Mass Spectrometry-based Multi-Omics: Combinations of Proteomics, Metabolomics, and/or Lipidomics

This manuscript (<u>permalink</u>) was automatically generated from <u>jessegmeyerlab/2022-multi-omics-review@ccd5df2</u> on December 22, 2021.

Authors

- Jane Roe

Department of Something, University of Whatever; Department of Whatever, University of Something

- · Jesse G. Meyer
 - © 0000-0003-2753-3926 · ♠ jessegmeyerlab · ♥ j my sci

Department of Biochemistry, Medical College of Wisconsin · Funded by Grant R21 AG074234; Grant R35 GM142502

Abstract

Studies that integrate unbiased measurements across at least two omics layers are often referred to as "multiomics". Measurable "omes" include the genome, transcriptome, proteome, and metabolome. Any combination of omic measures can be referred to as multiomics; for the scope of this review we focus on research combining proteomics and metabolomics. Mass spectrometry is the leading technique for analysis of the proteome and the metabolome. Due to improvements in sample preparation and data collection, more studies are incorporating both mass spectrometry-based proteomics and metabolomics. In this review, we discuss the perceived value of multiomics, advances in sample preparation and data collection, the current state of multiomic data integration, and clinical examples of multiomic analysis. Finally, we explore major barriers preventing democratization of mass spectrometry based multiomics to the same level as nucleic acid analysis, and we suggest solutions to break these barriers.

Introduction

Here is where we briefly go over the following:

- 1. Cover other reviews
- 2. What is proteomics
- 3. what is metabolomics
 - polar metabolomics
 - lipidomics
- 4. what does multi-omic integration mean?

Test adding citation [1]

Test adding citation by PMID [2]

Sample Preparation for Multi-Omic Analysis

Integrative multi-omics analysis is a powerful approach to study complex biological responses and has gained popularity in recent years. To avoid the potential

- 1, Sample preparation for proteomics
- 2, Sample preparation for metabolomics
- 2.1 non-targeted metabolomics

[3]

- 2.2 targeted metabolomics
- 2.3 lipidomics

4

3, Integrative sample prepatation for multi-omics

In the context of multi-omics analyses, being able to perform multiple measurements on the same sample can also decrease experimental variation.

References

1. Quantitative shotgun proteome analysis by direct infusion

Jesse G Meyer, Natalie M Niemi, David J Pagliarini, Joshua J Coon *Nature Methods* (2020-12) https://www.nature.com/articles/s41592-020-00999-z DOI: 10.1038/s41592-020-00999-z

2. Charge state coalescence during electrospray ionization improves peptide identification by tandem mass spectrometry.

Jesse G Meyer, Elizabeth A Komives

Journal of the American Society for Mass Spectrometry (2012-05-18)

https://www.ncbi.nlm.nih.gov/pubmed/22610994

DOI: 10.1007/s13361-012-0404-0 · PMID: 22610994 · PMCID: PMCID: PMC6345509

3. Development of a plasma pseudotargeted metabolomics method based on ultra-high-performance liquid chromatography-mass spectrometry

Fujian Zheng, Xinjie Zhao, Zhongda Zeng, Lichao Wang, Wangjie Lv, Qingqing Wang, Guowang Xu

Nature Protocols (2020-08) https://www.nature.com/articles/s41596-020-0341-5
DOI: 10.1038/s41596-020-0341-5

4. A complete workflow for high-resolution spectral-stitching nanoelectrospray direct-infusion mass-spectrometry-based metabolomics and lipidomics

Andrew D Southam, Ralf JM Weber, Jasper Engel, Martin R Jones, Mark R Viant *Nature Protocols* (2017-02) https://www.nature.com/articles/nprot.2016.156
DOI: 10.1038/nprot.2016.156

5. Multiomic analysis of a dried single-drop plasma sample using an integrated mass spectrometry approach

Weina Gao, Qiaoyun Zhang, Yiran Su, Peiwu Huang, Xue Lu, Qinyue Gong, Wendong Chen, Ruilian Xu, Ruijun Tian

Analyst (2020-10-12) https://pubs.rsc.org/en/content/articlelanding/2020/an/d0an01149e
DOI: 10.1039/d0an01149e

6. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

Ernesto S Nakayasu, Carrie D Nicora, Amy C Sims, Kristin E Burnum-Johnson, Young-Mo Kim, Jennifer E Kyle, Melissa M Matzke, Anil K Shukla, Rosalie K Chu, Athena A Schepmoes, ... Thomas O Metz

mSystems (2016-05-10) <u>https://journals.asm.org/doi/abs/10.1128/mSystems.00043-16</u> DOI: <u>10.1128/msystems.00043-16</u>