Roteiro - Unidade I

- Introdução às redes de computadores
 - Modelos de camadas OSI e TCP/IP
- Interligação de redes
 - Comutação de circuitos e de pacotes
 - Meios físicos de transmissão
 - Equipamentos e topologias de rede
- Comunicação de dados
 - Modelos de comunicação
 - Controle de acesso ao meio de comunicação
 - Técnicas de correção e detecção de erros

Comutação de circuitos

- Uma conexão física é estabelecida entre dois dispositivos
 - Recursos fim a fim são reservados para a chamada

- Quando a conexão se estabelece, os dados podem ser trocados livremente nos dois sentidos (bidirecional)
- A conexão sempre utiliza o mesmo caminho (o "circuito")
- Os dados sempre são recebidos na ordem de envio
- A largura de banda é garantida
- Utilizada no sistema telefônico tradicional (analógico)

Comutação de circuitos

- Na comutação de circuitos moderna são utilizados dispositivos eletrônicos para estabelecer o circuito
 - Circuitos podem ser compartilhados por meio de multiplexação (divisão por frequência ou tempo)
 - Recursos da rede (ex: largura de banda) são divididos em segmentos
 - Segmentos alocados às chamadas
 - Segmento do circuito fica ocioso se não for utilizado pela chamada
 - Recursos dedicados: sem compartilhamento

Comutação de circuitos

• Exemplos de comutadoras de circuitos

Comutação de circuitos tradicional (manual)

Comutação de circuitos moderna (automática)

Comutação de pacotes

- Os dados são divididos em pedaços discretos, denominados pacotes
- O caminho que cada pacote seguirá até o destino não é fixo
 - Os roteadores definem o melhor caminho:
 - Caminho mais curto
 - Caminho menos congestionado, eventualmente mais distante
- Os pacotes podem chegar fora de ordem ao destino
- Cada pacote utiliza toda a largura de banda do canal/enlace
- Utilizada por diversas arquiteturas de redes de computadores atuais
 - Utilizada para otimizar o uso da largura de banda
 - Minimizar a latência
 - Aumentar a robustez da comunicação por meio de redundância

Comutação de pacotes

- Recursos são usados quando necessário
- Disputa por recursos:
 - A demanda total pelos recursos pode superar a quantidade disponível
 - Congestionamento: pacotes são enfileirados, esperam para usar o enlace
 - Armazena e encaminha (*store and forward*): pacotes se deslocam uma etapa por vez
 - Transmite num enlace
 - Espera a vez no próximo

Comutação de pacotes

- Dois tipos de comutação de pacotes
 - Circuito virtual
 - Os pacotes são encaminhados de acordo com o identificador do circuito virtual
 - É composto de um caminho único (não dedicado)
 - Pacote é armazenado nó-a-nó
 - Mantém informações do estado da conexão
 - Caso haja uma falha em um enlace o circuito virtual se desfaz

Datagrama

- Os pacotes são encaminhados de acordo com o endereço de destino
- Cada pacote é tratado de forma independente
- Pacotes carregam o endereço de destino
- Pacotes podem chegar fora de ordem
- Não mantém informações de estado
- Geralmente não orientado a conexão

Comutação de circuitos v.s. Comutação de pacotes

	Comutação de circuitos	Comutação de pacotes
Estabelecimento do circuito	Obrigatório	Sem necessidade
Caminho físico dedicado	Sim	Não
Cada pacote segue a mesma rota	Sim	Não
Os pacotes chegam na mesma ordem	Sim	Não
A falha de um elemento comutador impossibilita a comunicação	Sim	Não
Largura de banda disponível	Fixo	Dinâmico
Desperdício de recursos da rede	Sim	Não
Atrasos devido a congestionamento (filas)	Não	Sim

Roteiro - Unidade I

- Introdução às redes de computadores
 - Modelos de camadas OSI e TCP/IP
- Interligação de redes
 - Comutação de circuitos e de pacotes
 - Meios físicos de transmissão
 - Equipamentos e topologias de rede
- Comunicação de dados
 - Modelos de comunicação
 - Controle de acesso ao meio de comunicação
 - Técnicas de correção e detecção de erros

