Семинар 16

Ряд Лорана

Рядом Лорана называется выражение вида

$$S(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n = \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{z - z_0} + a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \dots \stackrel{\text{def}}{=} \underbrace{\sum_{n=-\infty}^{-1} a_n (z - z_0)^n}_{S_{-}(z)} + \underbrace{\sum_{n=0}^{+\infty} a_n (z - z_0)^n}_{S_{+}(z)} = \underbrace{\sum_{k=1}^{+\infty} \frac{a_{-k}}{(z - z_0)^k}}_{S_{-}(z)} + \underbrace{\sum_{n=0}^{+\infty} a_n (z - z_0)^n}_{S_{+}(z)}.$$

Здесь n пробегает все целые значения. Для отрицательных n мы сделали замену: -n = k. По определению, будем считать, что ряд Лорана S(z) сходится тогда и только тогда, когда сходятся оба ряда: $S_+(z)$ (правильная часть ряда Лорана) и $S_-(z)$ (главная часть ряда Лорана).

Правильная часть $S_+(z)$ представляет собой степенной ряд, который сходится в некотором круге $|z-z_0| < R_2$.

Главная часть $S_{-}(z) = \sum_{k=1}^{+\infty} \frac{a_{-k}}{(z-z_0)^k} = \sum_{k=1}^{+\infty} a_{-k} t^k$ представляет собой степенной ряд по переменной $t = \frac{1}{z-z_0}$, который сходится при |t| < r,

T. e.
$$\left| \frac{1}{z - z_0} \right| < r$$
, T. e. $|z - z_0| > \frac{1}{r} = R_1$.

Тогда ряд Лорана сходится в общей области сходимости рядов $S_+(z)$ и $S_-(z)$ — в *кольце* $R_1 < |z-z_0| < R_2$, включая, быть может, все или некоторые граничные точки этого кольца.

В зависимости от значений R_1 и R_2 область сходимости ряда Лорана может вырождаться в пустое множество (при $R_1 > R_2$), внешность круга (при $R_1 < R_2 = +\infty$) и др.

Т. Сумма ряда Лорана S(z) — однозначная аналитическая функция в кольце $R_1 < |z-z_0| < R_2$.

Т. (**Лорана**). Однозначную аналитическую в кольце $R_1 < |z-z_0| < R_2$ функцию можно в этом кольце единственным образом разложить в ряд Лорана вида $\sum_{n=-\infty}^{+\infty} a_n (z-z_0)^n$. Частным случаем ряда Лорана является степенной ряд (когда $S_-(z) \equiv 0$).

Пример 1 (самостоятельно). Найти область сходимости ряда $\sum_{n=-\infty}^{+\infty} z^n$.

$$\sum_{n=-\infty}^{+\infty} z^n = \sum_{\substack{n=-\infty\\S_-(z)}}^{-1} z^n + \sum_{\substack{n=0\\S_+(z)}}^{+\infty} z^n.$$

 $S_{+}(z) = \sum_{n=0}^{+\infty} z^{n}$ — степенной ряд для функции $\frac{1}{1-z}$, который сходится в круге |z| < 1 (геометрическая прогрессия со знаменателем z).

 $S_{-}(z) = \sum_{n=-\infty}^{-1} z^n = \sum_{k=1}^{+\infty} \left(\frac{1}{z}\right)^n$ — аналогичный степенной ряд (геометрическая прогрессия со знаменателем 1/z), который сходится при $\left|\frac{1}{z}\right| < 1$, т. е. при |z| > 1.

Значит, оба ряда, $S_+(z)$ и $S_-(z)$, могут сходиться одновременно только на границе своих областей сходимости — при |z|=1. Но при |z|=1 общие члены рядов z^n и $\left(\frac{1}{z}\right)^n$ не стре-

мятся к нулю, т. к. $|z^n| = |z|^n = 1$ и $\left| \left(\frac{1}{z} \right)^n \right| = \frac{1}{|z|^n} = 1$, поэтому не выполнено необходимое условие сходимости, и оба ряда расходятся.

Таким образом, ряд Лорана $\sum_{n=-\infty}^{+\infty} z^n$ не сходится ни в одной точке комплексной плоско-

Ответ: Ø.

Пример 2 (вопрос к общему зачёту № 25, самостоятельно). Разложить в ряд Лорана функцию $f(z) = \frac{2z+1}{z^2+z-2}$ в области:

a)
$$|z| < 1$$
, б) $1 < |z| < 2$, в) $|z| > 2$, г) $0 < |z - 1| < 3$, д) $0 < |z + 2| < 3$

a)
$$|z| < 1$$
, б) $1 < |z| < 2$, в) $|z| > 2$, г) $0 < |z - 1| < 3$, д) $0 < |z + 2| < 3$.

$$f(z) = \frac{2z+1}{(z-1)(z+2)} = \frac{1}{z-1} + \frac{1}{z+2}.$$

Функция имеет две особые точки: z = 1 и z = -2.

