Lab 2

Grupo:

- Eduardo Amorim Vilela de Salis 11226805
- Débora Mauricio Kono 9896754
- Douglas Silva Cardosos 11766990

Biblioteca

```
library(WDI) # baixar os dados do World Bank
library(magrittr)
library(tidyverse)
— Attaching core tidyverse packages —
                                                               – tidyverse 2.0.0 —

✓ dplyr 1.1.0 ✓ readr 2.1.4

✓ forcats 1.0.0

✓ stringr 1.5.0

✓ ggplot2 3.4.1 ✓ tibble 3.2.0
✓ lubridate 1.9.2 ✓ tidyr 1.3.0

✓ purrr 1.0.1
— Conflicts ——
                                                       —— tidyverse_conflicts() —
* tidyr::extract() masks magrittr::extract()
# dplyr::filter() masks stats::filter()
# dplyr::lag() masks stats::lag()
purrr::set_names() masks magrittr::set_names()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts
to become errors
 library(ggplot2)
library(dplyr)
library(cluster)
library(fpc)
 library(formattable)
```

```
pre_process_df <- function(df){
    df <- subset(df, region != "Aggregates")

df$region |> as.character()

dfi <- df[, lista_indicadores]
    row.names(dfi) <- df$country
    colnames(dfi) <- c("Inflacao", "PIB_per_Capita", "Crescimento_PIB", "Desemprego")

dfi <- na.omit(dfi)
    dfi$Desemprego <- 100 - dfi$Desemprego
    names(dfi)[4] <- "Emprego"</pre>
```

```
return(dfi)
}
```

KEANS

Análise para 2014

```
lista_indicadores <- c("FP.CPI.TOTL.ZG", # inflação (%)
                      "NY.GDP.PCAP.CD", # Pib per capita (USD)
                      "NY.GDP.MKTP.KD.ZG", # crescimento do PIB anual (%),
                      "SL.UEM.TOTL.ZS" # Desemprego (%)
)
df2014 <- WDI(indicator = lista_indicadores, country = "all", start = 2014, end = 2014
              extra = TRUE)
str(df2014 )
'data.frame':
               266 obs. of 16 variables:
                   : chr "Afghanistan" "Africa Eastern and Southern" "Africa Western
$ country
and Central" "Albania" ...
                  : chr "AF" "ZH" "ZI" "AL" ...
$ iso2c
                  : chr "AFG" "AFE" "AFW" "ALB" ...
$ iso3c
                 $ year
                         ...
$ status
                  : chr
$ lastupdated : chr "2023-05-10" "2023-05-10" "2023-05-10" "2023-05-10" ...
$ FP.CPI.TOTL.ZG : num 4.67 5.37 1.77 1.63 2.92 ...
 ... attr(*, "label")= chr "Inflation, consumer prices (annual %)"
$ NY.GDP.PCAP.CD
                 : num 628 1719 2243 4579 5516 ...
 ... attr(*, "label")= chr "GDP per capita (current US$)"
$ NY.GDP.MKTP.KD.ZG: num 2.72 4.04 5.93 1.77 3.8 ...
  ... attr(*, "label")= chr "GDP growth (annual %)"
$ SL.UEM.TOTL.ZS
                 : num 7.91 6.56 3.99 18.05 10.21 ...
  ... attr(*, "label")= chr "Unemployment, total (% of total labor force) (modeled ILO
estimate)"
$ region
                         "South Asia" "Aggregates" "Aggregates" "Europe & Central
                  : chr
Asia" ...
                 : chr "Kabul" "" "" "Tirane" ...
$ capital
                         "69.1761" "" "19.8172" ...
$ longitude
                  : chr
                         "34.5228" "" "41.3317" ...
$ latitude
                 : chr
$ income
                  : chr "Low income" "Aggregates" "Aggregates" "Upper middle
income" ...
$ lending
               : chr "IDA" "Aggregates" "Aggregates" "IBRD" ...
dfi2014 <- pre_process_df(df2014)</pre>
```

```
dfi2014 |> str()
'data.frame':
               171 obs. of 4 variables:
$ Inflacao
                 : num 4.67 1.63 2.92 7.28 2.98 ...
$ PIB_per_Capita : num 628 4579 5516 5059 4017 ...
$ Crescimento_PIB: num 2.72 1.77 3.8 4.82 3.6 ...
                 : num 92.1 82 89.8 90.4 88.1 ...
$ Emprego
- attr(*, "na.action")= 'omit' Named int [1:45] 4 5 7 8 10 22 28 37 40 44 ...
 ... attr(*, "names")= chr [1:45] "American Samoa" "Andorra" "Antigua and Barbuda"
"Argentina" ...
dfi2014 |> summary()
   Inflacao
                  PIB_per_Capita
                                     Crescimento_PIB
                                                          Emprego
```

```
257.8
     :-1.5092
               Min. :
                               Min.
                                     :-10.079
                                                     :71.62
1st Qu.: 0.8682
               1st Qu.: 1928.2
                               1st Qu.: 1.599 1st Qu.:89.36
Median : 2.7592
               Median : 5544.1
                               Median: 3.537 Median: 93.45
               Mean : 15240.7
Mean : 4.0680
                               Mean : 3.556 Mean :91.97
3rd Qu.: 5.6829
                               3rd Qu.: 5.397
                                               3rd Qu.:96.43
               3rd Qu.: 16899.8
Max. :62.1686
               Max. :123678.7
                               Max. : 19.047
                                              Max.
                                                    :99.80
```

```
dfi2014 |> head()
```

```
Inflacao PIB_per_Capita Crescimento_PIB Emprego
Afghanistan 4.673996
                      628.1468
                                      2.724543 92.090
Albania 1.625865
                     4578.6332
                                      1.774449 81.950
                     5516.2306
         2.916927
                                      3.800000 89.790
Algeria
                      5059.0804
                                     4.820000 90.420
Angola
         7.280387
        2.981309
                     4017.2298
                                     3.600000 88.138
Armenia
Australia 2.487923
                      62513.4112
                                      2.579017 93.920
```

Determinando Quantidade de grupos

```
dfi2014_escala <- scale(dfi2014)

wss <- (nrow(dfi2014_escala)-1)*sum(apply(dfi2014_escala,2,var))
for (i in 2:15) wss[i] <- sum(kmeans(dfi2014_escala,centers=i)$withinss)

plot(1:15, wss, type="b", xlab="Número de Grupos",ylab="Soma dos quadrados dentro dos</pre>
```


