Práctica 2

Ejercicio 1. Se definen las funciones $d_i : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \ (1 \le i \le 5)$ por:

$$d_1(x,y) = (x-y)^2$$
 , $d_2(x,y) = \sqrt{|x-y|}$, $d_3(x,y) = |x^2 - y^2|$
$$d_4(x,y) = |x-2y|$$
 , $d_5(x,y) = \frac{|x-y|}{1+|x-y|}$

Determinar cuáles de estas funciones son métricas en IR.

Ejercicio 2.

i) Probar que las siguientes funciones son métricas en \mathbb{R}^n :

(a)
$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

(b)
$$d_2(x,y) = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{1/2}$$

(c)
$$d_{\infty}(x,y) = \sup_{1 \le i \le n} |x_i - y_i|.$$

ii) Para n=2, dibujar las bolas abiertas B(0,r) de centro $0\in\mathbb{R}^2$ y radio r correspondientes a las tres distancias mencionadas.

Ejercicio 3. Sea X un conjunto y $\delta: X \times X \longrightarrow \mathbb{R}$ definida por

$$\delta(x,y) = \begin{cases} 1 & \text{si } x \neq y \\ 0 & \text{si } x = y \end{cases}$$

Verificar que δ es una métrica y hallar los abiertos de (X, δ) .

Nota: δ se llama métrica discreta y (X, δ) espacio métrico discreto.

Ejercicio 4. Sea $N: \mathbb{Z} \longrightarrow \mathbb{R}$ la función definida por

$$N(a) = \begin{cases} 2^{-n} & \text{si } a \neq 0, \quad p^n \mid a \quad \text{y} \quad p^{n+1} \not\mid a \\ 0 & \text{si } a = 0 \end{cases}$$

donde p es un primo fijo, y sea $d: \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{R}$ dada por d(a,b) = N(a-b). Probar que (\mathbb{Z},d) es un espacio métrico.

Ejercicio 5. Sea $\ell^{\infty} = \{(a_n)_{n \in \mathbb{N}} \subset \mathbb{R} / (a_n)_{n \in \mathbb{N}} \text{ es acotada}\}$. Se considera $d : \ell^{\infty} \times \ell^{\infty} \to \mathbb{R}$ definida por $d((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |a_n - b_n|$. Probar que (ℓ^{∞}, d) es un espacio métrico.

Ejercicio 6. Dados $a, b \in \mathbb{R}$, a < b, se define $C[a, b] = \{f : [a, b] \to \mathbb{R} / f \text{ es continua } \}$. Probar que son espacios métricos:

i)
$$(C[a,b], d_1)$$
, con $d_1(f,g) = \int_a^b |f(x) - g(x)| dx$,

ii)
$$(C[a, b], d_{\infty})$$
, con $d_{\infty} = \sup_{x \in [a, b]} |f(x) - g(x)|$.

Ejercicio 7. Sea (X, d) un espacio métrico. Se define $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$.

- i) Probar que d' también es una métrica en X, que satisface $0 \le d'(x,y) < 1$ para todos $x,y \in X$.
- ii) Probar que un subconjunto $A \subset X$ es abierto para la métrica d si y sólo si lo es para la métrica d'.
- iii) Deducir que una sucesión $(x_n)_{n\in\mathbb{N}}$ converge a un punto x con la métrica d si y sólo si también converge a x con la métrica d'.

Ejercicio 8. Sean (X_1, d_1) y (X_2, d_2) espacios métricos. Consideremos el conjunto $X_1 \times X_2$ y la aplicación $d: (X_1 \times X_2) \times (X_1 \times X_2) \longrightarrow \mathbb{R}$ dada por $d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$.

- i) Probar que d es una métrica en $X_1 \times X_2$.
- ii) Probar que en el espacio métrico $(X_1 \times X_2, d)$ se cumple que una sucesión $((a_n, b_n))_{n \in \mathbb{N}}$ converge a un punto (a, b) si y sólo si converge en cada coordenada, es decir si y sólo si $a_n \to a$ en (X_1, d_1) y $b_n \to b$ en (X_2, d_2) .

Ejercicio 9. Sea $(X_n, d_n)_{n \in \mathbb{N}}$ una sucesión de espacios métricos, y consideramos el producto cartesiano $X = \prod_{n=1}^{\infty} X_n$. El objetivo de este ejercicio es construir una métrica para X en la cual la convergencia de una sucesión equivalga a la convergencia en cada coordenada, como en el ejercicio anterior.

i) Supongamos primero que todos los X_n tienen diámetro menor o igual que 1, es decir $d_n(x,y) \leq 1$ para todos $n \in \mathbb{N}$ y $x,y \in X_n$. Dados dos elementos $x = (x_n)_{n \in \mathbb{N}}$ e $y = (y_n)_{n \in \mathbb{N}}$ en X, definimos

$$d(x,y) = \sum_{n=1}^{\infty} \frac{d_n(x_n, y_n)}{2^n}.$$

Probar que d es una métrica en X.

