First-order MDPs

Motivation

Scott Sanner NICTA / ANU

FOMDP Tutorial Outline

Motivation

- Deductive First-order Planning in the Situation Calculus
- FOMDPs and Symbolic Dynamic Programming
- Potential Caveats

Planning Languages

- Common languages:
 - STRIPS
 - PDDL
 - more expressive than STRIPS
 - for example, *universal* and *conditional* effects:

- General Game Playing (GGP)
 - one or more agents

Benefits of Relational Languages

- STRIPS, PDDL, GGP are relational languages...
 - Refer to relational *fluents*:
 - e.g., *BIn*(?b,?c), *OnTable*(?b)
 - specify relations between objects
 - change over time
 - Use first-order logic to specify...
 - action preconditions
 - action effects
 - goals / rewards
 - e.g., (forall (?b ?c) ((Destination ?b ?c) \Rightarrow (Bin ?b ?c)))
 - Are domain-independent and often compact!

How to Solve?

Relational planning problem:


```
(:action load-box-on-truck-in-city

:parameters (?b - box ?t - truck ?c - city)

:precondition (and (BIn ?b ?c) (TIn ?t ?c))

:effect (and (On ?b ?t) (not (BIn ?b ?c))))
```

- Solve ground problem for each domain instance?
 - 3 trucks: 4 2 planes: 3 boxes: 5 5 6
- Or solve lifted specification for all domains at once?

Full Specification: BoxWorld

```
• Relational Fluents: BoxIn(Box, City), TruckIn(Truck, City), BoxOn(Box, Truck)
• Goal: [\exists Box : b.BoxIn(b, paris)]
Actions:
      - load(Box : b, Truck : t):
           * Effects:
                 \cdot when [\exists City : c.\ BoxIn(b,c) \land TruckIn(t,c)] then [BoxOn(b,t)]
                 \cdot \ \forall City : c. \ when \ [BoxIn(b,c) \land TruckIn(t,c)] \ then \ [\neg BoxIn(b,c)] \}
      - unload (Box: b, Truck: t):
           * Effects:
                 \cdot \ \forall City : c. \ when \ [BoxOn(b,t) \land TruckIn(t,c)] \ then \ [BoxIn(b,c)]
                 \cdot when [\exists City : c. BoxOn(b, t) \land TruckIn(t, c)] then [\neg BoxOn(b, t)]
      - drive(Truck : t, City : c):
           * Effects:
                 \cdot when [\exists City : c_1. \ TruckIn(t, c_1)] \ then \ [TruckIn(t, c)]
                 \cdot \ \forall City: c_1. \ when \ [TruckIn(t, c_1)] \ then \ [\neg TruckIn(t, c_1)]
```

Solving Ground BoxWorld

Apply planner to BoxWorld grounded w.r.t. domain, e.g.,

Domain Object Instantiation:

#states exponential in #state-vars!

```
- Box = \{box_1, box_2, box_3\}, Truck = \{truck_1, truck_2\}, City = \{paris, berlin, rome\}
```

• Ground Fluents (i.e., binary state variables):

Exponential #state-vars in arity

- BoxIn: $\{BoxIn(box_1, paris), BoxIn(box_2, paris), BoxIn(box_3, paris), BoxIn(box_1, berlin), BoxIn(box_2, berlin), BoxIn(box_3, berlin), BoxIn(box_1, rome), BoxIn(box_2, rome), BoxIn(box_3, rome)\}$
- TruckIn: { $TruckIn(truck_1, paris)$, $TruckIn(truck_1, berlin)$, $TruckIn(truck_1, rome)$, $TruckIn(truck_2, paris)$, $TruckIn(truck_2, berlin)$, $TruckIn(truck_2, rome)$ }
- BoxOn: $\{BoxOn(box_1, truck_1), BoxOn(box_2, truck_1), BoxOn(box_3, truck_1), BoxOn(box_1, truck_2), BoxOn(box_2, truck_2), BoxOn(box_3, truck_2)\}$

