Espectro de masas en un modelo 3HDM

Modelo con dos dobletes inertes y uno activo

Diego Padilla Casillas¹; Asesores: Jaime Hernández – Sánchez, ²

 1 diego.padilla0382@alumnos.udg.mx 2 BUAP

Resumen

Se presenta un estudio del potencial escalar de un modelo de tres dobletes de Higgs en el que dos son *inertes* (Φ_1, Φ_2) y uno *activo* (Φ_3) encargado de la ruptura electrodébil. Imponiendo una simetría discreta se evita que los dobletes inertes adquieran VEV y se construye un potencial V que respeta dicha simetría. La expansión alrededor del mínimo $(0, 0, v/\sqrt{2})$ proporciona matrices de masa de dimensión 3×3 para los sectores neutro CP-par, neutro CP-impar y cargado. Gracias a la simetría, el doblete activo se desacopla en cada sector, dando lugar al bosón de Higgs estándar y a los modos de Goldstone. Se muestran las condiciones de minimización y estabilidad, así como las masas físicas tras la diagonalización de los sub-bloques inertes.

Introducción

El Modelo Estándar utiliza un único doblete de Higgs para romper la simetría electrodébil. En un 3HDM se consideran tres dobletes (Φ_1, Φ_2, Φ_3) , lo que amplía la estructura del sector escalar y permite introducir nuevos candidatos a materia oscura. Al imponer una simetría discreta (por ejemplo \mathbb{Z}_3), los dobletes Φ_1 y Φ_2 permanecen sin VEV y no acoplan a fermiones (inertes). El doblete Φ_3 desarrolla el VEV $v \approx 246\,\mathrm{GeV}$ y actúa como el Higgs del Modelo Estándar. Esta configuración da lugar a estados neutros estables y enriquece los patrones de mezcla de los sectores escalar, pseudoscalar y cargado.

Potencial y minimización

El potencial general se divide en una parte V_0 invariante bajo rotaciones de fase y una parte V_{sym} controlada por la simetría discreta. La parte V_0 contiene términos cuadráticos $-\mu_i^2 \Phi_i^{\dagger} \Phi_i$ y cuárticos proporcionales a $\lambda_{ii} (\Phi_i^{\dagger} \Phi_i)^2/2$, así como acoplamientos entre dobletes $\lambda_{ij}(\Phi_i^{\dagger}\Phi_i)(\Phi_i^{\dagger}\Phi_j)$ y $\lambda'_{ij}(\Phi_i^{\dagger}\Phi_j)(\Phi_j^{\dagger}\Phi_i)$. La parte V_{sym} depende de la simetría elegida (por ejemplo una \mathbb{Z}_3) y contiene términos trilineales y cuárticos que mezclan a los tres dobletes con coeficientes $\lambda_{1,2,3}$. La simetría asegura que los términos que mezclarían a los dobletes inertes con el activo desaparezcan.

Para que el vacío $(0, 0, v/\sqrt{2})$ sea mínimo global, sólo Φ_3 debe adquirir VEV. Ello fija la relación

$$v^2 = \frac{\mu_3^2}{\lambda_{33}},\tag{1}$$

entre los parámetros del potencial. La estabilidad del potencial impone $\lambda_{ii} \geq 0$ y relaciones de copositividad entre λ_{ij} y λ'_{ij} . Además, para que las masas de los componentes inertes sean positivas se requiere $-\mu_{1,2}^2 + \frac{1}{2}\lambda_{3i}v^2 > 0$. Estas condiciones evitan que los campos inertes adquieran VEV y garantizan un mínimo electrodébil estable.

Matrices de masa y sectores

Al expandir el potencial en torno al mínimo se obtienen matrices de masa de dimensión 3×3 para cada sector. Debido a la simetría, el doblete activo se desacopla y ocupa el tercer componente de cada matriz. Los sub-bloques 2×2 superiores describen la mezcla de los dos dobletes inertes. A continuación se presentan las tres matrices y sus autovalores generales.

Sector neutro CP-par (escalar real)

Para los campos escalares reales (H_1^0, H_2^0) se obtiene la matriz

$$\mathcal{M}_{H}^{2} = \begin{pmatrix} -\mu_{1}^{2} + \Lambda_{1} & \frac{1}{2}\lambda_{3}v^{2} & 0\\ \frac{1}{2}\lambda_{3}v^{2} & -\mu_{2}^{2} + \Lambda_{2} & 0\\ 0 & 0 & 0 \end{pmatrix},$$
(2)

donde $\Lambda_1 = \frac{1}{2}(\lambda_{31} + \lambda'_{31})v^2$ y $\Lambda_2 = \frac{1}{2}(\lambda_{23} + \lambda'_{23})v^2$. El sub-bloque 2×2 se diagonaliza mediante una rotación $R(\theta_h)$

$$\tan 2\theta_h = \frac{\lambda_3 v^2}{(-\mu_1^2 + \Lambda_1) - (-\mu_2^2 + \Lambda_2)}.$$
(3)

