MSc Probabilidade 2023.1

Escola de Matemática Aplicada, Fundação Getulio Vargas Professor Paulo César P. Carvalho Monitor Lucas Machado Moschen

Lista 8

Solução 1. Sejam $X_1, X_2 \sim \text{Geom}(p)$ independentes que contém o número de falhas até o sucesso.

(a) Usando o Teorema da Probabilidade Total,

$$\mathbb{P}(X_1 = X_2) = \sum_{x=0}^{\infty} \mathbb{P}(X_1 = x | X_2 = x) \mathbb{P}(X_2 = x)$$
(independência) =
$$\sum_{x=0}^{\infty} \mathbb{P}(X_1 = x) \mathbb{P}(X_2 = x)$$
=
$$\sum_{x=0}^{\infty} (p(1-p)^x)^2$$
=
$$\frac{p^2}{1 - (1-p)^2} = \frac{p}{2 - p}.$$

Pela simetria $\mathbb{P}(X_1 < X_2) = \mathbb{P}(X_1 > X_2)$, o que implica

$$1 = \mathbb{P}(X_1 < X_2) + \mathbb{P}(X_1 = X_2) + \mathbb{P}(X_1 > X_2) = 2\mathbb{P}(X_1 < X_2) + \frac{p}{2-p},$$

e, então,
$$\mathbb{P}(X_1 < X_2) = (2 - 2p)/(4 - 2p) = (1 - p)/(2 - p).$$

(b) Primeiro vamos encontrar

$$\mathbb{P}(X_1 + X_2 = n) = \sum_{i=0}^{n} \mathbb{P}(X_1 = n - i | X_2 = i) \mathbb{P}(X_2 = i)$$

$$= \sum_{i=0}^{n} \mathbb{P}(X_1 = n - i) \mathbb{P}(X_2 = i)$$

$$= \sum_{i=0}^{n} p(1 - p)^{n-i} p(1 - p)^{i}$$

$$= \sum_{i=0}^{n} p^2 (1 - p)^{n}$$

$$= (n+1)p^2 (1-p)^{n}.$$

Portanto,

$$\mathbb{P}(X_1 = m \mid X_1 + X_2 = n) = \frac{\mathbb{P}(X_1 = m, X_1 + X_2 = n)}{\mathbb{P}(X_1 + X_2 = n)}$$

$$= \frac{\mathbb{P}(X_1 = m, X_2 = n - m)}{\mathbb{P}(X_1 + X_2 = n)}$$

$$= \frac{\mathbb{P}(X_1 = m)\mathbb{P}(X_2 = n - m)}{\mathbb{P}(X_1 + X_2 = n)}$$

$$= \frac{p^2(1 - p)^n}{(n + 1)p^2(1 - p)^n} = \frac{1}{n + 1}, m = 0, \dots, n.$$

Solução 2. Seja $X_t \sim \text{Poisson}(\lambda t)$ o número de partículas contadas e F o multiplicador com densidade f. Defina a voltagem $V = FX_t$. Estamos interessados em $\mathbb{P}(V < 1)$. Assim

$$\mathbb{P}(FX_{t} < 1) = \mathbb{P}(X_{t} = 0) + \sum_{n=1}^{\infty} \mathbb{P}(F < 1/n \mid X_{t} = n) \mathbb{P}(X_{t} = n)
= \mathbb{P}(X_{t} = 0) + \sum_{n=1}^{\infty} \frac{e^{-\lambda} \lambda^{n}}{n!} \int_{0}^{1/n} \frac{1}{(1+x)^{2}} dx
= e^{-\lambda t} + \sum_{n=1}^{\infty} \frac{e^{-\lambda t} (\lambda t)^{n}}{n!} \frac{1}{n+1}
= e^{-\lambda t} + \frac{e^{-\lambda t}}{\lambda t} \sum_{n=1}^{\infty} \frac{(\lambda t)^{n+1}}{(n+1)!}
= e^{-\lambda t} + \frac{e^{-\lambda t}}{\lambda t} \sum_{n=2}^{\infty} \frac{(\lambda t)^{n}}{n!}
= e^{-\lambda t} + \frac{e^{-\lambda t}}{\lambda t} [e^{\lambda t} - 1 - \lambda t]
= \frac{1 - e^{-\lambda t}}{\lambda t} = \frac{\mathbb{P}(X_{t} > 0)}{\lambda t}.$$

Solução 3. Temos duas fontes A e B com impulsos independentes e Poisson λ e ξ respectivamente.

