Matemática Discreta I - MATA42

Profa. Isamara Alves (DMAT/IME/UFBA)

AULA - 11/06/2019

Proposicão.5:(Relação de Stifel)

Sejam n, k inteiros tais que e $n \ge k \ge 0$. Então,

$$\begin{pmatrix} n+1 \\ k+1 \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} + \begin{pmatrix} n \\ k+1 \end{pmatrix} \Rightarrow C_{n+1}^{k+1} = C_n^k + C_n^{k+1} = C_{n+1}^{n-k}$$

Demonstração: Consideremos um conjunto com n+1 objetos, onde n são brancos e 1 é azul. Podemos selecionar k+1 objetos deste conjunto de n+1 elementos, de $\left(egin{array}{c} n+1 \\ k+1 \end{array}
ight)$ maneiras distintas. Por outro lado, "estes subconjuntos são de tal maneira que o objeto azul pode ser escolhido, ou não": (i) Se o objeto azul foi escolhido, temos 1. $\binom{n}{k}$ possibilidades, pois o restante dos objetos devem ser brancos (ii) Se o objeto azul não foi escolhido, temos $\binom{n}{k+1}$ possibilidades, pois neste caso todos os elementos devem ser brancós. Como os dois casos são disjuntos, temos pelo princípio da adição, $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$; onde $0 \le k \le n$.

Demonstração: Podemos também demonstrar a Relação de Stifel como segue: desenvolvendo o coeficiente $C_{n+1}^{k+1} = C_{n+1}^{(n+1)-(k+1)} = C_{n+1}^{n-k}$; então, $\left(\begin{array}{c} n+1 \\ k+1 \end{array}\right) = \left(\begin{array}{c} n+1 \\ n-k \end{array}\right) = \frac{(n+1)!}{(n-k)!(k+1)!} = \frac{(n+1).n!}{(n-k).(n-k-1)!(k+1).k!} =$ $\frac{n!}{(n-k-1)! \cdot k!} \cdot \frac{(n+1)}{(n-k) \cdot (k+1)} = \frac{n!}{(n-k-1)! \cdot k!} \cdot \frac{(n-k)+(k+1)}{(n-k-1)! \cdot k!} =$ $\frac{n!}{(n-k-1)! \cdot k!} \cdot \left(\frac{(n-k)}{(n-k) \cdot (k+1)} + \frac{(k+1)}{(n-k) \cdot (k+1)} \right) = \frac{n!}{(n-k-1)! \cdot k!} \cdot \left(\frac{1}{(k+1)} + \frac{1}{(n-k)} \right) =$ $\frac{n!}{(n-k-1)!(k+1)k!} + \frac{n!}{(n-k)(n-k-1)!(k!)} = \frac{n!}{(n-k-1)!(k+1)!} + \frac{n!}{(n-k)!(k!)} = \frac{n!}{(n-k-1)!(k+1)!}$ $\binom{n}{k+1} + \binom{n}{k} = C_n^{k+1} + C_n^k$; ou, $C_n^k + C_n^{k+1} = \binom{n}{k} + \binom{n}{k+1} = \frac{n!}{(n-k)! \cdot k!} + \frac{n!}{(n-k-1)! \cdot (k+1)!} = \frac{n!}{(n-k-1)!} = \frac{n!}{(n-k-1)! \cdot (k+1)!} = \frac{n!}{(n-k-1)!} = \frac{n!}{(n-k-1)! \cdot (k+1)!} = \frac{n!}{(n-k-1)! \cdot (k+1)!} = \frac$ $\frac{n!}{(n-k)(n-k-1)!.k!} + \frac{'}{(n-k-1)!.(k+1)k!} = \frac{'}{(n-k-1)!.k!} \cdot \left(\frac{1}{(n-k)} + \frac{1}{(k+1)}\right) =$ $\frac{n!}{(n-k-1)! \cdot k!} \cdot \left(\frac{(k+1)}{(n-k) \cdot (k+1) + \frac{(n-k)}{(n-k) \cdot (k+1)}} \right) = \frac{n!}{(n-k-1)! \cdot k!} \cdot \frac{(n-k) + (k+1)}{(n-k) \cdot (k+1)} =$ $\frac{n!}{(n-k-1)!,k!} \cdot \frac{(n+1)}{(n-k),(k+1)} = \frac{(n+1).n!}{(n-k).(n-k-1)!(k+1).k!} = \frac{(n+1)!}{(n-k)!(k+1)!} =$ $\left(\begin{array}{c} n+1 \\ k+1 \end{array}\right) = C_{n+1}^{k+1}$

