Document FP6 Appl. No. 10/560,438

(19) World Intellectual Property Organization International Bureau

| 1841 | 301310 | 1 31611 | 6010 | 1011 | 1011 | 1611 | 1611 | 1611 | 1611 | 1611 | 1611 | 1611 | 1611 | 1611

(43) International Publication Date 10 January 2002 (10.01.2002)

PCT

(10) International Publication Number WO 02/02563 A2

(51) International Patent Classification⁷: C07D 487/00

(21) International Application Number: PCT/US01/20672

(22) International Filing Date: 28 June 2001 (28.06.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/215,585

30 June 2000 (30.06.2000) US

- (71) Applicant: AMERICAN HOME PRODUCTS COR-PORATION [US/US]; Five Giralda Farms, Madison, NJ 07940 (US).
- (72) Inventors: SCHMITT, Mark, R.; 107 Kensington Avenue, Trenton, NJ 08618 (US). KIRSCH, Donald, R.; 152 Terhune Road, Princeton, NJ 08540 (US). HARRIS, Jane, E.; 19 Meadow Lane, Pennington, NJ 08534 (US). BEYER, Carl, F.; 32 Hambletonian Road, Chester, NY 10918 (US). PEES, Klaus-Juergen; Soonwaldstrasse 9, 55129 Mainz (DE). CARTER, Paul; Amriswilstrasse 7, 88400 Biberach an der Riss (DE). PFRENGLE, Waldemar; Junkermuehle 1, 55444 Siebersbach (DE). ALBERT, Guido; Volxheimerstrasse 4, 55546 Hackenheim (DE).

- (74) Agents: BERG, Egon, E.; American Home Products Corporation, Patent Law Deptartment, Five Giralda Farms, Madison, NJ 07940 et al. (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: SUBSTITUTED-TRIAZOLOPYRIMIDINES AS ANTICANCER AGENTS

(57) Abstract: The invention provides a method of treating of inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof which comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof and further provides a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules and promoting microtubule polymerization which comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof.

PCT/US01/20672 WO 02/02563

SUBSTITUTED-TRIAZOLOPYRIMIDINES AS ANTICANCER AGENTS

Background of the Invention

Field of the Invention

5

15

20

The present invention relates to a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal by administering an effective amount of a substituted-triazolopyrimidine derivative and pharmaceutically acceptable salts thereof. Further, the present 10 invention relates to a method for the treatment or prevention of (MDR) multiple drug resistance in a mammal in need thereof which method comprises adminstering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof. More specifically, the present invention relates to a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal by interacting with tubulin and microtubules and promotion of microtubule polymerization which comprises administering to said mammal an effective amount of a substituted-triazolopyrimidine derivative and pharmaceutically acceptable salts thereof.

b) Description of the Prior Art

Most of the cytostatics in use today either inhibit the formation of essential precursors for biosynthesis of DNA or block DNA polymerases or interfere with the template function of DNA because DNA was the primary target for developing therapeutic drugs for chemotherapy. Unfortunately,

inhibition of the formation of essential precursors for biosynthesis of DNA or blocking DNA polymerases or interference with the template function of DNA also affects normal tissues.

Microtubules are among the cellular structures necessary for cell growth. Tubulin is the biochemical target for several anticancer drugs, which include the vinca alkaloids vincristine and vinblastine. The interaction of vincristine and vinblastine by binding to the alpha and beta-tubulin subunits interfere with the growing and shortening of the microtubules and prevents the formation of microtubules necessary for cell functions. While these compounds have efficacy in cancer chemotherapy, they also have a destabilizing effect on the microtubules which also affects rapidly proliferating normal tissues and leads to toxicity.

5

10

15

20

25

Paclitaxel and its semisynthetic derivative docetaxel (Taxotere®) also interfere with microtubule formation and stabilise microtubules. Paclitaxel (Taxol®), is a diterpene isolated from the bark of the Western (Pacific) yew. Taxus brevifolia and is representative of a new class of the rapeutic agent having a taxane ring system. It was additionally found in other members of the Taxacae family including the yew of Canada (Taxus canadensis) found in Gaspesia, eastern Canada and Taxus baccata found in Europe whose needles contain paclitaxel and analogs and hence provide a renewable source of paclitaxel and derivatives. The crude extract was tested for the first time during the 1960s and its active principle was isolated in 1971 and the chemical structure identified (M.C. Wani et al, J.Am.Chem.Soc., 93, 2325) (1971)). Further, a wide range of activity over melanoma cells, leukemia. various carcinomas, sarcomas and non-Hodgkin lymphomas as well as a number of solid tumors in animals was shown through additional testing. Paclitaxel and its analogs have been produced by partial synthesis from 10deacetylbaccatin III, a precursor obtained from yew needles and twigs, and by total synthesis (Holton, et al., J. Am. Chem. Soc. 116:1597-1601 (1994) and

Nicolaou, et al., Nature 367:630-634 (1994)). Paclitaxel has been demonstrated to possess antineoplastic activity. More recently, it was shown that the antitumor activity of paclitaxel is due to a promotion of microtubule polymerization (Kumar, N., J. Biol. Chem. 256:10435-10441 (1981);

Rowinsky, et al., J. Natl.Cancer Inst., 82:1247-1259 (1990); and Schiff, et al., Nature, 277:665-667 (1979)). Paclitaxel has now demonstrated efficacy in several human tumors in clinical trials (McGuire, et al., Ann. Int. Med., 111:273-279 (1989); Holmes, et al., J. Natl. Cancer Inst., 83:1797-1805 (1991); Kohn et al., J. Natl. Cancer Inst., 86:18-24 (1994); and A. Bicker et al., Anti-Cancer Drugs, 4,141-148 (1993)

Paclitaxel is a microtubule blocker, inhibiting mitosis by interaction with microtubules. Paclitaxel does not prevent tubulin assembly but rather accelerates tubulin polymerization and stabilizes the assembled microtubules. Paclitaxel acts in a unique way which consists in binding to microtubules, preventing their depolymerization under conditions where usually depolymerization occurred(dilution, calcium, cold and microtubules disrupting drugs). Paclitaxel blocks the cell cycle at prophase which results in an accumulation of cells in G2+M.

Accordingly, there is still a need in the art for cytotoxic agents for use in cancer therapy. In particular, there is a need for drugs which inhibit or treat the growth of tumors which have an effect similar to paclitaxel and interfere with the process of microtubule formation. Additionally, there is a need in the art for agents which accelerate tubulin polymerization and stabilize the assembled microtubules.

Accordingly, it would be advantageous to provide a method of treating or inhibiting cell proliferation, neoplastic growth and malignant tumor growth in mammals by administering compounds which have paclitaxel like anticancer activity.

Additionally, it would be advantageous to provide a method for treating or inhibiting multiple drug resistance (MDR).

Substituted triazolopyrimidine compounds of this invention are known to the art and have found use in agriculture as fungicides. The preparation of compounds of this invention and methods of preparation are disclosed in the following United States Patent Numbers: 5,593,996; 5,756,509;5,948,783; 5,981,534; 5,612,345; 5,994,360; 6,020,338; 5,985,883; 5,854,252; 5,808,066; 5,817,663; 5,955,252; 5,965,561; 5,986,135; and 5,750,766.

Compounds of this invention are also prepared according to procedures described in the following International Publication Numbers: WO98/46607; WO98/46608; WO99/48893; WO99/41255; EPO 834513A2; EPO 782997A2; EPO 550113B1; EPO 613900B1; FR2784381A1; EPO 989130A1; WO98/41496; WO94/20501; EPO 945453A1; EPO 562615A1 and EPO 562615B1.

15

20

25

10

5

Summary of the Invention

A first object of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal by administering an effective amount of a substituted-triazolopyrimidine derivative and pharmaceutically acceptable salts thereof.

A second object of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules by promotion of microtubule polymerization which comprises administering to said mammal an effective amount of a substituted-triazolopyrimidine derivative and pharmaceutically acceptable salts thereof.

A third object of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by administering to said mammal an effective amount of a compound of Formula (I):

5

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

$$\mathbb{R}^3$$

$$\mathbb{R}^3$$

(I)

wherein:

10

15

20

 R^1 is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one $-CH_2$ -may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8

carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NR^aR^b;

substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

 R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one $-CH_2$ - may also be replaced by -O-, -S-, or

-NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl,

-SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

15

20

25

10

5

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

 R^3 is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

25

5

10

15

20

R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 5 14 carbon atoms, or -CF₃: provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, 10 R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5-trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is 15 not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is -SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are not 1,2,4-triazole; j) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4.6-20 trifluorophenyl, and R³ is not -OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴ is ethyl, R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R² is phenyl, R³ is chloro, R⁴ is hydrogen, R¹ is not (2E)-,7-dimethyl-2,6-octadienyl or a pharmaceutically acceptable salt thereof. 25

A fourth object of the present invention is to provide a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules by promotion of microtubule polymerization which comprises

administering to said mammal an effective amount of a compound of Formula (I):

(I)

5

10

15

20

wherein:

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NR^aR^b;

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkaynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

15

20

10

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also

be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

5

10

25

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

15 R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

 R^3 is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, —S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, —S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

5

10

15

20

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

- 25 R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;
- 30 R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12

carbon atoms, dialkylamino of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃;

- provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4-methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5-
- cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is
 not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴
- is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is –SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are not 1,2,4-triazole; j) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4,6-trifluorophenyl, and R³ is not —OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴
 - is ethyl, R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R² is phenyl, R³ is chloro, R⁴ is hydrogen R¹ is not (2E)-,7-dimethyl-2,6-octadienyl

or a pharmaceutically acceptable salt thereof.

20

25

A fifth object of the present invention is to provide a method for the treatment or prevention of multiple drug resistance (MDR) in a mammal in need thereof which method comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof. In particular the multiple drug resistance (MDR) is mediated by p-glycoprotein or MXR.

A sixth object of the present invention is to provide a method for the treatment or prevention of multiple drug reistance (MDR) in a mammal in need thereof by administering to said mammal an effective amount of a compound of Formula (I):

5

(I)

wherein:

10

15

20

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂-may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8

carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NR^aR^b;

- R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally 5 substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl 10 group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon 15 atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;
- R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or

-NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl,

-SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

15

20

25

10

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

 R^3 is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

 R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

25

20

10

 R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR' where R' is H or alkyl of 1 to 12 carbon atoms;

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 5 14 carbon atoms, or -CF₃; provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, 10 R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5-trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is 15 not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is -SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are not 1,2,4-triazole; j) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4,6-20 -OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴ trifluorophenyl, and R³ is not is ethyl, R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R2 is phenyl, R3 is chloro, R4 is hydrogen, R1 is not (2E)-,7-dimethyl-2,6-octadienyl or a pharmaceutically acceptable salt thereof. 25

Among the preferred groups of compounds of Formula (I) including pharmaceutically acceptable salts thereof useful for the methods of this invention are those in the subgroups below wherein the other variables of Formula (I) in the subgroups are as defined above wherein:

a) R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety –NR^aR^b;

15

25

5

- b) R^a and R^b each independently represent the moiety $-C^*H(R^e)(R^f)$ where R^e and R^f independently represent an optionally halo-substituted alkyl group of 1 to 12 carbon atoms where C^* represents the (R) or (S) isomer;
- c) R² is optionally substituted aryl of 6, 10 or 14 carbon atoms, aryloxy, thienyl, benzyloxy, heterocyclyl or halogen;
 - d) R^3 is halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR c R d , benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms,
 - alkylthio of 1 to 12 carbon atoms, hydroxy, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or $-N_3$;
- e) R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, -CF₃;

Among the additionally preferred groups of compounds of this invention according to general Formula (I) including pharmaceutically acceptable salts thereof useful for the methods of this invention are those in the subgroups below, wherein the other variables of Formula (I) in the subgroups are as defined above wherein:

5

10

15

- a) R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;
- b) R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or heterocyclyl;
- c) R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, or -N₃;
- d) R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃;

PCT/US01/20672

Among the more preferred groups of compounds of Formula (I) including pharmaceutically acceptable salts thereof useful for the methods of this invention are those in the subgroups below including the pharmaceutically acceptable salts thereof wherein the other variables of Formula (I) in the subgroups are as defined above wherein:

- a) R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 5 to 10 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety -NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;
- b) R² is optionally substituted aryl of 6, 10 or 14 carbon atoms;
- c) R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;
- d) R⁴ is H;

WO 02/02563

5

10

15

20

25

30

Among the most preferred groups of compounds of Formula (I) including pharmaceutically acceptable salts thereof useful for the methods of this invention are those in the subgroups below including the pharmaceutically acceptable salts thereof wherein the other variables of Formula (I) in the subgroups are as defined above wherein:

a)R¹ is selected from the group consisting of an optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H;

- b) R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H;
- 20 c) R¹ is the moiety -NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

25 R⁴ is H;

10

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon

5

10

15

20

atoms, in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl; Rb is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms; R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one -CH₂- may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 2 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused:

 R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

 R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

 R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR' where R' is H or alkyl of 2 to 20 carbon atoms;

- d) R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;
- 30 R² is selected from

5

10

20

R³ is halogen, alkoxy, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

R⁴ is H;

e) R^1 is the moiety $-NR^aR^b$ wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R^1 is selected from

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H;

5

f) R^1 is the moiety $-NR^aR^b$ wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R^1 is selected from

$$\begin{cases} -N(C_2H_5)_2, & -NH - CH_3, & -N(CH_3)_2, & -NHC_2H_5, & -NHC_2H_5$$

R² is optionally substituted thienyl;

 $\ensuremath{\mathsf{R}}^3$ is halogen, alkoxy of 1 to 12 carbon atoms, -NR $^c\ensuremath{\mathsf{R}}^d$, haloalkoxy of 1 to 12

5 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

R4 is H;

5

10

15

Also, among the most particularly preferred compounds for the methods of this invention according to Formula (I) are the following compounds or a pharmaceutically acceptable salt thereof:
7-(1-azepanyl)-5-chloro-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methyl-1-20 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

methyl [[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl](methyl)amino]acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,1,3,3-tetramethylbutyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azepanyl)-5-chloro-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-6-(4-bromophenyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidine;

5 5-chloro-7-(1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

10 ·

5-chloro-6-(4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-bromophenyl)-5-chloro-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

25

5-chloro-6-(2-chlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-[3-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

Diethyl 2-[6-(2,6-difluorophenyl)-5-ethoxy[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

15

20

5

7-(azepanyl)-5-chloro-6-{2-chloro-6-nitrophenyl}[1,2,4}triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2- trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-N-[(2,2-dichlorocyclopropyl)methyl]-N-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-3-piperidinol;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,5-difluorophenyl)-N-dodecyl[1,2,4]triazolo[1,5-a]pyrimidin-7-

5 amine;

25

5-chloro-7-(4-methyl-1-piperidinyl)-6-(2,3,6- trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-[5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-Nisopropylamine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-N-cycloheptyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(3,3-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(3-chloropropyl)-N-methyl-6-(2,3,6-

trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azocanyl)-5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(2,6-difluorophenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

7-(1-azocanyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

```
5-methoxy-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-10 yl]methanol;

1-[5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-4-piperidinol;

5-chloro-7-(4-chloro-1-piperidinyl)-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

5-chloro-6-(2,6-difluorophenyl)-7-(2,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-methyl-1-piperidinyl)-5-amino-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2,5-dimethyl-2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

- 5 7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-methylphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 6-(2-bromophenyl)-N-(sec-butyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(4-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-chloro-1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(trifluoromethyl)-1-piperidinyl][1,2,4]triazolo[1,5-a]pyrimidine;
- 7-(4-bromo-1-piperidinyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5- a]pyrimidin-7- amine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-isopropyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2,4-dimethyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;

5-chloro-7-[ethyl(2-methyl-2-propenyl)amino]-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

15

7-(1-azepanyl)-5-chloro-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5 5-chloro-6-(2-chloro-6-fluorobenzyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(allylsulfanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

10

15

5-chloro-N-ethyl-6-mesityl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(2-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

N-(sec-butyl)-5-chloro-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-[4-(methylsulfanyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 7-(1-azepanyl)-5-chloro-6-[2,6-dichloro-4-
- 5 (trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2,2,2-trifluoroethyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(3,5-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;
 - 4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]aniline;
- N-{4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]phenyl}acetamide;

[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methyl acetate;

5 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(chloromethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

diethyl 2-[6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-5-yl]malonate;

10

7-(1-azepanylmethyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(trifluoromethoxy)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(cyclopropylmethyl)-N-propyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

5-chloro-7-(2-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-(4-methyl-1piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(4-chloro-2,3,5,6-tetrafluorophenyl)-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
```

4-[5-chloro-2-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-N,N-dimethylaniline;

6-(2-chloro-6-fluorophenyl)-5-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclohexen-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(methoxymethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-[ethyl(2-methyl-2-propenyl)amino][1,2,4]triazolo[1,5-a]pyrimidine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;

5-chloro-N-cyclopentyl-6-(4-ethoxy-2,3,5,6-tetrafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-methyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-bromo-1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]butyl acetate;

diethyl 2-allyl-2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}malonate;

6-(2-chloro-6-fluorophenyl)-N-ethyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin- 7-5 amine;

N-butyl-5-chloro-N-ethyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-chloro-6-fluorophenyl)-5-(difluoromethoxy)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(4-chlorophenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2-methoxyphenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,2,2-

20 trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,3,4,5,6-pentafluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,4,6-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(4-fluorophenyl)-N-(1,2,2- trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-bis(4-methyl-1-piperidinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-methylphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,4,5-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 6-(2-bromophenyl)-5-chloro-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-isobutyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-6-(2-methylphenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2-trifluoro-1methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-(2,2,2-trifluoro-1-methylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - N-allyl-5-chloro-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(1,2-dimethylpropyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-isopropyl-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-isopropyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 7-butyl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-N-(1-phenylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-ethyl-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-hexyl[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-methylphenyl)-N,N-bis(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-cyclopentyl-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-butyl-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

30

20

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methylpropanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-pentyl[1,2,4]triazolo[1,5-a]pyrimidine;

10

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5a]pyrimidine;

5-chloro-6-(2-bromo-5-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

25

[5-chloro-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(1-p-tolyl-ethyl)-amine;

5-chloro-6-(2,4,6-trifluoro-phenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-cyclohexyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-difluoro-1-

5 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(bicyclo[2.2.1]hept-2-ylamino)-5-chloro-6-{2-fluoro-4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-fluoro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

15

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl] (2,2,2-trifluoro-1-phenylethyl)-amine;

5-chloro-N-[1-(trifluoromethyl)propyl]-6-(2,4,6-20 trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidin-5-amine;

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(2-methyl-1-trifluoromethyl-propyl)amine;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2,4-difluorophenyl)-5-chloro-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15 .

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-fluorocyclohexyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichloro-4-fluorophenyl)-7-(3,3,3-

5 trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-(2,6-dichloro-4-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,6-difluorophenol;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-20 a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

30.

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-fluorocyclohexyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)hexanoic acid;

2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-{2-[(trifluoromethyl)sulfanyl]phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-[4-(trifluoromethyl)phenyl]-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(4,4,4-trifluoro-2-methylbutyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3-methyl-3-butenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-isobutyl[1,2,4]triazolo[1,5-a]pyrimidine;

5

7-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-thienyl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-(5-chloro-7-(2,2,2-trifluoro-1-methyl-ethylamino)[1,2,4]trìazolo[1,5-a]pyrimidin-6-yl]-3,5-difluoro-phenol;

10 {5-chloro-6-[2,6-difluoro-4-(2,2,2-trifluoro-ethoxy)-phenyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-(2,2,2-trifluoro-1-methyl-ethyl)amine;

5-chloro-6-{2,6-difluoro-4-(methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

(5-chloro-6-{4-[2-(2-ethoxyethoxy]-ethoxy]-2,6-difluoro-phenyl}{1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;

20 (5-chloro-6-{2,6-difluoro-4-[2-(2-methoxy-ethoxy)ethoxy]-phenyl}- [1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;

5-chloro-6-[2,6-difluoro-4-(3-furan-3-ylmethoxy)phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(2,2,2-trifluoro-1-methylethyl)amine;

25

5-chloro-6-(2,5-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]-5-30 methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-fluoro-4-methoxy-6-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-[2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 2-[2-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)ethoxy]ethanol;
- 5-chloro-6-(2,3-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-{4-(2-fluoroethoxy)-2,6-difluorphenyl}-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(4-chlorobenzyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-pyridinyl)-1piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1-ethylpentyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-chlorophenyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(4-methoxyphenyl)-3-methyl-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-phenoxy-6-(4-methoxy-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-chloro-N-cyclopentyl-6-(4-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

10

5,7-diphenoxy-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N,N-diethyl-6-[4-methoxyphenyl][1,2,4]triazolo[1,5-a]pyrimidin-7amine;

5-chloro-N,N-diethyl-6-[2,4-dichlorophenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4-dichlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

25

5-cyano-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-6-30 fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

5-chloro-7-(1,4-dioxa-8-azaspiro[4,5]dec-8-yl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

15

20

25

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

10 2-methyl-6,7-di-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2-methyl-6-phenyl-7-(4-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2-trifluoromethyl-6-phenyl-7-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5,7-diphenoxy-6-(2-methylpropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-N-(isopropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-bromo-6-(4-bromophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-bromo-6-(4-trifluoromethylphenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-trifluoromethylphenyl)-N-(ethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-30 amine; 7-(1-azepanyl)-5-chloro-6-(4-tert-butylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine; ethyl {[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]amino}acetate;

5

diethyl 5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-malonate;

5-chloro-6-(2,5-difluorophenyl)-N-(3-methyl-2-butenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

[5-chloro-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]acetic acid methyl ester;

. 5-chloro-6-(2,6-difluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N,N-diethyl-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

ethyl [6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)- [1,2,4]triazolo[1,5-a]pyrimidin-5-yl]acetate;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

dimethyl 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

diethyl 2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}-2-isobutylmalonate;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-1,3-cyclohexanedione;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]cyclohexanone;

5-chloro-7-(3-nitro-4-methylanilino)-6-(2, 4, 6-trifluorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]5-(2-methoxyethoxy)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-2-ethyl-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5

7-(3-bromophenyl)-6-(3-chlorophenyl)-2-ethyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromophenyl)-2-ethyl-6-[4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

20

25

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(3,4,5-trimethoxybenzyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(2-benzyl-4,5-dihydro-1H-imidazol-1-yl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-4-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-N,N-1-diethyl-1,4-pentanediamine;

5-chloro-N-(3-methyl-2-butenyl)-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-dimethylamino-6-phenyl-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5 5-chloro-7-[(2-furylmethyl)sulfanyl]-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 6-[1,1'-biphenyl]-4-yl-5-chloro-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-[4-(benzyloxy)phenyl]-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-[(2,2-dichlorocyclopropyl)methyl]-6-(3,4,5trimethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - N-cyclopentyl-6-(2-fluorophenyl)-5-hydrazino[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-ethyl-6-(2-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 6-(4-tert-butylphenyl)-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-[(3-methyl-2-butenyl)oxy]phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-[2,6-difluoro-4-(1-propenyloxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(3-tricyclo[2.2.1.0^{2,6}]hept-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-azido-7-cyclohexyl-6-(2-fluoro-6-chlorophenyl) [1,2,4]triazolo[1,5-5 a]pyrimidine;

5-azido-6-[2-chloro-6-fluorophenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2,5-dichloro-7-(4-methyl-1-piperidinyl)-6-[2-chloro-6-fluorophenyl][1,2,4]triazolo[1,5-a]pyrimidine.

15

20

25

30

It is understood that the definition of compounds of Formula (I), when R¹, R², R³, R⁴, Ra, Rb, Rc, Rd, or R contain asymmetric carbons, encompass all possible stereoisomers and mixtures thereof which possess the activity discussed below. In particular, the definition encompasses racemic modifications and any optical isomers, (R) and (S), which possess the indicated activity. Optical isomers may be obtained in pure form by standard separation techniques or enantiomer specific synthesis. It is understood that this invention encompasses all crystalline forms of compounds of Formula (I). The pharmaceutically acceptable salts of the basic compounds of this invention are those derived from such organic and inorganic acids as: lactic, citric, acetic, tartaric, fumaric, succinic, maleic, malonic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, and similarly known acceptable acids. Where R¹, R², R³, R⁴, Ra, Rb, Rc, Rd, or R contains a carboxyl group, salts of the compounds in this invention may be formed with bases such as alkali metals (Na, K, Li) or alkaline earth metals (Ca or Mg).

For the compounds defined above and referred to herein, unless otherwise noted, the following terms are defined.

The term halogen atom may denote a bromine, iodine, chlorine or fluorine atom, and is especially a bromine, chlorine or fluorine atom.

