森哥考研数学5套卷.数学一(模拟一)

答案解析

一、选择题

1.【答案】 D.

【解】 选项 A 的反例:
$$f(x) = \begin{cases} \sqrt[3]{x}, & x \neq 0, \\ 1, & x = 0. \end{cases}$$
 选项 B 的反例: $f(x) = \begin{cases} 0, & x \neq 0, \\ 1, & x = 0; \end{cases}$ 由于 $\lim_{x \to 0} f(x)$ 存在, 令 $g(x) = \begin{cases} f(x), & x \neq 0, \\ \lim_{x \to 0} f(x), & x = 0, \end{cases}$ 则 $g(x)$ 在 $(-\infty, +\infty)$ 内连续,所以
$$\int_{0}^{x} g(t) dt \ \text{在}(-\infty, +\infty) \ \text{内可导, 进而} \int_{0}^{x} f(t) dt = \int_{0}^{x} g(t) dt \ \text{在} \, dx = 0 \, \text{处可导. 选 D.} \end{cases}$$

2.【答案】 C.

【解】 设 y = f(x) 在 $x = x_0$ 处取到极值,则必有 $f'(x_0) = 0$, $f''(x_0) + q(x_0) f(x_0) = 0$, q(x) < 0,知 $f''(x_0)$ 和 $f(x_0)$ 同号,由一元函数极值的第二充分条件知, $f''(x_0) > 0$ 时,则 $f(x_0)$ 为正的极小值; $f''(x_0) < 0$ 时,则 $f(x_0)$ 为负的极大值; 选 C.

3.【答案】 B.

【解】
$$\lim_{\substack{x \to 0 \\ y \to 0}} f(x,y) = \lim_{\substack{x \to 0 \\ y \to 0}} y \sin \frac{1}{x^2 + y^2} = 0 = f(0,0)$$
,故 $f(x,y)$ 在点(0,0) 处连续. ① 正确. $\frac{\partial f}{\partial x}\Big|_{(0,0)} = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x, 0) - f(0,0)}{\Delta x} = 0$,② 正确.

$$\frac{\partial f}{\partial y} \Big|_{(0,0)} = \lim_{\Delta y \to 0} \frac{f(0,0 + \Delta y) - f(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{\Delta y \sin \frac{1}{(\Delta y)^2}}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{(\Delta y)^2}$$
不存在,故 $f(x,y)$ 在点(0,0) 处关于 y 的偏导数不存在,因而 $f(x,y)$ 在(0,0) 处不可微,③④ 错误. 应选 B.

4.【答案】 C.

【解】 由对称性
$$\iint_{a} x^{2} dV = \iint_{a} y^{2} dV = \iint_{a} z^{2} dV$$
, $\iint_{a} xy dV = 0$, 所以
$$I = (2a + b + b - 2c + c - 2b) \iint_{a} x^{2} dV = (2a - c) \iint_{a} x^{2} dV,$$

因此 I 与 a , c , R 有关 , 但与 b 无关. 选 C.

5.【答案】 A.

【解】 由条件知
$$\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{*}$$
 , $|\mathbf{A}| = |\mathbf{A}|^{2}$, 从而 $|\mathbf{A}| = 0$ 或者 $|\mathbf{A}| = 1$,由于 $|\mathbf{A}| = a_{11}^{2} + a_{12}^{2} +$ 数学一(模拟一) 第 1 页 (共 8 页)

 $a_{13}^2 > 0$, $\Delta |A| = 1$. Δ

$$|A - E| = |A - AA^{-1}| = |E - A^{-1}| = |E - A^*| = |E - A^{T}|$$

= $|E^{T} - A^{T}| = |E - A| = -|A - E|$,

于是
$$|A-E|=0$$
, $A-E$ 不可逆.取 $A=E$ 知B,C不成立!取 $A=\begin{pmatrix} -1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$ 知D不成

立.

6.【答案】 A.