Proposição.3:

Sejam
$$n \in 0 \le k \le n$$
 naturais. Então, $C_n^k = \binom{n}{k} = \binom{n}{n-k} = C_n^{n-k}$

Proposição.5:(Relação de Stifel)

Sejam n, k naturais tais que e $0 \le k \le n$. Então,

$$\begin{pmatrix} n+1 \\ k+1 \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} + \begin{pmatrix} n \\ k+1 \end{pmatrix} \Rightarrow C_{n+1}^{k+1} = C_n^k + C_n^{k+1} = C_{n+1}^{n-k}$$

Corolário:(Triângulo de Pascal)

A *n*-èsima linha deste triângulo consiste em todos os valores $C_n^k = \begin{pmatrix} n \\ k \end{pmatrix}$; onde $0 \le k \le n$.

```
Corolário: (Triângulo de Pascal)
C_n^k = \begin{pmatrix} n \\ k \end{pmatrix}; onde 0 \le k \le n.
                                           Linha-n
```

Números Binomiais - (TRIÂNGULO DE PASCAL)

COROLÁRIO: (TRIÂNGULO DE PASCAL)

Proposição.3:
$$C_n^k = \binom{n}{k} = \binom{n}{n-k} = C_n^{n-k}$$
; e,

Proposição.5:

$$C_{n+1}^{k+1} = {n+1 \choose k+1} = {n \choose k} + {n \choose k+1} = C_n^k + C_n^{k+1} = C_{n+1}^{n-k}$$

Combinação Simples

Observações:

◆ As ARESTAS do triângulo de Pascal têm sempre o valor "1":

$$C_n^0 = \begin{pmatrix} n \\ 0 \end{pmatrix} = 1 = \begin{pmatrix} n \\ n \end{pmatrix} = C_n^n;$$

- ② Proposição.3: Os elementos EQUIDISTANTES possuem o mesmo valor, $C_n^k = \binom{n}{k} = \binom{n}{n-k} = \binom{n}{n-k}$;
- "Relação de Stifel" (IDENTIDADE DE PASCAL): Qualquer elemento INTERIOR do triângulo pode ser obtido pela soma dos dois elementos diretamente acima (linha anterior),

$$C_{n+1}^{k+1} = \begin{pmatrix} n+1 \\ k+1 \end{pmatrix} = \begin{pmatrix} n \\ k \end{pmatrix} + \begin{pmatrix} n \\ k+1 \end{pmatrix} = C_n^k + C_n^{k+1};$$

4 A soma de todos os valores da n-ésima linha, $\sum_{k=0}^{n} \binom{n}{k}$, é igual ao número total de subconjuntos de um conjunto com n elementos.

Proposição.6:

Sejam $n \in 0 \le k \le n$ naturais. Então, $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

DEMONSTRAÇÃO:

Sejam A um conjunto com n elementos e $0 \le k \le n$. Sabemos que o número de subconjuntos com k elementos de A é dado por $\binom{n}{k}$. Assim,

temos que o número total de subconjuntos de A é dado por $\sum_{k=0}^{n} \binom{n}{k}$.

Por outro lado, podemos formar um subconjunto de A do seguinte modo: $A:=\{A_1,\cdots,A_n\}$. Então, para obter um subconjunto de A temos 2 possibilidades para cada elemento $A_i\in A; i=1,\cdots,n$: "escolher" ou "não-escolher" este elemento.

Pelo princípio multiplicativo, temos então $\underbrace{2.2.2.\cdots.2}_{}=2^n$ possibilidades de

formar um subconjunto de A. Logo, $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

COROLÁRIO:

Um conjunto com n elementos tem 2^n subconjuntos, isto é, $|\mathcal{P}(A)| = 2^n$.

