Statistical Modelling - Concise Notes

MATH50011

Arnav Singh

Colour Code - Definitions are green in these notes, Consequences are red and Causes are blue

Content from MATH40005 assumed to be known.

Contents

1	Statistical Models 1.2 Parametric Statistical Models 1.3 Using Models 2.2 Parametric Statistical Models 2.3 Parametric Statistical Models 3.4 Parametric Statistical Models 4.5 Parametric Statistical Models 5.7 Parametric Statistical Models 6.7 Parametric Statistical Models
2	Point Estimation 2.1 Properties of estimators 2 2.1.1 Bias 2 2.1.2 Standard error 2 2.1.3 Mean Square Error 2
3	The Cramér-Rao Lower Bound
4	Asymptotic Properties
5	Maximum Likelihood Estimation5.1Properties of Maximum Likelihood estimators55.1.1MLEs functionally invariant55.1.2Large Sample property5
6	Confidence Regions66.1 Construction of confidence intervals66.2 Asymptotic confidence intervals66.3 Simultaneous Confidence Interval/Confidence regions6
7	Hypothesis Testing 7.1 Prelim 7.2 7.2 Power of a Test 8. 7.3 p-Value 8. 7.4 Connection between tests & confidence intervals 8. 7.4.1 Constructing a test from confidence region 8. 7.4.2 Constructing confidence region from tests 8.
8	Likelihood Ratio Tests
9	Linear models with 2nd order assumptions99.1 Simple Linear Regression99.2 Matrix Algebra99.3 Review of rules for E , cov for random vectors109.4 Linear Model109.5 Identifiability119.6 Least Square estimation129.7 Properties of LSE139.8 Projection Matrices139.9 Residuals, Estimation of the variance12
10	Linear Models with Normal theory Assumptions 13
	10.1 Distributional Results1510.1.1 Multivariate Normal Distribution1510.1.2 Distributions derived from MVN1410.1.3 Some independence results1410.1.4 Confidence intervals, tests for one dimensional quantities1510.2 The F -test1510.3 Confidence regions15
11	Diagnostics, Model selection, Extensions
	11.1 Outliers 16 11.2 Leverage 17 11.3 Cook's Distance 17 11.4 Under/Overfitting 17 11.5 Weighted Least Squares 17

1 Statistical Models

1.2 Parametric Statistical Models

Definition 1.1 Statistical Model

Statistical model; collection of probability distribution $\{P_{\theta} : \theta \in \Theta\}$ on a given sample space. Set Θ - (**Parameter Space**) - set of all possible parametric values, $\Theta \subset \mathbb{R}^p$

Definition 1.2 Identifiable

Statistical model is identifiable if map $\theta \mapsto P_{\theta}$, one-to-one, $P_{\theta_1} = P_{\theta_2} \implies \theta_1 = \theta_2 \quad \forall \theta_1, \theta_2 \in \Theta$

1.3 Using Models

Requirements for a model

- 1. Agree with observed data "reasonable" well
- 2. reasonably simple (no excess parameters)
- 3. easy to interpret (parameter have practical meaning)

2 Point Estimation

Definition 2.1 Statistic

Statistic - function of observable random variable.

Definition 2.2 Estimate/Estimators

t a statistic

 $t(y_1, \ldots, y_n)$ called **estimate** of θ $T(Y_1, \ldots, Y_n)$ an **estimator** of Θ

2.1 Properties of estimators

2.1.1 Bias

Definition 2.3 Bias

T estimator for $\theta \in \Theta \subset \mathbb{R}$

$$bias_{\theta}(T) = E_{\theta}(T) - \theta$$

unbiased if $bias_{\theta}(T) = 0$, $\forall \theta \in \Theta$

If $\Theta \subset \mathbb{R}^k$ often interested in $g(\theta)$, $g: \theta \to \mathbb{R}$

extend
$$bias_{\theta}(T) = E_{\theta}(T) - g(\theta)$$

2.1.2 Standard error

Definition 2.4

T estimator for $\theta \in \Theta \subset \mathbb{R}$

$$SE_{\theta}(T) = \sqrt{Var_{\theta}(T)}$$

Standard error, is standard deviation of sampling distribution of T

2.1.3 Mean Square Error

Definition 2.5

T estimator for $\theta \in \Theta \subset \mathbb{R}$ Mean square error of T

$$MSE_{\theta}(T) = E_{\theta}(T - \theta)^{2}$$

= $Var_{\theta}(T) + [bias_{\theta}(T)]^{2}$

3 The Cramér-Rao Lower Bound

Theorem 3.1 (Cramér-Rao Lower Bound)

T = T(X) unbiased estimator for $\theta \in \Theta \subset \mathbb{R}$ for $X = (X_1, \dots, X_n)$ with just pdf $f_{\theta}(x)$ under mild regularity conditions:

$$Var_{\theta}(T) \ge \frac{1}{I(\theta)}$$

For I_{θ} the Fisher information of sample

$$I(\theta) = E_{\theta} \left[\left\{ \frac{\partial}{\partial \theta} \log f_{\theta}(x) \right\}^{2} \right]$$
$$= -E_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) \right]$$
$$I_{n}(\theta) = -nE_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f_{\theta}(x) \right]$$

Proposition.

For a random sample: Fisher info proportional to sample size

Jensen's inequality

For X a random variable with φ a convex function

$$\varphi(E[X]) \le E[\varphi(X)]$$

Call $E[\varphi(X)] - \varphi(E[X])$ the **Jensen gap**

4 Asymptotic Properties

Definition 4.1

Sequence of estimators $(T_n)_{n\in\mathbb{N}}$ for $g(\theta)$ called (weakly) consistent if $\forall \theta \in \Theta$

$$T_n \xrightarrow{P_\theta} g(\theta) \quad (n \to \infty)$$

Definition 4.2

Convergence in probability: $T_n \xrightarrow{P_{\theta}} g(\theta)$

$$\forall \epsilon > 0 : \lim_{n \to \infty} P_{\theta}(|T_n - g(\theta)| < \epsilon) = 1$$

Lemma - (Portmanteau Lemma)

 X, X_n real valued random value.

