PLANO DE ENSINO

Identificação da disciplina e dos dados da oferta

Código e nome da disciplina: FSC835 - TÓPICOS ESPECIAIS EM FÍSICA III

Curso: PG Física - Mestrado e PG Física - Doutorado

Turma: 910 e 949

Docente responsável: Jonas Maziero

Ano/período: 2021/2

Objetivos da disciplina:

Conhecer o Quantum Information Science Kit (qiskit), um conjunto de ferramentas para programação e controle de computadores quânticos. Utilizar o qiskit pra simular e implementar, no hardware quântico real da IBM, alguns protocolos e algoritmos quânticos.

Carga horária: 60ha

Conteúdo programático:

1	IBMQ: qubits e sistema 🕒	
2	Composer: Portas lógicas 🍑	
3	qiskit: Instalação e hello world 🝊	
4	qiskit: Mais ferramentas 🖵	
5	Representação de estados na Esfera de Bloch 🖵	
6	Tomografia de estados –	
7	Swap de estados	
8	Teleportação 🗕	
9	Codificação superdensa -	
10	Preparação remota de estados	
11	Violação de desigualdades de Bell 💊	
12	Emaranhamento	
13	Swap de emaranhamento -	
14	Máquinas de copiar quânticas	
15	Criptografia: BB84 e <mark>E91</mark>	
16	Discórdia quântica	
17	Complementariedade –	
18	Correção de erros	
19	Mitigação de erros	
20	Medidas projetivas não reveladoras	
21	Canais quânticos; POVMs	
22	Algoritmo de Deutsch	
23	Algoritmo de Shor	
24	Algoritmo de Grover	
25	Algoritmo quântico para sistemas de equações lineares	
26	Redes neurais artificiais quânticas	
27	Variational quantum eigensolver (VQE)	
28	Quantum approximate optimization algorithm (QAOA) —	
29	Química quântica	
30	Jogos quânticos	

Bibliografia básica:

- https://quantum-computing.ibm.com/
- https://qiskit.org/textbook-beta

- M. A. Nielsen e I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)
- G. F. de Jesus, M. H. F. da Silva, T. G. Dourado, L. Q. Galvão, F. G. de Oliveira Souza, and C. Cruz, "Computação quântica: uma abordagem para a graduação usando o Qiskit," *Rev. Bras. Ensino Fís.*, vol. 43, Jun. 2021, doi: 10.1590/1806-9126-RBEF-2021-0033.
- A. C. Santos, "O Computador Quântico da IBM e o IBM Quantum Experience," *Rev. Bras. Ensino Fís.*, vol. 39, Sep. 2016, doi: <u>10.1590/1806-9126-RBEF-2016-0155</u>.

Bibliografia complementar:

- E.F. Galvão, O Que é Computação Quântica? Coleção Ciência no Bolso (Ed. Vieira & Lent, Rio de Janeiro, 2007).
- A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).
- MESSIAH, A. Quantum Mechanics. Dover, Mineola: 1999.
- S. J. Devitt, "Performing Quantum Computing Experiments in the Cloud," Phys. Rev. A, vol. 94, no. 3, p. 032329, Sep. 2016, doi: 10.1103/PhysRevA.94.032329.
- Mauro B. Pozzobom, <u>Estudo experimental de recursos quânticos usando os computadores quânticos da IBM</u>, Tese de doutorado, UFSM, 2021.
- Jhordan S. de Borba, <u>Implementação de técnicas de aprendizado de máquina em computadores quânticos</u>. Trabalho de Graduação em Física, UFSM, 2021.

Descrição do plano

Metodologia:

Serão gravadas aulas usando OBS Studio, Ipad com Bamboo Paper e Reflector Teacher. Essas aulas serão disponibilizadas via Youtube. Serão disponibilizadas notas de aula produzidas usando Jupyter Notebooks e Sympy. Essas notas de aula podem ser acessadas em

https://github.com/jonasmaziero/mecanica_quantica_1900-1925, visualizadas em https://nbviewer.jupyter.org, e executadas em https://mybinder.org ou no computador pessoal dos alunos. Na 1ª aula da semana será feita uma aula tira-dúvidas síncrona sobre o conteúdo das aulas da semana anterior.

Cronograma de atividades:

A disciplina seguirá o cronograma detalhado no Moodle.

Atividades práticas:

Os alunos realizarão experimentos na nuvem através de seus computadores pessoais.

Critérios de avaliação:

Cada aluno deve apresentar um seminário sobre um dos tópicos da disciplina, e deve implementar um experimento relacionado a esse tópico.

Informações complementares:

Santa Maria, de	de 20
Jonas Maziero	
Docente Responsável	
Coordenador(a) do Curso	