The terms alkyl, alkenyl, alkynyl, alkadienyl as used herein with respect to a radical or moiety refer to a straight or branched chain radical or moiety. As a rule, such radicals have up to 12, in particular up to 6 carbon atoms. Suitably an alkyl moiety has from 1 to 6 carbon atoms, preferably from 1 to 3 carbon atoms. A preferred alkyl moiety is an ethyl or especially a methyl group. Suitably an alkenyl moiety has from 2 to 12 carbon atoms. A preferred alkenyl moiety has from 2 to 6 carbon atoms. Most preferred is allyl or especially a 2methylallyl group. Any of the alkyl, alkenyl, alkynyl, alkadienyl groups as used herein with respect to the radical or moiety may optionally be substituted with one or more of substituents which include for example, halogen atoms, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, aryl, alkoxycarbonyl, carboxyl, alkanovi, alkylthio, alkylsulphinyi, alkylsulphonyi, carbamoyi, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocyclyl, especially furyl, and cycloalkyl, especially cyclopropyl, groups. Typically, 0-3 substituents may be present.

20

25

30

5

10

15

Cycloalkyl or cycloalkenyl as used herein with respect to a radical or moiety refer to a cycloalkyl or cycloalkenyl group having 3 to 8 carbon atoms preferably 3 to 6 carbon atoms or a cycloalkenyl group having 5 to 8 carbon atoms, preferably 5 to 7 carbon atoms, in particular cyclopentyl, cyclohexyl or cyclohexenyl being optionally substituted by one or more of substituents which include for example, halogen atoms, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxycarbonyl, carboxyl, alkanoyl, alkylthio, alkylsulphinyl, alkylsulphonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocyclyl, especially furyl, and cycloalkyl, especially cyclopropyl, groups. Typically, 0-3 substituents may be present. Optionally, -CH₂- group of the

cycloalkyl or cycloalkenyl radical or moiety may optionally be replaced with -O-, -S- or -NR' where R' is H or an alkyl group of 2 to 12 carbon atoms.

A bicycloalkyl group may contain from 5 to 10 carbon atoms.

5

10

Aryl as used herein with respect to the radical or moiety refers to an aryl group having 6, 10 or 14 carbon atoms, preferably 6 to 10 carbon atoms, in particular, phenyl, or naphthyl group being optionally substituted by one or more independently selected substituents which include, halogen atoms, nitro, cyano, alkenyl, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, alkenyloxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxycarbonyl, carboxyl, alkanoyl, alkylthio, alkylsulphinyl, alkylsulphonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocyclyl, and cycloalkyl, groups. Typically, 0-5 substituents may be present.

15

Aralkyl as used herein means an aryl-alkyl group in which the aryl and alkyl group are previously defined. Exemplary aralkyl groups include benzyl and phenethyl.

Aralkyloxy as used herein refers to an aryl-alkyl-O- group in which the alkyl group and aryl group are previously described.

Phenyl as used herein refers to a 6-membered aromatic ring.

Heterocyclyl group may be a single ring, a bicyclic ring system or a system of annelated or spiro-fused rings as a saturated or unsaturated moiety or radical having 3 to 12 ring atoms with 5 to 8 ring atoms preferred with 5 or 6 ring atoms more preferred selected from carbon, oxygen, sulfur and nitrogen, one or more, typically one or two, of which being oxygen, nitrogen or sulfur, being optionally substituted by one or more of substituents which include for example, halogen atoms, preferably fluorine, nitro, cyano, thiocyanato,

cyanato, hydroxyl, alkyl of 1 to 12 carbon atoms, preferably 1 to 6 carbon atoms, haloalkyl, preferably haloalkyl of 1 to 6 carbon atoms, alkoxy, alkoxy of 1 to 12 carbon atoms, preferably alkoxy of 1 to 6 carbon atoms, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxycarbonyl, carboxyl, alkanoyl, alkylthio, alkylsulphinyl, alkylsulphonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocyclyl, especially furyl, and cycloalkyl, especially cyclopropyl, groups. Typically, 0-3 substituents may be present. Optionally substituted heterocyclyl groups include pyrrolodinyl, pyrrazolidinyl, piperidinyl, piperazinyl or morpholin-4-yl, pyridinyl, 2,3-dehydropiperid-3-yl, tetrahydropyranyl, tetrahydrofuranyl or tetrahydrothienyl, N-methyl-2,3-dehydropiperid-3-yl, pyrimidinyl, pyrrolidinyl, furyl, pyranyl, morpholinyl, tetrahydropyridine, thienyl, pyrrolidinyl, piperidyl, dihydropiperidyl, dihydropyridinyl, thiazanyl, morpholinyl, thiazinyl, azepanyl, azocanyl and dioxa-aza- spiro-decyl.

15

20

25

30

10

5

When any of the foregoing substituents are designated as being optionally substituted, the substituent groups which are optionally present may be any one or more of substituents which include for example, halogen atoms, nitro, cyano, thiocyanato, cyanato, hydroxyl, alkyl, haloalkyl, alkoxy, haloalkoxy, amino, alkylamino, dialkylamino, formyl, alkoxycarbonyl, carboxyl, alkanoyl, alkylthio, alkylsulphinyl, alkylsulphonyl, carbamoyl, alkylamido, phenyl, phenoxy, benzyl, benzyloxy, heterocyclyl, especially furyl, and cycloalkyl. especially cyclopropyl, groups. Typically, 0-3 substituents may be present. When any of the foregoing substituents represents or contains an alkyl substituent group, this may be linear or branched and may contain up to 12. preferably up to 6, and especially up to 4, carbon atoms. When any of the foregoing substituents represents or contains an aryl or cycloalkyl moiety, the aryl or cycloalkyl moiety may itself be substituted by one or more halogen atoms, nitro, cyano, alkyl, haloalkyl, alkoxy or haloalkoxy groups. In the case of cycloalkyl and heterocyclyl groups, optional substituents also include groups which together with two adjacent carbon atoms of the cycloalkyl or

heterocyclyl group form a saturated or unsaturated hydrocarbyl ring. In other words, a saturated or unsaturated hydrocarbyl ring may be optionally fused with the cycloalkyl or heterocyclyl group.

When any of the foregoing substituents represents or contains an aryl or cycloalkyl moiety, the aryl or cycloalkyl moiety may itself be substituted by one or more halogen atoms, nitro, cyano, alkyl, haloalkyl, alkoxy or haloalkoxy groups. In the case of cycloalkyl and heterocyclyl groups, optional substituents also include groups which together with two adjacent carbon atoms of the cycloalkyl or heterocyclyl group form a saturated or unsaturated hydrocarbyl ring. In other words, a saturated or unsaturated hydrocarbyl ring may be optionally fused with the cycloalkyl or heterocyclyl group.

Optionally substituted moieties may be unsubstituted or have from one up to the maximal possible number of substituents. Typically, 0 to 3 substituents are present.

The present invention accordingly provides a pharmaceutical composition which comprises a compound of this invention in combination or association with a pharmaceutically acceptable carrier. In particular, the present invention provides a pharmaceutical composition which comprises an effective amount of a compound of this invention and a pharmaceutically acceptable carrier. As used in accordance with this invention, the term providing an effective amount of a compound means either directly administering such compound, or administering a prodrug derivative, or analog which will form an effective amount of the compound within the body.

20

25

DESCRIPTION OF THE INVENTION

Compounds of this invention are prepared according to the procedures described in U.S. Patent Nos. 5,593,996; 5,756,509;5,948,783; 5,981,534;

5,612,345; 5,994,360; 6,020,338; 5,985,883; 5,854,252; 5,808,066; 5,817,663; 5,955,252; 5,965,561; 5,986,135; and 5,750,766 which are hereby incorporated herein by reference.

standard pharmacological test procedures that showed that the compounds of this invention possess significant activity as promoters of microtubule polymerization and are antineoplastic agents. Based on the activity shown in the standard pharmacological test procedures, the compounds of this invention are therefore useful as anticancer agents. Associated cancers are selected from the group consisting of breast, colon, lung, prostate, melanoma, epidermal, leukemia, kidney, bladder, mouth, larynx, esophagus, stomach, ovary, pancreas, liver, skin and brain. In particular the compounds of this invention possess an effect similar to Paclitaxel. The test procedures used and results obtained are shown below.

CYTOTOXICITY STANDARD PHARMACOLOGICAL TEST PROCEDURE USING MTS AS DETECTION REAGENT

This standard pharmacological test procedure identifies representative examples of substituted triazolopyrimidine compounds of the invention, which further includes compounds of Formula (I), which kill various human cancer cell lines. The test is based on the conversion by viable cells, but not by dead cells, of the tetrazolium salt, MTS, into a water-soluble colored formazan which is detected by spectrophotometry. The test procedure was used to identify the most potent compounds within a series of related structures which were known or suspected to have a microtubule mechanism of action. The most potent compounds were then taken forward into other test procedures which specifically analyzed effects on microtubules.

20

25

Part 1. Cytotoxicity with HeLa Cells

5

10

15

20

25

In the first cytotoxicity test, representative compounds of the invention were tested with the HeLa human cervical carcinoma cell line at a single concentration. HeLa cells (ATCC CCL2.2) were routinely maintained by twice-weekly subculture in fresh medium. Medium was RPMI-1640 with L-glutamine, supplemented with 10% heat-inactivated fetal calf serum, 100 units/ml penicillin, and 100 µg/ml streptomycin.

For assay, HeLa cells were harvested by trypsinization, washed, counted and distributed to wells of 96-well flat-bottom microtiter plates at 1000 cells per well in 100 μ l of medium. The plates were incubated at 37° in humidified 5% CO₂ in air for about 24 hr.

On day 2, compounds for test were diluted and added to wells. Compounds were dissolved in dimethyl sulfoxide (DMSO) at 10 mg/ml. These solutions were diluted into medium to give solutions of 20 μ g/ml, and then 100 μ l was added in duplicate to wells already containing cells, to give final drug concentrations of 10 μ g/ml and a final DMSO concentration of 0.1%. Each plate also contained the following controls: cells with no drug (uninhibited cell growth = maximal MTS response = control response); cells plus 100 nM paclitaxel (all cells killed = minimal MTS response); and medium only (MTS reagent control). The plates were returned to the incubator for three days.

After three days of culture with test compounds (day 5 overall), the MTS assay was done on all wells of the plates. Twenty µl of the combined MTS/PMS reagent (Promega "CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay," catalog no. G5421; see Technical Bulletin No. 169, Revised 9/96) were added to each well with a repeating pipettor, and the plates were returned to the 37° incubator for 2 hr before recording the absorbance of each well at 490 nm using an ELISA plate reader.

The absorbance values of the duplicate sample wells were averaged and expressed as a percentage of the average value of the control wells. Percentages less than 100 indicated that the test compounds had exerted a cytotoxic effect on the cells. The results of this pharmacological test procedure are displayed in Table 1.

5

Table 1

Evaluation of Representative Compounds of the Invention in the MTS Cytotoxicity Standard Pharmacological Test Procedure with HeLa Cells

Ex No.	Percent of Control
	at 10 ug/ml
1	-1.6
2	10.4
4	2.9
5	-0.8
6	-0.4
7	0.6
8	. 2
9	8.1
12	0.3
19	-1.3
24	3.7
27	2.2
28	3.4
30	-0.4
32	20.3
33	-1.3
35	17.6
37	-1.6
38	0.2
39	10.6
41	7.1
42	·-0.1

Table 1 (cont)				
Ex No.	Percent of Control at			
	10 ug/ml			
43	5.8			
47	. 0			
48	13.9			
49 -	12			
54	-0.1			
59	0.9			
60	4.9			
61	-1.2			
62	-0.7			
63	10.6			
64	-2			
65	-0.6			
66	-0.7			
70	1.4			
72	-1.8			
73	15.6			
79	7.1			
82	-1.5 ·			
87	-0.2			
99	1.8			
102	1.1			
103	-0.7			
105	0			
113	-0.3			
116	-1.3			
117	-0.1			
121	-0.8			

Table 1 (cont)				
Ex No.	Percent of Control			
	at 10 ug/ml			
122	2.1			
123	-2.2			
124	-1.6			
127	-0.9			
128	-0.3			
130	5.4			
132	3.4			
133	10.7			
135	-1.1			
140	-0.9			
141	10.8			
143	92.8			
144	. 2.3			
145	16.2			
146	16.1			
149	7.8			
150	3.4			
151	9.6			
157	-2.7			
158	-0.4			
159	-1			
160	1.1			
163	27.2			
167	-2.5			
168	8.7			
169	23.8			
170	22.6			

Table 1 (cont)				
Ex No.	Percent of Control			
	at 10 ug/ml			
172	-0.9			
173	-0.6			
174	0.6			
175	1.9			
176	-0.6			
177	8.5			
180	-0.3			
181	-1.5			
182	-1.7			
183	-0.1			
184	1.3			
185	1.5			
186	1			
187	-1.4			
188	8.8			
189	2.2			
213	10.2			
216	5.8			
217	-0.5			
225	-1			

Part 2. Cytotoxicity with COLO 205 Cells

5

In the second cytotoxicity standard pharmacological test procedure, representative compounds of the invention were tested with the COLO 205 human colon adenocarcinoma cell line at six concentrations, in order to determine IC₅₀ values. COLO 205 cells (ATCC CCL 222) were routinely maintained by thrice-weekly subculture in fresh medium. Medium was RPMI-

1640 with L-glutamine, supplemented with 10% heat-inactivated fetal calf serum, 20 mM HEPES, 100 units/ml penicillin, and 100 µg/ml streptomycin.

For the test procedure, COLO 205 cells were harvested by trypsinization, washed, counted and distributed to wells of 96-well flat-bottom microtiter plates at 1000 cells per well in 100 µl of medium. In addition, one row of wells on an additional plate received cells as above ("time 0" plate). All plates were incubated at 37° in humidified 5% CO₂ in air for about 24 hr.

5

10

15

20

25

30

On day 2, compounds for test were diluted and added to wells. Compounds were dissolved in DMSO at 10 mg/ml. For each compound, six serial 3-fold dilutions were prepared in medium. The highest drug concentration with cells was 5 µg/ml and the highest DMSO concentration was 0.05%. Drugs were added in duplicate to wells in 100 µl volume. Each plate also contained the following controls: cells with no drug (uninhibited cell growth = maximal MTS response); cells plus 100 nM paclitaxel (all cells killed = minimal MTS response); and medium only (MTS reagent control). The plates were returned to the incubator for three days.

At the time of drug addition to the experimental plates, the MTS assay was run on the "time 0" plate. This produced the "time 0 MTS value" which was related to the number of viable cells per well at the time of drug addition. The MTS values of the wells of the experimental plates were lower than, higher than, or the same as the time 0 value, depending on whether a drug killed the cells, did not inhibit cell growth, or was cytostatic, respectively.

After three days of culture with test compounds (day 5 overall), the MTS assay was done on all wells of the experimental plates. The results for each plate were calculated separately, using its own controls. The absorbance values of the duplicate sample wells were averaged and divided by the average of the "time 0" values. The average of the control wells without drug, divided by the average "time 0" value, gave the maximal relative increase in MTS color yield due to cell growth during the final three days of culture. The average of the control wells with paclitaxel, divided by the "time 0"

value, gave the minimal relative color yield for cells that were completely killed. The six values for each compound were plotted against concentration, and the concentration that produced a relative color yield half way between the maximum and minimum was taken as the IC_{50} value. The most potent compounds had the lowest IC_{50} values. Test results of representative compounds of the invention are displayed in Table 2.

5

10

In addition, some compounds of the invention were tested in duplicate at 25 and 50 µg/ml with COLO 205 cells in the MTS cytotoxicity pharmacological test procedure. Results were expressed as a percent of the average value of the control wells. Percentages less than 100 indicated that the test compounds had exerted a cytotoxic effect on the cells. These test results are also displayed in Table 2.

Table 2

Evaluation of Representative Compounds of the Invention in the MTS

Cytotoxicity Standard Pharmacological Test Procedure with COLO 205

Çells

Ex No.	IC50	n	% of Co	ontrol At
	(μg/ml)			
	٠.		25 μg/ml	50 μg/ml
1	0.84			
2	0.092			
3	0.82			
4	0.082			
5	0.057			
6	0.16			
7	0.12			
8	3.3			
9	0.86			
10	0.35			
11	2.5			
12	0.32	.2		·
13	4.3			
14	0.22			
15	1.2			
16	4.8			
17	0.91			
18	0.33			
19	0.25			
20	1			
21	2.8		<u> </u>	
22	4.6			

	Table 2 (cont)				
Ex No.	IC50	n	% of Co	ontrol At	
	(μg/ml)		<u>.</u>		
	ļ		25 μg/ml	50 μg/ml	
23	3.7				
24	>5				
25	>5 a				
26	0.33				
27	0.033				
28	0.08			,	
29	0.29				
30	0.31	2			
31	2.8				
32	>5				
33	0.062				
34	0.44				
35	0.026	3			
36	0.1				
37 ·	>5				
38	2.5				
39	2.2				
40	0.31				
41	0.062				
42	0.33				
43	0.084				
44	0.64				
45	4.8	,			
46	0.31				
47	0.11				
48	0.13				

Ex No. IC50		Table 2 (cont)				
25 μg/ml 50 μg/ml 49 0.15 50 2.1 51 0.86 52 0.7 53 1.3 54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13 0.13	Ex No.	IC50	n	% of Co	ontrol At	
49 0.15 50 2.1 51 0.86 52 0.7 53 1.3 54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13		(μg/ml)				
50 2.1 51 0.86 52 0.7 53 1.3 54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13				25 μg/ml	50 μg/ml	
51 0.86 52 0.7 53 1.3 54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	49	0.15				
52 0.7 53 1.3 54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	50	2.1				
53 1.3 54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	51	0.86				
54 0.094 55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	52	0.7				
55 0.59 56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	53	1.3				
56 0.86 57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	54	0.094				
57 0.64 58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	55	0.59				
58 1 59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	56	0.86				
59 0.18 60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	57	0.64				
60 0.19 61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	58	1				
61 0.095 62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	59	0.18				
62 0.13 63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	60	0.19				
63 0.16 64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	61	0.095				
64 0.68 2 65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	62	0.13				
65 0.18 66 0.11 67 0.34 68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	63	0.16				
66 0.11 67 0.34 68 1.7 69 0.36 70 0.22 71 0.87 72 0.22 73 0.13	64	0.68	2			
67 0.34 68 1.7 69 0.36 70 0.22 71 0.87 72 0.22 73 0.13	65	0.18				
68 1.7 2 69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	66	0.11				
69 0.36 70 0.22 71 0.87 2 72 0.22 73 0.13	67	0.34				
70 0.22 71 0.87 2 72 0.22 73 0.13	68	1.7	2			
71 0.87 2 72 0.22 73 0.13	69					
72 0.22 73 0.13	70	0.22				
73 0.13	71		2			
	72					
74 0.31	73					
<u> </u>	74	0.31				

Table 2 (cont)				
Ex No.	IC50	n	% of Co	ontrol At
	(μg/ml)			•
			25 μg/ml	50 μg/ml
75.	4.3			
76	0.37	2		
77	0.66	2		
78	2.4			
79	0.27			
80	2.6	2		
81	2.5	2		
82	0.038			
83	3	2		
84	2.8			
85	2.8	2		
86	0.26	2		
87	0.24			
88	2.8	2		
89	2.9	2		
90	1			
91	0.39	2		
92	1.8			
93	2.7	2		
94	3.5	2		
95	3.8			
96	0.79	2		
97	>5 a			
98	2	2		
99	0.064			
100	>5 a			

Table 2 (cont)						
Ex No.	IC50	n	%	of Co	ontro	ol At
	(μg/ml)					
			25 μ	g/ml	50	μg/ml
101	4.4					
102	2.3					
103	0.27					
104	0.25	2				
105	0.12	2				
106	>5 a					
107	0.11	2				
108	0.63	2		1		
109	3.5					
110	0.32	2				
111	0.39	2				
112	0.34					
113	0.91					
114	3.7				-	
115	>5 a					-
116	>5					
117	0.26 -					
118	1.2	2				
119	0.75	2				
120	1.4	2				
121	2.7					
122	0.73					
123	>5					

Ex No.	Table 2 (cont)				
25 50 μg/ml μg/ml 124 0.12 125 4.7 2 126 0.14 127 0.056 128 2.6 129 0.31 2 130 0.91 131 0.1 2 132 0.084 133 0.092 2 134 0.33 2 135 0.16 136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099 140 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 147 0.099 147 0.099 148	Ex No.	IC50	n	% of Control At	
μg/ml μg/ml μg/ml 124 0.12 125 4.7 2 126 0.14 127 0.056 128 2.6 129 0.31 2 130 0.91 131 0.1 2 132 0.084 133 0.092 2 134 0.33 2 135 0.16 136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 146 0.099 147 0.099 147 0.099 148 0.		(μg/ml)			
124 0.12 125 4.7 2 126 0.14 127 0.056 128 2.6 129 0.31 2 130 0.91 131 0.1 2 132 0.084 133 133 0.092 2 134 0.33 2 135 0.16 136 136 0.55 2 137 1.2 138 139 0.96 140 140 0.075 141 142 0.29 2 143 0.097 144 145 2.5 146 0.099				25	50
125 4.7 2 126 0.14 127 127 0.056 128 129 0.31 2 130 0.91 131 131 0.1 2 132 0.084 133 133 0.092 2 134 0.33 2 135 0.16 136 136 0.55 2 137 1.2 138 139 0.96 140 140 0.075 141 142 0.29 2 143 0.097 144 145 2.5 146 0.099				μg/ml	μg/ml
126 0.14 127 0.056 128 2.6 129 0.31 2 130 0.91 131 0.1 2 132 0.084 133 133 0.092 2 134 0.33 2 135 0.16 136 136 0.55 2 137 1.2 138 138 0.34 2 139 0.96 140 141 0.28 142 142 0.29 2 143 0.097 144 144 0.084 145 2.5 146 0.099	124	0.12			
127 0.056 128 2.6 129 0.31 2 130 0.91 131 0.1 2 132 0.084 133 133 0.092 2 134 0.33 2 135 0.16 136 136 0.55 2 137 1.2 138 138 0.34 2 139 0.96 140 141 0.28 142 142 0.29 2 143 0.097 144 144 0.084 145 145 2.5 146	125	4.7	2		
128 2.6 129 0.31 2 130 0.91 1 131 0.1 2 132 0.084 1 133 0.092 2 134 0.33 2 135 0.16 1 136 0.55 2 137 1.2 1 138 0.34 2 139 0.96 1 140 0.075 1 141 0.28 1 142 0.29 2 143 0.097 1 144 0.084 1 145 2.5 1 146 0.099 1	126	0.14			
129 0.31 2 130 0.91 1 131 0.1 2 132 0.084 1 133 0.092 2 134 0.33 2 135 0.16 1 136 0.55 2 137 1.2 1 138 0.34 2 139 0.96 1 140 0.075 1 141 0.28 1 142 0.29 2 143 0.097 1 144 0.084 1 145 2.5 1 146 0.099 1	. 127	0.056			
130 0.91 131 0.1 2 132 0.084 133 0.092 2 134 0.33 2 135 0.16 136 136 0.55 2 137 1.2 138 139 0.96 140 141 0.28 141 142 0.29 2 143 0.097 144 145 2.5 146 146 0.099 148	128	2.6			
131 0.1 2 132 0.084 133 0.092 2 134 0.33 2 135 0.16 136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	129	0.31	2		
132 0.084 133 0.092 2 134 0.33 2 135 0.16 1 136 0.55 2 137 1.2 1 138 0.34 2 139 0.96 1 140 0.075 1 141 0.28 1 142 0.29 2 143 0.097 1 144 0.084 1 145 2.5 1 146 0.099 1	130	0.91			
133 0.092 2 134 0.33 2 135 0.16 136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	131	0.1	2		
134 0.33 2 135 0.16 136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	132	0.084			
135 0.16 136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	133	0.092	2		
136 0.55 2 137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	134	0.33	2		
137 1.2 138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	135	0.16			
138 0.34 2 139 0.96 140 0.075 141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	136	0.55	2		
139 0.96 140 0.075 141 0.28 142 0.29 143 0.097 144 0.084 145 2.5 146 0.099	137	1.2			
140 0.075 141 0.28 142 0.29 143 0.097 144 0.084 145 2.5 146 0.099	138	0.34	2		
141 0.28 142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	139	0.96			
142 0.29 2 143 0.097 144 0.084 145 2.5 146 0.099	140	0.075			
143 0.097 144 0.084 145 2.5 146 0.099	. 141	0.28			
144 0.084 145 2.5 146 0.099	i	0.29	2		
145 2.5 146 0.099	L I				
146 0.099					
147 1.2 2					
	147	1.2	2		
148 0.36	148	0.36			

Table 2 (cont)				
Ex No.	IC50	n	% of Co	ontrol At
	(μg/ml)			
			25 μg/ml	50 μg/ml
149	0.056			·
150	0.28			
151	0.099			
152	1			
153	0.42			-
154	1.2			
155	1.1			
156	0.11			
157	>5			
158	0.19			
159	0.38			
160	0.27			
161	2.6			
162	0.78			
163	0.27			,
164	0.17			
165	0.96			
166	0.32			
167	0.1			
168	0.11			
169	0.31	4		
170	0.074	11		
171	0.29			
172	0.3			
173	0.3			
174	0.13			

Table 2 (cont)				
Ex No.	IC50	n	% of Control At	
	(μg/ml)		5	
			25 μg/ml 50 μg/ml	
175	0.038	3		
176	0.1			
177	0.13			
178	0.099	3		
179	0.35			
180	0.81			
181	0.043			
182	1.3			
183	0.078			
184	0.25			
185	0.04			
186	0.034			
187	0.035			
188	0.012	2		
189	0.055			
190	0.33		,	
191	0.032			
192	>5 a			
193	0.95			
194	0.58			
195	0.1			
196	0.15			
197	0.3			
198	0.091	3		
199	0.38			

Table 2 (cont)						
Ex No.	IC50	n	% of Control At			
	(μg/ml)					
			25 μg/ml	50 μg/ml		
200	0.27					
201	0.39					
202	0.25					
203	0.17			,		
204	0.12					
205	0.036					
206	0.12					
207	0.035					
208	0.014	2				
209	0.11					
210	0.31			_		
211	0.049	3				
212	0.88					
213	0.47					
214	0.79					
215	3.5			· · · · · · · · · · · · · · · · · · ·		
216	0.63					
217	0.2					
218	>5 a					
219	0.89					
220	4.9					
221	2.8					
222	5	2				
223	2.1					
224	0.3					

Table 2 (cont)						
Ex No.	IC50	n	% of Co	ontrol At		
	(μg/ml)					
			25 μg/ml	50 μg/ml		
225	0.086					
226	0.095					
227	4.3	_				
228	>5 a					
229	0.95	2				
230	2.5					
231			44.3	6.6		
232		•	67.5	15.0		
233	·		27.3	20.4		
234			. 5.6	-4.5		
235			80.6	14.7		
236	***		28.4	10.9		
237			24.1	-3.5		
238			100.4	41.5		
239			58.8	25.5		
240			-0.9	-4.0		
241			2.3	2.4		
242			13.1	-4.8		
243			12.7	-3.0		
244			9.2	21.0		
245			100.3	72.5		
246			4.0	-4.8		
247	-		63.6	46.4		
248			15.5	-3.9		
249			47.4	20.3		

Table 2 (cont)						
Ex No.	IC50	n	% of Control At			
	(μg/ml)					
			25 μg/ml	50 μg/ml		
250			16.4	4.6		
251			103.9	28.1		
252			94.8	69.6		
253			120.0	74.1		
254			39.6	15.6		
255			58.3	86.1		
256			20.2	14.8		
257			27.3	-3.5		
258			74.6	44.1		
259			32.6	0.7		
260			87.8	53.5		
261			7.4	-3.9		
262			23.7	-5.1		
263			-1.5	2.0		
264			34.5	4.2		
265			8.1	-1.6		
266			84.9	72.4		
267			17.8	32.1		
268			-0.8	4.2		
269			3.5	11.9		
270	0.095					
271	0.32					
272	0.91					
273	1					
274	1.9					

Table 2 (cont)						
Ex No.	IC50	n	% of Control At			
	(μg/ml)					
		 .	25 μg/ml	50	μg/ml	
275	0.13					

Notes to Table 2:

10

15

- 1. n = number of independent assays (n = 1 unless stated otherwise)
 - 2. a means that at 5 μg/ml the inhibition was between 30 and 50%

Part 3. Cytotoxicity with H157, U87MG, PC-3 MM2, and DLD1 Cells

The cytotoxicity standard pharmacological test procedure with MTS detection was applied to representative compounds of the invention with four additional human cancer cell lines in order to characterize the range of tumor types against which the compounds were active. The cell lines used were H157 human non-small cell lung carcinoma, U87MG human glioblastoma, PC-3 MM2 human prostate carcinoma, and DLD1 human colon adenocarcinoma. The procedure of the test and the method of data calculation were the same as described above in Part 2 with COLO 205 cells. The results are displayed in Table 3.

