13 August 2020 محرم 1442 محرم

وَمَا أُوتِيتُوْ مِنَ الْعِلْمِ إِلَّا فَلَبِلًا

Ain Shams University – Faculty of Engineering – ECE Dept. – Integrated Circuits Lab.

Dr. Hesham Omran

Computer Aided Circuit Design Lab 01 SPICE

Objectives

- 1. Create a behavioral model for an op-amp.
- 2. Write and analyze SPICE netlists.
- 3. Run and analyze different types of simulations (TF, AC, TRAN).
- 4. Explain the relation between negative feedback closed-loop parameters and open-loop parameters.
- 5. Perform basic hand analysis and compare it with simulation results.

Instructions

- 1. Use LTSpice for design entry and simulation. You may use Notepad++ to write your netlist (it has SPICE highlight mode). Do NOT use a schematic entry GUI. Do NOT use any other program.
- 2. If necessary, make any reasonable assumptions.
- 3. If you do not know how to perform hand analysis, you must study it on your own. A suggested reference is Sedra/Smith.

Deliverables

Index	Deliverable	Points
1.	Write a SPICE subcircuit that describes an op-amp with an open-loop gain of 1e4	1
	and a UGF of 10MHz. Use comments generously to describe every line of the netlist.	
	Report the SPICE subcircuit and explain how you chose the circuit parameters.	
2.	Use the previous subcircuit to write a netlist of a non-inverting amplifier. The	1
	feedback resistance is 9kOhm and the other resistance is 1kOhm. Use a 1V DC	
	input. Use comments generously to describe every line of the netlist.	
	Run transfer function (TF) analysis. Report a snapshot of the SPICE output file. Justify the output.	
3.	Change the input to be a sine wave with 1V amplitude and 1kHz frequency. Run	1
	transient analysis for two complete periods. Use a time step = period/50.	
	Report results (Vsig and Vout vs time). Clearly annotate the peak value of Vsig and	
	Vout in the figure.	
4.	How much is the voltage gain? Compare the voltage gain acquired from hand	1
	analysis, TF analysis, and TRAN analysis in a table. Comment.	
5.	Report the waveform of the differential input of the op-amp. Clearly annotate the	1
	peak value in the figure. What is the amplitude of this signal? Why (explain with	
	hand-analysis)?	
6.	Repeat the previous step but with input frequency equal to the UGF. What is the	1
	amplitude of this signal? Why (explain with hand-analysis)?	
7.	Run AC analysis to plot the frequency response of the previous non-inverting	2
	amplifier (use an AC source). Use parametric sweep for the feedback resistance	
	with two values (9k and 4k).	
	Report the gain in dB vs frequency (log-log scale). Clearly annotate the DC gain, the	
	3dB high cutoff frequency, and the GBW (UGF) in the figure.	
8.	If you increase the input amplitude in AC analysis and transient analysis, do you	1
	expect to see clipping in the output? Why?	
9.	Compare the DC gain, the 3dB high cutoff frequency, and the GBW (UGF) from hand	1
	analysis and AC analysis in a table. Comment.	

Thanks to all who contributed to these labs. If you find any errors or have suggestions concerning these labs, please contact Hesham.omran@eng.asu.edu.eg.