Linear and Bilinear Functions

LA3\$1. Find the number of all

- (a) linear maps $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$.
- (b) linear injective maps $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$. (c) linear functions $f: \mathbb{F}_q^n \to \mathbb{F}_q$.

LA3 \diamond **2.** Suppose that a linear map $A: V \to W$ in the bases (v_1, v_2, v_3) of V and (w_1, w_2) of W has the matrix

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}.$$

Find the matrix of *A* in bases $(v_1, v_1 + v_2, v_1 + v_2 + v_3)$ and $(w_1, w_1 + w_2)$.

LA3 \diamond **3.** Suppose $A, B: V \to W$ are linear maps and dim(Im A) \leq dim(Im B). Prove that there exist such linear operators $C: V \to V$ and $D: W \to W$ that A = DBC and C (or D) is non-degenerate.

LA3 \diamond **4.** Suppose f is a nonzero linear function on some vector space V and $U = \ker f$. Prove that $V = U \oplus \langle a \rangle$ for any $a \notin U$.

LA3\$5. Which of the following functions are bilinear and which are symmetric?

- (a) $f(X, Y) = X^T Y$
- (b) f(A, B) = tr (AB)
- (c) $f(A, B) = \operatorname{tr} (AB BA)$
- (d) f(A, B) = tr (A + B)
- (e) $f(A, B) = \det(AB)$
- (f) $f(A, B) = (AB)_{ij}$