

SÍLABO

REDES Y CONECTIVIDAD II (CCNA II CISCO) ÁREA CURRICULAR: TECNOLOGÍAS DE INFORMACIÓN

CICLO: Electivo de Especialidad (Ing. Computación y

Sistemas) SEMESTRE ACADÊMICO: 2017-I

Electivo Complementario (Ing. Electrónica)

I. CÓDIGO DEL CURSO : 090676E2040

II. CRÉDITOS : 04

III.REQUISITOS : 090675E2040 Redes y Conectividad I (CCNA I CISCO)

IV.CONDICIÓN DEL CURSO : Electivo de Especialidad (Ing. Computación y Sistemas)

Electivo Grupo Complementario (Ing. Electrónica)

V. SUMILLA

El curso es teórico-práctico; contribuye a que el estudiante logre una mayor especialización en el campo de networking referente a la administración de routers (equipo de comunicaciones) basándose en la configuración de protocolos de ruteo. El curso se centra en: introducción a redes de área amplia (WAN), administración del IOS (Internetworking System Operative), protocolos de enrutamiento y listas de control de acceso. En el curso se desarrollan contenidos y actividades mediante los siguientes temas:

Conceptos básicos de enrutamiento, protocolos de enrutamiento vector distancia y protocolos de enrutamiento de estado de enlace.

VI. FUENTES DE CONSULTA

Bibliográficas

- Allan Johnson (2016). Routing and Switching Essentials v6 Labs & Study Guide (Hardcover), USA: Cisco Press.
- Dye, M. & McDonald, R. & Rufi, A. (2012). h Exploration Companion Guide (Hardcover), USA. Cisco Press.
- · Graziani, R. & Johnson, A. (2012). Routing Protocols and Concepts, CCNA Exploration Companion Guide (Hardcover), USA: Cisco Press.

Electrónicas

Cisco Systems (2016): Cisco Networking Academy. Recuperado de: https://www.netacad.com

VI. UNIDADES DE APRENDIZAJE

UNIDAD I. CONCEPTOS BÁSICOS DE ENRUTAMIENTO Y CONMUTACION

OBJETIVOS DE APRENDIZAJE:

- Explicar el funcionamiento de un router.
- Explicar el funcionamiento de un switch.
- Explicar las practicas recomendadas de seguridad en un entorno conmutado

PRIMERA SEMANA

Primera sesión

Conceptos básicos y configuración de Switching, Configuración de parámetros iniciales de un Switch, Configuración de puertos de un Switch. Laboratorio.

Segunda sesión

Configuración de Switches. Laboratorio.

SEGUNDA SEMANA

Primera sesión

Seguridad de Switches: Administración e Implementación, Acceso Remoto Seguro, Cuestiones de seguridad en redes LAN. Laboratorio.

Segunda sesión

Configuración de Seguridad de Switches. Laboratorio.

UNIDAD II. REDES VIRTUALES (VLAN), ENRUTAMIENTO ESTATICO Y PROTOCOLOS DE ENRUTAMIENTO DINAMICO

OBJETIVOS DE APRENDIZAJE:

- Explicar la finalidad de las VLAN en una red conmutada
- Explicar las prácticas recomendadas de seguridad para un entorno segmentado por VLAN.
- Explicar las ventajas y desventajas de enrutamiento estático.
- Implementar y monitorear protocolos de enrutamiento dinámico
- Explicar las ventajas y desventajas de los protocolos de enrutamiento dinámico
- Diseñar redes LAN mediante mecanismos de VLSM y CIDR

TERCERA SEMANA

Primera sesión

Introducción de VLAN, Segmentación de VLAN, Implementación de VLAN, Enlace Troncal Dinámico. Laboratorio.

Segunda sesión

Seguridad y diseño de redes VLAN, Prácticas recomendadas de diseño para las VLAN. Laboratorio.

CUARTA SEMANA

Primera sesión

Enrutamiento entre VLAN, Configuración de Routing entre VLAN, Configuración de Routing entre VLAN antigua, Configurar enrutamiento **Router– on-a-stick** entre VLAN. Laboratorio

Segunda sesión

Resolución de problemas de Routing entre VLAN, Conmutación capa 3, Funcionamiento y configuración del Switching de capa 3. Laboratorio

QUINTA SEMANA

Primera sesión

Conceptos de Routing, Configuración básica de un Router, verificación de la conectividad de redes conectadas directamente; Funcionamiento del Router: Análisis de la tabla de Routing, Rutas descubiertas estáticamente. Protocolos de Enrutamiento Dinámico. Laboratorio

Segunda sesión

Enrutamiento Estático, introducción e implementación del enrutamiento estático, Configuración de rutas estáticas y predeterminadas IPv4 e IPv6. Laboratorio.

SEXTA SEMANA

Primera sesión

Dimensionamiento de redes con VLSM y CIDR. Configuración de rutas resumidas y flotantes IPv4 e IPv6. Laboratorio.

