

Wolfram		
Aufgabennummer: B_104		
Technologieeinsatz:	möglich ⊠	erforderlich

Wolfram ist ein wegen seines hohen Schmelzpunktes und seiner technisch interessanten Verbindungen zu einem unverzichtbaren Teil unseres Alltags geworden.

- a) Das Metall Wolfram kristallisiert in einem kubisch raumzentrierten Kristallgitter. Die Atommasse beträgt 183,85 Units (u). Der Atomradius *r* beträgt 137 Pikometer (pm = 10⁻¹² m). Hinweis: Beachten Sie, dass die Atome an den Ecken der Elementarzelle nicht voll zu dieser Elementarzelle zählen.
 - Berechnen Sie die Kantenlänge a der abgebildeten Elementarzelle. Gehen Sie davon aus, dass die Atome anders als im abgebildeten Modell einander entlang der Diagonale berühren.
- a
- Berechnen Sie die Dichte von Wolfram in g/cm³
 auf 2 Kommastellen genau (1 u ... 1,661 · 10⁻²⁷ kg).

b) Bei einem Stanzwerkzeug besteht der vordere Teil, ein abgerundeter Kegelstumpf, aus Wolframcarbid (siehe nachstehende Skizze).

– Erstellen Sie anhand des Steigungswinkels α und der Höhe h des Drehparaboloids eine Funktionsgleichung für die erzeugende quadratische Parabel des Drehparaboloids. Legen Sie den Koordinatenursprung so wie in der Skizze abgebildet.

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Wolfram 2

Möglicher Lösungsweg

a) Die Raumdiagonale d des Würfels entspricht 4r und es gilt:

$$d = a \cdot \sqrt{3}$$

 $a = \frac{4r}{\sqrt{3}} = \frac{548 \cdot 10^{-12}}{\sqrt{3}} \text{ m}$

In einer Elementarzelle befinden sich umgerechnet 2 Wolframatome (1 + 8 · $\frac{1}{8}$).

Die Masse m_E einer Elementarzelle beträgt m_E = 367,68 u = 6,107 · 10⁻²⁵ kg = 6,107 · 10⁻²² g. Das Volumen V_E einer Elementarzelle in Kubikzentimetern beträgt:

$$V_{\rm E} = \left(\frac{548 \cdot 10^{-10}}{\sqrt{3}} \text{ cm}\right)^3 \approx 3,167 \cdot 10^{-23} \text{ cm}^3$$

Dichte $\rho = \frac{m}{V} = \frac{m_{\rm E}}{V_{\rm F}} \approx 19,28 \frac{\rm g}{{\rm cm}^3}$

b) Die allgemeine Gleichung für eine nach unten offene Parabel durch den Ursprung lautet $f(x) = -a \cdot x^2 + h$ für a > 0.

Die Nullstellen von f ergeben sich aus $-a \cdot x^2 + h = 0$ mit $x_1 = \sqrt{\frac{h}{a}}$ und $x_2 = -\sqrt{\frac{h}{a}}$.

Für die Steigung an der Stelle x_2 gilt: $f'(x_2) = \tan(\alpha)$.

$$f'(x) = -2ax$$

$$f'\left(-\sqrt{\frac{h}{a}}\right) = 2a\sqrt{\frac{h}{a}} = \tan(\alpha) \leftrightarrow 4ah = \tan^2(\alpha) \leftrightarrow a = \frac{\tan^2(\alpha)}{4h}$$

$$f(x) = -\frac{\tan^2(\alpha)}{4h} \cdot x^2 + h$$

Wolfram 3

Klassifikation ⊠ Teil B □ Teil A Wesentlicher Bereich der Inhaltsdimension: a) 1 Zahlen und Maße b) 3 Funktionale Zusammenhänge Nebeninhaltsdimension: b) 4 Analysis Wesentlicher Bereich der Handlungsdimension: a) B Operieren und Technologieeinsatz b) A Modellieren und Transferieren Nebenhandlungsdimension: a) A Modellieren und Transferieren b) B Operieren und Technologieeinsatz Schwierigkeitsgrad: Punkteanzahl: a) mittel a) 3 b) schwer b) 4 Thema: Chemie

Quellen: -