Data Mining Project:

-Prapthi Pandian

Table of Contents

1. Problem 1 Statement

- 1.1 Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.
- 1.2 Treat missing values in CPC, CTR and CPM using the formula given.
- 1.3 Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ.
- 1.4 Perform z-score scaling and discuss how it affects the speed of the algorithm.
- 1.5 Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.
- 1.6 Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.
- 1.7 Print silhouette scores for up to 10 clusters and identify optimum number of clusters.
- 1.8 Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].
- 1.9 Conclude the project by providing summary of your learnings.

2. Problem 2 Statement

- 2.1 Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.
- 2.2 Perform detailed Exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? (Example Questions). Pick 5 variables out of the given 24 variables below for EDA: No_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_AL_M, MAIN_AL_F, MAIN_HH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F
- 2.3 We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

- 2.4 Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.
- 2.5 Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.
- 2.6 Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.
- 2.7 Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.
- 2.8 Write linear equation for first PC.

Problem 1: Clustering:

Digital Ads Data:

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

The following three features are commonly used in digital marketing:

CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column in the dataset and the Number of Impressions refers to the 'Impressions' Column in the dataset.

CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column in the dataset and the Number of Clicks refers to the 'Clicks' Column in the dataset.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column in the dataset and the Total Measured Ad Impressions refers to the 'Impressions' Column in the dataset.

1.1 Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.

Printing 1st 5 rows:

	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC
0	2020-9-2- 17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0	0.35	0.0	0.0031	0.0	0.0
1	2020-9-2- 10	Format1	300	250	75000	Inter227	Арр	Mobile	Video	1780	285	285	1	0.0	0.35	0.0	0.0035	0.0	0.0
2	2020-9-1- 22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0	0.35	0.0	0.0028	0.0	0.0
3	2020-9-3- 20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0	0.35	0.0	0.0020	0.0	0.0
4	2020-9-4-	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0	0.35	0.0	0.0041	0.0	0.0

Printing last 5 rows:

	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC
23061	2020-9-13- 7	Format5	720	300	216000	Inter220	Web	Mobile	Video	1	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
23062	2020-11-2- 7	Format5	720	300	216000	Inter224	Web	Desktop	Video	3	2	2	1	0.04	0.35	0.0260	NaN	NaN	NaN
23063	2020-9-14- 22	Format5	720	300	216000	Inter218	App	Mobile	Video	2	1	1	1	0.05	0.35	0.0325	NaN	NaN	NaN
23064	2020-11- 18-2	Format4	120	600	72000	inter230	Video	Mobile	Video	7	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
23065	2020-9-14-	Format5	720	300	216000	Inter221	Арр	Mobile	Video	2	2	2	1	0.09	0.35	0.0585	NaN	NaN	NaN

Checking data type of columns:

Shape:

(23066, 19)

There are 23066 observations and 19 columns in the data

6 variables of Object data type and 13 variables of numeric data type (int and float)

Basic description of data -

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
count	23066.000000	23066.000000	23066.000000	2.306600e+04	2.306600e+04	2.306600e+04	23066.000000	23066.000000	23066.000000	23066.000000	18330.000000	18330.000000	18330.000000
mean	385.163097	337.896037	96674.468048	2.432044e+06	1.295099e+06	1.241520e+06	10678.518816	2706.625689	0.335123	1924.252331	0.073661	7.672045	0.351061
std	233.651434	203.092885	61538.329557	4.742888e+06	2.512970e+06	2.429400e+06	17353.409363	4067.927273	0.031963	3105.238410	0.075160	6.481391	0.343334
min	120.000000	70.000000	33600.000000	1.000000e+00	1.000000e+00	1.000000e+00	1.000000	0.000000	0.210000	0.000000	0.000100	0.000000	0.000000
25%	120.000000	250.000000	72000.000000	3.367225e+04	1.828250e+04	7.990500e+03	710.000000	85.180000	0.330000	55.365375	0.002600	1.710000	0.090000
50%	300.000000	300.000000	72000.000000	4.837710e+05	2.580875e+05	2.252900e+05	4425.000000	1425.125000	0.350000	926.335000	0.082550	7.660000	0.160000
75%	720.000000	600.000000	84000.000000	2.527712e+06	1.180700e+06	1.112428e+06	12793.750000	3121.400000	0.350000	2091.338150	0.130000	12.510000	0.570000
max	728.000000	600.000000	216000.000000	2.759286e+07	1.470202e+07	1.419477e+07	143049.000000	26931.870000	0.350000	21276.180000	1.000000	81.560000	7.260000

We have also observed that there are no duplicate values in the dataframe.

Checking for null values-

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	4736
CPM	4736
CPC	4736
dtype: int64	

We can observe that the fields CTR, CPM and CPC contain null values i.e. 4736 entries each which we will treat in the next step.

1.2 Treat missing values in CPC, CTR and CPM using the formula given.

Treating null values using the given formula-

CPM = (Total Campaign Spend / Number of Impressions) * 1,000.

CPC = Total Cost (spend) / Number of Clicks.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100.

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	0
CPM	0
CPC	0
dtype: int64	

Post treating the null values, the result is as above. We can now observe that there are no null values in the data.

1.3 Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ.

