#Following the CRISP-DM methodology:

1. Business understanding- Business Problem: # ************ #"Need to develop a Market mix model to observe the actual impact of different marketing variables over the last year. # Using the understanding, we have to recommend the optimal budget allocation for different marketing levers for the next year" # "To create market mix models for three product sub-categories - camera accessory, home audio and gaming accessory. # **Also, the models have to be built at a weekly level" # 2. Data understanding # ******** # -Explain the data, sources, and results from exploratory analysis #3. Data Preparation # *********** # -Briefly explain the data preparation process # 4. Data Modeling # Planned to develop 5 models # 5. Model Evaluation # ******* # # Insights # -Explain the final conclusion or insights derived from the model **Data Cleaning and Data PREPERATION STEPS FOLLOWED** # 1. Identify the columns having "na" # Omitted the records having "na" # 2. Formatted the order_date to match our defined format for further analysis #3. Removed the records that are not in our analysis period "July 15 to June 16" - Outlier identification # 4. Handled the missing values #5. Calcuated the list price of each units from Order level data

6. Calcuated the discount of each units from Order level data

- # 7. Framed a holiday date for analysis Period from Media Data spreadsheet
- #8. Translate the transaction data and Media monthly level data to weekly granular level
- #9. Extracted the records those are only from the holiday period from Order level data
- # 10. Extracted the records based on the three sub-category per the Project SCOPE #"Camera_accessory", "home_audio" & "gaming_accessory" from Order level data
- # 11. Frame the final Dataset for the model building by merging the Media and Order level Dataset at weekly level

from Order level data and the Media Data and other info spreadsheet

LOAD THE REQUIRED LIBRARIERS library("gdata") library("ggplot2") #install.packages("magrittr") library(magrittr) library(lubridate) library(stringr) library(dplyr) library(MASS) library(car) library(GGally) library(scales) library(DataExplorer) #library("gdata") **LOAD THE DATASETS**

```
#Load the Order Level Data
capstone <- read.csv("ConsumerElectronics.csv", stringsAsFactors = F)</pre>
capstonebk <- capstone
#View(capstone)
cap1 <- capstone %>% filter(product_analytic_sub_category == 'CameraAccessory')
names(cap1)
unique(cap1$product_analytic_vertical)
#Load the Media Investment information
mediainvestment <- read.xls("Media data and other information.xlsx", sheet = 2, header = TRUE, skip =
```

head(mediainvestment)

```
#Processing the Month column to be double digit for further processing
for (i in 1:length(mediainvestment$Month)) {
if(nchar(mediainvestment[i,2])=="1")
 mediainvestment$Month[i] <- assign(paste0(mediainvestment$Month[i]), paste0('0',
mediainvestment[i,2]))
else{
 print("No change")
}
}
#Further processing the Media investment data
mediainvestment$year month <- paste(mediainvestment$Year , mediainvestment$Month , sep = ' ')
mediainvestment$Year <- as.numeric(mediainvestment$Year)</pre>
mediainvestment$Month <- as.numeric(mediainvestment$Month)
mediainvestment$year month <- factor(mediainvestment$year month, levels =
mediainvestment$year_month[order(mediainvestment$Year, mediainvestment$Month)])
DATA UNDERSTANDING
## From the below plot we can say that expense is lowest for august and expense is high in
Sep,Oct,Dec,Mar
ggplot(mediainvestment, aes(x = year_month, y = Total.Investment)) + geom_bar(stat = "identity")
##Load the Product List information
productlist <- read.xls("Media data and other information.xlsx", sheet = 1, header = TRUE, skip = 0)
head(productlist)
head(productlist)
##Load the Monthly NPS Score information
npsscore <- read.xls("Media data and other information.xlsx", sheet = 4, header = TRUE)
DATA PROCESSINGTS
Process the Monthly NPS Score information from spreadsheet for further analysis
npsscore <- npsscore[2:13]
npsscore <- as.data.frame(t(npsscore))</pre>
npsscore$Month <- c(seq(7,12,1),seq(1,6,1))
colnames(npsscore)[1] <- "NPS"
#ggplot(productlist, aes(x = X, y = Frequency)) + geom bar(stat = "identity")
```

#Process the Media Investment information to be converted to daywise

mediainvestment_daywise\$Total.Investment <(mediainvestment_daywise\$Total.Investment*10000000)/30
mediainvestment_daywise\$TV <- (mediainvestment_daywise\$TV*10000000)/30
mediainvestment_daywise\$Digital<- (mediainvestment_daywise\$Digital*10000000)/30
mediainvestment_daywise\$Sponsorship<- (mediainvestment_daywise\$Sponsorship*10000000)/30
mediainvestment_daywise\$Content.Marketing<(mediainvestment_daywise\$Content.Marketing*10000000)/30
mediainvestment_daywise\$Online.marketing<(mediainvestment_daywise\$Online.marketing*10000000)/30

mediainvestment_daywise\$X.Affiliates<- (mediainvestment_daywise\$X.Affiliates*10000000)/30 mediainvestment_daywise\$SEM<- (mediainvestment_daywise\$SEM*10000000)/30 mediainvestment_daywise\$Radio<- (mediainvestment_daywise\$Radio*10000000)/30 mediainvestment_daywise\$Other<- (mediainvestment_daywise\$Other*10000000)/30

#Data imputation for NA values

mediainvestment_daywise[which(is.na(mediainvestment_daywise\$Radio)), "Radio"] <- 0 mediainvestment daywise[which(is.na(mediainvestment daywise\$Other)), "Other"] <- 0

