3000788 Intro to Comp Molec Biol

Week 8: Proteomics

Fall 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Proteomics

- Pros and cons of proteomics
- Mass spectrometry for peptide sequencing
- Techniques for comparative proteomics
- Beyond protein quantifications
 - Structural analysis
 - Other compounds

Why not proteomics all the time?

- Amounts of materials
- Difficult to extract
 - Proteins are chemically heterogeneous
 - Integrated into cellular structure
- Difficult to identify
 - Cannot rely on complementary pairing to read out amino acids
 - Similar issue as nanopore (but more costly to synthesize data)
- Post translational modifications

PTM greatly increases the variety of proteins

Mass spectrometry (MS)

A mass spectra

Shalek and Benson. Science Trans Med. 9:eaan4730 (2017)

- Abundances + mass-to-charge ratio (m/z) of all detected ions

Physics of m/z measurement

Ion in magnetic field → orbital frequency

Image from https://en.wikipedia.org/wiki/Orbitrap

$$zV = \frac{1}{2} mv^2$$

 $m/z = 2V/v^2$

Solving mass from mass-to-charge ratio

- Ions exist as isotopes
- ¹³C, ¹⁴C, ¹⁵N, and ¹⁸O
- Adjacent isotopes differ by a neutron
- Difference betweenm/z and (m+1)/z = 1/z

Making MS works for biology

Soft ionization techniques

Image from https://www.thermofisher.com

Image from https://www.shimadzu.com

- MS analyzes ions in gas phases
- Biomolecules break apart under regular ionization techniques
- Electrospray (ESI) and Matrix-assisted LASER desorption (MALDI)

Preparation of protein/peptide samples for MS

- Whole-cell lysate or sub-cellular
 - Scope of study
- In-solution vs in-gel
 - Selection of specific protein complexes
- Intact proteins or digested into peptides

Protein digestion by protease enzymes

Trypsin	Cleaves after lysine and arginine but not before proline
Trypsin/P	Cleaves after lysine and arginine also if a proline follows
LysC	Cleaves after lysine but not before proline
LysC/P	Cleaves after lysine also if a proline is following
D.P	Cleaves D.P pairs. Can be added to other enzymes to include this desired breakage.
ArgC	Cleaves after arginine
AspC	Cleaves after aspartic acid
GluC	Cleaves after glutamic acid
GluN	Cleaves before glutamic acid
AspN	Cleaves before aspartic acid
LysN	Cleaves before lysine
Chymotrypsin+	Cleaves after tyrosine, tryptophane, phenylalanine, leucine, methionine
Chymotrypsin	Cleaves after tyrosine, tryptophane, phenylalanine

Image from https://en.wikipedia.org/wiki/Peptide_bond

Image from MaxQuant software

Combining multiple proteases

Ensure well-sized peptides throughout the protein

Top-down vs bottom-up proteomics

- Top-down = analysis of in-tact proteins
 - Complex MS data
 - Limited to ~50-100 kDa proteins
 - Can identify co-occurring PTMs
 - Can identify multiple species of a proteins

- - Easier to analyze
 - Applicable to all protein samples
 - PTMs on multiple peptides cannot be linked

Handling the complexity of proteme

The need for chromatography

Image from https://en.wikipedia.org/wiki/Tandem_mass_spectrometry

- It takes time for MS to collect ions and analyze their m/z profiles
- Cannot dump the entire proteome in the MS at once
 - lons that cannot be analyzed in time will be lost

High/Ultra-performance LC (HPLC / UPLC)

- Separate molecules by their isoelectric potential, hydrophobicity, and size
- Different molecules take different amounts of time to pass through (retention time)

Sample fractionation

High pH reversed-phase (HpH)

Proteins are eluted with increasing salt (NaCl) gradient

Enrichment of target proteins / peptides

- Same idea as the scope of DNA sequencing
- Analysis of kinases may focus on phosphorylated peptides
- Depend on the biological mechanism of interest

Peptide identification

The journey of a peptide

Profile of peptides at a specific retention time

 MS first measures the m/z values of all peptide ions (MS1 spectrum) - At a time, a number of peptide ions were injected into MS

MS analysis of individual peptides

- Ions of interest (with high abundances) are isolated and further analyzed
 - Top 5 up to top 20 ions

Data-dependent mode

Collision-induced dissociation

Image from https://www.molgen.mpg.de

Image from https://www.biologie.hu-berlin.de

- Accelerate peptide molecules to run into inert gases, such as helium, nitrogen, or argon
- Collision at the **right energy level** breaks a peptide bond at random

MS/MS spectrum = profile of fragment ions of a peptide

Database search for peptide sequencing

Adapted from Nescizhskii. Journal of Proteomics 73: 2092-2123 (2010)

- We will do a demo with MaxQuant in the next session

Limitation of database search

- Only identify the best known answer
 - Doesn't work on data from new species
 - Cannot identify cancer mutations
- Including too many proteins → False hits
- Not practical to search many PTMs
 - FQSADETMAR with oxidation and phosphorylation = 8 possibilities
 - PTM changes amino acid mass → changes MS/MS m/z values

De novo peptide sequencing

- Directly deducing amino acid sequences
- Can identify sequence tags (partial sequence)
- Rely on deep learning (AI)

Nescizhskii. Journal of Proteomics 73: 2092-2123 (2010)

Peptide quantification

Peptide abundance from MS1 spectrum

Image from http://fields.scripps.edu/yates/wp/

Intensity values in MS1 spectrum reflect peptide abundances

Peptide and protein quantification

- Number of MS/MS of a peptide sequence
- Intensity of the peptide in MS1 spectrum
 - Not all peptides can be ionized
 - Different ionization efficiencies
- How to quantify proteins with multiple peptides?
 - Sum of all peptides
 - Sum of top N peptides
 - Consider only high-quality peptides
 - Linear effect model
- Intensity values are log-normal \rightarrow Log-transformed + t-test

Multiple reaction monitoring (MRM)

https://medicine.yale.edu/keck/proteomics

- Targeted MS analysis of specific peptides and their fragmented ions
- Commonly performed on quadrupole MS (different from proteomics)

Comparative proteomics

Label-free comparison

 Simply perform multiple LC-MS/MS runs and match the observed m/z and retention time patterns

Stable isotope labeling (SILAC)

https://en.wikipedia.org/wiki/Stable_isotope_labeling_by_amino_ acids in cell culture

- Feed cell cultures with heavy and light isotopes
 - Integrated into all proteins
- Mix samples and perform a single LC-MS/MS run
 - No technical bias
- Look for a pair of peptides
 - With mass shift
 - With similar MS/MS

Tandem mass tag (TMT)

Image from https://www.thermofisher.com

- TMTs are added to N-terminus of peptides
- All TMTs have the same total mass
- Different TMTs have different reporter mass (126 Da, 127 Da, etc.)
 - Will be separated from the peptide molecule in tandem MS

Comparative quantification via TMT

- The same peptides attached with TMT will be isolated together
- Peptide with different TMT will produce different reporter ions in MS/MS

Other applications

Chemical crosslinking

Hydrogen-deuterium exchange

HDX-MS: Conformational Changes

Image from https://www.underbakkelab.org/techniques

Deuterium readily replaces hydrogen wherever accessible

Time-of-flight distinguish protein conformations

Saliva biomarkers for COVID-19 diagnosis

- Attempted during PCR reagent shortage
- Compare whole proteins in saliva from patients to controls
- No MS/MS = only m/z signatures

MS/MS of non-peptides

- Choosing the right collision energy level to break chemical bonds
- Comparing to a database of known MS/MS spectra of known compounds

Any question?