Anomaly Detection and Recommender Systems

Sidharth Baskaran

June 2021

Anomaly detection problem

- Decide if a example is an anomaly to dataset
- Build model for p(x) which is probability of feature being anomalous
 - $-p(x) < \epsilon \implies$ anomaly and $p(x) \ge \epsilon$ is fine
 - Ex: fraud detection where $x^{(i)}$ is features of user i

Gaussian/Normal Distribution

- If $x \in \mathbb{R}$, then if x is a distributed Gaussian with mean μ and variance σ^2
 - $-x^{\sim}\mathcal{R}(\mu,\sigma^2)$
 - Formula is $p(x; \mu, \sigma^2)$
- Density formula is $p=\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2})$ Distribution is centered at μ and σ determines width
- Area under curve is always 1, so $\sigma \propto \text{height}^-$
- Parameter estimation

 - arameter estimation $-\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)} \\ -\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} \mu)^2 \\ -\text{ Tend to use } \frac{1}{m} \text{ instead of } \frac{1}{m-1}, \text{ both work equally well}$

Anomaly detection algorithm

- Model probability of each feature vector as $p(x) = p(x_1; \mu_1, \sigma_1^2) p(x_2; \mu_2, \sigma_2^2) \dots p(x_n; \mu_n, \sigma_n^2) =$ $\prod_{j=1}^{n} p(x_j; \mu_j, \sigma_j^2)$
 - Assumes features are independent

$$p(x) = \prod_{j=1}^{n} p\left(x_j; \mu_j, \sigma_j^2\right) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_j} \exp\left(-\frac{\left(x_j - \mu_j\right)^2}{2\sigma_j^2}\right)$$

• Is anomaly if $p(x) < \epsilon$

Developing and Evaluating an Anomaly Detection System

- Importance of real-number evaluation
 - Assume labeled data exists, anomalous and non-anomalous
 - Training set $x^{(i)}, \dots, x^{(m)} \to \text{assume normal examples that are not anomalous}$
 - Define a cross validation and test set
- Fit model p(x) on training set $\{x^{(i)}, \dots, x^{(m)}\}$
- On cross validation/test set example x, predict

$$y = \begin{cases} 1 \text{ if } p(x) < \epsilon \text{ (anomaly)} \\ 0 \text{ if } p(x) \ge \epsilon \text{ (normal)} \end{cases}$$

- Evaluation metrics
 - True positive, false positive, false negative, true negative
 - Precision/recall
 - $-F_1$ score (if skewed)
 - Classification accuracy is not a good metric due to skewedness
- Can also use the CV set to choose ϵ

Anomaly Detection vs. Supervised Learning

- Anomaly Detection
 - Very small number of positive examples
 - Large number of negative examples
 - Many different types of anomalies \rightarrow cannot discern what anomalies look like from small positive examples
- Supervised learning
 - Large number of positive and negative examples
 - Enough positive examples for algorithm to discern a positive example
 - * Later positive examples are similar to those in training set