FAKULTA MECHATRONIKY, INFORMATIKY A MEZIOBOROVÝCH STUDIÍ <u>TUL</u>

Diplomová práce

Návrh jazyka odvozeného z C a implementace nástrojů pro překlad

Studijní program: B0613A140005 – Informační technologie

Studijní obor: Aplikovaná informatika Autor práce: Maxim Osolotkin

Vedoucí práce: Ing. Lenka Koskova Třísková Ph.D.

Liberec 2025

Tento list nahraďte originálem zadání.

Prohlášení

Prohlašuji, že svou diplomovou práci jsem vypracoval samostatně jako původní dílo s použitím uvedené literatury a na základě konzultací s vedoucím mé diplomové práce a konzultantem.

Jsem si vědom toho, že na mou diplomovou práci se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci nezasahuje do mých autorských práv užitím mé diplomové práce pro vnitřní potřebu Technické univerzity v Liberci.

Užiji-li diplomovou práci nebo poskytnu-li licenci k jejímu využití, jsem si vědom povinnosti informovat o této skutečnosti Technickou univerzitu v Liberci; v tomto případě má Technická univerzita v Liberci právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Současně čestně prohlašuji, že text elektronické podoby práce vložený do IS STAG se shoduje s textem tištěné podoby práce.

Beru na vědomí, že má diplomová práce bude zveřejněna Technickou univerzitou v Liberci v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů.

Jsem si vědom následků, které podle zákona o vysokých školách mohou vyplývat z porušení tohoto prohlášení.

21. 3. 2025 Maxim Osolotkin

Návrh jazyka odvozeného z C a implementace nástrojů pro překlad

Abstrakt

Klíčová slova: programovací jazyk, překladač

Design of a C-derived language and compiler tools implementation

Abstract

 $\textbf{Keywords:} \ \ \text{programming language, compiler}$

Poděkování

Obsah

Ú	vod		9
1	Kon 1.1 1.2	Přechodná reprezentace	10 12 12 13 13
2	Gra 2.1		16 17
3	Výv 3.1 3.2 3.3	Zvýraznění kódu 3.1.1 Dokumentace Language server protocol Debugger 3.3.1 Debug informace	19 20 20 21 21
4	4.1	Drobností 4.1.1 Vstupní bod programu 4.1.2 Alokace 4.1.3 Komentáře 4.1.4 Datové typy	23 23 24 24 24
	4.3	4.2.1 Délka pole 4.2.2 Typy poli 4.2.3 Prace s polem String 4.3.1 UTF-8 4.3.2 Operace	 24 25 26 27 27 28
		434 Import	28

4.4	Function Overloading	29
	4.4.1 Implementace	30
	4.4.2 Přistup jiných jazyku	31
4.5	Error handling	31
	4.5.1 Implementace	32
4.6	context	36
	4.6.1 custom alloc	36
4.7	Vestavená kompilcae C kodu	36
	4.7.1 TCC	36
	4.7.2 LLVM libclang	36
	4.7.3 GCC	36
4.8	context	36
5 Imp	olementace kompilatoru	37

Úvod

Dnes, v době, kdy člověk se spíš zeptá, umí-li to JavaScript, než, běží-li na tom Doom, C je stále C.

I když mně jazyk C imponuje, málokdy jsem se v něm našel dělat projekty. Ve většině případů jsem se uchýlil k používání C++, protože mi chyběly některé triviální moderní vlastnosti, které jsou dnes součástí mnoha jazyků (např. i pouhá namespace). Ovšem programování v C++ bylo vždy spojeno s utrpením. Tak jsem si položil otázku, zda existuje alternativa, jestli je tu něco, co by bylo jako C, ale mělo tu tak potřebnou špetku současnosti.

Odpovědí byl Odin a, popřípadě, Zig, které ve výsledku řešili můj problém, i když z části nepřímo. Ovšem, nebyl jsem v obou případech spokojen s přístupem k syntaxi, která, na rozdíl od C, šla cestou implicitnosti, ve stopách Go. Kdežto pro mě jednou z hlavních imponujících vlastností C byla i explicitní syntaxe, která i dělala dojem jazyka, kde to — co se přečte — se i vykoná.

Protože jsem ve výsledku nebyl úplně spokojen s existujícími řešeními a obecně mi přišlo, že je spíše řešena problematika náhrady C++ se zaměřením na bezpečnost, než na tvorbu jazyka, ve kterém by se dalo příjemně trávit čas při psaní vlastní aplikace, dospěl jsem k myšlence návrhu vlastního jazyka, a v důsledku psaní této práce.

Na úvod se dotknu teorie ohledně kompilátorů a programovacích jazyků. Dále představím možné nástroje/způsoby zlehčující práci s vlastním jazykem. A ve druhé polovině práce se budu věnovat samotnému návrhu jazyka, kde mimo zdůvodnění, proč je něco tak či onak, se budu odkazovat na jiné jazyky a diskutovat jejich přístup. Následně se dotknu i konkrétní implementace kompilátoru.

Nyní vás opustím a předám trpnému rodu.

1 Kompilátor

Kompilatorem nazveme program, který převádí vstupní text do výstupního textu zachovávající význam, kde oba texty jsou zapsané nějakým jazykem. Samotný proces převodu se nazývá kompilací nebo take překladem. V kontextu programovacích jazyků se jedná o převod zdrojového kódu konkrétního programovacího jazyka do jiného programovacího jazyka, nebo přímo strojového kódu.

Existence kompilátoru pro libovolný programovací jazyk je zásadní, protože z podstaty věci finálním cílem je dostat program reprezentující zdrojový kód běžící na nějakém stroji, či v nějakém virtuálním prostředí.

Za cíl se také může klást i návrh jazyka čistě pro zápis programů. Ovšem, pokud neexistuje nástroj pro překlad tohoto zápisu do jazyka, který ve výsledku je schopen být přeložen do spustitelné podoby, onen zápis nemá žádnou technickou relevanci.

Často tedy dochází k případům, kdy pojmy kompilátor a jazyk splynou nebo se zaměňují. Kdy se při použití názvu jazyka implicitně bere i na mysl konkrétní kompilátor, např. Go. Nebo kdy se naopak místo názvu jazyka používá název kompilátoru.

Protože kompilátor je jen program jako každý jiný, může být napsán v jakémkoliv již existujícím programovacím jazyce a zkompilován příslušným libovolným kompilátorem. Dokonce může být napsán v jazyce, který sám kompiluje a přeložen sam sebou. Takovýto jev se nazývá bootstrapping. To vše vede na problém o kuřeti a vejci. Zde ovšem máme jasné řešení, jelikož ve výsledku existuje stroj schopný vykonání nějakého souboru instrukcí. One instrukce vlastně tvoří jazyk, který je spustitelný, a tudíž se dá vnímat jako nejtriviálnější kompilátor pro daný stroj.

1.1 Přechodná reprezentace

Programovací jazyk slouží jako abstrakce semantiky programu a jeho skutečné podoby na konkrétním hardwaru a, po případě, operačním systému. Je zřejmé, že takto lze proložit chtěné množství vrstev abstrakcí před překladem do strojového kódu. Ovšem obecně má smysl jen jedna taková další abstrakce, kdy se jazyk přeloží nejprve do tzv. přechodné reprezentace, IR (intermediate representation), a až ona do kódu konkrétního hardwaru. Smyslem je vytvořit rozhraní pro výrobce hardwaru a jazyku. Část určená pro překlad do IR se označuje jako front-end a část převádějící IR do spustitelného kódu back-end.

Je nutno podotknout, že jak back-end, tak i front-end jsou samostatné celky, které jsou implementované pro problémy/potřeby, které chtějí řešit/naplnit. Proto jejich samotné implementace mohou také obsahovat svoje front-endy a back-endy. A tedy jak výrobce jazyků, tak i hardwaru, nemusí přímo implementovat práci IR, ale třeba využije nějakého rozhraní poskytnutého již existujícím obecným back-endem či front-endem.

