# Neural Network Training Basics

Stephen Baek

# **Gradient Descent**

#### Motivation

• Typical machine learning tasks:

$$\min_{\mathbf{\theta}} \sum_{i} \|y^{(i)} - f(\mathbf{x}^{(i)}|\mathbf{\theta})\|^{2}$$

- where...
  - $(\mathbf{x}^{(i)}, y^{(i)})$ : i-th data point in a dataset.
  - $f(\cdot | \theta)$ : machine learning model with parameters  $\theta$ .
- Examples:
  - x=[particle size, void fraction, porosity, fluid viscosity, ...], y=pearmeability (regression)
  - x=drone image, y=crack/no crack (classification)

So, how do we find  $\theta$ ?

#### Linear Models

- $\min_{\mathbf{\theta}} \sum_{i} ||y^{(i)} f(\mathbf{x}^{(i)}|\mathbf{\theta})||^2$  where  $f(\mathbf{x}|\mathbf{\theta}) = \theta_0 + \theta_1 x_1 + \dots + \theta_{d-1} x_{d-1} = \mathbf{x}^T \mathbf{\theta}$
- Let  $\mathbf{X}\coloneqq \left[\left(\mathbf{x}^{(i)}\right)^{\mathrm{T}}\right]$ , and  $\mathbf{y}\coloneqq \left[y^{(i)}\right]$ , then:  $\mathcal{L}(\mathbf{\theta})=\|\mathbf{y}-\mathbf{X}\mathbf{\theta}\|^2$

#### Linear Models

• Solution:

$$\mathcal{L}(\boldsymbol{\theta}) = \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2 = (\mathbf{y} - \mathbf{X}\boldsymbol{\theta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$= (\mathbf{y}^T - \boldsymbol{\theta}^T \mathbf{X}^T)(\mathbf{y} - \mathbf{X}\boldsymbol{\theta})$$

$$= \mathbf{y}^T \mathbf{y} - \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{y} - \mathbf{y}^T \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\theta}$$

$$= \mathbf{y}^T \mathbf{y} - 2\mathbf{y}^T \mathbf{X}\boldsymbol{\theta} + \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X}\boldsymbol{\theta}$$
First order necessary condition: 
$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\theta}}(\boldsymbol{\theta}) = -2\mathbf{y}^T \mathbf{X} + 2\boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} \equiv \mathbf{0}$$

$$\Leftrightarrow \boldsymbol{\theta}^T \mathbf{X}^T \mathbf{X} = \mathbf{y}^T \mathbf{X}$$

$$\Leftrightarrow \mathbf{X}^T \mathbf{X} \boldsymbol{\theta} = \mathbf{X}^T \mathbf{y}$$

$$\Leftrightarrow \boldsymbol{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

# A bit of nonlinearity...

- Minimize  $f(x) = (\cos x + \tan x)^2$ , w.r.t.  $x \in (-1,1)$

• First order necessary condition: 
$$\frac{\partial f}{\partial x} = 2(\cos x + \tan x)(-\sin x + \sec^2 x) \equiv 0$$



# Climbing up a Mountain

• Q. Suppose you're an *extremely* near-sighted person (can only see things within, say 6 ft., of your periphery). What would be the best strategy to get to

the peak?



# A Strategy: Steepest Ascent



# A Strategy: Steepest Ascent



# A Strategy: Steepest Ascent



# Steepest Descent Algorithm (a.k.a. Gradient Descent)

- Given a differentiable function  $\mathcal{L}$ , the function value decreases the fastest if one goes in the direction of the negative gradient of  $\mathcal{L}$ .
- It follows that, for small enough scalar value  $\alpha$ , if

$$\mathbf{\theta}_{i+1} = \mathbf{\theta}_i - \alpha \nabla \mathcal{L}(\mathbf{\theta}_i)$$

then  $\mathcal{L}(\boldsymbol{\theta}_{i+1}) \leq \mathcal{L}(\boldsymbol{\theta}_i)$ . (Proof: 1st order Taylor approximation)

# Machine Learning with Gradient Descent

- 1. Design your model  $f(\mathbf{x}|\mathbf{\theta})$ , and the learning objective  $\mathcal{L}(\mathbf{\theta}|\mathbf{x},y)$ .
- 2. Initialize the model parameters  $\theta$  (usually with random numbers).
- 3. Evaluate the gradient  $\nabla \mathcal{L}$  with respect to the current model parameters  $\mathbf{\theta}$  and training dataset  $\{\mathbf{x}^{(i)}, y^{(i)}\}$ .
- 4. Improve the model parameters with a given learning rate  $\alpha$  and the update strategy:  $\mathbf{\theta} \leftarrow \mathbf{\theta} \alpha \nabla \mathcal{L}$ .
- 5. Repeat 3~4 until converges

