MAT377 Lecture Notes

ARKY!! :3C

'24 Fall Semester

Contents

1	Day 1: Introduction to Probability (Sep. 4, 2024)	2
2	Day 2: Expectations and Distributions (Sep. 9, 2024)	4
3	Day 3: Distributions, Stability Property, Moments (Sep. 11, 2024)	9
4	Day 4: Independence and Dependence (Sep. 16, 2024)	11
6	Day 6: Ulam's Problem; Chebyshev Inequality, Stirling Approximation, and Erdös-Renyi Random Graphs (Sep. 23, 2024)	14
10	Day 10: Erdös-Renyi Random Graphs and Cliques, Chebyshev Inequality, Moment Generating Function (Oct. 7, 2024)	17
12	Day 12: Inequalities (Oct. 16, 2024)	20

§1 Day 1: Introduction to Probability (Sep. 4, 2024)

Link to textbook.

We start with a sampler problem that on the surface, seems unrelated to probability. Let $v_1, \ldots, v_n \in \mathbb{R}^n$ be unit vectors on the unit sphere, i.e.t $||v_i|| = 1$. If we are to pick $\varepsilon_i = \{-1, 1\}$ at random, what is our expectation on how large will

$$\sum_{i=1}^{n} \varepsilon_i v_i$$

be? We could brute force and average out over all probabilities as follows,

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left(\sum_{i=1}^n \varepsilon_i v_i \right) = \sum_{i=1}^n \left(\frac{1}{2^n} \sum_{\underbrace{\varepsilon \in \{-1,1\}^n}_{=0}} \varepsilon_i \right) v_i = 0.$$

Now, consider that

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left| \sum_{i=1}^n \varepsilon_i v_i \right|^2 = \frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \sum_{i_1,i_2=1}^n \varepsilon_{i_1} \varepsilon_{i_2} \left\langle v_{i_1}, v_{i_2} \right\rangle \\
= \sum_{i_1,i_2=1}^n \left(\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \varepsilon_{i_1} \varepsilon_{i_2} \right) \left\langle v_{i_1}, v_{i_2} \right\rangle$$

To simplify the bracketed summation, we could consider the following two cases:

• If $i_1 \neq i_2$, we would have that

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \varepsilon_{i_1} \varepsilon_{i_2} = \frac{2^{n-2}}{2^n} \sum_{\substack{\varepsilon_{i_1} \in \{-1,1\} \\ \varepsilon_{i_2} \in \{-1,1\}}} \varepsilon_{i_1} \varepsilon_{i_2} = 0.$$

• If $i_1 = i_2$, we would have

$$\frac{1}{2^n}\sum_{\varepsilon\in\{-1,1\}^n}\varepsilon_{i_1}\varepsilon_{i_2}=\frac{2^{n-1}}{2^n}\sum_{\varepsilon_i\in\{-1,1\}}\varepsilon_{i_1}\varepsilon_{i_2}=1.$$

By linearity of expectation, we obtain

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left| \sum_{i=1}^n \varepsilon_i v_i \right|^2 = n,$$

and

$$\frac{1}{2^n} \sum_{\varepsilon \in \{-1,1\}^n} \left| \sum_{i=1}^n \varepsilon_i v_i \right| = c\sqrt{n},$$

where c is a positive real constant.

We now abstract a few probability terms;

- Ω is a sample space, i.e. the set of possible outcomes.
- Let P denote probability, i.e. a mapping of subsets of Ω to [0,1] (read: probability of getting these subsets of Ω); the probability of an event ε out of S occurring is given by $P(\varepsilon \in S, S \subset \{-1,1\}^n) = \frac{1}{|S|}$, assuming that each event in S is equally likely. With this, we have three important properties of P to define:
 - 1. $P(\Omega) = 1$; the chance of an event in the probability space happening is 1.
 - 2. Let \mathcal{F} be a collection of subsets A_1, \ldots, A_n . Then

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i),$$

given that $A_i \cap A_j = \emptyset$ for all $1 \le i, j \le n$. This is linearity of expectation.

- 3. $P(A^C) = 1 P(A)$, which is a property of set complement.
- When our collection \mathcal{F} of subsets of Ω satisfy the following properties, we call it a σ -algebra:
 - 1. $\emptyset \in \mathcal{F}$,
 - 2. Closed under countable union: $A_n \in \mathcal{F} \implies \bigcup_{i=1}^n A_i \in \mathcal{F}$,
 - 3. Closed under complement: $A_i \in \mathcal{F} \implies A_i^C \in \mathcal{F}$.

In a finite sample space, the power set $\mathcal{F} = \mathcal{P}(\Omega)$ is one such example of a σ -algebra. As an example, let $\Omega = [0,1)$; then P([a,b]) = b - a (wlog, let a < b). Now, let $\mathcal{F} = \mathcal{P}([0,1))$. Define the equivalence $x \sim y$ if $x - y \in \mathbb{Q}$.

• We now introduce the axiom of choice; Let A be a set containing one element of each equivalence class from the above defined equivalence. Consider $\tau_q A := \{A\} + q$; let us claim that

$$\bigcup_{q \in \mathbb{Q}} \tau_q A = [0, 1),$$

which is a countable union of [0,1), since \mathbb{Q} is countable. We have that $P(A) = P(\tau_q A)$ because intervals don't change size under shifting by q. However, observe that

$$P([0,1)) = P\left(\bigcup_{q \in \mathbb{Q}} \tau_q A\right) = \sum_{q \in \mathbb{Q}} P(\tau_q A).$$

Then either

$$P(A) = 0 \implies P(\tau_q A) = 0 \implies P([0, 1)) = 0, \text{ or}$$

 $P(A) \neq 0 \implies P(\tau_q A) \to \infty \implies P([0, 1)) \to \infty,$

which doesn't make sense (for now). This shows that we need to pick our σ -algebra properly; observing that the intersection of two σ -algebras is also a σ -algebra, it is appropriate to let \mathcal{F} be the smallest σ -algebra containing [a,b). This is called a Borel Set.¹

¹this is confusing. ill check later

§2 Day 2: Expectations and Distributions (Sep. 9, 2024)

Course administrative details first; starting next week, office hours will be held on Monday from 11:15am to 12:15pm. Recap of last lecture:

- A probability space Ω is the set of all possible outcomes of an "experiment," i.e. a countable set of individual events $\{\omega_1, \ldots, \omega_n\}$ (we will cover continuous probability later on).
- $\mathcal{F} = \mathcal{P}(\Omega)$ is the set of all subsets of Ω .
- $P(A) = \sum_{\omega \in \Omega} P(\omega)$ is the probability of an outcome in $A \in \mathcal{F}$ occurring.

