Przewidywanie niewypłacalności kredytobiorców na podstawie danych Credit Score

Pahasian Milanna, Bokhan Katsiaryna, Badzeika Hleb

Dane

87 kolumn, 1000 obserwacji

- 1. Potencjalne targety: **DEFAULT** lub **CREDIT_SCORE**
- 2. Wydatki po czasie (12 i 6 miesiące)
- 3. Kategorie, nprz. Posiadanie karty, kredyt hipoteczny i t.d.
- 4. Sztucznie wygenerowane dane
- 5. Ratios!!

Target - 'DEFAULT'

Dataset jest niezbalansowany według zmiennej celu

Imputacja

Mamy dużo (zastąpionych) **NaNów** w datasecie, więć wykorzystaliśmy **KNNImputer oraz IterativeImputer**

To **nie** dało wyników

Praca z danymi

Liczba zer

Oraz wyrzuciliśmy **outlierów** z:

- SAVINGS
- DEBT
- T_CLOTHING_12
- T_CLOTHING_6
- T_HEALTH_12
- T_HEALTH_6
- T_TRAVEL_12
- T_TRAVEL_6

Również postanowiliśmy wyrzucić:

- T_EXPENDITURE_12
- T_EDUCATION_6
- T_ENTERTAINMENT_6
- T_GAMBLING_6
- T_GROCERIES_6
- R_UTILITIES_DEBT
- T_HOUSING_6
- T_TAX_6
- T_UTILITIES_6

Z tego powodu, że te kolumny **mają korelacje** >95% z innymi kolumnami datasetu

Rozważane modele

Wyniki

Model	Accuracy (c-v)	Recall 1 (c-v)	Accuracy (T)	Recall 1 (T)
Logistic Regression	0.734375	0.231	0.74375	0.22
$egin{array}{c} { m Random} \\ { m Forest} \end{array}$	0.734	0.127	0.742	0.16
Stacking	0.732	0.143	0.74	0.22
Support Vector Classification	0.731	0.094	0.744	0.11
Gradient Boosting Classifier	0.7297	0.1264	0.73125	0.11
XGBOOST Classifier	0.7234375	0.115	0.71875	0.089

Logistic Regression Pipeline

Po tym Pipeline'e został użyty GridSearch

Logistic Regression + SMOTE +Oversampling

Model	Accuracy (c-v)	Recall 1 (c-v)	Accuracy (T)	Recall 1 (T)
Logistic Regression	0.734375	0.231	0.74375	0.22
$\begin{array}{c} \text{Logistic} \\ \text{Regression} + \text{SMOTE} \end{array}$	0.774	0.6179 †	0.70625	0.044
Logistic Regression + OverSampling	0.627	0.70	0.64375	0.667

AutoML

TPOT (Tree-Based Pipeline Optimization Tool)

Logistic Regression

TPOT:

- 30 gen
- population size = 40

xAl

Feature Importance

Variable Importance

Wydajność modeli

Receiver Operating Characteristic

Implikacje biznesowe

Bank jest zainteresowany:

- Zmniejszenie ryzyka kredytowego
- Zwiększenie dochodowości
- Optymalizacja ofert produktowych

Co potrafi zbudowany model?

- 1. Nie potrafi złapać dostateczny procent DEFAULTów 💥
- 2. Może złapać prawie 95% klientów spłacających kredyt 💠
- 3. Daje sensowne i intuicyjne wyniki stosownie ważności zmiennych 💠

Dziękujemy za uwagę!