Примерни задачи по линейна алгебра - 2009-2010

Задача 1 Да се докаже, че множеството V на функциите $f: \mathbb{C} \to \mathbb{C}$ е линейно пространство над \mathbb{C} относно поточково определените събиране (f+g)(z) = f(z) + g(z) и умножение $(\lambda f)(z) = \lambda f(z)$ с $\lambda \in \mathbb{C}$.

Упътване: Трябва да установите, че V е затворено относно събирането на функции и умножението на функция с число. После проверете, че споменатите операции изпълняват аксиомите за линейно пространство.

Задача 2 Нека V е линейното пространство на функциите $f: \mathbb{C} \to \mathbb{C}$ от Задача 1. Определете кои от следните подмножества на V са подпространства:

- (i) подмножеството W_1 на $f \in V$ с f(1) + 2f(2) + 3f(3) = 0;
- (ii) подмножеството W_2 на $f \in V$ с f(1) + 2f(2) + 3f(3) = 1;
- (iii) подмножеството W_3 на $f \in V$ с $f^2(0) + f(0) = 0$.

Упътване: Проверете затвореност относно събиране и умножение с число.

Задача 3 Ако a_1, a_2, a_3 са линейно независими вектори, да се определят включванията межеду линейните обвивки $l(a_1+a_2,a_3-a_4)$, $l(a_1+a_2,a_3,a_4)$, $l(a_1,a_2,a_3,a_4)$ и да се пресметнат техните размерности

Задача 4 Нека e_1, e_2, e_3, e_4 е базис на линейното пространство V. Да се намерят (a) стойностите на параметъра λ , за които векторите

$$f_1 = e_1 + 2e_2 - e_3$$
, $f_2 = -e_1 - e_2 + e_3$, $f_3 = 2e_1 + e_2 + \lambda e_3$

образуват базис на V;

- (б) координатите на $u = e_1 + e_2 + e_3$ спрямо базиса f_1, f_2, f_3 ;
- (в) координатите на вектора

$$v = \frac{2}{\lambda + 2} f_1 + \frac{4 - \lambda}{\lambda + 2} f_2 + \frac{2}{\lambda + 2} f_3$$

спрямо базиса e_1, e_2, e_3 при $\lambda \neq -2$.

Упътване: Матрицата на прехода T от базиса $e=(e_1,e_2,e_3)$ към базиса $f=(f_1,f_2,f_3)$ е образувана по стълбове от координатите на f_1,f_2,f_3 спрямо базиса e_1,e_2,e_3 . Ако вектор $w\in V$ има координатни стълбове $x,y\in F_{3\times 1}$ спрямо базисите e, съответно, f, то x=Ty. Векторите f_1,f_2,f_3 образуват базис на V тогава и само тогава, когато матрицата на прехода $T\in F_{3\times 3}$ е обратима. Последното е еквивалентно на съществуването на единствено решение $y\in F_{3\times 1}$ на матричното уравнение x=Ty за всички $x\in F_{3\times 1}$.

Отговор: (a) $\lambda \neq -2$; (б) и (в) u = v.

Задача 5 (а) В линейното пространство \mathbb{R}^4 са дадени линейната обвивка $U=l(a_1,a_2,a_3)$ на векторите

$$a_1 = (1, 2, 3, 4), \quad a_2 = (3, 2, 7, 6), \quad a_3 = (1, -2, 1, -2)$$

u пространството от решения W на хомогенната линейна система

$$\begin{vmatrix} x_1 & +x_2 & -x_3 & -x_4 & = 0 \\ x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 2x_1 & -3x_2 & -2x_3 & +3x_4 & = 0 \end{vmatrix}.$$

 \mathcal{A} а се намерят базиси на U+W и $U\cap W$.

(б) B линейното пространство \mathbb{R}^4 са дадени линейните обвивки $U=l(a_1,a_2)$ и $W=l(b_1,b_2)$ на векторите

$$a_1 = (1, -10, -3, -13),$$
 $a_2 = (1, 10, 7, 16),$
 $b_1 = (1, 7, 1, 7),$ $b_2 = (1, -8, 1, -8).$

 \mathcal{A} а се намерят базиси на U+W и $U\cap W$.

