

BNPG (Binary Networked Public Goods) **Games**

Given:

- Network as Undirected graph with players as vertices
- Each player i can either invest $(x_i = 1)$ or not $(x_i = 0)$
- Utility of ith player:

$$U_{i}(x) = U_{i}(x_{i}, n_{i}^{\times}) = g_{i}(x_{i} + n_{i}^{\times}) - c_{i}x_{i}$$

where:

- n_i := #neighbors investing
- g_i(.) := non negative non decreasing

x. := Strategy played by
 ith player
 x = (x1, ..., xn) := Joint
 pure strategy profile of
 all players

PSNE (Pure Strategy Nash Equilibria) of BNPG Games

A Joint Pure Strategy Profile $x \in \{0, 1\}^n$ such that:

- $U_i(x_i, n_i^x) > U_i(1-x_i, n_i^x), or$
- $U_i(x_i, n_i^x) = U_i(1 x_i, n_i^x)$ and xi = 1

Who Invests?? PSNE Classes

all: every player invests i.e. x = (1, 1, ..., 1)

= S: only set S invests

≥ S: superset of set S invests

≥ r: at least r players invest

What's the Problem then???

A few "diligent" workers may bear all the load

Detrimental for a long-term perspective

Turns out to be unfair

Policymaker

Network Modifications: Tackling Unfairness

A central mechanism (algorithm) ensuring:

- A specified set of players invest
- Break existing connections (delete edges)
- Make new connections (add edges)
- Bribe them!!!

g_i(·): what forms it can take?

- Captures how a player behaves w.r.t increasing investment of its neighbors
- Non negative, Non decreasing

Can be:

- general
- convex (increasing returns)
- concave (diminishing returns)
- sigmoid (first increasing then diminishing returns)

Investment Degree Set (D_i)

A unique set $D_i \subseteq \{0, 1, ..., n - 1\}$ such that:

- $x_i = 1$ is a best response $\Leftrightarrow n_i^x \in Di$

Interesting property:

- g_i is concave ⇔ D_i is downward-closed interval
- g_i is convex ⇔ D_i is upward-closed interval
- g_i is sigmoid \Leftrightarrow D_i is an interval

NDDS(P,X) (Network Design for Degree Sets)

```
Given:

- BNPG instance := (Graph & utilities U_{i \in [n]})

- D_i := investment degree sets for all players i \in [n]

- Y_{e \in nC2} := Edge costs

- X := desired PSNE class (all, = S, ⊇ S, ≥ r)

- P := Property of g_i(·) (convex, concave, sigmoid, or general)

- k := budget k
```

Goal:

Decide whether there exists an edge set S with:

```
-\sum_{e \in E \Theta S} \gamma_e \leq k
```

- $\exists I \subseteq X$ of investing players such that in the modified graph $G'(V, E' = E \ominus S)$

$$\begin{array}{cccc} |N_{i}^{G'} \cap I| & \in & D_{i} & \forall i \in I \\ |N_{i}^{G} i \cap I| & \notin & D_{i} & \forall i \notin I. \end{array}$$

Homogeneity: NDDS^{\alpha} (P,X)

NDDS (P,X) with extra constraint:

$$\alpha = \alpha_i = \min\{z \mid s.t. z \in Di\}$$

No Budget !! (k=0)

 $\gamma_{e \in nC2} > 0$

NDDS reduces to:

- Finding PSNE for BNPG
- Without any modifications allowed

Preliminaries

Parameterized Algorithms

Parameterized problem : Language $L \subseteq \Sigma^* \times N$, where Σ is a fixed, finite alphabet. For an instance $(x, k) \in \Sigma^* \times N$, k is called the parameter.

Prelims...

Parameterized Hardness

W[t]-Hard: Every problem in W[t] can be reduced to P

Parameters Under Consideration

```
k := input budget
r := NDDS(P, r)
\alpha := \min_{v \in V[G]} lower bound(D_v)
δ := diameter of input graph
          number of distinct utility functions
 tw := treewidth of graph*
 D := \max_{v \in V[G]} |D_v|
△ := max degree of input graph'
 vc := vertex cover number
```


Skipping over the Prior Results...

