

Techniek, Ontwerpen en Informatica / Engineering, Design and Computing Bedrijfswiskunde / Information Technology

Front page exam	
Student - Surname	
Student - First name	
Studentnumber	
Group:	
Exam for group(s):	2IT
Exam Code:	3713IT232A
Exam Title:	Probability Theory
Period:	1
Date of Exam:	October 30, 2015
Time of Exam:	14:00-16:00
Number of questions	10
Number of pages: (title page excluded)	6
Additional means to be allowed:	none
Remarks / Particulars:	Return of exam paper: Yes
Name of lecturer:	Koos van Tubergen

Below are 10 exercises, each exercise weighted at 12 point max.

However you get ONLY points, if you add a motivation by calculation, by theorem / theory, by graph etc. The grade is the total divided by 12.

Good luck!

1. [Definition of Conditional Probability]

Give the definition of Conditional Probability.

2. [Domino]

- a) Calculate the Probability, that a stone has at least one blanco side.
- b) Calculate the Probability, that a stone has both odd sides.
- c) Calculate the Probability, that a stone has at least one 4, given that both sides are even.

3. [Conditional probability]

Vase I contains 3 white and 4 black balls, and Vase II contains 2 white and 6 black balls.

- a) You pick a ball randomly from Vase I and place it in Vase II. Next you pick a ball randomly from Vase II. What is the probability that the ball is black?
- **b)**This time, you pick a Vase at random, each of the two Vases being picked with probability ½, and you pick a ball at random from the chosen Vase. Given the ball is black, what is the probability you picked Vase I?

4. [Vase]

A Vase contains 1 red, 2 white, 3 blue balls. Someone picks out 3 balls.

- a) Calculate the Probability, that he has got one of each color.
- b) Calculate the Probability, that the balls have at least 2 different colors.

5. [Probability mass function]

Someone throws a fair die.

Let the stochast \underline{x} = the number of dots in one throw.

- a) Make a graph of the (probability) mass function p(x)
- b) Make a graph of the (cumulative) distribution function F(x)
- c) Calculate E \underline{x} , var (\underline{x}), and σ (\underline{x})

6. [Uniform distribution]

A stochast \underline{x} has an Uniform distribution with density function

$$f(x) = \begin{cases} \frac{1}{5} & \text{if } 3 < x < 8 \\ 0 & \text{otherwise} \end{cases}$$

- a) Make a graph of the (cumulative) distribution function F(x).
- b) Calculate E x²
- c) Calculate $P(|\underline{x}| \ge 6)$ by Chebyshev's inequality

7. [Correlation coefficient]

Let's look at Domino again.

Let the stochast \underline{x} = the maximum of both sides of dots of one stone

and let the stochast \underline{y} = the minimum of both sides of dots of one stone.

Further let the difference stochast $\underline{d} = \underline{x} - \underline{y}$

- a) Calculate Ex
- b) Calculate $var(\underline{x})$
- c) Calculate $\rho(\underline{x}, \underline{y})$
- d) Calculate $var(\underline{d})$

8. [Central limit theorem]

A fair die is thrown 12000 times.

Let the stochast \underline{s} = the total number of sixes thrown.

Use the central limit theorem to find values of a and b such that

$$P(1900 < \underline{s} < 2200) \approx \int_{a}^{b} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} dx$$

9. [Markov chain with a Die]

Someone throws a die many times.

Let the stochast \underline{x}_n = the greatest number shown in the first n throws of a fair six-sided die.

He starts counting at n=0 (first throw).

- a) Calculate the initial distribution.
- b) Calculate the transition matrix.
- c) Calculate E x₀
- d) Calculate E x₁

10. [Two-state Markov Chain]

A two-state Markov chain has a transition matrix:

$$P = \begin{pmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{1}{4} & \frac{3}{4} \end{pmatrix}$$

- a) Calculate P2
- b) Calculate P^3
- c) What will be $\lim_{n\to\infty} P^n$? (no calculation)