Introduction: naive set theory

$$\mathbb{N} = \{1, 2, 3, \dots, \}$$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \}$$

$$\mathbb{Z}_{+} = \{0, 1, 2, \dots, \}$$

$$\mathbb{Q} = \left\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\right\}$$

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$

$$\mathbb{C}_{q} = \{a + bi \mid a, b \in \mathbb{Q}\}$$

Recall: given sets X and Y, a relation from X to Y is a subset of $X \times Y$, where \times denotes the cartesian product of X and Y.

A relation $f \subseteq X \times Y$ is a function from X to Y such that $\forall x \in X$, $\exists ! y \in Y$ such that $(x, y) \in f$. We write f(x) = y, and denote f as $f : X \to Y$.

X is the **domain** of f and Y is the **codomain**. The range $Ran(f) = \{f(x) \mid x \in X\} \subseteq Y$.

The graph of a function $Graph(f) = \{(x, f(x)) \mid x \in X\} \subseteq X \times Y$.

Examples

$$id_X: X \to X, id_X(x) = x$$

This is the identity function.

The Characteristic Function: If $A \subseteq X$

$$\mathbb{1}_A: X \to \mathbb{R}, \ \mathbb{1}_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \notin A \end{cases}$$

Algebra of Functions

Let X be any set, and $(X; \mathbb{R}) = \{f : X \to \mathbb{R}\}$ represent the function space of X with codomain \mathbb{R} .

Let
$$f, g \in \mathcal{F}(X; \mathbb{R})$$
. Then, $(f+g)(x) = f(x) + g(x)$, and $(f \cdot g)(x) = f(x) \cdot g(x)$.

If $t \in \mathbb{R}$, then (tf)(x) = tf(x) (scalar multiplication). If $g(x) \neq 0 \forall x \in X$, then $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$.

Finally, we have composition. If $f: X \to Y$ and $g: Y \to Z$ are functions, then $g \circ f(x) = g(f(x))$.

Injective, Subjective, and Bijective

A function $f: X \to Y$ is a **injective** map, then, if $f(x_1) = f(x_2)$, then $x_1 = x_2$. For example, the shift map $S: \mathbb{N} \to \mathbb{N}$, S(n) = n + 1 is injective.

Any strictly increasing function $f: I \to \mathbb{R}$, where I is any interval, is injective.

A function f is **surjective** if $\forall y \in Y, \exists x \in X$ such that f(x) = y.

Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 - 2x + 1$. We can show that this function is surjective because $\lim_{x \to \infty} f(x) = \infty$, $\lim_{x \to -\infty} f(x) = -\infty$. Due to the intermediate value theorem, we get that $\operatorname{ran}(f) = \mathbb{R}$.

f is **bijective** if it is injective and surjective.

Invertibility

Let $f: X \to Y$ be a function. f is **left-invertible** if $\exists g: Y \to X$ such that $g \circ f = \mathrm{id}_X$. f is **right-invertible** if $\exists h: Y \to X$ such that $f \circ h = \mathrm{id}_Y$.

f is **invertible** if $\exists k : Y \to X$ such that $f \circ k = id_Y$ and $k \circ f = id_X$.

For example, the function Sin(x) defined as sin(x) restricted to $[-\pi/2, \pi/2]$ has an inverse, $arcsin(x): [-1, 1] \rightarrow [-\pi/2, \pi/2]$.

Invertibility Definition

f is invertible if and only if f is left and right invertible.

Forward direction: This is via the definition of invertibility.

Reverse direction: Suppose g is a left-inverse of f, and h is a right-inverse of f. Therefore, $g \circ f = \mathrm{id}_X$, and $f \circ h = \mathrm{id}_Y$. Observe that $g = g \circ \mathrm{id}_Y$. Therefore, $g = g \circ (f \circ h)$. Via associativity, $g = (g \circ f) \circ h = \mathrm{id}_X \circ h = h$.

Injection and Surjection Invertibility

If $f: X \to Y$ is a function:

- 1. f is injective $\Leftrightarrow f$ is left-invertible.
- 2. f is surjective $\Leftrightarrow f$ is right-invertible.
- 3. f is bijective $\Leftrightarrow f$ is invertible.

We will prove the first proposition in the forward direction. Suppose f is injective. Given $y \in \text{ran}(f)$, we know that $\exists ! x_y \in X$ such that $f(x_y) = Y$, by the definition of injective.

Let $g: Y \to X$. We will define g as follows:

$$g(y) = \begin{cases} x_y & y \in \operatorname{ran}(f) \\ x_0 & y \notin \operatorname{ran}(f) \end{cases}$$

Where x_0 is an arbitrary point in X. We can see that $g \circ f = id_X$.

Cardinality and Finitude

Which set is "larger," $\{1,2,3\}$ or $\{1,2,3,4\}$? \mathbb{N} or \mathbb{N}_0 ? \mathbb{Z} or \mathbb{Q} ?

In order to prove that one set is "the same size" as the other, we can create pairs. For two sets A and B, we can show that A is the same size as B by creating a function. For example, to show that \mathbb{N} and \mathbb{N}_0 have the same size, we create $s: \mathbb{N} \to \mathbb{N}_0$, s(n) = n + 1.

Cardinality

Sets A and B have the same **cardinality** if \exists bijection $f : A \rightarrow B$. We write card(A) = card(B).

Equivalent Cardinalities of Intervals

Given a < b and c < d, we know that card ([a, b]) = card([c, d]).

We can create a linear function from [a, b] to [c, d], and since linear functions are bijections, we know that card ([a, b]) = card([c, d]).

Intervals and Real Numbers

$$\operatorname{card}((0,1)) = \operatorname{card}(\mathbb{R})$$

- tan : $(-\pi/2, \pi/2) \to \mathbb{R}$ is a bijection:
 - tan is strictly increasing (and thus injective)
 - $\lim_{x\to\infty}\tan(x)=\infty$ and $\lim_{x\to-\infty}\tan(x)=-\infty$, and by intermediate value theorem, tan is surjective
- $\ell:(0,1)\to(-\pi/2,\pi/2)$ is a bijection as it is a linear function between two intervals.
- Therefore, our bijection is $\tan \circ \ell : (0,1) \to \mathbb{R}$.

Finitude

A set F is **finite** if F is empty or $\exists n \in \mathbb{N}$ such that $card(F) = card(\{1, 2, ..., n\})$. A non-finite set is called infinite.

We can *enumerate* F by creating a function $\sigma: \{1, 2, ..., n\} \to F$, such that $x_j = \sigma(j)$ for $F = \{x_1, x_2, ..., x_n\}$.

Inequality of Finite Sets

If $m \neq n$, then card $\{1, 2, ..., m\} = \text{card}\{1, 2, ..., n\}$.

WLOG, suppose m > n.

Suppose toward contradiction that $f:\{1,2,\ldots,m\}\to\{1,2,\ldots,n\}$ is our bijection. This means there are m "pigeons" and n "holes."

One hole, j, must contain at least two pigeons (i.e., f(i) = f(k) = j for some $i \neq k \in \{1, 2, ..., m\}$). Since f is assumed to be injective, this is a contradiction.

Infinitude of the Naturals

 $\ensuremath{\mathbb{N}}$ is infinite.

Suppose toward contradiction that \mathbb{N} is finite. Thus, $\exists m \in \mathbb{N}$ such that $f : \mathbb{N} \to \{1, 2, ..., m\}$ is a bijection.

Consider the inclusion $i: \{1, 2, ..., m+1\} \rightarrow \mathbb{N}$. i is injective.

Then, $f \circ i : \{1, 2, ..., m+1\} \to \{1, 2, ..., m\}$ is an injection, but by the pigeonhole principle, this cannot be. Therefore, we have reached a contradiction.

Proposition

If *A* is infinite, $\exists i : \mathbb{N} \hookrightarrow A$.

 $\exists a_1 \in A$, as $A \neq \emptyset$.

 $A \setminus \{a_1\} \neq \emptyset$, so $\exists a_2 \in A \setminus \{a_1\}$.

 $A \setminus \{a_1, a_2\} \neq \emptyset$, so $\exists a_3 \in A \setminus \{a_1, a_2\}$.

:

We thus get a sequence $\{a_1, a_2, \dots\}$ of distinct elements of A.

Consider $f: \mathbb{N} \to A$, $f(n) = a_n$. f is injective as a_n are distinct.

Cardinality of Integers and Natural Numbers

$$\operatorname{card}(\mathbb{Z}) = \operatorname{card}(\mathbb{N})$$

$$f: \mathbb{Z} \to \mathbb{N}$$

$$f(m) = \begin{cases} 2m+1 & m \ge 0 \\ -2m & m < 0 \end{cases}$$

f is a bijection as $g: \mathbb{N} \to \mathbb{Z}$, $g(n) = (-1)^{n+1} \lfloor \frac{n}{2} \rfloor$ is the inverse of f.

Power Set

Given any set X, $\mathcal{P}(X) = \{A \mid A \subseteq X\}$ is the **power set** of X.

$$2^X := \{ f \mid f : X \to \{0, 1\} \}.$$

Power Set and 2^X

$$\operatorname{card}(\mathcal{P}(X)) = \operatorname{card}(2^X)$$

Let $\varphi: \mathcal{P}(X) \to 2^X$.

For $A \subseteq X$, put $\varphi(A) := \mathbb{1}_A$.

Consider $\psi: 2^X \to \mathcal{P}(X)$. $\psi(f) = f^{-1}(\{1\}) = \{x \in X \mid f(x) = 1\}$.

Then, $\psi \circ \varphi(A) = \psi(1_A) = 1^{-1}(\{1\}) = A$,

and, we claim $\varphi(\psi(f)) = \varphi(f^{-1}(\{1\})) = \mathbb{1}_{f^{-1}(\{1\})} = f$.

Cantor's Theorem

 \nexists surjection $\mathbb{N} \to (0,1)$

Fact from calculus: $\forall \sigma \in (0,1)$, σ can be written uniquely as a decimal expansion.

$$\sigma = \sum_{k=1}^{\infty} \frac{\sigma_k}{10^k}$$

Where $\sigma_k \in \{0, 1, ..., 9\}$ and not terminating in 9s.

Suppose toward contradiction that $\exists r: \mathbb{N} \to (0,1)$ that is a surjection. Write $r(n) = 0.\sigma_1(n)\sigma_2(n)\sigma_3(n)\ldots$, and $\sigma_i(n) \in \{0,1,\ldots,9\}$, and not terminating in 9s.

Consider $\tau : \mathbb{N} \to \{0, 1, \dots, 9\}$:

$$\tau(n) = \begin{cases} 3 & \sigma_n(n) = 2 \\ 2 & \sigma_n(n) \neq 2 \end{cases}$$

Let $\tau = 0.\tau(1)\tau(2)\tau(3)\dots$ Since r is surjective, $\exists m \in \mathbb{N}$ such that $r(m) = 0.\sigma_1(m)\sigma_2(m)\dots\sigma_m(m)\dots = \tau = 0.\tau(1)\tau(2)\dots\tau(m)\dots$

This implies that $\sigma_m(m) = \tau(m)$, which is definitionally not true, which is our contradiction.

Comparing Cardinalities

- $card(A) \le card(B) \Rightarrow \exists f : A \hookrightarrow B$
- $\operatorname{card}(A) < \operatorname{card}(B) \Rightarrow \operatorname{card}(A) \leq \operatorname{card}(B)$, $\operatorname{card}(A) \neq \operatorname{card}(B)$

For example, $X \subseteq Y \Rightarrow \operatorname{card}(X) \leq \operatorname{card}(Y)$ because $i: X \hookrightarrow Y, i(x) = x$ is an injection.

Transitive Property

If $card(A) \le card(B) \le card(C)$, then $card(A) \le card(C)$.

The composition of two injective functions is injective.

Canonical Set Comparisons

Via the inclusion map, we know the following:

$$\operatorname{card}(\mathbb{N}) \leq \operatorname{card}(\mathbb{Z}) \leq \operatorname{card}(\mathbb{Q}) \leq \operatorname{card}(\mathbb{R})$$

Cardinality of the Power Set

For any set A, $card(A) < card(\mathcal{P}(A))$.

Let us construct a function: $f: A \to \mathcal{P}(A)$, where $a \mapsto \{a\}$.

f is injective, as if $\{a\} = \{a'\}$, a = a'. So, $card(A) \le card(\mathcal{P}(A))$.

Claim $\not\exists g: A \to \mathcal{P}(A), g$ is surjective.

Suppose toward contradiction that such a g exists. Consider $S: \{a \in A \mid a \notin g(a)\}$.

Since g is onto, $\exists a_0 \in A$ with $g(a_0) = S$. $a_0 \in g(a_0) \Leftrightarrow a_0 \in S \Leftrightarrow a_0 \notin g(a_0)$. \bot

Equivalent Propositions

- (i) $card(A) \leq card(B)$
- (ii) $\exists f: A \hookrightarrow B$
- (iii) $\exists g: B \to A$, g surjection.

By definition, (i) \Leftrightarrow (ii).

- (ii) \Rightarrow (iii) If $f: A \hookrightarrow B$, f is left-invertible, and thus $\exists g: B \to A$ with $g \circ f = id_A$. So, g is right-invertible, so g is surjective.
- (iii) \Rightarrow (ii) If $g: B \to A$ is surjective, then g is right-invertible, so $\exists f: A \to B$ such that $g \circ f = id_B$. So, f is left-invertible, so f is injective.

Corollary

If $f: A \to B$ is any map, $card(f(A)) \le card(A)$.

Consider $g: A \to f(A)$, where g(a) = f(a). So, g is onto, so \exists an injection $f(A) \hookrightarrow A$.

More Cardinality of Canonical Sets

Consider the map $q: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}$, $q(m,n) = \frac{m}{n}$. This map is *not* injective, as 2/4 = 1/2. However, it is surjective, meaning $\operatorname{card}(\mathbb{Q}) \leq \operatorname{card}(\mathbb{Z} \times \mathbb{N})$.

Earlier, we showed that $\exists h : \mathbb{Z} \leftrightarrow \mathbb{N}$. Consider $H : \mathbb{Z} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, defined as H(m, n) = (h(m), n).

Claim H is a bijection.

Proof of Injection If $H(m_1, n_1) = H(m_2, n_2)$, then $h(m_1) = h(m_2)$, and $h_1 = h_2$, and since h is bijective, $h_1 = h_2$, and $h_1 = h_2$, so $h_1 = h_2$, so $h_2 = h_1$.

Proof of Surjection Let $(k, \ell) \in \mathbb{N} \times \mathbb{N}$. We want to find $(m, n) \in \mathbb{Z} \times \mathbb{N}$ such that $H(m, n) = (k, \ell)$. Set $n = \ell$, and since h is surjective, set $m \in \mathbb{Z}$ such that h(m) = k.

Therefore $\operatorname{card}(\mathbb{Z} \times \mathbb{N}) = \operatorname{card}(\mathbb{N} \times \mathbb{N})$.

We claim that $\operatorname{card}(\mathbb{N} \times \mathbb{N}) = \operatorname{card}(\mathbb{N})$. First, we need to find $\varphi : \mathbb{N} \times \mathbb{N} \hookrightarrow \mathbb{N}$. Consider $\varphi(m,n) = 2^m \cdot 3^n$. By the Fundamental Theorem of Arithmetic, φ is injective.

Bringing together our inequalities, we have:

$$\operatorname{card}(\mathbb{N}) \leq \operatorname{card}(\mathbb{Q})$$

 $\leq \operatorname{card}(\mathbb{Z} \times \mathbb{N})$
 $= \operatorname{card}(\mathbb{N} \times \mathbb{N})$
 $\leq \operatorname{card}(\mathbb{N})$

Cardinality Rules

- (i) $card(A) \leq card(A)$ (Reflexivity)
- (ii) $card(A) \le card(B) \le card(C) \Rightarrow card(A) \le card(C)$ (Transitivity)
- (iii) $card(A) \le card(B)$ and $card(B) \le card(A) \Rightarrow card(A) = card(B)$ (Cantor-Schröder-Bernstein)
- (iv) Either $card(A) \le card(B)$ or $card(B) \le card(A)$.

Proof of (iii) We have injections $f: A \hookrightarrow B$ and $g: B \hookrightarrow A$.

Let $A_0 \setminus \text{ran}(g)$. Let $A_1 = g \circ f(A_0)$. Note that $A_0 \cap A_1 = \emptyset$. Let $A_2 = g \circ f(A_1)$. Note that $A_0 \cap A_2 = \emptyset$.

Claim We claim $A_1 \cap A_2 = \emptyset$. If $\exists z \in A_1 \cap A_2$, then $z = g(f(x_0))$ for some $x_0 \in A_0$, and $z = g(f(x_1))$ where $x_1 \in A_1$. However, g and f are injective, so $g \circ f$ is injective, so $x_0 = x_1$, but $A_0 \cap A_1$. \bot

We let $A_n = g \circ f(A_{n-1})$ for arbitrary n, and $A_\infty = \bigcup_{n \geq 0} A_n$. If $a \notin A_\infty$, then $a \notin A_0$, so $a \in \text{ran}(g)$. Define $h : A \to B$.

$$h(x) = \begin{cases} f(x) & x \in A_{\infty} \\ y_{x} & x \notin A_{\infty} \end{cases}$$

Where y_x is the unique element in B with $g(y_x) = x$.

Claim We claim h is the desired bijection.

Proof of Injection Suppose $h(x_1) = h(x_2)$.

If $x_1, x_2 \in A_{\infty}$, then by the definition of H, $f(x_1) = f(x_2)$, f is injective, so $x_1 = x_2$.

Suppose $x_1, x_2 \notin A_{\infty}$. Then, by definition, $h(x_1) = y_{x_1}$ and $h(x_2) = y_{x_2}$, then $g(y_{x_1}) = g(y_{x_2})$, so $x_1 = x_2$.

WLOG, suppose $x_1 \in A_{\infty}$, and $x_2 \notin A_{\infty}$. $h(x_1) = f(x_1) = h(x_2) = y_{x_2}$. Then, $g(f(x_1)) \in A_{\infty} = g(y(x_2)) = x_2 \notin A_{\infty}$. This case is not possible.

Thus, *h* is injective.

Proof of Surjection Let $y \in B$. Set x := g(y).

Suppose $x \notin A_{\infty}$. Then, $h(x) = y_x$, where y_x is the unique element in B with $g(y_x) = x = g(y)$, so $y = y_x$, so h(x) = y.

If $x \in A_{\infty}$. We know that $x \notin A_0$, as $x \in \text{ran}(g)$. So, x = g(f(z)) for some $z \in A_{m-1}$. Since g is injective, y = f(z), $z \in A_{\infty}$. Thus, h(z) = f(z) = y.

Countability

A set X is *countable* if $\exists f : x \hookrightarrow \mathbb{N}$ (card $(X) \leq \text{card}(\mathbb{N})$). card $(\mathbb{N}) = \aleph_0$. If X is countable and infinite, X is *denumerable*.

Corollary to Cantor-Schröder-Bernstein

If X is denumerable, then $card(X) = \aleph_0$.

Since X is infinite, $\exists f : \mathbb{N} \hookrightarrow X$. Since X is countable, $\exists g : X \hookrightarrow \mathbb{N}$. By Cantor-Schröder-Bernstein, $\operatorname{card}(X) = \operatorname{card}(\mathbb{N})$, so $\operatorname{card}(X) = \aleph_0$.

Thus, we have:

$$\operatorname{card}(\mathbb{N}) = \operatorname{card}(\mathbb{Z}) = \operatorname{card}(\mathbb{Q})$$

Countability under Union

The countable union of countable sets is countable. If I is a countable indexing set and for each $i \in I$, A_i is countable, then $\bigcup_{i \in I} A_i$ is countable.

Since each A_i is countable, $\exists \pi_i : \mathbb{N} \twoheadrightarrow A_i$. Consider the function

$$\pi: I \times \mathbb{N} \to \bigcup_{i \in I} A_i$$

defined as $\pi(i,j) = \pi_i(j)$.

Claim 1 π is a surjection.

Proof 1 Let $x \in \bigcup_{i \in I} A_i$. $\exists i_0$ such that $x \in A_{i_0}$. Since π_{i_0} is surjective, $\exists k \in \mathbb{N}$ with $\pi_{i_0}(k) = x$. $\pi_{i_0}(k) = \pi(i_0, k)$. Therefore, π is surjective.

Claim 2 $I \times \mathbb{N}$ is countable.

Proof 2 We know $\exists f: I \hookrightarrow \mathbb{N}$ since I is countable. Thus, $g: I \times \mathbb{N} \hookrightarrow \mathbb{N} \times \mathbb{N}$, $(i, n) \mapsto (f(i), n)$. Recall, $\mathbb{N} \times \mathbb{N} \hookrightarrow \mathbb{N}$, $(m, n) \mapsto 2^m \cdot 3^n$ is an injection. By composing these maps, $I \times \mathbb{N} \hookrightarrow \mathbb{N}$. Since π is onto, and $I \times \mathbb{N}$ is countable, $\bigcup_{i \in I} A_i$ is countable.

Continuum Hypothesis

We saw that $\operatorname{card}(\mathbb{N}) < \operatorname{card}(\mathcal{P}(\mathbb{N})) = \operatorname{card}(2^{\mathbb{N}})$, where $2^{\mathbb{N}} \{ f \mid f : \mathbb{N} \to \{0, 1\} \}$.

Theorem $\operatorname{card}(\mathbb{R}) = \operatorname{card}(I) = \operatorname{card}(2^{\mathbb{N}})$, where I is any non-degenerate interval.

Lemma 1 $card([0,1]) \leq card(2^{\mathbb{N}}).$

Proof 1 Every $t \in [0, 1]$ has a binary expansion.

$$t = \sum_{k=1}^{\infty} \frac{\sigma_k}{2^k}$$

where $\sigma_k \in \{0, 1\}$.

Consider $2^{\mathbb{N}} \xrightarrow{\varphi} [0,1]$, defined as $\phi(f) = \sum_{k=1}^{\infty} \frac{f(k)}{2^k}$. Set $f: \mathbb{N} \to \{0,1\}$, $f(k) = \sigma_k$.

Therefore, φ is surjective, so $\exists \{0,1\} \hookrightarrow 2^{\mathbb{N}}$, so $\mathrm{card}([0,1]) \leq 2^{\mathbb{N}}$

Lemma 2 card([0,1]) = card(\mathbb{R}).

Proof 2 We have $[0,1] \stackrel{i}{\hookrightarrow} \mathbb{R}$ via inclusion, so $card([0,1]) \leq card(\mathbb{R})$.

Also, $card(\mathbb{R}) = card((0,1)) \le card([0,1])$, so by Cantor-Schröder-Bernstein, $card(\mathbb{R}) = card([0,1])$.

Lemma 3 Any two non-degenerate intervals I and J have the same cardinality.

Proof 3 We can create injections $I \hookrightarrow J$ and vice-versa.

Lemma 4 card $(2^{\mathbb{N}}) \leq \operatorname{card}([0,1])$.

Proof 4 $\psi:2^{\mathbb{N}} \to [0,1].$ Where $\psi(f) = \sum_{k=1}^{\infty} \frac{f(k)}{3^k}.$

 ψ is well-defined:

$$0 \le \sum_{k=1}^{\infty} \frac{f(k)}{3^k} \le \sum_{k=1}^{\infty} \frac{1}{3^k} \le \frac{1}{2} \le 1$$

We claim ψ is injective. Suppose $f \neq g$ in $2^{\mathbb{N}}$. Let $k_0 = \min\{k \mid f(k) \neq g(k)\}$. WLOG, $f(k_0) = 0$, $g(k_0) = 1$. Let $t_f = \sum_{k>k_0}^{\infty} \frac{f(k)}{3^k}$, $t_g = \sum_{k>k_0}^{\infty} \frac{g(k)}{3^k}$.

Therefore, $\psi(f) = \sum_{k=1}^{k_0-1} \frac{f(k)}{3^k} + 0 + t_f$, and $\psi(g) = \sum_{k=1}^{k_0-1} + \frac{1}{3^{k_0}} + t_g$.

Suppose toward contradiction $\psi(f) = \psi(g)$. Then, $t_f = \frac{1}{3^{k_0}} + t_g$, or $t_f - t_g = \frac{1}{3^{k_0}}$.

$$|t_f - t_g| = |\sum_{k > k_0} \frac{f(k)}{3^k} - \sum_{k > k_0} \frac{g(k)}{3^k}|$$

$$\leq \sum_{k > k_0} \frac{|f(k) - g(k)|}{3^k}$$

$$\leq \sum_{k > k_0} \frac{1}{3^k}$$

$$= \frac{(1/3)^{k_0 + 1}}{1 - (1/3)}$$

$$= \frac{1}{2} \cdot \frac{1}{3^{k_0}}$$

 \perp

We have thus shown:

$$\mathsf{card}(\mathbb{R}) = \mathsf{card}([0,1]) = \mathsf{card}(2^{\mathbb{N}})$$

We know that

$$\aleph_0=\text{card}(\mathbb{N})=\text{card}(\mathbb{Q})=\text{card}(\mathbb{Z})<2^{\aleph_0}=\text{card}(2^{\mathbb{N}})=\text{card}(\mathbb{R})=\text{card}(I)$$

However, the existence of an infinity with cardinality strictly greater than \aleph_0 and strictly less than 2^{\aleph_0} is an axiom (i.e., it can be an assumption or not).

Ordering

Let X be a non-empty set. A relation on X is a subset of $X \times X$.

- R is reflexive if $\forall x \in X$, $(x, x) \in R$.
- R is transitive if $(x, y), (y, z) \in R \rightarrow (x, z) \in R$.
- If R is antisymmetric $(x, y), (y, x) \in R \rightarrow x = y$.

If R is reflexive, transitive, and antisymmetric, then R is an *ordering* of X.

If R is an ordering of X, then we write:

$$(x, y) \in R \Leftrightarrow xRy \Leftrightarrow x \leq_R y$$

- $x \leq_R x \ \forall x \in X$
- $x \leq_R y$, $y \leq_R z \to x \leq_R z$
- $x \leq_R y$, $y \leq_R x \to x = y$

Additionally, $x <_R y$ means $x \le_R y$ and $x \ne y$.

Algebraic ordering of \mathbb{N}_0

 $n \leq_a m \Leftrightarrow \exists k \in \mathbb{N}_0 \text{ such that } n+k=m$

N ordered via division

$$n \leq_D m \Leftrightarrow n|m$$

Under this definition, it is false that $2 \le_D 5$, but it is true that $4 \le_D 20$.

Inclusion Let S be any set, and let $X = \mathcal{P}(S)$. For $A, B \in \mathcal{P}(S)$, we define $A \leq_i B \Leftrightarrow A \subseteq B$.

Containment With *X* defined as above, $A \leq_c B \Leftrightarrow A \supseteq B$.

For $\mathcal{F}(X,\mathbb{R}) = \{f \mid f : X \to \mathbb{R}\}$, we can define $f \leq g \Leftrightarrow f(x) \leq g(x) \ \forall x \in X$.

Types of Orderings

- An ordering \leq of X is total or linear if $\forall x, y \in X, x \leq y$ or $y \leq x$.
- An ordering is *directed* if $\forall x, y \in X \exists z \in X$ such that $x \leq z$ and $y \leq z$.

If X is a totally ordered set, X is directed.

For example, all the following orderings are directed but not total:

$$(\mathbb{N}_0, \leq_D), (\mathcal{P}(S), \leq_i), (\mathcal{P}(S), \leq_c)$$

Upper/Lower Bounds

- (i) Let (X, \leq) be an ordered set, $A \subseteq X$. A is bounded above if $\exists v \in X$ with $a \leq v \ \forall a \in A$. Such a v is an upper bound.
- (ii) A is bounded below if $\exists \ell \in X$ such that $a \geq \ell \ \forall a \in A$. Such a w is a lower bound.
- (iii) If v is an upper bound of A and $v \in A$, then v is the greatest element of A, or $\max(A) = v$.
- (iv) If ℓ is a lower bound for A and $\ell \in A$, then ℓ is the least element of A, or $\min(A) = \ell$.
- (v) If u is an upper bound for A, and $u \le v$ for all other upper bounds v of A, then u is the *least upper bound* of A, or $\sup(A) = u$ (for *supremum*).
- (vi) If ℓ is a lower bound for A, and $\ell \leq g$ for all other lower bounds g of A, then ℓ is the *greatest lower bound* of A, or $\inf(A) = \ell$ (for *infimum*).
- (vii) If A is bounded above and below, then A is bounded.

