





# Introducción a la Ciencia de Datos con R Miguel Jorquera

Educación Profesional Escuela de Ingeniería

El uso de apuntes de clases estará reservado para finalidades académicas. La reproducción total o parcial de los mismos por cualquier medio, así como su difusión y distribución a terceras personas no está permitida, salvo con autorización del autor.





# RESUMEN

# RESUMEN

#### EDUCACIÓN PROFESIONAL

#### **TDSP**



La metodología TDSP (Team Data Science Process) propuesta por Microsoft es una metodología ágil, iterativa y eficiente, que promueve la colaboración entre los distintos miembros del equipo de desarrollo así como la interacción permanente con el cliente.

#### Flujo de trabajo en Data Science









Introducción a gráficos con Ggplot.

• Gramática de gráficos:



Recibe como argumento el origen de datos (data.frame). Se indican las variables a graficar (mapeo).



Se define el tipo de gráfico y otros parámetros visuales.



### **RESUMEN**



# Ejemplo:

```
flights %>%
 group_by(dest) %>%
  summarise(mean_arr_del =
              mean(arr_delay,
                  na.rm = TRUE)) %>%
  left_join(airports,
            by = c("dest" = "faa")) %>%
 ggplot() +
 aes(x = lon,
      y = lat,
      color = mean_arr_del) +
 geom_point()
```





### **RESUMEN**



## Ejemplo:

```
flights %>%
 group_by(dest) %>%
  summarise(mean_arr_del =
              mean(arr_delay,
                   na.rm = TRUE)) %>%
  left_join(airports,
            by = c("dest" = "faa")) %>%
 ggplot() +
  aes(x = lon,
      y = lat,
      color = mean_arr_del) +
 geom_point() +
  borders("state") +
 geom_point()
```









# TEMAS PARA HOY





# Temas para hoy

Introducción modelos no supervisados

- Análisis exploratorio mediante de reglas de asociación
- Clustering









# MODELOS NO SUPERVISADOS

# INTRODUCCIÓN



#### Aprendizae no suervisado

- Data no supervisada no contiene etiquetas y no existe una variable respuesta.
- Existe interés en encontrar una estructura escondida (que nunca es completamente observada).
- Validación de resultados compleja.





# INTRODUCCIÓN



Aprendizaje no supervisado

#### Algunas tareas usuales:

- Reducción de la dimensionalidad
- Generación de clusters
- Reglas de asociación











## **Objetivo**

- Generar "reglas" que asocien productos.
- Estas reglas deben ser:
  - Frecuentes
  - Razonables.









### **Definiciones**

{Zapatos, cartera} → {Traje de Baño}

### Conceptos claves:

- Item
- Itemset
- Antecedente
- Consecuente
- Regla de asociación

#### Métricas claves:

- Support
- Confidence
- Lift





#### **Definiciones**

Reglas basadas en probabilidades.

• 
$$Supp(\{a,b\}) = \frac{\# Transacciones \ que \ contienen \ a \ y \ b}{\# Transacciones}$$

• 
$$Conf(\{a,b\} \to \{c\}) = \frac{Supp(\{a,b,c\})}{Supp(\{a,b\})} = \hat{P}(\{c\} \mid \{a,b\})$$







### **Definiciones**

¿Qué hace "buena" a una regla? Debe ser común:

$$Supp(\{a,b\}) \ge \theta$$

¿Cómo generar las reglas?

Debe ser razonable:

$$Conf(\{a,b\} \rightarrow \{c\}) \ge minconf$$





#### Algoritmo apriori

#### Algoritmo:

- Se buscan los itemset de un item y se filtran aquellos con soporte mayor o igual que  $\theta$
- Repetir hasta que no se puedan formar nuevos Itemsets:
  - Crea itemsets candidatos: Para cada par de itemsets ya listados con k elementos, combinarlos si comparten k-1 elementos.
  - Poda: Retener candidato si tiene un soporte de al menos  $\theta$  para definir la lista con itemset con k+1 elementos.
  - Fin: si la lista de itemsets con k+1 elementos es vacía.







