ЛАБОРАТОРНАЯ РАБОТА 17

КВАЗИОПТИЧЕСКИЕ ИЗМЕРЕНИЯ НА МИЛЛИМЕТРОВЫХ ВОЛНАХ

ТЕОРИЯ

ИНТЕРФЕРОМЕТР ФАБРИ-ПЕРО

Пропускание интерферометра Фабри-Перо в зависимости от расстояния d между зеркалами и фазы δ .

$$I_t = I_0 T^2 / (1 - \text{Re}^{-i\delta})(1 - \text{Re}^{i\delta}) = \frac{I_0 T^2}{(1 - R)^2 + 4R \sin^2(\delta/2)}.$$

Ширина пиков и резкость

$$\varepsilon = 4 \arcsin\left(\frac{1-R}{2\sqrt{R}}\right)$$
 $F = \frac{2\pi}{\varepsilon} \cong \frac{\pi\sqrt{R}}{1-R}$

ДИФРАКЦИОННАЯ РЕШЕТКА

ХОД РАБОТЫ

ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК ИПФ

Рассмотрим схему:

Медленно сблизим зеркала. Вращая микрометрический винт, снимем зависимость интенсивности прошедшего сигнала и построем график.

Откуда,

Длина волны	Контраст	Резкость	Отражение R	
1.16 мм	1.42	1.01	0.087	
1.16 мм	1.42	1.01	0.087	

изучение дифракции на решетке в проходящих лучах

Соберем схему как на рисунке

Снимем зависимость $I(\alpha)$ и построем график. Сравним с теоретической зависимостью.

Откуда, длина волны: 1.88мм.

ИЗУЧЕНИЕ ДИФРАКЦИИ НА РЕШЕТКЕ В ОТРАЖЕННЫХ ЛУЧАХ

Соберем аналогичную схему для отражения.

Снимем зависимость $I(\theta)$ и построем графики для углов решетки 30 и 45 градусов.

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТОВ ПРОПУСКАНИЯ

Толщина стекла	Без фильтра	Аттеньюатор	Аттеньюатор + стекло	2 стекла	3 стекла
5.8 мм	36.8	72.9	13.9	7.28	1.73

Откуда коэффициент пропускания стекла 0.19.