Well-Ordering Principle

With (\mathbb{N}, \leq_a) , every nonempty $A \subseteq \mathbb{N}$ has a least element.

Examples

Example 1

For $A \subseteq (\mathbb{N}, \leq_a)$, $A = \{2, 3, \dots, 12\}$, we have the following:

Bounded Above? Yes.

Upper Bounds 12, 13, 14, . . .

Greatest Element 12

Example 2

For $A \subseteq (\mathbb{N}, \leq_D)$, $A = \{2, 3, \dots, 10\}$

Bounded Above? Yes.

Upper Bounds 10!

Greatest Element? No.

Supremum $2^3 \cdot 3^2 \cdot 5 \cdot 7$

Bounded Below? Yes.

Lower Bound 1

Least Element? No.

Infimum 1

Example 3

For
$$A \subseteq (\mathcal{P}(S), \leq_i)$$
, $A = \{A_i\}_{i \in I} \subseteq \mathcal{P}(S)$.

Supremum $\bigcup_{i \in I} A_i$

Infimum $\bigcap_{i \in I} A_i$

Complete Sets

An ordered set (X, \leq) is *complete* if for all $A \subseteq X$ bounded, $\inf(A)$ and $\sup(A)$ exist.

For example, \mathbb{Q} is *not* complete, as there is not a largest rational number less than $\sqrt{2}$, for example.

Ordering of $\mathbb Z$

$$n \leq_a m \Leftrightarrow \exists k \in \mathbb{N}_0, \ n+k=m$$

This defines a total and complete ordering.

Define $\mathbb{Z}^+ = \{ m \in \mathbb{Z} \mid 0 \leq_a m \}$

Properties of \mathbb{Z}^+

- (i) $m, n \in \mathbb{Z} \Rightarrow m + n \in \mathbb{Z}^+, m \cdot n \in \mathbb{Z}^+$
- (ii) $m \in \mathbb{Z}$, then $m \in \mathbb{Z}^+$ or $-m \in \mathbb{Z}^+$
- (iii) $m, -m \in \mathbb{Z}^+$, then m = 0
- (iv) $m \leq_a n \Leftrightarrow n m \in \mathbb{Z}^+$

Ordering of \mathbb{Z} , \mathbb{Q} , and \mathbb{R}

Recall the ordering of \mathbb{Z} :

$$n \leq_a m \stackrel{\text{def}}{\Longleftrightarrow} \exists k \in \mathbb{N}_0 \text{ with } n+k=m$$

Claim \leq_a is an ordering of \mathbb{Z}

We claim that $\mathbb{Z}^+ = \{ m \in \mathbb{Z} \mid 0 \leq_a m \}$. Thus, $\mathbb{Z}^+ = \mathbb{N}_0$.

Properties of \mathbb{Z}^+

- (i) $m, n \in \mathbb{Z} \Rightarrow m + n \in \mathbb{Z}^+, m \cdot n \in \mathbb{Z}^+$
- (ii) $m \in \mathbb{Z}$, then $m \in \mathbb{Z}^+$ or $-m \in \mathbb{Z}^+$
- (iii) $m, -m \in \mathbb{Z}^+$, then m = 0
- (iv) $m \leq_a n \Leftrightarrow n m \in \mathbb{Z}^+$

Other Properties of $\mathbb Z$

- (1) $n \leq_a m \Leftrightarrow m n \in \mathbb{Z}^+$
- (2) $m \leq_a n$ and $p \leq_a q \Rightarrow m + p \leq_a n + q$
- (3) $m \leq_a n$ and $p \in \mathbb{Z}^+ \Rightarrow pm \leq_a pn$
- (4) $m \leq_a n \Rightarrow -m_a \geq n$
- (5) \leq_a is total.
- (6) If $a_a > -$, and $ab_a \ge 0$, then $b_a > 0$
- (7) If a > 0 and $ab_a \ge ac$, then $b \ge c$.

Proof of (3):

$$m \leq_a n \Rightarrow \exists k \in \mathbb{N}_0 \text{ with } m+k=n.$$

 $\Rightarrow pm+pk=pn$
 $pk \in \mathbb{N}_0 \text{ by the properties of } \mathbb{Z}^+.$ So, $pm \leq_a pn$

Proof of (5):

Let $m, n \in \mathbb{Z}$. Consider m - n. By (ii), $m - n \in \mathbb{Z}^+$ or $-(m - n) \in \mathbb{Z}^+$. Thus, m - n = k for some $k \in \mathbb{Z}^+$, or $-(m - n) = \ell$ for some $\ell \in \mathbb{Z}^+$.

Thus, $n \leq_a m$ in the first case, or $m \leq_a n$ in the second case.

We now want an ordering on Q.

Recall that $Q=\mathbb{Z}\times\mathbb{Z}^*=\{(a,b)\mid a\in\mathbb{Z},\ b\in\mathbb{Z},\ b\neq 0\}.$ Consider the equivalence relation:

$$(a, b) \sim (c, d) \stackrel{\text{def}}{\iff} ad = bc$$

We will let $\mathbb{Q} = \{[(a, b)] \mid (a, b) \in Q\}$ be the set of all equivalence classes in Q. We write:

$$[(a,b)] = \frac{a}{b}$$

We define addition as follows:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

We must check that addition is well-defined: $\frac{a'}{b'} = \frac{a}{b}$ and $\frac{c'}{d'} = \frac{c}{d}$, then $\frac{a'd' + c'b'}{b'd'} = \frac{ad + bc}{bd}$.

We define multiplication as follows:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

These operations make $\mathbb Q$ a **field**:

Fields

A ring is a nonempty set set R equipped with two binary operations:

• $+: R \times R \to R$, $(a, b) \mapsto a + b$ ("addition")

• $\cdot : R \times R \to R$, $(a, b) \mapsto a \cdot b$ ("multiplication")

such that the following hold:

(1) (a+b)+c=a+(b+c)

(2) $\exists z \in R$ such that $a + z = a = z + a \ \forall a \in R$; there is at most one such z. Set $z = 0_R$.

(3) $\forall a \in R, \exists b \in R \text{ such that } a+b=0_R=b+a; \text{ there is at most one such } b. \text{ Set } b=-a.$

(4) $\forall a, b \in R, \ a + b = b + a.$

(5) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

(6) $a \cdot (b+c) = a \cdot b + a \cdot c$, $(a+b) \cdot c = a \cdot c + b \cdot c$

The above six rules define a ring. If $(R, +, \cdot)$ satisfies ab = ba, R is a commutative ring.

If there exists $u \in R$ such that $ua = au = a \ \forall a \in R$, R is a unital ring; there is at most one unit. Set $u = 1_R$

An integral domain is a unital, commutative ring such that $ab=0 \Rightarrow a=0 \lor b=0$. For example, \mathbb{Z} is an integral domain. However, $c(\mathbb{R})=\{f:\mathbb{R}\to\mathbb{R}\mid f \text{ continuous}\}$ is a unital, commutative ring, but there exist two functions such that $f,g\neq\mathbf{0}$, but $f\cdot g=\mathbf{0}$.

A field is a unital, commutative ring such that every element has a multiplicative inverse.

$$\forall a \in R, a \neq 0_R, \exists b \in R, \text{ with } ab = 1_R$$

There is only one such b. Set $b = a^{-1}$.

Proof that \mathbb{Q} is a Field:

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

Provided that $\frac{a}{b} \neq 0_{\mathbb{Q}}$.

Additionally, $\mathbb{Z} \stackrel{j}{\hookrightarrow} \mathbb{Q}$, $j(n) = \frac{n}{1}$ is injective.

Ordering of $\mathbb Q$

$$\frac{a}{b} \leq_a \frac{c}{d} \Leftrightarrow ad \leq_a bc \in \mathbb{Z}$$

Prove that this ordering is well-defined.

Order Embedding

 \leq is a well-defined total ordering of \mathbb{Q} , and $j: \mathbb{Z} \hookrightarrow \mathbb{Q}$, $j(n) = \frac{n}{1}$ is an order embedding.

$$j(n) \le j(m) \Leftrightarrow n \le_a m \in \mathbb{Z}$$

Properties of \mathbb{Q}^{-}

$$\mathbb{Q}^+ = \{ q \in \mathbb{Q} \mid q \ge 0_{\mathbb{Q}} \}$$

- (i) $q_1, q_2 \in \mathbb{Q}^+ \Rightarrow q_1 + q_2 \in \mathbb{Q}^+, q_1 q_2 \in \mathbb{Q}^+$
- (ii) $q \in \mathbb{Q} \Rightarrow q \in \mathbb{Q}^+ \lor -q \in \mathbb{Q}^+$
- (iii) $\pm q \in \mathbb{Q}^+$, q = 0
- (iv) $x \le y$, $!u \le v \Rightarrow x + u \le y + v$
- (v) $x \le y$, $0 \le z \Rightarrow zx \le zy$

Ordering of \mathbb{R} , cont'd

An **ordered field** is a field F equipped with a total ordering \leq_F such that:

- (i) if $s \leq_F t$, and $x \leq_F y$, then $s + x \leq_F t + y$
- (ii) if $s \leq_F t$ and $0 \leq_F z$, then $zs \leq_F zt$

For example, \mathbb{Q} with its ordering is an ordered field.

Proposition 1: If (F, \leq_F) is an ordered field, we define $F^+ = \{x \in F, x_F \geq 0\}$ with the following properties:

- (1) $x, y \in F^+ \Rightarrow x + y \in F^+, xy \in F^+$
- (2) $x \in F \Rightarrow x \in F^+, -x \in F^+$
- (3) $\pm x \in F^+ \Rightarrow x = 0_F$

Proofs

- (1) Let $x, y \in F^+$. Then, $x \ge 0$ and $y \ge 0$, so by property (i) of an ordered field, $x + y \ge 0$, so $x + y \in F^+$. Additionally, we have $x \cdot y \ge x \cdot 0 = 0$, so $xy \in F^+$.
- (2) Let $x \in F$. Since the ordering on F is total, $x \ge 0$ or $0 \ge x$. In the first case, $x \in F^+$. In the second case, we add -x to both sides, so by (i), $-x \ge 0$, so $-x \in F^+$.
- (3) We have $x \ge 0$ and $-x \ge 0$. So $x \ge 0$ and $x + (-x) \ge x + 0$, so $x \ge 0$ and $0 \ge x$. So, x = 0 by antisymmetry.

Note: $x \leq_F y \Leftrightarrow y - x \in F^+$.

Proposition 2: Let *F* be an ordered field. Then, the following is true:

- (1) $\forall a \in F, a^2 \in F^+$
- (2) $0, 1 \in F^+$
- (3) If $n \in \mathbb{N}$, $n \cdot 1_F = \underbrace{1_F + 1_F + \dots + 1_F}_{n \text{ times}}$
- (4) If $x \in F^+$, and $x \neq 0$, then $x^{-1} \in F^+$

- (5) If xy > 0, then $x, y \in F^+$, or $-x, -y \in F^+$
- (6) If $0 < x \le y$, then $0 < y^{-1} \le x^{-1}$
- (7) If $x \le y$, then $-y \le -x$
- (8) $x \ge 1 \Rightarrow x^2 \ge x \ge 1$, and $0 \le x \le 1 \Rightarrow 0 \le x^2 \le x \le 1$.

Proofs

(1) Let $a \in F$. Then, $a \in F^+$ or $-a \in F^+$.

Case 1 If $a \in F^+$, then by the previous proposition, $a^2 \in F^+$. Case 2 If $-a \in F^+$, then by the previous proposition, $(-a)(-a) = a^2 \in F^+$.

- (2) $0 \ge 0$, so $0 \in F+$. $1 = 1 \cdot 1 = 1^2 \in F^+$ by the previous result.
- (3) $n \cdot 1_F = \underbrace{1_F + 1_F + \cdots 1_F}_{n \text{ times}} \in F^+$ by the previous proposition.
- (4) Let $x \neq 0$, $x \in F^+$. Suppose toward contradiction that $x^{-1} \notin F^+$, then $-x^{-1} \in F^+$. Thus, $x \cdot (-x^{-1}) \in F^+$, so $-1 \in F^+$, but $1 \in F^+$, so 1 = 0. \bot
- (5) Let xy > 0, meaning $xy \in F^+$. Suppose toward contradiction that x > 0 and y < 0. So, x > 0 and -y > 0, so (x)(-y) > 0, so $-(xy) \in F^+0$, so xy = 0. \perp
- (6) Let $0 < x \le y$. We know $x^{-1} \in F^+$, so $x^{-1}x \le x^{-1}y$. So $1 \le x^{-1}y$. We also know $y \in F^+$, so $y^{-1} \in F^+$. So, $1 \cdot y^{-1} \le x^{-1} \cdot y \cdot y^{-1}$.
- (7) Let $x \le y$. Then, $0 \le y x$, so $-y \le -x$.
- (8) Let $x \ge 1$. Then, $x \cdot x \ge 1 \cdot x \ge 1$.

Order Axiom

 \mathbb{R} is an ordered field. The injection $\mathbb{Q} \hookrightarrow \mathbb{R}$, i(q) = q is an order embedding.

Rational Orderings

Proposition 1: If $a \le b$, then $a \le \frac{1}{2}(a+b) \le b$

Proof

 $2a = a + a \le a + b \le b + b$, all by property (i) of an ordered field.

Therefore, $2a \le a+b \le 2b$. Since $2=1+1 \in \mathbb{R}^+$, $2^{-1} \in \mathbb{R}^+$, so $(2a)/2 \le \frac{1}{2}(a+b) \le (2b)/2$, so $a \le \frac{1}{2}(a+b) \le b$.

Proposition 2: If $a \ge 0$ and $(\forall \varepsilon > 0)$, $a \le \varepsilon$.

Proof

If $a \ge 0$ and $a \ne 0$, then a > 0. So, we have that $\frac{1}{2}a < a$. Let $\varepsilon = \frac{1}{2}a$. We also have that $a \le \varepsilon = \frac{1}{2}a < a$, so a < a. \bot

Arithmetic and Geometric Means

Given $a_1, a_2, \ldots, a_n \in \mathbb{R}^+$:

Arithmetic Mean

$$=\frac{\sum_{i=1}^{n}a_{i}}{m}$$

Geometric Mean

$$=\sqrt[m]{a_1a_2\cdots a_m}$$

Arithmetic Mean-Geometric Mean Inequality

Let $a, b \ge 0$.

$$(ab)^{1/2} \le \frac{1}{2}(a+b)$$

If $x, y \ge 0$, $x \le y \Leftrightarrow x^2 \le y^2$.

$$0 \le x \cdot x \le x \cdot y \le y \cdot y$$

by property (ii) of ordered fields

Therefore,

$$(ab)^{1/2} \le \frac{1}{2}(a+b)$$

$$ab \le \frac{1}{4}(a^2 + 2ab + b^2)$$

$$4ab \le a^2 + 2ab + b^2$$

$$0 \le a^2 - 2ab + b^2$$

$$0 \le (a-b)^2$$

by definition

Challenge: Prove for *m*.

Remark: The harmonic mean is defined as:

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{a_i}}$$

Bernoulli's Inequality

If $x \ge -1$, then $(1+x)^n \ge 1 + nx$, for any $n \in \mathbb{N}_0$

By induction, we know that for n = 0 and n = 1, this holds.

Assume the inequality holds for some $m \ge 1$.

$$(1+x)^{m+1} = (1+x)^m (1+x)$$

$$\geq (1+mx)(1+x)$$

$$= 1+x+mx+mx^2$$

$$= 1+(m+1)x+mx^2$$

$$\geq 1+(m+1)x$$

by the inductive hypothesis

Cauchy's Inequality

Let $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$. Then

$$\left| \sum_{j=1}^{n} a_j b_j \right| \le \left(\sum_{j=1}^{n} a_j^2 \right)^{1/2} \left(\sum_{j=1}^{n} b_j^2 \right)^{1/2}$$

In linear algebra language, this is equivalent to $|\vec{v} \cdot \vec{w}| \leq ||\vec{v}|| \cdot ||\vec{w}||$.

Consider $f: \mathbb{R} \Rightarrow \mathbb{R}$

$$f(x) = \sum_{j=1}^{n} (a_j - b_j x)^2$$

We know that $f(x) \ge 0$ for all $x \in \mathbb{R}$

$$= \sum_{i=1}^{n} (a_j^2 - 2a_j b_j x + b_j^2 x^2)$$

$$= \left(\sum_{j=1}^{n} b_j^2\right) x^2 + \left(\sum_{j=1}^{n} -2a_j b_j\right) x + \sum_{j=1}^{n} a_j^2$$

$$= Ax^2 + Bx + C$$

Therefore, $\Delta = B^2 - 4AC \le 0 \Rightarrow B^2 \le 4AC$

$$\left(-2\sum_{j=1}^{n}a_{j}b_{j}\right)^{2} \leq 4\left(\sum_{j=1}^{n}a_{j}\right)\left(\sum_{j=1}^{n}b_{j}\right)$$

$$\left|\sum_{j=1}^{n}a_{j}b_{j}\right| = \left(\sum_{j=1}^{n}a_{j}\right)^{1/2}\left(\sum_{j=1}^{n}b_{j}\right)^{1/2}$$

As we know from linear algebra, the way we get equality is when $\vec{v} = c\vec{w}$, or that $a_j = cb_j \ \forall j$ for some $c \in \mathbb{R}$.

Triangle Inequality

Given $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}$

$$\left(\sum_{j=1}^{n} (a_j + b_j)^2\right)^{1/2} \le \left(\sum_{j=1}^{n} a_j^2\right)^{1/2} + \left(\sum_{j=1}^{n} b_j^2\right)^{1/2}$$

In linear algebra, this is equivalent to $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$.

$$\sum (a_j + b_j)^2 = \sum a_j^2 + \sum 2a_jb_j + \sum b_j^2$$

$$\leq \sum a_j^2 + 2\left(\sum a_j^2\right)^{1/2} \left(\sum b_j^2\right)^{1/2} + \sum b_j^2 \qquad \text{by Cauchy}$$

$$= \left(\left(\sum a_j^2\right)^{1/2} + \left(\sum b_j^2\right)^{1/2}\right)^2$$

we take square roots to get our end result

Metrics and Norms on \mathbb{R}'

Consider $|\cdot|:\mathbb{R}\to\mathbb{R}$, defined as follows:

$$|x| := \begin{cases} x, & x \in \mathbb{R}^+ \\ -x, & x \notin \mathbb{R}^+ \end{cases}$$

Theorems about Absolute Value:

(i)
$$|ab| = |a||b|$$

(ii)
$$|a^2| = |a|^2$$

(iii)
$$|-a| = |a|$$

(iv)
$$|a| \in \mathbb{R}^+$$

$$(v) -|a| \le a \le |a|$$

(vi)
$$|a| \le \delta \Rightarrow -\delta \le a \le \delta$$
 for $\delta > 0$

(vii)
$$|a+b| \le |a| + |b|$$
, $|a-b| \le |a| + |b|$, $||a| - |b|| \le |a-b|$

Proofs

Proof of (i)

Case 1: If $a, b \in \mathbb{R}^+$, then |a| = a, and |b| = b, and $ab \in \mathbb{R}^+$, so |ab| = ab

Case 2: If $a, b \notin \mathbb{R}^+$, then |a| = -a, and |b| = -b. Additionally, $(-a)(-b) = ab \in \mathbb{R}^+$, so |ab| = ab. The LHS = ab, and the RHS = ab.

Case 3: $a \in \mathbb{R}^+$, $-b \in \mathbb{R}^+$. Then, |a||b| = (a)(-b) = -ab. Then, since $a(-b) \in \mathbb{R}^+$, $-ab \in \mathbb{R}^+$, so |ab| = -ab. Therefore, the LHS and RHS are equal.

Proof of (vii) Having established that $|a+b| \le |a| + |b|$, we will show that $||a| - |b|| \le |a-b|$.

$$|a| = |a - b + b|$$

$$\leq |a - b| + |b|$$

$$|a| - |b| \leq |a - b|$$

Similarly, by exchanging a for b

$$|b| - |a| \le |b - a|$$
$$|b| - |a| \le |a - b|$$

Let t = |a| - |b|. We have shown that

$$\pm t \le |a - b|$$
$$-|a - b| \le t \le |a - b|$$
$$|t| \le |a - b|$$

Absolute Values, cont'd

Recall:

$$|x| = \begin{cases} x, & x \in \mathbb{R}^+ \\ -x, & x \notin \mathbb{R}^+ \end{cases}$$

If we want to find all $x \in \mathbb{R}$ such that $|x-1| \le |x|$, we would split up into cases:

$$x \le 0$$
 $x - 1 \le -1$, so $|x| = -x$ and $|x - 1| = 1 - x$, so $1 - x \le -x$, so $0 \ge 1$. \bot

$$0 < x \le 1 \ |x| = x \text{ and } |x - 1| = 1 - x, \text{ so } 1 - x \le x, \text{ so } x \ge \frac{1}{2}, \text{ so } \frac{1}{2} \le x \le 1.$$

 $1 < x \mid x \mid = x$ and |x - 1| = x - 1, so $x - 1 \le x$, so $x - 1 \le 0$, which is true $\forall \mathbb{R}$ in the interval, so x > 1.

Therefore, we have $x \in (\frac{1}{2}, \infty)$ as that which satisfies this inequality.

Bounded Sets

A subset $A \subseteq \mathbb{R}$ is **bounded** $\Leftrightarrow \exists c \geq 0$ such that $\forall x \in A, |x| \leq c$.

(⇒) Suppose $A \subseteq \mathbb{R}$ is bounded. Then, $\exists \ell, u \in \mathbb{R}$ such that $\ell \le x \le u \ \forall x \in A$. Let $c := \max\{|\ell|, |u|\}$.

Since $|u| \le c$, we have that $x \le c$.

Since $|\ell| \le c$, and $-|\ell| \le x$, we get that $-x \le |\ell| \le c$.

Since $x \le c$ and $-x \le c$, $|x| \le c$.

(\Leftarrow) If such a c exists, then $|x| \le c$ if and only if $-c \le x \le c$. Thus, -c is the lower bound and c is the upper bound.

Bounded Functions

Let D be any set. A function $f: D \to \mathbb{R}$ is bounded if $Ran(D) \subseteq \mathbb{R}$ is bounded.

Example

Let $f:[3,7] \to \mathbb{R}$, $f(x) = \frac{x^2 + 2x + 1}{x - 1}$. Show that f is bounded.

$$3 \le x \le 7 \Rightarrow 2 \le x - 1 \le 6 \Rightarrow \frac{1}{6} \le \frac{1}{x - 1} \le \frac{1}{2} \Rightarrow \frac{1}{|x - 1|} \le \frac{1}{2}.$$

Also,
$$4 \le x + 1 \le 8 \Rightarrow 16 \le x^2 + 2x + 1 \le 64 \Rightarrow |x^2 + 2x + 1| \le 64$$
.

So, $|f(x)| \le 32$.

Distance Metrics

For $s, t \in \mathbb{R}$, we will define d(s, t) = |s - t| to be the **distance** between s and t.

Properties:

(i)

$$d: \mathbb{R} \times \mathbb{R} \to [0, \infty)$$
$$(s, t) \mapsto d(s, t) \ge 0$$

(ii)
$$d(s,t) = d(t,s)$$

(iii)
$$d(s,r) \leq d(s,t) + d(t,r)$$

(iv)
$$d(s, s) = 0$$

(v) If
$$d(s, t) = 0$$
, then $s = t$.

Let
$$v = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, $w = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n$.

• 1-norm:

$$||v||_1 = \sum_{j=1}^n |x_j|$$

• ∞ -norm:

$$||v||_{\infty} = \max_{j=1}^{n} |x_j|$$

• 2-norm:

$$||v||_2 = \left(\sum_{j=1}^n x_j^2\right)^{1/2}$$

Properties of the Norms

Properties: With v, w above, let $p = 1, 2, \infty$. The following are true:

(1)
$$||v||_p \geq 0$$

(2)
$$\|v + w\|_p \le \|v\|_p + \|w\| + p$$

(3)
$$\|\vec{0}\|_p = 0$$

(4)
$$||v||_p = 0 \Rightarrow v = \vec{0}$$

(5)
$$\forall t \in \mathbb{R}, \ \|tv\|_p = |t| \|v\|_p$$

Proofs

Let $p = \infty$. We will prove (2).

Say $||v||_{infty} = |x_i|$ and $||w||_{\infty} = |y_k|$. We want to show that $||v + w||_{\infty} = \max_{j=1}^{n} |x_j + y_j| \le |x_i| + |y_k|$.

Note that $\forall i$

$$|x_j + y_j| \le |x_j| + |y_j|$$

$$\le |x_i| + |y_k|$$

$$= ||v||_{\infty} + ||w||_{\infty}$$

Triangle Inequality

Therefore, $||v + w||_{\infty} \le ||v||_{\infty} + ||w||_{\infty}$.

Distances and Norms

A **norm** on \mathbb{R}^n is a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}^+$, $v \mapsto \|v\|$, satisfying the following properties for $v \in \mathbb{R}^n$:

(1)
$$||v|| \ge 0$$

(2)
$$||v + w|| \le ||v|| + ||w||$$

(3)
$$\|\vec{0}\| = 0$$

(4)
$$||v|| = 0 \Rightarrow v = \vec{0}$$

(5)
$$\forall t \in \mathbb{R}, ||tv|| = |t|||v||$$

If $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}^+$ is a norm, we define $d_{\|\cdot\|}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$, defined as follows:

$$d_{\|.\|}(v, w) = \|v - w\|$$

for $v, w \in \mathbb{R}^n$.

The properties of distance in \mathbb{R} still hold for distance in \mathbb{R}^n :

(1)
$$d(v, w) = d(w, v)$$

(2)
$$d(u, w) \le d(u, v) + d(v, w)$$

(3)
$$d(v, v) = 0$$

(4)
$$d(v, w) = 0 \Rightarrow v = w$$

Metric Spaces

A **metric space** is a nonempty set X equipped with a function $d: X \times X \to \mathbb{R}^+$, $(x, y) \mapsto d(x, y) \geq 0$. The metric has the following properties:

(1)
$$d(x, y) = d(y, x) \forall x, y \in X$$

(2)
$$d(x, z) \le d(x, y) + d(y, z) \ \forall x, y, z \in X$$

(3)
$$d(x, x) = 0$$

(4)
$$d(x, y) = 0 \Leftrightarrow x = y$$

The map d is called a *metric* on X.

Metric Spaces, Open Sets, and Closed Sets

Examples of Metric Spaces:

- \mathbb{R} with d(x, y) = |x y|.
- \mathbb{R}^n with the *Euclidean metric*:

$$d_2(v, w) = ||v - w||_2$$
$$= \left(\sum_{j=1}^n (x_j - y_j)^2\right)^{1/2}$$

• \mathbb{R}^n with the 1-norm:

$$d_1(v, w) = ||v - w||_1$$
$$= \sum_{i=1}^n |x_i - y_i|$$

• \mathbb{R}^n with the ∞ -norm:

$$d_{\infty}(v, w) = ||v - w||_{\infty}$$
$$= \max_{i=1}^{n} |x_i - y_i|$$

Let (X, d) be a metric space.

(1) The **open ball** centered at $x_0 \in X$ with radius δ is:

$$U(x_0, \delta) := \{x \in X \mid d(x, x_0) < \delta\}$$

(2) The **closed ball** centered at $x_0 \in X$ with radius δ is:

$$B(x_0, \delta) := \{x \in X \mid d(x, x_0) < \delta\}$$

- (3) A set $U \subseteq X$ is **open** if $\forall x \in U$, $\exists \delta > 0$ such that $U(x, \delta) \subseteq U$.
- (4) A set $C \subseteq X$ is **closed** if $\overline{C} = X C \subseteq X$ is open.