• Ground Actions:

Exponential #actions in arity

- load: { $load(box_1, truck_1)$, $load(box_2, truck_1)$, $load(box_3, truck_1)$ $load(box_1, truck_2)$, $load(box_2, truck_2)$ }, $load(box_3, truck_2)$ }
- unload: $\{unload(box_1, truck_1), unload(box_2, truck_1), unload(box_3, truck_1), unload(box_1, truck_2), unload(box_2, truck_2)\}, unload(box_3, truck_2)\}$
- drive: { $drive(truck_1, paris)$, $drive(truck_1, berlin)$, $drive(truck_1, rome)$ $drive(truck_2, paris)$, $drive(truck_2, berlin)$, $drive(truck_2, rome)$

• Goal: $[BoxIn(box_1, paris) \lor BoxIn(box_2, paris) \lor BoxIn(box_3, paris)]$

Exponential in #nested quantifiers

A First-order Solution to BoxWorld

Derive solution deductively at lifted PDDL level:

```
• if (\exists b.BoxIn(b, paris)) then do noop
```

- else if $(\exists b^*, t^*. TruckIn(t^*, paris) \land BoxOn(b^*, t^*))$ then do $unload(b^*, t^*)$
- else if $(\exists b, c, t^*.BoxOn(b, t^*) \land TruckIn(t, c)$ then do $drive(t^*, paris)$
- else if $(\exists b^*, c, t^*.BoxIn(b^*, c) \land TruckIn(t^*, c))$ then do $load(b^*, t^*)$
- else if $(\exists b, c_1^*, t^*, c_2.BoxIn(b, c_1^*) \land TruckIn(t^*, c_2))$ then do $drive(t^*, c_1^*)$ Optimal for any

domain instantiation!

• else do noop

Great, but how do I obtain this solution?

Tutorial Overview

- Foundational theory for exploiting first-order structure in planning
 - deterministic and probabilistic
 - representations and implementation
- We cover a deductive approach
 - plan solely based on model
 - no simulations or sampled data
 - this would require grounding
- See Sanner & Boutilier, Al Journal 2008 for discussion / comparison to inductive approaches

First-order MDPs

Deterministic Planning in the Situation Calculus

Scott Sanner NICTA

FOMDP Tutorial Outline

- Motivation
- Deductive First-order Planning in the Situation Calculus
- FOMDPs and Symbolic Dynamic Programming
- Potential Caveats

Situation Calculus: Ingredients

Actions

- first-order terms with action parameters
- e.g., load(b,t), unload(b,t), drive(t,c)

Situations

- term that encodes action history
- e.g., s, s_0 , do(load(b,t),s), do(load(b,t),drive(t,c),s)

Fluents

- relation whose truth value varies b/w situations
- e.g., BoxOn(b,t,s), TruckIn(t,c,s), BoxIn(t,c,s)

Situation Calculus: PDDL to Effects

Recall BoxWorld PDDL specification...

```
• load(Box : b, Truck : t):
     – Effects:
           * when [\exists City : c. BoxIn(b,c) \land TruckIn(t,c)] then [BoxOn(b,t)]
           * \forall City : c. \ when \ [BoxIn(b,c) \land TruckIn(t,c)] \ then \ [\neg BoxIn(b,c)] \}
• unload(Box : b, Truck : t):
     Effects:
           * \forall City : c. \ when \ [BoxOn(b,t) \land TruckIn(t,c)] \ then \ [BoxIn(b,c)]
           * when [\exists City : c. BoxOn(b, t) \land TruckIn(t, c)] then [\neg BoxOn(b, t)]
• drive(Truck:t,City:c):
     - Effects:
           * when [\exists City : c_1. TruckIn(t, c_1)] then [TruckIn(t, c)]
           * \forall City : c_1. when [TruckIn(t, c_1)] then [\neg TruckIn(t, c_1)]
```