(в) B линейното пространство \mathbb{R}^4 са дадени пространството от решения U на хомогенната линейна система

$$\begin{vmatrix} x_1 & -x_2 & -x_3 & +x_4 & = 0 \\ 2x_1 & +3x_2 & -2x_4 & = 0 \end{vmatrix}$$

u пространството от решения W на хомогенната линейна система

$$\begin{vmatrix} x_1 & +5x_2 & -x_3 & -5x_4 & = 0 \\ 2x_1 & -3x_2 & -2x_3 & +3x_4 & = 0 \end{vmatrix}.$$

 \mathcal{A} а се намерят базиси на U+W и $U\cap W$.

Упътване: За намиране на базис на U+W представяме $U=l(a_1,\ldots,a_k)$ и $W=l(b_1,\ldots,b_l)$ като линейни обвивки. Всяка максимална линейно независима подсистема на $a_1,\ldots,a_k,b_1,\ldots,b_l$ е базис на U+W. Ако U е пространството от решения на хомогенната линейна система (1), а W е пространството от решения на (2), то $U\cap W$ е

пространството от решения на хомогенната линейна система (3), получена чрез обединяване на уравненията на (1) е (2).

Отговор: (а) Например, a_1, a_3 е базис на U, съгласно $2a_1 - a_2 + a_3 = 0$. Избираме базис $b_1 = (1, 0, 1, 0), b_2 = (0, 1, 0, 1)$ на W. Пресмятаме, че $a_3 = b_1 - 2b_2$ и a_1, b_1, b_2 е базис на U + W. Представяме U като пространството от решения на хомогенната линейна система

$$\begin{vmatrix} 4x_1 & +x_2 & -2x_3 & = 0 \\ 5x_1 & -3x_3 & +x_4 & = 0 \end{vmatrix}.$$

Сега $U \cap W$ е правата, породена от вектора (1, -2, 1, -2).

- (б) Непосредствено се проверява, че векторите a_1, a_2, b_1, b_2 са линейно независими. Следователно образуват базис на $U + W = \mathbb{R}^4$. По Теоремата за размерност на сума и сечение $U \cap W = \{\mathcal{O}\}$.
- (в) Сечението $\dot{U} \cap \dot{W}$ има базис (1,-2,1,-2). Поотделно, U има базис $a_1=(-3,2,-5,0)$, $a_2=(1,0,2,1)$, а W има базис $b_1=(1,0,1,0)$, $b_2=(0,1,0,1)$. Следователно $\dim(U+W)=3$. След намиране на линейната зависимост $a_1+2a_2+b_1-2b_2=0$, стигаме до извода, че произволни три вектора измежду a_1,a_2,b_1,b_2 образуват базис на U+W.

Задача 6 За кои стойности на параметъра λ векторите

$$a_1 = (1, 1, 1, 1),$$
 $a_2 = (1, 2, 3, 4),$ $a_3 = (\lambda^2, 4, 7, 10),$ $a_4 = (1, -\lambda - 1, -5, 8)$

са линейно независими?

Упътване: Използвайте, че a_1, \ldots, a_4 са линейно независими точно когато рангът $\operatorname{rk}(a_1, \ldots, a_4) = 4$ или матрицата $A \in F_{4 \times 4}$ с вектор-редове a_1, \ldots, a_4 е неособена.

Отговор:
$$det(A) = -(\lambda + 1)(\lambda - 1)(\lambda - 17) \neq 0$$
 за $\lambda \neq -1, 1, 17$.

Задача 7 B линейното пространство V с базис e_1, e_2, e_3 са дадени векторите

$$a_1 = e_1 + e_2 + pe_3$$
, $a_2 = -e_1 + e_2 + (p+q)e_3$, $a_3 = 2e_1 + 3e_2 + qe_3$ u
 $b_1 = e_1 - 2e_2 + e_3$, $b_2 = e_1 + e_2 - 3e_3$, $b_3 = e_1 + 2e_2 + 2e_3$.

За кои стойности на параметрите p и q съществува линеен оператор $\varphi: V \to V$ c $\varphi(a_i) = b_i$ за $\forall 1 \leq i \leq 3$.

Упътване: Ако a_1, a_2, a_3 са линейно независими, то съществува линеен оператор $\varphi: V \to V$ с $\varphi(a_i) = b_i$ за $\forall 1 \leq i \leq 3$. Ако допуснем, че a_1, a_2, a_3 са линейно зависими и съществува линеен оператор $\varphi: V \to V$ с $\varphi(a_i) = b_i$ за $\forall 1 \leq i \leq 3$, то b_1, b_2, b_3 са линейно зависими.