Samotná IR může být reprezentována jak rozhraním a objekty či strukturami v programovacím jazyce, nebo přímo jako jazyk, tzv. mezijazyk, IL (intermediate language).

Dále se specifikuje pár ukázek IR s krátkým popisem a ukázkou reprezentace následující C funkce.

```
unsigned add1(unsigned a, unsigned b) {
    return a+b;
}
```

LLVM IR Forma, která se dá využívat napříč LLVM nástroji, hlavně tedy pro optimalizaci a kompilaci. Jedná se o jazyk, který je někde na pomezí C a assembleru. Může být jak v normální textové formě, nebo i přímo implementován v paměti.

```
define i32 @add1(i32 %a, i32 %b) {
entry:
    %tmp1 = add i32 %a, %b
    ret i32 %tmp1
}
```

GCC GIMPLE Jedna z mezi frémy využívaných GCC, která je využívaná při optimalizacích. Výrazy převádí do tříadresného formátu.

```
unsigned int add1(unsigned int a, unsigned int b) {
   unsigned int _tmp;
   _tmp = a + b;
   return _tmp;
}
```

Java bytecode Jedná se o instrukční sadu JVM (Java Virtual Machine). Jméno vyplývá z faktu, že každá instrukce je reprezentována jedním bytem. Bytecode je využíván JVM k JIT (viz []) kompilaci, lze ho tedy spustit, pokud existuje příslušné JVM.

```
.method public static add1(II)I
.limit stack 2
.limit locals 2
iload_0
iload_1
iadd
ireturn
.end method
```

CIL Zkráceno z Common Intermediate Language. Jedná se o obdobu Java bytecode vyvinutou Microsoftem. Ke spuštění CIL je potřeba platforma, která podporuje nějakou implementaci tzv. Common Language Infrastructure, zkráceně CLI, jako je .NET.

```
.method uint32 add1(uint32 a, uint32 b) cil managed {
    .maxstack 2
    ldarg.0
    ldarg.1
    add
    ret
}
```

C I samotné Céčko může sloužit jako IR, i když nebylo přímo pro to navrženo. Jedná se o jazyk blízký k assembleru a využívaný v některých různých operačních systémech. Existuje pro něj jak velký výběr kompilátorů pro různé platformy, tak i jiných vývojových nástrojů.

1.2 Konstrukce kompilátoru

Samotný překlad se může rozdělit do pár základních kroků. Nejprve je provedena lexikální a syntaktická analýza a čirá sleď textu je převedena na abstraktní reprezentaci. Následně je tato reprezentace zvalidována dle příslušných semantických pravidel. Validní reprezentace pak převedena do vybraného IR či přímo do spustitelné podoby. Viz obr[].

Samozřejmě, překlad může obsahovat mnohem více kroků, např. po validaci může následovat optimalizace. Ovšem, vytknuté tři kroky jsou nezbytné pro jakýkoliv překlad.

1.2.1 Lexikální a syntaktická analýza

Cílem je převést zdrojový kód dle gramatiky jazyka do nějaké abstraktní datové struktury v paměti kompilátoru. Taková struktura je často reprezentována stromem, jelikož je to nejpřirozenější vyjádření gramatiky, a nese ustálený název AST (abstract syntax tree).

Zde se nabízí zřejmá a 'dobrá' abstrakce lexikální a syntaktické analýzy. Kde modul lexikální analýzy se stará o zpracování vstupního textu a převádí slova na reprezentaci v paměti kompilátoru, která se nazývá token. Syntaktická analýza pak bude již se slovy pracovat jako s abstraktními celky. Lexikální část se často nazývá lexer a syntaktická parser.

Zároveň se smysluplná abstrakce nabízí i mezi samotnou gramatikou a lexémemparsrem. Možnost vyjádření jazyka za pomoci jistého standardu gramatiky (viz.[]) umožňuje i existenci příslušných nástrojů napomáhajících při generaci AST.

Mezi takové nástroje patří třeba YACC a ANTLR.

- YACC Neboli Yet Another Compiler-Compiler. Nástroj umožňující parsing na úrovni gramatiky jazyka (pro bližší představení samotného formátu gramatiky viz.[]). Vše probíhá v jakémsi dialektu C, kde se jednotlivým syntaktickým celkům dají přiřadit funkce, jež budou vykonány při jejich rozpoznání, jednotlivým za pomoci asociovaných pravidel. Jako lexer YACC využívá uživatelem definovanou funkci, standardně se využívá nástroj Lex. YACC ve výsledku generuje C kód (hlavně yyparse funkci), který se již používá v samotném kompilátoru.
- ANTLR Neboli Another Tool for Language Recognition. Jedná se o nástroj umožňující generaci parseru z gramatiky. Kromě generace samotného parseru ANTLR vygeneruje i tzv. procházeče stromu, které umožní aplikaci vykonávat vlastní kód. Základním jazykem, pro který ANTLR generuje parser, je Java, ale umožňuje generaci i do jiných jazyků, jako C#, Python, Go atd.

1.2.2 Validace a linkování AST

Cílem je provést semantickou kontrolu AST. Kontrola se bude lišit od jazyka k jazyku v závislosti na striktnosti jeho pravidel. Může se zde provést ověření existence příslušných deklarací vyskytujících se proměnných v příslušných jmenných prostorech; kontrola datových typů proměnných a výrazů; nalezení vhodné funkce v případě function-overloadingu; a podobně. Kromě validace se zároveň vyskytujícím se symbolům spojí příslušné definice, je-li to třeba z hlediska navrženého AST. Tedy například uzlu reprezentujícímu proměnnou se přiřadí reference na její definici.

1.2.3 Vykreslení

Na konec se AST má vykreslit do finální podoby. Tedy, obecně by pro každý node měla existovat posloupnost instrukcí, které by to činily. Nejprirozenější způsob je existence funkce pro každý typ uzlu AST, kdy by se volala vždy příslušná funkce při procházení stromu. Ovšem, je to ve výsledku jen obyčejný program, takže implementace může být vždy přizpůsobena konkrétnímu problému.

Vykreslení lze rozdělit v závislosti na finálním produktu.

- Kod Výsledkem je kód v jiném jazyce, tedy buď v IL, nebo přímo strojový kód. Zde buď kompilátor končí a očekává se, že výsledný kód se přeloží již jiným nástrojem do spustitelné podoby. Může to být i v podobě skriptu, který je pak součástí většího celku, jako je game engine. Nebo se může jednat i o tzv. transkripci, jako v případě TypeScriptu.
- Interpretace Za místo získání nějakého výsledného kódu můžeme rovnou každý uzel interpretovat. Tedy, za místo napsání funkce, jejíž výstupem by byl text v jiném jazyce, lze v ní implementovat rovnou chování uzlu, jeho logiku. Takovéto kompilátory se z pravidla označují za interpretery.
- JIT I když se formálně jedná o první kategorii, tak samotná koncepce je významná a stojí za samostatnou zmínku. JIT stojí za Just In Time. Jedná se o způsob kompilace, kdy je generovaná IR reprezentace, která se pak předá programu

tzv. JIT kompilátoru, který už přeloží IR do konkrétního strojového kódu mašiny, na které běží. Důležitým bla bla bla..

1.3 Cross-Compilation

Někdy je vhodné přeložit program do strojového kódu jiného hardwaru, než na kterém běží kompilátor. Tomuto procesu se říká cross-compilation. Může to být v případech, kdy se program vyvíjí na vysoce výkonném stroji obsahujícím všechny potřebné nástroje pro rychlou a pohodlnou práci, a výsledný software má být určen jinému stroji neobsahujícím takovou infrastrukturu. Příčinou může být operační systém, nebo i samotný hardware stroje.

