

LSI Design Flow

BG001

Tsuneo Funabashi

(Hai Pham reviewed and modified)

Renesas Electronics Corporation

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Preface

1. Intended audience

H/W and S/W engineers who have studied BF001

2. Purpose of this course

- * to understand how to design LSIs (from front end to back end)
- * to fill knowledge gap between automated designs and actual device behavior

3. Recommendations

- * to memorize every info in this course is not necessary
- * but to recall it when you understand other groups' activities

Terminology

Training Courses in LSI Development

Formation of BG001 in LSI Development

Total LSI Design Flow

To design LSIs using design environment established by platform development

- Quality of the platform determines quality of all products

Product Categories

GPSP: General Purpose Standard Product

MCU: Micro Controlling Unit (CPU + Peripherals + Memory)

MPU: Micro Processing Unit (High-performance CPU)

Discretes

Standard IC

Memory

ASSP: Application Specific Standard Product (see next slide)

ASCP: Application Specific Custom Product

ASIC: Application Specific Integrated Circuit, or

SoC: System on Chip

SiP: System in Package

CPU: Central Processing Unit

LSI Development and Business Models

LSI Development in Renesas Group

Self-Organized Design Steps

Design Input and Design Output

- To minimize retrogression, Input and Output of each design step must be clearly defined: key in ISO9001
- Input and Output are design interfaces, and must be well documented
- If Input is unclear, confirm with person in charge of upper stream design step
- Before releasing Output verify it and investigate it by design review
- Modification or addition to Input must be clearly stated in Output with reason for existence
- Modifications to existing design and newly added design must be clearly designated in Output with reason for existence

Design Output

= documentation first + design database later

- becomes Input of succeeding design step
- determines design quality
- becomes fundamental document for future product maintenance

<example of system design>

Start coding for the moment, and create document later in my own time: putting the cart before the horse.

Sometimes, system designers are also logic designers.

But close system design by outputting system specification as Output.

Well Organized Document

- > To be fully conscious of readers: like instructing them
- To make design interfaces clear: design input, and design output
- To make 5W1H clear (who, what, when, where, why, how)
- ➤ To make document systematic, and avoid distributed description by organizing your thoughts
- To avoid ambiguous expression: no room for arbitrary interpretation by readers

Not to abuse alteration, and to make revision history and distribution history clear

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

<simplified in an easy-to-understand way>

substrate

<simplified in an easy-to-understand way>

oxide substrate

<simplified in an easy-to-understand way>

photoresist
oxide
substrate

<simplified in an easy-to-understand way>

<simplified in an easy-to-understand way>

<simplified in an easy-to-understand way>

<simplified in an easy-to-understand way >

<simplified in an easy-to-understand way >

<simplified in an easy-to-understand way >

Photolithography: these steps are used to shape some specific patterns on silicon substrate surface by using mask set

oxide substrate

Process Steps

Shaping Transistor

Wafer Process (1) - STI

STI (Shallow Trench Isolation) is used to isolate transistors.

Wafer Process (2) - STI

Photoresist developed

Substrate etched by plasma

Wafer Process (3) - STI

Photoresist removed

Oxidation and CMP (Chemical Mechanical Polishing)

Si₃N₄ (P-SiN)is used as a barrier to oxidation. CMP is used for planarization.

STI etch back and P-SiN etching

Wafer Process (5) - Gate

Gate Oxidation

Poly silicon deposition

Wafer Process (6) - Source/Drain

P+ Diffusion high concentration ion implantation (acceptor)

Final Cross-section

Cross-section SEM photograph (6 layers Cu metal wire)

MOSFET

*** focusing on n-channel transistor ***

Shaping Transistor

Inverter Design

<cell symbol>

<circuit design>

Define W and L depending on speed and driveabilty

<circuit schematics> <composit schematics> <cross section>

-well connection not shown for simplicity-

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Platform Development

Device Design

Circuit Design

Library Design

LSI Design Flow

Total LSI Design Flow

To design LSIs using design environment established by platform development

- Quality of the platform determines quality of all products

Device Design

Determine transistor characteristics and parasitic device parameters

TEG

Test Element Group = test chip

Circuit Model

- For estimating delay time and power consumption -

An inverter chain with parasitic devices will be investigated.

VDD

Accurate parameters are required

VDD

VDD

Current Characteristics

Actual Circuit Behavior

was just a simplified equation. Actual behavior is obtained by circuit simulation based on differential equations: SPICE.

