

AO4616

Complementary Enhancement Mode Field Effect Transistor

General Description

The AO4616 uses advanced trench technology MOSFETs to provide excellent R_{DS(ON)} and low gate charge. The complementary MOSFETs may be used in inverter and other applications. Standard Product AO4616 is Pb-free (meets ROHS & Sony 259 specifications). AO4616L is a Green Product ordering option. AO4616 and AO4616L are electrically identical.

Features

n-channel p-channel $V_{DS}(V) = 30V$ -30V

 $I_D = 8.1A (V_{GS}=10V)$ -7.1A $(V_{GS} = -10V)$

 $R_{DS(ON)}$ $R_{DS(ON)}$

 $< 20 m\Omega (V_{GS} = 10 V)$ $< 25 m\Omega (V_{GS} = -10 V)$ $< 28 m\Omega (V_{GS} = 4.5 V)$ $< 40 m\Omega (V_{GS} = -4.5 V)$

SOIC-8

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Max n-channel	Max p-channel	Units
Drain-Source Voltag	rain-Source Voltage		30	-30	V
Gate-Source Voltage	e	V_{GS}	±20	±20	V
Continuous Drain	T _A =25°C		8.1	-7.1	
Current ^A	T _A =70°C	I_D	6.5	-5.6	Α
Pulsed Drain Curren	Pulsed Drain Current ^B		30	-30	
	T _A =25°C	D	2	2	w
Power Dissipation	T _A =70°C	$-P_{D}$	1.28	1.28	\ \v
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150	-55 to 150	°C
				•	•

Thermal Characteristics: n-channel and p-channel

morniar characteriotics: if charmer and p charmer								
Parameter		Symbol	Device	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t ≤ 10s R _{θJA}		n-ch	48	62.5	°C/W		
Maximum Junction-to-Ambient ^A	Steady-State	ГνθЈА	n-ch	74	110	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	n-ch	35	60	°C/W		
Maximum Junction-to-Ambient ^A	t ≤ 10s	$R_{\scriptscriptstyle{ hetaJA}}$	p-ch	48	62.5	°C/W		
Maximum Junction-to-Ambient ^A	Steady-State	Г√θЈА	p-ch	74	110	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	p-ch	35	40	°C/W		

N-Channel Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =250 μ A, V_{GS} =0V	30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V			1	μА
		T _J =55°0			5	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V_{DS} = V_{GS} I_D =250 μ A	1	1.8	3	V
ID _(ON)	On state drain current	V _{GS} =10V, V _{DS} =5V	30			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =8.1A		16.4	20	m O
		T _J =125°0		20	25	mΩ
		V _{GS} =4.5V, I _D =6A		23.4	28	mΩ
g FS	Forward Transconductance	V _{DS} =5V, I _D =8.1A		23		S
V_{SD}	Body-Diode Forward Voltage	I _S =1A		0.75	1	V
I _S	Maximum Body-Diode Continuous Current	•			3	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance			1040	1250	pF
Coss	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		180		pF
C _{rss}	Reverse Transfer Capacitance			110		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		0.7		Ω
SWITCHI	NG PARAMETERS					
Q _g (10V)	Total Gate Charge			19.2		nC
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =8.1A		9.36		nC
Q_{gs}	Gate Source Charge	V _{GS} -10V, V _{DS} -13V, I _D -8.1A		2.6		nC
Q_{gd}	Gate Drain Charge			4.2		nC
$t_{D(on)}$	Turn-On DelayTime			5.2		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =1.8 Ω ,		4.4		ns
$t_{D(off)}$	Turn-Off DelayTime	R _{GEN} =3Ω		17.3		ns
t_f	Turn-Off Fall Time			3.3		ns
t _{rr}	Body-Diode Reverse Recovery Time	I _F =8.1A, dI/dt=100A/μs		16.7	21	ns
Q_{rr}	Body-Diode Reverse Recovery Charge	I _F =8.1A, dI/dt=100A/μs		6.7	10	nC

A: The value of R $_{0.A}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t $_{\odot}$ 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

Rev 0 : July 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using 80 $\,\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

N-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 6: Body-Diode Characteristics

Figure 5: On-Resistance vs. Gate-Source Voltage

N-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

P-Channel Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =-250 μ A, V_{GS} =0V	-30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-24V, V _{GS} =0V			-1	μА			
		T _J =55°C	•		-5	μΑ			
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V			±100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$	-1.4	-2	-2.7	V			
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V	30			Α			
	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-7.1A		20	25	mΩ			
$R_{DS(ON)}$		T _J =125°C	,	27	33	11122			
		V_{GS} =-4.5V, I_{D} =-5.6A		29	40	mΩ			
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_D =-7.1A		19.6		S			
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.7	-1	V			
I _S	Maximum Body-Diode Continuous Current				-4.2	Α			
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			1573		pF			
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f=1MHz		319		pF			
C_{rss}	Reverse Transfer Capacitance			211		pF			
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		6.7		Ω			
SWITCHII	SWITCHING PARAMETERS								
$Q_g(10V)$	Total Gate Charge (10V)			30.9		nC			
Q _g (4.5V)	Total Gate Charge (4.5V)	V _{GS} =-10V, V _{DS} =-15V, I _D =-7.1A		16.1		nC			
Q_{gs}	Gate Source Charge	VGS10V, VDS10V, ID7.17A		8		nC			
Q_{gd}	Gate Drain Charge			4.4		nC			
$t_{D(on)}$	Turn-On DelayTime			9.5		ns			
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =2.2 Ω ,		8		ns			
$t_{D(off)}$	Turn-Off DelayTime	R_{GEN} =3 Ω		44.2		ns			
t _f	Turn-Off Fall Time			22.2		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =-7.1A, dI/dt=100A/μs		25.5		ns			
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =-7.1A, dI/dt=100A/μs		14.7		nC			

A: The value of R $_{\theta JA}$ is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t $_{\perp}$ ≤ 10s thermal resistance rating.

- B: Repetitive rating, pulse width limited by junction temperature.
- C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.
- D. The static characteristics in Figures 1 to 6,12,14 are obtained using 80 µs pulses, duty cycle 0.5% max.
- E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ =25°C. The SOA curve provides a single pulse rating.

Rev 0 : July 2005

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

P-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

1.0E-05

1.0E-06

0.0

0.2

-V_{GS} (Volts)
Figure 20: On-Resistance vs. Gate-Source Voltage

7

6

25°C

8

9

10

25°C

0.6

1.0

5

20

10

3

4

P-CH TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 22: Gate-Charge Characteristics

Figure 23: Capacitance Characteristics

Figure 24: Maximum Forward Biased Safe Operating Area (Note E)

Figure 25: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 26: Normalized Maximum Transient Thermal Impedance