Plotando os clusters

```
dendo <- dfi2014_escala %>% dist() %>% hclust()
plot(dendo)
rect.hclust(dendo, k = 4, border = "blue")
rect.hclust(dendo, k = 5, border = "red")
rect.hclust(dendo, k = 8, border = "green")
```

Cluster Dendrogram

hclust (*, "complete")

```
library(cluster)
library(fpc)

grupos <- kmeans(dfi2014_escala, centers=5)
clusplot(dfi2014_escala, grupos$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)</pre>
```

CLUSPLOT(dfi2014_escala)

These two components explain 61.66 % of the point variability.

grupos <- kmeans(dfi2014_escala, centers=4)
clusplot(dfi2014_escala, grupos\$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)</pre>

CLUSPLOT(dfi2014 escala)

These two components explain 61.66 % of the point variability.

Plotando os clusters

```
dfi2014_escala[c("Brazil", "Chile", "Colombia", "Norway", "United States"),] %>% dist(

Brazil Chile Colombia Norway

Chile 0.499762

Colombia 1.435620 1.013618

Norway 4.017933 3.836570 4.241284

United States 2.185957 1.925989 2.311189 1.975246
```

Países com MENOR dissimilaridade em relação ao Brasil

```
mat_brasil <- dfi2014_escala %>% dist(diag = TRUE, upper = TRUE) %>% as.matrix()
mat_brasil[, "Brazil"] %>% sort() %>% head(5)

Brazil Russian Federation Equatorial Guinea Suriname
0.0000000 0.3694132 0.4409301 0.4849345
Chile
0.4997620
```

Países com MAIOR dissimilaridade em relação ao Brasil

```
mat_brasil[, "Brazil"] %>% sort() %>% tail(5)
Papua New Guinea
                       Luxembourg
                                             Sudan
                                                            Morocco
        4.286916
                         5.243560
                                          5.262285
                                                           6.075438
   Venezuela, RB
        8.814588
Estatística por cluster
```

```
set.seed(123)
 lista_clusteres <- kmeans(dfi2014_escala, centers = 5)$cluster
dfi2014_com_cluster <- dfi2014 |>
  mutate(cluster = lista_clusteres)
stats_cluster <- dfi2014_com_cluster |>
  group_by(cluster) |>
  summarise(
    qtd = n(),
    Media_inflacao = mean(Inflacao, na.rm = TRUE),
    Media_pibpc = mean(PIB_per_Capita, na.rm = TRUE),
    Media_cresciemento = mean(Crescimento_PIB),
    Media_emprego = mean(Emprego, na.rm = TRUE))
stats_cluster
# A tibble: 5 \times 6
           qtd Media_inflacao Media_pibpc Media_cresciemento Media_emprego
  cluster
    <int> <int>
                         <dbl>
                                     <dbl>
                                                         <dbl>
                                                                       <dbl>
                         49.5
                                                         0.383
1
        1
             2
                                     9026.
                                                                        87.9
             27
2
        2
                          1.57
                                    58757.
                                                         2.19
                                                                        94.4
3
            6
                          3.20
                                     1761.
                                                        11.6
                                                                        96.2
4
        4
             44
                          2.33
                                     9828.
                                                         1.63
                                                                        83.9
5
        5
             92
                          4.70
                                     6072.
                                                         4.42
                                                                        95.0
dfi2014_com_cluster["Brazil",]
       Inflacao PIB_per_Capita Crescimento_PIB Emprego cluster
Brazil 6.32904
                      12071.16
                                     0.5039557
                                                  93.24
dfi2014_com_cluster |> filter(cluster == 3) # paises realmente parecidos
```

```
Inflacao PIB_per_Capita Crescimento_PIB Emprego cluster
Congo, Dem. Rep. 1.2430389
                                472.2662
                                                9.470288 95.551
Cote d'Ivoire
                0.4486821
                               2124.0196
                                                9.372000 96.525
                                                                       3
Ethiopia
                6.8900195
                                557.5341
                                               10.257493 97.588
                                                                       3
Morocco
                0.4423101
                               3430.5496
                                               19.047279 90.300
                                                                       3
```

Myanmar 4.9532992 1238.7287 8.199664 99.277 3 Papua New Guinea 5.2221172 2742.2333 13.543771 97.660 3

dfi2014_com_cluster |> filter(cluster == 2) # paises desenvolvidos

	Inflacao	PIB_per_Capita	${\tt Crescimento_PIB}$	Emprego	cluster
Australia	2.48792271	62513.41	2.5790171	93.920	2
Austria	1.60581183	51786.38	0.6612728	94.380	2
Belgium	0.34000283	47764.07	1.5785331	91.480	2
Brunei Darussalam	-0.20710873	41037.07	-2.5083526	93.140	2
Canada	1.90663591	50956.00	2.8700361	93.090	2
Denmark	0.56402054	62548.98	1.6193938	93.070	2
Finland	1.04119621	50327.24	-0.3649082	91.340	2
France	0.50775882	43068.55	0.9561831	89.710	2
Germany	0.90679400	48023.87	2.2095434	95.020	2
Hong Kong SAR, China	4.42364532	40315.29	2.7624196	96.700	2
Iceland	2.04461482	54576.74	1.6872150	95.100	2
Ireland	0.18254232	55643.06	8.6493506	88.140	2
Israel	0.48649555	38259.68	3.9191269	94.110	2
Japan	2.75922671	38475.40	0.2962055	96.410	2
Kuwait	2.90892673	43234.82	0.5008770	97.100	2
Luxembourg	0.62854399	123678.70	2.6230860	94.150	2
Macao SAR, China	6.04823452	90873.93	-2.0483806	98.330	2
Netherlands	0.97603508	52900.54	1.4233954	92.580	2
New Zealand	1.22750751	44572.90	3.8154276	94.570	2
Norway	2.04170287	97019.18	1.9695443	96.520	2
Qatar	3.34972086	93126.15	5.3343233	99.800	2
Singapore	1.02514803	57562.53	3.9355403	96.260	2
Sweden	-0.17963849	60020.36	2.6577983	92.050	2
Switzerland	-0.01320254	88724.99	2.3498813	95.170	2
United Arab Emirates	2.34626866	46865.96	4.1656918	98.098	2
United Kingdom	1.45112016	47447.59	3.1997026	93.890	2
United States	1.62222298	55123.85	2.2877759	93.830	2

dfi2014_com_cluster |> filter(cluster == 5) # paises subdesenvolvidos / emergentes

