第二章 向量和矩阵基础

第3讲向量空间

黄定江

DaSE @ ECNU djhuang@dase.ecnu.edu.cn

- 1 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- 5 3.5 秩
- 6 3.6 仿射子空间

- 1 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- ③ 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- 5 3.5 秩
- 6 3.6 仿射子空间

向量空间引例: 鸢尾花数据集降维

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
7	3.2	4.7	1.4	Iris-versicolo
6.4	3.2	4.5	1.5	Iris-versicolo
6.9	3.1	4.9	1.5	Iris-versicolo
5.5	2.3	4	1.3	Iris-versicolo
6.5	2.8	4.6	1.5	Iris-versicolo
5.7	2.8	4.5	1.3	Iris-versicolo
6.3	3.3	6	2.5	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
7.1	3	5.9	2.1	Iris-virginica
6.3	2.9	5.6	1.8	Iris-virginica
6.5	3	5.8	2.2	Iris-virginica
7.6	3	6.6	2.1	Iris-virginica
4.9	2.5	4.5	1.7	Iris-virginica
7.3	2.9	6.3	1.8	Iris-virginica

图 1: Iris 数据集 (左), PCA 降维可视化 (右)

向量空间:数据处理空间的出发点

定义 1

设 \mathbb{V} 是由 n 维向量组成的非空集合, \mathbb{K} 是一个数域。在 \mathbb{V} 上定义了加法,在 \mathbb{K} 与集合 \mathbb{V} 上定义了数乘,并且 $\forall a,b \in \mathbb{V}$ 及任意数 $k \in \mathbb{K}$,有 $a+b,ka \in \mathbb{V}$,则称 \mathbb{V} 对于向量的加法和数乘两种运算封闭, \mathbb{V} 为数域 \mathbb{K} 上的 n 维向量空间或者线性空间.

数域 \mathbb{K} 上的 n 维向量,按照如下定义的加法和数乘运算,构成数域 \mathbb{K} 上的向量空间。 考虑向量空间 $\mathbb{V} = \mathbb{K}^n$,任意两个向量 $a,b \in \mathbb{V}$, $\lambda \in \mathbb{K}$ 满足:

1. 加法

$$m{a} + m{b} = egin{pmatrix} a_1 \ dots \ a_n \end{pmatrix} + egin{pmatrix} b_1 \ dots \ b_n \end{pmatrix} = egin{pmatrix} a_1 + b_1 \ dots \ a_n + b_n \end{pmatrix} \in \mathbb{V}$$

2. 数乘

$$\lambda oldsymbol{a} = egin{pmatrix} \lambda a_1 \ dots \ \lambda a_n \end{pmatrix} \in \mathbb{V}$$

数域 ≤ 上的 m×n 矩阵,按照如下定义的加法和数乘运算,构成数域 ≤ 上的向量空间。 考虑矩阵空间 $\mathbb{V} = \mathbb{K}^{m \times n}$. 任意两个矩阵 $A, B \in \mathbb{V}$. $\lambda \in \mathbb{K}$ 满足:

1. 加法

$$\boldsymbol{A} + \boldsymbol{B} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix} \in \mathbb{V} \qquad \lambda \boldsymbol{A} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in \mathbb{V}$$

2. 数乘

$$\lambda \mathbf{A} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix} \in \mathbb{V}$$

假设元素属于数域 €:

- 令 λ 所在的数域 $K = \mathbb{C}$, 定义加法为复数加法、数乘为复数乘法,根据复数的加法和乘法,我们可以知道复数域 \mathbb{C} 是自身上的向量空间。
- 令 λ 所在的数域 $\mathbb{K} = \mathbb{R}$,定义加法为实部与实部相加,虚部与虚部相加,而数乘则是将实数分别乘至实部和虚部。容易知道,复数域 \mathbb{C} 是实数域 \mathbb{R} 上的向量空间。

