ЛЕКЦИЯ 8

Геометрия на движението

Съдържание

- 1. Абсолютно, относително и преносно движение.
- 2. Събиране на скорости.
- 3. Събиране на ускорения.

1. Абсолютно, относително и преносно движение.

• обща постановка на задачата за относително движение:

движението на дадена точка се определя спрямо две различни координатни системи, които се движат една спрямо друга по зададен закон;

спрямо всяка координатна система се определят характеристиките на движението – траектория, скорост и ускорение

• задача:

при известно движение на едната координатна система спрямо другата да се определи връзката между параметрите на движението на произволна точка относно всяка от координатните системи

- представяне на движението като съставно движение:
 - спрямо едната система (A) и движението на (A) спрямо друга система (B);
 - преминаване към описание на движението относно (В)

• метод на относителното движение:

възможността за разлагане на сложно движение на точка на попрости движения

• пример:

Точка се движи равномерно и праволинейно по ос, която от своя страна се върти с постоянна ъглова скорост относно неподвижна равнина.

Относно неподвижната равнина траекторията е Архимедова спирала, докато съставното движение се представя като равномерно праволинейно движение по оста и равномерно въртене на оста около друга неподвижна ос.

- разглежда се движението на точка М спрямо две различни координатни системи:
 - *абсолютна* (неподвижна) координатна система Охуг и
 - $\underline{omнocumeлнa}$ (подвижна, движеща се спрямо Охуz) система O'x'y'z'
 - абсолютно движение:
 - спрямо неподвижната координатна система Охух;
 - индексиране на параметрите на абсолютно движение с долен индекс "а"

пример: ${\bf v}_a$ - абсолютна скорост; ${\bf w}_a$ - абсолютно ускорение

- преносно движение:
 - движението на системата О'x'y'z' спрямо системата Охуz;
 - индексиране на параметрите на преносното движение с долен индекс "е"

пример: \mathbf{v}_{e} - преносна скорост; \mathbf{w}_{e} - преносно ускорение

- *относително (релативно) движение*: спрямо координатната система O'x'y'z';
 - индексиране на параметрите на релативното движение с долен индекс "r"

пример: ${\bf v}_r$ - релативна скорост; ${\bf w}_r$ - релативно ускорение

• определение:

преносно движение на точка – движението на точката от относителната система, в която в даден момент се намира движещата се точка

разглежда се движението на точка М (фиг.1)

$$\mathbf{r} = \mathbf{r_0} + \mathbf{r'} \,, \tag{1}$$

където:

 ${f r}(x,y,z)$ - радиус-вектор на M в неподвижната координатна система Охух ${f r}_0(x_0,y_0,z_0)$ - радиус-вектор на началото O' в неподвижната система Охух ${f r}'(x',y',z')$ - радиус-вектор на M в подвижната система O'х'у'z'

връзка между координатите (x, y, z) и (x', y', z') на точка M в двете системи

$$x = x_0 + \alpha_{11}x' + \alpha_{12}y' + \alpha_{13}z'$$

$$y = y_0 + \alpha_{21}x' + \alpha_{22}y' + \alpha_{23}z'$$

$$z = z_0 + \alpha_{31}x' + \alpha_{32}y' + \alpha_{33}z'$$
(2)

 (α_{ij}) - косинусите между единичните вектори на неподвижната и подвижната система, т.е. $(x,x') \to \cos(x,x') = \alpha_{11}; \ (x,y') \to \cos(x,y') = \alpha_{21},\dots$

уравнение на относителното движение на точката М

$$x' = f_1(t), \quad y' = f_2(t), \quad z' = f_3(t)$$
 (3)

при зададени функции на времето $f_1(t)$, $f_2(t)$, $f_3(t)$

• уравнение на абсолютното движение на точката М – определя се от уравнението на относителното движение на точката и уравнението на движението на относителната система спрямо абсолютната, т.е. в десните части на (3) и (2) всички параметри са функции на времето

- разлика с уравнение на движението на твърдо тяло
 - координатите (x', y', z'), определящи точката от твърдото тяло, <u>не са постоянни</u> величини, а са функции на времето, характеризиращи относителното движение на точката
 - уравнение на преносното движение: чрез фиксиране на (x',y',z') в (2), т.е. функции на времето са само косинусите (α_{ij}) , изразени с Ойлеровите ъгли
 - траекторията на точката в абсолютната система се получава чрез изключване на времето от уравнението на абсолютното движение
 - траекторията на точката в относителната система се получава чрез изключване на времето от уравнението на относителното движение
 - заради движението на относителната система точката описва различни траектории спрямо всяка от двете системи

