Spectrum of a Ring

April 1, 2021

1 Spec A as a Topological Space

We start with the following basic definition. Let A be a ring. We set

Spec
$$A := \{ \mathfrak{p} \subset A \mid \mathfrak{p} \text{ is a prime ideal} \}$$
.

We will now endow Spec A with the structure of a topological space. For every subset S of A, we denote by V(S) the set of prime ideals of A containing S. Clearly, if $\mathfrak a$ is the ideal generated by S, then $V(S) = V(\mathfrak a)$. For any $f \in A$, we write V(f) instead of $V(\{f\})$.

Lemma 1.1. The map $\mathfrak{a} \mapsto V(\mathfrak{a})$ is an inclusion reversing map from the set of ideals of A to the set of subsets of Spec A. Moreover, the following relations hold:

- 1. $V(0) = Spec A \text{ and } V(1) = \emptyset$.
- 2. For two ideals a and b, we have

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b}).$$

3. For every family $\{a_i\}_{i\in I}$ of ideals, we have

$$V\left(igcup_{i\in I}\mathfrak{a}_i
ight)=V\left(\sum_{i\in I}\mathfrak{a}_i
ight)=igcap_{i\in I}V(\mathfrak{a}_i).$$

Proof.

1. Trivial.

- 2. Since $\mathfrak{a}\mathfrak{b} \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{a}$ and $\mathfrak{a}\mathfrak{b} \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{b}$, it follows that $V(\mathfrak{a}\mathfrak{b}) \supset V(\mathfrak{a} \cap \mathfrak{b}) \supset V(\mathfrak{a}) \cup V(\mathfrak{b})$. It remains to show that $V(\mathfrak{a}\mathfrak{b}) \subset V(\mathfrak{a}) \cup V(\mathfrak{b})$. Assume that $\mathfrak{p} \supset \mathfrak{a}\mathfrak{b}$ but $\mathfrak{p} \not\supset \mathfrak{a}$ and $\mathfrak{p} \not\supset \mathfrak{b}$ for some prime $\mathfrak{p} \in \operatorname{Spec} A$. Then there exists $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$ such that $x, y \notin \mathfrak{p}$. But $xy \in \mathfrak{a}\mathfrak{b} \subset \mathfrak{p}$ contradicts the fact that \mathfrak{p} is prime.
- 3. That $V(\bigcup_{i\in I}\mathfrak{a}_i)=V(\sum_{i\in I}\mathfrak{a}_i)$ follows from the fact that $\sum_{i\in I}\mathfrak{a}_i$ is the ideal generated by $\bigcup_{i\in I}\mathfrak{a}_i$. That $V(\sum_{i\in I}\mathfrak{a}_i)=\bigcap_{i\in I}V(\mathfrak{a}_i)$ follows from the fact that $\mathfrak{p}\supset\sum_{i\in I}\mathfrak{a}_i$ if and only if $\mathfrak{p}\supset\mathfrak{a}_i$ for all $i\in I$ and for all primes $\mathfrak{p}\in\operatorname{Spec} A$.

The lemma shows that the subsets $V(\mathfrak{a})$ of Spec A form the closed sets of a topology on Spec A. This leads us to the following definition.

Definition 1.1. Let A be a ring. The set Spec A of all prime ideals of A with the topology whose closed sets are the sets $V(\mathfrak{a})$, where \mathfrak{a} runs through the set of ideals of A, is called the **prime spectrum** of A or simply the **spectrum** of A. The topology thus defined is called the **Zariski topology** on Spec A.

Remark. If x is a point in Spec A, we will often write \mathfrak{p}_x instead of x when we think of x as a prime ideal of A.

Proposition 1.1. Let A be a ring and let \mathfrak{a} be an ideal of A. Then $V(\mathfrak{a}) = V(\sqrt{\mathfrak{a}})$.

Proof. Since $\mathfrak{a} \subset \sqrt{\mathfrak{a}}$, we have $V(\mathfrak{a}) \supset V(\sqrt{\mathfrak{a}})$. For the reverse inclusion, let \mathfrak{p} be a prime ideal of A such that $\mathfrak{p} \supset \mathfrak{a}$. Assume, for a contradiction, that $\mathfrak{p} \not\supset \sqrt{\mathfrak{a}}$. Choose $a \in \sqrt{\mathfrak{a}}$ such that $a \notin \mathfrak{p}$. Then $a^n \in \mathfrak{a} \subset \mathfrak{p}$ for some $n \in \mathbb{N}$. But this contradicts the fact that \mathfrak{p} is a prime ideal.

