CM3110 Security

George Theodorakopoulos - Theodorakopoulos G@cardiff.ac.uk

Symmetric Cryptography

- Terminology and basic scenario
- Intro to Cryptanalysis
 - Substitution Cipher
 - Brute-force attack and Frequency analysis
- Modular Arithmetic
 - Caesar's Cipher
 - Affine Cipher
- Modern Symmetric ciphers
 - Stream Ciphers
 - Block Ciphers (AES)
 - Modes of operation (ECB, CBC, CTR)

- Intro to stream ciphers
- Random number generators (RNGs)
- One-Time Pad (OTP)
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream cipher

Stream Ciphers: Big picture

Stream Ciphers were invented in 1917 by Gilbert Vernam

Stream Cipher vs. Block Cipher

Stream Ciphers

- Encrypt bits individually
- Usually small and fast → common in embedded devices (e.g., A5/1 for GSM phones)

Block Ciphers:

- Always encrypt a full block (several bits, usually 128) in one go
- Are common for Internet applications

Encryption and Decryption with Stream Ciphers

Plaintext x_i , ciphertext y_i and key stream s_i consist of individual bits

- Encryption and decryption are simple additions modulo 2 (aka XOR)
- Encryption and decryption are the same functions
- **Encryption:** $y_i = e_{si}(x_i) = x_i + s_i \mod 2$ **Decryption:** $x_i = d_{si}(y_i) = y_i + s_i \mod 2$ $x_i, y_i, s_i \in \{0,1\}$
- Let's encrypt and decrypt something to see whether this works...

Synchronous vs. Asynchronous Stream Cipher

- Security of stream cipher depends entirely on the key stream s_i :
 - Should be **random**, i.e., $Pr(s_i = 0) = Pr(s_i = 1) = 0.5$
 - Must be reproducible by sender and receiver
- Synchronous Stream Cipher
 - Key stream depends only on the key (and possibly an initialization vector IV)
- Asynchronous Stream Cipher
 - Key stream depends also on the ciphertext (dotted feedback enabled)
 Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Why is Modulo 2 Addition a Good Encryption Function?

- Modulo 2 addition is equivalent to XOR operation
- For perfectly random key stream s_i, each ciphertext output bit has a 50% chance to be o or 1
 - → Good statistical property for ciphertext
- Inverting XOR is simple, since it is the same XOR operation

x _i	s _i	y i
0	0	0
0	1	1
1	0	1
1	1	0

Stream Cipher: Throughput

Cipher	Key length	Mbit/s
DES	56	36.95
3DES	112	13.32
AES	128	51.19
RC4 (stream cipher)	(choosable)	211.34

Source: Zhao et al., Anatomy and Performance of SSL Processing, ISPASS 2005

- Intro to stream ciphers
- Random number generators (RNGs)
- One-Time Pad (OTP)
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream cipher

Random number generators (RNGs)

True Random Number Generators (TRNGs)

- Based on physical random processes: coin flipping, dice rolling, semiconductor noise, radioactive decay, mouse movement, clock jitter of digital circuits
- Output stream s_i should have good statistical properties: $Pr(s_i = 0) = Pr(s_i = 1) = 50\%$ (often achieved by post-processing)
- Output can neither be predicted nor reproduced

Typically used for generation of keys, nonces (used only-once values)

Chapter 2 of *Understanding Cryptography* by Christof Paar and Jan Pelzl

Pseudorandom Number Generator (PRNG)

- Generate sequences from initial seed value
- Typically, output stream has good statistical properties
- Output can be reproduced and can be predicted
 Often computed in a recursive way:

$$s_0 = seed$$

 $s_{i+1} = f(s_i, s_{i-1}, ..., s_{i-t})$

Example: rand() function in ANSI C:

$$s_0 = 12345$$

 $s_{i+1} = 1103515245s_i + 12345 \mod 2^{31}$

Most PRNGs have bad cryptographic properties!

Cryptanalyzing a Simple PRNG

Simple PRNG: Linear Congruential Generator

$$S_0 = seed$$

$$S_{i+1} = AS_i + B \mod m$$

Assume

- unknown A, B and S_o as key
- Size of A, B and S, to be 100 bits
- 300 bit of output are known, i.e. S_1 , S_2 and S_3

Solving

$$S_2 = AS_1 + B \mod m$$

$$S_3 = AS_2 + B \mod m$$

...directly reveals A and B. All S, can be computed easily!