#Extract the Date as "Year-Month-Day" from the Order data provided Data format "Year-Month-Day Hr:mn:ss"

#This mandatory for the code to train the given date format is YYYY-mm-dd. This can be used to fetch the date data per the analysis requirement as "Yr" "YEAR" etc capstone\$Odate <- as.Date(capstone\$order_date,format = "%Y-%m-%d")

#Add a new column "yrmonth" using "%Y_%m" capstone\$yrmonth <- format(capstone\$Odate,"%Y_%m")

capstone_bk <- capstone
#capstone <- capstone bk</pre>

dim(capstone)
head(capstone)
names(capstone)
str(capstone)
summary(capstone)

#Process the weeknumber to have the continuity from July 2015 to June 2016 as "1-53"

#View(capstone\$weeknumber)

capstone\$weeknumber <- week(capstone\$order_date)</pre>

capstone\$weeknumber <- ifelse(capstone\$Year ==

2016,capstone\$weeknumber+53,capstone\$weeknumber)

#As we have for our analysis week 26 that is June 2015 is considerered to be the first week, updating week 26 as the first week.

```
capstone$weeknumber <- ifelse(capstone$weeknumber > 26, capstone$weeknumber-26,
capstone$weeknumber)
unique(capstone$weeknumber)
#Check if we have week number beyond 54 weeks. If we have more than 54 weeknumber, then
#we need to process the outlier dates i.e dates outside of the analysis period "July 2015 to June 2016"
min(capstone$weeknumber) #1
max(capstone$weeknumber) #57
#------Format the columns "order_id", "order_item_id", "cust_id" & "pincode"------#
#capstone$order id <-format(capstone$order id, scientific = FALSE)</pre>
#capstone$order_item_id <-format(capstone$order_item_id, scientific = FALSE)</pre>
#capstone$cust id <-format(capstone$cust id, scientific = FALSE)</pre>
capstone$pincode <-format(capstone$pincode, scientific = FALSE)</pre>
#-----Extract the non-negative from cust_id" & "pincode"-----#
## extract the numbers
regexp <- "[[:digit:]]+"
#process string
capstone$pincode <- str extract(capstone$pincode, regexp)</pre>
capstone$cust_id <- str_extract(capstone$cust_id, regexp)</pre>
#-----# Number of COLUMNS having NA Values-----#
#sum(is.na(capstone))
options(repr.plot.width=8, repr.plot.height=3)
# Visualize the missing values using the DataExplorer package
plot missing(capstone)
# To find the list of columns having NA
colnames(capstone)[colSums(is.na(capstone)) > 0]
#"gmv" "cust_id" "pincode"
#------
Extract the Dataframe WITHOUT NA's------#
capstonewithna <- capstone %>% filter(is.na(capstone$pincode))
nrow(capstonewithna) #4904
#Omit the NA's
capstonewithoutna <- capstone %>% na.omit()
#DF without NA's
nrow(capstonewithoutna) #1643920
paste("Orignal record count is:",nrow(capstone), "Record count after omitting NA's:",
nrow(capstonewithoutna),
```

```
"Record count with NA is ",(nrow(capstone) -
nrow(capstonewithoutna)))
# "Orignal record count is: 1648824 Record count after omitting NA's: 1643920 Record count with NA is
4904"
#-----Extract the Date and Day columns-----#
capstonewithoutna$Odate <- as.Date(capstonewithoutna$order date,format = "%Y-%m-%d") #Is
mandatory for the code to train the given date format is YYYY-mm-dd,
#Extract the Date in %Y_%m" format
capstonewithoutna$yrmonth <- format(capstonewithoutna$Odate,"%Y %m")
unique(capstonewithoutna$yrmonth)
uniqueyrmonth <- unique(capstonewithoutna$yrmonth)</pre>
length(uniqueyrmonth)
#Extract the Date in "%Y-%m-%d" format
capstonewithoutna$yrmonthdate <- format(capstonewithoutna$Odate,"%Y %m %d")
head(capstonewithoutna$yrmonthdate)
uniqueyrmonthdate <- unique(capstonewithoutna$yrmonthdate)
length(uniqueyrmonthdate)
#-----Extract the ORDER DATA only from "July 2015 to June 2016" per the Scope of the project
#Excluding the Orders outside of "July 2015 to June 2016" => 2015_05, 2015_06, ,2016_07
#expectedyrmonth <-
c('2015 07','2015 08','2015 09','2015 10','2015 11','2015 12','2016 01','2016 02','2016 03','2016 0
4','2016_05','2016_06')
expectedyrmonth <-
c("2015\_07","2015\_08","2015\_09","2015\_10","2015\_11","2015\_12","2016\_01","2016\_02","2016\_03","2016\_01","2016\_02","2016\_01","2016\_02","2016\_01","2016\_02","2016\_01","2016\_02","2016\_01","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2
2016 04","2016 05","2016 06")
capstonewithoutna outsideperiod <- capstonewithoutna
capstonewithoutna outsideperiod <-
subset(capstonewithoutna_outsideperiod,!(capstonewithoutna$yrmonth %in%
c("2015\_07","2015\_08","2015\_09","2015\_10","2015\_11","2015\_12","2016\_01","2016\_02","2016\_03","2016\_01","2016\_02","2016\_01","2016\_02","2016\_01","2016\_02","2016\_01","2016\_02","2016\_01","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2016\_02","2
2016_04","2016_05","2016_06")))
nrow(capstonewithoutna_outsideperiod) #609
#Found we have ORDER DATA even from 2016 07" "2015 06" "2015 05" which is out of the Scope of
this project.
```

