MA1522 Linear Algebra for Computing Lecture 12: Singular Value Decomposition

Yang Yue

Department of Mathematics National University of Singapore

7 April, 2025

Outline

Exercises and Questions posed in Dr. Teo's Lectures

Revision of SVD

Questions and Challenges in Section 7.1

Beginning Remarks

- ► SVD brings everything (eigenvalue, orthogonal basis, diagonalization, etc) together.
- It applies to arbitrary matrices.
- ➤ You should watch the Youtube video at the end of Dr. Teo's Lecture to get the geometric idea.

Exercise in Section 6.5

1. Show that

$$\Sigma^{T}\Sigma = \begin{pmatrix} \mu_{1} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \mu_{2} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mu_{r} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & \mu_{n} \end{pmatrix},$$

where μ_i , i=1,...,n, are the eigenvalues of $\mathbf{A}^T\mathbf{A}$. If we let $\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n of the associated eigenvectors of $\mathbf{A}^T\mathbf{A}$, then $\mathbf{A}^T\mathbf{A} = \mathbf{P}\Sigma^T\Sigma\mathbf{P}^T$, where $\mathbf{P} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix}$.

2. Show that $\mathbf{A}\mathbf{v}_i \neq \mathbf{0}$ for all $i \leq r$ and $\mathbf{A}\mathbf{v}_i = \mathbf{0}$ for all i > r.

Slides 79 and 80: Singular Values

Let \mathbf{A} be an $m \times n$ matrix. Since $\mathbf{A}^T \mathbf{A}$ is an order n symmetric matrix, it is orthogonally diagonalizable. Let $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of $\mathbf{A}^T \mathbf{A}$ with associated eigenvalues μ_i , not necessarily distinct.

Lemma

The eigenvalue μ_i of $\mathbf{A}^T \mathbf{A}$ is nonnegative.

Reordering if necessary, we may assume that

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \geq 0.$$

The singular values of A are

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$$
,

where $\sigma_i = \sqrt{\mu_i}$, i = 1, ..., n. Let r be the largest integer such that $1 \le r \le n$ and $\sigma_i > 0$ for all $i \le r$, that is

$$\sigma_1 > \sigma_2 > \cdots > \sigma_r > \sigma_{r+1} = 0 = \cdots = \sigma_m = 0.$$

Slides 79 and 80: The Matrix Σ

Define the matrix $m \times n$ matrix Σ to be

$$\Sigma = \begin{pmatrix} \mathbf{D} & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{pmatrix}, \text{ where } \mathbf{D} = \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_r \end{pmatrix}.$$

Answer to Exercise in Section 6.5 (part 1)

Since

$$\Sigma = \begin{pmatrix} \mathbf{D} & \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{(m-r) \times r} & \mathbf{0}_{(m-r) \times (n-r)} \end{pmatrix}, \Sigma^{T} = \begin{pmatrix} \mathbf{D} & \mathbf{0}_{r \times (m-r)} \\ \mathbf{0}_{(n-r) \times r} & \mathbf{0}_{(n-r) \times (m-r)} \end{pmatrix}.$$

Thus,

$$\Sigma^{T}\Sigma = \begin{pmatrix} \mathbf{D}^{2} & \mathbf{0}_{r\times(n-r)} \\ \mathbf{0}_{(n-r)\times r} & \mathbf{0}_{(n-r)\times(n-r)} \end{pmatrix}.$$

Furthermore, the *i*-th entry in \mathbf{D}^2 is $\sigma_i^2 = \mu_i$, when $i \leq r$. The result follows.

Answer to Exercise in Section 6.5 (part 2)

2. Show that $\mathbf{A}\mathbf{v}_i \neq \mathbf{0}$ for all $i \leq r$ and $\mathbf{A}\mathbf{v}_i = \mathbf{0}$ for all i > r.

The following more general **Fact** is useful: For any $m \times n$ matrix **A** and $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A}\mathbf{x} = \mathbf{0}$ iff $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{0}$, consequently,

$$Null(\mathbf{A}) = Null(\mathbf{A}^T \mathbf{A}).$$

Proof of the fact: (\subseteq): If Ax = 0, then clearly, $A^TAx = 0$.