For every subset *Y* of Spec*A*, we set

$$I(Y):=\bigcap_{\mathfrak{p}\in Y}\mathfrak{p}.$$

We obtain an inclusion reversing map $Y \mapsto I(Y)$ from the set of subsets of Spec A to the set of ideals of A. Note that $I(\emptyset) = A$. The maps V and I are related as follows.

Proposition 1.2. Let A be a ring, $\mathfrak a$ an ideal in A, and Y a subset of Spec A.

1.
$$\sqrt{I(Y)} = I(Y)$$
.

2.
$$I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}$$
.

3.
$$V(I(Y)) = \overline{Y}$$
.

4.
$$I(D(\mathfrak{a})) = \sqrt{0} : \mathfrak{a}$$
.

5.
$$D(I(Y)) = \bigcap_{\mathfrak{p} \in Y} D(\mathfrak{p}).$$

6. The maps

{ideals
$$\mathfrak{a}$$
 of A with $\mathfrak{a} = rad(\mathfrak{a})$ } $\stackrel{V}{\longleftarrow}$ {closed subsets Y of Spec A }

are mutually inverse bijections.

Proof.

- 1. The relation $\mathfrak{a} = \sqrt{\mathfrak{a}}$ means that for $f \in A$, $f^n \in \mathfrak{a}$ implies already $f \in \mathfrak{a}$. This certainly holds for prime ideals and therefore for arbitrary intersections of prime ideals as well.
- 2. This follows from the fact that the radical of an ideal equals the intersection of all prime ideals containing it.
- 3. Observe that $V(\mathfrak{b}) \supset Y$ if and only if $\sqrt{\mathfrak{b}} \subset I(Y)$ if and only if $V(\mathfrak{b}) = V\left(\sqrt{\mathfrak{b}}\right) \supset V(I(Y))$. Therefore V(I(Y)) is the smallest closed subset of Spec A containing Y.
- 4. We first show that $\sqrt{0}$: $\mathfrak{a} \subseteq I(D(\mathfrak{a}))$. Let $x \in \sqrt{0}$: \mathfrak{a} and assume (to obtain a contradiction) that $x \notin I(D(\mathfrak{a}))$. Since $x \notin I(D(\mathfrak{a}))$, there exists a prime $\mathfrak{p} \subseteq A$ such that $\mathfrak{p} \not\supseteq \mathfrak{a}$ and $x \notin \mathfrak{p}$. Since $x \in \sqrt{0}$: \mathfrak{a} , we have $x\mathfrak{a} \subseteq \sqrt{0} \subseteq \mathfrak{p}$. In particular, either $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq x$. Contradiction.

Now we will show that $\sqrt{0}$: $\mathfrak{a} \supseteq I(D(\mathfrak{a}))$. Let $x \in I(D(\mathfrak{a}))$ (so x belongs to every prime ideal which does not contain \mathfrak{a}) and assume (to obtain a contradiction) that $x \notin \sqrt{0}$: \mathfrak{a} . Since $x \notin \sqrt{0}$: \mathfrak{a} , there exists $a \in \mathfrak{a}$ such that $ax \notin \sqrt{0}$. In particular, $\{(ax)^n\}_{n \in \mathbb{N}}$ forms a multiplicative set, and so we can localize at ax. Let \mathfrak{q} be a prime ideal in A_{ax} and let $\mathfrak{p} := \iota_{ax}^{-1}(\mathfrak{q})$, where $\iota_{ax} \colon A \to A_{ax}$ is the canonical ring homomorphism. Then \mathfrak{p} is a prime ideal in A which does not contain ax. This implies that \mathfrak{p} does not contain \mathfrak{a} or x (if it did, then it'd certain contain ax). Contradiction.

5. We have

$$D(I(Y)) = D\left(\bigcap_{\mathfrak{p} \in Y} \mathfrak{p}\right)$$
$$= \bigcap_{\mathfrak{p} \in Y} D(\mathfrak{p})$$

6. This follows from part 2.

1.0.1 Partially Ordered Sets

Definition 1.2.

