

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Arquitetura de um processador

2. Controle no caminho de dados

Prof. John L. Gardenghi Adaptado dos slides do livro

Controle da ULA

- A ULA é utilizada para:
 - Load/Store: F = add
 - Desvio (beq): F = subtract
 - Instruções tipo R: F depende do campo funct

ALU control	Function		
0000	AND		
0001	OR		
0010	add		
0110	subtract		
0111	set-on-less-than		
1100	NOR		

Controle da ULA

- ALUOp = opcode
 - Uma combinação deste com funct gera o código de controle da ULA

opcode	ALUOp	Operação	funct	ALU function	ALU control
lw	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
beq	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
		subtract	100010	subtract	0110
		AND	100100	AND	0000
		OR	100101	OR	0001
		set-on-less-than	101010	set-on-less-than	0111

3

A unidade de controle principal

Os sinais de controle derivam da instrução

Caminho de dados com controle

MORGAN KAUFHANN

5

Instruções do tipo R

Instruções load

Instruções beq

Implementando Jumps

 Jump
 2
 address

 31:26
 25:0

- Jump usa palavras como endereçamento
- Atualiza o PC com a concatenação de
 - Os 4 bits mais significativos do PC
 - O endereço de 26-bits da instrução
 - 00 (por causa do deslocamento por palavra)
- É necessário um sinal de controle adicional, extraído do opcode

9

Caminho de dados com jump

Problemas de desempenho

- A instrução mais demorada determina o período de clock
 - Caminho crítico: instrução load
 - Memória de instrução → banco de registradores → ULA → memória de dados → banco de registradores
- Entretanto, outras instruções são mais rápidas
- Isso será melhorado com pipeline

