Report: Al-Powered Workout and Diet Planner with Exercise Counter Integration

1. Introduction

This report presents an AI-powered application designed to generate personalized workout and diet plans based on the user's goals. The system integrates two key functionalities:

- Personalized workout and diet plan generation using a pre-trained GPT-2 model.
- Exercise counting and pose analysis using OpenCV and Mediapipe, integrated within the GUI.

2. System Overview

The application consists of two main modules:

- 1. **Workout and Diet Planner**: Utilizes OpenAI's GPT-2 model to generate detailed workout and diet plans.
- 2. **Exercise Counter**: Uses Mediapipe for real-time pose estimation and counts specific exercises based on user input.

Both modules are integrated into a Tkinter-based GUI, enabling smooth user interaction.

3. Key Features

1. Personalized Workout and Diet Plan

- The user inputs their personal details such as name, age, weight, height, fitness goal, gender, and dietary preferences (vegetarian).
- Based on this input, the system generates a structured plan detailing:
 - Workout Plan: Exercise suggestions with sets and repetitions.
 - Diet Plan: Meal suggestions and portion sizes.
- The AI model generates the plan based on the goal (e.g., Muscle Gain, Weight Loss, or Maintenance).

2. Exercise Counter and Pose Estimation

• The system integrates **Mediapipe's Pose Detection** to analyze the user's body posture in real-time via webcam or video file.

- The application calculates the angles between key body parts (e.g., shoulders, elbows, knees) to determine the user's exercise technique and count repetitions of specific exercises.
- The user can select a video source: either a webcam or an uploaded video file.

3. User Progress Tracking

• User details, fitness goals, and progress (e.g., weight, height) are stored in a text file for future reference.

4. System Workflow

1. Workout and Diet Plan Generation

- The user enters details into the input fields: name, age, weight, height, gender, and goal.
- Based on the goal (Muscle Gain, Weight Loss, Maintain), the AI model generates a custom workout and diet plan.
- The system calculates the **BMI** and categorizes the user into one of four categories: Underweight, Normal weight, Overweight, or Obese.

2. Exercise Counter

- The user selects a video source (Webcam or Video File).
- The system opens a video feed (either from the webcam or an uploaded file) and uses **Mediapipe Pose Detection** to track the user's exercise movements.
- The system calculates angles between key body parts (shoulders, elbows, knees) to monitor exercise form and count repetitions.

5. Technological Details

1. GPT-2 for Workout and Diet Plan Generation

- **Library**: transformers from Hugging Face.
- Model: GPT-2 (small version).
- **Method**: The model generates text based on predefined goal-specific templates (e.g., Muscle Gain, Weight Loss).
- **Processing**: The prompt is tokenized and passed to the model for text generation using a greedy decoding method.

2. Mediapipe for Exercise Pose Estimation

- Library: mediapipe for pose estimation.
- **Method**: The user's pose is detected through a series of landmarks, and angles between joints are calculated to determine exercise form.
- **Video Source**: The user can select between a webcam or an uploaded video file to capture the exercise.

3. GUI with Tkinter

- **Library**: tkinter for building the graphical user interface.
- **Features**: Input fields, buttons, and labels for collecting user data and displaying results.
- **Buttons**: To trigger plan generation and open the exercise counter feature.

4. File Handling for Progress Tracking

• **Data Persistence**: The user's details and progress are saved in a text file (user_progress.txt).

5. Exercise Tracking Integration

- **Exercise Types**: The application can detect exercises based on arm and leg movements (e.g., squats, push-ups, curls).
- **Repetition Count**: The system counts repetitions for each exercise using real-time pose tracking.

6. Data Flow and User Interaction

1. User Input

• The user provides inputs such as personal details (e.g., age, weight), fitness goal, and dietary preferences.

2. Al Plan Generation

• The GPT-2 model processes this input and generates a structured workout and diet plan, which is displayed on the GUI.

3. Exercise Video Feed

- The user can start a webcam feed or upload a video.
- The system detects the pose and monitors the exercises, providing feedback based on the detected form and repetition count.

4. Result Display

• The generated workout and diet plan is displayed on the screen.

• If the user opts for the exercise counter, the system begins real-time video analysis and counts exercise repetitions.

5. Saving Progress

• After generating the plan, the user's details and progress are saved for future reference.

7. Potential Enhancements

1. More Advanced Exercise Detection

 The system could be enhanced by adding more advanced exercise tracking, such as detecting multiple exercise types simultaneously.

2. Diet Recommendations

• In future versions, more personalized diet plans could be integrated based on nutrient requirements and specific dietary preferences (e.g., vegan, keto).

3. Mobile Version

 The application could be adapted for mobile devices for on-the-go workout tracking.

8. Conclusion

The AI-powered workout and diet planner, integrated with an exercise counter, provides users with personalized fitness plans based on their goals. The combination of AI-driven text generation for workout plans and real-time pose estimation for exercise tracking offers a powerful tool for fitness enthusiasts. The system ensures that users receive comprehensive and actionable insights, while tracking their progress to achieve their fitness goals effectively.

9. Future Work

- Integration of advanced machine learning models for more accurate exercise tracking.
- Expansion of the diet planner to recommend personalized meals based on the user's metabolic rate.
- Development of a mobile application for easier access to the system.

10. References

- 1. Hugging Face Transformers Library: https://huggingface.co/docs/transformers/index
 - For generating workout and diet plans using the GPT-2 model.
- 2. **Mediapipe**: https://google.github.io/mediapipe/
 - For real-time pose estimation and exercise counting.
- 3. **Tkinter**: https://wiki.python.org/moin/TkInter
 - Used for building the graphical user interface (GUI).
- 4. **OpenCV**: https://opencv.org/
 - For handling video processing and integration with Mediapipe.
- 5. Singh, Amritanshu Kumar, Vedant Arvind Kumbhare, and K. Arthi. "Real-time human pose detection and recognition using mediapipe." *International conference on soft computing and signal processing*. Singapore: Springer Nature Singapore, 2021.
- 6. Li, Xiangying, et al. "Fitness action counting based on MediaPipe." 2022 15th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2022.