Los autovalores correspondientes a los campos inertes son

$$m_{H_1^{\pm}}^2 = a\cos^2\theta_c + d\sin^2\theta_c + 2b\sin\theta_c\cos\theta_c, \tag{4}$$

$$m_{H_2^{\pm}}^2 = a\sin^2\theta_c + d\cos^2\theta_c - 2b\sin\theta_c\cos\theta_c.$$
 (5)

$$a = -\mu_1^2 + \Lambda_1, \qquad d = -\mu_2^2 + \Lambda_2, \qquad b = \mu_{12}^2 - \frac{v}{2}\lambda_3.$$
 (6)

Sector neutro CP-impar (pseudoscalar)

Los campos pseudoscalar (A_1^0, A_2^0) generan la matriz

$$\mathcal{M}_{A}^{2} = \begin{pmatrix} -\mu_{1}^{2} + \Lambda_{1} & -\frac{1}{2}\lambda_{3}v^{2} & 0\\ -\frac{1}{2}\lambda_{3}v^{2} & -\mu_{2}^{2} + \Lambda_{2} & 0\\ 0 & 0 & 0 \end{pmatrix},$$

$$(7)$$

donde el elemento nulo en la tercera fila/columna corresponde al bosón de Goldstone G^0 absorbido por el Z. El sub-bloque 2×2 se diagonaliza con $R(\theta_a)$, con $\tan 2\theta_a = -\tan 2\theta_h$. Sus autovalores coinciden con los obtenidos en el sector CP-par: $m_{A_i}^2 = m_{H_i}^2$.

Sector cargado

Los campos cargados (H_1^+, H_2^+) dan lugar a la matriz

$$\mathcal{M}_{H^{\pm}}^{2} = \begin{pmatrix} -\mu_{1}^{2} + \frac{1}{2}\lambda_{31}v^{2} & \mu_{12}^{2} & 0\\ \mu_{12}^{2} & -\mu_{2}^{2} + \frac{1}{2}\lambda_{23}v^{2} & 0\\ 0 & 0 & 0 \end{pmatrix}, \tag{8}$$

en la que m_{12} es un término de mezcla entre los dobletes inertes proveniente de $V_{\rm sym}$. El elemento nulo se asocia al bosón de Goldstone G^+ absorbido por el W^+ . La diagonalización del sub-bloque 2×2 se realiza con una rotación $R(\theta_c)$ definida por

$$\tan 2\theta_c = \frac{2\mu_{12}^2}{\left(-\mu_2^2 + \frac{1}{2}\lambda_{23}v^2\right) - \left(-\mu_1^2 + \frac{1}{2}\lambda_{31}v^2\right)},\tag{9}$$

Sus masas son:

$$M_{H_1^+}^2 = \left(-\mu_{12}^2 + \frac{1}{2}\lambda_3 v^2\right)\cos^2\theta + \left(-\mu_{12}^2 + \frac{1}{2}\lambda_3 v^2\right)\sin^2\theta - 2\mu_{12}^2\sin\theta\cos\theta$$

$$M_{H_2^+}^2 = \left(-\mu_{12}^2 + \frac{1}{2}\lambda_3 v^2\right)\sin^2\theta + \left(-\mu_{12}^2 + \frac{1}{2}\lambda_3 v^2\right)\cos^2\theta + 2\mu_{12}^2\sin\theta\cos\theta$$

Campos físicos y autovalores

Las rotaciones $R(\theta_h)$, $R(\theta_a)$ y $R(\theta_c)$ definen los campos físicos en términos de los de sabor. Por ejemplo, en el sector CP-par:

$$H_1 = H_1^0 \cos \theta_h + H_2^0 \sin \theta_h, \qquad H_2 = -H_1^0 \sin \theta_h + H_2^0 \cos \theta_h, A_1 = A_1^0 \cos \theta_a + A_2^0 \sin \theta_a, \qquad A_2 = -A_1^0 \sin \theta_a + A_2^0 \cos \theta_a,$$

y para los cargados:

$$H_1^+ = H_1^+ \cos \theta_c + H_2^+ \sin \theta_c,$$
 $H_2^+ = -H_1^+ \sin \theta_c + H_2^+ \cos \theta_c.$

El Higgs activo tiene masa $m_h^2 = \lambda_{33}v^2$ y los bosones Goldstone G^0, G^{\pm} son sin masa.

