Towards a deeper understanding of deep learning

Yuanzhi Li

Stanford University

January 13, 2019

• 13.772 billion years BC to 1940s

- 13.772 billion years BC to 1940s
 - Nothing happens...

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.
 - Single layer learning models: SVM, kernel SVM, products of experts...

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.
 - Single layer learning models: SVM, kernel SVM, products of experts...
 - There are lots of theory for them: theory of kernels (representation power), convex optimization (training time bound), VC theory (sample complexity and generalization).

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.
 - Single layer learning models: SVM, kernel SVM, products of experts...
 - There are lots of theory for them: theory of kernels (representation power), convex optimization (training time bound), VC theory (sample complexity and generalization).
- In the past few years:

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.
 - Single layer learning models: SVM, kernel SVM, products of experts...
 - There are lots of theory for them: theory of kernels (representation power), convex optimization (training time bound), VC theory (sample complexity and generalization).
- In the past few years:
 - Neural networks (Deep learning).

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.
 - Single layer learning models: SVM, kernel SVM, products of experts...
 - There are lots of theory for them: theory of kernels (representation power), convex optimization (training time bound), VC theory (sample complexity and generalization).
- In the past few years:
 - Neural networks (Deep learning).
 - Works extremely well in practice, tons of applications.

- 13.772 billion years BC to 1940s
 - Nothing happens...
- 1950s to 2010s:
 - The age of perceptrons.
 - Single layer learning models: SVM, kernel SVM, products of experts...
 - There are lots of theory for them: theory of kernels (representation power), convex optimization (training time bound), VC theory (sample complexity and generalization).
- In the past few years:
 - Neural networks (Deep learning).
 - Works extremely well in practice, tons of applications.
 - (Please imagine some fancy pictures here)

• Multi-layer models.

- Multi-layer models.
 - Input layer, output layer, and hidden layers.

- Multi-layer models.
 - Input layer, output layer, and hidden layers.
 - Each hidden layer is associated with activation function(s).

- Multi-layer models.
 - Input layer, output layer, and hidden layers.
 - Each hidden layer is associated with activation function(s).

- Multi-layer models.
 - Input layer, output layer, and hidden layers.
 - Each hidden layer is associated with activation function(s).

 In this talk, I will particularly focus on neural networks with ReLU activations.

• But why? How do I prove that my neural networks work?

- But why? How do I prove that my neural networks work?
- In the past years, people have reached a satisfying answer to this question:

- But why? How do I prove that my neural networks work?
- In the past years, people have reached a satisfying answer to this question:
 - Stop asking about it!

- But why? How do I prove that my neural networks work?
- In the past years, people have reached a satisfying answer to this question:
 - Stop asking about it!
 - Just deal with the fact that neural networks work in practice although we can not fully prove it.

- But why? How do I prove that my neural networks work?
- In the past years, people have reached a satisfying answer to this question:
 - Stop asking about it!
 - Just deal with the fact that neural networks work in practice although we can not fully prove it.

• There is a simple reason we might want to stop asking about it:

- There is a simple reason we might want to stop asking about it:
- In theory, neural networks are also well known as neural notworks.

- There is a simple reason we might want to stop asking about it:
- In theory, neural networks are also well known as neural notworks.
 - Learning a neural network with three hidden units is NP-hard (BR'98).

- There is a simple reason we might want to stop asking about it:
- In theory, neural networks are also well known as neural notworks.
 - Learning a neural network with three hidden units is NP-hard (BR'98).
 - In practice, we have millions.

- There is a simple reason we might want to stop asking about it:
- In theory, neural networks are also well known as neural notworks.
 - Learning a neural network with three hidden units is NP-hard (BR'98).
 - In practice, we have millions.
 - Given any practical neural network, we can always come up with examples where we can't learn the network on them. (worst case examples)

• In practice, the data is not worse case.

- In practice, the data is not worse case.
- But it is so hard to model.

- In practice, the data is not worse case.
- But it is so hard to model.
 - A two dimension circle is something of form $x^2 + y^2 = R^2$. Great!

- In practice, the data is not worse case.
- But it is so hard to model.
 - A two dimension circle is something of form $x^2 + y^2 = R^2$. Great!
 - A two dimension picture of a dog is of form?

- In practice, the data is not worse case.
- But it is so hard to model.
 - A two dimension circle is something of form $x^2 + y^2 = R^2$. Great!
 - A two dimension picture of a dog is of form?
 - Consists of symbols 'd', 'o', and 'g', and exclusively in that order?

- In practice, the data is not worse case.
- But it is so hard to model.
 - A two dimension circle is something of form $x^2 + y^2 = R^2$. Great!
 - A two dimension picture of a dog is of form?
 - Consists of symbols 'd', 'o', and 'g', and exclusively in that order?

- In practice, the data is not worse case.
- But it is so hard to model.
 - A two dimension circle is something of form $x^2 + y^2 = R^2$. Great!
 - A two dimension picture of a dog is of form?
 - Consists of symbols 'd', 'o', and 'g', and exclusively in that order?

No clean model.

