

Weighted Vertex Cover

Input graph G=(V, E), {wx | x e v}.

Input graph G=(V, E), Ewx x ev}

Output immm weight set S=V such that every e E
to care seS.

Pricing Algorithm

Associate prize pe to each edge e E . "Cost of VC distribud and the edges"

Say prizes pe are Pair if Eight Pe & wi. the edge is overpaying for its

"No edge is overpaying for its

covering vertex"

If S* is a vertex cover, and pe is fair,

then I pe & w (S*)

If S* is a vertex cover, and pe is fair,

than
$$\sum_{cef} p_c \leq w(S^*)$$

Know that $\sum_{cef} p_c \leq w$; for all nodes $: \in S^*$.

 $\Rightarrow \sum_{i \in S^*} \sum_{e \in (i,j)} p_e \leq w(S^*)$

b/c S^* is a vertex case, $\Rightarrow \sum_{i \in S^*} \sum_{e \in (i,j)} p_e \leq w(S^*)$

A vertex i B right is E by

Algorithm:

Set pe=0 for all c=E

Unille 3e=(i,j) st. neither i new j is tight:

increase pe until one & for j is tight

return S= & all hight under }

Bipartite Matching Problem

Have a bipartite graph G=(V, E).

