

NRC POSTDOCTORAL RESEARCH ASSOCIATE

Space Science Division, U.S. Naval Research Laboratory, Washington, D.C., USA

will.t.barnes@gmail.com | ★ https://wtbarnes.github.io | 🖸 wtbarnes | 🔝 wtbarnes | 🞓 Will Barnes

Education

Rice University Houston, TX

Ph.D. Physics

2016 - 2019

2013 - 2016

• Thesis: Diagnosing the Frequency of Energy Deposition in the Magnetically-Closed Solar Corona

· Advisor: Dr. Stephen Bradshaw

Rice University Houston, TX

M.S. Physics

Baylor University Waco, TX

B.S. Astrophysics 2009 – 2013

- Thesis: Astrophysical Applications of Dusty Plasma Physics, Advisor: Dr. Lorin Matthews
- University Honors Program, Magna Cum Laude, Phi Beta Kappa, Dean's List
- Minors: Mathematics, Great Texts of the Western Tradition

Experience_____

NRC Postdoctoral Research Associate

Washington, D.C.

U.S. Naval Research Laboratory

January 2020 – present

Visiting Postdoctoral Scholar

Stanford, CA

Palo Alto, CA

July - December 2019

W. W. Hansen Experimental Physics Laboratory, Stanford University
Exploring applications of HPC/cloud computing to analysis of HMI data

Postdoctoral Research ScientistLockheed Martin Solar and Astrophysics Laboratory, Bay Area Environmental Research Institute

May – December 2019

Developing workflows for analyzing AIA imaging data using HPC/cloud infrastructure in collaboration with Stanford U. and NASA Ames

Research Computing Intern

Houston, TX

CENTER FOR RESEARCH COMPUTING, RICE UNIVERSITY

October 2018 – May 2019

Developed web application for scheduled data transfers with Globus. Refactored high performance computing documentation in reStructuredText and Sphinx with interactive examples. Explored research applications for cloud computing.

Graduate Research Assistant

Houston, TX

DEPARTMENT OF PHYSICS AND ASTRONOMY, RICE UNIVERSITY

May 2014 - May 2019

Investigated observable signatures of nanoflare heating frequency using hydrodynamic simulations of coronal loops, forward modeling, and machine learning

Papers_

A current publication list is also available from Orcid (ID: 0000-0001-9642-6089).

REFEREED PUBLICATIONS

Understanding Heating in Active Region Cores through Machine Learning II. Classifying Observations, 2020 W. T. Barnes, S. J. Bradshaw, N. M. Viall, in prep SunPy: A Python Package for Solar Physics, Stuart J. Mumford, Nabil Freij, Steven Christe, Jack Ireland, 2020 Florian Mayer, V. Keith Hughitt, Albert Y. Shih, Daniel F. Ryan, Simon Liedtke, David Pérez-Suárez, et al. (including Will Barnes), JOSS, doi: 10.21105/joss.01832 The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package, The SunPy 2020 Community, Will T. Barnes, Monica G. Bobra, Steven D. Christe, Nabil Freij, Laura A. Hayes, Jack Ireland, Stuart Mumford, David Pérez-Suárez, Daniel F. Ryan, Albert Y. Shih, et al., ApJ, doi: 10.3847/1538-4357/ab4f7a Solar Active Region Heating Diagnostics from High Temperature Emission using the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS), P. S. Athiray, Amy R. Winebarger, Will T. Barnes, Stephen J. Bradshaw, 2019 Sabrina Savage, Harry P. Warren, Ken Kobayashi, Patrick Champey, Leon Golub, Lindsay Glesener, ApJ, doi: 10.3847/1538-4357/ab3eb4 Understanding Heating in Active Region Cores through Machine Learning I. Numerical Modeling and 2019 Predicted Observables, W. T. Barnes, S. J. Bradshaw, N. M. Viall, ApJ, doi: 10.3847/1538-4357/ab290c Inference of Heating Properties from Hot Non-flaring Plasmas in Active Region Cores II. Nanoflare Trains, 2016 W. T. Barnes, P. J. Cargill, S. J. Bradshaw, *ApJ*, doi: 10.3847/1538-4357/833/2/217 Inference of Heating Properties from Hot Non-flaring Plasmas in Active Region Cores I. Single Nanoflares, 2016 W. T. Barnes, P. J. Cargill, S. J. Bradshaw, *ApJ*, doi: 10.3847/0004-637X/829/1/31