пример: траекторията на моментния център на скоростите – неподвижна и подвижна центроида

• частни случаи:

- равнинно движение (ϕ : ъгъл на завъртане между осите Ox и O'x')

$$x = x_0 + x'\cos\varphi - y'\sin\varphi, \quad y = y_0 + x'\sin\varphi + y'\cos\varphi \tag{4}$$

- постъпателно движение (φ е нула при подходящ избор на осите Ох и О'х')

$$x = x_0 + x', \quad y = y_0 + y'$$
 (5)

- въртене около неподвижна ос

$$x = x'\cos\varphi - y'\sin\varphi, \quad y = x'\sin\varphi + y'\cos\varphi \tag{6}$$

2. Събиране на скорости.

- Векторна функция $\mathbf{r} = \mathbf{r}(t)$ на скаларен аргумент t.
- представяне в относителната система

$$\mathbf{r}(t) = r_{\mathbf{r}'}\mathbf{i}' + r_{\mathbf{r}'}\mathbf{j}' + r_{\mathbf{r}'}\mathbf{k}',$$

$\mathbf{i}', \mathbf{j}', \mathbf{k}'$ - единични вектори по координатните оси

• абсолютна производна: производна по времето в абсолютната система

$$\frac{d\mathbf{r}}{dt} = \frac{dr_{x'}}{dt}\mathbf{i}' + \frac{dr_{y'}}{dt}\mathbf{j}' + \frac{dr_{z'}}{dt}\mathbf{k}' + r_{x'}\frac{d\mathbf{i}'}{dt} + r_{y'}\frac{d\mathbf{j}'}{dt} + r_{z'}\frac{d\mathbf{k}'}{dt}$$
(7)

• *относителна производна*: производна по времето, когато \mathbf{i}' , \mathbf{j}' , \mathbf{k}' са неизменни в относителната система

$$\frac{d'\mathbf{r}}{dt} = \frac{dr_{x'}}{dt}\mathbf{i}' + \frac{dr_{y'}}{dt}\mathbf{j}' + \frac{dr_{z'}}{dt}\mathbf{k}'$$
(8)

• от представянето

$$\frac{d\mathbf{i}'}{dt} = \mathbf{\omega} \times \mathbf{i}', \quad \frac{d\mathbf{j}'}{dt} = \mathbf{\omega} \times \mathbf{j}', \quad \frac{d\mathbf{k}'}{dt} = \mathbf{\omega} \times \mathbf{k}'$$

за последните три събираеми на (7) се получава

$$r_{x'}\frac{d\mathbf{i}'}{dt} + r_{y'}\frac{d\mathbf{j}'}{dt} + r_{z'}\frac{d\mathbf{k}'}{dt} = \mathbf{\omega} \times (r_{x'}\mathbf{i}' + r_{y'}\mathbf{j}' + r_{z'}\mathbf{k}') = \mathbf{\omega} \times \mathbf{r}$$
или
$$\frac{d\mathbf{r}}{dt} = \frac{d'\mathbf{r}}{dt} + \mathbf{\omega} \times \mathbf{r}$$
(9)

- абсолютната производна на вектор по времето е равна на сумата от относителната производна на този вектор и векторното произведение на ъгловата скорост на относителната система със самия вестор
- проекциите на вектора на относителната производна по осите на относителната система са равни на производните от проекциите на вектора на тези оси

$$\left(\frac{d'\mathbf{r}}{dt}\right)_{x'} = \frac{dr_{x'}}{dt}, \quad \left(\frac{d'\mathbf{r}}{dt}\right)_{y'} = \frac{dr_{y'}}{dt}, \quad \left(\frac{d'\mathbf{r}}{dt}\right)_{z'} = \frac{dr_{z'}}{dt} \tag{10}$$

 проекции на вектора на абсолютната производна по осите на относителната система

$$\left(\frac{d\mathbf{r}}{dt}\right)_{x'} = \frac{dr_{x'}}{dt} + \omega_{y'}z' - \omega_{z'}y'$$

$$\left(\frac{d\mathbf{r}}{dt}\right)_{y'} = \frac{dr_{y'}}{dt} + \omega_{z'}x' - \omega_{x'}z'$$

$$\left(\frac{d\mathbf{r}}{dt}\right)_{x} = \frac{dr_{z'}}{dt} + \omega_{x'}y' - \omega_{y'}x'$$
(11)

