

National Institute of Technology Rourkela Spring Semester 2022-23

Department of Electrical Engineering

Assignment-1

Course Tittle & Code: Communication Systems (EE3402)

Instructor: Dr. S. K. Dey

- 1. Find the Fourier transform of (i). $g(t) = e^{-at}u(t)$, (ii) $g(t) = \prod (t/\tau) \& \text{ (iii) } g(t) = \cos(2\pi f_0)$
- 2. Find the Fourier transform of a general periodic signal g(t) of period T_0 , and hence, determine the Fourier transform of the periodic impulse train $\delta_{T_0}(t)$ shown in Figure.

Figure 1: Impulse train

3. Use the time differentiation property to find the Fourier transform of the triangular pulse $\Delta(t/\tau)$ show in figure.

4. System shown in Fig. 2(a), X(f) is shown in Fig. 2(b)

- (a) Obtain and sketch Y(f) and Z(f).
- (b) Compare X(f) with Z(f) and comment.
- (c) What is the energy of Z(f)?
- (d) How can X(f) be recovered from Z(f).
- 5. The system shown in Fig. 3, $x(t) = sinc(\pi t)$ Calculate E_y , the energy in y(t). What should be the value of f_c so that energy of z(t), E_z , is 80% of E_y .
- 6. Given $x(t) = e^{-3t}u(t)$. Determine its autocorrelation function $R_x(\tau)$. What is the energy in x(t)? Sketch $R_x(\tau)$.

Figure 3: System

- 7. In a DSB system, a carrier $A_L \cos(\omega_c t + \phi)$ is added to the received signal $Am(t) \cos(\omega_c t)$. The resultant signal is passed through an envelope detector. Show that the modulating signal can be recovered at the output when $A_L >> A$.
- 8. A signal x(t) is described as

$$x(t) = \left(\frac{3}{2}\right)\cos(190 \times 10^3 \pi t) + 5\cos(200 \times 10^3 \pi t) + \left(\frac{3}{2}\right)\cos(210 \times 10^3 \pi t)$$

- (a) Show that x(t) is an AM signal.
- (b) Determine the ratio P_s/P_c , where P_s is the power in sidebands and P_c is the power in the carrier.
- (c) What is the power efficiency (η) in the AM signal?
- 9. Cross-correlation of real-valued functions $g_1(t)$ and $g_2(t)$ is given by

$$R_{12}(\tau) = \int_{-\infty}^{\infty} g_1(t)g_2(t-\tau)dt$$

- (a) Show that $R_{12}(\tau) \longleftrightarrow G_1(f)G_2^*(f)$.
- (b) Using (a), show that g(t) and its Hilbert transform $g_h(t)$ are orthogonal.
- 10. A VSB signal is modulated by $m(t) = 3\cos(6 \times 10^3 \pi t) + 5\cos(16 \times 10^3 \pi t)$. The carrier frequency is 100 kHz. The VSB filter is

$$H(f) = \begin{cases} 0.5 \left[\frac{f - f_c}{f_0} + 1 \right] & \text{for } (f_c - f_0) \le |f| \le (f_c + f_0) \\ 1 & \text{for } (f_c + f_0) \le |f| \le f_{max} \\ 0 & \text{otherwise} \end{cases}$$

where f_c is the carrier frequency = 100 kHz, $f_0 = 5$ kHz, and $f_{max} = 10$ kHz. Determine power in the VSB signal.

11. A modulated signal is described as

$$x(t) = A\cos(\omega_c t + k\frac{t^2}{2} + \theta_0), \qquad 0 \le t \le T$$

where θ_0 is the signal phase at t = 0. Interpret the above signal as an FM signal. Hence, suggest measurements to determine the constant k.

- 12. A carrier is frequency modulated by $m(t) = A_m \sin \omega_m t$ with frequency modulation sensitivity constant k_f . The resulting modulation index is β_f . The same carrier is phase modulated by m(t) with phase modulation sensitivity constant k_p . The resulting modulation index is β_p . Obtain the relationship between k_f and k_p so that $\beta_f = \beta_p$.
- 13. (a) Estimate B_{FM} and B_{PM} for the modulating signal m(t) in Fig 4 for $k_f = 2\pi \times 10^5$ and $k_p = 5\pi$. Assume the essential bandwidth of the periodic m(t) as the frequency of its third harmonic.

Figure 4: Message signal m(t)

- (b) Repeat the problem if the amplitude of m(t) is doubled [i.e., if m(t) is multiplied by 2].
- 14. Discuss the nature of distortion inherent in the Armstrong indirect FM generation.
- 15. Design an Armstrong indirect FM modulator to generate an FM signal with carrier frequency 97.3 MHz and $\Delta f = 10.24$ kHz. An NBFM generator of $f_{c1} = 20$ kHz and $\Delta f = 5$ Hz is available. Only frequency doublers can be used as multipliers. Additionally, a local oscillator (LO) with adjustable frequency between 400 and 500 kHz is readily available for frequency mixing.