A random variable X is a function $\Omega \to \mathbb{R}$, aka the measurement of the event, and the expectation of the random variable, EX, is given by $\sum_{\omega \in \Omega} X(\omega) P(\omega)$. Is expectation well behaved? No. For example, consider the St. Petersburg Paradox; suppose you are playing a game in the casino; every time you flip a coin, your prize money doubles if it lands on heads (read: double or nothing lfg!!!). Then we may consider the set of outcomes to be the number of consecutive heads, i.e.

$$\Omega = \{1, 2, 3, \dots\},$$

$$P(n) = \frac{1}{2^n},$$

$$X(n) = 2^n.$$

Clearly, the chance of getting n heads in a row is 2^{-n} , and assuming your prize money started at 1 dollar, you would win 2^n dollars for said n heads. Taking the expectation of this game, we find

$$EX = \sum_{n=1}^{\infty} 2^n \cdot \frac{1}{2^n} = \sum_{n=1}^{\infty} 1 = \infty.$$

It doesn't make sense to expect to win infinite amounts of money from this game² unless you had unlimited wealth to start with. With this in mind, we insist on

$$\sum_{\omega \in \Omega} |X(\omega)| P(\omega) < \infty$$

within the context of this class.

Theorem 2.1 (Linearity of Expectation). X is linear; i.e., E[ax + by] = aEx + bEy.

We start with a lemma:

Lemma 2.2. Let us have a bijective map $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$. Then

$$\sum_{n=1}^{\infty} c_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{\pi(n,m)}$$

if all $c_n \geq 0$ or if either side is absolutely convergent.

²martingale strat lfg.,..

We proceed to prove this with casework.

• Suppose $c_n \geq 0$; then using the bijective nature of π , we may choose large enough N, M such that

$$\sum_{n=1}^{K} c_n \le \sum_{n=1}^{N} \sum_{m=1}^{M} c_{\pi(n,m)}$$

for any choice of K. Conversely, we may pick

$$\sum_{n=1}^{N} \sum_{m=1}^{M} c_{\pi(n,m)} \le \sum_{n=1}^{K} c_n$$

for any N, M by picking $k \ge \max_{\substack{1 \le n \le N \\ 1 \le m \le M}} \{\pi(n, m)\}$. Now, let $M \to \infty$; we have

$$\sum_{n=1}^{N} \sum_{m=1}^{\infty} c_{\pi(n,m)} \le \sum_{n=1}^{\infty} c_n,$$

then let $N \to \infty$ to get

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{\pi(n,m)} \le \sum_{n=1}^{\infty} c_n.$$

As per earlier, we also see that LHS is greater or equal to RHS, which implies equality. \Box

• Now, suppose $\sum_{n=1}^{\infty} |c_n| < \infty$. Let $c_n = a_n - b_n$, where $a_n = c_n \mathbb{1}(c_n \ge 0)$ and $b_n = c_n \mathbb{1}(c_n < 0)$. Then we obtain

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} a_{\pi}(n, m), \qquad \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} b_{\pi}(n, m)$$

as per our proof above. Summing both, we conclude that equality holds for absolute convergence as well. \Box

For now, let X take values $\{a_1, a_2, \dots\}$ (countably many). Consider

$$P'(a_n) = P(X = a_n) = P(\underbrace{\{\omega \mid X(\omega) = a_n\}}_{X^{-1}(a_n)})$$

as the probably of a pre-image (or, $P' = P \circ X$). We see that P' is a probability on \mathbb{R} (concentrated on $\{a_1, a_2, \dots\}$), and $0 \leq P'(a_n) \leq 1$ for any n; from now, we will call P' a distribution of X. Here are some examples of distributions:

• The Bernoulli distribution: let $0 \le p \le 1$. Then consider a coin with p chance to land on heads, and 1-p on tails; then Ber_p is given by $\Omega = \{H, T\}$,

$$X(H) = 1, P(X = 1) = p,$$

 $X(T) = 0, P(X = 0) = 1 - p.$

• Flip N coins, with $X = \{0, 1, ..., N\}$ being the number of heads we obtain. Then

$$P(X = \ell) = \binom{N}{\ell} p^{\ell} (1 - p)^{N - \ell},$$

and the expected value is given by

$$EX = \sum_{\ell=0}^{N} \ell \binom{N}{\ell} p^{\ell} (1-p)^{N-\ell}.$$

Using linearity of expectation, we see $EX = EX_1 + \cdots + EX_n = Np$ by separating each coinflip.

Expectation enjoys the change of variables property;³

$$EX = \sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{n=1}^{\infty} a_n P'(a_n).$$

To see this, consider partioning the probability space Ω into $X^{-1} = \{\omega_{nm} \mid 1 \leq m \leq M_n\}$ in terms of their measurement from X (where $X(\omega_{ni}) = X(\omega_{nj}) = a_n$ for any $1 \leq i, j \leq M_n$)⁴, and write

$$\sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{n=1}^{\infty} \sum_{m=1}^{M_n} X(\omega_{nm}) P(\omega_{nm}),$$
 (by Lemma)

where we may note that mapping each individual $\omega \in \Omega$ to some index nm is bijective since it is a partition. We continue by writing

$$= \sum_{n=1}^{\infty} \sum_{m=1}^{M_n} a_n P(\omega_{nm}) = \sum_{n=1}^{\infty} a_n \left(\sum_{m=1}^{M_n} P(\omega_{nm}) \right)$$
$$= \sum_{n=1}^{\infty} a_n P(X = a_n),$$

where we may note $P(X = a_n) = P'(a_n)$.

The probability distribution of any given random variable X also approaches 0 at its tail. Specifically, we have that $\lim_{t\to\infty} P(x\geq t)=0$. To prove this, we start by observing that $P(x\geq t)$ is monotone decreasing; consider

$$P(X \ge n) = \sum_{m=n}^{\infty} P(m \le X < m+1).$$

Clearly, the sum is convergent, as the sum of probabilities is equal to 1. Using the fact that the tail of a convergent series approaches 0, we conclude that $P(m \le X < m+1) \to 0$ as $m \to \infty$, and so $P(X \ge n) \to 0$ as $n \to \infty$.

