Теортест-1 (Вариант 82)

Тема – определенный интеграл

Задача 1

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 2. f непрерывна в точке a и f(b) = 1;
- 3. f > 0 на [a, b];
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int f(x)dx = \int \frac{f(\ln t)}{t}dt$;
- 2. $\int f(x^2)dx = 2 \int f(t)tdt;$
- 3. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt;$
- 4. $\int f(x)dx = \int f(\ln t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F имеет разрывы в точках разрыва функции f;
- 2. F не убывает на [a, b];
- 3. F дифференцируема на [a,b];
- 4. F непрерывна на [a, b];

Задача 4

Выберите все верные утверждения (тела А и В имеют объем):

- 1. объем одной точки равен нулю;
- 2. объем $A \cup B$ равен сумме объемов A и B;
- 3. объем A всегда неотрицателен;
- 4. любое множество имеет неотрицательный объем;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_{-\ln 2}^0 \frac{f(x)}{e^x} dx$:

- 1. [-10; 0];
- 2. [-1; 10];
- 3. [-1; 5];
- 4. [-0.25; 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. Любая кривая имеет бесконечно много различных параметризаций;
- 2. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 3. Кусочно-гладкая кривая спрямляема;
- 4. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 5. Спрямляемы только кусочно-гладкие кривые;

Задача 7

Выберите все верные утверждения:

- 1. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 2. если первообразная дробно-рациональной функции f(x) является дробно-рациональной, то все корни знаменателя f(x) кратные;
- 3. первообразная дробно-рациональной функции выражается через элементарные функции;
- 4. первообразная дробно-рациональной функции является дробно-рациональной функцией;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. Верхняя сумма Дарбу является наибольшей из всех интегральных сумм для данного разбиения;
- 2. При измельчении разбиения верхняя сумма Дарбу увеличивается или не изменяется;
- 3. При измельчении разбиения верхняя сумма Дарбу увеличивается;
- 4. Верхняя сумма Дарбу не меньше любой интегральной суммы для данного разбиения;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Пусть функция u = u(x) – первообразная для функции v = v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. u = v';
- 2. v = u':
- 3. u' = v + C;
- 4. v' = u + C;

Задача 10

Пусть $f \in R[a,b], \, a < b.$ Выберите все верные утверждения:

1. Если
$$\left| \int_a^b f(x) dx \right| < A$$
, то $\int_a^b |f(x)| dx < A$;

- 2. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;
- 3. Если f>0 на [a,b], то $\int_a^b f(x) dx>0;$
- 4. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a,b];