

Applied Geochemistry

JOURNAL OF THE INTERNATIONAL ASSOCIATION OF
GEOCHEMISTRY AND COSMOCHEMISTRY

**LIST OF REFEREES, LIST OF CONTENTS
SUBJECT INDEX AND AUTHOR INDEX
VOL. 1, 1986**

OL.
1
986

PERGAMON PRESS

OXFORD · NEW YORK · BEIJING
FRANKFURT · SÃO PAULO · SYDNEY
TOKYO · TORONTO

APPLIED GEOCHEMISTRY

EXECUTIVE EDITOR

Brian Hitchon, Alberta Research Council, P.O. Box 8330, Postal Station F, Edmonton, Alberta T6H 5X2, Canada

ASSOCIATE EDITORS

- J. L. Bischoff, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, U.S.A
 J. A. Boon, Alberta Geological Survey, Alberta Research Council, 4445 Calgary Trail South, Edmonton, Alberta T6H 5R7, Canada
 D. G. Brookins, Department of Geology, University of New Mexico, Albuquerque, NM 87131, U.S.A.
 J. Brooks, Exploration Division, Britoil, 150 St. Vincent Street, Glasgow G2 5LJ, Scotland
 C. D. Curtis, Beaumont Building, University of Sheffield, Brookhill, Sheffield S3 7HF, England
 W. M. Edmunds, British Geological Survey, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, England
 P. Fritz, Department of Earth Sciences, The University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
 W. F. Guggenbach, Chemistry Department, DSIR, Private Bag, Petone, New Zealand
 M. Kastner, Scripps Institution of Oceanography, SVH, A-012, La Jolla, CA 92093, U.S.A.
 Y. K. Khakura, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025, U.S.A.
 A. A. Levinson, Department of Geology and Geophysics, The University of Calgary, Calgary, Alberta T2N 1N4, Canada
 F. J. Longstaffe, Department of Geology, The University of Alberta, Edmonton, Alberta T6G 2E3, Canada
 V. K. Lukashev, Institute of Geochemistry and Geophysics, Academy of Sciences of the B.S.S.R., Zhodinskaya 7, 220600, Minsk, U.S.S.R.
 J. A. Plant, British Geological Survey, 154 Clerkenwell Road, London, EC1R 5DU, England
 H. Sakai, Ocean Research Institute, The University of Tokyo, 1-15-1 Minamidai, Nakano-Ku, Tokyo 164, Japan
 R. E. Smith, CSIRO Division of Minerals and Geochemistry, Private Mail Bag, P.O. Wembley, W.A. 6014, Australia
 E. F. Stumpf, Institute of Mineralogy and Petrology, Mining University, A-8700 Leoben, Austria

EDITORIAL ADVISORY BOARD

- E. Baker, *Editor-in-Chief, Organic Geochemistry*
E. Barbier, *Editor-in-Chief, Geothermics*
K. J. Ives, *Honorary Executive Editor, Water Research*
J. P. Lodge, Jr., *Executive Editor, Atmospheric Environment*
D. F. Merriam, *Editor-in-Chief, Computers & Geosciences*
D. M. Shaw, *Executive Editor, Geochimica et Cosmochimica Acta*

PUBLICATIONS COMMITTEE

- A. A. Levinson (*Chairman*), I. Barnes, Brian Hitchon, L. V. Tauson

INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY

- President:* M. H. Grunenfelder *Vice-President:* H. Wänke
Past President: V. L. Barsukov *Secretary:* Brian Hitchon *Treasurer:* E. E. Angino

COUNCILLORS

- I. Barnes K. Kigoshi D. Lal F. Mrna
M. Carapezza L. N. Kogarko S. Moorbat H. Sorensen

Membership enquiries to Dr Brian Hitchon, Alberta Research Council, P.O. Box 8330, Postal Station F, Edmonton, Alberta T6H 5X2, Canada

Applied Geochemistry is published bimonthly.

Publishing, Subscription and Advertising Offices: Pergamon Journals Ltd, Headington Hill Hall, Oxford OX3 0BW, U.K. (Tel. Oxford 64881; Telex 83177); Pergamon Journals Inc., Maxwell House, Fairview Park, Elmsford, NY 10523, U.S.A. (Tel. (914) 592 7700; Telex 13-7328).

Annual Subscription Rate 1987: For libraries, university departments, research institutions, government departments, and other multiple-reader institutions US \$95.00 (including postage and insurance). Two-year rate (1987/1988) US \$180.50.

Membership Subscription Rates: Members of the International Association of Geochemistry and Cosmochemistry may receive this journal for an additional \$15.00/year above their membership dues of \$10.00/year (total: \$25.00/year). Individuals may choose to be a member of I.A.G.C. for \$10.00/year and not receive this journal. Prices are subject to change without notice.

Subscription enquiries from customers in North America should be sent to: Pergamon Journals Inc., Maxwell House, Fairview Park, Elmsford, NY 10523, U.S.A., and for the remainder of the world to: Pergamon Journals Ltd, Headington Hill Hall, Oxford OX3 0BW, U.K.

Copyright © 1987 Pergamon Journals Ltd

It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. However, assignment of copyright is not required from authors who work for organizations which do not permit such assignment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microform or any other reproductions of similar nature, and translations. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holder.

Photocopying information for Users in the U.S.A.

The Item-Fee Code for this publication indicates that authorization to photocopy items for internal or personal use is granted by the copyright holder for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service provided the stated fee for copying, beyond that permitted by Section 107 or 108 of the United States Copyright Law, is paid. The appropriate remittance of \$3.00 per copy per article is paid directly to the Copyright Clearance Center Inc., 27 Congress Street, Salem, MA 01970.

Permission for other use

The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the publisher for such copying.

The Item-Fee Code for this publication is: 0883-2927/86 \$3.00 + 0.00

Editorial Acknowledgements

Applied Geochemistry has completed its first year of publication with an impressive variety of papers in effectively all fields commonly covered by the appellation "applied geochemistry". Most of the production goals have been met, and a successful bi-monthly journal has been launched. None of this could have been accomplished without the dedicated work of the Associate Editors, referees, and the I.A.G.C. Publications Committee. The list below acknowledges all who have contributed to our success, but I particularly wish to express my thanks and appreciation to Dr. A.A. Levinson without whose support, dedication, effort and advice this entire venture would never have been the success it clearly has become. Special thanks are also due to my secretary, Mrs. Kathie Skogg, who has unfailingly met all requirements in an exemplary manner. Finally, I wish to recognize the excellent relations developed with the staff of Pergamon Journals Ltd., particularly the copy editors Russell Allen and Geoff Roberts, the Senior Managing Editor Peter A. Henn, and above all Mr. Gilbert Richards, Managing Director of Pergamon Journals Ltd., whose foresight and assistance in starting Applied Geochemistry have been fully justified.

