Minimum Viable Product (MVP)

Sprint: Engenharia de Dados (40530010057_20240_01)

1. Introdução

1.1 Objetivo

No contexto atual, a eficiência logística é um fator crucial para o sucesso de empresas que dependem de entregas de produtos aos seus clientes. A capacidade de gerenciar e otimizar a logística de distribuição não apenas melhora a satisfação do cliente, mas também reduz custos operacionais e aumenta a competitividade no mercado. No entanto, essa tarefa pode ser desafiadora, especialmente para empresas que operam em grande escala e em diversas regiões geográficas.

Com a evolução das tecnologias de big data e cloud computing, tornou-se possível coletar, armazenar e analisar grandes volumes de dados de maneira eficiente. Estas tecnologias permitem a criação de pipelines de dados robustos que podem integrar, processar e analisar dados de várias fontes para fornecer insights valiosos e facilitar a tomada de decisões estratégicas.

O objetivo deste MVP (Minimum Viable Product) é desenvolver um pipeline de dados utilizando tecnologias de nuvem para responder a três questões críticas relacionadas à logística de distribuição:

- 1. Quantos pedidos saem diariamente para entrega?
- 2. Quantos pedidos foram entregues por Estado até a presente data?
- 3. Qual a distância total percorrida por mês?

Para alcançar esse objetivo, serão utilizados quatro conjuntos de dados principais:

- Origem do legado
 - Banco de dados Atlas Mongo
 - Databases:
 - pedidoentrega:
 - documento: pedidoEntrega
 - entregas:
 - documentos: roteiro, filial
 - endereço

• Ingestão de Dados – camada raw

- **dados_pedidos**: Contém informações detalhadas sobre todos os pedidos diários desde janeiro de 2024.
- dados_roteiros: Inclui dados sobre as rotas e os respectivos veículos de entrega.
- dados regioes: Cadastro das regiões para onde os pedidos são enviados.
- dados_filial: Cadastro de todos os centros de distribuição envolvidos no processo.
- dados_pedidos_filho: Contém todos os códigos de roteiros que estão no legado estruturado como array.
- dados_roteiro_filho: Contém todos os códigos de pedidos que estão no legado estruturado como array.

• Tabelas Staging – camada bronze

- **dim_pedidos**: Contém informações detalhadas sobre todos os pedidos diários com tratamento inicial das informações.
- **dim_roteiros**: Inclui dados sobre as rotas e os respectivos veículos de entrega com tratamento inicial das informações.
- dim_regioes: Cadastro das regiões para onde os pedidos são enviados com tratamento inicial das informações.
- **dim_filial**: Cadastro de todos os centros de distribuição envolvidos no processo com tratamento inicial das informações.
- dim_pedidos_filhos: Contém todos os códigos de roteiros que estão no legado.
- dim roteiro filho: Contém todos os códigos de pedidos que estão no legado.

Este documento descreverá a construção de um pipeline de dados que envolve a busca, coleta, modelagem, carga e análise desses dados. A infraestrutura será desenvolvida utilizando tecnologias de nuvem para garantir escalabilidade, flexibilidade e eficiência no processamento dos dados. Ao final, espera-se obter uma análise detalhada que permita identificar padrões e insights valiosos sobre a logística de distribuição da empresa.

Todas as tabelas estão no hive metastore dentro do schema asap mvp.

1.2 Visão Geral

Este MVP (Minimum Viable Product) tem como objetivo a construção de um pipeline de dados na nuvem para responder a quatro questões críticas relacionadas à logística de distribuição. A seguir, detalharemos a abordagem e as etapas principais envolvidas no desenvolvimento do pipeline, bem como as tecnologias que serão utilizadas.

1.2.1 Abordagem

A abordagem para o desenvolvimento do pipeline de dados será dividida em cinco etapas principais:

1. Coleta de Dados:

- o Leitura do legado com origem no Atlas Mongo.
- Carga dos dados contendo os dados de pedidos, roteiros, regiões e centros de distribuição.
- Armazenamento dos dados brutos em um serviço de armazenamento na nuvem no Amazon S3 em formato Delta Table Parquet.

2. Modelagem de Dados:

- Limpeza e pré-processamento dos dados utilizando ferramentas como Pyspark, Pandas e SQL, todos dentro de notebooks.
- Estruturação dos dados em um formato adequado para análise, garantindo a integridade e consistência dos mesmos.

3. Carga de Dados:

- Implementação de processos de ETL (Extract, Transform, Load) para mover os dados dos arquivos brutos para um data warehouse na nuvem, como Delta Table, usando notebooks.
- Utilização de ferramentas como Apache Pyspark para orquestrar e automatizar o processo de ETL.

4. Análise de Dados:

- Desenvolvimento de consultas SQL para extrair insights dos dados armazenados no data warehouse.
- Utilização de ferramentas de análise e visualização de dados, como Databricks Painel, para criar dashboards e relatórios interativos.

5. Resposta às Questões Críticas:

- Análise dos dados processados para responder às três questões principais:
 - Quantos pedidos saem diariamente para entrega?
 - Quantos pedidos foram entregues por Estado até a presente data?
 - Qual a distância total percorrida por mês?

