RACHUNEK PRAWDOPODOBIEŃSTWA 1R Lista zadań nr 10

1. Pokaż, że jeśli 0 , to

$$(\mathbb{E}|X|^p)^{1/p} \leq (\mathbb{E}|X|^q)^{1/q}.$$

2. (Reguła n sigm) Pokaż, że jeśli $\operatorname{Var}(X) = \sigma^2 < \infty$, to

$$\mathbb{P}(|X - \mathbb{E}X| > n\sigma) \le \frac{1}{n^2} .$$

3. Sprawdzić, że zdarzenie $\{\lim_{n\to\infty}X_n=a\}$ należy do \mathcal{F}_{∞} .

4. Sprawdzić, że zdarzenie $\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^nX_i\leq a\}$ należy do \mathcal{F}_∞ .

5. Zbadaj zbieżność szeregu $\sum_{n=1}^{\infty} X_n$, jeśli $\{X_n\}_{n=1}^{\infty}$ jest ciągiem niezależnych zmiennych losowych o rozkładach:

a)
$$\mathbb{P}(X_n = 2^{-n}) = \mathbb{P}(X_n = 0) = 1/2$$

a)
$$\mathbb{P}(X_n=2^{-n})=\mathbb{P}(X_n=0)=1/2;$$

b) $\mathbb{P}(X_n=1/n)=1-\mathbb{P}(X_n=0)=1/(n\log n);$

6. Niech $\{X_n\}$ będzie ciągiem niezależnych zmiennych losowych takich, że X_n ma rozkład jednostajny U[-n,n]. Dla jakich wartości parametru p>0 szereg $\sum_{n=1}^{\infty} \frac{X_n}{n^p}$ jest zbieżny p.w.?

7. Niech $\mathbb{P}(X_n=n)=\mathbb{P}(X_n=-n)=\frac{1}{n^3}, \mathbb{P}(X_n=0)=1-\frac{2}{n^3}.$ Pokaż, że $\sum_{n=1}^{\infty}X_n$ jest zbieżny p.n., chociaż $\sum_{n=1}^{\infty}\mathrm{Var}(X_n)=\infty.$

8. Niech $\{X_n\}$ będzie ciągiem niezależnych zmiennych losowych takich, że $X_n \sim \mathrm{U}[1/n,1]$. Pokazać, że ciąg $\frac{1}{n}\sum_{i=1}^{n}X_{i}$ jest zbieżny p.n. i wyznacz jego granicę.

9. Niech $\{X_n\}_{n=1}^{\infty}$ będzie ciągiem niezależnych zmiennych losowych o rozkładach:

$$\mathbb{P}(X_n = n) = \mathbb{P}(X_n = -n) = 1/n , \quad \mathbb{P}(X_n = 0) = 1 - 1/n .$$

Czy ciąg $\{X_n\}_{n=1}^{\infty}$ spełnia SPWL, czy spełnia MPWL?

 10^* . Zbadaj zbieżność szeregu $\sum_{n=1}^{\infty} X_n$, jeśli $\{X_n\}_{n=1}^{\infty}$ jest ciągiem niezależnych zmiennych losowych o rozkładzie

$$\mathbb{P}(X_n = a_n) = \mathbb{P}(X_n = -a_n) = 1/2$$

dla pewnego ciągu $\{a_n\}_{n=1}^{\infty}$.

11. Obliczyć granice:

a)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \int_{[0,2]^n} \sqrt{\sum_{i=1}^n x_i^4} dx_1 \dots dx_n;$$

b)
$$\lim_{n\to\infty} \frac{1}{\sqrt{n}} \int_{[0,1]^n} \frac{\sum_{i=1}^n x_i^i}{\sum_{i=1}^n x_i^2} dx_1 \dots dx_n;$$

12. Niech $f: [0,1] \to \mathbb{R}$ będzie funkcją ciągłą. Obliczyć granice:

a)
$$\lim_{n\to\infty} \int_{[0,1]^n} f\left(\frac{1}{n}\sum_{i=1}^n x_i^2\right) dx_1 \dots dx_n;$$

b)
$$\lim_{n\to\infty} \int_{[0,1]^n} f\left(\sqrt[n]{\prod_{i=1}^n x_i}\right) dx_1 \dots dx_n$$
.

13. Definiujemy ciąg zmiennych losowych w następujący sposób: niech X_0 ma rozkład jednostajny na [0,1], dla $n \ge 1$, X_{n+1} na rozkład jednostajny na $[0,X_n]$, tzn $X_{n+1} = U_{n+1}X_n$, gdzie $\{U_n\}$ jest ciągiem niezależnych zmiennych losowych o rozkładzie U(0,1). Pokaż, że granica

$$\lim_{n \to \infty} \frac{1}{n} \log X_n$$

istnieje p.n. i znajdź jej wartość.