Device Development and EDA Tools

TEG evaluation facilitates to determine:

- 1) Characteristics of transistors
 - SPICE parameters (BSIM3/BSIM4)
 - parameters for circuit design tools

2) Wiring structure

- capacitor parameters (voltage dependent, temperature dependent)
 - resistor parameters (temperature dependent)
- 3) Design rules (rules for mask patterns)
 - parameters for physical data checkers (DRC/LVS/ERC)
 - data for parameter extraction tools (LPE)
 - parameters of OPC for mask data modification

EDA: Electronic Design Automation

LPE: Layout Parasitic Extraction

OPC: Optical Proximity Correction

SPICE

Circuit Design

Determine circuits of basic circuits (libraries)

Circuit Specifications Circuit Design Circuit Design Circuit verification Design layout/verification Post-layout circuit verification Library design

Schematic entry using device symbols (trs. C. R.) [CADENCE dfII, Composer]

Confirm whether circuit specifications (DC/AC characteristics, functions) are satisfied [Spectre/ALICE/HSPICE, Verilog-Spectre etc.]

Confirm whether it satisfies the process rules by editing layout data Virtuoso/Virtuoso-XL, Calibre/Assura/Diva etc.]

Reconfirm circuit specifications with post-layout load conditions (actual shapes of trs. and wiring)
[Columbus-AMS/Assura-RCX etc]

Schematic Entry

◆ Electric circuits are inputted with circuit schematic editor interactively, where pre-determined device symbols, such as transistors, capacitors,

and resistors, are used.

Verification

◆ Confirm desired output is obtained from circuit net list under certain input conditions and with electrical characteristic parameters:

DC analysis, transient analysis and AC analysis.

by visual confirmation

Layout

◆ Layout design environment by net-list-driven automatic layout tool, coordinated with circuit design environment

Library Design Flow

Example: standard cell

Library Design

Make basic circuits reusable

Definitions

- ◆ Core cell: commonly used parts of basic logic circuits, such as inverters, logic gates, FFs, and I/O buffer cells; also referred to as standard cell
- ◆ Libraries: design package commonly used for LSI designs, comprising the following major data:
 - ➤ Logic model : RTL description, Verilog HDL,VHDL
 - ➤ Timing model: Liberty (Synopsys model) (including delay, timing constraints, power consumption model)
 - **≻**Layout model: GDSII, LEF
 - **➤ Circuit model: SPICE netlist, CDL netlist**

models for front-end designs

models for back-end designs

Library Examples

Circuit schematics [Composer]

Layout data [Virtuoso]

Total LSI Design Flow

To design LSIs using design environment established by platform development

- Quality of the basic platform determines quality of all products

<u>IPs</u>

IP: commonly used modules, such as memory module (RAM, ROM, flash memory),

analog module (DAC, ADC, PLL), processing unit (CPU, DSP)

and interfaces(USB, LVDS,

High-speed memory)

RAM: Random Access Memory

ROM: Read Only Memory

LVDS: Low Voltage Differential Signaling

LSI Design Flow

LSI design flow is also adopted in IP designs

Design Methodologies for each LSI device

LSI	Methodology	Design steps and merits	Design TAT	Fab. TAT
Logic	Full custom	Transistor based design for performance optimization	10 months	1~2 months
	Cell based	Combination of pre-designed modules (cells, macros, IPs), logic synthesis, and auto P&R, for large scale integration	2 months	1~2 months
	Gate array	Logic synthesis, and auto P&R, for middle scale integration	1 month	2 weeks
	FPGA	Logic synthesis, and auto routing. Prefabricated.	1 week	(1 day)
Memory	Full custom	Transistor based design for high density memory macro	10 months	1~2 months
Analog	Full custom	Transistor based design for high performance and precision	6 months	1~2 months
Mixed Signal	Full custom/ cell based	Co-verification for analog and digital	8 months	1~2 months

TAT: Turn Around Time

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Platform Development

LSI Design Flow

System Design

Logic Design

Test Design

Layout Design

Before Learning Details

LSI Design Flow

RTL: Register Transfer Level

P&R: Place & Route

OPC: Optical Proximity Correction

s/w: software h/w: hardware

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Platform Development

LSI Design Flow

System Design

Logic Design

Test Design

Layout Design

System Design

Systems & Components

System Integration

SoC (System-on-Chip): System implementation in single LSI

SiP(System-in-Package): System implementation in 1 package

System Design Flow

Requirements for System Design

- To optimize LSI specifications by watching market trend and hearing customers' needs, such as performance, features, power dissipation, reliability, price (target die size, package selection, process)
- To remove over-spec and spec bugs
- ➤ To avoid specification changes during h/w design phase because h/w design becomes critical:
 - demand for time-to-market is increasing
 - complexity is increasing
 - need for performance is increasing
 - fabrication cost is increasing (more than \$1M for one maskset)

