Table of Contents

vord	. xiii
се	xv
duction: The Right Brain in the Right Place (Why We Need Autonomous Al)	. xxv
I. When Automation Doesn't Work	
Sometimes Machines Make Bad Decisions	3
Math, Menus, and Manuals: How Machines Make Automated Decisions	5
Control Theory Uses Math to Calculate Decisions	5
Optimization Algorithms Use Menus of Options to Evaluate Decisions	9
Expert Systems Recall Stored Expertise	21
The Quest for More Human-Like Decision-Making	. 27
Augmenting Human Intelligence	28
How Humans Make Decisions and Acquire Skills	29
Humans Act on What They Perceive	30
Humans Build Complex Correlations into Their Intuition with Practice	31
Humans Abstract to Strategy for Complex Tasks	31
There's a New Kind of AI in Town	36
The Superpowers of Autonomous AI	40
Autonomous AI Makes More Human-Like Decisions	41
Autonomous AI Perceives, Then Acts	41
The Difference Between Perception and Action in AI	42
Autonomous AI Learns and Adapts When Things Change	43
Autonomous AI Can Spot Patterns	43
	duction: The Right Brain in the Right Place (Why We Need Autonomous Al) I. When Automation Doesn't Work Sometimes Machines Make Bad Decisions

	Autonomous AI Infers from Experience	44
	Autonomous AI Improvises and Strategizes	44
	Autonomous AI Can Plan for the Long-Term Future	45
	Autonomous AI Brings Together the Best of All Decision-Making	
	Technologies	46
	When Should You Use Autonomous AI?	46
	Autonomous AI Is like a Brilliant, Curious Toddler That Needs to Be Taught	47
Par	t II. What Is Machine Teaching?	
3.	How Brains Learn Best: Teaching Humans and Al	. 53
	Learning Multiple Skills Simultaneously Is Hard for Humans and AI	53
	Teaching Skills and Strategies Explicitly	54
	Teaching Allows Us to Trust AI	58
	The Mindset of a Machine Teacher	60
	Teacher More Than Programmer	60
	Learner More Than Expert	62
	What Is a Brain Design?	62
	How Decision-Making Works	63
	Acquiring Skill Is like Learning to Navigate by Exploring	68
	A Brain Design Is a Mental Map That Guides Exploration with Landmarks	69
4.	Building Blocks for Machine Teaching	. 73
	Case Study: Learning to Walk Is Hard to Evolve, Easier to Teach	76
	So, Why Do We Walk?	77
	Strategy Versus Evolution	78
	Teaching Walking as Three Skills	81
	Concepts Capture Knowledge	84
	Skills Are Specialized Concepts	84
	Brains Are Built from Skills	86
	Building Skills	86
	Expert Rules Inflate into Skills	87
	Perceptive Concepts Discern or Recognize	91
	Directive Concepts Decide and Act	96
	Selective Concepts Supervise and Assign	97
	Brains Are Organized by Functions and Strategies	99
	Sequences or Parallel Execution for Functional Skills	100
	Hierarchies for Strategies	108
	Visual Language of Brain Design	113

ar	t III. How Do You Teach a Machine?	
Jnc	derstanding the Process	117
	et with Experts	118
	the Right Questions	118
Cas	e Study: Let's Design a Smart Thermostat	119
5.	Teaching Your Al Brain What to Do	121
	Determining Which Actions the Brain Will Take	122
	Perception Is Required, but It's Not All We Need	122
	Sequential Decisions	123
	Triggering the Action in Your AI Brain	124
	Setting the Decision Frequency	125
	Handling Delayed Consequences for Brain Actions	125
	Actions for Smart Thermostat	127
6.	Setting Goals for Your Al Brain	129
	There's Always a Trade-off	129
	Throughput Versus Efficiency	131
	Supervisors Have Different Goals Than Crews Do	132
	Don't Prioritize Goals; Balance Them Instead	133
	Watch Out for Expert Rules Disguised as Goals	133
	Ideal Versus Available	134
	Setting Goals	135
	Step 1: Identify Scenarios	135
	Step 2: Match Goals to Scenarios	136
	Step 3: Teach Strategies for Each Scenario	137
	Goal Objectives	137
	Maximize	137
	Minimize	137
	Reach, like the Finish Line for a Race	137
	Drive, like the Temperature for a Thermostat	138
	Avoid, like Dangerous Conditions	138
	Standardize, like the Heat in an Oven	139
	Smooth, like a Line	139
	Expanding Task Algebra to Include Goal Objectives	140
	Setting Goals for a Smart Thermostat	141
7.	Teaching Skills to Your Al Brain	143
	Teaching Focuses and Guides Practice (Exploration)	144
	Skills Can Evolve and Transform	147
	Skills Adapt to the Scenario	148
	Levels of Teaching Sophistication	148

	Designers and Builders Working Together in Harmony (Mostly)	185
9.	Designing Al Brains That Someone Can Actually Build	185
Par	t IV. Tools for the Machine Teacher	
	Sensor Variables for Smart Thermostat	180
	Simulating Reality Using Expert Rules	180
	Simulating Reality Using Machine Learning	179
	Simulating Reality Using Statistics and Events	179
	Simulating Reality Using Physics and Chemistry	179
	Simulators: A Gym for Your Autonomous AI to Practice In	176
	Trends	176
	Proxy Variables	175
	Variables	174
	Sensors: The Five Senses for Your AI Brain	174
8.	Giving Your Al Brain the Information It Needs to Learn and Decide	173
	Brain Design for Our Smart Thermostat	171
	Example of Teaching Skills to an AI Brain: Rubber Factory	169
	Pitfall 2: Losing the forest for the trees	169
	Pitfall 1: Confusing the solution for the problem	169
	Pitfalls to Avoid When Teaching Skills	168
	Step 3: Select Which Technology Should Perform Each Skill	168
	Step 2: Orchestrate How the Skills Work Together	168
	Step 1: Identify the Skills That You Want to Teach	166
	Steps to Architect an AI Brain	166
	Brains with Skills That Coordinate	165
	Brains That Assemble Themselves	164
	Brains That Define Skills as They Learn	162
	Brains That Come with Hardwired Skills	161
	Pursuing Expert Skill Acquisition in Autonomous AI	160
	Massive Concept Networks Are Proficient Learners	159
	Concept Networks Are Competent Learners	157
	Monolithic Brains Are Advanced Beginners	156
	Machine Learning Adds Perception	155
	Levels of Autonomous AI Architecture	154
	How Maestros Democratize Technology	153
	The Mentor Teaches Strategy The Maestro Democratizes New Paradigms	151
	The Coach Sequences Skills to Practice The Mentor Teaches Strategy	150
	The Coach Sequences Skills to Practice	149
	The Introductory Teacher Conveys the Facts and Goals	149

Index	194
Glossary	193
What Difference Will You Make with Machine Teaching?	191
Platform for Wiring Multiple Skills Together as Modules	190
Platform for Machine Teaching	190
Specification for Documenting AI Brain Designs	188
The Autonomous AI Implementation Fallacy Skips Design Altogether	188
The Autonomous AI Design Fallacy Designs but Won't Iterate	187