

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคการศึกษาที่ 2 ปีการศึกษา 2557

วิชา INC 212 Signals & Systems

วศ.ระบบควบคุมและเครื่องมือวัด ปีที่ 2 ปกติ วศ.ระบบควบคุมและเครื่องมือวัด ปีที่ 2 สหกิจศึกษา

สอบวันจันทร์ที่ 11 พฤษภาคม 2558

เวลา 13.00 น. - 16.00 น.

คำสั่ง

- 1. ข้อสอบมีทั้งหมด 3 ข้อ เต็ม 90 คะแนนให้ทำทุกข้อลงในข้อสอบ
- 2. ข้อสอบมี 14 หน้า รวมใบปะหน้านี้และเอกสารประกอบ
- 3. อนุญาตให้ใช้เครื่องคำนวณตามระเบียบของมหาวิทยาลัย
- 4. อ่านคำถามให้ละเอียดก่อนลงมือทำ
- 5. ข้อสอบไม่มีการแก้ไขใดๆ ถ้าพบที่ผิดหรือข้อมูลไม่ครบให้นักศึกษาเขียนอธิบายเหตุผลตามสมควร เอกสารประกอบ
 - ตาราง DTFT
 - 2. ตาราง z-transform
 - 3. สูตรการคำนวณที่สำคัญ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

(ศราวัณ วงษา)./

ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิศวกรรมระบบควบคุมและเครื่องมือวัดแล้ว

(ผศ. ดร. เดี่ยว กุลพิรักษ์)

หัวหน้าภาควิชาวิศวกรรมระบบควบคุมและเครื่องมือวัด

A	بو _م ر بو
ดีล ยายตกล	รหัสประจำตัว
DE-19 19 19 19 19 19 19 19 19 19 19 19 19 1	ansi 191 d

Problem 1: (30 คะแนน)

1.1 คำนวณ DTFT ของสัญญาณ x[n] ซึ่งมีค่า $x[0] = -1, x[1] = 1, x[2] = 0, x[3] = 1, x[4] = -1 \,$ และมีค่าเป็นศูนย์สำหรับ n ค่าอื่นที่เหลือ และให้คำนวณหาค่าของ DTFT ที่ความถี่ $\Omega = 0.4\pi$ rad/sample (9 คะแนน)

d	
ชื่อ-นามสกล	รหัสประจำตัว

1.2 ถ้า X[k] คือ DFT ของสัญญาณ x[n] ในข้อที่ 1.1 จงหาค่า k ที่ตรงหรือใกล้เคียงมากที่สุดกับ ความถี่ $\Omega=0.4\pi$ rad/sample และ f = 150 Hz ในกรณีที่ sampling frequency = 256 Hz (6 คะแนน)

1.3 สัญญาณ x(t) ถูกแชมเปิ้ลเป็นสัญญาณไม่ต่อเนื่อง x[n] และเก็บข้อมูลมา 300 ข้อมูล (N) ด้วย sampling rate (f_s) = 1600 Hz กำหนดให้ $x_z[n]$ คือ สัญญาณไม่ต่อเนื่องที่ได้จากการทำ zero-padding x[n] ด้วยตัวเลขศูนย์จำนวน M-N ตัว กำหนดให้ $X_z[k]$ เป็น FFT ของ $x_z[k]$ ที่ คำนวณจากวิธี radix-two FFT จงหาค่าต่ำสุดของ M หากต้องการ frequency spacing ที่มีความ ละเอียดอย่างน้อย 2 Hz (6 คะแนน)

ط	به پی
ชื่อ-นามสกุล	รหลาไระจำตว
20 100 011 101	

1.4 Spectral leakage คืออะไร มีสาเหตุเกิดจากอะไร ส่งผลอย่างไรต่อการวิเคราะห์ spectrum ของ สัญญาณด้วยวิธี DFT และเราจะสามารถลดผลกระทบดังกล่าวได้อย่างไร (9 คะแนน) ชื่อ-นามสกุล.....รหัสประจำตัว......รหัสประจำตัว......

