# Current protocols example dataset

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 4.4.3(git:) [March-21-2019]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 8 compute nodes are available.

Compiled for a SYMMETRIC multiprocessors (Grandcentral)

Program started at Sat Jun 1 22:21:29 2019

Program finished at Sat Jun 1 22:49:35 2019 [Runtime:0000:00:28:06]



### **Options**

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2162460700

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population 1 2 3 1 Arbon\_1 \* \* \* 2 Berg\_2 \* \* \* 3 Chur\_3 \* \* \*

Order of parameters:

|          |                          |                       |                          |                |                                                                       |        | Current p | rotocois exa  | mple dataset 2     |
|----------|--------------------------|-----------------------|--------------------------|----------------|-----------------------------------------------------------------------|--------|-----------|---------------|--------------------|
| 1        | Э                        | <b>)</b> <sub>1</sub> |                          |                | <displa< td=""><td>iyed&gt;</td><td></td><td></td><td></td></displa<> | iyed>  |           |               |                    |
| 2        |                          | )2                    |                          |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 3        |                          | $0_{3}^{-}$           |                          |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 4        | N                        | 1                     | ->1                      |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 5        | N                        | 1                     | ->1                      |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 6        | N                        | 1                     | ->2                      |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 7        | N                        | Л                     | ->2                      |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 8        | N                        | 1                     | ->3                      |                | <displa< td=""><td>yed&gt;</td><td></td><td></td><td></td></displa<>  | yed>   |           |               |                    |
| 9        | M                        | Л                     | ->3                      |                | <displa< td=""><td>iyed&gt;</td><td></td><td></td><td></td></displa<> | iyed>  |           |               |                    |
| Mutatio  | n rate amon              | g lo                  | ci:                      |                |                                                                       |        | Mutatio   | n rate is con | stant for all loci |
|          |                          |                       |                          |                |                                                                       |        |           |               |                    |
| =        | s strategy:              |                       |                          |                |                                                                       |        |           |               | esian inference    |
| •        | ation size es            |                       | ation:                   |                |                                                                       |        |           | •             | tial Distribution  |
| -Genet   | flow estimation          | on:                   |                          |                |                                                                       |        |           | Exponen       | tial Distribution  |
| Propos   | al distributio           | ns fo                 | or paramete              | er             |                                                                       |        |           |               |                    |
| Paramet  | ter                      |                       |                          | Prop           | oosal                                                                 |        |           |               |                    |
| Theta    |                          |                       | M                        | letropolis sam | pling                                                                 |        |           |               |                    |
| M        |                          |                       | M                        | letropolis sam | pling                                                                 |        |           |               |                    |
| Diverger | nce                      |                       | M                        | letropolis sam | pling                                                                 |        |           |               |                    |
| Diverger | nce Spread               |                       | M                        | letropolis sam | pling                                                                 |        |           |               |                    |
| Genealo  | gy                       |                       | M                        | 1etropolis-Has | tings                                                                 |        |           |               |                    |
| Prior di | stribution for           | nar                   | ameter                   |                |                                                                       |        |           |               |                    |
| Paramet  |                          | pu.                   | Prior                    | Minimum        | MeanMa                                                                | aximum | Delta     | Bins l        | JpdateFreq         |
| 1        | Theta                    | **                    | Uniform                  | 0.000000       | 0.050                                                                 | 0.100  | 0.010     | 1500          | 0.05556            |
| 2        | Theta                    | **                    | Uniform                  | 0.000000       | 0.050                                                                 | 0.100  | 0.010     | 1500          | 0.05556            |
| 3        | Theta                    | **                    | Uniform                  | 0.000000       | 0.050                                                                 | 0.100  | 0.010     | 1500          | 0.05556            |
| 4        | М                        | **                    | Uniform                  | 0.000000       | 2500.                                                                 | 5000.  | 500.0     | 1500          | 0.05556            |
| 5        | М                        | **                    | Uniform                  | 0.000000       | 2500.                                                                 | 5000.  | 500.0     | 1500          | 0.05556            |
| 6        | М                        | **                    | Uniform                  | 0.000000       | 2500.                                                                 | 5000.  | 500.0     | 1500          | 0.05556            |
| 7        |                          | **                    | Uniform                  | 0.000000       | 2500.                                                                 | 5000.  | 500.0     | 1500          | 0.05556            |
| 8        | М                        | **                    | Uniform                  | 0.000000       | 2500.                                                                 | 5000.  | 500.0     | 1500          | 0.05556            |
| 9        | М                        | **                    | Uniform                  | 0.000000       | 2500.                                                                 | 5000.  | 500.0     | 1500          | 0.05556            |
| [* * mea | ans priors we            | ere s                 |                          |                |                                                                       |        |           |               |                    |
| Markov   | , abain aattin           | <b>~</b> 0.           |                          |                |                                                                       |        |           |               | Long chain         |
|          | chain settiner of chains | ys.                   |                          |                |                                                                       |        |           |               | Long chain         |
|          |                          | o1                    |                          |                |                                                                       |        |           |               | 5000               |
|          | orded steps [a           | -                     | onu v oton <sup>[]</sup> | h1             |                                                                       |        |           |               | 5000               |
|          | ment (record             |                       |                          | -              |                                                                       |        |           |               | 100                |
|          | ber of concu             |                       | ,                        | . ,            |                                                                       |        |           |               | 500000             |
|          | ed (sampled)             | •                     |                          |                |                                                                       |        |           |               | 500000             |
| inum     | ber of discar            | u tre                 | ees per cna              | iii (bum-in)   |                                                                       |        |           |               | 5000               |

