Variable Compleja I Tema 2: Topología del plano

- Topología del plano
 - \bullet Distancia y topología de $\mathbb C$
 - Sucesiones de números complejos
 - Acotación, compacidad y divergencia
 - Cálculo de límites

- 2 Funciones complejas de variable compleja
 - Operaciones con funciones complejas
 - Continuidad en un punto
 - Continuidad global
 - Límite funcional

Distancia y topología de \mathbb{C}

Distancia de \mathbb{C}

$$d(z,w) = |w-z| \quad \forall z, w \in \mathbb{C}$$

 $\mathbb{R} \subset \mathbb{C}$ subespacio métrico

Topología de C

- \bullet Topología de \mathbb{C} : la generada por su distancia. Induce en \mathbb{R} la usual
- Discos abiertos y cerrados: $a \in \mathbb{C}, r \in \mathbb{R}^+$,

$$D(a,r) = \{ z \in \mathbb{C} : |z-a| < r \} \qquad \overline{D}(a,r) = \{ z \in \mathbb{C} : |z-a| \leqslant r \}$$

- Los abiertos de C son las uniones (arbitrarias) de discos abiertos
- Interior de un conjunto: $A \subset \mathbb{C}, z \in \mathbb{C}$

$$z \in A^{\circ} \iff \exists r \in \mathbb{R}^+ : D(z,r) \subset A$$

• Otra descripción de los abiertos: Para $\Omega \subset \mathbb{C}$ se tiene:

$$\Omega$$
 abierto $\iff \Omega = \Omega^{\circ} \iff \forall z \in \Omega \ \exists r \in \mathbb{R}^{+} : D(z,r) \subset \Omega$

Sucesiones convergentes y conjuntos cerrados

Sucesiones convergentes

• Si $z_n \in \mathbb{C} \ \forall n \in \mathbb{N} \ \text{y} \ z \in \mathbb{C}$, se tiene:

$$\{z_n\} \to z \iff [\forall \varepsilon > 0 \exists m \in \mathbb{N} : n \geqslant m \Rightarrow |z_n - z| < \varepsilon]$$

 $\iff \{|z_n - z|\} \to 0$

• En particular: $\{z_n\} \to 0 \iff \{|z_n|\} \to 0$

Conjuntos cerrados

• Cierre de un conjunto: $A \subset \mathbb{C}, z \in \mathbb{C}$

$$z \in \overline{A} \iff \exists \{z_n\} : z_n \in A \ \forall n \in \mathbb{N} , \ \{z_n\} \to z$$

• Conjuntos cerrados: $A \subset \mathbb{C}$

$$A \text{ cerrado } \iff \begin{bmatrix} z_n \in A & \forall n \in \mathbb{N}, \{z_n\} \to z \in \mathbb{C} \Rightarrow z \in A \end{bmatrix}$$

Complitud

Sucesiones convergentes y sucesiones de Cauchy

$$\max \left\{ |\operatorname{Re} w - \operatorname{Re} z|, |\operatorname{Im} w - \operatorname{Im} z| \right\} \leq |w - z| \\ |w - z| \leq |\operatorname{Re} w - \operatorname{Re} z| + |\operatorname{Im} w - \operatorname{Im} z| \right\} \quad \forall w, z \in \mathbb{C}$$

$$z_n \in \mathbb{C} \quad \forall n \in \mathbb{N}, z \in \mathbb{C}$$

$$\bullet \ \{z_n\} \to z \iff \begin{cases} \{\operatorname{Re} z_n\} \to \operatorname{Re} z \\ \{\operatorname{Im} z_n\} \to \operatorname{Im} z \end{cases}$$

• $\{z_n\}$ sucesión de Cauchy \iff $\{\operatorname{Re} z_n\}$ y $\{\operatorname{Im} z_n\}$ sucesiones de Cauchy