【解】 解法 1 由
$$\begin{pmatrix} E & A^{\mathrm{T}} \\ A & O \end{pmatrix} \xrightarrow{r_2 - Ar_1} \begin{pmatrix} E & A^{\mathrm{T}} \\ O & -AA^{\mathrm{T}} \end{pmatrix}$$
,知 $\begin{pmatrix} E & A^{\mathrm{T}} \\ A & O \end{pmatrix}$ 与 $\begin{pmatrix} E & A^{\mathrm{T}} \\ O & AA^{\mathrm{T}} \end{pmatrix}$ 行等价,且 $A^{\mathrm{T}}y = 0$ 与 $AA^{\mathrm{T}}y = 0$ 同解,知 $\begin{pmatrix} E & O \\ O & A^{\mathrm{T}} \end{pmatrix}$ $x = 0$ 与 $\begin{pmatrix} E & A^{\mathrm{T}} \\ A & O \end{pmatrix}$ $x = 0$ 同解,A 成立.

解法 2
$$r \begin{pmatrix} E & O \\ O & A^{\mathrm{T}} \end{pmatrix} = n + r(A)$$
,

$$r \begin{pmatrix} E & A^{\mathrm{T}} \\ A & O \end{pmatrix} = r \begin{pmatrix} E & A^{\mathrm{T}} \\ O & AA^{\mathrm{T}} \end{pmatrix} = r \begin{pmatrix} E & O \\ O & AA^{\mathrm{T}} \end{pmatrix} = n + r(AA^{\mathrm{T}}) = n + r(A),$$

$$r egin{pmatrix} E & O \ O & A^{\mathrm{T}} \ E & A^{\mathrm{T}} \ A & O \ \end{pmatrix} = r egin{pmatrix} E & O \ O & A^{\mathrm{T}} \ O & O \ O & O \ \end{pmatrix} = n + r(A)$$
,知 $\begin{pmatrix} E & O \ O & A^{\mathrm{T}} \end{pmatrix} x = 0$ 与 $\begin{pmatrix} E & A^{\mathrm{T}} \ A & O \ \end{pmatrix} x = 0$ 同解.

取
$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, 知选项 B 不成立. 取 $A = E$, 知选项 C, D 不成立.

7.【答案】 A.

【解】 由条件知
$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)^{-1} A(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$$
. 又 $\boldsymbol{P} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$,

再由
$$|\mathbf{A}| = 2$$
 知 $\mathbf{A}^* = 2\mathbf{A}^{-1}$,故 $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)^{-1}\mathbf{A}^* (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 1 \end{pmatrix}$,

$$\mathbf{P}^{-1}\mathbf{A}^*\mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)^{-1}\mathbf{A}^* (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix},$$

选 A.

数学一(模拟一) 第2页(共8页)

或者用赋值法,取
$$\mathbf{A} = \begin{pmatrix} 1 & & \\ & 1 & \\ & & 2 \end{pmatrix}$$
, $(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3) = \mathbf{E}$,则 $\mathbf{A}^* = \begin{pmatrix} 2 & & \\ & 2 & \\ & & 1 \end{pmatrix}$,可以排除选项B和

$$\mathbf{D}, \mathbf{P}^{-1}\mathbf{A} \cdot \mathbf{P} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 2 & & \\ & 2 & \\ & & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

8.【答案】 C.

【解】
$$p_1 = P\{X > a\} = e^{-\lambda a}, p_2 = P\{X > b\} = e^{-\lambda b}, p_3 = P\{X > b - a\} = e^{-\lambda (b-a)},$$
因为 $b - a < a < b$,所以 $p_3 > p_1 > p_2$.选 C.

9.【答案】 D.

[M] $E(Z) = 2E(X) - E(Y) + 1 = 0, D(Z) = 4D(X) + D(Y) = 2, Z \sim N(0,2),$ Z的密度函数

$$f_{Z}(z) = \frac{1}{2\sqrt{\pi}} e^{-\frac{z^{2}}{4}}, -\infty < z < +\infty.$$

$$D|Z| = E(|Z|^{2}) - (E|Z|)^{2} = E(Z^{2}) - (E|Z|)^{2},$$

其中

$$E(Z^{2}) = D(Z) + [E(Z)]^{2} = 2 + 0 = 2;$$

$$E|Z| = \int_{-\infty}^{+\infty} |z| \frac{1}{2\sqrt{\pi}} e^{-\frac{z^{2}}{4}} dz = 2 \int_{0}^{+\infty} z \frac{1}{2\sqrt{\pi}} e^{-\frac{z^{2}}{4}} dz = \frac{2}{\sqrt{\pi}},$$

$$(E|Z|)^{2} = \frac{4}{\pi}, D|Z| = 2 - \frac{4}{\pi}.$$

10.【答案】 D.

