## Facts about Rings of Fractions

## 1 Introduction

Fact 1.1. If  $0 \in S$ , then  $S^{-1}A$  is a trivial ring.

*Proof.* Any (a, s), (a', s') are related because  $(as' - a's) \cdot 0 = 0$  with  $0 \in S$ .

**Fact 1.2.** For A a field, and  $S = \{-1, 1\}, S^{-1}A \cong A$ .

*Proof.* It is easily verified that the standard isomorphism from A to  $S^{-1}A$  is 1-1 and onto.  $\Box$ 

**Fact 1.3.** For A a field, and S a multiplicatively closed subset of A not containing zero,  $S^{-1}A \cong A$ .

Proof. The standard homomorphism  $f: a \mapsto a/1$  of A into  $S^{-1}A$  is injective: if a/1 = a'/1 then  $a \cdot 1 = a1 \cdot 1$ , then a = a'. It is surjective:  $f(as^{-1}) = f(a)f(s^{-1}) = (a/1)(s^{-1}/1) = \ldots$ , but  $s^{-1}/1 = 1/s$  as  $s^{-1}s = 1 \cdot 1$ ; continuing,  $\ldots = (a/1)(1/s) = a/s$ .

**Fact 1.4.** For A a field, and S a multiplicatively closed subset of A not containing zero,  $S^{-1}A \cong A$ .

Proof. The standard homomorphism  $f: a \mapsto a/1$  of A into  $S^{-1}A$  is injective: if a/1 = a'/1 then  $a \cdot 1 = a1 \cdot 1$ , then a = a'. It is surjective:  $f(as^{-1}) = f(a)f(s^{-1}) = (a/1)(s^{-1}/1) = \ldots$ , but  $s^{-1}/1 = 1/s$  as  $s^{-1}s = 1 \cdot 1$ ; continuing,  $\ldots = (a/1)(1/s) = a/s$ .

Fact 1.5. For A a field, the ring of fractions and the field of fractions are isomorphic.

*Proof.* For isomorphism of A with its field of fractions, see Math Exchange 79188. About the isomorphism with its ring of fractions, is the fact above.

Example 1.6. Some example.

**Fact 1.7.** The quotient ring A/I can be viewed as an A-module, and then the ring of fractions  $T^{-1}(A/I)$ , where T is the image of S in A/I, equals the module of fractions  $S^{-1}(A/I)$ .

*Proof.* On the left, the relation is in  $(A/I) \times T$ :  $([a], [s]) \equiv ([a'], [s'])$  iff ([a][s'] - [a'][s])[s''] = [0] iff [as's'' - a'ss''] = [0]. On the right, the relation works in  $(A/I) \times S$ :  $([a], s) \equiv ([a'], s')$  iff s''(s'[a] - s[a']) = [0] iff [as's'' - a'ss''] = [0]. The conditions are identical so the classes must be in bijective correspondence. However, they are not identical as sets, so saying *equals* is too much.

## 2 Saturated

**Fact 2.1.** For saturated S, if f(a) is a unit in  $S^{-1}A$ , then  $a \in S$ .

Proof.

$$\frac{a}{1} \cdot \frac{b}{t} = \frac{1}{1}$$
$$\frac{ab}{t} = \frac{1}{1}$$
$$(ab, t) \equiv (1, 1)$$

$$(ab - t)u = 0$$

abu=tu

 $abu \in S$ 

As S is saturated,  $a \in S$ .