Криптоанализ

Павленко Артём // Университет ИТМО

Вступление

- Современный мир и информационная безопасность
 - Банковские системы
 - Ресурсы интернета (https, TLS, ...)
 - Беспроводные технологии (Bluetooth, Wi-Fi, NFC, ...)
 - Сотовая связь (2G, ..., 5G)

Передача сообщения

- Алиса хочет отправить сообщение Бобу
- Однако Ева может их подслушивать

Процесс шифрования

Способы шифрования

- Симметричное шифрование
 - один ключ для шифрования и расшифровки
 - высокая скорость шифрования и расшифровывания
- Ассиметричное шифрование
 - открытый и закрытый ключи
 - ресурсоемкий процесс шифрования и расшифровывания

Симметричное шифрование

- Поточные алгоритмы
 - Легче аппаратно реализовать
 - Быстрее работают

- Блочные алгоритмы
 - Более гибкие, могут использоваться как поточные

Поточный алгоритм А5/1*

Секретный ключ X Ключевой поток Y

$$X = X_A \cup X_B \cup X_C$$

$$X_A = \{x_1, x_2, \dots x_{19}\}$$

$$X_B = \{x_{20}, x_{21}, \dots x_{41}\}$$

$$X_C = \{x_{42}, x_{43}, \dots x_{64}\}$$

^{*}Использовался в протоколе сотовой связи 2G

Криптоанализ

• наука о методах дешифровки зашифрованной информации без предназначенного для этого ключа

Применение:

- Поиск уязвимостей в алгоритмах шифрования
- Обоснование их криптографической стойкости

Методы криптоанализа

- На основе шифротекста
- На основе открытых текстов и соответствующих шифротекстов
- На основе подобранного открытого текста
- На основе адаптивно подобранного открытого текста

Методы криптоанализа

- На основе шифротекста
- На основе открытых текстов и соответствующих шифротекстов

- На основе подобранного открытого текста
- На основе адаптивно подобранного открытого текста

Криптографическая атака

- Результат применения методов криптоанализа
 - Асимптотическая сложность (элементарные операции)
 - Временная сложность (секунды)

Алгоритм А5/1			
Полный перебор	Атака Андерсона (1994 г.)		
0(2 ⁶⁴)	$O(2^{53})$		

Задача криптоанализа (1)

Секретный ключ X Ключевой поток Y

$$X = X_A \cup X_B \cup X_C$$

$$X_A = \{x_1, x_2, \dots x_{19}\}$$

$$X_B = \{x_{20}, x_{21}, \dots x_{41}\}$$

$$X_C = \{x_{42}, x_{43}, \dots x_{64}\}$$

$$f_{A5/1}: \{0,1\}^{64} \to \{0,1\}^m$$

Задача криптоанализа (2)

$$f_{A5/1}$$
: $\{0,1\}^{64} \to \{0,1\}^m$
 $f_{A5/1}(x) = y$

Задача обращения криптографической функции: зная ключевой поток **у**, восстановить секретный ключ **х**

$$f_{A5/1}^{-1}(y) = x$$

Алгебраический криптоанализ

• Метод предполагает сведение задачи к полиномиальной системе уравнений

SAT-based криптоанализ

- Boolean SATisfiability первая известная NP-полная задача
- Большое число применимых SAT-решателей
- Ежегодные SAT Competitions

Транслятор

• Позволяет преобразовать исходную программу, представленную на одном языке, в программу на другом языке

Нас интересует трансляция: $* \rightarrow SAT$

- Transalg
- Cryptol
- URSA

Сведение к SAT

Алгоритм А5/1

Программа для Transalg

```
1 in bit XA[19];
   __in bit XB[22];
    __in bit XC[23];
    __out bit Y[128];
    bit shift_rslosA() {
      bit x0 = XA[18]^XA[17]^XA[16]^XA[13];
      for(int j = 18; j > 0; j=j-1) {
       XA[j] = XA[j-1];
      XA[0] = x0;
13 ...
    bit majority(bit A, bit B, bit C) {
        return A&B|A&C|B&C;
17 }
   void main() {
      int b1 = 8:
      int b2 = 10;
      int b3 = 10;
      bit maj;
24
      for(int i = 0; i < 128; i=i+1) {
        maj = majority(XA[b1], XB[b2], XC[b3]);
        if(!(maj^XA[b1])) shift_rslosA();
        if(!(maj^XB[b2])) shift_rslosB();
        if(!(maj^XC[b3])) shift_rslosC();
        Y[i] = XA[18]^XB[21]^XC[22];
30
31 }
```