Table 3

Evaluation of Representative Compounds of the Invention and Standard

Cytotoxic Agents in the MTS Cytotoxicity Standard Pharmacological Test

Procedure with Four Human Cancer Cell Lines

Example	IC ₅₀ (nM)						
	H157	U87MG	PC-3 MM2	DLD1			
35	31	390	220	105			
169		>1000	>1000				
170	310	200	140	560			
175		180	240	215			
178 .		480	550				
186	38			· · · · · · · · · · · · · · · · · · ·			
187	86						
188	16	48	73	48			
198		640	580				
205	83			···			
208	10	120	140	69			
211		370	400				
Camptothecin	10						
Colchicine	13	6.5	10	25			
Doxorubicin	17			170			
Mitoxantrone	13						
Nocodazole	33	34	43	40			
Paclitaxel			0,.17	1.4			
Vincristine	0.28		0.30	3.0			

Part 4. Cytotoxicity with KB Cells and Drug-Resistant Lines Derived from KB

5

10

15

20

The cytotoxicity standard pharmacological test procedure with MTS detection was applied to representative compounds of the invention with the KB human epidermoid carcinoma cell line and two multidrug resistant lines derived from it. These derived lines were colchicine-resistant KB 8.5, which expresses a moderate level of the multidrug transporter P-glycoprotein, and vinblastine-resistant KB VI, which expresses a high level of P-glycoprotein. The purpose of these experiments was to determine if the compounds were able to overcome drug resistance mediated by P-glycoprotein. If the IC₅₀'s of the compounds are essentially the same on all three lines, then the compounds are not substrates of P-glycoprotein. If on the other hand, the compounds have much higher IC₅₀'s on KB 8.5 and KB VI compared to KB (as do paclitaxel, vincristine, and many other standard anti-cancer drugs) then they would be substrates of P-glycoprotein.

The procedure of the cytotoxicity test and the method of data calculation were the same as described above in Part 2 with COLO 205 cells. The results are displayed in Table 4. The results show that the compounds of this invention have essentially the same IC₅₀'s on all three cell lines, indicating that they would not be subject to multidrug resistance mediated by P-glycoprotein.

Table 4
Evaluation of Representative Compounds of the Invention and Standard
Cytotoxic Agents in the MTS Cytotoxicity Standard Pharmacological Test
Procedure with Human Cancer Cell Lines that Overexpress the
P-glycoprotein Transporter

5

10

15

Example	IC ₅₀ (nM)			F	Relative Resistance		
	КВ	KB 8.5	KB VI	КВ	KB 8.5	KB VI	
35	19	31	16	1	1.6	0.8	
186	30	48	33	1.	1.6	1.1	
187	45	76	56	1	1.7	1.2	
188	10	18	11	1	1.8	1.1	
Taxol	<0.03	19	3,325	1	>630	>111,000	
Vincristine	<0.06	29	3,150	1	>480	>52,500	
Colchicine	7.2	51	1,330	1	7.1	185	
Nocodazole	21	24	33	1	1.1	1.6	
Doxorubicin	34	101	4,400	1	3.0	130	

Part 5. Cytotoxicity with S1 Cells and a Drug-Resistant Line Derived from S1

The cytotoxicity standard pharmacological test procedure with MTS detection was applied to representative compounds of the invention with the S1 human colon carcinoma cell line and a multidrug resistant line derived from it. The derived line was mitoxantrone-resistant S1-M1, which expresses the multidrug transporter MXR. The purpose of these experiments was to determine representative compounds of the invention able to overcome drug resistance mediated by MXR. If the IC₅₀'s of the compounds are essentially the same on both lines, then the compounds are not substrates of MXR. If on the other hand, the compounds have much higher IC₅₀'s on S1-M1 compared

to S1 (as do many standard anti-cancer drugs) then they would be substrates of MXR.

The procedure of the cytotoxicity test and the method of data calculation were the same as described above in Part 2 with COLO 205 cells.

The results are displayed in Table 5. The results show that the compounds of this invention have essentially the same IC₅₀'s on both cell lines, indicating that they would not be subject to multidrug resistance mediated by MXR.

10

Table 5

Evaluation of Representative Compounds of the Invention and Standard Cytotoxic Agents in the MTS Cytotoxicity Pharmacological Test Procedure with a Human Cancer Cell Line that Overexpresses the MXR Transporter Protein

15

Example	IC ₅	₀ (nM)	Relative Resistance		
	\$1	S1-M1	S1	S1-M1	
35	73	94	1	1.3	
186	99	102	1	1.0	
187	99	124	1	1.3	
188	33	74	1	2.2	
Colchicine	11	47	1	4.3	
Nocodazole	43	146	1	3.4	
Doxorubicin	19	10,700	. 1	565	
Mitoxantrone	<4	>10,000	1	>2,500	
Camptothecin	6.8	21	1	3.1	

INHIBITION OF CELLULAR PROLIERATION STANDARD PHARMACOLOGICAL TEST PROCEDURE USING SULFORHODAMINE B AS DETECTION REAGENT

This standard pharmacological test procedure measures the ability of compounds to inhibit cellular proliferation. Sulforhodamine B staining was used to estimate total cellular protein in each culture after exposure to compounds. A decrease in staining compared to untreated control cultures indicated an inhibition of proliferation.

5

10

15

20

25

30

Two cell lines were used in these experiments: Reh human acute lymphocytic leukemia, and CCRF-CEM human acute lymphoblastic leukemia, both obtained from ATCC. Two types of experiments were done on each of the two cell lines. In the first, cells were cultured with Example 170 at several concentrations for either 24 or 72 hr, and the effect on cellular proliferation was determined. In the second, cells were cultured with Example 170 at several concentrations for 24 hr, the compound was removed and replaced with fresh medium without compound, culture was continued for another 48 hr, and the effect on cellular proliferation was determined. This second experiment determined the ability of cells to recover from the damage inflicted by compound during the first 24 hr of culture. At the end of the incubation periods, cells were fixed with trichloroacetic acid and stained with sulforhodamine B using the in vitro Toxicology Assay Kit (Sigma). Actinomycin D was used as a positive control in all experiments. Bound dye was measured spectrophotometrically at 565 nm with a reference wavelength of 690 nm. Cultures were done in 96-well assay plates with five replicates of each concentration. The absorbance values of the replicates were averaged and expressed as a percent of the vehicle control. Each experiment was repeated once, and the percent of control for a given concentration in each experiment were averaged to calculate the results displayed in Table 6.

The results showed that Example 170 inhibited the proliferation of both cell lines, with a greater effect observed after 72 hr compared with 24 hr. In

addition, the recovery experiment showed that neither cell line could recover from the toxicity induced by 24 hr of culture with Example 170.

An additional experiment was done with HL-60 human promyelocytic leukemia in which the inhibition of cellular proliferation by several concentrations of Example 170 were determined after 24 or 72 hrs of culture using the Sulforhodamine B test procedure as described above. Concentrations of Example 170 ranged from 0.005-100 μ g/ml. The calculated EC₅₀ value at 24 hr was 2.3 μ g/ml, and the EC₅₀ value at 72 hr was 0.1 μ g/ml.

10

15

Table 6
Evaluation of Example 170 in the Sulforhodamine B Standard
Pharmacological Test Procedure with Two Human Leukemia Cell Lines

		Percent of Control						
		Reh Cell	<u>s</u>	CCRF-CEM Cells				
Conc. (µg/ml)	24 hr. Treatment	72 hr Treatment	24 hr Treatment 48 hr Recovery	24 hr Treatment	72 hr Treatment	24 hr Treatment 48 hr Recovery		
0.005	120.15	88.57	105.29	104.86	94.88	152.66		
0.01	110.83	89.43	103.98	111.05	88.98	143.58		
0.05	81.50	71.31	81.23	67.31	19.73	57.05		
0.1	68.67	65.87	84.68	65.48	24.04	38.99		
0.5	67.70	66.24	74.13	65.72	11.59	50.17		
1	83.94	52.91	66.81	51.41	20.74	29.42		
5	66.21	41.86	61.34	30.04	22.24	28.90		
10	71.46	44.70	34.10	42.05	8.17	18.19		
50	55.07	35.40	36.36	47.10	24.84	27.16		
100	84.35	51.62	35.76	113.70	54.07	39.47		
0.2 *	66.99	50.54	39.75	52.44	45.71	20.26		

5 * Actinomycin-D

CELL CYCLE ANALYSIS STANDARD PHAMACOLOGICAL TEST PROCEDURE

This standard pharmacological test procedure measures the percentages of cells in a population that are in the G1, S and G2/M phases of the cell cycle. It utilizes staining of fixed cells with propidium iodide and analysis of these cells by flow cytometry. The procedure also gives an estimate of apoptosis induction caused by drug treatment by measurement of the appearance of particles with sub-G1 amounts of DNA. Microtubule-active

drugs characteristically arrest cells in the G2/M phase of the cell cycle because of disruption of the function of the microtubules that comprise the mitotic spindle.

HeLa cells were maintained in RPMI-1640 medium with L-glutamine, supplemented with 10% heat-inactivated fetal calf serum, 100 units/ml penicillin, and 100 µg/ml streptomycin. For assay, cells were harvested by trypsinization, washed, counted and distributed to wells of a 6-well plate at 50,000 cells per well in 3 ml of medium. Cells were cultured overnight at 37° in humidified 5% CO₂ in air.

5

10

15

20

On day 2, compounds for test were diluted and added to wells at the final concentrations given in the tables. Twenty hours after drug addition, cells from each well were harvested, fixed with cold 80% ethanol, treated with 100 µg/ml RNAse and stained with propidium iodide before analysis by flow cytometry. The percentages of total cells in G1, S, G2/M, and apoptosis (sub-G1 population) were estimated from the fluorescence histograms, and compared with those determined using untreated control cells in the same assay.

Table 7 displays results for representative compounds of this invention tested at a low concentration and at a five-fold higher concentration. Table 8 displays results of a second experiment in which representative compounds were tested at six concentration levels each. In both experiments the compounds caused a profound increase in the percentage of cells in the G2/M phase of the cell cycle and induced substantial apoptosis.

Table 7

Evaluation of Representative Compounds of the Invention in the Cell Cycle

Analysis Standard Pharmacological Test Procedure with HeLa Cells

Example	Conc.	Per	Percent Cell Cycle Phase				
	(μg/mL)						
		Apop	G1	S	G2/M		
None	-	3	64	18	16		
		2	63	18	17		
1	0.84	8	3	10	79		
	4.2	13	7 .	12	68		
5	0.057	44	10	22	25		
	0.285	9	1	5	85		
7	0.12	8	2	6	84		
	0.6	9	3	8	81		
9	0.86	10	2	7	81		
	4.3	16	28	21	35		
12	0.27	46	10	18	26		
	1.35	7	1	7	85		
27	0.033	28	4	-13	55		
	0.165	8	1	5	86		
35	0.022	28	5	14	54		
	0.11	-	•	-	-		
39	2.19	26	4	15	55		
	10.95	19	17	20	45		
41	0.062.	. 9	58	20	13		
	0.31	34	18	17	30		
42	0.33	47	14	20	19		
	1.65	6	1	10	83		
47	0.11	8	2	8	83		
	0.55	7	1	10	81		

Table 7 continued

Example	Conc.	Per	Percent Cell Cycle Phase			
	(μg/mL)				-	
		Apop	G1	S	G2/M	
59	0.18	43	8	24	26	
·	0.9	8	2	6	. 84	
61	0.08	7	. 1	9	83	
	0.4	7	2	8	83	
105	0.08	12	3	11	74	
	0.4	6	2	8	84	
127	0.08	8	2	12	79	
	0.4	6	3	. 6	84	
151	0.08	15	4	14	67	
	0.4	9	6	8	76	
186	0.08	7	2	8	.82	
	0.4	7	. 2	10	· 80	
187	0.08	6	4	9	81	
	0.4	7	2	9	81	
188	0.08	9	2	8	81	
	0.4	9	2	10	. 78	

Note to Table 6: Apop = Apoptosis

Table 8

Evaluation of Representative Compounds of the Invention in the Cell Cycle

Analysis Standard Pharmacological Test Procedure with HeLa Cells

Example	Conc.	. Pe	rcent Cell	Cycle Ph	ase		
	(μg/mL)						
		Apop	G1	S	G2/M		
None	-	4	55	23	18		
	<u>.</u> .	3	49	25	20		
	-	1	56	20	20		
35	0.001	1	57	22	20		
	0.003	1	58	22	18		
	0.01	2	57	20	21		
	0.03	29	20	25	25		
	0.1	26	9	13	50		
	0.3	4	4	3	89		
133	0.01	4	54	19	23		
	0.03	28	25	21	25		
	0.1	34	9	26	29		
	0.3	15	5	8	73		
	1	3	4	3	90		
	3 .	3	4	3	89		
169	0.01	2	51	23	24		
	0.03	14	41	21	24		
	0.1	33	17	23	25		
	0.3	34	8	24	32		
	1	3	5	3	88		
	3	4	5	2	88		

Example	Conc.	Per	cent Cell	Cycle Ph	ase ·
	(μg/mL)				
		Apop	G1	\$	G2/M
170	0.01	13	42	21	24
	0.03	33	17	20	28
	0.1	27	3	. 18	50
	0.3	5	5	4	85
	1	3	4	4	88
	3	3	4	4	88
188	0.001	1	55	21	23
	0.003	2	56	18	23
	0.01	18	35	19	27
	0.03	27	7	14	52
	0.1	4	4	3	88
	0.3	3	3	3	90
208	0.001	2	59	20	20
	0.003	2	57	20	21
	0.01	14	43	20	23
	0.03	33	8	21	36
	0.1	3	2	3	90
	0.3	3	3	2	91

Note to Table 7: Apop = Apoptosis

5

10

15

25

30

TUBULIN POLYMERIZATION STANDARD PHARMACOLOGICAL TEST PROCEDURE USING HIGHLY PURIFIED TUBULIN

This standard pharmacological test procedure determines the activity of representative compounds of this invention in promoting the polymerization of α/β tubulin heterodimers. The tubulin preparation used was over 99% pure so that any effects of test compounds on polymerization must be due to direct binding of the test compounds to tubulin protein. It is well known that in this assay paclitaxel promotes polymerization compared to the control reaction without drug, and that vincristine and colchicine inhibit polymerization. Highly purified tubulin does not exhibit substantial spontaneous polymerization at protein concentrations between 1 and 2 mg/ml. Therefore an agent such as glycerol is added to the reactions to lower the critical concentration for polymerization and yield a higher spontaneous control polymerization. In some experiments described below, either glycerol or guanosine 5'-triphosphate (the energy source of polymerization) was left out of the reaction mixtures in order to better compare the effects of paclitaxel and representative compounds of this invention.

20 Part 1. Polymerization of Purified Tubulin in the Presence of Guanosine 5'-triphosphate and Glycerol

Bovine brain tubulin, purchased from Cytoskeleton, Inc., was greater than 99% pure by polyacrylamide gel electrophoresis. The protein was dissolved at 1.5 mg/ml in ice-cold GPEM buffer (80 mM piperazine-N,N'-bis[2-ethanesulfonic acid], pH 6.9, 1 mM ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid, 1 mM magnesium chloride, 1 mM guanosine 5'-triphosphate, GTP) containing 10% (w/w) glycerol. The solution was centrifuged at top speed in an Eppendorf model 5415C microfuge for 10 min at 4° immediately before use. The tubulin solution was added to wells of a ½ area 96-well plate (Costar No. 3696) already containing the compounds of

PCT/US01/20672 WO 02/02563

interest. Each compound was assayed at three concentrations as indicated. Final volume per well was 110 µl. Each sample was done in duplicate, and the control reaction, which received drug solvent only, was done in quadruplicate. The highest concentration of DMSO in any reaction was 1%. The plate was put in a Molecular Devices SpectraMax plate reader thermostated at 35° and the absorbance of each well at 340 nm was determined every minute for 60 minutes. The absorbance at time 0 for each well was subtracted from each of the subsequent absorbance readings for that well, and then the duplicates were averaged.

5

10

The results of this standard pharmacological test procedure with representative compounds of this invention and with standard microtubuleactive drugs are displayed in Tables 9 to 14. Compounds that enhanced the rate and/or extent of purified tubulin polymerization compared to the control (as does paclitaxel) were judged to be promoters of polymerization; 15 compounds that reduced the rate or extent of polymerization (e.g., vincristine, colchicine) were judged to be inhibitors.

Table 9
Evaluation of Examples 35 and 188 in the Tubulin Polymerization
Standard Pharmacological Test Procedure

			<u></u>	ΔA ₃₄₀					
		Example 3	5	Е	Example 188				
Time (min)	10 μΜ	1 μΜ	0.1 μM	10 μΜ	1 μΜ	0.1 μΜ			
0	0	0	0 ,	0	0	0	0		
5	0.0434	0.0003	0.0004	0.0179	-0.0007	-0.0006	-0.0009		
10	0.0972	0.0015	0.0010	0.0469	0.0001	-0.0005	-0.0008		
15	0.1219	0.0028	0.0012	0.0667	0.0016	-0.0001	0.0001		
20	0.1316	0.0058	0.0024	0.0813	0.0040	0.0009	0.0019		
25	0.1364	0.0079	0.0041	0.0919	0.0063	0.0026	0.0051		
30	0.1387	0.0106	0.0061	0.0988	0.0110	0.0052	0.0087		
35	0.1397	0.0139	0.0079	0.1032	0.0141	0.0079	0.0132		
40	0.1401	0.0177	0.0099	0.1064	0.0179	0.0119	0.0198		
45	0.1392	0.0232	0.0133	0.1100	0.0229	0.0142	0.0221		
50	0.1396	0.0278	0.0167	0.1149	0.0288	0.0203	0.0245		
55	0.1399	0.0311	0.0193	0.1165	0.0337	0.0262	0.0282		
60	0.1398	0.0350	0.0224	0.1176	0.0372	0.0304	0.0340		

Table 10

Evaluation of Example 170 and Paclitaxel in the Tubulin Polymerization

Standard Pharmacological Test Procedure

			.•	ΔA ₃₄₀			
		Example 1	70			Control	
Time (min)	10 μΜ	1 µМ	0.1 μΜ	· 10 μM	1 μΜ	0.1 μΜ	
. 0	0	0	0	. 0	0	0	0
. 5	0.0103	-0.0001	-0.0005	0.0136	0.0044	-0.0012	-0.0009
10	0.0555	0.0008	-0.0010	0.0416	0.0167	-0.0010	-0.0008
15	0.0923	0.0028	-0.0005	0.0704	0.0336	0.0001	0.0001
20	0.1100	0.0056	0.0002	0.0931	0.0500	0.0025	0.0019
25	0.1199	0.0093	0.0018	0.1075	0.0638	0.0060	0.0051
30	0.1257	0.0143	0.0041	0.1162	0.0748	0.0100	0.0087
35	0.1289	0.0198	0.0053	0.1216	0.0835	0.0123	0.0132
40	0.1330	0.0246	0.0088	0.1245	0.0903	0.0168	0.0198
45	0.1353	0.0291	0.0124	0.1269	0.0957	0.0229	0.0221
50	0.1353	0.0338	0.0155	0.1279	0.0997	0.0257	0.0245
55	0.1363	0.0380	0.0192	0.1279	0.1027	0.0293	0.0282
60	0.1364	0.0419	0.0241	0.1282	0.1053	0.0314	0.0340

Table 11

Evaluation of Examples 169 and 175 in the Tubulin Polymerization
Standard Pharmacological Test Procedure

				ΔA_{340}			
		Example	169	E	Example 1	175	Control
Time (min)	10 μΜ	1 μМ	0.1 μΜ	10 µM	1 μΜ	0.1 μM	
0	0	0	0	0	0	0	0
5	0.0239	0.0005	-0.0014	0.0073	0.0001	-0.0012	-0.0012
10	0.1172	0.0011	-0.0009	0.0199	0.0014	-0.0005	-0.0011
15	0.1435	0.0024	0.0001	0.0309	0.0037	0.0011	0.0000
20	0.1509	0.0045	0.0020 .	0.0399	0.0067	0.0025	0.0024
25	0.1532	0.0073	0.0042	0.0488	0.0102	0.0057	0.0051
30	0.1548	0.0106	0.0057	0.0566	0.0160	0.0088	0.0108
35	0.1554	0.0154	0.0105	0.0638	0.0217	0.0116	0.0157
40	0.1555	0.0197	0.0136	0.0704	0.0294	0.0177	0.0203
45	0.1552	0.0246	0.0186	0.0761	0.0349	0.0233	0.0246
50	0.1545	0.0331	0.0234	0.0817	0.0416	0.0261	0.0329
55	0.1561	0.0414	0.0282	0.0872	0.0450	0.0309	0.0369
60	0.1552	0.0456	0.0322	0.0919	0.0485	0.0373	0.0392

Table 12

Evaluation of Example 178 and Paclitaxel in the Tubulin
Polymerization Standard Pharmacological Test Procedure

