MIES - CTI

18EC10054

SHIKMAR MONAN

1. a) Total instances possible = 72Total concepts possible = x^{72}

b) Adding two other attribute value (?, \$) to each space ?

Total hypotheres = 4×5 × 4× 4×5 = 1600

All hypotheses centaining even a single of are the same

i- Statistically different = 1+ (314x 3x3x4) = 1+432

c) We apply Find-s on the given data.

So = < p, p, p, p) [Mont specific trypothesis]

Training on ex-1: Nothing change (-ve ex), s1=s0

Training on ex-2: s2 = < many, big, no, exp, one>

Training on ex-3: S3 = 4 S2 (-ve ex, nothing changes)

Training on ex-4: Sy = < many, ?, no, exp., ?>

Training on ex-5: s= < many, ?, no, ?, ??

This is the most specific final hypothesis.

ર.	<u>\$1</u>	· A1	AZ	A3	A4	T		
	1	righ	Good	Migh -	73	Pau		<u> </u>
	2	Nigh	Fair	Low x	60	Fair		
	3	Low	Good	Migh.	64_	Pans		
-	4	Low	Good	low x	57	Fail		
_	5	High	Fair	Kigh .	66	Pars		
	6	Low	Fair	Nigh.	59	Fail		
	Val	ues (AI)	= Migu,	Low				
			1 = [3+					
	Mu		= [32					
			= [].					
	_		3 .					
	Gai	n (S, AI)	= Entropy	$(m) - \frac{1}{2}$	GUNOPY (Much)	- 1 Entrop	y (Al In)
	U		,()		2 10			
			= -1/2 6	g(1/2) - 1/21	w2(1/2) -	$-\frac{1}{2} - \frac{2}{7}$	3 log 43 -	2 wy 1/3
				•		L	•	- 1/3 loge/s
			= 1+	(43 wg 2/3	+ 1/3 63//3)		
			= 1-	.918				

Similarly for A2, A2 = [3+, 3-] $A2_{good} = [2+, 1-]$ $A2_{good} = [1+, 2-]$

Being exactly similar to A1, gain(s, A2) = 0.082

= 0.082

	Page No.
	Date: / /
1 A Frenchis de de la miserianion de M	EJC MAC
- Juditor shoulds = 1 [3+, 31-] ithe mountings	
$A3_{\text{High}} = [3+,1-]$	
A31000 = [0+,2-] [-8,48] =)4A
[-8,40]=	rl-A
gain (s, A3) = 1 + (4 10 (3/4 10 (3/4) + 1/4	wg(1/4)) + % (0))
= 1-0.541	
exactly smales to 1964.00 to A3 we find	Being

_

_

We use the ad comparator c = 65 to convert by from a continuous attribute to a discrete attribute. A4 = [3+,3-] [-5 +0] = 30 A4 (65 = [3 (+) 3-] + ((N M) + 1 = (A 2) NO 1 + 1 = (B A 2) NO 1 Being exactly similar to in statistics to A3, we find gain (s, 14) = 0-459 By having the courst attribut number for the hypnest entropy gain, we see that A3 is our first node. Endropy (A310mg) =0, hence no further nodes are needed in that branch Endropy (A3 migh) = \$0.811+87 = NA Now we evaluate A1, A2 and A4 under A3 right $g_{ain}(A3niph, A1) = 0.811 + \frac{1}{2}(\frac{1}{2}log\frac{1}{2})$ = 0.561 $gain (A3_{hijh}, A2) = 0.811 + \frac{1}{2} \left(0 + \frac{1}{2} log(\frac{1}{2})\right)$ = 0.58) gain (#3 mgn, Ay) = 0.81) + 1 (0+ 2 log 2) = 0.56)

By similar rules as before, A3high branch.	we pick As as	pre second	node on
A3 wyn -> A1 wyn has		o further 1	lody what
	4		

We evaluate A2 and My on A3 wign - Man

Gain (A3 mign → A1 wwo, A2) = 68 1 -)
= 0, which is perfect domitication
for both A2 good & Represent

Final free

Migh / bw

A2 Fail

A2 Paus

Fail Pars