

Consistency Models: One-Step Image Generation

ICML 2023 Paper by OpenAI | Presented by Mary-Brenda Akoda

Table of Contents

•	Introduction	4
•	Consistency Model Concept	5
•	Core Mathematical Foundation	6
•	Training Methods	7
•	Sampling Methods	S
•	Results	10
•	Advantages	14
•	Limitations	15
•	Future Work	16
•	Conclusion	20
•	References	21

Introduction

Generative models learn high-dimensional data distributions (e.g., images)

Applications: Image synthesis, inpainting, super-resolution, image denoising

Diffusion Models (DMs): Powerful but **slow sampling** (100s - 1000s steps) so not feasible for real-time application (e.g., MRI reconstruction).

Consistency Models (CMs): Directly map noisy data to clean data for **one-step generation**. Allows multistep sampling for **quality-compute trade-off**.

Consistency Models Concept

$$f_{\theta}(x_t, t) = f_{\theta}(x_{t'}, t')$$
 for any $(x_t, x_{t'})$ on the same PF ODE trajectory $f_{\theta}(x_{\varepsilon}, \varepsilon) = x_{\varepsilon}$ (boundary condition)

Core Mathematical Foundation

Forward Diffusion as SDE¹:

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) dt + \sigma(t) d\mathbf{w}_t,$$

where $t \in [0, T]$; $\mu(x_t, t)$, $\sigma(t) = drift$ and diffusion coefficients, $w_t = standard$ Brownian motion.

Probability Flow ODE (Reverse Diffusion):

Same marginal distributions as original SDE, enabling deterministic transformations.

$$d\mathbf{x}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2} \sigma(t)^2 \nabla \log p_t(\mathbf{x}_t) \right] dt.$$

where $\nabla log p_t(x_t)$ is called the score function of $p_t(x_t)$

Simplification to empirical PF ODE²:

• Applied $\mu(x,t) = 0$ and $\sigma(t) = \sqrt{2t}$

$$\frac{\mathrm{d}\mathbf{x}_t}{\mathrm{d}t} = -t\boldsymbol{s}_{\boldsymbol{\phi}}(\mathbf{x}_t, t).$$

- 1. Y. Song, et al, "Score-based generative modelling through stochastic differential equations," ICLR, 2020.
- 2. T. Karras, M. Aittala, T. Aila, and S. Laine. "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022.

Training Method 1: Consistency Distillation (CD)

- 1. Start with pre-trained model
- 2. Sample noisy x at time, t_{n+1}
- 3. Get teacher's estimate at t_n
- 4. Minimise output differences between adjacent points
- Update online network and target networks.

Algorithm 2 Consistency Distillation (CD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot,\cdot;\boldsymbol{\phi})$, $d(\cdot,\cdot)$, $\lambda(\cdot)$, and μ $\theta^- \leftarrow \theta$ repeat Sample $\mathbf{x} \sim \mathcal{D}$ and $n \sim \mathcal{U}[1, N-1]$ Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \boldsymbol{I})$ $\hat{\mathbf{x}}_{t_n}^{\phi} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi)$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi}) \leftarrow$ $\lambda(t_n)d(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}},t_{n+1}),\mathbf{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}},t_n))$ $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^-; \phi)$ $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1 - \mu)\boldsymbol{\theta})$ until convergence

Training Method 2: **Consistency Training** (CT)

- **No teacher**: Uses score matching technique (unbiased estimator)
- Progressive schedules, (N) and μ:
 - Small N(k) (bigger Δt) \rightarrow Faster initial learning; higher bias.
 - Large N(k) (smaller Δt) \rightarrow Higher precision in later training. Higher variance, better results.
 - Slow updates of θ^- in later training → stabilises learning & reduces sensitivity to small fluctuations in θ .

Algorithm 3 Consistency Training (CT)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , step schedule $N(\cdot)$, EMA decay rate schedule $\mu(\cdot), d(\cdot, \cdot), \text{ and } \lambda(\cdot)$ $\theta^- \leftarrow \theta$ and $k \leftarrow 0$ repeat Sample $\mathbf{x} \sim \mathcal{D}$, and $n \sim \mathcal{U}[1, N(k) - 1]$ Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) \leftarrow$ $\lambda(t_n)d(\mathbf{f}_{\theta}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\mathbf{f}_{\theta^-}(\mathbf{x}+t_n\mathbf{z},t_n)$ $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^{-})$ $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu(k)\boldsymbol{\theta}^- + (1 - \mu(k))\boldsymbol{\theta})$ $k \leftarrow k + 1$

until convergence

Sampling with Consistency Models

One-Step Sampling:

• Directly map noise to clean data, \hat{x}_{ε} , across all time steps using $f_{\theta}(x_T,T)$

Multi-Step Sampling:

- Balances speed and quality.
- Alternates between denoising and noise injection at each step: to maintain smooth transitions and avoid instability.
- Controlled Noise Injection: Scaling factor ensures noise matches time step's level.

