Geometria Analítica e Álgebra Linear

3 de dezembro de 2019

Sumário

	Sumário
1	Matrizes
1.1	Igualdade entre Matrizes
1.2	Tipos Especiais de Matrizes
1.2.1	Matriz Quadrada
1.2.2	Matriz Nula
1.2.3	Matriz Coluna
1.2.4	Matriz Linha
1.2.5	Matriz Diagonal
1.2.6	Matriz Identidade
1.2.7	Matriz Triângular Superior
1.2.8	Matriz Triângular Inferior
1.2.9	Matriz Simétrica
1.2.10	Matriz Antissimétrica
1.3	Operações com Matrizes
1.3.1	Adição
1.3.1.1	Propriedades da Adição
1.3.2	Multiplicação por Escalar
1.3.2.1	Propriedades da Multiplicação por Escalar
1.3.3	Transposição
1.3.3.1	Propriedades da Transposição
1.3.4	Multiplicação de Matrizes

1.3.4.1	Propriedades da Multiplicação de Matrizes
1.3.5	Diferença entre Matrizes
1.3.6	Potenciação
2	Determinantes
2.1	Propriedades dos Determinantes
2.2	Cálculo dos Determinantes
2.2.1	Matriz 2 x 2
2.2.2	Regra de Sarrus
2.2.3	Desenvolvimento de Laplace
3	Operações Elementares
3.1	Permutação
3.2	Multiplicação
3.3	Substituição
4	Processo de Triangularização
5	Forma Escada
6	Matriz Inversa
6.1	Propriedades da Inversa
6.2	Matriz Adjunta
6.3	Matriz Elementar
6.4	Procedimento para Inversão de Matrizes
7	Sistemas Lineares
7.1	Matrizes Associadas a um Sistema Linear
7.2	Solução de um Sistema Linear
7.3	Classifiçação de um Sistema Linear
7.4	Sistema Homogêneo
8	Métodos de Resolução de Sistemas Lineares
8.1	Método de Gauss
8.2	Método de Gauss-Jordan
8.3	Posto e Nulidade de uma Matriz
8.4	Método da Matriz Inversa e Regra de Cramer
9	Retas no Espaço
10	Equações do Plano
11	Posições Relativas entre Retas no Espaço
12	Equações Paramétricas do Plano
13	Ângulos
13.1	Ângulos Entre Retas
13.2	Ângulos Entre Planos
14	Distâncias
14.1	Distância de um Ponto a uma Reta

14.2	Distância de um Ponto a um Plano	
14.3	Distância Entre Dois Planos	
14.4	Distância Entre Duas Retas	
15	Espaços Vetoriais	
15.1	Propriedades	
16	Subespaços Vetoriais	
17	Combinação Linear, Espaços Finitamente Gerados	
18	Dependência e Independência Linear	
18.1	Propriedades	
19	Base de um Espaço Vetorial	
20	Mudança de Base	
20.1	Matriz de Mudança de Base	
21	Produto Interno	
21.1	Propriedades	
22	Coeficientes de Fourier	
22.1	Propriedades	
23	Processo de Ortogonalização de Gram - Schmidt 53	
24	Mudança de Coordenadas	
25	Rotação	
26	Translação	
27	Diagonalização de Matrizes	
27.1	Propriedades	
28	Cônicas	
29	Superfície Cilíndrica	
30	Superfície Cônica	
31	Aplicação da Diagonalização na Identificação de Cônicas e Quá-	
	dricas	
32	dricas	
32 33		
	Núcleo e Imagem de uma Transformação Linear 71	
33	Núcleo e Imagem de uma Transformação Linear 71 Teorema do Núcleo e da Imagem 73	
33 34	Núcleo e Imagem de uma Transformação Linear71Teorema do Núcleo e da Imagem73Isomorfismos74	

1 Matrizes

Uma matriz A, $m \times n$, é uma tabela de $m \times n$ elementos dispostos em m linhas e n colunas.

$$A_{m \times n} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = [a_{ij}]_{m \times n}$$

- Usamos sempre letras maiúsculas para representar uma matriz;
- Se quisermos representar a ordem de uma matriz (número de linhas e colunas) usa se $A_{m \times n}$;
- Se os elementos de uma matriz A forem números reais, dizemos que $A \in M_{m \times n}(\mathbb{R})$.

1.1 Igualdade entre Matrizes

Dizemos que duas matrizes $A = (a_{ij})_{m \times n} \ e \ B = (b_{ij})_{p \times q}$ são iguais se:

- Os números de linhas (m e p) e os números de colunas (n e q) forem iguais. Ou seja, $m=p\ e\ n=q;$
- Todos os itens são iguais ao da sua respectiva posição ($a_{ij} = b_{ij}$, para todo i e j).

$$\begin{bmatrix} 2^4 & \log 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 16 & 0 \\ sen\frac{\Pi}{2} & \cos\frac{3\Pi}{2} \end{bmatrix}$$

1.2 Tipos Especiais de Matrizes

1.2.1 Matriz Quadrada

• é aquela cujo número de linhas é igual ao número de colunas.

Exemplo.

$$A = \underbrace{\begin{bmatrix} 0 & 2 \\ -1 & 4 \end{bmatrix}}_{A \in M_{2 \times 2}(\mathbb{R})}, B = \underbrace{\begin{bmatrix} 1 & 5 & -3 \\ 0 & 7 & -1 \\ -3 & 2 & 4 \end{bmatrix}}_{B \in M_{3 \times 3}(\mathbb{R})}$$

1.2.2 Matriz Nula

 \bullet é aquela cujo todos os elementos são nulos - ou seja, 0.

Exemplo.

$$A = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right], \ B = \left[\begin{array}{cc} 0 & 0 \end{array} \right]$$

1.2.3 Matriz Coluna

• é aquela que só contém uma coluna.

Exemplo.

$$A = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 23 \end{bmatrix}$$

1.2.4 Matriz Linha

• é aquela que só contém uma linha.

Exemplo.

$$A = \begin{bmatrix} -1 & -3 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

1.2.5 Matriz Diagonal

• é uma matriz quadrada onde todos os números fora da diagonal principal são nulos - ou seja, $a_{ij} = 0$, com $i \neq j$.

Exemplo.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \ B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

1.2.6 Matriz Identidade

• é uma matriz quadrada em que a diagonal principal é igual a 1 e todos os outros elementos são nulos - ou seja, $a_{ij} = 1$ e $a_{ij} = 0$ para $i \neq j$.

Exemplo.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

1.2.7 Matriz Triângular Superior

• é uma matriz quadrada onde todos os elementos abaixo da diagonal principal são nulos - ou seja $a_{ij} = 0$ para i > j.

Exemplo.

$$A = \begin{bmatrix} 2 & -1 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$$

1.2.8 Matriz Triângular Inferior

• é uma matriz quadrada onde todos os elementos abaixo da diagonal principal são nulos - ou seja $a_{ij} = 0$ para i < j.

Exemplos

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 5 & 0 \\ 2 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

1.2.9 Matriz Simétrica

• é uma matriz quadrada onde todos os elementos espelhados são iguais - ou seja $a_{ij}=a_{ji}$ para todo $i\ e\ j.$

Exemplos

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & 5 \\ -1 & 5 & 3 \end{bmatrix}$$

1.2.10 Matriz Antissimétrica

• é uma matriz quadrada onde todos os elementos espelhados são opostos - ou seja $a_{ij} = -a_{ji}$ para todo $i \ e \ j$.

Exemplos

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & -1 \\ -2 & 1 & 0 \end{bmatrix}$$

Note que, na matriz antissimétrica, a diagonal principal é sempre nula.

1.3 Operações com Matrizes

1.3.1 Adição

• a soma de duas matrizes de mesma ordem é uma matriz C obtida somando - se os elementos correspondentes de A e B, ou seja $C_{ij} = A_{ij} + Bij$, para todo i e j.

Exemplos

$$A = \begin{bmatrix} 1 & 4 & -3 \\ 2 & 3 & 0 \end{bmatrix}, B = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 5 & 4 \end{bmatrix}$$

$$C = A + B = \begin{bmatrix} 1 + (-1) & 4 + 0 & -3 + 1 \\ 2 + (-2) & 3 + 5 & 0 + 4 \end{bmatrix} = \begin{bmatrix} 0 & 4 & -2 \\ 0 & 8 & 4 \end{bmatrix}$$

1.3.1.1 Propriedades da Adição

• Comutatividade: A + B = B + A

• Associatividade: A + (B + C) = (A + B) + C

• Elemento Neutro: $A + 0_{m \times n} = A$

1.3.2 Multiplicação por Escalar

a multiplicação de uma matriz A_{m×n} por um escalar (número) k é definida pela matriz B = A × k, obtida multiplicando cada elemento da matriz A pelo escalar k
ou seja B_{ij} = A_{ij} × k, para todo i e j.

Exemplos

$$A = \begin{bmatrix} -2 & 0 & 4 \\ 1 & 3 & -1 \end{bmatrix}, \ k = -2$$

$$C = A + B = \begin{bmatrix} -2 \times -2 & 0 \times -2 & 4 \times -2 \\ 1 \times -2 & 3 \times -2 & -1 \times -2 \end{bmatrix} = \begin{bmatrix} 4 & 0 & -8 \\ -2 & -6 & 2 \end{bmatrix}$$

1.3.2.1 Propriedades da Multiplicação por Escalar

• Distributividade: k(A+B) = kA + kB

• Distributividade: $(k_1 + k_2) \cdot A = k_1 A + k_2 A$

• Elemento Nulo: $0 \cdot A = 0_{m \times n}$

• Associatividade: $k_1 \cdot (k_2 \cdot A) = (k_1 \cdot k_2) \cdot A$

1.3.3 Transposição

• Dada uma matriz $A = (a_{ij})_{m \times n}$, podemos obter uma outra matriz $A^T = (b_{ij})_{n \times m}$ cujas linhas serão as colunas da matriz A, isto é, $b_{ij} = a_{ji}$ para todo $i \in j$.

Exemplo.

$$A = \begin{bmatrix} 1 & 0 \\ -1 & 2 \\ 3 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}, C = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 2 & -1 \end{bmatrix}, B^{T} = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}, C^{T} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

1.3.3.1 Propriedades da Transposição

- Uma matriz A é **simétrica** se, e somente se, ela for igual a sua transposta. Ou seja, $A = A^T$
- Uma matriz é antissimétrica se, e somente se, ela for igual ao oposto da sua transposta. Isso é, se $A=A^T$
- $\bullet \ (A^T)^T = A$
- $\bullet (A+B)^T = A^T + B^T$
- $\bullet \ (k \times A)^T = k \times A^T$

1.3.4 Multiplicação de Matrizes

• Sejam $A = (a_{ij})_{m \times n}$ e $B = (b_{ij})_{n \times p}$. Definitions $AB = (C_{uv})_{m \times p}$, onde $C_{uv} = \sum_{k=1}^{n} a_{uk} \times b_{vk}$

Observações:

- Só podemos efetuar o produto de duas matrizes $A_{m \times n}$ e $B_{l \times p}$ se o número de colunas da primeira for igual ao número de linhas da segunda, isto é, n = l. Além disso, a matriz resultante C = AB terá ordem $m \times p$.
- O elemento C_{ij} é obtido multiplicando os elementos correspondentes da i ésima linha da primeira matriz pelos elementos correspondentes da j ésima coluna da segunda matriz, e somando esses produtos.

Exemplos

$$A = \begin{bmatrix} 2 & 0 \\ 1 & -1 \\ 3 & 2 \end{bmatrix}_{3 \times 2}, \ B = \begin{bmatrix} -1 & 0 \\ 1 & 1 \end{bmatrix}_{2 \times 2}$$

$$A = \begin{bmatrix} 2 \times (-1) + 0 \times 1 & 2 \times 0 + 0 \times 1 \\ 1 \times (-1) + (-1) \times 1 & 1 \times 0 + 1 \times 1 \\ 3 \times (-1) + 2 \times 1 & 3 \times 0 + 2 \times 1 \end{bmatrix}_{3 \times 2} = \begin{bmatrix} -2 & 0 \\ -2 & -1 \\ -1 & 2 \end{bmatrix}_{3 \times 2}$$

$$A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}_{2\times 2}, B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}_{2\times 2}$$
$$A = \begin{bmatrix} 1 \times 0 + 2 \times 1 & 1 \times 1 + 2 \times 2 \\ 0 \times 0 + (-1) \times 1 & 0 \times 1 + (-1) \times 2 \end{bmatrix}_{2\times 2} = \begin{bmatrix} 2 & 5 \\ -1 & -2 \end{bmatrix}_{2\times 2}$$

1.3.4.1 Propriedades da Multiplicação de Matrizes

- Em geral, $AB \neq BA$, podendo até mesmo um dos produtos estar definido e o outro não
- $A \times I_n = I_n \times A$, para toda matriz $A_{m \times n}$
- Distributividade: $A(B+C) = A \times B + A \times C$
- $(A \times B)^T = B^T \times A^T$ (Observação: A ordem importa)
- Associatividade: $(A \times B) \times C = A \times (B \times C)$

1.3.5 Diferença entre Matrizes

• É dada para duas matrizes de mesma ordem, onde A - B = A + (-B)

1.3.6 Potenciação

• Seja A uma matriz quadrada $n \times n$ e p um número inteiro positivo, define - se $\underbrace{A^p = A \times A \times \cdots \times A}_{p \ vezes}$

2 Determinantes

Definição: O determinante da matriz **quadrada** $A = (a_{ij})_{n \times n} |A| = det(A) = \sum_{p} (-1)^{J} a_{1j_1} \times a_{2j_2} \times \cdots \times a_{nj_n}$

Observações:

- Em cada termo do somatório existe um, e somente um, elemento de cada linha; e um, e somente um, elemento de cada coluna.
- Também é possível definir o determinante de A variando o j nas linhas.

2.1 Propriedades dos Determinantes

- $det(A) = det(A^T)$
- Se multiplicarmos uma linha (ou coluna) por uma constante, o determinante da matriz fica multiplicado por essa constante. Ou seja, $det(B) = k \times det(A)$
- Se A é uma matriz de ordem n, então $det(kA) = k^n det(A)$
- Uma vez trocadas de posição duas linhas (ou colunas), o determinante troca de sinal.
- O determinante de uma matriz triangular é igual à multiplicação dos elementos da diagonal principal.
- O determinante de uma matriz que tem todos os elementos de uma linha (ou coluna) iguais a 0, é igual a 0.
- O determinante de uma matriz que tem duas linhas (ou colunas) iguais é igual a 0.
- O determinante de uma matriz que tem duas linhas (ou colunas) proporcionais é igual a 0. Exemplo:

$$\left[\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 4 & 0 \\
2 & 4 & 6
\end{array}\right]$$

Neste exemplo, a linha 3 é a linha 1 multiplicada por 2. Logo, o determinante da matriz é 0.

•

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ c_{i1} & c_{i2} & \cdots & c_{in} \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ b_{i1} + c_{i1} & b_{i2} + c_{i2} & \cdots & b_{in} + c_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

- O determinante de uma matriz não se altera se sormarmos uma linha a outra multiplicada por uma constante.
- $det(AB) = det(A) \times det(B)$

2.2 Cálculo dos Determinantes

Existem diversas técnicas para cálculo dos determinantes, mostradas abaixo.

2.2.1 Matriz 2 x 2

O determinante de uma matriz 2×2 é dado pelo produto dos termos da diagonal principal menos o produto dos termos da diagonal secundária.

Exemplos

$$det(A) = \begin{vmatrix} 6 & 9 \\ 2 & 5 \end{vmatrix} = 6 \times 9 - 2 \times 5 = 44$$

$$det(B) = \begin{vmatrix} 2 & 9 \\ -1 & 6 \end{vmatrix} = 2 \times 6 - 9 \times -1 = 21$$

2.2.2 Regra de Sarrus

Consiste em duplicar as duas primeiras colunas da matriz a sua direita, e fazer a soma dos produtos da diagonal principal e suas paralelas, menos a soma dos produtos de sua diagonal secundária e suas paralelas. Atenção: A Regra de Sarrus só funciona para $\mathbf{matrizes}\ 3 \times 3$.

Exemplos

$$det(A) = \begin{vmatrix} 1 & 5 & -2 & 1 & 5 \\ 8 & 3 & 0 & 8 & 3 \\ 4 & -1 & 2 & 4 & -1 \end{vmatrix}$$

$$= 1 \times 3 \times 2 + 5 \times 0 \times 4 + (-2) \times 8 \times (-1) - (-2) \times 3 \times 4 + 1 \times 0 \times (-1) + 5 \times 8 \times 2$$
$$= 6 + 0 + 16 - (-24) - 0 - 80$$
$$= 22 - 56 = -34$$

2.2.3 Desenvolvimento de Laplace

Seja $\Delta_{ij} = (-1)^{i+j} |A_{ij}|$, chamado de cofator, e onde A_{ij} é uma submatriz da inicial, de onde a i-ésima e a j-ésima coluna foram retiradas. Logo, podemos definir $det(A) = \sum_{j=1}^{n} a_{ij} \times \Delta_{ij}$

Exemplos

Calcule o determinante de A utilizando o desenvolvimento de Laplace pela 2ª coluna.

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix}$$

$$det(A) = 3 \times (-1)^{1+2} \times 1 + 1 \times (-1)^{2+2} \times 2$$

$$det(A) = -3 + 2$$

$$det(A) = -1$$

Calcule o determinante da matriz B utilizando o desenvolvimento de Laplace pela segunda linha.

$$B = \left[\begin{array}{rrr} 1 & -2 & 3 \\ 2 & 1 & 1 \\ -2 & -1 & -2 \end{array} \right]$$

$$det(B) = 2 \times (-1)^{2+1} \times \begin{vmatrix} -2 & 3 \\ -1 & -2 \end{vmatrix} + 1 \times (-1)^{2+2} \times \begin{vmatrix} 1 & 3 \\ -2 & -2 \end{vmatrix} + 1 \times (-1)^{2+3} \times \begin{vmatrix} 1 & -2 \\ -2 & -1 \end{vmatrix}$$
$$det(B) = -2(4+3) + 1(-2+6) - 1(-1-4)$$
$$det(B) = -2 \times 7 + 4 + 5$$
$$det(B) = -5$$

Calcule o determinante da matriz

$$C = \left[\begin{array}{cccc} 1 & 2 & -1 & 0 \\ 0 & 1 & 3 & -1 \\ 0 & 0 & 5 & -4 \\ 0 & 0 & 0 & -2 \end{array} \right]$$

Utilizando o desenvolvimento de Laplace pela 4ª linha, obtemos:

$$det(C) = -2 \times (-1)^{4+4} \begin{vmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 5 \end{vmatrix}$$

Utilizando o desenvolvimento de Laplace pela 3^a linha, temos:

$$det(C) = -2\left(5 \times (-1)^{2+2} \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}\right)$$
$$det(C) = -10$$

3 Operações Elementares

São três as operações elementares sobre as linhas de uma matriz.

