TEST REPORT

Reference No	WTF17S0682652R1E
FCC ID :	2ABEU-MJCTD01YL
Applicant	Qingdao Yeelink Information Technology Co., Ltd.
Address	F10-B4, Bldg.B, International Innovation Park, 1# Keyuanweiyi Rd., Laoshan, Qingdao, Shandong, China
Manufacturer :	Qingdao Yeelink Information Technology Co., Ltd.
Address	F10-B4, Bldg.B, International Innovation Park, 1# Keyuanweiyi Rd., Laoshan, Qingdao, Shandong, China
Product Name	Mi Bedside Lamp
Model No	MJCTD01YL
Standards	FCC CFR47 Part 15 C Section 15.247:2016
Date of Receipt sample	2017-06-22
Date of Test	2017-06-23 to 2017-07-10
Date of Issue	2018-04-20
Test Result	Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by: Approved by:

Jack Wen / Test Engineer

Philo Zhong / Manager

2 Contents

		Page
1	COVER PAGE	
2	CONTENTS	
3	REPORT REVISION HISTORY	
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.2 DETAILS OF E.O.T.	
	4.4 TEST MODE	
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	
	5.1 EQUIPMENTS LIST	
	5.2 MEASUREMENT UNCERTAINTY	
6	TEST SUMMARY	
7	CONDUCTED EMISSION	
′	7.1 E.U.T. OPERATION	
	7.2 EUT SETUP	
	7.3 MEASUREMENT DESCRIPTION	11
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED EMISSIONS	
	8.1 EUT OPERATION	
	8.2 TEST SETUP	
	8.4 Test Procedure	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	17
	8.6 SUMMARY OF TEST RESULTS	
9	BAND EDGE MEASUREMENT	
	9.1 Test Produce	
10	9.2 TEST RESULT BANDWIDTH MEASUREMENT	
10		
	10.1 TEST PROCEDURE:	
11	MAXIMUM PEAK OUTPUT POWER	-
	11.1 Test Procedure:	
	11.2 TEST RESULT:	
12	POWER SPECTRAL DENSITY	42
	12.1 Test Procedure:	42
	12.2 TEST RESULT:	42
13	ANTENNA REQUIREMENT	49
14	RF EXPOSURE	50
	14.1 REQUIREMENTS	
	14.2 THE PROCEDURES / LIMIT	
1-	14.3 MPE CALCULATION METHOD	
15	PHOTOGRAPHS – TEST SETUP PHOTOS	
	15.1 RADIATED EMISSION	52

Reference No.: WTF17S0682652R1E Page 3 of 64

	15.2	CONDUCTED EMISSION	54
16	PHOT	TOGRAPHS - CONSTRUCTIONAL DETAILS	55
	16.1	EUT – External View	55
	16.2	FUT - INTERNAL VIEW	60

3 Report Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTF17S0682652E	Jun. 22, 2017	Jun. 23 – Jul. 10, 2017	Jul. 12, 2017	Original	-	Replaced
WTF17S0682652R1E	2017-06- 22	2017-06- 23 to 2017-07- 10	2018-04- 20	Revised	-	Valid

This report is based on WTF17S0682652E for revised the Ratings information.

Reference No.: WTF17S0682652R1E Page 5 of 64

4 General Information

4.1 General Description of E.U.T

Product Name: Mi Bedside Lamp

Model No.: MJCTD01YL

Model Difference: N/A

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz

BLE: 2402-2480MHz

RF output power Wifi: 9.86dBm

BLE: 1.65dBm

The Lowest Oscillator: 32.768kHz

Antenna Gain: 3dBi

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max)

BLE: GFSK

Antenna installation : PCB Printed Antenna

4.2 Details of E.U.T.

Rated input: 100-240V~50/60Hz 0.45A;

Technical Data: Rated lamp input: 12V==1A;

Rated power: 10W (14 x 0.7W/LED module)

Adapter Model: ASSA107A-120100

Manufacturer AQUIL STAR PRECISION INDUSTRIAL(SHENZHEN) CO.,LTD.

