

Network Layer Part 7

Mark Allman mallman@case.edu

Fall 2018

"I was working in the lab late one night When my eyes beheld an eerie sight" These slides are more-or-less directly from the slide set developed by Jim Kurose and Keith Ross for their book "Computer Networking: A Top Down Approach, 5th edition".

The slides have been lightly adapted for Mark Allman's EECS 325/425 Computer Networks class at Case Western Reserve University.

All material copyright 1996-2010 J.F Kurose and K.W. Ross, All Rights Reserved

Reading Along ...

- Network layer is chapters 4 & 5
 - Routing Algorithms

Interplay between routing, forwarding

Graph: G = (N,E)

 $N = set of routers = \{ u, v, w, x, y, z \}$

 $E = \text{set of links} = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

•
$$c(x,x') = cost of link (x,x')$$

$$-e.g., c(w,z) = 5$$

•
$$c(x,x') = cost of link (x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

•
$$c(x,x') = cost of link(x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

E.g., cost of $(u, w, z) = c(u, w) + c(w, z) = 5 + 5 = 10$

•
$$c(x,x') = cost of link (x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

E.g., cost of $(u, w, z) = c(u, w) + c(w, z) = 5 + 5 = 10$

Question: What path to use between u and z?

•
$$c(x,x') = cost of link (x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

E.g., cost of $(u, w, z) = c(u, w) + c(w, z) = 5 + 5 = 10$

Question: What path to use between u and z?

Question: What's the least-cost path between u and z?

•
$$c(x,x') = cost of link (x,x')$$

$$- e.g., c(w,z) = 5$$

 cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

Cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

E.g., cost of $(u, w, z) = c(u, w) + c(w, z) = 5 + 5 = 10$

Question: What path to use between u and z?

Question: What's the least-cost path between u and z?

Routing algorithm: algorithm that finds least-cost path

Global or decentralized information?

Global or decentralized information?

Global:

- *all routers have complete topology, link cost info
- "link state" algorithms

Global or decentralized information?

Global:

- *all routers have complete topology, link cost info
- *"link state" algorithms

Decentralized:

- router knows physicallyconnected neighbors, link costs to neighbors
- *iterative process of computation, exchange of info with neighbors
- distance vector algorithms

Static or dynamic?

Static:

*routes change slowly over time

Dynamic:

- *routes change more quickly
 - periodic update
 - in response to link cost changes

Reading Along ...

- Network layer is chapters 4 & 5
 - Routing Algorithms
 Link state routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- *net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- *computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- *iterative: after k iterations, know least cost path to k dest.'s

Dijsktra's Algorithm

```
Initialization:
   N' = \{a\}
   for all nodes b
     if b adjacent to a
       then D(b) = c(a,b)
6
     else D(b) = \infty
   Loop
    find e not in N' such that D(e) is a minimum
    add e to N'
     update D(f) for all f adjacent to e and not in N':
       D(f) = \min(D(f), D(e) + c(e,b))
13 /* new cost to f is either old cost to f or known
     shortest path cost to e plus cost from e to f */
15 until all nodes in N'
```

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

*e.g., link cost = amount of carried traffic

initially

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

*e.g., link cost = amount of carried traffic

initially

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Algorithm complexity: n nodes

- *each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: $O(n^2)$
- *more efficient implementations possible: O(nlogn)

Oscillations possible:

Reading Along ...

- Network layer is chapters 4 & 5
 - Routing Algorithms
 Distance vector

 routing

Distance Vector Algorithm

Distance Vector Algorithm

Bellman-Ford Equation (dynamic programming)

Define

 $d_x(y) := cost of least-cost path from x to y$

Then

$$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$

where min is taken over all neighbors v of x

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_u(z) = \min \{ c(u,v) + d_v(z),$$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z),$$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z), c(u,w) + d_{w}(z) \}$$

$$= min \{ 2 + 5,$$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

$$d_{u}(z) = min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= min \{ 2 + 5, 1 + 3, 4 \}$$

Clearly,
$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

Node that achieves minimum is next hop in shortest path → forwarding table

Distance Vector Algorithm

- $D_{x}(y) = estimate of least cost from x to y$
 - x maintains distance vector $D_x = [D_x(y): y \in N]$
- *node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors.
 For each neighbor v, x maintains

$$D_v = [D_v(y): y \in N]$$

Distance vector algorithm

Basic idea:

- *from time-to-time, each node sends its own distance vector estimate to neighbors
- *when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c(x,v) + D_v(y)\}$$
 for each node $y \in N$

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused

by:

- *local link cost change
- *DV update message from neighbor

Distributed:

- each node notifies neighbors only when its DV changes
 - neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor) *recompute* estimates if DV to any dest has changed, *notify* neighbors

Distance Vector: link cost changes

Link cost changes:

- node detects local link cost change
- updates routing info, recalculates distance vector
- * if DV changes, notify neighbors
- good news travels fast

Distance Vector: link cost changes

Link cost changes:

- good news travels fast
- bad news travels slow "count to infinity" problem!
- * 44 iterations before algorithm stabilizes: see text

Comparison of LS and DV algorithms

Comparison of LS and DV algorithms Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

Comparison of LS and DV algorithms Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

Speed of Convergence

- * LS: $O(n^2)$ algorithm requires O(nE) msgs
 - may have oscillations
- * <u>DV</u>: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Comparison of LS and DV algorithms

Message complexity

- LS: with n nodes, E links, O(nE) msgs sent
- DV: exchange between neighbors only
 - convergence time varies

Speed of Convergence

- * LS: $O(n^2)$ algorithm requires O(nE) msgs
 - may have oscillations
- * <u>DV</u>: convergence time varies
 - may be routing loops
 - count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- node can advertise incorrect link cost
- each node computes only its own table

<u>DV:</u>

- DV node can advertise incorrect path cost
- each node's table used by others
 - error propagate thru network

Link State

Distance Vector

5 U 1

Distance Vector

Both can work in small networks

Distance Vector

- Neither great for dealing with big networks
 - millions of destinations

- *We must apply divide and conquer
- *Aggregate routers within organizations together and deal with them as a single unit
 - An "autonomous system"

- *Must have two routing algorithms:
 - Intra-AS or Interior routing algorithms to manage routing inside an AS
 - Inter-AS or Exterior routing algorithms to manage routing between ASes

Interconnected ASes

Interconnected ASes

- *forwarding table configured by both intra- and inter-AS routing algorithm
 - intra-AS sets entries for internal dests
 - inter-AS & intra-As sets entries for external dests