³read: sum of value of outcome multiplied by the chance it occurs over all ω is the same as going over each value individually and multiplying the chance you roll into it

⁴read M_n as a counter of how many outcomes in Ω have the same measurement of a_n

Lemma 2.3 (Expectation of Random Variable in terms of Integral). The expectation of a random variable X may be expressed as $EX = \int_0^\infty P(X \ge t) dt$ for $X \ge 0.5$

Let us start by considering the case where X takes integer values only;

$$EX = \sum_{n=1}^{\infty} nP(X = n) = \sum_{n=1}^{\infty} \sum_{m=1}^{n} P(X = n)$$
$$= \sum_{m=1}^{\infty} \sum_{n=m}^{\infty} P(X = n)$$
$$= \sum_{m=1}^{\infty} P(X \ge m).$$

For the general case, let us start by writing $a_n = \int_0^\infty 1(t \le a_n) dt$ by the layer cake decomposition. Then

$$EX = \sum_{n=1}^{\infty} a_n P(X = a_n) = \sum_{n=1}^{\infty} \left(\int_0^{\infty} 1(t \le a_n) dt \right) P(X = a_n)$$

$$\stackrel{(*)}{=} \int_0^{\infty} \left(\sum_{n=1}^{\infty} 1(t \le a_n) P(X = a_n) \right) dt \qquad (Fubini)$$

$$= \int_0^{\infty} \sum_{a_n \ge t} P(X = a_n) dt$$

$$= \int_0^{\infty} P(X \ge t) dt$$

To resolve (*) without the use of Fubini's theorem, we may write

$$\sum_{n=1}^{\infty} \int_{0}^{\infty} 1(t \le a_{n}) P(X < a_{n}) dt = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \int_{m-1}^{m} 1(t \le a_{n}) P(X = a_{n}) dt$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \int_{m-1}^{m} 1(t \le a_{n}) P(X \ge a_{n}) dt$$

$$= \sum_{m=1}^{\infty} \lim_{N \to \infty} \sum_{n=1}^{N} \int_{m-1}^{m} 1(t \le a_{n}) P(X \ge a_{n}) dt$$

$$= \sum_{m=1}^{\infty} \lim_{N \to \infty} \int_{m-1}^{m} \left(\sum_{n=1}^{N} 1(t \le a_{n}) P(X \ge a_{n}) \right) dt$$

$$= \sum_{m=1}^{\infty} \int_{m-1}^{m} \left(\lim_{N \to \infty} \sum_{n=1}^{N} 1(t \le a_{n}) P(X \ge a_{n}) \right) dt$$

$$= \int_{0}^{\infty} \left(\sum_{n=1}^{\infty} 1(t \le a_{n}) P(X = a_{n}) \right) dt,$$

which we conclude by removing the auxiliary summations, since it is enough to know that $\sum_{n=1}^{N} 1(t \leq a_n) P(X = a_n) \to \sum_{n=1}^{\infty} 1(t \leq a_n) P(X = a_n)$ uniformly in $t \in [m-1, m]$; i.e.,

$$\left| \sum_{n=N+1}^{\infty} 1(t \le a_n) P(X = a_n) \right| \le \sum_{n=N+1}^{\infty} P(X = a_n) \to 0$$

as $N \to \infty$ as per earlier (since the tail goes to 0).

⁵intuition: layer cake formula, but compile them together in level sets.

We also briefly went over examples multinomial distributions at the end of class;

• Suppose X_1, \ldots, X_n are independent, and let $P(X_i = j) = p_j$ for $j = 1, \ldots, k$. Let $\Omega = \{n_1, \ldots, n_k\}, n_j \geq 0, n_1 + \cdots + n_k = n\}$ (read: k-sided dice rolled n times, where n_j denotes the number of times j came up). Then

$$P((n_1, \dots, n_k)) = \binom{n}{n_1, \dots, n_k} p_1^{n_1} p_2^{n_2} \dots p_k^{n_k}.$$

• The geometric distribution; let 0 denote the probability of getting a head, and let us toss a coin until we get a heads. Let the outcome of <math>X denote the number of tosses it took. Then

$$P(X = n) = (1 - p)^{n-1}p,$$

and we may check $\sum_{n=1}^{\infty} P(x=n) = 1$ by geometric series.

• The Poisson distribution; let $\lambda > 0$. Then

$$P(X=n) = \frac{\lambda^n}{n!}e^{-\lambda}$$

for $n = 0, 1, 2, \dots$

§3 Day 3: Distributions, Stability Property, Moments (Sep. 11, 2024)

Recall the Poisson distribution

$$P(X=n) = \frac{\lambda^n}{n!}e^{-\lambda}$$

where $n = 0, 1, \ldots$ and $\lambda > 0$. We introduce the stability property: let us consider the independent random variables X_1, X_2 distributed as follows,

$$X_1 \sim \operatorname{Poiss}_{\lambda_1},$$

 $X_2 \sim \operatorname{Poiss}_{\lambda_2}.$

Then we have that $X_1 + X_2 \sim \text{Poiss}_{\lambda_1 + \lambda_2}$. To prove this, write

$$P(X_1 + X_2 = n) = \sum_{m=0}^{n} P(X_1 = m, X_2 = n - m)$$

$$= \sum_{m=0}^{n} P(X_1 = m) P(X_2 = n - m)$$

$$= \sum_{m=0}^{n} \frac{\lambda_1^m}{m!} e^{-\lambda_1} \frac{\lambda_2^{m-2}}{(m-n)!} e^{-\lambda_2}$$

$$= \frac{1}{n!} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \lambda_1^m \lambda_2^{n-m} e^{-(\lambda_1 + \lambda_2)}$$

$$= \frac{1}{n!} (\lambda_1 + \lambda_2)^n e^{-(\lambda_1 + \lambda_2)}.$$

Binomials also have a related property; let

$$X_1 \sim \text{Bin}(n_1, p),$$

 $X_2 \sim \text{Bin}(n_2, p).$

Given that X_1, X_2 are independent, we know that $X_1 + X_2 \sim \text{Bin}(n_1 + n_2, p)$. To prove this, we may just write

$$X_1 = y_1 + \dots + y_{n_1},$$

$$X_2 = y_{n_1+1} + \dots + y_{n_1+n_2},$$

$$X_1 + X_2 = y_1 + \dots + y_{n_1+n_2} \sim \text{Bin}(n_1 + n_2, p).$$

Moreover, we also have $Bin(n, \frac{\lambda}{n}) \stackrel{n \to \infty}{\to} Poiss_{\lambda}$. This is called the *law of little numbers*. To prove this, we have

$$\binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \frac{\lambda^k}{k!} \underbrace{\frac{n(n-1)\dots(n-k+1)}{n^k}}_{\to 1} \underbrace{\left(1 - \frac{\lambda}{n}\right)^{n-k}}_{\to e^{-\lambda}}$$

$$\stackrel{n \to \infty}{\to} \frac{\lambda^k}{k!} e^{-\lambda} = \text{Poiss}_{\lambda}.$$

There are two examples of Poisson distributions that we will go over: shark attacks and radioactive decay. (but we didn't go over it ig?)

