Relacje i relacje równoważności

Materiały pomocnicze do wykładu

uczelnia: PJWSTK

przedmiot: Matematyka Dyskretna 1

wykładowca: dr Magdalena Kacprzak

Zbiór i iloczyn kartezjański

Pojęcie zbioru

 Zbiór jest pojęciem <u>pierwotnym</u>, tzn. nie podajemy jego formalnej definicji. Intuicyjnie powiemy, że

zbiór jest kolekcją pewnych obiektów.

- Obiekty, które należą do pewnego zbioru nazywamy elementami tego zbioru. Pojęcie elementu zbioru również jest pojęciem pierwotnym.
- Zbiory będziemy oznaczać dużymi literami A, B, X a ich elementy małymi a,b,x itp..

Elementy zbioru

 Zdanie "element a należy do zbioru A" (lub "a jest elementem zbioru A) zapisujemy a∈A.

 Zdanie "element a nie należy do zbioru A" (lub "a nie jest elementem zbioru A) zapisujemy

a∉A.

lloczyn kartezjański

Anastacia,

Maria Carey,

Shakira


```
(Anastacia,1); (Anastacia,2); (Anastacia,3);
(Maria Carey,1); (Maria Carey, 2); (Maria Carey,3);
(Shakira,1); (Shakira, 2); (Shakira,3)
```

iloczyn kartezjański

lloczyn kartezjański

lloczynem (produktem) kartezjańskim zbiorów X i Y, oznaczanym przez $X \times Y$, nazywamy zbiór złożony z wszystkich par uporządkowanych (x,y) takich, że $x \in X$ i $y \in Y$,

$$(x,y) \in X \times Y \text{ wttw } x \in X \text{ i } y \in Y.$$

UWAGA: $(a,b) \neq (b,a)$

$$X=N=\{0,1,2,3,...\}, Y=\{y: 1 \le y \le 2\}$$

$$X'Y=\{(x,y): x\in N \ i \ 1\le y\le 2\}$$

 $(0,1)\in X'Y, (1,3/2)\in X'Y, (2,2)\in X'Y$
 $(1,1/2)\notin X'Y$

$$X=N=\{0,1,2,3,...\}, Y=\{y: 1 \le y \le 2\}$$

Pojęcie relacji

Intuicje

- Relacja zależność (funkcja, stosunek, związek, powiązanie, więź) między dwoma bądź wieloma elementami.
- Własność przysługująca pewnym elementom.
- Językiem relacji można opisywać wiele zjawisk życia codziennego: relacje rodzinne, relacje społeczne (międzyludzkie), relacje emocjonalne.

Niech A=zbiór ludzi, B=zbiór sportów
 r = {(a,b)∈A×B : człowiek a lubi uprawiać sport b}

Niech A=zbiór miast oraz B=zbiór państw
 r = {(a,b)∈A×B : miasto a leży w państwie b}

Niech A=B=zbiór państw
 r = {(a,b)∈A×B : państwo a graniczy z państwem b}

Niech A=zbiór modeli samochodów
 B=zbiór marek samochodów
 r = {(a,b)∈A×B : a jest modelem marki b}

Niech A=B={3,4,6,8}
 r = {(a,b)∈A×B : a jest dzielnikiem liczby b}

Definicja relacji

Niech X i Y będą dwoma zbiorami.

Dowolny podzbiór r produktu kartezjańskiego X×Y nazywamy relacją dwuargumentową (binarną) w X×Y.

 Jeśli X=Y, to mówimy, że r jest relacją binarną w X.

Definicja relacji

Jeśli

(x,y)∈r

to piszemy

xry

i mówimy, że relacja r zachodzi między elementami x i y.

