PATENT SPECIFICATION

(21) Application No. 22341/72 (22) Filed 12 May 1972

(23) Complete Specification filed 17 April 1973

(44) Complete Specification published 15 Oct. 1975

(51) INT. CL.³ B29D 7/02

(52) Index at acceptance

B5B 230 352 35Y 360 361 363 368 369 412 422 803

(72) Inventor RAYMOND JOHN LATHAM ARTHUR JOHN HOLLOWAY

(54) IMPROVEMENTS IN THE QUENCHING OF POLYMERIC FILM

(71) We, IMPERIAL CHEMICAL INDUSTRIES LIMITED, Imperial Chemical House, Millbank, London SW1P, 3JF, a British Company, do hereby declare the in-5 vention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:

The present invention relates to apparatus for quenching an extruded polymeric

Polymeric film is commonly made by extrusion from a slot die on to a rotating 15 casting drum where it is solidified into a form suitable for subsequent film making operations. In the case of certain crystallisable polymeric materials, such as polyethylene terephthalate, it is important to 20 rapidly quench the extruded film to a temperature below its second order glass transition temperature to minimise the onset of excessive crystallinity in the film which would cause embrittlement and interfere 25 with subsequent film making operations.

Quenching may be effected by extruding the film on to a suitably cooled casting drum. One method of obtaining good contact between the film and the casting drum 30 surface and preventing the film from slipping on the drum surface is known as electrostatic pinning and involves depositing electrostatic charges upon the molten film

before it reaches the casting drum and 35 usually electrically earthing the casting drum. Such an electrostatic pinning system is shown in United States Patent 3 223 757 which is incorporated herein by reference.

The electrostatic charges are normally 40 applied to the film by a pinning electrode, which may be in the form of a wire, extending transversely across the film and located just clear of the film surface so that electrostatic charges are deposited on 45 the film just before it makes contact with

the drum surface. Generally the film is narrower than the casting drum so that a margin of the drum surface remains exposed beyond each edge of the deposited film. In view of the proximity of the pin- 50 ning electrode to the casting drum surface there is a risk that sparking will develop between the electrode and the exposed margins of the drum surface thereby diminishing the pinning effect and im- 55 pairing the quenching of the extruded film. It has been proposed to insulate the ends of the pinning electrode against such sparking as shown in British Patent 1 304 439.

The molten film tends to neck-in be-tween the extrusion die and the casting drum and the degree of neck-in can vary throughout the process of making film, for example if a change of film thickness is 65 made during a process run. It has been found that sparking can occur from the uninsulated ends of the electrode which are exposed above the casting drum as the edges of the film neck-in. This invention 70 provides a means of moving the pinning electrode insulators to compensate for fluctuations in the film width.

According to the present invention an apparatus for electrostatically pinning a 75 molten polymeric film to an electrically earthed casting surface comprises a pinning wire electrode extending transversely across the casting surface and connected to a high voltage electrical source, the pinning wire 80 electrode being supported in spaced relation from the molten film for the deposition of electrostatic charges upon the film in the proximity of or prior to the region of first contact of the film and the 85 casting surface, and being electrically insulated by dielectric insulators located beyond the film edges, said dielectric insulators being movable along the wire electrode by an amount corresponding to any 90

transverse fluctuations that may occur in the film edges by means which are activated by a sensor of the transverse fluctuations of the film edges whereby 5 sparking between the wire electrode and the margins of the casting surface is im-

It will be understood that this invention is equally useful for compensating for the 10 inward or outward movement of the film edges and provides an efficient way of moving the wire insulators which would otherwise need to be accomplished by a difficult and hazardous manual adjustment.

The present invention may be used for the quenching of all polymeric materials which are capable of being formed into a flat film and being quenched, such as polycarbonates, polyamides
20 hexamethylene adipamide
caprolactam, polyimides, e.g. polyadipamide and polypolysulphones, polymers and copolymers of alpha olefines ethylene, propylene, butene and 4-methyl pentene-1, polymers and copolymers of vinyl monomers e.g. vinyl chloride, linear polyesters and copolyesters e.g. polyethylene terephthalate, polyethylene-2,6-n a p li th a late, and polyethylene-1,5-naphthalate and polyesterethers e.g. 30 polyethylene-1,2-diphenoxyethane - 4,4' -dicarboxylate. The present invention is particularly suitable for use in the produc-

tion of polyethylene terephthalate film. The invention is also concerned with a 35 process of casting a molten polymeric film upon an electrically earthed casting surface which comprises passing the film past a pinning wire electrode which extends transversely across the casting surface and is 40 connected to a high voltage electrical source, the pinning wire being supported in spaced relation from the molten film, depositing electrostatic charges upon the molten film from the pinning wire electrode in 45 the proximity of or prior to the region of first contact of the film and the casting surface, the pinning wire electrode being

electrically insulated by dielectric insulators located beyond the film edges, and moving 50 the dielectric insulators along the wire electrode by an amount corresponding to any transverse fluctuations that may occur in the film edges in response to said edge fluctuations whereby sparking between the 55 wire electrode and the margins of the casting surface is impeded.

