## ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea in Ingegneria e Scienze Informatiche

# Integrazione di RAG e LLM nello Sviluppo del Software

Tesi di laurea in: Programmazione ad oggetti

Relatore
Prof. Viroli Mirko

Candidato
Bollini Simone

Correlatori

Dott. Aguzzi Gianluca Dott. Farabegoli Nicolas

## Abstract

I Large Language Model (LLM) addestrati per sviluppare il codice sono oggi altamente efficaci e in grado di generare soluzioni di qualità. L'addestramento fatto sui modelli è però su fonti generiche, questo non da quindi la possibilità al modello di generare soluzioni su misura per una specifica richiesta utilizzando casistiche già create dal programmatore o dalla propria azienda per casi simili. Da questo nasce l'esigenza di addestrare il modello per personalizzare le soluzioni proposte, contestualizzandole alla propria realtà aziendale e al proprio stile nel programmare. Il fine-tuning di un LLM è un processo molto costoso e non scalabile per essere aggiornato frequentemente. Per rispondere a questa esigenza entra in gioco la Retrieval-Augmented Generation (RAG), che permette aumentare la conoscenza del modello, recuperando informazioni da una base di conoscenza esterna al modello, come librerie specifiche di un azienda, arricchendo il prompt della query di input. Ricercando semanticamente i chunk maggiormente somiglianti a quanto richiesto se trovati, si inseriranno per completare la query inviata al LLM, estendendo la base di informazioni sulla quale genererà l'output con la risposta. Questa tesi approfondisce questi concetti e sperimenta l'integrazione di un RAG e un LLM con lo scopo di ottenere dal LLM risposte personalizzate che solo con la conoscenza del LLM anche se estremamente performante e preparato sarebbe stato impossibile ottenere.



Grazie a tutti voi.

V

# Contents

CONTENTS

| Abstract |                                                             |                                           |    |  |  |  |  |
|----------|-------------------------------------------------------------|-------------------------------------------|----|--|--|--|--|
| 1        | Introduzione                                                |                                           |    |  |  |  |  |
|          | 1.1                                                         | Essere programmatori nel 2025             | 1  |  |  |  |  |
| 2        | Addestrare un LLM per la Generazione del Codice 5           |                                           |    |  |  |  |  |
|          | 2.1                                                         | Scelta Modello                            | 5  |  |  |  |  |
|          | 2.2                                                         | Raccolta e Preparazione dei Dataset       | 6  |  |  |  |  |
|          |                                                             | 2.2.1 Pulizia e Pre-Processo              | 6  |  |  |  |  |
|          | 2.3                                                         | Pre-Addestramento                         | 7  |  |  |  |  |
|          | 2.4                                                         | Fine-Tuning                               | 8  |  |  |  |  |
|          |                                                             | 2.4.1 Overfitting                         | 8  |  |  |  |  |
|          | 2.5                                                         | Pre-Addestramento vs Fine-Tuning          | 8  |  |  |  |  |
|          | 2.6                                                         | Valutazione e Ottimizzazione              | 9  |  |  |  |  |
|          |                                                             | 2.6.1 Metriche di Valutazione             | 9  |  |  |  |  |
|          |                                                             | 2.6.2 Tecniche di Ottimizzazione          | 9  |  |  |  |  |
| 3        | RAG 1:                                                      |                                           |    |  |  |  |  |
|          | 3.1                                                         | Introduzione                              | 11 |  |  |  |  |
|          | 3.2                                                         | 2 Funzionamento                           |    |  |  |  |  |
|          |                                                             | 3.2.1 Creazione degli Embedding           | 14 |  |  |  |  |
|          |                                                             | 3.2.2 Fase 1: Function Calling            | 14 |  |  |  |  |
|          |                                                             | 3.2.3 Fase 2: Recupero delle Informazioni | 14 |  |  |  |  |
|          |                                                             | 3.2.4 Fase 3: Aumento del Prompt          | 15 |  |  |  |  |
|          | 3.3                                                         | Perchè RAG                                | 15 |  |  |  |  |
| 4        | Implementazione di un Sistema RAG per lo Sviluppo del Soft- |                                           |    |  |  |  |  |
|          | war                                                         |                                           | 17 |  |  |  |  |
|          | 4.1                                                         | Obiettivo                                 | 17 |  |  |  |  |
|          | 4.2                                                         | Architettura del Sistema                  | 17 |  |  |  |  |
|          | 4.3                                                         | Software Utilizzati                       | 19 |  |  |  |  |
|          |                                                             |                                           |    |  |  |  |  |

vii

## CONTENTS

|                  |        | 4.3.1          | Ollama                                             | . 19 |  |  |  |  |
|------------------|--------|----------------|----------------------------------------------------|------|--|--|--|--|
|                  |        | 4.3.2          | LLM                                                |      |  |  |  |  |
|                  |        | 4.3.3          | LangChain                                          |      |  |  |  |  |
|                  |        | 4.3.4          | BGE-M3                                             |      |  |  |  |  |
|                  | 4.4    | Datas          |                                                    |      |  |  |  |  |
|                  | 4.5    | Implei         | mentazione                                         |      |  |  |  |  |
|                  |        | 4.5.1          | Creazione dei Chunk                                | . 21 |  |  |  |  |
|                  |        | 4.5.2          | Arricchire i chunk con metadati relativi al codice | . 25 |  |  |  |  |
|                  |        | 4.5.3          | Generazione degli Embedding                        | . 26 |  |  |  |  |
|                  |        | 4.5.4          | Esecuzione di query sul Database FAISS             | . 27 |  |  |  |  |
|                  |        | 4.5.5          | Creazione della Pipeline RAG                       | . 29 |  |  |  |  |
|                  |        | 4.5.6          | Risultati del Sistema RAG                          | . 32 |  |  |  |  |
|                  |        | 4.5.7          | Valutazione del RAG                                | . 35 |  |  |  |  |
| 5                | Cor    | Conclusioni 37 |                                                    |      |  |  |  |  |
|                  | 5.1    | Impat          | to sullo Sviluppo Software                         | . 37 |  |  |  |  |
|                  | 5.2    |                | e Prospettive Future                               |      |  |  |  |  |
|                  |        |                |                                                    |      |  |  |  |  |
|                  |        |                |                                                    | 39   |  |  |  |  |
| $\mathbf{B}^{i}$ | ibliog | graphy         |                                                    | 39   |  |  |  |  |

