2003 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time- 5 minutes
- Working Time 2 hours
- O Write using a blue or black pen
- O Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- O Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7
- O All questions are of equal value

WESTERN REGION

Extension 1

ii)

Quest	ion 1 12 Marks Start a fresh sheet of paper.	Marks
a)	Find the horizontal asymptote for $y = \frac{3x^2 + 4x + 5}{x^2}$	2
b)	Solve the inequality $\frac{x}{2-x} \le 4$	3
c)	Find $\sum_{n=2}^{20} 3n - 4$. 2
d)	Use the substitution $u = x^2 - 3$ to evaluate	3
	$\int_{2}^{6} \frac{x}{\sqrt{x^2 - 3}} dx$	
e)	A parabola is defined by the parametric equations $x = 3t$ $y = 6t^{2}$	·
	i) What point is defined when $t = 5$?	1

What is the Cartesian equation of the parabola?

12 Marks Question 3

Start a fresh sheet of paper.

Marks

Find $\int_{0}^{\pi/16} \cos^2 4x dx$ a)

3

How many arrangements can be made from the letters of the word i) b) **EXCESSIVE?**

1

Find the probability that such an arrangement has the consonants ii) and vowels in alternating positions.

2

Calculate the solutions to $4\cos\theta + 3\sin\theta = 2$ in the range $0 \le \theta \le 2\pi$ c) Express your answers to the nearest hundredth of a radian.

The graph below shows a function y = f(x). d)

Specify a portion of the domain for which f(x) has an inverse i)

1

Copy the graph of the curve onto your answer sheet and neatly draw ii) $y = f^{-1}(x)$ for the domain you specified in i)

1

Question 4 12 Marks

Start a fresh sheet of paper.

Marks

a)

3

In the diagram AB is common tangent to the two circles.

Likewise CD is also a common tangent.

The two tangents meet externally at X.

Explain why AC | BD.

b) Given that $\cos 3\theta = \cos(\theta + 2\theta)$, use the double angle formulae to express $\cos 3\theta$ in terms of $\cos \theta$.

2

5

c)

The graph represents a part of the curve $y = 8\sin^2 x - 10\sin x + 3$. Calculate the two roots shown in the diagram and evaluate the minimum value shown in the graph.

1

Question 4 is continued on page 6

Marks Question 4 continued 1 Specify the equation graphed by the thinner of the two lines. i) d)

- What values of x are defined by $x+2 \ge |3x-2|$? 1
- ii)

Ques	stion 5	12 Marks Start a fresh sheet of paper.	Marks
a)	i)	Use the method of proof by induction to show that	3
	ii)	$1+7+19++(3n^2-3n+1)=n^3$ Show that the rule $T_n = S_n - S_{n-1}$ holds true in part (i).	1
			1
b)	i)	Use the Chain Rule to show that $\frac{dv}{dt} = \frac{d}{dx} \left(\frac{1}{2} v^2 \right)$	-
	ii)	The acceleration due to gravity is inversely proportional to	1
		the square of the distance x from the centre of the earth. $-k$	
		This can be written as $a = \frac{-k}{x^2}$.	
		Find k if $a = -g$ when $x = R$.	
	iii)	If the initial velocity of a rocket is $u \text{ ms}^{-1}$, show that	2
		$v^2 = \frac{2R^2g}{x} + u^2 - 2gR$ where g is the acceleration due to gravity	
		and R is the radius of the earth.	
	iv)	Find the maximum distance that the rocket will travel from the	1
		centre of the earth.	
		(Answer in terms of g , R and u)	
	v)	Taking $g = 9.8$, $R = 6400$ km find the value of u in ms ⁻¹	1
		for which the rocket will escape the gravity of the earth.	
C) G	iven that $f(x) = ax^3 + bx^2 + cx + d$ is a function with a	2
	de	ouble root at $x = -1$ and with a minimum value of -4 when $x = 1$,	

find the values of a, b, c and d.

Question 6 12 Marks Start a fresh sheet of paper.