Following are equivalent:

- 1. $X_n \to X$ as $n \to \infty$
- 2. $E[f(X_n)] \to E[f(X)]$ $n \to \infty$ for all bounded + continuous functions $f: \mathbb{R} \to \mathbb{R}$

Definition 4.3

Sequence of estimators $(T_n)_{n\in\mathbb{N}}$ for $g(\theta)$ asymptotically unbiased if $\forall \theta \in \Theta$

$$E_{\theta} \to g(\theta) \quad n \to \infty$$

Lemma.

 (T_n) asymptotically unbiased for $g(\theta)$ and $\forall \theta \in \Theta$

$$Var_{\theta}(T_n) \to 0 \quad n \to \infty$$

 $\implies (T_n)$ consistent for $g(\theta)$

Definition 4.4

Sequence (T_n) of estimators for $\theta \in \mathbb{R}$ asymptotically normal if

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$$

for some σ^2)(θ)

Theorem 4.1 (Central Limit Theorem)

 Y_1, \ldots, Y_n be iid random variable with $E(Y_i) = \mu$, $Var(Y_i) = \sigma^2$

$$\implies$$
 sequence $\sqrt{n}(\bar{Y} - \mu) \xrightarrow{d} N(0, \sigma^2)$

Remark.

Under mild regularity conditions for asymptotically normal estimators T_n

$$SE_{\theta}(T_n) \approx \frac{\sigma(T_n)}{\sqrt{n}}$$

Lemma. (Slutsky)

 X_n, X, Y_n random variables

If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{p} c$ for constant c

- 1. $X_n + Y_n \xrightarrow{d} X + c$
- 2. $Y_n X_n \xrightarrow[d]{} cX$
- 3. $Y_n^{-1}X_n \xrightarrow{d} c^{-1}X$ provided $c \neq 0$

Theorem 4.2 (Delta Method)

Suppose T_n asymptotically normal estimator of θ with

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$$

 $g:\Theta\to\mathbb{R}$) differentiable function with $g'(\theta)\neq 0$. Then

$$\sqrt{n}[g(T_n) - g(\theta)] \xrightarrow{d} N(0, g'(\theta)^2 \sigma^2(\theta))$$

Theorem 4.3 (Continuous Mapping Theorem)

 $k, m \in \mathbb{N}, X, X_n$, \mathbb{R}^k -valued random variable. $g : \mathbb{R}^k \to \mathbb{R}^m$ continuous function at every point of C s.t $P(X \in C) = 1$

- If $X_n \to X \implies g(X_n) \to g(x)$ as $n \to \infty$
- If $X_n \xrightarrow[p]{} X \implies g(X_n) \xrightarrow[p]{} g(X)$ as $n \to \infty$
- If $X_n \xrightarrow{a.s} X \implies g(X_n) \xrightarrow{a.s} g(X)$ as $n \to \infty$

5 Maximum Likelihood Estimation

Definition 5.1 (Likelihood function)

Suppose observer Y with realisation y

Likelihood function

$$L(\theta) = L(\theta : y) = \begin{cases} P(Y = y : \theta) & \text{discrete data} \\ f_Y(y : \theta) & \text{absolutely continuous data} \end{cases}$$

Likelihood function is the joint pdf/pmf or observed data as a function of unknown parameter.

Random sample $Y = (Y_1, ..., Y_n)$ Y_i iid. If Y_i has pdf $f(\cdot; \theta)$

$$\implies L(\theta) = \prod_{i=1}^{n} f(y_i : \theta)$$

Definition 5.2 (Maximum Likelihood Estimator)

MLE of θ is estimator $\hat{\theta}$ s.t

$$L(\hat{\theta}) = \sup_{\theta \in \Theta} L(\theta)$$

5.1 Properties of Maximum Likelihood estimators

5.1.1 MLEs functionally invariant

g bijective function $\hat{\theta}$ MLE of $\theta \implies \hat{\phi} = g(\hat{\theta})$ a MLE of $\phi = g(\theta)$

5.1.2 Large Sample property

Theorem 5.1

 X_1, X_2, \ldots iid observations with pdf/pmf f_{θ} $\theta \in \Theta$, Θ an open interval $\theta_0 \in \Theta$ - true parameter.

Under regularity conditions ($\{x: f_{\theta}(x) > 0\}$ independent of θ). We have

- 1. \exists consistent sequence $(\hat{\theta})_{n \in \mathbb{N}}$ of MLE
- 2. $(\hat{\theta})_{n\in\mathbb{N}}$ consistent sequence of MLEs $\Longrightarrow \sqrt{n}(\hat{\theta}_n \theta_0) \xrightarrow{d} N(0, (I_f(\theta_0))^{-1})$ (Asymptotic normality of MLE) Where $I_f\theta$ Fisher information of sample size = 1

Remark: if MLE unique $(\forall n) \implies$ sequence of MLEs consistent

Remark

Limiting distribution depends on $I_f(\theta_0)$, which is often unknown in practical situations. \implies need to estimate $I_f(\theta_0)$

iid sample; $I_f(\theta_0)$ estimated by

- $I_f(\hat{\theta})$
- $\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \log(f(x_i : \theta)) |_{\theta = \hat{\theta}} \right)^2$
- $-\frac{1}{n}\sum_{i=1}^{n}(\frac{\partial}{\partial\theta})^2\log(f(x_i:\theta))|_{\theta=\hat{\theta}}$

Often consistent \implies converge to $I_f(\theta_0)$ in probability

Remark

Standard error of asymptotically normal MLE $\hat{\theta}_n$ Approximated by $SE(\hat{\theta}_n) = \sqrt{\hat{I}_n^{-1}}/\sqrt{n} \hat{I}_n$ estimator from above. Remark - Multivariate version.

