

S'20 CS410/510 Intro to quantum computing

Fang Song

Week 7

- QFT recap
- Grover's algorithm
- Optimality of Grover's alg.

Review: QFT

$$QFT_n: |j_{n-1}j_{n-2}...j_0\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \omega_{2^n}^{jk} |k_{n-1}k_{n-2}...k_0\rangle$$

$$\widetilde{QFT}_n: |j_{n-1}j_{n-2}...j_0\rangle \mapsto \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n-1} \omega_{2^n}^{jk} |k_0k_1...k_{n-2}k_{n-1}\rangle$$

$$R_{k} = \begin{pmatrix} 1 & 0 \\ 0 & \omega_{2^{k}} \end{pmatrix} \qquad e^{\frac{1}{2\pi i} \left(\frac{1}{2^{k}} \right)}$$

Exercise

Quantum order finding/factorization

Order finding à la phase estimation [Kitaev'95]

Shor's algorithm à la quantum Fourier sampling [Shor'94]

Quantum speedup for "structured" problems

Problem	Deterministic	Randomized	Quantum
Deutsch	2	2	1
Deutsch-Josza	$2^{n}/2$	O(n)	1
Simon	$2^{n}/2$	$\sqrt{2^n}$	$O(n^2)$
Order-finding Factoring N	$2^{O((\log N)^{1/3}(\log\log N)^{2/3})}$		$(\log N)^3$

Oracle/Query model

Today. Generic quantum speedup for unstructured search.

$$\alpha^{r} = 1 \mod N$$
 $N \mid (\alpha^{r} - 1) = (\alpha^{r/2} + 1) \mid (\alpha^{r/2} - 1)$

Grover's quantum search algorithm

Unstructured search

Given: a black-box function $f: \{0,1\}^n \to \{0,1\}$

Goal: find x such that f(x) = 1 (if there is one).

- Example.
 - $x \in \{0,1\}^n$ represents a record of a patient at a hospital
 - f(x) = 1 if x is tested positive for DIVOC-91
- \bullet Classical algorithms: 2^n queries necessary
- Grover's quantum algorithm: $O(\sqrt{2^n})$ queries

qua dratic speadup

$$2^{128} \longrightarrow 2^{64}$$

Grover's algorithm: basic operations

9(x) = 7×1/7×2/11/2

Grover's algorithm

- Repeat k times: $(HZ_0H)Z_f$.
- Measure and get x, check if f(x) = 1.

Reflections and rotations

2 reflections = 1 rotation

Reflection about L_1 and L_2 \equiv Rotation by 2θ

Grover Iteration

Notations

- $A := \{x \in \{0,1\}^n : f(x) = 1\}$
- $B := \{x \in \{0,1\}^n : f(x) = 0\} = \{0,1\}^n \setminus A$
- $N = 2^n, a = |A|, b = |B|$

A fundamental 2D-plane

$$|h\rangle := H^{\otimes n} |0^n\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$$

• $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on span $\{|A\rangle, |B\rangle\}$

Exercise

Notations

- $A := \{x \in \{0,1\}^n : f(x) = 1\}$
- $B := \{x \in \{0,1\}^n : f(x) = 0\} = \{0,1\}^n \setminus A$
- $N = 2^n, a = |A|, b = |B|.(a << N)$

A fundamental 2D-plane

- $|A\rangle := \frac{1}{\sqrt{a}} \sum_{x \in A} |x\rangle, |B\rangle := \frac{1}{\sqrt{b}} \sum_{x \in B} |x\rangle$
- $|h\rangle := H^{\otimes n} |0^n\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$
- $|h\rangle^{\perp}$: orthogonal to $|h\rangle$ on span $\{|A\rangle, |B\rangle\}$

1. Show that
$$\langle B | A \rangle = 0$$
.

2. Find α and β so that $|h\rangle = \alpha |A\rangle + \beta |B\rangle$

$$A := \begin{bmatrix} a' \\ N \end{bmatrix} = \begin{bmatrix} a \\ N \\ X \times A \end{bmatrix}$$

$$A := \begin{bmatrix} b \\ N \end{bmatrix} \begin{bmatrix} B \\ X \times B \end{bmatrix}$$

Grover Iteration

A fundamental 2D-plane

•
$$|A\rangle := 1/\sqrt{a} \sum_{x \in A} |x\rangle, |B\rangle := 1/\sqrt{b} \sum_{x \in B} |x\rangle$$

•
$$|h\rangle := H^{\otimes n} |0^n\rangle, |h\rangle^{\perp} \perp |h\rangle$$

ullet Obs. 1. Z_f is a reflection about $|B\rangle$

Grover Iteration

 $h\rangle$

A fundamental 2D-plane

$$\bullet \ |A\rangle := 1/\sqrt{a} \sum_{x \in A} |x\rangle, \, |B\rangle := 1/\sqrt{b} \sum_{x \in B} |x\rangle$$

•
$$|h\rangle := H^{\otimes n} |0^n\rangle, |h\rangle^{\perp} \perp |h\rangle$$

$$ullet$$
 Obs 2. HZ_0H is a reflection about $\mid h
angle$.

