01:XXX:XXX - Homework n

Pranav Tikkawar

June 11, 2025

Contents

	Multiple Time Series			
	1.1	Introductory Theory		2
		1.1.1	Introduction	2
		1.1.2	Differentiation and Integration of Stochastic Processes	5

1 Multiple Time Series

1.1 Introductory Theory

1.1.1 Introduction

Considering a Probability space triplet: $\Omega, \mathscr{A}, \mathbb{P}$. We can consider Ω to be our sample space. The borel algebra \mathscr{A} to be the collection of historic events. And the Probability Measure \mathbb{P} . We are mainly concerned with the finite second moments of the Stochastic.

$$\mathbb{E}(x_i(s), x_k(t)) = \gamma_{i,k}(s, t) < \infty$$

We can arrange this into a Symmetric Matrix $\Gamma(s,t)$

Theorem 1. In order that $\gamma_{j,k}(s,t)$ may be continuous, j, k = 1, ..., p, it is necessary and sufficient that $\gamma_j(s,t)$ be continuous at s = t for j = 1, ..., p

Proof. pg 5
$$\Box$$

This equivalent to $\lim_{u\to 0} \mathbb{E}[(x_j(s+u)-x_j(s))^2]=0, j=1,\ldots,p$. This is called mean-square continuity.

1.1.2 Differentiation and Integration of Stochastic Processes

Definition (Convergence in the Mean-Square Sense). Let $x_{n=1}^{\infty}$, be a sequence of random variables, $\mathbb{E}|x_n|^2 < \infty$. Then the sequences converges to R.V x if

$$\lim_{n} \mathbb{E}[|x - x_n|^2] = ||x - x_n||^2 = 0$$

To denote this we write $x_n \to x$

Definition (Cauchy Condition).

$$\lim_{n,m} ||x_n - x_m|| = 0$$

Note if $\mathbb{E}[x\bar{y}]$ is a continuous function of x and y, so that $||x_n||$ and $||y_n||$ are finite and $x_n \to x$ and $y_n \to y$ then $\mathbb{E}(x_n\bar{y}_n) \to \mathbb{E}(x\bar{y})$

Definition (Mean-Square Differentiable). We say a the scalar process x(t) is MS Differentiable at t if $\delta^{-1}[x(t+\delta)-x(t)]$ has a unique limit as $\delta \to 0$ The cauchy criterion for MS Diff. is as follows:

$$\lim_{\delta_1, \delta_2 \to 0} ||\delta_1^{-1}[x(t+\delta_1) - x(t)] - \delta_2^{-1}[x(t+\delta_2) - x(t)]|| = 0$$

Then a nessesary and sufficient condition for the cauchy criterion definition is as follows:

$$\lim_{\delta_{1},\delta_{2}\to 0} \mathbb{E}[\delta_{1}^{-1}[x(t+\delta_{1})-x(t)] - \delta_{2}^{-1}[x(t+\delta_{2})-x(t)]] = \lim_{\delta_{1},\delta_{2}\to 0} \frac{\gamma(t+\delta_{1},t+\delta_{2}) - \gamma(t+\delta_{1},t) - \gamma(t,t+\delta_{2}) + \gamma(t,t)}{\delta_{1}\delta_{2}}$$

In turn it is sufficient that $\frac{\partial^2 \gamma(s,t)}{\partial s \partial t}$ exists and be continuous.

If $\dot{x}(t)$ is the MS derivative, this equation above has covariance function $\frac{\partial^2 \gamma(s,t)}{\partial s \partial t}$ and $\mathbb{E}[x(s)\dot{x}(t)] = \frac{\partial \gamma(s,t)}{\partial t}$

We want to represent this in the form of $\int_{-\infty}^{\infty} x(t)m(dt)$ where m is a σ -finite measure adjusted* so that the corresponding distribution function is continuous from the right.

Similarly we only consider mean-square continuous functions and functions of the form $\iint_{-\infty}^{\infty} \gamma(s,t) m(ds) m(dt) < \infty$

We can consider the integral $\int_a^b x(t)m(dt)$ by approximating sums $\sum_{i=1}^n x(t_i)m((s_{j-1},s_j))$ wherein the points s_j divide the interval [a,b] into intervals less than ϵ and $t_i \in (s_{j-1},s_j)$. We call this the integral of x(t) wrt m(t) over [a,b] This is called the Riemann-Stieltjes integral.

Bookmark pg 8