SAT-формула

```
p cnf 8425 38262
                        c input variables 64
                        c literals count 128374
                        65 9 30 0
                        65 9 52 0
                        -65 9 -30 -52 0
                        65 -9 -52 0
                        -65 -9 30 52 0
                        65 -9 -30 0
                        66 -19 65 0
                   10
автоматически
                        66 -18 -65 0
                        -66 19 65 0
                        -66 18 -65 0
                        67 -18 65 0
                   14
                        67 -17 -65 0
                       -67 18 65 0
                        -67 17 -65 0
                        68 -17 65 0
                        68 -16 -65 0
                        -68 17 65 0
                        -68 16 -65 0
                        69 -16 65 0
                        69 -15 -65 0
                       -69 16 65 0
                    • • •
                        -8425 -8293 8295
                                         -82970
                        -8425 -8293 -8295 8297 0
```

SAT-решатели

Пример взлома алгоритма Trivium-Toy 64

CPU:

AMD Opteron 6276 @ 2.3 GHz x32

Ограничение времени:

7 дней

	PLingeling	Treengeling	Guess-and-determine атака
Задача 1	прервана	прервана	2д 6ч
Задача 2	прервана	3д 2ч	3д 19ч
Задача З	прервана	4д 10ч	154
Задача 4	прервана	прервана	1д 21ч
Задача 5	прервана	прервана	4д 3ч

Guess-and-Determine атака

$$\mathbf{B} = \{ x_3, x_4, x_5, x_8, x_9, x_{12}, x_{16}, ..., x_{19}, x_{21}, ..., x_{30}, x_{34}, x_{37}, x_{38}, x_{43}, x_{51}, x_{52} \}$$

$$\sum_{i=1}^{2^{s}} t_{i} \ll T_{BruteForce}$$

Guess-and-Determine. Декомпозиция

Суммарное время решения: $T'=t_1+t_2$

Как построить эффективную декомпозицию?

$$\Phi(B) = \sum_{i=1}^{2^S} t^{i}$$

Метаэвристические алгоритмы

• Итеративные практические алгоритмы поиска решения задачи, о которой мало что известно

Алгоритмы:

- Локальный поиск
- Поиск с запретами
- Имитация отжига
- Эволюционные алгоритмы

Необходимые операции

Изменение точки

$$B_1 = \{ x_3, x_4, x_5, x_8, x_9, x_{12}, x_{16}, ..., x_{19}, x_{21}, ..., x_{30}, x_{34}, x_{37}, x_{38}, x_{43}, x_{51}, x_{52} \}$$

$$B_2 = \{ x_3, x_4, x_5, x_8, x_9, x_{12}, x_{16}, ..., x_{19}, x_{21}, ..., x_{30}, x_{33}, x_{34}, x_{37}, x_{38}, x_{43}, x_{51}, x_{52} \}$$

Вычисление сложности

B = {
$$x_3$$
, x_4 , x_5 , x_8 , x_9 , x_{12} , x_{16} , ..., x_{19} , x_{21} , ..., x_{30} , x_{34} , x_{37} , x_{38} , x_{43} , x_{51} , x_{52} }

$$T_B = \sum_{i=0}^N t_i$$
 , где $N = 2^s$ и $s = |B|$

Оценивание декомпозиции. UNSAT-иммунность

Оценивание декомпозиции. SAT-иммунность

^{*}IBS resistant function: [Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using backdoors for SAT // The Thirty-Second AAAI Conference on Artificial Intelligence. – IEEE, 2018. – P. 6641-6648]

Промежуточный итог

- Обеспечение информационной безопасности методами криптографии
- Криптоанализ, как метод проверки криптостойкости систем, посредством построения криптографических атак
- Сведение задачи криптоанализа к **SAT** для построения атак
- Для ускорения атак строятся декомпозиционные множества
- Выбор эффективной декомпозиции является трудной задачей
- Были рассмотрены **быстрые** методы **оценки** исследуемого декомпозиционного множества