CONFERENCE PROCEEDINGS

- 2017 **ChiantiPy: A Python Package for Astrophysical Spectroscopy**, <u>W. T. Barnes</u>, K. P. Dere, <u>16th SciPy Conference</u>, doi: 10.25080/shinma-7f4c6e7-011
- 2013 Dust Grain Growth in a Protoplanetary Disk: Effects of Location on Charge and Size, <u>W. T. Barnes</u>, L. S. Matthews, T. W. Hyde, <u>44th LPSC</u>, bibcode: 2013LPI....44.1897B

OTHER NON-REFEREED PUBLICATIONS

2018 Modeling Coronal Loops in 3D with sunpy.coordinates, W. T. Barnes, SunPy Blog, url: sunpy.org

Research Fellowships Awarded _____

NRC Research Associateship Postdoctoral Fellowship

NAVAL RESEARCH LABORATORY, NATIONAL ACADEMIES OF SCIENCES

Awarded 1-year NRC postdoctoral fellowship to study observational signatures of thermal non-equilibrium in coronal loops

NASA Postdoctoral Program Fellowship (declined)

NASA GODDARD SPACE FLIGHT CENTER, USRA

Awarded competitive NPP Fellowship to study physics of coronal heating; declined in favor of NRC postdoctoral fellowship

NSF REU Research Fellowship

BAYLOR UNIVERSITY, CASPER

Received NSF REU fellowship to study dust grain charging and growth in protoplanetary disks.

Summer Undergraduate Research Fellowship

BAYLOR UNIVERSITY, DEPT. OF PHYSICS

Awarded summer research funding to investigate plasma physics of charged dust grains in Saturn's F Ring.

Washington, D.C.

January 2020 – present

Washington, D.C.

Waco, TX

June – August 2012

Waco, TX

June – August 2011

Professional Service

Reviewer for: The Astrophysical Journal

Python in Astronomy Conference 2020

MEMBER OF SCIENTIFIC ORGANIZING COMMITTEE

20 - 24 April 2020

Organize webpage, communicate meeting announcements to community, and assist in choosing program of speakers

SHINE Workshop

Discussion session co-organizer and co-chair (with S. Bradshaw and N. Viall)

30 July – 3 August 2018

Topic: Signatures of Time-dependent Heating in Active Regions and the Slow Solar Wind

SPD/AAS Congressional Visit Day

STUDENT REPRESENTATIVE 25 June 2018

Visited senators and representatives to lobby for increase in NASA heliophysics budget

Presentations

CONFERENCE TALKS

Machine Learning in HeliophysicsAmsterdam, The Netherlands

CENTRUM WISKUNDE AND INFORMATICA

16 – 20 September 2019

Seeing the Trees through a Random Forest: Details of Active Region Heating Revealed through Forward Modeling and Classification

Coronal Loops Workshop IX

St Andrews, UK

UNIVERSITY OF ST ANDREWS 11 – 14 June 2019

Constraining the Frequency of Energy Deposition through Quantitative Comparisons of Models and Observations (invited)

Heliophysics Community Python Working Group Meeting

LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS 13 – 15 November 2018

Boulder, CO

Palo Alto, CA

20 June 2019

19 November 2018

29 October – 2 November 2018

fiasco: a Python Interface to the CHIANTI Atomic Database

2018 SDO Science Workshop Ghent, Belgium

ROYAL OBSERVATORY BELGIUM, SOLAR-TERRESTRIAL CENTRE OF EXCELLENCE
Understanding Heating Properties of Active Region Loops through Forward Modeling and Machine Learning

Triennial Earth-Sun Summit

Leesburg, VA

AMERICAN GEOPHYSICAL UNION 21 – 24 May 2018

Timelag Analysis of Simulated Active Region Cores Heated by Nanoflares

 Python in Astronomy 2018
 New York City, NY

 CENTER FOR COMPUTATIONAL ASTROPHYSICS, THE FLATIRON INSTITUTE
 30 April - 4 May 2018

A Complete fiasco - The Difficulties of Dealing with Atomic Data and a Possible Pythonic Solution

