Organización del Computador 1

Práctica 2: Lógica Digital

1er cuatrimestre 2022

${\rm \acute{I}ndice}$

1.	Ejercicio 1	2
2.	Ejercicio 2	2
3.	Ejercicio 3	3
4.	Ejercicio 4	5
5.	Ejercicio 5	5
6.	Ejercicio 6	5
7.	Ejercicio 7: demultiplexor	7
8.	Ejercicio 8: codificador	8
9.	Ejercicio 9: decodificador	10
10.	Ejercicio 10: carry left shifter 3-4	11
11.	Ejercicio 11: full adder de 1 bit	12
12.	Ejercicio 12: full adder de 4 bits	13
13	Ejercicio 13	14

1. Ejercicio 1

Calculando las tablas de verdad podemos ver la equivalencia de las fórmulas booleanas.

1.a.

$$p = (p.q) + (p.\overline{q})$$

p	q	(p.q)	+	$(p.\overline{q})$
0	0	0	0	0
0	1	0	0	0
1	0	0	1	1
1	1	1	1	0

1.b.

$$x.z = (x + y).(x + \overline{y}).(\overline{x} + z)$$

x	y	z	x.z	(x+y)		$(x+\overline{y})$		$(\overline{x}+z)$
0	0	0	0	0	0	1	0	1
0	0	1	0	0	0	1	0	1
0	1	0	0	1	0	0	0	1
0	1	1	0	1	0	0	0	1
1	0	0	0	1	1	1	0	0
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	0
1	1	1	1	1	1	1	1	1

2. Ejercicio 2

Resolviendo mediante propiedades llegamos a 2 fórmulas que a priori no parecen ser equivalentes. Notar en la última línea que a la izquierda tenemos $\overline{y}.\overline{z}$ mientras que a la derecha tenemos $\overline{y}.\overline{z}$.

$$\begin{split} x \oplus (y.z) &= (x \oplus y).(x \oplus z) \\ \overline{x}.y.z + x.\overline{y}.\overline{z} &= (\overline{x}.y + x.\overline{y}).(\overline{x}.z + x.\overline{z}) \\ \overline{x}.y.z + x.\overline{y}.\overline{z} &= (\overline{x}.y + x.\overline{y}).\overline{x}.z + (\overline{x}.y + x.\overline{y}).x.\overline{z} \\ \overline{x}.y.z + x.\overline{y}.\overline{z} &= \overline{x}.y.\overline{x}.z + x.\overline{y}.\overline{x}.z + \overline{x}.y.x.\overline{z} + x.\overline{y}.x.\overline{z} \\ \overline{x}.y.z + x.\overline{y}.\overline{z} &= \overline{x}.y.z + x.\overline{y}.\overline{z} \end{split}$$

Calculamos la tabla de verdad para verificar.

	\boldsymbol{x}	y	z	x	\oplus	(y.z)	$(x \oplus y)$		$(x \oplus z)$		
	1	1	1	1	0	1	0	0	0		
	1	1	0	1	1	0	0	0	1	×	
	1	0	1	1	1	0	1	0	0	×	
	1	0	0	1	1	0	1	1	1		
	0	1	1	0	1	1	1	1	1		
	0	1	0	0	0	0	1	0	0		l
İ	0	0	1	0	0	0	0	0	1		
	0	0	0	0	0	0	0	0	0		

Conclusión: la propiedad planteada es falsa.

3. Ejercicio 3

3.a.

Verdadero, con el operador NAND $(p|q=\overline{p.q})$ podemos representar todas las funciones booleanas: AND, OR, NOT.

