

OTTO YOR GUTGICEE UNIVERSITÄT MAGDEBURG	Project: Pers	sonal Loan Status	Classification
FEATURE IMPORTANCE & DECISION TREE		CLASSIFICATION PERFORMANCE	PREDICTION FOR NEW INPUTS
Fill in information of	an applicant		
	Loan amount:	Number of accounts ever 120 or more days past due:	The number of open credit lines in the borrowers credit file.:
	Enter a number Number of revolving trades opened in past 12 months:	Enter a number Number of currently active revolving	Enter a number FICO scores:
	Enter a number Maximum current balance owed on all revolving accounts:	Enter a number Number of bankcard accounts: Enter a number	Enter a number Total credit revolving balance: Enter a number

Personal Loan Status Prediction using XGBoost

EUROPÄISCHE UNION
EFRE
Europäischer Fonds für regionale Entwicklung

PROBLEM STATEMENT & UNDERSTANDING DATASET

Problem Statement

- The collection of the dataset
 - LendingClub Notes platform
 - Duration: 2007-2020 | USD | Kaggle
- Content of the data
 - (1) Demographic data such as employment status, employment length and house ownership,
 - (2) Loan Characteristics such as loan amount, term and purpose and
 - (3) Behavioral data related to historical payments
- Dimension: 2925493 rows and 141 columns
- Data choosen for this project: Sub-sample of 700000/2925493

Explanatory Data Analysis (EDA)

- Univariate EDA
- Numerical data
- Categorical data

○Bivariate EDA

Loan status

Loan amount

Purpose

Interest rates

• Conclusion of EDA

EDA Conclusion

- Most of accepted borrowers: a good profile (good average FICO scores and no public records of bankruptcies), mainly with financial reasons (Debt consolidation and credit card).
- Most borrowers: a shorter loan term (36 months, compared to 60 months) and
 do not enroll into the hardship plan, but the percentage of people who are
 Charged Off and default accounts for nearly one third of the data sample.
- Checking bivariance relationship cannot show that the features such as annual income, verified status, house ownership, credit line, etc. have a specific effect on Charged Off, Default or Late status.
- People with lower interest rate and lower loan amount likely to pay off loans successfully.

Data Preparing

- Cleaning columns
- Cleaning rows
- Convert data types (one-hot coding for setting dummies)
- Set up predictors (43 variables) and responding variable (loan_status)
- Data split: Stratified style with proportion of train-test set (70%-30%)

o Imbalanced data:

Classes of Charged off and Fully Paid in Loan status

DASH Plotly (APP)

It is a localhost web

Conducted using DASH plot library

Has 3 different tabs

LEHRSTUHL FÜR INNOVATIONS- UND FINANZMANAGEMENT

DASH Plotly (APP) - Link

HOW XGBOOST WORKS

Overview

- Ensemble algorithm creating a model by combining a number of baser learners
- Boosting: Sequential ensemble

XGBoost math in brief

- Extreme gradient boosting (XGBoost) is a decision-tree-based ensemble algorithm
- Log loss function: the negative log-likelihood for Binary Classification (Daniel & Martin(2021). Speech and Language Processing. <u>5.pdf (stanford.edu)</u>. <u>P.152)</u>

$$L(y_i, p_i) = -[y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$

The general objective function (Chen & Guestrin, 2016) is:

$$L(\phi) = \sum_{i} l(\widehat{y}_i, y_i) + \sum_{\kappa} \Omega(f_k) \quad \text{T is the number of leaves in a tree wis leaf weight, } \\ \gamma \text{ and } \lambda \text{ are hyperparameters.}$$

fk is an independent tree, γ and λ are hyperparameters.

a loss function measuring how well model fit on the training data

$$\Omega(f) = \gamma T + \frac{1}{2}\lambda ||w||^2$$

regularization to measure the complexity of trees

How XGBoost works

$$L(\phi) = \sum_{i} l(\hat{y_i}, y_i) + \sum_{\kappa} \Omega(f_k) \qquad \begin{array}{l} \textit{Fomulas source (in this page):} \\ \textit{Tianqi Chen and Carlos Guestrin.} \\ \hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i) \\ \textit{Plug in} \\ \\ \mathcal{L}^{(t)} = \sum_{j=1}^n l(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)) + \Omega(f_t) \\ \textit{Taylor} \\ \textit{approximation } f(x + \Delta x) \cong f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2 \\ \\ n \\ \end{array}$$

 $\mathcal{L}^{(t)} \cong \sum_{i=1}^{n} [l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i)] + \Omega(f_t)$ where $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)})$ and $h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