数域 \mathbb{R} 上的次数小于 n 的一元多项式,即

$$\mathbb{P}_n = \{ p : p(x) = a_{n-1}x^{n-1} + \dots + a_1x + a_0, \not\exists \, \forall \, a_0, a_1, \dots, a_{n-1} \in \mathbb{R} \}$$

构成 \mathbb{R} 上的向量空间。这是因为对于 $\forall p_1, p_2 \in \mathbb{P}_n$ 及任意数 $k \in \mathbb{K}$, 有 $p_1 + p_2, kp_1 \in \mathbb{P}_n$ 。

设有

$$p_1 = a_{1,n-1}x^{n-1} + \dots + a_{1,1}x + a_{1,0}, \quad p_2 = a_{2,n-1}x^{n-1} + \dots + a_{2,1}x + a_{2,0}$$

 $\lambda \in \mathbb{R}$,则有

$$p_1 + p_2 = (a_{1,n-1} + a_{2,n-1})x^{n-1} + \dots + (a_{1,1} + a_{2,1})x + (a_{1,0} + a_{2,0})$$

和

$$\lambda p_1 = \lambda a_{1,n-1} x^{n-1} + \dots + \lambda a_{1,1} x + \lambda a_{1,0}$$

- 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- ③ 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- ⑤ 3.5 秩
- 6 3.6 仿射子空间

3.2.1 子空间

定义 2

设 \mathbb{X} 是 \mathbb{K} 上的 n 维线性空间, \mathbb{Y} 是 \mathbb{X} 的子集且满足: 若 $x, y \in \mathbb{Y}$, 则 $x + y \in \mathbb{Y}$; 若 $a \in \mathbb{K}, x \in \mathbb{Y}$, 则 $ax \in \mathbb{Y}$, 则称 \mathbb{Y} 是 \mathbb{X} 的线性子空间, 简称子空间。

例 5

非空的线性空间一定会有的子空间: 自身和 $\{0\}$ 。我们把只含零向量的子集称为**零子空间**。 零子空间和线性空间本身统称为平凡子空间,其它子空间叫做非平凡子空间。

图2中只有 D 是 \mathbb{R}^2 的子空间。在 A 和 C 中封闭性被违反。 B 则不包括 0。

图 2: ℝ² 中的一些子集

- 1. 线性方程组 Ax=0 的解空间是 \mathbb{R}^n 中常见的子空间
- 2,线性方程组 Ax=b 的解空间, 当 $b\neq 0$ 时, 不是子空间
- 3/线性方程组 Ax=0 的解空间和 Bx=0 的解空间的交集也是 \mathbb{R}^n 中的子空间

3.2 子空间的交、和、直和

定理1

设 \mathbb{Y}_1 与 \mathbb{Y}_2 都是数域 \mathbb{K} 上的线性空间 \mathbb{X} 的子空间。若用 $\mathbb{Y}_1 \cap \mathbb{Y}_2$ 表示 \mathbb{Y}_1 与 \mathbb{Y}_2 中的公 共元素集合,则 $\mathbb{Y}_1 \cap \mathbb{Y}_2$,也是 \mathbb{X} 的子空间,且称 $\mathbb{Y}_1 \cap \mathbb{Y}_2$ 为 \mathbb{Y}_1 与 \mathbb{Y}_2 的 **交**。

定理 2

给定 \mathbb{X} 的两个子空间 $\mathbb{Y}_1,\mathbb{Y}_2$,若用 $\mathbb{Y}_1+\mathbb{Y}_2$ 表示全体形如 $\mathbf{y}_1+\mathbf{y}_2(\mathbf{y}_1\in\mathbb{Y}_1,\mathbf{y}_2\in\mathbb{Y}_2)$ 的向量组成的集合,则 $\mathbb{Y}_1+\mathbb{Y}_2$ 也是 \mathbb{X} 的子空间,且称 $\mathbb{Y}_1+\mathbb{Y}_2$ 为 \mathbb{Y}_1 与 \mathbb{Y}_2 的 和。

