2019-12-05

Co-Graphen, Splitgraphen, Schwellwertgraphen

Pascal Braband

Institut für Informatik Heinrich-Heine-Universität Düsseldorf

5. Dezember 2019

Co-Graphen, Splitgraphen, Schwellwertgraphen

Co-Graphen, Splitgraphen, Schwellwertgraphen

Pascal Braband

Institut für Informatik Heinrich-Heine-Universität Dasseldor 5. Dezember 2019

1/21

Gliederung

- 1 Co-Graphen
 - Grundlagen
 - Algorithmus zur Erkennung
 - Algorithmen auf Co-Graphen
- 2 Splitgraphen
 - Grundlagen
 - Splittance
- 3 Schwellwertgraphen
 - Grundlagen

2019-12-05

Co-Graphen, Splitgraphen, Schwellwertgraphen

 \sqsubseteq Gliederung

Co-Copples

Condispon

Condispon

Agorithmus zur Erkennung

Agorithmus auf Co-Copples

Spittgraphun

Condispon

Spittgraphun

Spittgraphun

Spittgraphun

Condispon

Spittgraphun

Condispon

Condispon

Condispon

Condispon

Gliederung

ZIEL:

- Grundlagen
- Definition
- Eigenschaften
- Verbindungen

der 3 Graphenklassen zeigen

Co-Graphen

Definition

Seien $G_1 = (V, E)$ und $G_2 = (V, E)$ zwei Graphen

1 Die disunkte Vereinigung von G_1 und G_2 ist definiert durch

$$G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$$

2 Die disjunkte Summe von G_1 und G_2 ist definiert durch

$$G_1 \times G_2 = (V_1 \cup V_2, E_1 \cup E_2 \cup \{\{v_1, v_2\} | v_1 \in V_1, v_2 \in V_2\})$$

Co-Graphen, Splitgraphen, Schwellwertgraphen $\cup Co ext{-}$ Co-Graphen $\cup Grundlagen$ $\cup Co ext{-}$ Co-Graphen

Co-Graphen

Definition

Stein $G_i = (V, E)$ and $G_0 = (V, E)$ zerol Graphen

If the disserted horningings on G_i and G_0 as defining durch $G_0 = (V, E)$ and $G_0 = (V, U, E)$, $G_0 = (V, U, V, E, U, E)$.

If the disjoinable Summer von G_i and G_0 is defining durch $G_i \times G_0 = (V_i \cup V_i, E_i \cup E_i \cup \{(v_i, v_i)|v_i \in V_i, v_i \in V_i\})$

Co-Graphen

Definition Co-Graphen [GRRW10]

Ein ungerichteter Graph G = (V, E) ist ein Co-Graph, falls er konstruiert werden kann über:

- **1** Graph mit genau einem Knoten ($G = \bullet$) ist ein Co-Graph.
- **2** Disjunkte Vereinigung $G_1 \cup G_2$ der Co-Graphen G_1 , G_2 ist Co-Graph.
- 3 Disjunkte Summe $G_1 \times G_2$ der Co-Graphen G_1 , G_2 ist Co-Graph.

Co-Graphen, Splitgraphen, Schwellwertgraphen

Co-Graphen

Grundlagen

Co-Graphen

Co-Graphen

Co-Graphen

Co-Graphen

East superfection Graph $G = \{V, V\}$ is sin Co-Graph, falls with transfer and the confidence of the co-Graph of the co-Graph of the co-Graph of the co-Graphen G_1 (Co-Graphen G_2) (Co-Graphen G_3) (Co-Graphen G_4) (

Ungerichteter Graph, gibt **aber** auch gerichtete Entdeckt in den 1970er Jahren von mehreren Autoren

Kurzes Beispiel für Co-Graph an der TAFEL

$$G_1 \quad G_2 \quad G_1 \cup G_2 = G_3$$

Co-Baum

Definition Co-Baum [GRRW10]

Seien G_1 , G_2 Co-Graphen mit entsprechenden Co-Bäumen T_1 , T_2 .

Der Co-Baum T zum Graphen G wird konstruiert mit:

- **1** Co-Baum T für Co-Graph $G = \bullet$ hat genau einen Knoten markiert mit \bullet
- **2** Co-Baum T zu $G_1 \cup G_2$ hat Wurzel w markiert mit \cup und die Kinder T_1 , T_2
- 3 Co-Baum T zu $G_1 \times G_2$ hat Wurzel w markiert mit \times und die Kinder T_1 , T_2

Jede Operation wird durch einen Knoten dargestellt.