ASSOCIATE EDITORS DURING 1986

J.L. Bischoff, Menlo Park	P. Fritz, Waterloo	V.K. Lukashev, Minsk
J.A. Boon, Edmonton	W.F. Giggenbach, Petone	J. Plant, London
D.G. Brookins, Albuquerque	M. Kastner, La Jolla	H. Sakai, Tokyo
J. Brooks, Glasgow	Y.K. Kharaka, Menlo Park	R.E. Smith, Wembley
C.D. Curtis, Sheffield	A.A. Levinson, Calgary	E.F. Stumpf, Leoben
W.M. Edmunds, Wallingford	F.J. Longstaffe, Edmonton	

REFEREES

D.D. Andres	K.E. Chave	P. Hooker	C. Neal
J.D. Appleton	B. Christensen	H.R. Hudson	J. O'Neil
H. Babich	F.W. Dickson	M.L. Jackson	J. Plant
J.L. Bischoff	J.J. Dunham	D. Kadko	E.J. Reardon
A.T. Blades	W.M. Edmunds	R.L.F. Kay	C. Reichert
C.J. Bland	S.K. Frape	D.G. Kinniburgh	J. Ridgway
J.A. Boon	R. Fuge	K.B. Krauskopf	K. Schulz
J. Brooks	M. Gascoyne	P. Kruger	R.E. Smith
C. Butt	W.F. Giggenbach	J.S. Leventhal	C. Taylor
D.J. Cant	J.M. Gray	A.A. Levinson	J.G. Webster
J.G. Catts	B. Hitchon	C.K. Minns	

OL.
1
986

VOL.
1
1980

CONTENTS OF VOLUME 1

NUMBER 1

F. Earl Ingerson Festschrift (Part 1)

BRIAN HITCHON: Editorial	1
MARC H. GRUNENFELDER: Foreword.....	3
MICHAEL FLEISCHER: A tribute to F. Earl Ingerson	5
Articles	
BRIAN HITCHON: International Association of Geochemistry and Cosmochemistry: a history.....	7
KONRAD B. KRAUSKOPF: Aqueous geochemistry of radioactive waste disposal	15
JOHN D. SAXBY and MICHIO SHIBAOKA: Coal and coal macerals as source rocks for oil and gas	25
JEFFREY S. HANOR and AUDREY L. WORKMAN: Distribution of dissolved volatile fatty acids in some Louisiana oil field brines	37
HALLDÓR ÁRMANNSSON, GESTUR GÍSLASON and HELGI TORFASON: Surface exploration of the Theistareykir high-temperature geothermal area, Iceland, with special reference to the application of geochemical methods.....	47
JOHAN C. VAREKAMP and PETER R. BUSECK: Global mercury flux from volcanic and geothermal sources	65
H. A. DAVEY and J. C. VAN MOORT: Current mercury deposition at Ngawha Springs, New Zealand	75
A. P. JONES and P. J. WYLIE: Solubility of rare earth elements in carbonatite magmas, indicated by the liquidus surface in $\text{CaCO}_3\text{--Ca(OH)}_2\text{--La(OH)}_3$ at 1 kbar pressure	95
GLENDIA B. MICHAELS and WALTER C. RIESE: Microbiological exploration for mineral deposits: a new technique.....	103
R. FUGE, M. J. ANDREWS and C. C. JOHNSON: Chlorine and iodine, potential pathfinder elements in exploration geochemistry	111
K. NORRISH, H. ROSSER and L. J. WARREN: A geochemical study of the forms of metals present in sediments from Spencer Gulf, South Australia	117
W. SACKETT, G. BROOKS, M. CONKRIGHT, L. DOYLE and L. YARBRO: Stable isotope compositions of sedimentary organic carbon in Tampa Bay, Florida, U.S.A.: implications for evaluating oil contamination	131
NORMAN HERZ and NANCY E. DEAN: Stable isotopes and archaeological geology: the Carrara marble, northern Italy	139
JACOB I. D. ADEKEYE and ALVIN J. COHEN: Correlation of Fe^{4+} optical anisotropy, Brazil twinning and channels in the basal plane of amethyst quartz.....	153
J. N. WALSH and R. A. HOWIE: Recent developments in analytical methods: uses of inductively coupled plasma source spectrometry in applied geology and geochemistry	161
Papers to appear in forthcoming issues.....	173

NUMBER 2

**F. Earl Ingerson Festschrift
(Part 2)**

Articles

M. L. JACKSON: Geochemical characteristics of land and its effect on human heart and cancer death rates in the United States and China	175
TERRI L. WOODS and ROBERT M. GARRELS: Use of oxidized copper minerals as environmental indicators	181
ROBERT O. FOURNIER and BRUCE B. HANSHAW: Geochemical evaluation of the geothermal resources in the San Marcos region, Guatemala	189
M. GASCOYNE: Evidence for the stability of the potential nuclear waste host, sphene, over geological time, from uranium-lead ages and uranium-series measurements	199
R. A. BINNS and E. C. APPLEYARD: Wallrock alteration at the Western System of the CSA Mine, Cobar, New South Wales, Australia	211
EDWARD D. GOLDBERG, VERN HODGE, PETER KAY, MARTHA STALLARD and MINORU KOIDE: Some comparative marine chemistries of platinum and iridium	227
KEITH E. CHAVE, CHARLES L. MORGAN and WILLIAM J. GREEN: A geochemical comparison of manganese oxide deposits of the Hawaiian Archipelago and the deep sea	233
JOEL S. LEVENTHAL, TED A. DAWS and JAMES S. FRYE: Organic geochemical analysis of sedimentary organic matter associated with uranium	241
C. J. BLAND and A. A. LEVINSON: Non-significant anomalies in the search for uranium in Saskatchewan, Canada	249
JOHN G. CATTS and DONALD LANGMUIR: Adsorption of Cu, Pb and Zn by δMnO_2 : applicability of the site binding-surface complexation model	255
JAMES R. O'NEIL, CLARK M. JOHNSON, LLOYD D. WHITE and EDWIN ROEDDER: The origin of fluids in the salt beds of the Delaware Basin, New Mexico and Texas	265
LIBERTO DE PABLO-GALÁN: Geochemical trends in the alteration of Miocene vitric tuffs to economic zeolite deposits, Oaxaca, Mexico	273
KAZUE TAZAKI, W. S. FYFE and C. B. DISSANAYAKE: Weathering of phosphatic marble to exploitable apatite deposit, Sri Lanka	287
F. M. SWAIN: Composition of marsh gases in the central and eastern United States	301
W. E. BAKER: An application of soil humic substances to geochemical exploration	307
M. E. THOMPSON, A. S. FRASER and H. G. THODE: Sulfate yields and isotopic ratios of sulfate sulfur in rivers of the Northwest Territories, Canada	311
Papers to appear in forthcoming issues	315

NUMBER 3

**F. Earl Ingerson Festschrift
(Part 3)**

Y. SEKI, F. W. DICKSON, J. G. LIOU, Y. OKI, H. SAKAI and T. HIRANO: Geochemical prediction of impending catastrophic inflow of seawater during construction of the undersea part of the Seikan Tunnel, Japan	317
BRUCE M. THOMSON, PATRICK A. LONGMIRE and DOUGLAS G. BROOKINS: Geochemical constraints on underground disposal of uranium mill tailings	335
G. LOCKE and K. K. BERTINE: Magnetite in sediments as an indicator of coal combustion	345
CHRISTOPHER R. RINGROSE, RUSSELL S. HARMON, SIMON E. JACKSON and CLIVE M. RICE: Stable isotope geochemistry of a porphyry-style hydrothermal system, West Silverton District, San Juan Mountains, Colorado, U.S.A.	357
COLIN E. DUNN and ERIC HOFFMAN: Multi-element study of vegetation from a zone of rare-earth rich allanite and apatite in northern Saskatchewan, Canada	375
H. KUNZENDORF, R. GWODZ, H. J. HANSEN and N. SVENSEN: Trace elements in a North Sea drill core	383
RENE LEFEBVRE and IAN HUTCHEON: Mineral reactions in quartzose rocks during thermal recovery of heavy oil, Lloydminster, Saskatchewan, Canada	395
R. A. KYDD and A. A. LEVINSON: Ammonium halos in lithogeochemical exploration for gold at the Horse Canyon carbonate-hosted deposit, Nevada, U.S.A.: use and limitations	407
ANGELA M. RAE and MIRO IVANOVICH: Successful application of uranium series dating of fossil bone	419
WILLIAM BACK: Role of aquitards in hydrogeochemical systems: a synopsis	427
Papers to appear in forthcoming issues	439

