Reinforcement Learning

Cheat Sheet

 $Saar\ Barak$ - TAU 2023 B

Markov's inequality: ∀ non-negative random $\overline{\text{variable } X \text{ and } a > 0}$, it holds that $P[X \ge a] \le \frac{E[X]}{a}$ Chebyshev's inequality: let X be a random variable with $E[X] = \mu < \infty$ and $0 \neq Var(X) = \overset{\cdot}{\sigma^2} < \overset{\cdot}{\infty}$. It holds that

 $\forall k > 0 : P[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$ Chernoff bound (Hoeffding inequality): let $R_1, ..., R_m$ be m i.i.d samples of a RV $R \in [0, 1]$. Let $\mu = E[R], \ \hat{\mu} = \frac{1}{m} \sum_{i=1}^m Ri$. For any $\epsilon \in (0, 1)$:

$$P[|\mu - \hat{\mu}| > \epsilon] \le 2e^{-2\epsilon^2 m}$$

$$P[\hat{\mu} \le (1 - \epsilon)\mu] \le e^{-\frac{m\epsilon^2}{2}}$$

$$P[\hat{\mu} \ge (1 + \epsilon)\mu] \le e^{-\frac{m\epsilon^2}{3}}$$

McDiarmid's inequality: let domain X, $\overline{f:X^n \to R, c_i} =$

 $\max_{x,x_i,x_i'} |f(x_1,...,x_i,...,x_n) - f(x_1,...,x_i',...,x_n)|$ then: $P[|f(x) - E[f(x)]| \ge \epsilon] \le 2e^{-\frac{2\epsilon^2}{\sum_{i=1}^n c_i^2}}$ Corollary: set $f = \bar{X} = \frac{1}{n} \sum_{i=1}^n x_i$ where $x_i \in [0,1]$ then $c_i = \frac{1}{n}$ and

 $P[|\bar{X} - E[\bar{X}]| \ge \epsilon] \le 2e^{-2\epsilon^2 n} \frac{\text{Corollary:}}{\beta_i x_i \text{ where } x_i \in [0, 1]}$ $f = wavg(x_1, ..., x_n) = \sum_{i=1}^n \overline{\beta_i x_i} \text{ where } x_i \in [0, 1]$ then $c_i = \beta_i$ and

 $P[|wavg(X) - E[wavg(X)]| \ge \epsilon] \le 2e^{-\frac{2\epsilon^2}{\sum_{i=1}^n \beta_i^2}}$ Exponential average:

$$\hat{\mu}_T = \frac{1}{T} \sum_{i=1}^{T} r_t = \hat{\mu}_{T-1} + \alpha_T (r_T - \hat{\mu}_{T-1}) = \sum_{t=1}^{T} \beta_t r_t$$

where $\beta_t = \alpha_t \prod_{j=1}^{t-1} (1 - \alpha_j)$ Integration by parts:

Discrete Dynamic Systems

Definition. $t \in [T]$ infinite or finite, S_t is the set of all possible states, A_t is the set of possible control actions, $f_t: S_t \times A_t \to S_{t+1}$ is the state transition function: $s_{t+1} = f_t(s_t, a_t), s_t \in S_t, a_t \in A_t$

3 DDP - Finite Horizon

Optimal Control Policies

Algorithm 1 Finite-Horizon DP (value iteration)

1: Initialize the value function $C_T(s) =$ $c_T(s), \forall s \in S_T$

2: Backward recursion:

For $t = T - 1, \dots, 0$ compute: $\forall s \in S_t$

$$C_t(s) = \min_{a \in A_t} c_t(s, a) + C_{t+1}(f_t(s, a))$$

3: Optimal policy: Choose any $\pi^* = (\pi_t^*)$ that satisfies: $\pi_t^*(s)$

$$\arg\min_{a\in A_t} c_t(s,a) + C_{t+1}(f_t(s,a))$$

Proposition: the following holds for finite-horizon DP value iteration algorithm: $C_0(s) = \min_{\pi} C_0(\pi; s)$

DDP - Average cost

Avg cost criteria:

 $C_{avg}^{\pi} = \lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} c_t(s_t, a_t)$. The aim is to minimize $E[C_{avg}^{\pi}]$.

