APÉNDICE: NÚMEROS COMPLEJOS

1.1 Números complejos. Generalidades.

El número complejo.

Llamaremos **número complejo** a toda expresión de la forma a+bi, donde a y b son números reales; i es la unidad imaginaria, definida por $i=\sqrt{-1}$ o $i^2=-1$.

a se denomina parte real del número complejo.

b se denomina parte imaginaria del número complejo.

El **conjugado** del número complejo z=a+bi es otro número complejo que se define como $\bar{z}=a-bi$.

Un número se dice **imaginario puro** cuando su parte real es nula: z = bi.

Si z = 0, entonces a = 0 y b = 0.

Cuestión: Si un número complejo tiene parte imaginaria nula, ¿sigue siendo un número complejo?

1.1 Números complejos. Generalidades.

Representación gráfica de los números complejos.

$$a = r\cos\theta$$
$$b = r\sin\theta$$

$$r^2 = a^2 + b^2$$
 $\operatorname{tg} \theta = \frac{b}{a}$

Forma trigonométrica

$$a + bi = r(\cos\theta + i \sin\theta)$$

$$z = a + bi$$
 $r = |z| = |a + bi|$

1.1 Números complejos. Generalidades.

Formas de expresión de los números complejos.

Forma trigonométrica

$$z = a + bi = r(\cos \theta + i \sin \theta)$$

Todo número real puede escribirse en forma trigonométrica

$$a = |a|(\cos 0 + i \operatorname{sen} 0), \operatorname{si} a > 0$$
$$a = |a|(\cos \pi + i \operatorname{sen} \pi), \operatorname{si} a < 0$$

El cero se escribiría del siguiente modo

$$0 = |0|(\cos\theta + i \sin\theta), \quad |0| = 0.$$

Forma polar

$$z = r_{\theta}$$

1.2. Operaciones con números complejos.

Operaciones básicas con números complejos.

Suma
$$(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) i$$

Producto por un número real $\lambda (a + bi) = \lambda a + \lambda bi$

Producto
$$(a_1 + b_1 i) \cdot (a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (b_1 a_2 + a_1 b_2) i$$

División
$$\frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 - a_1 b_2}{a_2^2 + b_2^2} i$$

Cuestión: ¿Cuánto valen $z - \bar{z}$, $z \cdot \bar{z}$ y z/\bar{z} ?

1.2. Operaciones con números complejos.

Operaciones básicas con números complejos (forma trigonométrica).

$$z_1 = r_1(\cos\theta_1 + i \sin\theta_1)$$
 $z_2 = r_2(\cos\theta_2 + i \sin\theta_2)$

Producto
$$z_1 \cdot z_2 = r_1 r_2 \left[\cos \left(\theta_1 + \theta_2 \right) + i \sin \left(\theta_1 + \theta_2 \right) \right]$$

División
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos \left(\theta_1 - \theta_2 \right) + i \, \sin \left(\theta_1 - \theta_2 \right) \right]$$

Cuestión: ¿operaciones en forma polar?

1.2. Operaciones con números complejos.

Propiedades

- 1) Propiedad conmutativa: z + w = w + z, zw = wz
- 2) Propiedad asociativa: (z + w) + v = z + (w + v), (zw)v = z(wv)
- 3) Propiedad distributiva: z(w + v) = zw + zv
- 4) |z| = 0 si y solo si z = 0
- 5) |zw| = |z||w|
- 6) $\operatorname{Re}(z) \le |z|$ y $\operatorname{Im}(z) \le |z|$
- 7) $z\bar{z} = |z|^2$
- 8) Designaldad triangular: $|z + w| \le |z| + |w|$

Cuestión: Demuestra la propiedad 7.

1.3. Potencia y raíz de números complejos.

Potencia. Fórmula de Moivre.

Sea
$$z = a + bi = r(\cos \theta + i \sin \theta)$$
 y $n \in \mathbb{N}$, se verifica:

$$z^{n} = r^{n}(\cos n\theta + i \sin n\theta)$$

Nota: Si
$$r = 1$$
, $(\cos \theta + i \sec \theta)^n = \cos n\theta + i \sec n\theta$
Si $n = 3$, $(\cos \theta + i \sec \theta)^3 = \cos 3\theta + i \sec 3\theta$
 $(\cos \theta + i \sec \theta)^3 = \cos^3 \theta + i 3\cos^2 \theta \sec \theta - 3\cos \theta \sec^2 \theta - i \sec^3 \theta$
 $= (\cos^3 \theta - 3\cos \theta \sec^2 \theta) + i (3\cos^2 \theta \sec \theta - \sec^3 \theta)$

$$\cos 3\theta = \cos^3 \theta - 3\cos\theta \, \sin^2 \theta$$
$$\sin 3\theta = 3\cos^2 \theta \sin \theta - \sin^3 \theta$$

1.3. Potencia y raíz de números complejos.

Raiz.