Teorema de complitud

 $\mathbb C$ es un espacio métrico completo

Acotación

Conjuntos acotados y sucesiones acotadas

• Conjuntos acotados: $A \subset \mathbb{C}$,

$$A \ \operatorname{acotado} \iff \exists M \in \mathbb{R} : |z| \leq M \ \forall z \in A$$

• Sucesiones acotadas: $z_n \in \mathbb{C} \ \forall n \in \mathbb{N}$,

$$\{z_n\}$$
 acotada \iff $\exists M \in \mathbb{R} : |z_n| \leqslant M \ \forall n \in \mathbb{N}$

- Toda sucesión convergente está acotada
- Una sucesión de números complejos $\{z_n\}$ está acotada si, y sólo si, las sucesiones de números reales $\{\operatorname{Re} z_n\}$ y $\{\operatorname{Im} z_n\}$ está acotadas.

Compacidad

Teorema de Bolzano-Weierstrass

Toda sucesión acotada de números complejos admite una sucesión parcial convergente

Caracterización de la compacidad

Para un conjunto $K \subset \mathbb{C}$, son equivalentes:

- (a) K es compacto
- (b) Toda sucesión de puntos de K admite una sucesión parcial que converge e un punto de K
- (c) K es cerrado y acotado

En particular $\mathbb C$ es un espacio topológico localmente compacto

Divergencia

Sucesiones divergentes

$$z_n \in \mathbb{C} \quad \forall n \in \mathbb{N}$$

$$\{z_n\} \to \infty \iff \{|z_n|\} \to +\infty$$

Caracterización

Una sucesión de números complejos es divergente si, y sólo si, no admite ninguna sucesión parcial convergente

Ejemplo

$$z_n = n \left(\cos \frac{n\pi}{2} + i \operatorname{sen} \frac{n\pi}{2} \right) \quad \forall n \in \mathbb{N}$$

- $\{z_n\} \to \infty$
- Las sucesiones $\{\operatorname{Re} z_n\}$ y $\{\operatorname{Im} z_n\}$ no son divergentes

Cálculo de límites

Cálculo de límites

$$z_n, w_n \in \mathbb{C} \quad \forall n \in \mathbb{N}, \ z, w \in \mathbb{C}$$

$$\bullet \ \{z_n\} \to z \implies \{|z_n|\} \to |z|$$

•
$$\{z_n\} \to z$$
, $\{w_n\} \to w \implies \{z_n + w_n\} \to z + w$

$$\bullet \ \{z_n\} \to \infty \ , \ \{w_n\} \ \text{acotada} \ \implies \ \{z_n+w_n\} \to \infty$$

$$\bullet \ \{z_n\} \to 0 \ , \ \{w_n\} \ {\rm acotada} \ \implies \ \{z_nw_n\} \to 0$$

$$\bullet \ \{z_n\} \to z \ , \ \{w_n\} \to w \ \Longrightarrow \ \{z_n w_n\} \to z w$$

•
$$\{z_n\} \to z \neq 0$$
, $\{w_n\} \to \infty$ \Longrightarrow $\{z_n w_n\} \to \infty$

•
$$\{z_n\} \to \infty$$
, $\{w_n\} \to \infty$ \Longrightarrow $\{z_n w_n\} \to \infty$

•
$$w_n \neq 0 \quad \forall n \in \mathbb{N} , \{w_n\} \rightarrow w \neq 0 \implies \{1/w_n\} \rightarrow 1/w$$

• Si
$$w_n \neq 0 \quad \forall n \in \mathbb{N}$$
, entonces: $\{w_n\} \to 0 \iff \{1/w_n\} \to \infty$

Operaciones con funciones complejas de variable compleja

Si $\emptyset \neq A \subset \mathbb{C}$, $\mathcal{F}(A)$ es el conjunto de todas las funciones de A en \mathbb{C}

Estructura algebraica

Para $f, g \in \mathcal{F}(A)$ y $\lambda \in \mathbb{C}$, definimos:

- Suma: $(f+g)(z) = f(z) + g(z) \quad \forall z \in A$
- Producto: $(fg)(z) = f(z)g(z) \quad \forall z \in A$ Con estas operaciones, $\mathcal{F}(A)$ es un anillo conmutativo con unidad
- Si $g(A) \subset \mathbb{C}^*$ tenemos la función cociente:

$$\left(\frac{f}{g}\right)(z) = \frac{f(z)}{g(z)} \quad \forall z \in A$$

• Producto por escalares: $(\lambda f)(z) = \lambda f(z) \quad \forall z \in A$ Con la suma y este producto por escalares, $\mathcal{F}(A)$ es un espacio vectorial complejo

Otras operaciones con funciones

Composición

$$f \in \mathcal{F}(A), f(A) \subset B \subset \mathbb{C}, g \in \mathcal{F}(B)$$
:

$$(g \circ f)(z) = g(f(z)) \quad \forall z \in A$$

Partes real e imaginaria, conjugada y módulo

Para $f \in \mathcal{F}(A)$ podemos definir:

•
$$(\operatorname{Re} f)(z) = \operatorname{Re} f(z)$$
, $(\operatorname{Im} f)(z) = \operatorname{Im} f(z)$ $\forall z \in A$

•
$$\overline{f}(z) = \overline{f(z)} \quad \forall z \in A$$

•
$$|f|(z) = |f(z)| \quad \forall z \in A$$

•
$$f = \operatorname{Re} f + i \operatorname{Im} f$$
, $\overline{f} = \operatorname{Re} f - i \operatorname{Im} f$

• Re
$$f = \frac{f + \overline{f}}{2}$$
, Im $f = \frac{f - \overline{f}}{2i}$

•
$$|f| = |\overline{f}| = (f\overline{f})^{1/2} = ((\operatorname{Re} f)^2 + (\operatorname{Im} f))^{1/2}$$

Continuidad en un punto (I)

Definición y caracterización

 $\emptyset \neq A \subset \mathbb{C}$, $f \in \mathcal{F}(A)$, $z \in A$. f es continua en z cuando:

- $\bullet \ \forall \varepsilon > 0 \ \exists \delta > 0 : w \in A, |w z| < \delta \ \Rightarrow \ |f(w) f(z)| < \varepsilon$
- $z_n \in A \ \forall n \in \mathbb{N}, \{z_n\} \to z \Rightarrow \{f(z_n)\} \to f(z)$

Carácter local

$$z \in B \subset A$$
, $f \in \mathcal{F}(A)$:

- Si f es continua en z, entonces $f|_{B}$ es continua en z
- Si $f|_B$ es continua en z y existe $\delta>0$ tal que $D(z,\delta)\cap A\subset B$, entonces f es continua en z

Operaciones algebraicas

 $f,g \in \mathcal{F}(A)$ continuas en $z \in A$. Entonces:

- \bullet f+g es continua en z
- fg es continua en z
- Si $g(A) \subset \mathbb{C}^*$, entonces f/g es continua en z

Continuidad en un punto (II)

Composición

$$f\in\mathcal{F}(A)$$
 , $f(A)\subset B\subset\mathbb{C}$, $g\in\mathcal{F}(B)$, $z\in A$
$$\left.\begin{array}{c} f \text{ continua en } z\\ g \text{ continua en } f(z) \end{array}\right\} \quad\Longrightarrow\quad g\circ f \text{ continua en } z$$

Consecuencias

$$f \in \mathcal{F}(A)$$
, $z \in A$

- f continua en $z \iff \overline{f}$ continua en z
- \bullet f continua en $z \iff \operatorname{Re} f$, $\operatorname{Im} f$ continuas en z
- f continua en $z \implies |f|$ continua en z. El recíproco es falso

Continuidad global (I)

