Let V be a unitary local system on X-D, and let E be its canonical extension. A weight filtration on the complex $DR_D(E,\nabla)$ has been defined and studied in [?]. We give a review here:

For simplicity, assume each component of D is smooth. For m>0, let D_m be the union of m-fold intersection of components of D. Let $\tilde{D_m}$ be the disjoint union of components of D_m , and let $v_m: \tilde{D_m} \to X$ be the composition of projection onto D_m and the inclusion map. $\tilde{C_m}:=v_m(D_{m+1})$ is either empty or a normal crossing divisor in $\tilde{D_m}$.

Residue map For each $m \le p \le \dim D_m$, there exists a residue map

$$\operatorname{Res}_m: \Omega^p_X(\log D) \to v_{m*}(\Omega^{q-m}_{\tilde{D_m}})$$

This map is defined as the following:

Let D_{m1} be one component of D_m , as the intersection of D_{i1}, \cdots, D_{im} . Then, the map Res_m sends dz_i/z_i to 1 if i appears in i_1, \cdots, i_m , and Res_m sends all other 1-form to 0. It can be checked that this map is well-defined independent of the chosen coordinate. Futhermore, this map commutes with exterior derivative d, making it a homomorphism of complexes

$$\operatorname{Res}_m: \Omega_X^{\boldsymbol{\cdot}}(\log D) \to v_{m*}(\Omega_{\tilde{D_m}}^{\boldsymbol{\cdot}}(\log \tilde{C_m})[-m]$$

Restriction of j_*V on D_m

 D_{m+1}

Theorem 1. [?]

- 1. $V_m := j_*V|_{D_mD_{m+1}}$ is a unitary local system on D_m D_{m+1} .
- 2. There exist a unique subvector bundle E_m of v_m^*E and a unique holomorphic integrable connection ∇_m on E_m with logarithmic poles along $\tilde{C_m}$ such that

$$\ker \nabla_m|_{\tilde{D_m}\tilde{C_m}} = v_m^{-1}V_m$$

- 3. (E_m, ∇_m) is the canonical extension of $v_m^{-1}V_m$.
- 4. There exists a unique subvectorbundle M_m^* of v_m^*M with

$$M_m \oplus M_m^* = v_m^* M$$

such that for $\tilde{x} \in \tilde{D_m}$ $\tilde{C_m}$

$$M_{m,\tilde{x}}^* = {v_m}^*(\{\sigma \in M_{v_m(\tilde{x})} | (\sigma,\tau) = 0 \text{ for all } \tau \in j_*(V)_{v_m(\tilde{x})}\})$$

The residue map and the decomposition of v_m^*E into $E_m \oplus E_m^*$ enables us to define the following variation of residue map

$$\begin{split} \operatorname{Res}_m(E): \Omega_x^p(\log D) \otimes E & \xrightarrow{\operatorname{Res}_m \otimes \operatorname{id}} v_{m*}(\Omega_{\tilde{D_m}}^{p-m}(\log \tilde{C_m})) \otimes E & = v_{m*}(\Omega_{\tilde{D_m}}^{p-m}(\log \tilde{C_m}) \otimes v_m^*E) \\ & \xrightarrow{\operatorname{id} \otimes p_m} v_{m*}(\Omega_{\tilde{D_m}}^{p-m}(\log \tilde{C_m}) \otimes E_m) \end{split}$$

where p_m is the projection onto the \mathcal{M}_m component.

Lemma 1. [?] $Res_m(E) \circ \nabla = \nabla_m \circ Res_m(E)$, i.e. $Res_m(E)$ is homomorphism of complexs

$$DR_D(E, \nabla) \to v_{m*} DR_{\tilde{C_m}}(E_m, \nabla_m)[-m]$$

Weight Filtration The weight filtration W_m on $DR_D(E, \nabla)$ is defined as

$$W_m(DR_D(E, \nabla)) = \ker \operatorname{Res}_{m+1}(E) \text{ if } m \ge 0$$

 $W_m(DR_D(E, \nabla)) = 0 \text{ if } m < 0$

Proposition 1. [?]

- $W_{\cdot}(DR_D(E, \nabla))$ is an increasing filtration.
- $Res_m(E)$ induces an isomorphism

$$Gr_m^W(DR_D(E,\nabla)) \to v_{m*}(W_0(DR_{\tilde{C_m}}(E_m,\nabla_m)))$$

 $W_0(DR_D(E,\nabla))$ was studied by Timmerscheidt in the Appendix D of [?]. The interesting thing about $W_0(DR_D(E,\nabla))$ is that it defines a Hodge structure on j_*V .

Theorem 2. [?]

