Supplementary Materials of "The Mean Shape under the Relative Curvature Condition".

Mohsen Taheri , Stephen M. Pizer and Jörn Schulz

 $Corresponding\ author\ email:\ Mohsen Taheri Shalmani@gmail.com$

October 27, 2024

This document provides R code documentation related to the Supplementary Materials of the manuscript titled "The Mean Shape under the Relative Curvature Condition".

For additional information, please visit the corresponding author's GitHub repository: Https://Github.com/MohsenTaheriShalmani/Elliptical_Tubes.

Contents

1	Des	cription	2
2	Fun	actions	2
	2.1	Create a Discrete Elliptical Tube	2
	2.2	Plotting	4
		Check the validity of a tube	
	2.4	Transformations	4
	2.5	Mean calculation	5
	2.6	Simulation	5

1 Description

The primary script file is main.R, which is supported by two additional scripts in the Functions folder: ETRep_Functions.R, containing functions specific to ETRep analysis, and ETRep_MathFunctions.R, which includes general mathematical functions. An ETRep encapsulates the characteristics of an *elliptical tube* (e-tube), including the size and orientation of its elliptical cross-sections, positioned according to the material frames along the spine, as illustrated in Figure 1.

Figure 1: ETRep representation of the left hippocampus with 53 cross-sections. Arrows highlight material frames aligned along the spine.

The main.R script is divided into two main sections: 1. Transformation and 2. Simulation. The Transformation section provides examples for calculating both intrinsic and non-intrinsic means using intrinsic and non-intrinsic transformations between two e-tubes, represented by their corresponding *elliptical tube representations* (ETReps), as discussed in the main manuscript. The simulation section provides an example of ETRep simulation, as discussed in the article's Supplementary Materials.

The required libraries for running the main.R script are: shapes, rgl, Morpho, matlib, RiemBase, doBy, plotrix, Directional, RSpincalc, rotations, SphericalCubature, Rvcg, fields, Matrix, pracma, truncnorm, ggplot2, reshape2, and dplyr.

2 Functions

The functions essential for ETRep analysis are outlined below, covering transformation calculations, mean computation, ETRep size estimation, simulation, and plotting.

2.1 Create a Discrete Elliptical Tube

The function create_Elliptical_Tube constructs a discrete e-tube and represents it as an ETRep.

Input Parameters

- numberOfFrames: Integer, specifies the number of consecutive material frames.
- method: String, either "basedOnEulerAngles" or "basedOnMaterialFrames", determining whether the material frames are defined by Euler angles or given material frames.

- EulerAngles_Matrix: numberOfFrames × 3 matrix, with each row containing three Euler angles to define a material frame.
- materialFramesBasedOnParents: Array of dimensions $3 \times 3 \times$ numberOfFrames, defining the predetermined material frames.
- ellipseResolution: Integer, specifies the boundary resolution of the elliptical cross-sections (default is 10).
- ellipseRadii_a: Real vector with numberOfFrames elements, defining the primary radii of the cross-sections.
- ellipseRadii_b: Real vector with numberOfFrames elements, defining the secondary radii of the cross-sections.
- connectionsLengths: Real vector with numberOfFrames elements, defining the lengths of the spinal connection vectors.
- plotting: Logical, enables plotting of the ETRep (default is TRUE).

Output

- ETRep: A list containing the generated tube's details, including:
 - Orientation of material frames based on materialFramesBasedOnParents,
 - Twisting angles theta_angles,
 - Curvature angles phi_angles_bend,
 - Principal radii of the cross-sections ellipseRadii_a and ellipseRadii_b,
 - Projection lengths, r_project_lengths, according to Equation (1) in the main article,
 - Lengths of the spinal connection vectors connectionsLengths,
 - Boundary points of the cross-sections, stored as boundaryPoints for the ETRep-PDM.

Example

```
numberOfFrames<-15
ellipseResolution<-10
EulerAngles_alpha<-c(rep(0,numberOfFrames))</pre>
EulerAngles_beta<-c(rep(-pi/20,numberOfFrames))</pre>
EulerAngles_gamma<-c(rep(0,numberOfFrames))</pre>
EulerAngles_Matrix =cbind(EulerAngles_alpha,EulerAngles_beta,EulerAngles_gamma)
ellipseRadii_a<-rep(3,length.out=numberOfFrames)</pre>
ellipseRadii_b<-rep(2,length.out=numberOfFrames)</pre>
connectionsLengths<-rep(4,numberOfFrames)</pre>
tube<-create_Elliptical_Tube(numberOfFrames=numberOfFrames,</pre>
                               EulerAngles_Matrix =EulerAngles_Matrix,
                               method="basedOnEulerAngles",
                               ellipseResolution=ellipseResolution,
                               ellipseRadii_a=ellipseRadii_a,
                               ellipseRadii_b=ellipseRadii_b,
                               connectionsLengths=connectionsLengths,
                               plotting=TRUE)
```

2.2 Plotting

The plot_Elliptical_Tube function plots an ETRep.

