Lecture 8: 29 April, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

Decision trees for regression

- How do we use decision trees for regression?
- Partition the input into intervals
- For each interval, predict mean value of output, instead of majority class
- Regression tree

Decision trees for regression

- Regression tree for noisy quadratic centered around $x_1 = 0.5$
- For each node, the output is the mean y value for the current set of points
- Instead of impurity, use mean squared error (MSE) as cost function
- Choose a split that minimizes MSE

Regression trees

Approximation using regression tree

Regression trees

- Extend the regression tree one more level to get a finer approximation
- Set a threshold on MSE to decide when to stop
- Classification and Regression Trees (CART)
 - Combined algorithm for both use cases
- Programming libraries typically provide CART implementation

Overfitting

- Overfitting: model too specific to training data, does not generalize well
- Regression use regularization to penalize model complexity
- What about decision trees?
- Deep, complex trees ask too many questions
- Prefer shallow, simple trees

Tree pruning

- Remove leaves to improve generalization
- Top-down pruning
 - Fix a maximum depth when building the tree
 - How to decide the depth in advance?
- Bottom-up pruning
 - Build the full tree
 - Remove a leaf if the reduced tree generalizes better
 - How do we measure this?

Tree pruning

Overfitted tree

Pruned tree

Madhavan Mukund Lecture 8: 29 April, 2021 DMML Apr-Jul 2021

Bottom up tree pruning

- Build the full tree, remove leaf if the reduced tree generalizes better
- How do we measure this?
- Check performance on a test set
- Use sampling theory [Quinlan]
- Given n coin tosses with h heads, estimate probability of heads as h/n
 - **E**stimate comes with a confidence interval: $h/n \pm \delta$
 - As n increases, δ reduces: 7 heads out of 10 vs 70 out of 100 vs 700 out of 1000
- Impure node, majority prediction, compute confidence interval
- Pruning leaves creates a larger impure sample one level above
- Does the confidence interval decrease (improve)?

Example: Predict party from voting pattern [Quinlan]

- Predict party affiliation of US legislators based on voting pattern
 - Read the tree from left to right
- After pruning, drastically simplified tree
- Quinlan's comment on his use of sampling theory for post-pruning

Now, this description does violence to statistical notions of sampling and confidence limits, so the reasoning should be taken with a large grain of salt. Like many heuristics with questionable underpinnings, however, the estimates it produces seem frequently to yield acceptable results.

```
physician fee freeze = n:
    adoption of the budget resolution = y: democrat (151)
    adoption of the budget resolution = u: democrat (1)
    adoption of the budget resolution = n:
        education spending = n: democrat (6)
        education spending = v: democrat (9)
        education spending = u: republican (1)
physician fee freeze = y:
    synfuels corporation cutback = n: republican (97/3)
    synfuels corporation cutback = u: republican (4)
    synfuels corporation cutback == v:
        duty free exports = y: democrat (2)
        duty free exports = u: republican (1)
        duty free exports == n:
            education spending = n: democrat (5/2)
            education spending = y: republican (13/2)
            education spending = u: democrat (1)
physician fee freeze = u:
    water project cost sharing = n: democrat (0)
    water project cost sharing = y: democrat (4)
    water project cost sharing = u:
        mx missile = n: republican (0)
        mx missile = y: democrat (3/1)
        mx missile = u: republican (2)
```

Bayesian classifiers

- As before
 - Attributes $\{A_1, A_2, \dots, A_k\}$ and
 - Classes $C = \{c_1, c_2, \dots c_\ell\}$
- Each class c; defines a probabilistic model for attributes
 - $Pr(A_1 = a_1, ..., A_k = a_k \mid C = c_i)$
- Given a data item $d = (a_1, a_2, ..., a_k)$, identify the best class c for d
- Maximize $Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$

- To use probabilities, need to describe how data is randomly generated
 - Generative model
- Typically, assume a random instance is created as follows
 - Choose a class c_j with probability $Pr(c_j)$
 - Choose attributes a_1, \ldots, a_k with probability $Pr(a_1, \ldots, a_k \mid c_j)$
- Generative model has associated parameters $\theta = (\theta_1, \dots, \theta_m)$
 - Each class probability $Pr(c_i)$ is a parameter
 - Each conditional probability $Pr(a_1, ..., a_k \mid c_j)$ is a parameter
- We need to estimate these parameters

Maximum Likelihood Estimators

- lacktriangle Our goal is to estimate parameters (probabilities) $heta=(heta_1,\ldots, heta_m)$
- Law of large numbers allows us to estimate probabilities by counting frequencies
- **Example:** Tossing a biased coin, single parameter $\theta = Pr(\text{heads})$
 - N coin tosses, H heads and T tails
 - Why is $\hat{\theta} = H/N$ the best estimate?
- Likelihood
 - Actual coin toss sequence is $\tau = t_1 t_2 \dots t_N$
 - Given an estimate of θ , compute $Pr(\tau \mid \theta)$ likelihood $L(\theta)$
- $\hat{\theta} = H/N$ maximizes this likelihood $\underset{\theta}{\operatorname{arg max}} L(\theta) = \hat{\theta} = H/N$
 - Maximum Likelihood Estimator (MLE)

Bayesian classification

- Maximize $Pr(C = c_i | A_1 = a_1, ..., A_k = a_k)$
- By Bayes' rule,

$$Pr(C = c_i \mid A_1 = a_1, \dots, A_k = a_k)$$

$$= \frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{Pr(A_1 = a_1, \dots, A_k = a_k)}$$

$$= \frac{Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)}{\sum_{j=1}^{\ell} Pr(A_1 = a_1, \dots, A_k = a_k \mid C = c_j) \cdot Pr(C = c_j)}$$

■ Denominator is the same for all c_i , so sufficient to maximize

$$Pr(A_1 = a_1, \ldots, A_k = a_k \mid C = c_i) \cdot Pr(C = c_i)$$

Example

■ To classify A = g, B = q

$$Pr(C = t) = 5/10 = 1/2$$

$$Pr(A = g, B = q \mid C = t) = 2/5$$

■
$$Pr(A = g, B = q \mid C = t) \cdot Pr(C = t) = 1/5$$

$$Pr(C = f) = 5/10 = 1/2$$

$$Pr(A = g, B = q \mid C = f) = 1/5$$

■
$$Pr(A = g, B = q \mid C = f) \cdot Pr(C = f) = 1/10$$

■ Hence, predict C = t

Α	В	C
m	b	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	S	f
h	Ь	f
h	q	f
m	b	f

Example . . .

- What if we want to classify A = m, B = q?
- $Pr(A = m, B = q \mid C = t) = 0$
- Also $Pr(A = m, B = q \mid C = f) = 0!$

A	В	С
m	Ь	t
m	S	t
g	q	t
h	5	t
g	q	t
g	q	f
g	5	f
h	Ь	f
h	q	f
m	b	f