• теорема за събиране на скоростите

OT
$$\mathbf{r} = \mathbf{r}_0 + \mathbf{r}'$$

$$\frac{d\mathbf{r}}{dt} = \frac{d\mathbf{r}_0}{dt} + \frac{d\mathbf{r}'}{dt}, \quad \text{където}$$

$$\frac{d\mathbf{r}}{dt} = \mathbf{v}_a, \qquad \frac{d\mathbf{r}_0}{dt} = \mathbf{v}_0, \qquad \frac{d\mathbf{r}'}{dt} = \frac{d'\mathbf{r}'}{dt} + \mathbf{\omega} \times \mathbf{r}' \quad \mathbf{u} \quad \frac{d'\mathbf{r}'}{dt} = \mathbf{v}_r$$
 Tогава
$$\mathbf{v}_a = \mathbf{v}_0 + \mathbf{\omega} \times \mathbf{r}' + \mathbf{v}_r \qquad (12)$$

• преносна скорост $\mathbf{v}_e = \mathbf{v_0} + \mathbf{\omega} \times \mathbf{r}'$ (13) смисъл: скоростта на фиксираната в относителната система точка, в която в дадения момент се намира движещата се (и спрямо относителната координатна система) разглеждана точка или:

$$\mathbf{v}_a = \mathbf{v}_e + \mathbf{v}_r \tag{14}$$

Абсолютната скорост на точка е равна на сумата на преносната и относителната скорост.

3. Събиране на ускорения.

• от израза за събиране на скоростите

$$\mathbf{v}_a = \mathbf{v_0} + \mathbf{\omega} \times \mathbf{r'} + \mathbf{v_r}$$

$$\frac{d\mathbf{v}_a}{dt} = \frac{d\mathbf{v_0}}{dt} + \frac{d\mathbf{v}_r}{dt} + \frac{d\mathbf{\omega}}{dt} \times \mathbf{r}' + \mathbf{\omega} \times \frac{d\mathbf{r}'}{dt}$$
(15)

Но трябва да се отчете, че $\frac{d\mathbf{r}'}{dt} = \frac{d'\mathbf{r}'}{dt} + \mathbf{\omega} \times \mathbf{r}'$ - чрез локалното диференциране.

• означения: $\frac{d\mathbf{v}_a}{dt} = \mathbf{w}_a$; $\frac{d\mathbf{v}_0}{dt} = \mathbf{w}_0$ - в абсолютната система

Ho
$$\frac{d\mathbf{v}_r}{dt} = \frac{d'\mathbf{v}_r}{dt} + \mathbf{\omega} \times \mathbf{v}_r = \mathbf{w}_r + \mathbf{\omega} \times \mathbf{v}_r$$
, където

$$\frac{d'\mathbf{v}_r}{dt} = \mathbf{w}_r \qquad \frac{d'\mathbf{r}'}{dt} = \mathbf{v}_r \qquad \frac{d\mathbf{\omega}}{dt} = \mathbf{\varepsilon}$$

или (15) се записва като

$$\frac{d\mathbf{v}_{a}}{dt} = \frac{d\mathbf{v}_{0}}{dt} + (\frac{d'\mathbf{v}_{r}}{dt} + \mathbf{\omega} \times \mathbf{v}_{r}) + \frac{d\mathbf{\omega}}{dt} \times \mathbf{r}' + \mathbf{\omega} \times (\frac{d'\mathbf{r}'}{dt} + \mathbf{\omega} \times \mathbf{r}')$$

След пренареждане на събираемите вектори последното равенство добива вида:

$$\mathbf{w_a} = \mathbf{w_r} + \mathbf{w_0} + \mathbf{\varepsilon} \times \mathbf{r'} + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r'}) + 2\mathbf{\omega} \times \mathbf{v_r}$$
 (16)

- означения:
 - ${\bf w}_a$: абсолютно ускорение
 - \mathbf{w}_r : относително ускорение
 - $\mathbf{w}_e = \mathbf{w}_0 + \mathbf{\varepsilon} \times \mathbf{r}' + \mathbf{\omega} \times (\mathbf{\omega} \times \mathbf{r}')$: преносно ускорение
 - $\mathbf{w}_c = 2\mathbf{\omega} \times \mathbf{v}_r$: Кориолисово ускорение
 - смисъл на Кориолисовото ускорение:
 - едното събираемо $\mathbf{\omega} \times \mathbf{v}_r$ следва от изчисление на абсолютната производна на относителната скорост \mathbf{v}_r ; изразява изменението на вектора на относителната скорост \mathbf{v}_r , обусловено от завъртането му заедно с относителната координатна система

