REVIEW FOR FINAL PHYSICS 1

LÊ HOÀNG THÔNG – NGUYỄN BÙI THANH TRÚC

CHAPTER 3

Work: W =
$$(F \cos \theta)\Delta x = \vec{F} \cdot \overrightarrow{\Delta x}$$
 (J)

Power:
$$P = \frac{W}{\Delta t} = \vec{F} \cdot \vec{v}$$
 (J/s or W)

Energy: E= K + Ug + Uel

- Kinetic energy: $K = \frac{1}{2}mv^2(J)$
- Potential energy: $U_g = mgh$ (J)
 - With h is the distance from potential origin to obj position.
- Elastic energy: $U_{\rm el} = \frac{1}{2}kx^2$ (J)
 - k is force constant or spring constant (N/m)
 - x is spring deformation (m)
 - Equilibrium position: x = 0

Kinetic Energy Theorem: (Định lý biến thiên động năng)

$$W_{net} = \Delta K = K_f - K_i = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

Potential Energy: (Định lý thế năng trọng trường)

$$W_{\text{gravity}} = -\Delta U_g = U_{\text{gi}} - U_{\text{gf}}$$

Work done by spring:

$$W = -\Delta U_{el} = \frac{1}{2}kx_1^2 - \frac{1}{2}kx_2^2$$

Conservative VS Nonconservative

- Conservative force: gravity, elastic
- Nonconservative force: friction, resistance,...

Note: Work of resistive forces are always negative

Conservation of energy theorem: (Định luật bảo toàn cơ năng) (use for conservative system)

$$E_i = E_f$$

$$=> K_i + U_{gi} + U_{eli} = K_f + U_{gf} + U_{elf}$$

Energy with nonconservative force

$$W_{nc} = \Delta E = (K_f + U_f) - (K_i + U_i)$$

CHAPTER 4

Linear momentum: (động lượng)

$$\vec{p} = m\vec{v}$$

Impulse:

$$I = \Delta \vec{p} = \int d \vec{p} = \int_{t_i}^{t_f} \vec{F} \, \Delta t$$

Conservation of linear momentum:

$$\overrightarrow{p_i} = \overrightarrow{p_f}$$

Two types of collisions:

Inelastic collision: Kinetic energy is not conserved

$$E_{lost} = \Delta K$$

Elastic collision: both momentum and kinetic energy are conserved

$$K_i = K_f$$

CHAPTER 5

Notation	Linear	Angular
	Translational	Rotational
Basic	x (m)	θ (rad)
quantities	v (m/s)	ω (rad/s)
	a (m/s²)	α (rad/s²)
Basic	a const	α const
formula	$v = v_0 + at$	$\omega = \omega_0 + \alpha t$
	$x = x_0 + v_0 t + \frac{1}{2}at^2$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$
	$v^2 - v_0^2 = 2a\Delta x$	$\omega^2 - \omega_0^2 = 2\alpha\Delta\theta$
Inertia	mass: m (kg)	Moment of inertia –
		Rotational inertia
		❖ I =

Notation	Linear Translational	Angular Rotational
Speeding up	a∙v	α·ω
Slowing down	$\vec{a} \cdot \vec{v}$	$\overrightarrow{\alpha}\cdot\overrightarrow{\omega}$
Force	Newton's 2 nd law:	$\vec{\tau} = \vec{r} \times \vec{F}$ or $\tau = Fd$
VS	$\vec{F} = m\vec{a} (N)$	(d: moment/lever arm)
Torque		Newton's 2 nd law:
		τ=l×α (N·m)
Convention of	y up	Counterclockwise
(+) direction	x to the right	

Notation	Linear Translational	Angular Rotational
Energy E = K + U	K = $\frac{1}{2}$ mv ² (J)(eV) U _g = mgh (y up, 0 at) U _{el} = $\frac{1}{2}$ kx ² (J)(eV)	K = ½Ιω² (J)(eV)
Work	$W = \vec{F} \cdot \Delta \vec{x} \text{ or } \int\limits_{X_i}^{X_f} \vec{F}(x) \cdot d \vec{x}$ (J)(eV)	$W = \vec{t} \cdot \Delta \vec{\theta} \text{ or } \int_{\theta_{i}}^{\theta_{f}} \vec{t}(\theta) \cdot d \vec{\theta}$ (J)(eV)
Power	$P = \frac{W}{\Delta t} = \vec{F} \cdot \vec{v}$ $(J/s)(W)$	$P = \frac{W}{\Delta t} = \vec{\tau} \cdot \vec{\omega}$ $(J/s)(W)$
Momentum	p=mv (kg·m/s)	$\vec{L} = \vec{r} \times \vec{p}$ $\vec{L} = I \vec{\omega} (kg \cdot m^2/s)$

Notation	Linear Translational	Angular Rotational
Impulse	$\vec{I} = \Delta \vec{p} = \vec{F} \Delta t = \int_{t_i}^{t_f} \vec{F}(t) dt$ $\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} \text{ or } \frac{d\vec{p}}{dt}$	$\vec{l} = \Delta \vec{L} = \vec{\tau} \Delta t = \int_{t_i}^{t_f} \vec{\tau}(t) dt$ $\vec{\tau}_{i} = \frac{\Delta \vec{L}}{\Delta t} \text{ or } \frac{d\vec{L}}{dt}$
Momentum conservation		$ \begin{array}{ccc} + & \vec{\tau}_{net} = \vec{0} \Rightarrow \Delta \vec{L} = \vec{0} \\ \Rightarrow & \Sigma \vec{L}_i = \Sigma \vec{L}_f \\ \Rightarrow & \Sigma I_i \omega_i = \Sigma I_f \omega_f \end{array} $

Pure rotation relationship:

$$s=R\theta$$

$$v=R\omega$$

$$a_{T}=R\alpha$$

$$v^{2}$$

$$a_{R}=\frac{1}{R}$$

$$a=\sqrt{a_{T}^{2}+a_{R}^{2}}$$

Rolling motion relationship:

$$s_{cm}=R\theta$$

 $v_{cm}=R\omega$
 $a_{cm}=R\alpha$

Total kinetic energy (translation + rotation)

$$K = \frac{1}{2}I_{cm}\omega^2 + \frac{1}{2}Mv_{cm}^2$$