Sposoby reprezentacji

Sposoby reprezentacji: wypisanie par należących do relacji

```
r = {(Niemcy, Francja), (Niemcy, Polska),
(Niemcy, Austria), (Niemcy, Czechy), (Francja, Niemcy),
(Polska, Niemcy), (Polska, Czechy), (Austria, Niemcy),
(Austria, Czechy), (Czechy, Niemcy), (Czechy, Polska),
(Czechy, Austria)}
```

Sposoby reprezentacji: tabelka (macierz)

	Niemcy	Francja	Polska	Austria	Czechy
Niemcy	-	+	+	+	+
Francja	+	-	-	-	-
Polska	+	-	1	-	+
Austria	+	-	1	-	+
Czechy	+	-	+	+	-

Sposoby reprezentacji: graf

Dziedzina

Dziedziną relacji r $\subseteq X \times Y$ nazywamy zbiór D(r) tych $x \in X$, dla których istnieje $y \in Y$, taki że $(x,y) \in r$:

 $D(r)=\{x\in X: istnieje\ y\in Y\ dla\ którego\ (x,y)\in r\}.$

Dziedzina

Niech A=B={3,4,9,16}
 r = {(a,b)∈A×B : a jest kwadratem liczby b}

Przeciwdziedzina

Przeciwdziedziną relacji r $\subseteq X \times Y$ nazywamy zbiór D*(r) tych y $\in Y$, dla których istnieje $x \in X$, takie że $(x,y) \in r$:

 $D^*(r) = \{y \in Y : istnieje x \in X dla którego (x,y) \in r\}.$

Przeciwdziedzina

Niech A=B={3,4,9,16}
 r = {(a,b)∈A×B : a kwadratem liczby b}

PRZECIWDZIEDZINA RELACJI r

Przykłady relacji

Relacje określone w zbiorze liczb rzeczywistych i całkowitych

x r y wttw x≤y,

x r y wttw x≠y,

• x r y wttw x+y<10,

• x r y wttw x=y.

Przykłady zastosowania relacji w definiowaniu programów

```
Program1
       begin
              z:=x; y:=1;
              while z-y≥0
              do
                 Z:=Z-y;
                 y := y + 2
              od
       end
```

Przykłady zastosowania relacji w definiowaniu programów

Program2 begin z := 0;while z≠y do z:=z+1;x := x + 1od end

Relacja modulo

Niech p będzie ustaloną liczbą całkowitą, większą niż 1. Weźmy liczby całkowite m i n. Mówimy, że

liczba m przystaje do liczby n modulo p i piszemy

 $m\equiv n \pmod{p}$,

gdy różnica (m-n) jest wielokrotnością p.

Relacja modulo c.d.

• $7 \equiv 2 \pmod{5}$, bo 7-2 jest podzielne przez 5,

 12 = 22 (mod 10), bo 12-22 jest podzielne przez 10.

Arytmetyka modularna jest używana między innymi w kryptografii (szyfr RSA - Ronald Rivest, Adi Shamir, Leonard Adleman).

Relacje określone w zbiorze programów

Program P1 jest w relacji r z programem P2 wttw wartość zmiennej x po wykonaniu programu P1 jest taka sama jak wartość zmiennej x po wykonaniu programu P2 dla tych samych danych początkowych.

Relacje określone w zbiorze programów

Czy program P1 jest w relacji r z programem P2?

$$P1(k) = \{ x := k \} dla k \in \mathbb{Z},$$

$$P2(k) = \{ x := \sqrt{k^2} \} dla k \in \mathbb{Z}.$$

Relacje określone w zbiorze programów

Niech $A=\{0,1,2,3\}, B=N$.

Czy program P1 jest w relacji r z programem P2?

P1 = { y:=random(A); if y jest liczbą parzystą then x:=y+1 else x:=y-1 },

 $P2 = \{y := random(B); x := y mod 4 \}.$

gdzie random(X) jest akcją polegającą na wylosowaniu dowolnej liczby ze zbioru X.

Relacje określone w zbiorze automatów

Automat A1 jest w relacji r z automatem A2 wttw zbiór stanów osiągalnych automatu A1 jest taki sam jak zbiór stanów osiągalnych automatu A2 dla tych samych stanów początkowych.