Marks

1

1

- a) A body is moving in a straight line and its position x is given by $x = 2 \sin^2 t$.
 - i) What are the extremities of its position?
 ii) Express the acceleration of the particle in terms of x.
 1
 - iii) Show the particle is undergoing SHM.
 - iv) Find its maximum speed.
- b) The binomial theorem states that $(1+x)^n = \sum_{k=0}^n {}^nC_kx^k$ Show that ${}^nC_1 + 2{}^nC_2 + 3{}^nC_3 + \dots + n{}^nC_n = n \times 2^{n-1}$
- c) $\left(\frac{1}{2} + \frac{1}{2}\right)^7$ represents the outcomes in terms of gender of children for a family with 7 children.

 Calculate the probability of 5 boys and 2 girls.
- d) The graph below shows the derivative of $y = 2 \tan^{-1} x$.
 - i) Where does $y = 2 \tan^{-1} x$ have its greatest slope and what is this slope? 1
 - ii) What x values correspond with $\frac{dy}{dx} = \frac{1}{3}$
 - What is the total area bounded by this curve and the x axis? (Note: Domain of the function is $-\infty \le x \le \infty$)

Ques	stion 2	12 Marks	Start a fresh sheet of paper.	Marks
a)	Consi	der the points	A (-1, -1) B (2, 4) C (8, 14)	
	i)	Find the rati	o AB:BC	1
	ii)	Complete th	e statement "C divides AB externally in the ratio"	1
b)	i)	If log 12 =	2.26186, find log, 4	1

- b) i) If $\log_3 12 = 2.26186$, find $\log_3 4$ ii) Find $\log_e e^{1.09}$
- c) Find the quotient and the remainder when $x^3 + 4x^2 2x + 3 \text{ is divided by } x^2 1.$
- d) A surveyor at X observes a tower due north.
 The angle of elevation to the top of the tower is 10°.
 He then walks 400m to a position Y which is due east of the tower.
 The angle of elevation from Y to the top of the tower is 15°.

i) Write an expression for OY in terms of h.
ii) Calculate h to the nearest metre.
iii) Find the bearing of Y from X.
2

Question 7 12 Marks Start a fresh sheet of paper.

Marks

- a) A projectile has an initial velocity V and an angle of projection θ .
 - i) Assuming $\frac{d^2y}{dt^2} = -10$, $\frac{d^2x}{dt^2} = 0$ and the initial point of projection

 is 10m above the origin, find expressions for x and y in terms of t.
 - ii) If $V = 13 \text{ms}^{-1}$ and $\theta = \tan^{-1} \frac{5}{12}$ find the range of the projectile.
- b) P $(2ap, ap^2)$ and Q $(2aq, aq^2)$ are extremities of a focal chord for the parabola $x^2 = 4ay$.
 - i) Form the equation of the chord PQ and deduce the constraint on p and q. 2
 - ii) Find where the tangents at P and Q meet.
 - iii) Show that the chord PQ has length $a\left(p+\frac{1}{p}\right)^2$.

End of Paper

Solutions Question 1 2003	Marks/Comments
	1 for realising x tends
(a)	to infinity represents
$\lim_{x \to \pm \infty} \frac{3x^2 + 4x + 5}{x^2}$	horizontal asymptote
$=\lim_{x\to\infty}\left(3+\frac{4}{x}+\frac{5}{x^2}\right)$	
=3+0+0	4.6
= 3	1 for answer
1 b)	
- /	1. C. CD. her either
$\frac{x}{2-x} \le 4, x \ne 2$	1 for CPs by either
x = 8 - 4x	method
5x = 8	,
x = 1.6	1 for test
x = 2, 1.6 are critical points	1 for statement.
test points $x=0 \checkmark$, $x=5\checkmark$, $x=1.75 \times$	not 3^{rd} mark if $x \ge 2$
$x \le 1.6$ or $x > 2$	not 5 max 2 3
$x \le 1.0 \text{ or } x > 2$ 1 c) $2 + 5 + 8 + \dots + 56$	1 for clear expression
has 19 terms with common difference = 3	1 for correct answer
$\frac{n}{2}(a+l) = 9.5 \times 58 = 551$	110100
1 d)	
6	
$\int_{x}^{x} \frac{x}{\sqrt{x^2 - 3}} dx$	
$\frac{3}{2}\sqrt{x^2-3}$	1 not all reqd
$\frac{du}{dx} = 2x, \ x = 2, u = 1, \ x = 6, u = 33$	1 not an roqu
$\frac{1}{dx} = 2x, x = 2, u = 1, u = 1$	
$1^{33} c du$	1 for clear statement
$I = \frac{1}{2} \int_{1}^{33} \frac{du}{\sqrt{u}}$	of integral
	01 11110
$=\frac{1}{2}\left[2u^{\frac{\gamma_2}{2}}\right]_1^{33}$	1 for completion
$=\sqrt{33}-1$	
1 e) i) (15,150)	$\frac{1}{1}$ /13
1 e) ii) $9t^2 = x^2 = 1.5y$	1 /1/

