PATENT ABSTRACTS OF JAPAN

(11)Publication number:

02-002726

(43)Date of publication of application: 08.01.1990

(51)Int.CI.

H04B 7/15

H04B 7/26

(21)Application number : 63-150814

(71)Applicant : FUJITSU LTD

(22)Date of filing:

17.06.1988

(72)Inventor: TANABE NAOTO

(54) MULTI-ADDRESS TYPE SATELLITE COMMUNICATION SYSTEM

(57) Abstract:

PURPOSE: To return a response signal from a reception side to a transmission side with simple constitution by forming plural reception stations being neighbored to each other geographically as one group, and providing a communication satellite via a response station between the group and the reception station connected to the reception stations which comprise the group via a ground line.

CONSTITUTION: An information signal from an information source not being shown in figure is signalprocessed at the input processing part 1f of a transmission station 1, and is accumulated in a transmission buffer 1e, and it is read out at a transmission signal processing part 1d, and a packet header is attached on it, then, it is outputted to a transmitter 1b. The transmitter 1b performs a processing for the delivery of the signal to a satellite line, and sends the signal to the communication satellite 5 via a transmission/reception antenna 1a, and the information

signal passing the satellite is inputted to receivers 2b and 3b via the reception station 2 and the response station 3, and is sent to reception signal processing parts 2c and 3c after a prescribed processing is performed. After that, the packet header analytic processing of a reception signal is performed at each of the processing parts 2c and 3c, and a reception result is informed from the processing part 2c of the reception station 2 to an on-ground line control part 2d and a response signal processing part 3g, respectively.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

BEST AVAILABLE COPY

[Date of registration]
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑲ 日本国特許庁(JP)

① 特許出願公開

平2-2726 四公開特許公報(A)

Slnt. Cl. 3

識別記号

庁内整理番号

❸公開 平成2年(1990)1月8日

H 04 B

H 04 B 7/15

7608-5K 7323-5K 101

審査請求 未請求 請求項の数 2 (全8頁)

会発明の名称 同報型衛星通信システム

顧 昭63-150814

顧 昭63(1988)6月17日 ❷出

@発 明 者 田部 直 人 神奈川県川崎市中原区上小田中1015番地 富士通株式会社

切出 顧 人 富士通株式会社 神奈川県川崎市中原区上小田中1015番地

10代 理 人 弁理士 井桁 貞一 外2名

1.発明の名称

両報型街星通信システム

2.特許請求の範囲

(1) 1つまたは複数の送信局(1)から多数の受 信局(2)に対して通信衛星(5)を介し情報信号を伝 送する同報型街里通信システムにおいて、

地理的に近接した複数の該受信局(2)を1グル ープとし.

この1グループを構成する該受信局(2)と地上 四線(4)を介して接続され該受信局(2)のために該 送信局(1)へ該通信衛星(5)を介し応答信号を送出 しうる応答局(3)が設けられたことを 特徴とする、同報型御具通信システム。

(2) 該応答局(3)が該送信局(1)からの情報信号 を受信しうる受信局としての機能を兼用している 請求項1記載の同報型衡量通信システム。

3.発明の詳細な説明

[目 次]

産業上の利用分野

従来の技術 (第5,6個)

発明が解決しようとする課題

課題を解決するための手段(第1回)

作用(第1國)

灰 施 例 (第2~4 图)

発明の効果

[概 聚]

1 つまたは複数の送信局から多数の受信局に対 して通信街里を介し情報信号を伝送する問報型街 星通信システムに関し、

受信側から送信側への応答信号の返送を可能に しながらシステムのコストダウンをはかれるよう にすることを目的とし、

1つまたは複数の送信局から多数の受信局に対

特周平2-2726(2)

して通信衛星を介し情報信号を伝送する同報型衛星通信システムにおいて、地理的に近接した複数の該受信局を1グループとし、この1グループを構成する該受信局と地上回線を介して接続され該受信局のために該送信局へ該通信衛星を介し応答信号を送出しうる応答局を設けるように構成する。

[巌棠上の利用分野]

本発明は、1つまたは複数の送信局から多数の受信局に対して通信衛星を介し情報信号を伝送する両親型衛星通信システムに関し、特に受信側から確認応答信号や再送要求信号等の応答信号を送信側へ返すことにより、送信側からの情報を確実に受信側へ伝送できるような両親型衛星通信システムに関する。

