P2 de Álgebra Linear I -2005.13 de maio de 2005

Gabarito

- 1) Considere a base $\beta = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 .
 - (1.a) Prove que

$$\gamma = \{u_1 + u_2, u_1 + u_3, u_2 + u_3\}$$

é uma base de \mathbb{R}^3 .

- (1.b) Considere um vetor w cujas coordenadas na base β são $(w)_{\beta} = (1,2,3)$. Determine as coordenadas $(w)_{\gamma}$ do vetor w na base γ .
- (1.c) Considere agora a base de \mathbb{R}^3

$$\alpha = \{(1, 2, 3), (1, 1, 1), (a, b, c)\}.$$

Sabendo que as coordenadas do vetor (1,4,9) na base α são (1,2,2) determine $a,b \in c$.

(1.d) Considere os vetores

$$v_1 = (2, -1, 0),$$
 $v_2 = (2, 0, 1),$ $v_3 = (0, 1, 1),$ $v_4 = (4, -2, 0),$ $v_5 = (2, 2, 3),$ $v_6 = (1, 1, a).$

Determine o valor de **a** no vetor v_6 para que os vetores v_1, v_2, v_3, v_4, v_5 e v_6 gerem um plano π . Determine a equação cartesiana de π .

Resposta:

(1.a) Como três vetores linearmente independentes de \mathbb{R}^3 formam uma base, é suficiente verificar que os vetores (u_1+u_2) , (u_1+u_3) e (u_2+u_3) são linearmente independentes. Considere uma combinação linear deste vetores dando o vetor nulo,

$$\sigma_1(u_1 + u_2) + \sigma_2(u_1 + u_3) + \sigma_3(u_2 + u_3) = \bar{0}.$$

Devemos ver que σ_1 , σ_2 e σ_3 são necessariamente nulos. A combinação linear acima pode ser escrita como

$$(\sigma_1 + \sigma_2) u_1 + (\sigma_1 + \sigma_3) u_2 + (\sigma_2 + \sigma_3) u_3 = \bar{0}.$$

Como os vetores u_1, u_2 e u_3 são linearmente independentes, necessariamnete,

$$\sigma_1 + \sigma_2 = 0$$
, $\sigma_1 + \sigma_3 = 0$, $\sigma_2 + \sigma_3 = 0$.

Portanto

$$\sigma_2 = -\sigma_1, \quad \sigma_3 = -\sigma_1.$$

Substituindo na última equação temos que

$$-2 \sigma_1 = 0, \quad \sigma_1 = 0.$$

Logo,

$$\sigma_1 = \sigma_2 = \sigma_3 = 0.$$

Portanto, os vetores $(u_1 + u_2)$, $(u_1 + u_3)$ e $(u_2 + u_3)$ são l.i. e γ é uma base de \mathbb{R}^3 .

(1.b) Sejam (a, b, c) as coordenadas de w na base γ , isto é,

$$w = a(u_1 + u_2) + b(u_1 + u_3) + c(u_2 + u_3) =$$

= $(a + b) u_1 + (a + c) u_2 + (b + c) u_3$.

Por outra parte, como as coordenadas de w na base β são (1,2,3), temos

$$w = (1) u_1 + (2) u_2 + (3) u_3.$$

Portanto, pela unicidade de coordenadas em uma base,

$$1 = a + b$$
, $2 = a + c$, $3 = b + c$.

Logo,

$$1 = c - b$$
, $3 = c + b$,

portanto,

$$2c = 4$$
, $c = 2$, $b = 1$, $a = 0$.

Logo,

$$(w)_{\gamma} = (0, 1, 2).$$

(1.c) Pela definição de coordenadas em uma base, temos

$$(1,4,9) = 1(1,2,3) + 2(1,1,1) + 2(a,b,c).$$

Logo

$$1 = 1 + 2 + 2a, \quad a = -1,$$

 $4 = 2 + 2 + 2b, \quad b = 0,$
 $9 = 3 + 2 + 2c, \quad c = 2.$

Logo as coordenadas são (-1,0,2).

