In [30]: import pandas as pd import numpy as np from sklearn.model_selection import train_test_split, learning_curve from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures, StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error, r2_score import matplotlib.pyplot as plt import seaborn as sns

Out[2]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Tra
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	
296	city	2016	9.50	11.60	33988	Diesel	Dealer	
297	brio	2015	4.00	5.90	60000	Petrol	Dealer	
298	city	2009	3.35	11.00	87934	Petrol	Dealer	
299	city	2017	11.50	12.50	9000	Diesel	Dealer	
300	brio	2016	5.30	5.90	5464	Petrol	Dealer	

301 rows × 9 columns

In [3]: print(df.head())

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type
0	ritz	2014	3.35	5.59	27000	Petrol
1	sx4	2013	4.75	9.54	43000	Diesel
2	ciaz	2017	7.25	9.85	6900	Petrol
3	wagon r	2011	2.85	4.15	5200	Petrol
4	swift	2014	4.60	6.87	42450	Diesel

\

	Selling_type	Transmission	Owner
0	Dealer	Manual	0
1	Dealer	Manual	0
2	Dealer	Manual	0
3	Dealer	Manual	0
4	Dealer	Manual	0

```
In [4]: features = ['Year', 'Present_Price', 'Driven_kms', 'Fuel_Type', 'Selling_ty
X = df[features]
y = df['Selling_Price']
```

Out[5]:

	Year	Present_Price	Driven_kms	Owner	Fuel_Type_Diesel	Fuel_Type_Petrol	Selling_ty
0	2014	5.59	27000	0	0	1	
1	2013	9.54	43000	0	1	0	
2	2017	9.85	6900	0	0	1	
3	2011	4.15	5200	0	0	1	
4	2014	6.87	42450	0	1	0	
296	2016	11.60	33988	0	1	0	
297	2015	5.90	60000	0	0	1	
298	2009	11.00	87934	0	0	1	
299	2017	12.50	9000	0	1	0	
300	2016	5.90	5464	0	0	1	