3.1 Permutação

Permutação da i - ésima linha pela j - ésima linha da matriz $(L_i \leftrightarrow L_j)$

Exemplo

$$\begin{bmatrix} 1 & 0 \\ -2 & -2 \\ 3 & 5 \end{bmatrix} L_1 \underset{\rightarrow}{\leftrightarrow} L_3 \begin{bmatrix} -2 & -4 \\ 1 & 0 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 5 \\ 1 & 0 \\ -2 & -4 \end{bmatrix}$$

3.2 Multiplicação

Multiplicação a i - ésima linha por um escalar não nulo k $(L_i \to kL_i)$

Exemplo

$$\begin{bmatrix} 1 & 0 \\ -2 & -4 \\ 3 & 5 \end{bmatrix} L_1 \to -3L_1 \begin{bmatrix} -3 & 0 \\ -2 & -4 \\ 3 & 5 \end{bmatrix}$$

3.3 Substituição

Subsituição da i - ésima linha pela i - ésima linha mais k vezes a j - ésima linha $(L_i \to L_i + kL_j)$

Exemplo

$$\begin{bmatrix} 1 & 0 \\ -2 & -4 \\ 3 & 5 \end{bmatrix} L_2 \to L_2 + 2L_1 \begin{bmatrix} 1 & 0 \\ 0 & -4 \\ 3 & 5 \end{bmatrix}$$

4 Processo de Triangularização

O cálculo do determinante de uma matriz quadrada pode ser realizado utilizando - se operações elementares sobre as linhas da matriz. Tal método consiste em encontrar uma matriz triângular equivalente por lihas à matriz dada respeitando - se as propriedades dos deerminantes. O determinante de uma matriz triângular é o produto dos elementos da diagonal principal. Observe que:

- $L_i \leftrightarrow L_j$: determinante troca de sinal
- $L_i \to kL_i$: determinante fica multiplicado pela constante k.
- $L_i \to L_i + kL_j$: não muda o determinante

Exemplos

a) Calcule o determinante da matriz dada usando o processo de Triangularização

$$\begin{bmatrix} 2 & -4 & 8 \\ 5 & 4 & 6 \\ -3 & 0 & 2 \end{bmatrix} L_2 \to 1/2 L_1 \begin{bmatrix} 1 & -2 & 4 \\ 5 & 4 & 6 \\ -3 & 0 & 2 \end{bmatrix} L_2 \to -5 L_1 + L_2 \begin{bmatrix} 1 & -2 & 4 \\ 0 & 14 & -14 \\ -3 & 0 & 2 \end{bmatrix}$$

$$L_{3} \to 3L_{1} + L_{3} \begin{bmatrix} 1 & -2 & 4 \\ 0 & 14 & -14 \\ 0 & -6 & 14 \end{bmatrix} L_{2} \to 1/14L_{2} \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & -6 & 14 \end{bmatrix} L_{3} \to 6L_{2} + L_{3} \begin{bmatrix} 1 & -2 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 8 \end{bmatrix}$$

Utilizando as propriedades de determinantes, temos que

$$det(A_1) = 1/2det(A); \ det(A_2) = det(A_1); \ det(A_3 = det(A_2);$$
$$det(A_4) = 1/14det(A_3); \ det(B) = det(A_4))$$
$$det(A) = 2det(A_1) = 2det(A_2) = 2det(A_3) = 2 \times 14det(A_4) = 2 \times 14det(B) = 2 \times 14 \times 8$$
$$det(A) = 28 \times 8 = 224$$

5 Forma Escada

Definição: Uma matriz $m \times n$ é linha reduzida à forma escada se:

- 1. o primeiro elemento não nulo de uma linha não nula, chamado pivô, é 1
- 2. cada coluna que contém o pivô de uma linha tem todos os elementos iguais à zero
- 3. toda linha nula ocorre abaixo de todas as linhas não nulas
- 4. o pivô de uma linha está à direita do pivô da linha anterior

Exemplos

$$A = \left[\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right]$$

não é linha reduzida à forma escada pois a condição 2 não se verifica. Observe que na coluna do pivô da terceira linha existe um elemento não nulo, o -1;

$$B = \left[\begin{array}{rrr} 0 & 2 & 1 \\ 1 & 0 & -3 \\ 0 & 0 & 0 \end{array} \right]$$

não é linha reduzida à forma escada pois as condições 1 e 4 não se verificam. Observe o primeiro elemento não nulo da primeira linha é o número 2 e que o pivô da segunda linha está a esquerda do pivô da primeira.

$$C = \left[\begin{array}{ccccc} 0 & 1 & -3 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

é linha reduzida à forma escada.

6 Matriz Inversa

Definição: Uma matriz quadrada $A = (a_{ij})_{n \times n}$ é invertível ou não - singular se existe $B = (b_{ij})_{n \times n}$ tal que $A \times B = B \times A = I_n$, em que I_n é a matriz identidade de ordem n. A matriz B é a inversa da matriz A. Se A não tem inversa, dizemos que A é não invertível ou singular.

Teorema: Se uma matriz $A = (a_{ij})_{n \times n}$ tem inversa, então a inversa é única. **Demonstração:** Suponhamos que B e C sejam inversas de A. Então:

$$A \times B = B \times A = I_n \ e \ A \times C = C \times A = I_n$$
$$B = B \times I_n = B \times (A \times C) = (B \times A) \times C = I_n \times C = C$$

Denotamos a inversa de A por A^{-1}

6.1 Propriedades da Inversa

- 1. Se A é invertível, então A^{-1} também é invertível $(A^{-1})^{-1} = A$
- 2. Se $A=(a_{ij})_{n\times n}$ e $B=(b_{ij})_{n\times n}$ são matrizes invertíveis, então $A\times B$ também é invertível e $(A\times B)^{-1}=B^{-1}\times A^{-1}$
- 3. Se $A=(a_{ij})_{n\times n}$ é invertível, então A^T também é invertível $(A^T)^{-1}=(A^{-1})^T$

Teorema: Sejam A e B matrizes de ordem n

- 1. Se $B \times A = I_n$, então $A \times B = I_n$
- 2. Se $A \times B = I_n$, então $B \times A = I_n$

6.2 Matriz Adjunta

Definição: Dada uma matriz quadrada A e calculados seus cofatores, podemos formar uma nova matriz $\bar{A} = cof(A) = [\Delta_{ij}]_{n \times n}$

Exemplo:

$$A = \left[\begin{array}{rrr} 2 & 1 & 0 \\ -3 & 1 & 4 \\ 1 & 6 & 5 \end{array} \right]$$

$$\Delta_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 4 \\ 6 & 5 \end{vmatrix} = 5 - 24 = -19$$

$$\Delta_{12} = (-1)^{1+2} \begin{vmatrix} -3 & 4 \\ 1 & 5 \end{vmatrix} = -(-15 - 4) = 19$$

$$\Delta_{13} = (-1)^{1+3} \begin{vmatrix} -3 & 1 \\ 1 & 6 \end{vmatrix} = -18 - 1 = -19$$

$$\Delta_{21} = (-1)^{2+1} \begin{vmatrix} 1 & 0 \\ 6 & 5 \end{vmatrix} = -(5 + 0) = -5$$

$$\Delta_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 0 \\ 1 & 5 \end{vmatrix} = 10 + 0 = 10$$

$$\Delta_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 1 \\ 1 & 6 \end{vmatrix} = -(12 - 1) = -11$$

$$\Delta_{31} = (-1)^{3+1} \begin{vmatrix} 1 & 0 \\ 1 & 4 \end{vmatrix} = 4 + 0 = 4$$

$$\Delta_{32} = (-1)^{3+2} \begin{vmatrix} 2 & 0 \\ -3 & 4 \end{vmatrix} = -(8 + 0) = -8$$

$$\Delta_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 1 \\ -3 & 1 \end{vmatrix} = 2 - 3 = -1$$

Logo,

$$\bar{A} = \begin{bmatrix} -19 & 19 & -19 \\ -5 & 10 & -11 \\ 4 & -8 & -1 \end{bmatrix}$$

Definição: Dada uma matriz quadrada A, chamaremos de matriz adjunta de A a transposta da matriz dos cofatores de A:

$$adj(A) = (\bar{A})^T$$

No exemplo anterior,

$$adj(A) = (\bar{A})^T = \begin{bmatrix} -19 & -5 & 4\\ 19 & 10 & -8\\ -19 & -11 & -1 \end{bmatrix}$$

Teorema: $A \times (\bar{A})^T = A \times adj(A) = \det(A)I_n$ se $\det(A) \neq 0$ temos:

$$A \times \left[\frac{1}{\det(A)} \times adj(A)\right] = I_n.$$

Como a inversa de uma matriz é única, segue que:

$$A^{-1} = \frac{1}{\det(A)} \times adj(A).$$

Exemplo:

$$A = \begin{bmatrix} 6 & 2 \\ 11 & 4 \end{bmatrix}$$

$$\det(A) = \begin{vmatrix} 6 & 2 \\ 11 & 4 \end{vmatrix} = 24 - 22 = 2 \neq 0$$

$$\Delta_{11} = (-1)^{1+1} \cdot 4 = 4$$

$$\Delta_{12} = (-1)^{1+1} \cdot 11 = -11$$

$$\Delta_{21} = (-1)^{2+1} \cdot 2 = -2$$

$$\Delta_{22} = (-1)^{2+2} \times 6 = 6$$

$$\bar{A} = \begin{bmatrix} 4 & -11 \\ -2 & 6 \end{bmatrix}$$

$$adj(A) = \bar{A}^T = \begin{bmatrix} 4 & -2 \\ -11 & 6 \end{bmatrix}$$

$$A^{-1} = \frac{1}{\det(A)} \times adj(A) = \frac{1}{2} \begin{bmatrix} 4 & -2 \\ -11 & 6 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -\frac{11}{2} & 3 \end{bmatrix}.$$

6.3 Matriz Elementar

Cada operação sobre as linhas de uma matriz corresponde a uma multiplicação dessa matriz por uma matriz especial.

Exemplos:

$$A = \left[\begin{array}{rrr} 1 & 0 & -1 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{array} \right]$$

a) Multiplicando a primeira linha de A por 3, obtemos:

$$\begin{bmatrix} 3 & 0 & -3 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{bmatrix}$$

b) Ao trocarmos a segunda e terceira linhas de A, obtemos:

$$\begin{bmatrix} 1 & 0 & -1 \\ 3 & 1 & -5 \\ 2 & 1 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{bmatrix}$$

c) Ao somarmos a primeira linha de A a segunda multiplicada por -2, obtemos:

$$\begin{bmatrix} 3 & -2 & 7 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{bmatrix} = \begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & -4 \\ 3 & 1 & -5 \end{bmatrix}$$

Observando estes exemplos, vemos que aplicar uma operação elementar sobre as linhas da matriz A é o mesmo que aplicar esta operação na matriz identidade e, em seguida, multiplicar essa nova matriz por A.

Definição: Uma matriz elementar é uma matriz obtida da matriz identidade I através de uma operação elementar com linhas.

Teorema: Sejam uma matriz elementar $E_{m\times n}$ e uma matriz qualquer $A_{m\times n}$, então $E\times A$ é igual a matriz obtida aplicando - se na matriz A a mesma operação elementar que originou E.

Corolário: Uma matriz elementar E_1 é invertível e sua inversa é uma matriz E_2 , que corresponde à operação com linhas inversa da operação efetuada por E_1 .

6.4 Procedimento para Inversão de Matrizes

Teorema: Se A é uma matriz invertível, sua matriz linha reduzida à forma escada é a matriz identidade; além disso, A é um produto de matrizes elementares.

Teorema: Se uma matriz A pode ser reduzida à uma matriz identidade por uma sequêndia de operações elementares com linha, então A é invertível e a matriz inversa de A é obtida a partir da matriz identidade, aplicando - se a mesma sequência de operações com linhas.

Sendo assim **para obtermos a inversa de A**, operamos simultaneamente com as matrizes A e I, através de operações elementares, até chegarmos à matriz identidade I na posição correspondente a A. A matriz obtida no lugar correspondente à matriz I será a inversa de A.

$$(A|I) \to (I|A).$$

Sistemas Lineares

Definição 1. Uma equação linear em n variáveis x_1, x_2, \dots, x_n é uma equação da forma $a_1x_1 + a_2x_2 + \dots + a_nx_n = b$ em que a_1, a_2, \dots, a_n são constantes.

Exemplo.

$$2x + 3y + 9t = 0$$

é uma equação linear nas variáveis x, y, t.

Observação. • Quando o termo independente b for nulo trata - se de uma equação linear homogênea

- Toda equação linear tem expoentes de todas as incógnitas iguais a 1
- Uma equação linear não apresenta termos mistos (xy, xz, \cdots)

Definição 2. Uma sequência ordenada ou n - upla dos números reais $\alpha_1, \alpha_2, \dots, \alpha_n$ é a solução da equação $a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$ se, e somente se, a equação $a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n = b$ for verdadeira.

Exemplo. O par ordenado (-1,2) é a solução da equação 2z + y = 0, pois

$$2(-1) + 2 = 0.$$

Definição 3. Um sistema de equações lineares (ou sistema linear) é um conjunto de equações lineares nas mesmas variáveis, isto é, um conjunto da forma

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\ \vdots + \vdots &+ \ddots + \vdots &= \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{n3}x_3 &= b_n \end{cases}$$

7.1 Matrizes Associadas a um Sistema Linear

O sistema linear da definição anterior pode ser escrito como uma equação matricial AX=B em que

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

A matriz A é chamada de matriz associada ao sistema ou matriz dos coeficientes e B é a matriz dos termos independentes. Outra matriz que também podemos

associar a um sistema é:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{bmatrix}.$$

a qual chamamos de matriz ampliada ou matriz aumentada do sistema

7.2 Solução de um Sistema Linear

Uma sequência ordenada ou uma n-upla ordenada de números reais $(\alpha_1, \alpha_2, cdots, \alpha_n)$ é a solução de um sistema linear quando é a solução de cada uma das equações do sistema. **Exemplo:**

O sistema

$$\begin{cases} x + 2y = 1 \\ 2x + y = 0 \end{cases}$$

admite como solução o par ordenado $\left(-\frac{1}{3},\frac{2}{3}\right)$ pois esse par verifica cada uma das equações.

7.3 Classifiçação de um Sistema Linear

Consideremos um sistema linear de m equações e n incógnitas cujos coeficientes a_{ij} e termos constantes b_k são números reais, esse sistema poderá ter

- 1. Uma única solução: Sistema Possível e Determinado (SPD) ($\det \neq 0$)
- 2. Infinitas soluções: Sistema Possível e Indeterminado (SPI) ($\det = 0$)
- 3. Nenhuma solução: Sistema Impossível (SI) (det principal = 0t e det secundário $\neq 0$)

7.4 Sistema Homogêneo

Um sistema linear é dito homogêneo quando os termos independentes de cada equação são iguais a zero. O sistema homogêneo sempre tem solução, pois a solução é nula ou trivial.

$$x_1 = x_2 = \dots = x_n = 0.$$

Em particular, se um sistema linear homogêneo possui uma solução não nula, ele possui infinitas soluções.

8 Métodos de Resolução de Sistemas Lineares

Teorema: Se dois sistemas lineares AX = B e CX = D são tais que a matriz [C|D] é obtida de [A|B] aplicando - se operações elementares, então os dois sistemas possuem a mesma solução.

Dois sistemas que possuem o mesmo número de soluções são chamados de **sistemas** equivalentes.

8.1 Método de Gauss

Consiste em reduzir a matriz ampliada do sistema, por linha equivalência, a uma matriz que só é diferente da linha reduzida à forma escada na condição dois, que passa a ser: Cada coluna que contém o pivô de uma linha não nula tem todos os elementos abaixo dessa linha iguais a zero.

Uma vez reduzida a matriz ampliada a essa forma, a solução final do sistema é obtida por substituição.

8.2 Método de Gauss-Jordan

Consiste em se reduzir a matriz ampliada do sistema, por linha equivalência, a uma matriz reduzida a forma escada.

8.3 Posto e Nulidade de uma Matriz

Dada uma matriz $A_{m \times n}$, seja $B_{m \times n}$ a matriz linha reduzida a forma escada da linah equivalente a A. O Posto de A, denotado por p, é o número de linhas não nulas de B. A Nulidade de A é o número n - p.

- **Teorema 1.** 1. Um sistema com m equações e n incógnitas admite solução se, e somente se, a posto da matriz ampliada é igual ao posto da matriz dos coeficientes.
 - 2. Se as matriz têm o mesmo posto p e n=p, então a solução será única
 - 3. Se as duas matrizes têm o mesmo posto p e n > p, podemos escolher n p incógnitas e outras p incógnitas serão dadas em função destas.

Observações:

- 1. Se pc = pa, denotamos o posto por p
- 2. No caso 3, dizemos que o grau de liberdade do sistema é n-p

8.4 Método da Matriz Inversa e Regra de Cramer

Método utilizado para resolver sistemas lineares em que o número de equações é igual ao número de incógnitas.

Suponhamos que desejássemos resolver o sistema linear de n equações e n incógnitas

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots + \vdots + \cdots + \vdots = \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Que equivale a

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Se $det(A) \neq 0$, A é invertível e, em forma matricial

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Ou, ainda

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \frac{1}{\det(A)} \begin{bmatrix} \Delta_{11} & \Delta_{12} & \cdots & \Delta_{1n} \\ \Delta_{21} & \Delta_{22} & \cdots & \Delta_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{n1} & \Delta_{n2} & \cdots & \Delta_{nn} \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Daí,

$$x_1 = \frac{b_1 \Delta_{11} + b_2 \Delta_{22} + \dots + b_n \Delta_{nn}}{\det(A)}.$$

Note que o numerador é igual ao determinante da matriz obtida de A substituindo-se a primeira coluna pela matriz dos termos independentes B.

$$x_1 = \frac{\begin{vmatrix} b_1 & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \cdots & a_{nn} \end{vmatrix}}{\det(A)}.$$

Fazendo deduções análogas,

$$x_i = \frac{\begin{vmatrix} a_{11} & \cdots & b_1 & \cdots & a_{1n} \\ a_{21} & \cdots & b_2 & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{vmatrix}}{\det(A)}.$$

Onde a coluna que se encontra a matriz dos termos independetes é a i-ésima coluna.

9 Retas no Espaço

Seja r uma reta paralela a um vetor v=(a,b,c) não nula e que passapelo ponto $P_0=(x,y,z)$, um ponto P=(x,y,z) pertence à reta r se, e somente se, o vetor $\vec{P_0}P$ é paralelo ao vetor v, isto é, se o vetor $\vec{P_0}$ é um múltiplo escalar de v, ou seja:

$$\vec{P_0P} = tv, t \in \mathbb{R} \tag{1}$$

$$(x - x_0, y - y_0, z - z_0) = (ta, tb, tc)$$
(2)

As equações dadas em (1) e (2) são chamadas **equações vetoriais da reta r**. De (2), obtemos:

$$r: \begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}, \ t \in \mathbb{R}$$

As equações acima são chamadas de **equações paramétricas da reta r** e o vetor v = (a, b, c) é chamado de **vetor diretor da reta r**. Se a, b, c são não nulos, eliminando o parâmetro t do sistema, obtemos:

$$r = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$

as equações acima são chamadas de **equações simétricas da reta**.

Exemplo. a) encontre as equações simétricas da reta que passa por $P_0 = (1, 0, -1)$ e é paralela ao vetor v = (3, -1, 2) tem equações paramétricas

$$r: \begin{cases} x = 1 + 3t \\ y = -t \\ z = 1 + 2t \end{cases}, \ t \in \mathbb{R}$$

$$r: \frac{x-1}{3} = \frac{y}{-1} = \frac{z+1}{2}$$

b) encontre as equações paramétricas da reta que passa por $P_0 = (2, 4, -1)$ e $P_1 = (3, -2, 7)$

 $\vec{P_0P}=(1,-6,8)$ é paralelo a reta r
; $P_0\in\mathbb{R}$

$$r: \begin{cases} x = 2 + t \\ y = 4 - 6t \\ z = -1 + 8t \end{cases}, \ t \in \mathbb{R}$$

10 Equações do Plano

Figura 1 – plano1

Suponhamos que queremos determinar a equação do plano π que passa por $P_0=(x_0,y_0,z_0)$ e é perpendicular ao vetor n=(a,b,c). Um ponto P=(x,y,z) pertence ao plano π se , e somente se, o vetor $\vec{P_0P}$ for perpendicular ao vetor n, ou seja $\langle n,\vec{P_0P}\rangle=0$.

Como $\vec{P_0P} = (x - x_0, y - y_0, z - z_0)$, podemos escrever a equação acima como:

$$\pi : \langle (a, b, c), (x - x_0, y - y_0, z - z_0) \rangle = 0$$

$$\pi : a(x - x_0, b(y - y_0), c(z - z_0)) = 0$$

$$\pi : ax + by + cz - (ax_0 + by_0 + cz_0) = 0$$

$$\pi : ax + by + cz - d = 0$$

Sendo esta equação chamada de **forma geral** da equação do plano π e o vetor n é chamado de **vetor normal** ao plano.

Exemplo. a) Encontre a equação do plano π que passa por $P_0 = (2, 1, -4)$ e é perpendicular ao vetor n = (1, 2, -1)

Seja P=(x,y,z) pertencente ao plano π . Então, $\vec{P_0P}=(x-2,y-1,z+4)$ é perpendicular a n, isto é

$$\langle (x-2, y-1, z+4), (1, 2, -1) \rangle = 0$$

Assim:

$$\pi : 1(x-2) + 2(y-1) - 1(z+4) = 0$$

$$\pi : x - 2 + 2y - 2 - z - 4 = 0$$

$$\pi : x + 2y - z - 8 = 0$$

b) Encontrar a equação geral do plano π que contém os pontos A=(2,1,-1), B=(0,1,2) e C=(-1,-1,3)

Uma vez que A, B e C pertencem ao plano π , os vetores $u = \overrightarrow{AB} = (-2, 0, 3)$ e $v = \overrightarrow{AC} = (-3, -2, 4)$ são paralelas a π . O vetor normal ao plano π deve ser perpendicular aos vetores u e v. Assim, escolhemos:

$$n = u \times v = \begin{vmatrix} 0 & 3 \\ 2 & 4 \end{vmatrix} \cdot \vec{i} - \begin{vmatrix} -2 & 3 \\ -3 & 4 \end{vmatrix} \cdot \vec{j} + \begin{vmatrix} -2 & 0 \\ -3 & -2 \end{vmatrix} \cdot \vec{k} = (6, -1, 4)$$

Sabendo que $A \in \pi$, obtemos:

$$\pi : 6(x-2) - 1(y-1) + 4(z+1)$$
$$\pi : 6x - y + 4z - 7 = 0$$

11 Posições Relativas entre Retas no Espaço

Quando consideramos duas retas no espaço, elas podem ou não estar contidas em um mesmo plano. Logo, podemos classificá-las da seguinte forma:

- Retas Coplanares: Se estão contidas no mesmo plano.
 - Paralelas: Se os vetores diretores são múltiplos um do outro.
 - * Coincidentes: Possuem um ponto em comum
 - * Não Coincidentes: Não possuem nenhum ponto em comum
 - Concorrentes: Se interceptam em um único ponto. Logo, os vetores diretores não são paralelos
- Retas Reversas: Não estão contidas no mesmo plano.

