Chow-Liu Trees

Generative Al Models — Lecture 5

9th May 2025

Thomas Krak (slides adapted from Gennaro Gala) Uncertainty in Artificial Intelligence

Idea: structure learning as discrete optimization

- Let ${\pmb X}$ be a set of RVs and ${\mathcal D}=\{{\pmb x}^n\}_{n=1}^N$ be i.i.d. data
- ullet Let $[\mathcal{G}]$ be some family of DAGs over $oldsymbol{X}$
- Define a suitable score $\mathcal{S}(\mathcal{G}, \mathcal{D})$
- ullet Find $\mathcal{G}^* = \operatorname{arg\,max}_{\mathcal{G} \in [\mathcal{G}]} \, \mathcal{S}(\mathcal{G}, \mathcal{D})$

- [G] is the **set of all directed trees** [T] over **X**
- Directed tree: Every RV has at most one parent
- Score $S(G, D) = \max_{\Theta} L(G, \Theta, D)$, where
 - ullet Θ are all BN parameters for $\mathcal G$ (for categorical CPDs)
 - $\mathcal{L}(\mathcal{G}, \Theta, \mathcal{D})$ is the log-likelihood
- Thus, tree \mathcal{G} is "better" than \mathcal{G}' if the log-likelihood of \mathcal{G} is higher than the log-likelihood of \mathcal{G}' (when equipping them with their ML parameters):

$$\mathcal{G}^* = \arg\max_{\mathcal{G} \in [\mathcal{T}]} \underbrace{\left(\max_{\Theta} \mathcal{L}(\mathcal{G}, \Theta, \mathcal{D})\right)}_{\mathcal{S}}$$

• Remarkable: Poly-time Algorithm!

Algorithm 3 $VE_PR1(N, Q, \pi)$

input:

 \mathcal{N} : Bayesian network

Q: variables in network N

 π : ordering of network variables not in **Q**

output: the prior marginal $Pr(\mathbf{Q})$

main:

1: $\mathcal{S} \leftarrow \text{CPTs}$ of network \mathcal{N}

2: **for** i = 1 to length of order π **do**

3: $f \leftarrow \prod_k f_k$, where f_k belongs to S and mentions variable $\pi(i)$

4: $f_i \leftarrow \sum_{\pi(i)} f$

5: replace all factors f_k in S by factor f_i

6: end for

7: **return** $\prod_{f \in \mathcal{S}} f$

Approximating Discrete Probability Distributions with Dependence Trees

C. K. CHOW, SENIOR MEMBER, IEEE, AND C. N. LIU, MEMBER, IEEE

Overview

Learning Chow-Liu Trees

Inference in Tree-shaped BNs

Ancestral Sampling

Learning Chow-Liu Trees

(Kullback-Leibler divergence) Let p and q be probability distributions over the same state space \mathcal{X} . The Kullback-Leibler divergence between p and q is defined as:

$$\mathbb{KL}(\mathbf{p}||q) = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{p}(\mathbf{x}) \log \frac{\mathbf{p}(\mathbf{x})}{q(\mathbf{x})} \ge 0$$
 (1)

(Kullback-Leibler divergence) Let p and q be probability distributions over the same state space \mathcal{X} . The Kullback-Leibler divergence between p and q is defined as:

$$\mathbb{KL}(\mathbf{p}||q) = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{p}(\mathbf{x}) \log \frac{\mathbf{p}(\mathbf{x})}{q(\mathbf{x})} \ge 0$$
 (1)

In other words, it is the expectation of the logarithmic difference between the distributions p and q, where the expectation is taken using the distribution p, i.e.:

$$\mathbb{KL}(p||q) = \mathbb{E}_{x \sim p} \left[\log \frac{p(x)}{q(x)} \right] = \mathbb{E}_{x \sim p} \left[\log p(x) - \log q(x) \right]$$
 (2)

(Kullback-Leibler divergence) Let p and q be probability distributions over the same state space \mathcal{X} . The Kullback-Leibler divergence between p and q is defined as:

$$\mathbb{KL}(\mathbf{p}||q) = \sum_{\mathbf{x} \in \mathcal{X}} \mathbf{p}(\mathbf{x}) \log \frac{\mathbf{p}(\mathbf{x})}{q(\mathbf{x})} \ge 0$$
 (1)

In other words, it is the expectation of the logarithmic difference between the distributions p and q, where the expectation is taken using the distribution p, i.e.:

$$\mathbb{KL}(p||q) = \mathbb{E}_{\mathbf{x} \sim p} \left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})} \right] = \mathbb{E}_{\mathbf{x} \sim p} \left[\log p(\mathbf{x}) - \log q(\mathbf{x}) \right]$$
 (2)

Note that, in general, $\mathbb{KL}(p||q) \neq \mathbb{KL}(q||p)$ and that $\mathbb{KL}(p||q) = 0$ iff p = q.

