Refine Search

Search Results -

 Terms
 Documents

 5122467.pn.
 1

fh

US Pre-Grant Publication Full-Text Database

US Patents Full-Text Database
US OCR Full-Text Database

Database:

EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:

21		
······································	MANAGE.	

Refine Search

88	988	92000	0000000	99888 25 8	2000000000	0.0000000000	0000000
	-					990 mm	20000
	1	' DI	nai	100 E	Y T	0000000	000000
	***		****	***	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	200	00000					000000

Interrupt

Search History

DATE: Thursday, October 07, 2004 Printable Copy Create Case

Set Name side by side	Query	Hit Count	Set Name result set
•	PLUR=YES; OP=OR		
<u>L21</u>	5122467.pn.	1	<u>L21</u>
<u>L20</u>	5650554.pn.	1	<u>L20</u>
<u>L19</u>	5714474.pn.	1	<u>L19</u>
<u>L18</u>	5614474.pn.	1	<u>L18</u>
<u>L17</u>	5543576.pn.	1	<u>L17</u>
<u>L16</u>	6753459.pn.	1	<u>L16</u>
DB=EPAB,	IPAB,DWPI,TDBD; PLUR=	YES; OP=OR	
<u>L15</u>	seed and 110	3	<u>L15</u>
<u>L14</u>	see and 110	2	<u>L14</u>
<u>L13</u>	seed and L12	2	<u>L13</u>
<u>L12</u>	rennin	238	<u>L12</u>
<u>L11</u>	rennin L10	340	<u>L11</u>
<u>L10</u>	chymosin	143	<u>L10</u>
<u>L9</u>	11	C	<u>L9</u>

DB = USPT	T; PLUR=YES; OP=OR		
<u>L8</u>	aqueous and L7	27	<u>L8</u>
<u>L7</u>	fraction and 16	31	<u>L7</u>
<u>L6</u>	purify and 14	42	<u>L6</u>
<u>L5</u>	purify and 11	165	<u>L5</u>
<u>L4</u>	seed and 11	110	<u>L4</u>
<u>L3</u>	11 and L2	83	<u>L3</u>
<u>L2</u>	rennin	521	<u>L2</u>
<u>L1</u>	chymosin	556	<u>L1</u>

END OF SEARCH HISTORY

Search Results -

Terms	Documents
see and L10	2

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database **EPO Abstracts Database** JPO Abstracts Database

Derwent World Patents Index IBM Technical Disclosure Bulletins

Search:

Database:

seed	and	110		į
				ŝ

Refine Search

Interrupt

Search History

DATE: Thursday, October 07, 2004 Printable Copy Create Case

Set Name	Query	Hit Count	Set Name
side by side			result set
DB=EPAB,J	PAB,DWPI,TDBD; PLUR=	YES; OP=OR	
<u>L14</u>	see and 110	2	<u>L14</u>
<u>L13</u>	seed and L12	2	<u>L13</u>
<u>L12</u>	rennin	238	<u>L12</u>
<u>L11</u>	rennin L10	340	<u>L11</u>
<u>L10</u>	chymosin	143	<u>L10</u>
<u>L9</u>	11	0	<u>L9</u>
DB = USPT;	PLUR=YES; OP=OR		
<u>L8</u>	aqueous and L7	27	<u>L8</u>
<u>L7</u>	fraction and 16	31	<u>L7</u>
<u>L6</u>	purify and 14	42	<u>L6</u>
<u>L5</u>	purify and 11	165	<u>L5</u>
<u>L4</u>	seed and 11	110	<u>L4</u>
<u>L3</u>	l1 and L2	83	<u>L3</u>
<u>L2</u>	rennin	521	<u>L2</u>

<u>L1</u> chymosin

556 <u>L1</u>

END OF SEARCH HISTORY

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 21 through 27 of 27 returned.

☐ 21. Document ID: US 5891650 A

L8: Entry 21 of 27

File: USPT

Apr 6, 1999

US-PAT-NO: 5891650

DOCUMENT-IDENTIFIER: US 5891650 A

** See image for <u>Certificate of Correction</u> **

TITLE: Kinase receptor activation assay

DATE-ISSUED: April 6, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Godowski; Paul J. Burlingame CA
Mark; Melanie R. Burlingame CA
Sadick; Michael D. El Cerrito CA
Shelton; David L. Pacifica CA

Wong; Wai Lee Tan Los Altos Hills CA

US-CL-CURRENT: 435/7.21; 435/15, 435/7.4, 435/7.94, 436/501, 436/518, 436/531, 436/548, 530/388.22, 530/388.26, 530/389.6

Full | Title | Citation | Front | Review | Classification | Date | Reference | Market | Market | Market | Claims | KVMC | Draw, De

☐ 22. Document ID: US 5889189 A

L8: Entry 22 of 27

File: USPT

Mar 30, 1999

US-PAT-NO: 5889189

DOCUMENT-IDENTIFIER: US 5889189 A

TITLE: Process for protein production in plants

DATE-ISSUED: March 30, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Rodriguez; Raymond L. Davis CA

US-CL-CURRENT: 800/320; 435/320.1, 435/69.1, 435/69.8, 536/23.5, 536/23.6, 536/24.1, 800/288, 800/320.1, 800/320.2, 800/320.3

US-PAT-NO: 5888789

DOCUMENT-IDENTIFIER: US 5888789 A

TITLE: Process for protein production in plants

DATE-ISSUED: March 30, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Rodriguez; Raymond L. Davis CA

US-CL-CURRENT: $\underline{435}/\underline{69.1}$; $\underline{435}/\underline{320.1}$, $\underline{435}/\underline{419}$, $\underline{435}/\underline{420}$, $\underline{435}/\underline{431}$, $\underline{435}/\underline{468}$, $\underline{435}/\underline{69.8}$, $\underline{435}/\underline{70.1}$, $\underline{530}/\underline{412}$, $\underline{536}/\underline{23.6}$, $\underline{536}/\underline{24.1}$, $\underline{800}/\underline{278}$, $\underline{800}/\underline{288}$

Full Title	Citation Front	t Review	Classification	Date	Reference		Claims	KWC	Drawa Di
	·····			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************	 	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••••••••••••••••••••••••••••
□ 24.	Document I	D: US 5	766863 A						
L8: Entry	24 of 27				File: U	SPT	Jun	16,	1998

US-PAT-NO: 5766863

DOCUMENT-IDENTIFIER: US 5766863 A

TITLE: Kinase receptor activation assay

DATE-ISSUED: June 16, 1998

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY Godowski; Paul J. Burlingame CA Mark; Melanie R. Burlingame CA Sadick; Michael D. El Cerrito CA Shelton; David L. Pacifica CA Wong; Wai Lee Tan Los Altos Hills CA

US-CL-CURRENT: $\frac{435}{7.21}$; $\frac{435}{6}$, $\frac{435}{69.1}$, $\frac{435}{7.4}$, $\frac{435}{7.94}$, $\frac{435}{975}$, $\frac{436}{501}$, $\frac{436}{518}$, $\frac{436}{531}$, $\frac{436}{548}$, $\frac{530}{388.22}$, $\frac{530}{388.26}$, $\frac{530}{389.6}$, $\frac{530}{391.3}$

Full	Title	Citation	Front	Review	Classification	Date	Reference		Claims	KWC	Drawd [

Page 3 of 4

Record List Display

L8: Entry 25 of 27

File: USPT

Jan 20, 1998

US-PAT-NO: 5709858

DOCUMENT-IDENTIFIER: US 5709858 A

TITLE: Antibodies specific for Rse receptor protein tyrosine kinase

DATE-ISSUED: January 20, 1998

INVENTOR-INFORMATION:

NAME CITY

STATE ZIP CODE COUNTRY

Godowski; Paul J.

Burlingame

Jul 22, 1997

Mark; Melanie R.

Burlingame

CA CA

Scadden; David T.

Weston

MA

File: USPT

US-CL-CURRENT: 424/143.1; 424/139.1, 435/7.4, 530/387.3, 530/387.9, 530/388.22, 530/391.1, 530/391.3

Ful	1	Title	Citation Front	Review Classification	Date	Reference	Claims	KWIC	Draw, De
***************************************		•••••	······································	······································			 ***************************************		······································
		26.	Document ID:	US 5650554 A					

US-PAT-NO: 5650554

L8: Entry 26 of 27

DOCUMENT-IDENTIFIER: US 5650554 A

TITLE: Oil-body proteins as carriers of high-value peptides in plants

DATE-ISSUED: July 22, 1997

INVENTOR-INFORMATION:

ZIP CODE NAME CITY STATE COUNTRY

Moloney; Maurice Calgary

US-CL-CURRENT: 800/288; 435/183, 435/320.1, 435/418, 435/419, 435/69.1, 435/69.2, <u>435/69.52</u>, <u>435/69.6</u>, <u>435/69.7</u>, <u>435/69.8</u>, <u>435/70.1</u>, <u>435/71.1</u>, <u>536/23.2</u>, <u>536/23.4</u>, <u>536/23.52</u>, <u>536/23.6</u>, <u>536/24.1</u>, <u>800/298</u>, <u>800/301</u>, <u>800/302</u>

Full	Title	Citation Front	Review Classification	Date	Reference			Claims	KWC	Draw, De
		`								
	•••••		***************************************	·····	***************************************		***************************************	***************************************		······································
	27.	Document ID	: US 4370267 A							
L8:	Entry	27 of 27			File: U	JSPT		Jan	25,	1983

US-PAT-NO: 4370267

DOCUMENT-IDENTIFIER: US 4370267 A

TITLE: Fractionation and isolation of 7S and 11S protein from isoelectrically precipitated vegetable protein mixtures

DATE-ISSUED: January 25, 1983

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY

Lehnhardt; William F.

Decatur

Gibson; Paul W.

Mt. Zion

ILΙL

Orthoefer; Frank T.

