Linguaggi Regolari

- 1. Descrivere in italiano il linguaggio generato dall'espressione regolare $(\mathbf{11} + \varepsilon)(\mathbf{0011})^*(\mathbf{00} + \varepsilon)$ Soluzione: L'espressione definisce il linguaggio di tutte le parole di lunghezza pari (anche vuote) che alternano coppie di zero $(\mathbf{00})$ e coppie di uno $(\mathbf{11})$
- 2. Trasformare il seguente NFA in DFA

Soluzione: Applicando la costruzione a sottoinsiemi si ottiene il DFA con la seguente tabella di transizione (dove gli stati non raggiungibili da $\{q_0\}$ sono omessi):

	0	1
$\rightarrow \{q_0\}$	$\{q_0,q_1\}$	$\{q_0, q_3\}$
$\{q_0,q_1\}$	$\{q_0, q_1, q_2\}$	$\{q_0,q_3\}$
$\{q_0,q_3\}$	$\{q_0,q_1\}$	$\{q_0,q_3,q_4\}$
$*\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_0, q_2, q_3\}$
$*\{q_0, q_1, q_4\}$	$\{q_0, q_1, q_2, q_4\}$	$\{q_0,q_3\}$
$*\{q_0, q_2, q_3\}$	$\{q_0,q_1\}$	$\{q_0, q_2, q_3, q_4\}$
$*\{q_0, q_3, q_4\}$	$\{q_0, q_1, q_4\}$	$\{q_0, q_3, q_4\}$
$*\{q_0, q_1, q_2, q_4\}$	$\{q_0, q_1, q_2, q_4\}$	$\{q_0,q_2,q_3\}$
$*\{q_0, q_2, q_3, q_4\}$	$\{q_0,q_1,q_4\}$	$\{q_0, q_2, q_3, q_4\}$

e con il seguente diagramma di transizione:

3. Il linguaggio

 $L = \{w \in \{a, b, c\}^* \mid \text{ il numero di } a \text{ è uguale al numero di } b \text{ e maggiore del numero di } c\}$

è regolare? Motivare la risposta.

Soluzione: Il linguaggio non è regolare. Supponiamo per assurdo che lo sia:

- sia n > 0 la lunghezza data dal Pumping Lemma;
- consideriamo la parola $w = a^n b^n$, che appartiene ad L ed è di lunghezza maggiore di n;
- sia w = xyz una suddivisione di w tale che $y \neq \varepsilon$ e $|xy| \leq n$;
- poiché $|xy| \le n$, allora xy è completamente contenuta nel prefisso a^n di w, e quindi sia x che y sono composte solo da a. Inoltre, siccome $y \ne \varepsilon$, possiamo dire che $y = a^p$ per qualche valore p > 0. Allora la parola xy^0z è nella forma $a^{n-p}b^n$, e quindi non appartiene al linguaggio perché il numero di a è minore del numero di b.

Abbiamo trovato un assurdo quindi L non può essere regolare.

Nota: In alternativa si può utilizzare xy^2z (o un qualsiasi esponente k > 1): in questo caso si ottiene una parola che non appartiene ad L perché il numero di a è maggiore del numero di b.