Huffman Codes

Let $\Sigma = \{0, 1\}, \mathcal{X}, p(\cdot).$

Huffman algorithm: Number of leaves equalts $|\mathcal{X}| = N$. leaves have prefix free labels

Build tree from bottom up.

1. label \mathcal{X} : x_1, \ldots, x_n such that

$$p(x_1) \ge p(x_2) \ge \dots \ge p(x_N)$$

2. (If N = 1 stop.) Otherwise build

$$\begin{aligned} x_1^{\text{new}} &= x_1^{\text{old}}, \dots, \qquad x_{N-2}^{\text{new}} &= x_{N-2}^{\text{old}}, x_{N-1}^{\text{new}} = \{x_{N-1}^{\text{old}}, x_N^{\text{old}}\} \\ p(x_1) & p(x_{N-2}) p(x_{N-1}^{\text{new}}) = p(x_{N-1}^{\text{old}}) + p(x_N^{\text{old}}) \end{aligned}$$

wit noew collection continue at 1 $(N \leftrightarrow N-1)$

Example. N = 10

i	1	2	3	4	5	6		γ		8		9	10
$p(x_i)$	0.2	0.2	0.15	0.15	0.1	0.05	(0.05	0.	.04	0.	03	0.03
i	1	2	3	4	5	(9,1	0)	6		7		8	
$p(x_i)$	0.2	0.2	0.15	0.15	0.1	0.0	6	0.08	$0.05 \mid 0.05$		5 0.04		
i	1	2	3	4	5	(7,8		(9,10))	6			
$p(x_i)$	0.2	0.2	0.15	0.15	0.1	0.09	9	0.0ϵ	ĵ	0.0	5		
i	1	2	3	4	(6,9)	,10)	5	(7	7,8)				
$p(x_i)$	0.2	0.2	0.15	0.15	0	11	0.1	! 0	.09				
i	1	2	(5,7,8	3) 3	}	4	(6,9)	,10)]				
$p(x_i)$	0.2	0.2	0.19	0.1	$15 \mid 0$.	15	0.	11					
i	(4,6,9,10)		1 2		(5,7,8) 3		3						
$p(x_i)$	0.26		0.2 0.2		0.19 0.		15]					
i	(3,5,7,8)		(4,6,9,10)		1 2								
$p(x_i)$	0.34		0.26		0.2								
i	(1,2) (3,5,7,8) (2,5,7,8)			(4,6,	(6,9,10)								
$p(x_i)$	0.4 0.34			0.26									
i	(3,4,5,6,7,8,9,10) (1				2)								
$p(x_i)$		0.6		0.4	4								
i	(1,2,3,4,5,6,7,8,9,10)												
$p(x_i)$	1												

Lemma 0.1. Let $C: \mathcal{X} \to \{0,1\}^+$ be an optimal prefix code. $W = \{w \in C(\mathcal{X}) : \ell(w) = \ell_{\max}\}$. Then

- 1. If p(x) > p(y), then $\ell(C(x)) \le \ell(C(y))$.
- 2. If $v, w \in C(\mathcal{X})$ are longest codewords that is $\ell(w') \leq \ell(v) \leq \ell(w)$ for all $w' \in C(\mathcal{X}) \setminus \{v, w\}$, then $\ell(v) = \ell(w)$. $|W| \geq 2$.

3. C can be modified into another optimal prefix code C which has the additional property that among the codewords of maximal length [there are at least 2 by (2)] [≡ the elements of W] there are two which are siblings (differ only in the last bit) and corresopnd to two least likely symbols (elements of X).