• Obs 2.
$$HZ_0H$$
 is a reflection about $|h\rangle$.

P(: $P_0 = HZ_0H$: $P_0 = HZ$

$$Z_{f} H^{\otimes n} Z_{0} H$$

$$Z_{o}: (\times > \mapsto \subset 1) (\times >)$$

$$|A\rangle \quad 9(\times) = 1 \text{ iff. } \times = 0^{N}$$

$$|h\rangle^{\perp}$$

A fundamental 2D-plane

•
$$|A\rangle := 1/\sqrt{a} \sum_{x \in A} |x\rangle, |B\rangle := 1/\sqrt{b} \sum_{x \in B} |x\rangle$$

•
$$|h\rangle := H^{\otimes n} |0^n\rangle, |h\rangle^{\perp} \perp |h\rangle$$

$$\odot$$
 Obs 2. HZ_0H is a reflection about

• Obs 2.
$$HZ_0H$$
 is a reflection about $|h\rangle$.

P(: HZ_0H) = -|h| = -|h

Grover Iteration

$$|A\rangle$$
 $9(x)=1$ iff. $x=0^{N}$

- Obs. Each Grover iteration is a rotation of 2θ , $\theta = \sin^{-1}\left(\sqrt{a/N}\right)$. $\alpha << N$
- Goal: $(2k+1)\theta \approx \pi/2$
- Theorem. $k = \Omega(\sqrt{N/a})$ suffice for $\Omega(1)$ success prob.

$$(2k+1)\theta \approx \frac{7}{2}$$

$$k \approx \frac{\pi}{4\theta} \left(\frac{1}{2}\right) \theta \approx \sin\theta = \sqrt{\frac{\alpha}{N}}$$

$$\approx \frac{\pi}{k} \cdot \sqrt{\frac{\pi}{k}} \cdot \sqrt{\frac{\pi}{N}}$$

$$\approx = 1 \quad \sqrt{N}$$

Grover Iteration G

Unknown number of solutions

- One approach: if random k, then success prob. is the area under the curve
 - ... It turns out to be always > 0.4
- Read more if interested https://arxiv.org/abs/1709.01236

Optimality of Grover's algorithm

An unfortunate news...

- **Theorem.** Any quantum algorithm must make $\Omega(\sqrt{2^n})$ queries to f (assuming a single marked item).
- A k-query quantum algorithm if of the form below
 - $f = Z_f : |x\rangle \mapsto (-1)^{f(x)} |x\rangle$
 - $U_0, U_1, ..., U_k$ are arbitrary unitary operations

$$|\hspace{.06cm} 0^n \rangle - U_0 - f - U_1 - f - U_k - U_{k-1} - f - U_k$$

Optimality of Grover's algorithm: proof sketch

 \bullet For every $r \in \{0,1\}^n$, let $f_r: \{0,1\}^n \to \{0,1\}$ be such that $f_r(x) = 1$ iff. x = r.

• each query only drifts the states apart by a tiny bit

Exercise

1. Show that
$$\||\psi\rangle - |\phi\rangle\| \le 2|\alpha_r|$$

$$f_r(x) = 1$$
 iff. $x = r$.

$$\sum_{x} \alpha_{x} |x\rangle \qquad f_{r} \qquad |\psi\rangle = \int_{X \neq r} \langle x|x\rangle + \int_{x \neq r} \langle x|x\rangle + \int_{x \neq r} \langle x|x\rangle + \langle x|x\rangle = \int_{x \neq r} \langle x|x\rangle + \langle$$

Logistics

- HW5 due Sunday
 - One more to go! Keep up the good work
- Project [Sign up on google <u>spreadsheet</u>]
 - Week8. Progress check-up
 - Office hour + after Friday's lecture: mandatory meetings. Sign up ASAP.
 - Week10. Presentations
 - Office hour: voluntary meetings, sign up as you wish
 - Friday's lecture: presentations from you! Sign up a slot ASAP. Details to follow.

Discussion: quantum factoring experiments

- [SSV13] Oversimplifying quantum factoring
 - What are the main critique of prior experiments?

- [MNM+16] Realization of a scalable Shor algorithm
 - Does it address adequately the criticisms in the SSV13? Why and why not?

• Recent estimate on quantum Factoring [hear more from a final presentation]

Scratch