HETEROGENEOUS CPU+GPU COMPUTING

Ana Lucia Varbanescu – University of Amsterdam
a.l.varbanescu@uva.nl
Stijn Heldens – Twente University
mail@stijnh.nl

Significant contributions by: **Pieter Hijma** (UvA, NL), **Jie Shen** (TUDelft, NL), **Basilio Fraguela** (A Coruna University, ESP)

PART I

Heterogeneous processing: pro's and con's

Hardware Performance metrics

- Clock frequency [GHz] = absolute hardware speed
 - Memories, CPUs, interconnects
- Operational speed [GFLOPs]
 - Instructions per cycle + frequency
- Memory bandwidth [GB/s]
 - differs a lot between different memories on chip
- Power [Watt]
- Derived metrics
 - FLOP/Byte, FLOP/Watt

Theoretical peak performance

```
Peak = chips * cores * threads/core * vector_lanes * FLOPs/cycle * clockFrequency
```

- Some examples:
 - Intel Core i7 CPU
 2 chips * 4 cores * 4-way vectors * 2 FLOPs/cycle * 2.4 GHz = 154 GFLOPs
 - NVIDIA GTX 580 GPU
 1 chip * 16 SMs * 32 cores * 2 FLOPs/cvcle * 1.544 GhZ = 1581 GFLOPs

Performance ratio (CPU:GPU): 1:10 !!!

DRAM Memory bandwidth

Bandwidth = memory bus frequency * bits per cycle * bus width

- Memory clock != CPU clock!
- In bits, divide by 8 for GB/s
- Some Examples:
 - Intel Core i7 DDR3:
 1.333 * 2 * 64 = 21 GB/s
 - NVIDIA GTX 580 GDDR5: 1.002 * 4 * 384 = 192 GB/s

Performance ratio (CPU:GPU): 1:8 !!!

Power

- Chip manufactures specify Thermal Design Power (TDP)
- We can measure dissipated power
 - Whole system
 - Typically (much) lower than TDP
- Power efficiency
 - FLOPS / Watt
- Examples (with theoretical peak and TDP)
 - Intel Core i7:
 154 / 160 = 1.0 GFLOPs/W
 - NVIDIA GTX 580:
 1581 / 244 = 6.3 GFLOPs/W
 - ATI HD 6970: 2703 / 250 = 10.8 GFLOPs/W

Summary

	Cores	Threads/ALUs	GFLOPS	Bandwidth
Sun Niagara 2	8	64	11.2	76
IBM BG/P	4	8	13.6	13.6
IBM Power 7	8	32	265	68
Intel Core i7	4	16	85	25.6
AMD Barcelona	4	8	37	21.4
AMD Istanbul	6	6	62.4	25.6
AMD Magny-Cours	12	12	125	25.6
Cell/B.E.	8	8	205	25.6
NVIDIA GTX 580	16	512	1581	192
NVIDIA GTX 680	8	1536	3090	192
AMD HD 6970	384	1536	2703	176
AMD HD 7970	32	2048	3789	264
Intel Xeon Phi 7120	61	240	2417	352

GPU vs. CPU performance

 $1 \text{ GFLOP} = 10^9 \text{ ops}$

Theoretical GFLOP/s

These are theoretical numbers! In practice, efficiency is much lower!

GPU vs. CPU performance

Theoretical GB/s

 $1 \text{ GB} = 8 \times 10^{9} \text{ bits}$

These are theoretical numbers! In practice, efficiency is much lower!

Heterogeneity vs. Homogeneity

- Increase performance
 - Both devices work in parallel
 - Gain is much more than 10%
 - Decrease data communication
 - Which is often the bottleneck of the system
 - Different devices for different roles
- Increase flexibility and reliability
 - Choose one/all *PUs for execution
 - Fall-back solution when one *PU fails
- Increase power efficiency
- Cheaper per flop

Example 1: dot product

- Dot product
 - Compute the dot product of 2 (1D) arrays
- Performance
 - T_G = execution time on GPU
 - T_C = execution time on CPU
 - T_D = data transfer time CPU-GPU
- GPU best or CPU best?

Example 1: dot product

Example 2: separable convolution

- Separable convolution (CUDA SDK)
 - Apply a convolution filter (kernel) on a large image.
 - Separable kernel allows applying
 - Horizontal first
 - Vertical second
- Performance
 - T_G = execution time on GPU
 - T_C = execution time on CPU
 - T_D = data transfer time
- GPU best or CPU best?

Example 2: separable convolution

Example 3: matrix multiply

- Matrix multiply
 - Compute the product of 2 matrices
- Performance
 - T_G = execution time on GPU
 - T_C = execution time on CPU
 - T_D = data transfer time CPU-GPU
- GPU best or CPU best?

Example 3: matrix multiply

Example 4: Sound ray tracing

Example 4: Sound ray tracing

Which hardware?

- Our application has ...
- Massive data-parallelism ...
- No data dependency between rays ...
- Compute-intensive per ray ...
- ... clearly, this is a perfect GPU workload !!!

Results [1]

Only 2.2x performance improvement!
We expected 100x ...

Workload profile

Bottom Processing iterations: ~500

Results [2]

So ...

- There are very few GPU-only applications
 - CPU GPU communication bottleneck.
 - Increasing performance of CPUs
- A part of the computation can be done by the CPU.
 - How to program an application to enable this?
 - Which part?

Main challenges: programming and workload partitioning!

PART III

Challenge 2: Programming

Programming models (PMs)

- Heterogeneous computing = a mix of different processors on the same platform.
- Programming
 - Single programming model (unified)
 - OpenCL is a popular choice
 - Mix of programming models
 - One(/several?) for CPUs OpenMP
 - One(/several?) for GPUs CUDA

Low level

OpenCL

High level

Heterogeneous Programming Library

Heterogeneous computing PMs

- CUDA + OpenMP/TBB
 - Typical combination for NVIDIA GPUs
 - Individual development per *PU
 - Glue code can be challenging
- OpenCL
 - Functional portability => can be used as a unified model
 - Performance portability via code specialization
- HPL
 - Library on top of OpenCL, to automate code specialization

Heterogeneous computing PMs

- StarPU
 - Special API for coding
 - Runtime system for scheduling
- OmpSS
 - C + OpenCL/CUDA kernels
 - Runtime system for scheduling and communication optimization

Heterogeneous computing PMs

- Cashmere
 - Dedicated to Divide-and-conquer solutions
 - OpenCL backend.
- GlassWing
 - Dedicated to MapReduce applications
- TOTEM
 - Graph processing
 - CUDA+Multi-threading
- HyGraph
 - Graph processing
 - Based on CUDA+OpenMP

Heterogeneous Computing PMs

High productivity; not all applications are easy to implement.

Generic

OpenACC, OpenMP 4.0 OmpSS, StarPU, ... HPL

High level Domain and/or application specific. Focus on: productivity and performance

HyGraph, Cashmere, GlassWing

Specific

OpenCL
OpenMP+CUDA

The most common atm. Useful for performance, more difficult to use in practice

TOTEM

Low level Domain specific, focus on performance.

More difficult to use.

End of part III

Questions?

PART III

Workload partitioning models