viii CONTENTS

## Chapter 1

## Introduzione

## 1.1 Essere programmatori nel 2025

Sono disponibili tantissimi (IDE) per lo sviluppo del codice uno di questi è Visual Studio Code, mentre GitHub può essere lo strumento dove condividere i progetti e lavorare in team. Se richiesta memoria GPU per piccoli progetti accademici è disponibile COLAB che permette di eseguire in remoto codice utilizzando GPU senza costi. Questi esempi sono parte di una panoramica di strumenti sempre più vasta, complessa e in rapita evoluzione, con un frequente cambio di software per realizzare un programma. Inoltre la complessità dei progettti è aumentanta disponendo sempre di più librerie e metodi per realizzare il codice. Un esempio d'utilizzo con gli strumenti sopra elencato potrebbe essere la realizzazione iniziale del progetto in locale utilizzado Visual Studio Code per poi riportare il tutto su GitHub, in un secondo momento il codice viene ripreso e aperto su Colab dove a sua volta il programma viene modificato ed infine rieseguito il Push sul progetto radice presente su GitHub. Ora nel 2025, la cosa che accomuna questi strumenti, è l'implemazione al loro interno di funzioni basate sull'IA, in grado di completare il codice, suggerire correzioni e creare documentazione pertinente. GitHub ha introdotto Copilot, un assistente IA per la scrittura del codice, questo strumento è integrabile per vari IDE tra cui proprio Visual Studo Code. Un esempio semplice ma che offre già un idea della vastità e della potenza di queste funzioni è l'utility di **Github Copilot** 'Generate Commit Message with Copilot' che propone il testo da utilizzare come descrizione di un commit, ho provato a riscontrare quanto fosse contestualizzato e coerente con quanto aggiornato e ho ottenuto il seguente risultato:

Add model files and configuration for Llama-3.2-3B-Instruct

Nel mio caso quanto proposto era corretto ed ho quindi eseguito il Commit con la descrizione proposta. Quanto è riuscito a fare Copilot è strabiliante, in pochi istanti ha analizzato il contesto ritornando come output una risposta semplice ma coerente rispetto a quanto cambiato. L'uso di questi strumenti sta rendendo il lavoro molto più dinamico e veloce, riducendo le interruzioni nel cercare soluzioni o per trovare le giuste parole per descrivere quanto fatto.



L'intelligenza artificiale sta rivoluzionando il modo in cui il software viene sviluppato, strumenti come Copilot utilizzando tutto il loro potenziale, possono creare la spina dorsale di un progetto in poco tempo lasciando al programmatore il compito di verificare e correggere solo in parte il codice proposto. In progetti complessi questo non riduce il ruolo del programmatore, anzi lo eleva a compiti di precisione e ad alto valore aggiunto delegando la stesura di parti del codice semplici e ripetitive

al software stesso. Per questi motivi capire come funzionano oggi questi strumenti è importante, sapere come chiedere e formulare correttamente le domande al LLM è fondamentale, esplicitando nel dettaglio con parole chiave mirate come deve essere realizzato il codice per indirizzarlo nell'elaborazione e ragionamento corretto. Altro compito complesso per il programmatore è non farsi troppo ammaliare dalle soluzioni proposte perché non sempre necessarie per quanto richiesto oppure diverse da quanto già conosciuto per realizzare una determinata funzione. Questo nuovo modo di lavorare permette di conoscere nuove soluzioni ma comporta test e tempo non sempre disponibile, il programmatore deve sempre avere il controllo del progetto, accettando generazione del codice automatica solo dove consapevole di quanto proposto e del suo impatto anche in casi di revisione e manutenzione futuri. Il codice deve rimanere rapidamente leggibile e coerente in tutte le sue parti, far generare il codice in automatico può portare ad una perdità di coerenza e leggibilità. Proprio per questo l'ultimo miglio da percorrere per sfruttare questi strumenti è la personalizzazione delle risposte del LLM, per ottenere risposte rimanendo nel contesto e nello stile di quanto già realizzato e conosciuto, per fare questo entra in gioco il **Fine-Tuning** e i **RAG** che verrano ampiamente approfonditi.

## Chapter 2

# Addestrare un LLM per la Generazione del Codice

L'addestramento di LLM per la generazione del codice di programmazione richiede una serie di passaggi complessi e costi significativi. Conoscere questo processo, senza addentrarsi nel dettaglio, è utile per poter poi comprendere al meglio la successiva implementazione con le tecniche di **RAG**. La procedura si divide nelle seguenti fasi:

## 2.1 Scelta Modello

Gli LLM utilizzano tipicamente architetture basate su trasformatori, che sono particolarmente efficaci nell'elaborazione di sequenze di dati, come il testo e il codice. I trasformatori utilizzano meccanismi di auto-attenzione per valutare l'importanza di diversi elementi in una sequenza, permettendo al modello di comprendere le relazioni tra parole o token. Questa capacità è fondamentale nella generazione del codice, poiché le dipendenze tra variabili e funzioni possono estendersi su ampie sezioni del codice, richiedendo al modello di considerare un ampio contesto per trovare le risposte corrette. L'architettura del modello scelto influenzerà in maniera decisiva tutte le successive fasi di addestramento. È utile notare che sebbene i trasformatori siano attualmente lo standard, esistono anche altri approcci come le reti neurali ricorrenti (RNN e LSTM) e nuove tecniche in continua evoluzione

come i Large Concept Models [WFS<sup>+</sup>24].

## 2.2 Raccolta e Preparazione dei Dataset

La qualità e la quantità dei dati per l'addestramento è di primaria importanza per prepare un modello alla generazione di codice in maniera efficace. È quindi essenziale utilizzare per il training codice proveniente da molteplici fonti tra cui codice sorgente, file readme, documentazione tecnica, commenti nel codice, pagine Wiki, API e discussioni su forum specializzati in programmazione, arricchendo così il dataset con esempi pratici e ricchezza terminologica. In rete è possibile trovare diverso materiale open source tra cui dataset già etichettati. Alcuni dataset hanno un valore altissimo, per tutelare il costo per produrli per certi dataset è previsto il diritto d'autore. I dati si dividono in due tipologie:

- Dati Strutturati: seguono un formato specifico e predefinito, seguono la struttora in coppie (descrizione, codice).
- Dati non Strutturati: non sono organizzati e sono quindi più difficili da interpretare dal modello.

#### 2.2.1 Pulizia e Pre-Processo

La raccolta di dati va visionata con cura, se non si conosce la provenienza del codice è possibile che contenga bug o codice obsoleto che possono essere trasmessi al modello. Con la rapida evoluzione del codice molte librerie e tecniche vengono rapidamente deprecate e superate per questo anche utilizzando i più noti modelli LLM ad oggi disponibili, può capitare di ricevere come output codice obsoleto che risolve il quesito ma con soluzioni contenti tecniche, api e librerie deprecate o non più disponibili. Per questo motivo i dati raccolti devono essere quindi puliti e pre-processati per rimuovere errori e informazioni non pertinenti, garantendo così un dataset di alta qualità per l'addestramento.