Definición y caracterización

$$\emptyset \neq B \subset A \subset \mathbb{C} \ , \ f \in \mathcal{F}(A)$$

- f continua en $B \iff f$ continua en $z, \forall z \in B$
- \bullet f continua \iff f continua en A
- $C(A) = \{ f \in \mathcal{F}(A) : f \text{ continua} \}$
- \bullet Si $f\in\mathcal{F}(A)$ y \mathcal{T} es la topología de $\mathbb{C},$ entonces:

$$f \in \mathcal{C}(A) \iff \forall V \in \mathcal{T} \ \exists U \in \mathcal{T} : f^{-1}(V) = U \cap A$$

Carácter local

Supongamos $A=\bigcup_{\lambda\in\Lambda}A_\lambda$ donde Λ es un conjunto y A_λ es subconjunto

abierto (relativo) de A, para todo $\lambda \in \Lambda.$ Entonces, para $f \in \mathcal{F}(A)$ se tiene:

$$f \in \mathcal{C}(A) \iff f|_{A_{\lambda}} \in \mathcal{C}(A_{\lambda}) \ \forall \lambda \in \Lambda$$

Continuidad global (II)

Operaciones con funciones continuas

- C(A) es subanillo y subespacio vectorial de $\mathcal{F}(A)$
 - $f,g \in \mathcal{C}(A)$, $g(A) \subset \mathbb{C}^* \implies f/g \in \mathcal{C}(A)$
 - $\bullet \ f \in \mathcal{C}(A) \ , \ f(A) \subset B \ , \ g \in \mathcal{C}(B) \ \implies \ g \circ f \in \mathcal{C}(A)$
 - Para $f \in \mathcal{F}(A)$ se tiene:

$$f \in \mathcal{C}(A) \Leftrightarrow \overline{f} \in \mathcal{C}(A) \Leftrightarrow \operatorname{Re} f, \operatorname{Im} f \in \mathcal{C}(A) \Rightarrow |f| \in \mathcal{C}(A)$$

Propiedades de las funciones continuas

- $\emptyset \neq A \subset \mathbb{C}$, $f \in \mathcal{C}(A)$
 - A compacto $\implies f(A)$ compacto y f uniformemente continua
 - $A \text{ conexo} \implies f(A) \text{ conexo}$

Continuidad uniforme

Definición

 $f \in \mathcal{F}(A)$ es uniformemente continua cuando:

$$\forall \varepsilon > 0 \ \exists \delta > 0 : z, w \in A, |z - w| < \delta \Rightarrow |f(z) - f(w)| < \varepsilon$$

Esto implica que $f \in \mathcal{C}(A)$ pero en general el recíproco es falso

Funciones lipschitzianas

 $f \in \mathcal{F}(A)$ es lipschitziana cuando:

$$\exists M \in \mathbb{R}_0^+ : |f(z) - f(w)| \leqslant M|z - w| \quad \forall z, w \in A$$

La mínima M que verifica lo anterior es la constante de Lipschitz de f:

$$M_0 = \sup \left\{ \frac{|f(z) - f(w)|}{|z - w|} : z, w \in A, z \neq w \right\}$$

Toda función lipschitziana es uniformemente continua. El recíproco es falso

Conexión

Subconjuntos conexos de $\mathbb C$

$$A\subset \mathbb{C}$$
 , $\mathcal{T}_A=\mbox{ topología inducida en }A$ por la usual de \mathbb{C}

A conexo

$$U\,,V\in\mathcal{T}_{\!\!A}\,,\ A=U\cup V\,,\ U\cap V=\emptyset\ \Rightarrow\ U=\emptyset\ \text{o bien }V=\emptyset$$

$$U \in \mathcal{T}_A$$
, $A \setminus U \in \mathcal{T}_A \Rightarrow U = \emptyset$ obien $U = A$

$$f \in \mathcal{C}(A), f(A) \subset \mathbb{Z} \Rightarrow f \text{ constante}$$