 $\Theta \subset \mathbb{R}^k$ open set, $\hat{\theta}_n$ MLE based on n observation.

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} N(0, (I_f(\theta_0)^{-1}))$$

 θ_0 the true parameter, $I_f(\theta)$ Fisher information matrix

$$I_f(\theta) := E_{\theta} \left[(\nabla \log f(X; \theta))^T (\nabla \log f(X; \theta)) \right]$$

:= $-E_{\theta} \left[\nabla^T \nabla \log f(X; \theta) \right]$

Definition 5.3

Converges in distribution for random vector

 X, X_1, X_2 random vectors of dimension k

$$\mathbf{X}_n \xrightarrow{d} \mathbf{X} \quad (n \to \infty)$$

If
$$P(\mathbf{X}_n \leq z) \xrightarrow[n \to \infty]{} P(\mathbf{X} \leq z) \quad \forall z \in \mathbb{R}^k : z \mapsto P(X \leq Z)$$
 continuous

6 Confidence Regions

Definition 6.1 (Confidence interval)

 $1-\alpha$ confidence interval for θ , a random interval I containing 'true' paramter with probability $\geq 1-\alpha$

$$P_{\theta \in I} \ge 1 - \alpha \quad \forall \theta \in \Theta$$

6.1 Construction of confidence intervals

Definition 6.2

Pivotal Quantity for θ a function $t(Y, \theta)$ of data and θ

s.t distribution of $t(Y, \theta)$ known (no dependency on unknown parameters)

Know distribution of
$$t(Y, \theta) \implies$$
 can find constant a_1, a_2 s.t $P(a_1 \le t(Y_1, \theta) \le a_2) \ge 1 - \alpha$
 $\implies P(h_1(Y) \le \theta \le h_2(Y)) \ge 1 - \alpha$

Call $[h_1(Y), h_2(Y)]$ a random interval

with observed interval $[h_1(y), h_2(y)]$ a $1 - \alpha$ confidence interval for θ

6.2 Asymptotic confidence intervals

We often know

$$\sqrt{n}(T_n - \theta) \xrightarrow{d} N(0, \sigma^2(\theta))$$

$$\implies \sqrt{n}(\frac{T_n - \theta}{\sigma(\theta)}) \xrightarrow{d} N(0, 1)$$
use as pivotal quantity

Definition 6.3

Sequence of random intervals I_n an asymptotic $1 - \alpha$ Confidence Interval if

$$\lim_{n \to \infty} P_{\theta}(\theta \in_n) \ge 1 - \alpha \quad \theta$$

Simplification

Given consistent estimator $\hat{\sigma}_n$ for $\sigma(\theta)$ $\hat{\sigma}_n \xrightarrow{P_{\theta}} \sigma(\theta) \ \forall \theta$

$$\sqrt{n}(\frac{T_n - \theta}{\sigma(\theta)}) \xrightarrow{d} N(0, 1)$$

$$T_n \pm c_{\alpha/2} \times \underbrace{\frac{\hat{\sigma}_n}{\sqrt{n}}}_{\text{estimates } SE(T_n)}$$

$$T_n \pm c_{\alpha/2} SE(T_n)$$

Simplification.

$$\hat{\sigma}^2 = \frac{Y}{n} (1 - \frac{Y}{n}) \quad \hat{\sigma}^2 \xrightarrow{P} \theta (1 - \theta)$$

$$\underbrace{\sqrt{n} \frac{Y/n - \theta}{\sqrt{\frac{Y}{n} (1 - \frac{Y}{n})}}}_{\text{interposition}} \implies \frac{y}{n} \pm \frac{c_{\alpha/2}}{\sqrt{n}} \sqrt{\frac{y}{n} (1 - \frac{y}{n})}$$

6.3 Simultaneous Confidence Interval/Confidence regions.

Definition 6.4

$$\theta = (\theta_1, \dots, \theta_k)^T \in \Theta \in \mathbb{R}^k$$

With random intervals $(L_i(\mathbf{Y}), U_i(\mathbf{Y}))$ s.t

$$\forall \theta : P_{\theta}(L_i(\mathbf{Y} < \theta_i < U_i(\mathbf{Y}), i \in \{1, \dots, k\}) \ge 1 - \alpha$$

 $(L_i(\mathbf{y}, U_i(\mathbf{y})) \ i \in \{1, \dots, k\} \ \text{a} \ 1 - \alpha \ \text{simultaneous confidence interval for} \ \theta_1, \dots, \theta_k$ **Remark -** (Bonferroni correction) take $[L_i, U_i]$ a $1 - \alpha$ confidence interval for $\theta_i, \ i \in \{1, \dots, k\}$

7 Hypothesis Testing

7.1 Prelim

Definition 7.1 (Hypotheses)

We have 2 complementary hypothesis

- H_0 : Null hypothesis consider to be the status quo
- H_1 : Alternative hypothesis

Definition 7.2 (Hypthesis Test)

Hypothesis test a rule that specifies for which valus of a sample x_1, \ldots, x_n a decision is to be made

- accept H_0 as true
- reject H_0 and accept H_1

Rejection region/Critical region - subset of sample space for which H_0 rejected

Definition 7.3 (Types of error)

	H_0 True	H_0 False
Don't reject H_0	✓	Type II Error
Reject H_0	Type I Error	✓

7.2 Power of a Test

Definition 7.4 (Power function)

