Fondamenti di elettronica

Corso di laurea in Ingegneria Biomedica

Prima prova di accertamento – 30/01/2024 – Canale 1 – Prof. Meneghesso

SOLUZIONE

Problema 1

DATI: $R_1 = 120k\Omega$, $R_2 = 240k\Omega$, $R_D = 4k\Omega$, $R_S = 250\Omega$, $R_I = 40k\Omega$, $R_L = 12k\Omega$, $V_{DD} = 12V$.

Parametri del MOSFET: $k_p = 8mA/V^2$, $V_{TP} = -1.5V$.

Consideriamo l'amplificatore in figura. Calcolare:

- 1. Il valore di R₃ per polarizzare il MOSFET in saturazione con I_{DS} = 1mA
- 2. Il punto di polarizzazione dei MOSFET in condizioni stazionarie (V_{GS} e V_{DS}).
- 3. Disegnare il circuito ai piccoli segnali e calcolare la transconduttanza di M₁ Dall'analisi ai piccoli segnali calcolare:
- 4. Le resistenze di ingresso e di uscita dell'amplificatore (come indicato in figura).

$$V_0 = R_0 \mp D_S = 4V$$

$$=> V_0 - V_S = -6V$$

VERIFICA VDS < VCS-UTP? -6V <-0,5V

OK HI SATURAZ.

SCHEMA PICCOLO SEGNALE

$$g_{m1} = \frac{2I_D}{|V_{GS} - V_{TP}|} = -K_P(V_{GS} - V_{TP}) = 4mS$$

$$Rw = R_1 || R_2 = 80 \text{ KR}$$

 $Rout = R_D = 4 \text{ KR} \left(R_{OD} = \infty \right)$

$$\Rightarrow Av = \frac{2}{3} \cdot (-6) = -4$$

Problema 2

DATI: $R_1 = R_2 = 20k\Omega$.

Consideriamo il circuito in figura che realizza un filtro passa banda.

- 1. Trovare la funzione di trasferimento del filtro.
- 2. Calcolare i valori della capacità C_1 e C_2 in modo tale che le pulsazioni di taglio inferiore e superiore siano ω_L = 100rad/s e ω_H = 1000rad/s.
- 3. Calcolare il valore della resistenza R3 in modo che il guadagno in banda passante abbia modulo 10.
- 4. Disegnare il diagramma di bode del modulo e della fase. Per ciascun diagramma indicare: le coordinate (pulsazione, dB e gradi) di ciascun punto di spezzamento, le pendenze di ciascun segmento della spezzata (in dB/dec o °/dec).

$$W(s) = \frac{R_1 + R_3}{R_1} \cdot \frac{C_1 R_1}{C_1 R_1} \cdot \frac{S}{(\frac{1}{C_1 R_1} + S)(\frac{1}{1 + SC_2 R_2})}$$

$$W(s) = \frac{R_1 + R_3}{R_1} \cdot \frac{1}{C_1 R_1} \cdot \frac{1}{C_1 R_1} \cdot \frac{1}{C_1 R_1} \cdot \frac{1}{I + SC_2 R_2}$$

$$\frac{A_{11}}{A_{11}} \cdot \frac{1}{I + SC_2 R_2} \cdot \frac{1}{I + SC_2 R_2}$$

$$\frac{A_{11}}{R_1} \cdot \frac{1}{I + SC_2 R_2} \cdot \frac{1}{I + SC_2 R_2} \cdot \frac{1}{I + SC_2 R_2}$$

$$\frac{A_{11}}{R_1} \cdot \frac{1}{I + SC_2 R_2} \cdot \frac{1}{I + SC_$$

Problema 3

Consideriamo il circuito in figura realizzato con un operazionale ideale, un diodo con V_{ON} = 1V e resistenze di valore R = 1k Ω :

- 5. Calcolare la tensione di uscita con $v_s = 5V$
- 6. Calcolare la tensione di uscita con v_s = -5V
- 7. Tracciare la transcaratteristica di vo in funzione di vS.
- 8. Calcolare il valore di v_s corrispondente al punto in cui il diodo cambia regione operativa e il corrispondente valore di v_o .

