# **Hackathon Project Phases Template**

## **Project Title:**

Blog Generation Using LLaMA 2 and Streamlit

### **Team Name:**

Byte Stormers

### **Team Members:**

- Shaik Zuveriya Tabassum
- Vemuri Devi Sai Sudha
- Yadapalli Anuradha

## Phase-1: Brainstorming & Ideation

### **Objective:**

This project aims to create a customizable, cost-effective, and privacy-focused Al blog generator using LLaMA 2 and Streamlit, ensuring ease of use and scalability for various users.

## **Key Points:**

#### 1 Problem Statement:

**High Cost & Dependency on Proprietary Al Tools –** Many blog generation tools rely on expensive, subscription-based Al models, limiting access for individuals and small businesses.

**Lack of Customization & Privacy –** Existing solutions often lack real-time customization options and may store user data on cloud servers, raising privacy concerns.

#### 2. Proposed Solution:

Cost-Effective & Open-Source – Uses LLaMA 2 instead of expensive proprietary AI models.

Interactive & Customizable – Allows real-time adjustments to tone, style, and length via Streamlit.

Privacy-Focused – Supports local deployment, ensuring data security.

User-Friendly & Scalable – Simple interface accessible to both developers and non-developers.

Versatile Application – Suitable for bloggers, businesses, and researchers to generate high-quality content efficiently.

#### 3. Target Users:

Businesses & Marketers – Create engaging marketing content, articles, and product descriptions.

Students & Researchers – Summarize research papers, draft reports, and write academic content.

Educators & Trainers – Develop educational materials and learning resources with ease.

Tech Enthusiasts & Developers – Experiment with Al-generated content and build innovative applications.

#### 4. Expected Outcome:

This provides a cost-effective, customizable, and secure Al-powered blog generator using LLaMA 2 and Streamlit.

It offers real-time content adjustments, ensures data privacy, and serves bloggers, businesses, and researchers with an efficient and user-friendly writing too.

## **Phase-2: Requirement Analysis**

### **Objective:**

The objective of requirement analysis is to define the technical and functional needs of the AI-powered blog generator, ensuring feasibility, scalability, and user-friendliness. It helps in selecting the right technology stack, optimizing performance, and ensuring data privacy for an efficient and effective system..

### **Key Points:**

- 1. Technical Requirements:
- LLaMA 2 & Python for Al-driven text generation.
- Streamlit for an interactive web UI.
- Libraries: Transformers (Hugging Face), PyTorch, Requests/JSON.
- Deployment: Streamlit Cloud, Hugging Face Spaces, or local hosting.
- Version Control: Git/GitHub for collaboration.
- 2. Functional Requirements:
- User Input & Customization Adjust tone, style, and length.
- Real-Time Blog Generation Instant Al-powered content creation.
- **Privacy & Security** Supports local deployment.
- User-Friendly Interface Accessible for all users.
- Optimized Performance Fast and efficient processing.
- 3. Constraints & Challenges:
- 1. **Accuracy & Bias** Al-generated content may lack factual accuracy, coherence, or reflect biases from training data.
- 2. **Performance & Privacy** High computational resources are needed for local execution, and cloud deployment may pose security risks.
- 3. **Creativity & Dependence** Al may struggle with highly creative writing, and future updates to LLaMA 2 could impact functionality.

## Phase-3: Project Design

## **Objective:**

#### Architecture:

• Frontend: Streamlit-based UI for user input and interaction.

- Backend: LLaMA 2 processes inputs via Hugging Face & PyTorch.
- Deployment: Hosted on Streamlit Cloud, Hugging Face Spaces, or locally.

**Key Points**:

1. System Architecture Diagram:



- 2. User Flow:
- 1. **Open the Application** Access the Al-powered blog generator via the web interface.
- 2. Enter Blog Topic & Preferences Input a topic and select tone, style, and length.
- 3. Generate Blog Content Click the "Generate" button to process input using LLaMA 2.
- 4. View & Edit Content Review the generated blog and make refinements if needed.
- 5. **Copy or Download** Save or copy the final content for further use.

#### **UI/UX Considerations:**

- Simple & Responsive Design Ensures smooth navigation across devices.
- Customization & Real-Time Feedback Users can adjust tone, style, and length with instant previews.
- Privacy & Performance Optimized for fast processing while ensuring data security.

## **Phase-4: Project Planning (Agile Methodologies)**

## **Objective:**

Break down the tasks using Agile methodologies.

## **Key Points:**

.