- In practice, the data is not worse case.
- But it is so hard to model.
 - A two dimension circle is something of form $x^2 + y^2 = R^2$. Great!
 - A two dimension picture of a dog is of form?
 - Consists of symbols 'd', 'o', and 'g', and exclusively in that order?

- No clean model.
- So beyond worst case is also hard...

And even harder

• Yet there is another reason:

And even harder

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.
 - So we show good respect to the difficulty.

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.
 - So we show good respect to the difficulty.
- In neural networks, we optimize super complicated neural networks with an extremely simple algorithm: SGD.

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.
 - So we show good respect to the difficulty.
- In neural networks, we optimize super complicated neural networks with an extremely simple algorithm: SGD.
 - Starting from W_0 at random (often Gaussian).

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.
 - So we show good respect to the difficulty.
- In neural networks, we optimize super complicated neural networks with an extremely simple algorithm: SGD.
 - Starting from W_0 at random (often Gaussian).
 - In each iteration, sample an example x from the data set, then update the weights W_t as: $W_{t+1} = W_t \eta \nabla f(W_t, x)$.

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.
 - So we show good respect to the difficulty.
- In neural networks, we optimize super complicated neural networks with an extremely simple algorithm: SGD.
 - Starting from W_0 at random (often Gaussian).
 - In each iteration, sample an example x from the data set, then update the weights W_t as: $W_{t+1} = W_t \eta \nabla f(W_t, x)$.
- We use it (or its variants) almost everywhere, regardless of the problem.

- Yet there is another reason:
- In theory, we usually solve a rather complicated problem with a rather complicated algorithm.
 - So we show good respect to the difficulty.
- In neural networks, we optimize super complicated neural networks with an extremely simple algorithm: SGD.
 - Starting from W_0 at random (often Gaussian).
 - In each iteration, sample an example x from the data set, then update the weights W_t as: $W_{t+1} = W_t \eta \nabla f(W_t, x)$.
- We use it (or its variants) almost everywhere, regardless of the problem.
- Make the analysis even harder.

• Given the above examples, we see that theory for deep learning is indeed quite difficult.

- Given the above examples, we see that theory for deep learning is indeed quite difficult.
- This is the end of the talk.

- Given the above examples, we see that theory for deep learning is indeed quite difficult.
- This is the end of the talk.
- If we accept the fact neural networks might not have a complete theorem.

- Given the above examples, we see that theory for deep learning is indeed quite difficult.
- This is the end of the talk.
- If we accept the fact neural networks might not have a complete theorem.
- But of course we won't.

- Given the above examples, we see that theory for deep learning is indeed quite difficult.
- This is the end of the talk.
- If we accept the fact neural networks might not have a complete theorem.
- But of course we won't.
 - Spirit: If we try to build up the theory, we might not be successful immediately.

- Given the above examples, we see that theory for deep learning is indeed quite difficult.
- This is the end of the talk.
- If we accept the fact neural networks might not have a complete theorem.
- But of course we won't.
 - Spirit: If we try to build up the theory, we might not be successful immediately.
 - But if we don't try, we will feel very relaxed immediately.

- Given the above examples, we see that theory for deep learning is indeed quite difficult.
- This is the end of the talk.
- If we accept the fact neural networks might not have a complete theorem.
- But of course we won't.
 - Spirit: If we try to build up the theory, we might not be successful immediately.
 - But if we don't try, we will feel very relaxed immediately.
 - we will never have a chance to succeed.

• There are many progress in the theory of deep learning, moving us closer to getting a full explanation.

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:
 - Linearization principle: focus on simpler models (linear networks etc.)

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:
 - Linearization principle: focus on simpler models (linear networks etc.)
 - Redesign of the activation functions (exponential, quadratic, special Hermite polynomial etc.)

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:
 - Linearization principle: focus on simpler models (linear networks etc.)
 - Redesign of the activation functions (exponential, quadratic, special Hermite polynomial etc.)
 - Use different algorithms (tensor decomposition etc.)

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:
 - Linearization principle: focus on simpler models (linear networks etc.)
 - Redesign of the activation functions (exponential, quadratic, special Hermite polynomial etc.)
 - Use different algorithms (tensor decomposition etc.)
 - (Please imagine some fancy papers here)

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:
 - Linearization principle: focus on simpler models (linear networks etc.)
 - Redesign of the activation functions (exponential, quadratic, special Hermite polynomial etc.)
 - Use different algorithms (tensor decomposition etc.)
 - (Please imagine some fancy papers here)
- There are lots of amazing (marvelous, thrilling, remarkable, fantastic, magnificent, striking or spectacular) results along these lines and they are really great and impactful...

- There are many progress in the theory of deep learning, moving us closer to getting a full explanation.
- Different types of work:
 - Linearization principle: focus on simpler models (linear networks etc.)
 - Redesign of the activation functions (exponential, quadratic, special Hermite polynomial etc.)
 - Use different algorithms (tensor decomposition etc.)
 - (Please imagine some fancy papers here)
- There are lots of amazing (marvelous, thrilling, remarkable, fantastic, magnificent, striking or spectacular) results along these lines and they are really great and impactful...
- But I am going to use a different approach.

