List of degree 2 tableaux which cannot be splitted directly is

$t_0 =$	1	1	1	1	1	1	2	2	2	3	3	3	3	3]	1	1	1	1	1	2	2	2	3	3	3	3	3
	2	2	2	4	4	4	4	4	4	5	5	5	5	6	,	$t_1 =$	2	2 2	2	4	4	4	4	4	4	5	5	5	5	5
	3	5	5	6	6	6	6	6	7	7	7	7	7	7				3 5	6	6	6	6	6	6	7	7	7	7	7	7
			. 1		_	١.				_	_	_	_				Ε.	Τ.	١.	١.	Ι.	. 1	_		_	_	_	_	_ 1	
$t_2 =$	1	1	1	1	1	1	2	2	2	3	3	3	3	3]	. 1	1	1	1	1	2	2	2	3	3	3	3	3
	2	2	2	4	4	4	4	4	4	5	6	6	6	6	,	$t_3 =$	2	$2 \mid 2$	2	4	4	4	4	4	4	5	5	6	6	6
	3	5	5	5	5	5	6	6	7	7	7	7	7	7				3 5	5	5	5	6	6	6	7	7	7	7	7	7
	$\overline{}$													\equiv			\equiv		_	1										\equiv
	1	1	1	1	1	1	2	2	2	3	3	3	3	3			1	$\lfloor \rfloor 1$	1	1	1	1	2	2	2	3	3	3	3	3
$t_4 =$	2	2	2	4	4	4	4	4	4	5	5	5	6	6	,	$t_5 =$	2	$2 \mid 2$	2	4	4	4	4	4	4	6	6	6	6	6
	3	5	5	5	6	6	6	6	7	7	7	7	7	7			٠	3 5	5	5	5	5	5	6	7	7	7	7	7	7
	\equiv													\equiv			\equiv		_	1										\equiv
	1	1	1	1	1	1	2	2	2	3	3	3	3	3			1	$\lfloor \rfloor 1$	1	1	1	1	2	2	2	3	3	3	3	3
$t_6 =$	2	2	2	4	4	4	4	5	5	6	6	6	6	6	,	$t_7 =$	2	2 2	2	3	4	4	4	c_1	5	6	6	6	6	6
	3	4	4	5	5	5	5	6	7	7	7	7	7	7			4	1 4	4	5	5	5	5	6	7	7	7	7	7	7

0.1 Factoring t_0, t_3, t_4

We will use following plucker relations:

$$R_1: \quad 0 = \begin{bmatrix} 2 & 3 \\ 5 & 4 \\ 7 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 7 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 3 & 5 \\ 7 & 7 \end{bmatrix}$$

On [3, 6, 7], last monomial in R_1 is 0.

Applying R_1 on t_0, t_3, t_4 we get

Note following tableau is factor of all of above tableaux

$$f_{034} = \begin{array}{|c|c|c|c|c|c|}\hline 1 & 1 & 1 & 2 & 3 & 3 & 3 \\ 2 & 2 & 4 & 4 & 4 & 5 & 6 \\ \hline 5 & 5 & 6 & 6 & 7 & 7 & 7 \\\hline \end{array}$$

0.2 Factoring t_2

We will use following plucker relations:

$$R_2: \quad 0 = \begin{bmatrix} 2 & 3 \\ 6 & 4 \\ 7 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 4 & 6 \\ 7 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 3 & 6 \\ 7 & 7 \end{bmatrix}$$

On [3, 6, 7], last monomial in R_2 is 0.

Applying R_2 on t_2 we get

Note following tableau is factor of above tableau

0.3 Factoring t_5

We define one more pluckre relation

$$R_3: \quad 0 = \begin{bmatrix} 2 & 3 \\ 5 & 4 \\ 6 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 3 & 5 \\ 6 & 7 \end{bmatrix} - \begin{bmatrix} 2 & 4 \\ 3 & 6 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 3 \\ 4 & 6 \\ 5 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{bmatrix}$$

Observe that 3^{rd} , 4^{th} and 6^{th} monomials are 0 on [3,6,7] Hence after multiplying following tableau

1	1	1	1	1	1	2	2	3	3	3	3
2	2	2	4	4	4	4	4	6	6	6	6
3	5	5	5	5	5	6	7	7	7	7	7

to above relation in empty columns, we get

Observe that following is factor of left hand side tableau

Hence t_5 factored.

0.4Factoring t_7

Next we factor t_7 , we will use following plucker relation:

We multiply following tableau to above relation (in empty columns)

1	1	1	1	1	2	2	2	3	3	3	3
2	2	2	4	4	4	5	5	6	6	6	6
4	4	4	5	5	5	6	7	7	7	7	7

then we get following

Observe that tableau on left hand side is t_7 , also observe that following two tableaux are factors of two tableaux on right side in above relation

$$f_{71} = \begin{array}{|c|c|c|c|c|c|c|c|c|}\hline 1 & 1 & 1 & 2 & 2 & 3 & 3\\\hline 2 & 3 & 4 & 4 & 5 & 6 & 6\\\hline 4 & 7 & 5 & 5 & 6 & 7 & 7\\\hline \end{array}$$

$$f_{71} = \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 2 & 3 & 4 & 4 & 5 & 6 & 6 \\ 4 & 7 & 5 & 5 & 6 & 7 & 7 \end{bmatrix} \qquad f_{72} = \begin{bmatrix} 1 & 1 & 1 & 2 & 2 & 3 & 3 \\ 2 & 3 & 4 & 4 & 5 & 6 & 6 \\ 4 & 6 & 5 & 5 & 7 & 7 & 7 \end{bmatrix}$$

0.5Factoring t_6

Next we will use following plucker relation to factor t_6

$$R_5: \quad 0 = egin{bmatrix} 1 & 1 & 1 \ 2 & 3 \ 5 & 4 \end{bmatrix} - egin{bmatrix} 1 & 1 \ 2 & 3 \ 4 & 5 \end{bmatrix} + egin{bmatrix} 1 & 1 \ 2 & 4 \ 3 & 5 \end{bmatrix}$$

We multiply following tableau to above relation (in empty columns)

I	1	1	1	1	2	2	2	3	3	3	3	3
	2	2	4	4	4	5	5	6	6	6	6	6
	4	4	5	5	5	6	7	7	7	7	7	7

We get

1	1	1	1	1	1	2	2	2	3	3	3	3	3
2	2	2	3	4	4	4	5	5	6	6	6	6	6
5	$\overline{4}$	$\overline{4}$	4	5	5	5	6	7	7	7	7	7	7

Observe that following tableau ia factor of left hand side tableau in above relation

$$f_6 = \begin{bmatrix} 1 & 1 & 1 & 2 & 3 & 3 & 3 \\ 2 & 2 & 4 & 4 & 6 & 6 & 6 \\ 4 & 5 & 5 & 5 & 7 & 7 & 7 \end{bmatrix}$$