Week 4 Quiz

Back to Week weekNumber

10/10 points earned (100%)

Quiz passed!

1 / 1 points

1.

What is produced at the end of this snippet of R code?

- 1 set.seed(1) 2 rpois(5, 2)
- A vector with the numbers 1, 1, 2, 4, 1

Correct

Because the `set.seed()' function is used, `rpois()' will always output the same vector in this code.

- It is impossible to tell because the result is random

 A vector with the numbers 1, 4, 1, 1, 5
- O A vector with the numbers 3.3, 2.5, 0.5, 1.1, 1.7

1/1 points

2.

What R function can be used to generate standard Normal random variables?

- O pnorm
- O dnorm
- O rnorm

Correct

Functions beginning with the `r' prefix are used to simulate random variates.

O qnorm

	Week 4 Quiz Coursera
/	1 / 1 points
Vhen sim	nulating data, why is using the set.seed() function important? Select all that apply.
☐ It	ensures that the sequence of random numbers is truly random.
Un-selec	cted is correct
☐ It	ensures that the random numbers generated are within specified boundaries.
Un-selec	cted is correct
☐ It	can be used to generate non-uniform random numbers.
Un-selec	cted is correct
	ensures that the sequence of random numbers starts in a specific place and is nerefore reproducible.
Correct	
/	1 / 1 points
	nction can be used to evaluate the inverse cumulative distribution function for the listribution?

ppois dpois

rpois

qpois

Probability distribution functions beginning with the `q' prefix are used to evaluate the quantile (inverse cumulative distribution) function.

1/1 points

5.

What does the following code do?

1 2 3 4	<pre>set.seed(10) x <- rep(0:1, each = 5) e <- rnorm(10, 0, 20) y <- 0.5 + 2 * x + e</pre>	
0	Generate data from a Poisson generalized linear model	
0	Generate data from a Normal linear model	
Corr	ect	
0	Generate random exponentially distributed data	
0	Generate uniformly distributed random data	
~	1 / 1 points	
6. What	R function can be used to generate Binomial random variables?	
0	pbinom	
0	dbinom	
0	rbinom	
Corr	ect	
0	qbinom	
~	1/1 points	
7. What aspect of the R runtime does the profiler keep track of when an R expression is evaluated?		
0	the global environment	
0	the working directory	
0	the package search list	
0	the function call stack	
Corr	ect	

Consider the following R code

1	library(datasets)
2	Rprof()
3	$fit <-lm(y \sim x1 + x2)$
4	Rprof(NULL)

(Assume that y, x1, and x2 are present in the workspace.) Without running the code, what n

percentage of the run time is spent in the 'lm' function, based on the 'by.total' method of normalization shown in 'summaryRprof()'?				
0	23%			
0	100%			
Correct When using `by.total' normalization, the top-level function (in this case, `lm()') always takes 100% of the time.				
0	50%			
0	It is not possible to tell			
9. When	1 / 1 points using 'system.time()', what is the user time?			
0	It is a measure of network latency			
0	It is the "wall-clock" time it takes to evaluate an expression			
0	It is the time spent by the CPU evaluating an expression			
Correct				
0	It is the time spent by the CPU waiting for other tasks to finish			
✓	1/1			

points

If a computer has more than one available processor and R is able to take advantage of that, then which of the following is true when using 'system.time()'?

0	user time is 0
0	user time is always smaller than elapsed time