Problém batohu—tradičné dynamické programovanie

for
$$b := 0$$
 to B do $K[0, b] := 0$

for
$$i:=1$$
 to n for $b:=1$ to B if $w_i\geq b$ and $K[i-1,b-w_i]+c_i>K[i-1,b]$
$$K[i,b]:=K[i-1,b-w_i]+c_i$$
 else
$$K[i,b]:=K[i-1,b]$$

return maximum K[n,*]

Časová zložitosť: O(nB)

Problém batohu—tradičné dynamické programovanie

for
$$b := 0$$
 to B do $K[0, b] := 0$

for
$$i:=1$$
 to n for $b:=1$ to B if $w_i\geq b$ and $K[i-1,b-w_i]+c_i>K[i-1,b]$
$$K[i,b]:=K[i-1,b-w_i]+c_i$$
 else
$$K[i,b]:=K[i-1,b]$$

return maximum K[n,*]

Časová zložitosť: Q(nB) $O(nB \log B)$

Problém batohu—alternatívne dynamické programovanie

for
$$c := 0$$
 to C do $F[0, c] = \infty$

for
$$i:=1$$
 to n for $c:=0$ to C if $c_i \leq c$ and $F[i-1,c-c_i]+w_i \leq F[i-1,c]$
$$F[i,c]:=F[i-1,c-c_i]+w_i$$
 else
$$F[i,c]:=F[i-1,c]$$

return maximálne c, pre ktoré $F[n,c] \leq B$

Časová zložitosť: $O(n^2 \max\{c_i\} \log B)$

Definícia: Aproximačný algoritmus $A(x,\varepsilon)$, pre ktorý $A(x,\varepsilon) \leq (1+\varepsilon)OPT(x)$ (min. problém) resp. $A(x,\varepsilon) \geq (1-\varepsilon)OPT(x)$ (max. problém) a ktorá má polynomiálnu časovú zložitosť vzhľadom k |x| pre ľubovoľnú konštantu $\varepsilon>0$ nazývame **polynomiálna aproximačná schéma (PTAS)**.

Ak je časová zložitosť navyše polynomiálna aj vzhľadom ku $1/\varepsilon$, tak algoritmus je **plne polynomiálna aproximačná schéma (FPTAS)**.