7. Homogeneous Equilibrium Model

7.1. Governing equations

The Homogeneous Equilibrium Model (HEM) for the 1D isothermal two-fluid equations read:

$$\frac{\partial}{\partial t}(\rho_g A_g) + \frac{\partial}{\partial x}(\rho_g u_m A_g) = 0 \tag{7.1}$$

$$\frac{\partial}{\partial t}(\rho_l A_l) + \frac{\partial}{\partial x}(\rho_l u_m A_l) = 0 \tag{7.2}$$

$$\frac{\partial}{\partial t}(\rho_m u_m A) + \frac{\partial}{\partial x}(\rho_m u_m^2 A + pA) + \rho_m g_s A + T_w = 0 \tag{7.3}$$

The liquid holdup A_l and gas holdup A_g have to fill up the total area of the pipe A, which allows a direct relation between A_g and A_l : $A_l + A_g = A$. The last term of Equation 7.3 represents the effect of wall friction which is expressed as:

$$T_w = \frac{A}{2D} f_w \rho_m u_m |u_m| \tag{7.4}$$

Here f_w is a friction factor calculated with the Churchill correlation:

$$f_w = 8\left(\left(\frac{8}{Re}\right)^{12} + (a+b)^{-1.5}\right)^{1/12} \tag{7.5}$$

where

$$a = \left(-2.457 \log \left(\left(\frac{7}{Re}\right)^{0.9} + 0.27 \frac{\epsilon}{D} \right) \right)^{16} \tag{7.6}$$

$$b = \left(\frac{37530}{Re}\right)^{16} \tag{7.7}$$

Here ϵ is the roughness of the pipe and D the pipe diameter. Re is the Reynolds number which is defined as

$$Re = \frac{\rho_m u_m D}{\mu_m} \tag{7.8}$$

Here ρ_m and μ_m are the mixture density and mixture dynamic viscosity respectively, defined as

$$\rho_m = (\rho_q A_q + \rho_l A_l)/A \tag{7.9}$$

$$\mu_m = (\mu_g A_g + \mu_l A_l)/A \tag{7.10}$$

The model is closed by defining an equation of state for the gas density $\rho_g = \rho_g(p)$ (ρ_l is taken constant, $\rho_l = \rho_{l0}$):

$$\rho_g(p) = \frac{\rho_{norm} T_{norm}}{p_{norm}} \frac{p}{T} \tag{7.11}$$

7.1.1. IFP case

We now specify the relevant constants we use for simulating the IFP test case described in Omgba 2004. The test case describes a ramp up of the gas mass flow rate at the inlet of a $10 \, km$ pipe filled with liquid and gas. The liquid mass flow rate is constant during the ramp up with a value of $20 \, kg/s$. The gas mass flow rate is initially $0.2 \, kg/s$ and is then doubled to $0.4 \, kg/s$ in a time span of 10 seconds in a linear fashion. As a result, a transient will move through the pipe and a new steady state is developed. The pressure at the outlet is fixed at $p_{outlet} = 10^6 \, Pa$.

The constants for this case study are defined in Table 7.1. As can be noted from the table, we consider an actual fluid temperature of T = 278K.

ρ_{norm}	$1 kg/m^3$
T_{norm}	300K
p_{norm}	$10^{5} Pa$
p_{outlet}	$10^{6} Pa$
T	278K
D	0.146 m
L	10 km
ϵ	$10^{-8} m$
$ ho_{l0}$	$1000 kg/m^3$
μ_l	$8.9*10^{-4} Pas$
μ_g	$1.8*10^{-5} Pas$

Table 7.1: Values of relevant constants for IFP test case.

7.1.2. Eigenvalue analysis

The HEM described in Equation 7.1, 7.2, and 7.3 can be written in vector notation as:

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}}{\partial x} + \mathbf{S} = \mathbf{0}. \tag{7.12}$$

Here **U** is the conservative variable vector, $\mathbf{U} = [\rho_g A_g, \rho_l A_l, \rho_m u_m A]^T$, **F** is the flux vector $\mathbf{F} = [\rho_g u_g A_g, \rho_l u_l A_l, \rho_m u_m^2 A + pA]^T$, and **S** is the vector containing the source terms, $\mathbf{S} = [0, 0, \rho_m g_s A + T_w]^T$