unique(capstonewithoutna outsideperiod\$vrmonth)

capstonewithoutna withinperiod <- capstonewithoutna

```
capstonewithoutna withinperiod <-
subset(capstonewithoutna_withinperiod,capstonewithoutna$yrmonth %in%
c("2015\_07","2015\_08","2015\_09","2015\_10","2015\_11","2015\_12","2016\_01","2016\_02","2016\_03","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2016\_01","2
2016 04","2016 05","2016 06"))
nrow(capstonewithoutna withinperiod) #1643311
nrow(capstonewithoutna) - nrow(capstonewithoutna_outsideperiod) #1643311 matches with above
count.
paste("we had ",length(unique(capstonewithoutna withinperiod$yrmonthdate)),"unique number of
Transactional days")
capstonewithoutna withinperiod bk<-capstonewithoutna withinperiod
#After processing the ORDER Data to be within the analysis period "July 2015 to June 2016". Check the
WeekNumbers to be within 54,
min(capstonewithoutna_withinperiod$weeknumber)
max(capstonewithoutna withinperiod$weeknumber)
#Note: When we do diff between 1st july 2015 and 30th June 2016, we get => 52 weeks 2 days(366
#so HERE we have 53rd week as the max.
#------#
capstonewithoutna withinperiod$list price <-
capstonewithoutna withinperiod$gmv/capstonewithoutna withinperiod$units
head(capstonewithoutna withinperiod)
#-----# Process the MRP & GMV if it is less than 0 from the ORDER Level Data-----#
capstonewithoutna withinperiod bk <- capstonewithoutna withinperiod
capstonewithoutna_withinperiod <- capstonewithoutna_withinperiod_bk
nrow(capstonewithoutna withinperiod)
capstonewithoutna withinperiod <-
subset(capstonewithoutna withinperiod,!capstonewithoutna withinperiod$product mrp <= 0)
nrow(capstonewithoutna_withinperiod)
length(unique(capstonewithoutna_withinperiod$order_id))
length(unique(capstonewithoutna_withinperiod$order_item_id))
#1643311-1638021
capstonewithoutna withinperiod <-
subset(capstonewithoutna withinperiod,!capstonewithoutna withinperiod$gmv <= 0)
nrow(capstonewithoutna_withinperiod)
```

```
#-----#-Process the calculated unit price, if Unit price greater than MRP------#
#Adding a column "moreListPrice" with 1 OR 0, if the List Price is greater than the MRP(1) or Not(0)
capstonewithoutna withinperiod$moreListPrice <- ifelse(capstonewithoutna withinperiod$list price >
capstonewithoutna withinperiod$product mrp,1,0)
capstonewithoutna_withinperiod <-
subset(capstonewithoutna_withinperiod,!capstonewithoutna_withinperiod$list_price >
capstonewithoutna withinperiod$product mrp)
listpricemorethanMRP <-
subset(capstonewithoutna withinperiod,capstonewithoutna withinperiod$list price >
capstonewithoutna_withinperiod$product_mrp)
#View(listpricemorethanMRP) #33632
nrow(capstonewithoutna_withinperiod) #1603404
nrow(listpricemorethanMRP)
paste("Total % of OUTLIER in List price is:",
format((nrow(listpricemorethanMRP)/nrow(capstonewithoutna_withinperiod))*100,digits =2),"%")
#-----#
capstonewithoutna_withinperiod$discount <- (capstonewithoutna_withinperiod$product_mrp -
capstonewithoutna_withinperiod$list_price) / capstonewithoutna_withinperiod$product_mrp
head(capstonewithoutna withinperiod)
discountinNegative <-
subset(capstonewithoutna_withinperiod,capstonewithoutna_withinperiod$discount < 0)
nrow(discountinNegative) #33632
#View(capstonewithoutna_withinperiod)
unique(capstonewithoutna_withinperiod$discount)
#-------Calculate if we have any negative values for deliverybdays and deliverycdays---------
table(capstonewithoutna withinperiod$sla)
unique(capstonewithoutna_withinperiod$deliverybdays)
deliverybdays_positive <- subset(capstonewithoutna_withinperiod,
capstonewithoutna_withinperiod$deliverybdays > 0)
nrow(deliverybdays_positive) #333453
unique(deliverybdays_positive$deliverybdays)
setdiff(unique(capstonewithoutna withinperiod$deliverybdays),unique(deliverybdays positive$delivery
bdays))
# "\\N" "0" "-71" "-72" "-53" "-40" "-39" "-41" "-14" "-45" "-56" "-73" "-75" "-12" "-22" "-44" "-42" "-43"
"-74" "-13" "-98" "-46" "-76" "-10" "-77"
```

```
unique(capstonewithoutna_withinperiod$deliverycdays)
deliverycdays_positive <- subset(capstonewithoutna_withinperiod,</pre>
capstonewithoutna_withinperiod$deliverycdays > 20)
nrow(deliverycdays_positive) #335274
unique(deliverycdays_positive$deliverycdays)
setdiff(unique(capstonewithoutna_withinperiod$deliverycdays),unique(deliverycdays_positive$delivery
cdays))
#"\\N" "0" "-832" "-840" "-628" "-836" "-834" "-476" "-466" "-848" "-844" "-482" "-837" "-
849" "-835" "-16" "-532" "-655" "-859" "-879" "-14" "-25" "-516" "-876" "-492" "-510"
#"-512" "-871" "-875" "-153" "-5345" "-884" "-115" "-544" "-893" "-11" "-898" "-908"
#------ Calculate if the Order is placed during the Sale Day------#
#Sales Calendar
#2015
#Eid & Rathayatra sale (18-19th July)
#Independence Sale (15-17th Aug)
#Rakshabandhan Sale (28-30th Aug)
#Daussera sale (17-15th Oct)
#Big Diwali Sale (7-14th Nov)
#Christmas & New Year Sale (25th Dec'15 - 3rd Jan'16)
#Translate the above Sale period into a Salecalendar vector for processing
SaleCalendar 2015 <-
c('2015_07_18','2015_07_19','2015_08_15','2015_08_16','2015_08_17','2015_08_28','2015_08_29','20
15_08_30','2015_10_15','2015_10_16','2015_10_17','2015_11_07','2015_11_08',
'2015_11_09','2015_11_10','2015_11_11','2015_11_12','2015_11_13','2015_11_14','2015_12_25','2015
_12_26','2015_12_27','2015_12_28','2015_12_29','2015_12_30',
            '2015_12_31','2016_01_01','2016_01_02','2016_01_03')
#Note: we consider jan03,jan02,jan01 of 2016 as in sale calendar of 2015 itself.
#capstonewithoutna_withinperiod_2015saleday <- capstonewithoutna_withinperiod %>%
filter(capstonewithoutna_withinperiod$yrmonthdate %in% SaleCalendar_2015)
#nrow(capstonewithoutna_withinperiod_2015saleday) #189719
##2016
#Republic Day (20-22 Jan)
#BED (1-2 Feb)
#FHSD (20-21 Feb)
#Valentine's Day (14-15 Feb)
#BSD-5 (7-9 Mar)
```

