THE UNIVERSITY OF SYDNEY

MATH1901 DIFFERENTIAL CALCULUS (ADVANCED)

Semester 1 Tutorial Week 11 2012

1. (This question is a preparatory question and should be attempted before the tutorial. Answers are provided at the end of the sheet – please check your work.)

Compute the partial derivatives $f_x(x,y)$, $f_y(x,y)$ of the following functions f(x,y).

(a)
$$xy^3$$

(b)
$$\sin(2x+3y)$$

(c)
$$\ln(x + \sqrt{x^2 + y^2})$$

Questions for the tutorial

2. Find the limit, if it exists, or show that the limit does not exist.

(a)
$$\lim_{(x,y)\to(2,3)} (x^2y^2 - 2xy^5 + 3y)$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^3 + x^3y^2 - 5}{2 - xy}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x-y}{x^2+y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^3 + xy^2}{x^2 + y^2}$$

3. Consider the function

$$f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}$$
, defined for $(x,y) \neq (0,0)$.

Is it possible to define f(0,0) so that f is continuous at (0,0)?

4. Decide whether the limits exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2} \sin \frac{1}{x^2+y^4}$$

(c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$

(d)
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}$$

5. Define $f: \mathbb{R}^2 \to \mathbb{R}$ as follows:

$$f(x,y) = \begin{cases} 1 & \text{if } x = y \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is not continuous at (0,0) but both f_x and f_y exist at (0,0).

6. Verify that the functions given by the following formulas are solutions of the *Laplace* equation $f_{xx} + f_{yy} = 0$.

(a)
$$x^2 - y^2$$

(c)
$$e^x \cos y$$

(d)
$$e^x \sin y$$

7. Suppose that f is a diffentiable function of one variable. Show that if $z = f\left(\frac{x}{y}\right)$, then

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0.$$

- **8.** Find the equation of the tangent plane to the surface $z = e^x \ln y$ at (3, 1, 0).
- 9. Find the single point at which the tangent plane to the surface $z=x^2+2xy+2y^2-6x+8y$ is horizontal.

Extra Question

10. Use the ϵ, δ definition of the limit of a function of two variables to show that

$$\lim_{(x,y)\to(1,2)} x^2 + y = 3.$$

Solution to Question 1

(a)
$$f_x = y^3$$
, $f_y = 3xy^2$

(b)
$$f_x = 2\cos(2x + 3y)$$
, $f_y = 3\cos(2x + 3y)$

(c)
$$f_x = \frac{1 + x(x^2 + y^2)^{-1/2}}{x + \sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}, f_y = \frac{y}{(x + \sqrt{x^2 + y^2})\sqrt{x^2 + y^2}}$$