Yakeen NEET 2.0 2026

Physics By Manish Raj Sir

Units and Measurements

Assignment-02 By: M.R. Sir

- 1. If speed V, area A and force F are chosen as fundamental units, then the dimension of Young's modulus will be: [**JEE Main 2020**]
 - (1) $FA^{-1}V^0$
- (2) FA^2V^{-1}
- (3) FA^2V^{-2}
- (4) FA^2V^{-3}
- 2. If momentum (P), area (A) and time (T) are taken to be the fundamental quantities then the dimensional [**JEE Main 2020**] formula for energy is
 - (1) $[P^{1/2} AT^{-1}]$
 - (2) $[P^2 AT^{-2}]$
 - (3) $[PA^{1/2} T^{-1}]$
 - (4) $[P^{-1}AT^{-2}]$
- The dimensions of $\frac{B^2}{2\mu_0}$, where B is magnetic field 3.

and μ_0 is the magnetic permeability of vacuum, is

[**JEE Main 2020**]

- (1) $ML^{-1}L^{-2}$
- (2) $ML^2 L^{-2}$
- (3) $ML^{-1}L^2$ (4) $ML^{-2}L^{-1}$
- 4. Stopping potential depends on Planck's constant (h), current (I), Universal gravitational constant (G) and speed of light (C). Choose the correct option for the dimension of stopping potential (V)

[**JEE Main 2020**]

- (1) $hI^{-1}G^{-1}C^5$ (2) $h^{-1}I^1G^{-1}C^6$
- (3) $h^0 I^{-1} G^{-1} C^6$ (4) $h^0 I^{-1} G^{-1} C^5$
- 5. If 'C' and 'V' represent capacity and voltage respectively then what are the dimensions of λ where $C/V = \lambda$? [**JEE Main 2021**]
 - (1) $[M^{-2} L^{-4} I^3 T^7]$
 - (2) $[M^{-2} L^{-3} I^2 T^6]$
 - (3) $[M^{-1} L^{-3} I^{-2} T^7]$
 - (4) $[M^{-3} L^{-4} I^3 T^7]$

- Identify the pair of physical quantities which have 6. different dimensions: [**JEE Main 2022**]
 - (1) Wave number and Rydberg's constant
 - (2) Stress and Coefficient of elasticity
 - (3) Coercivity and Magnetization
 - (4) Specific heat capacity and Latent heat
- 7. If momentum [P], area [A] and time [T] are taken as fundamental quantities, then the dimensional formula for coefficient of viscosity is:

[**JEE Main 2022**]

- (1) $[P A^{-1} T^{0}]$
- (2) $[P A T^{-1}]$
- (3) $[P A^{-1} T]$
- (4) $[P A^{-1} T^{-1}]$
- Given below are two statements:

Statements-I: Astronomical unit (Au), Parsec (Pc) and Light year (ly) are units for measuring astronomical distances.

Statements-II: Au < Parsec (pc) < ly

In the light of the above statements, choose the most appropriate answer from the options given below:

[**JEE Main 2023**]

- (1) Both Statement I and Statement II are incorrect
- (2) Statement I is correct but Statement II is incorrect
- (3) Both Statement I and Statement II are correct
- (4) Statement I is incorrect but Statement II is correct
- 9. If force (F), velocity (V) and time (T) are considered as fundamental physical quantity, then dimensional [JEE Main 2023] formula of density will be:
 - (1) $FV^4 T^{-6}$
- (2) $FV^{-4}T^{-2}$
- (3) $F^2 V^{-2} T^6$
- (4) $FV^{-2}T^2$

- 10. The speed of a wave produced in water is given by $v = \lambda^a g^b \rho^c$. Where λ , g and ρ are wavelength of wave, acceleration due to gravity and density of water respectively. The values of a, b and c respectively, are [JEE Main 2023]
 - (1) 1, -1, 0
- (2) $\frac{1}{2}$, 0, $\frac{1}{2}$
 - (3) 1, 1, 0
- (4) $\frac{1}{2}, \frac{1}{2}, 0$
- 11. The frequency (v) of an oscillating liquid drop may depend upon radius (r) of the drop, density (ρ) of liquid and the surface tension (s) of the liquid as: $v = r^a \rho^b s^c$. The values of a, b and c respectively are [JEE Main 2023]
 - (1) $\left(-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}\right)$ (2) $\left(\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}\right)$
 - (3) $\left(\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}\right)$ (4) $\left(-\frac{3}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- 12. The equation of a circle is given by $x^2 + y^2 = a^2$, where a is the radius. If the equation is modified to change the origin other than (0, 0), then find out the correct dimensions of A and B in a new equation:

$$(x-At)^2 + \left(y - \frac{t}{B}\right)^2 = a^2$$
. The dimensions of t is given as $[T^{-1}]$. [JEE Main 2023]