1.1 Properties of Spec A

Let A be a ring and let a be an ideal in A. We set

$$D(\mathfrak{a}) := \operatorname{Spec}(A) \setminus V(\mathfrak{a}).$$

If \mathfrak{a} is finitely generated, say $\mathfrak{a} = \langle f_1, \ldots, f_n \rangle$, then we write $D(f_1, \ldots, f_n)$ instead of $D(\langle f_1, \ldots, f_n \rangle)$. Open subsets of Spec A of the form D(f) are called **principal open sets** of Spec A. Clearly, $D(0) = \emptyset$ and $D(u) = \operatorname{Spec} A$ for any unit $u \in A$. As for a prime ideal \mathfrak{p} and two elements $f, g \in A$ we have $fg \notin \mathfrak{p}$ if and only if $f \notin \mathfrak{p}$ and $g \notin \mathfrak{p}$, we find

$$D(f) \cap D(g) = D(fg).$$

Lemma 1.2. Let (f_i) be a family of elements in A and let $g \in A$. Then $D(g) \subseteq \bigcup_i D(f_i)$ if and only if there exists an integer n > 0 such that g^n is contained in the ideal \mathfrak{a} generated by the f_i .

Proof. Indeed, $D(g) \subseteq \bigcup_i D(f_i)$ is equivalent to $V(g) \supseteq V(\mathfrak{a})$ which is equivalent to $g \in \sqrt{\mathfrak{a}}$.

Remark. Applying this to g = 1 it follows that $(D(f_i))_i$ is a covering of Spec A if and only if the ideal generated by the f_i is equal to A.

Proposition 1.3. Let A be a ring. The principal open subsets D(f) for $f \in A$ form a basis of the topology of Spec A. For all $f \in A$ the open sets D(f) are quasi-compact. In particular, the space Spec A is quasi-compact.

Proof. Every closed subset of Spec A is the intersection of closed sets of the form V(f). By taking complements we see that the D(f) form a basis for the topology.

Let $(g_i)_{i\in I}$ be a family of elements of A such that $D(f)\subseteq \bigcup_{i\in I}D(g_i)$. Then there exists an integer $n\geq 1$ such that $f^n=\sum_{i\in I}a_ig_i$ where $a_i\in A$ and $a_i=0$ for all $i\notin J$, $J\subseteq I$ a suitable finite subset. Hence $D(f)\subseteq \bigcup_{j\in J}D(g_j)$. This proves that D(f) is quasi-compact by the first part of the proposition.

Proposition 1.4. Let A be a ring and let U be an open subset of Spec A. Then U is quasi-compact if and only if it is the complement of a closed set of the form $V(\mathfrak{a})$, where \mathfrak{a} is a finitely generated ideal.

Proof. Suppose $U = D(\mathfrak{a})$ where \mathfrak{a} is a finitely generated. Then $\mathfrak{a} = \langle f_1, \ldots, f_n \rangle$ for some $f_1, \ldots, f_n \in A$. In particular,

$$U = D(f_1, \ldots, f_n) = D(f_1) \cup \cdots \cup D(f_n).$$

As *U* is a finite union of compact spaces, it must be compact.

Conversely, suppose that *U* is quasi-compact. Since $\{D(g)\}_{g\in A}$ forms a basis for the topology, we can write

$$U = \bigcup_{i \in I} D(g_i)$$

for some $g_i \in A$. In particular, $\{D(g_i)\}_{i \in I}$ is an open covering of U. Since U is quasi-compact, there exists a finite subcovering, say $\{D(g_1), \ldots, D(g_n)\}$. Thus,

$$U = \bigcup_{i=1}^n D(g_i) = D(g_1, \dots, g_n).$$

In particular, setting $\mathfrak{a} = \langle g_1, \dots, g_n \rangle$, we can write $U = D(\mathfrak{a})$ where \mathfrak{a} is finitely generated.

Example 1.1. Let A = K[x, y], $\mathfrak{a} = \langle x^2, y^2 \rangle$, and $\mathfrak{b} = \langle x^2, xy, y^2 \rangle$. Even though $\mathfrak{a} \subset \mathfrak{b}$ (where the inclusion is strict), we have $V(\mathfrak{a}) = V(\mathfrak{b})$, since $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$.

Proposition 1.5. Let A be a ring. A subset Y of Spec A is irreducible if and only if $\mathfrak{p} := I(Y)$ is a prime ideal. In this case $\{\mathfrak{p}\}$ is dense in \overline{Y} .

Proof. Assume that Y is irreducible. Let $f,g \in A$ with $fg \in \mathfrak{p}$. Then

$$Y \subset V(fg) = V(f) \cup V(g)$$
.