Il modello per poter elaborare il dataset ha bisogno che quest'ultimo venga diviso in parti più piccole chiamate token per mantenere l'integrita del dato [Sta24], i token

possono essere parole, parti di parole o singoli caratteri, e questa suddivisione è fondamentale per:

- Gestione del contesto: mantenere la relazione semantica tra i diversi elementi del codice
- Efficienza computazionale: processare grandi quantità di testo in modo ottimizzato
- Limitazioni del modello: rispettare i limiti massimi di input del modello (tipicamente tra 512 e 4096 token)
- Preservazione della struttura: mantenere la struttura sintattica del codice sorgente

Ad esempio, nel codice Java, i token potrebbero includere:

- Parole chiave (public, class, static)
- Identificatori (nomi di variabili e metodi)
- Operatori e simboli (+, =, {, })
- Stringhe letterali e commenti

### 2.3 Pre-Addestramento

Il pre-addestramento di un LLM specializzato nella generazione di codice ha lo scopo di fornire al modello una conoscenza generale della sintassi e delle strutture logiche dei linguaggio di programmazione. Durante questa fase il modello impare a generare codice partendo da dati non etichettati utilizzando tecniche come il language modeling autoregressivo per insegnare al modello di predire il token successivo in una sequenza. Questo approccio rende la generazione contestualmente e coerente di codice, sfruttando la capacità del modello di "ricordare" il contesto anche su ampie sequenze di dati.

## 2.4 Fine-Tuning

Il fine-tuning è la fase in cui il modello già pre-addestrato viene ulteriormente specializzato per la generazione di codice adattando e migliorando il modello per specifici domini di applicazione. Durante questa fase, il modello affina le sue capacità attraverso dataset specializzati composti da coppie descrizione-codice, documentazione tecnica e commenti, esempi di bug-fixing e refactoring. **Tecniche di Apprendimento**:

- Supervisionato: Training su coppie input-output predefinite, il modello impara a mappare input di descrizione con linguaggio naturale a output di codice corrispondente.
- Per Rinforzo: Ottimizzazione basata su feedback e metriche di qualità
- Few-shot Learning: Adattamento a nuovi contesti con pochi esempi

#### 2.4.1 Overfitting

Il processo di fine-tuning richiede un attento bilanciamento nell'apprendere dai dati di addestramento cercando di evitare di incorrere in overfitting. L'overfitting si verifica quando il modello si specializza troppo sui dati di addestramento, riducendo la sua capacità di generalizzazione producendo risposte errate o incoerenti su nuovi dati. Per evitare l'overfitting vengono utilizzati set di validazione, regolarizzazione e tecniche di dropout.

## 2.5 Pre-Addestramento vs Fine-Tuning

È importante comprendere la distinzione tra queste due fasi:

#### Pre-Addestramento

Il pre-addestramento è la fase iniziale dove il modello:

- Acquisisce una comprensione **generale** del linguaggio di programmazione
- Viene addestrato su grandi quantità di codice sorgente generico

- Impara le strutture base e la sintassi del linguaggio
- Non è ancora specializzato per compiti specifici

#### Fine-Tuning

Il fine-tuning è invece la fase di specializzazione dove il modello:

- Si adatta a un dominio specifico o a compiti particolari
- Utilizza dataset specifici e composti da dati strutturati

### 2.6 Valutazione e Ottimizzazione

Una volta addestrato, il modello deve essere rigorosamente valutato utilizzando metriche specifiche per la generazione di codice, come la correttezza sintattica, la funzionalità e l'efficienza del codice prodotto. I risultati della valutazione possono essere utilizzati per ulteriori ottimizzazioni, come aggiustamenti dei pesi del modello, modifiche all'architettura o includere dati di addestramento aggiuntivi per affrontare eventuali carenze.

#### 2.6.1 Metriche di Valutazione

- Correttezza Sintattica: Verifica che il codice generato sia sintatticamente corretto.
- Funzionalità: Verifica che il codice generato realizzi la funzionalità desiderata.
- Efficienza: Valuta le prestazioni del codice in termini di tempo di esecuzione e utilizzo delle risorse.

#### 2.6.2 Tecniche di Ottimizzazione

• Aggiustamento dei Pesi: Modifica dei pesi del modello per migliorare le prestazioni.

## 2.6. VALUTAZIONE E OTTIMIZZAZIONE

- Modifiche all'Architettura: Introduzione di nuove componenti o modifiche a quelle esistenti.
- Integrazione di Dati Aggiuntivi: Utilizzo di ulteriori dati di addestramento per migliorare le prestazioni.

## Chapter 3

## RAG



## 3.1 Introduzione

Il RAG Retrieval-Augmented Generation, (in italiano Generazione Aumentata tramite Recupero) è un sistema che permette di migliorare l'output di un LLM estendendo la sua conoscenza con nuove informazioni, al di fuori dai suoi dati di addestramento. Allo scopo di:

- ottenere risposte personalizzate provenienti da librerie e codice custom;
- migliorare il codice generato rendendolo più specifico al dominio riducendo le allucinazioni;
- facilitare l'assistenza da parte del modello nella fase di debugging migliorando la sua comprensione di sistemi complessi;
- supportare la creazione di documentazione aggiornata;

## 3.1. INTRODUZIONE

• permettere all'interno di un Team di migliorare la coerenza del codice scritto da diversi programmatori proponendo librerie e standard comuni;

• evitare risposte imprecise a causa della confusione terminologica, in cui diverse fonti utilizzano la stessa terminologia per parlare di cose diverse.

## 3.2 Funzionamento



RAG è un sistema che integra il processo di generazione del linguaggio con un

CHAPTER 3. RAG 13

meccanismo di recupero delle informazioni. Il funzionamento si articola in diverse fasi, come sopra illustrato.

### 3.2.1 Creazione degli Embedding

Il sistema RAG utilizza dati esterni al training set originale del LLM, provenienti da diverse fonti come:

- API e database interni
- Archivi documentali
- File di testo e codice

Questi dati vengono convertiti in rappresentazioni numeriche (embedding) e archiviati in un database vettoriale, creando una knowledge base accessibile dal RAG.