EXEMPLO:

Vamos calcular a soma
$$S:=1$$
. $\binom{n}{1}+2$. $\binom{n}{2}+\cdots+n$. $\binom{n}{n}$; $n\geq 1$. Observe que $S=\sum_{k=0}^n k$. $\binom{n}{k}=\sum_{k=1}^n k$. $\binom{n}{k}=\sum_{k=1}^n k$. $\frac{n!}{k!(n-k)!}=\sum_{k=1}^n k.\frac{n(n-1)!}{k(k-1)!((n-1)-(k-1))!}=n\sum_{k=1}^n \binom{n-1}{k-1}=n\sum_{k=0}^{n-1} \binom{n-1}{k}=n.2^{n-1}$. Logo, $S=n.2^{n-1}$.

Proposição.7:

Sejam
$$n \ge 0$$
 e $k \ge 0$ naturais. Então,
$$\binom{k}{k} + \binom{k+1}{k} + \binom{k+2}{k} + \cdots + \binom{k+n}{k} = \binom{k+n+1}{k+1}.$$

Observando o Triângulo de Pascal:

"Se SOMARMOS elementos de uma COLUNA qualquer do Triângulo de Pascal de **cima para baixo** obtemos como resultado o valor que está imediatamente à direita na linha abaixo da última parcela na soma".

imediatamente a direita na ililia abaixo da ditima parceia na										
k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	Linha- <i>n</i>				
1						0				
1	1					1				
1	2	1				2				
1	3	3	1			3				
1	4	6	4	1		4				
1	5	10	10	5	1	5				
:	:	:	:	:	:	:				
•	•	•	•	•	•					

```
DEMONSTRAÇÃO: (PROPOSIÇÃO.7:) Sejam n > 0 e 0 < k < n naturais. Então,
 \begin{pmatrix} k \\ k \end{pmatrix} + \begin{pmatrix} k+1 \\ k \end{pmatrix} + \begin{pmatrix} k+2 \\ k \end{pmatrix} + \cdots + \begin{pmatrix} k+n \\ k \end{pmatrix} = \begin{pmatrix} k+n+1 \\ k+1 \end{pmatrix}.
 \begin{pmatrix} k+1 \\ k+1 \end{pmatrix} = \begin{pmatrix} k \\ k \end{pmatrix} + \begin{pmatrix} k \\ k+1 \end{pmatrix}; \begin{pmatrix} k+2 \\ k+1 \end{pmatrix} = \begin{pmatrix} k+1 \\ k \end{pmatrix} + \begin{pmatrix} k+1 \\ k+1 \end{pmatrix};
\begin{pmatrix} k+3 \\ k+1 \end{pmatrix} = \begin{pmatrix} k+2 \\ k \end{pmatrix} + \begin{pmatrix} k+2 \\ k+1 \end{pmatrix}; \cdots ; \begin{pmatrix} k+n \\ k+1 \end{pmatrix} = \begin{pmatrix} k+(n-1) \\ k \end{pmatrix} + \begin{pmatrix} k+(n-1) \\ k+1 \end{pmatrix};
\binom{k+(n+1)}{k+1} = \binom{k+n}{k} + \binom{k+n}{k+1}; Agora, somando todas estas igualdades:
\begin{pmatrix} k+1 \\ k+1 \end{pmatrix} + \begin{pmatrix} k+2 \\ k+1 \end{pmatrix} + \begin{pmatrix} k+3 \\ k+1 \end{pmatrix} + \cdots + \begin{pmatrix} k+n \\ k+1 \end{pmatrix} + \begin{pmatrix} k+(n+1) \\ k+1 \end{pmatrix} =
 \left(\begin{array}{c}k\\k\end{array}\right)+\left(\begin{array}{c}k\\k+1\end{array}\right)+\left(\begin{array}{c}k+1\\k\end{array}\right)+\left(\begin{array}{c}k+1\\k+1\end{array}\right)+\left(\begin{array}{c}k+2\\k\end{array}\right)+\left(\begin{array}{c}k+2\\k+1\end{array}\right)+\cdots+
\binom{k+(n-1)}{k}+\binom{k+(n-1)}{k+1}+\binom{k+n}{k}+\binom{k+n}{k+1}; simplificando as parcelas que aparecem
em membros opostos; e, assumindo que \binom{k}{k+1} = 0; então, \binom{k+1}{k+1} + \binom{k+2}{k+1} + \binom{k+3}{k+1} + \cdots
\cdots + \binom{k+n}{k+1} + \binom{k+(n+1)}{k+1} = \binom{k}{k} + \binom{k+1}{k+1} + \binom{k+1}{k} + \binom{k+1}{k+1} + \cdots
\binom{k+2}{k} + \binom{k+2}{k+1} + \cdots + \binom{k+(n-1)}{k} + \binom{k+(n-1)}{k+1} + \binom{k+n}{k} + \binom{k+n}{k+1} ;
 obtemos;
 \begin{pmatrix} k \\ k \end{pmatrix} + \begin{pmatrix} k+1 \\ k \end{pmatrix} + \begin{pmatrix} k+2 \\ k \end{pmatrix} + \cdots + \begin{pmatrix} k+(n-1) \\ k \end{pmatrix} + \begin{pmatrix} k+n \\ k \end{pmatrix} = \begin{pmatrix} k+n+1 \\ k+1 \end{pmatrix}.
```

