Grup

Fie *G*-nevidã și *: $GxG \rightarrow G$, $(x,y) \rightarrow x^*y$, $\forall x,y \in G$.

Axiomele grupului:

- **G1.** $(x^*y)^*z = x^*(y^*z) \ \forall x,y,z \in G$ (asociativitatea);
- **G2.** $\exists e \in G$ astfel încât $x^*e = e^*x = x$, $\forall x \in G$ (e element neutru);
- **G3.** $\forall x \in G \exists x' \in G \text{ astfel încât } x'*x = x*x' = e(x' \text{ simetricul lui } x);$ dacă **G4.** x*y = y*x, $\forall x,y \in G \text{ grupul este comutativ (sau abelian).}$

Exemple

- 1. $(\mathbf{Z},+)$, $(\mathbf{Q},+)$, $(\mathbf{R},+)$, $(\mathbf{C},+)$ grupuri comutative;
- 2. (\mathbf{R}_n, \oplus) grupul resturilor modulo n, comutativ;
- 3. $(M_n(\mathbf{Z}),+)$ grupul matricilor patrate de ordin n cu elemente din \mathbf{Z} ;
- 4. (K, o) grupul lui Klein (al simetriilor față de sistemul de coordonate), comutativ;
- 5. (σ_n, o) grupul simetric de grad n (al permutãrilor de n elemente) nu este comutativ;

Definiția 1. *Fie* (*G*,*) *grup*, $H \subset G$, H este <u>subgrup</u> dacã $\forall x,y \in H \Rightarrow x^*y \in H$ și $\forall x \in H$ $\Rightarrow x' \in H$ (x' este simetricul lui x în raport cu operația *);

Fie grupurile (G_1,\perp) , (G_2,Δ) :

Definiția 2. $f:G_1 \rightarrow G_2$ se numește <u>morfism de grupuri</u> dacă $f(x \perp y) = f(x) \Delta f(y)$, $\forall x,y \in G_1$.

Definiția 3. $f:G_1 \rightarrow G_2$ se numește <u>izomorfism de grupuri</u> dacă f este bijectivă și $f(x \perp y) = f(x) \Delta f(y), \forall x,y \in G_1$.

Definiția 4. $f:G_1 \rightarrow G_2$ se numește <u>automorfism (endomorfism)</u> al grupului G_1 , dacă f este un izomorfism (morfism).

Caz general

Fie pe **R** operația $x \circ y = axy - abx - aby + b(ab+1)$, $\forall x,y \in \mathbf{R}$. Se cere:

- 1. Să se arate că, $\forall x,y \in \mathbf{R} \ x \circ y = a(x-b)(y-b) + b$;
- 2. Să se arate că $f: \mathbf{R} \to \mathbf{R}$, f(t) = a(t-b), este funcție bijectivă care verifică totodată $f(x \circ y) = f(x) \cdot f(y)$, $\forall x, y \in \mathbf{R}$;
- 3. În cazul alegerii a > 0 considerând $H = (b; + \infty)$, respectiv în cazul alegerii a < 0 considerând $H = (-\infty; b)$, să se arate că, $\forall x, y \in H$, are loc $x \circ y \in H$;
- 4. În cazul alegerii a > 0 considerând $H = (b; + \infty)$, respectiv în cazul alegerii a < 0 considerând $H = (-\infty; b)$, să se arate că $f : H \to \mathbf{R}_+^*$, f(t) = a(t-b), este izomorfism de la $(H; \circ)$ la $(\mathbf{R}_+^*; \cdot)$;
- 5. Să se arate că, $\forall x,y \in \mathbf{R}$, are loc $x \circ y = y \circ x$;
- 6. Să se arate că $\exists x,y \in \mathbb{Q} \setminus \mathbb{Z}$ încât $x \circ y \in \mathbb{Z}$;
- 7. Să se arate că $\exists x,y \in \mathbb{R} \setminus \mathbb{Q}$ încât $x \circ y \in \mathbb{Z}$;
- 8. Să se arate că $\forall x,y,z \in \mathbb{R}$, are loc $(x \circ y) \circ z = x \circ (y \circ z)$;
- 9. Să se arate că $\exists e \in \mathbf{R}$ încât, $\forall x \in \mathbf{R}$, verifică $\mathbf{x} \circ \mathbf{e} = \mathbf{e} \circ \mathbf{x} = \mathbf{x}$;
- 10. Să se arate că, $\forall x \in \mathbb{R} \setminus \{b\}$, $\exists x' \in \mathbb{R} \setminus \{b\}$ încât $x \circ x' = x' \circ x = \frac{1}{a} + b$;
- 11.În cazul alegerii a > 0, considerând $H = (b; +\infty)$, respectiv în cazul alegerii a < 0, considerând $H = (-\infty; b)$, să se determine ce fel de structură este (H, \circ) ;
- 12. Să se rezolve ecuația $x \circ \left(\frac{1}{a} + b\right) \circ x = a \cdot A \cdot B + C$, $x \in (0, +\infty)$, unde A = "an"-b c, B = "an"-b + c, $C = ac^2 + b$, $\forall c \in \mathbb{Z}$;
- 13. Să se arate că $\exists \theta \in \mathbf{R}$ încât $\forall x \in \mathbf{R}$ verifică $\mathbf{x} \circ \theta = \theta \circ \mathbf{x} = \theta$;
- 14.Să se determine valoarea expresiei

$$E=(-"an")\circ(-"an"+1)\circ...\circ(-2)\circ(-1)\circ0\circ1\circ2\circ...\circ("an"-1)\circ("an");$$

- 15. Să se arate că, $\forall x,y,z \in \mathbb{R}$, $x \circ y \circ z = a^2(x-b)(y-b)(z-b) + b$;
- 16. Să se rezolve în \mathbf{R} ecuația ("an" x^2 -x+b) \circ (x^2 -"an"x+b)=b;
- 17. Să se rezolve în **R** ecuația $(b-|b|+d^x)\circ(\log_d x)\circ(b-1+C^x)=b, \ \forall \ d\in \mathbb{N}, \ d\geq 2;$
- 18. Să se arate că $\underbrace{A \circ A \circ ... \circ A}_{denori} = a^{n-1} \cdot (A b)^n + b$, $\forall n \in \mathbb{N}$, A fiind un număr real liber

ales, spre exemplu A = "an";

- 19.Să se determine cel mai mic număr $n \in \mathbb{N}^*$ cu proprietatea $(b+1)\circ(b+2)\circ(b+3)\circ...\circ n \geq \text{"an"}$;
- 20. Să se rezolve în **R** ecuația $x \circ x \circ x \circ x \circ x = a^4 \cdot A^5 + b$, A fiind un număr real liber ales, spre exemplu A = "an".

