

Problems and solutions for cooccurring policies in research on the health effects of social policies

Ellicott C. Matthay, PhD MPH 2024 CAPS-CPR Conference at Syracuse University May 21, 2024

NYU Grossman School of Medicine

Overarching research goal: Which social policies should we be investing in to eliminate health inequities?

Methods matter.

Methodological challenges for research on the health effects of social policies

Methods matter.

On quasi-experimental study designs

- Promising approach for studying social policies
- Increasing in health research
- Major challenge: new policies rarely adopted or implemented in isolation

The problem of co-occurring policies

The problem of co-occurring policies

No adjustment → confounding bias

Adjustment → data sparsity, imprecise or unstable estimates, bias, positivity violation

Consequences: low statistical power, incorrect inferences

How pervasive are co-occurring social policies?

What consequences do co-occurring policies have for estimation of the health effects of social policies?

Matthay et al., *Epidemiologic Reviews*, 2021 "The revolution will be hard to evaluate: How co-occurring policy changes affect research on the health effects of social policies"

Methods

All studies published in 2019 in 10 top journals

AJPH, AJE, SSM, Demography, AER, Health Affairs, Lancet, NEJM, JAMA, Am J Prev Med

N = 6,794 potential articles

N = 55 studies of 36 unique policies

Methods

All studies published in 2019 in 10 top journals

AJPH, AJE, SSM, Demography, AER, Health Affairs, Lancet, NEJM, JAMA, Am J Prev Med

N = 6,794 potential articles

Relevant empirical studies on health effects of social policies

N = 55 studies of 36 unique policies

Corresponding quantitative databases

Locations and timing of index policy and related policies Same domain and geographic level

N = 13 databases

Methods

Example study: Impacts of changes in level and duration of paid maternity leave on infant mortality across 18 African and Asian countries Corresponding database: country-level paid leave policies

Country	Year	Paid maternity leave	Weeks of maternity leave	Paid sick leave
Botswana	2003	Yes	6	No
Botswana	2004	Yes	6	No
Botswana	2005	Yes	10	Yes
Colombia	2003	Yes	4	Yes

Analysis

1. Visualize policy co-occurrence

Heatmaps of pairwise correlations between policy variables

2. Quantify policy co-occurrence

Regression: Index policy ~ remaining policies in same database

1 - R^2 = unique variation left to study index policy

Analysis

3. Estimate impacts of policy co-occurrence on precision using simulations

Databases

Results: visualizing policy co-occurrence

Unemployment, sick leave, and pension benefits policies, 22 countries, 1971-2010

Recreational cannabis policies, 50 states, Jan 2009 – Dec 2017

Results: quantifying policy co-occurrence

Little independent variation remaining after adjustment

Of 500+ policies, 65% with $R^2 > 0.90$

Substantial variance inflation

Across simulations, databases and policies, median variance inflation: 57-fold

Summary & interpretation

High degrees of co-occurrence are the norm

Adequate control for co-occurring policies → extreme variance inflation

Likely an underestimate of the problem

Exacerbated for subgroup analyses that are critical to evaluating equity impacts of social policies

Casts doubt on existing social policy studies

Need plausibly like-random or arbitrary variation

What approaches help to address policy co-occurrence?

How often are they used in practice?

Matthay et al., *Epidemiologic Reviews*, 2021 "What to do when everything happens at once: Analytic approaches to estimate the health effects of cooccurring social policies"

Analytic solutions to policy co-occurrence

	Approach	Studies
	Used at least one approach	35 (64%)
Disentangle	1. Adjust for clustered policies	18 (33%)
	2. Restrict the study sample to the region of common support	2 (4%)
	3. Define the outcome on subpopulations likely to be affected by the index policy but not other clustered policies	14 (25%)
	4. Select a less correlated measure of policy exposure	7 (13%)
	5. Use Bayesian methods	0 (0%)
Cluster	6. Identify and evaluate the impacts of policy clusters	4 (7%)
	7. Use an overall policy stringency or generosity score	3 (5%)
	Approaches not identified a priori	0 (0%)

Ways forward

Earned income tax credit disbursement

Short-term health outcomes

Overall diet Cardiovascular

Vegetables Systolic pressure

Fruit Diastolic pressure

Meat Forced Expiratory vo

Meat Forced Expiratory volume
Dairy Pulse rate

Dairy Pulse rate
Sodium Metabolic
Saturated fat HDL cholesterol
Diet variety LDL cholesterol
Food security Trigylcerides
Not enough food Haemoglobin A1c

Health behaviours

Glucose

Not try lose weight^a
Cotinine

Infection & immunity
C-reactive protein
Lymphocytes

Marijuana^a Illness^a

Alcohol Respiratory infection^a

Not walk mile/week^a Cold^a

Acknowledgements

Collaborators

Maria Glymour NYU Grossman School of Medicine

Institutions

Nancy Adler UC San Francisco

David Vlahov Robert Wood Johnson Foundation

Erin Hagan UC Berkeley

Laura Gottlieb

May Lynn Tan

Funding

Evidence for Action program of the Robert

Wood Johnson Foundation (PI: Adler)

NIAAA K99/R00 AA028256 (PI: Matthay)

Thank you

Ellicott C. Matthay, PhD MPH
Assistant Professor
Center for Opioid Epidemiology and Policy
Division of Epidemiology
Department of Population Health

■ ellicott.matthay@nyulangone.org

NYU Grossman School of Medicine

