Math 400: Homework 7 Avinash Iyer

3

The graph G in Figure 50 is connected and contains no bridges. Find a strong orientation of G.

4

Suppose that D is an orientation of a connected graph G such that for each vertex v of G, some edge is directed toward v and some edge is directed away from v. Is D a strong orientation on G.

Since G is a connected graph, there must be a path P between any two vertices v_1 and v_2 . Call this path P, travelling along the orientation D. Then, the path "exits" v_1 and "enters" v_2 . Suppose that there is no path from v_2 back to v_1 .

Then, within G-P it must be the case that either v_1 or v_2 are of degree 0, or there is a point in G-P wherein the interior vertices have no edges directed "out" both of which would contradict the assumptions. Additionally, since there is at least one edge directed "out" from v_2 and directed "in" v_1 .

Extra Problem

Determine whether the following statements are true, and prove if so.

- (a) A graph G has a strong orientation if and only if G is connected and has an orientation such that every pair of distinct vertices in G is in a directed cycle.
- (b) A graph G has a strong orientation if and only if G is connected and has an orientation such that every pair of distinct vertices in G is in a directed circuit.
- (c) A graph G has a strong orientation if and only if G is connected and has an orientation such that every pair of distinct vertices in G is in a directed closed walk.

(a)

- (⇒) If G has a strong orientation, then for $u, v \in V(G)$ distinct, $\exists P = u, ..., v$, and $P' = v, ..., u \in G P$ paths. Therefore, by appending P and P' together, we find that u and v are in a directed cycle.
- (\Leftarrow) Let $u, v \in V(G)$ distinct such that $u, v \in C$, where C is a directed cycle. Thus, there must be no bridge between u and v, as deletion of any edge must allow a path in C e so, by the condition of Robbin's Theorem, it must be the case that there is a strong orientation on G.

(b)

- (⇒) Suppose G has a strong orientation. Then, every pair of distinct vertices $u, v \in V(G)$ must have a path $P = u, \ldots, v$ and a path $P' = v, \ldots, u \in G P$. By appending these paths together, we get a directed cycle, which is also a directed circuit.
- \Leftarrow Suppose G is connected and has an orientation such that for every $u, v \in V(G)$ distinct, u, v are in a directed circuit C'. This means there is a directed u, v trail in G and thus, a directed u, v path P in G. Similarly, in G P, there must be a directed v, u trail, and thus a directed v, u path. So, by the conditions of Robbin's Theorem, it must be the case that G has a strong orientation.

(c)

Since a closed walk is able to repeat edges, it is not necessarily the case that G is a bridgeless graph, and thus has a strong orientation.

Math 400: Homework 7 Avinash lyer

Extra Problem 2

Let K_n be a strong tournament with $n \geq 3$.

- (a) Prove that for every j in $\{2, \ldots, n-2\}$, K_n has a directed cycle of length 1+j or 1+n-j.
- (b) Prove that for every j in $\{2, \ldots, n-2\}$, K_n has n distinct directed cycles C_1, \ldots, C_n such that each C_j has length 1+j or 1+n-j.

(a)

Let $v_1, v_2, \ldots, v_n, v_1$ be a Hamiltonian cycle in the strong tournament K_n , which we know exists by Theorem 9.5. Then, there is an edge connecting v_1 and v_{j+1} for each $j \in \{2, \ldots, n-2\}$.

If $e=v_1\to v_{j+1}$, then we trace $v_1\to v_{j+1}\to\cdots\to v_n\to v_1$ with length n-j+1. Otherwise, we have $v_1\to v_2\to\cdots\to v_j\to v_1$, with length j+1.