《线性代数 D》强化训练题三

一、填空题

1. 已知
$$A = \begin{pmatrix} 3 & -2 & 0 \\ 5 & -3 & 0 \\ 0 & 0 & 8 \end{pmatrix}$$
, 则 $A^{-1} = \underline{\qquad}$.

- 2. 设A为三阶方阵,且|A|=2,则 $|3A^{-1}-2A^*|=$ ______.
- 3. 已知向量组 $A: \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s; B: \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t$ 的秩分别为 $r_1, r_2,$ 并且A中每一 个向量都可由B线性表示,则r,与r,的关系是_____
 - 4. 已知三阶矩阵 A 的特征值为 -1, 2, 4, 又设 $B = A^2 2A$, 则 B 的特征值是
 - 5. 当 k 的取值范围为______时,二次型 $f = 3x_1^2 + (k-3)x_2^2 + (k-5)x_3^2$ 正定.

二、单项选择题

- 1. 下列n(n > 2)阶行列式的值必为零的有()
 - A. 行列式主对角线上的元素全为零
 - B. 行列式的次对角线上的元素全为零
 - C. 行列式零元素的个数多干n个
 - D. 行列式非零元素的个数小于n个
- 2. 设 $A \neq m \times n$ 矩阵, $C \sim E_n$, B = AC. 若R(A) = r, R(B) = r, 则一定有(

- A. r > r, B. r < r, C. r = r, D. r = r, 的关系由 C 确定
- 3. 设 η_0 是Ax = b的一个解, $\xi_1, \xi_2, \dots, \xi_r$ 是Ax = 0的基础解系,则有(
 - A. $\eta_0, \xi_1, \xi_2, \dots, \xi_r$ 线性无关
 - B. $\eta_0, \xi_1, \xi_2, \dots, \xi_r$ 线性相关
 - C. $\eta_0, \xi_1, \xi_2, \dots, \xi_r$ 的线性组合都是非齐次方程组 Ax = b 的解
 - D. $\eta_0, \xi_1, \xi_2, \dots, \xi_r$ 的线性组合都是齐次方程组 $Ax = \mathbf{0}$ 的解

- 4. n 阶矩阵 A 与对角矩阵相似的充要条件是()
 - A. A有n个互不相同的特征值 B. A有n个非零的特征值

C. $|A| \neq 0$

- D. $A \in n$ 个线性无关的特征向量
- 5. 设非齐次线性方程组 $\begin{cases} kx+z=0\\ 2x+ky+z=1 有唯一解,则()\\ kx-2y+z=1 \end{cases}$ A. $k\neq 0$ B. $k\neq -1$ C. $k\neq 2$ D. $k\neq -2$

三、计算题

1. 设
$$D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ a & b & c & d \\ 1 & 4 & 10 & 20 \end{vmatrix}$$
, 求元素 a, b 的代数余子式的值.

2. 计算行列式的值

$$D_{n+1} = \begin{vmatrix} -a_1 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & -a_2 & a_2 & \cdots & 0 & 0 \\ 0 & 0 & -a_3 & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & -a_n & a_n \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{vmatrix}$$

求 (1) AB; (2) |AB|; (3) B^{-1} ; (4) 满足 BX = A 的矩阵 X.

4. 问
$$\lambda$$
 为何值时,方程组
$$\begin{cases} 2x_1+x_2-3x_3=-5\\ x_1+3x_2-x_3=\lambda \end{cases}$$
 有解,无解,有解时求全部解.
$$-7x_1-11x_2+9x_3=\lambda^2$$

四、简答题

- 1. 设 A, B 均为 n 阶对称阵,问 AB 是否也是对称阵? 你能否给出 AB 也是对称阵的充要条件.
- 2. 问空间 R^3 中的平面 2x-3y+z=0 是否构成 R^3 中的子空间? 若是, 求该子空间的基与维数, 若不是, 则说出理由.

五、已知二次型 $f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ (a > 0) 可通过正交变换化为标准形 $f = y_1^2 + 2y_2^2 + 5y_3^2.$

- 1. 写 出 二 次 型 $f = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2ax_2x_3$ (a > 0) 的 矩 阵 A 和 标 准 形 $f = y_1^2 + 2y_2^2 + 5y_3^2$ 的矩阵 B;
 - 2. 由A与B的关系求A的特征值和参数a的值:
 - 3. 求正交变换矩阵P.

六、证明题

1. 已知 $\alpha_1, \alpha_2, \alpha_3$ 是线性空间V的一个基,设

$$\beta_1 = \alpha_1 + 2\alpha_2 + \alpha_3$$
, $\beta_2 = 2\alpha_1 + 3\alpha_2 + 3\alpha_3$, $\beta_3 = 3\alpha_1 + 7\alpha_2 - \alpha_3$.

证明 β_1 , β_2 , β_3 也是V 的一个基, 并求基 α_1 , α_2 , α_3 到基 β_1 , β_2 , β_3 的过渡矩阵.

- 2. 设n阶非零矩阵 A_1, A_2 满足 $A_i^2 = A_i$ (i = 1, 2), 且 $A_2A_1 = O$,
- (1) 证明: A_i (i = 1, 2) 的特征值 λ 不是 0 就是 1.
- (2) 证明: A_1 属于 $\lambda = 1$ 的特征向量x就是 A_2 属于 $\lambda = 0$ 的特征向量.
- (3) x_i 分别是 A_i 属于 $\lambda=1$ 的特征向量(i=1,2),证明 x_1,x_2 线性无关.