IMPERIAL COLLEGE LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING **EXAMINATIONS 2017**

EEE/EIE PART I: MEng, BEng and ACGI

Corrected Copy

ANALYSIS OF CIRCUITS

Tuesday, 6 June 10:00 am

Time allowed: 2:00 hours

There are THREE questions on this paper.

Answer ALL questions. Q1 carries 40% of the marks. Questions 2 and 3 carry equal marks (30% each).

Any special instructions for invigilators and information for candidates are on page 1.

Examiners responsible

First Marker(s):

D.M. Brookes

Second Marker(s): P. Georgiou

1. Using nodal analysis, calculate the voltages at nodes X and Y of Figure 1.1.

[4]

4 4 2 18

Figure 1.1

Figure 1.2

- b) Use the principle of superposition to find the voltage X in Figure 1.2. [4]
- Draw the Thévenin equivalent circuit of the two-terminal network in Figure 1.3 and find the values of its components.

Figure 1.3

Figure 1.4

- Assuming the opamp in the circuit of Figure 1.4 is ideal, give an expression for Z in terms of X and Y.
- e) The diode in the circuit of Figure 1.5 has a forward voltage of 0.7 V when conducting but is otherwise ideal. Determine the output voltage, Y, when
 - (i) X = 1 V,
 - (ii) X = 5 V

(iii)
$$X = -5 \,\mathrm{V}$$
, [5]

Figure 1.5

ANALYSIS OF CIRCUITS

Information for Candidates:

Numerical answers must be given as fully evaluated decimal values and not as unevaluated arithmetic expressions.

Notation

The following notation is used in this paper:

- 1. The voltage waveform at node X in a circuit is denoted by x(t), the phasor voltage by X and the root-mean-square (or RMS) phasor voltage by $\widetilde{X} = \frac{X}{\sqrt{2}}$. The complex conjugate of X is X^* .
- Component and source values in a circuit are normally given in Ohms, Farads, Henrys, Volts or Amps with the unit symbol omitted. Where an imaginary number is specified, it represents the complex impedance or phasor value.
- 3. Times are given in seconds unless otherwise stated.
- 4. Unless otherwise indicated, frequency response graphs should use a linear axis for phase and logarithmic axes for frequency and magnitude.
- 5. The real and imaginary parts of a complex number, X, are written $\Re(X)$ and $\Im(X)$ respectively.

3. Figure 3.1 shows a shows a transmission line of length $L = 10 \,\text{m}$ whose characteristic impedance is $Z_0 = 120 \,\Omega$ and whose propagation velocity is $u = 2 \times 10^8 \,\text{m/s}$. Distance along the line is denoted by x and the two points x = 0 and x = L are marked in the figure.

At a point x on the line, the line voltage and current are given by $v_x(t) = f_x(t) + g_x(t)$ and $i_x(t) = Z_0^{-1}(f_x(t) - g_x(t))$ where $f_x(t) = f_0(t - u^{-1}x)$ and $g_x(t) = g_0(t + u^{-1}x)$ are the forward and backward waves respectively.

Figure 3.1

a) i) At the position x = L, the backward wave is given by $g_L(t) = \rho_L f_L(t)$ where $\rho_L = 0.75$ is the reflection coefficient at x = L.

Show that
$$g_0(t) = \rho_L f_0(t - 2u^{-1}L)$$
. [3]

- ii) At x = 0, show that $v_s(t) = v_0(t) + R_S i_0(t)$. Hence show that $f_0(t)$ can be written in the form $f_0(t) = \tau_0 v_s(t) + \rho_0 g_0(t)$ and determine the numerical values of τ_0 and ρ_0 .
- iii) By combining the results of parts i) and ii) show that

$$f_0(t) = \tau_0 v_s(t) + \rho_0 \rho_L f_0(t - 2u^{-1}L).$$

Hence prove, by using induction or otherwise, that

$$f_0(t) = \sum_{n=0}^{\infty} \tau_0 \rho_0^n \rho_L^n v_s \left(t - 2nu^{-1} L \right).$$
 [6]

b) If the source is a 30 ns pulse given by

$$v_s(t) = \begin{cases} 25.6 \,\mathrm{V} & \text{for } 0 \le t \le 30 \,\mathrm{ns} \\ 0 & \text{otherwise} \end{cases},$$

draw a dimensioned sketch of the waveform $v_x(t)$ on the line at the point x = 8 m for the time interval $0 \le t \le 150$ ns. Give the times of all discontinuities and the values of all horizontal portions of the waveform. [6]

