Michael Dumelle

November 30, 2020

Section 1

Introduction

Introduction

- Research statistician at the Environmental Protection Agency
- PhD in Statistics from Oregon State University (2020)
- Met Alec Kowalewski and Clint Mattox through OSU Statistics Consulting Practicum
 - Encourage you to sign up!
 - Long format vs drop-in
 - Faculty are encouraged too separate process
 - https://stat.oregonstate.edu/content/consulting-services

Accessing Slides

 I will interweave R code to illustrate ideas (I will also provide SAS code!)

```
# this is a comment
this_is_an_object <- this_is_a_function(this_is_an_argument)
this_is_an_object
#> [1] "this is output"

# mean of 1, 2, 3
x <- c(1, 2, 3)
mean(x)
#> [1] 2
```

- Slides and code available on my GitHub
 - https://github.com/michaeldumelle/OSUHort_11302020
 - ullet https://michaeldumelle.github.io/ o CV o Presentations
- Slide numbers in bottom left.

Introduction

- Use Analysis of Variance (ANOVA) to study designed experiments
 - Are there statistically significant differences among treatment effects?
- One common problem: unequal variance within treatment groups
 - Non constant variance, heterogeneous variance
 - Focus of the talk!
- Will be an initial introduction to addressing this problem using GVANOVA
 - An Illustration of concepts, not an exhaustive comparison of ANOVA and GVANOVA

Section 2

ANOVA

ANOVA Overview

- Often use ANOVA to analyze data from a designed experiment
 - Focus on one-way ANOVA with categorical (group) structure
 - $\bullet \ \ \mathsf{Response} = \mathsf{True} \ \mathsf{Mean} + \mathsf{Treatment} \ \mathsf{Effect} + \mathsf{Random} \ \mathsf{Error}$
 - $Y_i = \mu + \alpha_i + \epsilon_i, i = 1, ..., n, Var(\epsilon_i) = \sigma^2$
- Several attractive propreties when assumptions are satisfied (accurate, precise, p-values reliable)
- One important assumption constant variance (homogeneous variance)
 - All ϵ_i have the same variance (standard deviation)
 - standard deviation = $\sqrt{\text{variance}}$
- Explore ANOVA on percent green cover data having non constant variance (heterogeneous variance)

Percent Green Cover Data

Figure 1: Healthy vs. Non-Healthy Turfgrass. Percent green cover is the proportion of healthy turfgrass.

Percent Green Cover Data

- Use simulated data to study analysis methods
 - So helpful because we know the truth!
 - Study several scenarios without having to design an experiment, collect data, etc.

Table 1: Treatment Means, Standard Deviations (StDev), and Replicates

Treatment	Mean	StDev	Replicates
Trt1	50	5.0	8
Trt2	50	2.0	8
Trt3	58	1.0	8
Trt4	60	0.5	8

Percent Green Cover Data

```
set.seed(1130)
data <- create_data(treatments = c("Trt1", "Trt2", "Trt3", "Trt4"),</pre>
                    means = c(50, 50, 58, 60),
                    stdevs = c(5, 2, 1, 0.5),
                    replicates = c(8, 8, 8, 8)
head(data, n = 9)
     treatments pct_green
#>
           Trt1 43.98231
#> 1
#> 2
           Trt1 54.94049
#> 3
           Trt1 45.64911
#> 4
           Trt1 50.33370
#> 5
           Trt1 45.03723
#> 6
           Trt1 54.45938
#> 7
           Trt1 47.62064
#> 8
           Trt1 40.34577
#> 9
           Trt2 50.07621
```

Visualizing the Data

 Visualization always a good first step – notice the difference in spread!

Figure 2: Percent Green Cover by Treatment Group.

ANOVA Code

Introduction

 Let's perform an ANOVA assuming constant variance – pretend we don't know the truth!

```
# Perform the ANOVA
anova_model <- gls(pct_green ~ treatments, data = data) # nlme package
# Pairwise comparisons among treatments
anova_trtmeans <- emmeans(anova_model, "treatments") # emmeans package
pairs(anova_trtmeans, adjust = "bonferroni") # emmeans package

# SAS Code
proc mixed data=data;
   class treatments;
   model pct_green = treatments;
   lsmeans treatments / diff adjust=BON;
run;</pre>
```

ANOVA Results

Table 2: ANOVA Pairwise Comparison Results

contrast	estimate	SE	df
Trt1 - Trt2	-2.660	1.424	28
Trt1 - Trt3	-10.209	1.424	28
Trt1 - Trt4	-11.946	1.424	28
Trt2 - Trt3	-7.548	1.424	28
Trt2 - Trt4	-9.286	1.424	28
Trt3 - Trt4	-1.737	1.424	28

• Next we need to check assumptions!

ANOVA Residuals

- Commonly use ANOVA residuals to check assumptions
- Recall the ANOVA model: $Y_i = \mu + \alpha_i + \epsilon_i$
 - Fitted values: $\hat{\mu} + \hat{\alpha}_i$ (group mean)
 - Residual: $Y_i (\hat{\mu} + \hat{\alpha}_i)$ (observed value minus fitted value)

- Use residuals (normalized) to check constant variance assumptions!
 - Residuals divided by their estimated standard deviation are normalized residuals
- Fitted vs residuals plot should show even spread around zero if variance is constant

ANOVA Residuals

That variance does NOT look constant!

Figure 3: Fitted Values vs Normalized residuals Using ANOVA for Percent Green Cover

Figure 4: Can we trust our ANOVA results when the variance is not constant?

Section 3

Warning Signs?

•0000000

Warning Signs?

