

Índice

- Point QuadTree
- 2. PR QuadTree
- 3. Region QuadTree
- 4. Point k-d-Tree
- 5. BSP-tree
- 6. hB-Tree
- 7. R-Tree

Point QuadTree

Point QuadTree

Point QuadTree

PR QuadTree

PR QuadTree

PR QuadTree

Region QuadTree

Region QuadTree

1

2

Region QuadTree

1

- 1.Si el nodo es una **hoja**: se borra
- 2.Si es nodo interno

Si hay sub-árbol derecho

Si no hay sub-árbol derecho

1

1 2 3

2

1

hB-Tree

hB-Tree

hB-Tree

R-Tree

Algorithm insert(u, p)

- 1. **if** *u* is a leaf node **then**
- 2. add p to u
- 3. **if** u overflows **then** /* namely, u has B+1 points */
- 4. handle-overflow(u)
- 5. **else**
- 6. $v \leftarrow \text{choose-subtree}(u, p)$ /* which subtree under u should we insert p into? */
- 7. insert(v, p)

Algorithm handle-overflow(u)

- 1. split(u) into u and u'
- 2. **if** *u* is the root **then**
- 3. create a new root with u and u' as its child nodes
- 4. else
- 5. $w \leftarrow$ the parent of u
- 6. update MBR(u) in w
- 7. add u' as a child of w
- 8. **if** *w* overflows **then**
- 9. handle-overflow(w)

Linear Split

Elija dos objetos como semillas para los dos nodos, donde estos objetos estén lo más separados posible. A continuación, considere cada objeto restante en un orden aleatorio y asígnelo al nodo que requiera la menor ampliación de su respectiva MBR.

R-Tree

R-Tree

