POTENTIEL ET CHANIP ÉLECTROSTATIQUE

VRAI FAUX
En électrostatique, le champ électrique est à rotationnel nul.
Le signe – de la relation $\overline{E} = - \operatorname{grad}(V)$ traduit une irréversibilité.
Les lignes de champ de \overline{E} sont fermées.
Les fignes équipotentielles sont fermées.
La norme de \overline{E} augmente si les surface de potentiel se rapprochent.
L'équation locale qui lie le potentiel aux sources est $\Delta_M V = \frac{\rho(M)}{\epsilon_0}$.
Si l'équation de Laplace $\Delta V = 0$ est vérifiée, c'est qu'il n'y a pas de charge électrique dans l'espace, donc pas de champ électrique.
Le théorème de Gauss peut être utiliser en pratique quelque soit le problème electrostatique étudié :
Le champ électrique crée en M par une charge ponctuelle s'écrit $\overline{E}(M) = \frac{q}{4\pi\epsilon_0 r} \overline{e}_r(M)$.
Le champ électrique n'est pas continu à la traversée d'une surface.
Dans un conducteur à l'équilibre électrostatique, la densité volumique de charge est nulle car il n'y a aucune particule chargée.
La capacité d'un condensateur ne dépend que de sa géométrie et de la permittivité diélectrique de l'isolant qu'il contient.
La capacité d'un condensateur peut être négative suivant le choix de l'orientation du calcul de la différence de potentiel à ses bornes.
La dimension d'une capacité est L'.
La densité volumique de l'énergie électrique dans un condensateur de capacité C sous la
tension $U \operatorname{est} \frac{1}{2} C U^2$
L'énergie d'une particule de charge q en un point où le potentiel est V s'écrit $\frac{1}{2}qV$.

I-On place une particule ponctuelle de charge q au point A d'abscisse (-a) et une particule ponctuelle de charge 4q au point B d'abscisse b

Déterminer le rapport $\frac{a}{b}$ pour que le champ électrostatique soit nul en O. Quel est alors le potentiel en O?

Il-Calculer en tout point de l'espace le potentiel crée par la distribution volumique de charges suivante: $p(x) = + p_a$ pour 0 < x

≤ a et ρ(x) = − ρ₀ pour −a ≤ x < 0. On posera le potentiel en x = 0 égal à V₀. III-On assimile la Terre à une sphère de rayon R, de masse volumique ρ(r) (qui ne dépend que de la distance r au centre O de la

3 d

sphère). On note $\vec{H} = H(r)\vec{u}_r$ le champ de gravitation en un point situé à la distance r < R. En exprimant $\operatorname{div}(\vec{H})$, trouver l'expression de p(r) en fonction de r, $\vec{H}(r)$ et de $\operatorname{grad}(H)$.

Dans la base sphérique, on a
$$div(\bar{A}) = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 A_r) + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \theta} (\sin(\theta) A_\theta) + \frac{1}{r \sin(\theta)} \frac{\partial A_\phi}{\partial \phi}$$

IV-On considère un cylindre de rayon R et de longueur infinie. Il est chargé uniformément en volume avec une densité p. En utilisant l'équation de Laplace-Poisson calculer le potentiel électrostatique puis le champ en tout point de l'espace.

Dans la base cylindrique, on a
$$\Delta V = \frac{1}{r} \frac{d}{dr} \left(r \frac{dV(r)}{dr} \right)$$
 si $V(M)$ ne dépend que de r .

- V-1) On considère une coquille sphérique de centre O, de rayon R, d'épaisseur ε uniforme ($\varepsilon << R$) portant une densité volumique de charge uniforme ρ . Calculer $\tilde{E}(M)$ et V(M) en un point M quelconque extérieur à la sphère.
- 2) Pour modéliser une coquille d'épaisseur non uniforme, on considère une sphère pleine (de centre O et de rayon R) contenant une cavité de centre O et de rayon R telle que $||OO^*|| = 0.2 R$ et $R^* = 0.8 R$. On admet que la densité volumique de charge est toujours uniforme. Calculer $\bar{E}(M)$ et V(M) en un point quelconque de l'axe OO^* , extérieur à la coquille.
- 3) Quelle valeur faut-il donner à ε pour que la charge Q de la distribution étudiée à la question 1 soit la même que la distribution étudiée à la question 2? Comparer dans ce cas le potentiel crée par les deux distribution au point M tel que OM = R.

VI-Une distribution de charges crée en tout point M de l'espace le potentiel V(M) tel que :

$$V(M) = \frac{q}{4\pi\varepsilon_n} \frac{1}{r} \left(1 + \frac{r}{a}\right) e^{-\frac{2r}{a}}$$

où r est la distance de M à une origine fixe O. La charge q est positive.

- 1) Montrer que la distribution de charges est constituée d'une charge ponctuelle dont on déterminera la charge q_0 et d'une répartition 3D dont on déterminera la densité $\rho(M)$.
- 2) Ce modèle décrit la répartition de la charge de l'atome d'hydrogène dans son état fondamental. Quelles valeurs doit-on donner à q et a. Déterminer la charge négative Q' contenue dans la sphère de rayon a, 2a, 3a. (On rappelle la fonction d'onde de l'état 1s de l'atome

d'hydrogène :
$$\psi_{1s}(r) = \frac{1}{\sqrt{\pi}} \frac{1}{a_0^{3/2}} e^{-\frac{r}{a_0}}$$
 où $a_0 = 53$ pm). On notera q_e la charge électrique élémentaire.

3) Calculer le potentiel V_0 crée en O par les charges négatives.

Données: dans la base sphérique, pour un champ vectoriel $\bar{A} = A(r)\vec{u}_{\tau}$, on a $\operatorname{div}(\bar{A}) = \frac{1}{r^2} \frac{d(r^2 E(r))}{dr}$. Pour un champ scalaire f(r), on a $\Delta f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right)$

- VII-1) On considère une sphère fixe de centre O et de rayon R, contenant une charge Q répartie de manière uniforme dans le volume. On cherche à déterminer le vecteur champ électrostatique $\vec{E}(P)$ créé en un point P de l'espace situé à la distance r de O. On envisagera les cas r < R et r < R. On note ε_0 , la permittivité du vide.
- 2) On admet que l'énergie électrostatique d'une distribution de charge de densité volumique $\rho(M)$ est égale à $W = \frac{1}{2} \iiint_{\text{volume}} \rho(M) V(M) d\tau$, où V(M) est le potentiel au point M. Déterminer

l'expression de l'énergie W de la sphère précédente en fonction de Q, R et ε_0 .

3) On suppose qu'un opérateur extérieur amène lentement une charge Q ponctuelle d'une distance très grande (que l'on supposera infinie) à une distance r_1 de Q. Déterminer la valeur de r_i qui correspond à la distance telle que le travail dépensé par l'opérateur soit égal à l'énergie W déterminée dans la question précédente.