Q. What does it take to evaluate loss?

$$\mathcal{L}(\mathbf{\theta}) = \sum_{i=1}^{n} \|\mathbf{y}^{(i)} - f(\mathbf{x}^{(i)} | \mathbf{\theta})\|^{2}$$

Q. What does it take to evaluate loss?

$$\mathcal{L}(\mathbf{\theta}) = \sum_{i=1}^{n} \|\mathbf{y}^{(i)} - f(\mathbf{x}^{(i)} | \mathbf{\theta})\|^{2}$$

A. The function value  $f(\mathbf{x}^{(i)}|\mathbf{\theta})$  need to be evaluated for all  $\mathbf{x}^{(i)}$  in the dataset.

Q. What does it take to evaluate loss?

$$\mathcal{L}(\mathbf{\theta}) = \sum_{i=1}^{N} \left\| \mathbf{y}^{(i)} - f(\mathbf{x}^{(i)} | \mathbf{\theta}) \right\|^{2}$$

A. The function value  $f(\mathbf{x}^{(i)}|\mathbf{\theta})$  need to be evaluated for all  $\mathbf{x}^{(i)}$  in the dataset.

Q. What about the gradient?

Q. What does it take to evaluate loss?

$$\mathcal{L}(\mathbf{\theta}) = \sum_{i=1}^{N} \|\mathbf{y}^{(i)} - f(\mathbf{x}^{(i)} | \mathbf{\theta})\|^{2}$$

A. The function value  $f(\mathbf{x}^{(i)}|\mathbf{\theta})$  need to be evaluated for all  $\mathbf{x}^{(i)}$  in the dataset.

Q. What about the gradient?

A. Same! Backpropagation needs to happen for all and each  $\mathbf{x}^{(i)}$ 

Q. What does it take to evaluate loss?

$$\mathcal{L}(\mathbf{\theta}) = \sum_{i=1}^{N} \|\mathbf{y}^{(i)} - f(\mathbf{x}^{(i)} | \mathbf{\theta})\|^{2}$$

A. The function value  $f(\mathbf{x}^{(i)}|\mathbf{\theta})$  need to be evaluated for all  $\mathbf{x}^{(i)}$  in the dataset.

Q. What about the gradient?

A. Same! Backpropagation needs to happen for all and each  $\mathbf{x}^{(i)}$ 

Q. Then what happens to the gradient descent algorithm?

Q. What does it take to evaluate loss?

$$\mathcal{L}(\mathbf{\theta}) = \sum_{i=1}^{N} \|\mathbf{y}^{(i)} - f(\mathbf{x}^{(i)} | \mathbf{\theta})\|^{2}$$

A. The function value  $f(\mathbf{x}^{(i)}|\mathbf{\theta})$  need to be evaluated for all  $\mathbf{x}^{(i)}$  in the dataset.

Q. What about the gradient?

A. Same! Backpropagation needs to happen for all and each  $\mathbf{x}^{(i)}$ 

Q. Then what happens to the gradient descent algorithm?

A. Computational time increases exponentially as N goes up.

• Idea:

#### **Gradient Descent**

Compute everything

→ make the optimal one step

e.g. 6 steps \* 1 hr/step = 6 hrs





"Have no fear of perfection, you'll never reach it"

- Salvador Dali

TwistedSifter.com

```
1. Randomly shuffle dataset
```

```
Repeat until converge {
    for a mini-batch {
        compute gradient only with the mini-batch
        update weights
    }
}
```

• Gradients come from mini-batches, so they can be noisy and inaccurate!



#### ML with Stochastic Gradient Descent

- 1. Design your model  $f(\mathbf{x}|\mathbf{\theta})$ , and the learning objective  $\mathcal{L}(\mathbf{\theta}|\mathbf{x},y)$ .
- 2. Initialize the model parameters  $\theta$  (usually with random numbers).
- 3. Randomly sample a batch  $B = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N_b}$  with the batch size  $N_b \ll N$ .
- 4. Approximate the gradient  $\nabla \mathcal{L}$  with respect to the current model parameters  $\boldsymbol{\theta}$  and the current batch B.
- 5. Improve the model parameters with a given learning rate  $\alpha$  and the update strategy:  $\mathbf{\theta} \leftarrow \mathbf{\theta} \alpha \nabla \mathcal{L}$ .
- 6. Repeat 3~5 until all samples in the training data set is consumed. ("Epoch")
- 7. Repeat 6 until converges