- O que é um meio físico?
 - Um <u>meio físico</u> é qualquer meio <u>capaz de transportar informações</u> (sinais eletromagnéticos) de um emissor para um receptor
 - Ex: Cabos coaxiais, fibras ópticas, água, ar, luz, entre outros...
- Objetivo da camada física:
 - Transmitir fluxos de bits de um dispositivo para outro por intermédio de um meio físico
 - Realizar a correta modulação de sinal
- Os meios físicos podem ser:
 - Guiados (com fios / wired)
 - Metálicos ou ópticos
 - Não guiados (sem fios / wireless)

- Mas, no nível físico, como é que os bits "passam" de um lado para o outro?
 - Canal de comunicação
 - Meio de transmissão usado para enviar/receber dados
 - Guiado (com fio) ou não-guiado (sem fio)
 - Transmissor/Receptor
 - Dispositivos que enviam/recebem dados pelo canal de comunicação
 - Sinal
 - Qualquer dado transmitido pela rede
 - Ruído
 - Qualquer interferência que modifique o valor do sinal original

- Existem dois tipos de sinais de dados, representados como:
 - Analógicos
 - Sinais eletromagnéticos contínuos no tempo e expressados como uma oscilação na frequência (senóide)
 - Ex: voz, dados, vídeo, imagem
 - Digitais
 - Sequência discreta de símbolos produzida por computadores, geralmente em formato binário

- A transmissão de dados em um canal de comunicação pode ocorrer na mesma forma em que foi gerado o sinal ou convertida (modulada) de um tipo de sinal para outro tipo
 - Nas redes de computadores é comum encontrar transmissões puramente digitais ou convertidas A/D ou D/A
 - Utilizam-se modems para converter sinais digitais em sinais analógicos (D/A)
 - Utilizam-se codecs para converter sinais analógicos em sinais digitais (A/D) -> para transmissão em canais digitais

- Se sinais digitais forem transmitidos em meios analógicos ...
 - As ondas quadradas seriam distorcidas pelo meio analógico
 - O receptor seria incapaz de interpretar corretamente estes sinais
 - Para resolver este problema, os sinais digitais devem ser convertidos em sinais analógicos!

- Para converter sinais digitais em sinais analógicos (e vice-versa) se faz necessário recorrer à modulação de sinal, que pode ser:
 - Em amplitude
 - Em frequência
 - Em fase

• Exemplo de sinais digitais modulados:

Sinal digital

Modulação em amplitude (ASK - Amplitude Shift Keying)

Modulação em fase (*PSK - Phase Shift Keying*)

Modulação em frequência (FSK - Frequency Shift Keying)

- Vantagens da transmissão digital
 - O sinal é exato (0 ou 1), facilitando a detecção e correção de erros
 - Mais eficiente, pois permite maximizar a taxa de transmissão de bits e consequentemente enviar mais dados
 - Mais seguro, pois permite a encriptação dos dados a serem transmitidos
 - Permite fácil integração de dados de voz, vídeo e dados em um mesmo canal de comunicação (digital)

• Exemplo de transmissão digital em canais analógicos e digitais

- Nas transmissões digitais, os bits são codificados
 - Pulsos discretos de voltagens
 - Cada pulso é um elemento de sinal
 - Os dados binários são codificados nestes elementos
- Os esquemas de codificação mais utilizados em redes de computadores são:
 - NRZ
 - NRZI
 - Manchester

- Non-Return-to-Zero (NRZ)
 - Esquema mais simples de codificação de bits
 - Sinal ALTO codifica um bit 1
 - Sinal BAIXO codifica um bit 0

- Problema?
 - Dificuldade de distinguir longas sequências de bits 1 ou 0 consecutivos

- Non-Return-to-Zero Inverted (NRZI)
 - Método que tenta suprir o problema do NRZ
 - Uma transição de sinal codifica um bit 1
 - Sem mudança no sinal codifica um bit 0

Resolve o problema de bits 1 consecutivos, mas não resolve o de bits 0 consecutivos

Manchester

- Todo bit é representado por uma transição
 - Uma transição de subida representa um bit 0
 - Uma transição de descida representa um bit 1

Problema:

- Maior largura de banda comparado aos outros métodos para transmitir a mesma taxa de dados
- Eficiência de 50% comparada aos métodos anteriores em relação a utilização do canal