(Mutual Information) Given two jointly discrete RVs X and Y with joint distribution p_{XY} and marginal distributions p_X and p_Y , the mutual information MI(X; Y) between X and Y is:

$$MI(X;Y) = \mathbb{KL}(p_{XY}||p_Xp_Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)}$$
(3)

(Mutual Information) Given two jointly discrete RVs X and Y with joint distribution p_{XY} and marginal distributions p_X and p_Y , the mutual information MI(X; Y) between X and Y is:

$$MI(X;Y) = \mathbb{KL}(p_{XY}||p_Xp_Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)}$$
(3)

• The mutual information of two RVs is a measure of the mutual dependence

(Mutual Information) Given two jointly discrete RVs X and Y with joint distribution p_{XY} and marginal distributions p_X and p_Y , the mutual information MI(X; Y) between X and Y is:

$$MI(X;Y) = \mathbb{KL}(p_{XY}||p_Xp_Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)}$$
(3)

- The mutual information of two RVs is a measure of the mutual dependence
- Note that, MI is measured in *nats* (natural unit of information) when the natural logarithm is used.

$p_{XY}(X,Y)$	x = 0	x = 1	$p_Y(Y)$
y = 0	0.1	0.3	0.4
y = 1	0.2	0.4	0.6
$p_X(X)$	0.3	0.7	

$$\begin{aligned} \mathsf{MI}(X;Y) &= \mathbb{KL}(p_{XY}||p_Xp_Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)} = \\ &= 0.1 \log \frac{0.1}{0.3 \cdot 0.4} + 0.3 \log \frac{0.3}{0.7 \cdot 0.4} + 0.2 \log \frac{0.2}{0.3 \cdot 0.6} + 0.4 \log \frac{0.4}{0.7 \cdot 0.6} \\ &\approx 0.004 \text{ nats} \end{aligned}$$

$p_{XY}(X,Y)$	x = 0		$p_Y(Y)$
y = 0	0.08	0.32	0.4
y = 1	0.12	0.48	0.6
$p_X(X)$	0.2	0.8	

$$\begin{array}{c|cccc} p_{XY}(X,Y) & x=0 & x=1 & p_Y(Y) \\ \hline y=0 & 0.08 & 0.32 & 0.4 \\ y=1 & 0.12 & 0.48 & 0.6 \\ \hline p_X(X) & 0.2 & 0.8 & \\ \hline \end{array}$$

$$\begin{split} \text{MI}(X;Y) &= \mathbb{KL}(p_{XY}||p_Xp_Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p_{XY}(x,y) \log \frac{p_{XY}(x,y)}{p_X(x)p_Y(y)} = \\ &= 0.08 \log \frac{0.08}{0.2 \cdot 0.4} + 0.32 \log \frac{0.32}{0.8 \cdot 0.4} + 0.12 \log \frac{0.12}{0.2 \cdot 0.6} + 0.48 \log \frac{0.48}{0.8 \cdot 0.6} \\ &= 0 \text{ nats} \end{split}$$

Bayesian Networks

A Bayesian Network (BN) over RVs $\mathbf{X} = (X_i)_{i=1}^d$ is a pair $(\mathcal{G}, \mathcal{P})$, where:

- G is a DAG which has RVs X as nodes;
- \mathcal{P} is a collection of distributions $p(X_i|\mathbf{pa}(X_i))$; and where:

$$p(\boldsymbol{X}) = \prod_{i=1}^d p(X_i|\mathbf{pa}(X_i)).$$

Bayesian Networks

A Bayesian Network (BN) over RVs $\mathbf{X} = (X_i)_{i=1}^d$ is a pair $(\mathcal{G}, \mathcal{P})$, where:

- ullet ${\cal G}$ is a DAG which has RVs ${m X}$ as nodes;
- \mathcal{P} is a collection of distributions $p(X_i|\mathbf{pa}(X_i))$; and where:

$$p(\boldsymbol{X}) = \prod_{i=1}^d p(X_i|\mathbf{pa}(X_i)).$$

$$p(\mathbf{X}) = p(X_1|X_2, X_5)p(X_2)p(X_3|X_1)p(X_4|X_1)p(X_5)$$

Tree-shaped Bayesian Networks

A tree-shaped BN over RVs $\mathbf{X} = (X_i)_{i=1}^d$ is a pair $(\mathcal{T}, \mathcal{P})$, where:

- ullet T is a directed tree which has RVs $oldsymbol{X}$ as nodes;
- \mathcal{P} is a collection of distributions $p(X_i|X_{\tau(i)})$, where $X_{\tau(i)}$ is the parent of X_i in \mathcal{T} ;

and where:

$$p(\boldsymbol{X}) = \prod_{i=1}^d p(X_i|X_{\tau(i)}).$$

If X_i is the root of \mathcal{T} then $\tau(i) = 0$ and $p(X_i|X_0) = p(X_i)$.

