Approche ontologique du champ magnétique • • •

On considère un fil électrique de section Σ dirigé suivant l'axe x. Il est constitué d'atomes séparés d'une distance a, de charge +e et d'autant d'électrons de conduction de charge -e; on suppose que atomes et électrons sont confondus sur l'axe x et uniformément répartis à travers la section Σ . On impose un courant I dans le fil, les électrons se déplacent alors avec une vitesse $\vec{v'} = -v'\vec{e_x}$ uniforme le long du fil.

Une particule de charge q se déplace à la vitesse $\vec{v}=v\vec{e_x}$ à l'extérieur du fil à une distance r>a de l'axe x.

On s'intéresse aux forces électromagnétiques exercées par les charges du fil sur la particule de charge q par deux approches différentes.

Approche en mécanique classique

- Quelle est la densité de charge ρ_+ (respectivement ρ_-) due aux atomes (resp. aux électrons) dans le fil ? En déduire le champ électrique \vec{E} créé par cette distribution de charge pour r > a.
- \clubsuit Quelle est la densité de courant \vec{j} dans le fil ? Exprimer la vitesse $\vec{v'}$ des électrons de conduction en fonction de I. En déduire le champ magnétique \vec{B} créé par ce courant en fonction de v' et des autres données de l'énoncé.
- \clubsuit Exprimer la force totale s'exerçant alors sur la charge +q, en fonction de q, v, v', a, r et de constantes fondamentales. Quels sont les contributions des forces électriques et magnétiques sur cette particule ?
- \clubsuit Que devient cette force dans le référentiel en mouvement de la charge +q? En quoi est-ce une contradiction?

Approche en mécanique relativiste

La théorie de la relativité restreinte permet de lever cette contradiction, en affirmant que tout objet se déplaçant relativement par rapport à un autre voit sa longueur contractée dans le sens du déplacement. Ainsi, Einstein a démontré en 1905 qu'un objet à la vitesse v par rapport à un autre objet, voit la longueur de ce dernier contractée d'un facteur $\gamma(v) = 1/\sqrt{1-v^2/c^2}$ (où c est la vitesse de la lumière). Dans son référentiel, la charge q voit donc la densité de charge des atomes ρ_+ et des électrons ρ_- augmenter, mais pas dans les mêmes proportions.

- \clubsuit Que deviennent les densités de charge ρ_+ et ρ_- dans le référentiel de la particule +q?
- \clubsuit Déterminer le champ électrique créé par cette nouvelle distribution de charges en fonction de v, v', a, r et de constantes fondamentales. On supposera que $v' \ll v \ll c$.
- \clubsuit Quelle est la force électrique s'exerçant sur la particule +q?
- ♣ Comparer avec le résultat trouvé en approche classique (non relativiste). Que peut-on en dire sur la nature du champ magnétique ?

N.B.: On rappelle que la vitesse de la lumière c est définie comme $c^2 = 1/\epsilon_0 \mu_0$, où ϵ_0 et μ_0 sont respectivement la permittivité électrique et la perméabilité magnétique du vide.

Correction Approche ontologique du champ magnétique

Approche en mécanique classique

- ♣ Dans une volume $a\Sigma$, on a une charge +e et une charge -e, comme celle-ci sont réparties uniformément. Les densités de charges sont donc respectivement $\rho_+ = e/(a\Sigma)$ et $\rho_- = -e/(a\Sigma)$.
- \clubsuit Par définition, $\vec{j} = \rho \vec{v}$. Comme seuls les électrons ont une vitesse non nulle, $\vec{j} = \rho_- \vec{v'} = ev'/(a\Sigma)\vec{e}_x$. Et donc $I = \oiint_{\Sigma} d\vec{S}\vec{j} = ev'/a$.
- $\rho_{tot} = \rho_+ + \rho_- = 0 \text{ donc } \vec{E} = 0.$
- A vec le théorème d'Ampère appliqué uniquement en dehors du fil, on trouve :

$$\vec{B} = \frac{\mu_0 I}{2\pi r} \vec{e_\theta}$$

(résultat classique d'un fil parcouru par un courant I) La force qui s'exerce sur la charge q est donc :