				ΔA ₃₄₀			
	E	xample 17	'8·	****	Paclitaxel		Control
Time (min)	10 μM _.	1 μΜ	0.1 μM	10 μM	1 µМ	0.1 μΜ	
0	0	0	0	0 .	0	0	0
5	0.0182	-0.0029	-0.0001	0.0200	0.0024	-0.0008	-0.0012
10	0.0304	-0.0021	0.0000	0.0587	0.0144	0.0005	-0.0011
15	0.0448	-0.0007	0.0002	0.0939	0.0315	0.0031	0.0000
20	0.0602	0.0006	0.0009	0.1199	0.0484	0.0070	0.0024
25	0.0770	0.0039	0.0030	0.1369	0.0626	0.0103	0.0051
30	0.0951	0.0064	0.0055	0.1470	0.0746	0.0159	0.0108
35	0.1099	0.0110	0.0080	0.1522	0.0838	0.0197	0.0157
40	0.1250	0.0152	0.0134	0.1557	0.0913	0.0256	0.0203
45	0.1360	0.0202	0.0216	0.1583	0.0969	0.0304	0.0246
50	0.1424	0.0242	0.0218	0.1584	0.1014	0.0336	0.0329
55	0.1488	0.0273	0.0229	0.1588	0.1050	0.0368	0.0369
60	0.1538	0.0316	0.0299	0.1586	0.1076	0.0399	0.0392

Table 13

Evaluation of Examples 198 and 211 and Paclitaxel in the Tubulin Polymerization Standard Pharmacological Test Procedure

		ΔA_{340}									
	E	xample	198	Example 211			Paclitaxel			**	
*	10 µМ	1 μM	0.1 µМ	10 µМ	1 µМ	0.1 μM	10 µM	1 μM	0.1 μM		
0	0	0	0	0	0	0	0	0	0	0	
5	0.0011	0.0001	0.0021	-0.0008	-0.0019	-0.0001	0.0145	0.0037	-0.0014	-0.0012	
10	0.0025	0.0006	0.0053	-0.0006	-0.0017	.0.0014	0.0496	0.0173	0.0032	-0.0014	
15	0.0057	0.0017	0.0096	0.0009	0.0000	0.0043	0.0857	0.0381	0.0056	-0.0001	
20	0.0117	0.0046	0.0143	0.0029	0.0027	0.0080	0.1119	0.0572	0.0098	0.0031	
25	0.0206	0.0071	0.0200	0.0055	0.0060	0.0129	0.1280	0.0731	0.0160	0.0077	
30	0.0303	0.0106	0.0239	0.0085	0.0107	0.0173	0.1370	0.0860	0.0217	0.0124	
35	0.0407	0.0153	0.0292	0.0121	0.0138	0.0228	0.1427	0.0961	0.0289	0.0193	
40	0.0489	0.0214	0.0367	0.0165	0.0195	0.0287	0.1462	0.1041	0.0360	0.0223	
45	0.0572	0.0258	0.0393	0.0211	0.0251	0.0321	0.1483	0.1102	0.0431	0.0288	
50	0.0661	0.0320	0.0495	0.0263	0.0279	0.0397	0.1495	0.1148	0.0488	0.0345	
55	0.0729	0.0360	0.0556	0.0320	0.0339	0.0458	0.1505	0.1185	0.0544	0.0389	
60	0.0763	0.0413	0.0607	0.0383	0.0393	0.0512	0.1508	0.1211	0.0596	0.0440	

^{*} Time (min)

^{**} Control

Table 14

Evaluation of Vincristine, Colchicine, and Paclitaxel in the Tubulin Polymerization Standard Pharmacological Test Procedure

		ΔA_{340}										
	,	√incristir	ne	Colchicine				Paclitaxel				
*	10 μM	1 μМ	0.1 μΜ	10 μΜ	1 μМ	0.1 μM	10 μΜ	1 µM	0.1 μΜ			
0	0,	0	0	0	0	0	0	0	0	0		
5	-0.0011	-0.0008	0.0016	0.0005	-0.0003	-0.0011	0.0104	0.0023	-0.0008	-0.0016		
10	0.0001	-0.0007	0.0012	0.0011	0.0000	-0.0012	0.0372	0.0128	0.0020	0.0013		
15	-0.0001	-0.0007	0.0018	0.0006	0.0002	-0.0008	0.0658	0.0288	0.0084	0.0007		
20	-0.0006	-0.0001	0.0031	-0.0001	0.0009	0.0003	0.0885	0.0434	0.0107	0.0027		
25	-0.0012	0.0003	0.0044	-0.0003	0.0019	0.0024	0.1040	0.0568	0.0160	0.0054		
30	-0.0015	0.0012	0.0074	-0.0008	0.0029	0.0058	0.1149	0.0682	0.0251	0.0103		
35	-0.0018	0.0019	0.0119	-0.0008	0.0039	0.0086	0.1218	0.0779	0.0321	0.0181		
40	0.0017	0.0029	0.0154	-0.0012	0.0044	0.0119	0.1261	0.0857	0.0366	0.0232		
45	-0.0020	0.0041	0.0189	-0.0016	0.0057	0.0159	0.1299	0.0920	0.0423	0.0272		
50	-0.0025	0.0057	0.0253	-0.0020	0.0067	0.0209	0.1313	0.0975	0.0480	0.0300		
55	-0.0026	0.0067	0.0298	-0.0020	0.0079	0.0243	0.1325	0.1015	0.0517	0.0362		
60	-0.0026	0.0079	0.0322	-0.0021	0.0090	0.0274	0.1335	0.1049	0.0550	0.0399		

^{*} Time (min)

^{**} Control

Part 2.Polymerization of Purified Tubulin in the Absence of Either Guanosine 5'-triphosphate or Glycerol

This standard pharmacological test procedure measures the ability of a representative example of the invention to induce polymerization of purified tubulin in the absence of glycerol or guanosine 5'-triphosphate (GTP). All other conditions and data calculation were as given above in Part 1.

In the first experiment, the polymerization reaction mixture did not contain glycerol. In the absence of glycerol, highly purified tubulin undergoes very little spontaneous polymerization but paclitaxel is known to induce polymerization under these conditions. The data displayed in Table 15 show that Example 170 also induced polymerization in the absence of glycerol.

In the second experiment, GTP was absent from the reaction mixture. Normal tubulin polymerization requires energy released from GTP hydrolysis to drive subunit assembly, but paclitaxel is able to induce polymer formation even in the absence of GTP. The data displayed in Table 16 show that Example 170 also induced polymerization in the absence of GTP.

The results of both these experiments are consistent with the conclusion that Example 170 has a paclitaxel-like mechanism of action on tubulin polymerization.

20

5

10

15

Table 15

Evaluation of Example 170 and Paclitaxel in the Tubulin Polymerization Standard Pharmacological Test Procedure in the absence of glycerol

Time (min)		ΔA ₃₄₀									
	Examp	Example 170 Paclitaxel									
	10 μM	1 μΜ	-10 μΜ	1 μΜ							
0	0	0	0	0	0						
5	0.0019	0.0005	0.0056	0.0014	0.0002						
10	0.0049	0.0014	0.0279	0.0091	0.0007						
15	0.0095	0.0024	0.0546	0.0198	0.0011						
20	0.0153	0.0039	0.0801	0.0310	0.0018						
25	0.0215	0.0054	0.1016	0.0412	0.0024						
. 30	0.0280	0.0074	0.1188	0.0500	0.0033						
35	0.0347	0.0097	0.1070	0.0576	0.0043						
40	0.0422	0.0121	0.1142	0.0638	0.0048						
45	0.0504	0.0149	0.1192	0.0691	0.0058						
50	0.0595	0.0188	0.1238	0.0737	0.0069						
55	0.0687	0.0222	0.1262	0.0773	0.0077						
60	0.0783	0.0264	0.1293	0.0805	0.0094						

Table 16

Evaluation of Example 170 and Paclitaxel in the Tubulin Polymerization Standard Pharmacological Test Procedure in the absence of GTP

Time (min)		ΔA ₃₄₀									
	Examp	le 170	Pacli	taxel	Control						
	20 μΜ	5 μΜ	20 μM	5 μΜ							
. 0	0.	0	0	0	0 ,						
5	0.0364	0.0000	0.0204	0.0032	-0.0010						
10	0.0582	0.0009	0.0592	0.0160	-0.0004						
15	0.0735	0.0028	0.0933	0.0305	0.0019						
20	0.0830	0.0046	0.1159	0.0445	0.0035						
25	0.0921	0.0078	0.1288	0.0570	0.0078						
30	0.1022	0.0107	0.1365	0.0674	0.0121						
35	0.1086	0.0142	0.1409	0.0764	0.0167						
40	0.1125	0.0180	0.1435	0.0843.	0.0198						
45	0.1192	0.0220	0.1449	0.0908	0.0241						
50	0.1225	0.0265	0.1457	0.0962	0.0276						
55	0.1264	0.0310	0.1456	0.1008	0.0333						
60	0.1277	0.0357	0.1455	0.1046	0.0387						

IMMUNOFLUORESCENCE STANDARD TEST PROCEDURE FOR ANALYSIS OF EFFECTS OF COMPOUNDS ON MORPHOLOGY OF MITOTIC SPINDLE MICROTUBULES IN CELLS

5

Compounds that bind to tubulin or microtubules typically have profound and characteristic effects on the structure of the microtubules which comprise the mitotic spindle of dividing cells. Compounds such as vincristine and colchicine that inhibit normal tubulin polymerization cause a severe disruption and even disappearance of spindle microtubules. On the other hand, compounds such as paclitaxel that promote tubulin polymerization and stabilize microtubules cause the appearance of dense tubulin bundles or aggregates. These effects of compounds can be visualized by immunofluorescent staining of fixed cells.

15

20

10

PC-3 MM2 human prostate carcinoma cells were plated at 5 X 10⁴ cells/chamber in 8-chamber microscope slides that had been treated with poly-D-lysine (Biocoat 8-well CultureSlide, Becton Dickinson). The cells were allowed to attach and grow for 24 hr before addition of compounds at the indicated concentrations. After an additional 18-20 hr of culture with compounds, cells were fixed directly on the slides with methanol at minus 20°, rehydrated in phosphate-buffered saline, and stained with a mouse monoclonal antibody to α-tubulin (clone DM 1A, Sigma) followed by F(ab')₂ fragments of goat anti-mouse IgG, FITC conjugate (Jackson Immunoresearch). Cells were also stained with Hoescht 33258 to visualize DNA. Cells were viewed with a Zeiss fluorescence microscope under epi-illumination, and digital images were captured with a MTI Model DC330 video camera using Optimas V software. Images were processed using Corel PhotoPaint.

25

As displayed in Table 17, representative compounds or this invention produced marked bundling or aggregation of spindle microtubules in dividing

cells. The patterns of microtubule bundling were similar to that produced by paclitaxel. When tested at equi-potent concentrations (i.e., at a concentration of each compound equal to eight times its IC_{50} value in the 3-day MTS cytotoxicity assay), paclitaxel produced predominantly bipolar structures in which the microtubules appeared to be shortened and condensed. The compounds of this invention typically produced two, three, or four dense, circular bundles with intense fluorescence. The microtubule disrupting agents, vincristine and colchicine, produced patterns that were quite distinct from the compounds described here. These results are consistent with the conclusion that the compounds of this invention promote tubulin polymerization, as does paclitaxel.

5

10

Table 17

Evaluation of Representative Compounds of this Invention on Morphology of Mitotic Spindle Microtubules in PC-3 MM2 Cells Determined by the Immunofluorescence Standard Pharmacological Test Procedure

5

Ex.	Concentration	Appearance of Mitotic Spindle Microtubules ·
	(μM)	
35	0.54	Less tightly condensed, greater variety of abnormal
		structures, including "tangled spaghetti"
169	6.41	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, 2-4 per cell
170	1.74	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, 2-4 per cell
175	0.74	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, 2-4 per cell
178	1.91	Rigid spikes emanating from a central core: "sea urchin"
		appearance
188	0.24	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, 2-4 per cell
,198	2.10	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, 2-4 per cell
208	0.26	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, up to 8 per cell
211	0.89 -	Dense, compact, highly fluorescent bundles, roughly
		circular in shape, 2-4 per cell
Paclitaxel	0.016	Dense, compact, highly fluorescent bundles, typically
		bipolar
Vincristine	0.008	Multiple abnormal structures, many resembling partially
		disrupted spindles
Colchicine	0.064	Almost completely depolymerized microtubules,
		sometimes with multiple small flecks of brighter
		fluorescence

STANDARD PHARMACOLOGICAL TEST PROCEDURE OF ANTITUMOR ACTIVITY IN ATHYMIC MICE BEARING HUMAN TUMOR XENOGRAFTS

The tumors used were H157 human non-small cell lung carcinoma, U87MG human glioblastoma, LOX human melanoma, and DLD1 human colon adenocarcinoma. Cells were cultured in RPMI-1640 medium with L-glutamine, supplemented with 10% heat-inactivated fetal calf serum, 100 units/ml penicillin and 100 µg/ml streptomycin. Cells were injected subcutaneously into the flank of outbred nu/nu mice. About 5 days later tumors were staged and those around 100 mg were selected for use. Tumor weights were calculated from measurements of length in two dimensions.

5

10

15

Compounds for test were prepared in Klucel and administered to mice by intraperitoneal injection (0.5 ml volume) or by oral gavage (0.2 ml volume). Typically, the compounds of this invention were given twice per day for 14 days at the doses indicated in the tables. Each experimental group contained 10 animals unless otherwise indicated. The control group (also 10 animals) received Klucel only. Tumor weights were estimated every 3 to 5 days in most experiments (every 7 days in one experiment).

Individual experiments are displayed in Tables 18-28.

Table 18

Evaluation of Example 170 on Growth of Human H157 Non-small
Cell Lung Carcinoma in Athymic Mice: Comparison of
Intraperitoneal and Oral Dosing

Treatment	Parameter	Day 0	Day 7	Day 10	Day 14	Day 16	Day	Day 21
 							18	
Klucel	MTW	121	509	756	1298	1583	1752	2879
Ex. 170	MTW	128	221	287	567	755	1163	2467
25 mg/kg			ł					
bid, ip								
	T/C	1.05	0.43	0.38	0.44	0.48	0.66	0.86
	р		0.001	0.001	0.001	0.009	0.062	0.282
Ex. 170	MŢW	125	191	235	489	591	816	1835
25 mg/kg								
bid, po								
	T/C	1.03	0.37	0.31	0.38	0.37	0.47	0.64
	р		0.0005	0.0003	0.0003	0.0025	0.0065	0.052

5

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-14.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. No deaths in experimental groups.

Table 19

Evaluation of Example 170 on Growth of Human H157 Non-small

Cell Lung Carcinoma in Athymic Mice:

Comparison of Oral Dosing at Three Levels

Treatment	Parameter	Day 0	Day 4	Day 8	Day 12	Day 14	Day 17
Klucel	MTW	117	270	549	1066	1632	2314
Ex. 170	MTW	127	142	194	428	602	839
25 mg/kg bid, po	,		-		}		
	T/C	1.08	0.53	0.35	0.40	0.37	0.36
	р.		0.002	0.001	0.003	0.001	0.001
Ex. 170	MTW	126	188	275	464	748	965
12.5 mg/kg bid, po							
	T/C	1.08	0.70	0.50	0.44	0.46	0.42
	р		0.018	0.005	0.004	0.004	0.002
Ex. 170 6.3 mg/kg bid, po	MTW ,.	121	221	377	643	1030	1147
	T/C	1.03	0.82	0.69	0.60	0.63	0.50
	р		0.130	0.044	0.023	0.024	0.003

5

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 2. Animals were staged on day 0 and dosed on days 1-14.
- 10 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test...
 - 5. One death each in 25 and 12.5 groups.

Table 20

Evaluation of Example 170 on Growth of Human H157 Non-small Cell

Lung Carcinoma in Athymic Mice:

Comparison of Oral Dosing Once or Twice Per Day

5

Treatment	Parameter	Day 0	Day 4	Day 9	Day 12	Day 14	Day 18
Klucel	MTW	111	334	577	1037	2237	3782
			· · ·		,		
Ex. 170 25 mg/kg qd, po	MTW	126	219	287	431	766	1550
I	T/C	1.14	0.65	0.50	0.42	0.34	0.41
	р		0.03	0.01	0.0006	0.0006	0.005
Ex. 170 25 mg/kg bid, po	MTW	115	123	158	176	413	817
	T/C	1.04	0.37	0.27	0.17	0.18	0.22
	р		4E-05	5E-05	2E-06	9E-06	2.5E-05

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-14.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. No deaths in experimental groups.

Table 21

Evaluation of Example 170, Example 169, and Example 133 on

Growth of Human H157 Non-small Cell Lung Carcinoma in Athymic

Mice:

Treatment	Parameter	Day 0	Day 5	Day 7	Day 10	Day 14	Day 17
Klucel	MTW	119	300	425	638	1385	1940
				-			
Ex. 170	MTW	136	215	253	345	540	1203
25 mg/kg					}	li i	
bid, ip							
ļ	T/C	1.14	0.72	0.60	0.54	0.39	0.62
	р		0.07	0.05	0.07	0.03	0.10
Ex. 169	MTW	136	277	425	716	1641	1869
25 mg/kg					}		
bid, ip							
	T/C	1.14	0.92	1.00	1.12	1.18	0.96
Ex. 133	MTW	139	262	367	558	1103	1888
25 mg/kg							
bid, ip			·				
	T/C	1.17	0.87	0.86	0.87	0.80	0.97

5

- MTW = mean tumor weight ≈ mean weight of tumors in all animals of the group.
 Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-14.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. One death in Example 170 group.

Table 22 *
Evaluation of Example 170 and Example 208 on Growth of Human H157
Non-small Cell Lung Carcinoma in Athymic Mice

Treatment	Parameter	Day 0	Day 3	Day 7	Day 10	Day 14	Day 17	Day 21
Klucel	MTW	138	213	580	1028	1948	3041	3453
·								
Ex. 170 50 mg/kg bid, then qd, ip	MTW	159	123	162	236	391	562	1335
	T/C	1.15	0.58	0.28	0.23	0.20	0.18	0.39
	р		0.002	0.0005	0.001	0.001	0.0005	0.006
Ex. 208 50 mg/kg bid, then qd,ip	MTW	158	187	287	367	See note 5	See note 5	See note 5

5

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-14. Dosing was bid days 1-6, then qd days 7-14.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. Dosing of Example 208 was stopped after 10 days because of toxicity.
- 15 6. 1 death in Example 170 group.

Table 23
Evaluation of Example 35 on Growth of Human H157
Non-small Cell Lung Carcinoma in Athymic Mice

Treatment	Parameter	Day 0	Day 6	Day 10	Day 14	Day 18	Day 21	Day 25
Klucel	MTVV	87	255	334	721	1212	1148	2076
Ex. 35 50 mg/kg bid, ip	MTW	91	305	514	1372	2192	2296	2154
	T/C	1.05	1.20	1.54	1.90	1.81	2.00	1.04
	р							

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 2. Animals were staged on day 0 and dosed on days 1-14
- 10 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. No deaths in experimental group.

Table 24

Evaluation of Example 188 on Growth of Human H157 Non-small Cell Lung Carcinoma in Athymic Mice

Treatment	Parameter	Day 0	Day 4	Day 7	Day 10
Klucel	MTW	139 [°]	325	516	942
			,		
Ex. 188	MTW	154	385	560	1037
50 mg/kg					
bid, ip					,
	. T/C	1.11	1.18	1.08	1.10
	р		0.15	0.33	0.31

5

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-10.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. Dosing of Example 188 was stopped after 10 days because of toxicity.

Table 25
Evaluation of Example 170 on Growth of Human U87MG
Glioblastoma in Athymic Mice: Comparison of Intraperitoneal
Dosing at Three Levels

Treatment	Parameter	Day 0	Day 4	Day 7	Day 10	Day 14	Day 17	Day 19
Klucel	MTW	160	258	406	504	1025	1656	2257
·								
Ex. 170	MTW	156	134	145	111	144	200	296
25 mg/kg	ı							
bid, ip		<u> </u>						
	T/C	0.98	0.52	0.36	0.22	0.14	0.12	0.13
	р		2E-07	8.8E-07	1.5E-08	6.9E-09	3.3E-09	2.8E-06
Ex. 170	MTW	156	190	232	314	664	1155	1896
10 mg/kg						[
bid, ip			}	}				
	T/C	0.98	0.74	0.57	0.62	0.65	0.70	0.84
	р		0.0010	0.0001	0.0005	0.0027	0.0084	0.174
Ex. 170	MTW	161	213	320	414	849	1631	2567
5 mg/kg								
bid, ip	•	1.]				
	T/C	1.01	0.83	0.79	. 0.82	0.83	0.99	1.14
	р		0.028	0.052	0.100	0.157	0.462	0.259

5

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-14.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. No deaths in experimental groups.

Table 26
Evaluation of Representative Compounds of this Invention on
Growth of Human U87MG Glioblastoma in Athymic Mice

Treatment	Parameter	Day 0	Day 3	Day 7	Day 9
Klucel	MTW	128	213	363	537
Ex. 170	MTW	128	138	120	112
25 mg/kg					
bid, ip	T/C	1.00	0.65	0.33	0.21
Ex. 211	MTW	130	171	266	374
25 mg/kg					
bid, ip					
	T/C	1.02	0.80	0.73	0.70
	MTW	127	198	305	559
Ex. 198 25 mg/kg	101 1 00	121	190	300	000
bid, ip	·				
	T/C	0.99	0.93	0.84	1.04
Ex. 178	MTW	124	112	See	See
25 mg/kg				note 4	note 4
bid, ip					
	T/C	0.97	0.53		

Table 26 Continued

Evaluation of Representative Compounds of this Invention on Growth of

Human U87MG Glioblastoma in Athymic Mice

Treatment	Parameter	Day 0	Day 3	Day 7	Day 9
Klucel	MTW	128	213	363	537
			•		
Ex. 175 25 mg/kg	MTW	138	176	239	433
bid, ip					,
	T/C	1.08	0.83	0.66	0.81
Ex. 35	MTW	135	180	226	427
25 mg/kg bid, ip		•			
-12, 4	T/C	1.05	0.85	0.62	0.80
Ex. 169 25 mg/kg bid, ip	MTW	136	187	254	464
	T/C	1.06	0.88	0.70	0.86

5

- 1. MTW = mean tumor weight = mean weight of tumors in all animals of the group. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-9.
 - 3. T/C = MTW of treated animals on day n/MTW of control animals on day n.
 - 4. Dosing of Example 178 was stopped after 4 days because of toxicity.

Table 27
Evaluation of Example 170 on Growth of Human LOX Melanoma in Athymic Mice: Comparison of Intraperitoneal and Oral Dosing

Treatment	Parameter	Day 0	Day 7	Day 14
Klucel	RTG	1	11.51	40.53
Ex. 170 25 mg/kg bid, ip	RTG	1	4.91	14.77
	T/C	1	0.43	0.36
	р		0.05	0.08
Ex. 170 10 mg/kg bid, ip	RTG	1	8.06 ·	35.55
:	T/C		0.70	0.88
	р		0.38	0.53
Ex. 170 25 mg/kg bid, po	RTG	1	10.17	40.49
	T/C		0.88	1.00
	р		0.61	0.53

5

- 1. RTG = relative tumor growth = mean tumor weight on day n/mean tumor weight of same group on day 0. 10 animals in control group, 5 in CL 376894 groups.
- 10 2. Animals were staged on day 0 and dosed on days 1-14.
 - 3. T/C = RTG of treated animals on day n/RTG of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. No deaths in experimental groups.

Table 28
Evaluation of Example 170 on Growth of Human DLD1 Colon
Carcinoma in Athymic Mice: Comparison of Intraperitoneal and
Oral Dosing

Treatment	Parameter	Day 0	Day 7	Day 14	Day 21
Treatment	1 arameter	Day 0	Day	Day 14	Day 21
Klucel	RTG	1	3.17	9.62	18.11
·					
Ex. 170	RTG	1	3.60	8.08	14.58
25 mg/kg					
bid, ip					
	T/C		1.14	0.84	0.81
	р		0.87	0.20	0.31
Ex. 170	RTG	1	3.95	9.64	17.32
25 mg/kg					
bid, po					
	T/C		1.25	1.00	0.96
	р		0.96	0.56	0.48

5

- 1. RTG = relative tumor growth = mean tumor weight on day n/mean tumor weight of same group on day 0. Each group had 10 animals.
- 10 2. Animals were staged on day 0 and dosed on days 1-14.
 - 3. T/C = RTG of treated animals on day n/RTG of control animals on day n.
 - 4. p = p value, Student's T-test.
 - 5. No deaths in experimental groups.

Based on the results of these standard pharmacological test procedures, the compounds of this invention are useful as agents for treating, inhibiting or controlling the growth of cancerous tumor cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules and promotion of microtubule polymerization. The compounds of the invention are also useful for the treaatment or prevention of multiple drug resistant (MDR). The effective dosage of active ingredient employed may vary depending on the particular compound employed, the mode of administration and severity of the condition being treated. However, in general satisfactory results are obtained when the compounds of the invention are administered in amounts ranging from about 0.10 to about 100 mg/kg of body weight per day. A preferred regimen for optimum results would be from about 1 mg to about 20 mg/kg of body weight per day and such dosage units are employed that a total of from about 70 mg to about 1400 mg of the active compound for a subject of about 70 kg of body weight are administered in a 24 hour period.