【解】 似然函数
$$L(\theta) = P\{X_1 = 1, X_2 = 2, X_3 = 3, X_4 = 1, X_5 = 3\}$$

 $= (\theta^2)^2 \times 2\theta (1-\theta) \times [(1-\theta)^2]^2$
 $= 2\theta^5 (1-\theta)^5$,
 $\ln L(\theta) = \ln 2 + 5\ln \theta + 5\ln(1-\theta)$,

令
$$\frac{\operatorname{dln} L(\theta)}{\operatorname{d}\theta} = \frac{5}{\theta} - \frac{5}{1-\theta} = 0$$
,得 $\hat{\theta}_L = \frac{1}{2}$.

二、填空题

11.【答案】 $\frac{1}{2}$.

【解】 解法 1
$$\lim_{n\to\infty}\int_0^n \frac{x}{n^2+x} dx = \lim_{n\to\infty}\left[n-n^2\ln\left(1+\frac{1}{n}\right)\right] = \lim_{n\to\infty}\left[\frac{1}{2}+n^2\cdot o\left(\frac{1}{n^2}\right)\right] = \frac{1}{2}.$$

解法 2 由于
$$\int_{0}^{n} \frac{x}{n^{2} + n} dx \le \int_{0}^{n} \frac{x}{n^{2} + x} dx \le \int_{0}^{n} \frac{x}{n^{2}} dx$$
,得 $\frac{n}{2(n+1)} \le \int_{0}^{n} \frac{x}{n^{2} + x} dx \le \frac{1}{2}$,且数学一(模拟一) 第 3 页 (共 8 页)

$$\lim_{n\to\infty}\frac{n}{2(n+1)}=\frac{1}{2}\,, \text{ fill } \lim_{n\to\infty}\int_0^n\frac{x}{n^2+x}\mathrm{d}x=\frac{1}{2}\,.$$

解法 3
$$\lim_{n\to\infty}\int_0^n \frac{x}{n^2+x} dx = \lim_{n\to\infty}\sum_{k=1}^n \int_{k-1}^k \frac{x}{n^2+x} dx = \lim_{n\to\infty}\sum_{k=1}^n \frac{\xi_k}{n^2+\xi_k}, k-1 \leqslant \xi_k \leqslant k.$$

由于
$$\frac{n}{n+1}\sum_{k=1}^n\frac{\xi_k}{n}\cdot\frac{1}{n}\leqslant\sum_{k=1}^n\frac{\xi_k}{n^2+\xi_k}\leqslant\sum_{k=1}^n\frac{\xi_k}{n}\cdot\frac{1}{n}$$
,且

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{\xi_{k}}{n} \cdot \frac{1}{n} = \int_{0}^{1} x \, dx = \frac{1}{2}, \lim_{n \to \infty} \frac{n}{n+1} = 1,$$

所以

$$\lim_{n\to\infty}\int_0^n \frac{x}{n^2+x} \mathrm{d}x = \lim_{n\to\infty} \sum_{k=1}^n \frac{\xi_k}{n^2+\xi_k} = \frac{1}{2}.$$

12.【答案】 0.

解法 1
$$\int_0^{+\infty} \frac{x-1}{x^3+1} dx = \int_0^1 \frac{x-1}{x^3+1} dx + \int_1^{+\infty} \frac{x-1}{x^3+1} dx.$$

$$\diamondsuit x = \frac{1}{t}, 则$$

$$\int_{1}^{+\infty} \frac{x-1}{x^{3}+1} dx = \frac{x = \frac{1}{t}}{t} \int_{1}^{0} \frac{\frac{1}{t}-1}{\frac{1}{t^{3}}+1} \left(-\frac{1}{t^{2}}\right) dt = \int_{0}^{1} \frac{\frac{1}{t}-1}{\frac{1}{t^{3}}+1} \cdot \frac{1}{t^{2}} dt = \int_{0}^{1} \frac{1-t}{1+t^{3}} dt = -\int_{0}^{1} \frac{x-1}{x^{3}+1} dx$$

为定积分,故
$$\int_{1}^{+\infty} \frac{x-1}{x^3+1} dx$$
 收敛,进而 $\int_{0}^{+\infty} \frac{x-1}{x^3+1} dx$ 收敛,且 $\int_{0}^{+\infty} \frac{x-1}{x^3+1} dx = 0$.

解法 2
$$\int_{0}^{+\infty} \frac{x-1}{x^3+1} dx = \int_{0}^{+\infty} \left(\frac{-\frac{2}{3}}{x+1} + \frac{\frac{2}{3}x - \frac{1}{3}}{x^2 - x + 1} \right) dx = \frac{1}{3} \ln \frac{x^2 - x + 1}{(x+1)^2} \Big|_{0}^{+\infty} = 0.$$

13.【答案】 $\frac{\pi}{2}$.

【解】 由
$$x^2 + y^2 = y$$
 知 $I = \int_L (y^2 + x^2) ds = \int_L y ds$.

由
$$x^2 + y^2 = y$$
 知 $x^2 + (y - \frac{1}{2})^2 = \frac{1}{4}$,其参数式方程为

$$x = \frac{1}{2}\cos t$$
, $y = \frac{1}{2} + \frac{1}{2}\sin t$,

由于
$$ds = \sqrt{x_t'^2 + y_t'^2} dt = \sqrt{\left(-\frac{1}{2}\sin t\right)^2 + \left(\frac{1}{2}\cos t\right)^2} dt = \frac{1}{2}dt$$

所以
$$I = \int_0^{2\pi} \left(\frac{1}{2} + \frac{1}{2}\sin t\right) \frac{1}{2} dt = \frac{\pi}{2}.$$

14.【答案】 $\frac{4}{3}\pi^2$.

【解】 设 $f(x)=x^2$, $x \in [-\pi,\pi]$ 是偶函数,将 f(x) 延拓为 $T=2\pi$ 的周期函数,则 f(x) 的傅里叶级数为

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx,$$

其中 $a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{3} \pi^2$, $a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx dx$, $n = 1, 2, \dots$, 令 $x = \pi$, 得

$$\pi^{2} = \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} a_{n} \cos n \pi = \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} (-1)^{n} a_{n}$$

所以
$$\sum_{n=1}^{\infty} (-1)^n a_n = \frac{2}{3} \pi^2$$
,

进而
$$\sum_{n=0}^{\infty} (-1)^n a_n = a_0 + \sum_{n=1}^{\infty} (-1)^n a_n = \frac{4}{3} \pi^2$$
.

15.【答案】 2.

【解】 二次型矩阵 $A = \begin{pmatrix} a & 0 & 1 \\ 0 & a & -1 \\ 1 & -1 & a - 1 \end{pmatrix}$ 的特征值为 a - 2, a, a + 1, 注意到 A 合同于

$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
,故 A 的特征值两正一个零,所以 $a-2=0$,得 $a=2$.

16.【答案】 $\frac{1}{2}$.

【解】 由题意知 $\ln X_1$, $\ln X_2$, ..., $\ln X_{100}$ 相互独立,且 $E(\ln X_i)=1.6$, $D(\ln X_i)$ $\stackrel{i}{=}$ σ^2 , $i=1,2,\cdots,100$,则由中心极限定理

$$\sum_{i=1}^{100} \ln X_i = \ln(X_1 X_2 \cdots X_{100}) \stackrel{\text{left}}{\sim} N(160, 100\sigma^2),$$

所以
$$P\{X_1X_2\cdots X_{100} < e^{160}\} = P\{\ln(X_1X_2\cdots X_{100}) < 160\} \approx \Phi\left(\frac{160-160}{10\sigma}\right) = \Phi(0) = \frac{1}{2}$$

三、解答题

17.【解】 当x = 0时,y = 1,原式两边对x求导得

$$3x^{2} + 3y^{2}y' + y + xy' = 0 \Rightarrow y'(0) = -\frac{1}{3}.$$

两边再对 x 求导得

$$6x + 6y(y')^2 + 3y^2y'' + 2y' + xy'' = 0 \Rightarrow y''(0) = 0,$$

数学一(模拟一) 第 5 页 (共 8 页)

同理继续对 x 求导,可得 $y'''(0) = -\frac{52}{27}$,于是

$$\lim_{x \to 0} \frac{3y + x - 3}{x^3} = \lim_{x \to 0} \frac{3y' + 1}{3x^2} = \lim_{x \to 0} \frac{3y''}{6x} = \frac{1}{2} \lim_{x \to 0} y''' = -\frac{26}{27}.$$

18.【解】 令
$$u = \frac{y}{x}$$
, $z = xf(u) + y$, $\frac{\partial z}{\partial x} = f(u) - \frac{y}{x}f'(u)$, $\frac{\partial z}{\partial y} = f'(u) + 1$, 代人到 $x \frac{\partial z}{\partial x} - y = xf(u)$

$$y\frac{\partial z}{\partial y} = 2z$$
 可得 $xf(u) - 2yf'(u) - y = 2xf(u) + 2y$,整理后得 $f'(u) + \frac{1}{2u}f(u) = -\frac{3}{2}$,

上述方程的通解为 $f(u) = -u + \frac{C}{\sqrt{u}}$. 由 f(1) = 1 可得 C = 2,所以 $f(u) = -u + \frac{2}{\sqrt{u}}$.

因为 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left(-x + \frac{2}{\sqrt{x}}\right) = \infty$,所以x = 0为曲线y = f(x)的铅直渐近线.又

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{-x + \frac{2}{\sqrt{x}}}{x} = -1,$$

$$\lim_{x\to+\infty} [f(x) - (-x)] = \lim_{x\to+\infty} \frac{2}{\sqrt{x}} = 0,$$

所以 y = -x 为曲线 y = f(x) 的斜渐近线.

19.【解】 线段 AB 所在的直线方程为 $\begin{cases} x=1, \\ y=z. \end{cases}$ 设 M(x,y,z) 是曲面 Σ 上任意一点,过 M(x,y,z)

y,z) 的纬圆交直线 AB 于点 $M_1(x_1,y_1,z_1)$,则

$$\begin{cases} x^{2} + y^{2} = x_{1}^{2} + y_{1}^{2}, \\ x_{1} = 1, \\ y_{1} = z_{1}, \\ z = z_{1}. \end{cases}$$

消去 x_1, y_1, z_1 ,可得曲面 Σ 的方程为

$$z = \sqrt{x^2 + y^2 - 1}$$
, $0 \leqslant z \leqslant 1$.

补充 $\Sigma_1: z = 0, x^2 + y^2 \leq 1$,取下侧. 补充 $\Sigma_2: z = 1, x^2 + y^2 \leq 2$,取上侧.

设由 Σ , Σ_1 与 Σ_2 围成的立体区域为 Ω . 则有

$$= \iint_{\Omega} (2x + 2z) \,\mathrm{d}V + \pi - 8\pi.$$

因 Ω 关于 yOz 面对称,所以 2x dV = 0. 得

$$\iiint_{\Omega} 2z \, dV = 2 \int_{0}^{1} z \, dz \iint_{x^{2} + y^{2} \leq z^{2} + 1} dx \, dy = 2\pi \int_{0}^{1} z (z^{2} + 1) \, dz = \frac{3\pi}{2},$$

所以 $I = \frac{3\pi}{2} - 7\pi = -\frac{11\pi}{2}$.

20.【解】 (1) 令 $F(x) = (b-x) \int_{a}^{x} f(t) dt$, $x \in [a,b]$, 则 F(x) 在[a,b] 可导,且 F(a) = F(b) = 0,由罗尔中值定理知,存在 $\xi \in (a,b)$,使得 $F'(\xi) = (b-\xi)f(\xi) - \int_{a}^{\xi} f(t) dt = 0$, 即 $\int_{a}^{\xi} f(x) dx = (b-\xi)f(\xi)$.

(2) 设 f(x) 在[a,b]上的最大值为M、最小值为m,故存在 $x_M,x_m \in (a,b)$,使得 $f(x_M) = M$, $f(x_m) = m$.

如果 M=m,则 f(x)=常数,故对任意的 $\eta\in(a,b)$,均有 $\int_a^{\eta}f(x)\mathrm{d}x=(\eta-a)f(\eta)$.