Univariate analysis-

Description of Ad - Length

count 2	3066.000000
mean	385.163097
std	233.651434
min	120.000000
25%	120.000000
50%	300.000000
75%	720.000000
max	728.000000
Name: Ad -	Length, dtype: float64

Skew : 0.33

Distribution of Ad - Length

Description of Ad- Width

			 	 	 -
count	23066.000000				
mean	337.896037				
std	203.092885				
min	70.000000				
25%	250.000000				
50%	300.000000				
75%	600.000000				
max	600.000000				
Name •	Ad- Width dtyne:	f102+64			

Name: Ad- Width, dtype: float64

Skew : 0.21

Distribution of Ad- Width

Description of Ad Size

count 23066 000000

count	23066.000000	
mean	96674.468048	
std	61538.329557	
min	33600.000000	
25%	72000.000000	
50%	72000.000000	
75%	84000.000000	
max	216000.000000	

Name: Ad Size, dtype: float64

Skew : 1.21

Distribution of Ad Size

Description of Available_Impressions

count	2.306600e+04
mean	2.432044e+06
std	4.742888e+06
min	1.000000e+00
25%	3.367225e+04
50%	4.837710e+05
75%	2.527712e+06
max	2.759286e+07

Name: Available_Impressions, dtype: float64

Skew : 3.07

Distribution of Available_Impressions

17500 -15000 -12500 -7500 -2500 -2500 -0 0.5 1.0 1.5 2.0 2.5

Description of Matched_Queries

count 2.306600e+04
mean 1.295099e+06
std 2.512970e+06
min 1.000000e+00
25% 1.828250e+04
50% 2.580875e+05
75% 1.180700e+06
max 1.470202e+07

Name: Matched_Queries, dtype: float64

Skew : 2.98

Distribution of Matched_Queries

Description of Impressions

.....

2.306600e+04 count 1.241520e+06 mean std 2.429400e+06 1.000000e+00 min 7.990500e+03 25% 50% 2.252900e+05 75% 1.112428e+06 max 1.419477e+07

Name: Impressions, dtype: float64

Skew : 2.97

Distribution of Impressions

.....

Description of Clicks

23066.000000 count mean 10678.518816 std 17353.409363 min 1.000000 710.000000 25% 4425.000000 50% 75% 12793.750000 max 143049.000000 Name: Clicks, dtype: float64

Skew : 2.94

Distribution of Clicks

Description of Spend

count 23066.000000 mean 2706.625689 std 4067.927273 0.000000 min 25% 85.180000 50% 1425.125000 75% 3121.400000 max 26931.870000

Name: Spend, dtype: float64

Skew : 2.58

Distribution of Spend

Description of Fee

count	23066.000000
mean	0.335123
std	0.031963
min	0.210000
25%	0.330000
50%	0.350000
75%	0.350000
max	0.350000
Name:	Fee, dtype: float64

Skew : -2.3

Distribution of Fee

Description of Revenue

.....

count	23066.000000	
mean	1924.252331	
std	3105.238410	
min	0.000000	
25%	55.365375	
50%	926.335000	
75%	2091.338150	
max	21276.180000	

Name: Revenue, dtype: float64

Skew : 2.79

Distribution of Revenue

.....

MOD 4 PROJ - Jupyter Notebook

Description of CTR

count	23066.000000
mean	2.614863
std	7.853405
min	0.000100
25%	0.003400
50%	0.112650
75%	0.183778
max	200.000000
Name:	CTR, dtype: float64

Skew : 5.43

Distribution of CTR

Description of CPM

count	23066.000000
mean	8.396730
std	9.057082
min	0.000000
25%	1.750000
50%	8.370742
75%	13.040000
max	715.000000

Name: CPM, dtype: float64

Skew : 22.32

Distribution of CPM

Description of CPC count 23066.000000 0.336652 mean 0.341231 0.000000 min 25% 0.090000 0.140000 75% 0.550000 max 7.260000 Name: CPC, dtype: float64

Skew : 1.84

Distribution of CPC

We can observe that there are outliers present in all except for the Ad Length and Ad Width column. Fee is left skewed wherein mean <median CPM is highly skewed.

Since K-Means is sensitive to outliers, in order to perform clustering, we will consider outlier treatment to reduce their impact.

And here we are treating outliers using IQR (Interquartile Range).

Number of outliers present in the data-

Ad - Length	0
Ad- Width	0
Ad Size	8448
Available_Impressions	2378
Matched_Queries	3192
Impressions	3269
Clicks	1691
Spend	2081
Fee	3517
Revenue	2325
CTR	3487
CPM	208
CPC	568
dtype: int64	

For the higher outliers we will treat it to get it at 95 percentile value and for Lower-level outliers we will treat it to get it at 5 percentile value.

Bivariate analysis-

1.4 Perform z-score scaling and discuss how it affects the speed of the algorithm.

First 5 rows of the scaled data

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC
_	0 -0.364496	-0.432797	-0.102518	-0.755333	-0.778949	-0.768478	-0.867488	-0.89317	0.535724	-0.880093	-0.891201	-1.194562	-1.04114
	1 -0.364496	-0.432797	-0.102518	-0.755345	-0.778988	-0.768516	-0.867488	-0.89317	0.535724	-0.880093	-0.888615	-1.194562	-1.04114
	2 -0.364496	-0.432797	-0.102518	-0.754900	-0.778919	-0.768445	-0.867488	-0.89317	0.535724	-0.880093	-0.893142	-1.194562	-1.04114
	3 -0.364496	-0.432797	-0.102518	-0.755040	-0.778781	-0.768302	-0.867488	-0.89317	0.535724	-0.880093	-0.898315	-1.194562	-1.04114
	4 -0.364496	-0.432797	-0.102518	-0.755610	-0.779030	-0.768560	-0.867488	-0.89317	0.535724	-0.880093	-0.884734	-1.194562	-1.04114