Claim. for a deterministic stationary policy, the policy converges to a simple cycle, and the avg cost is the avg cost of the edges on the cycle

Minimum Avg Cost Cycle: Given a directed graph G(V, E), let Ω be the collection of all cycles in G(V, E). For each cycle $\omega = (v_1, \ldots, v_k)$, we define $c(\omega) = \sum_{i=1}^{k} c(v_i, v_{i+1})$, where (v_i, v_{i+1}) is the i^{th} edge in the cycle ω . Let $\mu(\omega) = \frac{c(\omega)}{k}$. The minimum avg cost cycle is $\mu^* = \min_{\omega \in \Omega} \mathring{\mu}(\omega)$. (|V| = n)

Theorem. For any DDP the optimal avg cost is μ^* , and the policy is π_{ω} that cycles around a simple cycle of avg cost μ^* , where μ^* is the minimum avg cost cycle

Definition. State i is recurrent if $\mathbb{P}(X_t = i \text{ for some } t \geq 1 | X_0 = i) = 1. \text{ O.W, the}$ state is transient.

Claim. State i is transient if and only if $\sum_{m=1}^{\infty}\mathbb{P}_{i}^{m}<\infty.$ Recurrence is a class property. If states i and j are in the same class, then $\mathbb{P}(X_t = j \text{ for some } t \geq 1 | X_0 = i) = 1.$ Let T_i be the return time to state i (i.e., the number of stages required for (X_t) starting from state i to first return to i). If i is a recurrent state, then $\mathbb{P}(T_i < \infty) = 1$. Claim. $V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) Q^{\pi}(s, a)$ for all State i is positive recurrent if $\mathbb{E}(T_i) < \infty$, and null recurrent if $\mathbb{E}(T_i) = \infty$. If the state space X is finite, all recurrent states are positive recurrent.

Theorem. The probability vector $\mu = (\mu_i)$ is an invariant/stationary distribution for the Markov chain if $\mu^{\top}P = \mu^{\top}$, namely $\forall j, \mu_j = \sum_i \mu_i p_{ij}$. The discounted return: probability vector $\mu = (\mu_i)$ is an invariant/stationary distribution for the Markov chain if $\mu^{\top} P = \mu^{\top}$, namely $\forall j, \mu_j = \sum_i \mu_i p_{ij}$. **Theorem.** Let (X_t) be an irreducible and aperiodic Markov chain over a finite state space Xwith transition matrix P. Then there is a unique distribution μ such that $\mu^{\top} P = \mu^{\top} > 0$. Moreover,

for any $j \in X$, we have $\mu_j = \frac{1}{\mathbb{E}[T_j]}$ (on average, state i appears every $\mathbb{E}[T_j] < \infty$ steps). Furthermore, all states are positive recurrent. If the Markov chain is over a countable state space, then all states are either positive/null recurrent or

 ${\bf Definition.}\ {\bf The}\ {\it Total}\ {\it Variation}\ {\it distance}$ between distributions D_1 and D_2 is defined as $||D_1 - D_2||_{TV} = \sum_{x \in X} |D_1(x) - D_2(x)|$. The mixing time is the smallest m such that $||s_0^\top P^m - \mu||_{TV} \le \frac{1}{4}||s_0 - \mu||_{TV}$ where s_0 is the initial state distribution and μ the steady-state distribution. For $k \ge m$, we have $||s_0^\top P^k - \mu||_{TV} \le \frac{1}{4^k}||s_0 - \mu||_{TV}$.

$5 \quad MDP$

Markov Decision Process

Controlled Markov chains: $T = \{0, ..., T-1\}$ (finite horizon) or infinite horizon, $\mathcal S$ finite state space, where $S_t \subseteq \mathcal{S}$, \mathcal{A} finite action space where $A_t(s) \subseteq \mathcal{A}, s \in S_t, \mathcal{P}_t(\cdot|s,a)$ transition probability from state s to state s' given action a (distribution) that is $\mathbb{P}(s_{t+1} = s' | s_t = s, a_t = a) = \mathcal{P}_t(s' | s, a)$. States $s' \in S_{t+1}$.