Tree-shaped Bayesian Networks

A tree-shaped BN over RVs $\mathbf{X} = (X_i)_{i=1}^d$ is a pair $(\mathcal{T}, \mathcal{P})$, where:

- ullet T is a directed tree which has RVs $oldsymbol{X}$ as nodes;
- \mathcal{P} is a collection of distributions $p(X_i|X_{\tau(i)})$, where $X_{\tau(i)}$ is the parent of X_i in \mathcal{T} ;

and where:

$$p(\boldsymbol{X}) = \prod_{i=1}^{d} p(X_i | X_{\tau(i)}).$$

If X_i is the root of \mathcal{T} then $\tau(i) = 0$ and $p(X_i|X_0) = p(X_i)$.

$$p(\boldsymbol{X}) = p(X_1)p(X_2|X_1)p(X_3|X_5)p(X_4|X_5)p(X_5|X_1)$$

Problem

ullet We are given a dataset $\mathcal{D} = \{m{x}^{(n)}\}_{n=1}^N$ drawn from an unknown distribution $p^*(m{X})$

Problem

- ullet We are given a dataset $\mathcal{D}=\{m{x}^{(n)}\}_{n=1}^N$ drawn from an unknown distribution $m{p}^*(m{X})$
- ullet We want to learn the "best" tree-shaped BN $({\mathcal T},{\mathcal P})$ from ${\mathcal D}$

Problem

- ullet We are given a dataset $\mathcal{D} = \{m{x}^{(n)}\}_{n=1}^N$ drawn from an unknown distribution $p^*(m{X})$
- ullet We want to learn the "best" tree-shaped BN $(\mathcal{T},\mathcal{P})$ from \mathcal{D}
- In other words, we want to find the best tree-based approximation

$$p(X) = \prod_{i=1}^d p^*(X_i|X_{\tau(i)}) \text{ of } p^*(X)$$

How many possible trees?

- Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer d, the number of trees on d labeled vertices is d^{d-2}
- The number of possible trees for any moderate value of d is so enormous as to exlude any approach of exhaustive search

How many possible trees?

- Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer d, the number of trees on d labeled vertices is d^{d-2}
- The number of possible trees for any moderate value of d is so enormous as to exlude any approach of exhaustive search

We want to find \mathcal{T} s.t. its induced probability distribution $p(X) = \prod_{i=1}^{d} p^*(X_i|X_{\tau(i)})$ is as close as possible to the true unknown distribution $p^*(X)$.

We want to find \mathcal{T} s.t. its induced probability distribution $p(X) = \prod_{i=1}^{d} p^*(X_i | X_{\tau(i)})$ is as close as possible to the true unknown distribution $p^*(X)$.

$$\mathbb{KL}(p^*||p) = \mathbb{E}_{\mathbf{x} \sim p^*} \left[\log p^*(\mathbf{x}) - \log p(\mathbf{x}) \right]$$

We want to find \mathcal{T} s.t. its induced probability distribution $p(X) = \prod_{i=1}^d p^*(X_i|X_{\tau(i)})$ is as close as possible to the true unknown distribution $p^*(X)$.

$$\mathbb{KL}(p^*||p) = \mathbb{E}_{\mathbf{x} \sim p^*} [\log p^*(\mathbf{x}) - \log p(\mathbf{x})]$$
$$= \mathbb{E}_{\mathbf{x} \sim p^*} [\log p^*(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p^*} [\log p(\mathbf{x})]$$

We want to find \mathcal{T} s.t. its induced probability distribution $p(X) = \prod_{i=1}^d p^*(X_i|X_{\tau(i)})$ is as close as possible to the true unknown distribution $p^*(X)$.

$$\begin{split} \mathbb{KL}(p^*||p) &= \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p^*(\boldsymbol{x}) - \log p(\boldsymbol{x}) \right] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p^*(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p(\boldsymbol{x}) \right] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p^*(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\boldsymbol{x}_i | \boldsymbol{x}_{\tau(i)}) \right] \end{split}$$

We want to find \mathcal{T} s.t. its induced probability distribution $p(X) = \prod_{i=1}^d p^*(X_i|X_{\tau(i)})$ is as close as possible to the true unknown distribution $p^*(X)$.

$$\begin{split} \mathbb{KL}(p^*||p) &= \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p^*(\boldsymbol{x}) - \log p(\boldsymbol{x}) \right] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p^*(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p(\boldsymbol{x}) \right] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\log p^*(\boldsymbol{x}) \right] - \mathbb{E}_{\boldsymbol{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\boldsymbol{x}_i | \boldsymbol{x}_{\tau(i)}) \right] \end{split}$$

Since $\mathbb{E}_{\mathbf{x} \sim p^*}[\log p^*(\mathbf{x})]$ is independent of \mathcal{T} , only the second quantity matters.

$$\mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i | \mathbf{x}_{ au(i)}) \right]$$

$$\mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i | \mathbf{x}_{\tau(i)}) \right] = \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log \frac{p^*(\mathbf{x}_i | \mathbf{x}_{\tau(i)}) p^*(\mathbf{x}_{\tau(i)}) p^*(\mathbf{x}_i)}{p^*(\mathbf{x}_i) p^*(\mathbf{x}_{\tau(i)})} \right] =$$