# Problems of Vanilla (S)GD

Local minima or Saddle points → zero gradient! → No update (gets stuck)



#### Momentum

- Idea: let's build up a velocity (momentum)!
- SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

• SGD + Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
  
$$x_{t+1} = x_t - \alpha v_{t+1}$$

•  $\rho$ : "friction" or "drag". Causes decrease of velocity. Typically 0.9 or 0.99

#### SGD + Momentum

- Discuss:
  - High condition number (long-narrow valley)
  - Local minima and saddle points
  - Noisy gradient

#### **Nesterov Momentum**

• Vanilla momentum method: Current gradient + Current velocity.



$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

• Nesterov Version Gradient in joint where the current velocity would take us. Take the gradient there and perform the update.



$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

#### **Nesterov Momentum**

• 
$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t), \ x_{t+1} = x_t + v_{t+1}$$

- We want to update in terms of  $x_t$  and  $\nabla f(x_t)$ , NOT  $\nabla f(x_t + \rho v_t)$ .
- Luckily, this can be rearranged by the change of variables:  $\tilde{x}_t = x_t + \rho v_t$

$$\begin{aligned} v_{t+1} &= \rho v_t - \alpha \nabla f(\tilde{x}_t) \\ \tilde{x}_{t+1} &= \tilde{x}_t - \rho v_t + v_{t+1} + \rho v_{t+1} \\ &= \tilde{x}_t + v_{t+1} + \rho (v_{t+1} - v_t) \end{aligned}$$

# Another issue with GD: Long Narrow Valley

- What if *f* happens to be steep in one direction but "flat" in the other directions? (Long narrow valley)
  - Condition number: ratio of largest to smallest singular value of the Hessian.
  - Large condition number → long-narrow valley



#### AdaGrad

- Perform element-wise scaling of the gradient
  - Scale factors determined based on the historical sum of squares...

```
scale_factor = 0

for iter in range(0, MAX_ITER):
    dx = backpropagate(x)  # compute gradient
    scale_factor += dx*dx
    x -= learning_rate * dx / (np.sqrt(scale_factor) + epsilon)
```

• The element-wise scaling has an effect of "per-parameter learning rates" or "adaptive learning rates," thus, the name Adaptive Gradient.

### AdaGrad

- Long narrow valley: what happens with AdaGrad?
  - Step size along steep directions will be damped.
  - Step size along flat directions will be accelerated.



### AdaGrad

- Historical sum: what happens with AdaGrad after many iterations?
  - Step size decays to zero... 🟵

```
scale_factor = 0

for iter in range(0, MAX_ITER):
    dx = backpropagate(x)  # compute gradient
    scale_factor += dx*dx
    x -= learning_rate * dx / (np.sqrt(scale_factor) + epsilon)
```

# RMSProp

AdaGrad (step size decays to zero):

```
scale_factor = 0
for iter in range(0, MAX_ITER):
    dx = backpropagate(x)  # compute gradient
    scale_factor += dx*dx
    x -= learning_rate * dx / (np.sqrt(scale_factor) + epsilon)
```

• RMSProp (problem solved ☺)

```
scale_factor = 0
for iter in range(0, MAX_ITER):
    dx = backpropagate(x)  # compute gradient
    scale_factor = decay_rate*scale_factor + (1-decay_rate)*dx*dx
    x -= learning_rate * dx / (np.sqrt(scale_factor) + epsilon)
```

# Comparison of Optimization Methods



# Comparison of Optimization Methods



# Comparison of Optimization Methods



#### Comparison of Optimization Methods



#### Adam (All of the above!)

Why not take the advantage of both momentum and adaptive gradient methods?

```
moment = [0, 0]
for iter in range(0, MAX_ITER):
    dx = backpropagate(x)  # compute gradient
    moment[0] = beta[0]*moment[0] + (1-beta[0])*dx  # momentum
    moment[1] = beta[1]*moment[1] + (1-beta[1])*dx*dx  # RMSProp
    x -= learning_rate * moment[0] / (np.sqrt(moment[1]) + epsilon)
```

- Problem with the idea: what happens when iter = 0?
  - moments =  $0 \rightarrow bias!$

