Курсовой проект

Задание

Надо спрогнозировать ТО по месяцам за 2019. В исходнике - все данные по продажам с 2013 года orders_all. Нужно учесть пробои данных, некорректность. Т.е. в некоторых месяцах проставить поправочные коэффициенты. Ваша задача - глубоко проанализировать, как развивался магазин, как менялись средние чеки, повторность продаж, тренд и сделать скорректирвоанный план на 2019 год по месяцам. В качестве вывода: строите график ТО по месяцам за 2019 год и детально описываете, что учитывали для прогноза в pdf.

Краткое описание проделанной работы

- 1. Из анализа были исключены невалидные данные с датой в виде 00.00.0000.
- 2. Данные с отрицательной ценой были скорректированны, в столбце price сменили знак с минуса на плюс.
- 3. Данные с очень маленькой или нулевой ценой были оставлены.
- 4. Используя интерквартильный размах (IQ), из анализа были исключены данные с сильно завышенной ценой.
- 5. В результате фильтрации выбросов и не валидных данных было потеряно 9,11% информации.
- 6. Из анализа ТО были исключены первые 18 месяцев жизни магазина, так как они приводили к завышенным результатам.
- 7. Анализ динамики среднего чека был проведён по всему временному диапазону с 01.2013 по 12.2018
- 8. Результаты прогноза ТО и среднего чека на 2019 год:

year_month	прогноз ТО	средний чек
2019-01	201,955,941.02	1,540.78
2019-02	171,465,618.67	1,554.45
2019-03	207,260,715.23	1,579.78
2019-04	200,201,007.17	1,551.65

year_month	прогноз ТО	средний чек
2019-05	214,071,579.04	1,528.84
2019-06	192,035,446.23	1,537.67
2019-07	206,327,507.78	1,518.28
2019-08	212,301,819.67	1,520.77
2019-09	210,123,450.71	1,524.90
2019-10	248,189,887.31	1,562.22
2019-11	296,733,066.45	1,552.34
2019-12	323,614,786.55	1,564.85

Графики за 2019 год:

Графики за весь период анализа:

Предобработка данных

Очистку данных делал с помощью jupyter notebook.

```
import pandas as pd
import numpy as np

DATASET_PATH = '../databases/orders_all.csv'
PREPARED_DATASET_PATH = '../databases/orders_all_prepared.csv'
RESULT_DATASET_PATH = '../databases/coursework.csv'
```

Загружаем данные и смотрим основные характеристики.

```
df = pd.read_csv(DATASET_PATH, sep=";")
df.head()
```

index	id_order	id_user	price	o_date
0	129	1	1337	26.04.2013
1	130	155	182	26.04.2013
2	131	1	602	26.04.2013

index	id_order	id_user	price	o_date
3	132	1	863	26.04.2013
4	133	1	2261	26.04.2013

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4365731 entries, 0 to 4365730

Data columns (total 4 columns):

id_order int64
id_user int64
price int64
o_date object

dtypes: int64(3), object(1)
memory usage: 133.2+ MB

df.describe()

	id_order	id_user	price
count	4.365731e+06	4.365731e+06	4.365731e+06
mean	5.147334e+06	3.325856e+06	1.603399e+09
std	3.509189e+06	3.011275e+06	3.350191e+12
min	1.290000e+02	0.000000e+00	-2.086000e+03
25%	1.812644e+06	5.880940e+05	7.340000e+02
50%	5.040464e+06	2.333255e+06	1.386000e+03
75%	8.403741e+06	5.422811e+06	2.496000e+03
max	1.697058e+07	9.900289e+06	7.000000e+15

df['id_order'].nunique()

4365731

Пропусков в колонках id_order и id_user нет. Все записи в колонке id_order уникальные.

```
initial_count = df.id_order.count()
initial_count

4365731

df.o_date.min()
'00.00.0000'
```

Нашли явно не валидные данные.

index	id_order	id_user	price	o_date
2136569	4900219	3764611	0	00.00.0000
2139866	4909909	3764611	0	00.00.0000
2139909	4910065	3764611	0	00.00.0000
2141378	4914559	3764611	0	00.00.0000

index	id_order	id_user	price	o_date
2141974	4916425	3764611	0	00.00.0000

Видим что в записях с невалидной датой цена везде равна нулю. Так что эти данные можно отбросить.

```
df.drop(df[(df['o_date'] == '00.00.0000')].index, inplace=True)

df.o_date.min()

'01.01.2014'

df.o_date.max()

'31.12.2017'
```

