MATH 8520 SPRING 2019 HOMEWORK 11

Due Monday April 20, 2019

- 1. (5 pts) Let V be a domain with quotient field K. Show that the following conditions are equivalent.
 - (1) For all nonzero $a, b \in V$, either a|b or b|a.
 - (2) For all nonzero $\omega \in K$, either ω or ω^{-1} is in V.
 - (3) There is a valuation v on K such that $V = \{x \in K | v(x) \ge 0\} \bigcup \{0\}$.
- 3. Let R be a domain with quotient field K and \overline{R} the integral closure of R. V will denote a valuation overring of R.
 - a) (5 pts) Show that \overline{R} is integrally closed.
 - b) (5 pts) Show that $\overline{R} \subseteq \bigcap_{R \subset V \subset K} V$.
 - c) (5 pts) Now show that $\overline{R} = \bigcap_{R \subset V \subset K} V$.
- 4. Let R be a domain with quotient field K. An element $x \in K$ is said to be almost integral if there is a nonzero $r \in R$ such that $rx^n \in R$ for all $n \in \mathbb{N}$. We say that a domain is completely integrally closed if it contains all of its almost integral elements.
 - a) (5 pts) Give an example of an element that is almost integral, but not integral.
 - b) (5 pts) Show that if $x \in K$ is integral over R, then x is almost integral over R..
 - c) (5 pts) Show that if R is Noetherian, then any almost integral element over R is integral over R.
 - d) (5 pts) Let V be a valuation domain that is not a field. Show that V is completely integrally closed if and only if V is one-dimensional (that is, every nonzero prime ideal is maximal).