Project2 HMM、CRF、Transformer+CRF

具体运行的完整代码在 Code 中,运行的 JyputerNotebook 可见 run.pdf

Part1 - HMM实现命名实体识别(NER)任务

由于我们的数据中既有隐藏状态序列,又有观察序列,则只要做统计就能得到估计的初始概率,转移概率矩阵和发射矩阵。为此,简单统计:

- 1. 每个序列第一个词的状态出现次数
- 2. 状态之间转移的次数
- 3. 同一状态发射到不同单词的次数

具体来说:

```
1 def _build_matrix(self,epsilon=1e-8):
           self.observation_num = len(self.word_index)
 3
           self.state_num = len(self.label_index)
 4
           self.pi = np.zeros(self.state_num)
           self.transfer = np.zeros((self.state_num,self.state_num))
 5
           self.emission = np.zeros((self.state_num,self.observation_num))
 6
           for seg in self.seguences:
 7
 8
               previous_label = None
               for idx,word in enumerate(seq["word"]):
 9
                   label = seq["label"][idx]
10
                   self.emission[self.label_index[label],self.word_index[word]]
11
   += 1
                   if idx == 0:
12
                        self.pi[self.label_index[label]] += 1
13
14
                   else:
15
   self.transfer[self.label_index[previous_label],self.label_index[label]] += 1
                   previous_label = label
16
17
           # Avoid overflow
18
           self.pi[self.pi == 0] = epsilon
           self.pi /= self.pi.sum()
19
           self.transfer[self.transfer == 0] = epsilon
20
           self.transfer /= self.transfer.sum(axis=1, keepdims=True)
21
           self.emission[self.emission == 0] = epsilon
22
           self.emission /= self.emission.sum(axis=1, keepdims=True)
23
```

在统计完次数后,做 softmax 归一化变为概率即可。由于词空间巨大,很多数值为 0 ,为了防止溢出,可以将所有的 0 加上 1e-8 。

Viterbi 算法是一种允许线性复杂度进行推理的动态规划算法。伪代码如下:

```
function VITERBI(O, S, \pi, Y, A, B): X
      for each state s_i do
             T_1[i,1] \leftarrow \pi_i \cdot B_{iy_1}
             T_2[i,1] \leftarrow 0
      end for
      for i \leftarrow 2,3,...,T do
             for each state s_i do
                    T_1[j,i] \leftarrow \max_i (T_1[k,i-1] \cdot A_{kj} \cdot B_{jy_i})
                    T_2[j,i] \leftarrow rg \max_i \left(T_1[k,i-1] \cdot A_{kj} \cdot B_{jy_i}\right)
             end for
      end for
      z_T \leftarrow \arg\max\left(T_1[k,T]\right)
      x_T \leftarrow s_{Z_T}
      for i \leftarrow T, T-1, ..., 2 do
             z_{i-1} \leftarrow T_2[z_i,i]
             x_{i-1} \leftarrow s_{z_{i-1}}
      end for
      return X
end function
```

具体来说,

```
1 def _viterbi(self,seq):
 2
           length = len(seq["word"])
           T1_table = np.zeros([length, self.state_num])
 3
           T2_table = np.zeros([length, self.state_num])
 4
           initial_state = self._get_state(seq["word"][0])
 5
           T1_table[0, :] = self.pi + initial_state
 6
           T2_{table}[0, :] = np.nan
 7
           for i in range(1, length):
 8
               state = self._get_state(seq["word"][i])
9
               state = np.expand_dims(state, axis=0)
10
               prev_score = np.expand_dims(T1_table[i-1, :], axis=-1)
11
               score = prev_score + self.transfer + state
12
13
               T1_table[i, :] = np.max(score, axis=0)
               T2_table[i, :] = np.argmax(score, axis=0)
14
           best_label = int(np.argmax(T1_table[-1, :]))
15
           best_labels = [best_label]
16
           for i in range(length-1, 0, -1):
17
               best_label = int(T2_table[i, best_label])
18
               best_labels.append(best_label)
19
```

最后进行简单测试,发现确实收敛:

micro	avg	0.8941	0.7476	0.8143	8603
macro	avg	0.8831	0.7318	0.7987	8603
weighted	avg	0.8974	0.7476	0.8137	8603