16th Python in Science Conference Austin, TX

SCIPY, ENTHOUGHT 10 – 16 July 2017

ChiantiPy: a Python package for Astrophysical Spectroscopy

Coronal Loops Workshop VIII Palermo, Italy

 INAF IASF Palermo
 27 – 30 June 2017

Constraining Nanoflare Heating Frequency with a Global Active Region Model

AAS Solar Physics Division Meeting Boulder, CO

AMERICAN ASTRONOMICAL SOCIETY 31 May – 3 June 2016

Hot Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

Texas Undergraduate Astronomy Research Symposium College Station, TX

Texas A&M University 14 September 2012

Dust Grain Charging in a Protoplanetary Disk

SEMINARS

Stanford Solar Group Science Meeting Stanford, CA

STANFORD UNIVERSITY 26 June 2019

Seeing the Trees through a Random Forest: Details of Active Region Heating Revealed through Forward Modeling and Classification

Lockheed Martin Solar and Astrophysics Seminar

LOCKHEED MARTIN SOLAR AND ASTROPHYSICS LABORATORY

Seeing the Trees through a Random Forest: Details of Active Region Heating Revealed through Forward Modeling and Classification

Space Physics Seminar Series

Houston, TX

RICE UNIVERSITY

Understanding Heating Frequency in Active Region Loops through Forward Modeling and Machine Learning

NRL Solar and Heliospheric Physics Branch Seminar

Naval Research Laboratory

Washington, D.C.

11 July 2018

Investigating Heating Frequency in Active Region Cores through Timelag Analysis of Forward Modeled Emission (invited)

Space Physics Seminar Series

Houston, TX

Space Filysics Seminar Series

RICE UNIVERSITY 27 February 2017

A Framework for Forward Modeling Solar Active Regions

Space Physics Seminar Series Houston, TX

RICE UNIVERSITY 9 November 2015

Impacts of Two-fluid Effects on Emission from Impulsively Heated Coronal Loops

OUTREACH

North Houston Astronomy Club Late Summer Gathering Conroe, TX

LONE STAR COLLEGE-MONTGOMERY CAMPUS 24 August 2018

Why is the Sun So Hot? A Current Perspective on Coronal Heating

POSTERS

American Geophysical Union Fall Meeting San Francisco, CA

AMERICAN GEOPHYSICAL UNION 9 – 13 December 2019

 $The Sun \ at \ Scale: Interactive \ Analysis \ of \ High \ Resolution \ EUV \ Imaging \ Data \ on \ HPC \ Platforms \ with \ Dask$

Solar Heliospheric and Interplanetary Environment (SHINE) Workshop

NATIONAL SCIENCE FOUNDATION

Using Synthetic and Observed Timelags to Constrain Nanoflare Heating Frequency in Active Region Cores

Rice Data Science Conference

Houston, TX

Cocoa Beach, FL

9 - 10 October 2017

24 - 28 July 2017

18 - 22 March 2013

30 July – 3 August 2018

RICE UNIVERSITY

Timelag Analysis of Global Hydrodynamic Simulations of Active Regions in the Solar Corona

Solar Heliospheric and Interplanetary Environment (SHINE) Workshop Saint-Sauveur, Quebec, CA

NATIONAL SCIENCE FOUNDATION Modeling Observable Signatures of Nanoflare Heating Frequency in Active Region Cores

Solar Heliospheric and Interplanetary Environment (SHINE) Workshop Santa Fe, NM

NATIONAL SCIENCE FOUNDATION 11 - 15 July 2016

Understanding the Impact of Nanoflare Heating Frequency on the Observed Emission Measure Distribution

Coronal Loops Workshop VII Cambridge, UK 21 - 23 July 2015

UNVERSITY OF CAMBRIDGE Effects of Ion Heating on Emission Measure of Coronal Loops in Active Region Cores