• I will focus on (multi-layer) neural networks with:

- I will focus on (multi-layer) neural networks with:
 - ReLU activation functions.

- I will focus on (multi-layer) neural networks with:
 - ReLU activation functions.
- Training algorithm that is:

- I will focus on (multi-layer) neural networks with:
 - ReLU activation functions.
- Training algorithm that is:
 - SGD with Gaussian random initialization.

- I will focus on (multi-layer) neural networks with:
 - ReLU activation functions.
- Training algorithm that is:
 - SGD with Gaussian random initialization.
- I will do theory with them.

- I will focus on (multi-layer) neural networks with:
 - ReLU activation functions.
- Training algorithm that is:
 - SGD with Gaussian random initialization.
- I will do theory with them.
- How?

• Some simple questions for you:

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.
 - (Deep learning): You should use a larger network.

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.
 - (Deep learning): You should use a larger network.
- (2). My network finds the global optimal on the training set, but it generalizes badly. What should I do?

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.
 - (Deep learning): You should use a larger network.
- (2). My network finds the global optimal on the training set, but it generalizes badly. What should I do?
 - (A person who just learned the VC dimension): Make the total number of parameters smaller so it generalizes better.

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.
 - (Deep learning): You should use a larger network.
- (2). My network finds the global optimal on the training set, but it generalizes badly. What should I do?
 - (A person who just learned the VC dimension): Make the total number of parameters smaller so it generalizes better.
 - (Deep learning): You should use a larger network.

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.
 - (Deep learning): You should use a larger network.
- (2). My network finds the global optimal on the training set, but it generalizes badly. What should I do?
 - (A person who just learned the VC dimension): Make the total number of parameters smaller so it generalizes better.
 - (Deep learning): You should use a larger network.
- (3). My network finds a good solution, but I can't prove it. What should I do?

- Some simple questions for you:
- (1). My network finds the global optimal on the training set, but it runs really slow. What should I do?
 - (A person who just took the convex optimization course): Make the total number of parameters smaller so it runs faster.
 - (Deep learning): You should use a larger network.
- (2). My network finds the global optimal on the training set, but it generalizes badly. What should I do?
 - (A person who just learned the VC dimension): Make the total number of parameters smaller so it generalizes better.
 - (Deep learning): You should use a larger network.
- (3). My network finds a good solution, but I can't prove it. What should I do?
 - (In this talk): You should use a larger network!

Principle of over-parameterization.

 By building up a network with (much more) parameters than the total number of training examples.

Principle of over-parameterization.

- By building up a network with (much more) parameters than the total number of training examples.
- Improves both the training and generalization.

Principle of over-parameterization.

- By building up a network with (much more) parameters than the total number of training examples.
- Improves both the training and generalization.
- And it improves the theory.

Folklore example for training.

teacher 100 neurons

learner 1000 neurons

Example for generalization.

Widen factor	Number of parameters	Test error
1	0.6M	6.85
2	2.2M	5.33
4	8.9M	4.97
8	36.5M	4.66

Table: Depth 40 WideResNet on CIFAR-10 (0.05M training examples)

• Given enough over-parameterization, prove that:

- Given enough over-parameterization, prove that:
- (1). SGD will find a good solution on the training data set (close to zero training error).

- Given enough over-parameterization, prove that:
- (1). SGD will find a good solution on the training data set (close to zero training error).
- (2). And it generalizes to test data set.

- Given enough over-parameterization, prove that:
- (1). SGD will find a good solution on the training data set (close to zero training error).
- (2). And it generalizes to test data set.
- We begin with our theorem for (1), then we will see (2) as well.

Our theorem

Theorem (Sketched, (LL'18, ALS'18a,b))

Given N different training examples $x_1,...,x_N$ with labels $y_1,...,y_N$, then for every $\varepsilon > 0$, as long as the number of neurons (m) in the network satisfies

$$m \ge poly(N \log(1/\varepsilon))$$

then SGD starting from gaussian random initialization finds an ε -approximate optimal of the training objective in time poly(m/ε).

The theorem holds for multi-layer DNN, CNN, ResNet and Recurrent Neural Networks (all with ReLU activation functions), the training loss can be given by ℓ_2 loss, cross entropy, hinge loss etc.

• Only assumption: *N* different training examples, so no two identical training examples.

- Only assumption: N different training examples, so no two identical training examples.
- $m \ge \text{poly}(N \log(1/\varepsilon))$ implies good fitting on the training data set.

- Only assumption: *N* different training examples, so no two identical training examples.
- $m \ge \text{poly}(N \log(1/\varepsilon))$ implies good fitting on the training data set.
- Training labels can be random.

- Only assumption: N different training examples, so no two identical training examples.
- $m \ge \text{poly}(N \log(1/\varepsilon))$ implies good fitting on the training data set.
- Training labels can be random.
 - From capacity view: Obviously there exists a network that fits the training data.

