Undirected graphs 10/10/11 3:52 PM

Next Up Previous

Next: Interlacing Up: The spectrum of a Previous: The spectrum of a

Undirected graphs

We shall mostly be interested in the case where Γ is undirected, without loops or multiple edges. For A this means that it is symmetric ($A = A^{\top}$), has zero diagonal ($a_{xx} = 0$), and is a 0-1 matrix ($a_{xy} \in \{0, 1\}$).

A number θ is eigenvalue of A if and only if it is a zero of the polynomial p_A . Since A is real and symmetric, all its eigenvalues are real. Also, for each eigenvalue θ , its algebraic multiplicity (that is, its multiplicity as a root of the polynomial p_A) coincides with its geometric multiplicity (that is, the dimension of the eigenspace $V_{\theta} = \{v \mid Av = \theta v\}$), so that we may omit the adjective and just speak about 'multiplicity'. Conjugate algebraic integers have the same multiplicity.

Two very useful properties of this matrix representation of a graph are:

- (i) Γ is regular (of degree k) if and only if AJ = kJ (where J is the matrix with all entries equal to 1);
- (ii) $(A^h)_{xy}$ is the number of paths of length h from x to y. In particular, $(A^2)_{xx}$ is the degree of the vertex x, and $\operatorname{tr} A^2$ equals twice the number of edges of Γ ; similarly, $\operatorname{tr} A^3$ is six times the number of triangles in Γ .

By Perron-Frobenius theory, we know something about the largest eigenvalue of a connected graph. (Indeed, A is irreducible if and only if Γ is connected.)

Proposition 1.4.2 Let Γ be a connected graph with largest eigenvalue θ_1 and with minimum, maximum and average degree k_{\min} , k_{\max} and \bar{k} . Then either $k_{\min} < \bar{k} < \theta_1 < k_{\max}$ or $k_{\min} = \bar{k} = \theta_1 = k_{\max}$.

Proof: Let 1 be the vector with all entries equal to 1. Then $A1 \leq k_{\max} 1$, and by (iv) of Perron-Frobenius we have $\theta_1 \leq k_{\max}$ with equality if and only if $A1 = \theta_1 1$, that is, if and only if Γ is regular of degree θ_1 . This settles the case where Γ is regular. If Γ is not regular, then $k_{\min} < \overline{k} < k_{\max}$ and we

Undirected graphs 10/10/11 3:52 PM

have seen $\, heta_1 < k_{
m max} \, .$ Finally, let $\, u \,$ be any nonzero vector. We show that

$$heta_1 \geq rac{u^ op Au}{u^ op u}$$

with equality if and only if $Au=\theta_1u$. Indeed, let $u_1,...,u_v$ be an orthonormal basis of V consisting of eigenvectors of A, so that $Au_j=\theta_ju_j$ ($1\leq j\leq v$). Then we can write u as a linear combination of the u_j , say $u=\sum_i a_iu_i$, and then $u^\top Au=\sum_i a_i^2\theta_i\leq \theta_1\sum_i a_i^2=\theta_1u^\top u$. Applying this with u=1 we find $\theta_1\geq \frac{\bar{k}v}{v}=\bar{k}$, with equality if and only if Γ is regular. \square

Remark Choosing the vector u in the previous proof more subtly, we may obtain better bounds on θ_1 .

Exercise Use interlacing (see below) to show that $\theta_1 \ge \sqrt{k_{\text{max}}}$. When does equality hold?

The spectrum of a disconnected graph is easily found from the spectra of its components:

Proposition 1.4.3 Let Γ be a graph with connected components Γ_i ($1 \le i \le s$). Then the spectrum of Γ is the union of the spectra of Γ_i (and multiplicities are added). \square

So, for not necessarily connected graphs, we have $\bar{k} \leq \theta_1 \leq k_{\max}$, and $\bar{k} = \theta_1$ if and only if Γ is regular, but if $\theta_1 = k_{\max}$ then we only know that Γ has a regular component with this valency, but Γ need not be regular itself.

Exercise Show that no (undirected) graph has eigenvalue $\sqrt{2+\sqrt{5}}$.

Undirected graphs 10/10/11 3:52 PM

Next Up Previous

Next: Interlacing Up: The spectrum of a Previous: The spectrum of a Andries Brouwer 2003-09-30