Například, Doom byl vyvíjen na NeXT počítači s operačním systémem NeXTSTEP, zatímco byl spuštěn pod MSDOS. Také se jedná o případy, kdy se program kompiluje i pro jiné operační systémy, než na kterém je vyvíjen.

Je zřejmé, že o cross-compilaci má smysl mluvit pouze v případě kompilace do strojového kódu. V jiných případech se jedná o kód, který je mezivýsledkem a jeho spuštění závisí na jiném nástroji, který sám musí být přeložen pro odpovídající stroj.

2 Gramatiky

Při návrhu programovacího jazyka hraje důležitou roli samotná syntaxe, která ho z velké části definuje. Syntaxe je totiž jakýmsi rozhraním mezi člověkem a jazykem, obzvlášť v případě programovacích jazyků, kde se v textových editorech či vývojových prostředích běžně různé části syntaxe různě zvýrazňují. Je tedy vhodné mít možnost ji nějakým způsobem formálně popsat, jak z teoretického hlediska, tak i z praktického, kdy definice gramatiky jazyka se může používat v různých nástrojích, např. jak již bylo zmíněno, syntaktické zvýrazňování.

K definici syntaxe jazyka slouží tzv. formální gramatika. Formální gramatiku můžeme definovat následovně:

Definice 2.1. Formální gramatika G je čtveříce (σ, V, S, P) , kde:

- σ je konečná neprazdná množina terminálních symbolů, tzv. terminálů.
- ullet V je konečná neprazdná množina neterminálních symbolů, tzv. neterminálů.
- S je počáteční neterminal.
- P je konečná množina pravidel.

Terminály jsou dále nedělitelné symboly jazyka. Jsou to například klíčová slova nebo jednotlivá písmena sloužící pro definici proměnných. Neterminaly jsou pak jakési proměnné, které se dále dělí na další terminály nebo neterminaly. Neterminal může například představovat binární operátor, který pak bude definován jako množina již terminálních symbolů představujících jednotlivé binární operátory. Prázdný symbol se označuje jako ϵ .

Obecně pravidlo gramatiky můžeme vyjádřit jako zobrazení: ¹

$$\alpha \to \beta$$
, kde $\alpha \in (\Sigma \cup V)^*V(\Sigma \cup V)^*$, a $\beta \in (\Sigma \cup V)^*$

Tedy vzorem je posloupnost terminálů a neterminálů obsahující alespoň jeden neterminál. Obrazem pak je libovolná posloupnost terminálů a neterminálů.

Gramatiky lze členit na základě striktnosti pravidel dle tzv. Chomského hierarchie.

Definice 2.2. Necht $G = (\sigma, V, S, P)$ je gramatika, pak:

¹Hvězdíčka (*) představuje symbol libovolného opakování výrazu, a to i žádného.

- G je gramatika typu 0 nebo take neomezená gramatika právě tehdy, když ...
- G je typu 1 nebo take kontextová gramatika právě tehdy, kde pro každé pravidlo $\alpha \to \beta$ z P platí $|\beta| \ge |\alpha|$ a zaroveň pravidlo $S \to \epsilon$ se nevyskytuje na pravé straně.
- S je typu 2 nebo take bezkontextová gramatika právě tehdy, když pro každé pravidlo $\alpha \to \beta$ z P platí $|\alpha| = 1$. Neboli, že α je pouze neterminal.
- P je typu 3 nebo take regulární gramatika právě tehdy, když každe pravidlo z
 P je v jedné z forem:

$$A \to cB, A \to c, A \to \epsilon$$

kde A, B jsou libovolné neterminaly a c je terminal.

Z hlediska programovacích jazyků prakticky se lze omezit na gramatiky bezkontextové.

2.1 Bezkontextová gramatika

Bezkontextovou gramatiku, kromě definice uvedené výše, lze také definovat z hlediska samotných pravidel, což bude názornější pro navazující text.

Definice 2.3. Gramatika je bezkontextová právě tehdy, když pro každé pravidlo z *P* platí buď

$$S \to \varepsilon$$
,

nebo

$$\alpha A\beta \to \alpha \gamma \beta$$
,

kde

$$A \in N, \alpha, \beta \in (N \cup \Sigma \setminus \{S\})^* \text{ a } \gamma \in (N \cup \Sigma \setminus \{S\})^+$$

Například, pravidlo pro sestavení goto výrazu v jazyce C může být vyjádřeno ve volné formě třeba následovně

$$goto \rightarrow 'goto' identifier ';'$$

Pravidlo definuje nonterminal goto jako možné slovo počínající goto, čírym textem následujícím nonterminalem identifier , který je definován v nějakém jiném pravidle, představujícím identifikátor. To vše je zakončeno terminálem představujícím symbol středníku.

Definuje-li se pak třeba identifier za pomoci regulárního výrazu následovně

$$identifire \rightarrow [a-zA-Z]^+$$

goto pravidlo bude třeba generovat slova jako

goto Me;

goto UnhandledException;

Je zřejmé, že zápis pravidel může být různorodý. Pro sjednocení zápisu existují různé standardy. Může se vytknout několik relevantních a stručně předvést na příkladu s goto příkazem.

BNF zkraceno od Backus-Naur forma.

```
<goto-stmt> ::= "goto" <identifier> ";"
<identifier> ::= <letter> <letters>
<letters> ::= <letter> <letters> | \epsilon
<letter> ::= "a" | "b" | ... | "Z"
```

EBNF rozěířená (Extended) Backus-Naur forma. Existuje několik verzí a ma ISO Standard.

```
goto-stmt = "goto", identifier, ";";
identifier = letter, { letter };
letter = "a".."z" | "A".."Z";
```

YACC notace bližší seznámení s YACC'em muže byt naleznuto zde [].

```
goto_stmt : KW_GOTO identifier ';' { .. };
```

Složené závorky představují místo, kam se umisťuje C kód, který se má provést při parsingu oných elementů. Neterminaly z příslušných pravidel jsou přístupná za použití symbolu \$. Například \$ označuje proměnnou samotného pravidla, \$1 proměnnou prvního terminala či neterminala (KW_GOTO v případě pravidla goto), \$2 respektive druhého atd.

Definice identifier je pak součástí jiného programu zvaného Lex, na výstup kterého YACC spoléhá.

```
identifier : [A-Za-z]+
```

ANTLR notace bližší seznámení s ANTLR'em muže byt naleznuto zde [].

```
goto_stmt : 'goto' identifier ';';
identifier : [a-zA-Z]+;
```

3 Vývojové nástroje

Po mimo samotného překladače se k práci s programovacím jazykem běžně využívají různé nástroje usnadňující práci.

Základem je samotný textový editor, bez kterého by nebylo možné samotný kód v celku psát. Samotné editory pak, většinou za pomoci pluginů, umožňují přidávat podporu různých jazyků. Mezi takové populární editory patří například VS Code nebo Vim/Nvim. Lze jich tedy využít jako platformu pro tvorbu jakéhosi IDE pro vlastní jazyk. Tento text se omezí pouze na VS Code a Nvim.

Pluginy, nebo také Extensions, se ve VS Code dají standardně psát za pomoci Type-Scriptu či JavaScriptu. Jako v prohlížečích, je zde i možnost využití WebAssembly. Lze tedy využít i jiný jazyk, který by šel do WebAssembly zkompilovat, jako třeba Rust nebo C++. Ke komunikaci s editorem je zde VS Code API, které umožňuje přístup k elementům uživatelského rozhraní editoru, poslouchání různých eventů, přístup k debuggeru atd. Všechny pluginy se pak dají nahrát do jednotného oficiálního marketplace, kde budou dostupné uživatelům a umožní automatické aktualizace.