Recordemos la tabla de verdad del NAND.

p	q	p.q	$p q = \overline{p.q}$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

3.a.1. NOT

Utilizando la misma entrada 2 veces en un NAND podemos obtener un NOT.

$$p|p=\overline{p}$$

p	p p	\overline{p}
0	1	1
1	0	0

3.a.2. AND

Utilizando el NOT ya construido, podemos encadenarlo a la salida de un NAND para cancelar su negación y así obtener el resultado original del AND.

$$(p|q)|(p|q) = p.q$$

p	q	p q	(p q) (p q)	p.q
0	0	1	0	0
0	1	1	0	0
1	0	1	0	0
1	1	0	1	1

3.a.3. OR

$$(p|p)|(q|q) = \overline{p}|\overline{q} = \overline{\overline{p}.\overline{q}} = \overline{\overline{p}} + \overline{\overline{q}} = p + q$$

$\mid p$	q	p		(q q)	p+q
0	0	1	0	1	0
0	1	1	1	0	1
1	0	0	1	1	1
1	1	0	1	0	1

3.b.

Verdadero, con el operador NOR $(p\downarrow q=\overline{p+q})$ podemos representar todas las funciones booleanas: AND, OR, NOT.

Recordemos la tabla de verdad del NOR.

p	q	p+q	$p \downarrow q = \overline{p+q}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

Observemos que los circuitos para armar las funciones booleanas utilizando solo la compuerta NOR son análogos a los utilizandos con la compuerta NAND.

3.b.1. NOT

$$p\downarrow p=\overline{p}$$

p	$p \downarrow p$	\overline{p}
0	1	1
1	0	0

3.b.2. AND

$$(p\downarrow p)\downarrow (q\downarrow q)=\overline{p}\downarrow \overline{q}=\overline{\overline{p}+\overline{q}}=\overline{\overline{p}}.\overline{\overline{q}}=p.q$$

p	q	$(p \downarrow p)$	\downarrow	$(q \downarrow q)$	p.q
0	0	1	0	1	0
0	1	1	0	0	0
1	0	0	0	1	0
1	1	0	1	0	1

3.b.3. OR

$$(p\downarrow q)\downarrow (p\downarrow q)=(\overline{p+q})\downarrow (\overline{p+q})=\overline{\overline{p+q}}=p+q$$

p	q	$p \downarrow q$	$(p\downarrow q)\downarrow (p\downarrow q)$	p+q
0	0	1	0	0
0	1	0	1	1
1	0	0	1	1
1	1	0	1	1

4. Ejercicio 4

Resuelto en el ejercicio 3.

5. Ejercicio 5

p	q	r	p.q.r
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

6. Ejercicio 6

A	$\mid B \mid$	C	F(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Nota: La tabla de verdad fue ordenada para una lectura más fácil.

6.a.

$$F(A,B,C) = \overline{A}.B.C + A.\overline{B}.\overline{C} + A.\overline{B}.C + A.B.C$$

La implementación literal requiere un total de 15 compuertas: 3 OR, 8 AND y 4 NOT.

6.b.

 $F(A,B,C) = \overline{A}.B.C + A.\overline{B}.\overline{C} + A.\overline{B}.C + A.B.C = B.C(A + \overline{A}) + A.\overline{B}(\overline{C} + C) = B.C + A.\overline{B}$

La implementación optimizada requiere un total de 4 compuertas: 1 OR, 2 AND y 1 NOT.

$\mid A$	$\mid B \mid$	C	B.C	+	$A.\overline{B}$
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	1	1	0
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	0	0	0
1	1	1	1	1	0

7. Ejercicio 7: demultiplexor

En la primer tabla de verdad planteamos una columna para los valores explícitos de e_0 . En la segunda tabla eliminamos esta columna y en cambio planteamos e_0 como el valor de salida cuando las líneas de control computan a 1 para esa fila. Es decir, dada la fórmula booleana para cada salida, primero vemos si el AND entre las 2 líneas de control daría 1, y solo en ese caso el resultado final va a ser determinado por e_0 . En todos los otros casos, como el AND entre las líneas de control da 0, es indistinto el valor de e_0 y la salida va a ser siempre 0.

c_1	c_0	$\mid e_0 \mid$	s_3	s_2	s_1	s_0
0	0	0	0	0	0	0
0	1	0	0	0	0	0
1	0	0	0	0	0	0
1	1	0	0	0	0	0
0	0	1	0	0	0	1
0	1	1	0	0	1	0
1	0	1	0	1	0	0
1	1	1	1	0	0	0

c_1	c_0	s_3	s_2	s_1	s_0
0	0	0	0	0	e_0
0	1	0	0	e_0	0
1	0	0	e_0	0	0
1	1	e_0	0	0	0

Podemos plantear las siguientes fórmulas booleanas para cada una de las salidas.

