1. Dadas as seguintes permutações:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3 \end{pmatrix} \ \mathbf{e} \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}$$

Calcular $\sigma \circ \tau$, $\tau \circ \sigma$, σ^{-1} , τ^{-1} , $\sigma^{109} \circ \tau^{60}$.

- **2.** Mostre que para todo σ , permutação de \mathbb{S}_n , existe um número inteiro n > 0 tal que $\sigma^n = \mathrm{id}$.
- **3.** Quantos são os ciclos de ordem p em \mathbb{S}_n ?
- **4.** Ache uma realização para a função de resposta ao impulso $\Psi(t) = 3t$.
- **5.** Vamos chamar de suporte de uma permutação σ de \mathbb{S}_n o conjunto complementar dos pontos fixos em E_n . Mostre que se duas permutações têm suporte disjuntos então elas comutam.
- 6. Escrever as permutações:

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 6 & 3 & 5 \end{pmatrix} e \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 1 & 2 & 6 \end{pmatrix}$$

Como composição de ciclos disjuntos.

- 7. Verificar se as permutações acima são pares ou ímpares e dê uma decomposição em produto de tansposição de cada uma delas.
- 8. A matriz de representação de uma permutação $\sigma \in \mathbb{S}_n$ é a matriz quadrada $n \times n$ dada por $M(\sigma) = (s_{ij})$ onde

$$s_{ij} = \begin{cases} 1 & \text{se } \sigma j = i \\ 0 & \text{nos outros casos.} \end{cases}$$

Mostre que vale $M(\sigma).M(\tau) = M(\sigma \circ \tau).$