定义 3

如果 $\mathbb Y$ 中的每个向量 x 可唯一地表成 $x=y_1+y_2(y_1\in\mathbb Y_1,y_2\in\mathbb Y_2)$ 的形式,则称 $\mathbb Y$ 为 $\mathbb Y_1$ 与 $\mathbb Y_2$ 的直和。记作 $\mathbb Y=\mathbb Y_1+\mathbb Y_2$ 或 $\mathbb Y_1\oplus\mathbb Y_2$

定理3

 $\mathbb{Y}_1+\mathbb{Y}_2$ 为直和的充分必要条件是:由 $\mathbf{y}_1+\mathbf{y}_2=0(\mathbf{y}_1\in\mathbb{Y}_1,\mathbf{y}_2\in\mathbb{Y}_2)$ 可推出 $\mathbf{y}_1=\mathbf{y}_2=\mathbf{0}$ 。

推论 1

 $\mathbb{Y}_1 + \mathbb{Y}_2$ 为直和的充分必要条件是:由 $\mathbb{Y}_1 \cap \mathbb{Y}_2 = \{0\}$ 。

- 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- ⑤ 3.5 秩
- 6 3.6 仿射子空间

3.3.1 线性表出定义

- 一个向量能否用其它向量表示?
- 一个线性空间里的所有向量最少可以用几个向量表示出来?
- 这些向量之间又是什么关系?
- 空间里的坐标是如何确定的?
- 为什么向量空间要用数乘和向量加法定义?
- 为什么封闭性是向量空间非常重要的性质?

这些问题就是我们接下来要讨论的问题。

3.3.1 线性表出定义

定义 4

设向量 a_1, a_2, \cdots, a_s 是数域 \mathbb{K} 上的 n 维向量组, k_1, k_2, \cdots, k_s 是数域 \mathbb{K} 上的一组数,那么表达式

$$k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 + \cdots + k_s \mathbf{a}_s.$$

称为向量组 a_1,a_2,\cdots,a_s 的一个线性组合,而 k_1,k_2,\cdots,k_s 称为组合系数。

定义 5

若向量 b 是向量组 a_1, a_2, \cdots, a_s 的一个线性组合,即

$$\boldsymbol{b} = k_1 \boldsymbol{a}_1 + k_2 \boldsymbol{a}_2 + \dots + k_s \boldsymbol{a}_s,$$

则称 b 可以由向量组 a_1, a_2, \cdots, a_s 线性表出。

零向量 0 总可以写成其它一些向量的线性组合。

例 9

例如,设向量组

$$a_1 = (2, -1, 3, 1)$$

$$a_2 = (4, -2, 5, 4)$$

$$\mathbf{a}_3 = (2, -1, 4, -1)$$

则有 $\mathbf{a}_3 = 3\mathbf{a}_1 - \mathbf{a}_2$, 这表示 \mathbf{a}_3 可以由 $\mathbf{a}_1, \mathbf{a}_2$ 线性表出。

3.3.2 线性相关/无关

定义 6

设 $\mathbf{a}_i \in \mathbb{K}^n (i=1,2,\cdots,r)$. 若在 \mathbb{K} 中存在 r 个不全为零的数 $\lambda_i (i=1,2,\cdots,r)$, 使 $\sum_{i=1}^r \lambda_i a_i = 0$, 则称向量组 a_1, a_2, \dots, a_r 线性相关. 反之,如果向量组 a_1, a_2, \dots, a_r 不线 性相关, 即只有 $\lambda_1, \lambda_2, \dots, \lambda_r$ 全为零时, 才能使得 $\sum_{i=1}^r \lambda_i \mathbf{a}_i = 0$, 则称向量组 a_1, a_2, \cdots, a_r 线性无关.