Reference No.: WTF17S0682652R1E Page 6 of 64

4.3 Channel List

WIFI

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

BLE:

D <u>LC.</u>							
Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

4.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
	802.11g	54 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	BLE	1 Mbps	0/19/39	TX
	802.11b	11 Mbps	1/6/11	TX
	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	BLE	1 Mbps	0/19/39	TX
	802.11b	11 Mbps	1/11	TX
	802.11g	54 Mbps	1/11	TX
Frequency Range	802.11n HT20	108 Mbps	1/11	TX
	802.11n HT40	150 Mbps	3/9	TX
	BLE	1 Mbps	0/19/39	TX
	802.11b	11 Mbps	1/6/11	TX
	802.11g	54 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	BLE	1 Mbps	0/19/39	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product.

4.5 Test Facility

Waltek Services (Shenzhen) Co., Ltd.

Accreditations for Conformity Assessment						
Country/Region	Accreditation Body	Scope	Note			
USA		FCC ID\DOC\VOC	1			
Canada		IC ID\VOC	2			
Japan	A2LA	MIC-T\MIC-R \ PSE	-			
Europe	(Certificate No.: 4243.01)	EMCD\LVD\RED	-			
Taiwan	7	BSMI\NCC	-			
Hong Kong	CNAS	OFCA	-			
Australia	(Registration No. :	RCM	-			
South Korea	L3110)	KC	-			
Thailand		NTC	-			
Singapore		IDA	-			

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476. test Firm Registration No.: 328995
- 2. IC Canada Registration No.: 7760A

5 Equipment Used during Test

5.1 Equipments List

	cted Emissions Test S					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017
2.	LISN	R&S	ENV216	101215	Sep.12, 2016	Sep.11, 2017
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017
Condu	cted Emissions Test S	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017
4.	Cable	LARGE	RF300	-	Sep.12, 2016	Sep.11, 2017
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Oct.16, 2016	Oct.15, 2017
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.07, 2017	Apr.06, 2018
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.07, 2017	Apr.06, 2018
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09, 2017	Apr.08, 2018
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.07, 2017	Apr.06, 2018
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.07, 2017	Apr.06, 2018
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Apr.06, 2017	Apr.07, 2018
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.07, 2017	Apr.06, 2018
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.13, 2017	Apr.12, 2018
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.07, 2017	Apr.06, 2018

RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2016	Sep.14,2017	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.15,2016	Sep.14,2017	

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TES T CO., LTD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTF17S0682652R1E Page 10 of 64

6 Test Summary

Test Items	Test Requirement	Result			
	15.247				
Radiated Emissions	15.205(a)	С			
	15.209(a)				
Conducted Emissions	15.207(a)	С			
Bandwidth	15.247(a)(2)	С			
Maximum Peak Output Power	15.247(b)(3),(4)	С			
Power Spectral Density	15.247(e)	С			
Band Edge	15.247(d)	С			
Antenna Requirement	15.203	С			
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	С			
Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.					

Reference No.: WTF17S0682652R1E Page 11 of 64

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013,ANSI C63.4:2014

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Only the worst case (WIFI transmitting mode) test data were record in the report.

Live line:

Neutral line:

Reference No.: WTF17S0682652R1E Page 14 of 64

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013,ANSI C63.4:2014

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIIIL.							
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH:	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTF17S0682652R1E Page 17 of 64

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

Reference No.: WTF17S0682652R1E Page 18 of 64

8.6 Summary of Test Results

WIFI and BLE:

Test Frequency : 32.768kHz ~ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

WIFI:

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11b: Lo	w Chann	el 2412ľ	MHz			
223.69	40.96	QP	348.32	1.24	Н	11.59	29.37	46.00	-16.63
223.69	36.52	QP	17.10	1.36	V	11.59	24.93	46.00	-21.07
4824.00	50.18	PK	201.84	1.32	V	1.23	48.95	74.00	-25.05
4824.00	45.29	Ave	201.84	1.32	V	1.23	44.06	54.00	-9.94
7236.00	40.28	PK	46.18	1.34	Н	1.33	41.61	74.00	-32.39
7236.00	41.02	Ave	46.18	1.34	Н	1.33	42.35	54.00	-11.65
2326.13	45.97	PK	349.84	1.14	V	13.11	32.86	74.00	-41.14
2326.13	38.93	Ave	349.84	1.14	V	13.11	25.82	54.00	-28.18
2365.81	42.50	PK	187.92	1.04	Н	13.63	28.87	74.00	-45.13
2365.81	36.90	Ave	187.92	1.04	Н	13.63	23.27	54.00	-30.73
2496.75	43.71	PK	227.81	1.54	V	13.50	30.21	74.00	-43.79
2496.75	38.89	Ave	227.81	1.54	V	13.50	25.39	54.00	-28.61

	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree (m) (H/V) (dB) ((dBµV/m)	(dBµV/m)	(dB)			
			11b: Mid	dle Chan	nel 243	7MHz			
223.69	39.83	QP	174.75	1.43	Н	11.22	28.61	46.00	-17.39
223.69	36.68	QP	135.54	1.12	V	11.22	25.46	46.00	-20.54
4874.00	51.20	PK	355.55	1.48	V	1.00	50.20	74.00	-23.80
4874.00	45.79	Ave	355.55	1.48	V	1.00	44.79	54.00	-9.21
7311.00	40.88	PK	116.78	1.70	Н	2.21	43.09	74.00	-30.91
7311.00	40.06	Ave	116.78	1.70	Н	2.21	42.27	54.00	-11.73
2312.95	46.59	PK	224.39	1.09	V	13.02	33.57	74.00	-40.43
2312.95	38.42	Ave	224.39	1.09	V	13.02	25.40	54.00	-28.60
2358.51	42.96	PK	64.83	1.83	Н	13.25	29.71	74.00	-44.29
2358.51	37.08	Ave	64.83	1.83	Н	13.25	23.83	54.00	-30.17
2488.45	44.03	PK	109.11	1.23	V	13.08	30.95	74.00	-43.05
2488.45	37.62	Ave	109.11	1.23	V	13.08	24.54	54.00	-29.46

	Receiver	Datastas	Turn	RX An	tenna	Factor Ampl	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)		(dBµV/m)	(dBµV/m)	(dB)
			11b: Hi	gh Chanr	nel 2462	MHz			
223.69	39.53	QP	340.71	1.22	Н	11.00	28.53	46.00	-17.47
223.69	36.90	QP	273.38	1.49	V	11.00	25.90	46.00	-20.10
4924.00	50.98	PK	296.03	1.92	V	1.52	49.46	74.00	-24.54
4924.00	46.37	Ave	296.03	1.92	V	1.52	44.85	54.00	-9.15
7386.00	40.16	PK	76.61	1.94	Н	2.84	43.00	74.00	-31.00
7386.00	38.92	Ave	76.61	1.94	Н	2.84	41.76	54.00	-12.24
2348.18	46.55	PK	54.67	1.06	V	13.24	33.31	74.00	-40.69
2348.18	38.54	Ave	54.67	1.06	V	13.24	25.30	54.00	-28.70
2361.22	42.87	PK	109.39	1.13	Н	13.18	29.69	74.00	-44.31
2361.22	36.94	Ave	109.39	1.13	Н	13.18	23.76	54.00	-30.24
2491.98	42.09	PK	205.74	1.82	V	13.02	29.07	74.00	-44.93
2491.98	36.05	Ave	205.74	1.82	V	13.02	23.03	54.00	-30.97

F	Receiver	Detector	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Lov	w Channe	el 2412N	ЛНz			
223.69	38.21	QP	222.02	1.10	Н	11.59	26.62	46.00	-19.38
223.69	37.54	QP	329.42	1.61	V	11.59	25.95	46.00	-20.05
4824.00	51.20	PK	77.48	1.26	V	1.23	49.97	74.00	-24.03
4824.00	45.44	Ave	77.48	1.26	V	1.23	44.21	54.00	-9.79
7236.00	41.65	PK	109.92	1.87	Н	1.33	42.98	74.00	-31.02
7236.00	40.11	Ave	109.92	1.87	Н	1.33	41.44	54.00	-12.56
2332.32	45.65	PK	147.60	1.58	V	13.11	32.54	74.00	-41.46
2332.32	39.88	Ave	147.60	1.58	V	13.11	26.77	54.00	-27.23
2367.60	44.42	PK	134.66	1.32	Н	13.63	30.79	74.00	-43.21
2367.60	36.37	Ave	134.66	1.32	Н	13.63	22.74	54.00	-31.26
2483.71	44.60	PK	126.13	1.05	V	13.50	31.10	74.00	-42.90
2483.71	37.99	Ave	126.13	1.05	V	13.50	24.49	54.00	-29.51

