Data Flow Analysis

Baishakhi Ray Columbia University

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Data flow analysis

- Derives information about the **dynamic** behavior of a program by only examining the **static** code
- Intraprocedural analysis
- Flow-sensitive: sensitive to the control flow in a function

Examples

- Live variable analysis
- Constant propagation
- Common subexpression elimination
- Dead code detection

```
1 a := 0
2 L1: b := a + 1
3 c := c + b
4 a := b * 2
5 if a < 9 goto L1
6 return c</pre>
```

- How many registers do we need?
- Easy bound: # of used variables (3)
- Need better answer

Data flow analysis

- Statically: finite program
- Dynamically: can have infinitely many paths
- Data flow analysis abstraction
 - For each point in the program, combines information of all instances of the same program point

Example 1: Liveness Analysis

Liveness Analysis

Definition

- -A variable is live at a particular point in the program if its value at that point will be used in the future (dead, otherwise).
 - -To compute liveness at a given point, we need to look into the future

Motivation: Register Allocation

- -A program contains an unbounded number of variables
- Must execute on a machine with a bounded number of registers
- -Two variables can use the same register if they are never in use at the same time (i.e., never simultaneously live).
 - -Register allocation uses liveness information

Control Flow Graph

 Let's consider CFG where nodes contain program statement instead of basic block.

lacktriangle

```
    a := 0
    L1: b := a + 1
    c:= c + b
    a := b * 2
    if a < 9 goto L1</li>
    return c
```


Liveness by Example

- Live range of b
 - Variable b is read in line 4, so b is live on 3->4 edge
 - b is also read in line 3, so b is live on (2->3) edge
 - Line 2 assigns b, so value of b on edges (1->2) and (5->2) are not needed. So b is **dead** along those edges.
- b's live range is (2->3->4)

Liveness by Example

- Live range of a
 - (1->2) and (4->5->2)
 - a is dead on (2->3->4)

Terminology

- Flow graph terms
 - A CFG node has out-edges that lead to successor nodes and in-edges that come from predecessor nodes
 - pred[n] is the set of all predecessors of node n
 - succ[n] is the set of all successors of node n

Examples

- Out-edges of node 5: $(5\rightarrow 6)$ and $(5\rightarrow 2)$
- $succ[5] = \{2,6\}$
- pred[5] = {4} - pred[2] = {1,5}

Uses and Defs

Def (or definition)

- An assignment of a value to a variable
- def[v] = set of CFG nodes that define variable v
- def[n] = set of variables that are defined at node n

a = 0

Use

- A read of a variable's value
- use[v] = set of CFG nodes that use variable v
- use[n] = set of variables that are used at node n

a < 9

More precise definition of liveness

- A variable v is live on a CFG edge if
 - (1) a directed path from that edge to a use of v (node in use[v]), and
 - (2)that path does not go through any def of v (no nodes in def[v])

The Flow of Liveness

- Data-flow
 - Liveness of variables is a property that flows through the edges of the CFG
- Direction of Flow
 - Liveness flows backwards through the CFG, because the behavior at future nodes determines liveness at a given node

Liveness at Nodes

Two More Definitions

- A variable is **live-out** at a node if it is live on any out edges
- A variable is live-in at a node if it is live on any in edges

Computing Liveness

- Generate liveness: If a variable is in use[n], it is live-in at node n
- Push liveness across edges:
 - If a variable is live-in at a node n
 - then it is live-out at all nodes in pred[n]
- Push liveness across nodes:
 - If a variable is live-out at node n and not in def[n]
 - then the variable is also live-in at n
- Data flow Equation: $in[n] = use[n] \cup (out[n] def[n])$ $out[n] = \cup in[s]$ $s \in succ[n]$

Solving Dataflow Equation

```
for each node n in CFG
                                                 Initialize solutions
              in[n] = \emptyset; out[n] = \emptyset
repeat
          for each node n in CFG
                  in'[n] = in[n]
                                                Save current results
                  out'[n] = out[n]
                   in[n] = use[n] \cup (out[n] - def[n])
                                                            Solve data-flow equation
                   out[n] = \cup in[s]
                           s \in succ[n]
until in'[n]=in[n] and out'[n]=out[n] for all n
Test for convergence
```

Computing Liveness Example

			1	st	2	nd	3	rd	41	h	5t	h	61	th	7t	h
node #	use	def	in	out												
1		a				a		a		ac	С	ac	С	ac	С	ac
2	a	b	a		a	bc	ac	bc								
3	bc	c	bc		bc	b	bc	b	bc	b	bc	b	bc	bc	bc	bc
4	b	a	b		b	a	b	a	b	ac	bc	ac	bc	ac	bc	ac
5	a		a	a	a	ac	ac	ac								
6	c		С		c		c		c		c		c		c	
																- 1

Iterating Backwards: Converges Faster

			18	st	21	nd	31	rd
node #	use	def	out	in	out	in	out	in
6	c			С		c		c
5	a		c	ac	ac	ac	ac	ac
4	b	a	ac	bc	ac	bc	ac	bc
3	bc	c	bc	bc	bc	bc	bc	bc
2	a	b	bc	ac	bc	ac	bc	ac
1		a	ac	c	ac	c	ac	c
			ļ					

Liveness Example: Round1

A variable is **live** at a particular point in the program if its value at that point will be used in the future (**dead**, otherwise).