NUMBER 4

V. K. LUKASHEV: Some scientific and applied problems of supergene geochemistry in the U.S.S.R.	441
N. A. ROSLYAKOV and N. V. ROSLYAKOVA: Evaluation of the economic potential of gold deposits by the analysis of oxidized ore outcrops and exogenic aureoles: methods used in the U.S.S.R.	451
T. T. TAISAEV: Geochemical exploration methods for gold in areas with mountain glaciation in Siberia, U.S.S.R.	463
KAREN J. WENRICH: Geochemical exploration for mineralized breccia pipes in northern Arizona, U.S.A.	469
M. L. JACKSON, J. Z. ZHANG, C. S. LI and D. F. MARTIN: The geochemical availability of soil Zn and Mo in relation to stomach and esophageal cancer in the People's Republic of China and U.S.A.	487
M. IKRAMUDDIN, L. BESSE and P. M. NORDSTROM: Thallium in the Carlin-type gold deposits	493
R. A. ZIELINSKI, C. A. BUSH and J. N. ROSHOLT: Uranium series disequilibrium in a young surficial uranium deposit, northeastern Washington, U.S.A.	503
DOUGLAS G. BROOKINS: Rhenium as analog for fissionogenic technetium: Eh-pH diagram (25°C, 1 bar) constraints	513

M. J. ANDREWS and R. FUGE: Cupriferous bogs of the Coed y Brenin area, North Wales and their significance in mineral exploration	519
--	-----

D. PEACHEY, J. W. AUCOTT, J. L. ROBERTS, B. P. VICKERS and A. J. BLOODWORTH: Rapid colorimetric test to differentiate between bauxite-rich material and clay in exploration samples	527
---	-----

Erratum	531
-------------------	-----

Papers to appear in forthcoming issues	533
--	-----

NUMBER 5

I. T. RALSTON, A. A. LEVINSON and R. S. HARMON: Uranium series disequilibrium in young lacustrine sediments from an arid environment at Henkries, Republic of South Africa	535
--	-----

ROGER STOFFREGEN: Observations on the behavior of gold during supergene oxidation at Summitville, Colorado, U.S.A., and implications for electrum stability in the weathering environment	549
---	-----

GLENDIA B. MICHAELS and WALTER C. RIESE: Luminometry and isotopy in microbiological exploration for mineral deposits	559
--	-----

A. A. BEUS and V. V. LJAKHOVICH: On the ore producing potential of granitoids: experiences in the U.S.S.R.	567
--	-----

ERDEM F. IDIZ, DONALD CARLISLE and I. R. KAPLAN: Interaction between organic matter and trace metals in a uranium rich bog, Kern County, California, U.S.A.	573
---	-----

E. ROSENTHAL and A. MATES: Iodine concentrations in groundwater of northern Israel and their relation to the occurrence of goiter	591
---	-----

FRANCOIS CARON, ANDRE TESSIER, JAMES R. KRAMER, HENRY P. SCHWARCZ and CHARLES E. REES: Sulfur and oxygen isotopes of sulfate in precipitation and lakewater, Quebec, Canada	601
---	-----

P. KAUSHANSKY and S. YARIV: The interactions between calcite particles and aqueous solutions of magnesium, barium or zinc chlorides	607
---	-----

R. S. ROCHE, D. R. SALOMON and A. A. LEVINSON: The application of non-isothermal programmed pyrolysis-mass spectrometry to geochemistry	619
---	-----

Book Review

R. R. BROOKS: "Mineral Exploration: Biological Systems and Organic Matter" edited by D. Carlisle, W. L. Berry, I. R. Kaplan and J. R. Watterson	627
---	-----

Announcement

World Catalogue of Primary Geochemical Signatures of Mineral Deposits	629
---	-----

NUMBER 6

P. D. JENDEN and I. R. KAPLAN: Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon: implications for the origin of natural gas	631
--	-----

J. N. ANDREWS, N. HUSSAIN, A. S. BATCHELOR and K. KWAKWA: ^{222}Rn solution by the circulating fluids in a "hot dry rock" geothermal reservoir	647
---	-----

V. DUCHI, A. A. MINISSALE and R. ROSSI: Chemistry of thermal springs in the Larderello-Travale geothermal region, southern Tuscany, Italy	659
---	-----

A. I. PEREL'MAN: Geochemical barriers: theory and practical applications	669
--	-----

BRUCE T. MARSHALL and JANET S. HERMAN: Trace element distribution in the soils above deeply weathered pegmatites, Virginia, U.S.A.: implications for exploration.....	681
HERBERT V. WEISS and DAN PAVONE: A ^{238}Pu heat source in marine coastal sediment: formation of a protective concretion	691
D. GRONDIN and C. BARBEAU: Selective extraction of anthropogenic lead from sediments using Tiron	697
M. KOIDE, V. F. HODGE, J. S. YANG, M. STALLARD, E. G. GOLDBERG, J. CALHOUN and K. K. BERTINE: Some comparative marine chemistries of rhenium, gold, silver and molybdenum	705
T. W. D. EDWARDS and P. FRITZ: Assessing meteoric water composition and relative humidity from ^{18}O and ^2H in wood cellulose: paleoclimatic implications for southern Ontario, Canada	715
Book Review	
M. L. JACKSON: "Environmental Geochemistry and Health: Report to the Royal Society's British National Committee for Problems of the Environment" edited by S. H. U. Bowie and I. Thornton	725
Announcement	
Pergamon Geothermal Energy Award	727
Papers to appear in forthcoming issues	729

OL.
1
986

VOL.
1
1986

MAJOR CLASSIFICATION INDEX OF ARTICLES

ARCHAEOLOGICAL GEOCHEMISTRY

- Assessing meteoric water composition and relative humidity from wood cellulose 715-723
- Distinguishing Carrara marble using stable isotopes 139-151
- Uranium-series dating of fossil bone 419-426

ENVIRONMENTAL GEOCHEMISTRY

- Anthropogenic lead in sediments 697-704
- Composition of marsh gases 301-305
- Geochemical prediction of seawater inflow during tunnel construction 317-333
- Global mercury flux from volcanic and geothermal sources 65-73
- Implications for evaluating oil contamination using stable isotopes 131-137
- Magnetite in sediments as an indicator of coal combustion 345-356
- Metal-contaminated sediments adjacent to a lead zinc smelter 117-130
- Oxidized copper minerals as environmental indicators 181-187
- ^{238}Pu heat source in marine coastal sediments 691-696
- Radioactive waste disposal
 - Aqueous geochemistry of radioactive waste disposal 15-23
 - Rhenium as analog for fissogenic technetium 513-517
 - Stability of sphene, a potential nuclear waste host 199-210
 - Underground disposal of uranium mill tailings 335-343
- Sulfate yields and isotopic ratios of sulfate sulfur in rivers 311-314
- Sulfur and oxygen isotopes of sulfate in precipitation and lake water 601-606

EXPLORATION: ENERGY RESOURCES

Geothermal resources

- Geochemical evaluation of geothermal resources, Guatemala 189-197
- ^{222}Rn solution in a hot-dry-rock geothermal reservoir 647-657
- Surface geochemical exploration in a high-temperature area 47-64
- Thermal springs in the Larderello-Travale geothermal region, Italy 659-667

Petroleum and natural gas

- Coal and coal macerals as source rocks for oil and gas 25-36
- Dissolved volatile fatty acids in oil field brines 37-46
- Trace elements in a North Sea drill core 383-394