Proof. 1. $\ell_x = \ell(C(x))$ exchange codewords new

$$C'(z) = C(z), z \neq x, y$$

$$C'(x) = C(y)$$

$$C'(y) = C(x)$$

$$L_{C'} \ge L_C$$

$$0 \le L_{C'} - L_C = p(x)\ell_y - p(x)\ell_x + p(y)\ell_x - p(y)\ell_y$$

= $(p(x) - p(y))(\ell_y - \ell_x) \implies \ell_y - \ell_x \ge 0$

- 2. Suppose $\ell(v) < \ell(w)$. Reduce w to the length of v: (tape prefix of w with length $\ell(v)$). Get new prefix code with < expected length <
- 3. Claim: If $w \in W$ and \tilde{w} its sibling [siblings: v0, v1], then $\tilde{w} \in W$.

Proof: Assume there exists a $w \in W$ such that $\tilde{w} \notin W$. Let v be their parent. Replace w by v: new collection of codewords. [If C(x) = w then C'(x) = v, C'(z) = C(z) for all $z \in \mathcal{X} \setminus \{x\}$.] again prefix code, $L_{C'} < L_{C'}$

By (1), there exist $x, y \in \mathcal{X}$ least likely with $C(x), C(y) \in W$. Let C(x) = v, C(y) = w, $v, w \in W$. \tilde{v}, \tilde{w} their siblings in W. If $\tilde{v} = w$ OK, otherwise there exists $\tilde{x} \in \S$: $C(\tilde{x}) = \tilde{v}$ $\tilde{x} \neq v, w$

$$\begin{split} \tilde{C}(y) &= \tilde{v} \\ \tilde{C}(\tilde{x}) &= w \\ \tilde{C}(z) &= C(z) \end{split}$$

for all $z \in \mathcal{X} \setminus \{y, \tilde{x}\}$. Now prefix code, $L_{\tilde{C}} = L_C$

Definition. Codes which are optimal and have properties (1),(2),(3) [siblings at the bottom] are canonical.

Theorem 0.2. If $C^*: \mathcal{X} \to \{0,1\}^+$ is a Huffman-code for \mathcal{X} , p, then it is optimal

Proof. $|\mathcal{X}| = N$, induction on N

Algorithm: If C_N^* is a Huffman code for $\mathcal{X}^N = \{x_1, \ldots, x_N\}$, then it is abtained from a Huffman-code for $\{x_1', \ldots, x_{N-2}', x_{N-1}'\}$ where

$$p(x_1) > p(x_2) > \cdots > p(x_N)$$

and $x_k' = x_k$ for $k = 1, \dots, N-2$ and $x_{N-1}' = \{x_{N-1}, x_N\}$ with probabilites $p(x_k') = p(x_k)$ and $p(x_{N-1}') = p(x_{N-1}) + p(x_N)$ respectively. $C_N^*(x_k) = C_{N-1}^*(x_k')$ and $C_N^*(x_{N-1}) = C_{N-1}^*(x_{N-1}')$ 0 and $C_N^*(x_N) = C_{N-1}^*(x_{N-1}')$ 1

add pic

Induction on $N \ge 2$: N = 2: $C_2^*(x_1) = 0$, $C_2^*(x_2) = 1$ $N-1 \to N$: Let $p^{(N)} = (p_1, \dots, p_N)$ ordered \ge . (Note: $p_i = p(x_i)$) Let $p^{(N)'} = (p_1, \dots, p_{N-2}, p_{N-1} + p_N)$. C_{N-1}^* Huffman code for $p^{(N)'}$ optimal by assumption construct C_N^* from C_{N-1}^* .

$$L_{C_N^*} = L_{C_{N-1}^*} + p_{N-1} + p_N$$

Now let \bar{C}_N be a canonical code for $p^{(N)}$ $L_{\bar{C}_N} \leq L_{C_N^*}$

$$\begin{split} \bar{C}_{N-1}(x_k') &= \bar{C}_N(x_k), \ k=1,\ldots,N-2\\ \bar{C}_{N-1}(x_{N-1}') &= \text{ parent of the siblings } \bar{C}_N(x_{N-1}), \bar{C}_N(x_N) \end{split}$$

 \bar{C}_{N-1} is a prefix code for $p^{(N)'}$

$$L_{\bar{C}_{N-1}} = L_{\bar{C}_N} - p_{N-1} + p_N$$