Exemplo. a)

$$r: \begin{cases} x = 1 + 2t \\ y = 2t \\ z = 2t \end{cases}, t \in \mathbb{R} \text{ e } s: \begin{cases} x = 2 + t \\ y = 3 - t \\ z = 2t \end{cases}, t \in \mathbb{R}$$

 $v_r = (2, 2, 2)$ e $v_s = (1, -1, 2)$ são os vetores diretores de r e s, respectivamente. Como um não é múltiplo escalar do outro, as retas não são paralelas.

 $P_0 = (x_0, y_0, z_0)$ pertence a r e s. Logo, existem $t_1, t_2 \in \mathbb{R}$ tal que:

$$x_0 = 1 + 2t_1, y_0 = 2t_1, z_0 = 2t_1; x_0 = 2 + t_2, y_0 = 3 - t_2, z = 2t_2.$$

Daí, temos:

$$\begin{cases} 2t_1 + t_2 = 1 \\ 2t_1 + t_2 = 3 \\ 2t_1 - 2t_2 = 0 \end{cases}$$

Realizando operações elementares sobre as linhas da matriz do sistema, temos:

$$\begin{bmatrix} 2 & -1 & 1 \\ 2 & 1 & -3 \\ 2 & -2 & 0 \end{bmatrix} L_2 \to -L_1 + L_2 \begin{bmatrix} 2 & -1 & 1 \\ 0 & 2 & 2 \\ 2 & -2 & 0 \end{bmatrix} L_3 \to -L_1 + L_3 \begin{bmatrix} 2 & -1 & 1 \\ 0 & 2 & 2 \\ 0 & -1 & -1 \end{bmatrix}$$

$$L_{2} \rightarrow \frac{1}{2}L_{2} \begin{bmatrix} 2 & -1 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} L_{1} \rightarrow L_{2} + L_{1} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix} L_{3} \rightarrow L_{2} + L_{3} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} L_{1} \rightarrow L_{2} \rightarrow L_{2} + L_{3} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} L_{1} \rightarrow L_{2} \rightarrow L_{2} + L_{3} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} L_{1} \rightarrow L_{2} \rightarrow L_{2} + L_{3} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} L_{1} \rightarrow L_{2} \rightarrow L_{3} \rightarrow L_{2} + L_{3} \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} L_{1} \rightarrow L_{2} \rightarrow L_{3} \rightarrow L_{4} \rightarrow L_{4} \rightarrow L_{4} \rightarrow L_{5} \rightarrow L_{5$$

$$\frac{1}{2}L_1 \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

 $S = \{(1,1)\} \implies P_0 = (3,2,2)$ é o ponto de interseção de r e s, e as retas são concorrentes.

Observação. Podemos verificar que as retas r e s são concorrentes através do produto misto e verificando que os vetores diretores v_r e v_s não são paralelos.

Notemos que se $v_r, v_s, \vec{PQ} = 0$ onde $P \in \mathbb{R}$ e $Q \in \mathbb{R}$, então r e s são coplanares.

12 Equações Paramétricas do Plano

Além da equação geral do plano, podemos, também, caracterizar os pontos de um plano da seguinte forma:

Considere um plano π , um ponto $P_0 \in \pi$ e dois vetores, $u = (u_1, u_2, u_3)$ e $v = (v_1, v_2, v_3)$ não colineares e paralelos a π . Um ponto P = (x, y, z) pertence a π se o vetor

 $\vec{P_0P} = (x-x_0, y-y_0, z-z_0)$ é uma combinação linear de u e v, isto é, existem escalares t e s tais que

$$\vec{P_0P} = tu + sv.$$

Em termos de componentes, temos:

$$(x-x_0, y-y_0, z-z_0) = (tu_1 + sv_1, tu_2 + sv_2, tu_3 + sv_3).$$

Assim, o ponto P = (x, y, z) pertence a π se, e somente se, satisfaz as equações:

$$\pi: \begin{cases} x = x_0 + tu_1 + sv_1 \\ y = y_0 + tu_2 + sv_2 \\ z = z_0 + tu_3 + sv_3 \end{cases}, t, s \in \mathbb{R}.$$

Exemplo. a) Encontre as equações paramétricas do plano π que contém

$$P_1 = (\frac{1}{2}, 0, 0), P_2 = (0, \frac{1}{2}, 0), P_3 = (0, -\frac{1}{2}, \frac{1}{2})$$

Como π é paralelo a $\vec{P_1P_2} = (-\frac{1}{2}, \frac{1}{2}, 0)$ e $\vec{P_1P_3} = (-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2})$ e $\vec{P_1} \in \pi$

$$\pi: \begin{cases} x = \frac{1}{2} - \frac{1}{2}t - \frac{1}{2}s \\ y = \frac{1}{2}t - \frac{1}{2}s \\ z = \frac{1}{2}s \end{cases}.$$

13 Ângulos

13.1 Ângulos Entre Retas

Com duas retas no espaço pode ocorrer um dos seguintes casos:

- 1. As retas são concorrentes, logo, elas determinam quatro ângulos, dois a dois, opostos pelo vértice.
 - O ângulo entre elas é definido como sendo o menor desses ângulos.
- 2. as retas são paralelas, logo o ângulo entre elas é 0.;
- 3. as retas são reversas, logo, por um ponto P de r_1 passa uma reta r'_2 que é paralela a r_2 .

Em qualquer um dos casos, se v_1 e v_2 são vetores paralelos a r_1 e r_2 , respectivamente, então o cosseno do ângulo entre elas é:

$$\cos(r_1, r_2) = |\cos \theta|,$$

onde θ é o ângulo entre v_1 e v_2 . Assim, o cosseno do ângulo entre as retas é:

$$\cos(r_1, r_2) = |\cos \theta| = \frac{|\langle v_1, v_2 \rangle|}{||v_1|| ||v_2||}.$$

Figura 2 – Retas Concorrentes

Figura 3 – Retas Reversas

13.2 Ângulos Entre Planos

Sejam $\pi_1: a_1x + b_1y + c_1z + d_1$ e $\pi_2: a_2x + a_2y + c_2z + d_2$ dois planos com normais $n_1 = (a_1, b_1, c_1)$ e $n_2 = (a_2, b_2, c_2)$, respectivamente, o ângulo entre π_1, π_2 é definido como o ângulo entre duas retas perpendiculares a eles.

Como toda reta perpendicular a π_1 tem n_1 como veor direor e toda reta perpendicular a π_2 tem n_2 como veor diretor, o cosseno do ângulo entre eles é dado por

$$\cos(\pi_1, \pi_2) = |\cos \theta|,$$

onde θ é o ângulo entre os vetores n_1 e n_2 .

Portanto, o cosseno do ângulo entre π_1 e π_2 é dado por

$$\cos(\pi_1, \pi_2) = \frac{|\langle n_1, n_2 \rangle|}{\|n_1\| \|n_2\|}.$$

14 Distâncias

14.1 Distância de um Ponto a uma Reta

Sejam $P_0 = (x_0, y_0, z_0)$ um ponto qualquer e r uma reta cujo vetor diretor é v, a distância do ponto P_0 a r, denotada por $d(P_0, r)$, é definida como a distância de P_0 ao ponto mais próximo de r. INSERIR DESENHO

Seja $P_1 = (x, y, z)$ um ponto sobre a reta r e posicione o vetor v de modo que P_1 seja seu ponto inicial. Assim, os vetores $\vec{P_1P_0}$ e v formam um paralelogramo de lados ||v|| e $||P_1\vec{P_0}||$.

Como a área do paralelogramo é dada por $||v \times P_1 \vec{P}_0||$, segue que a distância de P_0 a r é dada por

$$d(P_0, r) = \frac{\|v \times \vec{P_1 P_0}\|}{\|v\|}.$$

14.2 Distância de um Ponto a um Plano

Sejam $P_0 = (x_0, y_0, z_0)$ um ponto qualquer e $\pi : ax + by + cz + d = 0$ um plano, a distância do ponto P_0 a π , denotada por $d(P_0, \pi)$, é definida como a distância de P_0 ao ponto mais próximo de π .

INSERIR DESENHO

Seja $P_1 = (x, z)$ um ponto qualquer do plano π e posicione o vetor normal n = (a, b, c) de modo que P_1 seja seu ponto inicial. Assim, a distância de P_1 a π é igual ao comprimento da projeção ortogonal de $P_1\vec{P}_0$ sobre n, isto é,

$$d(P_0, \pi) = \|proj_n \vec{P_1 P_0}\| = \left\| \frac{\langle \vec{P_1 P_0}, n \rangle}{\|n^2\|} \right\| = \frac{|\langle \vec{P_1 P_0}, n \rangle|}{\|n\|}$$

•

Desenvolvendo a fórmula, chegamos que

$$d(P_0, \pi) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}.$$

14.3 Distância Entre Dois Planos

Sejam π_1 e π_2 dois planos quaisquer, a distância entre π_1 e π_2 , denotada por $d(\pi_1, \pi_2)$ é definida como a menor distância entre dois pontos, um de π_1 e outro de π_2 .

- 1. Se os seus vetores normais não são paralelos, então os planos são concorrentes e, neste caso, a distância entre eles é zero.
- 2. Se os vetores normais são paralelos, então os planos são paralelos (coincidentes ou não coincidentes) e a distância entre π_1 e π_2 é igual a distância entre um plano de um deles a outro plano.

14.4 Distância Entre Duas Retas

Sejam r_1 e r_2 duas retas quaisquer, a distância entre elas, denotada por $d(r_1, r_2)$ é definida como a menor distância entre dois pontos, um de r_1 e outro de r_2 .

1. Se os vetores diretores são paralelos, então as retas são paralelas (coincidentes ou não), neste caso, a distância entre elas é igual à distância entre um ponto de uma reta e a outra reta. Assim, se $P_1 \in r_1$ e $P_2 \in r_2$ e v_1 e v_2 são os vetores diretores, temos:

$$d(r_1, r_2) = d(P_1, r_2) = \frac{\|\vec{P_1}P_2 \times v\|}{\|v_2\|}.$$

2. Se os vetores diretores não são paralelos, as retas são reversas ou concorrentes; estas retas definem dois planos paralelos, π₁ que contém r₁ e é paralelo a r₂, e π₂ que contém r₂ e é paralelo a r₁. Se v₁ e v₂ são os vetores diretores, o vetor n = v₁ × v₂ é nromal a ambos os planos, isto é,

$$d(r_1, r_2) = d(\pi_1, \pi_2) = d(P_2, \pi_1) = \frac{|\langle P_1 P_2, v_1 \times v_2 \rangle|}{\|v_1 \times v_2\|}, P_1 \in r_1, P_2 \in r_2.$$

15 Espaços Vetoriais

Seja X um conjunto não vazio, no qual estão definidas duas operações, a adição e a multiplicação por escalar

$$+: V \times V \to V$$

 $(u, v) \mapsto u + v$

$$: V \times V \to V$$
$$(\lambda, u) \mapsto \lambda u$$

Definição 4. Dizemos que V é um *espaço vetorial real* se, para qualquer $u,v,w\in V$ e $\alpha,\beta\in\mathbb{R},$ têm-se:

1.
$$u + v = v + u$$

2.
$$(u + v) + w = u + (v + w)$$

3. Existe
$$O \in V$$
 tal que $u + O = u = O + u$ para todo $u \in V$

4. Para cada
$$u \in V$$
, existe $-u \in V$ tal que $u + (-u) = O = (-u) + u$

5.
$$\alpha(u+v) = \alpha u + \alpha v$$

6.
$$(\alpha + \beta)u = \alpha u + \beta u$$

7.
$$\alpha(\beta u) = (\alpha \beta u)$$

8.
$$1 \cdot u = u$$

15.1 Propriedades

Sejam v um espaço vetorial, u um vetor em V e λ um escalar, então:

1.
$$O \cdot u = O$$

2.
$$\lambda \cdot O = O$$

3.
$$-1 \cdot u = -u$$

4. Se
$$\lambda u = O$$
, então $\lambda = 0$ ou $u = O$

16 Subespaços Vetoriais

Definição 5. Um subconjunto não vazio W de um espaço vetorial V é um espaço vetorial de V se W é um espaço vetorial com relação ás operações de adição e de multiplicação por escalar definidas em V.

Teorema 2. Se W é um subconjunto não vazio de um espaço vetorial V, então W é um subespaço vetorial de V se, e somente se, valem as condições:

Observação. Como W é uma parte de V, que é um espaço vetorial, não há necessidade de verificar os oito axiomas.

- 1. Se $u, v \in W$, então $u + v \in W$.
- 2. Se $\lambda \in \mathbb{R}$ e $u \in W$, então $\lambda u \in W$.

Teorema 3. Dados U e W subespaços de um mesmo espaço vetorial V, a interseção $U \cap X = \{v \in V; v \in U \ e \ v \in W\}$ também é subespaço vetorial de V.

Demonstração. 1) Observe que $U \cap V \neq \emptyset$, pois como U e W são subespaços de V, ambos contém o vetor nulo. Logo, $0 \in U \cap W$.

- 2) Sejam $u, v \in U \cap W$. Então $u \in U, u \in W, v \in U$ e $v \in W$. Como U é um subespaço vetorial de V, $u + v \in W$. Assim, $u + v \in U \cap W$.
- 3) Sejam $\lambda \in \mathbb{R}$ e $u \in W$. Então $u \in U$ e $u \in W$. Como U_2 é um subespaço, $\lambda u \in W$. Logo, $\lambda u \in U \cap W$. Assim, $U \cap W$ é um subespaço vetorial de V.

Observação. A união de dois espaços de um mesmo espaço vetorial V não é necessariamente um subespaço vetorial de V.

Teorema 4. Sejam U e W dois subespaços de um mesmo espaço vetorial V. Então o conjunto $U+W=\{v\in V; v=u+w, u\in U\ e\ w\in W\}$ é um subespaço vetorial de V.

Demonstração. 1. Como U e W são subespaços de V, ambos contém o vetor nulo. Logo, $0=0+0\in U+W$. Assim, $U+W\neq\emptyset$

- 2. Sejam $v_1 = u_1 + w_1, v_2 = u_2 + w_2 \in U + W$ com $u_1 \in U, w_1 \in W, u_2 \in U, w_2 \in W$. Como U é subespaço de V, $u_1 + u_2 \in U$ e, como W é subespaço de V, $w_1 + w_2 \in W$. Assim, $v_1 + v_2 = (u_1 + w_1) + (u_2 + w_2) = (u_1 + u_2) + (w_1 + w_2) \in U + W$.
- 3. Sejam $\lambda \in \mathbb{R}$ e v = u + w, com $u \in U$ e $w \in W$. Como U é subespaço, $\lambda u \in U$ e, como W é subespaço, $\lambda w \in W$. Daí, $\lambda(u + w) = \lambda u + \lambda w \in U + W$. Assim, U + W é um subespaço vetorial de V.

Definição 6. Sejam U e V subespaços de um mesmo espaço vetorial V. Dizemos que V é soma direta de U e W, e representamos por $V = U \oplus W$, se V = U + W; $U \cap W = \emptyset$.

Exemplo. Sejam $V=\mathbb{R}^3, U=\{(x,y,z)\in\mathbb{R}^3; x+y+z=0\}$ e $W=\{(x,y,z)\in\mathbb{R}^3|x=y=0\}$. a) Mostre que U e W são subespaços de \mathbb{R}^3 . b) Mostre que $V=U\oplus W$.

(a) Notemos que $U = \{(x, y, -x - y); x, y \in \mathbb{R}\}$. Temos:

$$U \in \emptyset, pois \ 0 = (0, 0, 0) = (0, 0, -0 - 0) \in U$$
 (3)

Dados
$$u = (x_1, y_1, -x_1, -y_1), v = (x_2, 2, -x_2, -2) \in U$$
 (4)

$$u + v = (x_1 + x_2, y_1 + y_2, -x_1 - x_2) =$$
(5)

$$(x_1 + x_2, 1 + y_2, -(x_1 + x_2) - (y_1 - y_2)) \in U$$
 (6)

Dados
$$\lambda \in \mathbb{R} \ e \ u = (\lambda x, \lambda y, -\lambda x - \lambda y) \in U$$
 (7)

Teorema 5. Se V é soma direta de U e W, então todo vetor $v \in V$ se escreve de modo único na forma v = u + w, com $u \in U, w \in W$.

Demonstração. Como $V=U\oplus W,$ todo vetor $v\in V$ é da forma v=u+w, com $u\in U, w\in W.$

Suponhamos que v também possa ser expresso na forma $v = u_1 + w_1$, com $u_1 \in U, w_1 \in W$. Então, $u + w = u_1 + w_1$. Somando o oposto de w e o oposto de u_1 a ambos os lados dessa igualdade, obtemos: $u - u_1 = w_1 - w$. Com U é subespaço de $V, u - u_1 \in U$ e, como W é subespaço de $V, w_1 - w \in W$. Daí

$$u - u_1 = w - w_1 \in U \cap W = \emptyset$$

. Logo, $u = u_1$ e $w = w_1$, ou seja, v se escreve de modo único vomo soma de elementos de U e de W.

17 Combinação Linear, Espaços Finitamente Gerados

Definição 7. Sejam V um espaço vetorial, v_1, v_2, \dots, v_n vetores dim Vea_1, a_2, \dots, a_n escalares. Então o vetor $v = a_1v_1 + a_2v_2 + \dots + a_nv_n$ é um elemento de V, o qual chamamos combinação linear de $v1, v_2, \dots, v_n$.

Exemplo. a) Em \mathbb{R}^3 , o vetor v = (2,0,1) é uma combinação linear dos vetores

(1,0,0),(0,1,0) e (0,0,1). De fato, v=(2,0,1)=2(1,0,0)+0(0,1,0)+1(0,0,1).

b) Em \mathbb{R}^3 , o vetor v=(1,0,1) é uma combinação linear dos vetores (1,0,),(1,1,0) e (1,1,1).

De fato, sejam a_1, a_2, a_3 escalares tais que

$$v = (1,0,1) = a_1(1,0,0) + a_2(1,1,0) + a_3(1,1,1)$$

. Daí: $(1,0,1) = (a_1 + a_2 + a_3, a_2 + a_3, a_3)$

$$\begin{cases} a_1 + a_2 + a_3 = 1 \\ a_2 + a_3 = 0 \\ a_3 = 1 \end{cases}$$

Substituindo $a_3=1$ na segunda equação, obtemos $a_2=-a_3=-1$ Substituindo $a_3=1$ e $a_2=-1$ na primeira equação, obtemos: $a_1=1-a_2-a_3=1+1-1=1$. Logo, v=1(1,0,0)-1(1,1,0)+1(1,1,1).

Observação. Uma vez fixados vetores v_1, v_2, \cdots, v_n em V, o conjunto W de todos os vetores de v que são combinações lineares de v_1, v_2, \cdots, v_n é um subespaço vetorial de V.

a) O subespaço $W = \{(x, 2x); x \in \mathbb{R}\}\ de\ \mathbb{R}^3$ é gerado pelo vetor (1, 2). De fato, todo vetor w = (x, 2x) é uma combinação linear de (1, 2).

$$w = (x, 2x) = x(1, 2).$$

Assim, W=[(1,2)]. b) Mostremos que, se $v_3\in [v_1,v_2]$, então $[v_1,v_2]=[v_1,v_2,v_3]$. Seja $v\in [v_1,v_2,v_3]$. Então existem a_1,a_2,a_3 escalares tais que

$$v = a_1v_1 + a_2v_2 + a_3v_3$$
.