	Inflacao	PIB_per_Capita	Crescimento_PIB	Emprego
Afghanistan	4.67399604	628.1468	2.72454336	92.090
Algeria	2.91692692	5516.2306	3.80000000	89.790
Angola	7.28038730	5059.0804	4.82000000	90.420
Azerbaijan	1.37344182	7891.3131	2.75050682	95.090
Bahrain	2.64755321	25464.7601	4.35039085	98.816
Bangladesh	6.99163889	1108.5151	6.06105936	95.607
Belarus	18.11955435	8341.3997	1.72638485	94.004
Belize	1.20139964	6068.0886	4.08958130	91.760
Benin	-0.54875755	1251.5048	6.35767910	97.889
Bhutan	8.27106094	2589.8998	5.77649568	97.370
Bolivia	5.76660075	3022.4629	5.46056951	97.980
Brazil	6.32904016	12071.1582	0.50395574	93.240
Burkina Faso	-0.25808952	767.3714	4.32684561	95.794
Burundi	4.40535234	257.8186	4.24065021	98.430
Cambodia	3.85568861	1098.0745	7.14257110	99.310
Cameroon	1.85489850	1631.7141	5.71981814	96.470

Central African Republic	1/ 00060/10	394.8570	0.08107052	94.423
Chad	1.68197314	1017.7878	6.89998505	98.958
Chile	4.71867528	14666.3435	1.79264947	93.350
China	1.92164163	7636.1166	7.42576366	95.370
Colombia	2.89883788	8164.7145	4.49903000	91.430
Costa Rica	4.51920099	10737.6789	3.54210988	91.500
Dominican Republic	2.99864226	6533.6669	7.05046369	93.280
Ecuador	3.58922017	6374.6315	3.78886855	96.520
El Salvador	1.14134468	3638.5177	1.70870627	95.850
Estonia	-0.10617515	20261.0667	3.01136659	92.650
Fiji	0.51930647	5305.1909	5.60351489	95.723
Ghana	15.48961603	1942.9051	2.85624016	95.505
Guatemala	3.41836170	3779.6423	4.44397758	97.280
Guinea	6.15050557	774.5690	3.69655312	95.084
Guinea-Bissau	-1.50924461	605.1226	0.96456075	96.837
Honduras	6.12924930	2164.4202	3.05808056	92.920
Hungary	-0.22756627	14294.2584	4.23220981	92.270
India	6.66565672	1559.8645	7.41022761	92.019
Indonesia	6.39492541	3476.6249	5.00666843	95.950
Iran, Islamic Rep.	16.60655324	5757.5433	4.98477507	89.320
Jamaica	8.27407886	4991.5655	0.68982236	90.950
Kazakhstan	6.70657829	12807.2607	4.20000000	94.940
Kenya	6.87815499	1489.9191	5.02011100	97.204
Korea, Rep.	1.27477446	29249.5752	3.20245379	96.920
Kyrgyz Republic	7.53424730	1279.7698	4.02403863	96.717
Lao PDR	4.12924307	1984.5087	7.61196344	97.854
Lebanon	1.85460421	7665.3797	2.48406011	91.235
Liberia	9.86111286	713.7349	0.70139310	97.920
Madagascar	6.08040811	517.1362	3.33920311	98.609
Malawi	23.79206495	367.0243	5.70000001	95.032
Malaysia	3.14299051	11045.4451	6.00672195	97.120
Maldives	2.12000176	8872.1249	7.32962620	92.479
Mali	0.88381455	818.4304	7.08468388	98.651
Malta	0.31030647	26754.2623	7.63311934	
				94.270
Mauritania	3.53436856	1715.3888	4.27482327	89.934
Mauritius	3.21769192	10368.6134	3.82696982	92.530
Mexico	4.01861608	11076.0925	2.84977325	95.190
Moldova	5.08878555	3327.7868	4.99962592	96.270
Mongolia	12.25398081	4211.9395	7.88522548	95.200
Mozambique	2.55974876	680.3750	7.39851280	96.616
Nepal	8.36415470	827.7443	6.01148284	89.424
Nicaragua	6.03596862	1913.5213	4.78581617	95.480
Niger	-0.93028726	560.7545	6.64213665	99.480
Nigeria	8.04741088	3200.9531	6.30971866	96.056
Oman	1.02234314	23121.2064	1.29225229	96.450
Pakistan	7.18938403	1173.3925	4.67470798	98.170
Panama	2.62668365	12837.2480	5.06642235	95.581
Paraguay	5.02882767	6629.4170	5.30123859	94.970
Peru	3.41194580	6614.9333	2.38215737	96.790
Philippines	3.59782344	2935.9256	6.34798748	96.400
Poland	0.05382131	14182.1375	3.83695849	91.010
Romania	1.06830988	10031.2673	4.12067496	93.200
Russian Federation	7.82341184	14095.6484	0.73626722	94.840
Rwanda	2.35449053	724.3522	6.16716772	88.124
			- · = - · · · =	- ·