Co-Graph mit Co-Baum JETZT anzeichnen

Co-Baum

Co-Graphen, Splitgraphen, Schwellwertgraphen
Co-Graphen
Grundlagen
Co-Baum

Co-Graph und Co-Baum parallel aufbauen, an der TAFEL

Co-Graph Eigenschaften

Eigenschaften von Co-Graphen [CLSB81]

Sei G ein Co-Graph

- G ist abgeschlossen unter induzierter Teilgraphenbildung
- \blacksquare G enthält keinen P_4 als induzierten Teilgraphen

DEUTLICH SAGEN: Co-Graphen $\Leftrightarrow P_4$ -freie Graphen

Erkennung von Co-Graphen

Algorithmus Co-Graphen Erkennung [CPS85]

Der Algorithmus bestimmt für einen Graphen G, ob dieser ein Co-Graph ist. Falls ja, so gibt er den entsprechenden Co-Baum zurück.

- Grundlage: Induzierte Teilgraphenbildung über Co-Graphen
- *Idee:* Den Graphen *G* schrittweise aufbauen
- G ist ein Co-Graph \Rightarrow der Graph ist nach jedem Schritt ein Co-Graph

Co-Graphen, Splitgraphen, Schwellwertgraphen

Co-Graphen

Algorithmus zur Erkennung
Erkennung von Co-Graphen

Erkennung von Co-Graphen

Der Algorithmus bestimmt für einen Graphen G, ob dieser ein Co-Graph ist. Falls ja, so gibt er den entsprechenden Co-Baum zurück.

- Grandage: Induserie Teligraphenolidung über
 Most Dan Grandage G schriftmeise aufbause
- G ist ein Co-Graph → der Graph ist nach jedem Schritt ein

- NUR die Idee \rightarrow zu wenig Zeit
- Wenn der Graph ein Co-Graph ist
 - \rightarrow Nach jedem Schritt muss G ein Co-Graph sein
 - → Nach jedem Schritt pr
 üfen, ob aufgebauter Graph noch Co-Graph ist

Erkennung von Co-Graphen

Gegeben Graph
$$G = (V, E)$$
 mit $V = \{v_1, \dots, v_n\}$

- Füge iterativ jedes $x \in V$ zu anfangs leerem Graphen hinzu
- Markiere bisherigen Co-Baum, abhängig von den zu x adjazenten Knoten
- Mit Markierungen:
 - \rightarrow Überprüfe, ob G + x noch ein Co-Graph ist
 - \rightarrow Füge x zu Co-Baum hinzu

Erkennung von Co-Graphen

Gegeben Graph G = (V, E) mit $V = (v_1, \dots, v_n)$ II Füge iterativ jedes $x \in V$ zu anflangs leerem Graphen hinzu
II Markiese bisheringen Co-Baum, abhängig von den zu xadjazenten Knoten
III til Markerunene:

→ Überprüfe, ob G + x noch ein Co-Graph ist
→ Füge x zu Co-Baum hinzu

- Knoten beliebig mit $\{v_1, \ldots, v_n\}$ nummeriert
- Man weiß ja, mit welchen Knoten x adjazent ist

Algorithmen auf Co-Graphen

- Lösung von NP-schweren Problemen auf Co-Graphen oft einfach
- Algorithmen benutzen den Co-Baum
- Einschränkung auf P_4 -frei oft möglich in Praxis

osung von NP-schweren Problemen auf Co-Graphen oft

■ Einschränkung auf Pa-frei oft moglich in Praxis

Algorithmen auf Co-Graphen

- Vorteil: Darstellung durch Baumstruktur, ermöglicht schnelle Algorithmen
- Praktische, da bei vielen Anwendungen von Graphen ausgeschlossen werden kann, dass sie einen P_4 enthalten

Algorithmen auf Co-Graphen

Problem	Laufzeit
Unabhängigkeitszahl $\alpha(G)$	O(V + E)
Knotenüberdeckungszahl $ au(G)$	O(V + E)
Cliquenzahl $\omega(G)$	O(V + E)
Färbungszahl $\chi(G)$	O(V + E)
Cliquenpartitionszahl $\theta(G)$	O(V + E)
Hamiltonpfad/-kreis	O(V)
Isomorphie	O(V + E)
Baumweite	$O(V_T)$

Tabelle: Laufzeiten für Probleme auf Co-Graphen G=(V,E) mit Co-Baum $T=(V_T,E_T)$

Co-Graphen, Splitgraphen, Schwellwertgraphen
Co-Graphen
Algorithmen auf Co-Graphen
Algorithmen auf Co-Graphen

Übersicht über Laufzeiten einiger Algorithmen

Splitgraphen

Definition Splitgraph [FH77]

Ein ungerichteter Graph G = (V, E) ist ein Splitgraph, falls die Knotenmenge V partitioniert werden kann in zwei Knotenmengen K und S, wobei K eine Clique ist und S eine unabhängige Menge.