Chow-Liu Algorithm - The Proof \2

$$\mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i | \mathbf{x}_{\tau(i)}) \right] = \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log \frac{p^*(\mathbf{x}_i | \mathbf{x}_{\tau(i)}) p^*(\mathbf{x}_{\tau(i)}) p^*(\mathbf{x}_i)}{p^*(\mathbf{x}_i) p^*(\mathbf{x}_{\tau(i)})} \right] =$$

$$= \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log \frac{p^*(\mathbf{x}_i, \mathbf{x}_{\tau(i)})}{p^*(\mathbf{x}_i) p^*(\mathbf{x}_{\tau(i)})} \right] + \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i) \right]$$

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i | \mathbf{x}_{\tau(i)}) \right] &= \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log \frac{p^*(\mathbf{x}_i | \mathbf{x}_{\tau(i)}) p^*(\mathbf{x}_{\tau(i)}) p^*(\mathbf{x}_i)}{p^*(\mathbf{x}_i) p^*(\mathbf{x}_{\tau(i)})} \right] &= \\ &= \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log \frac{p^*(\mathbf{x}_i, \mathbf{x}_{\tau(i)})}{p^*(\mathbf{x}_i) p^*(\mathbf{x}_{\tau(i)})} \right] + \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i) \right] \\ &= \sum_{i=1}^d \mathsf{MI}(X_i, X_{\tau(i)}) + \mathbb{E}_{\mathbf{x} \sim p^*} \left[\sum_{i=1}^d \log p^*(\mathbf{x}_i) \right] \end{split}$$

Chow-Liu Algorithm - The Proof \2

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\sum_{i=1}^{d} \log p^{*}(\mathbf{x}_{i} | \mathbf{x}_{\tau(i)}) \right] &= \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\sum_{i=1}^{d} \log \frac{p^{*}(\mathbf{x}_{i} | \mathbf{x}_{\tau(i)}) p^{*}(\mathbf{x}_{\tau(i)}) p^{*}(\mathbf{x}_{i})}{p^{*}(\mathbf{x}_{i}) p^{*}(\mathbf{x}_{i}) p^{*}(\mathbf{x}_{i})} \right] &= \\ &= \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\sum_{i=1}^{d} \log \frac{p^{*}(\mathbf{x}_{i}, \mathbf{x}_{\tau(i)})}{p^{*}(\mathbf{x}_{i}) p^{*}(\mathbf{x}_{\tau(i)})} \right] + \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\sum_{i=1}^{d} \log p^{*}(\mathbf{x}_{i}) \right] \\ &= \sum_{i=1}^{d} \mathsf{MI}(X_{i}, X_{\tau(i)}) + \mathbb{E}_{\mathbf{x} \sim p^{*}} \left[\sum_{i=1}^{d} \log p^{*}(\mathbf{x}_{i}) \right] \end{split}$$

Therefore, minimising $\mathbb{KL}(p^*||p)$ is equivalent to maximizing $\sum_{i=1}^d \mathsf{MI}(X_i, X_{\tau(i)})$ over all possible trees.

Let *MI* be the Mutual Information matrix of $\mathbf{X} = (X_i)_{i=1}^5$.

$$MI = \begin{bmatrix} .72 & .56 & .61 & .63 \\ .72 & .63 & .57 & .33 \\ .56 & .63 & .58 & .67 \\ .61 & .57 & .58 & .64 \\ .63 & .33 & .67 & .64 \end{bmatrix}$$

Let *MI* be the Mutual Information matrix of $\mathbf{X} = (X_i)_{i=1}^5$.

$$MI = \begin{bmatrix} & .72 & .56 & .61 & .63 \\ .72 & & .63 & .57 & .33 \\ .56 & .63 & & .58 & .67 \\ .61 & .57 & .58 & & .64 \\ .63 & .33 & .67 & .64 \end{bmatrix}$$

Let *MI* be the Mutual Information matrix of $\boldsymbol{X} = (X_i)_{i=1}^5$.

$$MI = \begin{bmatrix} & .72 & .56 & .61 & .63 \\ .72 & & .63 & .57 & .33 \\ .56 & .63 & & .58 & .67 \\ .61 & .57 & .58 & & .64 \\ .63 & .33 & .67 & .64 \end{bmatrix}$$

Let *MI* be the Mutual Information matrix of $\mathbf{X} = (X_i)_{i=1}^5$.

$$MI = \begin{bmatrix} .72 & .56 & .61 & .63 \\ .72 & .63 & .57 & .33 \\ .56 & .63 & .58 & .67 \\ .61 & .57 & .58 & .64 \\ .63 & .33 & .67 & .64 \end{bmatrix}$$

- A maximum spanning tree is a subset of the edges of a connected undirected graph that connects all the vertices together, without any cycles and with the maximum possible total edge weight
- Kruskal's algorithm finds the maximum spanning tree in polynomial time

Orienting the Tree

Recall: minimising $\mathbb{KL}(p^*||p)$ is equivalent to maximizing $\sum_{i=1}^d \mathsf{MI}(X_i, X_{\tau(i)})$.

