Lab Sheet-5

DIVISION OF TWO UNSIGNED INTEGER BINARY NUMBERS

Objective:

To implement non-restoring division algorithm in digital computer.

In the non-restoring algorithm, B is not added if the difference is negative but instead, the negative difference is shifted left and then B is added. Here B is subtracted if the previous value of $Q_{LSB\ was}$ 1, but B is added if the previous value of $Q_{LSB\ was}$ 0 and no restoring of partial remainder is required. The first time the dividend is shifted, B must be subtracted. Also, if the last bit of the quotient is 0, the partial remainder must be restored to obtain the correct final remainder.

Consider two binary numbers A and B. A is the dividend, B the divisor and Q = A / B the quotient. We assume that A>B and B!=0. The flow chart of the algorithm used, is given in figure 5.1.

Let us take examples:

1) Dividend (Register - A) = 12 Equivalent binary representation is 1100 and divisor (Register - B) = 4 Equivalent binary representation is 0100.

Subtraction may be achieved by adding 2's complement of B as we have done in lab 3 and here it is 1100. Double length dividend is stored in registers AQ.

	A	Q
Initially	0000	1100
	0100	
Shift	0 0 0 1	$100 \square > count = 0$
Subtract	1100	r – – – <u>1</u>
Set LSB	$\overline{\underbrace{0}101}$	1 0 0 0 ノ
Shift	1011	0 0 0
Add	0 1 0 0	$r \frac{1}{1}$ \rightarrow count = 1
Set LSB	<u>①111</u>	
Shift	1110	000
Add	0 1 0 0	$r - \frac{1}{2}$ > count = 2
Set LSB	<u> </u>	J 0 <u>0 0 1</u>]
Shift	0100	
Subtract	1100	$r = -1$ \rightarrow count = 3
	<u> </u>	
	<u> </u>	
	Remainder	Quotient

Dividend (Register - A) = 8 Equivalent binary representation is 1000 and divisor (Register - B) = 3 Equivalent binary representation is 00011.
Subtraction may be achieved by adding 2's complement of B as we have done in lab 3 and here it is 11101. Dividend is stored in registers AQ.

	A	Q
Initially	00000	1000
	00011	
Shift	00001	$0 \ 0 \ \square $ \triangleright count = 0
Subtract	11101	r 1
Set LSB	<u> </u>	1 0000 7
Shift	11100	0 0 0 1
Add	00011	$r \frac{1}{1}$ \rightarrow count = 1
Set LSB	①1_1 <u>1</u> 1	
Shift	11110	000
Add	00011	$r - \frac{1}{1}$ > count = 2
Set LSB	<u></u>	
Shift	00010	$\boxed{001}$
Subtract	11101	$r 1$ \succ count = 3
Set LSB	①1111	0010
	11111 7	Quotient
Add	00011	> Quotient
	00010	Restore remainder
	$\searrow \hspace{0.5cm} \nearrow$	
	Remainder	

Let the number of bits stored in register Q is n Registers AQ is now shifted to the left with zero insertion into Q_{LSB} . Initialize the counter to zero value. And divisor is subtracted by adding 2's complement value. If $A_{MSB}=1$, set Q_{LSB} with value 0 and then increment the counter value by 1. The partial remainder is shifted to the left and then B is added to the partial remainder. If $A_{MSB}=0$, set Q_{LSB} with value 1 and then increment the counter value by 1. Process is repeated until count = n-1 i.e. all quotient bits are formed. If the last bit of the quotient is 0, the partial remainder must be restored to obtain the correct final remainder. Finally result, Quotient is in Q and the final remainder is in A, is obtained.

The flow chart for non-restoring division is shown below.

Figure 5.1