Поменяем тип данных для колонки o_date .

```
df['o_date'] = pd.to_datetime(df['o_date'])

df.info()

<class 'pandas.core.frame.DataFrame'>
```

```
Int64Index: 4310239 entries, 0 to 4363046
Data columns (total 4 columns):
id_order    int64
id_user    int64
price    int64
o_date    datetime64[ns]
dtypes: datetime64[ns](1), int64(3)
memory usage: 164.4 MB

df.o_date.min()

Timestamp('2013-01-08 00:00:00')

Timestamp('2018-12-27 00:00:00')
```

Теперь избавимся от невалидных данных в колонке price.

df.describe()

	id_order	id_user	price
count	4.310239e+06	4.310239e+06	4.310239e+06
mean	5.113639e+06	3.319858e+06	1.624042e+09
std	3.511263e+06	3.030090e+06	3.371688e+12
min	1.290000e+02	0.000000e+00	-2.086000e+03
25%	1.780412e+06	5.694485e+05	7.540000e+02
50%	4.959950e+06	2.263972e+06	1.400000e+03
75%	8.376397e+06	5.468550e+06	2.518000e+03
max	1.098539e+07	9.900289e+06	7.000000e+15

Для отрицательных значений поменяем знак.

В колонке с ценой есть как нулевые данные, так и явные выбросы. Применим интерквартильный размах чтобы избавиться от выбросов.

```
IQ=df.price.describe()['75%']-df.price.describe()['25%']
low_border=df.price.describe()['25%']-IQ*1.5
high_border=df.price.describe()['75%']+IQ*1.5

print(IQ,low_border,high_border)

1764.0 -1892.0 5164.0

df.loc[df['price'] > high_border, 'price'].count()

342583
```

Нижняя граница получилась отрицательной, так что избавиться от нулевых данных таким образом не получится. Сперва я приравнял выбросы значений колонки price сверху и снизу (заказ менее 50 рублей) к медианному значению. Но потом решил что заказы в 0 рублей вполне могут быть. Например, если клиенту дали 100% скидку за ошибку магазина или не качественный сервис. Так же решил выкинуть данные с выбросами сверху. В конце проверим, какой процент данных мы потеряем.

```
df.drop(df[(df['price'] > high_border)].index, inplace=True)
```

Посмотрим, что у нас получилось.

df.describe()

	id_order	id_user	price
count	3.967656e+06	3.967656e+06	3.967656e+06
mean	5.105578e+06	3.306019e+06	1.562793e+03
std	3.517659e+06	3.033508e+06	1.125650e+03
min	1.290000e+02	0.000000e+00	0.000000e+00
25%	1.766375e+06	5.593480e+05	7.100000e+02
50%	4.928302e+06	2.237073e+06	1.272000e+03
75%	8.381790e+06	5.454628e+06	2.147000e+03
max	1.098539e+07	9.900289e+06	5.164000e+03

Посмотрим на распределение цены заказа.

```
df['price'].hist(alpha = 0.5, bins=50, density=True)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f8bb39c1be0>

result_count = df.id_order.count()

```
result_count
```

3967656

```
lost_percentage = (initial_count - result_count) * 100 / initial_count
lost_percentage
```

9.118175169290092

Потери в 9% данных вполне приемлемы. Сохраним результат обработки данных в файл.

```
df.to_csv(PREPARED_DATASET_PATH, index=False, encoding='utf-8')
```

Группировка и выгрузка данных

Исходная задача такая: спрогнозировать ТО по месяцам за 2019. Сгруппируем данные для анализа по дате заказа (год-месяц) и посчитаем сумму заказов по каждому периоду.

