Analisi 1A - Lista Teoremi e Definizioni

Numeri Reali

Numeri Reali

1,411,511,14641			
Assiomi dei Numeri Reali			
O Definizione di Numeri Reali			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
T Unicità Elemento Neutro additività			
□ D Elemento Neutro Additivo			
□ D C4 - Esistenza opposto additivo			
☐ T Unicità dell'opposto additivo			
\bigcirc D Opposto di un numero reale			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
→ T Unicità dell'elemento neutro			
□ D Elemento Neutro Moltiplicativo			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
→ T Unicità dell'inverso moltiplicativo			
\bigcirc D Reciproco di un numero reale			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\bigcirc\;\; \mathbf{D}$ O 3 - Proprietà Transitiva della Relazione \leq			
$\bigcirc\;\;\mathbf{D}$ O 4 - Proprietà di Linearità della Relazione \leq			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
 D Assioma di Completezza 			
Conseguenze degli Assiomi			
D Numero non negativo, non positivo, positivo, negativo			
☐ T Legge di Cancellazione per l'addizione			
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
\bigcirc T $0 \neq 1$			
□ T Legge annullamento del Prodotto			
$ \bigcirc \ \ \mathbf{T} \ x \cdot y \neq 0 \Leftrightarrow x \neq 0 \land y \neq 0 $			
☐ T Opposto di 0			
→ T Reciproco di 1			
☐ T Opposto dell'Opposto			
→ T Opposto della Somma			
→ T Reciproco del Prodotto			
\bigcap T $(-1) \cdot x = x \cdot (-1) = -x$			

 $igcup_{}$ T $(-x)\cdot y=x\cdot (-y)=-(x\cdot y)$ / $(-x)\cdot (-y)=x\cdot y$

```
\bigcap T x \leq y \Leftrightarrow 0 \leq y - x
 \bigcap T x \leq y \Leftrightarrow -y \leq -x
 \bigcap T x \leq 0 \Leftrightarrow -x \geq 0
 \bigcap T x \leq y \land z \leq w \Rightarrow x + z \leq y + w
 \bigcap T x \ge 0 \land y \ge 0 \Rightarrow x + y \ge 0
 \bigcap \mathbf{T} x \cdot x \geq 0
 \bigcap T x > 0 \Leftrightarrow x^{-1} > 0
  \bigcirc \ \ \mathbf{T} \ x \leq y \land z \leq 0 \Rightarrow x \cdot z \geq y \cdot z 
 \bigcap \ \ \mathbf{T} \ \ 0 < x \le y \Rightarrow y^{-1} \le x^{-1}
 \bigcirc T 0 \le x \le y \land 0 \le z \le w \Rightarrow x \cdot z \le y \cdot w
  \bigcirc \ \mathbf{T} \ x \leq 0 \land y \leq 0 \Rightarrow x \cdot y \geq 0 
 \bigcap T x \leq 0 \land y \geq 0 \Rightarrow x \cdot y \leq 0
 O Valore assoluto di un numero reale
            |x|=0\Leftrightarrow x=0
           \left| -|x| \le x \le |x| \right|
  \bigcirc \  \, \mathbf{T} \,\, x,y \geq 0 \Rightarrow \begin{cases} x^2 = y^2 \Leftrightarrow x = y \\ x^2 \leq y^2 \Leftrightarrow x \leq y \end{cases} 
            |x\cdot y|=|x|\cdot |y|
 \bigcirc D Massimo e Minimo di un sottoinsieme di \mathbb R
 T Unicità del Massimo e Minimo
 \bigcap T min A \leq \max A
 \bigcap D Maggiorante e Minorante di un sottoinsieme di \mathbb R
 O Insieme Limitato Superiormente, Limitato Inferiormente, Limitato
 O D Estremo Superiore e Estremo Inferiore
 \bigcap T x = \max A se e solo se x \in A e x è maggiorante di A. x = \min A se e solo se x \in A e x è minorante di A
 \ \bigcap D Estremo Superiore e Estremo Inferiore di un sotto<br/>insieme di \mathbb R
 T Esistenza dell'estremo inferiore
 ☐ T Caratterizzazione dell'Estremo Superiore
 ☐ T Caratterizzazione dell'Estremo Inferiore
 \bigcap T Se A ha massimo, allora è superiormente limitato e supA=\max A. Se è superiormente è limitato e supA\in A,
      allora ha massimo e \max A = \sup A
 \bigcap T infA \leq \sup A
Numeri Naturali, Interi e Razionali
 O Insieme Induttivo
 \bigcirc D Insieme dei numeri Naturali \mathbb N
 \bigcirc T A \subseteq \mathbb{R}. Se A è induttivo, allora \mathbb{N} \subseteq A
 \bigcap T \mathbb{N} è induttivo
 T Principio di Induzione
 \bigcap T min \mathbb{N} = 0
 \bigcap T sup \mathbb{N} = +\infty
 \bigcap T n \in \mathbb{N} \setminus \{0\} \Rightarrow n-1 \in \mathbb{N}
 \bigcap T min(\mathbb{N} \setminus \{0\}) = 1
```