### Algoritmo apriori



| T ID | Items  |
|------|--------|
| 1    | 1,3,4  |
| 2    | 2,3,5  |
| 3    | 1,2,3, |
| 4    | 2,5    |

{2,3,5}

| ItemSet | Supp |     |       |      | ItemS |
|---------|------|-----|-------|------|-------|
| {1}     | 2    |     |       | _    | {1}   |
| {2}     | 3    |     |       |      | {2}   |
| {3}     | 3    |     |       | ,    | {3}   |
| {4}     | 1    |     |       |      | {5}   |
| {5}     | 3    | Ite | emSet | Supp |       |

| ItemSet | Supp | {1,2}     | 1 |         | {1,2} |  |
|---------|------|-----------|---|---------|-------|--|
| {1,3}   | 2    | {1,3}     | 2 |         | {1,3} |  |
| {2,3}   | 2    | <br>{1,5} | 1 |         | {1,5} |  |
| {2,5}   | 3    | {2,3}     | 2 |         | {2,3} |  |
| {3,5}   | 2    | {2,5}     | 3 |         | {2,5} |  |
|         |      | {3,5}     | 2 |         | {3,5} |  |
| ItemSet |      |           |   | ItemSet | guZ   |  |



2

Supp

ItemSet

{2,3,5}



### Algoritmo apriori

#### Itemsets

| Itemset | Supp |  |  |
|---------|------|--|--|
| {1}     | 2    |  |  |
| {2}     | 3    |  |  |
| {3}     | 3    |  |  |
| {5}     | 3    |  |  |
| {1,3}   | 2    |  |  |
| {2,3}   | 3    |  |  |
| {2,5}   | 3    |  |  |
| {3,5}   | 2    |  |  |
| {2,3,5} | 2    |  |  |

¿Qué reglas escogemos?

#### Reglas de asociación

| Regla             | Confidence | Regla                   | Confidence |
|-------------------|------------|-------------------------|------------|
| $1 \rightarrow 3$ | 2/2 = 1    | 5 <b>→</b> 3            | 2/3 = 0.66 |
| $2 \rightarrow 3$ | 3/3 = 1    | $\{2,3\} \rightarrow 5$ | 2/3 = 0.66 |
| $2 \rightarrow 5$ | 3/3 = 1    | $\{3,5\} \rightarrow 2$ | 2/2 = 1    |
| $3 \rightarrow 5$ | 2/3 = 0.66 | $\{2,5\} \rightarrow 3$ | 2/3 = 0.66 |
| 3 → 1             | 2/3 = 0.66 | $5 \rightarrow \{2,3\}$ | 2/3 = 0.66 |
| $3 \rightarrow 2$ | 3/3 = 1    | $2 \rightarrow \{3,5\}$ | 2/3 = 0.66 |
| 5 → 2             | 3/3 = 1    | $3 \rightarrow \{2,5\}$ | 2/3 = 0.66 |





#### Algoritmo apriori

¿Qué reglas son preferibles?

• Ordenar por confidence:

$$Conf(a \to b) = \hat{P}(b|a) = \frac{Supp(a \cup b)}{Supp(a)}$$

Ordenar por lift:

$$Lift(a \to b) = \frac{Conf(a \to b)}{Supp(b)} = \frac{\widehat{P}(a \cup b)}{\widehat{P}(a)\widehat{P}(b)}$$





#### Algoritmo apriori

#### Wikipedia:

"Lift is a measure of the performance of a targeting <u>model</u> (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model. A targeting model is doing a good job if the response within the target is much better than the average for the population as a whole. Lift is simply the ratio of these values:"

$$Lift = \frac{target\ response}{average\ response}$$





#### Algoritmo apriori

Wikipedia:

Por ejemplo,

En una población la tasa de respuesta es de un 5%, pero cierto modelo (o regla) logra identificar un segment con una tasa de resúesta de un 20%. Entonces dicho segment tiene un lift de 4.0 (20%/5%).





Vamos!