一般に、御豊通信システムは、広いサービスカ パレッジを有することから、ニュースや株式情報 等の各種データ信号を全国に同時配信するサービ スに有効である。

しかし、衛展通信システムでは、通信衛星と地

プロック関である。この第5 関において、101 は送信局、102 は受信局、105 は通信衛星であるが、この同報整衛星通信システムでは、送信局101から多数の受信局102に対して通信衛星105を介し情報信号(実験参照)を伝送すると、受信局102 関から確認応答信号や再送要求信号等の応答信号(点線参照)が通信衛星105を介して送信局101 個へ返すことが行なわれる。

また、第6回は従来の他の関報型新星通信システムを示すブロック団であるが、この関報型衛星通信システムでは、送信局101から多数の受信局102に対して通信衛星105を介し情報信号(実験参照)を伝送すると、受信局102個から確認応答信号や再送要求信号等の応答信号(点線参照)が地上四線104を介して送信局101個へ返すことが行なわれる。

[発明が解佚しようとする課題]

しかしながら、第5回に示す従来の両報型衛星 通信システムでは、各受信局102に送信機館を 球局との間の距離による信号の減衰が大きいこと、 及び時間による信号の減衰や雑音の増加によって 受信信号に誤りが生じるため、誤り打正を施すこ とが要求される。

かかる誤り訂正の方式には、冗長ビットをつけ 加えておきこれを使って訂正するFEC(フォワードエラーコレクション)方式と、受信側からの 応答信号が必要なARQ(オートマチックリピートリクエスト)方式とがあり、通常はこれらのい ずれか一方を用いるか併用することが行なわれている

ところで、FEC方式の単独使用では誤りを完全には訂正することが困難であるため、受信データの大移を避けるには、ARQ方式の併用が必要である。このためには、受信側から送信側へ確認、再送要求等の応答信号を返送することが必要となる。

【従来の技術】

第5回は従来の両報型衛星通信システムを示す

付加しなければならないので、衛風通信用地球局の価格の大部分を送信機能が占めることを勘案すると、この第5 圏に示すシステムでは、コストがかかりすぎるという問題点がある。

また、第6回に示す従来の同報型新風遠信システムでは、各受信馬102と送信馬101との間に地上回線104を布設しなければならず、特に送信局101と受信馬102との距離が離れている場合には、地上回線部分のコストが高くなりすぎるため、やはりこの第6回に示すシステムの場合も、コストがかかりすぎるという問題点がある。本発明は、このような問題点を解決しようとす

るもので、受信側から送信仰への応答信号の返送 を可値にしながらシステムのコストダウンをはかった、同模型街屋遺信システムを提供することを 目的とする。

[課題を解決するための手段]

第1因は本発明の原理説明図である。

第1因において、1は送信局で、この送信局1

特開平2-2726(3)

は通信衛星5を介して冬受信局2に対して情報信号(同報信号)を送出するものである。なお、送信局1は同一システム内に複数数配することが可能である。

なお、応答局3に、情報信号の受信処理、即ち 受信局としての機能を兼用させてもよい。この場 合は、応答局3も領線で示すように情報信号を受 信する。

入力処理部1 f , 応答信号処理部1 g , 送信制物部1 h を有している。

ここで、送受信アンテナ1 a は情報信号を送信したり応答信号を受信したりするアンテナで、送信帳1 b は情報信号について新屋囲縁に送出するためのスクランブル、FEC符号化、変詞、周被数変換、電力増報等を行なってからこれを送受信アンテナ1 a 倒へ出力するもので、受信帳1 c は応答信号を送受信アンテナ1 a 倒から受けてこの信号について低雑音増析、周波数変換、復調、FEC復号化、デスクランブル等を施すものである。

また、送信信号処理部1 d は情報信号にパケット・ヘッダ等を付加するもので、送信パッファ1 c は送信すべき情報信号を一時的に書えて記憶するもので、入力処理部1 f は受信処理(情報額から送信局間の通信制御手限処理等)を施すものである。

さらに、応答信号処理部1gは自局宛の応答信号を抽出する処理を施すもので、送信制御部1h は、再送要求の内容により送信信号処理部1dに 【作 用】

このような様成により、送信局1から多数の受信局2に対して通信衛星5を介し情報信号を伝送することが行なわれるが、受信局2は地上四線4を介して応答信号をこの受信局2の異するグループ用の応答局3へ送る。そして、応答局3は、このグループを構成する受信局2のために、送信局1へ通信衛星5を介し応答信号を送出する。

なお、応答局3が送信局1からの情報信号を受信しうる受信局としての機能を兼用している場合は、送信局1から情報信号を受けると、直接応答信号を返す。

[实 览 例]

以下、図面を参照して本発明の実施例を説明す 5.