Decatur

IL

US-CL-CURRENT: $\underline{530}/\underline{378}$; $\underline{426}/\underline{52}$, $\underline{426}/\underline{63}$, $\underline{426}/\underline{634}$, $\underline{426}/\underline{656}$, $\underline{435}/\underline{18}$, $\underline{435}/\underline{23}$, $\underline{435}/\underline{24}$, 435/272, 530/370, 530/375, 530/376, 530/377

Full	Title	Citation	Front	Review	Classification	Date	Reference			Claims	KWIC	Draw, D
Clear	1	Genera			Print	od 200000000	wd Refs		d Refs		rate O	
O.Cu.		Conco	<i>.</i>	iccion			114 11010		4 11010]	1010 0	.00
	Ten	ms					Do	cuments				
	aqu				<u> </u>			Caments			≕ l	•

Display Format: CIT

Change Format

Previous Page

Next Page

Go to Doc#

Hit List

Clear Generate Collection Print Fwd Refs Bkwd Refs
Generate OACS

Search Results - Record(s) 1 through 2 of 2 returned.

1. Document ID: WO 9015865 A, JP 2974763 B2, AU 9058522 A, FI 9105812 A, EP 477277 A, NO 9104886 A, US 5122467 A, JP 05500301 W, US 5215908 A, EP 477277 B1, EP 477277 A4, DE 69018823 E, FI 100110 B1, CA 2058453 C

Using default format because multiple data bases are involved.

L14: Entry 1 of 2

File: DWPI

Dec 27, 1990

DERWENT-ACC-NO: 1991-022230

DERWENT-WEEK: 199953

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Purificn. of chymosin enzyme - by chromatography on phenyl sepharose resin

INVENTOR: HEINSOHN, H G; MURPHY, M B

PRIORITY-DATA: 1989US-0365944 (June 13, 1989), 1992US-0869838 (April 16, 1992)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
WO 9015865 A	December 27, 1990		020	
JP 2974763 B2	November 10, 1999		006	C12N009/64
<u>AU 9058522 A</u>	January 8, 1991		000	
FI 9105812 A	December 10, 1991		000	
EP 477277 A	April 1, 1992		000	
NO 9104886 A	December 12, 1991		000	
US 5122467 A	June 16, 1992		006	C12N009/64
JP 05500301 W	January 28, 1993		005	C12N009/64
US 5215908 A	June 1, 1993		006	C12N009/64
EP 477277 B1	April 19, 1995	E	800	C12N009/64
EP 477277 A4	May 13, 1992		000	
DE 69018823 E	May 24, 1995		000	C12N009/64
FI 100110 B1	September 30, 1997		000	C12N009/64
CA 2058453 C	June 1, 1999	E	000	C12N009/64

INT-CL (IPC): $\underline{\text{C12}} \ \underline{\text{N}} \ \underline{9/00}; \ \underline{\text{C12}} \ \underline{\text{N}} \ \underline{9/64}$

Full	Title	Citation	Front	Review	Classification	Date	Reference		Claims	KWIC	Draw, De

Document ID: WO 8403711 A, CA 1212053 A, DE 3479743 G, DE 3486319 G, EP 122080 A, EP 122080 B, EP 268743 A, EP 268743 B1, GB 2138004 A, GB 2138004 B, JP 60500893 W, JP 94102034 B2, US 5340926 A

L14: Entry 2 of 2 File: DWPI Sep 27, 1984

DERWENT-ACC-NO: 1984-256610

DERWENT-WEEK: 198441

COPYRIGHT 2004 DERWENT INFORMATION LTD

TITLE: Soluble native protein prodn. - by reversible denaturing of insoluble

protein in alkaline soln.

INVENTOR: ANGAL, S; MARSTON, F A O ; SCHOEMAKER, J A ; LOWE, P A

PRIORITY-DATA: 1983GB-0027345 (October 12, 1983), 1983GB-0008234 (March 25, 1983),

1983WO-GB00152 (June 7, 1983)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
WO 8403711 A	September 27, 1984	E	019	
CA 1212053 A	September 30, 1986		000	
DE 3479743 G	October 19, 1989		000	
DE 3486319 G	July 21, 1994		000	C12N015/00
EP 122080 A	October 17, 1984	E	000	
EP 122080 B	September 13, 1989	E	000	
EP 268743 A	June 1, 1988	E	000	
EP 268743 B1	June 15, 1994	E	006	C12N015/00
GB 2138004 A	October 17, 1984		006	
GB 2138004 B	May 13, 1987		000	
JP 60500893 W	June 20, 1985		000	
JP 94102034 B2	December 14, 1994		005	C12P021/02
US 5340926 A	August 23, 1994		005	C07K003/12

INT-CL (IPC): A61K 39/39; A61K 39/395; C07G 7/00; C07K 3/12; C07K 15/06; C12N 1/20; C12N 9/52; C12N 15/00; C12N 15/13; C12P 21/00; C12P 21/02; G01N 33/56; C12P 21/02; C12R 1/19

Full	Title	Citation	Front	Review	Classification	Date	Reference			Claims	KWIC	Draws De
Clear		Genera	ate Col	lection	Print	F	wd Refs	Bkv	vd Refs	Gener	ate OA	CS
	Terr	ms					Docum	ents				
	see	and L10)								2	

Display Format: - Change Format

Previous Page Next Page Go to Doc#

Connecting via Winsock to STN

Welcome to STN International! Enter x:x

LOGINID: SSSPTA1600GXH

PASSWORD:

TERMINAL (ENTER 1, 2, 3, OR ?):2

7 Oct 54 :* Sh 09 | 643 755

Welcome to STN International

Web Page URLs for STN Seminar Schedule - N. America NEWS NEWS "Ask CAS" for self-help around the clock NEWS Jul 12 BEILSTEIN enhanced with new display and select options, resulting in a closer connection to BABS AUG 02 IFIPAT/IFIUDB/IFICDB reloaded with new search and display NEWS fields AUG 02 NEWS CAplus and CA patent records enhanced with European and Japan Patent Office Classifications NEWS AUG 02 The Analysis Edition of STN Express with Discover! (Version 7.01 for Windows) now available NEWS AUG 27 BIOCOMMERCE: Changes and enhancements to content coverage BIOTECHABS/BIOTECHDS: Two new display fields added for legal NEWS AUG 27 status data from INPADOC SEP 01 NEWS INPADOC: New family current-awareness alert (SDI) available NEWS 10 SEP 01 New pricing for the Save Answers for SciFinder Wizard within STN Express with Discover! SEP 01 New display format, HITSTR, available in WPIDS/WPINDEX/WPIX NEWS 11 NEWS 12 SEP 14 STN Patent Forum to be held October 13, 2004, in Iselin, NJ NEWS 13 SEP 27 STANDARDS will no longer be available on STN NEWS 14 SEP 27 SWETSCAN will no longer be available on STN NEWS EXPRESS JULY 30 CURRENT WINDOWS VERSION IS V7.01, CURRENT MACINTOSH VERSION IS V6.0c(ENG) AND V6.0jc(JP), AND CURRENT DISCOVER FILE IS DATED 11 AUGUST 2004 STN Operating Hours Plus Help Desk Availability NEWS HOURS NEWS INTER General Internet Information NEWS LOGIN Welcome Banner and News Items NEWS PHONE Direct Dial and Telecommunication Network Access to STN NEWS WWW CAS World Wide Web Site (general information)

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * * * * * * * STN Columbus

FILE 'HOME' ENTERED AT 17:57:54 ON 07 OCT 2004

=> file .agbiotech COST IN U.S. DOLLARS

SINCE FILE TOTAL ENTRY SESSION FILE 'CAPLUS' ENTERED AT 17:58:13 ON 07 OCT 2004
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2004 AMERICAN CHEMICAL SOCIETY (ACS)

FILE 'CABA' ENTERED AT 17:58:13 ON 07 OCT 2004 COPYRIGHT (C) 2004 CAB INTERNATIONAL (CABI)

FILE 'AGRICOLA' ENTERED AT 17:58:13 ON 07 OCT 2004

FILE 'BIOSIS' ENTERED AT 17:58:13 ON 07 OCT 2004 Copyright (c) 2004 The Thomson Corporation.

=> s chymosin

L1 3982 CHYMOSIN

=> s seed and l1

L2 35 SEED AND L1

=> s rennin

L3 2963 RENNIN

 \Rightarrow s seed and 13

L4 11 SEED AND L3

=> dup rem 14

PROCESSING COMPLETED FOR L4

L5 10 DUP REM L4 (1 DUPLICATE REMOVED)

=> d 1-10

L5 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN

AN 2000:441611 CAPLUS

DN 133:69803

TI Transgenic plants and methods for production thereof

IN Keller, W. A.; Fabijanski, S. F.; Arnison, P. G.

PA National Research Council of Canada, Can.

SO PCT Int. Appl., 63 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.CNT 1

| r Am | PATENT NO. | | | | | KIND DATE | | APPLICATION NO. | | | | | DATE | | | | |
|------|------------|--------|-------|-----|------------|-----------|------|-----------------|-----|----------------|------|------|------|----------|-----|------|-----|
| | | | | | | _ | | | | | | | | | | | |
| ΡI | WO 2 | 000037 | 060 | | A2 | | 2000 | 0629 | | WO 1999-CA1223 | | | | 19991222 | | | |
| | WO 2 | 000037 | 060 | | A 3 | | 2001 | 0104 | | | | | | | | | |
| | | W: AE | , AL, | AM, | AT, | AU, | ΑZ, | BA, | BB, | BG, | BR, | BY, | CA, | CH, | CN, | CR, | CU, |
| | | CZ | , DE, | DK, | DM, | EE, | ES, | FΙ, | GB, | GD, | GE, | GH, | GM, | HR, | HU, | ID, | IL, |
| | | IN | , IS, | JP, | KE, | KG, | KP, | KR, | KZ, | LC, | LK, | LR, | LS, | LT, | LU, | LV, | MA, |
| | | MD | , MG, | MK, | MN, | MW, | MX, | NO, | NZ, | PL, | PT, | RO, | RU, | SD, | SE, | SG, | SI, |
| | | SK | , SL, | ТJ, | TM, | TR, | TT, | TZ, | UA, | ŪG, | US, | UZ, | VN, | YU, | ZA, | ZW, | AM, |
| | | ΑZ | , BY, | KG, | ΚZ, | MD, | RU, | TJ, | TM | | | | | | | | • |
| | | RW: GH | , GM, | ΚE, | LS, | MW, | SD, | SL, | SZ, | TZ, | ŪG, | ZW, | ΑT, | BE, | CH, | CY, | DE, |
| | | | ES, | | | | | | | | | | | | | | |
| | | CG | CI, | CM, | GΑ, | GN, | GW, | ML, | MR, | NE, | SN, | TD, | TG | | | | |
| | EP 1 | 140043 | | | A2 | | 2001 | 1010 | | EP 1 | 999- | 9620 | 07 | | 19 | 9991 | 222 |
| | | R: AT | BE, | CH, | DE, | DK, | ES, | FR, | GB, | GR, | IT, | LI, | LU, | NL, | SE, | MC, | PT, |
| | | | FI | | | | | | | | | | • | - | • | , | - |
| | JP 2 | 002532 | 114 | | Т2 | | 2002 | 1002 | | JP 2 | 000- | 5891 | 71 | | 19 | 9991 | 222 |
| | AU 7 | 76046 | | | В2 | | 2004 | 0826 | | AU 2 | 000- | 1851 | 6 | | 19 | 9991 | 222 |
| | | | | | | | | | | | | | | | | | |