а) В круге |z| < 1 (в окрестности точки z = 0) функция f(z) является аналитической, поэтому она раскладывается в степенной ряд (ряд Тейлора) вида $\sum_{n=0}^{+\infty} a_n z^n$, который является частным случаем ряда

$$f(z) = \frac{1}{z-1} + \frac{1}{z+2}.$$

$$\frac{1}{z-1} = -\frac{1}{1-z} = -\sum_{n=0}^{+\infty} z^n, \quad |z| < 1.$$

$$\frac{1}{z+2} = \frac{1}{2} \cdot \frac{1}{1 - \left(-\frac{z}{2}\right)} = \frac{1}{2} \sum_{n=0}^{+\infty} \left(-\frac{z}{2}\right)^n = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{n+1}} z^n, \qquad |z| < 2.$$

$$f(z) = -\sum_{n=0}^{+\infty} z^n + \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{n+1}} z^n.$$

Первый ряд сходится при |z| < 1, второй — при |z| < 2. В круге |z| < 1 оба ряда сходятся, и их можно суммировать почленно:

$$f(z) = \sum_{n=0}^{+\infty} \left(\frac{(-1)^n}{2^{n+1}} - 1 \right) z^n$$
, $|z| < 1$.

Это и есть искомый ряд Лорана в области |z| < 1. Главная часть у него отсутствует, т. к. он в данном случае является степенным рядом.

б) В кольце 1 < |z| < 2 функция f(z) является аналитической, поэтому она раскладывается в ряд Лорана вида $\sum_{n=-\infty}^{+\infty} a_n z^n$.

$$f(z) = \frac{1}{z - 1} + \frac{1}{z + 2}.$$

Выше мы получили разложение для $\frac{1}{z-1}$:

$$\frac{1}{z-1} = -\sum_{n=0}^{+\infty} z^n, \qquad |z| < 1.$$

Такое разложение нам не подходит, поскольку этот

ряд сходится при |z| < 1, а нам нужен ряд, сходящийся при |z| > 1.

Поэтому сделаем замену: $z = \frac{1}{t}$. Тогда

$$\frac{1}{z-1} = \frac{1}{\frac{1}{t}-1} = \frac{t}{1-t} = t \sum_{n=0}^{+\infty} t^n = \sum_{n=0}^{+\infty} t^{n+1} = \sum_{k=1}^{+\infty} t^k, \qquad |t| < 1.$$

Полученный ряд сходится при |t| < 1, т. е. при |z| > 1, как нам и нужно. Вернёмся к переменной z:

$$\frac{1}{z-1} = \sum_{k=1}^{+\infty} \frac{1}{z^k}, \qquad |z| > 1.$$

Для функции $\frac{1}{z+2}$ можно использовать полученное выше разложение, справедливое при |z| < 2:

$$\frac{1}{z+2} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{n+1}} z^n, \qquad |z| < 2.$$

Тогда при 1 < |z| < 2:

$$f(z) = \sum_{k=1}^{+\infty} \frac{1}{z^k} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{n+1}} z^n , \qquad 1 < |z| < 2 .$$

Это и есть искомый ряд Лорана.

в) Область |z| > 2 является кольцом с бесконечным внешним радиусом. Область вида |z| > R ещё называют окрестностью бесконечно удалённой точки $z = \infty$. В данном кольце функция f(z) является аналитической, поэтому она может быть разложена в ряд Лорана вида $\sum_{n=-\infty}^{+\infty} a_n z^n$.

$$f(z) = \frac{1}{z - 1} + \frac{1}{z + 2}.$$

Для функции $\frac{1}{z-1}$ можно использовать полученное выше разложение, справедливое при |z| > 1:

$$\frac{1}{z-1} = \sum_{k=1}^{+\infty} \frac{1}{z^k}, \qquad |z| > 1.$$

Для функции $\frac{1}{z+2}$ получим аналогичное разложение, сделав замену $z = \frac{1}{t}$:

$$\frac{1}{z+2} = \frac{1}{\frac{1}{t}+2} = \frac{t}{1+2t} = \frac{t}{1-(-2t)} = t \sum_{n=0}^{+\infty} (-2t)^n = \sum_{n=0}^{+\infty} (-2)^n t^{n+1} = \sum_{k=1}^{+\infty} (-2)^{k-1} t^k = \sum_{k=1}^{+\infty} \frac{(-2)^{k-1}}{z^k}.$$

Данное разложение справедливо при |-2t| < 1, т.е. $|t| < \frac{1}{2}$, т.е. |z| > 2. Тогда при |z| > 2 получаем:

$$f(z) = \sum_{k=1}^{+\infty} \frac{1}{z^k} + \sum_{k=1}^{+\infty} \frac{(-2)^{k-1}}{z^k} = \underbrace{\sum_{k=1}^{+\infty} \frac{1 + (-2)^{k-1}}{z^k}}_{\text{PROPUGE WARFEY}}, \qquad |z| > 2.$$

Это и есть искомый ряд Лорана. У него отсутствует правильная часть.

