Math 445 Homework 7 Solutions

31. Continued fraction expansions:

$$53/18: 53 = 18 \cdot 2 + 17$$
, $18 = 17 \cdot 1 + 1$, and $17 = 1 \cdot 17 + 0$, so $\frac{53}{18} = 2 + \frac{17}{18} = 2 + \frac{1}{\frac{18}{17}} = 2 + \frac{1}{1 + \frac{1}{17}} = [2; 1, 17]$

115/53: $115 = 53 \cdot 2 + 9$, $53 = 9 \cdot 5 + 8$, $9 = 8 \cdot 1 + 1$, $8 = 1 \cdot 8 + 0$, so $\frac{115}{53} = [2; 5, 1, 8]$

32. If $x = [a_0, \ldots, a_n, b]$ and $y = [a_0, \ldots, a_n, c]$ with b < c, then x < y if n is odd, and x > y is n is even.

By induction; for $n=0, x=[a_0,b]=a_0+\frac{1}{b}>a_0+\frac{1}{c}=[a_o,c]=y$, since $b< c\Rightarrow \frac{1}{b}>\frac{1}{c}$.

 $b < c \Rightarrow \frac{1}{b} > \frac{1}{c}$. Inductively, if we assume that whenever B < C, $[a_0, \ldots, a_{n-1}, B] - [a_0, \ldots, a_{n-1}, C] = (-1)^{n-1}P$, where P > 0, then

$$x = [a_0, \dots, a_n, b] = [a_0, \dots, a_{n-1}, a_n + \frac{1}{b}] \text{ and } y = [a_0, \dots, a_n, c] =$$

$$[a_0, \dots, a_{n-1}, a_n + \frac{1}{c}] \text{ have } B = a_n + \frac{1}{c} < a_n + \frac{1}{b} = C \text{ , so}$$

$$[a_0, \dots, a_n, c] - [a_0, \dots, a_n, b] = [a_0, \dots, a_{n-1}, B] - [a_0, \dots, a_{n-1}, C] = (-1)^{n-1}P,$$
so $[a_0, \dots, a_n, b] - [a_0, \dots, a_n, c] = (-1)^n P$, as desired.

So by induction, x < y if n is odd, and x > y is n is even. Or, without induction:

We know that, for $[a_0, \ldots, a_{n-1}] = \frac{h_{n-1}}{k_{n-1}}$ and $[a_0, \ldots, a_n] = \frac{h_n}{k_n}$ that $x = \frac{h_n b + h_{n-1}}{k_n b + k_{n-1}}$ and $y = \frac{h_n c + h_{n-1}}{k_n c + k_{n-1}}$. If we look at $x - y \frac{h_n b + h_{n-1}}{k_n b + k_{n-1}} - \frac{h_n c + h_{n-1}}{k_n c + k_{n-1}} = \frac{(h_n b + h_{n-1})(k_n c + k_{n-1}) - (h_n c + h_{n-1})(k_n b + k_{n-1})}{(k_n b + k_{n-1})(k_n c + k_{n-1})}$, since the denomenator is

positive, this will be positive (x > y) or negative (x < y) depending on the sign of the numerator. But

 $(h_nb+h_{n-1})(k_nc+k_{n-1})-(h_nc+h_{n-1})(k_nb+k_{n-1})=(h_nk_nbc+h_{n-1}k_nc+h_nk_{n-1}b+h_{n-1}k_{n-1})-(h_nk_nbc+h_{n-1}k_nb+h_nk_{n-1}b+h_{n-1}k_{n-1})=(h_{n-1}k_n-h_nk_{n-1})(c-b)=(-1)^n(c-b)$, which, since c-b>0, is positive when n is even, and negative when n is odd.

33. The continued fraction expansion of $\sqrt{17}$;

$$a_0 = \lfloor \sqrt{17} \rfloor = 4, r_0 = \sqrt{17} - 4, \qquad a_1 = \lfloor \frac{1}{\sqrt{17} - 4} \rfloor = \lfloor \sqrt{17} + 4 \rfloor = 8,$$

 $r_1 = (\sqrt{17} + 4) - 8 = \sqrt{17} - 4 = r_0$, and then the process will repeat, so $\sqrt{17} = [4, 8, 8, 8, 8, \dots] = [4, \overline{8}]$.