Eigenschaften von Splitgraphen

- K oder S können leer sein
- Partition muss nicht eindeutig sein

Co-Graphen, Splitgraphen, Schwellwertgraphen

Splitgraphen
Grundlagen
Splitgraphen

Spiltgraphen

Colinicum Spiltgraph (PHT)

En ungerichteter Guph C = (V,E) at ein Spiltgraph, falls der Kottennenger V serbichteter dazu in zu der Spiltgraph, falls der Kottennenger V serbichteter under Dazu in zu zur Kottennenger V serbichteter und Spiltgraphen der Spiltgraphen (Spiltgraphen und Spiltgraphen und Spiltgraphen und Kotten Stemmen bereicht und Spiltgraphen und Kotten Stemmen bereicht und Spiltgraphen und Spiltgraph

Beispiel an TAFEL anzeichnen:

S leer $\Rightarrow K_4$ ist zB ein Splitgraph P_3 als Beispiel für verschiedene Partitionen Partitionen: $K = \{a, b\}, S = \{c\}$ oder $K = \{b, c\}, S = \{a\}$

Splittance

Definition Splittance [HS81]

Die *Splittance* $\sigma(G)$ eines beliebigen Graphen G=(V,E) ist die *minimale* Anzahl an Kanten, die entfernt oder hinzugefügt werden muss, damit G ein Splitgraph ist.

Eigenschaften der Splittance

- $\sigma(G) = 0$, falls G ein Splitgraph ist
- $\sigma(G) = \sigma(\overline{G})$

Co-Graphen, Splitgraphen, Schwellwertgraphen

Splitgraphen

Splittance

Co-Graphen, Splitgraphen, Schwellwertgraphen Splittance -Splitgraphen -Splittance $m = \max\{i | 1 \le i \le n, d_i \ge i - 1\}$ Die Splittance $\sigma(G) = \sigma_{el}(G)$ ist -Splittance $\sigma_m(d) = \frac{1}{2} \left(m(m-1) - \sum_{i=1}^{m} d_i + \sum_{i=1}^{n} d_i \right)$

Splittance Berechnung

Splittance kann eindeutig durch die Gradfolge $d_{1,\dots,n}$ von Gbestimmt werden.

$$m = \max\{i | 1 < i < n, d_i > i - 1\}$$

Die Splittance $\sigma(G) = \sigma_m(G)$ ist

$$\sigma_m(d) = \frac{1}{2} \Big(m(m-1) - \sum_{i=1}^m d_i + \sum_{i=m+1}^n d_i \Big)$$

$$m = \max\{1, 2, 3, 4\} = 4$$
 $m(m-1) = 4 \cdot 3 = 12$

$$\sum_{i=1}^{m} d_i = 6 + 4 + 4 + 4 = 18$$

$$\sum_{i=m+1}^{n} d_i = 1 + 1 + 2 + 2 = 6$$
 $\sigma_m(d) = \frac{1}{2} (12 - 18 + 6)$

$$\sum_{i=1}^{n} d_i = 0 + 4 + 4 + 4 = 10$$

$$\sum_{i=m+1}^{n} d_i = 1 + 1 + 2 + 2 = 6$$

Splittance

Splittance

Splitgraph Erkennung

G ist ein Splitgraph, falls gilt

$$\sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i$$

Co-Graphen, Splitgraphen, Schwellwertgraphen
Splitgraphen
Splittance
Splittance

Offensichtlich gültig für Beispiel VORRECHNEN

$$\sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i$$

$$\Leftrightarrow 18 = 12 + 6$$

$$\Leftrightarrow 18 = 18$$

Schwellwertgraphen

Definition Schwellwertgraph

Ein Graph G=(V,E) ist ein Schwellwertgraph, falls Werte $w_v\in\mathbb{R}_{\geq 0}$ für $v\in V$ und $T\in\mathbb{R}_{\geq 0}$ existieren, sodass für zwei Knoten $x,y\in V$ gilt

$$\{x,y\} \in E \Leftrightarrow w_x + w_y > T$$

Beispiel C a d d d d

Co-Graphen, Splitgraphen, Schwellwertgraphen

Schwellwertgraphen
Grundlagen
Schwellwertgraphen

- Beispiel Graphen ANZEICHEN + WERTE ANGEBEN T und w_v
- TRICK: wähle $w_v = \deg(v)$
- TRICK: wähle $T = \max$ aller deg's

