Lecture 6: Autoregressive Integrated Moving Average Models Introduction to Time Series, Fall 2023

Ryan Tibshirani

Related reading: Chapters 3.1, 3.3, and 3.6 in Shumway and Stoffer (SS); Chapters 9.1–9.5 and 9.8–9.9 of Hyndman and Athanasopoulos (HA).

1 AR models

- The *autoregressive* (AR) model is one of the foundational legs of ARIMA models, which we'll cover bit by bit in this lecture. (Recall, you've already learned about AR models, which were introduced all the way back in our first lecture)
- Precisely, an AR model of order $p \geq 0$, denoted AR(p), is of the form

$$x_t = \sum_{j=1}^{p} \phi_j x_{t-j} + w_t \tag{1}$$

where w_t , $t = 0, \pm 1, \pm 2, \pm 3, ...$ is a white noise sequence. Note that we allow the time index to be negative here (we extend time back to $-\infty$), which will useful in what follows

- The coefficients ϕ_1, \ldots, ϕ_p in (1) are fixed (nonrandom), and we assume $\phi_p \neq 0$ (otherwise the order here would effectively be less than p). Note that in (1), we have $\mathbb{E}(x_t) = 0$ for all t
- If we wanted to allow for a nonzero but constant mean, then we could add an intercept to the model in (1). We'll omit this for simplicity in this lecture
- A useful tool for expressing and working with AR models is the *backshift operator*: this is an operator we denote by B that takes a given time series and shifts it back in time by one index,

$$Bx_t = x_{t-1}$$

• We can extend this to powers, as in $B^2x_t = BBx_t = x_{t-2}$, and so on, thus

$$B^k x_t = x_{t-k}$$

• Returning to (1), note now that we can rewrite this as

$$x_t - \phi_1 x_{t-1} - \phi_2 - x_{t-2} - \dots - \phi_p x_{t-p} = w_t$$

or in other words, using backshift notation

$$\left(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p\right) x_t = w_t \tag{2}$$

• Hence (2) is just a compact way to represent the AR(p) model (1) using the backshift operator B. Often, authors will write this model even more compactly as

$$\phi(B)x_t = w_t \tag{3}$$

where $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$ is called the *autoregressive operator* of order p, associated with the coefficients ϕ_1, \dots, ϕ_p

• Figure 1 shows two simple examples of AR processes

Figure 1: Two examples of AR(1) processes, with $\phi = \pm 0.9$.

1.1 AR(1): auto-covariance and stationarity

- A key question for us will be: under what conditions does the AR model in (1), or equivalently (3), define a stationary process?
- The answer will turn out to be fairly sophisticated, but we can glean some intuition by starting with the AR(1) case:

$$x_t = \phi x_{t-1} + w_t \tag{4}$$

- Note that a random walk is the special case with $\phi = 1$. We already know (from previous lectures) that this is nonstationary, so certainly (4) cannot be stationary for any ϕ
- Unraveling the iterations, we get

$$x_{t} = \phi^{2} x_{t-2} + \phi w_{t-1} + w_{t}$$

$$= \phi^{3} x_{t-3} + \phi^{2} w_{t-2} + \phi w_{t-1} + w_{t}$$

$$\vdots$$

$$= \phi^{k} x_{t-k} + \sum_{j=0}^{k} \phi^{j} w_{t-j}$$

• If $|\phi| < 1$, then we can send $k \to \infty$ in the last display to get

$$x_t = \sum_{j=0}^{\infty} \phi^j w_{t-j} \tag{5}$$

This is called the stationary representation of the AR(1) process (4)

• Why is it called this? We can compute the auto-covariance function, writing $\sigma^2 = \text{Var}(w_t)$ for the noise variance, as

$$Cov(x_t, x_{t+h}) = Cov\left(\sum_{j=0}^{\infty} \phi^j w_{t-j}, \sum_{\ell=0}^{\infty} \phi^\ell w_{t+h-\ell}\right)$$

$$= \sum_{j,\ell=0}^{\infty} \phi^j \phi^\ell Cov(w_{t-j}, w_{t+h-\ell})$$

$$= \sum_{j=0}^{\infty} \phi^j \phi^{j+h} \sigma^2$$

$$= \sigma^2 \phi^h \sum_{j=0}^{\infty} \phi^{2j}$$

$$= \sigma^2 \frac{\phi^h}{1 - \phi^2}$$
(6)

where we used the fact that $\sum_{j=0}^{\infty} b^j = 1/(1-b)$ for |b| < 1. Since the auto-covariance in the last line only depends on h, we can see that the AR(1) process is indeed stationary