- Now assume that all voltages and currents are sinusoidal with angular frequency ω . The uppercase letter, V_x , denotes the phasor corresponding to $v_x(t)$.
 - i) The waveform $f_0(t) = A\cos(\omega t + \theta)$ is represented by the phasor $F_0 = Ae^{j\theta}$. Show that $F_x = F_0e^{-jkx}$ where $k = u^{-1}\omega$. [3]
 - ii) By converting the first equation given in part a)iii) into phasor form, determine an expression for F_0 in terms of V_s . [3]
 - iii) Determine an expression for V_x in terms of V_s . [3]

2. The frequency response of a circuit is given by

$$H(j\omega) = \frac{aj\omega}{(j\omega)^2 + 2\zeta\omega_0j\omega + \omega_0^2}$$

where a, ζ and ω_0 are real numbers.

- a) i) By dividing the numerator and denominator of $H(j\omega)$ by $j\omega$ and then multiplying the resultant expression by its complex conjugate, show that $|H(j\omega)|^2 = \frac{a^2}{4\zeta^2\omega_0^2 + \left(\omega \frac{\omega_0^2}{\omega}\right)^2}$. [3]
 - ii) Explain why the maximum value of $|H(j\omega)|^2$ occurs when the quantity $\left(\omega \frac{\omega_0^2}{\omega}\right)$ equals zero. Hence show that the maximum occurs at $\omega = \omega_0$ and determine $|H(j\omega_0)|^2$. [2]
 - iii) Find expressions for the two positive values of ω for which $|H(j\omega)|^2 = \frac{a^2}{8\zeta^2\omega_0^2} \text{ and determine a simplified expression for the difference between them.}$ [4]
- b) Suppose now that $a = 5000 \,\mathrm{s}^{-1}$, $\zeta = 0.1$ and $\omega_0 = 5000 \,\mathrm{rad/s}$.
 - i) Determine the low and high frequency asymptotes of $H(j\omega)$. [2]
 - ii) Draw a dimensioned sketch showing the high and low frequency asymptotes as well as the true magnitude response, $|H(j\omega)|$. Indicate on your graph in dB the peak value of $|H(j\omega)|$ and the value of the asymptotes at their point of intersection. [5]
 - iii) Draw a dimensioned sketch of the straight-line approximation to the phase response, $\angle H(j\omega)$. You may assume without proof that the gradient of the approximation at ω_0 is equal to $-0.5\pi\zeta^{-1}$ radians per decade where "decade" means a factor of 10 in frequency. [4]
- c) i) Show that the frequency response, $\frac{Y(j\omega)}{X(j\omega)}$ of the circuit shown in Figure 2.1 is given by [5]

$$\frac{Y(j\omega)}{X(j\omega)} = \frac{-j\omega R_2 C}{(j\omega)^2 R_1 R_2 C^2 + 2j\omega R_1 C + 1}.$$

- ii) Determine simplified expressions for a, ζ and ω_0 so that the expression given in part c)i) equals that given above for $H(j\omega)$. [3]
- iii) Given that $C=10\,\mathrm{nF}$, determine the values of R_1 and R_2 so that $\omega_0=5000\,\mathrm{rad/s}$ and $\zeta=0.1$. [2]

Figure 2.1

- f) The diagram of Figure 1.6 shows an AC source with r.m.s. voltage $\widetilde{V} = 230 \text{ V}$ driving a load with impedance $50 + 25 j \Omega$ through a line with impedance 2Ω .
 - Determine the complex powers, given by $S = \tilde{V} \times \tilde{I}^*$, absorbed both by the load and by the 2Ω resistor. [4]
 - ii) A capacitor with impedance -200j is now connected across the load, as indicated in Figure 1.7. Determine the complex powers absorbed both by the load and by the 2Ω resistor. [4]

Figure 1.6

Figure 1.7

g) Determine the gain, $\frac{Y}{X}$, for the block diagram shown in Figure 1.8. The rectangular blocks are drawn with inputs at the left and outputs at the right and have gains of F, G and H respectively. The open circle represents an adder/subtractor; its three inputs have the signs indicated on the diagram and its output is V. [4]

- -

Figure 1.8

Figure 1.9

h) The input voltage in Figure 1.9 is given by

$$x(t) = \begin{cases} 0 & t < 0 \\ 8 & t \ge 0. \end{cases}$$

- i) Determine the time constant of the circuit. [2]
- ii) Determine an expression for y(t) for t > 0. [5]