Comparação entre os esquemas

Meios físicos de transmissão

Meios guiados

- Cabos de par trançado
- Cabos coaxiais
- Cabos de fibra óptica

Meios não guiados

- Radiodifusão
- Micro-ondas
- Infravermelho

Meios Guiados

- Nos meios guiados as ondas eletromagnéticas são "guiadas" através de um meio sólido
- Meios físicos guiados mais comuns:
 - Par trançado: metálico (a)
 - Cabo coaxial: metálico (b)
 - Fibra Óptica: óptico (c)

Meios Guiados - Par trançado (Twisted Pair)

Dois condutores de cobre isolados enrolados em espiral

- Diminuição do ruído por interferência eletromagnética
- Mantém constantes as propriedades elétricas do meio ao longo de todo o seu comprimento
- Cabos de par trançado
 - Congregam em si vários pares trançados

- Os usos mais comuns são:
 - No sistema telefônico convencional
 - Central de telefonia até a casa do cliente
 - Redes locais (LANs)
 - Distâncias típicas de até 100 metros (necessita de repetidores para distâncias maiores)
- Baixo custo de instalação
- Suporta taxas de transmissão de 10 Gbps (dependendo do cabo)

Meios Guiados - Par trançado (Twisted Pair)

- Utilizado em conexões ponto-a-ponto
 - Conector RJ-45
 - Padrão EIA/TIA 568
 - Cabos straight-through ("normal")
 - Utilizado para interligar dispositivos finais aos dispositivos de redes
 - Ex: ligar PC ao switch, switch ao roteador, ...
 - Cabos crossover
 - Utilizado para interligar dois dispostivos diretamente
 - Não necessita de um dispositivo intermediário
 - Ex: ligar PC a PC, switch a switch, roteador a roteador, ...
 - Muitos dispositivos atualmente implementam o Auto MDI-X (Medium Dependent Interface)
 - Automaticamente detectam o tipo de configuração necessária do cabo, sem exigir que seja criado um cabo específico para cada ligação

Meios Guiados - Par trançado (Twisted Pair)

Vantagens

- Simplicidade
- Flexibilidade
- Baixo custo
- Durabilidade

Desvantagens

- Necessidade de repetidores para distâncias superiors a 100 metros
- Suscetível a interferências externas (cabos sem blindagem / UTP)
- Problemas de atenuação de sinal

Meios Guiados - Cabo Coaxial

- Constituído por diversas camadas concêntricas de condutores e isolantes
 - Formado por dois condutores, um interno e o outro disposto na forma de malha envolvendo o condutor central
 - Coaxial refere-se ao fato de o cabo ser feito de vários revestimentos compartilhando o mesmo eixo central (co-eixo)
- Foi um dos primeiros meios físicos utilizados para as redes locais de computadores
- Aplicações
 - Distribuição de televisão (TV a cabo)
 - Centenas de canais a algumas dezenas de Km
 - Comunicação telefônica de longa distância
 - Redes locais de computadores
 - Topologia em barramento
 - (Em desuso)

Meios Guiados - Cabo Coaxial

- As camadas deste cabo possuem as seguintes funções:
 - Condutor central: utilizado para transmitir as informações pelo cabo coaxial
 - Isolação (dielétrico): separador entre o condutor interno e o condutor externo
 - Blindagem (condutor externo em malha): utilizado como escudo de proteção para o condutor interno, formando uma gaiola de faraday.
 - Também tem função relevante na condução do sinal pois da mesma forma que no condutor interno, temos passagem de corrente elétrica nesta blindagem
 - Proteção (capa): feita de plástico, borracha ou PVC, protege o interior do cabo coaxial

Meios Guiados - Cabo Coaxial

Vantagens

- Melhor blindagem do que o par trançado
- Atinge maiores distâncias e velocidades mais altas
- Mais barato que os cabos de par trançado blindados
- Melhor imunidade a ruídos e contra a atenuação do sinal que o par trançado UTP

Desvantagens

- Mais caro que o par trançado sem blindagem
- Os conectores também são mais caros
- Por não ser flexível o suficiente, dificulta instalação e pode se quebrar com maior facilmente