#### EDUCACIÓN PROFESIONAL

## **Objetivo**

Buscamos subgrupos homogéneos de observaciones

- Enfoque de particiones
  - K-means, k-medioids, CLARANS
- Enfoque jerárquico
  - Diana, Agnes, BIRCH, CAMELEON
- Enfoque basado en densidad
  - DBSCAN, OPTICS, DenClue







#### K-means

#### Idea del algoritmo:

- 1. Suponer (por ejemplo), K=3 grupos y asignar aleatoriamente las obs. a ellos.
- 2. Definir los centroides.
- 3. Reasignar la data a al centroide más cercano.
- 4. Redefinir centroides
- Repetir proceso hasta que no haya cambio en la asignación

#### **Final Results**







#### K-means

¿Cómo determinar el número óptimo de clústers?

Minimizando la suma de cuadrados totales de todos los grupos (total within sum squares)

$$\underset{C_1,\dots,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K W(C_k) \right\}$$

$$W(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2,$$







## Clustering jerárquico

- Idea:
  - Construir un árbol binario para representar los grupos.
  - Grupos separados se fusionan sucesivamente.
  - Fácil representación a través de un árbol.







## Clustering jerárquico

#### ¿Qué necesitamos?

- K-means requiere:
- Número de clusters K.
- Una agrupación inicial (al azar)
- Una métrica para definir la distancia entre dos puntos.

#### Clustering jerárquico:

Una métrica para definir la distancia entre dos conjuntos de puntos.





## Clustering jerárquico

#### Tipos de clustering jerárquico:

- Aglomerativo
- Divisivo

#### Idea del algoritmo:

- Comenzar con todos los puntos como grupos individuales
- Repetir: Fusionar los dos grupos más "cercanos"
- Detener: cuando todos los grupos han sido fusionado en un solo gran grupo.







# Clustering jerárquico

FACULTAD DE INGENIERÍA

#### Agglomerative Clustering Step (1)





d.list.small hclust (\*, "complete")



### Clustering jerárquico

### ¿Cómo entendemos la distancia entre dos grupos?

The most popular choices:

► Single-linkage: the distance between the closest pair

$$d_{SL}(G, H) = \min_{i \in G, j \in H} d(x_i, x_j)$$

► Complete-linkage: the distance of the furthest pair

$$d_{CL}(G, H) = \max_{i \in G, j \in H} d(x_i, x_j)$$

Group-average: the average distance between groups

$$d_{GA}(G,H) = \frac{1}{N_G N_H} \sum_{i \in G, j \in H} d(x_i, x_j)$$

Metroid: the distance between the means or metroids of groups

$$d_{ME}(G,H) = d(\mu_G,\mu_H)$$



#### EDUCACIÓN PROFESIONAL

### Clustering jerárquico





FIGURE 10.10. An illustration of how to properly interpret a dendrogram with nine observations in two-dimensional space. Left: a dendrogram generated using Euclidean distance and complete linkage. Observations 5 and 7 are quite similar to each other, as are observations 1 and 6. However, observation 9 is no more similar to observation 2 than it is to observations 8,5, and 7, even though observations 9 and 2 are close together in terms of horizontal distance. This is because observations 2,8,5, and 7 all fuse with observation 9 at the same height, approximately 1.8. Right: the raw data used to generate the dendrogram can be used to confirm that indeed, observation 9 is no more similar to observation 2 than it is to observations 8,5, and 7.







### Clustering jerárquico

- Los métodos de clustering son sensibles a la forma de los conjuntos que buscamos agrupar.
- La siguiente comparativa muestra la forma en que logran caracterizar los grupos los distintos métoos.
- Otro enfoque que permite aislar los puntos que están fuera de zonas "densas" son los algoritmos DBSCAN y OPTICS, los que a su vez pueden ser utilizados como un método de detección de anomalías.



En esta imagen de referencia se destacan en color naranjo, azul y verde, los clústers generados por cada algoritmo, mientras que los puntos destacados en negro corresponden a puntos con baja densidad local, y por ende considerados como atípicos.