Algorithm 1 Multistep Consistency Sampling

Input: Consistency model $f_{\theta}(\cdot, \cdot)$, sequence of time points $\tau_1 > \tau_2 > \cdots > \tau_{N-1}$, initial noise $\hat{\mathbf{x}}_T$ $\mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_T, T)$ for n = 1 to N-1 do Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\hat{\mathbf{x}}_{\tau_n} \leftarrow \mathbf{x} + \sqrt{\tau_n^2 - \epsilon^2} \mathbf{z}$ $\mathbf{x} \leftarrow f_{\theta}(\hat{\mathbf{x}}_{\tau_n}, \tau_n)$ end for

Output: x

Figure 4: Multistep image generation with consistency distillation (CD). CD outperforms progressive distillation (PD) across all datasets and sampling steps. The only exception is single-step generation on Bedroom 256×256 .

Table 1: Sample quality on CIEAP 10	Direct Generation			1			
Table 1: Sample quality on CIFAR-10. *Methods that require			BigGAN (Brock et al., 2019)	1	14.7	9.22	
synthetic data construction for distillation.			Diffusion GAN (Xiao et al., 2022)	1	14.6	8.93	
				AutoGAN (Gong et al., 2019)	1	12.4	8.55
METHOD	NFE (↓)	FID (↓)	IS (†)	E2GAN (Tian et al., 2020)	1	11.3	8.51
Diffusion + Samplers				ViTGAN (Lee et al., 2021)	1	6.66	9.30
DDIM (Song et al., 2020)	50	4.67		TransGAN (Jiang et al., 2021)	1	9.26	9.05
DDIM (Song et al., 2020) DDIM (Song et al., 2020)	20	6.84		StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.83
DDIM (Song et al., 2020) DDIM (Song et al., 2020)	10	8.23		StyleGAN-XL (Sauer et al., 2022)	1	1.85	
DPM-solver-2 (Lu et al., 2022)	10	5.94		Score SDE (Song et al., 2021)	2000	2.20	9.89
DPM-solver-fast (Lu et al., 2022)	10	4.70		DDPM (Ho et al., 2020)	1000	3.17	9.46
3-DEIS (Zhang & Chen, 2022)	10	4.17		LSGM (Vahdat et al., 2021)	147	2.10	
	10	4.17		PFGM (Xu et al., 2022)	110	2.35	9.68
Diffusion + Distillation				EDM (Karras et al., 2022)	35	2.04	9.84
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36		1-Rectified Flow (Liu et al., 2022)	1	378	1.13
DFNO* (Zheng et al., 2022)	1	4.12		Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.08	Residual Flow (Chen et al., 2019)	1	46.4	
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.01	GLFlow (Xiao et al., 2019)	1	44.6	
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.79	DenseFlow (Greić et al., 2021)	1	34.9	
PD (Salimans & Ho, 2022)	1	8.34	8.69	DC-VAE (Parmar et al., 2021)	1	17.9	8.20
CD	1	3.55	9.48	CT	1	8.70	8.49
PD (Salimans & Ho, 2022)	2	5.58	9.05	CT	2	5.83	8.85
CD	2	2.93	9.75	CI	2	5.05	0.03

Table 2: Sample quality on ImageNet 64×64 , and LSUN Bedroom & Cat 256×256 . †Distillation techniques.

METHOD	NFE (↓)	FID (↓)	Prec. (†)	Rec. (†)
ImageNet 64×64				
PD [†] (Salimans & Ho, 2022)	1	15.39	0.59	0.62
DFNO [†] (Zheng et al., 2022)	1	8.35		
$\mathbf{C}\mathbf{D}^{\dagger}$	1	6.20	0.68	0.63
PD [†] (Salimans & Ho, 2022)	2	8.95	0.63	0.65
$\mathbf{C}\mathbf{D}^{\dagger}$	2	4.70	0.69	0.64
ADM (Dhariwal & Nichol, 2021)	250	2.07	0.74	0.63
EDM (Karras et al., 2022)	79	2.44	0.71	0.67
BigGAN-deep (Brock et al., 2019)	1	4.06	0.79	0.48
CT	1	13.0	0.71	0.47
CT	2	11.1	0.69	0.56