Theorem 3.1 (Doeblin). Let X_i be independent random variables distributed by Ber_{p_i} , where $0 < p_i < 1$. Let us have $S_n = X_1 + \cdots + X_n$ with $\lambda = p_1 + \cdots + p_n$. Then

$$\left| P(S_n \in A) - \sum_{n \in A} \frac{\lambda^n}{n!} e^{-\lambda} \right| \le \sum_{i=1}^n p_i^2,$$

where $A \subset \{0, 1, ... \}$.

To prove this, let y be a random variable where $y \sim \text{Poiss}_p$, then $P(y=0) = e^{-p} > 1 - p$. Define $\Omega^{\perp} = \{-1, 0, 1, 2, \dots\}$; then we have $P_p(-1) = 1 - p$, $P_p(0) = e^{-p} - 1 + p$, $P_p(k) = \frac{p^k}{k!}e^{-p}$ for $k = 1, 2, 3, \dots$ Moreover, define

$$X(\omega) = \begin{cases} 0 & \omega = -1 \\ 1 & \omega \ge 0 \end{cases}, \quad y(\omega) = \begin{cases} 0 & \omega = 0, 1 \\ \omega & \omega \ge 1 \end{cases}.$$

Then $P(x=y)=1-p+pe^{-p}\geq 1-p+p(1-p)=1-p^2$, so $P(x=y)\leq p^2$. Take $\Omega=(\Omega_+)^n$ and $X_i(\omega)=X(\omega)$, and let us have

$$P(\omega) = \prod_{i=1}^{n} P_{p_i}(\omega_i)$$

where X_i are independently distributed by Ber_p , and y_i are independently distributed by $Poiss_{p_i}$. Finally, let us have

$$S_n = X_1 + \dots + X_n,$$

$$S'_n = y_1 + \dots + y_n,$$

then $P(S_n \neq S_n') \leq \sum_{i=1}^n P(X_i \neq y_i) \leq \sum_{i=1}^n p_i^2$, which means $S_n' \sim \text{Poiss}_{\lambda}$.

We now define *moments*. For a random variable X, $E(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega)$, as long as $E|X| < \infty$. Then moments are given by EX^n where $n = 1, 2, \ldots$ (??) For example, let $X = \text{Poiss}_{\lambda}$. Then we have for n = 1,

$$EX = \sum_{n=0}^{\infty} n \frac{\lambda^n}{n!} e^{-\lambda}$$
$$= \sum_{n=0}^{\infty} \frac{\lambda^n}{(n-1)!} e^{-\lambda}$$
$$= \sum_{n=0}^{\infty} \frac{\lambda^{n+1}}{n!} e^{-\lambda}$$
$$= \lambda.$$

For n=2, we have

$$EX^{2} = \sum_{n=0}^{\infty} n^{2} \frac{\lambda^{n}}{n!} e^{-\lambda}$$
$$= E(X(X-1)) + EX$$
$$= \lambda^{2} + \lambda.$$

⁶reminder: review this proof, i'm stupid and don't really get it.

§4 Day 4: Independence and Dependence (Sep. 16, 2024)

Let (Ω, P) be our probability space. We define

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}$$

to be the conditional probability, i.e. probability of A given B, as long as P(B) > 0 (this is called Bayes' Rule). If $P(A \mid B) = P(A)$, then A is said to be independent of B. In particular, if A_1, \ldots, A_n are independent, then

$$P\left(\bigcap_{i=1}^{n} A_i\right) = \prod_{i=1}^{n} P(A_i).$$

If the above is true for only pairs of events A_i, A_j , then we say that they are pairwise independent.

Let Ω_i , P_i be probability spaces, and consider $\Omega = \Omega_1 \times \cdots \times \Omega_n = \prod_{i=1}^n \Omega_i$, where we define a probability event in $\omega \in \Omega$ to be $(\omega_1, \ldots, \omega_n) = \omega$ with $\omega_i \in \Omega_i$. Specifically, we have

$$P(\omega) := \prod_{i=1}^{n} P_i(\omega_i).$$

For example, let $A = A_1 \times \cdots \times A_n$, and $A_i \in \Omega_i$. then

$$P(A) := \sum_{\omega \in A} P(\omega) = \sum_{\substack{\omega_i \in A_i \\ i=1}} \prod_{i=1}^{n} P_i(\omega_i) = \prod_{i=1}^{n} \sum_{\omega_i \in A_i} P_i(\omega_i) = \prod_{i=1}^{n} P_i(A_i).$$

Let us have random variables $X_i: \Omega_i \to \mathbb{R}$ where $1 \leq i \leq n$. Then $X_i^{(\omega)} = f_i(\omega_i)$ are independent if $P(X_1 \in A_1, \dots, X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i)$. In other words, $X_i^{-1}(A_i)$ are independent.⁷ We may continue simplifying the expression as follows,

$$\prod_{i=1}^{n} P(X_i \in A_i) = \prod_{i=1}^{n} P_i(f_i(\omega_i) = x_i) = \prod_{i=1}^{n} P(X_i = x_i).$$

Now, suppose X, Y are independent and f, g are functions. Then we claim that f(X), g(Y) are independent. To check this, let us write

$$\begin{split} P(f(X) = a, g(Y) = b) &= P(X = f^{-1}(a), y = g^{-1}(b)) \\ &= P(X \in f^{-1}(a)) P(Y \in g^{-1}(b)) \\ &= P(f(X) = a) P(g(Y) = b). \end{split}$$

We can also do this with grouping; let $\{1,\ldots,n\}=U_{k=1}^mI_k$ with I_k disjoint; i.e., we're sorting [n] into disjoint subsets I_k . Then let $y_k=f_k(\{x_i\}_{i\in I_k})$ for some function $f_k:\mathbb{R}^{|I_k|\to\mathbb{R}}$, and we have that y_k are independent. To prove this, observe that

$$P(y_1 \in A_1, \dots, y_m \in A_m) = P(f_1 \in A_1, \dots, f_m \in A_m)$$

$$= P(\{X_i\}_{i \in I_1} \in f_1^{-1}(A_1), \dots, \{X_i\}_{i \in I_m} \in f_m^{-1}(A_m))$$

$$= \prod_{j=1}^m P(\{X_i\}_{i \in I_j} \in f_j^{-1}(A_j))$$

$$= \prod_{j=1}^m P(y_j \in A_j).$$

⁷note on board: for any A_1, \ldots, A_n borel sets, intervals are enough, like $(-\infty, x_i]$. confusion?