Solutions Question 2 2003	Marks/Comments
a) i) 1:2	1
a) ii) 3:2	1
b) i)	
<i>, ,</i>	1
$\log_3 4 = \log_3 \frac{12}{3}$	
$= \log_3 12 - \log_3 3$	
=2.26186-1	
=1.26186	
b) ii) 1.09	1 1 for setting up the
c) x^2-1 x^3+4x^2-2x+3	division
Q(x) = x + 4, R(x) = 7 - x	1
d) i)	1
$\frac{h}{OY} = \tan 15^{\circ}$	1
$\frac{\partial}{\partial Y} = \tan i \beta$	
$OY = \frac{h}{\tan 15^{\circ}} \text{or } h \cot 15^{\circ}$	
$OI = \frac{1}{\tan 15^{\circ}} OI n \in \mathbb{N}$	
d) ii) Likewise $OX = h \cot 10^{\circ}$	1 .
Now right angle at O in Δ OXY so	
$400^2 = h^2(\cot^2 15^0 + \cot^2 10^0)$	1
$h = \frac{400}{\sqrt{\cot^2 15^0 + \cot^2 10^0}}$	
	1
$h = \frac{400}{\sqrt{46.09164071}}$	
= 59 <i>m</i>	
d) iii)	
tan ∠OXY	1
hcot15°	
$=\frac{h\cot 15^{\circ}}{h\cot 10^{\circ}}$	
$=\frac{\tan 10^{\circ}}{\tan 15^{\circ}}$	
= .658	1 /12
$\angle OXY = 33^{\circ}21'$	1

Solutions Question 3 2003	Marks/Comments
a) Now	1
$\cos 2x = 2\cos^2 x - 1$	
$\cos^2 x = \frac{\cos 2x + 1}{2}$	
$\cos^2 x = \frac{1}{2}$	
$\cos^2 4x = \frac{\cos 8x + 1}{2}$,
$I = \frac{1}{2} \int_{0}^{\infty} \cos 8x + 1 dx$	1
$=\frac{1}{2}\left[\frac{1}{8}\sin 8x + x\right]_{0}^{5/6}$	·
$= \frac{1}{2} \left(\frac{1}{8} \sin \frac{\pi}{2} + \frac{\pi}{16} - 0 \right)$	
$=\frac{2+\pi}{32}$	1
b) i) 9 letters, E appears 3 times and S appears twice	1.00
$\frac{9!}{3!2!} = 30240$	1 simplification not
3!2!	req <u>d</u>
b) ii) The requirement is C V C V C V C V C	1
Vowels can be ordered in $\frac{4!}{3!} = 4$ ways	
Consonants can be ordered in $\frac{5!}{2!}$ = 60 ways	
Probability = $\frac{240}{30240} = \frac{1}{126}$	1 simplification not reqd
c) $4\cos\theta + 3\sin\theta = 2$	
then $\frac{4}{5}\cos\theta + \frac{3}{5}\sin\theta = \frac{2}{5}$	1
noting $\sin(\alpha + \theta) = \sin \alpha \cos \theta + \cos \alpha \sin \theta$	
we have $\sin \alpha = \frac{4}{5}$ and $\cos \alpha = \frac{3}{5}$	1
	1
$\alpha = 0.9273^{\circ}$ $\therefore 0.9273 + \theta = 0.41151^{\circ} \text{ or } 1.982313^{\circ}$ and so $\theta = 1.00^{\circ}, 5.77^{\circ}$ $5.77, 1.8$ $5.77, 1.8$	1 ignore failure to
and so $\theta = 0.005^{\circ}, 5.77^{\circ}$	conform to accuracy.
5.71.18 2.80	(Answer in degrees acceptable)
d) i) $x \le 1$ or $x \ge 1$	1
4)1) 221 0/ 221	