(\supseteq) On the other hand, if $\mathbf{A}^T \mathbf{A} \mathbf{x} = \mathbf{0}$, then $\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x} = 0$, i.e., $(\mathbf{A} \mathbf{x})^T (\mathbf{A} \mathbf{x}) = 0$, which says $\|\mathbf{A} \mathbf{x}\|^2 = 0$, so $\mathbf{A} \mathbf{x} = \mathbf{0}$.

Answer: For $i \leq r$, we have $\mu_i \neq 0$. Hence the associated eigenvector $\mathbf{v}_i \notin \text{Null}(\mathbf{A}^T \mathbf{A})$. By the fact, $\mathbf{A} \mathbf{v}_i \neq \mathbf{0}$.

For i > r, $\mu_i = 0$. Hence, the associated eigenvector $\mathbf{v}_i \in \text{Null}(\mathbf{A}^T\mathbf{A})$. By the fact, $\mathbf{A}\mathbf{v}_i = \mathbf{0}$.

Question in Section 6.5

Let **A** be an $m \times n$ matrix. Prove the following statements.

- 1. $rank(\mathbf{A}) = n$ if and only if all the singular values of \mathbf{A} are positive.
- 2. $rank(\mathbf{A}) = m$ if and only if all the singular values of \mathbf{A}^T are positive.

Recall that the Rank-Nullity Theorem says: For an $m \times n$ matrix **A**,

$$rank(\mathbf{A}) + nullity(\mathbf{A}) = n.$$

By the Fact above, we have $rank(\mathbf{A}) = rank(\mathbf{A}^T \mathbf{A})$.

Answer to Question in Section 6.5 (part 1)

Let **A** be an $m \times n$ matrix. Prove the following statements.

1. $rank(\mathbf{A}) = n$ if and only if all the singular values of \mathbf{A} are positive.

Proof: (\Rightarrow) If rank($\mathbf{A}) = n$ then rank($\mathbf{A}^T \mathbf{A}$) = n. Therefore $\mathbf{D} = \mathbf{P}^T \mathbf{A}^T \mathbf{A} \mathbf{P}$ also has rank n. Thus, every eigenvalue $\mu_i > 0$. So every singular value $\sigma_i > 0$.

(\Leftarrow) If all the singular values of **A** are positive, then the eigenvalues μ_i of $\mathbf{A}^T\mathbf{A}$ are positive. In other words, 0 is not an eigenvalue of $\mathbf{A}^T\mathbf{A}$. Hence nullity($\mathbf{A}^T\mathbf{A}$) = 0. By the Fact, nullity(\mathbf{A}) = 0. By Rank-Nullity Theorem, rank(\mathbf{A}) = n.

Question in Section 6.5 (part 2)

Let **A** be an $m \times n$ matrix. Prove the following statements.

2. $rank(\mathbf{A}) = m$ if and only if all the singular values of \mathbf{A}^T are positive.

Answer: Since $rank(\mathbf{A}^T) = rank(\mathbf{A}) = m$, apply part 1, we have all the singular values of \mathbf{A}^T are positive.

Slide 83: Singular Value Decomposition

Suppose **A** is an $m \times n$ matrix. Let $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of $\mathbf{A}^T \mathbf{A}$. Let

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$$

be the nonzero singular values of A. Define

$$\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{A} \mathbf{v}_i, \quad i = 1, ..., r.$$

Lemma

 $\{\mathbf{u}_1,...,\mathbf{u}_r\}$ is an orthonormal basis for the column space of \mathbf{A} , and $\mathrm{rank}(\mathbf{A})=r$.

Slide 85: Singular Value Decomposition

Extend $\{u_1,u_2,...,u_r\}$ to an orthonormal basis $\{u_1,u_2,...,u_m\}$ for \mathbb{R}^m (if $r\neq m$). Define

$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_m \end{pmatrix},$$

it is an order *m* orthogonal matrix. Define

$$\mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix},$$

then **V** is an order *n* orthogonal matrix. Let Σ be the matrix defined by the nonzero singular values $\sigma_1, \sigma_2, ..., \sigma_r$. Then

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$$

Slide 86: Algorithm to Singular Value Decomposition

Let **A** be an $m \times n$ matrix with rank(**A**) = r.