#### Adam (All of the above!)

```
moment = [0, 0]
for iter in range(0, MAX_ITER):
    dx = backpropagate(x)  # compute gradient
    moment[0] = beta[0]*moment[0] + (1-beta[0])*dx  # momentum
    moment[1] = beta[1]*moment[1] + (1-beta[1])*dx*dx  # RMSProp
    x -= learning_rate * moment[0] / (np.sqrt(moment[1]) + epsilon)
```

Modified version:

#### History of Gradient Descent Optimizers

Momentum

#### **GD**

Use all the data to evaluate the gradient and make the optimal step for every iteration



SGD

Approximate the gradient go a lit only with a small portion of data and move more in a given amount of time



#### Adagrad

Make large steps at places already visited, make smaller steps near new places

#### Nesterov Accelerated Gradient (NAG)

It is faster to move toward the momentum and to compute the step on a new location





Move a step forward and then go a little further following the momentum





#### RMSProp

Make the step length decision depending on the context



If you have no idea: ADAM!

NADAM



#### AdaDelta

Prevent "stop" because of too small steps

- Rumelhart, Hinton, and Williams. (1986).
- A popular training method for neural nets
- Propagate what? "the gradient of the current error"



- A simple example: f(x, y, z) = (x + y)z
  - Computational graph:



- A simple example: f(x, y, z) = (x + y)z
  - Computational graph:



- A simple example: f(x, y, z) = (x + y)z
  - Computational graph:







$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$
$$\frac{\partial}{\partial x} e^x = e^x$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$\frac{\partial}{\partial x}e^x = e^x$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$\frac{\partial}{\partial x}e^x = e^x$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$\frac{\partial}{\partial x}e^x = e^x$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$\frac{\partial}{\partial x}e^x = e^x$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



Cheat Sheet: 
$$\partial$$
 (1)

$$\frac{\partial}{\partial x} \left\{ \frac{1}{x} \right\} = -\frac{1}{x^2}$$

$$\frac{\partial}{\partial x}e^x = e^x$$

$$f(w,x) = \frac{1}{1 + e^{-(w_1x_1 + w_2x_2 + b)}}$$



$$\frac{\partial f}{\partial w_{1}} \left\{ \frac{1}{1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}} \right\} \qquad \frac{\partial f}{\partial x_{1}} = \frac{w_{1}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{2}{(1 + e^{-1})^{2}} e^{-1} = 0.3932$$

$$= -\frac{1}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} \frac{\partial}{\partial w_{1}} \left\{ -(w_{1}x_{1} + w_{2}x_{2} + b) \right\} \qquad \frac{\partial f}{\partial w_{2}} = \frac{x_{2}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{-2}{(1 + e^{-1})^{2}} e^{-1} = -0.3932$$

$$= -\frac{1}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} \frac{\partial f}{\partial w_{1}} \left\{ -(w_{1}x_{1} + w_{2}x_{2} + b) \right\} \qquad \frac{\partial f}{\partial x_{2}} = \frac{w_{2}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{-3}{(1 + e^{-1})^{2}} e^{-1} = -0.5898$$

$$= \frac{x_{1}}{\left(1 + e^{-(w_{1}x_{1} + w_{2}x_{2} + b)}\right)^{2}} e^{-(w_{1}x_{1} + w_{2}x_{2} + b)} = \frac{1}{(1 + e^{-1})^{2}} e^{-1} = 0.1966$$

$$= \frac{-1}{2} e^{-(-2+6-3)} = -0.1966$$

## Putting them all together



# Loss Functions

#### Lots of Puzzling Terms!

- Mean Squared Error/L2 (MSE/L2): torch.nn.MSELoss
- Mean Absolute Error/L1 (MAE/L1): torch.nn.L1Loss
- Huber Loss: torch.nn.HuberLoss
- Smooth L1: torch.nn.SmoothL1Loss
- Cross Entropy: torch.nn.CrossEntropyLoss
- Binary Cross Entropy: torch.nn.BCELoss
- Kullback-Leibler Divergence: torch.nn.KLDivLoss
- Hinge Embedding: torch.nn.HingeEmbeddingLoss
- Connectionist Temporal Classification: torch.nn.CTCLoss
- Negative Log Likelihood: torch.nn.NLLLoss
- Cosine Embedding: torch.nn.CosineEmbeddingLoss
- Margin Ranking: torch.nn.MarginRankingLoss
- Soft Margin: torch.nn.SoftMarginLoss; torch.nn.MultiLabelSoftMarginLoss
- Triplet Margin: torch.nn.TripletMarginLoss