• To reiterate, the representation (5), and the auto-covariance calculation just given, would have not been possible unless $|\phi| < 1$. This condition is required in order for the AR(1) process to have a stationary representation. We will see later that we can generalize this to a condition that applies to an AR(p), yielding an analogous conclusion. The conclusion we will be looking for is explained next

1.2 Causality (no, not the usual kind)

- Now we will introduce a concept called *causality*, which generalizes what we just saw falls out of an AR(1) when $|\phi| < 1$. This is a slightly unfortunate bit of nomenclature that nonetheless seems to be common in the time series literature. It has really nothing to do with causality used in the broader sense in statistics. We will ... somewhat begrudgingly ... stick with the standard nomenclature in time series here
- We say that a series x_t , $t = 0, \pm 1, \pm 2, \pm 3, \dots$ is causal provided that it can be written in the form

$$x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j} \tag{7}$$

for a white noise sequence w_t , $t=0,\pm 1,\pm 2,\pm 3,\ldots$, and coefficients such that $\sum_{j=0}^{\infty} |\psi_j| < \infty$

- You should think of this as a generalization of (5), where we allow for arbitrary coefficients $\psi_0, \psi_1, \psi_2, \ldots$, subject to an absolute summability condition
- It is straightforward to check that causality actually implies stationarity: we can just compute the auto-covariance function in (7), similar to the above calculation:

$$Cov(x_t, x_{t+h}) = Cov\left(\sum_{j=0}^{\infty} \psi_j w_{t-j}, \sum_{\ell=0}^{\infty} \psi_\ell w_{t+h-\ell}\right)$$
$$= \sum_{j,\ell=0}^{\infty} \psi_j \psi_\ell Cov(w_{t-j}, w_{t+h-\ell})$$
$$= \sigma^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+h}$$

The summability condition ensures that these calculations are well-defined and that the last display is finite. Since this only depends on h, we can see that the process is indeed stationary

- Thus, to emphasize, causality actually tells us *more* than stationary: it is stationary "plus" a representation a linear filter of past white noise variates, with summable coefficients
- Note that when $\psi_j = \phi^j$, the summability condition $\sum_{j=0}^{\infty} |\psi_j| < \infty$ is true if and only if $|\phi| < 1$. Hence what we actually proved above for AR(1) was that it is causal if and only if $|\phi| < 1$. And it is this condition—for causality—that we will actually generalize for AR(p) models, and beyond

2 MA models

- A moving average (MA) model is "dual", in a colloquial sense, to the AR model. Instead of having x_t evolve according to a linear combination of the recent past, the errors in the model evolve according to a linear combination of white noise
- Precisely, an MA model of order $q \geq 0$, denoted MA(q), is of the form

$$x_{t} = w_{t} + \sum_{j=1}^{q} \theta_{j} w_{t-j} \tag{8}$$

where w_t , $t = 0, \pm 1, \pm 2, \pm 3, ...$ is a white noise sequence

- The coefficients $\theta_1, \ldots, \theta_q$ in (8) are fixed (nonrandom), and we assume $\theta_q \neq 0$ (otherwise the order here would effectively be less than q). Note that in (8), we have $\mathbb{E}(x_t) = 0$ for all t
- Again, we can rewrite (8), using backshift notation, as

$$x_t = \left(1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q\right) w_t \tag{9}$$

• Often, authors will write (9) even more compactly as

$$x_t = \theta(B)w_t \tag{10}$$

where $\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$ is called the moving average operator of order q, associated with the coefficients $\theta_1, \dots, \theta_q$

• Figure 2 shows two simple examples of MA processes

2.1 Stationarity

- Unlike AR processes, an MA process (8) is stationary for any values of the parameters $\theta_1, \ldots, \theta_q$
- To check this, we compute the auto-covariance function using a similar calculation to those we've done before, writing $\theta_0 = 1$ for convenience:

$$\operatorname{Cov}(x_{t}, x_{t+h}) = \operatorname{Cov}\left(\sum_{j=0}^{q} \theta_{j} w_{t-j}, \sum_{\ell=0}^{q} \theta_{\ell} w_{t+h-\ell}\right)$$

$$= \sum_{j,\ell=0}^{q} \theta_{j} \theta_{\ell} \operatorname{Cov}(w_{t-j}, w_{t+h-\ell})$$

$$= \sigma^{2} \sum_{j=0}^{q} \theta_{j} \theta_{j+h}$$

$$(11)$$

Since this only depends on h, we can see that the process is indeed stationary

• The similarity in these calculations brings us to pause to emphasize the following connection: an AR(1) model with $|\phi| < 1$ is also a particular infinite-order MA model, as we saw in the stationary representation (5). We will see later that there are more general connections to be made

Figure 2: Two examples of MA(1) processes, with $\theta = \pm 0.9$.

