# UNCLASSIFIED

AD 274 148

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA



# UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

6231

274148

AS AU 100.

THE EMITTANCE OF CERAMICS AND GRAPHITES

DEFENSE METALS INFORMATION CENTER
BATTELLE MEMORIAL INSTITUTE
COLUMBUS 1, OHIO

### THE EMITTANCE OF CERAMICS AND GRAPHITES

W. D. Wood, H. W. Deem, and C. F. Lucks\*

#### INTRODUCTION

There has been, for some years, a considerable interest in data on the thermal properties of materials. Many of these data are reported in an excellent manner by Armour Research Foundation in WADC TR-58-476, Volumes I through IV. Data available through 1957 are included.

Recently there has been an increased and particular interest in the radiant heat transfer and thermal-radiation properties. The fundamentals and nomenclature of radiant heat transfer are often not familiar to those who now find themselves concerned with it.

The Defense Metals Information Center has prepared a series of memorandums in the general field of radiant heat transfer to make this information and the data on thermal-radiation properties more readily available. Each memorandum is being directed toward providing information in a particular area of interest. Included are basic fundamentals, definitions and methods used in measuring the radiant-heat-transfer properties of materials, as well as literature values of these properties for selected materials. This series of memorandums ultimately will be assembled into a report for those with a broad interest in radiant heat transfer.

This present memorandum is the last of the series and is a compilation of original test data on emittance, reflectance, and transmittance of ceramics and graphites. Although these materials are on the borderline of the DMIC scope, the data were uncovered during the general search and are included to complete the record. The data were taken from the literature published during the period 1940-1959, inclusive, and as much of the 1960 literature as could be obtained. The following sources were searched: Chemical Abstracts, Ceramic Abstracts, Metallurgical Abstracts, Nuclear Science Abstracts, and the files of the Defense Metals Information Center (DMIC). The authors have attempted to evaluate these scurces of data according to the apparent thoroughness of methods and techniques as described by the various investigators. In many cases the descriptions in the literature are a summary of methods and results, and a complete evaluation is impossible. With these considerations in mind the authors have shown curves which, in their estimation, indicate the most probable values for the various conditions and materials.

<sup>\*</sup>Principal Physicist, Assistant Chief, and Chief, respectively, Instrumentation Division, Battelle Memorial Institute.

### METHOD OF PRESENTATION OF DATA

The data have been separated according to material and to the type of measurement, whether spectral or total.

In previous publications of this series, emittance data are given as the complement of the reflectance, which assumes a sample opaque to the radiation concerned in each case. Many of the ceramic materials transmit considerable amounts of incident radiation and must be relatively thick to be effectively opaque. The data in this memorandum are, therefore, given only in the units measured by the investigators, since for most cases the emittance must be considered as the complement of the sum of the reflectance and the transmittance.

All data have been plotted with each reference shown by different symbols. The reference-information sheet accompanying each graph gives the names of the investigators and the number of the reference from which the data were obtained. Notations of composition and surface condition of the sample tested, and a brief notation on the methods and conditions of measurement, are given when available.

The curves drawn by the authors have been prepared with special emphasis on the extremes found in the literature for the polished and oxidized conditions. The information for other surface conditions is contained in the accompanying reference-information sheet.

Further information concerning methods used may be found in the particular reference given or in DMIC Memorandum No. 78, "Methods of Measuring Emittance".

## EMITTANCE DATA

|                                                                 | <u>Page</u> |
|-----------------------------------------------------------------|-------------|
| CARBIDES                                                        |             |
| SILICON CARBIDE                                                 |             |
| Normal Total Emittance Versus Temperature                       | 8           |
| Normal Spectral Emittance Versus Temperature                    | 10          |
| Normal Spectral Emittance Versus Wavelength                     | 12          |
| Spectral Reflectance Versus Wavelength                          | 14          |
| TANTALUM CARBIDE                                                |             |
| Normal Spectral Emittance (0.5 to 4 microns)  Versus Wavelength | 16          |
| Normal Spectral Emittance (2 to 14 microns)  Versus Wavelength  | 18          |
| TUNGSTEN CARBIDE                                                |             |
| Normal Spectral Emittance Versus Temperature                    | 20          |
| ZIRCONIUM CARBIDE                                               |             |
| Normal Total Emittance Versus Temperature                       | 22          |
| Normal Spectral Emittance Versus Wavelength                     | 24          |
| GRAPHI TES                                                      |             |
| ACHESON GRAPHITE                                                |             |
| Hemispherical Total Emittance Versus Temperature                | 26          |
| Normal Spectral Emittance Versus Temperature                    | 28          |
| ATJ GRAPHITE                                                    |             |
| Hemispherical Total Emittance Versus Temperature                | 30          |
| Total Emittance Versus Emission Angle                           | 32          |
| Normal Spectral Emittance Versus Wavelength                     | 34          |
| ELECTRODE GRAPHITE                                              |             |
| Normal Total Emittance Versus Temperature                       | 36          |
|                                                                 |             |

|                                                  | <u>Page</u> |
|--------------------------------------------------|-------------|
| GRAPHITES (CONTINUED)                            |             |
| GBE GRAPHITE                                     |             |
| Normal Total Emittance Versus Temperature        | 38          |
| GBH GRAPHITE                                     |             |
| Normal Total Emittance Versus Temperature        | 40          |
| GRAPHITE AND CARBON                              |             |
| Normal Spectral Emittance Versus Temperature     | 42          |
| 3474D GRAPHITE                                   |             |
| Normal Total Emittance Versus Temperature        | 44          |
| 7087 GRAPHITE                                    |             |
| Normal Total Emittance Versus Temperature        | 46          |
| NICKEL-TITANIUM CARBIDE HARD METALS              |             |
| K150A                                            |             |
| Hemispherical Total Emittance Versus Temperature | 48          |
| K151A                                            |             |
| Hemispherical Total Emittance Versus Temperature | 50          |
| K152B                                            |             |
| Hemispherical Total Emittance Versus Temperature | 52          |
| K153B                                            |             |
| Hemispherical Total Emittance Versus Temperature | 54          |
| K163B1                                           |             |
| Hemispherical Total Emittance Versus Temperature | 56          |
| K184B                                            |             |
| Hemispherical Total Emittance Versus Temperature | 58          |
| NITRIDES                                         |             |
| BORON NITRIDE                                    |             |
| Normal Spectral Emittance Versus Wavelength      | 60          |
|                                                  |             |

BATTELLE MEMORIAL INSTITUTE

|                                                          | <u>Page</u> |
|----------------------------------------------------------|-------------|
| OXIDES                                                   |             |
| ALUMINUM OXIDE                                           |             |
| Normal Total Emittance Versus Temperature                | 62          |
| Normal Spectral Emittance Versus Temperature             | 64          |
| Normal Spectral Emittance Versus Wavelength              | 66          |
| Spectral Reflectance Versus Wavelength                   | 68          |
| BERYLLIUM OXIDE                                          |             |
| Normal Total Emittance Versus Temperature                | <b>7</b> 0  |
| Spectral Reflectance Versus Wavelength                   | 72          |
| MAGNESIUM OXIDE                                          |             |
| Normal Total Emittance Versus Temperature                | 74          |
| Normal Spectral Emittance Versus Temperature             | 76          |
| Normal Spectral Emittance Versus Wavelength              | 78          |
| ZIRCONIUM OXIDE                                          |             |
| Normal Total Emittance Versus Temperature                | 80          |
| Normal Spectral Emittance Versus Temperature             | 82          |
| Normal Spectral Emittance Versus Wavelength              | 84          |
| Spectral Reflectance Versus Wavelength                   | 86          |
| PYROCERAM                                                |             |
| 9606 PYROCERAM                                           |             |
| Normal Total Emittance Versus Temperature                | 88          |
| Normal Spectral Emittance Versus Temperature             | 90          |
| Spectral Reflectance Versus Wavelength                   | 92          |
| 9608 PYROCERAM                                           |             |
| Normal Total Emittance Versus Temperature                | 94          |
| Normal Spectral Emittance Versus Temperature             | 96          |
| Spectral Reflectance and Transmittance Versus Wavelength | 98          |

| 1                                                       | Page |
|---------------------------------------------------------|------|
| SILICIDES                                               |      |
| MOLYBDENUM DISILICIDE                                   |      |
| Normal Total Emittance Versus Temperature               | 100  |
| Normal Spectral Emittance Versus Temperature            | 102  |
| TABULATION OF TOTAL SOLAR ABSORPTANCE OF FOUR GRAPHITES | 104  |