The casting surface may take any convenient form such as a rotating drum having a highly polished surface from which 60 the film may be readily stripped and which may be cooled by the passage of a quenching fluid or a continuous moving band of

dielectric insulators may con-The 65 veniently take the form of tubular members through which the wire electrode passes and which conform approximately to the outer dimension of the wire electrode but are a loose enough fit to enable the insulators to be moved along the wire 70 electrode to compensate for film width variation. Any suitable dielectric material may be used to make the insulators although a fluorocarbon polymer, such as polytetrafluoroethylene, is preferred on ac-75 count of its low coefficient of friction which enables it to slide along the wire electrode and also its exceptional dielectric properties. Polytetrafluoroethylene is commercially available under the trade name 80 'Fluon'.

The dielectric insulators may mounted on carriers which may be moved along guides by the appropriate amount to compensate for film width variation. The 85 carriers may be provided with a rack which engages a driven toothed wheel, conveniently powered by an electric motor.

The fluctuations of the film edges may be sensed by any convenient means such as 90 a mechanical sensing element or optically by a photoelectric device at a location downstream of the casting surface and after the film has been stripped from the surface. The response of the edge sensing 95 device may be converted into an electric signal which is then used to control the operation of the drive to the dielectric insulators so that the insulators are moved the requisite distance to compensate for 100 film edge fluctuations.

It has surprisingly been discovered that the transverse edge fluctuations of the film are proportional to changes in the linear speed of the film during the movement of 105 the insulation. The movement of the insulators may therefore be controlled by monitoring the speed of the film. This may be accomplished by coupling a potentiometer to the film quenching apparatus, 110 e.g. to the drive for the casting drum, so as to produce a reference voltage representing the film speed. A second potentiometer may be coupled to the drive for the insulators to produce a reference voltage re- 115 presenting the distance by which the insulators have been advanced along their guides. Comparison of the two reference voltages provides an electrical signal which controls the electric motors coupled to the 120 insulator carriers and hence the movement of the insulators themselves. When the reference voltages are balanced the insulators are correctly positioned with respect to the film edges and no further 125 movement of the insulators is required until further edge fluctuation occurs.

As volatile materials which may emerge from the molten film may tend to condense upon the relatively cool surface of the wire 130

electrode thereby impairing the electrostatic discharge and possibly also corroding the pinning wire, it is desirable to prevent or impede the contamination of the electrode 5 surface by the condensation of the volatile materials. This may be achieved by heating the wire electrode to a temperature above the condensation temperature by electrical means or by impinging a hot gaseous blast 10 upon the wire electrode. A useful advantage of using a gaseous blust is that the gaseous stream also tends to disperse the volatile materials away from the vicinity of the wire electrode. As a modification the hot gaseous blast may be directed between the wire electrode and the molten film to prevent volatile material reaching the wire electrode. Alternatively a supply of clean wire may be fed across the casting surface 20 or a continuous wire may be passed across the casting surface and around a pulley on each side of the casting surface and passed through a cleaning bath or between one or more scrapers or wipers to remove any 25 condensed deposit.

The cast film may subsequently be subjected to any conventional film forming operations known in the art, such as stretching in one or more directions to 30 molecularly orient the film, heat setting

and coating.

In order that the invention may be more readily understood it is described below in greater detail with reference to the draw-35 ings accompanying the provisional specification, in which:

Figure 1 is a perspective view of a web of molten film being cast on to a rotating

casting drum surface;

Figure 2 is an elevational view of one embodiment of the invention; and

Figure 3 is an elevational view of another embodiment of the invention.

Figure 1 illustrates the casting of a molten polyethylene terephthalate film web 1 on to a rotating polished steel casting drum surface 2 which is cooled to a temperature below 80°C by the passage of a quenching fluid through the inlet 3 and outlet 4 which are coincident with the axis about which the drum rotates. The quenched film 6 is removed from the drum surface 2 over a roll (obscured in Figure 1 by the drum) and is passed to a conventional molecular orienting and heat setting unit (not illustrated).

A pinning wire electrode 8 is supported in tension close to the film surface in the proximity of but before the touch down region of the molten film web on to the casting drum surface. The wire electrode 8 is made from a nicket-chrome alloy and has a diameter of approximately 0.007 inch, a specific resistance of 72 microhms per cm³ and a measured resistance of between 30

and 35 ohms depending upon the operating temperature of the electrode.