定义 7

向量组的一部分组称为一个极大线性无关组,如果这个部分组本身线性无关,但从原向量组 的其余向量中任取一个添加进去后, 所得的部分组都线性相关。

- 一个地理例子可能有助于阐明线性独立性的概念。
- 在上海的一个人在描述宣城的位置时可能会说:"您可 以先向西北行驶 180 公里到常州, 再向西南行驶 244.8 公里, 才能到宣城。"
- 这是描述宣城位置的充分信息, 因为地理坐标系可能 被视为二维矢量空间 (忽略高度和地球表面)。
- 这个人可能会加上"它在这里以西约 282.9 公里处。"
- 尽管这个说法是正确的,但鉴于先前的信息就可以找 到宣城。

图 3: 一个线性相关和线 性无关的例子

在向量组

$$a_1 = (2, -1, 3, 1)$$
 $a_2 = (4, -2, 5, 4)$ $a_3 = (2, -1, 2, 3)$

中, 由 a_1, a_2 组成的部分组就是一个极大线性无关组。首先, a_1, a_2 线性无关, 因为由

$$k_1 \mathbf{a}_1 + k_2 \mathbf{a}_2 = k_1(2, -1, 3, 1) + k_2(4, -2, 5, 4)$$

$$= (2k_1 + 4k_2, -k_1 - 2k_2, 3k_1 + 5k_2, k_1 + 4k_2) = (0, 0, 0, 0)$$

就有 $k_1 = k_2 = 0$, 同时, a_1, a_2, a_3 线性相关 $(a_2 = a_1 + a_3)$ 。不难看出, a_2, a_3 也是一个 极大线性无关组。

等价

3.3.3 等价

定义 8

设 a_1, a_2, \dots, a_s 和 b_1, b_2, \dots, b_t 是数域 \mathbb{K} 上的两个向量组,如果向量组 a_1, a_2, \dots, a_s 中 每一个向量 $a_i (i=1,2,\dots,s)$ 都可以用向量组 b_1, b_2, \dots, b_t 线性表出,那么称向量组 a_1, a_2, \dots, a_s 可以用向量组 b_1, b_2, \dots, b_t 线性表出。如果两个向量组互相可以线性表出,则称为它们等价。

例如. 设

$$a_1 = (1,0), a_2 = (0,1);$$

 $b_1 = (1,1), b_2 = (-1,1),$

则向量组 a_1, a_2 与向量组 b_1, b_2 是等价的。

$$egin{aligned} a_1 &= rac{1}{2} oldsymbol{b}_1 - rac{1}{2} oldsymbol{b}_2, & a_2 &= rac{1}{2} oldsymbol{b}_1 + rac{1}{2} oldsymbol{b}_2 \ b_1 &= oldsymbol{a}_1 + oldsymbol{a}_2, & oldsymbol{b}_2 &= -oldsymbol{a}_1 + oldsymbol{a}_2 \end{aligned}$$

图 4: 向量组等价

- □ 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- ③ 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- 5 3.5 秩
- 6 3.6 仿射子空间

3.4.1 生成集

定义 9

设 a_1, a_2, \cdots, a_r 是 \mathbb{V} 的一组向量,则这组向量所有可能的线性组合 $\sum_{k=1}^r \lambda_k a_k$ 所成的集合是 \mathbb{V} 的一个子空间,称为由 a_1, a_2, \cdots, a_r 张成的子空间,记作 $L(a_1, a_2, \cdots, a_r)$ 或 $\mathrm{span}(a_1, a_2, \cdots, a_r)$ 。 $\{a_1, a_2, \cdots, a_r\}$ 叫做 \mathbb{V} 的一个生成集。

图 5: 张成子空间

定理4

两个向量组张成相同的子空间的充分必要条件是:这两个向量组等价。

3.4.2 基底与维数

定义 10

如果在向量空间 \mathbb{V} 中有 n 个线性无关的向量 a_1, a_2, \cdots, a_n ,且 \mathbb{V} 中任一向量都可以用它们线性表出,则称 \mathbb{V} 为 \mathbb{K} 上的n 维线性空间,n 称为 \mathbb{V} 的维数,记作 $dim(\mathbb{V}) = n$ 。而 a_1, a_2, \cdots, a_n 就是 \mathbb{V} 的一组基。

