Support vector machine

Prof. Asim Tewari IIT Bombay

Support Vector Classifier

Lassifier

Day point a

- 1) Any point about or on $\overline{\omega} \cdot \overline{x} + b = 1$ belong to \overline{D}
- 2) A my sound on or below $\omega \times + \psi = -1$ blogs to ω

For "D": W.x + b > 1

For "D": W.x + b < -1

ω· ū + h ≥0 => D ω· ū + h ≤0 => O For an interior rule is based on maximum morgin hyperplan.

$$y_{i}(\overline{\omega},\overline{x}_{i}+\lambda)-1=0$$

areget $\overline{\omega},\overline{x}_{+}=1-b$ and $\overline{\omega},\overline{x}_{-}=-1-b$

width $=(\overline{x}_{+}-\overline{x}_{-})\cdot\overline{\omega}_{-}=\overline{x}_{+}\cdot\overline{\omega}-\overline{x}_{-}\cdot\overline{\omega}_{-}$

$$= \frac{2}{1001}$$

Some want two hyperplanes Gi(W.Xi+b)-1=0 such that the w (1011) is maximum. | Maximinge | 2 | IWII | => Minimina | 1/4/11/

Support Vector Classifier

minimize
$$||\omega||_{2}^{2}$$
 with a constrain

 $\varphi_{i}(\overline{\omega}.\overline{x}; + lr) - 1 = 0$
 $L = \frac{1}{2} ||\overline{\omega}||^{2} - \mathcal{E} \alpha_{i} \left[g_{i}(\overline{\omega}.\overline{x}_{i} + lr) + 1 \right]$
 $\min(L) = \sum_{d\omega} \frac{\partial L}{\partial \omega} = 0, \quad \frac{\partial L}{\partial d\varepsilon} = 0$
 $\frac{\partial L}{\partial \omega} = \frac{\partial}{\partial \omega} \left[\frac{1}{2} ||\omega|^{2} \right] - \frac{\partial}{\partial \omega} \left[\mathcal{E} \alpha_{i} g_{i}(\omega \cdot x_{i} + lr) - 1 \right]$
 $\frac{\partial L}{\partial \omega} = \frac{\partial}{\partial \omega} \left[\frac{1}{2} ||\omega|^{2} \right] - \frac{\partial}{\partial \omega} \left[\mathcal{E} \alpha_{i} g_{i}(\omega \cdot x_{i} + lr) - 1 \right]$
 $\frac{\partial L}{\partial \omega} = \frac{\partial}{\partial \omega} \left[\frac{1}{2} ||\omega|^{2} \right] - \frac{\partial}{\partial \omega} \left[\mathcal{E} \alpha_{i} g_{i}(\omega \cdot x_{i} + lr) - 1 \right]$

$$L = \frac{1}{2} ||\overline{\omega}||^2 - \frac{1}{2} ||\overline{\omega}|| \times i + \omega - 1$$

$$\frac{\partial L}{\partial \overline{\omega}} = 0 \implies - \frac{1}{2} ||\overline{\omega}||^2 = 0 \text{ on } \frac{1}{2} ||\overline{\omega}||^2 = 0$$

$$\frac{\partial L}{\partial \overline{\omega}} = 0 \implies - \frac{1}{2} ||\overline{\omega}||^2 = 0 \text{ on } \frac{1}{2} ||\overline{\omega}||^2 = 0$$

$$\frac{\partial L}{\partial \overline{\omega}} = 0 \implies - \frac{1}{2} ||\overline{\omega}||^2 = 0 \text{ on } \frac{1}{2} ||\overline{\omega}||^2 = 0$$

$$\frac{1}{2} ||\underline{\omega}||^2 - \frac{1}{2} ||\underline{\omega}||^2 = 0 \text{ on } \frac{1}{2} ||\underline{\omega}||^2 = 0$$

$$- \frac{1}{2} ||\underline{\omega}||^2 - \frac{1}{2} ||\underline{\omega}||^2 + \frac{1}{2} ||\underline{\omega}||^2 = 0$$

$$- \frac{1}{2} ||\underline{\omega}||^2 - \frac{1}{2} ||\underline{\omega}||^2 + \frac{1}{2} ||\underline{\omega}||^2 = 0$$

$$- \frac{1}{2} ||\underline{\omega}||^2 - \frac{1}{2} ||\underline{\omega}||^2 + \frac$$

Now if Saigi Xi. II + h > 0 Decision Rule

Also deputs
on this is bet

Arodut.

Dimensionality reduction

Dimensionality reduction

Random vectors:
$$\overline{X}_{R_1} = (X_{R_1}, X_{R_1}^2, \dots, X_{R_k}^2)$$
 $\overline{X}_{R_k} = (X_{R_k}^1, X_{R_k}^2, \dots, X_{R_k}^2)$
 $\overline{X}_{R_k} = (X_$

Dimensionality reduction

Random neutono:
$$\overline{X}_{R_1} = \left(\begin{array}{c} X_{R_1}^1, X_{R_2}^2, \dots & X_{R_r}^r \end{array} \right)$$
 \overline{X}_{R_1}
 $\overline{X}_{R_2} = \left(\begin{array}{c} X_{R_2}^1, X_{R_2}^2, \dots & X_{R_r}^r \end{array} \right)$
 \overline{X}_{R_1}
 \overline{X}_{R_2}
 \overline{X}_{R_3}
 \overline{X}_{R_4}
 $\overline{X}_{R_$