#Pacman (25-27 May)

```
SaleCalendar_2016 <-
c('2016 01 20','2016 01 21','2016 01 22','2016 02 01','2016 02 02','2016 02 14','2016 02 15','20
16 02 20','2016 02 21','2016 03 07','2016 03 08','2016 03 09','2016 03 25','2016 03 27')
#capstonewithoutna withinperiod 2016saleday <- capstonewithoutna withinperiod %>%
filter(capstonewithoutna withinperiod$yrmonthdate %in% SaleCalendar 2016)
#nrow(capstonewithoutna_withinperiod_2016saleday) #86135
TotalSalecalendar2015_2016 <- c(SaleCalendar_2015,SaleCalendar_2016)
TotalSalecalendar2015 2016
#Adding a column with 1 OR 0, if the Transaction is within the sale period(1) or Not(0)
capstonewithoutna withinperiod$Saleday <- ifelse(capstonewithoutna withinperiod$yrmonthdate
%in% TotalSalecalendar2015 2016,1,0)
head(capstonewithoutna withinperiod)
#filter(capstonewithoutna_withinperiod, capstonewithoutna_withinperiod$Saleday ==1) %>% nrow()
capstonewithoutna withinperiod Totalsaleday <-
subset(capstonewithoutna withinperiod,capstonewithoutna withinperiod$yrmonthdate %in%
TotalSalecalendar2015_2016)
nrow(capstonewithoutna_withinperiod_Totalsaleday)
                                                    #275854
capstonewithoutna withinperiod Not4mTotalsaleday <-
subset(capstonewithoutna withinperiod,!capstonewithoutna withinperiod$yrmonthdate %in%
TotalSalecalendar2015 2016)
nrow(capstonewithoutna_withinperiod_Not4mTotalsaleday) #1367457
paste("Percentage of Sale day contribution to the total is:",
format((nrow(capstonewithoutna_withinperiod_Totalsaleday))/(nrow(capstonewithoutna_withinperiod
_Not4mTotalsaleday))*100,digits =2),"%")
#275854+1367457 #1643311
#275854/1367457 #.2
```

#2015_7,2015_8,2015_9,2015_10,2015_11,2015_12,2016_1,2016_2,2016_3,2016_4,2016_5,2016_6

