STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

Obor: 7. Zemědělství, potravinářství, lesní a vodní hospodářství

Postav si svého druhého robota

Tomáš Vavrinec

Brno 2020

STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST

POSTAV SI SVÉHO DRUHÉHO ROBOTA

BUILD YOUR SECOND ROBOT

AUTOR Tomáš Vavrinec

ŠKOLA Střední průmyslová škola a Vyšší

odborná škola Brno, Sokolská,

příspěvková organizace

KRAJ Jihomoravský

ŠKOLITEL Mgr. Miroslav Burda

OBOR 7. Zemědělství, potravinářství, lesní

a vodní hospodářství

\mathbf{D}	ro	հ۱	٤č	_	~ í
	I ()		75	\leftarrow 1	

Prohlašuji, že svou práci na téma *Postav si svého druhého robota* jsem vypracoval samostatně pod vedením Mgr. Miroslava Burdy a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Dále prohlašuji, že tištěná i elektronická verze práce SOČ jsou shodné a nemám závažný důvod proti zpřístupňování této práce v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a změně některých zákonů (autorský zákon) v platném změní.

V Brně dne:	
	Tomáš Vavrinec

Poděkování

Děkuji svému školiteli Mgr. Miroslavu Burdovi za obětavou pomoc, podnětné připomínky a hlavně nekonečnou trpělivost, kterou mi během práce poskytoval.

Tato práce byla provedena za finanční podpory Jihomoravského kraje.

Anotace

Robotika se stává čím dál tím významnějším oborem, což s sebou nese i potřebu vzdělávání v tomto oboru. Při výuce robotiky jsou proto potřeba různé pomůcky na kterých se mohou žáci učit potřebné dovednosti. Jednou s takovýchto pomůcek by mohl být například SchoolBoard (viz práce Postav si svého prvního robota), ale pokročilejším studentům jiš tento hárdware nemusí stačit. Proto jsem začal pracovat na novém systnému který má více možností.

Klíčová slova

trezor, ESP32, ESP32 wrover, inteligentní ledky, WS2812, BMX055, LDC1614, LDC1314, open-source hardware

Annotation

Robotics is becoming an increasingly important field, which brings with it the need for education in this field. When teaching robotics, therefore, various aids are needed on which students can learn the necessary skills. Once with such aids could be, for example, SchoolBoard (see the work Build Your First Robot), but for more advanced students this hardware may no longer need suffice. That's why I started working on a new system that has more options.

Keywords

safe, ESP32, ESP32 wrover, smart leds, WS2812, BMX055, LDC1614, LDC1314, open-source hardware

Obsah

Úvod	 . 8
vývoj	9
první trezor	 . 9
první mechanická varianta	 . 11
druhá elektronická varianta	 . 13
druhá mechanická varianta	 . 15
Třetí elektronická varianta	 . 17
dnešní elektronická varianta	 . 20
Mechanická varianta	22
Elektronicka varianta	23
úvodní shrnutí	 . 23
mechanika tlakové desky	 . 24
Přílohy	27
Literatura	27
Seznam obrázků	 . 28
Seznam tabulek	 29

$\mathbf{\acute{U}vod}$

Úvod práce má za cíl uvést:

- ullet cíl práce
- jak ho chcete dosáhnout
- $\bullet\,$ popis tématu práce, musí být výstižný, ale stručný a poutavý

vývoj

Na konci července roku 2019 jsem dostal za úkol navrhnout výrobek pro děti na příměstský tábor pobočky D.D.M.Helceletova Brno, Robotárny. Požadavkem byla jednoduchá a levná konstrukce, kterou děti zvládnou sestavit za pár dní a ve zbytku času tábora, se jim ukážou základy programování s využitím tohoto výrobku. Proto, a i pro poněkud nižší věk účastníků, jsme se s vedoucím Robotárny, Jirkou Váchou, rozhodli jít cestou "trezoru". To byl rozdíl oproti našim běžným výrobkům, které většinou měly možnost pohybu, ale byly pro děti náročnější na výrobu a pochopitelně i cena u nich šla nahoru.

