Analysis.txt

Ankitha Durvasula and Pippa Lother

Data:

dna length = 4,639,221 cutting at enzyme gaattc

Class	splicee	recomb time	appends
StringBuilderStrand:	256	4,800,471	0.037 1290
StringBuilderStrand:	512	4,965,591	0.024 1290
StringBuilderStrand:	1,024	5,295,831	0.010 1290
StringBuilderStrand:	2,048	5,956,311	0.009 1290
StringBuilderStrand:	4,096	7,277,271	0.008 1290
StringBuilderStrand:	8,192	9,919,191	0.012 1290
StringBuilderStrand:	16,384	15,203,031	0.020 1290
StringBuilderStrand:	32,768	25,770,711	0.030 1290
StringBuilderStrand:	65,536	46,906,071	0.040 1290
StringBuilderStrand:	131,072	89,176,791	0.123 1290
StringBuilderStrand:	262,144	173,718,231	0.118 1290
StringBuilderStrand:	524,288	342,801,111	0.322 1290
StringBuilderStrand:	1,048,576	680,966,871	0.556 1290

dna length = 4,639,221 cutting at enzyme gaattc

Class	splicee	recomb	time	appends
StringStrand:	256	4,800,471	0.452	1290
StringStrand:	512	4,965,591	0.488	1290
StringStrand:	1,024	5,295,831	0.540	1290
StringStrand:	2,048	5,956,311	0.573	1290
StringStrand:	4,096	7,277,271	0.733	1290
StringStrand:	8,192	9,919,191	1.087	1290
StringStrand:	16,384	15,203,031	1.880	1290
StringStrand:	32,768	25,770,711	3.385	1290
StringStrand:	65,536	46,906,071	6.496	1290
StringStrand:	131,072	89,176,791	12.582	1290
StringStrand:	262,144	173,718,231	25.	851 1290
StringStrand:	524,288	342,801,111	50.	184 1290
StringStrand:	1,048,576	680,966,871	109	9.968 1290
StringStrand:	2,097,152	1,357,298,391	438	84.087 1290

Questions:

1. Are the benchmark timings for StringStrand consistent with the explanation below that the time to execute cutAndSplice is O(b2S)?

Looking at the data for StringStrand, append remains constant at 1290. Therefore, b^2 is also constant. S is the number of splices.

As the number of splices doubles, the time also appears to double. The one runtime that is not consistent with this pattern is the

last run because 4384 is a lot more than double of 109.968.

What patterns, if any, do you find in the runtimes for StringStrand? After tripling the StringStrand, the runtimes were as follows:

dna length = 13,917,663 cutting at enzyme gaattc

Class	splicee	recomb	time appends
StringStrand:	256	14,401,413	3.884 3870
StringStrand:	512	14,896,773	4.067 3870
StringStrand:	1,024	15,887,493	4.411 3870
StringStrand:	2,048	17,868,933	5.252 3870
StringStrand:	4,096	21,831,813	6.665 3870
StringStrand:	8,192	29,757,573	9.070 3870
StringStrand:	16,384	45,609,093	14.511 3870
StringStrand:	32,768	77,312,133	25.421 3870
StringStrand:	65,536	140,718,213	3 50.220 3870
StringStrand:	131,072	267,530,373	3 100.057 3870

Although there are indications of a doubling time, or time that follows O(S), towards the end of the data, there is not a definite pattern seen in the runtimes overall. From time 3.884 to time 9.070 the increase is more gradual than

the increase in splices.

2. Are the benchmark timings for StringBuilderStrand consistent with the explanation below that the time to execute cutAndSplice is O(bS)?

The runtimes of StringBuilderStrand are much faster than those of StringStrand, so it is a little more difficult to see an overall pattern.

However, from time 0.118 to time 0.558 S is large enough to see an increasing trend that follows O(s). As with the earlier question, b is

held constant, so O(bs) is just O(s).

What patterns, if any, do you find in the runtimes for StringBuilderStrand? After tripling the StringBuilderStrand, the runtimes were as follows:

dna length = 13,917,663 cutting at enzyme gaattc

Class	splicee	recomb	time appends	S	
StringBuilderStran	d:	256	14,401,413 0.0)18 3	3870
StringBuilderStran	d:	512	14,896,773 0.0)18 3	3870
StringBuilderStran	d:	1,024	15,887,493 0.0)18 3	3870
StringBuilderStran	d:	2,048	17,868,933 0.0)25	3870
StringBuilderStran	d:	4,096	21,831,813 0.0)21 3	3870
StringBuilderStran	d:	8,192	29,757,573 0.0)33	3870
StringBuilderStran	d:	16,384	45,609,093 0.0)60 3	3870
StringBuilderStran	d:	32,768	77,312,133 0.0)50	3870
StringBuilderStran	d:	65,536	140,718,213	0.056	3870
StringBuilderStran	d:	131,072	267,530,373	0.165	3870
StringBuilderStran	d:	262,144	521,154,693	0.271	3870
StringBuilderStran	d:	524,288	1,028,403,333	0.507	3870

bout the same. However, the last three runs again we begin to see a more steady increase in runtime with the larger splices.				