Rezolvare

- 1. Se verifică imediat, prin calcul direct: $x \circ y = a(x-b)(y-b) + b = a(xy-bx-by+b2) + b = axy-abx-aby+b(ab+1)$
- 2. Justificarea bijectivității funcției $f: \mathbf{R} \to \mathbf{R}$, f(t) = a(t-b), este imediată, ca funcție de gradul întâi. Conform cu

$$x \circ y = a(x-b)(y-b) + b \Rightarrow x \circ y - b = a(x-b)(y-b) | \cdot a \Rightarrow a(x \circ y - b) = a(x-b) \cdot a(y-b)$$

este chiar cerința, respectiv $f(x \circ y) = f(x) \cdot f(y)$.

- 3. Fie $x \in H \Rightarrow (x-b) \ge 0$ şi $y \in H \Rightarrow (y-b) \ge 0$ şi atunci $(x-b)(y-b) \ge 0$, dar cum a este constantă nenulă și de semn prestabilit, apartenența $a(x-b)(y-b)+b=x\circ y\in H$ este justificată.
- 4. Variația funcției $f: \mathbf{R} \rightarrow \mathbf{R}$, f(t) = a(t-b), studiată anterior, arată imediat că restricția $f: H \to \mathbb{R}^*_+$ este bijectivă. Tot din datele anterioare, este evident că H este parte stabilă a structurii (R; •) (item 3) și că are loc proprietatea de morfism +(item 2), izomorfismul fiind astfel demonstrat.
- 5. Comutativitatea este imediată
- 6. Luând $x \circ y = a(x-b)(y-b) + b$ și alegând $x-b = \frac{2}{3}$ și $y-b = \frac{3}{2}$, deoarece $b \in \mathbb{Z}$, evident $x,y \in \mathbb{Q} \setminus \mathbb{Z}$ și $x \circ y = a + b \in \mathbb{Z}$.
- 7. Pe aceeaşi idee, alegând $x-b=\sqrt{2}-1$ şi $y-b=\sqrt{2}+1$, se va obţine $x,y\in \mathbb{R}\setminus \mathbb{Q}$ şi $x\circ y=a+b\in \mathbb{Z}$. Se observă că alegerea nu este unică, admițând chiar o infinitate de posibilități.
- 8. Asociativitatea se demonstrează prin calcul
- 9. Din $x \circ y = a(x-b)(y-b) + b$ şi $x \circ e = x$ conduce la a(x-b)(e-b) + b = x din care se obţine $e = \frac{1}{a} + b$
- 10. Dubla egalitate $x \circ x' = x' \circ x = \frac{1}{a} + b$ se reduce de fapt la $x \circ x' = \frac{1}{a} + b$ care se exprimă în forma $a(x-b)(x'-b)+b=\frac{1}{a}+b$, obţinând $x'=b+\frac{1}{a^2(x-b)}$ care este în mod evident din $\mathbb{R}\setminus\{b\}$, justificând afirmația din item 10.
- 11. Structura $(H; \circ)$ se dovedește grup comutativ, verificarea proprietăților fiind asigurată de concluzii anterioare.
- 12. Cum $e = \frac{1}{a} + b$, $x \circ \left(\frac{1}{a} + b\right) \circ x = a \cdot A \cdot B + C$ devine $x \circ x = a \cdot A \cdot B + C$, adică a(x a) $(a)^2+b=a\cdot(a)^2+b=a\cdot(a)^2+b$. Observând diferența de pătrate, din $a(x-b)^2+b=a\cdot(a)^$ $(a^2-a^2)^2 = a^2 [(a^2-b)^2 - c^2] + ac^2$ se obține $(a^2-b)^2 = (a^2-b)^2$ și în final a^2 in final a^2 in condiția alegerii evidente 2*b*-"an"<0<"an"-*b*.
- 13. Din $x \circ y = a(x-b)(y-b) + b$ se observă q=b cu proprietatea menționată, $x \circ \theta = \theta \circ x = \theta$.
- 14. Cum $\theta = b$ se regăsește printre "factorii" ce compun expresia E, răspunsul la este $E = \theta = b$.
- 15. Se obține prin calcul folosind $x \circ y = a(x-b)(y-b) + b$.
- 16. Ecuația ("an" x^2-x+b) $\circ(x^2-$ "an"x+b)=b devine ("an" x^2-x)(x^2- "an"x)=0 și răspunsul va fi $x \in \left\{0; \text{"an"}; \frac{1}{\text{"an"}}\right\}.$
- 17. Ecuația devine $(d^x |b|)(\log_d x b)(C^x_{\text{"an"}} 1) = 0$, deci $x \in \{\log_d |b|; d^b; 0; \text{"an"}\}$.
- 18. Izomorfismul conduce imediat la $x_1 \circ x_2 \circ ... \circ x_n = a^{n-1} \cdot \prod_{k=1}^{n} (x_k b) + b$ și astfel identitatea

$$\underbrace{A \circ A \circ \dots \circ A}_{de \ n \ ori} = a^{n-1} \left(A - b \right)^n + b \ \text{este evidentă}.$$

- 19. $(b+1)\circ(b+2)\circ(b+3)\circ...\circ n=a^{n-b-1}\cdot(n-b)!+b$ și astfel se determină imediat răspunsul. 20. $x\circ x\circ x\circ x\circ x=a^4\cdot(x-b)^5+b$ și $a^4\cdot(x-b)^5+b=a^4\cdot A^5+b$ soluția x=A+b.

Probleme rezolvate

- 1. Pe multimea numerelor reale definim operația $x \circ y = xy + 4x + 4y + 12$.
 - a) Să se verifice că $x \circ y = (x + 4)(y + 4) 4$ pentru orice $x, y \in \mathbb{R}$.
 - **b)** Să se calculeze $x \circ (-4)$, unde x este număr real.
 - c) Știind că operația " \circ " este asociativă, să se calculeze (-2009) \circ (-2008) \circ ... \circ 2008 \circ 2009 .
 - R. a) Se verifică prin calcul direct:

$$(x + 4)(y + 4) - 4 = xy + 4x + 4y + 16 - 12 = xy + 4x + 4y + 12 = x \circ y.$$

b)
$$x \circ (-4) = (x+4)(-4+4) - 4 = (x+4) \cdot 0 - 4 = -4, \ \forall x \in \mathbb{R}.$$

$$=(-2009) \circ (-2008) \circ ... \circ \underbrace{(-5) \circ (-4)}_{=-4} \circ (-3) \circ ... \circ 2008 \circ 2009 = -4.$$

- **2.** Pe mulțimea numerelor reale definim operația $x \circ y = 2xy 6x 6y + 21$.
 - a) Să se arate că $x \circ y = 2(x-3)(y-3) + 3$, pentru orice $x, y \in \mathbb{R}$.
 - **b)** Să se rezolve în mulțimea numerelor reale ecuația $x \circ x = 11$.
 - c) Știind că operația " \circ " este asociativă, să se calculeze $1 \circ \sqrt{2} \circ \sqrt{3} \circ ... \circ \sqrt{2009}$.
 - **R. a)** Prin calcul direct obţinem $2(x-3)(y-3) + 3 = 2(xy-3x-3y+9) + 3 = 2xy-6x-6y+9+3=2xy-6x-6y+12=x \circ y$.

b)
$$x \circ x = 11 \Rightarrow 2(x-3)(x-3) + 3 = 11 \Rightarrow 2(x-3)^2 = 8 \Rightarrow (x-3)^2 = 4 \Rightarrow x-3 = \pm 2$$
. $S = \{1, 5\}$.