 \bigcirc T Sia $A \subseteq \mathbb{N}$, allora A ha minimo e se è superiormente limitato ha massimo

	$\Gamma \ m,n\in\mathbb{N}\Rightarrow m+n\in\mathbb{N},\ m\cdot n\in\mathbb{N}$
	Γ $\mathbb N$ con $+$ e \cdot verifica $C1,C2,C3,C5,C6,C7,C9$ ma non $C4,C8$
	D Potenza di un Numero Reale
	D Fattoriale
	Γ Disuguaglianza di Bernoulli
	D Coefficiente Binomiale
	Γ Proprietà del Coefficiente Binomiale
	D Numeri Interi
	$\Gamma \ m,n \in \mathbb{Z} \Rightarrow m+n \in \mathbb{Z}, \ m \cdot n \in \mathbb{Z}$
	Γ $\mathbb Z$ con $+$ e \cdot verifica gli tutti gli assiomi di campo tranne $C8$
	$\mathbf{\Gamma}\inf \mathbb{Z} = -\infty ext{ e } \sup \mathbb{Z} = +\infty$
	$\Gamma m,n\in\mathbb{Z} \Rightarrow n-m \geq 1$
	Γ Sia $A\subseteq\mathbb{Z}$ allora se è superiormente limitato ha massimo, se è inferiormente limitato ha minimo
	D Numeri Razionali
	$\mathbf{\Gamma} \; p,q \in \mathbb{Q} \Rightarrow p+q \in \mathbb{Q}, \; p \cdot q \in \mathbb{Q}$
	Γ $\mathbb Q$ con le operazioni + e · verifica tutti gli assiomi di Campo
	$\mathbf{\Gamma}\inf \mathbb{Q} = -\infty \; \mathrm{e} \; \mathrm{sup} \mathbb{Q} = +\infty$
	Γ Non esiste $x\in\mathbb{Q}$ tale che $x^2=2$
	Γ $\mathbb Q$ non è completo
Alt	re Proprietà
	Γ Sia $x\in\mathbb{R}$. Se $orall y\in\mathbb{R}^+, x\leq y\Rightarrow x\leq 0$
	Γ Proprietà di Archimede
	$x \in \mathbb{R} \Rightarrow \exists n \in \mathbb{N} \colon 1/n < x$
	D Parte intera
	D Radice n-esima di un numero
	$oldsymbol{\Gamma} x,y \in \mathbb{R} \Rightarrow egin{cases} \exists q \in \mathbb{Q} : x < q < y \ \exists z \in \mathbb{R} \setminus \mathbb{Q} : x < z < y \end{cases}$
	D Intervallo
	D Intervallo aperto, chiuso, limitato, illimitato
11666	ssioni di Numeri Reali

Successioni di Numeri Reali

 $\bigcirc \;\; \mathbf{T}$ Unicità del Limite $\hfill \Box$ T
 Teorema del Confronto

Successioni

→ D Successione e Successione Reale
→ D Termine di una successione
O Insieme dei termini di una successione
\bigcirc D Successione superiormente limitata, superiormente illimitata e estremo superiore di una successione
\bigcirc D Successione inferiormente limitata, inferiormente illimitata e estremo inferiore di una successione
O D Successione limitata e illimitata
Limiti di Successioni
□ Limite reale di una successione
→ D Successione Convergente