2.2 MA(1): issues with non-uniqueness

• Consider the MA(1) model:

$$x_t = w_t + \theta w_{t-1} \tag{12}$$

• According to (11), we can compute its auto-covariance simply (recalling $\theta_0 = 1$) as

$$\gamma(h) = \begin{cases} (1 + \theta^2)\sigma^2 & h = 0\\ \theta\sigma^2 & |h| = 1\\ 0 & |h| > 1 \end{cases}$$
 (13)

• The corresponding auto-correlation function is thus

$$\rho(h) = \begin{cases} 1 & h = 0\\ \frac{\theta}{1+\theta^2} & |h| = 1\\ 0 & |h| > 1 \end{cases}$$

- If we look carefully, then we can see a problem lurking here: the auto-correlation function is unchanged if we replace θ by $1/\theta$
- And in fact, the auto-covariance function (13) is unchanged if we replace θ and σ^2 with $1/\theta$ and $\sigma^2\theta^2$; e.g., try $\theta=5$ and $\sigma^2=1$, and $\theta=1/5$ and $\sigma^2=25$, you'll find that the auto-covariance function is the same in both cases
- This is not good because it means we cannot detect the difference in an MA(1) model with parameter θ and normal noise with variance σ^2 from another MA(1) model with parameter $1/\theta$ and normal noise with variance $\sigma^2\theta^2$

- In other words, there is some *non-uniqueness* of *redundancy* in the parametrization—different choices of parameters will actually lead to the same behavior in the model at the end
- In the MA(1) case, the convention is to simply choose the parametrization with $|\theta| < 1$. Note that we can write

$$w_t = -\theta w_{t-1} + x_t$$

which is like an AR(1) process with the roles of x_t and w_t reversed. Thus by the same arguments that led to (5), when $|\theta| < 1$, we now have

$$w_t = \sum_{j=0}^{\infty} (-\theta)^j x_{t-j} \tag{14}$$

This is called the *invertible representation* of the MA(1) process (12)

• We will see soon that we can generalize this to a condition that applies to a general MA(q), yielding an analogous conclusion. The conclusion we will be looking for is explained next

2.3 Invertibility

- Before we turn to ARMA models, we define one last concept called *invertibility*, which generalizes what we just saw for MA(1) when $|\theta| < 1$
- We say that a series x_t , $t=0,\pm 1,\pm 2,\pm 3,\ldots$ is invertible provided that it can be written in the form

$$w_t = \sum_{j=0}^{\infty} \pi_j x_{t-j} \tag{15}$$

for a white noise sequence w_t , $t=0,\pm 1,\pm 2,\pm 3,\ldots$, and coefficients such that $\sum_{j=0}^{\infty} |\pi_j| < \infty$, where we set $\pi_0=1$

- You should think of this as a generalization of (14), where we allow for arbitrary coefficients π_1, π_2, \ldots , subject to an absolute summability condition
- And of course, note how invertibility (15) is kind of an opposite condition to causality (7)

3 ARMA models

- AR and MA models have complementary characteristics. The auto-covariance of an AR model generally decays away from h=0, whereas that for an MA process has finite support—in other words, at a certain lag, variates along an MA sequence are completely uncorrelated. You can compare (6) and (13) for the AR(1) and MA(1) models
- (The spectral perspective, by the way, provides another nice way of viewing these complementary characteristics. In the spectral domain, the story is somewhat flipped: the spectral density of an MA process generally decays away from $\omega = 0$, whereas that for an AR process can be much more locally concentrated around particular frequencies; recall our examples from the last lecture)
- Sure, there is some duplicity in representation here, as we will see—we can write some AR models as infinite-order MA models, and some MA models as infinite-order AR models. But that's OK! We can generally take the most salient features that each model represents, and combine them to get a simple model formulation that exhibits both sets of features, simultaneously. This is exactly what an ARMA model does
- Precisely, an ARMA model of orders $p, q \ge 0$, denoted ARMA(p, q), is of the form

$$x_{t} = \sum_{j=1}^{p} \phi_{j} x_{t-j} + \sum_{j=0}^{q} \theta_{j} w_{t-j}$$
(16)

where w_t , $t = 0, \pm 1, \pm 2, \pm 3, \dots$ is a white noise sequence

- The coefficients $\phi_1, \ldots, \phi_p, \theta_0, \ldots, \theta_q$ in (16) are fixed (nonrandom), and we assume $\phi_p, \theta_q \neq 0$, and we set $\theta_0 = 1$. Note that in (16), we have $\mathbb{E}(x_t) = 0$ for all t
- As before, we can represent an ARMA model more compactly using backshift notation, rewriting (16) as