- Only assumption: N different training examples, so no two identical training examples.
- $m \ge \text{poly}(N \log(1/\varepsilon))$ implies good fitting on the training data set.
- Training labels can be random.
 - From capacity view: Obviously there exists a network that fits the training data.
 - From optimization view: How can SGD finds such fitting? The training objective is not only non-convex, but non-smooth as well due to ReLU.

- Only assumption: N different training examples, so no two identical training examples.
- $m \ge \text{poly}(N \log(1/\varepsilon))$ implies good fitting on the training data set.
- Training labels can be random.
 - From capacity view: Obviously there exists a network that fits the training data.
 - From optimization view: How can SGD finds such fitting? The training objective is not only non-convex, but non-smooth as well due to ReLU.
 - Not a trivial theorem, but much simpler than the next question.

• The harder question is:

- The harder question is:
 - What about generalization?

- The harder question is:
 - What about generalization?
- The empirical example (ZBHR'16), that is also proved by our theorem.

- The harder question is:
 - What about generalization?
- The empirical example (ZBHR'16), that is also proved by our theorem.
 - Over-parameterized networks (AlexNet) can fit CIFAR-10 data with random labels.

- The harder question is:
 - What about generalization?
- The empirical example (ZBHR'16), that is also proved by our theorem.
 - Over-parameterized networks (AlexNet) can fit CIFAR-10 data with random labels
 - The capacity of the model is way larger than the total number of training examples.

- The harder question is:
 - What about generalization?
- The empirical example (ZBHR'16), that is also proved by our theorem.
 - Over-parameterized networks (AlexNet) can fit CIFAR-10 data with random labels
 - The capacity of the model is way larger than the total number of training examples.
 - More importantly, SGD can find such (over)fitting.

- The harder question is:
 - What about generalization?
- The empirical example (ZBHR'16), that is also proved by our theorem.
 - Over-parameterized networks (AlexNet) can fit CIFAR-10 data with random labels
 - The capacity of the model is way larger than the total number of training examples.
 - More importantly, SGD can find such (over)fitting.
 - So why does SGD it still generalize?

• The labels are not random (necessary).

- The labels are not random (necessary).
 - What about SGD?

- The labels are not random (necessary).
 - What about SGD?
- The inductive bias of SGD: SGD biases towards generalizable solutions instead of the solutions that simply memorize the training data.

- The labels are not random (necessary).
 - What about SGD?
- The inductive bias of SGD: SGD biases towards generalizable solutions instead of the solutions that simply memorize the training data.
 - We are going to prove it for certain neural networks.

Labels are not random?

Assume that the labels are realizable by a simple neural network:

$$F^* = (f_1^*, \dots, f_k^*)$$
 each $f_r^*(x) = \sum_{i=1}^p a_{r,i}^* \phi_i(\langle w_i^*, x \rangle)$

k is the output dimension, ϕ_i are smooth activation functions (such as \sin, \cos, \exp and low degree polynomials), w_i^* are unit vectors, $|a_{r,i}^*| \leq 1$ and $\|x\|_2 \leq 1$.

Labels are not random?

Assume that the labels are realizable by a simple neural network:

$$F^* = (f_1^*, \dots, f_k^*)$$
each $f_r^*(x) = \sum_{i=1}^p a_{r,i}^* \phi_i(\langle w_i^*, x \rangle)$

k is the output dimension, ϕ_i are smooth activation functions (such as \sin, \cos, \exp and low degree polynomials), w_i^* are unit vectors, $|a_{r,i}^*| \leq 1$ and $\|x\|_2 \leq 1$.

• Such that the average loss of network F^* on the training data set is $\leq \varepsilon$.

Labels are not random?

Assume that the labels are realizable by a simple neural network:

$$F^* = (f_1^*, \dots, f_k^*)$$
each $f_r^*(x) = \sum_{i=1}^p a_{r,i}^* \phi_i(\langle w_i^*, x \rangle)$

k is the output dimension, ϕ_i are smooth activation functions (such as \sin, \cos, \exp and low degree polynomials), w_i^* are unit vectors, $|a_{r,i}^*| \leq 1$ and $\|x\|_2 \leq 1$.

- Such that the average loss of network F^* on the training data set is $\leq \varepsilon$.
- Two-layer network with *p* hidden neurons.

Picture of the Network.

Our theorem

Theorem (Sketched (LL'18, ALL'18))

Suppose the labels of the data can be realized as in the previous slides, then as long as the number of training examples N satisfies:

$$N \ge poly(kp/\varepsilon) \times poly(log(m))$$

Then SGD on a two layer (one hidden layer) fully-connected neural networks (with m neurons and ReLU activation functions) finds a solution with generalization gap $\leq \varepsilon$ in time poly(m/ ε).

Generalization gap = average error on test data - average error on training data.

• Get training error $\leq \varepsilon$:

- Get training error $\leq \varepsilon$:
 - Needs $m \ge poly(N \log(1/\varepsilon))$.

