Probabilistic Systems Semantics via Coalgebra

Plan:

Part 1. Modelling probabilistic systems for branching-time semantics

bisimilarity

Part 2. Traces, linear-time semantics

trace equivalence

Part 3. Belief-state-transformer semantics via convexity

Mathematical framework based on category theory for state-based systems semantics

distribution bisimilarity

all with help of coalgebra

Plan: not fully done yet

Part 1. Modelling probabilistic systems for branching-time semantics

bisimilarity

Part 2. Traces, linear-time semantics

trace equivalence

Part 3. Belief-state-transformer semantics via convexity

Mathematical framework based on category theory for state-based systems semantics

distribution bisimilarity

all with help of coalgebra

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Discrete probabilistic systems are coalgebras

 $X \stackrel{c}{\rightarrow} FX$

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

on

Sets

Discrete probabilistic systems are coalgebras

 $X \stackrel{c}{\rightarrow} FX$

on

Sets

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Discrete probabilistic systems are coalgebras

 $X \stackrel{c}{\rightarrow} FX$

$$F := - \mid A \mid \mathcal{D} \mid \mathcal{P} \mid F^A \mid F + F \mid F \circ F \mid F \times F$$

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

on

Sets

Discrete probabilistic systems are coalgebras

 $X \stackrel{c}{\rightarrow} FX$

probability distribution functor

$$F := - \mid A \mid \mathcal{D} \mid \mathcal{P} \mid F^A \mid F + F \mid F \circ F \mid F \times F$$

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

on

Sets

Discrete probabilistic systems are coalgebras

 $X \stackrel{c}{\rightarrow} FX$

probability distribution functor

$$F := - \mid A \mid \mathcal{D} \mid \mathcal{P} \mid F^A \mid F + F \mid F \circ F \mid F \times F$$

generic behaviour equivalence

branching-time semantics

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Discrete probabilistic systems are coalgebras

 $X \stackrel{c}{\rightarrow} FX$

probability distribution functor

$$F := - \mid A \mid \mathcal{D} \mid \mathcal{P} \mid F^A \mid F + F \mid F \circ F \mid F \times F$$

generic behaviour equivalence

branching-time semantics

coincides with concrete bisimilarity

on

Sets

Examples

NFA

$$2 \times (\mathcal{P}(-))^{A} \cong \mathcal{P} (1 + A \times (-))$$

Simple PA

$$\mathcal{P}(A \times \mathcal{D}(-))$$

Generative PTS

$$\mathcal{D}_{\leq 1} (1 + A \times (-))$$

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Continuous Probabilistic Systems

CC BY-SA 3.0

Continuous Probabilistic Systems

coalgebraically

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Continuous Probabilistic Systems

CC BY-SA 3.0

Continuous Probabilistic Systems

Continuous Probabilistic Systems

Objects = measurable spaces

Arrows = measurable maps

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Discrete vs. Continuous Probabilistic Systems

more complex but analogous results are possible

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Both discrete and continuous probabilistic systems are coalgebras

CC BY-SA 3.0

Both discrete and continuous probabilistic systems are coalgebras on on Sets

on on

Sets

Both discrete and continuous probabilistic systems are

coalgebras

gon Meas

on on

Sets

CC BY-SA 3.0

coalgebras

generic notion of behavioural equivalence

gon Meas

on on

Sets

Both discrete and continuous

probabilistic systems

are

coalgebras

gon Meas

generic notion of behavioural equivalence

> strong, branching-time semantics

Source Wikipedia, by Diacritica - Own work CC BY-SA 3.0

Part II

Modelling probabilistic systems for linear-time semantics

CC BY-SA 3.0

Part II

Modelling probabilistic systems for linear-time semantics

coalgebraically

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

top states

$$\begin{array}{c|cccc}
 & x_1 & & & \\
 & x_2 & & x_3 & & \\
 & b \downarrow & & \downarrow c & \\
 & x_4 & & x_5 & & \\
 & 1 \downarrow & & \downarrow 1 & & \\
 & * & & * & & \\
\end{array}$$

