Tabla de Contenidos

1.	Introducción	. 3
2.	Estructura del Proyecto	. 3
3.	Cómo se cargaron los datos en Neo4j	. 3
4.	Consultas utilizadas en Neo4j	. е
	4.1 Extracción de datos	6
5.	Análisis con Spark	. е
	5.1 Importación de librerías y Conexión a PostgreSQL	6
	5.2 Conexión a Neo4j e Inicialización de un cursor	7
	5.3 Creación de la sesión de Spark	8
	5.4 Función para ejecutar consultas Cypher	8
	5.5 Ejecución de consulta Cypher	8
	5.6 GTPC (Gasto Total por Cliente)	9
	5.7 PMC (Productos Más Comprados)	11
	5.8 PGPC (Promedio General Por Cliente)	12
	5.9 FCPC (Frecuencia de Compras Por Cliente)	13
6.	Resultados	15
	6.1 Gasto Total por Cliente (GTPC) / total_spent_per_customer	15
	6.2 Productos más Comprados (PMC) / product_purchase_count	15
	6.3 Promedio de Gasto por Cliente (PGPC) / average_spent_per_customer	16
	6.4 Frecuencia de Compra por Cliente / transaction count per customer	16

Estos se limpiaron y se transformaron en valores numéricos (float) para asegurar la compatibilidad con Neo4j.

3. Creación de nodos y relaciones en Neo4j

Los datos fueron cargados en Neo4j mediante transacciones Cypher, creando:

- Nodos para clientes (Customer).
- Nodos para productos (Product).
- Relación entre ambos nodos con las transacciones (TRANSACTION).
 Cada transacción incluye propiedades como transaction_id, transaction_date y standard_cost.

Escuela de Ingeniería en Computación IC-4302 – Bases de Datos II

Proyecto 2

Red Social de Viajes

Estudiantes:

Esteban Josué Solano Araya – 2021579468

Pablo Mesén Alvarado – 2023071259

Daniel Zeas Brown – 2023147474

Profesor:

Keneth Obando Rodríguez

22 de noviembre de 2024 Il Semestre 2024

1. Introducción

Este proyecto analiza transacciones simuladas utilizando servicios integrados como Neo4j, Spark y PostgreSQL. Los datos se cargan inicialmente en Neo4j, se procesan mediante Spark para generar métricas clave, y se almacenan en PostgreSQL para facilitar consultas adicionales.

2. Estructura del Proyecto

3. Cómo se cargaron los datos en Neo4j

1. Lectura del archivo CSV

Utilizamos la biblioteca pandas para leer el archivo Transactions.csv, seleccionando las columnas relevantes:

- transaction_id
- product_id
- customer_id
- transaction_date
- standard_cost

Eliminamos filas con valores faltantes en las columnas clave para garantizar que los datos cargados sean consistentes.

2. Limpieza de datos

 La columna standard_cost contenía valores formateados con caracteres como '\$' y ','.

4. Consultas utilizadas en Neo4j

4.1 Extracción de datos

Los datos fueron extraídos desde Neo4j con la siguiente consulta Cypher:

```
MMTG (crosstoner)-[t:TDAMGACTION]->[p:Product)

RETURN c-costoner_id AS custoner_id, p.product_id AS product_id, t.standard_cost AS
standard_cost
```

Esta consulta generó una tabla con tres columnas: customer_id, product_id,

y standard_cost. Los datos se procesaron con Python usando el driver oficial de Neo4j:

```
def execute_cypher_auery(query):
    with driver_sestion() as ession:
    result = session_run(query)
    return [dict(record) for record in
result]
```

5. Análisis con Spark

5.1 Importación de librerías y Conexión a PostgreSQL

- pyspark.sql.SparkSession: Se usa para inicializar una sesión de Spark, que permite realizar análisis de datos distribuidos.
- neo4j.GraphDatabase: Facilita la conexión con una base de datos Neo4j y la ejecución de consultas Cypher.
- pandas: Ayuda a manipular y transformar los datos en estructuras tabulares.
- psycopg2: Proporciona una interfaz para conectarse y realizar consultas con PostgreSQL.

La función psycopg2.connect establece la conexión con una base de datos PostgreSQL utilizando:

dbname: Nombre de la base de datos.