| Multiple Markov chains: Static heating scheme     |            | 4 chains with temperatures |
|---------------------------------------------------|------------|----------------------------|
| Static fleating scheme                            | 1000000.00 | 3.00 1.50 1.00             |
|                                                   | 1000000.00 |                            |
|                                                   |            | Swapping interval is 1     |
| Print options:                                    |            |                            |
| Data file:                                        |            | infile                     |
| Haplotyping is turned on:                         |            | NO                         |
| Output file:                                      |            | outfile                    |
| Posterior distribution raw histogram file:        |            | bayesfile                  |
| Raw data from the MCMC run:                       |            | bayesallfile.gz            |
| Print data:                                       |            | No                         |
| Print genealogies [only some for some data type]: |            | None                       |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |
|                                                   |            |                            |

## Data summary

| Data file:      | infile         |
|-----------------|----------------|
| Datatype:       | Haplotype data |
| Number of loci: | 10             |

Mutationmodel parameters

| Mutationmodel: |
|----------------|
| Locus Sublocus |

| 1  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|----|---|--------------|-------------------|
| 2  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 3  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 4  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 5  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 6  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 7  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 8  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 9  | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 10 | 1 | Jukes-Cantor | [Basefreq: =0.25] |

Mutationmodel

#### Sites per locus

| Locus | Sites |
|-------|-------|
| 1     | 1000  |
| 2     | 1000  |
| 3     | 1000  |
| 4     | 1000  |
| 5     | 1000  |
| 6     | 1000  |
| 7     | 1000  |
| 8     | 1000  |
| 9     | 1000  |
| 10    | 1000  |

Site rate variation and probabilities:

Locus Sublocus Region type Rate of change Probability Patch size

| ı |   |   |   |       |       |       |
|---|---|---|---|-------|-------|-------|
|   | 1 | 1 | 1 | 1.000 | 1.000 | 1.000 |
|   | 2 | 1 | 1 | 1.000 | 1.000 | 1.000 |
|   | 3 | 1 | 1 | 1.000 | 1.000 | 1.000 |
|   | 4 | 1 | 1 | 1.000 | 1.000 | 1.000 |
|   | 5 | 1 | 1 | 1.000 | 1.000 | 1.000 |
|   | 6 | 1 | 1 | 1.000 | 1.000 | 1.000 |
|   |   |   |   |       |       |       |

