기계학습을 위한 데이터 엔지니어링 - 기말과제

• 아주대학원 지능형 소프트웨어 공학과 202533163 박주형

데이터 결측치 탐지 및 제거

- 결측치 탐지 항목
 - Null Count: 데이터에 Null 값이 있는지 확인합니다.
 - Non-Numeric Count: 데이터에 숫자가 아닌 값이 있는지 확인합니다.
 - Negative Value Count: 데이터에 음수가 있는지 확인합니다.

Column Name	Null Count	Non-Numeric Count	Negative Value Count
fixed acidity	0	0	0
volatile acidity	0	0	0
citric acid	0	0	0
residual sugar	0	0	0
chlorides	0	0	0
free sulfur dioxide	0	0	0
total sulfur dioxide	0	0	0
density	0	0	0
рН	0	0	0
sulphates	0	0	0
alcohol	0	0	0
quality	0	0	0

• 결측치 탐지 결과 해당하는 데이터가 없기 때문에 제거하지 않습니다.

코드는 training.ipynb 참조

필드 선정

일반적인 접근

- 목표 데이터 quality는 맛과 관련이 있으므로 맛과 관련이 있는 feature 선정
 - o volatile acidity: 휘발성 산도: 와인에 함유된 아세트산의 양. 너무 높으면 불쾌한 식초 맛이 날 수 있음
 - o citric acid: 구연산: 소량으로 발견되며, 와인에 풍미를 더할 수 있음

o residual sugar: 잔여 당분: 발효가 멈춘 후 남은 설탕의 양으로 1g/L 미만의 와인은 드물며 45g/L 이상의 와인은 단맛으로 간주함

- o total sulfur dioxide: 총 이산화황: 저농도에서는 대부분 맛이 나지 않으나 50ppm 이상의 농도에서 맛에서 뚜렷하게 나타남
- o sulphates: 황산염: 이산화황 농도에 기여할 수 있는 와인 첨가제. 항균 및 항산화제로 작용

알고리즘 접근

- 각 column과 quality간의 상관관계를 분석합니다.
- 여러 필드의 복합적인 관계를 파악하지 못하기에 참고용으로 사용합니다.

- 하위 6항목 선정
 - fixed acidity
 - о pH
 - residual sugar
 - sulphates
 - citric acid
 - free sulfur dioxide
- 상위 5항목 선정
 - alchol
 - o density
 - chlorides
 - volatile acidity
 - o sulphates
 - total sulfur dioxide

최종 필드 선정

- 상관관계 알고리즘을 통한 상위 5항목과 일반적인 맛과 관련있는 항목을 합하여 선정합니다.
- 제거할 항목
 - fixed acidity
 - o pH
 - free sulfur dioxide

코드는 training.ipynb 참조

이상치 탐지

• 데이터의 각 column의 분포를 확인합니다.

• 데이터 중에 데이터의 이상치를 판별합니다.

- o citric acid나 residual suger, chlorides, density가 유난히 높은 수치를 보이는 데이터가 존재합니다.
- 하지만 이 데이터가 특이한 현상을 설명하는 단초가 될 수 있습니다.
- o 해당하는 column중에서 정규분포 3%를 벗어나는 데이터 즉 z-score가 3 이상인 데이터 중에서 quality 값이 5∼7값인 데이터를 제거합니다.
- 해당하는 146개의 데이터를 제거합니다.
 - 이 이상치 제거한 결과

o chlorides 값이 아직 특이한 형상을 보이는데, 중요한 단서가 될 수 있어 더이상 이상치를 제거하지 않습니다.

코드는 training.ipynb 참조

알고리즘 선정

- automl 즉 pycaret을 통해 최적의 알고리즘을 검색합니다.
- 데이터는 quality를 제외하고 minmax 통해 normalize 합니다.