## 3.2.2 Fase 1: Function Calling

Il sistema RAG inizia con una chiamata di funzione per ricercare nei dati di embedding:

- La query dell'utente attiva una chiamata di funzione
- Il sistema cerca nei dati di embedding le informazioni pertinenti
- Se trovate, queste informazioni vengono aggiunte al prompt

#### 3.2.3 Fase 2: Recupero delle Informazioni

Quando l'utente sottopone una query:

- La domanda viene convertita in un vettore
- Il sistema cerca nel database vettoriale le informazioni più pertinenti
- Viene calcolata la rilevanza attraverso calcoli matematici vettoriali

## 3.2.4 Fase 3: Aumento del Prompt

Il sistema RAG arricchisce il prompt dell'utente:

- Aggiunge le informazioni recuperate al contesto
- Utilizza tecniche di prompt engineering per ottimizzare la comunicazione con il LLM
- Fornisce al modello un contesto arricchito per generare risposte più accurate

### 3.3 Perchè RAG

Il RAG permette di superare le limitazioni dei LLM, fornendo risposte accurate e contestualizzate grazie all'integrazione di conoscenze interne e personalizzate. Costruire un RAG è una valida alternativa al fine-tuning e permette di avere rapidamente aggiornamenti sulla base dati. Cosa più difficile da ottenere con il fine-tuning, che richiede tempo e risorse significative. Inoltre è più facile costruire un RAG che intervenire direttamente sul LLM solitamente di proprietà di terzi.

CHAPTER 3. RAG

16 CHAPTER 3. RAG

## Chapter 4

# Implementazione di un Sistema RAG per lo Sviluppo del Software

### 4.1 Objettivo

Questo caso studio si propone di verificare il livello di personalizzazione e qualità delle risposte di un LLM potenziando la query nel prompt di input attraverso la creazione di un sistema RAG di supporto. Il sistema RAG è testato con della classi JAVA uniche create appositamente per il caso studio.

Problematica da affrontare: chiamate a più livelli di classi e metodi, dove il RAG potrebbe non essere in grado di estrapolare le informazione necessarie da inserire nel prompt per ottenere dal LLM risposte coerenti con quanto richiesto.

## 4.2 Architettura del Sistema

Il sistema RAG implementa un'architettura modulare composta da cinque componenti principali:

#### 1. Text Processor (Chunking):

- Suddivide i file Java in chunk di un numero definito appositamente di token
- Gestisce sovrapposizione di token tra chunk



Figure 4.1: Architettura del sistema RAG

• Preserva il contesto del codice

#### 2. Embedder (BGE-M3):

- Converte i chunk in vettori numerici
- Utilizza il modello BGE-M3 per la generazione degli embedding
- Normalizza i vettori per ottimizzare la ricerca

#### 3. Vector DB (FAISS):

- Memorizza gli embedding in un database vettoriale
- Ottimizza la ricerca per similarità
- Garantisce recupero efficiente dei chunk rilevanti

#### 4. Retriever:

18

- Esegue query semantiche sul database
- Recupera i k chunk più rilevanti
- Prepara il contesto per il LLM

#### 5. LLM Interface (CodeQwen e Llama 3.2):

- Interfaccia con i modelli CodeQwen e Llama 3.2
- Genera risposte basate sul contesto recuperato
- Ottimizza il prompt per la generazione di codice

#### 4.3 Software Utilizzati

## 4.3.1 Ollama

Ollama [Oll24] è un software che permette di utilizzare in locale LLM senza dover dipendere da servizi cloud esterni. Il software è stato scelto per la sua flessibilità, permettendo di integrare facilmente i modelli LLM nel sistema RAG.

#### 4.3.2 LLM

Ogni LLM è specializzato per determinati scopi, per questo motivo per rendere più completa la ricerca sono stati utilizzati due modelli. Nella scelta dei modelli è stato obbligatorio eseguire un pre filtraggio considerando solo modelli che permettessero di eseguire function calling.

#### Llama 3.2

Llama 3.2 3B [AI24], un modello di linguaggio open source. Il modello, con 3 miliardi di parametri, è ottimizzato per compiti di dialogo multilingue e si distingue per le sue capacità di recupero e sintesi delle informazioni. La scelta è ricaduta su questa versione per il suo equilibrio tra prestazioni e requisiti computazionali che permottono il suo utilizzo senza hardware troppo potente.

#### Codequen 1.5

Codequen [Tea24b] è un modello di linguaggio open source specializzato nella generazione di codice e documentazione tecnica. Con 7 miliardi di parametri, il modello è stato addestrato su un ampio dataset di codice sorgente e documentazione tecnica, permettendo di generare codice coerente e ben strutturato. La

scelta di questo modello è stata dettata, a differenza di llama3.2, dalla sua specializzazione nella programmazione e dalla sua capacità di generare codice di alta qualità.

### 4.3.3 LangChain

LangChain [Tea24a] è un framework open source progettato per costruire applicazioni basate su LLM. Fornisce strumenti avanzati per integrare modelli con dati esterni ed API, creare pipeline con chain e gestire database vettoriali, supportando l'implementazione di sistemi RAG.

#### 4.3.4 BGE-M3

BGE-M3 [BAA24] è un database vettoriale open source per la gestione di dati strutturati e non strutturati multilingue, sviluppato da BigGraph Engine.

#### 4.4 Dataset

Il dataset creato appositamente è composto da tre classi Java:

DateUtilCustom.java Classe personalizzata per gestire le date

Giorni Magici. java Classe per calcolare in maniera particolare dei giorni

BasketballStats.java Classe per calcolare statistiche relative al mondo del basket, questa classe non ha nessuna relazione diretta con le altre due classi, mentre DateUtilCustom.java e GiorniMagici.java sono strettamente correlate. Andremo a testare il sistema RAG con il seguente scenario:

• Query: Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?

#### Codice di riferimento per rispondere alla query

In GiorniMagici.java è presente la seguente funzione:

Listing 4.1: Metodo segnaleWow in GiorniMagici.java

Questa funzione richiama il metodo getMessaggioMagico presente in DateU-tilCustom.java:

Listing 4.2: Metodo getMessaggioMagico in DateUtilCustom.java

```
public static String getMessaggioMagico(LocalDate datamagica) throws
       DateTimeParseException {
       DayOfWeek giornoSettimana = datamagica.getDayOfWeek();
       switch(giornoSettimana) {
           case MONDAY: return "La magia inizia nel silenzio...";
           case TUESDAY: return "I sussurri degli antichi si fanno sentire.";
           case WEDNESDAY: return "Il velo tra i mondi e' sottile oggi.";
           case THURSDAY: return "L'energia magica e' potente e chiara.";
           case FRIDAY: return "Attenzione agli incantesimi del crepuscolo.";
           case SATURDAY: return "Il giorno perfetto per scoprire segreti nascosti.";
           case SUNDAY: return "Riposa e rigenera il tuo potere magico.";
10
           default: return "Il giorno e' avvolto nel mistero...";
11
       }
12
```

#### Risultato Atteso

Essendo il 10 gennaio 2025 un venerdì, ci aspettiamo come risposta:

"il tuo segnale Wow è: Attenzione agli incantesimi del crepuscolo."