As Y is irreducible, either $Y \subseteq V(f)$ or $Y \subseteq V(g)$ which implies $f \in \mathfrak{p}$ or $g \in \mathfrak{p}$. Conversely let \mathfrak{p} be a prime. Then by Proposition (1.2),

$$\overline{Y} = V(\mathfrak{p}) = V(I(\{\mathfrak{p}\}) = \overline{\{\mathfrak{p}\}}.$$

Therefore \overline{Y} is the closure of the irreducible set $\{\mathfrak{p}\}$ and therefore irreducible. This implies that the dense subset Y is also irreducible.

Note that for arbitrary irreducible subsets Y the prime ideal I(Y) is not necessarily a point in Y. But this is clearly true if Y is closed, or more generally, if Y is locally closed.

Corollary. The map $\mathfrak{p} \mapsto V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}}$ is a bijection from Spec A onto the set of closed irreducible subsets of Spec A. Via this bijection, the minimal prime ideals of A correspond to the irreducible components of Spec A.

Definition 1.3. Let *X* be an arbitrary topological space.

- 1. A point $x \in X$ is called **closed** if the set $\{x\}$ is closed,
- 2. We say that a point $\eta \in X$ is a **generic point** if $\overline{\{\eta\}} = X$.
- 3. We say x and x' be two points of X. We say that x is a **generization** or that x' is a **specialization** of x if $x' \in \overline{\{x\}}$.
- 4. A point $x \in X$ is called a **maximal point** if its closure $\overline{\{x\}}$ is an irreducible component of X.

Thus a point $\eta \in X$ is generic if and only if it is a generization of every point of X. As the closure of an irreducible set is again irreducible, the existence of a generic point implies that X is irreducible.

Example 1.2. If $X = \operatorname{Spec} A$ is the spectrum of a ring, the notions introduced in Definition (1.3) have the following algebraic meaning.

- 1. A point $x \in X$ is closed if and only if \mathfrak{p}_x is a maximal ideal.
- 2. A point $\eta \in X$ is a generic point of X if and only if \mathfrak{p}_{η} is the unique minimal prime ideal. This exists if and only if the nilradical of A is a prime ideal.
- 3. A point x is a generization of a point x' (in other words, x' is a specialization of x) if and only if $\mathfrak{p}_x \subseteq \mathfrak{p}_{x'}$.
- 4. A point $x \in X$ is a maximal point if and only if \mathfrak{p}_x is a minimal prime ideal.

1.2 The Functor $A \mapsto \operatorname{Spec} A$

We will now show that $A \mapsto \operatorname{Spec} A$ defines a contravariant functor from the category of rings to the category of topological spaces. Let $\varphi: A \to B$ be a homomorphism of rings. If \mathfrak{q} is a prime ideal of B, then $\varphi^{-1}(\mathfrak{q})$ is a prime ideal of A ($A/\varphi^{-1}(\mathfrak{q})$ is a subring of the domain B/\mathfrak{q} , hence $A/\varphi^{-1}(\mathfrak{q})$ is a domain) Therefore we obtain a map

$${}^{a}\varphi = \operatorname{Spec} \varphi : \operatorname{Spec} B \to \operatorname{Spec} A, \quad \mathfrak{q} \mapsto \varphi^{-1}(\mathfrak{q}).$$

Proposition 1.6. Let A be a ring.

1. For every subset $S \subseteq A$, the relation

$$^{a}\varphi^{-1}(V(S)) = V(\varphi(S))$$

holds. In particular, for $f \in A$,

$$^{a}\varphi^{-1}(D(f)) = D(\varphi(f)).$$

2. For every ideal b of B,

$$V(\varphi^{-1}(\mathfrak{b})) = \overline{{}^{a}\varphi(V(\mathfrak{b}))}. \tag{1}$$

Proof.

- 1. A prime ideal \mathfrak{q} of B contains $\varphi(S)$ if and only if $\varphi^{-1}(\mathfrak{q})$ contains S.
- 2. By Proposition (1.2), we can rewrite the right hand side as $V(I({}^a\varphi(V(\mathfrak{b}))))$. But

$$I({}^{a}\varphi(V(\mathfrak{b}))) = \bigcap_{\mathfrak{q} \in V(\mathfrak{b})} \varphi^{-1}(\mathfrak{q}) = \varphi^{-1}\left(\sqrt{\mathfrak{b}}\right) = \sqrt{\varphi^{-1}(\mathfrak{b})},$$

and the claim follows after applying V(-).