Proposição.8:

Sejam
$$n \ge 0$$
 e $k \ge 0$ naturais. Então, $\sum_{i=0}^k \binom{n+i}{i} = \binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \dots + \binom{n+k}{k} = \binom{n+k+1}{k}.$

Observando o Triângulo de Pascal:

"Se SOMARMOS elementos de uma DIAGONAL qualquer do Triângulo de Pascal da **esquerda para a direita** obtemos como resultado o valor que está imediatamente abaixo da última parcela na soma".

			a			
k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	Linha- <i>n</i>
1						0
1	1					1
1	2	1				2
1	3	3	1			3
1	4	6	4	1		4
1	5	10	10	5	1	5
:	:	:	:	:	:	:

$$\begin{array}{l} \mathbf{DEMONSTRAÇÃO:} \; & (\mathbf{PROPOSIÇÃO.8:}) \; \mathbf{Sejam} \; n \geq 0 \; \mathbf{e} \; 0 \leq k \leq n \; \mathrm{naturais.} \; \mathbf{Então}, \\ \left(\begin{array}{c} n \\ 0 \end{array} \right) + \left(\begin{array}{c} n+1 \\ 1 \end{array} \right) + \left(\begin{array}{c} n+2 \\ 2 \end{array} \right) + \cdots + \left(\begin{array}{c} n+k \\ k \end{array} \right) = \left(\begin{array}{c} n+k+1 \\ k \end{array} \right). \\ \mathbf{Vamos} \; \mathrm{aplicar} \; \mathrm{a} \; \mathrm{proposição.3:} \; \left(\begin{array}{c} n \\ k \end{array} \right) = \left(\begin{array}{c} n \\ n-k \end{array} \right); \\ \left(\begin{array}{c} n \\ 0 \end{array} \right) = \left(\begin{array}{c} n \\ n \end{array} \right); \left(\begin{array}{c} n+1 \\ 1 \end{array} \right) = \left(\begin{array}{c} n+1 \\ n \end{array} \right); \left(\begin{array}{c} n+2 \\ 2 \end{array} \right) = \left(\begin{array}{c} n+2 \\ n \end{array} \right); \cdots; \\ \left(\begin{array}{c} n+k \\ k \end{array} \right) = \left(\begin{array}{c} n+k \\ n \end{array} \right); \; \mathrm{Agora, \; somando \; todas \; estas \; igualdades:} \\ \left(\begin{array}{c} n \\ 0 \end{array} \right) + \left(\begin{array}{c} n+1 \\ 1 \end{array} \right) + \left(\begin{array}{c} n+2 \\ 2 \end{array} \right) + \cdots + \left(\begin{array}{c} n+k \\ k \end{array} \right) = \\ \left(\begin{array}{c} n \\ n \end{array} \right) + \left(\begin{array}{c} n+1 \\ n+1 \end{array} \right) \; \mathrm{pela \; proposicão.7} \\ \\ \mathrm{mas,} \; \left(\begin{array}{c} n+k+1 \\ n+1 \end{array} \right) = \left(\begin{array}{c} n+k+1 \\ k \end{array} \right) \; \mathrm{pela \; proposição.3.} \\ \\ \mathrm{Logo,} \left(\begin{array}{c} n \\ 0 \end{array} \right) + \left(\begin{array}{c} n+1 \\ 1 \end{array} \right) + \left(\begin{array}{c} n+2 \\ 2 \end{array} \right) + \cdots + \left(\begin{array}{c} n+k \\ k \end{array} \right) = \left(\begin{array}{c} n+k+1 \\ k \end{array} \right) \end{array} \right)$$

