Theoretische Informatik: Blatt 4

Abgabe bis 16. Oktober 2015 Assistent: Sascha Krug, CHN D42

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe 10

(a)
$$L = \{0^{\binom{2n}{n}} \mid n \in \mathbb{N}\}$$

Wir machen einen Widerspruchsbeweis. Annahme: L ist regulär.

Wir betrachten die Wörter

$$0^{\binom{2\cdot 1}{1}+1}, 0^{\binom{2\cdot 2}{2}+1}, \dots$$

Das erste Wort in $L_{0\binom{2m}{m}+1} = \{y \mid 0^{\binom{2m}{m}+1}y \in L\}$ ist $0^{\binom{2(m+1)}{m+1}-\binom{2m}{m}+1}$

Nach Satz 3.1 ist die Kolmogorov-Komplexität $K(y) \leq 1 + c$.

Es gibt unendlich viele Wörter $0^{\binom{2(m+1)}{m+1}-\binom{2m}{m}+1}$, da der Term mit m wächst, aber nur endlich viele Programme mit Länge $\leq 1+c$.

Also haben wir einen Widerspruch \Rightarrow die Annahme war falsch \Rightarrow L ist nicht regulär.

(b) Wir machen einen Widerspruchsbeweis. Annahme: L ist regulär. \Rightarrow Es gibt einen EA $A=(Q,\Sigma,\delta_A,q_o,F)$ mit L(A)=L. Sei m=|Q|

Betrachten wir die Wörter

$$\lambda, b, b^2, \cdots, b^m$$

Das sind mehr Wörter, als A Zustände hat. $\Rightarrow \exists i, j \ j \neq i$, sodass $\hat{d}(q_0, b^i) = \hat{d}(q_0, b^j)$ Also gilt nach Lemma 3.3

$$b^i z \in L \leftrightarrow b^j z \in L \quad \forall z \in \{0,1\}^*$$

Sei $z=a^{2i},$ dann gilt $b^iz=b^ia^{2i}\in L$ aber für $i\neq j,\ b^ja^{2i}\not\in L$

Also haben wir einen Widerspruch \Rightarrow die Annahme war falsch \Rightarrow L ist nicht regulär.

Aufgabe 11

(a) Wir machen einen Widerspruchsbeweis. Annahme: L ist regulär. Dann gilt das Pumping-Lemma für L. Wir betrachten nun das Wort

$$w = 0^{n_0} 1^{n_0}$$

Offensichtlich gilt $|w| \leq n_0$.

Daher gilt für die Zerlegung w = yxz nach (i) und (ii), dass $y = 0^l$, $x = 0^m$, $l + m \le n_0$.

Weil $w = yxz = 0^{n_0}1^{n_0} \notin L$ müssen nach (iii) auch alle $w \in \{yx^kz \mid k \in \mathbb{N}\} \notin L$ sein. Wenn wir nun das Wort

$$w = yx^2z = 0^l 0^{2m}z$$

betrachten, dann hat sich die Anzahl der Nullen erhöht, die Anzahl der Einsen ist jedoch gleich geblieben. Dadurch ist jedoch nach Definition $w \in L$.

Es gibt ein Widerspruch \Rightarrow Die Annahme war falsch \Rightarrow L ist nicht regulär.

Aufgabe 12

(a) Ein NEA für die Sprache $L = \{x \in \{0,1\}^* \mid |x|_1 \mod 3 = 0 \text{ oder } x \text{ enthält ein Teilwort } 1y1 \text{ für } y \in \{0,1\}^2\}$ sieht so aus:

Die Idee des Entwurfs ist, dass der NEA aus zwei Teil-Automaten besteht, die je folgende Bedingungen prüfen:

$$|x|_1 \bmod 3 = 0 \tag{1}$$

$$x$$
 enthält ein Teilwort $1y1$ für $y \in \{0,1\}^2\}$ (2)

Der Automat, der Bedingung (1) überprüft, ist durch die Zustände $\{q_0, q_1, q_2\}$ gegeben und derjenge, der (2) überprüft, durch die Zustände $\{p_0, p_1, p_2, p_3, p_4\}$.

Im Startzustand λ kann sich der NEA nun entscheiden, ob er Bedingung (1) oder (2) überprüft.

(b) Die Übertragungsfunktion δ' des äquivalenten deterministischen Automaten lautet wie folgt:

δ'	a	b
$p' = \{p\}$	$\{p,q\}$	{ <i>p</i> }
$q' = \{p, q\}$	$\{p,q,r\}$	$\{p,r\}$
$r' = \{p, r\}$	$\{p,q,s\}$	{ <i>p</i> }
$s' = \{p, s\}$	$\{p,s\}$	$\{p,r\}$
$t' = \{p,q,r\}$	$\{p,r,s\}$	$\{p,r\}$
$v' = \{p, q, s\}$	$\{p,r,s\}$	$\{p,r,s\}$
$u' = \{p, r, s\}$	$\{p,s\}$	$\{p,s\}$

Daraus folgt der deterministische Automat:

