MATH 51 FINAL EXAM (AUTUMN 2001)

1. Compute the following.

(a)
$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}^{-1}$$

- (b) The angle between $\begin{bmatrix} -1\\4\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\-2\\1 \end{bmatrix}$.
- (c) The area of the triangle with vertices (0,0,0), (-1,4,1) and (2,-2,1).

2. Let

$$A = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 4 \\ 7 & 18 & 11 & 22 \end{bmatrix}.$$

- (a) For which vectors $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ does the equation $A\mathbf{x} = \mathbf{b}$ have a solution? Express your answer as one or more equations of the form $?b_1 + ?b_2 + ?b_3 = ?$.
- (b) Find a basis for the null space of A.
- (c) Find a basis for the column space of A.
- (d) What is the rank of A?

3. (a) Let

$$\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{bmatrix} \quad \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \\ 2 \end{bmatrix} \quad \mathbf{v}_2 = \begin{bmatrix} 3 \\ 5 \\ 2 \\ 1 \\ 4 \end{bmatrix} \quad \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 4 \\ 3 \\ 4 \end{bmatrix}.$$

Express **b** as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .

(b) Assume
$$A\begin{bmatrix}1\\2\\3\\4\end{bmatrix}=\begin{bmatrix}2\\0\\-1\end{bmatrix}$$
 and $\operatorname{rref}(A)=\begin{bmatrix}1&0&0&5\\0&0&1&-7\\0&0&0&0\end{bmatrix}$. Find all solutions of $A\mathbf{x}=\begin{bmatrix}2\\0\\-1\end{bmatrix}$.

4. (a) Suppose \mathbf{v} is a unit vector in \mathbf{R}^n . Show that, for any vector $\mathbf{w} \in \mathbf{R}^n$, the vector

1

$$\mathbf{w} - (\mathbf{w} \cdot \mathbf{v})\mathbf{v}$$

is orthogonal to ${\bf v}.$

- (b) Let $\mathbf{T}: \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation and let $V = \{\mathbf{x} \in \mathbf{R}^n \mid \mathbf{T}(\mathbf{x}) = 5\mathbf{x}\}$. Show that V is a linear subspace of \mathbf{R}^n .
- 5. (a) Suppose $\mathbf{T}: \mathbf{R}^3 \to \mathbf{R}^5$ is a linear transformation such that

$$\mathbf{T}(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 2 \\ 5 \\ 3 \\ 4 \end{bmatrix} \qquad \mathbf{T}(\mathbf{e}_1 + \mathbf{e}_2) = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 5 \\ 3 \end{bmatrix} \qquad \mathbf{T}(\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3) = \begin{bmatrix} 5 \\ 3 \\ 2 \\ 4 \\ 1 \end{bmatrix}.$$

Find the matrix A such that $\mathbf{T}(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbf{R}^3$.

(b) The matrix for rotation by 45° about the x-axis in \mathbb{R}^3 is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

and the matrix for rotation by 45° about the z-axis in \mathbb{R}^3 is

$$B = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

(You need not verify these results.) Let \mathbf{T} be the linear transformation obtained by first rotating by 45° about the x-axis and then rotating by 45° about the z-axis. Find the matrix for \mathbf{T} .

- 6. Consider the ellipse $2x^2 + 2xy + y^2 = 1$, and let $\mathbf{T} : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation with matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}$.
 - (a) Show that points $(u, v) = \mathbf{T}(x, y)$ in the image of the ellipse under \mathbf{T} lie on the circle $u^2 + v^2 = 5$.
 - (b) Use the result of part (a) to find the area of the ellipse.
 - (c) Parametrize the ellipse. Hint: Parametrize the circle first and use A^{-1} .
- 7. In each part determine which figure below represents the level curves of the given function.

(a)
$$f(x,y) = x^2 + 3xy + y^2$$

(b)
$$f(x,y) = e^{x+y}$$

(c)
$$f(x,y) = \frac{y}{4x^2 + 1}$$

(d)
$$f(x,y) = 4x^2 + 5xy + 4y^2$$

(e)
$$f(x,y) = x - y$$

- 8. Answer each question True or False. No explanation is necessary. Each correct answer is worth 1 point.
 - (a) There exists a number c for which the function $g(x,y) = \begin{cases} \frac{xy}{x^2+y^2} & (x,y) \neq (0,0) \\ c & (x,y) = (0,0) \end{cases}$ is continuous at (0,0).
 - (b) There exists a number c for which the function $g(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ c & (x,y) = (0,0) \end{cases}$ is continuous at (0,0).
 - (c) On the domain $D = \{(x,y) \mid x^2 + y^2 \le 1\}$ the function $f(x,y) = e^{x^2 2xy} \cos(xy)$ attains a maximum value.