Proposição.9: (Identidade de Vandermonde)

Sejam $m, n, r, k \in \mathbb{N}$ com $r \leq m, r \leq n$; e $0 \leq k \leq r$ naturais. Então,

$$\left(\begin{array}{c} m+n \\ r \end{array}\right) = \sum_{k=0}^{r} \left(\begin{array}{c} m \\ r-k \end{array}\right) \cdot \left(\begin{array}{c} n \\ k \end{array}\right).$$

```
Se tomarmos no Triângulo de Pascalm = 2; n = 3; r = 2 \Rightarrow
\left(\begin{array}{c}2+3\\2\end{array}\right)=\sum_{k=0}^2\left(\begin{array}{c}2\\2-k\end{array}\right)\left(\begin{array}{c}3\\k\end{array}\right)=\left(\begin{array}{c}2\\2\end{array}\right)\left(\begin{array}{c}3\\0\end{array}\right)+\left(\begin{array}{c}2\\1\end{array}\right)\left(\begin{array}{c}3\\1\end{array}\right)+
\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = 1.1 + 2.3 + 1.3 = 10 = \begin{pmatrix} 5 \\ 2 \end{pmatrix}.
   k = 0 k = 1 k = 2 k = 3 k = 4 k = 5
                                                                                                                          I inha-n
```

DEMONSTRAÇÃO: (PROPOSIÇÃO.9)

Supondo que existem m elementos no conjunto $A = \{a_1, a_2, \dots, a_m\}$ e n elementos no conjunto $B = \{b_1, b_2, \dots, b_n\}$. Notamos que estes conjuntos são disjuntos e o número de elementos no conjunto união

possibilidades de escolhermos r elementos de m+n é dado por $\binom{m+n}{r}$; o

qual seria equivalente se escolhêssemos k elementos de n do conjunto B: $\binom{n}{k}$;

e, r - k elementos de m do conjunto A: $\binom{m}{r - k}$; e pelo P.F.C. temos

 $\begin{pmatrix} n \\ k \end{pmatrix} \cdot \begin{pmatrix} m \\ r-k \end{pmatrix}$ possibilidades para um determinado valor de k.

Mas $0 \le k \le r$, vamos considerar para todos os valores de k e utilizar o princípio da adição a fim de obter o número total de possibilidades de escolher r elementos de m+n:

$$\sum_{k=0}^{r} {m \choose r-k} \cdot {n \choose k}.$$

Corolário: (Relação de Lagrange)

Sejam $n \in \mathbb{N}$. Então,

$$\left(\begin{array}{c} 2n \\ n \end{array}\right) = \sum_{k=0}^{n} \left(\begin{array}{c} n \\ k \end{array}\right)^{2}.$$

DEMONSTRAÇÃO: (RELAÇÃO DE LAGRANGE)

Pela Relação de Vandermonde; para $m,n,r,k\in\mathbb{N};$ $r\leq m;$ $r\leq n;$ $k\leq r,$

temos que;
$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \cdot \binom{n}{k}$$
.

Assumindo m = r = n'e substituindo na relação acima;

$$\begin{pmatrix} n+n \\ n \end{pmatrix} = \sum_{k=0}^{n} \begin{pmatrix} n \\ n-k \end{pmatrix} \cdot \begin{pmatrix} n \\ k \end{pmatrix}$$
$$\begin{pmatrix} 2n \\ n \end{pmatrix} = \sum_{k=0}^{n} \begin{pmatrix} n \\ n-k \end{pmatrix} \cdot \begin{pmatrix} n \\ k \end{pmatrix}$$

mas pela proposição.3;

$$\left(\begin{array}{c} n \\ n-k \end{array}\right) = \left(\begin{array}{c} n \\ k \end{array}\right); \text{ então,}$$

$$\begin{pmatrix} 2n \\ n \end{pmatrix} = \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix} \cdot \begin{pmatrix} n \\ k \end{pmatrix} = \sum_{k=0}^{n} \begin{pmatrix} n \\ k \end{pmatrix}^{2}$$