Bad cryptographic properties due to the linearity of most PRNGs

Cryptographically Secure Pseudorandom Number Generator (CSPRNG)

- Special PRNG with additional property:
 - Output must be unpredictable

More precisely: Given n consecutive bits of output s_i , s_{i+1} , ..., s_{i+n-1} , the subsequent output bits s_{i+n} , s_{i+n+1} , ... cannot be predicted (in polynomial time).

- Needed in cryptography, in particular for stream ciphers
- Remark: There are almost no other applications that need unpredictability, whereas many, many (technical) systems need PRNGs.

- Intro to stream ciphers
- Random number generators (RNGs)
- One-Time Pad (OTP)
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream cipher

One-Time Pad (OTP)

Unconditionally secure cryptosystem:

A cryptosystem is unconditionally secure if it cannot be broken even with infinite computational resources

One-Time Pad

- A cryptosystem developed by Mauborgne that is based on Vernam's stream cipher:
- Properties: Let the plaintext, ciphertext and key consist of individual bits $x_{ii}, y_{ii}, k_{i} \in \{0,1\}.$

Encryption: $e_{k_i}(x_i) = x_i \oplus k_i$ Decryption: $d_{k_i}(y_i) = y_i \oplus k_i$

OTP is unconditionally secure if and only if the key bit k_i is only used once!

One-Time Pad (OTP)

Unconditionally secure cryptosystem:

$$y_o = x_o \oplus k_o$$

$$y_1 = x_1 \oplus k_1$$

Every equation is a linear equation with two unknowns

- \Rightarrow For every y_i , $x_i = 0$ and $x_i = 1$ are equiprobable!
- \Rightarrow This is true iff k_o , k_1 , ... are independent, and each is 0 w.prob 50% and 1 w. prob 50%, i.e., all k_i have to be generated truly randomly
- It can be shown that this system can provably not be solved.

Disadvantage: For almost all applications the OTP is **impractical** since the key must be as long as the message! (Imagine you have to encrypt a 1GByte email attachment.)

- Intro to stream ciphers
- Random number generators (RNGs)
- One-Time Pad (OTP)
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream cipher

Linear Feedback Shift Register

- Try to emulate the OTP
 - Design a random number generator
 - XOR output with plaintext stream
- LFSRs
 - Choose length of register
 - Choose number/location of "taps"

LFSR

- Using a single LFSR is bad
 - The LFSR structure can be determined given enough output
- Principle of the Shrinking generator
 - Use 2 LFSRs, A and B
 - If A=1, then output B
 - If A=o, output nothing

- Intro to stream ciphers
- Random number generators (RNGs)
- One-Time Pad (OTP)
- Linear feedback shift registers (LFSRs)
- Trivium: a modern stream cipher

A Modern Stream Cipher - Trivium

Trivium

Small in Hardware:

- Total register count: 288
- Non-linearity: 3 AND-Gates
- 7 XOR-Gates (4 with three inputs)

Initialization:

- Load 8o-bit IV into A (nonce)
- Load 8o-bit key into B
- Set c_{109} , c_{110} , c_{111} =1, all other bits o

Warm-Up:

Clock cipher 4 x 288 = 1152 times without generating output

Encryption:

XÓR-Sum of all three NLFSR outputs generates key stream s_i

Stream Ciphers: Lessons Learned

- Stream ciphers are less popular than block ciphers in most domains such as Internet security. There are exceptions, for instance, the popular stream cipher RC4.
- Stream ciphers sometimes require fewer resources, e.g., code size or chip area, for implementation than block ciphers, and they are attractive for use in constrained environments such as cell phones.
- The requirements for a cryptographically secure pseudorandom number generator are far more demanding than the requirements for pseudorandom number generators used in other applications such as testing or simulation
- The One-Time Pad is a provable secure symmetric cipher. However, it is highly impractical for most applications because the key length has to equal the message length.
- Single LFSRs make poor stream ciphers despite their good statistical properties. However, careful combinations of several LFSR can yield strong ciphers.