- c) Calculăm $x \circ 3 = 2(x-3)(3-3) + 3 = 2(x-3) \cdot 0 + 3 = 3$, oricare ar fi $x \in \mathbb{R}$. În termenii compunerii $1 \circ \sqrt{2} \circ \sqrt{3} \circ ... \circ \sqrt{2009}$ există $\sqrt{9} = 3$ și din calculul precedent rezultatul calculului este 3.
- **3.** Pe mulțimea numerelor reale se consideră legea de compoziție $x \circ y = xy 2(x + y) + 6$.
 - a) Să se arate că $x \circ y = (x 2)(y 2) + 2$, oricare ar fi $x, y \in \mathbb{R}$.
 - **b)** Să se demonstreze că $x \circ 2 = 2$, oricare ar fi $x \in \mathbb{R}$.
 - c) Știind că legea de compoziție " \circ " este asociativă, să se calculeze valoarea expresiei $E = (-2009) \circ (-2008) \circ ... \circ (-1) \circ 0 \circ 1 \circ 2 \circ ... \circ 2009$.
 - **R. a)** Prin calcul direct $(x-2)(y-2) + 2 = xy 2x 2y + 4 2 = xy 2x 2y + 2 = x \circ y$.

b)
$$x \circ 2 = (x-2)(2-2) + 2 = (x-2) \cdot 0 + 2 = 2$$
, oricare ar fi $x \in \mathbb{R}$.

c)
$$E = (-2009) \circ (-2008) \circ ... \circ (-1) \circ 0 \circ \underbrace{1 \circ 2}_{=2} \circ ... \circ 2009 = 2 \text{ conform}$$

punctului b).

- **4.** Se consideră mulțimea $G = \{A_x | x \in \mathbb{Z}\}$, unde matricea $A_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x & 0 & 1 \end{pmatrix}, x \in \mathbb{Z}$.
 - a) Să se verifice că $A_x \cdot A_y = A_{x+y}$, unde $x, y \in \mathbb{Z}$.
 - b) Știind că mulțimea G împreună cu operația de înmulțire a matricelor formează o structură de grup, să se determine elementul neutru al grupului (G,\cdot) .
 - c) Să se arate că funcția $f: \mathbb{Z} \to G$, $f(x) = A_x$ este morfism între grupurile $(\mathbb{Z}, +)$ și (G, \cdot) .

R. a)
$$A_x \cdot A_y = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ y & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x + y & 0 & 1 \end{pmatrix} = A_{x+y}$$

b) Element neutru este A_e , $e \in \mathbb{Z}$ și $A_x \cdot A_e = A_x \Rightarrow x + e = x \Rightarrow e = 0$ și

$$A_e = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_2.$$

c) O funcție
$$f: G_1 \rightarrow G_2$$
 este morfism dacă $f(x+y) = f(x) + f(y)$, $\forall x,y \in G_1$. Calculăm $f(x+y) = A(x+y) = A(x+y) = A(x) + A(y) = f(x) + f(y)$, $\forall x,y \in \mathbb{Z}$ și f este izomorfism de la \mathbb{Z} la G .

- 5. Pe mulțimea numerelor reale se consideră legea de compoziție $x \circ y = (x-4)(y-4) + 4$.
 - a) Să se determine elementul neutru al legii de compoziție.
 - **b)** Să se rezolve în mulțimea numerelor reale ecuația $x \circ x \circ x = x$.
 - c) Să se determine două numere $a,b \in \mathbb{Q} \setminus \mathbb{Z}$ astfel încât $a \circ b \in \mathbb{N}$.
 - **R. a)** Elementul neutru: există $e \in \mathbf{R}$ astfel încât oricare ar fi $x \in \mathbf{R}$ să avem: $x \circ e = e \circ x = x$. $x \circ e = (x-4)(e-4) + 4 \Rightarrow (x-4)(e-4) + 4 = x \Rightarrow (x-4)(e-4) = x-4 \Rightarrow e-4 = 1$ $\Rightarrow e = 5$.

b)
$$x \circ x \circ x = (x-4) \cdot (x-4) \cdot (x-4) + 4 = (x-4)^3 + 4 \Rightarrow (x-4)^3 + 4 = x$$

 $\Rightarrow (x-4)^3 - (x-4) = 0 \Rightarrow (x-4) \cdot [(x-4)^2 - 1] = 0 \Rightarrow x_1 = 0 \text{ si } (x-4)^2 - 1 = 0 \Rightarrow (x-4)^2 = 1$
 $\Rightarrow x-4 = \pm 1 \Rightarrow x_2 = 3 \text{ si } x_3 = 5.$

$$\mathbf{c})a,b \in \mathbf{Q} \setminus \mathbf{Z} \Rightarrow a = \frac{m}{n}, b = \frac{p}{q}, \text{cu } m, n, p, q \in \mathbf{N}, n \neq 0, p \neq 0, n \neq 1, p \neq 1, (m,n) = 1, (p,q) = 1$$

și calculăm
$$a \circ b = \left(\frac{m}{n} - 4\right) \left(\frac{p}{q} - 4\right) + 4 = \frac{m - 4n}{n} \cdot \frac{p - 4q}{q} + 4$$
. Cum $a \circ b \in \mathbb{N}$ atunci

$$\frac{m-4n}{n} \cdot \frac{p-4q}{q} \in \mathbb{N} \Rightarrow q/(m-4n) \quad n \quad (p-q). \text{ Luăm valori pentru } n \text{ şi } q, n=3 \text{ şi}$$

$$q=5$$
, atunci $5/(m-4\cdot 3) \Rightarrow m=17$ şi $3/(p-4\cdot 5) \Rightarrow p=23$. Obţinem $a=\frac{17}{3}$ şi $b=\frac{23}{5}$, iar

Structuri algebrice, grupuri, probleme bacalaureat

$$a \circ b = \left(\frac{17}{3} - 4\right) \left(\frac{23}{5} - 4\right) + 4 = \frac{17 - 12}{3} \cdot \frac{23 - 20}{5} + 4 = \frac{5}{3} \cdot \frac{3}{5} + 4 = 1 + 4 = 5 \in \mathbb{N}$$
. Obs. Se pot lua și alte valori pentru n și q .