	T Teorema dei due Carabinieri
	\mathbf{D} Limite $+\infty$ e $-\infty$ di una successione
	D Successione Divergente
	D Successione Regolare e Oscillante
0	$\mathbf{T} orall n \in \mathbb{N}, a_n \leq b_n \Rightarrow egin{cases} a_n ightarrow + \infty \Rightarrow b_n ightarrow + \infty \ b_n ightarrow - \infty \Rightarrow a_n ightarrow - \infty \end{cases}$
	D Insieme dei numeri reali esteso
	${f D}$ Intorno di un elemento $c\in\overline{\mathbb{R}}$
	D Limite con gli intorni
	T Teorema del confronto (con intorni)
	T Teorema della permanenza del segno (con intorni)
	${\bf T}$ Teorema sulla limitatezza delle successioni regolari
	T Teorema dell'unicità del limite (esteso)
	$\mathbf{T}\operatorname{Se} \overline{\exists n}\in\mathbb{N} : n>\overline{n} \Rightarrow a_{\overline{n}}=b_{\overline{n}} \Rightarrow \lim_{n\to +\infty} a_n=\lim_{n\to +\infty} b_n$
	T Teorema sul limite della somma
	T Teorema sul limite del prodotto
	T Teorema sul limite del rapporto
	T Teorema sul limite del valore assoluto
	T Criterio del Rapporto
$\mathbf{C}_{\mathbf{c}}$	ndigioni non la Dogolovità della Suggessioni
Co	ndizioni per la Regolarità delle Successioni
	D Successione Crescente, Decrescente, Monotona
	T Limite delle Successioni Monotone
	T Numero di Nepero
	D Sottosuccessione
	T $(k_n)_{n\in\mathbb{N}}$ sottosuccessione di $\mathbb{N}\Rightarrow \forall n\in\mathbb{N}, k_n\geq n$
	T Limite delle Sottosuccessioni
	$\mathbf{T}\ (a_n)_{n\in\mathbb{N}} \text{ successione in } \mathbb{R}\ \mathrm{e}\ (a_{k_n})_{n\in\mathbb{N}}\ \mathrm{e}\ (a_{h_n})_{n\in\mathbb{N}} \text{ sottosuccessioni di } a_n \text{ tali che hanno lo stesso limite e}\\ \mathbb{N}=\{k_m\mid m\in\mathbb{N}\}\cup\{h_m\mid m\in\mathbb{N}\}, \text{ allora } a_n \text{ ha lo stesso limite di } a_{k_n}\ \mathrm{e}\ a_{h_n}$
	T $(a_n)_{n\in\mathbb{N}}$ successione, allora esiste una sottosuccessione monotona
	T Teorema di Bolzano - Weierstrass
	D Successione di Cauchy
	T Se $(a_n)_{n\in\mathbb{N}}$ è convergente, allora è di Cauchy
	$\mathbf T$ Se $(a_n)_{n\in\mathbb N}$ è di Cauchy, allora è limitata
	$\mathbf T$ Se $(a_n)_{n\in\mathbb N}$ è di Cauchy e ha una sotto successione convergente, allora è convergente
	$\mathbf T$ Se $(a_n)_{n\in\mathbb N}$ è di Cauchy, allora è convergente
	T Sia $(a_n)_{n\in\mathbb{N}}$. Se è inferiormente limitata, sia $\alpha_n=\inf\{a_m\mid m\geq n\}$, allora $(\alpha_n)_{n\in\mathbb{N}}$ è crescente. Se è
	superiormente limitata, sia $\beta_n = \sup\{a_m \mid m \geq n\}$, allora $(\beta_n)_{n \in \mathbb{N}}$ è decrescente
	D Massimo limite e minimo limite
\bigcirc	T Se $(a_n)_{n\in\mathbb{N}}$ è superiormente limitata, allora $\max_{n\to+\infty}a_n=\inf\{\sup\{a_m\mid m\geq n\}\mid n\in\mathbb{N}\}$. Se è inferiormente
	limitata, allora $\min \lim_{n \to +\infty} a_n = \inf \{ \sup \{ a_m \mid m \geq n \} \mid n \in \mathbb{N} \}$
\bigcirc	$\mathrm{T} \min \lim_{n o +\infty} a_n \leq \max \lim_{n o +\infty} a_n$
\bigcirc	$\textbf{T} \text{ Sia } (a_{k_n})_{n \in \mathbb{N}} \text{ una sottosuccesione regolare di } (a_n)_{n \in \mathbb{N}}, \text{ allora } \min \lim_{n \to +\infty} a_n \leq \lim_{n \to +\infty} a_{k_n} \leq \max \lim_{n \to +\infty} a_n$
	T Sia $(a_n)_{n\in\mathbb{N}}$ successione, allora esistono due sottosuccessioni tali che $\lim_{n\to+\infty}a_{k_n}=\max\lim_{n\to+\infty}a_n$ e
	$\lim_{n o +\infty} a_{h_n} = \min_{n o +\infty} \lim_{n o +\infty} a_n$
0	$\textbf{T} \text{ Sono equivalenti } \begin{cases} (a_n)_{n \in \mathbb{N}} \text{ regolare} \\ \min \lim_{n \to +\infty} a_n = \max \lim_{n \to +\infty} a_n \text{ e in tal caso } \min \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} a_n = \max \lim_{n \to +\infty} a_n \end{cases}$

