EXERCICIO COMPLETO ES 728
PROJETAN PARA O S'STEMA ABANO UM CONTROLADOR "K" POR REAGMENTAÇÃO DE ESTADOS É UM OBSERVADOR "L".
POLOS DO OBSERVADOR -> 3-6,-89 POLOS DO SIST. MALHA FECHADA 3-1,-24
FORMAS CANÔNICAS E F. DE ACKEMMAN
(PONTE 1 - CONTROLADOR)
$A = \begin{bmatrix} 4 & -2 \\ 15 & -9 \end{bmatrix} \qquad B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
C=[10] D=0
$P = \begin{bmatrix} 3 & A \times B \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 6 \end{bmatrix}$
Trank(P) = 2 => E CONTROLAVEL

GENANDO A FORMA CAN. CONTROLADON -1 [1.5 -0.5 7 [-0.25 Q25] => ULTIMA LINHA -> p= 6025 005 MONTANDO APLICANDO A TRANSF. DE S'MILARIDADE Cos C.T

=> POL. CARACTER(STICO DE MACHA FECHADA
$\Rightarrow \phi(s) = S^2 + (5+K_1)S + (k_0-6)$
POL. CANAC. DESETADO PI M.F.
POL. CAMAC. DESETTADO P/ M.F. PDES (S) = (S+1)(S+2) - S2+35+2
$\frac{25+K_{1}=3}{K_{0}-6=2} \rightarrow K_{1}=-2$
=> Kc=[8-2]
YOLTANDO PANA A FORMA ORIGINAL
$K = K_{c}.T^{\frac{1}{2}}$ $K = [8 2].[-0.25 0.25] = [2.75 -1.75]$
(K5 [-7,5 5,5])
PENIFICADO - EIG (A-BK) = E1G (11.5 -7.5) - (1) (22.5 -14.5) - (2)

CHECANDO PELA F. ACKERMAN
NESSE CASO TEMOS DE USAR A FORMA DUAL POIS ACKERMAN É PETO PARA PROSETO DE CONTROLE
ASSIM USANDMOS -> "A" & A" "B" CT
NOSSA "MATRIZ" DE CONTROLABICIDADE SERIA P=["B" "A.B"]=[C' A'C']
$\overline{P} = \begin{bmatrix} 1 & 4 \\ 0 & -2 \end{bmatrix}$
Poes (A') = A' + 14 A' + 48. I = [90 135] [-18 -23]
ASSIM 8
L' = [01]. Emo(P). por (A')
L' = [9 13.5]
[tilibra]

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\mathbf{e}} \end{bmatrix} = \begin{bmatrix} A - BK & BK \\ 0 & A - LC \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} + \begin{bmatrix} B\overline{N} \\ 0 \end{bmatrix} r$$
 Nbar=1; Ace=[(A-B*K) (B*K); zeros(size(A)) (A-L*C)]; Bce = [B*Nbar; zeros(size(B))]; Cce = [C zeros(size(C))]; Dce = [0];