Como $v_3 \in [v_1, v_2]$, existem b_1, b_2 escalares tais que $v_3 = b_1 v_1 + b_2 v_2$. Daí:

$$v = a_1v_1 + a_2v_2 + a_3(b_1v_1 + b_2v_2) = (a_1 + a_3b_1)v_1 + (a_2 + a_3b_2)v_2.$$

Ou seja, v é uma combinação linear de v1 e v_2 . Assim, $v \in [v_1, v_2]$. Logo, $[v_1, v_2, v_3] \subset [v_1, v_2]$.

Agora, suponhamos que $v \in [v_1, v_2]$. Então existem escalares a_1, a_2 tais que $v = a_1v_1 + a_2v_2$. Mas podemos escrever:

$$v = a_1 v_1 + a_2 v_2 + 0 v_3$$

, ou seja, v é uma combinação linear de v_1,v_2,v_3 . Assim, $v\in[v_1,v_2,v_3]$ e, portanto, $[v_1,v_2]\subset[v_1,v_2,v_3]$. Assim, $[v_1,v_2]=[v_1,v_2,v_3]$.

18 Dependência e Independência Linear

Definição 8. Sejam V um espaço vetorial e v_1, v_2, \dots, v_n vetores em V. Dizemos que o conjunto $\{v_1, v_2, \dots, v_n\}$ é linearmente independente (L.I.), ou que os vetores v_1, v_2, \dots, v_n são L., se a equação vetorial

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0$$

admite apenas a solução trivial, isto é, $a_1=a_2=\cdots=a_n=0$. Caso contrário, isto é, se existir algum escalar não nulo satisfazendo a equação anterior, dizemos que o conjunto $\{v_1,v_2,\cdots,v_n\}$ é linearmente dependente (L.D.), ou que os vetores v_1,v_2,\cdots,v_n são L.D.

Exemplo. a) Verifique se os vetores $v_1 = (1,0)$ e $v_2 = (1,1)$ em \mathbb{R}^2 são LI ou LD. Para verificarmos se $\{v_1, v_2\}$ é LI ou LD, resolvemos a equação vetorial.

$$a_1v_1 + a_2v_2 = 0$$

$$a_1(1,0) + a_2(1,1) = (0,0)$$

$$(a_1 + a_2, a_2) = (0,0)$$

$$\begin{cases} a_1 + a_2 = 0 \\ a_2 = 0 \end{cases}$$

Substituindo $a_2 = 0$ na 1ª equação, obtemos:

$$a_1 = -a_2 \to a_1 = 0.$$

Assim, como o sistema admite apenas a solução trivial, o conjunto $\{v_1, v_2\}$ é LI. b) Em \mathbb{R}^3 , o conjunto $\{(1,0,1), (0,1,1), (1,1,1)\}$ é LI. De fato, sejam a_1, a_2, a_3 sejam escalares tais que

$$a_1(1,0,1) + a_2(0,1,1) + a_3(1,1,1) = (0,0,0).$$

Daí:

$$(a_1 + a_3, a_2 + a_3, a_1 + a_2 + a_3) = (0, 0, 0),$$

que é equivalente ao sistema

$$\begin{cases} a_1 + a_3 = 0 \\ a_2 + a_3 = 0 \\ a_1 + a_2 + a_3 = 0 \end{cases}$$

Obtemos:

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} L_3 \to -L_1 + L_3 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} L_2 \to L_3 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$L_3 \to L_2 + L_3 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} L_1 \to -L_3 + L_1 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Logo, $a_1 = a_2 = a_3 = 0$. Assim, $\{(1,0,1), (0,1,1), (1,1,1)\}$ é LI.

c) Verifique se o conjunto $\{(1,3,3),(0,1,4),(5,6,3),(7,2,-1)\}$ de vetores de \mathbb{R}^3 é um conjunto LI ou LD. Sejam, a_1,a_2,a_3,a_4 escalares tais que

$$a_1(1,3,3) + a_2(0,1,4) + a_3(5,6,3) + a_4(7,2,-1) = (0,0,0)$$
. Então

$$\begin{cases} a_1 + 5a_3 + 7a_4 = 0 \\ 3a_1 + a_2 + 6a_3 + 2a_4 = 0 \\ 3a_1 + 4a_2 + 3a_3 - a_4 = 0 \end{cases}$$

cuja solução é $S = \{ \left(\frac{17}{4} a_4, -\frac{5}{4} a_4, -\frac{9}{4} a_4 \right) | a_4 \in \mathbb{R} \}$. Como o sistema admite solução não trivial, o conjunto dado é LD.

d) Mostre que, se u, v, w são vetores LI, então u + v, u + w, v + w são vetores LI. Sejam a_1, a_2, a_3 escalares tais que

$$a_1(u+) + a_2(u+w) + a_2(v+w).$$

Daí:

$$(a_1 + a_2)u + (a_1 + a_3)v + (a_2 + a_3)w = 0.$$

Como $\{u, v, w\}$ é LI, segue que

$$\begin{cases} a_1 + a_2 &= 0 \\ a_1 &+ a_3 = 0 \\ a_2 + a_3 = 0 \end{cases}$$

A matriz do sistema linear homogêneo acima é

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right).$$

Note que $det(A) = 1(-1)^{1+1} \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} + 1(-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1(-1) - 1(1) = -1 \neq 0.$

Assim, A é invertível e o sistema linear homogêneo AX = 0 tem solução única, dada por $X = A^{-1} \times 0 = 0$. Assim, $a_1 = a_2 = a_3 = 0$ e, portanto, $\{u + v, u + w, v + w\}$ é LI.

18.1 Propriedades

1. Um conjunto finito de vetores $\{v_1, v_2, \cdots, v_n\}$ que contém o vetor nulo é LD. De fato, se $\{v_1, v_2, \cdots, v_n\}$ é tal para $v_j = 0$, para algum $j \in \{1, 2, \cdots, n\}$, então:

$$0v_1 + 0v_2 + \dots + 1v_{i-1} + 0v_i + 0v_{i+1} + \dots + 0v_n = 0.$$

Assim, $\{v_1, v_2, \cdots, v_n\}$ é LD.

- 2. Um conjunto formado por um único vetor não nulo v é LI. Com efeito, se av = 0, então a = 0 ou v = 0. Mas, por hipótese, $v \neq 0$. Logo, a = 0. Assim $\{v\}$ é LI.
- 3. Se $\{v_1, v_2, \cdots, v_n\}$ é um conjunto LD, então qualquer conjunto que contenha v_1, v_2, \cdots, v_n também é LD. Suponhamos que $\{v_1, v_2, \cdots, v_m\}$ é um conjunto LD. Então existem escalares não nulos a_1, a_2, \cdots, a_n tais que

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0.$$

Assim,

$$a_1v_1 + a_2v_2 + \dots + a_nv_n + 0w_1 + 0w_2 + 0w_k = 0$$

também admite solução não trivial. Logo, $\{v_1, v_2, \cdots, v_n, w_1, w_2, \cdots, w_k\}$ é LD.

4. O conjunto $\{v_1, v_2\}$ é LD se, e somente se, um vetor é um múltiplo escalar do outro. Inicialmente, suponhamos que $\{v_1, v_2\}$ seja LD. Então existem escalares não nulos a_1 e a_2 tais que

$$a_1v_1 + a_2v_2 = 0.$$

Se $a_1 \neq 0$, então $v_1 = -\frac{a_2}{a_1}v_2$ e, se $a_2 \neq 0$, então $v_2 = -\frac{a_1}{a_2}v_1$. Logo, um vetor é um múltiplo escalar do outro. Reciprocamente, suponhamos, sem perda de generalidade, v_2 um múltiplo escalar de v_1 . Então, $v_2 = \lambda v_1$, com $\lambda \in \mathbb{R}$. Daí,

$$\lambda v_1 - 1v_2 = 0.$$

Logo, $\{v_1, v_2\}$ é LD.

5. O conjunto $\{v_1, v_2, \dots, v_n\}$ é LD se, e somente se, um dos vetores é uma combinação linear dos outros. Suponhamos $\{v_1, v_2, \dots, v_n\}$ LD. Então existem escalares não todos nulos a_1, a_2, \dots, a_n tais que

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0.$$

Suponhamos $a_j \neq 0$ Então a equação vetorial acima pode ser reescrita como

$$v_j = -\frac{a_1}{a_j}v_1 - \dots - \frac{aj_{-1}}{a_j} - \dots.$$

Portanto, v_j é uma combinação linear dos outros vetores de $\{v_1, v_2, \dots, v_n\}$. Agora, suponhamos que v_j possa ser escrito como combinação linear dos outros vetores de $\{v_1, v_2, \dots, v_n\}$. Então

$$v_j = b_j v_1 + \dots + b_{j-1} v_{j-1} + b_{j+1} v_{j+1} + \dots + b_n v_n.$$

Daí,

$$b_1v_1 + \dots + b_{i-1}v_{i-1} - 1v + j + b_{i+1}v_{i+1} + \dots + b_nv_n = 0.$$

Logo, $\{v_1, v_2, \cdots, v_n\}$.

Observação. Para verificarmos se um conjunto de vetores é LI ou LD podemos proceder da seguinte forma:

Colocamos os vetores um abaixo do outro, obtendo uma matriz, a qual reduziremos à forma escada. Se a forma escada apresentar linhas nulas, o conjunto será LD. Além disso, as linhas não nulas representarão vetores LI.

Exemplo. a) Considere $\beta = \{(1,0), (1,1), (1,-1)\}$ um conjunto de vetores em \mathbb{R}^2 .

Colocando os vetores um abaixo do outro obtemos a matriz

$$\left(\begin{array}{cc}
1 & 0 \\
1 & 1 \\
1 & -1
\end{array}\right)$$

cuja forma escada é

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right).$$

De fato,

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} L_3 \to -L_1 + L_2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} L_3 \to L_2 + L_3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

Assim, β é um conjunto LD. Além disso, $\beta' = \{(1,0), (1,1)\}$ é LI.

b) Os vetores (0, 1, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1), (0, 0, 1, 1) formam um conjunto LI. Daí:

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} L_1 \leftrightarrow L_3 \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} L_3 \to -L_2 + L_3 \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} L_4 \to -L_3 + L_4$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix} L_4 \to \frac{1}{2} L_4 \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

19 Base de um Espaço Vetorial

Definição 9. Um conjunto de vetores $\{v_1, v_2, \cdots, v_n\}$ de um espaço vetorial V é uma base de V:

- 1. $\{v_1, v_2, \cdots, v_n\}$ é LI;
- 2. $\{v_1, v_2, \dots, v_n\}$ gera V $(V = [v_1, v_2, \dots, v_n]$, isto é, todo vetor $v \in V$ é uma combinação linear de v_1, v_2, \dots, v_n).

Exemplo. a) Sejam $V = \mathbb{R}^2$ e $\beta = \{(1,0),(0,1)\}$. Temos:

- 1. β é um conjunto LI, pois um vetor não é um múltiplo do outro.
- 2. β gera \mathbb{R}^2 , pois todo vetor $v=(x,y)\in\mathbb{R}^2$ pode ser escrito como combinação linear dos vetores de β : v=(x,y)=x(1,0)+y(0,1).

Assim, β é uma linha base de \mathbb{R}^2 , conhecida como base canônica de \mathbb{R}^2 .

- **b)** O conjunto $\beta' = \{(1,1), (0,1)\}$ também é uma base de \mathbb{R}^2 .
 - 1. β' é um conjunto LI.

De fato, sejam a_1, a_2 escalares tais que

$$a_1(1,1) + a_2(0,1) = (0,0).$$

Daí,

$$(a_1, a_1 + a_2) = (0, 0),$$

que é equivalente a

$$\begin{cases} a_1 = 0 \\ a_1 + a_2 = 0 \end{cases}.$$

Substituindo $a_1=0$ na $2^{\rm a}$ equação, obtemos:

$$a_2 = -a_1 \to a_2 = 0.$$

Assim, β' é um conjunto LI.

2. β' gera \mathbb{R}^2

Seja $v=(x,y)\in\mathbb{R}^2$ um vetor qualquer e a,b escalares tais que

$$v = (x, y) = a(1, 1) + b(0, 1).$$

Daí:

$$(x,y) = (a, a+b),$$

que é equivalente a

$$\begin{cases} a = x \\ a+b=y \end{cases}$$

Substituindo a = x na 2^a equação, obtemos:

$$b = y - a \to b = y - x.$$

Assim,

$$v = (x, y) = x(1, 1) + (y - x)(0, 1).$$

Portanto, β' gera \mathbb{R}^2 .

- c) O conjunto $\beta = \{(1,0),(2,0)\}$ não é uma base de \mathbb{R}^2 , pois, como um vetor é um múltiplo do outro, β é LD.
- d) O conjunto $\gamma = \{(1,0,0), (0,1,0), (0,0,1)\}$ é uma base de \mathbb{R}^3 , conhecida como base canônica de \mathbb{R}^3 .

De fato,

- 1. γ é um conjunto LI, uma vez que a forma escada da matriz obtida colocando se os vetores de γ um abaixo do outro é a matriz I_3 , que não apresenta linhas nulas.
- 2. γ gera \mathbb{R}^3 , pois todo vetor $v=(x,y,x)\in\mathbb{R}^3$ é uma combinação linear dos vetores de γ .

$$v = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$$

Assim, γ é uma base de \mathbb{R}^3 .

e) O conjunto $\alpha = \{(1,0,0), (0,1,0)\}$ não é uma base de \mathbb{R}^3 . Notemos que α é LI, mas não gera \mathbb{R}^3 . De fato,

$$[(1,0,0),(0,1,0)] = \{x(1,0,0) + y(0,1,0) | x, y \in \mathbb{R}\} = \{(x,y,0) | x, y \in \mathbb{R}\} \neq \mathbb{R}^3.$$

f) Seja $U=\{(x,y,z)\in\mathbb{R}^3|x+y+z=0\}$ um subespaço de \mathbb{R}^3 . Então

$$U = \{(x, y, -x - y) | x, y \in \mathbb{R}\} = \{(x, 0, -x) + (o, y, -y) | x, y \in \mathbb{R}\} = \{(x, 0, -x) + (o, y, -y) | x, y \in \mathbb{R}\} = \{(x, 0, -x) + (o, y, -y) | x, y \in \mathbb{R}\}$$

$$\{x(1,0,-1) + y(0,1,-1) | x, y \in \mathbb{R}\} = [(1,0,-1),(0,1,-1)].$$

Seja $\beta = \{(1, 0, -1), (0, 1, -1)\}$. Notemos que β é LI, pois um vetor não é um múltiplo do outro. Como β gera U e é LI, β é uma base de U.

Teorema 6. Sejam v_1, v_2, \dots, v_n vetores não nulos que geram um espaço vetorial V. Então dentre estes vetores podemos extrair uma base V.

Demonstração. Se v_1, v_2, \dots, v_n são vetores LI, então formam uma base V e a demonstração fica terminada. Caso contrário, existem escalares a_1, a_2, \dots, a_n nem todos nulos tais que

$$a_1v_1 + a_2v_2 + \dots + a_nv_n = 0.$$

Suponhamos que $a_n \neq 0$. Então

$$v_n = -\frac{a_1}{a_n}v_1 - \frac{a_2}{a_n}v_2 - \dots - \frac{a_n - 1}{a_n}v_n - 1,$$

ou seja, v_n é uma combinação linear de v_1, v_2, \dots, v_{n-1} . Assim, v_1, v_2, \dots, v_n ainda geram V. Se v_1, v_2, \dots, v_{n-1} forem LI, então formam uma base do meu espaço. Caso contrário, um destes vetores é uma combinação linear dos demais e então, podemos

desconsiderá - lo. Prosseguindo desta forma, após uma quantidade finita de passos, chegamos a um subconjunto de $\{v_1, v_2, \dots, v_n\}$ formado por vetores LI que geram V, ou seja, a uma base de V.

Teorema 7. Seja V um espaço vetorial gerado por um conjunto finito de vetores v_1, v_2, \dots, v_n . Então todo conjunto linearmente independente de vetores em V tem no máximo n vetores.

Demonstração. Vamos mostrar que todo conjunto de elementos de V que contenha mais do que n vetores é LD.

Seja $A = \{u_1, u_2, \dots, u_n\} \subset V$, com m > n. Como V é gerado por $\{v_1, v_2, \dots, v_n\}$, podemos extrair uma base de V deste conjunto, digamos $\{v_1, v_2, \dots, v_r\}$, com $r \leq n$. Logo, existem escalares $a_{ij} \in \mathbb{R}$ tais que

$$u_1 = a_{11}v_1 + a_{21}v_2 + \dots + a_{r1}v_r \tag{8}$$

$$u_2 = a_{12}v_1 + a_{22}v_2 + \dots + a_{r1}v_r \tag{9}$$

$$\vdots (10)$$

$$u_m = a_{1m}v_1 + a_{2m}v_2 + \dots + a_{rm}v_2 \tag{11}$$

Sejam $\lambda_1 u_1 + \lambda_2 u_2 + \cdots + \lambda_m u_m = 0$. Substituindo as duas equações temos:

$$(a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1m}\lambda_m)v_1 + (a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2m}\lambda_m)v_2 + \dots + (a_{r1}\lambda_1 + a_{r2}\lambda_2 + \dots + a_{rm}\lambda_m)v_r = 0$$

Como $\{v_1, v_2, \cdots, v_r\}$ é LI, segue que

$$a_{11}\lambda_1 + \dots + a_{1m}\lambda_m = 0$$

$$a_{r1}\lambda_1 + \dots + a_{rm}\lambda_m = 0$$

Assim, obtemos um sistema linear homogêneo nas variáveis $\lambda_1, \lambda_2, \dots, \lambda_m$, com mais equações que incógnitas

Corolário 1. Seja V um espaço vetorial finitamente gerado, então duas bases quaisquer de V têm o mesmo número de elementos. Este número é chamado de $dimens\~ao$ de~V e é denotado por dimV

Exemplo. a) Seja $V = \mathbb{R}^2$. Como $\beta = \{(1,0),(0,1)\}$ e $\beta' = \{(1,1),(0,1)\}$ são bases de \mathbb{R}^2 , concluímos que $dim\mathbb{R}^2 = 2$.

- **b)** Seja $V = \mathbb{R}^3$, vimos que $\beta = \{(1,0,0), (0,1,0), (0,0,1)\}$ é uma base de \mathbb{R}^3 . Logo, $dim\mathbb{R}^3 = 3$.
- c) Se $V = \mathbb{R}^n$, então $\beta = \{e_1, e_2, \dots, e_n\}$ é a base canônica e, portanto, $\dim \mathbb{R}^n = n$.

d) Seja $U = \{(x, y, z) \in \mathbb{R}^3 | x + +z = 0\}$ um subespaço de \mathbb{R}^3 . Vimos que $\beta = \{(1, 0, -1), (0, 1, -1)\}$ é uma base de U e, portanto, dimU = 2.

Observação. Quando um espaço vetorial V admite uma base finita de vetores, dizemos que V é um espaço de dimensão finita.

Teorema 8. Seja V um espaço vetorial e considere $\beta = \{v_1, v_2, \cdots, v_n\}$ um conjunto LI.

Se existe $v \in V$ que não seja combinação linear de β , então v_1, v_2, \dots, v_m, v é LI.

Demonstração. Sejam $a_1, a_2, \dots, a_m, a_{m+1}$ escalares tais que

$$a_1v_1 + a_2v_2 + \dots + a_mv_m + a_{m+1}v_{m+1} = 0.$$

Se $a_{m+1} \neq 0$, então:

$$v = -\frac{a_1}{a_m + 1}v_1 - \dots - \frac{a_m}{a_{m+1}}v_m,$$

o que contradiz a hipótese de v
 não ser uma combinação linear dos elementos de β . Então $a_{m+1}=0$ e, portanto,

$$a_1v_1 + a_2v_2 + \dots + a_mv_m = 0.$$

Como β é LI, segue que $a_1 = a_2 = \cdots = a_m = 0$. Assim, $\{v_1, v_2, \cdots, v_m, v\}$ é LI.

Teorema 9. Todo espaço vetorial finitamente gerado não nulo possui uma base.

Demonstração. Seja V um espaço vetorial finitamente gerado não nulo. Então V possui um conjunto gerador finito com m elementos, $m \ge 1$. Seja agora $v_1 \in V$ um vetor não nulo. Então $\beta = \{v_1\}$ é LI. Se β_1 gerar V, então β_1 é uma base de V. Caso contrário, existe $v_2 \in V$ que não é um múltiplo escalar de v_1 . Logo, pelo teorema anterior, $\beta_2 = \{v_1, v_2\}$ é LI.

Se β_2 gerar V, então β_2 é uma base de V. Caso contrário, existe $v_3 \in V$ tal que $\beta_3 = \{v_1, v_2, v_3\}$ seja LI. Repetindo esse processo, como V é finitamente gerado, chegaremos a uma base.