5.3 Creación de la sesión de Spark

SparkSession.builder configura la aplicación Spark con:

- appName: El nombre de la aplicación Spark.
- master: Define el modo de ejecución como local.

```
# Crear la sestón de Spark
spark = SparkSession.builder.appName("Spark").master("local").getOrCreate()
```

5.4 Función para ejecutar consultas Cypher

La función recibe una consulta Cypher (query) como parámetro y ejecuta esta consulta en el servidor Neo4i.

- driver.session(): Abre una sesión temporal con Neo4j.
- session.run(query): Ejecuta la consulta Cypher.
- list(): Convierte los resultados en una lista para su manejo posterior.

```
def execute_cypher_query(query):
    with driver.session() as session:
        return list(session.run(query))
```

5.5 Ejecución de consulta Cypher

La consulta busca nodos de tipo Customer y Product conectados por relaciones TRANSACTION. Devuelve tres atributos:

- c.customer_id: Identificador del cliente.
- p.product_id: Identificador del producto.

Código Utilizado para cargar datos en Neo4j junto a explicación en cada punto.

```
from need) import GraphOstabase
import pandos as pd

# Configuration de communion a besign

# "Interformation de communion a besign

# Tree - GraphOstabase of Verfuri, authe(username, password))

# Communion a bedignsourch

# Communion a bedignsourch

# Communion a bedignsourch

# Transaction, communion

# Transaction a communion

# Transaction

# Transaction a communion

# Transaction a communion

# Transac
```

- user y password: Credenciales de usuario.
- host y port: Dirección y puerto donde está corriendo el servidor.

```
from pyspark.sql import SparkSession
from needj import GraphDatabase
import pandas as pd
import psycopg2.connect(
domanee="pry92.db",
user="postpres",
password="password",
host="postpres",
port="5432"
)
```

5.2 Conexión a Neo4j e Inicialización de un cursor

Conexión a Neo4j:

- uri: Define la dirección del servidor Neo4j utilizando el protocolo bolt://.
- GraphDatabase.driver: Inicializa un controlador para conectarse al servidor.
- auth: Recibe un tuple con el nombre de usuario y contraseña para autenticar.

Inicialización de un cursor:

 conn.cursor crea un cursor que se utiliza para ejecutar comandos SQL en PostgreSQL.

```
urt = "bolt://neo4]:7687"
username = "neo4]:
"Badpassword = "badpassword"

# Crear cursor para Postgres
cursor = conn.cursor()

# Crear la conexión con Neo4]
driver = GraphDatabase.driver(urt, auth=(username, password))
```

Inserción de GTPC en PostgreSQL

Creación de tabla

- Crea una tabla llamada GTPC si no existe.
- Define dos columnas:
 - customer id: Llave primaria
 - total_cost: Representa el gasto total.

Inserción de datos:

- Convierte los datos procesados por Spark (almacenados en pandas) en una lista de tuplas para PostgreSQL.
- Usa executemany para insertar múltiples filas de manera eficiente.

Inserción de GTPC en PostgreSQL

Similar al caso anterior

5.8 PGPC (Promedio General Por Cliente)

Preparación de los datos:

 Similar a GTPC, organiza los resultados en una lista de diccionarios con customer id y average cost.

Conversión a DataFrame:

Idéntico al procedimiento de GTPC y PMC.

Análisis con Spark:

 Ordena los clientes por el ID para asegurar que los datos sean fáciles de interpretar y estén en orden lógico. - t.standard_cost: Costo de la transacción.

Ejecución de la consulta:

 Usa la función execute_cypher_query para enviar la consulta al servidor Neo4j y obtener los resultados en query_output.

```
query = """
MATCH (c:Customer)-[t:TRANSACTION]->(p:Product)
RETURN c.customer_id, p.product_id, t.standard_cost
"""
query_output = execute_cypher_query(query)
```

5.6 GTPC (Gasto Total por Cliente)

Preparación de los datos:

- Itera sobre los registros de query_output (resultado de Neo4j).
- Extrae y organiza los valores en un diccionario con las claves customer id, product id y standard cost.
- Los diccionarios se almacenan en la lista GTPC_data.

Conversión a DataFrame:

- Pandas: Convierte GTPC_data en un DataFrame (estructura tabular).
- Spark: Transforma el DataFrame de pandas en un DataFrame compatible con Spark.