Limiti di Funzioni

Limiti di Funzioni

Topologia dell'insieme dei numeri reali

	D Punto Esterno, Punto Interno e Punto di Frontiera
	${\bf D}$ Interno, Frontiera e Chiusura di un sotto insieme di ${\mathbb R}$
	$\mathrm{T} c \in \partial A \Leftrightarrow \forall U \in \mathcal{I}_c, (U \cap A \neq \varnothing) \wedge (U \cap \mathtt{C} A)$
	$\mathbf{T} \; \mathrm{int} A \subseteq A \subseteq \overline{A} \; \mathrm{e} \; \overline{A} = \mathrm{int} A \cup \partial A$
0	$\textbf{T} \ \text{Siano} \ A, B \subseteq \mathbb{R} \Rightarrow \begin{cases} A \subseteq B \Rightarrow \text{int} A \subseteq \text{int} B \\ A \subseteq B \Rightarrow \text{I punti esterni di } B \text{ sono esterni anche ad } A \\ \text{int} (A \cap B) = \text{int} A \cap \text{int} B \end{cases}$
	T Sia $A\subseteq\mathbb{R}$ e $c\in\mathbb{R}$
	$1.\ c\in\overline{A}\Leftrightarrow ext{esiste una successione }(a_n)_{n\in\mathbb{N}} ext{ in }A ext{ che converge a }c$
	2. c è interno ad $A \Leftrightarrow$ qualunque sia $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} convergente a $c, a_n \in A$ definitivamente
	3. c è esterno ad $A \Leftrightarrow$ qualunque sia $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} convergente a $c, a_n \notin A$ definitivamente
	$4.\ c$ è di frontiera per $A\Leftrightarrow$ esistono $(a_n)_{n\in\mathbb{N}}$ in $A\in(b_n)_{n\in\mathbb{N}}$ in $C A$ convergenti in c
Ö	D Insieme Aperto e Chiuso
0	$egin{aligned} \mathbf{T} & \mathrm{Sia} \ A \subseteq \mathbb{R} \Rightarrow egin{cases} A \ \mathrm{aperto} &\Leftrightarrow A \cap \partial A = \varnothing \ A \ \mathrm{chiuso} &\Leftrightarrow \partial A \subseteq A \end{cases} \ \mathbf{T} & \mathrm{Sia} \ A \subseteq \mathbb{R} \Rightarrow egin{cases} A \ \mathrm{aperto} &\Leftrightarrow \mathtt{C}A \ \mathrm{chiuso} \ A \ \mathrm{chiuso} &\Leftrightarrow \mathtt{C}A \ \mathrm{aperto} \end{cases} \end{aligned}$
\cap	$T_{Sig} A \subset \mathbb{R} \to \int A \text{ aperto} \Leftrightarrow CA \text{ chiuso}$
O	$A ext{chiuso} \Leftrightarrow C A ext{ aperto}$
0	$\textbf{T} \text{ Sia } \{A_i \mid i \in I\} \text{ una famiglia di insiemi, allora } \begin{cases} \forall i \in I, A_i \text{ aperto} \Rightarrow \bigcup_{i \in I} A_i \text{ aperto} \\ \forall i \in I, A_i \text{ chiuso} \Rightarrow \bigcap_{i \in I} A_i \text{ chiuso} \end{cases}$
	$ ext{T Siano } A, B \subseteq \mathbb{R} ext{ allora } egin{cases} A, B ext{ aperti} &\Rightarrow A \cap B ext{ aperto} \ A, B ext{ chiusi} &\Rightarrow A \cup B ext{ chiuso} \end{cases}$
	$ ext{T Sia } A \subseteq \mathbb{R} \Rightarrow egin{cases} rac{ ext{int} A ext{ aperto}}{A ext{ chiuso}} \end{cases}$
	D Insieme Compatto
	T Caratterizzazione degli Insiemi Compatti
	${\bf D}$ Punto limite, punto di accumulazione, punto isolato, insieme derivato di un sottoinsieme di ${\mathbb R}$
\bigcirc	$\mathrm{T} \operatorname{Sia} A \subseteq \mathbb{R} \Rightarrow egin{cases} \inf A \subseteq D(A) \subseteq \overline{A} \ \partial A \setminus A \subseteq D(A) \end{cases}$
	T Siano $A\subseteq\mathbb{R}$ e $c\in\overline{\mathbb{R}}$, allora $c\in PL(A)$ se e solo se esiste $(a_n)_{n\in\mathbb{N}}$ in $A\setminus\{c\}$ che tende a c
Es	tremi e Limitatezza Delle funzioni
\cap	D Funzione superiormente limitata, superiormente illimitata e estremo superiore
	D Funzione inferiormente limitata, inferiormente illimitata e estremo inferiore
	D Funzione limitata
O	2 I dimini mindade
Liı	niti di Funzioni
	D Limite di una funzione
	D Funzione Convergente, Divergente, Regolare, Oscillante
	T Relazione tra limite di funzione e limite di successione
\bigcirc	T Unicità del Limite
	T Siano $A,B\subseteq\mathbb{R},f:A o\mathbb{R},g:B o\mathbb{R},c\in PL(A)\cap PL(B)$ e sia $W\in\mathcal{I}_c$ tale che
	$\begin{cases} A\cap W\setminus\{c\}=B\cap W\setminus\{c\}\\ \forall x\in A\cap W\setminus\{c\}, f(x)=g(x) \end{cases} \text{, allora se } f \text{ è regolare, anche } g \text{ lo è e } \lim_{x\to c} f(x)=\lim_{x\to c} g(x)$
	T Limitatezza delle funzioni regolari
	T Limite della Restrizione
	T Limite della Composizione
\bigcirc	D Limite Destro e Sinistro

