Transformer Design for a X-Ray Device

high-frequency, high-voltage transformer that will be used in a X-Ray device Hüseyin YÜRÜK

Transformer Design for a X-Ray Device

Transformer Design for a X-Ray Device: high-frequency, high-voltage transformer that will be used in a X-Ray device

Hüseyin YÜRÜK

Publication date 09-Apr-2016 18:07:36 Copyright © 2016 Hyuruk

Abstract

In this report, it is supposed to design a high-frequency, high-voltage transformer that will be used in a X-Ray device. The transformer design will be given step by step.

Table of Contents

1. Introduction	. 1
2. Core Selection	. 2
3. Determine # of Turns	
4. Window Utilization & Cable Selection	. 5
5. Losses	
Cupper Losses	

Chapter 1. Introduction

The specs of the transformer are as follows:

- * Single Phase, High Frequency High Voltage Transformer
- * Primary Winding Voltage ± 417 V (peak to peak 834 V for pulsing)
- * Secondary Winding Voltage ± 12.5 kV (peak to peak 25 kV for pulsing)
- * Rated Power 30 kW (for maximum 100 milisecond)
- * Switching Frequency Minimum 100 kHz
- * Ambient Temperature 0-40 °C

Chapter 2. Core Selection

```
% In this code, it is supposed to design a high-frequency,
% high-voltage transformer that will be used in a X-Ray device.
% Huseyin YURUK
%-----
% Following design guide is used:
% Magnetics Ferrite Power Design 2013
% Core Selection by WaAc product
% The power handling capacity of a transformer core can also be determined
% by its
% WaAc product, where Wa is the available core window area, and Ac is
% the effective
% core cross-sectional area.
% Area Product Distribution (WaAc)
% WaAc = (Po * Dcma) / (Kt * Bmax * f)
% WaAc = Product of window area and core area (cm4)
% Po = Power Out (watts)
% Dcma = Current Density (cir. mils/amp)
% Bmax = Flux Density (gauss)
% f = frequency (hertz)
% Kt = Topology constant (Full-bridge = 0.0014)
Po = 30 * 10^3;
                % input parameter
f = 100 * 10^3;
                  % input parameter
Kt = 0.0014;
% for cir. mils to mm^2 see below link
% conversion see http://www.convertunits.com/from/mm%5E2/to/circular+mil
% 1mm^2 ~1973.5 cir. mils
J = 2.5;
                  % current density A/mm^2
Dcma = 1973.5 / J;
Bmax = 0.47 * 10^4; % P type core has the 0.47T max. flux density
WaAc = Po * Dcma / (Kt * Bmax * f)
응응응응응
Using the equation shown above, the WaAc product is calculated.
WaAc = 35.9909
Then the Area Product Distribution (WaAc) Chart is used to
select the appropriate core.
From the Magnetics Ferrite Catalog (2013) U core is selected.
The detail are given below.
```

Typical Power Handling Chart

	Power in Watts			Pot, RS,	E Cores	E Cores RM, PQ,	UU, UI,	ETD,	EFD, Planar	Toroid	
20 kHz	50 kHz	100 kHz	250 kHz	DS		EP	UR	EER, EC			
11700	19000	26500	51500		49928 EE		49330 UU			49725 TC	
							49332 UU			49740 TC	
							49920 UU				
							49925 UI				
							49925 UU				

P Material

A low-medium frequency general-purpose power converter material. Engineered for lowest losses between 80- $100^\circ\text{C}.$ Available in almost all core sizes and shapes.

Initial Perm (25°C; \leq 10 kHz)
Saturation Flux Density (4,700 G at 15 Oe, 25°C) \dots 470 mT, 11.9 A·T/cm
Curie Temperature 210°C

U cores are ideal for power transformer applications. The long legs of U core support low leakage inductance designs and facilitate superior voltage isolation.

			HARD	WARE					
TYPE/SIZE	ORDERING CODE	l _e (mm)	A _e (mm²)	A min (mm²)	V _e (mm³)	WaAc (cm ⁴)	Weight (grams per set)	Bobbins	Clips
U 102/57/25	0_49925UC	308	645	645	199,000	121	988		
1100 /05 /05	0 4000516	0.45	/45	/45	150,000	10.7	704		

		DIMENSIONS (mm)								
TYPE/SIZE	ORDERING CODE	Α	В	C	D	E	L			
U 102/57/25	0_49925UC	101.6 ± 1.5	57.1 ± 0.4	25.4 ± 0.6	31.7 ± 0.75	50.8 ± 1	25.4 ± 0.8			