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23066 entries, 0 to 23065
Data columns (total 13 columns):
```

#	Column	Non-Null Count	Dtype
0	Ad - Length	23066 non-null	float64
1	Ad- Width	23066 non-null	float64
2	Ad Size	23066 non-null	float64
3	Available_Impressions	23066 non-null	float64
4	Matched_Queries	23066 non-null	float64
5	Impressions	23066 non-null	float64
6	Clicks	23066 non-null	float64
7	Spend	23066 non-null	float64
8	Fee	23066 non-null	float64
9	Revenue	23066 non-null	float64
10	CTR	23066 non-null	float64
11	CPM	23066 non-null	float64
12	CPC	23066 non-null	float64

dtypes: float64(13)
memory usage: 2.3 MB

In the scaled data, the mean tends to 0 and Standard deviation to 1.

It is a preprocessing step in data analysis which helps in reducing the influence of features with larger scales or high variances so that we can obtain clusters more efficiently.

1.5 Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.

Below is the truncated dendrogram displaying the last 10 clusters (p=10).

1.6 Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.

Within sum of squares-

{1: 299858.0,

2: 187902.64770993276,

3: 139992.87426412938,

4: 106152.74229789544,

5: 72133.6934158383,

6: 62259.98939794785,

7: 55151.52147681743, 8: 49733.040051637116,

9: 46049.7390221088,

10: 41531.157690828666}

Elbow Plot:

We have used WSS to check the optimal number of clusters. And can observe that the WSS reduces as K keeps increasing.

There is a significant was value drop as we move from k=2 to k=5.

We can choose any from 2 to 5 as our number of clusters. Since there is not a significant reduction at k=6, we will choose 5 as the optimal number of clusters.

1.7 Print silhouette scores for up to 10 clusters and identify optimum number of clusters.