- **6.** Pe mulțimea numerelor reale se consideră legea de compoziție $x \circ y = \sqrt[3]{x^3 + y^3 1}$.
 - a) Să se demonstreze că $x \circ (-x) = -1$, oricare ar fi x real.
 - b) Să se arate că legea de compoziție "° "este asociativă.
 - c) Să se calculeze $(-4) \circ (-3) \circ ... \circ 3 \circ 4$.

R. a)
$$x \circ (-x) = \sqrt[3]{x^3 + (-x)^3 - 1} = \sqrt[3]{x^3 - x^3 - 1} = \sqrt[3]{-1} = -1, \forall x \in \mathbb{R}.$$

b) Asociativitatea: $x \circ (y \circ z) = (x \circ y) \circ z, \ \forall x,y,z \in \mathbb{R}$.

Calculăm
$$x \circ (y \circ z) = x \circ \sqrt[3]{y^3 + z^3 - 1} = \sqrt[3]{x^3 + \left(\sqrt[3]{y^3 + z^3 - 1}\right) - 1} = \sqrt[3]{x^3 + y^3 + z^3 - 2}$$
 și
$$(x \circ y) \circ z = \sqrt[3]{x^3 + y^3 - 1} \circ z = \sqrt[3]{\left(\sqrt[3]{x^3 + y^3 - 1}\right)^3 + z^3 - 1} = \sqrt[3]{x^3 + y^3 + z^3 - 2}$$
,
$$= \sqrt[3]{x^3 + y^3 + z^3 - 2}$$

cei doi termeni sunt egali și legea de compoziție este asociativă.

c) $(-4) \circ (-3) \circ ... \circ 3 \circ 4 = (-4) \circ (-3) \circ (-2) \circ (-1) \circ 0 \circ 1 \circ 2 \circ 3 \circ 4$ şi din punctul **a**) obţinem

$$\underbrace{\left(-4\right) \circ 4}_{=-1} \circ \underbrace{\left(-3\right) \circ 3}_{=-1} \circ \underbrace{\left(-2\right) \circ 2}_{=-1} \circ \underbrace{\left(-1\right) \circ 1}_{=-1} \circ 0 = \underbrace{\left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ \underbrace{\left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ 0 = \underbrace{\left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ \underbrace{\left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ 0 = \underbrace{\left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ \underbrace{\left(-1\right) \circ \left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ \underbrace{\left(-1\right) \circ \left(-1\right) \circ \left(-1\right)}_{=\sqrt[3]{-3}} \circ \underbrace{\left(-1\right) \circ \left$$

- 7. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy + 7(x + y) + 42$.
 - a) Să se calculeze $2 \circ (-2)$.
 - **b)** Să se verifice că $x \circ y = (x + 7)(y + 7) 7$, oricare ar fi $x, y \in \mathbb{R}$.
 - c) Știind că legea de compoziție " \circ " este asociativă, să se rezolve în mulțimea numerelor reale ecuația $x \circ x \circ x = x$.

R. a)
$$2 \circ (-2) = 2 \cdot (-2) + 7(2-2) + 42 = -4 + 0 + 42 = 38$$
.
b) $(x + 7)(y + 7) - 7 = xy + 7y + 7x + 49 - 7 = xy + 7y + 7x + 42 = x \circ y, \forall x,y \in \mathbb{R}$.
c) Calculăm $x \circ x \circ x = [(x + 7)^2 - 7] \circ x = [(x + 7)^2 - 7 + 7](x + 7) - 7 = (x + 7)^3 - 7$ și ecuația va fi: $(x + 7)^3 - 7 = x \Rightarrow (x + 7)^3 - (x + 7) = 0 \Rightarrow (x + 7)[(x + 7)^2 - 1] = 0 \Rightarrow (x + 7) = 0$ și $(x + 7)^2 - 1 = 0$, $x_1 = -7$ și $(x + 7)^2 = 1 \Rightarrow x + 7 = 1$ sau $x + 7 = -1 \Rightarrow x_2 = -6$ și $x_3 = -8$.

- **8.** Se consideră mulțimea $M = [k; +\infty) \subset \mathbf{R}$, $k \in \mathbf{R}$ și operația $x * y = xy k(x + y) + k^2 + k$, oricare ar fi $x, y \in \mathbf{R}$.
 - a) Să se determine $k \in \mathbb{R}$ astfel încât 2 * 3 = 2.
 - **b)** Pentru k = 2 să se rezolve în M ecuația x * x = 6.
 - c) Să se demonstreze că pentru orice $x, y \in M$, rezultă că $x * y \in M$.

Structuri algebrice, grupuri, probleme bacalaureat

R. a)
$$2 * 3 = 2 \cdot 3 - k(2+3) + k^2 + k = 6 - 5k + k^2 + k = k^2 - 4k + 6 \Rightarrow k^2 - 4k + 6 = 2 \Rightarrow k^2 - 4k + 4 = 0 \Rightarrow (k-2)^2 = 0 \Rightarrow k = 2.$$

b)
$$x * y = xy - 2(x + y) + 6 \Rightarrow x^2 - 4x + 6 = 6 \Rightarrow x^2 - 4x = 0 \Rightarrow x(x - 4) = 0 \Rightarrow x_1 = 0$$
 şi $x_2 = 4$.

$$x, y \in M \Rightarrow \begin{cases} x \ge k \Rightarrow x - k \ge 0 \\ y \ge k \Rightarrow y - k \ge 0 \ (\cdot) \end{cases}$$
$$(x - k)(y - k) \ge 0 \Rightarrow xy - k(x + y) + k^2 \ge 0 + k \Rightarrow xy - k(x + y) + k^2 + k \ge k \Rightarrow x * y \in M, \forall x, y \in M.$$

- **9.** Se consideră mulțimea $M = \left\{ A(a) = \begin{bmatrix} a & 0 & a \\ 0 & 0 & 0 \\ a & 0 & a \end{bmatrix} \middle| a \in \mathbf{R} \right\}.$
 - a) Să se verifice dacă $A(a) \cdot A(b) = A(2ab)$, oricare ar fi numerele reale $a \neq b$.
 - **b)** Să se arate că $A\left(\frac{1}{2}\right)$ este element neutru față de operația de înmulțire a matricelor
 - c) Să se determine simetricul elementului $A(1) \in M$ în raport cu operația de înmulțire a matricelor pe multimea M.