Our Results

Summary of Our Results

Problem Variant	Parameter	Result
all, general	k (budget)	W[1]-Complete Theorem 15
$\{=S, \supseteq S, \geqslant r\}$, general	k	W[1]-Complete Theorem 16
$\{\supseteq S, \geqslant r\}$, concave	k	W[1]-Complete Theorem 17
$\{\supseteq S, \geqslant r\}$, sigmoid	k	W[1]-Complete Theorem 18
$\geqslant r$, {concave, convex, sigmoid}	r + k	W[1]-Complete Theorem 19
$\geqslant r$, convex	$k+r+\alpha$	W[1]-Hard Theorem 23
$\geqslant r$, sigmoid	r + k	para-NP-hard Section 3.1
$\{\geqslant r,\ \supseteq S\}$, general	I	W[2]-Hard Observation 2
$\{\geqslant r,\ \supseteq S\}$, general	n- I	W[2]-Hard Observation 2
$\{\geqslant r,\ \supseteq S\}$, general	treewidth	W[1]-Hard Observation 3
$\{\geqslant r,\ \supseteq S\}$, general	Δ	para-NP-hard Observation 4
$\{\geqslant r,\ \supseteq S\}$, general	(δ, n_U)	para-NP-hard Observation 6, 5
{-any-, -any-}, -any-	k	n ^{O(k)} XP Theorem 28

Summary of Our Results

Homogeneous Variant: $NDDS^{\alpha}$			
$\geqslant r$, {convex, sigmoid, general}	$k+r+\alpha$	W[1]-Hard Corollary 24	
$\geqslant r$, {convex, sigmoid, general}	r+k	para-NP-hard Corollary 27	
$c = \left[\frac{1}{2} \sum_{v \in V(H)} df(v)\right]$		$k \in [c, 2c]$ Theorem 30	
$\mathbb{N}DDS^{\alpha}(\text{convex}, \geqslant r) \leqslant_{FPT} EDGE\text{-}K\text{-}CORE$		Theorem 31	
Forests: $\geq r$, convex	α	$O(\alpha n^2)$ Observation 8	
$\geqslant r$, convex	vc	FPT Observation 9	
$\geqslant r$, convex	$tw + \alpha$	FPT Observation 10	

Hardness Results

Result1: NDDs (general, all) - W[1]-C w.r.t k

Thm. The problem of NDDS (general, all) is W[1]-Complete w.r.t the parameter k (budget).

Even when the input graph is unweighted

Result1: NDDS (general, all) - W[1]-C w.r.t k...

r-regular Clique

Input: (G(V, E), k)

G is r-regular undirected graph

Goal: Decide whether there exists a k-clique as a subgraph of G

Result1: NDDS (general, all) - W[1]-C w.r.t k...

Main Reduction

$$\triangleright$$
 V'[G'] = V[G] \cup Z, where Z = { $z_1,...,z_k$ };

$$\triangleright \mathsf{E}'[\mathsf{G}'] = \mathsf{E}[\mathsf{G}] \cup \{(\nu_{i}, z_{j}) \mid \forall \nu_{i} \in \mathsf{V}[\mathsf{G}], \ , j \in [k]\};$$

$$\triangleright \gamma_e = 1, \forall e \in E'[G'];$$

$$D_{\nu_i} = \{r - k - 1, r + k\}, \forall \nu_i \in V[G];$$

$$\triangleright D_{z_j} = \{n - k\}, \ \forall j \in [k];$$

$$> k' = k^2 + \binom{k}{2}.$$

Result2: NDDs (convex, $\geq r$) - W[1]-C w.r.t (k + r + α)

Thm. NDDS (convex, $\geq r$) is W[1]-hard with respect to the parameter $k + r + \alpha$.

W[1]-hard w.r.t parameter k+r even when $\alpha = 3$ even when the graph is unweighted.

Result2: NDDS (convex, ≥ r) - W[1]-C w.rt k...

Edge-k-Core

Input: (G(V, E), k)

- Simple, undirected graph G = (V, E)
- Integers k, α , and r

Goal: Decide if there exists $H \subseteq V[G]$ such that:

- Adding at most k edges to G
- In modified graph G', every $v \in H$ has $\deg_{G'[H]}[v] \ge \alpha$

Result2: NDDS (convex, ≥ r) - W[1]-C w.t k...