| 7        | 1          | 1      | 1.000 | 1.000 | 1.000  |          |           |
|----------|------------|--------|-------|-------|--------|----------|-----------|
| 8        | 1          | 1      | 1.000 | 1.000 | 1.000  |          |           |
| 9        | 1          | 1      | 1.000 | 1.000 | 1.000  |          |           |
| 10       | 1          | 1      | 1.000 | 1.000 | 1.000  |          |           |
| Populati | on         |        |       |       | Locus  | Gene co  | opies     |
|          |            |        |       |       |        | data     | (missing) |
| 1 Arbon  | _1         |        |       |       | 1      | 10       |           |
|          |            |        |       |       | 2      | 10       |           |
|          |            |        |       |       | 3      | 10       |           |
|          |            |        |       |       | 4      | 10       |           |
|          |            |        |       |       | 5      | 10       |           |
|          |            |        |       |       | 6      | 10       |           |
|          |            |        |       |       | 7      | 10       |           |
|          |            |        |       |       | 8      | 10       |           |
|          |            |        |       |       | 9      | 10       |           |
|          |            |        |       |       | 10     | 10       |           |
| 2 Berg_  | 2          |        |       |       | 1      | 10       |           |
|          |            |        |       |       | 2      | 10       |           |
|          |            |        |       |       | 3      | 10       |           |
|          |            |        |       |       | 4      | 10       |           |
|          |            |        |       |       | 5      | 10       |           |
|          |            |        |       |       | 6      | 10       |           |
|          |            |        |       |       | 7      | 10       |           |
|          |            |        |       |       | 8      | 10       |           |
|          |            |        |       |       | 9      | 10       |           |
| 0.01     | 2          |        |       |       | 10     | 10       |           |
| 3 Chur_  | 3          |        |       |       | 1      | 10       |           |
|          |            |        |       |       | 2      | 10       |           |
|          |            |        |       |       | 3      | 10       |           |
|          |            |        |       |       | 4<br>5 | 10<br>10 |           |
|          |            |        |       |       | 6      | 10<br>10 |           |
|          |            |        |       |       | 7      | 10       |           |
|          |            |        |       |       | 8      | 10       |           |
|          |            |        |       |       | 9      | 10       |           |
|          |            |        |       |       | 10     | 10       |           |
| Total of | all popula | ations |       |       | 1      | 30       | (0)       |
|          | Popul      |        |       |       | 2      | 30       | (0)       |
|          |            |        |       |       | 3      | 30       | (0)       |
|          |            |        |       |       | 4      | 30       | (0)       |
|          |            |        |       |       | 5      | 30       | (0)       |
|          |            |        |       |       | 6      | 30       | (0)       |
|          |            |        |       |       | 7      | 30       | (0)       |
|          |            |        |       |       | 8      | 30       | (0)       |
|          |            |        |       |       | 9      | 30       | (0)       |
|          |            |        |       |       |        |          | . ,       |