V případě Nvim je zde kromě klasických možností využití Vimscriptu, jak v případě Vim, dostupná možnost skriptování za pomoci integrovaného Lua script enginu. Celé Vim API je pak dostupné skrz Lua. Lze tedy přímo přistupovat k bufferům a měnit rozhraní celého editoru. Pluginy jsou ve své podstatě jen zdrojové kódy, které jsou načtené v konfigu. Většinou za pomoci nějakého packer-manageru, který umožní načtení složky s pluginem jedním řádkem, a to i třeba z git repozitáře. Klasickým způsobem distribuce pluginů je pak git repozitář se samotným kódem pluginu, link na který uživatel předá packer-manageru. Takto uživatel bude moct i stáhnout updaty, jestli bude chtít.

3.1 Zvýraznění kódu

Za základní potřebnou vlastnost se může klást zvýraznění kódu, která je prakticky zřejmostí.

K definici vlastního zvýrazňování se v případě VS Code využívá TextMate, který umožňuje definovat vlastní gramatiku v JSON souboru za využití regulárních výrazů. V případě Vim se používá vlastní formát, který také umožňuje využití regex.

Oba tyto přístupy využívají tak či onak prohledávání a parsování zdrojového kódu

pro zvýraznění. Existuje však i jiný přístup, který je v praxi rychlejší a přesnější, a to za využití LSP. Většinou totiž i tak máme aktivní LSP, které nám zajišťuje např. doplňování slov, a tudíž už máme informaci o všech symbolech a jejich roli v jazyce. Oba vybrané editory mají vestavěnou podporu LSP.

3.1.1 Dokumentace

Po mimo zvýraznění kódu v editorech je někdy třeba mít možnost zvýraznění kódu ve statických dokumentech. Například jako dokumentace, která je nezbytná pro popis semantiky jazyka uživateli.

V takovémto případě lze využít například nástroje Shiki. Jedná se o JavaScript knihovnu, která využívá TextMate gramatiky k generaci zvýrazněného výstupu. V základu Shiki umí generovat výstup jako HTML. Klasické užití je pak napsání drobného skriptu v NodeJS, který by procházel HTML dokument a nahrazoval vybrané elementy, např. code, výstupem z Shiki. Pak výsledný HTML dokument neobsahuje žádný JS run-time kód. Obdobným způsobem je generována dokumentace obsažená v příloze.

V případě Vim syntaxe je zde možnost využití jeho samotného ke generování HTML z kódu. Je zde opět nutnost napsání nějakého skriptu, který by automaticky procházel HTML soubor a přepisoval ho.

```
vim -c 'syntax on' -c 'TOhtml' -c 'wq' myfile.html
```

Bohužel, zde nejsou výrazné nástroje, které by umožnily využití Vim syntaxe pro generování zvýrazněného výstupu, jako v případě TextMate gramatiky. Pro využití v HTML dokumentech je zde jen opce využití vim.js, tedy portu Vim pro prohlížeče, který by v run-time mohl zvýrazňovat kód. Ovšem využití tohoto řešení jen pro zvýraznění kódu je zbytečně náročné.

3.2 Language server protocol

Language server protocol, zkráceně LSP. Jedná se o protokol využívaný pro komunikaci language serveru a klienta, kterým je třeba IDE nebo textový editor, kde language server předává informaci klientovi o textu z pohledu jazyka. Smyslem je nabídnout rozhraní mezi programem nabízejícím syntaktickou a semantickou informaci o kódu a vývojovým nástrojem.

V základu k implementaci lze použít část kódu ze samotné implementace kompilátoru, či dokonce celé moduly. Protože práce serveru je od části shodná až do fáze vykreslení. Ovšem, v případě kompilátoru je možnost ukončení kompilace při první chybě. V případě LSP by měl program umět kompilovat i neúplně správný syntaktický kód, a to i semanticky, a dávat výsledky o tom, co se podařilo převést do AST. Navíc, LSP by měl fungovat v reálném čase obnovujíc informaci o kódu po každém inputu uživatele. Tvorba LSP tedy není triviálním úkolem i za podmínky existence

kompilátoru, jelikož jak kompilátor, tak i LSP by měly fungovat co nejrychleji, ovšem jejich potřeby se protiřečí.

bla bla bla

3.3 Debugger

Finalním nástrojem při tvorbě programů je debugger. Zde opět lze využít vybraných textových editorů jako platformy. Ovšem psaní vlastního debuggeru není zcela žádoucí, jelikož je to další aplikace, která se bude muset s jazykem vyvíjet a udržovat. Je výhodnější využít již existujících řešení skrze nějaký dostupný interface.

3.3.1 Debug informace

Debug informace je veškerá informace, která není obsažená ve spustitelném souboru, ale je napomocná debuggeru k propojení zdrojového kódu a konečných instrukcí. Debugger pak může umět například krokovat zkompilovaný program ve zdrojovém kódu, zobrazovat hodnoty proměnných atd.

Uvažujeme-li jazyk, který se bude kompilovat do strojového kódu, tak stačí mít program jako spustitelný soubor a k němu vygenerovanou debug informaci. První problém řeší samotný kompilátor, a tedy zbývá vyřešit otázku generace debug informace.

V zásadě existují dva hlavní formáty využívané moderními debuggery, a to PDB a DWARF.

PDB zkraceno z Program Database. Jedná se o soubory převážně využívané Microsoftem, například pro debugování ve Visual Studio. PDB vnitřně, pro definici samotných debug symbolů, využívá formátu CodeView. V rámci Windowsu existuje API, které umožňuje získání informací z PDB souboru bez znalostí formátu.

DWARF zkraceno z Debugging With Arbitrary Record Formats. Formát využívaný například GDB a LLDB. Převažně pro programy na Linux a macOS. Často se používá v rámci ELF souborů. Je standardně vestavěn do spustitelného souboru.

Samou přímočarou možností je vlastnoruční generace těchto souborů. Naštěstí některé backendy umožňují generaci oněch symbolů.

V případě LLVM IR lze třeba definovat podrobnější informace o původním kódu za pomoci maker #dbg_value, #dbg_declare a #dbg_assign. Může to vypadat následovně

```
%i.addr = alloca i32, align 4
#dbg_declare(ptr %i.addr, !1, !DIExpression(), !2); ...
```

```
!1 = !DILocalVariable(name: "i", ...); int i
!2 = !DILocation(...)
```

Kde první řádek představuje deklaraci proměnné i typu int32_t. Následující pak přidává oné deklaraci metadata a na dalších řádcích se některá metadata specifikují. Lze to použít jak pro generaci PDB, tak i DWARF.

Nebo, například při použití C jako IL, lze využít vybraného kompilátoru umožňujícího generaci potřebného formátu. Pro mapování zdrojového kódu na C kód pak lze využít direktivy #line, která umožňuje specifikovat číslo řádku a název souboru. Direktiva však funguje jen na bezprostředně následující řádek kódu, což lze řešit generací kódu obecně bez nových řádků a přidáváním je vždy s použitím oné direktivy.

3.4 Řešení

Pokud je možné generovat debug informaci se spustitelným souborem, lze využít libovolného již existujícího debuggeru podporujícího formát oné informace.

Protože VS-Code má standardně implementované rozhraní pro debuggery, lze vytvořit vlastní konfiguraci pro již existující debugger plugin, kde se zamění příkaz kompilace. A po případě se to dá zabalit i do samostatné extension.

Nvim nemá standardní interface pro debugger, takže v případě každého debugger pluginu je konfigurace individuální, jestli je vůbec v konkrétním případě dostupná. Vždy ale lze udělat fork . . .

4 Návrh jazyka

Prvně bych vytvoříl nějakou představu o vizi jazyka. Jazyk je nastroj, a jako každy nastroj by měl mit nějaky problem k řešení kterého by měl byt určen. Libovolný programovací jazyk řeší popis programu. Je tedy otázka jak a kterých programu. Odpověď bych viděl jako univerzalní proceduralní jazyk.

