Kvazistatična polja (obravnava indukcije)

Lenzevo pravilo

"Sprememba magnetnega pretoka skozi tokokrog (zanko) požene električno tok, ki se upira vzroku svojega nastanka."

5.1 Maxwellova formulacija elektromagnetne indukcije

Faradayjev zakon indukcije, ki je kvantitativni zakon, pravi:

$$\Gamma_e = -rac{d\phi_m}{dt}$$

Če napišemo cirkulacijo in magnetni pretok z integrali dobimo:

$$\oint\limits_C ec{E} \cdot dec{r} = -rac{d}{dt} \int\limits_S ec{B} \cdot dec{S}$$

kjer je zanka C rob ploskve S. Uporabimo Stokesov izrek na levi, na desni pa nesemo odvod pod integral saj se zanka ne spreminja s časom:

$$\int
abla imes ec{E} \cdot dec{S} = - \int rac{\partial ec{B}}{\partial t} \ dec{S} \, .$$

Dobimo Kinematično Maxwellovo enačbo

$$\mathbf{
abla} imes \mathbf{ec{E}} = -rac{oldsymbol{\partial} \mathbf{ec{E}}}{oldsymbol{\partial} \mathbf{t}}$$

Opazimo še, da ne vsebuje konstant kot parametre.

5.1.1 Maxwellov impulz magnetnega polja

Prepišimo zgornjo enačbo z uporabo magnetnega vektorskega potenciala. Dobimo:

$$abla imes ec{E} = -rac{\partial}{\partial t} (
abla imes ec{A}) =
abla imes \left(-rac{\partial ec{A}}{\partial t}
ight)$$

Odvod deluje samo na t zato ga lahko nesemo v rotor. Rotorja se lahko znebimo in dobimo:

 $ec{\mathbf{E}} = -rac{\partial ec{\mathbf{A}}}{\partial t}$ Povezava z 2. Newtonovim zakonom:

$$ec{F}=eec{E}=-erac{\partialec{A}}{\partial t}=-rac{\partial(eec{A})}{\partial t}=rac{dec{p}}{dt}$$

Zveza $e\vec{A}$ torej predstavlja gibalno količino. Indukcija je impulz te gibalne količine, ki jo vnesemo v sistem.

5.2 Popravljen (kvazistatičen) sistem Maxwellovih enačb

$$abla \cdot ec{E} = rac{
ho}{arepsilon_0} \qquad
abla \cdot ec{B} = 0$$

$$abla imes ec{E} = -rac{\partial ec{B}}{\partial t} \qquad
abla imes ec{B} = \mu_0 ec{j}$$

In ker se tok ohranja na zankah:

$$abla \cdot \vec{j} = 0$$

5.2.1 Elektromagnetna potenciala za kvazistatična polja

Zanima nas, kako zapisati $ec{E}$ in $ec{B}$ z osnovnima potencialoma arphi in $ec{A}$.

1. Velja:

$$abla \cdot \vec{B} = 0 \rightarrow \vec{B} =
abla imes \vec{A}$$

2. Velja:

$$egin{align}
abla imes ec{E} &= -rac{\partial ec{B}}{\partial t} = -
abla imes rac{\partial ec{A}}{\partial t} \
abla imes \left(ec{E} + rac{\partial ec{A}}{\partial t}
ight) = 0 \
onumber \end{split}$$

Če naj to velja moramo $ec{E}$ defnirati:

$$ec{E} = -
abla arphi - rac{\partial ec{A}}{\partial t}$$

Torej, v kvazistatičnem sistemu je električno polje potano z električnim **in** magnetnim vektorskim potencialom.