Examples

In \mathbb{R} with d(s,t) = |s-t|:

$$U(x_0, \delta) = \{ y \in \mathbb{R} \mid d(y, x_0) < \delta \}$$

$$= \{ y \in \mathbb{R} \mid |y - x_0| < \delta \}$$

$$= (x_0 - \delta, x_0 + \delta)$$

$$B(x_0, \delta) = [x_0, \delta, x_0 + \delta]$$

The interval $A = [1, \infty)$ is not open, as $\forall \delta > 0$, $U(1, \delta) \nsubseteq [1, \infty)$.

However, A is closed, as $\overline{A}=(-\infty,1)$ is open: given $t\in\overline{A}$, choose $\delta=1-t$. Let $s\in V_{\delta}(t)$. Then, $s\in (t-\delta,t+\delta)$, so $s\in (t-(1-t),t+(1-t))$, or $s\in (2t-1,1)$, so s<1.

Exercises

Show that the following are open:

- (a, b)
- (a, ∞)
- $(-\infty, b)$

and that the following are closed:

- [a, b]
- $[a, \infty)$
- $(-\infty, b]$

In (\mathbb{R}^2, d_2) , $B(0_{\mathbb{R}^2}, 1)$ is the **unit disc** centered at (0, 0).

However, in (\mathbb{R}^2, d_∞) :

$$\begin{split} B(0_{\mathbb{R}^2},1) &= \{ v \in \mathbb{R}^2 \mid \|v\|_{\infty} \le 1 \} \\ &= \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \mid \max\{|x|,|y|\} \le 1 \right\} \end{split}$$

is the unit square.

Finding a Supremum

Let $0 \neq A \subseteq \mathbb{R}$. Let $u \in \mathbb{R}$ be an upper bound for A. The following are equivalent:

- (i) $u = \sup(A)$
- (ii) If t < u, then $\exists a_t \in A$ such that $a_t > t$
- (iii) $(\forall \varepsilon > 0)(\exists a_{\varepsilon} \in A)$ with $u \varepsilon < a_{\varepsilon}$

Proofs

- (i) \Rightarrow (ii): Given t < u, if no such $a \in A$ with t < a exists, then $a \le t \ \forall a \in A$. Thus t would be an upper bound. However, t < u and u is the supremum of A. \bot
- (ii) \Rightarrow (iii): Given $\varepsilon > 0$, set $t = u \varepsilon < u$. So, by (ii), $\exists a_t$ with $t < a_t$. Thus, $u \varepsilon \le a_t$. Set $a_{\varepsilon} = a_t$.
- (iii) \Rightarrow (i): Let v be an upper bound for A. Suppose v < u. Then, set $\varepsilon = u v > 0$. By (iii), $\exists a_{\varepsilon} \in A$ with $u \varepsilon < a_{\varepsilon}$. So $u (u v) < a_{\varepsilon}$, so $v < a_{\varepsilon}$, meaning v cannot be an upper bound. \bot

Supremum Example

 $\sup[0,1)=1$: Certainly, 1 is an upper bound for [0,1). Let $\varepsilon>0$.

If $\varepsilon \geq 1$, pick $t = \frac{1}{2}$. Then, $1 - \varepsilon < 0 < \frac{1}{2}$

If $0 < \varepsilon < 1$, let $t = (1 - \varepsilon) + \frac{\varepsilon}{2} = 1 - \varepsilon/2$. Then, $t \in [0, 1)$, and $1 - \varepsilon < 1 - \varepsilon/2 = t$

Finding an Infimum

Let $\emptyset \neq A \subseteq \mathbb{R}$. Let $\ell \in \mathbb{R}$ be a lower bound for A. The following are equivalent:

- (i) $\ell = \inf(A)$
- (ii) If $t > \ell$, $\exists a_t$ such that $t > a_t$
- (iii) $(\forall \varepsilon > 0)(\exists a_{\varepsilon} \in A)$ with $\ell + \varepsilon > a_{\varepsilon}$

Infimum Example

 $\inf\left\{\tfrac{1}{n}\mid n\geq 1\right\}: \text{ Clearly, } 0<\tfrac{1}{n} \ \forall n\geq 1. \text{ Let } \varepsilon>0.$

We need to find $a \in \left\{\frac{1}{n} \mid n \ge 1\right\}$ with $\varepsilon > a$. By the Archimedean Property, $\exists m \in \mathbb{N}$ such that $\frac{1}{m} < \varepsilon$. Let $a_{\varepsilon} = \frac{1}{m}$.

More on Supremum/Infimum

- If $A \subseteq \mathbb{R}$ and $\max(A) = u$, then $u = \sup(A)$: u is an upper bound of A by the definition of max, and if $v \neq u$ is any upper bound of A, then u < v since $u \in A$.
- If $min(A) = \ell$, then $\ell = inf(A)$ (by the same logic).
- If A is not bounded above, $\sup(A) = +\infty$, and if A is not bounded below, then $\inf(A) = -\infty$.
- If $A \subseteq B$, then $\sup(A) < \sup(B)$.
- If $A \subseteq B$, then $\inf(A) \ge \inf(B)$: Let $\ell_A = \inf(A)$ and $\ell_B = \inf(B)$. By definition, $\ell_B \le b \ \forall b \in B$. Since $A \subseteq B$, $\ell_B \le a \ \forall a \in A$. Thus, ℓ_B is a lower bound for A. By definition of ℓ_A , $\ell_B \le \ell_A$.

Let $A, B \subseteq \mathbb{R}$ and $t \in \mathbb{R}$. Then, the following are also sets:

(1)
$$A + B = \{a + b \mid a \in A, b \in B\}$$

- (2) $A \cdot B = \{a \cdot b \mid a \in A, b \in B\}$
- $(3) t \cdot A = \{ta \mid a \in A\}$
- (4) $A + t = \{a + t \mid a \in A\}$

For example, we have the following results:

- $\sup(A+B) = \sup(A) + \sup(B)$
- $\sup(A + t) = \sup(A) + t$
- $\inf(-A) = -\sup(A)$

Completeness Axiom

If $\emptyset \neq A \subseteq \mathbb{R}$ is bounded above, then $\sup(A)$ exists.

Well-Ordering Property: if $\emptyset \neq S \subseteq \mathbb{N}$, then min(S) exists.

Therefore, we can prove that if $F \subseteq \mathbb{Z}$ is bounded, then F has a least and greatest element.

Archimedean Property: Proof

If $x \in \mathbb{R}$, then $\exists n_x \in \mathbb{N}$ such that $x \leq n_x$.

Suppose there exists no natural number greater than x, then $\mathbb N$ is bounded above by X. Let $u=\sup(\mathbb N)$. By the Completeness Axiom, $u\in\mathbb R$ exists. Let $\varepsilon=1$. Then, $\exists n\in\mathbb N$ with u-1< n. So, u< n+1, but $n+1\in\mathbb N$, so u cannot be an upper bound.

Corollary to the Archimedean Property

$$\forall t > 0 \ \exists n \in \mathbb{N} \ni \frac{1}{n} < t$$

Corollary: Powers of 2

$$\forall t > 0 \ \exists m \in \mathbb{N} \ni \frac{1}{2^m} < t$$

By the corollary to the Archimedean Property, we know that $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < t$. By Bernoulli's inequality with x = 1, we have $2^n \ge n$, so $2^{-n} < n^{-1} < t$.

Corollary: In Between Integers

$$\forall x \in \mathbb{R} \ \exists n_x \in \mathbb{Z} \ni n_x - 1 \le x < n_x$$

Assume $x \ge 0$. Let $S_x = \{n \mid n \in \mathbb{N} \ x < n\}$.

 $S_x \neq \emptyset$ by the Archimedean Property. By the well-ordering property, let $n_x = \min(S_x)$.

Therefore, $x < n_x$. Also, $n_x - 1 \notin S_x$. Therefore $n_x - 1 \le x$.

Density Theorems

Let (X, d) be any metric space. A subset $D \subseteq X$ is **dense** if $\forall x \in X$, $\varepsilon > 0$, $U(x, \varepsilon) \cap D \neq \emptyset$.

In the case of $X = \mathbb{R}$ and d(s, t) = |s - t|, $D \subseteq \mathbb{R}$ is dense if given any open interval $I, I \cap D \neq \emptyset$.

A metric space is **separable** if it admits a *countable* dense subset.

Density of the Rationals

 $\mathbb{Q}\subseteq\mathbb{R}$ is dense.

Let I=(a,b) be an open interval. We may assume that $a,b\in\mathbb{R}$ are finite.

Then, b-a>0. By the Archimedean property corollary, $\exists n\in\mathbb{N}$ such that $\frac{1}{n}< b-a$, meaning 1< nb-na.

There exists also an integer m such that $m-1 \le na < m$, implying that $a\frac{m}{n}$. Also, $m \le na+1 < nb$. Therefore, $\frac{m}{n} < b$.

So, $\frac{m}{n} \in \mathbb{Q} \cap (a, b)$.

Density of the Irrationals

 $\mathbb{R} \setminus \mathbb{Q}$ is dense.

Assume $\sqrt{2}$ exists. Let I=(a,b) be any open interval. Then, $\frac{a}{\sqrt{2}}<\frac{b}{\sqrt{2}}$.

Find $q \in \mathbb{Q}$ such that $\frac{a}{\sqrt{2}} < q < \frac{b}{\sqrt{2}}$.

Then, $a < q\sqrt{2} < b$, where $q\sqrt{2} \in \mathbb{R}$ and $q\sqrt{2} \notin \mathbb{Q}$.

Uniqueness of $\sqrt{2}$

$$\exists !x > 0 \ x^2 = 2$$

Existence: Let $S = \{t \in \mathbb{R} \mid 0 < t, \ t^2 < 2\}$. S is nonempty because $1 \in \S$, and S is bounded above because $y > 2 \Rightarrow y^2 > 4$.

So, by the completeness axiom, $x := \sup(S)$ exists, and $x \ge 1$.

Claim: $x^2 = 2$

Contradiction 1: Assume $x^2 < 2$. We want to show that $\exists n \in \mathbb{N}$ such that $x + \frac{1}{n} \in S$. By this assumption, we find that

$$0 < x + \frac{1}{n} \in S \Leftrightarrow \left(x + \frac{1}{n}\right)^2 < 2$$
$$\Leftrightarrow x^2 + \frac{2x}{n} + \frac{1}{n^2}$$

Observe:

$$x^{2} + \frac{2x}{n} + \frac{1}{n^{2}} \le x^{2} + \frac{2x}{n} + \frac{1}{n}$$
$$= x^{2} + \frac{1}{n}(2x+1)$$

We want to find $n \in \mathbb{N}$ with:

$$x^{2} + \frac{1}{n}(2x+1) < 2 \Leftrightarrow \frac{1}{n} < \frac{2-x^{2}}{2x+1}$$

Therefore, by the Archimedean Property corollary, we know that n must exist.

Contradiction 2: We know that $x^2 \ge 2$. Since $x = \sup(S)$, $\forall m \in \mathbb{N}$, $\exists t_m \in S$ with $x - \frac{1}{m} < t_m$, so $\left(x - \frac{1}{m}\right)^2 < t_m^2 < 2$.

Therefore, $x^2 - \frac{2x}{m} + \frac{1}{m^2}$, so $x^2 - \frac{2x}{m} < 2$, so $0 \le x^2 - 2 < \frac{2x}{m}$.

So,
$$0 \le \frac{x^2-2}{2x} < \frac{1}{m}$$
, so $x^2 - 2 = 0$, so $x^2 = 2$.

Remark: If we had set $S' = \{t' \in \mathbb{Q} \mid t^2 < 2, t > 0\}$, we would have still obtained $\sup(S') = \sqrt{2}$. This means that \mathbb{Q} is *not* complete.

Intervals and Nested Intervals

(*) Given any interval I, if $x_1, x_2 \in I$, with $x_1 < x_2$, then $[x_1, x_2] \in I$.

This seems like an obvious property, but this is the *characteristic property* of intervals.

Characterization of Intervals

Let $S \in \mathbb{R}$ be any nonempty subset of cardinality at least 2. Suppose S satisfies (*). Then, S is an interval.

Case 1: Suppose *S* is bounded.

Let $a = \inf(S)$ and $b = \sup(S)$. Then, $S \subseteq [a, b]$. We will show that $(a, b) \subseteq S$. Once this is shown, $S = \{(a, b), [a, b], [a, b), (a, b]\}$.

Let $t \in (a, b)$. Since $a = \inf(S)$, $\exists x_1 \in S$, $x_1 \in (a, t)$. Similarly, since $b = \sup(S)$, $\exists x_2 \in S$, $x_1 \in (t, b)$.

By the hypothesis, $[x_1, x_2] \subseteq S$. Since $t \in [x_1, x_2]$, $t \in S$.

Case 2: Suppose *S* is bounded above, but not below.

Let $b = \sup(S)$. Clearly, $S \subseteq (-\infty, b]$. We will show that $(-\infty, b) \subseteq S$. Once this is shown, $S = \{(-\infty, b), (-\infty, b]\}$.

Let $t \in (-\infty, b)$. Since $b = \sup(S)$, $\exists x_2 \in S$, $x_2 \in (t, b)$.

Since S is not bounded below, $\exists x_1 \in S$ such that $x_1 < t$ (or else t would be a lower bound).

By the hypothesis, $[x_1, x_2] \in S$, and $t \in [x_1, x_2]$, so $t \in S$.

Case 3, 4: Left as an exercise for the reader.

A sequence of intervals $(I_n)_{n\geq 1}$ is called *nested* if

$$I_1 \supseteq I_2 \supseteq \ldots I_n \supseteq I_{n+1} \supseteq \ldots$$

We are primarily interested in $\bigcap I_n$.

- (a) $\bigcap_{n=1} [0, 1/n) = \{0\}.$
- (b) $\bigcap_{n=1} (0, 1/n) = \emptyset$
- (c) $\bigcap_{n=1} [n, \infty) = \emptyset$

Measure

The measure of an interval is basically its "size."

- (a) m([a, b]) = b a
- (b) m((a, b]) = b a
- (c) m((a, b)) = b a
- (d) m([a, b)) = b a

Nested Intervals Theorem

Let $I_n = [a_n, b_n]$ for $n \in \mathbb{N}$ be a nested sequence of intervals.

- (1) $\bigcap_{n\geq 1}I_n\neq\emptyset$
- (2) If $\inf \{ m(I_n) \mid n \ge 1 \} = 0$, then $\bigcap_{n \ge 1} I_n = \{ \xi \}$

(a)

Since $[a_1, b_1] \supseteq [a_2, b_2] \supseteq \ldots$, we have that $\overline{a_1 \leq a_2 \leq a_3, \ldots}$, and $b_1 \geq b_2 \geq b_3 \geq \cdots$.

We know that $\{a_n\}$ is bounded above and nonempty. Let $\xi = \sup (\{a_n\}_{n=1}^{\infty})$.

We know that $\{b_n\}$ is bounded below. Let $\eta = \inf(\{b_n\}_{n=1}^{\infty})$.

We claim that $\xi \leq b_n \ \forall n \geq 1$. Suppose toward contradiction that $\exists m$ such that $\xi > b_m$. Then, by the supremum property, $\exists a_i$ such that $\xi > a_i > b_m$. If $k \leq m$, $a_k \leq a_m \leq b_m < a_k$. If $m \leq k$, then $b_m \geq b_k \geq a_k > b_m$. \bot

Similarly, using the same argument, $a_n \leq \eta \ \forall n$.

Thus, $\xi \leq \eta$.

We claim that $\bigcap_{n\geq 1}I_n=[\xi,\eta]$. If $t\in [\xi,\eta]$, then $a_n\leq \xi\leq t\leq \eta\leq b_n$. So $t\in [a_n,b_n]$ $\forall n$, so $t\in \bigcap_{n\geq 1}[a_n,b_n]$.

If $t \in \bigcap_{n \ge 1} I_n$, then $t \in [a_n, b_n] \ \forall n$, so $a_n \le t \le b_n \ \forall n$. So, t is an upper bound on a_n , and a lower bound on b_n . So, $\xi \le t \le \eta$ by definition of ξ and η .

(b)

We have $\forall n \geq 1$

$$\begin{aligned} [\xi, \eta] &\subseteq [a_n, b_n] \\ \Rightarrow 0 &\leq \eta - \xi \leq b_n - a_n \\ &= m(I_n) \end{aligned}$$

So, if $\inf (\{m(I_n) \mid n \ge 1) = 0$, then $0 \le \eta - \xi \le 0$, so $\eta = \xi$.

Corollary to the Nested Intervals Theorem

[0, 1] is uncountable.

Suppose it is possible to denumerate the interval $[0, 1] = \{t_1, t_2, \dots, \}$.

We can find $[a_1, b_1] \subseteq [0, 1]$ with:

- $a_1 < b_1$
- $t_1 \notin [a_1, b_1]$.

Then, we find $[a_2, b_2] \in [a_1, b_1]$ with $a_2 < b_2, t_2 \notin [a_2, b_2]$.

Recursively, we find $[a_n, b_n] \subseteq [a_{n-1}, b_{n-1}]$ with $a_n < b_n$, $t_n \notin [a_n, b_n]$.

So, $I_n = ([a_n, b_n])_0^{\infty}$ is a sequence of nested intervals.

Therefore, $\exists \xi \in \bigcap I_n \subseteq [0,1]$. However, $\xi \notin \{t_1, t_2, \dots\}$. \bot

Sequences in Metric Spaces

A sequence in a metric space M is a map

$$x: \mathbb{N} \to M$$
 $M = \mathbb{R}$, usually $x = (x_n)_{n=1}^{\infty}$

- **I.** Sequences defined by a formula:
 - (i) $x_n = t$ (the constant sequence)
 - (ii) $x_n = 2n + 1$
 - (iii) $x_n = \frac{1}{n-1}$ (here, $n \ge 2$)
 - (iv) $c_n = n \sin\left(\frac{1}{n}\right)$
 - (v) $d_n = (1 + \frac{1}{n})^n$
 - (vi) Geometric Sequence: for $b \neq 0$, $(b^n)_{n>0} = (1, b, b^2, ...)$
 - (vii) $x_n = \frac{n!}{n^n}$
 - (viii) Given any function

$$f:[0,\infty)\to\mathbb{R}$$

we can set $x_n = f(n)$.

- II. Sequences defined recursively:
 - (i) $a_1 = 1$, $a_{n+1} = 2a_n + 1 = (1, 3, 7, 15, ...)$
 - (ii) Fibonacci: $f_1 = 1$, $f_2 = 1$, $f_{n+1} = f_n + f_{n-1} = (1, 1, 2, 3, 5, 8, ...)$. The closed form equation is:

$$f_n = \frac{1}{\sqrt{5}} \left(\varphi^n - (1 - \varphi)^n \right)$$

where $\varphi = \frac{1+\sqrt{5}}{2}$

(iii) Let $f: M \to M$ be a self-map on a metric space. Fix $x_0 \in M$.

$$x_n = \underbrace{f \circ f \cdots \circ f}_{n \text{ times}}(x_0)$$

- III. New sequences from old:
 - (i) Let $(a_n)_n$ and $(b_n)_n$ be sequences, $t \in \mathbb{R}$. Then, we can do the following:
 - $(a_n)_n + (b_n)_n + (a_n + b_n)_n$
 - $t(a_n)_n = (ta_n)_n$
 - $\bullet (a_n)_n(b_n)_n = (a_nb_n)_n$
 - If $b_n \neq 0 \ \forall n, \left(\frac{a_n}{b_n}\right)$

(ii) We can also shift a sequence:

$$x_{n+1} = (x_2, x_3, \dots)$$

(iii) We can look at ratios for $a_n \neq 0$

$$r_n = \frac{a_{n+1}}{a_n}$$

(iv) We can look at partial sums, given $(a_k)_{k=1}^{\infty}$.

$$s_1 = a_1$$

$$s_n = s_{n-1} + a_n$$

$$= \sum_{k=1}^n a_k$$

The sequence $(s_n)_n$ is called the sequence of partial sums. For example, the sequence of partial sums for $(b^k)_{k=0}^{\infty}$ is:

$$1 + b + b^{2} + \dots + b^{n} = \begin{cases} \frac{1 - b^{n+1}}{1 - b} & b \neq 1\\ n + 1 & b = 1 \end{cases}$$

because for $b \neq 1$, $(1 - b)(1 + b + b^2 + \cdots + b^n) = 1 - b^{n+1}$

Exercise

Let $a_k = \frac{1}{k(k+1)}$. Find $(s_n)_n$.

Via partial fraction decomposition, we get that $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$. Therefore, $(s_n)_n = \left(1 - \frac{1}{n+1}\right)_{n=1}^{\infty}$

Bounded Sequences

$$\ell_{\infty} = \{(a_k)_k \mid a_k \in \mathbb{R}, \ a_k \text{ bounded}\}$$

We define

$$\|(a_k)_k\|_{\infty} = \sup_{k \ge 1} |a_k|$$

Infinity Norm

This norm has the traditional properties of the norm:

$$||(a_k)_k + (b_k)_k||_{\infty} \le ||(a_k)_k||_{\infty} + ||(b_k)_k||_{\infty}$$

$$||t(a_k)_k||_{\infty} = |t|||(a_k)_k||_{\infty}$$

$$||(a_k)_k||_{\infty} = 0 \Leftrightarrow a_k = 0 \ \forall k$$

$$||(a_k)_k(b_k)_k||_{\infty} \le ||(a_k)_k||_{\infty} ||(b_k)_k||_{\infty}$$

Triangle Inequality
Scalar Multiplication
Zero Property
Multiplication

Proof

Let $u = ||(a_k)_k||_{\infty}$ and $v = ||(b_k)_k||_{\infty}$.

Given any k,

$$|a_k + b_k| \le |a_k| + |b_k|$$

$$\le u + v$$

$$\Rightarrow \sup_{k \ge 1} |a_k + b_k| \le u + v$$

Triangle Inequality on $|\cdot|$ definition of supremum

Thus,

$$||(a_k)_k + (b_k)_k||_{\infty} = ||((a_k + b_k)_k)_k||_{\infty}$$

$$= \sup_{k \ge 1} |a_k + b_k|$$

$$\le u + v$$

Monotonicity

A sequence $(x_n)_n$ is **increasing** if

$$x_1 \le x_2 \le \cdots \ \forall n$$

and is decreasing if

$$x_1 \ge x_2 \ge \cdots \ \forall n$$

The sequence is *eventually* increasing if $\exists m \in \mathbb{N} \ni x_n \leq x_{n+1}$ for n > m.

Similarly, the sequence is eventually decreasing if $\exists m \in \mathbb{N} \ni x_n \geq x_{n+1}$ for n > m.

A sequence that is increasing or decreasing is **monotone** (or eventually monotone).

Monotonicity Example

The sequence

$$a_1 = 1$$
 $a_{n+1} = \frac{1}{2}a_n + 2$

is increasing and bounded above.

We will prove the first statement via induction:

Base: $a_1 = 1$, $a_2 = \frac{1}{2} + 2 = \frac{5}{2} \ge 1$

Inductive Hypothesis $a_n \le a_{n+1} \Rightarrow a_{n+1} \le a_{n+1}$

Proof:

$$a_n \le a_{n+1}$$

$$\frac{1}{2}a_n \le \frac{1}{2}a_{n+1}$$

$$\frac{1}{2}a_n + 2 \le \frac{1}{2}a_{n+1} + 2$$

$$a_{n+1} \le a_{n+2}$$

To prove the sequence is bounded above, we do the following:

$$a_1 = 1 \le 4$$

$$\frac{1}{2}a_1 \le 2$$

$$\frac{1}{2}a_1 + 2 \le 2$$

$$a_2 \le 4$$

We claim that $\forall n$, $a_n \leq 4 \Rightarrow a_{n+1} \leq 4$, as we have shown the base case.

$$a_n \le 4$$

$$\frac{1}{2}a_n \le 2$$

$$\frac{1}{2}a_n + 2 \le 4$$

$$a_{n+1} \le 4$$

Convergence of Sequences

Let $L \in \mathbb{R}$, $\varepsilon > 0$. Then, the ε -neighborhood of L is $(L - \varepsilon, L + \varepsilon) = V_{\varepsilon}(L)$.

$$\begin{aligned} x \in V_{\varepsilon}(L) \\ \Leftrightarrow \\ |x - L| < \varepsilon \\ L - \varepsilon < x < L + \varepsilon \end{aligned}$$

With this in mind, we know the following:

Definition of Convergence

A real sequence $(x_n)_n$ converges to a number x if

$$(\forall \varepsilon > 0) (\exists N_{\varepsilon} \in \mathbb{N}) \ni n \geq N \Rightarrow |x_n - x| < \varepsilon$$

If no such L exists, then $(x_n)_n$ is said to **diverge**.

A sequence $(x_n)_n$ in a metric space (X, d) converges to a point x if

$$(\forall \varepsilon > 0) (\exists N_{\varepsilon} \in \mathbb{N}) \ni d(x_n, x) < \varepsilon$$

Essentially, we want to show that there always exists an N such that the Nth tail (i.e., x_N, x_{N+1}, \cdots) are within ε of L for any ε .

Note: N usually depends on ε (the smaller the ε , the larger the N).

Convergence Proof

$$\left(\frac{1}{n}\right)_n \xrightarrow{n \to \infty} 0$$

We know that

$$|x_n - L| = \left| \frac{1}{n} \right|$$

Given $\varepsilon > 0$, we want $\frac{1}{n} < \varepsilon$, meaning $n > \frac{1}{\varepsilon}$.

Proof: Let $\varepsilon > 0$. By the Archimedean property corollary, find $N \in \mathbb{N}$ large such that $\frac{1}{N} < \varepsilon$.

$$n \ge N$$

$$\frac{1}{n} \le \frac{1}{N}$$

$$< \varepsilon$$

so, if $n \ge N$, then

$$|x_n - L| = \left| \frac{1}{n} \right|$$

$$= \frac{1}{n}$$

$$< \varepsilon$$

Convergence Proof 2

Show that

$$\left(\frac{5n-1}{3-n}\right)_{n\geq 4}\xrightarrow{n\to\infty} -5$$

$$|x_n - L| = \left| \frac{5n - 1}{3 - n} + 5 \right|$$

$$= \frac{14}{|3 - n|}$$

$$= \frac{14}{n - 3}$$

$$< \varepsilon$$

$$\frac{14}{n - 3} < \varepsilon$$

$$n > \frac{14}{\varepsilon} + 3$$

Proof: Let $\varepsilon > 0$. Find $N' \in \mathbb{N}$ so large that $\frac{1}{N'} < \frac{\varepsilon}{14}$ (which exists by the Archimedean property corollary). Let N = N' + 3. If $n \ge N$, then

$$n-3 \ge \frac{1}{N'}$$

$$\frac{1}{n-3} \le \frac{1}{N'}$$

$$< \frac{\varepsilon}{14}$$

whence

$$|x_n - L| = \frac{14}{n - 3}$$

$$< \frac{14\varepsilon}{14}$$

$$= \varepsilon$$

Sequences and their Limits, cont'd

Convergence and Distance

Let (X, d) be a metric space, and let $(x_n)_n$ be a sequence in the metric space. The following are equivalent:

- (i) $(x_n)_n \to x$
- (ii) $(d(x_n,x))_n \to 0$
- (i) \Rightarrow (b) Let $\varepsilon > 0$. Find $N_{\varepsilon} \in \mathbb{N}$ so large such that $d(x_n, x) < \varepsilon$ whenever $n \ge N_{\varepsilon}$.
 - So, $|d(x_n, x) 0| = d(x_n, x) < \varepsilon$ for all $\varepsilon > 0$. Whence, $(d(x_n, x))_n \to 0$.
- (ii) \Rightarrow (i) This direction is similar.

In \mathbb{R} , this implies that

$$(x_n)_n \to x$$

$$\Leftrightarrow$$

$$(|x_n - x|)_n \to 0$$

Comparison Proposition

Let (X, d) be a metric space and let $x \in X$, and suppose $(x_n)_n$ is a sequence in X.

If $\exists c \geq 0$, $m \in \mathbb{N}$, and a sequence $(a_n)_n \in \mathbb{R}^+$ with $(a_n)_n \to 0$ and $d(x_n, x) \leq ca_n \ \forall n > m$. Then, $(x_n)_n \to x$.

