## ОПР(Изометрия)

- $e:X\to X$  изометрия относительно метрики  $\rho$  на X, если  $\forall a,b\in X: \rho(e(a),e(b))=\rho(a,b)$ 
  - инъективная функция на конечном множестве, т.е изометрия это биекция

# Важные примеры изометрий на $\Sigma^r$ относительно расстояния хэмминга

## 1. Шифр перестановки

 $\sigma(a_1, \cdots, a_r) = a_{\sigma(1)}, \cdots, a_{\sigma(r)}$ 

- $\sigma \in S_r$  перестановка длины г
- ullet здесь в качестве ключа выступает  $\sigma$
- $\sigma$  это изометрия, которая не распространяет искажений типа "замена"
- чтобы расшифровать применяем к слову обратную перестановку

## 2. Шифр многоалфавитной замены

$$\begin{split} \tau &= (\tau_1, \tau_2, \cdots \tau_r) \in (S_\Sigma)^r \\ \tau(a_1, \cdots, a_r) &= \tau_1(a_1) \cdots \tau_r(a_r) \end{split}$$

- это ШМЗ
- чтобы расшифровать применяем к каждой букве свою обратную перестановку
- это изометрия

## Теорема Маркова

- $e \in E$ -изометрия  $\Leftrightarrow \exists \sigma, \tau$  из важных примеров 1 и 2, что  $e = \sigma \circ \tau$ 
  - т.е е это суперпозиция  $\sigma$  и  $\tau$

## Д-ВО ⇐

- $\tau$  и  $\sigma$  это изометрии, из замечания
- покажем, что суперпозиция изометрий это снова изометрия

$$\rho(e(x), e(y)) = \rho(\tau(\sigma(x)), \tau(\sigma(y))) =$$

ullet т.к au изометрия, то она сохраняет расстояние между прообразами

$$\rho(\sigma(x), \sigma(y)) =$$

- $\bullet\,$ т.<br/>к $\sigma$ изометрия, то она сохраняет расстояние между прообразами
- $\rho(x,y)$

### $\mathbf{\mathcal{L}}$ -ВО $\Rightarrow$

Берём 
$$\vec{a}=(a_1,a_2,\cdots,a_r)\in\Sigma^r$$

Определим 
$$\vec{\vec{a}_i} = (a_1, a_2, \cdots, a_{i-1}, \Sigma, a_{i+1}, \cdots)$$

- ullet на іой позиции любая буква из  $\Sigma$
- $\vec{a} \in \vec{\vec{a_i}}$
- $e(\vec{a}) = \vec{c}$

## 1. Покажем что $\exists j \in \{1, \dots, r\} : e(\vec{a_j}) = \vec{c_j}$

Пусть 
$$\vec{d} \in e(\vec{a_i}) \setminus \{\vec{c}\} \Rightarrow \exists \vec{b} \in \vec{a_i} : \vec{d} = e(\vec{b})$$

$$\measuredangle \rho(\vec{d}, \vec{c}) = \rho(e(\vec{b}), e(\vec{a})) = \rho(\vec{b}, \vec{a}) = 1$$

- Если  $\rho(\vec{b}, \vec{a}) = 0$ , то  $\vec{d} = \vec{c} \Rightarrow \bigotimes$
- $\Rightarrow \exists j : \vec{d} \in \vec{c}_i$ 
  - Покажем, что это ј одинаково для всех d

Берём 
$$\vec{d}_1 \neq \vec{d}_2; \vec{d}_1, \vec{d}_2 \in e(\vec{d}_i)$$
.

- $\exists \vec{b_1}, \vec{b_2} \in \vec{\vec{a_i}}$ :
  - $\vec{d_1} = e(\vec{b_1})$
  - $\bullet \ \vec{d}_2 = e(\vec{b_2})$

$$\rho(\vec{d_1}, \vec{d_2}) = \rho(\vec{b_1}, \vec{b_2}) = 1$$

•  $ho(\vec{b_1},\vec{b_2}) \neq 0$ , иначе  $\vec{b_1}=\vec{b_2} \Rightarrow \vec{d_1}=\vec{d_2} \bigotimes$ 

Т.е ј для  $\vec{d}_1$  и  $\vec{d}_2$  общее

ullet иначе  $ho(ec{d}_1,ec{d}_2)>1$ 

$$\Rightarrow \exists j : e(\vec{\vec{a_j}}) \subseteq \vec{\vec{c_j}}$$

- е инъективная функция
- размеры у множеств совпадают
- из этого следует, что множества равны

Мощности  $|e(\vec{a_i})|=|\vec{a_i}|=|\Sigma|=|\vec{c_j}|\Rightarrow e(\vec{a_i})=\vec{c_i}$ 

Получаем, что:

$$\forall \vec{a} \in \Sigma^r \ \forall i \ \exists \ j: \tau_j \in S_\Sigma : e(a_1, \cdots, a_r) = (c_1, \cdots, c_{j-1}, \tau_j(a_i), c_{j+1}, \cdots, c_r)$$

