Message Passing and Node Classification

Revisiting Node Classification

- Given labels of some nodes
- Let's predict labels of unlabeled nodes
- This is called semi-supervised node classification

An alternate framework for node classification – Message Passing

- Intuition: Correlations exist in networks.
 - In other words: Similar nodes are connected
 - Key concept is collective classification: Idea of assigning labels to all nodes in a network together
- We will look at three techniques today:
 - Relational classification
 - Iterative classification
 - Belief propagation

Correlations in Networks

- Individual behaviors are correlated in the network
- Correlation: nearby nodes have the same color (belonging to the same class)

Correlations in Networks

• Main types of dependencies that lead to correlation:

Homophily

- Homophily: The tendency of individuals to associate and bond with similar others
 - "Birds of a feather flock together"
 - It has been observed in a vast array of network studies, based on a variety of attributes (e.g., age, gender, organizational role, etc.)
 - Example: Researchers who focus on the same research area are more likely to establish a connection (meeting at conferences, interacting in academic talks, etc.)

Homophily

Influence

- Influence: Social connections can influence the individual characteristics of a person.
 - Example: I recommend my musical preferences to my friends, until one of them grows to like my same favorite genres!

Influence

Leveraging the correlation

How do we leverage this correlation observed in networks to help predict node labels?

How do we predict the labels for the nodes in grey?

Motivation

- Similar nodes are typically close together or directly connected in the network:
 - Guilt-by-association: If I am connected to a node with label X, then I am likely to have label X as well.
 - Example: Malicious/benign web page: Malicious web pages link to one another to increase visibility, look credible, and rank higher in search engines

Motivation

- Classification label of a node v in network may depend on:
 - Features of v
 - Labels of the nodes in v's neighborhood
 - Features of the nodes in v's neighborhood

Collective Classification Overview

- Intuition: Simultaneous classification of interlinked nodes using correlations
- Probabilistic framework
- Markov Assumption: the label Y_v of one node v depends on the labels of its neighbors N_v

$$P(Y_v) = P(Y_v|N_v)$$

Collective classification involves 3 steps:

Local Classifier

 Assign initial labels

Relational Classifier

Capture correlations between nodes

Collective Inference

Propagate correlations through network

Collective Classification Overview

Local Classifier

 Assign initial labels

Relational Classifier

Capture correlations between nodes

Collective Inference

Propagate correlations through network

Local Classifier: Used for initial label assignment

- Predicts label based on node attributes/features
- Standard classification task
- Does not use network information

Relational Classifier: Capture correlations

- Learns a classifier to label one node based on the labels and/or attributes of its neighbors
- This is where network information is used

Collective Inference: Propagate the correlation

- Apply relational classifier to each node iteratively
- Iterate until the inconsistency between neighboring labels is minimized
- Network structure affects the final prediction

Problem Setting

- How to predict the labels Y_v for the unlabeled nodes v (in grey color)?
- Each node v has a feature vector f_v
- Labels for some nodes are given (1 for green, 0 for red)
- **Task:** Find $P(Y_v)$ given all features and the network $P(Y_v) = ?$

Intuition and Techniques

- We focus on semi-supervised node classification
- Intuition is based on homophily: Similar nodes are typically close together or directly connected
- Three techniques we will introduce:
 - Relational classification
 - Iterative classification
 - Belief propagation

Probabilistic Relational Classifier

- Basic idea: Class probability Y_v of node v is a weighted average of class probabilities of its neighbors
- For **labeled nodes** v, initialize label Y_v with ground-truth label Y_v^*
- For unlabeled nodes, initialize $Y_v = 0.5$
- Update all nodes in a random order until convergence or until maximum number of iterations is reached

Probabilistic Relational Classifier

• Update for each node v and label c (e.g. 0 or 1)

$$P(Y_v = c) = \frac{1}{\sum_{(v,u)\in E} A_{v,u}} \sum_{(v,u)\in E} A_{v,u} P(Y_u = c)$$