$$\vec{F} = -\frac{qv\mu_0 I}{2\pi r}\vec{e_r}$$

Approche en mécanique relativiste

♣ Ainsi, en se déplaçant à la vitesse \vec{v} , la charge +q voit dans son référentiel la distance entre atomes réduite d'un facteur $\gamma_+ = 1/\sqrt{1 - v^2/c^2}$ et la distance entre électrons de conduction d'un facteur $\gamma_- = 1/\sqrt{1 - (v - v')^2/c^2}$. On trouve donc que :

$$\rho_{+} = \frac{e}{a\Sigma} \sqrt{1 - v^2/c^2}$$

$$\rho_{-} = \frac{e}{a\Sigma} \sqrt{1 - (v + v')^2/c^2}$$

Attention, l'hypothèse que la vitesse relative des électrons par rapport à la charge q est v' + v est une approximation. En mécanique relativiste, la vitesse relative serait :

$$v_{e_{-}/q} = \frac{v' - v}{1 - \frac{vv'}{c^2}} \tag{1}$$

A On trouve facilement avec le théorème de Gauss que :

$$\vec{E} = \frac{\Sigma(\rho_+ + \rho_-)}{2\pi r \varepsilon_0}$$

En développant à l'ordre 2, on trouve :

$$\rho_{+} + \rho_{-} \approx -\frac{e}{a\Sigma} \frac{vv'}{c^2}$$

On trouve alors que:

$$\vec{E} = -\frac{evv'}{2\pi r a\varepsilon_0 c^2} \vec{e_r} = -\frac{I\mu_0 v}{2\pi r} \vec{e_r}$$

♣ La force de Lorentz associée est donc :

$$\vec{F} = -\frac{qevv'}{2\pi r a\varepsilon_0 c^2} \vec{e_r} = -\frac{qI\mu_0 v}{2\pi r} \vec{e_r}$$

Cette expression est identique à celle trouvée par le calcul du champ magnétique en mécanique classique. Le champ magnétique est-il est une approximation à l'ordre 2 de la force de Coulomb?

Câble coaxial • • •

On considère un câble coaxial constitué de deux conducteurs cylindriques de même axe, séparés par du vide, de rayon a (l'âme) et b (la gaine), avec a < b, et d'épaisseur négligeable. Le conducteur central (de rayon a) a une charge surfacique σ_a répartie uniformément et est traversé par une densité surfacique de courant $j_{s,a}$, répartie aussi uniformément sur l'âme. La longueur du câble est L, très grande devant les rayons a et b.

On cherche à connaitre la capacité et l'inductance linéique du câble coaxial, pour comprendre la propagation des ondes électromagnétiques à l'intérieur.

- Exprimer le courant I circulant dans l'âme et sa charge totale Q en fonction de $j_{s,a}^{\vec{j}}$ et σ_a . En déduire la charge et l'intensité surfacique de la gaine, σ_b et $j_{s,b}^{\vec{j}}$, sachant que, sur toute la longueur du câble, le courant total à travers le câble est nul et qu'il est neutre électriquement.
- Déterminer le champ électrique en tout point.
- \blacksquare En déduire la capacité c par unité de longueur de câble.
- Déterminer le champ magnétique en tout point.
- \blacksquare On définit l'inductance L d'un circuit délimitant une surface S, parcouru par un courant I comme comme le rapport du flux du champ magnétique à travers S avec le courant I:

$$\Phi_B = \iint_S d\vec{S} \cdot \vec{B} = LI$$

En choisissant soigneusement une surface S, déterminer l'inductance linéique l.

 \blacksquare Que vaut le produit le produit $l \times c$? A quoi correspond cette grandeur?