Model	F1	Карра	MCC	TT (Sec)
rf	0.6084	0.4237	0.4302	0.166
et	0.6057	0.4195	0.4258	0.112
lightgbm	0.6013	0.4146	0.4179	1.891
catboost	0.5962	0.4077	0.4117	4.248
gbc	0.5355	0.3133	0.3207	0.559
dt	0.5384	0.3312	0.3317	0.013
knn	0.4802	0.2420	0.2439	0.807

- 최종적으로 Random Forest 알고리즘으로 선정합니다.
- 마지막으로 Deep Learning 방식도 비교하여 선정합니다.

코드는 automl/automl.py 참조

파라미터 선정

Random Forest

• MIFlow를 통해 뛰어난 Random Forest, Deep Learning의 파라미터를 획득합니다.

파라미터	설명	예시 값
n_estimators	생성할 트리의 수	50, 100, 200

파라미터	설명	예시 값
max_depth	개별 트리의 최대 깊이	None, 10, 20
min_samples_split	노드를 분할하기 위한 최소 샘플 수	2, 5
min_samples_leaf	리프 노드가 되기 위한 최소 샘플 수.	1, 2, 4
max_features	각 트리의 분할 시 고려할 최대 특성 수	'sqrt','log2'
bootstrap	부트스트랩 샘플링 여부 (샘플을 중복 허용 해 추출)	True, False
criterion	분할 품질을 측정하는 기준.	'squared_error', 'absolute_error'

• 선정 결과

• 파라미터

0

Name	Value
bootstrap	False
criterion	squared_error
max_depth	20
max_features	log2
min_samples_leaf	1
min_samples_split	2
n_estimators	200

코드는 mlflow/randomforest.py 참조

Deep Learning

• Optimizer, Activation, Loss_fn 파라미터 조회

Name Value

activation tanh

dropout_rate 0.3

kernel_initializer glorot_uniform

learning_rate 0.001

loss_fn mse

optimizer adam

- o data 분포가 tanh와 유사해서 그런지 activation이 tanh가 유리한 것을 확인했습니다.
- 레이어 조회
 - ㅇ 1차 레이어 판별

ㅇ 2차 레이어 판별

ㅇ 3차 레이어 판별

실험 시도한 hidden_units_list 단계

1차 [[8,8,8,8], [8,8], [64], [16,16], [32,32], [32,32,32], [64,32], 시도 [64,64], [64,32,16,8], [128,64,32]]

2차 시도 [[8], [16], [32], [64], [128], [64,8], [64,32]]

3차 시도 [[64], [128]]

최종 선택 ^[64]

코드는 "mlflow/Keras Deeplearning" 폴더 참고

결과

RandomForest

MAE: 0.7620MSE: 0.9113RMSE: 0.9546

• R²: -0.1012

• Confusion Matrix

ROC Curve

Deep Learning

MAE: 0.5778MSE: 0.5418

RMSE: 0.7360
R²: 0.3580
loss: 0.5439
val_loss: 0.6014
Confusion Matrix

ROC Curve

0

코드는 training.ipynb, "mlflow/Keras Deeplearning/keas_dl_validation.py" 참고

고찰

- RandomForest
 - 데이터 전처리 방법이나 모델 input, output 규격에 대해서 다양한 시도를 더 해야되겠다고 생각이 듭니다.
 - 특히 softmax 방법도 시도해보면 좋겠다고 생각이 듭니다.
- DeepLearning
 - mlflow로 데이터 학습 성능을 측정하는데 acc, loss를 검토하지 못 한점이 크게 작용한 것으로 생각이 됩니다.
 - o feature 선정 방법도 다양한 방식을 시도하는 것도 좋다 생각이 듭니다.
 - o softmax뿐만 아니라 여러 파리미터로 테스트해보면 어떨까 생각이 듭니다.

최종적으로는 RandomForest방법이 더 뛰어나기는 했으나, DeepLearning 방법으로도 충분한 성능이 나오게 시도해보고 싶습니다.

향후 더 다양한 방법으로 여러 시도를 해서 모델 최적화를 위한 기술을 익혀야 되겠습니다. 감사합니다.