Zadanie 4

4.1 Opis problemu:

Zastosować wcześniej zaprogramowane metody w celu obliczenia pierwiastka równania $f(x) = \sin(x) - \left(\frac{1}{2}x\right)^2$. Dla metody bisekcji zastosować przedział początkowy [1.5,2], oraz precyzję $\delta = \frac{1}{2} * 10^{(-5)}$ $\epsilon = \frac{1}{2} * 10^{(-5)}$. Dla metody Newtona przybliżenie początkowe $x_0 = 1.5$ i taką samą precyzję. Dla metody siecznych przybliżenie początkowe $x_0 = 1$, $x_1 = 2$ oraz ponownie taką samą precyzję.

4.2 Rozwiązanie:

Odpowiednie wywołanie metod, które znajduje się w pliku zad4.jl. Dodatkowo potrzebne jest obliczenie pochodnej funkcji f(x), która wynosi $f'(x) = \cos(x) - \frac{x}{2}$.

4.3 Wyniki:

metoda	r	V	it	err
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16	0
Newtona	1.933753779789742	-2.2423316314856834e-8	4	0
siecznych	1.933753644474301	1.564525129449379e-7	4	0

4.4 Wnioski

W kolumnie err znajdują się same wartości 0. To znaczy, że podczas obliczeń nie wystąpił żaden błąd a metoda Newtona oraz metoda siecznych są zbieżne. Jak wiemy funkcja f(x) ma dwa miejsca zerowe. Każda z metod oblicza dokładnie jedno miejsce zerowe. Ponadto możemy dokładnie zauważyć przewagę szybkości metody Newtona i siecznych nad metodą bisekcji. Metoda bisekcji jest zbieżna liniowo natomiast dwie pozostałe kwadratowo. Dlatego

też ilość iteracji wykonanych przez metody siecznych oraz stycznych są odpowiednio pierwiastkiem z ilości iteracji wykonanych przez metodę bisekcji.