 Θ parameter space with $\Theta_0 \subset \Theta$, $\Theta_1 = \Theta \setminus \Theta_0$ Consider:

$$H_0: \theta \in \Theta_0$$

 $H_1: \theta \in \Theta_1$

Given a test for this hypothsis, we have a Power function

$$\beta : \theta \to [0, 1]$$

 $\beta(\theta) = P_{\theta}(\text{reject}H_0)$

$$\theta \in \Theta_0 \implies \text{want } \beta(\theta) \text{ small } \theta \in \Theta_1 \implies \text{want } \beta(\theta) \text{ large}$$

7.3 p-Value

Definition 7.5 (p-value)

 $p = \sup_{\theta \in \Theta_0} P_{\theta}$ (observing something 'at least as extreme' as the observation)

reject $H_0 \iff p \leq \alpha$

For test based on statistic T with rejection for large value of T we have

$$p = \sup_{\theta \in \Theta_0} P_{\theta}(T \ge t)$$

for t our observed value

7.4 Connection between tests & confidence intervals

7.4.1 Constructing a test from confidence region

Y a random observation.

A(Y) a $1-\alpha$ confidence region for θ

$$P(\theta \in A(Y)) > 1 - \alpha \quad \forall \theta \in \Theta$$

Define test for $H_0: \theta \in \Theta_0$ $H_1: \theta \notin \Theta_0$ for $\Theta_0 \subset \Theta$ a fixed subset with level α s.t

Reject
$$H_0$$
 if $\Theta_0 \cap A(Y) = \emptyset$

$$P_{\theta}(\text{Type I error}) = P_{\theta}(\text{reject}) = P_{\theta}(\Theta_0 \cap A(Y) = \emptyset)$$

 $\leq P_{\theta}(\theta \notin A(Y)) \leq \alpha$

7.4.2 Constructing confidence region from tests

Suppose $\forall \theta_0 \in \Theta$ we have a level α test ϕ_{θ_0} for

$$H_0^{\theta_0}: \theta = \theta_0$$
 vs. $H_1^{\theta_0}: \theta \neq \theta_0$

A decision rule ϕ_{θ_0} to reject/not reject $H_0^{\theta_0}$ satisfying:

$$P_{\theta_0}(\phi_{\theta_0} \text{ reject } H_0^{\theta_0}) \leq \alpha$$

Consider random set:

$$A:=\left\{\theta_0\in\Theta:\phi_{\theta_0}\text{ doesn't reject }H_0^{\theta_0}\right\}$$

We see A a $1-\alpha$ confidence region for θ

$$\forall \theta \in \Theta \ P_{\theta}(\theta \in A) = P_{\theta}(\phi_{\theta} \text{ not rejects }) = 1 - P_{\theta}(\phi_{\theta} \text{ rejects }) \ge 1 - \alpha$$

8 Likelihood Ratio Tests

(Numbers don't line up with official notes!!!)

Definition 8.1 (Likelihood ratio statistic)

$$t(\mathbf{y}) = \frac{sup_{\theta \in \Theta}L(\theta; \mathbf{y})}{sup_{\theta \in \Theta_0}L(\theta; \mathbf{y})} = \frac{\text{max likelihood under } H_0 + H_1}{\text{max likelihood under } H_0}$$

Theorem 8.1

 $X_1, \ldots, X_n \sim N(0, 1), X_i$ independent

$$\sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$

Theorem 8.2

Under regularity conditions

$$2\log t(\mathbf{Y}) \xrightarrow{D} \chi_r^2 \quad (n \to \infty)$$

under H_0 where r the number of independent restrictions on θ needed to define H_0

9 Linear models with 2nd order assumptions

9.1 Simple Linear Regression

Definition 9.1 (Simple Linear Model)

$$Y_{i} = \underbrace{\beta_{1} + \underbrace{a_{i} \quad \beta_{2}}_{\text{outcome}}}_{\text{observable random var}} + \underbrace{\beta_{2}}_{\text{outcome}} + \underbrace{\epsilon_{i}}_{\text{outcome}}$$

Least Square Estimators

 $\hat{\beta}_1, \hat{\beta}_2$ of β_1, β_2 defined as minimisers of

$$S(\beta_1, \beta_2) = \sum_{i=1}^{n} (y_i - \beta_1 - a_i \beta_2)^2$$

Remark

- $e_i = y_i = \hat{\beta}_1 a_i \hat{\beta}_2$ **residuals** are observable, not i.i.d
- unkown parameters β_1, β_2 and σ^2
- Y_1, \ldots, Y_n generally not i.i.d observations independence holds if $\epsilon_1, \ldots, \epsilon_n$ independent Y_i not of same distribution, distribution depending on covariate a_i

9.2 Matrix Algebra

Lemma 5

- (i) $A \in \mathbb{R}^{n \times m}, B \in \mathbb{R}^{m \times n}$ $(AB)^T = B^T A^T$
- (ii) $A \in \mathbb{R}^{n \times n}$ invertible $\implies (A^{-1})^T = (A^T)^{-1}$
- (iii) trace(AB) = trace(BA)
- (iv) $rank(X^TX) = rank(X)$

Lemma 8

 $A \in \mathbb{R}^{n \times n}$ symmetric $\Longrightarrow \exists$ orthogonal P s.t P^TAP diagonal with diagonal entries = e.vals of A positive definite, symmetric $\Longrightarrow \exists Q$ non-singular s.t $Q^TAQ = I_n$

