Discrete Mathematics 2016 Solutions Section A

1. (a)

$$\sum_{i=0}^{20} \binom{22}{i} = \sum_{i=0}^{22} \binom{22}{i} - \binom{22}{21} - \binom{22}{22},$$
$$= \mathbf{2^{22} - 23}.$$

[2]

(b)

$$\sum_{i=1}^{50} (i+1)(i-1) = \sum_{i=1}^{50} i^2 - 1,$$

$$= \frac{1}{6} 50(51)(101) - 50,$$

$$= 42875.$$

[3]

- 2. (a) $3^4 = 81$ [1]
 - (b) Subtracting the number of words that contain no Xs, we have $3^4 2^4 = 65$.
 - (c) There are 3^2 words of the form XY -, 3^2 words of the form -XY and 3^2 words of the form -XY. There is one word that contains two copies of XY, namely XYXY. Hence the number of words that do not contain XY is 81-27+1=[2]**55**.
- 3. (a) $\binom{20+2}{2} = 231$ (b) $\binom{14+2}{2} = 120$ [1]
 - [1]
 - (c) Cases where the numbers of red and blue bowls are equal include 10 red and 10 blue, 9 red and 9 blue with 2 yellow, and so on, through to 0 red, 0 blue and 20 yellow, hence there are 11 such cases. Therefore there are 231 - 11 = 220 cases with unequal numbers of red and blue bowls; in half of these there will be more red bowls, so the answer is 110. [3]
- (a) The first four terms of the sequence defined by this difference equation are 2, 1, -2, 1. As it is a first-order difference equation, we conjecture that the solution repeats from this point onwards, so for $n \geq 1$, $u_n = 1$ when n is odd, and $u_n = -2$ when n is even.

Please turn over

We have $u_n \to \infty$ as $n \to \infty$. [3]

5. (a)
$$[2, 2, 2, 3, 3]$$

(b) We have

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 & 2 \\ 1 & 0 & 2 & 2 & 0 \\ 1 & 0 & 2 & 3 & 1 \\ 1 & 2 & 0 & 1 & 3 \end{pmatrix},$$

hence the answer is 1 (in either direction).

(c) The graphs G and H have the same degree sequence, but are not isomorphic to each other, as the vertices of degree 3 are adjacent in G but not in H. [2]

6. (a) **3** (in general the edge-connectivity of
$$K_n$$
 is $n-1$). [1]

(c) Examples include $K_{3,3}$ or the cube graph. For full marks justification is required, for example an observation that there are three edge-disjoint paths between every pair of vertices in the graph. [3]

[2]

7. (a) Using the longest path algorithm from the notes, we assign labels to the vertices.

$$P(b) = 5$$
,

$$P(c) = 2,$$

$$P(d) = 6,$$

$$P(e) = 8,$$

$$P(f) = 10,$$

$$P(q) = 15,$$

$$P(h) = 15,$$

$$P(j) = 17,$$

$$P(k) = 21.$$

The critical path is **aCdFfHhJk**, and it has length 21.

- (b) The earliest start time for activity G is given by the label of e, the vertex at the start of the arc corresponding to G, and hence is $\mathbf{8}$. There is only one path to k that starts with arc G, and it has length 11. Hence the latest start time for G is $21 11 = \mathbf{10}$.
- 8. (a) A perfect matching in a graph G is a set of edges of G with the property that each vertex of G is incident with precisely one edge in the set. [2]
 - (b) The first graph has an odd number of vertices, and hence cannot have a perfect matching. The second graph cannot have a perfect matching, as the fact that vertices f and c both have degree 1 implies that edges ef and ec would have to be included in such a matching; this is not possible as then e would be incident with more than one edge.

[3]

Section B

9. (a) (i)

$$A + C + P = 30,$$

 $5 \le A \le 10,$
 $10 \le C,$
 $P < 7.$

(ii) $g(x) = (x^5 + x^6 + x^7 + x^8 + x^9 + x^{10})(x^{10} + x^{11} + \cdots)(x^0 + x^1 + x^2 + x^3 + x^4 + x^5 + x^6 + x^7)$ [2]

(iii)

$$g(x) = (x^{5} + x^{6} + x^{7} + x^{8} + x^{9} + x^{10})(x^{10} + x^{11} + \cdots)(x^{0} + x^{1} + x^{2} + \cdots + x^{7}),$$

$$= x^{15}(1 + x + x^{2} + x^{3} + x^{4} + x^{5})(1 + x + x^{2} + \cdots)(x^{0} + x^{1} + x^{2} + \cdots + x^{7}),$$

$$= x^{15}(1 - x^{6})(1 - x^{8})(1 + x + x^{2} + \cdots)^{3},$$

$$= x^{15}(1 - x^{6} - x^{8} + x^{14}) \sum_{r=0}^{\infty} {r+2 \choose r} x^{r}.$$

The coefficient of x^{30} is $\binom{17}{15} - \binom{11}{9} - \binom{9}{7} + \binom{3}{1} = 48$. [5]

(b) Let g(x) be the generating function associated with the sequence $1, 1, 1, \ldots$ Then $g(x) = 1 + x + x^2 + \cdots$. We have

$$(1-x)g(x) = 1 + x + x^{2} + x^{3} + \cdots$$
$$-x - x^{2} - x^{3} - \cdots$$
$$= 1,$$

hence it is the case that $g(x) = (1 - x)^{-1}$.