R. a)
$$A(a) = \begin{pmatrix} a & 0 & a \\ 0 & 0 & 0 \\ a & 0 & a \end{pmatrix}, a \in \mathbf{R}$$
 $A(b) = \begin{pmatrix} b & 0 & b \\ b & 0 & b \end{pmatrix}, b \in \mathbf{R}$ si calculăm $A(a) \cdot A(b)$:
$$A(a) \cdot A(b) = \begin{pmatrix} a & 0 & a \\ 0 & 0 & 0 \\ a & 0 & a \end{pmatrix} \cdot \begin{pmatrix} b & 0 & b \\ 0 & 0 & 0 \\ b & 0 & b \end{pmatrix} = \begin{pmatrix} ab + ab & 0 & ab + ab \\ 0 & 0 & 0 \\ ab + ab & 0 & ab + ab \end{pmatrix} = \begin{bmatrix} 2ab & 0 & 2ab \\ 0 & 0 & 0 \\ 2ab & 0 & 2ab \end{pmatrix} = A(2ab)$$

- **b)** Calculăm $A(a) \cdot A\left(\frac{1}{2}\right)^{\frac{punctul}{a)}} = A\left(2 \cdot a \cdot \frac{1}{2}\right) = A(a)$ și atunci $A\left(\frac{1}{2}\right)$ este element neutru.
- c) $A(1) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ și elementul simetric este inversa matricei $A^{-1}(1)$ și trebuie să

avem $A(1) \cdot A^{-1}(1) = A\left(\frac{1}{2}\right)$. Notăm $A^{-1}(1) = A(e), e \in \mathbf{R} \Rightarrow A(1) \cdot A(e) = A(2 \cdot 1) \cdot e = A(2 \cdot$

$$A(2e)$$
 şi $A(2e) = A\left(\frac{1}{2}\right)$, se obţine $2e = \frac{1}{2} \Rightarrow e = \frac{1}{4}$. Obţinem $A^{-1}(1) = A\left(\frac{1}{4}\right)$.

- **10.** Pe mulțimea numerelor întregi se definesc legile de compoziție x * y = x + y 3 și $x \circ y = (x 3)(y 3) + 3$.
 - a) Să se rezolve în mulțimea numerelor întregi ecuația $x \circ x = x * x$.
 - **b)** Să se determine numărul întreg a care are proprietatea că x° a=3, oricare ar fi numărul întreg x.
 - c) Să se rezolve sistemul de ecuații $\begin{cases} x*(y+1)=4\\ (x-y)\circ 1=5 \end{cases}$, unde $x, y \in \mathbb{Z}$.
 - **R. a)** $x \circ x = (x-3)^2 + 3$ şi x * x = 2x 3, obţinem ecuaţia: $(x-3)^2 + 3 = 2x 3 \Rightarrow x^2 8x + 15 = 0$ care are soluţiile $x_1 = 3$ şi $x_2 = 5$, numere întregi.
 - **b)** $x \circ a = 3 \Rightarrow (x 3)(a 3) + 3 = 3 \Rightarrow (x 3)(a 3) = 0$ pentru a = 3 şi oricare ar fi $x \in \mathbb{Z}$.

c)
$$\begin{cases} x*(y+1) = 4 \\ (x-y) \cdot 1 = 5 \end{cases} \Leftrightarrow \begin{cases} x+y+1-3=4 \\ (x-y-3)(1-3)+3=5 \end{cases} \Leftrightarrow \begin{cases} x+y=6 \\ -2x+2y+6+3=5 \end{cases} \Leftrightarrow \begin{cases} x+y=6 \\ -2x+2y=-4 \end{vmatrix} : 2 \Leftrightarrow \begin{cases} x+y=6 \\ -x+y=-2 \end{cases} \end{cases}$$

$$(2y=4 \Rightarrow y=2, x=4)$$

și soluția este perechea (4;2).

- 11. Pe mulțimea numerelor reale se consideră legea de compoziție x*y=xy-5(x+y)+30.
 - a) Să se demonstreze că x*y=(x-5)(y-5)+5, oricare ar fi $x,y \in \mathbb{R}$.
 - b) Să se determine elementul neutru al legii de compoziție "*".
 - c) Știind că legea de compoziție "*" este asociativă, să se rezolve în mulțimea numerelor reale ecuația x*x*x=x.
 - **R. a)** (x-5)(y-5)+5 = xy-5y-5x+25+5 = xy-5(x+y)+30 = x*y.
 - **b)** $e \in \mathbb{R}$ este element neutru dacă x*e = x, oricare ar fi $x \in \mathbb{R}$. Atunci $(x-5)(e-5)+5=x \Rightarrow (x-5)(e-5)-(x-5)=0 \Rightarrow (x-5)(e-6)=0 \Rightarrow e=6 \in \mathbb{R}$. Același element neutru se obține și pentru e*x=x.

c)
$$x * x * x = [(x-5)^2 + 5] * x = [(x-5)^2 + 5 - 5](x-5) + 5 = (x-5)^3 + 5$$
. Ecuația va fi: $(x-5)^3 + 5 = x \Rightarrow (x-5)^3 - (x-5) = 0 \Rightarrow (x-5)[(x-5)^2 - 1] = 0 \Rightarrow x-5=0, x_1 = 5$ și $(x-5)^2 - 1 = 0 \Rightarrow (x-5)^2 = 1 \Rightarrow x-5 = \pm 1 \Rightarrow x_2 = 6, x_3 = 4$. Soluții $\{4,5,6\}$.

12. Pe mulțimea numerelor reale se consideră legea de compoziție

$$x * y = (x - \sqrt{2})(y - \sqrt{2}) + \sqrt{2}$$
.

- a) Să se rezolve ecuația x*x=x, unde $x \in \mathbb{R}$.
- b) Să se demonstreze că legea de compoziție "*" este asociativă.
- c) Să se determine elementul neutru al legii de compoziție "*".

R. a)
$$x * x = (x - \sqrt{2})(x - \sqrt{2}) + \sqrt{2} = (x - \sqrt{2})^2 + \sqrt{2}$$
 şi se obţine ecuaţia:
 $(x - \sqrt{2})^2 + \sqrt{2} = x \Rightarrow (x - \sqrt{2})^2 - (x - \sqrt{2}) = 0 \Rightarrow (x - \sqrt{2})(x - \sqrt{2} - 1) = 0$ cu soluţiile
 $x_1 = \sqrt{2}^{3} \quad x_2 = \sqrt{1 + 1}$.

b) Asociativitatea: x*(y*z)=(x*y)*z, $\forall x,y,z \in \mathbb{R}$. Calculăm fiecare termen:

$$x * (y * z) = x * \left[(y - \sqrt{2})(z - \sqrt{2}) + \sqrt{2} \right] = (x - \sqrt{2}) \left[(y - \sqrt{2})(z - \sqrt{2}) + \sqrt{2} - \sqrt{2} \right] + \sqrt{2} = (x - \sqrt{2})(y - \sqrt{2})(z - \sqrt{2}) + \sqrt{2}$$

$$(x * y) * z = \left[(x - \sqrt{2})(y - \sqrt{2}) + \sqrt{2} \right] * z = \left[(x - \sqrt{2})(y - \sqrt{2}) + \sqrt{2} - \sqrt{2} \right] (z - \sqrt{2}) + \sqrt{2} = (x - \sqrt{2})(y - \sqrt{2})(z - \sqrt{2}) + \sqrt{2}$$

