Formula Sheet for Probability and Statistical (II)

Chapter 1

If $X_1, X_2,...,X_n$ constitute a R.S. from a $N(\mu, \sigma^2)$, then

(1)
$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$
.

(2)
$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} - t_{e-1}$$

(3)
$$U = \frac{(n-1)S^2}{\sigma^2} = \sum_{n=1}^{\infty} \frac{X_n - x_n}{x_n} \sim \chi_{n-1}^2$$

(3)
$$U = \frac{(n-1)S^2}{\sigma^2} = \frac{(N_1 - 1)S^2}{S_1^2 \sigma_1^2} \sim \chi_{n-1}^2$$
 (4) $F = \frac{U_1/(n_1 - 1)}{U_1/(n_2 - 1)} = \frac{S_1^2 \sigma_2^2}{S_1^2 \sigma_1^2} \sim F_{n_1 - 1, n_2 - 1}$

Chapter 2

Point Estimation

(1)
$$\mu_k = E(X^k)$$
, $m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$, $k = 1, 2, ..., r$

(2)
$$MSE(\hat{\theta})=E(\hat{\theta}-\theta)^2$$

Special Probability Distributions

A-Discrete Distributions

Name of Disn	PM F	parameters	Mean	Variance
Bernoulli	$f(x,p) = p^{x}q^{1-x}, x = 0,1$	р	р	pq
Binomial	$f(x,n,p) = {n \choose x} p^x q^{n-x}, x = 0,1,2,,n$	n, p	np	npq
Poisson	$f(x;\lambda) = \frac{e^{-\lambda} \lambda^{x}}{x!} \text{for} x = 0, 1, 2,$	λ	λ	λ
Geometric	$f(x:n) = n e^{x-1}$ for $x = 1, 2, 3,$	р	1/p	q/p²
-ve Binomial	$f(x;k,p) = {x-1 \choose k-1} p^k q^{x-k}, x=k, k+1, k+2,$	k, p	k p	$\frac{\mathbf{k} \mathbf{q}}{\mathbf{p}^2}$

Discrete Distributions B-

Name of Disn	PDF	parameters	Mean	Variance
Uniform	$f(x) = \frac{1}{\beta - \alpha} \text{for} \alpha < x < \beta$	α, β	(α+β)/2	(β -α)/12
Exponential	$f(x; \theta) = \frac{1}{\theta} e^{-x/\theta}$ for $x > 0$	θ	θ	θ²
9	$f(x;\theta) = \frac{1}{\theta^{n} \Gamma(n)} x^{n-1} e^{-x/\theta} \text{for} x > 0$ if n is +ve integer, $\Gamma(n) = (n-1)!$	θ	nθ	nθ²
Normal	If n is +ve integer, $f(n) = (n-1)$: $f(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2} \text{for } -\infty < x < \infty$	μ, σ²	μ	σ2

Chapter 3 Summary of Confidence Interval

Parameter	Point Estimate	. 100(1- a) % CI
μ σ² known	x	$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ $E = \frac{z_{\alpha/2} \sigma}{\sqrt{n}} \qquad n = \left[\frac{z_{\alpha/2} \sigma}{E}\right]^2, \sigma \sim R/4$
$\frac{\mu}{\sigma^2 \text{ unknown}}$	$\overline{\mathbf{x}}$	$\overline{x} - t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}} \le \mu \le \overline{x} + t_{\frac{\alpha}{2}} \frac{S}{\sqrt{n}}$
$ \mu_1 - \mu_2 $ $ \sigma_1 \& \sigma_2 \text{ known} $	$\mathbf{\bar{X}_1} - \mathbf{\bar{X}_2}$	$\left[\left(\bar{X}_{1} - \bar{X}_{2} \right) - z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}, (\bar{X}_{1} - \bar{X}_{2}) + z_{\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} \right]$
$ \mu_1 - \mu_2 $ $ \sigma_1 = \sigma_2 = \sigma $ but unknown	$\overline{X}_1 - \overline{X}_2$	$\left((\bar{x}_{1} - \bar{x}_{2}) - t_{\alpha/2}S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, (\bar{x}_{1} - \bar{x}_{2}) + t_{\alpha/2}S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}\right)$
р	$\hat{\mathbf{p}} = \frac{\mathbf{x}}{\mathbf{n}}$	$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}}, E = z_{\alpha/2} \sqrt{\frac{pq}{n}}, n = \frac{Z_{\alpha/2}^2 pq}{E^2}$

