Note: in this course, \log denotes \log_2 .

Shannon's computation

Suppose we wish to compress a binary message $x_1^n = (x_1, ..., x_n) \in \{0, 1\}^n$. Assume x_1^n is generated by n iid random variables $X_1^n = (X_1, ..., X_n)$ where each X_i is Bernouilli of parameter p, for some $p \in (0, 1)$. We write P for the probability mass function of the X_i , i.e $P(x) = \mathbb{P}(X_i = x)$ for $x \in \{0, 1\}$.

Idea: give more likely strings shorter descriptions.

Question: how is the probability distributed among all such x_1^n ?

Let P^n denote the joint pmf of X_1^n . Then

$$\mathbb{P}(X_1^n = x_1^n) = P^n(x_1^n) = \prod_{i=1}^n P(x_i) = 2^{\log \prod_{i=1}^n P(x_i)}$$

$$= 2^{\sum_{i=1}^n \log P(x_i)}$$

$$= 2^{k \log p + (n-k) \log(1-p)}$$

$$= 2^{-n\left[-\frac{k}{n} \log p - \frac{n-k}{n} \log(1-p)\right]}$$

$$\approx 2^{-n\left[-p \log p - (1-p) \log(1-p)\right]}. \quad \text{(LLN)}$$

Where we have defined k to be the number of 1's in x_1^n . Now we define

$$h(p) = -p \log p - (1 - p) \log(1 - p)$$

so for large n we have

$$\mathbb{P}(X_1^n = x_1^n) \approx 2^{-nh(p)}$$

with high probability.

This means that for large n, the space $\{0,1\}^n$ of all possible messages consists of:

- 1. non typical strings that have negligible probability of showing up;
- 2. approximately $2^{nh(p)}$ each of similar probability.

Note that the binary entropy function h(p) has a maximum at $p = \frac{1}{2}$ with h(1/2) = 1 and is symmetric through $p = \frac{1}{2}$.

Back to data compression. Consider the following algorithm. Let $B_n \subseteq \{0,1\}^n$ consist of the "typical" strings. Given x_1^n to compress:

- If $x_1^n \notin B_n \to \text{declare "error"};$
- If $x_1^n \in B_n$, then describe it by describing its index j in B_n , where $1 \le j \le |B_n|$. This takes $\log |B_n| \approx nh(p)$ bits