```
df['year_month'] = pd.to_datetime(df['o_date']).dt.to_period('M')

df.head()
```

id_order	id_user	price	o_date	year_month
129	1	1337	2013-04-26	2013-04
130	155	182	2013-04-26	2013-04
131	1	602	2013-04-26	2013-04
132	1	863	2013-04-26	2013-04
133	1	2261	2013-04-29	2013-04

```
result_df = df \
    .groupby('year_month') \
    .agg({'price': ['sum', 'mean']}) \
    .reset_index()

result_df.head()
```

year_month	sum_price	mean_price
2013-01	1036657	1642.88
2013-02	1231875	1689.81
2013-03	1390532	1706.17
2013-04	1301414	1606.68
2013-05	1489346	1656.67

Выгрузим полученные результаты в файл и используем их для дальнейшего анализа.

```
result_df.to_csv(RESULT_DATASET_PATH, index=False, encoding='utf-8')
```

Анализ

Сперва рассчитываем коэффициенты тренда с помощью функции LINEST. Для первых 7-и месяцев 2013 года получаем отрицательные значения тренда. Это свидетельствует о том что фактически магазин получал прибыль, но относительно всего периода анализа (6 лет), в этот период магазин работал в убыток. Из графика видно, что в первые 7 месяцев роста почти не было, поэтому исключим первый год из анализ для более достоверного результата.

После перерасчёта тренда для периода с 2014-01, для первых 5-и месяцев 2014 года получаем отклонение тренда сильно больше среднего значения (от 1,29 до 2,7 при средних значениях от 1,03 до 1,31). Будем считать этот период фазой активного роста магазина и так же исключим эти 5 месяцев из анализа.

После перерасчёта тренда за период 2014-06 - 2018-12, на первый взгляд данные за 2015-11 сильно выбиваются из общей картины, но подсчёт разброса отклонения тренда по месяцам (разница между максимумом и минимумом для отклонения

тренда) говорит о том, что это нормальное поведение для ноября:

year_month	sum_price	отклонение тренда
2015-11	104616444	1.36944
2016-11	151046958	1.29458
2017-11	193709730	1.23414
2018-11	230696799	1.16962

Среднее отклонение тренда для ноября 1,24

Средние значения тренда и разброс отклонений тренда по месяцам:

месяц	среднее отклонение тренда	разброс отклонений тренда
январь	0.98591	0.19342
февраль	0.82368	0.12825
март	0.97983	0.10172
апрель	0.93172	0.05978
май	0.98105	0.16100
июнь	0.92489	0.36030
июль	0.91533	0.28159
август	0.92847	0.14522
сентябрь	0.90590	0.07226
октябрь	1.05495	0.30177
ноябрь	1.24381	0.21819
декабрь	1.33765	0.22575

Из таблицы видно что в июне разброс отклонения тренда достаточно большой (0,36). Присмотревшись, видим, что в 2014-06 отклонение тренда составило 1,15, в то время как для 2015-06, 2016-06, 2017-06 и 2018-06 оно меньше единицы. Это свидетельствует либо об продолжении актиивного роста магазина, либо об успешной рекламной акции в июне 2014. Так как это первый месяц рассматриваемого периода,

исключим его из анализа.

Далее для периода 2014-07 - 2018-12 пересчитываем коэффициенты тренда. Явно выбивающихся из общей картины результатов нет. Считаем коэффициенты сезонности, очищенные от роста, рассчитываем тренд на 2019 год. Перемножаем коэффициенты сезонности, очищенные от роста со значениями тренда и получаем прогнозируемый ТО на 2019 год.

Аналогичным способоми анализируем данные по среднему чеку. В этих данных нет специфических знаений. За 6 лет средний чек почти не меняется и колеблется около 1500р. Так как за 6 лет инфляция не может быть 0%, это свидетельствует о снижении покупательской способности потребителя.

Подробные данные в файле coursework.ods.

Результаты прогноза:

year_month	прогноз ТО	средний чек
2019-01	201,955,941.02	1,540.78
2019-02	171,465,618.67	1,554.45
2019-03	207,260,715.23	1,579.78
2019-04	200,201,007.17	1,551.65
2019-05	214,071,579.04	1,528.84
2019-06	192,035,446.23	1,537.67
2019-07	206,327,507.78	1,518.28
2019-08	212,301,819.67	1,520.77
2019-09	210,123,450.71	1,524.90
2019-10	248,189,887.31	1,562.22
2019-11	296,733,066.45	1,552.34
2019-12	323,614,786.55	1,564.85

Графики за 2019 год:

Графики за весь период анализа:

Средний чек с 2013-01 по 2019-12

