Nitrogen dioxide, $NO_2(g)$, is formed when nitrogen monoxide, NO(g), undergoes oxidation as shown below.

$$2 \text{ NO(g)} + O_2(g) \rightleftharpoons 2 \text{ NO}_2(g)$$
 $\Delta H = -62 \text{ kJ mol}^{-1}$

A change was imposed on an equilibrium gas mixture of NO_2 , NO and O_2 . The mixture returned to equilibrium and another change was imposed. The following graph shows the effects of the two changes.

- 4. What do the initial partial pressures of the three gases indicate?
 - The relative proportions of the gases present at equilibrium. (a)
 - That there is initially no NO gas present in the system. (b)
 - (c)
 - That the NO_2 gas reaches equilibrium first. That the O_2 and NO gases are producing NO_2 at a faster rate than they are being (d) formed.