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

top states

$$\begin{array}{c|cccc}
 & x_1 & & & \\
 & x_2 & & x_3 & \\
 & b \downarrow & & \downarrow c \\
 & x_4 & & x_5 & \\
 & 1 \downarrow & & \downarrow 1 \\
 & * & & *
\end{array}$$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

top states

$$\begin{array}{c|cccc}
 & x_1 & & & \\
 & x_2 & & x_3 & \\
 & b \downarrow & & \downarrow c \\
 & x_4 & & x_5 & \\
 & 1 \downarrow & & \downarrow 1 \\
 & * & & *
\end{array}$$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \{ab, ac\}$$

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

top states

Are the following systems equivalent?

$$\begin{array}{c|cccc}
 & x_1 & & & \\
 & x_2 & & x_3 & & \\
 & b \downarrow & & \downarrow c & \\
 & b \downarrow & & \downarrow c & \\
 & x_4 & & x_5 & & \\
 & 1 \downarrow & & \downarrow 1 & \\
 & * & & * & & \\
\end{array}$$

 $\operatorname{tr}: X \to \mathcal{P}(A^*)$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \{ab, ac\}$$

NFA = LTS + termination

$$2 \times \mathcal{P}^{A} \cong \mathcal{P} (1 + A \times -)$$

top states

Are the following systems equivalent?

$$\begin{array}{c|cccc}
x_1 & & & \\
x_2 & & x_3 \\
b \downarrow & & \downarrow c \\
x_4 & & x_5 \\
1 \downarrow & & \downarrow 1 \\
* & & *
\end{array}$$

 $\operatorname{tr}: X \to \mathcal{P}(A^*)$

- no, they are not wrt. bisimilarity
- yes, they are wrt. trace equivalence

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \{ab, ac\}$$

kernel of the trace map

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

top states

$$\begin{pmatrix} y_1 \\ a,1 & \\ b,\frac{1}{6} & y_2 & \\ c,\frac{1}{8} \\ & & & \\ y_3 & y_4 \\ & & & \\$$

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

top states

- different wrt. bisimilarity
- equivalent wrt. trace equivalence

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

top states

$$y_1$$
 $a,1$
 $b,\frac{1}{6}$
 y_2
 $c,\frac{1}{8}$
 y_3
 y_4
 y
 y
 $*$

- different wrt. bisimilarity
- equivalent wrt. trace equivalence

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \left(ab \mapsto \frac{1}{6}, ac \mapsto \frac{1}{8}\right)$$

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

top states

Are the following systems equivalent?

$$y_1$$
 $a,1$
 $b,\frac{1}{6}$
 y_2
 $c,\frac{1}{8}$
 y_3
 y_4
 y
 y
 $*$

- different wrt. bisimilarity
- equivalent wrt. trace equivalence

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \left(ab \mapsto \frac{1}{6}, ac \mapsto \frac{1}{8}\right)$$

kernel of the trace map

Generative PTS

$$\mathcal{D}_{\leq 1}(1 + A \times (-))$$

Are the following systems equivalent?

top states

$$y_1 \\ a, 1 \\ \psi \\ b, \frac{1}{6} \quad y_2 \quad c, \frac{1}{8} \\ \swarrow \quad \searrow \\ y_3 \quad y_4 \\ \psi \quad \psi \\ * \quad *$$

 $\operatorname{tr}: X \to \mathcal{D}(A^*)$

- different wrt. bisimilarity
- equivalent wrt. trace equivalence

$$\operatorname{tr}(x_1) = \operatorname{tr}(y_1) = \left(ab \mapsto \frac{1}{6}, ac \mapsto \frac{1}{8}\right)$$

kernel of the trace map

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

- (1) unfold branching + transitions on words
- (2) trace = bisimilarity after determinisation