Problem 2: (24 คะแนน)

2.1 พิจารณาระบบที่ 1 และระบบที่ 2 ด้านล่าง

ระบบที่ 1: (12 คะแนน)

ระบบที่ 2: (12 คะแนน)

- ก) จงหา transfer function ของแต่ละระบบ
- ข) คำนวณหา impulse response h[n] ของระบบ
- ค) จงวิเคราะห์ว่าระบบแต่ละระบบ causal และ BIBO stable หรือไม่
- ง) หากระบบดังกล่าวเสถียร จงคำนวณหาค่าของเอาต์พุต y ที่ steady-state เมื่ออินพุตเป็น unit step

ชื่อ-นามสกุล	 รหัสประจำตัว	

ระบบที่ 1:

ชื่อ-นามสกุล	รหัสประจำตัว

ระบบที่ 2:

d	ع ا م
ชื่อ-นามสกจ	รหัสประจำตัว

Problem 3 (36 คะแนน)

3.1 กำหนดให้ฟิลเตอร์มีทรานสเฟอร์ฟงัก์ชัน $H(z) = \frac{0.2(z+1)}{(z-0.6)}$

จงพล็อต pole-zero ของ H(z) , $H_1(z)=1-H(z)$, $H_2(z)=H(-z)$ และวิเคราะห์ว่าฟิลเตอร์แต่ละ ตัวเป็นฟิลเตอร์ซนิดใด (low-pass, high-pass, band-pass, band-stop filters) (15 คะแนน)

ชื่อ-นามสกุล.....รหัสประจำตัว.....

3.2 พิจารณาฟิลเตอร์ที่อธิบายด้วย difference equation ต่อไปนี้

$$y[n] - \alpha y[n-1] = x[n] - \beta x[n-1]$$

ก) จงหาเงื่อนไขของค่า lpha และ eta ที่ทำให้ฟิลเตอร์นี้เสถียร (3 คะแนน)

4	٠ , , ,
ชอ-นามสกล	รหัสประจำตัว
9	

ข) จงหาค่าของ lpha และ eta ที่ทำให้ฟิลเตอร์นี้เป็น linear phase และจงพิสูจน์โดยคำนวณค่า group delay ของค่าที่ตรงกับเงื่อนไขดังกล่าว (9 คะแนน)

A	٠
ชอ-นามสกล	รหัสประจำตัว
9	

ค) พิสูจน์ว่าหาก eta=1/lpha จะทำให้ฟิลเตอร์นี้เป็น allpass filter นั่นคือ เป็นฟิลเตอร์ที่มีอัตราขยายคงที่ สำหรับทุกช่วงความถี่ของสัญญาณ และคำนวณค่า lpha ที่ทำให้ฟิลเตอร์มีอัตราขยายมีค่าเท่ากับ 10 ทุกช่วงความถี่ (9 คะแนน)

TABLE Common DTFT Pairs

1, all
$$n \leftrightarrow \sum_{k=-\infty}^{\infty} 2\pi \delta(\Omega - 2\pi k)$$

$$sgn[n] \leftrightarrow \frac{2}{1 - e^{-j\Omega}}$$
, where $sgn[n] = \begin{cases} 1, & n = 0, 1, 2, ... \\ -1, & n = -1, -2, ... \end{cases}$

$$u[n] \leftrightarrow \frac{1}{1 - e^{-j\Omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\Omega - 2\pi k)$$

$$\delta[n] \leftrightarrow 1$$

$$\delta[n-q] \leftrightarrow e^{-jq\Omega}, q=\pm 1, \pm 2, \dots$$

$$a^n u[n] \leftrightarrow \frac{1}{1 - ae^{-j\Omega}}, |a| < 1$$

$$e^{j\Omega_{\eta}n} \leftrightarrow \sum_{k=-\infty}^{\infty} 2\pi\delta(\Omega-\Omega_0-2\pi k)$$

