$STK1100-Oblig\ 2$

Jonas Gahr Sturtzel Lunde - (jonass1)

Kode og figurer ligger til slutt.

	OBLIG 2
1a/	$F_{x}(x) = \int_{x}^{x} f_{x}(x) dx = \int_{x}^{x} \theta \kappa^{\theta} x^{-\theta-1} dx$
	n "
	$= \left[\frac{\Theta K^{2} X^{-\theta}}{-\theta} \right]_{K}^{2} = \left[-K^{2} X^{-\theta} \right]_{K}^{2} = -K^{2} X^{-\theta} + K^{2} K^{-\theta}$
	$= 1 - K^{\bullet} \times^{-\Theta}$
	· Median er giff som
	$F_{x}(x) = \frac{1}{2} = 1 - K^{\theta} x^{-\theta}$
	$K^{\theta}X^{-\theta} = \frac{1}{2}$
	x = 2 K
	$\sqrt{\chi^{\circ}} = \sqrt{2 \text{K}^{\circ}}$
	$x = 2^{\frac{1}{6}} K$
n yes	
(b)	$E[x] = \int_{X}^{\infty} x \int_{X} (x) dx = \int_{X}^{\infty} \theta H^{\theta} x^{-\theta} dx = \theta K^{\theta} \left[\frac{x^{-\theta+1}}{-\theta+1} \right]_{H}^{\infty}$
70-5	K K
	0 K 0 -0+1 -0+1 = 0 K K -0+1
	1-0' - 1 - 0
	OK OK
ő,	8-7-
	of the state of th

c)	0 = 3; K = 400'000
	M[X] = 2" K = 2". 400'000 = 504'000
	M(X) = 20
	3.400'000 = 600'600
	$E[X] = \frac{\partial R}{\partial x^2} = \frac{2}{2}$
	ACREA BELLEVILLE
	which and
	g & g * F = A
: 	
	. 5/
d)	$V[x] = E[x^{i}] - E[x]^{i}$
dl	» r.0127
	$E[x^2] = \int_{K}^{2} x^2 f(x) dx = \theta k^{\theta} \int_{K}^{2} x^{-\theta+1} dx = \theta k^{\theta} \left[\frac{x^{-\theta+2}}{-\theta+2} \right]_{K}$
	$E[x^2] = \int x f(x) dx = 0$
le A	γ 7 θ, ± θ+2
	$= \frac{\theta K^{\theta} \left[\frac{1}{2} - \frac{\theta K^{\theta} K^{1}}{2} - \frac{\theta K^{\theta} K^{1}}{2} \right]}{2 - \theta} = \frac{\theta K^{\theta} K^{1}}{2 - \theta} = \frac{\theta K^{\theta}}{2 - \theta}$
	2~9
	, , , , , , , , , , , , , , , , , , , ,
	$V\left[X\right] = \frac{\theta K^{2}}{\theta - 2} - \frac{\theta^{2}K^{2}}{(\theta - 1)^{2}} = \frac{(\theta - 1)^{2}\theta K^{2} - \theta^{2}K^{2}(\theta - 2)}{(\theta - 2)(\theta - 1)^{2}}$
	$V\left[X\right] = \frac{1}{\theta-2} \frac{(\theta-1)^2}{(\theta-2)(\theta-1)}$
	$= \frac{\theta^{3} R^{2} - 2 \theta^{2} R^{2} + \theta R^{2} - \theta^{3} R^{2} + 2 \theta^{2} R^{2}}{(\theta - 2) (\theta - 1)^{2}} \frac{\theta R^{2}}{(\theta - 2) (\theta - 1)^{2}}$
	$= \frac{1}{(\theta - 2)(\theta - 1)^2} \qquad (\theta - 2)(\theta - 1)^{\frac{\alpha}{2}}$
	3. (406000)
	$= \frac{3 \cdot (40000)^{2}}{(3-2)(3-1)^{2}} = 1.2 \times 10^{21}$
	$\sigma_{\star} = \sqrt{V[\star]} \approx 346'410$

e)	$f_{x}(y) = f_{x}(h(y)) h'(y) $
	how h (y) en den invene av O log (X/K)
	altra:
	$Y = \theta \log (X/K) \Rightarrow \frac{X}{K} = e^{-y/6}$ $X = K e^{-y/6}$
	Som gin
	Som gin $h(y) = Ke^{y/\theta} - P[h'(y)] = \left \frac{K}{\theta} e^{y/\theta} \right $
	Ship at
	$f_{\times}(y) = a \kappa^{a} \left[\kappa_{a}^{*a}\right]^{-a-1} \left \frac{\kappa}{a}\right ^{2a}$
	= 0 K K (2) (-0-1) K /6
	$=$ e^{y} .
	and the second of the second o
al	Burgares San San Africa e a la Care 9) de la como e a com

2 a)
$$1 = \int_{0}^{1} \lambda(x-y) \, \lambda y \, dx = \lambda \int_{0}^{1} \left[xy - \frac{1}{1}y^{2}\right]^{3} \, dx = \lambda \int_{0}^{1} \frac{1}{1}x^{2} \, dx$$

$$= \lambda \left[\frac{1}{6}x^{2} \right]^{3} = \frac{\lambda}{6} = 1 \implies \underline{\lambda} = 6$$

b) $P(2x \leq X) = \int_{0}^{1} \int_{0}^{1} ((x-y)) \, dy \, dx = 6 \int_{0}^{1} \left[xy - \frac{1}{2}y^{2}\right]^{3/2} \, dx$

$$= 6 \int_{0}^{2} \frac{3}{2}x^{2} \, dx = 6 \left[\frac{3}{2}x^{2} \right]^{3} = 6 \left[\frac{1}{4} \right] = \frac{6}{9}$$

c) $\int_{X} (x) = \int_{0}^{1} \int_{0}^{1} ((x-y)) \, dy = \left[\int_{0}^{1} ((x-y)) \, dy + \left[\int_{$

3a)	$P(X \leqslant x') = P(F''(u) \leqslant x) = P(u \leqslant F(x)) = F(x)$
	$F_{z}(x) = 1 - K^{\circ} x^{-\theta}$
	$u = 1 - K^{\circ} F_{x}(u)^{-\theta}$
	$F_{\star}^{-1}(u)^{-\theta} = \frac{1-u}{\kappa^{\theta}}$
X	$= F_{\chi}^{-1}(u) = \sqrt{\frac{\kappa^{\circ}}{1-u}} \qquad u \in \text{uniform } [0, ?]$
	$=\frac{K}{\sqrt{1-u}}$
<u> </u>	Generer uniforme v-verdier i [0, 1], seft de
	inn i formelen over.
c)	Median = 504/200
	6 jennomsnitt = 600'373

Oppgave 3 kode

```
n = 1e4;
U = unifrnd(0,1,[1,n]);
kappa = 4e5;
theta = 3;
X = kappa./((1-U).^(1/theta));
fprintf("mean = %i\n", mean(X));
fprintf("median = %i\n", median(X));
histogram(X, 100, 'BinLimits', [kappa,kappa*5], 'Normalization', 'pdf');
hold on
X2 = linspace(kappa, kappa*5);
Y2 = pareto(X2, theta, kappa);
line(X2, Y2, 'Color', 'red');
xlabel('Income');
ylabel('Probability Density');
legend('Generated Incomes', 'Pareto-distribution');
mean = 5.982161e+05
median = 5.047831e+05
%}
```

