Digit Recognition

with Support Vector Machines

Lisa Gaedke-Merzhäuser
Paul Korsmeier
Lisa Mattrisch
Vanessa Schreck

Freie Universität Berlin, Mathematical Aspects of Machine Learning

July 19, 2017

Outline

- 1. Introduction to Our Data Set
- 2. Our Approach
- 3. Sequential Minimal Optimization (SMO)
- 4. Multi-Class Classification
- 5. Results & Conclusions

Introduction to Our Data Set

Main Goal: train algorithm to recognize handwritten digits

Data:

- ▶ 42,000 greyscale images
- 28 by 28 pixels each
- partitioned into ten classes

Our Approach

We want to use the concept of SVMs.

- ▶ **Problem I:** SVMs are binary classifiers
- Problem II: Need to solve optimization problem

Our Approach

- 1. Implement solver for our QP
- 2. Implement basic SVM algorithm
 - ▶ linear kernel / Gaussian kernel
 - Parameter optimization
- 3. Combine individual SVMs in different ways
- 4. Validate and compare results

► The primal Soft Margin SVM QP is equivalent to solving the dual problem:

minimize
$$d(\alpha) := \frac{1}{2} \alpha^T Q \alpha - 1^T \alpha$$
 (1)
s.t. $0 \le \alpha \le C$ and $y^T \alpha = 0$,

where $q_{ij} = y_i y_j k(x_i, x_j)$, x_i the data, y_i the labels, k the kernel function and C the penalty term

► Since Q is spsd, satisfying the KKT conditions guarantees a solution to (1).

- Lagrangian of dual objective d: $\mathcal{L}(\alpha, \delta, \mu, \beta) = d(\alpha) - \delta^T \alpha + \mu^T (\alpha - C) - \beta \alpha^T y$
- KKT conditions for dual Lagrangian:

$$\nabla_{\alpha} \mathcal{L}(\alpha^*, \delta^*, \mu^*, \beta^*) = 0$$

$$\delta_i^* \geq 0$$

$$\delta_i^* \alpha_i^* = 0$$

$$\mu_i^* \geq 0$$

$$\mu_i^*(\alpha_i^* - C) = 0$$

$$\alpha_i^* \text{ feasible}$$
for all $i \in \{1, \dots, I\}$

- ▶ Define $F_i(\alpha) := y_i(\partial_i d)(\alpha) = \sum_{j=1}^l \alpha_j y_j k(x_i, x_j) y_i$.
- ▶ Then the KKT conditions are equivalent to:

$$b_{up}(\alpha) := \min_{i \in I_{up}(\alpha)} F_i(\alpha) \ge \max_{j \in I_{low}(\alpha)} F_j(\alpha) =: b_{low}(\alpha),$$

where $I_{up}(\alpha)$, $I_{low}(\alpha)$ are specific subsets of $\{1, \ldots, I\}$.

- ▶ Relax to $b_{up}(\alpha) \ge b_{low}(\alpha) \tau$ for some tolerance $\tau > 0$.
- ▶ A pair $(i,j) \in I_{up}(\alpha) \times I_{low}(\alpha)$ with $F_i(\alpha) < F_j(\alpha) \tau$ is called τ -violating.

► Any algorithm of the following form converges after finitely many steps:

Algorithm (General SMO type algorithm)

Let $\tau > 0$. Initialize k = 0 and $\alpha^0 = 0$.

- 1. **Pick** a τ -violating pair (α_i^k, α_i^k) . If there is none, stop.
- 2. *Minimize* d only in α_i^k and α_j^k , while respecting constraints. \rightarrow Obtain α^{new} .
- 3. Set $\mathbf{k} := \mathbf{k} + \mathbf{1}$, $\alpha^{\mathbf{k}} := \alpha^{new}$ and go to Step 1.