Teorema 10. Sejam V um espaço vetorial de dimensão finita e W um subespaço de V. Então todo subespaço de W que é LI é finito e é parte de uma base de W.

Demonstração. Suponhamos S_0 um subconjunto LI de W. Como $S_0 \subset V$ e V tem dimensão finita, S_0 tem no máximo dimV = n elementos.

Estendemos S_0 a uma uma base de W da seguinte forma: Se S_0 gerar W, então S_0 será uma base de W e a demonstração está terminada. Se S_0 não gera W, podemos encontrar $v_1 \in W$ tal que $S_1 = S_0 \cup \{v_1\}$ seja LI. Se S_1 gerar W, então S_1 é uma base de W. Caso contrário, existirá $v_2 \in W$ tal que $S_2 = S_1 \cup \{v_2\}$ seja LI. Prosseguindo dessa forma, chegaremos a um conjunto

$$S_m = S_0 \cup \{v_1, v_2, \cdots, v_m\},\,$$

que é uma base de W.

Corolário 2. Se W é um subespaço próprio de um espaço vetorial V de dimensão finita, então W é de dimensão finita e dimW < dimV.

Demonstração. Se $W = \{0\}$, a demonstração está terminada ($\beta = \emptyset$ é uma base de W e dimW = 0). Suponhamos que W contenha um vetor não nulo v. Pelo teorema anterior, existe uma base de W que contém v e tem no máximo dimV = n elementos. Logo, W tem dimensão finita e $dimW \leq dimV$. Como W é um subespaço próprio de V, existe $u \in V$ tal que $u \notin W$. Acrescentando u a uma base de W obtemos um conjunto LI. Portanto, dimW < dimV.

Corolário 3. Num espaço vetorial V de dimensão finita, todo conjunto de vetores LI é uma parte de uma base de V.

Corolário 4. Se dimV = n, qualquer conjunto de n vetores LI formará uma base de V.

Teorema 11. Se W_1, W_2 são subespaços de dimensão finita de um espaço vetorial V, então $W_1 + W_2$ tem dimensão finita e

$$dim(W_1, W_2) = dimW_1 + dimW_2 - dim(W_1 \cap W_2).$$

Demonstração. Suponhamos que $W_1 \cap W_2 \neq \{0\}$. Como $W_1 \cap W_2$ é um subespaço de W_1 e de W_2 , $W_1 \cap W_2$ tem uma base finita $\alpha = \{u_1, u_2, \cdots, u_k\}$ que é parte de uma base $\beta = \{u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_n\}$ de W_1 e é parte de uma base $\gamma = \{u_1, u_2, \cdots, u_k, w_1, w_2, \cdots, w_n\}$ de W_2 . O subespaço $W_1 + W_2$ é gerado pelos vetores $u_1, \cdots, u_k, v_1, \cdots, v_n, w_1, \cdots, w_n$ e estes vetores formam um conjunto LI. De fato, se $w \in W_1 + W_2$, então w = u + v, com $u \in W_1$ e $v \in W_2$. Daí,

$$w = u + v = (a_1u_1 + \dots + a_ku_k, a_{k+1}v_1 + \dots + a_{k+m}v_m) + (b_1u_1 + \dots + b_ku_k + b_{k+1}u_{k+1} + \dots + b_{k+n}w_n).$$

Logo,

$$w = (a_1 + b_1)u_1 + \dots + (a_k + b_k)u_k + \dots + a_{k+m}v_m + b_{k+1}w_1 + \dots + b_{k+n}w_n.$$

Assim,

$$W_1 + W_2 = [u_1, u_2, \cdots, u_k, v_1, v_2, \cdots, v_k, w_1, w_2, \cdots, w_k].$$

Agora, suponhamos $\sum_{i=1}^k a_i u_i \sum_{i=1}^m b_i v_i \sum_{i=0}^n c_i w_i = 0$. Então existem d_1, d_2, \dots, d_k escalares tais que

$$\sum_{i=1}^{n} i = 1^{n} - c_{i} w_{i} = \sum_{i=1}^{k} d_{k} u_{k}.$$

Daí:

$$\sum_{i=1}^{k} d_i u_i \sum_{i=1}^{n} c_i w_i = 0.$$

Como γ é LI, segue que $d_1 = \cdots = d_k = c_1 = \cdots = c_n = 0$. Voltando ao somatório anterior, temos que β é LI, segue que $a_1 = \cdots = b_m = 0$. Assim, $u_1, u_2, \cdots, v_1, \cdots, w_1, \cdots, w_m$ é LI e, portanto, uma base de $W_1 + W_2$. Finalmente,

$$dimW_1 + dimW_2 = (k+m) + (k+n) = k + (m+k+n) = dim(W_1 \cap W_2) + dim(W_1 + W_2).$$

20 Mudança de Base

Teorema 12. Seja V um espaço vetorial de dimensão finita $m \ge 1$ e seja $\beta \subset V$. As seguintes afirmações são equivalentes.

- 1. β é uma base de V;
- 2. Cada elemento de V se escreve de maneira única como combinação linear dos elementos de β .

Demonstração. $(1) \rightarrow (2)$

Seja $\beta = \{v_1, v_2, \dots, v_n\}$ uma base de V. Em particular, β gera V e, portanto, todo vetor $v \in V$ se escreve como combinação linear dos elementos de β .

Suponhamos

$$v = \sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} b_i v_i$$

 $com a_i, b_i \in \mathbb{R}.$

Então,

$$\sum_{i=1}^{n} (a_i - b_i) v_i.$$

Como β é LI, segue que $a_i - b_i = 0$ para todo i. Logo, $a_i = b_i$ para todo i, o que mostra que v se escreve de maneira única como combinação linear dos elementos de β .

$$(2) \to (1)$$

Suponhamos que cada elemento de V seja escrito de modo único como combinação linear dos elementos de β . Em particular, β gera V. Para verificar que β é uma base de V, resta mostrar que β é LI.

Sejam $v_1, v_2, \ldots, v_n \in \beta$ e $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ tais que

$$\sum_{i=1}^{n} \lambda_i v_i = 0.$$

Como

$$\sum_{i=1}^{n} 0v_i = 0,$$

segue da condição em (2) que $\lambda_i = 0$ para cada i. Portanto, β é LI e, assim, uma base de V.

Definição 10. Seja V um espaço vetorial de dimensão $n \geq 1$ e seja $\beta = \{v_1, v_2, \dots, v_n\}$ uma base de V. Vamos fixar a ordem dos elementos de β e chamá-la de **base ordenada** de V. O teorema anterior garante que, dado $v \in V$, existem únicos a_1, a_2, \dots, a_n tais que

$$v = \sum_{i=1}^{n} a_i v_i.$$

Dizemos que ai, a_2, \ldots, a_n são as coordenadas de v em relação à base (ordenada) β e denotamos por

$$[v]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}.$$

Exemplo. a) Consideremos $V = \mathbb{R}^3$, $v = (1,3) \in \mathbb{R}^2$ e $\beta = \{(1,0),(0,1)\}$ de \mathbb{R}^2 . As coordenadas de v em relação à base β serão.

$$[v]_{eta} = \left[egin{array}{c} 1 \ 3 \end{array}
ight],$$

pois v = (1,3) = 1(1,0) + 3(0,1).

b) Consideremos = \mathbb{R}^2 , $v = (1,3) \in \mathbb{R}^2$ e $\gamma = \{(1,1),(1,0)\}$ uma base ordenada de \mathbb{R}^2 . As coordenadas de v em relação à γ serão

$$[v]_{\gamma} = \left[\begin{array}{c} a_1 \\ a_2 \end{array} \right],$$

onde $a_1, a_2 \in \mathbb{R}$ satisfazem:

$$v = (1,3) = a_1(1,1) + a_2(1,0).$$

Daí: $(1,3) = (a1 + a_2, a_1)$

$$\begin{cases} a_1 + a_2 = 1 \\ a_1 = 3 \end{cases}.$$

Substituindo $a_1=3$ na 1ª equação, obtemos $a_2=1-a_1\to a_2=1-3\to a_2=-2$. Assim,

$$[v]_{\gamma} = \left[\begin{array}{c} 3 \\ -2 \end{array} \right].$$

Observação. É importante notar que a ordem dos elementos de uma base também influi na matriz das coordenadas de uma vetor em relação a essa base. Por exemplo,

 $\beta = \{(1,0),(0,1)\}$ e $\gamma = \{(0,1),(1,0)\},$ então:

$$[(1,3)]_{\beta} = \begin{bmatrix} 1\\3 \end{bmatrix} e [(1,3)]_{\gamma} = \begin{bmatrix} 3\\1 \end{bmatrix}$$

Em virtude disso, ao considerarmos β uma base de um espaço vetorial V estamos sempre subentendendo que ela seja ordenada.

20.1 Matriz de Mudança de Base

Sejam V um espaço vetorial de dimensão $n \ge 1$, $\beta = \{u_1, u_2, \dots, u_n\}$ e $\gamma = \{v_1, v_2, \dots, v_n\}$ bases ordenadas de V. Dado um vetor $v \in V$ podemos escrever:

$$(*) \begin{cases} v = \sum_{i=1}^{n} x_i u_i \\ v = \sum_{i=1}^{n} y_i v_i \end{cases}.$$

Vamos relacionar as coordenadas de v
 em relação a base $\beta,\,[v]_\beta=\begin{vmatrix}x_1\\x_2\\\vdots\\x_n\end{vmatrix}$, com as

coordenadas de v
 em relação à base $\gamma,\,[v]_{\gamma}=\begin{bmatrix}y_1\\y_2\\\vdots\\y_n\end{bmatrix}.$

$$(**) \begin{cases} v_1 = \sum_{i=1}^n {}^n a_{1i} u_i \\ v_2 = \sum_{i=1}^n {}^n a_{2i} u_i \\ \vdots \\ v_n = \sum_{i=1}^n {}^n a_{in} u_i \end{cases}.$$

Substituindo (**) em (*), considerando que $v = \sum_{i=1}^{n} x_i u_i$, como v se escreve de modo único como combinação linear dos vetores de β , temos:

$$\begin{cases} x_1 = \sum_{i=1}^n a_{1i} y_i \\ x_2 = \sum_{i=1}^n a_{2i} y_i \\ \vdots \\ x_n = \sum_{i=1}^n a_{ni} y_i \end{cases}$$

Em forma matricial,

$$\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{bmatrix} \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.$$

$$[v]_{\gamma}$$

A matriz denotada por $[I]^{\gamma}_{\beta}$ é chamada matriz mudança da base γ para a base β **Exemplo.** Sejam $V = \mathbb{R}^2$, $\beta = \{(2,0),(0,1)\}$ e $\gamma = \{(1,0),(1,1)\}$ bases ordenadas de \mathbb{R}^2 . Queremos encontrar escalares $a_{11}, a_{12}, a_{21}, a_{22} \in \mathbb{R}$ Tais que:

$$(1,0) = a_{11}(2,0) + a_{21}(0,1)$$
$$(1,1) = a_{12}(2,0) + a_{22}(0,1)$$

Daí,

$$\begin{cases}
2a_{11} = 1 \\
a_{21} = 0 \\
2a_{12} = 1 \implies a_{12} = \frac{1}{2} \\
a_{22} = 1
\end{cases}$$

Assim,

$$[I]^{\gamma}_{eta} = egin{bmatrix} rac{1}{2} & rac{1}{2} \\ 0 & 1 \end{bmatrix}.$$

Observação. Na descoberta da matriz $[I]^{\gamma}_{\beta}$, se começarmos escrevendo os vetores u_i em função dos v_j , resultará:

$$[v]_{\gamma} = [I]_{\gamma}^{\beta} [v]_{\beta}.$$

Logo, podemos perceber que $[I]^\gamma_\beta$ e $[I]^\beta_\gamma$ são invertíveis e que $([I]^\gamma_\beta)^{-1}=[I]^\beta_\gamma$ De fato,

$$[v]_{\gamma} = [I]_{\gamma}^{\beta}[v]_{\beta} = [I]_{\gamma}^{\beta}[I]_{\beta}^{\gamma}[v]_{\gamma}.$$

Daí,

$$[I]^{\beta}_{\gamma}[I]^{\gamma}_{\beta} = I_n,$$

e, portanto,

$$([I]_{\beta}^{\gamma})^{-1} = [I]_{\gamma}^{\beta}.$$

Exemplo. Para o exemplo anterior,

$$[I]_{\gamma}^{\beta} = ([I]_{\beta}^{\gamma})^{-1} = \begin{pmatrix} 2 & -1 \\ 0 & 1 \end{pmatrix}.$$

21 Produto Interno

Definição 11. Seja V um espaço vetorial real. Um produto interno sobre V é uma função que a cada par de vetores, v_1 e v_2 , associa um número real, denotado por $\langle v1, v_2 \rangle$, satisfazendo as propriedades:

- 1. $\langle v, v \rangle \geq 0$, para todo $v \in V$ e $\langle v, v \rangle = 0$ se, e somente se, v = 0.
- 2. $\langle \alpha v_1, v_2 \rangle = \alpha \langle v_1, v_2 \rangle$, para todo $\alpha \in \mathbb{R}$ e para todo $v \in V$
- 3. $\langle v_1 + v_2, v_3 \rangle = \langle v_1, v_3 \rangle + \langle v_2, v_3 \rangle$
- 4. $\langle v1, v_2 \rangle = \langle v_2, v1 \rangle$

Exemplo. a) Sejam $V = \mathbb{R}^n$, $u = (u_1, u_2, \dots, u_n)$ e $v = (v_1, v_2, \dots, v_n) \in V$. O produto interno usual para \mathbb{R}^n é definido por

$$\langle u, v \rangle = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n.$$

b) Sejam $V = \mathbb{R}^2, u = (x_1, y_1), v = (x_2, y_2) \in V$. Então

$$\langle u, v \rangle = 2x_1x_2 - x_1y_2 - x_2y_1y_2,$$

é um produto interno em \mathbb{R}^2 .

De fato, sejam $u=(x_1,y_1), v=(x_2,y_2), w=(x_3,y_3)\in\mathbb{R}^2$ e $\alpha\in\mathbb{R}$. Então

$$\langle u, u \rangle = 2x_1x_1 - x_1y_1 - x_1y_1 + y_1y_1 \tag{12}$$

$$= x_1^2 + x_1^2 - 2x_1y_1 + y_1^2 \tag{13}$$

$$=x_1^2 + (x_1 - y_1)^2 \ge 0 (14)$$

$$\langle u, u \rangle = 0 \implies x_1^2 + (x_1 - y_1)^2 = 0$$
 (15)

$$\begin{cases} x_1^2 = 0 \\ (x_1 - y_1)^2 = 0 \end{cases} \Longrightarrow \begin{cases} x_1 = 0 \\ x_1 = y_1 \end{cases} \Longrightarrow x_1 = y_1 = 0 \Longrightarrow u = 0.$$

Definição 12. Seja V um espaço vetorial com produto interno \langle , \rangle . Dizemos que dois vetores u e v de V são ortogonais (em relação a esse produto interno) se $\langle u, v \rangle = 0$. No caso em que u e v são ortogonais, escrevemos $u \perp v$

21.1 Propriedades

- $0 \perp v$
- $\bullet \ u \perp v \implies v \perp u$
- Se $u_1 \perp v$, $u_2 \perp v$, então $(u_1 + u_2) \perp v$
- $u \perp v . \lambda \in \mathbb{R} \implies \lambda u \perp v$

Demonstração. 1. Como 0 = 0v para todo $v \in V$, temos:

$$\langle 0, v \rangle = \langle 0v, v \rangle = 0 \langle v, v \rangle = 0.$$

Logo, $0 \perp v$.

- 2. Como $u \perp v$, temos $\langle u, v \rangle = 0$. Mas $\langle u, v \rangle = \langle v, u \rangle$. Logo, $\langle v, u \rangle = 0$, ou seja, $v \perp u$.
- 3. Suponhamos que $u \perp v$ para odo $v \in V$. Então $\langle u, v \rangle$. Em particular, se v = u:

$$0 = \langle u, u \rangle$$
.

Assim, u = 0.

4. Suponhamos que $u_1 \perp v$ e $u_2 \perp v$. Então $\langle u_1, v \rangle = \langle u_2, v \rangle = 0$. Então

$$\langle u_1 + u_2, v \rangle = \langle u_2, v \rangle + \langle u_2, v \rangle = 0 + 0 = 0,$$

ou seja, $(u_1 + u_2) \perp v$

5. Suponhamos $u \perp v$. Então $\langle u, v \rangle = 0$. Assim, se $\alpha \in \mathbb{R}$, então

$$\langle \alpha u, v \rangle = \alpha \langle u, v \rangle = \alpha \cdot 0 = 0,$$

ou seja, $\alpha u \perp v$.

Teorema 13. Seja $\{v_1, v_2, \dots, v_n\}$ um conjunto de vetores não nulos, dois a dois ortogonais, isto é, $\langle v_i, v_j \rangle = 0$ para $i \neq j$. Então $\{v_1, v_2, \dots, v_n\}$ é LI.

Definição 13. Uma base $\{v_1, v_2, \dots, v_n\}$ de um espaço vetorial V é dita uma base ortogonal se $\langle v_i, v_j \rangle = 0$, para $i \neq j$.

Observação. Se tivermos um conjunto de n vetores dois a dois ortogonais em um espaço de dimensão n, esse conjunto será uma base ortogonal.

22 Coeficientes de Fourier

Sejam V um espaço vetorial com produto interno \langle , \rangle , $\beta = \{v_1, v_2, \dots, v_n\}$ uma base ortogonal de V e v um vetor qualquer de V. Vamos calcular as coordenadas de v em relação à base β , $[v]_{\beta}$.

Como $v \in V$, existem escalares a_1, a_2, \ldots, a_n ais que

$$v = a_1 v_1 + a_2 v_2 + \ldots + a_n v_n.$$

Fazendo o produto interno dos dois membros da igualdade acima por v_i , obtemos:

$$\langle v, v_i \rangle = a_i \langle v_i, v_i \rangle$$
,

donde

$$a_i = \frac{\langle v, v_i \rangle}{\langle v_i, v_i \rangle},$$

para odo $i = 1, 2, \ldots, n$

Essa coordenada é chamada coeficiente de Fourier de v
 em relação a v_i

Exemplo. Sejam $V = \mathbb{R}^2$ com o produto usual e $\beta = \{(1, 1), (-1, 1)\}$ uma base de V. Notemos que β é uma base ortogonal, pois

$$\langle (1,1), (-1,1) \rangle = 1(-1) + 1 \cdot 1 = 0.$$

Vamos calcular $[(2,3)]_{\beta}$.

Sejam $a, b \in \mathbb{R}$, ais que

$$(2,3) = a(1,1) + b(-1,1).$$

Então

$$\langle (2,3), (1,1) \rangle = \langle a(1,1) + b(-1,1), (1,1) \rangle$$

$$5 = a \langle (1,1), (1,1) \rangle$$

$$5 = a \cdot 2$$

$$a = \frac{5}{2}$$

 \mathbf{E}

$$\langle (2,3), (-1,1) \rangle = \langle a(1,1) + b(-1,1), (-1,1) \rangle$$

 $1 = b \langle (-1,1), (-1,1) \rangle$
 $1 = 2b$
 $b = \frac{1}{2}$

Logo,

$$[(2,3)]_{\beta} = \begin{bmatrix} \frac{5}{2} \\ \frac{1}{2} \end{bmatrix}.$$

Definição 14. Seja V um espaço vetorial com produto interno \langle , \rangle . Definimos a norma de um vetor v em relação a esse produto interno por

$$||v|| = \sqrt{\langle v, v \rangle}.$$

Se ||v|| = 1, isto é, $\langle v, v \rangle = 1$ é chamado vetor unitário. Dizemos também que, nesse caso, v está normalizado

Observação. $\frac{v}{\|v\|}$ é um veor unitário, para odo $v \neq 0$.