Mutual information is symmetric: $MI(X_i, X_{\tau(i)}) = MI(X_{\tau(i)}, X_i)$

So direction of the arcs does not impact $\mathbb{KL}(p^*||p)!$

To orient the undirected maximum spanning tree:

- Choose any node as the root;
- Orient all edges to point away from the root

$$p(Y = y | Z = z) = \frac{p(Y = y, Z = z)}{p(Z = z)}$$

$$p(Y = y | Z = z) = \frac{p(Y = y, Z = z)}{p(Z = z)}$$

$$p(Y = y, Z = z) = \frac{\sum\limits_{x \in \mathcal{D}} \mathbb{1}[x[Y] = y, x[Z] = z]}{|\mathcal{D}|}$$

$$p(Y = y | Z = z) = \frac{p(Y = y, Z = z)}{p(Z = z)}$$

$$p(Y=y,Z=z) = \frac{\sum\limits_{x \in \mathcal{D}} \mathbb{1}[x[Y]=y,x[Z]=z]}{|\mathcal{D}|}$$

$$p(Z=z) = \frac{\sum\limits_{x \in \mathcal{D}} \mathbb{1}[x[Z]=z]}{|\mathcal{D}|}$$

$$p(Y = y | Z = z) = \frac{p(Y = y, Z = z)}{p(Z = z)}$$

$$p(Y = y, Z = z) = \frac{\sum_{x \in \mathcal{D}} \mathbb{1}[x[Y] = y, x[Z] = z]}{|\mathcal{D}|}$$

$$p(Z=z) = \frac{\sum_{x \in \mathcal{D}} \mathbb{1}[x[Z]=z]}{|\mathcal{D}|}$$

A CLT $(\mathcal{T}, \mathcal{P})$ encoding $p(X) = p(X_1)p(X_2|X_1)p(X_3|X_5)p(X_4|X_5)p(X_5|X_1)$.

where $\alpha > 0$ is a smoothing parameter for the Laplace's correction. Usually $\alpha = 0.01$.

Chow-Liu Algorithm

Algorithm 1 LEARN-CLT(\mathcal{D} , α)

Input: A set of samples $\mathcal{D} = \{\mathbf{x}^{(n)}\}_{n=1}^N$ over RVs **X** and a smoothing parameter α

Output: A CLT $(\mathcal{T}, \mathcal{P})$ over RVs **X**

1: $MI \leftarrow \mathsf{estimateMI}(\mathcal{D}, \alpha)$

2: $T \leftarrow \text{maximumSpanningTree}(MI)$

3: $\mathcal{T} \leftarrow \mathsf{directedTree}(\mathcal{T})$

4: $\mathcal{P} \leftarrow \mathsf{estimatePMFs}(\mathcal{T}, \mathcal{D}, \alpha)$

5: return $\langle \mathcal{T}, \mathcal{P} \rangle$

Chow-Liu Trees:

- Maximum-likelihood fit to given data over space of tree-shaped BNs
- Based on maximum-spanning tree for pairwise mutual information
- Runs in polynomial time using e.g. Kruskal's or Prim's algorithm

Inference in Tree-shaped BNs

Suppose we have a tree-shaped BN $(\mathcal{T}, \mathcal{P})$

• For instance, a CLT

We now want to perform inference with it:

- Marginal inference
- Most Probably Explanation

How can we do this efficiently?

Inference in BNs

Consider a CLT (T, P) encoding $p(X) = p(X_1)p(X_2|X_1)p(X_3|X_5)p(X_4|X_5)p(X_5|X_1)$.

Inference in BNs

Consider a CLT (T, P) encoding $p(X) = p(X_1)p(X_2|X_1)p(X_3|X_5)p(X_4|X_5)p(X_5|X_1)$.

$$p(x_1 = 1, x_2 = 0, x_3 = 1, x_4 = 1, x_5 = 0) = 0.7 \cdot 0.6 \cdot 0.6 \cdot 0.2 \cdot 0.4 = 0.02016$$

Exhaustive inference: $p(x_2 = 0, x_5 = 1) = 0.258$

<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	p(x)	x_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	p(x)
0	0	0	0	0	.01728	1	0	0	0	0	.05376
0	0	0	0	1	.0003	1	0	0	0	1	.0126
0	0	0	1	0	.00432	1	0	0	1	0	.01344
0	0	0	1	1	.0003	1	0	0	1	1	.0126
0	0	1	0	0	.02592	1	0	1	0	0	.08064
0	0	1	0	1	.0027	1	0	1	0	1	.1134
0	0	1	1	0	.00648	1	0	1	1	0	.02016
0	0	1	1	1	.0027	1	0	1	1	1	.1134
0	1	0	0	0	.06912	1	1	0	0	0	.03584
0	1	0	0	1	.0012	1	1	0	0	1	.0084
0	1	0	1	0	.01728	1	1	0	1	0	.00896
0	1	0	1	1	.0012	1	1	0	1	1	.0084
0	1	1	0	0	.10368	1	1	1	0	0	.05376
0	1	1	0	1	.0108	1	1	1	0	1	.0756
0	1	1	1	0	.02592	1	1	1	1	0	.01344
0	1	1	1	1	.0108	1	1	1	1	1	.0756

