JEE MAIN

Suraj Kolluru **EE24BTECH11033**

1. Multiple Choice Questions

- 1) Let f(x) be a polynomial function of second degree.If f(1)=f(-1) and a,b,c are in A.P, then f'(a), f'(b), f'(c) are in [2003]
 - a) Arthemetic-Geometric Progression
 - b) A.P
 - c) G.P
 - d) H.P
- 2) If $x=e^{y+e^{y+e^{y+---\infty}}}$, x>0, then $\frac{dy}{dx}$ is [2004]

- a) $\frac{1+x}{x}$ b) $\frac{1}{x}$ c) $\frac{1-x}{x}$ d) $\frac{x}{1+x}$
- 3) The value of a for which the sum of the squares of the roots of the equation $x^{2} - (a-2)x - a - 1 = 0$ assume the least value is [2005]
 - a) 1
- b) 0
- c) 3
- d) 2
- 4) If the roots of the equation $x^2 bx + c = 0$ be two consecutive integers, then $b^2 - 4c$ equals [2005]
 - a) -2
- b) 3
- c) 2
- d) 1
- 5) Let $f : R \rightarrow R$ be a differentiable function having $f(2) = 6, f'(2) = \left(\frac{1}{48}\right)$. Then $\lim_{x\to 2} \int_{6}^{f(x)} \frac{4t^3}{x-2} dt$ equals to [2005]
 - a) 24
- b) 36
- c) 12
- d) 18
- 6) The set of points where $f(x) = \frac{x}{1+|x|}$ is [2006]

- a) $(-\infty,0) \cup (0,\infty)$ c) $(-\infty, \infty)$
- b) $(-\infty, -1) \cup (-1, \infty)$ d) $0, \infty$
- 7) If $x^m \cdot y^n = x + y^{m+n}$, then $\frac{dy}{dx}$ is [2006]

 - a) $\frac{y}{x}$ b) $\frac{x+y}{xy}$ c) xy d) $\frac{x}{y}$
- 8) Let y be an implicit function of x defined by $x^{2x} - 2x^x \cot y - 1 = 0$. Then y'(1) equals [2009]
 - a) 1
- b) log 2 c) -log 2
- d) -1
- 9) Let $f: (-1,1) \rightarrow R$ be a differentiable function with f(0) = -1 and f'(0) = 1.Let $g(x) = [f(2f(x) + 2)]^2$. Then g'(0) =
 - a) -4 b) 0 c) -2

- d) 4

10) $\frac{d^2x}{dy^2}$ equals:

- [JEE M 2013]
- a) $-\left(\frac{d^2y}{dx^2}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3}$ c) $-\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-3}$ b) $\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2}$ d) $\left(\frac{d^2y}{dx^2}\right)^{-1}$

- 11) If $y = \sec(\tan^{-1} x)$, then $\frac{dy}{dx}$ at x=1 is equal [JEE M 2013]
 - a) $\frac{1}{\sqrt{2}}$ b) $\frac{1}{2}$

- 12) If g is the inverse of a function f and
 - $f'(x) = \frac{1}{1+x^5}$, then g'(x) is equal to: [JEE M 2014]
- a) $\frac{1}{1+(g(x))^5}$ c) $1+x^5$ b) 1+(g(x)) d) $5x^4$
- 13) If x=-1 and x=2 are extreme points of f(x)= $\alpha \log |x| + \beta x^2 + x$ then [JEE M 2014]

a)
$$\alpha = 2, \beta = -\frac{1}{2}$$

c)
$$\alpha = -6, \beta = \frac{1}{2}$$

b)
$$\alpha = 2, \beta = \frac{1}{2}$$

a)
$$\alpha = 2, \beta = -\frac{1}{2}$$

b) $\alpha = 2, \beta = \frac{1}{2}$
c) $\alpha = -6, \beta = \frac{1}{2}$
d) $\alpha = -6, \beta = -\frac{1}{2}$

- 14) If for $x \in (0, \frac{1}{4})$, the derivative of $\tan^{-1}(\frac{6x\sqrt{2}}{1-9x^3})$ is $\sqrt{x} \cdot g(x)$, then g(x) equals: [JEE M 2017]
 - a) $\frac{3}{1+9x^3}$ b) $\frac{3}{1+9x^3}$
- c) $\frac{3x\sqrt{x}}{1-9x^3}$ d) $\frac{3x}{1-9x^3}$