Отговор: $q \neq 6p$, когато a_1, a_2, a_3 са линейно независими.

Задача 8 Линейното изображение $\varphi:U\to V$ има матрица

$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & 1 \\ 2 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

спрямо базиса $u = (u_1, u_2, u_3)$ на U и базиса $v = (v_1, \dots, v_4)$ на V. Да се намерят:

(a) матрицата $B \in F_{4\times 3}$ на φ спрямо базиса

$$u'_1 = u_1 + u_2 + u_3, \quad u'_2 = -u_1 + u_2, \quad u'_3 = 2u_1 + u_2 + u_3$$

на U и базиса v на V;

(б) матрицата $C \in F_{4\times 3}$ на φ спрямо базиса и на U и базиса

$$v'_1 = v_1 + 2v_2 + v_3 + 2v_4,$$
 $v'_2 = -v_1 + v_2 + v_3 + 2v_4,$ $v'_3 = v_1 - v_2 + 2v_3 + 3v_4,$ $v'_4 = v_1 + 3v_2 - v_3 - v_4$

на V:

(в) матрицата $D \in F_{4\times 3}$ спрямо базиса $u' = (u'_1, u'_2, u'_3)$ на U и базиса $v' = (v'_1, \dots, v'_4)$ на V.

Отговор: (a) Ако
$$u' = uT$$
, то $B = AT = \begin{pmatrix} 2 & -2 & 3 \\ 5 & -2 & 8 \\ 1 & -3 & 3 \\ 3 & 0 & 4 \end{pmatrix}$.

(б) Ако v' = vS, то $C = S^{-1}A$ или C е решение на матричното уравнение SC = A. Получаваме, че

$$C = \begin{pmatrix} 36 & -28 & -11 \\ -14 & 12 & 4 \\ -23 & 18 & 8 \\ -26 & 21 & 9 \end{pmatrix}.$$

(в) За u'=uT и v'=vS следва $D=S^{-1}AT=S^{-1}B=CT$ или

$$D = \begin{pmatrix} -3 & -64 & 33 \\ 2 & 26 & -12 \\ 3 & 41 & -20 \\ 4 & 47 & -22 \end{pmatrix}.$$

Задача 9 Нека e_1, e_2, e_3 е базис на \mathbb{R}^3 , а f_1, f_2 е базис на \mathbb{R}^2 . Линейното изображение $\varphi : \mathbb{R}^3 \to \mathbb{R}^2$ трансформира e_1, e_2, e_3 в

$$\varphi(e_1) = f_1 + f_2, \quad \varphi(e_2) = -f_1 + f_2, \quad \varphi(e_3) = 2f_1 + f_2.$$

Линейното изображение $\psi: \mathbb{R}^3 \to \mathbb{R}^2$ има матрица

$$B = \left(\begin{array}{ccc} -2 & 1 & 2\\ 1 & -1 & 3 \end{array}\right)$$

спрямо базиса e_1, e_2, e_3 на \mathbb{R}^3 и базиса f_2, f_1 на \mathbb{R}^2 . Линейният оператор $\rho: \mathbb{R}^2 \to \mathbb{R}^2$ действа по правилото

$$\rho(x_1f_1 + x_2f_2) = (x_1 + 4x_2)f_1 + (5x_1 + 19x_2)f_2.$$

Да се намерят:

- (a) матрицата на линейното изображение $\rho(\varphi + 2\psi) : \mathbb{R}^3 \to \mathbb{R}^2$ спрямо базиса e_1, e_2, e_3 на \mathbb{R}^3 и базиса f_1, f_2 на \mathbb{R}^2 ;
- (б) матрицата на линейното изображение $\rho(2\varphi \psi): \mathbb{R}^3 \to \mathbb{R}^2$ спрямо базиса e_2, e_3, e_1 на \mathbb{R}^3 и базиса f_1, f_2 на \mathbb{R}^2 .