The Induced Stochastic Process: Let $\mathcal{P}_0(s_0)$ be the initial state distribution, $\pi \in \Pi_{\mathcal{H}_S}$, they induce a probability distribution over any finite state-action sequence $\mathcal{H}_T = (s_0, a_0, \dots, s_T)$, given

$$\mathbb{P}(\mathcal{H}_t) = \mathcal{P}_0(s_0) \prod_{t=0}^{T-1} \mathcal{P}_t(s_{t+1}|s_t, a_t) \pi(a_t|\mathcal{H}_t),$$

where $\mathcal{H}_t = (s_0, a_0, \dots, s_t)$.

Markov policy induces a Markov chain: $\mathbb{P}(s_{t+1} = s' | s_t = s) = \sum_a \mathcal{P}_t(s' | s, a) \cdot \pi_t(a | s).$ Finite horizon:

$$\mathcal{V}_{T}^{\pi}(s) = \mathbb{E}^{\pi} \left[\sum_{t=0}^{T} R_{t} | s_{0} = s \right] \equiv \mathbb{E}^{\pi, s} \left[\sum_{t=0}^{T} R_{t} \right]$$
$$= \sum_{t=0}^{T-1} \mathbb{E}_{\pi} [r_{t}(s_{t}, a_{t}) | s_{0} = s] + \mathbb{E}_{\pi} [r_{T}(s_{T}) | s_{0} = s]$$

 $\frac{\text{Infinite horizon:}}{\mathcal{V}_{\gamma}^{\pi}(s) = \sum_{t=0}^{\infty} \mathbb{E}_{\pi}[\gamma^{t} r_{t}(s_{t}, a_{t}) | s_{0} = s].}$

Claim. if $r(s,a) \in [0,1]$ then $0 \le V_{\gamma}^{\pi}(s) \le \frac{1}{1-\gamma}$ and the sum of rewards after $t \geq \log_{\gamma} \varepsilon$ contribute at most $\frac{\varepsilon}{1-\gamma}$

Extended rewards: $R_t = \tilde{r}_t(s_t, a_t, s_{t+1})$. $r_t(s, a) = \mathbb{E}[R_t | s_t = s, a_t = a] =$

 $\sum p(s_{t+1}|s_t, a_t) \cdot s_{t+1} \tilde{r}_t(s_t, a_t, s_{t+1})$

Lemma. (finite horizon policy evaluation): let $\pi = (\pi_0, \dots, \pi_{T-1}) \in \Pi^{MD}$. Define $V_k^{\pi}(s) = \mathbb{E}^{\pi}[\sum_{t=k}^T R_t | s_k = s]$

 $(V_0^{\pi}(s) = V^{\pi}(s))$ then $V_k^{\pi}(s) = r_k(s, \pi_k(s)) + \sum p_k(s'|s, \pi_k(s))V_{k+1}^{\pi}(s').$ $s' \in S_{k+1}, \forall s \in S_k \text{ for } k = T - 1, \dots, 0 \text{ starting}$ with $V_T^{\pi}(s) = r_T(s)$

Claim. For any policy π , $|V_{\gamma}^{\pi}(s)| \leq \frac{R_{\text{Max}}}{1-\gamma}$, where $R_{\text{Max}} \ge |r(s_t, a_t)|$

Lemma For a fixed stationary policy π , the value function \mathcal{V}_{π} satisfies the following set of |S| linear

$$\mathcal{V}_{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} \mathcal{P}_{\pi}(s'|s) \mathcal{V}_{\pi}(s') \text{ for } ^{1}$$

Algorithm 2 Finite-Horizon MDP (value iteration)

1: Set $V_T(s) = r_T(s)$ for $s \in S_T$.

2: For k = T - 1, ..., 0 Compute $V_k(s)$ using the following recursion:

$$\begin{aligned} V_k(s) &= \max_{a \in A_k} \ r_k(s, a) \\ &+ \sum_{s' \in S_{k+1}} p_k(s' \mid s, a) V_{k+1}^{\pi}(s') \end{aligned}$$

Where $s \in S_k$. We have $V_k(s) = V_k^*(s)$.

3: Optimal policy: Any Markov policy π^* that satisfies, for $t=0,\ldots,T-1$

 $\pi_t^*(s) \in \arg\max_{a \in A_k} r_k(s, a)$

+
$$\sum_{s' \in S_{k+1}} p_k(s' \mid s, a) V_{k+1}^{\pi}(s')$$

for all $s \in S_t$, is an optimal policy. Furthermore, π^* maximizes $V_{\pi}(s_0)$ simultaneously for every initial state $s_0 \in S_0$.