|     | Curre | ent protocols exam | ple dataset 6 |
|-----|-------|--------------------|---------------|
|     | 10    | 30                 | (0)           |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
|     |       |                    |               |
| I . |       |                    |               |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter            | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%    | Median   | Mean     |
|-------|----------------------|---------|---------|---------|---------|----------|----------|----------|
| 1     | $\Theta_1$           | 0.00180 | 0.00427 | 0.00503 | 0.00620 | 0.01907  | 0.01137  | 0.02142  |
| 1     | $\Theta_2$           | 0.00093 | 0.00193 | 0.00310 | 0.00353 | 0.00813  | 0.00370  | 0.00476  |
| 1     | $\Theta_3$           | 0.00127 | 0.00413 | 0.00423 | 0.00520 | 0.01513  | 0.00737  | 0.00903  |
| 1     | M <sub>2-&gt;1</sub> | 253.333 | 696.667 | 705.000 | 706.667 | 1066.667 | 728.333  | 750.594  |
| 1     | M <sub>3-&gt;1</sub> | 116.667 | 510.000 | 528.333 | 580.000 | 1080.000 | 598.333  | 648.945  |
| 1     | M <sub>1-&gt;2</sub> | 76.667  | 483.333 | 498.333 | 520.000 | 860.000  | 498.333  | 548.762  |
| 1     | M <sub>3-&gt;2</sub> | 43.333  | 186.667 | 218.333 | 220.000 | 580.000  | 285.000  | 307.931  |
| 1     | M <sub>1-&gt;3</sub> | 303.333 | 503.333 | 525.000 | 526.667 | 1056.667 | 641.667  | 676.760  |
| 1     | M <sub>2-&gt;3</sub> | 0.000   | 0.000   | 28.333  | 70.000  | 363.333  | 148.333  | 259.915  |
| 2     | $\Theta_1$           | 0.00160 | 0.00260 | 0.00383 | 0.00500 | 0.00840  | 0.00443  | 0.00488  |
| 2     | $\Theta_2$           | 0.00027 | 0.00120 | 0.00197 | 0.00360 | 0.01093  | 0.00370  | 0.00957  |
| 2     | $\Theta_3$           | 0.00073 | 0.00213 | 0.00277 | 0.00380 | 0.00793  | 0.00370  | 0.00423  |
| 2     | M <sub>2-&gt;1</sub> | 0.000   | 16.667  | 65.000  | 103.333 | 346.667  | 105.000  | 137.886  |
| 2     | M <sub>3-&gt;1</sub> | 0.000   | 10.000  | 48.333  | 103.333 | 343.333  | 95.000   | 130.658  |
| 2     | M <sub>1-&gt;2</sub> | 0.000   | 0.000   | 45.000  | 83.333  | 836.667  | 628.333  | 838.651  |
| 2     | M <sub>3-&gt;2</sub> | 3.333   | 126.667 | 248.333 | 270.000 | 766.667  | 358.333  | 455.960  |
| 2     | M <sub>1-&gt;3</sub> | 60.000  | 160.000 | 208.333 | 286.667 | 616.667  | 328.333  | 385.710  |
| 2     | M <sub>2-&gt;3</sub> | 0.000   | 0.000   | 1.667   | 33.333  | 206.667  | 55.000   | 76.772   |
| 3     | $\Theta_1$           | 0.00120 | 0.00433 | 0.00517 | 0.00533 | 0.00967  | 0.00550  | 0.00574  |
| 3     | $\Theta_2$           | 0.00127 | 0.00460 | 0.00650 | 0.00767 | 0.02127  | 0.02630  | 0.03493  |
| 3     | $\Theta_3^-$         | 0.00293 | 0.00647 | 0.00717 | 0.00767 | 0.01560  | 0.00883  | 0.00970  |
| 3     | M <sub>2-&gt;1</sub> | 0.000   | 0.000   | 5.000   | 50.000  | 263.333  | 61.667   | 128.024  |
| 3     | M <sub>3-&gt;1</sub> | 0.000   | 33.333  | 38.333  | 60.000  | 256.667  | 81.667   | 122.667  |
| 3     | M <sub>1-&gt;2</sub> | 23.333  | 80.000  | 108.333 | 173.333 | 173.333  | 2565.000 | 2507.317 |
| 3     | M <sub>3-&gt;2</sub> | 0.000   | 0.000   | 1.667   | 156.667 | 450.000  | 211.667  | 398.983  |
| 3     | M <sub>1-&gt;3</sub> | 0.000   | 0.000   | 1.667   | 30.000  | 140.000  | 31.667   | 47.296   |
| 3     | M <sub>2-&gt;3</sub> | 0.000   | 0.000   | 1.667   | 26.667  | 123.333  | 31.667   | 45.896   |
| 4     | $\Theta_1$           | 0.00080 | 0.00207 | 0.00237 | 0.00293 | 0.00840  | 0.00390  | 0.00449  |
| 4     | $\Theta_2$           | 0.00160 | 0.00293 | 0.00350 | 0.00480 | 0.00887  | 0.00457  | 0.00496  |
| 4     | $\Theta_3$           | 0.00233 | 0.00473 | 0.00497 | 0.00827 | 0.01560  | 0.00810  | 0.00913  |
| 4     | M <sub>2-&gt;1</sub> | 0.000   | 30.000  | 101.667 | 140.000 | 450.000  | 168.333  | 205.334  |
| 4     | M <sub>3-&gt;1</sub> | 166.667 | 296.667 | 305.000 | 306.667 | 893.333  | 558.333  | 606.140  |
| 4     | M <sub>1-&gt;2</sub> | 3.333   | 23.333  | 35.000  | 66.667  | 170.000  | 71.667   | 81.813   |