Упътване и отговор: Матрицата $A \in \mathbb{R}_{2\times 3}$ на $\varphi : \mathbb{R}^3 \to \mathbb{R}^2$ спрямо базиса $e = (e_1, e_2, e_3)$ на \mathbb{R}^3 и базиса $f = (f_1, f_2)$ на \mathbb{R}^2 е образувана по стълбове от координатите на $\varphi(e_1), \varphi(e_2), \varphi(e_3)$ спрямо f_1, f_2 . По-точно, $A = \begin{pmatrix} 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$. Матрицата на ρ спрямо базиса f_1, f_2 е $C = \begin{pmatrix} 1 & 4 \\ 5 & 19 \end{pmatrix}$. Матрицата D на ψ спрямо базисите e_1, e_2, e_3 и f_1, f_2 се получава от B чрез разместване на редовете, $D = \begin{pmatrix} 1 & -1 & 3 \\ -2 & 1 & 2 \end{pmatrix}$. Матрицата M на $\rho(\varphi + 2\psi)$ спрямо базисите e и f е

$$M = C(A + 2D) = \begin{pmatrix} -9 & 9 & 28 \\ -42 & 42 & 135 \end{pmatrix}.$$

Нека $N \in \mathbb{R}_{2\times 3}$ е матрицата на $\rho(2\varphi - \psi)$ спрямо базисите e и f, а $P \in \mathbb{R}_{2\times 3}$ е матрицата на същото линейно изображение $\rho(2\varphi - \psi)$ спрямо базисите e_2, e_3, e_1 и $f = (f_1, f_2)$. Тогава

$$N = C(2A - D) = \begin{pmatrix} 17 & 3 & 1 \\ 81 & 14 & 5 \end{pmatrix}.$$

Матрицата на прехода от базиса e_1, e_2, e_3 към базиса e_2, e_3, e_1 е

$$T = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right),$$

така че

$$P = NT = \left(\begin{array}{ccc} 3 & 1 & 17\\ 14 & 5 & 81 \end{array}\right).$$

Задача 10 Линейното изображение $\Phi: U \to V$ е зададено по правилото

$$\Phi(x_1e_1 + x_2e_2) = (x_1 - 2x_2)f_1 + (-x_1 + 2x_2)f_2 + (2x_1 - 4x_2)f_3 + (3x_1 + \lambda x_2)f_4$$

спрямо базиса $e = (e_1, e_2)$ на U и базиса $f = (f_1, \ldots, f_4)$ на V. B зависимост от стойностите на параметъра λ да се намерят базиси на ядрото $\ker(\Phi)$ и образа $\operatorname{im}(\Phi)$.

Упътване: Ако $A = A(\lambda) \in F_{4\times 2}$ е матрицата на Φ спрямо базисите e и f, то координатите на векторите от $\ker(\Phi)$ са решенията $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ на хомогенната линейна система $Ax = 0_{4\times 1}$. Образът $\operatorname{im}(\Phi) = l(\Phi(e_1), \Phi(e_2))$.

Отговор: Ако $\lambda \neq -6$, то $\ker(\Phi) = 0$ и $\operatorname{im}(\Phi)$ има базис $(1, -1, 2, 3), (-2, 2, -4, \lambda)$. При $\lambda = -6 \ker(\Phi)$ има базис (2, 1), а $\operatorname{im}(\Phi)$ има базис (1, -1, 2, 3).

 ${f 3}$ адача ${f 11}$ Линейният оператор $\varphi:\mathbb{R}^3 o \mathbb{R}^3$ има матрица

(a)
$$A = \begin{pmatrix} 3 & 9 & -13 \\ 2 & 14 & -17 \\ 2 & 12 & -15 \end{pmatrix}$$
; (6) $A = \begin{pmatrix} -18 & -15 & 45 \\ -10 & -13 & 30 \\ -10 & -10 & 27 \end{pmatrix}$

спрямо базиса e_1, e_2, e_3 . Да се намери базис v_1, v_2, v_3 на \mathbb{R}^3 , в който φ има диагонална матрица D, както и матрицата D.

Упътване: Пресметнете характеристичните корени на φ като решения на уравнението $f_A(\lambda) = \det(A - \lambda E_3) = 0$. Онези от тях, които са реални числа, са собствени стойности на φ . За всяка собствена стойност λ_i изберете максимална линейно независима система от собствени вектори, отговарящи на λ_i , като фундаментална система решения на хомогенната линейна система $(A - \lambda_i E_3)x = 0_{3\times 1}$. Обединението на тези собствени вектори е търсеният базис v_1, v_2, v_3 .

