Вариант 1

- 1. Дан симметричный ортогональный тензор $A(\mathbf{x}, \mathbf{x}) = x_1^2 2x_2^2 + x_3^2 4x_1x_2 8x_1x_3 + 4x_2x_3$. Записать характеристический многочлен. Записать тензор в главных осях. Выписать главные направления так, чтобы они составляли ортонормированный правый базис. $(\lambda = 6)$
- 2. Выделить симметричную S и антисимметричную A части ортогонального тензора

Выделить симметричную
$$S$$
 и антисимметричную A части ортогонального тензора $T=\begin{pmatrix} -4 & -2 & 6 \\ 8 & 2 & 3 \\ 2 & 1 & -7 \end{pmatrix}$. Симметричную часть разделить на шаровую часть и девиатор.

Найти декартовы координаты вектора \mathbf{w} : $A = \mathbf{w} \times$

3. Ортогональный тензор T в базисе $\mathbf{e}_1 = \frac{2}{\sqrt{29}}\mathbf{i} + \frac{5}{\sqrt{29}}\mathbf{j}$, $\mathbf{e}_2 = -\frac{5}{\sqrt{29}}\mathbf{i} + \frac{2}{\sqrt{29}}\mathbf{j}$ имеет компоненты

$$t_{111} = 1$$
 $t_{112} = 0$ $t_{121} = 0$ $t_{122} = 3$
 $t_{211} = 0$ $t_{212} = 5$ $t_{221} = 7$ $t_{222} = 9$

Найти компоненту t_{121} в базисе $\{\mathbf{i}, \mathbf{j}\}$.

- 4. Тензор $(t_{ijklmn}),\,i,j,k,l,m,n=1,2,3,4$ задан своими компонентами $t_{321124}=1,$ $t_{413122}=3,\,t_{213114}=5,\,t_{212124}=7,\,t_{124123}=9,\,t_{421123}=11,\,$ остальные компоненты равны нулю. Определим тензор $a_{ijklmn} = t_{[ijk|lm|n]}$. Вычислить a_{213124} .
- 5. Заданы: базис $\mathbf{e_1} = \mathbf{i} + \mathbf{j} + 3\mathbf{k}$; $\mathbf{e_2} = \mathbf{i} + 2\mathbf{j} + \mathbf{k}$; $\mathbf{e_3} = -5\mathbf{i} + 2\mathbf{j} + \mathbf{k}$; тензор $(t_j^i) = (\mathbf{e_1} + 2\,\mathbf{e_2} + 3\,\mathbf{e_3}) \otimes (\mathbf{e^1} - \mathbf{e^2}) + (-\mathbf{e_1} + \mathbf{e_2}) \otimes (\mathbf{e^1} + 3\,\mathbf{e^2})$, ковектор $\mathbf{v} = \mathbf{e^1} + \mathbf{e^2} + 4\,\mathbf{e^3}$. Выписать координаты тензора (t_i^i) . Найти длину ковектора \mathbf{u} , если $u_j = t_i^i v_i$.

Вариант 2.

- 1. Дан симметричный ортогональный тензор $A(\mathbf{x}, \mathbf{x}) = 5x_1^2 + 2x_2^2 + 5x_3^2 4x_1x_2 8x_1x_3 + 6x_1x_2 + 6x_1x_3 +$ $4x_2x_3$. Записать характеристический многочлен. Записать тензор в главных осях. Выписать главные направления так, чтобы они составляли ортонормированный правый базис. $(\lambda = 10)$
- 2. Выделить симметричную S и антисимметричную A части ортогонального тензора

$$T=egin{pmatrix} 2 & -2 & 1 \ 6 & 1 & 3 \ 9 & 7 & -6 \end{pmatrix}$$
. Симметричную часть разделить на шаровую часть и девиатор. Най-

ти декартовы координаты вектора \mathbf{w} : $A = \mathbf{w} \times$

3. Ортогональный тензор T в базисе $\mathbf{e}_1 = \frac{1}{\sqrt{50}}\mathbf{i} + \frac{7}{\sqrt{50}}\mathbf{j}$, $\mathbf{e}_2 = -\frac{7}{\sqrt{50}}\mathbf{i} + \frac{1}{\sqrt{50}}\mathbf{j}$ имеет компоненты

$$t_{111} = 2$$
 $t_{112} = 4$ $t_{121} = 6$ $t_{122} = 0$
 $t_{211} = 8$ $t_{212} = 0$ $t_{221} = 0$ $t_{222} = 10$

Найти компоненту t_{212} в базисе $\{i, j\}$.

- 4. Тензор (t_{ijklmn}) , i, j, k, l, m, n = 1, 2, 3, 4 задан своими компонентами $t_{133242} = 2$, $t_{312324}=4,\,t_{243224}=63,\,t_{213243}=8,\,t_{423213}=10,\,t_{243231}=12,\,$ остальные компоненты равны нулю. Определим тензор $a_{ijklmnr} = t_{[ij|kl|mn]}$. Вычислить a_{313224} .
- 5. Заданы: базис $\mathbf{e_1} = \mathbf{i} + 3\mathbf{j} + \mathbf{k}$; $\mathbf{e_2} = \mathbf{i} + \mathbf{j} \mathbf{k}$; $\mathbf{e_3} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$; тензор $(t_i^i) = (3\mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3}) \otimes (\mathbf{e^1} + \mathbf{e^2}) - (\mathbf{e_1} + \mathbf{e_2}) \otimes (2\mathbf{e^1} + \mathbf{e^2})$, ковектор $\mathbf{v} = 5\mathbf{e^1} + \mathbf{e^2} + \mathbf{e^3}$. Выписать координаты тензора (t_i^i) . Найти длину ковектора \mathbf{u} , если $u_j = t_i^i v_i$.