DBSCAN

Density-based spatial clustering of applications with noise

#### Idea del algoritmo

- 1. Se eligen 2 parámetros y un valor épsilon (eps) y un número de puntos (minPts).
- 2. Se elige un punto aleatorio del espacio
- Se buscan todos aquellos puntos, que estén a una distancia igual o menor a eps del punto inicial.
- Si hay más de minPts puntos (incluyendo el inicial), se eligen sólo minPts
- 4. Se expande el cluster, revisando todos los nuevos puntos, y se ve si ellos forman un cluster, incrementando el cluster recursivamente.
- 5. Cuando se acaban los puntos, se toma un nuevo punto y se comienza de nuevo.
- 6. Aquellos puntos que no entran (por estar más distantes de e de los otros) se les considera "ruido" y quedan aislados.









#### DBSCAN

Density-based spatial clustering of applications with noise

#### Conceptos claves

- 1. Core-point: Si al menos minPts están en la vecindad de radio eps de p
- 2. Directly Reachable-point: Un punto q es alcanzable desde p (corepoint) si está a distancia menor que eps
- 3. Reachable-point: un punto q es densamente alcanzable desde p, si existe una ruta de puntos p\_1,..., p\_n , con p\_1= p y p\_n=q, donde p\_(i+1) es directamente alcanzable desde p\_i .Notar que  $p_i$  es punto núcleo con la posible salvedad de q.
- 4. Outlier (noise point): Un punto que no sea directa o densamente alcanzable desde cualquier otro punto.



minPts = 4

A: Puntos núcleos

B, C: Puntos densamente alcanzables

N: Ruido





DBSCAN
Density-based spatial clustering of applications with noise

Notar que los dos parámetros eps y minPts, deben ser definidos inicialmente. Estos determinarán la calidad de la partición generada.

- Usualmente se considera minPts como p+1, donde p es la dimensión del espacio de atributos de nuestro dataset.
- Una manera de escoger el valor de eps es mediante la visualización de las KNN distancias de cada punto.
  - Para cada punto se calcula la distancia al k = minPts vecino más cercano.
  - Se ordenan las distancias de menor a mayor.
  - Se busca el punto de mayor crecimiento (regla del "codo")





#### EDUCACIÓN PROFESIONAL

OPTICS
Ordering Points To Identify
Clustering Structure

Una extensión del algoritmo DBSCAN corresponde al algoritmo OPTICS

- Comparte los mimos conceptos que DBSCAN, pero a cada punto se le asignan nos nuevas distancias que lo carcterizan:
  - $Core-dist_{(\epsilon,minPts)}$  (p)= distancia al minPts-ésimo punto más cercano dentro de  $N_{\epsilon}$  (p) Sólo definida si p es punto núcleo.
  - Reachability-dist\_ $(\epsilon, minPts)$   $(o,p)=max(Core-dist_{\epsilon, minPts})$  (p), dist(p,o)). Sólo definida si p es un punto núcleo.
- El algoritmo propone un ordenamiento de la base de datos, a modo de poder calcular bajo dicha indexación la distancia de alcance de cada punto.
- Las distancias de alcance funcionan como una especie de dendograma, y permitirá establecer la cantidad de clusters a generar.
- A diferencia de DBSCAN, el parámetro eps no es requerido (gracias a la inclusión de la distancia de alcance), pero se recomienda su uso para efectos de costo computacional.



# OPTICS Ordering Points To Identify Clustering Structure

- El gráfico de las distancias de alcance (reachability plot), contiene los puntos bajos el odenamiento propuesto por el algoritmo en el eje-x, mientras que en el eje-y la distancia de alcance respectiva.
- Puntos que pertenezcan al mismo cluster, tendrán una menor distancia de alcance a sus vecinos cercanos.
- Los valles representan los clusters.
- Mientras más pronunciado es el valle, mayor densidad del cluster







OPTICS
Ordering Points To Identify
Clustering Structure

#### Trabajo original

https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=C75424AECC04C36AC911CCCC7DB41238?doi=10.1.1.129 .6542&rep=rep1&type=pdf

#### Extensión OPTICS-OF para la detección de outliers

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.46.6586&rep=rep1&type=pdf

#### Manual de referencia package dbscan

https://cran.r-project.org/web/packages/dbscan/dbscan.pdf

