Prénom
Nom:

CYBER 2, ENSIBS Vannes, 2015-09-21

Examen de Réseau

Une page A4 recto/verso de **notes masnuscrites** est autorisée mais aucune forme de communication ne sera tolérée! Les réponses **courtes** et correctes sont les meilleures.

Pas la peine de philosopher ou débattre (Français ou Anglais au choix). La notation est à titre informatif et pourrait changer.

Bonne chance!

1 Design de sous-réseaux (10 pts)

Dans cet exercice vous devez designez plusieurs sous-réseaux. En commençant à 172.17.0.0, donner pour chacun des sous réseaux (aucun schéma attendu, mais cela pourrait vous aider):

- Le masque de sous-réseaux et nombre maximum d'hôtes,
- L'adresse IP du réseau,
- La première adresse IP d'hôte du réseau,
- La dernière adresse IP d'hôte du réseau,
- L'adresse IP de broadcast.

Les sous-réseaux a designé sont:

- 1. 1000 machines pour les étudiants,
- 2. 30 machines pour les services réseaux (serveur DNS, web, NAS...),
- 3. 40 machines pour le laboratoire réseau,
- 4. 500 machines pour enseignants et personnels,
- 5. 14 machines à des fins d'expérimentation.

Utilisez le tableau 3 de la page 4.

2 Modèle OSI (2 pts)

Donnez le nom et un rapide aperçu des 4 premières couches réseaux.

3 Routage (2 pts)

3.1 Définitions

Quelle est la définition des termes: routeur, algorithme de routage et transmission (de packets)? (Il est autorisé de réunir les trois définitions en une seule phrase).

3.2 NIC suivante?

Route #	Destination	Genmask	Iface
R0	0.0.0.0	/0	s0
R1	10.0.0.0	/8	eth0
R2	212.27.60.0	/22	s1
R3	80.10.200.0	/22	s2
R4	192.168.0.0	255.255.255.0	eth1
R5	192.168.3.0	255.255.255.0	eth0
R6	192.168.5.0	255.255.255.128	eth1

Table 1: Routing table

D'après la table de routage 1:

- Quel est le détail manquant ?
- Où seront transmis les packets ayant comme destination:
 - -198.41.191.47?
 - -192.168.4.3?
 - -192.168.1.1?
 - -80.10.201.0?
 - -80.10.210.0?
 - -10.128.0.4?
 - -212.27.61.1?
- Est-il possible d'aggréger des routes? Si oui, lesquelles?

4 Quelle couche est-ce? (2 pts)

Comlétez le tableau 2, en incluant entre parenthèses le port par défaut s'il existe) avec : HTTP, HTTPS, TCP, UDP, MAC, IP, telnet, ssh, ftp, IEEE 802.11, IEEE 802.15.2, DNS, SIP, TLS, ICMP, IS-IS, RIP.

4.1 Next NIC?

Layer	Protocols
*	
7	HTTP(80),
6	
5	
4	
3	
2	
1	

Table 2: Protocol table

5 Qui est-ce? (2 pts)

Que pouvez-vous déduire des deux packets capturés présents sur la figure 1?

Source	Destination	Protocol	Info								
172.17.96.139	9 193.52.48.66	DNS	Standard q	uery	0xc857	A 9gag.c					
193.52.48.66	172.17.96.139	DNS	Standard q	uery	response	0xc857	Α	176.34.246.218	A 176	5.34.1	12.194

Figure 1: Two lonely packets

6 Question bonus (0.5 pts)

6.1 DEF CON 22 Hacking Conference

Qu'avez-vous appris en regardant la vidéo nommée Blinding The Surveillance State By Christopher Soghoian?

You may want not to write the whole IP addresses but only the changing bytes.

Network ID	Mask (CIDR)	# hosts	Network	First node	Last node	Broadcast

Table 3: Designed networks