Correction Câble coaxial

- \heartsuit Le courant circulant dans l'âme est $I=2\pi aj_{s,a}$. De même, la charge totale est $Q=2\pi al\sigma_a$. On a forcément $I=2\pi bj_{s,b}$. De même, la charge totale est $Q=2\pi bl\sigma_b$ par conservation de la charge et du courant.
- \heartsuit Les symétries et les invariances donnent $\vec{E} = E(r)\vec{e_r}$. Avec le théorème de Gauss appliqué sur un cylindre de rayon r, on obtient :

$$\begin{cases} r < a & : \quad \vec{E} = \vec{0} \\ a < r < b & : \quad \vec{E} = \frac{\sigma_a a}{\varepsilon_0 r} \vec{e_r} \\ r > b & : \quad \vec{E} = \vec{0} \end{cases}$$

 \heartsuit On en déduit le potentiel entre les deux conducteurs :

$$V = \frac{\sigma_a a}{\varepsilon_0} \ln \left(\frac{b}{a} \right) = \frac{Q}{2\pi l \varepsilon_0} \ln \left(\frac{b}{a} \right)$$

La capacité par unité de longueur est donc :

$$c = \frac{2\pi\varepsilon_0}{\ln\left(\frac{b}{a}\right)}$$

 \heartsuit Les symétries et les invariances donnent $\vec{B} = B(r)\vec{e_{\theta}}$. Avec le théorème de d'Ampère appliqué sur un cercle de rayon r, on obtient :

$$\begin{cases} r < a & : \quad \vec{B} = \vec{0} \\ a < r < b & : \quad \vec{B} = \frac{\mu_0 j_{s,a} a}{r} \vec{e_{\theta}} \\ r > b & : \quad \vec{B} = \vec{0} \end{cases}$$

 \heartsuit Le flux du champ \vec{B} se calcule sur la surface rectangulaire comprises entre a et b, de longueur l avec $\vec{e_{\theta}}$ comme vecteur normal. On trouve alors :

$$\Phi_B = \frac{L\mu_0 I}{2\pi} \ln\left(\frac{b}{a}\right)$$

On a donc :

$$l = \frac{\mu_0}{2\pi} \ln \left(\frac{b}{a}\right)$$

 \heartsuit On trouve que $l \times c = \varepsilon_0 \mu_0 = \frac{1}{c^2}$. Cela correspond à l'inverse du carré de la vitesse de la lumière, qui est la vitesse de propagation dans le câble coaxial.

4

Champ magnétique entre deux nappes de courant • o o

Deux nappes de courant identiques de très grande surface $S = L_x \times L_y$, d'épaisseur e, sont parallèles entre elles et séparées d'une longueur 2a par un matériau isolant. Elles sont parcourues par un courant permanent de vecteur densité $J\vec{e}_x$ pour la nappe supérieure 1 et $-J\vec{e}_x$ pour la nappe inférieure 2. On se place suffisament loin des bords de la nappe pour négliger les effets de bord.

- 4 Etudier la dépendance et la direction du champ magnétique à partir des symétries et invariances.
- ♣ Déterminer rigoureusement le champ magnétique dans tous l'espace, et le représenter sur un graphe.

On définit l'inductance L d'un circuit délimitant une surface S, parcouru par un courant I comme comme le rapport du flux du champ magnétique à travers S avec le courant I:

$$\Phi_B = \iint_S d\vec{S} \cdot \vec{B} = LI$$

♣ Quelle est la surface délimitée par le circuit formé par les deux nappes ? En déduire l'inductance formée par ce système.

Champ magnétique dans un cylindre parcouru par un courant orthoradial $\bullet \bullet \circ$

On considère un cylindre conducteur de rayon a et de longueur $L\gg a$ selon l'axe O_z , dans lequel circule une densité volumique de courant $\vec{j}(r)=j_0\frac{r}{a}\vec{e}_{\theta}$.

- A l'aide des symétries et invariances, expliciter la dépendance spatiale et la direction du champ magnétique.
- o Déterminer l'expression du champ magnétique $\vec{B}(r)$ en fonction de la valeur du champ magnétique en r=0.
- o Quel est l'expression du champ magnétique $\vec{B}(r)$ si on impose un champ exterieur \vec{B}_{ext} de sorte à ce que $\vec{B}(r=a)=\vec{0}$? Quelle est alors la valeur de \vec{B}_{ext} ?

