e.g. max - vertex aver Discrete Optimization Problem U = / u1, u2, ..., un } U=10, -- Un} A SEO ASCA fis ~ IR Cov(S) = # edges S hit objective: max Cov(S) max f(S) S.t. Constraints 151 5 K Monotonicity: Is mono tonic, $f(su(x)) \geq f(s)$ e.g. ment - Vertex - Gren GV(S) is monotonic Submodularity, J is Submodular, if adding an element to a subset of S has higher benefit than adding it to S' f(SULX?)-f(S) (f(TULX?)-f(T))

 $f(su(x)) - f(s) \leq f(Tu(x)) - f(T)$

e.q. 2, max-vertex-aver:

is Cov Submodular?

S= 2 U1, V2, U3} fcs) = 7 T= 1 U1, V3} $\frac{1}{3}(T)_{s}$

$$f(s \cup \{v_{\delta}\}) - f(s) = 1$$

 $f(T \cup \{v_{\delta}\}) - f(T) = 2$

Theorem: if the objective function of is
monotonic, and 2 Submodular, then
athe greedy approach Satisfies on (1-1/e) approx. ratio
and (b) no other P-alo. Can do better. unless P=NP.
* (1-1/e) is a deviation of approx ratio definition.
* (1-1/e) is a deviation of approx-ratio definition. 1 is the Stamelard form 1-1/e
- 1- over 1 robjem
$\max_{S: \in \mathcal{S}} \left \begin{array}{c} Si \\ S: \in \mathcal{S} \end{array} \right = \underbrace{f(x)}_{S: t}$
S.t. $ \mathbf{S}_{i} = \mathbf{S}_{i} $
\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Approx. ratio for Greely is O(log n)
(IS O (lug n)
Df(x) is monotonic: adding a new set to of will not reduce Usi
reduce (Usi)
(Z), f(x) is Submodular:
VTC&CU
$f(TU(x)) - f(T) \ge f(fU(x)) - f(f)$
$ \bigcup_{S:GTU473} - \bigcup \geq \bigcup_{S:GTU473} - \bigcup $
Case 1: X & T = Tutis = T = Tutis - Tutis - Tutis
3 = 3 => 3 uni - 2 uni = 0

Case 2: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |J| = |

(ase 3: X&J, X&J => |TUKS | - |J| = |J| = |J| = |J|