Relacje określone w zbiorze automatów

Czy dla poniższych automatów zachodzi (A1,A2)∈r?

Rodzaje relacji

Relację binarną r_XXX nazywamy

zwrotną

wttw dla każdego x∈X,

(x,x)∈r.

Inaczej: r jest zwrotna wttw

$$\{(x,x):x\in X\}\subseteq r.$$

Niech A={3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

Niech A={3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

Niech A={3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

Relacja jest zwrotna, bo dla każdego a∈A, (a,a) ∈ r

$$(3,3) \in r, (4,4) \in r, (6,6) \in r, (8,8) \in r$$

Relację binarną r_XXX nazywamy

przeciwzwrotną

wttw dla każdego x∈X,

Inaczej: r jest przeciwzwrotna wttw

$$\{(x,x): x \in X\} \cap r = \emptyset.$$

Niech A={Niemcy, Francja, Polska, Austria, Czechy}
 r = {(a,b)∈A² : państwo a graniczy z państwem b}

Niech A={Niemcy, Francja, Polska, Austria, Czechy}
 r = {(a,b)∈A² : państwo a graniczy z państwem b}

	Niemcy	Francja	Polska	Austria	Czechy
Niemcy	-	+	+	+	+
Francja	+	1	1	1	-
Polska	+	ı	-	ı	+
Austria	+	ı	ı	-	+
Czechy	+	ı	+	+	-

Niech A={Niemcy, Francja, Polska, Austria, Czechy}
 r = {(a,b)∈A² : państwo a graniczy z państwem b}

Relacja jest przeciwzwrotna, bo dla każdego a∈A, (a,a)∉ r

(Niemcy, Niemcy) ∉ r, (Francja, Francja) ∉ r, (Polska, Polska) ∉ r, (Austria, Austria) ∉ r, (Czechy, Czechy) ∉ r

Relację binarną r_XXX nazywamy

symetryczną

wttw dla dowolnych $x,y \in X$,

jeśli (x,y)∈r, to (y,x)∈r.

Niech A={Niemcy, Francja, Polska, Austria, Czechy}
 r = {(a,b)∈A² : państwo a graniczy z państwem b}

Niech A={Niemcy, Francja, Polska, Austria, Czechy}
 r = {(a,b)∈A² : państwo a graniczy z państwem b}

	Niemcy	Francja	Polska	Austria	Czechy
Niemcy		+	+	+	+
Francja	+		-	-	-
Polska	+	-		-	+
Austria	+	-	-		+
Czechy	+	-	+	+	//

Niech A={Niemcy, Francja, Polska, Austria, Czechy}
 r = {(a,b)∈A² : państwo a graniczy z państwem b}

Relacja jest symetryczna, bo dla każdego a, b ∈ A,

jeśli a graniczy z b, to b graniczy z a

tzn. jeśli (a,b)∈r, to (b,a)∈r

Relację r nazwiemy

przeciwsymetryczną

(asymetryczną)

wttw dla dowolnych x,y∈X

jeśli (x,y)∈r, to (y,x)∉r.

Niech A={3,4,9,16}
 r = {(a,b)∈A² : a jest kwadratem liczby b}

Niech A={3,4,9,16}
 r = {(a,b)∈A² : a jest kwadratem liczby b}

	3	4	9	16
3		-	-	-
4	-		-	-
9	+	-		-
16	-	+	-	

Niech A={3,4,9,16}
 r = {(a,b)∈A² : a jest kwadratem liczby b}

Relacja jest przeciwsymetryczna, bo dla każdego a,b∈A,

jeśli a jest kwadratem liczby b, to b nie jest kwadratem liczby a

tzn. jeśli (a,b)∈r, to (b,a)∉r

Relację binarną r_XXX nazywamy

antysymetryczną

wttw dla dowolnych $x,y \in X$,

jeśli $(x,y) \in r$ i $(y,x) \in r$, to x=y.