Schwellwertgraphen

Definition Schwellwertgraph (konstruktiv)

Ein Graph G = (V, E) ist ein Schwellwertgraph, falls er über die folgenden Vorschriften konstruiert werden kann.

- 1 Hinzufügen eines einzelnen isolierten Knotens
- 2 Hinzufügen eines einzelnen dominierenden Knotens

Co-Graphen, Splitgraphen, Schwellwertgraphen

Schwellwertgraphen

Grundlagen
Schwellwertgraphen

action Schmidtunet graph (twistolids) C = (V, E) is it in Schmidtunetgraph, falls or über die
edee Verschöffen konstruert werden kann.

Hersdigen dem exchiste kolderen Krossen

Honologien dem exchiste kolderen Krossen

Honologien dem exchiste dominierender Krosten

Schwellwertgrapher

- Isolierter Knoten: Knoten der keine Verknüpfung zu einem anderen Knoten hat
- **Dominierender Knoten**: Knoten der mit allen anderen Knoten verknüpft wird
- Beispiel nochmal aufbauen
- Erzeugungssequenz: 110011
- Erzeugungssequenz kurz erklären

Schwellwertgraphen

Schwellwertgraphen Eigenschaft

 $Schwellwertgraphen = Co\text{-}Graphen \ \cap \ Splitgraphen$

Co-Graphen, Splitgraphen, Schwellwertgraphen

Schwellwertgraphen

Grundlagen

Schwellwertgraphen

- Schwellwertgraph ist Co-Graph
- Schwellwertgraph is Splitgraph
- Zu jedem Schwellwertgraphen lässt sich
 - ein **Co-Baum** finden
 - eine **Partition** finden

Schwellwertgraphen und Co-Graphen

Co-Graphen, Splitgraphen, Schwellwertgraphen

Schwellwertgraphen

Grundlagen

Schwellwertgraphen und Co-Graphen

Aus Erzeugungssequenz wird leicht ein Co-Baum

Schwellwertgraphen und Splitgraphen

- Splitgraph (Partition K, S) aus Schwellwertgraph
- Unabhängige Menge *S* immer gegeben durch isolierte Knoten

BEISPIEL:

- Die dominierenden Knoten sind immer in einer Clique
- Die isolierten Knoten werden nicht untereinander verbunden
- BEISPIEL:

$$K = \{a, b, e, f\}$$
$$S = \{c, d\}$$

- Dominierenden Knoten auf jeden Fall miteinander verknüpft
- Isolierte Knoten gerade nicht untereinander verknüpft

Literatur L

- ▶ D.G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete Applied Mathematics 3 (1981), no. 3, 163–174.
- ▶ D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on Computing 14 (1985). no. 4, 926–934.
- ▶ S. Földes and P. L. Hammer, *Split graphs*, 311–315.
- ► Frank Gurski, Irene Rothe, Jörg Rothe, and Egon Wanke, Exakte algorithmen für schwere graphenprobleme, Springer, Berlin, Heidelberg, 2010.
- ▶ Peter L. Hammer and Bruno Simeone, *The splittance of a* graph, no. 3, 275-284.

Co-Graphen, Splitgraphen, Schwellwertgraphen Schwellwertgraphen -Grundlagen └─Literatur

Literatur I

- ► D.G. Corneil, H. Lerchs, and L. Stewart Burlingham Complement reducible graphs. Discrete Applied Mathematics 2 (1981), no. 3, 163-174.
- D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs, SIAM Journal on Computing 14 (1985) no. 4, 926-934.
- ► S. Földes and P. L. Hammer, Split graphs, 311-315.
- Frank Gurski, Irene Rothe, Jörg Rothe, and Egon Wanke.
- Exakte algorithmen für schwere graphenprobleme, Springer, Berlin, Heidelberg, 2010.
- ► Peter L. Hammer and Bruno Simeone, The splittance of a graph no. 3, 275-284.