- второто събираемо $\mathbf{\omega} \times \mathbf{v}_r$ следва от изчисление на абсолютната производна на преносната скорост, обусловено от изменението на относителния радиус-вектор на точката
- теорема за събиране на ускоренията

$$\mathbf{W_a} = \mathbf{W}_r + \mathbf{W}_e + \mathbf{W}_c \tag{17}$$

Абсолютното ускорение е сума на относителното, преносното и Кориолисовото ускорение.

- частни случаи:
 - ${\bf w}_c = {\bf 0} \Rightarrow {\bf \omega} = {\bf 0}$: постъпателно движение на относителната система $\Rightarrow {\bf \omega} \| {\bf v}_r$: движението на точката е успоредно на оста, около която се върти относителната система)
 - големината на Кориолисовото ускорение е $w_c = 2\omega v_r$ (когато точката се движи в равнина, перпендикулярна на оста, около която се върти относителната система)

Примери:

1. Лента се движи с постоянна скорост "с" между два барабана, като се размотава от десния и се намотава на левия. По лентата се записват сигнали от регистриращо устройство, снабдено с писец, който извършва вертикални колебания, дадени със закона x = 0; $y = a \sin(\omega t + \alpha)$.

Да се намерят уравненията на движение на писеца относно движещата се лента и уравнението на изчертаната на лентата крива, т.е. относителната траектория.

Системата О'х'у' се движи спрямо системата Оху постъпателно, така че

$$0 = x_0 + x', y = a\sin(\omega t + \alpha) = y_0 + y'$$

В случая $x_0=-ct$; $y_0=0$; тогава x'=ct, $y'=a\sin(\omega t+\alpha)$

Относителната траектория, изчертана на лентата, се явява синусоида с уравнение

$$y' = a\sin(\frac{\omega \, x'}{c} + \alpha)$$

Амплитудата и фазата на записваните колебания се предават без изкривявяне, докато честотата е свързана със скоростта "c".

2. Две подводници се движат една след друга с еднаква скорост \mathbf{v} , като разстоянието между тях е s. Звукът от локатора на задната подводница настига предната, отразява се и се приема отново от задната. Да се определи времето от излъчването на звука до приемането му. Скоростта на звука във вода е \mathbf{c} .

Относителна скорост на звука от задната подводница до предната: $\mathbf{v}_{r1} = \mathbf{c} - \mathbf{v}$.

Време за изминаване на разстоянието s между тях: $t_1 = \frac{s}{c-v}$.

Относителна скорост на звука в направление към втората подводница: $\mathbf{v}_{r2} = \mathbf{c} + \mathbf{v}$.

Време за изминаване на разстоянието s между тях: $t_2 = \frac{s}{c+v}$.

Търсено време:
$$t = t_1 + t_2 = \frac{s}{c - v} + \frac{s}{c + v} = \frac{2sc}{c^2 - v^2}$$

3. Кораб плува по меридиана CBN в посока от юг на север. Скоростта му спрямо дъното е 36 км/ч. Да се определят компонентите на абсолютната скорост и абсолютното ускорение, отчитайки въртенето на Земята. Корабът се намира на 60^{0} ширина; радиусът на Земята е 64.10^{5} м.

фиг.3

Преносно движение: на Земята – точка В описва окръжност с радиус AB. Относително движение: по меридиана, дъга CBN от окръжност с център О.

Абсолютна скорост на кораба: $\mathbf{v}_a = \mathbf{v}_e + \mathbf{v}_r$.

$$v_e = AB\,\omega_e = R\cos 60^0\,\omega_e = 64.10^5.\frac{1}{2}.\frac{2\pi}{24.60.60} = 232$$
 [m/s] ; направление — по допирателната към паралела и посока от запад на изток;

 $v_r = 36 \text{ [km/h]} = 10 \text{ [m/s]}$; направление — по допирателната към меридиана и посока от юг на север;

Абсолютно ускорение: $\mathbf{w}_{\mathbf{a}} = \mathbf{w}_r + \mathbf{w}_e + \mathbf{w}_c$.