- ii) Sea x^1, x^2, x^3, \ldots una sucesión de puntos de X, es decir, cada x^k es una sucesión (x_1^k, x_2^k, \ldots) en la cual $x_n^k \in X_n$ para cada $n \in \mathbb{N}$. Sea $x = (x_n)_{n \in \mathbb{N}}$ un elemento de X. Probar que, con la métrica d definida en el ítem anterior, $x^k \to x$ en X si y sólo si para todo $n \in \mathbb{N}$ se cumple que $x_n^k \to x_n$ en X_n .
- iii) Mostrar cómo se puede reducir el caso general (es decir sin tener la hipótesis diam $(X_n) \le 1$) al caso ya resuelto.

Ejercicio 10. Sea (X, d) un espacio métrico y sean $A, B \subseteq X$.

i) Probar las siguientes propiedades del *interior* de un conjunto:

(a)
$$A^{\circ} = \bigcup_{\substack{G \text{ abierto} \\ G \subseteq A}} G$$

(b)
$$\emptyset^{\circ} = \emptyset$$
 y $X^{\circ} = X$

(c)
$$A \subseteq B \implies A^{\circ} \subseteq B^{\circ}$$

- (d) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$. ¿Se puede generalizar a una intersección infinita?
- (e) $(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}$. ¿Vale la igualdad?
- ii) Probar las siguientes propiedades de la clausura de un conjunto:

(a)
$$\overline{A} = \bigcap_{\substack{F \text{ cerrado} \\ A \subseteq F}} F$$

(b)
$$\overline{\emptyset} = \emptyset$$
 y $\overline{X} = X$

(c)
$$A \subseteq B \implies \overline{A} \subseteq \overline{B}$$

- (d) $\overline{A \cup B} = \overline{A} \cup \overline{B}$. ¿Se puede generalizar a una unión infinita?
- (e) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$
- (f) $x \in \overline{A} \iff \text{Existe una sucesión } (x_n)_{n \in \mathbb{N}} \subseteq A \text{ tal que } x_n \longrightarrow x$
- iii) Probar las siguientes propiedades que relacionan interior y clausura:

(a)
$$(X - A)^{\circ} = X - \overline{A}$$

(b)
$$\overline{X-A} = X - A^{\circ}$$

Son ciertas las igualdades: $\overline{A} = \overline{A^{\circ}}$, $A^{\circ} = (\overline{A})^{\circ}$?

iv) Probar las siguientes propiedades de la frontera de un conjunto:

(a)
$$\partial A = \overline{A} \cap \overline{X - A}$$

- (b) ∂A es cerrado
- (c) $\partial A = \partial (X A)$

Ejercicio 11. Sea (X, d) un espacio métrico y sea $A \subseteq X$ un conjunto numerable. Probar que $\#\overline{A} \le c$.

Ejercicio 12. Sea (X, d) un espacio métrico y sean $G \subseteq X$ abierto y $F \subseteq X$ cerrado. Probar que F - G es cerrado y G - F es abierto.

Ejercicio 13. Sea (X, d) un espacio métrico. Dados $a \in X$ y $r \in \mathbb{R}_{>0}$, llamamos bola cerrada de centro a y radio r al conjunto $\overline{B}(a, r) = \{x \in X \ / \ d(x, a) \le r\}$.

- i) Probar que $\overline{B}(a,r)$ es un conjunto cerrado y que $\overline{B(a,r)}\subseteq \overline{B}(a,r)$.
- ii) Dar un ejemplo de un espacio métrico y una bola abierta B(a,r) cuya clausura no sea $\overline{B}(a,r)$.

3

Ejercicio 14. Sean (X, d) un espacio métrico, p un punto de X y a, b números reales tales que 0 < a < b. Probar que:

- i) $\{x \in X / a < d(x, p) < b\}$ es abierto;
- ii) $\{x \in X \mid a \le d(x, p) \le b\}$ es cerrado.

Ejercicio 15. Sean (X, d_1) e (Y, d_2) espacios métricos. Se considera el espacio métrico $(X \times Y, d)$, donde d es la métrica definida en el Ejercicio 8. Probar que para $A \subseteq X$ y $B \subseteq Y$ valen:

i)
$$(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$$

ii)
$$\overline{A \times B} = \overline{A} \times \overline{B}$$

Ejercicio 16. Sea (X, d) un espacio métrico y sean A, B subconjuntos de X.

- i) Probar las siguientes propiedades del derivado de un conjunto:
 - (a) A' es cerrado
 - (b) $A \subseteq B \implies A' \subseteq B'$
 - (c) $(A \cup B)' = A' \cup B'$
 - (d) $\overline{A} = A \cup A'$
 - (e) $(\overline{A})' = A'$
- ii) Probar que $x \in X$ es un punto de acumulación de $A \subseteq X$ si y sólo si existe una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq A$ tal que $x_n \longrightarrow x$ y $(x_n)_{n \in \mathbb{N}}$ no es casi constante.