Submarine microbial gases: implications for natural gas origin 631-646

Uranium

- Non-significant anomalies in the search for uranium 249-253
- Organic matter and trace metals in a uranium-rich bog 573-590
- Sedimentary organic matter associated with uranium 241-247
- U -series disequilibrium in a young surficial uranium deposit 503-511
- U -series disequilibrium in young lacustrine sediments from an arid environment 535-548

EXPLORATION: MINERAL RESOURCES

Gold

- Ammonium halos in lithogeochemical exploration for gold 407-417
- Behaviour of gold during supergene oxidation 549-558
- Evaluation of gold deposits: USSR methods 451-462
- Exploration for gold in areas with mountain glaciation 463-468
- Thallium in Carlin-type gold deposits 493-502

Industrial minerals

- Alteration of vitric tuffs to economic zeolite deposits 273-285
- Rapid colorimetric test to differentiate between bauxite-rich material and clay 527-529
- Weathering of phosphatic marble to an exploitable apatite deposit 289-300

Manganese nodules

- Comparative marine chemistries of platinum and iridium 227-232
- Comparative marine chemistries of Re, Au, Ag, and Mo 705-714
- Geochemical comparison of manganese oxide deposits 233-240

Microbiological methodology

- A new technique for microbiological exploration for mineral deposits 103-109
- Luminometry and isotopy in microbiological exploration for mineral deposits 559-565

Rare earth elements

- Multi-element study of vegetation from zone of rare-earth rich allanite and apatite 375-381
- Solubility of rare earth elements in carbonatite magmas 95-102
- Trace elements in soils above deeply weathered pegmatites 681-690

Other metallic deposits

- Adsorption of copper, lead, and zinc by MnO_2 255-264
- Application of NIPPY-MS to geochemistry 531, 619-625
- Application of soil humic substances to geochemical exploration 307-310, 531
- Chlorine and iodine as potential pathfinder elements 111-116
- Geochemical barriers: theory and practical applications 669-680
- Geochemical exploration for mineralized breccia pipes 469-485
- Interaction between calcite and metal chloride solutions 607-618
- Ore producing potential of granitoids: USSR experience 567-571
- Significance of cuperiferous bogs in mineral exploration 519-525

OL.
1
986

Other metallic deposits

Stable isotope geochemistry of a porphyry-style hydrothermal system 357-373
Supergene geochemistry in the USSR 441-449
Wallrock alteration, CSA Mine, Cobar, Australia 211-225

MEDICAL GEOCHEMISTRY

Human heart and cancer death rates, USA and China 175-180
Iodine in groundwater and the relation to goitre 591-600
Soil Zn and Mo in relation to stomach and esophageal cancer, China and USA 487-492

UPGRADING ENERGY AND MINERAL RESOURCES

Mineral reactions in quartzose rocks during thermal recovery of heavy oil 395-405

OTHER TOPICS

Editorial 1
Foreword 3
IAGC history 7-14
 F^4 optical anisotropy of amethyst 153-160
Recent developments in ICP 161-171
Role of aquitards in hydrogeochemical systems 427-437
Tribute to F. Earl Ingerson 5-6

VOL
1
1980

SUBJECT INDEX

- * amethyst quartz 153
quartz 153
accessory minerals, in granite 567
acetate
dissimilation 631
in formation waters 37
acid-base equilibria
precipitation of salts 335
adsorption
Cu 255
Mg, Ba and Zn by calcite 607
Pb 255
trace elements 335
U on clays 535
Zn 255
adsorption spectrometry
biaxial 153
 Fe^{4+} 153
Ag 549, 705
in cupriferous bogs 519
in gold deposits 493
microbiological exploration 103
in mineralized breccia pipes 469
age determinations, uraniferous peat 503
age uranium mineralization 469
agriculture
biogeochemistry 487
trace element depletion 487
Akie District, British Columbia, Canada 619
Al
in amethyst 153
in North Sea drill core 383
in sediments 117
in vitric tuffs 273
in weathered phosphate 287
allanite 375
Alligator Ridge, Nevada, U.S.A. 493
alstonite 607
alteration
silification 211
wallrock 211
ammonia 619
ammonium
in Au exploration 407
as a lithogeochemical pathfinder 619
in thermal springs 659
analytical methods
automated photometric 111
detection limits 161
ICP 161
instrumental neutron activation (INAA) 383
NIPPPY 619
rapid colorimetric test 527
anhydrite 317, 691
anisotropy
basal plane 153
ankerite 317, 395
Announcements 629, 727
anomalies
Au 463
non-significant 249
anoxic sediments 705
anthropogenic
Hg contribution 65
metal contaminated sediments 117
anthropogenic barriers 669
anthropogenic lead 697
apatite 95, 375
apatite deposit 287
Applied Geochemistry 7
Editorial 1
Foreword 3
aquifers 427
aquitards 427
aronite 607
ARCHAEOLOGICAL GEOCHEMISTRY
Carrara marble 139
dating fossil bone 419
meteoric water composition 715
archaeology
Renaissance 139
Roman 139
Arctic
Canada 311
arsenopyrite 469
As 335
in manganese crusts 233
in mineralized breccia pipes 469
asphaltenes 619
Athabasca Basin, Saskatchewan, Canada 249
Athabasca, Canada 619
atmosphere
acid rain 181
Hg contribution 65
atomic substitution
Ca by Ba, Mg and Zn in calcite 607
ATP-enzyme 559
Au 407, 705
in Carlin-type deposits 493
in cupriferous bogs 519
exploration 451, 463
exploration method 619
geochemical exploration 407
microbiological exploration 103
supergene oxidation 549
Australia
Cooper Basin 25
Gippsland Basin 25
New South Wales
Cobar 211
South Australia, Spencer Gulf 117
Tasmania 307
azurite 181

B, in thermal springs 659
Ba
in mineralized breccia pipes 469
in North Sea drill core 383
in vegetation 375
 BaCl_2
in calcite reactions 607
bacteria
metal resistant 559
barite 469
bastnaesite 95
bauxite, exploration 527
Be, in weathered pegmatites 681
Bet Shean Valley, Israel 591
biochemical barriers 669
biogeochemistry
exploration 559
microbiology 103
rare earth elements 375
blood Se levels
locality comparisons 175
bogs
cupriferous 519
geochemistry 441
uranium rich 573
boiling conditions, geothermal system 47
boltwoodite 535