EMITTANCE DATA



NORMAL TOTAL EMITTANCE OF SILICON CARBIDE

NORMAL TOTAL EMITTANCE OF SILICON CARBIDE -- REFERENCE INFORMATION

| Reference | Investigator      | Symbo 1 | Composition and<br>Surface Condition                                         | Test Method                                                                                                                             | Remarks                                                              |
|-----------|-------------------|---------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|           | Anthony and Pearl | ox      | KT Silicon carbide<br>As received<br>Pre-oxidized in air l<br>hour at 2000 F | Normal total emittance. Induction-heated specimen. Comparison blackbody. Thermopile detector. Temperatures measured with thermocouples. | Measured in purge<br>of dry helium gas.<br>Data taken from<br>table. |
| 8         | Olson and Morris  | ٩       | Silicon carbide<br>Surface condition not<br>given                            | Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples.   | Measured in air.<br>Data taken from<br>curves.                       |



NORMAL SPECTRAL EMITTANCE OF SILICON CARBIDE

NORMAL SPECTRAL EMITTANCE OF SILICON CARBIDE.-REFERENCE INFORMATION

| Reference Investigator Symbol Surface Condition  R 2 Olson and Morris O Silicon carbide Surface condition not given |                                                                                                                                                                                        |                                                                  |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 0                                                                                                                   | Composition and Surface Condition Test Method                                                                                                                                          | Remarks                                                          |
| 1 N                                                                                                                 | Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.6654. Temperatures measured with thermocouples. | Measured in air. Data taken from curves. $(\lambda = 0.665 \mu)$ |



NORMAL SPECTRAL EMITTANCE OF SILICON CARBIDE

NORMAL SPECTRAL EMITTANCE OF SILICON CARBIDE - REFERENCE INFORMATION

| Reference | Investigator                                     | Symbo1 | Composition and<br>Surface Condition                                             | Test Method                                                                                      | Remarks                                                             |
|-----------|--------------------------------------------------|--------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| ო         | Blau, Marsh, Martin,<br>Jasperse, and<br>Chaffee |        | Silicon carbide<br>Diamond wheel finish as<br>supplied by manufacturer           | Normal spectral emittance.<br>Specimen mounted in wall<br>of cylindrical Globar<br>(SiC) heater. | Measured in air.<br>Data taken from<br>curves.<br>(Curves are drawn |
|           |                                                  |        | Crystolon R (Norton)<br>99% + pure                                               | Comparison blackbody<br>hole also in heater                                                      | through the 1112 F points only.                                     |
|           |                                                  | ٥      | Measured at 1112 F                                                               | Temperatures measured                                                                            |                                                                     |
|           |                                                  | 0      | Measured at 1877 F<br>RC4237 (Norton)<br>80% pure                                | <pre>with thermocouples. Monochromator and thermocouple detector.</pre>                          |                                                                     |
|           |                                                  | 0      | Measured at 1112 F                                                               |                                                                                                  |                                                                     |
|           |                                                  | •      | Measured at 1472 F                                                               |                                                                                                  |                                                                     |
|           |                                                  | •      | Measured at 1868 F                                                               |                                                                                                  |                                                                     |
| च         | Blau, Chaffee,<br>Jasperse, and<br>Martin        | ×      | 99 per cent silicon<br>carbide<br>(Norton Crystalon R)                           | Normal spectral emittance. Induction-heated specimen. Comparison blackbody.                      | Measured in 90% argon, 10% hydrogen atmos-                          |
|           |                                                  |        | Flat smooth surface<br>from diamond wheel<br>cutting.                            | Monochromator and<br>thermocouple detector.<br>Temperatures measured<br>with micro-optical       | Data taken from curve.                                              |
|           |                                                  |        | The minima at about 9 and 12 microns are attributed to a thin SiOz surface film. | pyrometer.                                                                                       |                                                                     |



SPECTRAL REFLECTANCE OF SILICON CARBIDE

SPECTRAL REFLECTANCE OF SILICON CARBIDE-REFERENCE INFORMATION

| R<br>Reference | Investigator     | Symbol | Composition and<br>Surface Condition          | Test Method                                 | Remarks                              |
|----------------|------------------|--------|-----------------------------------------------|---------------------------------------------|--------------------------------------|
| ~ N E M        | Olson and Morris |        | Silicon carbide, purity and surface condition | Spectral reflectance.<br>Incident radiation | Measured in air at room temperature. |
| 0 R            |                  |        |                                               | to specimen surface.                        | Curves.                              |
| IAL            |                  |        |                                               | Integrating sphere reflectometer.           |                                      |
| ı              |                  |        |                                               | Monochromator and lead sulphide detector.   |                                      |
| N S T          |                  |        |                                               | Normal (9 degrees)                          |                                      |
| 1 T            |                  |        |                                               | Diffuse reflection.                         |                                      |



NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (0.5 TO 4 MICRONS)

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (0.5 TO 4 MICRONS) -- REFERENCE INFORMATION

| R<br>Reference | Investigator | Symbo 1 | Composition and<br>Surface Condition                                                                 | Test Method                                                                                                                                                                   | Remarks                                          |
|----------------|--------------|---------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| φ<br>MEMORIAL  | Riethof      |         | Tantalum carbide Composition or surface condition not given Measured at 2834, 3590, 4340, and 4740 F | Normal spectral emittance. Induction-heated specimen. Blackbody hole in specimen surface. Thermocouple detector. Monochromator. Temperatures measured with optical pyrometer. | Measured in argon.<br>Data taken from<br>curves. |



NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (2 TO 14 MICRONS)

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (2 TO 14 MICRONS) -- REFERENCE INFORMATION

| r<br>Reference    | Investigator                           | Symbo1 | Composition and<br>Surface Condition                                                                                                                          | Test Method                                                                                                                                                        | Remarks                                                                                 |
|-------------------|----------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| M E M O R I A L I | Blau, Chaffee, Jasperse,<br>and Martin | •      | Tantalum carbide Purity not given Surface flat and smooth but not polished (Note: Surface analysis after 3234 K (5362 F) run showed thin tantalum oxide film) | Normal spectral emittance. Induction-heated specimen. Comparison blackbody. Monochromator and thermocouple detector. Temperatures measured with optical pyrometer. | Measured in 90%<br>argon 10%<br>hydrogen atmos-<br>phere.<br>Data taken from<br>curves. |



NORMAL SPECTRAL EMITTANCE OF TUNGSTEN CARBIDE

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN CARBIDE -- REFERENCE INFORMATION

| Composition and Surface Condition Test Method Remarks | Tungsten carbide (WC)  Surface condition or purity not given purity not formation from WC to W2C at 3140 F  Measured at 2060, 2780,  Surface condition or Induction—heated specimen. atmosphere of atmosphere of argon. argon. Data taken from Thermocouple detector. Curves. Monochromator. Temperatures measured with optical pyrometer. |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol                                                | -                                                                                                                                                                                                                                                                                                                                          |
| Investigator                                          | Coffman, Coulson, and<br>Kibler                                                                                                                                                                                                                                                                                                            |
| Reference                                             | ιn<br>O                                                                                                                                                                                                                                                                                                                                    |