1. Find the eigenvalues of **A**^T**A**. Arrange the nonzero eigenvalues in descending order (counting multiplicity)

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_r > 0 = \mu_{r+1} = \cdots = \mu_n,$$

and let $\sigma_i = \sqrt{\mu_i}$, i = 1, ..., r. Set

$$oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{D} & oldsymbol{0}_{r imes (n-r)} \ oldsymbol{0}_{(m-r) imes (n-r)} \end{pmatrix}, ext{ where } oldsymbol{D} = egin{pmatrix} \sigma_1 & 0 & \cdots & 0 \ 0 & \sigma_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & dots \ \end{pmatrix}.$$

2. Find an orthonormal basis for each eigenspace, and let \mathbf{v}_i be the unit vector associated to μ_i . Set

$$\mathbf{V} = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{pmatrix}.$$

Slide 86: Algorithm to Singular Value Decomposition (conti.)

3. Let $\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{A} \mathbf{v}_i$ for i = 1, ..., r. Extend $\{\mathbf{u}_1, ..., \mathbf{u}_r\}$ to an orthonormal basis $\{\mathbf{u}_1, ..., \mathbf{u}_r, \mathbf{u}_{r+1}, ..., \mathbf{u}_m\}$ of \mathbb{R}^m , that is, solve for $(\mathbf{u}_1 \ \cdots \ \mathbf{u}_r)^T \mathbf{x} = \mathbf{0}$ and find an orthonormal basis for the solution space. Let

$$\mathbf{U} = \begin{pmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_m \end{pmatrix}.$$

Then $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$.

Example 1

Find a singular value decomposition of $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$.

$$\mathbf{1.} \ \mathbf{A}^T \mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

$$\det(x\mathbf{I} - \mathbf{A}^T \mathbf{A}) = \begin{vmatrix} x-2 & -1 \\ -1 & x-2 \end{vmatrix} = (x-3)(x-1).$$
 Then eigenvalues of $\mathbf{A}^T \mathbf{A}$ are $\mu_1 = 3$, $\mu_2 = 1$, and thus the singular values of \mathbf{A} are $\sigma_1 = \sqrt{3}$, $\sigma_2 = 1$. Hence,

$$\Sigma = egin{pmatrix} \sqrt{3} & 0 \ 0 & 1 \ 0 & 0 \end{pmatrix}.$$

Example 1 (conti.)

2. Find and orthonormal basis for the eigenspace of $\mathbf{A}^T \mathbf{A}$,

$$\begin{aligned} \mathbf{3I} - \mathbf{A}^T \mathbf{A} &= \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} \\ \mathbf{I} - \mathbf{A}^T \mathbf{A} &= \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} \end{aligned}$$
 So, $\mathbf{V} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$.

So,
$$\mathbf{V} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$

Example 1 (conti.)

3.
$$\mathbf{u}_1 = \frac{1}{\sigma_1} \mathbf{A} \mathbf{v}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{6} \\ 1/\sqrt{6} \\ 2/\sqrt{6} \end{pmatrix}, \text{ and}$$

$$\mathbf{u}_2 = \frac{1}{\sigma_2} \mathbf{A} \mathbf{v}_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix}. \text{ Next, find}$$
an vector orthogonal to \mathbf{u}_1 and \mathbf{u}_2 ,

Example 1 (conti)

Therefore,
$$\mathbf{U} = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & -1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \end{pmatrix}$$
. Hence,

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & -1/\sqrt{3} \\ 2/\sqrt{6} & 0 & 1/\sqrt{3} \end{pmatrix} \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}.$$

Example 2

Find a singular value decomposition of $\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{pmatrix}$.

1.
$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} 10 & 2 & 6 \\ 2 & 2 & -2 \\ 6 & -2 & 10 \end{pmatrix}$$
.

$$\det(x\mathbf{I} - \mathbf{A}^T \mathbf{A}) = \begin{vmatrix} x - 10 & -2 & -6 \\ -2 & x - 2 & 2 \\ -6 & 2 & x - 10 \end{vmatrix} = (x - 16)(x - 6)x.$$

Then eigenvalues of ${\bf A}^T{\bf A}$ are $\mu_1=16$, $\mu_2=6$, $\mu_3=0$ and thus the singular values of ${\bf A}$ are $\sigma_1=4$, $\sigma_2=\sqrt{6}$, $\sigma_3=0$. Hence,

$$\Sigma = \begin{pmatrix} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{pmatrix}.$$

Example 2 (conti.)

