1. Solution

The sample size, *n*, is 48. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 48 ceil$	12	31.48
Q2	$\lceil 0.5 \times 48 \rceil$	24	33.49
Q3	$\lceil 0.75 \times 48 \rceil$	36	36.71

We determine the IQR.

$$IQR = Q3 - Q1$$

= 36.71 - 31.48
= 5.23

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 31.48 $- 1.5 \times 5.23$
= 23.635
upper boundary = Q3 + 1.5 $\times IQR$
= 36.71 + 1.5 $\times 5.23$
= 44.555

We determine the outliers.

outliers =
$$\{45.3\}$$

We identify the ends of the whiskers: 30.32 and 42.36. We plot the boxplot.

2. Solution

The sample size, *n*, is 25. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 25 ceil$	7	83.17
Q2	$\lceil 0.5 \times 25 \rceil$	13	85.78
Q3	$\lceil 0.75 \times 25 \rceil$	19	87.76

We determine the IQR.

$$IQR = Q3 - Q1$$

= 87.76 - 83.17
= 4.59

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $83.17 - 1.5 \times 4.59$
= 76.285
upper boundary = Q3 + $1.5 \times IQR$
= $87.76 + 1.5 \times 4.59$
= 94.645

We determine the outliers.

outliers =
$$\{74.09, 74.98\}$$

We identify the ends of the whiskers: 76.87 and 89.21. We plot the boxplot.