10

15

20

25

30

The dosage regimen for treating mammals may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. A decidedly practical advantage is that these active compounds may be administered in any convenient manner such as by the oral, intravenous, intramuscular or subcutaneous routes. The active compounds may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard or soft shell gelatin capsules, or they may be compressed into tablets or they may be incorporated directly with the food of the diet. For oral therapeutic administration, these active compounds may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compositions and preparations may, of course, be varied

and may conveniently be between about 2% to about 60% of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between 10 and 1000 mg of active compound.

5

10

15

20

25

30

The tablets, troches, pills, capsules and the like may also contain the following: a binder such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, or saccharin may be added or a flavoring agnet such as peppermint, oil of wintergreen or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose, as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts used. In addition, these active compounds may be incorporated into sustained-release preparations and formulations.

These active compounds may also be administered parenterally or intraperitoneally. Solutions or suspensions of these active compounds as a free base or pharmacologically acceptable salt can be prepared in water suitably mixed with a surfactant such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth or microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and starage and must be prepared against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol and liquid poly-ethylene glycol), suitable mixtures thereof, and vegetable oils.

10

15 .

5

The following examples are representative compounds of this invention which are useful as promoters of microtubule polymerization and as anticancer agents.

Example 1

7-(1-azepanyl)-5-chloro-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 2

5-chloro-6-(2,6-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

Example 3

5-chloro-6-(4-methoxyphenyl)-7-(1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 4

25

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 5

7-(1-azepanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-

30

alpyrimidine

<u>Example 6</u> <u>5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

5	Example 7
	5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5
	<u>a]pyrimidine</u>

nethyl [[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl](methyl)amino]acetate

Example 8

Example 9 5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,1,3,3tetramethylbutyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

15

25

Example 10 7-(1-azepanyl)-5-chloro-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

20 <u>Example 11</u>
7-(1-azepanyl)-6-(4-bromophenyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidine

<u>Example 12</u> <u>5-chloro-7-(1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine</u>

Example 13 6-(4-tert-butylphenyl)-5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

	Example 14
	5-chloro-6-(4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
5	Example 15
	5-chloro-6-(4-methoxyphenyl)-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-
	<u>alpyrimidine</u>
	Example 16
10	6-(4-bromophenyl)-5-chloro-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
	Example 17
	5-chloro-6-(3,4-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-
15	<u>a]pyrimidine</u>
	Example 18
	5-chloro-6-(2,6-dichlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-
Δ	<u>alpyrimidine</u>
20	F
	Example 19
	5-chloro-6-(2-chlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
25	Example 20
20	7-(1-azepanyl)-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
	αμγιπιωπα

Example 21

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

5

Example 22

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 23

10 <u>6-(4-tert-butylphenyl)-5-chloro-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

Example 24

5-chloro-7-(2-methyl-1-piperidinyl)-6-[3-

(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 25

<u>Diethyl 2-[6-(2,6-difluorophenyl)-5-ethoxy[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate</u>

20

30

15

Example 26

7-(azepanyl)-5-chloro-6-{2-chloro-6-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine

Example 27

25 <u>5-chloro-6-(2-chloro-6-fluorophenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine</u>

Example 28

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2- trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 29

5-chloro-6-(2-chloro-6-fluorophenyl)-N-[(2,2-dichlorocyclopropyl)methyl]-N-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5 Example 30

1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-3-piperidinol

Example 31

nethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 32

5-chloro-6-(2,5-difluorophenyl)-N-dodecyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine

Example 33

5-chloro-7-(4-methyl-1-piperidinyl)-6-(2,3,6- trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

15

Example 34

N-[5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-N-isopropylamine

25

30

Example 35

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 36

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 37

5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 38

5 <u>5-chloro-6-(3-chloro-4-methoxyphenyl)-N-cycloheptyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine</u>

Example 39

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(3,3-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 40

5-chloro-N-(3-chloropropyl)-N-methyl-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

15

10

Example 41

7-(1-azocanyl)-5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 42

20

5-chloro-6-(2,6-difluorophenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 43

7-(1-azocanyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

25

Example 44

5-methoxy-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 45 [5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7yl]methanol 5 Example 46 1-[5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-4piperidinol Example 47 10 5-chloro-7-(4-chloro-1-piperidinyl)-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5alpyrimidine Example 48 5-chloro-7-(4-thiomorpholinyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-15 a]pyrimidine Example 49 5-chloro-6-(2,6-difluorophenyl)-7-(2,4-dimethyl-1piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine 20 Example 50 7-(4-methyl-1-piperidinyl)-5-amino-6-(2-chloro-6fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine 25 Example 51 5-chloro-6-(2,6-difluorophenyl)-7-(2,5-dihydro-1H-pyrrol-1yl)[1,2,4]triazolo[1,5-a]pyrimidine Example 52 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2,5-dimethyl-2,5-dihydro-1H-pyrrol-1-30

yl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 53

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 55

5-chloro-6-(2-methylphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 56

6-(2-bromophenyl)-N-(sec-butyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidin-7amine

Example 57

5-chloro-N-ethyl-6-(4-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

15

Example 58

5-chloro-6-(4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine

25

Example 59

5-chloro-7-(4-chloro-1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 60

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(trifluoromethyl)-1-piperidinyl][1,2,4]triazolo[1,5-a]pyrimidine

	Example 61
	7-(4-bromo-1-piperidinyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
5	Example 62
	7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
•	Example 63
10	5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,4,6-
	trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine
	·
	Example 64
	5-chloro-N-isopropyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7
15	<u>amine</u>
	•
	Example 65
	5-chloro-7-(4-thiomorpholinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
20	
	Example 66
	7-(1-azepanyl)-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-
	<u>a]pyrimidine</u>
25	Example 67
	5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclopenten-1-
	vl][1,2,4]triazolo[1,5-a]pyrimidine
	Example 68
30	5-chloro-7-(4-isopropyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-
	alpyrimidine

Example 69

5-chloro-7-(2,4-dimethyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

5

Example 70

5-chloro-7-[ethyl(2-methyl-2-propenyl)amino]-6-{4-nitrophenyl}{1,2,4]triazolo[1,5-a]pyrimidine

10

15

Example 71

7-(1-azepanyl)-5-chloro-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine

Example 72

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 73

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

Example 74

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 75

5-chloro-6-(2-chloro-6-fluorobenzyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 76

30 <u>7-(allylsulfanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

Example 77

5-chloro-N-ethyl-6-mesityl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5

Example 78.

5-chloro-N-ethyl-6-(2-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

10

Example 79

5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 80

15

20

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-

(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 81

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-[4-

(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 82

N-(sec-butyl)-5-chloro-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 83

5-chloro-6-[4-(methylsulfanyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 84

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

5

Example 85

7-(1-azepanyl)-5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine

10

Example 86

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2,2,2-trifluoroethyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 87

15

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 88

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

Example 89

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine

25

Example 90

5-chloro-6-(3,5-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 91

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-
a]pyrimidine

5 Example 92

5-chloro-6-(2-chloro-6-fluorophenyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 93

4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]aniline

10 <u>Example 94</u>

N-{4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]phenyl}acetamide

Example 95

15 [5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methyl acetate

Example 96

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(chloromethyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 97

<u>diethyl 2-[6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-5-yl]malonate</u>

25

20

Example 98

7-(1-azepanylmethyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 99

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5.

Example 100

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(trifluoromethoxy)phenyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 101

5-chloro-7-(4-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 102

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(cyclopropylmethyl)-N-propyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 103

5-chloro-7-(2-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

15

Example 104

5-chloro-6-{2-chloro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

25

Example 105

5-chloro-6-(4-chloro-2,3,5,6-tetrafluorophenyl)-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 106

30 4-[5-chloro-2-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-N,N-dimethylaniline

Example 107

6-(2-chloro-6-fluorophenyl)-5-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

5	Example 108
	5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclohexen-1
	yl][1,2,4]triazolo[1,5-a]pyrimidine

Example 109

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(methoxymethyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 110

5-chloro-6-{2-chloro-4-nitrophenyl}-7-[ethyl(2-methyl-2-propenyl)amino][1,2,4]triazolo[1,5-a]pyrimidine

Example 111

5-bromo-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

15

Example 112

5-chloro-N-cyclopentyl-6-(4-ethoxy-2,3,5,6tetrafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 113

5-chloro-N-methyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 114

30 <u>4-bromo-1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]butyl acetate</u>

Example 115

diethyl 2-allyl-2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}malonate

5	Example 116
	6-(2-chloro-6-fluorophenyl)-N-ethyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-
	amine

Example 117

N-butyl-5-chloro-N-ethyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 118

6-(2-chloro-6-fluorophenyl)-5-(difluoromethoxy)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 119

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(4-chlorophenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine

20

15

Example 120

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2-methoxyphenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine

25

30

Example 121

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 122

5-chloro-6-(2,3,4,5,6-pentafluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 123

5-chloro-6-(2,4,6-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 124

5-chloro-6-(4-fluorophenyl)-N-(1,2,2- trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 125

5,7-bis(4-methyl-1-piperidinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 126

5-chloro-6-(2-methylphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 127

5-chloro-6-(2,4,5-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

15

5

Example 128

6-(2-bromophenyl)-5-chloro-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

30

Example 129

5-chloro-N-isobutyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 130

5-chloro-N-isobutyl-6-(2-methylphenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 131

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5 Example 132

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 133

5-chloro-N-(2,2,2-trifluoro-1-methylethyl)-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 134

N-allyl-5-chloro-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 135

5-chloro-N-(1,2-dimethylpropyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

15

Example 136

5-chloro-N-isopropyl-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 137

5-chloro-N-isopropyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 138

7-butyl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 139

5 <u>5-chloro-N-(1-phenylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine</u>

Example 140

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 141

5-chloro-N-ethyl-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

15

25

10

Example 142

5-chloro-6-(2-chloro-6-fluorophenyl)-7-hexyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 143

20 <u>5-chloro-6-(2-methylphenyl)-N,N-bis(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine</u>

Example 144

5-chloro-N-cyclopentyl-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 145

7-butyl-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 146

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5 Example 147

5-chloro-6-(2-chloro-6-fluorophenyl)-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 148

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methylpropanyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 149

5-chloro-6-(2-chloro-6-fluorophenyl)-7-pentyl[1,2,4]triazolo[1,5-a]pyrimidine

15 Example 150

10

25

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 151

20 <u>5-chloro-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-</u> a]pyrimidine

Example 152

5-chloro-6-(2-bromo-5-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 153

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 154 chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

5 <u>Example 155</u>

[5-chloro-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(1-p-tolyl-ethyl)-amine

Example 156

5-chloro-6-(2,4,6-trifluoro-phenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 157

5-chloro-7-cyclohexyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

15

Example 158

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-difluoro-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

30

Example 159

7-(bicyclo[2.2.1]hept-2-ylamino)-5-chloro-6-{2-fluoro-4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine

Example 160

25 <u>5-chloro-6-{2-fluoro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

Example 161

5-(methylsulfanyl)-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 162

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl] (2,2,2-trifluoro-1-phenylethyl)-amine

Example 163

5-chloro-N-[1-(trifluoromethyl)propyl]-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 164

5-bromo-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 165

6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidin-5-amine

15

Example 166

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(2-methyl-propyl)amine

20

Example 167

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 168

25 <u>5-chloro-7-(1-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

Example 169

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-

30 <u>trifluorophenyl)[1,2,4]triazolo[1,5</u>-a]pyrimidin-7-amine

Example 170

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5

Example 171

6-(2,4-difluorophenyl)-5-chloro-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 172

10

15

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 173

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 174

5-chloro-7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

Example 175

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 176

7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine

Example 177

30 <u>5-chloro-7-(4-fluorocyclohexyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

Example 178

5-chloro-6-(2,6-dichloro-4-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5	Example 179
	N-(sec-butyl)-5-chloro-6-(2,6-dichloro-4-fluorophenyl)[1,2,4]triazolo[1,5
	a]pyrimidin-7-amine

Example 180

4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,6-difluorophenol

Example 181

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 182

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

30

15

Example 183

5-chloro-N-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5-chloro-6-(2 6-diffuoro-4-methoxyphenyl)

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 185

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 186

7-(1-azepanyl)-5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

5 .

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 187

Example 188

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 189

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-fluorocyclohexyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 190

6-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)hexanoic acid

20

15

Example 191

2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

30

Example 192

5-chloro-N-isopropyl-6-{2-[(trifluoromethyl)sulfanyl]phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 193

5-chloro-N-[4-(trifluoromethyl)phenyl]-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 194

5-chloro-N-(4,4,4-trifluoro-2-methylbutyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5

Example 195

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3-methyl-3-butenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 196

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-isobutyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 197

7-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine

Example 198

5-chloro-6-(2-thienyl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

15

Example 199

4-(5-chloro-7-(2,2,2-trifluoro-1-methyl-ethylamino)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-3,5-difluoro-phenol

25

Example 200

{5-chloro-6-[2,6-difluoro-4-(2,2,2-trifluoro-ethoxy)-phenyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-(2,2,2-trifluoro-1-methyl-ethyl)amine

Example 201

5-chloro-6-{2,6-difluoro-4-(methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 202

(5-chloro-6-{4-[2-(2-ethoxyethoxy]-ethoxy]-2,6-difluoro-phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine

5

Example 203

(5-chloro-6-{2,6-difluoro-4-[2-(2-methoxy-ethoxy)ethoxy]-phenyl}-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine

10

Example 204

5-chloro-6-[2,6-difluoro-4-(3-furan-3-ylmethoxy)phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(2,2,2-trifluoro-1-methylethyl)amine

Example 205

15

5-chloro-6-(2,5-difluoro-4-methoxyphenyl)-N-(1,2,2-

trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin_7-amine

Example 206

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]-5methoxy[1,2,4]triazolo[1,5-a]pyrimidine

20

Example 207

5-chloro-6-(2-fluoro-4-methoxy-6-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 208

5-chloro-6-[2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 209

2-[2-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)ethoxy]ethanol

5 Example 210

5-chloro-6-(2,3-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 211

5-chloro-6-{4-(2-fluoroethoxy)-2,6-difluorphenyl}-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 212

5-chloro-N-(4-chlorobenzyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 213

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-pyridinyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine

20

15

Example 214

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1-ethylpentyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

25

Example 215

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-chlorophenyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 216

30 <u>5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(4-methoxyphenyl)-3-methyl-1-</u> piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 217

5-chloro-N-cyclopentyl-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5 <u>Example 218</u>

5-chloro-7-phenoxy-6-(4-methoxy-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 219

5-chloro-N-cyclopentyl-6-(4-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 220

5.7-diphenoxy-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

15 <u>Example 221</u>

10

5-chloro-N-cyclopentyl-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7amine

Example 222

5-chloro-N,N-diethyl-6-[4-methoxyphenyl][1,2,4]triazolo[1,5-a]pyrimidin-7amine

Example 223

5-chloro-N,N-diethyl-6-[2,4-dichlorophenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-25 <u>amine</u>

Example 224

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4-dichlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 225

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 227

5 Example 226

5-cyano-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

<u>Example 228</u>
<u>5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidine</u>

<u>Example 229</u>
5-chloro-7-(1,4-dioxa-8-azaspiro[4,5]dec-8-yl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

20

10

15

<u>Example 230</u>
<u>5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine</u>

25 <u>Example 231</u> 2-methyl-6,7-di-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 232
2-methyl-6-phenyl-7-(4-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

30

5

10

15

20

25

30

Example 233 2-trifluoromethyl-6-phenyl-7-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine Example 234 5,7-diphenoxy-6-(2-methylpropyl)[1,2,4]triazolo[1,5-a]pyrimidine Example 235 5-chloro-6-(3,4-difluorophenyl)-N-(isopropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7amine Example 236 5-bromo-6-(4-bromophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine Example 237 5-bromo-6-(4-trifluoromethylphenyl)-7-dimethylamino[1,2,4]triazolo[1,5alpyrimidine Example 238 5-chloro-6-(3,4-difluorophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine Example 239 5-chloro-6-(4-trifluoromethylphenyl)-N-(ethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-<u>amine</u> Example 240 7-(1-azepanyl)-5-chloro-6-(4-tert-butylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

<u>yl]amino}acetate</u>

Example 241

ethyl {[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-

Example 242

diethyl 5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-malonate

5 Example 243

5-chloro-6-(2,5-difluorophenyl)-N-(3-methyl-2-butenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 244

10 [5-chloro-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]acetic acid methyl ester

Example 245

5-chloro-6-(2,6-difluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 246

5-chloro-N,N-diethyl-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

15

Example 247

ethyl [6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)- [1,2,4]triazolo[1,5-a]pyrimidin-5-yl]acetate

25

Example 248

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 249

30 <u>dimethyl 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate</u>

Example 250

<u>diethyl 2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}-2-isobutylmalonate</u>

5

Example 251

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-1,3cyclohexanedione

Example 252

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]cyclohexanone

Example 253

5-chloro-7-(3-nitro-4-methylanilino)-6-(2, 4, 6-trifluorophenyl)
[1,2,4]triazolo[1,5-a]pyrimidine

15

Example 254

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]5-(2-methoxyethoxy)[1,2,4]triazolo[1,5-a]pyrimidine

20

Example 255

7-(3-bromophenyl)-2-ethyl-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 256

25 7-(3-bromophenyl)-6-(3-chlorophenyl)-2-ethyl[1,2,4]triazolo[1,5-a]pyrimidine

Example 257

7-(4-bromophenyl)-2-ethyl-6-[4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine

Example 258

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(3,4,5trimethoxybenzyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5	Example 259
	7-(2-benzyl-4,5-dihydro-1H-imidazol-1-yl)-5-chloro-6-(2-chloro-6-
	fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 260

N-4-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-N,N-1-diethyl-1,4-pentanediamine

Example 261

5-chloro-N-(3-methyl-2-butenyl)-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine

Example 262

5-dimethylamino-6-phenyl-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine

20

15

Example 263

5-chloro-7-[(2-furylmethyl)sulfanyl]-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 264

6-[1,1'-biphenyl]-4-yl-5-chloro-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine

Example 265

30 <u>6-[4-(benzyloxy)phenyl]-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine</u>

Example 266

5-chloro-N-[(2,2-dichlorocyclopropyl)methyl]-6-(3,4,5-trimethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

5	Example 267
	N-cyclopentyl-6-(2-fluorophenyl)-5-hydrazino[1,2,4]triazolo[1,5-a]pyrimidin-7
	<u>amine</u>

Example 268

5-chloro-N-ethyl-6-(2-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 269

6-(4-tert-butylphenyl)-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine

15

Example 270

5-chloro-6-[2,6-difluoro-4-[(3-methyl-2-butenyl)oxy]phenyl]-N-(2,2,2-trifluoro-1-methyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

20

Example 271

5-chloro-6-[2,6-difluoro-4-(1-propenyloxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 272

25

5-chloro-N-(3-tricyclo[2.2.1.0^{2,6}]hept-1-yl)-6-(2,4,6-

trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine

Example 273

5-azido-7-cyclohexyl-6-(2-fluoro-6-chlorophenyl) [1,2,4]triazolo[1,5-

30

a]pyrimidine

Example 274

5-azido-6-[2-chloro-6-fluorophenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine

Example 275

5

2,5-dichloro-7-(4-methyl-1-piperidinyl)-6-[2-chloro-6-fluorophenyl][1,2,4]triazolo[1,5-a]pyrimidine

We claim:

1. A method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof which comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof.

2. The method according to Claim 1 wherein the substituted triazolopyrimidine derivative is a compound selected from those of the formula:

10

(I)

wherein:

15 R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂-may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1

to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one —CH₂- may also be replaced by —O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety —NR^aR^b:

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

10

15.

20

25

30

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also

be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

5

10

25

30

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

15 R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

 R^3 is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, $-NR^cR^d$, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or $-N_3$;

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally

substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl:

R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

25

30

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon

atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃; provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen. R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is cyclopentylamino. R³ is chloro, R⁴ is hydrogen, R² is not 3.4.5trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5-10 trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is -SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are 15 not 1,2,4-triazole; i) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4,6trifluorophenyl, and R³ is not -OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴ is ethyl, R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R2 is phenyl, R3 is chloro, R4 is hydrogen R1 is not (2E)-3,7-dimethyl-2,6-octadienyl 20 or a pharmaceutically acceptable salt thereof.

3. The method according to claim 2 wherein

25

30

R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon

atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety –NR^aR^b or a pharmaceutically acceptable salt thereof is administered.

- 4. The method according to claim 2 wherein R^a and R^b each independently represent the moiety –C*H(R^e)(R^f) where R^e and R^f independently represent an optionally halo-substituted alkyl group of 1 to 12 carbon atoms where C* represents the (R) or (S) isomer or a pharmaceutically acceptable salt thereof is administered.
- 5. The method according to claim 2 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms, aryloxy, thienyl, benzyloxy, heterocyclyl or halogen or a pharmaceutically acceptable salt thereof is administered.
- 6. The method according to claim 2 wherein R³ is halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR°R³, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, hydroxy, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.

25

30

7. The method according to claim 2 wherein R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.

PCT/US01/20672 WO 02/02563

8. The method according to claim 2 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms. optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NR^aR^b wherein 15 R^aR^b are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.

5

10

25

30

- 9. The method according to claim 2 wherein R² is optionally substituted arvl of 6, 10 or 14 carbon atoms or heterocyclyl or a pharmaceutically acceptable salt thereof is administered. 20
 - 10. The method according to claim 2 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d , haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
 - 11. The method according to claim 2 wherein R⁴ is H. optionally substituted alkyl of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms. dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.

12. The method according to claim 2 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms,-S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms,-SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 5 to 10 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.

10

20

- 13. The method according to claim 2 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or a pharmaceutically acceptable salt thereof is administered.
 - 14. The method according to claim 2 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
- 15. The method according to claim 2 wherein R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
 - 16. The method according to claim 2 wherein R^1 is selected from the group consisting of an optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one $-CH_2$ may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one $-CH_2$ may also be replaced by -O-, -S-,

or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

10

15

20

- 17. The method according to claim 2 wherein R¹ is the moiety $-NR^aR^b$ wherein R^aR^b are optionally taken together with the nitrogen to which each is attached; R^2 is optionally substituted phenyl; R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$; R^4 is H or a pharmaceutically acceptable salt thereof is administered.
- 18. The method according to claim 2 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is optionally substituted phenyl;

 \mbox{R}^{3} is halogen, alkoxy, -NR $^{c}\mbox{R}^{d}$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N3;

R⁴ is H;

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12

carbon atoms, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl; Rb is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms; R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one -CH₂- may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 2 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused:

20

25

30

5

10

15

R° is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, —S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, —S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl; R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one —CH₂- may also be replaced by —O-, —S-, or —NR' where R' is H or alkyl of 2 to 20 carbon atoms or a pharmaceutically acceptable salt thereof is administered.

19. The method according to claim 2 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

20

5

10

15

R² is selected from

$$\begin{array}{c|c} & & & & \\ & &$$

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

- R³ is halogen, alkoxy, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;
 R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
- 20. The method according to claim 2 wherein R¹ is the moiety –NR^aR^b
 wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

$$H_3C$$
 H_3C
 H_3C

PCT/US01/20672

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

5

21. The method according to claim 2 wherein R^1 is the moiety $-NR^aR^b$ wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R^1 is selected from

R² is optionally substituted thienyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

5

- 22. The method according to claim 2 wherein said compound selected from:
- 7-(1-azepanyl)-5-chloro-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2,6-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(4-methoxyphenyl)-7-(1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 7-(1-azepanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - methyl [[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl](methyl)amino]acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,1,3,3-tetramethylbutyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azepanyl)-5-chloro-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

7-(1-azepanyl)-6-(4-bromophenyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidine; 5-chloro-7-(1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(4-methoxyphenyl)-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-bromophenyl)-5-chloro-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

15

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-[3-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

Diethyl 2-[6-(2,6-difluorophenyl)-5-ethoxy[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

7-(azepanyl)-5-chloro-6-{2-chloro-6-nitrophenyl}[1,2,4}triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2- trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-[(2,2-dichlorocyclopropyl)methyl]-N-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

30 1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-3-piperidinol;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,5-difluorophenyl)-N-dodecyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-(2,3,6- trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-[5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-N-isopropylamine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

25

5-chloro-6-(3-chloro-4-methoxyphenyl)-N-cycloheptyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(3,3-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(3-chloropropyl)-N-methyl-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azocanyl)-5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(2,6-difluorophenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

- 5 7-(1-azocanyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-methoxy-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 10 [5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methanol;
 - 1-[5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-4-piperidinol;

5-chloro-7-(4-chloro-1-piperidinyl)-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(2,4-dimethyl-1- piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-methyl-1-piperidinyl)-5-amino-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2,5-dimethyl-2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-bromophenyl)-N-(sec-butyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5

5-chloro-N-ethyl-6-(4-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;

5-chloro-7-(4-chloro-1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(trifluoromethyl)-1-piperidinyl][1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,4,6-

5 trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5- a]pyrimidin-7-amine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-isopropyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2,4-dimethyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-[ethyl(2-methyl-2-propenyl)amino]-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5 5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorobenzyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

10

15

7-(allylsulfanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-6-mesityl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(2-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

25

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

PCT/US01/20672 WO 02/02563

Ŋ.