```
{2: 0.40318725804432765,
3: 0.34547066630442486,
4: 0.41284225649057377,
5: 0.48020321346347616,
6: 0.47613989974053916,
7: 0.46883074857917595,
8: 0.43286664054059454,
9: 0.4470009074272004}
```


We can observe that the silhouette score is highest for k=5. So we can consider the optimal number of clusters as 5.

1.8 Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type.

We have grouped data based on 5 clusters. Clus_kmeans column denotes the cluster number.

	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC	Clus_kmeans
0	2020-9-2- 17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0	0.35	0.0	0.0031	0.0	0.0	3
1	2020-9-2- 10	Format1	300	250	75000	Inter227	App	Mobile	Video	1780	285	285	1	0.0	0.35	0.0	0.0035	0.0	0.0	3
2	2020-9-1- 22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0	0.35	0.0	0.0028	0.0	0.0	3
3	2020-9-3- 20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0	0.35	0.0	0.0020	0.0	0.0	3
4	2020-9-4- 15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0	0.35	0.0	0.0041	0.0	0.0	3

Frequency of the clusters-

4699

1 4049

2 1539 3 6139 4 6640

Name: Clus_kmeans, dtype: int64

We have calculated the mean of the original data for each label and grouped them accordingly.

	group_0 Mean	group_1 Mean	group_2 Mean	group_3 Mean	group_4 Mean
Ad - Length	681.939136	4.658810e+02	141.543860	4.244913e+02	146.024096
Ad- Width	305.309640	1.992122e+02	572.482131	1.462127e+02	568.373494
Ad Size	206053.202809	7.520506e+04	75680.311891	5.350448e+04	77139.759036
Available_Impressions	263137.601405	1.039627e+07	805593.964263	1.838153e+06	36489.929217
Matched_Queries	141872.516706	5.630305e+06	566390.274854	8.783969e+05	21813.339006
Impressions	120873.592041	5.451651e+06	477750.160494	8.398562e+05	15667.703916
Clicks	14361.254097	1.125400e+04	65260.276803	3.304247e+03	1888.464759
Spend	1254.077176	8.653044e+03	6985.407472	1.524133e+03	210.052837
Fee	0.349545	2.903853e-01	0.288356	3.492344e-01	0.349991
Revenue	816.684693	6.378677e+03	5013.785448	9.931507e+02	136.562174
CTR	4.473420	3.417136e-02	2.208029	6.252699e-02	5.327328
СРМ	12.046037	1.572871e+00	15.390007	1.805811e+00	14.448043
CPC	0.091051	7.607038e-01	0.111935	5.524783e-01	0.104421

	Clus_kmeans	Device Type	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC	freq
0	0	Desktop	14501.612634	1253.277342	0.349547	816.130957	4.443102	12.022119	0.090368	4699.0
1	0	Mobile	14283.292618	1254.521440	0.349543	816.992263	4.490260	12.059322	0.091430	4049.0
2	1	Desktop	11327.692886	8647.606334	0.290773	6374.965943	0.034836	1.560723	0.754071	1539.0
3	1	Mobile	11212.350599	8656.117445	0.290166	6380.773762	0.033795	1.579737	0.764452	6139.0
4	2	Desktop	65203.080645	6965.583154	0.288548	4997.376742	2.287759	15.440287	0.111979	6640.0
5	2	Mobile	65292.810398	6996.683690	0.288247	5023.118841	2.162678	15.361408	0.111910	NaN
6	3	Desktop	3311.025688	1522.011083	0.349257	991.712318	0.061328	1.810714	0.549474	NaN
7	3	Mobile	3300.514271	1525.300859	0.349222	993.942780	0.063187	1.803111	0.554132	NaN
8	4	Desktop	1918.356003	208.883552	0.349992	135.799904	5.314257	14.262153	0.104181	NaN
9	4	Mobile	1871.743072	210.706956	0.349991	136.988601	5.334641	14.552033	0.104555	NaN

1.9 Conclude the project by providing summary of your learnings.

Below is the final clustered dataset.

Final Clustering.csv

- There are 23066 observations and 19 columns in the data
- 6 variables of Object data type and 13 variables of numeric data type (int and float)
- We have also observed that there are no duplicate values in the dataframe.
- The columns CTR, CPM and CPC contain null values i.e. 4736 entries each
- We treated null values using the given formula-

CPM = (Total Campaign Spend / Number of Impressions) * 1,000.

CPC = Total Cost (spend) / Number of Clicks.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100.

Post which there were no null values in the data.

There were outliers present in many columns.

- Fee was left skewed wherein mean <median
- CPM was highly skewed.
- Since K-Means is sensitive to outliers, in order to perform clustering, we considered outlier treatment to reduce their impact using IQR (Interquartile Range).
- We scaled the data, the mean tended to 0 and Standard deviation to 1.
 It is a preprocessing step in data analysis which helps in reducing the influence of features with larger scales or high variances so that we can obtain clusters more efficiently.
- Performed truncated dendrogram displaying the last 10 clusters (p=10).
- We used WSS to check the optimal number of clusters. And observed that the WSS reduces as K increased.
- There was a significant wss value drop as we move from k= 2 to k=5.
 Since there is not a significant reduction at k=6, we chose 5 as the optimal number of clusters.
- Silhouette score was highest for k=5. So we considered the optimal number of clusters as 5.
- We grouped data based on 5 clusters.
- Cluster 5 had high frequency and 3rd cluster the least.
- The device type did not have much impact on the Clicks, Spend, Fee, Revenue, CTR, CPM, CPC.
