Correction exercice nº1

- 1. (a) $u_1 = u_0 (2 u_0)$ donc $u_1 = \frac{1}{8} \left(2 \frac{1}{8} \right)$ d'où $u_1 = \frac{15}{64}$. De même $u_2 = u_1 (2 - u_1)$ d'où $u_2 = \frac{1695}{4096}$.
 - (b) On construit les quatre premiers termes de la suite :

- 2. (a) Soit $\mathcal{P}_n: 0 < u_n < 1$. Montrons tout d'abord que f est strictement croissante sur [0;1]. f est dérivable en tant que polynôme de degré 2 sur [0;1] et pour tout réel $x \in [0;1]$, on a f'(x) = 2 2x > 0: on en déduit que f est strictement croissante sur [0;1]
 - *Initialisation*. Vérifions que \mathcal{P}_0 est vraie. On a $u_0 = a$ et 0 < a < 1 donc \mathcal{P}_0 est vraie.
 - *Hérédité*. Soit $n \in \mathbb{N}$. Supposons \mathscr{P}_n vraie, c'est-à-dire $0 < u_n < 1$. Par hypothèse de récurrence $0 < u_n < 1$ donc $f(0) < f(u_n) < f(1)$ car la fonction f est strictement croissante sur [0;1] donc l'ordre est conservé sur cet intervalle. Or f(1) = 1, $f(u_n) = u_{n+1}$ et f(0) = 0 donc $0 < u_{n+1} < 1$ ce qui prouve que \mathscr{P}_{n+1} est vraie.
 - <u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n = 0, on en déduit que \mathcal{P}_n est vraie pour tout n de \mathbb{N} .

$$\forall n \in \mathbb{N}, \ 0 < u_n < 1$$

(b) $\forall n \in \mathbb{N}$,

$$u_{n+1} - u_n = u_n (2 - u_n) - u_n$$

= $u_n (1 - u_n)$

Or on vient de démontrer que $u_n < 1 \iff 1 - u_n > 0$ et comme $u_n > 0$, on obtient par produit $u_{n+1} - u_n > 0$, ce qui montre que la suite (u_n) est croissante.

- (c) La suite (u_n) est croissante et majorée par 1 : elle est donc convergente vers une limite ℓ telle que $\ell \leq 1$.
- 3. (a) $\forall n \in \mathbb{N}$,

$$v_{n+1} = 1 - u_{n+1}$$

$$= 1 - u_n (2 - u_n)$$

$$= 1 - 2u_n + u_n^2$$

$$= (1 - u_n)^2$$

$$= v_n^2$$

(b) On a
$$v_0 = 1 - u_0 = 1 - \frac{1}{8}$$
 donc $v_0 = \frac{7}{8}$.
D'où $v_1 = v_0^2 = \left(\frac{7}{8}\right)^2$.
Puis $v_2 = v_1^2 = \left[\left(\frac{7}{8}\right)^2\right]^2 = \left(\frac{7}{8}\right)^{2^2}$.

On va montrer par récurrence que $v_n = \left(\frac{7}{8}\right)^{2^n}$.

- La proposition est vraie au rang zéro.
- Hérédité : soit $n \in \mathbb{N}$, supposons que $v_n = \left(\frac{7}{8}\right)^{2^n}$.

On a $v_{n+1} = v_n^2$ et par hypothèse de récurrence $v_n = \left(\frac{7}{8}\right)^{2^n}$.

On en déduit que $v_{n+1} = \left[\left(\frac{7}{8} \right)^{2^n} \right]^2$ ce qui induit que $v_{n+1} = \left(\frac{7}{8} \right)^{2 \times 2^n} = \left(\frac{7}{8} \right)^{2^{n+1}}$.

La relation est vraie au rang n+1: elle est donc vraie pour tout entier naturel n.

(c) Comme
$$-1 < \frac{7}{8} < 1$$
, donc $\lim_{n \to +\infty} \left(\frac{7}{8}\right)^n = 0$ et a fortiori $\lim_{n \to +\infty} \left(\frac{7}{8}\right)^{2^n} = 0$.
Conclusion: $\lim_{n \to +\infty} v_n = 0$.

Comme $v_n = 1 - u_n \iff u_n = 1 - v_n$; on en déduit que $\lim_{n \to +\infty} u_n = 1$.