1. أدرس تغيرات كل من الدالتين u و v على المجال

.v و u المنحنيين الممثلين للدالتين u و v

lpha مین أن المعادلة u(x)=v(x) تقبل حلا وحیدا 3.

.4 تحقق من أن العدد lpha ينتمي إلى المجال [2;3[

u(x) > v(x) استنتج مجموعة حلول المتراجحة .u(x) > v(x)

 $[1; +\infty[$ الدالة العددية المعرفة على الدالة العادية المعرفة التكن الدالة العادية العالم الع

 \bullet في المجال ∞ ا بخال.

 $f(x) = \frac{x}{2} - \sqrt{\frac{x^2 - 1}{x}}$ يلي:

سلسلة 2: الإشتقاق و تطبيقاته

التمرين 1

 $f(x) = x + 1 + \sqrt{x^2 + 4x}$ لتكن f الدالة المعرفة بما يلي:

- الدالة f أحسب D_f حدد الدالة عريف الدالة عمر أحسب D_f $\lim_{x \to -\infty} f(x) \ \mathbf{j} \ \lim_{x \to +\infty} f(x)$
- ر. بين أن المستقيم ذي المعادلة y=2x+3 مقاربy=2x+3 $+\infty$ للمنحني (\mathcal{C}) بجوار
- 3. أدرس قابلية اشتقاق الدالة f على اليمين في 0 و على اليسار في 4 ثم أعط تأويلا هندسيا.
- f أعط جدول تغيرات الدالة f ثم أنشئ المنحنى f
 - f(x) > 0 حل مبياني المتراجحة f(x) > 0.

 $oldsymbol{\cdot} \left(O; ec{i}; ec{j}
ight)$ منحناها في معلم متعامد ممنظم (\mathcal{C})

1. أدرس قابلية اشتقاق الدالة f في 1 على اليمين. $(\forall x \in]1; +\infty[): \ f'(x) = \frac{u(x)-v(x)}{2\sqrt{\frac{x^2-1}{x}}} \ .2$ 3. استنتج أن f تقبل قيمة دنوية ثم حددها.

التمرين 4

لتكن f الجالة العددية للمتغير الحقيقي x المعرفة بما يلي: $f(\vec{x}) = -1 + \sqrt[3]{1-x}$ و $O(\vec{i};\vec{j})$ منحناها في معلم متعامد ممنظم $O(\vec{i};\vec{j})$

- ا. حدد D_f مجموعة تعريف الدالة f ثم أحسب.
- f أدرس قابلية اشتقاق الدالة f على اليسار في f ثم أعط تأويلا هندسيا للنتيجة.
 - أدرس تغيرات الدالة 6.
 - 4. أدرس الفرع اللانهائي للمنحنى (\mathcal{C}_f).
 - رو (\mathcal{C}_f) بنتم أنشئ f'(0) و f(0) محدد .5
- بين أن f تقبل دالة عكسية معرفة على مجال I ينبغي f
 - I من $f^{-1}(x)$ من $f^{-1}(x)$
 - السابق. في نفس المعلم السابق. $(\mathcal{C}_{f^{-1}})$

التمرين 2

نعتبر الدالة f المعرفة على $\mathbb R$ بما يلي:

$$\begin{cases} f(x) = \frac{\sqrt{x}}{1+x}; & x \ge 0\\ f(x) = x\sqrt{x^2 - x}; & x < 0 \end{cases}$$

 $oldsymbol{\cdot} \left(O; ec{i}; ec{j}
ight)$ منحناها في معلم متعامد ممنظم $oldsymbol{(}C)$

- 1. تحقق أن الدالة f متصلة في 0.
- 2. أدرس قابلية إشتقاق الدالة f على اليمين و على اليسار في 0 ثم أعط ىأويلا هندسيا.
 - (C) أدرس الفرعين اللانهائيين للمنحنى
- و $]0;+\infty[$ على كل من الجالين $]0;+\infty[$ و f'(x) على $[-\infty;0]$
 - f أعط جدول تغيرات الدالة f.
 - \mathcal{C} ارسم المنحنى \mathcal{C}).

التمرين 3

 $[1; +\infty[$ المعرفتين على u و u الدالىين المعرفتين على الجزء الأول: $v(x) = 1 + \frac{1}{x^2}$ عا يلي: $u(x) = \sqrt{\frac{x^2 - 1}{x}}$ عا يلي:

يعتبر الدالة f المعرفة على $\mathbb R$ بما نلي:

6. بين أن الدالة f تقبل دالة عكسية على $[0; +\infty[$ ثم حدد دالتها العكسية.

التمرين 7

 $f(x)=rac{|2x^2-x-1|}{\sqrt{1-x^2}}$ لتكن f الدالة المعرفة بما يلي:

- به مالدالة D_f محدد معريف الدالة D_f
 - $\lim_{x \to -1} f(x)$ و $\lim_{x \to 1} f(x)$ عدد 2
- 3. أدرس قابلية اشتقاق الدالة f في $\frac{1}{2}$ ثم أول هندسيا النتيجة.
- و] $-1; -\frac{1}{2}$ [و] $-1; -\frac{1}{2}$ [على كل من المجالين f'(x) على •] $-\frac{1}{2}; 1$ [
 - f أعط جدول تغيرات الدالة f
 - $\cdot f$ أنشئ منحنى الدالة $\cdot f$

$\left\{ egin{array}{ll} f(x)=1+\sqrt[3]{1-x^3}; & x<1 \ f(x)=x+\sqrt{x^2-1}; & x\geq 1 \end{array} ight.$ و $\left(O;\vec{i};\vec{j} ight)$ منحناها في معلم متعامد ممنظم $\left(\mathcal{C}_f ight)$

- $\lim_{x \to +\infty} f(x)$ أدرس اتصال f في f ثم أحسب f(x) . $\lim_{x \to -\infty} f(x)$
- و. بين أن المستقيم (D) الذي معادلته y=2x مقارب للمنحنى (\mathcal{C}_f) بجوار (\mathcal{C}_f)
- د. أدرس وضع المنحنى (\mathcal{C}_f) بالنسبة للمستقيم (D) على الجال $[1;+\infty[$
 - (C_f) أدرس الفروع اللانهائية للمنحنى
- 5. أدرس قابلية اشتقاق الدالة f في 1 ثم اعط تأويلا هندسيا للنتيجة.
 - $-\infty$; 1[الكل x من المجال f'(x) أحسب.
 - $(\forall x \in]1; +\infty[): \ f'(x)>0$ بین أَن: 7.
- (C_f) أعط جدول تغيرات الدالة f ثم أنشئ المنحنى δ
 - $I = [1; +\infty[$ لتكن g قصور الدالة f على المجأل g
- را) بین أن g تقیل دالة عکسیة g^{-1} معرفة علی مجال J ینبغی تحدیده.
 - J من $g^{-1}(x)$ من $g^{-1}(x)$ من (ψ)
 - (ج) أنشئ $(\mathcal{C}_{g^{-1}})$ في نفس المعلم السابق.

التمرين 6

نعتبر الدالة f المعرفة على $f(x) = \sqrt{2x+1} - \frac{x}{\sqrt{2x+1}}$

 $oldsymbol{\cdot} \left(O; ec{i}; ec{j}
ight)$ منحناها في معلم متعامد ممنظم (\mathcal{C}_f)

- ا. حدد $\lim_{x\to -\frac12} f(x)$ و $\lim_{x\to +\infty} \frac{f(x)}{x}$ و $\lim_{x\to +\infty} f(x)$ أول هندسيا النتائج.
- عط -2 حدد f'(x) لكل x من المجال -2; $+\infty$ و أعط جدول تغيرات x.
- .3 بين ان: $(\forall x \in \left] -\frac{1}{2}; +\infty \right[): \ f''(x) = (2x+1)^{-\frac{5}{2}}(1-x)$
- 4. بين أن النقطة A ذات الافصول 1 تمثل نقطة انعطاف للمنحنى (C_f) .
 - $\cdot(\mathcal{C}_f)$ أنشئ المنحنى أنشئ .5