Situation Calculus: PDDL to Effects

Translate to positive and negative effect axioms

```
• load(Box : b, Truck : t):
      – Effects:
            * [\exists c.\ a = load(b, t) \land BoxIn(b, c, s) \land TruckIn(t, c, s)] \supset BoxOn(b, t, do(a, s))
            * [\exists t. \ a = load(b, t) \land BoxIn(b, c, s) \land TruckIn(t, c, s)] \supset \neg BoxIn(b, c, do(a, s))
• unload(Box : b, Truck : t):
      - Effects:
            * [\exists t. \ a = unload(b, t) \land BoxOn(b, t, s) \land TruckIn(t, c, s)] \supset BoxIn(b, c, do(a, s))
            * \ [\exists c. \ a = unload(b,t) \land BoxOn(b,t,s) \land \mathit{TruckIn}(t,c,s)] \supset \neg BoxOn(b,t,do(a,s))
• drive(Truck:t,City:c):
      – Effects:
            * [\exists c_1. \ a = drive(t, c) \land TruckIn(t, c_1, s)] \supset TruckIn(t, c, do(a, s))
            * [\exists c.\ a = drive(t,c) \land TruckIn(t,c_1,s)] \supset \neg TruckIn(t,c_1,do(a,s))
```

Situation Calculus: PDDL to Effects

Now, merge into positive effect axioms

$$\gamma_F^+(\vec{x}, a, s) \supset F(\vec{x}, do(a, s))$$

and negative effect axioms

$$\gamma_F^-(\vec{x}, a, s) \supset \neg F(\vec{x}, do(a, s))$$

• Use rule to combine multiple effects

$$[(C_1 \supset F) \land (C_2 \supset F)] \equiv [(C_1 \lor C_2) \supset F]$$

Frame Problem

Now we have positive and negative effects

```
 \gamma^{+}_{BoxIn}(\vec{x}, a, s) \supset BoxIn(\vec{x}, do(a, s)) \qquad \gamma^{-}_{BoxIn}(\vec{x}, a, s) \supset \neg BoxIn(\vec{x}, do(a, s)) 
 \gamma^{+}_{TruckIn}(\vec{x}, a, s) \supset TIn(\vec{x}, do(a, s)) \qquad \gamma^{-}_{TruckIn}(\vec{x}, a, s) \supset \neg TruckIn(\vec{x}, do(a, s)) 
 \gamma^{+}_{BoxOn}(\vec{x}, a, s) \supset BoxOn(\vec{x}, do(a, s)) \qquad \gamma^{-}_{BoxOn}(\vec{x}, a, s) \supset \neg BoxOn(\vec{x}, do(a, s))
```

so we have compactly specified what changes.

- How to compactly specify what does not change?
 - Infamous Frame Problem
 - Intuition:
 - "what does not change, remains same"
 - this is Reiter's **Default Solution**
 - but we have to logically formalize it...

Successor State Axioms (SSAs)

Default solution to frame problem given as SSAs:

Unique names axioms for terms

Effect axioms

$$\gamma_F^+(\vec{x}, a, s) \supset F(\vec{x}, do(a, s))$$
 $\gamma_F^-(\vec{x}, a, s) \supset \neg F(\vec{x}, do(a, s))$

Unique names for actions / arguments.

Explanation closure axioms

$$F(\vec{x},do(a,s)) \equiv \gamma_F^+(\vec{x},a,s) \vee F(\vec{x},s)$$

$$\wedge \neg \gamma_F^-(\vec{x},a,s)$$
 SSAs

SSAs

Shorthand:

$$F(\vec{x}, do(a, s)) \equiv \Phi_F(\vec{x}, a, s)$$
$$\equiv \gamma_F^+(\vec{x}, a, s) \vee F(\vec{x}, s) \wedge \neg \gamma_F^-(\vec{x}, a, s)$$

Reality check:

What changes and does not change!

```
BoxOn(b,t,do(a,s)) \equiv \Phi_{BoxOn}(b,t,a,s)
\equiv [\exists c. \ a = load(b,t) \land BoxIn(b,c,s) \land TruckIn(t,c,s)]
\lor BoxOn(b,t,s) \land \neg [\exists c. \ a = unload(b,t) \land BoxOn(b,t,s) \land TruckIn(t,c,s)]
BoxIn(b,c,do(a,s)) \equiv \Phi_{BoxIn}(b,c,a,s)
\equiv [\exists t. \ a = unload(b,t) \land BoxOn(b,t,s) \land TruckIn(t,c,s)]
\lor BoxIn(b,c,s) \land \neg [\exists t. \ a = load(b,t) \land BoxIn(b,c,s) \land TruckIn(t,c,s)]
TruckIn(t,c,do(a,s)) \equiv \Phi_{TruckIn}(t,c,a,s)
\equiv [\exists c_1. \ a = drive(t,c) \land TruckIn(t,c_1,s)]
\lor TruckIn(t,c,s) \land \neg [\exists c_1. \ a = drive(t,c) \land TruckIn(t,c_1,s)]
```

Regression

- Why have we defined SSAs?
- Regression:
 - If φ held after action a then regression is the φ' that held before action a
- Exploit following properties:
 - $Regr(\neg \psi) = \neg Regr(\psi)$
 - $Regr(\psi_1 \wedge \psi_2) = Regr(\psi_1) \wedge Regr(\psi_2)$
 - $Regr((\exists x)\psi) = (\exists x)Regr(\psi)$
 - $Regr(F(\vec{x}, do(a, s))) = \Phi_F(\vec{x}, a, s)$

Regression Example

- Given $\exists b. BoxIn(b, paris, do(unload(b^*, t^*), s))$
- Regress through unload(b*,t*)

Regression Example

But what action instantiation of unload(b*,t*) leads to:

```
\exists b. \, BoxIn(b, paris, do(unload(b^*, t^*), s))
```

- Just have to existentially quantify b*, t*
 - Can obtain instances via query extraction w.r.t. state KB

First-order state & action abstraction!

Don't have to enumerate all states, *b**, *t**!

Recap

- We translated PDDL to SitCalc theory
 - converted PDDL effects to SitCalc effect axioms
 - derived SSAs from effect axioms
 - using default solution to Frame Problem
- Introduced regression operator
 - extracted action instantiation to achieve goal
- Let the planning begin…

Regression Planning

 Define abstract goal state, e.g.,

 $\exists b. \ BoxIn(b, paris, s)$

 Check if regression through action sequence holds in initial state

First-order Goal-regression

- We can now do goal regression planning!
 - Provide initial state and sequence of actions
 - Use regression, ∃ to tell whether goal will hold

Progression and Forward-search?

Can we do lifted forward-search planning?

- Progression not first-order definable! (Reiter, 01)
- Could progress ground state
 - But this does not exploit first-order structure

Golog: Restricted Plan Search

AIGOI in LOGic

- Search the space of sequential action plans
- Regress actions to initial state to test reachability
- Restrict action space with program:

α	primitive action
ϕ ?	condition test
(δ_1,δ_2)	sequence
$\textbf{if } \phi \textbf{ then } \delta_2 \textbf{ endIf}$	conditional
while ϕ then δ endWhile	loop
$(\delta_1 \delta_2)$	nondeterministic choice of action
$\pi \vec{x} [\delta]$	nondeterministic choice of arguments
δ^*	nondeterministic iteration
$\mathbf{proc}\ eta(ec{x})\ \delta\ \mathbf{endProc}$	procedure call definition
$\mid eta(ec{t})$	procedure call

Golog Example

Golog Program:

```
(\pi b \ [\neg OnTable(b,s)?, pickup(b), putOnTable(b)])^*, \ \forall b. \ OnTable(b,s)?
```

Diagram of Golog Planning:

For Further Reading

Knowledge in Action:

In-depth coverage of SitCalc default solution, applications (Reiter, 2001)

Golog

(Levesque, Reiter, Lesperance, Lin, Journal Logic Programming, 1997)

Extensions

ConGolog: concurrent Golog
 (de Giacomo, Lesperance, Levesque, AIJ-00)

 DT-Golog: decision-theoretic, covered next (Soutchanski, Boutilier, Reiter, Thrun, AAAI-20)

For MDPs, covered next.

