ფაკულტეტი	საინჟინრო-ტექნიკური ფაკულტეტი
დეპარტამენტი	ენერგეტიკისა და ტელეკომუნიკაციის დეპარტამენტი
სპეციალობა	ელექტრული ინჟინერია ჯგ. 6B211-23, 6B212-23, 6B213-23,
საგანი	"ელექტრომაგნიტიზმის საფუძვლები"
პედაგოგი	ზ. მარდალეიშვილი
გამოცდის სახე	დასკვნითი
სემესტრი	საგაზაფხულო, სწავლების მე-2 წელი

	შეკითხვის, დავალების,	ტესტის შემთხვევაში ჩაწერეთ წერტილით გამოყოფილი	
	საკითხის ან ტესტის შინაარსი	პასუხები	
1.	მაგნიტური ინდუქციის ნაკადი	$\Phi = SdB. \ \Phi = \int B_n dS_{\underline{\cdot}} \ \Phi = \frac{B}{dS}.$	
_	გამოისახება ფორმულით:		
2.	ამპერის ძალის გამომსახველ	<u>დენიანი გამტარის მოქმედი სიგრძის ელემენტი.</u> ჩარჩოს	
	ფორმულაში dF=IBdlsin $lpha$, რა	ფართობი. ჩარჩოს ნორმალის სიგრძე.	
	სიდიდეა dl?		
3.	ელექტრომაგნიტური	$E=d\Phi/dt$. $E=d\Phi/dx$. $E=-d\Phi/dt$.	
	ინდუქციის კანონი გამოისახება		
	ფორმულით:		
4.	დენიანი ჩარჩოს მაგნიტური	$ \overrightarrow{p_m} = IS\overrightarrow{n_n} \overrightarrow{p_m} = ISB. \ \overrightarrow{p_m} = IB\overrightarrow{n}. \ \overrightarrow{p_m} = IH\overrightarrow{n}.$	
	მომენტი გამოითვლება		
	ფორმულით:		
5.	მაგნიტური ინდუქციის ნაკადი	<mark>ნულის.</mark> უსასრულობის. 2π.	
	ნებისმიერ შეკრულ ზედაპირში		
	ტოლია:		
6.	ერთეულთა საერთაშორისო	<mark>35/∂.</mark> χ/ϝ∂. δ∂.	
	სისტემაში, რომელია მაგნიტური		
	მუდმივას ერთეული?		
7.	რომელი ფორმულით	B=I/(MS). $B=M/(IS)$. $B=IS/M$.	
	გამოისახება მაგნიტური		
	ინდუქციის ვექტორის სიდიდე?		
8.	R რადიუსის წრიული დენის	$\frac{H=I/(2R)}{H}$ H=R/(2I). H=2RI.	
	ცენტრში მაგნიტური ველის		
	დამაზულობა, ერთეულთა		
	საერთაშორისო სისტემაში,		
	გამოითვლება ფორმულით:		
9.	რომელი ფორმულით არ	$dF=IBdlsin\alpha$. $dF=IBdl$. $dF=Bl$.	
	გამოისახება ამპერის კანონი		
	ერთეულთა სართაშორისო		
10	სისტემაში?		
10.	ლორენცის ძალის გამომსახველ	<mark>მოძრავი ნაწილაკის მუხტი.</mark> უძრავი ნაწილაკის მუხტი.	
	ფორმულაში F=qvBsin $lpha$ რა	გამტარის განივკვეთში გასული მუხტი.	
1.1	სიდიდეა q?		
11.	0 00 1000	ჩარჩოზე მოქმედი ძალის მომენტი. იმპულსის მომენტი. ძალის	
	სიდიდის გამოსათვლელ	იმპულსი. <mark>დენის ძალა.</mark>	

