Spatial Analyst Tools

GIS III: GIS Analysis

Overview

- Spatial Analyst Toolbox
 - Density Tools
 - Interpolation Tools
 - Statistics Tools

What is GIS Analysis?

- Mapped data shows you where objects are located but cannot explain why
 - GIS analysis searches for patterns and meaning in mapped data using GIS software
 - Allows you to link, query, collect and display your spatial data

Elements of Spatial Analysis

Geoprocessing

- Geographic analysis and data management
- Performs an operation on an input dataset, resulting in a new output dataset

Storing Abstracted Objects

- Two primary methods for digital storage
 - Vector formats discretely identify shape coordinates

- Raster formats assign square cells to real world entities

Spatial Analyst Tools Toolbox

- Specialized tools for analysis
- Raster based

- Population per square mile
- Number of features per acre
- Uses
 - Produce a continuous surface from a point layer
 - Visualize overlapping points
 - Identify "hot spots"

- Three density tools in Spatial Analyst
 - Line density: Calculates a magnitude per unit area from polyline features that fall within a radius around each cell
 - Point density
 - Kernel density
- All density tools produce new raster datasets

Point Density

Calculates a magnitude per unit area from point features that fall within a neighborhood around each cell

Kernel Density

Calculates a magnitude per unit area from point or polyline features using a kernel function to fit a smoothly tapered surface to each point or polyline

Module 02 11

Point vs. Kernel Density

Point Density

Kernel Density

Interpolation Tools

- Interpolation creates a continuous surface from individual point values
- Examples:
 - Elevation data
 - Temperature
- In ArcMap interpolation creates a new raster dataset

Why Use Interpolation?

- To estimate values where there is no data
- Visualization of complex point data
- Analysis of trends over space and time
- Creation of discrete boundaries between values

Zonal Statistics

Zone layer

Defines the zones (shapes, values and locations).

Value layer

Contains the input values used in calculating the output for each zone.

Output

The result of the statistic applied to the value input (Maximum in this example).

Can calculate:

- Majority
- Maximum
- Mean
- Median
- Minimum
- Minority
- Range
- Standard Deviation
- Sum
- Variety

Other Useful Spatial Analyst Tools

- Extraction Subset raster datasets by values or locations
- Map Algebra Run any algebraic operation on two rasters
- Overlay Combine multiple rasters into one layer, applying weights to the input datasets
- Reclass Change the values of rasters