The pinning wire electrode 8 is connected to a high voltage generator (not shown in Figure 1) which applies a poten-70 tial of 4.5 kv and a current of 720 micro amp to the electrode. Electrostatic charges are deposited by the wire electrode 8 upon the molten film 1 and attract the film to the surface 2 of the casting drum which is 75 maintained at earth potential.

The molten film web 1 is narrower than the casting drum surface 2 such that bare margins 9 and 10 of the steel casting drum surface are exposed beneath the pinning 80 wire. Accordingly the end sections of the pinning wire 8 which are located above these exposed margins 9 and 10 are insulated with polytetrafluoroethylene tubing insulators 12 and 13 which just overlap the 85 edges of the molten film web 1 and may be moved along the wire electrode 8 to accommodate fluctuations in the film edges.

Figure 2 illustrates one form of mechanism which may be employed to move the 90 insulators 12 and 13 shown in Figure 1. For simplicity the framework supporting the components of the apparatus has been omitted from Figure 2. Components common to Figures 1 and 2 are identified by 95 like reference numerals. The pinning wire 8 is maintained under slight tension between two fixed points 15 and 16, the latter being connected to the high voltage generator (not shown). The tubular insulators 12 and 100 13 are gripped firmly by clamps 18 and 19 respectively which are made from a dielectric material such as a reinforced urea or phenol formaldehyde resin and are mounted on carriers 20 and 21 re- 105 spectively. These carriers 20 and 21 are each located in a fixed guide channel (not shown) extending parallel to the wire electrode 8 along which they are freely movable. The carriers 20 and 21 are each 110 provided with a toothed rack 22 and 23 respectively engaging a driven toothed wheel 24 and 25 respectively. The driven wheels 24 and 25 are powered by electric motors (not shown). The operation of the 115 electric motors is controlled by an electrical relay circuit connected to edge sensors located downstream of the casting drum which bear against the edges of the film and monitor the edge fluctuations. 120 The relay circuit serves to actuate the electric motors thereby moving the carriers 20 and 21 along their appropriate guide channels so that the tubular insulators 12 and 13 are moved by a distance corresponding 125 to the movement of the film edges and in the direction of the film edge movement. Accordingly, the movement of the tubular insulators 12 and 13 is synchronised with the film edge movement so that the ends 130

of the insulators remain in slight overlapping relationship with the film edges. Hence by adjusting the position of the tubular insulators 12 and 13 sparking be-5 tween the wire electrode 8 and the bare margins 9 and 10 of the casting drum is avoided.

In a modification of the above, the movement of the insulators 12 and 13 is 10 controlled by the comparison of output signals derived from potentiometers coupled to the drive for the casting drum 2 and the drive for the carriers 20 and 21 as it has been found that the film edge fluctuations 15 are proportional to changes in the linear speed of the film. A potentiometer geared to the drive for the casting drum 2 produces a reference voltage which represents the linear speed of the film. 20 Another potentiometer is geared to the drive for the toothed wheels 24 and 25 to produce a reference voltage representing the extent to which the wheels 24 and 25 have been rotated to move the carriers 20 25 and 21 and hence the insulators 12 and 13. A signal produced by comparison of the reference voltages from the potentiometers is used to control the operation of the electric motors driving the toothed wheels 24 30 and 25 so that the insulators 12 and 13 are

of balance the signal produced by comparison causes the drive motors to adjust 35 the position of the insulators 12 and 13 until the reference voltages are brought back into balance. The insulators 12 and 13 are correctly positioned in relation to the film edges when the balanced condition

made to follow the fluctuations in the film

edges. When the reference voltages are out

the film edges when the balanced condition 40 is achieved and no further movement of the insulators 12 and 13 is required until further fluctuations in the film edges occur. Figure 3 illustrates another embodiment

of the invention and the components which 45 are common to Figures 1, 2 and 3 are allocated the same reference numerals. The framework upon which the components of the apparatus are mounted is omitted from Figure 3 for the sake of clarity.

The apparatus shown in Figure 3 employs a wire electrode 8 which is drawn from a supply of clean wire wound on reel 28, traversed across the casting drum 2 and wound on to a take-up reel 29 driven 55 by means of an electric motor 30 thereby avoiding the disadvantages of wire contamination which would otherwise occur by the condensation of volatile material upon a static wire electrode. The movement and 60 tension of the wire electrode is governed by a torque limiter 31. The wire electrode is energised by drawing—the—wire—across—aterminal 32 of the high voltage generator located adjacent the take-up reel 29.

65 In order to accurately position the wire

electrode 8 in spaced relation from molten film web 1 and the casting drum surface 2 it is passed around guide pulleys 33 and 34 which are made of dielectric material such as a urea or phenol formaldehyde 70 resin together with the tubular insulators 12 and 13 through which it is threaded.

