Importing Necessary Libraries

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

1. Read the dataset

dataset = pd.read_csv("/content/titanic.csv")
dataset.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	F
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2

Next steps: G

4

Generate code with dataset

2. Observe the shape of dataset

dataset.shape

→ (891, 12)

3. Observe the statistics of the dataset

dataset.describe()

} ▼		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fi
	count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.0000
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.2042
	std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.6934
	min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.0000
	25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.9104
	50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.4542
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.0000
	mav ∢	<u> </u>	1 000000	3 000000	80 000000	8 000000	6 000000	512 320°

4.0bserve the number of Non-NULL and datatype of each feature of the dataset

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data columns (total 12 columns):						
#	Column	Non-Null Count	Dtype			
0	PassengerId	891 non-null	int64			
1	Survived	891 non-null	int64			
2	Pclass	891 non-null	int64			
3	Name	891 non-null	object			
4	Sex	891 non-null	object			
5	Age	714 non-null	float64			
6	SibSp	891 non-null	int64			
7	Parch	891 non-null	int64			
8	Ticket	891 non-null	object			
9	Fare	891 non-null	float64			
10	Cabin	204 non-null	object			
11	Embarked	889 non-null	object			
<pre>dtypes: float64(2), int64(5), object(5)</pre>						
memory usage: 83.7+ KB						

```
# 5. Bifurcate the categorical and numerical features of the dataset
# Separate the features into categorical and numerical
categorical_features = [column for column in dataset.columns if dataset[column].dtype == 'object']
numerical_features = [column for column in dataset.columns if dataset[column].dtype == 'int64' or dataset[column].dtype == 'float64
# Print the results
print("Categorical features:", categorical_features)
print("Numerical features:", numerical_features)
Categorical features: ['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked']
Numerical features: ['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']
# 6. Observe the number of null (N/A) values for each feature
dataset.isnull().sum()
→ PassengerId
     Survived
     Pclass
                      0
     Name
                      a
     Sex
                      0
     Age
                    177
     SibSp
                      0
     Parch
                      0
     Ticket
                      0
     Fare
                      a
     Cabin
                    687
     Embarked
                      2
     dtype: int64
# 7. Observe the percentage of null (N/A) values for each feature
null_percentage = round(dataset.isnull().sum() * (100 / dataset.shape[0]),2)
null_percentage
→ PassengerId
                     0.00
     Survived
                     0.00
     Pclass
                     0.00
     Name
                     0.00
                     0.00
     Sex
                    19.87
     Age
     SibSp
                     0.00
     Parch
                     0.00
     Ticket
                     0.00
                     0.00
     Fare
     Cabin
                    77.10
     Embarked
                     0.22
     dtype: float64
# 8. Drop the "Ticket" and "Name" features from the dataset
dataset = dataset.drop(['Ticket', 'Name'], axis=1)
dataset.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch',
             'Fare', 'Cabin', 'Embarked'],
           dtype='object')
# 9. Drop the feature corresponding to the highest missing values
# Identify the feature with the highest percentage of missing values
max_null_feature = null_percentage.idxmax()
max_null_percentage = null_percentage.max()
print(f"The feature with the highest percentage of missing values is '{max null feature}' with {max null percentage:.2f}% missing v
# Drop the feature with the highest percentage of missing values
dataset = dataset.drop(max_null_feature, axis=1)
dataset.columns
→ The feature with the highest percentage of missing values is 'Cabin' with 77.10% missing values.
     Index(['PassengerId', 'Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch',
             'Fare', 'Embarked'],
           dtype='object')
```

dataset.columns

10. Drop the observations with missing values in the "Embarked" feature

dataset = dataset.dropna(subset=['Embarked'] , axis=0)

Checking the NULL Values after dropping the Observations

dataset.isnull().sum()

∑ *	PassengerId	0
	Survived	0
	Pclass	0
	Sex	0
	Age	177
	SibSp	0
	Parch	0
	Fare	0
	Embarked	0
	dtype: int64	

11. Fill the missing values of the "Age" feature with mean value

```
dataset['Age'] = dataset['Age'].fillna(dataset['Age'].mean())
```

Checking the NULL Values after dropping the Observations

dataset.isnull().sum()

Đ	PassengerId	0
	Survived	0
	Pclass	0
	Sex	0
	Age	0
	SibSp	0
	Parch	0
	Fare	0
	Embarked	0
	dtvpe: int64	

12. Observe the boxplot of the "Age" feature

```
plt.boxplot(dataset['Age'])
plt.show()
```


 $\ensuremath{\text{\#}}$ 13. Nomalize the features with the numerical values using MinMaxScaler

```
feature_to_be_scaled = numerical_features
```

Importing the Scaler

from sklearn.preprocessing import MinMaxScaler

Creating the Scaler

scaler = MinMaxScaler()

Scaling the features

dataset[feature_to_be_scaled] = scaler.fit_transform(dataset[feature_to_be_scaled])

Showing the Result

dataset.head()

Visulizing the Normalized Data

Generate code with dataset

dataset.describe()

Next steps:

View recommended plots