INSTITUTE



NORMAL TOTAL EMITTANCE OF ZIRCONIUM CARBIDE

NORMAL TOTAL EMITTANCE OF ZIRCONIUM CARBIDE.--REFERENCE INFORMATION

| Reference | Investigator                    | Symbol | Composition and Surface Condition                                                            | Test Method                                                                                                            | Remarks                                                                |
|-----------|---------------------------------|--------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| ν         | Coffman, Coulson,<br>and Kibler | 0      | Formed into "toadstool"<br>shaped specimen<br>Composition and surface<br>condition not given | Normal total emittance. Induction-heated specimen. Comparison blackbody. Temperatures measured with optical pyrometer. | Measured in 1.5 atmosphere of dry, pure, argon. Data taken from curve. |
|           |                                 |        |                                                                                              |                                                                                                                        |                                                                        |

4 L

INSTIT



NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CARBIDE

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CARBIDE--REFERENCE INFORMATION

|           | NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CARBIDEREFERENCE INFORMATION |        |                                                                                                                   |                                                                                                                                                                               |                                                     |
|-----------|---------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Reference | Investigator                                                        | Symbol | Composition and<br>Surface Condition                                                                              | Test Method                                                                                                                                                                   | Remarks                                             |
| ø         | Riethof                                                             |        | Zirconium carbide<br>Composition or surface<br>condition not given<br>Measured at 3320, 3626,<br>3990, and 4340 F | Normal spectral emittance. Induction-heated specimen. Blackbody hole in specimen surface. Thermocouple detector. Monochromator. Temperatures measured with optical pyrometer. | Measured in<br>argon.<br>Data taken from<br>curves. |

INSTITUTE



HEMISPHERICAL TOTAL EMITTANCE OF ACHESON GRAPHITE

HEMISPHERICAL TOTAL EMITTANCE OF ACHESON GRAPHITE.-REFERENCE INFORMATION

| Reference      | Investigator      | Symbol | Composition and Surface Condition                                                                           | Test Method                                                                                                                                                                                                                 | Remarks                                           |
|----------------|-------------------|--------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| MEMORIAL INSTI | Jain and Krishnan | 0      | Acheson graphite Sample held at 2000 K for 1 hour in vacuum, until emittance became steady and reproducible | Hemispherical total emittance. Hole-in-tube method. Correction of inside blackbody temperature to surface temperature made using known thermal conductivity and wall thickness. Blackbody temperature measured with optical | Measured in vacuum.<br>Data taken from<br>curves. |
| TUTE           |                   |        |                                                                                                             |                                                                                                                                                                                                                             |                                                   |



NORMAL SPECTRAL EMITTANCE OF ACHESON GRAPHITE

NORMAL SPECTRAL EMITTANCE OF ACHESON GRAPHITE.--REFERENCE INFORMATION

|                 |                   | <b>-29-</b>                                                                                                              |  |
|-----------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Remarks         | 7                 | weasured in vacuum. Data taken from curves. $( \gamma = 0.665 \mu )$                                                     |  |
| Test Method     |                   | Normal spectral emittance. Hole-in-tube method. Temperatures measured with optical pyrometer.                            |  |
| Composition and | Surface Condition | Acheson graphite<br>Specimen held at 2000 K<br>for 1 hour in vacuum<br>until emittance became<br>steady and reproducible |  |
|                 | Symbol            | 0                                                                                                                        |  |
|                 | Investigator      | Jain and Krishnan                                                                                                        |  |
|                 | Reference         | •                                                                                                                        |  |

L 11



HEMISPHERICAL TOTAL EMITTANCE OF ATJ GRAPHITE

HEMISPHERICAL TOTAL EMITTANCE OF AIJ GRAPHITE -- REFERENCE INFORMATION

| Reference | Investigator                              | Symbol | Composition and Surface Condition              | Took Mother                                                                                                                                                                                                                                                         |                                                                          |
|-----------|-------------------------------------------|--------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|           |                                           |        |                                                | poliner rest                                                                                                                                                                                                                                                        | Kemarks                                                                  |
| 4         | Blau, Chaffee,<br>Jasperse, and<br>Martin | 0      | AIJ graphite<br>Surface condition not<br>given | Normal total emittance. (Hemispherical emittance equals normal emittance for this specimen.) Induction-heated specimen. Monochromator with prism replaced by plane mirror. Thermocouple detector. Blackbody hole drilled in specimen surface. Temperatures measured | Measured in 90% argon - 10% hydrogen atmosphere. Data taken from curves. |
|           |                                           |        |                                                | With mitto-optical pyrometer.                                                                                                                                                                                                                                       |                                                                          |



TOTAL EMITTANCE VERSUS EMISSION ANGLE OF ATJ GRAPHITE

TOTAL EMITTANCE VERSUS EMISSION ANGLE OF ATJ GRAPHITE -- REFERENCE INFORMATION

| r<br>Reference | Investigator            | Symbol | Composition and<br>Surface Condition       | Test Method                                     | Remarks                        |
|----------------|-------------------------|--------|--------------------------------------------|-------------------------------------------------|--------------------------------|
| 4              | Blau, Chaffee,          |        | ATJ graphite                               | Total emittance measured                        | Measured in 90%                |
|                | Jasperse, and<br>Martin |        | Surface smooth and flat, but not polished. | normally and at 30, 45, and 60 degrees from the | argon - 10%<br>hydrogen atmos- |
| <b>.</b>       |                         | 0      | Measured at 1431 F                         | normal.<br>Induction—heated                     | phere.<br>Data taken from      |
| •              |                         | ×      | Measured at 2457 F                         | specimen.                                       | curves.                        |
|                |                         | •      |                                            | Monochromator with                              |                                |
| •              |                         |        |                                            | prism replaced by                               | Normal emittance               |
| •              |                         |        |                                            | plane mirror.                                   | equals hemispher-              |
| •              |                         |        |                                            | Thermocouple detector.                          | ical emittance                 |
|                |                         |        |                                            | Blackbody hole drilled                          | for this specimen.             |
|                |                         |        |                                            | in specimen surface.                            |                                |
|                |                         |        |                                            | Temperatures measured                           |                                |
| •              |                         |        |                                            | with micro-optical                              |                                |
| 7              |                         |        |                                            | pyrometer.                                      |                                |
| 1              |                         |        |                                            |                                                 |                                |



NORMAL SPECTRAL EMITTANCE OF ATJ GRAPHITE

NORMAL SPECTRAL EMITTANCE OF ATJ GRAPHITE.--REFERENCE INFORMATION

| Reference | Investigator                              | Symbol | Composition and<br>Surface Condition                        | Test Method                                                                                                                                                                                      | Remarks                                                                   |
|-----------|-------------------------------------------|--------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 4         | Blau, Chaffee,<br>Jasperse, and<br>Martin |        | ATJ graphite<br>Surface smooth and flat<br>but not polished | Normal spectral emittance. Induction-heated specimen. Monochromator and thermo- couple detector. Blackbody hole drilled in specimen surface. Temperatures measured with micro-optical pyrometer. | Measured in 90% argon - 10% hydrogen atmos-phere. Data taken from curves. |



NORMAL TOTAL EMITTANCE OF ELECTRODE GRAPHITE

NORMAL TOTAL EMITTANCE OF ELECTRODE GRAPHITE--REFERENCE INFORMATION

| E          |                   |        | Composition and        |                                               | -                 |
|------------|-------------------|--------|------------------------|-----------------------------------------------|-------------------|
| Reference  | Investigator      | Symbol | Surface Condition      | Test Method                                   | Kemarks           |
|            | Anthony and Pearl |        | Electrode graphite     | Normal total emittance.                       | Measured in purge |
| • •        |                   | 0      | Preoxidized            | induction-neated<br>specimen.                 | Data taken from   |
| <b>R</b> 1 |                   | ×      | Polished               | Comparison blackbody.                         | table.            |
| AL         |                   | 0      | Silicon carbide bonded | Inermopile detector.<br>Temperatures measured |                   |
|            |                   |        |                        | with thermocouples.                           |                   |