Chapter 3. Determine # of Turns

```
% The calculation of primary and secondary turns
% and the wire size selection
% Np = Vp * 10^8 / (4 * B * Ac * f)
% Ns = (Vs / Vp ) * Np
% Ip = Pin / Vp_rms
% Is = Po / Vs_rms
% where
% Np = number of turns on the primary
% Ns = number of turns on the secondary
% Ip = primary current
% Is = secondary current
% Ac = core area in cm^2
Vin = 417;
                      % input parameter
Vout = 12.5 * 10^3;
                     % input parameter
Vp_peak = Vin * 4 / pi(); % 1st harmonic peak value
B = 0.2 * 10^4;
                         % operating B value
Ac = 645 * 10^{-2};
                         % Ae effective are for the choosen ferrite
n_{eff} = 0.98;
                         % 98% efficiency assumed
Vs_rms = Vs_peak / sqrt(2); % rms value
Np = Vp_rms * 10^8 / (4*B*Ac*f);
Ns = (Vs_rms / Vp_rms) * Np;
Pin = Po / n_eff;
Ip = Pin / Vp_rms;
Is = Po / Vs_rms;
응응응응응
Using the equation shown above, the Np, Ns, Ip, Is are calculated.
Np = 7.2758
              take Np as 7
Ns = 218.0999
                take Ns as 218
Ip = 81.5387
Is = 2.6657
```

Chapter 4. Window Utilization & Cable Selection

```
% Approximately primary and secondary wire size are can be calculated
% as follows:
% Ku * Wa = Np*Awp + Ns*Aws
% Ku is fill factor
% Ku = s1*s2*s3*s4
% s1: wire isulation, conductor area/wire area
% s2: fill factor, wound area/usable window area
% s3: effective window, usable window area/window area
% s4: insulation factor, sable window area/usable window area + insulation
% Note that at 100Khz to minimize skin effect AWG26 is used
% for more details see below link
% http://coefs.uncc.edu/mnoras/files/2013/03/
% Transformer-and-Inductor-Design-Handbook_Chapter_4.pdf
% assume
% Np*Awp = 1.1 * Ns*Aws (to allow for losses)
% for AWG26 @100kHz
s1 = 0.79;
s2 = 0.61;
s3 = 0.6;
s4 = 1;
Ku = s1*s2*s3*s4;
D = 31.7;
                      % core dimensions in mm
E = 50.8;
                      % core dimensions in mm
Wa = 2 * D*E * 10^-2; % available core window area cm^2
Aws = Ku * Wa * 10^2 / (2.1 * Ns); % mm^2
Awp = 1.1 * Ns * Aws / Np;
         %requirred wire size for choosen current density
% mm^2
Awp\_req = Ip / J;
Aws_req = Is / J;
응응응응응
Due to 100Khz operation to minimize skin effect AWG26 cable size is used.
By regarding the window utilization factor Ku which is calculated as Ku = 0.2891,
allowable wire area
for primary side is Awp = 67.0429 [mm^2]
for secondary side is Aws = 2.0332 [mm^2]
From the choosen current density J = 2.5000 [A/mm^2], requirred wire size
for primary side Awp_req = 32.6155
for secondary side Aws_req = 1.0663
```

Chapter 5. Losses

Table of Contents

Cupper Losses

```
% cupper losses will be calculated
% length of one turn coil will be calculated as follow
% primary and secondary window area assumed equal
% radius of the coil, radius_acoil = C/2 + D/2; [mm]
% length of the coil, length_acoil = 2 * pi * radius_acoil
% where C, D see dimensions
% total coil length:
% for primary side Np * length_acoil * 10^-3
% for secondary side Ns * length_acoil * 10^-3
Icarry_cap_AWG26 = 0.361;
                               %[A] current rate for the AWG26 size cable
area\_AWG26 = 0.129;
                                % [mm^2]
ohm_AWG26 = 0.13386;
                                % [Ohm/m]
Icarry_cap_AWG26_J = J * area_AWG26; % [A] current rate by considering J value
C = 25.4;
           % dimensions of the core [mm]
D = 31.7;
               % dimensions of the core [mm]
radius_acoil = C/2 + D/2;
                          % [mm]
length_acoil = 2 * pi()* radius_acoil; % [mm]
% primary side loss calculation
Nstrand_pri = ceil(Ip / Icarry_cap_AWG26); % number of AWG26 size cable
tot_length_coil_pri = round(Np) * length_acoil * 10^-3; % [m]
res_coil_pri = ohm_AWG26 * tot_length_coil_pri / Nstrand_pri;
loss_coil_pri = Ip^2 * res_coil_pri;
                                           % [W]
% secondary side loss calculation
Nstrand_sec = ceil(Is / Icarry_cap_AWG26); % number of AWG26 size cable
tot_length_coil_sec = round(Ns) * length_acoil * 10^-3; % [m]
res_coil_sec = ohm_AWG26 * tot_length_coil_sec / Nstrand_sec;
                                                               % [ohm]
loss_coil_sec = Is^2 * res_coil_sec;
                                           % [W]
tot_loss_cupper = loss_coil_pri + loss_coil_sec;
                                                    용[W]
응응응응응
```

Cupper loss calculation of the primary and secondary side is given above. Total loss of the cupper is calculated as 9.5947