

DD66175

Patent number: DD66175
Publication date: 0000-00-00
Inventor:
Applicant:
Classification:
- international:
- european:
Application number: DDD66175 00000000
Priority number(s):

[Report a data error here](#)

Abstract not available for DD66175

Data supplied from the **esp@cenet** database - Worldwide

Deutsche
Demokratische
Republik

Amt
für Erfindungs-
und Patentwesen

PATENTSCHRIFT | 66 175

Wirtschaftspatent

Erteilt gemäß § 5 Absatz 1 des Änderungsgesetzes zum Patentgesetz

Zusatzpatent zum Patent: —

Kl.: 12 p, 2

Anmeldetag: 22. III. 1968 (WP 12 p / 131 014)

HPK.: C 07 d

Priorität: —

DK.:

Ausgabetag: 05. IV. 1969

Erfinder zugleich Inhaber:

Dipl.-Chem. Dr. Heinz Tönjes, Radebeul
Dipl.-Chem. Dr. Karlheinz Heidenbluth, Radebeul
Dr. Joachim Schmidt, Magdeburg

Verfahren zur Herstellung von β -Isoindolinoketonen

1
Die Erfindung betrifft ein Verfahren zur Herstellung von β -Isoindolinoketonen der allgemeinen Formel I, worin Y für ein Wasserstoffatom oder die Nitrogruppe, R₁ für ein Wasserstoffatom oder den Phenylrest, R₂ für Wasserstoff, Niederalkyl- oder Aryloxygruppen stehen und R₃ einen Alkyl-, Aralkyl- oder substituierten oder unsubstituierten Arylest bedeutet, wobei R₂ und R₃ auch zu einem gesättigten, isocyclischen Sechsring geschlossen sein können.

N-substituierte β -Aminoketone sind mit verschiedenen Indikationen in die Therapie eingeführt worden, so als Lokalanästhetika, Analgetika oder antinotinaktivierende Verbindungen. β -Aminoketone, die sich vom Isoindolin ableiten, wurden jedoch noch nicht beschrieben. Es wurde nun gefunden, daß Verbindungen der Formel I (siehe Blatt I, Formeln I bis V) wertvolle pharmakologische Eigenschaften zeigen; ferner sind wichtige Vorprodukte zur Herstellung von Isoindolinopropanolen.

Erfahrungsgemäß erhält man die β -Isoindolinopropionate in der Weise, daß man entweder

- ein Isoindolin der Formel II, worin Y für Wasserstoff oder die Nitrogruppe steht, bei Temperaturen zwischen Raumtemperatur und 100 °C an ein α,β -ungesättigtes Keton der Formel III addiert oder, falls Y für Wasserstoff steht,
- ein β -primäres Aminoketon der Formel IV in Dimethylformamid/Triethylamin bei 60 bis 100 °C mit o-Xylylenchlorid oder -bromid zur Reaktion bringt, oder, falls R₁ für Wasserstoff steht,
- das Isoindolin der Formel II, worin Y für Wasserstoff

oder die Nitrogruppe steht, mit einem Keton der Formel V, worin R₄ und R₅ die obengenannte Bedeutung haben, in Gegenwart einer Mineralsäure und unter Zusatz von Formaldehyd unter den Bedingungen der Mannich-Kondensation umsetzt.

In den nachfolgenden Beispielen wird das erfahrungsgemäß Verfahren näher erläutert:

Beispiel 1:

- 10 Ein Gemisch von 15,6 g Isoindolin-hydrochlorid, 4,5 g Paraformaldehyd, 15,5 g 4-Chloracetophenon, 100 ml abs. Äthanol und 0,25 ml konz. HCl wird 2 bis 3 Std. am Rückfluß gekocht, wobei man nach etwa 30 Min. weitere 3 g Paraformaldehyd zusetzt. Nach dem Erkalten wird das Hydrochlorid abgesaugt und mit Aceton gewaschen.
 β -Isoindolino-4-chlorpropiophenon-hydrochlorid
F 213 bis 215 °C (aus Äthanol oder Wasser)
 $C_{12}H_{11}Cl_2NO$ (322, 23); berechnet N 4,35%, gefunden N 4,47%.

Beispiel 2:

- Ein Gemisch von 39,33 g 5-Nitroisoindolin-sulfat, 44 g Aceton, 11,5 ml 40%iger Formaldehydlösung und 50 ml 25 Wasser wird 6 Std. am Rückfluß gekocht; nach Vertreiben des überschüssigen Acetons im Vakuum wird mit Äther überschichtet und unter guter Kühlung alkalisiert. Aus dem Ätherextrakt fällt man mit trockenem HCl-Gas das Hydrochlorid und kristallisiert aus Äthanol um.
4-(5-Nitroisoindolino)-butanon-(2)-hydrochlorid; Zers. ab

170 °C.

 $C_{15}H_{18}ClN_2O_3$ (270,72); berechnet N 10,35%, gefunden N 10,60%.

Beispiel 3:

Zur Lösung von 7,9 g α -Xylylenbromid in 20 ml Dimethylformamid tropft man unter Röhren bei Raumtemperatur das Gemisch von 4,5 g β -Aminopropiophenon, 5 ml Dimethylformamid und 12 ml Triäthylamin, wobei die Temperatur auf etwa 60 °C ansteigt; man röhrt noch 2 Std. bei 40 bis 60 °C, verdünnt mit Wasser auf 150 ml und extrahiert erschöpfend mit Benzol. Aus der benzolischen Lösung erhält man mit trockenem Chlorwasserstoff das Hydrochlorid, das aus wenig Äthanol/Aceton (3 : 1) umkristallisiert wird.