- Os dados trafegam na forma de ondas de luz
- A fibra é composta por um ou mais filamentos de sílica ou plástico por onde é realizada a transmissão de uma ou várias ondas de luz
 - O sinal é codificado dentro do domínio da frequência do infravermelho (1012 a 1014 Hz)

- Princípio de funcionamento
 - Funciona de acordo com o príncipio físico da reflexão total

- A transmissão de luz é unidirecional (simplex), por isso, normalmente são utilizadas duas fibras
 - Transmissão (Tx)
 - Recepção (Rx)
- Entretanto, com o uso da multiplexação por divisão de comprimento de onda WDM (Wavelength Division Multiplexing), é possível usar uma única fibra para comunicação bidirecional (full-duplex)
 - Neste caso s\u00e3o utilizados feixes de luz com diferentes comprimentos de onda, isto \u00e9, diferentes cores

- Estrutura dos cabos de fibra óptica
 - Núcleo
 - Revestimento interno
 - Cobertura
 - Revestimento externo

• Tipos de fibra óptica

- Multimodo (MMF)
 - Transmite mais de um sinal de luz
 - Fibra com núcleo grosso
 - Vários feixes de luz se propagam pela fibra com diferentes ângulos de refração
 - Seguem diferentes trajetórias na fibra
- Monomodo (SMF)
 - Transmite apenas um sinal de luz
 - Fibra com núcleo fino
 - Luz chega diretamente ao receptor
 - Comprimento e largura de banda maior do que as fibra multimodo

- Tipos de fibra óptica
 - Mas como identificar o tipo?
 - Pela cor!
 - Amarelo: monomodo
 - Laranja e azul: multimodo

- Componentes de um sistema óptico
 - Fontes de luz
 - Diodo emissor de luz (LED)
 - Laser
 - Meio de transmissão
 - Fibra
 - Conectores
 - SC (Subscriber Connector)
 - ST (Straight Tip)
 - LC (Lucent Connector)
 - FC (Ferrule Connector)
 - Detector
 - Conversor óptico/elétrico (transceiver)
 - Fotodiodo ou fototransistor

Meios Guiados - Fibra Óptica

Vantagens

- Imune a interferências eletromagnéticas
- Pode alcançar maiores distâncias (dezenas de quilômetros) sem uso de repetidores
- Altíssimas larguras de banda
 - Taxa de transmissão recorde (2014): 255 Tbps
- Resistência à corrosão

Desvantagens

- Instalação exige cuidados e equipamentos específicos
- A junção das fibras é uma tarefa crítica (fusão), assim como a incorporação de conectores
- Custo relativamente alto (cabo, infraestrutura, interfaces, fusão)

Principais Meios Físicos de Transmissão

- Meios de transmissão guiados
 - Cabo de par trançado
 - Cabo coaxial
 - Cabo de fibra óptica
- Meios de transmissão não guiados
 - Radiodifusão
 - Micro-ondas
 - Infravermelho

Transmissão sem fios

- Nos últimos anos os computadores portáteis e dispositivos móveis se popularizaram e, como consequência, impulsionaram a tecnologia de transmissão sem fios
 - Os usuários precisavam se econtar à rede/Internet sem depender de fios!
- Além disso, a transmissão sem fios oferece vantagens em relação à transmissão por cabo
 - Facilidade na instalação e formação da rede
 - Principalmente onde há dificuldade na instalação de cabos
 - Flexibilidade na implantação
 - No meio urbano (ruas, asfalto, construções)
 - Sem limitações geográficas
- Porém, também apresenta desvantagens
 - Meio mais suscetível a interferências
 - Problemas relacionados à segurança

Transmissão sem fios

- A transmissão sem fios se dá por meio da propagação de ondas eletromagnéticas
 - Ocorre em uma porção do espectro eletromagnético
 - Podem se propagar livremente pelo espaço
 - Cada onda eletromagnética possui:
 - Uma determinada frequência (f)
 - Número de oscilações por segundo medida em Hertz (Hz)
 - Um comprimento de onda (λ)
 - Distância entre dois pontos consecutivos que se encontram na mesma posição de vibração
 - Período (T)
 - Intervalo de tempo correspondente a uma oscilação completa
 - Velocidade de propagação (c)
 - Em quanto tempo a onda se propaga em um determinado meio