1.2.2 Tecnologias Utilizadas

Para garantir a eficiência, escalabilidade e flexibilidade do pipeline de dados, serão utilizadas as seguintes tecnologias:

- Plataforma:
 - Databricks
- Armazenamento de Dados:
 - o Amazon S3 em formato parquet Delta Tables
- Processamento e Modelagem de Dados:
 - Pyspark
 - o SQL
- ETL (Extract, Transform, Load):
 - o Pyspark
- Data Warehouse:
 - o Delta Tables catálogo Hive Metastore com o schema asap mvp
- Análise e Visualização de Dados:
 - o Painel Databricks

1.2.3 Fluxo de Trabalho do Pipeline

O fluxo de trabalho do pipeline de dados pode ser resumido nos seguintes passos:

- 1. Importação e leitura:
 - o Ler e carregar os dados do Mongo Atlas.
- 2. Transformação e Limpeza:
 - o Limpar e transformar os dados utilizando Pyspark e SQL.
- 3. Carga no Data Warehouse:
 - Executar processos de ETL para mover os dados transformados para o data warehouse.
- 4. Análise e Visualização:
 - Criar consultas SQL e dashboards para analisar os dados e responder às perguntas críticas.

1.2.4 Benefícios Esperados

Com a implementação deste pipeline de dados, espera-se alcançar os seguintes beneficios:

- Eficiência Operacional: Automação do processo de coleta, transformação e carga de dados.
- **Insights Valiosos**: Capacidade de identificar padrões e tendências nas operações logísticas.
- Tomada de Decisão Informada: Dados precisos e atualizados para suportar decisões estratégicas.
- **Escalabilidade**: Infraestrutura de dados escalável para acomodar o crescimento dos dados e das operações.

2. Descrição do Produto

2.1 Funcionalidades Principais

Conectar ao mongo usando script de conexão;

Ler os dados em ambiente Analitycs do Mongo Atlas;

Carregar os dados em um dataframe;

Filtrar as colunas que serão base de uso para projeto proposto;

Carregar em tabelas delta na camada raw.

Tratar os dados na camada silver;

Carregar na camada Gold;

Aplicar com o SQL nos painéis.

2.2 Fluxo de Usuário

O usuário apenas acessa o painel e visualiza os resultados.

3. Requisitos Técnicos

3.1 Arquitetura do Sistema

Utilizei a plataforma Databricks, onde fazemos uso em 100% do Pyspark nas fases de ingestão, transformação e processamento com cargas em Delta Tables com formato parquet salvos no S3, em seguida uso o SQL Warehouse como serverless para utilização de consultas em Sql e publicação e integração com painéis.

Para tudo isso uso um cluster com as seguintes configurações:

- Apache Spark na versão 3.4.1, Scala 2.12
- Work Type: m4.2xlarge com 32 Gb de memória e 8 núcleos
- Minímo de Workers 2 e máximo de Workers 8
- Com política sem restrições multi node
- Modo de acesso: No isolation shared

3.2 Tecnologias Utilizadas

- Databricks
- Delta Tables
- Sql Warehouse
- Sql Ansi

3.3 Requisitos de Desempenho

de 2 a 8 nós

com capacidade de 64 a 256 GB de memória

de 16 a 64 núcleos com dimensionamento automático

de 4 a 14 DBU/h

4. Plano de Desenvolvimento

4.1 Cronograma

O cronograma foi dispensado em virtude da implantação ser imediata ao desenvolvimento e validação.

4.2 Recursos Necessários

Notebook

Acesso ao databricks

Ambiente AWS com acesso ao S3

5. Testes e Validação

5.1 Estratégia de Testes

Os testes são realizados em tempo de desenvolvimento validando através de visualizações com instruções em Sql.

5.2 Critérios de Aceitação

A disponibilidade dos dados, a garantia dos dados com informações comparadas com o legado, painel com informações básicas ajudarão a garantir a qualidade.

6. Lançamento e Feedback

6.1 Plano de Lançamento

Sem definição para este MVP

6.2 Coleta de Feedback

Através da reunião de apresentação vamos buscar entender se o produto final satisfaz o cliente.

7. Conclusão

7.1 Resumo

Este MVP serviu para testar e ajudar a implementar uma forma de processo de pipeline com ingestão, transformação e carga para consumo com Slowly Changing Dimension (SCD) Tipo 1, onde as tabelas sofrem atualizações de Update para registros já existentes e Insert para os novos registros encontrados.

Autor: Antonio Lacerda de Castro Junior

Anexos:

Anexo 1 – imagens do databricks rodando o pipeline

Anexo 2 – imagens do catálogo asap_mvp

Anexo 3 – imagens do databricks Sql do painel

Git: mvplacerdadecastro/mvp_engenharia_de_dados (github.com)

Acesso databricks:

Login - Databricks

Usuário: <u>mvp.lacerdadecastro@gmail.com</u>

Senha: Mvp#2024

Anexo 1

Pipeline sendo executado:

Anexo 2

Imagens do catálogo asap_mvp

Todas as tabelas da asap_mvp

Tabela stage dados_filial

Tabela stage dados_pedidos

Tabela stage dados_regiao

Tabela stage dados_roteiros

Tabelas Bronze

Possuem a mesma estrutura de metadados, mas tratamentos nos tipos e situações de nulos.

Tabela bronze dim_filial

Tabela bronze dim_pedidos

Tabela bronze dim_regiao

Tabela bronze dim_roteiros

Anexo 3

Tela do Painel publicado

O painel é interativo e possui filtro de datas com opções de selecionar range de datas e períodos específicos.

