

Introduction to PCB design with Altium Designer

From Idea to Schematic to PCB

CALA.R.S Mechatronics and Robotics Society

Sign Up Now!

JOM.A.R.S **Mechatronics and Robotics Society**

EBESS

Agenda

What is PCB?

PCB Design Software

The Schematic

Help

Next Steps

Printed Circuit Board

A board which connects electrical components in a circuit by using conductive tracks and layers as opposed to wires.

complex connection,
manufacturing hurdles, debugging
was difficult

provide electrical interconnections
between components, a compact
package that can be integrated
into an end product.

Starting a New PCB Board Design

- 1 Understanding the Circuit
- 2 Schematic capture
- Component placement/Part search
- 4 PCB stack-up
- 5 Routing/Layering
- 6 Design review and verification
- 7 Preparing for Manufacturing

Softwares

 Altium is taught in METR2800 and ENGG2800

Understanding the Circuit

- IR LED and Phototransistor in Series.
- All ADC and voltage regulation are done within the chip.

Creating a new project

Creating a new schematic

Placing components to the schematic

O4 Manufacturer part search: (this will be interesting)

TCS3200D QRE1113GR

Add PCB to project

06

Updating

PCB from

Schematic

Cartesian

Grid Editor:

Ctrl + G

PCB Rules
and
Constraints
Editor

Layer Stack

Properties Panel

e) Y v	
Il Stack	×
II Stack	1 11 11
II Stack	
II Stack	ĺ
II Stack	ı
II Stack	ı
II Stack	ı
II Stack	1
II Stack	
II Stack	1
II Stack	
II Stack	ı
	ı
	ı
	ı

Board
Planning
Mode

11
Set / Reset
Origin

Polygon Pour

Polygon pours are used to create a solid or hatched (lattice) area on a PCB layer, using either Region objects or a combination of Track and Arc objects

Mechatronics and Robotics Society

