Name:	_
VIP ID:	_

- Write your name and VIP ID in the space provided above.
- The test has eleven (11) pages, including this one.
- Credit for each problem is given at the right of each problem number.
- Make sure to **box** your proofs, to differentiate them from your exploration and planning. I will only grade for boxed content on each submission.
- Make sure to provide only **direct proofs**. I will test your skill with other techniques in a different test.
- No books, notes or calculators are allowed.

Page	Max	Points	Page	Max	Points
2	10		7	10	
3	10		8	10	
4	10		9	10	
5	10		10	10	
6	10		11	10	
Total					

MATH 300 Test #2 Fall 2018 Page 2/11

Problem 1 (10 pts). Prove the following result:

Theorem. If x and y are odd integers, then xy is an odd integer.

MATH 300 Test #2 Fall 2018 Page 3/11

Problem 2 (10 pts). Prove the following result:

Theorem. If b and c are odd integers and a is any integer, then ab + ac is an even integer.

Problem 3 (10 pts). Prove the following result:

Theorem. If two integers have opposite parity, then their sum is odd.

MATH 300 Test #2 Fall 2018 Page 5/11

Problem 4 (10 pts). Prove the following result:

Theorem. Let x and y be positive numbers. If $x \leq y$, then $\sqrt{x} \leq \sqrt{y}$.

MATH 300 Test #2 Fall 2018 Page 6/11

Problem 5 (10 pts–5 pts each part). Prove the following result:

Theorem. If the equation $ax^2 + bx + c = 0$ has two different real-valued solutions, then

- (a) The sum of the two solutions is equal to -b/a.
- (b) The product of the two solutions is equal to c/a.

Problem 6 (10 pts-1,1,4,4). The first two steps will help you with the Theorem in this page.

- (a) Apply polynomial division to compute $\frac{x^2-1}{x-1}$. Or if you prefer, simply factor x^2-1 .
- (b) Apply polynomial division to compute $\frac{x^3+1}{x+1}$. Or if you prefer, simply factor x^3+1 .

(c) Prove the following result:

Theorem. For each integer a, if 4 divides a + 1, then 4 also divides $a^3 + 1$.

(d) Prove the following result:

Theorem. For each integer a, if 5 divides a + 2, then 5 also divides $2a^3 + 7a^2 + 6a$.

MATH 300 Test #2 Fall 2018 Page 8/11

Problem 7 (10 pts). Prove the following result:

Theorem. If the **greatest common divisor** of two natural numbers a, b is greater than 1, then $b \mid a$ or b is not prime.

MATH 300 Test #2 Fall 2018 Page 9/11

Problem 8 (10 pts). Prove the following result:

Theorem. If $x \in \mathbb{R}$ and 0 < x < 3/2, then $8x(3-2x) \le 9$.

Problem 9 (10 pts-2.5 pts each part). The following steps will help you with the Theorem in Problem 10

(a) Sketch the region A of the plane given by the inequality y > 2. Write A in set-builder notation.

$$A =$$

(b) Sketch the region B of the plane given by the inequality x < -4. Write B in set-builder notation. B.

$$B =$$

(c) Write down the formula for the distance d from any point (x, y) to the point (1, -2). Draw the curves with implicit equation $(x - 1)^2 + (y + 2)^2 = R^2$, for R = 2, 3, 4, 5, 6, 7.

$$d =$$

(d) How far is the point (1,-2) from the vertical line x=-4? How far is the point (1,-2) from the horizontal line y=2? What is the closest point from $A \cap B$ to the point (1,-2)?

Problem 10 (10 pts). Prove the following result:

Theorem. If x < -4 and y > 2, then the distance from (x, y) to (1, -2) is at least 6.