F	Receiver	Detector	Turn	RX An	tenna	Corrected	Corrected	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			11g: Mid	dle Chan	nel 243	7MHz			
223.69	38.13	QP	128.88	1.99	Н	11.22	26.91	46.00	-19.09
223.69	36.85	QP	241.89	1.87	V	11.22	25.63	46.00	-20.37
4874.00	50.64	PK	136.39	1.41	V	1.00	49.64	74.00	-24.36
4874.00	44.53	Ave	136.39	1.41	V	1.00	43.53	54.00	-10.47
7311.00	40.68	PK	214.45	1.09	Н	2.21	42.89	74.00	-31.11
7311.00	39.41	Ave	214.45	1.09	Н	2.21	41.62	54.00	-12.38
2325.17	46.93	PK	279.56	1.83	V	13.02	33.91	74.00	-40.09
2325.17	38.91	Ave	279.56	1.83	V	13.02	25.89	54.00	-28.11
2372.65	44.52	PK	91.46	1.21	Н	13.25	31.27	74.00	-42.73
2372.65	36.90	Ave	91.46	1.21	Н	13.25	23.65	54.00	-30.35
2486.45	43.34	PK	79.80	1.72	V	13.08	30.26	74.00	-43.74
2486.45	37.33	Ave	79.80	1.72	V	13.08	24.25	54.00	-29.75

F	Receiver	Detector	Turn	RX An	tenna	Corrected Factor	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree (m) (H/V) (dB) (dBμV/m	(dBµV/m)	(dBµV/m)	(dB)			
			11g: Hiç	gh Chann	el 2462	MHz			
223.69	38.13	QP	279.85	1.92	Н	11.00	27.13	46.00	-18.87
223.69	35.53	QP	228.00	1.30	V	11.00	24.53	46.00	-21.47
4924.00	51.05	PK	189.60	1.77	V	1.52	49.53	74.00	-24.47
4924.00	44.21	Ave	189.60	1.77	V	1.52	42.69	54.00	-11.31
7386.00	39.97	PK	24.95	1.42	Н	2.84	42.81	74.00	-31.19
7386.00	38.66	Ave	24.95	1.42	Н	2.84	41.50	54.00	-12.50
2326.25	46.80	PK	144.74	1.06	V	13.24	33.56	74.00	-40.44
2326.25	39.19	Ave	144.74	1.06	V	13.24	25.95	54.00	-28.05
2361.34	43.55	PK	176.10	1.09	Н	13.18	30.37	74.00	-43.63
2361.34	36.86	Ave	176.10	1.09	Н	13.18	23.68	54.00	-30.32
2497.44	44.23	PK	81.45	1.40	V	13.02	31.21	74.00	-42.79
2497.44	36.18	Ave	81.45	1.40	V	13.02	23.16	54.00	-30.84

F	Receiver	Detector	Turn	RX An	tenna	Corrected Factor	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar		Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			n20: Lo	w Chann	el 2412l	MHz			
223.69	38.95	QP	172.64	1.89	Н	11.59	27.36	46.00	-18.64
223.69	34.41	QP	5.45	1.92	V	11.59	22.82	46.00	-23.18
4824.00	52.10	PK	230.76	1.78	V	1.23	50.87	74.00	-23.13
4824.00	44.54	Ave	230.76	1.78	V	1.23	43.31	54.00	-10.69
7236.00	38.83	PK	28.81	1.56	Н	1.33	40.16	74.00	-33.84
7236.00	39.55	Ave	28.81	1.56	Н	1.33	40.88	54.00	-13.12
2331.54	46.76	PK	112.50	1.77	V	13.11	33.65	74.00	-40.35
2331.54	38.65	Ave	112.50	1.77	V	13.11	25.54	54.00	-28.46
2379.58	43.57	PK	347.11	1.39	Н	13.63	29.94	74.00	-44.06
2379.58	38.39	Ave	347.11	1.39	Н	13.63	24.76	54.00	-29.24
2496.19	42.84	PK	132.18	1.23	V	13.50	29.34	74.00	-44.66
2496.19	36.41	Ave	132.18	1.23	V	13.50	22.91	54.00	-31.09