The clamps 18 and 19, the carriers 20 and 21 and their racks 22 and 23 and the toothed wheels 24 and 25 are essentially 75 similar to the corresponding components shown in Figure 2 and operate in a similar manner to move the tubular insulators 12 and 13 in response to fluctuations in the film edges to ensure that the insulators 12 80 and 13 are positioned to prevent sparking between the wire electrode 8 and the exposed margins 9 and 10 of the casting drum 2. The movement of the carriers 20 and 21 is achieved in a similar manner to 85 that used for the embodiment shown in Figure 2, either by means of edge sensors or by potentiometrically relating to the edge fluctuations, and hence the adjustment of the dielectric insulators to the li- 90 near speed of the film.

WHAT WE CLAIM IS:-

1. An apparatus for electrostatically pinning a molten polymeric film to an elec- 95 trically earthed casting surface which comprises a pinning wire electrode extending transversely across the casting surface and connected to a high voltage electrical source, the pinning wire electrode being 100 supported in spaced relation from the molten film for the deposition of electrostatic charges upon the film in the proximity of or prior to the region of first contact of the film and the casting surface, and being 105 electrically insulated by dielectric insulators located beyond the film edges, said dielectric insulators being movable along the wire electrode by an amount corresponding to any transverse fluctuations that may occur 110 in the film edges by means which are activated by a sensor of the transverse fluctuations of the film edges whereby sparking between the wire electrode and the margins of the casting surface is im- 115

2. An apparatus according to Claim 1, in which the dielectric insulators are tubular members.

3. An apparatus according to Claim 1 120 or 2, in which the insulators are made from polytetrafluoroethylene.

4. An apparatus according to any preceding claim, in which the insulators are movable along guides in response to trans- 125 verse fluctuations of the film edges.

5. An apparatus according to Claim 4, in which the insulators are mounted on carriers for movement along the guides.

6. An apparatus according to any pre- 130

ceding claim, in which optical means or sensing elements which bear upon the edges of the film are provided to sense the fluctuations of the film edges.

7. An apparatus according to any of Claims 1 to 6, in which the movement of the insulators is controlled by monitoring

the speed of the film.

8. An apparatus according to Claim 7, 10 in which a potentiometer coupled to the drive for the casting surface is arranged to produce a reference voltage representing the film speed and a second potentiometer coupled to the drive for the insulators is 15 arranged to produce a second reference voltage representing the movement of the insulators for comparison with the reference voltage representing the film speed, the insulators being movable in relation to

20 the comparison of the reference voltages.

9. An apparatus according Claim 1, substantially as hereinbefore described with reference to Figure 1 and Figure 2 or Figure 3 of the drawings accompanying the

25 provisional specification.

10. A process for casting a molten polymeric film upon an electrically earthed casting surface which comprises passing the film past a pinning wire electrode

30 which extends transversely across the casting surface and is connected to a high voltage electrical source, the pinning wire being supported in spaced relation from the molten film, depositing electrostatic

35 charges upon the molten film from the pinning wire electrode in the proximity of or prior to the region of first contact of the film and the casting surface, the pinning wire electrode being electrically insulated to by dielectric insulators located beyond the film edges, and moving the dielectric in-

sulators along the wire electrode by an

amount corresponding to any transverse fluctuations that may occur in the film edges in response to said edge fluctuations 45 whereby sparking between the wire electrode and the margins of the casting surface is impeded.

11. A process according to Claim 10, in which the film is a film of a linear poly- 50

ester.

12. A process according to Claim 11, in which the film is a film of polyethylene terephthalate.

13. A process according to Claim 10, 55 11 or 12, in which the fluctuations of the film edges are sensed optically or by sensing elements which bear upon the edges of the film.

14. A process according to Claim 10, 11 or 12, in which the movement of the insulators is controlled by monitoring the

speed of the film.

15. A process according to Claim 14, in which a reference voltage representing the film speed and produced by a potentiometer coupled to the drive for the casting surface is compared with a second reference voltage representing the movement of the insulators and produced by a second potentiometer coupled to the drive for the insulators, the insulators being moved in relation to the comparison of the reference voltages.

16. A process according to Claim 10, substantially as hereinbefore described with reference to Figure 1 and Figure 2 or Figure 3 of the drawings accompanying the

provisional specification.

17. A polymeric film when obtained by a casting process according to any of Claims 10 to 16.

G. D. ARNOLD, Agent for the Applicants.

Printed for Her Majesty's Stationery Office by The Tweeddale Press Ltd., Berwick-upon-Tweed, 1975. Published at the Patent Office, 25 Southampton Buildings, London, WC2A 1AY, from which copies may be obtained.

FIG I

FIG 2

1 409 786 PROVISIONAL SPECIFICATION
2 SHEETS This drawing is a reproduction of the Original on a reduced scale.
SHEET 2

FIG 3