Flywheel to Oak

About

After we end a subject's session at the CNI, their data is uploaded to a data warehouse called Flywheel. We'll perform a few operations on the data in the Flywheel ecosystem before exporting to our storage space on Oak. See below for more details.

Flywheel

- In a Google Chrome browser, log in to Flywheel at cni.flyweel.io
- You should see a list of your projects on the home screen, hit
 Zaki_SocialNetworks_2022

Zaki_SocialNetworks_2022 // JZAKI (fw://jzaki/Zaki_SocialNetworks_2022)

Description Sessions Information Analyses Data Views

- Each individual subject is listed under the Sessions tab
- The default view is "non-BIDS" ... that's presented in the order that we scanned for each participant (localizers, functional runs, T1's, etc.)

- Our goal here is to programmatically update each subject's data structure to be in BIDS format
 - o See https://bids.neuroimaging.io/

Perform the following steps:

- Tab over to Analyses
- Click "Run Analysis Gear"

- Select "BIDS Pre-Curation" with no inputs
 - I recommend you tab over to Configuration and un-select "Suggest"

Click Run Gear

 Assuming you have no issues, click on the three dots to the far-right of the screen and download the files locally

- Use the populate.py script in this repo to fill in the acquisition labels
 - NOTE: This is hard coded for the present study, and should be updated before being used on other projects

You may need to fill in any missing entries, you can do this manually

existing_acquisition_label	new_acquisition_label
fmap-fieldmap	fmap-fieldmap
3PlaneLocfgre	
anat-T1w_acq-9mmBRAVO	anat-T1w_acq-9mmBRAVO
GEHOSFOV24	
GEHOSFOV24_1	
func-bold_task-socialeval_run-1	func-bold_task-socialeval_run-1
func-bold_task-socialeval_run-2	func-bold_task-socialeval_run-2
func-bold_task-stressbuffer_run-1	func-bold_task-stressbuffer_run-1
func-bold_task-stressbuffer_run-2	func-bold_task-stressbuffer_run-2
func-bold_task-faces_run-1	func-bold_task-faces_run-1
func-bold_task-rest_run-1	func-bold_task-rest_run-1
fmap-fieldmap_ignore-BIDS	
3Plane Loc fgre	
GE HOS FOV24	
GE HOS FOV24_1	
func-bold_task-rest_run-2	func-bold_task-rest_run-2
GE HOS FOV24_2	
func-bold_task-socialeval_run-1_ignore-BIDS	
func-bold_task-stressbuffer_run-1_ignore-BIDS	
func-bold_task-stressbuffer_run-2_ignore-BIDS	
spiral fieldmap	fmap-fieldmap
fMRI social eval run1 HB4	func-bold_task-socialeval_run-1
fMRI social eval run2 HB4	func-bold_task-socialeval_run-2
T1w .9mm BRAVO	anat-T1w_acq-9mmBRAVO
fMRI stress buff run1 HB4	func-bold_task-stressbuffer_run-1
fMRI stress buff run2 HB4	func-bold_task-stressbuffer_run-2
fMRI faces run1 HB4	func-bold_task-faces_run-1
fMRI faces run1 HB4_1	
fMRI rest run1 HB4	func-bold_task-rest_run-1
fMRI faces run1 HB4_2	
fMRI rest run2 HB4	func-bold_task-rest_run-2

 Once the acquisition table is updated, re-upload these to Flywheel under the Information tab

 It will prompt you to replace any existing files – that's cool, go ahead and replace them

 Re-run the BIDS Pre-Curation with these tables as input (again, I would un-select the "Suggest" field but it's not clear if this has any effect at this stage)

- Assuming this runs successfully, run the BIDS Curation gear with the reproin_mod.json file included as input
 - Tab over and check the "Reset" box as well

 You will get errors if you have duplicate runs here, you can manually rename these prior to BIDS Curation by clicking "Information" under a subject's duplicated container

Acquisition: func-bold_task-partial-faces_run-3

Acquisition Label

func-bold_task-partial-faces_run-

Oak

- First, check with lan to make sure you have access to Sherlock and Oak ...
 otherwise none of this information will be helpful!
- At the command line, log in to Sherlock

ssh [[SUNet@login.sherlock.stanford.edu]]

Navigate to our BIDS project on Oak

cd /oak/stanford/groups/jzaki/scp_2022

- If you don't have it installed already, install the Flywheel command line interface
 (CLI) ... you can find it at the link below
 - https://docs.flywheel.io/hc/en-us/articles/360008162214-Installing-the-Flywheel-Command-Line-Interface-CLI-
- You can export BIDS data at the project- or subject-level with the following command

fw export bids -p "Zaki_SocialNetworks_2022" ./bids/ [[--subject 12345]]

- Once a subject's data is exported, you should run the scripts that I've included to do the following:
 - Remove the session subdirectories for every subject

Update the fieldmap "IntendedFor" fields ... this will throw an error during
 BIDS Validation if it's not done correctly

```
[irf823@sh02-ln01 login /oak/stanford/groups/jzaki/scp_2022]$ tree ./scripts/utility/
 ./scripts/utility/
 directory_hierarchy.py
 session_cleanup.py
```

• I'll eventually wrap these in a shell script