LSUN I	Bedroom	256	×	256
--------	---------	-----	---	-----

ESCIV Dedition 250 × 250				
PD [†] (Salimans & Ho, 2022)	1	16.92	0.47	0.27
PD [†] (Salimans & Ho, 2022)	2	8.47	0.56	0.39
$\mathbf{C}\mathbf{D}^{\dagger}$	1	7.80	0.66	0.34
$\mathbf{C}\mathbf{D}^{\dagger}$	2	5.22	0.68	0.39
DDPM (Ho et al., 2020)	1000	4.89	0.60	0.45
ADM (Dhariwal & Nichol, 2021)	1000	1.90	0.66	0.51
EDM (Karras et al., 2022)	79	3.57	0.66	0.45
PGGAN (Karras et al., 2018)	1	8.34		
PG-SWGAN (Wu et al., 2019)	1	8.0		
TDPM (GAN) (Zheng et al., 2023)	1	5.24		
StyleGAN2 (Karras et al., 2020)	1	2.35	0.59	0.48
CT	1	16.0	0.60	0.17
CT	2	7.85	0.68	0.33

Figure 5: Samples generated by EDM (top), CT + single-step generation (middle), and CT + 2-step generation (Bottom). All corresponding images are generated from the same initial noise.

12

Advantages

Quality-compute trade-off for multistep generation

Zero-shot editing capabilities

Two Training Modes: distillation and as standalone

Outperforms existing distillation techniques and doesn't require synthetic datasets

Better samples than existing single-step generation models (except for some GANs)

Limitations

Distillation limits quality to that of the pre-trained model.

LPIPS introduced undesirable biases in evaluation, affecting the perceived quality of generated samples.

High computational resources: required for training.

Not always state-of-the-art: Sample quality can lag behind fully iterative diffusion or very large GANs.

Future Work

Improved Techniques for Training Consistency Models (ICLR 2024 | Oral)

Improved Consistency Training (iCT): learns directly from data without distillation.

Removed EMA for teacher network: led to significant improvement in FIDs.

Pseudo-Huber Losses: replaces LPIPS, reducing bias in evaluation.

Lognormal Noise Schedule: as CT objective, improving sample quality & efficiency.

Improved Sample Quality: 4x over CT, better FID scores, and surpassed CD.

Simplifying, Stabilizing and Scaling Continuous-Time Consistency Models (Preprint Oct. 2024)

Simplified, Unified Theoretical Formulation: to identify root causes of training instability.

Improved Network Architecture and Training Objectives: for stable and scalable training.

Large-Scale Model Training: trained largest CM with up to 1.5B parameters on ImageNet 512x512.

Efficient Sampling: Quality comparable to leading diffusion models using only 2 steps (~50x speedup; 0.11s for 1 sample).

Narrowed FID gap with teacher: to within 10% in 2 steps.

Beyond OpenAl

Consistency Models Made Easy (by CMU | ICLR 2025):

 Easy Consistency Tuning: makes training CMs cost-effective and more accessible (CIFAR-10: 1 hour on 1 A100 vs. 1 week on 8 A100s).

Consistency Trajectory Models (by Sony AI | ICLR 2024):

- Generalises CMs and DMs, for efficient traversal along PF ODE.
- Flexible Sampling: supports deterministic and stochastic.
- SoTA FID for 1-step sampling on CIFAR-10 (FID 1.73) and ImageNet (FID 1.92).
- Beats EDM (35 NFE) and StyleGAN-XL. Achieves student-beats-teacher.

Conclusion

Motivation

- Diffusion Models need many iterative steps → slow sampling.
- Consistency Models aim for **fast one-step generation** without zero-shot editing and sample quality.

Key Ideas

- Self-Consistency: Any noisy version of a data point (at different times) maps back to the same clean sample.
- Consistency Distillation: Uses a pretrained diffusion model; 1-step approx. a teacher's multi-step ODE path.
- **Consistency Training**: from scratch by enforcing consistency on multiple noise levels of same data, no teacher.
- Architecture: Enforces a boundary condition at near-zero noise.

Advantages

• One-step or Few step Generation (**potential for real-time applications**), Zero-Shot Editing, Comparable (or Better) Quality, No synthetic data needed.

Additional theoretical + practical refinements under active development.

References

- Y. Song, J. Sohl-Dickstein, D. Kingma, A. Kumar, S. Ermon, and B. Poole, "Score-based generative modelling through stochastic differential equations," *ICLR*, 2020.
- T. Karras, M. Aittala, T. Aila, and S. Laine. "Elucidating the design space of diffusion-based generative models," *NeurIPS*, 2022.
- Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, "Consistency models," ICML. PMLR, 2023.
- Y. Song and P. Dhariwal, "Improved techniques for training consistency models," ICLR, 2024.
- Z. Geng, A. Pokle, W. Luo, J. Lin, and J. Z. Kolter, "Consistency models made easy," ICLR 2025.
- C. Lu and Y. Song, "Simplifying, stabilizing and scaling continuous-time consistency mod-els," arXiv preprint arXiv:2410.11081, 2024
- D. Kim, C-H. Lai, et al. "Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion", ICLR 2024.