## 4.5 Implementazione

#### 4.5.1 Creazione dei Chunk

I modelli di embedding hanno limiti massimi di input (512-4096 token) per questo spezzare il codice in chunk di dimensioni adeguate è fondamentale oltre che in ogni caso obbligatorio. Inoltre occorre prestare attenzione alla dimensione dei chunk generati, se troppo piccoli riducono il contesto disponibile per il modello mentre

se troppo grandi perdono focalizzazione semantica. Per suddividere il file Java in chunk viene utilizzata la libreria **langchain\_text\_splitters.** Il seguente codice Python mostra come suddividere i file Java in chunk di dimensione fissa, salvando i risultati in un file JSON.

Listing 4.3: Codice Python per la suddivisione dei file Java in chunk

```
from langchain_text_splitters import RecursiveCharacterTextSplitter
        import json
3
4
        # Funzione per caricare e suddividere un file Java
       def process_file(file_path):
5
            with open(file_path, "r", encoding="utf-8") as f:
6
            lines = f.readlines()
            # Ricostruisce il testo mantenendo le informazioni sulle linee
9
            text = ''.join(lines)
10
11
            splitter = RecursiveCharacterTextSplitter(
12
13
            chunk_size=512,
            chunk_overlap=128,
            separators=[
15
                "\n}\n\npublic", # I seguenti separatori sono stati usati per provare
16
                     a mantenere i metodi uniti
                "\n}\n\nprivate",
17
                "\n}\n\nprotected",
18
                "\n}\n//",
19
                                  # Nuovo separatore per commenti
                "\nclass ",
20
                "\n@Override",
                                  # Cattura le implementazioni di interfacce
21
                "\n@Test",
                                   # Per eventuali test case
22
                "\n/**",
                                   # Separatore per Javadoc
23
                "\n * ",
24
                "\n"
25
           ],
26
27
            keep_separator=True,
28
            is_separator_regex=False
30
            chunks = splitter.split_text(text)
31
            # Calcola le linee esatte per ogni chunk
32
            chunk_metadata = []
33
            cursor = 0
            for chunk in chunks:
35
                start_line = text.count('\n', 0, cursor) + 1
36
                chunk_length = len(chunk)
37
                end_line = text.count('\n', 0, cursor + chunk_length) + 1
38
                chunk_metadata.append({
                    "start_line": start_line,
41
                    "end_line": end_line,
```

```
"text": chunk
42
43
                })
                cursor += chunk_length
44
45
            return chunk_metadata
46
47
        # Carica e suddividi i file Java
48
        files = ["my_project/DateUtilCustom.java", "my_project/GiorniMagici.java", "
49
            my_project/BasketballStats.java"]
50
        all_chunks = []
51
        for file_path in files:
53
            chunks_info = process_file(file_path)
            for chunk_info in chunks_info:
54
55
                chunk_text = chunk_info["text"]
56
57
                # Aggiungi contesto strutturale
                class_context = ""
58
                if "class " in chunk_text:
59
                    class_name = chunk_text.split("class ")[1].split("{")[0].strip()
60
                    class_context = f"Classe: {class_name}\n"
61
62
                all_chunks.append({
63
64
                    "id": len(all_chunks) + 1,
65
                    "text": f"// File: {file_path}\n{class_context}{chunk_text}",
                    "source": file_path,
66
                    "type": "code",
67
                    "start_line": chunk_info["start_line"],
68
69
                    "end_line": chunk_info["end_line"],
                    "class": class_context.replace("Classe: ", "") if class_context
70
                        else ""
                })
71
72
        # Salva i chunk in un file JSON
73
        with open("chunks.json", "w", encoding="utf-8") as f:
74
            json.dump(all_chunks, f, indent=4, ensure_ascii=False)
```

Il chunking è costruito in maniera specifica per codice java, i separatori sono stati scelti per tentare di segmentare il codice secondo la struttura tipica dei metodi e delle classi, garantendo che il chunk contenga blocchi di codice "interi". L'opzione keep\_separator=True fa sì che il separatore venga mantenuto nel chunk risultante. Per ciascun chunk, se nel testo è presente la stringa class, il codice estrae il nome della classe (prendendo il testo che segue class fino al primo {) e lo utilizza per creare un contesto strutturale (es Classe: NomeClasse). Questo contesto viene preappeso al testo del chunk e salvato anche come valore nel campo "class".

#### Il risultato nel file chunks.json è il seguente:

Listing 4.4: Esempio di chunks generati

```
2
                   "id": 1,
                   "text": "// File: my_project/DateUtilCustom.java\
                    nClasse: DateUtilCustom\npublic class
                    DateUtilCustom {\n
                                          public static String
                    getMessaggioMagico(LocalDate datamagica) throws
                    DateTimeParseException {\n
                                                       DayOfWeek
                    giornoSettimana = datamagica.getDayOfWeek();\n
                           switch(giornoSettimana) {\n
                    case MONDAY: return \"La magia inizia nel
                    silenzio...\";\n
                                                 case TUESDAY: return
                    \"I sussurri degli antichi si fanno sentire.\";\n
                                case WEDNESDAY: return \"Il velo tra
                    i mondi e' sottile oggi.\";\n
                    THURSDAY: return \"L'energia magica e' potente e
                                             case FRIDAY: return \"
                    chiara.\";\n
                    Attenzione agli incantesimi del crepuscolo.\";\n
                               case SATURDAY: return \"Il giorno
                    perfetto per scoprire segreti nascosti.\";\n
                               case SUNDAY: return \"Riposa e
                    rigenera il tuo potere magico.\";\n
                    default: return \"Il giorno e' avvolto nel
                    mistero...\";\n
                                            }\n
                                                  }\n}",
                   "source": "my_project/DateUtilCustom.java",
                   "type": "code",
                   "start_line": 1,
                   "end_line": 29,
                   "class": "DateUtilCustom"
10
11
                   "id": 2,
                   "text": "// File: my_project/GiorniMagici.java\
13
                    nClasse: GiorniMagici\npublic class GiorniMagici
                           public static String segnaleWow(LocalDate
                    data) {\n
                                     String wow = \"il tuo segnale
```

```
Wow e': \" + DateUtilCustom.getMessaggioMagico(
                     date);\n
                                       return wow; \n
                    "source": "my_project/GiorniMagici.java",
14
                    "type": "code",
15
                    "start_line": 1,
16
                    "end_line": 8,
17
                    "class": "GiorniMagici"
18
19
                     .....continua
20
           ]
```

Ogni chunk mantiene:

- Il riferimento al file sorgente
- Il nome della classe
- Le righe di inizio e fine nel file originale
- Il contenuto del codice con la sua struttura

#### 4.5.2 Arricchire i chunk con metadati relativi al codice

Oltre al testo del codice, è importante mantenere informazioni aggiuntive per facilitare la ricerca e l'interpretazione dei chunk. La seguente funzione extract\_method\_name aggiunge una stringa contestuale per ogni chunk che include:

- Il nome del metodo o della classe
- La classe di appartenenza
- Le righe di inizio e fine del codice

Listing 4.5: Funzione extract\_method\_name

```
import re
def extract_method_name(text):
    # Cerca firme di metodi Java standard
    method_pattern = r'(?:public|private|protected|static|final|synchronized|
    abstract|native)\s+[\w<>\[\]]+\s+(\w+)\s*\([^)]*\)'

# Cerca costruttori
```

```
constructor_pattern = r'(?:public|private|protected)\s+(\w+)\s*\([^)]*\)'
9
            matches = re.findall(method_pattern, text)
10
                return matches[0] # Restituisce il primo metodo trovato
11
12
            constr_matches = re.findall(constructor_pattern, text)
13
            if constr_matches:
14
                return constr_matches[0] + " (costruttore)"
16
17
            # Cerca chiamate a metodi nel chunk
            method_calls = re.findall(r' \setminus (w+) \setminus s* \setminus (', text)
18
19
            if method_calls:
                 return f"Chiamata a: {method_calls[-1]}"
20
21
22
            return "unknown_method" # Default se non trova nulla
```

### 4.5.3 Generazione degli Embedding

Gli embedding trasformano i chunk in rappresentazioni vettoriali che catturano il significato semantico. Il seguente codice Python mostra come generare gli embedding e creare un database Faiss. Il modello di embedding utilizzato è BGE-M3, un modello pre-addestrato per la generazione di embedding con dimesioni 1024(denso) + 250K (sparso). Il modello usa due rappresentazioni per complementarietà, la rappresentazione denza cattura relazioni semantiche mentre quella sparsa cattura relazioni sintattiche. Mentre FAISS [Met24b] (Facebook AI Similarity Search) è una libreria ottimizzata per la ricerca di similarità in spazi ad alta dimensionalità. Utilizza la ricerca di somiglianza utilizzando la distanza euclidea tra i vettori.

Listing 4.6: Codice Python per la generazione degli embedding e la creazione di un database FAISS

```
embedder = SentenceTransformer('BAAI/bge-m3')
13
            embeddings = embedder.encode(
                [f"METHOD:{extract_method_name(c['text'])} CLASS:{c['class']} LINES:{c
                    ['start_line']}-{c['end_line']} CONTENT:{c['text']}"
                 for c in chunks_data],
                show_progress_bar=True
16
17
            # 3. Crea un database FAISS
19
            vector_store = FAISS.from_embeddings(
20
                text_embeddings=list(zip(chunks, embeddings)), # Abbina testi e
21
                embedding=embedder, # Modello per future operazioni
22
23
24
            # 4. Salva il database
25
26
            vector_store.save_local("./faiss_db")
27
            print("Database FAISS creato e salvato in ./faiss_db.")
```

## 4.5.4 Esecuzione di query sul Database FAISS

Una volta creato il database FAISS, è possibile eseguire ricerche semantiche sui chunk memorizzati:

Listing 4.7: Esecuzione di una query sul database FAISS

```
from langchain_community.vectorstores import FAISS
       from langchain_huggingface import HuggingFaceEmbeddings
2
       # 1. Carica il modello di embedding nel formato corretto
4
       embedder = HuggingFaceEmbeddings(
           model_name="BAAI/bge-m3",
6
           model_kwargs={'device': 'cpu'}, # Usa 'cuda' per GPU
           encode_kwargs={'normalize_embeddings': True}
       # 2. Carica il database FAISS esistente
11
       vector_store = FAISS.load_local(
12
13
           folder_path="./faiss_db",
            embeddings=embedder,
15
           allow_dangerous_deserialization=True
16
17
       # 3. Query di esempio
18
       query = "Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"
19
       # 4. Cerca i chunk piu' simili
```

```
docs = vector_store.similarity_search_with_score(
23
           query,
24
           k=5,
25
           score_threshold=0.90, # bassa similarita'
            search_type="similarity",  # Piu' efficace per il codice usare mmr per
26
                diversita'
           lambda_mult=0.5
                                  # Bilancia diversita'/rilevanza
27
28
       )
       # 5. Stampa i risultati con relativo score
30
       for i, (doc, score) in enumerate(docs):
31
           print(f"Risultato {i+1} (Score: {score:.4f}):")
32
           print(doc.page_content)
33
           print("-" * 40)
```

#### **Query Base**

Con la query:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?" viene restituito il chunk corretto con uno score di similarità di 0.6547. Questo valore, basato sulla cosine similarity, non è particolarmente alto ma sufficiente per identificare il chunk corretto.

Nota: È importante riscontrare che viene restituito un solo chunk nonostante k=5. Questo accade perché nessun altro chunk supera la soglia di similarità impostata. Tale comportamento evidenzia una criticità: la funzione segnaleWow richiama un metodo presente nella libreria DateUtilCustom.

#### Query Migliorata

Per risolvere questo problema, la query è stata riformulata:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10)) che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?"

Risultati Ottenuti L'output fornisce 5 risultati:

• Primo chunk (score: 0.5276): contiene la funzione segnaleWow

- Secondo, terzo e quarto chunk (scores: 0.7188, 0.7258, 0.7605): contengono la funzione getMessaggioMagico
- Quinto chunk (score: 0.8958): funzione non rilevante relativa alle date

Conclusione Questa analisi ha portato alla decisione di abbassare score\_threshold da 0.90 a 0.80, è preferibile non ottenere risultati piuttosto che ricevere risposte non coerenti.

