

終何学的情報の変換例(2)

* 拡大・縮小

* a=2/3, b=2/3のとき,座標(1,1)の変換後の座標は, $\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} & 0 \\ 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \end{pmatrix}$ 変換後の座標は,整数値になるとは限らない.
しかしながら,実際の画素の座標は,整数値である.

幾何学的情報の変換方法(1)
 変換方法
 変換後の画素の座標を(x₂,y₂)とする。ここで、x₂, y₂ は整数値である。
 座標(x₂,y₂)に対して逆変換を施し、変換前の座標(x₁,y₁)を求める。ここで、x₁, y₁ は整数値であるとは限らない。
 (すなわち、変換前の画像において、座標(x₁,y₁)に、画素が存在しているとは限らない。
 座標(x₁,y₁)の画素値を、周辺に存在している画素の値を用いて求める。

 $\mathbb{D}\left(\frac{1}{2},\frac{1}{2}\right)$

 $\mathfrak{T}(2,0)$ (3,0) $\mathfrak{T}(1,1)$ (1.5,1.5)

演習問題 解答(未公開)

演習問題 解答(未公開)

Image Information Processing

Image Information Processing

演習問題 解答(未公開)

演習問題 解答(未公開)

Image Information Processing

演習問題 解答(未公開)

最近隣内挿法と共1次内挿法の比較

最近隣内挿法により
8倍に拡大

エッジが
ギザギザになる
エッジが
なまる

Image Information Processing

拡大・縮小(逆変換)

拡大・縮小は,

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

と表わされる.ここで,aは,x方向の拡大・縮小率であり,bは,y方向の拡大・縮小率である.

逆変換は

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}^{-1} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \frac{1}{ab} \begin{pmatrix} b & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

と表わされる.

回転(逆変換)

Image Information Processing

▶ 回転は,

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

と表わされる. ここで, θ は, 回転角である.

逆変換は,

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}^{-1} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$
 と表わされる.

24

Image Information Processing

せん断(逆変換) (1)

x軸方向へのせん断は,

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & \tan \theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

と表わされる. ここで, θは, スキュー角である.

逆変換は、

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1 & \tan \theta \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & -\tan \theta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

と表わされる.

Image Information Processing

せん断(逆変換) (2)

y軸方向へのせん断は,

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \tan \theta & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

と表わされる. ここで, θは, スキュー角である.

逆変換は、

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \tan \theta & 1 \end{pmatrix}^{-1} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\tan \theta & 1 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$$

と表わされる

26

Image Information Processing

平行移動 (逆変換)

▶ 平行移動は,

$$\begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

と表わされる. ここで、aは、x方向の移動量であり、bは、y方向の移動量である.

▶ 逆変換は,

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix}$$

と表わされる.

Image Information Processin

演習問題

- ▶問題
 -) 以下に示すような原画像に対して、回転変換(回転角 $\theta=\pi$)と平行移動 (x方向への移動量a=4, y方向への移動量b=4)を、この順序にて実施した、変換後の画像における① \sim ②の画素値を求めよ、
 - なお、補間処理は、すべての変換を行った後に、共1次内挿法(バイリニア補間法)を用いて行うものとする.

2

Image Information Processing

演習問題 解答(未公開)

Image Information Processing

演習問題 解答(未公開)

5

演習問題 解答(未公開)

演習問題 解答(未公開)

演習問題 解答(未公開)

演習問題 解答(未公開)

			Image Information Process	sing
演習問題	解答	(未公開)		
				37