první trezor

Dal jsem se tedy do kreslení trezoru, pochopitelně ne do nějaké nedobytné pevnosti, ale do malé krabičky, na které se dají ukazovat principy elektronických zámků. Jelikož se mi na podobné výrobky osvědčila jako materiál překližka, navrhoval jsem vše s úmyslem výroby z překližky za využití laseru. Konstrukce byla z velké části přizpůsobená dostupné elektronice, kterou jsem měl k dispozici, a která musela být stejně použita poněkud odlišně než jak byla zamýšlena. Němel jsem totiž čas, a vlastně ani rozpočet, navrhovat a především vyrábět konkrétní elektroniku pro výrobek, který se měl předložit dětem ani ne za týden. Použil jsem tedy starší univerzální desku ALKS (Arduino Learnikg Kit Starter) kterých jsem měl dostatečnou zásobu. Ovládací prvky, dvě tlačítka, dva potenciometry a tři barevné ledky, tedy celý ALKS jsem umístil na horní stranu trezoru. ALKS má v původní vari-

antě tři tlačítka. Já jsem však jedno musel pomocí magnetu a jazýčkového magnetického konektoru použít jako kontrolu, zda jsou dveře otevřeny či zavřeny. Jako zámek jsem pak použil obyčejné servo SG90, které velice jednoduše zajelo svou páčkou do drážky ve dveřích, a tím jim zabránilo se otevřít. Celý systém pak napájela malá powerbanka, která se dala vyjmout a nabýt, a používala se i ve dvou dalších verzích. Tato konstrukce měla kvůli uspěchanému návrhu spoustu problémů. Většinou však šlo o problémy, které by nebylo těžké odstranit a nebylo tedy třeba předělávat celý koncept návrhu. V těsném závěsu za touto elektronickou variantou, jsem ale dostal požadavek i na čistě mechanickou verzi trezoru. To byl následně jeden z velkých důvodů velkých změn, a to i změny samotného konceptu zařízení.

první mechanická varianta

První, čistě mechanická varianta, vznikla začátkem srpna 2019, chvíli po výše obšírněji popsané elektronické variantě. Měla stále poměrně klasický vzhled trezoru, tedy zamykatelná skříňka, která obsahovala dvě kola, která ovládala možnost pohybu jednoduché západky. Na rozdíl od jeho elektronického předchůdce bylo vše zajímavé uvnitř dveří. Také byla určená jako základ pro případný upgrade na elektronickou variantu. Na podobné vylepšení mělo stačit odstranění kódovacích kol a přidělání elektronické části. Toto sice fungovalo obstojně, zároveň i jako motivace, ale kvůli pozdější změně konceptu mechanizmu tento nápad padl. Tato varianta však nebyla, kvůli přílišným nárokům na přesnost, vhodná pro stavbu s malými dětmi, pro které byla určena jakožto předstupeň k variantě elektronické (která vyžaduje i znalosti, nebo alespoň ochotu k učení, programování).

Obrázek 1: zelená značí kódová kola, červená západku, modrá pevnou část trezoru(otvor) a žluté díly tvoří distanci

druhá elektronická varianta

Druhá verze elektronické varianty testovala použitelnost signalizačního kruhu, o dvanácti ledkách, kolem uprostřed dveří umístěného enkodéru. Jako základ trezoru jsem použil první mechanickou variantu, ze které jsem odstranil zamykací kola a doplnil o servo, řídící elektroniku a již zmínění kruh ledek a enkodér. Vzhledem k tomu, že se jednalo jen o hrubý prototyp, tak neměl specializovanou desku a elektroniku - tedy tvořila jen změť kabelů a kousek univerzální desky, takže nemám elektronickou variantu tohoto zapojení.

Trezor měl pro komunikaci s uživatelem tedy kruh o dvanácti ledkách a jeden vstupní prvek, enkodér s tlačítkem. Ovládání tedy bylo od tohoto odvozené a trezor se zmáčknutím zapnul a tlačítko pak dál sloužilo jako potvrzování výběru. Člověk tak mohl pomocí enkodéru otáčet jedinou rozsvícenou ledku a stiskem potvrdit, vstupní kód tedy mohl vypadat například jako čas, a uživatel ho zadal na kruhu odvozeném od ručičkových hodin, proto právě dvanáct ledek. Konkrétní ovládání je pochopitelně závislé na nahraném programu a mohlo by se tedy jednoduše změnit do libovolné podoby - to co popisuji je jen konkrétní možnost, kterou jsem použil.

druhá mechanická varianta

Druhá mechanická varianta je až na drobnosti stejná jako verze dnešní. Ovládá se pěti koly, z nichž čtyři zajišťují heslo a páté otáčí s rotační západkou, které drží dveře na svém místě. Tato varianta tedy přichází z možností dveře úplně oddělit od skříně trezoru. To by při využití jako trezor, který má za úkol jen ochraňovat svůj obsah, sice nepřinášelo žádný velký užitek, ale při mém využití, spíše jako herní prvek než trezor, to může být užitečné.