Segunda sesión

Laboratorio de habilidades prácticas de la primera parte del curso (Examen Preliminar 1).

SEPTIMA SEMANA

Primera sesión

Revisión y Sustentación preliminar del proyecto de investigación.

Segunda sesión

Revisión y Sustentación preliminar del proyecto de investigación, Revisión de avance de Curso de libre enrolamiento de Cisco: Ciberseguridad.

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión

Introducción de Enrutamiento Dinámico, rutas dinámicas vector distancia, Routing RIP y RIPng. Laboratorio.

Segunda sesión

Routing dinámico de estado de enlace, tabla de enrutamiento, Proceso de búsqueda de rutas IPv4, Análisis de una tabla de Routing IPv6. Laboratorio

DÉCIMA SEMANA

Primera sesión

Teoría Protocolo de enrutamiento OSPF, Costo OSPF, Configuración de OSPFv2 y OSPFv3 de área única, Laboratorio.

Segunda sesión

Comparación de protocolos OSPFv2 y OSPFv3. Laboratorio.

UNIDAD III. LISTA DE CONTROL DE ACCESO (ACL), ASIGNACION DINAMICA DE DIRECCIONES (DHCP) Y TRADUCCION DE DIRECCIONES (NAT)

OBJETIVOS DE APRENDIZAJE:

- Explicar la finalidad de las ACL en una red conmutada.
- Explicar el funcionamiento de DHCPv4 y DHCPv6 en una red pequeña o de mediana empresa.
- Describir las ventajas y desventajas del NAT

UNDÉCIMA SEMANA

Primera sesión

Concepto de Lista de Control de Acceso, Funcionamiento de ACL de IP, Comparación entre ACL de IPv4 estándar y extendida. Laboratorio.

Segunda sesión

Configuración de ACL de IPv4 estándar, Protección de puertos VTY con una ACL de IPv4 estándar. Creación de ACL de IPv6 Laboratorio.

DUODÉCIMA SEMANA

Primera sesión

Concepto de DHCP, Protocolo de Configuración dinámica de Host v4, Configuración de un servidor DHCPv4 básico. Laboratorio. Protocolo de configuración dinámica de Host v6, SLAAC y DCHPv6. Laboratorio.

Segunda sesión

Introducción a la Traducción de direcciones de red para IPv4 NAT, Configuración de NAT estático y dinámico, Laboratorio

DECIMOTERCERA SEMANA

Primera sesión

Configuración de la traducción de la dirección del puerto (PAT), Configuración de NAT e IPv6. Laboratorio

Segunda sesión

Integración de los protocolos de enrutamiento (OSFPv2 y OSPFv3, EIGRP, RIPv2 y RIPng.), VLAN, DHCP, NAT y ACL. Laboratorio de habilidades prácticas final del curso (Examen preliminar 2)

DECIMOCUARTA SEMANA

Primera sesión

Final Web. Examen Final del curso de libre enrolamiento de Cisco: Ciberseguridad.

Segunda sesión

Revisión y Sustentación final del proyecto de investigación.

DECIMOQUINTA SEMANA

Primera sesión

Examen de habilidad.

Segunda sesión

Examen de habilidad.

DECIMOSEXTA SEMANA

Examen Final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática v Ciencias Básicas b. Tópicos de Ingeniería 4 c. Educación General 0

IX.PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

- Equipos: Computadora, ecran, proyector multimedia, Switches, Routers y Computadoras
- Materiales: Manual Universitario, material docente, prácticas dirigidas de laboratorio y textos bases (ver fuentes de consultas).

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

PF = (2*PE+EP+EF)/4

Donde:

PF = Promedio Final.

PE = Promedio de Evaluaciones.

EP = Examen Parcial (escrito)

EF = Examen Final (escrito)

PE = ((P1+P2+P3+P4-MN)/3 + W1 + PL)/3

PL = (Lb1+Lb2+Lb3+Lb4) / 4

Donde:

Donde:

P1...P4 = Práctica calificada

Lb1...Lb4 = Práctica de laboratorio

MN = Menor nota

W1 = Trabajo 1

PL = Promedio de laboratorio

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Electrónica, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas	
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería	
(f)	Comprensión de lo que es la responsabilidad ética y profesional	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería	R

El aporte del curso al logro de los resultados (Students Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.		
b.			
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.		
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	R	
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.		
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.		
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.		
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.		
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	R	
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.		

XIII. HORAS, SESIONES, DURACIÓN

Teoría	Práctica	Laboratorio
2	0	4

a) Horas de clase:
b) Sesiones por semana: Dos sesiones.
c) Duración: 6 horas académicas de 45 minutos

XIV. PROFESOR DEL CURSO

Ing. Llatas Martinez, Luis Albert

XV. FECHA

La Molina, marzo de 2017.