5.3 Prevodniki in Ohmov zakon [Glej slike]

Snovi, v katerih so nosilci naboja prosto gibljivi, imenujemo prevodniki. Nosilci naboja so lahko elektroni, ioni, vrzeli, ... Za prevodnike velja **Ohmov zakon**:

$$ec{j} = \sigma_E ec{E}$$

kjer je σ_E **električna prevodnost**. V ravnvesju so naboji enakomerno porazdeljeni po snovi, ampak ko vključimo električno polje se pojavita dva pola. Ti dva generirata nasprotno enako

električno polje, tako da v prevodniku ni električnega polja (ob predpostavki, da je dovolj parov, ki z ločitvijo kompenzirajo zunanje polje). Ker je znotraj polje 0 pomeni, da je **gibljivi naboj na površini prevodnika**. Na površini velja:

$$ec{E}\cdotec{n}=rac{\sigma}{arepsilon_0}$$

kjer je σ površinski naboj. Inducirana površinska gostota naboja zasenči zunanje električno polje. Električno polje je v ravnovesju vedno pravokotno na površino prevodnika. Če to ne bi veljalo, bi tekel tok in ne bi bili v ravnovesju. Torej: **Površina prevodnika je ekvipotencialna ploskev.**

5.3.1 Časovna konstanta prevodnika

Ko vključimo električno polje se v prevodniku prerazporedi naboj. Zanima nas, kako hitro se vzpostavi ravnovesje. Uporabimo **kontinuitetno enačbo**, Ohmov zakon in 1. Maxwellovo enačbo:

$$abla \cdot ec{j} + rac{\partial
ho}{\partial t} = 0 \qquad ec{j} = \sigma_E ec{E} \qquad
abla \cdot ec{E} = rac{
ho}{arepsilon_0}$$

Dobimo:

$$0 =
abla \cdot (\sigma_E ec{E}) + rac{\partial
ho}{\partial t} = rac{\partial
ho}{\partial t} + rac{\sigma_E}{arepsilon_0}
ho$$

Rešitev te diferencialke pa že poznamo in sicer:

$$ho(ec{r},t) =
ho_0 e^{-t/ au} \quad au = rac{arepsilon_0}{\sigma_E}$$

au je značilen čas, večja kot je prevodnost prej bo prišel prevodnik v ravnovesje. Recimo za železo je to $\sim 10^{-19}~{
m s}$.

5.4 Mikroskopski izvor prevodnosti

Zanima nas, če znamo izpeljati prevodnost. Uporabimo **Deudejev model prevodnosti** (pravzaprav le 2. Newtonov zakon)

$$mrac{dec{v}}{dt}=-m\gammaec{v}+eec{E}(t)$$

kjer člen z γ opisuje proces disipacije (v kristalih je to sipanje, v elektrolitih hidrodinamika ipd.). Poglejmo si, ko je $\vec E=0$. Takrat rešitev že spet takoj poznamo:

$$ec{v}(t) = ec{v}_0 e^{-\gamma t}$$

Hitrost eksponentno pojema s časom. Imamo disipacijo energije. To je **Izvor Jouleove** toplote: $W_k=rac{mv^2}{2}=rac{mv_0^2}{2}e^{-2\gamma t}$ Ko pa imamo električno polje ec E
eq 0, rešujemo z

nastavkom:

$$v(t) = rac{e}{m} \int_{-\infty}^{t} e^{-\gamma(t-t')} \vec{E}(t') \ dt'$$

Tok lahko zapišemo tudi z n; številsko volumsko gostoto naboja in vstavimo naš nastavek:

$$ec{j} =
ho ec{v} = ne ec{v} =
onumber \ = rac{ne^2}{m} \int_{-\infty}^t e^{-\gamma(t-t')} ec{E}(t') \; dt'$$

Za konstatno električno polje, ga lahko premaknemo ven iz integrala in nato pointegriramo. Pazi, ker je bilo treba uvesti še novo spremenljivko za eksponent:

$$ec{j}=rac{ne^2}{m\gamma}ec{E}$$

Tako uvedemo:

$$\sigma_E = rac{ne^2}{m\gamma}$$

Prevodnost je večja za večje gostote naboja oz. je manjša za težje nosilce naboja ali pa če so nosilci močno dušeni.

5.5 Velikosti električne prevodnosti

Enote so S/m, kjer je S siemens oz. $S=1/\Omega$. Tipično je prevodnost zelo odvisna od temperature.