2. Find and orthonormal basis for the eigenspace of $\mathbf{A}^T \mathbf{A}$,

$$16\mathbf{I} - \mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} 6 & -2 & -6 \\ -2 & 14 & 2 \\ -6 & 2 & 6 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\implies \mathbf{v}_{1} = \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix}.$$

$$6\mathbf{I} - \mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} -4 & -2 & -6 \\ -2 & 4 & 2 \\ -6 & 2 & -4 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\implies \mathbf{v}_{2} = \begin{pmatrix} -1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix}.$$

Example 2 (conti.)

$$0\mathbf{I} - \mathbf{A}^{T}\mathbf{A} = \begin{pmatrix} -10 & -2 & -6 \\ -2 & -2 & 2 \\ -6 & 2 & -10 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\implies \mathbf{v}_{3} = \begin{pmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{pmatrix}.$$

So,
$$\mathbf{V} = \begin{pmatrix} 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & -1/\sqrt{3} & 2/\sqrt{6} \\ 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \end{pmatrix}$$
.

Example 2 (conti.)

3.

$$\begin{aligned} \mathbf{u}_1 &=& \frac{1}{\sigma_1} \mathbf{A} \mathbf{v}_1 = \frac{1}{4} \begin{pmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}. \\ \mathbf{u}_2 &=& \frac{1}{\sigma_2} \mathbf{A} \mathbf{v}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}. \end{aligned}$$

Therefore,
$$\mathbf{U} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}$$
. Hence,

$$\begin{pmatrix} 1 & -1 & 3 \\ 3 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} 4 & 0 & 0 \\ 0 & \sqrt{6} & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ -1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \end{pmatrix}.$$

Question One in Section 7.1

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & -1 & -1 \\ 1 & -1 & 0 & 2 \end{pmatrix}$$
. Then \mathbf{A} defines a linear

transformation defined T by matrix multiplication.

- 1. What are the domain and codomain of T?
- 2. Write down the formula of T.

Slide 6: Linear Transformation

Definition

A mapping (function) $T: \mathbb{R}^n \to \mathbb{R}^m$, is a <u>linear transformation</u> if for all vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n , and scalars α, β ,

$$T(\alpha \mathbf{u} + \beta \mathbf{v}) = \alpha T(\mathbf{u}) + \beta T(\mathbf{v}).$$

The Euclidean space \mathbb{R}^n is called the <u>domain</u> of the mapping, and the Euclidean space \mathbb{R}^m is called the <u>codomain</u> of the mapping.

Answer to Question One in Section 7.1

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 2 & 1 & -1 & -1 \\ 1 & -1 & 0 & 2 \end{pmatrix}$$
. Then \mathbf{A} defines a linear

transformation defined T by matrix multiplication.

- 1. What are the domain and codomain of T?
- 2. Write down the formula of T.

Answer: The domain is \mathbb{R}^4 and the codomain is \mathbb{R}^3 .

$$T\left(\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix}\right) = \begin{pmatrix} x + z - w \\ 2x + y - z - w \\ x - y + 2w \end{pmatrix}.$$

Question two in Section 7.1

Is the mapping $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$,

$$\mathbf{T}\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} \sqrt[3]{(x^3 + y^3)} \\ 0 \end{pmatrix},$$

a linear transformation?

Slide 12:

A mapping $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^m$ is not a linear transformation if any of the following statements hold.

- (i) ${\sf T}$ does not map the zero vector to the zero vector, ${\sf T}(0) \neq {\sf 0}.$
- (ii) There is a scalar α and a vector \mathbf{u} in \mathbb{R}^n such that $\mathbf{T}(\alpha \mathbf{u}) \neq \alpha \mathbf{T}(\mathbf{u})$.
- (iii) There are vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n such that $\mathbf{T}(\mathbf{u} + \mathbf{v}) \neq \mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})$.

