

WHAT IS CLAIMED IS:

- 1 1. A method for processing speech, comprising:
 - 2 synthesizing a first filter having at least one or more pseudo-cepstral
 - 3 coefficients based on a set of linear predictive coding coefficients, a pseudo-cepstral
 - 4 coefficient being a parameter relating to a pseudo-cepstrum domain existing between the
 - 5 linear predictive coding domain and the line spectral frequency domain; and
 - 6 processing one or more frames of speech using the first filter.
- 1 2. The method of claim 1, wherein the first filter emphasizes speech
- 2 frequency components related to at least one formant based on the set of linear predictive
- 3 coding coefficients and de-emphasizes speech frequency components related to at least
- 4 one spectral valley based on the set of linear predictive coding coefficients.
- 1 3. The method of claim 2, wherein the first filter compensates for spectral
- 2 tilt.
- 1 4. The method of claim 2, wherein the one or more pseudo-cepstral
- 2 coefficients are derived based on the formula:
$$H_S(z) \cong (P_M(z/\alpha_1) Q_M(z/\alpha_2)) / A_M^2(z/\beta);$$
wherein $P_M(z) = A_M(z) + z^{-(M+1)} A_M(z^{-1})$, $Q_M(z) = A_M(z) - z^{-(M+1)} A_M(z^{-1})$ and α_1 , α_2 and β are control parameters, and wherein $A_M(z)$ relates to a linear predictive coding transfer function and M is the order of the linear predictive coding transfer function.
- 1 5. The method of claim 4, wherein $0 < \alpha_1$, $0 < \alpha_2$ and $\beta < 1.0$.
- 1 6. The method of claim 4, wherein $\alpha_1 + \alpha_2 = \beta$.
- 1 7. The method of claim 2, wherein the one or more pseudo-cepstral
- 2 coefficients are derived based on the formula:
$$H_S(z) \cong (P_M(z/\alpha_1) Q_M(z/\alpha_2)) / A_M(z/2\beta);$$
wherein $P_M(z) = A_M(z) + z^{-(M+1)} A_M(z^{-1})$, $Q_M(z) = A_M(z) - z^{-(M+1)} A_M(z^{-1})$ and α_1 , α_2 and β are control parameters, and wherein $A_M(z)$ relates to a linear predictive coding transfer function and M is the order of the linear predictive coding transfer function.
- 1 8. The method of claim 4, wherein $0 < \alpha_1$, $0 < \alpha_2$ and $\beta < 0.5$
- 1 9. The method of claim 5, wherein $\alpha_1 + \alpha_2 = 2\beta$.

- 1 10. The method of claim 2, wherein the one or more pseudo-cepstral
2 coefficients are derived based on the formula:

3 $H^m_S(z) \cong (P_m(z/\alpha_1) Q_m(z/\alpha_2)) / A_M(z/2\beta);$

4 wherein α_1 , α_2 and β are control parameters, $P_m(z) = A_m(z) + z^{-(m+1)} A_m(z^{-1})$,
5 $Q_m(z) = A_m(z) - z^{-(m+1)} A_m(z^{-1})$, and wherein $A_M(z)$ relates to a linear predictive coding
6 transfer function and M is the order of the linear predictive coding transfer function, and
7 wherein $A_m(z)$ is a second linear predictive coding transfer function based on $A_M(z)$, m is
8 the order of $A_m(z)$ and $1 \leq m \leq M$.

- 1 11. The method of claim 10, wherein $0 < \alpha_1$, $0 < \alpha_2$ and $\beta < 0.5$.

- 1 12. The method of claim 10, wherein $\alpha_1 + \alpha_2 = 2\beta$.

- 1 13. A filter that processes speech, comprising:

2 two or more pseudo-cepstral coefficients based on a set of linear predictive
3 coding coefficients, a pseudo-cepstral coefficient being a parameter relating to a pseudo-
4 cepstrum domain existing between the LPC domain and the line spectral frequency
5 domain.

- 1 14. The filter of claim 13, wherein the filter emphasizes speech frequency
2 components related to at least one formant based on the set of linear predictive coding
3 coefficients and de-emphasizes speech frequency components related to at least one
4 spectral valley based on the set of linear predictive coding coefficients.

- 1 15. The filter of claim 14, wherein the filter compensates for spectral tilt.

- 1 16. The filter of claim 14, wherein the one or more pseudo-cepstral
2 coefficients are derived based on the formula:

3 $H_S(z) \cong (P_M(z/\alpha_1) Q_M(z/\alpha_2)) / A_M(z/2\beta);$

4 wherein $P_M(z) = A_M(z) + z^{-(M+1)} A_M(z^{-1})$, $Q_M(z) = A_M(z) - z^{-(M+1)} A_M(z^{-1})$
5 and α_1 , α_2 and β are control parameters, and wherein $A_M(z)$ relates to a linear predictive
6 transfer function and M is the order of the linear predictive coding transfer
7 function.

- 1 17. The filter of claim 16, wherein $0 < \alpha_1$, $0 < \alpha_2$ and $\beta < 0.5$.

- 1 18. The filter of claim 16, wherein $\alpha_1 + \alpha_2 = 2\beta$.

- 1 19. The filter of claim 16, wherein the one or more pseudo-cepstral
2 coefficients are derived based on the formula:

3 $H^m_S(z) \equiv (P_m(z/\alpha_1) Q_m(z/\alpha_2)) / A_M(z/2\beta);$
4 wherein α_1 , α_2 and β are control parameters, $P_m(z) = A_m(z) + z^{-(m+1)} A_m(z^{-1})$,
5 $Q_m(z) = A_m(z) - z^{-(m+1)} A_m(z^{-1})$, and wherein $A_M(z)$ relates to a linear predictive coding
6 transfer function and M is the order of the linear predictive coding transfer function, and
7 wherein $A_m(z)$ is a second linear predictive coding transfer function based on $A_M(z)$, m is
8 the order of $A_m(z)$ and $1 \leq m \leq M$.

1 20. The filter of claim 19, wherein $0 < \alpha_1$, $0 < \alpha_2$ and $\beta < 0.5$.

1 21. The filter of claim 19, wherein $\alpha_1 + \alpha_2 = 2\beta$.