Ejercicio 17. Hallar interior, clausura, conjunto derivado y frontera de cada uno de los siguientes subconjuntos de IR. Determinar cuáles son abiertos o cerrados.

$$[0,1]$$
 ; $(0,1)$; \mathbb{Q} ; $\mathbb{Q} \cap [0,1]$; \mathbb{Z} ; $[0,1) \cup \{2\}$

Ejercicio 18. Caracterizar los abiertos y los cerrados de \mathbb{Z} considerado como espacio métrico con la métrica inducida por la usual de \mathbb{R} . Generalizar a un subespacio discreto de un espacio métrico X.

Ejercicio 19. Sea (X,d) un espacio métrico y sean $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ sucesiones en X.

- i) Si $\lim_{n\to\infty} x_n = x$ y $\lim_{n\to\infty} y_n = y$, probar que $\lim_{n\to\infty} d(x_n,y_n) = d(x,y)$.
- ii) Si $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ son dos sucesiones de Cauchy en X, probar que la sucesión real $(d(x_n,y_n))_{n\in\mathbb{N}}$ es convergente.

Ejercicio 20. Sea (X,d) un espacio métrico. Dados $A \subseteq X$ no vacío y $x \in X$, se define la distancia de x a A como $d_A(x) = \inf\{d(x,a) \mid a \in A\}$. Probar:

- i) $|d_A(x) d_A(y)| \le d(x, y)$ para todo par de elementos $x, y \in X$
- ii) $x \in A \implies d_A(x) = 0$

- iii) $d_A(x) = 0 \iff x \in \overline{A}$
- iv) $B_A(r) = \{x \in X / d_A(x) < r\}$ es abierto para todo r > 0
- v) $\overline{B}_A(r) = \{x \in X / d_A(x) \le r\}$ es cerrado para todo r > 0

Ejercicio 21. Un subconjunto A de un espacio métrico X se dice un G_{δ} (resp. un F_{σ}) si es intersección de una sucesión de abiertos (resp. unión de una sucesión de cerrados) de X.

- i) Probar que A es un G_{δ} si y sólo si X A es un F_{σ} .
- ii) Probar que todo cerrado es un G_{δ} . Deducir que todo abierto es un F_{σ} .
- iii) (a) Exhibir una sucesión de abiertos de IR cuya intersección sea [0, 1). Idem con [0, 1].
 - (b) Exhibir una sucesión de cerrados de \mathbb{R} cuya unión sea [0,1).

¿Qué conclusión saca de estos ejemplos?

Ejercicio 22. Sea (X,d) un espacio métrico. Dados $A,B\subseteq X$ no vacíos se define la distancia entre A y B por $d(A,B)=\inf\{d(a,b)\mid a\in A, b\in B\}$. Determinar si las siguientes afirmaciones son verdaderas o falsas:

- i) $d(A, B) = d(\overline{A}, B)$
- ii) $d(A, B) = 0 \iff A \cap B \neq \emptyset$
- iii) $d(A, B) = 0 \iff \overline{A} \cap \overline{B} \neq \emptyset$
- iv) $d(A, B) \le d(A, C) + d(C, B)$

Ejercicio 23. Probar que \mathbb{R}^n (con la distancia euclídea) es separable.

Ejercicio 24. Sea $\mathbb{R}^{(\mathbb{N})} = \{(a_n)_{n \in \mathbb{N}} \subseteq \mathbb{R} \mid \exists n_0 : a_n = 0 \ \forall n \geq n_0\}$. Se considera la aplicación $d : \mathbb{R}^{(\mathbb{N})} \times \mathbb{R}^{(\mathbb{N})} \longrightarrow \mathbb{R}$ definida por $d((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}) = \sup_{n \in \mathbb{N}} |a_n - b_n|$.

Probar que $(\mathbb{R}^{(\mathbb{N})}, d)$ es un espacio métrico separable.

Ejercicio 25. Sea (X, d) un espacio métrico. Se dice que una familia $\mathcal{A} = (U_j)_{j \in J}$ de abiertos de X es una base de abiertos de X si verifica:

"Para todo abierto G de X y para todo $x \in G$ existe $j \in J$ tal que $x \in U_j \subseteq G$ "

Probar que \mathcal{A} es una base de abiertos de X si y sólo si todo abierto de X se puede escribir como unión de miembros de \mathcal{A} .

Ejercicio 26. Sea (X, d) un espacio métrico. Probar que son equivalentes:

- i) X es separable.
- ii) X posee una base contable de abiertos.
- iii) Todo cubrimiento abierto de X tiene un subcubrimiento contable.

Ejercicio 27. Probar que todo subespacio de un espacio métrico separable es separable.

Ejercicio 28. Sea (X, d) un espacio métrico separable. Probar que toda familia de subconjuntos de X no vacíos, abiertos y disjuntos dos a dos es contable. Deducir que el conjunto de puntos aislados de X es contable.

Ejercicio 29. ¿Es ℓ^{∞} separable?