The proposition shows in particular that ${}^a\varphi$: Spec $B\to \operatorname{Spec} A$ is continuous. As ${}^a(\psi\circ\varphi)={}^a\varphi\circ{}^a\psi$ for any ring homomorphism $\psi: B\to C$, we obtain a contravariant functor $A\mapsto \operatorname{Spec} A$ from the category of rings to the category of topological spaces.

Corollary. The map ${}^a \varphi$ is dominant (i.e. its image is dense in Spec A) if and only if every element of $Ker(\varphi)$ is nilpotent.

Proof. We apply (1) to
$$\mathfrak{b} = 0$$
.

Proposition 1.7. *Let A be a ring.*

- 1. Let $\varphi: A \to B$ be a surjective homomorphism of rings with kernel \mathfrak{a} . Then ${}^a\varphi$ is a homeomorphism of Spec B onto the closed subset $V(\mathfrak{a})$ of Spec A.
- 2. Let S be a multiplicative subset of A and let $\varphi: A \to S^{-1}A =: B$ be the canonical homomorphism. Then ${}^a\varphi$ is a homeomorphism of Spec $S^{-1}A$ onto the subspace of Spec A consisting of prime ideals $\mathfrak{p} \subset A$ with $S \cap \mathfrak{p} = \emptyset$.

Proof. In both cases it is clear that ${}^a\varphi$ is injective with the stated image. Moreover in both cases a prime ideal \mathfrak{q} of B contains an indeal \mathfrak{b} of B if and only if $\varphi^{-1}(\mathfrak{q})$ contains $\varphi^{-1}(\mathfrak{b})$. This shows that ${}^a\varphi(V(\mathfrak{b})) = V(\varphi^{-1}(\mathfrak{b})) \cap \operatorname{Im}({}^a\varphi)$. Therefore ${}^a\varphi$ is a homeomorphism onto its image.

Remark. Let A be a ring and let $\mathfrak{p}, \mathfrak{q} \subset A$ be prime ideals. Proposition (1.7) shows that the passage from A to $A_{\mathfrak{p}}$ cuts out all prime ideals except those contained in \mathfrak{p} . The passage from A to A/\mathfrak{q} cuts out all prime ideals except those containing \mathfrak{q} . Hence, if $\mathfrak{q} \subseteq \mathfrak{p}$ localizing with respect to \mathfrak{p} and taking the quotient modulo \mathfrak{q} (in either order as these operations commute) we obtain a ring whose prime ideals are those prime ideals of A that lie between \mathfrak{q} and \mathfrak{p} . For $\mathfrak{q} = \mathfrak{p}$, we obtain the field

$$\kappa(\mathfrak{p}) := A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}} = \operatorname{Frac}(A/\mathfrak{p}),$$

which is called the **residue field** at p.

2 Spectrum of a Ring as a Locally Ringed Space

Let A be a ring. We will now endow the topological space Spec A with the structure of a locally ringed space and obtain a functor $A \mapsto \operatorname{Spec} A$ from the category of rings to the category of locally ringed spaces which we will show to be fully faithful.

2.1 Structure Sheaf on Spec *A*

We set $X = \operatorname{Spec} A$. Recall that the principal open sets D(f) for $f \in A$ form a basis of the topology of X. We will define a presheaf \mathcal{O}_X on this basis and then prove that the sheaf axioms are satisfied. The basic idea is this: Looking back at the analogy with prevarieties, we certainly want to have $\mathcal{O}_X(X) = A$. More generally, for $f \in A$, we consider the localization A_f of A. Denote by $\iota_f : A \to A_f$ the canonical ring homomorphism $a \mapsto a/1$. By Proposition (1.7), ${}^a\iota_f$ is a homeomorphism of Spec A_f onto D(f). So it seems reasonable to set $\mathcal{O}_X(D(f)) = A_f$. Let us check that this is a sensible definition: we must check that $A_f = A_g$ whenever D(f) = D(g), define restriction maps, and check that the sheaf axioms are satisfied.

For $f,g \in A$, we have $D(f) \subseteq D(g)$ if and only if there exists an integer $n \ge 1$ such that $f^n \in \langle g \rangle$ or, equivalently, $g/1 \in (A_f)^\times$. In this case we obtain a unique ring homomorphism $\rho_{f,g} : A_g \to A_f$ such that $\rho_{f,g} \circ \iota_g = \iota_f$. Whenever $D(f) \subseteq D(g) \subseteq D(h)$, we have $\rho_{f,g} \circ \rho_{g,h} = \rho_{f,h}$. In particular, if D(f) = D(g), then $\rho_{f,g}$ is an isomorphism, which we use to identify A_g and A_f . Therefore we can define

$$\mathcal{O}_X(D(f)) := A_f$$

and obtain a presheaf of rings on the basis $\mathcal{B} = \{D(f) \mid f \in A\}$ for the topological space Spec A. The restriction maps are the ring homomorphism $\rho_{f,g}$.

