Iris Flower Classification Using Logistics Regression & KNeigbour Classifiers

By Dajah Vincent

In []:						
in [4]:	import import	pandas numpy seabor matplo	as np	as plt	#data proce #linear alg	
[5]:	df = p	d.read_	csv("IRIS.c	sv")		
[6]:	df.hea	ıd(10)				
t[6]:	sepa	al_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa
	5	5.4	3.9	1.7	0.4	Iris-setosa
	6	4.6	3.4	1.4	0.3	Iris-setosa
	7	5.0	3.4	1.5	0.2	Iris-setosa
	8	4.4	2.9	1.4	0.2	Iris-setosa
	9	4.9	3.1	1.5	0.1	Iris-setosa
n [7]:	df.tai	.1(10)				

Out[7]:		sepal_length	sepal_width	petal_length	petal_width	species
	140	6.7	3.1	5.6	2.4	Iris-virginica
	141	6.9	3.1	5.1	2.3	Iris-virginica
	142	5.8	2.7	5.1	1.9	Iris-virginica
	143	6.8	3.2	5.9	2.3	Iris-virginica
	144	6.7	3.3	5.7	2.5	Iris-virginica
	145	6.7	3.0	5.2	2.3	Iris-virginica
	146	6.3	2.5	5.0	1.9	Iris-virginica
	147	6.5	3.0	5.2	2.0	Iris-virginica
	148	6.2	3.4	5.4	2.3	Iris-virginica
	149	5.9	3.0	5.1	1.8	Iris-virginica

In [8]: df.describe()

\cap	14	ГΟ	Т.
υı		Lο] '

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75 %	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In []:

Data Visualization

```
In [ ]:

def converter(s):
    s = s.lower()
    if s == 'iris-setosa':
        return 0
    elif s == 'iris-versicolor':
        return 1
    elif s == 'iris-virginica':
        return 2
    else:
        return -1
```

```
df = pd.read_csv("IRIS.csv",converters = {"species":converter})
In [27]:
In [28]:
           sb.heatmap(df.corr(), annot = True)
           plt.show()
                                                                                                    - 1.0
                                            -0.11
                                                          0.87
                                                                       0.82
                                                                                    0.78
           sepal length -
                                 1
                                                                                                    - 0.8
                                                                                                    - 0.6
            sepal_width -
                               -0.11
                                              1
                                                         -0.42
                                                                      -0.36
                                                                                   -0.42
                                                                                                    - 0.4
           petal_length -
                                            -0.42
                                                           1
                                0.87
                                                                       0.96
                                                                                    0.95
                                                                                                    - 0.2
             petal width -
                                0.82
                                            -0.36
                                                          0.96
                                                                        1
                                                                                    0.96
                                                                                                    - 0.0
                                                                                                    - -0.2
                 species -
                                0.78
                                            -0.42
                                                                       0.96
                                                                                      1
                                                          0.95
                                                                                                     -0.4
                                sepal_length -
                                                                                     species
                                              sepal_width
                                                                        petal_width
                                                           petal_length
In [ ]:
```

Scatter Plot

```
In [54]: sb.scatterplot(data = df, x = 'sepal_length', y = 'sepal_width', hue = 'species')
plt.show()
```



```
In [ ]:
In [55]: sb.lineplot(data = df.drop(['species'], axis=1))
    plt.show()
```



```
In [31]:
           sb.pairplot(df)
           C:\Users\DajahV01\AppData\Local\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
           UserWarning: The figure layout has changed to tight
              self._figure.tight_layout(*args, **kwargs)
           <seaborn.axisgrid.PairGrid at 0x195d5052e50>
Out[31]:
            sepal_length
             4.5
             4.0
           sepal_width
o :s
c :e
             2.5
             2.0
              6
            petal_length
w p g
             2.5
             2.0
           petal_width
1.0
             0.5
             0.0
             2.0
             1.5
           sbecies
1.0
             0.5
                     6
sepal_length
                                                                                                0.0
                                                                                                    0.5
                                                                                                       1.0
species
                                                                                                             1.5
                                          sepal_width
                                                              petal_length
                                                                                  petal_width
 In [ ]:
           plt.figure(figsize=(10,5));
In [56]:
           sb.pairplot(df,kind='reg',hue ='species');
           C:\Users\DajahV01\AppData\Local\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
           UserWarning: The figure layout has changed to tight
              self._figure.tight_layout(*args, **kwargs)
           <Figure size 1000x500 with 0 Axes>
```

In []:

Training A Classification Model

```
In [38]: # Importing the model packages

from sklearn.model_selection import train_test_split
from sklearn import metrics

from sklearn.linear_model import LinearRegression
```

Linear Regression

```
In [36]: features = df[['sepal_length','sepal_width','petal_length','petal_width']]
labels = df["species"]
In [37]: X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size = 0.25)
```

```
In [39]:
         lm = LinearRegression()
         lm.fit(X_train,y_train)
Out[39]:
         ▼ LinearRegression
         LinearRegression()
In [40]: print(lm.intercept_)
         0.35064515381651695
In [42]: predictions = lm.predict(X_test)
In [43]: print('MAE :',metrics.mean_absolute_error(y_test, predictions))
         print('MSE :',metrics.mean_squared_error(y_test, predictions))
         print('RMSE :',np.sqrt(metrics.mean_squared_error(y_test,predictions)))
         MAE : 0.1921808832745818
         MSE: 0.06059184983222843
         RMSE: 0.24615411804848691
In [ ]:
```

Logistics Regression

```
In [46]: from sklearn import metrics
    from sklearn.linear_model import LogisticRegression

In []:

In [48]: lreg = LogisticRegression()
    lreg.fit(features, labels)
    labels_pred = logreg.predict(features)
    metrics.accuracy_score(labels, labels_pred)

#print(metrics.accuracy_score(labels, labels_pred))

Out[48]:

In []:
```

K Neighbors Classifier

```
In [49]: # Importing the KNeighors Classifier packaging
    from sklearn.neighbors import KNeighborsClassifier

In [50]: kn = KNeighborsClassifier(n_neighbors = 5, p = 2, metric='minkowski')
    kn.fit(X_train, y_train)
    kn.score(X_test, y_test)
```

Out[50]:	0.9210526315789473
In []:	