Let $\varepsilon > 0$. Note that $\frac{\varepsilon}{c} > 0$.

Find $N_1 \in \mathbb{N}$ large such that $n \geq N_1 \Rightarrow |a_n - 0| < \frac{\varepsilon}{c}$, which is always possible since $(a_n)_n \to 0$.

Let $N = \max(N_1, m)$. Then, $n \ge N \Rightarrow n \ge N_1$ and $n \ge m$. So,

$$d(x_n, x) \le ca_n$$

$$< c\frac{\varepsilon}{c}$$

$$= \varepsilon$$

so, $n \ge N \Rightarrow d(x_n, x) < \varepsilon$, whence $(x_n)_n \to x$

Comparison Proposition, Example 1

Prove

$$\left(\frac{\sin(n^2-1)}{n^2+3}\right)_n \to 0$$

$$\left| \frac{\sin(n^2 - 1)}{n^2 + 3} - 0 \right| = \frac{\left| \sin(n^2 - 1) \right|}{n^2 + 3}$$

$$\leq \frac{1}{n^2 + 3}$$

$$\leq \frac{1}{n^2}$$

$$\leq \frac{1}{n}$$

We know that $a_n = \frac{1}{n}$ converges to 0. So, by our comparison proposition, we are done.

Comparison Proposition, Example 2

Prove

$$\left(\frac{1}{2^n}\right)_n \to 0$$

$$2^n = (1+1)^n$$
$$\geq 1+n$$

Bernoulli's Inequality

> *n*

SO,

$$\frac{1}{2^n}<\frac{1}{n}$$

Since $a_n = \frac{1}{n}$ converges, we know that $\frac{1}{2^n}$ must converge.

Sequence Divergence

A sequence $(x_n)_n$ is **divergent** if it does not converge. $(x_n)_n \to 0$ if and only if

$$(\forall \varepsilon > 0)(\exists N_{\varepsilon} \in \mathbb{N}) \ni (\forall n \geq N_{\varepsilon})d(x_n, x) < \varepsilon$$

So, $(x_n)_n$ diverges if and only if

$$(\exists \varepsilon_0 > 0)(\forall N \in \mathbb{N})(\exists n \geq N) \rightarrow d(x_n, x) \geq \varepsilon_0$$

Diverging Sequence Proof

Show that the following sequence diverges:

$$a_n = (-1)^n$$

Step 1

$$((-1)^n)_n \not\to 1$$

Take $\varepsilon_0=1/2$, given any $N\in\mathbb{N}$, we will find $n\geq N$ odd:

$$n = 2N + 1$$

$$d((-1)^n,1)=2$$

$$\geq arepsilon_0$$

Step 2

$$((-1)^n)_n \not\to -1$$

by letting $\varepsilon_0 = 1/2$ and n = 2N.

Diverging Sequence Proof 2

Does

$$a_n = (\sin(n))_n$$

converge?

It is not the case that $(\sin(n))_n \to L$ for any $L \in \mathbb{R}$.

Case 1 If L > 1, set $\varepsilon_0 = \frac{L-1}{2}$. Then, given any $N \in \mathbb{N}$, pick n = N.

$$|\sin(n) - L| = L - \sin(n)$$

$$\geq L - 1$$

$$> \frac{L - 1}{2}$$

$$= \varepsilon_0$$

Case 2 Similarly for L < -1

Case 3 Suppose -1 < L < 1.

Case 3.1 Suppose L > 0. Set $\varepsilon_0 = \frac{L}{2}$. Given any N, find $n \ge N$ with $\sin(n) < 0$.

We find k large such that $N < (2k+1)\pi$, which we can always do because we are finding $k > \frac{1}{2} \left(\frac{N}{\pi} - 1 \right)$, which is always possible by the Archimedean property.

Note that $N<(2k+1)\pi<(2k+2)\pi$. Note that $\sin(x)<0$ on the interval $((2k+1)\pi,(2k+2)\pi)$. Note that $|(2k+1)\pi-(2k+2)\pi|=\pi$. Let $n=\lceil (2k+1)\pi \rceil$. Then, $|L-\sin(n)| \geq \frac{L}{2} = \varepsilon_0$

Case 3.2 Suppose L < 0, set $\varepsilon_0 = \frac{-L}{2}$. Given N, find $n \ge N$ with $\sin(n) > 0$. Using the same strategy as above, we find n such that $|L - \sin(n)| > \varepsilon_0$

Case 3.3 Suppose L=0. Set $\varepsilon_0=1/2$. Given $N\in\mathbb{N}$, find $n\geq N$ with $\sin(n)\geq \frac{1}{2}$. Then, $|\sin(n)-0|=\sin(n)\geq \varepsilon_0$.

Showing that a sequence diverges is not easy — later, we will divergence with non-uniqueness of convergent subsequences.

Alternating Series

Consider again

$$((-1)^n)_{n>0}=(1,-1,1,-1,\dots)$$

The even entries converge to 1:

$$((-1)^n)_{2n} = (1, 1, 1, \dots)$$

Similarly, the odd entries converge to -1:

$$((-1)^n)_{2n+1} = (-1, -1, -1, \dots)$$

Both of these subsequences of the same sequence converge to different values, meaning that the alternating series diverges.

Uniqueness of Limits

A sequence $(x_n)_n$ can converge to at most one limit.

Suppose toward contradiction that $(x_n)_n$ converges to L_1 and L_2 with $L_1 \neq L_2$.

WLOG, let $L_2 > L_1$. Take $\varepsilon = \frac{L_2 - L_1}{3}$.

Since $(x_n)_n$ converges to L_1 , $\exists N_1 \in \mathbb{N}$ such that $|x_n - L_1| < \varepsilon$. Similarly, since $(x_n)_n$ converges to L_2 , $\exists N_2 \in \mathbb{N}$ such that $|x_n - L_2| < \varepsilon$.

Let $N = \max N_1$, N_2 . If $n \ge N$, then $n \ge N_1$ and $n \ge N_2$.

So, $|x_n - L_1| < \varepsilon$ and $|x_n - L_2| < \varepsilon$. So, $x_n \in V_{\varepsilon}(L_1)$, and $x_n \in V_{\varepsilon}(L_2)$, meaning $x_n \in V_{\varepsilon}(L_1) \cap V_{\varepsilon}(L_2)$, but $V_{\varepsilon}(L_1) \cap V_{\varepsilon}(L_2) = \emptyset$. \bot

Useful Lemmas for Convergence

Absolutely Convergent Sequences

Let $(x_n)_n$ be a real sequence. If x_n converges to x, then $|(x_n)_n| \to |x|$. However, the converse is not the case.

Note that since $(x_n)_n \to x$, $d(x_n, x) \to 0$.

By the reverse triangle inequality, we have

$$||x_n| - |x|| \le |x_n - x|$$

$$\le 0$$

Convergence to Zero

Let a_n be a sequence.

$$(a_n)_n \to 0$$
 \Leftrightarrow
 $|(a_n)| \to 0$

- (\Rightarrow) If $(a_n)_n \to 0$, then we showed previously that $|(a_n)_n| \to |0| = 0$
- (⇐) Suppose $|(a_n)_n| \to 0$. Given $\varepsilon > 0$, then $\exists N$ such that $n \ge N$ implies

$$\begin{aligned} ||a_n| - 0| &< \varepsilon \\ ||a_n|| &< \varepsilon \\ |a_n| &< \varepsilon \\ |a_n - 0| &< \varepsilon \end{aligned}$$

So,
$$(a_n)_n \to 0$$

Geometric Sequence

Let $b \in \mathbb{R}$. Consider

$$(b^n)_{n>0}=(1,b,b^2,\dots)$$

We claim the sequence is convergent provided $-1 < b \le 1$. Otherwise, the sequence is divergent.

If b = 0, then the sequence $(b^n)_n = (0, 0, 0, ...)$ is convergent.

If b = 1, then the sequence $(b^n)_n = (1, 1, 1, ...)$ is convergent.

If b = -1, then the sequence $(b^n)_n = (1, -1, 1, ...)$ is divergent.

Case 1 Suppose 0 < b < 1. Then, $\frac{1}{b} > 1$, so $\frac{1}{b} = 1 + a$.

So, by Bernoulli's Inequality, $\left(\frac{1}{b}\right)^n = (1+a)^n \ge 1 + na > na$, so $b^n < \frac{1}{na}$.

$$|b^{n} - 0| = b^{n}$$

$$< \frac{1}{na}$$

$$= \frac{1}{a} \int_{0}^{a} dt$$

So, $(b^n)_n \to 0$.

Case 2 Suppose -1 < b < 0. If we look at $|b^n| = |b|^n$, we know that $(|b|^n)_n \to 0$ by our work above. By the previous lemma, we know that since $|b^n| \to 0$, $b^n \to 0$.

Case 3 Suppose b > 1. Then, b = 1 + a where a > 0.

$$b^n = (1+a)^n$$

 $\geq 1+na$ Bernoulli's Inequality
 $> na$

Suppose toward contradiction that $(b^n)_n \to L$. Let $\varepsilon_0 = 1$. Find $N \in \mathbb{N}$ such that $N > \frac{L+1}{a}$. N must exist by the Archimedean property.

Therefore, (N)(a) > L+1. If $n \ge N$, then (n)(a) > (N)(a) > L+1, so $|b^n - L| \ge na - L \ge \varepsilon_0$. \bot

Case 4 Suppose b < -1, and suppose toward contradiction that $(b^n)_n \to L$. By the previous lemma, we know that $|b^n| \to |L|$. So, $|b|^n \to |L|$. But, |b| > 1, which means our assumption contradicts the result from above. \bot

*n*th Root Convergence

If c > 0, then $(c^{1/n})_n \to 1$.

Case 1: If c=1, then we get $(c^{1/n})_n=(1,1,1,\ldots)$, which clearly converges to one.

Case 2: Assume that c > 1. Then, $c^{1/n} > 1$, because if $d = c^{1/n} \le 1$, then $d^n \le 1$, so $c \le 1$. We can

write $c^{1/n} = (1 + d_n)$, where $d_n > 0$.

$$c = c^{n}$$

$$= (1 + d_{n})^{n}$$

$$\geq 1 + nd_{n}$$

$$> nd_{n}$$

Bernoulli's Inequality

So, $d_n \leq \frac{c}{n}$. Remember, $c^{1/n} = 1 + d_n$.

$$|c^{1/n} - 1| = c^{1/n} - 1$$

$$= d_n$$

$$\leq c \cdot \frac{1}{n}$$

$$\to 0$$

Therefore, $c^{1/n} \rightarrow 1$.

Case 3: Assume 0 < c < 1. Then, $c^{1/n} < 1$, so $\frac{1}{c^{1/n}} > 1$.

So, we can write $\frac{1}{c^{1/n}} = (1 + d_n)$, where $d_n > 0$.

$$c^{1/n} = \frac{1}{1+d_n}$$

$$1 - c^{1/n} = 1 - \frac{1}{1+d_n}$$

$$= \frac{d_n}{1+d_n}$$

$$\leq d_n$$

Remember, $\frac{1}{c^{1/n}} = 1 + d_n$

$$\frac{1}{c} = (1 + d_n)^n$$

$$\geq 1 + nd_n$$

$$> nd_n$$

So, $d_n \leq \frac{1}{cn}$

$$|1 - c^{1/n}| = 1 - c^{1/n}$$

$$\leq d_n$$

$$\leq \frac{1}{c} \frac{1}{n}$$

$$\to 0$$

Therefore, $\left(c^{1/n}\right)_n \to 1$.

Positive Sequence Convergence

Let $(x_n)_n$ be a sequence with $x_n \in \mathbb{R}^+ \ \forall n \in \mathbb{N}$, with $(x_n)_n \to x$. Then, x is also positive, and $(\sqrt{x_n})_n \to \sqrt{x}$.

Suppose toward contradiction that x < 0. Let $\varepsilon = \frac{|0-x|}{2}$. Since $(x_n)_n$ converges to x, we know that $x_n \in V_{\varepsilon}(x)$ for large n. However, every member of $V_{\varepsilon}(x) < 0$, and $x_n > 0$. \bot

Case 1: If x = 0, we will show that $(\sqrt{x_n})_n \to 0$.

Let $\varepsilon > 0$, find $N \in \mathbb{N}$ large such that if $n \geq N$, we have

$$|x_n - 0| < \varepsilon^2$$

$$x_n < \varepsilon^2$$

$$\sqrt{x_n} < \varepsilon$$

$$|\sqrt{x_n} - 0| < \varepsilon$$

Case 2: If x > 0, we will show that $(\sqrt{x_n})_n \to \sqrt{x}$.

$$\left| \sqrt{x_n} - \sqrt{x} \right| = \left| \frac{\left(\sqrt{x_n} - \sqrt{x} \right) \left(\sqrt{x_n} + \sqrt{x} \right)}{\sqrt{x_n} + \sqrt{x_n}} \right|$$

$$= \frac{|x_n - x|}{\sqrt{x_n} + \sqrt{x}}$$

$$\leq \frac{1}{\sqrt{x}} |x_n - x|$$

$$\to 0$$

Therefore, $|\sqrt{x_n} - \sqrt{x}| \to 0$, so $(\sqrt{x_n})_n \to \sqrt{x}$.

*n*th Root of *n* Convergence

$$\left(n^{1/n}\right)_n \to 1$$

We will make use of the binomial theorem:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Note that $n^{1/n} > 1$ for n past 1. So, we write

$$n^{1/n} = 1 + d_n \qquad d_n > 0$$

$$n = (1 + d_n)^n$$

$$= \sum_{k=0}^n \binom{n}{k} d_n^k$$

$$= \binom{n}{0} + \binom{n}{1} d_n + \binom{n}{2} d_n^2 + \dots + \binom{n}{n} d_n^n$$

$$\geq \binom{n}{0} + \binom{n}{2} d_n^2 \qquad \text{as all terms are positive}$$

$$= 1 + \frac{n(n-1)}{2} d_n^2$$

SO

$$n-1 \ge \frac{n(n-1)}{2}d_n^2$$
$$\frac{2}{n} \ge d_n^2$$
$$\frac{\sqrt{2}}{\sqrt{n}} \ge d_n$$

So, we have

$$|n^{1/n} - 1| = n^{1/n} - 1$$

$$= d_n$$

$$\leq \sqrt{2} \frac{1}{\sqrt{n}}$$

$$\to 0$$

by previous corollary

So, $\left(n^{1/n}\right)_n \to 0$.

Multiplication by Geometric Sequence

Let $0 \le b < 1$. Show that

$$(nb^n)_n \to 0$$

If 0 < b < 1 (the 0 case is trivial). So, $\frac{1}{b} > 1$, meaning $\frac{1}{b} = 1 + d$ for some d > 0.

$$\frac{1}{b^n} = (1+d)^n$$

$$\geq \frac{n(n-1)}{2}d^2$$

$$\frac{2}{d^2(n)(n-1)} \geq b^n$$

$$nb^n \leq \frac{2}{d^2(n-1)}$$

$$\to 0$$

by previous corollary

Therefore, $(nb^n)_n \to 0$.

Boundedness and Convergence

If $(x_n)_n$ is a convergent sequence, x_n is bounded. The converse is false in general.

Suppose $(x_n)_n \to x$. Let $\varepsilon = 1$.

Then, $\exists N \in \mathbb{N}$ such that $x_n \in V_{\varepsilon}(x)$ for all $n \geq N$.

Let $c = \max\{|x_1|, |x_2|, \dots, |x_N|, |x-1|, |x+1|\}$. If $n \ge N$, then $|x_n| \le c$, because $x_n \in V_{\varepsilon}(x)$. If n < N, then $|x_n| \le c$.

Together, we have $|x_n| \le c$ for all n.

To show the converse is not true, consider $((-1)^n)_n$. This sequence is bounded but not convergent.

Algebraic Operations on Sequences

Let $(x_n)_n \to x$, $(y_n)_n \to y$, and $(z_n)_n \to z$ be convergent sequences. Let $t \in \mathbb{R}$. Then, the following are all true:

- (1) $(x_n \pm y_n)_n \rightarrow x \pm y$
- (2) $(tx_n)_n \to tx$
- (3) $(x_ny_n)_n \rightarrow xy$
- (4) Assume $z_n \neq 0 \ \forall n$, and $z \neq 0$. Then, $\left(\frac{1}{z_n}\right)_n \to \frac{1}{z}$, and $\left(\frac{x_n}{z_n}\right)_n \to \frac{x}{z}$.

Proof of (1) Let $\varepsilon > 0$. Since $x_n \to x$, $y_n \to y$, $\exists N_1, N_2 \in \mathbb{N}$ such that $n \ge N_1 \to |x_n - x| < \frac{\varepsilon}{2}$, and $n \ge N_2 \to |x_n - x| \le \frac{\varepsilon}{2}$.

Let $N = \max\{N_1, N_2\}$. If $n \ge N$, then $n \ge N_1$ and $n \ge N_2$.

$$|(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

Proof of (3) We have $(x_n)_n \to x$ and $(y_n)_n \to y$.

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy|$$

$$= |x_n (y_n - y) + y(x_n - x)|$$

$$\leq |x_n (y_n - y)| + |y(x_n - x)|$$

$$= |x_n||y_n - y| + |x_n - x||y|$$

Since convergent sequences are bounded, $\exists c \in \mathbb{R}$ such that $|x_n| < c$, $\forall n$

$$\leq c|y_n - y| + |x_n - x||y|$$

$$\to 0$$

Therefore, $|x_ny_n - xy| \to 0$, so $x_ny_n \to xy$.

Proof of (4) We have $z_n \neq 0$ and $z \neq 0$. Let $\varepsilon > 0$.

$$\left| \frac{1}{z_n} - \frac{1}{z} \right| = \frac{|z - z_n|}{|z_n z|}$$
$$= |z_n - z| \frac{1}{|z|} \frac{1}{|z_n|}$$

Let $\varepsilon = \frac{|z|}{2}$. Since $(z_n)_n \to z$, we know that $z_n \in V_{\varepsilon}(z)$ for $n \ge N \in \mathbb{N}$. For $n \ge N$, $|z_n| > \frac{|z|}{2}$, so $\frac{1}{|z_n|} < \frac{2}{|z|}$.

$$\leq |z_n - z| \frac{2}{|z|^2}$$

$$\to 0$$

So,
$$\left|\frac{1}{z_n} - \frac{1}{z}\right| \to 0$$
, so $\frac{1}{z_n} \to \frac{1}{z}$

Ordering of Limits

Let $(x_n)_n \to x$ and $(y_n)_n \to y$. If $x_n \le y_n$ for all n, then $x \le y$.

Suppose toward contradiction that x > y.

Let $\varepsilon = \frac{x-y}{2}$.

So, $\exists N_1 \in \mathbb{N}$ such that $n \ge N_1 \Rightarrow y_n \in V_{\varepsilon}(y)$, and $\exists N_2 \in \mathbb{N}$ such that $n \ge N_2 \Rightarrow x_n \in V_{\varepsilon}(x)$.

Let $N = \max\{N_1, N_2\}$. Then, $x_N \in V_{\varepsilon}(x)$ and $y_N \in V_{\varepsilon}(y)$. But that means $x_N > y_N$. \bot

In particular, if $(x_n)_n \to x$, and $a \le x_n \le b$, then $a \le x \le b$.

Squeeze Theorem

Let $(x_n)_n \to x$, $(y_n)_n \to y$, and $(z_n)_n \to z$, where $x_n \le y_n \le z_n$ for all n.

If L = x = z, then y = L.

Let $\varepsilon > 0$. Find $N_1, N_2 \in \mathbb{N}$ such that $n \geq N_1 \Rightarrow V_{\varepsilon}(L)$, and $n \geq N_2 \Rightarrow V_{\varepsilon}(L)$.

Let $N = \max\{N_1, N_2\}$. Then, $n \ge N \Rightarrow x_n, z_n \in V_{\varepsilon}(L)$. Thus,

$$L - \varepsilon < x_n \le y_n \le z_n < L + \varepsilon$$

so $y_n \in V_{\varepsilon}(L)$, so $(y_n)_n \to L$.

For example, let $a_n = \frac{\sin(n)}{n}$. Then, since

$$-\frac{1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}$$

and both sides of the inequality go to zero, $a_n \rightarrow 0$

As another example, consider $a_n = (2^n + 3^n)^{1/n}$. Then,

$$3^{n} \le 2^{n} + 3^{n} \le 2 \cdot 3^{n}$$
$$3 \le (2^{n} + 3^{n})^{1/n} \le 2^{1/n} \cdot 3$$

Since $2^{1/n} \to 1$, we have $a_n \to 3$.

Ratio Test

Let (x_n) be a sequence of strictly positive numbers, with $\left(\frac{x_{n+1}}{x_n}\right)_n \to r < 1$. Then, $(x_n)_n \to 0$.

Since r < 1, then 1 - r > 0. Let $\rho = r + \frac{1 - r}{2}$, and $\varepsilon = \rho - r = \frac{1 - r}{2}$.

Since the sequence converges, $\exists N \in \mathbb{N}$ such that for $n \geq N$,

$$\left| \frac{X_{n+1}}{X_n} - r \right| < \varepsilon$$

$$\frac{X_{n+1}}{X_n} < \rho$$

$$X_{n+1} < \rho$$

In particular, $x_{N+1} < \rho x_N$, and $x_{N+2} < \rho x_{N+1} < \rho^2 x_N$. Inductively, one can show that $\forall k \geq 1$, $x_{N+k} < \rho^k x_N$.

$$0 < x_{N+k} < \rho^k x_N$$

In particular, as $k \to \infty$, both sides of the inequality go to 0, implying that $x_n \to 0$

Monotone Convergence Theorem

Let $(x_n)_n$ be a monotone sequence. Then, $(x_n)_n$ is convergent if and only if it is bounded.

- (a) If $(x_n)_n$ is increasing and bounded above, then $(x_n)_n \to \sup(\{x_n \mid n \in \mathbb{N}\})$.
- (b) If $(x_n)_n$ is decreasing and bounded below, then $(x_n)_n \to \inf(\{x_n \mid n \in \mathbb{N}\})$.

We have already shown that all convergent sequences are bounded.

Assume that $(x_n)_n$ is monotonic and bounded.

Case 1: Suppose $(x_n)_n$ is increasing. Let $\sup\{x_n \mid n \in \mathbb{N}\} := u$. We claim that $(x_n)_n \to u$.

Let $\varepsilon > 0$. By the definition of supremum, $\exists N \in \mathbb{N}$ such that $u - \varepsilon < x_N$. Note that $\forall n \geq N$, $u - \varepsilon < x_N \leq x_n \leq u$.

Therefore, if $n \ge N$, then $|x_n - u| < \varepsilon$.

Case 2: Suppose $(x_n)_n$ is decreasing. Let $\ell := \inf\{x_n \mid n \in \mathbb{N}\}$. We claim that $(x_n)_n \to \ell$.

Let $\varepsilon > 0$. By the definition of infimum, $\exists N \in \mathbb{N}$ such that $\ell + \varepsilon > x_N$. Additionally, $\forall n \geq N$, $\ell \leq x_N \leq \ell + \varepsilon$.

Therefore, if $n \ge N$, $|x_n - \ell| < \varepsilon$.

Applications of the Monotone Convergence Theorem

Lemma

If $(x_n)_n$ is a convergent sequence, and $m \in \mathbb{N}$, the m-th tail, $x_{(m)} = (x_{m+k})_{k=1}^{\infty}$ is also convergent. If $(x_n)_n \to L$ then $x_{(m)} \to L$.

Let $\varepsilon > 0$. Find $N \in \mathbb{N}$ such that $n \geq N \Rightarrow |x_n - L| < \varepsilon$. If $k \geq N$, then $m + k \geq N$, so $|x_{m+k} - L| < \varepsilon$.

Thus, $(x_{m+k})_k \to L$

Consider the inductively defined sequence

$$x_1 = 8$$

 $x_{n+1} = \frac{1}{2}x_n + 2$
 $(x_n)_n = (8, 6, 5, 9/2, 17/4, ...)$

We claim that $x_n \ge 4 \ \forall n$.

$$x_1 = 8 \ge 4$$

Suppose $x_k \ge 4$. We will show that $x_{k+1} \ge 4$.

$$x_{k+1} = \frac{1}{2}x_k + 2$$

$$\ge \frac{1}{2}(4) + 2$$

$$= 4$$

Therefore, $(x_n)_n$ is bounded below by 4.

We claim that $(x_n)_n$ is decreasing. $\forall n \in \mathbb{N}$,

$$x_{n+1} \le x_n \Leftrightarrow \frac{1}{2}x_n + 2 \le x_n \Leftrightarrow 4 \le x_n$$

By the monotone convergence theorem, we know that $(x_n)_n \to L$.

To find L, we use the recursive relationship and the lemma.

$$x_{n+1} = \left(\frac{1}{2}x_n + 2\right)_{n=1}^{\infty}$$

$$L = \frac{1}{2}L + 2$$

$$L = 4$$

Consider the following sequence

$$x_{1} = 1$$

$$x_{2} = 1 + \frac{1}{4}$$

$$x_{3} = 1 + \frac{1}{4} + \frac{1}{9}$$

$$x_{k} = \sum_{k=1}^{n} \frac{1}{k^{2}}$$

We will show that $(x_n)_n$, the sequence of partial sums, converges.

Clearly, these partial sums form an increasing sequence. We only need to show that the sequence is bounded above.

$$k^{2} \ge k(k-1)$$

$$\frac{1}{k^{2}} \le \frac{1}{k(k-1)}$$

$$= \frac{1}{k-1} - \frac{1}{k}$$

$$\sum_{k=2}^{n} \frac{1}{k^{2}} \le \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right)$$

$$\sum_{k=1}^{n} \frac{1}{k^{2}} \le 1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k}\right)$$

But

$$1 + \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) = 2 - \frac{1}{n}$$

so, we have

$$\sum_{k=1}^{n} \frac{1}{k^2} \le 2 - \frac{1}{n}$$

$$\le 2$$

So, $(x_n)_n$ is bounded above.

Nested Intervals Theorem, Alternative Proof

Let $I_n = [a_n, b_n]$ be a countable family of nested intervals. Then,

$$\bigcap I_n \neq \emptyset$$

Since the intervals are nested, it must be the case that $a_1 \le a_2 \le \cdots \le a_n \le b_n \le b_1$.

Similarly, $a_1 \leq a_n \leq b_n \leq b_{n-1} \leq \cdots \leq b_2 \leq b_1$.

So, $(a_n)_n$ is an increasing sequence bounded above by b_1 and $(b_n) n$ is a decreasing sequence bounded below by a_1 . So, $(b_n)_n \to r$ and $(a_n) \to \ell$ Note that $\ell = \sup(a_n)$ and $r = \inf(b_n)$.

Fix $n \in \mathbb{N}$, then for any $m \ge n$, $a_n \le a_m \le b_m \le b_n$. So, $\sup(a_m) = \ell \le b_n$. Unlocking n, we get that $\ell \le \inf(b_n) = r$.

Calculating Square Roots

Let $a \in \mathbb{R}^+$. We will construct a sequence $(x_n)_n \to \sqrt{a}$.

Let

 $x_1 = 1$

Define

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right).$$

We will prove that $x_n^2 \ge a$.

$$2x_{n+1} = x_n + \frac{a}{x_n}$$
$$2x_{n+1}x_n = x_n^2 + a$$
$$0 = x_n^2 - 2x_{n+1}x_n + a$$

So, x_n is a real root, meaning

$$\Delta = 4x_{n+1}^2 - 4a$$

$$x_{n+1}^2 \ge a \qquad \forall n$$

So, $\forall n \geq 2$

$$x_n^2 \ge a$$

We will show that x_n is ultimately decreasing.

$$x_n - x_{n+1} = x_n - \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$
$$= \frac{1}{2} \underbrace{\left(\frac{x_n^2 - a}{x_n} \right)}_{>0, \forall n > 2}$$

So, we have that $(x_n)_n$ is decreasing and bounded below, meaning $(x_n)_n \to x$ for some $x \in \mathbb{R}$.

