

基于Kubernetes的电力行业虚拟化平台 大规模应用与实践

Content

目录

Part 01 背景&需求

数据中心基础设施建设的新要求

为加速"三商"转型与数字电网建设,为新型电力系统建设提供强大算力支撑,同时积极推动电力行业算力与电力深度融合,助力数字经济与低碳经济发展,南方电网制定了"3+1+X"数据中心规划。其中"X"主要是利用现有省级、地市级信息机房以及变电站等空闲土地资源,建设小微规模的分布式数据中心,满足边缘计算需求。

满足新型电力系统需求的分布式云架构

100+ 地级市 4W+

节点数

100+

云平台

大规模边缘算力集群建设难点

难点/痛点问题

关键技术

算力操作系统	● 传统云平台IaaS和PaaS独立 ● 云平台功能合规要求不能满足电力标准 ● 自主灵活可控三者不能同时满足	关键技术:基于kubernetes的轻量化云 关键技术:全栈国产化和IPV6适配
算力管理	大规模集群云边协同困难异构集群统一管理困难智能化云资源跨平台弹性伸缩能力缺失	关键技术:大规模云边协同技术 关键技术:基于CaaS的分布式云原生技术 关键技术:深度学习的云原生弹性伸缩技术
算力安全	● 云-边-端完整防护技术缺失	关键技术:云边安全协同技术
算力基础设施	灵巧标准高效的算力硬件供给困难大规模硬件远程运维安全能力缺失小规模算力无法满足高性能应用要求	关键技术:超融合架构的云数一体机 关键技术:基于软硬协同的算力加速卸载技术

Part 02 技术&实践

关键技术1:基于kubernetes的轻量化云

基于Kubernetes底座实现技术统一的IaaS和PaaS融合平台,既保留了Kubernetes云原生带来的强大扩容、调度、扩展和微服务治理能力,也从底层架构上保证了平台的可靠性和技术先进性,同时依托Kuberntes灵活的扩展能力和强大的技术生态可实现对云平台的快速赋能。

关键技术2:全栈国产化和IPV6适配

国产化&IPv6实践

- 1. 适配泰山、烽火、曙光、浪潮等多款国产服务器
 - 1. 个别型号网卡识别不到:驱动升级
 - 2. 个别型号网卡丢包严重:驱动升级
 - 3. 个别型号硬盘识别不到:硬盘故障
 - 4. 个别型号硬盘直通设置失败:BMC升级
- 2. 适配麒麟v10sp1/sp2/sp3、统信、欧拉、龙蜥等多款国产操作系统
 - 1. 操作哦系统自带的runc和容器运行时的runc冲突导致容器启动异常,升级runc
 - 2. KylinV10Sp2上启动的虚拟机IOError,内核版本不兼容,升级内核
 - 3. NetworkManager在某些场景下聚合网卡失败,使用network接管网络
- 3. 适配华为、华三、Xsky等多款存储服务
 - 1. 个别厂家的CSI驱动偶尔会导致虚拟机无法热迁移
 - 2. 多路径服务异常导致虚拟机故障
- 4. 国产化改造多套软件/组件
 - 1. 累计改造ARM镜像超过100个
 - 2. 累计改造组件超过20个,比如redis、harbor、kubevirt、multus、minio等
- 5. 全栈适配IPV6
 - 1. 操作系统、Kubernetes、Calico、Pod、VM全链路IPv6适配
 - 2. 内核参数、K8S启动参数、CNI配置全面调优

关键技术3:大规模云边协同技术

中心提供云边协同的应用管理平台,为业务研发团队提供应用制品协同、云边应用互访协同、边缘应用运维协同等技术框架和技术体系,中心能够快速便捷为应用提供与中心云一致的体验(云边能力一致),**为多场景应用提供统一管理,可屏蔽物理分散的边缘云数一体机带来的应用管理难点**。

关键技术4:基于CaaS的分布式云原生技术

针对跨地域的多个异构IaaS平台技术封闭、管理分散、标准缺失等问题,设计分布式的CaaS平台,基于一套标准的南北向管理接口,实现对全域资源的统一标准管理,设计算力网关设备实现对多家IaaS平台的网络流量控制,实现跨地域跨平台的容器弹性伸缩提高业务的连续性

