LAB REPORT NO 11

Spring 2020

CS-II lab

Submitted by: **Muhammad Ali** Registration No: **19PWCSE1801**

Class Section: A

Submitted to:

Engr. Faiz ullah (07/03/ 2021)

Department of Computer Systems Engineering University of Engineering and Technology, Peshawar

Lab 11

High Pass Filter

It is a frequency selective circuit, which passes signals of frequencies above its low cut off frequency (f_L) and attenuates signals of frequencies below f_L.

Objectives:

To study the Active High pass filter and to evaluate:

- Low cutoff frequency of High pass filter.
- Pass band gain of High pass filter.
- Plot the frequency response of High pass filter.

Equipment:

- 1. DC power supplies +15V, -15V from external source
- 2. Function generator
- 3. Oscilloscope
- 4. Digital Multimeter

Components:

- 1. Resistance $10k\Omega$
- 2. Resistance $22k\Omega$
- 3. Capacitor 0.01µF
- 4. LM 741

Equation of High pass filter
$$\frac{Vout}{Vin} = \frac{A_F}{1+j(f/f_l)}$$
1

$$\frac{Vout}{Vin} = \frac{A_{F}}{\sqrt{1 + \left(\frac{f}{f_{l}}\right)^{2}}}$$

V_{in}=Input signal Voltage

 $V_{out} = Output \ signal \ Voltage$

 $\mid V_{out}/V_{in} \mid = Gain of filter as a function of frequency$

 $A_F = 1 + R_F/R_1 = pass band gain of filter f$

= frequency of input signal

 $f_L = 1/2\pi RC$ =Low cut off frequency, 3-dB frequency, corner frequency Operation of high pass filter using equation 2 1.

At low frequencies $f < f_L$: $\mid V_{out}/V_{in} \mid < A_F$

$$2. \quad At \; f = f_L \qquad \quad \mid V_{out}/V_{in} \mid = 0.707 * A_{F(Approx.)}$$

3. At
$$f > f_L$$
 $|V_{out}/V_{in}| = A_F$

In ideal high pass filter, when $f < f_L$ gain is increased at a constant rate with an increase in frequency. At f_L the gain is 0.707*AF, and above f_L it has constant gain of AF. Below f_L when input frequency is increased tenfold (one decade), the voltage gain is multiplied by 10.

$$Gain (dB) = 20 log | Vout / Vin |$$

i.e. Gain Roll off rate is -20db / decade.

Figure 2

Procedure:

- 1. Connect the circuit as shown in Figure 2.
- 2. Switch ON the power supply.
- 3. Connect a sinusoidal signal of amplitude 1V (p-p) of frequency 1KHz to Vin of High pass filter from function generator.
- 4. Connect Ch-1 of oscilloscope to the signal source.
- 5. Observe output on Ch-2 of oscilloscope.
- 6. Increase the frequency of input signal step by step and observe the effect on output V_{out} on oscilloscope.
- 7. Tabulate values of V_{out}, gain, gain (dB) at different values of input frequency shown in observation Table 2.
- 8. Plot the frequency response of High pass filter using the data obtained at different input frequencies.

Theoretical Calculations:

Calculate all the following values

- 1. Pass band gain of High pass filter $A_F = 1 + R_F / R_1$
- 2. Pass band gain (dB) = $20 \log |V_{out} / V_{in}|$
- 3. Low cutoff frequency $f_L = 1/2\pi RC$
- 4. Gain at Low cutoff frequency $f_L = 0.707 * A_F$
- 5. Roll off rate = -20db/decade

Results:

	Theoretical	Practical
Pass band gain(At)	2	2.09
Pass band gain (At) in db	6.02	6.02
Low cutoff frequency(fL)	723.7	719.5
Gain at 3db frequency fH in	3	2.922
db		

For $V_{in} = 1v$ (peak to peak): -

Sr. No.	Input Frequency (Hz)	Vout	V _{out} /V _{in} = Gain	$Gain (dB) = 20 log V_{out} / V_{in} $
1	300	1	1	0
2	500	1.2	1.2	1.5
3	700	1.5	1.5	3.52
4	1k	1.9	1.9	5.575
5	5k	2.09	2.09	6.40
6	10k	2.00	2.00	6.02
7	15k	2.00	2.00	6.02

Table 2