Cei doi termeni sunt egali și legea de compoziție este asociativă.

c) Elementul neutru: $\exists e \in \mathbb{R}$ astfel încât $\forall x \in \mathbb{R}$ să avem: x*e = e*x = x. Trebuie determinat e din egalitatea: x*e = x, deoarece legea de compoziție este evident comutativă.

$$(x - \sqrt{2})(e - \sqrt{2}) + \sqrt{2} = x \Rightarrow (x - \sqrt{2})(e - \sqrt{2}) - (x - \sqrt{2}) = 0 \Rightarrow$$
$$\Rightarrow (x - \sqrt{2})(e - \sqrt{2} - 1) = 0 \Rightarrow e - \sqrt{2} - 1 = 0 \Rightarrow e = \sqrt{2} + 1 \in \mathbf{R}$$

este element neutru.

- **13.** Pe mulțimea numerelor reale se definește legea de compoziție x*y=x+y+m, unde m este număr real.
 - a) Să se arate că legea de compoziție "*" este asociativă.
 - **b)** Să se determine m astfel încât e = -6 să fie elementul neutru al legii "*".
 - c) Să se determine *m* astfel încât $(\sqrt{-3})*(\sqrt{-2})*m*\sqrt{3} = 3\sqrt{2}$.
 - **R. a)** asociativitatea: x*(y*z) = (x*y)*z, $\forall x,y,z \in \mathbb{R}$. Calculăm fiecare termen: x*(y*z) = x*(y+z+m) = x+(y+z+m)+m = x+y+z+2m și (x*y)*z=(x+y+m)*z=(x+y+m)+z+m=x+y+z+2m, cei doi termeni sunt egali și asociativitatea este demonstrată.
 - **b)** Elementul neutru: x*e=e*x=x, $\forall x \in \mathbb{R}$. Legea de compoziție este evident comutativă și atunci ajunge $x*e=x \Rightarrow x-6+m=x \Rightarrow m=6$.

c)
$$\frac{(-\sqrt{3})*(-\sqrt{2})*m*\sqrt{3} = [(-\sqrt{3})*\sqrt{3}]*(-\sqrt{2})*m == (\sqrt{3}+\sqrt{3}+m)*}{*(m-\sqrt{2}+m)=m*(2m-\sqrt{2})=m+2m-\sqrt{2}+m=4m-\sqrt{2}}$$

si se obtine: $4m - \sqrt{2} = 3\sqrt{2} \Rightarrow 4m = 4\sqrt{2}$ si $m = \sqrt{2}$.

- 14. Pe multimea numerelor reale, se consideră legea de compoziție definită prin $x \circ y = xy - x - y + 2$.
 - a) Să se arate că legea "° " este asociativă.
 - **b)** Să se arate că, pentru oricare $x,y \in (1,+\infty)$, rezultă că $x \circ y \in (1,+\infty)$.
 - c) Să se determine $a \in \mathbf{R}$ cu proprietatea că $x \circ a = a$, oricare ar fi $x \in \mathbf{R}$.
 - **R. a)** asociativitatea: x*(y*z) = (x*y)*z, $\forall x,y,z \in \mathbb{R}$. Calculăm fiecare termen: x*(y*z) = x*(yz-y-z+2) = x(yz-y-z+2)-x-(yz-y-z+2)+2 == xyz - xy - xz + 2x - x - yz + y + z - 2 + 2 = xyz - xy - xz - yz + x + y + z.

 $\sin(x*y)*z=(xy-x-y+2)*z=(xy-x-y+2)z-(xy-x-y+2)-z+2=$

=xyz-xz-yz+2z-xy+x+y-2-z+2=xyz-xy-xz-yz+x+y+z, cei doi termeni sunt egali şi asociativitatea este demonstrată.

- **b)** $\forall x, y \in (1, +\infty) \Rightarrow \begin{cases} x > 1 \Rightarrow x 1 > 0 \\ y > 1 \Rightarrow y 1 > 0 \end{cases} \Rightarrow (x 1)(y 1) > 0 \Rightarrow$
- $\Rightarrow xy x y + 1 > 0 | +1 \Rightarrow xy x y + 2 > 1 \Rightarrow x * y \in (1, +\infty)$.
- c) $x * a = a \Rightarrow xa x a + 2 = a \Rightarrow xa 2a = x 2 \Rightarrow a(x 2) = x 2 \Rightarrow a = 1$.
- **15.** Pe multimea **R** se consideră legea de compoziție x*y=2xy-x-y+1.
 - a) Să se arate că x*y=xy+(1-x)(1-y), oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se arate că legea de compoziție "*" este asociativă.
 - c) Să se rezolve în multimea numerelor reale ecuatia x*(1-x)=0.
 - **R. a)** $xy+(1-x)(1-y)=xy+1-x-y+xy=2xy-x-y+1=x*y, x,y \in \mathbb{R}$
 - **b)** asociativitatea: x*(y*z) = (x*y)*z, $\forall x,y,z \in \mathbb{R}$. Calculăm fiecare termen:

$$x*(y*z) = x*[2yz - y - z + 1] = 2x[2yz - y - z + 1] - x - [2yz - y - z + 1] + 1 =$$

$$=4xyz-2xy-2xz+2x-x-2yz+y+z-1+1=4xyz-2(xy+xz+yz)+x+y+z.$$

$$\sin(x*y)*z=[2xy-x-y+1]*z=2[2xy-x-y+1]z-[2xy-x-y+1]-z+1=$$

=4xyz-2xz-2yz+2z-2xy+x+y-1-z+1=4xyz-2(xz+yz+xy)+x+y+z, cei doi termeni sunt egali și asociativitatea este demonstrată.

c)
$$x*(1-x)=0 \Rightarrow x(1-x)(1-x)[1-(1-x)]=0 \Rightarrow x^2(1-x)^2=0 \Rightarrow x_1=0 \text{ și } x_2=1.$$

- **16.** Pe multimea numerelor reale se definește legea de compoziție x*y=-xy+2x+2y-2.
 - a) Să se rezolve în mulțimea numerelor reale ecuația x*4=10.
 - **b)** Să se determine $a \in \mathbb{R}$ astfel încât x*a=a*x=a, oricare ar fi $x \in \mathbb{R}$.

