# Procuring Performance in Python

Ian J. Bertolacci

Email: ian.bertolacci@gmail.com

Twitter: @ianbertolacci

Github: github.com/ian-bertolacci

#### About this talk

- General overview of some modules and tools that you can use to write more performant code.
- Share!
- I am not an expert in fast Python (yet).
- Code available on github
  - github.com/ian-bertolacci/procuring\_python\_performace\_talk

#### **General Classes of Tools**

- Compilers/Interpreters
  - CPython
  - o PyPy
- Low-level backed APIs
  - NumPy
- Parallel modules
  - Multiprocessing
  - Threading
- Low-level tie-ins
  - Cython \* compiler-y
  - PyCUDA

# Why is Python slow?

- Because the implementation is slow.
  - Python's semantics are difficult to provide without a runtime that includes lots of overhead.
- Where does this runtime overhead come from?
  - Dynamic typing
    - More memory requirements
    - Indirect accesses
    - explicit checking
  - Non-contiguous list elements
  - Large integers

# **Example of Overhead**

#### Python code:

```
a = 1

b = 2

c = a + b
```

This example taken from "Why Python is Slow" by Jake VanderPlas

(https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/)

- 1. Assign 1 to a
  - a. Set a->PyObject\_HEAD->typecode to integer
  - b. Set  $a \rightarrow val = 1$
- 2. Assign 2 to b
  - a. Set b->PyObject HEAD->typecode to integer
  - b. Set  $b \rightarrow val = 2$
- 3. call binary add(a, b)
  - a. find typecode in a->PyObject HEAD
  - b. a is an integer; value is a->val
  - c. find typecode in b->PyObject HEAD
  - d. b is an integer; value is b->val
  - e. call binary\_add<int, int>(a->val, b->val)
  - f. result of this is result, and is an integer.
- 4. Create a Python object c
  - a. set c->PyObject HEAD->typecode to integer
  - b. set c->val to result

#### Basic Benchmarks

- Two benchmarks are used here:
  - Fibonacci
    - Both recursive and iterative implementations.
    - N = 40
  - Jacobi 2D
    - Stencil computation.
    - 1000<sup>2</sup> grid and 1000 timesteps
      - 5 Giga FLOPS (1000<sup>2</sup> \* 5 \* 1000)
- Machine:
  - o Intel i7-6900K @ 3.20GHz
    - 8 cores / 16 hyperthreads
  - Nvidia GeForce GTX 1080
    - 8.5Gb On package RAM
  - o 32 Gb RAM



#### Baseline - Results

- CPython
  - o Fibonacci:
    - Iterative:
      - 0.00065 seconds
    - Recursive:
      - 59.2053 seconds
  - Jacobi:
    - 488.244 seconds (~8 minutes)
    - 10.24 Mega FLOPS/second

#### Baseline - Results

- C
- Fibonacci
  - Iterative
    - 0.0000003 seconds
  - Recursive
    - 0.433
- Jacobi
  - Serial
    - 0.897 seconds



# **PyPy**

- Alternative Python interpreter.
  - Probably most popular after CPython
- Written in RPython (a Python derivative). Work your head around that one.
- Pros:
  - Usea a just in time (JIT) compiler that compiles python code to lower code closer to machine level
  - No modifications to code required (except...)
- Cons:
  - Limited support for module using CPython's C-API
    - Support getting better, but performance could vary.
    - May require modified libraries

## PyPy - Benchmark Results

- Fibonacci
  - o Iterative:
    - 0.00007 seconds
  - Recursive:
    - 5.102 seconds
- Jacobi
  - 9.09s (53.6x faster than CPython Jacobi)
  - 549.67 Mega FLOPS/second