Main Reduction

1.
$$G^* = G$$
 i.e. $V^* = V$ and $E^* = E$;

2.
$$D_{\nu} = \{\alpha, ..., n-1\} \ \forall \nu \in V^*;$$

3.
$$r^* = r$$

4.
$$k^* = k$$

Result3: NDDs (sigmoid, ≥ r) - para-NP-hard w.r.t r+k

Thm. NDDS (sigmoid, \geq r) is para-NP-hard w.r.t parameter r + k even when max($|D_v|$) = 1, k=0, and the graph is unweighted

Result3: NDDs (sigmoid, ≥ r) - para-NP-hard w.r. r...

r-regular Subgraph

Input: (G(V, E), r)

- Simple, undirected graph G = (V, E)
- Positive Integer r

Goal: Decide whether there exists a $H \subseteq V[G]$, such that-

- Subgraph G[H] is r-regular

Idea of Reduction

- 1. $G^* = G$ i.e. $V^* = V$ and $E^* = E$;
- 2. $D_{\nu} = \{r\} \forall \nu \in V^*;$
- 3. $r^* = r$
- 4. $k^* = 0$
- 5. weight of each edge = 1.

Algorithmic Results

Result4: XP w.r.t k

Thm.

All versions of NDDS can be solved in XP time n^{O(k)}

We already:

- Established W[1]-Completeness results w.r.t k
- Ruling out any FPT-Algorithm
- Designed the next best: XP

Introducing Homogeneity

Result5: Deficiency

Thm. For a solution subgraph H:

$$\left\lceil \frac{1}{2} \sum_{\mathbf{v} \in V(\mathsf{H})} \mathrm{df}(\mathbf{v}) \right\rceil \leqslant \mathbf{k} \leqslant \sum_{\mathbf{v} \in V(\mathsf{H})} \mathrm{df}(\mathbf{v})$$

Result6: The Reduction to Edge-k-Core

Thm.

$$NDDS^{\alpha}(convex, > r) \leq_{FPT} Edge-k-Core$$

1.
$$G^* = G$$
 i.e. $V^* = V$ and $E^* = E$;

2.
$$D_{\nu} = \{\alpha, ..., n-1\} \ \forall \nu \in V^*;$$

3.
$$r^* = r$$

4.
$$k^* = k$$

Result7: Deficiency & Forests

Thm.

NDDS $^{\alpha}$ (convex, $\geq r$) is solvable in time $O(\alpha n^2)$ for forests.

Thm.

NDDS $^{\alpha}$ (convex, ≥ r) admits an FPT algorithm w.r.t. tw+ α .

Result8: FPT w.r.t. vertex cover

Thm.

NDDS^{α}(convex, $\geq r$) admits a $2^{\mathcal{O}(vc \cdot 3^{vc})} \cdot n^{\mathcal{O}(1)}$ FPT algorithm

We:

- Established W[1]-Completeness results w.r.t r+k+α
- Designed FPT for combination of params $tw+\alpha$, vc
- Designed the next best: XP

Conclusions & Significance of Our Work

- Notched up the results taking into account the parameterized complexity
 w.r.t key natural as well as structural parameters
- Crucial role in computer science, economics, game theory and network design
- Lower Bound by W[1]-hardness
- > Upper bound by XP, FPT-algorithms, making the analysis complete

Future Directions

- > Approximate, i.e., ε-PSNE for the problem...
- More structural parameters like FVS, FAS...
- > Problem formulation on line-graph of the input graph...
- XP algorithms w.r.t treewidth or maximum degree...
- Color/Chromatic coding
- > Parameterization by distance to trees, paths or cluster graphs...
- The 2-approximation Heuristic

Practical Implications

- Modeling Behavioral Response to Vaccination
 Using Public Goods Game by Ben-Arieh et al.
- Vaccination as a Social Contract by Korn et al.

Election Control in Social Networks using Edge edition by Castiglioni et al.

Maximizing spread of cascades using Network Design by Sheldon et al.

Game Theory of Social Distancing in Response to an Epidemic by Rulega

Manipulating opinion diffusion in social networks by Bredereck et al.