How XGBoost works

$$\Omega(f) = \gamma T + \frac{1}{2}\lambda \|w\|^2$$
 Formulas source (in this page): Tianqi Chen and Carlos Guestrin. 2016.
$$\tilde{\mathcal{L}}^{(t)} = \sum_{i=1}^n [g_i f_t(\mathbf{x}_i) + \frac{1}{2}h_i f_t^2(\mathbf{x}_i)] + \gamma T + \frac{1}{2}\lambda \sum_{j=1}^T w_j^2$$

$$= \sum_{j=1}^T [(\sum_{i \in I_j} g_i)w_j + \frac{1}{2}(\sum_{i \in I_j} h_i + \lambda)w_j^2] + \gamma T$$
 Solve the quadratic function of w
$$w_j^* = -\frac{\sum_{i \in I_j} g_i}{\sum_{i \in I_j} h_i + \lambda}$$
 Output, minimized objective function
$$\tilde{\mathcal{L}}^{(t)} = -\frac{1}{2} \sum_{i \in I_j} \frac{(\sum_{i \in I_j} g_i)^2}{\sum_{i \in I_j} h_i + \lambda} + \gamma T$$

How XGBoost grows trees

- XGBoost begins with a weak learner
- Loop from 1 to k:
 - Build the first tree
 - Learn the structure and use the minimized objective function
 - o To avoid overfitting, learning rate and gamma is added to each tree.
 - Final model = all of the trees are combined additively
- The process stops when:
 - Gain score becomes negative (cannot gain further information from splitting)
 - fixed number of the iteration (k) is reached

Advantages of XGBoost

- Source: (Chen & Guestrin, 2016)
- o For a big data sample:
 - sparsity-aware split finding algorithm to handle the problem of missing values in the data
 - For a big dataset training speed: fast
- o In practice:
 - Python package of XGBoost
 - Parallelization of tree construction
 - Out-of-Core Computing
 - Cache Optimization

Results

Model parameter:

```
%%time
xgb model = xgb.XGBClassifier(objective='binary:logistic',
                              learning rate=0.05,
                              scale pos weight=3,
                              n estimators=200,
                              max depth=5,
                              min child weight=1,
                              gamma=0.5,
                              colsample bytree=1,
                              subsample=1,
                              use label encoder=False,
                              random state=42)
xgb model.fit(x train, y train,
              verbose=0.
              early stopping rounds=10,
              eval metric='aucpr',
              eval set=[(x train, y train), (x test, y test)])
```

- Development:
 - Initial mode
 - optimized model (tunning hyperparameters)
 - o final mode
 - Each model is evaluated with confusion matrix, metrics scores...
- Trade-off: Bias vs Variance

Results

- CLASSIFICATION REPORT: precision recall f1-score support 0 0.86 0.69 0.77 45006 1 0.38 0.64 0.48 13542 0.68 58548 accuracy macro avg 0.62 0.66 0.62 58548 weighted avg 0.75 0.68 0.70 58548
 - Target: High recall for positive class & high accuracy
 - Cost of TP and FN
 - Trade-off: precision vs recall score

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
 precis

$$precision = \frac{TP}{TP + FP}$$
; $recall = \frac{TP}{TP + FN}$

Results

Precision and Recall Trade-off (AUC PR=0.33)

Permutation feature importance

Feature Importance

mo sin rcnt tl

purpose debt consolidation

a) Based on Shap values (Lundberg & Lee, 2017)

0 0.1 0.2 0.3 0.4 0.5
mean([SHAP value]) (average impact on model output magnitude)

b) Based on Gain values

$$\mathcal{L}_{split} = \frac{1}{2} \left[\frac{\left(\sum_{i \in I_L} g_i\right)^2}{\sum_{i \in I_L} h_i + \lambda} + \frac{\left(\sum_{i \in I_R} g_i\right)^2}{\sum_{i \in I_R} h_i + \lambda} - \frac{\left(\sum_{i \in I} g_i\right)^2}{\sum_{i \in I} h_i + \lambda} \right] - \gamma$$

Figure 2.1: An example tree showing a node split

Feature Importance based on Shap values Bar chart

Density Scatter plot

Local explanation using SHAP values (Lundberg & Lee, 2017) of the 9th borrower (randomly

pick a borrower in dataset)

- Ouput value: 0.6 convert to probability is 0.645 Charged Off
- Base value
- Color (Blue/Red)
- Manitude of each feature

Improvement

- Increase model performance by:
 - Training on larger subsample of data (due to hardware capacity, only 700000 rows are used)
 - Further EDA with informative features more distinguishing features
 - Tunning hyperparameters
- End-users: need knowledge of Machine Learning to read the dashboard

THANK YOU!

Q&A