### 4.5.5 Creazione della Pipeline RAG

Listing 4.8: Pipeline RAG

```
from langchain_community.vectorstores import FAISS
       from langchain_huggingface import HuggingFaceEmbeddings
2
       from langchain_ollama import OllamaLLM
       from langchain.chains import create_retrieval_chain
       from langchain.chains.combine_documents import create_stuff_documents_chain
5
       from langchain.prompts import PromptTemplate
6
       # Configurazione embedding
       embedder = HuggingFaceEmbeddings(
           model_name="BAAI/bge-m3",
10
11
           model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
12
13
14
15
       # Caricamento database FAISS
       vector_store = FAISS.load_local(
16
            folder_path="./faiss_db",
17
18
            embeddings=embedder,
19
           allow_dangerous_deserialization=True
20
       # Aggiunta del database FAISS al retriever
21
       retriever=vector_store.as_retriever(
22
23
                search_kwargs={
24
                    "k": 5,
                                               # Piu' documenti per contesto
                    "score_threshold": 0.80, # medio-bassa similarita' inizialmente
                    "search_type" : "similarity",  # Piu' efficace per il codice
26
                    "lambda_mult":0.5
                                             # Bilancia diversita'/rilevanza
27
                }
28
           )
29
       # Configurazione Template del prompt specifici per i modelli
31
```

```
LLAMA_TEMPLATE = """ < | begin_of_text | >
32
33
        <|start_header_id|>system<|end_header_id|>
34
        Contesto: {context}<|eot_id|>
        <|start_header_id|>user<|end_header_id|>
        Domanda: {input}<|eot_id|>
36
        <|start_header_id|>assistant<|end_header_id|>"""
37
38
        CODEQWEN_TEMPLATE = """<|im_start|>system
39
        {context}<|im_end|>
        {{ if .Functions }}<|im_start|>functions
41
        {{    .Functions }}<|im_end|>{{    end }}
42
        <|im_start|>user
43
        {input}<|im_end|>
44
        <|im_start|>assistant
        0.00
46
47
        COMMON_PARAMS = {
48
49
            "temperature": 0.3,
50
            "top_p": 0.85,  # Bilancia creativita'/controllo nei token generati
            "system": "Rispondi in italiano come esperto di programmazione ma solo se
51
                sei sicuro."
53
        # Caricamento modello
54
        def load_model(model_name):
            models = {
56
                "llama3.2": {
57
                     "template": LLAMA_TEMPLATE,
58
                     "params": COMMON_PARAMS
59
                },
61
                "codeqwen": {
                     "template": CODEQWEN_TEMPLATE,
62
                     "params": COMMON_PARAMS
63
                }
64
            }
65
            if model_name not in models:
                raise ValueError(f"Modello non supportato: {model_name}")
67
            return OllamaLLM(
68
                model=model_name,
69
70
                **models[model_name]["params"]
            ), PromptTemplate(
71
                template=models[model_name]["template"],
72
                input_variables=["input", "context"]
73
74
75
        # Inizializza il modello
76
        llm, prompt = load_model("codeqwen")
77
78
79
        # Catena RAG
        document_chain = create_stuff_documents_chain(llm, prompt)
80
```

```
rag_chain = create_retrieval_chain(
81
82
            retriever,
            document_chain
83
84
85
        # Funzione query
86
        def ask_ollama(question):
87
88
            try:
                result = rag_chain.invoke({"input": question})
                print("DOMANDA:", question)
90
                print("RISPOSTA:")
91
                print(result["answer"])
92
                 print("FONTI:")
93
                 for i, doc in enumerate(result["context"], 1):
94
                     print(f"{i}. {doc.page_content[:150]}...")
95
                     if 'source' in doc.metadata:
96
97
                         print(f" Fonte: {doc.metadata['source']}")
                     print("-" * 80)
98
99
            except Exception as e:
                 print(f"ERRORE: {str(e)}")
100
101
        # Esempio d'uso
        if __name__ == "__main__":
103
            ask_ollama("Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))
104
                che utilizza la funzione getMessaggioMagico() della libreria
                DateUtilCustom?")
            #ask_ollama("Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))
```

#### Spiegazione pipeline

Come nei passaggi precedenti viene usata la stessa configurazione con il modello di embedder BAAI/bge-m3 e viene poi caricato il database FAISS precedentemente creato. La chiamata iniziale alla funzione ask\_ollama() chiede come parametro la query di input che verrà processata dalla pipeline RAG. Sfruttando la libreria LangChain, result ritorna la risposta("answer") e il contesto("context") fornito alla query.

rag\_chain.invoke esegue la catena RAG creata tramite il metodo create\_retrieval\_chain che prende come parametri il retriever e il document chain.

document\_chain è una catena di documenti che prende in input il modello LLM e il template del prompt.

load\_model carica il modello LLM e il template del prompt in base al modello

scelto sfruttando OllamaLLM e PromptTemplate.

Per i due LLM è stata data una temperature molto bassa 0.3 per garantire risposte coerenti e precise senza che inventi. Il parametro top\_p è stato impostato a 0.85 per bilanciare creatività e controllo nei token generati. Mentre in system è stato specificato di rispondere in italiano come esperto di programmazione ma solo se è sicuro.

#### 4.5.6 Risultati del Sistema RAG

#### Query Base con informazioni incomplete

Come query di test è stata utilizzata:

"Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10))?"

#### Fonti aggiunte al prompt

Il RAG aggiunge solo il chunk dove è presente la funzione segnaleWow e non il chunk con la funzione getMessaggioMagico della libreria DateUtilCustom per questo le risposte dei due modelli sono incomplete.

#### Output con LLM Llama3.2

L'output ottenuto utilizzando il modello Llama3.2 è stato:

Il metodo segnaleWow restituisce una stringa che contiene un messaggio Wow specifico in base al giorno indicato. Tuttavia, non è chiaro come il messaggio sia calcolato.

Listing 4.9: Implementazione del metodo segnaleWow

In questo caso, il messaggio Wow viene calcolato chiamando l' metodo 'getMessaggioMagico' di 'DateUtilCustom', che non è mostrato nel codice fornito. Tuttavia, possiamo supporre che questo metodo restituisca un valore di tipo stringa.

Il problema è che il metodo 'segnaleWow' non contiene alcun calcolo per determinare il segnale Wow in base al giorno indicato. Pertanto, senza conoscere il comportamento del metodo 'getMessaggioMagico', non possiamo dire con certezza cosa ritorni il metodo 'segnaleWow'.

Tuttavia, se supponessimo che 'DateUtilCustom.getMessaggioMagico' restituisca un valore di tipo stringa che contiene una data o un numero, allora il risultato del metodo 'segnaleWow' dipenderebbe dal comportamento di questo metodo.

Per esempio, se 'DateUtilCustom.getMessaggioMagico' restituisce la data corrente, il metodo 'segnaleWow' potrebbe restituire un messaggio Wow che contiene la data del 10 gennaio 2025: "java public static String segnaleWow (LocalDate date) String wow = "il tuo segnale Wow è :" + DateUtilCustom.getMessaggioMagico(date); return wow; "'

In questo caso, il risultato del metodo 'segnaleWow' con l'input 'Local-Date.of(2025, 1, 10)' sarebbe: "'java public static String segnaleWow (LocalDate date) String wow = "il tuo segnale Wow è:" + DateUtil-Custom.getMessaggioMagico(date); return wow; "' In questo caso, il risultato sarebbe: "'java "il tuo segnale Wow è:2025-01-10" "'

Tuttavia, senza conoscere il comportamento di 'DateUtilCustom.getMessaggioMagico', non possiamo essere certi del risultato.

