Homework 3

Due by 3:05 PM 9/19/2024

1. (10 points) As in Homework 1, consider 150 observations y_i , i = 1, ..., 150, from the exponential distribution

$$f(y_i; \lambda) = \lambda e^{-\lambda y_i}, \quad y_i > 0, \lambda > 0$$

with the sum of these 150 observations equal to 30.

- (a) Starting from $\lambda_{start} = 1$ obtain the next iteration of the Newton-Raphson algorithm. Show details of your work. <u>Do NOT</u> use computer.
- (b) Starting from $\lambda_{start} = 1$ obtain the next iteration of the Method of Scoring algorithm. Show details of your work. <u>Do NOT</u> use computer.
- (c) Are your answers in (1) and (2) different? Explain why.
- 2. (6 points) Suppose Y_1, \ldots, Y_N are independent random variables following the normal distribution $Y_i \sim N(\log \beta, \sigma^2)$, where σ^2 is known. Derive matrix based formula for an iteratively re-weighted least squares (IRWLS) procedure for ML estimation of β .

[Hint: First, present matrices \mathbf{X} and \mathbf{W} , and vector \mathbf{z} for the formula $\mathbf{b}^{(m)} = {\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{X}}^{-1} {\mathbf{X}^T \mathbf{W}^{(m-1)} \mathbf{z}^{(m-1)}}$, and then simplify this formula as feasible.]

3. (10 points) Consider Table 4.3 [Textbook page 67] discussed in class. We now use a log link function.

Table 4.3 Data for Poisson regression example

y_i	2	3	6	7	8	9	10	12	15
x_i	-1	-1	0	0	0	0	1	1	1

- (a) Fit model $log(E(Y_i)) = \beta_1 + \beta_2 x_i$ with the glm function in R.
- (b) We want to obtain
 - Maximum likelihood estimates for β_1 and β_2
 - Variance-covariance matrix of the MLE for β_1 and β_2

Write an iteratively reweighted least squares R function similar to the one covered in class but accounting for the **log link**. In addition, provide all the details of the algebraic derivations.

(c) Compare values obtained in (a) and (b).