```
In [1]:
         # import python libraries
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt # visualizing data
         %matplotlib inline
         import seaborn as sns
In [2]:
         # import csv file
         df = pd.read csv('Diwali Sales Data.csv', encoding= 'unicode escape')
         df.shape
In [3]:
         (11251, 15)
Out[3]:
         df.head()
In [4]:
Out[4]:
                                                    Age
            User_ID Cust_name Product_ID Gender
                                                         Age
                                                             Marital_Status
                                                                                    State
                                                                                            Zone
                                                  Group
         0 1002903
                      Sanskriti
                               P00125942
                                                  26-35
                                                          28
                                                                         0
                                                                              Maharashtra
                                                                                          Western
         1 1000732
                         Kartik
                               P00110942
                                                  26-35
                                                          35
                                                                         1 Andhra Pradesh
                                                                                         Southern
         2 1001990
                        Bindu
                               P00118542
                                                  26-35
                                                          35
                                                                         1
                                                                             Uttar Pradesh
                                                                                           Central
         3 1001425
                        Sudevi
                               P00237842
                                                                         0
                                                                                Karnataka Southern C
                                              M
                                                   0 - 17
                                                          16
         4 1000588
                          Joni
                               P00057942
                                                  26-35
                                                          28
                                                                         1
                                                                                  Gujarat
                                                                                          Western
In [6]:
         df.info();
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 11251 entries, 0 to 11250
         Data columns (total 15 columns):
          #
              Column
                                 Non-Null Count
                                                  Dtype
              -----
          0
              User ID
                                 11251 non-null
                                                  int64
          1
                                 11251 non-null
                                                  object
              Cust_name
          2
              Product_ID
                                 11251 non-null
                                                  object
          3
                                 11251 non-null
                                                  object
              Gender
          4
              Age Group
                                 11251 non-null
                                                  object
          5
                                 11251 non-null int64
              Age
          6
                                 11251 non-null int64
              Marital Status
          7
              State
                                 11251 non-null object
          8
              Zone
                                 11251 non-null
                                                 object
          9
                                                  object
              Occupation
                                 11251 non-null
          10
              Product_Category
                                 11251 non-null
                                                  object
                                 11251 non-null
          11
              Orders
                                                  int64
          12
             Amount
                                 11239 non-null float64
          13
             Status
                                 0 non-null
                                                  float64
                                 0 non-null
                                                  float64
          14 unnamed1
         dtypes: float64(3), int64(4), object(8)
         memory usage: 1.3+ MB
```

```
#drop unrelated/blank columns
 In [7]:
          df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
          #check for null values
In [10]:
          pd.isnull(df).sum()
         User ID
                              0
Out[10]:
         Cust name
                              0
          Product ID
                              0
         Gender
         Age Group
         Age
         Marital_Status
                              0
         State
                              0
         Zone
                              0
         Occupation
         Product_Category
                              0
         Orders
                              0
          Amount
                              0
         dtype: int64
In [11]: # drop null values
          df.dropna(inplace=True)
In [12]: # change data type
          df['Amount'] = df['Amount'].astype('int')
          df['Amount'].dtypes
In [13]:
         dtype('int32')
Out[13]:
          df.columns
In [14]:
         Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
Out[14]:
                 'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
                 'Orders', 'Amount'],
                dtype='object')
          #rename column
In [15]:
          df.rename(columns= {'Marital_Status':'Shaadi'})
```

Out[15]:

	User_ID	Cust_name	Product_ID	Gender	Age Group	Age	Shaadi	State	Zone	0(
0	1002903	Sanskriti	P00125942	F	26-35	28	0	Maharashtra	Western	ŀ
1	1000732	Kartik	P00110942	F	26-35	35	1	Andhra Pradesh	Southern	
2	1001990	Bindu	P00118542	F	26-35	35	1	Uttar Pradesh	Central	Αı
3	1001425	Sudevi	P00237842	М	0-17	16	0	Karnataka	Southern	Co
4	1000588	Joni	P00057942	М	26-35	28	1	Gujarat	Western	F
•••						•••				
11246	1000695	Manning	P00296942	М	18-25	19	1	Maharashtra	Western	
11247	1004089	Reichenbach	P00171342	М	26-35	33	0	Haryana	Northern	ŀ
11248	1001209	Oshin	P00201342	F	36-45	40	0	Madhya Pradesh	Central	
11249	1004023	Noonan	P00059442	М	36-45	37	0	Karnataka	Southern	Д
11250	1002744	Brumley	P00281742	F	18-25	19	0	Maharashtra	Western	ŀ