| PRAI | | B2
P | 20031002
20040622
19981222
19991222 | US 2001-886207 | 20010622 | | | | | | | | |
|----------------------------|--|-----------------------|--|--|----------------------------------|--|--|--|--|--|--|--|--|
| L5
AN
DN
TI | ANSWER 2 OF 10 CAP
2001:287451 CAPLUS
135:60230
Production of renni | | | | na | | | | | | | | |
| AU
CS | Production of rennin-like enzyme by Hyphomucor assamensis using solid cultures Ghanem, Nevine B.; El-Aassar, Samy A.; Abedin, Rania M. Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alex, Egypt Egyptian Journal of Microbiology (2000), Volume Date 1999, 34(3), 447-463 | | | | | | | | | | | | |
| SO
PB
DT | CODEN: EJMBA2; ISSN National Information Journal | 0301-8 | 172 | | (3), 447-463 | | | | | | | | |
| | ALL CITATIO | ONS AVAI | LABLE IN TH | | CORD | | | | | | | | |
| L5
AN
DN
TI | ANSWER 3 OF 10 CAPLUS 1992:510484 CAPLUS 117:110484 Microencapsulation | | | | | | | | | | | | |
| IN
PA
SO | Janda, Joseph; Berna
Griffith Laboratoria
PCT Int. Appl., 26 p
CODEN: PIXXD2 | es World | | | i | | | | | | | | |
| DT
LA
FAN. | Patent English CNT 1 PATENT NO. | KIND | DATE | APPLICATION NO. | DATE | | | | | | | | |
| PI | wo 9205708 | | 19920416 | WO 1991-US7278 | | | | | | | | | |
| PRAI | US 5418010
CA 2075204
EP 504387
EP 504387 | A AA A1 B1 DE, DK, A2 | 19950523
19911004
19920923
19950705 | GR, IT, LU, NL, SE US 1990-593678 CA 1991-2075204 EP 1991-919717 , GR, IT, LI, LU, NL, S | 19901005
19911004
19911004 | | | | | | | | |
| L5
AN
DN
TI
AU | ANSWER 4 OF 10 CAPI
1988:588975 CAPLUS
109:188975
Acute oral toxicitie
Noda, Tsutomu; Morit | es of na | tural food a | | uru: Yamano. | | | | | | | | |
| CS | Tetsuo; Yamada, Akid
Dep. Hyg. Chem., Osa | | | ic Health Environ. Sci. | | | | | | | | | |
| SO
DT
LA | Japan
Seikatsu Eisei (1988
CODEN: SEEIAY; ISSN:
Journal
Japanese | | | • | | | | | | | | | |
| L5
AN
DN
TI | ANSWER 5 OF 10 CAPI
1981:492930 CAPLUS
95:92930
Trypsin inhibitor ac | | | ACS on STN DUPLICATE 1 | | | | | | | | | |

```
ΑU
     El-Mahdy, A. Rafik; Moustafa, E. K.; Mohamed, M. S.
     Fac. Agric., Univ. Alexandria, Alexandria, Egypt
CS
     Food Chemistry (1981), 7(1), 63-71
SO
     CODEN: FOCHDJ; ISSN: 0308-8146
DT
     Journal
LΑ
     English
     ANSWER 6 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
L5
     1964:19209 CAPLUS
AN
DN
     60:19209
OREF 60:3419e-f
     Quality standardization, chemical analysis, and biological evaluation of
     fermented milk products prepared by different methods
     Qureshi, Rahmat U.; Habibullah; Ali, S. M.
AU
     Pakistan Council Sci. Ind. Res., Lahore
CS
SO
     Pakistan Journal of Scientific Research (1963), 15(1), 25-31
     CODEN: PJSRAV; ISSN: 0552-9050
DΤ
     Journal
     Unavailable
LΑ
     ANSWER 7 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
L5
     1936:8106 CAPLUS
AN
     30:8106
DN
OREF 30:1076b-d
     Protease action on protein of ungerminated cereal grains and its effect on
     the amylolytic power
ΑU
     Chrzaszez, Tadeusz; Janicki, Josef
SO
     Biochemische Zeitschrift (1935), 281, 408-19
     CODEN: BIZEA2; ISSN: 0366-0753
DТ
     Journal
LΑ
     Unavailable
L5
     ANSWER 8 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
AN
     1925:17129 CAPLUS
DN
     19:17129
OREF 19:2226c-e
TI
     The coagulating property of papain
ΑU
     Rosenfeld, L.
SO
     Biochemische Zeitschrift (1924), 149, 158-73
     CODEN: BIZEA2; ISSN: 0366-0753
DT
     Journal
     Unavailable
LΑ
L5
     ANSWER 9 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
AN
     1914:20861 CAPLUS
DN
     8:20861
OREF 8:3059f-h
     Action of coagulating enzymes on caseinogen
     Harden, A.; Macallum, A. B.
ΑU
CS
     London
SO
     Biochemical Journal (1914), 8, 90-9
     CODEN: BIJOAK; ISSN: 0264-6021
יית
     Journal
    Unavailable
LΑ
     ANSWER 10 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
L5
     1913:4287 CAPLUS
AN
DN
     7:4287
OREF 7:627i,628a
TI
    Alfalfa Investigation. IV. Enzymes Present in Alfalfa Seeds.
     Jacobson, C. A.
ΑU
    Nevada Agr. Expt. Sta.
CS
```

```
SO
     Journal of the American Chemical Society (1913), 34, 1730-40
     CODEN: JACSAT; ISSN: 0002-7863
DT
     Journal
     Unavailable
LA
=> d his
     (FILE 'HOME' ENTERED AT 17:57:54 ON 07 OCT 2004)
     FILE 'CAPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 17:58:13 ON 07 OCT 2004
L1
           3982 S CHYMOSIN
            35 S SEED AND L1
L2
           2963 S RENNIN
L3
L4
             11 S SEED AND L3
L5
             10 DUP REM L4 (1 DUPLICATE REMOVED)
=> dup rem 12
PROCESSING COMPLETED FOR L2
             22 DUP REM L2 (13 DUPLICATES REMOVED)
=> d 1-22
L6
     ANSWER 1 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
     2003:512142 CAPLUS
ΑN
DN
     139:80190
     Production of recombinant heterologous proteins by incorporation into
     plant oil bodies for efficient expression and purification
IN
     Moloney, Maurice M.; Van Rooijen, Gijs
PΑ
     Sembiosys Genetics Inc., Can.
SO
     U.S. Pat. Appl. Publ., 52 pp., Cont.-in-part of U.S. Ser. No. 210,843.
     CODEN: USXXCO
DT
     Patent
     English
LA
FAN.CNT 9
     PATENT NO.
                      KIND
                               DATE
                                           APPLICATION NO.
                                                                  DATE
     -----
                        ____
                               -----
                                           ______
                      A1
PΙ
     US 2003126631
                               20030703
                                         US 2001-893525
                                                                  20010629
                        B2
     US 6753167
                               20040622
                        A 19970722 US 1997-846021
A 19990907 US 1997-846021
US 1998-210843
                               19970722 US 1994-366783
     US 5650554
                                                                19941230
     US 5948682
                                                                 19970425
     US 6288304
                        B1 20010911 US 1998-210843
                                                                 19981218
                       A1 20030918 US 2002-324131
B2 19910222
B2 19931116
     US 2003177537
                                                                 20021220
PRAI US 1991-659835
     US 1993-142418
     US 1994-366783
                        A2 19941230
                        ' A2
     US 1997-846021
                              19970425
     US 1998-210843
                        A2
                              19981218
     US 2001-893525
                         A2
                               20010629
RE.CNT 33
             THERE ARE 33 CITED REFERENCES AVAILABLE FOR THIS RECORD
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
    ANSWER 2 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
L6
     2003:261069 CAPLUS
AN
     138:282341
DN
     Vector and transgenic Dunaliella salina as a bioreactor for producing
TΙ
     drugs, vaccines and phytohormones
IN
    Xue, Lexun; Pan, Weidong; Jiang, Guozhong; Wang, Jianmin
PΑ
     Peop. Rep. China
    U.S. Pat. Appl. Publ., 12 pp.
SO
    CODEN: USXXCO
```

DT

Patent

```
LA English
```

| E V VI | .CNT | 2 |
|--------|--------|---|
| L WIA | · CIVI | _ |

| | PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------|----------------|------|----------|-----------------|----------|
| | | | | | |
| PΙ | US 2003066107 | A1 | 20030403 | US 2001-997445 | 20011129 |
| | CN 1356388 | Α | 20020703 | CN 2000-131217 | 20001203 |
| | CN 1410525 | Α | 20030416 | CN 2001-128486 | 20010921 |
| PRAI | CN 2000-131217 | Α | 20001203 | | |
| | CN 2001-128486 | Α | 20010921 | | |