- (d) On the domain $D = \{(x, y) \mid x^2 + y^2 < 1\}$ the function f(x, y) = x + y attains a maximum value.
- (e) On the domain $D = \{(x,y) \mid x^2 + y^2 < 1\}$ the function f(x,y) = 5 attains a maximum value.
- (f) Suppose f(x,y) is differentiable and $\nabla f(1,2) = (3,-7)$. Then there exists a direction **u** in which $D_{\mathbf{u}}f(1,2) = 8$.
- (g) If f is differentiable at **a**, then $D_{-\mathbf{u}}f(\mathbf{a}) = -D_{\mathbf{u}}f(\mathbf{a})$ for every unit vector **u**.
- (h) If f(x,y) has a local minimum at (0,0) along every line through (0,0), then f has a local minimum at (0,0).
- (i) There exists a function f(x,y) such that $\nabla f(x,y) = (2xy,x^2)$.
- (j) There exists a function f(x,y) such that $\nabla f(x,y) = (x^2,2xy)$.
- 9. Find the maximum and minimum values of $f(x,y) = x^3 + 3x^2 9x + y^2 2y$ on the square domain $D = \{(x,y) \mid 0 \le x \le 2, 0 \le y \le 2\}$ and all points at which they are attained.
- 10. Let $\mathbf{f}: \mathbf{R}^2 \to \mathbf{R}^3$ be given by $\mathbf{f}(s,t) = (t^2, st, e^s)$ and suppose $\mathbf{g}: \mathbf{R}^3 \to \mathbf{R}^2$ is differentiable with Jacobian matrix

$$J\mathbf{g}(x,y,z) = \begin{bmatrix} x & y & z \\ z & y & x \end{bmatrix}.$$

- (a) Compute $J\mathbf{f}(1,2)$.
- (b) Compute $J(\mathbf{g} \circ \mathbf{f})(1,2)$.
- 11. Consider the surface defined by the equation

$$x^3 + xyz + z^3 = 3.$$

- (a) Find the equation of the tangent plane to the surface at the point (1, 1, 1).
- (b) Regarding z=z(x,y) as a function of x and y near the point (1,1,1), compute $\frac{\partial z}{\partial x}(1,1)$.
- 12. Let $f: \mathbf{R}^3 \to \mathbf{R}$ be a differentiable function and suppose that

$$\frac{\partial f}{\partial x}(x_0, y_0, z_0) = 4 \qquad \frac{\partial f}{\partial y}(x_0, y_0, z_0) = 5 \qquad \frac{\partial f}{\partial z}(x_0, y_0, z_0) = 8$$

- (a) Let **u** be the unit vector $\begin{bmatrix} 1/3\\2/3\\2/3 \end{bmatrix}$. Compute $D_{\mathbf{u}}f(x_0,y_0,z_0)$.
- (b) Find a vector which points in the direction in which f is decreasing most rapidly at (x_0, y_0, z_0) .

- (c) Suppose we know that $f(x_0, y_0, z_0) = 5$. Determine the gradient of the function $g(x, y, z) = (f(x, y, z))^2$ at (x_0, y_0, z_0) .
- 13. Let $f(x, y) = x^2 x \ln y$.
 - (a) Find Jf(2,1).
 - (b) Find the linear approximation of f at (2,1) and use it to approximate f(1.99, 1.02).
 - (c) Find Hf(2,1).
 - (d) Find the second degree Taylor Polynomial of f at (2,1).
 - (e) Near (2,1) does the graph of f lie above its tangent plane, below its tangent plane, or neither? Explain.
- 14. (a) Find all the critical points of the function $f(x,y) = 12xy 2x^2 9y^4$.
 - (b) At each critical point, determine whether f has a local maximum, local minimum, or saddle point.
- 15. (a) Find the point on the ellipse defined by

$$x^2 + xy + y^2 = 7$$

at which the function f(x,y) = 4x + 5y is maximized.

(b) Find the point on the ellipse defined by

$$2x^2 + xy + 2y^2 = 30$$

which is closest to the line x = 20.