Sao Tome and Principe	6.99849944	1754.6005	6.54993496	86.360
Saudi Arabia	2.23629032	23543.5663	3.65248567	94.280
Senegal	-1.09025507	1417.0951	6.22407444	92.375
Sierra Leone	4.63931171	702.3354	4.55677237	95.320
Solomon Islands	5.16590238	2235.7473	1.18921747	99.266
Sri Lanka	3.17900228	3971.9187	6.37797890	95.810
Suriname	3.38341273	9199.1779	0.25550303	93.060
Tajikistan	6.10442765	1094.4227	6.70000069	91.773
Tanzania	6.13161433	1012.7669	6.73246187	91.773
Thailand	1.89514182	5822.3837	0.73240187	99.420
Timor-Leste	0.84883821	1221.5343	4.47196212	95.787
Togo	0.19087508	627.7094	5.92058857	97.855
Tonga	2.51087633	4125.4368	2.01870046	98.174
Trinidad and Tobago	5.68441815	20327.9835	3.32294441	97.520
Turkiye 	8.85457271	12020.5826	4.93971516	90.120
Uganda 	3.07570669	897.5097	5.10630732	97.677
Uruguay	8.87735333	16875.5062	3.23879122	93.450
Uzbekistan	9.28309356	2628.4600	6.87383844	94.910
Vanuatu	0.79886384	2861.2022	3.13686729	98.208
Vietnam	4.08455447	2558.7789	6.42224666	98.740
Zambia	7.80687554	1724.5762	4.69799236	91.867
Zimbabwe	-0.19778481	1407.0343	1.48454262	95.230
	cluster			
Afghanistan	5			
Algeria	5			
Angola	5			
Azerbaijan	5			
Bahrain	5			
Bangladesh	5			
Belarus	5			
Belize	5			
Benin	5			
Bhutan	5			
Bolivia	5			
Brazil	5			
Burkina Faso	5			
Burundi	5			
Cambodia	5			
Cameroon	5			
Central African Republic	5			
Chad	5			
Chile	5			
China	5			
Colombia	5			
Costa Rica	5			
Dominican Republic	5			
Ecuador	5			
El Salvador	5			
Estonia	5			
Fiji	5			
Ghana	5			
Guatemala	5			
Guinea	5			
Guinea-Bissau	5			
	-			

Honduras	5
Hungary	5
India	5
Indonesia	5
Iran, Islamic Rep.	5
Jamaica	5
Kazakhstan	5
Kenya	5
Korea, Rep.	5
Kyrgyz Republic	5
Lao PDR	5
Lebanon	5
Liberia	5
Madagascar	5
Malawi	5
Malaysia	5
Maldives	5
Mali	5
Malta	5
Mauritania	5
Mauritius	5
Mexico	5
Moldova	5
Mongolia	5
Mozambique	5
Nepal	5
Nicaragua	5
Niger	5
Nigeria	5
Oman	5
Pakistan	5
Panama	5
	5
Paraguay Peru	5
Philippines	5
Poland	5
Romania	
	5
Russian Federation	5
Rwanda	5
Sao Tome and Principe	5
Saudi Arabia	5
Senegal	5
Sierra Leone	5
Solomon Islands	5
Sri Lanka	5
Suriname	5
Tajikistan	5
Tanzania	5
Thailand	5
Timor-Leste	5
Togo	5
Tonga	5
Trinidad and Tobago	5
Turkiye	5

```
Uganda 5
Uruguay 5
Uzbekistan 5
Vanuatu 5
Vietnam 5
Zambia 5
Zimbabwe 5
```

Análise para 2020

```
lista_indicadores <- c("FP.CPI.TOTL.ZG", # inflação (%)</pre>
                      "NY.GDP.PCAP.CD", # Pib per capita (USD)
                      "NY.GDP.MKTP.KD.ZG", # crescimento do PIB anual (%),
                      "SL.UEM.TOTL.ZS" # Desemprego (%)
)
df2020 <- WDI(indicator = lista_indicadores, country = "all", start = 2020, end = 2020
              extra = TRUE)
str(df2020 )
'data.frame': 266 obs. of 16 variables:
                  : chr "Afghanistan" "Africa Eastern and Southern" "Africa Western
$ country
and Central" "Albania" ...
$ iso2c
                  : chr "AF" "ZH" "ZI" "AL" ...
                 : chr "AFG" "AFE" "AFW" "ALB" ...
$ iso3c
$ year
                  : chr "" "" "" "" ...
$ status
                 : chr "2023-05-10" "2023-05-10" "2023-05-10" "2023-05-10" ...
$ lastupdated
$ FP.CPI.TOTL.ZG : num NA 6.36 2.44 1.62 2.42 ...
 ... attr(*, "label")= chr "Inflation, consumer prices (annual %)"
$ NY.GDP.PCAP.CD : num 517 1364 1683 5332 3337 ...
 ... attr(*, "label")= chr "GDP per capita (current US$)"
$ NY.GDP.MKTP.KD.ZG: num -2.35 -3.04 -0.9 -3.48 -5.1 ...
 ... attr(*, "label")= chr "GDP growth (annual %)"
$ SL.UEM.TOTL.ZS
                 : num 11.71 7.63 4.91 13.07 12.25 ...
  ... attr(*, "label")= chr "Unemployment, total (% of total labor force) (modeled ILO
estimate)"
$ region
                         "South Asia" "Aggregates" "Aggregates" "Europe & Central
                  : chr
Asia" ...
                         "Kabul" "" "Tirane" ...
$ capital
                  : chr
                         "69.1761" "" "19.8172" ...
$ longitude
                 : chr
                         "34.5228" "" "41.3317" ...
$ latitude
                  : chr
$ income
                         "Low income" "Aggregates" "Aggregates" "Upper middle
                  : chr
income" ...
$ lending
                : chr "IDA" "Aggregates" "Aggregates" "IBRD" ...
dfi2020 <- pre_process_df(df2020)
```

```
dfi2020 |> str()
'data.frame':
               159 obs. of 4 variables:
$ Inflacao
                 : num 1.621 2.415 22.272 1.211 0.847 ...
$ PIB_per_Capita : num 5332 3337 1604 4506 51720 ...
$ Crescimento_PIB: num -3.4816 -5.1 -5.6 -7.2 -0.0509 ...
                 : num 86.9 87.8 89.7 87.8 93.5 ...
$ Emprego
 - attr(*, "na.action")= 'omit' Named int [1:57] 1 4 5 7 8 10 17 22 28 37 ...
 ... attr(*, "names")= chr [1:57] "Afghanistan" "American Samoa" "Andorra" "Antigua
and Barbuda" ...
dfi2020 |> summary()
   Inflacao
                   PIB_per_Capita
                                    Crescimento_PIB
                                                         Emprego
                   Min. : 216.8 Min.
                                            :-54.236
Min. : -2.5952
                                                             :71.95
                                                      Min.
1st Qu.: 0.4573 1st Qu.: 2227.9 1st Qu.: -7.290 1st Qu.:89.48
Median: 1.9403 Median: 5353.4 Median: -3.697 Median: 93.97
Mean : 8.2186
                   Mean : 14642.9 Mean : -4.598
                                                      Mean :91.96
                                                      3rd Qu.:95.77
3rd Qu.: 4.3330
                   3rd Qu.: 18873.3
                                     3rd Qu.: -1.086
Max. :557.2018 Max. :117370.5 Max. :43.480 Max.
                                                            :99.86
dfi2020 |> head()
           Inflacao PIB_per_Capita Crescimento_PIB Emprego
Albania
         1.6208866
                         5332.160
                                     -3.48163037 86.933
Algeria
         2.4151309
                         3337.253
                                    -5.10000000 87.752
                         1603.993
                                    -5.60000000 89.650
Angola 22.2715643
                        4505.867
                                     -7.20000000 87.820
         1.2114358
Armenia
Australia 0.8469055
                       51720.371
                                     -0.05088534 93.540
                    48809.227 -6.45396847 94.640
Austria
         1.3819106
# Load required libraries
library(ggplot2)
library(dplyr)
# Create a sample dataset
set.seed(123)
cluster <- rep(c("Cluster 1", "Cluster 2", "Cluster 3"), each = 50)</pre>
variable_A \leftarrow rnorm(150, mean = 0, sd = 1)
variable_B < -rnorm(150, mean = 0, sd = 1)
data <- data.frame(cluster, variable_A, variable_B)</pre>
# Reshape the data
data_long <- data %>%
  tidyr::pivot_longer(cols = c(variable_A, variable_B), names_to = "Variable", values_
# Boxplot with facet_wrap
ggplot(data_long, aes(x = cluster, y = Value)) +
  geom_boxplot() +
```

