Digital Logic Systems

Aakash Jog

2014-15

Contents

Ι	General Information	2
1	Lecturer Information	2
2	Required Reading	2
Π	Introduction to Discrete Math	3
1	Sets and Functions 1.1 Important Boolean Functions	3 4
2	Mathematical Induction	4

1 Lecturer Information

Prof. Guy Even

Office: Wolfson 202 Telephone: 03-640-7769 E-mail: guy@eng.tau.ac.il

2 Required Reading

Guy Even and Moti Medina: Digital Logic Design

Part I

Introduction to Discrete Math

1 Sets and Functions

Definition 1 (Universal set). The universal set is a set that contains all the possible objects.

Definition 2 (Set). A set is a collection of objects from a universal set.

Definition 3 (Subset). A is a subset of B if every element in A is also an element in B. It is denoted as $A \subseteq B$

Definition 4 (Equal sets). Two sets A and B are said to be equal if $A \subseteq B$ and $B \subseteq A$.

Definition 5 (Strict containment). $A \subsetneq B \iff A \subseteq B$ and $A \neq B$.

Definition 6 (Empty set). The empty set is the set that does not contain any element. It is usually denoted by \emptyset .

Definition 7 (Power set). The power set of a set A is the set of all the subsets of A. The power set of A is denoted by P(A) or 2^A .

Definition 8 (Ordered pair). Two objects (possibly equal) with an order (i.e., the first object and the second object) are called an ordered pair.

Definition 9 (Cartesian product). The Cartesian product of the sets A and B is the set

$$A \times B \triangleq \{(a, b) | a \in A \text{ and } b \in B\}$$

Theorem 1 (De Morgan's Laws).

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Theorem 2 (Binary relation). A subset $R \subseteq A \times B$ is called a binary relation.

Definition 10 (Function). A binary relation $R \subseteq A \times B$ is a function if for every $a \in A$ there exists a unique element $b \in B$ such that $(a, b) \in R$.

Definition 11 (Extension). Let f and g denote two functions. g is an extension of f if $f \subseteq g$, i.e., if every ordered pair in f is also an ordered pair in g.

Definition 12 (Boolean function). A function B : 0, 1n 0, 1k is called a Boolean function.

1.1 Important Boolean Functions

Definition 13 (NOT).

$$NOT(x) = 1 - x$$

Definition 14 (AND).

$$AND(x) = x \cdot y$$

Definition 15 (OR).

$$OR(x) = x + y - (x \cdot y)$$

Definition 16 (XOR).

$$XOR(x) = (x + y) \mod 2$$

2 Mathematical Induction

Theorem 3. For every $n \geq 2$, and for sets A_1, \ldots, A_n ,

$$\overline{A_1 \cup \dots \cup A_n} = \overline{A_1} \cap \dots \cap \overline{A_n}$$

Proof. If n=2, the statement is true, by De Morgan's Laws. Let

$$B = A_1 \cup \cdots \cup A_n$$

If possible, let

$$\overline{B} = \overline{A_1} \cap \dots \cap \overline{A_n}$$

Therefore,

$$\overline{A_1 \cup \dots \cup A_n \cup A_{n+1}} = \overline{B \cup A_{n+1}}$$

$$= \overline{B} \cap \overline{A_{n+1}}$$

$$= (\overline{A_1} \cap \dots \cap \overline{A_n}) \cap \overline{A_{n+1}}$$

Theorem 4 (Pigeon-hole Principle). If there are n holes and m > n pigeons then there exists at least one hole with more than one pigeon in it. Let $f: A \to \{1, ..., n\}$, and |A| > n, then f is not one-to-one, i.e., there are distinct $a_1, a_2 \in A$; $a_1 \neq a_2$, such that $f(a_1) = f(a_2)$.