Espectro Eletromagnético

Espectro Eletromagnético

- Cada porção do espectro possui vantagens e desvantagens que tornam adequada para uma determinada aplicação
- Porções de rádio, micro-ondas, infravermelho e luz visível podem ser usados na transmissão de dados
 - Moduladas pela amplitude, frequência ou fase
- Luz ultravioleta, raios X e raios gamas
 - Mais difíceis de produzir e modular
 - Não se propagam bem através dos prédios/barreiras
 - Perigosos para os seres vivos

Meios não guiados - Radiodifusão

- Amplamente utilizadas para comunicação
 - Rádio convencional (AM e FM)
 - Navegação marítima e aéreo
 - Acesso à Internet (via banda de rádio)
 - WiFi
 - Bluetooth
 - Leitura de tags RFID (*Radio-frequency identification*)
 - Comunicação NFC (Near-field communication)
 - ...
- Facilidade na geração do sinal
- Equipamentos, geralmente, têm baixo custo

Meios não guiados - Radiodifusão

- Propriedades das ondas de rádio dependem da frequência:
 - $\lambda = 1m 10km$
 - Em baixas frequências (VLF, LF e MF):
 - Omnidirecionais
 - As ondas se propagam próximas ao solo
 - Obedecem a curvatura da Terra (onda terrestre)
 - Atravessam bem obstáculos
 - Em altas frequências (HF, VHF, ...):
 - Se propagam em linha reta
 - Sinais são refletidos nos objetos
 - Sinais ricocheteiam na lonosfera
 - Uso militar, rádio amador, TV

Meios não guiados - Micro-ondas

- Uso bastante difundido na telefonia de longa distância, distribuição de sinais de TV, telefones celulares
- Comunicação com frequência alta e com comprimentos de onda pequenos
 - $\lambda = 1$ mm 1m
 - Ondas trafegam praticamente em linha reta
 - Dificuldade em transpor obstáculos
 - Necessidade de repetidores em caso de longas distâncias
- Porem ser classificados como micro-ondas:
 - Terrestres
 - Satélites

Meios não guiados - Micro-ondas

- Micro-ondas terrestres
 - As micro-ondas propagam-se junto à superfície da terra
 - Aplicações mais comuns:
 - Comunicação de voz e imagem de longa distância
 - WiMax (Worldwide Interoperability for Microwave Access)
- Micro-ondas via satélites
 - Podem ser considerados grandes repetidores de micro-ondas no céu
 - Satélite recebe em um frequência (uplink) e retransmite em outra (downlink)
 - Atrasos de propagação são elevados
 - Tipos de satélites:
 - Geoestacionários (GEO Geostationary Earth Orbit)
 - Órbita média (MEO Medium-Earth Orbit)
 - Órbita baixa (LEO Low-Earth Orbit)
 - Aplicações mais comuns:
 - Distribuição de TV por satélite, GPS

Meios não guiados - Infravermelho

- Comunicação de curto alcance, de altíssima frequência e pequenos comprimentos de onda
 - $\lambda = 750 \text{nm} 1 \text{mm}$
 - Sinal propaga-se em linha reta (visada direta)
 - Não atravessam objetos sólidos/opacos
 - Sinalização unidirecional
 - Cada lado deve ter um emissor e um fotodetector para duplex
- Não necessitam de licença para operar
- Baixas taxas de transmissão
 - Tipicamente 1 a 2 Mbps, até 4 Mbps
- Aplicações mais comuns:
 - Dispositivos de controle remoto
 - Comunicação de curto alcance

Critérios para Seleção do Meio de Transmissão

- Saber as necessidades de largura da banda das aplicações que correm na rede
- Conhecer o ambiente de instalação:
 - Existência de interferências
 - Fx: Ambiente industrial
 - Hostilidade do ambiente
 - Ex: Presença de animais roedores
 - Dificuldade ou impossibilidade de instalação de cabos
- Custos dos meios de transmissão e da instalação

Exercícios de fixação

- 1. Qual a importância do meio físico?
- 2. Como são codificados os bits para transmissão?
- 3. Por quê a transmissão digital é melhor que a analógica?
- 4. Quais as diferenças entre meios guiados e não guiados?
- 5. Os meios guiados são mais seguros e resistentes?
- 6. Quais as vantagens dos meios não guiados?