Example of Similarity Coefficient Using Inner Product

Consider a case insensitive query and document collection with a query \mathbf{Q} and a document collection consisting of the following three documents:

Q: "gold silver truck"

 D_1 : "Shipment of gold damaged in a fire"

 D_2 : "Delivery of silver arrived in a silver truck"

 D_3 : "Shipment of gold arrived in a truck"

In this collection, there are three documents, so d = 3. If a term appears in only one of the three documents, its idf is $\log \frac{d}{df_j} = \log \frac{3}{1} = 0.477$. Similarly, if a term appears in two

of the three documents its idf is $\log \frac{d}{df_j} = \log \frac{3}{2} = 0.176$, and a term which appears in all

three documents has an *idf* of $\log \frac{3}{3} = 0$.

The *idf* for the terms in the three documents is given below:

$$idf_a = 0 \\ idf_{arrived} = 0.176 \\ idf_{of} = 0 \\ idf_{of} = 0 \\ idf_{silver} = 0.477 \\ idf_{delivery} = 0.477 \\ idf_{fire} = 0.477 \\ idf_{gold} = 0.176$$

$$idf_{shipment} = 0.176 \\ idf_{gold} = 0.176$$

Document vectors can now be constructed. Since eleven terms appear in the document collection, an eleven-dimensional document vector is constructed. The alphabetical ordering given above is used to construct the document vector so that t_1 corresponds to term number one which is a and t_2 is arrived, etc. The weight for term i in vector j is computed as the $idf_i \times tf_{ii}$. The document vectors are shown in Table 2.1.

Table 2.1. Document Vectors

docid	a	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
D_1	0	0	.477	0	.477	.176	0	0	.176	0	0
D_2	0	.176	0	.477	0	0	0	0	0	.954	.176
D_3	0	.176	0	0	0	.176	0	0	.176	0	.176
Q	0	0	0	0	0	.176	0	0	0	.477	.176

$$SC(Q, D_1) = (0)(0) + (0)(0) + (0)(0.477) + (0)(0)$$

 $+(0)(0.477) + (0.176)(0.176) + (0)(0) + (0)(0)$
 $+(0)(0.176) + (0.477)(0) + (0.176)(0)$
 $= (0.176)^2 \approx 0.031$

Similarly,

$$SC(Q, D_2) = (0.954)(0.477) + (0.176)^2 \approx 0.486$$

 $SC(Q, D_3) = (0.176)^2 + (0.176)^2 \approx 0.062$

Hence, the ranking would be D_2 , D_3 , D_1 .