ЛАБОРАТОРНАЯ РАБОТА №5

ИССЛЕДОВАНИЕ ПРЕЦЕССИИ И НУТАЦИИ ГИРОСКОПА

Поляков Даниил, Б07-Ф3

Цель работы: исследование поведения гироскопа, явлений прецессии и нутации, исследование зависимости частоты прецессии гироскопа от частоты вращения диска и момента сил и зависимости частоты нутации от частоты вращения диска.

Схема установки и оборудование:

- 1) Гироскоп;
- 2) Датчик вращения;
- 3) Sensor-CASSY 2;
- 4) Оптический барьерный датчик;
- 5) Клипса для крепления оптического барьерного датчика;
- 6) Штатив;
- Набор грузов по 50 г и нить для раскручивания гироскопа.

Расчётные формулы:

• Частота прецессии гироскопа:

$$f_{\rm np} = \frac{M}{4\pi^2 I_{zz} f_D}$$

M – момент силы тяжести грузов;

 I_{zz} — момент инерции гироскопа относительно его оси фигуры;

 f_D – частота вращения диска.

• Частота нутации гироскопа:

$$f_{\rm H} = \frac{I_{zz}}{I_{xx}} f_D$$

 I_{zz} – момент инерции гироскопа относительно его оси фигуры;

 I_{xx} — суммарный момент инерции гироскопа относительно его вертикальной оси;

 f_D – частота вращения диска.

• Момент инерции гироскопа относительно его оси фигуры:

$$I_{zz} = \frac{mR^2}{2}$$

 $m = 1.54 \; \text{кг} - \text{масса диска};$

R = 11.5 см – радиус диска.

• Суммарный момент инерции гироскопа относительно его вертикальной оси:

$$I_{xx} = I_1 + I_2 + I_3 =$$

$$= \left(\frac{m_{cT}l^2}{12} + m_{cT}s^2\right) + ma_D^2 + m_B a_B^2$$

 I_1 – момент инерции стержня;

 I_2 – момент инерции диска;

 I_3 – момент инерции

балансирующего груза;

 $m_{
m \scriptscriptstyle CT}=0.50~{
m \kappa}$ г – масса стержня;

l = 57 см – длина стержня;

s = 6.6 см – расстояние от оси до центра масс стержня;

 $m = 1.54 \; {
m Kr}$ – масса диска;

 $a_D = 15 \; {
m cm}$ — расстояние от оси до диска;

 $m_{
m B}=1~{
m \kappa r}$ – масса уравновешивающего груза;

 $a_{\rm B} = 19~{
m cm}$ – расстояние от оси до уравновешивающего груза;

• Момент силы тяжести грузов:

$$M = dm_{\rm E}g$$

d — расстояние от вертикальной оси гироскопа до точки крепления грузов (плечо силы тяжести грузов);

 $m_{\scriptscriptstyle \Gamma}$ – масса грузов;

g — ускорение свободного падения.

Метод измерения

- 1. Установим датчик вращения снизу гироскопа для измерения частоты прецессии $f_{
 m np}.$
- 2. Уравновесим гироскоп, перемещая уравновешивающий груз до тех пор, пока гироскоп не установится в горизонтальном положении.
- 3. Намотаем нить на диск и резко раскрутим его. Подвесим к противоположному концу гироскопа груз и отпустим гироскоп. Гироскоп начнёт вращаться вокруг своей вертикальной оси. В программе CASSY Lab будем снимать частоту вращения диска f_D и частоту прецессии $f_{\rm np}$ в различные моменты времени по мере затухания вращения диска. Повторим те же измерения с двумя грузами.
- 4. Установим датчик вращения на горизонтальной оси гироскопа для измерения частоты нутации $f_{\rm H}$.
- 5. Уравновесим гироскоп, перемещая уравновешивающий груз до тех пор, пока гироскоп не установится в горизонтальном положении.
- 6. Намотаем нить на диск и резко раскрутим его. Подтолкнём горизонтальную ось гироскопа. Она начнёт вращаться в вертикальной плоскости. В программе CASSY Lab будем снимать частоту вращения диска f_D и частоту нутации $f_{\rm H}$ в различные моменты времени по мере затухания вращения диска. Нутация быстро затухает, поэтому периодически снова будем подталкивать ось гироскопа.

Таблицы и обработка данных

Масса каждого груза равна 50 г.

Коэффициенты наклона графиков (и их погрешности) каждой прямой зависимости найдём по методу наименьших квадратов.

Ускорение свободного падения g принято за 9.82 м/с².

1. Исследование зависимости прецессии гироскопа от частоты вращения диска.

Теоретическая зависимость $f_{np}(f_D)$ имеет вид $f_{np}=\frac{M}{4\pi^2I_{ZZ}f_D}$. Чтобы убедиться в правильности формы зависимости, кроме графиков $f_{np}(f_D)$ также изобразим графики $f_{np}(f_D^{-1})$. Таким образом, в графиках $f_{np}(f_D^{-1})$ коэффициент наклона равен:

$$\alpha = \frac{M}{4\pi^2 I_{zz}} = \frac{dm_{\scriptscriptstyle \Gamma} g}{2\pi^2 m R^2}$$

Найдём теоретическое значение данного коэффициента при одном и двух подвешенных грузах. Значения параметров гироскопа известны и указаны в расчётных формулах (кроме расстояния от вертикальной оси гироскопа до точки крепления грузов d; его значение грубо измерено линейкой и равно 35 см).