System Design Trend

- Conventional design
 - Inspiration and experience
 - Excess margin due to paper plans
- Current trend
 - C/System C based design

BH003

- Co-simulation
- Early prototype [Logic Bench]
- Emulator [Celaro]

Early Prototype

- Functional description (algorithm) in ANSI C is converted to form FPGA based early prototype.
 - ⇒ platform for software development, and system verification prior to initiation of RTL design

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Platform Development

LSI Design Fflow

System Design

Logic Design

Test Design

Layout Design

Logic Design

Synchronous Design

All operations of one circuit block of interest are uniquely defined in synchronous design with base clock signal.

RTL design ...fully synthesizable design, configured with single clock signal and registers (FF)

One cycle operation

RTL Design

- RTL design enables simple descriptions: less human errors
- Hardware Description Language (HDL) is used in RTL design, such as Verilog_HDL, VHDL

<u>Description example of multiplexer (Verilog_HDL):</u>

```
module definition
module mux (d1, d2, sel, mout);
input d1;
           // data-1
                                                                     multiplexer
input d2; // data-2
                                     terminals
input sel; // select
                                                                      (selector)
output mout; // selected data
     mout;
req
                                                               d1
                                                                             mout
                                                               d2-
always @(d1 or d2 or sel) begin
 if (sel == 1'b1) mout = d1;
                                     functions
                                                                            (when sel=1,
 else
             mout = d2:
                                                               sel-
                                                                            d1 is output;
end
                                                                            while sel=0.
                                                                            d2)
                                    end of module
endmodule // mux
                                    definition
```

RTL Code Check

The early bird catches the worm!

Purpose

- To improve RTL quality for shortening design period before starting its functional verification

Procedure

- Naming convention check
- Grammar check
- Inconsistency check
- Structural analysis

Advantageous Effects

- Smooth transfer to succeeding design steps (functional simulation, timing analysis, DFT tools...)
- Reusability of IPs developed by independent teams

RTL Checker

-> Pinpointing structural coding and consistency problems in early stage can shorten the total design period.

RTL Verification (1)

- functional logic simulation -

To check expected simulation output by applying functional test patterns to RTL description

RTL Verification (2)

- Random Test Generation (RTG)
 - Quasi random patterns enable exhaustive combinational tests
 - Reinforcing complex, time consuming logic simulation
 - Reference simulator, and constraints file are required
- Assertion Based Verification (ABV)
 - ABV eliminates visual confirmation miss in logic simulation
 - Assertion (prerequisites for functional operation) is embedded in RTL description
 - Assertion resembles comment in a statement line
- > Coverage Measurement
 - Code coverage for RTL exhaustiveness check on line-by-line basis: whether such line is executed or not
 - Function coverage for occurrence check of specific events: event definitions are required

Logic Synthesis

Synthesis: RTL description is converted to gate-level description.

Logic Verification (1)

- functional simulation

Logic simulation: event driven method by test patterns

Logic Verification (2)

- equivalence check

- Equivalence of two logic descriptions is mathematically verified by formality check: no need for test patterns
- Equivalence check is exhaustive and faster than functional simulation

Floor Planning (1)

- for pre-layout timing verification

- Place functional blocks by considering signal flow
- Consider package specifications, minimize pin count, and shorten wiring length
- Bonding pad layout must be well considered

Example for floor plan of processor chip

Timing Verification

Pre-layout verification

- > STA: Static Timing Analysis
- Structure of gate-level logic description is analyzed and then compared with timing constraints
- Test patterns are not required
- Synchronous paths can be 100% verified
- Asynchronous logic and other special circuit cannot be analyzed
- Special paths must be specified manually
- > DTA: Dynamic Timing Analysis
- Logic simulation handling delay timing is executed
- Verification of all paths is unrealistic because huge test patterns are required

-> Verify synchronous paths with STA, and use DTA for limited paths that cannot be checked by STA. Always do synchronous design except for unavoidable case!