第2回は本発明の一実施例を示すプロック医で、この第2回において、1は送信局で、この送信局1は、送受信アンテナ1 a,送信機1b,受信機1c,送信信号処理部1d,送信パッファ1e,

対して送出すべき情報信号パケットを指示するとともに、送信パッファ1 e の情報等積量を監視し、 入力処理部1 f に対して情報入力の規制を行なう ものである。

2 は受信局で、この受信局2は、受信アンテナ 2 a、受信機2b、受信信号処理部2c、地上回 線制御部2d、モデム2cを有している。

ここで、受信アンテナ2 a は情報信号を受信するアンテナで、受信機2 b は情報信号を送受信アンテナ2 a 例から受けてこの信号について伝統音地紙、周波数変換、復調、FEC復号化、デスクランブル等を施すもので、受信信号処理部2 c は受信信号のパケット・ヘッダ解析処理を施すものである。

また、地上四線制御部2dはモデム2e,地上 回線4,広答局3のモデム3jを介して広答局3 の地上四線制御部3hとの間でポーリングを行な うものである。

なお、受信局2は、国示されていないが、多数 数けられており、地理的に近接したものどうしが

特開平2-2726(4)

1つのグループを構成し、1つのグループを構成 する各受信局2が地上回線4を介して対応する応 等局3に接続されている。

3 は広答局で、この応答局3は、送受信アンテナ3 a 、受信機3 b 、受信信号処理部3 c 、タイミング発生部3 d 、送信機3 e 、広答信号送出制舞部3 f 、応答信号送出制舞部3 h 、モデム3 j を有している。

ここで、送受信アンテナ3 a は信頼信号を受信 したり応答信号を送信するアンテナで、受信機3 b は情報信号を送受信アンテナ3 a 何から受けて この信号について低鍵音増報、周波表変換、復興、 PEC復号化、デスクランブル等を施すもので、 受信信号処理部2 c は受信信号のパケットヘッダ 解析処理を行なうものである。

また、タイミング発生部3dは自局に割り当てられた送出タイミング信号を発生するもので、送信機3eは応答信号をについて都量回線に送出するためのスクランブル、FEC符号化、変調、局波数変換、電力増幅等を行なってからこれを送出

で受信処理(情報源・送信馬間の遺信制毎手順処理等)を施された後、送信パッファ1 e に替えられた情報信号は、送信信号処理部1 d によって読み出され、パケット・ヘッダを付加されてから、送信機1 b は、信号を衛星回線に送出するためのスクランブル、FEC符号化、変質、周波数変換、電力増幅等を行ない、送受信アンテナ1 a を選して信号送出を行なう。

その後は、通信衛星5を経由して同報される情報信号は、受信局2、応答局3のアンテナ2 a。 3 aを通して受信機2 b。3 bに入力され、低維音増幅、周波数変換、復興、PEC復号化、デスクランブル等を施された後、受信信号処理部2 c。 3 c へ出力される。

各受信信号処理部2 c, 3 cでは、受信信号のパケット・ヘッダ解析処理を行なって、正常に受信することのできた情報信号のみを出力する。さらに、受信局2の受信信号処理部2 cは、地上回線制御部2 dに、応答局3の受信信号処理部3 c

するもので、広答信号送出制御部31はタイミング発生部3dからの送出タイミング信号を受けて 広答信号の送出を制御するものである。

さらに、応答信号処理部3gは応答信号にパケット・ヘッダ等を付加するもので、地上四線制料部3hはモデム3j,地上回線4,受信局2のモデム2gを介して受信局2の地上回線制制部2dとの間でポーリングを行なうものである。