Correction Champ magnétique dans un cylindre parcouru par un courant orthoradial

- o Invariance : le champ ne dépend que de r. Symétrie : le plan $(\vec{e_r}; \vec{e_\theta})$ est plan de symétrie de la distribution de courant donc \vec{B} est suivant $\vec{e_z}$.
- ο On calcule la circulation de \vec{B} sur le contour Γ :

$$\oint_{\Gamma} d\vec{l} \cdot \vec{B} = \int_{B}^{C} dz \times B(r) + \int_{D}^{A} dz \times B(0)$$
$$= -hB(r) + hB(0)$$

D'après le théorème d'Ampère, pour r < a:

$$-hB(r) + hB(0) = \mu_0 j_0 h \frac{r^2}{2a}$$
 (2)

Donc:

$$B(r) = B(0) - \mu_0 j_0 \frac{r^2}{2a}$$

Pour r > a:

$$B(r) = B(0) - \mu_0 j_0 \frac{a}{2}$$

 $\circ\,$ On ajoute un champ magnétique es
xtérieur $\vec{B}_{ext},$ nécessairement selon \vec{e}_z :

$$B(r) = B(0) - \mu_0 j_0 \frac{r^2}{2a} + B_{ext}$$

Si B(r=a)=0 alors $B_{ext}=-B(0)+\mu_0j_0\frac{a}{2}$ et alors :

$$B(r) = \frac{\mu_0 j_0}{2a} \left(a^2 - r^2 \right)$$

Fourre $\bullet \circ \circ$

On modélise la foudre par un tube d'air ionisé cylindrique de rayon a=1m et de densité de courant $\vec{j}=j_0\frac{r}{a}\vec{e}_z$. Ce sont les électrons de charge -e qui sont supposés porter le courant électrique.

- \wr Relier le courant total I avec j_0 et a. Sachant que l'intensité d'un éclair peut atteindre 100 kA, quelle est la densité de courant j_0 associée ?
- ¿ Etudier la dépendance et la direction du champ magnétique à partir des symétries et invariances.
- ¿ Déterminer rigoureusement le champ magnétique dans tous l'espace, et le représenter sur un graphe. Estimer la valeur maximale que prend le champ magnétique.
- $\$ Rappeler l'expression de la force de Lorentz pour un électron de charge -e lorsqu'il est soumis à un champ magnétique extérieur \vec{B} . Expliquer succinctement pourquoi le tube d'air ionisé se contracte sur lui-même, se comprimant fortement et générant une grande quantité de chaleur.

Correction Foudre

$$I = \iint_D d\vec{S} \cdot \vec{j}$$
$$= 2\pi j_0 \int_0^a \frac{r^2}{a} dr$$
$$= \frac{2}{3} j_0 a^2$$

On trouve donc $j_0 \simeq 50 \text{kA.m}^{-2}$.

- \wr On trouve que $\vec{B} = B(r)\vec{e}_{\theta}$.
- \wr Théorème d'Ampère pour r < a:

$$2\pi \times B(r) = 2\pi \mu_0 j_0 \frac{r^3}{3a}$$
$$\Rightarrow B(r) = \mu_0 j_0 \frac{r^2}{3a}$$

Théorème d'Ampère pour r > a:

$$2\pi \times B(r) = 2\pi \mu_0 j_0 \frac{a^2}{3}$$
$$\Rightarrow B(r) = \mu_0 j_0 \frac{a^2}{3r}$$

$$\vec{f} = -e\vec{E} - e\vec{v} \wedge \vec{B}$$

Ici, $\vec{E}=\vec{0}$ et si $j_0>0$ alors \vec{v} est dirigé suivant $-\vec{e}_z$ et \vec{B} est dirigé suivant $+\vec{e}_\theta$. On a donc \vec{f} dirigé suivant $-(-\vec{e}_z) \wedge \vec{e}_\theta = -\vec{e}_r$. Les électrons sont donc attirés vers l'intérieur de l'éclair, se compriement et s'échauffent (faisant de la lumière et du bruit).

10