Jazyk by měl byt čitelný sam o sobě i na ukor osvědčeným postupum. Interpretace kodu po přečtení by měla co nejvíce odpovidat skutečnosti. Tedy, napřiklad, deklarace proměnné by neměla byt ve vychozím připadě konstatní, protože po přečtení kodu, ktery nespecifikuje vlastností deklarce je přirozenější se domnivát, že žadných vlastnotí nenabyva, než že jsou nějaké standardní skryté.

Jazyk by měl umožňovat jednoduchou a neomezenoun manipulaci s pamětí.

4.1 Drobností

Věcí, které stojí za zmínku, ale nejsou moc zavažné pro samostatnou kategorii.

4.1.1 Vstupní bod programu

Obvykle vstupním bodem programu ve vyšším programovacím jazyce je nějaká tzv. main funckce. Taková funkce muže mit za ukol předání vstupních argumentu programu a oddělení globalního scope.

Samotný koncept mi přijde obskurdním.

- Prvně, main funkce zvyšuje indencí kodu a zesložituje strukturu programu bez možnosti se tomu vyhnout. Když, například, uživatel bude chtít začít v lokalním scope, protože je to to, co se mu libí na main funkci, tak to muže udělat přímo za pomocí odpovidajicího syntaktického kostruktu. Dokonce, když to uděla, tak jasně da čtenáří znat svou myšlenku.
- A za druhý, ruší chápaní pořadí vykonání instrukcí. Instrukce se totíž běžne mohou objevít i v gloablním scope. Ovšem, protože z main funkce nelze nijak skočít do globalního scope, ale stale se jedna o misto, kde by měl program začít své konání, tak není jasné jak, a jestli vubec, se provedou globalní instrukce.

Sklonil bych se tedy k vstupnímu bodu programu jako k počátku souboru, obdobně jako v Pythonu, nebo, když mám vybírát z C-like jazyku, jak v HolyC.

4.1.2 Alokace

Dynamickou alokaci bych nevnímal jako funkcí, operator, nebo výraz, ale jako samostatný celek, ktery by sloužíl alternativou při přiřazení. Tedy, že by přířazení buď bylo alokaci, nebo výrezem. Smyslem je vždy zaručit, že dynamicky alocovaná paměť bude vždy přířazena proměnné.

To sice nevyřeší ...

Syntaxi bych volil nasledující

```
int^ ptr = alloc 8; // alokuje 8 bytu
int^ ptr = alloc int[8]; // alokuje 8 * sizeof int
```

Navíc bych umožníl při deklaraci vynachávat datový typ na pravé straně, jestli má byt schodný s tím na levé. Formalně je to možné, protože alloc je alternativní rvalue, oprotí výrazu new v C++ či D, ktrey by měl splňovat pravidla vyrazu.

Nasledující řadky by tedy vyjadřovali to same.

```
int^ ptr = alloc int[8];
int^ ptr = alloc [8];
```

4.1.3 Komentáře

V C, nebo napřiklad i v C++ a D nelze vnořovát blokové komentáře /**/. Není to vyznáčný nedostatek, ale stalé nepřijemny, pokud se komentuje něco, co už obsahuje komentář. Navíc se je to nekonzistentní s řadkovými komentáří, ktere se mohou vnořovát.

Volil bych nasledující syntaxi.

4.1.4 Datové typy

4.2 Pole

Jedna se o nejzákladnější a nejužitečnější datovou strukturu, která se v programovani vyskytuje. V C se ovšem pole daji používat jen ve statických případech, kdy velikost lze stanovit ještě při kompilaci. Ovšem, i v připadech, kde je to dostačující, tak při snaze využít pole jako argument funkce, tak buď se ona funkce musi definovat pro konkretni velikost pole, nebo využit ukazatele.

První případ je použitelný jen zřídka, jelikož nepřináší abstrakci, která se intuitivně pojí s voldbou datového typu, muselá by se vytvořít pro různé velikosti poli samostatná funkce. To se řeší předaním pole přes pointer a, po případě, ukončením pole nějakým specifickým symbolem, nebo předáním doplňujícího parametru délky.

V takovém to připadě se však ztraci jaka koliv vyhoda vybraného datového typu, a vlastně i konceptualní smysl onoho. Kod je ve vysledku méně explicitní, a navíc více nadolný na chyby, jelikož compile-time informaci, ktera se poji jen k jedne proměnné, rozvadime do dvou run-time.

Stanovíl bych tedy některe zakladní požadavky pro pole. Mělo by byt využitelné ve funkcich bez ztraty identity a při tom byt implicitním ukazatelem na počatek svyćh dat pří přiřazeni do pointeru. Navíc, rozšířít typ i na dynamické pole a dynamické pole variablní délky.

4.2.1 Délka pole

Nasledně bych zavedl získatelnou délku pole.

```
int[8] arr;
arr.length; // vrati delku pole, tedy 8
```

Při předani pole do funce by se tedy třeba předal ukazatel na data a jako skryty parametr velikost pole. Pro připady, kdy neni potřeba předavat velikost, se muže použit pointer a implicitní přetypovaní.

4.2.2 Typy poli

Po mimo klasického rozdělení poli na statická a dynamicka, bych chtěl umožnít jejich dělení v zavislostí na variabilnosti délky. To by umožnílo vytvařet více specifické rozhraní pro využírí poli ve funkcích. Napřiklad by int [const] by vyznačovalo konstantní délku.

Navíc bych chtěl integrovat array list do jazyka v ramci poli, jelikož je to často využivaná struktura. Array list bych viděl jako automaticky rozšířovatelné pole tak, aby vždy šlo zapsat na zvolený index.

Pole konstantní compile-time znamé délky

```
Jedna se o pole analogické tomu, co je v C. Tedy
```

```
int[8] arr;
```

By vytvořilo pole o delce 8. Spočtená délka by se vždy dosazovala compile-time, realná proměnna by se pro jeji uchovaní negenerovala.

Pole konstantní run-time znamé délky

Jedna se o analogii alokace konstantního ukazatele v C, ktery by byl využivany jako pole.

```
int* const arr = malloc(sizeof(int) * 8);
```

Tedy

```
int[const] arr = alloc int[8];
```

By alokovalo pole o delce 8 na heapu a vygenerovalo by přislušnou proměnnou pro uložení délky někde v pamětí programu. Pole by, samozřejmě, nešlo realokovat, jelikož delka pole je obecně run-time znama, a tedy není možnosti ověřit při kompilaci jeji neměnnost.

Pole variabilní run-time znamé délky

Analogie využití ukazatele jako pole v C.

```
int* arr = malloc(sizeof(int) * 8);
Tedy
int[dynamic] arr = alloc int[8];
```

By alokovalo pole o delce 8 na heapu a vygenerovalo by přislušnou proměnnou pro uložení délky někde v pamětí programu. Pole by šlo realokovat.

Array List

Šel by vytvořít nasledovně

```
int[] arr;
```

nebo se specifickou počateční delkou, v tomto připadě 8.

```
int[] arr = alloc int[8];
```

Volba kvalifikatoru

Lze take vnímat dynamické pole za výchozí, a ne array list. Pak by se využíl kvalifikator při inicilaizací arraylistu, pole variabilní run-time znamé délky by se inicializovalo bez kvalifikatoru. Takovým kvalifikatorem by mohl byt třeba auton od slova autonomus.

Taková to varianta se protířečí s zakladní představou o jazyce viz. Ale na druhou stranu se zbavuje skrytého flow, kdy se akce, ktera nese v sobě implicitní alokace není jako vychozí, ale musí se konkretně zvolit.