We need to show that $P(\{X_i\}_{i\in I_1} = b_1, \{X_i\}_{i\in I_2} = b_2) = P(\{X_i\}_{i\in I_1} = b_1)P(\{X_i\}_{i\in I_2} = b_2)$; but as per earlier, this is true.

Now, suppose our random variables X_i s are independently binomial distributed. Then

$$X_1 + \dots + X_{m_1} \sim \text{Bin}(m_1, p) \sim \text{Poiss}_{\lambda_1},$$
 $(\lambda_1 = pm_1)$

$$X_{m_1+1} + \dots + X_{m_1+m_2} \sim \operatorname{Bin}_{m_2,p} \sim \operatorname{Poiss}_{\lambda_2}$$
 $(\lambda_2 = pm_2)$

We may combine the groupings above to get $X_1 + ... X_{m_1+m_2} \sim \text{Bin}(m_1 + m_2, p) \sim \text{Poiss}_{\lambda_1 + \lambda_2}$.

Lemma 4.1. If X and Y are independent and $E[|X|] < \infty$, $E[|Y|] < \infty$, then $E[XY] = E[X]E[Y].^8$

First, assume X, Y > 0. Let us directly write

$$\begin{split} E[XY] &= \sum_{\omega \in \Omega} X(\omega) Y(\omega) P(\omega) \\ &= \sum_{n,m} a_n b_m P(X = a_n, Y = b_m) \\ &= \sum_{n,m} a_n b_m P(X = a_n) P(Y = b_m) \\ &= \sum_n a_n P(X = a_n) \sum_m b_m P(Y = b_m) \\ &= E[X] E[Y]. \end{split}$$

In the case that the random variables are not necessarily non-negative, we may simple consider

$$X = X1(X \ge 0) - |X| 1(X < 0) = X_{+} - X_{-},$$

$$Y = Y1(Y \ge 0) - |Y| 1(Y < 0) = Y_{+} - Y_{-}.$$

However, do note that in the OPPOSITE direction that E[XY] = E[X]E[Y] does NOT imply that X, Y are independent. It is true that E[f(X)g(Y)] = E[f(X)]E[g(y)] for "lots of" f, g would imply that X, Y independent (if this is true for all f, g, then it is independent), but this is unreliable.

Using Fubini's theorem, we may consider X,Y on non-discrete probability spaces, and write

$$\begin{split} E[f(X,Y)] &= \sum_{n,m} f(a_n,b_m) P(X=a_n,Y=b_m) \\ &\overset{\text{if indep.}}{=} f(a_n,b_m) P(X=a_n) P(Y=b_m) \\ &\overset{\text{if "nice"}}{=} \sum_n \left[\sum_m f(a_n,b_m) P(Y=b_m) \right] P(X=a_n). \end{split}$$

We say that the above is "nice" if $f \ge 0$, or $E[f(x,y)] < \infty$, or

$$\sum_{n} \left[\sum_{m} |f(a_n, b_m)| P(Y = b_m) \right] P(X = a_n) < \infty.$$

 $^{^8\}mathrm{i'm}$ sick of the no bracket nonsense

Alternatively, if we dont have our "nice" cases, we have

$$\sum_{n} \left[\sum_{m} f(a_n, b_m) P(Y = b_m \mid X = a_n) \right] P(X = a_n).$$

Now, we inntroduce the conditional distribution $P(y = b_m \mid X = a_n)$, where the distribution is Y given $X = a_n$. We can write the expectation

$$E[g(Y) \mid X = a_n] = \sum_m g(b_m) P(y = b_m \mid x = a_n),$$

i.e. the conditional expectation of g(Y) given $X = a_n$. For example, let X_1, X_2, \ldots be i.i.d. Ber_p and N indep. Poiss_{λ}. Then $Y = X_1 + \cdots + X_N$ has

$$P(Y = k) = \sum_{n=0}^{\infty} P(Y = k, N = n) = \sum_{n=0}^{\infty} P(y = k \mid N = k) P(N = n).$$

If N = n, then $Y = X_1 + \cdots + X_n$, and we have

$$P(Y = k \mid N = n) = P(X_1 + \dots + X_n = k) = \binom{n}{k} p^k (1 - p)^{n - k}.$$

Specifically,

$$P(y) = \sum_{n=0}^{\infty} \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} \frac{\lambda^n}{n!} e^{-\lambda}$$
$$= \frac{(\lambda k)^k}{k!} \left(\sum_{n=0}^{\infty} \frac{(1-p)^{n-k}}{(n-k)!} \lambda^{n-k} \right) e^{-\lambda}$$
$$= \frac{(\lambda p)^k}{k!} e^{-p\lambda} \sim \text{Poiss}_{p\lambda}.$$

Now for another example; let $X_1, X_2, ...$ be i.i.d. Ber_{y_2} ; i.e. let $x_i \in \{0, 1\}^{\mathbb{N}}$; let $x \in [0, 1) = \Omega$, $X = 0, X_1, X_2, ...$ Let P be on [0, 1). Then P([a, b)) = b - a where b > a; we claim that they are i.i.d. Ber_{y_2} , which is proven by subdividing the intervals (whatever this means).

Let
$$P(X_1 = x_1, ..., X_n = x_n)$$
. Then this is equal to
$$= P(X_n = x_n \mid x_1 = x_1, ..., X_{n-1} = x_{n-1}) P(X_1 = x_1, ..., X_{n-1} = x_{n-1})$$

$$= \prod_{k=0}^{n-1} P(X_{k+1} = x_{k+1} \mid X_1 = x_1, ..., X_k = x_k).$$

In this specific kind of system where the probability of X_{k+1} only depends on the ones the step right before, we call it a *Markov Chain*, i.e. a probabilisitic version of dynamical systems.

