# Flowering phenology in lodgepole pine

3/16/2023

C. Susannah Tysor

# Lodgepole pine flowering biology

#### In spring

- ► Male strobili shed pollen
- ► Female strobili capture pollen

Wind pollinated

## Flowering phenology matters

- ► Gene flow
  - ► assortative mating
  - ▶ (local) adaptation
  - ► clinal variation
- ► Seed orchard management
- ► Tree breeding
- Assisted migration

# What controls the timing of flowering phenology in lodgepole pine?

- ► Chilling accumulation
- ► Forcing accumulation
- Genetics

- ► Assume met
- ▶ assume > 5 °C
- ► Is there clinal variation?

#### Data

- ▶ 748 clones of 259 genotypes
- ▶ grown in 7 seed orchards across BC
- flowering state recorded every few days over a one day to several week period
- ▶ 15 total years of data collection

#### Provenance

- ▶ seeds and scions from 143 natural stands
- grafted onto rootstock to create a clone bank
- ► clone bank scions selected based on superior growth, form

## Мар



## How much forcing?

- ► Thermal time transferable
- ► Test for provenance climate effect MAT
- ► 4 models
  - ► Begin (male) pollen shed
  - ► End (male) pollen shed
  - ► Begin (female) receptivity
  - ► End (female) receptivity
- ► Account for variance due to site, year, genotype, and clone
- ► Account for unbalanced and censored data

#### Likelihood model

Likelihood of forcing observations would have a normal distribution

$$f_i \sim \text{Normal}(\phi_i, \sigma)$$

But all of my data is censored.

| Event | Sex           | interval | left | right |
|-------|---------------|----------|------|-------|
| begin | FEMALE        | 0.63     | 0.37 | NA    |
| begin | MALE          | 0.35     | 0.65 | NA    |
| end   | <b>FEMALE</b> | 0.47     | NA   | 0.53  |
| end   | MALE          | 0.48     | NA   | 0.52  |

#### Likelihood model - for censored data

So we assume an underlying normal distribution that we're observing badly.

► Left censored start data (hazard function)

$$\Pr[f_i < U] = \int_{-\infty}^{U} \text{Normal}(y \mid \phi_i, \sigma) dy$$

► Right censored end data (survival function)

$$\Pr[f_i > L] = \int_{L}^{\infty} \operatorname{Normal}(y \mid \phi_i, \sigma) dy$$

► Interval censored data

$$\Pr[L > f_i > U] = \int_L^U \text{Normal}(y|\phi_i, \sigma) dy$$

## Modeling the mean

$$\phi_i = \alpha + \beta MAT + \delta_{Site,i} + \delta_{Year,i} + \delta_{Clone,i} + \delta_{Ramet,i}$$

- $ightharpoonup \alpha$ : Overall mean forcing requirement
- ightharpoonup eta: Provenance climate effect using MAT as covariate
- $\blacktriangleright$   $\delta$ : Offsets from the overall mean based on site, year, clone, and ramet

#### **Priors**

- ► limits based on possible forcing accumulation
- gamma distribution for intercept
- half normal for offset parameter standard deviations



#### Fit in Stan via brms package

```
# model formula
bform <- brmsformula(sum_forcing | cens(censored, upper) ~</pre>
                        MAT + (1|Site) + (1|Clone) + (1|Year) + (1|Tree)
# model prior
bprior <- c(prior("gamma(3.65, 0.01)", class = "Intercept"),</pre>
            prior("normal(0,15)", class = "sigma"),
            prior("normal(0,9)", class = "sd"),
            prior("normal(0,5)", class = "b"))
# female/receptivity begin
fbfit <- brm(bform, data = fbdat,
             prior = bprior,
             init = initpars,
             iter = 4000.
             cores = 6.
             chains = 6)
```

#### Fit

Modelling events I didn't observe - so how can I check how my model is doing?



| Sex    | Begin | Begin_sd | End  | End_sd |
|--------|-------|----------|------|--------|
| FEMALE | 0.61  | 0.97     | 0.71 | 0.97   |
| MALE   | 0.76  | 0.99     | 0.71 | 0.97   |

## Results - Provenance effect similar for end and begin



#### Results - Mean and variation





# Results - Forcing predictions expectation

Forcing requirements for trees sourced from focal sites expectation (mean) predictions



## Day of year predictions intro

Temperature timeseries -> forcing accumulation timeseries

Then match to forcing predictions

Focus on 5 sites (as provenances as sites)

| Site        | MAT  | Elevation |
|-------------|------|-----------|
| Border      | -1.4 | 671       |
| Trench      | 1.5  | 659       |
| PGTIS       | 3.9  | 598       |
| KettleRiver | 6.9  | 632       |
| Kalamalka   | 8.0  | 486       |

#### Results - MAT Day of Year

#### Predicted flowering periods

posterior expectation, ribbons = uncertainty, lines = medians



## Results - DoY expectations in common garden

Change in flowering day of year expectation with MAT effect typical year, trees grown at PGTIS



## Results - DoY expecations on the landscape

Change in flowering day of year expectation with MAT effect typical year, trees grown at home



# Results - MAT Day of Year





## Overlap





#### Summary

- Males have longer period and start slightly before, end after females
- ► ~5 more GDD per 1 degree MAT required for flowering
- Countergradient variation should increase flowering period overlap
- Overlap depends on geographic location and provenance climate
- Anybody can predict flowering time in lodgepole with just daily temperature data and MAT - with no modelling required.

#### Questions

But why is there countergradient variation?

#### More

- Climate change (1 month shift, no big overlap changes)
- ▶ Does it all wash away in the light of individual variation?

## Extra

