Date: Tue, 9/18/18

Lecture # 03: Matrix Egns & Solution Sets

The Matrix Eas Av-is

The matrix $\epsilon g n A \vec{x} = \vec{b}$

Def IF A is an mxn matrix
$$[\vec{a}, \vec{a}_z, ... \vec{a}_n]$$

8 $\vec{x} = \begin{bmatrix} x_i \\ x_z \end{bmatrix} \in \mathbb{R}^n$, then

$$A\vec{x} = X_1 \vec{\alpha}_1 + X_2 \vec{\alpha}_2 + ... + X_n \vec{\alpha}_n$$

$$= X_1 \begin{bmatrix} \alpha_{11} \\ \vdots \\ \alpha_{m_1} \end{bmatrix} + X_2 \begin{bmatrix} \alpha_{12} \\ \vdots \\ \alpha_{m_2} \end{bmatrix} + ... + X_n \begin{bmatrix} \alpha_{1n} \\ \vdots \\ \alpha_{m_n} \end{bmatrix} \in \mathbb{R}^m$$

Notice:
$$\hat{\mathbb{M}} \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix} \begin{bmatrix} \hat{\mathbf{M}} & = \\ & \hat{\mathbf{M}} \end{bmatrix}$$

$$\begin{array}{c|c}
E_{x} \cdot \int \begin{bmatrix} a & 1 \\ 0 & -1 \\ 4 & 3 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} a \\ 0 \\ 4 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -1 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} ax_1 + x_2 \\ 0x_1 - x_2 \\ 4x_1 + 3x_2 \\ x_1 + 0x_2 \end{bmatrix}$$

Def A <u>matrix</u> equation has the form

$$\begin{bmatrix} \vec{a}_1, \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

Une nown Known

Shorthand: $A\vec{x} = \vec{b}$

Pate: Tue. 9/18/18

Lecture #03: Matrix Egns a Solution Sets

The Following have the same soln. set:

(i) Ax=6

(ii) x, \(\vec{a}_1 + ... + x_n \vec{a}_n = \vec{b}\)
(iii) [\(\vec{a}_1, \vec{a}_n \vec{b}\)

We find soin using REF or BREF & back sub.

Consequence: $A\vec{x}=\vec{b}$ has a soln if a only if (iff) \vec{b} is a linear combination of the cols of A, i.e.

be Span & columns of A3

Thm Let A be an mxn matrix.

The following are equivalent (TFAE)

- a) For any berk, Ax = b has a soln.
- b) Every be IR is a linear combo of cols. of A
- C) Span ? Cols of A3 = RM

d) A has a pivot Position in every row

Lecture #03: Matrix Egns & Solution Sets Pate: Tue, 9/18/18

$$\begin{bmatrix}
E_{X} \\
0 & 1 & 0 \\
3 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix}$$
has a soln $\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$

No matter what we pick for $\begin{bmatrix}
b_1 \\
b_2 \\
x_3
\end{bmatrix}$

Check:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 3 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{\text{Pivot}} \xrightarrow{\text{Position}} \xrightarrow{\text{in every}} \xrightarrow{\text{Row}}$$

Think of matrices as $\frac{1}{1}$ transform $\frac{1}{2}$ that $\frac{1}{2}$ transform vectors into other vectors: $\vec{V} \rightarrow A\vec{v}$

The transformations are linear:
$$A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$$

$$A(c\vec{v}) = c(A\vec{v}), \text{ any } c \in \mathbb{R}$$

Lecture # 03: Matrix Egns & Solution Sets

Pate: Tue 9/18/18

Solution sets of Linear Systems

Def: A linear system is nomogeneous if it can be written as $A \vec{x} = \hat{\sigma}$

$$\begin{array}{cccc}
E_{X} & 3X_1 + \lambda X_2 = 0 \\
& -X_1 - 3X_2 = 0
\end{array}$$

$$\begin{bmatrix}
3 & \lambda \\
-1 & -1
\end{bmatrix}
\begin{bmatrix}
X_1 \\
X_2
\end{bmatrix} = \begin{bmatrix}
0 \\
0
\end{bmatrix}$$

 $\frac{1}{1}$ Every homogeneous linear system $A\vec{x} = \vec{0}$ has @ least 1 soln.

$$\frac{PF}{\vec{x}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \vec{O}$$
 is a soln \Box

We call of the trivial solution.

Question: when do nontrivial solus exist?

Answer: $A\vec{x}=\vec{o}$ has a nontrivial soln (= nonzero) solns iff the linear system has a

free Variable

Lecture #03: Matrix Egns a Solution Sets

Date: Tue, 9/18/18 $\begin{bmatrix} x \\ 6 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 3 & -1 & 2 & | & 0 \\ 6 & 1 & -1 & | & 0 \end{bmatrix} \xrightarrow{\Rightarrow} \begin{bmatrix} 3 & -1 & 2 & 0 \\ 0 & 3 & -5 & 0 \end{bmatrix} \xrightarrow{\Rightarrow} 3x_1 - x_2 + 2x_3 = 0$

 $3x_{2}-5t=0 \implies x_{2}=\frac{2}{3}t$ $3x_{1}-\frac{2}{3}t+2t=0 \implies x_{1}=\frac{1}{4}t$ includes $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 07 \\ 07 \\ 6 = 0 \end{bmatrix}$ (choose) and ∞ many other soins

Conclusion: Soln set consists of vectors of the form $t \left[\frac{1}{9}\right]$, any t.

Soin set = $5pan\left\{\begin{bmatrix} \frac{1}{4} \\ \frac{5}{3} \end{bmatrix}\right\}$ which contains non thivial soins i.e.

More generally: The soln set of Ax = 0 is always span 20, ... vx3

for some set of vectors $\vec{v}_{ij} ... \vec{J}_{ie}$. (If o is the only soln then 501n 5et = span 203 = 203) Lecture # 03: Matrix Egns a Solution Sets

Nonhomogeneous Systems

Thm Suppose $A\vec{x} = \vec{b}$ is Consistent (i.e. has ≥ 1 soln) If \vec{X}_p is the only soln, then the soln set has the form $\vec{X}_p + \vec{X}_h$, where \vec{X}_n ranges over all solns to $A\vec{x} = \vec{o}$.

Check:
$$A(x_0 + x_h) = Ax_p + Ax_h = \overline{b}$$

so $\overline{x}_p + \overline{x}_h$ is a soln.

Remarks:

1. If $A\vec{x}=0$ has exactly 1 soin, so does $A\vec{x}=\vec{b}$ 2. If $A\vec{x}=\vec{o}$ has ∞ many soins so does $A\vec{x}=\vec{b}$

3. If
$$A\vec{x} = \vec{b}$$
 is inconsistent, theorem doesn't apply

$$\begin{bmatrix} x \\ 6 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -1 & 2 & 2 \\ 6 & 1 & -1 & 7 \end{bmatrix} \xrightarrow{REF} \begin{bmatrix} 3 & -1 & 2 & 2 \\ 0 & 3 & -5 & 3 \end{bmatrix}$$

$$X_3 = t$$

$$3x_a - 5t = 3 \implies X_z = \frac{5}{3}t + 1$$

$$3x_1 - (\frac{5}{3}t + 1) + 2t = 2 \implies X_1 = -\frac{1}{4}t + 1$$

$$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = t \begin{bmatrix} -\frac{1}{4} \\ \frac{5}{3} \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\Rightarrow \infty$$
 many solns

Parametric Form