POLITECHNIKA ŚLĄSKA

Wydział Matematyki Stosowanej

Projekt z Informatyki

Szyfrowanie Wiadomości

Student: Kamil Król

Spis treści

1	Opis programu				
2	Instrukcja Obsługi	•			
3	Techniczny Opis Programu 3.1 Biblioteki	;			
	3.2 Funkcja main()	;			
4	Szczegóły techniczne	2			

1 Opis programu

Projekt jest rozwiązaniem zadania z konkursu Algorytmion 2015 - zadanie
1 - "SZYFROWANIE WIADOMOŚCI".

Program ma za zadanie zaszyfrować wiadomość z pliku a następnie odszyfrować podaną wiadomość.

Opis szyfru:

- Każdą literę i znak interpunkcyjny należy zamienić na odpowiadającą liczbę kodu ASCII(liczba naturalna od 0 do 127).
- Pierwsza, tak powstała liczba, jest zamieniana na system dwójkowy.
- Kolejne liczby, wynikające z kodu ASCII, są zamieniane na system liczbowy, który jest równy powiększonej o dwa reszcie z dzielenia przez osiem poprzedniej liczby.
- Ilość cyfr zamienionej liczby, dla każdego systemu liczbowego, wynika z ilości cyfr zamiany liczby maksymalnej, czyli liczby 127 (dla systemu binarnego jest to siedem cyfr).

Kolejność wykkonywanych działań programu:

- Pobranie wiadomości z pliku text.txt (tylko pierwsza linijka)
- Szyfrowanie wiadomości
- Przesłanie kryptogramu do pliku szyfr.txt
- Odczyt kryptogramu z pliku szyfr.txt
- Odszyfrowanie wiadomości
- Wysłanie odszyfrowanej wiadomości do pliku odszyfrowane.txt

2 Instrukcja Obsługi

Do poprawnego działania programu wymagane jest utworzenie pliku szyfr.txt w folderze zawierającym program("projekt").

Do pliku szyfr.txt należy wprowadzić tylko jedną linijkę tekstu który życzymy sobie zaszyfrować.

Następnie należy uruchomić program który wyświetli w konsoli tylko jedą wiadomość:

```
Program dokonal przeksztalcen.
Process returned 0 (0x0) execution time : 0.191 s
Press any key to continue.
```

Po zakończeniu działania programu zaszyfrowana wiadomośc pojawi sie w pliku szyfr.txt, zaś odszyfrowana w pliku odszyfrowanie.txt.

3 Techniczny Opis Programu

Program został napisany w języku C++ za pomocą IDE Code::Blocks oraz kompilatora GNU GCC Compiler.

3.1 Biblioteki

Do poprawnego działania programu zostały użyte trzy biblioteki.

- iostream w celu wypisania wiadomości
- fstream w celu możliwości pracy na plikach
- string w celu wykorzystania funkcji działających na ciągach znaków takich jak length()

3.2 Funkcja main()

Funkcja main ma za zadanie odczyt danych z plików oraz wywołanie funkcji pomocniczych do szyfrowania jak i odszyfrowania wiadomości.

3.3 Funkcje pomocnicze

Funkcje szyfrujące:

- void szyfrowanie(string dane)
 funkcja szyfruje podany ciąg znaków oraz przesyła kryptogram do pliku
- string usuniecie_spacji(string dane)
 funkcja usuwa spacje z podanego ciągu
- string zamiana_systemu(char znak, int system) funckja zamienia pojedynczy znak tekstu na szyfr w podanym systemie liczbowym

FUNKCJE DESZYFRUJĄCE:

- void odszyfrowywanie(string dane)
 funckja odszyfrowuje dany ciag znaków i wysyła go do pliku
- char odszyfrowanie_znaku(string znak, int system)
 funkcja odszyfrowuje pojedynczy znak

4 Szczegóły techniczne

Szyfrowanie danych polega na algorytmie symetrycznym, gdyż ten sam algorytm co szyfruje dane jest wykorzystywany do ich odszyfrowania.

Przykładowe szyfrowanie wiadomości "Ola".

Znak	ASCII	System	Szyfr
О	79	2	1001111
1	108	$(79 \mod 8) + 2 = 9$	130
a	97	$(108 \mod 8) + 2 = 6$	241

"O" posiada numer 79 w ASCII pierwszy znak szyfrujemy za pomocą systemu dwójkowego zatem $79_{(2)}\,=\,1001111.$

"l" posiada numer 108 w ASCII. Żeby obliczyć kolejny system liczbowy do zaszyfrowania wykonujemy działanie (wczesniejszy znak(nr.ASCII) mod 8)+2 = system.

Zatem $(79 \mod 8) + 2 = 9$.

Teraz szyfrujemy znak za pomocą uzyskanego systemu liczbowego. $108_{(9)} = 130$.

Tak samo postępujemy z kolejnymi znakami aż do ich wyczerpania.

Stosując powyższy algorytm dla słowa "Ola" uzyskamy szyfr w postaci:

1001111 130 241

Odszyfrowywanie wyglada bardzo podobnie co szyfrowanie:

Szyfr	System	ASCII(dziesiętny)	Znak
1001111	2	79	О
130	$(79 \mod 8) + 2 = 9$	108	1
241	$(108 \mod 8) + 2 = 6$	97	a

Wiemy, że pierwszy znak jest zaszyfrowany w systemie dwójkowym zatem. $1001111_{(2)}=79_{(10)}.$

Numer 79 w ASCII oznacza znak "O"

Żeby poznać w jakim systemie został zaszyfrowany kolejny znak stosujemy ten sam wzór co do szyfrowania:

(wczesniejszy znak(nr.ASCII) mod 8)+2 = system.

Zatem $(79 \mod 8) + 2 = 9$.

Po otrzymaniu systemu odszyfrowujemy znak. $130_{(9)} = 108_{(10)}$

Numer 108 w ASCII oznacza znak "l"

Tak samo postępujemy z kolejnymi zaszyfrowanymi znakami aż do ich wyczrpania.