Solutions Question 4 2003	Marks/Comments
a) BX =DX (tangents drawn from external point)	1
∴∠DBX=∠BDX	
likewise $AX = CX$ and $\angle CAX = \angle ACX$	1
(Both these pairs of equal angles are equal since $\angle X$ is	
common in both triangles)	1
:. AC BD (corresponding angles equal)	1
(b)	
$\cos(\theta + 2\theta)$	
$=\cos\theta\cos2\theta-\sin\theta\sin2\theta$	1
$=\cos\theta(2\cos^2\theta-1)-\sin\theta(2\sin\theta\cos\theta)$	1
$= 2\cos^3\theta - \cos\theta - 2(1-\cos^2\theta)\cos\theta$	
$=4\cos^3\theta-3\cos\theta$	1
c) $\sin x = \frac{10 \pm \sqrt{100 - 96}}{16} = 0.5 \text{ or } 0.75$	1
10	
Then $x = .524^{\circ}$ or $.848^{\circ}$	1
Minimum when first deriv. $= 0$	
$16\sin x \cos x - 10\cos x = 0$	
$16\sin x = 10$	1
since $\cos x \neq 0$ $(x = \frac{\pi}{2} \text{ but } \frac{\pi}{2} > 1, \therefore \text{ not a solution})$	1
$\sin x = 0.625$, $x = .675$	1
$y = 8\left(\frac{5}{8}\right)^2 - 10 \times \frac{5}{8} + 3 = -0.125$	1
d) i) $y = 3x - 2 $	1
d) ii) $0 \le x \le 2$	1 /12

Solutions Ouestion 5 2003	Marks/Comments
Solutions Question 5 2003 a) i) If $n = 1$, $1 = 1^3$ true when $n = 1$	
Assume when $n = k$ ie. $1 + 7 + 19 + \dots + (3k^2 - 3k + 1) = k^3$	1
Read to prove	
$1 + 7 + \dots + (3k^2 - 3k + 1) + (3(k+1)^2 - 3(k+1) + 1) = (k+1)^3$	
LHS = $k^3 + 3(k+1)^2 - 3(k+1) + 1$	
$= k^3 + 3k^2 + 6k + 3 - 3k - 3 + 1 = k^3 + 3k^2 + 3k + 1$	1
$=(k+1)^3$	
The proposal holds when $n = 1$. If assumed for a number it will hold for the next number, so it holds for $n = 2$ etc. Hence by induction the proposal holds for all $n \in J$, $n \ge 1$	1
a) ii)	
$n^3 - (n-1)^3$	
$= n^3 - n^3 + 3n^2 - 3n + 1$	1
$=3n^2-3n+1$	
b) i)	
, ,	
$\frac{dv}{dt} = \frac{dv}{dx} \cdot \frac{dx}{dt}$	
$=v\cdot\frac{dv}{dx}$	
	1
$=\frac{d}{dv}\left(\frac{1}{2}v^2\right)\frac{dv}{dx}$	
$=\frac{d}{dx}\left(\frac{1}{2}v^2\right)$	
$-g = \frac{-k}{R^2}$	
$\begin{array}{ccc} b) & ii \end{array} \begin{array}{ccc} -g = \overline{R^2} \end{array}$	1
$\therefore k = gR^2$	
b) iii) $a = \frac{-gR^2}{x^2}$	
$\frac{d}{dx}\left(\frac{1}{2}v^2\right) = -gR^2x^{-2}$	1
$\frac{1}{2}v^2 = \int -gR^2x^{-2}dx$	
$v^2 = 2gR^2x^{-1} + c$	
but when $x = R$, $v = u$,	
$\therefore c = u^2 - 2gR$	1
$v^2 = \frac{2R^2g}{x} + u^2 - 2gR \text{ as req}\underline{d}$	