- L6 ANSWER 3 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1
- AN 2003:904123 CAPLUS
- DN 141:35858
- TI Precise and efficient cleavage of recombinant fusion proteins using mammalian aspartic proteases
- AU Kuehnel, Blanka; Alcantara, Joenel; Boothe, Joseph; van Rooijen, Gijs; Moloney, Maurice
- CS SemBioSys Genetics Inc., Calgary, AB, T1Y 7L3, Can.
- SO Protein Engineering (2003), 16(10), 777-783 CODEN: PRENE9; ISSN: 0269-2139
- PB Oxford University Press
- DT Journal
- LA English
- RE.CNT 43 THERE ARE 43 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT
- L6 ANSWER 4 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 2002:505462 CAPLUS
- DN 137:74423
- TI Chimeric genes encoding thioredoxin, thioredoxin reductase or other proteins and oleosins for oil body targeting in transgenic plants
- IN Moloney, Maurice M.; Dalmia, Bipin K.
- PA Sembiosys Genetics, Inc., Can.
- SO U.S. Pat. Appl. Publ., 69 pp., Cont.-in-part of U.S. 6,288,304. CODEN: USXXCO
- DT Patent
- LA English
- FAN.CNT 9

| | PATENT NO. | | | KIND | DATE | AP | DATE | | |
|-------|------------|-------------|---|------|----------|----|-------------|---|----------|
| PI | US | 2002088025 | - | A1 | 20020704 | US | 2001-897425 | 2 | 20010703 |
| | US | 6750046 | | B2 | 20040615 | | | | |
| | US | 5650554 | | Α | 19970722 | US | 1994-366783 |] | 19941230 |
| | US | 5948682 | | Α | 19990907 | US | 1997-846021 | 1 | 19970425 |
| | US | 6288304 | | В1 | 20010911 | US | 1998-210843 | 1 | 19981218 |
| PRAI | US | 1991-659835 | | В2 | 19910222 | | | | |
| | US | 1993-142418 | | B2 | 19931116 | | | | |
| | US | 1994-366783 | | A2 | 19941230 | | | | |
| | US | 1997-846021 | | A2 | 19970425 | | | | |
| | US | 1998-210843 | | A2 | 19981218 | | | | |
| DE 01 | 7.00 | F 0 | | |
 | | . | | |

RE.CNT 52 THERE ARE 52 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT

- L6 ANSWER 5 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AN 2002:591669 CAPLUS
- DN 137:154384
- TI Symbiotic regenerative compositions containing microorganisms
- IN Schuer, Joerg-Peter
- PA Germany
- SO Eur. Pat. Appl., 25 pp. CODEN: EPXXDW
- DT Patent

```
LA
     German
FAN.CNT 1
     PATENT NO.
                                DATE
                                           APPLICATION NO.
                        KIND
                                                                  DATE
     _____
                               -----
                                           -----
                        ----
                                                                  _____
                                        EP 2001-102384
     EP 1228769
                               20020807
                         A1
                                                                  20010202
PΙ
         R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
     WO 2002067986
                         A2
                                20020906
                                           WO 2002-EP1056
                                                                  20020201
     WO 2002067986
                         A3
                                20031211
            AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
         W:
             CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
             GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
             LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH,
             PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ,
             UA, UG, US, UZ, VN, YU, ZA, ZM, ZW, AM, AZ, BY, KG, KZ, MD, RU,
             TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH,
            CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG
                               20040225
                                         EP 2002-712882
     EP 1390071
                         A2
                                                             20020201
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL, TR
     US 2004076614
                     A1
                               20040422
                                          US 2003-467040
                                                                  20031204
PRAI EP 2001-102384
                         Α
                                20010202
     WO 2002-EP1056
                         W
                                20020201
RE.CNT 5
             THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
L6
     ANSWER 6 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
AN
     2001:152856 CAPLUS
     134:204356
DN
TI
     Commercial production of chymosin in plant by recombinant
     expression in seeds
IN
     Van Rooijen, Gijs; Keon, Richard Glenn; Boothe, Joseph; Shen, Yin
PA
     Sembiosys Genetics Inc., Can.
SO
     PCT Int. Appl., 56 pp.
     CODEN: PIXXD2
DT
     Patent
LA
     English
FAN.CNT 1
                        KIND
                               DATE APPLICATION NO. DATE
     PATENT NO.
                        ____
                               -----
                                           ______
                                         WO 2000-CA975 20000823
                        A1 20010301
     WO 2001014571
PΙ
         W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN,
             CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
            HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,
             LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU,
            SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
             YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM
         RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
             DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ,
             CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
     EP 1216306
                              20020626 EP 2000-954228
                         A1
            AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
             IE, SI, LT, LV, FI, RO, MK, CY, AL
PRAI US 1999-378696
                    Α
                               19990823
    WO 2000-CA975
                         W
                               20000823
             THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
RE.CNT 5
             ALL CITATIONS AVAILABLE IN THE RE FORMAT
    ANSWER 7 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
L6
    1999:571776 CAPLUS
AN
```

```
131:180808
DN
```

- Targetting foreign proteins manufactured in plant cells to oil bodies ΤI using targetting sequences from oleosins
- Moloney, Maurice M. IN
- Sembiosys Genetics Inc., Can. PA
- U.S., 48 pp., Cont.-in-part of U.S. 5,650,554. SO

CODEN: USXXAM

- DTPatent
- LΑ English
- FAN.CNT 9

| ran. | PATENT NO. | NO. KIND | | APPLICATION NO. | DATE | | |
|------|----------------|----------|----------|-----------------|----------|--|--|
| ΡI | US 5948682 | A | 19990907 | US 1997-846021 | 19970425 | | |
| | US 5650554 | Α | 19970722 | US 1994-366783 | 19941230 | | |
| | US 6288304 | B1 | 20010911 | US 1998-210843 | 19981218 | | |
| | US 2002100073 | A1 | 20020725 | US 2001-887569 | 20010625 | | |
| | US 2003126631 | A1 | 20030703 | US 2001-893525 | 20010629 | | |
| | US 6753167 | B2 | 20040622 | | | | |
| | US 2002088025 | A1 | 20020704 | US 2001-897425 | 20010703 | | |
| | US 6750046 | В2 | 20040615 | | | | |
| | US 2003177537 | A1 | 20030918 | US 2002-324131 | 20021220 | | |
| PRAI | US 1991-659835 | B2 | 19910222 | | | | |
| | US 1993-142418 | B2 | 19931116 | | | | |
| | US 1994-366783 | A2 | 19941230 | | | | |
| | US 1997-846021 | A2 | 19970425 | | | | |
| | US 1998-210843 | A3 | 19981218 | | | | |
| | US 2001-893525 | A2 | 20010629 | | | | |
| | | | | | | | |

- RE.CNT 28 THERE ARE 28 CITED REFERENCES AVAILABLE FOR THIS RECORD ALL CITATIONS AVAILABLE IN THE RE FORMAT
- ANSWER 8 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN L6
- AN1997:527665 CAPLUS
- DN 127:186616
- Recombinant preparation of high-value peptides by using oil-body proteins ΤI as carriers in transgenic plants
- IN Moloney, Maurice
- PASembiosys Genetics Inc., Can.
- U.S., 37 pp., Cont.-in-part of U.S. Ser. No. 142,418, abandoned. CODEN: USXXAM SO
- DTPatent
- LA English FAN.CNT 9

| FAN. | CNT | 9 | | | | | | | | | | | | | | | | |
|------|-----|------|------|-----|-----|-----|-----|------|------|---------------|------|------|-------|-----|-----|-----|----------|-----|
| | PAT | CENT | NO. | | | KIN | | DATE | | i | APPL | ICAT | ION 1 | NO. | | D. | ATE | |
| ΡI | US | 5650 | 554 | | | A | | 1997 | 0722 | 1 | JS 1 | 994- | 3667 | 83 | | 1 |
9941 | 230 |
| | CA | 2208 | 751 | | | AA | | 1996 | 0711 | (| CA 1 | 995- | 2208 | 751 | | 1 | 9951 | 221 |
| | WΟ | 9621 | 029 | | | A1 | | 1996 | 0711 | WO 1995-CA724 | | | | | | | | |
| | | W: | AM, | AT, | AU, | BB, | BG, | BR, | BY, | CA, | CH, | CN, | CZ, | DE, | DK, | EE, | ES, | FI, |
| | | | | | | | | KE, | | | | | - | - | | - | | |
| | | | MG, | MN, | MW, | MX, | NO, | NZ, | PL, | PT, | RO, | RU, | SD, | SE, | SG, | SI, | SK, | TJ, |
| | | | TM, | TT | · | • | • | • | • | • | • | · | • | · | • | • | • | • |
| | | RW: | KE, | LS, | MW, | SD, | SZ, | UG, | AT, | BE, | CH, | DE, | DK, | ES, | FR, | GB, | GR, | IE, |
| | | | IT, | LU, | MC, | NL, | PT, | SE, | BF, | ВJ, | CF, | CG, | CI, | CM, | GΑ, | GN, | ML, | MR, |
| | | | NE, | SN, | TD, | TG | | | | | | | | | | | | • |
| | ΑU | 9642 | 950 | | | A1 | | 1996 | 0724 | 1 | AU 1 | 996- | 4295 | 0 | | 1 | 9951 | 221 |
| | ΑU | 7091 | 41 | | | B2 | | 1999 | 0819 | | | | | | | | | |
| | ZA | 9510 | 999 | | | Α | | 1996 | 0713 | | ZA 1 | 995- | 1099 | 9 | | 1 | 9951 | 228 |
| | BR | 9600 | 006 | | | Α | | 1998 | 0121 |] | BR 1 | 996- | 6 | | | 1 | 9960 | 102 |
| | US | 5948 | 682 | | | Α | | 1999 | 0907 | Ţ | JS 1 | 997- | 8460 | 21 | | 1 | 9970 | 425 |
| | US | 6288 | 304 | | | В1 | | 2001 | 0911 | τ | JS 1 | 998- | 2108 | 43 | | 1 | 9981 | 218 |
| | US | 2002 | 1000 | 73 | | A1 | | 2002 | 0725 | Ţ | JS 2 | 001- | 8875 | 69 | | 2 | 0010 | 625 |
| | US | 2003 | 1266 | 31 | | A1 | | 2003 | 0703 | Ţ | JS 2 | 001- | 8935 | 25 | | .2 | 0010 | 629 |
| | | | | | | | | | | | | | | | | | | |

```
US 6753167
                              20040622
                        В2
                        A1
     US 2002088025
                              20020704 US 2001-897425
                                                                20010703
                       B2
    US 6750046
                              20040615
    US 2003177537
                       A1
                              20030918 US 2002-324131
                                                                20021220
PRAI US 1991-659835
                       · B2
                              19910222
                       B2
    US 1993-142418
                              19931116
                       A
W
    US 1994-366783
                              19941230
    WO 1995-CA724
                              19951221
    US 1997-846021
                       A2
                              19970425
    US 1998-210843
                        A3
                              19981218
                        A2
    US 2001-893525
                              20010629
    ANSWER 9 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2
L6
    1997:204928 CAPLUS
AN
    126:198695
DN
ΤI
    Oryzasin As an Aspartic Proteinase Occurring in Rice Seeds:
     Purification, Characterization, and Application to Milk Clotting
    Asakura, Tomiko; Watanabe, Hirohito; Abe, Keiko; Arai, Soichi
ΑU
    Laboratory of Food Science, Atomi Junior College, Tokyo, 112, Japan
CS
     Journal of Agricultural and Food Chemistry (1997), 45(4), 1070-1075
SO
    CODEN: JAFCAU; ISSN: 0021-8561
PB
    American Chemical Society
DT
    Journal
LΑ
    English
L6
    ANSWER 10 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
AN
    1996:537696 CAPLUS
DN
    125:187589
    Plant oleosin cDNA sequences and oil body proteins as carriers of high
    value recombinant proteins
IN
    Moloney, Maurice
    University Technologies International, Inc., Can.
PA
SO
    PCT Int. Appl., 98 pp.
    CODEN: PIXXD2
DT
    Patent
LΑ
    English
FAN.CNT 9
    PATENT NO.
                       KIND
                              DATE APPLICATION NO.
                                                              DATE
                              -----
                                         ______
                                                               _____
                       A1 19960711 WO 1995-CA724
PΙ
    WO 9621029
                                                              19951221
        W: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI,
            GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD,
            MG, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ,
            TM, TT
        RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE,
            IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR,
            NE, SN, TD, TG
    US 5650554
                              19970722
                                        US 1994-366783
                        Α
                                                               19941230
    AU 9642950
                                        AU 1996-42950
                        A1
                              19960724
                                                               19951221
    AU 709141
                              19990819
                        B2
PRAI US 1994-366783
                        Α
                              19941230
    US 1991-659835
                        B2
                              19910222
    US 1993-142418
                        B2
                              19931116
    WO 1995-CA724
                        W
                              19951221
```