Límite funcional

Puntos de acumulación

$$A\subset\mathbb{C}\,\,,\,\,lpha\in\mathbb{C}$$

$$\begin{array}{cccc} \alpha \in A' & \iff & D(\alpha, \epsilon) \cap (A \setminus \{\alpha\}) \neq \emptyset & \forall \epsilon > 0 \\ & \iff & \exists \; \{z_n\} & : & z_n \in A \setminus \{\alpha\} & \forall n \in \mathbb{N}, \; \; \{z_n\} \rightarrow \alpha \end{array}$$

Límite de una función en un punto

$$\emptyset \neq A \subset \mathbb{C}$$
, $f \in \mathcal{F}(A)$, $\alpha \in A'$, $L \in \mathbb{C}$

$$\lim_{z \to \alpha} f(z) = L$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 : z \in A, \ 0 < |z - \alpha| < \delta \ \Rightarrow \ |f(z) - L| < \varepsilon$$

$$z_n \in A \setminus \{\alpha\} \ \forall n \in \mathbb{N}, \ \{z_n\} \to \alpha \ \Rightarrow \ \{f(z_n)\} \to L$$

Límite y continuidad

Observaciones inmediatas

$$\lim_{z \to \alpha} f(z) = L \iff \lim_{z \to \alpha} |f(z) - L| = 0$$

$$\lim_{z \to \alpha} f(z) = 0 \iff \lim_{z \to \alpha} |f(z)| = 0$$

$$\lim_{z \to \alpha} f(z) = L \qquad \Longleftrightarrow \qquad \lim_{z \to \alpha} \ \mathrm{Re} \, f(z) = \mathrm{Re} L \quad \mathrm{y} \quad \lim_{z \to \alpha} \ \mathrm{Im} \, f(z) = \mathrm{Im} L$$

Relación entre límite y continuidad

Para $f \in \mathcal{F}(A)$ y $\alpha \in A \cup A'$, se pueden dar tres casos:

- $\alpha \in A \setminus A'$. Entonces f es continua en el punto α
- $\alpha \in A \cap A'$. Entonces f es continua en α si, y sólo si, $\lim_{z \to \alpha} f(z) = f(\alpha)$
- $\alpha \in A' \setminus A$. Entonces f tiene límite en α si, y sólo si, existe una función $g \in \mathcal{F}(A \cup \{\alpha\})$ que es continua en α y extiende a f, en cuyo caso se tiene $g(\alpha) = \lim_{z \to \alpha} f(z)$.

Divergencia de funciones. Carácter local

Divergencia de funciones

$$f \in \mathcal{F}(A)$$
, $\alpha \in A'$

Decimos que f diverge en α y escribimos $f(z) \to \infty \ (z \to \alpha)$ cuando:

$$\forall M \in \mathbb{R} \ \exists \delta > 0 : z \in A, \ 0 < |z - \alpha| < \delta \ \Rightarrow \ |f(z)| > M$$

Caracterización mediante sucesiones:

$$f(z) \to \infty \ (z \to \alpha) \iff \left[z_n \in A \setminus \{\alpha\} \ \forall n \in \mathbb{N}, \ \{z_n\} \to \alpha \ \Rightarrow \ \{f(z_n)\} \to \infty \right]$$

Carácter local

$$\begin{split} f \in \mathcal{F}(A) \ , \ \alpha \in A' \ , \ \delta > 0 \ , \ B = A \cap D(\alpha, \delta) \ , \ g = f \big|_{B} \ , \ L \in \mathbb{C} \\ & \lim_{z \to \alpha} f(z) = L \quad \Longleftrightarrow \quad \lim_{z \to \alpha} g(z) = L \\ & f(z) \to \infty \quad (z \to \alpha) \quad \Longleftrightarrow \quad g(z) \to \infty \quad (z \to \alpha) \end{split}$$

