

ANALYSIS OF SIMULATION DATA: INPUT MODELING

Lecture # 29

Chi-Square (2) Test

- Non-parametric Test
- Used to find out how the observed value of a given phenomena is significantly different from the expected value.
- It is appropriate when following conditions are met:
 - The sampling method is simple sampling.
 - The variable under study is categorical (qualitative).
 - The expected number of sample observation in each level of variable is at least 5.

Chi-Square Test: Procedure

1. Set up the Hypothesis:

- a. Null Hypothesis (H_0) = assumes that there is no significant difference between observed and expected value.
- b. Alternative Hypothesis(H_1) = assumes that there is a significant difference between observed and expected value.

2. Analyze Sample Data:

Degree of Freedom: (Exact shape of distribution is determined by its DF)

$$DF = K - S - 1$$

- K = # of class intervals, S = # of Parameters
- Expected Frequency Count:

$$E_i = np_i$$

 \blacksquare n = # of samples, p_i = probability associated with ith class

Chi-Square Test: Procedure

3. Test Statistics:

$$\chi_0^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

- Critical Value (CV): $\chi^2_{\alpha,k-s-1}$
 - The Null Hypothesis H_o is rejected if

$$\chi_0^2 > \chi_{\alpha,k-s-1}^2$$

- Significance Level (α): criteria to reject null hypothesis.

Table A.6 Percentage Points of The Chi-Square Distribution with v Degrees of Freedom

	X2000	χ2 _{0.01}	2023	X20.03	X _{0.10}
- 1	7.88	6,63	5.02	3.84	2.71
2	10.60	9.21	7.38	5.99	4,61
- 3	12.84	11.34	9.35	7.81	6.25
4	14.96	13.28	11.14	9.49	7,78
. 5	16.7	15.1	12.8	11.1	9.2
. 6	18.5	16.8	14.4	12.6	10.6
7	20.3	18.5	16.0	14.1	12.0
8	22.0	20.1	17.5	15.5	13.4
9	23.6	21.7	19.0	16.9	14.7
10 .	25.2	23.2	20.5	18.3	16.0
11	26.8	24.7	21.9	19.7	17.3
12	28.3	26.2	23.3	21.0	18.5
13	29.8	27.7	24.7	22.4	19.8
14	31.3	29.1	26.1	23.7	21.1
15	32.8	30.6	27.5	25.0	22.3
16	34.3	32.0	28.8	26.3	23.5
17	35.7	33.4	30.2	27.6	24.8
18	37.2	34.8	31.5	28.9	26.0
19	38.6	36.2	32.9	30.1	27.2
20	40.0	37.6	34.2	31.4	28.4
21	41.4	38.9	35.5	32.7	29.6
22	42.8	40.3	36.8	33.9	30.8
23	44.2	41.6	38.1	35.2	32.0
24	45.6	43.0	39.4	36.4	33.2
25	49.6	44.3	40.6	37.7	34.4
26	48.3	45.6	41.9	38.9	35.6
27	49.6	47.0	43.2	40.1	36.7
28 .	51.0	48.3	44.5	41.3	37.9
29 -	52.3	49.6	45.7	42.6	39.1