- Get training error $\leq \varepsilon$:
 - Needs $m \ge poly(N \log(1/\varepsilon))$.
- Get generalization gap $\leq \varepsilon$:

- Get training error $\leq \varepsilon$:
 - Needs $m \ge poly(N \log(1/\varepsilon))$.
- Get generalization gap $\leq \varepsilon$:
 - Needs $N \ge poly(1/\varepsilon) \times poly(\log(m))$.

Close look at the theorem

- Get training error $\leq \varepsilon$:
 - Needs $m \ge poly(N \log(1/\varepsilon))$.
- Get generalization gap $\leq \varepsilon$:
 - Needs $N \ge poly(1/\varepsilon) \times poly(\log(m))$.
- We can obtain error on the test data set $\leq 2\varepsilon$ with up to sup-exponential over-parameterization.

Close look at the theorem

- Get training error $\leq \varepsilon$:
 - Needs $m \ge poly(N \log(1/\varepsilon))$.
- Get generalization gap $\leq \varepsilon$:
 - Needs $N \ge poly(1/\varepsilon) \times poly(\log(m))$.
- We can obtain error on the test data set $\leq 2\varepsilon$ with up to sup-exponential over-parameterization.
- The theorem also applies to convolution nets.

Picture of intuition

 You just mentioned that learning two-layer network with three neurons is NP-hard, now how can you learn m many efficiently?

- You just mentioned that learning two-layer network with three neurons is NP-hard, now how can you learn m many efficiently?
- We are not optimizing a *m* neurons network up to optimal, we are just making sure it can do as well as the best (much) smaller networks.

- You just mentioned that learning two-layer network with three neurons is NP-hard, now how can you learn m many efficiently?
- We are not optimizing a m neurons network up to optimal, we are just making sure it can do as well as the best (much) smaller networks.
 - $m \ge poly(N)$: Training.

- You just mentioned that learning two-layer network with three neurons is NP-hard, now how can you learn m many efficiently?
- We are not optimizing a m neurons network up to optimal, we are just making sure it can do as well as the best (much) smaller networks.
 - $m \ge poly(N)$: Training.
 - $N \ge poly(p)$: Testing.

- You just mentioned that learning two-layer network with three neurons is NP-hard, now how can you learn m many efficiently?
- We are not optimizing a m neurons network up to optimal, we are just making sure it can do as well as the best (much) smaller networks.
 - $m \ge poly(N)$: Training.
 - $N \ge poly(p)$: Testing.
 - So $m \ge poly(p)$.

- You just mentioned that learning two-layer network with three neurons is NP-hard, now how can you learn m many efficiently?
- We are not optimizing a *m* neurons network up to optimal, we are just making sure it can do as well as the best (much) smaller networks.
 - $m \ge poly(N)$: Training.
 - $N \ge poly(p)$: Testing.
 - So $m \ge poly(p)$.
- We are training a network with 1M parameters to match the performance of a network with 1K parameters, and that is easy!

Networks with more hidden layers?

• Our theorem also works for three layer networks (two hidden layers).

Networks with more hidden layers?

- Our theorem also works for three layer networks (two hidden layers).
- Theoretical reasoning on three layer networks is much harder due to the extremely non-convex interactions between the two hidden layers.

Label assumption of three-layer networks

• Assume that the labels are realizable by a simple neural network:

$$F^* = (f_1^*, \dots, f_k^*)$$
each $f_r^*(x) = \sum_{i \in [p]} a_{r,i}^* \Phi_i \left(\sum_{j \in [p]} v_{i,j}^* \phi_{1,j}(\langle w_j^*, x \rangle) \right)$

Label assumption of three-layer networks

• Assume that the labels are realizable by a simple neural network:

$$\begin{split} F^* &= (f_1^*, \cdots, f_k^*) \\ \text{each } f_r^*(x) &= \sum_{i \in [p]} a_{r,i}^* \Phi_i \left(\sum_{j \in [p]} v_{i,j}^* \phi_{1,j}(\langle w_j^*, x \rangle) \right) \end{split}$$

• Such that the average loss of network F^* on the training data set is $\leq \varepsilon$.

Picture of the Network.

Our theorem

Theorem (Sketched (ALL'18))

Suppose the labels of the data can be realized as in the previous slides, then as long as the number of training examples N satisfies:

$$N \ge poly(kp/\varepsilon) \times poly(log(m))$$

Then SGD on a three layer (two hidden layers) fully-connected neural networks (with m neurons per layer and ReLU activation functions) finds a solution with generalization gap $\leq \varepsilon$ in time poly(m/ ε).

Our theorem

Theorem (Sketched (ALL'18))

Suppose the labels of the data can be realized as in the previous slides, then as long as the number of training examples N satisfies:

$$N \ge poly(kp/\varepsilon) \times poly(log(m))$$

Then SGD on a three layer (two hidden layers) fully-connected neural networks (with m neurons per layer and ReLU activation functions) finds a solution with generalization gap $\leq \varepsilon$ in time poly(m/ ε).

 Despite the fact that the paper is 67 pages long (all proofs), the proof is conceptually very simple. Believe me:)

Extending to even deeper?

 We could not do it for general network, but we could show it for ResNet.

Extending to even deeper?

