Programme de colle n°10

Équations polynomiales

- 1) Racines n-ièmes de l'unité.
- 2) Résolution de $z^n = a$ quand a est sous forme polaire.
- 3) Résolution de $\delta^2 = a$ quand a est sous la forme algébrique.
- 4) Résolution d'équations : $az^2 + bz + c = 0$ avec $a, b, c \in \mathbb{C}$.

Primitives et équations différentielles

- 1) Définition et formules pour les primitives usuelles.
- 2) Primitives de $x \mapsto e^{ax} \cos bx$ et $x \mapsto \frac{1}{ax^2 + bx + c}$.
- 3) Calcul d'intégrales : intégration par parties, changement de variable (de classe \mathcal{C}^1).

Questions de cours

- 1) Déterminer les racines cubiques de 2 + 2i.
- 2) Déterminer les racines cubiques de $\frac{\sqrt{3}+i}{1+i}$.
- 3) Résoudre l'équation $z^2 iz i 1 = 0$ dans \mathbb{C} .
- 4) Résoudre l'équation $z^2 + (2+3i)z 5 + 5i = 0$ dans \mathbb{C} .
- 5) Déterminer toutes les primitives de $x\mapsto \frac{1}{x}$ sur \mathbb{R}^* puis une primitive sur \mathbb{R}^*_+ des fonctions définies par $f(x)=\frac{\ln x}{x}$ et $g(x)=\frac{1}{x\ln x}$.
- 6) Déterminer une primitive de $f: x \mapsto \frac{1}{(x-2)(x+5)}$. On précisera le domaine de validité.
- 7) Déterminer une primitive de $f \colon x \mapsto \frac{1}{x^2 4x + 10}$. On précisera le domaine de validité.
- 8) Calculer l'intégrale suivante : $I = \int_0^1 te^t dt$.
- 9) Calculer $I = \int_0^1 \frac{t}{\sqrt{2t+1}} dt$ en posant x = 2t+1.