We now adopt as primitive variable vector $\mathbf{W} = [Al, p, u_m]^T$ and define Jacobian matrix $\mathbf{F}_{\mathbf{W}} = \frac{\partial \mathbf{F}}{\partial \mathbf{W}}$ and $\mathbf{U}_{\mathbf{W}} = \frac{\partial \mathbf{U}}{\partial \mathbf{W}}$:

$$\mathbf{F_{W}} = \begin{pmatrix} -u_{m} \rho_{g}(p) & A_{g} u_{m} \frac{\partial}{\partial p} \rho_{g}(p) & A_{g} \rho_{g}(p) \\ u_{m} \rho_{l}(p) & A_{l} u_{m} \frac{\partial}{\partial p} \rho_{l}(p) & A_{l} \rho_{l}(p) \\ u_{m}^{2} \frac{\partial}{\partial A_{l}} \rho_{m}(p, A_{l}) A & \left(u_{m}^{2} \frac{\partial}{\partial p} \rho_{m}(p, A_{l}) + 1\right) A & 2 u_{m} \rho_{m}(p, A_{l}) A \end{pmatrix}$$
(7.13)

$$\mathbf{U}_{\mathbf{W}} = \begin{pmatrix} -\rho_g(p) & A_g \frac{\partial}{\partial p} \rho_g(p) & 0\\ \rho_l(p) & A_l \frac{\partial}{\partial p} \rho_l(p) & 0\\ u_m \frac{\partial}{\partial A_l} \rho_m(p, A_l) A & u_m \frac{\partial}{\partial p} \rho_m(p, A_l) A & \rho_m(p, A_l) A \end{pmatrix}$$
(7.14)

Making use of the definition of the Jacobians, we multiply Equation 7.12 by $\mathbf{U_W}^{-1}$ and obtain the HEM in quasi linear form:

$$\frac{\partial \mathbf{W}}{\partial t} + \mathbf{A}(\mathbf{W}) \frac{\partial \mathbf{W}}{\partial x} + \mathbf{U}_{\mathbf{W}}^{-1} \mathbf{S} = \mathbf{0}.$$
 (7.15)

where $\mathbf{A}(\mathbf{W}) = \mathbf{U}_{\mathbf{W}}^{-1} \mathbf{F}_{\mathbf{W}}$. We can calculate $\mathbf{A}(\mathbf{W})$ analytically, as an analytic expression for $\mathbf{U}_{\mathbf{W}}^{-1}$ exists. We will now substitute the relevant equations of state described in Section 7.1, and obtain for $\mathbf{A}(\mathbf{W})$:

$$\mathbf{A}(\mathbf{W}) = \begin{pmatrix} u_m & 0 & A_l \\ 0 & u_m & \frac{pA}{A_g} \\ 0 & \frac{c_g^2 A}{A_l \rho_{10} c_g^2 + A_g p} & u_m \end{pmatrix}$$
(7.16)

The eigenvalues and corresponding eigenvectors of \mathbf{A} , that is $\mathbf{A} = \mathbf{R}\Lambda\mathbf{R}^{-1}$, which are used for characteristic boundary treatment, can now readily be calculated. Here $\mathbf{\Lambda}$ contains the eigenvalues $[\lambda_1, \lambda_2, \lambda_3]^T$ on the diagonal and \mathbf{R} contains the right eigenvectors of \mathbf{A} .

$$\mathbf{\Lambda} = \begin{pmatrix}
\frac{A_g^{\frac{3}{2}} p u_m - A c_g \sqrt{p} \sqrt{A_l \rho_{10} c_g^2 + A_g p} + \sqrt{A_g} A_l c_g^2 \rho_{10} u_m}{A_g^{\frac{3}{2}} p + \sqrt{A_g} A_l c_g^2 \rho_{10}} & 0 & 0 \\
0 & \frac{A_g^{\frac{3}{2}} p u_m + A c_g \sqrt{p} \sqrt{A_l \rho_{10} c_g^2 + A_g p} + \sqrt{A_g} A_l c_g^2 \rho_{10} u_m}{A_g^{\frac{3}{2}} p + \sqrt{A_g} A_l c_g^2 \rho_{10}} & 0 \\
0 & 0 & 0 & u_m
\end{pmatrix}$$
(7.17)

$$\mathbf{R} = \begin{pmatrix} -\frac{\sqrt{A_g} A_l \sqrt{A_l \rho_{10} c_g^2 + A_g p}}{A c_g \sqrt{p}} & \frac{\sqrt{A_g} A_l \sqrt{A_l \rho_{10} c_g^2 + A_g p}}{A c_g \sqrt{p}} & 1\\ -\frac{\sqrt{p} \sqrt{A_l \rho_{10} c_g^2 + A_g p}}{\sqrt{A_g} c_g} & \frac{\sqrt{p} \sqrt{A_l \rho_{10} c_g^2 + A_g p}}{\sqrt{A_g} c_g} & 0\\ 1 & 1 & 0 \end{pmatrix}$$
(7.18)

$$\mathbf{R}^{-1} = \begin{pmatrix} 0 & -\frac{\sqrt{A_g} c_g}{2\sqrt{p} \sqrt{A_l \rho_{l0} c_g^2 + A_g p}} & \frac{1}{2} \\ 0 & \frac{\sqrt{A_g} c_g}{2\sqrt{p} \sqrt{A_l \rho_{l0} c_g^2 + A_g p}} & \frac{1}{2} \\ 1 & -\frac{A_g}{Ap} & 0 \end{pmatrix}$$
(7.19)