- We could not do it for general network, but we could show it for ResNet.
- We first consider single skip ResNet.

Extending to even deeper?

- We could not do it for general network, but we could show it for ResNet.
- We first consider single skip ResNet.

Extending to even deeper

Assume that the labels are realizable by a ResNet:

$$\begin{split} F_{\ell}^* &= (f_{1,\ell}^*, \cdots, f_{k,\ell}^*), \text{for } \ell = 1, \cdots, L. \\ f_{r,1}^*(x) &= \phi_{r,1}(\langle w_{r,1}^*, x \rangle) \\ f_{r,\ell}^*(x) &= f_{r,\ell-1}^*(x) + \alpha_{\ell} \phi_{r,\ell}(\langle w_{r,\ell}^*, F_{\ell-1}^*(x) \rangle) \text{ for } \ell \geq 2 \end{split}$$

Extending to even deeper

Assume that the labels are realizable by a ResNet:

$$\begin{split} F_{\ell}^* &= (f_{1,\ell}^*, \cdots, f_{k,\ell}^*), \text{for } \ell = 1, \cdots, L. \\ f_{r,1}^*(x) &= \phi_{r,1}(\langle w_{r,1}^*, x \rangle) \\ f_{r,\ell}^*(x) &= f_{r,\ell-1}^*(x) + \alpha_{\ell} \phi_{r,\ell}(\langle w_{r,\ell}^*, F_{\ell-1}^*(x) \rangle) \text{ for } \ell \geq 2 \end{split}$$

• Where F_0 is the identity mapping and $\alpha_{\ell} \leq \alpha_{\ell-1}/poly(k)$ with $\alpha_1 = 1$.

Extending to even deeper

Assume that the labels are realizable by a ResNet:

$$\begin{split} F_{\ell}^* &= (f_{1,\ell}^*, \cdots, f_{k,\ell}^*), \text{for } \ell = 1, \cdots, L. \\ f_{r,1}^*(x) &= \phi_{r,1}(\langle w_{r,1}^*, x \rangle) \\ f_{r,\ell}^*(x) &= f_{r,\ell-1}^*(x) + \alpha_{\ell} \phi_{r,\ell}(\langle w_{r,\ell}^*, F_{\ell-1}^*(x) \rangle) \text{ for } \ell \geq 2 \end{split}$$

• Where F_0 is the identity mapping and $\alpha_{\ell} \leq \alpha_{\ell-1}/poly(k)$ with $\alpha_1 = 1$.

Our theorem

Theorem (Sketched (corollary of ALL'18))

Suppose the labels of the data can be realized as in the previous slides, then as long as the number of training examples N satisfies:

$$N \ge poly(kL/\varepsilon) \times poly(log(mL))$$

Then SGD on a L-layer single-skip ResNet with ReLU activation functions (each layer is fully connected with m neurons) finds a solution with generalization gap $\leq \varepsilon$ in time poly(mL/ ε).

Multi-level features.

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.
- Second level features are built on top of first level features by adding simple functions of the first level features.

$$f_{r,2}^*(x) = f_{r,1}^*(x) + \alpha_2 \phi_{r,2}(\langle w_{r,2}^*, F_1^*(x) \rangle).$$

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.
- Second level features are built on top of first level features by adding simple functions of the first level features. $f_{r,2}^*(x) = f_{r,1}^*(x) + \alpha_2 \phi_{r,2}(\langle w_{r,2}^*, F_1^*(x) \rangle)$.
- Third level...

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.
- Second level features are built on top of first level features by adding simple functions of the first level features. $f_{r,2}^*(x) = f_{r,1}^*(x) + \alpha_2 \phi_{r,2}(\langle w_{r,2}^*, F_1^*(x) \rangle)$.
- Third level...
- The 'effect' of the additional features gets smaller as level goes higher $(\alpha_{\ell} << \alpha_{\ell-1})$.

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.
- Second level features are built on top of first level features by adding simple functions of the first level features. $f_{r,2}^*(x) = f_{r,1}^*(x) + \alpha_2 \phi_{r,2}(\langle w_{r,2}^*, F_1^*(x) \rangle)$.
- Third level...
- The 'effect' of the additional features gets smaller as level goes higher $(\alpha_{\ell} << \alpha_{\ell-1})$.
- The identity mapping in ResNet allows the network to discover each level gradually to simplify the learning process.

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.
- Second level features are built on top of first level features by adding simple functions of the first level features. $f_{r,2}^*(x) = f_{r,1}^*(x) + \alpha_2 \phi_{r,2}(\langle w_{r,2}^*, F_1^*(x) \rangle)$.
- Third level...
- The 'effect' of the additional features gets smaller as level goes higher $(\alpha_{\ell} << \alpha_{\ell-1})$.
- The identity mapping in ResNet allows the network to discover each level gradually to simplify the learning process.
 - Learn first level features first, then learn second level features, then third...