5-chloro-6-[4-(methylsulfanyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5alpyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-methyl-1piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine; 5

7-(1-azepanyl)-5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2,2,2-10 trifluoroethyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-dimethyl-1piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

20

5-chloro-6-[2.6-dichloro-4-(trifluoromethyl)phenyl]-N-ethyl-N-(2-methyl-2propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,5-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5alpyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-25 alpyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5alpyrimidine;

30

4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]aniline;

N-{4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]phenyl}acetamide;

[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methyl acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(chloromethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

diethyl 2-[6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-5-yl]malonate;

7-(1-azepanylmethyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-

20 (trifluoromethoxy)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;
5-chloro-7-(4-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(cyclopropylmethyl)-Npropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(4-chloro-2,3,5,6-tetrafluorophenyl)-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
```

5 4-[5-chloro-2-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-N,N-dimethylaniline;

6-(2-chloro-6-fluorophenyl)-5-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

10

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclohexen-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(methoxymethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-[ethyl(2-methyl-2-propenyl)amino][1,2,4]triazolo[1,5-a]pyrimidine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(4-ethoxy-2,3,5,6-tetrafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

5-chloro-N-methyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-bromo-1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]butyl acetate;

diethyl 2-allyl-2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}malonate;

6-(2-chloro-6-fluorophenyl)-N-ethyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin- 7-amine;

N-butyl-5-chloro-N-ethyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-chloro-6-fluorophenyl)-5-(difluoromethoxy)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(4-chlorophenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

5

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2-methoxyphenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,2,2-

20 trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,3,4,5,6-pentafluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,4,6-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(4-fluorophenyl)-N-(1,2,2- trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-bis(4-methyl-1-piperidinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-methylphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,4,5-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 6-(2-bromophenyl)-5-chloro-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-isobutyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-isobutyl-6-(2-methylphenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2-trifluoro-1-20 methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-(2,2,2-trifluoro-1-methylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - N-allyl-5-chloro-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

5-chloro-N-(1,2-dimethylpropyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-butyl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(1-phenylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

5-chloro-6-(2-chloro-6-fluorophenyl)-7-hexyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-N,N-bis(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

5-chloro-N-cyclopentyl-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-butyl-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methylpropanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-pentyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-bromo-5-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

[5-chloro-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(1-p-tolyl-ethyl)-amine;

5-chloro-6-(2,4,6-trifluoro-phenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

30

25

5

5-chloro-7-cyclohexyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-difluoro-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(bicyclo[2.2.1]hept-2-ylamino)-5-chloro-6-{2-fluoro-4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-fluoro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

15

5

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl] (2,2,2-trifluoro-1-phenylethyl)-amine;

5-chloro-N-[1-(trifluoromethyl)propyl]-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidin-5-amine;

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(2-methyl-1-trifluoromethyl-propyl)amine;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2,4-difluorophenyl)-5-chloro-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-fluorocyclohexyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichloro-4-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-(2,6-dichloro-4-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,6-difluorophenol;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-fluorocyclohexyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)hexanoic acid;

2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-N-isopropyl-6-{2-[(trifluoromethyl)sulfanyl]phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-[4-(trifluoromethyl)phenyl]-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(4,4,4-trifluoro-2-methylbutyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3-methyl-3-butenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-isobutyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-thienyl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 4-(5-chloro-7-(2,2,2-trifluoro-1-methyl-ethylamino)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-3,5-difluoro-phenol;
- 10 {5-chloro-6-[2,6-difluoro-4-(2,2,2-trifluoro-ethoxy)-phenyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-(2,2,2-trifluoro-1-methyl-ethyl)amine;
 - 5-chloro-6-{2,6-difluoro-4-(methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

(5-chloro-6-{4-[2-(2-ethoxyethoxy]-ethoxy]-2,6-difluoro-phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;

15

- 20 (5-chloro-6-{2,6-difluoro-4-[2-(2-methoxy-ethoxy)ethoxy]-phenyl}-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
 - 5-chloro-6-[2,6-difluoro-4-(3-furan-3-ylmethoxy)phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(2,2,2-trifluoro-1-methylethyl)amine;
 - 5-chloro-6-(2,5-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]-5-30 methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-fluoro-4-methoxy-6-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-[2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 2-[2-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)ethoxy]ethanol;
- 5-chloro-6-(2,3-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-{4-(2-fluoroethoxy)-2,6-difluorphenyl}-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(4-chlorobenzyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-pyridinyl)-1-20 piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1-ethylpentyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-chlorophenyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(4-methoxyphenyl)-3-methyl-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-phenoxy-6-(4-methoxy-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-chloro-N-cyclopentyl-6-(4-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-diphenoxy-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

10

5-chloro-N-cyclopentyl-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N,N-diethyl-6-[4-methoxyphenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N,N-diethyl-6-[2,4-dichlorophenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4-dichlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

25

30

5-cyano-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1,4-dioxa-8-azaspiro[4,5]dec-8-yl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

. 5

15

20

25

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-methyl-6,7-di-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2-methyl-6-phenyl-7-(4-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2-trifluoromethyl-6-phenyl-7-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5,7-diphenoxy-6-(2-methylpropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-N-(isopropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-bromo-6-(4-bromophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-bromo-6-(4-trifluoromethylphenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-trifluoromethylphenyl)-N-(ethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-30 amine;

7-(1-azepanyl)-5-chloro-6-(4-tert-butylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine; ethyl {[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]amino}acetate;

5

diethyl 5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-malonate;

5-chloro-6-(2,5-difluorophenyl)-N-(3-methyl-2-butenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

[5-chloro-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]acetic acid methyl ester;

5-chloro-6-(2,6-difluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N,N-diethyl-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

ethyl [6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)- [1,2,4]triazolo[1,5-a]pyrimidin-5-yl]acetate;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

dimethyl 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

diethyl 2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}-2-isobutylmalonate;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-1,3-cyclohexanedione;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]cyclohexanone;

5-chloro-7-(3-nitro-4-methylanilino)-6-(2, 4, 6-trifluorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]5-(2-methoxyethoxy)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-2-ethyl-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

7-(3-bromophenyl)-6-(3-chlorophenyl)-2-ethyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromophenyl)-2-ethyl-6-[4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(3,4,5trimethoxybenzyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(2-benzyl-4,5-dihydro-1H-imidazol-1-yl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

25

N-4-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-N,N-1-diethyl-1,4-pentanediamine;

5-chloro-N-(3-methyl-2-butenyl)-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-30 amine;

5-dimethylamino-6-phenyl-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-7-[(2-furylmethyl)sulfanyl]-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 6-[1,1'-biphenyl]-4-yl-5-chloro-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 6-[4-(benzyloxy)phenyl]-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-[(2,2-dichlorocyclopropyl)methyl]-6-(3,4,5-trimethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

20

N-cyclopentyl-6-(2-fluorophenyl)-5-hydrazino[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-ethyl-6-(2-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 6-(4-tert-butylphenyl)-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-[(3-methyl-2-butenyl)oxy]phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-[2,6-difluoro-4-(1-propenyloxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-(3-tricyclo[2.2.1.0^{2,6}]hept-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-azido-7-cyclohexyl-6-(2-fluoro-6-chlorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;

5-azido-6-[2-chloro-6-fluorophenyl]-7-(4-methyl-1-

5 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2,5-dichloro-7-(4-methyl-1-piperidinyl)-6-[2-chloro-6-fluorophenyl][1,2,4]triazolo[1,5-a]pyrimidine or a pharmaceutically acceptable salt thereof is administered.

10

15

- 23. A method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules and promoting microtubule polymerization which comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof.
- 24. The method according to Claim 23 wherein the substituted triazolopyrimidine derivative is a compound selected from those of the formula:

wherein:

5

10

15

20

25

30

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamovl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms. optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 -CH₂- may also be replaced by -O-, -S-, or carbon atoms in which one NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NRaRb:

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

15

20

25

10

5

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

R³ is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon

atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

5

10

15

20

25

R° is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

30 R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally

substituted in which one –CH₂- may also be replaced by –O-, -S-', or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

- R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃;
- provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4-methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is
- cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is
 not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴
- is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is –SO₂ethyl or –SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are not 1,2,4-triazole; j) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4,6-trifluorophenyl, and R³ is not –OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴
- is ethyl, R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R² is phenyl, R³ is chloro, R⁴ is hydrogen R¹ is not (2E)-3,7-dimethyl-2,6-octadienyl

or a pharmaceutically acceptable salt thereof.

30 25. The method according to claim 24 wherein

 R^1 is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH2-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH2-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO2aryl of 6, 10 or 14 carbon atoms, -SO2alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety –NR a R b or a pharmaceutically acceptable salt thereof is administered.

5

10

15

20

25

- 26. The method according to claim 24 wherein R^a and R^b each independently represent the moiety –C*H(R^e)(R^f) where R^e and R^f independently represent an optionally halo-substituted alkyl group of 1 to 12 carbon atoms where C* represents the (R) or (S) isomer or a pharmaceutically acceptable salt thereof is administered.
- 27. The method according to claim 24 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms, aryloxy, thienyl, benzyloxy, heterocyclyl or halogen or a pharmaceutically acceptable salt thereof is administered.
- 28. The method according to claim 24 wherein R³ is halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, hydroxy, cyano, amino, alkylamino of 1 to 12 carbon atoms,

dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.

- 29. The method according to claim 24 wherein R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.
- 30. The method according to claim 24 wherein R¹ is selected from the group 10 consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted anyl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 15 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂ aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered. 25
 - 31. The method according to claim 24 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or heterocyclyl or a pharmaceutically acceptable salt thereof is administered.

32. The method according to claim 24 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.

5

10

15

- 33. The method according to claim 24 wherein R^4 is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.
- 34. The method according to claim 24 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 5 to 10 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.
- 25 35. The method according to claim 24 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or a pharmaceutically acceptable salt thereof is administered.
- 36. The method according to claim 24 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1

to 12 carbon atoms, cyano, or -N₃ or a pharmaceutically acceptable salt thereof is administered.

37. The method according to claim 24 wherein R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

5

10

15

20

25

- 38. The method according to claim 24 wherein R¹ is selected from the group consisting of an optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NRab wherein RaRb are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NRcRb , haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
- 39. The method according to claim 24 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
- 40. The method according to claim 24 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H;

R^a is H. optionally substituted alkyl of 1 to 12 carbon atoms, optionally 5 substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one -CH2- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be 10 replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl; Rb is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 15 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1. to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where 20 R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms; R^aR^b together with the nitrogen atom to which each is attached represent an 25 optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one -CH₂- may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 2 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused; 30

 R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

10

15

20

25

30

 R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 2 to 20 carbon atoms or a pharmaceutically acceptable salt thereof is administered.

41. The method according to claim 24 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is selected from

PCT/US01/20672

$$\begin{array}{c} \text{F} \\ \text{Volume} \\ \text{F} \end{array}, \\ \begin{array}{c} \text{CH}_2\text{CH}_2\text{P} \\ \text{CH}_2\text{CH}_2\text{F} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{F} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{F} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{F} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{F} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{F} \\ \text{CH}_2\text{C$$

$$\begin{array}{c} \text{F} \\ \text{OCH}_2 \\ \text{OCH}_2 \\ \end{array}$$

5

R³ is halogen, alkoxy, -NR°R¹, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

- 10 R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
 - 42. The method according to claim 24 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12

5 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

43. The method according to claim 24 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

PCT/US01/20672

R² is optionally substituted thienyl;

R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NRcRd , haloalkoxy of 1 to 12

5 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

44. The method according to claim 24 wherein said compound selected from:

7-(1-azepanyl)-5-chloro-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5 5-chloro-6-(4-methoxyphenyl)-7-(1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 7-(1-azepanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

methyl [[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl](methyl)amino]acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,1,3,3-tetramethylbutyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 7-(1-azepanyl)-5-chloro-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 7-(1-azepanyl)-6-(4-bromophenyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-7-(1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-bromophenyl)-5-chloro-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

7-(1-azepanyl)-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(4-methyl-1piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-[3-

5 (trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

Diethyl 2-[6-(2,6-difluorophenyl)-5-ethoxy[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

7-(azepanyl)-5-chloro-6-{2-chloro-6-nitrophenyl}[1,2,4}triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2- trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-[(2,2-dichlorocyclopropyl)methyl]-N-20 methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-3-piperidinol;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,5-difluorophenyl)-N-dodecyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-(2,3,6- trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-[5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-N- isopropylamine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-N-cycloheptyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(3,3-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(3-chloropropyl)-N-methyl-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

7-(1-azocanyl)-5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

30 7-(1-azocanyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-methoxy-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-
     piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
     [5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-
     yi]methanol;
 5
     1-[5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-4-
     piperidinol;
     5-chloro-7-(4-chloro-1-piperidinyl)-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-
10
     a]pyrimidine;
     5-chloro-7-(4-thiomorpholinyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-
     alpyrimidine;
15
     5-chloro-6-(2,6-difluorophenyl)-7-(2,4-dimethyl-1-
     piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
     7-(4-methyl-1-piperidinyl)-5-amino-6-(2-chloro-6-
     fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
20
     5-chloro-6-(2,6-difluorophenyl)-7-(2,5-dihydro-1H-pyrrol-1-
     yl)[1,2,4]triazolo[1,5-a]pyrimidine;
     5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2,5-dimethyl-2,5-dihydro-1H-pyrrol-1-
25
     vl)[1,2,4]triazolo[1,5-a]pyrimidine;
     5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-ethyl-1H-imidazol-1-
     yl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

```
7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

5-chloro-6-(2-methylphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-bromophenyl)-N-(sec-butyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(4-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5

5-chloro-7-(4-chloro-1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(trifluoromethyl)-1-20 piperidinyl][1,2,4]triazolo[1,5a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

15

20

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-isopropyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2,4-dimethyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-[ethyl(2-methyl-2-propenyl)amino]-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorobenzyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(allylsulfanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-6-mesityl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

10

5-chloro-N-ethyl-6-(2-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4- (methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

5-chloro-6-[4-(methylsulfanyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-methyl-1-30 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2,2,2-

5 trifluoroethyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(3,5-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]aniline;

N-{4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]phenyl}acetamide;

30 [5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methyl acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(chloromethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

diethyl 2-[6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-

5 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-5-yl]malonate;

7-(1-azepanylmethyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(trifluoromethoxy)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-7-(4-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(cyclopropylmethyl)-N-20 propyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-chloro-2,3,5,6-tetrafluorophenyl)-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-[5-chloro-2-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-N,N-dimethylaniline;

- 6-(2-chloro-6-fluorophenyl)-5-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclohexen-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(methoxymethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-[ethyl(2-methyl-2-propenyl)amino][1,2,4]triazolo[1,5-a]pyrimidine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(4-ethoxy-2,3,5,6tetrafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-methyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 4-bromo-1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]butyl acetate;
 - diethyl 2-allyl-2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}malonate;

5

6-(2-chloro-6-fluorophenyl)-N-ethyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin- 7-amine;

N-butyl-5-chloro-N-ethyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-chloro-6-fluorophenyl)-5-(difluoromethoxy)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(4-chlorophenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2-methoxyphenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

20

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,3,4,5,6-pentafluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,4,6-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(4-fluorophenyl)-N-(1,2,2- trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-bis(4-methyl-1-piperidinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,4,5-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-bromophenyl)-5-chloro-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-6-(2-methylphenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoro-1methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(2,2,2-trifluoro-1-methylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-allyl-5-chloro-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(1,2-dimethylpropyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-isopropyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-
- 5 trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-butyl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-(1-phenylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-ethyl-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-hexyl[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-methylphenyl)-N,N-bis(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-cyclopentyl-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

- 7-butyl-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine; -268-

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methylpropanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-pentyl[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-10 a]pyrimidine;

5-chloro-6-(2-bromo-5-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

[5-chloro-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(1-p-tolyl-ethyl)-amine;

5-chloro-6-(2,4,6-trifluoro-phenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

25

5-chloro-7-cyclohexyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-difluoro-1-30 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(bicyclo[2.2.1]hept-2-ylamino)-5-chloro-6-{2-fluoro-4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-fluoro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

10 [5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl] (2,2,2-trifluoro-1-phenylethyl)-amine;

5-chloro-N-[1-(trifluoromethyl)propyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidin-5-amine;

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(2-methyl-1-trifluoromethyl-propyl)amine;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-(2,4-difluorophenyl)-5-chloro-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-7-(4-fluorocyclohexyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-dichloro-4-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-(2,6-dichloro-4-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,6-difluorophenol;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-fluorocyclohexyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)hexanoic acid;

2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-{2-[(trifluoromethyl)sulfanyl]phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-[4-(trifluoromethyl)phenyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15.

5-chloro-N-(4,4,4-trifluoro-2-methylbutyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3-methyl-3-butenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-isobutyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-thienyl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-(5-chloro-7-(2,2,2-trifluoro-1-methyl-ethylamino)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-3,5-difluoro-phenol;

- {5-chloro-6-[2,6-difluoro-4-(2,2,2-trifluoro-ethoxy)-phenyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-(2,2,2-trifluoro-1-methyl-ethyl)amine;
 - 5-chloro-6-{2,6-difluoro-4-(methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 10 (5-chloro-6-{4-[2-(2-ethoxyethoxy]-ethoxy]-2,6-difluoro-phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
- (5-chloro-6-{2,6-difluoro-4-[2-(2-methoxy-ethoxy)ethoxy]-phenyl}-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
 - 5-chloro-6-[2,6-difluoro-4-(3-furan-3-ylmethoxy)phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(2,2,2-trifluoro-1-methylethyl)amine;
- 5-chloro-6-(2,5-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-fluoro-4-methoxy-6-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-[2-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)ethoxy]ethanol;

5-chloro-6-(2,3-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-{4-(2-fluoroethoxy)-2,6-difluorphenyl}-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(4-chlorobenzyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-pyridinyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

5

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1-ethylpentyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-chlorophenyl)-1-20 piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(4-methoxyphenyl)-3-methyl-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-phenoxy-6-(4-methoxy-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(4-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-diphenoxy-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

5-chloro-N,N-diethyl-6-[4-methoxyphenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N,N-diethyl-6-[2,4-dichlorophenyl][1,2,4]triazolo[1,5-a]pyrimidin-7amine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4-dichlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-cyano-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1,4-dioxa-8-azaspiro[4,5]dec-8-yl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-methyl-6,7-di-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine; 2-methyl-6-phenyl-7-(4-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2-trifluoromethyl-6-phenyl-7-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

5,7-diphenoxy-6-(2-methylpropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-N-(isopropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

10

5-bromo-6-(4-bromophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

5-bromo-6-(4-trifluoromethylphenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(3,4-difluorophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;

20 8

25

5-chloro-6-(4-trifluoromethylphenyl)-N-(ethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azepanyl)-5-chloro-6-(4-tert-butylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

ethyl {[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]amino}acetate;

diethyl 5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-malonate;

30 5

5-chloro-6-(2,5-difluorophenyl)-N-(3-methyl-2-butenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

[5-chloro-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]acetic acid methyl ester;

5-chloro-6-(2,6-difluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N,N-diethyl-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

ethyl [6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)- [1,2,4]triazolo[1,5-a]pyrimidin-5-yl]acetate;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

dimethyl 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

diethyl 2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}-2-isobutylmalonate;

- 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-1,3-cyclohexanedione;
- 25 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]cyclohexanone;

5-chloro-7-(3-nitro-4-methylanilino)-6-(2, 4, 6-trifluorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;

15.

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]5-(2-methoxyethoxy)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-2-ethyl-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-6-(3-chlorophenyl)-2-ethyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromophenyl)-2-ethyl-6-[4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(3,4,5-trimethoxybenzyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(2-benzyl-4,5-dihydro-1H-imidazol-1-yl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-4-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-N,N-1-diethyl-1,4-pentanediamine;

20

5-chloro-N-(3-methyl-2-butenyl)-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-dimethylamino-6-phenyl-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-25 amine;

5-chloro-7-[(2-furylmethyl)sulfanyl]-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

30 6-[1,1'-biphenyl]-4-yl-5-chloro-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-[4-(benzyloxy)phenyl]-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-[(2,2-dichlorocyclopropyl)methyl]-6-(3,4,5-
- 5 trimethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-cyclopentyl-6-(2-fluorophenyl)-5-hydrazino[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-ethyl-6-(2-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-(4-tert-butylphenyl)-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-[(3-methyl-2-butenyl)oxy]phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-[2,6-difluoro-4-(1-propenyloxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(3-tricyclo[2.2.1.0^{2,6}]hept-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

5-azido-7-cyclohexyl-6-(2-fluoro-6-chlorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;

5-azido-6-[2-chloro-6-fluorophenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2,5-dichloro-7-(4-methyl-1-piperidinyl)-6-[2-chloro-6-fluorophenyl][1,2,4]triazolo[1,5-a]pyrimidine or a pharmaceutically acceptable salt thereof is administered.

45. A method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by administering to said mammal an effective amount of a substituted triazolopyrimidine derivative having a paclitaxel like mechanism of action on tubulin polymerization or a pharmaceutically acceptable salt thereof.

46. The method according to Claim 45 wherein the substituted triazolopyrimidine derivative is a compound selected from those of the formula:

15

wherein:

20

10

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy,

halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one —CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -SO₂alkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -SO₂alkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -SO₂alkyl of

10

15

20

25

30

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted

bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

25

30

20

5

10

15

 R^3 is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

 R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_2$ - may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

25

10

15

20

R°R^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 5 14 carbon atoms, or -CF₃; provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4methoxyphenyl: b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, 10 R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is 15 not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is -SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are not 1,2,4-triazole; j) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4,6-20 trifluorophenyl, and R³ is not -OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴ is ethyl. R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R² is phenyl, R³ is chloro, R⁴ is hydrogen R¹ is not (2E)-3,7-dimethyl-2,6-octadienyl

or a pharmaceutically acceptable salt thereof.

30

47. The method according to claim 46 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted

alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14

carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one ~CH₂-may also be replaced by ~O-, ~S-, or ~NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one ~CH₂- may also be replaced by ~O-, ~S-, or ~NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, ~S-aryl of 6, 10 or 14 carbon atoms, ~S-alkyl of 1 to 12 carbon atoms, ~S-alkenyl of 2 to 12 carbon atoms, ~SO₂aryl of 6, 10 or 14 carbon atoms, ~SO₂cycloalkyl of 3 to 8 carbon atoms, ~SO₂alkyl of 1 to 12 carbon atoms, ~O-aryl of 6, 10 or 14 carbon atoms, and the moiety ~NR^aR^b or a pharmaceutically acceptable salt thereof is administered.

10

- 48. The method according to claim 46 wherein R^a and R^b each independently represent the moiety –C*H(R^e)(R^f) where R^e and R^f independently represent an optionally halo-substituted alkyl group of 1 to 12 carbon atoms where C* represents the (R) or (S) isomer or a pharmaceutically acceptable salt thereof is administered.
- 49. The method according to claim 46 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms, aryloxy, thienyl, benzyloxy, heterocyclyl or halogen or a pharmaceutically acceptable salt thereof is administered.
- 50. The method according to claim 46 wherein R³ is halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy,
 aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, hydroxy, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
- 30 51. The method according to claim 46 wherein R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon

atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.

- 52. The method according to claim 46 wherein R¹ is selected from the group 5 consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms. optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon 15 atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂ aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NRaRb wherein RaRb are optionally taken together with the 20 nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.
 - 53. The method according to claim 46 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or heterocyclyl or a pharmaceutically acceptable salt thereof is administered.

25.

30

54. The method according to claim 46 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.

PCT/US01/20672 WO 02/02563

55. The method according to claim 46 wherein R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.

5

- 56. The method according to claim 46 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms. -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂ aryl of 6, 10 or 14 carbon atoms, -SO₂ cycloalkyl of 5 to 10 carbon atoms,
- -SO₂alkyl of 1 to 12 carbon atoms, and the moiety -NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.
- 57. The method according to claim 46 wherein R² is optionally substituted 20 aryl of 6, 10 or 14 carbon atoms or a pharmaceutically acceptable salt thereof is administered.
- 58. The method according to claim 46 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d , haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 25 to 12 carbon atoms, cyano, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
- 59. The method according to claim 46 wherein R⁴ is H or a pharmaceutically acceptable salt thereof is administered. 30

60. The method according to claim 46 wherein R¹ is selected from the group consisting of an optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NRaRb wherein RaRb are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NRcRb, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

15

20

25

10

- 61. The method according to claim 46 wherein R¹ is the moiety -NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
- 62. The method according to claim 46 wherein R¹ is the moiety -NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is optionally substituted phenyl;

 \mbox{R}^{3} is halogen, alkoxy, -NR $^{c}\mbox{R}^{d}$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N3;

R⁴ is H;

5

10

15

20

25

30

Ra is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl; R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted anyl of 6, 10 or 14 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms. -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to8 carbon atoms. -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms; R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one -CH₂- may also be replaced by -O-, -S-, or -NR where R is H or an alkyl group of 2 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused:

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one —CH₂- may also

be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 2 to 20 carbon atoms or a pharmaceutically acceptable salt thereof is administered.

