Théorème des restes chinois et application :

I Le développement

Le but de ce développement est de démontrer le théorème des restes chinois (grâce à un lemme préliminaire) dans le but de résoudre des systèmes d'équations diophantiennes dans $\mathbb{Z}/n\mathbb{Z}$ par exemple.

Dans tout ce développement, on considère $(A, +, \times)$ un anneau commutatif principal. On commence tout d'abord par démontrer un lemme qui sera utile pour la preuve du théorème :

Lemme 1: [Rombaldi, p.249]

Soient $a_1, ..., a_r$ des éléments de A deux à deux premiers entre eux.

Si l'on pose, pour tout $i \in [1; r]$, $b_i = \prod_{\substack{j=1 \ j \neq i}}^r a_j$, alors les b_i sont premiers entre eux

dans leurs ensemble.

Preuve:

Soient $a_1, ..., a_r$ des éléments de A deux à deux premiers entre eux.

Pour tout
$$i \in [1; r]$$
, on pose $b_i = \prod_{\substack{j=1\\j\neq i}}^r a_j$.

On raisonne par l'absurde en supposant que les b_i ne soient pas premiers entre eux dans leur ensemble.

Il existe alors un élément premier p de A qui divise tous les b_j (car l'anneau A est principal et donc factoriel). Ainsi, comme p divise $b_1 = \prod_{i=2}^r a_i$, il divise un a_i (car deux à deux premiers entre eux). Mais il divise aussi b_i (pour $i \neq 1$) et donc l'un des a_k pour $k \neq i$, ce qui contredit le fait que a_i et a_k sont premiers entre eux.

Ainsi, les b_i sont premiers entre eux dans leur ensemble.

On peut désormais passer à la preuve du théorème :

Théorème 2: Théorème des restes chinois [Rombaldi, p.249]:

Soient $a_1, ..., a_r$ des éléments de A deux à deux premiers entre eux. L'application :

$$\varphi: A \longrightarrow \prod_{i=1}^r A/(a_i)$$

$$x \longmapsto (\pi_1(x), ..., \pi_r(x))$$

est un morphisme d'anneaux surjectif de noyau $\left(\prod_{i=1}^r a_i\right)$.

On a donc en particulier:

$$A / \left(\prod_{i=1}^{r} a_i \right) \cong \prod_{i=1}^{r} A / (a_i)$$

Preuve:

Soient $a_1, ..., a_r$ des éléments de A deux à deux premiers entre eux. On considère l'application :

$$\varphi: A \longrightarrow \prod_{i=1}^r A/(a_i)$$

$$x \longmapsto (\pi_1(x), ..., \pi_r(x))$$

Montrons que φ est un morphisme d'anneaux surjectif de noyau $\left(\prod_{i=1}^r a_i\right)$:

 \ast φ est bien un morphisme d'anneaux (car il s'agit de projections coordonnées par coordonnées).

* Soit $x \in A$.

 $x \in \text{Ker}(\varphi) \iff \forall i \in [1; r], \ \pi_i(x) = 0 \iff \forall i \in [1; r], \ a_i \text{ divise } x$

$$\iff$$
 PPCM $(a_1,...,a_r)$ divise $x\iff\prod_{j=1}^r a_j$ divise $x\iff x\in\left(\prod_{j=1}^r a_j\right)$

On a donc $\operatorname{Ker}(\varphi) = \left(\prod_{j=1}^r a_j\right)$.

* Pour tout $i \in [1; r]$, on pose $b_i = \prod_{\substack{j=1\\ j \neq i}}^r a_j$.

Les b_j sont premiers entre eux dans leur ensemble, donc par le théorème de Bézout, il existe $u_1, ..., u_r$ des éléments de A tels que $\sum_{i=1}^r b_i u_i = 1_A$.