- Multi-level features.
- First level features are simple functions of the input. $f_{r,1}^*(x) = \phi_{r,1}(\langle w_{r,1}^*, x \rangle)$.
- Second level features are built on top of first level features by adding simple functions of the first level features. $f_{r,2}^*(x) = f_{r,1}^*(x) + \alpha_2 \phi_{r,2}(\langle w_{r,2}^*, F_1^*(x) \rangle)$.
- Third level...
- The 'effect' of the additional features gets smaller as level goes higher $(\alpha_{\ell} << \alpha_{\ell-1})$.
- The identity mapping in ResNet allows the network to discover each level gradually to simplify the learning process.
 - Learn first level features first, then learn second level features, then third...
- Also applies to ResNet with convolution layers. But not double skip or triple skip yet.

• We have shown that:

- We have shown that:
 - SGD provably optimizes over-parameterization deep neural networks with ReLU activations, on the training data set.

- We have shown that:
 - SGD provably optimizes over-parameterization deep neural networks with ReLU activations, on the training data set.
 - SGD also biases towards generalizable solutions on two/three layer networks and ResNet if the labels are structured.

- We have shown that:
 - SGD provably optimizes over-parameterization deep neural networks with ReLU activations, on the training data set.
 - SGD also biases towards generalizable solutions on two/three layer networks and ResNet if the labels are structured.
- Question: Why always SGD?

- We have shown that:
 - SGD provably optimizes over-parameterization deep neural networks with ReLU activations, on the training data set.
 - SGD also biases towards generalizable solutions on two/three layer networks and ResNet if the labels are structured.
- Question: Why always SGD?
 - Can we modify SGD so it biases towards solutions with even better generalization?

 When we train a neural network (VGG, ResNet, Dense Net, etc. for image classification etc.)

- When we train a neural network (VGG, ResNet, Dense Net, etc. for image classification etc.)
- It is better to use large learning rate first, then decay the learning rate.

- When we train a neural network (VGG, ResNet, Dense Net, etc. for image classification etc.)
- It is better to use large learning rate first, then decay the learning rate.

SGD with small learning rate

• Training loss of using large learning rate + learning rate decay and using small learning rate are all close to zero.

- Training loss of using large learning rate + learning rate decay and using small learning rate are all close to zero.
- But large learning rate generalizes better!

- Training loss of using large learning rate + learning rate decay and using small learning rate are all close to zero.
- But large learning rate generalizes better!
- SGD with learning rate decay implicitly biases towards solutions with better generalization?

• SGD with large learning rate can escape sharp local minimals.

- SGD with large learning rate can escape sharp local minimals.
- So after learning rate decay it will converge to a flat local minimal.

- SGD with large learning rate can escape sharp local minimals.
- So after learning rate decay it will converge to a flat local minimal.
- Flat local minimal generalize better.

- SGD with large learning rate can escape sharp local minimals.
- So after learning rate decay it will converge to a flat local minimal.
- Flat local minimal generalize better.
- But for theory:

- SGD with large learning rate can escape sharp local minimals.
- So after learning rate decay it will converge to a flat local minimal.
- Flat local minimal generalize better.
- But for theory:
 - Why neural network has sharp local minimals?

- SGD with large learning rate can escape sharp local minimals.
- So after learning rate decay it will converge to a flat local minimal.
- Flat local minimal generalize better.
- But for theory:
 - Why neural network has sharp local minimals?
 - Why flat local minimal in neural network generalizes better?

Our current work

• A concrete example of a data set such that:

Our current work

- A concrete example of a data set such that:
- When training a two layer network using SGD, large learning rate + learning rate decay provably generalizes better than small learning rate.

• Texts labeled as happy:

- Texts labeled as happy:
 - I am so happy ☺

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ☺

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ☺
 - ...

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ☺
 - ...
- Texts labeled as sad:

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ©
 - ...
- Texts labeled as sad:
 - I am so unhappy ③

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ☺
 - ...
- Texts labeled as sad:
 - I am so unhappy ©
 - Feeling sorrowful ©

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ©
 - ...
- Texts labeled as sad:
 - I am so unhappy ©
 - Feeling sorrowful ③
 - Very unhappy.

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ©
 - Today is a good day!
 - I am Groot ☺
 - ...
- Texts labeled as sad:
 - I am so unhappy ©
 - Feeling sorrowful ©
 - Very unhappy.
 - Being wrecked ©

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ☺
 - Today is a good day!
 - I am Groot ☺
 - ...
- Texts labeled as sad:
 - I am so unhappy ©
 - Feeling sorrowful ©
 - Very unhappy.
 - Being wrecked ©
 - I am Groot ☺

- Texts labeled as happy:
 - I am so happy ☺
 - Feeling good ©
 - Excited ☺
 - Today is a good day!
 - I am Groot ☺
 - ...
- Texts labeled as sad:
 - I am so unhappy ☺
 - Feeling sorrowful ©
 - Very unhappy.
 - Being wrecked ©
 - I am Groot ©
 - ...

• Randomly 80 percent of the data has symbols ©, ©.

- Randomly 80 percent of the data has symbols ©, ©.
- SGD with small learning rate will quickly memorize the special symbols ©, ©.