25 63. The method according to claim 46 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is selected from

5

10

15

5

-293-

 R^3 is halogen, alkoxy, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

64. The method according to claim 46 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

5

65. The method according to claim 46 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

R² is optionally substituted thienyl;

 $\ensuremath{\mathsf{R}}^3$ is halogen, alkoxy of 1 to 12 carbon atoms, -NR $^c \ensuremath{\mathsf{R}}^d$, haloalkoxy of 1 to 12

5 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

 $\ensuremath{\mathsf{R}}^4$ is H or a pharmaceutically acceptable salt the reof is administered.

66. The method according to claim 46 wherein said compound selected from:

7-(1-azepanyl)-5-chloro-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;

- 5 5-chloro-6-(2,6-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(4-methoxyphenyl)-7-(1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 7-(1-azepanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;
 - methyl [[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl](methyl)amino]acetate;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,1,3,3tetramethylbutyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-(1-azepanyl)-5-chloro-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 30 7-(1-azepanyl)-6-(4-bromophenyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-bromophenyl)-5-chloro-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(3,4-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-[3-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

Diethyl 2-[6-(2,6-difluorophenyl)-5-ethoxy[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

7-(azepanyl)-5-chloro-6-{2-chloro-6-nitrophenyl}[1,2,4}triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2- trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-[(2,2-dichlorocyclopropyl)methyl]-N-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25 1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-3-piperidinol;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,5-difluorophenyl)-N-dodecyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-(2,3,6- trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-[5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-N-isopropylamine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-N-cycloheptyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

25

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(3,3-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(3-chloropropyl)-N-methyl-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azocanyl)-5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azocanyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-methoxy-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methanol;

1-[5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-4piperidinol;

5-chloro-7-(4-chloro-1-piperidinyl)-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(2,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

7-(4-methyl-1-piperidinyl)-5-amino-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2,5-dimethyl-2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

5-chloro-6-(2-methylphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-bromophenyl)-N-(sec-butyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(4-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

· 15

5-chloro-7-(4-chloro-1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(trifluoromethyl)-1-20 piperidinyl][1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-isopropyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2,4-dimethyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-[ethyl(2-methyl-2-propenyl)amino]-6-{4-20 nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

15

7-(1-azepanyl)-5-chloro-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorobenzyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(allylsulfanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-6-mesityl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(2-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-[4-(methylsulfanyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2,2,2-

5 trifluoroethyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15.

5-chloro-6-(3,5-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-20 a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]aniline;

N-{4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]phenyl}acetamide;

30 [5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methyl acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(chloromethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- diethyl 2-[6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-5-yl]malonate;
- 7-(1-azepanylmethyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(trifluoromethoxy)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(cyclopropylmethyl)-N-20 propyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-7-(2-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-{2-chloro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-chloro-2,3,5,6-tetrafluorophenyl)-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

4-[5-chloro-2-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-N,N-dimethylaniline;

6-(2-chloro-6-fluorophenyl)-5-methyl-7-(4-methyl-1-

5 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclohexen-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(methoxymethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-[ethyl(2-methyl-2-propenyl)amino][1,2,4]triazolo[1,5-a]pyrimidine;

15

5-bromo-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(4-ethoxy-2,3,5,6-

20 tetrafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-methyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-bromo-1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]butyl acetate;

diethyl 2-allyl-2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}malonate;

6-(2-chloro-6-fluorophenyl)-N-ethyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-butyl-5-chloro-N-ethyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-chloro-6-fluorophenyl)-5-(difluoromethoxy)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(4-chlorophenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2-methoxyphenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

5

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,3,4,5,6-pentafluorophenyl)-N-(1,2,2-

- 20 trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,4,6-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(4-fluorophenyl)-N-(1,2,2- trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5,7-bis(4-methyl-1-piperidinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,4,5-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-bromophenyl)-5-chloro-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-6-(2-methylphenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

20

5

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(2,2,2-trifluoro-1-methylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-allyl-5-chloro-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(1,2-dimethylpropyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-butyl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(1-phenylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-hexyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-N,N-bis(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-cyclopentyl-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

30

7-butyl-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methylpropanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-pentyl[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-bromo-5-chlorophenyl)-N-(2,2,2-triffuoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

[5-chloro-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(1-p-tolyl-ethyl)-amine;

5-chloro-6-(2,4,6-trifluoro-phenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

25

5-chloro-7-cyclohexyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-difluoro-1-30 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(bicyclo[2.2.1]hept-2-ylamino)-5-chloro-6-{2-fluoro-4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-fluoro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl] (2,2,2-trifluoro-1-phenylethyl)-amine;

5-chloro-N-[1-(trifluoromethyl)propyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-bromo-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidin-5-20 amine;

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(2-methyl-1-trifluoromethyl-propyl)amine;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-(2,4-difluorophenyl)-5-chloro-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-7-(4-fluorocyclohexyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-dichloro-4-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

N-(sec-butyl)-5-chloro-6-(2,6-dichloro-4-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,6-difluorophenol;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

20

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-fluorocyclohexyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 6-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)hexanoic acid;
 - 2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-isopropyl-6-{2-[(trifluoromethyl)sulfanyl]phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-[4-(trifluoromethyl)phenyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(4,4,4-trifluoro-2-methylbutyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3-methyl-3-butenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-isobutyl[1,2,4]triazolo[1,5-a]pyrimidine;
- 7-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-thienyl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-(5-chloro-7-(2,2,2-trifluoro-1-methyl-ethylamino)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-3,5-difluoro-phenol;

- {5-chloro-6-[2,6-difluoro-4-(2,2,2-trifluoro-ethoxy)-phenyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-(2,2,2-trifluoro-1-methyl-ethyl)amine;
 - 5-chloro-6-{2,6-difluoro-4-(methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 10 (5-chloro-6-{4-[2-(2-ethoxyethoxy]-ethoxy]-2,6-difluoro-phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
- (5-chloro-6-{2,6-difluoro-4-[2-(2-methoxy-ethoxy)ethoxy]-phenyl}-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
 - 5-chloro-6-[2,6-difluoro-4-(3-furan-3-ylmethoxy)phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(2,2,2-trifluoro-1-methylethyl)amine;
- 5-chloro-6-(2,5-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-fluoro-4-methoxy-6-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-[2-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)ethoxy]ethanol;

5-chloro-6-(2,3-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

15

- 5-chloro-6-{4-(2-fluoroethoxy)-2,6-difluorphenyl}-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-(4-chlorobenzyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-pyridinyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1-ethylpentyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-chlorophenyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(4-methoxyphenyl)-3-methyl-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-cyclopentyl-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-7-phenoxy-6-(4-methoxy-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-cyclopentyl-6-(4-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-diphenoxy-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

5-chloro-N,N-diethyl-6-[4-methoxyphenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N,N-diethyl-6-[2,4-dichlorophenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

10

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4-dichlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-cyano-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

25

5-chloro-7-(1,4-dioxa-8-azaspiro[4,5]dec-8-yl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-30 (methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-methyl-6,7-di-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 2-methyl-6-phenyl-7-(4-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5 2-trifluoromethyl-6-phenyl-7-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5,7-diphenoxy-6-(2-methylpropyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(3,4-difluorophenyl)-N-(isopropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7amine;
 - 5-bromo-6-(4-bromophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-bromo-6-(4-trifluoromethylphenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(3,4-difluorophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(4-trifluoromethylphenyl)-N-(ethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-(1-azepanyl)-5-chloro-6-(4-tert-butylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine; ethyl {[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]amino}acetate;
 - diethyl 5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-malonate;

25

5-chloro-6-(2,5-difluorophenyl)-N-(3-methyl-2-butenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

[5-chloro-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]acetic acid methyl ester;

5-chloro-6-(2,6-difluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N,N-diethyl-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

ethyl [6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)- [1,2,4]triazolo[1,5-a]pyrimidin-5-yl]acetate;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

dimethyl 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

diethyl 2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}-2-isobutylmalonate;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-1,3-cyclohexanedione;

25 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]cyclohexanone;

5-chloro-7-(3-nitro-4-methylanilino)-6-(2, 4, 6-trifluorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]5-(2-methoxyethoxy)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-2-ethyl-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-6-(3-chlorophenyl)-2-ethyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromophenyl)-2-ethyl-6-[4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(3,4,5-trimethoxybenzyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(2-benzyl-4,5-dihydro-1H-imidazol-1-yl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

N-4-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-N,N-1-diethyl-1,4-pentanediamine;

5-chloro-N-(3-methyl-2-butenyl)-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-dimethylamino-6-phenyl-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-25 amine;

5-chloro-7-[(2-furylmethyl)sulfanyl]-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

30 6-[1,1'-biphenyl]-4-yl-5-chloro-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-[4-(benzyloxy)phenyl]-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-[(2,2-dichlorocyclopropyl)methyl]-6-(3,4,5-
- 5 trimethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - N-cyclopentyl-6-(2-fluorophenyl)-5-hydrazino[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-ethyl-6-(2-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-(4-tert-butylphenyl)-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-[(3-methyl-2-butenyl)oxy]phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-[2,6-difluoro-4-(1-propenyloxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-(3-tricyclo[2.2.1.0^{2,6}]hept-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-azido-7-cyclohexyl-6-(2-fluoro-6-chlorophenyl) [1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-azido-6-[2-chloro-6-fluorophenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2,5-dichloro-7-(4-methyl-1-piperidinyl)-6-[2-chloro-6-fluorophenyl][1,2,4]triazolo[1,5-a]pyrimidine or a pharmaceutically acceptable salt thereof is administered.

- 5 67. The method according to claim 1 wherein the cancerous tumor cells are selected from the group consisting of breast, colon, lung, prostate, melanoma, epidermal, leukemia, kidney, bladder, mouth, larynx, esophagus, stomach, ovary, pancreas, liver, skin and brain.
- 10 68. The method according to claim 23 wherein the cancerous tumor cells are selected from the group consisting of breast, colon, lung, prostate, melanoma, epidermal, leukemia, kidney, bladder, mouth, larynx, esophagus, stomach, ovary, pancreas, liver, skin and brain.
- 15 69. The method according to claim 45 wherein the cancerous tumor cells are selected from the group consisting of breast, colon, lung, prostate, melanoma, epidermal, leukemia, kidney, bladder, mouth, larynx, esophagus, stomach, ovary, pancreas, liver, skin and brain.
- 70. A pharmaceutical composition comprising an effective amount of a compound of Formula (I):

(I)

wherein:

10

15

20

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NRaRb:

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of

2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

5

10

15

20

25

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

5

10

25

30

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

15 R³ is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR°Rd , benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to

10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl, optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

15

10

5

R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

20

25

30

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃; provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4-methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is

cyclopentylamino, R^3 is chloro, R^4 is hydrogen, R^2 is not 3,4,5-trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R^1 is 2-aminobicyclo(2.2.1.)heptyl, R^3 is chloro, R^4 is hydrogen, R^2 is not 3,4,5-trimethoxyphenyl and f) R^1 is diethylamino, R^3 is chloro, R^4 is hydrogen, R^2 is not 4-trifluoromethylphenyl and g) R^1 is 1,1,1-trifluoroethoxy, R^3 is chloro, R^4 is hydrogen, R^2 is not 2-chloro-6-fluorophenyl h) R^1 is $-SO_2$ ethyl or $-SO_2$ cyclopentyl, R^3 is chloro, R^4 is hydrogen, R^2 is not 2-chloro-6-fluorophenyl; i) R^4 is hydrogen, R^2 is 2-chloro-6-fluorophenyl, R^1 and R^3 are not 1,2,4-triazole; j) R^1 is cyclohexyl, R^4 is hydrogen, R^2 is 2,4,6-trifluorophenyl, and R^3 is not $-OCH_2O_2C(CH_3)_3$; k) R^1 is 2-thienyl, R^4 is ethyl, R^3 is hydrogen and R^2 is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; l) R^2 is phenyl, R^3 is chloro, R^4 is hydrogen R^1 is not (2E)-3,7-dimethyl-2,6-octadienyl or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable carrier.

15

20

10

71. A pharmaceutical composition for treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules by promotion of microtubule polymerization which comprises administering to said mammal an effective amount of a compound of Formula (I):

(I)

wherein:

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy. halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 -CH₂- may also be replaced by -O-, -S-, or carbon atoms in which one -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO2aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NRaRb;

5

15

20

25

30

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

15

20

25

10

5

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

R³ is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon

atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

5

10

15

20

25

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by –O-, -S-, or –NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

30 R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally

substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

- R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃;
- provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4-methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is
- cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is -SO₂ethyl or
 - -SO₂cyclopentyl, R^3 is chloro, R^4 is hydrogen, R^2 is not 2-chloro-6-fluorophenyl; i) R^4 is hydrogen, R^2 is 2-chloro-6-fluorophenyl, R^1 and R^3 are not 1,2,4-triazole; j) R^1 is cyclohexyl, R^4 is hydrogen, R^2 is 2,4,6-trifluorophenyl, and R^3 is not $-OCH_2O_2C(CH_3)_3$; k) R^1 is 2-thienyl, R^4 is ethyl,
 - R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; I) R² is phenyl, R³ is chloro, R⁴ is hydrogen R¹ is not (2E)-3,7-dimethyl-2,6-octadienyl or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.
- 30 72. A pharmaceutical composition comprising a compound of Formula (I):

$$R^4 \xrightarrow{N \atop 1} \begin{array}{c} R \\ 8 \\ 7 \\ 6 \\ 4 \\ 5 \\ N \end{array}$$

(I)

5 wherein:

10

15

20

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NRaRb;

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring;

5

10

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally 15 substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted anyl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or 20 -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂ aryl of 6, 10 or 14 carbon atoms, -SO₂ cycloalkyl, -SO₂ alkyl, -O-aryl of 6, 25 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl. cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring. optionally ortho-fused with an optionally substituted phenyl ring;

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

5

10

25

30

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

15 R³ is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR°Rd , benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to

10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl, optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

15

10

R^cR^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

20

25

30

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃; provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4-methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is

cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-aminobicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3.4.5trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ 5 is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is -SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl; i) R⁴ is hydrogen, R² is 2-chloro-6-fluorophenyl, R¹ and R³ are not 1,2,4-triazole; j) R¹ is cyclohexyl, R⁴ is hydrogen, R² is 2,4,6trifluorophenyl, and R³ is not -OCH₂O₂C(CH₃)₃; k) R¹ is 2-thienyl, R⁴ is ethyl. R³ is hydrogen and R² is not 2-methoxyphenyl, 4-methoxyphenyl, and 4trifluorophenyl; I) R² is phenyl, R³ is chloro, R⁴ is hydrogen R¹ is not (2E)-3.7dimethyl-2,6-octadienyl or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable carrier.

15

10

73. A method for the treatment or prevention of multiple drug resistance (MDR) in a mammal in need thereof which method comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof.

- 74. The method of claim 73 wherein the multiple drug resistance (MDR) is mediated by p-glycoprotein or MXR.
- 75. The method according to Claim 73 wherein the substituted triazolopyrimidine derivative is a compound selected from those of the 25 formula:

(I)

wherein:

R¹ is selected from the group consisting of halogen, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, -CN, hydroxy, halogen, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms. heterocyclyl, optionally substituted bicycloalkyl of 5 to 10 carbon atoms. optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one -CH₂may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, thiophene, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-cycloalkyl of 3 to 8 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂ aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety -NR^aR^b:

20

10

15

R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon

atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one $-CH_{2}$ - may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_{2}$ - may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted tricycloalkyl, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring, optionally ortho-fused with an optionally substituted phenyl ring ;

R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl, -S-alkenyl, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl, -SO₂alkyl, -O-aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl, cycloalkyl of 3 to 8 carbon atoms or a 3- to 6-membered heterocyclyl ring,

25

30

15

20

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may optionally be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

optionally ortho-fused with an optionally substituted phenyl ring;

R² is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, hydroxy, alkylthio of 1 to 12 carbon atoms, cyano, carbamoyl, optionally substituted alkoxy of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, aryloxy, benzyloxy, thienyl, heterocyclyl or halogen;

R³ is H, halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR^cR^d, benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, heterocyclyl, aryl, hydroxy, carbamoyl, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃;

15

20

25

30

10

5

 R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted

cycloalkyl of 3 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

5

15

25

30

R°R^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or alkyl of 1 to 12 carbon atoms;

R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, halogen, cyano, carboxy, alkoxycarbonyl of 2 to 12 carbon atoms, heterocyclyl, halogen, carbamoyl, optionally substituted aryl of 6, 10 or 14 carbon atoms, or -CF₃;

provided that when: a) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl, 3,4-dichlorophenyl, 4-chlorophenyl, 3-chloro-4-methoxyphenyl; b) R¹ is diethylamino, R³ is bromo, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl; c) R¹ is isopropylamino, R³ is chloro, R⁴ is hydrogen, R² is not 2-benzyloxyphenyl or 3,4,5-trimethoxyphenyl; d) R¹ is

cyclopentylamino, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5-trimethoxyphenyl, 2-napthyl or 2-stilbene; e) R¹ is 2-amino-bicyclo(2.2.1.)heptyl, R³ is chloro, R⁴ is hydrogen, R² is not 3,4,5-trimethoxyphenyl and f) R¹ is diethylamino, R³ is chloro, R⁴ is hydrogen, R² is not 4-trifluoromethylphenyl and g) R¹ is 1,1,1-trifluoroethoxy, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-fluorophenyl h) R¹ is –SO₂ethyl or -SO₂cyclopentyl, R³ is chloro, R⁴ is hydrogen, R² is not 2-chloro-6-

fluorophenyl; i) R^4 is hydrogen, R^2 is 2-chloro-6-fluorophenyl, R^1 and R^3 are not 1,2,4-triazole; j) R^1 is cyclohexyl, R^4 is hydrogen, R^2 is 2,4,6-trifluorophenyl, and R^3 is not $-OCH_2O_2C(CH_3)_3$; k) R^1 is 2-thienyl, R^4 is ethyl, R^3 is hydrogen and R^2 is not 2-methoxyphenyl, 4-methoxyphenyl, and 4-trifluorophenyl; l) R^2 is phenyl, R^3 is chloro, R^4 is hydrogen R^1 is not (2E)-3,7-dimethyl-2,6-octadienyl or a pharmaceutically acceptable salt thereof.

76. The method according to claim 75 wherein

R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂aryl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms, and the moiety –NR^aR^b or a pharmaceutically acceptable salt thereof is administered.

25

30

10

15

20

77. The method according to claim 75 wherein R^a and R^b each independently represent the moiety –C*H(R^e)(R^f) where R^e and R^f independently represent an optionally halo-substituted alkyl group of 1 to 12 carbon atoms where C* represents the (R) or (S) isomer or a pharmaceutically acceptable salt thereof is administered.

78. The method according to claim 75 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms, aryloxy, thienyl, benzyloxy, heterocyclyl or halogen or a pharmaceutically acceptable salt thereof is administered.

- 5 79. The method according to claim 75 wherein R³ is halogen, alkyl of 1 to 12 carbon atoms, alkoxy of 1 to 12 carbon atoms, aryloxy, -NR°Rd , benzyloxy, aralkyloxy, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, hydroxy, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
 - 80. The method according to claim 75 wherein R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkoxy of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.

15

20

25

30

81. The method according to claim 75 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkaynyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted bicycloalkyl of 5 to 10 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, and the moiety –NR²b wherein

R^aR^b are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.

82. The method according to claim 75 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or heterocyclyl or a pharmaceutically acceptable salt thereof is administered.

5

10

20

25

- 83. The method according to claim 75 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR°R¹ , haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, amino, alkylamino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
- 84. The method according to claim 75 wherein R⁴ is H, optionally substituted alkyl of 1 to 12 carbon atoms, amino, alkyl amino of 1 to 12 carbon atoms, dialkylamino of 1 to 12 carbon atoms, -CF₃ or a pharmaceutically acceptable salt thereof is administered.
 - 85. The method according to claim 75 wherein R¹ is selected from the group consisting of an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms,-S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms,-SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety –NRaRb wherein RaRb are optionally taken together with the nitrogen to which each is attached or a pharmaceutically acceptable salt thereof is administered.

PCT/US01/20672 WO 02/02563

86. The method according to claim 75 wherein R² is optionally substituted aryl of 6, 10 or 14 carbon atoms or a pharmaceutically acceptable salt thereof is administered.

- 87. The method according to claim 75 wherein R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃ or a pharmaceutically acceptable salt thereof is administered.
- 88. The method according to claim 75 wherein R⁴ is H or a pharmaceutically 10 acceptable salt thereof is administered.
- 89. The method according to claim 75 wherein R¹ is selected from the group consisting of an optionally substituted cycloalkyl of 3 to 8 carbon atoms in 15 which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms in which one -CH₂- may also be replaced by -O-, -S-, or -NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms, -SO₂alkyl of 1 to 12 carbon atoms, and the moiety -NR^aR^b wherein RaRb are optionally taken together with the nitrogen to which each is attached: R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃; R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

20

25

30

90. The method according to claim 75 wherein R¹ is the moiety -NR^aR^b wherein RaRb are optionally taken together with the nitrogen to which each is attached; R² is optionally substituted phenyl; R³ is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to

12 carbon atoms, cyano, or $-N_3$; R^4 is H or a pharmaceutically acceptable salt thereof is administered.

91. The method according to claim 75 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is optionally substituted phenyl;

R³ is halogen, alkoxy, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

10 R⁴ is H;

15

20

25

30

 R^a is H, optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR' where

R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, heterocyclyl, benzyl, optionally substituted benzyl; R^b is H, an optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted

optionally substituted alkyl of 1 to 12 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted aryl of 6, 10 or 14 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms in which one –CH₂-may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, optionally substituted cycloalkenyl of 5 to 10 carbon

atoms in which one –CH₂- may also be replaced by –O-, -S-, or –NR' where R' is H or an alkyl group of 1 to 12 carbon atoms, -S-aryl of 6, 10 or 14 carbon atoms, -S-alkyl of 1 to 12 carbon atoms, -S-alkenyl of 2 to 12 carbon atoms, -SO₂aryl of 6, 10 or 14 carbon atoms, -SO₂cycloalkyl of 3 to 8 carbon atoms,

-SO₂alkyl of 1 to 12 carbon atoms, -O-aryl of 6, 10 or 14 carbon atoms;

R^aR^b together with the nitrogen atom to which each is attached represent an optionally substituted saturated or unsaturated heterocyclyl ring from 3 to 12 ring atoms in which optionally, at least one —CH₂- may also be replaced by —O-, -S-, or —NR where R is H or an alkyl group of 2 to 12 carbon atoms, said saturated or unsaturated heterocyclyl ring may optionally be aryl or cycloalkyl fused;

5

10

15

20

25

30

 R^c is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 8 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, or heterocyclyl;

 R^d is H, amino, optionally substituted alkyl of 1 to 12 carbon atoms, haloalkyl of 1 to 10 carbon atoms, optionally substituted alkenyl of 2 to 12 carbon atoms, optionally substituted alkadienyl of 4 to 12 carbon atoms, optionally substituted cycloalkyl of 3 to 10 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted cycloalkenyl of 5 to 10 carbon atoms, in which one $-CH_{2^-}$ may also be replaced by $-O_-$, $-S_-$, or -NR where R is H or an alkyl group of 1 to 12 carbon atoms optionally substituted bicycloalkyl of 5 to 10 carbon atoms, aryl of 6, 10 or 14 carbon atoms, benzyl , optionally substituted benzyl, heterocyclyl;

R°R^d together with the nitrogen atom to which each is attached represent an optionally substituted heterocyclyl ring from 3 to 8 ring atoms optionally substituted in which one –CH₂- may also be replaced by –O-, -S-, or –NR'

where R' is H or alkyl of 2 to 20 carbon atoms or a pharmaceutically acceptable salt thereof is administered.

92. The method according to claim 75 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached;

R² is selected from

10

. 5

$$\mathsf{CH}_2)_2\mathsf{OCH}_3$$

$$\mathsf{OCH}_2$$

$$\mathsf{And}$$

- R³ is halogen, alkoxy, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;
 R⁴ is H or a pharmaceutically acceptable salt thereof is administered.
- 93. The method according to claim 75 wherein R¹ is the moiety –NR^aR^b
 wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

5

R² is optionally substituted phenyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, -NR^cR^d, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or -N₃;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

5

94. The method according to claim 75 wherein R¹ is the moiety –NR^aR^b wherein R^aR^b are optionally taken together with the nitrogen to which each is attached and wherein R¹ is selected from

R² is optionally substituted thienyl;

 R^3 is halogen, alkoxy of 1 to 12 carbon atoms, $-NR^cR^d$, haloalkoxy of 1 to 12 carbon atoms, alkylthio of 1 to 12 carbon atoms, cyano, or $-N_3$;

R⁴ is H or a pharmaceutically acceptable salt thereof is administered.