| ocus. | Parameter            | 2.5%     | 25.0%    | Mode     | 75.0%    | 97.5%    | Median   | Mean     |
|-------|----------------------|----------|----------|----------|----------|----------|----------|----------|
| 4     | M <sub>3-&gt;2</sub> | 0.000    | 16.667   | 58.333   | 70.000   | 166.667  | 65.000   | 73.488   |
| 4     | M <sub>1-&gt;3</sub> | 46.667   | 136.667  | 191.667  | 223.333  | 460.000  | 225.000  | 243.440  |
| 4     | M <sub>2-&gt;3</sub> | 26.667   | 83.333   | 111.667  | 173.333  | 323.333  | 155.000  | 166.951  |
| 5     | $\Theta_1$           | 0.00080  | 0.00120  | 0.00137  | 0.00287  | 0.02107  | 0.02137  | 0.03304  |
| 5     | $\Theta_2$           | 0.00133  | 0.00180  | 0.00263  | 0.00267  | 0.00660  | 0.00350  | 0.00378  |
| 5     | $\Theta_3$           | 0.00573  | 0.00913  | 0.00950  | 0.00980  | 0.02393  | 0.01410  | 0.01555  |
| 5     | M <sub>2-&gt;1</sub> | 893.333  | 893.333  | 905.000  | 913.333  | 1060.000 | 1605.000 | 1805.062 |
| 5     | M <sub>3-&gt;1</sub> | 6.667    | 183.333  | 255.000  | 263.333  | 880.000  | 425.000  | 525.674  |
| 5     | M <sub>1-&gt;2</sub> | 0.000    | 0.000    | 8.333    | 36.667   | 250.000  | 65.000   | 97.579   |
| 5     | $M_{3->2}$           | 0.000    | 16.667   | 51.667   | 110.000  | 263.333  | 95.000   | 110.232  |
| 5     | M <sub>1-&gt;3</sub> | 0.000    | 3.333    | 28.333   | 70.000   | 210.000  | 65.000   | 83.033   |
| 5     | M <sub>2-&gt;3</sub> | 0.000    | 0.000    | 1.667    | 23.333   | 103.333  | 25.000   | 35.266   |
| 6     | $\Theta_1$           | 0.00073  | 0.00213  | 0.00277  | 0.00360  | 0.01660  | 0.00530  | 0.01206  |
| 6     | $\Theta_2$           | 0.00093  | 0.00173  | 0.00303  | 0.00333  | 0.00707  | 0.00323  | 0.00373  |
| 6     | $\Theta_3$           | 0.00467  | 0.01273  | 0.01283  | 0.01347  | 0.02993  | 0.01603  | 0.02159  |
| 6     | M <sub>2-&gt;1</sub> | 1546.667 | 1573.333 | 1585.000 | 1590.000 | 1696.667 | 1725.000 | 1888.815 |
| 6     | M <sub>3-&gt;1</sub> | 0.000    | 110.000  | 135.000  | 163.333  | 773.333  | 338.333  | 447.474  |
| 6     | M <sub>1-&gt;2</sub> | 0.000    | 206.667  | 235.000  | 270.000  | 820.000  | 455.000  | 654.861  |
| 6     | $M_{3->2}$           | 0.000    | 0.000    | 5.000    | 50.000   | 350.000  | 128.333  | 172.826  |
| 6     | M <sub>1-&gt;3</sub> | 0.000    | 0.000    | 11.667   | 150.000  | 760.000  | 231.667  | 348.537  |
| 6     | $M_{2->3}$           | 0.000    | 0.000    | 5.000    | 6.667    | 550.000  | 201.667  | 265.521  |
| 7     | $\Theta_1$           | 0.00200  | 0.00320  | 0.00463  | 0.00480  | 0.01093  | 0.00537  | 0.00608  |
| 7     | $\Theta_2$           | 0.00327  | 0.00427  | 0.00463  | 0.00487  | 0.02593  | 0.02537  | 0.03429  |
| 7     | $\Theta_3$           | 0.00373  | 0.01033  | 0.01097  | 0.01107  | 0.02260  | 0.01590  | 0.02462  |
| 7     | M <sub>2-&gt;1</sub> | 76.667   | 233.333  | 245.000  | 310.000  | 640.000  | 331.667  | 373.928  |
| 7     | M <sub>3-&gt;1</sub> | 0.000    | 33.333   | 61.667   | 73.333   | 253.333  | 91.667   | 111.918  |
| 7     | M <sub>1-&gt;2</sub> | 656.667  | 903.333  | 908.333  | 916.667  | 1646.667 | 1155.000 | 1210.422 |
| 7     | $M_{3->2}$           | 0.000    | 36.667   | 41.667   | 46.667   | 400.000  | 148.333  | 194.748  |
| 7     | M <sub>1-&gt;3</sub> | 0.000    | 23.333   | 108.333  | 176.667  | 760.000  | 295.000  | 522.954  |
| 7     | M <sub>2-&gt;3</sub> | 0.000    | 40.000   | 51.667   | 173.333  | 530.000  | 205.000  | 312.852  |
| 8     | $\Theta_1$           | 0.00093  | 0.00353  | 0.00363  | 0.00387  | 0.00807  | 0.00417  | 0.00496  |
| 8     | $\Theta_2$           | 0.00100  | 0.00267  | 0.00323  | 0.00433  | 0.01093  | 0.00490  | 0.00616  |
| 8     | $\Theta_3$           | 0.00193  | 0.00520  | 0.00543  | 0.00600  | 0.01933  | 0.00930  | 0.01070  |
| 8     | M <sub>2-&gt;1</sub> | 0.000    | 0.000    | 8.333    | 60.000   | 483.333  | 168.333  | 353.573  |
| 8     | M <sub>3-&gt;1</sub> | 0.000    | 73.333   | 88.333   | 140.000  | 476.667  | 165.000  | 252.311  |
| 8     | M <sub>1-&gt;2</sub> | 3.333    | 186.667  | 238.333  | 310.000  | 1463.333 | 815.000  | 1061.030 |
| •     |                      |          |          |          |          | 546.667  | 228.333  | 299.790  |