(c) We have

$$\frac{1}{(1-5x+6x^2)} = \frac{1}{(1-3x)(1-2x)},$$
$$= \frac{3}{1-3x} - \frac{2}{1-2x}.$$

Thus the first 5 terms are

$$3^{1} - 2^{1} = 1,$$

 $3^{2} - 2^{2} = 5,$
 $3^{3} - 2^{3} = 19,$
 $3^{4} - 2^{4} = 65,$
 $3^{5} - 2^{5} = 211.$

[2]

[3]

- (d) Let $g(x) = (1-x)^{-1}$. Then the generating function of the sequence $0, 1, 2, 3, \ldots$ is given by $xg'(x) = \frac{x}{(1-x)^2}$. The n^{th} triangle number is the sum of the first n terms of this sequence, hence the generating function for the sequence of triangle numbers is $\frac{x}{(1-x)^3}$.
- (e) (i) We have established that the generating function of the sequence $0, 1, 2, 3, \ldots$ is $\frac{x}{(1-x)^2}$. It follows that the generating function of this sequence is $\frac{x^2}{(1-x^2)^2}$. [2]
 - (ii) This is the Fibonacci sequence, which satisfies the linear difference equation $u_n u_{n-1} u_{n-2} = 0$, with $u_0 = 0$ and $u_1 = 1$. Let g(x) be the generating function for this sequence. Then we have

$$g(x) = x + x^{2} + 2x^{3} + \cdots$$

 $-xg(x) = -x - x^{2} - \cdots$
 $-x^{2}g(x) = -x^{2} - \cdots$

so
$$g(x) = \frac{x}{1 - x - x^2}$$
. [2]

- 10. (a) Solve the following difference equations:
 - (i) Find the characteristic polynomial: $\lambda^2 3\lambda 10 = (\lambda 5)(\lambda + 2)$. General solution to homogeneous part: $G(n) = A5^n + B(-2)^n$. Find a particular solution: Try P(n) = Cn + D. Then

$$Cn + d = 3C(n-1) + 3D + 10C(n-2) + 10D - 36n + 9,$$

 $C = 3C + 10C - 36,$
 $C = 3.$
 $D = -3C + 3D - 20C + 10D + 9,$
 $12D = 60,$
 $D = 5.$

General solution: $u_n = G(n) + P(n) = A5^n + B(-2)^n + 3n + 5$. Apply initial conditions:

$$u_0 = A + B + 5 = 11,$$

 $A + B = 6.$
 $u_1 = 5A - 2B + 8 = 10,$
 $5A - 2B = 2,$
 $A = 2,$
 $B = 4.$

Solution: $\mathbf{u_n} = 2 \cdot 5^n + 4(-2)^n + 3n + 5.$ [4]

(ii) Find the characteristic polynomial: $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2$. General solution to homogeneous part: G(n) = An + B. Find a particular solution: Try $P(n) = Cn^2$. Then

$$Cn'' = 2C(n-1)^2 - C(n-2)^2 + 8,$$
 comparing constants: $0 = 2C - 4C + 8,$
$$C = 4.$$

General solution: $u_n = 4n^2 + An + B$. Apply initial conditions:

$$u_0 = B = 6,$$

 $u_1 = 4 + A + 6 = 13,$
 $A = 3.$

Solution: $\mathbf{u_n} = 4\mathbf{n^2} + 3\mathbf{n} + 6$. [4]

Please turn over

(iii) We have

$$u_n = \prod_{i=1}^n \frac{i+2}{i} + \sum_{i=1}^n (i+1) \prod_{j=i+1}^n \frac{j+1}{j},$$

$$= n+1 + \sum_{i=1}^n (i+1) \frac{n+1}{i+1},$$

$$= n+1 + n(n+1),$$

$$= (n+1)^2.$$

[4]

- (b) (i) This is a second order linear homogeneous difference equation with constant coefficients, hence its characteristic polynomial is the quadratic polynomial in which the coefficient of λ^i matches the coefficient of term u_{n-2+i} in the equation, namely $\lambda^2 A\lambda + B$. [1]
 - (ii) We have that ω^n is a solution of (1) if and only if $\omega^n = A\omega^{n-1} + B\omega^{n-2}$. This occurs if and only if $\omega^{n-2}(\omega^2 A\omega B) = 0$, that is, if and only if $\omega = 0$ or ω is a zero of the characteristic polynomial $\lambda^2 a\lambda + B$.