ylab("Value") +

```
ggtitle("Boxplot: Distribution by Cluster") +
facet_wrap(~ Variable, scales = "free_y", nrow = 1)
```

Boxplot: Distribution by Cluster


```
dfi2014_com_cluster_long <- dfi2014_com_cluster |>
    tidyr::pivot_longer(cols = c("Inflacao" ,"PIB_per_Capita","Crescimento_PIB","Empreg

ggplot(dfi2014_com_cluster_long, aes(x = cluster, y = Value,group = cluster)) +
    geom_boxplot(aes(fill=as.factor(cluster))) +
    ylab("Value") +
    ggtitle("Boxplot: Distribution by Cluster") +
    facet_wrap(~ Variable, scales = "free_y", nrow = 1)
```

Boxplot: Distribution by Cluster

Determinando Quantidade de grupos

```
dfi2020_escala <- scale(dfi2020)

wss <- (nrow(dfi2020_escala)-1)*sum(apply(dfi2020_escala,2,var))
for (i in 2:15) wss[i] <- sum(kmeans(dfi2020_escala,centers=i)$withinss)

plot(1:15, wss, type="b", xlab="Número de Grupos",ylab="Soma dos quadrados dentro dos</pre>
```


Plotando os clusters

```
dendo <- dfi2020_escala %>% dist() %>% hclust()
plot(dendo)
rect.hclust(dendo, k = 4, border = "blue")
rect.hclust(dendo, k = 5, border = "red")
rect.hclust(dendo, k = 8, border = "green")
```

Cluster Dendrogram

hclust (*, "complete")

grupos <- kmeans(dfi2020_escala, centers=5)
clusplot(dfi2020_escala, grupos\$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)</pre>

CLUSPLOT(dfi2020_escala)

These two components explain 57.36 % of the point variability.

grupos <- kmeans(dfi2020_escala, centers=4)
clusplot(dfi2020_escala, grupos\$cluster, color=TRUE, shade=TRUE, labels=2, lines=0)</pre>

CLUSPLOT(dfi2020 escala)

These two components explain 57.36 % of the point variability.

Plotando os clusters

```
dfi2020_escala[c("Brazil", "Chile", "Colombia", "Norway", "United States"),] %>% dist(

Brazil Chile Colombia Norway

Chile 0.6426576

Colombia 0.4520524 0.8039336

Norway 3.4752975 3.0242062 3.7025703

United States 3.0133136 2.6011301 3.1973846 0.7187515
```

Países com MENOR dissimilaridade em relação ao Brasil

Países com MAIOR dissimilaridade em relação ao Brasil

```
mat_brasil[, "Brazil"] %>% sort() %>% tail(5)
         Ireland
                       Luxembourg
                                            Guyana Macao SAR, China
        4.370194
                         5.661024
                                          5.983287
                                                          6.840375
        Zimbabwe
       12.078602
Estatística por cluster
 set.seed(123)
 lista_clusteres <- kmeans(dfi2020_escala, centers = 5)$cluster
 dfi2020_com_cluster <- dfi2020 |>
   mutate(cluster = lista_clusteres)
 stats_cluster <- dfi2020_com_cluster |>
   group_by(cluster) |>
   summarise(
     qtd = n(),
     Media_inflacao = mean(Inflacao, na.rm = TRUE),
     Media_pibpc = mean(PIB_per_Capita, na.rm = TRUE),
     Media_cresciemento = mean(Crescimento_PIB),
     Media_emprego = mean(Emprego, na.rm = TRUE))
 stats_cluster
# A tibble: 5 \times 6
  cluster qtd Media_inflacao Media_pibpc Media_cresciemento Media_emprego
    <int> <int>
                        <dbl>
                                    <dbl>
                                                       <dbl>
                                                                    <dbl>
                     557.
                                                       -7.82
1
        1
             1
                                     1373.
                                                                       92.1
2
        2
            72
                        4.31
                                    6356.
                                                       -0.625
                                                                       94.9
3
        3 31
                        7.64
                                    5852.
                                                      -6.73
                                                                       82.6
4
        4
           25
                         0.400
                                    54556.
                                                       -3.39
                                                                       94.6
5
        5
            30
                         6.41
                                    10796.
                                                      -12.8
                                                                       92.3
 dfi2020_com_cluster["Brazil",]
       Inflacao PIB_per_Capita Crescimento_PIB Emprego cluster
Brazil 3.211768
                      6794.489
                                     -3.878676
                                                 86.07
 dfi2020_com_cluster |> filter(cluster == 1) # Zimbabwe é um outlier
         Inflacao PIB_per_Capita Crescimento_PIB Emprego cluster
Zimbabwe 557.2018
                        1372.697
                                       -7.816951 92.102
```

dfi2020_com_cluster |> filter(cluster == 4)