Niech A={3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

Niech A={3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

	3	4	6	8
3	\ 4 \	-	+	-
4	-	4	-	+
6	-	-	, / /	-
8	-	-	-	\ 4 \

Niech A={3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

Relacja jest antysymetryczna, bo dla każdego a,b∈A,

jeśli a jest dzielnikiem liczby b i

b jest dzielnikiem liczby a, to a=b

tzn. jeśli $(a,b) \in r$ i $(b,a) \in r$, to a=b

Niech A={-3,3,4,6,8}
 r = {(a,b)∈A² : a jest dzielnikiem liczby b}

To nie jest relacja antysymetryczna !!!

$$(-3,3) \in r i (3,-3) \in r$$

 $i 3 \neq -3$

	-3	3	4	6	8
-3	, /	+	ı	+	ı
3	+	<i>/</i> +/	-	+	-
4	-	-	<i> </i>	-	+
6	-	-	-	*	-
8	-	_	-	-	*_

Relacja przechodnia

Relację binarną r_{\subset}X×X nazywamy

przechodnią

wttw dla dowolnych $x,y,z \in X$,

jeśli $(x,y)\in r$ i $(y,z)\in r$, to $(x,z)\in r$.

Relacja przechodnia

Niech A={-3,3,4,8}
 r = {(a,b)∈A²: a jest mniejsze od b}

Relacja przechodnia

Niech A={-3,3,4,8}
 r = {(a,b)∈A² : a jest mniejsze od b}

Relacja spójna

Relację binarną r_{\subset}X×X nazywamy

spójną

wttw dla dowolnych $x,y \in X$,

 $(x,y)\in r \text{ lub } (y,x)\in r \text{ lub } x=y.$

Relacja spójna

Niech A={-3,3,4,8}
 r = {(a,b)∈A² : a jest mniejsze od b}

Relacja spójna

Niech A={-3,3,4,8}
 r = {(a,b)∈A² : a jest mniejsze od b}

Relacja jest spójna, bo dla każdego a,b∈A,

albo a jest mniejsze od b albo b jest mniejsze od a

albo a=b

tzn. albo $(a,b) \in r$ albo $(b,a) \in r$ albo a=b

Jakie własności posiada ta relacja?

.....przeciwsymetryczną

.....przeciwsymetryczną

.....symetryczną

.....symetryczną

Własności relacji - zadania

Niech r będzie relacją określoną w zbiorze liczb całkowitych taką, że

 $m r n wttw min\{x,y\}=x$.

Niech r będzie relacją określoną w zbiorze liczb całkowitych taką, że

 $m r n wttw m \equiv n \pmod{5}$.

Relacja jest:

 zwrotna, bo dla każdego całkowitego m, m-m jest podzielne przez 5,

Relacja jest:

 symetryczna, bo dla każdego całkowitego m i n, jeśli m-n jest podzielne przez 5, to n-m=-(m-n) też jest podzielne przez 5,

Relacja jest:

przechodnia, bo dla każdego całkowitego m, n, s, jeśli m-n=5k1 i n-s=5k2 dla k1,k2∈Z, to m-s=m-n+n-s=5k1+5k2=5(k1+k2) dla k1,k2∈Z, (jeśli m-n jest podzielne przez 5 i jeśli n-s jest podzielne przez 5, to jeśli m-s jest podzielne przez 5)

Niech r będzie relacją określoną w zbiorze programów taką, że program P1 jest w relacji r z programem P2 wttw wartość zmiennej x po wykonaniu programu P1 jest taka sama jak wartość zmiennej x po wykonaniu programu P2 dla tych samych danych początkowych.

Niech r będzie relacją określoną w zbiorze automatów taką, że automat A1 jest w relacji r z automatem A2 wttw zbiór stanów osiągalnych automatu A1 jest taki sam jak zbiór stanów osiągalnych automatu A2 dla tych samych stanów początkowych.

