Advanced Data Structures and Algorithms

NP-Hard and NP-Complete Problems

Dr G.Kalyani
Department of Information Technology
VR Siddhartha Engineering College

Topics

Basic Concepts

Non-Deterministic Algorithms

NP-Hard and NP-Complete Problems

Categorization of Problems

Depending on problem characteristics

Depending on time complexity

 Depending on the logic used to solve the problem

Types of Problems Depending on Problem Characteristics

- Any problem for which answer is 0 or 1 is called decision problem, such algorithm is called decision algorithm.
- Any problem that tries to identify all possible solutions is called enumeration problem, such algorithm is called enumeration algorithm.
- Any problem that involves identification of optimal solution of given cost function is known as optimization problem, such algorithm is optimization algorithm.

Types of Problems Depending on Time Complexity

 An algorithm for a given problem is said to be polynomial time algorithm if its time complexity belongs O(n^k), Where k is an integer.

• An algorithm for a given problem is said to be non polynomial time algorithm if it is Not a polynomial time algorithm. $TSP(n^22^n)$

Types of Problems Depending on Logic Used

- A **Deterministic Algorithm** is an algorithm that, given a particular input, always produces the same output and follows the same sequence of operations. we can identify the how the logic works during the execution.
- A Non-Deterministic Algorithm is an algorithm that, given a particular input, may not always produces the same output even it follows the same sequence of operations. we can not identify the how the logic works during the execution.

Deterministic & Non-Deterministic Search Algorithm

Deterministic

```
A is array of size n
for j=1 to n
  If A[j]=key then
    Write(j);
Write(0);
```

Non-Deterministic

Deterministic & Nondeterministic Search Algorithm

Deterministic

```
A is array of size n
for j=1 to n
  If A[j]=key then
    Write(j);
Write(0);
```

Non-Deterministic

```
A is array of size n
for i=1 to n
 j:=Choice(1,n)
  If A[j]=key then
     Write(j);
     Success();
Write(0);
Failure()
```

Nondeterministic Sorting Algorithm

```
Algorithm NSort(A, n)
     // Sort n positive integers.
         for i := 1 to n do B[i] := 0; // Initialize B[].
5
         for i := 1 to n do
6
7
             j := \mathsf{Choice}(1, n);
8
             if B[j] \neq 0 then Failure();
9
             B[j] := A[i];
10
         for i := 1 to n - 1 do // Verify order.
11
             if B[i] > B[i+1] then Failure();
12
         write (B[1:n]);
13
         Success();
14
15
```

Satisfiability(SAT) Problem

- Let x1,X2,... denote boolean variables (their value is either true or false).
- Let \overline{xi} denote the negation of xi.
- A literal is either a variable or its negation.
- A formula in the propositional calculus is an expression that can be constructed using literals and the operations and and or.
- Examples of such formulas are $(x_1 \land x_2) \lor (x_3 \land \bar{x_4})$ and $(x_3 \lor \bar{x_4}) \land (x_1 \lor \bar{x_2})$.
- The symbol ∨ denotes or and ∧ denotes and.

Satisfiability(SAT) Problem contd...

- A formula is in **Conjunctive Normal Form (CNF)** if and only if it is represented as $\wedge_{i=1}^k c_i$ where the ci are clauses each represented as $\vee l_{ij}$. The l_{ij} are literals.
- It is in **Disjunctive Normal Form(DNF)** if and only if it is represented as $\bigvee_{i=1}^k c_i$ and each clause ci is represented as $\wedge l_{ij}$.
- Ex for DNF: $(x_1 \wedge x_2) \vee (x_3 \wedge \bar{x_4})$
- Ex for CNF: $(x_3 \lor \bar{x_4}) \land (x_1 \lor \bar{x_2})$
- The satisfiability problem is to determine whether a formula is true for some assignment of truth values to the variables.
- CNF-satisfiability is the satisfiability problem for CNF formulas.

Nondeterministic Algorithm for SAT Problem

```
Algorithm Eval(E, n)

// Determine whether the propositional formula E is

// satisfiable. The variables are x_1, x_2, \ldots, x_n.

for i := 1 to n do // Choose a truth value assignment.

x_i := \text{Choice}(\text{false}, \text{true});

if E(x_1, \ldots, x_n) then \text{Success}();

else Failure();

}
```

P and NP Problems

- P: The class of decision problems that are solvable in polynomial time by deterministic algorithms.
- NP: The class of decision problems that are solvable in polynomial time by nondeterministic algorithms.

- Since deterministic algorithms are just a special case of nondeterministic ones P ⊆ NP.
- The most famous unsolved problem in computer science, is whether $P = NP \text{ or } P \neq NP$.

Relationship between P and NP

Reducibility

Definition 11.4 Let L_1 and L_2 be problems. Problem L_1 reduces to L_2 (also written $L_1 \propto L_2$) if and only if there is a way to solve L_1 by a deterministic polynomial time algorithm using a deterministic algorithm that solves L_2 in polynomial time.

Graph coloring Problem

NP-Hard and NP-Complete

• Definition of NP-Hard: A problem L is NP-Hard if and only if satisfiability reduces to L (satisfiability α L).

• Definition of NP-Complete: A problem L is NP-Complete if and only if L is, NP-Hard and $L \in NP$.

Relationship between P, NP, NP-Hard and NP-Complete

Examples of NP-Hard and NP-Complete Problems

- The following problems are NP-Hard
 - The circuit-satisfiability problem
 - Set Cover
 - Vertex Cover
 - Travelling Salesman Problem
- Following are some NP-Complete problems:
 - Determining whether a graph has a Hamiltonian cycle
 - Determining whether a Boolean formula is satisfiable, etc.