9.3 Review of rules for E, cov for random vectors

Definition 9.2

 $\mathbf{X} = (X_1, \dots, X_n)^T$ random vector

$$\implies E(\mathbf{X}) = (E(X_1), \dots, E(X_n))^T$$

Lemma 9

 \mathbf{X}, \mathbf{Y} random vector

- (i) $E(\mathbf{X} + \mathbf{Y}) = E(\mathbf{X}) + E(\mathbf{Y})$
- (ii) $E(a\mathbf{X}) = aE(\mathbf{X})$
- (iii) AB deterministic matrices $E(A\mathbf{X}) = AE(\mathbf{X}), E(\mathbf{X}^{T}B) = E(\mathbf{X})^{T}B$

Definition 9.3 (Covariance)

X,Y random vectors

$$cov(\mathbf{X}, \mathbf{Y}) = E(\mathbf{X}\mathbf{Y}^{\mathbf{T}}) - E(\mathbf{X})E(\mathbf{Y})^{T}$$
$$cov(\mathbf{X}) = cov(\mathbf{X}, \mathbf{X})$$

Lemma 10

 $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ random vector

A, B deterministic matrices, $a, b \in \mathbb{R}$

- (i) $cov(\mathbf{X}, \mathbf{Y}) = cov(\mathbf{Y}, \mathbf{X})^T$
- (ii) $cov(a\mathbf{X} + b\mathbf{Y}, Z) = a \cdot cov(\mathbf{X}, \mathbf{Z}) + b \cdot cov(\mathbf{Y}, \mathbf{Z})$
- (iii) $cov(A\mathbf{X}, B\mathbf{Y}) = Acov(\mathbf{X}, \mathbf{Y})B^T$
- (iv) $cov(A\mathbf{X}) = Acov(\mathbf{X})A^T$ $cov(\mathbf{X})$ positive semidefinite and symmetric i.e. $\mathbf{c}^T cov(\mathbf{X})\mathbf{c} \geq 0 \ \forall \mathbf{c}$ All e.val. of $cov(\mathbf{X})$ non-negative
- (v) \mathbf{c}, \mathbf{Y} independent $\implies cov(\mathbf{X}, \mathbf{Y}) = 0$

9.4 Linear Model

Definition 9.4

In a linear model

$$\mathbf{Y} = X\beta + \epsilon$$

- Y n. dimensional random vector (observable)
- $X \in \mathbb{R}^{n \times p}$ known matrix design matrix
- $\beta \in \mathbb{R}^p$
- ϵ n-variate random vector (not observable); $E(\epsilon) = 0$

Assumptions

2nd order assumptions (SOA)

$$cov(\epsilon) = (cov(\epsilon_i, \epsilon_j))_{\substack{i=1,\dots,n\\j=1,\dots,n}} = \sigma^2 I_n \quad \sigma^2 > 0$$

Normal theory assumptions (NTA)

$$\epsilon \sim N(0, \sigma^2 I_n)$$
, some $\sigma^2 > 0$

N-multivariate n-dimensional normal multivariate distribution

$$NTA \implies SOA$$

Full rank (FR)

X has full rank rank(X) = r

9.5 Identifiability

Definition 9.5

Suppose statistical model with unkown parameter θ θ identifiable if no 2 different values of θ yield same distribution of observed data.

9.6 Least Square estimation

Estimate β by least squares.

Least squares: choose β to minimise

$$S(\beta) = \sum_{i=1}^{n} \left(Y_i - \sum_{j=1}^{p} X_{ij} \beta_j \right)^2$$

$$= (Y - X\beta)^T (Y - X\beta)$$

$$= Y^T Y - 2Y^T X\beta + \beta^T X^T X\beta$$

$$\frac{\partial S(\beta)}{\partial \beta} = \frac{\partial S(\beta)}{\partial \beta_i} \Big|_{i=1,\dots,p} = -2X^T Y + 2X^T X\beta$$

Unique solution $\iff X^TX$ invertible $(rank = p) \quad rank(X^TX) = rank(X)$ \iff linear model of full rank

 $\hat{\beta}$ satisfies LSE \implies minimise $S(\beta)$

9.7 Properties of LSE

Assume (FR) and (SOA) $\implies \hat{\beta} = (X^T X)^{-1} X^T Y$

- $\hat{\beta}$ linear in \mathbf{X} i.e. $\hat{\beta}: \mathbb{R}^n \to \mathbb{R}^p, y \mapsto (X^T X)^{-1} X^T \mathbf{y}$ linear mapping
- $\hat{\beta}$ unbiased for β $\forall \beta \ E(\hat{\beta}) = (X^TX)^{-1}X^TE(\mathbf{Y}) = (X^TX)^{-1}X^TX\beta = \beta$
- $cov(\hat{\beta}) = \sigma^2(X^X X)^{-1}$

Definition 9.6

Estimator $\hat{\gamma}$ linear if $\exists L \in \mathbb{R}^n$ s.t $\hat{\gamma} = L^T Y$

Theorem 9.1 (Gauss-Markov Theorem for FR linear models)

Assume (FR),(SOA)

Let $\mathbf{c} \in \mathbb{R}^p$, $\hat{\beta}$ a least square estimator of β in a linear model.

 \implies estimator $c^T\beta$ has smallest variance among all linear unbiased estimators for $c^T\beta$

9.8 Projection Matrices

Definition 9.7

L a linear subspace of \mathbb{R}^n , $dim(L) = r \leq n$ $P \in \mathbb{R}^{n \times n}$ a projection matrix onto L if

(i)
$$P\mathbf{x} = \mathbf{x} \quad \forall \mathbf{x} \in L$$

(ii)
$$P\mathbf{x} = \mathbf{0} \quad \forall \mathbf{x} \in L^{\perp} = \{\mathbf{z} \in \mathbb{R}^n : \mathbf{z}^T \mathbf{v} = 0 \ \forall \mathbf{v} \in L\}$$

Lemma 11

$$P$$
 a projection matrix $\iff \underbrace{P^T = P}_{P \text{ symmetric}}$ and $\underbrace{P^2 = P}_{P \text{ independent}}$

Lemma 12

A a $n \times n$ projection matrix $(A = A^T, A^2 = A)$ of rank(r)

- (i) r of e.val of A are 1 and n-r are 0
- (ii) rank(A) = trace(A)

9.9 Residuals, Estimation of the variance

Definition 9.8

 $\hat{Y} = X\hat{\beta}, \hat{\beta}$ a least squares estimator, called vector of fitted values.

