

<u>Help</u>

HuitianDiao 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

★ Course / Unit 3 Methods of E... / Lecture 10: Consistency of MLE, Covariance Matrices, and ...

9. Multivariate Gaussian Distribution

□ Bookmark this page

Exercises due Jun 29, 2021 19:59 EDT

Note: Now is a good time to review Gaussian random variables from Lecture 2.

Video Note: In the slide of the video below, there is a typo in the formula of the pdf of the multivariate Gaussian distribution: the exponent d in overall scaling factor should apply only to 2π , rather than $2\pi \det \Sigma$. The correct version is in the note below the video. (The unannotated slides in the resource section have also been corrected).

Multivariate Gaussian Distribution: Definition

multivariate PDF by heart.

What I'm really trying to say is if you give me

a covariance matrix and a vector of expectations--

the expectation vector, I guess--

then I actually can fully characterize a Gaussian PDF.

I have just an entire distribution.

Just like if you give me a expectation and a variance,

I have a Gaussian PDF in one dimension.

Video

<u>Download video file</u>

Transcripts

<u>Download SubRip (.srt) file</u> <u>Download Text (.txt) file</u>

Multivariate Gaussian Random Variable

A random vector $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})^T$ is a **Gaussian vector**, or **multivariate Gaussian or normal variable**, if any linear combination of its components is a (univariate) Gaussian variable or a constant (a "Gaussian" variable with zero variance), i.e., if $\boldsymbol{\alpha}^T \mathbf{X}$ is (univariate) Gaussian or constant for any constant non-zero vector $\boldsymbol{\alpha} \in \mathbb{R}^d$.

The distribution of \mathbf{X} , the d-dimensional Gaussian or normal distribution , is completely specified by the vector mean $\mu = \mathbb{E}\left[\mathbf{X}\right] = \left(\mathbb{E}\left[X^{(1)}\right], \ldots, \mathbb{E}\left[X^{(d)}\right]\right)^T$ and the $d \times d$ covariance matrix Σ . If Σ is invertible, then the pdf of \mathbf{X} is

$$f_{\mathbf{X}}\left(\mathbf{x}
ight) = rac{1}{\sqrt{\left(2\pi
ight)^{d}\mathrm{det}\left(\Sigma
ight)}}e^{-rac{1}{2}\left(\mathbf{x}-\mu
ight)^{T}\Sigma^{-1}\left(\mathbf{x}-\mu
ight)}, \;\;\; \mathbf{x} \in \mathbb{R}^{d}$$

where $\det (\Sigma)$ is the determinant of the Σ , which is positive when Σ is invertible.

If $\mu=\mathbf{0}$ and Σ is the identity matrix, then \mathbf{X} is called a **standard normal random vector** .

Note that when the covariant matrix Σ is diagonal, the pdf factors into pdfs of univariate Gaussians, and hence the components are independent.

Linear Transformation of a Multivariate Gaussian Random Vector

1 point possible (graded)

 $(X^{(1)})$

/1

1 2\

/n`

Consider the vector $\pmb{lpha}=egin{pmatrix} 1 \ -1 \end{pmatrix}$, so that $\pmb{Y}=\pmb{lpha}^T \mathbf{X}$ is a $\mathbf{1}$ -dimensional Gaussian.

What is the variance Var(Y) of Y?

$$\mathsf{Var}\left(Y
ight)=$$

Submit

You have used 0 of 3 attempts

Singular Covariance Matrices

1 point possible (graded)

Consider again a **2**-dimensional Gaussian
$$\mathbf{X}=\begin{pmatrix}X^{(1)}\\X^{(2)}\end{pmatrix}$$
. But instead, Σ_X is $\begin{pmatrix}1&2\\2&4\end{pmatrix}$ and $\alpha=\begin{pmatrix}2\\-1\end{pmatrix}$, what is the variance $\mathsf{Var}\left(Y\right)$ of $Y=\alpha^T\mathbf{X}$?

$$\mathsf{Var}\left(Y
ight)=$$

This result tells us that the Gaussian $(X^{(1)}, X^{(2)})^T$ is actually a one-dimensional Gaussian, orthogonal to the direction of $\begin{pmatrix} 2 \\ -1 \end{pmatrix}$.

