— So for we have seen parametric densities like Gaussian, BMM, etc.
which makes on assumption about the form.
Non-parametric estimation — estimate pus, who strong assumptions,
using the data. (Note, also has parameters)
Histogram
· Assume Samples (X1,, Xn)
, Consider a region R
- Define P = pixeR) = SxGR pixx-dx
prob a point in R
• Define $K_R = \#$ points inside R
- Eestimate of P $\beta = \frac{kR}{n}$
* Assume R is small, then
$\hat{p} \approx p(x) U_R - U_R = vdumn of R$
χ = center of R
(Capproximate integral over R with rectongle.
$p = \frac{kR}{n}$ $\beta = p(x) k$
> PON UZ = KR
$p(x) \cdot \sqrt{R} = \frac{kR}{n}$ $p(x) = \frac{kR}{n \cdot \sqrt{R}}$
KR n.VR
n.UR
$2 \times 1 \times $
This is just a histogram, but we can extend it
•

Q: How to choose R
1/D Keep UR fixed, I lot KR yory Kernal density estimation
2) keep KR fixed, & leo VR vory> k-w estimation (k newest neighborg)
(k newest heighbong)
in general is better, why?
Selond me requires the same number of points in each
region. For a low density region (region should be entenely longe)
dense region (region will be too small)
Kernal Density Festimotion.
- let R be a d-din hypercube w/ side of h
d=1
d=2
d=3 Th
- introduce a window
MX)= (1, 1xi) = \frac{1}{2}, \text{di=\langle 1,, d)}
$ \mathcal{H}X\rangle = \langle 1, Xi \stackrel{?}{=} \frac{1}{2}, \forall i = \{1, \dots, d\} $
CPapen undow > kemal function)
<u> </u>
$\mathcal{L}\left(\frac{x-x_i}{x}\right) = 1$, if x falls inside a cube w/side h.
$\frac{\chi\left(\frac{x-x_i}{h}\right)}{\left(\frac{x-x_i}{h}\right)} = \begin{pmatrix} 1, & \text{if } x \text{ falls inside a cube } w/\text{ side } h, \\ & \text{contaved at } x_i \end{pmatrix}$
o, otherwse

- # of points near x:
$$k = \frac{2}{5} k \left(\frac{x-x_i}{h} \right)$$

$$p(x) = \frac{1}{h} \frac{kR}{kR}$$

$$p(x) = \frac{1}{h} \frac{kR}{k} \left(\frac{x-x_1}{h} \right)$$

Other Lemal Function

Examples:

Uniform $k(x) = \begin{cases} 1 & |x| \leq \frac{1}{2} & \forall i \\ 0, & \text{otherwise}. \end{cases}$

Unit sphere $|X| = \left(\frac{1}{C}, \|X\|^2 \le 1 - c$ is the volumn

= Sp(u) &(X-N) du

Mean-Shift algorithm Find the modes (peaks) of \$1x)

- 1) Start at a point of (eg. one datapoint Ni)
- 2) use gradient ascent to more uphill CXZX+X \pri(x)]
- 3) eventually & will converge to a mode.
- · Repeat for many different initial is to find the modes

Clustoning:

The Xi that converge to the same made belong to the same cluster.

Consider radially Symmotric lienals

meaning (L(X) = & K(11 X112) leemal function Const Icemal profile

Eq. Gaussian
$$k(x) = \frac{1}{(2\pi)^{4/2}} \cdot e^{-\frac{1}{2}||x||^{2}}$$

$$\overline{k}(x) = e^{-\frac{1}{2}x}$$

$$x = (2\pi)^{-\frac{1}{2}}$$

FOE Chomal density estimation)
$$\beta(x) = \frac{1}{n h^{d}} \mathbb{Z} \left[\mathbb{E}(||\frac{x-x_{1}}{h}||^{2}) \right]$$

Aradient: define g(r) = -k(r) (Gaussian $g(r) = \frac{1}{2}e^{-\frac{1}{2}r}$) $= \frac{\alpha}{n \cdot h} \frac{1}{n \cdot h}$

Gradient ascents

$$\uparrow_{A} C(k+1) = \sqrt{3}(k) + \sqrt{3} \nabla \beta (\sqrt{3}(k))$$

Updated currents step size \rightarrow important for convergence.

Use an adoptive step size $\lambda = \frac{1}{g(x)} \iff g(x) \text{ is small } \Rightarrow | \text{auge step size}$ (au - density region) $g(x) \text{ is large } \Rightarrow \text{small step size}$ (high - density region)

$$= \frac{1}{3} \frac{(k+1)^2}{(k+1)^2} = \frac{1}{3} \frac{(k)^2}{(k+1)^2} + \frac{1}{3} \frac{1}{3}$$