 In addition to the fitted vs residuals plot, were there any other warning signs?

- YES
- What were they?
- Graphics of the Data
- Ratio of largest variance and smallest variance
- Statistical hypothesis tests for constant variance

Graphics

- It it looks off, it probabily is!
- Similar to the spread we saw in fitted vs residuals plot

Figure 5: Percent Green Cover by Treatment Group.

Variance Ratios

- Rule of thumb: ANOVA problems when variance ratios larger than 1.5 to 9 (seen cutoff suggestions within this range)
 - Standard deviation range of 1.22 to 3

```
(trt_stdevs <- data %>%
 group_by(treatments) %>%
 summarize(grp_stdev = sd(pct_green)))
#> # A tibble: 4 x 2
#> treatments grp stdev
#> <fct>
           <db1>
                5.13
#> 1 Trt.1
#> 2 Trt2 2.25
#> 3 Trt3
              0.809
#> 4 Trt4
           0.678
(stdev_ratio <- max(trt_stdevs$grp_stdev) /
   min(trt_stdevs$grp_stdev)) # much higher than 3!
#> \[ 17 \] 7.563561
```

Statistical Tests for Constant Varince

- Hypothesis test constant variance assumption is questioned
 - Levene's test, Brown-Forsythe test are two examples there are many others
 - Come with their own assumptions
 - ullet Low p-value o evidence the variances are NOT equal

What Now?

• We know constant variance assumption is invalid – what now?

- We could transform the response variable
 - Hope the transformed data has constant variance
- This approach can be very useful!
- But there are some drawbacks!

What Now?

- Generally require relationship between mean and variance to be successful
 - Example: Log transformations successful when mean increases \rightarrow variance increases
- Analysis on transformed scale NOT original scale
 - Statistically significant difference on transformed scale does not necessarily imply a statistically significant difference on the original scale

Transformations

Most common is the log transformation – lets hope this works!

Figure 6: Fitted Values vs Normalized Residuals Using ANOVA for Loge of Percent Green Cover

 Square root, cube root, reciprocal transformations don't work either – we need another approach!

Section 4

GVANOVA

What is GVANOVA?

- Can use Generalized Variance ANOVA (GVANOVA) to directly model variances within groups
 - Separate variance for each group, $Var(\epsilon_i = \sigma_g^2)$
 - No mean / variance relationship required
 - Analysis on original scale
 - More variance parameters require estimation
- Goal here is to introduce an alternative approach to transformations
 - Important to be aware of both transformations are still a useful tool in the toolbox!

GVANOVA Code

Introduction

Let's perform an GVANOVA

```
# Perform the GVANOVA
gvanova_mod <- gls(pct_green ~ treatments,</pre>
                   weights = varIdent(form = ~ 1 | treatments),
                   data = data) # nlme package
# Pairwise comparisons among treatments
gvanova_trtmeans <- emmeans(gvanova_mod, "treatments") # emmeans package</pre>
pairs(gvanova_trtmeans, adjust = "bonferroni") #emmeans package
# SAS Code
proc mixed data=data;
  class treatments:
  model pct_green = treatments / ddfm=SAT; # this is different
  repeated / group = treatments; # this is different
  lsmeans treatments / diff adjust=BON;
run:
```

GVANOVA Analysis

Table 3: GVANOVA Pairwise Comparison Output

contrast	estimate	SE	df
Trt1 - Trt2	-2.660	1.980	9.589
Trt1 - Trt3	-10.209	1.836	7.349
Trt1 - Trt4	-11.946	1.829	7.246
Trt2 - Trt3	-7.548	0.844	8.784
Trt2 - Trt4	-9.286	0.829	8.263
Trt3 - Trt4	-1.737	0.373	13.586

GVANOVA Residuals

- Use residuals (normalized) to check assumptions!
- Even spread yields evidence the GVANOVA assumptions are satisfied

Figure 7: Fitted Values vs Normalized Residuals Using GVANOVA for Percent Green Cover

GVANOVA

00000

Table 4: Standard Errors and P-values of ANOVA (*.a) and GVANOVA (*.gva). True contrast standard errors (c.se) and differences (c.d) are provided for context.

contrast	c.se	SE.a	SE.gva	c.d	p.a	p.gva
Trt1 - Trt2	1.904	1.424	1.980	0	0.434	1.000
Trt1 - Trt3	1.803	1.424	1.836	-8	0.000	0.004
Trt1 - Trt4	1.777	1.424	1.829	-10	0.000	0.002
Trt2 - Trt3	0.791	1.424	0.844	-8	0.000	0.000
Trt2 - Trt4	0.729	1.424	0.829	-10	0.000	0.000
Trt3 - Trt4	0.395	1.424	0.373	-2	1.000	0.002

- More uncertainty refleted in Trt1 Trt2
- Less uncertainty reflected in Trt3 Trt4

Section 5

Takeaways

Takeaways

• ANOVA is the best tool we have when assumptions are satisfied

- Constant variance assumption should not be overlooked
 - Remember the warning signs!
- Two approaches: transformations and GVANOVA
- When true variance is not constant, using an analysis approach accommodating this will generally yield a more accurate representation of the truth

Additional Resources

• R: Mixed Effects Models and Extensions in Ecology with R by Alain Zuur Et al. 2009.

- Chapter 4
- SAS: SAS for Mixed Models by Ramon C. Littell Et al. 2006.
 - Chapter 9

Acknowledgements

Thank you to

- Everyone here!
- Horticulture Department at Oregon State University

Warning Signs?

Special thanks to Alec Kowalewski and Clint Mattox