GVPO Explained: Novelties, Advantages, and Mathematical Differences

Executive Summary

GVPO (Group Variance Policy Optimization) addresses the training instability issues of GRPO while providing stronger theoretical guarantees. The key innovation is incorporating the analytical solution to KL-constrained reward maximization directly into gradient weights through a clever zero-sum weight constraint that eliminates the intractable partition function.

1. Core Novelties of GVPO

Novel 1: Zero-Sum Weight Constraint Eliminates Partition Function

The Problem: The optimal policy for KL-constrained reward maximization has a closed-form solution:

$$\pi^*(y|x) = \frac{1}{Z(x)} \pi_{\theta'}(y|x) e^{R(x,y)/\beta}$$

where $Z(x) = \sum_y \pi_{\theta'}(y|x) e^{R(x,y)/\beta}$ is computationally intractable (requires summing over all possible responses).

GVPO's Solution: By designing weights such that $\sum_{i=1}^{k} w_i = 0$, the partition function $\beta \log Z(x)$ becomes **invariant across responses and cancels out** in gradient computations:

$$\nabla_{\theta} L(\theta) = -\sum_{x, \{y_i\}} \sum_{i=1}^k w_i \nabla_{\theta} \log \frac{\pi_{\theta}(y_i|x)}{\pi_{\theta'}(y_i|x)} = -\sum_{x, \{y_i\}} \sum_{i=1}^k w_i \nabla_{\theta} \frac{R_{\theta}(x, y_i)}{\beta}$$

Since $\sum w_i = 0$, the $\beta \log Z(x)$ term disappears, making the method computationally tractable.

Novel 2: Gradient Weights Based on Central Distance Differences GVPO's Weight Design:

$$w_i = (R(x, y_i) - \bar{R}(x)) - \beta \left(\log \frac{\pi_{\theta}(y_i|x)}{\pi_{\theta'}(y_i|x)} - \overline{\log \frac{\pi_{\theta}}{\pi_{\theta'}}} \right)$$

where the bar notation denotes group average: $\bar{R}(x) = \frac{1}{k} \sum_{i=1}^{k} R(x, y_i)$.

Physical Interpretation: The weight is the difference between actual reward central distance and implicit reward central distance.

Novel 3: Three Equivalent Loss Interpretations

The paper elegantly shows GVPO's loss has three mathematically equivalent forms:

(a) Negative Log-Likelihood View (Equation 9):

$$\mathcal{L}_{\text{GVPO}}(\theta) = -\beta \sum_{x, \{y_i\}} \sum_{i=1}^{k} \left[(R(x, y_i) - \bar{R}) - \beta \left(\log \frac{\pi_{\theta}(y_i | x)}{\pi_{\theta'}(y_i | x)} - \overline{\log \frac{\pi_{\theta}}{\pi_{\theta'}}} \right) \right] \log \pi_{\theta}(y_i | x)$$

(b) Mean Squared Error View (Middle panel, Figure 1):

$$\nabla_{\theta} \mathcal{L}_{\text{GVPO}} = \frac{1}{2} \nabla_{\theta} \sum_{x, \{y_i\}} \sum_{i=1}^{k} \left[\left(R_{\theta}(x, y_i) - \bar{R}_{\theta} \right) - \left(R(x, y_i) - \bar{R} \right) \right]^2$$

Key Insight: Minimizing GVPO loss = minimizing MSE between implicit and actual reward central distances.

(c) Reinforcement Learning View (Equation 14, =1):

$$\nabla_{\theta} \hat{\mathcal{L}}_{\text{GVPO}} = -2\mathbb{E}_{x,y} \left[(R(x,y) - \mathbb{E}_y R) \log \pi_{\theta}(y|x) + \text{Cov}(\log \pi_{\theta}, \log \pi_{\theta'}) - 0.5 \text{Var}(\log \pi_{\theta}) \right]$$

Three components: 1. Group-relative reward term: Advantage maximization

- 2. Covariance term: Regularization preventing deviation from reference policy
- 3. Variance term: Entropy-like exploration encouragement

2. Mathematical Comparison: GVPO vs GRPO

GRPO Loss (Equation 2):

$$\mathcal{L}_{GRPO}(\theta) = -\sum_{x, y_1, \dots, y_k} \sum_{i=1}^k \frac{R(x, y_i) - \text{Mean}(\{R(x, y_i)\})}{\text{Std}(\{R(x, y_i)\})} \log \pi_{\theta}(y_i|x)$$

Key Differences:

Aspect	GRPO	GVPO
Weight Formula	$w_i = \frac{R(x, y_i) - \bar{R}}{\sigma_R}$ (standardized reward)	$w_i = (R(x, y_i) - \bar{R}) -$
Normalization	(standardized reward) Divides by standard	$\beta(\log \frac{\pi_{\theta}}{\pi_{\theta'}} - \overline{\log \frac{\pi_{\theta}}{\pi_{\theta'}}})$ No std normalization
	$\stackrel{\circ}{\text{deviation}} \sigma_R$	(only centering)

Aspect	GRPO	GVPO
Policy Dependency	Weights independent	Weights depend on
	of current policy	$\pi_{\theta}/\pi_{\theta'}$ ratio
KL Constraint	Applied externally	Built into gradient
	(hyperparameter	$\mathbf{weights}$
	tuning)	analytically
Zero-Sum Property	Yes (due to centering)	Yes (by design)

Critical Mathematical Insight:

GRPO's standardization conflates prompt-level difficulty with reward signals (cited in paper [17]). For example: - Hard prompt with rewards [8, 9, $10] \rightarrow \text{all}$ responses get similar standardized scores - Easy prompt with rewards [1, 2, 9] \rightarrow large standardized score differences

GVPO removes std normalization but adds the $\beta(\log \pi_{\theta}/\pi_{\theta'})$ term to directly encode the optimal policy structure.

3. Theoretical Advantages of GVPO

Advantage 1: Unique Optimal Solution (Theorem 3.1)

GVPO Guarantee:

$$\operatorname{argmin}_{\theta} \hat{\mathcal{L}}_{\text{GVPO}}(\theta) = \pi^*(y|x) = \frac{1}{Z(x)} \pi_{\theta'}(y|x) e^{R(x,y)/\beta}$$

Uniqueness is proven by showing: 1. When $\pi_{\theta} = \pi^*$, the loss equals 0 (minimum achieved) 2. Any other policy yields loss > 0 (contradiction proof in Appendix B.1)

Why This Matters: - DPO fails this: Due to Bradley-Terry model limitations [3, 11], DPO may converge to suboptimal policies - GRPO lacks this: No theoretical guarantee of convergence to KL-constrained optimum

Advantage 2: Flexible Sampling Distributions (Corollary 3.2)

GVPO's Condition: Theorem 3.1 holds for any sampling distribution π_s satisfying:

$$\forall x, \{y | \pi_{\theta'}(y|x) > 0\} \subseteq \{y | \pi_s(y|x) > 0\}$$

Translation: As long as π_s covers all responses that the reference policy could generate, GVPO maintains theoretical guarantees.

Comparison with GRPO/PPO:

Method	Sampling Requires	ment Problem
PPO	On-policy $(\pi_s = \pi_\theta)$	Low sample efficiency, requires fresh
GRPO	Uses importance sampling $\frac{\pi_{\theta}}{\pi_{\theta_{\text{old}}}}$	trajectories Gradient explosion when policies diverge;
GVPO	Any π_s satisfying mild condition	requires clipping (introduces bias) No importance sampling, no explosion risk

Mathematical Detail: Policy gradient methods require:

$$\nabla_{\theta} \left[\mathbb{E}_{x, y \sim \pi_{\theta}} \left[R(x, y) \right] - \text{DKL}[\pi_{\theta} | | \pi_{\theta_{\text{old}}}] \right] = \mathbb{E}_{x, y \sim \pi_{\theta}} \left[\left(R - \log \frac{\pi_{\theta}}{\pi_{\theta_{\text{old}}}} - 1 \right) \nabla_{\theta} \log \pi_{\theta} \right]$$

Off-policy estimation uses importance sampling (Equation 16):

$$\mathbb{E}_{x,y \sim \pi_{\theta_{\text{old}}}} \left[\frac{\pi_{\theta}(y|x)}{\pi_{\theta_{\text{old}}}(y|x)} \left(R - \log \frac{\pi_{\theta}}{\pi_{\theta_{\text{old}}}} - 1 \right) \nabla_{\theta} \log \pi_{\theta} \right]$$

The ratio $\frac{\pi_{\theta}}{\pi_{\theta_{\mathrm{old}}}}$ can explode \rightarrow gradient clipping needed.

GVPO's Advantage: By using the zero-sum property and central distances, GVPO's gradient becomes:

$$\mathbb{E}_{x,y \sim \pi_s} \left[\left(R - \log \frac{\pi_{\theta}}{\pi_{\theta'}} - \mathbb{E}_{y \sim \pi_s} \left(R - \log \frac{\pi_{\theta}}{\pi_{\theta'}} \right) \right) \nabla_{\theta} \log \pi_{\theta} \right]$$

No importance sampling ratio appears in the gradient!