- If edges have strength/weight information, $A_{v,u}$ can be the edge weight between v and u
- $P(Y_v = c)$ is the probability of node v having label c

Challenges:

- Convergence is not guaranteed
- Model cannot use node feature information

Example

Initialization:

- All labeled nodes with their labels
- All unlabeled nodes 0.5 (belonging to class 1 with probability 0.5)

1st Iteration – Update of node 3

- Update for the 1st Iteration:
 - For node 3, $N_3 = \{1, 2, 4\}$

$$P(Y_3) = (0 + 0 + 0.5)/3 = 0.17$$

1st Iteration – Update of Node 4

- Update for the 1st Iteration:
 - For node 4, $N_4 = \{1, 3, 5, 6\}$

After Node 3 is updated

1st Iteration – Update of node 5

- Update for the 1st Iteration:
 - For node 5, $N_5 = \{4, 6, 7, 8\}$

After 1st Iteration

After Iteration 1 (a round of updates for all unlabeled nodes)

After 2nd Iteration

After Iteration 2

Convergence after 4 iterations

- All scores stabilize after 4 iterations. We therefore predict:
 - Nodes 4, 5, 8, 9 belong to class 1 ($P_{Y_n} > 0.5$)
 - Nodes 3 belong to class 0 ($P_{Y_v} < 0.5$)

Iterative Classification

- Relational classifiers do not use node attributes. How can one leverage them?
- Main idea of iterative classification: Classify node v based on its attributes f_v as well as labels z_v of neighbor set N_v

Iterative Classification Approach

Input: Graph

- f_v : feature vector for node v
- Some nodes v are labeled with Y_v
- Task: Predict label of unlabeled nodes
- Approach: Train two classifiers:
- $\phi_1(f_v)$ = Predict node label based on node feature vector f_v
- $\phi_2(f_v, z_v)$ = Predict label based on node feature vector f_v and summary z_v of labels of v's neighbors.

Computing Summary Z_{ν}

How do we compute the summary z_v of labels of v's neighbors N_v ?

- Ideas: z_v = vector
 - Histogram of the number (or fraction) of each label in N_v
 - Most common label in N_v
 - Number of different labels in N_v

Iterative Classifier Approach

Phase 1: Classify based on node attributes alone

- On a training set, train classifier (e.g., linear classifier, neural networks, ...):
- $\phi_1(f_v)$ to predict Y_v based on f_v
- $\phi_2(f_v, z_v)$ to predict Y_v based on f_v and summary z_v of labels of v's neighbors

Phase 2: Iterate till convergence

- On **test set**, set labels Y_v based on the classifier ϕ_1 , compute z_v and predict the labels with ϕ_2
- Repeat for each node v
 - Update z_v based on Y_u for all $u \in N_v$
 - Update Y_v based on the new Z_v (ϕ_2)
- Iterate until class labels stabilize or max number of iterations is reached
- Note: Convergence is not guaranteed

Example Web Page Classification

- Input: Graph of web pages
- Node: Web page
- Edge: Hyper-link between web pages
 - Directed edge: a page points to another page
- Node features: Webpage description
 - For simplicity, we only consider 2 binary features
- Task: Predict the topic of the webpage

Example Web Page Classification

 Baseline: train a classifier (e.g., linear classifier) to classify pages based on binary node attributes.

Example: Web Page Classification

- Each node maintains vectors z_v of neighborhood labels: I =Incoming neighbor label information vector O =Outgoing neighbor label information vector
- $I_0 = 1$ if at least one of the incoming pages is labelled 0. Similar definitions for I_1 , O_0 , and O_1

Iterative Classifier Step 1

- On a different training set, train two classifiers:
 - Node attribute vector only (green circles): ϕ_1
 - Node attribute and link vectors (red circles): ϕ_2