2-Isoindolinoäthyl-phenylketon-hydrochlorid; F.: 175 bis 177 °C.
 $C_{17}H_{18}ClNO$ (287,77); berechnet N 4,86%, gefunden N 4,74%.

Beispiel 4:

Zu 41,6 g Benzalacetophenon tropft man unter Röhren bei Raumtemperatur 24 g Isoindolin und erwärmt anschließend 2 Std. auf dem Dampfbad; nach dem Erkalten wird abgesaugt, mit Essigester gewaschen und umkristallisiert.

(2-Isoindolino-2-phenyläthyl)-phenylketon; F.: 124 bis 126 °C (aus Essigester) $C_{28}H_{21}NO$ (327,40)

C	H	N
---	---	---

berechnet	84,70	6,47	4,28
gefunden	84,37	6,48	4,51

Weitere Beispiele für Verfahrensprodukte der Formel I finden sich in der Tabelle.

Patentspruch:

- Verfahren zur Herstellung von β -Isoindolinoketonen der allgemeinen Formel (siehe Blatt I, Formeln I bis V), worin Y für ein Wasserstoffatom oder die Nitrogruppe, R_1 für ein Wasserstoffatom oder den Phenylrest, R_2 für Wasserstoff, Niederalkyl- oder Aryloxygruppen stehen und R_3 einen Alkyl-, Arylalkyl- oder substituierten oder unsubstituierten Aryl-Rest bedeutet, wobei R_2 und R_3 auch zu einem gesättigten, Isocyclischen Sechsring geschlossen sein können, dadurch gekennzeichnet, daß man entweder
- a) ein Isoindolin der Formel II, worin Y für Wasserstoff oder die Nitrogruppe steht, bei Temperaturen zwischen Raumtemperatur und 100 °C an ein α,β -ungesättigtes Keton der Formel III addiert oder, falls Y für Wasserstoff steht,
 - b) ein β -primäres Aminoketon der Formel IV in Dimethylformamid/Triäthylamin bei 60 bis 100 °C mit α -Xylylenchlorid oder -bromid zur Reaktion bringt oder, falls R_1 Wasserstoff bedeutet,
 - c) das Isoindolin der Formel II, worin Y für Wasserstoff oder die Nitrogruppe steht, mit einem Keton der Formel V, worin R_2 und R_3 die obengenannte Bedeutung haben, in Gegenwart einer Mineralsäure und Zusatz von Formaldehyd unter den Bedingungen der Mannich-Kondensation umsetzt.

Hierzu 1 Blatt Formeln, 1 Blatt Tabellen

Kl.: 12 p. 2

66 175

IPK.: C 07 d

(I)

(II)

(III)

(IV)

(V)

Tabelle:
Weitere Verfahrensprodukte der allgemeinen Formel I

Bei- spiel	Y	R ₁	R ₂	R ₃	Schmp. °C (Lösungsmittel)	Summenformel (Mol.-Gew.)	N-Best. ber./gef.
5	H	H	H	-CH ₃	165 bis 167 (Athanol/ Aceton)	C ₁₂ H ₁₆ CINO (225,71)	6,21 6,04
6	H	H	-CH ₃	-CH ₃	118 bis 120 (Aceton)	C ₁₃ H ₁₈ CINO (239,73)	5,84 5,87
7	H	H	-	(CH ₂) ₄	180 bis 183 (Athanol)	C ₁₅ H ₂₀ CINO (265,77)	5,27 5,30
8	-NO ₂	H	H	-C ₆ H ₅	270 (Zers.) (Wasser)	C ₁₁ H ₁₇ CIN ₂ O ₃ (332,79)	8,42 8,62
9	H	H	H	-C ₁₀ H ₇	169 bis 172 (Butanol)	C ₂₁ H ₂₀ CINO (337,83)	4,14 3,92
10	H	H	-CH ₃	-C ₆ H ₅	85 bis 86 (Petroläther)	C ₁₅ H ₁₈ NO (265,32)	5,28 4,95
11	H	H	H	-C ₆ H ₄ -p-OH	204 bis 208 (Wasser)	C ₁₇ H ₁₆ CINO ₂ (303,77)	4,61 4,70
12	H	H	H	-C ₆ H ₄ -p-OCH ₃	201 bis 205 (Wasser)	C ₁₈ H ₂₀ CINO ₂ (317,80)	4,41 4,10
13	H	H	H	-C ₆ H ₄ -p-OC ₆ H ₇	164 (Wasser)	C ₂₀ H ₂₄ CINO ₂ (345,86)	4,06 4,14
14	-NO ₂	H	H	-C ₆ H ₄ -p-OC ₆ H ₇	206 bis 208 (Wasser)	C ₂₀ H ₂₂ CIN ₂ O ₄ (390,86)	7,17 7,13
15	H	H	H	-C ₆ H ₄ -p-OC ₆ H ₉	148 (Wasser)	C ₂₁ H ₂₂ CINO ₂ (359,87)	3,90 3,78
16	H	H	H	-C ₆ H ₉ -3,4- (OCH ₃) ₂	195 bis 200 (Athanol)	C ₁₉ H ₂₂ CINO ₃ (347,83)	4,03 3,97
17	H	H	-OC ₆ H ₅	-C ₆ H ₅	163 bis 164 (Dioxan)	C ₂₃ H ₂₂ CINO ₃ (379,88)	3,69 3,47
18	H	H	-OC ₆ H ₄ p-Cl	-C ₆ H ₅	152 bis 153 (Essigester)	C ₂₃ H ₂₁ Cl ₂ NO ₂ (414,32)	3,38 3,59