Submit

You have used 0 of 3 attempts

(Optional) Diagonalization of the Covariance Matrix

Let Σ be a covariance matrix of size $d \times d$. Note that its entries are all real numbers with diagonal elements being non-negative. Σ has the following properties:

- Σ is symmetric. That is, $\Sigma = \Sigma^T$.
- Σ is diagonalizable to a diagonal matrix D via a transformation $D=U\Sigma U^T$, where U is an orthogonal matrix (recall that a square matrix A is orthogonal if $AA^T=A^TA=I$, where I is the identity matrix). This implies that $\Sigma=U^TDU$.
- ullet Moreover, $oldsymbol{\Sigma}$ is positive semidefinite. That is, the diagonal matrix $oldsymbol{D}$ has diagonal entries that are all non-negative.
- Σ has a unique positive semidefinite square root matrix. That is, there exists a positive semi-definite matrix $\Sigma^{\frac{1}{2}}$ that is unique such that $\Sigma^{\frac{1}{2}} \cdot \Sigma^{\frac{1}{2}} = \Sigma$.
- If Σ is of size $d \times d$, then it has d orthonormal eigenvectors (even if there are repeated eigenvalues). Furthermore, if U is a matrix with rows corresponding to the orthonormal eigenvectors, then the diagonal matrix $D = U \Sigma U^T$ contains the eigenvalues of Σ along its diagonal. Therefore, diagonalization of a symmetric matrix involves finding its eigenvalues and the orthonormal eigenvectors.
- If Σ is positive definite, i.e. the diagonal matrix $D=U\Sigma U^T$ has diagonal entries that are all strictly positive, then it is invertible and the inverse Σ^{-1} satisfies the following: $\Sigma^{-\frac{1}{2}} \cdot \Sigma^{-\frac{1}{2}} = \Sigma^{-1}$, where $\Sigma^{-\frac{1}{2}}$ is the inverse of the square root of Σ .

<u>Hide</u>

dependent and ea	ch of mean $oldsymbol{0}$ ".		
True			
False			
nt: Refer to the no	te above on diagonaliz	zation of the covariance matrix.	
Submit You ha	ve used 0 of 1 attempt		
iscussion			
	stimation:Lecture 10: Consist	tency of MLE, Covariance Matrices,	Hide Discussion
pic: Unit 3 Methods of E I Multivariate Statistics ,	stimation:Lecture 10: Consist / 9. Multivariate Gaussian Dist	·	Add a Post
oic: Unit 3 Methods of E d Multivariate Statistics / Show all posts ✓		·	
oic: Unit 3 Methods of E d Multivariate Statistics / Ghow all posts ✓ these	/ 9. Multivariate Gaussian Dist	·	Add a Post by recent activity ✓
oic: Unit 3 Methods of E I Multivariate Statistics , Show all posts ✓ • these on 3:19, what are th	/ 9. Multivariate Gaussian Dist	e in the lecture, professor is pointing to 'these', but here I have no idea v	Add a Post by recent activity ✓
Show all posts these on 3:19, what are the Singular Covariance	9. Multivariate Gaussian Distonese guys referring to? Maybentrix is diagonal, compone	e in the lecture, professor is pointing to 'these', but here I have no idea v	Add a Post by recent activity what these is referring to 4
Show all posts these on 3:19, what are the singular Covariance Malthough I got the a	9. Multivariate Gaussian Distonese guys referring to? Maybentrix is diagonal, compone	e in the lecture, professor is pointing to 'these', but here I have no idea vents are independent? Existent the last line of the section. "This result tells us that the Gaussian	Add a Post by recent activity what these is referring to 4
Show all posts these on 3:19, what are the Singular Covariance Market Sing	nese guys referring to? Maybe trix is diagonal, compone nce Matrices answer right, I still don't under	e in the lecture, professor is pointing to 'these', but here I have no idea vents are independent? Existent the last line of the section. "This result tells us that the Gaussian	Add a Post by recent activity what these is referring to 4 a (X(1),X(2))T is actually a

Recall from an earlier part of this lecture that the covariance between two random variables being 0 does not necessarily imply that the random variables are independent. However, this is true if the random variables are multivariate Gaussian.

© All Rights Reserved

0 points possible (ungraded)

edX

<u>About</u>

<u>Affiliates</u>

edX for Business

Open edX

<u>Careers</u>

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>