NFA / LTS

Two ideas:

(1) unfold branching + transitions on words

(2) trace = bisimilarity after determinisation

monads!

we need to move out of Sets

we need to move out of **Sets**

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

we need to move out of **Sets**

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

Two approaches:

Hasuo, Jacobs, S. LMCS '07 we need to move out of **Sets**

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

Two approaches:

Hasuo, Jacobs, S. LMCS '07

we need to move out of Sets

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

Silva, Bonchi, Bonsangue, Rutten FSTTCS'10

Two approaches:

Hasuo, Jacobs, S. LMCS '07 we need to move out of **Sets**

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

of a monad T

we can connect (1) and (2)

Silva, Bonchi, Bonsangue, Rutten FSTTCS'10

Two approaches:

Hasuo, Jacobs, S. LMCS '07 we need to move out of **Sets**

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

of a monad T

Jacobs, Silva, S. JCSS'15

we can connect (1) and (2)

Silva, Bonchi, Bonsangue, Rutten FSTTCS'10

we need to move out of **Sets**

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

we need to move out of **Sets**

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

of a monad T $\mu\colon TT\Rightarrow T$ $\eta\colon Id\Rightarrow T$

we need to move out of **Sets**

Two approaches:

- (1) modelling in a Kleisli category
- (2) modelling in an Eilenberg-Moore category

of a monad T $\mu\colon TT\Rightarrow T$ $\eta\colon Id\Rightarrow T$ are monads

we need to move out of **Sets**

Two approaches:

(1) modelling in a Kleisli category

works for *TF*-coalgebras

(2) modelling in an Eilenberg-Moore category

of a monad T $\mu\colon TT\Rightarrow T$ $\eta\colon Id\Rightarrow T$ are monads

we need to move out of **Sets**

Two approaches:

(1) modelling in a Kleisli category

works for *TF*
coalgebras

(2) modelling in an Eilenberg-Moore category

of a monad T

 $\mu \colon TT \Rightarrow T$

 $\eta \colon Id \Rightarrow T$

are monads

 \mathcal{P} and \mathcal{D}

NFA, Generative PTS,..

we need to move out of **Sets**

Two approaches:

(1) modelling in a Kleisli category

works for *TF*-coalgebras

(2) modelling in an Eilenberg-Moore category

of a monad T

NFA, Generative PTS,..

 $\mu \colon TT \Rightarrow T$ $\eta \colon Id \Rightarrow T$

initial algebra = final coalgebra

we need to move out of Sets

Two approaches:

(1) modelling in a Kleisli category

works for TFcoalgebras

(2) modelling in an Eilenberg-Moore catagory

of a monad T

NFA, Generative PTS,..

works for FTcoalgebras

 $\mu \colon TT \Rightarrow T$ $\eta \colon \overline{Id} \Rightarrow \overline{T}$ are monads

initial algebra = final coalgebra

 \mathcal{P} and \mathcal{D}

we need to move out of **Sets**

Two approaches:

(1) modelling in a Kleisli category

works for *TF*-coalgebras

(2) modelling in an Eilenberg-Moore category

of a monad T

NFA, Generative PTS,.. works for *FT*-coalgebras

 $\mu \colon TT \Rightarrow T$ $\eta \colon Id \Rightarrow T$

initial algebra = final coalgebra

NFA, Reactive PTS,..