Definition. The \mathcal{Q} function:

$$Q^{\pi}(s, a) = \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma V^{\pi}(s') \right]$$

$$Q_k^*(s,a) = r_k(s,a) + \sum_{s'} p_k(s' \mid s,a) V_{k+1}^*(s').$$
 Claim. $V^{\pi}(s) = \sum_{a \in A} \pi(a \mid s) Q^{\pi}(s,a)$ for all

Claim. $V^*(s) = \max_a Q^*(s, a)$, $\pi_k^*(s) \in \arg\max_{a \in A_k} Q_k^*(s, a).$

 ${\bf Definition.}\ In finite\ horizon\ problems:\ {\bf same}$ setting as before (now $\mathbb{E}[R_t] = r(s_t, a_T)$) with

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s \right]$$
$$\equiv \mathbb{E}_{\pi, s} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right] \text{ for } \gamma \in (0, 1).$$

Claim. For any policy π , $|V^{\pi}(s)| \leq \frac{R_{\text{Max}}}{1-\gamma}$, where $R_{\text{Max}} \ge |r(s, a)|.$

Lemma. For $\pi \in \Pi_S^D$, the value function V^{π} satisfies the following set of |S| linear equations:

$$V^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s'} p(s' \mid s, \pi(s)) V^{\pi}(s'),$$

Lemma. The set of linear equations in the lemma above has a unique solution V^{π} , which is given by

$$V^{\pi} = (I - \gamma P_{\pi})^{-1} r_{\pi}.$$

Algorithm 3 Discounted Policy Eval

- 1: Let $\mathcal{V}_0 = (\mathcal{V}_0(s))_{s \in S}$ be arbitrary.
- 2: **for** n = 0, 1, ...
- $\mathcal{V}_{n+1}(s) = r(s, \pi(s)) +$ $\gamma \sum_{s'} p(s' \mid s, \pi(s)) \mathcal{V}_n(s')$ for all $s \in S$. or equivalently $V_{n+1} = r^{\pi} + \gamma P V_n$

Proposition: We have $\lim_{n\to\infty} \frac{\mathcal{V}_n(s)}{\mathcal{V}(s)} = \mathcal{V}_{\pi}(s) \quad \forall s \in \mathcal{S}.$

Theorem. (Bellman Optimality Equation) For $V^{\gamma}(s) = \sup_{\pi \in \Pi_{H,S}} V^{\pi}(s)$: (1) V^* is the unique solution of the following set of (nonlinear)

$$V(s) = \max_{a} \left\{ r(s, a) + \gamma \sum_{s'} p(s' \mid s, a) V(s') \right\}.$$

(2) Any stationary policy π^* that satisfies

$$\pi^*(s) \in \arg\max_{a \in A} \left\{ r(s, a) + \gamma \sum_{s'} p(s' \mid s, a) V(s') \right\}$$

is an optimal policy (for any initial state $s_0 \in S$).

Definition. For a fixed stationary policy $=\sum_{t=0}^{T-1}\mathbb{E}_{\pi}[r_{t}(s_{t},a_{t})|s_{0}=s]+\mathbb{E}_{\pi}[r_{T}(s_{T})|s_{0}=s\frac{\pi}{T}:S\rightarrow A,\text{ define fixed policy DP operator}\\T_{\pi}:\mathbb{R}^{|S|}\rightarrow\mathbb{R}^{|S|}\text{ as follows: for all}\\V=(V(s))\in\mathbb{R}^{|S|},\forall s\in S,(T_{\pi}(V))(s)=0$ $r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V(s')$. In our column-vector notation: $T_{\pi}(V) = r_{\pi} + \gamma P_{\pi}V$.