如果 M > m,则 $x_M \neq x_m$. 令 $G(x) = \int_a^x f(t) dt - (x - a) f(x)$, $x \in [a, b]$,则 $G(x_M) = \int_a^{x_M} f(t) dt - (x_M - a) f(x_M) \leqslant \int_a^{x_M} M dt - (x_M - a) M = 0,$ $G(x_m) = \int_a^{x_m} f(t) dt - (x_m - a) f(x_m) \geqslant \int_a^{x_m} m dt - (x_m - a) m = 0,$

由介值定理,存在 $\eta \in [x_M, x_m]$ 或 $[x_m, x_M] \subset (a, b)$,使得 $G(\eta) = 0$,即 $\int_a^{\eta} f(x) dx = (\eta - a) f(\eta)$.

21.【解】 (1) 方程组的增广矩阵 $\begin{pmatrix} 1 & 2 & 1 & 3 \\ 2 & a+4 & -5 & 6 \\ -1 & -2 & a & -3 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 2 & 1 & 3 \\ 0 & a & -7 & 0 \\ 0 & 0 & a+1 & 0 \end{pmatrix}$,由线性方程

组有无穷多个解可知 a = -1 或 a = 0.

若 a = -1,则 $\boldsymbol{\alpha}_1 = (1, -2, -1)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (-1, 2, 1)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (-3, -1, 0)^{\mathrm{T}}$, $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 线性相关,矛盾! 故 a = 0. 此时 $\boldsymbol{\alpha}_1 = (1, 0, -1)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (0, 3, 2)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (-2, -1, 1)^{\mathrm{T}}$.

易知
$$\mathbf{A} = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)^{\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}} (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3)^{-1},$$
故
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 3 & -1 \\ -1 & 2 & 1 \end{pmatrix}^{\begin{pmatrix} 1 & 0 & -2 \\ 0 & 3 & -1 \\ -1 & 2 & 1 \end{pmatrix}^{-1}}$$

数学一(模拟一) 第7页(共8页)

$$= \begin{pmatrix} 1 & 0 & -2 \\ 0 & 3 & -1 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & & & \\ & -1 & \\ & & 0 \end{pmatrix} \begin{pmatrix} -5 & 4 & -6 \\ -1 & 1 & -1 \\ -3 & 2 & -3 \end{pmatrix} = \begin{pmatrix} -5 & 4 & -6 \\ 3 & -3 & 3 \\ 7 & -6 & 8 \end{pmatrix}$$

(2)**A** 的特征值为 1, -1, 0, A^{2024} 的特征值为 1, 1, 0, A^{2024} + 2**E** 的特征值为 3, 3, 2,

$$|\mathbf{A}^{2024} + 2\mathbf{E}| = 3 \times 3 \times 2 = 18.$$

22.【解】
$$(1)F(\frac{1}{2},1) = P\{X \leqslant \frac{1}{2},Y \leqslant 1\} = \frac{3}{4};$$

(2) 当 z < 0 时, $F_z(z) = 0$;

当
$$0 \leqslant z < \frac{1}{2}$$
 时, $F_Z(z) = P\{Z \leqslant z\} = P\{Z = 0\} = P\{X + Y \leqslant \frac{1}{2}\} = \frac{1}{4}$;

当
$$\frac{1}{2}$$
 \leqslant z $<$ 1 时, $F_Z(z)$ $=$ P $\{Z$ \leqslant $z\}$ $=$ P $\{0$ \leqslant X \leqslant z , 0 \leqslant Y \leqslant z x $\}$ $=$ z^2 ;

当 $1 \leqslant z$ 时, $F_Z(z) = 1$.

所以
$$F_{Z}(z) = \begin{cases} 0, & z < 0, \\ \frac{1}{4}, & 0 \leqslant z < \frac{1}{2}, \\ z^{2}, & \frac{1}{2} \leqslant z < 1, \\ 1, & 1 \leqslant z. \end{cases}$$

 $P\{Z=0\}=F_Z(0)-F_Z(0-0)=\frac{1}{4}-0=\frac{1}{4}.$ 由于 $P\{Z=0\}\neq 0$,所以 Z 不是连续型随机变量.

$$(3)E(U+V) = E(X+Y) = \int_0^1 dx \int_0^{1-x} 2(x+y) dy = \int_0^1 (1-x^2) dx = 1 - \frac{1}{3} = \frac{2}{3}.$$