- L6 ANSWER 11 OF 22 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN
- AN 97:43159 AGRICOLA
- DN IND20572726
- TI Milk-clotting enzyme from Solanum dobium plant.

- AU Yousif, B.H.; McMahon, D.J.; Shammet, K.M.
- CS Utah State University, Logan, UT.
- AV DNAL (SF221.I57)
- SO International dairy journal, June 1996. Vol. 6, No. 6. p. 637-644 Publisher: Oxford, U.K.: Elsevier Science Limited. CODEN: IDAJE6; ISSN: 0958-6946
- NTE Includes references
- CY England; United Kingdom
- DT Article
- FS Non-U.S. Imprint other than FAO
- LA English
- L6 ANSWER 12 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3
- AN 1995:786724 CAPLUS
- DN 124:77836
- TI Rice aspartic proteinase, oryzasin, expressed during **seed** ripening and germination, has a gene organization distinct from those of animal and microbial aspartic proteinases
- AU Asakura, Tomiko; Watanabe, Hirohito; Abe, Keiko; Arai, Soichi
- CS Laboratory Food Science, Atomi Junior College, Tokyo, Japan
- SO European Journal of Biochemistry (1995), 232(1), 77-83 CODEN: EJBCAI; ISSN: 0014-2956
- PB Springer
- DT Journal
- LA English
- L6 ANSWER 13 OF 22 CABA COPYRIGHT 2004 CABI on STN
- AN 94:73201 CABA
- DN 19940403218
- TI Identification and partial purification of a novel milk clotting enzyme from Onopordum turcicum
- AU Tamer, I. M.
- CS Food Engineering Department, Hacettepe University, Beytepe, 06532 Ankara, Turkey.
- SO Biotechnology Letters, (1993) Vol. 15, No. 4, pp. 427-432. 24 ref. ISSN: 0141-5492
- DT Journal
- LA English
- ED Entered STN: 19941101

 Last Updated on STN: 19941101
- L6 ANSWER 14 OF 22 CABA COPYRIGHT 2004 CABI on STN
- AN 95:137433 CABA
- DN 19950311620
- TI Aspartic proteinase inhibitor from wheat: some properties
- AU Galleschi, L.; Friggeri, M.; Repiccioli, R.; Come, D. [EDITOR]; Corbineau, F. [EDITOR]
- CS Department of Botanical Sciences, University of Pisa, 56123 Pisa, Italy.
- Proceedings of the Fourth International Workshop on Seeds: basic and applied aspects of seed biology, Angers, France, 20-24 July, 1992. Volume 1, (1993) pp. 207-211. 12 ref.

Publisher: ASFIS. Paris

Meeting Info.: Proceedings of the Fourth International Workshop on Seeds: basic and applied aspects of seed biology, Angers, France, 20-24 July, 1992. Volume 1.

ISBN: 2-9507351-2-6

- CY France
- DT Conference Article
- LA English
- ED Entered STN: 19950821

Last Updated on STN: 19950821

```
L6 ANSWER 15 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 4
```

AN 1993:513438 CAPLUS

DN 119:113438

TI cDNA cloning of an extracellular dermal glycoprotein of carrot and its expression in response to wounding

AU Satoh, Shinobu; Sturm, Arnd; Fujii, Tadashi; Chrispeels, Maarten J.

CS Inst. Biol. Sci., Univ. Tsukuba, Tsukuba, 305, Japan

SO Planta (1992), 188(3), 432-8 CODEN: PLANAB; ISSN: 0032-0935

DT Journal

LA English

L6 ANSWER 16 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1992:52978 CAPLUS

DN 116:52978

TI Transgenic seed for use as a source of heterologous enzymes

IN Pen, Jan; Hoekema, Andreas; Sijmons, Peter Christiaan; Van Ooyen, Albert J. J.; Rietveld, Krijn; Verwoerd, Teunis Cornelis; Quax, Wilhelmus Johannes

PA Gist-Brocades N. V., Neth.; Mogen International N. V.

SO Eur. Pat. Appl., 38 pp. CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 6

| PAN. | PATENT NO. | | | | | APPLICATION NO. | DATE |
|------|------------|---|-----|------------|----------|--|----------|
| PI | | | | | | EP 1991-200688 | 19910325 |
| | | | | | | GB, GR, IT, LI, LU, NL, | |
| | | | | | | | |
| | MO | 9114772 | | Δ1 | 19911003 | IL 1991-97645
WO 1991-NL48 | 19910322 |
| | " | W: AU, CA | FT. | HU. | TP KB SU | WO 1991 NE40 | 13310323 |
| | ΑIJ | 9177656 | , | A1 | 19911021 | AU 1991-77656 | 19910325 |
| | AU | 649447 | | B2 | 19940526 | AU 1991-77656 | 23320020 |
| | ΑU | 9177766 | | A1 | 19911021 | AU 1991-77766
HU 1987-40 | 19910325 |
| | AU | 632941 | | В2 | 19930114 | | |
| | HU | 60767 | | A2 | 19921028 | HU 1987-40 | 19910325 |
| | JΡ | 06501838 | | T 2 | 19940303 | JP 1991-508275 | 19910325 |
| | JΡ | 3471795 | | B2 | 20031202 | | |
| | JΡ | 06502296 | | Т2 | 19940317 | JP 1991-508276
HU 1991-4087
RU 1991-5010599 | 19910325 |
| | HU | 215260 | | В | 19981130 | HU 1991-4087 | 19910325 |
| | RU | 2128228 | | C1 | 19990327 | RU 1991-5010599 | 19910325 |
| | DII | 2129609 | | C1 | 10000/27 | DII 1991_5010/80 | 10010225 |
| | ES | 2160095 | | Т3 | 20011101 | ES 1991-200688 | 19910325 |
| | US | 5543576 | | Α | 19960806 | US 1993-146422 | 19931102 |
| | US | 5714474 | | A | 19980203 | ES 1991-200688
US 1993-146422
US 1996-626554
US 1998-149310 | 19960402 |
| | US | 2004088750 | | A1 | 20040506 | US 1998-149310 | 19980202 |
| | GR | 3036358 | | T3 | 20011130 | GR 2001-401209 | 20010809 |
| PRAI | US | 1990-498561 | | A | 19900323 | | |
| | US | 1990-586765 | | A | 19900921 | | |
| | EP | 1991-200688 | | A | 19910325 | GR 2001-401209 | |
| | WO | T33T-NT4/ | | A | 19910323 | | |
| | WO | 1991-NL48 | | A | 19910325 | | |
| | US | 1991-756994 | | B2 | 19910911 | | |
| | 02 | 1991-756994
1993-146422
1996-626554 | | A3 | 19931102 | | |
| | U.S | 1990-020334 | | AZ | 19960402 | | |