8. Ejercicio 8: codificador

8.a.

e_0	e_1	e_2	$ e_3 $	s_1	s_0
1	0	0	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0
0	0	0	1	1	1

$$s_1 = \overline{e_0}.\overline{e_1}.e_2.\overline{e_3} + \overline{e_0}.\overline{e_1}.\overline{e_2}.e_3 = \overline{e_0}.\overline{e_1}.(e_2.\overline{e_3} + \overline{e_2}.e_3) = \overline{e_0 + e_1}.(e_2.\overline{e_3} + \overline{e_2}.e_3) = (e_0 \downarrow e_1).(e_2 \oplus e_3)$$

$$s_0 = \overline{e_0}.e_1.\overline{e_2}.\overline{e_3} + \overline{e_0}.\overline{e_1}.\overline{e_2}.e_3 = \overline{e_0}.\overline{e_2}.(e_1.\overline{e_3} + \overline{e_1}.e_3) = \overline{e_0 + e_2}.(e_1.\overline{e_3} + \overline{e_1}.e_3) = (e_0 \downarrow e_2).(e_1 \oplus e_3)$$

Nota: Consideramos s_1 como el bit más significativo de la representación binaria del número i.

8.b.

Para determinar si el estado de la entrada es válido necesitamos que v = 1 únicamente cuando hay una sola entrada en 1.

$ e_0 $	e_1	e_2	$\mid e_3 \mid$	v
0	0		0	0
0	0	0		
$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0	1	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1
0	0	1	1	0
0	1	1 1 0	0	1
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	0		0
0	1	1	0	0
0	1	0 1 1 0 0 1 1 0	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	1 1 0 1 0 0 0 1 0 0
1	0	0	0	1
1 1	0	0	1	0
1	0	1	0	0
1	0	1	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$	0
1 1 1	1	0	0	0
1	0 0 0 1 1 1 1 0 0 0 0	0	1	0 0 0
1	1	1	0	0
1	1	1	1	0

Traducimos la tabla de verdad a una fórmula booleana literal y simplificamos usando propiedades.

$$v = e_0.\overline{e_1}.\overline{e_2}.\overline{e_3} + \overline{e_0}.e_1.\overline{e_2}.\overline{e_3} + \overline{e_0}.\overline{e_1}.e_2.\overline{e_3} + \overline{e_0}.\overline{e_1}.\overline{e_2}.e_3$$

$$= (e_0.\overline{e_1} + \overline{e_0}.e_1).\overline{e_2}.\overline{e_3} + \overline{e_0}.\overline{e_1}.(e_2.\overline{e_3} + \overline{e_2}.e_3)$$

$$= (e_0 \oplus e_1).(e_2 \downarrow e_3) + (e_0 \downarrow e_1).(e_2 \oplus e_3)$$

La fórmula se puede describir de la siguiente forma: la salida v será 1 si e_0 o e_1 son 1 (pero no ambos al mismo tiempo) y a su vez e_2 y e_3 son ambos 0. O, de forma análoga, si e_2 o e_3 son 1 (pero no ambos al mismo tiempo) y a su vez e_0 y e_1 son ambos 0.

Planteamos un único circuito para el codificador con la salida que indica si la entrada está en un estado válido.

9. Ejercicio 9: decodificador

9.a.

	e_1	e_0	s_3	s_2	s_1	s_0
Г	0	0	0	0	0	1
	0	1	0	0	1	0
	1	0	0	1	0	0
	1	1	1	0	0	0

9.b.