Material	Prevodnost
Aluminij	$3\cdot 10^7~\mathrm{S/m}$
Železo	$9.9\cdot 10^7~\mathrm{S/m}$
$7Ba_2Cn_3O_7$ nad $T=92\ K$	$10^6~\mathrm{S/m}$
$7Ba_2Cn_3O_7$ pod $T=92\ K$	$\infty~\mathrm{S/m}$
Steklo $T=300\ K$	$10^{-15}~\mathrm{S/m}$
Steklo $T=1000\ K$	$10^{-7}~\mathrm{S/m}$

Omejimo električni tok na vodnik in vzemimo Ohmov zakon:

$$\int ec{j} \cdot dec{l} = \sigma_E \int \limits_{(1)}^{(2)} ec{E} \cdot dec{l} = \sigma[arphi(2) - arphi(1)]$$

Hkrati pa tudi velja:

$$\int ec{j} \cdot dec{l} = \int ec{j} \cdot ec{t} rac{d^3 ec{r}}{S(l)} = I \int rac{dl}{S(l)}$$

Enačimo ta dva konca in vpeljemo **upornost** R kot:

$$R = \int rac{dl}{\sigma_E S(l)}$$

Dobimo tudi znano zvezo:

$$U = -(\varphi(2) - \varphi(1)) = RI$$

5.6. Disipacija energije

Na naboje v elektromagnetnem polju delujeta električna in magnetna sila. Magnetna sila je vedno pravokotna na tir delca, zato ne troši/dodaja energije. Za silo velja:

$$ec{F}=\int
hoec{E}\;d^3ec{r}$$

Izračunajmo **Joulevo moč** kot integral skalarnega produkta gostote sile in hitrosti: $P=\int \vec{f}\cdot\vec{v}\;d^3\vec{r}=\int \frac{\vec{j}}{\rho}(\rho\vec{E}+\vec{j}\times\vec{B})\;d^3\vec{r}=$ $=\int \vec{j}\cdot\vec{E}\;d^3\vec{r}$ kjer je vektorski produkdt zaradi vzporednosti[??]. Ta izraz nam opisuje izgube pri gibanju nabitih delcev.

5.7 Kapacitativnost

V splošnem želimo vpeljati kapacitativnost prevodnika. Vzamemo N prevodnikov $i=1,\ldots,N$ in si poglejmo celotno energijo polja. Ker so prevodniki, so naboji le na površini tako da 3D integral pretvorimo v:

$$ho(ec{r}) \; d^3ec{r}
ightarrow \sum_i \sigma_i \; dS_i$$

Dobimo:

$$W_e = rac{1}{2} \sum_i \oint arphi \sigma_i \ dS_i = rac{1}{2} \sum_i arphi_i e_i$$

kjer je φ konstanta, φ_i predstavlja potencial na površini i-tega prevodnika, e_i pa njegov naboj. Sedaj izrazimo isto energijo se drugače:

$$egin{align} W_e &= rac{1}{2} \int\limits_V
ho(ec{r}) arphi(ec{r}) \ d^3ec{r} \quad arphi(ec{r}) = rac{1}{4\piarepsilon_0} \int\limits_V rac{
ho(ec{r'})}{|ec{r}-ec{r'}|} \ d^3ec{r'} \ &= rac{1}{8\piarepsilon_0} \int\limits_V \int\limits_V rac{
ho(ec{r})
ho(ec{r'})}{|ec{r}-ec{r'}|} \ d^3ec{r} \ d^3ec{r} \ d^3ec{r'} = \end{split}$$

Tu zopet prepoznamo, da je ves naboj na površini prevodnika:

$$=rac{1}{8\piarepsilon_0}\sum_{i,j}\int\limits_{(i)}\int\limits_{(j)}rac{\sigma_i\sigma_j}{|ec{r}_i-ec{r}_j|}\;dS_i\;dS_j=$$

kjer sta radij vektorja do poljubnih točk na površini i-tega in j-tega prevodnika. Sedaj uvedemo $\int \sigma_i \ dS_i = e_i$

$$=rac{1}{2}\sum_{i,j}rac{1}{4\piarepsilon_0e_ie_j}e_ie_j\int\limits_{(i)}\int\limits_{(j)}rac{\sigma_i\sigma_j}{|ec{r}_i-ec{r}_j|}~dS_i~dS_j=$$

Sedaj lahko uvedemo C_{ij}^{-1} ; inverz tenzorja kapacitativnosti. Vidimo, da kapacitativnost normiramo na naboj, hkrati pa tudi vsebuje informacije o porazdelitvi nabojev po prostoru.