- Randomly 80 percent of the data has symbols ©, ©.
- SGD with small learning rate will quickly memorize the special symbols ©, ©.
- Then the gradient of the examples with these symbols will be close to zero.

- Randomly 80 percent of the data has symbols ©, ©.
- SGD with small learning rate will quickly memorize the special symbols ©, ©.
- Then the gradient of the examples with these symbols will be close to zero.
- SGD then uses very few examples without these symbols to learn the sentences.

- Randomly 80 percent of the data has symbols ©, ©.
- SGD with small learning rate will quickly memorize the special symbols ©, ©.
- Then the gradient of the examples with these symbols will be close to zero.
- SGD then uses very few examples without these symbols to learn the sentences.
- SGD with large learning rate will avoid memorizing the special symbols, and learn sentences with all examples.

- Randomly 80 percent of the data has symbols ©, ©.
- SGD with small learning rate will quickly memorize the special symbols ©, ©.
- Then the gradient of the examples with these symbols will be close to zero.
- SGD then uses very few examples without these symbols to learn the sentences.
- SGD with large learning rate will avoid memorizing the special symbols, and learn sentences with all examples.
- After weight decay it then learns the symbols.

The data set

• Data points in dimension 2d: $x = (x_1, x_2)$ where $x_1, x_2 \in \mathbb{R}^d$.

The data set

- Data points in dimension 2d: $x = (x_1, x_2)$ where $x_1, x_2 \in \mathbb{R}^d$.
- $x_1 \sim N\left(0, \frac{1}{d}I\right)$, the label of x is $y(x) = 1_{(w,x)\geq 0}$, where w is a vector in \mathbb{R}^d .

The data set

- Data points in dimension 2d: $x = (x_1, x_2)$ where $x_1, x_2 \in \mathbb{R}^d$.
- $x_1 \sim N\left(0, \frac{1}{d}I\right)$, the label of x is $y(x) = 1_{(w,x) \ge 0}$, where w is a vector in \mathbb{R}^d .
- With probability 1 p,

$$x_2 = \begin{cases} z \pm \delta & \text{if } y(x) = 0; \\ z & \text{if } y(x) = 1. \end{cases}$$

Where z, δ are two vectors in \mathbb{R}^d with $||z||_2 = 1$ and $||\delta||_2 = \frac{1}{d^{\Theta(1)}}$.

The model

We use the following model:

Theorem (Sketched)

Theorem (Sketched)

Given N training examples, at training error $\frac{p}{N}$ for the cross entropy loss:

1 SGD with large learning rate + learning rate decay achieves generalization error O(p/N).

Theorem (Sketched)

- **1** SGD with large learning rate + learning rate decay achieves generalization error O(p/N).
- **2** SGD with small learning rate has generalization error at least $\Omega(1/N)$.

Theorem (Sketched)

- **1** SGD with large learning rate + learning rate decay achieves generalization error O(p/N).
- **2** SGD with small learning rate has generalization error at least $\Omega(1/N)$.
 - For p = o(1), large learning rate provably generalize better.

Theorem (Sketched)

- **1** SGD with large learning rate + learning rate decay achieves generalization error O(p/N).
- **2** SGD with small learning rate has generalization error at least $\Omega(1/N)$.
 - For p = o(1), large learning rate provably generalize better.
 - But in practice, probably p = 0.9 (so we ignore 10 percent of the data) would make a huge difference.

• I have described 10 percent of my works.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.
 - Non-convex optimization.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.
 - Non-convex optimization.
 - Matrix completion, matrix sensing, topic model, graphical model, mixture of regressions, escaping saddle points, experiment design.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.
 - Non-convex optimization.
 - Matrix completion, matrix sensing, topic model, graphical model, mixture of regressions, escaping saddle points, experiment design.
 - Data processing.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.
 - Non-convex optimization.
 - Matrix completion, matrix sensing, topic model, graphical model, mixture of regressions, escaping saddle points, experiment design.
 - Data processing.
 - PCA (SVD), CCA, PCP, PCR, online/stochastic PCA.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.
 - Non-convex optimization.
 - Matrix completion, matrix sensing, topic model, graphical model, mixture of regressions, escaping saddle points, experiment design.
 - Data processing.
 - PCA (SVD), CCA, PCP, PCR, online/stochastic PCA.
 - Convex optimization/Algorithms.

- I have described 10 percent of my works.
 - In the past 4 years of my Ph.D. I have published 31 papers, with 6 online manuscripts and 6 writing manuscripts.
 - Smoothed analysis of the regularization paths in regression problems.
 - Online learning.
 - Bandit convex optimization; Sparsity, variance and curvature in linear/multi-arm bandit, distributed bandit, chasing convex functions, theory of reinforcement learning.
 - Non-convex optimization.
 - Matrix completion, matrix sensing, topic model, graphical model, mixture of regressions, escaping saddle points, experiment design.
 - Data processing.
 - PCA (SVD), CCA, PCP, PCR, online/stochastic PCA.
 - Convex optimization/Algorithms.
 - Matrix/Operator scaling, ℓ_p regressions, parallel(distributed) optimization.