A presentation on

REAL-TIME VOICE-CONTROLLED OFFLINE BASED GAME FOR PHYSICALLY CHALLENGED PEOPLE

Course Code: ECE 452

Course Title: Project and Thesis

Presented by

Student ID: 1702118

Session: 2017

Student ID: 1702127

Session: 2017

Student ID: 1702155

Session: 2017

Purpose of the project

- Implementation of VOSK for offline based games
- Only option for gamers who are physically disabled
- Online based games have greater delay
- To introduce voice command games
- Online Games are costly but offline games are free to use
- Intriguing and under appreciated
- Players can interact with the game without having the knowledge of gaming consoles
- To provide a new and better experience in video games
- Gamers can use multiple control (both physical control consoles such as keyboard, mouse, joystick and voice control)
- To avoid utilizing physical controllers which are costly

➤ What our proposed method offers:

- Better Voice command Accuracy
- Gamers can easily integrate new voice commands
- Gamers can easily modify previously registered voice commands
- Excellent Compatibility (with both systems and languages)

➤ Overall System Requirements:

- Personal Computer with following configuration:
 - INTEL CORE i5 3.5 GHz
 - 8 GB RAM
 - 1 TB SSD as storage device
 - NVIDIA MX150 GPU
- Decent quality Microphone
- IDE (Pycharm , Proton , VScode)
- Python 3.9 or 3.10 (tested)

- > Python libraries used in the project:
 - √ VOSK
 - KaldiRecognizer (c++ based open-source voice recognition toolkit)
 - ✓ Pyaudio
 - Speech Recognition Through Microphone
 - Play and record Audio on a variety of platforms
 - ✓ Time
 - Performs a variety of time-related tasks
 - ✓ Threading
 - Threaded Objects and functions
 - Parallel for loops
 - Generates events that are regularly spaced in time
 - ✓ Random
 - Game Engine Modules:
 - I. Tkinter
 - II. Turtle
 - III. PyGame

FLOWCHART

Training Phase Speech **Testing Phase** Signal Silence Removal Preprocessing Preemphasis Feature Extraction Smoothing Window Speech Command MFCC Classifier Database Fig 2: Training Phase & Convolutional Neural Decision Networks Algorithm Testing Phase Steps Identified Speech Command WAIT FOR CMD ACCEPT MOVE CHECK MOVE DISPLAY MOVE INVALID VALID Fig_3: State diagram MOVE MOVE of game engine

Fig 1: Overall Project Methodology

Spectrogram Analysis

Waveform Analysis

2500 5000 7500 10000 12500 15000

2500 5000 7500 10000 12500 15000

Game Engine Modules Compatibility Analysis

COMPARISON WITH OTHER METHODS

[1] Microsoft speech SDK

- Only compatible with Windows based operating system
- Environment setup is complex

[2] Sphinx

- Accuracy level is very poor
- Not switchable for use

[3]Convolutional Neural Networks

 It needs training for adding or replacing new voice commands.

VOSK model

- Compatible with both windows, linux
- Also compatible with lightweight devices -Raspberry Pi, Android, iOS
- Open source

Accuracy level is decent enough

Adding or replacing new commands is easy

[1] Yuan, X., & Fan, J. (2011, July). (pp. 275-278). IEEE.

[2] https://cmusphinx.github.io/wiki/tutorialbeforestart/

[3] Waqar, D. M., Gunawan, T. S., Kartiwi, M., & Ahmad, R. (2021, August). In 2021 IEEE 7th (ICSIMA) (pp. 76-81). IEEE.

LIMITATIONS

There is a slight delay

FUTURE WORK

- We will try to integrate this module in 3D games and VR
- Multiplayer Adaptation

THANK YOU FOR YOUR KIND ATTENTION AND PATIENCE