Conclusion

- Situation Calculus
 - First-order specification of action theory
 - Default solution addresses Frame Problem
 - Effective approach to PDDL-expressive planning
- Supports Regression Planning
 - Initial state need not be fully specified
 - Can restrict action space with Golog program
 - Exploits state & action abstraction
 - Avoids enumerating all state & action instances!

First-order MDPs

FOMDPs and Symbolic Dynamic Programming

Scott Sanner NICTA

FOMDP Tutorial Outline

- Motivation
- Deductive First-order Planning in the Situation Calculus
- FOMDPs and Symbolic Dynamic Programming
- Potential Caveats

MDPs <S,A,T,R, $\gamma>$

- $S = \{1,2\}; A = \{stay, change\}$
- Reward
 - R(s=1,a=stay) = 2
 - **—** ...
- Transitions
 - $T(s=1,a=stay,s'=1) = P(s'=1 \mid s=1, a=stay) = .9$
 - **—** ...
- Discount γ

How to act in an MDP?

Define policy

 $\pi \colon S \to A$

What's the best Policy?

• Immediate vs. long-term gain?

What's the best Policy?

- Must define reward criterion to optimize!
 - Discount factor γ important (γ =.9 vs. γ =.1)

MDP Policy, Value, & Solution

• Define value of a policy π :

$$V_{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \middle| s = s_0 \right]$$

- Tells how much value you expect to get by following π starting from state s
- MDP Optimal Solution:
 - Find optimal policy π^* that maximizes value
 - Fortunately: $\exists \pi^* . \forall s, \pi. \ V_{\pi^*}(s) \geq V_{\pi}(s)$

Value Iteration: from finite to ∞ decisions

- Given optimal t-1-stage-to-go value function
- How to act optimally with t decisions?
 - Take action a then act so as to achieve V^{t-1} thereafter

$$Q^{t}(s, a) := R(s, a) + \gamma \cdot \sum_{s' \in S} T(s, a, s') \cdot V^{t-1}(s')$$

— What is expected value of best action a at decision stage t?

$$V^{t}(s) := \max_{a \in A} \left\{ Q^{t}(s, a) \right\}$$

At ∞ horizon, get same value (=V*)

$$\lim_{t \to \infty} \max_{s} |V^{t}(s) - V^{t-1}(s)| = 0$$

• π^* says act same at each decision stage for ∞ horizon!

Single Dynamic Programming Step

Graphical view:

Synchronous DP Updates (Value Iteration)

Value Function → Policy

- Can derive policy from value function V
- Given arbitrary value V (optimal or not)...
 - A greedy policy π_V takes action in each state that maximizes expected value w.r.t. V:

$$\pi_V(s) = \arg\max_a \left\{ R(s, a) + \gamma \sum_{s'} T(s, a, s') V(s') \right\}$$

– If can act so as to obtain V after doing action a in state s, π_V guarantees V(s) in expectation

How to Specify & Solve First-order MDPs?

Following: [Boutilier, Reiter, Price, IJCAI-01]

First-order (FO)MDPs: Case Statement

- $\langle S,A,T,R \rangle$ for FOMDPs defined in terms of *cases*
 - ◆ E.g., express reward in BoxWorld FOMDP as...

$$rCase(s) = \begin{array}{|c|c|c|c|}\hline \forall b, c. \ Dest(b, c) \Rightarrow BIn(b, c, s) & 1\\\hline \neg \text{``} & 0\\\hline \end{array}$$

- Operators: Define unary, binary case operations
 - ♦ E.g., can take "cross-sum" \oplus (or \otimes , \ominus) of cases...