1
1
1
1
1
1
*
/12

Solutions Question 6 2003	Marks/Comments
of i) $-1 \le \sin t \le 1$	1
$0 \le \sin^2 t \le 1$	1
$0 \le 2\sin t \le 2$	
$\therefore \text{ extremities are between } x = 0 \text{ and } x = 2$	
ii) $\frac{dx}{dt} = 2 \times 2 \sin t \cos t$	1 for clear intention to differentiate wrt t
$=4\sin t\cos t$	
$\frac{d^2x}{dt^2} = vu' + uv'$	
$=4(\cos^2 t - \sin^2 t)$	1 for completion
$=4\left(1-2\sin^2t\right)$	
$=4(1-x)$ = 4 (1-x) has form $-n^2X$	1
a) iii) Particle has SHM since its acceleration has form $-n^2X$	
a) iv) Maximum speed when $x = 1$, $t = \sin^{-1}(\frac{1}{\sqrt{2}})$	
Then $\frac{dx}{dt} = 2 \times 2 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}} = 2 \text{ ms}^{-1}$	1
	1 for clear expression
b) $(1+x)^n = {}^nC_0 + {}^nC_1x + {}^nC_2x^2 + + {}^nC_nx^n$	of bin. th. and
differentiating both sides wrt x	differentiating or
$n(1+x)^{n-1} = {}^{n}C_{1} + 2{}^{n}C_{2}x + 3{}^{n}C_{3}x^{2} + + n{}^{n}C_{n}x^{n-1}$	letting x equal something
	sometime
letting $x = 1$	1
$RHS = n \times 2^{n-1}$	•
RHS = $n \times 2^{n-1}$ c) ${}^{7}C_{5} \left(\frac{1}{2}\right)^{5} \times \left(\frac{1}{2}\right)^{2} = 0.1640625$	1
d) i) By inspection $m_{\text{max}} = 2$ when $x = 0$	1
d) ii) The curve represents $\frac{dy}{dx} = \frac{2}{1+x^2}$	
which equals $\frac{1}{3}$ when $x = \pm \sqrt{5}$	1
d)iii)	1
$\int_{-\infty}^{\infty} \frac{2}{1+x^2} dx = 2 \int_{0}^{\infty} \frac{2}{1+x^2} dx$	
$=4\int_{0}^{\infty}\frac{1}{1+x^{2}}dx$	
$=4\left[\tan^{-1}x\right]_{0}^{\infty}$	1
$=4\times\frac{\pi}{2}$	
$=2\pi$	

Solutions Question 7 2003	Marks/Comments
a) i) $\frac{dy}{dt} = -10t + c$ but when $t = 0$ $y' = V \sin \theta$ so	1 clear intention to
aı	integrate both wrt t
$y' = V \sin \theta - 10t$ Also $x' = V \cos \theta$	
$x = Vt \cos \theta$	1
$y = \int V \sin \theta - 10t dt = Vt \sin \theta - 5t^2 + c$	
and from the initial conditions $c = 10$	1 for correct
	constants
a) ii) By Pythagoras $\sin \theta = \frac{5}{13}$ and $\cos \theta = \frac{12}{13}$	
We require x when $y = 0$	1
$y = 13t \frac{5}{13} - 5t^2 + 10$ which =0 when	
$-5 \pm \sqrt{25 + 4 \times 5 \times 10}$	
$t = \frac{-5 \pm \sqrt{25 + 4 \times 5 \times 10}}{-10}$	
$=\frac{-20}{-10}$ or $\frac{10}{-10}$	
10	
When $t = 2$	1
$x = 13 \times 2 \times \frac{12}{13} = 24 \text{ m}$	
b) i) PQ has eqn	
$\frac{aq^2 - ap^2}{2aq - 2ap} = \frac{y - ap^2}{x - 2ap}$	
2aq - 2ap x - 2ap	1
$=\frac{q+p}{2}$	
which becomes $2y-2ap^2 = (p+q)x-2apq-2ap^2$	
when $x = 0$, $y = a$	
2a = -2apq	1
$\therefore pq = -1$	
b) ii) Tangent at P $y = px - ap^2$	
Tangent at Q $y = qx - aq^2$	
$q \times \text{Tangent at P} qy = pqx - ap^2q$	1
$p \times \text{Tangent at } Q$ $py = pqx - aq^2 p$	
whence $y = -a$	1
	. 1
1	
	-
	1
whence $(q-p)y = apq(q-p)$ $y = -a$ subbing $-a = px - ap^{2}$ $pqa + ap^{2} = px$ $x = a(p+q)$ b)iii) $PQ = \sqrt{(2ap - 2aq)^{2} + (ap^{2} - aq^{2})^{2}}$	1

