Homework 2

Huan Chen

1. Matlab Part

Test the matlab codes with a 2D map: 250×250 map, obstacles ratio is 0.3, target location (250, 250). Calculation result is showed in Table 1.

Dijkstra is the slowest, as showed in the Figure 1, it visits all the nodes on the map. A* with Manhattan distance as heuristic function is the fastest while fails to find the shortest path.

Figure 1: Path planning on 250×250 map, heuristic function used (from left to right): 0 (Dijkstra), Euclidean distance, Manhattan distance

2. C++ Part

2.1 The influence of heuristic function

Table 2 shows the path planning result with three heuristic function, targeting three points: A, B, C. We can conclude the following conclusions:

Table 1: A* path planning with three heuristic functions

	0 (Dijkstra)	Euclidean	Manhattan
Path length	370.30	370.30	378.40
Time	78.43	25.93	0.62

Table 2: Path planning with three heuristic functions, 3 target points

Target Point 1-A					
Euclidean Manhattan Diagonal					
Time (ms)	0.4732	0.0968	0.1322		
Path cost (m)	5.5799	5.6971	5.5799		
Visited nodes	496	26	99		

Target Point 1-B					
Euclidean Manhattan Diagonal					
Time (ms)	1.2010	0.1205	0.3946		
Path cost (m)	5.7999	5.7999	5.7999		
Visited nodes	983	24	369		

Target Point 1-C					
Euclidean Manhattan Diagonal					
Time (ms)	0.6728	0.1267	0.1695		
Path cost (m)	5.4876	5.6340	5.4876		
Visited nodes	288	21	85		

- 1. Calculation speed: Manhattan > Diagonal > Euclidean, Manhattan is the fastest.
- 2. Number of visited nodes: Euclidean > Diagonal > Manhattan
- 3. Path cost (length): Manhattan > Euclidean = Diagonal, Manhattan cannot promise a shortest path.

2.2 The influence of tie breaker

Use Euclidean heuristic function, compare the influence of the tie breaker, the result is showed in Table 3. Tie breaker can reduce the visited nodes therefore shorten the calculation time, while keep the shortest length at the mean time.

2.3 A* and jumping point search

In lots of situations in this map, JPS can find a path faster than A*, as the **case 1** and **case 2** showed in Table 4. Because there are many obstacles on the map, JPS has no chance to expand too much. But the improvement is not so obvious in these two cases.

Sometimes, JPS has less visited nodes, but still takes longer time to find a path, as the **case 3** in Table 4. Because JPS reduces the number of nodes in the open list, but increases the number of status query.

Also, sometimes JPS is less efficient than A*. Like the **case 4** showed in Table 4. As you can find in Figure 3, the target point locates high space in 3D map, there are much less obstacles around, JPS could have more nodes to expand and have less chance to find jump points.

Table 3: Path planning with and without tie breaker

Target Point 2-A				
No Tie Breaker With Tie Breaker				
Time (ms)	1.1697	0.5940		
Path cost (m)	6.4683	6.4683		
Visited nodes	496	26		

Target Point 2-B				
No Tie Breaker With Tie Breaker				
Time (ms)	1.3600	0.8106		
Path cost (m)	6.0734	6.0734		
Visited nodes	972	472		

Target Point 2-C				
No Tie Breaker With Tie Breaker				
Time (ms)	0.8412	0.2806		
Path cost (m)	6.0971	6.0971		
Visited nodes	514	220		

Table 4: JPS and A^* comparisons

JPS is faster	Case 1		Case 2	
	A*	JPS	A*	JPS
Time (ms)	0.4520	0.2721	0.4760	0.4520
Path cost (m)	4.3321	4.3321	4.8634	4.8634
Visited nodes	268	96	355	159

A* is faster	Case 3		Case 4	
	A*	JPS	A*	JPS
Time (ms)	0.6286	0.9159	0.3929	1.2010
Path cost (m)	5.7655	5.7655	6.7554	6.7554
Visited nodes	407	343	212	250

Figure 2: JPS and \mathbf{A}^* path search comparison case 1

Figure 3: JPS and A^* path search comparison case 4

3. Appendix

The main process of A^* is showed in Algorithm 1. For the heuristic function, there are several options:

- 1. Dijkstra, h = 0.
- 2. Manhattan, h = dx + dy.
- 3. Euclidean, $h = \sqrt{dx^2 + dy^2}$

```
4. Diagonal, h = dx + dy + (\sqrt{2} - 2) * min(dx, dy)
```

```
5. Tie break, h=h\times(1+p),\,p<\frac{\text{minimum cost of one step}}{\text{expected maximum path cost}}
```

For the jump point search algorithm, mainly the node expansion method is different with breadth first search (BFS).

Algorithm 1 A* Algorithm

```
Input: Map, startNode, targetNode
Output: Path
 1: for node in the map do
     node.visited = false
     node.gScore = inf
 3:
     node.fScore = inf
 4:
5:
     node.parent = NULL
 6: end for
 7: startNode.gScore = 0
 8: startNode.fScore = 0
9: OPEN = startNode
10: while OPEN \neq \emptyset do
11:
     currentNode = findLowestScore(OPEN)
     currentNode.visited = true
12:
     eraseFromOpen(currentNode)
13:
     if currentNode == targetNode then
14:
        return buildPath(targetNode)
15:
16:
     end if
     neighborNodeSet = getSuccors(currentNode)
17:
     for neighborNodeSet do
18:
       edgeCost = calculateEdgeCost(currentNode, neighborNode)
19:
       if neighborNode.visited == false then
20:
21:
          neighborNode.gScore = current.gScore + edgeCost
          neighborNode.fScore = neighborNode.gScore + calculateHeuristicScore(neighborNode,
22:
         targetScore)
         neighborNode.parent = currentNode
23:
         insertIntoOpen(neighborNode)
24:
25:
        else if neighborNode.gScore ≥ current.gScore + edgeCost then
         neighborNode.gScore = current.gScore + edgeCost
26:
         neighborNode.fScore = neighborNode.gScore + calculateHeuristicScore(neighborNode,
27:
          targetScore)
         neighborNode.parent = currentNode
28:
        end if
29:
     end for
30:
31: end while
```