Input Parameters

- tube: A list containing the information of an ETRep.
- plot_boundary: Logical, enables plotting of the boundary (default is TRUE).
- plot_frames: Logical, enables plotting the material frames (default is TRUE).
- frameScaling: Real value for scaling the frames.
- plot_r_project: Logical, enables plotting of the projection of the cross-sections along the normals based on Equation (1) of the main article (default is TRUE).
- plot_r_max: Logical, enables plotting of the maximum possible size of the projection of the cross-sections along the normals, i.e., $\frac{x_i}{v_i}$ based on Equation (1) of the main article (default is FALSE).

Output

• Just a graphical output.

Example

plot_Elliptical_Tube(e_tube = tube_A)

2.3 Check the validity of a tube

The check_Tube_Legality function checks the RCC and the validity of the principal radii $\forall i a_i > b_i$.

Input Parameters

• tube: A list containing the information of an ETRep.

Output

• Logical (TRUE as valid and False as invalid)

Example

check_Tube_Legality(tube = tube)

2.4 Transformations

The nonIntrinsic_Transformation_Elliptical_Tubes and intrinsic_Transformation_Elliptical_Tubes functions perform non-intrinsic and intrinsic transformations from one ETRep to another. Both ETReps must have the same number of spinal points.

Input Parameters

- tube1: A list containing the details of the first ETRep.
- tube2: A list containing the details of the second ETRep.
- numberOfSteps: Integer, specifying the number of transformation steps.
- plotting: Logical, enables visualization during transformation (default is TRUE).

Output

• tubes: A list containing numberOfSteps intermediate ETReps.

Example

2.5 Mean calculation

The nonIntrinsic_mean_tube and intrinsic_mean_tube functions calculate the non-intrinsic and intrinsic mean of a set of ETReps, respectively. All ETReps must have the same number of spinal points.

Input Parameters

- tubes: A list of ETReps.
- type: String, either "ShapeAnalysis" and "sizeAndShapeAnalysis" for calculating the mean with or without scaling (default is "sizeAndShapeAnalysis").
- plotting: Logical, enables visualization of the mean (default is TRUE).

Output

• tube: An ETRep as a list representing the mean ETRep.

Example

```
# Non-intrinsic mean
nonIntrinsic_mean_tube(tubes = tubes, plotting = TRUE)
nonIntrinsicMeanTube

# Intrinsic mean
intrinsic_mean_tube(tubes = tubes, plotting = TRUE)
intrinsicMeanTube
```

2.6 Simulation

The simulate_etube function generates a set of ETReps based on a reference tube by adding variation to the tube elements, as discussed in the article's Supplementary Materials.

Input Parameters

- referenceTube: A list consists of the information of an ETRep as the reference e-tube.
- numberOfSimulation: Number of random samples.
- $\mathtt{sd_v}$: Standard deviation for the v_i vectors.
- sd_psi: Standard deviation for the roll angles ψ_i .
- sd_x: Standard deviation for the length of the spinal connection vectors x_i .
- sd_a : Standard deviation for the first principal radii a_i .
- sd_b: Standard deviation for the second principal radii b_i .
- rangeSdScale: A range for adding random scaling to the generated samples.
- plotting: Logical, enables visualization of the sample (default is FALSE).

Output

• tubes: A list containing numberOfSimulation of random ETReps.

Example

```
#create a reference tube
numberOfFrames<-15
ellipseResolution<-10
EulerAngles_alpha<-c(rep(0,numberOfFrames))</pre>
EulerAngles_beta<-c(rep(-pi/20,numberOfFrames))</pre>
EulerAngles_gamma<-c(rep(0,numberOfFrames))</pre>
EulerAngles_Matrix<-cbind(EulerAngles_alpha, EulerAngles_beta, EulerAngles_gamma)
ellipseRadii_a<-rep(3,length.out=numberOfFrames)</pre>
ellipseRadii_b<-rep(2,length.out=numberOfFrames)</pre>
connectionsLengths<-rep(3,numberOfFrames)</pre>
referenceTube<-
  create_Elliptical_Tube(numberOfFrames=numberOfFrames,
                          EulerAngles_Matrix =EulerAngles_Matrix,
                          method="basedOnEulerAngles",
                          ellipseResolution=10,
                          ellipseRadii_a=ellipseRadii_a,
                          ellipseRadii_b=ellipseRadii_b,
                          connectionsLengths=connectionsLengths,
                          plotting=TRUE)
# Generate random samples
simulate_etube(referenceTube = referenceTube,
               numberOfSimulation=5,
                sd_v=0.1,
                sd_psi=0.001,
                sd_x=0.01,
                sd_a=0.01,
                sd_b=0.01,
                rangeSdScale=c(1,2),
                plotting=TRUE)
```