Lineares Ausgleichsproblem: Daten:
$$\frac{t_{i} \mid 0 \mid 1}{y_{i} \mid 3 \mid 2,14 \mid 1,8 \mid 1,72}$$
 Modellfunktion:
$$y(t) = \alpha \frac{1}{1+t} + \beta$$

$$A = \begin{pmatrix} y(t_{1} = 0) \\ y(1) \\ y(2) \\ y(t_{n} = 3) \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix}; b = \begin{pmatrix} y_{1} = 3 \\ 2,14 \\ 1,86 \\ y_{n} = 1,72 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ \frac{1}{2} & 1 \\ \frac{1}{3} & 1 \\ \frac{1}{4} & 1 \end{pmatrix} \cdot \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} y_{1} = 3 \\ 2,14 \\ 1,86 \\ y_{n} = 1,72 \end{pmatrix}$$

Satz: 1.1: $x^* \in \mathbb{R}$ ist genau dann eine Lösung des linearen Ausgleichsproblems, wenn x^* Lösung der Normalgleichung $A^TAx = A^Tb$ ist. Es gibt mindestens eine Lösung x^* . Sie ist eindeutig, gdw. Rang(A) = n.

Satz: 1.2: Sei $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ mit QR-Zerlegung von A, $Rang(A) \equiv n$, A = QR, $R = \binom{R_1}{0}$, $R_1 \in \mathbb{R}^{n \times n}$ und $\binom{c_1}{c_2} := Q^T b$ mit $c_1 \in \mathbb{R}^n$, $c_2 \in \mathbb{R}^{m-n}$. Dann gilt: R_1 ist regulär und Außerdem gilt: $b - Ax_2 = c_2$.

Householder-Hessenbergmatrix durch Reflexion: Mithilfe einer Householder-Reflexion, dargestellt durch Matrixmultiplikation $Q_u \cdot A_r$ kann ein Teil der Matrix zu null transformiert werden.

Mit v als Spaltenvektor von A, welcher die erste Spalte enthält, wird $u := v + \operatorname{sgn}(v_1) \cdot e_1 \cdot v$ gewählt (sgn(.) ist die Vorzeichenfunktion, jedoch muss bei 0 nicht 0 genommen werden!). Damit wird

Spalte gestrichen hat und darauf weiter agieren. Am ende hätte man mindestens eine obere rechte Dreiecksmatrix. Das Produkt aller verwendeten Q wäre dann eine orthogonale Matrix, womit $Q \cdot R = A$ als QR-Zerlegung entstanden ist.

Eigenschaften der Householder-Reflexion:

(i)
$$Q_v \cdot v = -v$$

(ii)
$$Q_v \cdot u = u \Leftrightarrow v \perp u$$

(iii)
$$Q_v^T = Q_v^{-1} \Rightarrow Q_v$$
 ist Orthogonal

Eine **Givensrotation** von $A = \begin{pmatrix} a_1 & * \\ a_2 & * \end{pmatrix}$ kann mit $\begin{vmatrix} r = |\sqrt{a_1^2 + a_2^2}|, c = a_1/r, s = a_2/r \text{ und } G = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}$ erfolgen: $G \cdot A = \begin{pmatrix} r & \star \\ 0 & \star \end{pmatrix}$

Spalte enthält, wird
$$u := v + \operatorname{sgn}(v_1) \cdot e_1 \cdot v$$
 gewählt (sgn(.) ist die Vorzeichenfunktion, jedoch muss bei 0 nicht 0 genommen werden!). Damit wird $Q_u := \mathbbm{1}_{m \times m} - 2 \cdot \frac{u \cdot u^T}{u^T \cdot u}$ definiert, welche A so verdrehspiegelt, dass alle Elemente in der ersten Spalte unterhalb der Diagonalen verschwinden. Nun kann man weiter vorgehen und die Teilmatrix von A hernehmen, welche die erste Zeile und Spalte gestrichen hat und darauf weiter agieren. Am ende hätte man mindestens eine obere rechte Dreiecksmatrix. Das Produkt aller verwendeten Q wäre dann eine orthogonale Matrix, womit $Q \cdot R = A$ als QR -Zerlegung entstanden ist