- Based on the analysis, we found that Ad Group 4 is more preferrable followed by Ad group 3 and the Ad Group 0 the least preferrable.

Problem 2: PCA:

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages.

2.1 Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

First 5 rows of dataframe

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3	1150	749	180	237	680	252	32	4
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7	525	715	123	229	186	148	76	17
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	114	188	44	89	3	34	0	
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0	194	247	61	128	13	50	4	1
4	1	5	Jammu &	Punch	11654	20591	29981	5157	4587	20	874	1928	465	1043	205	302	24	10

Last 5 rows of dataframe

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M MARG_OT_0_
635	34	636	Puducherry	Mahe	3333	8154	11781	1146	1203	21	 32	47	0		0	0	0
636	34	637	Puducherry	Karaikal	10612	12346	21691	1544	1533	2234	 155	337	3	14	38	130	4
637	35	638	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225	0	 104	134	9	4	2	6	17
638	35	639	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664	0	 136	172	24	44	11	21	1
639	35	640	Andaman & Nicobar	South Andaman	7975	11977	18049	1470	1358	0	 173	122	6	. 2	17	17	2

Basic information about the dataframe-

<class 'pandas.core.frame.DataFrame'> RangeIndex: 640 entries, 0 to 639 Data columns (total 61 columns): # Column Non-Null Count Dtype 0 State Code 640 non-null int64 Dist.Code 640 non-null int64 640 non-null object State Area Name 640 non-null object No_HH 640 non-null int64 TOT_M 640 non-null int64 6 TOT F 640 non-null int64 640 non-null int64 M 06 640 non-null 8 F 06 int64 9 640 non-null M_SC int64 10 F_SC 640 non-null int64 640 non-null int64 11 M_ST 640 non-null 12 F ST int64 13 M_LIT 640 non-null int64 14 F_LIT 640 non-null int64 15 M_ILL 640 non-null int64 16 640 non-null int64 F ILL 17 TOT_WORK_M 640 non-null int64 TOT WORK F 640 non-null int64 MAINWORK M 640 non-null int64 19 MAINWORK F 640 non-null 20 int64 21 MAIN CL M 640 non-null int64 22 MAIN_CL_F 640 non-null int64 23 MAIN AL M 640 non-null int64 640 non-null MAIN AL F 24 int64 MATN HH M 640 non-null 25 int64 MAIN HH F 640 non-null 26 int64 27 MAIN OT M 640 non-null int64 28 MAIN OT F 640 non-null int64 29 MARGWORK_M 640 non-null int64 30 MARGWORK_F 640 non-null int64 31 MARG_CL_M 640 non-null int64 MARG_CL_F 640 non-null int64 32 33 MARG_AL_M 640 non-null int64 640 non-null 34 MARG AL F int64 MARG_HH_M int64 35 640 non-null 36 MARG HH F 640 non-null int64 37 MARG OT M 640 non-null int64 38 MARG_OT_F 640 non-null int64 39 MARGWORK 3 6 M 640 non-null int64 MARGWORK_3_6_F 640 non-null int64 40 41 MARG_CL_3_6_M 640 non-null int64 42 MARG_CL_3_6_F 640 non-null int64 43 MARG_AL_3_6_M 640 non-null int64 int64 44 MARG_AL_3_6_F 640 non-null MARG_HH_3_6_M 45 640 non-null int64 46 MARG_HH_3_6_F 640 non-null int64 MARG OT 3 6 M 47 640 non-null int64 MARG_OT_3_6_F 640 non-null 48 int64 49 MARGWORK_0_3_M 640 non-null int64 50 MARGWORK 0 3 F 640 non-null int64 MARG_CL_0_3_M 51 640 non-null int64 640 non-null MARG_CL_0_3_F int64 52 53 MARG_AL_0_3_M 640 non-null int64 54 MARG AL 0 3 F 640 non-null int64 MARG_HH_0_3_M 640 non-null 55 int64 56 MARG_HH_0_3_F 640 non-null int64 57 MARG OT 0 3 M 640 non-null int64 MARG_OT_0_3_F 640 non-null int64 58 NON_WORK_M 59 640 non-null int64 NON WORK F 640 non-null int64 dtypes: int64(59), object(2) memory usage: 305.1+ KB

It contains 640 entries.

Two of object data type and 59 of numeric data type

State Code	Dist.Code	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST		MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F
count	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000		640.000000	640.000000	640.000000
mean	17.114062	320.500000	51222.871875	79940.576563	122372.084375	12309.098438	11942.300000	13820.946875	20778.392188	6191.807813		1392.973438	2757.050000	250.889062
std	9.426486	184.896367	48135.405475	73384.511114	113600.717282	11500.906881	11326.294567	14426.373130	21727.887713	9912.668948		1489.707052	2788.776676	453.336594
min	1.000000	1.000000	350.000000	391.000000	698.000000	56.000000	56.000000	0.000000	0.000000	0.000000		4.000000	30.000000	0.000000
25%	9.000000	160.750000	19484.000000	30228.000000	46517.750000	4733.750000	4672.250000	3466.250000	5603.250000	293.750000		489.500000	957.250000	47.000000
50%	18.000000	320.500000	35837.000000	58339.000000	87724.500000	9159.000000	8663.000000	9591.500000	13709.000000	2333.500000		949.000000	1928.000000	114.500000
75%	24.000000	480.250000	68892.000000	107918.500000	164251.750000	16520.250000	15902.250000	19429.750000	29180.000000	7658.000000		1714.000000	3599.750000	270.750000
max	35.000000	640.000000	310450.000000	485417.000000	750392.000000	96223.000000	95129.000000	103307.000000	156429.000000	96785.000000		9875.000000	21611.000000	5775.000000

Shape: (640, 61)

There are no duplicates found in the dataframe.

Null value check:

```
State Code 0
Dist.Code 0
State 0
Area Name 0
No_HH 0
...
MARG_HH_0_3_F 0
MARG_OT_0_3_M 0
MARG_OT_0_3_F 0
NON_WORK_M 0
NON_WORK_F 0
Length: 61, dtype: int64
```

No null values found.

2.2 Perform detailed Exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? (Example Questions). Pick 5 variables out of the given 24 variables below for EDA: No_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_LH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F

We are choosing following variables for analysis-

No_HH	No of Household
TOT_M	Total population Male

TOT_F	Total population Female
TOT_WORK_M	Total Worker Population Male
	Total Worker Population
TOT_WORK_F	Female

Univariate analysis-

Description of No_HH

count	640.000000			
mean	51222.871875			
std	48135.405475			
min	350.000000			
25%	19484.000000			
50%	35837.000000			
75%	68892.000000			
max	310450.000000			
Name:	No_HH, dtype: float	:64		

Skew : 2.02

Distribution of No_HH

Description of TOT_M

.....

640.000000 count 79940.576563 mean std 73384.511114 min 391.000000 30228.000000 25% 58339.000000 50% 75% 107918.500000 max 485417.000000 Name: TOT_M, dtype: float64

Skew : 2.03

Distribution of TOT_M

Description of TOT_F

count 640.000000 122372.084375 mean std 113600.717282 min 698.000000 25% 46517.750000 50% 87724.500000 75% 164251.750000 750392.000000 max Name: TOT_F, dtype: float64

Skew : 2.11

Distribution of TOT_F

.....

Description of TOT_WORK_M count 640.000000 37992.407813 mean std 36419.537491 100.000000 25% 13753.500000 27936.500000 50% 50226.750000 75% 269422.000000 max Name: TOT_WORK_M, dtype: float64 Skew : 2.3 Distribution of TOT_WORK_M 300 250 200 150 150 100 50 100000 200000 250000 50000 100000 150000 200000 250000 150000 TOT_WORK_M Description of TOT_WORK_F count 640.000000 mean 41295.760938 std 37192.360943 min 357.000000 25% 16097.750000 30588.500000 50% 53234.250000 75% 257848.000000 max Name: TOT_WORK_F, dtype: float64 Skew : 1.93 Distribution of TOT_WORK_F 250 200 150 100

All the entries are positively skewed and contains outliers.

200000

250000

50000

100000

150000

TOT_WORK_F

200000

250000

100000

50000

150000

50

Bivariate analysis-

We can obtain Gender ratio using following formula-

Gender ratio= Female pop *1000 / male pop

Ct - t -		
State		E4122 02724E
Uttar Pradesh		54132.937245
Madhya Pradesh		31775.695694
Bihar		28359.179844
Rajasthan		22689.095737
Maharashtra		20137.830181
Karnataka		19094.178717
Assam		18512.947635
Tamil Nadu		17342.585846
Gujarat		17221.226828
Odisha		16659.085662
Haryana		16332.590075
Jharkhand		16263.942064
Jammu & Kashmir		16016.296979
Punjab		14956.868233
West Bengal		12337.016850
Andhra Pradesh		12303.635809
Chhattisgarh		9673.837123
Arunachal Prades	h	9148.075615
Kerala		8284.307828
Uttarakhand		8045.597434
Himachal Pradesh		7545.342854
NCT of Delhi		6897.924454
Nagaland		6467.275656
Manipur		5773.922018
Meghalaya		5152.737661
Mizoram		5064.937805
Sikkim		2628.330933
Tripura		2489.246453
Puducherry		2407.197208
Andaman & Nicoba	r Island	1901.582314
Daman & Diu		1404.381804
Goa		1240.316274
Lakshadweep		868.061197
Chandigarh		700.036886
Dadara & Nagar H	avelli	644.631151
Name: Gender rat		float64
Area Name		
Aurangabad	1380.55960	
Hamirpur	1343.37925	
Bilaspur	1247.88350	01
Bijapur	1158.49094	1
Raigarh	1040.77246	52
Baudh	451.45504	7
West Godavari	450.07567	6
Virudhunagar	449.35161	.2
Koraput	440.76873	1
Krishna	437.97225	8
Name: Gender rat	io, Length:	635, dtype: float64

We can conclude that Uttar Pradesh has highest gender ratio and Dadara & Nagar Havelli with the least.

In terms of area, Aurangabad has highest gender ratio while Krishna the least.

Considering around 50,000 households, we have total of around 79,000 male population and 1,00,000 female population.

In which, total working population of male is around 38,000 and 41,000 female.

2.3 We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

Treating outliers depends on the nature of data. Since we have scaled the data to make sure the high variance data does not impact, outlier treatment is not necessary in this case.

2.4 Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.

Printing first few rows of scaled data:

No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0
0 -0.904738	-0.771236	-0.815563	-0.561012	-0.507738	-0.958575	-0.957049	-0.423306	-0.476423	-0.798097	 -0.163229	-0.720610	-0.156494	-0.287524	0.156577	-0.657412	-0.3€
1 -0.935695	-0.823100	-0.874534	-0.681096	-0.725367	-0.958297	-0.956772	-0.582014	-0.607607	-0.849434	 -0.583103	-0.732811	-0.282327	-0.294688	-0.491731	-0.723062	0.04
2 -0.972412	-1.000919	-0.981466	-0.976956	-0.965262	-0.958575	-0.956772	-0.038951	-0.027273	-0.956457	 -0.859212	-0.921931	-0.456727	-0.420050	-0.731894	-0.795026	-0.6€
3 -1.037530	-1.052224	-1.041001	-1.022118	-0.995393	-0.958783	-0.957049	-0.355965	-0.390060	-1.004643	 -0.805468	-0.900758	-0.419198	-0.385127	-0.718770	-0.784926	-0.62
4 -0.822676	-0.809381	-0.813933	-0.622359	-0.649908	-0.957395	-0.955529	0.149238	0.043330	-0.800568	 -0.348645	-0.297513	0.472670	0.434200	-0.466796	-0.625849	-0.43

Hence, we can observe that scaling does not have much impact on outliers.

2.5 Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.

Bartletts Test of Sphericity to test the hypothesis that the variables are uncorrelated in the population.

- H0: All variables in the data are uncorrelated
- Ha: At least one pair of variables in the data are correlated

P value= 0.0

p value < 0.05, hence alternate hypothesis is true and we can agree that there is atleast one pair of variables in the data wihich are correlated. Hence PCA is recommended.

KMO Test to check whether we have adequate no. of observations to perform PCA.

MSA:

0.8039889932781528

Since msa > 0.7, we are expected to provide a considerable reduction is the dimension and extraction of meaningful components. Hence, can perform PCA.

Co-variance matrix-