	ფორმულაში B=M/(IS), რა		
	სიდიდეა I?		
12.	მაგნიტური ინდუქციის სიდიდის გამოსათვლელ ფორმულაში B=M/(IS), რა სიდიდეა S?	ჩარჩოზე მოქმედი ძალის მომენტი. იმპულსის მომენტი. ძალის იმპულსი. <mark>ჩარჩოს ფართობი.</mark>	
13.	ამპერის ძალის გამომსახველ ფორმულაში dF=IBdl \sinlpha , რა სიდიდეა l?	დენიანი გამტარის მოქმედი სიგრძის ელემენტი. ჩარჩოს ფართობი. ჩარჩოს ნორმალის სიგრძე. <mark>დენის ძალა.</mark>	
14.	ამპერის ძალის გამომსახველ ფორმულაში dF=IBdl \sinlpha , რა სიდიდეა B?	დენიანი გამტარის მოქმედი სიგრძის ელემენტი. <mark>მაგნიტური</mark> ველის ინდუქცია. ჩარჩოს ნორმალის სიგრძე. დენის ძალა.	
15.	ამპერის ძალის გამომსახველ ფორმულაში dF=IBdl $\sin lpha$, რა სიდიდეა $lpha$?	დენიანი გამტარის მოქმედი სიგრძის ელემენტი. <mark>კუთხე დენის</mark> მიმართულებასა და მაგნიტური ინდუქციის ვექტორს შორის. ჩარჩოს ნორმალის სიგრძე. დენის ძალა.	
16.	ლორენცის ძალის გამომსახველ ფორმულაში F=qvBsinα რა სიდიდეა v?	მოძრავი ნაწილაკის მუხტი. უძრავი ნაწილაკის მუხტი. გამტარის განივკვეთში გასული მუხტი. <mark>დამუხტული ნაწილაკის</mark> <u>სიჩქარე.</u>	
17.	ლორენცის ძალის გამომსახველ ფორმულაში F=qvBsinα რა სიდიდეა B?	მოძრავი ნაწილაკის მუხტი. უძრავი ნაწილაკის მუხტი. გამტარის განივკვეთში გასული მუხტი. <mark>მაგნიტური ინდუქციის</mark> <mark>ვექტორის მოდული.</mark>	
18.	ლორენცის ძალის გამომსახველ ფორმულაში $F=qvBsinlpha$ რა სიდიდეა $lpha$?	მოძრავი ნაწილაკის მუხტი. <mark>კუთხე დადებითი მუხტის სიჩქარის</mark> ვექტორსა და მაგნიტური ინდუქციის ვექტორს შორის. გამტარის განივკვეთში გასული მუხტი. დამუხტული ნაწილაკის სიჩქარე.	
19.	უსასრულოდ გრმელი წრფივი დენის მაგნიტური ველის ინდუქცია ერთეულთა საერთაშორისო სისტემაში გამოისახება ფორმულით:	$B = \frac{2\pi\mu_0}{IR}$. $B = \frac{\mu_0 I}{2\pi R}$. $B = \frac{IR}{2\pi\mu_0}$. $B = \mu_0 IR$.	
20.	ვაკუუმში სოლენოიდის (ან ტოროიდის) მაგნიტური ველი:	$B_0 = \mu_0 nI$. $B_0 = \mu_0 RI$. $B_0 = \mu_0 nH$. $B_0 = nI$.	
21.	ვაკუუმში მაგნიტური ინდუქციის ცირკულაცია ტოლია:	$ \oint B_{0l}dl = \mu_0 \sum I_{\underline{}} \oint B_{0l}dl = \mu_0. $ $ \oint B_{0l}dl = 0. $	
22.	ურთიერთპარალელური დენიანი გამტარები ერთმანეთს მიიზიდავენ ძალით:	$F = \frac{\mu_0 I_1 I_2 I}{2\pi d}. F = \frac{\mu_0 I_1 I_2 B}{2\pi d}. F = \frac{\mu_0 I_1 I_2 H}{2\pi d}. F = \frac{\mu_0 \mu I_1 B}{2\pi d}.$	
23.	ერთგვაროვან მაგნიტურ ველში დენიან კონტურზე მოქმედი მაბრუნებელი მომენტი გამოითვლება ფორმულით:	$\overrightarrow{M} = \left[\overrightarrow{p_m} \cdot \overrightarrow{B}\right]. \overrightarrow{M} = \left[\overrightarrow{p_m} \cdot IB\right]. \overrightarrow{M} = \left[\overrightarrow{p_m} \cdot Il\right]. \overrightarrow{M} = \left[\overrightarrow{p_m} \cdot \overrightarrow{F}\right].$	
24.	ბიო-სავარ-ლაპლასის ფორმულა:	$\overline{d\vec{B}} = \frac{\mu_0 \mu I}{4\pi r^3} \left[\overrightarrow{d\vec{l}} \cdot \overrightarrow{r} \right]_{\underline{\cdot}} \overrightarrow{dB} = \frac{\mu_0 \mu I}{r^3} \left[\overrightarrow{d\vec{l}} \cdot \overrightarrow{r} \right]_{\underline{\cdot}} \overrightarrow{dB} = \frac{\mu_0}{4\pi r^3} \left[\overrightarrow{d\vec{l}} \cdot \overrightarrow{r} \right]_{\underline{\cdot}}$	
25.	მოძრავი მუხტის მაგნიტური ველი:	$\vec{B} = \frac{\mu_0 \mu q}{4\pi r^3} [\vec{v} \cdot \vec{r}] \cdot \vec{B} = \frac{\mu_0 \mu q}{4\pi} [\vec{v} \cdot \vec{r}] \cdot \vec{B} = \frac{\mu_0}{4\pi r^3} [\vec{v} \cdot \vec{r}].$	

