МГТУ им. Н.Э. Баумана

Дисциплина электроника

Лабораторный практикум №4

по теме: «Исследование полупроводниковых диодов»

Студент: Фам Минь Хиеу

Группа: ИУ7-32Б

Работу проверил: Оглоблин Д. И.

Цель работы:

Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобрести навыки в использовании базовых возможностей программ схемотехнического анализа, на примере программы Multisim, для исследования статических и динамических характеристик полупроводниковых диодов с последующим расчетом параметров модели полупроводникового диода. Приобретение навыков расчета моделей полупроводниковых приборов по данным, полученным в экспериментальных исследованиях и включение модели в базу компонентов.

Эксперимент 5: ИССЛЕДОВАНИЕ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ С ИСПОЛЬЗОВАНИЕМ ПРИБОРА IV ANALYZER

Получение ВАХ с применением виртуального прибора **IV analyzer**, используемого для снятия ВАХ p-n-переходов, диодов, транзисторов.

Рабочей точкой диода является: I = 1.529mA U = 240.448mV.

(1) зависимость V1, V2 – напряжения на источнике и диоде от температуры в выбранной рабочей точке

(2) зависимость тока I(R1), равного току диода, от температуры.

		0	1
VAX =	0	0	0
	1	0.01	4.313·10 ⁻¹⁰
	2	0.02	9.469·10 ⁻¹⁰
	3	0.03	1.564·10 ⁻⁹
	4	0.04	2.303·10 ⁻⁹
	5	0.05	3.188·10 ⁻⁹
	6	0.06	4.248·10 ⁻⁹
	7	0.07	5.521·10 ⁻⁹
	8	0.08	7.046·10 ⁻⁹
	9	0.09	8.877·10 ⁻⁹
	10	0.1	1.107·10 ⁻⁸
	11	0.11	1.371·10 ⁻⁸
	12	0.12	1.687·10 ⁻⁸
	13	0.13	2.067·10 ⁻⁸
	14	0.14	2.523·10 ⁻⁸
	15	0.15	

$$Id3 := max \left(VAX^{\langle 1 \rangle} \right)$$

$$Id3 = 5.069 \times 10^{-7}$$

$$Ud1 := 0.05$$
 $Id1 := 2.751 \cdot 10^{-5}$

$$Ud2 := 0.1$$
 $Id2 := 9.668 \cdot 10^{-5}$

Ud3 := 0.2
$$Id3 := 7.125 \cdot 10^{-4}$$

$$Ud4 := 0.3$$
 $Id4 := 4.652 \cdot 10^{-3}$

Rb := 1 IS :=
$$(1.465 \cdot 10)^{-12}$$
 Ft := 0.026 m := 0.4

Given

$$Idi:Rb+In\left[\frac{(IS+Idi)}{IS}\right]\cdot m:Ft = Udi$$

$$Id2 \cdot Rb + In \left[\frac{(IS + Id2)}{IS} \right] \cdot m \cdot Ft = Ud2$$

$$Id3 \cdot Rb + In \left[\frac{(IS + Id3)}{IS} \right] \cdot m \cdot Ft = Ud3$$

$$Id4 \cdot Rb + In \left[\frac{(IS + Id4)}{IS} \right] \cdot m \cdot Ft = Ud4$$

 $Diod_P := Minerr(IS, Rb, m, Ft)$

$$Diod_P = \begin{pmatrix} 1.059 \times 10^{-8} \\ 33.23 \\ 0.487 \\ 0.024 \end{pmatrix}$$

Эксперимент 6: ИССЛЕДОВАНИЕ ВОЛЬТФАРАДНОЙ ХАРАКТЕРИСТИКИ ПОЛУПРОВОДНИКОВОГО ДИОДА

Была построена схема:

Зависимость зависимости резонансной частоты от напряжения управления:

Зная значения резонансной частоты и значения напряжения смещения, можно рассчитать вольтфарадную характеристику. Поскольку резонансная частота определяется по формуле Томпсона, из этой формулы можно вычислить значение емкости диода для напряжения управления и построить вольтфарадную характеристику построена по 5 точкам.

Расчёт параметров барьерной ёмкости можно провести с использованием возможностей MCAD — решение системы нелинейных уравнений с использованием вычислительного блока Given-Find:

$$M := 0.3333$$
 $CJO := 35 \cdot 10^{-12}$ $VJO := 0.75$

Given

$$2.241 \cdot 10^{-9} = \text{CJO} \cdot \left[1 - \frac{-1}{(\text{VJO})} \right]^{-\text{M}}$$

$$1.563 \cdot 10^{-9} = \text{CJO} \cdot \left[1 - \frac{-3.25}{(\text{VJO})} \right]^{-\text{M}}$$

$$1.285 \cdot 10^{-9} = \text{CJO} \cdot \left[1 - \frac{-5.5}{(\text{VJO})} \right]^{-\text{M}}$$

Find(CJO,M,VJO) =
$$\begin{pmatrix} 3.22 \times 10^{-9} \\ 0.442 \\ 0.787 \end{pmatrix}$$

Cd1 :=
$$3.22 \cdot 10^{-9} \left[1 - \frac{(-VFX)^{\langle 1 \rangle}}{0.787} \right]^{-0.442}$$