Algorithm

Node use

def

Liveness Example: Round1

1

Node use def 6 c 5 a 4 b a 3 bc c 2 a b

Algorithm

Liveness Example: Round1

Node use def 6 c ... 5 a ... 4 b a 3 bc c 2 a b 1 a

Algorithm

Conservative Approximation

				X	,	Y	2	Z
node #	use	def	in	out	in	out	in	out
1		a	С	ac	cc	l acd	С	ac
2	a	b	ac	bc	acc	l bcd	ac	b
3	bc	c	bc	bc	bcc	l bcd	b	b
4	b	a	bc	ac	bcc	l acd	b	ac
5	a		ac	ac	acd	acd	ac	ac
6	c		С		c		c	
		- 1						I

Solution X:

- From the previous slide

Conservative Approximation

			2	X	•	Y		Z
node	use	def	in	out	in	out	in	out
1		a	С	ac	cc	l acd	С	ac
2	a	b	ac	bc	acc	l bcd	ac	b
3	bc	c	bc	bc	bcc	l bcd	b	b
4	b	a	bc	ac	bcc	l acd	b	ac
5	a		ac	ac	acd	acd	ac	ac
6	c		c		c		c	
								I

Solution Y:

Carries variable d uselessly

- Does Y lead to a correct program?

Imprecise conservative solutions \Rightarrow sub-optimal but correct programs

Conservative Approximation

				X	•	Y	2	Z
node	use	def	in	out	in	out	in	out
1		a	С	ac	co	l acd	c	ac
2	a	b	ac	bc	acc	l bcd	ac	b
3	bc	c	bc	bc	bcc	l bcd	b	b
4	b	a	bc	ac	bcc	l acd	b	ac
5	a		ac	ac	acd	acd	ac	ac
6	c		c		c		c	
		l	l					I

Solution Z:

Does not identify c as live in all cases

- Does Z lead to a correct program?

Non-conservative solutions ⇒ incorrect programs

Need for approximation

Static vs. Dynamic Liveness: b*b is always non-negative, so c >=
 b is always true and a's value will never be used after node

No compiler can statically identify all infeasible paths

Liveness Analysis Example Summary

- Live range of a
 - (1->2) and (4->5->2)
- Live range of b
 - (2->3->4)
- Live range of c
 - Entry->1->2->3->4->5->2, 5->6

You need 2 registers Why?

Example 2: Reaching Definition

Definition

 A definition (statement) d of a variable v reaches node n if there is a path from d to n such that v is not redefined along that path

Uses of reaching definitions

- Build use/def chains
- Constant propagation
- Loop invariant code motion

Reaching definitions of **a** and **b**

To determine whether it's legal to move statement 4 out of the loop, we need to ensure that there are no reaching definitions of **a** or **b** inside the loop

Computing Reaching Definition

- Assumption: At most one definition per node
- Gen[n]: Definitions that are generated by node n (at most one)
- Kill[n]: Definitions that are killed by node n

<u>statement</u>	gen's	<u>kills</u>
x:=y	{y}	{x}
x:=p(y,z)	${y,z}$	{x}
x:=*(y+i)	{y,i}	{x}
*(v+i):=x	{x}	{}
$x := f(y_1, \dots, y_n)$	$\{f, y_1, \dots, y_n\}$	{x}

Data-flow equations for Reaching Definition

The in set

- A definition reaches the beginning of a node if it reaches the end of **any** of

the predecessors of that node

A definition reaches the end of a node if (1) the node itself generates the
definition or if (2) the definition reaches the beginning of the node and the
node does not kill it

Recall Liveness Analysis

Data-flow Equation for liveness

$$in[n] = \mathbf{use}[n] \cup (out[n] - \mathbf{def}[n])$$
$$out[n] = \bigcup_{s \in succ[n]} in[s]$$

Liveness equations in terms of Gen and Kill

$$in[n] = gen[n] \cup (out[n] - kill[n])$$

$$out[n] = \bigcup_{s \in succ[n]} in[s]$$
A use of a variable generates liveness
A def of a variable kills liveness

Gen: New information that's added at a node

Kill: Old information that's removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Backward data-flow analysis

Information at a node is based on what happens later in the flow graph i.e., in[] is defined in terms of out[]

$$\begin{split} & in[n] = gen[n] \quad \bigcup \quad (out[n] - kill[n]) \\ & out[n] = \bigcup_{s \in succ[n]} in[s] \end{split}$$

Forward data-flow analysis

Information at a node is based on what happens earlier in the flow graph i.e., out[] is defined in terms of in[]

$$in[n] = \bigcup_{p \in pred[n]} out[p]$$

$$out[n] = gen[n] \quad \bigcup \quad (in[n] - kill[n])$$

Some problems need both forward and backward analysis

e.g., Partial redundancy elimination (uncommon)

Data-Flow Equation for reaching definition

Symmetry between reaching definitions and liveness

Swap in[] and out[] and swap the directions of the arcs

Reaching Definitions

$$in[n] = \bigcup_{p \in pred[n]} out[s]
out[n] = gen[n] \cup (in[n] - kill[n])$$

Live Variables

$$\begin{aligned} & \text{in}[n] = \bigcup_{p \in \text{pred}[n]} \text{out}[s] & \text{out}[n] = \bigcup_{s \in \text{succ}[n]} \text{in}[s] \\ \text{out}[n] = \text{gen}[n] \bigcup & \text{(in}[n] - \text{kill}[n]) & \text{in}[n] = \text{gen}[n] \bigcup & \text{(out}[n] - \text{kill}[n]) \end{aligned}$$

Available Expression

• An expression, **x+y**, is **available** at node n if every path from the entry node to n evaluates **x+y**, and there are no definitions of **x** or **y** after the last evaluation.

Available Expression for CSE

- Common Subexpression eliminated
 - If an expression is available at a point where it is evaluated, it need not be recomputed

Must vs. May analysis

- May information: Identifies possibilities
- Must information: Implies a guarantee

	May	Must
Forward	Reaching Definition	Available Expression
Backward	Live Variables	Very Busy Expression