11239 rows × 13 columns

In [16]: # describe() method returns description of the data in the DataFrame (i.e. count, mean
df.describe()

Out[16]:		User_ID	Age	Marital_Status	Orders	Amount
	count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
	mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
	std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
	min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
	25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
	50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
	75 %	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
	max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

In [17]: # use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()

Out[17]:

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

```
In [18]: # plotting a bar chart for Gender and it's count
    ax = sns.countplot(x = 'Gender',data = df)

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [19]: # plotting a bar chart for gender vs total amount
    sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount')
    sns.barplot(x = 'Gender',y= 'Amount' ,data = sales_gen)
```

Out[19]: <Axes: xlabel='Gender', ylabel='Amount'>

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

```
In [20]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')
for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [21]: # Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='
sns.barplot(x = 'Age Group',y= 'Amount' ,data = sales_age)
Out[21]:

Caxes: xlabel='Age Group', ylabel='Amount'>
```


From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
In [23]:
                                                   # total number of orders from top 10 states
                                                   sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Or
                                                   sns.set(rc={'figure.figsize':(16,5)})
                                                   sns.barplot(data = sales_state, x = 'State',y= 'Orders')
                                                  <Axes: xlabel='State', ylabel='Orders'>
Out[23]:
                                                         5000
                                                         4000
                                                         2000
                                                          1000
                                                                              Uttar Pradesh
                                                                                                                       Maharashtra
                                                                                                                                                                        Karnataka
                                                                                                                                                                                                                       Delhi
                                                                                                                                                                                                                                                     Madhya Pradesh Andhra Pradesh Himachal Pradesh
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Gujarat
In [25]:
                                                   # total amount/sales from top 10 states
                                                   sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount'].sum().sort_values(by='Amount'].sum().sort_values(by='Amount'].sum().sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_values(by='Amount').sort_
```

```
sns.set(rc={'figure.figsize':(16,5)})
sns.barplot(data = sales_state, x = 'State',y= 'Amount')
```

Out[25]: <Axes: xlabel='State', ylabel='Amount'>

From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
In [27]: ax = sns.countplot(data = df, x = 'Marital_Status')
    sns.set(rc={'figure.figsize':(5,5)})
    for bars in ax.containers:
        ax.bar_label(bars)
```


From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
sns.set(rc={'figure.figsize':(20,5)})
In [29]:
           ax = sns.countplot(data = df, x = 'Occupation')
           for bars in ax.containers:
               ax.bar_label(bars)
                                                                        1583
            1600
            1400
                                                                              1310
            1200
            1000
           800
800
            600
            400
            200
                                                          Banking
Occupation
In [30]:
           sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(t
           sns.set(rc={'figure.figsize':(20,5)})
           sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
```

Out[30]: <Axes: xlabel='Occupation', ylabel='Amount'>

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
In [32]:
           sns.set(rc={'figure.figsize':(25,5)})
           ax = sns.countplot(data = df, x = 'Product_Category')
           for bars in ax.containers:
                ax.bar label(bars)
In [35]:
           sales_state = df.groupby(['Product_Category'], as_index=False)['Amount'].sum().sort_va
           sns.set(rc={'figure.figsize':(20,5)})
           sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount');
            3.5
            3.0
            0.5
            0.0
                         Clothing & Apparel Electronics & Gadgets Footwear & Shoes
                                                                  Games & Toys
                                                                            Sports Products
                                                                                                           Stationery
                                                            Product_Category
```

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

```
In [36]: sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(t
```

```
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders');
```



```
In [37]: # top 10 most sold products (same thing as above)
fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plc
```


Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!