Verification of Deep Convolutional Neural Network using ImageStars

The experimental results of the paper consist of three main parts

- 1. Comparison of the Zonotope, Polytope and ImageStar methods on three MNIST networks.
- 2. Comparison of the Polytope and ImageStar methods on VGG16 and VGG19.
- 3. Comparison of the exact and approximate scheme of the ImageStar methods on VGG16 and VGG19.

Requirements for reproducing the results

- 1. Matlab 2019b
- 2. A Computer with > 60 GiB RAM. Note that a computer with smaller RAM cannot be used to reproduce all the results in the paper.

Install NNV

- 1. Clone NNV: git clone https://github.com/verivital/nnv
- 2. Install NNV:
 - Open Matlab
 - Go to code/nnv/
 - Run install.m

Reproduce Part I

- 1. Produce Figure 8.
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/MNIST_NETS/Small
 - Run plot_ranges.m
- 2. Produce Table 1.
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/MNIST_NETS/Small
 - Run compare_star_absdom.m
- 3. Produce Table 2.
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/MNIST_NETS/Medium
 - Run compare_star_absdom.m
- 4. Produce Table 3.
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/MNIST_NETS/Large
 - Run compare_star_absdom.m
- 5. Produce Figure 13 in Appendix
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/MNIST_NETS/Architecture
 - Run plot_network_architectures.m

Note for repoducing Part I:

When producing Table 1, 2, and 3, in the case that the reviewer run into "out of memory" problem, we suggest the reviewer to run the short version of the results by running

"compare_star_absdom_short.m" for each table. This script will produce a small version of the full result.

Reproduce Part II

- 1. Produce Table 4, VGG16 part
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG16/Compare_Polytope_ImageStar/
 - Run verify_VGG16.m
- 2. Produce Table 4, VGG19 part
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG19/Compare_Polytope_ImageStar/
 - Run verify_VGG19.m

Reproduce Part III

- 1. Produce Table 5, VGG16 part
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG16/Compare_Exact_vs_Approx
 - Run verify_robustness_delta_e_07.m and verify_robustness_delta_2e_07.m
- 2. Produce Table 5, VGG19 part
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG19/Compare_Exact_vs_Approx
 - Run verify_robustness_delta_e_07.m and verify_robustness_delta_2e_07.m
- 3. Produce Figure 9
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG19/Plot_Figures
 - Run plot_vgg19_exact_range.m
- 4. Produce Figure 10
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG19/Plot_Figures
 - Run plot_vgg19_counter_example.m
- 5. Produce Figure 11
 - Go to code/nnv/example/Submission/CAV2020 ImageStar/VGG19/Plot Figures
 - Run plot_vgg19_reachTime.m
- 6. Produce Figure 12
 - Go to code/nnv/example/Submission/CAV2020_ImageStar/VGG19/Plot_Figures
 - Run plot_vgg19_inputSize_effect.m