Algebra relacji

Suma, iloczyn i różnica relacji

Jeśli r₁ i r₂ są dwiema relacjami binarnymi w X×Y, to

$$(x,y) \in r_1 \cup r_2$$
 wttw $(x,y) \in r_1$ lub $(x,y) \in r_2$, $(x,y) \in r_1 \cap r_2$ wttw $(x,y) \in r_1$ i $(x,y) \in r_2$, $(x,y) \in r_1 \setminus r_2$ wttw $(x,y) \in r_1$ i $(x,y) \notin r_2$.

Relacja pusta

Relację binarną r_X×Y nazywamy

pustą

wttw dla dowolnych $x \in X$, $y \in Y$

(x,y)∉r.

Relacja pusta

Niech A=zbiór liczb rzeczywistych
 r = {(a,b)∈A² : |ab| < 0}

Łatwo zauważyć, że $r = \emptyset$.

Relacja pełna

Relację binarną r_X×Y nazywamy

pełną

wttw dla dowolnych $x \in X$, $y \in Y$

(x,y)∈r.

Relacja pełna

Niech A={Asia, Krysia, Piotr}
 r = {(a,b)∈A² : a lubi b}

Relacja odwrotna

Niech r będzie relacją binarną w X×Y. Relacją

odwrotną

do relacji r nazywamy relację r $^{-1}$ określoną w Y×X taką, że dla dowolnych $x \in X$ i $y \in Y$,

 $(y,x)\in r^{-1}$ wttw $(x,y)\in r$.

Relacja odwrotna

A=zbiór modeli samochodów,

B=zbiór marek samochodów

 $r \subset A \times B$, $r = \{(a,b): a \text{ jest modelem marki b}\}$

Relacja odwrotna

A=zbiór modeli samochodów,

B=zbiór marek samochodów

 $r^{-1} \subset B \times A$, $r^{-1} = \{(b,a): b \text{ jest marka modelu } a\}$

Złożenie relacji

Niech $r_1\subseteq X\times Y$ oraz $r_2\subseteq Y\times Z$.

Złożeniem

relacji r_1 z r_2 nazywamy relację r_1 ° r_2 będącą podzbiorem zbioru X×Z określoną dla dowolnych $x \in X$ i $z \in Z$ następująco:

 $(x,z) \in r_1^{\circ} r_2$ wttw istnieje takie $y \in Y$, że $(x,y) \in r_1$ i $(y,z) \in r_2$.

Złożenie relacji

Lemat

Niech r będzie relacją binarną w zbiorze X. Wtedy

- 1. r jest relacją symetryczną wttw r⊆r ⁻¹,
- 2. r jest relacją przechodnią wttw r \circ r \subseteq r.

Dowód: r jest relacją symetryczną wttw r⊆r -1

Załóżmy, że r jest relacją symetryczną. Wówczas, jeśli $(x,y) \in r$, to na mocy symetrii również $(y,x) \in r$, a stąd $(x,y) \in r^{-1}$. Zatem $r \subseteq r^{-1}$.

Załóżmy, że $r\subseteq r^{-1}$. Wówczas, jeśli $(x,y)\in r$, to $(x,y)\in r^{-1}$ i z definicji operacji odwracania $(y,x)\in r$. Z dowolności wyboru x i y wynika, że r jest relacją symetryczną.

Dowód: r jest relacją przechodnią wttw r°r⊆r.

Załóżmy, że r jest relacją przechodnią. Wówczas, jeśli $(x,y) \in r^{\circ}r$, to na mocy definicji operacji składania, istnieje z takie, że $(x,z) \in r$ i $(z,y) \in r$. Zatem, z przechodniości relacji r, $(x,y) \in r$. Ostatecznie $r^{\circ}r \subseteq r$.

Załóżmy, że r°r \subseteq r. Wówczas, jeśli $(x,y)\in$ r i $(y,z)\in$ r dla pewnych elementów x, y, z zbioru X, to $(x,z)\in$ r°r i w konsekwencji $(x,z)\in$ r, co dowodzi przechodniości relacji r.