Exemplo. Sejam $V = \mathbb{R}^2, u = (a_1, b_1), v = (a_2, b_2) \in \mathbb{R}^2,$

$$\langle u, v \rangle_1 = a_1 a_2 + b_1 b_2$$

 $\langle u, v \rangle_2 = 2a_1 a_2 - a_1 b_2 - a_2 b_1 + b_1 b_2$

produtos internos em \mathbb{R}^2 e v = (1,0) Logo:

$$||v|| = \sqrt{\langle v, v \rangle_1} = \sqrt{\langle (1, 0), (1, 0) \rangle} = \sqrt{1} = 1$$

$$||v||_2 = \sqrt{\langle v, v \rangle_2} = \sqrt{\langle (1, 0), (1, 0) \rangle_2} = \sqrt{2 \cdot 1 \cdot 1 - 1 \cdot 0 - 0 \cdot 1 + 0 \cdot 0} = \sqrt{2}$$

22.1 Propriedades

- 1. $||v|| \ge 0$ e ||v|| = 0 se, e somente se, v = 0
- 2. $\|\alpha v\| = \|\alpha\| \|v\|$ (Designaldade de Cauchy Schuarz)
- 3. $||u+v|| \le ||u||v||$ (Designaldade Triangular)

Definição 15. Seja V um espaço vetorial com produto interno \langle , \rangle . Dizemos que uma base $\beta = \{v1, v_2, \dots, v_n\}$ de V é ortonormal se for ortogonal e cada vetor for unitário

$$\langle v_i, v_j \rangle \begin{cases} 0 \text{ se } i \neq j \\ 1 \text{ se } i = j \end{cases}$$

Definição 16. Sejam u e v vetores de um espaço vetorial V, com $v \neq 0$. Definimos a projeção orogonal de u sobre v por

$$proj_v u = \frac{\langle u, v \rangle}{\|v\|^2} v.$$

Proposição 1. Seja $v \in V$ um vetor não nulo . Então $u - proj_v u$ é ortogonal a v para qualquer $u \in V$.

Demonstração.

$$\langle u - proj_v u \rangle = \langle u - \frac{\langle u, v \rangle}{\|v\|^2} v, v \rangle$$
$$= \langle u, v \rangle - \frac{\langle u, v \rangle i}{\|v\|^2} \langle v, v \rangle = 0$$

Portanto, $u - proj_v u$ é ortogonal a v.

Proposição 2. Sejam v_1, v_2, \ldots, v_k vetores não nulos, ortogonais entre si. Então, para qualquer $v \in V$, $v - proj_{v1}v - proj_{v2}v - \ldots - proj_{vk}v$ é ortogonal a v_i , para cada $i = 1, 2, \ldots, k$

Demonstração. De fato,

$$\langle v + \sum_{i=1}^{k} -proj_{vi}v, v_i \rangle =$$

$$\langle v, v_i \rangle + \sum_{j=1}^{k} -\langle proj_{vj}v, v_i \rangle$$

$$\langle v, v_i \rangle + \sum_{j=1}^{k} -\frac{\langle 1, v_j \rangle}{\|v_j\|^2} \langle v_j, v_i \rangle = 0$$

23 Processo de Ortogonalização de Gram - Schmidt

Seja V um espaço vetorial sobre \mathbb{R} com produto interno \langle , \rangle . Considere $\beta = \{v1, v_2, \ldots, v_n\} \subset V$ um conjunto linearmente independente. Vamos construir um outro conjunto $\beta' = \{w_1, w_2, \ldots, w_2\} \subset V$ que seja ortogonal e tal que os subespaços gerados por β e β' sejam os mesmos.

Esta construção é feita indutivamente, como segue:

$$w_1 = v_1$$

 $w_2 = v_2 - proj_{w1}v_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\|w_1\|^2} w_1$

Observe que $w_2 \neq 0$ (pois $\{v_1, v_2\}$) é LI e que $w_1 \perp w_1$.

O conjunto $\beta' = \{w_1, w_2, \dots, w_n\}$ definido acima é ortogonal e, em particular, linearmente independente. Observe também que, para cada $i = 1, 2, \dots, n$, $w_1 \in W = [v_1, v_2, \dots, v_n]$ (é uma combinação linear dos n vetores). Como dim W = n, segue que β' é uma base de W, o que mostra a igualade dos subespaços gerados por β e por β' .

Teorema 14. Todo espaço vetorial de dimensão finita $n \geq 1$ com produto interno possui uma base ortonormal.

Demonstração. Seja V um espaço vetorial de dimensão finita $n \geq 1$ e seja $\beta = \{v_1, v_2, \ldots, v_n\}$ uma base de V. Pelo processo de Ortogonalização de Gram - Schmidt, existe um conjunto ortogonal $\{w_1, w_2, \ldots, w_n\}$ que gera V. Como todo conjunto ortogonal é LI, segue que $\{w_1, w_2, \ldots, w_n\}$ é uma base ortogonal de V. Por fim, $\{u_1 = 1\}$

 $\frac{w_1}{\|w_1\|}, u_2 = \frac{w_2}{\|w_2\|}, \dots, u_n = \frac{w_n}{\|w_n\|}\}$ é uma base ortonormal de V, como queríamos.

Exemplo. a) Seja $\beta = \{(2,1), (1,1)\}$ uma base de \mathbb{R}^2 . Vamos obter uma base ortonormal em relação ao produto interno usual a partir de β .

Façamos:

$$v_1 = (2, 1)$$

 $v_2 = (1, 1)$

Uilizando o Processo de Ortogonalização de Gram - Schmidt, emos:

$$\begin{aligned} w_1 &= v_1 = (2,1) \\ \|w_1\| &= \sqrt{2^2 + 1^2} = \sqrt{5} \\ w_2 &= v_2 - proj_{w_1} v_2 = v_2 - \frac{\langle v_2, w_1 \rangle}{\|w_1\|} \\ &= (1,1) - \frac{\langle (1,1), (2,1) \rangle}{\|(2,1)\|^2} = (1,1) - \frac{3}{5}(2,1) = (-\frac{1}{5}, \frac{2}{5}) \\ \|w_2\| &= \sqrt{\frac{1}{25} + \frac{4}{25}} = \frac{\sqrt{5}/5}{\|w_1\|^2} w_1 \end{aligned}$$

Agora, façamos

$$u_1 = \frac{w_1}{\|w_1\|} = (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$$
$$u_2 = \frac{w_2}{\|w_2\|} = (-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}})$$

Assim, $\beta' = \{u_1, u_2\}$ é uma base ortonormal de \mathbb{R}^2 obditida a partir de β .

Observação. Para conferir o resulado, o produto interno de duas em duas deve ser igual a 0, e cada norma deve ser igual a 1.

Observação. Seja V um espaço vetorial com produto interno \langle , \rangle e com uma base ortonormal $\{v_1, v_2, \ldots, v_n\}$. Se $u = a_1v_1 + a_2v_2 + \ldots + a_nv_n$ e $v = b_1v_1 + b_2v_2 + \ldots + b_nv_n$, então

$$\langle u, v \rangle = a_1 b_1 + a_2 b_2 + \ldots + a_n b_n,$$

pois
$$\langle v_i, v_j \rangle = \begin{cases} 0 \text{ se } i \neq j \\ 1 \text{ se } i = j \end{cases} = \delta_{il}$$

Proposição 3. Sejam V um espaço vetorial munido de um produto interno $\beta = \{u_1, u_2, \dots, u_n\}$ e $\beta\{v_1, v_2, \dots, v_n\}$ bases ortonormais de V. Se $M = [I]_{\beta'}^{\beta}$, é a matriz mudança de base β para β' , então $M \cdot M^T = I_n = M^T \cdot M$ (M é ortogonal).

Demonstração. Seja $M = [I]_{\beta'}^{\beta} = (a_{ij})_{n \times n}$. Então:

$$u_i = \sum_{j=1}^n a_{ji} v_j$$

$$u_j = \sum_{i=1}^n a_{ij} v_i$$

Como $\langle u_i, u_j \rangle = \delta_{ij}$, segue que

$$a_{1i}a_{1j} + a_{2i}a_{2j} + \ldots + a_{ni}a_{nj} = \delta_{ij},$$

para cada $1 \le i, j \le n$.

Daí, $M \cdot M^T = I_n = M^T \cdot M$ (M é ortogonal).

24 Mudança de Coordenadas

Se as coordenadas de um ponto P no espaço são (x, y, z), então as componentes do vetor \vec{OP} também são (x, y, z) e podemos escrever

$$\vec{OP} = (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) = x\vec{i} + y\vec{j} + z\vec{k},$$

onde
$$\vec{i} = (1, 0, 0), \vec{j} = (0, 1, 0), \vec{i} = (0, 0, 1).$$

Ou seja, as coordenadas de um pono P são iguais aos escalares obtidos ao escrevermos \overrightarrow{OP} como combinação linear dos vetores canônicos $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$. Assim, o ponto O = (0,0,0) e os vetores anteriores determinam um sistema de coordenadas ortogonal $S = \{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\}$. Consideramos um sistema de coordenadas ortogonal $S' = \{0', u_1, u_2, u_2\}$, onde o' é um ponto (origem) e u_1, u_2, u_3 são vetores ortonormais.

As coordenadas de um ponto P no sistema de coordenadas S' são definidas como sendo os escalares obtidos ao escrevermos \vec{OP} como combinação linear dos vetores u_1, u_2, u_3 , ou seja, se

$$\vec{OP} = x'u_1 + y'u_2 + z'u_3,$$

então as coordenadas de P são dadas por

$$[P]_{S'} = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}.$$

Consideremos, inicialmente, o caso em que 0' = 0 = (0, 0, 0). Assim, se $\vec{OP} = (x, y, z)$, então $\vec{OP} = x'u_1 + yu_2 + zu_3$ é equivalente ao sistema linear

$$QX' = X$$
.

em que

$$Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}, X' = \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix},$$

.

Como a matriz Q é invertível, a solução deste sistema é dada por

$$X' = Q^{-1}X.$$

Mas como u_1, u_2, u_3 formam uma base ortonormal de \mathbb{R}^3 , então.

$$Q^t \cdot A = \begin{bmatrix} u_1^T \\ u_2^T \\ u_3^T \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} u_1^t u_1 & u_1^t u_2 & u_1^t u_3 \\ u_2^t u_1 & u_2^t u_2 & u_2^t u_3 \\ u_3^t u_1 & u_3^t u_2 & u_3^t u_3 \end{bmatrix} =$$

$$\begin{bmatrix} \langle u_1, u_1 \rangle & \langle u_1, u_2 \rangle & \langle u_1, u_3 \rangle \\ \langle u_2, u_1 \rangle & \langle u_2, u_2 \rangle & \langle u_2, u_3 \rangle \\ \langle u_3, u_1 \rangle & \langle u_3, u_2 \rangle & \langle u_3, u_3 \rangle \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Assim, Q é ortogonal, ou seja, $Q^{-1} = Q^t$.

Desta forma, as coordenadas de um ponto P no espaço em relação ao sistema $S' = \{0' = 0, u_1, u_2, u_3\}$ estão unicamente determinadas e

$$[P]_{S'} = Q^T [P]_S,$$

ou seja,

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = Q^t \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

De modo análogo, as coordenadas de um ponto P no plano em relação ao sistema ortogonal $S' = \{0', u_1, u_2, u_3\}$ são dadas por

$$[P]_{S'} = Q^t[P]_S,$$

ou seja,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = Q^t \begin{bmatrix} x \\ y \end{bmatrix},$$

onde $Q = [u_1, u_2], S = \{0, l_1 = (1, 0), l_2 = (0, 1)\}.$

Exemplo. Digitar depois

25 Rotação

Suponha que o novo sistema de coordenadas $S' = \{0, u_1, u_2\}$ seja obtido do sistema original $S = \{0, l_1, l_2\}$ por uma rotação de um ângulo θ .

Desenho

Observando a figura, obtemos:

$$u_1 = (\cos \theta, \sin \theta), u_2 = (-\sin \theta, \cos \theta).$$

Vamos determinar as coordenadas de um ponto P do plano em relação ao novo sistema de coordenadas.

A matriz

$$Q = \begin{bmatrix} u_1, u_2 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = R_{\theta}$$

é chamada matriz de rotação.

As coordenadas de P em relação ao nosso sistema de coordenadas são dadas por

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = R_{\theta}^{t} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

26 Translação

Vamos considerar o caso que $0' \neq 0 = (0,0)$, ou seja, em que ocorre uma translação dos eixos coordenadas.

Inserir desenho

Observando a figura acima, obtemos:

$$\vec{OP} = \vec{OP} - \vec{OO'}$$

Assim, se $\vec{OO'} = (h, k)$, então

$$\vec{OP} = (x', y') = (x, y) - (h, k) = (x - h, y - k).$$

Logo, as coordenadas de P em relação ao novo sistema são dados por

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x - h & y - k \end{bmatrix}.$$

O eixo x' tem equação y'=0, ou seja, y=k e o eixo y' tem equação x'=0, ou seja, x=h.

27 Diagonalização de Matrizes

Definição 17. Dizemos que uma matriz A, $n \times n$, é diagonalizável se existem matrizes P invertível e D diagonal tais que

$$A = PDP^{-1},$$

ou equivalentemente,

$$P^{-1}AP = D$$

Exemplo. Toda matriz diagonal

$$\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

é diagonalizável, pois $A = I_n A(I_n)^{-1}$.

Suponhamos, inicialmente, que a matriz $A_{n\times n}$ seja diagonalizável. Então existem matrizes P invertível e D diagonal tais que

$$P^{-1}AP = D.$$

Multiplicando à esquerda por P ambos os membros da equação anterior, obtemos

$$AP = PD$$
.

Sejam D =
$$\begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$
 e P =
$$\begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$
 em que v_j é a coluna j de P. Por

um lado,

$$AP = A \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} = \begin{bmatrix} Av_1 & Av_2 & \dots & Av_n \end{bmatrix},$$

e, por outro lado,

$$PD = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \dots & \lambda_n v_n \end{bmatrix}.$$

Assim, a equação anterior pode ser reescrita como

$$\begin{bmatrix} Av_1 & Av_2 & \dots & Av_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \lambda_2 v_2 & \dots & \lambda_n v_n \end{bmatrix}.$$

Logo,

$$Av_j = \lambda_j v_j,$$

para cada $j=1,2,\ldots,n,$ ou seja, as colunas de P e os elementos da diagonal de D satisfazem a equação

$$AX = \lambda X$$

em que λ e X são incógnitas. Isto motiva a seguinte definição:

Definição 18. Seja a matriz $A_{n\times n}$, um número real λ é chamado *autovalor* de A se existe um vetor $n\tilde{a}o$ nulo tal que

$$Av = \lambda v$$
.

Um vetor não nulo que satisfaça a equação acima é chamado de *autovetor* associado ao autovalor λ .

Observe que, usando o fato de que a matriz identidade I_n é tal que $I_n v = v$, a equação anterior pode ser escrita como

$$Av = \lambda I_n v$$
,

ou ainda,

$$(A - \lambda I_n)v = 0.$$

Como os autovetores são vetores não nulos, os autovalores são os valores de λ para os quais $(A - \lambda I_n)X = 0$ tem solução não trivial. Mas este sistema linear homogêneo tem soluções não triviais se, e somente se, $\det(A - xI_n) = 0$.

Proposição 4. Seja a matriz $A_{n\times n}$.

Os autovalores de A são as raízes do polinômio

$$p(x) = \det(A - xI_n),$$

denominado polinômio característico de A.

• Para cada autovalor de λ , os autovetores associados a λ são os vetores não nulos da solução do sistema

$$(A - \lambda I_n)X = 0.$$

Exemplo. a) Vamos determinar os autovalores e os autovetores da matriz

$$A = \begin{bmatrix} 1 & -1 \\ 4 & 1 \end{bmatrix}.$$

Para esta matriz, o polinômio característico é:

$$p(x) = \det(A - xI_n) = \begin{vmatrix} 1 - x & -1 \\ -4 & 1 - x \end{vmatrix} = (1 - x)^2 - 4 = x^2 - 2x - 3.$$

Logo, os autovalores de A são $\lambda_1 = 3$ e $\lambda_2 = -1$.

Agora, vamos determinar os autovetores associados aos autovalores. Para isto, resolvemos os sistemas $(A - \lambda_1 I)X = 0$ e $(A - \lambda_2 I)X = 0$.

$$(A-3I)X = 0 \implies \begin{bmatrix} -2 & -1 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{cases} -2x - y = 0 \\ -4x - 2y = 0 \end{cases}$$

cuja solução geral é

$$Aut(\lambda_1) = \{(x, -2x)/x \in \mathbb{R}\},\$$

que é o conjunto de todos os autovetores associados a $\lambda_1 = 3$, acrescentado o vetor nulo.

$$(A+1I)X = 0 \implies \begin{bmatrix} -2 & -1 \\ -4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \implies \begin{cases} -2x - y = 0 \\ -4x + 2y = 0 \end{cases}$$

cuja solução geral é

$$Aut(\lambda_2) = \{(x, 2x)/x \in \mathbb{R}\},\$$

que é o conjunto de todos os autovetores de A associados a $\lambda_2 = -1$, acrescentado do vetor nulo.

Proposição 5. Uma matriz P é ortogonal se, e somente se, as suas colunas formam um conjunto ortonormal de vetores.

Demonstração. Sejam u_1, u_2, \ldots, u_n as colunas de P, isto é,

$$P = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}.$$

A inversa de P é P^t se, e somente se, $P^t \cdot P = I = P \cdot P^t$.

Mas

$$P^{t} = \begin{bmatrix} u_{1}^{t} \\ u_{2}^{t} \\ \vdots \\ u_{n}^{t} \end{bmatrix} \begin{bmatrix} u_{1} & u_{2} & \dots & u_{n} \end{bmatrix} = \begin{bmatrix} \langle u_{1}, u_{1} \rangle & \dots & \langle u_{1}, u_{n} \rangle \\ \vdots & \ddots & \vdots \\ \langle u_{n}, u_{1} \rangle & \dots & \langle u_{n}, u_{n} \rangle \end{bmatrix}.$$

Logo, $P^t P = I$ se, e somente se, $\langle u_i, u_j \rangle = \delta_{ij}$.

Assim, $P^t \cdot P = I$ se, e somente se, u_1, u_2, \dots, u_n são vetores ortonormais.

Observação. Pela proposição acima, vemos que A é diagonalizável por uma matriz ortogonal se, e somente se, ela possui um conjunto ortogonal de autovetores. As matrizes simétricas têm essa propriedade.

Proposição 6. Para uma matriz simétrica A, os autovetores associados a autovalores distintos são ortogonais.

Demonstração. Sejam v_1 e v_2 autovetores de A associados, respectivamente, aos autovalores distintos λ_1 e λ_2 . Então $Av_1 = \lambda_1 v_1$ e $Av_2 = \lambda_2 v_2$.

Se escrevermos os vetores como matrizes colunas, obtemos:

$$\langle Av_1, v_2 \rangle = (Av_1)^t \cdot v_2 = v_1^t(A^tv_2) = \langle v_1, A^tv_2 \rangle.$$

Como A é simétrica, $A^t = A$. Daí:

$$\langle Av_1, v_2 \rangle = \langle v_1, Av_2 \rangle$$
.

Como v_1 e v_2 são autovetores de A, obtemos:

$$\langle \lambda_1 v_1, v_2 \rangle = \langle v_1, \lambda_2 v_2 \rangle \implies (\lambda_1 - \lambda_2) \langle v_1, v_2 \rangle.$$

Como $\lambda_1 \neq \lambda_2$, concluímos que $\langle v_1, v_2 \rangle = 0$, ou seja, v_1 e v_2 são ortogonais.

Exemplo. Considere a matriz

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}.$$

Seu polinômio característico é

$$p_A(x) = \det(A - xI) = \begin{vmatrix} 3 - x & 1 \\ 1 & 3 - x \end{vmatrix} = (3 - x)^2 - 1 = x^2 - 6x + 8 = (x - 2)(x - 4),$$

Portanto os autovalores de A são $\lambda_1=2$ e $\lambda_2=4$, cujos respectivos autoespaços associados são dados por

$$(A-2I)X = 0 e (A-4I)X = 0.$$

Resolvendo o sistema

$$(A-2I)X = 0 \implies \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

obtemos: y = -x.

Logo, $Aut(\lambda_1) = \{(x, -x)/x \in \mathbb{R}\}\$

Como (x, -x) = x(1, -1), temos que $v_1 = (1, -1)$ gera $Aut(\lambda_1)$ e, como, $v_1 \neq 0$, $\{v_1\}$ é LI e, portanto, uma base de $Aut(\lambda_1)$

Fazendo $u_1 = \frac{v_1}{\|v_1\|} = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, temos $\{u_1\}$ base ortonormal de $Aut(\lambda_1)$.

Repetindo o processo para λ_2 temos o vetor ortonormal $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$, que é uma base ortonormal de $Aut(\lambda_2)$. Como A é simétrica, u_1 e u_2 são ortogonais. Assim:

$$P = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
 e
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix}$$

são tais que

$$A = PDP^t$$
.

Observação. Se a matriz A é diagonalizável através de uma matriz ortogonal, isto é, se $A = PDP^t$, com P ortogonal e D diagonal, então A é simétrica.

Definição 19. Uma matriz B é dita semelhante à matriz A se existe uma matriz P invertível tal que

$$A = PBP^{-}1.$$

Notação: $B \sim A$.