26.	მაგნიტური ინდუქციის	<mark>კონტურის გამჭოლი დენების ალგებრული ჯამის.</mark> მაგნიტური		
	ცირკულაცია შეკრულ კონტურში პირდაპირპროპორციულია:	ინდუქციის ვექტორის. მაგნიტური ნაკადის.		
27.	მაგნიტური ველის განსაზღვრისას	<u>აბსოლუტურ მაგნიტურ შეღწევადობას.</u> მაგნიტურ ამთვისებლობას.		
	μμ₀ - ნამრავლს უწოდებენ:	დიელექტრიკულ მუდმივას.		
		<u>მართობია.</u> პარალელურია. ნებისმიერადაა ორიენტირებული.		
	შორის ჩარჩოს თანაბარი ბრუნვისას			
	მასში აღმრული Ei ინდუქციის ემძ-			
	ის მყისი მნიშვნელობა მაქსიმალურია, როცა ჩარჩოს			
	სიბრტყე ინდუქციის წირების:			
29.	Wk კინეტიკური ენერგიის	<u>არ შეიცვლება.</u> გაიზრდება. შემცირდება.		
	ელექტრონი შევიდა B ინდუქციის			
	ერთგვაროვან მაგნიტურ ველში.			
	როგორ შეიცვლება ($\Delta W_{\mathbf{k}}$) მისი			
20	კინეტიკური ენერგია?	Λε Λε Λε Λε Λε Λε Λε Λε		
30.	როდესაც ჩაკეტილ გამტარ კოჭაში მაგნიტი შეაქვთ ∆tı დროის	$\frac{\Delta t_1 + \Delta t_3}{\Delta t_1} \Delta t_1 + \Delta t_2 \Delta t_2 + \Delta t_3 \Delta t_3 - \Delta t_1.$		
	განმავლობაში, აჩერებენ კო $rak{4}$ აში $\Delta \mathbf{t} \mathbf{z}$			
	დროის განმავლობაში, გამოაქვთ			
	კოჭიდან Δ ts დროის განმავლობაში,			
	მაშინ დენის არსებობის დრო			
	შეადგენს:			
31.	გრძელ კოჭაში გამავალი დენის	გ <u>აიზრდება 4-ჯერ.</u> გაიზრდება 2-ჯერ. გაიზრდება 8-ჯერ.		
	ორჯერ გაზრდისას ($\mathbf{k} = \mathbf{I}_2 / \mathbf{I}_1 = 2$)			
	კოჭას მაგნიტური ველის ენერგიის			
32.	სიმკვრივე ($\mathbf{Z} = \mathbf{w}_2 / \mathbf{w}_1$): ერთი ნახევრად გამტარის	<u>4.</u> 2. 1/2. 1/4.		
02.	მვრადობა ორჯერ მეტია ($\mathbf{k} = \mu_1 / \mu_2 =$			
	2) მეორის ძვრადობაზე, ხოლო			
	ჰოლის მუდმივა			
	(j = RH₁ / RH₂ = 1/2). − ორჯერ			
	ნაკლები. მაშინ მათი გამტარობების			
00	შეფარდება $\mathbf{Z} = \sigma_1 / \sigma_2$ იქნება:	7/ P P / 7/ 1/P / 7/ / P		
33.	0 00 00 1 1000	mV/eR. eR/mV. VR/em. mVe/R.		
	წირების მართობულად V სიჩქარით შეიჭრა ელექტრონი. იპოვეთ B			
	ველის ინდუქცია, თუ ველში			
	ელექტრონმა R რადიუსიანი			
	წრეწირი შემოწერა {ელექტრონის			
	მუხტია – e , მასა – m }			
34.		1. 2. 4. 8.		
	=4-ჯერ მეტია მეორე კოჭას			
	ინდუქციურობა- ზე, მაგრამ მეორე			
	კოჭაში გამავალი დენი $\mathbf{n}=\mathbf{I}_2/\mathbf{L}_1=2$ -			
	ჯერ მეტია პირველ კოჭაში გამავალ			
	დენზე. როგორია ამ დენიანი კოჭების მაგნიტური ველის			
	კოჟების მაგსიტური ველის ენერგიების შეფარდება Z=W 2/ W 1?			
	100,000,000 00,9300,000 Z= 44 Z/ 44 I!			