BOOK REVIEWS

- Environmental Geochemistry and Health:
Report to the Royal Society's British
National Committee for Problems of the
Environment 725
- Mineral Exploration: Biological Systems
and Organic Matter 627
- Brampton, Ontario, Canada 715
- bravoite 469
- breccia pipes, solution collapse 469
- brine 265, 427
role of aquitards 427
- brochantite 181
- buddingtonite 407, 619
- butane, in marsh gases 301
- butyrate, in formation waters 37
- Byelorussia, supergene geochemistry 441
- C 95
in geothermal system 47
in marble 139
organic, U association 241
- C isotopes
in marble 139
in marsh gas methane 301
in sedimentary organics 131
- C-13 NMR 241
- C₄-C₇ hydrocarbons, in marsh gases 301
- Ca 95
in North Sea drill core 383
in seawater 317
in sediments 117
in vitric tuffs 273
- Ca(OH)₂ 95
- CaCO₃, low soil Zn availability 487
- calcite 95, 317, 335, 383, 607
magnesian 117
- California
Kern County 573
San Clemente Island 691
- Canada
Athabasca 619
British Columbia, Akie District 619
Northwest Territories 311
Ontario, Brampton 715
Quebec 601
Lac Des-Deux-Montagnes 697
Saguenay Fjord 697
- Saskatchewan 241, 375
Athabasca Basin 249
Lloydminster 395
Poitras Lake 249
- Canadian Shield 601
river water composition 311
- carbohydrates
in marsh plants 301
- carbon dioxide 427
in marsh gases 301
in natural gases 631
- carbon monoxide, in marsh gases 301
- carbonaceous material, U-content 535
- carbonate 317, 383, 427, 619
infrared spectroscopy 407
interactions with salt solutions 607
- carbonate fluorapatite 287
- carbonate minerals 395
- carbonate-hosted Au deposits
Nevada 407
- carbonatite 95
- Carlin, Nevada, U.S.A. 493
- Carlin-type gold deposits 493
- carnotite 535
- Carrara, Italy 139
- Cd
in sediments 117, 345
- Ce
in manganese crusts 233
in vegetation 375
- cellulose synthesis 715
- cementation, non-porous 691
- Central America, San Marcos, Guatemala 189
- Central Graben, North Sea 383
- chalcophile elements
affinity of thallium 493
- chalcopyrite 469
- chalk 383
- chemical thermography 619
- chemical weathering, sulfide ores 549
- chert, 'elvan' 211
- China, low Zn and high stomach cancer 487
- chlorite 211, 395
- cinnabar 75
- Cl
in geothermal system 47
in North Sea drill core 383
as pathfinder element 111
in seawater 317
- clay 427, 527
- clay minerals 317, 395
- clay-carbonate aggregates 117
- clays, U-content 535
- clinoptilolite 273
- Co
in cupriferous bogs 519
in ferromanganese minerals 227
in manganese crusts 233
in mineralized breccia pipes 469
in pelagic sediments 227
in relation to cancer 441
- CO₂ 95
coal, macerals 25
coal combustion 345
- Cobar, New South Wales, Australia 211
- Coed y Brenin, North Wales, U.K. 519
- coffinite 335
- cold springs, Larderello 659
- color center
[A10₄]^o 153
- Colorado
San Juan Mountains 357
Summitville 549
- Colorado Plateau, Arizona, U.S.A. 469
- Columbia
Western Cordillera, Valle del Cauca 527
- complexation 227, 573
- computer program
PHREEQE 335
WATEQFC 335
- concretion, chemical composition 691
- confining bed 427
- Cooper Basin, Australia 25
- Cornwall, U.K. 647
- corrosion, copper 181
- Cortez, Nevada, U.S.A. 619
- Cr, in sediments 345
- crandallite 287
- crystalline rock 647
- crystallization
aragonite, witherite, alstonite,
smithsonite 607
- Cu 175
- adsorption by MnO₂ 255

- Cu
in cupriferous bogs 519
environmental indicator 181
in manganese crusts 233
microbiological exploration 103
in mineralized breccia pipes 469
in relation to cancer 441
in sediments 345
in soils 307
in waters of cupriferous bogs 519
- ¹³⁷Cs 697
culture techniques 103
- Danish Subbasin, Denmark 383
Delaware
Delaware Bay 301
Delaware Basin
New Mexico, U.S.A. 265
Texas, U.S.A. 265
Delaware, U.S.A. 301
Denmark
Danish Subbasin 383
diagenesis 273, 383, 427
diatomaceous earth, U-content 535
diet, risk factors 175
dissolution 287
dolomite 317
Dy, in North Sea drill core 383
- Editorial, Applied Geochemistry 1
Eh-pH, Re and Tc 513
electron microprobe 117
element transport 441
endogenic aureoles (halos) 451
environment, acid rain 181
environmental geochemistry 441
environmental variations, cancer rates 487
enzyme functions, trace elements 175
enzymes, multiplicity of Zn needs 487
Eppawala, Sri Lanka 287
Erratum 531
ethane, in marsh gases 301
Eu
in North Sea drill core 383
in vegetation 375
Europe, western 419
evapotranspiration 715
exinite 25
exogenic aureoles (halos) 451
exploration
biogeochemical 559
biogeochemistry 103
culture methods 559
geochemical 307
geothermal resources 189
microbiological 559
oil and gas 631
pegmatites 681
porphyry mineralization 357
uranium 249
exploration geochemistry 111, 441
extraction
partial 111
selective 697
sequential, soils, trace elements 681
"false" anomalies, U exploration 249
fatty acids, in brines 37
Fe 335, 697
in amethyst 153
in ferromanganese minerals 227
- Fe
in manganese crusts 233
in sediments 117, 345
in vegetation 375
in vitric tuffs 273
in weathered pegmatites 681
fermentation 631
ferromanganese minerals 705
ferroselite 335
Finland 175
Florida, Tampa Bay 131
fluellite 287
fluid inclusions 357
H and O isotopes 265
in halite 265
food transportation 175
Foreword, Applied Geochemistry 3
formation water 317
dissolved fatty acids 37
fossil bone, U-series dating 419
fractional crystallization 95
fracture width 647
fuel rods, from nuclear reactors 15
fulvic acid, trace metal reactions 573
fumaroles
Hg 65, 75
fusinite 25
- galena 469
Galilee, Israel 591
gas, natural 25
gas chromatography 241
gases
biogenic 631
 CH_4 , geothermal system 47
 CO_2 , geothermal system 47
 H_2 , geothermal system 47
 H_2S , geothermal system 47
Hg, volcanic and geothermal 65
marsh, composition 301
microbial 631
 N_2 , geothermal system 47
natural 631
thermogenic methane 631
geochemical barriers 669
geochemical exploration 307, 519
Au 451, 463
B. cereus bacterial and helium surveys 469
bauxite 527
field laboratory 527
geothermal resources 189
glaciated areas 463
granitoids 567
He soil gas surveys 469
hydrogeochemical 469
lithogeochemical 469
soil 469
geochemical indicators
ore-producing granitoids 567
geochemical trends 273
- GEOCHRONOLOGY
¹³⁷Cs dating 697
fossil bone 419
uraniferous peat 503
geopressured zones 427

- geothermal
 Hg 65
 Iceland 47
 resources 189
 geothermal energy 647
 geothermal gas 75
 geothermal reservoir 647
 geothermal water 75
 geothermometry 395, 659
 gas 47
 geothermal fluids 189
 gersdorffite 469
 gibbsite 287, 527
 Gippsland Basin, Australia 25
 glaciated areas, geochemical exploration 463
 goethite 75, 287, 335
 gold deposits 451, 463
 Grand Canyon, northern Arizona, U.S.A. 469
 granite 647
 granitoids, ore-producing 567
 Grants Mineral Belt, New Mexico, U.S.A. 335
 Great Lakes region, North America 715
 groundwater 15
 groundwater alteration 427
 Guatemala, San Marcos 189
 Gulf Coast, Louisiana 37
 gypsum 317, 335
- H 95
 in geothermal system 47
 in marsh gases 301
- H isotopes
 in brines 265
 in fluid inclusions in halite 265
 geothermal, Iceland 47
 in groundwater 265
 hot springs 189
 in marsh gas methane 301
 in porphyry-style systems 357
 in wood cellulose 715
- H_2O 95
- halite, fluid inclusions 265
- halogens
 Cl 111
 I 111
- halos
 Au lithogeochemical 407
 exogenic and endogenic 451
 secondary 441
- Harod Valley, Israel 591
- Hawaiian Archipelago 233
- HCO_3^- , in seawater 317
- He
 in geothermal system 47
 retention by capsule 691
- He isotopes, geothermal, Iceland 47
- heat flow 659
- heat source 691
- heat transfer surface 647
- hematite 75, 395
- Henkries, South Africa 535
- Hg 75
 from geothermal sources 65
 in geothermal system 47
 global flux 65
 in volcanic fumaroles 65
 from volcanic sources 65
- histosols 503
- Hokkaido, Japan 317
- hole-trapping, Fe^{3+} 153
- Honshu, Japan 317
- Horse Canyon, Nevada, U.S.A. 407
- hot-dry-rock, ^{222}Rn release 647
- human genetics
 trace element metabolic role 175
- humic acid, trace metal reactions 573
- humic substances, 307
 in soils 307
 U-rich bog 573
- hyalophane 375
- hydrocarbons 25
- hydrogen sulfide, in marsh gases 301
- hydrogeochemistry, 317, 591, 659
 groundwater quality 335
 role of aquitards 427
- hydrolysis, Zn on calcite surface 607
- hydromorphic dispersion 519
- hydrothermal, radioactive 691
- hydrothermal mineralization 357
- hydrothermal sulfides 705
- hydrothermal water 75
- hydroxyapatite 287
- hypergene
 geochemistry 441
 processes 451
- hypergenesis 441
- I
 in groundwater 591
 in lakes 591
 as pathfinder element 111
 in precipitation 591
 in rivers 591
 in thermomineral springs 591
- I.A.G.C. 1, 3, 5
 history 7
- I.A.V.C.E.I. 3
- I.U.G.G. 7
- I.U.G.S. 7
- I.U.P.A.C. 7
- Iceland
 Theistareykir 47
 illite 395, 619
 inertinite 25
 infrared spectroscopy, Au exploration 407
 Ingerson, F. Earl 5, 7
 iodine analysis, catalytic reduction 591
 ion exchange 317
 Ca by Mg, Ba and Zn on calcite 607
- Ir
 in ferromanganese minerals 227
 in pelagic sediments 227
 protective capsule 691
- iron
 hydroxides 697
- ISOTOPES 317
- C
 in marsh gas methane 301
 in natural gases 631
 in sedimentary organic matter 131
- fractionation factor 601
- H
 in brines 265
 in fluid inclusions in halite 265
 in groundwater 265
 in hot springs 189
 in marsh gas methane 301
 in natural gases 631
 in porphyry-style systems 357
 in wood cellulose 715

ISOTOPES

- O
in brines 265
in fluid inclusions in halite 265
in groundwater 265
in hot springs 189
in porphyry-style systems 357
in wood cellulose 715
radioactive 15
ratios 311
S, in river water sulfate 311
stable 357
U-series 503
isotopic enrichment 715
isotopic variation
boiling and mixing 189
C 139
O 139
Sr 139
U-series 503
Israel
Bet Shean Valley 591
Galilee 591
Harod Valley 591
Jordon Valley 591
Makhtesh Ramon 607
Samaria 591
Italy
Carrara 139
Larderello-Travale, Tuscany 659
- Japan
Hokkaido 317
Honshu 317
Seikan Tunnel 317
Tokyo 345
jarosite 335
Jerritt Canyon, Nevada, U.S.A. 493
Jordon Valley, Israel 591
- K
in gold deposits 493
in seawater 317
in vitric tuffs 273
wallrock alteration 211
K-feldspar 395
K/Tl ratios in gold deposits 493
kaolinite 287, 395
kaolinitic outcrops 451
Kentucky, U.S.A. 241
Kern County, California, U.S.A. 573
kerogen, associated with U 241
- La 95
in vegetation 375
in weathered pegmatites 681
 $\text{La}(\text{OH})_3$ 95
Lac Des-Deux-Montagnes, Quebec, Canada 697
lacustrine sediments, U-deposit 535
Lake Michigan
sediments 227
U.S.A. 227
lake water
O isotopes 601
S isotopes 601
Saskatchewan, Canada 249
U exploration 249
- Larderello-Travale, Italy 659
lead, anthropogenic 697
lead-zinc smelter 117
Li
in thermal springs 659
in weathered pegmatites 681
lichens, radioactive elements 249
ligand, tiron 697
limestone 383
interactions with salt solutions 607
limonitic outcrops 451
lipid bilayer of cells
protection by Se, Zn 487
liquidus 95
lithogeochemical halos for Au 407
lithogeochemistry, siltstones 211
Lloydminster, Saskatchewan, Canada 395
Louisiana, Gulf Coast, U.S.A. 37
Lu, in vegetation 375
luminometry, tritium 559
- magma, early Hg degassing 65
magnetic susceptibility 345
magnetite 345
Makhtesh Ramon, Israel 607
malachite 181
marble 139
(phosphatic) 287
marcasite 75, 469
marine corrosion, protection against 691
marine ore 227
marine sediments 227, 705
marsh plants
culture experiments 301
organic analysis 301
mass spectrometry 241
Au exploration 407
mechanical barriers 669
- MEDICAL GEOCHEMISTRY 441
- goiter 591
human longevity variations 175
Keshan disease 175
selenogluthathione peroxidase 175
Se, in blood 175
stomach and esophageal cancer 487
Mercur, Utah, U.S.A. 493
meteoric water 317
methane
in marsh gases 301
in natural gases 631
methanogenesis 631
Mexico, Oaxaca 273
Mg
in North Sea drill core 383
in seawater 317
in sediments 117
in vitric tuffs 273
 MgCl_2 , in calcite reactions 607
microbes 559
microbiology
exploration 103, 559
Middle America Trench, Pacific Ocean 631
millerite 469
mineral reactions 395
mines, northern Arizona 469
mixing zone 427
Mn
in cupriferous bogs 519
in ferromanganese minerals 227

- Mn
 in marble 139
 δMnO_2 adsorption 255
 in nodules 233
 in North Sea drill core 383
 in pelagic sediments 227
 in relation to cancer 441
 in sediments 345
 in weathered pegmatites 681
 Mn crusts, nodules 233
 δMnO_2 , adsorption 255
- Mo 175, 335, 705
 in blood, hair, urine 487
 in cupriferous bogs 519
- mobility
 gold and silver 549
 U and daughter 503
- modelling 189
 adsorption 255
 contaminants 335
 death rates 175
 fluid flow 47
 hydrologic 189
 isotopes 631
- models, flow 427
- modern sediments, organic carbon content 131
- molybdenite 357
- monazite 95
- Montana, North Moccasin gold deposit 493
- montmorillonite 335
- monzonite 357
- mordenite 273
- mosses, radioactive elements 249
- mountain glaciation, exploration methods 463
- muscovite 211
- N
 ammonium halos 407
 ("excess"), in marsh gases 301
 in geothermal system 47
 in NH_4^+ 407
- Na
 in geothermal system 47
 in North Sea drill core 383
 in seawater 317
 in vitric tuffs 273
- Nb, in weathered pegmatites 681
- Nevada
 Alligator Ridge gold deposit 493
 Carlin gold deposit 493
 Horse Canyon 407
 Jerritt Canyon gold deposit 493
- New Mexico
 Delaware Basin 265
 U.S.A. 241
- New Zealand 175
 North Island, Ngawha Springs 75
 Ngawha Springs, North Island, New Zealand 75
- NH_4^+ , in thermal springs 659
- NH_4^+ -containing minerals 407
- Ni
 in ferromanganese minerals 227
 in manganese crusts 233
 in mineralized breccia pipes 469
 in pelagic sediments 227
 in sediments 345
 in weathered pegmatites 681
- nitrate reductase enzyme, Mo requirements 487
- nitrosamine, carcinogenesis and low Mo 487
- North America, Great Lakes region 715
- North Moccasin, Montana, U.S.A. 493
- North Sea, Central Graben 383
- North Wales, U.K. 519
- Northwest Territories, Canada 311
- O 95
 in geothermal system 47
 in marble 139
- O isotopes
 in brines 265
 in fluid inclusions in halite 265
 geothermal, Iceland 47
 in groundwater 265
 hot springs 189
 lake water 601
 in marble 139
 in porphyry-style systems 357
 precipitation 601
 in wood cellulose 715
- Oaxaca, Mexico 273
- oil 25, 383
 evaluation of contamination 131
 migration 25
 source rocks 25
- oil sands, thermal recovery 395
- optical bands, A_1 , A_2 , A_3 153
- ore
 base metal sulfides 211
 Hg 75
- ore bodies, U 469
- ore outcrops 451
- organic geochemistry, kerogen 241
- organic matter, U-rich bog 573
- oxidation 75
 of Au deposits 407
 processes 227
 sulfide ores 549
 (Re, Tc) 513
- oxidized outcrops 451
- Pacific Ocean 227
- ferromanganese minerals 227
- Middle America Trench gases 631
- Scripps Submarine Canyon gases 631
- seawater 227
- sediments 227
- Pacific pelagic sediments 705
- paleoclimate 715
- Panama, Gulf of Panama 345
- paratacamite 181
- partial chemical extractions 441
- pathfinders, hydrothermal mineralization 111
- Pb 697
 adsorption by δMnO_2 255
 in cupriferous bogs 519
 in ferromanganese minerals 227
- in manganese crusts 233
- microbiological exploration 103
- in mineralized breccia pipes 469
- Pb
 in relation to cancer 441
 in sediments 117, 345
 in soils 307
 in sphene 199
 in uraniferous peat 503
- Pd, in ferromanganese minerals 227
- peat 503
 cupriferous 519
 uraniferous 503