Relacje wieloargumentowe

Relacje wieloargumentowe

Każdy podzbiór zbioru

$$X_1 \times X_2 \times ... \times X_n$$

nazywamy

n-argumentową relacją.

Zbiór X_i nazywa się i-tą dziedziną relacji n-argumentowej.

Relacje wieloargumentowe

Niech r⊆R×R×R, relacja trójargumentowa zdefiniowana następująco:

$$r=\{(x,y,z): x+y=z\}$$

Zauważmy, że:

$$(1,2,3) \in r$$

 $(3,4,7) \in r$
 $(3,4,5) \notin r$

Relacje równoważności

Lexus SC

Ford Fiesta

Nissan Almera

Seat Ibiza

Ford Expedition

Lexus LS

Jeep Cherokee

Intuicje: podział według marki

Nissan Almera

Nissan Patrol

Lexus SC

Lexus LS

Ford Fiesta

Ford Expedition

Jeep Cherokee

Seat Ibiza

Intuicje: podział według klasy

Nissan Almera

Ford Fiesta

Seat Ibiza

Lexus LS osobowe

Lexus SC

sportowe

Ford Expedition

Nissan Patrol

Jeep Cherokee

terenowe

Definicja

Relację binarną r określoną w zbiorze X nazywamy

relacją równoważności

wttw relacja r jest zwrotna, symetryczna i przechodnia, tzn. dla dowolnych x,y,z∈X,

- 1. $(x,x) \in r$,
- 2. jeśli $(x,y) \in r$, to $(y,x) \in r$,
- 3. jeśli $(x,y) \in r$ i $(y,z) \in r$, to $(x,z) \in r$.

Intuicje: podział według marki

 $r = \{(a,b) : a \text{ jest samochodem tej samej marki, co b}\}$

Klasy abstrakcji (warstwy)

Jeśli r jest relacją równoważności w zbiorze X, to przyjmujemy oznaczenie

$$[x]_r = \{y \in X : x r y\}.$$

O zbiorze [x]_r mówimy:

klasa abstrakcji (warstwa)

elementu x, ze względu na relację r.

Klasy abstrakcji (warstwy)

O elemencie x mówimy, że jest reprezentantem klasy $[x]_r$.

Intuicje: podział według marki

Lexus LS

Reprezentant

[SC] = {a : a jest samochodem marki Lexus}

[Fiesta] = {a : a jest samochodem marki Ford}

To też jest relacja równoważności

To też jest relacja równoważności

Przykład

```
Niech X=zbiór liczb całkowitych,

r=\{(x,y)\in X^2: |x|=|y|\}
```

To jest relacja równoważności, bo jest ona:

```
zwrotna: dla każdego x, |x|=|x|
symetryczna: dla każdego x,y,
jeśli |x|=|y|, to |y|=|x|
przechodnia: dla każdego x,y,z,
jeśli |x|=|y| i |y|=|z|, to |x|=|z|
```

Przykład

```
Niech X=zbiór liczb całkowitych,

r=\{(x,y)\in X^2: |x|=|y|\}
```

Wyznaczymy klasy abstrakcji:

```
[1]={x: x r 1}={x: |x|=|1|}={-1,1}

[2]={x: x r 2}={x: |x|=|2|}={-2,2}

.....

[k]={x: x r k}={x: |x|=|k|}={-k,k}

.....
```

Czy poniższa relacja jest relacją równoważności?

Niech r będzie relacją określoną w zbiorze liczb całkowitych taką, że

m r n wttw m \equiv n (mod 5).

Czy poniższa relacja jest relacją równoważności?

Niech r będzie relacją określoną w zbiorze programów taką, że program P1 jest w relacji r z programem P2 wttw wartość zmiennej x po wykonaniu programu P1 jest taka sama jak wartość zmiennej x po wykonaniu programu P2 dla tych samych danych początkowych.

Czy poniższa relacja jest relacją równoważności?