Using our formulas $h_i = h_{i-1}a_i + h_{i-2}$, $k_i = k_{i-1}a_i + k_{i-2}$, we have

$$\frac{h_0}{k_0} = \frac{4}{1}, \frac{h_1}{k_1} = \frac{4 \cdot 8 + 1}{1 \cdot 8 + 0} = \frac{33}{8}, \frac{h_2}{k_2} = \frac{33 \cdot 8 + 4}{8 \cdot 8 + 1} = \frac{268}{65}, \frac{h_3}{k_3} = \frac{268 \cdot 8 + 33}{65 \cdot 8 + 8} = \frac{2177}{528}, \frac{h_4}{k_4} = \frac{2177 \cdot 8 + 268}{528 \cdot 8 + 65} = \frac{17684}{4289}.$$

34. The continued fraction expansion of $\sqrt{19}$: $4 < \sqrt{19} < 5$. so:

$$a_{0} = \lfloor \sqrt{19} \rfloor = 4, r_{0} = \sqrt{19} - 4 , \quad a_{1} = \lfloor \frac{1}{\sqrt{19} - 4} \rfloor = \lfloor \frac{\sqrt{19} + 4}{3} \rfloor = 2 ,$$

$$r_{1} = \frac{\sqrt{19} + 4}{3} - 2 = \frac{\sqrt{19} - 2}{3} , \quad a_{2} = \lfloor \frac{3}{\sqrt{19} - 2} \rfloor = \lfloor \frac{\sqrt{19} + 2}{5} \rfloor = 1 , r_{2} = \frac{\sqrt{19} + 2}{5} - 1 = \frac{\sqrt{19} - 3}{5} , \quad a_{2} = \lfloor \frac{5}{\sqrt{19} - 3} \rfloor = \lfloor \frac{\sqrt{19} + 3}{2} \rfloor = 3 , r_{2} = \frac{\sqrt{19} + 3}{2} - 3 = \frac{\sqrt{19} - 3}{2} , \quad a_{3} = \lfloor \frac{2}{\sqrt{19} - 3} \rfloor = \lfloor \frac{\sqrt{19} + 3}{5} \rfloor = 1 , r_{3} = \frac{\sqrt{19} + 3}{5} - 1 = \frac{\sqrt{19} - 2}{5} + 3 = 2 = \frac{3}{5} - 1 = \frac{\sqrt{19} - 2}{5} + 3 = 2 = \frac{3}{5} - 1 = \frac{3}{5} - \frac{3}{5} - 1 = \frac{3}{$$

so $\sqrt{19} = [4, 2, 1, 3, 1, 2, 8, 2, 1, 3, 1, 2, 8, \dots] = [4, \overline{2, 1, 3, 1, 2, 8}]$.

Using our formulas $h_i = h_{i-1}a_i + h_{i-2}$, $k_i = k_{i-1}a_i + k_{i-2}$, we have

$$\frac{h_0}{k_0} = \frac{4}{1}, \frac{h_1}{k_1} = \frac{4 \cdot 2 + 1}{1 \cdot 2 + 0} = \frac{9}{2}, \frac{h_2}{k_2} = \frac{9 \cdot 1 + 4}{2 \cdot 1 + 1} = \frac{13}{3}, \frac{h_3}{k_3} = \frac{13 \cdot 3 + 9}{3 \cdot 3 + 2} = \frac{48}{11}, \frac{h_4}{k_4} = \frac{48 \cdot 1 + 13}{11 \cdot 1 + 3} = \frac{61}{14}.$$

35. If $\alpha < \beta < \gamma$ are irrational numbers, $\alpha = [a_0, a_1 \dots]$, $\beta = [b_0, b_1, \dots]$, $\gamma = [c_0, c_1, \dots]$, and $a_i = c_i$ for $0 \le i \le n$, then $a_i = b_i = c_i$ for $0 \le i \le n$.

By induction: for n=0, we have $a_0=\lfloor\alpha\rfloor\leq\lfloor\beta\rfloor\leq\lfloor\gamma\rfloor=a_0,$ so $\lfloor\beta\rfloor=a_0$.

If we assume that $a_i = b_i = c_i$ for $0 \le i \le k < n$, then

 $\alpha = [a_0, \ldots, a_k, a_{k+1} + x_{k+1}], \beta = [a_0, \ldots, a_k, b_{k+1} + y_{k+1}], \text{ and } \gamma = [a_0, \ldots, a_k, a_{k+1} + z_{k+1}] \text{ with } 0 < x_{k+1}, y_{k+1}, y_{k+1} < 1$. But since $\alpha < \beta < \gamma$, we claim that by Problem # 32, $a_{k+1} + x_{k+1} < b_{k+1} + y_{k+1} < c_{k+1} + z_{k+1}$ (if k+1 is odd; the opposite inequalities if k+1 is even). This is because we can't have any equalities; the resulting continued fractions would then be equal, contradicting $\alpha < \beta < \gamma$. And the inequalities cannot run the other way, since then Problam #32 and the parity of k would say that one of the inequalities $\alpha < \beta < \gamma$ would have to run the other way, a contradiction. But then

 $a_{k+1} = \lfloor a_{k+1} + x_{k+1} \rfloor \le b_{k+1} = \lfloor b_{k+1} + y_{k+1} \rfloor \le \lfloor c_{k+1} + z_{k+1} \rfloor = c_{k+1} = a_{k+1}$, so $a_{k+1} = b_{k+1}$, as desired.

So, by induction, $a_k = b_k = c_k$ for all $0 \le k \le n$.