(1.d) Os vetores v_1 e v_2 são linearmente independentes. Portanto geram um plano π cujo vetor normal n é seu produto vetorial:

$$n = (2, -1, 0) \times (2, 0, 1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 0 \\ 2 & 0 & 1 \end{vmatrix} = (-1, -2, 2).$$

Portanto,

$$\pi$$
: $x + 2y - 2z = 0$.

Veja que os vetores v_3, v_4 e v_5 verificam a equação do plano π . Portanto, v_1, \ldots, v_5 tambeém geram o plano π . Finalmente, devemos escolher a de forma que v_6 pertence ao plano π (caso contrário os vetores v_1, \ldots, v_6 gerariam \mathbb{R}^3):

$$1 + 2 - 2a = 0$$
, $a = 3/2$.

2) Considere o vetor w=(1,2,1) de \mathbb{R}^3 e a transformação linear

$$M: \mathbb{R}^3 \to \mathbb{R}^3, \qquad M(u) = u \times w.$$

- (2.a) Determine a matriz [M] de M na base canônica.
- (2.b) Determine o subespaço imagem de M, isto é,

im
$$(M) = \{u \in \mathbb{R}^3 \text{ tal que existe } v \in \mathbb{R}^3 \text{ tal que } M(v) = u\}.$$

(2.c) Determine o conjunto v de vetores que verifica

$$M(v) = (1, -1, 1).$$

(2.d) Estude se M possui (transformação linear) inversa. Em caso afirmativo, determine $[M]^{-1}$.

Resposta:

(2.a) Temos,

$$M(x, y, z) = (x, y, z) \times (1, 2, 1) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x & y & z \\ 1 & 2 & 1 \end{vmatrix} = (y - 2z, -x + z, 2x - y).$$

Portanto,

$$M(\mathbf{i}) = (0, -1, 2), \quad M(\mathbf{j}) = (1, 0, -1), \quad M(\mathbf{k}) = (-2, 1, 0).$$

Logo a matriz de M é

$$[M] = \left(\begin{array}{ccc} 0 & 1 & -2 \\ -1 & 0 & 1 \\ 2 & -1 & 0 \end{array}\right).$$

(2.b) O subespaço im (M) é gerado pelos vetores $M(\mathbf{i})$, $M(\mathbf{j})$ e $M(\mathbf{k})$. Todos estes vetores são (por definição de M) ortogonais a (1,2,1). Portanto, como $M(\mathbf{i})$ e $M(\mathbf{j})$ são l.i., estes vetores geram um plano, no caso o plano π de vetor normal (1,2,1). Como $M(\mathbf{k})$ pertence a dito plano, temos

im
$$(M) = \pi$$
: $x + 2y + z = 0$.

(2.c) Devemos resolver o sistema

$$M(x,y,x) = (y-2z, -x+z, 2x-y) = (1, -1, 1).$$

Portanto,

$$y = 1 + 2z$$
, $y = -1 + 2x$, $x = 1 + z$.

Veja agora que a equação -x+z=-1 decorre das outras. Portanto, escolhendo z como parâmetro temos:

$$(1+t, 1+2t, t) = (1, 1, 0) + t(1, 2, 1), t \in \mathbb{R}.$$

Observe que

$$M((1,1,0) + t(1,2,1)) = M((1,1,0)) + t M((1,2,1)) =$$

$$= (1,1,0) \times (1,2,1) + t(1,2,1) \times (1,2,1) =$$

$$= (1,1,0) \times (1,2,1) = (1,-1,1).$$

- (2.d) A transformação M não possui inversa. V. pode ver isto de várias formas (equivalentes)
 - M não é sobrejetora: sua imagem é um plano e não \mathbb{R}^3 .
 - M não é injetora: existe $v \neq \bar{0}$ (por exemplo (1, 2, 1)) tal que $M(v) = \bar{0}$ (ou pode usar o item anterior).
 - ullet O determinante da matriz de M é nulo:

$$det(M) = (-1)((-1)(0) - (2)(1)) + (-2)((-1)(-1) + (2)(0)) = 2 - 2 = 0.$$

3) Considere as retas

$$r_1$$
: $y = 2x - 1$, r_2 : $y = 3x - 3$

е

$$s_1: y = x + 2, \qquad s_2: y = 3.$$

Sejam T uma transformação afim

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

que verifica

$$T(r_1) = s_1$$
 e $T(r_2) = s_2$

e $L: \mathbb{R}^2 \to \mathbb{R}^2$ a parte linear de T.

- (3.a) Determine a matriz [L] de L.
- (3.b) Determine a forma matricial de T.

Resposta:

(3.a) A parte linear L de T deve transformar um vetor diretor de r_1 em um vetor diretor de s_1 , e um vetor diretor de r_2 em um vetor diretor de s_2 . Por exemplo,

$$L((1,2)) = (1,1), L((1,3)) = (1,0).$$

Portanto,

$$L((0,1)) = L((1,3) - (1,2)) = L((1,3)) - L((1,2)) = (1,0) - (1,1) = (0,-1).$$

Logo

$$L((1,2)) = L((1,0)) + L((0,2)) = L((1,0)) + 2L(0,1) =$$

= $L(1,0) + (0,-2) = (1,1),$

Portanto,

$$L(1,0) = (1,3).$$

Logo,

$$[L] = \left(\begin{array}{cc} 1 & 0 \\ 3 & -1 \end{array}\right).$$

(3.b) Sabemos que

$$[T] \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 3 & -1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} a \\ b \end{array} \right).$$

Também sabemos que o ponto de interseção das retas r_1 e r_2 deve ser levado no ponto de interseção das retas s_1 e s_2 . Temos

$$r_1 \cap r_2 = (2,3), \quad s_1 \cap s_2 = (1,3).$$

Portanto,

$$\left(\begin{array}{cc} 1 & 0 \\ 3 & -1 \end{array}\right) \left(\begin{array}{c} 2 \\ 3 \end{array}\right) + \left(\begin{array}{c} a \\ b \end{array}\right) = \left(\begin{array}{c} 1 \\ 3 \end{array}\right).$$

Logo,

$$2 + a = 1,$$
 $a = -1,$ $3 + b = 3,$ $b = 0.$

Assim,

$$[T] \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{cc} 1 & 0 \\ 3 & -1 \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right) + \left(\begin{array}{c} -1 \\ 0 \end{array} \right).$$

Verifique, por exemplo, que $T(r_1) = s_1$, veja que $r_1 = (t, 2t - 1)$, logo

$$\left(\begin{array}{cc} 1 & 0 \\ 3 & -1 \end{array}\right) \left(\begin{array}{c} t \\ 2\,t-1 \end{array}\right) + \left(\begin{array}{c} -1 \\ 0 \end{array}\right) = \left(\begin{array}{c} t-1 \\ 3\,t-2\,t+1 \end{array}\right) = \left(\begin{array}{c} t-1 \\ t+1 \end{array}\right),$$

logo

$$x = t - 1$$
, $t = x + 1$, $y = t + 1 = x + 2$.

Finalmente, para ver que $T(r_2)=s_2$, veja que $r_2=(t,3\,t-3)$, logo

$$\left(\begin{array}{cc} 1 & 0 \\ 3 & -1 \end{array}\right) \left(\begin{array}{c} t \\ 3t - 3 \end{array}\right) + \left(\begin{array}{c} -1 \\ 0 \end{array}\right) = \left(\begin{array}{c} t - 1 \\ 3 \end{array}\right).$$

Logo x = t - 1 e y = 3 (que é a reta s_2).