Nucl Eng 535/Chem	580: Radiochemistry
-------------------	---------------------

Nucl Eng 535/Chem 580: Radiochemistry
First Examination Print Name J. R. Powers-Luhn Friday, 17 February 2017
1. Consider 85Rb. Give complete symbols for an isotope $\frac{86}{37}$ Rb., an isotone $\frac{86}{38}$ No., an isotone $\frac{86}{38}$ No.
2. The equation for the surface of a sphere is $S = 4\pi R^2$ where R is the radius. The second term of the binding energy equation is -17.23A ^{2/3} . Do not write beyond the lines provided. (4 each)
Clearly explain why the term is negative. the nuclears at the surface are less tightly bound
Why is A to the 2/3 power? the radius is proportional to (A) meaning the surface even $\propto (A^{\frac{1}{3}})$
Why is A to the 2/3 power? the radius is proportional to (A meaning the surface even $\propto (A^3)$
3. Bromine has two stable isotopes: ⁷⁹ Br with a mass of 78.91835 mu and an abundance of 50.54%, and ⁸¹ Br with a mass of 80.91634 mu. On the back, calculate the average weighted mass of Br, and place the answer here. <u>79.9066 av</u> (6)
4. There are 5 stable nuclides with odd Z and odd N. What is the smallest atomic number below which four of them are located?
5. Beyond what element are there no stable radionuclides? beyond Bi (3)
6. Write the complete decay equation for 86Sc. Assume no gamma emission.
7. Write the most probable decay equation for ⁶⁹ As. Assume no gamma emission. 33 As 32 GeV + 35 H + 0V (9)
8. 81Kr decays by electron capture. 81Kr weighs 80.91660 mu, 81Br weighs 80.91634 mu, 81Rb weighs 80.91901 mu, and the electron weighs 0.00055 mu. On the back calculate the decay energy and place the answer here.
9. ²⁵⁹ No is produced by bombardment of ²⁴⁸ Cm with ¹⁸ O. On the back, calculate the coulomb barrier and place the answer here. (9)
10. On the reverse, calculate the reaction energy for ¹⁴ N(n,p ⁺) Masses in mu are ¹⁴ N (13.003074), n (1.00867), ¹ H(1.00783), ¹⁴ O(14.00860), ¹⁴ C(14.00324). Place answer here.
11. A nuclide with a half-life T of 22 days has an activity of 12,441 c/m. How long will it take for the count to drop to 4077 c/m?
Calculate on the back, and place answer here. 35.43 days 54 (10)

3.
$$f_{11}M_{11} + f_{21}M_{11} = 50.54 - 78.91335... + 49.46 - 80.91634 = 79.9066...$$

8. $\frac{1}{100}$

9. $\frac{1}{100}$

10. $\frac{1}{100}$

chem580 exam 1

Binding Energy ar face

 $B = 15.56 A - 17.23 A^{2/3} - 0.72 Z^2 A^{-1/3} - 23.285 (A - 2Z)^2 A^{-1} + 11 A^{-1/2} A^{2/3} + 1.00867 A^{2/3} A^{-1} + 11 A^{-1/2} A^{-1/3} A^{2/3} A^{-1} + 11 A^{-1/2} A^{2/3} A^{-1} A^{2/3} A^{-1} A^{2/3} A^{2/3} A^{-1} A^{2/3} A^{2/3} A^{2/3} A^{2/3} A^{2/3} A^{2/3} A^{2/$ Company

Nuclear Radius

 $1 u=931 \,\mathrm{MeV}$

AMU

2, 8, 20, 28, 50, 82, 126 (also 118 for p^+)

Magic Numbers

 $R(cm) = 1.4 \times 10^{-13} A^{1/3}$

Ofer even - for add soc

Coulomb Barrier

 $E_C = 1.11 \frac{(A + A')}{}$ $(A^{1/3} + A'^{1/3})$ bean

(4)

Specific Activity

(1) A is mass number, T is half-life in days

(2) mCi mg

+ ful over

Paris 38

 $\frac{\text{MBq}}{\text{mg}}$ $\frac{4.8 \times 10^6}{AT}$

Beta Recoil

(3) $\frac{1.3\times10^8}{AT}$

$$E_{Max} = E_m \frac{m_e}{m_e + M_D}$$

(5)