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) x_t = (1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q) w_t$$
 (17)

• Often, authors will write (17) even more compactly as

$$\phi(B)x_t = \theta(B)w_t \tag{18}$$

where $\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$ and $\theta(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$ are the AR and MA operators, respectively, as before

3.1 Parameter redundancy

• For ARMA models, there is an issue of parameter redundancy, just like there are for MA models. If $\eta(B)$ is any (invertible) operator, then we can transform (18) by applying $\eta(B)$ on both sides,

$$\eta(B)\phi(B)x_t = \eta(B)\theta(B)w_t$$

which may look like a different model, but the dynamics are entirely the same

• As an example, consider white noise $x_t = w_t$, and multiply both sides by $\eta(B) = 1 - B/2$. This gives:

$$x_t = \frac{1}{2}x_{t-1} + w_t - \frac{1}{2}w_{t-1}$$

which looks like an ARMA(1,1) model, but it is nothing else that white noise!

• How do we resolve this issue? Doing so requires introducing another concept. The AR and MA polynomials associated with the ARMA process (16) are

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p \tag{19}$$

$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q \tag{20}$$

respectively. To be clear, these are polynomials over *complex numbers* $z \in \mathbb{C}$. (Note that these are just what we get by taking the AR and MA operators, and replacing the backshift operator B by a complex argument z)

• As it turns out, several important properties of ARMA models can be derived by placing conditions on the AR and MA polynomials. Here we'll see the first one, to deal with parameter redundancy: when we speak of an ARMA model, we implicitly assume that the AR and MA polynomials $\phi(z)$ and $\theta(z)$, in (19) and (20), have no common factors. This rules out a case like

$$x_t = \frac{1}{2}x_{t-1} + w_t - \frac{1}{2}w_{t-1}$$

because the polynomials each have 1-z/2 as a common factor. Hence we do not even refer to the above as an ARMA(1,1) model

3.2 Causality and invertibility

- Now we learn about two more conditions on the AR and MA polynomials that imply important general properties of the underlying ARMA process, and generalize calculations we saw earlier for AR(1) and MA(1) models
- Before we describe these, we recall the following terminology: for a polynomial $P(z) = \sum_{j=0}^{k} a_j z^j$, we say that z is a root of P provided P(z) = 0

- And we say that a point $z \in \mathbb{C}$ lies outside of the unit circle (in the complex plane \mathbb{C}) provided that |z| > 1, where |z| is the complex modulus of z (recall $|z|^2 = \text{Re}\{z\}^2 + \text{Im}\{z\}^2$)
- The first property: the ARMA process (16) has a causal representation (7) if and only if all roots of the AR polynomial (19) lie outside of the unit circle. The coefficients $\psi_0, \psi_1, \psi_2, \ldots$ in the causal representation can be determined by solving

$$\psi(z) = \phi(z)^{-1}\theta(z) \iff \sum_{j=0}^{\infty} \psi_j z^j = \frac{1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q}{1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p}, \quad \text{for } |z| < 1$$

• The second property: the ARMA process (16) is invertible (15) if and only if all roots of the MA polynomial (20) lie outside of the unit circle. The coefficients π_1, π_2, \ldots in the invertible representation can be determined by solving

$$\pi(z) = \theta(z)^{-1}\phi(z) \iff \sum_{j=0}^{\infty} \pi_j z^j = \frac{1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p}{1 + \theta_1 z + \theta_2 z^2 + \dots + \theta_q z^q}, \quad \text{for } |z| < 1$$