4.2.3 Prace s polem

Protože přinašíme rozdělení pole od ukazatele, tak bych s touto myšlenkou pokračoval dal a vnímal pole jako definici prvku stejných vlastnosti, jako něco, co určuje chování pro všechny jeho prvky v jdnom mistě. Vyjdeme li z C, tak tato myšlenka je zde.

```
int arr[8];
```

Kde my vytvoříme kontejner pro 8 proměnných arr[0] .. arr[7] o datovém typu int, ktery specifikujeme jednou. Proměnná arr je však konstantní, jelikož neni zřejmé, jestli např.

```
int arr1[8];
int arr2[8];
arr1 = arr2;
```

ma přiřadit všechny prvky arr2 do arr1, nebo přepsat ukazatel arr1 na ukazatel arr2. To plyne z toho, že vlastně pole jako takové v C by se dalo říct, že neexistuje. Jedna se fakticky vždy jen o ukazatel posypany syntaktickým cukrem a v takovém to připadě by, jaka koliv z předchozích operaci, by mohla byt vnímana jako hidden flow. My ovšem rozdělujeme mezi ukazatelem a polem na urovní typu. Tedy mužeme rozdělít chování ukazatele a pole a praci s polem vnímat vskutku jako praci se všemi proměnnými naraz, aniž by jsme něčemu ubližili.

4.3 String

V C string literaly jsou pouze hezčí verzí zapsani pole constantních charu. Vcelku, i když je to primitivní, tak zcela postačujicí. Problemem je zde 'absence' pole jako typu, jak již bylo zmiňovano[]. Tedy vlastně se s každym stringem pracuje jako s pointrem. Jelikož my vnímame pole jinak, tak mužeme rozvinout možnosti pole, aby nam umožňovaly ve vysledku lehčí praci i se stringy. Samotný typ pro string existovat nebude, ale bude jen podpora string literalu, ktery se při kompilaci rozloží na pole.

4.3.1 UTF-8

Bylo by vhodné rozšířít podporu literalu z ASCII na jiné kodovaní, aby byla jednoduchá cesta s připadnou jednoduchou manipulaci se složitějšímí symboly. Jako takové kodovaní bych volil utf8, protože je kompatibilní s ascii, jeho blokem je byte, tedy neni zavísle na edianech a je velmi rozšířene.

Jako nejlepší možnost bych viděl zadani literalu v utf8 a compile-time vyhodnocení nevětší delky potřebné pro uložení jednoho symbolu, a nasledně konverzi na pole intu o patřičné velikosti, kde každy element bude samostatnym symbolem zakodovaným v utf8.

4.3.2 Operace

Jako jediné konvenční operace nad stringy ktere by se měly integrovat do syntaxe, bych viděl concatinaci a slice. Ostatní operace by už měly byt obsažené v standardní knihovně.

Spojení

Níc nového bych nevymyšlel, a použil operator .. jako v Lua.

Implementace by však nesměl obsahovat žadnou alokaci pamětí, bylo by to zavadějicí. Jelikož délky dynamickych poli jsou jejich 'současti', šlo by to využivat pro alokavana pole. Ovšem, samotná, opět, nesmi obsahovat alokace, tedy připadné vysledné pole by se muselo samostatně standardně alokavt prostředky jazyka.

```
u8[const] arrC3 = alloc [] : arrA .. arrB;
...
Slice
...
```

4.3.3 Namespace

Zručný nástroj k organizací kodu. Umožňuje zhlukovat proměnné pod jedním společným názvem, který je rozlišitelný parsrem. Na rozdíl od použití identifikujících prefixu / postfixu v názvech je strukturním celkem z hlediska nástrojů operujících s kódem (např LSP). Umožňuje také při kompilaci hromadně pracovat s definovanými vevnitř proměnnými, a tedy se dá dobře využívat i pro import export části kódu (např python import foo; import from foo x;).

V našem případě by namespacem byl jednoduše pojmenovaný scope.

```
namespace Foo {
    x;
}
```

K přístupu by se použila syntaxe z C++ Foo::x;

4.3.4 Import

Nejhorší části C jsou hlavičkové soubory a s nimi související systém importu. Hlavní nevýhodou kterého je duplicita definic. Slouží však k dobrému úmyslů, k izolaci implementací a definici rozhraní.

My teda budeme chtít tuto myšlenku ponechat a rozvít.

Základním celkem bude soubor, jelikož jeto to co ve vysledku předame překladači. Překladač dostane jen jeden vstupní soubor, ktery nasledně již za pomoci prostředku jazyka umožňí načíst další soubory. Všechny importy však budou probíhat v rámci AST, každý soubor by tedy měl být samostatně parsovatelným celkem.

Prvně ošetříme možnost přímého importu souboru. Použijeme intuitivní syntaxi.

```
import filename;
```

Protože se v importovaném souboru mohou vyskytnout stejné názvy proměnných, chceme mít možnost zabalit ho do namespacu.

```
import filename as namespace Foo;
```

To nám vytvoří namespace Foo a kořen rozparsovaného souboru filename se přidá jako jediný prvek do něj.

Syntakticky specifikujeme namespace, protože by jsme mohli využít onoho syntetického konstruktu k implementaci jiných zpusobu zabalení souboru.

Např.

```
import filename as scope;
import filename as fcn foo;
```

apod.

Dále, samozřejmě, budeme chtít umět vybrat patřičné namespace ze souboru (Popřípadě i identifikátory).

```
import from filename foo, boo as namespace Foo
```

V zásadě tohle nám umožní robustní import, a více prostředků potřebovat nebudeme. Zbývá zohlednít viditelnost jednotlivých identifikátorů.

Můžeme buď vycházet z toho, že vše je viditelne, a my omezujeme viditelnost, nebo naopak, vše je nepřístupné, a my rozšiřujeme přístup. Druhy přístup je víc prakticky, ale ztrácí na explicitnosti, protože, když importujeme soubor, tak intuitivně očekáváme, že se nám tam naimportuje všechno, než nic.

V celku, onen problem není tak podstatný, podstatnější je otázka viditelnosti vnořených importu. Tedy importuje li soubor, který importujeme, identifikátory z jiného souboru, budeme li je vidět také. Zřejmé je, že pokud jsou p5istupné při importu, tak by měly být přístupně i pro další importy, jelikož jsou na stejné úrovní jako kód souboru, a nekladli jsme žádným způsobem omezení.

Tedy, navrhoval bych umožnit omezit viditelnost importu, než omezovat viditelnost samostatných identifikátorů. Pak by jsme měli decentní explicitní možnost omezení viditelnosti symbolu, aniž by jsme to museli řešit poprvkově a navíc by jsme stale měli možnost vytvoření připadného rozhraní z dostupných symbolu, ktere by se umisitili do jednoho souboru a zbyle by se importovali lokalně.

K označení lokalních importu bych použíl slovo local

import filename as local namespace Foo

4.4 Function Overloading

I když se jedna o implicitní konstrukt, ktery skryva od čtenáře pravou identitu volané funkce, tak přinaši, z mého hlediska, jednu zasadní věc, zjednošuená jmena funkcí. Tedy, zamisto vepisovani datového typu do jmena funkce, mužeme jen uvest jeji činnost. To zjednodušuje vnimani samotného programu, jelikož při praci s vlastnimi datovymi typy, ktere definuji složité objekty, jmena funkci budou už znatelnou

zatíží, oproti např. maxi, maxí, maxu, kde mužeme přibližně vydedukovat typ očekavane proměnné, se tak jednoduše nevystačime. Navíc jmena samotných funkci s použitím postfixu/prefixu, které si zvolime pro identifikaci, nebudou samostatnými celky z hlediska nastroju pracujicich s kodem, tedy v zakladu samotným kompilatorem a např LSP. Tedy nebude se moct nad nimi provadět žadna kontorla, tedy např kontorla překlepu, stíženy refaktoring, horší napověda, analyza atd..

Navíc, samotná abstrakce nad konkretní volanou funkci pro četnáře není nikterak zavadějicí. Nebo spíš, je stejně zavadějicí jako for loop, ktery za misto instrukce abstraktní intrukce for provadí skoky a sem a tam. Smysl čtenář získava ze samotného nazvu funkce a vstupních proměnných, a vníma konkretní funkcí jako černou skříňku. Tedy i když ona funkce dostava int, tak nemuže vědět, že ten int neni hned první instrukci přetypovan do floatu. Tedy jediné co to ovlivní je rychlost nalezení spravné funkce při potřebě se podivát na jeji kod, což, bez užití LSP, bude zřejmě delší, ovšem, neřekl bych, že to není něco zavažného.