301 rows × 8 columns

In [6]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rai
X_train, X_test, y_train, y_test

```
Out[6]: (
                       Present_Price Driven_kms Owner
                Year
                                                             Fuel_Type_Diesel
          184
                2008
                                0.750
                                             26000
                                                          1
                2017
                                0.950
                                                          0
                                                                              0
          132
                                              3500
                                                                              0
          194
                2008
                                0.787
                                              50000
                                                          0
          75
                2015
                                6.800
                                             36000
                                                          0
                                                                              0
                                                          0
          111
                2016
                                1.500
                                              8700
                                                                              0
           . .
                                                . . .
          188
                2013
                                0.570
                                             18000
                                                          0
                                                                              0
                                                          0
          71
                2011
                               12.480
                                             45000
                                                                              1
                                                                              0
          106
                2014
                                3.450
                                             16500
                                                          1
                                                                              0
          270
                               10.000
                                                          0
                2011
                                             69341
          102
                2017
                                1.780
                                              4000
                                                          0
                                                                              0
                Fuel_Type_Petrol
                                   Selling_type_Individual
                                                                Transmission Manual
          184
                                 1
                                                             1
                                                                                     1
                                 1
                                                             1
                                                                                     1
          132
          194
                                 1
                                                             1
                                                                                     1
          75
                                 1
                                                             0
                                                                                     1
                                 1
                                                                                     1
          111
                                                             1
          188
                                 1
                                                             1
                                                                                     1
          71
                                 0
                                                             0
                                                                                     1
          106
                                 1
                                                             1
                                                                                     1
          270
                                 1
                                                             0
                                                                                     1
          102
                                 1
                                                             1
                                                                                     1
          [240 rows x 8 columns],
                Year Present Price Driven kms
                                                     0wner
                                                             Fuel_Type_Diesel
          177
                2016
                                 0.57
                                             24000
                                                          0
                                                                              0
          289
                                                          0
                                                                              0
                2016
                                13.60
                                             10980
          228
                2012
                                 9.40
                                                          0
                                                                              1
                                             60000
          198
               2011
                                 0.57
                                             35000
                                                          1
                                                                              0
                                                                              0
          60
                2013
                                18.61
                                             40001
                                                          0
           . .
                                  . . .
                 . . .
                                                . . .
                                                                              0
          234
               2015
                                 5.70
                                              4492
                                                          0
          296
                                                          0
                                                                              1
                2016
                                11.60
                                             33988
          281
                2006
                                 7.60
                                                          0
                                                                              0
                                             50456
          285
                                 8.50
                                                          0
                                                                              0
                2016
                                             15059
                                                                              0
          182
                2013
                                 0.58
                                             30000
                                                          0
                Fuel_Type_Petrol
                                   Selling_type_Individual
                                                                 Transmission Manual
          177
                                 1
                                                             1
                                                                                     0
                                 1
                                                             0
                                                                                     1
          289
          228
                                 0
                                                             0
                                                                                     1
          198
                                 1
                                                             1
                                                                                     1
                                 1
                                                             0
          60
                                                                                     1
                                                                                   . . .
                                 1
                                                             0
                                                                                     1
          234
          296
                                 0
                                                             0
                                                                                     1
                                 1
                                                             0
                                                                                     1
          281
                                 1
                                                             0
                                                                                     0
          285
                                 1
                                                             1
                                                                                     1
          182
          [61 rows x 8 columns],
          184
                  0.25
          132
                  0.75
          194
                  0.20
          75
                  3.95
          111
                  1.15
                  . . .
          188
                  0.25
```

```
71
                 4.50
          106
                 1.35
          270
                 4.10
          102
                 1.65
          Name: Selling_Price, Length: 240, dtype: float64,
          177
                  0.35
          289
                 10.11
                  4.95
          228
          198
                  0.15
          60
                  6.95
                 . . .
          234
                  5.50
          296
                  9.50
          281
                  2.10
          285
                  7.40
                  0.30
          182
          Name: Selling_Price, Length: 61, dtype: float64)
In [7]:
         model = LinearRegression()
         model
Out[7]:
          ▼ LinearRegression
          LinearRegression()
         model.fit(X_train, y_train)
In [8]:
Out[8]:
          ▼ LinearRegression
          LinearRegression()
 In [9]: |y_pred = model.predict(X_test)
         y_pred
Out[9]: array([ 2.95433731,
                              8.17716341, 6.45612271, -1.42337164,
                                                                      9.08864657,
                              1.33513921, 0.84032259, 1.36320242,
                 7.41793553,
                                                                      7.49067757,
                 9.11623744,
                              0.58602147,
                                           8.4171901 ,
                                                        3.42182892,
                                                                      6.90176412,
                 3.05018044,
                              0.4861294 , 10.7066932 ,
                                                        1.74950537,
                                                                      2.34321858,
                 0.3983127 ,
                              8.11856504, 6.62720292, 2.66249362,
                                                                      0.78244173,
                 3.69502798,
                              5.24822431, 2.82925881,
                                                        2.13370568,
                                                                      1.75038508,
                              9.11715068, -0.65878346,
                 0.39804532,
                                                                      8.5693085,
                                                        2.29562782,
                 4.49098276, 7.20461351, 7.54096855, 2.89153082,
                                                                      7.9380318 ,
                 3.94218138, 4.27826846, 4.33243831, 0.60013063,
                                                                      7.34017047,
                              7.29115924, 11.23338227, 3.1391956,
                 0.47635371,
                                                                      5.38488332,
                 6.80049399, 2.1763552, 20.63141992, 16.99979702,
                                                                      7.50636179,
                              4.47468976, 8.97255903, 1.82948926,
                 9.6950184 ,
                                                                      7.6037684 ,
                 0.2226926 ])
In [10]: | mse = mean_squared_error(y_test, y_pred)
         mse
```

Out[10]: 3.4813498305149753

```
In [11]: r2 = r2_score(y_test, y_pred)
```

Out[11]: 0.8488707839191783

```
In [12]: | print(f'Mean Squared Error: {mse}')
         print(f'R^2 Score: {r2}')
```

Mean Squared Error: 3.4813498305149753

R^2 Score: 0.8488707839191783

```
In [13]: plt.figure(figsize=(10, 6))
         plt.scatter(y_test, y_pred, alpha=0.7)
         plt.xlabel('Actual Selling Prices')
         plt.ylabel('Predicted Selling Prices')
         plt.title('Actual vs Predicted Selling Prices')
         plt.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=3)
         plt.show()
```



```
In [15]: residuals = y_test - y_pred
   plt.figure(figsize=(10, 6))
   sns.scatterplot(x=y_pred, y=residuals, alpha=0.7)
   plt.axhline(y=0, color='r', linestyle='--')
   plt.xlabel('Predicted Selling Prices')
   plt.ylabel('Residuals')
   plt.title('Residuals vs Predicted Selling Prices')
   plt.show()
```



```
In [17]: coefficients = pd.DataFrame(model.coef_, X.columns, columns=['Coefficient']
    coefficients = coefficients.sort_values(by='Coefficient')
```



```
In [22]:
         pipeline.fit(X_train, y_train)
Out[22]:
                 Pipeline
           ▶ PolynomialFeatures
             ▶ StandardScaler
            ▶ LinearRegression
In [23]:
         y_pred = pipeline.predict(X_test)
         y_pred
Out[23]: array([ 0.1040764 , 10.17499925, 5.10926439, 0.08613206,
                                                                    9.26459886,
                 6.82685472, 0.95844652, 0.55878831, 0.40613939,
                                                                    6.88569261,
                10.28974535, 0.68476488, 8.49909593, 0.65974046, 5.76765062,
                 2.62952806, 0.97071458, 14.81672288, 0.5952263 ,
                                                                    1.96870042,
                 0.32209398, 8.07264329, 5.05366136, 2.69269945,
                                                                    0.47919847,
                 3.54114915, 4.92884447, 2.74512865, 1.47034837,
                                                                    1.22742845,
                 0.33308031, 9.70576097, 0.27253343, 2.27643968,
                                                                    9.15382005,
                 4.34125902, 6.56702806, 4.70765306, 2.495739 ,
                                                                    5.97840501,
                 1.2459221 , 0.3462639 , 4.27570726, 0.18854906,
                                                                    6.59058763,
                 0.50281908, 7.71235277, 5.71003343, 2.86909105, 3.4811516,
                 6.0103264 , 1.57868577, 25.21735765, 22.58015062,
                                                                    7.17304613,
                10.17634202,
                             4.45539476, 9.92621995, 1.88825609,
                                                                    7.6509514,
                 0.07624437])
In [24]: | mse = mean_squared_error(y_test, y_pred)
         r2 = r2_score(y_test, y_pred)
In [25]: | print(f'Mean Squared Error: {mse}')
         print(f'R^2 Score: {r2}')
```