Lemma 13

 \hat{Y} unique and

$$\hat{Y} = PY$$

P the projection matrix onto column space of X

Definition 9.9

Vector of residuals.

$$\mathbf{e}=Y-\hat{Y}: \text{ vector of residuals}$$

$$=Y-PY=QY, Q=I-P: \text{ the projection of matrix onto } span(X)^{\perp}$$

$$E(\mathbf{e})=E(QY)=QE(Y)=\underbrace{QX}_{=0}\beta=0$$

Diagnostic plots

Suppose data comes from model

$$Y = X\beta + Z\gamma + \epsilon$$
 $E(\epsilon) = 0$

 $z \in \mathbb{R}^n \backslash span(X), \gamma \in \mathbb{R}$ deterministic But analyst works with

$$Y = X\beta + \epsilon$$

 \implies if $\gamma \neq 0$, used wrong model

$$\implies E(\epsilon) = E(QY) = E(Q(X\beta + Z\gamma + \epsilon)) = QZ\gamma$$

 \implies plot QZ against residuals yields line through the origin. if non-zero slope \implies consider including Z

Residual sum of squares

Definition 9.10 (Residual sum of squares)

$$RSS = e^T e$$

Other forms

• RSS =
$$\sum_{i=1}^{n} e_i^2$$

• RSS =
$$S(\hat{\beta}) = ||Y - X\hat{\beta}||^2$$

• RSS =
$$Y^TY - \hat{Y}^T\hat{Y}$$

• RSS =
$$(Y - \hat{Y})^T (Y - \hat{Y})$$

• RSS =
$$(QY)^T QY$$

• RSS =
$$Y^T Q Y$$

Theorem 9.2

$$\hat{\sigma}^2 = \frac{RSS}{n-r}$$

An unbiased estimator of σ^2 , r = rank(X)

Coefficient of determination - (\mathbb{R}^2)

For models containing intercept term (X has column of 1s or other constants)

$$R^{2} = 1 - \frac{RSS}{\sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2}}$$

Small RSS 'better' \Longrightarrow want large R^2 $0 \le R^2 \le 1 \Longrightarrow R^2 = 1$ for perfect model.

Remark

 $\frac{RSS}{n}$ an estimator of σ^2

$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

estimator of σ^2 in model with only intercept term.

$$\implies \frac{RSS/n}{\frac{1}{n}\sum(Y_i-\bar{Y})^2} \approx \frac{\text{Var. in model}}{\text{Total variance}} \implies R^2 \approx \frac{\text{Total var. - Var. in Model}}{\text{Total var.}}$$

10 Linear Models with Normal theory Assumptions

10.1 Distributional Results

10.1.1 Multivariate Normal Distribution

Denoted $N(\underbrace{\mu}_{\in\mathbb{R}^n},\underbrace{\Sigma}_{\in\mathbb{R}^{n\times n}})$, distribution of random vec. μ - Expectation, Σ - Covariance

Definition 10.1

 Σ - positive definite

 $Z \sim N(\mu, \Sigma)$ if Z has pdf of form

$$f(z) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1.2}} \exp\left(-\frac{1}{2} (z - \mu)^T \Sigma^{-1} (z - \mu)\right)$$

n-variate random vector Z follows MVN distribution if

- $\forall a \in \mathbb{R}^n$ random variable $a^T Z$ follows univariate normal distribution
- $X_1, \dots, X_n \sim N(0,1)$ iid, let $\mu \in \mathbb{R}^d$, $A \in \mathbb{R}^{n \times r}$ $\implies Z = AX + \mu \sim N(\mu, AA^T)$
- $Z \sim N(\mu, \Sigma)$ if its characteristic function $\phi : \mathbb{R}^n \to \mathbb{C}, \phi(t) = E(\exp(iZ^T t))$ satisfies

$$\phi(t) = \exp\left(i\mu^T t - \frac{1}{2}t^T \Sigma t\right) \quad \forall \ t \in \mathbb{R}^n, \mu \in \mathbb{R}^n, \Sigma \in \mathbb{R}^{n \times n} \text{ symm. pos. def}$$

Remark

 $Z \sim N(\mu, \Sigma) \implies$

- $E(Z) = \mu$
- $cov(Z) = \Sigma$
- A deterministic matrix, b deterministic vector $AZ + b \sim N(A\mu + b, A\Sigma A^T)$

Remark

X, Y random variables

 $cov(X,Y) \neq = 0 \implies X,Y$ independent

Lemma 14

i = 1, ..., k let $A_i \in \mathbb{R}^{n_i \times n_i}$ positive semidefinite and symmetric

 Z_i a n_i -variate random vector

if
$$Z = \begin{pmatrix} Z_1 \\ \dots \\ Z_k \end{pmatrix} \sim N(\mu, \Sigma)$$
 for some $\mu \in \mathbb{R}^{\sum_{i=1}^k n_i}$ and $\Sigma = diag(A_1, \dots, A_n) \implies Z_1, \dots, Z_k$ independent.