L6 ANSWER 17 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 5

AN 1991:626750 CAPLUS

DN 115:226750

- TIPurification and some properties of a milk clotting protease from the young seeds of Albizia julibrissin Otani, Hajime; Matsumori, Manao; Hosono, Akiyoshi ΑU CS Fac. Agric., Shinshu Univ., Minamiminowa, 399-45, Japan Animal Science and Technology (1991), 62(5), 424-32 SO CODEN: ALSTEQ; ISSN: 0918-2365 DTJournal English LΑ L6ANSWER 18 OF 22 CABA COPYRIGHT 2004 CABI on STN DUPLICATE 6 92:1752 CABA AN19920450054 DN The screening of trees having milk clotting activity TIOtani, H.; Iwagaki, M.; Hosono, A. ΑU CS. Faculty of Agriculture, Shinshu University, Minamiminowa-mura, Nagano-ken 399-45, Japan. SO Animal Science and Technology, (1991) Vol. 62, No. 5, pp. 417-423. 10 ref. ISSN: 0021-5309 DT Journal LΑ English Japanese SLED Entered STN: 19941101 Last Updated on STN: 19941101 L6 ANSWER 19 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN AN1993:444091 CAPLUS DN 119:44091 Aspartic proteinase from barley seeds is related to animal TIcathepsin D Tormakangas, K.; Runeberg-Roos, P.; Ostman, A.; Tilgmann, C.; Sarkkinen, AU P.; Kervinen, J.; Mikola, L.; Kalkkinen, N. CS Inst. Biotechnol., Univ. Helsinki, Helsinki, SF-00380, Finland SO Advances in Experimental Medicine and Biology (1991), 306(Struct. Funct. Aspartic Proteinases), 355-9 CODEN: AEMBAP; ISSN: 0065-2598 DTJournal LΑ English ANSWER 20 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN L6 AN 1990:435891 CAPLUS
- DN 113:35891
- TI Process for controlling plant pests using recombinant proteinase inhibitor genes
- IN Fowler, Elizabeth
- PA Ciba-Geigy A.-G., Switz.
- SO Eur. Pat. Appl., 74 pp. CODEN: EPXXDW
- DT Patent
- LA German
- FAN.CNT 1

| 1144. | CIVI | - | | | | | | | | | | | | | | | |
|-------|------------|------|-----|-----|-----|-----|-----|------|------|-----------------|--------|-------|-----|----|---|----------|--|
| | PATENT NO. | | | | | |) | DATE | | APPLICATION NO. | | | | | I | DATE | |
| | | | | | | | - | | | | | | | | - | | |
| ΡI | ΕP | 3483 | 48 | | | A2 | | 1989 | 1227 | EP | 1989- | 81044 | 17 | | - | 19890613 | |
| | ΕP | 3483 | 48 | | | A3 | | 1990 | 0404 | | | | | | | | |
| | ΕP | 3483 | 48 | | | В1 | | 2000 | 0809 | | | | | | | | |
| | | R: | AT, | BE, | CH, | DE, | ES, | FR, | GB, | GR, I | r, LI, | LU, | NL, | SE | | | |
| | ΑT | 1952 | 18 | | | E | | 2000 | 0815 | AT | 1989- | 81044 | 17 | | - | 19890613 | |
| | ES | 2150 | 410 | | | Т3 | | 2000 | 1201 | ES | 1989- | 81044 | 17 | | - | 19890613 | |
| | IL | 9064 | 0 | | | A1 | | 1998 | 0104 | IL | 1989- | 90640 |) | | - | 19890616 | |
| | AU | 8936 | 568 | | | A1 | | 1989 | 1221 | AU | 1989- | 36568 | 3 | | : | 19890619 | |
| | ΑU | 6315 | 51 | | | B2 | | 1992 | 1203 | | | | | | | | |
| | DK | 8903 | 022 | | | Α | | 1990 | 0228 | DK | 1989- | 3022 | | | - | 19890619 | |

| | ZA 8904638
JP 02046238
JP 3111204
HU 53938
HU 217573
GR 3034752 | A
A2
B2
A2
B
T3 | 19900228
19900215
20001120
19901228
20000228
20010228 | ZA 1989-4638
JP 1989-158114
HU 1989-3150
GR 2000-402442 | 19890619
19890620
19890620
20001102 | | | | | |
|---|--|---------------------------------|--|--|--|--|--|--|--|--|
| PRAI | I US 1988-208331 A 19880620
US 1989-320195 A 19890307 | | | | | | | | | |
| TI
PA
DT
LA | AN 1940:41310 CAPLUS DN 34:41310 OREF 34:6310h-i TI Producing dry active products containing papain and other enzymes PA W. Klotz & Co. DT Patent | | | | | | | | | |
| | PATENT NO. | KIND | DATE
 | APPLICATION NO. | DATE | | | | | |
| PI | FR 843069 | | 19390626 | FR | | | | | | |
| ANSWER 22 OF 22 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN AN 1993:453082 BIOSIS DN PREV199396097982 TI Response of New Zealand honey bee colonies to Nosema apis. AU Malone, L. A.; Giacon, H. A.; Hunapo, R. J; McIvor, C. A. CS Hortic. and Food Res. Inst. New Zealand Ltd., Mt Albert Res. Centre, Private Bag 92169, Auckland, New Zealand SO Journal of Apicultural Research, Vol. 31, No. 3-4, pp. 135-140. 1992 (1993). CODEN: JACRAQ. ISSN: 0021-8839. DT Article LA English ED Entered STN: 5 Oct 1993 Last Updated on STN: 6 Oct 1993 | | | | | | | | | | |
| => d his | | | | | | | | | | |
| (FILE 'HOME' ENTERED AT 17:57:54 ON 07 OCT 2004) | | | | | | | | | | |
| L1
L2
L3
L4
L5 | 3982 S CHYMOS
35 S SEED A
2963 S RENNIN
11 S SEED A
10 DUP REM | IN
ND L1
ND L3
L4 (1) | DUPLICATE REI | | ON 07 OCT 2004 | | | | | |

FILE 'CAPLUS, CABA, AGRICOLA, BIOSIS' ENTERED AT 17:58:13 ON 07 OCT 2004
L1 3982 S CHYMOSIN
L2 35 S SEED AND L1
L3 2963 S RENNIN
L4 11 S SEED AND L3
L5 10 DUP REM L4 (1 DUPLICATE REMOVED)
L6 22 DUP REM L2 (13 DUPLICATES REMOVED)

=> d 16 1-22 abs

of

L6 ANSWER 1 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN

The present invention relates to the use of an oil body protein gene to AΒ target the expression of a heterologous polypeptide, to an oil body in a host cell, wherein the protein of interest can be easily separated from other host cell components. The invention is further exemplified by methods for exploitation of the unique characteristics of the oil body proteins and oil body genes for expression of polypeptides of interest in many organisms, particularly plant seeds. Said polypeptides may include but are not limited to: seed storage proteins, enzymes, bioactive peptides, antibodies and the like. The invention can also be modified to recover recombinant polypeptides fused to oil body proteins from non-plant host cells. Addnl. the invention provides a method of using recombinant proteins associated with seed oil bodies released during seed germination for expression of polypeptides that afford protection to seedlings from pathogens. Finally, the persistent association of oil body proteins with the oil body can be further utilized to develop a biol. means to create novel immobilized enzymes useful for bioconversion of substrates. The unique features of both the oil body protein and the expression patterns are used in this invention to provide a means of synthesizing com. important proteins on a scale that is difficult if not impossible to achieve using conventional systems of protein production

L6 ANSWER 2 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN

AB The invention relates to vectors comprising a foreign target gene, special selectable markers and host cell of Dunaliella Salina for recombinantly producing drugs, vaccines and phytohormones. It is prepared by the genetic transformation techniques that include introducing a foreign target gene into the cells of Dunaliella Salina and screening the transformed cells of Dunaliella Salina. The bioreactor of the present invention can be used as a safe and cheap production system for proteins of pharmaceutical interest including vaccines, especially oral products, in a large scale, because the cells of Dunaliella Salina are easy of genetic manipulation in preparation of the bioreactor, nontoxic and harmless to the environment.

L6 ANSWER 3 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1

AB Expression of recombinant proteins as translational fusions is commonly employed to enhance stability, increase solubility and facilitate purification

the desired protein. In general, such fusion proteins must be cleaved to release the mature protein in its native form. The usefulness of the procedure depends on the efficiency and precision of cleavage and its cost per unit activity. We report here the development of a general procedure for precise and highly efficient cleavage of recombinant fusion proteins using the protease chymosin. DNA encoding a modified pro-peptide from bovine chymosin was fused upstream of hirudin, carp growth hormone, thioredoxin and cystatin coding sequences and expressed in a bacterial Escherichia coli host. Each of the resulting fusion proteins was efficiently cleaved at the junction between the pro-peptide and the desired protein by the addition of chymosin, as

determined by activity, N-terminal sequencing and mass spectrometry of the recovered protein. The system was tested further by cleavage of two fusion proteins, cystatin and thioredoxin, sequestered on oil body particles obtained from transgenic Arabidopsis seeds. Even when the fusion protein was sequestered and immobilized on oil bodies, precise and efficient cleavage was obtained. The precision, efficiency and low cost of this procedure suggest that it could be used in larger scale manufacturing of recombinant proteins which benefit from expression as fusions in their host organism.

- L6 ANSWER 4 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AB The present invention relates to the use of a class of genes called oil body protein genes that have unique features. The discovery of these features allowed the invention of methods for the production of recombinant proteins wherein a protein of interest can be easily separated from other host cell components. The invention is further exemplified by methods for exploitation of the unique characteristics of the oil body proteins and oil body genes for expression of polypeptides of interest in many organisms, particularly plant seeds. Said polypeptides include thioredoxin and/or thioredoxin reductase. The invention can also be modified to recover recombinant polypeptides fused to oil body proteins from non-plant host cells.
- ANSWER 5 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN

 The invention concerns regenerative drugs, dietary supplements, feed additives that contain microorganisms and modulating substances, e.g. enzymes, GRAS (Generally Recognized As Safe) aromas, plant exts. Further

enzymes, GRAS (Generally Recognized As Safe) aromas, plant exts. Further the compns. contain vitamins, minerals, growth promoters, carrier substances, etc. Microorganisms are a-pathogenic, pathogenic or facultative pathogenic,.

- L6 ANSWER 6 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- The present invention relates to novel and improved methods of producing com. levels of chymosin in transgenic plants, by recombinant expression of chymosin in plant seeds, is described.

