電子學 (二) 期末考 Chapter 10, 11, 12.1~12.3,13.2 (if not specified,  $v_d = v_1 - v_2$ ,  $v_{cm} = (v_1 + v_2)/2$  for differential amplifiers) 必須要有計算過程。

- 1. (10%) For the current-source circuit shown in Figure 1, assume  $V_{BE1}(\text{on}) = 0.7 \text{ V}$ ,  $\beta = 40$ ,  $V^+ =$ 5 V,  $V^- = -5$  V, and all base currents are NOT negligible. (a) Design  $I_{REF}$  such that  $I_0 = 0.1$  mA. (b) Assuming that  $V_A = 80 \text{ V}$ , what is the output resistance  $R_0$  of this circuit?
- 2. (10%) For the circuit in Figure 2, the transistor parameters are:  $K_p = 0.1 \text{ mA/V}^2$ ,  $K_n =$ 0.25 mA/V<sup>2</sup>,  $V_{TN} = 1 \text{ V}$ ,  $V_{TP} = -1 \text{ V}$ ,  $\lambda_n = 0.01 \text{ V}^{-1}$ , and  $\lambda_p = 0.02 \text{ V}^{-1}$ . Let  $V^+ = 10 \text{ V}$ ,  $I_{REF}=0.25$  mA, and  $R_L=500$  k $\Omega$ . (a) Find the small-signal voltage gain  $A_v=v_o/v_i$ . (b) If transistors M1-M2 are replaced by cascode active load (with same transistor parameters), find the new small-signal voltage gain  $A_v = v_o/v_i$ .



3. (12%) Consider the BiCMOS Darlington pair in Figure 3. The NMOS parameters are  $K_n =$ 50  $\mu$ A/V<sup>2</sup>,  $V_{TN}=0.5$  V, and  $\lambda=0$ . The BJT parameters are  $\beta=150$ ,  $V_{BE}(\text{on})=0.7$  V, and  $V_{A}=0.7$  $\infty$ . (a) Determine the transconductance for each transistor ( $g_{m1}$  and  $g_{m2}$ ) (4%). (b) Determine the composite transconductance  $g_m^c = i_o/v_i$  (5%). (c) What is the advantage of this circuit comparing to a MOSFET alone (3%)?



Figure 3

Figure 1

- (20%) For the differential amplifier shown in Figure 4, the parameters are R<sub>1</sub> = 50 kΩ and R<sub>D</sub> = 24 kΩ. The transistor parameters are K<sub>n</sub> = 0.25 mA/V<sup>2</sup>, V<sub>TN</sub> = 2 V, and λ = 0. (a) Determine I<sub>Q</sub> (4%). (b) What are the maximum and minimum values of common-mode input voltage v<sub>CM</sub> (6%).
  (c) Determine the differential-mode gain A<sub>d</sub> = v<sub>o</sub>/v<sub>d</sub> (5%). (d) If λ = 0.02 V<sup>-1</sup> for M<sub>3</sub> and M<sub>4</sub>, determine the common-mode gain A<sub>cm</sub> = v<sub>o</sub>/v<sub>cm</sub> (5%).
- 5. (25%) Consider the Darlington pair and output stage of the circuit in Figure 5. The parameters are  $I_{C7} = I_Q = 0.5 \text{ mA}$ ,  $I_{C8} = 2.5 \text{ mA}$ ,  $R_4 = 5 \text{ k}\Omega$ ,  $R_2 = R_3 = 0.1 \text{ k}\Omega$ ,  $\beta = 100 \text{ for all transistors, and early voltages } V_A = 80 \text{ V}$  for  $Q_1 \sim Q_5$  and  $Q_{11}$ . (a) Determine the input resistance of the Darlington pair  $R_i$ . (b) Determine the resistance looking into collector of  $Q_{11}$ . (c) Calculate the small-signal voltage gain of the differential amplifier  $(A_{v1} = v_{o2}/v_d)$ . (d) Calculate the small-signal voltage gain of the Darlington pair  $(A_{v2} = v_{o3}/v_{o2})$ . (e) Find the output resistance  $(R_o)$ .



6. (10%) For a feedback system shown in Figure 6, the amplifier A has input resistance R<sub>i</sub> and output resistance R<sub>o</sub>. (a) What kind of feedback system is this (4%)? (b) What are the input resistance R<sub>if</sub> and output resistance R<sub>of</sub> of the entire system (6%)?



7. (13%) uA741 circuit is shown in Figure 7. In the classroom, we have analyzed uA741 assuming V<sup>+</sup> = 15V and V<sup>-</sup> = -15V. (a) Writing down the equation of input resistance of gain stage R<sub>i2</sub> using β<sub>n</sub>, β<sub>p</sub>, g<sub>m</sub>, r<sub>π</sub> of Q<sub>16</sub>~Q<sub>17</sub> and necessary resistors (5%). (b) What is the purpose or function for the combination of Q<sub>18</sub>, Q<sub>19</sub> and R<sub>10</sub> (4%)? (c) What is the purpose or function for the combination of Q<sub>15</sub>, Q<sub>21</sub>, R<sub>6</sub> and R<sub>7</sub> (4%)?



Figure 7