Introduction to Beamer

Firstname Lastname

Department of Computer Science and Engineering IIT Bombay. Powai, Mumbai - 400076 userid@cse.iitb.ac.in

October 31, 2019

This is the title

Beamer is a Late Class for preparing presentations.

- 1 Slides are called frames in Beamer.
- This is the usual ordered list in LaTeX.
- Following slides will contain random content which will show you various ways of using it. You need to replicate it.
- Of course! we will give you boilerplate code!

2/7

Type Rules

Figure: This is the caption.

Type Rules

- A substitution is a list of pairs denoted as $S = \{\alpha_1/\tau_1...\alpha_n/\tau_n\}$.
- A substitution S applied on a type expression σ , denoted by $S(\sigma)$ involves simultaneous substitution of the variables $\alpha_1 \dots \alpha_n$, if they occur free in σ , by the corresponding type expressions $\tau_1 \dots \tau_n$.

Definition

Let $\sigma = \forall \alpha_1 \dots \alpha_m \cdot \tau$ and $\sigma' = \forall \beta_1 \dots \beta_n \cdot \tau'$. Then σ' is a generic instance of σ , iff there is a substitution S acting only on $\{\alpha_1 \dots \alpha_m\}$ such that $\tau' = \mathsf{S}(\tau)$ and no β_i is free in σ .

• Clearly, the restriction that no β_i is free in σ is needed, else we would have absurdities like $\alpha \to Int \le \forall \alpha.\alpha \to Int$.

Recapitulation – Type rules for λ_2

$$\Gamma \cup \{x :: \sigma\} \vdash x :: \sigma \tag{Var}$$

$$\Gamma \cup \{c :: \sigma\} \vdash c :: \sigma \tag{Con}$$

$$\frac{\Gamma \vdash M :: \sigma \qquad \sigma' \ge \sigma}{\Gamma \vdash M :: \sigma'} \tag{Inst}$$

$$\frac{\Gamma \vdash M :: \sigma \qquad \alpha \notin FV(\Gamma)}{\Gamma \vdash M :: \forall \alpha.\sigma}$$
 (Gen)

$$\frac{\Gamma \vdash M :: \tau_1 \to \tau_2 \qquad \Gamma \vdash N :: \tau_1}{\Gamma \vdash M :: \sigma'}$$
 (M-APP)

$$\frac{\Gamma, x :: \tau_1 \vdash M :: \tau_2}{\Gamma \vdash \lambda x.M :: \tau_1 \to \tau_2}$$
 (M-Abs)

Hindley-Milner - Type checking variables

1: t is a variable x

$$\Gamma x = \forall \alpha_1, ... \alpha_n \cdot \tau$$

- $\beta_1, ..., \beta_n$ are fresh variables.
- Reason for monomorphising the type of *x*: We try to find the type of a variable only in the context of an application, and our application is monomorphic.

6/7

Hindley-Milner - Type checking applications

- 1 Typecheck e_1 with the initial environment Γ . Result is τ_1 and θ_1 .
- 2 Typecheck e_2 with the environment $\theta_1\Gamma$. Result is τ_2 and θ_2 .
- 3 Unify $\theta_2 \tau_1$ and $\tau_2 \to \alpha$. Assume that unifier is θ . And the unified term $(\theta \alpha)$ is τ_3 .
- 4 Type of the application is τ_3 and the final substitution is $\theta \circ \theta_2 \circ \theta_1$.