NORMAL TOTAL EMITTANCE OF GBE GRAPHITE

NORMAL TOTAL EMITTANCE OF GBE GRAPHITE-REFERENCE INFORMATION

| m<br>r Reference | Investigator                        | Symbo1 | Composition and<br>Surface Condition                    | Test Method                                                                                                                                    | Remarks                                              |
|------------------|-------------------------------------|--------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                  | Olson and Morris                    | 0      | National GBE graphite<br>Surface condition not<br>given | Normal total emittance. Resistance-heated strip specimen. Comparison blackbody. Temperatures measured with thermocouples. Thermistor detector. | Measured in<br>vacuum.<br>Data taken from<br>curves. |
| -<br>1 A L       | Betz, Olson, Schurin,<br>and Morris | ٥      | Same as above                                           | Same as above.                                                                                                                                 | Same as above.                                       |



NORMAL TOTAL EMITTANCE OF TYPE GBH GRAPHITE

NORMAL TOTAL EMITTANCE OF TYPE GBH GRAPHITE.-REFERENCE INFORMATION

| T T E   | Investigator                        | Symbol | Composition and<br>Surface Condition                    | Test Method                                                    | Remarks                                           |
|---------|-------------------------------------|--------|---------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------|
|         | Olson and Morris                    | 0      | National GBH graphite<br>Surface condition not<br>given | Normal total emittance. Resistance-heated strip specimen.      | Measured in vacuum.<br>Data taken from<br>curves. |
| 4 E M O |                                     |        | Note: Changed with cycling                              | Thermistor detector. Temperatures measured with thermocouples. | ,-                                                |
| r I A L | Betz, Olson, Schurin,<br>and Morris | ٥      | Surface condition not given                             | Same as above.                                                 | Measured in vacuum.<br>Data taken from<br>table.  |
|         |                                     |        |                                                         |                                                                | !                                                 |



NORMAL SPECTRAL EMITTANCE OF GRAPHITE AND CARBON

NORMAL SPECTRAL EMITTANCE OF GRAPHITE AND CARBON --- REFERENCE INFORMATION

| Doforonce | Investinator      | Sumbol  | Composition and         | Toc+ Mothod                | Domosely        |
|-----------|-------------------|---------|-------------------------|----------------------------|-----------------|
|           | to of the sailt   | c ympor |                         | TORE MCCIO                 | Vellatiks       |
| 01        | Thorn and Simpson | 0       | High-purity, medium-    | Normal spectral emittance. | Measured in     |
| •         |                   |         | density graphite        | Modified hole-in-tube      | vacuum.         |
|           |                   |         |                         | method.                    | Data taken from |
| _         |                   | ×       | Spectroscopic electrode |                            | curves.         |
|           |                   |         | carbon                  | Temperatures measured      |                 |
| _         |                   |         |                         | with calibrated            | (N= 0.653 x)    |
| •         |                   |         | Surface condition,      | optical pyrometer.         |                 |
|           |                   |         | polished and then       |                            |                 |
|           |                   |         | heated to 1800 K in     |                            |                 |
| •         |                   |         | vacuum for 3 hours      |                            |                 |
| •         |                   |         |                         |                            |                 |

INSTITUTE



NORMAL TOTAL EMITTANCE OF TYPE 3474D GRAPHITE

NORMAL TOTAL EMITTANCE OF TYPE 3474D GRAPHITE -- REFERENCE INFORMATION

| Reference | Investigator                           | Symbol | Composition and<br>Surface Condition                   | Test Method                                                                          | Remarks                                             |
|-----------|----------------------------------------|--------|--------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|
| ω         | Olson and Morris                       | 0      | Speer 3474D graphite<br>Surface condition not<br>given | Normal total emittance. Resistance-heated strip specimen.                            | Measured in<br>vacuum.<br>Data taken from           |
|           |                                        |        | Note: Changed with cycling                             | Comparison blackbooy. Thermistor detector. Temperatures measured with thermocouples. | · car.                                              |
| <b>L</b>  | Betz, Olson,<br>Schurin, and<br>Morris | ٥      | Surface condition not<br>given                         | Same as above.                                                                       | Measured in<br>vacuum.<br>Data taken from<br>table. |



NORMAL TOTAL EMITTANCE OF TYPE 7087 GRAPHITE

NORMAL TOTAL EMITTANCE OF TYPE 7087 GRAPHITE -- REFERENCE INFORMATION

| aniereirei L | Investigator                           | Symbol | Surface Condition                                     | Test Method                                                                          | Remarks                                             |
|--------------|----------------------------------------|--------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------|
| œ            | Olson and Morris                       | 0      | Speer 7087 graphite<br>Surface condition not<br>given | Normal total emittance.<br>Resistance-heated strip<br>specimen.                      | Measured in vacuum.<br>Data taken from<br>curves.   |
|              |                                        |        | Note: Changed with cycling                            | Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples. |                                                     |
| ^            | Betz, Olson,<br>Schurin, and<br>Morris | ٥      | Surface condition not<br>given                        | Same as above.                                                                       | Measured in<br>vacuum.<br>Data taken from<br>table. |



HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K150A Ni-Tic HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K150A NI-TIC HARD METAL--REFERENCE INFORMATION

| מבובובוב | Investigator   | Symbol | Surface Condition     | Test medical                               |                         |
|----------|----------------|--------|-----------------------|--------------------------------------------|-------------------------|
| =        | Wade and Casev |        | Composition: 10Ni,    | Hemispherical total                        | Measured in air.        |
| <b>;</b> |                |        | 80Tic, 10CbC          | emittance.<br>(Total emittance             | Data taken from curves. |
|          |                | 0      | As received, then     | measured normally                          |                         |
|          |                | }      | oxidized              | and at various angles.<br>Normal emittance |                         |
|          |                | 0      | Polished: Hand lapped | equals hemispherical                       |                         |
|          |                |        | with 3 micron and 1   | emittance.)                                |                         |
|          |                |        | micron diamond paste, | Thermopile total                           |                         |
|          |                |        | then oxidized         | ratiation detector.                        |                         |
|          |                |        |                       | Resistance-heated                          |                         |
|          |                |        |                       | specimen. Comparison                       |                         |
|          |                |        |                       | blackbody.                                 |                         |
|          |                |        |                       | Temperatures measured                      |                         |
|          |                |        |                       | with thermocouples.                        |                         |



HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K151A Ni-Tic HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K151A Ni-Tic HARD METAL--REFERENCE INFORMATION

| Reference        | Investigator   | Symbo1             | Composition and<br>Surface Condition                                                                                                      | Test Method                                                                                                                                                                                                                                                                 | Remarks                                  |
|------------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| I MEMORIAL INSTI | Wade and Casey | ОО                 | Composition: 20Ni, 70TiC, 10CbC  As received, then oxidized Polished; hand lapped with 3-micron and 1-micron diamond paste, then oxidized | Hemispherical total emittance. (Total emittance measured normally and at various angles. Normal emittance equals hemispherical emittance.) Thermopile total radiation detector. Resistance-heated specimen. Comparison blackbody. Temperatures measured with thermocouples. | Measured in air. Data taken from curves. |
| . <b>.</b>       | Composition:   | 20Ni, 70TiC, 10CbC | .c, 10CbC                                                                                                                                 |                                                                                                                                                                                                                                                                             |                                          |



HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K152B NI-TIC HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K152B Ni-Tic HARD METAL--REFERENCE INFORMATION

| Reference | Investigator   | Symbol | Composition and Surface Condition                                                                                                        | Test Method                                                                                                                                                                                                                                                                 | Remarks                                        |
|-----------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 11        | Wade and Casey | O      | Composition: 30Ni, 65TiC, 5CbC  As received, then oxidized Polished; hand lapped with 3-micron and 1-micron diamond paste, then oxidized | Hemispherical total emittance. (Total emittance measured normally and at various angles. Normal emittance equals hemispherical emittance.) Thermopile total radiation detector. Resistance—heated specimen. Comparison blackbody. Temperatures measured with thermocouples. | Measured in air.<br>Data taken from<br>curves. |



HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K153B NI-TIC HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K153B Ni-Tic HARD METAL--REFERENCE INFORMATION

| Reference | Investigator   | Symbol   | Composition and<br>Surface Condition            | Test Method                         | Remarks                             |
|-----------|----------------|----------|-------------------------------------------------|-------------------------------------|-------------------------------------|
| 11        | Wade and Casey |          | Composition: 40Ni, 54TiC, 6CbC                  | Hemispherical total emittance.      | Measured in air.<br>Data taken from |
|           |                | (        |                                                 | (Total emittance                    | curves.                             |
|           |                | <b>-</b> | As received, then oxidized 20 minutes at 1600 F | measured normally<br>and at various |                                     |
|           |                | 0        | Polished; lapped with                           | angles. Normal                      |                                     |
|           |                |          | 3-micron and 1-micron                           | emittance equals                    |                                     |
|           |                |          | diamond paste, then                             | hemispherical                       |                                     |
|           |                |          | oxidized 20 minutes at                          | <pre>emittance.)</pre>              |                                     |
|           |                |          | 1600 F                                          | Thermopile total                    |                                     |
|           |                |          |                                                 | radiation detector.                 |                                     |
|           |                |          |                                                 | Resistance-heated                   |                                     |
|           |                |          |                                                 | specimen.                           |                                     |
|           |                |          |                                                 | Comparison blackbody.               |                                     |
|           |                |          |                                                 | Temperatures measured               |                                     |
|           |                |          |                                                 | with thermocouples.                 |                                     |



HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K163B1 Ni-Tic HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K163B1 Ni-Tic HARD METAL--REFERENCE INFORMATION

| r<br>F Reference | Investigator   | Symbol | Composition and<br>Surface Condition | Test Method                    | Remarks                 |
|------------------|----------------|--------|--------------------------------------|--------------------------------|-------------------------|
| -                | Wade and Casev |        | Composition: 33.3Ni, 54TiC,          | Hemispherical total            | Measured in air.        |
| 4                |                |        | 6.7Mo, 6CbC                          | emittance.<br>(Total emittance | Data taken from curves. |
|                  |                |        | As received, then oxidized           | measured normally              |                         |
|                  |                |        | 20 minutes at 1600 F                 | and at various                 |                         |
|                  |                | 0      | Polished; lapped with 3-             | angles. Normal                 |                         |
|                  |                |        | micron and 1-micron                  | emittance equals               |                         |
|                  |                |        | diamond paste, then                  | hemispherical                  |                         |
|                  |                |        | oxidized 20 minutes at               | <pre>emittance.)</pre>         |                         |
|                  |                |        | 1600 F                               | Thermopile total               |                         |
|                  |                |        |                                      | radiation detector.            |                         |
|                  |                |        |                                      | Resistance-heated              |                         |
|                  |                |        |                                      | specimen.                      |                         |
|                  |                |        |                                      | Comparison blackbody.          |                         |
|                  |                |        |                                      | Temperatures measured          |                         |
|                  |                |        |                                      | with thermocouples.            |                         |



HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K184B Ni-Tic HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K184B Ni-Tic HARD METAL--REFERENCE INFORMATION

| Reference | Investigator   | Symbo 1 | Composition and<br>Surface Condition                                                                                                                                                         | Test Method                                                                                                                                                                                                                                                                       | Remarks                                  |
|-----------|----------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| ==        | Wade and Casey | _ O     | Composition: 40Ni, 40TiC, 10CbC, 4Mo, 3Al, 3Cr As received, then oxidized 20 minutes at 1600 F Polished; lapped with 3-micron and 1-micron diamond paste, then oxidized 20 minutes at 1600 F | Hemispherical total emittance.  (Total emittance measured normally and at various angles.  Normal emittance equals hemispherical emittance.)  Thermopile total radiation detector.  Resistance—heated specimen.  Comparison blackbody.  Temperatures measured with thermocouples. | Measured in air. Data taken from curves. |

INSTITUTE



NORMAL SPECTRAL EMITTANCE OF BORON NITRIDE

NORMAL SPECTRAL EMITTANCE OF BORON NITRIDE -- REFERENCE INFORMATION

|           |                                                  |        | Composition and                                            |                                                                      | Domarks                                         |      |
|-----------|--------------------------------------------------|--------|------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------|
| Reference | Investigator                                     | Symbol | Surface Condition                                          | Test Method                                                          | Nelliat N. S.                                   |      |
| 6         | Blau, Marsh, Martin,<br>Jasperse, and<br>Chaffee |        | Boron nitride<br>Purity and surface condition<br>not given | Normal spectral emittance. Specimen mounted in wall of cylindrical   | Measured in air.<br>Data taken from<br>curves.  |      |
| M 0 =     |                                                  | 0 0    | Measured at 1112 F<br>Measured at 1490 F                   | Globar (SiC) heater.<br>Comparison blackbody<br>hole in heater wall. | (Curve drawn<br>through 1112 F<br>points only.) | -01- |
| . 1 🛦 1   |                                                  | ×      | Measured at 2156 F                                         | Monochromator and thermocouple de-                                   |                                                 |      |
|           |                                                  |        |                                                            | Temperatures measured with thermocouples.                            |                                                 |      |
| N 1       |                                                  |        |                                                            |                                                                      |                                                 | 11   |



NORMAL TOTAL EMITTANCE OF ALUMINUM OXIDE

NORMAL TOTAL EMITTANCE OF ALUMINUM OXIDE -- REFERENCE INFORMATION

| 1                                    |                                                  | <del>-</del> 63-                                                                     | <b>-</b><br>;                  |
|--------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------|
| Remarks                              | Measured in air.<br>Data taken from              | curves.                                                                              |                                |
| Test Method                          | Normal total emittance. Furnace-heated specimen. | Comparison blackbody.  Temperatures measured with thermocouples Thermistor detector. |                                |
| Composition and<br>Surface Condition | Norton LA603<br>Aluminum oxide                   | Norton RA4213<br>Aluminum oxide                                                      | Surface condition not<br>given |
| Symbol                               | ۵                                                | 0                                                                                    |                                |
| Investigator                         | Olson and Morris                                 |                                                                                      |                                |
| Reference                            | 8                                                |                                                                                      |                                |

ATTELLE MEMORIA

INSTITUTE



NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE

NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition | Test Method                | Remarks          |
|-----------|------------------|--------|--------------------------------------|----------------------------|------------------|
| 7         | Olson and Morris | 0      | Norton LA603                         | Normal spectral emittance. | Measured in air. |
|           |                  |        | Aluminum oxide                       | Furnace-heated specimen.   | Data taken from  |
|           |                  | •      |                                      | Comparison blackbody.      | curves.          |
|           |                  | ٥      | Norton RA4213                        | Commercial radiation       |                  |
|           |                  |        | Aluminum oxide                       | detector and filter        | $(N = 0.665\mu)$ |
|           |                  |        |                                      | system for peak            |                  |
|           |                  |        |                                      | response at $0.665\mu$ .   |                  |
|           |                  |        |                                      | Temperatures measured      |                  |
|           |                  |        |                                      | with thermocouples.        |                  |
|           |                  |        |                                      |                            |                  |



NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE

NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator                         | Symbo1 | Composition and<br>Surface Condition                              | Test Method                                                         | Remarks                     |
|-----------|--------------------------------------|--------|-------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|
| ო         | Blau, Marsh, Martin,<br>Jacobse, and |        | Aluminum oxide                                                    | Normal spectral emittance.                                          | Measured in air.            |
|           | Chaffee                              |        | Diamond wheel finish as supplied by                               | of cylindrical Globar (SiC) heater.                                 | CULVES.                     |
|           |                                      |        | manufacturer                                                      | Comparison blackbody hole                                           | (Curves are                 |
|           |                                      |        | TWA No. 2 (Norton A 402)<br>98.56% Al <sub>2</sub> 0 <sub>3</sub> | Temperatures measured with thermocouples. Monochromator and thermo- | the 1112 F<br>points only.) |
|           |                                      | 0      | Measured at 1112 F                                                | couple detector.                                                    |                             |
|           |                                      | ×      | Measured at 1922 F                                                |                                                                     |                             |
|           |                                      |        | Coors AD85<br>85% A1 <sub>2</sub> O <sub>3</sub>                  |                                                                     |                             |
|           |                                      | 0      | Measured at 1112 F                                                |                                                                     |                             |
|           |                                      | 2      | Measured at 1886 F                                                |                                                                     |                             |
|           |                                      |        | Coors AD99<br>99% A1 <sub>2</sub> O <sub>3</sub>                  |                                                                     |                             |
|           |                                      | ٥      | Measured at 1112 F                                                |                                                                     |                             |
|           |                                      | •      | Measured at 1886 F                                                |                                                                     |                             |
|           |                                      |        |                                                                   |                                                                     |                             |



SPECTRAL REFLECTANCE OF ALUMINUM OXIDE

SPECTRAL REFLECTANCE OF ALUMINUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator     | Symbo1 | Composition and<br>Surface Condition                                        | Test Method                                                                                                                                                                                                         | Remarks                                                               |
|-----------|------------------|--------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 7         | Olson and Morris |        | Aluminum oxide<br>Norton RA4213 and LA603<br>Surface condition not<br>given | Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere reflectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination diffuse reflection. | Measured in air at<br>room temperature.<br>Data taken from<br>curves. |



NORMAL TOTAL EMITTANCE OF BERYLLIUM OXIDE

NORMA: TOTAL EMITTANCE OF BERYLLIUM OXIDE -- REFERENCE INFORMATION

| 2 Olson and Morris ( | Sympot | Composition and Surface Condition | Test Method                                                                                                       | Remarks                                        |
|----------------------|--------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                      | 0      | Beryllium oxide                   | Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured | Measured in air.<br>Data taken from<br>curves. |

BATTELLE MEMORIAL INSTITUTI



SPECTRAL REFLECTANCE OF BERYLLIUM OXIDE

SPECTRAL REFLECTANCE OF BERYLLIUM OXIDE-REFERENCE INFORMATION

| Dogos       | Investigator          | Symbol | Composition and<br>Surface Condition | Test Method              | Remarks            |
|-------------|-----------------------|--------|--------------------------------------|--------------------------|--------------------|
| anieratau . | יייי פאריאפיייי       |        |                                      |                          |                    |
| 7           | Retz. Olson. Schurin. |        | Beryllium oxide                      | Spectral reflectance.    | Measured in air at |
|             | and Morris            |        | Purity not given                     | Incident radiation 9     | room temperature.  |
| •           |                       |        | As received condition                | degrees from normal      | Data taken from    |
|             |                       |        |                                      | to specimen surface.     | curves.            |
|             |                       |        |                                      | Integrating sphere       |                    |
|             |                       |        |                                      | reflectrometer.          |                    |
| <b>A</b>    |                       |        |                                      | Monochromator, and lead  |                    |
| L           |                       |        |                                      | sulphide detector.       |                    |
|             |                       |        |                                      | Normal (9 degrees)       |                    |
|             |                       |        |                                      | illumination and diffuse |                    |
| N           |                       |        |                                      | reflection.              |                    |
| •           |                       |        |                                      |                          |                    |



NORMAL TOTAL EMITTANCE OF MAGNESIUM OXIDE

**-**75-

NORMAL TOTAL EMITTANCE OF MAGNESIUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator     | Symbo1 | Composition and<br>Surface Condition                                                              | Test Method                                                                                                                           | Remarks                                       |
|-----------|------------------|--------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| ~         | Olson and Morris | ×      | Fused magnesium oxide obtained from the National Bureau of Standards. Surface condition not given | Normal total emittance. Furnace-heated specimen. Thermistor detector. Comparison blackbody. Temperatures measured with thermocouples. | Measured in air.<br>Data taken from<br>curve. |
| ω         | Olson and Morris | 0      | Refractory magnesium oxide Composition and surface condition not given                            | (Same as above.)                                                                                                                      | (Same as above.)                              |



NORMAL SPECTRAL EMITTANCE OF MAGNESIUM OXIDE

NORMAL SPECTRAL EMITTANCE OF MAGNESIUM OXIDE-REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition                                                          | Test Method                                                                                                                                                                                  | Remarks                                                          |
|-----------|------------------|--------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 8         | Olson and Morris | 0      | Fused magnesium oxide obtained from National Bureau of Standards. Surface condition not given | Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.665 $\mu$ . Temperatures measured with thermocouples. | Measured in air. Data taken from curves. $(\lambda = 0.665 \mu)$ |

ATTELLE MEMORIAL



NORMAL SPECTRAL EMITTANCE OF MAGNESIUM OXIDE

NORMAL SPECTRAL EMITTANCE OF MAGNESIUM OXIDE--REFERENCE INFORMATION

| oo t                                                                                                           | Reference | Investigator         | Symbo1 | Composition and<br>Surface Condition | Test Method                                     | Remarks          |
|----------------------------------------------------------------------------------------------------------------|-----------|----------------------|--------|--------------------------------------|-------------------------------------------------|------------------|
| Norton RM4473 Purity: 97% MgO, 1.3-1.5% CaO Surface condition not given  Measured at 1112 F Measured at 1877 F | ო         | Blau, Marsh, Martin, |        | Magnesia (MgO)                       | Normal spectral emittance.                      | Measured in air. |
| Purity: 97% MgO, 1.3-1.5% CaO (Surface condition not given  Measured at 1112 F  Measured at 1877 F             |           | Jasperse and         |        | Norton RM4473                        | Specimen mounted in wall                        | Data taken from  |
| oct .                                                                                                          |           | Chaffee              |        | Purity: 97% MgO,                     | of cylindrical Globar                           | curves.          |
| oct P                                                                                                          |           |                      |        | 1.3-1.5% CaO                         | (SiC) heater.                                   |                  |
| not M                                                                                                          |           |                      |        |                                      | Comparison blackbody hole                       | (Curve drawn     |
| M H                                                                                                            |           |                      |        | Surface condition not                | in heater wall.                                 | through 1112 F   |
| H                                                                                                              |           |                      |        | given                                | Monochromator and                               | points only.)    |
|                                                                                                                |           |                      | 0      | Measured at 1112 F                   | thermocouple detector.<br>Temperatures measured |                  |
|                                                                                                                |           |                      | ×      | Measured at 1877 F                   | with thermocouples.                             |                  |



NORMAL TOTAL EMITTANCE OF ZIRCONIUM OXIDE

NORMAL TOTAL EMITTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition                          | Test Method                                                                                                                           | Remarks                                        |
|-----------|------------------|--------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 8         | Olson and Morris | 0 4    | Zirconium oxide<br>Galcium stabilized<br>Magnesium stabilized | Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples. | Measured in air.<br>Data taken from<br>curves. |



NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM OXIDE

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition                          | Test Method                                                                                                                                                                             | Remarks                                               |
|-----------|------------------|--------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 8         | Olson and Morris | 0 4    | Zirconium oxide<br>Calcium stabilized<br>Magnesium stabilized | Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.665/w. Temperatures measured with thermocouples. | Measured in air. Data taken from curves. (>= 0.665 μ) |



NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM OXIDE

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM OXIDE.-REFERENCE INFORMATION

| Reference    | Investigator                          | Symbol | Composition and<br>Surface Condition           | Test Method                                                                     | Remarks                                        |
|--------------|---------------------------------------|--------|------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------|
| en           | Blau, Marsh, Martin,<br>Jasperse, and |        | Zirconia (ZrO <sub>2</sub> )<br>Norton RZ 5601 | Normal spectral emittance.<br>Specimen mounted in wall<br>of cylindrical Globar | Measured in air.<br>Data taken from<br>curves. |
| <b>.</b> 0 - |                                       |        | Purity: 92% ZrO2,<br>4.5% CaO                  | (SiC) heater. Comparison blackbody hole                                         | (Curves drawn                                  |
|              |                                       |        | surface condition not given                    | Monochromator and                                                               | points only.)                                  |
| •            |                                       | 0      | Measured at 1112 F                             | thermocouple detector.<br>Temperatures measured                                 |                                                |
|              |                                       | ×      | Measured at 1877 F                             | with thermocouples.                                                             |                                                |



SPECTRAL REFLECTANCE OF ZIRCONIUM OXIDE

SPECTRAL REFLECTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition                                                                           | Test Method                                                                                                                                                                                                          | Remarks                                                                    |
|-----------|------------------|--------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| a         | Olson and Morris |        | Zirconium oxide<br>Galcium stabilized and<br>magnesium stabilized<br>Purity and surface<br>condition not given | Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere reflectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination. Diffuse reflection. | Measured in air<br>at room temper-<br>ature.<br>Data taken from<br>curves. |



NORMAL TOTAL EMITTANCE OF PYROCERAM 9606

NORMAL TOTAL EMITTANCE OF PYROCERAM 9606--REFERENCE INFORMATION:

ATTELLE MEMORIAL



NORMAL SPECTRAL EMITTANCE OF PYROCERAM 9606

NORMAL SPECTRAL EMITTANCE OF PYROCERAM 9606--REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition             | Test Method                                                                                                                                                                                    | Remarks                                                         |
|-----------|------------------|--------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 8         | Olson and Morris | 0      | Pyroceram 9606<br>Surface condition not<br>given | Normal spectral emittance. Furnace-heated specimens. Comparison blackbody. Commercial detector and filter system for peak response at 0.665 \$\mu\$. Temperatures measured with thermocouples. | Measured in air. Data taken from curves. $(\lambda = 0.665\mu)$ |

BATTELLE MEMORIAL INSTITUTI



SPECTRAL REFLECTANCE OF PYROCERAM 9606

SPECTRAL REFLECTANCE OF PYROCERAM 9606--REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and<br>Surface Condition             | Test Method                                                                                                                                                                                                            | Remarks                                                               |
|-----------|------------------|--------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| ~         | Olson and Morris |        | Pyroceram 9606<br>Surface condition not<br>given | Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere re- flectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination. Diffuse reflection. | Measured in air at<br>room temperature.<br>Data taken from<br>curves. |



NORMAL TOTAL EMITTANCE OF PYROCERAM 9608

NORMAL TOTAL EMITTANCE OF PYROCERAM 9608--REFERENCE INFORMATION

| Reference | Reference Investigator | Symbol | Composition and<br>Surface Condition             | Test Method                                                                                                                           | Remarks                                       |
|-----------|------------------------|--------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 7         | Olson and Morris       | 0      | Pyroceram 9608<br>Surface condition not<br>given | Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples. | Measured in air.<br>Data taken from<br>curve. |



NORMAL SPECTRAL EMITTANCE OF PYROCERAM 9608

NORMAL SPECTRAL EMITTANCE OF PYROCERAM 9608--REFERENCE INFORMATION

| Reference | Investigator     | Symbol | Composition and Surface Condition                | Test Method                                                                                                                                                                                   | Remarks                                              |
|-----------|------------------|--------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0         | Olson and Morris | 0      | Pyroceram 9608<br>Surface condition not<br>given | Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.665 \$\mu\$. Temperatures measured with thermocouples. | Measured in air. Data taken from curves. (λ= 0.665μ) |



SPECTRAL REFLECTANCE AND TRANSMITTANCE OF PYROCERAM 9608

| 8                                    |
|--------------------------------------|
| Ē                                    |
| ¥                                    |
| ð                                    |
| INFOR                                |
| Η                                    |
| <u>ප</u>                             |
| Ē                                    |
| H                                    |
| REFERENC                             |
| 7                                    |
| 9096                                 |
| 8                                    |
| =                                    |
| <b>YROCERA</b>                       |
| 벙                                    |
| ٤                                    |
| ፳                                    |
| a<br>H                               |
| щ                                    |
| ž                                    |
| Ĕ                                    |
| 불                                    |
| S                                    |
| ≨                                    |
| _                                    |
| ¥                                    |
| <u>~</u>                             |
| ទ្ទ                                  |
| ۲                                    |
| 띯                                    |
| FLE                                  |
| SPECTRAL REFLECTANCE AND TRANSMITTAI |
| ¥                                    |
| Æ                                    |
| 띴                                    |
| ស                                    |
|                                      |

| Remarks                              | Ince. Measured in air at room temperature.  In a bata taken from care.  I lead  I lead |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method                          | Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere reflectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination. Diffuse reflection. Spectral Transmittance. Normal specimen position filled by MgCO <sub>3</sub> or MgO block. Specimen placed in entrance beam to sphere. Diffuse transmission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Composition and<br>Surface Condition | Pyroceram 9608 Surfaces reasonably flat and parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Symbo1                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Investigator                         | Olson and Morris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| r<br>Reference                       | C<br>E MEMORIAL INSTITUTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



NORMAL TOTAL EMITTANCE OF MOLYBDENUM DISILICIDE

NORMAL TOTAL EMITTANCE OF MOLYBDENUM DISILICIDE--REFERENCE INFORMATION

| Reference | Investigator      | Symbol | Composition and<br>Surface Condition | Test Method                                                                                                                                                   | Remarks                                           |      |
|-----------|-------------------|--------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|
| -         | Anthony and Pearl | 0      | As received                          | Normal total emittance. Induction-heated specimen. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer. | Measured in<br>continuous purge<br>of helium gas. | -101 |

BATTELLE MEMORIAL INSTITUTE



NORMAL SPECTRAL EMITTANCE OF MOLYBDENUM DISILICIDE

NORMAL SPECTRAL EMITTANCE OF MOLYBDENUM DISILICIDE-REFERENCE INFORMATION

| Reference | Investigator                              | Symbol | Composition and<br>Surface Condition                                                                                                                  | Test Method                                                                                                                                           | Remarks                                                                  |
|-----------|-------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 4         | Blau, Chaffee,<br>Jasperse, and<br>Martin | ο×     | Molybdenum disilicide Surface clean and smooth Preoxidized (Lower emittance for the preoxidized surface attributed to SiO <sub>2</sub> surface layer) | Normal spectral emittance. Induction-heated specimen. Blackbody hole drilled in specimen surface. Temperatures measured with micro-optical pyrometer. | Measured in 90% argon – 10% hydrogen atmosphere. Data taken from curves. |

TOTAL SOLAR ABSORPTANCES AT SEA LEVEL AND ABOVE THE ATMOSPHERE

|                              | Finish | Above Atmosphere | Sea Level |
|------------------------------|--------|------------------|-----------|
| Graphite-National GBE        | (F)    | 0.850            | 0.863     |
| Graphite-National GBE        | (B)    | 0.869            | 0.877     |
| Graphite-National GBH        | (M)    | 0,881            | 0.887     |
| Graphite-National GBH        | (R)    | 0.885            | 0.891     |
| Graphite-Speer 3474D         | (M)    | 0.853            | 0.858     |
| Graphite-Speer 3474D         | (R)    | 0.866            | 0.871     |
| Graphite-Speer 7087          | (M)    | 806.0            | 0.911     |
| Graphite-Speer 7087          | (R)    | 0.916            | 0.918     |
| Beryllium Oxide (Refractory) | (R)    | 0.421            | 0.405     |
| Magnesium Oxide (Refractory) | (R)    | 0.168            | 0.141     |