Cálculo de límites

Reglas para límites y divergencia de funciones

$$f,g \in \mathcal{F}(A)$$
, $\alpha \in A'$, $\lambda,\mu \in \mathbb{C}$

•
$$\lim_{z \to \alpha} f(z) = \lambda \implies \lim_{z \to \alpha} |f(z)| = |\lambda|$$

$$\bullet \lim_{z \to \alpha} f(z) = \lambda , \lim_{z \to \alpha} g(z) = \mu \implies \lim_{z \to \alpha} (f + g)(z) = \lambda + \mu$$

$$\bullet \ f(z) \to \infty \ (z \to \alpha) \ , \ g \ {\rm acotada} \ \implies \ \left(f + g \right) (z) \to \infty \ (z \to \alpha)$$

•
$$\lim_{z \to \alpha} f(z) = 0$$
, g acotada $\implies \lim_{z \to \alpha} (fg)(z) = 0$

•
$$\lim_{z \to \alpha} f(z) = \lambda$$
, $\lim_{z \to \alpha} g(z) = \mu$ \Longrightarrow $\lim_{z \to \alpha} (fg)(z) = \lambda \mu$

$$\bullet \ \lim_{z \to \alpha} f(z) = \lambda \in \mathbb{C}^* \ , \ g(z) \to \infty \quad (z \to \alpha) \quad \Longrightarrow \quad (f \, g)(z) \to \infty \quad (z \to \alpha)$$

$$\bullet \ f(z) \to \infty \ (z \to \alpha) \ , \ g(z) \to \infty \ (z \to \alpha) \ \Longrightarrow \ (f \, g)(z) \to \infty \ (z \to \alpha)$$

$$\bullet \ g(A) \subset \mathbb{C}^* \ , \ \lim_{z \to \alpha} g(z) = \mu \in \mathbb{C}^* \ \implies \ \lim_{z \to \alpha} (1/g)(z) = 1/\mu$$

• Si
$$g(A) \subset \mathbb{C}^*$$
, entonces: $\lim_{z \to \alpha} g(z) = 0 \iff (1/g)(z) \to \infty \quad (z \to \alpha)$

Límite o divergencia en el infinito

Límite o divergencia en el infinito

 $A \subset \mathbb{C}$, A no acotado, $f \in \mathcal{F}(A)$, $L \in \mathbb{C}$

$$\lim_{z \to \infty} f(z) = L \iff \left[\ \forall \varepsilon > 0 \ \exists R > 0 \ : \ z \in A, \ |z| > R \implies |f(z) - L| < \varepsilon \ \right]$$

$$\iff \left[\ z_n \in A \ \forall n \in \mathbb{N}, \ \{z_n\} \to \infty \implies \{f(z_n)\} \to L \ \right]$$

$$f(z) \to \infty \ (z \to \infty) \iff \left[\forall M \in \mathbb{R} \ \exists R > 0 \ : \ z \in A, \ |z| > R \implies |f(z)| > M \right]$$

$$\iff \left[z_n \in A \ \forall n \in \mathbb{N}, \ \{z_n\} \to \infty \implies \{f(z_n)\} \to \infty \right]$$

Reducción a límite o divergencia en un un punto

$$A\subset\mathbb{C}$$
 , A no acotado, $B=\{w\in\mathbb{C}^*:1/w\in A\}$ verifica $0\in B'$ $f\in\mathcal{F}(A)$, $g\in\mathcal{F}(B)$, $\ g(w)=f(1/w)\ \ \forall\,w\in B$, $L\in\mathbb{C}$

$$\lim_{z\to\infty} f(z) = L \iff \lim_{w\to 0} g(w) = L \iff \lim_{w\to 0} f(1/w) = L$$

$$f(z) \to \infty \quad (z \to \infty) \quad \Longleftrightarrow \quad g(w) \to \infty \quad (w \to 0) \Longleftrightarrow \quad f(1/w) \to \infty \quad (w \to 0)$$