RD designs with multiple cutoffs or scores Northwestern Causal Inference Workshop

Gonzalo Vazquez-Bare

Department of Economics, UC Santa Barbara

August 1, 2024

Overview

- Multiple cutoffs:
 - Cutoffs change across regions, time periods, etc
 - ▶ All units receive the same treatment when they exceed their cutoff
- Cumulative cutoffs:
 - Treatment is multivalued
 - lacktriangle Different dosage of treatment depending on value of X_i
 - ► E.g. $D_i = \mathbb{1}(X_i \le c_1) + 2\mathbb{1}(c_1 < X_i \le c_2)$
- Multiple scores:
 - Treatment assigned based on multiple running variables
 - ▶ E.g. scholarship if both math and language scores above a cutoff

RD with multiple cutoffs: some examples

Table: Progresa (Mexico)

Region	Cutoff	
27	691.0	
6	751.0	
5	751.5	
4	753.0	
3	759.4	
28	853.3	
28	853.3	

Table: P-900 (Chile)

Region	Cutoff
7	42.4
6,8	43.4
13	46.4
9	47.4
2,5,10	49.4
1,3,4	51.4

RD with multiple cutoffs

- Common empirical approach: normalizing-and-pooling
 - $ightharpoonup C_i \in \mathcal{C}$ (random) cutoff faced by unit i
 - ▶ Discrete cutoffs: $C = \{c_0, c_1, ..., c_J\}$
 - lacktriangledown Re-centered running variable: $\tilde{X}_i = X_i C_i$
 - Pooled estimand:

$$\tau^p = \lim_{x \downarrow 0} \mathbb{E}[Y_i | \tilde{X}_i = x] - \lim_{x \uparrow 0} \mathbb{E}[Y_i | \tilde{X}_i = x]$$

• What parameter is this approach identifying?

Identification under the pooling approach

$$\tau^p = \lim_{x \downarrow 0} \mathbb{E}[Y_i | \tilde{X}_i = x] - \lim_{x \uparrow 0} \mathbb{E}[Y_i | \tilde{X}_i = x]$$

Identification under pooling (CKTV, 2016)

If the CEFs and $f_{X|C}(x|c)$ are continuous at the cutoffs,

$$\tau^p = \sum_{c \in \mathcal{C}} \mathbb{E}[Y_i(1) - Y_i(0)|X_i = c, C_i = c]\omega(c)$$

where

$$\omega(c) = \frac{f_{X|C}(c|c)\mathbb{P}[C_i = c]}{\sum_{c \in \mathcal{C}} f_{X|C}(c|c)\mathbb{P}[C_i = c]}$$

Empirical example: Progresa

Table: Pooled and separate RD estimates

	Cutoff	Estimate	s.e.	Obs.	Weights
Pooled	0	24.66	7.66	734	-
Region 3	759.4	31.64	12.91	119	.16
Region 4	753.0	15.12	17.05	270	.21
Region 5	751.5	24.42	9.54	474	.52
Region 6	751.0	27.98	24.65	63	.11

Exploiting multiple cutoffs

- Two drawbacks of the pooling approach:
 - policy relevance: combines TEs for different populations
 - discards variation that can identify parameters of interest
- What are the parameters of interest in this context?
- Potential CEFs:

$$\mu_d(x,c) = \mathbb{E}[Y_i(d)|X_i = x, C_i = c], \qquad d \in \{0,1\}$$

(Conditional) ATE:

$$\tau(x,c) = \mathbb{E}[Y_i(1) - Y_i(0)|X_i = x, C_i = c] = \mu_1(x,c) - \mu_0(x,c)$$

Empirical illustration: the ACCES program in Colombia

- Cattaneo, Keele, Titiunik and Vazquez-Bare (JASA, forthcoming)
 - ► Reanalysis of Melguizo, Sanchez and Velasco (2016)
 - Subsidized loan program for post-secondary education
- Eligibility discontinuity: SABER 11 exam
- Eligibility cutoff varies by year and department (129 cutoffs)
- We select two cutoffs with largest sample sizes
- Nonparametrically estimate effects between the two cutoffs