Answer to Question two in Section 7.1

Q: Is the mapping $\mathbf{T}: \mathbb{R}^2 \to \mathbb{R}^2$,

$$\mathbf{T}\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} \sqrt[3]{(x^3 + y^3)} \\ 0 \end{pmatrix},$$

a linear transformation?

Answer: No, it is not a linear mapping.

$$\begin{split} & \mathbf{T}\left(\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}0\\1\end{pmatrix}\right) = \mathbf{T}\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}\sqrt[3]{1^3 + 1^3}\\0\end{pmatrix} = \begin{pmatrix}\sqrt[3]{2}\\0\end{pmatrix}\\ \neq & \begin{pmatrix}2\\0\end{pmatrix} = \begin{pmatrix}\sqrt[3]{1}\\0\end{pmatrix} + \begin{pmatrix}\sqrt[3]{1}\\0\end{pmatrix} = \mathbf{T}\left(\begin{pmatrix}1\\0\end{pmatrix}\right) + \mathbf{T}\left(\begin{pmatrix}0\\1\end{pmatrix}\right). \end{split}$$

Challenge

Find a mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$T(\alpha \mathbf{u}) = \alpha T(\mathbf{u})$$

for all scalar α and vector \mathbf{u} in \mathbb{R}^n , but is not a linear transformation.

Let T be as in Question 2. We knew it is not a linear transformation. However,

$$T\left(\alpha \begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} \sqrt[3]{\alpha^3 x^3 + \alpha^3 y^3} \\ 0 \end{pmatrix} = \alpha T\left(\begin{pmatrix} x \\ y \end{pmatrix}\right).$$

Question three in Section 7.1

1. Is the mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$,

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\right) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

a linear transformation? If it is, find its standard matrix.

2. Is
$$T \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$
 for some constants

 $a_1, a_2, ..., a_n$ a linear transformation? If it is, find its standard matrix.

3. What is the standard matrix of the following linear

transformation
$$\mathbf{T} \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
?

Slides 15, 16: Standard Matrix

Theorem

A mapping $\mathbf{T}: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation if and only if there is a unique $m \times n$ matrix \mathbf{A} such that

$$T(\mathbf{u}) = \mathbf{A}\mathbf{u}$$
 for all vectors \mathbf{u} in \mathbb{R}^n .

The matrix **A** is given by

$$\mathbf{A} = \begin{pmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) & \cdots & T(\mathbf{e}_n) \end{pmatrix},$$

where $E = \{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ is the standard basis for \mathbb{R}^n . That is, the *i*-th column of \mathbf{A} is $T(\mathbf{e}_i)$, for i = 1, ..., n.

Definition

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. The unique $m \times n$ matrix \mathbf{A} such that $T(\mathbf{u}) = \mathbf{A}\mathbf{u}$ for all \mathbf{u} in \mathbb{R}^n is called the standard matrix of T.

Remarks

Slide 4: Matrix multiplication is linear, for all vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n and scalars α, β ,

$$\mathbf{A}(\alpha\mathbf{u} + \beta\mathbf{v}) = \alpha\mathbf{A}\mathbf{u} + \beta\mathbf{A}\mathbf{v}.$$

- For Question 3, one can check the definition for each map, and apply them to the standard basis to get their matrices respectively.
- We just reformulate them as matrix multiplication, so that we can show their linearity and find their standard matrices in one shot.

Answer to Question three in Section 7.1, part 1

1. Is the mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$,

$$T\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\right) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

a linear transformation? If it is, find its standard matrix.

Answer:

$$T\begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = (x + 2y + 3z) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
$$= \begin{pmatrix} x + 2y + 3z \\ 2x + 4y + 6z \\ 3x + 6y + 9z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

Thus, it is a linear transformation with matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 0 \end{pmatrix}$$
.

Answer to Question three in Section 7.1, part 2

2. Is
$$T\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$
 for some constants a_1, a_2, \dots, a_n a linear transformation? If it is, find its standard

matrix.

Answer: Since

$$T\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = a_1x_1 + a_2x_2 + \cdots + a_nx_n = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

It is a linear transformation with matrix

$$\begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$$
.

Answer to Question three in Section 7.1, part 3

3. What is the standard matrix of the following linear

transformation
$$\mathbf{T} \begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$
?

Answer: The standard matrix is the identity matrix I_n .