V/F	Es. 1	Es. 2	Voto
/12	/10	/10	/32

Sapienza Università di Roma, Corso di Laurea in Informatica - canale telematico (a.a. 2023/2024) Prova scritta di Calcolo Differenziale - 1 luglio 2024

Nome e Cognome (in stampatello):

Numero matricola:

NOTA BENE: devono essere riconsegnati soltanto i fogli contenenti i testi degli esercizi. È vietato usare testi, appunti e strumenti elettronici di ogni tipo. Ogni affermazione negli esercizi a risposta aperta deve essere motivata dettagliatamente! È possibile utilizzare anche il retro dei fogli per inserire i calcoli. Il tempo a disposizione per la prova è di 2h.

Domande V/F

NOTA BENE: +1 risposta esatta, -0.5 risposta sbagliata, 0 risposta assente

1. Sia data la successione numerica reale

$$a_n = \frac{(-1)^n}{e^n + 2}$$

1A la successione a_n è infinitesima

la successione $b_n=(-1)^na_n$ non ammette limite per $n\longrightarrow \infty$ la successione $c_n=\frac{a_n}{2}$ è limitata **1B**

1C

1**D** a_n è indeterminata

2. Sia data la funzione

$$f(x) = \ln \frac{1}{x^2}$$

2A f ammette asintoti

2B f non ammette punti né di massimo né di minimo relativi

2C f è pari

2D l'insieme immagine di f è \mathbb{R} F

F

F F

3. Sia

$$f(x) = x^5 - 10x + 1$$

3A L'insieme immagine di f è l'insieme $[2, +\infty)$.

3B La funzione f è invertibile

3C La funzione f è dispari **3D** La funzione f ha tre zeri reali

Esercizio 1

(1) Studiare continuità e derivabilità della funzione

$$f(x) = \begin{cases} x^2 \arctan\left(\frac{1}{x}\right) & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

(2) Risolvere la disequazione

$$\log_2(x^2 - 4x) < 2$$

(3) Calcolare il polinomio di MacLaurin di

$$f(x) = 2x\ln(x+1)$$

di grado 2.

Esercizio 2

Studiare la seguente funzione

$$f(x) = \frac{2x}{x^2 + 1}$$

 $f(x) = \frac{2x}{x^2 + 1}$ In particolare: determinarne il dominio, eventuali simmetrie, studiarne il segno, studiare i limiti agli estremi del dominio, determinare eventuali asintoti, studiarne la continuità, derivabilità, la monotonia, la convessità, determinarne eventuali punti di massimo, di minimo (locali e/o assoluti) e di flesso. Tracciare un grafico qualitativo $\operatorname{di} f$.