Algorithmus: Gauß-Newton-Verfahren

- 1: Wähle Startvektor $x^{(0)} \in \mathbb{R}$
- 2: **for** k = 0, 1, ... **do**

AV = VD

$$\triangleright$$
 Löse LGS nach $\Delta x^{(k)}$

- $I_F(x^{(k)})\Delta x^{(k)} + F(x^{(k)})_2^2 \to min$
- setze $x^{(k+1)} = x^{(k)} + \Lambda x^{(k)}$
- 5: end for

$A \in \mathbb{R}^{n \times n} s.p.d \Rightarrow \exists V \in \mathbb{R}^{n \times n} \text{ orthogonal mit}$ $V^T A V = D$; $d_{ii} = \lambda_i \ge 0 \Rightarrow A = V D V^T (V V^T = 1)$

$$A \in \mathbb{R}^{m \times n} A^T A$$
 ist s.p.semi-d. $x^T A^T A x \ge 0$

Satz: **Singulärwertzerlegung**: Sei $A \in \mathbb{R}^{m \times n}$ und p = min(m, n). Dann existieren orthogonale Matri-

zen $U \in \mathbb{R}^{m \times m}$ und $V \in \mathbb{R}^{n \times n}$ mit $U^T A V = \Sigma = 0$ $diag(\sigma_1,...,\sigma_n) \Rightarrow$

Algorithmus: QR-Verfahren mit Spektralverschiebung

- 1: $A_0 = P^T \cdot A \cdot P$
 - ▶ Tridiagonaltransformation
- 2: **for** k = 0, 1, ... **do**
- 3: wähle $\mu_k \in \mathbb{R}$
- 4: $A_k \mu_k \mathbb{1} = Q_k \cdot R_k$ ▷ QR-Zerlegung
- 5: $A_{k+1} = R_k \cdot Q_k + \mu_k \mathbb{1}$
- $\triangleright = Q_k^T A_k Q_k$ 6: end for

Algorithmus: Vektoriteration

1: wähle $x^{(0)} \in \mathbb{R}$, setze $y^{(0)} = \frac{x^{(0)}}{x^{(0)}}$

- 2: **for** k = 0, 1, ... **do**
- $3: \qquad x^{k+1} = A \cdot y^{(k)}$
- 4: $\lambda^{(k)} = y^{(k)T} \cdot x^{(k)}$
- 5: $y^{k+1} = \frac{x^{(k+1)}}{x^{(k+1)}}$
- 6: end for

Algorithmus: Inverse Vektoriteration mit Spektralverschiebung

- 1: wähle $x^{(0)} \in \mathbb{R}$, setze $y^{(0)} = x^{(0)}/x^{(0)}$ ₂
- 2: **for** k = 0, 1, ... **do**

3: Löse LGS
$$(A - \mu \mathbb{1}) x^{(k+1)} = y^{(k)}$$

$$\Rightarrow x^{(k+1)} = (A - \mu \mathbb{1})^{-1} \cdot y^{(k)}$$

$$\Rightarrow \Leftrightarrow x^{(k+1)} = (A - \mu \mathbb{1}) \cdot y^{(k)}$$

$$\Rightarrow x^{(k+1)} = (A - \mu \mathbb{1})^{-1} \cdot y^{(k)}$$
4:
$$\lambda^{(k+1)} = \frac{1}{y^{(k)^T} \cdot x^{(k)}} + \mu$$
5:
$$y^{k+1} = \frac{x^{(k+1)}}{x^{(k+1)}_2}$$

5:
$$y^{k+1} = \frac{1}{x^{(k+1)}}$$