### **Sprint Planning**

| Sprint   | Task                                                  | Priorit<br>y | Duration           | Dead1<br>ine       | Assigne<br>d To | Dependencies                       | Expected<br>Outcome                            |
|----------|-------------------------------------------------------|--------------|--------------------|--------------------|-----------------|------------------------------------|------------------------------------------------|
| Sprint 1 | Environment<br>Setup &<br>LLaMA 2<br>Integration      | High         | 6 hours<br>(Day 1) | End<br>of<br>Day 1 |                 | Hugging Face                       | AI model integrated and working                |
| Sprint 1 | Frontend UI<br>Development<br>(Streamlit)             | Medium       | 2 hours<br>(Day 1) | End<br>of<br>Day 1 |                 | Ul design                          | Basic UI<br>with input<br>fields               |
| Sprint 2 | Blog<br>Generation<br>&<br>Customizati<br>on Features | High         |                    | Mid-<br>Day 2      | Member<br>1 & 2 | IAI model                          | Customizable content generation enabled        |
| Sprint 2 | Error<br>Handling &<br>Debugging                      | High         |                    |                    | wember i        | AI logs, UI<br>input<br>validation | Improved AI response & stability               |
| Sprint 3 | Testing &<br>UI<br>Enhancement<br>s                   | Medium       |                    | Mid-<br>Day 2      | Member<br>2 & 3 | IAI rechance                       | Responsive UI, better user experience          |
| Sprint 3 | Final<br>Presentatio<br>n &<br>Deployment             | Low          | 1 hour<br>(Day 2)  | End<br>of<br>Day 2 | HENTIRA I       | Fully<br>functional                | Demo-ready<br>project,<br>deployed &<br>tested |

### **Sprint 1: Setup & Initial Development**

- The first sprint focuses on setting up the **development environment** and integrating **LLaMA 2** for blog generation.
- The **frontend UI** is developed using **Streamlit**, providing basic input fields for user interaction.

### **Sprint 2: Core Functionality & AI Processing**

- The Al-powered **blog generation and customization features** are implemented, allowing users to adjust tone, style, and length.
- **Error handling and debugging** ensure the Al responses are stable and optimized for better performance.

### Sprint 3: Testing, UI Enhancements & Deployment

- The user interface is improved for **better responsiveness and experience**.
- Thorough **testing** is conducted, followed by **final deployment** on **Streamlit Cloud or Hugging Face Spaces**.
- The project is made **demo-ready** for presentation and future scalability.

## **Phase-5: Project Development**

### **Objective:**

Code the project and integrate components.

### **Key Points:**

1. Technology Stack Used:

**Programming Languages:** 

Python

#### **APIs & Libraries:**

LLaMA 2 (Meta AI)

**Hugging Face Transformers** 

**PyTorch** 

Streamlit

Requests & JSON

Deployment & Version Control:

Streamlit Cloud / Hugging Face Spaces

Git & GitHub

#### 2. Development Process:

**Setup** – Install dependencies and configure GitHub.

**LLaMA 2 Integration** – Load the Al model with Hugging Face & PyTorch.

**UI Development** – Build a Streamlit interface with customization options.

**Backend Implementation** – Process inputs and generate blog content.

**Testing & Debugging** – Fix bugs and optimize performance.

**Deployment** – Host on Streamlit Cloud or Hugging Face Spaces.

- 3. Challenges & Fixes:
- **High Computational Requirements** Running LLaMA 2 locally required significant resources.
  - Solution: Used **optimized model versions** and leveraged **cloud deployment** on Hugging Face Spaces.
- Slow Response Time AI-generated content processing took longer than expected.
  - Solution: Implemented **efficient caching** and **input optimization** to reduce processing time.
- Content Accuracy & Coherence The AI sometimes generated irrelevant or incoherent blog content.
  - Solution: Fine-tuned prompts and applied **post-processing techniques** to improve content quality.

## **Phase-6: Functional & Performance Testing**

### **Objective:**

Ensure the LLAMA2 as expected.

## **Key Points:**

| Test Case ID | Category                    | Test Scenario                                | Expected Outcome                         | Status                  | Tester    |
|--------------|-----------------------------|----------------------------------------------|------------------------------------------|-------------------------|-----------|
| TC-001       | Functional<br>Testing       | Generate a blog<br>on "AI in<br>Healthcare". | AI should generate a relevant blog post. | ✓ Passed                | Tester 1  |
| TC-002       | Functional<br>Testing       | Customize blog with "Casual" tone.           | The blog should match the selected tone. | ✓ Passed                | Tester 2  |
| TC-003       | Performance<br>Testing      | AI response time under 500ms.                | AI should return results quickly.        | ⚠ Needs<br>Optimization | Tester 3  |
| TC-004       | Bug Fixes &<br>Improvements | Fix incorrect<br>AI-generated<br>content.    | Content should be accurate and relevant. | ✓ Fixed                 | Developer |
| TC-005       | Final Validation            | Ensure UI is responsive on all devices.      |                                          |                         | Tester 2  |
| TC-006       | Deployment<br>Testing       | Deploy app using<br>Streamlit Cloud.         | App should be accessible online.         | Deployed                | Dev0ps    |

## **Final Submission**

- 1. Project Report Based on the templates
- 2. Demo Video (3-5 Minutes)
- 3. GitHub/Code Repository Link
- 4. Presentation