

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych

Automatyczna kategoryzacja tematyczna tekstów przy użyciu metryk w przestrzeni ciągów znaków

Natalia Potocka *Warszawa*, 21.04.2014

Plan działania

- Cel pracy
- O metrykach słów kilka
- Postęp prac
- Co dalej?

CEL PRACY

Celem pracy jest skategoryzowanie tekstów z polskiej Wikipedii pod względem tematu na podstawie liczności słów występujących w tekście. Można się spodziewać, że jeśli w dwóch tekstach występuje dużo podobnych do siebie słów, to pochodzą one z tej samej kategorii tematycznej.

CEL PRACY

Celem pracy jest skategoryzowanie tekstów z polskiej Wikipedii pod względem tematu na podstawie liczności słów występujących w tekście. Można się spodziewać, że jeśli w dwóch tekstach występuje dużo podobnych do siebie słów, to pochodzą one z tej samej kategorii tematycznei.

Α		В		С		D	
całka	10	całka	5	niewłaściwy	3	ułamek	4
pochodna	5	pochodna	15	powieść	7	mianownik	5
niewłaściwa	4	granica	7	granica	15	niewłaściwy	6

CEL PRACY

Co ze słowami podobnymi? Przykładowo słowa *niewłaściwy* i *niewłaściwa* mają ten sam temat, różnią się tylko rodzajem (męski / żeński). W tekstach mogą też występować błędy ortograficzne, błędy spowodowane brakami znaków diaktrycznych (ą, ę, ł, ...) itd. Takie słowa również chcielibyśmy traktować jak "podobne". W celu określenia jak bardzo dwa słowa są do siebie podobne, posłużą *metryki określone na napisach*.

DEFINICJA

Napisem nazywamy skończone złączenie symboli (znaków) ze skończonego alfabetu, oznaczonego przez Σ . Produkt kartezjański rzędu $q, \Sigma \times \ldots \times \Sigma$ oznaczamy przez Σ^q , natomiast zbiór wszystkich skończonych napisów, które można utworzyć ze znaków z Σ oznaczamy przez Σ^* . Pusty napis, oznaczany ε , również należy do Σ^* . Napisy zwyczajowo będziemy oznaczać przez s, t oraz s, a ich s0 oznaczań znaków w napisie, przez s1.

DEFINICJA

Napisem nazywamy skończone złączenie symboli (znaków) ze skończonego alfabetu, oznaczonego przez Σ . Produkt kartezjański rzędu $q, \Sigma \times \ldots \times \Sigma$ oznaczamy przez Σ^q , natomiast zbiór wszystkich skończonych napisów, które można utworzyć ze znaków z Σ oznaczamy przez Σ^* . Pusty napis, oznaczany ε , również należy do Σ^* . Napisy zwyczajowo będziemy oznaczać przez s, t oraz s, a ich s0 oznaczań znaków w napisie, przez s1.

Przykład. Niech Σ będzie alfabetem złożonym z 26 małych liter alfabetu łacińskiego oraz niech s='ala'. Wówczas mamy |s|=3, $s\in\Sigma^3$ oraz $s\in\Sigma$. Pojedyncze znaki oznaczamy przez indeks dolny, stąd mamy $s_1='a'$, $s_2='l'$, $s_3='a'$. Podnapis oznaczamy przez m:n w indeksie dolnym, np. $s_{1:2}='al'$. Jeśli n< m, to $s_{m:n}=\varepsilon$, czyli napis pusty.

DEFINICJA

Funkcję d nazywamy metryka na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \le d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \leq d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

Nie wszystkie metryki na napisach posiadają wszystkie z wyżej wymienionych właśności.

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \leq d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

Nie wszystkie metryki na napisach posiadają wszystkie z wyżej wymienionych właśności.

Metryki na napisach można podzielić na trzy grupy:

- oparte na operacjach edytowania (edit operations)
- oparte na q-gramach
- miary heurystyczne

DEFINICJA

Funkcję d nazywamy metrykq na Σ^* , jeśli ma poniższe własności:

- $d(s,t) \ge 0$
- d(s,t) = 0 wtw s = t
- d(s,t) = d(t,s)
- $d(s,u) \leq d(s,t) + d(t,u)$,

gdzie s, t, u są napisami.

