Aaditya Prakash (Adi) aprakash@brandeis.edu, iamaaditya.github.io Blog ♠, Github ♠, Scholar ੴ, LinkedIn **in**, Twitter ❤

RESEARCH	Now: Model parallelism in CNNs, Defense against robust adversarial attacks 같 은 다 Past: Paraphrase Generation 라, Applications of Memory Networks in NLP 라 Semantic Image Compression using CNN라, Visual Question Answering 라 Computational Fact Checking with Retrospection 라	Advisor: Sadid Hasan Advisor: James Storer Advisor: Liuba Shrira
EDUCATION	PhD, Computer Science, Brandeis University. Advisor: Prof. James Storer	Current
	MA, Computer Science, Brandeis University Courses: Algorithms, Distributed Systems, Statistical approaches to NLP Computational Semantics, Computational Neuroscience, Information Retrieval	2013 - 2015 GPA $4.0/4.0$
	BS, Biomedical Engineering, Bharath University, Chennai, India <i>Courses</i> : Calculus(I, II), Complex Analysis, Numerical Methods, Digital Signal Processing Biostatistics, Medical Physics, Medical Imaging Lab, Modeling of Physiological Systems	2004 - 2008 GPA $9.36/10$ Rank = $1/71$
	Reinforcement Learning Summer School, Vector Institute (CIFAR/MILA)	Aug-2018
	Completed 24 MOOC courses from Coursera, Udacity, edX, Harvard Business School Machine Learning (Ng), Game Theory, Algorithms, Neural Networks (Hinton), AI (Abbe	2012 − 2013 cel) Certificates ♂
COMPUTING SKILLS	Languages : Python, C, C++, CUDA, Matlab Deep Learning : TensorFlow[TF], Keras, PyTorch, Theano, Torch Research Tools : iPython, SciPy, NumPy, OpenCV, Git, Bash, LATEX Big Data Tools : Hadoop, MapReduce, MongoDB, Mahout, Spark Code Samples : VQA [Keras] & Multi-structure ROI [TF] & Neural Paraphrase Ger : Multi-agent GANs [TF] & Pixel Deflection [TF] & Fallacy Detector	
EXPERIENCE	• Research Intern, Microsoft Research (AI+R)	Summer 2018
	 Model Compression in Convolutional Neural Networks Improved training of compact models (MobileNet, SqueezeNet, ShuffleNet) 	
	Research Intern, Qualcomm Research	Summer 2017
	 Explored model parallelism for convolutional neural networks Architecture learning for reduced model complexity 	
	 Deep Learning Developer (contract), Spin Master™, Canada 	Oct-Dec 2016
	Designed CNN models for fine grained classification of various toysDeveloped Android App for classification/detection in real-time	
	· Associate Research Scientist (part-time), AI Labs, Philips Research, Cambridge, MA	2016 - 2017
	– Use of neural networks for detecting adverse drug reaction, WWW $2017\mbox{cm}$	2017 - 2018

- Neural Network for paraphrase generation, Clinical-NLP COLING 2016 ♂ - Clinical text simplification for supervised & unsupervised models, multiple patent applications & · Research Intern, AI Labs, Philips Research, Cambridge, MA Summer 2016 Explored applications of LSTM in sequence to sequence learning, COLING 2016 [™] - Developed efficient representation of memory state for Memory Networks, AAAI 2017e3 Summer 2014 Big Data Analyst, Brandeis University - Researched various new techniques in data analysis on Hadoop and Spark framework - Designed assignments and quizzes for a graduate level course · Teaching Assistant, Brandeis University 2013-Current - Mobile Application Development - Theory of Computation Scientific Data Processing in MATLAB Data Structures - Fundamentals of Artificial Intelligence - Introduction to Algorithms - Introduction to Big Data Analysis - Data Compression & Multimedia 2010-2012 Independent Algorithmic Trading - Statistical Arbitrage trades on co-integrated pairs (INFY/TCS, ICICI/IDFC, MRF/Apollo) Low latency Options strategies (Butterfly spread) on Nifty50 Designed, developed and programmed several algorithmic strategies as a contractual work Senior Systems Engineer, Infosys Limited ☑ 2009-2013 Developed new algorithm to visualize large unstructured datasets Implemented various Machine Learning algorithms on Map-Reduce (Mahout) - Analyzed various fault measures in distributed optimization problems Independent Tutoring, Bharath University ☑ 2007-2009 - Courses taught: C, C++, Java, Maths [I, II, III, IV], Computer Architecture - Taught more than 50 students in batch sizes ranging from 2 to 15 2017

RECOGNITIONS

 • Roberto Padovani (Qualcomm) Scholarship Award.
 2017

 • Outstanding Teaching Fellow, Brandeis University.
 2017

 • Honorable spotlight award, Visual Question Answering Challenge, CVPR □.
 2016

 • Best paper award at International Conference on Perspective of Computer Confluence, Pune .□
 2012

 • Gold Medal (for securing highest rank), Bharath University, Chennai.
 2008

ACTIVITIES

- Reviewer NIPS 2018, COLING 2018, Quantum Information and Computation.
- Undergraduate theses advisor (Image Colorization with Priors and Off-policy Actor-Critic)
- Invited lectures on Deep Learning at Connecticut College and Brandeis University.
- Advisory board member, OneQube 2.

PUBLICATIONS

♣→ first author

- **a** Deflecting Adversarial Attacks with Pixel Deflection (Spotlight). CVPR 2018

 PDFC CODEC :Image transformation based defense to adversarial attacks, recovers 98% fooled images
- & Robust Discriminative Localization Maps. CVCOPS 2018

 PDFC CODEC: :Securing Class Activations Maps against attacks by using geometric mean over all classes.
- ♣ Protecting JPEG Images Against Adversarial Attacks (Oral). IEEE DCC 2018

 PDF♂ CODE♂: Improves ability of JPEG to defend against attacks, recovery improved from 27% to 82%
- DR-BiLSTM: Dependent Reading Bidirectional LSTM for NLI.

 PDFC Dependent reading using hierarchical soft attention, achieves SOTA on Stanford NLI
- Visual Lecture Summary using Intensity Correlation Coefficient.
 PDFC Technique to remove instructor and generates slides from white/chalk board videos
- & Condensed Memory Networks for Clinical Diagnostic Inferencing.

 AAAI 2017

 PDFC CODEC: :Classifying the diagnosis of a given medical note; SOTA results.
- Semantic Perceptual Image Compression using Deep CNNs (Oral). IEEE DCC 2017

 PDFC CODEC: :Using custom designed CNNs to add differential quantization to achieve semantic JPEG.
- Adverse Drug Event Detection in Tweets with Semi-Supervised CNNs. WWW 2017

 PDFE Use of unlabeled data to improve performance of detecting ADE in tweets; SOTA results on PSB 2016.
- Neural Paraphrase Generation with Stacked Residual LSTM. COLING 2016

 PDFC CODEC: :First deep learning based paraphrasing model, use of skip connection on LSTM.
- & Highway Networks for Visual Question Answering (honorable award). CVPR (VQA) 2016

 PDFC CODEC: :VQA Model with implicit attention; Top-4 in VQA Challenge 1.0
- A Reconstructing Self Organizing Maps as Spider Graphs.

 PDFC Visualizing large unstructured text for interpretable information.

 INFY 2013
- Measures of Fault Tolerance in Distributed Simulated Annealing (best paper).

 PDFC Study of various ways a distributed Simulated Annealing can fail to optimize.