> **Theorem.** $T \in \{T^*, T_\pi\}$ is a γ -contraction operator with respect to the max-norm, namely $||T(\mathcal{V}_1) - T(\mathcal{V}_2)||_{\infty} \le \gamma ||\mathcal{V}_1 - \mathcal{V}_2||_{\infty}.$

Lemma. If $\|\mathcal{V}_{n+1} - \mathcal{V}_n\|_{\infty} < \frac{\epsilon(1-\gamma)}{2\gamma}$ then $\|\mathcal{V}_{n+1} - \mathcal{V}^*\|_{\infty} < \frac{\epsilon}{2}$ and $|\mathcal{V}_{\pi_{n+1}} - \mathcal{V}^*| \le \epsilon$ where π_{n+1} is the greedy policy w.r.t \mathcal{V}_{n+1} . Claim. $T_{\pi}(\mathcal{V}_{\pi}) = \mathcal{V}_{\pi}, T_{\pi_n}(\mathcal{V}_n) = T^*(\mathcal{V}_n),$ $T_{\pi_n}(\mathcal{V}_{\pi_n}) \leq T^*(\mathcal{V}_{\pi_n}), T_{\pi_{n+1}}(\mathcal{V}_{\pi_n}) = T^*(\mathcal{V}_{\pi_n})$ $(\pi_n, \pi_{n+1} \text{ greedy w.r.t } \mathcal{V}_n, \mathcal{V}_{n+1}).$

Theorem. We have $\lim_{n\to\infty} \mathcal{V}_n = \mathcal{V}^*$. The rate of convergence is exponential at rate $\mathcal{O}(\gamma^n)$.

Algorithm 4 Policy Iteration

- 1: choose some stationary policy π_0 .
- 2: Policy Evaluation: computee \mathcal{V}_{π_k} .
- 3: Policy Improvement: compute π_{k+1} :

$$\pi_{k+1}(s) \in \arg\max_{a \in A} \{ r(s, a) \}$$

$$+ \gamma \sum_{s' \in S} p(s'|s, a) \mathcal{V}_{\pi_k}(s') \}$$

4: Stop if $\pi_{k+1} = \pi_k$ (or if \mathcal{V}_{π_k} satisfied the optimality equation), else continue.

Theorem. The following statements hold: $(1)\mathcal{V}_{\pi_{k+1}} \geq \mathcal{V}_{\pi_k}, (2) \mathcal{V}_{\pi_{k+1}} = \mathcal{V}_{\pi_k} \text{ iff } \pi_k \text{ is an}$ optimal policy $(3)\pi_k$ converges after a finite number of steps since the number of stationary policies is finite.

Theorem. Let $\{V_{I_n}\}$ be the sequence of values created by the VI algorithm (where $V_{I_{n+1}} = T^*(V_n)$ and $\{P_{I_n}\}$ be the sequence of values created by PI algorithm, i.e., $P_{I_n} = \dots$

Contraction Operators

Definition. the operator T is called a contraction operator if

 $\exists \beta \in (0,1) \forall v_1, v_2 \in \mathbb{R}^d. ||T(v_1) - T(v_2)|| \le \beta ||v_1 - v_2||$

Theorem. let $T: \mathbb{R}^d \to \mathbb{R}^d$ be a contraction operator. Then (1) The equation T(v) = v has a unique solution $V^* \in \mathbb{R}^d$ (2) $\forall v_0 \in \mathbb{R}^d$. $\lim_{n \to \infty} T^n(v_0) = V^*$. In fact, $||T^n(v_0) - V^*|| \le \mathcal{O}(\beta^n)$

Model Based - Off policy

Theorem. Given a discount factor γ , the discounted return in the first $T = \frac{1}{1-\gamma} \log \frac{R_{\text{Max}}}{\epsilon(1-\gamma)}$ time steps, is within ϵ of the total discounted

Off policy: Input – sequences of (s, a, r, s') where $\overline{r \sim R(s,a)}, s' \sim p(\cdot|s,a)$. Output – complete MDP model i.e. r(s, a), p(s'|s, a).

Claim. Set $m = \frac{R_{\text{Max}}^2}{2\epsilon^2} \log \frac{2|S| \cdot |A|}{\delta}$. For each (s, a) use samples $R_1(s, a), \dots, R_m(s, a)$. Set $\hat{r}(s, a) = \frac{1}{m} \sum_{i=1}^m R_i(s, a)$. Then for each (s, a): $P[|\hat{r}(s,a) - r(s,a)| \le \epsilon] \ge 1 - \frac{\delta}{|S| \cdot |A|}.$ Globally: for all (s,a): $P[|\hat{r}(s,a) - r(s,a)| \le \epsilon] \ge 1 - \delta$. Influence of reward estimation errors: Finite

horizon: Assume for every (s, a) and t we have $|r^t(s, a) - \hat{r}^t(s, a)| \le \epsilon \text{ and } |\hat{r^T(s)} - \hat{r}^T(s)| \le \epsilon.$ Define $V_{\pi}^{T}(s_0) = E_{\pi,s_0} \left| \sum_{t=0}^{T} r^{t}(s_t, a_t) + r^{T}(s_T) \right|$ and $\hat{V}_{\pi}^{T}(s_0) = E_{\pi,s_0} \left[\sum_{t=0}^{T} \hat{r}^t(s_t, a_t) + \hat{r}^T(s_T) \right].$