Třetí elektronická varianta

Třetí verze elektronické varianty do značné míry vycházela z předchozí, druhé verze, a dále na ní stavěla. Asi nejzjevnější změna bylo navýšení počtu ledek z dvanácti, jakožto hodiny, na šedesát jakožto minuty, což pochopitelně znamenalo i zvětšení kruhu. Na desku se ale přidaly i nové funkcionality, a to gyroskop, pro možnost znalosti náklonu zařízení, akcelerometr, pro znalost směru a velikosti zrychlování, magnetický kompas, pro určení světových stran, RTC (Real Time Clock, hodiny reálného času), pro znalost přesného času a také GPS pro možnost určení svojí polohy. Také jsem použil, po vzoru mechanické varianty, rotační západku, což znamenalo, že na stejný trezor se daly použít jak mechanické tak elektronické dveře.

Tato verze měla dvě podverze, které se lišily motorem.

[obecné obrázky]

[motory podverzí]

Přes velké množství funkcí jsem kvůli několika věcem ale opět koncept přepracoval. Hlavním důvodem změn bylo náročné uložení rotační západky, které vyžadovalo ozubený věnec a několik dalších tisknutých dílů.

dnešní elektronická varianta

Čtvrtá elektronická varianta byla co se elektroniky týče přímým pokračováním předchozí verze. Hlavní dvě věci, co se změnili, bylo ovládání a princip zamykání.

Princip mechanizmu Zamykání je založeno na mechanizmu bajonetu a zamčení je zajištěno západkou, která zabraňuje zpětnému otočení. Západka je ovládána motorem, který otáčí magnetem a tak přitahuje nebo odpuzuje magnet na západce. Důvodem pro magnetické ovládání byla možnost západku ovládat i přes pevnou stěnu a také pružné spojení které takto vznikne, takže se trezor například dá zavřít i když je už zamčen (když například dveře nejsou dovřeny).

Shrnutí změn z minulé verze Trezor získal možnost komunikace pomocí IR, pro možnost identifikace různých dveří, dále získal magnetický enkodér, pro možnost snazšího ovládání motoru zámku. Další inovací byl programovací systém s USB-C, na místo USB-micro jako dřív. Tento programátor si má možnost úplně odpojit napájení, a to v rámci šetření energie, když ho trezor nevyužívá, a zároveň možnost zákazu přeprogramování. Podstatnou změnou také bylo rozdělení elektroniky do dvou různých desek, protože na jedné by nebyl dostatek místa. Jedna deska tak obsahuje ledkový kruh a čip LDC1614 nebo LDC1314 se čtyřmi cívkami, které měří vzdálenost tlakové desky. Na druhé desce pak bylo vše ostatní, tedy procesor, akcelerometr, gyroskop, magnetický kompas, RTC (Real Time Clock, hodiny reálného času), barometr, IR vysílač a přijímač, magnetický enkodér, programátor, řešení napájení, řízení motoru a nabíječka.

Ovládání Předchozí varianty měli jako hlavní ovládací prvek enkodér s tlačítkem, ten jsem v nynější variantě odstranil, aby přední stěna neměla podobný velký výstupek. Proto jsem tento prvek nahradil indukční tlakovou deskou, která vyplnila vnitřek kruhu ledek. Zbytek ovládání víceméně přetrval, jen kvůli nedostatku času a pandemií způsobenému nedostatku

součástek, trezor přišel o GPS. Na druhou stranu získal barometr s rozlišením schopným detekovat změnu výšky o půl metru.

Odstavec Napájení Předchozí verzím sloužila jako napájení powerbanka. Ta však kladla poměrné velké omezení, dokázala poskytnout proud pouze jedné ampéry, a proto jsem jí nahradil vlastním zdrojem, dvěma baterkami 18650. To však samozřejmě znamenalo nutnost vlastního řešení stabilizace napětí, díky čemuž trezor dostal stepup, který spíná napětí z 3.5V až 4.2V na 5V, a původně stepdown, později lineární stabilizátor, který poskytoval 3,3.5V. Trezor také dostal vlastní nabíječku, aby stačilo připojit kabel, stejně jako třeba u mobilu.