- c) Știind că legea "*" este asociativă, să se calculeze $\frac{1}{2009} * \frac{2}{2009} * ... * \frac{4018}{2009}$
- **R. a)** $x*4=10 \Rightarrow -4x+2x+2\cdot 4-2=10 \Rightarrow -2x=4 \Rightarrow x=-2$.
 - **b)** $x*a=a \Rightarrow -xa+2x+2a-2=a \Rightarrow -xa+a=-2x+2 \Rightarrow a(-x+1)=2(-x+1) \Rightarrow a=2 \in \mathbf{R}$.

c)
$$\frac{1}{2009} * \frac{2}{2009} * ... * \frac{4018}{2009} = \frac{1}{2009} * \frac{2}{2009} * ... * \frac{4017}{2009} * \frac{4018}{2009} = 2 \text{ conform punctului}$$

precedent.

Probleme propuse

- 17. Pe mulțimea \mathbb{Z} se consideră legile de compoziție $x \perp y = x + y + 1$, $x \circ y = ax + by 1$, cu $a,b \in \mathbb{Z}$ și funcția f(x) = x + 2, $f: \mathbb{Z} \to \mathbb{Z}$,
 - a) Să se demonstreze că $x \perp (-1) = (-1) \perp x = x$, oricare ar fi $x \in \mathbb{Z}$.
 - **b)** Să se determine $a,b \in \mathbb{Z}$ pentru care legea de compoziție " \circ " este asociativă.
 - c) Dacă a=b=1 să se arate că funcția f este morfism între grupurile (\mathbf{Z}, \perp) și (\mathbf{Z}, \circ) .
- **18.** Se consideră mulțimea $G = \{a+b\sqrt{2} \mid a,b \in \mathbb{Z}, a^2-2b^2=1\}$.
 - a) Să se verifice că $3+2\sqrt{2} \in G$.
 - **b)** Să se demonstreze că $x \cdot y \in G$, pentru $\forall x, y \in G$.
 - c) Să se arate că orice element din mulțimea G are invers în G în raport cu înmulțirea numerelor reale.
- **19.** Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = 2^{x+y}$.
 - a) Să se calculeze 2008 ∘(−2008).
 - **b)** Să se rezolve în **R** ecuația $x \circ x^2 = 64$.
 - c) Să se demonstreze că nu există $x,y,z \in \mathbb{R}$ pentru care $(x \circ y) \circ z = 2^z$.
- **20.** Pe mulțimea **R** se definește legea de compoziție $x * y = \sqrt[3]{x^3 + y^3}$.
 - a) Să se calculeze x*0.
 - b) Să se demonstreze că legea "*" este asociativă.
 - c) Știind că $x_0 \in \mathbb{Q}$ și $x_n = x_0 * x_{n-1}$, oricare ar fi $n \in \mathbb{N}^*$, să se arate că $x^* \in \mathbb{Q}$.
- **21.** Se consideră mulțimea $G=(2,\infty)$ și operația $x \circ y = xy 2(x+y) + 6$, $\forall x,y \in G$.
 - a) Să se arate că $x \circ y = (x-2)(y-2)+2$, $\forall x,y \in G$.
 - **b)** Să se demonstreze că $x \circ y \in G$, pentru $\forall x, y \in G$.
 - c) Să se afle elementele simetrizabile ale mulțimii G în raport cu legea " \circ ".
- **22.** Se consideră mulțimea $G=(0,\infty)\setminus\{1\}$ și operația $x\circ y=x^{3\ln y}$, $\forall x,y\in G$.
 - a) Să se determine mulțimea soluțiilor reale ale ecuației $x \circ e = 1$, unde e este baza logaritmului natural.
 - **b)** Să se demonstreze că $x \circ y \in G$, pentru $\forall x,y \in G$.

- c) Să se arate că operația " \circ " este asociativă pe mulțimea G.
- 23. Pe mulțimea numerelor reale se consideră legea de compoziție x*y=2xy-6x-6y+21, pentru orice $x,y \in \mathbb{R}$.
 - a) Să se arate că x*y=2(x-3)(y-3)+3 pentru orice $x,y \in \mathbb{R}$.
 - **b)** Să se rezolve în **R** ecuația 5x*5x=11.
 - c) Să se determine elementele simetrizabile în raport cu legea "*".
- **24.** Fie mulţimea $G = \{a+b\sqrt{3} \mid a,b \in \mathbb{Z}, a^2-3b^2=1\}$.
 - a) Să se verifice dacă 0 și 1 aparțin mulțimii G.
 - **b)** Să se demonstreze că pentru orice $x, y \in G$ avem $x \cdot y \in G$.
 - c) Să se arate că dacă $x \in G$, atunci $\frac{1}{x} \in G$.
- **25.** Pe **R** se consideră legea de compoziție asociativă $x \circ y = x + y + 1$.
 - a) Să se calculeze 2007°2008.
 - **b)** Să se rezolve în **R** inecuația $x \circ x^2 \le 3$.
 - c) Fie mulţimea $A = \{n \in \mathbb{N}^* | n \ge 2 \text{ și } C_n^0 \circ C_n^1 \circ C_n^2 = n + 6 \}$. Să se determine numărul elementelor mulţimii A.
- **26.** Se consideră mulțimea G=(-1,1) și legea de compoziție $x * y = \frac{x+y}{1+xy}$,

 $\forall x, y \in G$.

- a) Să se rezolve în G ecuația $x*x = \frac{4}{5}$.
- **b)** Să se verifice egalitatea $x * y = \frac{(x+1)(y+1) (x-1)(y-1)}{(x+1)(y+1) + (x-1)(y-1)}, \ \forall x, y \in G.$
- c) Să se arate că pentru oricare $x, y \in G$ rezultă că $x * y \in G$.
- 27. Pe mulțimea numerelor reale definim legea de compoziție $x \circ y = xy + 3x + 3y + 6$, $\forall x,y \in \mathbb{R}$.
 - **a)** Să se arate că $x \circ y = (x+3)(y+3)-3, \forall x,y \in \mathbb{R}$.
 - **b)** Să se determine elementul neutru, știind că legea de compoziție "°" este asociativă și comutativă.
 - c) Să se determine $n \in \mathbb{N}$, $n \ge 2$ astfel încât $C_n^2 \circ C_n^2 = 13$.
- **28.** Pe mulțimea numerelor întregi definim legile de compoziție x*y=x+y-3 și $x\circ y=xy-3(x+y)+12$.
 - a) Să se rezolve în \mathbb{Z} ecuația $x \circ x = 12$.
 - **b)** Să se arate că $1 \circ (2*3) = (1 \circ 2)*(1 \circ 3)$.
 - c) Să se rezolve în mulțimea $\mathbb{Z} \times \mathbb{Z}$ sistemul $\begin{cases} (x-3) * y = 2 \\ (x-y) \circ 4 = 10 \end{cases}$
- **29.** Pe mulțimea numerelor întregi se definește legea de compoziție $x \circ y = x + y + 11$.