Espectro de masas final

Al evaluar las rotaciones en el límite de mezcla máxima ($\theta_x = \pi/4$), las expresiones de masa se simplifican drásticamente. Para cada sector $x \in \{H, A, C\}$ (correspondiente a los sectores CP-par, CP-impar y cargado) definimos los parámetros del sub-bloque 2×2

Sustituyendo en obtenemos las masas físicas sin ángulos de mezcla:

$$m_{H_1}^2 = \frac{1}{2}(-\mu_1^2 - \mu_2^2 + \Lambda_1 + \Lambda_2) - \mu_{12}^2 - \lambda_3 v^2, \tag{10}$$

$$m_{H_1}^2 = \frac{1}{2}(-\mu_1^2 - \mu_2^2 + \Lambda_1 + \Lambda_2) - \mu_{12}^2 - \lambda_3 v^2,$$

$$m_{H_2}^2 = \frac{1}{2}(-\mu_1^2 - \mu_2^2 + \Lambda_1 + \Lambda_2) + \mu_{12}^2 + \lambda_3 v^2,$$
(10)

$$m_{A_1}^2 = \frac{1}{2}(-\mu_1^2 - \mu_2^2 + \Lambda_1 + \Lambda_2) + \mu_{12}^2 + \lambda_3 v^2,$$

$$m_{A_2}^2 = \frac{1}{2}(-\mu_1^2 - \mu_2^2 + \Lambda_1 + \Lambda_2) - \mu_{12}^2 - \lambda_3 v^2,$$
(12)

$$m_{H_1^{\pm}}^2 = \frac{1}{2} \left[-\mu_1^2 - \mu_2^2 + \frac{1}{2} (\lambda_{31} + \lambda_{23}) v^2 \right] + \mu_{12}^2, \tag{14}$$

$$m_{H_2^{\pm}}^2 = \frac{1}{2} \left[-\mu_1^2 - \mu_2^2 + \frac{1}{2} (\lambda_{31} + \lambda_{23}) v^2 \right] - \mu_{12}^2. \tag{15}$$

En particular, m_{H_1} y m_{A_2} comparten la combinación lineal con signo opuesto en μ_{12}^2 y $\lambda_3 v^2$, y lo mismo ocurre con m_{H_2} y m_{A_1} pero con el signo opuesto. Para el sector cargado, los términos diagonales se combinan de forma simétrica y el término de mezcla μ_{12}^2 desplaza las masas hacia arriba o hacia abajo.

Observables y diferencias de masas

Definimos las brechas de masa

$$\Delta_H = m_{H_2} - m_{H_1}, \qquad \Delta_A = m_{A_2} - m_{A_1} \qquad \Delta_C = m_{H_2^{\pm}} - m_{H_1^{\pm}}.$$
 (16)

En este límite, Δ_H es proporcional a $m_{12} + \lambda_3 v^2$ y Δ_A a $-(m_{12} + \lambda_3 v^2)$, de modo que $\Delta_H = -\Delta_A$. Controlar estas diferencias permite sintonizar la apertura cinemática de los canales $H_2 \to ZH_1$, $A_2 \to ZA_1$ y $H_2^{\pm} \to W^{\pm}H_1$. Además, exigir $\theta_h = \theta_a = \pi/4$ genera la degeneración $m_{H_1} = m_{A_2}$ y $m_{H_2} = m_{A_1}$, condición que favorece candidatos de materia oscura en dos componentes.

Estabilidad y límites experimentales

- **Estabilidad:** el potencial debe estar acotado desde abajo. Esto impone $\lambda_{ii} \geq 0$ y condiciones de copositividad entre los acoplamientos inter-dobletes. Parámetros trilineales y cuárticos de la parte V_{sym} deben ser suficientemente pequeños para no desestabilizar el potencial.
- Positividad de masas: los términos diagonales $-\mu_{1,2}^2$ y las combinaciones con $\lambda_{3i}v^2$ deben dar lugar a masas positivas; además $m_{H^\pm} > 70$ – $90~{\rm GeV}$ para cumplir límites de LEP.
- **Degeneraciones:** elegir parámetros tales que $\theta_h = \theta_a = \pi/4$ produce mezcla máxima y masas degeneradas $(m_{H_1} = m_{A_2}, m_{H_2} = m_{A_1})$, lo que ayuda a evadir acoplamientos con el bosón Z y favorece candidatos de materia oscura.

Conclusiones y perspectivas

En este trabajo armé las matrices de masa completas para el modelo 3HDM con dos dobletes inertes y uno activo. También mostré cómo se hacen las rotaciones para pasar a los campos físicos y diagonalizar los bloques inertes. Al evaluar las expresiones en el caso de mezcla máxima ($\theta_x = \pi/4$), las fórmulas se simplifican bastante y dependen solo de los parámetros cuadráticos μ_i^2 , los acoplamientos λ_{ij} y el término de mezcla μ_{12} .

Con esto se puede ver más claro cuándo aparecen degeneraciones que podrían dar buenos candidatos a materia oscura, y también cómo las diferencias de masa controlan los canales de producción y decaimiento en colisionadores. A futuro se podrían agregar correcciones de orden superior, analizar regiones del espacio de parámetros que sean compatibles con cosmología y ver qué señales podrían buscarse en el LHC