Nie wszystkie metryki na napisach posiadają wszystkie z wyżej wymienionych właśności.

Metryki na napisach można podzielić na trzy grupy:

- oparte na operacjach edytowania (edit operations)
- oparte na q-gramach
- miary heurystyczne

OPERACJE EDYTOWANIA

Metryki oparte na operacjach edytowania zliczają liczbę opercji potrzebnych do przetworzenia jednego napisu w drugi. Najczęściej wymieniamymi operacjami są:

- zamiana znaku, np. $'ala' \rightarrow 'ela'$
- usunięcie znaku, np. $'ala' \rightarrow 'aa'$
- wstawienie znaku, np. $'ala' \rightarrow 'alka'$
- ullet transpozycja dwóch przylegających znaków, np. 'ala'
 ightarrow 'laa'

Przykładowe metryki: Hamminga, najdłuższego wspólnego podnapisu (longest common substring), Levenshteina, optymalnego dopasowania napisów (optimal string alignment), Damareu-Levenshteina.

Metryka **najdłuższego wspólnego podnapisu**, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia', 'leela') = 3$, bo $leela \xrightarrow{us. e} lela \xrightarrow{us. l} lea \xrightarrow{wst. i} leia$.

Metryka **najdłuższego wspólnego podnapisu**, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia','leela') = 3$, bo $leela \xrightarrow{us.\ e} lela \xrightarrow{us.\ l} lea \xrightarrow{wst.\ i} leia$. Uogólniona **odległość Levenshteina**, ozn. d_{lv} zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego napisu w drugi.

Metryka najdłuższego wspólnego podnapisu, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia','leela') = 3$, bo $leela \xrightarrow{us.\ e} lela \xrightarrow{us.\ l} lea \xrightarrow{wst.\ i} leia$. Uogólniona odległość Levenshteina, ozn. d_{lv} zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego napisu w drugi.

Gdy za wagi przyjmuje się $1 \,$ mamy do czynienia ze zwykłą odległością Levenshteina, np.

 $d_{lv}('leia', 'leela') = 2$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$.

Metryka najdłuższego wspólnego podnapisu, ozn. d_{lcs} , zlicza liczbę usunięć i wstawień, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{lsc}('leia','leela')=3$, bo $leela \xrightarrow{us.\ e} lela \xrightarrow{us.\ l} lea \xrightarrow{wst.\ i} leia$. Uogólniona odległość Levenshteina, ozn. d_{lv} zlicza ważoną sumę usunięć, wstawień oraz zamian znaków, potrzebnych do przetworzenia jednego

Gdy za wagi przyjmuje się $1 \ \mathrm{mamy}$ do czynienia ze zwykłą odległością Levenshteina, np.

$$d_{lv}('leia', 'leela') = 2$$
, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$. Gdy za wagi przyjmiemy np. $(0.1, 1, 1)$,

$$d_{lv}('leia', 'leela') = 1.1$$
, bo $leela \xrightarrow[0.1]{us.\ e} lela \xrightarrow[1]{zm.\ l\ na\ i} leia$

napisu w drugi.

Metryka optymalnego dopasowania napisów, ozn. d_{osa} , zlicza liczbę usunięć, wstawień, zamian oraz transpozycji przylegających znaków, potrzebnych do przetworzenia jednego napisu w drugi. Np. $d_{osa}('leia', 'leela') = 2$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l na i} leia$.

Metryka optymalnego dopasowania napisów, ozn. d_{osa} , zlicza liczbę usunięć, wstawień, zamian oraz transpozycji przylegających znaków, potrzebnych do przetworzenia jednego napisu w drugi. Np.

 $d_{osa}('leia', 'leela') = 2$, bo $leela \xrightarrow{us. e} lela \xrightarrow{zm. l \ na \ i} leia$.

Metryka ta nie spełnia nierówności trójkąta:

$$2 = d_{osa}('ba','ab') + d_{osa}('ab','acb') \leq d_{osa}('ba','acb') = 3$$

Postępy prac

Dziękuję za uwagę.