- a) Să se arate că legea de compoziție "o" este asociativă.
- **b)** Să se rezolve ecuația $\underbrace{x \circ x \circ ... \circ x = 1}_{\text{de 6 ori}}$.
- c) Să se demonstreze că (**Z**,°) este grup comutativ.
- **30.** Pe mulțimea numerelor reale **R** se consideră legea de compoziție $x \circ y = xy 2(x+y) + 6$.
 - a) Să se verifice că $x \circ y = (x-2)(y-2)+2$, $\forall x,y \in \mathbb{R}$.
 - **b)** Să se demonstreze că $x \circ 2 = 2$ oricare ar fi $x \in \mathbb{R}$.
 - c) Știind că legea de compoziție "°" este asociativă, să se calculeze expresia $E=(-2008)\circ(-2007)\circ...\circ(-1)\circ0\circ1\circ2\circ...\circ2008$.
- **31.** Pe mulțimea G=(-1,1) se consideră legea de compoziție $x * y = \frac{x+y}{1+xy}$.

Fie funcția $f:(-1,1) \to (0,4), \ f(x) = \frac{1-x}{1+x}$

- a) Să se calculeze $\frac{1}{2} * \frac{1}{2}$.
- **b)** Să se verifice că $f(x*y)=f(x)*f(y), \forall x,y \in G$.
- c) Să se demonstreze că legea "*" este asociativă.
- **32.** Pe mulțimea **R** se definește legea de compoziție $x \circ y = xy 10(x+y) + 110$.
 - a) Să se verifice că $x \circ y = (x-10)(y-10)+10$, oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se calculeze $C_{20}^1 \circ C_{20}^1$
 - c) Să se rezolve ecuația $x \circ (x-1)=10$, unde $x \in \mathbb{R}$.
- 33. Se consideră mulțimea $G = \{A_x \mid x \in \mathbf{Z}\}$, unde matricea $A_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ x & 0 & 1 \end{pmatrix}, x \in \mathbf{Z}$.
 - a) Să se verifice că A_x : $A_y = A_{x+y}$, unde $x,y \in \mathbb{Z}$.
 - **b)** Să se determine elementul neutru din grupul (G, \cdot) .
 - c) Să se demonstreze că funcția $f: \mathbb{Z} \to G$, $f(x) = A_x$ este morfism de grupuri.
- **34.** Pe mulțimea numerelor reale **R** se consideră legea de compoziție definită astfel x*y=xy-x-y+2.
 - a) Să se demonstreze că x*y=(x-1)(y-1)+1, oricare ar fi $x,y \in \mathbb{R}$.
 - b) Să se demonstreze că legea "*" este asociativă.
 - c) Să se calculeze $\frac{\sqrt{1}}{2} * \frac{\sqrt{2}}{2} * ... * \frac{\sqrt{2008}}{2}$.
- **35.** Se definește pe mulțimea numerelor reale legea de compoziție asociativă x*y=xy-6x-6y+42, pentru orice $x,y \in \mathbb{R}$.
 - a) Să se arate că x*y=(x-6)(y-6)+6, oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se rezolve în **R** ecuația x * x * x * x = x.
 - c) Să se calculeze 1* 2 * 3 * ... * 2008.
- 36. Pe mulțimea numerelor reale se definește legea de compoziție

 $x*y=xy-\sqrt{2008}(x+y)+2008+\sqrt{2008}$, oricare ar fi $x,y \in \mathbb{R}$.

- a) Să se arate că $x*y=(x-\sqrt{2008})(y-\sqrt{2008})+\sqrt{2008}$, oricare ar fi $x,y \in \mathbb{R}$.
- b) Să se determine elementul neutru al legii de compoziție "*" pe mulțimea R.
- c) Știind că legea de compoziție "*" este asociativă, să se calculeze
- $(-\sqrt{2008})*(-\sqrt{2007})*...*0*...*(\sqrt{2007})*(\sqrt{2008}).$
- **37.** Pe **Z** se definește legea de compoziție asociativă x*y=3xy+7x+7y+14.
 - a) Să se determine elementul neutru al legii "*".
 - **b)** Să se rezolve în **R** inecuația $x*x \le -\frac{7}{3}$.
 - c) Să se determine elementele simetrizabile în raport cu legea "*".
- **38.** Pe **R** se definește legea de compoziție prin $x \circ y = 3xy + 3x + 3y + 2$, oricare ar fi numerele reale x si y.
 - a) Să se verifice că $x \circ y = 3(x+1)(y+1) 1$, oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se determine perechile $(x,y) \in \mathbb{R} \times \mathbb{R}$ pentru care $(x^2-5) \circ (y^2-10) = -1$.
 - c) Să se determine două numere $a,b \in \mathbb{Q} \mathbb{Z}$, astfel încât $a \circ b \in \mathbb{N}$.
- **39.** Pe mulțimea **Z** se definesc legile de compozițiex*y=x+y+2 și respectiv $x\circ y=xy+2x+2y+2$.
 - a) Să se demonstreze că $x \circ y = (x+2)(y+2)-2$.
 - b) Să se determine elementele neutre ale fiecăreia dintre cele două legi de compoziție.
 - c) Să se rezolve sistemul $\begin{cases} x^2 * y^2 = 7 \\ x^2 \circ y^2 = 16 \end{cases}$
- **40.** Pe mulțimea numerelor reale se consideră legea de compoziție $x \circ y = 2xy 8x 8y + 36$.
 - a) Să se demonstreze că $x \circ y = 2(x-4)(y-4)+4$, oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se rezolve ecuația $x \circ x = 36$.
 - c) Știind că operația " \circ " este asociativă să se calculeze $\sqrt{1} \circ \sqrt{2} \circ ... \circ \sqrt{2008}$.
- **41.** Pe mulțimea numerelor reale se definește legea de compoziție prin x*y=3xy+3x+3y+2.
 - a) Să se demonstreze că x*y=3(x+1)(y+1)-1, oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se determine perechile $(x,y) \in \mathbb{R} \times \mathbb{R}$ pentru care $(x^2-2)*(y^2-5)=-1$.
 - c) Știind că legea de compoziție este asociativă să se calculeze (-2008)*(-2007)*...*(-1)*0*1*...*2007*2008.
- **42.** Pe **R** definim legile de compoziție $x \circ y = x + y + 3$ și x * y = xy 3(x + y) + 12.
 - a) Să se verifice că x*y=(x-3)(y-3)+3, oricare ar fi $x,y \in \mathbb{R}$.
 - **b)** Să se rezolve în **R** ecuația $(x \circ (x+1)) + (x*(x+1)) = 11$.
 - c) Să se rezolve sistemul de ecuații $\begin{cases} x \circ (y-1) = 0 \\ (x+1) * y = x * (y+1) \end{cases}, x,y \in \mathbf{R}.$