	Inflacao	PIB_per_Capita	${\tt Crescimento_PIB}$	Emprego	cluster
Australia	0.84690554	51720.37	-0.05088534	93.540	4
Austria	1.38191063	48809.23	-6.45396847	94.640	4
Belgium	0.74079181	45517.79	-5.36138663	94.450	4
Canada	0.71699963	43258.26	-5.23302430	90.540	4
Denmark	0.42071197	60915.42	-1.99460757	94.360	4
Finland	0.29055456	49170.75	-2.20513937	92.240	4
France	0.47649885	39055.28	-7.78458649	91.990	4
Germany	0.14487793	46772.83	-3.69678871	96.140	4
Hong Kong SAR, China	0.25096202	46107.77	-6.54500824	94.190	4
Iceland	2.84792402	59200.18	-6.84229603	94.520	4
Ireland	-0.33458463	85420.19	6.18453804	94.380	4
Israel	-0.58843030	44846.79	-1.85728928	95.670	4
Japan	-0.02499583	39918.17	-4.50690454	97.200	4
Korea, Rep.	0.53728802	31721.30	-0.70941536	96.070	4
Luxembourg	0.81995730	117370.50	-0.79743559	93.230	4
Netherlands	1.27246038	52162.57	-3.88608392	96.180	4
New Zealand	1.71456170	41596.51	-1.25266453	95.400	4
Norway	1.28658491	67329.68	-0.71718267	95.580	4
Qatar	-2.54031503	52315.66	-3.64044980	99.860	4
Singapore	-0.18191667	60729.45	-4.14310562	95.900	4
Sweden	0.49736732	52837.90	-2.17021318	91.710	4
Switzerland	-0.72587493	85656.32	-2.37556328	95.180	4
United Arab Emirates	-2.07940318	37629.17	-4.95705244	95.710	4
United Kingdom	0.98948670	40318.56	-11.03085846	95.528	4
United States	1.23358440	63530.63	-2.76780251	91.950	4

dfi2020_com_cluster |> filter(cluster == 3)

	Inflacao	PIB_per_Capita	Crescimento_PIB
Albania	1.6208866	5332.1605	-3.481630
Algeria	2.4151309	3337.2525	-5.100000
Armenia	1.2114358	4505.8674	-7.200000
Bosnia and Herzegovina	-1.0512960	6012.0628	-3.119291
Botswana	1.8903592	5863.2032	-8.726409
Brazil	3.2117680	6794.4892	-3.878676
Cabo Verde	0.6057958	2924.1018	-14.783405
Colombia	2.5266350	5307.2152	-7.048151
Congo, Rep.	1.7953715	1838.4481	-6.239320
Costa Rica	0.7249115	12132.8769	-4.050908
Djibouti	1.7774078	2917.9963	1.202022
Gabon	1.3527611	6680.0827	-1.837761
Georgia	5.2024649	4255.7430	-6.760440
Greece	-1.2479836	17658.9473	-9.004044
Haiti	22.7963114	1283.1408	-3.343373
Iraq	0.5741627	4332.3041	-11.324199
Jordan	0.3332944	4042.7693	-1.569473
Lesotho	4.9780968	989.8472	-8.356396
Montenegro	-0.2556557	7677.1522	-15.306894
Namibia	2.2093824	4251.1728	-8.036214
Nepal	5.0523666	1139.1903	-2.369621
North Macedonia	1.2000735	5965.4502	-6.110887
Rwanda	9.8503990	774.6893	-3.358853

South Africa	3.2100360	5741.6431	-6.342471
Spain	-0.3227530		
St. Lucia	-1.7558083		
St. Vincent and the Grenadines			
Sudan	150.3227239		
Tunisia	5.6341512		
Turkiye	12.2789574	8561.0709	
West Bank and Gaza	-0.7353320		
west bank and daza	Emprego clus		11.310400
Albania	86.933	3	
Algeria	87.752	3	
Armenia	87.820	3	
Bosnia and Herzegovina	84.735	3	
Botswana	78.980	3	
Brazil	86.070	3	
Cabo Verde	85.122	3	
Colombia	84.960	3	
Congo, Rep.	77.483	3	
Costa Rica	83.570	3	
Djibouti	71.952	3	
Gabon	78.274	3	
Georgia	88.270	3	
Greece	83.690	3	
Haiti	84.915	3	
Iraq	83.770	3	
Jordan	80.790	3	
Lesotho	81.539	3	
Montenegro	82.120	3	
Namibia	78.764	3	
Nepal	86.922	3	
North Macedonia	83.450	3	
Rwanda	86.990	3	
South Africa	75.660	3	
Spain	84.470	3	
St. Lucia	79.610	3	
St. Vincent and the Grenadines	79.450	3	
Sudan	80.708	3	
Tunisia	83.627	3	
Turkiye	86.890	3	
West Bank and Gaza	74.110	3	

dfi2020_com_cluster |> filter(cluster == 5)