$$p[n] \leftrightarrow \frac{\sin\left[\left(q + \frac{1}{2}\right)\Omega\right]}{\sin(\Omega/2)}$$

$$\frac{B}{\pi}\operatorname{sinc}\left(\frac{B}{\pi}n\right) \leftrightarrow \sum_{k=-\infty}^{\infty} p_{2B}(\Omega+2\pi k)$$

$$\cos\Omega_0 n \leftrightarrow \sum_{k=-\infty}^{\infty} \pi [\delta(\Omega + \Omega_0 - 2\pi k) + \delta(\Omega - \Omega_0 - 2\pi k)]$$

$$\sin \Omega_0 n \leftrightarrow \sum_{k=-\infty}^{\infty} j\pi [\delta(\Omega + \Omega_0 - 2\pi k) - \delta(\Omega - \Omega_0 - 2\pi k)]$$

$$\cos(\Omega_0 n + \theta) \leftrightarrow \sum_{k=-\infty}^{\infty} \pi [e^{-j\theta} \delta(\Omega + \Omega_0 - 2\pi k) + e^{j\theta} \delta(\Omega - \Omega_0 - 2\pi k)]$$

ND.

1.
$$p[n] = \begin{cases} 1, |n| < q \\ 0, \text{ otherwise} \end{cases}$$

2.
$$p_{2B}(\Omega) = \begin{cases} 1, |\Omega| < B \\ 0, \text{ otherwise} \end{cases}$$

$$3. \quad \operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

COMMON Z-TRANSFORM PAIRS

x[n]	X(z)	ROC
$\delta[n]$	1	All z
u[n]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	2 > 1
-u[-n-1]	$\frac{1}{1-z^{-1}}, \frac{z}{z-1}$	z < 1
$\delta[n-m]$	Z -m	All z except 0 if $(m > 0)$ or ∞ if $(m < 0)$
$a^n u[n]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z > a
$-a^nu[-n-1]$	$\frac{1}{1-az^{-1}}, \frac{z}{z-a}$	z < a
na"u[n]	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z > a
$-na^nu\{-n-1\}$	$\frac{az^{-1}}{(1-az^{-1})^2}, \frac{az}{(z-a)^2}$	z < a
$(n+1)a^nu[n]$	$\frac{1}{\left(1-az^{-1}\right)^2}, \left[\frac{z}{z-a}\right]^2$	z > a
$(\cos\dot{\Omega}_0 n)u[n]$	$\frac{z^2 - (\cos \Omega_0) z}{z^2 - (2\cos \Omega_0) z + 1}$	z > 1
$(\sin\Omega_0 n)u[n]$	$\frac{(\sin\Omega_0)z}{z^2 - (2\cos\Omega_0)z + 1}$	z > 1
$(r^n\cos\Omega_0n)u[n]$	$\frac{z^2 - (r\cos\Omega_0)z}{z^2 - (2r\cos\Omega_0)z + r^2}$	z >r
$(r^n \sin \Omega_0 n) u[n]$	$\frac{(r \sin \Omega_0) z}{z^2 - (2r \cos \Omega_0) z + r^2}$	z >r
$\begin{cases} a^n & 0 \le n \le N-1 \\ 0 & \text{otherwise} \end{cases}$	$\frac{1-a^Nz^{-N}}{1-az^{-1}}$	z]>0

SOME USEFUL FORMULA

DTFT	$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$
Inverse DTFT	$x[n] = \frac{1}{2\pi} \int_{2\pi} X(\Omega) e^{j\Omega n} d\Omega$
DFT	$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$
Inverse DFT	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}$
Z transform	$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$
Frequency response function	$H(\Omega) = H(e^{j\Omega}) = H(z) _{z=e^{j\Omega}} = H(\Omega) e^{j\theta(\Omega)}$
Group delay	$\tau(\Omega) = -\frac{d\theta(\Omega)}{d\Omega}$