We had

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

$$x = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

$$x = \frac{a}{x}$$

$$x^2 = a$$

$$x = \sqrt{a}$$

remember that x > 0

Euler's Number

Consider

$$(e_n)_n = \left(1 + \frac{1}{n}\right)^n$$
$$= \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}$$

Similarly,

$$e_{n+1} = \sum_{k=0}^{\infty} \left(\frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n+1} \right) \right)$$

$$e_{n+1} \ge e_n$$

We claim that $(e_n)_n$ is bounded above.

$$e_{1} = \left(1 + \frac{1}{1}\right)^{1}$$

$$2 \le e_{n}$$

$$e_{n} = \sum_{k=0}^{n} \left(\frac{1}{k!} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right)\right)$$

$$2^{k-1} \le k!$$

$$\frac{1}{k!} \le \frac{1}{2^{k-1}}$$

$$e_{n} = \sum_{k=0}^{n} \frac{1}{k!} \cdot \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right)$$

$$\le \sum_{k=0}^{n} \frac{1}{k!}$$

$$\le 2 + \sum_{\ell=1}^{n-1} \frac{1}{2^{\ell}}$$

$$< 3$$

 $\forall n$

so, we have

$$2 \le e_n \le 3$$

so, by the monotone convergence theorem, $(e_n)_n$ converges

$$e := \sup_{n} \left(1 + \frac{1}{n} \right)^{n}$$

Monotone Divergence

A sequence that is increasing and unbounded diverges to infinity.

Let M > 0. Since $(x_n)_n$ is unbounded, $\exists N \in \mathbb{N}$ such that $x_N > M$

Thus, if $n \ge N$, then $x_n \ge x_N > M$.

Consider

$$h_n = \sum_{k=1}^n \frac{1}{k}$$

We can see that $h_n < h_{n+1}$. The primary question is as to whether $(h_n)_n$ is bounded.

$$h_{1} = 1$$

$$\geq 1$$

$$h_{2} = 1 + \frac{1}{2}$$

$$\geq 1 + \frac{1}{2}$$

$$h_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$$

$$\geq 1 + \frac{1}{2} + \frac{1}{2}$$

$$h_{8} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$\geq 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

so, we have

$$h_{2^k} \ge 1 + \sum_{i=1}^k \frac{1}{2}$$

Let M be large. Find n such that n > 2(M-1). In this case, n/2+1 > M. Let $N=2^n$. Then, for $m \ge N$, $h_m > M$.

Thus, $(h_n)_n$ diverges to infinity.

Natural Sequences

A **natural sequence** is a strictly increasing sequence of natural numbers, $(n_k)_{k=1}^{\infty}$

$$n_1 < n_2 < n_3 < \dots$$

where $\forall k \in \mathbb{N}$, $n_k \in \mathbb{N}$.

Natural Sequence Property

Given $(n_k)_k$ natural sequence, show that $(n_k) \ge k$.

Base Case: We know that $n_1 \leq 1$, as $n_1 \in \mathbb{N}$.

Inductive Step: To be continued...

Subsequences

Let $(x_n)_n$ be a sequence. A subsequence $(x_{n_k})_{k=1}^{\infty}$, where $(n_k)_k$ is a natural sequence.

For example, if $(x_n)_n = (-1)^n$. If $(n_k) = 2k$, then, $(x_{n_k}) = ((-1)^{2k})_k = (1, 1, 1, ...)$. But, if $(n_k) = 2k + 1$, then $(x_{n_k}) = (-1, -1, -1, ...)$.

If
$$(x_n) = (1/n)_n$$
, and $(n_k)_k = k^2$, then $(x_{n_k})_k = (1/k^2)_k = (1, 1/4, 1/9, ...)$.

If $(x_n)_n$ is a sequence, its *m*-th **tail** is $(x_{m+k}) = (x_m, x_{m+1}, x_{m+2}, \dots)$, where $n_k = m + k$.

Convergence of Subsequence

If $(x_n)_n \to x$, then for any natural sequence $(n_k)_k$,

$$(x_{n_k})_k \to x$$

Let $\varepsilon > 0$. Find $N \in \mathbb{N}$ large such that $n \ge N$, $|x_n - x| < \varepsilon$.

Take K = N. Then,

$$n_k \ge k$$

$$\ge K$$

$$= N$$

$$\Rightarrow |x_{n_k} - x| < \varepsilon$$

Corollary to Convergence of Subsequences

Given a sequence $(x_n)_n$, if there are two subsequences $(x_{n_k})_k \to x$, $(x_{n_\ell})_\ell \to x'$, where $x \neq x'$, then $(x_n)_n$ is divergent.

Recall the geometric sequence

$$(b^n)_{n=1}^{\infty} \to 0$$

if 0 < b < 1.

The sequence $(1, b, b^2, \dots)$ is decreasing and bounded below (as all elements are positive), meaning that by the monotone convergence theorem, $(b^n)_n \to \ell$.

Given n = 2k, we know that $(b^{2k})_k \to \ell$.

$$b^{2k} = (b^k)^2$$
$$(b^k)^2 \to \ell^2$$
$$\ell^2 = \ell$$
$$\ell = \{0, 1\}$$

since b < 1

$$\ell = 0$$

Divergence and Subsequence

If $(x_n)_n \nrightarrow x$, then

$$(\exists \varepsilon_0 > 0) (\forall N \in \mathbb{N}) (\exists n \geq N) \ni |x_n - x| \geq \varepsilon_0$$

We can use this to construct a sequence to show divergence.

Let $(x_n)_n$ be a sequence, and $x \in \mathbb{R}$.

$$(x_n)_n \nrightarrow x$$

$$\Leftrightarrow$$

$$(\exists \varepsilon_0 > 0)(\exists (x_{n_k})_k)$$

with

$$|x_{n_k}-x|\geq \varepsilon_0$$

(⇒) We know $\exists \varepsilon_0 > 0$ as above. We construct the sequence as follows:

$$N = 1 \Rightarrow \exists n_1 \geq 1$$

with

$$|x_{n_1} - x| \ge \varepsilon_0$$

$$N = n_1 + 1 \Rightarrow \exists n_2 \ge n_1 + 1$$

with

$$|x_{n_2} - x| \ge \varepsilon_0$$

$$N = n_2 + 1 \Rightarrow \exists n_3 \ge n_2 + 1$$

with

$$|x_{n_3}-x|\geq \varepsilon_0$$

Assume we have $n_1 < n_2 < \dots, n_k$ with

$$|x_{n_j} - x| \ge \varepsilon_0$$
 $j = 1, 2, \dots, k$ $N = n_k + 1 \Rightarrow n_{k+1} \ge n_k + 1$

with

$$|x_{n_{k+1}} - x| \ge \varepsilon_0$$

Iteratively, we have our desired subsequence $(x_{n_k})_k$.

 (\Leftarrow) If $(x_n)_n \to x$, any subsequence converges to x.

By assumption, $(\exists \varepsilon_0 > 0) (\exists (n_k)_k)$ with $|x_{n_k} - x| \ge \varepsilon_0$. Thus, $(x_{n_k})_k \nrightarrow x$.

Bolzano-Weierstrass Theorem

If $(x_n)_n$ is a bounded sequence, then $(x_n)_n$ admits a convergent subsequence.

Lemma

Let $(x_n)_n$ be any real sequence. Then, $\exists n_k$ such that $(x_{n_k})_k$ is monotone.

A **peak** of a sequence $(x_n)_n$ is an x_m such that $x_m \ge x_n \ \forall n \ge m$.

Case 1: There are infinitely many peaks, $(x_{n_1}, x_{n_2}, x_{n_3}, \dots)$, where $n_1 < n_2 < \dots$. Then, $(x_{n_k})_k$ is decreasing.

Case 2: There are finitely many peaks. Let these peaks be $x_{m_1}, x_{m_2}, \ldots, x_{m_r}$.

Let $n_1=m_r+1$. Since x_{n_1} is not a peak, $\exists n_2>n_1$ such that $x_{n_2}>x_{n_1}$. Since x_{n_2} is not a peak, $\exists n_3>n_2$ such that $x_{n_3}>x_{n_2}$.

Iteratively, we have an increasing sequence of non-peaks $(x_{n_k})_k$.

Since $(x_n)_n$ admits a monotone subsequence, and $(x_{n_k})_k$ is bounded as $(x_n)_n$ is bounded, this monotone, bounded subsequence must converge by the monotone convergence theorem.

Limit Superior and Limit Inferior

Let $X = (x_n)_n$ be a bounded real sequence. By Bolzano-Weierstrass, $(x_n)_n$ admits at least one convergent subsequence.

Let

$$\overline{X}:=\left\{t\mid t\in\mathbb{R},\ t=\lim_{k o\infty}x_{n_k}
ight\}$$
 for any subsequence $\left(x_{n_k}
ight)_k$

Then, $t \in \overline{X}$ is called a **limit point** of X.

Let $u_1 = \sup_{n>1} (x_n)$, $\ell_1 = \inf_{n\geq 1} (x_n)$. Clearly, $\ell_1 \leq u_1$, and $\overline{X} \subseteq [\ell_1, u_1]$.

Let $u_2 = \sup_{n \ge 2} (x_n)$ and $\ell_2 = \inf_{n \ge 2} (x_n)$.

Since u_1 is an upper bound for $(x_n)_n$, it is an upper bound for $(x_n)_{n\geq 2}$, so $u_2\leq u_1$. Similarly, since ℓ_1 is a lower bound for $(x_n)_n$, it is a lower bound for $(x_n)_{n\geq 2}$, so $\ell_2\geq \ell_1$.

As a result, we can see that $\overline{X} \subseteq [\ell_2, u_2]$.

We continue, letting $u_m = \sup_{n \geq m} (x_n)$, and $\ell_m = \inf_{n \geq m} (x_n)$. We get $\ell_1 \leq \ell_2 \leq \cdots$, and $u_1 \geq u_2 \geq \cdots$, and $\overline{X} \in [\ell_m, u_m]$, $\forall m$.

We get a nested sequence of intervals $[\ell_1, u_1] \supseteq [\ell_2, u_2] \supseteq \cdots$. By the Nested Intervals Theorem, we know that

$$\overline{X} \subseteq \bigcap_{m \ge 1} [\ell_m, u_m]$$

= $[\ell, u]$

where $\ell = \sup(\ell_m)$ and $u = \inf(u_m)$.

Given a bounded sequence $(x_n)_x = X$,

$$u = \inf_{m \ge 1} (u_m)$$
$$= \inf_{m \ge 1} \left(\sup_{n > m} x_n \right)$$

called the **limit superior** of $(x_n)_n$

$$u = \limsup_{n \to \infty} x_n$$

and

$$\ell = \sup_{m \ge 1} (\ell_m)$$
$$= \sup_{m \ge 1} \left(\inf_{n \ge m} (x_n) \right)$$

called the **limit inferior** of $(x_n)_n$

$$\ell = \liminf_{n \to \infty} x_n$$

Applications of Limit Superior and Limit Inferior

Let $(x_n)_n$ be bounded. Then,

- (1) $\liminf_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$
- (2) $(x_n)_n \to x \Leftrightarrow \liminf_{n \to \infty} x_n = \limsup_{n \to \infty} x_n = x$
- (1) This was proven with the Nested Intervals Theorem
- (2) Let $\varepsilon > 0$. Then, $\exists N \in \mathbb{N}$ such that $n \ge N \Rightarrow |x_n x| < \varepsilon/2$.

We know that $u_m = \sup_{n \geq m} x_n$. If $m \geq N$, then $u_m \in [x - \varepsilon/2, x + \varepsilon/2]$. Therefore, $|u_m - x| \leq \varepsilon/2 < \varepsilon$, so $(u_m)_m \to \varepsilon x \limsup_{n \to \infty} x_n$.

Similarly, we know that $\ell_m = \inf_{n \geq m} x_n$. If $m \geq N$, then $\ell_m \in [x - \varepsilon/2, x + \varepsilon/2]$. So, $|\ell_m - x| \leq \varepsilon/2 < \varepsilon$, so $(\ell_m)_m \to x = \liminf_{n \to \infty} x_n$.

Consider the sequence

$$x_n = \begin{cases} 2 + \frac{1}{n} & n \in 2\mathbb{N} \\ -\frac{1}{n} & n \in 2\mathbb{N} - 1 \end{cases}$$
$$= (-1, 5/2, -1/3, 9/4, -1/5, \dots)$$

We begin by constructing the u_m sequence: (5/2, 5/2, 9/4, 9/4, ...). We can see that $u_m \to 2$.

Then, we construct the ℓ_m sequence: $(-1, -1/3, -1/3, -1/5, -1/5, \dots)$. We can see that $\ell_m \to 0$.

Exercise: If $(x_n)_n$ and $(y_n)_n$ are sequences with $x_n \leq y_n \ \forall n$, then $\limsup x_n \leq \limsup y_n$ and $\liminf x_n \leq \liminf y_n$.

Ratio Test and Root Test Equivalent Convergence

If $(a_n)_n$ is a sequence of strictly positive terms such that

 $\left(\frac{a_{n+1}}{a_n}\right)_n \to \rho$

then,

$$\left(a_n^{1/n}\right)_{n=1}^{\infty} \to \rho$$

Let $\varepsilon > 0$. Then, $\exists N$ large such that $\forall n \geq N$,

$$\left|\frac{a_{n+1}}{a_n} - \rho\right| < \varepsilon \qquad \forall n \ge N$$

$$\Rightarrow \frac{a_{n+1}}{a_n} < \rho + \varepsilon \qquad \forall n \ge N$$

$$a_{n+1} n a_n (\rho + \varepsilon) \qquad \forall n \ge N$$

$$a_n < a_N (\rho + \varepsilon)^{n-N} \qquad \forall n \ge N$$

$$a_n < (\rho + \varepsilon)^n \cdot \frac{a_N}{(\rho + \varepsilon)^N}$$

$$a_n^{1/n} < (\rho + \varepsilon) \left(\frac{a_N}{(\rho + \varepsilon)^N}\right)^{1/n}$$

$$\lim\sup_{n \to \infty} a_n^{1/n} \le \lim\sup_{n \to \infty} (\rho + \varepsilon) \left(\frac{a_N}{(\rho + \varepsilon)^N}\right)^{1/n}$$

Case 1: If $\rho = 0$, the case his trivial.

Case 2: Suppose $\rho > 0$. Find $\varepsilon > 0$ small such that $0 < \varepsilon < \rho$.

Since $\left(\frac{a_{n+1}}{a_n}\right)_n \to \rho$, find N large such that $\frac{a_{n+1}}{a_n} > \rho - \varepsilon$. So, $\forall n \geq N$,

$$\begin{aligned} a_{n+1} &\geq a_n \left(\rho - \varepsilon\right) \\ a_n &\geq a_N \left(\rho - \varepsilon\right)^{n-N} \\ a_n^{1/n} &\geq \left(\rho - \varepsilon\right) \left(\frac{a_N}{(\rho - \varepsilon)^N}\right)^{1/n} \\ \lim\inf a_n^{1/n} &\geq \rho - \varepsilon \end{aligned}$$

thus,

$$\rho \leq \liminf a_n^{1/n}$$

Together, $\rho \leq \liminf a_n^{1/n} \leq \limsup a_n^{1/n} \leq \rho$, so $\liminf a_n^{1/n} = \limsup a_n^{1/n} = \rho$, whence $\left(a_n^{1/n}\right) \to \rho$

Properties of \overline{X}

We found earlier that $\overline{X} \subseteq [\ell, u]$. We claim that

$$\sup \overline{X} = u$$

$$\sup \overline{X} = \ell$$

We have shown that u is an upper bound for \overline{X} . The goal is to show that u is the least upper bound.

Let $\varepsilon > 0$. We need to find a $t \in \overline{X}$ with $u - \varepsilon < t$. Note that $u - \varepsilon < u_m \ \forall m$.

We know that $u - \varepsilon < u_1$. Since $u_1 = \sup_{n > 1} x_n$, we know $\exists n_1 \in \mathbb{N}$ with $u - \varepsilon < x_{n_1} < u_1$.

Consider $u_{n_1+1} = \sup_{n>n_1} x_n$. We know that $u - \varepsilon < u_{n_1+1}$. Therefore, $\exists x_{n_2}$ with $n_2 > n_1$ and $u - \varepsilon < x_{n_2} < u_{n_1+1}$.

Then, we use u_{n_2+1} . Then, $\exists n_3 > n_2$ with $u - \varepsilon < x_{n_3} < u_{n_2+1}$.

We get a subsequence from the natural sequence n_1, n_2, \ldots , where $u - \varepsilon < x_{n_k} \ \forall k$.

Also, $x_{n_k} < u_1 \ \forall k$. Therefore, $(x_{n_k})_k$ is a bounded sequence. By Bolzano-Weierstrass, \exists a convergent subsequence

$$\left(x_{n_{k_j}}\right)_j \to t$$

We know that $u - \varepsilon \le t$. Note that $t \in \overline{X}$.

Exercise: Show that $\inf \overline{X} = \ell$.

Cauchy Sequences

A sequence $(x_n)_n$ in a metric space (X, d) is Cauchy if

$$(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) \ni p, q \ge N \Rightarrow d(x_p, x_q) < \varepsilon$$

if $(X, d) = (\mathbb{R}, |\cdot|)$:

$$(\forall \varepsilon > 0) (\exists N \in \mathbb{N}) \ni p, q \geq N \Rightarrow |x_p - x_q| < \varepsilon$$

Consider the sequence $(x_n)_n = \frac{1}{n}$. Then,

$$|x_p - x_q| = \left| \frac{1}{p} - \frac{1}{q} \right|$$
$$= \frac{1}{q} - \frac{1}{p}$$
$$\le \frac{1}{q}$$

Given $\varepsilon > 0$, find N large such that $\frac{1}{N} < \varepsilon$. Then, $p, q \ge N$ implies

$$\left| \frac{1}{p} - \frac{1}{q} \right| < \frac{1}{q}$$

$$\leq \frac{1}{N}$$

$$< \varepsilon$$

Show that $(-1)^n$ is not Cauchy.

$$(\exists \varepsilon_0 > 0) \ (\forall N \in \mathbb{N}) \ni p, q \ge N \Rightarrow |x_p - x_q| \ge \varepsilon_0$$

Boundedness of Cauchy Sequences

Cauchy sequences are bounded.

Let $\varepsilon = 1$. Then, by the Cauchy criterion, $\exists N \in \mathbb{N}$ such that $p, q \ge N \Rightarrow |x_p - x_q| < 1$.

In particular, $\forall n \geq N$,

$$|x_n| = |x_n - x_N + x_N|$$

$$\leq |x_n + x_N| + |x_N|$$

$$< 1 + |x_N|$$

Triangle Inequality

Let $c = \max\{|x_1|, |x_2|, \dots, |x_N|, |x_N| + 1\}$. Then, $x_n \le c \ \forall n \ge 1$. Thus, x_n is bounded.

Convergent Subsequences of Cauchy Sequences

If $(x_n)_n$ is Cauchy and $(x_n)_n$ admits a convergent subsequence, then $(x_n)_n$ is convergent.

Say $(x_{n_k}) \to x$ for some natural sequence $(n_k)_k$. We claim that $(x_n)_n \to x$.

Let $\varepsilon > 0$. Since $(x_n)_n$ is Cauchy, $\exists N \in \mathbb{N}$ such that $p, q \ge N \Rightarrow |x_p - x_q| < \varepsilon/2$.

Also, since $(x_{n_k})_k \to x$, then $\exists K \in \mathbb{N}$ and $K \geq N$ with $k \geq K \Rightarrow |x_{n_k} - x| < \varepsilon/2$.

For all $k \geq K$,

$$|x_n - x| = |x_n - x_{n_k} + x_{n_k} - x|$$

 $\leq |x_n - x_{n_k}| + |x_{n_k} - x|$

Let $N_1 = \max\{N, K\}$. Then,

$$n \ge N_1 \Rightarrow n \ge N$$

 $\Rightarrow n_k \ge k \ge K \ge N$
 $|x_n - x| < \varepsilon/2 + \varepsilon/2$

by max

def. of natural sequence

Cauchy Sequence Convergence in the Reals

Let $(x_n)_n$ be any sequence in \mathbb{R} . The following are equivalent:

- (1) $(x_n)_n$ converges.
- (2) $(x_n)_n$ is Cauchy.
- (1) \Rightarrow (2) (Holds in any metric space). Suppose $(x_n)_n \to x$. Find N large such that $n \ge N \to d(x_n, x) < \varepsilon/2$.

Then, $p, q \ge N \Rightarrow$

$$d(x_p, x_q) \le d(x_p, x) + d(x, x_q)$$
$$< \varepsilon/2 + \varepsilon/2$$
$$= \varepsilon$$

 $(2) \Rightarrow (1)$ If $(x_n)_n$ is Cauchy, then $(x_n)_n$ converges.

By Bolzano-Weierstrass, $(x_n)_n$ admits a convergent subsequence, so by our previous lemma, $(x_n)_n$ must converge.

Note: To show $(2) \Rightarrow (1)$, we used Bolzano-Weierstrass, which requires the monotone convergence theorem, which itself requires the completeness axiom. This is why we cannot show $(2) \Rightarrow (1)$ converges.

Complete Metric Spaces

A metric space (X, d) is **complete** if every Cauchy sequence converges.

Remark: All convergent sequences are Cauchy, and all Cauchy sequences are bounded. We showed that $\mathbb R$ under the absolute value metric is complete.

 \mathbb{Q} under d(s,t)=|s-t| is not complete; similarly, A=(0,1) under the metric inherited from \mathbb{R} is not complete; $x_n=\frac{1}{n}$ is Cauchy but not convergent in A.

Finding Cauchy Sequences and Convergence in ${\mathbb R}$

Consider the harmonic sequence

$$h_n = \sum_{k=1}^n \frac{1}{k}$$

We claim that h_n is not convergent.

Let p > q. Then,

$$|h_{p} - h_{q}| = \left| \sum_{1}^{p} \frac{1}{k} - \sum_{1}^{q} \frac{1}{k} \right|$$

$$= \frac{1}{q+1} + \frac{1}{q+2} + \dots + \frac{1}{p}$$

$$\geq \frac{1}{p} + \frac{1}{p} + \dots + \frac{1}{p}$$

$$= \frac{p-q}{p}$$

$$= 1 - \frac{q}{p}$$

set p = 2q:

$$|h_{2q} - h_q| \ge 1\frac{q}{2q}$$
$$= 1/2$$

Therefore, h_n is not Cauchy, and thus not convergent.

Consider a sequence of partial sums

$$x_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$$

We claim that $(x_n)_n$ is Cauchy, and thus convergent. Let p>q. Then, we have

$$|x_{p} - x_{q}| = \left| \sum_{k=q+1}^{p} \frac{(-1)^{k}}{k!} \right|$$

$$\leq \sum_{k=q+1}^{p} \frac{1}{k!}$$

$$\leq \sum_{k=q+1}^{p} k = q + 1^{p} \frac{1}{2^{k-1}}$$

$$= \frac{1}{2^{q}} + \frac{1}{2^{q+1}} + \dots + \frac{1}{2^{p-1}}$$

$$= \frac{1}{2^{q}} \left(1 + \frac{1}{2} + \dots + \frac{1}{2^{p-q-1}} \right)$$

$$\leq \frac{1}{2^{q-1}}$$

Given $\varepsilon>0$, choose N large such that $\frac{1}{2^{N-1}}<\varepsilon$. When p>q>N, then $|x_p-x_q|\leq \frac{1}{2^{q-1}}\leq \frac{1}{2^{N-1}}<\varepsilon$.

Thus, the sequence is convergent.

Contractive Sequences

A sequence $(x_n)_n$ in a metric space (X, d) is **contractive** if

$$\exists 0 < \rho < 1 \ni d(x_{n+1}, x_n) \le \rho d(x_n, x_{n-1}) \qquad \forall n \ge 1$$

In \mathbb{R} , the definition is

$$|x_{n+1} - x_n| \le \rho |x_n - x_{n-1}|$$

We claim that every contractive sequence is Cauchy.

From examination, we arrive at the following:

$$|x_n - x_{n-1}| \le \rho^{n-2} |x_2 - x_1| \tag{*}$$

If p > q, then

$$\begin{split} |x_{p}-x_{q}| &= |x_{p}-x_{p-1}+x_{p-1}-x_{p-1}+\dots+x_{q+1}-x_{q}| \\ &\leq |x_{p}-x_{p-1}|+\dots+|x_{q+1}-x_{q}| & \text{Triangle Inequality} \\ &\leq |x_{2}-x_{1}| \left(\rho^{p-2}+\rho^{p-3}+\dots+\rho^{q-1}\right) \\ &= |x_{2}-x_{1}| \rho^{q-1} \left(1+\rho+\rho^{2}+\dots+\rho^{p-q-1}\right) \\ &= |x_{2}-x_{1}| \rho^{q-1} \frac{1-\rho^{p-q}}{1-x} & \text{Finite Geometric Sequence} \\ &\leq |x_{2}-x_{1}| \frac{\rho^{q-1}}{1-\rho} \end{split}$$

Given $\varepsilon > 0$, we can find N large such that

$$q \ge N \Rightarrow |x_2 - x_1| \frac{\rho^{q-1}}{1-\rho} < \varepsilon$$

Thus, $p > q \ge N \Rightarrow |x_p - x_q| < \varepsilon$.

Application of Contractive Sequences

Consider $(f_n)_n$ defined as follows:

$$f_0 = 1$$

 $f_1 = 1$
 $f_{n+1} = f_n + f_{n-1}$

Consider x_n defined as follows:

$$x_n = \frac{f_{n+1}}{f_n}$$

We can rewrite x_n as:

$$x_{n} = \frac{f_{n} + f_{n-1}}{f_{n}}$$

$$= 1 + \frac{f_{n-1}}{f_{n}}$$

$$= 1 + \frac{1}{\frac{f_{n}}{f_{n-1}}}$$

$$= 1 + \frac{1}{X_{n-1}}$$

We claim that $3/2 \le x_n \le 2 \ \forall n \ge 2$.

$$x_2 = 2$$

Inductive Hypothesis: suppose $3/2 \le x_n \le 2$

$$: \frac{3}{2} \le x_n \le 2$$

$$\frac{2}{3} \ge \frac{1}{x_n} \ge \frac{3}{2}$$

$$2 \ge \frac{5}{3} \ge 1 + \frac{1}{x_n} \ge \frac{3}{2}$$

We now claim that $(x_n)_n$ is contractive.

$$|x - n + 1 - x_n| = \left| \left(1 + \frac{1}{x_n} \right) - \left(1 + \frac{1}{x_{n-1}} \right) \right|$$

$$= \left| \frac{1}{x_n} - \frac{1}{x_{n-1}} \right|$$

$$= \left| \frac{x_{n-1} - x_n}{x_{n-1} x_n} \right|$$

$$\leq \frac{4}{9} |x_n - x_{n-1}|$$

Therefore, $\rho = \frac{4}{9}$ is our constant of contraction. Thus, $(x_n)_n$ is Cauchy, so it converges in \mathbb{R} .

$$x_{n+1} = 1 + \frac{1}{x_n} \qquad (n \to \infty, x_n \to \varphi)$$

$$\varphi = 1 + \frac{1}{\varphi}$$

$$\varphi^2 - \varphi - 1 = 0$$

$$\varphi = \frac{1 + \sqrt{5}}{2}$$

Let $x_1 = 0$, $x_2 = 1$, and

$$x_{n+1} = \frac{1}{2}(x_n + x_{n-1})$$

(x_n)_n = (0, 1, 1/2, 3/4, 5/8, 11/16, 21/32, ...)

While the sequence is not monotone, we can show that the sequence is contractive.

$$|x_{n+1} - x_n| = \left| \frac{1}{2} (x_n + x_{n-1}) - x_n \right|$$
$$= \left| \frac{1}{2} (x_{n-1} - x_n) \right|$$
$$= \frac{1}{2} |x_n - x_{n-1}|$$

Since the constant of contraction is equal to 1/2, this sequence is Cauchy, and thus converges in the real numbers.

