PC814 Series

AC Input Photocoupler

Lead forming type (I type) and taping reel type (P type) are also available. (PC814I/PC814P)

■ Features

- 1. AC input
- 2. High isolation voltage between input and output ($V: 5000V_{rms}$)
- 3. Compact dual-in-line package

PC814 (1-channel type)

PC824 (2-channel type)

PC844 (4-channel type)

4. Current transfer ratio

CTR: MIN. 20% at $I_F = \pm 1 \text{mA}$, $V_{CE} = 5 \text{V}$

5. Recognized by UL, file No. E64380

■ Applications

- 1. Programmable controllers
- 2. Telephone sets, telephone exchangers
- 3. System appliances
- Signal transmission between circuits of different potentials and impedances

■ Outline Dimensions

(Unit: mm)

■ Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	Parameter	Symbol	Rating	Unit	
Input	Forward current	I_F	± 50	mA	
	*1Peak forward current	I_{FM}	± 1	A	
	Power dissipation	P	70	mW	
	Collector-emitter voltage	V _{CEO}	35	V	
Outmut	Emitter-collector voltage	V ECO	6	V	
Output	Collector current	Ic	50	mA	
	Collector power dissipation	Pc	150	mW	
	Total power dissipation	P tot	200	mW	
	*2Isolation voltage	V iso	5 000	V _{rms}	
	Operating temperature	T opr	- 30 to + 100	°C	
	Storage temperature	T stg	- 55 to + 125	°C	
	*3Soldering temperature	T sol	260	°C	

^{*1} Pulse width \leq =100 μ s, Duty ratio : 0.001

■ Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		VF	$I_F=\pm\ 20mA$	-	1.2	1.4	V
	Peak forward voltage		V _{FM}	$I_{FM}=\pm\ 0.5V$	-	-	3.0	V
	Terminal capacitance		Ct	V = 0, $f = 1kHz$	-	50	250	pF
Output	Collector dark current		Iceo	$V_{CE} = 20V, I_{F} = 0$	-	-	10 - 7	A
Transfer charac- teristics	*4Current transfer ratio		CTR	$I_F = \pm 1 \text{mA}$, $V_{CE} = 5 V$	20	-	300	%
	Collector-emitter saturation voltage		V _{CE(sat)}	$I_F = \pm 20$ mA, $I_C = 1$ mA	-	0.1	0.2	V
	Isolation resistance		R _{ISO}	DC500V, 40 to 60% RH	5 x 10 ¹⁰	1011	-	Ω
	Floating capacitance		Cf	V = 0, $f = 1MHz$	-	0.6	1.0	pF
	Cut-off frequency		fc	$V_{CE} = 5V$, $I_{C} = 2mA$, $R_{L} = 100 \Omega$, $-3dB$	15	80	-	kHz
	Response time	Rise time	t _r	$V_{CE} = 2V$, $I_{C} = 2mA$, $R_{L} =$	-	4	18	μs
		Fall time	$t_{\rm f}$	100Ω	-	3	18	μs

^{*4} Classification table of current transfer ratio

Model No.	Rank mark	CTR (%)		
PC814A				
PC824A	A	50 to 150		
PC844A				
PC814		20 to 300		
PC824	A or no mark			
PC844				

^{*2 40} to 60% RH, AC for 1 minute

^{*3} For 10 seconds

Fig. 1 Forward Current vs. Ambient Temperature

Fig. 3 Peak Forward Current vs. Duty Ratio

Fig. 5 Current Transfer Ratio vs. Forward Current

Fig. 2 Collector Power Dissipation vs.
Ambient Temperature

Fig. 4 Forward Current vs. Forward Voltage

Fig. 6 Collector Current vs.
Collector-emitter Voltage

Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature

Fig. 9 Collector Dark Current vs.
Ambient Temperature

Fig.11 Frequency Response

Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature

Fig.10 Response Time vs. Load Resistance

Test Circuit for Response Time

Fig.12 Collector-emitter Saturation Voltage vs. Forward Current

 $\label{eq:Forward current I} \mbox{F (mA)$}$ $\mbox{$\bullet$ Please refer to the chapter "Precautions for Use"}$

Test Circuit for Frepuency Response