Triennial Earth-Sun Summit Indianapolis, IN

AMERICAN ASTRONOMICAL SOCIETY 26 - 30 April 2015

Nonnegative Matrix Factorization as a Method for Studying Coronal Heating

44th Annual Lunar and Planetary Science Conference The Woodlands, TX

LUNAR AND PLANETARY SCIENCE INSTITUTE Dust Grain Growth in a Protoplanetary Disk: Effects of Location on Charge and Size

Honors and Awards

Nov 2018 Metcalf Travel Award to the SDO Workshop, Solar physics Division of the AAS

Nov 2017 Scientific Image Contest (Second Place), Wiess School of Natural Sciences, Rice University

Jul 2017 Outstanding Student Poster Award, SHINE Workshop

May 2016 William and Elva Gordon Fellowship, Department of Physics and Astronomy, Rice University

May 2016 Chuoke Graduate Student Award, Department of Physics and Astronomy, Rice University

Apr 2015 Studentship Travel Award for AAS Solar Physics Division Meeting, Solar Physics Division of the AAS

Apr 2013 URSA Scholars Week Outstanding Research Poster in Physics, Baylor University

2009-2013 President's Gold Scholarship, Baylor University

2011, 2012 Gordon K. Teal Scholarship, Department of Physics, Baylor University

2010, 2011 Herbert D. Schwetman Scholarship, Department of Physics, Baylor University

Software and Computing_

SKILLS

Languages Bash, C, C++, IDL, Mathematica, MATLAB, Python

Scientific Computing numerical methods, high performance computing (e.g. SLURM, PBS), parallel/distributed data processing

Markup CSS, HTML, LaTeX, markdown, reStructuredText

DevOps continuous integration, documentation, testing, version control

OPEN SOURCE CONTRIBUTIONS

A more complete record of my contributions is available on GitHub.

fiasco 2017 - present

MAINTAINER github.com/wtbarnes/fiasco

fiasco provides a modern Python interface to the CHIANTI atomic database in addition to implementing many atomic physics calculations commonly used in solar physics. I am the creator and primary maintainer of fiasco.

2016 – present SunPy

CONTRIBUTOR github.com/sunpy/sunpy

SunPy is a library for solar data analysis in Python. I am an active member of the SunPy community and have made several contributions to the package. Specifically, I have worked to implement the widely-used AIA temperature response functions in SunPy.

ChiantiPy 2016 - 2017

CONTRIBUTOR github.com/chianti-atomic/ChiantiPy

ChiantiPy is a Python interface to CHIANTI atomic database. My main contributions to ChiantiPy have been improving the documentation and packaging infrastructure and adding a test suite.

Teaching and Mentoring_

STUDENTS MENTORED

Lily Han Rice University

UNDERGRADUATE October 2017 - April 2018

Assisted in advising undergraduate thesis work on force-free field extrapolations and forward modeling

Brandon Wang

HIGH SCHOOL INTERN April 2017 - May 2018

Advisor for STEM research course.

Tessa Wilkinson Google Summer of Code

UNDERGRADUATE May – August 2016

Mentor for project to implement AIA response functions in SunPy

TEACHING EXPERIENCE

PHYS 480/580: Introduction to Plasma Physics

Rice University

Clements High School

GUEST LECTURER

Gave guest lecture for introductory plasma course for senior undergraduate and graduate students. Topics covered included electrostatic waves, binary collisions, and motion in a uniform magnetic field.

ASTR 201: Stars, Galaxies, and the Universe

Rice University

GUEST LECTURER

Spring 2017

Fall 2018

Gave two guest lectures for non-majors astronomy course of approximately 70 undergraduate students. Topics covered included eclipses, phases of the moon, and the celestial sphere.

PHYS 102: Electricity and Magnetism

Rice University

LAB TEACHING ASSISTANT

LAB TEACHING ASSISTANT

Spring 2014, Spring 2015

Instructed lab sections of 40+ undergraduate students on topics including electrostatic interactions, magnetic induction, and basic circuits.

Rice University

PHYS 101: Mechanics

Fall 2014, Fall 2015

Instructed lab sections of 40+ undergraduate students on topics including kinematics, collisions, and simple harmonic motion.

Memberships_

- American Astronomical Society, Solar Physics Division (Junior Membership)
- Phi Beta Kappa
- · Sigma Pi Sigma