Mechanická varianta

Elektronicka varianta

úvodní shrnutí

Dnešní vzhled elektronické varianty, se zamyká pomocí mechanizmu bajonetu a magneticky řízené zpětné západky. Elektronika je pak vybavena čipem ESP32, který obsahuje dva procesory Xtensa LX6, WiFi a bluetooth. Dále je trezor vybaven čipem BMX055 nebo dvojicí čipů MPU6050 a QMC5883 které poskytují gyroskop, akcelerometr a magnetický kompas. Dále je sde SPL06, barometr s přesností měření 0,06hPa což umožňuje rozeznat změnu nadmořské výšku o polovinu metru. Další system trezoru je IR přijímačem a vysílačem, který je zde pro možnost jednoznačné identifikace dveří ale pochopitelně muže sloužit i pro jiný učel. Deska je také vybavena hodinami reálného času, vlastní programátor pro usnadnění programování a vedle ESP32 asi nejvýznamnějším čipem, LDC1614, připadne LDC1314, který umožňuje funkci tlakové plochy.

ESP32	dva procesory Xtensa LX6, WiFi a bluetooth	
BMX055	gyroskop, akcelerometr, magnetický kompas	možno nahradit dvojicí čipů MPU6050 a QMC5883
SPL06	barometr	rozlišení až 0,06h Pa což umožňuje rozeznat změnu nadmořské výšky o $0.5\mathrm{m}$
IRM-H936 a IR led	IR komunikace	
LDC1614	snímání tlakové desky	počítá se s možnou záměnou za LDC1314
CP2102	programátor	s hardwarově zajištěným odpojováním napájení pokud není využíván

Tabulka 1: shrnutí elektronického vybavení

mechanika tlakové desky

Indukčně snímaná tlaková deska, funguje díky čtyřem cívkám, na desce plošných spojů, které mění svojí indukčnost podle vzdálenosti snímané desky, terčíku. Z tohoto důvodu se terčík při používání naklání, čímž zároveň mění svojí vzdálenost od jednotlivých cívek. Z toho také plyne nutnost uložit terčík částečně volně. Terčík je proto od snímací desky oddělen pružnou vložkou, která je zároveň předepnuta pomocí nažehlovací folie která kryje přední stranu dveří, a spojuje terčík s čelní krycí deskou. Díky nažehlovací folii je také přední část dveří voděodolné.

Tlaková deska zárově počítá s možností působení síli o velikosti až 100N, což samozřejmě zároveň znamená že tělo dveří tomuto zatížení musí odolat. Vzhledem k tomu že nemám možnost vyrobit tělo z kovu, a jsem odkázán na 3D tisk a laserovou řezačku, a zároveň chci mít dveře co možná nejmenší, musel jsem napočítat kritické části napřesno. Z tohoto důvodu jsem v pro-

gramu Fusion 360, ve kterém jsem trezor vyvíjel, dělal simulace, kterou zde přikládám.

Jako materiál jsem v první fázi zvolil standardní fotopolimer pro tiskárny typu SLA, s pevností v tahu 46 až 67 MPa. V budoucnu bych ale chtěl tělo odlévat z nějakého houževnatého polyuretanu, aby se zlevnila výroba a zároveň stoupla odolnost.

Závěr

V závěru by mělo být:

- Rekapitulace cíle práce
- Dosáhnul jsem jej? Ano, nebo ne?
- Zhodnocení průběhu práce
- Co mi práce dala?

Literatura

- AOSONG ELECTRONICS CO.,LTD. AM2321 product manual [online]
 [cit. 2020-02-20]. Dostupné z: http://akizukidenshi.com/download/ds/aosong/AM2321_e.pdf.
- HOLEKA, Lukáš. Zavlažovací systém skleníku. 20. únor 2020. Dostupné také z: http://stretech.fs.cvut.cz/2018/sbornik_2018/pdf/69. pdf. Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice.
- 3. AOSONG ELECTRONICS CO.,LTD. DHT22 datasheet [online] [cit. 2020-02-10]. Dostupné z: https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf.
- 4. MAXIM INTEGRATED. DS18B20 datasheet [online] [cit. 2020-02-10]. Dostupné z: https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf.

Seznam obrázků

1	zelená značí kódová kola, červená západku, modrá pevnou část	
	trezoru(otvor) a žluté díly tvoří distanci	12

Seznam tabulek

shrnutí elektronického vybaven	í	23
--------------------------------	---	----