So, we need something smarter $% \left\{ 1,2,...,N\right\}$

Variable Elimination

Algorithm 3 VE_PR1($\mathcal{N}, \mathbf{Q}, \pi$)

input:

N: Bayesian network

 \mathbf{Q} : variables in network \mathbf{N}

 π : ordering of network variables not in **Q**

output: the prior marginal $Pr(\mathbf{Q})$

main:

- 1: $\mathcal{S} \leftarrow \text{CPTs}$ of network \mathcal{N}
- 2: **for** i = 1 to length of order π **do**
- 3: $f \leftarrow \prod_k f_k$, where f_k belongs to S and mentions variable $\pi(i)$
- 4: $f_i \leftarrow \sum_{\pi(i)} f$
- 5: replace all factors f_k in S by factor f_i
- 6: end for
- 7: **return** $\prod_{f \in \mathcal{S}} f$

Simple algorithm, but efficiency depends on variable order $\pi!$

Variable Elimination in Trees

When using **reverse topological order** on a tree-structured BN:

- The order width w = 1, so VE will run in $\mathcal{O}(n \exp(w)) = \mathcal{O}(n)$ time!
- Algorithm can be elegantly restructured as message passing method

¹Recall: order width of π is largest number of variables in factor f_i on Line 4 of VE, for order π .

Message Passing

- Every non-root node sends messages to its parent
- Every node can send a message if and only if it has received messages from all its children
- We denote by $\mu_{X_i \to X_{\tau(i)};x}$ the message sent from X_i to its parent $X_{\tau(i)}$ when $X_{\tau(i)} = x$

Marginal Inference: The Sum-Product Algorithm

- Let $(\mathcal{T}, \mathcal{P})$ be a tree-shaped BN over $\mathbf{X} = \{X_i\}_{i=1}^d$ and X_r the root of \mathcal{T}
- ullet We want to compute $p(\hat{\pmb{x}})$ where $\hat{\pmb{x}} \in \hat{\mathcal{X}}$ and $\hat{\pmb{X}} \subseteq \pmb{X}$

$$p(\hat{\boldsymbol{x}}) = \begin{cases} p(x_r = \hat{\boldsymbol{x}}_r) \prod_{X_j \in \text{ch}(X_r)} \mu_{X_j \to X_r; \hat{\boldsymbol{x}}_r} & \text{if } X_r \in \hat{\boldsymbol{X}} \\ \sum_{\mathbf{x} \in \mathcal{X}_r} p(x_r = \mathbf{x}) \prod_{X_j \in \text{ch}(X_r)} \mu_{X_j \to X_r; \mathbf{x}} & \text{otherwise (VE)} \end{cases}$$

$$\mu_{X_i \to X_{\tau(i)}; \mathbf{x}} = \begin{cases} p(x_i = \hat{\mathbf{x}}_i | x_{\tau(i)} = \mathbf{x}) \prod_{X_j \in \mathsf{ch}(X_i)} \mu_{X_j \to X_i; \hat{\mathbf{x}}_i} & \text{if } X_i \in \hat{\mathbf{X}} \\ \sum_{\mathbf{x}' \in \mathcal{X}_i} p(x_i = \mathbf{x}' | x_{\tau(i)} = \mathbf{x}) \prod_{X_j \in \mathsf{ch}(X_i)} \mu_{X_j \to X_i; \mathbf{x}'} & \text{otherwise (VE)} \end{cases}$$

Marginal Inference: How to compute $p(x_2 = 0, x_5 = 1)$?

• We use $X_3 \succ X_4 \succ X_2 \succ X_5 \succ X_1$ as reversed topological order

$$p(x_2 = 0, x_5 = 1) = p(x_1 = 0) \cdot \mu_{X_2 \to X_1; 0} \cdot \mu_{X_5 \to X_1; 0} + p(x_1 = 1) \cdot \mu_{X_2 \to X_1; 1} \cdot \mu_{X_5 \to X_1; 1}$$
$$= 0.3 \cdot (0.2 \cdot 0.1) + 0.7 \cdot (0.6 \cdot 0.6) = 0.258$$

Marginal Inference: How to compute $p(x_2 = 0, x_3 = 1, x_4 = 1)$?