$$C_{ij}^{-1} = rac{1}{4\piarepsilon_0 e_i e_j} \int\limits_{(i)} \int\limits_{(j)} rac{\sigma_i \sigma_j}{|ec{r}_i - ec{r}_j|} \ dS_i \ dS_j$$

Združimo izraza skupaj:

$$W_e = rac{1}{2}\sum_i arphi_i e_i = rac{1}{2}\sum_{i,j} C_{ij}^{-1} e_i e_j$$

Torej je:

$$arphi_i = \sum_j C_{ij}^{-1} e_j \Rightarrow e_i = \sum_j C_{ij} arphi_j$$

To pa poznamo od prej, saj je to le e=CU.

5.8 Induktivnost

Podobno kot kapacitivnost samo v jeziku magnetizma. Imamo $i=1,\dots,N$ tokovnih vodnikov, po katerih teče tok I_i . Računamo celotno energijo magnetnega polja. Zavedamo se, da smo tok omejili samo na tokovne vodnike:

$$ec{j} d^3 ec{r} = I dec{l}$$

Torej:

$$W_m = rac{1}{2} \sum_i I_i \oint ec{A} \cdot dec{l} =$$

Tu se daj uporabimo Stokesov iztek, da dobimo:

$$=rac{1}{2}\sum_{i}I_{i}\iint_{S}
abla imesec{A}\:dec{S}=rac{1}{2}\sum_{i}I_{i}\:\int_{(i)}ec{B}\cdot dec{S}=rac{1}{2}\sum_{i}I_{i}\phi_{m_{i}}$$

Zapišimo to energijo še na drugi način. Uporabimo splošno rešitev za vektorski potencial:

$$W = rac{1}{2} rac{\mu_0}{4\pi} \int\limits_V \int\limits_V rac{ec{j}(ec{r})ec{j}(ec{r'})}{|ec{r}-ec{r'}|} \, d^3ec{r} \, d^3ec{r'} =$$

Spet se zavedamo, da smo omejili tok na tokovne vodnike:

$$I_{i} = rac{1}{2} \sum_{i,j} I_{i} I_{j} \int \limits_{(i)} \int \limits_{(j)} rac{d ec{l}_{i} d ec{l}_{j}}{|ec{r}_{i} - ec{r}_{j}|} = rac{1}{2} \sum_{i} L_{ij} I_{i} I_{j}$$

kjer smo uvedli tenzor induktivnosti kot:

$$L_{ij} = rac{\mu_0}{4\pi} \oint\limits_{(i)} \oint\limits_{(j)} rac{dec{l}_i dec{l}_j}{|ec{r}_i - ec{r}_j|}$$

Po diagonali L_{ii} ima tenzor lastne induktivnosti. Velja pa še:

$$\phi_{m_i} = \sum_i L_{ij} I_j$$

Če to časovno odvajamo, dobimo znan izraz $U=L\dot{I}$.

5.11 Kožni pojav (Skin effect)

Ko **izmenični tok** teče skozi **prevodnik**, se razporedi tako, da je gostota toka največja blizu sten prevodnika. Temu se reče kožni pojav.

5.11.1 Osnovne enačbe kožnega pojava

Uporabimo Maxwellove enačbe in Ohmov zakon za prevodnik:

$$abla \cdot ec{E} = rac{
ho}{arepsilon_0} = 0 \qquad
abla \cdot ec{B} = 0$$

$$abla imes ec{E} = -rac{\partial ec{B}}{\partial t} \qquad
abla imes ec{B} = \mu_0 ec{j} = \mu_0 \sigma_E ec{E}$$

Na zadnji dve enačbi delujemo z rotorjem:

$$abla imes (
abla imes ec{E}) = -rac{\partial}{\partial t}
abla imes ec{B} = -\mu_0 \sigma_E rac{\partial ec{E}}{\partial t}$$

$$abla imes (
abla imes ec{B}) = \mu_0 \sigma_E
abla imes ec{E} = -\mu_0 \sigma_E rac{\partial ec{B}}{\partial t}$$

Tu uporabimo vektorsko identiteto: $abla imes (
abla imes ec{A}) =
abla (
abla \cdot ec{A})
abla^2 ec{A}$

