Ejercicios sobre LaTeX, R y Markdown

Enrique Ortega 4/4/2019

Instrucciones

...omitido... Este ejercicio está parcialmente resuelto repositorio de github por lo voy a hacer mi propio documento, contraviniendo las instrucciones del propio ejercicio.

Preguntas

Pregunta 1

Realizar los siguientes productos de matrices en R:

$$A \cdot B$$

$$B \cdot A$$

$$(A \cdot B)^{t}$$

$$B^{t} \cdot A$$

$$(A \cdot B)^{-1}$$

$$A^{-1} \cdot B^{t}$$

donde

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 0 & 3 & 2 & 1 \\ 3 & 0 & 4 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 4 & 3 & 2 & 1 \\ 0 & 3 & 0 & 4 \\ 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 2 \end{pmatrix}$$

Finalmente, escribir haciendo uso de ETEX el resultado de los dos primeros productos de forma adecada.

Respuesta 1

Empezamos por instanciar las variables. Utilizaremos la función *matrix* para declarar la matrix a partir de un vector plano e indicando el número de filas más relleno por filas.

```
A = matrix(c(1, 2, 3, 4, 4, 3, 2, 1, 0, 1, 0, 2, 3, 0, 4, 0), nrow = 4, byrow = TRUE)
B = matrix(c(4, 3, 2, 1, 0, 3, 0, 4, 1, 2, 3, 4, 0, 1, 0, 2), nrow = 4, byrow = TRUE)
```

Las matrices resultantes son:

```
A
```

```
[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 4 3 2 1
[3,] 0 1 0 2
[4,] 3 0 4 0
```

В

```
[,1] [,2] [,3] [,4]
[1,] 4 3 2 1
[2,] 0 3 0 4
[3,] 1 2 3 4
[4,] 0 1 0 2
```

Seguimos con las operaciones solicitadas

Producto $A \cdot B$

```
A %*% B
```

```
[,1] [,2] [,3] [,4]
[1,] 7 19 11 29
[2,] 18 26 14 26
[3,] 0 5 0 8
[4,] 16 17 18 19
```

Producto (¿comple conmutativa?) $B \cdot A$

```
B %*% A
```

```
[,1] [,2] [,3] [,4]
[1,] 19
        19 22 23
             22
                  3
[2,]
     24
         9
        11
             23 12
[3,]
     21
[4,]
     10
         3
             10
```

Evidentemente, no la cumple.

Transpuesta $(A \cdot B)^t$

```
t(A %*% B)
```

```
[,1] [,2] [,3] [,4]
[1,] 7 18 0 16
[2,] 19 26 5 17
[3,] 11 14 0 18
[4,] 29 26 8 19
```

Transpuesta y producto $B^t \cdot A$

```
t(B) %*% A
```

```
[,1] [,2] [,3] [,4]
[1,] 4 9 12 18
[2,] 18 17 19 19
[3,] 2 7 6 14
[4,] 23 18 19 16
```

Matriz invertida del producto $(A \cdot B)^{-1}$

```
solve(A %*% B)
```

```
[,1] [,2] [,3] [,4]
[1,] -1.66 -0.65 4.52 1.52
[2,] 1.60 0.80 -4.60 -1.60
[3,] 1.02 0.35 -2.84 -0.84
[4,] -1.00 -0.50 3.00 1.00
```

...e inversa de una por la transpuesta de la otra $A^{-1} \cdot B^t$

```
solve(A) %*% t(B)
```

```
[,1] [,2] [,3] [,4]
[1,] 6.000000e-01 2.4 6.4 1.2
[2,] -3.330669e-16 -2.0 -7.0 -1.2
[3,] -2.000000e-01 -0.8 -3.8 -0.4
[4,] 1.000000e+00 1.0 5.0 0.6
```

Finalmente el resultado de los dos primeros productos en ET_{FX}

Ya he practicado la generación manual de matrices en ET_EX representando las matrices A y B. Voy a probar a representar sus productos mediante *result=asis*. Esto es, que sea R quien construya el código ET_EX

He consultado varios ejemplos y finalmente me he decantado por esta solución que paso a describir.

El algoritmo utilizado segmenta el texto ETEX final en tres partes.

- El inicio, con la sintaxis de apertura de matrix con paréntesis
- El cuerpo, con la sintaxis iterativa para representar los elementos de la matriz y los saltos de línea
- El final, con la sintaxis de cierre de matrix con paréntesis

El cuerpo

El cuerpo de la matriz se genera mediante el uso de estas instrucciones:

- apply para poder tratar los elementos de la matrix mediante una función. Haremos el tratamiento por filas.
- paste, para concatenar texto. En este caso anidamos dos paste consecutivos para:
 - Mediante el paste exterior concatenar los elementos de una fila con el salto de línea

 Mediante el paste interior agrupar los elementos de una fila utilizando como separador el &. Esta agrupación se realiza con el parámetro collapse. En otros lenguajes sería equivalente a hacer un join de los elementos de un vector donde especificamos el separador entre elementos.