Stochastic Actions & FODTR

- Stochastic actions using deterministic SitCalc:
 - ♦ User's stochastic action: A(x) = load(b,t)
 - ♦ Nature's choice: $n(x) \in \{loadS(b,t), loadF(b,t)\}$
 - Probability distribution over Nature's choice:

$$P(loadS(b,t) \mid load(b,t)) = \begin{cases} snow(s) & .1 \\ \neg snow(s) & .6 \end{cases}$$

$$P(loadF(b,t) \mid load(b,t)) = \begin{cases} snow(s) & .9 \\ \neg snow(s) & .4 \end{cases}$$

- First-order decision-theoretic regression
 - ◆ FODTR = expectation of regression:

```
FODTR[vCase(s),A(x)] = \mathbf{E}_{P(n(x)|A(x))}[Regr[vCase(s),n(x)]]
```

Q-functions and Backups

FODTR almost gives us a Q-function

$$FODTR[vCase(unload(b,t))] =$$

On(b,t,s)	5
$\neg On(b,t,s)$	0

- FODTR specific to action variables
- Also need to add reward, discount

Specify a backup operator for this

$$B^{unload}[vCase(s)] = rCase(s) \oplus \gamma$$

$\exists b, t.$	On(b,t,s)	5
$\exists b,t$	$\neg On(b,t,s)$	0

- Idea: if exists action instance that achieves value
- Yields a first-order Q-function

- What value if 0-stages-to-go?
 - Obviously $V^0(s) = rCase(s)$
- What value if 1-stage-to-go?
 - We know value for each action

- Now just need max for every state
- Value iteration: (BoutReiPr, IJCAI-01)
 - − Obtain V^{n+1} from V^n until $(V^{n+1} \ominus V^n) < \varepsilon$

- What value if 0-stages-to-go?
 - Obviously $V^0(s) = rCase(s)$
- What value if 1-stage-to-go?
 - We know value for each action

- Now just need max for every state
- Value iteration: (BoutReiPr, IJCAI-01)
 - − Obtain V^{n+1} from V^n until $(V^{n+1} \ominus V^n) < \varepsilon$

- What value if 0-stages-to-go?
 - Obviously $V^0(s) = rCase(s)$
- What value if 1-stage-to-go?
 - We know value for each action

- Now just need max for every state
- Value iteration: (BoutReiPr, IJCAI-01)
 - − Obtain V^{n+1} from V^n until $(V^{n+1} \ominus V^n) < \varepsilon$

- What value if 0-stages-to-go?
 - Obviously $V^0(s) = rCase(s)$
- What value if 1-stage-to-go?
 - We know value for each action

- Now just need max for every state
- Value iteration: (BoutReiPr, IJCAI-01)
 - − Obtain V^{n+1} from V^n until $(V^{n+1} \ominus V^n) < \varepsilon$

- What value if 0-stages-to-go?
 - Obviously $V^0(s) = rCase(s)$
- What value if 1-stage-to-go?
 - We know value for each action

- Now just need max for every state
- Value iteration: (BoutReiPr, IJCAI-01)
 - − Obtain V^{n+1} from V^n until $(V^{n+1} \ominus V^n) < \varepsilon$

First-order ADDs

Want to compactly represent:

Push down quantifiers, expose prop. structure:

Var	Var ⇔ FOL KB
a	$\equiv [\exists x.A(x)]$
b	$\equiv [\exists x. A(x) \land B(x)]$

case =
$$\frac{a \lor (b \land \neg a)}{\neg "}$$

Convert to first-order ADD

Results for SDP with FOADDs

Replace case with FO(A)ADDs, e.g. BoxWorld

Use FO(A)ADD ops for structured SDP (using γ=.9)...

```
vCase(s) = \boxed{\exists b. \ BIn(b, Paris, s)}
100: \ noop \ \boxed{\exists b, t.TIn(t, Paris, s) \land On(b, t, s)}
89: \ unload(b, t) \boxed{\exists b, t. \ On(b, t, s)}
80: \ drive(t, Paris) \boxed{\exists b, c. \ BoxIn(b, c, s) \land \exists t.TIn(t, c, s)}
72: \ load(b, t) \cdots
```