- pegmatites, deeply weathered 681
People's Republic of China 175, 487
permeability 47
perovskite 95
phosphate 287
phosphatic marble 287
phosphorites 705
photosynthesis 715
Phragmites, culture experiments 301
physico-chemical barriers 669
placer deposits, mechanical barriers 669
Po, geochemical exploration 249
²¹⁰Po, geochemical exploration 249
pollution 345
 uranium tailings 335
porphyry copper 519
portlandite 95
Powhatan County, Virginia, U.S.A. 681
precipitation
 O isotopes 601
 S isotopes 601
propane, in marsh gases 301
propionate, in formation waters 37
Pt 705
 in ferromanganese minerals 227
 in Pacific Ocean waters 227
 in pelagic sediments 227
²³⁸Pu, heat source 691
pyrite 75, 469
pyrochlore 95
pyroclastics 273
pyrolysis 241
- quartz 21, 357
Quebec, Canada 601
 Lac Des-Deux-Montagnes 697
 Saguenay Fjord 697
- Ra
 geochemical exploration 249
 in sphene 199
 in uraniferous peat 503
- ²²⁶Ra 335
 geochemical exploration 249
radioactive waste 513
radioactivity, soil and sediment 503
radiometric survey 249
radon flux 647
rain
 acid 181
 I content 591
rammelsbergite 469
rare earth elements 95
 biogeochemistry 375
Rb, in gold deposits 493
Re 705
 Eh-pH (25°C, 1 bar) 513
realgar 75
redox barrier 427
redox reactions 705
relative humidity 715
reprocessing waste, radioactive 15
retardation factors 15
rhyolite 357
Rn
 in geothermal system 47
 in uraniferous peat 503
- ²²²Rn, hot-dry-rock 647
Rock-Eval 241
Rocky Mountains, U.S.A. 103, 559
- S
 in geothermal system 47
 in sediments 117
wallrock alteration 211
 in weathered phosphate 287
S isotopes
 lake water 601
 precipitation 601
 sulfate in rivers 311
Saguenay Fjord, Quebec, Canada 697
salinity 317
salt, beds 265
salt water encroachment 427
Samaria, Israel 591
sample
 cuttings 383
 drill core 383
San Clemente Island,
 California coast, U.S.A. 691
San Juan Mountains, Colorado, U.S.A. 357
San Marcos, Guatemala 189
sandstone, trace elements 487
Saskatchewan, Canada 241, 375
 Lloydminster 395
 Poitras Lake 249
Scripps Submarine Canyon,
 California, U.S.A. 631
Se 175, 335
 in mineralized breccia pipes 469
seawater 227, 317
 copper minerals 181
 seasalt 311
secondary dispersion halos 441
sediment-hosted precious metal deposits 493
sedimentary rocks 395
 gold deposits 493
 hydrothermal alteration 493
 mineralized 493
sediments 75
 estuarine 345
 feldspathic 691
 lake 345
 marine 345
 metal contaminated 117
ore 75
oxidation 75
river 697
zeolite 273
Seikan Tunnel, Japan 317
shale 383, 619
Si
 in sediments 117
 in vitric tuffs 273
wallrock alteration 211
 in weathered phosphate 287
Siberia, U.S.S.R. 463
siderite 317, 395
siderophile elements
 affinity of thallium 493
siegenite 469
siltstone, silicified 211
Sm, in vegetation 375
smithsonite 607
smoking, risk factors 175
Sn, in weathered pegmatites 681
^{SO₄}, in seawater 317
soil
 Au anomalies 451

- soil**
 exploration geochemistry 111
 histosols 503
 humic substances 307
 low Mo and esophageal cancer 487
 low Zn and Mo in food crops 487
 low Zn and stomach cancer 487
 pegmatitic, extracts, trace elements 681
 trace elements 175
 selected trace elements 441
 Zn and Mo availability 487
 Zn, Mo, Se
 depletion by intensive cropping 487
 solid solution, gold-silver 549
 solubility 95
 radionuclides 15
 sorbents, artificial 441
 sorption
 mechanisms 697
 radionuclides 15
 South Africa, Henkries 535
 Spencer Gulf, South Australia, Australia 117
 sphalerite 469
 sphene 199
Sr
 in gold deposits 493
 in manganese crusts 233
 in marble 139
 in North Sea drill core 383
 in vegetation 375
 Sr isotopes, in marble 319
 Sri Lanka, Eppawala 287
 statistics
 dendograms 233
 discriminant analysis 139
 factor analysis 375
 Stevens County, Washington, U.S.A. 503
 structure, amethyst 153
 sulfate 601
 reduction 311
 in river water 311
 sulfur 75
 Summitville, Colorado, U.S.A. 549
 supergene geochemistry 441
 surface
 calcite
 interactions with salt solution 607
 Sweden 241
 synthesis 95
 systems, $\text{CaCO}_3\text{-Ca(OH)}_2\text{-La(OH)}_3$ 95
- Tampa Bay, Florida, U.S.A. 131
 tar sands 619
 thermal recovery 395
 Tasmania, Australia 307
 Tc, Eh-pH (25°C, 1 bar) 513
 technogenic geochemistry 441
 ternary eutectic 95
 Texas, Delaware Basin 265
Th
 in fossil bone 419
 in sphene 199
 in uraniferous peat 503
 in vegetation 375
 Theistareykjark, northeast Iceland 47
 thenardite 335
 thermal recovery, oil sands 395
 thermal springs 659
 thermodynamic calculations 395
 thermodynamic data (Re, Tc) 513
 thermodynamics
 solution-mineral equilibria 335
- Ti**
 in manganese crusts 233
 in North Sea drill core 383
 in sediments 345
 tidal flats 117
 titanate 199
Tl
 as an indicator element 493
 in gold deposits 493
 mobility 493
 Tl/Sr ratios in gold deposits 493
 Tokyo, Japan 345
 Tomichi Mining District, Colorado U.S.A. 103
 trace elements
 adsorption 255, 335
 cancer death rates 175
 deficiency of Mo and esophageal cancer 487
 distribution 681
 enzyme functions 175
 geochemical barriers 669
 health requirements 487
 heart death rates 175
 low in grain crops 487
 in manganese oxide deposits 233
 metabolic role 175
 Mn in marble 139
 multiple deficiencies and cancer 487
 in North Sea drill core 383
 in silicified siltstone 211
 soil 175
 Sr in marble 139
 U-rich bog 573
 Zn in marble 139
 tuff 273
 Turf copper 519
 Tuscany, Italy 659
 twinning, Brazil 153
Typha, culture experiments 301
- U** 335, 535, 705
 in bogs 573
 in carbonaceous material 535
 in clays 535
 in diatomaceous earth 535
 exploration 249, 573
 in fossil bone 419
 in mineralized breccia pipes 469
 non-significant anomalies 249
 sedimentary organic matter 241
 in sphene 199
 spring waters 573
 trace metals, U-rich bog 573
 in uraniferous peat 503
 in weathered pegmatites 681
 U-deposit, young age (South Africa) 535
 U-Pb ages, uranium-series disequilibrium 199
 U-series dating, fossil bone 419
 U-series disequilibrium 199, 419, 503, 535
U.K.
 Coed y Brenin, North Wales 519
 Cornwall 647
U.N.E.S.C.O. 7
 uraninite 335, 469
U.S.A. 175
 Arizona 469
 California
 Kern County 573
 San Clemente Island 691
 Cascades 65
 Central and eastern 301
 Chesapeake Bay 345