§6 Day 6: Ulam's Problem; Chebyshev Inequality, Stirling Approximation, and Erdös-Renyi Random Graphs (Sep. 23, 2024)

Let us throw n balls into n boxes. Then consider N to be the number of empty boxes, and we have

$$P(N = k) = \frac{1}{n^n} \binom{n}{k} \sum_{\ell=0}^{k} (-1)^{\ell} \binom{k}{\ell} (k - \ell)^n,$$

with accompanying expectation

$$E[N] = \sum_{k=0}^{n} P(N = k).$$

However, we may simply the expression as follows; let N instead be written as a sum of indicators, i.e.

$$N = \sum_{i=1}^{N} 1(\text{the } i\text{th box is empty}),$$

yielding

$$E[N] = \sum_{i=1}^{N} P(\text{the } i \text{th box is empty}) = nP(\text{the } i \text{th box is empty}) = n \frac{(n-1)^n}{n^n}.$$

Next example; the longest increasing subsequence of a random permutation. Let S_n be the set of bijections $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$. Then $|S_n| = n!$ where each σ has probability $\frac{1}{n!}$, and we define an increasing subsequence to be given by $\sigma(i_1) < \sigma(i_2) < \cdots < \sigma(i_k)$ for $i_1 < i_2 < \cdots < i_k$. Let $L_n(k)$ be the longest increasing subsequence of σ . Then L_n is a random variable; it remains to ask how big L_n is (Ulam's Problem). It is proven (though not in this class) that

$$\frac{L_n}{\sqrt{n}} \to 2$$

as $n \to \infty$, i.e. the expectation $E[L_n] \sim 2\sqrt{n}$ 9.

We prove a looser bound for now; let N_k be the number of increasing subsequences of length k. Then

$$N_k = \sum_{i_1 < \dots < i_k} 1(\sigma(i_1) < \dots < \sigma(i_k)),$$

and we may write

$$E[N_k] = \sum_{i_1 < \dots < i_k} P(\sigma(i_1) < \dots < \sigma(i_k))$$

= $\binom{n}{k} \frac{1}{k!} = \frac{n!}{(n-k)!(k)!^2}.$

We now present Chebyshev's inequality,

$$P(X \ge x) \le \frac{E[X1(X \ge x)]}{x},$$

where x > 0. Using $X1(X \ge x) \ge x1(X \ge x)$, we have $E[X1(X \ge x)] \ge xP(X \ge x)$. Returning to earlier, we obtain $P(N_k > 0) \le E[N_k] = \frac{n!}{(n-k)!(k!)^2}$.

⁹for more, see here:3

Theorem 6.1 (Stirling's Formula). $n! \sim \sqrt{2\pi} n^{n+\frac{1}{2}} e^{-n}$.

To prove this, start by considering the Gamma function $\Gamma(z) = \int_0^\infty t^{z-1} e^t dt$, which gives $\Gamma(n) = (n-1)!$. Let us consider the following;

$$\begin{split} &\Gamma(n+1) = \int_0^\infty t^n e^{-t} \, dt \\ &= \int_0^\infty e^{n \log t - t} \, dt \\ &= n e^{n \log n} \int_0^\infty e^{n (\log x - x)} \, dx \\ &\approx \int e^{n f(x^*) + \frac{f''(x^*)}{2} (x - x^*)^2} \, dx \\ &= e^{-n} \int e^{-\frac{n}{2} (x - 1)^2} \, dx \\ &= \frac{e^{-n}}{\sqrt{n}} \int_{-\infty}^\infty e^{-\frac{y^2}{2}} \, dy \\ &= \frac{e^{-n}}{\sqrt{n}} \sqrt{\int_{-\infty}^\infty \int_{-\infty}^\infty e^{-\frac{1}{2} (x^2 + y^2)} \, dx \, dy \\ &= \frac{e^{-n}}{\sqrt{n}} \sqrt{\int_0^\infty \int_0^{2\pi} e^{-\frac{r^2}{2}} r \, d\theta \, dr \\ &= \frac{e^{-n}}{\sqrt{n}} \sqrt{2\pi} \int_0^\infty r e^{-\frac{r^2}{2}} \, dr \\ &= \frac{e^{-n}}{\sqrt{n}} \sqrt{2\pi}. \end{split}$$

(I don't know where the hell this went. Oh well.)

We may now insert Stirling's formula into Ulam's problem to obtain

$$P_n(N_k > 0) \le \frac{n!}{(n-k)!(k!)^2} \approx c \frac{n^{n+\frac{1}{2}}e^{-n}}{k^{2k+1}e^{-2k}(n-k)^{n-k+\frac{1}{2}}e^{-(n-\frac{1}{2})}},$$

which cancels nicely. Using $k! \ge k^k e^{-k}$, we get $P(N_k > 0) \le (\frac{e\sqrt{n}}{k})^{2k}$. We may make the bound nicer by writing

$$\left(\frac{e\sqrt{n}}{k}\right)^{2k} \le \left(\frac{e}{3}\right)^{6\sqrt{n}},\qquad (k = 3\sqrt{n})$$

and using $(\frac{e}{3})^6 \le e^{-\frac{1}{2}}$ yields that it is less than $e^{-\frac{n}{2}}$. Thus, we have that $P(L > \sqrt[3]{n}) \le \sum_{m=3\sqrt{n}}^{\infty} e^{-\frac{\sqrt{m}}{2}}$.

We now cover Erdös-Renyi random graphs. Let us have a graph on vertices $V = \{v_1, \ldots, v_n\}$, and edges $E = \{e_{ij}\} \subset V \times V$. We have that e_{ij} is in E with probability p, and not there with probability 1 - p, considered independently over all undirected pairs (i, j).

Define a clique to be a complete subgraph of any graph G(n,p), and let us have $\omega(G)$ to be the clique number, i.e. the size of the largest clique of G. This is approximately $C_p \log n$, where C_p is some constant. Let us have N_k as the number of cliques of size k. To calculate the expectation, let us have

$$N_k = \sum_{V' \subset V|V'| = k} 1_{\text{all } e_{ij} for all i, j \in V' \text{ exists}}.$$

Then we have

$$E[N_k] = \binom{n}{k} p^{\binom{k}{2}} =: f(k).$$

Observe that we have

$$\frac{f(k+1)}{f(k)} = \frac{\binom{n}{k+1}p^{\binom{k+1}{k}}}{\binom{n}{k}p^{\binom{k}{2}}} = \frac{n-k}{k+1}p^k.$$

Observing that f(1) = n and $f(n) = p^{\frac{n(n-1)}{2}} \ll 1$, we see that f is unimodal. In particular, there is a unique point k_0 such that $f(k_0) \geq 1 > f(k_0 + 1)$. Thus,

$$\left(\frac{n}{k} - 1\right)^k p^{\frac{k(k-1)}{2}} \le f(k) \le n^k p^{\frac{k(k-1)}{2}}.$$

In particular, the right hand side is less than 1 if $np^{\frac{k-1}{2}} < 1$, and this evaluates out to $k > C_p \log n$. The left hand side is greater than 1 when $k \le \frac{\log(\frac{n}{k} - 1)}{|\log p|} + 1$.