- (As an aside, you can see that parameter redundancy issues would not affect the causal and invertible representations, as they shouldn't, because any common factors in $\phi(z)$ and $\theta(z)$ would cancel in their ratios which determine the coefficients in the causal and invertible expansions)
- Interestingly, these results can also be interpreted as follows:
 - An AR(q) process, such that the roots of ϕ lie outside the unit circle, can also be written as an MA(∞) process (this is what causality (7) means)
 - An MA(q) process, such that the roots of θ lie outside the unit circle, can also be written as an AR(∞) process (this is what invertibility (15) means, as it says $x_t = -\sum_{j=1}^{\infty} \pi_j x_{t-j} + w_t$)
- We won't cover the proofs of these properties or go into further details about them. But you will see several hints of their significance (what the causal and invertible representations allow us to do) in what follows. At a high-level, they are worth knowing because they are considered foundational results for ARMA modeling (just like it is worth knowing foundations for regression modeling, and so on). You can refer to Appendix B.2 of SS for proofs, or read more in Chapter 3 of SS
- Also, recall that causality implies stationarity, so what we have just learned is the general result that renders an ARMA(p, q) process stationary
- Finally, as a summary, here are three equivalent ways to represent a causal, invertible ARMA(p,q) model:

$$\phi(B)x_t = \theta(B)w_t$$

$$x_t = \psi(B)w_t, \text{ for } \psi(B) = \phi(B)^{-1}\theta(B)$$

$$\pi(B)x_t = w_t, \text{ for } \pi(B) = \theta(B)^{-1}\phi(B)$$

3.3 Auto-covariance

- The auto-covariance for an MA(q) model was already given in (11). We can see that it has a finite bandwidth 2q + 1: this is a signature structure of the MA(q) model
- The auto-covariance for a causal AR(1) model was given in (6). We can see that it decays away from h = 0: this is a signature structure of AR models. But what does the precise auto-covariance look like for a general causal AR(p) model? How about a general causal ARMA(p, q) model?
- The answer is much more complicated, but still possible to characterize precisely. We'll do it first for an AR(p) model, and then look at an ARMA(p,q) model, which will have an analogous behavior

• For an AR(p) model (1), assumed causal (i.e., all roots of $\phi(z)$ are outside of the unit circle), we can focus on the auto-covariance at lags $h \ge 0$ (without a loss of generality, because γ is symmetric around zero),

$$Cov(x_t, x_{t+h}) = \sum_{i=1}^{p} \phi_i Cov(x_t, x_{t+h-i}) + Cov(x_t, w_{t+h})$$

• The last term on the right-hand side zero for h > 0; recall, x_t is a causal process, and only depends on white noise in the past. On the other hand, when h = 0, writing $x_t = \sum_{j=0}^{\infty} \psi_j w_{t-j}$,

$$Cov(x_t, w_t) = \sum_{j=0}^{\infty} \psi_j Cov(w_{t-j}, w_t) = \sigma^2 \psi_0$$

• Combining the last two displays, we learn that the auto-covariance function satisfies

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0, \quad h > 0$$

$$\gamma(0) - \sum_{j=1}^{p} \phi_j \gamma(-j) = \sigma^2 \psi_0,$$

- This is called a difference equation of order p for the auto-covariance function γ . Some simple difference equations can be solved explicitly without complicated mathematics, but to solve a difference equation in general requires knowing something (again) about the roots of a certain complex polynomial associated with the difference equation, when it is represented in operator notation. You can read Chapter 3.2 of SS for an introduction to the theory of difference equations
- For an AR(p) model, it turns out we can solve the difference equation in the last display and get

$$\gamma(h) = P_1(h)z_1^{-h} + \dots + P_r(h)z_r^{-h} \tag{21}$$

where each P_j is a polynomial, and each z_j is a root of the AR polynomial ϕ . Because each $|z_j| > 1$ (all roots lie outside the unit circle), we see that the auto-covariance function will decay to zero as $h \to \infty$. In the case that some roots are complex, then what will actually happen is that the auto-covariance will dampen to zero but in doing so oscillate in a sinusoidal fashion

• Now what about an ARMA(p,q) model (16), assumed causal? Similarly, we can focus on the auto-covariance a lags $h \ge 0$,

$$Cov(x_t, x_{t+h}) = \sum_{j=1}^{p} \phi_j Cov(x_t, x_{t+h-j}) + \sum_{j=0}^{q} \theta_j Cov(x_t, w_{t+h-j})$$

• The last term on the right-hand side zero for h > q, whereas when $h \le q$, writing $x_t = \sum_{\ell=0}^{\infty} \psi_{\ell} w_{t-\ell}$, we see that for $j \ge h$,

$$Cov(x_t, w_{t+h-j}) = \sum_{\ell=0}^{\infty} \psi_{\ell} Cov(w_{t-\ell}, w_{t+h-j}) = \sigma^2 \psi_{j-h}$$

• Combining the last two displays, we learn that the auto-covariance function satisfies

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = 0, \qquad h > q$$

$$\gamma(h) - \sum_{j=1}^{p} \phi_j \gamma(h-j) = \sigma^2 \sum_{j=h}^{q} \psi_{j-h}, \quad h \le q$$

- This is again a difference equation of order p that determines γ , but the boundary condition (what happens when $h \leq q$) is more complicated. Nonetheless, the solution is still the form (21), and the qualitative behavior is still the same as in the AR(p) case
- Figure 3, top row, shows sample auto-correlation functions for simple MA and AR models

Figure 3: Top row: sample auto-correlation functions for data from AR(2) and MA(3) models. Bottom row: sample partial auto-correlation functions for these same data.