## Information Theory (Claude Shannon, 1948)

- Digital information: series of bits (either 0 or 1)
- Sending a single bit (useful) of information = reducing receiver's uncertainty into half
- For example, who would win the Yonsei-Korea University game, assuming the both team have the equal chance of winning (50%)?
  - With no information, the uncertainty is 50-50.
  - One bit of information (Yonsei won!) → resolves the uncertainty.
- Another example, imagine a league of 8 teams. Who is the winner?
  - With no information, the uncertainty is 12.5% each.
  - How many bits of information do you need?
  - 3 bits!  $(2^3 = 8, \text{ or } \log_2(8) = 3)$

## Information Theory (Claude Shannon, 1948)

- What if the chance of winning is not equal?
  - Say, Yonsei (75% of winning) and Korea U (25% of winning).
  - If a sender says, Korea U won the game, the uncertainty drops by the factor of 4.
    - Uncertainty reduction =  $-\log_2(1/4) = 2$
  - If a sender says, Yonsei won the game,
    - Uncertainty reduction =  $-\log_2(3/4) = 0.42$
  - Therefore, the expected number of bits to resolve the uncertainty:
    - $-0.75*\log_2(3/4) 0.25*\log_2(1/4) = 0.75*0.42 + 0.25*2 = 0.82$  bits
- Entropy:  $H(p) = -\sum_i p_i \log_2(p_i)$ 
  - Average amount of information that can be derived from one sample drawn from a given probability distribution
  - Indicator of how unpredictable the probability distribution is.
  - More variation in the data → larger entropy.

#### **Cross Entropy**

- Entropy:  $H(p) = -\sum_i p_i \log_2(p_i)$
- Cross Entropy:  $H(p,q) = -\sum_i p_i \log_2(q_i)$ 
  - Think of p as a true distribution and q as a predicted distribution.
  - If q = p (correct prediction), cross entropy equals to entropy.
  - If  $q \neq p$  (erroneous prediction), cross entropy gets greater (why?) than entropy by some number of bits

https://en.wikipedia.org/wiki/Gibbs' inequality

- Kullback-Leibler Divergence:  $D_{KL}(p,q) = H(p,q) H(p)$ 
  - The amount of difference between cross entropy and entropy.
  - a.k.a, relative entropy

#### Hinge Loss

- Penalizes incorrectly classified examples + correctly classified examples that lie within the margin
- Hinge loss is generally faster than cross entropy but less accurate.



# Regression: L<sub>p</sub> Distances

•  $L_p$  norm or Minkowski distance:

$$L_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

• For p = 1, Manhattan (or city-block) distance:

$$L_1(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

• For p = 2, Euclidean distance:

$$L_2(x,y) = \sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}$$

#### L1 and L2 Loss

- Mean Absolute Error (MAE):  $\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$
- Mean Squared Error (MSE):  $\frac{1}{n}\sum_{i=1}^n |y_i \hat{y}_i|^2$





https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-should-know-4fb140e9d4b0

#### L1 and L2 Loss

- Mean Absolute Error (MAE):  $\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$
- Mean Squared Error (MSE):  $\frac{1}{n}\sum_{i=1}^n |y_i \hat{y}_i|^2$





#### **Huber & Smoothed L1**

• Huber:

$$L_{\delta}(a) = egin{cases} rac{1}{2}a^2 & ext{for } |a| \leq \delta, \ \delta \cdot \left(|a| - rac{1}{2}\delta
ight), & ext{otherwise.} \end{cases}$$



## Still puzzling?

- Mean Squared Error/L2 (MSE/L2): torch.nn.MSELoss
- Mean Absolute Error/L1 (MAE/L1): torch.nn.L1Loss
- Huber Loss: torch.nn.HuberLoss
- Smooth L1: torch.nn.SmoothL1Loss
- Cross Entropy: torch.nn.CrossEntropyLoss
- Binary Cross Entropy: torch.nn.BCELoss
- Kullback-Leibler Divergence: torch.nn.KLDivLoss
- Hinge Embedding: torch.nn.HingeEmbeddingLoss
- Connectionist Temporal Classification: torch.nn.CTCLoss
- Negative Log Likelihood: torch.nn.NLLLoss
- Cosine Embedding: torch.nn.CosineEmbeddingLoss
- Margin Ranking: torch.nn.MarginRankingLoss
- Soft Margin: torch.nn.SoftMarginLoss; torch.nn.MultiLabelSoftMarginLoss
- Triplet Margin: torch.nn.TripletMarginLoss

Some generically useful ones that are applicable to the majority of the PADL problems

More specific loss functions for advanced learners