Dobimo dve "difuzijski" enačbi za polji:

$$abla^2ec E=\mu_0\sigma_Erac{\partialec E}{\partial t}$$

$$abla^2ec{B}=\mu_0\sigma_Erac{\partialec{B}}{\partial t}$$

Iščemo rešitve z nastavkom, kjer smo predpostavili, da lahko časovno odvisnost zapišemo kot sinus in kosinus pri neki frekvenci:

$$ec{E}(ec{r},t)=ec{E}(ec{r})e^{-i\omega t}$$

$$ec{B}(ec{r},t)=ec{B}(ec{r})e^{-i\omega t}$$

Tako dobimo Helmholtzovo enačbo:

$$abla^2ec E=k^2ec E$$
 $abla^2ec B=k^2ec B$

kjer smo definirali:

$$k^2 = -i\omega \mu_0 \sigma_E
ightarrow k = rac{1-i}{\sqrt{2}} \sqrt{\omega \mu_0 \sigma_E}$$

Rešitev v eni dimenziji je tako:

$$E(z) = \exp\left(-\sqrt{rac{\omega \mu_0 \sigma_E}{2}}z
ight) \exp\left(i\sqrt{rac{\omega \mu_0 \sigma_E}{2}}z
ight)$$

Udorno globino izračunamo kot:

$$x_0 = \sqrt{rac{2}{\omega \mu_0 \sigma_E}}$$

5.11.2 Geometrija polj in ustrezna rešitev

Vzemimo cilindrčne koordinate (r,ϕ,z) in cilindrično bazo $(\hat z, \hat z)$ Neničelna prispevka sta samo:

$$E_z(r,t) = E_z(r)e^{-i\omega t}$$

$$B_{\phi}(r,t)=B_{\phi}(r)e^{-i\omega t}$$

Laplaceov operator v cilindrični bazi in cilindričnih koordinatah je:

$$rac{1}{r}rac{\partial}{\partial r}\left(rrac{\partial}{\partial r}
ight)-rac{1}{r^2}$$

Rešujemo Helmholtzovo enačbo direktno:

$$rac{1}{r}rac{\partial}{\partial r}\left(rrac{\partial B_{\phi}}{\partial r}
ight)-rac{B_{\phi}}{r^{2}}=k^{2}B_{\phi}$$

$$rac{1}{r}rac{\partial}{\partial r}\left(rrac{\partial E_z}{\partial r}
ight)-rac{E_t}{r^2}=k^2E_z$$

Ti dve enačbi na prvi videz ne delujeta sklopljeni, a velja še povezava med njima:

$$abla imes ec{E} = -rac{\partial ec{B}}{\partial t}$$

Pri nas ostane le ena smer:

$$i\omega B_{arphi} = (
abla imes ec{E})_{\phi} = -rac{\partial E_z}{\partial r}$$

Torej ja **sta povezani**. Rešitev enačb so **Modificirane Besselove funkcije** (morajo biti sposobne vzeti kompleksen argument). Torej:

$$E_z(r) = AJ_0(kr)$$

Za rešitev magnetnega polja pa zgornjo enačbo samo odvajamo po času in dodamo minus:

$$B_{\phi}(r)=-iArac{k}{\omega}J_{1}(kr)$$

kjer je k tak kot prej.

5.11.3 Tok skozi cilindričen vodnik

Gostoto električnega toka lahko sedaj izračinamo:

$$j=\sigma_E E_Z=\sigma_E A J_0(kr)$$

Celoten tok je potem:

$$I=\int ec{j}\cdot \hat{n}\;dS=\sigma_E\int_0^a E_z 2\pi r dr=0$$

Tu sedaj uporabimo okol obrnjeno zvezo od prej, ko smo delovali z Laplace operatorjem v cilindričnih koordinatah in zvezo med odvodom električnega polja in magnetnim poljem:

$$=irac{2\pi a}{\omega\mu_0}|_0^a=rac{2\pi a}{\mu_0}B_\phi(a)$$

Tok skozi žico je pogojen z odvodom električnega polja na popvršini žice oz. z magnetnim poljem na površini žice. Loči se močen in šibel kožni pojav glede na frekvenco (velikost frekvence).