Эволюционные алгоритмы

- Эволюционные стратегии
 - Мутация
 - Селекция
- Генетические алгоритмы
 - Мутация
 - Скрещивание
 - Селекция

Инициализация

Мутация

$$B_1 = \{ x_3, x_4, x_5, x_8, x_9, x_{12}, x_{16}, ..., x_{19}, x_{21}, ..., x_{30}, x_{34}, x_{37}, x_{38}, x_{43}, x_{51}, x_{52} \}$$

$$B_2 = \{ x_3, x_4, x_5, x_8, x_9, x_{12}, x_{16}, ..., x_{19}, x_{21}, ..., x_{30}, x_{33}, x_{34}, x_{37}, x_{38}, x_{43}, x_{51}, x_{52} \}$$

Скрещивание

Пример процесса оптимизации

Алгоритм: А5/1

Стратегия: (1+1)

Адаптивная стратегия

- Алгоритм начинает
 оптимизацию с размером
 выборки Монте-Карло
 N = 10
- Размер выборки N
 постепенно растет до
 1000 задач с
 уменьшением значения
 оценочной функции

Результаты экспериментов

	Tabu Search		(1+1)-EA		GA	
	B	Оценка времен, сек	B	Оценка времени, сек	B	Оценка времени, сек
Trivium-Toy 64/75	17	4.30e+07	17	3.19e+07	22	5.36+07
Trivium-Toy 96/100	34	3.14e+12	33	1.28e+13	40	2.09+12
Bivium 177/200	40	4.29e+12	32	2.60e+12	39	1.49+12
ASG 72/76	8	5601.33	9	5604.8	8	6155.19
ASG 96/112	14	3.95e+06	13	6.76e+06	16	3.72e+06
ASG 192/200	47	1.14e+16	47	2.27e+18	44	2.84e+17

Проблемы адаптивной стратегии

• Необходимо подстраивать значения под каждый алгоритм отдельно

• Снижение эффективности по мере уменьшения значения

оценочной функции

Статистические тесты

• Для проверки статистических гипотез

Статистическая гипотеза — предположение о виде распределения и свойствах случайной величины

Применение статистических тестов (1)

Статистическая гипотеза: Выборки не различаются

 $\delta_1 = 0$ — наращиваем выборку $\delta_2 = 0$ — наращиваем выборку $\delta_3 < 0$ — особь \emph{Y} хуже, переходим к следующей

Применение статистических тестов (2)

Статистическая гипотеза: Выборки не различаются

 $\delta_1 = 0$ — наращиваем выборку $\delta_2 > 0$ — особь X хуже, заменяем её новой особью Y

Применение статистических тестов (3)

Статистическая гипотеза: Выборки не различаются

Число просмотренных точек

	Число		
Алгоритм	Со статистическим тестом	Без статистического теста	Во сколько раз больше
A5/1	1471	341	x4.31
Bivium	3616	2439	x1.48
Trivium 64	3398	1323	x2.57
Trivium 96	2494	1299	x1.92

Сравнение результатов

A =======	Статистические тесты		Адаптивная стратегия		
Алгоритм	B	Оценка времени, сек	B	Оценка времени, сек	
ASG 72	10	4794.55	9	5604.8	
ASG 96	19	1.56e+06	16	3.72e+06	
Bivium	27	7.49e+11	39	1.49e+12	
Trivium 64	17	2.03e+07	21	3.17e+07	
Trivium 96	35	1.24e+12	40	2.09e+12	

Атака на Alternative Step Generator (ASG 72)

Полученная оценка: 4794.55 сек.

Число атак	Ограничение времени, сек.	Успешные атаки, %	Усредненное время, сек.	Отклонение времени, сек.
1000	1.0	64.8	1039.24	17.43
1000	2.0	100	1081.32	492.72
1000	3.0	100	1592.62	281.56
10000	2.0	100	1084.26	486.00

Из расчета на одно ядро процессора Intel®Xeon®E5-2695 v4

Выводы

- Были рассмотрены автоматизированные методы построения декомпозиционных множеств
- Некоторые построенные декомпозиционные множества лучше, чем найденные раннее, однако оценки времени взлома все еще очень велики

• Современные криптографические алгоритмы надежны!

Спасибо за внимание!

alpavlenko@itmo.ru