• We use $X_3 \succ X_4 \succ X_2 \succ X_5 \succ X_1$ as reversed topological order

$$p(x_2 = 0, x_3 = 1, x_4 = 1) = p(x_1 = 0) \cdot \mu_{X_2 \to X_1; 0} \cdot \mu_{X_5 \to X_1; 0} + p(x_1 = 1) \cdot \mu_{X_2 \to X_1; 1} \cdot \mu_{X_5 \to X_1; 1}$$
$$= 0.3 \cdot (0.2 \cdot 0.153) + 0.7 \cdot (0.6 \cdot 0.318) = 0.14274$$

MPE Inference

- The Most Probable
 Explanation (MPE) task
 computes the most probable
 state of variables that do not
 have evidence
- The difference between standard inference and MPE inference is that instead of summing values, the maximum is used

Application: data imputation, e.g. inpainting

Exhaustive inference: What is the most probable state?

x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	p(x)	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	p(x)
0	0	0	0	0	.01728	1	0	0	0	0	.05376
0	0	0	0	1	.0003	1	0	0	0	1	.0126
0	0	0	1	0	.00432	1	0	0	1	0	.01344
0	0	0	1	1	.0003	1	0	0	1	1	.0126
0	0	1	0	0	.02592	1	0	1	0	0	.08064
0	0	1	0	1	.0027	1	0	1	0	1	.1134
0	0	1	1	0	.00648	1	0	1	1	0	.02016
0	0	1	1	1	.0027	1	0	1	1	1	.1134
0	1	0	0	0	.06912	1	1	0	0	0	.03584
0	1	0	0	1	.0012	1	1	0	0	1	.0084
0	1	0	1	0	.01728	1	1	0	1	0	.00896
0	1	0	1	1	.0012	1	1	0	1	1	.0084
0	1	1	0	0	.10368	1	1	1	0	0	.05376
0	1	1	0	1	.0108	1	1	1	0	1	.0756
0	1	1	1	0	.02592	1	1	1	1	0	.01344
0	1	1	1	1	.0108	1	1	1	1	1	.0756

Exhaustive inference: What is the most probable state when $x_2 = 1$ and $x_5 = 0$?

x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	p(x)	x_1	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	p(x)
0	0	0	0	0	.01728	1	0	0	0	0	.05376
0	0	0	0	1	.0003	1	0	0	0	1	.0126
0	0	0	1	0	.00432	1	0	0	1	0	.01344
0	0	0	1	1	.0003	1	0	0	1	1	.0126
0	0	1	0	0	.02592	1	0	1	0	0	.08064
0	0	1	0	1	.0027	1	0	1	0	1	.1134
0	0	1	1	0	.00648	1	0	1	1	0	.02016
0	0	1	1	1	.0027	1	0	1	1	1	.1134
0	1	0	0	0	.06912	1	1	0	0	0	.03584
0	1	0	0	1	.0012	1	1	0	0	1	.0084
0	1	0	1	0	.01728	1	1	0	1	0	.00896
0	1	0	1	1	.0012	1	1	0	1	1	.0084
0	1	1	0	0	.10368	1	1	1	0	0	.05376
0	1	1	0	1	.0108	1	1	1	0	1	.0756
0	1	1	1	0	.02592	1	1	1	1	0	.01344
0	1	1	1	1	.0108	1	1	1	1	1	.0756

MPE Inference: The Max-Product Algorithm

- Let $(\mathcal{T}, \mathcal{P})$ be a tree-shaped BN over $\mathbf{X} = \{X_i\}_{i=1}^d$ and X_r the root of \mathcal{T}
- ullet $\hat{oldsymbol{x}}\in\hat{oldsymbol{\mathcal{X}}}$, $\hat{oldsymbol{X}}\subseteqoldsymbol{X}$ and $oldsymbol{Z}=oldsymbol{X}\setminus\hat{oldsymbol{X}}$
- ullet We want to compute $\max_{oldsymbol{z}\in\mathcal{Z}}p(\hat{oldsymbol{x}},oldsymbol{z})\propto \max_{oldsymbol{z}\in\mathcal{Z}}p(oldsymbol{z}|\hat{oldsymbol{x}})$

$$\max_{\boldsymbol{z} \in \boldsymbol{\mathcal{Z}}} p(\hat{\boldsymbol{x}}, \boldsymbol{z}) = \begin{cases} p(x_r = \hat{\boldsymbol{x}}_r) \prod_{X_j \in \operatorname{ch}(X_r)} \tilde{\mu}_{X_j \to X_r; \hat{\boldsymbol{x}}_r} & \text{if } X_r \in \hat{\boldsymbol{X}} \\ \max_{\boldsymbol{x} \in \mathcal{X}_r} p(x_r = \boldsymbol{x}) \prod_{X_j \in \operatorname{ch}(X_r)} \tilde{\mu}_{X_j \to X_r; \boldsymbol{x}} & \text{otherwise} \end{cases}$$

$$\tilde{\mu}_{X_i \to X_{\tau(i)}; \mathbf{x}} = \begin{cases} p(x_i = \hat{\mathbf{x}}_i | x_{\tau(i)} = \mathbf{x}) \prod\limits_{X_j \in \mathsf{ch}(X_i)} \tilde{\mu}_{X_j \to X_i; \hat{\mathbf{x}}_i} & \text{if } X_i \in \hat{\mathbf{X}} \\ \max_{\mathbf{x}' \in \mathcal{X}_i} p(x_i = \mathbf{x}' | x_{\tau(i)} = \mathbf{x}) \prod\limits_{X_j \in \mathsf{ch}(X_i)} \tilde{\mu}_{X_j \to X_i; \mathbf{x}'} & \text{otherwise} \end{cases}$$

MPE Inference: What is the most probable state?