Theorem 2.1. The presheaf \mathcal{O}_X is a sheaf on \mathcal{B} .

We denote the sheaf of rings on X associated to \mathcal{O}_X again by \mathcal{O}_X . For all points $x \in X = \operatorname{Spec} A$, we have

$$\mathcal{O}_{X,x} = \lim_{D(f)\ni x} \mathcal{O}_X(D(f)) = \lim_{f\notin \mathfrak{p}_x} A_f = A_{\mathfrak{p}_x}.$$

In particular, (X, \mathcal{O}_X) is a locally ringed space. We will often simply write Spec A instaed of (Spec A, $\mathcal{O}_{\operatorname{Spec} A}$).

Proof. Let D(f) be a principal open set and let $\{D(f_i)\}_{i\in I}$ be an open covering over D(f). We have to show the following two properties:

1. Let $s \in \mathcal{O}_X(D(f))$ be such that $s|_{D(f_i)} = 0$ for all $i \in I$. Then s = 0.

2. For $i \in I$, let $s_i \in \mathcal{O}_X(D(f_i))$ be such that $s_i|_{D(f_i)\cap D(f_j)} = s_j|_{D(f_i)\cap D(f_i)}$ for all $i,j \in I$. Then there exists $s \in \mathcal{O}_X(D(f))$ such that $s|_{D(f_i)} = s_i$ for all $i \in I$.

As D(f) is quasi-compact, we can assume that I is finite. Restricting the presheaf \mathcal{O}_X to D(f) and replacing A by A_f , we may assume that f=1 and hence D(f)=X to ease the notation. The relation $X=\bigcup_{i\in I}D(f_i)$ is equivalent to $\langle f_i\mid i\in I\rangle=A$ (indeed $\sqrt{\mathfrak{a}}=A$ implies $\mathfrak{a}=A$). As $D(f_i)=D(f_i^n)$ for all integers $n\geq 1$ there exists elements $b_i\in A$ (depending on n) such that

$$\sum_{i \in I} b_i f_i^n = 1. \tag{2}$$

1. Proof of (1). Let $s = a \in A$ be such that the image of a in A_{f_i} is zero for all $i \in I$. As I is finite, there exists an integer $n \ge 1$, independent of i, such that $f_i^n a = 0$. By (2),

$$a = \left(\sum_{i \in I} b_i f_i^n\right) a = 0.$$

2. Proof of (2). As I is finite, we can write $s_i = a_i/f_i^n$ for some n independent of i. By hypothesis, the images of a_i/f_i^n and of a_j/f_j^n in $A_{f_if_j}$ are equal for all $i,j \in I$. Therefore there exists an integer $m \ge 1$ (which again we can choose independent of i and j) such that

$$(f_i f_j)^m (f_j^n a_i - f_i^n a_j) = 0.$$

Replacing a_i by $f_i^m a_i$ and n by n+m (which does not change s_i), we see that $f_j^n a_i = f_i^n a_j$ for all $i, j \in I$. We set

$$s:=\sum_{j\in I}b_ja_j\in A,$$

where the b_i are the elements in (2). Then

$$f_i^n s = f_i^n \left(\sum_{j \in I} b_j a_j \right)$$

$$= \sum_{j \in I} b_j (f_i^n a_j)$$

$$= \sum_{j \in I} b_j (f_j^n a_i)$$

$$= \left(\sum_{j \in I} b_j f_j^n \right) a_i$$

$$= a_i.$$

This means that the image of s in A_{f_i} is s_i .

Remark. We have just proved that the sequence

$$0 \longrightarrow A \longrightarrow \bigoplus_{i \in I} A_{f_i} \longrightarrow \bigoplus_{i,j \in I} A_{f_i f_j}$$

is exact.

2.2 The Functor $A \mapsto (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$

Definition 2.1. A locally ringed space (X, \mathcal{O}_X) is called an **affine scheme**, if there exists a ring A such that (X, \mathcal{O}_X) is isomorphism to (Spec A, $\mathcal{O}_{Spec A}$).