Series 232.0381 231.0388 238.0289 (237.0482) (244.664) (243.061) (247.0482) (249.061) (249.061)							(223.02) (7	87	Cesium	1330054	3 8	TUDIOUTI	85.4678	Rb	37	Potassium	39.0983	~	3	Sodium	22.9898	Z :	=	Lithium	_	ω.	Hydrogen	1 7070	-
-					_		(226.0254)(227.0278) Radium Actinium	Ra	88	Barium	27 227	9	munonou	87.62	Sr	<u>پ</u>	Calcium	40.078	Ca	26	Magnesium	24.3050	S	12	9.0122	Ве		5	3	
Series	**Actinide		Series	Lanthanide	:		(227.0278) Actinium	Ac**	88	Lanthanum		*	Mulia	88.9059	~	3	Scandium	44.9559	Sc	. 21	-	33						•	U	
les	nide		ies	anide	:		(261.11)	Ŗ	104	Hafnium	=	12	Zirconium	91.224	Zr	8	Titanium	47.867	=!	22	i	AR							בר ס	ě
232.0381 Thorium	∃ %	Cerium	140.115	င္မ	58	Capinan	(262.11)	망	105	Tantalum	a	1 2	Niobium	92,9064	N N	41	Vanadium	50.9415	<	23	6	£		×		*		2	<u>⊇</u> .	
231.0388 Protactinium	20 s	Praseodymium	140.9076	Pr	59	Occording	(263.12)	Sg	106	Tungsten	W	74	Molybdenum	95.96	Mo	42	Chromium	51.9961	ರ	24		B						2	Deriodic Table	
238.0289 Uranium	C 8	Neodymium	144.24	Nd	89	Donnan	(262.12)	뫄	107	186.207 Rhenium	Xe	3		(97.907)	ਨ	43	Manganese	54.9380	3	25	ò	7B							<u>D</u>	
(237.0482) Neptunium	S a	Promethium	(145.91)	Pm	63	Hinsepin	(265)	НS	108	190.2 Osmium	S	8	Ruthenium	101.07	P	4	lion	55.845	Fi O	33					3		-	9	<u></u>	
(244.664) Plutonium	P 2	Samarium	150.36	Sm	ಜ	Medineruni	(266)	¥	109	192.22 Iridium	=	7	Rhodium	102.9055	_모	1 5	Cobalt	58.9332	င္ပ	27	8	8						-	tho	
(243.061) Americium	Am 95	Europium	151.965	Ш	ಜ	Compound	(281)	Ds	110	195.084 Platinum	7	2 %	Palladium	106.42	Pd	46	Nickel	58.6934	Z	28										
(247.07)	င္က ရ	Gadolinium	157.25	ଜୁ	2	Logingenon		Rg	##	196.9666 Gold	Au	79	Silver	107.8682	Ag	47	Copper	63.546	ဥ	23	 ō	à	×						Flomo	
(247.07)	B %	Terbium	158.9253	7	æ	_					БП	8	Cadmium	112.411	2	8	Zinc	55.38	Zn	8	6	8							n T O	9
(251.08)	បី ន	Dysprosium	162.50	Ş	8					204.3833 Thallium	=	1 9	Indium	114.818	=	25	Gallium	69.723	ရှူ	31	Aluminum	26 0845	2 3	Boron	10.811	8	5	34	•	
(252.08)	S S	Holmium	164.9303	픙	67					207.2 Lead	5	2 8	귥	118.710	Sn	50	Germanium	72.61	Ge	z	Silicon	30 0055	<u>.</u>	Carbon	12.011	ဂ	•	44		
_	3 8	Erbium	167.26	щ	&					208,9804 Bismuth	<u>a</u>] a	Antimony	121,760	ds	51	Arsenic	74 9216	As	23	Phosphorus	20 0738	D 5	Nitrogen	14.0067	z	7	5A	T	٠.
(258.10)	S 00	Thullum	168.9342	Ħ	69					(208.98) Polonium	0	2 2	Tellurium	127.60	e e	52	Selenium	78.96	Se	2	Suffur Suffur	33.066	೧ ಕ	Uxygen	15.9994	0	00	6A		ě
(259.10)	Z i	Ytterbium	173.54	⋨	70	W. A.				(209.99) Astatine	A	85	lodine	126.9045	_	ន	Bromine	79 904	<u>в</u>	35	Chlorine	35 4537	2 =	FROME	18.9984	71	9	7A		
(262.11)	Ę á	Lutetum	174.9668	<u>_</u>	71			·		(222.02) Radon	3	8	Xenon	131.29	Xe	52	Kypton	83.80	<u>₹</u>	38	Argon	202	7 8	Neon	20.1797	Ne	6	4.0026 Hellum	H .	3
													-	-	_	_	_	-	-	-		-		_	-	_	_	_	_	_ \