Universidade Federal do Ceará (UFC) Departamento de Engenharia de Teleinformática (DETI) Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI)

Filtragem Adaptativa - TIP 7188

Prof. Dr. Charles Casimiro Cavalcante Período: 2018.2

Lista de Exercícios No. 4: Método dos Mínimos Quadrados

- 1. O algoritmo RLS é utilizado para prever o sinal $x(n) = \cos\left(\frac{\pi n}{3}\right)$ usando um filtro FIR de segunda ordem com o primero coeficiente fixo em 1. Dado $\lambda = 0.98$, calcule o sinal de saída y(n) e os coeficientes do filtro nas primeiras 10 iterações. Note que a meta é minimizar $E\left\{y^2(n)\right\}$. Inicie com $\mathbf{w} = \begin{bmatrix} 1 & 0 \end{bmatrix}^T e \delta = 100$.
- **2.** Seja $\epsilon(n)$ que denota um erro de estimação a priori

$$\epsilon(n) = d(n) - \mathbf{w}^H(n-1)\mathbf{x}(n)$$

em que d(n) é a resposta desejada, $\mathbf{x}(n)$ é o vetor de entrada do filtro e $\mathbf{w}(n-1)$ é a estimativa anterior do vetor de coeficientes do filtro. Seja e(n) o erro de estimação a posteriori

$$e(n) = d(n) - \mathbf{w}^H(n)\mathbf{x}(n)$$

em que $\mathbf{w}(n)$ é a estimativa atual do vetor de coeficientes do filtro. Para dados complexos ambos $\epsilon(n)$ e $\epsilon(n)$ são de valores complexos. Mostre que o produto $\epsilon(n)e^*(n)$ é sempre de valor real.

- **3.** Seja um sinal x(n) composto de uma senóide em meio à ruído. Simule um preditor adaptativo de ordem 2 com um algoritmo RLS considerando SNR = 3 dB e SNR $\rightarrow \infty$. Variando o fator de esquecimento e/ou as condições iniciais verifique e comente sobre a ocorrência ou não de instabilidade numérica. Repita o procedimento como preditor de ordem 3.
- 4. Considere um sinal branco gaussiano de variância unitária transmitido por um canal de comunicação de função de transferência $H(z) = 1 + 1.6z^{-1}$. Para compensar este canal utiliza-se um equalizador dado por $W(z) = w_0 + w_1 z^{-1}$. (Problema da lista de exercícios no. 3).
 - (a) Calcule a adaptação do algoritmo usando o RLS.
 - (b) Obtenha as trajetórias sobre as curvas de nível, tendo condições iniciais nulas para os coeficientes do equalizador. Verifique qual a melhor inicialização do algoritmo RLS. Compare com os algoritmos LMS, LMS-Normalizado e Gauss-Newton.
 - (c) Obtenha também a evolução do erro quadrático médio para cada um dos algoritmos anteriores.
- 5. Seja a questão 6 da lista de exercícios anterior (Algoritmos Recursivos questão sobre Equalização Adaptativa). Implemente o RLS para a equalização do sistema considerado na letra (a) da mesma. Compare os resultados obtidos com o LMS. Verifique a velocidade de convergência para os casos de $\lambda = 0.9$, $\lambda = 0.99$ e $\lambda = 0.999$.