#-----#

#same as yrmonth

```
Analysis on the selected 3 sub-categories
#-----Analysis Category - 3 product sub-categories
analysisCategory <- c('CameraAccessory','HomeAudio','GamingAccessory')
#capstonewithoutna withinperiod b317 <- capstonewithoutna withinperiod
#capstonewithoutna withinperiod <- capstonewithoutna withinperiod Filter grpbyOdate media
names(capstonewithoutna_withinperiod)
unique(capstonewithoutna_withinperiod$product analytic sub category)
analysisCategory <- c('CameraAccessory', 'HomeAudio', 'GamingAccessory')
#-----# data-----#
camera accessory <-
subset(capstonewithoutna_withinperiod,capstonewithoutna_withinperiod$product_analytic_sub_categ
ory == 'CameraAccessory')
#View(camera accessory)
nrow(camera_accessory)
str(camera accessory)
paste("Total Camera_accessory contribution of the total is:",
format((nrow(camera accessory))/(nrow(capstonewithoutna withinperiod))*100,digits =2),"%")
#-----Filtering for "HomeAudio based" on Order level data-----#
home audio <-
subset(capstonewithoutna withinperiod,capstonewithoutna withinperiod$product analytic sub categ
ory == 'HomeAudio')
head(home_audio)
nrow(home audio)
paste("Total home audio contribution of the total is:",
format((nrow(home audio))/(nrow(capstonewithoutna withinperiod))*100,digits =2),"%")
#-----# based on Order level data-----#
gaming_accessory <-
subset(capstonewithoutna_withinperiod,capstonewithoutna_withinperiod$product_analytic_sub_categ
ory == 'GamingAccessory')
head(gaming_accessory)
nrow(gaming_accessory)
paste("Total gaming_accessory contribution of the total is:",
format((nrow(gaming_accessory))/(nrow(capstonewithoutna withinperiod))*100,digits =2),"%")
capstonewithoutna withinperiod bkp <- capstonewithoutna withinperiod
```

```
#capstonewithoutna withinperiod <- capstonewithoutna withinperiod bkp
##Merge the Order Level Data with the Media data and other information data for Model Building
#-----#
#library(ggplot2)
#ggplot(capstonewithoutna withinperiod, aes(x=s1 fact.order payment type,y=gmv)) + geom point()
ncol(capstonewithoutna withinperiod) #After dropping the below variables, we have
names(capstonewithoutna withinperiod)
#View(capstonewithoutna withinperiod)
capstonewithoutna withinperiod 376 <- capstonewithoutna withinperiod
#capstonewithoutna withinperiod <- capstonewithoutna withinperiod 425
#capstonewithoutna withinperiod <- capstonewithoutna withinperiod final1
#Here we are merging using "yrmonth" of electronics master sheet with "Month" of Npsscore sheet.
head(npsscore,12)
# for (i in 1:length(npsscore$Month)) {
# if(nchar(npsscore[i,2])=="1")
# npsscore$Month[i] <- assign(paste0(npsscore$Month[i]), paste0('0', npsscore[i,2]))</pre>
# }
# else{
# print("No change")
# }
# }
capstonewithoutna withinperiod npsscore <-
merge(capstonewithoutna_withinperiod,npsscore,by.x="Month",by.y="Month")
names(capstonewithoutna withinperiod npsscore)
unique(capstonewithoutna withinperiod$Month)
unique(capstonewithoutna withinperiod npsscore$yrmonth)
#unique(productlist$X)
#Here we are merging using "product_analytic_vertical" as the productlist is having more than 75
unique component those are listed in "product_analytic_vertical" column in electronics master sheet
head(productlist)
capstonewithoutna_withinperiod_bk05 <- capstonewithoutna_withinperiod
capstonewithoutna_withinperiod_npsscore_ProductList <-
merge(capstonewithoutna withinperiod npsscore,productlist,by.x="product analytic vertical",by.y="X
head(capstonewithoutna withinperiod npsscore ProductList)
#unique(capstonewithoutna withinperiod npsscore ProductList$product analytic vertical)
```

capstonewithoutna_withinperiod_bk408 <- capstonewithoutna_withinperiod #capstonewithoutna_withinperiod <- capstonewithoutna_withinperiod_bk408 capstonewithoutna_withinperiod <- capstonewithoutna_withinperiod_npsscore_ProductList capstonewithoutna_withinperiod_411 <- capstonewithoutna_withinperiod #----

#------#

capstonewithoutna_withinperiod_b412 <- capstonewithoutna_withinperiod names(capstonewithoutna_withinperiod) capstonewithoutna_withinperiod\$s1_fact.order_payment_type <- factor(capstonewithoutna_withinperiod\$s1_fact.order_payment_type) capstonewithoutna_withinperiod\$moreListPrice <- factor(capstonewithoutna_withinperiod\$moreListPrice) capstonewithoutna withinperiod\$Saleday <- factor(capstonewithoutna withinperiod\$Saleday)

#-----#

#1 s1_fact.order_payment_type #2 moreListPrice #3 SaleDay

The creation of dummy variables to convert a categorical variable into a numeric variable is an important step of data preparation.

unique(capstonewithoutna_withinperiod\$s1_fact.order_payment_type)

#"COD" "Prepaid"

unique(capstonewithoutna_withinperiod\$moreListPrice)

#unique(capstonewithoutna_withinperiod\$SaleDay)

1. One simple way to convert "s1_fact.order_payment_type" variable to numeric is to replace the levels- COD and Prepaid with 1 and 0 is:

levels(capstonewithoutna_withinperiod\$s1_fact.order_payment_type)<-c(1,0)

2,3 Already have SaleDay, moreListPrice as categorical

capstonewithoutna_withinperiod\$s1_fact.order_payment_type

Now store the numeric values in the same variable

capstonewithoutna_withinperiod\$s1_fact.order_payment_type <-

as.numeric(levels(capstonewithoutna_withinperiod\$s1_fact.order_payment_type))[capstonewithoutna_withinperiod\$s1_fact.order_payment_type]

capstonewithoutna_withinperiod\$moreListPrice <-

as.numeric(capstonewithoutna_withinperiod\$moreListPrice)

capstonewithoutna_withinperiod\$Saleday <- as.numeric(capstonewithoutna_withinperiod\$Saleday)</pre>

#capstonewithoutna_withinperiod\$Frequency <-

as.numeric(capstonewithoutna_withinperiod\$Frequency)

#head(View(capstonewithoutna withinperiod))

colnames(capstonewithoutna withinperiod)

Check the summary of those variable (We can find the min, max, median)

summary(capstonewithoutna withinperiod\$s1 fact.order payment type)

summary(capstonewithoutna withinperiod\$moreListPrice)

summary(capstonewithoutna_withinperiod\$Saleday)

analysisCategory names(capstonewithoutna_withinperiod) summary(factor(capstonewithoutna_withinperiod_bk408\$product_analytic_sub_category))