 \mathcal{P} and \mathcal{D}

we need to move out of Sets

Two approaches:

(1) modelling in a Kleisli category

works for TFcoalgebras

(2) modelling in an Eilenberg-Moore catagory

of a monad T

NFA, Generative PTS,..

works for FTcoalgebras

 $\mu \colon TT \Rightarrow T$ $\eta \colon \overline{Id} \Rightarrow \overline{T}$

initial algebra = final coalgebra

NFA, Reactive PTS,...

via generalised determinisation

 \mathcal{P} and \mathcal{D}

we need to move out of **Sets**

Two approaches:

(1) modelling in a Kleisli category

works for *TF*-coalgebras

(2) modelling in an Eilenberg-Moore category

of a monad T

NFA, Generative PTS,.. works for *FT*-coalgebras

 $\mu \colon TT \Rightarrow T$ $\eta \colon Id \Rightarrow T$

initial algebra = final coalgebra

NFA, Reactive PTS,..

via generalised determinisation

generalised² determinization connects (1) and (2)

 \mathcal{P} and \mathcal{D}

we need to move out of Sets

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an <u>F</u>-coalgebra on $\mathcal{E}\mathcal{M}(T)$

we need to move out of Sets

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{E}\mathcal{M}(\mathsf{T})$

algebras

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

algebras DA \downarrow^{α} A

we need to move out of **Sets**

Two approaches:

(1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$

free ones

(2) FT-coalgebra on Sets becomes an \underline{F} -coalgebra on $\mathcal{EM}(T)$

algebras

 $\mathcal{D}A$ $\downarrow \alpha$ A

we need to move out of **Sets**

Two approaches:

(1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$

free ones

(2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

algebras

 $\mathcal{D}A$ $\downarrow \alpha$

we need to move out of **Sets**

Two approaches:

(1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$

free ones

(2) FT-coalgebra on Sets becomes an E-coalgebra on £M(T)

algebras

suitable lifting

 $\psi \mu$ $\mathcal{D}S$

we need to move out of **Sets**

Two approaches:

(1) TF-coalgebra on Sets becomes an \underline{F} -coalgebra on $\mathfrak{Kl}(T)$

free ones

(2) FT-coalgebra on Sets becomes an E-coalgebra on £M(T)

algebras

Needed: distributive laws!

$$(1) \quad FT \Rightarrow TF$$

(2)
$$TF \Rightarrow FT$$

suitable lifting $\begin{array}{ccc} \mathcal{D}A & \mathcal{D}\mathcal{D}S \\ \downarrow^{\alpha} & \downarrow^{\mu} \\ A & \mathcal{D}S \end{array}$

we need to move out of **Sets**

Two approaches:

(1) TF-coalgebra on Sets becomes an \underline{F} -coalgebra on $\mathfrak{Kl}(T)$

free ones

(2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

algebras

Needed: distributive laws!

$$(1) \quad FT \Rightarrow TF$$

(2)
$$TF \Rightarrow FT$$

suitable lifting

trace equivalence is behaviour equivalence

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

Needed: distributive laws!

$$(1) \quad FT \Rightarrow TF$$

(2)
$$TF \Rightarrow FT$$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

Needed: distributive laws!

$$(1) \quad FT \Rightarrow TF$$

$$(T)$$
 $TF \Rightarrow FT$

 $X \to TFX \to TFTFX \to TTFFX \to TFFX \cdots$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

Needed: distributive laws!

$$(1) \quad FT \Rightarrow TF$$

(2)
$$TF \Rightarrow FT$$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

Needed: distributive laws!

$$(1) \quad FT \Rightarrow TF$$

(2)
$$TF \Rightarrow FT$$

 $TX \to TFTX \to FTTX \to FTX$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

we need to move out of **Sets**

Two approaches:

- (1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathfrak{Kl}(T)$
- (2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

we need to move out of **Sets**

Two approaches:

(1) TF-coalgebra on Sets becomes an E-coalgebra on $\mathcal{Kl}(T)$

must be order enriched

(2) FT-coalgebra on Sets becomes an E-coalgebra on $\mathcal{EM}(T)$

Needed: distributive laws!