Observação. A é uma relação de equivalência:

1. \sim é reflexiva, isto é, $A \sim A$ para toda matriz A. De fato, existe I matriz invertível tal que:

$$A = IAI^{-1} = IAI.$$

- 2. \sim é simétrica, isto é, $A \sim B \rightarrow B \sim A$. De fato, suponhamos $A \sim B$. Então existe P invertível tal que $B = PAP^{-1}$. Multiplicando esta igualdade por P à direita e por P^{-1} à esquerda, obtemos $A = P^{-1}BP$. Fazendo $Q = P^{-1}$, podemos escrever $A = QBQ^{-1}$, com Q invertível. Logo, $B \sim A$.
- 3. \sim é transitiva, isto é, se $A\sim B$ e $B\sim C$ então $A\sim C$. Suponhamos $A\sim B$ e $B\sim C$. Então existem P,Q invertíveis tais que $B=PAP^{-1}$ e $C=QBQ^{-1}$ Logo,

$$C = Q(PAP^{-1})Q^{-1} = (QP)A(P^{-1}Q^{-1}) = (QP)A(QP)^{-1} = RAR^{-1}.$$

com R = PQ. Logo, $A \sim C$

27.1 Propriedades

- 1. Matrizes semelhantes possuem o mesmo determinante.
- 2. Se $A \sim B$, então A é invertível se, e somente se, B é invertível.
- 3. Matrizes semelhantes possuem o mesmo traço.
- 4. Matrizes semelhantes possuem o mesmo polinômio característico.
- 5. Matrizes semelhantes possuem os mesmos autovalores.

28 Cônicas

Definição 20. Uma cônica no plano é definida como um conjunto de pontos P = (x, y) que satisfazem a equação

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0,$$

onde a, b, c, d, e, f são números reais com a, b, c não simultaneamente nulos.

Definição 21. A elipse é o conjunto de planos P tais que a soma das distâncias de P a dois pontos fixos F_1 e F_2 , chamados focos, é constante. Ou seja, se $D(F_1, F_2) = 2c$, então a elipse é o conjunto dos pontos P tais que

$$d(P, F_1) + d(P, F_2) = 2a,$$

onde a > c.

Proposição 7. A equação da elipse cujos focos são $F_1 = (-c, 0)$ e $F_2 = (c, 0)$ é

$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = 1.$$

A equação da elipse cujos focos são $F_1=(0,-c)$ e $F_2=(0,c)$ é

$$\frac{x^2}{h^2} = \frac{y^2}{a^2} = 1$$

.

Em ambos os casos, $b = \sqrt{a^2 - c^2}$.

29 Superfície Cilíndrica

Definição 22. Sejam C uma curva plana e l uma reta fixa não contida nesse plano. Superfície Cilíndrica é a superfície gerada por uma reta r que se move paralelamente à reta fixa l em contato permanente com a curva plana C. A reta r que se move é denominada geratriz e a curva C é a diretriz da superfície.

Estamos interessados em superfícies cilíndricas cuja diretriz é uma curva em um dos planos coordenados e a geratriz é uma reta paralela ao eixo coordenado não contido no plano.

Conforme a diretriz seja uma circunferência, elipse, hipérbole ou parábola, a superfície cilíndrica é chamada circular, elíptica, hiperbólica ou parabólica.

Exemplo. a) A equação

$$\frac{x^2}{4} + \frac{z^2}{9} = 1$$

representa uma superfície cilíndrica com geratriz paralela ao eixo dos y e com diretriz sendo a elipse

$$\begin{cases} \frac{x^2}{4} + \frac{z^2}{9} = 1\\ y = 0 \end{cases}$$

no plano xz.

b) A equação

$$y = 8x^2.$$

representa um cilindro cuja diretriz é a parábola $\begin{cases} y = 8x^2 \\ z = 0 \end{cases}$ e cuja geratriz é uma reta paralela ao eixo z.

c) A equação

$$s = \sin(y)$$

representa um cilindro cuja diretriz no plano yz tem equação $\begin{cases} z=\sin(y)\\ x=0 \end{cases}$ e a geratriz é uma reta paralela ao eixo x.

30 Superfície Cônica

Definição 23. Superfície Cônica é a superfície gerada por uma reta que se move apoiada numa curva plana qualquer e passando sempre por um ponto dado não situado no plano desta curva. A reta é denominada geratriz, a curva plana é a diretriz e o ponto fixo é o vértice da superfície cônica.

Vamos considerar agora o caso particular da superfície cônica cuja diretriz é uma elipse co, vértice na origem e com seu eixo sendo um dos eixos coordenados.

A superfície cônica cujo eixo é o eixo dos z tem equação

$$(*)\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0.$$

Seu traço no plano xy é o ponto O=(0,0,0) e o traço no plano yz tem equação

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0 \\ x = 0 \end{cases} \iff \begin{cases} y = \pm \frac{b}{c}z \\ x = 0 \end{cases},$$

ou seja, retas que passam pela origem.

O traço no plano xz também é um par de retas tais que passam pela origem $\begin{cases} x = \pm \frac{a}{c}z \\ y = 0 \end{cases}$.

Os traços nos planos z = k são elipses

$$\begin{cases} \frac{x^2}{a^2} + \frac{y^2}{b^2} &= \frac{k^2}{c^2} \\ z &= k \end{cases}.$$

Se a = b, são circunferências e, neste caso, temos o cone circular reto.

Os traços nos planos x = k e y = k são, respectivamente, as hipérboles

$$\begin{cases} \frac{y^2}{b^2} - \frac{z^2}{c^2} = -\frac{k^2}{a^2} \\ x = k \end{cases}, \begin{cases} \frac{x^2}{a^2} - \frac{z^2}{c^2} = -\frac{k^2}{b^2} \\ y = k \end{cases},.$$

31 Aplicação da Diagonalização na Identificação de Cônicas e Quádricas

Consideremos o problema de identificar uma cônica representada pela equação

$$3x^2 + 2xy + 3y^2 = 4.$$

Usando matrizes, esta equação pode ser escrita como

$$\begin{bmatrix} 3x + y & x + 3y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

ou

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 4,$$

ou ainda,

$$X^T A X = 4$$

em que
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$
 e $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.

Vimos que A é tal que $A = PDP^T$, com $P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ e $D = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$. Assim, a equação dada pode ser escrita como

$$(X^T P)D(P^T X) = 4$$

 $(P^TX)^TD(P^TX)=4$ Se fazemos a mudança de coordenadas $X=PX'(X'P^TX)$, então como $P^TP=I$, teremos $(X')^TDX'=4$. Se $X'=\left\lceil x'y'\right\rceil$, temos

$$\begin{bmatrix} x' & y' \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} x' & y' \end{bmatrix} = 4,$$

que pode ser escrita como

$$2(x')^2 + 4(y')^2 = 4.$$

ou ainda,

$$\frac{(x')^2}{2} + \frac{(y')^2}{1} = 1$$

que é a equação de uma elipse.

Exemplo. Identificar a cônica de equação

$$5x^2 - 4xy + 8y^2 + \frac{20}{\sqrt{5}}x - \frac{80}{\sqrt{5}}y + 4 = 0.$$

Podemos escrever a equação dada como

$$X^t A X + K X + 4 = 0.$$

em que $A=\begin{pmatrix}5&-2\\-2&8\end{pmatrix},\,X=\begin{pmatrix}x\\y\end{pmatrix}$ e $K=\begin{pmatrix}\frac{20}{\sqrt{5}}&-\frac{80}{\sqrt{5}}\end{pmatrix}$. O polinômio característico de A é:

$$p_A = \det(A - xI) = \begin{vmatrix} 5 - x & -2 \\ -2 & 8 - x \end{vmatrix} = (5 - x)(8 - x) - 4 = (x - 4)(x - 9).$$

Logo, os autovalores de A são $\lambda_1 = 4$ e $\lambda_2 = 9$.

Calculemos os autoespaços associados. Para $\lambda_1 = 4$, temos:

$$(A-4I)X = 0 \implies \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

cuja solução geral é

$$Aut(\lambda_1) = \{(2y, y)/y \in \mathbb{R}\} = \{y(2, 1)/y \in \mathbb{R}\} = [(2, 1)].$$

Assim, se $v_1 = (2,1)$, $\{v_1\}$ é LI, pois é unitário e não nulo. Logo, $\{v_1\}$ é uma base de $Aut(\lambda_1)$.

Pegando $u_1 = \frac{v_1}{\|v_1\|} = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$, temos $\{u_1\}$ uma base ortonormal de $Aut(\lambda_1)$.

Como A é uma matriz simétrica, autovetores associados a autovalores distintos são ortogonais. Assim,

$$Aut(\lambda_2) = \{(-x, 2x)/x \in \mathbb{R}\} = \{(x(-1, 2)/x \in \mathbb{R}\} = [(-1, 2)].$$

Se $v_2 = (-1, 2)$, então $\{v_2\}$ é LI e, portanto, uma base de $Aut(\lambda_2)$.

Tomando $u_2 = \frac{v_2}{\|v_2\|} = \left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$, temos $\{u_2\}$ uma base ortonormal de $Aut(\lambda_2)$.

Tomando
$$P = \begin{pmatrix} u_1 u_2 \end{pmatrix}$$
 e $D = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$, temos $A = PDP^T$.

Substituindo na primeira equação, obtemos:

$$(X^T P)D(P^T X) + KX + 4 = 0.$$

Substituindo - se X = PX' (ou seja, $P^TX = X'$), temos:

$$(X')^T DX'' + KPX' + 4 = 0,$$

ou

$$(x' \ y') \begin{pmatrix} 4 \ 0 \\ 0 \ 9 \end{pmatrix} \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} \frac{20}{\sqrt{5}} & -\frac{80}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} + 4 = 0.$$

$$4(x')^2 + 9(y')^2 - 8x' - 36y' + 4 = 0$$

$$4[((x')^2 - 2x' + 1) - 1] + 9[((y')^2 - 4y' + 4) - 4] + 4 = 0$$

$$4(x' - 1)^2 + 9(y' - 2)^2 - 36 = 0$$

Fazendo a mudança de variáveis

$$\begin{cases} x'' = x' - 1 \\ y'' = y' - 2 \end{cases}$$

obtemos

$$4(x'')^{2} + 9(y'')^{2} = 36$$
$$\frac{(x'')^{2}}{9} + \frac{(y'')^{2}}{4} = 1$$

uma elipse.

Exemplo. Considere a quádrica de equação

$$x^2 = 2yz$$
.

Esta equação pode ser escrita como

$$X^T A X = 0,$$

em que
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$
 e $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. O polinômio característico de A é

$$p_A(x) = \det(A - xI) = \begin{vmatrix} 1 - x & 0 & 0 \\ 0 & -x & -1 \\ 0 & -1 & -x \end{vmatrix} = (1 - x)(x^2 - 1) = (x - 1)^2(x + 1).$$

Logo, os autovalores de A são $\lambda_1 = 1$ e $\lambda_2 = -1$ (pode - se escolher o autovalor que possui multiplicidade maior).

Para $\lambda_1 = 1$ temos:

$$(A-I)X = 0 \implies \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

cuja solução geral é

$$Aut(\lambda_1) = \{(x, -z, z)/x, z \in \mathbb{R}\} = \{x(1, 0, 0) + z(0, -1, 1)/x, z \in \mathbb{R}\} = [(1, 0, 0), (0, -1, 1)].$$

Se $v_1 = (1,0,0)$ e $v_2 = (0,-1,1)$, então são ortogonais entre si e, portanto, $\{v_1,v_2\}$ é LI, logo, uma base de $Aut(\lambda_1)$.

Tomando $u_1 = \frac{v_1}{\|v_1\|} = (1,0,0)$ e $u_2 = \frac{v_2}{\|v_2\|} = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, $\{u_1, u_2\}$ é uma base ortonormal de $Aut(\lambda_1)$. Como autovetores associados a autovalores distintos de uma matriz simétrica são ortogonais, podemos tomar

$$u_3 = u_1 \times u_2 = \begin{vmatrix} 0 & 0 \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 0 \\ 0 & \frac{1}{\sqrt{2}} \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 0 \\ 0 & -\frac{1}{\sqrt{2}} \end{vmatrix} \vec{k} = \left(0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right).$$

Assim, fazendo
$$P = \begin{pmatrix} u_1 & u_2 & u_3 \end{pmatrix}$$
 e $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$, obtemos $A = PDP^t$.

Logo,

$$(X^t P)D(P^t X + = 0,$$

fazendo $X' = P^T X$, temos:

$$(X')^T D X' = 0$$

$$(x' \ y' \ z') \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

$$(x')^2 + (y')^2 - (z')^2 = 0,$$

que é um cone circular.

Transformações Lineares

Definição 24. Sejam U e V dois espaços vetoriais. Uma $transformação\ linear$ de U e V é uma função $T:U\to V$ que satisfaz, para quaisquer $u,v\in U$ e $\alpha\in\mathbb{R}$ as condições

1.
$$T(u+v) = T(u) + T(v)$$

2.
$$T(\alpha u) = \alpha T(u)$$

No caso especial em que U=V, dizemos que $T:U\to U$ é um operador linear. As condições 1 e 2 podem ser reescritas da seguinte maneira:

$$T(\alpha u + v) = \alpha T(u) + T(v).$$

Exemplo. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por f(x) = 4x. Dados $u, v \in \mathbb{R}$ e $\alpha \in \mathbb{R}$, temos:

1.
$$f(u+v) = 4(u+v) = 4u + 4v = f(u) + f(v)$$

2.
$$f(\alpha u) = 4(\alpha u) = \alpha(4u) = \alpha f(u)$$

Logo, f é uma transformação linear.

EXEMPLOS

Observação. Decorre da definição que uma transformação linear $T: U \to V$ leva o vetor nulo de U no vetor nulo de V, isto é,

$$T(O_u) = O_v$$
.

De fato, se T é uma transformação linear, temos:

$$T(O_u) = T(O_u + O_v) = T(O_u) + T(O_u) = 2T(O_u)$$
$$2T(O_u) - T(O_u) = O_v$$
$$T(O_u) = O_v$$

Assim, se $T(O_u) \neq O_v$, concluímos que T não é uma transformação linear. Mas $T(O_u) = O_v$ não é suficiente para que T seja uma transformação linear.

Teorema 15. Seja $\alpha = \{u_1, u_2, \dots, u_n\}$ uma base de um espaço vetorial U. Sejam v_1, v_2, \dots, v_n vetores de um espaço vetorial V. Então existe uma única transformação linear $T: U \to V$ tal que $T(u_i) = v_i$ para cada $i = 1, 2, \dots, n$.

Demonstração. Tomemos $u \in U$. Como α é uma base de U, u se escreve de modo

único como combinação linear dos vetores de α , digamos:

$$u = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n$$
.

Defina $T: U \to V$ por:

$$T(u) = a_1v_1 + a_2v_2 + \ldots + a_nv_n.$$

A função T está bem definida, pois os escalares a_1, a_2, \ldots, a_n são unicamente determinados a partir de u.

Além disso, T é uma transformação linear. De fato, dados $u = a_1u_1 + a_2u_2 + \ldots + a_nu_n, u = b_1v_1 + b_2v_2 + \ldots + b_nv_n \in U$ e $\lambda \in \mathbb{R}$, temos:

$$T(\lambda u + v) = T((\lambda a_1 + b_1)u_1 + \dots + (\lambda a_n + b_n)u_n) = (\lambda a_1 + b_1)v_1 + \dots + (\lambda a_n + b_n)v_n = \lambda (a_1v_1 + \dots + a_nv_n) + (b_1v_1 + \dots + b_nv_n) = \lambda T(u) + T(v)$$

Notemos que, para todo $j, i \leq j \leq n$,

$$u_i = Ou_1 + \ldots + Ou_{i-1} + 1u_i + Ou_{i+1} + \ldots + Ou_n,$$

e, portanto,

$$T(u_j) = v_j.$$

Agora, vamos verificar que T é a única transformação linear com as propriedades desejadas. Para isto, suponhamos $S\colon U\to V$ uma transformação linear tal que $S(u_i)=v_i$ para todo $i=1,2,\ldots,n$.

Se $u \in U$, então $u = a_1u_1 + a_2u_2 + \ldots + a_nu_n$ e, portanto,

$$S(u) = S(a_1u_1 + a_2u_2 + \dots + a_nu_n)$$

$$= S(a_1u_1) + S(a_2u_2 + \dots + S(a_nu_n))$$

$$= a_1S(u_1) + a_2S(u_2) + \dots + a_nS(u_n)$$

$$= a_1v_1 + a_2v_2 + \dots + a_nv_n = T(u)$$

Como $u \in U$ foi tomado de forma arbitrária, segue que S = T.

Exemplo. Vamos determinar uma transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$ tal que T(1,1) = (0,2,1) e T(0,2) = (1,0,1).

Notemos, inicialmente, que $\alpha = \{(1,1),(0,2)\}$ é uma base de \mathbb{R}^2 . De fato, como um vetor não é um múltiplo do outro, α é um conjunto LI. Daí, como dim $\mathbb{R}^2 = 2$ e α contém dois vetores LI, segue que α é uma base de \mathbb{R}^2 .

Assim, para qualquer $u=(x,y)\in\mathbb{R}^2$ podemos encontrar escalares $a_1,a_2\in\mathbb{R}$ tais que

$$u = (x, y) = a_1(1, 1) + a_2(0, 2),$$

ou seja,

$$(x,y) = (a_1, a_1 + 2a_2).$$

Daí,

$$\begin{cases} a_1 = x \\ a_1 + 2a_2 = y \end{cases} \implies a_2 = \frac{y - x}{2}.$$

Logo,

$$u = (x, y) = x(1, 1) + \frac{y - x}{2}(0, 2),$$

e, portanto,

$$T(x,y) = T\left(x(1,1) + \frac{y-x}{2}(0,2)\right)$$

$$= xT(1,1) + \frac{y-x}{2}T(0,2)$$

$$= x(0,2,1) + \frac{y-x}{2}(1,0,1)$$

$$= \left(\frac{y-x}{2}, 2x, \frac{x+y}{2}\right)$$

32 Núcleo e Imagem de uma Transformação Linear

Definição 25. Sejam U e V dois espaços vetoriais e $T\colon U\to V$ uma transformação linear.

- 1. O conjunto $\{u \in U/T(u) = 0\}$ é chamado *núcleo* de T e será denotado por Ker(T).
- 2. O conjunto $\{v \in V/v = T(u) \text{ para algum } u \in U\}$ é chamado imagem de T e será denotado por Im(T).
- 3. T é injetora se dados $u, v \in U$ com T(u) = T(v) tivermos u = v. Ou igualmente, T é injetora se dados $u, v \in U$, com $u \neq v$, tivermos $T(u) \neq T(v)$.
- 4. T é sobrejetora se dado $v \in V$ existir $u \in U$ tal que v = T(u). Em outras palavras, T é sobrejetora se Im(T) = V.

Proposição 8. Sejam U e V dois espaços vetoriais e $T\colon U\to V$ uma transformação linear. Então,

- 1. Ker(T) é um subespaço vetorial de U.
- 2. Im(T) é um subespaço vetorial de V.
- 3. T é injetora se, e somente se, $Ker(T) = \{0\}$

Demonstração. 1. $Ker(T) \neq \emptyset$, pois $O_u \in U$ é tal que $T(O_u) = O_v$. Logo, $O_u \in Ker(T)$.

2. Dados $u, v \in Ker(T)$, temos $u, v \in U$ e T(u) = T(v) = 0. Daí, $u + v \in U$ e

$$T(u+v) = T(u) + T(v) = 0 + 0 = 0.$$

Logo, $u + v \in Ker(T)$

3. Dados $\lambda \in \mathbb{R}$ e $u \in Ker(T)$, temos $u \in U$ e T(u) = 0. Daí, $\lambda u \in U$ e

$$T(\lambda u) = \lambda T(u) = \lambda 0 = 0.$$

Logo, $\lambda u \in Ker(T)$.

4. (\Longrightarrow) Suponhamos T injetora e seja $u \in Ker(T)$. Então $u \in U$ e T(u) = 0. Mas T(0) = 0 e, como T é injetora, segue que u = 0. Logo, $Ker(T) \subset \{0\}$. Como, $\{0\} \subset Ker(T)$ temos $Ker(T) = \{0\}$.

(<=) Suponhamos $Ker(T)=\{0\}$. Sejam $u,v\in U$ tais que T(u)=T(v). Então

$$T(u) - T(v) = 0 \implies T(u - v) = 0 \implies u - v \in Ker(T) = \{0\} \implies u - v = 0 \implies u = v.$$

Exemplo. Considere a transformação linear $T: \mathbb{R}^4 \to \mathbb{R}^3$ definida por

T(x, y, z, w) = (x, y, z - w).

