Fall 2016 Topics in Algebraic Topology 3450:589

INSTRUCTOR: Dr. Stefan Forcey <u>EMAIL:</u> sforcey@uakron.edu

OFFICE: CAS 275 <u>PHONE</u>: 972-6779 **OFFICE HOURS:** MTuWF 1:15-2:15pm, and lots more by appointment!

TEXTs:

[PS] Hatcher, Point-Set Topology:

http://www.math.cornell.edu/~hatcher/Top/Topdownloads.html

[AT] Hatcher, Algebraic Topology:

http://www.math.cornell.edu/~hatcher/AT/ATpage.html

BIBLIOGRAPHY:

Prasolov, V.V., *Intuitive Topology* A.M.S. Weeks, Jeffrey. *The Shape of Space*.

<u>Website</u> for schedule, homework problems and announcements: http://www.math.uakron.edu/~sf34/class_home/topo/topos17.htm

GRADING POLICY:

400 pts: Team Moderator (1st time, weeks 2-7)
400 pts: Team Moderator (2nd time, weeks 8-12)
200 pts: Attendance, or turn in HW.

900 pts. guarantees an A
800 pts. guarantees a B
700 pts. guarantees a C
600 pts. guarantees a D
(+,- at my discretion)

Course Outline:

Jan. 18 Category of topological spaces and continuous maps.

Reading [PS] Chapter 1,2 pgs 1-20.

Given the spaces $X=\{1,2,3,4,5,6,7\}; \ \mathcal{O}_X=\{\{\},X,\{1\},\{2\},\{1,2\},\{2,3\},\{1,2,3\},\{1,2,3,7\}\} \ \text{and}$ $Y=\{y \text{ in } \mathbf{N} \mid 0 < y < 15\};$ $\mathcal{O}_Y=\{\{\},Y,\{2\},\{5\},\{2,5\},\{2,4,5\},\{1,2,5,7\},\{1,2,4,5,7\},\{1,2,4,5,6,7\},\{1,2,4,5,6,7,10\}\};$ and $Z=\{2,4,6,8\}; \ \mathcal{O}_Z=\{\{\},Z,\{2\},\{4,6\},\{6,8\}\}.$

Which pair A, \mathcal{O}_A is not a topology? Find bases for the two topological spaces. Is the function f = 2x continuous from X to Y? Is the function g from the unit interval given by g(t) = 2 for $t < \frac{1}{2}$, and g(t) = 4 otherwise, a path in X? Is that same function a path in Y? Pick 2 from weeks 2-7, and another 2 topics from weeks 8-12. Email me!

Jan. 25	Reading [PS] Chapter 2 pgs 20-28.
2)	Connectivity, path connectivity.
	Is the space X , \mathcal{O}_X from the previous week path connected? Is it connected? Describe a specific space that is connected but not path connected. Describe a specific space that is connected but for which it is unknown whether it is path connected. For what topologies on the set of vertices of a graph are the edges of the graph connected as subspaces?
Feb 1	Metric spaces. Reading [PS] pgs 9-10. Also see the links below.
3)	Mackenzie JonesDraw the unit balls in the taxicab metric (see the wiki: https://en.wikipedia.org/wiki/Taxicab geometry) and the bus metric (also known as the British Rail metric, on page 94 here: https://www.math.ucdavis.edu/~hunter/m125a/intro analysis ch7.pdf). Show that a continuous function from Calculus 1 is a continuous function in the standard topology of the real line.
Feb 8 0	Gluing and cutting spaces: Quotient Spaces: Reading [PS] pgs 20-21
4)	Haley Innes, De Airre HainesENUMERATE THE CUT POINTS, NON-CUT-POINTS, AND THE HOMEOMORPHISM CLASSES OF THE LETTERS IN THIS SENTENCE.
Feb 15	Reading [PS] pgs 44-51
5)	Brandon Pipher, Brandon MartinSurfaces: Figure out what you get by gluing some surfaces by handstart with polygons and identify edges. [Link to worksheet: http://www.math.uakron.edu/~sf34/class home/topo/gluing.pdf .]
Feb 22	Reading [AT] pgs 1-10
6)	Andrew Mayer Euler characteristic, genus: Find the Euler characteristic of a genus- <i>n</i> surface with <i>k</i> distinct boundary components. Find the Euler characteristic of an <i>n</i> -dimensional polytope.
March	1 Homotopy groups. Reading [AT] pgs 21-39
7)	Christopher BensonFind the fundamental groups of the circle, sphere, torus, Klein bottle, two-holed torus, punctured torus and thrice punctured sphere.

March 8 Reading [AT] pgs 40-55
8)Mackenzie JonesFigure out the fundamental groups for some knot complements: the Knot Groups for the trefoil and the figure eight, and one more.
March 15 Reading [AT] pgs 339-340
9)Brandon Pipher, Brandon MartinHigher homotopy: What is the definition of the homotopy group $\pi_2(X, x_0)$. Define $\pi_n(X, x_0)$. Show that $\pi_2(X, x_0)$ is abelian. What is the open problem of homotopy for the spheres?
March 22 Homology groups. Reading [AT] pgs 95-107
10)Andrew MayerFind the homology groups of the circle, sphere, torus, Klein bottle and projective plane.
April 5 Reading [AT] pgs 137-143, pgs 5-8
11)Haley InnesUse Simplicial and Cellular complexes, simplicial or cellular homology to calculate homology groups. Find the homology groups of the two-holed torus, punctured torus, thrice punctured sphere and 3-torus.
April 12 Reading [AT] pgs 149-159
Calculate (maybe using Mayer-Vietoris) the real homology sequences of: the solid 3d-ball with a toroidal hole (missing a torus-shaped solid), the solid torus with a missing 3-ball, and the solid torus with a toroidal hole.
April 19 Polytopes from topologies. Reading <u>Graph Associahedra</u> pgs 2-5
13) De Airre Haines Define graph associahedra in terms of topological bases on nodes in a path graph.
April 26 Spaces of Trees. Reading <u>Tree spaces</u> pgs 9-24
14)Define Billera Holmes Vogt (BHV) space, Balanced Minimal Evolution (BME) polytope
May 3 Spaces of Networks. Reading <u>Network spaces</u> pgs 2-13
15)Christopher Benson Define the spaces of networks CSN_n and \u03b5_n
Phylogenetics. Facets of the BME polytope and cells of S_n