

3.7.
$$ABCD$$
 tetrohedron. Show that:

 $AB^2 + BC^2 - AC^2 - BD^2$ (3D law 2.AB.CD at applie)

At 2.AB.CD at applie)

 ABC
 $BC^2 = AB^2 + AC^2 - 2AB AC \cdot COS(BAC)$
 $BC^2 = AB^2 + AC^2 - 2AB AC \cdot COS(BAC)$
 $BC^2 = AB^2 + AC^2 - 2AB \cdot AC$
 $ABCC$
 $ABCC$

$$An^{2} + ac^{2} - ac^{2} - ac^{2} = (An^{2} - ac^{2}) + (Ac^{2} - ac^{2}) =$$

$$= (An^{2} - Ac^{2}) (An^{2} + Ac^{2}) + (An^{2} - ac^{2}) (An^{2} + ac^{2}) =$$

$$= (an^{2} - Ac^{2}) (An^{2} + Ac^{2}) + (An^{2} + ac^{2}) (An^{2} + ac^{2}) =$$

$$= (an^{2} + an^{2}) (An^{2} + ac^{2}) + (An^{2} + ac^{2}) =$$

$$= (an^{2} + an^{2}) (An^{2} + ac^{2}) + (An^{2} + ac^{2}) =$$

$$= (an^{2} + an^{2}) (An^{2} + ac^{2}) + (An^{2} + ac^{2}) =$$

$$= (an^{2} + an^{2}) (An^{2} + ac^{2}) + (an^{2} + ac^{2}) =$$

$$= (an^{2} + an^{2}) (An^{2} + an^{2}) =$$

$$= (a$$

No mid of
$$AC \Rightarrow N(3, h)$$

No: $(y-y_N) = (x-x_N) m_{NO}$

No: $y = 4-x$

M mid of $BC \Rightarrow M(4, 2)$
 $m_{BC} = \frac{6+2}{5-3} = h$
 $m_{MO} = -\frac{1}{4}$
 $\Rightarrow MO : y-2 = (x-h)(-\frac{1}{4})$

Mo: $y = -\frac{1}{4}x+1$

Mo: $y = -\frac{1}{4}x+3$
 $1 + \frac{1}{4}x+3$
 1

