

<u>Home</u> Chemistry

Physical Kinetics

Essential Pre-Uni Chemistry M3.1

Essential Pre-Uni Chemistry M3.1

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in \mathbf{K}^{-1} .

On a plot of $\ln(k)$ against $\frac{1}{T}$, what is the y-intercept?

The following symbols may be useful: A, E_A, R, T, k

Give th	e units of the gradient of an Arrhenius plot.
	$ m Ndm^{-3}$
	K
	$ m Km^{-2}$
	$^{\circ}\mathrm{C}$
	adient Let of $\ln(h)$ expired $\frac{1}{2}$, what is the gradient?
On a p	lot of $\ln(k)$ against $rac{1}{T}$, what is the gradient?
The follo	wing symbols may be useful: A, E_A, R, T, k
	All materials on this site are licensed under the <u>Creative Commons license</u> , unless stated otherwise.

Units of gradient

Part B

Home Chemistry Phys

Physical Kinetics

Essential Pre-Uni Chemistry M3.2

Essential Pre-Uni Chemistry M3.2

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A Activation energy

If the gradient of an Arrhenius plot is $-1203\,\mathrm{K}$, find the activation energy. Use $R=8.3145\,\mathrm{J\,mol^{-1}\,K^{-1}}$.

Part B Activation energy II

If the gradient of an Arrhenius plot is $-4250\,\mathrm{K}$, find the activation energy. Give your answer to 3 significant figures.

Part C Gradient of Arrhenius plot

If a reaction has activation energy of $16.5 \, \mathrm{kJ} \, \mathrm{mol}^{-1}$, find the expected gradient of an Arrhenius plot.

Part D y-intercept

The pre-exponential factor, A, is found to have a value of $0.6\,\mathrm{s}^{-1}$ for a first-order reaction. Calculate the expected y-intercept of an Arrhenius plot.

<u>Home</u> Chemistry

Physical Kinetics Essential Pre-Uni Chemistry M3.3

Essential Pre-Uni Chemistry M3.3

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A for a first-order reaction Part A

The y-intercept of an Arrhenius plot for a first-order reaction is at -2.30. Find the pre-exponential factor, A, according to the Arrhenius model.

\boldsymbol{A} for a second-order reaction Part B

The y-intercept of an Arrhenius plot for a second-order reaction is at 3.20. Find the pre-exponential factor, A, according to the Arrhenius model.

<u>Home</u> Chemistry

Physical Kinetics

Essential Pre-Uni Chemistry M3.4

Essential Pre-Uni Chemistry M3.4

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Part A **Activation energy**

The rate constant, k, for a first-order reaction is found to be $0.0250\,\mathrm{s}^{-1}$ at $290\,\mathrm{K}$. If the pre-exponential factor is $26.0\,\mathrm{s}^{-1}$, find the activation energy.

Part B Pre-exponential factor A

The rate constant, k, for a second-order reaction is found to be $0.050\,\mathrm{dm^3\ mol^{-1}\ s^{-1}}$ at $300\,\mathrm{K}$. If the activation energy is $2.50 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$, find the value of the pre-exponential factor, A.

Home Chemistry

Physical

Kinetics Essential

Essential Pre-Uni Chemistry M3.5

Essential Pre-Uni Chemistry M3.5

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A first-order reaction has pre-exponential factor $8.0\,\mathrm{s^{-1}}$ and activation energy $4.8\,\mathrm{kJ\,mol^{-1}}$. Find the rate constant at:

Part A 290 K			
290 K			

 $\textcolor{red}{\textbf{Part B}} \qquad 900\,K$

 $900\,\mathrm{K}$

Home Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M3.6

Essential Pre-Uni Chemistry M3.6

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

If a reaction has activation energy $14.0\,\mathrm{kJ\,mol^{-1}}$, and a pre-exponential factor of $120\,\mathrm{s^{-1}}$, find the temperature at which the rate constant is equal to $2.00\,\mathrm{s^{-1}}$.

Home Chemistry

Physical

Kinetics Esse

Essential Pre-Uni Chemistry M3.7

Essential Pre-Uni Chemistry M3.7

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

A reaction is found to have a rate constant of $1.25\times10^{-3}~dm^6~mol^{-2}~s^{-1}$ at 400~K and $1.60\times10^{-3}~dm^6~mol^{-2}~s^{-1}$ at 500~K.

Part A E_A

Find the activation energy.

Part B A

Find the pre-exponential factor, A

Part C Order of the reaction

Give the overall order of reaction

<u>Home</u> Chemistry

Physical

Kinetics

Essential Pre-Uni Chemistry M3.8

Essential Pre-Uni Chemistry M3.8

$$k = Ae^{-E_A/RT}$$

An Arrhenius plot is a graph of $\ln(k)$ against $\frac{1}{T}$ in K^{-1} .

Figure 1
M3.8 Arrhenius Plot

Part A E_A

Using the graph above, find the activation energy. Give your answer to 2 significant figures

Part B A

Using the graph above, find the pre-exponential factor. Give your answer to $1\ \mathrm{significant}$ figure

<u>Home</u>

Physical

Kinetics Essential Pre-Uni Chemistry M4.1

Essential Pre-Uni Chemistry M4.1

The iodination of propanone, $C_3H_6O+I_2\longrightarrow C_3H_5OI+HI$, when catalysed in aqueous conditions, obeys the rate law:						
$\mathrm{rate} = k [\mathrm{C_3H_6O}][\mathrm{HCl}]$						
•						
Part A Catalyst						
Identify the catalyst in this reaction.						
Part B Type of catalyst						
Is the catalyst homogeneous or heterogeneous?						
homogeneous						
heterogeneous						
Part C Concentration of catalyst						
If the catalyst has an initial concentration of $0.020\mathrm{moldm^{-3}}$, give the concentration of the catalyst when the concentration of propanone has decreased to one quarter of its original value.						

<u>Home</u> Unknown page

Page not found

We're sorry, page not found: /questions/chem_22_m4_6