35.	ერთი ელექტრონის კინეტიკური ენერგია n =2-ჯერ მეტია მეორე ელექტრონის კი- ნეტიკურ ენერგიაზე. ერთგვაროვან მაგნიტურ ველში მათ მიერ შემოწერილი წრეწირე- ბის რადიუსების	√2 <u>.</u> 2. 4. 1/2.
36.	შეფარდება Z = R 1/ R 2 იქნება: თვითინდუქციის ემძ გამოითვლება ფორმულით:	$\mathcal{E} = -L\frac{dI}{dt}$. $\mathcal{E} = -L\frac{dB}{dt}$. $\mathcal{E} = -L\frac{dF}{dt}$. $\mathcal{E} = -L\frac{dH}{dt}$.
37.	სოლენოიდში მაგნიტური ველის ენერგია გამითვლება ფორმულით:	$W_M = 0.5BHV_{.}$ $W_M = 0.5FHV$. $W_M = 0.5BLV$. $W_M = 0.5BHL$.
38.	დამაგნიტების ვექტორი გამოითვლება ფორმულით:	$\vec{M} = (\Delta V)^{-1} \sum_{i=1}^{N} (\vec{P}_{Am})_{i}. \vec{M} = (\Delta V)^{-1} \sum_{i=1}^{N} (IB)_{i}. \vec{M} = (\Delta V)^{-1} \sum_{i=1}^{N} (BH_{m})_{i}.$
39.	ჩაკეტილ კონტურზე ელექტრული ველი დაძაბულობის ცირკულაცია ტოლია:	$(\Delta V)^{-1} \sum_{i=1}^{N} (BH_m)_i.$ $\oint E_l dl = -\frac{d\Phi}{dt}. \oint B dl = -\frac{d\Phi}{dt}. \oint H_l dl = -\frac{d\Phi}{dt}. \oint E_l dl = -\frac{dB}{dt}.$
40.	წანაცვლების დენის სიმკვრივის ვექტორი გამოითვლება ფორმულით:	$\vec{i} = \frac{d\vec{D}}{dt} \cdot \vec{i} = \frac{d\vec{D}}{dx}. \vec{i} = \frac{d\vec{D}}{dy}. \vec{i} = \frac{d\vec{D}}{dz}.$

41. ბიო-სავარლაპლასის კანონი. უსასრულო წრფივი დენის მაგნიტური ველის ინდუქცია.

ბიო-სავარ-ლაპლასის კანონის თანახმად, მაგნიტური ველის dB ინდუქცია, რომელსაც ქმნის I დენის dl ელემენტი მისგან r მანძილზე, გამოითვლება შემდეგი ფორმულით: $dB = k \frac{Idl \sin \alpha}{r^2}$

$$dB = k \frac{Idl \sin \alpha}{r^2}$$

სადაც lpha კუთხეა \overline{dl} ელემენტსა და $ec{r}$ რადიუს-ვექტორს შორის. თუ გავითვალისწინებთ ბურღის წესს, მაშინ:

$$\overrightarrow{dB} = k \frac{I}{r^3} \left[d\vec{l} \cdot \vec{r} \right]$$

თუ ყველა $dec{B}$ ვექტორს ერთი და იგივე მიმართულება აქვს, მაშინ

$$B = \int_{I} dB$$

ან

$$B = kI \int_{l} \frac{\sin \alpha}{r^2} dl$$

სადაც

$$k = \frac{\mu_0}{4\pi}$$

 μ_0 მაგნიტური ინდუქციის მუდმივაა და ტოლია: $\mu_0=4\pi\cdot 10^{-7}\frac{\it 36}{\it \partial}$. ამრიგად,

$$dB = \frac{\mu_0 Idl \sin \alpha}{4\pi r^2}$$

და

$$B = \frac{\mu_0 I}{4\pi} \int_{I} \frac{\sin \alpha}{r^2} dl$$

უსასრულო წრფივი დენის მაგნიტური ინდუქცია:

$$B = \frac{\mu_0 I}{4\pi} \int_{-\infty}^{+\infty} \frac{\sin \alpha \, dl}{r^2}$$

$$OAB = \varphi, \qquad OB = l$$

მაშინ

$$l = R \operatorname{tg} \varphi; \ dl = \frac{R d \varphi}{\cos^2 \varphi}; \ r = \frac{R}{\cos \varphi}; \sin \alpha = \cos \varphi$$

როცა $l=-\infty$, მაშინ $\varphi=-\frac{\pi}{2}$ და როცა $l=+\infty$, მაშინ $\varphi=+\frac{\pi}{2}$ ამიტომ

$$B = \frac{\mu_0 I}{4\pi R} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \cos \varphi \, d\varphi$$

ანუ

$$B = \frac{\mu_0 I}{2\pi R}$$

42. წრიული დენის მაგნიტური ველის ინდუქცია.