TOTAL SOLAR ABSORPTANCE OF BERYLLIUM OXIDE, MAGNESIUM OXIDE AND THREE GRAPHITES -- REFERENCE INFORMATION

| Reference | Investigator                        | Symbol | Composition and<br>Surface Condition                                              | Test Method                                                                                             | Remarks                                     |
|-----------|-------------------------------------|--------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 7         | Betz, Olson, Schurin,<br>and Morris |        | Surface finishes:<br>B* back                                                      | Solar absorptance<br>calculated by method<br>of truncated weighted                                      | Calculated.<br>Data obtained from<br>table. |
|           |                                     |        | F* front M fine milling                                                           | ordinate integration<br>using spectral re-                                                              |                                             |
|           |                                     |        | machine cut<br>R as received from<br>supplier.                                    | curves and solar energy distribution curves                                                             |                                             |
|           |                                     |        |                                                                                   | to 2.4 microns.  Above atmosphere values corrected for 3 per cent of energy lying outside these limits. |                                             |
|           |                                     |        | * back and front surfaces arbitrarily assigned to graphite sample. Sides appeared |                                                                                                         |                                             |

## **REFERENCES**

- (1) Anthony, F. M. and Pearl, Harry A., "Investigations of Feasibility of Utilizing Available Heat Resistant Materials for Hypersonic Leading Edge Applications" (Vol. III Screening Test Results and Selection of Materials), WADC TR 59-744 (July, 1960).
- (2) Olson, O. H. and Morris, J. C., "Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials", Part III Techniques for Measurement, WADC TR 56-222, ASTIA AD 239302 (April, 1960).
- (3) Blau, H. H., Jr., Marsh, J. B., Martin, W. S., Jasperse, J. R. and Chaffee, E., "Infrared Spectral Emittance Properties of Solid Materials", AFCRL-TR-60-416, ASTIA AD 248276 (October, 1960).
- (4) Blau, H. H., Jr., Chaffee, E., Jasperse, J. R., and Martin, W. S., "High Temperature Thermal Radiation Properties of Solid Materials", AFCRC-TN-60-165, ASTIA AD 236394 (March 31, 1960).
- (5) Coffman, J. A., Coulson, K. L. and Kibler, T. M., General Electric Company, Cincinnati, Ohio, preliminary information under an Air Force contract.
- (6) Riethof, T. R., "High Temperature Spectral Emissivity Studies", General Electric Company MSVD, Space Sciences Laboratory, R61SD004 (January, 1961).
- (7) Betz, H. T., Olson, O. H., Schurin, B. D. and Morris, J. C.,
  "Determination of Emissivity and Reflectivity Data on Aircraft
  Structural Materials", Part II: Techniques for measurement of total
  normal spectral emissivity, solar absorptivity, and presentation of
  results. WADC TR 56-222, ASTIA AD 202493.
- (8) Olson, O. H. and Morris, J. C., "Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials", WADC TR 56-222, Part II Supplement I, ASTIA 202494 (October, 1958).
- (9) Jain, S. C. and Krishnan, Sir F.R.S., "The Distribution of Temperature Along a Thin Rod Electrically Heated in Vacuo", Proc. Royal Soc. London, Vol. 225, pp 7-19 (1954).
- (10) Thorn, R. J. and Simpson, O. C., "Spectral Emissivities of Graphite and Carbon", Jour. of Applied Physics, Vol. 24, No. 5, pp 633-639 (May, 1953).
- (11) Wade, W. R. and Casey, F. W., Jr., "Measurements of Total Hemispherical Emissivity of Several Stably Oxidized Nickel-Titanium Carbide Cemented Hard Metals From 600° to 1600° F", NASA Memo 5-13-59L.

## LIST OF DMIC MEMORANDA ISSUED DEFENSE METALS INFORMATION CENTER Battelle Memorial Institute Columbus 1, Ohio

Copies of the technical memoranda listed below may be obtained from DMIC at no cost by Government agencies and by Government contractors, subcontractors, and their suppliers. Others may obtain copies from the Office of Technical Services, Department of Commerce, Washington 25, D. C.

A list of DMIC Memoranda 1-117 may be obtained from DMIC, or see previously issued memoranda.

| DMIC<br>Memorandum |                                                                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Number             | Title                                                                                                                     |
| 118                | Review of Recent Developments in the Metallurgy of High-Strength Steels, July 21, 1961, (AD 259986 \$0.50)                |
| 119                | The Emittance of Iron, Nickel, Cobalt and Their Alloys, July 25, 1961, (AD 261336 \$2.25)                                 |
| 120                | Review of Recent Developments on Oxidation-Resistant Coatings for Refractory Metals, July 31, 1961, (AD 261293 \$0.50)    |
| 121                | Fabricating and Machining Practices for the All-Beta Titanium Alloy, August 3, 1961, (AD 262496 \$0.50)                   |
| 122                | Review of Recent Developments in the Technology of Nickel-Base and Cobalt-Base Alloys, August 4, 1961, (AD 261292 \$0.50) |
| 123                | Review of Recent Developments in the Technology of Beryllium, August 18, 1961, (AD 262497 \$0.50)                         |
| 124                | Investigation of Delayed-Cracking Phenomenon in Hydrogenated Unalloyed Titanium, August 30, 1961                          |
| 125                | Review of Recent Developments in Metals Joining, September 1, 1961, (AD 262905 \$0.50)                                    |
| 126                | A Review of Recent Developments in Titanium and Titanium Alloy Technology,<br>September 15, 1961                          |
| 127                | Review of Recent Developments in the Technology of Tungsten, September 22, 1961                                           |
| 128                | Review of Recent Developments in the Evaluation of Special Metal Properties,<br>September 27, 1961                        |
| 129                | Review of Recent Developments in the Technology of Molybdenum and Molybdenum-<br>Base Alloys, October 6, 1961             |
| 130                | Review of Recent Developments in the Technology of Columbium and Tantalum,<br>October 10, 1961                            |
| 131                | Review of Recent Developments in the Technology of High-Strength Stainless<br>Steels, October 13, 1961                    |
| 132                | Review of Recent Developments in the Metallurgy of High-Strength Steels, October 20, 1961                                 |
| 133                | Titanium in Aerospace Applications, October 24, 1961                                                                      |
| 134                | Machining of Superalloys and Refractory Metals, October 27, 1961                                                          |
| 135                | Review of Recent Developments in the Technology of Nickel-Base and Cobalt-Base Alloys, October 31, 1961                   |
| 136                | Fabrication of Tungsten for Solid-Propellant Rocket Nozzles, November 2, 1961                                             |
| 137                | Review of Recent Developments on Oxidation-Resistant Coatings for Refractory Metals, November 8, 1961                     |
| 138                | Review of Recent Developments in the Technology of Beryllium, November 16, 1961                                           |
| 139                | Review of Recent Developments in the Technology of Tungsten, November 24, 1961                                            |
| 140                | Review of Recent Developments in Metals Joining, December 6, 1961                                                         |
| 141                | The Emittance of Chromium, Columbium, Molybdenum, Tantalum, and Tungsten, December 10, 1961                               |

## LIST OF DMIC MEMORANDA ISSUED (Continued)

| DMIC<br>Memorandum<br>Number | Title                                                                                                            |
|------------------------------|------------------------------------------------------------------------------------------------------------------|
| 142                          | Effects of Moderately High Strain Rates on the Tensile Properties of Metals, December 18, 1961                   |
| 143                          | Notes on the Forging of Refractory Metals, December 21, 1961                                                     |
| 144                          | Review of Recent Developments in Titanium Alloy Technology, December 29, 1961                                    |
| 145                          | The Use of Nickel-Base Alloys in the Rotating Parts of Gas Turbines for Aerospace Applications, January 11, 1962 |
| 146                          | Magnesium-Lithium Alloys - A Review of Current Developments, February 6, 1962                                    |
| 147                          | An Evaluation of Materials for Rocket-Motor Cases Based on Minimum Weight Concepts, March 8, 1962                |