# PyPy - Related

- There are a gajillion python interpreters and compilers
  - o Jython: JVM
  - Pyston: LLVM
  - Pyjion:
  - Hope
  - Falcon
  - PyDron
  - Nuitka: Compiler, almost all of Python.
  - Shed Skin: Compiler, limited subset of Python.
  - Pythran: Compiler, limited subset of Python
  - GT-Py: Intel's interpreter. Adds OpenMP and OpenACC annotations

# NumPy

- Non-standard (but wildly popular) module
- Mainly C backed multi-dimensional arrays and some linear algebra tools
- Pros:
  - Powerful array abstractions.
  - Basis of SciPy (scientific python module filled with magic).
  - Mostly written in C/C++/Fortran (fast).
- Cons:
  - Need to modify code to use it.
    - Not a big deal, but would always like to avoid redevelopment.

## NumPy - Benchmark Results

#### Jacobi

- 4.592 seconds (106.324x faster than CPython basline)
- 1088.850 Mega FLOPS/second

## Multiprocessing

- Standard module.
- Parallelism through processes (not threads).
- Provides mechanisms for usual task-based parallelism.
- Pros:
  - API is fairly standard for a task-based parallelism ( create process objects, start, and join them; locks, pipe, semaphore).
  - Provides process pools that can easily map work across them.
  - Supposedly can use multiprocessing on a cluster.
  - Not limited by a Global Interpreter Lock (GIL).

#### Cons:

- Very heavy weight (creates entirely new python interpreter process).
- Requires you to be quite hands on.

## Multiprocessing - Terse Example

```
processes = [
  Process (
    target=work function,
    args=(work unit, result queue)
  for work unit in work list
# Start all processes
for process in processes:
 process.start()
# Wait for all processes to stop
for process in processes:
 process.join()
```

```
pool = Pool( cpu_count() )
results = pool.map(
  work_function,
  work_list
)
```

#### Multiprocessing - Fibonacci Results



#### Baseline was:

- Iterative: 0.00065 seconds
  - Multiprocessing slower
- Recursive: 59.20 seconds
  - Multiprocessing faster

## Multiprocessing - Jacobi Results



Uses NumPy arrays to simplify comms Baseline was:

- 488.244 seconds
  - Multiprocessing does worse (and keeps getting worse!)

## Multiprocessing - Related

#### PyMPI, MPI4Py

- Message Passing Interface (MPI) is a very old API for multiprocessing
- These let you use the API in python

#### Global Arrays

- Partitioned Global Addressing Space (PGAS) is a way of thinking about and writing distributed codes.
- Global Arrays is one such implementation
- Global Arrays seems to have some Python facing API

## Threading

- Standard module
- "Parallelism" via threads
- Very similar to multiprocessing
  - Thread objects, locks, et cetera.
- Pros:
  - API is fairly standard for a task-based parallelism ( create process objects, start, and join them; locks, pipe, semaphore)
- Cons:
  - Not concurrent! Bound by GIL.
  - All work and no gain.
- Apparently used for more I/O parallelism...

# Threading - Terse Example

```
# Create threads
threads = [
  Thread( target=work function, args=(work, result queue) )
  for work in worklist
# Start threads
for thread in threads:
    thread.start()
# Join threads
for thread in threads:
    thread.join()
```

## Threading - Benchmark Results

- Fibonacci
  - o Iterative:
    - 0.0079 seconds
  - Recursive:
    - 176.43 seconds

0

# Threading - Related

- Any kind of asynchronous library is sure to work similarly to the threading module.
  - Probably about a billion of these, primarily used for web services

# **PyCUDA**

- Non-standard module
- Write CUDA kernels in as strings, compile during runtime, and execute.
  - Very similar to how native OpenCL works (and PyOpenCL).
- Pros:
  - Can utilize very powerful hardware in a manner similar (if not identical) to the native API.
  - Spoiler alert: Very fast
- Cons:
  - Single Instruction Multiple Data (SIMD) paradigm limits its application to (essentially) array operations
  - $\circ$  Lots of setup that is confusing, unintuitive, and that can have a performance impact