なお、応答局3は複数の受信局2からなるグループごとに1局ずつ取けられている。

4 は地上回路で、この地上回線 4 としては公衆網が使用される。

5は通信街風である。

ところで、送信局1に対して複数の応答局3から送出される応答信号は、情報量が少ないことから、例えばランダムアクセス方式あるいはTDMA(時分割多元接続)方式により信号送出を行なうようになっている。。

上述の構成により、情報票(医示せず)より出 力された情報信号は、送信局1の入力処理部1 f

は応答信号処理部3gに、それぞれ受信結果(応 答信号、確認、形送要求)を通知する。

応答信号送出制算部3gでは、タイミング発生部3gからのタイミング信号に従い、 自馬に割当てられた送出タイミングで応答信号を送出する。

なお、他の応答局3の場合も、同様にして、応 体信号を送出する。

そして、各応答局3から送出される応答信号は、

特開平2-2726 (5)

送信用1の応答信号処理部1gにより自局宛のものが抽出されるが、ここでは各応答用3からの再送要求のうち、最も前(古い)に送出したパケットの番号を送信制御部1hに通知することが行なわれる。

送信局1の送信制等部1hは、応答処理部1g からの再送要求の内容により送信信号処理部1d に対して送出すべき情報信号を指示するとともに、 送信パッファ1eの情報等被量を監視し、入力処理部1fに対して情報入力の規制を行なうか否か を指示する。

このようにして、この実施例によれば、広い地域に分散した受信地点(受信用)に対して、情報信号を配信する場合、各受信用から応答信号の返送に際し、利用する地上回線区間を短くすることができるとともに、送信機能を必要とする地球局を少なくできるため、各受信用からの応答を必要とする同様型街里通信システムのコスト削減におおいに客与しうるという利点がある。

なお、第3回に示すごとく、送信馬1を2馬投

型してもよく、この場合は、受信局2, 応答局3 には、2系統の受信処理部を設け、応答局3では、 応答信号を宛先(送信局)別に編集することが行 なわれる。また、各送信局1は自局宛の応答信号 のみを選択して受信するように構成する。

もちろん、送信局1を3局以上設けることも可能で、この場合も、受信局2, 広答局3には、送信局の数だけの系統の受信処理部を設け、広答局3では、広答信号を宛先(送信局)別に編集することが行なわれる。

なお、上記のように送信局1を複数設置した場合でも、受信局2や応答局3については軽微な変更で対応が可能である。

また、応答局3を応答信号送信専用にすること も可能で、この場合のシステム構成図は、第4図 のようになる。すなわち、この場合は、第2図に 示す応答局3から受信機能にかかるブロック部分 を省略したものとなる。

[発明の効果]

4.図面の簡単な説明

第1箇ば本発明の原理説明图、

第2回は本発明の一実施例を示すブロック図、 第3回は本発明の他の実施例を示すシステム機

第4回は本発明の更に他の実施例を示すプロック原、

第 5 國は従来例を示すシステム構成國、 第 6 國は他の従来例を示すシステム構成國であ

因において、

1は送信局、

ō.

1aは送受信アンテナ、

1bは送信機、

1cは受信機、

1 d は送信信号処理部.

1eは送信パッファ、

1 f は入力処理部、

1 g は応答信号処理部、

1hは送信制御部、

2 は受信局.

2aは爻信アンテナ、

2 b は受信機、

2 c は受信信号処理部.

2 d は地上回線制御部、

2 e はモデム、

特開平2-2726(6)

3は広答局、

3aは送受信アンテナ、

3 b 比受信機。

3 c は受信信号処理部、

3dはタイミング発生部、

3 e は送信機、

3 f は応答信号送出朝御部.

3 g 比応答信号选理部。

3 为 比地上回線制 钾 都。

3 j はモデム.

4 比地上回路。

5は通信衛星である。

代理人 弁理士 井 桁 其 一个流程

本発明a原理說明团 第 1 因

本発明の-実施例Eホイブロック図 第 2 図

特開平2-2726(7)

本発明の他の実施例を示すシステム構成図 第3図

本登明の更に他a实施例を示す7077図 第 4 図

特開平2-2726(8)

102 ---安信局

従来例を示すシステム構成団 第 5 図

他の従来例を示すシステム構成図 第 6 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.