复数域 ℂ 在 ℂ 上和 ℝ 上是两个不同的向量空间。

- 因为在 ℂ上它是一维的,数 1 就是一组基;
- 而在 \mathbb{R} 上它是二维的,数 1 与 i 就是一组基。

这个例子告诉我们, 维数是和所考虑的数域有关的。

定理5

令 V 是一向量空间, B ⊆ V, B ≠ \emptyset 下列命题等价:

- B 是 V 的一个基
- B 是最小生成集
- B 是 V 中的极大线性无关组
- V 中每一个向量能被 B 线性表出

定义 11

如果一组基中的每一个向量长度均为 1. 我们称其为标准基。

在后面的课程中,我们将会严格说明向量的长度。

例 14

- 在右图中, 粉色的两个向量组成的基是一组标准基。
- 在 \mathbb{R}^3 中,常用基 $\left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$ 就是一组标准基。

图 6: 标准基和基

确定一组基

例 15

对于一个由向量 x_1, x_2, x_3 张成的向量空间 $\mathbb{U} \subset \mathbb{R}^4$

$$oldsymbol{x}_1 = egin{pmatrix} 1 \ 0 \ 1 \ 0 \end{pmatrix}, oldsymbol{x}_2 = egin{pmatrix} 0 \ 1 \ 1 \ 1 \ 1 \end{pmatrix}, oldsymbol{x}_3 = egin{pmatrix} 1 \ 1 \ 2 \ 1 \end{pmatrix},$$

我们关心 x_1,x_2,x_3 是否是 $\mathbb U$ 的一组基。为此,我们需要确认 x_1,x_2,x_3 是否线性无关。因此,我们需要解 $\sum_i \lambda_i x_i = \mathbf 0$

这是一个关于下面这个矩阵的一个线性方程组,并且我们对这个矩阵作行初等变换可将其化 成阶梯型

$$\left(m{x}_{\!1},m{x}_{\!2},m{x}_{\!3}
ight) = egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 1 & 1 & 2 \ 0 & 1 & 1 \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$

从而我们可以发现 x_1, x_2 是线性无关的, $\lambda_1 x_1 + \lambda_2 x_2 = 0$ 只有 $\lambda_1 = \lambda_2 = 0$ 时成立。因此 $\{x_1, x_2\}$ 是 U 的一组基。

这个例子说明, □ 是 □ 中的 维向量空间。如果我们添加向量 $e_3 = (0,0,1,0)^T$, $e_4 = (0,0,0,1)^T$, 那么因为 $e_1 = x_1 - e_3$, $e_2 = x_2 - e_3 - e_4$, 则 e_1, e_2, e_3, e_4 可以由 x_1, x_2, e_3, e_4 线性表出, 也就是 x_1, x_2, e_3, e_4 生成的子空间为 \mathbb{R}^4 。

3.4.2 子空间的扩张

定理 6

设 $\mathbb{Y}=L(\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m)$ 是 n 维空间 \mathbb{X} 的一个 m 维子空间,则向量组 $\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m$ 可扩张为 $\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m,\boldsymbol{a}_{m+1},\ldots,\boldsymbol{a}_n$ 使得 $\mathbb{X}=L(\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_m,\boldsymbol{a}_{m+1},\ldots,\boldsymbol{a}_n)$ 。

注意: 其中 $L(\mathbf{a}_{m+1},\ldots,\mathbf{a}_n)$ 也是 \mathbb{X} 的一个子空间。

$$L(a_{m+1},\ldots,a_n) \oplus L(a_1,a_2,\cdots,a_m) = L(a_1,a_2,\cdots,a_m,a_{m+1},\ldots,a_n).$$