(c) (i)
$$C_n = \frac{1}{n+1} {2n \choose n}$$
. [2]

(ii) We have

$$C_{n} = \frac{1}{n+1} {2n \choose n},$$

$$= \frac{(2n)!}{(n+1)n!n!},$$

$$= \frac{\prod_{i=1}^{2n} i}{(n+1) (\prod_{i=1}^{n} i) (\prod_{i=1}^{n} i)},$$

$$= \frac{\prod_{i=n+1}^{2n} i}{(n+1) (\prod_{i=1}^{n} i)},$$

$$= \frac{1}{n+1} \prod_{k=1}^{n} \frac{n+k}{k},$$

$$= \prod_{k=2}^{n} \frac{n+k}{k},$$

as required. [3]

Please turn over

- 11. (a) (i) The size of a minimum cut in a network is equal to the value of a maximum flow. [2]
 - (ii) The size of any cut in a network is given by a sum of weights of arcs in the network, so if the weights are integers, so too is this sum. In particular, the size of a minimum cut must be an integer, and therefore so too must the value of a maximum flow, by the maximum flow/minimum cut theorem. [2]
 - (iii) Let ϕ be the zero flow. Add 10 to ϕ along all arcs in the path abeg.

Add 10 to ϕ along all arcs in the path acdebg.

Add 4 to ϕ along all arcs in the path acdfg.

Add 5 to ϕ on all arcs in the path acg

Reversing the direction of the dashed arcs yields ϕ , which is now a maximum flow with value 29. [6]

- (b) (i) A convex polyhedron with v vertices, e edges and f faces satisfies v+f=e+2. [2]
 - (ii) By the Handshaking Lemma it has 3(20)/2 = 30 edges. Euler's polyhedral formula then implies 20 + f = 30 + 2, hence it divides the plane into 12 distinct regions. [3]
 - (iii) The complete bipartite graph $K_{m,n}$ is planar whenever m or n (or both) are less than 3. [2]

(iv) The graph is planar and hence does not contain a subgraph isomorphic to a subdivision of $K_{3,3}$:

[3]

12. (a) (i) Let G be a connected simple graph with $n \ge 3$ vertices. If $d(u) + d(v) \ge n$ for any non-adjacent pair of vertices u and v, then G is Hamiltonian. [2]

(ii) e.g.
$$C_{500}$$

- (iii) e.g. $K_{3,3}$
- (iv) There are n! ways to order the vertices. For each such choice there are n vertices from which the cycle could start, and two orders in which you could write the vertices of the cycle. Hence there are (n-1)!/2 distinct Hamiltonian cycles in K_n .
- (b) Let *M* be a square matrix. The size of the largest independent set of entries that are equal to zero is equal to the smallest number of rows and/or columns that between them contain all zero entries of the matrix. [2]
- (c) A manager wishes to have five tasks completed, Task A, Task B, Task C, Task D and Task E. He approaches five contractors, Contractor 1, Contractor 2, Contractor 3, Contractor 4 and Contractor 5. The amounts they quote in pounds to perform each task are given in the following table:

	A	B	C	D	E
1	4	7	5	6	9
2	6	8	10	8	9
3	7	7	9	7	7 .
4	6	9	5	10	6
5	8	9	6	D 6 8 7 10 9	8

(i) We use the Hungarian algorithm. After preprocessing the rows we have the matrix

$$\begin{pmatrix} 0 & 3 & 1 & 2 & 5 \\ 0 & 2 & 4 & 2 & 3 \\ 0 & 0 & 2 & 0 & 0 \\ 1 & 4 & 0 & 5 & 1 \\ 2 & 3 & 0 & 3 & 2 \end{pmatrix}.$$

Covering up columns 1 and 3 and row 3 covers all the zeros. The smallest entry in the rest of the matrix is 1, so we update it accordingly:

$$\begin{pmatrix} 0 & 2 & 1 & 1 & 4 \\ 0 & 1 & 4 & 1 & 2 \\ 1 & 0 & 3 & 0 & 0 \\ 1 & 3 & 0 & 4 & 0 \\ 2 & 2 & 0 & 2 & 1 \end{pmatrix}.$$

This does not have a set of five independent zero entries, so we cover column 1

and rows 3,4,5 and update the matrix:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 3 & 0 & 1 \\ 2 & 0 & 3 & 0 & 0 \\ 2 & 3 & 0 & 4 & 0 \\ 3 & 2 & 0 & 2 & 1 \end{pmatrix}.$$

This matrix does have a set of five independent zero entries. An appropriate assignment is 1-A, 2-B, 3-D, 4-E, 5-C, for a total cost of **31**. [5]

- (ii) In order to maximise the total, we could begin by replacing each entry x with 10 x then performing the Hungarian Algorithm as before. [1]
- (iii) We would add an extra row to the matrix for Contractor 6, then to make it a square matrix we would add a dummy task in column 6, with (for example) costs of 0 for each entry. We would then apply the Hungarian algorithm to this new matrix, and whichever Contractor was assigned task 6 would not be hired. [2]
- (iv) The largest entry in column 1 is 8, so the assignment 1-E, 2-D, 3-C, 4-B, 5-A is best possible here. [2]

End	of	examination	paper———
= 114	-	CHAILLIAGIOI	paper