Digital Image Processing - CS 663 Group - 23

Assignment 2 - Question 2

Avyakta Wrat - 180070010 Nayan Barhate - 180070037 Meeta Malviya - 180070034 Varad Mane - 18D070034

1 Overview

In this question, we performed edge-preserving smoothing using Bilateral Filtering. The basic algorithm involves adjusting pixel value for a particular pixel by weighing in all the surrounding pixels based on the distance from this particular pixel in space as well as in terms of intensity. A gaussian kernel is used to define the weights, hence we have 2 tunable parameters, one for distance and one for intensity.

To speed up the algorithm, data collection for a value of standard deviation was performed only upto a distance of 1 standard deviation from the original pixel. Hence we have a variable window size which depends on the standard deviation of distance. The values of the two standard deviations were tuned on the basis of Root Mean Square Distance(RMSD), defined as:

$$RMSD(A, B) = \sqrt{\frac{\sum_{p}(A(p) - B(p))}{N}}$$

where A and B are the Original image and the bilateral filter output image, N is the number of pixels and A(p) refers to a pixel in A.

The parameters were tuned manually using binary search, by first indexing over all the values in [1, 2, 4, 8, 16, 32, 64, 128, 256] for intensity and similar for distance. Then we zoomed onto the area having the minimum RMSD and increased the resolution, until we had a resolution of 1 decimal place. After this, the RMSD for various standard deviations (0.9 and 1.1 times the original) were computed as a proof to show that we had a minima. (NOTE: We haven't scaled the image to [0,1] range here in this question)

2 Bilateral Filter Operation on images

2.1 Grass.png

2.1.1 Tuning the standard deviations

Let σ_d be the standard deviation for density and σ_i be the standard deviation for intensity. First a binary search was performed as explained above We found a minima at $\sigma_d = 1$ and $\sigma_i = 32$

Standard d	andard deviation of distance varies along x axis>							
	1	2	4	8	16	32	64	128
1	11.75812	11.75402	11.74611	11.74436	11.74694	11.7497	11.7521	11.7532
2	11.73729	11.70971	11.68303	11.68186	11.69944	11.71561	11.72451	11.72897
4	11.59213	11.45599	11.39479	11.43204	11.52094	11.58722	11.6211	11.63798
8	10.85805	10.44335	10.41536	10.6582	10.99665	11.21393	11.32185	11.37156
16	8.92793	8.463166	8.904575	9.747583	10.6294	11.14131	11.36273	11.46703
32	7.366782	8.159093	10.06756	12.54542	14.92071	16.09447	16.60316	16.85542
64	7.663639	10.50085	14.80123	19.92637	23.78696	25.64589	26.58269	27.13159
128	8.322653	12.50576	18.49145	25.06327	29.19002	31.24393	32.43877	33.21219

Figure 1: Initial Binary Search Run

Then we performed a linear search for integer σ_i in [16, 64] and σ_d in [0.9,1,1.1]. The cropped image is shown here (First column is σ_i)

30	7 488911	7.427829	7 515579	37.7	7.306212	7.297548	7.643
31		7.394347		37.8	7.305406	7.297382	7.64623
32	7.413828			37.9	7.30463	7.297245	7.64939
33	7.384664	7.344573	7.532791	38	7.303884	7.297136	7.65257
34	7.360412	7.327202	7.549111	38.1	7.303168	7.297055	7.65578
35	7.340614	7.314194	7.569743	38.2	7.302481	7.297002	7.65901
36	7.324848	7.305109	7.594171	38.3	7.301823	7.296976	7.6622
37	7.312724	7.299546	7.621925	38.4	7.301193	7.296978	7.66555
38	7.303884	7.297136	7.652575	38.5	7.300592	7.297007	7.66886
39	7.297999	7.297542	7.685732	38.6	7.300018	7.297062	7.67219
40	7.294765	7.300456	7.721041	38.7	7.299473	7.297143	7.67554
41	7.293908	7.305596	7.758182	38.8	7.298954	7.29725	7.67891
42	7.295172	7.312708	7.796862	38.9	7.298463	7.297383	7.6823
43	7.298329	7.321558	7.83682	39	7.297999	7.297542	7.68573
(a)]	Initial li	inear se	arch	(b)	Final li	near sea	rch

We then found the minima at $\sigma_d = 1$ and $\sigma_i = 38$. We then checked for 21 values of σ_i in [37,39] and σ_d in [0.9, 1 1.1]. The final minima was found for $\sigma_d = 1$ and $\sigma_i = 38.3$. The optimum RMSD value is 7.296976

2.1.2 Output Image

Figure 3: Original Image

Figure 4: Noisy Image

Figure 5: Bilateral Filter Output

2.1.3 RMSD Values

σ_d	σ_i	RMSD
1	38.3	7.296976
0.9	38.3	7.301823
1.1	38.3	7.662276
1	34.47	7.320573
1	42.13	7.313765

Table 1: RMSD Values

2.1.4 Gaussian Mask

Figure 6: Gaussian Mask

2.2 HoneyCombReal.png

2.2.1 Tuning the standard deviations

First a binary search was performed as was explained above. We found a minima at $\sigma_d=1$ and $\sigma_i=32$

