A Project on Computer Graphics

3D Mirror

By:

Aashish Poudel (060BEX401)

Anup Shrestha (060BEX405)

Bikash Sharma (060BEX407)

Objectives

- Utilize various techniques and algorithms of Computer Graphics.
- Draw output primitives such as line, circle, ellipse, polygons and use them to draw various 3D shapes.
- To be able to understand 3D object representation using polygon tables including vertex table, edge table and surface table.
- Become familiar with attributes of objects like line type, color, fill styles, fill color etc.

Objectives...

- To simulate the mirror reflection of some specific 3D objects.
- Perform various 3D transformations like rotation, scaling on objects and view their corresponding changes in mirror image.
- Understand algorithms for visible surface detection.
- Understand algorithms on Illumination Models and Surface Rendering Methods such as Diffuse Reflection, Specular Reflection, Ambient Reflection and Polygon rendering methods such as Constant Intensity Shading.

Introduction

- Computers powerful tool for rapid and economical creation of 2D and 3D graphics.
- Simulation of virtual 3D world can be done in a 2D computer screen.
- Used in science, engineering, medicine, business, industry, government, art, entertainment, advertising, education and trainings, in user interface, data visualization, television, commercials, motion pictures, simulation and much more.

Introduction to 3D Mirror

- This project visualization of different 3D objects from the Z axis and their mirror images in a 3D world.
- 3D objects are modeled by using vertex and surface tables.
- Algorithms like hidden surface detection and different lighting models are used for improving the realism.

Vertex and Surface Table

- Vertex Table
 - stores the coordinates of the vertices. i.e. x,
 y, z and w (homogenous)
- Surface table
 - 4 vertices of the surface
 - ABCD parameters
 - color value of surface

Visible Surface Detection

- 'Back-Face Detection' algorithm is used.
- Here the A, B, C, D parameters are calculated using the three vertices taken in anticlockwise order and solving the matrices.
- If V be a vector in viewing direction from the eye position then the surface faces backwards if V.N>0.
- Here viewing direction is towards negative Z axis. So V.N=-C

Visible Surface Detection ...

- So the surface with 'negative C' indicates that the back face of the object is seen and we do not draw it. Only the surface with 'positive C' is drawn.
- The painter's algorithm has been implemented in vessel by sorting all the surfaces in a scene according to their distance from viewplane.

Illumination and Surface Rendering

- Basic Illumination Models
- Diffuse Reflection
 - Fraction of incident light that is diffusely reflected can be set for each surface with parameter 'd'
 - d = N.L/|N||L|
- Specular Reflection / Phong Model
 - Result of reflection of the incident light from a concentrated region.
 - s = (2*d*C)/|N|

Transformations

- Rotation
 - About all 3 Cartesian axes simultaneously.
 - Matrix multiplication
- Scaling
 - from 0 to 2 times of original size.
- Dragging / Translation
 - Left mouse button to drag left, right, up, down.
 - Right mouse button to drag in/out.

Reflection about Mirror

- The Image tracks all the transformation in the real object.
 - Rotation and Scaling
 - Rotation about x & y axes result in opposite rotation of image.
 - Rotation about z axes result in same effect in image.
 - Scaling changes the size of both object and image
 - Dragging in all 6 directions
 - Dragging sideways (left, right, up, down)
 - Dragging in/out

Methodology and Development Tools used

- Object oriented approach is chosen for this project.
- Event driven programming is also necessary to increase the user interactivity
- The development tool used for this purpose in our project is 'Visual C#.NET"

Problems Faced and Solutions

- The programming language 'C#.NET' was itself new for us.
- constructing Polygon tables.
 - Unable to use 'Edge table' due to the limited use of **pointers** in C#.
 - So we used only 'Vertex and Surface tables'.
- visible surface detection
 - working on the 'Z-buffer' algorithm was slow and didn't produce good results.
 - Instead we used 'back-face detection' algorithm

Future Enhancement

- Due to time limitation and the gravity of the theory involved in Computer Graphics
 - Implementation of efficient visible surface detection algorithm for removing hidden surfaces.
 - Shadow implementation.
 - Gouraud or Phong Shading for Surface Rendering.
 - Different View plane of looking the object.
 - A better Perspective Projection algorithm for both object and image.

Conclusion

- In a limited time, we tried our best to utilize most of the graphics algorithm for 3-D drawing and rendering.
- We learned many techniques and algorithms used in Computer Graphics field.
- knowledge of C++ and graphics theory was crucial for implementing the graphics techniques in 'C#.NET' platform.

References

- Computer Graphics, 2nd Edition Donald Hearn, M. Pauline Baker
- Professional C#, 3rd Edition Simon Robinson, Christian Nagel, Jay Glynn, Morgan Skinner, Karli Watson, Bill Evjen
- SAMS Teach Yourself C#.NET in 24 days.
- www.google.com
- Oreilly C#.Net Programming, 2nd Edition –
 By Jesse Liberty

Suggestions/Questions???

