Announcements

□ Homework for tomorrow...

Ch. 32: Probs. 38, 39, & 63
CQ7: a) into page b) no deflection

CQ7: a) into page b) no deflection 32.16: a) 3.1 x 10⁻⁴ Am² b) 5.0 x 10⁻⁷ T 32.18: a) 6.2 x 10⁻⁵ T b) 1.8 x 10⁹ A 32.48: 4.1 x 10⁻⁴ T, into the page

□ Office hours...

MW 10-11 am TR 9-10 am F 12-1 pm

□ Tutorial Learning Center (TLC) hours:

MTWR 8-6 pm F 8-11 am, 2-5 pm Su 1-5 pm

Chapter 32

The Magnetic Field

(Magnetic Forces on Current-Carrying Wires & Forces and Torques on Current Loops)

Review...

□ The *radius* and *frequency* for cyclotron motion...

$$r_{cyc} = \frac{mv}{qB}$$

$$\left(f_{cyc} = \frac{qB}{2\pi m}\right)$$

□ The *force* on a current-carrying wire in a *B*-field is...

$$\vec{F}_{wire} = I\vec{\ell} \times \vec{B}$$

Force Between Two Parallel Wires

What is the force on wire, due to wire?

Force Between Two Parallel Wires

What is the force on wire, due to wire?

$$F_{1 \text{ on } 2} = F_{2 \text{ on } 1} = \frac{\mu_0 \ell I_1 I_2}{2\pi d}$$

Quiz Question 1

The horizontal wire can be levitated – held up against the force of gravity – if the current in the wire is

- 1. Right to left.
- 2. Left to right.
- 3. It can't be done with this magnetic field.

i.e. 32.14 A current balance

Two stiff, 50 cm long parallel wires are connected at the ends by metal springs. Each spring has an unstretched length of 5.0 cm and a spring constant of 0.025 N/m. The wires push each other apart when a current travels around the loop.

How much current is required to stretch the springs to lengths of 6.0 cm?

Forces and Torques on Current Loops

Alternative but equivalent ways to view magnetic forces between two current loops.

Parallel currents attract, opposite currents repel.

Opposite poles attract, like poles repel.

Forces and Torques on Current Loops

Consider a current loop in a *B*-field...

- □ F_{front} and F_{back} are *opposite* in direction, but *equal* in magnitude, therefore $\Sigma F_x = 0$.
- □ F_{top} and F_{bottom} are *opposite* in direction, but *equal* in magnitude, therefore $\Sigma F_y = 0$.
- □ F_{top} and F_{bottom} exert a *net torque*, therefore $\Sigma \tau \neq 0$!

So what is the *net torque*?

Forces and Torques on Current Loops

Consider a current loop in a B-field...

- □ F_{front} and F_{back} are *opposite* in direction, but *equal* in magnitude, therefore $\Sigma F_{r} = 0$.
- □ F_{top} and F_{bottom} are *opposite* in direction, but *equal* in magnitude, therefore $\Sigma F_y = 0$.
- □ F_{top} and F_{bottom} exert a *net torque*, therefore $\Sigma \tau \neq 0$!

 \vec{F}_{top} and \vec{F}_{bottom} exert a torque that rotates the loop about the *x*-axis. \vec{F}_{top} \vec{F}_{top} \vec{F}_{back} \vec{F}_{back} Lines of action \vec{F}_{bottom} Magnetic field

So what is the *net torque*?

$$(\vec{ au} = \vec{\mu} \times \vec{B})$$

Quiz Question 2

If released from rest, the current loop will

- 1. Move upward.
- 2. Move downward.
- 3. Rotate clockwise.
- 4. Rotate counterclockwise.
- 5. Do something not listed here.

Forces and Torques on Current Loops

A simple electric motor...

The commutator reverses the current in the loop every half cycle so that the force is always upward on the left side of the loop.