	1	2	4	8	16	32
1	12.64983247	12.64440093	12.63704934	12.63552643	12.63613388	12.63728543
2	12.62608378	12.59247268	12.56501841	12.56913898	12.58003913	12.58789384
4	12.47241972	12.3147937	12.24691273	12.30096943	12.36369803	12.40044457
8	11.69446005	11.19678525	11.14515621	11.43750708	11.69900238	11.82276883
16	9.519132994	8.802573693	9.130175793	10.10461461	10.88937004	11.04768434
32	7.479684096	7.605335399	9.215241123	11.94199137	13.87616049	13.65527889
64	7.556841088	9.696274134	13.91604611	19.51884168	22.58815855	22.50232481
128	8.630226414	12.47795159	18.38366579	25.38132443	28.88945883	29.48823451
256	9.196369279	13.69560095	20.10337102	27.43379811	31.06048794	31.97987266

Figure 7: Initial Binary Search Run

Then we performed a linear search for integer σ_i in [16, 64] and σ_d in [0.8,0.9,1,1.1,1.2].

Figure 8: Linear Search Run

We then found the minima at $\sigma_d = 1$ and $\sigma_i = 43$. We then checked for 21 values of σ_i in [42,44] and σ_d in [0.9, 1 1.1].

	0.9	1	1.1
42	7.31008742	7.26517717	7.375964898
42.1	7.309205858	7.264848773	7.378329673
42.2	7.308351344	7.264546647	7.380722073
42.3	7.307523658	7.264270568	7.38314183
42.4	7.30672258	7.264020315	7.385588677
42.5	7.305947894	7.26379567	7.388062351
42.6	7.305199384	7.263596414	7.390562588
42.7	7.304476837	7.263422332	7.393089129
42.8	7.303780041	7.263273211	7.395641715
42.9	7.303108788	7.263148839	7.398220091
43	7.302462867	7.263049004	7.400824001
43.1	7.301842073	7.2629735	7.403453195
43.2	7.301246202	7.26292212	7.40610742
43.3	7.300675049	7.262894657	7.40878643
43.4	7.300128414	7.26289091	7.411489976
43.5	7.299606097	7.262910676	7.414217816
43.6	7.299107899	7.262953756	7.416969705
43.7	7.298633623	7.26301995	7.419745404
43.8	7.298183075	7.263109063	7.422544672
43.9	7.297756061	7.2632209	7.425367273
44	7.29735239	7.263355266	7.42821297

Figure 9: Linear Search Run

The final minima was found for $\sigma_d = 1$ and $\sigma_i = 43.4$. The optimum RMSD value is 7.26289091.

2.2.2 Gaussian Mask

Figure 10: Gaussian Mask

2.2.3 Output Images

Figure 11: Original Image

Figure 12: Noisy Image

Figure 13: Bilateral Filter Output

2.2.4 RMSD Values

	σ_d	σ_i	RMSD
ĺ	1	43.4	7.26289091
	0.9	43.4	7.300128414
	1.1	43.4	7.411489976
	1	39.06	7.287691698
	1	47.74	7.282871318

Table 2: RMSD Values

2.3 Barbara.mat

2.3.1 Tuning the standard deviation

As is done in all the images above, first a binary search was performed, in which the least RMDS was observed for $\sigma_d = 2$ and i = 8. After this, a linear search was performed for σ_i in [4,12] and i in [1,4]. The optimum value now was observed at $\sigma_d = 2$ and $\sigma_i = 10$. After some more linear searches, we found the optimum value of $\sigma_i = 10.4$ and $\sigma_d = 1.3$. The optimum RMSD value is 3.294366.

	1	2	4	8	16	space
1	4.95635	4.932984	4.910325	4.903449	4.91064	
2	4.856115	4.755639	4.691205	4.690539	4.730724	
4	4.42409	4.156881	4.060977	4.121469	4.26339	
8	3.60275	3.363793	3.379089	3.580238	3.876748	
16	3.426746	3.858029	4.102984	4.539165	5.112402	
32	4.334618	5.605029	6.079255	7.029652	8.450298	
64	5.05561	6.642645	7.291181	8.69978	10.89048	
128	5.300323	6.964592	7.681595	9.263764	11.735	
intensity						

Figure 14: Initial Binary Search Run

	1	2	3	4
4	4.42409	4.156881	4.079555	4.060977
5	4.172796	3.866633	3.794389	3.785868
6	3.944005	3.633825	3.576239	3.580045
7	3.752767	3.467228	3.43008	3.446723
8	3.60275	3.363793	3.349874	3.379089
9	3.49168	3.315669	3.325694	3.366909
10	3.41499	3.31387	3.347193	3.399718
11	3.367712	3.34981	3.404948	3.46809
12	3.3452	3.415776	3.490809	3.563962

Figure 15: Initial Linear Search Run

Figure 16: Linear Search Runs

2.3.2 Gaussian Mask

Figure 17: Initial Binary Search Run

2.3.3 Output Images

Figure 18: Original Image

Figure 19: Noisy Image

Figure 20: Bilateral Filter Output

2.3.4 RMSD Values

σ_d	σ_i	RMSD
1.3	10.4	3.294366147
1.17	10.4	3.298116177
1.43	10.4	3.297123959
1.3	9.36	3.314137427
1.3	11.44	3.31131997

Table 3: RMSD Values

3 Results

- \bullet Barbara.mat: $\sigma_{distance}=1.3,\,\sigma_{intensity}=10.4,\,\mathrm{RMSD}=3.294$
- HoneyCombReal.png: $\sigma_{distance}=1,\,\sigma_{intensity}=43.4,\,\mathrm{RMSD}=7.263$