§10 Day 10: Erdös-Renyi Random Graphs and Cliques, Chebyshev Inequality, Moment Generating Function (Oct. 7, 2024)

We start at *Example 1.5.5* in Panchenko. Consider the Erdös-Renyi random graph, G(n,p), where n is the number of vertices of the graph, and p is the probability that an edge is in the graph. Then a clique subset of $V = \{v_1, \ldots, v_n\}$ is a complete graph, and we denote N_k to be the number of cliques of size k. We also define

$$f(k) = \mathbb{E}N_k = \binom{n}{k} p^{\binom{k}{2}},$$

i.e. f(1) = n, $f(n) = p^{\binom{n}{2}}$. Then k_0 , defined as $f(k_0) \ge 1 > f(k_0 + 1)$, has $k_0 \sim c_p \log n$, where $c_p = \frac{2}{\lceil \log p \rceil}$. We also have

$$f(k+1) = \frac{n-k}{k+1} p^k f(k) \le n p^k f(k), \quad f(k_0+m) \le \frac{1}{n^m} (1-\varepsilon).$$

Then we also get bounds on k_0 , which is greater than $\frac{(2-\varepsilon)\log n}{|\log p|}$, and so $p_0^k \leq \frac{1}{n^{2-\varepsilon}}$. Using Chebyshev, we get that

$$\mathbb{P}(N_{k_0+m+1} > 0) \le \mathbb{E}[N_{k_0+m+1}] \le \frac{1}{n^{m(1-\varepsilon)}}.$$

Observe that we have $\frac{(2-\varepsilon)\log n}{|\log p|} < k < k_0$, and $p^k \leq \frac{1}{n^{2-\varepsilon}}$, and

$$\frac{f(k+1)}{f(k)} = \frac{n-k}{k+1}p^k \le np^k \le \frac{1}{n^{1-\varepsilon}}.$$

We want to prove that there are lots of cliques there. To do this, we use the second moment method, $\mathbb{P}(|N_k - \mathbb{E}N_k| \ge x) \le \frac{\operatorname{Var}(N_k)}{x^2}$. Using the fact that N_k is defined as

$$N_k = \sum_{\substack{W \subset V \\ |W| = k}} 1(W \text{ is a clique}),$$

we get that

$$\operatorname{Var} N_k = \sum_{W,W'} \operatorname{Cov}(1_W, 1_{W'}).$$

If $|W \cap W'| \leq 1$, then $1_W, 1_{W'}$ are clearly independent, so $Cov(1_W, 1_{W'}) = 0$. If W and W' share more than 1 vertex, though, call this number i. Then

$$\operatorname{Cov}(1_W, 1_{W'}) = \mathbb{E}[1_W' 1_W] - \mathbb{E}[1_W] \mathbb{E}[1_{W'}] \le \mathbb{E}[1_W' 1_W] = \mathbb{P}(W, W' \text{ cliques}).$$

Note that there are $\binom{n}{k}\binom{k}{i}\binom{n-k}{k-i}$ pairs of W,W' with i vertices in common. Thus, we have that the probability of W,W' being cliques is given by

$$\mathbb{P}(W, W' \text{ cliques}) = p^{\binom{k}{2}} p^{\binom{k}{2} - \binom{i}{2}}.$$

Then we may write

$$Var(N_k) \le \sum_{i=2}^k \binom{n}{i} k \binom{k}{i} \binom{n-k}{k-i} p^{\binom{k}{2}} p^{\binom{k}{2} - \binom{i}{2}}$$
$$= f^2(k) \sum_{i=2}^k \frac{\binom{k}{i} \binom{n-k}{k-i}}{\binom{n}{k}} p^{-\binom{i}{2}}.$$

Using Chebyshev from earlier, we get

$$\mathbb{P}(|N_k - \mathbb{E}E_k| \ge \delta \mathbb{E}N_k) \le \frac{1}{\delta^2} \sum_{i=2}^k a(i).$$

It remains to show that the right hand side is small for k in the range. This just leads to tedious calculation; to start, let us check a(2):

$$a(2) = \frac{\binom{k}{2}\binom{n-k}{k-2}}{\binom{k}{2}} p^{-\binom{2}{2}}$$

$$= \frac{k^2(k-1)^2}{2} \frac{(n-k)\dots(n-2k+3)}{n(n-1)\dots(n-k+1)} \frac{1}{p}$$

$$\leq \frac{k^4}{(n-k)^2} \frac{1}{2p} \leq c_p \frac{(\log n)^4}{n^2}.$$

We also have that

$$a(k) = \frac{1}{\binom{n}{k}} p^{-\binom{k}{2}} = \frac{1}{f(k)}.$$

Let us define b(i) as the ratio of two consecutive a(i), and write

$$b(i) = \frac{a(i+1)}{a(i)} = \frac{\binom{k}{i+1}}{\binom{k}{i}} \frac{\binom{n-k}{k-i-1}}{\binom{n-k}{k-i}} p^{-\binom{i+1}{2} + \binom{i}{2}} = \frac{(k-i)^2}{(i+1)(n-2k+i+1)} p^{-i}.$$

We may derive the properties of a from b; in particular, we like b more because it is "nicer" than a. In particular, if $i \leq \frac{1}{3} \frac{\log n}{|\log p|}$, then $p^{-1} \leq n^{\frac{1}{3}}$, and we have $b(i) \sim n^{-\frac{2}{3}} \lesssim 1$.

Likewise, if $i > \frac{3}{2} \frac{\log n}{|\log p|}$, then $p^{-i} > n^{\frac{3}{2}}$. Then $b(i) \gtrsim \frac{n^{\frac{1}{2}}}{k} > 1$. We have that $\frac{b(i+1)}{b(i)} \gtrsim \frac{1}{p} > 1$, so b is increasing.

We now return to sums of independent random variables. Let X_1, \ldots, X_n be i.i.d., and $\mathbb{E}X_i^2 < \infty$. Let us have $\overline{X_n} = \frac{1}{n} \sum_{i=1}^n x_i$, and

$$\mathbb{P}(\left|\overline{X_n} - EEX_1\right| > \varepsilon) = \frac{\operatorname{Var}\overline{X_n}}{\varepsilon^2} = \frac{\sigma^2}{n\varepsilon^2},$$

where we let ε^2 be the variance of X_i . We could do better, i.e.

