Optimizing Asynchronous Successive Halving (ASH) for Hyperparameter Tuning Evan and Roy

OUTLINE

PROBLEM

What are hyperparameters and their relevance

WHY PARALLEL?

Motivation for parallelization and optimization

MODEL AND DATA

Examining ASH and the Iris dataset

IMPLEMENTATION

How we plan on parallelizing the app

THE PROBLEM

What are hyperparameters? Why are they important? ML models use them to influence Key to **performance** predictive accuracy and output **improvement** and catering to **hypersensitive** ML models Examples include: Current techniques include: Learning rate Dropout rate **Manual Tuning Brute Force**: Grid Search **Activation function** and Random Search

MODEL AND DATA

Figure 1. Job allocation and promotion in Successive Halving

- SEQUENTIAL BASELINE: SUCCESSIVE HALVING (SH)
 - Uniform resource allocation across candidates per rung
- PARALLELIZATION MECHANISM (ASH)
 - Training multiple candidate models simultaneously
- CONTEXT OF THE MODEL
 - Optimizing an ML model's hyperparameters
- LIMITATIONS TO THE MODEL
 - Robustness, computational cost
- DATA SOURCE AND TRANSFORMATION
 - Iris Dataset transformed from API to C++ vectors

WHY PARALLEL?

IMPLEMENTATION PLAN

Shared memory – multi-threading the training process for individual candidate models openMP openMP1 Simultaneously running **jobs** and enables message-passing between multiple processors

Concurrently calculate gradients for batch gradient descent when training a model

Why openMP?

Why openMP1?

Desynchronize jobs and communicate which hyperparameter configurations are to be promoted to next rung

WORKS CITED

Li, L. (2019, December 19). Massively parallel hyperparameter optimization. ML@CMU | Carnegie Mellon University. Retrieved March 22, 2023, from https://blog.ml.cmu.edu/2018/12/12/massively-parallel-hyperparameter-optimization/

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-Tzur, J., Hardt, M., Recht, B., Talwalkar., A. (2020, March 15). A System For Massively Parallel Hyperparameter Tuning. Retrieved March 22, 2023, from https://arxiv.org/pdf/1810.05934.pdf