 An improved method for the laboratory-scale purification of chymosin from transgenic seed produced is described. Construction of a plant transformation vector comprising of a chimeric nucleic acid sequence containing prepro-chymosin is also described. Agrobacterium strain EHA101 (pSBS2151) was used to transform Brassica napus. The biol. activity of the plant (Brassica) derived chymosin was determined through the use of milk-clotting assays. Transgenic Brassica seeds had the ability to clot milk whereas, seeds that were not transformed with the prochymosin gene were unable to clot milk.
- L6 ANSWER 7 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- Genes for oleosins and other proteins of the oil body of plants are cloned AΒ and methods of using peptides of the proteins to direct foreign proteins to the oil body are described. Incorporation of a protein into the oil body greatly simplifies its purification from the host organism. Proteins including, but not limited to: seed storage proteins, enzymes, bioactive peptides, and antibodies can be prepared and purified in this manner. The invention can also be modified to recover oil body protein fusion products from non-plant host cells. These oil body-associated proteins can be released during seed germination to afford protection of seedlings from pathogens. Finally, the persistent association of oil body proteins with the oil body can be further utilized to develop a biol. means to create novel immobilized enzymes useful for bioconversion of substrates. Use of the oleosin gene and promoter to direct synthesis of a β -glucuronidase fusion protein with incorporation of the fusion protein into the oil body is demonstrated. The enzyme could be released from the oil body by cleavage with thrombin.

- L6 ANSWER 8 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- ÀΒ Methods and compns. for expressing a heterologous peptide/polypeptide of interest in a seed cell as a fusion protein with an oil body protein (oleosin) are described. The fusion protein may be isolated by methods such as affinity chromatog. using antibodies to the oil body protein. The Arabidopsis thaliana 1.8 kb oleosin gene was cloned and sequenced. An expression cassette encoding interleukin-1β fused to this oleosin was prepared Transgenic tobacco and Brassica napus plants containing this expression cassette were shown by immunochem. anal. of electrophoretically separated tobacco proteins to contain the expected fusion protein. Also disclosed were the preparation of various recombinant proteins of non-plant origin by expression of their oleosin/protein-encoding chimeric gene in transgenic B. napus. Insecticidal protein may also be expressed using this method in transgenic plants for protection. Finally, the persistent association of oil body proteins with the oil body can be further utilized to develop a biol. means to create novel immobilized enzymes useful for bioconversion of substrates. Cloning of cDNA for oleosin from B. napus was also shown.
- ANSWER 9 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 2

 An aspartic proteinase in rice seeds (oryzasin) was purified by (NH3)2SO4 fractionation, DEAE-cellulose anion exchange chromatog., Sephadex G-100 gel filtration, Mono Q anion exchange chromatog., and pepstatin-affinity chromatog. SDS-PAGE showed the affinity-purified enzyme to have two mol. forms, 57 and 53 kDa, together with their probable autolyzates appearing as two small bands at 35 and 25 kDa. Compared with the other three bands, the 57 kDa band reacted strongly on western blot anal. The affinity-purified oryzasin pH optimum for hydrolysis is 3.0 and is completely inhibited by pepstatin but not affected by other proteinase inhibitors such as EDTA, leupeptin, PMSF, and E-64. The milk-clotting activity of oryzasin was investigated using the crude enzyme obtained by precipitation at 30% and 60% (NH4)2SO4 saturation. The enzyme clotted a skim milk solution.
 - at pH 6.3, yielding the same κ -casein digest pattern as those of **chymosin** and pepsin producing a 12 kDa band.
- L6 ANSWER 10 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AΒ The present invention relates to the use of a class of genes called oil body protein genes that have unique features. The discovery of these features allowed the invention of methods for the production of recombinant proteins wherein a protein of interest can be easily separated from other host cell components. The invention is further exemplified by methods for exploitation of the unique characteristics of the oil body proteins and oil body genes for expression of polypeptides of interest in many organisms, particularly plant seeds. Said polypeptides may include but are not limited to: seed storage proteins, enzymes, bioactive peptides, antibodies and the like. The invention can also be modified to recover recombinant polypeptides fused to oleosins from non-plant host cells. Addnl. the invention provides a method of using recombinant proteins associated with seed oil bodies released during seed germination for expression of polypeptides that afford protection to seedlings from pathogens. Finally, the persistent association of oil body proteins with the oil body can be further utilized to develop a biol. means to create novel immobilized enzymes useful for bioconversion of substrates.
- ANSWER 11 OF 22 AGRICOLA Compiled and distributed by the National Agricultural Library of the Department of Agriculture of the United States of America. It contains copyrighted materials. All rights reserved. (2004) on STN

- L6 ANSWER 12 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 3 The gene organization and nucleotide sequence of an aspartic proteinase AΒ (AP) of plant origin were first disclosed by cDNA and genomic DNA cloning of a rice AP (oryzasin). The deduced amino acid sequence of oryzasin 1 (I) was similar to those of other APs (34-85%), with highest similarity (85%) to barley AP (HvAP). I, as well as HvAP, is distinct from animal and microbial APs in that the plant APs contain a unique 104-amino-acid insertion in the C-terminal region. The I gene spans approx. 6.6 kbp and is composed of 14 exons and 13 introns. The exon-intron organization of the I gene is totally different from those of genes for animal and microbial APs such as human cathepsin D, rat renin, bovine chymosin, aspergillopepsin A of Aspergillus awamori, proteinase A of Saccharomyces cerevisiae and rhizopuspepsin of Rhizopus niveus, despite the fact that I shows overall sequence similarity to these APs.
- ANSWER 13 OF 22 CABA COPYRIGHT 2004 CABI on STN

 Seeds, flowers and leaves of Onopordum turcicum contained proteolytic enzymes that could coagulate milk. Extraction, concentration and identification of the parameters affecting the activity of the enzyme complex were followed by partial purification steps involving gel-filtration and ion-exchange chromatography. Milk clotting activity of the enzyme complex was tested in several steps of its purification and an increase of almost 200-fold was obtained. MW of the proteolytic enzyme fraction with the maximum activity was about 19 000-24 000. Isoelectric point was 3.3-3.7.
- ANSWER 14 OF 22 CABA COPYRIGHT 2004 CABI on STN

 An inhibitor of aspartic proteinases from wheat bran was characterized: it had a molecular mass of 58 kDa and high resistance to heat (100[deg]C) and pH (0.8-12). This protein differs in its effectiveness of inhibition against various aspartic proteinases: it is more active on pepsin than on endogenous wheat enzyme and inactive against cathepsin D, chymosin or proteinases of other classes. The wheat inhibitor thus appears to be considerably different from those isolated from potato: no protein inhibitor of similar properties has previously been described.
- L6 ANSWER 15 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 4 Suspension-cultured cells of carrot (Daucus carota) synthesize and secrete a glycoprotein that is normally found only in dermal tissues (epidermis, endodermis and periderm). This protein, previously called GP57, is now referred to as EDGP (Extracellular Dermal GlycoProtein). Sufficient quantities of EDGP were purified to obtain amino-acid sequences on 2 internal tryptic peptides and a cDNA library of young carrot roots was screened with antiserum to EDGP and with oligonucleotides corresponding to the peptides. Here the authors report the derived amino-acid sequence of EDGP. Sequence comparisons show that it has 40% amino-acid sequence identity with 7S basic globulin, a protein that is released when soybean seeds are soaked in hot water for a few hours. It is suggested that these 2 proteins belong to a new family of dermal proteins. apparently the first report of a derived amino-acid sequence for a protein that is specific to the epidermis and other dermal tissues. The level of EDGP mRNA is low in dry seeds, but increases rapidly in growing seedlings as they develop dermal tissues. The level of mRNA is low in storage roots, but increases rapidly in response to wounding. The presence of EDGP in dermal tissues and its up-regulation in response to wounding indicate a role in the response of plants to biotic and/or abiotic stresses. An unusual feature of the amino-acid sequence of EDGP is that it contains a short motif, which is present at the active site of aspartyl proteases such as pepsin and chymosin.
- L6 ANSWER 16 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AB **Seed** from transgenic plants in which a gene for an enzyme is

strongly expressed are used as a source of the enzyme for industrial or therapeutic purposes. Seed may be ground to conveniently prepare the crude enzyme. The phytase gene of Aspergillus ficuum was cloned using polymerase chain reaction and put under the control of a constitutive (cauliflower mosaic virus 35S) or seed-specific (cruciferin or Brassica napus 12S storage protein) promoter. The gene was introduced into tobacco via Agrobacterium. Regenerated lines producing phytase at up to 0.4% of soluble seed protein were selected. Ground seed from these plants was able to hydrolyze phytic acid in buffer, soybean meal, and in an in vitro model of the chicken digestive tract. Broiler chicks fed on a cereal meal-based diet supplemented with tobacco seed flour at 400 phytase units/kg showed growth comparable to that of chicks grown on a diet enriched in Ca and P. Similar expts. involving expression of the Bacillus licheniformis α-amylase gene in tobacco for use in starch liquefaction are described.

- ANSWER 17 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 5 AΒ Gouda type cheese was prepared with a milk-clotting enzyme partially purified from the young seeds of A. julibrissin. The yield of green cheese made with the enzyme was comparable to that made with chymosin. In terms of flavor, the enzyme did not develop any bitterness in the cheese after 3 mo of ripening. Hence, the milk-clotting enzyme was purified .apprx.20-fold, and its properties were examined The purified enzyme showed a single band in SDS-PAGE. The mol. wts. estimated by gel filtration and SDS-PAGE were 21,000 and 28,000, resp. The optimum pH for proteolytic activity of the enzyme was at .apprx.6.0, whereas the optimum temperature was at 65° . The enzyme was most stable at pH .apprx.6.0. Proteolytic activity was lost at temps. of >50°. and .apprx.50% of the original activity was lost after incubation at 60° for 30 min. On the other hand, proteolytic activity was inhibited by p-chloromercuribenzoate, N-ethylmaleimide, antipain, and leupeptin, and was activated by dithiothreitol and L-cysteine. This indicated that the purified enzyme was a papain-like cysteine protease.
- L6 ANSWER 18 OF 22 CABA COPYRIGHT 2004 CABI on STN DUPLICATE 6 Some 63 out of 165 species of trees were found to possess milk clotting ability. Leaf extracts of some trees hydrolysed [kappa]-casein more rapidly than [alpha]sl-casein and [beta]-casein, while those of the other trees digested [alpha]sl-casein and/or [beta]-casein as well as [kappa]-casein. Leaf extracts of Albizia julibrissin, Euonymus sieboldianus and Celastrus orbiculatus digested casein components, resulting in some large peptide fragments, and the fragments hardly disappeared despite long incubation. The ratios of milk clotting activity:proteolytic activity of the extracts of Albizia julibrissin, Euonymus sieboldianus and Celastrus orbiculatus, and chymosin were 26.9, 21.6, 23.3 and 34.2 resp. Conversely, milk clotting activity was observed not only in leaves but also in the bark and young seeds of Albizia julibrissin.
- ANSWER 19 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
 Computer anal. of the cDNA sequence of barley aspartic proteinase predicted a hydrophobic signal sequence (presequence) of about 20 amino acids to be cleaved from the 508 residue polypeptide, but the exact location of the cleavage site remains to be determined The N-termini of both the 32 kDa and 29 kDa subunits start from the serine residue at position 67. This gives a putative prosequence of about 45 amino acids, which is equal in length to the prosequences of other aspartic proteinases such as porcine cathepsin D and chymosin. The potential active sites are located at Aspl01-Thr102-Gly103 and Asp238-Ser289-Gly290, similar to the other aspartic proteinases. Earlier protein analyses suggested that the larger (32 + 16 kDa) enzyme is an intermediate precursor of the smaller (29 + 11 kDa) enzyme. The presence of the N-termini of all

