Twitter Sentiment Analysis

() Hakeem Hinds

Lan Vu

Shawn Yang

hhinds3@students.kennesaw.edu

yyuxuan@students.kennesaw.edu

lvu4@students.kennesaw.edu

Sentiment Analysis

- Allows us to extract insights from text data
- Determining whether an opinion or text is negative, neutral, or positive
- Neutral text usually have no significance
- Helping understand public opinion, customer feedback, and trends in real-time

Logistic Regression in Sentiment Analysis

Machine learning algorithms, such as logistic regression, are leveraged to assess sentiment accuracy and make informed decisions.

Logistic regression is applied to classify sentiment in Twitter data, providing statistical insights into public opinions.

Naive Bayes Algorithm in Sentiment Analysis

TF-IDF

Term Frequency: Number of times t occurs in a sentence TF-IDF: measures the importance of a word

```
tf(t,d) = count of t in d / number of words in d
df(t) = N(t)
```

```
df(t) = Document frequency of a term t
N(t) = Number of documents containing the term t
```

$$idf(t) = log(N/df(t))$$

where

Unprocessed Data

0 1467810369 Mon Apr 06 22:19: NO_QUERY TheSpecialOne_ @switchfoot http: 0 1467810672 Mon Apr 06 22:19: NO_QUERY scotthamilton is upset that he 0 1467810917 Mon Apr 06 22:19: NO_QUERY mattycus @Kenichan I dived 0 1467811184 Mon Apr 06 22:19: NO_QUERY ElleCTF my whole body fee 0 1467811193 Mon Apr 06 22:19: NO_QUERY Karoli @nationwideclass 0 1467811372 Mon Apr 06 22:20: NO_QUERY joy_wolf @Kwesidei not the	target	id		date	flag	username	tweet
0 1467811592 Mon Apr 06 22:20: NO_QUERY mybirch Need a hug 0 1467811594 Mon Apr 06 22:20: NO_QUERY coZZ @LOLTrish hey lo 0 1467811795 Mon Apr 06 22:20: NO_QUERY 2Hood4Hollywood @Tatiana_K nope t 0 1467812025 Mon Apr 06 22:20: NO_QUERY mimismo @twittera que me		1467810672 1467810917 1467811184 1467811193 1467811372 1467811592 1467811594 1467811795	Mon Apr Mon Apr Mon Apr Mon Apr Mon Apr Mon Apr Mon Apr Mon Apr	06 22:19: 06 22:19: 06 22:19: 06 22:20: 06 22:20: 06 22:20: 06 22:20:	NO_QUERY NO_QUERY NO_QUERY NO_QUERY NO_QUERY NO_QUERY NO_QUERY NO_QUERY NO_QUERY	scotthamilton mattycus ElleCTF Karoli joy_wolf mybirch coZZ 2Hood4Hollywood	is upset that he @Kenichan I dived my whole body fee @nationwideclass @Kwesidei not the Need a hug @LOLTrish hey lo @Tatiana_K nope t

Bar chart of positive and negative tweets

Preprocess/ Data Splitting

- Stemming is the process of eliminating characters, prefixes, suffix resulting in the root word
- Splitting the data into 80% training data and 20% testing data

```
stop_words = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're"]
def preprocess_text(content):
    content = re.sub('[^a-zA-Z]', ' ', content).lower().split()
    return ' '.join([word for word in content if word not in stop_words])
    preprocess_udf = udf(preprocess_text, StringType())
```

```
(train_data, test_data) = data.randomSplit([0.8, 0.2], seed=93)
```

Image after Stemming

target	id		date	flag	username	tweet	clean_tweet
	1467810369 Moi 1467810672 Moi		Y.			-	switchfoot http t upset update face
	1467810917 Moi 1467811184 Moi	NO. 01 (1997) (1997) (1997)					kenichan dived ma whole body feels
	1467811193 Moi 1467811372 Moi	0.00			Karoli	@nationwideclass	nationwideclass b kwesidei whole crew
j 0	1467811592 Moi 1467811594 Moi	n Apr 06	22:20:	NO_QUERY	mybirch	Need a hug	need hug loltrish hey long
0		on Apr 06	22:20:	NO_QUERY	2Hood4Hollywood		tatiana k nope twittera que muera

Logistic Regression Model

```
lr = LogisticRegression(maxIter=2000, featuresCol='features', labelCol='target')
lr pipeline = Pipeline(stages=[tokenizer, remover, hashingTF, idf, lr])
lr model = lr pipeline.fit(train data)
lr train predictions = lr model.transform(train data)
lr test predictions = lr model.transform(test data)
lr evaluator = MulticlassClassificationEvaluator(labelCol="target", predictionCol="prediction", metricName="accuracy")
lr train accuracy = lr evaluator.evaluate(lr train predictions)
lr test accuracy = lr evaluator.evaluate(lr test predictions)
print(f"\nLogistic Regression - Training Accuracy: {lr train accuracy*100:.2f}%")
print(f"Logistic Regression - Testing Accuracy: {lr test accuracy*100:.2f}%")
Logistic Regression - Training Accuracy: 75.95%
Logistic Regression - Testing Accuracy: 75.30%
```

Naive Bayes Multinomial Model

```
nb = NaiveBayes(smoothing=1.0, modelType="multinomial", featuresCol='features',
nb_pipeline = Pipeline(stages=[tokenizer, remover, hashingTF, idf, nb])
nb_model = nb_pipeline.fit(train_data)
nb_train_predictions = nb_model.transform(train_data)
nb_test_predictions = nb_model.transform(test_data)
nb_evaluator = MulticlassClassificationEvaluator(labelCol="target", predictionCol="prediction", metricName="accuracy")
nb_train_accuracy = nb_evaluator.evaluate(nb_train_predictions)
nb_test_accuracy = nb_evaluator.evaluate(nb_test_predictions)
print(f"\nNaive Bayes - Training Accuracy: {nb_train_accuracy*100:.2f}%")
print(f"Naive Bayes - Testing Accuracy: {nb_test_accuracy*100:.2f}%")
```

Naive Bayes - Training Accuracy: 74.13% Naive Bayes - Testing Accuracy: 73.60%

```
("I hate him",),
    ("You wouldn't believe what he said to me",),
    ("Two scoop kinda day.",),
    ("I cannot decide if I like or hate this product.",),
    ("Yes",)
], ["tweet"])
new tweets = new tweets.withColumn("clean tweet", preprocess udf(col("tweet")))
nbnew tweets = nb model.transform(new tweets) # Predict using the Naive Bayes model
nbnew tweets.select("tweet", "prediction").show()
new tweets = new tweets.withColumn("clean tweet", preprocess udf(col("tweet")))
1rnew tweets = 1r model.transform(new tweets) # Predict using the Naive Bayes model
lrnew tweets.select("tweet", "prediction").show()
             tweet prediction
          I hate him
                           0.0
You wouldn't beli...
                           0.0
Two scoop kinda day.
                           0.0
I cannot decide i...
                           0.0
                 Yes
                           1.0
             tweet prediction
          I hate him
                           0.0
You wouldn't beli...
                           0.0
Two scoop kinda day.
                           0.0
I cannot decide i...
                           0.0
                 Yes
                           1.0
```

new tweets = spark.createDataFrame([

Sources

https://www.geeksforgeeks.org/understanding-tf-idf-term-frequency-inverse-document-frequency/