定理7

维数公式: $\dim(\mathbb{Y}_1 + \mathbb{Y}_2) = \dim \mathbb{Y}_1 + \dim \mathbb{Y}_2 - \dim(\mathbb{Y}_1 \cap \mathbb{Y}_2)$

• 对于直和: $\dim(\mathbb{Y}_1 \oplus \mathbb{Y}_2) = \dim \mathbb{Y}_1 + \dim \mathbb{Y}_2$

定义 12

如果一个向量空间 extstyle
olimits 中任一向量都能被 n 个线性无关的向量线性表出时, extstyle
olimits 称为有限维线 性空间, 否则, 称为无限维线性空间。

有限维线性空间

- 1. n 维向量空间
- 2. $n \times m$ 维矩阵空间
- 3. 最高次为 n 次的多项式空间
- 4. 复数域

无限维线性空间

- 1. 所有的多项式构成的空间
- 2. 一阶可导函数空间
- 3. 傅里叶变换后的频域空间

3.4.3 坐标

定义 13

在n维向量空间 \mathbb{V} 中,n个线性无关的向量 $\varepsilon_1,\varepsilon_2,\cdots,\varepsilon_n$ 称为 \mathbb{V} 的一组基。设a是 \mathbb{V} 中

$$\mathbf{a} = a_1 \mathbf{\varepsilon}_1 + a_2 \mathbf{\varepsilon}_2 + \dots + a_n \mathbf{\varepsilon}_n,$$

其中系数 a_1, a_2, \dots, a_n 是被向量 a 和基 e_1, e_2, \dots, e_n 唯一确定的, 这组数就称为 a 在基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$ 下的坐标, 记为 (a_1, a_2, \cdots, a_n) 。

在向量空间 P_n 中,

$$1, x, x^2, \cdots, x^{n-1}$$

是 n 个线性无关的向量,而且每一个次数小于 n 的数域 $\mathbb K$ 上的多项式都可以被它们线性表出,所以 P_n 是 n 维的,而 $1,x,x^2,\cdots,x^{n-1}$ 就是它的一组基。

在这组基下,多项式 $f(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}$ 的坐标就是它的系数

 (a_0,a_1,\cdots,a_{n-1})

如果在 ♥ 中取另外一组基

$$\varepsilon_1' = 1, \varepsilon_2' = (x-a), \cdots, \varepsilon_n' = (x-a)^{n-1}.$$

那么按泰勒展开公式

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}.$$

因此, f(x) 在基 $\varepsilon_1', \varepsilon_2', \cdots, \varepsilon_n'$ 下的坐标是

$$\left(f(a),f'(a),\cdots,\frac{f^{(n-1)}(a)}{(n-1)!}\right).$$

在 n 维向量空间 ∇ 中. 显然

$$\begin{cases} \varepsilon_1 = (1, 0, \dots, 0), \\ \varepsilon_2 = (0, 1, \dots, 0), \\ \dots \\ \varepsilon_n = (0, 0, \dots, 1) \end{cases}$$

是一组基。任意向量 $\mathbf{a} = (a_1, a_2, \cdots, a_n) = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \cdots + a_n \varepsilon_n$ 。 所以 (a_1, a_2, \dots, a_n) 就是向量 a 在这组基下的坐标。

不难证明,

$$\begin{cases} \boldsymbol{\varepsilon_1}' = (1, 1, \dots, 1), \\ \boldsymbol{\varepsilon_2}' = (0, 1, \dots, 1), \\ & \dots \\ \boldsymbol{\varepsilon_n}' = (0, 0, \dots, 1) \end{cases}$$

是 \forall 中 n 个线性无关的向量。

在基 $\varepsilon_1', \varepsilon_2', \cdots, \varepsilon_n'$ 下,对向量 $\mathbf{a} = (a_1, a_2, \cdots, a_n)$,有

$$\mathbf{a} = a_1 \boldsymbol{\varepsilon}_1' + (a_2 - a_1) \boldsymbol{\varepsilon}_2' + \dots + (a_n - a_{n-1}) \boldsymbol{\varepsilon}_n'.$$