	Receiver	Datastan	Turn	RX An	tenna	Corrected	0	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree (m) (H/V) (dB) (dBμV/r	(dBµV/m)	(dBµV/m)	(dB)			
			n20: Mid	dle Chan	nel 243	7MHz			
223.69	39.41	QP	37.50	1.26	Н	11.22	28.19	46.00	-17.81
223.69	33.18	QP	307.96	1.93	V	11.22	21.96	46.00	-24.04
4874.00	53.31	PK	203.11	1.89	V	1.00	52.31	74.00	-21.69
4874.00	45.10	Ave	203.11	1.89	V	1.00	44.10	54.00	-9.90
7311.00	38.29	PK	154.21	1.38	Н	2.21	40.50	74.00	-33.50
7311.00	40.73	Ave	154.21	1.38	Н	2.21	42.94	54.00	-11.06
2324.56	46.91	PK	242.31	1.58	V	13.02	33.89	74.00	-40.11
2324.56	37.43	Ave	242.31	1.58	V	13.02	24.41	54.00	-29.59
2371.08	42.54	PK	149.77	1.48	Н	13.25	29.29	74.00	-44.71
2371.08	36.79	Ave	149.77	1.48	Н	13.25	23.54	54.00	-30.46
2489.91	42.55	PK	298.17	1.58	V	13.08	29.47	74.00	-44.53
2489.91	37.10	Ave	298.17	1.58	V	13.08	24.02	54.00	-29.98

	Receiver	Detector	Turn	RX An	tenna		Corrected Amplitude	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar			Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)		(dBµV/m)	(dBµV/m)	(dB)
			n20: Hiç	gh Chann	el 2462	MHz			
223.69	37.97	QP	12.65	1.56	Н	11.00	26.97	46.00	-19.03
223.69	33.21	QP	97.42	1.69	V	11.00	22.21	46.00	-23.79
4924.00	52.97	PK	280.72	1.64	V	1.52	51.45	74.00	-22.55
4924.00	44.95	Ave	280.72	1.64	V	1.52	43.43	54.00	-10.57
7386.00	38.78	PK	2.87	1.62	Н	2.84	41.62	74.00	-32.38
7386.00	40.43	Ave	2.87	1.62	Н	2.84	43.27	54.00	-10.73
2342.53	46.88	PK	179.74	1.66	V	13.24	33.64	74.00	-40.36
2342.53	38.76	Ave	179.74	1.66	V	13.24	25.52	54.00	-28.48
2371.72	43.25	PK	292.37	1.38	Н	13.18	30.07	74.00	-43.93
2371.72	38.94	Ave	292.37	1.38	Н	13.18	25.76	54.00	-28.24
2498.94	42.27	PK	283.86	1.26	V	13.02	29.25	74.00	-44.75
2498.94	37.50	Ave	283.86	1.26	V	13.02	24.48	54.00	-29.52

BLE:

Frequen	Receiver	Detector	Turn table	RX An	tenna	Correct	Corrected	l imais	Morreita
сy	Reading	Detector	Angl e	Height	Polar	ed Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Av e)	Degr ee	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµ V/m)	(dB)
			GFSK	Low Chan	nel 240	2MHz			
236.66	36.59	QP	320	1.2	Н	-13.35	23.24	46.00	-22.76
236.66	41.02	QP	59	1.5	V	-13.35	27.67	46.00	-18.33
4804.00	46.25	PK	289	1.6	V	-1.06	45.19	74.00	-28.81
4804.00	42.15	Ave	289	1.6	V	-1.06	41.09	54.00	-12.91
7206.00	40.12	PK	44	1.2	Н	1.33	41.45	74.00	-32.55
7206.00	34.26	Ave	44	1.2	Н	1.33	35.59	54.00	-18.41
2348.28	46.03	PK	253	1.8	V	-13.19	32.84	74.00	-41.16
2348.28	37.59	Ave	253	1.8	V	-13.19	24.40	54.00	-29.60
2366.72	43.44	PK	350	1.3	Н	-13.14	30.30	74.00	-43.70
2366.72	36.68	Ave	350	1.3	Н	-13.14	23.54	54.00	-30.46
2491.80	44.27	PK	3	1.9	V	-13.08	31.19	74.00	-42.81
2491.80	38.22	Ave	3	1.9	V	-13.08	25.14	54.00	-28.86
			GFSK m	iddle Cha	nnel 24	40MHz			
236.66	36.20	QP	305	1.7	Н	-13.35	22.85	46.00	-23.15
236.66	40.62	QP	345	1.3	V	-13.35	27.27	46.00	-18.73
4880.00	44.98	PK	272	1.8	V	-0.62	44.36	74.00	-29.64
4880.00	43.40	Ave	272	1.8	V	-0.62	42.78	54.00	-11.22
7320.00	41.40	PK	59	1.4	Н	2.21	43.61	74.00	-30.39
7320.00	33.80	Ave	59	1.4	Н	2.21	36.01	54.00	-17.99
2311.40	45.23	PK	110	1.4	V	-13.19	32.04	74.00	-41.96
2311.40	37.78	Ave	110	1.4	V	-13.19	24.59	54.00	-29.41
2388.78	43.69	PK	18	1.2	Н	-13.14	30.55	74.00	-43.45
2388.78	37.86	Ave	18	1.2	Н	-13.14	24.72	54.00	-29.28
2495.05	43.06	PK	284	1.1	V	-13.08	29.98	74.00	-44.02
2495.05	38.28	Ave	284	1.1	V	-13.08	25.20	54.00	-28.80

GFSK High Channel 2480MHz									
236.66	33.26	QP	311	1.2	Н	-13.35	19.91	46.00	-26.09
236.66	40.27	QP	201	1.2	V	-13.35	26.92	46.00	-19.08
4960.00	44.83	PK	90	1.6	V	-0.24	44.59	74.00	-29.41
4960.00	43.63	Ave	90	1.6	V	-0.24	43.39	54.00	-10.61
7440.00	42.78	PK	356	1.5	Н	2.84	45.62	74.00	-28.38
7440.00	32.95	Ave	356	1.5	Н	2.84	35.79	54.00	-18.21
2347.82	45.35	PK	198	1.2	V	-13.19	32.16	74.00	-41.84
2347.82	38.79	Ave	198	1.2	V	-13.19	25.60	54.00	-28.40
2387.91	44.84	PK	190	2.0	Н	-13.14	31.70	74.00	-42.30
2387.91	36.20	Ave	190	2.0	Н	-13.14	23.06	54.00	-30.94
2496.36	43.25	PK	197	1.3	V	-13.08	30.17	74.00	-43.83
2496.36	37.70	Ave	197	1.3	V	-13.08	24.62	54.00	-29.38

WIFI and BLE:

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTF17S0682652R1E Page 29 of 64

9 **Band Edge Measurement**

Test Requirement: FCC CFR47 Part 15 Section 15.247 Test Method: 558074 D01 DTS Meas Guidance V04

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

> frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits

specified in §15.209(a) (see §15.205(c)).