Отговор: (а) Операторът φ има диагонална матрица $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ спрямо базиса $v_1 = (1,1,1), v_2 = (2,1,1), v_3 = (-1,3,2);$

(б) Операторът
$$\varphi$$
 има диагонална матрица $D=\begin{pmatrix} -3&0&0\\0&-3&0\\0&0&2\end{pmatrix}$ спрямо базиса $v_1=(-1,1,0),\,v_2=(3,0,1),\,v_3=(3,2,2).$

Задача 12 Спрямо ортонормиран базис e_1, \ldots, e_4 на евклидовото пространство V са дадени векторите

$$a_1 = (1, -1, 2, 1), \quad a_2 = (-1, 2, -5, -1), \quad a_3 = (1, 3, -10, 1)$$

u v = (1, 1, 1, 1). Да се намерят:

- (a) ортогоналната проекция v_1 и перпендикулярът h_1 от а към $U = l(a_1, a_2, a_3);$
- (б) ортогоналната проекция v_2 и перпендикуляр $m h_2$ от а към U^{\perp} .

Упътване: (а) Чрез ортогонализация по метода на Грам-Шмид намерете ортогонален базис на U.

(б) Ако матрицата $A \in \mathbb{R}_{3\times 4}$ е образувана по редове от векторите a_1, a_2, a_3 , то ортогоналното допълнение U^{\perp} се състои от пространството от решения на хомогенната линейна система $Ax = 0_{3\times 1}$.

Отговор: (а) Векторите $b_1 = a_1$ и $b_2 = (1, 0, -1, 1)$ образуват ортогонален базис на U, защото $a_3 = 5a_1 + 4a_2 \in l(a_1, a_2)$. В резултат,

$$v_1 = \frac{(v, b_1)}{(b_1, b_1)} b_1 + \frac{(v, b_2)}{(b_2, b_2)} b_2 = \left(\frac{16}{21}, -\frac{3}{7}, \frac{11}{21}, \frac{16}{21}\right), \quad h_1 = v - v_1 = \left(\frac{5}{21}, \frac{10}{7}, \frac{10}{21}, \frac{5}{21}\right).$$

(б) Един ортогонален базис на U^{\perp} е $c_1 = (-1, 0, 0, 1), c_2 = (1, 6, 2, 1)$. Оттук

$$v_2 = \frac{(v, c_1)}{(c_1, c_1)}c_1 + \frac{(v, c_2)}{(c_2, c_2)}c_2 = \left(\frac{5}{21}, \frac{10}{7}, \frac{10}{21}, \frac{5}{21}\right), \quad h_2 = v - v_2 = \left(\frac{16}{21}, -\frac{3}{7}, \frac{11}{21}, \frac{16}{21}\right).$$

Задача 13 Да се докаже, че системата линейни уравнения

$$\begin{vmatrix} x_1 + & x_2 + & x_3 = 1 \\ x_1 - & x_2 + & 2x_3 = 1 \\ 2x_1 + & x_2 + & x_3 = 2 \\ x_1 - & x_2 - & x_3 = 2 \end{vmatrix}$$

с реални коефициенти е несъвместима и да се реши по метода на най-малките квадрати.

Упътване и отговор: Ако системата линейни уравнения Ax = b е несъвместима, то нейното решение по метода на най-малките квадрати удовлетворява равенството $A^tAx = A^tb$. Получаваме $\left(\frac{15}{14}, -\frac{11}{42}, -\frac{13}{42}\right)$.

Задача 14 Спрямо ортонормирана система в равнината са дадени точките $P_1(-2,-1)$, $P_2(-1,1)$, $P_3(0,3)$, $P_4(1,-2)$, $P_5(2,2)$. Да се докаже, че през тяп не минава права и да се намери правата y=px+q, която е най-близо до тях по метода на най-малките квадрати.

Упътване и отговор: Ако правата y=px+q минава през точките $P_i(x_i,y_i)$ за $1\leq i\leq 5,$ то $\left(\begin{array}{c}p\\q\end{array}\right)$ е решение на линейната система

$$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \dots \\ x_5 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_5 \end{pmatrix}.$$

По метода на най-малките квадрати търсим решение на

$$\begin{pmatrix} x_1 & x_2 & \dots & x_5 \\ 1 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \dots & \dots \\ x_5 & 1 \end{pmatrix} \begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_5 \end{pmatrix}$$

и получаваме y = 0.3x + 0.6.