$= \sqrt{4a^{2}(p-q)^{2} + a^{2}(p^{2}-q^{2})^{2}}$	
$= a\sqrt{4(p-q)^{2} + (p-q)(p+q)^{2}}$	
$=a(p-q)\sqrt{4+(p+q)^2}, p>q$	1
$=a(p-q)\sqrt{-4pq+(p+q)^2}$, $(pq=-1)$	
$=a(p-q)\sqrt{(p-q)^2}$	
$= a(p-q)^2 \text{but } q = \frac{-1}{p}$	1
$= a \left(p + \frac{1}{p} \right)^2$ as reqd	or 3 marks for other method

Mathematics Extension 1 2003 Trial HSC Examination Mapping Grid

Mathematics Extension 1 2003 That HSC Examination Mapping Tar				
Question	Marks	Content	Syllabus Outcomes	d Perform ance Bands
		C 1 1.1.1	P5	E2 - E3
1 a)	2	Real functions of a real variable and their	13	
		geometrical representation	P4	E2 - E4
1 b)	3	Basic Arithmetic and Algebra	H5, H9	E2 - E3
1 c)	2	Series and Applications	HE6	E2 - E3
1 d)	3	Integration Parabola	PE4	E2 - E3
1 e) i)	1	The Quadratic Polynomial and the Parabola	PE4	E2 - E3
1 e) ii)	1	The Quadratic Polynomial and the Parabola	P4	E2 - E3
2 a) i)	1	Linear Function and lines	P4	E2 - E3
2 a) ii)	1	Linear Function and lines	H3	E2 - E3
2 b) i)	1	Logarithmic and Exponential Functions	H3	E2 - E3
2 b) ii)	1	Logarithmic and Exponential Functions	PE3	E2 - E3
2 c)	2	Polynomials	P4	E2 - E3
2 d) i)	1	Trigonometric Ratios	HE3	E3 - E4
2 d) ii)	3	Trigonometric Ratios Basic Arithmetic and	11177	
		Algebra	H5	E2 - E3
2 d) iii)	2	Trigonometric Ratios	H8	E2 - E3
3 a)	3	Integration, The Trigonometric Functions	PE3	E2 - E3
3 b) i)	1	Permutations, Combinations and Further	FES	
		Probability	PE3	E3 - E4
3 b) ii)	2	Permutations, Combinations and Further	FE3	
		Probability	H5, PE2	E2 - E3
3 c)	4	Trigonometric Ratios, The Trigonometric	H3, FE2	
		Functions	HE4	E2 - E4
3 d) i)	1	Inverse function, and Inverse Trigonometric	пс4	DZ Z
		Functions	H5, HE4	E2 - E3
3 d) ii)	1	Inverse function, and Inverse Trigonometric	H3, 11124	
		Functions	PE2,PE3,H5	E2 - E4
4 a)	3	Circle Geometry	PEZ,FE3,113	E3 - E4
4 b)	2	Trigonometric Ratios, Basic Arithmetic and	P4	LS D.
		Algebra	112 115 116	E3 - E4
4 c)	5	The Trigonometric Functions, Geometric	H2, H5, H6	
		Applications of Differentiation	P5	E2 - E4
4 d) i)	1	Basic Arithmetic and Algebra		E2 - E4
4 d) ii)		Basic Arithmetic and Algebra	P5	E2 - E3
5 a) i)		Series and Applications	HE2	E2 - E3
5 a) ii		Series and Applications	H5, HE2	E2 - E3
5 b) i)		Applications of Calculus to the Physical World	HE3, HE5	E2 - E3 E3 - E4
5 b) ii		Applications of Calculus to the Physical World	P3	E3 - E4
5 b) ii		Applications of Calculus to the Physical World	HE3, HE7	
5 b) is		Applications of Calculus to the Physical World	HE3	E3 - E4
5 b) v		Applications of Calculus to the Physical World	HE3	E2 - E4
5 c)	$\frac{1}{2}$	Polynomials	HE7, PE3	E2 - E3
		Applications of Calculus to the Physical World,	H5	E2 - E4
6 a) i)	' '	Trigonometric Functions		
(2) :	i) 2	Applications of Calculus to the Physical World	HE3	E2 - E3
6 a) i		Applications of Calculus to the Physical World	H5	E3 - E4
6 a) i		Applications of Calculus to the Physical World	HE3	E3 - E4
6 a) i	v) 1	Applications of Careares to the		