

Axioms

0:00 / 0:00 ▶ 1.0x X CC 66 Start of transcript. Skip to the end.

Hello and welcome back.

properties of probability

by defining a set of axioms and showing that we can prove

that we have observed before.

So we'll have only three axioms

5.6_Probability_Axioms

POLL

Does P(A)=0 imply that A is the empty set?

RESULTS

Yes 26%

Not necessarily **74%**

Submit

Results gathered from 38 respondents.

FEEDBACK

It is possible that P(A)=0 for a non-empty set A.

0 points possible (ungraded)

For any three events A, B, and C, we have $P\left(B\right)=$

So we have talked about different

and now we would like to start in some sense afresh

many of the results,

$\bigcirc P(A \cap B) + P(B \cap C) + P(B \cap A^c \cap C^c)$
$ \bigcirc P(A \cap B) + P(B \cap C) - P(A \cap B \cap C) + P(B \cap A^c \cap C^c) $
$\bigcirc \ P\left(A^c\cap C^c ight) + P\left(A\cap B ight) + P\left(B\cap C ight)$
$\bigcirc P\left(\Omega ight) - P\left(A ight) - P\left(C ight) + P\left(A\cap B\cap C ight)$
Answer Correct: Video: Total Probability
Explanation
- False. It is $P\left(B ight) + P\left(A\cap B\cap C ight)$.
- True.
- False. This includes the events outside of the three circles.
- False. Same as above.
Submit You have used 2 of 2 attempts
Answers are displayed within the problem
2 (Graded)
1/1 point (graded) Under which of the following probability assignments does $S=\{a_1,a_2,a_3\}$ become a probability space?
$oxed{ D(a_1) = 0.2, \ P(a_2) = 0.3, \ P(a_3) = 0.4 }$
$lacksquare P\left(a_{1} ight)=0.2,\ P\left(a_{2} ight)=0.3,\ P\left(a_{3} ight)=0.5$
$oxed{ P\left(a_1 ight)=0.3,\ P\left(a_2 ight)=-0.2,\ P\left(a_3 ight)=0.9}$
$igwedge P\left(a_{1} ight)=0.2,\ P\left(a_{2} ight)=0,\ P\left(a_{3} ight)=0.8$
✓
Explanation Two necessary conditions: 1. The probability P of the events satisfies $0 \le P \le 1$. 2. All P s sum up to 1.
Submit You have used 1 of 3 attempts
Answers are displayed within the problem
3

Which of the following always holds?

0 points possible (ungraded)

$ ightharpoonup A \subset B \Rightarrow P(A) < P(B),$	
Explanation The only tricky part may be the third. Note that because elements may have 0 probabilities, non-empty ever may also have zero probability. Hence A may be a strict subset of B and yet have the same probability. For example, if the sample space is $\{a,b\}$ and $P(a)=1$ while $P(b)=0$, then $P(\{a\})=P(\{a,b\})$.	
Submit You have used 3 of 3 attempts	
Answers are displayed within the problem	
4 0 points possible (ungraded) Which of the following statements are true?	
If $P(E_1)+P(E_2)=1$, then $E_1\cup E_2=\Omega$. If $E_1\uplus E_2=\Omega$, then $P(E_1)+P(E_2)=1$.	
$lacksquare I$ If $P(E_1)+P(E_2)=1$, then $E_1\uplus E_2=\Omega$.	
Explanation - False. E is not necessary to be \emptyset True False. Let $\Omega=\{1,2,3\}, E_1=\{1,2\}, E_2=\{2,3\}.$ $E_1\cup E_2=\Omega$, but $P(E_1)+P(E_2)=\frac{4}{3}.$ - False. Let $\Omega=\{1,2,3\}, E_1=\{1,2\}, E_2=\{1\}.$ $P(E_1)+P(E_2)=1$, but $E_1\cup E_2\neq \Omega$ True False. Same as option 4.	
? Hint (1 of 1): Recall that $A \uplus B$ means $A \cup B$ when A and B are disjoint.	t Hint

You have used 3 of 3 attempts

Submit

5 (Graded)

7/7 points (graded)

Suppose A, B are events that P(A)=0.65, P(B)=0.5 and $P(A\cap B)=0.25$. What are the following probabilities?

• $P(A^c)$

0.35

✓ Answer: 0.35

0.35

Explanation

$$P(A^c) = 1 - P(A) = 0.35.$$

• $P(B^c)$

0.5

✓ Answer: 0.5

0.5

Explanation

$$P(B^c) = 1 - P(B) = 0.5.$$

• $P(A \cup B)$

0.9

✓ Answer: 0.9

0.9

Explanation

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.9.$$

• P(A-B)

0.65-0.25

✓ Answer: 0.4

0.65 - 0.25

Explanation

$$P(A - B) = P(A \cup B) - P(B) = 0.4.$$

• P(B-A)

0.5-0.25

✓ Answer: 0.25

0.5 - 0.25

Explanation

$$P(B-A) = P(A \cup B) - P(A) = 0.25.$$

• $P(A\Delta B)$

0.65

✓ Answer: 0.65

0.65

Explanation

$$P(A\Delta B) = P(A \cup B) - P(A \cap B) = 0.65.$$

•
$$P((A \cup B)^c)$$

0.1	✓ Answer: 0.1
0.1	

Explanation

$$P((A \cup B)^c) = 1 - P(A \cup B) = 0.1.$$

Submit

You have used 4 of 4 attempts

• Answers are displayed within the problem

6

0 points possible (ungraded)

Let P be a probability function on $S=\{a_1,a_2,a_3\}$. Find $P\left(a_1
ight)$ if:

•
$$P(\{a_2,a_3\}) = 3P(a_1)$$

•
$$P(a_1) = 2P(a_2) = 3P(a_3)$$

Submit

You have used 0 of 4 attempts

7

0 points possible (ungraded)

Let X be distributed over $\Omega=\{1,2,\ldots,100\}$ with $P\left(X=i\right)=rac{i}{k}$ for some integer k. Find:

• k

• |E| where $E=\{x|x\in\Omega,x ext{ is multiples of } 3\}$,

• P(E).

Submit

You have used 0 of 4 attempts

8	
0 points possible (ungraded) Consider a die where the probability of rolling $1,2,3,4,5$ and 6 are in the ratio $1:2:3:4:$ probability that when this die is rolled twice, the sum is 7 ?	$oldsymbol{5:6}$. What is the
Submit You have used 0 of 4 attempts	
9	
0 points possible (ungraded) Jack solves a Math problem with probability 0.4, and Rose solves it with probability 0.5. What is least one of them can solve the problem?	is probability that at
O.7	
0.9	
0.6	
○ Not enough information	
×	
Explanation Let A be the event that Jack solves the problem, B be the event that Rose solves the problem $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, but $P(A \cap B)$ is missed here.	n.
Answers are displayed within the problem	
Discussion	
Discussion Topic: Topic 5 / Axioms	Hide Discussion
	Add a Post
Show all posts 🗸	by recent activity 🗸
There are no posts in this topic yet.	
×	

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

<u>Privacy Policy</u>

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>