POLITECHNIKA BIAŁOSTOCKA

WYDZIAŁ INFORMATYKI

KATEDRA OPROGRAMOWANIA

PRACA DYPLOMOWA MAGISTERSKA

ΓΕΜΑΤ:	
	WYKONAWCA:
	PODPIS:

PROMOTOR: dr inż. Marek Krętowski

BIAŁYSTOK 2006 r.

Karta dyplomowa

POLITECHNIKA BIAŁOSTOCKA		Nr albumu
		studenta
Wydział Informatyki	Studia stacjonarne	Rok Akademicki
		2005/2006
Katedra Oprogramowania	magisterskie jednolite	Kierunek studiów
		Informatyka
		Specjalność Inżynieria
		Oprogramowania
	imię i nazwisko	
TEMATE DE LON DIVELONON	77.1	
TEMAT PRACY DYPLOMOW	EJ:	
	•••••	
Zalmas pragu		
Zakres pracy:		
1		
2		
3		
9	•••••	
Imię i nazwisko promotora - p		ierownika katedry - podpis
		Frag.
Data wydania tematu pracy dyplomowej	Regulaminowy termin złożenia	Data złożenia pracy dyplomowej
- podpis promotora	pracy dyplomowej	- potwierdzenie dziekanatu
Ocena promotora	Podp	ois promotora
Imie i nazwisko recenzenta	Ocena recenzenta	Podpis recenzenta

Streszczenie

Streszczenie streszczenie.

Spis treści

$\mathbf{S}_{\mathbf{I}}$	Spis treści										
1	Wst	5ęp	6								
2	Syn	nulacje komputerowe	7								
	2.1	Idea symulacji	7								
	2.2	Bariery symulacji	7								
		2.2.1 Moc obliczeniowa	7								
		2.2.2 Pamięć operacyjna	7								
	2.3	Obliczenia równolegle	7								
	2.4	Klastry	7								
	2.5	Symulacje z wykorzystaniem procesorów graficznych	7								
3	Pro	cesory graficzne	8								
	3.1	Rozwój technologii GPU	8								
	3.2	Standardowy potok graficzny	9								
	3.3	GPGPU	9								
		3.3.1 Pierwsze próby	9								
		3.3.2 OpenCL	9								
		3.3.3 CUDA API	9								
	3.4	Architektura CUDA	9								
4	$\mathbf{W}\mathbf{y}$	brany algorytm ORM	10								
	4.1	Ogólny opis	10								
	4.2	Analiza pod kątem obliczeń równoległych	10								
	13	Wykonania algorytmu równologłogo	10								

5	Analiza przeprowadzonych testów													11											
	5.1	Test 1												 										 	11
	5.2	Test 2												 										 	11
	5.3	Test 3												 										 	11
	5.4	Test 4												 										 	11
6	Pod	lsumow	an	ιie)																				12
Bi	bliog	grafia																							13

Rozdział 1.

Wstęp

Rozdział 2.

Symulacje komputerowe

- 2.1 Idea symulacji
- 2.2 Bariery symulacji
- 2.2.1 Moc obliczeniowa
- 2.2.2 Pamięć operacyjna
- 2.3 Obliczenia równolegle
- 2.4 Klastry
- 2.5 Symulacje z wykorzystaniem procesorów graficznych

Rozdział 3.

Procesory graficzne

3.1 Rozwój technologii GPU

Po raz pierwszy termin "procesor graficzny" użyty został przez firmę NVIDIA w 31 sierpnia 1999 roku. W tym czasie firma wprowadziła na rynek karty graficzne z serii GeForce 256. Układy graficzne, które posiadały procesory wspierające akcelerację 3D istniały już wiele lat wcześniej. Pierwsza na świecie karta graficzna oddana została do użytku w 1981 roku[4]. Była ona częścią komputera o nazwie IBM 5150 i nosiła nazwę MDA (Monochrome Display Adapter). Pozwalała na wyświetlenie 25 wierszy po 80 znaków. Początkowa wersja nie dawała możliwości wyświetlania grafiki. Twórcy uważali, że ich komputery wykorzystywane będą wyłącznie w biurach. Okazało się, że popyt na te maszyny istniał wśród odbiorców indywidualnych, którzy zainteresowani byli wykorzystaniem komputerów w celach rozrywkowych. Firma szybko naprawiła swój błąd i wprowadziła na rynek kartę CGA (Color Graphics Adapter).

Rysunek 3.1: CGA - protoplasta kart graficznych

Karta CGA 3.1 wyposażona była w 16KB pamięci przeznaczonej na bufor ramki, który służy do reprezentacji aktualnie wyświetlanego obrazu. Udostępniała dwa tryby tekstowe, co ciekawe, niezgodne z MDA, oraz dwa tryby graficzne. Pierwszy tryb graficzny umożliwiał wyświetlanie 320x200 pikseli z wykorzystaniem 16 kolorów. Kolejny tryb o wysokiej rozdzielczości 640x200 pikseli umożliwiał wykorzystanie tylko barwy czarnej i białej.

Przez kolejne lata w dziedzinie układów graficznych nie działo się nic przełomowego. Regularnie zwiększano rozdzielczość oraz liczbę obsługiwanych kolorów. Wiązało się to z jednoczesnym wzrostem pojemności dedykowanej pamięci RAM. Sytuacja zmieniła się wraz z powstaniem pierwszych akceleratorów grafiki trójwymiarowej. Jednym z pierwszych akceleratorów był VooDoo.

3.2 Standardowy potok graficzny

- 3.3 GPGPU
- 3.3.1 Pierwsze próby
- 3.3.2 OpenCL
- 3.3.3 CUDA API
- 3.4 Architektura CUDA

Rozdział 4.

Wybrany algorytm ORM

- 4.1 Ogólny opis
- 4.2 Analiza pod kątem obliczeń równoległych
- 4.3 Wykonanie algorytmu równoległego

Rozdział 5.

Analiza przeprowadzonych testów

- 5.1 Test 1
- 5.2 Test 2
- 5.3 Test 3
- 5.4 Test 4

Rozdział 6.

Podsumowanie

Bibliografia

- [1] Jason Sanders, Edward Kandrot. CUDA w przykładach. Wprowadzenie do ogólnego programowania procesorów GPU. Wydawnictwo Helion. Gliwice. 2012.
- [2] Nvidia. Witryna internetowa. http://www.nvidia.pl/ Stan z 03.04.2014.
- [3] Nvidia. Witryna internetowa. https://developer.nvidia.com/ Stan z 03.04.2014
- [4] INFO-KOMPUTERY. Witryna internetowa. http://www.info-komputery.pl/artykul,id_m-2,t-ka Stan z 28.03.2014
- [5] NAZWA. Witryna internetowa. http://www.seasip.info/VintagePC/cga.html Stan z03.04.2014