(1) $FT \Rightarrow TF$ (2) $TF \Rightarrow FT$ distributive monad multiplication $TX \rightarrow TFTX \rightarrow FTTX \rightarrow FTX$

NFA

$$P(1 + A \times (-))$$

$$\operatorname{tr}(x_1) = \{ab, ac\}$$

$$\operatorname{tr}: X \to \mathcal{P}(A^*)$$

NFA

$$P(1 + A \times (-))$$

$$\operatorname{tr}(x_1) = \{ab, ac\}$$

$$\operatorname{tr}: X \to \mathcal{P}(A^*)$$

trace
equivalence is
behaviour
equivalence in
Kl(P)

NFA

$$P(1 + A \times (-))$$

$$\operatorname{tr}(x_1) = \{ab, ac\}$$

$$\operatorname{tr} \colon X \to \mathcal{P}(A^*)$$
 arrow in $\mathcal{Kl}(\mathcal{P})$

NFA

$$P(1 + Ax(-))$$

lifts to $\mathcal{Kl}(\mathcal{P})$ via a distributive law

$$\operatorname{tr}(x_1) = \{ab, ac\}$$

$$\operatorname{tr}: X \to \mathcal{P}(A^*)$$

arrow in $\mathcal{K}l(\mathcal{P})$

NFA

$$P(1 + A \times (-))$$

lifts to $\mathcal{Kl}(P)$ via a distributive law

$$\operatorname{tr}(x_1) = \{ab, ac\}$$

$$\operatorname{tr}: X \to \mathcal{P}(A^*)$$

arrow in $\mathcal{Kl}(\mathcal{P})$

trace
equivalence is
behaviour
equivalence in $\mathcal{Kl}(\mathcal{P})$

 $1 + A \times \mathcal{P} \Rightarrow \mathcal{P}(1 + A \times -)$

NFA

$$P(1 + A \times (-))$$

lifts to $\mathcal{Kl}(P)$ via a distributive law

$$\operatorname{tr}(x_1) = \{ab, ac\}$$

$$\operatorname{tr}: X \to \mathcal{P}(A^*)$$

arrow in $\mathcal{K}l(\mathcal{P})$

trace
equivalence is
behaviour
equivalence in
Kl(P)

 $1 + A \times \mathcal{P} \Rightarrow \mathcal{P}(1 + A \times -)$

$$X \to \mathcal{P}(1 + A \times X) \to \mathcal{P}(1 + A \times \mathcal{P}(1 + A \times X)) \to \mathcal{P}^2(1 + A \times (1 + A \times X)) \to \mathcal{P}(1 + A \times X + A^2 \times X) \cdots$$

$$D(1 + A \times (-))$$

$$\mathcal{D}(1 + A \times (-))$$

$$tr(x_1)(ab) = \frac{1}{6} \quad tr(x_1)(ac) = \frac{1}{8}$$

$$\mathcal{D}(1 + A \times (-))$$

$$a, \frac{1}{3}$$
 x_1 $a, \frac{1}{4}$ x_2 x_3 $b, \frac{1}{2}$ ψ $\psi c, 1$ x_4 x_5 $\psi \frac{1}{2}$ $*$

$$tr(x_1)(ab) = \frac{1}{6}$$
 $tr(x_1)(ac) = \frac{1}{8}$

$$\operatorname{tr}: X \to \mathcal{D}(A^*)$$

Generative PTS

$$\mathcal{D}(1 + A \times (-))$$

$$a, \frac{1}{3}$$
 x_1 $a, \frac{1}{4}$ x_2 x_3 $b, \frac{1}{2}$ ψ $\psi c, 1$ x_4 x_5 $\psi \frac{1}{2}$ ψ

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6} \quad \operatorname{tr}(x_1)(ac) = \frac{1}{8}$$

$$\operatorname{tr}: X \to \mathcal{D}(A^*)$$

Generative PTS

$$\mathcal{D}(1 + A \times (-))$$

$$a, \frac{1}{3}$$
 x_1 $a, \frac{1}{4}$ x_2 x_3 $b, \frac{1}{2}$ ψ $\psi c, 1$ x_4 x_5 $\psi \frac{1}{2}$ $*$