$$\max_{\mathbf{x} \in \mathcal{X}} p(\mathbf{x}) = \max[(p(x_1 = 0) \cdot \mu_{X_2 \to X_1; 0} \cdot \mu_{X_5 \to X_1; 0}), (p(x_1 = 1) \cdot \mu_{X_2 \to X_1; 1} \cdot \mu_{X_5 \to X_1; 1})]$$

$$= \max[(0.3 \cdot 0.8 \cdot 0.432), (0.7 \cdot 0.6 \cdot 0.27)] = 0.1134 \quad [1]$$

$$x_1 = 1 \implies x_2 = 0 \text{ and } x_5 = 1 \qquad x_5 = 1 \implies x_3 = 1 \text{ and } x_4 = 0$$

MPE Inference: What is the most probable state when $x_2 = 1$ and $x_5 = 0$?

$$\begin{split} \tilde{\mu}_{X_3 \to X_5;0} &= \max[.4,.6] = .\mathbf{6} \quad \llbracket 1 \rrbracket \\ \tilde{\mu}_{X_4 \to X_5;0} &= \max[.8,.2] = .\mathbf{8} \quad \llbracket 0 \rrbracket \\ \tilde{\mu}_{X_2 \to X_1;0} &= .8 \quad \llbracket 1 \rrbracket \qquad \tilde{\mu}_{X_2 \to X_1;1} = .4 \quad \llbracket 1 \rrbracket \\ \tilde{\mu}_{X_5 \to X_1;0} &= (.9 \cdot .\mathbf{6} \cdot .\mathbf{8}) = .432 \quad \llbracket 0 \rrbracket \\ \tilde{\mu}_{X_5 \to X_1;1} &= (.4 \cdot .\mathbf{6} \cdot .\mathbf{8}) = .192 \quad \llbracket 0 \rrbracket \end{split}$$

$$\begin{aligned} \max_{\pmb{z} \in \pmb{\mathcal{Z}}} p(\hat{\pmb{x}}, \pmb{z}) &= \max[(p(x_1 = 0) \cdot \mu_{X_2 \to X_1; 0} \cdot \mu_{X_5 \to X_1; 0}), (p(x_1 = 1) \cdot \mu_{X_2 \to X_1; 1} \cdot \mu_{X_5 \to X_1; 1})] \\ &= \max[(0.3 \cdot 0.8 \cdot 0.432), (0.7 \cdot 0.4 \cdot 0.192)] = 0.10368 \quad \llbracket 0 \rrbracket \\ x_1 &= 0 \text{ and } x_2 = 1 \text{ and } x_5 = 0 \quad x_5 = 0 \implies x_3 = 1 \text{ and } x_4 = 0 \end{aligned}$$

Efficient inference with VE using reverse topological order

ullet This has order width w=1, so VE then has complexity $\mathcal{O}(n)$

Algorithm can be restructured as message passing method

- Sum-Product algorithm for marginal inference
- Max-Product algorithm for MPE

Method to draw i.i.d. samples $\mathbf{x} \sim p(\mathbf{X})$, where $p(\mathbf{X})$ is (encoded by) a BN $(\mathcal{G}, \mathcal{P})$

- Requires method to sample $x \sim p(X \mid \mathbf{pa}(X))$ for each X
 - E.g. inverse-transform sampling

Method to draw i.i.d. samples $\mathbf{x} \sim p(\mathbf{X})$, where $p(\mathbf{X})$ is (encoded by) a BN $(\mathcal{G}, \mathcal{P})$

- Requires method to sample $x \sim p(X \mid \mathbf{pa}(X))$ for each X
 - E.g. inverse-transform sampling

Simply use **topological order** π of \mathcal{G} . For each $i=1,\ldots,|\pi|$,

- Let $\rho_i = \mathbf{pa}(X_{\pi(i)})$
- Sample $x_{\pi(i)} \sim p(X_{\pi(i)} \mid \mathbf{X}_{\rho_i} = \mathbf{x}_{\rho_i})$, where \mathbf{x}_{ρ_i} are values already sampled

Then $\mathbf{x} \sim p(\mathbf{X})$

- Let $X \sim \mathcal{B}(p)$ a Bernoulli RV with probability p. To sample from X we generate a random number $\epsilon \in [0,1]$ if $\epsilon \leq p$ then x=1 else x=0.
- We use $X_1 \prec X_2 \prec X_5 \prec X_3 \prec X_4$ as topological order.

1. rand([0, 1]) =
$$0.8 \rightarrow x_1 = 0$$

2. rand([0, 1]) =
$$0.3 \rightarrow x_2 = 1$$

3. rand([0, 1]) =
$$0.5 \rightarrow x_5 = 0$$

4. rand([0, 1]) =
$$0.1 \rightarrow x_3 = 1$$

5. rand([0, 1]) =
$$0.6 \rightarrow x_4 = 0$$

Summary and Outlook

Today's lecture

- Chow-Liu Trees
- Inference in tree-shaped BNs
- Ancestral sampling

Next lecture

- Markov networks
- missing data