Seja $u = (x, y, z, w) \in Ker(T)$. Então T(u) = 0, ou seja,

$$T(x, y, z, w) = (0, 0, 0)$$

$$(x, y, z - w) = (0, 0, 0)$$

Daí,

$$\begin{cases} x = 0 \\ y = 0 \implies w = z. \\ -w + z = 0 \end{cases}$$

Logo, $u = (0, 0, z, z), z \in \mathbb{R}$.

Portanto, $Ker(T) = \{(0,0,z,z)\}/z \in \mathbb{R} = \{z(0,0,1,1)/z \in \mathbb{R}\} = [(0,0,1,1)]$. Notemos que $\beta = \{(0,0,1,1)\}$ gera Ker(T) e é um conjunto LI, pois é unitário e não nulo. Assim, β é uma base de Ker(T) e $dim\ Ker(T) = 1$. T não é injetora, pois

Assim, β é uma base de Ker(T) e $dim\ Ker(T) = 1$. T não é injetora, pois $Ker(T) \neq \{0\}$.

Além disso, a imagem de T é formada pelos vetores da forma

$$(x, y, z - w) = x(1, 0, 0) + y(0, 1, 0).$$

Proposição 9. Sejam U e V dois espaços vetoriais sobre \mathbb{R} e $T: U \to V$ uma transformação linear. Se $\beta = \{u_1, u_2, \dots, u_n\}$ é uma base de U, então $\gamma = \{T(u_1), T(u_2), \dots, T(u_n)\}$ gera Im(T).

Demonstração. Seja $v \in Im(T)$. Existe $u \in U$ tal que T(u) = v. Como β é uma base de U existem escalares a_1, a_2, \ldots, a_n tais que

$$u = a_1 u_1 + a_2 v_2 + \ldots + a_n v_n.$$

Daí:

$$v = T(u) = T(a_1u_1 + a_2v_2 + \ldots + a_nv_n) = a_1T(u_1) + a_2T(u_2) + a_nT(u_n),$$

o que significa que v é uma combinação linear dos elementos de γ e, portanto, γ gera Im(T).

33 Teorema do Núcleo e da Imagem

Sejam U e V espaços vetoriais sobre \mathbb{R} , com U de dimensão finita, e $T\colon U\to V$ uma transformação linear. Então

$$dim\ U = dim\ Ker(T) + dim\ Im(T).$$

Demonstração. Suponhamos que $Ker(T) \neq \{0\}$ e seja $\beta = \{u_1, u_2, \dots, u_n\}$ uma base de Ker(T). Como $Ker(T) \subset U$ é um subespaço de U, podemos estender o conjunto β a uma base $\beta' = \{u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_m\}$ de U. Vamos mostrar que $\gamma = \{T(v_1), T(v_2), \dots, T(v_m)\}$ é uma base de Im(T).

Pela proposição anterior, $\{T(u_1), T(u_2), \ldots, T(u_n), T(v_1), T(v_2), \ldots, T(v_m)\}$ gera Im(T)Como $u_i \in Ker(T), T(u_i) = 0$ para $i = 1, 2, \ldots, n$. Logo, $\{T(v_1), T(v_2), \ldots, T(v_m)\}$ gera Im(T). Resta mostrar que γ é LI. De fato, sejam $\lambda_1, \lambda_2, \ldots, \lambda_m$ escalares tais que

$$\lambda_1 T(v_1) + \lambda_2 T(v_2) + \ldots + \lambda_m T(v_m) = 0.$$

Como

$$T(\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_m v_m) = 0,$$

segue que $\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_m v_m \in Ker(T)$.

Como β é uma base de Ker(T), temos

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_m v_m = a_1 u_1 + a_2 v_2 + \ldots + a_n u_n$$

para certos $a_1, a_2, \ldots, a_n \in \mathbb{R}$.

Daí:

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n - \lambda_1v_1 - \lambda_2v_2 - \ldots - \lambda_mv_m = 0.$$

Como β' é LI, segue que $\lambda_i = 0$ para todo i = 1, 2, ..., m. Portanto, γ é LI. Assim,

$$dim\ U = n + m = dim\ Ker(T) + dim\ Im(T).$$

Se $Ker(T) = \{0\}$, consideramos $\beta = \{u_1, u_2, \dots, u_n\}$ base de U e, de modo análogo, mostramos que $\{T(u_1), T(u_2), \dots, T(u_n)\}$ é uma base de Im(T).

34 Isomorfismos

Definição 26. Sejam U e V dois espaços vetoriais sobre \mathbb{R} .

- 1. Seja $T\colon U\to V$ uma transformação linear. Se T for bijetora, então dizemos que ela é um isomorfismo.
- 2. Se existir um isomorfismo $T\colon U\to V$, dizemos que U e V são isomorfos e indicaremos por $U\cong V$.

35 Transformações Inversas

Seja $F\colon U\to V$ uma bijetora. Em particular, para cada $v\in V$, existe um único $u\in U$ tal que F(u)=v. Com isso, podemos definir $G\colon V\to U$ por G(v)=u. Temos $F\circ G=Id_v$ e $G\circ F=Id_u$. Chamamos G de função inversa de F. Se F for uma transformação linear, então G também será linear. De fato, $\lambda\in\mathbb{R}$, $u_1,u_1\in U$ e $v_1,v_2\in V$ tais que $F(u_i)=v_i$ para cada i=1,2. Logo,

$$G(\lambda v_1 + v_2) = G(\lambda F(u_1) + F(u_2)) = G(F(\lambda u_1 + u_2)) = (G \circ F)(\lambda u_1 + u_2) = \lambda u_1 + u_2 = \lambda G(v_1) + G(v_2).$$

Portanto, G é linear.

Assim, temos o seguinte resultado:

Proposição 10. A inversa de uma transformação linear bijetora é também uma transformação linear.

Denotaremos a inversa de uma transformação linear $T: U \to V$ por $T: V \to U$.

Proposição 11. Sejam U e V dois espaços vetoriais sobre \mathbb{R} de mesma dimensão finita $n \geq 1$ e $T: U \to V$ uma transformação linear. São equivalentes:

- 1. T é um isomorfismo.
- 2. Té injetora.
- 3. é sobrejetora

Demonstração. As implicações $(1) \implies (2)$ e $(1) \implies (3)$ são claras.

(2) \Longrightarrow (i): Suponhamos T injetora. Então $Ker(T) = \{0\}$ e $dim\ Ker(T) = 0$. Pelo teorema do núcleo e da imagem, temos:

$$dim\ V = dim\ U = dim\ Ker(T) + dim\ Im(T)$$

$$dim V = dim Im(T).$$

Como $Im(T) \subset V$ é subespaço de V e $dim\ Im(T) = dim\ V$, segue que Im(T) = V e, portanto T é sobrejetora.

Assim, T é um isomorfismo.

(3) \Longrightarrow (1): Suponhamos T sobrejetora. Então Im(T) = V e $dim\ Im(T) = dim\ V = dim\ U$. Pelo Teorema do Núcleo e da Imagem,

$$dim\ U = dim\ Ker(T) + dimIm(T) = dim\ Ker(T) + dim\ U.$$

Logo, $dim\ Ker(T)=0$ e, portanto, $Ker(T)=\{0\}$. Daí, T é injetora e, assim, T é um isomorfismo.

Proposição 12. Sejam U e V dois espaços vetoriais sobre \mathbb{R} e $T:U\to V$ uma transformação linear injetora. Se $\dim U=\dim V$, então T leva base em base.

Demonstração. Seja $\beta = \{u_1, u_2, \dots, u_n\}$ é uma base de V. Sejam a_1, a_2, \dots, a_n escalares tais que

$$a_1T(u_1) + a_2T(u_2) + \ldots + a_nT(u_n) = 0.$$

Daí,

$$T(a_1u_1 + a_2u_2 + \ldots + a_nu_n) = 0,$$

ou seja,

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n \in Ker(T) = \{0\},\$$

uma vez que T é injetora. Logo,

$$a_1u_1 + a_2u_2 + \ldots + a_nu_n = 0.$$

Como β é LI, segue que $a_1 = a_2 = \ldots = a_n = 0$. Portanto, γ é LI e, como contém $n = \dim V$ elementos, γ é uma base de V.

Teorema 16. Dois espaços vetoriais de mesma dimensão finita são isomorfos.

Demonstração. Se ambos os espaços forem nulos, não há nada a demonstrar.

Sejam U e V espaços vetoriais sobre $\mathbb R$ de dimensão $n \geq 1$. Para definirmos um isomorfismo $T\colon U \to V$ consideremos $\beta = \{u_1, u_2, \ldots, u_n\}$ e $\gamma = \{v_1, v_2, \ldots, v_n\}$ bases de U e V, respectivamente. Sabemos que existe uma única transformação linear $T\colon U \to V$ tal que $T(u_i) = v_i$. Vamos mostrar que tal transformação é sobrejetora. Dado $v \in V$, $v = a_1v_1 + a_2v_2 + \ldots + a_nv_n$, precisamos encontrar $u \in U$ tal que T(u) = v. Basta considerarmos $u = a_1u_1 + a_2u_2 + \ldots + a_nv_n \in U$ e teremos:

$$T(u) = T(a_1u_1 + a_2u_2 + \dots + a_nu_n)$$

$$= a_1T(u_1) + a_2T(u_2) + \dots + a_nT(u_n)$$

$$= a_1v_1 + a_2v_2 + \dots + a_nv_n = v$$

Portanto, T é sobrejetora e, assim, T é um isomorfismo.

Exemplo. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear definida por

T(x,y,z)=(z-2y,z,x+y). Vamos mostrar que T é um isomorfismo e calcular sua inversa T^{-1} .

Seja $u=(x,y,z)\in Ker(T)$. Então T(u)=T(x,y,z)=(0,0,0), ou seja,

$$(x-2y, z, x+y) = (0, 0, 0).$$

Daí, temos

$$\begin{cases} x - 2y = 0 \\ z = 0 \\ x + y = 0 \end{cases}$$

Isolando y em (3), obtemos y = -x e, substituindo em (1) resulta:

$$x + 2x = 0 \implies 3x = 0 \implies x = 0.$$

Logo, y = 0.

Portanto, u=(0,0,0) e, assim, $Ker(T)=\{0\}$. Logo, T é injetora e, portanto, um isomorfismo.

Tomando $\beta = \{(1,0,0), (0,1,0), (1,0,1)\}$ base canônica de \mathbb{R}^3 , sua imagem pela T é $\gamma = \{T(1,0,0), T(0,1,0), T(0,0,1)\} = \{(1,0,1), (-2,0,1), (0,1,0)\}$. também é uma base de \mathbb{R}^3 .

Queremos calcular $T^{-1}(x, y, z)$ como combinação linear da base γ .

Sejam a_1, a_2, a_3 escalares tais que

$$(x, y, z) = a_1(1, 0, 1) + a_2(-2, 0, 1) + a_3(0, 1, 0).$$

Então

$$\begin{cases} a_1 - 2a_2 &= x \\ a_3 &= y \\ a_1 + a_2 &= z \end{cases}$$

cuja solução é $S = \left\{ \left(\frac{x+2z}{3}, \frac{-x+z}{3}, y \right) \right\}$

Portanto

$$(x, y, z) = \frac{x + 2z}{3}(1, 0, 1) + \frac{z - x}{3}(-2, 0, 1) + y.$$

Assim,

$$T(x, y, z) =$$

36 Matriz de uma Transformação Linear

Sejam U e V dois espaços vetoriais sobre \mathbb{R} com dimensões n e m, respectivamente. Seja $T:U\to V$ uma transformação linear. Vamos associar a T uma matriz $m\times n$. Sejam $\beta=\{u_1,u_2,\ldots,u_n\}$ e $\gamma=\{v_1,v_2,\ldots,v_n\}$ bases de U e V, respectivamente. Cada um dos vetores $T(u_i)$ pode ser expresso de modo único como combinação linear dos elementos de γ , digamos:

$$T(u_1) = a_{11}v_1 + a_{21}v_2 + \dots + a_{m1}v_m$$

$$T(u_2) = a_{12}v_1 + a_{22}v_2 + \dots + a_{m2}v_m$$

$$\vdots$$

$$T(u_n) = a_{1n}v_1 + a_{2n}v_2 + \dots + a_{mn}v_m$$

Se $u = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_n u_n \in U$ temos:

$$T(u) = \alpha_1 T(u_1) + \alpha_2 T(u_2) + \ldots + \alpha_n T(u_n) = \sum_{i,j=1}^{n,m} \alpha_i (a_{ij} v_j)$$
$$= \sum_{i,j=1}^{n,m} (\alpha_i a_{ij}) v_j$$

Se escrevermos $\lambda_j = \alpha_1 a_{j1} + \ldots + \alpha_n a_{jn}$ para $j = 1, 2, \ldots, m$, então

$$T(u) = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_m v_m,$$

isto,

$$[T(u)]_{\gamma} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{bmatrix}.$$

Reescrevendo em termos de multiplicação de matrizes, temos:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{bmatrix},$$

isto é, $[T(u)]_{\gamma} = A[u]_{\beta}$, onde $A = (a_{ij})_{m \times n}$

Definição 27. A matriz $A = (a_{ij})_{m \times n}$ definida acima é chamada matriz da transformação linear com relação às bases β e γ e é denotada por $[T]_{\gamma}^{\beta}$. Se U = V e $\beta = \gamma$, denotamos simplesmente $[T]_{\beta}$

Exemplo. Seja $T: \mathbb{R}^2 \to \mathbb{R}^3$ definida por T(x,y) = (zx+y,y-x,3x). Sejam $\beta = \{(1,2),(2,-1)\}$ e $\gamma = \{(1,1,1),(0,1,1),(0,0,1)\}$ bases de \mathbb{R}^2 e \mathbb{R}^3 , respectivamente. Vamos determinar $[T]^{\beta}_{\gamma}$. Calculando T nos elementos da base β e escrevendo o resultado como combinação linear da base γ , temos:

$$T(1,2) = (4,1,3) = a_{11}(1,1,1) + a_{21}(0,1,1) + a_{31}(0,0,1)$$

$$T(2,-1) = (3,-3,6) = a_{12}(1,1,1) + a_{22}(0,1,1) + a_{32}(0,0,1)$$

Daí:

$$\begin{cases} a_{11} = 4 \\ a_{11} + a_{21} = 1 \\ a_{11} + a_{21} + a_{31} = 3 \end{cases} = \begin{cases} a_{12} = 3 \\ a_{12} + a_{22} = -3 \\ a_{12} + a_{22} + a_{32} = 6 \end{cases}$$

Observação. Como as duas matrizes são AX = B com as mesmas matrizes A, pode - se colocar as duas juntas no escalonamento.

Portanto,

$$[T]_{\gamma}^{\beta} = \begin{bmatrix} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{bmatrix}$$

Se $[u]_{\beta}$, então $[T(u)]_{\gamma}$ é:

$$[T(u)]_{\gamma} = [T]_{\gamma}^{\beta}[u]_{\beta}$$

$$[T(u)]_{\gamma} = \begin{bmatrix} 4 & 3 \\ -3 & -6 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \\ -5 \end{bmatrix}$$

Proposição 13. Seja U e V dois espaços vetoriais sobre \mathbb{R} com dimensões n e m, respectivamente. Dadas β e γ de U e V, respectivamente, e uma matriz M de $M_{m \times n}(\mathbb{R})$, então existe uma *única* transformação linear $T: U \to V$ tal que $[T]^{\beta}_{\gamma} = M$.

Teorema 17. Sejam U, V e W espaços vetoriais sobre $\mathbb{R}, T_1 \colon V \to V$ e $T_2 \colon V \to W$ transformações lineares. Então a função composta $T_2 \circ T_1 \colon U \to W$ também é uma transformação linear.

Demonstração. Dados $u, v \in e$ $\lambda \in \mathbb{R}$, temos

$$(T_2 \circ T_1)(\lambda u + v) = T_2(T_1(\lambda u + v))$$

$$= T_2(\lambda T_1(u) + T_1(v))$$

$$= \lambda T_2(T_1(u)) + T_2(T_1(v))$$

$$= \lambda (T_2 \circ T_1)(u) + (T_2 \circ T_1)(v)$$

Portanto, $T_2 \circ T_1$ é uma transformação linear.

Teorema 18. Sejam U, V e W espaços vetoriais com dimensões n, m e r, respectivamente. $T_1: V \to V$ e $T_2: V \to W$ transformações lineares. Fixe α, β, γ bases de U, V, W, respectivamente. Então

$$[T_2 \circ T_1]^{\alpha}_{\gamma} = [T_2]^{\beta}_{\gamma} [T_1]^{\alpha}_{\beta}.$$

Corolário 5. Sejam U e V dois espaços vetoriais de dimensão finita $n \geq 1$ sobre \mathbb{R} e consideremos β e γ bases de U e V, respectivamente. Uma transformação linear $T: U \to V$ é um isomorfismo se, e somente se, a matriz $[T]_{\gamma}^{\beta}$ for invertível. Além disso, neste caso $[T^{-1}]_{\beta}^{\gamma} = ([T]_{\gamma}^{\beta})^{-1}$.

Observação. Dado um operador linear $T: V \to V$, com dim V = n se conseguirmos uma base $\beta = \{v_1, v_2, \dots, v_n\}$ formada por autovetores de T, então, como

$$T(v_1) = \lambda_1 v_1 = \lambda_1 v_1 + 0v_2 + \dots + 0v_n$$

$$T(v_2) = \lambda_2 v_2 = 0v_1 + \lambda_2 v_2 + \dots 0v_n$$

$$\vdots$$

$$T(v_n) = \lambda_n v_n = 0v_1 + 0v_2 + \dots + \lambda_n v_n$$

a matriz $[T]_{\beta}$ será diagonal e os elementos da diagonal principal serão os autovalores λ_i

$$[T]_{\beta} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}.$$

Por outro lado, se $\gamma = \{u_1, u_2, \dots, u_n\}$ é uma base de V tal que

$$[T]_{\gamma} = \begin{bmatrix} a_1 & 0 & \dots & 0 \\ 0 & a_2 & \dots & 0 \\ \vdots & \vdots & \ddots & vdots \\ 0 & 0 & \dots & a_n \end{bmatrix}.$$

então γ é uma base formada por autovetores de T. De fato, pela definição de $[T]_{\gamma}$, temos

$$T(v_1) = a_1v_1 + 0v_2 + \dots + 0v_n$$

$$T(v_2) = 0v_1 + a_2v_2 + \dots + 0v_n$$

$$\vdots$$

$$T(v_n) = 0v_1 + 0v_2 + \dots + a_nv_n$$

ou seja, u_i é um autovetor de T associado ao autovalor a_i para cada $i=1,2,\ldots,n$.

Definição 28. Seja $T \colon V \to V$ um operador linear com dim V = n. Dizemos, que T é um operador diagonalizável se existe uma base de V cujos elementos são autovetores de T.

Exemplo. Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear cuja matriz em relação à base canônica de \mathbb{R}^3 é

$$[T]_{\beta} = \begin{bmatrix} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}.$$

O polinômio característico de T é

$$p_T(x) = \det([T]_{\beta} - xI) = \begin{vmatrix} 3 - x & 0 & -4 \\ 0 & 3 - x & 5 \\ 0 & 0 & -1 - x \end{vmatrix} = -(3 - x)^2 (1 + x).$$

Assim, os autovalores de T são $\lambda_1 = 3$ e $\lambda_2 = -1$. Para $\lambda_1 = 3$, temos

$$([T] - 3I)[v]_{\beta} = 0 \implies \begin{pmatrix} 0 & 0 & -4 \\ 0 & 0 & 5 \\ 0 & 0 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

cuja solução é

$$Aut(\lambda_1) = \{(x, y, 0)/x, y \in \mathbb{R}\} = [(1, 0, 0), (0, 1, 0)].$$

Se $v_1=(1,0,0)$ e $v_2=(0,1,0)$, então $\{v_1,v_2\}$ é LI, pois um vetor não é múltiplo do outro.

Para $\lambda_2 = -1$, temos

$$([T]_{\beta} + I)[v]_{\beta} = 0 \implies \begin{pmatrix} 4 & 0 & -4 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

cuja solução é

$$Aut_T(\lambda_2) = \{z, -\frac{5}{4}z, z)/z \in \mathbb{R}\} = [(4, -5, 4)].$$

Se $v_3=(4,-5,4),$ então $\{v_3\}$ é um conjunto LI, pois é unitário e não nulo.

Como os autovetores associados a autovalores distintos são LI, $\gamma = \{v_1, v_2, v_3\}$ é LI. E, como dim $\mathbb{R}^3 = 3$, γ é uma base de \mathbb{R}^3 formada por autovetores de T. Portanto, T é diagonalizável e

$$[T]_{\gamma} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$