Mean Squared Error: 0.6603247220346687

R^2 Score: 0.9713345792700402

In [27]: sns.pairplot(df)
plt.show()

C:\Users\Aditya Kudva\AppData\Local\Temp\ipykernel_15920\1703484852.py:2:
FutureWarning: The default value of numeric_only in DataFrame.corr is depr ecated. In a future version, it will default to False. Select only valid c olumns or specify the value of numeric_only to silence this warning.
 sns.heatmap(df.corr(), annot=True, cmap='coolwarm')


```
train_sizes, train_scores, test_scores = learning_curve(pipeline, X, y, cv=
         train_sizes, train_scores, test_scores
Out[31]: (array([ 24, 48, 72, 96, 120, 144, 168, 192, 216, 240]),
          array([[-0.0501817 , -0.07571879, -0.07571879, -0.07571879],
                 [-0.47132889, -0.14623978, -0.14623978, -0.14623978, -0.14623978],
                 [-0.35012011, -0.24790623, -0.43733808, -0.43733808, -0.43733808],
                 [-0.26991532, -0.19095776, -0.73569316, -0.73569316, -0.73569316],
                 [-0.2363127, -0.15601609, -0.70213232, -0.70213232, -0.70213232],
                 [-0.24367529, -0.13700329, -0.62300888, -0.60061386, -0.60061386],
                 [-0.33509282, -0.22961672, -0.6243216, -0.52065555, -0.52065555],
                 [-0.34127273, -0.27284926, -0.61569563, -0.49540278, -0.47864475],
                 [-0.34493704, -0.27114582, -0.58394134, -0.48297896, -0.46598378],
                 [-0.36933595, -0.28927183, -0.56769158, -0.47097342, -0.4970701
         ]]),
          array([[-2.43831540e+05, -2.71098222e+04, -5.32870092e+03,
                  -4.98814288e+03, -2.69516862e+02],
                 [-9.24281860e+23, -5.57867053e+03, -1.24586538e+00,
                  -3.95172162e+00, -4.04444764e+00],
                 [-2.36613489e+23, -9.88265517e+03, -6.38484102e+05,
                  -2.63431943e+06, -1.67007305e+03],
                 [-6.41727338e+24, -3.65062885e+04, -1.80034515e+02,
                   -1.53669031e+02, -4.55360579e-01],
                 [-2.89679292e+24, -1.10609443e+04, -1.43564453e+06,
                  -7.57263498e+05, -1.07378045e+02],
                 [-1.40176981e+25, -1.28531962e+03, -4.05385305e-01,
                  -1.11758106e+23, -4.11835553e+16],
                 [-2.15697512e+25, -1.67620270e+03, -4.05047446e-01,
                  -4.75655664e+04, -2.09578189e+02],
                 [-4.91440786e+22, -5.23817268e+02, -3.08303390e-01,
                  -5.82952911e+03, -4.58239953e-01],
                 [-1.69870672e+23, -4.70148541e+04, -2.82202754e-01,
                  -4.56921625e+03, -3.80987137e-01],
                  [-9.32535509e+24, -1.97411181e+03, -2.90678447e-01,
                  -2.67168159e+02, -3.84903435e-01]]))
In [32]: train scores mean = -train scores.mean(axis=1)
         test_scores_mean = -test_scores.mean(axis=1)
```

```
In [33]: plt.figure(figsize=(10, 6))
    plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label='Training en
    plt.plot(train_sizes, test_scores_mean, 'o-', color='g', label='Validation on
    plt.xlabel('Training Size')
    plt.ylabel('Mean Squared Error')
    plt.title('Learning Curves')
    plt.legend(loc='best')
    plt.show()
```



```
In [ ]:
```