Dharanya Vanchinathan

+1-213-573-9259 | dharanyavanchinathan@gmail.com | LinkedIn | Github

EDUCATION

University of Southern California

Los Angeles, CA

M.S in Electrical Engineering

Aug 2021 - Dec 2022

- Concentration: Signal and Image Processing
- Coursework: Machine Learning(EE559), Digital Signal Processing(EE483), Probability for Electrical Engineers(EE503), Linear Algebra(EE510)

National Institute of Technology

Tiruchirappalli, India

B. Tech in Electronics and Communication Engineering with minor in Computer Science

July 2016 - May 2020

EXPERIENCE

Research Intern

May 2019 – July 2019

Shantou University

Shantou, Guangdong, China

- Built a standalone application in **Python** using **PyQt5**, **VTK** for visualizing Automated Breast Ultrasound DICOM files in 3D to embed in SIUI instruments for the detection of lesions.
- Built an application MATLAB GUI that detects vortexes formed due to blood flow in the left ventricle of the heart, for the clinicians to evaluate the functioning of a patient's heart in real-time. A technique called Vector Flow Mapping is used which draws streamlines over the Doppler Echocardiography Images to detect vortexes.

Projects

Intracranial Vessel Wall MRI Image Reconstruction | Deep Learning, Image Processing

• Developed a Generative Adversarial Network **GAN** with attention modules using **Tensorflow** for better contrast enhancement of the MRI precontrast images in order to speed up the MRI scanning process.

Brain Tumor Visualization | Image Processing, Volume Rendering

• Built an application using **VTK** in **Python** that renders 2D MRI Brain Slices into an interactive 3D model and segments the region of brain tumour in the 3D model.

Facial Expression Recognition | Deep Learning, Image Processing

• Developed a novel Auxiliary Classifier Generative Adversarial Network (ACGAN) based model that recognizes ten different Facial Expressions with better accuracy.

Self Interference Cancellation | Wireless Communication, Machine Learning

• Developed a model using **Tensorflow** to eliminate self-interference, which arises due to the presence of both transmitters and receivers in close proximity, in Full-Duplex Radios, for 5G Wireless Technology, with the help of Neural Networks.

Classification of Macular Edema | Image Processing

• Employed a Super-pixel based approach for classifying different types of Macular Edema in Optical Coherence Tomography (OCT) images using Histogram of Oriented Gradients(HOG) descriptor.

TECHNICAL SKILLS

Languages: Python, C/C++, SQL, MongoDB, JavaScript, HTML/CSS

Frameworks/Libraries: NumPy, Matplotlib, Tensorflow, PyTorch, OpenCV, Node.js, Flask, Pandas, VTK

Developer Tools: Git, Google Cloud Platform, MATLAB

Publications / Journals

Facial Expression Recognition through person-wise regeneration of expressions using Auxiliary Classifier Generative Adversarial Network (AC-GAN) based model — Journal of Visual Communication and Image Representation, Elsevier (May 2021)

https://doi.org/10.1016/j.jvcir.2021.103110

Novel Method of Self-interference Cancelation in Full-Duplex Radios for 5G Wireless Technology Using Neural Networks—Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020), Springer (April 2021) https://doi.org/10.1007/978-981-16-0289-4_5