Since $(x_n)_n \to x$, every subsequence converges to x. Therefore, $(x_{2k+1})_k \to x$.

$$x_{2k+1} = \sum_{j=1}^{k} \frac{1}{2^{2j-1}}$$

$$= 2 \sum_{j=1}^{k} \frac{1}{4^{j}}$$

$$= 2 \frac{1 - \frac{1}{4^{k+1}}}{1 - \frac{1}{4}}$$

$$= \frac{2}{2}$$

 $k \to \infty$

Properly Divergent Sequences

Let $(x_n)_n$ be a real sequence. $(x_n)_n$ properly diverges to $+\infty$ if

$$(\forall \alpha > 0)(\exists N \in \mathbb{N}) \ni n \ge N \Rightarrow x_n \ge \alpha$$

We write that $(x_n)_n \to +\infty$. Similarly, $(x_n)_n$ properly diverges to $-\infty$ if

$$(\forall \beta < 0)(\exists N \in \mathbb{N}) \ni n \geq N \Rightarrow x_n \leq \beta$$

and $(x_n)_n \to -\infty$. We say that $(x_n)_n$ is properly divergent if $(x_n)_n \to \pm \infty$.

For example $(x_n)_n$ diverges to n.

If $\alpha > 0$, find $N \ge \alpha$ by the Archimedean property. Then, $n \ge N \Rightarrow n > \alpha$.

If $(x_n)_n$ and $(y_n)_n$ are sequences such that $x_n \ge y_n \ \forall n$, and $(y_n)_n \to +\infty$, then $(x_n)_n \to +\infty$.

Divergence of the Geometric Sequence

In the geometric sequence, if b > 1, we can show that $(b^n) \to +\infty$.

Write b = 1 + a for some a > 0. Then, by Bernoulli's inequality, we have

$$b^n = (1+a)^n$$

$$\geq 1 + na$$

$$\geq na$$

Given any $\alpha > 0$, find N large such that $N > \frac{\alpha}{a}$, which is always possible by the Archimedean property. Then, for $Na \ge \alpha$. If $n \ge N$, then $na \ge Na > \alpha$.

Since $b^n > na$, we have that $(b^n)_n \to +\infty$.

Monotone Divergence

By the Monotone Convergence Theorem, we have that if $(x_n)_n$ is monotone, then

$$(x_n)_n \to x \Leftrightarrow (x_n)_n$$
 bounded

Negating, we have that if $(x_n)_n$ is monotone, then

 $(x_n)_n$ divergent $\Leftrightarrow (x_n)_n$ unbounded

However, we can make this statement stronger.

Proposition Let $(x_n)_n$ be monotone. $(x_n)_n$ is unbounded if and only if $(x_n)_n$ is properly divergent.

Proof:

- (\Leftarrow) If $(x_n)_n$ is properly divergent, then $(x_n)_n$ is divergent, and thus unbounded.
- (⇒) Let $(x_n)_n$ be unbounded and increasing. Then, given $\alpha > 0$, $\exists n_\alpha$ with $x_{n_\alpha} > \alpha$. If $n \ge n_\alpha$, then $x_n \ge x_{n_\alpha} > \alpha$, so $(x_n)_n$ is properly divergent to $+\infty$.

Comparison Test

Let $(x_n)_n$ and $(y_n)_n$ be sequences with $x_n > 0$ and $y_n > 0$. Suppose that

$$\left(\frac{x_n}{y_n}\right)_n \to L > 0$$

Then, $(x_n)_n \to +\infty \Leftrightarrow (y_n)_n \to \infty$.

Let $\varepsilon = L/2$. Since

$$\left(\frac{x_n}{y_n}\right)_n \to L$$

 $\exists N \in \mathbb{N}$ such that $n \geq N$ implies

$$\frac{L}{2} \le \frac{x_n}{y_n} \le \frac{3L}{2}$$

$$\frac{L}{2}y_n \le x_n$$

$$\frac{2}{3L}x_n \le y_n$$

If $(y_n)_n \to \infty$, then so too does $(L/2)(y_n)$, so $(x_n)_n \to \infty$. Similarly, if $(x_n)_n \to \infty$, then so too does $(2/3L)x_n$, so $(y_n)_n \to \infty$.

Show that

$$\left(\sqrt{4n^2-3n+1}\right)_n \to +\infty$$

We will compare to $y_n = n$. Then

$$\frac{x_n}{y_n} = \frac{\sqrt{4n^2 - 3n + 1}}{n}$$
$$= \sqrt{4 - \frac{3}{n} + \frac{1}{n^2}}$$
$$\to 2 \ge 0$$

Since y_n is properly divergent to $+\infty$, so too is x_n .

Introduction to Infinite Series

An **infinite series** is a sequence of partial sums s_n , where s_n is formed from x_k as follows:

$$s_n = \sum_{k=1}^n x_k$$

alternatively,

$$s_1 = x_1$$
$$s_n = s_{n-1} + x_n$$

The limit of the sequence $(s_n)_n$ is the value of

$$\sum_{n=1}^{\infty} x_n$$

The infinite series converges to s if $(s_n)_n \to s$.

If $(s_n)_n$ diverges, then so too does the series. If $(s_n)_n$ is properly divergent to $\pm \infty$, then we write that the series is equal to $\pm \infty$.

Series of Positive Terms

Let $(x_k)_k$ be a sequence of positive terms. The following are equivalent:

- (a) $\sum x_k$ converges.
- (b) The sequence of partial sums $(s_n)_n$ is bounded above.
- (c) A subsequence of the sequence of partial sums $(s_{n_j})_j$ is bounded above.

Proof:

- (1) \Rightarrow (2): $\sum x_k$ is convergent \Rightarrow $(s_n)_n$ is convergent \Rightarrow $(s_n)_n$ is bounded.
- (2) \Rightarrow (3): If $(s_n)_n$ is bounded, so is any subsequence $(s_{n_i})_i$.
- (3) \Rightarrow (2): Suppose $s_{n_j} \leq c$. If m is arbitrary, $\exists j$ such that $n_j \geq m$. Take j = m. Then, $s_m \leq s_{n_j} \leq c$. Therefore, $(s_n)_n$ is bounded above.
- (2) \Rightarrow (1) Let $(s_n)_n$ be bounded above. We know that $(s_n)_n$ is increasing as $x_k \ge 0$. By the Monotone Convergence theorem, $(s_n)_n$ converges, meaning $\sum x_k$ converges.

Corollary to Series of Positive Terms

Let $(x_k)_k$ be a sequence with $x_k \ge 0$. Then,

$$\sum x_k$$
 properly diverges $\Leftrightarrow (s_n)_n$ is unbounded

Recall that for $x_k = 1/k$, we proved that $(s_n)_n$ is unbounded, and also that $(s_n)_n$ is not cauchy, meaning $\sum_{k=1}^{\infty} 1/k$ is properly divergent.

Additionally, we saw that for $x_k = 1/k^2$, $(s_n)_n$ is increasing and bounded above.

$$s_n = \sum_{k=1}^n \frac{1}{k^2}$$

$$\leq 1 + \sum_{k=2}^n \frac{1}{k(k-1)}$$

$$= 1 + \sum_{k=2}^n \frac{1}{k} - \frac{1}{k-1}$$

$$= 2 - \frac{1}{n}$$

Let $b \in \mathbb{R}$. Let $x_k = b^k$. Then, we have

$$s_n = \sum_{k=0}^{n} b^k$$

$$= \frac{1 - b^{n+1}}{1 - b}$$

$$b \neq 1$$

Therefore, we know the end behavior of the series:

$$\begin{split} \lim_{n \to \infty} s_n &= \lim_{n \to \infty} \frac{1 - b^{n+1}}{1 - b} \\ &= \frac{1}{1 - b} \left(1 - b \lim_{b \to \infty} b^n \right) \\ &= \begin{cases} \frac{1}{1 - b} & |b| < 1 \\ \text{diverges} & |b| > 1 \end{cases} \end{split}$$

Series Comparison Test

Let $0 \le x_k \le y_k$.

- If $\sum y_k$ converges, then so too does $\sum x_k$
- If $\sum x_k$ diverges, then so too does $\sum y_k$.

Proof:

 (\Rightarrow) If $\sum y_k$ converges, then $t_n = \sum_{k=1}^n y_k$ is bounded.

Setting $s_n = \sum_{k=1}^n x_k$, we see that $0 \le s_n \le t_n$. Seeing as t_n is bounded, so too is s_n . Therefore, $\sum x_k$ is convergent.

For example, consider the series

$$\sum \frac{1}{k^2 + k}$$

Since $\frac{1}{k^2} \geq \frac{1}{k^2+k}$, we know that, seeing as $\frac{1}{k^2}$ converges, so does $\frac{1}{k^2+k}$.

Limit Comparison Test

Let x_k and y_k be strictly positive sequences. Suppose that

$$\lim_{k\to\infty}\frac{x_k}{y_k}=L$$

- (a) If L > 0, then $\sum x_k$ converges if and only if $\sum y_k$ converges.
- (b) If L = 0, then $\sum y_k$ converges $\Rightarrow \sum x_k$ converges.

Proof:

(a) Since

$$\frac{x_k}{y_k} \to L$$

Set $\varepsilon = L$. We know $\exists K$ such that $k \geq K \Rightarrow y_k \leq \frac{2}{L}x_k$. Let $s_n = \sum_{k=1}^n x_k$ and $t_n = \sum_{k=1}^n y_k$. Then,

$$t_n = \sum_{k=1}^{K-1} y_k + \sum_{k=K}^n$$

$$\leq t_{K-1} + \frac{2}{L} \sum_{k=K}^n$$

$$\leq t_{K-1} + \frac{2}{L} s_n$$

$$\leq t_{K-1} + c,$$

implying that t_n is bounded, so $\sum y_k$ converges.

(b) Since

$$\frac{x_k}{y_k} \to 0$$
,

 $\exists \mathcal{K} \text{ such that } \frac{x_k}{y_k} \leq 1 \ \forall k \geq \mathcal{K}, \text{ meaning } x_k < y_k \ \forall k \geq \mathcal{K}.$

Letting $s_n = \sum_{k=1}^n x_k$ and $t_n = \sum_{k=1}^n y_k$. Thus,

$$s_n = \sum_{k=1}^{K-1} x_k + \sum_{k=K}^n x_k$$
$$= s_{K-1} + \sum_{k=K}^n y_k$$
$$\leq s_{K-1} + t_n$$
$$\leq s_{K-1} + c$$

Thus, s_n is bounded, meaning $\sum x_k$ is convergent.

Limit Comparison Test Examples

Consider

$$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2 - 1}}$$

Letting $x_n = \frac{1}{\sqrt{n^2-1}}$, and $y_n = \frac{1}{n}$, we have

$$\frac{x_n}{y_n} = \frac{n}{\sqrt{n^2 - 1}}$$

$$\to 1 > 0$$

Since $\sum y_n$ diverges, so too does $\sum x_n$.

*n*th Term Divergence Test

If $\sum x_k$ is convergent, then $(x_k)_k \to 0$. Conversely, if $(x_k)_k \not\to 0$, then $\sum x_k$ diverges. Recall that $s_n = s_{n-1} + x_n$. If $\sum x_k$ converges, then $(s_n)_n \to 0$. So,

$$x_n = s_n - s_{n-1}$$
$$(s_n)_n \to s$$
$$x_n \to s - s$$
$$= 0$$

For example, we can find that

$$\sum_{k=1}^{\infty} \frac{1}{\arctan k}$$

diverges, as $\lim_{k\to\infty} \frac{1}{\arctan k} = \frac{2}{\pi} \neq 0$

Cauchy Condensation Test

Let $(x_k)_k$ be a decreasing sequence of positive numbers. Then,

$$\sum_{k} x^{k}$$
 converges $\Leftrightarrow \sum_{k} 2^{k} x_{2^{k}}$ converges

Look at the partial sum s_{2^n} ,

$$S_{2^{n}} = \sum_{k=1}^{2^{n}} x_{k}$$

$$= x_{1} + (x_{2} + x_{3}) + (x_{4} + x_{5} + x_{6} + x_{7}) + (x_{8} + \dots + x_{1}5) + \dots + (x_{2^{n-1}} + \dots + x_{2^{n}-1}) + x_{2^{n}}$$

$$\leq x_{1} + 2x_{2} + 4x_{4} + \dots + 2^{n-1}x_{2^{n-1}} + x_{2^{n}}$$

$$= \sum_{k=1}^{n-1} 2^{k} x_{2^{k}} + x_{2^{n}}$$

If $\sum_k 2^k x_{2^k}$ converges, then its partial sums are bounded, and we have that $x_{2^n} \to 0$. Then, s_{2^n} is

bounded, and thus $\sum x_k$ converges.

$$2s_{2^{n}} = \sum_{k=1}^{2^{n}} x_{k}$$

$$= x_{1} + (x_{2} + x_{3}) + (x_{4} + x_{5} + x_{6} + x_{7}) + (x_{8} + \dots + x_{1}5) + \dots + (x_{2^{n-1}} + \dots + x_{2^{n}-1}) + x_{2^{n}}$$

$$+ x_{1} + (x_{2} + x_{3}) + (x_{4} + x_{5} + x_{6} + x_{7}) + (x_{8} + \dots + x_{1}5) + \dots + (x_{2^{n-1}} + \dots + x_{2^{n}-1}) + x_{2^{n}}$$

$$= (x_{1} + x_{1}) + (x_{2} + x_{2}) + (x_{3} + x_{3} + x_{4} + x_{4}) + \dots + (x_{2^{n-1}} + x_{2^{n-1}} + \dots + x_{2^{n}} + x_{2^{n}})$$

$$\geq x_{1} + 2x_{2} + 4x_{4} + \dots + 2^{n}x_{2^{n}}$$

$$= \sum_{k=0}^{n} 2^{k} x_{2^{k}}$$

therefore, we get that

$$\frac{1}{2} \sum_{k=0}^{n} 2^k a_{2^k} \le s_{2^n}$$

If $\sum_{k=0}^{n} x_k$ converges, then s_n is bounded, so s_{2^n} is bounded, so $\sum_{k=0}^{n} 2^k x_{2^k}$ is bounded, so the series $\sum_{k=0}^{n} 2^k x_{2^k}$ is convergent.

p-Series

Consider the series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \qquad p \in \mathbb{R}$$

By the Cauchy Condensation Test, we see that the series converges if and only if the following series converges:

$$\sum_{n=1}^{\infty} \frac{2^n}{2^{np}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{np-1}}\right)^n$$

$$\Leftrightarrow \frac{1}{2^{p-1}} < 1$$

$$\Leftrightarrow 2^{p-1} > 1$$

$$\Leftrightarrow p > 1$$

Uniform Convergence

Fix a nonempty set Ω . Then,

$$\mathcal{F}(\Omega, \mathbb{R}) = \{ f \mid f : \Omega \to \mathbb{R} \}$$

A sequence of functions $(f_n)_n \in \mathcal{F}(\Omega, \mathbb{R})$ converges pointwise to $f \in \mathcal{F}(\Omega, \mathbb{R})$ if

$$\forall x \in \Omega, \ (f_n(x))_n \xrightarrow{n \to \infty} f(x)$$

Pointwise Convergence ε Definition

$$\begin{split} (f_n)_n \to f \text{ pointwise } &\in \mathcal{F}(\Omega, \mathbb{R}) \\ \Leftrightarrow \\ (\forall x \in \Omega)(\forall \varepsilon > 0)(\exists N_{x,\varepsilon} \in \mathbb{N}) \ni n \geq N_{x,\varepsilon} \Rightarrow |f_n(x) - f(x)| < \varepsilon \end{split}$$

Pointwise Convergence Examples

Example 1: Let $f_n:[0,1]\to\mathbb{R}$, and $f_n(x)=x^n$. Note that $(f_n)_n\to\delta_1$, where

$$\delta_1(x) = \begin{cases} 0 & 0 \le x < 1 \\ 1 & x = 1 \end{cases}$$

Example 2: Let $f_n : \mathbb{R} \to \mathbb{R}$, where

$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$

Claim: $f_n \rightarrow o$.

If x = 0, then $f_n(0) = \mathbf{o} \ \forall n \ge 1$.

Otherwise, we have

$$|f_n(x) - \mathbf{o}(x)| = \frac{n|x|}{1 + n^2 x^2}$$

$$\leq \frac{n|x|}{n^2 x^2}$$

$$= \frac{1}{n|x|}$$

$$\to 0$$

Example 3: Let $h_n:[0,\infty)\to\mathbb{R}$, where $h_n(x)=x^{1/n}$. We claim that

$$h_n \to h$$

$$h(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \end{cases}$$

$$= 1_{(0,\infty)}$$

Since, for any b > 0, $(b^{1/n}) \to 1$

Example 4: Let $g_n:[0,\infty)\to\mathbb{R}$, where $g_n(x)=\frac{x^n}{1+x^n}$. We claim that $g_n\to g$, where $g:[0,\infty)\to\mathbb{R}$ defined as follows:

$$g(x) = \begin{cases} 0 & 0 \le x < 1 \\ \frac{1}{2} & x = 1 \\ 1 & x > 1 \end{cases}$$

When x > 1, we have

$$|g_n(x) - 1| = \left| \frac{x^n}{1 + x^n} - 1 \right|$$

$$= \left| \frac{-1}{1 + x^n} \right|$$

$$= \frac{1}{1 + x^n}$$

$$\to 0$$

Uniform Convergence

A sequence of functions $(f_n)_n \in \mathcal{F}(\Omega, \mathbb{R})$ converges uniformly to $f \in \mathcal{F}(\Omega, \mathbb{R})$ if

$$(\forall \varepsilon > 0)(\exists N_{\varepsilon} \in \mathbb{N}) \ni (n \ge N_{\varepsilon}) (\forall x \in \Omega) \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$

Equivalently,

$$(\forall \varepsilon > 0)(\exists N_{\varepsilon} \in \mathbb{N}) \ni n \geq N_{\varepsilon} \Rightarrow \sup_{x \in \Omega} |f_n(x) - f(x)| < \varepsilon.$$

Uniform Convergence Examples

Example 1: Let $f_n : [0, 4] \to \mathbb{R}$.

$$f_n(x) = \frac{x}{x+n}$$

We claim that

 $f_n \to \mathbf{o}$ uniformly.

We start by examining the maximum size of $f_n(x)$:

$$|f_n(x) - \mathbf{o}(x)| = \frac{x}{x+n}$$

$$\leq \frac{x}{n}$$

$$\leq \frac{4}{n}$$

SO,

$$\sup_{x\in[0,4]}|f_n(x)-\mathbf{o}(x)|\leq\frac{4}{n}.$$

Given $\varepsilon > 0$, find N so large such that $\frac{1}{N} < \frac{\varepsilon}{4}$. Then, for $n \ge N$,

$$\sup_{x \in \Omega} |f_n(x) - f(x)| \le \frac{4}{n}$$

$$\le \frac{4}{N}$$

$$< \varepsilon$$

Negating Uniform Convergence

$$(f_n)_n \nrightarrow f \text{ uniformly}$$

$$\Leftrightarrow$$

$$(\exists \varepsilon_0 > 0)(\forall N \in \mathbb{N}) \ni (\exists n_0 \ge N)(\exists x_0 \in \Omega) |f_{n_0}(x_0) - f(x_0)| \ge \varepsilon_0$$

$$\Leftrightarrow$$

$$(\exists \varepsilon_0 > 0)(\forall N)(\exists (x_k)_k \in \Omega)(\exists (f_{n_k})_k) \ni |f_{n_k}(x_k) - f(x_k)| \ge \varepsilon_0$$

(⇒) We know $\exists \varepsilon_0$ satisfying condition (1). Let N=1. We know $\exists n_1 \geq 1$ such that $\exists x_1 \in \Omega$ with $|f_{n_1}(x_1) - f(x_1)| \geq \varepsilon_0$.

Now, set $N = n_1 + 1$. Then, $\exists n_2 \ge N$ and $x_2 \in \Omega$ satisfying condition (1).

Defining n_k and x_k recursively, we have a natural sequence $(n_k)_k$, and thus a subsequence of f_n , thereby satisfying condition (2).

Uniform Convergence: Contingency on Domain

Does $(f_n)_n \to f$ uniformly converge on [0, 1], where $f_n(x) = x^n$, $f = \delta_1$?

Let
$$x_k = (\frac{1}{2})^k$$
, $n_k = k$.

$$|f_{n_k}(x_k) - f(x_k)| = |f_{n_k}(x_k)|$$
$$= \left(\frac{1}{2^{1/k}}\right)^k$$
$$= \frac{1}{2}$$

Setting $\varepsilon_0 = 1/2$, we have that it does *not* converge uniformly.

Recall $g_n:[0,\infty)\to\mathbb{R}$, where

$$g_n(x) = \frac{nx}{1 + n^2 x^2}$$

We saw that $(g_n)_n \to \mathbf{o}$ pointwise. However, it is *not* uniformly convergent. Take $x_k = \frac{1}{k}$, and $n_k = k$. Then,

$$|g_{n_k}(x_k) - \mathbf{o}(x_k)| = \frac{k \cdot \frac{1}{k}}{1 + k^2 \cdot \frac{1}{k^2}}$$
$$= 1/2$$
$$= \varepsilon_0.$$

However, $g_n \to g$ on $[a, \infty)$ where a > 0. Let $x \in [a, \infty)$

$$|g_n(x) - \mathbf{o}(x)| = \frac{nx}{1 + n^2 x^2}$$

$$\leq \frac{nx}{n^2 x^2}$$

$$= \frac{1}{nx}$$

$$\leq \frac{1}{na}$$

therefore,

$$\sup_{x \in [a,\infty)} |g_n(x) - \mathbf{o}(x)| \le \frac{1}{na}$$

Further Examining Pointwise and Uniform Convergence

Consider the family of functions

$$f_n:[0,\infty)\to\mathbb{R}$$

 $f_n(x)=e^{-nx}$

Upon examination, we can see that:

$$f_n \xrightarrow{\text{p.w.}} \delta_0 = \mathbb{1}_{\{0\}}.$$

However, the convergence is *not* uniform.

Let $(x_k)_k = \frac{1}{k}$ and $n_k = k$. Then, setting $\varepsilon_0 = e^{-1}$

$$|f_{n_k}(x_k) - \delta_0(x_k)| = \left| f_k \left(\frac{1}{k} \right) \right|$$

$$= e^{-1}$$

$$\geq \varepsilon_0$$

Uniform Norm

For $f \in \mathcal{F}(\Omega, \mathbb{R})$, the **uniform norm** or **infinity norm** is defined as:

$$||f||_u = \sup_{x \in \Omega} |f(x)|.$$

Importantly, the value of the uniform norm is dependent on Ω .

The uniform norm satisfies the rules we desire of any other norm:

- Scalar multiplication: $\forall t \in \mathbb{R}, \|tf\|_u = |t| \|f\|_u$
- Triangle Inequality: $||f + g||_u \le ||f||_u + ||g||_u$
- Zero Property: $||f||_u = 0 \Leftrightarrow f = \mathbf{o}_{\mathbb{R}}$
- Algebraic Property: $||fg||_u \le ||f||_u \cdot ||g||_u$.

$$\ell_{\infty}(\Omega) = \{ f \in \mathcal{F}(\Omega, \mathbb{R}) \mid ||f||_{\mathcal{U}} < \infty \}$$

is a normed vector space.

A Different Definition of Uniform Convergence

Given $(f_k)_k$, $f \in \ell_{\infty}(\Omega)$, we have

$$(f_k)_k \xrightarrow{\text{uniformly}} f \Leftrightarrow (\|f_k - f\|_u)_k \to 0$$

Applying The New Definition

Let

$$g_n: [0,1] \to \mathbb{R}$$

 $g_n(x) = x^n(1-x)$

Clearly, $(g_n)_n$ belongs to $\ell_{\infty}([0,1])$. We can see that

$$(g_n)_n \xrightarrow{\mathsf{p.w.}} \mathbf{o}$$

To show that the convergence is uniform, we must find

$$\|g_n-\mathbf{o}\|_u\xrightarrow{n\to\infty}\mathbf{o},$$

or

$$\sup_{x \in [0,1]} x^{n} (1-x) \to 0$$

$$\frac{d}{dx} (x^{n} (1-x)) = nx^{n-1} - (n+1)x^{n}$$

$$nx^{n-1} = (n+1)x^{n}$$

$$x = \frac{n}{n+1}$$

$$\sup_{x \in [0,1]} x^{n} (1-x) = \left(\frac{n}{n+1}\right)^{n} \left(1 - \frac{n}{n+1}\right)$$

$$= \frac{1}{(1+1/n)^{n}} \left(\frac{1}{n+1}\right)$$

$$\to 0$$

Root Test and Series Convergence

Let

$$\limsup_{k\to\infty} |x_k|^{1/k} = \rho.$$

If $\rho < 1$, then $\sum_k x_k$ converges absolutely. If $\rho > 1$, then $\sum_k x_k$ diverges.

Suppose $\rho < 1$. Let $\rho < r < 1$. By property of inf, $\exists N \in \mathbb{N}$ large such that $r \geq \sup_{k \geq N} |x_k|^{1/k}$.

Therefore, $\forall k \geq N$, we have

$$r^{k} \le r$$
 $x_k \le r^k$

 $\forall k \geq N$

Therefore,

$$\sum_{k} x^{k} \le \underbrace{\sum_{k=1}^{N-1} + \sum_{k \ge N} r^{k}}_{\text{converges: } r < 1}$$

If $\limsup |x_k|^{1/k} = \rho > 1$, we can find a subsequence $(x_{k_\ell})^{1/k_\ell} \xrightarrow{\ell \to \infty} \rho$. We cannot have $((x_k)_k)^{1/k} \to 0$. Thus, the series diverges.

Absolute Convergence

A series $\sum_k x_k$ converges absolutely if $\sum_k |x_k|$ converges. If a series converges absolutely, then it always converges.

Let $s_n = \sum_{k=1}^n x_k$, $t_n = \sum_{k=1}^n |x_k|$. Let m > n. Then,

$$|s_m - s_n| = \left| \sum_{k=n+1}^m x_k \right|$$

$$\leq \sum_{k=n+1}^m |x_k|$$
Triangle Inequality
$$= |t_m - t_n|$$

By assumption, $(t_n)_n$ converges, and thus is Cauchy. By the above inequality, $(s_n)_n$ is Cauchy, and thus convergent.

Series of Functions

Given a sequence of functions $(f_k)_k \in \mathcal{F}(\overline{\Omega, \mathbb{R}})$, we say that the series

$$\sum_{k} f_{k}$$

converges pointwise to f in $\mathcal{F}(\Omega, \mathbb{R})$ if

$$s_n = \left(\sum_{k=1}^n f_k\right)_n$$

converges to f pointwise.

$$\sum_{k=1}^{\infty} f_k(x) = f(x)$$

 $\forall x \in \Omega$

Pointwise Convergence of Series of Functions, Example

Let $f_k: (-1,1) \to \mathbb{R}$, where $f_k = x^k$. Then,

$$\sum_{k=0}^{\infty} f_k \to f(x) = \frac{1}{1-x}$$

Uniform Convergence of Series

 $\sum f_k$ converges to f uniformly if

$$s_n = \left(\sum_{k=1}^n f_k\right)_n$$

converges to f uniformly.

Uniform Convergence of Series

We know that $\sum_{k=0}^{\infty} x_k$ converges pointwise to $s(x) = \frac{1}{1-x}$ on (-1,1). Does it converge *uniformly* on the same interval?

Claim: The convergence is not uniform on (-1,1), but convergence is uniform on [a,b], where $-1 < a \le b < 1$.

Let $s_n(x) = \sum_{k=0}^n x^k$.

$$|s_n(x) - s(x)| = \left| \frac{1 - x^{n+1}}{1 - x} - \frac{1}{1 - x} \right|$$

= $\frac{|x|^{n+1}}{1 - x}$

Let $c = \max\{|a|, |b|\} < 1$

$$\leq \frac{c^{n+1}}{1-b}$$

$$\sup_{x \in [a,b]} |s_n(x) - s(x)| \leq \frac{c^{n+1}}{1-b}$$

$$\to 0$$

To show non-uniform convergence on (-1,1), let $x_{\ell}=1-\frac{1}{\ell}$, and let $n_{\ell}=\ell$.

$$|s_{n_{\ell}}(x_{\ell}) - s(x_{\ell})| = \frac{\left(1 - \frac{1}{\ell}\right)^{\ell+1}}{\frac{1}{\ell}}$$

$$= \ell \left(1 - \frac{1}{\ell}\right)^{\ell} \left(1 - \frac{1}{\ell}\right)$$

$$= (\ell - 1) \left(1 - \frac{1}{\ell}\right)^{\ell}$$

$$\to \infty$$

since $\left(1 - \frac{1}{\ell}\right)^{\ell} \to \frac{1}{e}$.

Weierstrass *M*-test

Consider a sequence of functions $(f_k)_k$ in $\ell_{\infty}(\Omega)$, where $\Omega \subseteq \mathbb{R}$.

If $\sum_{k=1}^{\infty} \|f\|_u$ converges, then $\sum_k f_k$ converges uniformly and absolutely on Ω .

Set $M_k = \|f_k\|_u$. Given $\varepsilon > 0$, $\exists N \in \mathbb{N}$ such that

$$\sum_{n+1}^{m} M_k < \varepsilon \qquad \forall m > n \ge N$$

since $\sum_{k=1}^{\infty} M_k$ is convergent, and thus Cauchy.

Let $s_n(x) = \sum_{k=1}^n f_k(x)$. So,

$$|s_n(x) - s_m(x)| = \left| \sum_{k=n+1}^m f_k(x) \right|$$

$$\leq \sum_{k=n+1}^m |f_k(x)|$$

$$\leq \sum_{k=n+1}^m M_k$$

$$< \varepsilon$$

whenever $m > n \ge N$

For every $x \in \Omega$, $s_n(x)$ is Cauchy. So, $\forall x \in \Omega$, $s(x) := \lim s_n(x)$ exists.

Additionally, $\forall x \in \Omega$,

$$|s_m(x)-s_n(x)|<\varepsilon.$$

Let $m \to \infty$. Then,

$$|s(x) - s_n(x)| < \varepsilon$$

$$\sup_{x \in \Omega} |s(x) - s_n(x)| < \varepsilon.$$

 $\forall x \in \Omega, \ \forall n \ge N$ $\forall n > N$

Weierstrass *M*-test Examples

Consider

$$\sum_{k=1}^{\infty} \frac{1}{x^2 + k^2},$$

where $f_k : \mathbb{R} \to \mathbb{R}$. Then, $||f_k||_u \leq \frac{1}{k^2}$. So,

$$\sum \|f_k\|_u \le \sum \frac{1}{k^2}$$

$$< \infty.$$

Thus, $\sum \frac{1}{x^2+k^2}$ converges absolutely and uniformly.

$$\sum_{k=0}^{\infty} \frac{x^k}{k!}$$

converges $\forall x \in \mathbb{R}$, and converges *uniformly* on any closed and bounded interval [a, b].

Power Series

A **power series** centered at c in \mathbb{R} is a formal series of functions

$$\sum_{k=0}^{\infty} a_k (x-c)^k.$$

We want to examine such things as the convergence and the uniformity of such convergence.

Given $\sum a_k(x-c)^k$, set $\rho = \limsup |a_k|^{1/k}$ and $r = 1/\rho$.

Cauchy-Hadamard Theorem

A power series

$$\sum_{k=1}^{\infty} a_k (x-c)^k$$

converges absolutely on (c-r,c+r), diverges on $\overline{[c-r,c+r]}$, and uniformly convergent on [a,b], $c-r < a \le b < c+r$.

Let
$$\sum_{k=1}^{\infty} a_k (x-c)^k$$
, where $x_k = a_k (x-c)^k$.

$$|x_k|^{1/k} = |a_k|^{1/k}|x - c|$$

Root test:

$$\limsup_{k \to \infty} |x_k|^{1/k} = |x - c| \limsup_{k \to \infty} |a_k|^{1/k}$$
$$= |x - c|\rho$$

Absolute Convergence:

$$|x - c|\rho < 1$$
$$|x - c| < \frac{1}{\rho}$$

Divergence:

$$|x - c|\rho > 1$$
$$|x - c| > \frac{1}{\rho}$$

Let $[a, b] \subset (c - r, c + r)$. Set $d = \max\{|a - c|, |b - c|\}$. So,

$$|s_{m}(x) - s_{n}(x)| = \left| \sum_{k=n+1}^{m} a_{k}(x - c)^{k} \right|$$

$$\leq \sum_{k=n+1}^{m} |a_{k}| |x - c|^{k}$$

$$\leq \sum_{k=n+1}^{m} |a_{k}| |d|^{k}$$

we know that $d < r \Rightarrow d/r < 1 \Rightarrow d\rho < 1 \Rightarrow \rho < 1/d$. Pick $\rho < \rho < 1/d$. So, $\exists N \in \mathbb{N}$ with

$$\sup_{k \ge N} |a_k|^{1/k} < p$$
$$|a_k| < p^k$$

So, if $m > n \ge N$, we have

$$|s_m(x)-s_n(x)|\leq \sum_{n+1}^m (rd)^k$$

$$\sup_{x \in [a,b]} |s_m(x) - s_n(x)| \le \sum_{n+1}^m (rd)^k$$

Given $\varepsilon > 0$, find $N_1 \in \mathbb{N}$ with $m > n \ge N_1$ meaning

$$\sup_{x \in [a,b]} |s_m(x) - s_n(x)| \le \sum_{n+1}^m (rd)^k$$

$$< \varepsilon$$

Let $K = \max\{N, N_1\}$. With $m > n \ge K$, we have

$$\sup_{x \in [a,b]} |s_m(x) - s_n(x)| < \varepsilon$$

Letting $m \to \infty$, we have

$$\sup_{x\in[a,b]}|s(x)-s_n(x)|<\varepsilon.$$

So, $(s_n(x))_n \to s(x)$ uniformly on [a, b].

Limit Points

Recall: If $c \in \mathbb{R}$, and $\delta > 0$, then $V_{\delta}(x) = (c - \delta, c + \delta)$.

The deleted neighborhood $\dot{V}_{\delta} = (c - \delta, c) \cup (c, c + \delta) = V_{\delta} \setminus \{c\}.$

(i)
$$x \in V_{\delta}(c) \Leftrightarrow |x - c| < \delta$$

(ii)
$$x \in \dot{V}_{\delta}(c) \Leftrightarrow 0 < |x - c| < \delta$$

Let $D \subseteq \mathbb{R}$. A number $c \in \mathbb{R}$ is a cluster point or limit point of D if

$$(\forall \delta > 0)(\exists x \in D \cap \dot{V}(c)) \Leftrightarrow \forall \delta > 0, \ \dot{V}(c) \cap D \neq \emptyset$$

Remarks If c is a limit point of D, c may or may not belong to D. If $c \in D$, then c is not necessarily a limit point.

Examples:

• Let D = (0, 1). Is c = 0 a limit point of D?

Yes — given any $\delta > 0$, $\dot{V}_{\delta}(0) \cap (0,1) = (0, \min(1.\delta))$. We have that [0,1] is the set of all limit points of D.

- Let $D = \mathbb{N}$. Then, D admits no limit points.
- Additionally, all finite sets have no limit points.

• If $D=\mathbb{Q}$, then the set of limit points of \mathbb{Q} is \mathbb{R} .

Given any $t \in \mathbb{R}$, $\delta > 0$,

$$\dot{V}_{\delta} \cap \mathbb{Q} \neq \emptyset$$

because $\mathbb Q$ is dense.

• If $D = \{\frac{1}{n} \mid n \ge 1\}$, then $\{0\}$ is the set of limit points of D.

Alternative Limit Point Definition

Let $D \subseteq \mathbb{R}$, $c \in \mathbb{R}$. The following are equivalent:

- (1) c is a limit point of D.
- (2) $\exists (x_n)_n \in D \setminus \{c\}$ with $(x_n)_n \to c$

(2) \Rightarrow (1) Let $\delta > 0$. Then, $\exists N \in \mathbb{N}$ such that $\forall n \geq N$, $0 < |x_n - c| < \delta$. Thus $x_N \in \dot{V}_{\delta}(c) \cap D$.

(1)
$$\Rightarrow$$
 (2) Let $\delta_n = \frac{1}{n}$. Then, $\exists x_n \in D \cap \dot{V}_{1/n}(c)$. So, $x_n \neq c$, $x_n \in D$, and $|x_n - c| < 1/n$. So, $(x_n)_n \to c$.

Definition of a Limit

Let $f: D \to \mathbb{R}$, and c a limit point of D. Let $L \in \mathbb{R}$.

$$\lim_{x\to c} f(x) = L \stackrel{\text{defn.}}{\longleftrightarrow} (\forall \varepsilon > 0) (\exists \delta > 0) \ni \forall x \in \dot{V}_{\delta}(c) \cap D, \ f(x) \in V_{\varepsilon}(L)$$

Limit Proof Examples

$$\lim_{x \to c} ax + b = ac + b$$

 $a \neq 0$

Preliminary Work:

$$|f(x) - L| = |ax + b - (ac + b)|$$
$$= |ax - ac|$$
$$= |a||x - c|$$

Proof: Given $\varepsilon > 0$, set $\delta = \frac{\varepsilon}{|a|}$.

$$0 < |x - c| < \delta$$

$$0 < |x - c| < \frac{\varepsilon}{|a|}$$

$$|f(x) - L| = |a||x - c|$$

$$< |a|\frac{\varepsilon}{|a|}$$

$$= \varepsilon$$

$$\lim_{x \to c} x^2 = c^2$$

Preliminary Work:

$$|f(x) - L| = |x^2 - c^2|$$

= $|x - c||x + c|$

If $0 < \delta < 1$, and $|x - c| < \delta$, then $|x + c| \le |x| + |c| \le 2|c| + 1$. In this case,

$$|f(x) - L| \le (2|c| + 1)|x - c|$$
.

Proof: Given $\varepsilon > 0$, let $\delta = \frac{1}{2} \min \left(1, \frac{\varepsilon}{2|c|+1} \right)$. This guarantees $\delta < 1$. So, if $|x - c| < \delta$,

$$|f(x) - L| \le (2|c| + 1)|x - c|$$

$$< (2|c| + 1)|x - c|$$

$$< (2|c| + 1)\frac{\varepsilon}{2|c| + 1}$$

$$= \varepsilon$$

$$\lim_{x \to c} \frac{1}{x} = \frac{1}{c} \qquad c \neq 0$$

Preliminary Work:

$$|f(x) - L| = \left| \frac{1}{x} - \frac{1}{c} \right|$$
$$= \frac{1}{|x|} \frac{1}{|c|} |x - c|$$

If $x \in \left(c - \frac{|c|}{2}, c + \frac{|c|}{2}\right)$, then $|x| \ge |c|/2$, so $\frac{1}{|x|} \le \frac{2}{|c|}$. So,

$$\frac{1}{|x|} \frac{1}{|c|} |x - c| \le \frac{2}{|c|^2} |x - c|$$

Proof: Given $\varepsilon > 0$, let $\delta = \frac{1}{2} \min \left(\frac{|c|}{2}, \frac{|c|^2}{2} \varepsilon \right)$. If

$$0 < |x - c| < \delta$$

$$|f(x) - L| \le \frac{2}{|c|^2} |x - c|$$

$$< \frac{2}{|c|^2} \frac{|c|^2}{2} \varepsilon$$

$$= \varepsilon$$

Uniqueness of Limits

Let $f: D \to \mathbb{R}$ with c a limit point of D. Then, f can have at most one limit.

Suppose toward contradiction that $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} f(x) = L_2$, where $L_1 \neq L_2$.

Let ε be small such that $V_{\varepsilon}(L_1) \cap V_{\varepsilon}(L_2) = \emptyset$. So, $\exists \delta_1 > 0$ such that

$$0 < |x - c| < \delta_1 \Rightarrow f(x) \in V_{\varepsilon}(L_1),$$

and $\exists \delta_2 > 0$ such that

$$0 < |x - c| < \delta_2 \Rightarrow f(x) \in V_{\varepsilon}(L_2).$$

Set $\delta = \min(\delta_1, \delta_2)$. Then,

$$0 < |x - c| < \delta \Rightarrow f(x) \in V_{\varepsilon}(L_1) \cap V_{\varepsilon}(L_2) = \emptyset$$

Sequential Definition of a Limit

Let $f: D \to \mathbb{R}$, c a cluster point of D. The following are equivalent:

- (i) $\lim_{x\to c} f = L$
- (ii) $\forall (x_n)_n \in D \setminus \{c\}$ where $(x_n)_n \to c$, we have $(f(x_n))_n \to L$
- (⇐) Assume $\lim_{x\to c} f(x) \neq L$. Then, $(\exists \varepsilon_0) (\forall \delta > 0) (\exists x \in \dot{V}(c) \cap D)$ with $|f(x) L| \geq \varepsilon_0$.

Let $\delta_n = \frac{1}{n}$. Then, $\exists x_n \in \dot{V}_{1/n}(c) \cap D$, with $|f(x_n) - L| \ge \varepsilon_0$.

Note that 0 < |x - c| < 1/n. So, $(x_n)_n \in D \setminus \{c\}$, and $(x_n)_n \to c$. By (ii), it must be the case that $(f(x_n))_n \to L$.

However, $|f(x_n) - L| \ge \varepsilon_0$. \perp

Divergence and Limit Non-Existence

Let $f: D \to \mathbb{R}$, and c a cluster point of D. Let $L \in \mathbb{R}$. The following are true:

- (1) $\lim_{x\to c} f(x) \neq L \Leftrightarrow \exists (x_n)_n \in D \setminus \{c\} \text{ with } (x_n)_n \to c \text{ but } f(x_n) \nrightarrow L$
- (2) $\lim_{x\to c} f(x)$ DNE $\Leftrightarrow \exists (x_n)_n \in D \setminus \{c\}$ with $(x_n)_n \to c$ and $(f(x_n))_n$ divergent.
- (1) This is a direct negation of the Sequential Definition.
- (2)
- (⇒) Suppose toward contradiction, $\forall (x_n)_n \in D \setminus \{c\}$ with $(x_n)_n \to c$, we have $(f(x_n))_n$ is convergent.

Pick any two such sequences, $(x_n)_n$ and $(y_n)_n$. We know $(f(x_n))_n \to L_1$, and $(f(y_n))_n \to L_2$.

Consider $(z_n)_n = (x_1, y_1, x_2, y_2, \dots)$. We know that $(z_n)_n \to c$, meaning $(f(z_n))_n \to M$.

The sequence $(f(z_n))_n$ admits two subsequences $(f(x_n))_n \to M$ and $(f(x_n))_n \to M$. Thus, $L_1 = L_2$.

We showed that, for any sequence $(x_n)_n \to c$, $(f(x_n))_n \to L$. Thus, $\lim_{x \to c} f(x)$ exists. \perp

Limit Divergence using Sequences

We want to find $\lim_{x\to c} \mathbb{1}_{\mathbb{Q}}$. Consider two sequences $(r_n)_n \to c$, where $r_n \in \mathbb{Q}$ — this is always possible since the rationals are dense — and $(t_n)_n \to c$, where $t_n \notin \mathbb{Q}$.

Let $(x_n)_n = (r_1, t_1, r_2, t_2, ...)$. Then, $(x_n) \to c$, but $(\mathbb{1}_{\mathbb{Q}}(x_n))_n = (1, 0, 1, 0, ...)$. Thus, $\lim_{x \to c} \mathbb{1}_{\mathbb{Q}}$ DNE.

Bounded Functions

Recall that $f: D \to \mathbb{R}$ is bounded on $E \subseteq D$ if $\sup_{x \in E} |f(x)| < \infty$.

If $f: D \to \mathbb{R}$ and c is a cluster point of D, if $\lim_{x \to c} f(x) = L$, then $\exists \delta > 0$ such that f is bounded on $\dot{V}_{\delta}(c) \cap D$.

Let $\varepsilon=1$. Then, $\exists \delta>0$ such that $x\in \dot{V}_{\delta}(c)\cap D\Rightarrow |f(x)-L|<1$. Then,

$$|f(x)| = |f(x) - L + L|$$

 $\leq |f(x) - L| + |L|$
 $< 1 + |L|,$

SO,

$$\sup_{x \in \dot{V}_{\delta}(c)} |f(x)| \le 1 + |L|$$

Operations with Limits

Let $f, g: D \to \mathbb{R}$, and c is a cluster point of D. Let $\alpha \in \mathbb{R}$.

- (a) If $\lim_{x\to c} f(x) = L$, and $\lim_{x\to c} g(x) = M$, then
 - (i) $\lim_{x\to c} (f\pm g) = L\pm M$
 - (ii) $\lim_{x\to c} (\alpha f) = \alpha L$
 - (iii) $\lim_{x\to c} (fg) = LM$
 - (iv) $\lim_{x\to c} \left(\frac{f}{g}\right) = \frac{L}{M}$ if $M \neq 0$
- (b) $\lim_{x \to c} |f(x)| = |L|$
- (c) $\lim_{x\to c} \sqrt{f(x)} = \sqrt{L}$, provided $f(x) \ge 0$
- (d) If f(x) is a polynomial, then $\lim_{x\to c} f(x) = f(c)$.
- (e) If f(x) is rational, then $\lim_{x\to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}$, provided $q(c) \neq 0$.

Proof of (a)(iii): Let $(x_n)_n \in D \setminus \{c\}$ with $(x_n)_n \to c$. Then, $(f(x_n))_n \to L$, $(g(x_n))_n \to M$. Then,

$$(f \cdot g(x_n)) = (f(x_n)g(x_n))_n$$

 $\to LM$ by sequence properties

Proof of (a)(iv): Let $(x_n)_n \in D \setminus \{c\}$ with $(x_n)_n \to c$. Then, by the properties of sequences,

$$\left(\frac{f}{g}(x_n)\right) = \left(\frac{f(x_n)}{g(x_n)}\right)_n$$

$$\to \frac{L}{M}$$

provided $M \neq 0$

Proof of (d): Let $p(x) = \sum_{k=0}^{n} a_k x^k$. Then,

$$\lim_{x \to c} p(x) = \lim_{x \to c} \left(\sum_{k=0}^{n} a_k x^k \right)$$

$$= \sum_{k=0}^{n} \lim_{x \to c} a_k x^k$$

$$= \sum_{k=0}^{n} a_k \lim_{x \to c} x^k$$
(a)(i)

$$= \sum_{k=0}^{n} a_k \left(\lim_{x \to c} x \right)^k$$

$$= p(c)$$
(a)(i)

Proof of (b) Using the properties of sequence, we can show that $(|f(x_n)|)_n \to |L|$ for $(x_n)_n \in D \setminus \{c\}$ with $(x_n)_n \to c$

Squeeze Theorem

If $f: D \to \mathbb{R}$, c is a cluster point of D.

- (i) If $f(x) \le b$ for x in a deleted neighborhood of c, and if $\lim_{x\to c} f(x) = L$, then $L \le b$.
- (ii) If $f(x) \ge a$ for all x in a deleted neighborhood of c, and if $\lim_{x \to c} f(x) = L$, then $L \ge a$.
- (iii) If $f, g, h: D \to \mathbb{R}$, and c is a cluster point of D. Suppose

$$g(x) \le f(x) \le h(x)$$

for all x in some deleted neighborhood of c. Suppose $\lim_{x\to c} g(x) = \lim_{x\to c} h(x) = L$. Then, $\lim_{x\to c} f(x) = L$.

Proof of (iii) Let $(x_n)_n \in D \setminus \{c\}$, with $(x_n)_n \to c$. Then, as $n \to \infty$,

$$g(x_n) \le f(x_n) \le h(x_n)$$

 $L \le f(x_n) \le L$,

so $f(x_n)_n \to L$.

We know that

$$0 \le \sin(x) \le x$$

so as $x \to 0^+$, $\sin(x) \to 0$. Similarly, if $x \to 0^-$, then

$$\lim_{x \to 0^{-}} \sin(x) = \lim_{y \to 0^{+}} \sin(-y)$$
$$= -\lim_{y \to 0^{+}} \sin(y)$$
$$= 0$$

and

$$\lim_{x \to 0^{+}} \cos(x) = \lim_{x \to 0^{+}} \sqrt{1 - \sin^{2}(x)}$$

$$= 1$$

$$\lim_{x \to 0^{-}} \cos(x) = \lim_{y \to 0^{+}} \cos(-y)$$

$$= \lim_{y \to 0^{+}} \cos(y)$$

$$= 1$$

Claim:

$$\lim_{x\to 0}\frac{\sin(x)}{x}=1$$

Proof: Let $x \to 0$

$$\frac{\sin(x)}{2} \le \frac{x}{2} \le \frac{\tan(x)}{2}$$

$$0 \le \frac{\sin(x)}{x} \le 1$$

$$\cos(x) \le \frac{\sin(x)}{x}$$

$$\cos(x) \le \frac{\sin(x)}{x} \le 1$$

$$1 \le \frac{\sin(x)}{x} \le 1$$

Strictly Positive Limits

Let $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$. Let c be a cluster point of D. If $\lim_{x \to c} f(x) = L > 0$, then $\exists \delta > 0$ and $\exists t > 0$ such that f(x) > t for $x \in \dot{V}_{\delta}(c) \cap D$.

Let $\varepsilon = \frac{L}{2}$. Then, $V_{\varepsilon} = (L/2, 3L/2)$. So, $\exists \delta > 0$ such that $x \in \dot{V}_{\delta}(c) \Rightarrow f(x) \in V_{\varepsilon}(L)$. Set t = L/2.

One-Sided Limits

Let $f: D \to \mathbb{R}$.

Cluster Points:

- (i) A number $c \in D$ is a right cluster point if $\forall \delta > 0$, $\exists x \in (c, c + \delta) \cap D$
- (ii) A number $c \in D$ is a left cluster point if $\forall \delta > 0$, $\exists x \in (c \delta, c) \cap D$.

Limits:

(i)
$$\lim_{x \to c^+} f(x) = L \iff$$

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni x \in (c, c + \delta) \cap D \Rightarrow f(x) \in V_{\varepsilon}(L)$$

(ii)
$$\lim_{x \to c^{-}} f(x) = L \iff$$

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni x \in (c - \delta, c) \cap D \Rightarrow f(x) \in V_{\varepsilon}(L)$$

Sequential Definition:

- (i) Let c be a right cluster point of D. $\lim_{x\to c^+} f(x) = L$ if and only if $\forall (x_n)_n \in D \cap (c, \infty)$ with $(x_n)_n \to c$, we have $(f(x_n))_n \to L$
- (ii) Let c be a left cluster point of D. $\lim_{x\to c^-} f(x) = L$ if and only if $\forall (x_n)_n \in (-\infty,c) \cap D$ with $(x_n)_n \to c$, we have $(f(x_n))_n \to L$.

Limit Equality

Let $f: D \to \mathbb{R}$. Let c be a cluster point of D.

$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$$

Infinite Limits

Let $f: D \to \mathbb{R}$, and c be a limit point of D. Then,

$$\lim_{x \to c} f(x) = \infty \stackrel{\text{def}}{\Longleftrightarrow} (\forall M \ge 0) (\exists \delta > 0) \ni x \in \dot{V}_{\delta}(c) \cap D \Rightarrow f(x) \ge M$$

We can also define

$$\lim_{x \to c} f(x) = -\infty$$
$$\lim_{x \to c^{\pm}} f(x) = \pm \infty$$

Infinite Limits, Example

$$\lim_{x\to 1^-}\frac{1}{1-x}=-\infty$$

Proof: Let $M \ge 0$ be large. We want $f(x) \ge M$.

$$\frac{1}{1-x} \ge M$$

$$1-x \le \frac{1}{M}$$

$$x \ge 1 - \frac{1}{M}$$

Set $\delta = \frac{1}{M}$. If $x \in (1 - \delta, 1)$, then $x \ge 1 - \frac{1}{M}$. So, by our work above, $f(x) \ge M$.

Limits at Infinity

Let $f:[a,\infty)\to\mathbb{R},\ L\in\mathbb{R}$. Then,

$$\lim_{x \to \infty} f(x) = L \stackrel{\text{def}}{\Longleftrightarrow} (\forall \varepsilon > 0) (\exists K \ge a) \ni x \ge K \Rightarrow f(x) \in V_{\varepsilon}(L)$$

Similarly, we can define for $f:(-\infty,b]\to\mathbb{R},\ L\in\mathbb{R}$

$$\lim_{x \to -\infty} f(x) = L \stackrel{\text{def}}{\longleftrightarrow} (\forall \varepsilon > 0) (\exists K \le b) \ni x \le K \Rightarrow f(x) \in V_{\varepsilon}(L)$$

and for $f:[a,\infty)$ where

$$\lim_{x \to \infty} f(x) = \infty \stackrel{\text{def}}{\Longleftrightarrow} (\forall M \ge 0)(\exists K \ge a) \ni x \ge K \Rightarrow f(x) \ge M$$

and the respective sequential definitions.

Limits at Infinity, Example

Let $n \in \mathbb{N}$.

$$\lim_{x \to \infty} x^n = \infty$$

Proof: Let M be large. We want $x^n \ge M$. Then, $x \ge M^{1/n}$. Set $K = M^{1/n}$.

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty, & n = 2k \\ -\infty, & n = 2k+1 \end{cases}$$

$$p(x) = \sum_{k=1}^{n} a_k x^k$$

$$\lim_{x \to \infty} p(x) = \begin{cases} +\infty, & a_n > 0 \\ -\infty & a_n < 0 \end{cases}$$

Let $g(x) = x^n$.

$$\frac{p(x)}{g(x)} = a_n + a_{n-1} \frac{1}{x} + \dots + a_0 \frac{1}{x^n}$$

$$\lim_{x \to \infty} \frac{p(x)}{g(x)} = a_n$$

Lemma

If $f, g : [a, \infty) \to \mathbb{R}$, and g(x) > 0. If

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \neq 0$$

- (1) If L > 0, then $\lim_{x \to \infty} f(x) = \infty \Leftrightarrow \lim_{x \to \infty} g(x) = \infty$
- (2) If L < 0, then $\lim_{x \to \infty} f(x) = -\infty \Leftrightarrow \lim_{x \to \infty} g(x) = +\infty$

Apply the lemma to p(x), x^n .

Continuity

Let $D \subseteq \mathbb{R}$, $f: D \to \mathbb{R}$. Let $c \in D$. The function f is continuous at c if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni x \in V_{\delta}(c) \cap D \Rightarrow f(x) \in V_{\varepsilon}(f(c))$$

Remark: Here, c may not be a cluster point of D.

For example, let

$$f(x) = \begin{cases} x & x = -1\\ x^2 & x \ge 0 \end{cases}$$
$$D = \{-1\} \cup [0, \infty)$$

Here, f is continuous at c=-1. Given any $\varepsilon>0$, let $\delta=1/2$. Then, if $x\in V_{1/2}(-1)\cap D$, x=-1, meaning $|f(x)-f(-1)|=0<\varepsilon$

Continuity and Limits

If $f: D \to \mathbb{R}$, $c \in D$ and c a cluster point of D, the following are equivalent:

- (i) f is continuous at c
- (ii) $\lim_{x\to c} f(x) = f(c)$

Remark: We are deign to use the second definition as *the* definition of continuity due to the fact that it removes the possibility of those mentioned above.

Sequential Definition of Continuity

Let $f: D \to \mathbb{R}$, $c \in D$. The following are equivalent:

- (i) f is continuous at x = c
- (ii) $\forall (x_n)_n \text{ in } D \text{ with } (x_n)_n \to c, \text{ we have } (f(x_n))_n \to f(c)$

Left and Right Continuity

Let $f: D \to \mathbb{R}$, $c \in D$.

• f is left-continuous if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni 0 \le c - x < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$$

$$\forall (x_n)_n \in D, \ x_n \le c, \ (x_n)_n \to c \text{ we have } (f(x_n))_n \to f(c)$$

Continuity on Sets

Let $f: D \to \mathbb{R}$.