- (a) Seja X_t a contagem total de impulsos dos, isto é, $X_t = A_t + B_t$. Já fizemos as contas desse caso e obtivemos que $X_t \sim \text{Poisson}((\lambda + \xi)t)$.
- (b) Estamos interessados em $\mathbb{P}(A_t = 1 | X_t = 1)$. Assim

$$\mathbb{P}(A_t = 1 | X_t = 1) = \frac{\mathbb{P}(A_t = 1, X_t = 1)}{\mathbb{P}(X_t = 1)} = \frac{\mathbb{P}(A_t = 1, B_t = 0)}{\mathbb{P}(X_t = 1)} = \frac{\mathbb{P}(A_t = 1)\mathbb{P}(B_t = 0)}{\mathbb{P}(X_t = 1)}$$
$$= \frac{\lambda}{\lambda + \xi}.$$

(c) Sabendo que $X_1 = 100$, estamos interessados na distribuição de A_1 . Assim, para

$$n = 0, \dots, 100,$$

$$\mathbb{P}(A_1 = n \mid X_1 = 100) = \frac{\mathbb{P}(A_1 = n)\mathbb{P}(B_1 = 100 - n)}{\mathbb{P}(X_1 = 100)}$$

$$= \frac{e^{-\lambda}\lambda^n}{n!} \frac{e^{-\xi}\xi^{100-n}}{(100 - n)!} \frac{100!}{e^{-\lambda - \xi}(\lambda + \xi)^{100}}$$

$$= {100 \choose n} \left(\frac{\lambda}{\lambda + \xi}\right)^n \left(\frac{\lambda}{\lambda + \xi}\right)^{100-n},$$

que implica que $A_1|X_1 = 100 \sim \text{Bin}(100, \lambda/(\lambda + \xi)).$

Solução 4. Seja X_T o número de visitantes que chegaram no período de T horas. Sabemos que $X_T \sim \text{Poisson}(\lambda T)$. Defina T_i o tempo de chegada entre o (i-1)-ésimo e o i-ésimo visitante, em que T_1 é o tempo de chegada do primeiro visitante. Como mostrado na página 154 do livro, a distribuição de $(T_1, T_1 + T_2, \dots, T_1 + \dots + T_n)$ dado $X_T = n$ é a distribuição da estatística de ordem de n variáveis aleatórias independentes e distribuídas uniformemente em [0, T]. Estamos interessados em

$$\mathbb{E}\left[\sum_{i=1}^{X_T} T - \sum_{j=1}^i T_j\right] = \sum_{n=1}^{\infty} \mathbb{E}\left[\sum_{i=1}^n T - \sum_{j=1}^i T_j\right] \mathbb{P}(X_T = n).$$

Para simplificar, desconsiderando a ordem, que não importa para calcular o valor esperado, basta considerar, para cada $X_T = n$, n visitantes chegando, cada um a seu tempo e sem ordená-los. Nesse caso, \tilde{T}_i é o tempo de chegada para o i-ésimo visitante em qualquer ordem, que tem distribuição uniforme [0,T]. Com essa formulação, estamos interessados em

$$\sum_{n=1}^{\infty} \mathbb{E} \left[\sum_{i=1}^{n} T - \tilde{T}_{i} \right] \mathbb{P}(X_{T} = n) = \sum_{n=1}^{\infty} \mathbb{E} \left[\sum_{i=1}^{n} T - \tilde{T}_{i} \right] \mathbb{P}(X_{T} = n)$$

$$= \sum_{n=1}^{\infty} n \frac{T}{2} e^{-\lambda T} \frac{(\lambda T)^{n}}{n!}$$

$$= \frac{T}{2} e^{-\lambda T} \sum_{n=1}^{\infty} \frac{(\lambda T)^{n}}{(n-1)!}$$

$$= \frac{T}{2} e^{-\lambda T} \lambda T \sum_{n=0}^{\infty} \frac{(\lambda T)^{n}}{n!}$$

$$= \lambda \frac{T^{2}}{2}$$

Solução 5. Sejam $X \sim b(m,p)$ e $Y \sim b(n,p)$ É fácil ver que $X + Y \sim b(m+n,p)$, pois só estamos fazendo mais experimentos de Bernoulli independentes. Assim,

$$\begin{split} \mathbb{P}(X=k|X+Y=s) &= \frac{\mathbb{P}(X=k)\mathbb{P}(Y=s-k)}{\mathbb{P}(X+Y=s)} \\ &= \binom{m}{k} p^k (1-p)^{m-k} \binom{n}{s-k} p^{s-k} (1-p)^{n-s+k} / \binom{m+n}{s} p^s (1-p)^{m+n-s} \\ &= \binom{m}{k} \binom{n}{s-k} / \binom{m+n}{s}, \end{split}$$

que é a distribuição hipergeométrica com N=m+n bolas, m as que são de interesse e s são as amostragens.