subunits (32, 29, 16 and 11 kDa) in the same transcript as well as the presence of a single 2.0 kb mRNA in the Northern blots confirms this hypothesis. In addition, during the processing, a disulfide bridge in the cleaved polypeptide is removed and the 29 kDa and 11 kDa subunits remain held together by noncovalent bonds. In comparison with the mammalian aspartic proteinases the barley enzyme has an extra 104 amino acids inserted approx. 317 amino acids from the initiation methionine, and containing the N-terminal sequence of the 16 kDa subunit. The N-terminus of the 11 kDa subunit is located immediately after the insert. The insert is located at approx. the same position as intron 7 in the human renin gene, the human prochymosin pseudogene and the human pepsinogen A and C genes. Interestingly, the 104 amino acid insert has certain homol. with the CaMV genome. However, the origin of the 104 amino acid insert as well as its evolutionary significance remains to be elucidated. According to the amino acid sequence data barley aspartic proteinase is homologous to porcine cathepsin D, human cathepsin D and yeast proteinase A. The homol. is split between two regions of the barley enzyme, leaving 104 nonhomologous amino acids in between. In the N-terminal region there is a 52% identity over 248 amino acids between the porcine cathepsin D and the barley enzyme.

- L6 ANSWER 20 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AB Biol. pesticides are prepared using transgenic plants containing genes coding for proteinase inhibitors or their precursors. Ti plasmid-derived vector pCIB710 was constructed, the egg albumin cystatin gene and the cauliflower mosaic virus promoter/terminator cassette were inserted, and maize protoplasts were transformed with this vector using electroporation and were regenerated. Plants containing the vector and pos. for cystatin expression were resistant to infestation with Diabrotica larvae compared to control plants.
- L6 ANSWER 21 OF 22 CAPLUS COPYRIGHT 2004 ACS on STN
- AB A dry active product is obtained by mixing dry com. papain with dry yeast, or with seeds containing amygdalin and emulsin such as cacao seeds, or with a mixture of dry yeast and above mentioned seeds. The product is used as substitute for pepsin, trypsin, erepsin, lipase, chymosin and pancreas extract, as albumin and fat solvent and in various other applications. In an example com. dry papain 50 is mixed with dry yeast 30 and cacao seeds 200 parts.
- L6 ANSWER 22 OF 22 BIOSIS COPYRIGHT (c) 2004 The Thomson Corporation. on STN
- AB Seventeen colonies of honey bees from 13 different sources were dosed with Nosema apis spores in sugar syrup. Spore loads carried by foraging bees were recorded for 11 weeks thereafter. Eleven further colonies, fed plain sugar syrup, were sampled as controls. Mean spore loads in all N. apis-dosed colonies increased to between 8 million and 27 million spores per bee two weeks after dosing, spore loads had decreased to levels comparable to those found in the control colonies (about 4 million spores per bee or less). There were no significant differences in the responses of colonies from different sources. Colonies from different sources showed a similar uniformity with regard to the rate of spread of infection among caged bees and chymosin levels in the guts of workers. These results show little variation in response to N. apis infection, and indicate a lack of genetic variability among New Zealand bees in respect of susceptibility to N. apis infection.

- L5 ANSWER 1 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB Genetic constructs, transformation vectors and methods are taught for production of transgenic plants which can be selectively removed from a growing site by application of a chemical agent or physiol. stress. The invention links a target gene for the trait of com. interest to a conditionally lethal gene, which can be selectively expressed to cause plant death. By use of the genetic constructs, transformation vectors and methods of the present invention, invasion of environments and contamination of com. non-engineered productions by transgenic plants can be avoided. Methods are also taught for transformation of Brassica species.
- L5 ANSWER 2 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB A Local isolate of Hyphomucor assamensis showed high activity of rennet production when cultivated on medium containing wheat bran on solid culture. Highest enzyme activity was recorded using 1% five days old culture at 25°. A 55% moisture content using dry wheat bran yielded the highest milk clotting activity at pH 7. Fructose favored the enzyme production, 1% of skim milk, 1.66 gm/l Mg SO4. 7H2O and 6.66 gm/l KH2PO4. The crude rennet enzyme reached its maximum activity when 1.08 mg protein/reaction mixture, 8% skim milk powder and 0.11 gm/l00 mL CaCl2were used at pH 5 using 0.03 M sodium acetate buffer.
- L5 ANSWER 3 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB Food additives are encapsulated in a denatured protein coating. The food additives are mixed with a solution or slurry of the protein and heated to denature protein; the coagulant is then comminuted to microcapsules. Alternatively, the protein may be insolubilized by proteolysis and Ca stearate may be added to improve flexibility of the coagulant. Polysaccharides may also be used to generate a partially water-soluble coating. Optimization expts. are reported.
- L5 ANSWER 4 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB Food additives (including food dyes) used in Japan were tested for their toxicities in rats and mice. Gardenia yellow induced liver injury. Anise oil, pimenta oil, orange oil, and wood vinegar induced death. Nontoxic additives included caramel, crystalline cellulose, tamarind seed polysaccharide, locust bean gum, allspice oil, vanilla, α-amylase, β-amylase, lysozyme, rennin, gardenia red, and gardenia green.
- ANSWER 5 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN DUPLICATE 1

 Exts. of mature green, dry, and germinated V. faba depressed the trypsin activity with casein. Germination of V. faba (for 60 h) lowered the trypsin inhibitor (I) activity. Saline (0.171M) was the most efficient extractant for I. Min. amts. of the I were extracted in the pH range 4-5. I of V. faba was nondialyzable. The inhibitor activity originated in the seeds at the beginning of pod formation and increased with development to maturity. I was active only towards trypsin, it was inactive towards papain, rennin, and pepsin. Chromatographing V. faba proteins possessing antitryptic activity on a column of DEAE-cellulose yielded 6 peaks, all of which possessed antitryptic activity.
- L5 ANSWER 6 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB Normally prepared dahi, an important fermented milk product in West Pakistan, was compared with the product made by the use of a rennin-like enzyme prepared from the seeds of Withania coagulans. The enzyme-like material was extracted with water from finely ground seeds, followed by precipitation with alc. The product freed from alc. by evaporation actively coagulated milk; 200 mg. coagulated 1 l. milk

in 45 min. at 45°. Boiled milk, thus treated was compared chemical and nutritionally with conventionally prepared dahi, as follows: moisture 88.91, 88.31; protein 3.69, 3.84; fat 3.23, 3.33; lactose 3.43, 3.84; titratable acidity 0.63, 0.13% (as lactic), resp. The digestibility and protein efficiency were nearly the same for both.

- L5 ANSWER 7 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB cf. C. A. 29, 1110.1,1110.5. The effectiveness of the amylase contained in various cereal grains can be increased by proteases (trypsin, pepsin, papain, rennin) to different degrees. The increase in the amylase activity depends partly upon the nature of the protein and the extent of its hydrolysis. Trypsin produces the strongest effect. However, the increase in amylase effectiveness is greater in seeds of high amylase content (wheat, rye, barley) than of a low content so that the protease action is due primarily to formation or liberation of amylase-mobilizing factors, the eleuto-substances, kinases, etc., rather than the destruction of the proteins. The effect is manifested principally in the saccharifying ability of the amylase.
- L5 ANSWER 8 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB The mucin from Cydonia seeds is precipitated by papain. Other "slimes," e. g., from linseed, gum arabic and tragacanth, are not precipitated The action is sp. for Cydonia, which may thus be identified. Other enzymes, pepsin, rennin, trypsin, and certain plant proteases, do not precipitate Cydonia mucin. The precipitation is based on the neutralization of

the negative charge of the mucin by the positive charge of papain. The combination is quite stable; papain exhibits fermentative action (milk coagulation) while in this combination. Blood serum prevents the coagulation; the serum globulin is the effective preventive agent. Alkalies and inorg. acids inhibit the coagulation; organic acids and neutral salts promote the coagulation.

- L5 ANSWER 9 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB The conversion of caseinogen into casein in by enzyme action is accompanied by the cleavage of N, P, and Ca. Rennin produces no sol.N or P. Trypsin splits off both soluble N and P, while the Withania enzyme (obtained from the seeds of the Withania coagulans) also produces soluble N and P, but in smaller absolute quantities. The cleavage products are specific for each enzyme and it is to this difference of enzyme action that the variation in behavior of the resulting casein is to be ascribed. The precipitation of Ca caseinate by soluble Ca salts is not due to any

chemical combination with these. The caseinogen once exposed to enzyme action and redispersed cannot be rendered more precipitable by renewed enzyme action. If the enzyme be sufficiently concentrated, ppts. are obtained without the addition of Ca salts and the same thing occurs with more dilute enzyme solns. when the temperature is raised above 45°.

- L5 ANSWER 10 OF 10 CAPLUS COPYRIGHT 2004 ACS on STN
- AB Alfalfa seeds contain enzymes that hydrolyze starch and amygdalin, like amylase and emulsin, resp.; an enzyme that coagulates milk, like rennin; an enzyme that ppts. purpurogallin from pyrogallol solution with H2O2, like the ordinary peroxidases; and an enzyme that digests casein and Witte peptone, like a protease. The protease is a vegetable erepsin. The seeds probably do not contain invertase, and if lipase is present, it is not water-soluble