- 1. $W_0(DR_D(E,\nabla))$ is a resolution of j_*V .
- 2. The spectral sequence

$$E_1^{p,q} := H^q(X, W_0^p(DR_D(E, \nabla))) => \mathbb{H}^{p+q}(X, j_*V)$$

degenerates at E_1 .

3. There exists a conjugate linear isomorphism

$$H^q(X, W_0^p(DR_D(E, \nabla))) \cong H^p(X, W_0^q(DR_D(N, \nabla)))$$

where N is the canonical extension of V^{\vee} .

Proposition 2. [?](1.5) Suppose U is an affine manifold. Let \mathcal{L} be any local system on U. Then

$$H^k(U, \mathcal{L}) = 0$$

for $k > \dim X$.

Therefore, back in our situation

Proposition 3. Suppose U := X - D is affine. Then

$$H^q(X, W_0^p(DR_D(E, \nabla))) = 0$$

for $p + q > \dim X$.

Theorem 3. Suppose $D_m - D_{m+1}$ is affine for each m. Then

$$H^q(X, DR_D^p(E, \nabla)) = 0$$

for $p + q > \dim X$.

Proof. Consider the weight filtration W_{\cdot} on $DR_D(E, \nabla)$, we show that for all $m \geq 0$,

$$H^q(X, W_m^p) = 0$$

for $p + q > \dim X$.

For m = 1, consider the exact sequence

$$0 \to W_0 \to W_1 \to W_1/W_0 \to 0$$

by ??,

$$W_1/W_0 \cong W_0(DR_{\tilde{C}_1}(E_1, \nabla_1))[-1]$$

Take cohomology sequence of the above exact sequence, one gets

$$\cdots \to H^q(X, W_0^p) \to H^q(X, W_1^p) \to H^q(\tilde{D_1}, W_0^{p-1}(DR_{\tilde{C_1}}(E_1, \nabla_1))) \to \cdots$$

Therefore, by the result for W_0 , one has

$$H^q(X, W_1^p) = 0$$

for $p + q > \dim X$.

Repeat this process for all $m = 2, 3, \cdots$

Suppose $Y=\operatorname{Spec} A$ is a smooth affine variety, and Z is a smooth Weil divisor then Z is defined by one equation $f\in H^0(Y,O_Y)$. Therefore, $Y-Z=\operatorname{Spec} A_f$ is an affine variety.

Corollary 1. Let $D = D_1 + \cdots + D_s$ be a simple normal crossing divisor on X such that D_s is very ample, and $D_s \cap D_i \neq \emptyset$. Let V be a unitary local system on X - D, and let E be its canonical extension. Then,

$$H^q(X, DR_D^p(E, \nabla)) = 0$$

for $p+q>\dim X$

1 Vanishing Theorem

Lemma 2. Suppose B is a smooth divisor transversal to D. Then, there is short exact sequence

$$0 \to \Omega_X^p(\log D + B) \xrightarrow{i} \Omega_X^p(\log D) \otimes O_X(B) \xrightarrow{r} \Omega_B(\log D \cap B) \otimes O_X(B) \to 0$$

where i is the inclusion map, and r is the restriction map.

Lemma 3. Suppose B is a smooth divisor transversal to D. Then, $E_B := E \otimes O_B$ is the canonical extension of $V_B := V|_{B-B \cap D}$.

Theorem 4. Suppose L is very ample on X. Then

$$H^q(X, E \otimes \Omega_X^p(\log D) \otimes L) = 0$$

for $p + q > \dim X$

Proof. Tensor the exact sequence in $\ref{eq:proof}$ by E, and take cohomology long exact sequence. By the topological vanishing proved in the previous section, it remains to show

$$H^q(B, E \otimes \Omega^p_B(\log D \cap B) \otimes O_X(B)) = 0$$

for $p + q > \dim X$.

Then, by inducting on the dimension of X and $\ref{eq:X}$, one may assume that X is a curve.

In the curve case, one only needs to show

$$H^1(X, E \otimes \Omega^1_X(\log D) \otimes O_X(B)) = 0$$

But if X is curve, then $\Omega_X^1(\log D) \otimes O_X(B) = \Omega_X^1(\log D + B)$. Therefore, the above follows from the topological vanishing proved in the previous section. \square

Now suppose L is any ample line bundle. Let m be an integer such that $L^{\otimes m}$ is very ample. Take a smooth divisor B transversal to D such that $L^{\otimes m} \cong O_X(B)$. Let φ be the local equation of B on some affine open set, and let $\pi: X^{prime} \to X$ be the normalization of X in $\mathbb{C}(X)(\varphi^{\frac{1}{m}})$.

Proposition 4. 1. X^{prime} is smooth.