ა) წრის ცენტრში:

$$B = \frac{\mu_0 I}{4\pi} \int_{l} \frac{\sin \alpha}{r^2} \, dl$$

მაგრამ ყველა dl ელემენტისთვის, $\sin \alpha = 1$, ხოლო r = R, ამიტომ

$$B = \frac{\mu_0 I}{4\pi R^2} \int_{I} dl = \frac{\mu_0 I}{4\pi R^2} \cdot 2\pi R$$

ანუ

$$B = \frac{\mu_0 I}{2R}$$

ბ) წრიული დენის ღერძზე მდებარე A წერტილში:

$$\vec{B} = \sum_{} d\vec{B}$$
$$d\vec{B} = d\vec{B'} + d\vec{B''}$$

 $\sum d\vec{B}'' = 0$, რადგან ყოველი მდგენელი ბათილდება მისი დიამეტრულად მოწინააღმდეგე შესაბამისი მდგენელით. ამიტომ,

$$B=\sum dB'$$

ან

$$B = \int_{A} dB' = \int_{A} dB \cdot \sin \beta$$

ზიო-სავარის კანონის თანახმად

$$dB = \frac{\mu_0 Idl \sin \alpha}{4\pi r^2} = \frac{\mu_0 Idl}{4\pi r^2}$$

ხოლო ნახაზიდან

$$\sin\beta = \frac{r_0}{r}$$

ამიტომ

$$B = \frac{\mu_0 I r_0}{4\pi r^2} \int_{l} dl = \frac{\mu_0 r_0^2 I}{2r^2}$$

ან

$$B = \frac{\mu_0 r_0^2 I}{2(r_0^2 + r_1^2)^{\frac{3}{2}}}$$

 \vec{B} -ის მიმართულება განისაზღვრება მარჯვენა ბურღის წესით.

43.	სოლენოიდის	
	მაგნიტური	
	ველის	
	ინდუქცია.	

$$dB = \frac{\mu_0 I R^2 n dl}{2(R^2 + l^2)^{\frac{3}{2}}}$$

სადაც n არის ხვიათა რიცხვი სოლენოიდის ერთეულ სიგრძეზე, l კი მანძილი A წერტილიდან dl უზნამდე.

$$l = R \operatorname{ctg} \beta$$

ამიტომ

$$dl = \frac{Rd\beta}{\sin^2 \beta}$$

გარდა ამისა,

$$R^2 + l^2 = R^2(1 + \operatorname{ctg}^2 \beta) = \frac{R^2}{\sin^2 \beta}$$

ამიტომ

$$dB = \frac{1}{2}\mu_0 nI \sin \beta d\beta$$

ხოლო

$$B = \int_{\beta_1}^{\beta_2} dB = \frac{\mu_0}{2} nl \int_{\beta_1}^{\beta_2} \sin \beta d\beta$$
$$B = \frac{\mu_0}{2} nI (\cos \beta_1 - \cos \beta_2)$$

თუ სოლენოიდი უსასრულოდ გრძელია, $\beta_1=0$, $\beta_2=\pi$, ამიტომ მეტად გრძელი სოლენოიდის შემთხვევაშიც კი მაგნიტური ველის ინდუქცია სოლენოდისი ზოლოებთან არ აღემატება $\frac{1}{2}\mu_0nI$ -ს $\left(\beta_1=0;\;\beta_2=\frac{\pi}{2}\right)$

44. ტოროიდის მაგნიტური ველის ინდუქცია

ამიტომაც

ტოროიდი ეწოდება წრიული ღერძის მქონე ხვიათა ერთობლიობას. \vec{B} ვექტორის ცირკულაცია ერთერთი ინდუქციის წირის გასწვრივ იქნება $(B_l=B)$:

$$\oint_{l} B_{l}dl = Bl$$

$$\oint_{l} B_{l}dl = \mu_{0}NI$$

$$B = \frac{\mu_{0}NI}{l}$$

$$B = \mu_{0}nI$$

ტოროიდის სიღრუეში ცირკულაცია ყველგან

$$\oint_{l} B_{l} dl = 0$$

B = 0

სოლენოიდისთვის:

$$\oint_{ABSNA} B_l dl = \mu_0 NI$$

$$\oint_{ABSNA} B_l dl = \oint_{SN} B_l dl + \oint_{NABS} B_l dl$$

$$\oint_{ABSNA} B_l dl = Bl$$

$$ABSNA$$

აქედან

ან

$$B = \frac{\mu_0 NI}{l}$$

 $B = \mu_0 nI$

45.	მოძრავი	
	მუხტის	
	მაგნიტური	
	ველი.	