Effect of ACCES: enrollment in higher ed

Effect of ACCES: enrollment in higher ed

Assessing the parallel trends assumption

RD with cumulative cutoffs: example

Brollo et al (2013, AER): The Political Resource Curse

- Effect of federal transfers on corruption in Brazil
- Federal transfers jump at population thresholds

Table: Fundo de Participação dos Municipios (Brazil)

Population	Transfer
Below 10,189	0.6
10,189-13,584	8.0
13,585-16,980	1
16,981,23772	1.2
:	:

RD with cumulative cutoffs: example

RD with cumulative cutoffs: parameters

- Multivalued treatment $D_i \in \{d_1, d_2, \dots, d_J\}$
- Effect of switching from one dosage to the next one:

$$\tau_j = \mathbb{E}[Y_i(d_j) - Y_i(d_{j-1})|X_i = c_j]$$

• Under continuity assumptions,

$$\tau_j = \lim_{x \downarrow c_j} \mathbb{E}[Y_i | X_i = x] - \lim_{x \uparrow c_j} \mathbb{E}[Y_i | X_i = x]$$

RD with cumulative cutoffs: estimation and inference

- Can use robust bias-corrected techniques cutoff by cutoff
- Unit i is "control" for some units, "treated" for others
- Bandwidth selection:
 - Ensure bandwidths are non-overlapping or
 - ▶ Joint estimation accounting for overlap

RD with multiple scores

- Treatment assigned based on several running variables
- Bivariate score: $\mathbf{X}_i = (X_{1i}, X_{2i})$
- Suppose treatment is assigned if both scores exceed a cutoff:

$$D_i = \mathbb{1}(X_{1i} \ge b_1)\mathbb{1}(X_{2i} \ge b_2)$$

Multidimensional RD parameter:

$$\tau(\mathbf{b}) = \mathbb{E}[Y_i(1) - Y_i(0) | \mathbf{X}_i = \mathbf{b}], \quad \mathbf{b} \in \mathcal{B}$$

lacktriangle ATE at each point in the boundary set ${\cal B}$

RD with multiple scores: example

RD with multiple scores: identification

• Under continuity assumptions,

$$\tau(\mathbf{b}) = \lim_{\substack{d(\mathbf{x}, \mathbf{b}) \to 0 \\ \mathbf{x} \in \mathcal{B}_t}} \mathbb{E}[Y_i | \mathbf{X}_i = \mathbf{x}] - \lim_{\substack{d(\mathbf{x}, \mathbf{b}) \to 0 \\ \mathbf{x} \in \mathcal{B}_c}} \mathbb{E}[Y_i | \mathbf{X}_i = \mathbf{x}]$$

- $ightharpoonup \mathcal{B}_t = \mathsf{treated} \; \mathsf{region}$
- \triangleright $\mathcal{B}_c = \text{control region}$
- Need to define a notion of distance $d(\mathbf{x}, \mathbf{b})$

RD with multiple scores: estimation

- Estimating a whole curve of TE may not be feasible
- Alternative approach: pooling
 - ▶ Define distance measure $d(\cdot, \cdot)$
 - Normalize running variable as distance to closest boundary point
 - lacktriangle Run RD on (unidimensional) normalized running variable $ilde{X}_i$

RD with multiple scores: estimation

- Intermediate approach:
 - Define a set of boundary points of interest
 - ► E.g. {(80,60), (100,60), (80,80)}
 - ▶ Define a distance measure $d(\cdot, \cdot)$
 - Estimate a pooled RD at each of the specified points
- Helps explore heterogeneity in TEs across boundary points

RD with multiple scores: geographic RD

- Common case of multi-score RD:
 - ▶ E.g. treatment and control areas are adjacent counties, municipalities
- \bullet Set ${\cal B}$ is a geographic boundary separating treated and control areas
- ullet Score $\mathbf{X}_i = \mathsf{geographical}$ coordinates (latitude and longitude)

Geographic RD

Geographic RD

Geographic RD: some concerns

- Compound treatments
 - Many policies changing simultaneously at geographic boundary
- Running variable manipulation
 - Units may be able to move from treated to control area or vice versa
- Spillovers / interference
 - Treatment can indirectly affect units in untreated areas
- See Keele and Titiunik (2015, PA)