Tedy, opět, z mého hlediska, je lepší ho mít, než nemit. Zbyva rozhodnout, zda povolit implicitni overloading, tedy jestli

```
foo(int x);
```

nebo pro jiny datový typ musi byt explicitní cast

Zde však dochazi k zajimávemu jevu. My explicitně vepisujeme datový typ, čímž identifikujeme funkci, ovšem o tom, jestli potřebná varianta existuje, se dozvíme buď z LSP, v tomto připadě je cast jen z hlediska informace navíc (porovnavame li s implicitnim overloadingem), nebo při kompilaci, což už je trochu pozdě. Tedy jediny k čemu to muže sloužit je jako assert, kdy my víme, že chceme jit do konkretní varianty oné funkce, a pokud neexistuje, tak dostat error. Ovšem to budeme muset specifikovat u každého volani overloaded funkce, což se pře s tím, že chceme overloading hlavně z duvodu zjednodušené jmeňné stopy v kodu (nemluvě o tom, že vlastně mame tutež informaci dva x v kodu, jednou při definici, po druhy při volání).

Bylo by tedy vhodné mit implicitní overloading, ale s opci v jistých připadech specifikovat konkretní požadovaný datový typ. Zavedeme tedy přisloušnou symboliku

Využití prapodivného symbolu v tomto připadě není zavadějicí, jelikož očekavané intuitivní chovaní vyrazu se nemění. Jedna se stale o function call, ktery nijak nemění vysledky volaní ani jeho vstupy, z hlediska čtenaře je prakticky irelavantní.

4.4.1 Implementace

V C++ implementuji nasledovně bla bla ... https://en.cppreference.com/w/cpp/language/overload_resolution

My budeme postupovat obdobně.

Pro jmeno volané funkce najdeme všechny funckce se stejnymi jmeny a v odpovidajicím scope. Uložime do pole, kde v každem chlivečku bude struktura odkazujici se na funkci a doplňujici připadné informace popisujcí schodu. Pro zatím, neuvažujeme li polymorfismus, genericitu atd... si postačíme jen s jednou jedinou proměnnou typu int určujicí podobnost funcke našemu vzoru z volaní.

Budeme prochazet ono pole postupně funcki po funcki a buď je vyřazovat, nebo sestavovat skore podobnosti. Nakonci vybereme funkci s největším skore. Chyba nastane pokud budou dvě a vice stejná maximalní score, nebo nezbude žadna funkce se scorem.

4.4.2 Přistup jiných jazyku

V Odin je pouze explicitní, jelikož jazyk umožňuje definovat vnořené funkce ve funkcích, a tudíž rozlišení konkretní funkce, ktera se ma zavolat není trivialní. https://odin-lang.org/docs/overview/

Zig nema function overloading, ale podobného chování lze docilit při kompilaci za pomoci tzv. duck typing.https://ziglang.org/documentation/master/

4.5 Error handling

Vezmeme-li C, tak jazyk nenabizí přímý zpusob spravy chyb. Chyby se mohou řešít např. navratovou hodnotou, nějakým specifickým stavem očekavané vystupní promměnné předane přes ukazatel (většinou NULL), specialní funkci, ktera vraci poslední chybu atd... V celku je to na programatorovi, aby vytvořil nějaky system pro spravu chyb, a jestli vubec. Pak, při praci s libovolným kodem je nutne číst komentaře k funkcím, externí dokumentaci apod. Zde opět naražíme na problem, kdy duležita informace není současti strukturných elementu kodu, ke kterym by měly ruzné nastroje přístup. Take to postrada jednotnost, kde různé knihovny mohu řešit zpravu chyb vždy jinak, a ve vysledném programu se bude muset řešít zbytečný problem, jak s tím naložit. To vše nas ve vysledku vede k myšlence o přídaní standartního systemu pro spravu chyb v našem jazyce.

Podívame-li se na jiné programovaci jazyky a jejich metody řešení spravy chyb, tak dokažeme v zasadě vyčlenít dva přistupy.

Navratova hodnota Chyba je vracena jako navratova proměnná nebo jeji součast. Obvykle je to spojene s možnosti navratu několika proměnných, kde se vyděluje jedno, např poslední misto, pro připadnou chybu (Odin), nebo je přímo specialní doplňujicí navratova hodnota vydělena jen pro chybu (Go). Nebo, třeba, se muže vracet struktura obsahujici jak připadnou chybu, tak i navratovou hodnotu (Rust).

Tenhle přístup je přímočaré a explicitní a dava svobodu programatorovi jak

a kde s chybou naložit. Zpracovaní chyby je pak přípmou současti code-flow. Tedy chybovy stav je prakticky jen další stav programu.

Try-Catch Využiva se system tzv. exceptions, kde připadne chybové místo je zabalene do try bloku, a připadna chyby odchycena v catch bloku. To umožňuje např. nezatěžovát kod spravou chyb, a psat ho v try bloku tak, jako kdyby žadná chba nastat nemohla, a nasledně jakoukoliv chybu zohlednít v catch bloku.

S try-catch se většínou pojí i tzv. throw mechanizmus umožňujicí označit připadné chyby, které muže kod nějaké funkce vyvolat, a propagovat jejich ošetřění do bloku, jež onu funkci volal.

- Jednotný datovy typ.
- Umožňit vytvoření množin chyb, ktere by se mohly kompozičně skladat do novyćh množín. Např mužeme vytvořit množinu chyb pro načtení souboru a množinu chyb pro zapis do souboru. Pak, budeme li chtit vytvořit funkci, ktera čte a zapisuje do souboru, tak by jsme měli mit možnost spojit oné dvě množiny do jedne.
- Definice funkce musí specifikovat, ktere chyby při jeji volaní mohou byt vracene.
- Umožnit jednoduchou propagací chyby stakem funkcí dal. Tedy zjednodušít obdobny konstrukt err = foo(); if err != null : return err;, ktery je relativně frekventní.

https://www.youtube.com/watch?v=uoIutDC5iBE

4.5.1 Implementace

Protože nahlížet na chybu jako jen na další stav programu, i když, řekněme, specialní, je z mého hlediska přirozenější a implicitní přistup, tak se vydame cestou navratové proměnné.

Jelikož používame jen jednu navratovou proměnnou, chybu budeme chtit vracet samostatným kanálem. Ovšem, nebudeme chtit vnímat chybu jako přímo navratovou hodnotu, ktera je určena jen pro chybu, jak je tomu např. v Go. Protože pak musíme řešit po každe volaní funcke dvě vystupní proměnné. To ve vysledku povede k vytvoření buď implicitních pravidel, nebo, k mnohomluvné (verbose) syntaxi.

Představme si to na nasledujícím přikladu v Go.

```
func foo() (int, error) {
    return 42, nil;
}
vall, err := foo();
if err != nil { ... }
```

```
val2, err := foo();
if err != nil { ... }
```

Symbol := vyjadřuje, obdobně jako v Pascalu, definici s inicializaci. Zde neni zcela zřejmé, co se ma dít, jelikož prvně provadíme definici val1 a err, a nasledně, v tymtyž scope provadíme definici val2 a opět err. Samozřejmě, je to zoohledněné pravidly jazyka, a kod je kompilovatelny, a nová definice err se neprovede, pouze val2. Ovšem, řekněme, dochazí ke sporu syntaxe a semantiky, kde ze syntaktického hlediska se err chova jen jako druha navratova hodnota, ovšem ze semantického se implicitně provadí 'vyjimky' v pravidléch, jen protože je to chybova hodnota. Navíc se to kompilkuje přidaním kvalifkatoru. Budeme-li chtit označit val1 jako const ale ne err, nebo naopak, budeme li chtít mit jedno embed a druhý const, atd... To vše lze řešit na ukor upovidané syntaxe, budeme-li chtit byt explicitní, nebo přidaním implicitních pravidel. Proto se pokusíme najit jiné řešení, ktere by více sedělo naší vizi.