3.4 Partial auto-covariance

- The auto-covariance function for an MA model provides a considerable amount of information that will help identify its structure: since it is zero for lags h > q, if we were to compute a sample version based on data, then by seeing where the sample auto-correlation "cuts off", we could roughly identify the order q of the underlying MA process (see top right of Figure 3 again)
- For an AR (or ARMA) model, this is not the case. As we saw from (21), the auto-covariance decays to zero, but this tells us little about the AR order of dependence p (see also top left of Figure 3). Thus it is worth pursuing a type of *modified* correlation function for the AR model that behaves like the auto-correlation does for the MA model
- Such a modification will be given to us by the partial auto-correlation function. In general, the partial correlation between random variables X, Y given Z is denoted $\rho_{XY|Z}$ and defined as

$$\begin{split} &\rho_{XY|Y}=\operatorname{Cor}(X-\hat{X},Y-\hat{Y}),\quad \text{where}\\ &\hat{X}\text{ is the linear regression of }X\text{ on }Z,\quad \text{and}\\ &\hat{Y}\text{ is the linear regression of }Y\text{ on }Z \end{split}$$

Here, and in what follows, by "linear regression" we mean regression in the population sense, so that precisely $\hat{X} = Z^{\mathsf{T}} \operatorname{Cov}(Z)^{-1} \mathbb{E}(ZX)$ and $\hat{Y} = Z^{\mathsf{T}} \operatorname{Cov}(Z)^{-1} \mathbb{E}(ZY)$

- Said differently, the partial correlation of two random variables given Z is the correlation after we remove ("partial out") the linear dependence of each random variable on Z
- We note that when X, Y, Z are jointly normal, then this definition coincides with conditional correlation: $\rho_{XY|Z} = \text{Cor}(X, Y|Z)$, but not in general
- We are now ready to define the partial auto-correlation function for a stationary time series x_t , $t = 0, \pm 1, \pm 2, \pm 3, \ldots$, denoted $\phi_x(h)$ at a lag h. Without a loss of generality we will only define it for $h \geq 0$, since it will be symmetric around zero (due to stationarity). First, at lag h = 0 or h = 1, we simply define:

$$\phi_x(0) = 1$$

$$\phi_x(1) = \operatorname{Cor}(x_t, x_{t+1})$$

Next, at all lags $h \geq 2$, we define:

$$\phi_x(h) = \operatorname{Cor}(x_t - \hat{x}_t, x_{t+h} - \hat{x}_{t+h}), \quad \text{where}$$
 \hat{x}_t is the linear regression of x_t on $x_{t+1}, \dots, x_{t+h-1}, \quad \text{and}$
 \hat{x}_{t+h} is the linear regression of x_{t+h} on $x_{t+1}, \dots, x_{t+h-1}$

• To best see the effect of this definition we can go straight back to the causal AR(p) model. When h > p, it can be shown that the population linear regression \hat{x}_{t+h} , of x_{t+h} on $x_{t+1}, \ldots, x_{t+h-1}$, is

$$\hat{x}_{t+h} = \sum_{j=0}^{p} \phi_j x_{t-j}$$

Thus $x_{t+h} - \hat{x}_{t+h} = x_{t+h} - \sum_{j=0}^{p} \phi_j x_{t-j} = w_{t+h}$, and the partial auto-correlation is

$$\phi_x(h) = \operatorname{Cor}(x_t - \hat{x}_t, w_{t+h}) = 0$$

because causality implies that x_t can only depend on white noise through time t, and \hat{x}_t can only depend on white noise through time t + h - 1

- That is, the partial auto-correlation function for an AR(p) model is exactly zero at all lags h > p
- Figure 3, bottom row, shows sample partial auto-correlation functions for AR and MA models
- The table below summarizes the behavior of the auto-correlation function (ACF) and partial auto-correlation function (PACF) for causal AR(p) and invertible MA(q) models. By "tails off" we mean decays to zero as $h \to \infty$ without dropping to zero exactly; by "cuts off" we mean drops to zero at a finite lag h

