

Introduction to channel coding

Dr. Yoann Altmann

B39AX – Fall 2023 Heriot-Watt University

Plan

- Joint/conditional entropy
- Mutual information
- Examples of channels
- Channel capacity
- Based on the book: "Information Theory, Inference, and Learning Algorithms". David J.C. MacKay (Chap. 8-9)

Joint entropy

• Let X and Y be two (discrete) RVs defined on \mathcal{A}_X and \mathcal{A}_Y

$$H(X,Y) = -\sum_{x \in \mathcal{A}_X, y \in \mathcal{A}_Y} p(x,y) \log_2(p(x,y))$$

Important property

Let X and Y be two RVs. We have

$$H(x,y) = H(x) + H(y)$$

if and only if X and Y are independent, i.e., p(x,y) = p(x)p(y)

Conditional entropy

• Let X and Y be two (discrete) RVs defined on \mathcal{A}_X and \mathcal{A}_Y , for a fixed value $y = y_k$

$$H(X|y = y_k) = -\sum_{x \in \mathcal{A}_X} p(x|y = y_k) \log_2(p(x|y = y_k))$$

• "Conditional entropy of X given $y = y_k$ "

Conditional entropy

• Let X and Y be two (discrete) RVs defined on \mathcal{A}_X and \mathcal{A}_Y ,

$$H(X|Y) = -\sum_{y \in \mathcal{A}_Y} p(y) \sum_{x \in \mathcal{A}_X} p(x|y) \log_2(p(x|y))$$

- "Conditional entropy of X given Y"
- Using the Bayes rule:

$$H(X|Y) = -\sum_{x \in \mathcal{A}_X, y \in \mathcal{A}_Y} p(x, y) \log_2(p(x|y))$$

Joint and conditional entropy

Joint entropy

$$H(X,Y) = -\sum_{x \in \mathcal{A}_X, y \in \mathcal{A}_Y} p(x,y) \log_2(p(x,y))$$

Conditional entropy

$$H(X|Y) = -\sum_{x \in \mathcal{A}_X, y \in \mathcal{A}_Y} p(x, y) \log_2(p(x|y))$$

Marginal entropy

- Let X and Y be two (discrete) RVs defined on \mathcal{A}_X and \mathcal{A}_Y ,
- The entropy H(X) is also called marginal entropy of X

Chain rules

Information content

$$I(x) = -\log_2 p(x)$$

Using
$$p(x,y) = p(x|y)p(y)$$

 $I(x,y) = I(x|y) + I(y) = I(y|x) + I(x)$

"The information content of (x, y) is the information content of x plus the information content of y|x"

Chain rules

• Entropy H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)

"The uncertainty of (X, Y) is the uncertainty of X plus the uncertainty of Y|X"

Mutual information

$$H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$$

Definition: mutual information

$$MI(X;Y) = H(X) - H(X|Y)$$

- Properties:
 - -MI(X;Y) = MI(Y;X)
 - $-MI(X;Y) \ge 0$
 - -MI(X;Y) = H(X) + H(Y) H(X,Y)
- Measures the average reduction of uncertainty about x that results from knowing y OR the average amount of information that x conveys about y

Entropy and mutual information

H(X,Y)		
H(X)		
		H(Y)
H(X Y)	MI(X;Y)	H(Y X)

Example

- $\mathcal{A}_X = \{0,1\}$ (binary source)
- p(X = 0) = p, p(X = 1) = 1 p
- Binary symmetric channel

$$\mathbb{p}(Y = 0 | X = 0) = 1 - f, \, \mathbb{p}(Y = 1 | X = 1) = 1 - f$$

$$\mathbb{p}(Y = 1 | X = 0) = f, \, \mathbb{p}(Y = 0 | X = 1) = f$$

Example

- $p(Y = 0) = p + f 2fp = \tilde{p}$
- $p(Y = 1) = 1 p f + 2fp = 1 \tilde{p}$
- p((Y,X) = (0,0)) = (1-f)p
- p((Y,X) = (1,1)) = (1-f)(1-p)
- p((Y,X) = (1,0)) = fp
- p((Y,X) = (0,1)) = f(1-p)
- $H(X) = -p \log_2 p (1-p) \log_2 (1-p)$
- $H(Y) = -\tilde{p} \log_2 \tilde{p} (1 \tilde{p}) \log_2 (1 \tilde{p})$

... see demo1.m