

Steps of Building Fault Tolerant System

- 1- Fault Estimation
- 2- Fault Tolerant Builds
- 3- Fault Detection
- 4 Fault Diagnosis
- 5- Fault-Mode Operation

Most common failures in the electric motor & drive system

Cause of failure	Failure rate/phase
	(per hour)
Open-circuit in windings	1.3×10 ⁻⁵
Open-circuit in connections	1×10 ⁻⁶
Open-circuit in others	0.4×10^{-6}
Short-circuit between phases	6.7×10 ⁻⁶
Short-circuit in connections	1×10 ⁻⁶
Short-circuit in others	0.4×10 ⁻⁶
Total electrical failure	6.6×10 ⁻⁵
Power supply	5.4×10 ⁻⁵
Power electronic controller	8.5×10 ⁻⁵
Control signal	1.3×10^{-5}
DSP failure	1×10 ⁻⁵
Total electronic failure	1.5×10 ⁻⁴

To achieve this, we need redundancy and different control techniques.

My current topology is simply inadequate.

Fault Detection Algorithms

Park's Vector Approach

space vector trajectory diameter

Voltage-Based Techniques

Figure 3: 3-phase Inverter with Neutral Leg

Only for short circuit protection, causes stress

Figure 5: 3-phase Inverter with Redundant Leg