Algorithmique & Programmation (Suite) Chapitre 2- -

TD - 02

Savoirs et compétences :

Soit (*E*) l'équation $u_n = u_{n-1} + u_{n-2} + 1$ et (*E*₀) l'équation homogène associée : $u_n = u_{n-1} + u_{n-2} + 1$. On remarque que la suite constante $v_n = -1$ est une solution (particulière) de E. On a alors u_n solution de $E \Leftrightarrow$ $u_n - v_n$ solution de E_0 .

Résolution de E_0 .

L'équation caractéristique associée à u_n est $x^2-x-1=$ 0.

On a alors $\Delta = 1 + 4 = 5$. En conséquence $x_1 = \frac{1 - \sqrt{5}}{2}$

et
$$x_2 = \frac{1 + \sqrt{5}}{2}$$
.

On peut donc écrire v_n sous la forme $u_n = \lambda \left(\frac{1-\sqrt{5}}{2}\right)^n + \mu \left(\frac{1+\sqrt{5}}{2}\right)^n$.

Pour n = 0, on a $2 = \lambda + \mu$. Pour n = 1 on a $2 = \lambda \frac{1 - \sqrt{5}}{2} + \mu \frac{1 + \sqrt{5}}{2}$.

En conséquence, on pose $\mu = 2 - \lambda$ et $2 = \lambda \frac{1 - \sqrt{5}}{2} + \frac{1 - \sqrt{5}}{2}$

$$(2-\lambda)\frac{1+\sqrt{5}}{2} \Longleftrightarrow 4 = \lambda(1-\sqrt{5}) + (2-\lambda)(1+\sqrt{5})$$

$$\Leftrightarrow 4 = \lambda - \lambda\sqrt{5} + 2 + 2\sqrt{5} - \lambda - \lambda\sqrt{5}$$

$$\Leftrightarrow 1 = -\lambda\sqrt{5} + \sqrt{5} \Longleftrightarrow \lambda = \frac{\sqrt{5} - 1}{\sqrt{5}}$$
Au final, $\lambda = \frac{\sqrt{5} - 1}{\sqrt{5}}$ et $\mu = 2 - \frac{\sqrt{5} - 1}{\sqrt{5}} = \frac{\sqrt{5} + 1}{\sqrt{5}}$.

Retour à u_i

$$u_n = \frac{\sqrt{5} - 1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n + \frac{\sqrt{5} + 1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n$$

$$\operatorname{Or} \left| \left(\frac{1 - \sqrt{5}}{2} \right) \right| < 1. \operatorname{Donc} \left(\frac{1 - \sqrt{5}}{2} \right)^n \text{ tend vers 0 quand}$$
end vers l'infini

Au final, la complexité est donc exponentielle (u_n tend vers x_2^n).

Autre réflexion

On a $u_n = u_{n-1} + u_{n-2} + 1$ avec $u_0 = u_1 = 1$ $(n \ge 2)$. Soit $v_n = v_{n-1} + v_{n-2}$ avec $v_0 = 2$ $v_1 = 2$.

Montrons que $u_n = v_n - 1 \ \forall n \ge 2$

- Initialisation : au rang 2, on a d'une part $u_2 =$ $u_1 + u_0 + 1 = 3$ et d'autre part $v_2 = v_1 + v_0 = 4$; donc $u_2 = v_2 - 1$.
- Hypothèse de récurrence : on suppose la relation de récurrence vraie jusqu'au rang n.
- Vérifions que la relation est vraie au rang n + 1: On a d'une part $u_{n+1} = u_n + u_{n-1} + 1$ et d'autre part, $v_{n+1} = v_n + v_{n-1}$.

Montrons que $u_{n+1} - v_{n+1} = -1$.

 $u_{n+1} - v_{n+1} = u_n + u_{n-1} + 1 - v_n - v_{n-1} =$ $\underbrace{u_n - v_n}_{-1} + \underbrace{u_{n-1} - v_{n-1}}_{-1} + 1 = -1.$ La propriété est donc vraie au rang n+1.

Etude de v_n .

L'équation caractéristique associée à v_n est x^2-x-

On a alors $\Delta = 1 + 4 = 5$. En conséquence $x_1 = \frac{1 - \sqrt{5}}{2}$ et $x_2 = \frac{1 + \sqrt{5}}{2}$. On peut donc écrire v_n sous la forme $v_n = \lambda \left(\frac{1 - \sqrt{5}}{2}\right)^n + \mu \left(\frac{1 + \sqrt{5}}{2}\right)^n$. Pour n = 0, on a $2 = \lambda + \mu$. Pour n = 1 on a $2 = \lambda \frac{1 - \sqrt{5}}{2} + \mu \frac{1 + \sqrt{5}}{2}$.

En conséquence, on pose $\mu = 2 - \lambda$ et $2 = \lambda \frac{1 - \sqrt{5}}{2} + \frac{1 - \sqrt{5}}{2}$

$$(2-\lambda)\frac{1+\sqrt{5}}{2} \iff 4 = \lambda(1-\sqrt{5}) + (2-\lambda)(1+\sqrt{5})$$

$$\iff 4 = \lambda - \lambda\sqrt{5} + 2 + 2\sqrt{5} - \lambda - \lambda\sqrt{5}$$

$$\Leftrightarrow 1 = -\lambda\sqrt{5} + \sqrt{5} \Leftrightarrow \lambda = \frac{\sqrt{5} - 1}{\sqrt{5}}$$

Au final,
$$\lambda = \frac{\sqrt{5}-1}{\sqrt{5}}$$
 et $\mu = 2 - \frac{\sqrt{5}-1}{\sqrt{5}} = \frac{\sqrt{5}+1}{\sqrt{5}}$.

Retour à u_n

1

$$u_n = v_n - 1$$

$$u_n = \frac{\sqrt{5} - 1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n + \frac{\sqrt{5} + 1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - 1$$
Or $\left| \left(\frac{1 - \sqrt{5}}{2} \right) \right| < 1$. Donc $\left(\frac{1 - \sqrt{5}}{2} \right)^n$ tend vers 0 quand n tend vers l'infini.

Au final, la complexité est donc exponentielle (u_n tend vers x_2^n).