5

- 95. The method according to claim 75 wherein said compound selected from:
- 7-(1-azepanyl)-5-chloro-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2,6-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(4-methoxyphenyl)-7-(1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 7-(1-azepanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - methyl [[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl](methyl)amino]acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,1,3,3-tetramethylbutyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

7-(1-azepanyl)-5-chloro-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

7-(1-azepanyl)-6-(4-bromophenyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidine; 5-chloro-7-(1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-tert-butylphenyl)-5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(4-methoxyphenyl)-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(4-bromophenyl)-5-chloro-7-(3-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,4-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-dichlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chlorophenyl)-7-(2-methyl-1-pyrrolidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

30

7-(1-azepanyl)-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(4-methyl-1-

5 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine:

6-(4-tert-butylphenyl)-5-chloro-7-(2-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-[3-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

Diethyl 2-[6-(2,6-difluorophenyl)-5-ethoxy[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

7-(azepanyl)-5-chloro-6-{2-chloro-6-nitrophenyl}[1,2,4}triazolo[1,5-

20 a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2- trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-[(2,2-dichlorocyclopropyl)methyl]-N-methyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

30 1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-3-piperidinol;

```
N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(3-chloro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
```

5-chloro-6-(2,5-difluorophenyl)-N-dodecyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-(2,3,6- trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-[5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-N-isopropylamine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

5-chloro-6-(3-chloro-4-methoxyphenyl)-N-cycloheptyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(3-chloro-4-methoxyphenyl)-7-(3,3-dimethyl-1piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-(3-chloropropyl)-N-methyl-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

30 7-(1-azocanyl)-5-chloro-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

```
5-chloro-6-(2,6-difluorophenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
```

7-(1-azocanyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-methoxy-6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methanol;

1-[5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-4-piperidinol;

5-chloro-7-(4-chloro-1-piperidinyl)-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-thiomorpholinyl)-6-(2,3,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

25

5-chloro-6-(2,6-difluorophenyl)-7-(2,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-methyl-1-piperidinyl)-5-amino-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2,6-difluorophenyl)-7-(2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2,5-dimethyl-2,5-dihydro-1H-pyrrol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-bromophenyl)-N-(sec-butyl)-5-chloro[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(4-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

20

5-chloro-6-(4-methoxyphenyl)-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-chloro-1-piperidinyl)-6-[2-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine:

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(trifluoromethyl)-1-piperidinyl][1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromo-1-piperidinyl)-5-chloro-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine:

5-chloro-7-(4-thiomorpholinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclopenten-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(4-isopropyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(2,4-dimethyl-1-piperidinyl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-[ethyl(2-methyl-2-propenyl)amino]-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

15

25 7-(1-azepanyl)-5-chloro-6-{4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorobenzyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(allylsulfanyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-6-mesityl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-ethyl-6-(2-methoxyphenyl)-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-20 (methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-(sec-butyl)-5-chloro-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-[4-(methylsulfanyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(1-azepanyl)-5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2,2,2-trifluoroethyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-dimethyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

30

5

5-chloro-6-[2,6-dichloro-4-(trifluoromethyl)phenyl]-7-(4-thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(3,5-difluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-tetrahydro-2-furanyl[1,2,4]triazolo[1,5-a]pyrimidine;

4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]aniline; N-{4-[5-chloro-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]phenyl}acetamide;

[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]methyl acetate;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(chloromethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

diethyl 2-[6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-5-yl]malonate;

7-(1-azepanylmethyl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-allyl-5-chloro-6-(2-chloro-6-fluorophenyl)-N-hexyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-7-(4-methyl-1-piperidinyl)-6-[4-(trifluoromethoxy)phenyl][1,2,4]triazolo[1,5-a]pyrimidine; 5-chloro-7-(4-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20.

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(cyclopropylmethyl)-N-propyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-(2-methyl-1-piperidinyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(4-chloro-2,3,5,6-tetrafluorophenyl)-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-[5-chloro-2-methyl-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-N,N-dimethylaniline;

- 6-(2-chloro-6-fluorophenyl)-5-methyl-7-(4-methyl-1-
- 5 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[2-(1-pyrrolidinyl)-1-cyclohexen-1-yl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(methoxymethyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-chloro-4-nitrophenyl}-7-[ethyl(2-methyl-2-propenyl)amino][1,2,4]triazolo[1,5-a]pyrimidine;

15

5-bromo-6-(2-chloro-6-fluorophenyl)-7-(isopropylsulfanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(4-ethoxy-2,3,5,6-

20 tetrafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-methyl-N-(2-methyl-2-propenyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-bromo-1-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]butyl acetate;

diethyl 2-allyl-2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}malonate;

6-(2-chloro-6-fluorophenyl)-N-ethyl-5-methyl[1,2,4]triazolo[1,5-a]pyrimidin- 7-amine;

N-butyl-5-chloro-N-ethyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-chloro-6-fluorophenyl)-5-(difluoromethoxy)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(4-chlorophenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-[(2-methoxyphenyl)sulfanyl][1,2,4]triazolo[1,5-a]pyrimidine;

.15

20

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,3,4,5,6-pentafluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine:

5-chloro-6-(2,4,6-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(4-fluorophenyl)-N-(1,2,2- trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5,7-bis(4-methyl-1-piperidinyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-methylphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,4,5-trifluorophenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

6-(2-bromophenyl)-5-chloro-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isobutyl-6-(2-methylphenyl)-N-(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2,6-difluorophenyl)-N-(2,2,2-trifluoro-1methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(2,2,2-trifluoro-1-methylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-allyl-5-chloro-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-(1,2-dimethylpropyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-isopropyl-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-isopropyl-N-(2,2,2-trifluoroethyl)-6-(2,4,6-
- 5 trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-butyl-5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-(1-phenylethyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-ethyl-N-isobutyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-hexyl[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-methylphenyl)-N,N-bis(2,2,2-trifluoroethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-cyclopentyl-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

25

30

- 7-butyl-5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-phenyl[1,2,4]triazolo[1,5-a]pyrimidine; -391-

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(2-methylpropanyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-pentyl[1,2,4]triazolo[1,5-a]pyrimidine;

5

5-chloro-N-(1,2-dimethylpropyl)-N-methyl-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5a]pyrimidine;

5-chloro-6-(2-bromo-5-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(3-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

[5-chloro-6-(2,4,6-trifluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(1-p-tolyl-ethyl)-amine;

5-chloro-6-(2,4,6-trifluoro-phenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

25

5-chloro-7-cyclohexyl-6-(2,3,4,5,6-pentafluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(4,4-difluoro-1-30 piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(bicyclo[2.2.1]hept-2-ylamino)-5-chloro-6-{2-fluoro-4-nitrophenyl}[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-{2-fluoro-4-nitrophenyl}-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

10 [5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl] (2,2,2-trifluoro-1-phenylethyl)-amine;

5-chloro-N-[1-(trifluoromethyl)propyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-bromo-6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidine;

6-(2-chloro-6-fluorophenyl)-7-cyclohexyl[1,2,4]triazolo[1,5-a]pyrimidin-5-20 amine;

[5-chloro-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-(2-methyl-1-trifluoromethyl-propyl)amine;

5-chloro-7-(3-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1-cyclohexen-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-[(1R)-2,2,2-trifluoro-1-methylethyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-(2,4-difluorophenyl)-5-chloro-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-[(1S)-2,2,2-trifluoro-1-methylethyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-cyclohexyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-7-(4-fluorocyclohexyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-dichloro-4-fluorophenyl)-7-(3,3,3-trifluoropropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

N-(sec-butyl)-5-chloro-6-(2,6-dichloro-4-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,6-difluorophenol;
 - 5-chloro-7-(3-cyclohexen-1-yl)-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3,6-dihydro-1(2H)-pyridinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4thiomorpholinyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 7-(1-azepanyl)-5-chloro-6-(2,6-difluoro-4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(4-fluorocyclohexyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 6-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)hexanoic acid;
 - 2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-isopropyl-6-{2-[(trifluoromethyl)sulfanyl]phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N-[4-(trifluoromethyl)phenyl]-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-(4,4,4-trifluoro-2-methylbutyl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-(3-methyl-3butenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2,6-difluoro-4-methoxyphenyl)-7-isobutyl[1,2,4]triazolo[1,5-a]pyrimidine;
- 7-cyclopentyl-6-(2,6-difluoro-4-methoxyphenyl)-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-thienyl)-N-[(1R)-2,2,2-trifluoro-1-methylethyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

4-(5-chloro-7-(2,2,2-trifluoro-1-methyl-ethylamino)[1,2,4]triazolo[1,5-a]pyrimidin-6-yl]-3,5-difluoro-phenol;

- {5-chloro-6-[2,6-difluoro-4-(2,2,2-trifluoro-ethoxy)-phenyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-(2,2,2-trifluoro-1-methyl-ethyl)amine;
 - 5-chloro-6-{2,6-difluoro-4-(methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 10 (5-chloro-6-{4-[2-(2-ethoxyethoxy]-ethoxy]-2,6-difluoro-phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
- (5-chloro-6-{2,6-difluoro-4-[2-(2-methoxy-ethoxy)ethoxy]-phenyl}[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-)-(2,2,2-trifluoro-1-methylethyl)amine;
 - 5-chloro-6-[2,6-difluoro-4-(3-furan-3-ylmethoxy)phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-yl}-N-(2,2,2-trifluoro-1-methylethyl)amine;
- 5-chloro-6-(2,5-difluoro-4-methoxyphenyl)-N-(1,2,2-trimethylpropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]-5-methoxy[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(2-fluoro-4-methoxy-6-chlorophenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-(2-fluoroethoxy)phenyl]-N-ethyl-N-(2-methyl-2-propenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-[2-(4-{5-chloro-7-[(2,2,2-trifluoro-1-methylethyl)amino][1,2,4]triazolo[1,5-a]pyrimidin-6-yl}-3,5-difluorophenoxy)ethoxy]ethanol;

- 5-chloro-6-(2,3-difluoro-4-methoxyphenyl)-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-{4-(2-fluoroethoxy)-2,6-difluorphenyl}-N-(2,2,2-trifluoro-1-methylethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-(4-chlorobenzyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-pyridinyl)-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;

15

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(1-ethylpentyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(2-chlorophenyl)-1-20 piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(2-chloro-6-fluorophenyl)-7-[4-(4-methoxyphenyl)-3-methyl-1-piperazinyl][1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-cyclopentyl-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-7-phenoxy-6-(4-methoxy-phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-N-cyclopentyl-6-(4-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5,7-diphenoxy-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-cyclopentyl-6-(2-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5

5-chloro-N,N-diethyl-6-[4-methoxyphenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-N,N-diethyl-6-[2,4-dichlorophenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

N-bicyclo[2.2.1]hept-2-yl-5-chloro-6-(2,4-dichlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-6-(2-chloro-6-fluorophenyl)-7-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-cyano-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

20

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-(methylsulfanyl)-7-(4-methyl-1-piperidinyl)-6-(2-chloro-5-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-7-(1,4-dioxa-8-azaspiro[4,5]dec-8-yl)-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-(methylsulfanyl)phenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

2-methyl-6,7-di-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2-methyl-6-phenyl-7-(4-chlorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

- 5 2-trifluoromethyl-6-phenyl-7-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5,7-diphenoxy-6-(2-methylpropyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(3,4-difluorophenyl)-N-(isopropyl)[1,2,4]triazolo[1,5-a]pyrimidin-7amine;
 - 5-bromo-6-(4-bromophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-bromo-6-(4-trifluoromethylphenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;
 - 5-chloro-6-(3,4-difluorophenyl)-7-dimethylamino[1,2,4]triazolo[1,5-a]pyrimidine;
- 5-chloro-6-(4-trifluoromethylphenyl)-N-(ethyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 7-(1-azepanyl)-5-chloro-6-(4-tert-butylphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;
- ethyl {[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]amino}acetate;
 - diethyl 5-chloro-6-(2,6-difluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-malonate;

5-chloro-6-(2,5-difluorophenyl)-N-(3-methyl-2-butenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

[5-chloro-6-(2-chloro-6-fluorophenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]acetic acid methyl ester;

5-chloro-6-(2,6-difluorophenyl)-7-(2-ethyl-1H-imidazol-1-yl)[1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-N,N-diethyl-6-[4-(methylsulfanyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

ethyl [6-(2-chloro-6-fluorophenyl)-7-(4-methyl-1-piperidinyl)- [1,2,4]triazolo[1,5-a]pyrimidin-5-yl]acetate;

5-chloro-N-ethyl-N-(2-methyl-2-propenyl)-6-(4-phenoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

20

dimethyl 2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]malonate;

diethyl 2-{[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]oxy}-2-isobutylmalonate;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]-1,3cyclohexanedione;

2-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl]cyclohexanone;

5-chloro-7-(3-nitro-4-methylanilino)-6-(2, 4, 6-trifluorophenyl)
[1,2,4]triazolo[1,5-a]pyrimidine;

7-cyclohexyl-6-[2,6-difluoro-4-(2-methoxyethoxy)phenyl]5-(2-methoxyethoxy)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-2-ethyl-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

7-(3-bromophenyl)-6-(3-chlorophenyl)-2-ethyl[1,2,4]triazolo[1,5-a]pyrimidine;

7-(4-bromophenyl)-2-ethyl-6-[4-(trifluoromethyl)phenyl][1,2,4]triazolo[1,5-a]pyrimidine;

5-chloro-6-(2-chloro-6-fluorophenyl)-N-(3,4,5-trimethoxybenzyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

15

25

7-(2-benzyl-4,5-dihydro-1H-imidazol-1-yl)-5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

N-4-[5-chloro-6-(2-chloro-6-fluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-yl-N,N-1-diethyl-1,4-pentanediamine;

5-chloro-N-(3-methyl-2-butenyl)-6-phenyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-dimethylamino-6-phenyl-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

5-chloro-7-[(2-furylmethyl)sulfanyl]-6-(4-methoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidine;

6-[1,1'-biphenyl]-4-yl-5-chloro-N-cyclopentyl[1,2,4]triazolo[1,5-a]pyrimidin-7-30 amine;

6-[4-(benzyloxy)phenyl]-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-chloro-N-[(2,2-dichlorocyclopropyl)methyl]-6-(3,4,5-
- trimethoxyphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - N-cyclopentyl-6-(2-fluorophenyl)-5-hydrazino[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-N-ethyl-6-(2-methylphenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 6-(4-tert-butylphenyl)-5-chloro-N-isopropyl[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
- 5-chloro-6-[2,6-difluoro-4-[(3-methyl-2-butenyl)oxy]phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-6-[2,6-difluoro-4-(1-propenyloxy)phenyl]-N-(2,2,2-trifluoro-1-methylethyl)-l[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;
 - 5-chloro-N-(3-tricyclo[2.2.1.0^{2,6}]hept-1-yl)-6-(2,4,6-trifluorophenyl)[1,2,4]triazolo[1,5-a]pyrimidin-7-amine;

- 5-azido-7-cyclohexyl-6-(2-fluoro-6-chlorophenyl) [1,2,4]triazolo[1,5-25 a]pyrimidine;
 - 5-azido-6-[2-chloro-6-fluorophenyl]-7-(4-methyl-1-piperidinyl)[1,2,4]triazolo[1,5-a]pyrimidine;

2,5-dichloro-7-(4-methyl-1-piperidinyl)-6-[2-chloro-6-fluorophenyl][1,2,4]triazolo[1,5-a]pyrimidine or a pharmaceutically acceptable salt thereof is administered.

- 5 96. Use of a substituted triazolopyrimidine derivative to make a medicament for treating or inhibiting the growth of cancerous tumour cells and associated diseases or for the treatment or prevention of multiple drug resistance (MDR).
 - 97. A substituted triazolopyrimidine derivative for use as a pharmaceutical.

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 10 January 2002 (10.01.2002)

PCT

(10) International Publication Number WO 02/002563 A3

- (51) International Patent Classification⁷: A61K 31/505, C07D 487/04
- (21) International Application Number: PCT/US01/20672
- (22) International Filing Date: 28 June 2001 (28.06.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/215,585

30 June 2000 (30.06.2000) US

- (71) Applicant: WYETH [US/US]; Five Giralda Farms, Madison, NJ 07940 (US).
- (72) Inventors: SCHMITT, Mark, R.; 107 Kensington Avenue, Trenton, NJ 08618 (US). KIRSCH, Donald, R.; 152 Terhune Road, Princeton, NJ 08540 (US). HARRIS, Jane, E.; 19 Meadow Lane, Pennington, NJ 08534 (US). BEYER, Carl, F.; 32 Hambletonian Road, Chester, NY 10918 (US). PEES, Klaus-Juergen; Soonwaldstrasse 9, 55129 Mainz (DE). CARTER, Paul; Amriswilstrasse 7, 88400 Biberach an der Riss (DE). PFRENGLE, Waldemar; Junkermuehle 1, 55444 Siebersbach (DE). ALBERT, Guido; Volxheimerstrasse 4, 55546 Hackenheim (DE).

- (74) Agents: BERG, Egon, E.; Wyeth, Patent Law Deptartment, Five Giralda Farms, Madison, NJ 07940 et al. (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 3 January 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SUBSTITUTED-TRIAZOLOPYRIMIDINES AS ANTICANCER AGENTS

(57) Abstract: The invention provides a method of treating of inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof which comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof and further provides a method of treating or inhibiting the growth of cancerous tumour cells and associated diseases in a mammal in need thereof by interacting with tubulin and microtubules and promoting microtubule polymerization which comprises administering to said mammal an effective amount of a substituted triazolopyrimidine derivative or a pharmaceutically acceptable salt thereof.

Inter I Application No PC I/US 01/20672

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61K31/505 C07D487/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ CO7D \ A61K$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, BEILSTEIN Data, EPO-Internal, PAJ, WPI Data

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; retrieved from STN Database accession no. 1981:609676 XP002205268	1-3,6-8, 11,12, 15, 23-25, 28-30, 33,34, 37, 45-47, 50-52, 55,56, 59, 67-72, 96,97
	abstract; RN 15421-84-8 & JP 56 110620 A (MOCHIDA PHARMACEUTICAL CO LTD) 1 September 1981 (1981-09-01) 	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.				
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filling date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filling date but later than the priority date claimed	"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "8" document member of the same patent family				
Date of the actual completion of the International search 10 July 2002	Date of mailing of the international search report 31/07/2002				
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tet. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Van Amsterdam, L				

PC://J 01/20672

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; retrieved from STN Database accession no. 1981:497710 XP002205269	1-3,6-8, 11,12, 15, 23-25, 28-30, 33,34, 37, 45-47, 50-52, 55,56, 59, 67-72, 96,97
	abstract; RN 78706-33-9, 78706-41-9 -& CHEMICAL ABSTRACTS, vol. 95, no. 11, 14 September 1981 (1981-09-14) Columbus, Ohio, US; abstract no. 97710, XP002205266 abstract & A,P. NOVIKOVA ET AL: KHIMFARM. ZH., vol. 15, no. 4, 1981, pages 31-35,	
X	T. OKABAYASHI: CHEM. PHARM. BULL., vol. 8, no. 2, 1960, pages 162-167, XP001040491	1-3,6-8, 11,12, 15, 23-25, 28-30, 33,34, 37, 45-47, 50-52, 55,56, 59,70, 72,96,97
	table IV; page 166, lines 9-17 /	

Intel al Application No PC I / US 01/20672

A 40	A DOMINICATO ACMORPHE TO BE STUDIED	
C.(Continue Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DATABASE CAPLUS 'Online! CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; STN, CAPLUS accession no. 1991:81809, retrieved from STN Database accession no. 1991:81809 XP002205270	1-3,6-8, 11,12, 23-25, 28-30, 33,34, 45-47, 50-52, 55,56, 70-72, 96,97
	abstract; RN 131258-83-8, 131258-85-0, 131278-46-1, 131278-47-2, 131278-48-3, 131278-49-4, 131278-50-7, 131278-51-8, 131278-52-9, 131278-53-0, 131278-54-1, 131278-55-2, 131278-56-3, 131278-57-4, 131278-68-5, 131278-69-6, 131278-60-9, 131278-61-0, 131278-62-1, 131278-63-2, 131278-64-3, 131278-65-4, 131278-68-7, 131302-05-1, 131826-51-2 -& CHEMICAL ABSTRACTS, vol. 114, no. 9, 4 March 1991 (1991-03-04) Columbus, Ohio, US; abstract no. 81809, XP002205267 abstract & JP 02 212488 A (S. SHIMIZU) 23 August 1990 (1990-08-23)	90,97
X	M. SUIKO ET AL: SGRIC. BIOL. CHEM., vol. 41, no. 10, 1977, pages 2047-2053, XP001059128	1,2,6,7, 11,15, 23,24, 28,29, 33,37, 45,46, 50,51, 55,59, 70-72, 96,97
	page 2051, table IV, entries 7-8	
X	US 4 444 774 A (J.P. DUSZA ET AL) 24 April 1984 (1984-04-24) column 1, lines 7-36; examples 2, 3, 6, 8, 9, 13	70,72,97
X	DD 55 956 A (E. TENOR ET AL) column 2, line 7 - column 3, line 3; examples	70,72,97
X	DD 61 269 A (E. TENOR ET AL) column 2, lines 3-16; examples -/	70,72,97
	,	

Interi al Application No
PC1, US 01/20672

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A EP 0 305 093 A (THE WELLCOME FOUNDATION) 1 March 1989 (1989-03-01) page 4, line 37 - page 5, line 7	1,23,45, 67-69, 73,96
A US 5 593 996 A (KJ. PEES ET AL) 14 January 1997 (1997-01-14) cited in the application table I, compounds 30, 75	2,24,46
FR 2 784 380 A (AMERICAN CYANAMID CO) 14 April 2000 (2000-04-14) page 28, compound 25	2,24,46

tional application No. PCT/US 01/20672

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Although claims 1-69, 73-95 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged
effects of the compound/composition. 2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this International application, as follows:
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

rmation on patent family members

Inter al Application No
PC 1/US 01/20672

_						PC 1/US	01/20672
	locument arch report		Publication date		Patent family member(s)		Publication date
JP 561	10620	A	01-09-1981	JP	5802777	3 B	11-06-1983
US 444	4774	A	24-04-1984	NONE			
DD 559	56	A		NONE			
DD 612	:69	A		NONE			
EP 305	093	A	01-03-1989	AP		9 A	14-06-1990
				AT	103919		15-04-1994
				AU	61339		01-08-1991
				AU CA	2097988 1336438		16-02-1989 25-07-1995
				CN	103153		08-03-1989
				CN	108590		27-04-1994
				DD	289529		02-05-1991
				DE	388889		11-05-1994
				DE	388889		20-10-1994
				DK	16895		18-07-1994
				EP	030509		01-03-1989
				ES	206303		01-01-1995
				FI		B A ,B,	16-02-1989
				HU	5047		28-02-1990
				IL	8743		31-01-1993
				JP	106837		14-03-1989
				MC MX	1969 1265		29-09-1989 01-10-1993
				NO	88361		16-02-1989
				NO	17676		13-02-1995
				NZ	22580		26-07-1991
				PH	2574		18-10-1991
				PL	27421		02-05-1989
				PT		0 A ,B	14-09-1989
				SU	176975		15-10-1992
				RU	201774	1 C1	15-08-1994
				SU	183637		23-08-1993
				US	537121		06-12-1994
				US	538075		10-01-1995
				US	509153		25-02-1992
				U\$	544795 553897		05-09-1995 23-07-1996
				US YU	15698		23-07-1996 30-04-1990
				YU	20278		30-04-1990
				YU	20288		30-04-1990
				ZA	880599		25-04-1990
US 559	 93996	Α	14-01-1997	AT	15925		15-11-1997
				AT	19215		15-05-2000
				AU	66720		14-03-1996
				AU	304359		01-07-1993
				BR	920517		06-07-1993
				CA CN	208640 107514		01-07-1993 11-08-1993
				CN	114111		29-01-1997
				DF	6922274	6 DI	/(!-! -!44/
				DE De	6922274 6922274		20-11-1997 12-02-1998
				DE DE DE	6922274 6922274 6923097	6 T2	12-02-1998 31 - 05-2000

INTERNATIONAL SEARCH REPORT mation on patent family members

PCI/US 01/20672

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 5593996	Α	 	DK	550113	<u>г</u> з	09-02-1998
			DK	782997		07-08-2000
			EP	0550113 /	12	07-07-1993
			EP	0782997	42	09-07-1997
			ES	2108727	Г3	01-01-1998
			ES	2147411	Γ3	01-09-2000
			GR	3025920	Г3	30-04-1998
			GR	3033916	Г3	30-11-2000
			HK	1010105 /	A1	23-06-2000
			HU	217349	3	28-01-2000
			IL	104244		13-07-1997
			JP	5271234 /	4	19-10-1993
			NZ	245581 /	Ą	26-07-1995
			PL	174047	31	30-06-1998
			PL	171579 E	31	30-05-1997
			PT	782997	Γ	29-09-2000
			RU	2089552 (10-09-1997
			SG	47563	A1	17-04-1998
			ZA	9210043		28-07-1993
FR 2784380	A	14-04-2000	FR	2784380 /	41	14-04-2000