English

•••				
micro avg	0.8652	0.8882	0.8765	8437
macro avg	0.5843	0.7061	0.6238	8437
weighted avg	0.8694	0.8882	0.8782	8437

Chinese

Part2 - CRF 实现命名实体识别(NER)任务

条件随机场作为一种特殊的随机场,其假定只有前后两个状态之间,通过人工挑选的特征生成分数,利用类似 Logistic 回归的方式得到各个标签的概率,**刻画观察与隐藏状态之间的关系**;辅以概率转移矩阵,**刻画隐藏状态之间的序列关系**。

我们这里直接选取 pytorch 默认的表征传入即可。

由于特征为人工挑选,可训练的参数只在概率转移矩阵中。

我们利用 pycrfsuite 库,可以看到其利用 L-BFGS 这一常见优化器优化概率转移矩阵。

推理仍然可以用 Viterbi 算法来进行推理。

具体来说,只要设置 trainer 即可:

```
1 for xseq, yseq in zip(X_train, y_train):
2     trainer.append(xseq, yseq)
3
4 trainer.set_params({
5     'c1': 1.0,
6     'c2': 1e-3,
7     'max_iterations': 100000,
8 })
9
```

```
10 trainer.train('crf_eng.model')
11 tagger = pycrfsuite.Tagger()
12 tagger.open('crf_eng.model')
13 y_pred_eng = [tagger.tag(xseq) for xseq in X_test]
14 tagger.close()
```

训练略微花费时间,但总体还比较快。结果确实收敛:

micro	avg	0.8816	0.8445	0.8626	8603
macro	avg	0.8763	0.8168	0.8443	8603
weighted	avg	0.8821	0.8445	0.8622	8603

English

• • •					
micro	avg	0.9346	0.9444	0.9395	8437
macro	avg	0.7233	0.7290	0.7257	8437
weighted	avg	0.9349	0.9444	0.9395	8437

Chinese

Part3 - Transformer+CRF 实现命名实体识别 (NER) 任务

在传统的 CRF 模型中,人为挑选的特征对于模型的性能十分重要。 Transformer 的介入相当于将"人为挑选特征得到分数-Logistic回归-得到概率"的模式改为"Transformer 得到表征-Feed Forward 得到概率"。概率转移矩阵部分不变。

由于 Transformer 部分和概率转移矩阵要一同训练,不能使用较为高效的 L-BFGS 算法,这里就采用简单的 SGD 进行优化。

推理也可以用 Viterbi 算法来进行推理。

我们利用 pytorch 框架中的 Transformer Encoder 完成 Transformer 部分

```
1 self.transformer =
    nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=self.embedding_dim,nhe
    ad=nhead,dim_feedforward=self.hidden_dim
    ), num_layers=num_layers)
```

再额外训练一个转移概率矩阵:

```
1 self.transitions = nn.Parameter(torch.randn(self.num_label, self.num_label))
```

这只需要在 forward 中对 Transformer 获得的表征做即可。前向时仍然利用 Viterbi 算法。

```
1 def forward(self, sentence):
2     feats = self._get_transformer_features(sentence)
3     score, tag_seq = self._viterbi_decode(feats)
4     return score, tag_seq
```

而在学习时,我们既可以像在 HMM 模型中那样直接统计获得概率转移矩阵,也可以跟随 Transformer 一起利用 SGD 训练。这里就简单利用 SGD 训练。

训练比较花费时间,下面证明其收敛:

micro avg 6	ð.5264	0.6076	0.5641	8603
macro avg 6	ð.5699	0.5839	0.5586	8603
weighted avg 6	0.5807	0.6076	0.5765	8603

English

• • •				
micro avg	0.8130	0.8649	0.8382	8437
macro avg	0.5978	0.5866	0.5843	8437
weighted avg	0.8451	0.8649	0.8447	8437

Chinese

其中 English 在训练时epoch进行的较多,可以看到已经出现了明显的过拟合现象;相反,Chinese 只训练了1个epoch,准确率达到 0.83 ,相当不错。

备注

具体运行结果都在 run.pdf 中可以看到。