$$dB = \frac{\mu_0 I dl \sin \alpha}{4\pi r^2}$$
$$I = n_0 qvS$$

სადაც v არის მუხტის სიჩქარე. აქედან

$$dB = \frac{\mu_0 n_0 q v S dl \sin \alpha}{4\pi r^2}$$

ეს ინდუქციის ველი იქმნება Sdl მოცულობაში მოთავსებული მუხტები, რომელთა რაოდენობა

$$n' = Sdln_0$$

ამიტომ ცალკეული მოძრავი მუხტის მიერ შექმნილი ინდუქციაა

$$B = \frac{dB}{n'}$$

ან

$$B = \frac{\mu_0 q v \sin \alpha}{4\pi r^2}$$

ვექტორული სახით

$$\vec{B} = \frac{\mu_0 q}{4\pi r^3} [\vec{v} \cdot \vec{r}]$$

 q_1 მუხტის ინდუქცია მისგან r მანძილზე ტოლია $(\sin lpha = 1)$ $B_1 = rac{\mu_0 q_1 v}{4\pi r^2}$

$$B_1 = \frac{\mu_0 \dot{q}_1 v}{4\pi r^2}$$

ეს ველი იმოქმედებს q₂ მუხტზე ლორენცის ძალით

$$F = q_2 v B_1$$

ან

$$F = \frac{\mu_0 q_1 q_2 v^2}{4\pi r^2}$$

აგრეთვე, მოქმედებს განზიდვის ძალა

$$F_{\rm e} = \frac{q_1 q_2}{4\pi \varepsilon_0 r^2}$$

გავიგოთ, რომელი ძალაა მეტი

$$\frac{F}{F_e} = \varepsilon_0 \mu_0 v^2$$

 ϵ_0 -სა და μ_0 -ს რიცხვითი მნიშვნელობების ჩასმის შედეგად მივიღებთ

$$\frac{F}{F_e} = \left(\frac{v}{c}\right)^2$$

სადაც c ვაკუუმში ელექტრომაგნიტურ ტალღათა გავრცელების სიჩქარეა, ეს ნიშნავს, რომ პარალელურად მოძრავ ერთსახელა მუხტებს შორის ჭარბობს განზიდვის ძალა.

46.	ინდუქციური
	დენის მიერ
	გადატანილი
	ელექტრობის
	რაოდენობა

ვთქვათ, ჩაკეტილი გამტარი კონტურის გამჭოლი მაგნიტური ინდუქციის ნაკადი უსასრულოდ მცირე dl დროში იცვლება $d\Phi$ სიდიდით. მაშინ წარმოიქმნება ინდუქციის ემძ:

$$\varepsilon_i = -\frac{d\Phi}{dt}$$

ინდუქციური დენი:

$$I=rac{arepsilon_i}{R}=-rac{1}{R}rac{d\Phi}{dt}$$
რადგანაც ეს დენი არამუდმივია, $I=rac{dq}{dt}$, საიდანაც

$$dq = Idt$$
$$dq = -\frac{d\Phi}{R}$$

q მუხტი, რომელიც გამტარის განივკვეთში გადადის ნაკადის Φ_1 -დან Φ_2 -მდე ცვლილების დროში, ტოლია:

$$q = -\frac{1}{R} \int_{\Phi_1}^{\Phi_2} d\Phi$$

ან

$$q = \frac{\Phi_1 - \Phi_2}{R}$$

ვთქვათ, მაგნიტური ნაკადი ისპობა, ანუ იცვლება $\Phi_1=\Phi$ -დან $\Phi_2=0$ -მდე. $q=\frac{\Phi}{R}$

$$q = \frac{\Phi}{R}$$
$$\Phi = qR$$

აქედან გამოვთვალოთ სოლენოიდის ინდუქციურობა, რომლის l სიგრძეზე მოთავსებულია N ხვია და გადის I დენი. თითოეულ ხვიაზე:

$$\Phi_1 = BS = \mu_0 \mu \frac{NI}{l} S$$

სრული ნაკადი (N ხვიაში):

$$\Phi = N\Phi_1 = \mu_0 \mu \frac{N^2}{l} IS = \mu_0 \mu \left(\frac{N}{l}\right)^2 SlI$$

ან

$$\Phi = \mu_0 \mu n^2 V I$$

სადაც $n=rac{N}{l}$, ხოლო V=Sl, მაშინ

$$L = \mu_0 \mu n^2 V$$

47. დენის
ცვლილება
წრედის
ჩართვისა და
გამორთვის

თვითინდუქციის ემძ წარმოიშობა კონტურში გამავალი დენის ყოველგვარი ცვლილებისას, როგორც ჩართვისას, ასევე გამორთვისას.