VOL.
1
1986

OL.
1
986

U.S.A.
Colorado
San Juan Mountains 357
Summitville 549
Colorado, Tomichi Mining District 103
Delaware, Delaware Bay 301
excess nitrate in vegetables 487
Florida, Tampa Bay 131
Hawaiian Archipelago 233
Kentucky 241
Lake Michigan 227, 345
Louisiana 301
Louisiana, Gulf Coast 37
low Mo in crops 487
low Zn and stomach cancer 487
Minnesota 301
Montana, North Moccasin 493
Nevada
Alligator Ridge 493
Carlin 493
Cortez 619
Horse Canyon 407
Jerritt Canyon 493
New Mexico 241
Delaware Basin 265
Grants Mineral Belt 335
Rocky Mountains 103, 559
Texas, Delaware Basin 265
Utah 241
Mercur 493
Virginia, Powhatan County 681
Washington, Stevens County 503
Wisconsin 487
U.S.S.R. 451, 567
Byelorussia 441
Siberia 463
supergene geochemistry 441
Utah
Mercur gold deposit 493
U.S.A. 241

Yb, in vegetation 375
zeolite 619
from vitric tuffs 273
zippeite 535
Zn 175
adsorption by MnO_2 255
 CaCO_3 487
in cupriferous bogs 519
in marble 139
microbiological exploration 103
in mineralized breccia pipes 469
in sediments 117, 345
in soils 307
 ZnCl_2 , in calcite reactions 607
 ZnS , in metal contaminated sediments 117

V 335
in North Sea drill core 383
vaesite 469
Valle del Cauca,
Western Cordillera, Columbia 527
vapor phase 75, 659
Virginia, U.S.A. 681
vitrinite 25
volcanic gases 65, 273

wardite 287
Washington, Stevens County 503
waste
nuclear 265
radionuclides 15
water
geothermal 189
ground (copper minerals) 181
ground 265
meteoric 715
surface (copper minerals) 181
weathering
agricultural aspects 175
deeply buried 441
of NH_4^+ minerals 407
pegmatites 681
phosphatic marble 287
Wisconsin, low available Zn 487
witherite 607

AUTHOR INDEX
(Book Review - BR, Erratum - E)

- Adekeye J.I.D. 153
Andrews J.N. 647
Andrews M.J. 111, 519
Appleyard E.C. 211
Armannsson H. 47
Aucott J.W. 527
Back W. 427
Baker W.E. 307, 531 (E)
Barbeau C. 697
Batchelor A.S. 647
Bertine K.K. 345, 705
Besse L. 493
Beus A.A. 567
Binns R.A. 211
Bland C.J. 249
Bloodworth A.J. 527
Brookins D.G. 335, 513
Brooks G. 131
Brooks R.R. 627 (BR)
Buseck P.R. 65
Bush C.A. 503
Calhoun J. 705
Carlisle D. 573
Caron F. 601
Catts J.G. 255
Chave K.E. 233
Cohen A.J. 153
Conkright M. 131
Davey H.A. 75
Daws T.A. 241
de Pablo-Galan L. 273
Dean N.E. 139
Dickson F.W. 317
Dissanayake C.B. 287
Doyle L. 131
Duchi V. 659
Dunn C.E. 375
Edwards T.W.D. 715
Fleischer M. 5
Fournier R.O. 189
Fraser A.S. 311
Fritz P. 715
Frye J.S. 241
Fuge R. 111, 519
Fyfe W.S. 287
Garrels R.M. 181
Gascayne M. 199
Gislason G. 47
Goldberg E.D. 227, 705
Green W.J. 233
Grondin D. 697
Grunenfelder M.H. 3
Gwozdz R. 383
Hanon J.S. 37
Hansen H.J. 383
Hanshaw B.B. 189
Harmon R.S. 357, 535
Herman J.S. 681
Herz N. 139
Hirano T. 317
Hitchon B. 1, 7
Hodge V.F. 227, 705
Hoffman E. 375
Howie R.A. 161
Hussain N. 647
Hutcheon I. 395
Idiz E.F. 573
Ikramuddin M. 493
Ivanovich M. 419
Jackson M.L. 175, 487, 725 (BR)
Jackson S.E. 357
Jenden P.D. 631
Johnson C.C. 111
Johnson C.M. 265
Jones A.P. 95
Kaplan I.R. 573, 631
Kaushansky P. 607
Kay P. 227
Koide M. 227, 705
Kramer J.R. 601
Krauskopf K.B. 15
Kunzendorf H. 383
Kwakwa K. 647
Kydd R.A. 407
Langmuir D. 255
Lefebvre R. 395
Leventhal J.S. 241
Levinson A.A. 249, 407, 535, 619
Li C.S. 487
Liou J.G. 317
Ljakhovich V.V. 567
Locke G. 345
Longmire P.A. 335
Lukashev V.K. 441
Marshall B.T. 681
Martin D.F. 487
Mates A. 591
Michaels G.B. 103, 559
Minissale A.A. 659
Morgan C.L. 233
Nordstrom P.M. 493
Norrish K. 117
O'Neil J.R. 265
Oki Y. 317
Pavone D. 691
Peachey D. 527
Perelman A.I. 669
Rae A.M. 419
Ralston I.T. 535
Rees C.E. 601
Rice C.M. 357
Riese W.C. 103, 559
Ringrose C.R. 357
Roberts J.L. 527
Roche R.S. 619
Roedder E. 265
Rosenthal E. 591
Rosholt J.N. 503
Roslyakov N.A. 451
Roslyakova N.V. 451
Rosser H. 117
Rossi R. 659
Sackett W. 131
Sakai H. 317
Salomon D.R. 619
Saxby J.D. 25
Schwartz H.P. 601
Seki Y. 317
Shibaoka M. 25
Stallard M. 227, 705
Stoffregen R. 549
Svendsen N. 383
Swain F.M. 301
Taisaev T.T. 463
Tazaki K. 287
Tessier A. 601
Thode H.G. 311
Thompson M.E. 311

OL.
1
986