Test Mode: **Transmitting**

9.1 **Test Produce**

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Test result plots shown as follows:

Wifi

TX 11b: Band edge-right side

BLE Band edge-left side

Band edge-right side

Reference No.: WTF17S0682652R1E Page 34 of 64

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: 558074 D01 DTS Meas Guidance V04

10.1 Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result:

WIFI:

Operation mode	6dB	Bandwidth (MHz)	99% Bandwidth (MHz)			
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11	
TX 11b	10.028	10.028	10.028	13.956	13.924	13.956	
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11	
TX 11g	16.467	16.467	16.467	16.517	16.517	16.467	
	Channel 1	Channel 6	Channel 11	Channel 1	Channel 6	Channel 11	
TX 11n HT20	17.731	17.731	17.731	17.731	17.731	17.677	

BLE:

Operation mode	6dB Bandwidth (MHz)	99% Bandwidth (MHz)		
Low channel	0.677	1.060		
Middle channel	0.719	1.048		
High channel	0.713	1.048		

Wifi: Test result plot as follows:

CF 2.462 GHz

BLE:
Mode: Low channel

Span 27.0 MHz

Mode: Middle channel

Mode: High channel

Reference No.: WTF17S0682652R1E Page 41 of 64

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: 558074 D01 DTS Meas Guidance V04

11.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

Wifi:

Test mode :TX 11b						
Maximum Peak Output Power (dBm)						
2412MHz	2412MHz 2437MHz 2462MHz					
9.30 9.49 9.60						
Limit: 1W/30dBm						

Test mode :TX 11g						
Maximum Peak Output Power (dBm)						
2412MHz	2412MHz 2437MHz 2462MHz					
9.54 9.40 9.27						
Limit: 1W/30dBm						

Test mode :TX 11n HT20						
Maximum Peak Output Power (dBm)						
2412MHz	2412MHz 2437MHz 2462MHz					
9.75 9.51 9.86						
Limit: 1W/30dBm						

BLE:

Maximum Peak Output Power (dBm)				
Low channel Middle channel High channel				
0.36 0.94 1.65				
Limit: 1W/30dBm				

Reference No.: WTF17S0682652R1E Page 42 of 64

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247
Test Method: 558074 D01 DTS Meas Guidance V04

12.1 Test Procedure:

558074 D01 DTS Meas Guidance V04

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

WIFI:

Test mode :TX 11b					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-22.21 -22.61 -21.47					
Limit: 8dBm per 3kHz					

Test mode :TX 11g						
Power Spectral (dBm per 3kHz)						
2412MHz	2412MHz 2437MHz 2462MHz					
-22.36 -22.70 -20.53						
Limit: 8dBm per 3kHz						

Test mode :TX 11n HT20					
Power Spectral (dBm per 3kHz)					
2412MHz 2437MHz 2462MHz					
-25.97 -26.85 -21.61					
Limit: 8dBm per 3kHz					

BLE:

Power Spectral Density(dBm)					
Low channel Middle channel High channel					
-15.53 -14.70 -13.96					
Limit: 8dBm per 3kHz					

BLE:

Test mode: Middle channel

Test mode: High channel

13 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has a PCB Printed Antenna, meets the requirements of FCC 15.203.

Reference No.: WTF17S0682652R1E Page 50 of 64

14 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

14.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

14.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

(B) Elithis for General Fordiation Forcontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTF17S0682652R1E Page 51 of 64

14.3 MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Mode	Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
WIFI	3.00	1.995	9.86	9.68	0.003843	1
BLE	3.00	1.995	1.65	1.46	0.000580	1

15 Photographs – Test Setup Photos

15.1 Radiated Emission

Test frequency Below 30MHz

Test frequency from 30MHz to 1GHz

Test frequency above 1GHz

Reference No.: WTF17S0682652R1E Page 54 of 64

15.2 Conducted Emission

16 Photographs - Constructional Details

16.1 EUT – External View

Reference No.: WTF17S0682652R1E Page 56 of 64

Reference No.: WTF17S0682652R1E Page 57 of 64

Reference No.: WTF17S0682652R1E Page 58 of 64

Reference No.: WTF17S0682652R1E Page 59 of 64

16.2 EUT – Internal View

Reference No.: WTF17S0682652R1E Page 61 of 64

WIFI & BLE antenna

Reference No.: WTF17S0682652R1E Page 62 of 64

Reference No.: WTF17S0682652R1E Page 63 of 64

Reference No.: WTF17S0682652R1E Page 64 of 64

=====End of Report=====