A Bayesian Approach to Baseball

•••

By: Tucker Saland

Introduction

- The aim of this project is two-fold: (1) I want to project the aging curve of MLB players over time, and (2) I want to determine whether there are certain playstyles and characteristics that lend themselves to player longevity.
- More precisely, I want to project players' WAR (Wins Above Replacement) values over time to construct probability distributions for player performance rather than the point estimate predictions that are currently in use.

CALIBER OF PLAYER	WINS ABOVE REPLACEMENT
BENCH GUY	0-1 WAR
ROLE PLAYER	1-2 WAR
SOLID STARTER	2-3 WAR
ABOVE-AVERAGE	3-4 WAR
ALL-STAR	4-5 WAR
SUPERSTAR	5-6 WAR
MVP	6+ WAR

Hypothetical Example – Josh Donaldson Trade

Suppose you are the Yankees' GM in February 2022. You get a call from the Twins, and they are ready to part with Josh Donaldson with two years left on his contract in exchange for three prospects.

The consensus is that over the lifetime of the trade, you would expect to make off slightly better in the long run with the prospects than you would with two years of Donaldson. But at the same time, your team is built to win now, and a 3.0 WAR 2022 season from Donaldson should bring you from a projected wildcard team to legitimate World Series contenders.

Donaldson would be going into his age 36 season in 2022, and in the previous season, he had 3.0 WAR. Do you take the trade?

Expected WAR = $(1 + \mu)$ × Previous Year WAR = 2.60

Probability of WAR > 3.0 = 1 - Φ (-μ/ σ) = 39.78% \rightarrow In other words, probability that percent change is greater than 0

Data

- 1. A list of all baseball games from 2016-2022 with aggregate box scores, location, odds, and team record scraped from <u>ESPN</u>.
- 2. Hitter-specific game logs from 2016-2022 from Fangraphs scraped using the baseballr package. This dataset includes traditional hitting metrics, advanced hitter statistics (e.g., exit velocity, launch angle, wRC+), and WAR (Wins Above Replacement).
- 3. Pitcher-specific game logs from 2016-2022 from Fangraphs scraped using the baseball package. This dataset includes advanced pitching metrics (e.g., FIP, HardHit%, pitch mix) along with traditional statistics.

Game <dbl></dbl>	away <chr></chr>	away-record <chr></chr>	awayaway-record <chr></chr>	home <chr></chr>	home-record <chr></chr>	homehome-record <chr></chr>
360403123	STL	0-1	0-1 Away	PIT	1-0	1-0 Home
360403130	TOR	1-0	1-0 Away	ТВ	0-1	0-1 Home
360403107	NYM	0-1	0-1 Away	KC	1-0	1-0 Home
360404108	SF	1-0	1-0 Away	MIL	0-1	0-1 Home
360404101	MIN	0-1	0-1 Away	BAL	1-0	1-0 Home
360404113	SEA	0-1	0-1 Away	TEX	1-0	1-0 Home

PlayerName <chr></chr>	playerid <int></int>	Date <chr></chr>	Te <chr></chr>	Opp <chr></chr>	season <int></int>		BatOrder <chr></chr>	Pos <chr></chr>	G <dbl></dbl>	AB <dbl></dbl>	PA <dbl></dbl>	H <dbl></dbl>
Bryce Harper	11579	2022-10-04	PHI	@H	2022	29		DH		4	4	
Bryce Harper	11579	2022-10-03	PHI	@H	2022	29		DH		4	4	
Bryce Harper	11579	2022-10-02	PHI	@	2022	29		DH		4	4	
Bryce Harper	11579	2022-10-01	PHI	@	2022	29		DH		4		
Bryce Harper	11579	2022-10-01	PHI	@	2022	29		DH			4	
Bryce Harper	11579	2022-09-30	PHI	@	2022	29		DH		4		

PlayerName <chr></chr>	playerid <int></int>	Date <chr></chr>	Opp <chr></chr>	teamid <int></int>	season <int></int>	Te <chr></chr>	HomeA <chr></chr>	Age <int></int>	W <dbl></dbl>	L <dbl></dbl>	ERA <dbl></dbl>
Zack Wheeler	10310	2021-09-28	@ATL	26	2021	PHI	A	31			2.571429
Zack Wheeler	10310	2021-09-22	BAL	26	2021	PHI		31			1.500000
Zack Wheeler	10310	2021-09-17	@N	26	2021	PHI	A	31			1.800000
Zack Wheeler	10310	2021-09-11	COL	26	2021	PHI		31			1.350000
Zack Wheeler	10310	2021-09-06	@MIL	26	2021	PHI	A	31			0.000000
Zack Wheeler	10310	2021-08-30	@W	26	2021	PHI	A	31			6.000000

Run Distribution

Home vs. Away Run Distribution

Earned Runs

Strikeouts

Zach Wheeler K/Game: A Gamma-Poisson Example

2021 Likelihood

Update Prior Using 2021 Data

2022 Likelihood

Update Beliefs Using 2022 Data

Update Beliefs Using 2022 Data

Batting Trends

Hitting Rate Stats

Hitting Characteristics

wRC+ and OPS Correlation

Bryce Harper Batting Average: A Beta-Binomial Example

2021 Likelihood

Update Prior Using 2021 Data

2022 Likelihood

Update Beliefs Using 2022 Data

Traditional Methods for Predicting the Aging Curve

- Projecting the process of aging, in terms of WAR (Wins Above Replacement), is essential for executives looking to make contract decisions.
- Traditionally, this is done in one of two ways: averaging across all players of a given age or looking at aging patterns of players that are "nearest" to the player of interest.
- These methods are **not ideal** when it comes to predicting the performance of any given player.
- In the case of the average curve, the aging pattern for the average player does not map work well for outliers.
- The k-nearest neighbors approach is complicated by the problem of quantifying "nearness" between players.
- Importantly, neither method can give a probability distribution over next season's performance for a given player.

Adapted from Cory Frontin (Baseball Prospectus, 2019)

Proposed Prior Model

$$\left(rac{\Delta ext{WAR}}{ ext{WAR}_{i\!-\!1}}
ight)_i \sim \mathcal{N}(\mu,\sigma^2)$$

$$\mu_{\text{model}} = \left(\alpha_0 + e^{-\alpha_1 W A R_{i-1} - \alpha_2 W A R_{i-1}^2}\right) \times \left(\alpha_3 \text{age}^2 + \alpha_4 \text{age} + \alpha_5\right)$$

$$\sigma_{\text{model}}^2 = \left(\beta_0 + e^{-\beta_1 WAR_{i-1} - \beta_2 WAR_{i-1}^2}\right) \times \left(\beta_3 \text{age}^2 + \beta_4 \text{age} + \beta_5\right)$$

Functional form proposed by Cory Frontin (<u>Baseball</u> <u>Prospectus</u>, 2019) based on observed patterns in aging trends

Parameters were estimated using MLE from data on qualified hitters from 1955 to 2018

Adapted from Cory Frontin (Baseball Prospectus, 2019)

Model Predictions for 2018

Model Predictions for 2019

Next Steps?

- 1. Use BNNs to project oWAR for players over time using historical player data to derive probability distributions.
- 2. Possibly use hierarchical models or poisson regression to account for differences in injury rates due to factors such as player position, age, and playing style.
- 3. Consider this analysis to also include pitchers and perform factor analysis.

Questions?

Thanks!