• 1 груз: $\alpha \approx 0.427 \ \Gamma \text{ц}^2$ • 2 груза: $\alpha \approx 0.855 \ \Gamma \text{ц}^2$

Далее рассмотрим экспериментальные результаты.

 $f_{np}(f_D)$ при одном подвешенном грузе:

f_D , Гц	f_D^{-1} , Γ ц $^{-1}$	$f_{\mathrm{пр}}$, Гц	f_D , Гц	f_D^{-1} , Γ ц $^{-1}$	$f_{\rm пр}$, Гц
10.6	0.094	0.042	8.8	0.114	0.053
10.5	0.095	0.044	8.7	0.115	0.053
10.4	0.096	0.045	8.6	0.116	0.052
10.3	0.097	0.046	8.5	0.118	0.052
10.2	0.098	0.046	8.4	0.119	0.054
10.1	0.099	0.047	8.2	0.122	0.055
10.0	0.100	0.046	8.1	0.123	0.057
9.9	0.101	0.046	7.8	0.128	0.057
9.8	0.102	0.047	7.7	0.130	0.060
9.7	0.103	0.047	6.6	0.152	0.067
9.6	0.104	0.048	6.5	0.154	0.069
9.5	0.105	0.049	6.4	0.156	0.070
9.3	0.108	0.050	6.3	0.159	0.070
9.1	0.110	0.050	6.2	0.161	0.071
9.0	0.111	0.051	6.1	0.164	0.071
8.9	0.112	0.051	6.0	0.167	0.072

График зависимости $f_{пp}(f_D)$:

График зависимости $f_{пp}(f_D^{-1})$:

Экспериментально полученный коэффициент наклона:

$$\alpha=0.403\pm0.007$$
 Гц 2

 $f_{np}(f_D)$ при двух подвешенных грузах:

f_D , Гц	f_D^{-1} , Γ ц $^{-1}$	$f_{\rm пр}$, Гц	f_D , Γ ц	f_D^{-1} , Γ ц $^{-1}$	$f_{\rm пр}$, Гц
9.9	0.101	0.094	9.0	0.111	0.099
9.8	0.102	0.093	8.9	0.112	0.098
9.7	0.103	0.093	8.8	0.114	0.100
9.6	0.104	0.094	8.7	0.115	0.102
9.5	0.105	0.095	8.6	0.116	0.101
9.4	0.106	0.097	7.8	0.128	0.112
9.3	0.108	0.096	7.7	0.130	0.116
9.2	0.109	0.097	7.6	0.132	0.116
9.1	0.110	0.099	7.4	0.135	0.118

График зависимости $f_{np}(f_D)$:

График зависимости $f_{пp}(f_D^{-1})$:

График с осями из нуля

График со смещёнными ближе к точкам осями Экспериментально полученный коэффициент наклона:

$$α = 0.77 \pm 0.03$$
 Γ $\mathbf{μ}^2$

Анализ результатов

Экспериментально полученное значение коэффициента α в случае с одним грузом находится достаточно близко к теоретическому и отличается от него на 6%; в случае с двумя грузами разница между экспериментальным и теоретическим значением α составила 10%.

2. Исследование зависимости нутации гироскопа от частоты вращения диска.

Теоретическая зависимость $f_{\rm H}(f_{\rm D})$ имеет вид $f_{\rm H}=\frac{I_{\rm ZZ}}{I_{\chi\chi}}f_{\rm D}$. Коэффициент наклона графика равен:

$$\alpha = \frac{I_{zz}}{I_{xx}} = \frac{\frac{mR^2}{2}}{\frac{m_{\rm cT}l^2}{12} + m_{\rm cT}s^2 + ma_D^2 + m_{\rm B}a_{\rm B}^2}$$

Найдём теоретическое значение данного коэффициента. Значения параметров гироскопа известны и указаны в расчётных формулах.

$$\alpha = 0.118$$

Далее рассмотрим экспериментальные результаты.

f_D , Гц	$f_{\scriptscriptstyle m H}$, Гц
10.83	1.068
10.35	1.055
10.23	1.002
9.32	0.917
8.61	0.840
7.97	0.752
7.70	0.738
7.33	0.732
6.95	0.670
6.50	0.635
5.81	0.579
5.35	0.533
5.06	0.509
4.61	0.449

График зависимости $f_H(f_D)$:

Экспериментально полученный коэффициент наклона:

$$\alpha = 0.099 \pm 0.002$$

Анализ результатов

Экспериментально полученное значение коэффициента α меньше теоретического на 16%.

Выводы

- Частота прецессии гироскопа обратно пропорциональна частоте вращения его диска и прямо пропорциональна моменту сил, действующих на него.
- Частота нутации гироскопа прямо пропорциональна частоте вращения его диска.
- Экспериментально полученные коэффициенты, связывающие исследованные зависимости частот гироскопа, несильно отличаются от вычисленных теоретически, что подтверждает верность описывающих данную связь формул.