Niech r będzie relacją określoną w zbiorze automatów taką, że automat A1 jest w relacji r z automatem A2 wttw zbiór stanów osiągalnych automatu A1 jest taki sam jak zbiór stanów osiągalnych automatu A2 dla tych samych stanów początkowych.

Lemat

Niech r będzie relacją równoważności w X oraz $[x]_r$, $[y]_r$ klasami abstrakcji elementów x i y. Wówczas:

- 1. X∈[X]_r,
- 2. $[x]_r = [y]_r$ wttw x r y,
- 3. jeżeli $[x]_r \neq [y]_r$, to $[x]_r \cap [y]_r = \emptyset$.

Podziały zbioru

Definicja

Podziałem

zbioru X nazywamy indeksowaną rodzinę $(X_i)_{i \in I}$ niepustych podzbiorów zbioru X taką, że:

$$X_i \cap X_j = \emptyset$$
 dla $i \neq j$ oraz $X = \bigcup_{i \in I} X_i$.

Zasada abstrakcji

Twierdzenie (zasada abstrakcji)

- Każda relacja równoważności r określona w niepustym zbiorze X, wyznacza podział tego zbioru na niepuste i rozłączne podzbiory, a mianowicie na klasy abstrakcji relacji r.
- Każdy podział zbioru X wyznacza relację równoważności, której klasami abstrakcji są dokładnie zbiory tego podziału.

Przykład

Relacja $r = \{(x,y) \in \mathbb{Z}^2 : |x| = |y|\}$ określona w zbiorze liczb całkowitych dzieli ten zbiór na podzbiory postaci $\{-k,k\}$ dla $k \in \mathbb{Z}$.

$$Z = \{0\} \cup \{-1,1\} \cup \{-2,2\} \cup \{-3,3\} \cup \dots$$

Przykład

Relacja $r = \{(x,y) \in \mathbb{Z}^2 : m \equiv n \pmod{5}\}$ określona w zbiorze liczb całkowitych dzieli ten zbiór na 5 podzbiorów.

$$Z = \{5k: k \in Z\} \cup \{5k+1: k \in Z\} \cup \{5k+2: k \in Z\} \cup \{5k+3: k \in Z\} \cup \{5k+4: k \in Z\}$$

Równoważność programów

Przykłady definicji równoważności programów

1. Programy P1 i P2 są równoważne wttw dla dowolnej zmiennej x, wartość zmiennej x po wykonaniu programu P1 jest taka sama jak wartość zmiennej x po wykonaniu programu P2 dla tych samych danych początkowych.

Przykłady definicji równoważności programów

- Programy P1 i P2 są równoważne ze względu na zbiór zmiennych X w strukturze A wttw
 - dla dowolnych danych początkowych v, P1 ma obliczenie skończone wttw P2 ma obliczenie skończone oraz
 - jeżeli dla dowolnie ustalonych danych początkowych oba programy mają obliczenia skończone i udane, to wyniki są identyczne na zbiorze zmiennych X.

Przykłady definicji równoważności programów

3. Programy P1 i P2 są równoważne w strukturze A ze względu na zbiór własności Z wttw dla dowolnego α∈Z i dla dowolnych danych początkowych wyniki programu P1 spełniają warunek α wtedy i tylko wtedy, gdy wyniki programu P2 spełniają warunek α.

Zadanie domowe

Dane są dwa programy P1 i P2. Czy są one równoważne w sensie powyższych definicji? Co obliczają te programy?

Zadanie domowe

```
P1(x):
   begin
        a:=1; b:=x;
        while (b-a)≥ \delta
                do
                   y:=(a+b)/2;
                    if (a^2-x)(y^2-x)\le 0 then b:=y else a:=y fi
                od
   end
(x jest liczbą dodatnią większą od 1, a \delta ustaloną liczbą dodatnią)
```

Zadanie domowe

```
P2(x):
  begin
       z:=0; y:=x;
       while |z-y| \ge \delta
               do
                   z:=y;
                   y:=(z+x/z)/2
               od
   end
```