容器资源管理缺失:对于专业领域组件、未实现微服务改造的容器应用,容器资源管控能力缺失。

烟囱式服务建设:不同的IaaS厂商会建设强 耦合的容器服务,并且不同的容器服务都会 对容器资源进行独立的申请与管理。

异构技术栈建设:不同厂商的容器服务对于资源、网络、存储会有封闭的独立技术栈,需要应用进行单独适配。

分散管理模式:基于以上情况,对于异构的容器服务需要单独维护,IaaS与容器强耦合时,维护、升级难度大且成本高。

关键技术5:深度学习的云原生弹性伸缩技术

水道建設場

弹性伸缩决策

(1)建立基于Transformer的预测模型,将CPU、内存、硬盘等多种资源预测任务融合到统一的深度神经网络框架中,形成中长期预测结果

(2)基于极值理论估算多种资源历史数据峰值的风险阈值,根据资源使用的状态变化,使用探索-利用机制迭代探索动态阈值

(3)形成虚拟资源的弹性伸缩容决策建议,提前调整资源规模,自动应对业务应用的使用峰值,提升应用系统的鲁棒性和用户体验

关键技术6:超融合架构的云数一体机

边缘云数一体机是靠近数据源部署的轻量级软硬一体化设备,实现了服务器、防火墙、交换机、堡垒机的一体化集成,内置kubernetes提供计算网络存储的融合,其尺寸可根据现场环境设计为全机柜、半机柜、小型工控机等类型,具备自治运行和云边协同等能力。

8U

24U

12U

工控机柜

• 8U小型机柜

• 计算: 2-6路CPU(信创)

• 存储: 最大20000 IOPS, 96TB

• 集群规模:50台以内

• 使用场景:配电房、小型变电站、隧道

中型机柜

- 24U中型机柜
- 计算:6-10路CPU(信创)
- 存储: 最大20000 IOPS, 200TB
- 集群规模:100台以内
- 使用场景:变电站、小型机房

标准机柜

- 42U标准机柜
- 计算:10-14路CPU(信创)
- 存储: 最大50000 IOPS, 600TB
- 集群规模:500台以内
- 使用场景:中型数据中心

关键技术7:基于软硬协同的算力加速卸载技术

通过网络卸载、存储RDMA充分释放 物理服务器CPU资源,节省用于计算、 网络和存储的算力,提高网络吞吐, 降低时延。

加速网卡

虚拟机、容器密度提升20%

卡多架构

网络IO性能提升4倍

关键技术8:云边安全协同技术

为了满足大规模跨地域安全无人值守,研发分布式"堡垒机+运维平台"安全可信运维保障平台,分布式架构保证了跨地域的组件协同联合和最小资源开销。"云-管-边"同时配置中心云安全、网络安全、云本体安全来保障每一个运维指令的安全可依、执行可靠、指令可溯。

Part 03 未来&展望

未来&展望

南方电网数字平台科技(广东)有限公司

> 实施经验

硬件,操作系统,平台软件全方位不同版本不同厂商实施经验:驱动检测&升级、BMC升级、内核升级、网卡配置、交换机路由器配置、集群部署、插件部署、集群巡检&升级、集群扩缩容等。

> 运维经验

大量实践及长期运维的积累,对操作系统、内核配置、软件参数、 安全加固等形成统一的定值管理,快速对系统进行定值检测及配置。

> 国产化经验

从硬件种类(芯片/内存/硬盘/网卡等)到硬件厂商(鲲鹏/海光/华为/华三/浪潮等等),再到不同操作系统(麒麟/统信/欧拉/龙蜥等), 从虚拟化平台到容器镜像等全方位实现国产化适配。

> 生态支持

庞大的生态系统,涵盖丰富的插件、库、工具和集成方案,使软件功能更强大且易于扩展。用户可快速对接现有技术栈,实现系统互操作,降低开发成本。

> 技术创新

社区汇聚全球开发者的智慧,以协作和共享推动技术创新。新技术 和最佳实践可以迅速传播,并在社区贡献者的不断优化下快速成熟。

> AI赋能

社区蓬勃发展的AI技术,为传统企业的AI赋能提供了无限的可能。结合社区力量,可快速使AI技术在传统行业落地生根