განვიხილოთ წრედის გამორთვა. თუ წრედში გადის I_0 დენი და $\mathbf{t}=0$ მომენტში წრედი გამოვრთეთ.

$$\varepsilon_s = -L \frac{dI}{dt}$$

$$I = \frac{\varepsilon_s}{R}$$

$$I = -\frac{L}{R}\frac{dI}{dt}$$

$$\frac{dI}{I} = -\frac{R}{L}dt$$

$$\ln\frac{I}{I_0} = -\frac{R}{L}t$$

$$\frac{I}{I_0} = e^{-\frac{R}{L}t}$$

$$I = I_0 e^{-\frac{R}{L}t}$$

ეს გამოსახავს დენის ცვლილებას წრედის გამორთვის დროს. წრედის ჩართვის მომენტში აგრეთვე წარმოიშობა თვითინდუქციის დენი, რომელიც ამავე ფორმულით გამოისახება. ცხადია, წრედის ჩართვიდან t დროის შემდეგ:

$$I = I_0 - I_0 e^{-\frac{R}{L}t}$$

$$I = I_0 \left[1 - e^{-\frac{R}{L}t} \right]$$

48.	დენის	წრედში დენის ჩართვისაც წყაროს მიერ გაცემული მთელი ენერგია $Iarepsilon dt$ გამოიყოფა		
	მაგნიტური	ჯოულის სითბოს სახით:		
	ველის	$I\varepsilon dt = I^2 R dt$		
	ენერგია	წრედში წარმოქმნილი თვითინდუქციის ემძ:		
	0-00	$\varepsilon_s = -L \frac{dI}{dt}$		
		ut		
		წრედში დენი:		
		$I = \frac{\varepsilon - L\frac{dI}{dt}}{R}$		
		$I = \frac{\alpha c}{R}$		
		აქედან		
		$IR = \varepsilon - L \frac{dI}{dt}$		
		αc		
		ორივე მხარე გავამრავლოთ Idt -ზე და დავალაგოთ:		
		$I\varepsilon dt = I^2 R dt + LI dI$		
		როგორც ვხედავთ, წყაროს მიერ გაცემული ენერგიის მხოლოდ ნაწილი გამოიყოფა		
		ჯოულის სითბოს სახით, მეორე წაწილი კი: $dA = LIdI$		
		სრული მუშაობა დენის გაზრდისას ნულიდან I_0 -მდე იქნება:		
		$A = \int_{0}^{I_{0}} LIdI = \frac{1}{2}LI_{0}^{2}$		
		დენის მაგნიტური ველის ენერგია:		
		1		
		$W_m = \frac{1}{2}LI_0^2$		
		ინდექსს "0"-ს თუ ჩამოვაშორებთ, მივიღებთ ნებისმიერი $\it I$ დენის მაგნიტური ველის		
		ენერგიის ფორმულას:		
		$W_m = \frac{1}{2}LI^2$		
		" 2 ვიპოვოთ მაგნიტური ველის ენერგია არა დენიანი გამტარის, არამედ მაგნიტური		
		ველის დამახასიათებელი სიდიდეებით. ამისთვის განვიხილოთ სოლენოიდი:		
		H = nI		
		აქედან დენი:		
		$I = \frac{H}{n}$		
		სოლენოიდის ინდუქციურობა:		
		$L = \mu_0 \mu n^2 V$		
		აქედან:		
		$W_m = \frac{1}{2}\mu_0\mu H^2 V$		
		მაგნიტური ველის ენერგიის სიმკვრივე:		
		1 1 1		
		$\omega_m = \frac{1}{2}\mu_0\mu H^2 = \frac{1}{2}BH$		
		ველის სრული ენერგია:		
		$W_m = \frac{1}{2} \int_{V} \mu_0 \mu H^2 dV$		
		$2\int_{V}^{m}$		
		, and the second		

49.	ცვლადი დენის
	სრული
	წრედი

ვთქვათ, ცვლადი დენის წრედი შეიცავს R წინაღობას, L ინდუქციურობასა და C ტევადობის კონდენსატორს. წყაროს ემძ იცვლება კანონით:

$$\varepsilon = \varepsilon_0 \sin \omega t$$

თუ კონდენსატორის შემონაფენებზე ძაბვაა V, მაშინ

$$IR + V = \varepsilon + \varepsilon_s$$

სადაც $arepsilon_0 = -Lrac{dI}{dt}$ არის თვინთინდუქციის ემძ.

$$L\frac{dI}{dt} + IR + V = \varepsilon_0 \sin \omega t$$

გავაწარმოოთ:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{dV}{dt} = \varepsilon_0 \omega \cos \omega t$$

რადგან კონდენსატორის ტევადობა $\mathcal{C}=rac{q}{V}$, ამიტომ

$$V = \frac{q}{C}$$

და

$$\frac{dV}{dt} = \frac{d}{dt} \left(\frac{q}{C}\right) = \frac{1}{C} \frac{dq}{dt} = \frac{1}{C} I$$

 $\frac{dV}{dt}$ -ს მნიშვნელობის ჩასმისა და ყველა წევრის L-ზე გაყოფით მივიღებთ იძულებითი რხევის დიფერენციალურ განტოლებას :

$$\frac{d^2I}{dt^2} + \frac{R}{L}\frac{dI}{dt} + \frac{1}{LC}I = \frac{\varepsilon_0}{L}\omega\cos\omega t$$