```
[[1. 0.92 0.97 ... 0.54 0.76 0.74]

[0.92 1. 0.98 ... 0.59 0.85 0.72]

[0.97 0.98 1. ... 0.57 0.83 0.75]

...

[0.54 0.59 0.57 ... 1. 0.61 0.52]

[0.76 0.85 0.83 ... 0.61 1. 0.88]

[0.74 0.72 0.75 ... 0.52 0.88 1. ]
```

Since we performed z scaling, co-variance and correlation matrix are same.

These are 57 PC scores-

```
array([[-4.62, 0.14, 0.33, ..., -0. , 0. , 0. ], [-4.77, -0.11, 0.24, ..., 0. , 0. , 0. ], [-5.96, -0.29, 0.37, ..., 0. , -0. , 0. ],
        [-6.29, -0.64, 0.11, ..., 0. , 0. , -0. ],
        [-6.22, -0.67, 0.27, ..., -0. , -0. , 0. ],
[-5.9 , -0.94, 0.35, ..., -0. , 0. , -0. ]])
Eigen Vectors:
[[ 0.16  0.17  0.17  ...  0.13  0.15  0.13]
[-0.13 -0.09 -0.1 ... 0.05 -0.07 -0.07]
[-0.
        0.06 0.04 ... -0.08 0.11 0.1 ]
[ 0.
        0.21 0.25 ... -0.07 0. -0.07]
[ 0.
        0.29 -0.21 ... 0.04 -0.03 0.01]
[-0. 0.19 0.03 ... -0.03 -0.14 -0.02]]
Eigen Values:
 [3.181e+01 7.870e+00 4.150e+00 3.670e+00 2.210e+00 1.940e+00 1.180e+00
 7.500e-01 6.200e-01 5.300e-01 4.300e-01 3.500e-01 3.000e-01 2.800e-01
 1.900e-01 1.400e-01 1.100e-01 1.100e-01 1.000e-01 8.000e-02 6.000e-02
 4.000e-02 4.000e-02 3.000e-02 3.000e-02 2.000e-02 1.000e-02 1.000e-02
 1.000e-02 1.000e-02 1.000e-02 1.000e-02 0.000e+00 0.000e+00 0.000e+00
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
 0.000e+00]
```

2.6 Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.

Obtaining % of variability explained by each PC

explained variance = (eigen value of each pc)/(sum of eigen values of all pc's)

```
[0.557 0.138 0.073 0.064 0.039 0.034 0.021 0.013 0.011 0.009 0.008 0.006
0.005 0.005 0.003 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001
   0. 0. 0. 0. 0. 0. 0. 0. 0.
0.
                                                     0.
              0.
                                  0.
                        0.
                             0.
                                       0.
                                            0.
                                                 0.
                                                      0.
0.
     0.
          0.
                   0.
             0. 0. 0.
        0.
                                0.
                           0.
                                          1
0.
     0.
                                       0.
```

In %

Obtaining the Cumulative Sum of the Explained Variance