#Creating the Dummy Variables for the 3 sub-categories
#Add the Dummy variables to the 3 sub-categories individual Dataset
#Aggregate the 3 sub-categories individual dataset using the "Weeknumber"
#capstonewithoutna_withinperiod_Filter_grpbyweeknumber_GA
#capstonewithoutna_withinperiod_Filter_grpbyweeknumber_HA
#capstonewithoutna_withinperiod_Filter_grpbyweeknumber_CA

#Preparing the MediaInvest data for merging with the Order level data #Aggregate the Media investment dataset using the "Weeknumber" #Merge the Media investment dataset with 3 sub-categories dataset

#-----"product_analytic_vertical" unique values into Columns-----#

Create a dataset only for Home audio , camera accessory and gaming accessories #capstonewithoutna_withinperiod_3subcategory <- filter (capstonewithoutna_withinperiod ,capstonewithoutna_withinperiod\$product_analytic_sub_category %in% analysisCategory) capstonewithoutna_withinperiod_CameraAccessory <- filter (capstonewithoutna_withinperiod ,capstonewithoutna_withinperiod \$product_analytic_sub_category == 'CameraAccessory')

capstonewithoutna_withinperiod_CA <- capstonewithoutna_withinperiod_CameraAccessory capstonewithoutna_withinperiod_CA\$product_analytic_vertical <- factor(capstonewithoutna_withinperiod_CA\$product_analytic_vertical) levels(capstonewithoutna_withinperiod_CA\$product_analytic_vertical) dummy_subcat<-data.frame(model.matrix(~product_analytic_vertical,data = capstonewithoutna_withinperiod_CA)) dummy_subcat<-dummy_subcat[,-1] capstonewithoutna_withinperiod_CA1<-capstonewithoutna_withinperiod_CA1bk <- capstonewithoutna_withinperiod_CA1 capstonewithoutna_withinperiod_CA1 capstonewithoutna_withinperiod_CA1<-capstonewithoutna_withinperiod_CA1<-cbind(capstonewithoutna_withinperiod_CA1,dummy_subcat) colnames(capstonewithoutna_withinperiod_CA1)

names(capstonewithoutna_withinperiod_CA1) str(capstonewithoutna_withinperiod_CA1)

capstonewithoutna_withinperiod_472 <- capstonewithoutna_withinperiod_CA1 capstonewithoutna_withinperiod_CA1

#-Creating the Dummy variable for the HomeAudio subcategory "product_analytic_vertical" unique values into Columns--#

```
capstonewithoutna withinperiod HomeAudio <- filter ( capstonewithoutna withinperiod
,capstonewithoutna withinperiod$product analytic sub category == 'HomeAudio' )
capstonewithoutna withinperiod HA <- capstonewithoutna withinperiod HomeAudio
capstonewithoutna withinperiod HA$product analytic vertical <-
factor(capstonewithoutna withinperiod HA$product analytic vertical)
levels(capstonewithoutna withinperiod HA$product analytic vertical)
dummy subcat<-data.frame(model.matrix(~product analytic vertical,data =</pre>
capstonewithoutna withinperiod HA))
dummy subcat<-dummy subcat[,-1]</pre>
capstonewithoutna withinperiod HA1<-capstonewithoutna withinperiod HA
capstonewithoutna_withinperiod_HA1bk <- capstonewithoutna_withinperiod_HA1
capstonewithoutna withinperiod HA1<-capstonewithoutna withinperiod HA1[,-1]
capstonewithoutna_withinperiod_HA1<-cbind(capstonewithoutna_withinperiod_HA1,dummy_subcat)
colnames(capstonewithoutna withinperiod HA1)
names(capstonewithoutna_withinperiod_HA1)
str(capstonewithoutna withinperiod HA1)
capstonewithoutna withinperiod 493 <- capstonewithoutna withinperiod
capstonewithoutna withinperiod HA <- capstonewithoutna withinperiod HA1
#-----Creating the Dummy variable for the GamingAccessory subcategory
"product analytic vertical" unique values into Columns-----#
capstonewithoutna_withinperiod_GamingAccessory <- filter ( capstonewithoutna_withinperiod
,capstonewithoutna withinperiod$product analytic sub category == 'GamingAccessory')
capstonewithoutna withinperiod GA <- capstonewithoutna withinperiod GamingAccessory
capstonewithoutna withinperiod GA$product analytic vertical <-
factor(capstonewithoutna withinperiod GA$product analytic vertical)
levels(capstonewithoutna withinperiod GA$product analytic vertical)
dummy_subcat<-data.frame(model.matrix(~product_analytic_vertical,data =</pre>
capstonewithoutna withinperiod GA))
dummy_subcat<-dummy_subcat[,-1]</pre>
capstonewithoutna withinperiod GA1<-capstonewithoutna withinperiod GA
capstonewithoutna_withinperiod_GA1bk <- capstonewithoutna_withinperiod_GA1
capstonewithoutna withinperiod GA1<-capstonewithoutna withinperiod GA1[,-1]
capstonewithoutna withinperiod GA1<-cbind(capstonewithoutna withinperiod GA1,dummy subcat)
colnames(capstonewithoutna withinperiod GA1)
```

names(capstonewithoutna withinperiod GA1)

str(capstonewithoutna_withinperiod_GA1)

capstonewithoutna_withinperiod_513 <- capstonewithoutna_withinperiod_GA1 capstonewithoutna_withinperiod_GA1

#------Added the Dummy variables for the Home audio , camera accessory and gaming accessories from product_analytic_vertical
#View(capstonewithoutna_withinperiod_CA)
#View(capstonewithoutna_withinperiod_HA)
#View(capstonewithoutna_withinperiod_GA)