განტოლების კერძო ამონახსენი:

$$I_0 = \frac{\varepsilon_0}{\sqrt{R^2 + \left(L_\omega - \frac{1}{C\omega}\right)^2}}$$

ხოლო

$$tg\phi = \frac{L\omega - \frac{1}{C\omega}}{R}$$

ე. ი. ცვლადი დენი იცვლება იმავე ω ციკლური სიხშირით, როგორითაც ემძ, ხოლო დენი ჩამორჩება ემძ-ს ფაზით:

$$\varphi = \arctan \frac{L\omega - \frac{1}{C\omega}}{R}$$

50.	ელექტრომაგ
	ნიტური
	რხევები.
	რხევითი

კონტური

ელექტრომაგნიტური რხევები ეწოდება ელექტრული და მაგნიტური სიდიდეების

პერიოდულ ცვლილებას. ამ რხევების მიღების უმარტივეს საშუალებას რხევითი კონტური წარმოადგენს.

. რხევითი კონტური ეწოდება ერთმანეთთან მიმდევრობით შეერთებულ კონდენსატორსა და ინდუქციურობის კოჭას.

კონდენსატორის ელექტრული ენერგია:

$$W_e = \frac{1}{2}CV^2$$

ვინაიდან კოჭას მაგნიტური ველის ენერგია $\overline{W}_m = \frac{1}{2}LI^2$, ამიტომ

$$\frac{1}{2}CV^2 + \frac{1}{2}LI^2 = const$$

ვაწარმოოთ დროით:

$$CV\frac{\mathrm{d}V}{\mathrm{d}t} + LI\frac{dI}{dt} = 0$$

კონდენსატორის ტევადობის ფორმულიდან $\mathcal{C}=rac{q}{V}$ მივიღებთ, რომ

$$CV = 1, \qquad V = \frac{1}{C}, \qquad \frac{dV}{dt} = \frac{1}{C}\frac{dq}{dt}$$

გარდა ამისა, რადგან $\mathrm{I}=\frac{\mathrm{d}\mathrm{q}}{\mathrm{d}\mathrm{t}}$, ამიტომ $\frac{\mathrm{d}\mathrm{I}}{\mathrm{d}\mathrm{t}}=\frac{d^2q}{dt^2}$, შედეგად

$$\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$$

თუ აღვნიშნავთ $\frac{1}{LC}=\omega_0^2$, მივიღებთ ჰარმონიული რხევის დიფერენციალურ განტოლებას

$$\frac{\mathrm{d}^2 q}{dt^2} = \omega_0^2 q = 0$$

საიდანაც

$$q = q_0 \cos(\omega_0 t + \varphi)$$

ძაზვა კონდენსატორის ფირფიტებზე:

$$V = \frac{q}{C} = \frac{q_0}{C}\cos(\omega_0 t + \varphi)$$

ან

$$V = V_0 \cos(\omega_0 t + \varphi)$$

ხოლო დენი კონტურში

$$I = \frac{\mathrm{dq}}{\mathrm{dt}} = -q_0 \omega_0 \sin(\omega_0 t + \varphi)$$

ან

$$I = I_0 \sin(\omega_0 t + \varphi - \pi)$$

კონტურის საკუთარი რხევის პერიოდი:

$$T_0 = 2\pi\sqrt{LC}$$

მიღებულს ეწოდება ტომსონის ფორმულა.

•••

შენიშვნა საკითხების ცხრილის ბოლო სვეტი ივსება შემდეგნაირად საკითხს მიეწერება 1,2,3, . . . რიცხვები. რაც ნიშნავს, რომ იქმნება შესწავლილი თემების პირობითი ჯგუფები. ბილეთის ფორმირებისას პედაგოგს შეუძლია შეარჩიოს ბილეთში შემავალი საკითხების რაოდენობა და გაანაწილოს იგი სხვადასხვა ჯგუფების მიხედვით. იხილეთ მესამე ცხრილის განმარტება.

1	2	3
5	10	5

შენიშვნა ცხრილის პირველი სტრიქონი ნიშნავს, რომ მაგალითად, საგამოცდო საკითხებში პირველი, მეორე, მესამე და ა.შ. ჯგუფის ან სირთულის დავალებებია. ცხრილის მეორე სტრიქონი ნიშნავს, რომ პირველი ჯგუფიდან (სირთულიდან) ბილეთში შევა 1, მეორე ჯგუფიდან 3 და მესამედან 3 საკითხი (დავალება, ტესტი) და ა. შ.

ფაკულტეტის დეკანი ——————	
დეპარტამენტის კოორდინატორი —————	
საგნის პედაგოგი ———————————————————————————————————	