

Vision: Toward 10 Tbps NDN Forwarding with Billion Prefixes by Programmable Switches

2021/9/23

<u>Junji Takemasa</u>, Yuki Koizumi, Toru Hasegawa Osaka University

This work has been supported by JSPS KAKENHI Grant Number JP20H04176.

Background

Goal

10-Tbps NDN router w/ billion prefixes FIB

Approach

 Leveraging switching speed of programmable switch and large DRAM capacity of commodity computers

Issue

 The DRAM accesses consume the switch's bandwidth, thereby degrading the router's throughput.

Key Idea

- Forwarding <u>Data packets by switch alone</u>,
 <u>Interest packets by computers</u>
 - Leveraging fast switching speed to accommodate a large amount of Data traffic
 - Leveraging large DRAM capacity of computers to store billion prefixes of FIB

Throughput Estimation

- Result*: 10.8-Tbps throughput w/ 2 computers
- Method: calculating ideal number of computers <u>n</u>
 - 11 determines the bottleneck in a router as well as throughput.
 - Large n lacks bandwidth for Data forwarding B^{D} [bps] (due to connection of wastefully many computers)
 - Small n lacks computing capacity for Interest forwarding $n \times \lambda^{I}[pps]$
 - Condition for ideal \underline{n} : $\underline{B^D} \approx \underline{n \times \lambda^I \times S}$ (S: Data size)
 - The bandwidth & the computing capacity are balanced.

Packet Processing Design

Packet processing flows:

- Interest flow
 - 1. Looking up FIB of computer's DRAM to decide the outgoing port
 - 2. Recording the incoming port at PIT of switch ASIC
- Data flow
 - Looking up and deleting the incoming port of Interest at PIT of switch ASIC
- Challenge: PIT in switch ASIC
 - Limited SRAM capacity & Arithmetic and Logic Units (ALUs)

Challenges of PIT in Switch ASIC

C1: store a few millions of names at SRAM

- $2^{21}[1] \times 64$ -B[2] names = 128 MB >> O(10)-MB SRAM
- Design: Hashing names of PIT at switch ASIC
 - Compressing 64-B name [5] into about 21-bit name's hash
 - Resolving hash collisions via name-based PIT at computers

C2: complete all the operations by one pipeline pass

- Packet re-circulation via loopback reduces bandwidth by half.
- Design: Multi-staged pipeline layout for PIT
 - Splitting entry's fields into distinct stages to fully leverage ALUs

D1: Hashing Names of PIT

Interest recording

- In-face is recorded at switch or computer.
 - At switch if same hash is not found.
 - At computer with name if same hash is found.
- Number of pending Interests is counted for collision handling.
 - +1 when Interest is successfully forwarded.
 - −1 when Data is successfully forwarded.

D1: Hashing Names of PIT

Data forwarding

- Switch (hash) can itself forward Data packet just after arrival of only one Interest of same hash.
 - The hash is obviously created by Interest of same name.
- Switch must involve computer (name) for Data packet after arrivals of 2 or more than Interests of same hash.
 - The hash cannot validate whether of same or different name.
 - Collision detection based on number of pending Interests at switch (details in the paper)

D2: Pipeline Layout

- Splitting in-face & pending fields to 2 stages
 - ALUs of a single stage is not enough to handle both fields.
- Distributing hashes to multiple stages
 - 10s of MB-capacity only results from SRAMs of all the stages.

Prototype Implementation

Objectives

- Evaluation of throughput compared to Naïve
 - Naïve: running PIT and FIB at computer, dispatching packets to computer at switch
- Validation of Data forwarding by switch alone
- Router*: switch & 1 computer
 - Switch: Tofino ASIC & 32x 100 Gbps ports
 - Computer: 2x 22-cores CPUs & 2x 40 Gbps ports
- Traffic generator: up to 500 Gbps Interest-Data traffic by 3 computers

Results

Total throughput

- Proposal: nearly equal to the upper bound of traffic generator
- Naïve: limited by 80 Gbps bandwidth b/w switch & computer
 - Bandwidth consumption due to DRAM accesses for Data packets

Router Architecture	bits/s	packets/s
Proposal	470 Gbps	94.4 MPPS
Naive	79 Gbps	15.8 MPPS

Validation in Proposal

- 98% of Data packets are forwarded by switch alone.
 - The rest 2% are successfully forwarded via computer.

Summary & Open Issues

- 10-Tbps NDN router w/ billion prefixes FIB is feasible with a switch and a few computers.
 - Data forwarding by switch alone for efficient bandwidth usage, whereas Interest forwarding with computer's large DRAMs
 - Compact hash-based PIT structure for switch ASIC
 - 470 Gbps throughput in prototype router
 w/ one Tofino switch & one computer
- Open issues (details in the paper)
 - Tbps-scale traffic generator (ccnGen in poster session)
 - Formal verification for PIT's behavior
 - TLV handling in stateful parser of switch ASIC
 - Performance against unexpected traffic patterns