Linear Algebra and Calculus Exercises: Part II

CSCI 567 Machine Learning Fall 2022

Instructor: Vatsal Sharan

MULTIPLE-CHOICE QUESTIONS: one or more correct choices for each question.

Q1 Which of the following statements are true? PSD stands for positive semi-definite.

- (a) XX^{\top} is a PSD matrix if and only if X is PSD.
- (b) If X and Y are PSD matrices, then so is $\lambda X + \mu Y$ for any $\lambda, \mu \in \mathbb{R}$.
- (c) If X Y and X + Y are PSD matrices, then so are X and Y.
- (d) All eigenvalues of a symmetric PSD matrix are non-negative.

 $\mathbf{Q2}$ Suppose A and B are two positive definite matrices. Which matrix may NOT be positive definite?

- (a) A^{-1}
- (b) A + B
- (c) AA^{\top}
- (d) A B

SHORT-ANSWER QUESTION. The following questions use linear algebra and calculus in ML formulations. They particularly test your knowledge of gradients of multivariate functions.

Q3 Consider the following optimization problem:

$$oldsymbol{w}_* = rg \min_{oldsymbol{w} \in \mathbb{R}^d} \|oldsymbol{X} oldsymbol{w} - oldsymbol{y}\|_2^2 + oldsymbol{w}^T oldsymbol{M} oldsymbol{w}$$

Here, $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, $M \in \mathbb{R}^{d \times d}$ is a positive definite matrix and $\|\cdot\|_2$ stands for the ℓ_2 norm. Find the closed form solution for w_* . Proceed in a similar way as how we derived the general least-squares solution in class. (This optimization problem is a generalization of ℓ_2 regularization, which we will see in class.)

Q3 Assume we have a training set $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$, where each outcome y_i is generated by a probabilistic model $\boldsymbol{w}_*^T \boldsymbol{x}_i + \epsilon_i$ with ϵ_i being an independent Gaussian noise with zero-mean and variance σ^2 for some $\sigma > 0$. In other words, the probability of seeing any outcome $y \in \mathbb{R}$ given $\boldsymbol{x}_i \in \mathbb{R}^d$ is

$$\Pr(y \mid \boldsymbol{x}_i; \boldsymbol{w}_*, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(y - \boldsymbol{w}_*^{\mathrm{T}} \boldsymbol{x}_i)^2}{2\sigma^2}\right).$$

Assume σ is fixed and given, find the maximum likelihood estimation for \mathbf{w}_* . In other words, first write down the probability of seeing the outcomes y_1, \ldots, y_n given $\mathbf{x}_1, \ldots, \mathbf{x}_n$ as a function of the value of \mathbf{w}_* ; then find the value of \mathbf{w}_* that maximizes this probability. You can assume $\mathbf{X}^T\mathbf{X}$ is invertible where \mathbf{X} is the data matrix with each row corresponding to the feature of an example.