Lineare Algebra 2 — Übungsblatt 10

Sommersemester 2020

AOR Dr. D. Vogel P. Gräf, R. Steingart

Abgabe: Do 09.07.2020 um 9:15 Uhr

36. Aufgabe: (4 Punkte, Äußere Potenzen von Abbildungen) Seien

$$A = \begin{pmatrix} 0 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & 2 \end{pmatrix} \in M_{3,3}(\mathbb{R})$$

und f_A die lineare Abbildung $\mathbb{R}^3 \xrightarrow{A} \mathbb{R}^3$. Man berechne die Darstellungsmatrix der linearen Abbildung $\bigwedge^2 f_A \colon \bigwedge^2 \mathbb{R}^3 \to \bigwedge^2 \mathbb{R}^3$ bezüglich der Basis $(e_1 \wedge e_2, e_1 \wedge e_3, e_2 \wedge e_3)$ von $\bigwedge^2 \mathbb{R}^3$, wobei (e_1, e_2, e_3) die Standardbasis von \mathbb{R}^3 bezeichnet.

Definition: Seien R ein Ring und M ein R-Modul. Dann heißt M flach, wenn für alle injektiven R-Modulhomomorphismen $\varphi \colon N \to L$ mit R-Modulh N, L auch $\varphi \otimes \mathrm{id}_M \colon N \otimes_R M \to L \otimes_R M$ (oder äquivalent $\mathrm{id}_M \otimes \varphi \colon M \otimes_R N \to M \otimes_R L$) injektiv ist.

- **37. Aufgabe:** (2+2+2 *Punkte, Flache Moduln*) Seien *R* ein Ring und *M* ein *R*-Modul.
 - (a) Man zeige: Ist *M* endlich erzeugt und frei, so ist *M* flach.
 - (b) Seien M flach und N ein weiterer flacher R-Modul. Sei $\varphi \colon M \to N$ ein injektiver R-Modulhomomorphismus. Man zeige, dass $\varphi \otimes \varphi \colon M \otimes_R M \to N \otimes_R N$ injektiv ist. **Hinweis:** Man schreibe $\varphi \otimes \varphi = (\mathrm{id}_N \otimes \varphi) \circ (\varphi \otimes \mathrm{id}_M)$.
 - (c) Man gebe ein Beispiel eines Ringes R und eines R-Moduls M, der nicht flach ist.

38. Aufgabe: (3+3+2 *Punkte, Die Determinante und Injektivität*) Seien *R* ein Ring und *M* ein endlich erzeugter freier *R*-Modul. Man zeige:

(a) Seien N ein weiterer endlich erzeugter freier R-Modul und $\varphi \colon M \to N$ ein injektiver R-Modulhomomorphismus. Dann ist $\bigwedge^2 \varphi \colon \bigwedge^2 M \to \bigwedge^2 N$ injektiv.

Hinweis: Man verwende Aufgabe 35 und Aufgabe 37.

- (b) Seien $m_1, m_2 \in M$. Dann sind die folgenden Aussagen äquivalent:
 - (i) Die Familie (m_1, m_2) ist linear unabhängig.
 - (ii) Aus $r(m_1 \wedge m_2) = 0$ in $\bigwedge^2 M$ mit $r \in R$ folgt bereits r = 0.

Hinweis: Für die Implikation (i) \Rightarrow (ii) betrachte man den *R*-Modulhomomorphismus $\psi \colon R^2 \to M$ mit $\psi(e_i) = m_i$ für i = 1, 2, wobei (e_1, e_2) die Standardbasis von R^2 bezeichnet.

- (c) Seien nun Rang(M) = 2 und $\varphi \in \operatorname{End}_R(M)$. Dann sind die folgenden Aussagen äquivalent:
 - (i) φ ist injektiv.
 - (ii) $det(\varphi) \in R$ ist kein Nullteiler.

39. Aufgabe: (3+3 *Punkte, Exakte Folgen*) Seien $N = \mathbb{Z}$ und $M = \bigoplus_{i \in \mathbb{N}} \mathbb{Z}/2\mathbb{Z}$. Seien weiterhin $f: N \to N \oplus M$ und $g: N \oplus M \to M$ gegeben durch

$$f(n) = (2n, 0)$$
 und $g(n, (\overline{m}_1, \overline{m}_2, \dots)) = (\overline{n}, \overline{m}_1, \overline{m}_2, \dots)$

für $n \in N$ und $(\overline{m}_1, \overline{m}_2, \dots) \in M$. Man zeige:

- (a) Die Folge $0 \to N \xrightarrow{f} N \oplus M \xrightarrow{g} M \to 0$ ist eine kurze exakte Folge von Z-Moduln.
- (b) Die Folge aus (a) zerfällt nicht.

Hinweis: Man betrachte das Element $x = (1, 0, 0, ...) \in M$ und verwende, dass 2x = 0 gilt.