Client Server Programming

ECE 50863 – Computer Network Systems

A Client-Server Transaction

- Every network application is based on the client-server model:
 - A server process and one or more client processes
 - Server manages some resource.
 - Server provides service by manipulating resource for clients.

Network Applications

- Access to Network via Program Interface
 - Sockets make network I/O look like files
 - Call system functions to control and communicate
 - Network code handles issues of routing, reliability, ordering, etc.

How does a client find a server?

- Two pieces of information:
 - The IP address of the server
 - E.g., 128.210.7.200
 - 32 bits long, how a host is identified by all other hosts.
 - The server port.

Using Ports to Identify Services

Multiplexing using Ports

- Well-known Vs. Ephemeral Ports
 - 0-1023 "well-known" port numbers
 - Typically used by servers of well-known apps
 - Higher numbers: "ephemeral"

Servers

- Servers are long-running processes (daemons).
 - Created at boot-time (typically) by the init process
 - Run continuously until the machine is turned off.
- Each server waits for requests to arrive on a wellknown port associated with a particular service.
 - Port 7: echo server
 - Port 23: telnet server
 - Port 25: mail server
 - Port 80: HTTP server

See /etc/services for a comprehensive list of the services available on a Linux machine.

 A machine that runs a server process is also often referred to as a "server."

Internet Connections

- Clients and servers communicate by sending streams of bytes over connections.
- Connections are point-to-point, full-duplex (2way communication), and reliable.

Note: 3479 is an ephemeral port allocated by the kernel

Note: 80 is a well-known port associated with Web servers

Sockets

- What is a socket?
 - To the kernel: endpoint of communication.
 - To an application: a file descriptor that lets the application read/write from/to the network.
- Clients and servers communicate with each by reading from and writing to socket descriptors.
- The main distinction between regular file I/O and socket I/O is how the application "opens" the socket descriptors.

TCP Vs. UDP sockets

- Programmer decides which transport protocol to use.
- Specified using a parameter to the socket call
- TCP:
 - Byte Stream" Abstraction
 - Reliable and in-order
- UDP:
 - Does not guarantee reliability or in-order delivery