г) В кольце 0 < |z - 1| < 3 (с нулевым внутренним радиусом) — в проколотой окрестности особой точки z = 1 — функция f(z) является аналитической, поэтому она раскладывается в ряд Лорана вида

$$f(z) = \frac{1}{z - 1} + \frac{1}{z + 2}.$$

$$\frac{1}{z+2} = \frac{1}{t+3} = \frac{1}{3} \cdot \frac{1}{1 - \left(-\frac{t}{3}\right)} = \frac{1}{3} \sum_{n=0}^{+\infty} \left(-\frac{t}{3}\right)^n =$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{3^{n+1}} t^n = \sum_{n=0}^{+\infty} \frac{(-1)^n}{3^{n+1}} (z-1)^n.$$

Это разложение справедливо при |t| < 3, т. е. при |z - 1| < 3.

Заметим, что функция $\frac{1}{z-1}$ уже является своим рядом Лорана вида $\sum_{n=-\infty}^{+\infty} a_n (z-1)^n$, состоящим из одного слагаемого $\frac{1}{(z-1)^1}$, поэтому её дальше раскладывать не нужно.

$$f(z) = \underbrace{\frac{1}{z-1}}_{\text{главная часть}} + \underbrace{\sum_{n=0}^{+\infty} \frac{(-1)^n}{3^{n+1}} (z-1)^n}_{\text{правильная часть}}, \quad 0 < |z-1| < 3.$$

Это и есть искомый ряд Лорана. Его главная часть состоит только из одного слагаемого.

д) В кольце 0 < |z + 2| < 3 (в проколотой окрестности особой точки z=-2) функция f(z) является аналитической, поэтому она раскладывается в ряд Лорана вида $\sum_{n=-\infty}^{+\infty} a_n (z+2)^n$. $f(z) = \frac{1}{z-1} + \frac{1}{z+2}.$ Слелав замену z+2=t, получаем:

$$f(z) = \frac{1}{z-1} + \frac{1}{z+2}$$

$$\frac{1}{z-1} = \frac{1}{t-3} = -\frac{1}{3} \cdot \frac{1}{1-\frac{t}{3}} = -\frac{1}{3} \sum_{n=0}^{+\infty} \left(\frac{t}{3}\right)^n =$$
$$= -\sum_{n=0}^{+\infty} \frac{t^n}{3^{n+1}} = -\sum_{n=0}^{+\infty} \frac{(z+2)^n}{3^{n+1}}.$$

Это разложение справедливо при |t| < 3, т.е. при |z+2| < 3. Тогда

$$f(z) = \underbrace{\frac{1}{z+2}}_{\text{главная часть}} \underbrace{-\sum_{n=0}^{+\infty} \frac{(z+2)^n}{3^{n+1}}}_{\text{правильная часть}}, \qquad 0 < |z+2| < 3.$$

Это и есть искомое разложение в ряд Лорана. Его главная часть состоит только из одного слагаемого.

Ответ:
$$\frac{2z+1}{z^2+z-2} = \sum_{n=0}^{+\infty} \left(\frac{(-1)^n}{2^{n+1}} - 1\right) z^n$$
 при $|z| < 1$; $\frac{2z+1}{z^2+z-2} = \sum_{k=1}^{+\infty} \frac{1}{z^k} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{n+1}} z^n$ при $1 < |z| < 2$; $\frac{2z+1}{z^2+z-2} = \sum_{k=1}^{+\infty} \frac{1+(-2)^{k-1}}{z^k}$ при $|z| > 2$; $\frac{2z+1}{z^2+z-2} = \frac{1}{z-1} + \sum_{n=0}^{+\infty} \frac{(-1)^n}{3^{n+1}} (z-1)^n$ при $0 < |z-1| < 3$; $\frac{2z+1}{z^2+z-2} = \frac{1}{z+2} - \sum_{n=0}^{+\infty} \frac{(z+2)^n}{3^{n+1}}$ при $0 < |z+2| < 3$.

Таким образом, мы убеждаемся, что одна и та же функция в различных областях имеет различные разложения в ряд Лорана.

ДЗ 16. КРАМ гл. II № 3.3–3.8 (задачи для самостоятельного решения).