- (1) $A = [L^{-1} T], B = [LT^{-1}]$
- (2) $A = [LT], B = [L^{-1}T^{-1}]$
- (3) $A = [L^{-1} T^{-1}], B = [LT^{-1}]$
- (4) $A = [L^{-1} T^{-1}], B = [LT]$
- 13. If the velocity of light c, universal gravitational constant G and Planck's constant h are chosen as fundamental quantities. The dimensions of mass in the new system is:

 [JEE Main 2023]
 - (1) $\left[h^{\frac{1}{2}}c^{-\frac{1}{2}}G^{1}\right]$ (2) $\left[h^{1}c^{1}G^{-1}\right]$
 - (3) $\left[h^{-\frac{1}{2}}c^{\frac{1}{2}}G^{\frac{1}{2}}\right]$ (4) $\left[h^{\frac{1}{2}}c^{\frac{1}{2}}G^{-\frac{1}{2}}\right]$

- 14. Applying the principle of homogeneity of dimensions, determine which one is correct, where T is time period G is gravitational constant, M is mass, r is radius of orbit.[JEE Main 2024]
 - (1) $T^2 = \frac{4\pi^2 r^2}{GM}$ (2) $T^2 = \frac{4\pi^2 r}{GM^2}$
 - (3) $T^2 = \frac{4\pi^2 r^3}{GM}$ (4) $T^2 = 4\pi^2 r^3$
- 15. If G be the gravitational constant and u be the energy density then which of the following quantity have the dimensions as that of the \sqrt{uG} :

[JEE Main 2024]

- (1) Pressure gradient per unit mass
- (2) Gravitational potential
- (3) Energy per unit mass
- (4) Force per unit mass
- **16.** Statement (I): Dimension of specific heat is $[L^2T^{-2}K^{-1}]$

Statement (II): Dimension of gas constant is $[ML^2T^{-1}K^{-1}]$ [JEE Main 2024]

- (1) Both Statement (I) and Statement (II) are correct
- (2) Statement (I) is correct but Statement (II) is incorrect
- (3) Both Statement (I) and Statement (II) are incorrect Statement (I) is incorrect but statement (II) is correct
- (4) Statement (I) is incorrect but Statement (II) is correct
- 17. The de-Broglie wavelength associated with a particle of mass m and energy E is $h/\sqrt{2mE}$. The dimensional formula for Planck's constant is:

[JEE Main 2024]

- (1) $[ML^2 T^{-1}]$
- (2) $[ML^{-1} T^{-2}]$
- (3) $[MLT^{-2}]$
- (4) $[M^2 L^2 T^{-2}]$

18. Statement-I: Planck's constant and angular momentum have same dimensions.

Statement-II: Linear momentum and moment of force have same dimensions.

Choose the correct answer from the options given below: [JEE Main 2024]

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true
- 19. If mass is written as $m = k c^P G^{-1/2} h^{1/2}$ then the value of P will be: (Constants have their usual meaning with k a dimensionless constant) [JEE Main 2024]
 - (1) 1/2
- (2) 1/3
- (3) 2
- (4) -1/3
- **20.** Consider two physical quantities A and B related to

each other as $E = \frac{B - x^2}{At}$ where E, x and t have

dimensions of energy, length and time respectively. The dimension of AB is [JEE Main 2024]

- (1) $L^{-2}M^1T^0$
- (2) $L^2M^{-1}T^1$
- (3) $L^{-2}M^{-1}T^1$
- (4) $L^0M^{-1}T^1$
- 21. In a measurement, it is asked to find modulus of elasticity per unit torque applied on the system. The measured quantity has dimension of $[M^aL^bT^c]$. If b=3, the value of c is _____. [JEE Main 2025]

22. Match List-I with List-II

[JEE Main 2025]

List-I		List-II		
(A)	Gravitational constant	I	[LT ⁻²]	
(B)	Gravitational potential	II	$[L^2T^{-2}]$	
	energy			
(C)	Gravitational potential	III	$[ML^2T^{-2}]$	
(D)	Acceleration due to gravity	IV	$[M^{-1}L^3T^{-2}]$	

Choose the correct answer from the options given below:

- (1) A-IV, B-III, C-II, D-I
- (2) A-III, B-II, C-I, D-IV
- (3) A-II, B-IV, C-III, D-I
- (4) A-I, B-III, C-IV, D-II
- 23. In an electromagnetic system, a quantity defined as the ratio of electric dipole moment and magnetic dipole moment has dimension of [M^PL^QT^RA^S]. The value of P and Q are: [JEE Main 2025]
 - (1) -1, 0
- (2) -1, 1
- (3) 1, -1
- (4) 0, -1

A	NS	WE	R	KI	$\mathbf{E}\mathbf{V}$

2. **(3)**

3. **(1)**

4. **(4)**

5. (1)

(4) 6.

7. (1)

(2) 8.

9. **(2)**

(4) 10.

(1) 11.

(2) 12.

(4) 13.

(3) 14.

15. (4)

16. **(2)** 17. **(1)**

18. (1)

19. (1)

(2) 20.

21. **(4)**

22. (1)

23. **(4)**