#-----#

#-----Aggregate the Home audio,camera accessory and gaming accessories dataset using the "Weeknumber"

names(capstonewithoutna_withinperiod_CA)
unique(capstonewithoutna_withinperiod\$product_analytic_sub_category)

capstonewithoutna_withinperiod_Filter_grpbyweeknumber_CA <- capstonewithoutna_withinperiod_CA %>%

group_by(product_analytic_sub_category,weeknumber) %>% summarise(gmv=sum(gmv), product_mrp=mean(product_mrp),units=sum(units),

discount=mean(discount),NPS=mean(NPS),Frequency=mean(Frequency),Percent=mean(Percent),Camer aAccessory=sum(product_analytic_verticalCameraAccessory),

CameraBag=sum(product_analytic_verticalCameraBag), CameraBattery=sum(product_analytic_verticalCameraBattery), CameraBatteryCharger=sum(product_analytic_verticalCameraBatteryCharger),

CameraBatteryGrip=sum(product_analytic_verticalCameraBatteryGrip),CameraEyeCup=sum(product_analytic_verticalCameraEyeCup),CameraFilmRolls=sum(product_analytic_verticalCameraFilmRolls),

CameraHousing=sum(product_analytic_verticalCameraHousing), CameraMicrophone=sum(product_analytic_verticalCameraMount=sum(product_analytic_verticalCameraMount),

CameraRemoteControl=sum(product_analytic_verticalCameraRemoteControl),CameraTripod=sum(product_analytic_verticalCameraTripod),ExtensionTube=sum(product_analytic_verticalExtensionTube),

Filter=sum(product_analytic_verticalFilter),Flash=sum(product_analytic_verticalFlash),FlashShoeAdapter r=sum(product_analytic_verticalFlashShoeAdapter),Lens=sum(product_analytic_verticalLens)

,ReflectorUmbrella=sum(product_analytic_verticalReflectorUmbrella),Softbox=sum(product_analytic_verticalSoftbox),Strap=sum(product_analytic_verticalStrap),

Teleconverter=sum(product_analytic_verticalTeleconverter),Telescope=sum(product_analytic_verticalTelescope),PaymentType=sum(s1_fact.order_payment_type),IsmoreListPrice=sum(moreListPrice),isSaled ay=sum(Saleday))

Percent=mean(Percent),Dock=sum(product_analytic_verticalDock),DockingStation=sum(product_analytic verticalDockingStation),FMRadio=sum(product_analytic verticalFMRadio),

 $HiFiSystem = sum(product_analytic_vertical HiFiSystem), Home Audio Speaker = sum(product_analytic_vertical Home Audio Speaker), Karaoke Player = sum(product_analytic_vertical Karaoke Player), \\$

SlingBox=sum(product_analytic_verticalSlingBox),SoundMixer=sum(product_analytic_verticalSoundMixer),VoiceRecorder=sum(product_analytic_verticalVoiceRecorder),

PaymentType=sum(s1_fact.order_payment_type),IsmoreListPrice=sum(moreListPrice),isSaleday=sum(Saleday))

names(capstonewithoutna_withinperiod_GA)
capstonewithoutna_withinperiod_Filter_grpbyweeknumber_GA <capstonewithoutna_withinperiod_GA %>%
group_by(product_analytic_sub_category,weeknumber) %>% summarise(gmv=sum(gmv),
product_mrp=mean(product_mrp),units=sum(units),discount=mean(discount),NPS=mean(NPS),Frequen
cy=mean(Frequency),Percent=mean(Percent),

 $\label{lem:controlMount} Game Control Mount), Game Pad = sum(product_analytic_vertical Game Control Mount), Game Pad = sum(product_analytic_vertical Game Pad),$

GamingAccessoryKit=sum(product_analytic_verticalGamingAccessoryKit),GamingAdapter=sum(product_analytic_verticalGamingAdapter),

 $Gaming Charging Station = sum(product_analytic_vertical Gaming Charging Station), Gaming Head set = sum(product_analytic_vertical Gaming Head set),$

 $Gaming Keyboard = sum(product_analytic_vertical Gaming Keyboard), Gaming Memory Card = sum(product_analytic_vertical Gaming Memory Card),$

GamingMouse=sum(product_analytic_verticalGamingMouse),GamingMousePad=sum(product_analytic_verticalGamingMousePad),

 $Gaming Speaker = sum(product_analytic_vertical Gaming Speaker), Joystick Gaming Wheel = sum(product_analytic_vertical Joystick Gaming Wheel),$

```
Motion Controller = sum(product\_analytic\_vertical Motion Controller), TVOut Cable Accessory = sum(product\_analytic\_vertical TVOut Cable Accessory),
```

PaymentType=sum(s1_fact.order_payment_type),IsmoreListPrice=sum(moreListPrice),isSaleday=sum(Saleday))

```
View(capstonewithoutna_withinperiod_Filter_grpbyweeknumber_GA) View(capstonewithoutna_withinperiod_Filter_grpbyweeknumber_HA) View(capstonewithoutna_withinperiod_Filter_grpbyweeknumber_CA)
```