Chapter 4 Summary of Hypothesis Testing on Means and Variances

H _o	Test Statistic	Ha	Critical Region
$\mu = \mu_0$ σ^2 known	$Z_{c} = \frac{\overline{X} - \mu_{0}}{\sigma / \sqrt{n}}$	μ<μ ₀ μ>μ ₀ μ≠μ ₀	$Z_{\tau} < -z_{\alpha}$ $Z_{\tau} > z_{\alpha}$ $ Z_{\tau} > z_{\alpha/2}$
$\mu = \mu_0$ $\sigma^2 \text{ unknown}$	$T_c = \frac{\overline{x} - \mu_o}{S/\sqrt{n}}$, $v = n-1$.	μ<μ ₀ μ>μ ₀ μ≠μ ₀	$T_c < -t_a$ $T_c > t_a$ $ T_c > t_{\alpha/2}$
$\mu_1 - \mu_2 = d_0$ $\sigma_1 \& \sigma_2$ known	$Z = \frac{(\overline{X}_1 - \overline{X}_2) - d_o}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$ \mu_{1} - \mu_{2} < d_{0} $ $ \mu_{1} - \mu_{2} > d_{0} $ $ \mu_{1} - \mu_{2} \neq d_{0} $	$Z_{\tau} < -Z_{\sigma}$ $Z_{\tau} > Z_{\sigma}$ $ Z_{\tau} > Z_{\sigma/2}$
$\mu_1 - \mu_2 = d_0$ $\sigma_1 = \sigma_2 = \sigma$ but unknown	$T_{c} = \frac{(\bar{X}_{1} - \bar{X}_{2}) - d_{o}}{S_{P} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}, v = n_{1} + n_{2} - 2$ $S_{P}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2}$	$ \mu_{1} - \mu_{2} < d_{0} $ $ \mu_{1} - \mu_{2} > d_{0} $ $ \mu_{1} - \mu_{2} \neq d_{0} $	$T_{c} < -t_{u}$ $T_{c} > t_{u}$ $ T_{c} > t_{u/2}$
$ \mu_1 - \mu_2 = d_0 $ Paired Comparisons	$T_c = \frac{\overline{d} - d_0}{S_d / \sqrt{n}} , v = n-1$	$\mu_{d} < d_{o}$ $\mu_{d} > d_{o}$ $\mu_{d} \neq d_{o}$	$T_{c} < -t_{\alpha}$ $T_{c} > t_{\alpha}$ $ T_{c} > t_{\alpha/2}$
$\sigma_1^2 = \sigma_2^2$	$F_c = S_1^2/S_2^2$ $v_1 = n_1 - 1$, $v_2 = n_2 - 1$	$\sigma_1^2 \neq \sigma_2^2$	$F_c > F_{\alpha/2,n_1-1,n_2-1}$ or $F_c < F_{1-\alpha/2,n_1-1,n_2-1}$

Chapter 5 ANOVA

$$\hat{\sigma}^2 = MSE, \ \hat{\alpha}_i = \overline{x}_{i.} - \overline{x}_{...}, \quad \sum_{i=1}^k \hat{\alpha}_i = 0 \qquad \text{and} \quad \hat{\beta}_j = \overline{x}_{.j} - \overline{x}_{...}, \quad \sum_{i=1}^n \hat{\beta}_j = 0$$