10. Ejercicio 10: carry left shifter 3-4

10.a.

10.b.

El shift a la izquierda equivale a multiplicar por 2. El shift a la derecha equivale a la división entera por 2 (es decir, dividir por 2 redondeado hacia abajo).

11. Ejercicio 11: full adder de 1 bit

11.a.

$$S = \overline{A}.\overline{B}.C_{in} + \overline{A}.B.\overline{C_{in}} + A.\overline{B}.\overline{C_{in}} + A.B.C_{in}$$

$$= (\overline{A}.\overline{B} + A.B).C_{in} + (\overline{A}.B + A.\overline{B}).\overline{C_{in}}$$

$$= (\overline{A}.B + A.B).C_{in} + (\overline{A}.B + A.\overline{B}).\overline{C_{in}}$$

$$= (\overline{A}.B + A.\overline{B}).C_{in} + (\overline{C_{in}} + C_{in}).A.B$$

$$= (A \oplus B).C_{in} + A.B.C_{in}$$

$$= (A \oplus B).C_{in} + A.B.C_{in}$$

$$= (A \oplus B).C_{in} + A.B.C_{in}$$

11.b.

El retardo total del circuito será $max\{retardo(S), retardo(C_{out})\}$. La salida S utiliza 2 compuertas mientras que C_{out} utiliza 4. Nos concentramos entonces en ver el retardo de C_{out} para cada instante.

- 1. Se activan las compuertas para las operaciones: $A \oplus B$ y A.B
- 2. Se activa la compuerta para la operación AND: $(A \oplus B) \cdot C_{in}$
- 3. Se activa la compuerta para la operación OR: $(A \oplus B).C_{in} + A.B$

Por lo tanto, el retardo total del circuito para producir todas su señales de salida es de 3t.

12. Ejercicio 12: full adder de 4 bits

12.a.

Nota: Este circuito ya incluye los flags del item b.

12.b.

• Negative: $N = S_3$

• Overflow: $V = C_{in3} \oplus C_{out3}$

• Carry: $C = C_{out3}$

• Zero: $Z = (S_0 \downarrow S_1).(S_2 \downarrow S_3)$

12.c.

Sí, el circuito funciona para sumar números codificados en notación sin signo. Pero habría que ajustar los flags de la siguiente forma:

• Negative: no aplica ya que estamos sumando números sin signo

 \blacksquare Overflow: se ignora

• Carry: es el nuevo flag de overflow

■ Zero: sin cambios

12.d.

Para realizar restas se podría modificar el circuito agregando una nueva señal de control O para indicar la operación: 0 representa suma, 1 representa resta.

Si los números están representados en complemento a 2, el procedimiento sería el siguiente:

- \blacksquare Invertir todos los bits de la entrada B.
- Suministrar un 1 en el C_{in} del full adder del bit menos significativo.

De esta forma encontramos el inverso aditivo de la entrada B y en efecto la operación realizada es: A + (-B) = A - B.

Para números representados en notación sin signo, si restringimos la entrada a 3 bits, el número se representa igual en complemento a 2 con 4 bits y podemos hacer la misma operación planteada anteriormente.

Tabla de verdad de la resta:

$\mid A$	$\mid B \mid$	$borrow_{in}$	resta	$borrow_{out}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

12.e.

Pendiente

12.f.

Pendiente

13. Ejercicio 13

13.a. Negador

Simplemente negamos todas las entradas.

13.b. Inversor

Utilizando el negador y un full adder (para sumar 1) podemos aplicar el algoritmo para invertir un número en representación complemento a 2.

13.c. Inversor con flag

El único número que no tiene inverso aditivo en representación complemento a 2 es el -8_{10} , el cual se representa con el siguiente numeral: 1000_2 . Por lo tanto, la fórmula booleana para prender el flag es la siguiente: $F = e_3.\overline{e_2}.\overline{e_1}.\overline{e_0}$.