Pour tout $j \in [1; r]$, on a $\pi_j(b_i) = 0_{A/(a_j)}$ pour $i \neq j$ (car b_i est multiple de a_j), ce qui donne :

$$\pi_j(1_A) = \pi_j\left(\sum_{i=1}^r u_i b_i\right) = \pi_j(u_j)\pi_j(b_j) = 1_{A/(a_j)}$$

Donc $\pi_j(b_j)$ est inversible dans $A/(a_j)$, d'inverse $\pi_j(u_j)$.

Pour $(\pi_j(x_j))_{j\in [1;r]}$ donné dans $\prod_{i=1}^r A/(a_i)$, en posant $x=\sum_{i=1}^r x_i u_i b_i$, on a pour tout $j\in [1;r]$:

$$\pi_j(x) = \pi_j(x_j)\pi_j(u_j)\pi_j(b_j) = \pi_j(x_j)$$

Et donc $\varphi(x) = (\pi_j(x_j))_{j \in [1,r]}$ et donc φ est surjectif.

Finalement, φ est donc un morphisme d'anneaux surjectif et noyau $\left(\prod_{i=1}^r a_i\right)$ et par le théorème d'isomorphisme :

$$A / \left(\prod_{i=1}^{r} a_i \right) \cong \prod_{i=1}^{r} A / (a_i)$$

On donne désormais notre application :

Exemple 3: [Rombaldi, p.291]

On considère le système d'équations diophantiennes suivant :

$$(S) \begin{cases} k \equiv 2 & [4] \\ k \equiv 3 & [5] \\ k \equiv 1 & [9] \end{cases}$$

Le but est de trouver les antécédents de $(\overline{2},\overline{3},\overline{1})$ par l'application :

$$\varphi: \left| \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/9\mathbb{Z} \\ x & \longmapsto & (\pi_4(x), \pi_5(x), \pi_9(x)) \end{array} \right|$$

Or, le théorème des restes chinois nous donne les antécédents : il nous suffit donc de déterminer u_4, u_5 et u_9 grâce à une relation de Bézout à 3 coefficients.

On a

$$45 - 36 = 9(5 - 4) = 9$$
 et
$$\begin{cases} 20 = 2 \times 9 + 2 \\ 9 = 4 \times 2 + 1 \end{cases}$$

Ainsi:

$$1 = 9 - 4 \times 2 = 9 - 4 \times (20 - 2 \times 9)$$

= $9 - 4 \times 20 + 8 \times 9 = 9 \times 9 - 4 \times 20 = 9 \times 45 - 9 \times 36 - 4 \times 20$

On a alors $u_4 = 9$, $u_5 = -9$ et $u_9 = -4$ et donc les solutions de (S) sont exactement les 118 + 180n, avec $n \in \mathbb{Z}$.

II Remarques sur le développement

II.1 Pour aller plus loin...

On sait que si l'on a deux anneaux unitaires A et B et φ un isomorphisme d'anneaux de A sur B, alors φ induit un isomorphisme de groupes de A^{\times} sur B^{\times} .

En particulier, en décomposant $n=\prod_{j=1}^r p_{j\,j}^a$ (décomposition en facteurs premiers), le théorème des restes chinois nous donne alors :

$$\mathbb{Z}/n\mathbb{Z}\cong\prod_{i=1}^r\mathbb{Z}/p_j^{a_j}\mathbb{Z}$$

d'où:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong \left(\prod_{i=1}^r \mathbb{Z}/p_j^{a_j}\mathbb{Z}\right)^{\times} = \prod_{i=1}^r \left(\mathbb{Z}/p_j^{a_j}\mathbb{Z}\right)^{\times}$$

En particulier, en prenant les cardinaux, on obtient que $\varphi(n) = \prod_{j=1}^{r} \varphi\left(p_{j}^{a_{j}}\right)$.

II.2 Recasages

 ${\bf Recasages: 120-121-122-142.}$

III Bibliographie

— Jean-Étienne Rombaldi, Mathématiques pour l'agrégation, Algèbre et géométrie.