

Trabajo práctico Nº4

Autores:

- Mariano Alberto Condori Leg. 406455 (Coordinador)
- Ignacio Ismael Perea Leg. 406265 (Operador)
- Gonzalo Ezequiel Filsinger Leg. 403797 (Operador/Doc.)
- Marcos Acevedo Leg. 402898 (Doc)
- **Curso:** 3R1
- Asignatura: Dispositivos Electrónicos.
- Institución: Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

1.	Actividad 1: Condiciónes I_G e I_H . 1.1. Actividad de Laboratorio	1 1
	1.2. Simulación	1
2.	Actividad 2: Curvas características del SCR	2
	2.1. Actividad de Laboratorio	2
3.	Actividad 3: Funcionamiento con corriente alterna	3
	3.1. Simulación	3
4.	Actividad 4: Tiristores DIAC y TRIAC	3
	Actividad 4: Tiristores DIAC y TRIAC 4.1. Actividad de Laboratorio	3
5.	Actividad 5: Polarización y func. del TRIAC	4
	Actividad 5: Polarización y func. del TRIAC 5.1. Actividad de Laboratorio	4
6.	Actividad 6: Control de disparo del TRIAC	4
7.	Actividad 7: Interpretación del Datasheet	5
	7.1. Parametros del DIAC	5
	7.2. Parametros del SCR	
	7.3. Parametros del TRIAC	5

1. Actividad 1: Condiciónes I_G e I_H .

1.1. Actividad de Laboratorio

- 3 Multimetros
- SCR TIC106M
- Resistores de 3300Ω y dos de 4700Ω
- Potenciómetro de 5000Ω
- 2 Fuentes de alimentación

Procedimiento Para esta actividad se implementó el siguiente circuito:

Primero se dejó la fuente V_{CC} en 0, se cerró el interruptor y se empezó a variar el potenciometro para obtener valores de V_G e I_G .

Luego se colocó V_G en 0 y se cerró el interruptor y se colocó V_{CC} en 100V. Lentamente aumentamos el valor V_G hasta ver un cambio en I_{AK} .

Dejamos el potenciometro en el valor que nos dió el disparo y abrimos el interruptor, observando que sucede con I_{AK} .

Ahora manteniendo la llave abierta, bajamos V_{CC} en pasos de 10V, y los ultimos 10V en pasos de 1V. Luego volver a aumentar V_{CC} hasta 100V.

Cerramos el interruptor y comprobamos que los valores de V_G e I_G son los mismos que al principio.

Abrimos el interruptor y analizamos que sucede con I_{AK} . Desconectamos las tensiones de alimentación sin mover nada y luego las volvemos a conectar, cerramos el interruptor y analizamos el comportamiento de I_{AK} .

Analisis de Resultados

- I. Analizar y mencionar la alternativa que se presentó para disparar un SCR. ¿Cómo la puede explicar?. Existe otra manera de disparar el SCR sin corriente en la compuerta ¿Cual es ese método?
- Analizar y sacar conclusiones de las conexiones y mediciones realizadas.

1.2. Simulación

Para la simulación del circuito utilizamos el siguiente esquema:

Primero establecemos la fuente V_2 en 0V y variamos la fuente V_1 de 0.2V a 1.5V en pasos de 0.1V, obteniendo la siguiente gráfica:

Ahora Analizaremos el disparo, para ello variaremos la fuente V_2 de 0V a 800V en pasos de 10V, obteniendo la siguiente gráfica:

Por ultimo realizaremos un disparo controlado, dejaremos la fuente V_2 en 100V y variaremos la fuente V_1 hasta encontrar un punto donde I_A cambie bruscamente, obteniendo la siguiente gráfica:

En la primera simulacion observamos que la curva tiene un comportamiento similar al de un diodo, con una caida de tension directa de aproximadamente 0.7V. En la segunda simulacion observamos que el SCR se dispara alrededor de los 1.56V. En la tercera simulacion con V_2 en 100V, el SCR empieza a conducir entre los 0.6V y los 0.7V como se observa en la grafica.

2. Actividad 2: Curvas características del SCR

2.1. Actividad de Laboratorio

Procedimiento Para esta actividad se implementó el circuito mostrado anteriormente.

Primero fijamos un valor de I_G y variamos V_{CC} hasta ovservar el disparo del SCR, anotando los valores de V_{AK} e I_{AK} . INSERTAR tabla

Ahora realizamos el mismo procedimiento pero para cada vez un valor de I_G variamos V_{CC} para obtener V_{AK} desde 0 hasta 15V.

Analisis de Resultados

4. Actividad 4: Tiristores DIAC y TRIAC
4.1. Actividad de Laboratorio

5. Actividad 5: Polarización y func. del TRIAC	6. Actividad 6: Control de disparo del TRIAC
5.1. Actividad de Laboratorio	

7. Actividad 7: Interpretación del Datasheet

7.1. Parametros del DIAC

7.2. Parametros del SCR

- **VDRM** (Voltaje máximo directo de bloqueo): Es el voltaje máximo que el SCR puede soportar en polarización directa sin dispararse. En este caso, es de 600V.
- IT(RMS) (Corriente RMS máxima): Es la corriente máxima que el SCR puede manejar en condiciones normales de operación. En este caso, es de 4A.
- IT(AV) (Corriente media máxima): Es la corriente media máxima que el SCR puede manejar en un ciclo completo. En este caso, es de 2.55A.
- ITSM (Corriente de pulso máxima): Es la corriente máxima que el SCR puede manejar en un pulso corto. En este caso, es de 20A.
- IDRM (Corriente de fuga en bloqueo directo): Es la corriente que fluye a través del SCR cuando está en polarización directa pero no está disparado. En este caso, es de 10μA.
- IGT (Corriente de disparo): Es la corriente mínima que se debe aplicar a la compuerta para disparar el SCR. En este caso, es de 15μA la típica y 200μA la máxima.
- VGT (Voltaje de disparo): Es el voltaje mínimo que se debe aplicar a la compuerta para disparar el SCR. En este caso, es de 0.4V la mínima, 0.6V la típica y 0.8V la máxima.
- IH (Corriente de mantenimiento): Es la corriente mínima que debe fluir a través del SCR para mantenerlo en estado de conducción después de haber sido disparado. En este caso, es de 0.19mA la típica y 3mA la máxima.
- tgt (Tiempo de disparo): Es el tiempo que tarda el SCR en cambiar de estado de bloqueo a estado de conducción después de que se aplica la corriente de disparo a la compuerta. En este caso, es de 1.2μs.
- tq (Tiempo de apagado): Es el tiempo que tarda el SCR en volver al estado de bloqueo después de que la corriente a través de él cae por debajo de la corriente de mantenimiento. En este caso, es de 40µs.
- RθJC (Resistencia térmica unión a carcasa): Es la resistencia térmica entre la unión del SCR y su carcasa.
 En este caso, es de 3°C/W.
- RθJA (Resistencia térmica unión a ambiente): Es la resistencia térmica entre la unión del SCR y el ambiente.
 En este caso, es de 75°C/W.

7.3. Parametros del TRIAC