K navratu chyby využijeme tedy pravou stranu příkazu. To nam ponecha příkaz, nad kterým budeme chybu odchycovat, nezměnným, a tedy budeme moct jednoduše jak měnít samotný přikaz, tak i ošetření jeho chyb, jelikož syntaktický na sobě nebudou zavíslé. Navíc to nam muže do budoucna umožnít odchycení chyby nejen z jednoho volaní funkce, ale i z libovolného vyrazu, ktery by mohl obsahovat několik volaní funkcí.

Navrholval bych nasledujíci syntaxi.

```
int x = foo() catch err;
```

Kde se připadná chyba uloží do proměnné err.

Zde bych stanovíl, že nechceme zbytečně zesložiťovat datový typ chyby přidaním ruzného implicitního chování, nebo ruzných druhu konstruktu pro tvorbu chyb. Chyba je vždy jen datového typu error a chová se vždy stejně. Tedy, mužeme v takovém to připadě pominout samotnou definci err, jelikož je redundantní. Ošem, mužeme ji tam i mit.

```
error err; int x = foo() catch err;
```

Množiny chyb

Samotna chyba by měla byt jednoduše identifikovatelná přes svoje jmeno, aby ji bylo možné použivát pro určení stavu. Např.

```
if err == ErrName : foo();
```

Chyby by měly byt shlukovane do uživatelem definovaných skupin, ktere by pak sloužili pro určení chybového rozhraní funkcí. Skupiny by měly byt shlukovatelné, jelikož funkce by měla mit možnost navracet i chyby uživaných funkci, ktere mohou byt definované samostatně, aniž by se pro ní redundantě definovaly nové chyby.

Tedy, řekněme, že budeme moct definovat jakysi množiny chyb, a jen je. Použijeme nasledující syntaxi.

```
error ErrorSetA {
    ErrorA;
    ErrorB;
};
error ErrorSetB {
    ErrorSetA;
    ErrorB;
};
```

Pak ErrorSetA je množina obsahující ErrorA a ErrorB, prazdné množiny, a ErrorSetB obsahuje množinu ErrorSetA a prazdnou množinu ErrorB. Libovolná s těchto množin je identifikovatelná svým jmenem a muže byt přiřazena do datového typu error.

```
error err = ErrorSetB::ErrorB;
```

K definici chybového rozharní funkce pak použijeme nasledujicí syntaxi.

```
fcn foo() using ErrorSetB => int {...}
```

funkce foo pak muže vracet chyby definovane v ErrorSetB, ale take i samotný ErrorSetB, což je nutné, abychom mohli využivat i připadně prazdných množin definovaných vně jiných množin.

Protože oné množiny maji smysl jen při definici samotných funkci a my neumožňujeme definovat funkci ve funkci, tak jejich definice uvnitř funkcí je zavadějicí, a tudíž zakazana. A tedy mužeme vnímát oné množiny jako nadstavbu nad namespace pro chyby, a tedy k jejich diferenci použivat stejný symbol ::, jak již bylo naznačeno viz.[...].

Toto řešení je jednoduché a relativně všestranné. Umožnuje nam např rozvít některou prazdnou množinu na plnohodnotnou, aniž by jsme rozbili kod, ktery onu množinu využival. Ovšem, ma jeden zakladní nedostatek – vracíme pouze stav. Tedy nemužeme vratít inforamci o chybě. Teoreticky je to možné řešit přidaním počtu stavu, ovšem to zdaleka není prakticke.

To nas omezuje jen při logovaní chyby, protože jinak my vždy popisujeme stav programu, ktery je nezbytny z hlediska jeho činnosti. Tudíž přidani v takových to připadech chybového stavu je vlastně nezbytné (uvažujeme-li, že chceme tento stav mit jako chybovy, obecně, samozřemě mužeme ho řešít normalní cestou). I tak mame možnosti, jak to zohlednít.

Pomocné proměnné V tomto připadě využijeme stavu vstupních proměnných, buď již existujících, nebo novych, pomocných, k popisu chyby. Tedy např. mame li nasledující funkci, ktera vyhledava v souboru slovo a vraci idx symbolu, kde se to slovo začina vyskytovat

fcn find(u8[] fname, u8[] str) using IOErrorSet => int {...

tak mužeme i s chybou vratit index, kde se chyba vyskytla.

Logovaní v mistě vyskutu chyby Je zřejmé, že přimo v mistě vyskytu chyby mame veškerou informaci k tomu, aby jsme ji popsali. Ovšem muže nam chybět kontext, kdy pro nas bude duležita informace z funkce, ktera nas volala. Tedy mužeme postupně logovnat jen informaci dostupnou nam v dany moment a ve vysledku dostat podbrobnou zpravu. Hlavním nedostatkem je však samotna nutnost logovat, protože pak musíme mit přistup k nějake přisloušné funkci, ktera by to duělala dle našich potřeb. Což je fakticky nerealizovatelne. Ovšem dalo by se to řešít za pomoci tzv. kontextu viz[], kde by všechny funkce mohly využivat standartního zapisu do stdout, ovšem by jsme pak z vně mohly definovat kontext, ktery by všechna tato volaní přesměroval do nami zvolené funkce.

Ani jedna z možností není idelaní, ale ve vysledku je to jen něco, co slouží jako doplnění systemu. Něco, co je využiváno přímo při zpracovaní samotné chyby, a tedy neruší samotnou standartizaci, kterou jsme si kladli za cil, protože popis samotné chyby už není obecně standartiyovatelný, a tak čí onak se jedna o konkretní zaležitost.

Pokud by jsme chtěli zobecnit naš model a rozšiřit definici za pomoci struktury nebo unie, tak vlastně narazíme pření se standartizaci, protože zobecníme system natolik, že bude moct byt využívan i pro jiné věci, a take mnohy zpusoby, tudíž vlastně nami postaveny problem nevyřešíme, jen ho přesuneme jinam.

Jediny co by jsem mohli udělat, je povolit přiřazení chybam konkretních hodnot, což by mohl byt postačující kompromis. To umožní pak indexovat pole hodnotami chyb, což je ve vysledku velmí silný nastroj.

Navrat chyby

Jak bylo zmiňěno [], možnost v chybovém stavu vratít i normalní hodnotu z funkce je zručna zaležitost. Navíc, je to dokonce nutná zaležitost, jelikož vnímame chybu jen jako další stav, a ne jako něco zvlaštního.

Mužeme intuitivně zvolit nasledující syntaxi

```
return value, err;
```

Kde value představuje proměnnou s navratovou hodnotou, a err navratovou chybu. Pak navrat value je nezměnný. Ale, musíme se zamyslet, co při navratu je chyby. Mužeme k tomu přistoupit tak, že vlastně takovy to připad existovat nebude, tedy vždy budeme muset vratit i hodnotu. Tento zpusob je pomimo všeho i zaruči, že proměnna do ktere se zapiše navratova hodnota nebudeme mit undefined hodnotu. I když je to skvělé chování, nemužeme ho použit, protože mame li byt low level, tak musíme take dat programatorovi i kontrolu. Nemužeme jen tak zbytečně vnucovat instrukci. Tedy mužeme přidat symbol, např _ definujíci přeskočení proměnné, a skončít s nasledujícím kodem

```
return _, err;
```

Implementace v jiných jazycích

4.6 context

print, mem alloc, etc.

- 4.6.1 custom alloc
- 4.7 Vestavená kompilcae C kodu
- 4.7.1 TCC
- 4.7.2 LLVM libclang
- 4.7.3 GCC
- 4.8 context

5 Implementace kompilatoru