Преносно ускорение — съвпада с нормалното ускорение (ъгловата скорост е постоянна), т.е. $w_e = AB\omega_e^2 = R\cos 60^0\omega_e^2 = 64.10^5.\frac{1}{2}.\left(\frac{2\pi}{24.60.60}\right)^2 = 0.017 \, [\text{m/s}^2]$

Относителното ускорение — съвпада също с нормалното ускорение (ъгловата скорост е постоянна при движение по меридиана), т.е. $w_r = \frac{v_r^2}{R} = \frac{10^2}{64.10^5} = 1.56.10^{-5}$ [m/s²]; посока — от В към О.

Кориолисово ускорение: $\mathbf{w}_c = 2\boldsymbol{\omega} \times \mathbf{v}_r$ и големината му е

$$v_c=2\,\omega_e v_r \sin(\angle\omega_e\omega_r)=2\frac{2\pi}{24.60.60}10\sin 60^0=1.26.10^{-3}~\rm{[m/s^2]}$$
 , а посоката - по допирателната към паралела и посока от запад на изток.

Случай, когато корабът плува по паралела от запад на изток. Изменението е само, че относителната скорост съвпада с преносната по направление, а самата преносна скорост е както в предишния случай; същото се отнася и за преносното ускорение. Относителното ускорение се определя от движението по окръжност с радиус $R\cos 60^{\circ}$, т.е. $w_r = \frac{v_r^2}{R\cos 60^{\circ}} = 3.12.10^{-5} \, [\text{m/s}^2]\,$ и по посока съвпада с преносното ускорение. Кориолисово ускорение е $v_c = 2\omega_e v_r = 1.46.10^{-3} \, [\text{m/s}^2]\,$ и по посока съвпада с преносното ускорение, което е от В към А. В този случай и трите компоненти на абсолютното ускорение са върху една права.

4. Точка се движи по повърхността на Земята със скорост \mathbf{v} , като ъгълът α , сключван с меридиана, е постоянен. Да се определи траекторията на точката.

Изразяване в сферични координати: $x = R\cos\theta\cos\varphi$ $y = R\cos\theta\sin\varphi$ $z = R\sin\theta$

фиг.4

Производните са:

 $\dot{x} = R(-\sin\theta\cos\varphi.\dot{\theta} - \cos\theta\sin\varphi.\dot{\varphi})$

 $\dot{y} = R(-\sin\theta\sin\varphi.\dot{\theta} + \cos\theta\cos\varphi.\dot{\varphi}$

 $\dot{z} = R\cos\theta.\dot{\theta}$

Големина на квадрата на скоростта: $v^2 = \dot{x}^2 + \dot{y}^2 + \dot{z}^2 = R^2(\dot{\theta}^2 + \cos^2\theta.\dot{\phi}^2)$

Разлагане на скоростта: $v_1 = R\dot{\theta}$ (по допирателната към меридиана) и $v_2 = R\cos\theta.\dot{\phi}$

(по допирателната към паралела). Тогава $\frac{v_1}{v_2} = \cot g \, \alpha = \frac{\dot{\theta}}{\cos \theta \cdot \dot{\phi}}$, т.е. $\frac{d\theta}{\cos \theta} = \cot g \, \alpha \, d\phi$,

 $\int\limits_0^\theta \frac{d\theta}{\cos\theta} = \cot g \, \alpha \int\limits_0^\varphi d\varphi \,, \quad \ln tg \bigg(\frac{\pi}{4} + \frac{\theta}{2} \bigg) = \varphi \cot g \, \alpha \,, \quad tg \bigg(\frac{\pi}{4} + \frac{\theta}{2} \bigg) = e^{\varphi \cot g \, \alpha} \quad \text{- траекторията} \quad \text{е}$

локсодрома. Ако $\cot g \ \alpha > 0$ и при неограничено нарастване на $\varphi: \ tg\left(\frac{\pi}{4} + \frac{\theta}{2}\right) \to \infty$ и

 $\left(\frac{\pi}{4} + \frac{\theta}{2}\right) = \frac{\pi}{2}$, т.е. $\theta = \frac{\pi}{2}$ и локсодромата е сферична спирала, навиваща се около

северния полюс. Ако $\cot g \ \alpha < 0$ аналогично : $\theta = -\frac{\pi}{2}$ и локсодромата е сферична спирала, навиваща се около южния полюс.