Implementation in Quantum Simulator

Niladri Banerjee (CrS-1913)

• Deutsch-Jozsa Algorithm:

Here initially the oracle function is: $f(x,y) = (0,0) \ \forall x$ Circuit:

Histogram:

Here the circuit measured the 000 bit with probability 1. Hence, it's a **constant function.**

Here the oracle function is: $f(x, y) = (x \land y)$ Circuit:

Histogram:

Here, the probability of 000 is 0. Hence, it's a balanced function.

• Simon's Algorithm:

Here the oracle function is, $f(x,y,z) = (0, y \oplus z, x \oplus y)$ Circuit:

Histogram:

Suppose, our target string is, $s = (s_0, s_1, s_2)$. Here, the measurement bits are 000, 101, 110, 011. So, s will be the solution of the equation,

$$x.\,1 \oplus y.\,1 \oplus z.\,0 = 0$$

$$x. 0 \oplus y. 1 \oplus z. 1 = 0$$

$$x. 1 \oplus y. 0 \oplus z. 1 = 0$$

Solving these one may get that $s = (111)_2$.

• Grover's Algorithm:

Let us consider the Boolean function, $f(x) = \begin{cases} 1, & \text{if } x = (101)_2 \\ 0, & \text{otherwise} \end{cases}$

Now let us define the corresponding oracle function $Z_f|x\rangle = \begin{cases} -|x\rangle, & \text{if } f(x) = 1\\ |x\rangle, & \text{otherwise} \end{cases}$ Circuit:

Now, here N=2³; i.e., $\frac{\pi}{4}\sqrt{N}$ = 2.22. Hence, no. of steps reqd. to find the exact match is 2.

Histogram for 2 iterations:

Here, we can see that the probability at $(101)_2$ is very high than the others. So, from the histogram itself it's clear that it is far better than the classical computer. Where classical computer requires 8 many steps to find the match in the worst case, here 2 steps is enough.