因此, a 在基 $\varepsilon_1', \varepsilon_2', \cdots, \varepsilon_n'$ 下的坐标为

$$(a_1, a_2 - a_1, \cdots, a_n - a_{n-1}).$$

- 1 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- ③ 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- 5 3.5 秩
- 6 3.6 仿射子空间

3.5.1 秩、矩阵的秩

定义 14

向量组 a_1, a_2, \dots, a_r 的极大线性无关组中所含向量的个数称为这个向量组的秩, 记作 $\operatorname{rank}\{a_1, a_2, \dots, a_r\}$.

定义 15

矩阵 A 的行 (9) 向量组的秩称为 A 的行秩 (9) 的大,其中矩阵的行秩和列秩相等,它们都称为矩阵 A 的秩,记作 $\mathrm{rank}(A)$.

定理8

$$\dim L(\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_r) = \operatorname{rank}\{\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_r\}$$

设矩阵 A

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 2 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

矩阵 A 的行向量组为

$$a_1 = (1, 1, 3, 1)$$
 $a_2 = (0, 2, -1, 4)$

$$a_3 = (0, 0, 0, 5)$$
 $a_4 = (0, 0, 0, 0).$

可以证明, a_1, a_2, a_3 是向量组 a_1, a_2, a_3, a_4 的一个极大线性无关组。因此,向量组 a_1, a_2, a_3, a_4 的秩为 3, 换句话说, 矩阵 A的行秩为3。

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 2 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

A 的列向量组为

$$egin{aligned} m{b}_1 &= (1,0,0,0)^{\mathrm{T}} \ m{b}_2 &= (1,2,0,0)^{\mathrm{T}} \ m{b}_3 &= (3,-1,0,0)^{\mathrm{T}} \ m{b}_4 &= (1,4,5,0)^{\mathrm{T}}. \end{aligned}$$

用同样的方法可以证明, b_1 , b_2 , b_4 线性无关,且 $b_3 = \frac{7}{2}b_1 - \frac{1}{2}b_2$,所以 b_1 , b_2 , b_4 是向量组 b_1 , b_2 , b_3 , b_4 的一个极大线性无关组,于是向量组 b_1 , b_2 , b_3 , b_4 的秩为 3,换句话说,矩阵 \boldsymbol{A} 的列秩为 3。

一般在推荐系统中,数据往往使用"用户——物品"矩阵来表示的。用户对其接触过的物品进行评分,评分表示了用户对于物品的喜爱程度,分数越高,表示用户越喜欢这个物品。而这个矩阵往往是稀疏的,空白项是用户还未接触到的物品,推荐系统的任务则是选择其中的部分物品推荐给用户。这就需要对矩阵中的空白项进行补全。

	物品1	物品2	物品3	物品4	物品5	物品6	物品7	物品8	物品9	物品10
用户1	3					5			2	
用户2			3		5			2		
用户3		1		2			5			
用户4			3					3		5
用户5	5				2					

	物品1	物品2	物品3	物品4	物品5	物品6	物品7	物品8	物品9	物品10
用户1	3					5			2	
用户2			3		5			2		
用户3		1		2			5			
用户4			3					3		5
用户5	5				2					

设 \mathbb{E} 为可以被观察到评分的 (用户, 物品) 指标集,M 为观察评分矩阵, M_{ij} 为观测到的用户 i 对物品 j 的评分,X 为预测评分矩阵, X_{ij} 为预测的用户 i 对物品 j 的评分。矩阵补全问题可以转化为寻找与观测到数据集合 \mathbb{E} 中所有项匹配的低秩矩阵 X。形式化如下

$$\min_{\pmb{X}} \qquad \mathrm{rank}(\pmb{X})$$

s.t.
$$\boldsymbol{X}_{ij} = \boldsymbol{M}_{ij} \quad \forall i, j \in \mathbb{E}$$