10.1.2 Distributions derived from MVN

Definition 10.2 χ^2 (Chi squared distribution)

 $Z \sim N(\mu, I_n), \ \mu \in \mathbb{R}^n$

 $U = Z^T Z = \sum_{i=1}^n z_i^2$ has non-central χ^2 distribution with n degrees of freedom and non-centrality parameter; $\delta = \sqrt{\mu^T \mu}$

$$U \sim \chi_n^2(\delta), \quad \chi_n^2 = \chi_n^2(0)$$

Lemma

 $U \sim \chi_n^2(\delta) \Longrightarrow E(U) = n + \delta^2, \ Var(U) = 2n + 4\delta^2$ $U_i \sim \chi_{n_i}^2(\delta_i), i = 1, \dots, k \text{ and } U_i \text{ independent}$

$$\implies \sum_{i=1}^{k} U_i \sim \chi^2_{\sum_{n_i} \sqrt{\sum \delta_i^2}}$$

Definition 10.3

X, U independent random variables, $X \sim N(\delta, 1), U \sim \chi_n^2$

$$Y = \frac{X}{\sqrt{U/n}} \sim t_n(\delta)$$

Non-central t-distribution with n degrees of freedom and centrality parameter δ $t_n = t_n(0)$

Remark

 $Y_n \sim t_n \ \forall n \in \mathbb{N}$

$$Y_n \xrightarrow[n \to \infty]{d} N(0,1)$$

Definition 10.4

 $W_1 \sim \chi_{n_1}^2(\delta), W_2 \sim \chi_{n_2}^2$ independently

$$F = \frac{W_1/n_1}{W_2/n_2} \sim F_{n_1, n_2}(\delta)$$

Non-central F distribution with (n_1, n_2) degrees of freedom and non-centrality parameter $= \delta F_{n_1, n_2} = F_{n_1, n_2}(0)$

10.1.3 Some independence results

Lemma 16

 $A \in \mathbb{R}^{n \times n}$ positive semidefinite and symmetric matrix of rank r

$$\implies \exists L \in \mathbb{R}^{n \times r} \text{ s.t } rank(L) = r, A = LL^T L^T L = diag(\text{non-zero evals of } A)$$

Lemma 17

 $X \sim N(\mu, I), A \in \mathbb{R}^{n \times n}$ positive semidefinite symmetric, B s.t BA = 0

$$\implies X^T A X, B X \text{ independent}$$

Lemma 18

 $Z \sim N(\mu, I_n)$, A a $n \times n$ projection matrix of rank r

$$\implies Z^T A Z \sim \chi_r^2(\delta) \quad \delta^2 = \mu^T A \mu$$

Lemma 19

 $Z \sim N(\mu, I_n), A_1, A_2 \in \mathbb{R}^{n \times n}$ prejocetion matrix s.t $A_1 A_2 = 0$

$$\implies Z^T A_1 Z \& Z^T A_2 Z$$
 independent

Lemma 20

 A_1, \ldots, A_k symmetric $n \times n$ matrices s.t $\Sigma(A_i) = I_n$ if rank $A_i = r_i$ Following equivalent

(i)
$$\Sigma r_i = n$$

- (ii) $A_i A_j = 0 \quad \forall i \neq j$
- (iii) A_i independent $\forall i = 1, \ldots, k$

Theorem 10.1 (The Fisher-Cochran Theorem)

Consider linear model $Y = X\beta + \epsilon$, $E(\epsilon) = 0$ with (NTA) (NTA): $\epsilon \sim N(0, \sigma^2 I_n) \implies Y \sim N(X\beta, \sigma^2 I_n)$

$$f(y) = \frac{1}{(\sigma\sqrt{2\pi})^n} \exp\left(-\frac{1}{2\sigma^2}(y - X\beta)^T(y - X\beta)\right)$$

Estimation using maximum likelihood approach:

• Log-likelihood of data is

$$L(\beta, \mu^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\underbrace{(Y - X\beta)^T(Y - X\beta)}_{S(\beta)}$$

- Maximising L w.r.t β (for fixed σ^2) equivalent to minimising $S(\beta) = (Y X\beta)^T (Y X\beta)$ Max likelihood equivalent to least squares for estimating β
- MLE for σ^2 is $\frac{RSS}{n}$

$$L(\hat{\beta}, \sigma^2) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}RSS \quad \text{w.r.t } \sigma^2$$

10.1.4 Confidence intervals, tests for one dimensional quantities.

Lemma 21 - (Distribution of RSS)

Assume (NTA)
$$\implies \frac{RSS}{\sigma^2} \sim \chi_{n-r}^2 \ r = rank(X)$$

Lemma 22

Assume (FR),(NTA) in linear model.

Let $c \in \mathbb{R}^p$

$$\frac{c^T \hat{\beta} - c^T \beta}{\sqrt{c^T (X^T X)^{-1} c \frac{RSS}{n-p}}} \sim t_{n-p}$$

10.2 The F-test

Lemma 23

Under $H_0: E(Y) \in Span(X_0)$

$$F = \frac{RSS_0 - RSS}{RSS} \cdot \frac{n-r}{r-s} \sim F_{r-s,n-r}$$

 $r = rank(X), s = rank(X_0)$

NEED EXPLAINING AND TYPING UP STILL

10.3 Confidence regions

Suppose $E(Y) = X\beta$ a linear model satisfying (FR),(NTA) Want to find random set D s,t $P(\beta \in D) \ge 1 - \alpha \ \forall \beta, \sigma^2$

$$A = \frac{(\hat{\beta} - \beta)^T X^T X (\hat{\beta} - \beta)}{RSS} \cdot \frac{n - p}{p}$$

