# ЛАБОРАТОРНАЯ РАБОТА 4

#### РАСПАКОВКА БИТОВЫХ ГРУПП

#### ЦЕЛЬ РАБОТЫ

- 1. Изучение логических команд.
- 2. Изучение команд сдвига.
- 3. Изучение алгоритмов распаковки битовых групп.
- 4. Изучение обработки чисел различной длины.

#### **ЗАДАНИЕ**

В задании графически изображен формат 32-битового двоичного числа. В каждом поле представлено название этого поля, а под соответствующим полем - его размер в битах. Выполнить распаковку упакованных двоичных групп, учитывая следующие требования:

- название каждого поля в упакованном виде является названием переменной, содержащей это поле:
- биты упакованного поля должны располагаться в младших разрядах соответствующей переменной, в то время как старшие разряды должны содержать нулевые биты;
- для размещения каждого поля использовать стандартную битовую группу минимальной длины (байт, слово или длинное слово).

## ИСХОДНЫЕ ДАННЫЕ

Формат исходного упакованного числа представлен на рисунке.

### ТРЕБУЕМЫЙ РЕЗУЛЬТАТ

Определить самостоятельно, на основании формата исходного числа. Формат результирующих переменных изобразить самостоятельно, указав сверху каждого поля нумерацию битов. Название переменных определяется названием соответствующего поля, а количество переменных - количеством битовых полей в упакованном числе.

2 из 4 Лабораторная работа 4



Тестовые примеры для распаковки битовых групп приведены в таблице 1.

Таблица 1 – Тестовые примеры для распаковки

| Номер | Packing  | Var1 | Var2 | Var3 | Var4 |
|-------|----------|------|------|------|------|
| 1     | AAAAAAA  |      |      |      |      |
| 2     | 5555555  |      |      |      |      |
| 3     | 12345678 |      |      |      |      |
| 4     | FFFFFFF  |      |      |      |      |

### ХОД РАБОТЫ

Составить тестовые примеры для распаковки, которые следует оформить в виде таблицы (см. выше). Исходные данные и требуемый результат должны приводиться в 16-й системе счисления.

Ввод и вывод данных выполняется в 16-й системе счисления.

Программа должна быть зациклена.

#### Содержание отчета

- 1. Титульный лист.
- 2. Задание.
- 3. Исходные данные.
- 4. Требуемый результат.
- 5. Алгоритм решения задачи на псевдокоде. Схема алгоритма.
- 6. Текст программы с комментариями.
- 7. Тестовые примеры.

## Варианты заданий

| 1  | mod   | kop   | reg   | scale |       |      |
|----|-------|-------|-------|-------|-------|------|
|    | 9     | 5     | 11    | 7     |       |      |
| 2  | mod   | kop   | w_b   | disp  |       |      |
|    | 6     | 8     | 1     | 17    |       |      |
| 3  | kop   | mod1  | reg1  | dst   |       |      |
|    | 5     | 14    | 6     | 7     |       |      |
| 4  | mod   | kop   | w_b   | reg1  | reg2  |      |
|    | 7     | 12    | 2     | 7     | 4     | •    |
| 5  | kop   | reg   | mod2  | reg2  |       |      |
|    | 12    | 6     | 5     | 9     |       |      |
| 6  | kop   | len   | mod   | reg   |       |      |
|    | 10    | 7     | 9     | 6     |       |      |
| 7  | src   | dst_t | dst_r | b_w   | kop   |      |
|    | 11    | 6     | 5     | 1     | 9     |      |
| 8  | src_t | src_r | dst   | b_w   | kop   |      |
|    | 2     | 7     | 10    | 1     | 12    |      |
| 9  | dst_r | cnt   | kop   | b_w   |       |      |
|    | 6     | 6     | 18    | 2     |       |      |
| 10 | kop   | S     | W     | mod   | reg   | r_m  |
|    | 12    | 2     | 2     | 7     | 3     | 6    |
| 11 | kop   | W     | reg   | mod   | kop1  | r_m  |
|    | 9     | 2     | 4     | 6     | 6     | 5    |
| 12 | kop   | cond  | mod   | r_m   | scale |      |
|    | 10    | 7     | 4     | 6     | 5     |      |
| 13 | mod   | reg   | r_m   | kop   | S     | W    |
|    | 8     | 6     | 5     | 9     | 2     | 2    |
| 14 | mod   | reg1  | r_m   | kop   | W     | reg2 |
|    | 4     | 6     | 12    | 4     | 1     | 5    |

4 из 4 Лабораторная работа 4

| 15 | mod    | r_m    | kop    | cond  | range    |         |
|----|--------|--------|--------|-------|----------|---------|
|    | 2      | 6      | 12     | 10    | 2        | ı       |
| 16 | mod    | reg    | r_m    | kop   | S        | W       |
|    | 8      | 6      | 5      | 9     | 2        | 2       |
| 17 | mod    | reg1   | r_m    | kop   | W        | reg2    |
|    | 4      | 6      | 12     | 4     | 1        | 5       |
| 18 | ind    | offset | trank  | diff  | scale    |         |
|    | 7      | 4      | 7      | 9     | 5        |         |
| 19 | time   | year   | weight | mod   | send     | whole   |
|    | 10     | 7      | 6      | 7     | 1        | 1       |
| 20 | paris  | romul  | city   | viene | krakov   | krit    |
|    | 6      | 4      | 10     | 3     | 2        | 7       |
| 21 | rand   | sum    | dif    | cond  | division |         |
|    | 4      | 5      | 2      | 11    | 10       |         |
| 22 | monkey | gus    | dog    | cat   | giraff   | enymals |
|    | 3      | 5      | 11     | 7     | 5        | 1       |
| 23 | src_t  | src_r  | dst    | b_w   | kop      |         |
|    | 2      | 10     | 7      | 3     | 9        | •       |
| 24 | dst_r  | cnt    | kop    | b_w   |          |         |
|    | 7      | 9      | 12     | 4     | •        |         |
| 25 | kop    | S      | W      | mod   | reg      | r_m     |
|    | 10     | 7      | 5      | 3     | 4        | 3       |
| 26 | kop    | W      | reg    | mod   | kop1     | r_m     |
|    | 5      | 2      | 7      | 9     | 3        | 6       |
| 27 | kop    | cond   | mod    | r_m   | scale    |         |
|    | 7      | 11     | 6      | 3     | 5        | I       |