#-----Preparing the MediaInvest data for merging with the Order level data Dataset extracted for "Home audio,camera accessory and gaming accessories" above

```
#Preparation for the MediaInvest Merge
mediainvestment <- read.xls("Media data and other information.xlsx", sheet = 2, header = TRUE, skip =
daysinmonths<-c(31,30,30,31,30,31,31,29,31,30,31,30)
mediainvestment$daysinmonths<-daysinmonths
getMediaidx<-function(monthnum){</pre>
for (i in 1:12)
{
  if (mediainvestment[i,2]==monthnum)
   return(i)
  }
}
}
stdate<-as.Date(ymd("20150701"))
dfdayinvestments <- data.frame(matrix(ncol = 12, nrow = 0))
x <- c("yymm","date", "weeknumber","TV","Digital","Sponsorship","Content Marketing","Online
marketing","Affiliates","SEM","Radio","Other"
colnames(dfdayinvestments) <- x
stdate<-ymd("20150701")
weeknum=1
i=1
while (i <= 366) {
for (j in 1:7)
```

```
yymm<-year(as.Date(stdate))
  mm<-month(as.Date(stdate))
  if (mm<10) {
  stryymm<-paste(toString(yymm),"_","0",toString(mm),sep="")
  }
  else {
  stryymm<-paste(toString(yymm),"_",toString(mm),sep="")</pre>
  idx<-getMediaidx(mm)</pre>
  TVinvst<-mediainvestment[idx,4]/mediainvestment[idx,13]
  Digitalinvst<-mediainvestment[idx,5]/mediainvestment[idx,13]
  Sponsorinvst<-mediainvestment[idx,6]/mediainvestment[idx,13]
  CMinvst<-mediainvestment[idx,7]/mediainvestment[idx,13]
  OMinvst<-mediainvestment[idx,8]/mediainvestment[idx,13]
  Affinvst<-mediainvestment[idx,9]/mediainvestment[idx,13]
  SEMinvst<-mediainvestment[idx,10]/mediainvestment[idx,13]
  Radioinvst<-mediainvestment[idx,11]/mediainvestment[idx,13]
  Otherinvst<-mediainvestment[idx,12]/mediainvestment[idx,13]
  dfdayinvestments[i,]<-
c(stryymm,stdate,weeknum,TVinvst,Digitalinvst,Sponsorinvst,CMinvst,OMinvst,Affinvst,SEMinvst,Radioi
nvst,Otherinvst)
  stdate<-stdate+days(1)
  i=i+1
  if (i>366){
  break
  }
weeknum=weeknum+1
dfdayinvestments1<-dfdayinvestments[1:366,]
#as.Date(as.integer(max(dfdayinvestments1$date)))
names(dfdayinvestments1)
#-----Aggregate the Media Invest dataset using the "Weeknumber"
dfdayinvestmentsweekly<-
dfdayinvestments1%>%dplyr::group by(weeknumber)%>%dplyr::summarise(TV=sum(as.numeric(TV)),D
igital=sum(as.numeric(Digital)),Sponsorship=sum(as.numeric(Sponsorship)),
                                               Content_Marketing=sum(as.numeric(`Content
Marketing`)),Online_marketing=sum(as.numeric(`Online
marketing`)), Affiliates=sum(as.numeric(Affiliates)),
SEM=sum(as.numeric(SEM)),Radio=sum(as.numeric(Radio)),Other=sum(as.numeric(Other)))%>%dplyr::a
rrange(as.integer(weeknumber))
dfdayinvestmentsweekly[which(is.na(dfdayinvestmentsweekly$Radio)), "Radio"] <- 0
dfdayinvestmentsweekly[which(is.na(dfdayinvestmentsweekly$Other)), "Other"] <- 0
```

```
#MediaInvest Merge below with three Sub-categories
'CameraAccessory','HomeAudio','GamingAccessory'
#------MERGE the Media Dataset with the Extracted Order Level dataset for the 3 Sub-
categories-----
#CameraAccessory
capstonewithoutna withinperiod Filter grpbyOdate media CA <-
merge(capstonewithoutna withinperiod Filter grpbyweeknumber CA,dfdayinvestmentsweekly,by.x="
weeknumber",by.y="weeknumber")
#HomeAudio
capstonewithoutna withinperiod Filter grpbyOdate media HA <-
merge(capstonewithoutna withinperiod Filter grpbyweeknumber HA,dfdayinvestmentsweekly,by.x="
weeknumber",by.y="weeknumber")
#GamingAccessory
capstonewithoutna_withinperiod_Filter_grpbyOdate_media_GA <-
merge(capstonewithoutna withinperiod Filter grpbyweeknumber GA,dfdayinvestmentsweekly,by.x="
weeknumber",by.y="weeknumber")
#-----To view the merged DATASET for the 3 sub-categories
#View(capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA)
#View(capstonewithoutna withinperiod Filter grpbyOdate media HA)
#View(capstonewithoutna_withinperiod_Filter_grpbyOdate_media_GA)
# names(capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA)
# names(capstonewithoutna withinperiod Filter grpbyOdate media HA)
# names(capstonewithoutna_withinperiod_Filter_grpbyOdate_media_GA)
#-----To verify the Total Media investment made for each of the Media verticals
sum((capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA$TV)/3)
sum((capstonewithoutna withinperiod Filter grpbyOdate media CA$Digital)/3)
sum((capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA$Sponsorship)/3)
sum((capstonewithoutna withinperiod Filter grpbyOdate media CA$Content Marketing)/3)
sum((capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA$Online_marketing)/3)
sum((capstonewithoutna withinperiod Filter grpbyOdate media CA$Affiliates)/3)
sum((capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA$SEM)/3)
names(capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA)
unique(capstonewithoutna_withinperiod_Filter_grpbyOdate_media_CA$product_analytic_sub_categor
v)
#------
```