Find distribution of $A \implies$ use A as pivotal quantity for β

Numerator of first fraction re-written as

$$(Y - X\beta)^T P(Y - X\beta)$$

P, projection onto space span(cols. of X)

$$(Y - X\beta)^T P(Y - X\beta) = (Y - X\beta)^T P P(Y - X\beta) = [P(Y - X\beta)]^T [P(Y - X\beta)]$$

Taking
$$P = X(X^TX)^{-1}X^T$$

$$\implies [X(\hat{\beta} - \beta)]^T [X(\hat{\beta} - \beta)]$$

With

$$RSS = Y^T Q Y = (Y - X\beta)^T Q (Y - X\beta), \quad Q = I_P \implies Z = \frac{1}{\sigma} (Y - X\beta)$$

$$A = \frac{Z^T P Z}{Z^T Q Z} \cdot \frac{n-p}{p} \quad Z \sim N(0,1), P + Q = I, rank(P) = p, P \& Q \text{ proj. mat.}$$

 \implies by Fisher-Cochran Theorem $A \sim F_{p,n-p}$

 $1 - \alpha$ confidence region R for β defined by all $\gamma \in \mathbb{R}^p$ s.t

$$\frac{(\hat{\beta} - \gamma)^T X^T X (\hat{\beta} - \gamma)}{RSS} \cdot \frac{n - p}{p} \le F_{p, n - p, \alpha}$$

$$P(Z \ge F_{p,n-p,\alpha}) = \alpha \text{ for } Z \sim F_{p,n-p}$$

R an ellipsoid central at $\hat{\beta}$

Remark

General definition of ellipsoid

$$\{z \in \mathbb{R}^p : (z - z_0)^T A^{-1} (z - z_0) \le 1\}$$
 A pos. semi def., $z_0 \in \mathbb{R}^p$

11 Diagnostics, Model selection, Extensions

11.1 Outliers

Definition 11.1 (Outlier)

Outlier - an observation that does not conform to general pattern of the rest of the data.

Potential causes

- error in data recording mechanism
- Data set may be 'contaminated (e.g. mix of 2 or more populations)
- Indication that model/underlying theory needs improvement

Spot outliers \implies look for residuals that are 'too large'

$$e = (I - P); P - projects onto $span(X)$$$

X full rank $\implies P = X(X^TX)^{-1}X^T$

$$cov(\mathbf{e}) = (I - P)cov(Y)(I - P)^T = \sigma^2(I - P)$$
 $E(\mathbf{e}) = 0$

 \implies under (NTA) $e_i \sim N(0, \sigma^2(1 - P_{ii}))$ $P_i i$ the i^{th} diagonal of P

$$\implies \frac{e_i}{\sqrt{(1-P_{ii}\sigma^2}} \sim N(0,1)$$

 σ^2 unknown \implies use unbiased estimator $\hat{\sigma}^2 = \frac{RSS}{n-p}$

$$r_i = \frac{e_i}{\sqrt{\hat{\sigma}^2 (1 - P_{ii})}}$$

 r_i not necessarily $\sim N(0,1)$ but distribution is close to it.

Remark

 $r_i \not\sim t$; $\hat{\sigma}^2$, e_i not independent

Remark

 $X \sim N(0,1) \implies$ probability for large X v. rapidly decreasing

if (NTA) holds \implies standardised residuals should be relatively small

11.2 Leverage

Definition 11.2

Leverage of i^{th} observation in linear model is P_{ii} i^{th} diagonal matrices of hat matrix P

11.3 Cook's Distance

Definition 11.3 (Cook's Distance)

Measure how much i^{th} observation changes estimator $\hat{\beta}$

$$D_i = \frac{(\hat{\beta}_{(i)} - \hat{\beta})^T X^T X (\hat{\beta}_{(i)} - \hat{\beta})}{pRSS/(n-p)}$$

 $\hat{\beta}_{(i)}$ - least squares estimator with i^{th} observation removed

Alternatively

$$\begin{split} D_i &= \frac{(\hat{Y} - Y_{(i)})^T (\hat{Y} - Y_{(i)})}{pRSS/(n-p)} \quad \hat{Y}_{(i)} = X \hat{\beta}_{(i)} \\ &= r_i^2 \frac{P_{ii}}{(1-P_{ii})r} \quad r_i \text{ standardised residuals}, r = rank(X) \end{split}$$

11.4 Under/Overfitting

Definition 11.4

- 1. Underfitting necessary predictors left out
- 2. Overfitting unnecessary predictors included

11.5 Weighted Least Squares

 $cov(Y) = \sigma^2 I_n$ but now we take $cov(Y) = \sigma^2 V$ instead for V symmetric, positive definite. Transform model s.t $cov(\epsilon) = \sigma^2 I$ to estimate β

V symmetric, positive definite $\implies \exists$ non-singular T s.t $T^TVT = I_n$ $TT^T = V^{-1}$ $\implies \exists$ orthogonal P, diagonal of e.vals of V; D s.t $P^TVP = D$ Take $T = PD^{-1/2}P^T \implies V = PDP^T \implies T^TVT = PD^{-1/2}P^TPDP^TPD^{-1/2}P^T = I_n$ $TT^T = PD^{-1}P^T = V^{-1}$

Take $Z = T^T Y \implies$

$$E(Z) = \underbrace{T^T X}_{=\tilde{X}} \beta \quad cov(Z) = T^T V T \sigma^2 = \sigma^2 I_n$$

 $\implies E(Z) = \tilde{X}\beta$ satisfies (SOA) Assuming (FR):

$$\hat{\beta} = [\tilde{X}^T X]^{-1} \tilde{X}^T Z$$

$$= [X^T (TT^T) X]^{-1} X^T (TT^T) Y$$

$$= (X^T V^{-1} X)^{-1} X^T V^{-1} Y$$

 $\hat{\beta}$; optimal estimator in sense of Gauss-Markov Theorem.