	AR(p)	MA(q)	ARMA(p,q)
ACF	tails off	drops off at lag q	tails off
PACF	drops off at lag p	tails off	tails off

The fact that the partial auto-correlation function for an invertible MA(q) model "tails off" was not derived in these notes, but you can read more in Section 3.3 of SS if you are curious. Same with the behavior of a causal, invertible ARMA(p,q)

3.5 Estimation and selection

- Estimation in an ARMA(p,q) model—estimating the coefficients $\phi_1, \ldots, \phi_p, \theta_1, \ldots, \theta_q$ in (16)—is in general fairly complicated. Much more so than in linear regression
- Estimation is usually performed by maximum likelihood (assuming Gaussian errors), but there are many other (nonequivalent) approaches, such as the method of moments. Maximum likelihood is no longer a simple least squares minimization (as it is for regression) over a linear parameterization. There are various approaches, typically iterative, for carrying out maximum likelihood, and different approaches will give different answers

- We won't cover estimation techniques in detail at all, but we'll just note that a simple approach is as follows (which dates back to Durbin in 1960). Start with some estimates \hat{w}_t the noise variates w_t . Then use these as covariates, i.e., regress x_t on $x_{t-p}, \ldots, x_{t-1}, \hat{w}_{t-q}, \ldots, \hat{w}_{t-1}$, over $t = t_0 + 1, t_0 + 2, \ldots, n$, where $t_0 = \max\{p, q\}$. This is like a conditional maximum likelihood approach (where we condition on the initial values $x_1, \ldots, x_{t_0}, w_1, \ldots, w_{t_0}$ and our estimates \hat{w}_t)
- You can read about other approaches in Chapter 3.5 of SS, Chapter 9.6 of HA, or references therein
- Both the astsa package (written by Stoffer of SS) and fable package (written by Hyndman of HA) provide functionality for fitting ARIMA models in R
- If there's one thing even more complicated than fitting ARIMA models, it's choosing an ARIMA model—that is, order selection, or determining the choice of p, q from data
- At least, this topic seems to be more controversial ... some authors like Hyndman believe that this can be automated (via algorithms like the Hyndman-Khandakar algorithm), and this is what is implemented in ARIMA() in the fable package when the order p, q is left unspecified. But other authors like Stoffer believe that this doesn't work, and recommend more human-expert-driven model building
- If the point is to identify the "right" structure, from a model specification point of view, then Stoffer may have a point (see R notebook examples)
- But to HA's credit, their Chapter 9.8 does also recommend more of a human-in-the-loop procedure than simply calling ARIMA() once, involving several diagnostic steps
- The gist of the non-automated part (which is fairly standard) is as follows:
 - 0. Plot the data to identify (and possibly remove) any outliers. Apply data transformation (e.g., Box-Cox), if needed, to stabilize the variance
 - 1. If the data appears nonstationary, take differences until it is stationary
 - 2. Plot the ACF and PACF to determine possible MA and AR orders
 - 3. Fit an ARMA model, inspect the residuals: they should look like white noise
- Step 1 is at the heart of ARIMA, which we'll cover soon. Steps 2-3 are the part that can be (but arguably, should not be) automated by Hyndman-Khandakar: instead of a single ARMA model, it fits a number of different ARMA models, using a stepwise procedure, and then uses an information criterion (like AICc) to select a final one
- Chapter 3.7 in SS also goes into details about a similar sequence of steps for building ARIMA models, and provides nice worked examples
- The ACF and PACF are great tools, and looking at them to get a sense of MA and AR dependence is generally helpful, but we will not concern ourselves too much with the formality of ARMA order selection (just like we did not with model selection in regression)
- Since our focus is on prediction, we will adopt the following simple perspective (just like in regression): an ARMA model is useful if it predicts well. And as before, we can assess this with time series cross-validation

3.6 Regression with correlated errors

• Very briefly, we describe regression with auto-correlated errors. Suppose we assume a model

$$y_t = \sum_{j=1}^k x_{tj}\beta_j + z_t, \quad t = 1, \dots, n$$

where instead of white noise, the error sequence z_t , t = 1, ..., n has some ARMA structure

 $^{^{1}} See\ https://github.com/nickpoison/astsa/blob/master/fun_with_astsa/fun_with_astsa.md\#arima-estimation.$