Train classifier

Apply classifier to test set Iterate

- . Update relational features z_v
- 2. Update label Y_v

Iterative Classifier Step 2

- On the test set:
 - Use trained node feature vector classifier ϕ_1 to set Y_v

 f_v **1 0**

1. Train classifier

2. Apply classifier to test set

3. Iterate

1. Update relational features z_v 2. Update label Y_v Ground truth: 1 Ground truth: 0

Ground truth: 1

 f_v 0 1

Iterative Classifier Step 2

- On the test set:
 - Use trained node feature vector classifier ϕ_1 to set Y_v

Iterative Classifier Step 3a

• Update z_v for all nodes

Iterative Classifier Step 3b

• Re-classify all nodes with ϕ_2

- Train classifier
- 2. Apply classifier to test
- 3. Iterate
 - 1. Update relational features z_v

Now it's correct prediction!

Iterative Classifier Step Iterate

- Continue until convergence
 - Update Z_n
 - Update $Y_v = \phi_2(f_v, z_v)$

Train classifier

Apply classifier to test

Iterate

- Update relational features z_v
- Update label Y_n

Iterative Classifier Prediction

- Stop iteration
 - After convergence or when maximum iterations are reached
- Train classifier
- 2. Apply classifier to test set
- Iterate
 - 1. Update relational features z_v

Loopy Belief Propagation

- Belief Propagation is a dynamic programming approach to answering probability queries in a graph (e.g. probability of node v belonging to class 1)
- Iterative process in which neighbor nodes "talk" to each other, passing messages

"I (node v) believe you (node u) belong to class 1 with likelihood ..."

When consensus is reached, calculate final belief

Message Passing Basics

Task: Count the number of nodes in a graph

Condition: Each node can only interact (pass message) with

its neighbors

Solution: Each node listens to the message from its

neighbor, updates it, and passes it forward

m: the message

Belief Propagation in a tree

Loopy Belief Propagation

What message will i send to j?

- It depends on what i hears from its neighbors
- Each neighbor passes a message to i its beliefs of the state of i

I (node i) believe that you (node j) belong to class Y_j with probability

. . .

Notation

- Label-label potential matrix ψ : Dependency between a node and its neighbor. $\psi(Y_i, Y_j)$ is proportional to the probability of a node j being in class Y_j given that it has neighbor i in class Y_i .
- **Prior belief** ϕ : $\phi(Y_i)$ is proportional to the probability of node i being in class Y_i .
- $m_{i \to j}(Y_j)$ is i's message / estimate of j being in class Y_i .
- L is the set of all classes/labels

Loopy Belief Propagation

- 1. Initialize all messages to 1
- 2. Repeat for each node:

Label-label potential All messages sent by neighbors from previous round

$$m_{i\to j}(Y_j) = \sum_{Y_i \in \mathcal{L}} \psi(Y_i, Y_j) \phi_i(Y_i) \prod_{k \in N_i \setminus j} m_{k\to i}(Y_i) \forall Y_j \in \mathcal{L}$$

Sum over all states

Prior

Loopy Belief Propagation

After convergence:

 $b_i(Y_i)$ = node i's belief of being in class Y_i

All messages from neighbors

$$b_i(Y_i) = \phi_i(Y_i) \Pi_{j \in N_i} m_{j \to i}(Y_i), \ \forall \ Y_i \in \mathcal{L}$$

Prior

Loopy Belief Propagation in Graphs

- Now we consider a graph with cycles
- There is no longer an ordering of nodes
- We apply the same algorithm as in previous slides:
 - Start from arbitrary nodes
 - Follow the edges to update the neighboring nodes

What if the graph has cycles?

What if our graph has cycles?

Messages from different subgraphs are no longer independent!

But we can still run BP, but it will pass messages in loops.

What can go wrong?

Beliefs may not converge

- Message m_{u→i}(Y_i) is based on initial belief of i, not a separate evidence for i
- The initial belief of i (which could be incorrect) is reinforced by the cycle i → j → k → u → i
- However, in practice, Loopy BP is still a good heuristic for complex graphs which contain many branches.