Exploratory Data Analysis of Insurance Claims Data

1. Introduction

Problem Statement: Global Insure faces significant financial losses due to
fraudulent insurance claims. The current manual inspection process is inefficient
and results in delayed fraud detection. The goal is to develop a data-driven model to
classify claims as fraudulent or legitimate early in the process, minimizing losses
and optimizing claims handling.

Business Objectives:

- Build a predictive model to classify insurance claims as fraudulent or legitimate.
- o Identify key features that indicate fraudulent behavior.
- o Enable early detection of fraudulent claims to reduce financial losses.
- Improve the efficiency of the claims processing workflow.

Data Description:

- The dataset contains 1000 rows and 40 columns.
- Key columns include:
 - fraud_reported (target variable)
 - Numerical features (e.g., age, total_claim_amount)
 - Categorical features (e.g., policy_state, incident_type)
 - Date/time features (e.g., incident_date)
- o The data dictionary (provided earlier) gives description of each column.

2. Exploratory Data Analysis (EDA)

• 2.1. Data Loading and Initial Inspection

- o The dataset was loaded into a Pandas DataFrame.
- o The first few rows were inspected to understand the data structure.
- Column data types were checked to identify numerical, categorical, and date columns.

 Missing values were checked. Column '_c39' has all missing values and can be dropped.

2.2. Target Variable Analysis (fraud_reported)

- The target variable fraud_reported is categorical, with values 'Y' (fraudulent) and 'N' (legitimate).
- o The distribution of the target variable shows an imbalance:
 - Legitimate claims (N): 753
 - Fraudulent claims (Y): 247
- The class imbalance suggests that the majority of claims are legitimate,
 which is typical in fraud detection scenarios.
- This imbalance needs to be addressed during model training to avoid biased predictions.
- [Include Chart: Count plot of fraud_reported]

• 2.3. Numerical Feature Analysis

- Distributions of numerical features were visualized using histograms and box plots.
- Relationships between numerical features and the target variable were explored using box plots.
- Key numerical features analysed: months_as_customer, age, policy_annual_premium, total_claim_amount, vehicle_claim, injury_claim, property_claim.

Observations:

- total_claim_amount, vehicle_claim, injury_claim, and property_claim show right-skewed distributions.
- There are potential outliers in policy_annual_premium and claim amount-related features.
- Some numerical features show differences in distribution between fraudulent and legitimate claims.

[Include Charts: Histograms and box plots for numerical features]

2.4. Categorical Feature Analysis

- Distributions of categorical features were visualized using count plots.
- Relationships between categorical features and the target variable were explored using stacked bar plots.
- Key categorical features analysed: policy_state, insured_sex, insured_education_level, insured_occupation, insured_hobbies, insured_relationship, incident_type, collision_type, incident_severity, authorities_contacted, property_damage, police_report_available.

Observations:

- Some categorical features have imbalanced distributions (e.g., insured_sex).
- Certain categories within features show higher proportions of fraudulent claims. For example, 'Theft' in incident_type has higher number of fraud cases.
- incident_severity appears to be a strong indicator of fraud.

[Include Charts: Count plots and stacked bar plots for categorical features]

• 2.5. Date/Time Feature Analysis

- Date features policy_bind_date and incident_date were converted to datetime objects.
- Incident month and year were extracted from incident date.
- Distributions of incidents by month and year were plotted.
- Observations:
 - The dataset contains incident dates for the year 2015.
 - There is some variation in the number of incidents across months.
- [Include Charts: Count plots for incident month and year]

2.6. Feature Interactions

 Interactions between age and total_claim_amount were explored using a scatter plot, with points colored by fraud_reported.

- Observations:
 - No clear pattern of fraud based on the interaction between age and total claim amount is observed.
- [Include Chart: Scatter plot of age vs. total_claim_amount by fraud_reported]

2.7. Summary of EDA Findings

- The target variable fraud_reported is imbalanced.
- Numerical features show varying distributions and potential outliers.
- Categorical features exhibit different distributions and relationships with fraud.
- Date features provide insights into incident timelines.
- o Feature interactions may reveal more complex patterns.
- Further data preprocessing and feature engineering are necessary before building a predictive model.

4. Next Steps

- Data preprocessing:
 - Handle missing values and outliers.

Handled missing values by imputing with mode and outliers by capping

- Encode categorical variables.
 - Created dummies of categorical variables
- o Scale numerical features.

Scalar function is used to standardize the numerical features

- Address class imbalance.
 - Performed Random Oversampling to address class imbalance
- Fixed datatypes
- Feature engineering:

- o Create new features (e.g., ratios, aggregations).
 - Created new features like claim ratio, claim_per_age by other variables
- o Identified unique values and grouped wherever possible
- o Select relevant features.

Selected relevant features by dropping high correlated to avoid multicollinearity – We used RFECV, High P value and VIF techniques for selecting the features

Model building:

- Train and evaluate classification models by Logistic Regression and Random Forest
- o Tune model parameters.
- Model interpretation:
 - o Analyse feature importance.
- Understand model predictions. Predictions on validation data