- 2. обозначим через  $\vec{x} \in \Sigma^t : O_t(\vec{x}) = \{ \vec{y} \in \Sigma^r | \rho(\vec{x}, \vec{y}) \leq t \}$ 
  - $O_t(\vec{x})$  окрестность слова  $\vec{x}$  радиуса t
  - в пункте 1 показали, что для фиксированного  $a \in \Sigma^t$  единичная окрестность  $\vec{a}$  переходит в единичную окрестность  $\vec{c}$

$$\exists \tau = (\tau_1, \cdots, \tau_r) \in (S_\Sigma)^r \text{ if } \exists \ \sigma \in S_r : \ \forall \vec{x} \in O_1(\vec{a}) : e(\vec{x}) = (\tau_1(a_{\sigma(1)}), \tau_2(a_{\sigma(2)}), \cdots, \tau_r(a_{\sigma(r)})) = (\tau_1(a_{\sigma(r)}), \tau_2(a_{\sigma(r)}), \cdots, \tau_r(a_{\sigma(r)})) = (\tau_1(a_{\sigma(r)}), \tau_1(a_{\sigma(r)}), \cdots, \tau_r(a_{\sigma(r)})) = (\tau_1(a_{\sigma(r)}), \tau_1(a$$

ullet где  $\sigma(j)=i$ 

 $(\sigma \circ \tau)(\vec{a})$ 

т.е на  $O_1(\vec{a}): e = \sigma \circ \tau \Rightarrow$ 

 $\varphi = e \circ \tau^{-1} \circ \sigma^{-1} = \epsilon$  - тождественная функция на  $O_1(\vec{a})$ 

индукцией по t покажем, что  $\varphi = \epsilon$  на  $O_t(\vec{a})$ 

### Б.И

уже доказали для случая t=1

### ш.и

Если  $\vec{x} \in O_t(\vec{a})$ 

Если  $\rho(\vec{x}, \vec{a}) < t \Rightarrow$  применяем П.И

Д-жем для  $\rho(\vec{x}, \vec{a}) = t$ 

пусть  $\rho(\vec{y}, \vec{a}) = t-2$ , причем у такой, что  $\rho(\vec{y}, \vec{x}) = 2$ 

•  $t \geq 2$ 

 $\measuredangle O_1(\vec{x})\cap O_1(\vec{y})$ 

- $\bullet \ \vec{x} = x_1, x_2, \cdots x_\alpha, \cdots, x_\beta, \cdots, x_r$
- $\bullet \ \vec{y} = y_1, y_2, \cdots y_\alpha, \cdots, y_\beta, \cdots, y_r$
- в словах  $\vec{x}$  и  $\vec{y}$ :
  - $-x_{\alpha} \neq y_{\alpha}$
  - $-x_{\beta} \neq y_{\beta}$
  - остальные буквы совпадают

Получается, что есть ровно 2 слова

- $\vec{u} = u_1 u_2 \cdots u_{\alpha} \cdots u_{\beta} \cdots u_r$   $u_{\alpha} = x_{\alpha}$   $u_{\beta} = y_{\beta}$
- $$\begin{split} \bullet & \ \overrightarrow{v} = v_1 v_2 \cdots v_\alpha \cdots v_\beta \cdots u_r \\ & \ v_\alpha = y_\alpha \\ & \ v_\beta = x_\beta \end{split}$$

$$\Rightarrow O_1(\vec{x}) \cap O_1(\vec{y}) = \{\vec{u}, \vec{v}\}\$$

$$\measuredangle O_1(\vec{v}) \cap O_1(\vec{u}) = \{\vec{y}, \vec{x}\}\$$

по неравенству треугольника:

$$\rho(\vec{u}, \vec{a}) \le \rho(\vec{u}, \vec{y}) + \rho(\vec{y}, \vec{a}) \le t - 1$$

- $\rho(\vec{u},\vec{y})=1,$  т.к  $\vec{y}\in O_1(\vec{v})\cap O_1(\vec{u})$
- $\rho(\vec{y}, \vec{a}) = t 2$ , так выбрали точку у

аналогично показываем  $\rho(v,a) \leq t-1$ 

По П.И  $\varphi(\vec{u}) = \vec{u}, \, \varphi(\vec{v}) = \vec{v}, \, \varphi(\vec{y}) = \vec{y}$ 

ullet  $\varphi$  - изометрия, т.к суперпозиция изометрий

 $\rho(\varphi(\vec{x}), \varphi(\vec{u})) = \rho(\vec{x}, \vec{u}) = 1$ 



Рис. 1: alt text

$$\begin{split} \rho(\varphi(\vec{x}),\varphi(\vec{v})) &= \rho(\vec{x},\vec{v}) = 1 \\ \text{получаем, что} \\ \varphi(\vec{x}) &\in O_1(\vec{u}) \cap O_1(\vec{v}) = \{\vec{x},\vec{y}\}, \\ \text{но } \varphi(\vec{x}) &\neq \varphi(\vec{y}), \text{ т.к } (\vec{x} \neq \vec{y}) \\ \Rightarrow \varphi(\vec{x}) &= \vec{x} \\ \text{Доказали шаг индукции} \end{split}$$

Любое слово из  $\Sigma^r$  находится в  $O_r(\vec{a}),$  т.е  $\varphi:\Sigma^r> \twoheadrightarrow \Sigma^r$ 

Причем  $\varphi=\epsilon$ , т.е  $e\circ \tau^{-1}\circ \sigma^{-1}=\epsilon\Rightarrow e=\sigma\circ \tau$