Advantage 3: Unbiased and Consistent Estimator (Theorem 3.4)

The empirical loss with finite samples is:

$$\frac{1}{|D|} \sum_{(x,\{y_i\})\in D} \frac{1}{k-1} \sum_{i=1}^{k} \left[(R_{\theta}(x,y_i) - \bar{R}_{\theta}) - (R(x,y_i) - \bar{R}) \right]^2$$

Note the $\frac{1}{k-1}$ factor (not $\frac{1}{k}$) — this is the Bessel correction for unbiased variance estimation.

Why This Matters: - With small k (few samples per prompt), bias becomes significant - Corollary 3.5 extends this to variable k(x) per prompt, enabling mixed-source datasets

4. Algorithm Comparison

Algorithm 1 (GVPO) vs GRPO:

GVPO:

- 1. Sample k responses $\{yi\} \sim s(\cdot | x)$
- 2. Compute weights: wi = $(R(x,yi) R) (\log(/') \log(/'))$
- 3. Update: minimize wi log (yi|x)

GRPO:

- 1. Sample k responses $\{yi\} \sim old(\cdot | x)$
- 2. Compute weights: wi = (R(x,yi) R) / R
- 3. Update: minimize wi log (yi|x)
- 4. Apply gradient clipping + KL penalty

Key Implementation Difference (Listing 1):

GVPO only changes GRPO's loss computation by:

```
# GRPO:
```

```
advs = (R - R.mean()) / R.std() # Standardization
loss = -scores * advs
# GVPO:
```

```
advs = (R - R.mean()) - beta * ((scores_new - scores_new.mean())
                               - (scores_old - scores_old.mean()))
loss = -beta * scores * advs / (k-1) # Note: k-1 for unbiased estimator
```

5. Empirical Performance (Table 1)

Model	AIME2024	AMC	MATH500	Minerva	${\bf Olympiad Bench}$
Base	14.68	38.55	64.00	27.20	30.66
(Qwen 2.5-					
Math-					
7B)					
+GRPO	14.79	55.42	80.00	41.17	42.07
+Dr.GRP	O16.56	48.19	81.20	44.48	43.40

Model	AIME2024	AMC	MATH500	Minerva	OlympiadBench
+GVPO	20.72	$\boldsymbol{62.65}$	83.80	45.95	46.96

Observations: - GVPO achieves best performance across all 5 benchmarks - 40% relative improvement on AIME2024 over GRPO (14.79 \rightarrow 20.72) - Particularly strong on complex reasoning tasks (AIME, OlympiadBench)

Ablation Study Insights:

Figure 2 (sensitivity): - GVPO shows little performance fluctuation across [0.01, 0.5] - Suggests robustness to hyperparameter tuning (unlike GRPO's high sensitivity)

Figure 3 (Scaling with k): - GVPO consistently outperforms GRPO for all k [2, 32] - Superior scalability: GVPO on 1.5B model with k=32 matches 7B model performance - Inference cost reduction: Can use smaller models with more samples

Figure 4 (Off-policy sampling s): - Tests mixing historical responses with current policy samples - GVPO maintains **robust performance** with ratios from 0:8 to 4:4 (historical:current) - Validates Corollary 3.2's theoretical guarantee

6. Limitations and Future Work

Acknowledged Limitations:

- 1. Computational cost: Still requires sampling k responses per prompt
- 2. Reward model quality: Performance depends on accurate R(x,y)
- 3. Hyperparameter: Though robust, still requires selection

Unexplored Connections:

- Integration with exploration strategies from classical RL
- Extension to continuous action spaces
- Multi-modal reward signals

7. Summary: Why GVPO is Better

Criterion	GRPO	GVPO
Training Stability	Documented instability [34, 16]	Implicit regularization via Cov/Var terms

Criterion	GRPO	GVPO
Hyperparameter Sensitivity	High (clip threshold, KL coeff)	Robust to variations
Theoretical Guarantee	No convergence to optimal policy	Unique optimal = KL-constrained optimum
Sampling Flexibility	Uses importance sampling	Any s (no IS needed)
Normalization Bias	Std normalization conflates difficulty	Only centering (no std division)
Gradient Explosion	Requires clipping	No IS ratio \rightarrow inherently stable
Performance	Baseline	Best across all benchmarks

Bottom Line

GVPO's core innovation is **operationalizing the closed-form optimal policy** through a mathematically elegant **zero-sum weight design** that: 1. Eliminates the intractable partition function 2. Embeds KL constraints directly into gradients 3. Enables off-policy training without importance sampling 4. Guarantees convergence to the unique optimal policy

This makes GVPO a **theoretically principled AND empirically superior** alternative to GRPO for LLM post-training.