Análisis con Spark:

- Agrupa los datos por customer_id.
- Calcula la suma de standard_cost para cada cliente.
- Renombra la columna de la suma como total_cost.
- Ordena los resultados por customer_id.

```
# Crear tabla en Postgres
cursor.execute("""
CREATE TABLE IF NOT EXISTS GTPC (
customer_id INT PRIMARY KEY,
total_cost PLOAT
)
"""
conn.commit()

# Insertar datos en la tabla
tinsert_query = "INSERT INTO GTPC (customer_id, total_cost) VALUES (%s, %s)"
data = [tuple(row) for row in GTPC_pandas_df.to_numpy()]
cursor.executemany(insert_query, data)
conn.commit()
```

5.7 PMC (Productos Más Comprados)

Preparación de los datos:

 Similar al caso de GTPC, organiza los resultados en una lista de diccionarios con las claves product_id y purchase_count.

Conversión a DataFrame:

 Mismo procedimiento que GTPC: se convierten los datos a un DataFrame de pandas y luego a uno de Spark.

Análisis con Spark:

 Ordena los productos por la columna purchase_count en orden descendente para conservar los productos más comprados en la parte superior.

```
FCPC_data = []

for record in query_output:
    FCPC_data.aspend({
        "customer_ld": record["c.customer_ld"],
        "product_ld": record["p.product_ld"]
        })

FCPC_df = pd.DataFrame(FCPC_data)

FCPC_spark_df = spark.createDataFrame(FCPC_df)

FCPC_spark_drey = FCPC_spark_df.groupBy("customer_ld") \
        .vitinColumnRenamed("count", "total_transactions") \
        .orderBy("customer_ld")

FCPC_spark_query.show()

FCPC_pandas_df = FCPC_spark_query.toPandas()
```

Inserción de GTPC en PostgreSQL

- Similar al caso anterior

6.3 Promedio de Gasto por Cliente (PGPC) / average_spent_per_customer

	customer_id / [PK] integer	avg_cost double precision	/
	1	551.4872727272727	27
	2	640.93666666666	56
	3	815.677	75
	4	413.57	75
	5	584.709999999999	99
	6	397.02	28
	7	258.4233333333333	35
	8	495.7820000000000	04
	9	500.7	74
0	10	329.0939999999999	94
1	11	523.4333333333333	34
2	12	407.7400000000000	07
3	13	485.337142857142	28
4	1.4 rows: 1000 of		

6.4 Frecuencia de Compra por Cliente / transaction_count_per_customer

	customer_id [PK] integer	total_transactions /	
1	1	11	
2	2	3	
3	3	8	
4	4	2	
5	5	6	
6	6	5	
7	7	3	
8	8	10	
9	9	6	
10	10	5	
11	11	6	
12	12	7	
13	13	7	
14 Tota	14 al rows: 1000 of 3	3 8494 Ouerv comp	olete 00:00:00.110

Inserción de GTPC en PostgreSQL

Similar al caso anterior

5.9 FCPC (Frecuencia de Compras Por Cliente)

Preparación de los datos:

 Similar a las otras métricas, organiza los resultados en una lista de diccionarios con customer id y transaction count.

Conversión a DataFrame:

- Mismo procedimiento que GTPC, PMC y PGPC.

Análisis con Spark:

- Ordena los datos por el ID del cliente para mantener la consistencia.

6. Resultados

6.1 Gasto Total por Cliente (GTPC) / total_spent_per_customer

	customer_id / [PK] integer	total_cost double precision	/
1	1	6066.3	36
2	2	1922.8	31
3	3	6525.4	12
4	4	827.1	15
5	5	3508.259999999999	8
6	6	1985.1	14
7	7	775.2	27
8	8	4957.820000000000	1
9	9	3004.4	14
10	10	1645.469999999999	98
11	11	3140.60000000000000	04
12	12	2854.18000000000000	03
13	13	3397.359999999999	7
14	1.4 rows: 1000 of	705 40 3494 Ouery comp	

6.2 Productos más Comprados (PMC) / product_purchase_count

	product_id [PK] integer	total_count /
1	0	1181
2	1	311
3	2	240
4	3	354
5	4	241
6	5	222
7	6	186
8	7	194
9	8	136
10	9	201
11	10	188
12	11	170
13	12	224
14	13	189