Colle 11 MPSI/MP2I Jeudi 11 janvier 2024

Planche 1

- 1. Théorème de la limite de la dérivée : énoncé et démonstration.
- 2. Soit $(a,b) \in \mathbb{R}^2$ et $f : \mathbb{R} \to \mathbb{R}, x \mapsto (x-a)^n (x-b)^n$. Calculer la dérivée n-ième de f. En déduire $\sum_{k=0}^n \binom{n}{k}^2$.
- 3. Soit $f:[0,1]\to\mathbb{R}$ continue, dérivable sur]0,1]. On suppose que $\exists \ell\in\mathbb{R}, xf'(x)\xrightarrow[x\to 0]{}\ell.$ Déterminer $\ell.$

Planche 2

- 1. Formule de Leibniz : énoncé et démonstration.
- 2. Soit a > 0 et $f: [0, a] \to \mathbb{R}$, continue, dérivable sur]0, a] telle que f(0) = 0 et f(a)f'(a) < 0. Montrer que

$$\exists c \in]0, a[, f'(c) = 0]$$

3. Soit $x \in [0,1[$ et $\psi:[0,\pi/2[\to \mathbb{R},t\mapsto \arcsin\left(\frac{(1+x)\sin(t)}{1+x\sin^2(t)}\right)$. Montrer que ψ est dérivable et exprimer ψ' .

Planche 3

- 1. Théorème de Rolle : énoncé et démonstration.
- 2. On note $g:]0,1] \to \mathbb{R}$, $x \mapsto x^x$. Prolonger g par continuité en 0 et étudier la dérivabilité de ce prolongement.
- 3. Montrer que

$$\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, \int_{x}^{y} e^{t^{2}} dt = 1$$

Montrer que l'application $\varphi : \mathbb{R} \to \mathbb{R}$, $x \mapsto y$ ainsi construite est de classe C^1 .

Bonus

Pour tout réel x, on note $x^{1/3}$ l'unique réel dont le cube vaut x. Montrer que

$$E = \left\{ n^{1/3} \cos\left(n^{1/3}\right) | \ n \in \mathbb{N} \right\}$$

est dense dans R.