| Locus | Parameter            | 2.5%    | 25.0%    | Mode     | 75.0%    | 97.5%    | Median   | Mean     |
|-------|----------------------|---------|----------|----------|----------|----------|----------|----------|
| 8     | M <sub>1-&gt;3</sub> | 0.000   | 0.000    | 1.667    | 33.333   | 133.333  | 35.000   | 50.664   |
| 8     | M <sub>2-&gt;3</sub> | 0.000   | 0.000    | 11.667   | 26.667   | 236.667  | 58.333   | 89.832   |
| 9     | $\Theta_1$           | 0.00147 | 0.00227  | 0.00297  | 0.00400  | 0.01867  | 0.01070  | 0.02299  |
| 9     | $\Theta_2$           | 0.00180 | 0.00373  | 0.00403  | 0.00507  | 0.00880  | 0.00490  | 0.00524  |
| 9     | $\Theta_3$           | 0.00687 | 0.00813  | 0.00863  | 0.00867  | 0.02833  | 0.02690  | 0.03646  |
| 9     | M <sub>2-&gt;1</sub> | 970.000 | 1180.000 | 1191.667 | 1193.333 | 2000.000 | 1468.333 | 1502.752 |
| 9     | M <sub>3-&gt;1</sub> | 0.000   | 50.000   | 81.667   | 113.333  | 410.000  | 151.667  | 180.210  |
| 9     | M <sub>1-&gt;2</sub> | 133.333 | 293.333  | 321.667  | 343.333  | 563.333  | 345.000  | 358.498  |
| 9     | M <sub>3-&gt;2</sub> | 213.333 | 336.667  | 378.333  | 426.667  | 686.667  | 421.667  | 435.687  |
| 9     | M <sub>1-&gt;3</sub> | 136.667 | 386.667  | 391.667  | 396.667  | 626.667  | 378.333  | 410.923  |
| 9     | M <sub>2-&gt;3</sub> | 210.000 | 440.000  | 445.000  | 510.000  | 810.000  | 488.333  | 507.995  |
| 10    | $\Theta_1$           | 0.00113 | 0.00200  | 0.00303  | 0.00387  | 0.00713  | 0.00357  | 0.00398  |
| 10    | $\Theta_2$           | 0.00173 | 0.00360  | 0.00397  | 0.00493  | 0.01007  | 0.00577  | 0.00701  |
| 10    | $\Theta_3^-$         | 0.00353 | 0.00813  | 0.00843  | 0.01007  | 0.02367  | 0.01397  | 0.01815  |
| 10    | M <sub>2-&gt;1</sub> | 290.000 | 520.000  | 595.000  | 596.667  | 1023.333 | 631.667  | 654.985  |
| 10    | M <sub>3-&gt;1</sub> | 213.333 | 620.000  | 628.333  | 640.000  | 1003.333 | 601.667  | 630.958  |
| 10    | M <sub>1-&gt;2</sub> | 250.000 | 480.000  | 561.667  | 603.333  | 1043.333 | 641.667  | 681.913  |
| 10    | $M_{3->2}$           | 356.667 | 693.333  | 701.667  | 733.333  | 1103.333 | 748.333  | 767.446  |
| 10    | M <sub>1-&gt;3</sub> | 143.333 | 300.000  | 371.667  | 400.000  | 696.667  | 408.333  | 428.371  |
| 10    | M <sub>2-&gt;3</sub> | 206.667 | 370.000  | 388.333  | 496.667  | 730.000  | 451.667  | 471.048  |
| All   | $\Theta_1$           | 0.00260 | 0.00340  | 0.00397  | 0.00447  | 0.00553  | 0.00410  | 0.00405  |
| All   | $\Theta_2$           | 0.00260 | 0.00340  | 0.00390  | 0.00440  | 0.00533  | 0.00403  | 0.00397  |
| All   | $\Theta_3^-$         | 0.00547 | 0.00687  | 0.00783  | 0.00873  | 0.01080  | 0.00803  | 0.00810  |
| All   | M <sub>2-&gt;1</sub> | 170.000 | 256.667  | 291.667  | 323.333  | 330.000  | 271.667  | 268.719  |
| All   | M <sub>3-&gt;1</sub> | 80.000  | 120.000  | 148.333  | 180.000  | 256.667  | 161.667  | 164.471  |
| All   | M <sub>1-&gt;2</sub> | 123.333 | 180.000  | 218.333  | 263.333  | 366.667  | 235.000  | 239.527  |
| All   | M <sub>3-&gt;2</sub> | 63.333  | 110.000  | 141.667  | 170.000  | 236.667  | 148.333  | 149.817  |
| All   | M <sub>1-&gt;3</sub> | 70.000  | 110.000  | 135.000  | 166.667  | 230.000  | 148.333  | 148.212  |
| All   | M <sub>2-&gt;3</sub> | 20.000  | 60.000   | 81.667   | 103.333  | 143.333  | 85.000   | 84.482   |