- ► Each step of GSMO is only a (clipped) one-dimensional $QP \rightarrow$ analytic solution known \rightarrow cheap.
- ► Two heuristics for choosing violating pair:
 - ► WSS1: steepest possible gradient

$$(i_{\mathit{up}}, j_{\mathit{low}}) \in \operatorname{argmin}_{i \in I_{\mathit{up}}(\alpha)} F_i(\alpha) \times \operatorname{argmax}_{j \in I_{\mathit{low}}(\alpha)} F_j(\alpha)$$

▶ WSS2: maximal possible decrease in d

$$(i,j) \in \operatorname{argmin}_{i \in I_{up}(\alpha)} F_i(\alpha) \times I_{low}(\alpha) : d(\alpha^{new}) - d(\alpha) \to \min$$

WSS2 seems promising, but is too expensive.

► Run time comparison of algorithms with Gaussian kernel and separating the digits into even and odd numbers:

- ► All algorithms seem to have polynomial order 2.
- Our WSS1 with caching runs about 5.8 times as long as scikit-learn SVC.

Multi-Class Classification

- Choose k groups of the classes
- ► Train *k* SVMs that separate each group from the rest
- ▶ Compare outcome to what would arise for each digit.
- Problem: Points may not be classified uniquely.
- ► Handle overlappings by comparing distance to barycenters

Multi-Class Classification

1. One-vs-All

Idea: For each $i \in \{0, 1, ..., 9\}$, train an SVM that separates class i from the rest

Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f ₉
0	-1	1	1	1	1	1	1	1	1	1
1	1	-1	1	1	1	1	1	1	1	1
2	1	1	-1	1	1	1	1	1	1	1
3	1	1	1	-1	1	1	1	1	1	1
4	1	1	1	1	-1	1	1	1	1	1
5	1	1	1	1	1	-1	1	1	1	1
6	1	1	1	1	1	1	-1	1	1	1
7	1	1	1	1	1	1	1	-1	1	1
8	1	1	1	1	1	1	1	1	-1	1
9	1	1	1	1	1	1	1	1	1	-1

Multi-Class Classification

2. Error Correcting Output Codes

Idea: Relabeling with large Hamming distance according to:

Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1	1	-1	1
1	-1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1	1	-1
2	1	-1	-1	1	-1	-1	-1	1	1	1	1	-1	1	-1	1
3	-1	-1	1	1	-1	1	1	1	-1	-1	-1	-1	1	-1	1
4	1	1	1	-1	1	-1	1	1	-1	-1	1	1	-1	-1	1
5	-1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	-1	-1	1
6	1	-1	1	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1
7	-1	-1	-1	1	1	1	1	-1	1	-1	1	1	-1	-1	1
8	1	1	-1	1	-1	1	1	-1	-1	1	-1	-1	-1	1	1
9	-1	1	1	1	-1	-1	-1	-1	1	-1	1	-1	-1	1	1

Results & Conclusions

# training points	One-vs-All uniquely classfied, linear	One-vs-All with bary- centers, linear	One-vs-All uniquely classfied, Gaussian	One-vs-All with bary- centers, Gaussian	ECOC, linear	ECOC, Gaussian
500						
1000						
2000						
5000						
10000						

Table: Correctly Classified Digits

Results & Conclusions

# training points	One-vs-All uniquely classfied, linear	One-vs-All with bary- centers, linear	One-vs-All uniquely classfied, Gaussian	One-vs-All with bary- centers, Gaussian	ECOC, linear	ECOC, Gaussian
500	65.9%	74.1%	75.4%	83.3%	74.2%	87.4%
1000	68.2%	75.0%	84.3%	89.0%	78.0%	92.7%
2000	70.2%	76.4%	89.8%	91.9%	77.8%	94.3%
5000	70.0%	73.8%	88.9%	91.6%	82.0%	95.2%
10000	64.6%	67.5%	88.0%	90.6%	82.5%	95.4%

Table: Correctly Classified Digits

Results & Conclusions

Figure: Visualizing very illegible digits