EPITA / InfoS3		Décembre2021
NOM :	. Prénom :	Groupe :

Partiel Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice	<u>e 1.</u> Redresseur double alternance (6 points)
Soit le mo	ontage ci-contre : D_4 D_2
	une source de tension variable et on utilisera A
	premier temps le modèle idéal pour les diodes. $e(t)$
a)	Durant l'alternance positive $(e(t) > 0)$, quelle(s) D_3 diode(s) est (sont) conductrice(s)? Justifiez votre réponse.
b)	Quelle est alors l'expression de u ?
c)	Durant l'alternance négative ($e(t) < 0$), quelle(s) diode(s) est (sont) conductrice(s)? Justifiez votre réponse.
d)	Quelle est alors l'expression de u ?

EPITA / InfoS3 Décembre 2021

e) Tracer alors u(t).

f) On remplace désormais les diodes par leur modèle à seuil. Tracer l'allure de u(t), en **justifiant votre réponse**. On notera V_0 la tension de seuil de chacune des diodes et on supposera que la valeur maximale E_M de e(t) est telle que $E_M > 2.V_0$.

Exercice 2. Polarisation (6 points)

On considère le montage suivant.

On donne:

$$R_C = 1k\Omega$$
, $R_E = 1k\Omega$, $V_{CC} = 10V$,

 $\beta=150$, $V_{BE}=0.7V$ si la jonction Base-Emetteur est passante.

- 1. On souhaite obtenir un courant $I_C = 4,65 \text{ } mA$.
 - a. En supposant le transistor en mode linéaire, que vaut alors la tension V_{CE} ? On supposera $\beta\gg 1$. L'hypothèse est-elle bien vérifiée ? Justifiez votre réponse.

b. Quelle est la valeur de la résistance R_B qui permet d'obtenir ce courant I_C . On considérera que $\beta+1\approx\beta$ pour l'application numérique. N'oubliez pas de justifier votre réponse !

	Quelle est la valeur minimale de la résistance R_B qui assure une polarisation du transistor dans sa zone de fonctionnement linéaire. On considèrera que $\beta+1\approx\beta$. N'oubliez pas de justifier votre réponse !
<u>Exer</u>	cice 3. Montage Darligton (3 points) I_{c1}
On cor	nsidère le montage ci-contre. $egin{array}{c c} B_1 & I_{C2} & \\ \hline \end{array}$
Gain e détern On cor	Int le coefficient de transfert du courant de base (aussi appelé en courant) du transistor de gauche et β_2 celui du transistor de droite, niner le gain en courant β du transistor équivalent, en fonction de β_1 et β_2 . Insidèrera que β_1 et β_2 sont très grands devant 1 et on supposera les deux tors polarisés dans leur zone de fonctionnement linéaire. Justifiez votre
•	mmencez par exprimer $I_{\mathcal{C}}$ en fonction de $I_{\mathcal{B}}$.

Exercice 4. QCM (5 points – Pas de point négatif)

- 1. Le dopage permet de diminuer la conductivité du semiconducteur.
 - a. VRAI

b. FAUX

Décembre 2021

http://www.hector-bd.com/

2. Par quoi remplace-t-on la diode Zéner lorsqu'elle est passante en inverse si on utilise le modèle réel?

Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur) (Q3&4)

3. Que vaut la tension aux bornes de R si E=10V, $R=100\Omega$.

4. Que vaut la tension V_{AK} aux bornes de la diode si E=0.5~V, $R=1\mathrm{k}\Omega$.

b-
$$-0.5 V$$

d-
$$-0.7 V$$

Soit le circuit ci-contre, dans lequel on modélise la diode par son modèle à seuil (source de tension idéale) avec $V_0=0.6V$. (Q5&6)

- 5. Choisir l'affirmation correcte si $E_1=1~V$, $R_1=100\varOmega$, et $R_2=500\varOmega$:
 - a- La diode est passante et le courant qui la traverse vaut $0.8 \ mA$
 - b- La diode est bloquée et la tension à ses bornes est égale à $\frac{1}{6}V$.
 - c- La diode est passante et le courant qui la traverse vaut 1*A*.
 - d- La diode est passante et le courant qui la traverse vaut 2mA.

- 6. Choisir l'affirmation correcte si $E_1=10V$, $R_1=100\Omega$, et $R_2=50\Omega$:
 - a- La diode est bloquée et la tension à ses bornes est égale à $\frac{20}{3}V$.
 - b- La diode est passante et le courant qui la traverse vaut $100 \ mA$
 - c- La diode est passante et le courant qui la traverse vaut 5A.
 - d- La diode est passante et le courant qui la traverse est égal à $182 \ mA$.

Soit le circuit ci-contre dans lequel V est une tension pouvant prendre n'importe quelle valeur réelle. On utilisera le modèle réel de la diode et on notera V_0 la tension de seuil en direct, r_D , la résistance interne de la diode en direct, V_Z ($V_Z>0$) , la tension de seuil Zéner et r_Z , la résistance interne de la diode en inverse. (Q7&8)

7. Pour quelles valeurs de *V* la diode Zéner est-elle bloquée ?

a-
$$-2.V_z \le V \le 2.V_0$$

c-
$$-V_z \le V \le V_0$$

b-
$$-2.V_0 \le V \le 2.V_Z$$

$$d-V_0 \le V \le V_Z$$

8. Quelle est l'expression de U quand la diode est passante en inverse ?

$$\text{a-} \quad U = \frac{r_Z}{2r_Z + 2R} \cdot V + \frac{2R}{2r_Z + 2R} \cdot V_Z$$

c-
$$U = \frac{r_D}{2r_D + 2R} \cdot V + \frac{2R}{2r_D + 2R} \cdot V_0$$

b-
$$U = \frac{r_Z}{2r_Z + 2R} \cdot V - \frac{2R}{2r_Z + 2R} \cdot V_Z$$

d-
$$U = \frac{r_D}{2r_D + 2R} \cdot V - \frac{2R}{2r_D + 2R} \cdot V_0$$

Soit le circuit ci-contre (Q9&10)

On considère le cahier des charges suivant : $I_C=20~mA$, $V_{CE}=5V$, et on prend un transistor ayant les caractéristiques suivantes : $\beta=100$, $V_{BE}=0.7V$ si la jonction Base-Emetteur est passante.

9. Que vaut V_{BC} ?:

a-
$$0.6V$$

$$c-4,7V$$

b-
$$-5.7V$$

$$d - 4.3V$$

10. Que vaut R_C ?:

a.
$$2,5k\Omega$$

c.
$$25\Omega$$

b.
$$250\Omega$$

d.
$$750\Omega$$