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

### Bayesian Analysis: Posterior distribution over all loci





#### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ In(Prob(D | thisModel) - In( Prob( D | otherModel) or as LBF = 2 (In(Prob(D | thisModel) - In( Prob( D | otherModel)) shows the support for thisModel]

| Locus | Raw thermodynamic score(1a) | Bezier approximation score(1b) | Harmonic mean(2) |
|-------|-----------------------------|--------------------------------|------------------|
| 1     | -3259.68                    | -2481.78                       | -2316.92         |
| 2     | -2617.92                    | -2101.31                       | -1982.49         |
| 3     | -2984.41                    | -2296.79                       | -2145.04         |
| 4     | -3402.35                    | -2451.22                       | -2252.37         |
| 5     | -3025.62                    | -2372.29                       | -2198.44         |
| 6     | -3054.68                    | -2545.68                       | -2365.67         |
| 7     | -3063.32                    | -2403.66                       | -2217.02         |
| 8     | -3295.88                    | -2436.02                       | -2282.95         |
| 9     | -3315.35                    | -2494.27                       | -2289.66         |
| 10    | -2983.81                    | -2316.44                       | -2159.82         |
| All   | -30890.53                   | -23786.97                      | -22097.91        |

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains [Scaling factor = 112.486621]

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

# Acceptance ratios for all parameters and the genealogies

| Parameter            | Accepted changes | Ratio   |
|----------------------|------------------|---------|
| $\Theta_1$           | 117341/276666    | 0.42413 |
| $\Theta_2$           | 132091/278732    | 0.47390 |
| $\Theta_3^2$         | 121683/277649    | 0.43826 |
| $M_{2\rightarrow 1}$ | 118380/278347    | 0.42530 |
| $M_{3->1}^{2->1}$    | 108032/277931    | 0.38870 |
| $M_{1->2}$           | 143597/278308    | 0.51596 |
| $M_{3->2}$           | 142457/277244    | 0.51383 |
| $M_{1->3}^{3->2}$    | 109581/277469    | 0.39493 |
| $M_{2->3}$           | 137639/277534    | 0.49594 |
| Genealogies          | 330262/2500120   | 0.13210 |

# MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter            | Autocorrelation | Effective Sampe Size |
|----------------------|-----------------|----------------------|
| $\Theta_1$           | 0.69058         | 12317.35             |
| $\Theta_2$           | 0.72734         | 11513.68             |
| $\Theta_3^2$         | 0.61565         | 16888.79             |
| $M_{2\rightarrow 1}$ | 0.72276         | 11563.76             |
| $M_{3->1}$           | 0.62149         | 16535.95             |
| $M_{1\rightarrow 2}$ | 0.74998         | 11147.20             |
| $M_{3->2}$           | 0.61628         | 18390.41             |
| M 1->3               | 0.68665         | 13847.61             |
| $M_{2->3}$           | 0.70894         | 13697.48             |
| Genealogies          | 0.83778         | 6858.39              |

#### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No warning was recorded during the run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |