Lycée Privé Ampinga d'Or Examen : MATHEMATIQUES Classe 2^{nde} Année scolaire : 2024-2025 Antanjombe ambony Ambohimanarina Prof: M^r Bruno Durée: 2h

EXERCICE 01 (10 points)

Pour tout entier naturel n, on pose $U_n = \left(\frac{2}{3}\right)^n$ et $V_n = \ln(U_n)$.

- 1) a) Calculer U_0 , U_1 , V_0 et V_1 (2 points)
 - b) Montrer que (U_n) est une suite géométrique de raison $q=\frac{2}{3}$. (2 points)
 - c) Calculer en fonction de n la somme $S_n = U_0 + U_1 + \cdots + U_n$. (2 points)
- 2) Vérifier que (V_n) est une suite arithmétique dont on, précisera la raison. (2 points)
- 3) Calculer $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} V_n$ (2 points)

PROBLEME (10 points)

Soit f la fonction définie par : $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $(0,\vec{1},\vec{j})$ d'unité $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $(0,\vec{1},\vec{j})$ d'unité $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $(0,\vec{1},\vec{j})$ d'unité $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $f(x) = 2x^2 - 8x + 5$.

- 1) Déterminer l'ensemble de définition de f. (1 point)
- 2) Vérifier que pour tout $x \in IR$: $f(x) = x^2 \left(2 \frac{8}{x} + \frac{5}{x^2}\right)$ (1 point)
- 3) Calculer alors les limites aux bornes de Df (1 point)
- 4) Montrer que f'(x) = 4x 8 (1 points)
- 5) Dresser le tableau de variation de f. (2 points)
- 6) Écrire l'équation de la tangente (T) au point d'abscisse $x_0 = 1$ (2 points)
- 7) Tracer (T) et (C) (2 points)

Lycée Privé Ampinga d'Or Examen : MATHEMATIQUES Classe 2^{nde} Année scolaire : 2024-2025 Antanjombe ambony Ambohimanarina Prof: M^r Bruno Durée: 2h

EXERCICE 01 (10 points)

Pour tout entier naturel n, on pose $U_n = \left(\frac{2}{3}\right)^n$ et $V_n = \ln(U_n)$.

- 1) a) Calculer U_0 , U_1 , V_0 et V_1 (2 points)
 - b) Montrer que (U_n) est une suite géométrique de raison $q = \frac{2}{3}$. (2 points)
 - c) Calculer en fonction de n la somme $S_n = U_0 + U_1 + \cdots + U_n$. (2 points)
- 2) Vérifier que (V_n) est une suite arithmétique dont on, précisera la raison. (2 points)
- 3) Calculer $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} V_n$ (2 points)

PROBLEME (10 points)

Soit f la fonction définie par : $f(x) = 2x^2 - 8x + 5$.On note par (C) sa courbe représentative dans un repère orthonormé $(0,\vec{i},\vec{j})$ d'unité 1 cm.

- 1) Déterminer l'ensemble de définition de f. (1 point)
- 2) Vérifier que pour tout $x \in IR$: $f(x) = x^2 \left(2 \frac{8}{x} + \frac{5}{x^2}\right)$ (1 point)
- 3) Calculer alors les limites aux bornes de Df (1 point)
- 4) Montrer que f'(x) = 4x 8 (1 points)
- 5) Dresser le tableau de variation de f. (2 points)
- 6) Écrire l'équation de la tangente (T) au point d'abscisse $x_0 = 1$ (2 points)
- 7) Tracer (T) et (C) (2 points)