Let $\operatorname{error}(\pi) = |V_{\pi}^{T}(s_0) - \hat{V}_{\pi}^{T}(s_0)|$. Then for any $\pi \in \Pi_{MD}$ we have $\operatorname{error}(\pi) \leq \epsilon(T+1)$.

Influence of reward estimation errors **Discounted return:** Assume for every (s, a) and twe have $|r^t(s, a) - \hat{r}^t(s, a)| \le \epsilon$. Define

 $V_{\pi}^{\gamma}(s_0) = E_{\pi,s_0} \left[\sum_{t=0}^{T} \gamma^t r^t(s_t, a_t) \right]$ and $\hat{V}_{\pi}^{\gamma}(s_0) = E_{\pi,s_0} \left[\sum_{t=0}^{T} \gamma^t \hat{r}^t(s_t, a_t) \right].$ Let

 $\operatorname{error}(\pi) = |V_{\pi}^{\gamma}(s_0) - \hat{V}_{\pi}^{\gamma}(s_0)|$. Then for any $\pi \in \Pi_{SD}$ we have $\operatorname{error}(\pi) \leq \frac{\epsilon}{1-\gamma}$.

Computing approximate optimal policy Finite horizon: we need to sample $m \geq \frac{R_{\text{Max}}^2}{2\epsilon^2} \log \frac{2|S| \cdot |A|}{\delta}$ for each $RVR^t(s,a)$ $(R^T(s))$

in finite). Given the sample, we compute $\hat{r}^t(s, a)$ ($\hat{r}^T(s)$ in finite). Now compute $\hat{\pi}^*_{\text{optimal policy}}$ w.r.t the estimated rewards.

Theorem. Assume that for $\forall (s, a), t : |r^t(s, a) - \hat{r}^t(s, a)| \le \epsilon$ $(\forall s: |r^T(s) - \hat{r}^T(s)| \le \epsilon \text{ in finite}).$ Then, $V_{\pi^*}^T(s_0) - V_{\pi^*}^T(s_0) \le 2\epsilon(T+1)$ for finite and $V_{\pi^*}^{\gamma}(s_0) - V_{\hat{\pi}^*}^{\gamma}(s_0) \le \frac{2\epsilon}{1-\gamma}$ for discounted.

Estimate the transitions: $\forall (s, a)$ consider m i.i.d transitions (s, a, s'_i) for $i \in [m]$. Then

 $\hat{p}(s'|s,a) = \frac{|\{i|s'_i = s'\}|}{m}$

Theorem. Let q_1, q_2 be distributions. Let $f: S \to [0, F_{\text{Max}}], \text{ then }$ $|E_{s \sim q_1}[f(s)] - E_{s \sim q_2}[f(s)]| \le F_{\text{Max}} ||q_1 - q_2||_1.$ Claim. $||z^T M||_1 \le ||z||_1 ||M||_{\infty,1}$ where $z \in \mathbb{R}^n, M \in \mathbb{R}^{n,n}$ and

 $||M||_{\infty,1} = \max_i \sum_j |M[i,j]|.$ Corollary. For a distribution q and $|M1_{i,j} - M2_{i,j}| \le \alpha \ (\|q\|_1 = 1,$ $||M1 - M2||_{\infty,1} \le \alpha |S|$ it holds $||q^T(M1 - M2)||_1 \le \alpha |S|$

Corollary. For a row stochastic $M: ||M||_{\infty,1} = 1$, $||z^T M||_1 \le ||z||_1$ **Theorem.** Consider two Markov chains M1, M2

s.t $\forall i, j: |M1_{i,j} - M2_{i,j}| \leq \alpha$. Let q_i^t be the state distribution after t steps i.e. $q_1^t = p_0^T M_1^t, q_2^t = p_0^T M_2^t, \text{ then } ||q_1^t - q_2^t||_1 \le \alpha |S|^t$