• In the case that the noise was AR(p), with associated operator $\phi(B)$, we could then simply apply this operator to both sides, to yield

$$\phi(B)y_t = \sum_{j=1}^k \phi(B)x_{tj}\beta_j + \phi(B)z_t, \quad t = 1, \dots, n$$

or defining $y'_t = \phi(B)y_t$, $x'_{tj} = \phi(B)x_{tj}$, $w_t = \phi(B)z_t$,

$$y'_t = \sum_{j=1}^k x'_{tj}\beta_j + w_t, \quad t = 1, \dots, n$$

where now w_t , t = 1, ..., n is white noise

- If we knew the coefficients ϕ_1, \ldots, ϕ_p that comprise the AR operator $\phi(B)$, then we could just obtain estimates of the regression coefficients β_1, \ldots, β_k by regressing y'_t on x'_t . But since we don't know the coefficients ϕ_1, \ldots, ϕ_p in general, these would need to be estimated as well
- We could solve for β_1, \ldots, β_k and ϕ_1, \ldots, ϕ_p jointly using maximum likelihood, or least squares minimization (which are not equivalent). For example, the latter would solve

$$\min_{\beta \in \mathbb{R}^k, \phi \in \mathbb{R}^p} \sum_{t=1}^n \left(\phi(B) y_t - \sum_{j=1}^k \phi(B) x_{tj} \beta_j \right)^2$$

which is called a nonlinear least squares problem (since each square is applied to a nonlinear function of the parameters β, ϕ)

- For (invertible) ARMA noise, the same approach carries over but with $\pi(B) = \phi(B)^{-1}\theta(B)$ in place of $\phi(B)$, which only makes the nonlinear least squares optimization much more complicated
- For more, you can read Chapter 3.8 of SS and Chapters 10.1-10.2 of HA. In R, the ARIMA() function in the fable package allows us to fit regression models with ARIMA errors

4 ARIMA models

- Finally, we arrive at ARIMA models. We've hinted at what these are about a few times already, but it is nonetheless worth making the motivation explicit: the main point behind the new "I" component here is to account for nonstationary. Well-behaved ARMA models (causal ones) are stationary, and ARIMA allows us to handle nonstationary data
- The "T" stands for "integration", so an ARIMA model is an autoregressive *integrated* moving average model. Integration is to be understood here as the inverse of differencing, because we are effectively just differencing the data to render it stationary, and then assuming the differenced data has ARMA structure
- \bullet First, we define the differencing operator ∇ that takes a given sequence and returns pairwise differences.

$$\nabla x_t = x_t - x_{t-1}$$

• We can extend this to powers by iterating, as in

$$\nabla^2 x_t = \nabla \nabla x_t = x_t - 2x_{t-1} - x_{t-2}$$

• Note that we can also write ∇ in terms of the backshift operator B as $\nabla = 1 - B$, so that a general d^{th} order difference is

$$\nabla^d = (1 - B)^d$$

• Now we can formally define, an ARIMA(p, d, q) model, for orders $p, d, q \ge 0$: this is a model for x_t , $t = 0, \pm 1, \pm 2, \pm 3, \ldots$ such that $(1 - B)^d x_t$ follows an ARMA(p, q) model, i.e.,

$$\phi(B)(1-B)^d x_t = \theta(B)w_t \tag{22}$$

where w_t , $t = 0, \pm 1, \pm 2, \pm 3, ...$ is a white noise sequence, and $\phi(B)$, $\theta(B)$ are the AR and MA operators, respectively, as before. In other words, x_t is given by d^{th} order integration of an ARMA(p,q) sequence

• Note that ARIMA(0,1,0) says that the differences in the sequence are white noise,

$$x_t = x_{t-1} + w_t$$

which is nothing more than a random walk, which we already know is nonstationary (the variance grows over time)

• Below is a summary of some of the basic models that the ARIMA framework encompasses. We write c for the intercept in the model, which was assumed zero throughout for simplicity. However, recall, we can always fit ARIMA models with nonzero intercept in (22)

White noise	ARIMA $(0,0,0)$ with $c=0$	
Random walk	ARIMA(0,1,0) with $c = 0$	
Random walk with drift	ARIMA(0,1,0) with $c \neq 0$	
Autoregressive	ARIMA(p, 0, 0)	
Moving average	ARIMA(0,0,q)	

• A general warning should be given about choosing large d; HA say that in practice, d > 2 is never really needed, and also give a cautionary note about taking d = 2 with $c \neq 0$ (more later)

4.1 Seasonality extensions

4.2 IMA (EWMA) models

connection to exponential something

5 Forecasting

describe behavior of long-range forecasts for ARIMA as in HA....

ARMAX models

Long-range forecasts converge to zero (or to the mean, in a process with nonzero mean)