Correctness of SDP

Show SDP for FOMDPs is correct w.r.t. ground MDP:

Related Purely Deductive Approaches

- Value Iteration:
 - ReBel algorithm
 (Kersting, van Otterlo, de Raedt, ICML-04)

 FOVIA algorithm for fluent calculus (Karabaev & Skvortsova, UAI-05)

First-order decision diagrams (FODDs)
 (Wang, Joshi, Khardon, IJCAI-07; JK, ICAPS-08; WJK, JAIR-08)

Kristian covers this.

Saket covers this.

- Approximate Linear Programming (ALP)
 - First-order ALP (FOALP)(Sanner & Boutilier, UAI-05)
- Policy Iteration
 - Approximate policy iteration (FOAPI) (Sanner & Boutilier, UAI-06)
 - Modified policy iteration with FODDs (Wang & Joshi, UAI-07)
- Factored FOMDPs FOMDP extension
 - Factored SDP and Factored FOALP (Sanner & Boutilier, ICAPS-07)

3rd place in ICAPS IPPC5 (after FPG, FF-Replan)

First-order MDPs

Caveats

Scott Sanner NICTA

FOMDP Tutorial Outline

- Motivation
- Deductive First-order Planning in the Situation Calculus
- FOMDPs and Symbolic Dynamic Programming
- Potential Caveats

- Many problems have topologies
 - e.g, reachability constraints in logistics

- If topology not fixed a priori...
 - first-order solution must consider ∞ topologies
 - e.g., if *Moscow* reachable from *Rome* in five steps...
 - in general case, leads to ∞ values / policy

Universal Rewards

$$R(s) = \begin{array}{|c|c|c|} \hline \forall b, c. \ Dst(b, c) \rightarrow BoxIn(b, c, s) : 1 \\ \hline \neg " & : 0 \\ \hline \end{array}$$

Value function must distinguish ∞ cases

$$V^{t}(s) = \begin{cases} \forall b, c. \, Dst(b, c) \rightarrow BoxIn(b, c, s) : & 1 \\ \text{One box not at destination} : & \gamma \\ \text{Two boxes not at destination} : & \gamma^{2} \\ \vdots & \vdots & \vdots \\ t-1 \text{ boxes not at destination} : \gamma^{t-1} \end{cases}$$

- Policy will also likely be ∞
 - But some notable exceptions (put all blocks on table)

- Unreachable States
 - (P)PDDL domains often under-constrained
 - e.g., domain designer intends
 - BlocksWorld: 2 blocks cannot be on a 3rd block
 - Logistics: 1 box cannot be in 2 cities at once
- Constraints implicitly obeyed in initial state
 - Then action effects cannot violate constraints
 - Reachable legal states are small subset of all states
 - But (P)PDDL does not constrain legal states!!!

- Unreachable states (continued)
 - If no background theory to restrict legal states
 - First-order planning must solve for all states
 - when initial state unknown
 - Where the majority of states are actually illegal!
 - First-order planning w/o initial state solves more difficult problem than search-based solutions
 - Initial state contains implicit constraint information
 - Reachable state space is small subset of all states

Suggests need for hybrid firstorder / search-based approaches

Conclusions

- MDP: model of decision-theoretic planning
 - Common solution is dynamic programming
- FOMDPs are one model for lifted decisiontheoretic planning
 - Use SitCalc specified action theory
 - Use case to represent reward, probabilities
 - Symbolic dynamic programming = lifted DP
 - Exploit state & action abstraction for MDPs