## PyCUDA - Terse Example

```
mod = SourceModule("""
global void multiply them(float *dest, float *a, float *b, int N) {
  const int i = threadIdx.x;
 if(i < N)
    dest[i] = a[i] * b[i];
11 11 11 )
# Compile CUDA function
multiply them = mod.get function("multiply them")
# Create Numpy arrays for input and out
a = numpy.array( data a ).astype(numpy.float32)
b = numpy.array( data b ).astype(numpy.float32)
dest = numpy.zeros like(a)
# Caluclate blocksize and grid size
block size = 400
grid size = int( math.ceil(N/float(block size)) )
# Call CUDA function
multiply them (
  driver.Out(dest), driver.In(a), driver.In(b), numpy.int32( a.shape[0] ),
  block=(400,1,1), grid=(grid size), 1)
```

## PyCUDA - Benchmark Results

#### Jacobi

- 0.0507 seconds (10693x faster CPython, 17.88x faster than C!)
- 98.619 Giga FLOPS/second

# PyCUDA - Related

#### PyOpenCL

- Same but with OpenCL codes
- Developed by same person/group

#### PyChapel

- Chapel is a high performance programming language from Cray.
- PyChapel lets you write/use Chapel code and make calls to it from Python

# Cython

- Broadly, a Python/Cython-to-C compiler
- Can compiler most Python code to a C-API implemented module
- Has Cython language for writing
- Pros:
  - Essentially compiled python
  - Seems to port relatively easily (some minor build process required)
- Cons
  - Does not work in interpreters that dont implement the CPython C-API (limited PyPy support)

## Cython - Benchmark Results

- Fibonacci
  - Iterative
    - **8.70227813721e-05s**
  - Recursive
    - **15.0813598633s**
- Jacobi
  - 221.64 seconds (2.2x faster than CPython)
  - 22.55 Mega FLOPS/second

# Cython - Related

#### PyFort

- Very similar.
- Write Python-y Fortran that gets compiled and is callable from Python.
- Pervasive in SciPy (~25% of project).

#### SWIG

- More for creating interfaces between existing code in a language.
- Grumpy
  - Python to Go transpiler + runtime
- Rust?

#### Numba

- Annotation system for Python (and maybe an interpreter?)
- Annotate loops with @jit or @vectorize
  - JIT compiler lowers into LLVM, optimizes, and then to compiles machine code during runtime.
- Pros:
  - Easy to use (on paper). Just annotate
- Cons:
  - Not actually all that easy to use.
    - Confusing type system that does not seem to terminate.
    - When are things arrays? When are they not?
    - Sometimes need to modify code to make work at all.

# Numba - Terse Example

```
#Tell numba to JIT foo, infer types
@jit
def foo(a,b):
    return a+b
# Tell numba to JIT foo, specifically for these types
@jit([ int32(int32,int32),
       float32 (float32, float32),
       float64(float64, float64)))
def bar(a, b):
  return a-b
```

#### Numba - Benchmark Results

- Fibonacci
  - Iterative
    - 0.082 seconds (25% slower than CPython baseline)
  - Recursive
    - 1.24985098839 (47x faster than CPython baseline)
- Jacobi
  - 542.145 seconds (11% slower than CPython baseline)

#### Conclusion

- No magic wand.
  - This is the norm, and is not surprising.
- Quite usable.
  - Writing high performance always requires fairly large code modifications.
  - Notably easier to modify in python than with than other languages, like C/C++
- If you need peak performance, Python won't be your main application.
  - But Python will work for most people systems
    - You Aren't Google Ozan Onay <a href="https://blog.bradfieldcs.com/you-are-not-google-84912cf44afb">https://blog.bradfieldcs.com/you-are-not-google-84912cf44afb</a>
  - Python can be used in other places, such as orchestration of your application(s)
    - Either as a bash replacement
    - Call low level operations (see PyCUDA)