STA Basic Algorithm

STA tool propagates LAT by selecting the maximum of LATs and adding delay of ARC to the LAT

LAT: Latest Arrival Time

 $\mathbf{Sum} \quad : d1 + d2$

max : max (d1, d2)

example

blue italic: gate delay

red: LAT

Synchronous Design

<u>Timing Requirements</u>

Requirements

Tcyc - Tsu > Tpd > Tho

: timing margin

timing specifications

Tcyc: clock cycle time
Tsu: input setup time
Tho: input hold time

estimated by STA

Tpd: propagation delay time

Comparison of STA and DTA

	STA	DTA	
analyzing objects	synthesizable, synchronous circuit (any combinational circuit)	any logic circuit	
asynchronous circuit	NG OK		
special circuit, such as mixed signal	NG	OK for logic portion	
special paths	need timing exception info.	not necessary	
analyzing method	structure analysis of gate level logic and comparison with timing constraints	event driven, logic simulation	
tools	timing analysis tool (ex. Synopsys Prime Time)	logic simulation tool (ex. Synopsys VCS, Cadence Ncsim)	
input	gate level netlist R/C parasitic information (net) cell library (timing information) constraint file gate level netlist delay information (net/cell) cell library (functional info.) test patterns		
output	timing analysis result (violated path list, slack value)	simulation result (pass/fail, simulation wave form)	
analysis coverage	100%	depending upon test patterns	
execution time	short	long (depending on test patterns)	

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Platform Development

LSI Design Flow

System Design

Logic Design

Test Design

Layout Design

What is Test Design?

The purpose of Test Design is to establish testing environment to be used after wafers are fabricated. Fabricated wafers contain defects at several rates. Defective chips must be screened by an LSI tester before being diced and packaged

The LSI tester is also used to screen defective LSIs damaged during packaging

Test Design

DFT in LSI Development

DFT (1)

- to solve manpower problem

Example of SH7040 development: totally 19 man-months

→ SCAN and ATPG techniques were then introduced

SCAN

- ◆ Internal circuits become controllable and observable by applying test signals by ATPG to FFs serially connected to form SCAN chain and by observing chain output, respectively → Defects are easily detected
- ◆ Die size penalty is slight and testability improvement is overwhelming

SCAN Cell

Typical organization of SCAN Cell

DFT (2)

- to cool down test pattern explosion

→ BIST is used to reduce test pattern size and shorten testing time

BIST

- BIST (Built-In Self Test) design embedded in single chip is comprised of the modules for generating test patterns and judging test results. An LSI tester can only apply clock signals and read testing results
- Pros: to downsize the tester and to shorten test time by concurrent tests
- Cons: die size penalty of 2% (BIST) together with 10% (SCAN) in typical cases, and constraints on clock signals and propagation of undefined operations

Scan test

Logic BIST

Test Pattern Generation

Fault coverage can be assessed by using fault simulator

→ Fault coverage can be improved by adding test patterns that

can locate faulty points

Contents

- 1. Introduction
- 2. Photolithography, Mask Set, and MOS Transistor
- 3. SoC Design Flow

Platform Development

LSI Design Flow

System Design

Logic Design

Test Design

Layout Design

Layout Design

Floor Planning (2)

- Start design by using the floor plan considered in pre-layout timing verification

- Bonding pad allocation
- Each block is P&Red by layout tool
- Power lines and signal lines should be deeply considered

Example for floor plan of processor chip

Automatic P&R

- Then, P&R (Place and Route)

<Automatic Placement>

Cells are automatically placed in each island under the following conditions:

- to minimize die size
- to shorten inter-cell routing
- to enable fully automatic routing

< Automatic Routing>

Cells are automatically connected under the following conditions:

- to minimize wire length avoiding roundabouts
- to restrict routing directions in each layer
- to use available grids for wiring which are predetermined

Manual Layout

- Manual layout if necessary

- Manual layout is adopted in logic LSI pursuing ultra high performance and/or smaller die size, or in analog LSI
- Based on design rules described in DM (Design manual)
- Manual layout area should be restricted, since its design cost is extremely high in comparison with automatic P&R

<Transistor layout image>

RC Extraction

- LPE (Layout Parasitic Extraction) for timing verification

- LPE extracts parasitic capacity and resistance from layout database and outputs circuit diagram to be used for simulation
- Fringe effect and cross couple are taken into consideration
- Density among multiple layers and effect of adjacent lines are further considered

Timing Verification

Post-layout verification

- ➤ STA:Static Timing Analysis)
- Extracted RC parameters are used in STA: post-layout
- Violations of setup time and hold time must be resolved by modifying logic description or layout
- Device samples with delay time violation could be evaluated by lowering operating frequency. But in setup and/or hold time violation case, there is no way to evaluate samples
- ➤ DTA: Dynamic Timing Analysis
- Logic simulation handling delay timing is executed
- Verification of all paths is unrealistic because huge test patterns are required
 - -> Verify synchronous paths with STA, and use DTA for limited paths that cannot be checked by STA. Always do synchronous design except for unavoidable case!

Signal Integrity

- In LSI design adopting nanometer technologies, preserving signal integrity and its verification become indispensable
- Signal Integrity is classified:
 - 1) IR drop and ground bounce
 Voltage across parasitic resistors reduces power supply voltage and raises ground voltage at each transistor.

These bring about malfunction or timing delay increase at each gate.

- 2) Cross Talk (X-talk)

 Noise between multiple signal lines brings about malfunction or timing delay increase at each gate.
- 3) Electro Migration (EM) Excessive, repeated electric current damages wiring (wiring stress).
- 4) Hot Carrier (HC)

 Excessively energized electrons damage transistor (Trs. stress).

IR Drop and Ground Bounce

Cross Talk (1)

- ◆ Cross-talk means signal deterioration due to noise generated at adjacent wiring by <u>capacitive</u> and/or <u>inductive</u> coupling
 - → Malfunctions and delay timing shift will occur.
 - → Cross talk becomes dominant as wiring pattern becomes finer.
- **♦** Logical malfunctions

Asynchronous logic inversion

Noise on set/reset signals may cause asynchronous logic inversion.

Synchronous logic inversion

Noise on clock signal may synchronously flip FF output.

Logic 0 → momentarily recognized as logic 1

Cross Talk (2)

◆ Timing shifts

Delay value decreases in the in-phase noise and increases in the reversed phase noise

Unexpected timing violation may occur.

Detectable by P&R tools

DFM in LSI Development

Design For Manufacturing

DFM: technologies to solve various fabrication related problems in design phases ahead

Precise estimation of variance

- **→** Performance optimization
- **→** Yield improvement

Measures to reduce fabrication variance

- > 130nm node or earlier: process and device engineers' job
- 90nm node: LSI designers consider variance effect of transistor and wiring
- ▶ 65nm node: LSI designers further consider variance effect of CMP (Chemical Mechanical Polishing) and photolithography

Abstract of DFM

Production process	Cause	Phenomenon	Measures
forming of films (deposition)	+ foreign particles	+ random o/s	+ double VIA+ cell swapping+ spacing change*
lithography	+ misalignment of masks + diffraction	+ o/s + characteristics deviation	+ VIA shift
СМР	+ over etching	+ open	+ dummy metal

Process Variance

* Common to platform development and LSI design (others are specific to LSI design)

Defects

Random defects: due to foreign particles Systematic defects: dependent on layout pattern

Critical Area Analysis

- random defects -

Lithography Simulation

- systematic defects-

DFM in Platform Development

Lithographyfriendly technology data development Modification of technology data and layout rules

ex. resizing of dog bone shape for improving via margins

enlarging space

Lithographyfriendly cell layout design Optimization of space margins

ex. Optimization of diffusion and poly

DFM in LSI Design

Measures against Random Defects

Double VIA

Wire Spreading

CMP

Isolated wider wiring will be over-polished. To avoid this, dummy metal is inserted in layout design.

Statistical Static Timing Analysis

Not DFM but...

Performance (timing) is variant depending on process variance.

Conventional STA

max t_{c1} + max t_d - min t_{C2} < t_{CYC} - t_{SETUP} : setup time

min t_{c1} + min t_{d} - max t_{C2} > t_{HOLD} : hold time

excessive timing margins

Statistical STA (SSTA)

Delay timing or slack is handled by statistical variables based on distribution functions

SSTA is different from DFM, but sometimes discussed with DFM.

Layout Verification

- DRC and LVS are the two major tools for layout verification.

<DRC: Design Rule Check>

- Check width, space, and overlap of patterns among several layout layers according to layout rules.

• In case of any violations, correct layout and check again. Repeat this process until no violation is reported at all.

<LVS: Layout Vs Schemathic Check>

•Check whether layout corresponds to reference, i.e. circuit diagram (netlist).

 In case of inconsistency, correct layout and check again. Repeat this process until inconsistency is solved.

Example of LSI Design

- development of new IP (processor core) -

LSI Product Troubles and Designs

> Functional errors

- deterministic fault → to be avoided by logic verification
- intermittent fault → to be avoided by logic and timing verification

> Marginal problems

- heat, low power supply voltage → to be avoided by circuit simulation
- noise → to be avoided by circuit simulation

> Fabrication problems

screening of defective devices → to be solved by DFT (Design For Test)

> Fluctuation of fabrication conditions

 yield problem → to be solved by DFM (Design For Manufacturing)

> Aged deterioration

- hot carrier → to be avoided by signal integrity check
- electro migration → be avoided by signal integrity check

Thank you for your attention!