Definition. Model \hat{M} is an α -approx of M if: $\forall (s,a).((|\hat{r}(s,a)-r(s,a)| \leq$ $\alpha R_{\text{Max}}) \wedge (\forall s'. |\hat{p}(s'|s, a) - p(s'|s, a)| \leq \alpha))$

Theorem. Let \hat{M} be an α -approx of M. If $\alpha = O\left(\frac{\varepsilon}{R_{\text{Max}}|S|T^2}\right)$ then

 $\forall \pi \in MD. |V_{\pi}^{T}(s_0; M) - V_{\pi}^{T}(s_0; \hat{M})| \leq \varepsilon \text{ where } T \text{ is}$

Theorem. Let \hat{M} be an α -approx of M. If $\alpha = O\left(\frac{\varepsilon(1-\gamma)^2}{R_{\text{Max}}|S|\log_2\left(\frac{R_{\text{Max}}}{\varepsilon(1-\gamma)}\right)}\right)$ $\forall \pi \in MD. |V_{\pi}^{\gamma}(s_0; M) - V_{\pi}^{\gamma}(s_0; \hat{M})| \le \varepsilon$

Theorem. Sample each (s, a) for m times where $m = \frac{1}{\alpha^2} \log \left(\frac{|S^2||A|}{\delta} \right)$ then w.p $(1 - \delta)$ all errors

$$\leq \alpha.$$
 $m = O\left(\frac{R_{\text{Max}}^2|S|^2T^4}{\varepsilon^2}\log\left(\frac{|S||A|}{\delta}\right)\right)$ for finite horizon,

$$m = O\left(\frac{R_{\text{Max}}^2 |S|^2}{\varepsilon^2 (1-\gamma)^4} \log\left(\frac{|S||A|}{\delta} \log_2\left(\frac{R_{\text{Max}}}{\varepsilon (1-\gamma)}\right)\right)\right) \text{ for discounted Next, build observed MDP } \hat{M}. \text{ Solve for the optimal policy } \hat{\pi}_* \text{ in } \hat{M}. \text{ This is a } 2\varepsilon\text{-optimal policy } V_* - V_{\hat{\pi}_*} \leq 2\varepsilon$$

Algorithm 5 Approximate V.I

- 1: Let $V_0 = 0$.
- 2: **for** $n = 0, \dots N$:

$$\hat{V}_{n+1}(s) = \max_{a \in A} \{ \hat{r}(s, a) + \gamma \frac{1}{m} \sum_{i=1}^{m} \hat{V}_{n}(s'_{i}) \}$$

where $s_i' \sim p(\bullet|s, a)$ and $\hat{r} = \frac{1}{m} \sum_{i=1}^m r_i$.

Theorem. For $m = O\left(\frac{R_{\text{Max}}^2}{\varepsilon^2} \log (N|S||A|/\delta)\right)$ w.p $(1 - \delta) \forall n \leq N$ and $(s,a):|E[\hat{V}_n(s')]-\frac{1}{m}\sum_{i=1}^m\hat{V}_n(s_i')|\leq \varepsilon$ and $|\hat{r}(s,a)-r(s,a)|\leq \varepsilon.$

GAIN: in the dependency of |S|. **LOSE:** bound

8 Model Based - On policy

Definition. Model Based – On policy Learning DDP structure: given observed transition from M: obs = $\{(st, at, rt, st + 1)\}_{t=1,...,T}$, define observed DDP \hat{M}_T : $\hat{f}(st, at) = st + 1$, $\hat{r}(st, at) = rt$. For all $(s,a) \notin \text{obs set } \hat{f}(s,a) = s \text{ and } \hat{r}(s,a) = RMax.$

Claim. $V_{\pi}(s; \hat{M}_T) \geq V_{\pi}(s; M)$

only for optimal policy

Algorithm 6 Leaning DDP:

- 1: at time T: compute \hat{M}_T , compute $\hat{\pi}_T^*$ the optimal policy for \hat{M}_T
- 2: Let $a_T = \hat{\pi}_T(s_T)$. Do action a_T and observe r_T and s_{T+1} .

Claim. We change \hat{M}_T at most $|S| \cdot |A|$ times.

¹forall $s \in S$