		Inflacao	PIB_per_Capita	${\tt Crescimento_PIB}$	Emprego	cluster
Angola		22.27156431	1603.993	-5.600000	89.650	5
Bahamas,	The	0.03852110	23862.711	-23.822608	87.133	5
Belize		0.12143464	5266.876	-13.402959	89.212	5
Bhutan		5.62936523	3009.924	-10.009699	94.970	5
Bolivia		0.94074215	3068.813	-8.737884	92.100	5
Chile		3.04549085	13094.460	-5.978224	88.860	5
Croatia		0.15481137	14198.754	-8.580343	92.490	5
Ecuador		-0.33887239	5645.199	-7.787607	93.890	5
Fl Salvad	or	-0.37159021	3903.396	-8.177217	94.980	5

```
Fiji
                                                     -17.000235
                                                                 95.206
                                                                              5
                    -2.59524326
                                      4864.117
Honduras
                                                                              5
                     3.46841178
                                      2354.120
                                                      -8.964760
                                                                 89.320
                                                                              5
India
                     6.62343678
                                      1910.421
                                                      -6.596081
                                                                 89.805
Italy
                    -0.13770757
                                     31911.036
                                                      -9.039953
                                                                 90.840
                                                                              5
                     5.22677779
Jamaica
                                      4897.266
                                                     -10.000000 93.500
                                                                              5
                     2.10172955
                                     24300.329
                                                                              5
Kuwait
                                                      -8.855279 96.669
                                                                              5
Kyrgyz Republic
                     6.32542296
                                      1182.522
                                                     -8.398364 95.370
                    84.86433305
                                      5599.958
                                                                              5
Lebanon
                                                     -21.399900 87.029
Macao SAR, China
                     0.81141051
                                     37646.316
                                                     -54.235900 97.430
                                                                              5
Maldives
                    -1.36977426
                                      7282.358
                                                     -33.492796 94.660
                                                                              5
Malta
                     0.63854496
                                     28977.566
                                                     -8.324283 95.650
                                                                              5
Mauritius
                     2.58080077
                                      9007.419
                                                     -14.597398 91.370
                                                                              5
                                                                              5
Mexico
                     3.39683416
                                      8655.001
                                                      -7.987912 95.550
                     0.70596866
                                                     -7.187080 88.886
                                                                              5
Morocco
                                      3258.121
                                                                              5
Panama
                    -1.55027541
                                     12569.172
                                                     -17.944894 85.886
Peru
                     2.00241206
                                      6056.344
                                                     -10.952699 92.820
                                                                              5
Philippines
                     2.39316239
                                      3224.423
                                                      -9.518295 97.480
                                                                              5
Portugal
                    -0.01243833
                                     22242.406
                                                     -8.300516 93.200
                                                                              5
Suriname
                    34.88978431
                                      4796.533
                                                     -15.975196 90.476
                                                                              5
Trinidad and Tobago 0.59898633
                                     13871.798
                                                      -7.678331 95.790
                                                                              5
                                                                              5
Uruguay
                                                      -6.121476 89.670
                     9.75640636
                                     15619.543
dfi2020_com_cluster <- dfi2020_com_cluster |>
```

```
dfi2020_com_cluster <- dfi2020_com_cluster |>
    tidyr::pivot_longer(cols = c("Inflacao" ,"PIB_per_Capita","Crescimento_PIB","Empreg

ggplot(dfi2020_com_cluster, aes(x = cluster, y = Value,group = cluster)) +
    geom_boxplot(aes(fill=as.factor(cluster))) +
    ylab("Value") +
    ggtitle("Boxplot: Distribution by Cluster") +
    facet_wrap(~ Variable, scales = "free_y", nrow = 1)
```

Boxplot: Distribution by Cluster

Seeds Agrupamento hierarquico

```
set.seed(786)
file_loc <- 'seeds.txt'
seeds_df <- read.csv(file_loc,sep = '\t',header = FALSE)

feature_name <-
c('area','perimeter','compactness','length.of.kernel','width.of.kernal
','asymmetry.coefficient','length.of.kernel.groove','type.of.seed')
colnames(seeds_df) <- feature_name</pre>
```

```
str(seeds_df)
```

```
'data.frame':
               221 obs. of
                            8 variables:
$ area
                         : num
                               15.3 14.9 14.3 13.8 16.1 ...
$ perimeter
                                14.8 14.6 14.1 13.9 15 ...
                         : num
$ compactness
                                0.871 0.881 0.905 0.895 0.903 ...
                         : num
$ length.of.kernel
                                5.76 5.55 5.29 5.32 5.66 ...
                         : num
$ width.of.kernal
     : num 3.31 3.33 3.34 3.38 3.56 ...
$ asymmetry.coefficient : num 2.22 1.02 2.7 2.26 1.35 ...
$ length.of.kernel.groove: num 5.22 4.96 4.83 4.8 5.17 ...
$ type.of.seed
                         : num 1111115 NA1...
```

```
summary(seeds_df)
```

```
length.of.kernel
     area
                  perimeter
                                 compactness
      : 1.00
                     : 1.00
Min.
                Min.
                                 Min.
                                        :0.8081
                                                  Min.
                                                         :0.8189
1st Qu.:12.11
                1st Qu.:13.43
                                 1st Qu.:0.8577
                                                 1st Qu.:5.2447
Median :14.13
                Median :14.29
                                 Median :0.8735 Median :5.5180
Mean
      :14.29
                Mean
                      :14.43
                                 Mean
                                        :0.8713 Mean :5.5639
3rd Qu.:17.09
                3rd Qu.:15.69
                                 3rd Qu.:0.8877
                                                  3rd Qu.:5.9798
Max.
       :21.18
                Max.
                       :17.25
                                 Max.
                                        :0.9183
                                                  Max.
                                                         :6.6750
NA's
                NA's
                        : 9
                                 NA's
                                                  NA's
        • 1
                                        :14
                                                         :11
width.of.kernal\n asymmetry.coefficient length.of.kernel.groove
Min. :2.630
                  Min.
                         :0.7651
                                         Min.
                                               :3.485
1st Qu.:2.956
                  1st Qu.:2.6002
                                         1st Qu.:5.045
Median :3.245
                  Median :3.5990
                                         Median :5.226
Mean
       :3.281
                  Mean
                          :3.6935
                                         Mean
                                                :5.408
3rd Qu.:3.566
                  3rd Qu.:4.7687
                                         3rd Qu.:5.879
Max.
        :5.325
                  Max.
                          :8.4560
                                         Max.
                                                :6.735
                  NA's
                                         NA's
NA's
                                                :15
        :12
                          :11
 type.of.seed
       :1.000
Min.
1st Qu.:1.000
Median :2.000
Mean
      :2.084
3rd Qu.:3.000
Max.
       :5.439
NA's
       :15
any(is.na(seeds_df))
[1] TRUE
seeds_df <- na.omit(seeds_df)</pre>
seeds_label <- seeds_df$type.of.seed</pre>
seeds_df$type.of.seed <- NULL</pre>
str(seeds_df)
'data.frame': 199 obs. of 7 variables:
$ area
                          : num 15.3 14.9 14.3 13.8 16.1 ...
$ perimeter
                          : num 14.8 14.6 14.1 13.9 15 ...
$ compactness
                          : num 0.871 0.881 0.905 0.895 0.903 ...
$ length.of.kernel
                          : num 5.76 5.55 5.29 5.32 5.66 ...
$ width.of.kernal
      : num 3.31 3.33 3.34 3.38 3.56 ...
$ asymmetry.coefficient : num 2.22 1.02 2.7 2.26 1.35 ...
$ length.of.kernel.groove: num 5.22 4.96 4.83 4.8 5.17 ...
- attr(*, "na.action")= 'omit' Named int [1:22] 8 9 37 38 63 64 72 73 111 112 ...
 ... attr(*, "names")= chr [1:22] "8" "9" "37" "38" ...
seeds_df_sc <- as.data.frame(scale(seeds_df))</pre>
summary(seeds_df_sc)
```

```
area
                   perimeter
                                  compactness
                                                    length.of.kernel
Min.
      :-1.4825
                 Min.
                        :-1.6680
                                 Min.
                                         :-2.6891
                                                    Min.
                                                           :-1.6776
1st Qu.:-0.8866
                 1st Qu.:-0.8591 1st Qu.:-0.5879
                                                    1st Qu.:-0.8480
Median :-0.1674
                 Median :-0.1723 Median : 0.1110
                                                    Median :-0.2303
     : 0.0000
                       : 0.0000
                                   Mean : 0.0000
                                                           : 0.0000
Mean
                 Mean
                                                    Mean
3rd Qu.: 0.8686
                 3rd Qu.: 0.9227
                                   3rd Qu.: 0.6857
                                                    3rd Qu.: 0.8090
      : 2.1443
                       : 2.0254
                                         : 2.0364
                                                           : 2.3261
Max.
                 Max.
                                   Max.
                                                    Max.
width.of.kernal\n asymmetry.coefficient length.of.kernel.groove
      :-1.67987
                         :-1.99450
                                               :-1.8300
Min.
                  Min.
                                        Min.
1st Qu.:-0.82214
                 1st Qu.:-0.76760
                                        1st Qu.:-0.7604
                                        Median :-0.3910
Median :-0.05427 Median :-0.04637
Mean : 0.00000
                  Mean : 0.00000
                                        Mean : 0.0000
3rd Qu.: 0.79025
                  3rd Qu.: 0.74759
                                        3rd Qu.: 0.9302
Max. : 2.02861
                  Max. : 3.13764
                                        Max. : 2.2921
dist_mat <- dist(seeds_df_sc, method = 'euclidean')</pre>
hclust_avg <- hclust(dist_mat, method = 'average')</pre>
plot(hclust_avg)
```