或者转化为限定在秩为r的条件下,求矩阵使得观测到的评分与预测的评分最接近:

$$\min_{m{X}} \qquad \sum_{ij} (m{X}_{ij} - m{M}_{ij})^2 \quad orall i, j \in \mathbb{E}$$

$$s.t.$$
 rank $(X) = r$

- 1 3.1 向量空间的基本概念
- 2 3.2 向量子空间
- ③ 3.3 线性无关性
- 4 3.4 生成集、基底和坐标
- 5 3.5 秩
- 6 3.6 仿射子空间

3.6.1 仿射子空间

定义 16

令 \mathbb{V} 是一线性空间, $x_0 \in \mathbb{V}$ 且 $\mathbb{U} \subseteq \mathbb{V}$ 是一线性子空间,则子集

$$\mathbb{L} = \boldsymbol{x}_0 + \mathbb{U} := \{ \boldsymbol{x}_0 + \boldsymbol{u} | \boldsymbol{u} \in \mathbb{U} \} \subseteq \mathbb{V}$$

是一仿射子空间。我们定义线性子空间的维数为仿射子空间的维数。

- 注意,如果 $x_0 \notin \mathbb{U}$,则仿射子空间 \mathbb{L} 不是一个线性子空间。
- 若 \mathbb{U} 有一基底 $a_1, a_2, ..., a_m$,则 \mathbb{L} 中的每一个元素 x 均可写成 $x_0 + k_1 a_1 + k_2 a_2 + ... + k_m a_m$ 。 这一结论通过定义是容易知道的。

超平面

图 7: 仿射子空间

例 20

R3 中常见的仿射子空间

- 1. 零维仿射子空间: 单点集 $\{x_0\}$
- 2. 一维仿射子空间: 直线 $\{x_0 + ku\}$
- 3. 二维仿射子空间: 平面 $\{x_0 + k_1 u_1 + k_2 u_2\}$
- R³ 本身
- 5. \mathbb{R}^n 中的 n-1 维仿射子空间称为超平面。在二维空间中一条直线是一个超平面;在三维空间中一个平面就是它的超平面;在四维空间中,一个超平面是三维空间。

我们已经知道线性方程组 $Ax=b,b\neq 0$ 的解空间不是一个线性空间,但是它的解空间是一 个仿射空间。

设 Ax = 0 的解空间为 \mathbb{V} ,它是一个子空间,且 x_0 是 Ax = b 的一个特解,则可以证明仿 射空间 $x_0 + \mathbb{V}$ 是方程组 $Ax = b, b \neq 0$ 的解空间。

事实上, $\forall x \in x_0 + \mathbb{V}$, x 必可以写成 $x = x_0 + x_1$, 其中 $x_1 \in \mathbb{V}$ 。显然:

$$Ax = A(x_0 + x_1) = Ax_0 + Ax_1 = 0 + b = b.$$

说明 $x_0 + \mathbb{V} \subset \{x | Ax = b\}$.

反之. $\forall x$ 满足 Ax = b. 则 $Ax - Ax_0 = A(x - x_0) = 0$. 则 $x - x_0 \in \mathbb{V}$, $x \in x_0 + \mathbb{V}$.

说明 $\{\boldsymbol{x}|\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}\}\subseteq \boldsymbol{x}_0+\mathbb{V}.$

综上,线性方程组 $Ax = b, b \neq 0$ 的解空间为 $x_0 + \mathbb{V}$,这是一个仿射空间。

向量空间小结

向量空间上的运算封闭性

- 加法
- 数乘
- <u>. . . .</u>

"非严格"向量空间

- 输入空间
- 输出空间
- 特征空间

如何把数据向量从高维向量空间"拉回"到低维子空间?机器学习中输入和输出空间以及特征空间可以考虑为向量空间,要实现运算任务,还需要附加额外的数学结构,那可以附加哪些数学结构呢?