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[e^{\lambda x}]}{e^{\lambda t}}.$$

This gives

$$\mathbb{P}(X_1 + \dots + X_n \ge t) \le \frac{\mathbb{E}[e^{\lambda(X_1 + \dots + X_n)}]}{e^{\lambda t}} = \frac{EE[e^{\lambda X_1}]^n}{e^{\lambda t}}.$$

This is called exponential Chebyshev. For example, let $X = \sum \varepsilon_i a_i$, where ε_i are independent Rademacher with $\mathbb{P}(\varepsilon_i = 1) = \frac{1}{2} = \mathbb{P}(\varepsilon_i = -1)$ (read: coinflip distribution). Then we may apply exponential Chebyshev and optimize to get (Theorem 3.1 in Panchenko)

$$\mathbb{P}\left(\sum_{i=1}^{n} \varepsilon_{i} a_{i} \geq t\right) \leq e^{-\frac{t^{2}}{2\sum_{i=1}^{n} a_{i}^{2}}}.$$

We also have

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} \varepsilon_{i} a_{i}\right| \geq t\right) \leq 2e^{-\frac{t^{2}}{2\sum_{i=1}^{n} a_{i}^{2}}}.$$

By the law of large numbers for a fair coin, we may take $a_i = \frac{1}{n}$ as per $\overline{X_n}$, and we get

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\right|\geq t\right)\leq 2e^{-\frac{nt^{2}}{2}}.\quad \Box$$

Small digression; let X_1, \ldots be i.i.d., and consider $\mathbb{E}[e^{\lambda x}] < \infty$. We call the LHS $M(\lambda)$, i.e. the moment generating function. In particular, $M'(0) = \mathbb{E}[X]$. We also have $M''(0) = \mathbb{E}[X^2] = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \mathbb{E}[X^n]$, meaning that we have $X^n \leq C_{\lambda}[e^{\lambda X} + e^{-\lambda X}]$. Notice that we may write

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{n} > t\right) \le \frac{M(\lambda)^n}{e^{\lambda t n}} = e^{-n\{\lambda t - \log M(\lambda)\}}.$$

Optimizing this over λ , we get that the LHS is less than or equal to $e^{-nI(d)}$, where $I(t) = \sup_{\lambda} \{\lambda t - \log M(\lambda)\}.$

Let $a_1^2 + \cdots + a_n^2 = 1$. Then $\mathbb{E}X^{2k+1} = 0$, and we may write

$$\begin{split} \mathbb{E} X^{2k} &= \int_0^\infty 2kt^{2k-1} \mathbb{P}(|X| > t) \, dt \\ &\leq \int_0^\infty 2kt^{2k-1} 2e^{-\frac{t^2}{2}} \, dt \\ &= k2^{k+1} \int_0^\infty u^{k-1} e^{-i} \, du \\ &= k2^{k+1} \Gamma(k) \\ &= k2^{k+1} (k-1)! = 2^{k+1} k!. \end{split}$$

Let $Z \sim N(0,1)$. Then we have

$$\mathbb{E}[e^{\lambda z^2}] = \int_{-\infty}^{\infty} e^{\lambda z^2 - \frac{z^2}{2}} \frac{dz}{\sqrt{2\pi}} . < \infty$$

if and only if $\lambda < \frac{1}{2}$. Let $Y = X^2 - 1$. Then $e^x \le 1 + x + \frac{x^2}{2} + \sum_{k=3}^{\infty} \frac{x_+^k}{k!}$. We denote $x_+ = x$ if $x \ge 0$, and 0 otherwise.

§12 Day 12: Inequalities (Oct. 16, 2024)

Let X_i be independently distributed B(p), and consider $X_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then (where q > p)

$$\mathbb{P}\left(\overline{X_n} \ge q\right) \le e^{-n\lambda q} \mathbb{E}[e^{\lambda x_i}]^n = e^{-n\left\{\lambda q - \log(1 - p \pm p e^{\lambda})\right\}}.$$

We want to take the supremum of $\{\lambda q - \log(1 - p + pe^{\lambda})\}$; then we have

$$f'(\lambda) = q - \frac{pe^{\lambda}}{1 - p + pe^{\lambda}},$$

where we note if $f'(\lambda) = 0$, then $q(1-p) + qpe^{\lambda} = pe^{\lambda}$ implies $e^{\lambda} = \frac{q(1-p)}{p(1-q)} > 1$. We write D(q || p) to be the Kullback-Leibler divergence, aka relative entropy, i.e. H(q || p). Let M be a differentiable manifold of dimension n. Then let $D: M \times M \to [0, \infty)$, and consider M as a parameterized family of probability measures. Then

$$D(q,p) \ge 0;$$

 $D(q,p) = 0;$ (if and only if $q = p$)
 $D(p,p+dp).$ (should be positive def. quadratic in dp)

We check that this is indeed true.

(a) We check that D is non-negative.

$$q \log \frac{q}{p} + (1 - q) \log \frac{1 - q}{1 - p}$$

$$= q \left(-\log \frac{p}{q} \right) + (1 - q) \left(-\log \frac{1 - p}{1 - q} \right)$$

$$\ge q \left(1 - \frac{p}{q} \right) + (1 - q) \left(1 - \frac{1 - p}{1 - q} \right)$$

$$= q - p + 1 - q - (1 - p) = 0.$$

(b) We now check that it is identically zero iff q = p. Intuitively, there is no entropy needed to move $p \to q$ if they are equal.

$$\inf_{q} \underbrace{\left\{ q \log \frac{q}{p} + (1 - q) \log \frac{1 - q}{1 - p} \right\}}_{g'(a)}$$

$$g'(a) = \log \frac{q}{p} - q \frac{p}{q} \frac{1}{p} - \log \frac{1 - q}{1 - p} = 1$$

$$\implies \log \frac{q}{p} = \log \frac{1 - q}{1 - p},$$

which occurs only when p = q.

(c) We leave the third alone for now.

An application of this is to classification algorithms. Consider t a classifier, and E_n an empirical error, i.e.

$$E_n(t) = \frac{1}{n} \sum_{i=1}^{m} L(y_i, f(x_i)),$$

where L is some loss function, and we consider (X_i, Y_i) i.i.d. $\mathcal{F} = \{f_1, \dots, f_N\}$. The generalization error E(f) = E[L(X, f(y))], and suppose we have

$$\mathbb{P}(E_n(f) \ge E(f) + \varepsilon) < e^{-cn\varepsilon^2}.$$

Then $\mathbb{P}(\forall f \in \mathcal{F}, E(f) \leq E_n(f) + \varepsilon) \geq 1 - Ne^{cn\varepsilon^2}$. Let $\delta = Ne^{-Cn\varepsilon^2}$; to get confidence $1 - \delta$ that the generalization error is within ε ; then we need $n = \frac{1}{c\varepsilon^2} \log \frac{N}{\delta}$.