- 2. $\pi^* B = m\tilde{B}$. $\tilde{B} = \pi^* B)_{red}$.
- 3. $D' := \pi^* D$ is a normal crossing divisor on X^{prime} .
- 4. \tilde{B} is transversal to π^*D .
- 5. $\pi^* \Omega_X(\log D) = \Omega_X^{prime}(\log D')$.
- 6. π^*E is the canonical extension of $\pi^{-1}V$.

Proof. Choose $x \in X - D$. If $x \in B$, then let U be a polycylinder around x with coordinate $(z_1, \dots, z_r, \dots, z_n)$, such that if $D \cap U \neq \emptyset$, then $D \cap U$ is defined

by $\prod_{i=1}^r z_i$ and B is defined by $z_n = 0$. Then, $\pi^{-1}(U)$ is a branched cover over U.

Write $\pi^{-1}(U) = \bigcup_{i=1}^r U_i'$, where U_i' is a polycylinder with coordinate $(w_1, \dots, w_r, \epsilon_i w_n)$, where $w_i = z_i$ for i < n, ϵ_i is a primitive m-th root of unity, and w_n is a fixed branch of $z_n^{1/m}$.

Alternatively, one can think of $\pi^{-1}(U)$ as the product

$$\Delta_1 \times \cdots \times \Delta_{n-1} \times \Sigma^m$$

where each Δ_i is complex disk, and Σ^m is the m-sheeted cover over Δ branched over the origin.

If $x \notin B$, then $\pi^*(U)$ is etale over U. Then, 1, 2, 3 and 4 are clear.

5. Let $T:\pi_1(U-D,x)\to \mathrm{GL}(r,\mathbb{C})$ be the representation corresponding to the local system V.

Case 1: Suppose $x \notin B$, then $\pi^{-1}(U)$ is etale over U. Let U' be an component of $\pi^{-1}(U)$, and let $x' \in U'$ be a preimage of x. Then, $T' : \pi_1(U' - D', x') \xrightarrow{\pi_*} \pi_1(U - D, x) \xrightarrow{T} \operatorname{GL}(r, \mathbb{C})$ is the representation corresponding to $\pi^{-1}V$.

Let γ_i be a small circle around D_i , and let Γ_i be the monodromy $T(\gamma_i)$. Let N_1, \cdots, N_s be commuting matrices with eigenvalue in the stripe $\{z \in \mathbb{C} | 0 \leq \text{Re}z < 1\}$ such that $e^{-2\pi i N_i} = \Gamma_i$. Let U be small enough, so that $E_U \cong O_U^r$, then, ∇_E over U can be written as

$$d + \sum_{i=1}^{s} N_i \frac{dz_i}{z_i}$$

Let γ_i' be a small circle around D_i' . Then, $\pi_*(\gamma_i') = \gamma_i$. π^*E is trivial over U', and the lifted connection $\pi^*\nabla_E$ over U' can be written as

$$d + \sum_{i=1}^{s} N_i \frac{dw_i}{w_i}$$

Therefore, π^*E is the canonical connection of $\pi^{-1}V$.

Case 2: Supposes $x \in B$, then $U' := \pi^{-1}(U)$ is a branched cover over U. Let x' be the preimage of x. Then, $T' : \pi_1(U' - D', x') \xrightarrow{\pi_*} \pi_1(U - D, x) \xrightarrow{T} \operatorname{GL}(r, \mathbb{C})$ is the representation corresponding to $\pi^{-1}V$.

The fundamental group $\pi_1(U' - D', x')$ in this case is also generated by small circles around D', because we can simply contract every polydisk or branched cover of a ploydisk after s to a point and ignore their contribution to the fundamental group.

The rest of the argument goes though like in Case 1.

Corollary 2. For any ample line bundle L on X,

$$H^q(X, E \otimes \Omega_X^p(\log D) \otimes L) = 0$$

for $p + q > \dim X$

Proof. Let m, B and $\pi: X' \to X$ be as above. By ??

$$H^q(X', \pi^*(E \otimes \Omega_X^p(\log D) \otimes L)) = 0$$

for $p + q > \dim X' = \dim X$.

 $\pi:X'\to X$ is a finite morphism, so for i>0, $R^i{=}_*0$ for any coherent sheaf. This implies

$$\begin{split} &H^q(X', \pi^*(E \otimes \Omega_X^p(\log D) \otimes L)) \\ &= H^q(X, \pi_*(\pi^*(E \otimes \Omega_X^p(\log D) \otimes L))) \\ &= H^q(X, \pi_*(O_Y) \otimes E \otimes \Omega_X^p(\log D) \otimes L) = 0 \end{split}$$

for $p+q>\dim X$. The second equality follows from the projection formula.

As
$$\pi_*(O_Y) \cong \bigoplus_{i=0}^{m-1} O_X(-L^{\otimes i})$$
, the result follows. \square

[?] [?]