#### Output con LLM CodeQwen

Utilizzando invece il modello CodeQwen, la risposta ottenuta è stata:

Se si chiama il metodo 'segnaleWow' con un'istanza di 'LocalDate' che corrisponde a "2025-01-10", il metodo restituirà una stringa che indica il segnale Wow associato ad tale data.

"java String result = GiorniMagici.segnaleWow(LocalDate.of(2025, 1, 10)); System.out.println(result);

Il risultato sarà: "il tuo segnale Wow è : L'anno 2025 ha un giorno magico che non è un numero perfetto." Questo è perchè la data specificata (2025-01-10) corrisponde ad un anno che non ha un numero perfetto come il 28 febbraio del 2024, quindi il metodo utilizza il messaggio "L'anno 2025 ha un giorno magico che non è un numero perfetto." proveniente da 'DateUtilCustom.getMessaggioMagico(date)'.

#### Query Completa con tutte le informazioni richieste

''Cosa ritorna il metodo segnaleWow(LocalDate.of(2025, 1, 10)) che utilizza la funzione getMessaggioMagico() della libreria DateUtilCustom?''

#### Fonti aggiunte al prompt

In questo caso il RAG aggiunge 4 chunk ovvero oltre a quello relativo alla funzione segnaleWow anche i chunk relativi alla funzione getMessaggioMagico della libreria DateUtilCustom. Ne consegue che le risposte date dai due modelli sono coerenti a quanto aspettato.

#### Output con LLM Llama3.2

RISPOSTA: Il metodo 'segnaleWow(LocalDate.of(2025, 1, 10))' ritorna un segnale Wow specifico in base al giorno indicato.

Per determinare il segnale Wow, il metodo 'getMessaggioMagico()' della libreria 'DateUtilCustom' viene chiamato con la data 'LocalDate.of(2025, 1, 10)' come argomento.

La funzione 'getMessaggioMagico()' restituisce un messaggio magico in base al giorno della settimana di una data. In questo caso, il giorno è sabato (giorno 7), quindi il messaggio ritornato sarà:

"Il giorno perfetto per scoprire segreti nascosti."

Quindi, il metodo 'segnaleWow(LocalDate.of(2025, 1, 10))' restituirà la stringa "il tuo segnale Wow è : Il giorno perfetto per scoprire segreti nascosti.".

#### Output con LLM CodeQwen

Se si chiama il metodo 'segnaleWow' con una data di 10 gennaio 2025, utilizzando la funzione 'getMessaggioMagico()' della libreria 'DateUtilCustom', il risultato sarà:

"" "il tuo segnale Wow è :Il giorno perfetto per scoprire segreti nascosti." "

Questo è poiché, inizialmente, viene recuperata la data di 10 gennaio 2025 utilizzando 'LocalDate.of(2025, 1, 10)'. Quindi, viene richiamato il metodo 'getMessaggioMagico()' passando questa data come parametro.

Il metodo 'getMessaggioMagico()' restituisce un messaggio magico in base al giorno della settimana di tale data. In questo caso, la data 10 gennaio 2025 cade mercoledì, quindi viene restituito il messaggio "Il giorno perfetto per scoprire segreti nascosti."

#### 4.5.7 Valutazione del RAG

Sfruttando l'approccio "llm as a judge" per valutare automaticamente quanto prodotto dal sistema RAG operiamo una valutazione automatica delle risposte prodotte. .........

# Chapter 5

## Conclusioni

da completare

### 5.1 Impatto sullo Sviluppo Software

L'integrazione di strumenti basati su AI nel processo di sviluppo software sta rivoluzionando il settore. Durante il periodo di sviluppo di questa tesi (Ottobre 2024 - Gennaio 2025), abbiamo osservato:

- Rapida evoluzione degli strumenti di AI per lo sviluppo software
- Crescente disponibilità di soluzioni open source
- Miglioramento continuo nelle capacità di generazione e comprensione del codice

### 5.2 Sfide e Prospettive Future

# **Bibliography**

- [AI24] Meta AI. Llama-3.2-3b: Open foundation and fine-tuned chat models, 2024.
- [BAA24] BAAI. Bge-m3: A multi-modal model understanding images and text, 2024. HuggingFace model repository for BGE-M3, a multi-modal model for image and text understanding.
- [Doc24] Huggingface Docs. Lora, dec 2024.
- [Doc25] GitHub Docs. Asking github copilot questions in your ide, jan 2025.
- [FGT+20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.
- [Git24] GitHub. Github copilot is more than a tool, it's an ally, dec 2024.
- [Hug24a] Hugging Face. Llm judge: Automated evaluation cookbook, 2024. Guide for automated LLM evaluation using judge models.
- [Hug24b] Hugging Face. Rag evaluation cookbook, 2024. Guide for evaluating Retrieval Augmented Generation systems.
- [JWS<sup>+</sup>24] Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language models for code generation. arXiv preprint arXiv:2406.00515, 2024.

BIBLIOGRAPHY 39

#### BIBLIOGRAPHY

- [Lan24a] LangChain. Langchain integration: Ollama, 2024. Documentation for LangChain Ollama integration.
- [Lan24b] LangChain. Langchain retrieval chain documentation, 2024. Create Retrieval Chain API reference.
- [Met24a] Meta. Llama-3.3-70b-instruct, dec 2024.
- [Met24b] Meta AI. Faiss: A library for efficient similarity search, 2024. Facebook AI Similarity Search library documentation.
- [Oll24] Ollama. Ollama documentation, 2024. GitHub repository.
- [Res24] Restack. Understanding tokenization in machine learning, 2024. Guide to tokenization concepts and implementation in ML.
- [SBO23] Ahmed R. Sadik, Sebastian Brulin, and Markus Olhofer. Coding by design: Gpt-4 empowers agile model driven development, 2023.
- [Sta24] Stanford University. Code generation with large language models, 2024. CS224G Course Materials.
- [Tea24a] LangChain Team. Langchain documentation, 2024.
- [Tea24b] Qwen Team. Codequen1.5: A code-specialized language model, 2024.
- [Tea24c] Qwen Team. Qwen2.5-coder-3b: A code-specialized language model, 2024.
- [WDS<sup>+</sup>20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45. Association for Computational Linguistics, 2020.
- [WFS<sup>+</sup>24] Ziyi Wang, Hui Fang, Weiyi Sun, Moshi Wu, Yixin Chen, and Rui Wang. A survey of code llms: A journey from code completion to aipowered programming. arXiv preprint arXiv:2412.08821, 2024.

40 BIBLIOGRAPHY