Cluster Dendrogram

dist_mat
hclust (*, "average")

```
cut_avg <- cutree(hclust_avg, k = 3)

cut_avg <- cutree(hclust_avg, k = 3)

plot(hclust_avg)
rect.hclust(hclust_avg , k = 3, border = 2:6)</pre>
```

```
abline(h = 3, col = 'red')
```

Cluster Dendrogram

dist_mat
hclust (*, "average")

```
#install.packages("dendextend")
suppressPackageStartupMessages(library(dendextend))
avg_dend_obj <- as.dendrogram(hclust_avg)
avg_col_dend <- color_branches(avg_dend_obj, h = 3)</pre>
```

```
suppressPackageStartupMessages(library(dplyr))
seeds_df_cl <- mutate(seeds_df, cluster = cut_avg)
count(seeds_df_cl,cluster)</pre>
```

```
suppressPackageStartupMessages(library(ggplot2))
ggplot(seeds_df_cl, aes(x=area, y = perimeter, color =
factor(cluster))) + geom_point()
```


Conclusão

Neste laboratório, pudemos compreender a importância da clusterização como um processo para identificar similaridades nos dados. Economistas e cientistas sociais podem se beneficiar da clusterização para compreender as verdadeiras relações entre os países, sem depender de classificações tradicionais baseadas em demarcações territoriais, regionais ou políticas. Da mesma forma, um gestor de ações pode agrupar seus ativos de forma não óbvia, identificando correlações "escondidas" e evitando a subjetividade das demarcações setoriais fornecidas por provedores como a Bolsa, Bloomberg, S&P, CVM, etc. Gerentes de marketing podem obter uma compreensão mais profunda de seus consumidores, identificando grupos nos quais uma campanha de marketing específica pode ser eficaz e conhecendo os concorrentes que possuem produtos semelhantes. Agricultores e biólogos podem compreender como diferentes grupos de sementes se comportam em diferentes condições climáticas e ambientais.

Ao aplicarmos o algoritmo K-means no dataset do Banco Mundial, pudemos capturar as reações dos países a diferentes dinâmicas econômicas. Observamos o seguinte:

 Em 2014, o K-means foi capaz de identificar países em situação extrema, como aqueles afetados por guerras, com baixo PIB per capita e alta inflação, agrupando-os nos clusters 3 e
 1. Também identificamos países ricos/desenvolvidos que foram alocados no cluster 2 (EUA, Dinamarca, Canadá, etc.). Países subdesenvolvidos e emergentes foram agrupados no cluster
 5.

- Em 2020, os clusters apresentaram uma distribuição um pouco mais uniforme (hipótese: "a pandemia pode ter aumentado a similaridade entre alguns países"). As regiões mais desenvolvidas (grupo 4) ainda não haviam sofrido os efeitos inflacionários da pandemia e experimentaram uma desaceleração menor. No entanto, é importante destacar que a principal distinção entre essas regiões foi o alto PIB per capita, um panorama histórico e anterior à pandemia. Independentemente do cluster, foi possível observar uma desaceleração generalizada entre os países devido à pandemia, ao contrário do que ocorreu em 2014.
- O Brasil, apesar de ter registrado uma queda no PIB abaixo da média, foi classificado no grupo de países emergentes/subdesenvolvidos. Em ambas as análises, foi possível identificar que o Brasil ficou agrupado com países emergentes/subdesenvolvidos, caracterizados por baixo crescimento e baixo PIB per capita.

Esta análise certamente será aprimorada com a inclusão de novas variáveis que nos permitam distinguir melhor os países. Algumas dessas variáveis podem ser o índice de alfabetização, notas no PISA (Programme for International Student Assessment), produtividade econômica, níveis de fome, índices de criminalidade, qualidade da saúde pública, índice de corrupção e uma variável indicadora para identificar se o país está em guerra, entre outras.

A adição dessas variáveis proporcionará uma visão mais abrangente e precisa da situação econômica, social e política de cada país, permitindo uma análise mais completa e aprofundada. Com um conjunto de dados mais abrangente, será possível identificar melhor os padrões, tendências e correlações entre as diferentes variáveis, o que contribuirá para uma compreensão mais precisa dos clusters e das relações entre os países.

Portanto, ao incorporar essas novas variáveis, será possível enriquecer a análise e obter insights mais valiosos sobre as semelhanças e diferenças entre os países, possibilitando uma tomada de decisão mais informada em várias áreas, como economia, política, educação, saúde e segurança.