Sea $z = a + bi = r(\cos \theta + i \sin \theta)$, una raíz n - sima de z es un número complejo $\sqrt[n]{z} = \rho(\cos \varphi + i \sin \varphi)$ tal que

$$\rho^{n}(\cos n\varphi + i \sin n\varphi) = r(\cos \theta + i \sin \theta)$$
$$\rho^{n} = r, \ n\varphi = \theta + 2k\pi$$

$$\rho = \sqrt[n]{r}$$
, $\varphi = \frac{\theta + 2k\pi}{n}$ donde $k = 0, 1, ..., n-1$

Exponencial compleja.

Sea z = x + yi. Si x e y son variables reales, z es una variable compleja. Se define la exponencial compleja como sigue:

$$w = e^z = e^{x+yi} = e^x(\cos y + i \sin y)$$

Propiedades Si z_1 y z_2 son números complejos, se verifica:

- 1) $e^{z_1+z_2} = e^{z_2}e^{z_2}$. 3) Si *m* es un número entero, $(e^z)^m = e^{mz}$.
- 2) $e^{z_1-z_2} = e^{z_2} / e^{z_2}$. 4) $e^{z+2\pi i} = e^z (\cos 2\pi + i \sin 2\pi) = e^z$.

Cuestión: ¿qué es la exponencial compleja?

Fórmula de Euler.

Sea $e^{x+yi} = e^x(\cos y + i \sin y)$, si hacemos x = 0, se obtiene:

$$e^{yi} = \cos y + i \sin y \tag{1}$$

expresión conocida como fórmula de Euler.

Si se cambia y por -y se obtiene: $e^{-yi} = \cos(-y) + i \sin(-y)$

$$e^{-yi} = \cos y - i \sin y \tag{2}$$

A partir de (1) y (2):
$$\cos y = \frac{e^{yi} + e^{-yi}}{2}$$
, $\sin y = \frac{e^{yi} - e^{-yi}}{2i}$

Forma exponencial

Sea $z = a + bi = r(\cos \theta + i \sin \theta)$, a partir de la fórmula de Euler se verifica: $e^{i\theta} = \cos \theta + i \sin \theta$ \Longrightarrow $z = re^{i\theta}$

Nota: Dados $z = re^{i\theta}$, $z_1 = r_1e^{i\theta_1}$ y $z_2 = r_2e^{i\theta_2}$, se verifica:

- a) $z_1 \cdot z_2 = r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
- c) $z^n = r^n e^{in} \theta$ siendo *n* entero positivo.

b)
$$z_1 \cdot / z_2 = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$
 d) $\sqrt[n]{z} = \sqrt[n]{r} e^{i\varphi_k}, \quad \varphi_k = \frac{\theta + 2k\pi}{n}$ donde $k = 0, 1, ..., n - 1$

Fórmula de Euler.

Nota: En forma polar, $z = r_{\theta}$, $z_1 = (r_1)_{\theta_1}$ y $z_2 = (r_2)_{\theta_2}$

a)
$$z_1 \cdot z_2 = (r_1)_{\theta_1} (r_2)_{\theta_2} = (r_1 r_2)_{\theta_1 + \theta_2}$$

b)
$$z_1 \cdot / z_2 = \frac{(r_1)_{\theta_1}}{(r_2)_{\theta_2}} = \left(\frac{r_1}{r_2}\right)_{\theta_1 + \theta_2}$$

c) $z^n = (r^n)_{n\theta}$ siendo *n* entero positivo.

d)
$$\sqrt[n]{z} = \left(\sqrt[n]{r}\right)_{\varphi_k}$$
, $\varphi_k = \frac{\theta + 2k\pi}{n}$ donde $k = 0, 1, ..., n-1$

1.5. Raíces de un polinomio complejo

Teorema fundamental del Álgebra

Todo polinomio con coeficientes complejos

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$
, $a_n \neq 0$, $n \geq 1$,

tiene n raíces complejas (contando su multiplicidad).

Es decir, dado cualquier polinomio con coeficientes complejos con la forma P(z), existen n números complejos tales que $P(z) = a_n(z-z_1)(z-z_2)\cdots(z-z_n)$. Además, se verifica:

$$z_1 + z_2 + \dots + z_n = -\frac{a_{n-1}}{a_n}, \quad z_1 z_2 \dots z_n = (-1)^n \frac{a_0}{a_n}.$$

1.5. Raíces de un polinomio complejo

Polinomios con coeficientes reales

Si el polinomio P(z) tiene coeficientes reales

$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$
, $a_n \neq 0$, $n \geq 1$,

Sabemos que tiene n raíces complejas (contando su multiplicidad), y además:

- Las raíces complejas no reales aparecen por pares conjugados.
- Como consecuencia, si n es impar, tendrá al menos una raíz real.

Cuestión: ¿Cuántas raíces reales puede tener el polinomio $P(z) = az^n + b$, donde a y b son números reales? ¿y si los coeficientes son números complejos?