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6} \quad \operatorname{tr}(x_1)(ac) = \frac{1}{8}$$

 $\operatorname{tr}: X \to \mathcal{D}(A^*)$

arrow in $\mathcal{K}l(\mathcal{D})$

Generative PTS

$$D(1 + A \times (-))$$

$$a, \frac{1}{3}$$
 x_1 $a, \frac{1}{4}$ x_2 x_3 $b, \frac{1}{2}$ ψ $\psi c, 1$ x_4 x_5 $\psi \frac{1}{2}$ $*$

lifts to $\mathcal{Kl}(\mathcal{D})$ via a distributive law

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6} \quad \operatorname{tr}(x_1)(ac) = \frac{1}{8}$$

 $\operatorname{tr}: X \to \mathcal{D}(A^*)$

arrow in $\mathcal{K}l(\mathcal{D})$

Generative PTS

$$D(1 + A \times (-))$$

$$a, \frac{1}{3}$$
 x_1 $a, \frac{1}{4}$ x_2 x_3 $b, \frac{1}{2}$ ψ $\psi c, 1$ x_4 x_5 $\psi \frac{1}{2}$ $*$

 $1 + A \times \mathcal{D} \Rightarrow \mathcal{D}(1 + A \times -)$

lifts to $\mathcal{Kl}(\mathcal{D})$ via a distributive law

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6} \quad \operatorname{tr}(x_1)(ac) = \frac{1}{8}$$

$$\operatorname{tr}: X \to \mathcal{D}(A^*)$$

arrow in $\mathcal{K}l(\mathcal{D})$

\mathcal{D} for $\mathcal{D}_{\leq 1}$

(1) Traces in Kleisli

Generative PTS

$$D(1 + Ax(-))$$

$$a, \frac{1}{3}$$
 x_1 $a, \frac{1}{4}$ x_2 x_3 $b, \frac{1}{2}$ ψ $v, 1$ x_4 x_5 $v, \frac{1}{2}$ $v, \frac{1}{2}$

 $1 + A \times \mathcal{D} \Rightarrow \mathcal{D}(1 + A \times -)$

lifts to $\mathcal{Kl}(\mathcal{D})$ via a distributive law

$$tr(x_1)(ab) = \frac{1}{6}$$
 $tr(x_1)(ac) = \frac{1}{8}$

$$\operatorname{tr}: X \to \mathcal{D}(A^*)$$

arrow in $\mathcal{Kl}(\mathcal{D})$

$$X \to \mathcal{D}(1 + A \times X) \to \mathcal{D}(1 + A \times \mathcal{D}(1 + A \times X)) \to \mathcal{D}^2(1 + A \times (1 + A \times X)) \to \mathcal{D}(1 + A \times X + A^2 \times X) \cdots$$

NFA

 $2 \times P^A$

$$D(1 + Ax(-))$$

$$D(1 + Ax(-))$$

Generative PTS

$$D(1 + Ax(-))$$

DFA

[0,1]
$$\times$$
 (-)^A states \mathcal{D} (-)

Generative PTS

$$\mathcal{D}(1 + A \times (-))$$

DFA

[0,1]
$$\times$$
 (-)^A states \mathcal{D} (-)

trace = bisimilarity after determinisation

Generative PTS

$$\mathcal{D}(1 + A \times (-))$$

DFA

[0,1] x (-)^A states
$$\mathcal{D}$$
(-)

trace = bisimilarity after determinisation

Happens in $\mathcal{EM}(\mathcal{D})$

Generative PTS

$$\mathcal{D}(1 + A \times (-))$$

DFA

[0,1]
$$\times$$
 (-)^A states \mathcal{D} (-)

Happens in $\mathcal{EM}(\mathcal{D})$

(positive) convex algebras

trace = bisimilarity after determinisation