Importante Hay indicar el parámetro *result='asis'* para que el resultado de R sea interpretado como parte del markdown. En mi caso también he tenido que forzar la salida por HTML ya que por PDF no llegaba a renderizarse.

```
porFilas=1
# Preparamos las variables de inicio y fin de matriz
# Calculamos las matrices mostrar
P1 = A%*%B
P2 = B%*%A

# Las dobles \\ son para escapar el carácter \.
iniciol = "$$(A \\cdot B) = \\begin{pmatrix}"
inicio2 = "$$(B \\cdot A) = \\begin{pmatrix}"
fin = "\\end{pmatrix}$$"

# Creamos el cuerpo de la matriz. Dado que cada salto de línea son dos \ tenemos que
escaparlo dos veces para lo que necesitaremos cuatro \.
cuerpol = apply(P1,porFilas, FUN=function(x){paste(paste(x, collapse = "&"),"\\\")})
cuerpo2 = apply(P2,porFilas, FUN=function(x){paste(paste(x, collapse = "&"),"\\\")})
# Extraemos el texto LaTeX
writeLines(c(iniciol,cuerpol,fin))
```

$$(A \cdot B) = \begin{pmatrix} 7 & 19 & 11 & 29 \\ 18 & 26 & 14 & 26 \\ 0 & 5 & 0 & 8 \\ 16 & 17 & 18 & 19 \end{pmatrix}$$

writeLines(c(inicio2, cuerpo2, fin))

$$(B \cdot A) = \begin{pmatrix} 19 & 19 & 22 & 23 \\ 24 & 9 & 22 & 3 \\ 21 & 11 & 23 & 12 \\ 10 & 3 & 10 & 1 \end{pmatrix}$$

Pregunta 2

Crear un vector llamado dni donde almacenar los números del DNI cualquiera. Ejemplo de un DNI

$$dni = (5, 4, 2, 0, 1, 5, 6, 7)$$

Definir el vertor en R. Calcular con R el vector dni al cudrado, la raíz cuadrada del vector dni y, por último, la suma de todas las cifras del vector dni.

Finalmente, escribir todos los estos vectores en ETEX

Respuesta 2

No me parece adecuado utilizar el número de DNI en un entorno como este. Así pues utilizaré un vector de números al azar. Concretamente utilizaré el siguiente vector:

$$dni = (2, 5, 1, 2, 7, 8, 5, 3)$$

Entiendo que las operaciones que se piden es sobre cada uno de los elementos del vector. Esto es, cuadrado de cada uno de los elmentos, raíz de cada uno y la suma de todos. Para ello:

- · Inicializaremos el vector
- · Realizaremos las operaciones y las almacenaremos en variables para su posterior uso
- Generaremos el texto ETEX
- · Mostraremos el resultado

En esta ocasión como sólo tenemos una fila no nos hará falta utilizar apply. La conversión la realizaremos de esta manera: - Mediante la función sprinf preparamos la cadena con un punto de sustitución de tipo string. - Mediante paste y collapse agrupamos los elementos de vector en una cadena separada por comas.

```
dni=c(2,5,1,2,7,8,5,3)

# Resultado de las operaciones
cuadrado = dni^2
raiz = round(sqrt(dni),2)
suma = sum(dni)

cuadrado_md = sprintf("$$cuadrado=(%s)$$",paste(cuadrado,collapse=","))
raiz_md = sprintf("$$raiz=(%s)$$",paste(raiz,collapse = ","))
suma_md = sprintf("$$suma=%s$$",suma)

writeLines(c(cuadrado_md, raiz_md, suma_md))
```

$$cuadrado = (4, 25, 1, 4, 49, 64, 25, 9)$$

 $raiz = (1.41, 2.24, 1, 1.41, 2.65, 2.83, 2.24, 1.73)$
 $suma = 33$

Pregunta 3

Definir el vector name de letras con nombre y apellido en Ry:

- Calcular el subvector que sólo contenga el nombre
- Calcular también el subvector que contenga sólo el apellido
- · Ordenar el vector alfabéticamente
- · Crear una matriz a partir del vector

Respuesta 3

Vamos a ello.

- 1. Definimos el vector
- 2. Calculamos los subvectores para nombre y apellidos
- 3. Calculamos el vector ordenado
- 4. Creamos la matríz
- 5. Mostramos los resultados

Notas: Para separar nombre de apellidos localizaremos la posición del espacio y extraremos el lado izquierdo para el nombre y el lado derecho para el apellido. El resto es combinación de lo ya visto para convertir vectores y/o matrices a formato ET_FX

```
full_name = c("E","n","r","i","q","u","e"," ","0","r","t","e","g","a")
first name = full name[1:(which(full name==" ")-1)]
last_name = full_name[(which(full_name=="")+1):length(full_name)]
sorted = sort(full_name)
mtx = matrix(full_name,nrow = 2, byrow = TRUE)
full_name_md = sprintf("$$fullname=(%s)$$",paste(full_name,collapse = ","))
first_name_md = sprintf("$$firstname=(%s)$$",paste(first_name,collapse = ","))
last name md = sprintf("$$lastname=(%s)$$",paste(last name,collapse = ","))
sorted md = sprintf("$$sorted=(%s)$$",paste(sorted,collapse = ","))
mtx_inicio = "$$matrix = \\begin{pmatrix}"
mtx_fin = "\\end{pmatrix}$$"
porFilas=1
mtx_cuerpo = apply(mtx,porFilas, FUN=function(x){paste(paste(x, collapse = "&"),
"\\\\")})
mtx md = sprintf("%s%s%s", mtx inicio, mtx cuerpo, mtx fin)
writeLines(c(full name md, first name md, last name md, sorted md, c(mtx inicio, mtx cuerp
o,mtx_fin)))
```

$$fullname = (E, n, r, i, q, u, e, O, r, t, e, g, a)$$

$$firstname = (E, n, r, i, q, u, e)$$

$$lastname = (O, r, t, e, g, a)$$

$$sorted = (, a, e, e, E, g, i, n, O, q, r, r, t, u)$$

$$matrix = \begin{pmatrix} E & n & r & i & q & u & e \\ O & r & t & e & g & a \end{pmatrix}$$