```
Cumulative Variance Explained in Percentage:
 [ 55.73 69.51 76.79 83.21 87.08 90.47 92.53 93.85 94.93 95.85
  96.61 97.23 97.75 98.24 98.57 98.81 99.01 99.2
                                                       99.37 99.51
 99.61 99.69 99.75 99.81 99.85 99.89 99.92 99.94 99.96 99.97
 99.98 99.99 100.
                     100.
                           100.
                                  100.
                                         100.
                                               100.
                                                      100.
                                                             100.
                                                             100.
 100.
       100.
              100.
                     100.
                           100.
                                  100.
                                         100.
                                               100.
                                                      100.
 100.
                     100.
                                              ]
       100.
              100.
                           100.
                                  100.
                                         100.
```

While adding the variance of PCs, and stopping at 90% variance, 6 PCs contribute 90% variance Hence, 90% of variability is explained by 6 PCs.

Scree Plot to identify the number of components to be built.

Plotting Cumulative explained variance and individual explained variance vs Principal Components

We can also find the least number of components that can explain more than 90% variance using enumerate function which has provided below result-

Number of PCs that explain at least 90% variance: 6

2.7 Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.

We have 6 set of eigen vectors and each vector has 57 coefficients.

The below are the eigen vectors-

	DC4	DCO	DC2	DC4	DOF	DOC
	PC1	PC2	PC3	PC4	PC5	PC6
No_HH	0.16	-0.13	-0.00	-0.13	-0.01	0.00
тот_м	0.17	-0.09	0.06	-0.02	-0.03	-0.07
TOT_F	0.17	-0.10	0.04	-0.07	-0.01	-0.04
M_06	0.16	-0.02	0.06	0.01	-0.05	-0.16
F_06	0.16	-0.02	0.05	0.01	-0.04	-0.15
M_SC	0.15	-0.05	0.00	0.01	-0.17	-0.06
F_SC	0.15	-0.05	-0.03	-0.03	-0.16	-0.04
M_ST	0.03	0.03	-0.12	-0.22	0.43	0.22
F_ST	0.03	0.03	-0.14	-0.23	0.44	0.23
M_LIT	0.16	-0.12	0.08	-0.04	-0.01	-0.06
F_LIT			0.12	-0.06	0.06	
M_ILL	0.16	-0.01	-0.02	0.03	-0.10	
_	0.17	-0.01	-0.09	-0.08	-0.12	
TOT_WORK_M		-0.13	0.05	-0.04	-0.02	
TOT_WORK_F	0.15	-0.09	-0.06	-0.23	-0.04	0.11
MAINWORK_M		-0.18	0.05	-0.07	-0.04	0.02
MAINWORK_F	0.12	-0.15	-0.06	-0.25	-0.08	0.12
MAIN_CL_M	0.10	0.06	-0.07	-0.09	-0.29	-0.01
MAIN_CL_F	0.07	0.09	-0.01	-0.29	-0.24	0.10
MAIN_AL_M	0.11	-0.03	-0.25	-0.14	-0.21	-0.03
MAIN_AL_F	0.07	-0.06	-0.25	-0.29	-0.18	0.02
MAIN_HH_M	0.13	-0.08	0.03	0.15	-0.13	0.17
MAIN_HH_F	0.08	-0.08	-0.06	0.05	-0.14	0.42
MAIN_OT_M	0.12	-0.21	0.14	-0.04	0.06	0.02
MAIN_OT_F	0.11	-0.21	0.10	-0.12	0.08	0.08
MARGWORK M			-0.01	0.09		-0.09
_						
MARGWORK_F			-0.05	-0.09	0.09	0.02
MARG_CL_M			0.20	-0.06	-0.02	
MARG_CL_F				-0.17	-0.06	
MARG_AL_M			-0.19	0.09	0.02	
MARG_AL_F			-0.27	-0.11	0.08	
MARG_HH_M			-0.02	0.24	-0.06	
MARG_HH_F			-0.08	0.20	-0.03	
MARG_OT_M MARG_OT_F			0.11	0.09	0.12	
MARGWORK_3_6_M			0.10	-0.00	-0.04	
MARGWORK_3_6_F			0.08	0.00	0.00	
MARG_CL_3_6_M				0.09	0.05	
MARG_CL_3_6_F			-0.07	-0.11	0.07	0.02
MARG_AL_3_6_M			0.15	-0.04	-0.01	
MARG_AL_3_6_F		0.24	0.26	-0.18	-0.06	0.09
MARG_HH_3_6_M			-0.20	0.08	0.01	-0.14
MARG_HH_3_6_F			-0.28		0.06	
MARG_OT_3_6_M	0.14	0.06	-0.02	0.24	-0.07	0.10
MARG_OT_3_6_F	0.12	0.01	-0.08	0.19	-0.04	0.38
MARGWORK_0_3_M	0.15	-0.09	0.11	0.09	0.11	-0.06
MARGWORK_0_3_F	0.15	-0.13	0.10	0.03	0.14	0.01
MARG_CL_0_3_M	0.15	0.15	0.05	0.09	0.08	-0.06
MARG_CL_0_3_F			0.02	-0.02	0.13	-0.00
MARG_AL_0_3_M	0.05	0.25	0.27	-0.10	-0.05	0.07
MARG_AL_0_3_F				-0.14		
MARG_HH_0_3_M				0.13	0.06	
MARG_HH_0_3_F	0.12	0.18	-0.20	0.00	0.13	-0.11
	PC1	PC2	PC3	PC4	PC5	PC6
MARG_OT_0_3_M						
MARG_OT_0_3_M MARG_OT_0_3_F					0.00	0.06
NON_WORK_M			0.11	0.21	0.00	-0.05
NON_WORK_M NON_WORK_F		-0.07	0.11	0.08	0.16	-0.05
NON_WORK_F	0.13	-0.07	0.10	0.02	0.24	-0.02

To identify which features have maximum loading across the components, we will first plot the component loading on a heatmap.

For each feature, we have found the maximum loading value across the components and marked the same with help of rectangular box.

Features marked with rectangular red box are the one having maximum loading on the respective component. We will consider these marked features to decide the context that the component represents.

PC2 provides more information about the Marginal Cultivator population, Marginal Agriculture Labourers.

PC3 on Marginal Agriculture Labourers, Marginal Cultivator Population.

PC4 on Marginal Household Industries Population, Marginal Other Workers Population, Marginal Household Industries.

PC5 on Scheduled Tribes population, Non Working Population.

Highly coefficient columns are Scheduled Tribes population Male, Scheduled Tribes population Female, Main Household Industries Population Female, Marginal Household Industries Population Female, Marginal Other Workers Population Person 3-6 Female, Marginal Other Workers Population 0-3 Female which are very important for our data analysis.

2.8 Write linear equation for first PC.

Liner equation for 1st PC:

PC1 = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6

a1...- coefficients/ eigen vectors

x1... - original data

The Linear equation of 1st component:

0.16 * No_HH + 0.17 * TOT_M + 0.17 * TOT_F + 0.16 * M_06 + 0.16 * F_06 + 0.15 * M_SC + 0.15 * F_SC + 0.03 * M_ST + 0.03 * F_S

T + 0.16 * M_LIT + 0.15 * F_LIT + 0.16 * M_ILL + 0.17 * F_ILL + 0.16 * TOT_WORK_M + 0.15 * TOT_WORK_F + 0.15 * MAINWORK_M +

0.12 * MAINWORK_F + 0.1 * MAIN_CL_M + 0.07 * MAIN_CL_F + 0.11 * MAIN_AL_M + 0.07 * MAIN_AL_F + 0.13 * MAIN_HH_M + 0.08 * MAIN
HH_F + 0.12 * MAIN_OT_M + 0.11 * MAIN_OT_F + 0.16 * MARGWORK_M + 0.16 * MARGWORK_F + 0.08 * MARG_CL_M + 0.05 * MARG_CL_F +

0.13 * MARG_AL_M + 0.11 * MARG_AL_F + 0.14 * MARG_HH_M + 0.13 * MARG_HH_F + 0.16 * MARG_OT_M + 0.15 * MARG_OT_F + 0.16 * MARG
WORK_3_6_M + 0.16 * MARGWORK_3_6_F + 0.17 * MARG_CL_3_6_M + 0.16 * MARG_CL_3_6_F + 0.09 * MARG_AL_3_6_M + 0.05 * MARG_AL_3_6_F +

0.13 * MARG_HH_3_6_M + 0.11 * MARG_HH_3_6_F + 0.14 * MARG_OT_3_6_M + 0.12 * MARG_OT_3_6_F + 0.15 * MARGWORK_0_3_F + 0.15

* MARGWORK_0_3_F + 0.15 * MARG_CL_0_3_M + 0.14 * MARG_CL_0_3_F + 0.05 * MARG_AL_0_3_M + 0.04 * MARG_AL_0_3_F + 0.12 * MARG_HH_0_3_F + 0.12 * MARG_OT_0_3_F + 0.13 * MARG_OT_0_3_F + 0.15 * NON_WORK_M + 0.13 * NON_WORK_F +

Principal Component Plot 45 42 43 53

 PC_1

Thankyou! The end.