Задача 15 Спрямо ортонормиран базис e_1, e_2, e_3 на евклидовото пространство \mathbb{R}^3 , линейният оператор $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ има матрица

(a)
$$A = \begin{pmatrix} 2 & 2 & 0 \\ 2 & 3 & -2 \\ 0 & -2 & 4 \end{pmatrix}$$
; (6) $A = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$.

Да се намери ортонормиран базис f_1, f_2, f_3 на \mathbb{R}^3 , в който матрицата D на φ е диагонална, както и тази диагонална матрица D.

Упътване: Даденият оператор φ е симетричен, защото има симетрична матрица А спрямо ортонормиран базис e_1, e_2, e_3 . Корените $\lambda_1, \lambda_2, \lambda_3$ на характеристичния полином $f_A(\lambda) = \det(A - \lambda E_3)$ са винаги реални, а оттам и собствени стойности. Избираме ортонормиран базис на всяко собствено подпространство. Понеже собствените вектори, отговарящи на различни собствени стойности са перпендикулярни помежду си, обединението на намерените вектори е ортонормиран базис на V, съставен от собствени вектори за φ .

Отговор: (а) Спрямо ортонормирания базис $e_1 = \frac{1}{3}(-2,2,1), e_2 = \frac{1}{3}(2,1,2),$

$$e_3 = \frac{1}{3}(1,2,-2)$$
 операторът φ има матрица $D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{pmatrix}$.

(б) Спрямо ортонормирания базис
$$e_1 = \frac{1}{\sqrt{3}}(1,1,1), e_2 = \frac{1}{\sqrt{2}}(1,-1,0), e_3 = \frac{1}{\sqrt{6}}(1,1,-2)$$
 операторът φ има матрица $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Задача 16 Спрямо ортонормиран базис e_1, e_2, e_3 на евклидовото пространство \mathbb{R}^3 , линейният оператор $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ има матрица

(a)
$$A = \frac{1}{2} \begin{pmatrix} -1 & -1 & \sqrt{2} \\ -1 & -1 & -\sqrt{2} \\ -\sqrt{2} & \sqrt{2} & 0 \end{pmatrix}$$
; (6) $A = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}$.

- (i) Да се докаже, че φ е ортогонален оператор.
- (ii) Да се намери ортонормиран базис на \mathbb{R}^3 , в който φ има блочно-диагонална матрица D, както и матрицата D.

Упътване: Нека $\lambda = \cos \alpha + i \sin \alpha \in \mathbb{C} \setminus \mathbb{R}$ е комплексен нереален характеристичен корен на ортогоналния оператор φ . Операторът $\varphi_o^{\mathbb{C}}: \mathbb{C}^3 \to \mathbb{C}^3, \ \varphi_o^{\mathbb{C}}(z) = Az$ за $\forall z \in \mathbb{C}^3$ има собствена стойност λ . Намираме собствен вектор $w \in \mathbb{C}^3 \setminus \{0^3\}$, отговарящ на λ . Доказали сме, че $u = \text{Re}(w) \in \mathbb{R}^3$ и $v = \text{Im}(w) \in \mathbb{R}^3$ са взаимно перпендикулярни вектори с равни дължини. Следователно $e_1 = \frac{u}{||u||}, e_2 = \frac{v}{||u||}$ е ортонормирана система вектори с φ -инвариантна линейна обвивка $l_{\mathbb{R}}(e_1, e_2) \subset \mathbb{R}^3$. Матрицата на φ спрямо базиса e_1, e_2 е

$$\left(\begin{array}{ccc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right).$$

Отговор: (а) Спрямо ортонормирания базис $e_1 = \frac{1}{2}(1, -1, \sqrt{2}), \ e_2 = \frac{1}{2}(-1, 1, \sqrt{2}),$ $e_3 = \frac{1}{\sqrt{2}}(1, 1, 0)$ операторът φ има матрица $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$

(б) Спрямо ортонормирания базис $e_1 = \frac{1}{\sqrt{2}}(1,1,0), e_2 = \frac{1}{\sqrt{2}}(1,-1,\sqrt{2}), e_3 = \frac{1}{2}(-1,1,\sqrt{2})$ операторът φ има матрица $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.