Blockchain-based Federated Learning: privacy and incentive ECE6903J - Distributed Machine Learning Systems (Research project)

Hugo Vanhille, Pedro Hernández Rubio

Department of Automation

2022 年 12 月

目录

Background Motivation

Crowdsensing

2 Research

Problems

The privacy-preserving of crowdsensing
The incentive mechanism of

The incentive mechanism of

crowdsensing

3 System architecture

Software application

Security issues: privacy Single point of failure

5 Quality management: incentive

Mechanism design: multifactor

Mechanism design: issues

6 Conclusions

Application

Limitations

Further research

第1节

Background

第1节

Background

第1小节

Motivation

Motivation

Goal

Applying ML to systems (blockchain-based models)

- Research line mainly targeted to blockchain technology (its application to systems)
- Research group in Department of Automation (PhD supervisors) has been recently working in blockchain-based models applied to trust management systems
- Specifically, applied to data-aggregation systems in the Internet of Things (IoT) field crowdsensing
- Could similar approach be applied for Federated Learning?

第1节

Background

第2小节 Crowdsensing

Crowdsensing: definition

- Crowdsensing: emerging paradigm of data aggregation paper1, having a key role in data-driven applications. Specially used for getting large ammounts of IoT sensing data, by using the individual intelligent sensing devices.
- Benefit: improved data collection efficiency and reduced costs effectively paper 2

2022 年 12 月

Crowdsensing: issues

- Managed and maintained centralized platforms suffer from the single point of failure
 - **Proposal:** decentralized architecture (blockchain technology) that lacks a single point of failure, and enhances privacy with asymmetric encryption and digital signature technology
- Encouraging workers by offering appropriate incentive mechanisms (monetary usually) →auction theory guarantees benefits for both requesters and workers paper 15 but only provide short-term incentives
 - Proposal: hybrid incentive mechanism, adopting mechanism design theory, considering three factors:
 - Monetary reward
 - Reputation evaluation
 - Data quality

第2节

Research

第2节

Research

第1小节 **Problems**

Blockchain background

Distributed ledger containing a time-stamped series of immutable blockchains, trustless, decentralized, proof-tampering and full traceability

- Research approaches on blockchain-based crowdsensing:
 - Evaluating time consumption and task cost of applying a blockchain-based system^{paper33}
 - Blockchain-based crowdsensing quality control modelpaper34
 - Considering privacy issues^{paper35}
 - Handling location privacy protection^{paper37} (confusion mechanism)

第2节

Research

第2小节

The privacy-preserving of crowdsensing

第2节

Research

第3小节

The incentive mechanism of crowdsensing

The incentive mechanism of crowdsensing

- Main types of incentive mechanisms:
 - Monetary-based: distributing rewards. And two subtypes can be consideredpaper16:
 - price-decision-first (auction theory) design optimal mechanism benefiting both requesters adn workers
 - upload-decision-first: distributing rewards base on the uploaded data (quality)
 - Reputation-based: reputation framework for worker selection (algorithms)
- Limitations
 - Relies on a central platform, vulnerable to target attacks
 - Single-attribute incentive mechanisms (multifactor incentive needed)

Some previous hybrid incentive mechanisms^{paper52} suffer of usability problems because the difficulty of hybrid data management

第3节

System architecture

←□▶ ←□▶ ←□▶ ←□▶ □□ ♥ ♀♡

System architecture

第1小节

Software application

System architecture

System flow

- System initialization: configuration and identity authentication mechanisms
- Task process: Specific steps of crowdsensing
 - Step 1: Task publishing (invoking the smart contract to update the task state)
 - Step 2: Worker selection (workers submit the bidding price and workers select appropriate workers)
 - Step 3: Data uploading (selected workers perform the task and upload data)
 - Step 4: Reward assignment and data evaluation (requester distribute rewards and evaluate data quality)
- System synchronization: state update about tasks and workers (validating transactions into new blocks)

第4节

Security issues: privacy

4□▶ 4周▶ 4厘▶ 4厘▶ 厘厘 900

2022 年 12 月

Security issues: privacy

第4节

Security issues: privacy

第1小节

Single point of failure

第5节

Quality management: incentive

第5节

Quality management: incentive

第1小节

Mechanism design: multifactor

- Based on three parameters:
 - 1 Workers' bidding
 - 2 Reputation
 - 3 Recent data quality estimation
- Analytic Hierarchy Process (AHP) framework →(top-down)
 - 1 Objective level: winning workers
 - 2 Criteria level: parameters criteria
 - 3 Alternative level: workers available

Multifactor worker evaluation approach

$$\theta_i = \omega_1 B_i + \omega_2 R_i + \omega_3 Q_i$$

where
$$\omega_i \geq 0$$
 and $\sum_{\omega_i=1}^{3} \omega_i = 1$

<ロト <個ト < 注ト < 注ト 至|= り<0 23/

第5节

Quality management: incentive

第2小节

Mechanism design: issues

□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≥ | □ ◆ ○ Q ○ 24/34

Mechanism design: issues

- How to select appropriate workers?
 - Proposal: decentralized architecture (blockchain technology) that lacks a single point of failure, and enhances privacy with asymmetric encryption and digital signature technology
- 2 How to distribute the rewards to the workers?

With the help of mechanism design theory article two important properties for the incentive mechanism are guaranteed:

- **Incentive quality (IC):** the truthful submission of sensing cost is the worker's optimal bidding strategy
- Individual rationality (IR): the reward must compensate for the worker's cost (non-negative)

第6节

Conclusions

Conclusions

第1小节 **Application**

Results

A consortium blockchain-based incentive model for crowdsensing system is proposed

- Benefits of consortium blockchain technology:
 - resistant to the single point of failure (system security)
 - · cooperative management (by requesters) reduces cost and enhances the flexibility of the system (selection criteria)
- Benefits of hybrid incentive mechanism:
 - encourages workers to contribute valuable data (and penalizes malicious ones)
 - ensures favorables short-term and long-term incentives for workers

第6节

Conclusions

第 2 小节 Limitations

Limitations

Further research:

- 1 Dynamic situation where evaluations attributes are changing
- Optimization of consensus protocol (better performance)
- § Further protection of worker privacy

Possible solutions

Application of ML techniques to blockchain-based system

第6节

Conclusions

第3小节

Further research

第丨部分

附录

参考文献

参考文献 I

[1] JIANG X, WANG H, CHEN Y, et al. MNN: A Universal and Efficient Inference Engine[EB/OL]. arXiv. 2020. https://arxiv.org/abs/2002.12418.