- (1) f is continuous on $E \subseteq D$ if f is continuous at each $c \in E$.
- (2) f is continuous on [a, b] if
 - (i) f is continuous on (a, b)
 - (ii) f is left-continuous at b
 - (iii) f is right-continuous at a
- (1) Polynomials are continuous on \mathbb{R} because $\lim_{x\to c} p(x) = p(c)$.
- (2) Rational functions are continuous on their domain.
- (3) $f: \mathbb{1}_{\mathbb{Q}}$ is continuous nowhere:

Case 1: Suppose $c \in \mathbb{Q}$. Let $(t_n)_n \to c$ with $t_n \in \mathbb{R} \setminus \mathbb{Q}$. Then, $(f(t_n))_n = 0 \to 0 \neq f(c) = 1$

Case 2: Let $c \in \mathbb{R} \setminus \mathbb{Q}$. Let $(r_n)_n \to c$ with $r_n \in \mathbb{Q}$. Then, $(f(r_n))_n = 1 \to 1 \neq f(c) = 0$

Discontinuity

 $f: D \to \mathbb{R}$ is not continuous at x = c if $\exists (x_n)_n \text{ in } D \text{ with } (x_n)_n \to c$ and $(f(x_n))_n \nrightarrow f(c)$

Discontinuity of the Sign Function

$$sgn(x) = \begin{cases} \frac{|x|}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

is not continuous at x = 0, since $(x_n)_n = \frac{1}{n} \to 0$ but $(f(x_n))_n = 1 \neq 0$.

Thomae's Function

Let

$$f(x) = \begin{cases} 0 & x \notin \mathbb{Q} \\ \frac{1}{b} & x = \frac{a}{b} \in \mathbb{Q}, \ b \in \mathbb{N}, \ \gcd(a, b) = 1 \\ 1 & x = 0 \end{cases}$$

Claim 1: f is not continuous at $x \in \mathbb{Q}$: find a sequence $(t_n)_n$ of irrationals with $(t_n)_n \to x$. Then, $(f(t_n))_n = 0 \neq f(x) = \frac{1}{h}$

Claim 2: f is continuous at $t \in \mathbb{R} \setminus \mathbb{Q}$: let $t \in \mathbb{R} \setminus \mathbb{Q}$, t > 0. Let $n \in \mathbb{N}$. Consider

$$A_n = \left\{ \frac{a}{b} \mid 1 \le b \le n \right\} \cap (t-1, t+1).$$

We claim that A_n is finite.

$$t-1 < \frac{a}{b} < t+1$$

 $b(t-1) < a < b(t+1)$
 $t-1 < a < n(t+1)$,

so there are finitely many values of a and finitely many values of b — therefore, A_n is finite. One can find $\delta > 0$ such that $(t - \delta, t + \delta) \cap A_n = \emptyset$

Given $\varepsilon > 0$, find $n_0 \in \mathbb{N}$ with $\frac{1}{n_0} < \varepsilon$. Let δ be such that $(t - \delta, t + \delta) \cap A_{n_0} = \emptyset$. If $x \in (t - \delta, t + \delta)$,

$$|f(x) - f(t)| = |f(x)|$$

$$= \begin{cases} 0 & x \notin \mathbb{Q} \\ \frac{1}{b} & x = \frac{a}{b} \text{ lowest terms} \end{cases}$$

but $\frac{1}{b} < \varepsilon$ because $x \notin A_{n_0}$, meaning $b > n_0$.

Extension of Function

Consider

$$g(x) = \sin\left(\frac{1}{x}\right) \qquad \qquad x \neq 0$$

Assuming that g is continuous on its domain, can we find a $\tilde{g}: \mathbb{R} \to \mathbb{R}$ such that

$$\tilde{g}(x) = g(x)$$
 $\forall x \in \mathbb{R} \setminus \{0\}$

If such a \tilde{g} existed, we would expect that $\lim_{x\to 0} \tilde{g}(x) = \tilde{g}(0)$. But, $\lim_{x\to 0} \tilde{g}(x) = \lim_{x\to 0} g(x)$.

However, since $\lim_{x\to 0} g(x)$ DNE, so such an extension does not exist.

Therefore, x = 0 is known as a non-removable discontinuity (i.e., we cannot create an extension of the function that "fills in" the function).

However, not all discontinuities involving sin(1/x) are non-extendible:

$$f(x) = x \sin\left(\frac{1}{x}\right)$$
$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

Jump Discontinuities

Suppose $\lim_{x\to c^-} f(x) = L$, $\lim_{x\to c^+} f(x) = R$. If $L \neq R$, then x=c is a jump discontinuity.

Lipschitz Functions

A function $f: D \to \mathbb{R}$ is called Lipschitz if $\exists c \geq 0$ with

$$|f(x) - f(y)| \le c|x - y|$$
 $\forall x, y \in D$

The linear function f(x) = ax + b is a Lipschitz function. Additionally, if $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear, then $\|T(\vec{v}) - T(\vec{w})\| \le c\|\vec{v} - \vec{w}\|$ for any norm on \mathbb{R}^n and \mathbb{R}^m .

- If c < 1, then f is a contraction.
- If c = 1 and |f(x) f(y)| = |x y|, f is called an isometry.

Lipschitz functions are on their domain:

Proof: Let $c \in D$, let $\varepsilon > 0$. Set $\delta = \varepsilon/c$.

$$|x - c| < \delta$$

$$|f(x) - f(c)| \le c|x - c|$$

$$|f(x) - f(c)| < c\delta$$

$$= \varepsilon$$

If $f(x) = \sin(x)$, then

$$|\sin(x) - \sin(y)| = \left| 2\sin\left(\frac{1}{2}(x - y)\right) \cos\left(\frac{1}{2}(x + y)\right) \right|$$

$$\leq 2\frac{1}{2}|x - y|$$

$$= |x - y|$$

Equality over a Dense Subset

Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous. Let $E \subseteq \mathbb{R}$. If $f(x) = g(x) \ \forall x \in E$, then f = g.

Let $t \in \mathbb{R}$. Since E is dense, $\exists (x_n)_n \in E$ such that $(x_n)_n \to t$. So, $(f(x_n))_n \to t$ because f is continuous, and $(g(x_n))_n \to g(t)$ because g is continuous.

However, since $f(x_n) = g(x_n) \ \forall x_n$, it must be the case that f(t) = g(t).

Boundedness over a Dense Subset

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Suppose $f|_E$ is bounded. That is, $\exists c$ such that

$$|f(x)| < c$$
.

 $\forall x \in E$

Then, f is bounded.

Let $t \in \mathbb{R}$. Since E is dense, $\exists (x_n)_n \in E$ such that $(f(x_n))_n \to t$. Then,

$$|f(x_n)_n| \leq c$$
,

meaning that f(t) < c.

Strictly Positive Continuity

If f is continuous at x = c and f(c) > 0, then $\exists \delta > 0$ and $\exists m > 0$ with $f(x) \leq m \ \forall x \in V_{\delta}(c)$. Similarly for the negative case.

Let $\varepsilon = f(c)/2 > 0$. Then, $\exists \delta > 0$ such that $\forall x \in V_{\delta}(c)$, $f(x) \in V_{\varepsilon}(f(c)) = (f(c)/2, 3f(c)/2)$. Set m = f(c)/2.

Continuity Under Operations

Let $f, g: D \to \mathbb{R}, c \in D$.

- (1) If f, g are continuous at x = c, then $f \pm g$ are continuous at x = c. Similarly, if f, g are continuous on D, then $f \pm g$ is continuous on D.
- (2) Let $\alpha \in \mathbb{R}$. If f is continuous at x = c or on D, then αf is continuous at x = c or D respectively.
- (3) If f, g are continuous at x = c or on D, then $f \cdot g$ is continuous on x = c or D respectively.
- (4) If f,g are continuous at x=c, and $g(c)\neq 0$, then $\frac{f}{g}$ is continuous at c. Likewise, if f,g are continuous on D and $g(x)\neq 0 \ \forall x\in D$, then $\frac{f}{g}$ is continuous.
- (5) If g is continuous at x = c and f is continuous at d = g(c), then $f \circ g$ is continuous at x = c. If $ran(g) \subseteq dom(f)$, with f, g continuous on their domain, then $f \circ g$ is continuous.

Remark on (4): If $g(c) \neq 0$, then $g \neq 0$ on a δ -neighborhood of c.

Proof of (5): Let $(x_n)_n \to c$. Then, $g(x_n)_n \to g(c)$. So, $(f(g(x_n)))_n \to f(g(c))$.

Further Operations

- (1) If $f: D \to \mathbb{R}$ is continuous, and $f(x) \ge 0$ on D, then $\sqrt{f(x)}$ is continuous on D.
- (2) If $f: D \to \mathbb{R}$ is continuous on D, then |f(x)| is continuous.
- (3) Polynomials and Rational functions are continuous on their domain.
- (4) If f(x), g(x) are continuous, then $h(x) = \max(f(x), g(x))$ and $k(x) = \min(f(x), g(x))$.

Fundamental Theorem of Continuous Functions on [a, b]

Boundedness Theorem: If $f:[a,b]\to\mathbb{R}$ is continuous, then $||f||_u<\infty$.

Proof: Suppose it is not the case. Given any $n \ge 1$, $\exists x_n \in [a, b]$ with $|f(x_n)| \le n$. We thus have a sequence $(x_n)_n \in [a, b]$.

By Bolzano-Weierstrass, $\exists (x_{n_k})_k \to x \in [a,b]$. So, $f(x_{n_k}) \to f(x)$. In particular, $(f(x_{n_k}))_k$ is bounded; however, $f(x_{n_k}) \ge k$. \bot

Note: It is possible for f to be bounded on an infinite interval where it does not attain the supremum or infimum.

Let $f: D \to \mathbb{R}$.

- (1) f has an absolute maximum on D if $\exists x_M \in D$ with $f(x) \leq f(x_M) \ \forall x \in D$. Notably, this means $\sup_{x \in D} f(x) = f(x_M)$.
- (2) f has an absolute minimum on D if $\exists x_m \in D$ with $f(x_m) \leq f(x) \ \forall x \in D$. Notably, this means $\inf_{x \in D} f(x) = f(x_m)$.

Extreme Value Theorem (EVT): If $f : [a, b] \to \mathbb{R}$ is continuous, then f admits an absolute minimum and absolute maximum.

Proof: We know that $\sup_{x \in [a,b]} f(x) = u < \infty$ by the boundedness theorem. For each $n \in \mathbb{N}$, $\exists x_n \in [a,b]$ such that

$$u - \frac{1}{n} < f(x_n) \le u.$$

Thus, there is a sequence $(x_n)_n \in [a, b]$ — by Bolzano-Weierstrass, $\exists (x_{n_k})_k \to x^*$ for some $x^* \in [a, b]$. So, for each k,

$$u - \frac{1}{n_k} < f(x_{n_k}) \le u$$

$$u < f(x^*) \le u.$$
 since f is continuous

So, by the squeeze theorem, $f(x^*) = u$ is our absolute max.

Corollary to the Extreme Value Theorem: If $f:[a,b]\to\mathbb{R}$ is continuous with $f(x)>0\ \forall x\in[a,b]$, then $\exists \alpha>0$ such that $f(x)\geq\alpha\ \forall x\in[a,b]$.

Proof: By the previous theorem, we know $\exists x_m \in [a, b]$ such that $f(x) \ge f(x_m) \ \forall x \in [a, b]$. But $\alpha := f(x_m) > 0$ by definition.

Location of Roots: We will use this to prove the Intermediate Value Theorem. Let $f:[a,b]\to\mathbb{R}$ be continuous, Suppose f(a)<0 and f(b)>0, or f(a)>0 and f(b)<0. Then, $\exists c\in(a,b)$ such that f(c)=0.

Proof: Assume f(a) < 0 and f(b) > 0. Let $N = \{x \in [a, b] \mid f(x) \ge 0\}$. Since $b \in N$, $N \ne \emptyset$. Let $z = \inf N$. We claim that f(z) = 0.

We know that $\exists (x_n)_n \in N$ with $x_n \to z$. Since $(x_n)_n \in N$, $f(x_n) \ge 0 \ \forall n \ge 1$. However, $f(x_n) \to f(z)$ since f is continuous. So, $f(z) \ge 0$.

Suppose toward contradiction that f(z) > 0. So, $\exists \delta > 0$ such that $f(x) \ge \frac{f(z)}{2}$ on $(z - \delta, z + \delta)$. Then, $z - \frac{\delta}{2} \in \mathcal{N}$. \bot

Intermediate Value Theorem (IVT): Let $f: I \to \mathbb{R}$, where I is any interval. Suppose $\exists x_1, x_2 \in I$ and $k \in \mathbb{R}$, with $f(x_1) < k < f(x_2)$. Then, $\exists \xi$ strictly between x_1 and x_2 , with $f(\xi) = k$.

Proof: Clearly, $x_1 \neq x_2$. Suppose $x_1 < x_2$. Consider $g: [x_1, x_2] \to \mathbb{R}$, g(x) = f(x) - k. So, g is continuous (as f is continuous), and $g(x_1) = f(x_1) - k < 0$, and $g(x_2) = f(x_2) - k > 0$. Thus, $\exists \xi \in [x_1, x_2]$ with $g(\xi) = 0$, whence $f(\xi) = k$.

Corollary to IVT and EVT: Let $f:[a,b]\to\mathbb{R}$ be continuous. If $\inf_{[a,b]}f\leq k\leq\sup_{[a,b]}f$, then $\exists c\in[a,b]$ with f(c)=k.

Proof: We know that by EVT, $\exists x_m, x_M$ with $\inf_{[a,b]} f = f(x_m)$ and $\sup_{[a,b]} f = f(x_M)$. So, $f(x_m) \le k \le f(x_M)$. Apply IVT.

Preservation of Intervals 1: If $f:[a,b] \to \mathbb{R}$ is continuous, then f([a,b]) = [c,d].

Proof: Set $c = \inf_{[a,b]} f$ and $d = \inf_{[c,d]} f$. By definition, $c \le f(x) \le d$, meaning $f([a,b]) \subseteq [c,d]$. By the previous corollary, if $k \in [c,d]$, then $\exists \xi \in [a,b]$ with $f(\xi) = k$. Thus, $[c,d] \subseteq f([a,b])$.

Preservation of Intervals 2: Let I be any interval, and $f: I \to \mathbb{R}$ continuous. Then, f(I) is an interval.

Proof: Let $\alpha, \beta \in f(I)$. WLOG, $\alpha < \beta$. We will show that $[\alpha, \beta] \in f(I)$. Say $f(a) = \alpha$ and $f(b) = \beta$ for some $a, b \in I$. Note that $a \neq b$. Let $\alpha < k < \beta$. By IVT, $\exists \xi$ strictly between a and b with $f(\xi) = k$. If a < b, then $[a, b] \subseteq I$, and if b < a, then $[b, a] \subseteq I$. Thus, $\xi \in I$.

Uniform Continuity

A function $f: D \to \mathbb{R}$ is **uniformly continuous** on D if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni u, v \in D, |u - v| < \delta \Rightarrow |f(u) - f(v)| < \varepsilon$$

Uniform continuity is different from continuity in that f is continuous at a point x = c if

$$(\forall \varepsilon > 0)(\exists \delta > 0) \ni |x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon.$$

In (non-uniform) continuity, $\delta = \delta(\varepsilon, c)$.

For example, if $f(x) = \frac{1}{x}$ and $D = (0, \infty)$, we will show that f is continuous at x = c > 0.

$$|f(x) - f(c)| = \left| \frac{1}{x} - \frac{1}{c} \right|$$
$$= \frac{1}{c} \frac{1}{x} |x - c|$$

if $0 < \delta < c/2$ and $|x - c| < \delta$, then $x \ge c/2$. Thus,

$$|f(x) - f(c)| = \frac{1}{c} \frac{2}{c} |x - c|$$

= $\frac{2}{c^2} |x - c|$.

Given $\varepsilon>0$, pick $\delta=\frac{1}{2}\min\left(\frac{c}{2},\frac{2}{c^2}\varepsilon\right)$. Thus, if $|x-c|<\delta$, then $|f(x)-f(c)|<\varepsilon$

Specifically, we can see that on this domain, we require that δ be a function of ε and c.

However, if we look at $f(x) = \frac{1}{x}$ on $[1, \infty)$, we can see that for $u, v \ge 1$,

$$|f(u) - f(v)| = \left| \frac{1}{u} - \frac{1}{v} \right|$$
$$= \frac{1}{uv} |v - u|$$
$$\le |v - u|$$

Given $\varepsilon > 0$, set $\delta = \varepsilon$. If $|u - v| < \delta$, then $|f(u) - f(v)| < \varepsilon$.

Here, we see that $\delta = \delta(\varepsilon)$.

We will show that $f(x) = x^2$ is uniformly continuous on [1, 4].

$$|f(u) - f(v)| = |u^{2} - v^{2}|$$

$$= |u - v||u + v|$$

$$\leq |u - v|(|u| + |v|)$$

$$\leq 8|u - v|$$

Triangle Inequality

Given $\varepsilon > 0$, set $\delta = \varepsilon/8$. Whenever $u, v \in [1, 4]$, with $|u - v| < \delta$, then $|f(u) - f(v)| < \varepsilon$

Lipschitz and Uniform Continuity

If $f: D \to \mathbb{R}$ is Lipschitz, then f is uniformly continuous.

If $f: D \to \mathbb{R}$ is Lipschitz, then $\exists c > 0$ such that $\forall u, v \in D$,

$$|f(u) - f(v)| \le c|x - y|.$$

Given $\varepsilon > 0$, set $\delta = \frac{\varepsilon}{c}$. Whenever $|u - v| < \delta$, then $|f(x) - f(y)| < \varepsilon$.

Uniform Continuity and Continuity

If $f: D \to \mathbb{R}$ is uniformly continuous, then f is continuous on D.

Let $c \in D$. Given $\varepsilon > 0$, by uniform continuity, $\exists \delta > 0$ such that

$$|u - v| < \delta \Rightarrow |f(u) - f(v)| < \varepsilon$$

 $|x - c| < \delta \Rightarrow |f(x) - f(c)| < \varepsilon$

Negating Uniform Continuity

The following are equivalent for $f: D \to \mathbb{R}$

- (i) f is not uniformly continuous
- (ii) $\exists \varepsilon_0$ such that $\forall \delta > 0$, $\exists u_\delta$, v_δ such that $|u_\delta v_\delta| < \delta$ and $|f(u_\delta) f(v_\delta)| > \varepsilon$
- (iii) $\exists \varepsilon_0$ such that $\exists (u_n)_n, (v_n)_n \in D$ with $(u_n v_n)_n \to 0$ and $|f(u_n) f(v_n)| \ge \varepsilon_0$

(i) ⇔ (ii): Negating definition.

(ii) \Rightarrow (iii): Set $\delta_n=1/n$ in (ii). Given δ_n , it must be the case that

$$|u_n-v_n|<\frac{1}{n}$$

so $(u_n - v_n)_n \to 0$, and

$$|f(u_n) - f(v_n)| \ge \varepsilon_0.$$

(iii) \Rightarrow (ii): Let $\delta > 0$. Then, $\exists N \in \mathbb{N}$ large such that $|u_N - v_N| < \delta$, by the definition of sequence convergence. Set $u_{\delta} = u_N$ and $v_{\delta} = v_N$.

Showing Non-Uniform Continuity

We will show that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1).

Set $u_n = 1/n$, and $v_n = \frac{1}{n+1}$. Then,

$$|f(u) - f(v)| = |n - (n+1)|$$

$$= 1$$

$$= \varepsilon_0$$

$$|u_n - v_n| = \left| \frac{1}{n} - \frac{1}{n+1} \right|$$

$$= \frac{1}{n(n+1)}$$

$$\to 0$$

Consider $f(x) = x^2$ on $[0, \infty)$. We will show that f is not uniformly continuous.

Let $u_n = n$ and $v_n = n + \frac{1}{n}$. Clearly, $(u_n - v_n)_n \to 0$.

$$|f(u_n) - f(v_n)| = \left| n^2 - \left(n + \frac{1}{n} \right)^2 \right|$$
$$= \left| n^2 - n^2 - 2 - \frac{1}{n^2} \right|$$
$$= 2 + \frac{1}{n^2}$$
$$\ge 2$$

Uniform Continuity Theorem

If $f:[a,b]\to\mathbb{R}$ is continuous, then f is uniformly continuous.

Suppose toward contradiction that f is not uniformly continuous. Then, $\exists (u_n)_n, (v_n)_n \in [a,b]$ and $\varepsilon_0 > 0$ such that $(u_n - v_n)_n \to 0$ and $|f(u_n) - f(v_n)| \ge \varepsilon > 0$.

Since $(u_n)_n$ is bounded, $\exists n_k$ such that $(u_{n_k})_k \to z$ by the Bolzano-Weierstrass. We claim that $(v_{n_k})_k \to z$:

$$|v_{n_k} - z| = |v_{n_k} - u_{n_k} + u_{n_k} - z|$$

 $\leq |v_{n_k} - u_{n_k}| + |u_{n_k} - z|$
 $\to 0.$

So,

$$0 < \varepsilon_0 \le |f(u_{n_k}) - f(v_{n_k})|$$

$$\to 0$$

since $(f(u_k))_k \to f(z)$ and $(f(v_k))_k \to f(z)$.

Uniform Continuity and Lipschitz (or lack thereof)

The function $f(x) = \sqrt{x}$ on [0, 1] is uniformly continuous. However, $f(x) = \sqrt{x}$ is not Lipschitz:

Suppose toward contradiction that f is Lipschitz.

$$|f(x) - f(y)| \le c|x - y| \qquad \forall x, y \in [0, 1]$$

Take y = 0.

$$\sqrt{x} \le cx$$
$$0 < \frac{1}{c} \le \sqrt{x}$$

Lemma: Uniform Continuity and Cauchy Sequences

Let $f: D \to \mathbb{R}$ be uniformly continuous. If $(x_n)_n \in D$ is Cauchy, then $(f(x_n))_n$ is Cauchy.

This is not true for mere continuity. For example, for $f(x) = \frac{1}{x}$ in $(0, \infty)$, $(x_n)_n = \frac{1}{n}$ is Cauchy in $(0, \infty)$, but $f(x_n) = n$ is not Cauchy.

Let $(x_n)_n$ be Cauchy. Let $\varepsilon > 0$. Then, $\exists \delta > 0$ such that $\forall u, v \in D$ with $|u - v| < \delta$, we have $|f(u) - f(v)| < \varepsilon$.

Since $(x_n)_n$ is Cauchy, $\exists N \in \mathbb{N}$ such that for $p, q \geq N$, $|x_p - x_q| < \delta$. So, $|f(x_p) - f(x_q)| < \varepsilon$. So, $(f(x_n))_n$ is Cauchy.

Continuous Extension Theorem

Let $f:(a,b)\to\mathbb{R}$ be a map. The following are equivalent:

- (1) f is uniformly continuous.
- (2) $\exists \tilde{f} : [a, b] \to \mathbb{R}$ such that
 - \tilde{f} is continuous
 - $\tilde{f}(x) = f(x) \ \forall x \in (a, b)$
- (2) \Rightarrow (1): Since \tilde{f} is continuous on [a, b], \tilde{f} is uniformly continuous on [a, b]. So, \tilde{f} is uniformly continuous on (a, b). But, $\tilde{f} = f$ on (a, b). So, f is uniformly continuous.

(1) \Rightarrow (2): Let $f:(a,b) \to \mathbb{R}$ be uniformly continuous.

Claim: $\lim_{x\to a^+} f(x)$ exists. Let $(x_n)_n$ be any sequence where $x_n > a$ and $(x_n)_n \to a$. Then, $(x_n)_n$ is Cauchy. So, by the lemma, $(f(x_n))_n$ is Cauchy. Since $\mathbb R$ is complete, $\exists L \in \mathbb R$ such that $(f(x_n))_n \to L$.

We claim that the limit is L. Let $(y_n)_n$ be any sequence with $y_n > a$, $(y_n)_n \to a$. By our work above, $(f(y_n))_n \to L'$ for some $L' \in \mathbb{R}$. Consider $z_n = (x_1, y_1, x_2, y_2, \dots)$. Then, $z_n > a$ with $(z_n)_n \to a$. By our work above, $(f(z_n)) \to L''$, for some $L'' \in \mathbb{R}$. Since $(f(x_n))_n$ is a subsequence of $(f(z_n))_n$, $(f(x_n))_n \to L''$, so L = L'', and similarly, L' = L''.

Therefore, L = L'. So, we have $\lim_{x \to a^+} f(x) = L$.

Similarly, $\lim_{x\to b^-} f(x) = R$ exists. Set $\tilde{f}: [a,b] \to \mathbb{R}$ such that

$$\tilde{f}(x) = \begin{cases} f(x) & x \in (a, b) \\ L & x = a \\ R & x = b \end{cases}$$

Then, \tilde{f} is the desired continuous extension.

Applying the Continuous Extension Theorem

If $f(x) = \sin(1/x)$, then f(x) is not uniformly continuous on (0,1). This is because $\lim_{x\to 0^+} f(x)$ does not exist.

Meanwhile, $g(x) = x \sin(1/x)$ is uniformly continuous on (0, 1), since we can define $\tilde{g}(x)$ as follows:

$$\tilde{g}(x) = \begin{cases} 0 & x = 0 \\ g(x) & 0 < x < 1 \end{cases}$$

Approximations by Step Function

A map $s:[a,b]\to\mathbb{R}$ is called a step function if

- (1) $[a, b] = \bigsqcup_{j=1}^{n} I_j$ where I_j are intervals.
- (2) $\exists c_1, \ldots, c_n \in \mathbb{R}$ such that $s(x) = c_j \ \forall x \in I_j$.

Alternatively, this is equivalent to:

$$s = \sum_{j=1}^{n} c_j \mathbb{1}_{I_j}$$

Theorem: If $f:[a,b]\to\mathbb{R}$ is uniformly continuous and $\varepsilon>0$, then $\exists s:[a,b]\to\mathbb{R}$ with $||f-s||_u<\varepsilon$.

We know that f is uniformly continuous. Given $\varepsilon > 0$, $\exists \delta > 0$ with $|u - v| < \delta \Rightarrow |f(u) - f(v)| < \varepsilon$.

Choose N large such that

$$\Delta_n = \frac{b-a}{N}$$
< \delta.

Set $x_i = j\Delta_N$. Set $I_i = [x_i, x_{i+1})$ with $0 \le j \le N - 1$.

Set $c_i = f(x_i)$,

$$s = \sum_{i=0}^{N-1} c_i \mathbb{1}_{I_i}.$$

If $x \in [a, b]$, $x \in I_k$ for some k = 0, ..., N - 1. Then,

$$|f(x) - s(x)| = |f(x) - c_k|$$

$$\leq |f(x) - f(x_k)|$$

$$< \varepsilon$$

since

$$|x - x_k| < \Delta_N < \delta$$

SO,

$$||f - s||_u < \varepsilon$$

Approximation by Piecewise Linear Function

A function g is piecewise linear if

- (a) $[a, b] = \bigsqcup_{j=1}^{n} I_j$, where I_j are intervals.
- (b) $g|_{I_i}$ is linear; $\exists a_1, b_1, \ldots, a_n, b_n$ with $g(x) = a_j + b_j x \ \forall x \in I_j$.

Theorem: If $f:[a,b]\to\mathbb{R}$ is uniformly continuous and $\varepsilon>0$, then there is a continuous piecewise linear $g:[a,b]\to\mathbb{R}$ with $\|f-g\|_u<\varepsilon$.

We know that f is uniformly continuous. Given $\varepsilon > 0$, $\exists \delta > 0$ with $|u - v| < \delta \Rightarrow |f(u) - f(v)| < \varepsilon/2$. Choose N large such that

$$\Delta_n = \frac{b-a}{N}$$
< \delta.

Set $x_j = j\Delta_N$. Set $I_j = [x_j, x_{j+1})$ with $0 \le j \le N - 1$.

Set $g(x) = \sum_{k=0}^{N-1} g_k(x) \mathbb{1}_{I_k}$, where

$$g_k(x) = f(x_k) + \left(\frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k}\right)(x - x_k)$$

We observe that if $x \in I_k$, then

$$|f(x) - g(x)| = \left| f(x) - f(x_k) - \left(\frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k} \right) (x - x_k) \right|$$

$$\leq |f(x) - f(x_k)| + |f(x_{k+1}) - f(x_k)| \frac{|x - x_k|}{|x_{k+1} - x_k|}$$

$$\leq |f(x) - f(x_k)| + |f(x_{k+1}) - f(x_k)|$$

$$< \varepsilon$$

SO,

$$||f-g||<\varepsilon$$