	D Funzione Asintotica
	T Relazione di Equivalenza tra Asintotici
	T Proprietà degli Asintotici
	D Funzione Trascurabile
	T Teorema Ausiliario tra Asintotici e Trascurabili
Ō	T Regole di Calcolo dei Trascurabili
	D Funzione Controllata
	T Teorema di collegamento tra Controllate, Asintotici e Trascurabili
	D Funzione Crescente, Decrescente, Monotona
	T $A\subseteq\mathbb{R},f:A o\mathbb{R}$ strettamente monotona, allora è iniettiva e f^{-1} è strettamente monotona
	T Limite delle Funzioni Monotone
	D Condizione di Cauchy
	T $f:A o\mathbb{R}$ è convergente per $x o c$ se e solo se verifica la condizione di Cauchy per $x o c$
0	D Massimo Limite e Minimo Limite per le Funzioni
Fu	nzioni Continue
0	D Funzione Continua
	D Funzione Continua in un insieme
	T Siano $A\subseteq \mathbb{R}, f:A \to \mathbb{R}, c\in A$ allora
	1. Se c è un punto isolato per A , f è continua in c
	2. Se $c \in D(A)$, f è continua in c se e solo se $\lim_{x \to c} f(x) = f(c)$
	T Caratterizzazione della Continuità
	T Siano f,g funzioni continue, allora $f+g,fg$ sono continue e se $\forall x,g(x)\neq 0$ $\frac{f}{g}$ è continua
\bigcirc	T Continuità della Composizione
0	T Teorema di Weierstrass
	T Teorema di Bolzano o degli zeri
	T Teorema dei Valori Intermedi
	T f monotona e $f(A)$ intervallo, allora f è continua
0	$\mathbf T ext{ Siano } a,b,c \in I egin{cases} a < b,a < c,f(a) < f(b) \Rightarrow f(a) < f(c) \ a < b,c < b,f(a) < f(b) \Rightarrow f(c) < f(b) \end{cases}$
	${\bf T}$ Siano I intervallo e f continua e iniettiva, allora f è strettamente monotona
	T Teorema sulla continuità dell'inversa
	D Funzione uniformemente continua
	T Se f è continua è uniformemente continua
	$\mathbf{T}\ f \text{ uniformemente continua} \Leftrightarrow \text{qualunque siano } (a_n)_{n\in\mathbb{N}} \text{ e } (b_n)_{n\in\mathbb{N}} \text{ tali che } a_n-b_n \to 0 \text{ risulta } f(a_n)-f(b_n) \to 0$
	T f uniformemente continua e $(a_n)_{n\in\mathbb{N}}$ convergente, allora $f(a_n)$ è convergente
	T Teorema di Heine - Cantor
	T Teorema sulla prolungabilità delle funzioni
	olo Differenziale per Funzioni Reali colo Differenziale per Funzioni Reali
De	erivate
	D Rapporto Incrementale

D Funzione Derivabile in un insieme
 T Caratterizzazione della Derivabilità
 T Continuità delle Funzioni Derivabili

 $\hfill \Box$ T Algebra delle Derivate

→ T Derivata della Composizione	
T Derivata della Funzione Inversa	
D Funzione Derivabile due volte e Derivata Seconda	
D Funzione Derivabile n volte e Derivata n-esima	
☐ D Funzione Indefinitamente Derivabile	
Funzioni Derivabili in un Intervallo	
◯ T Teorema di Rolle	
☐ T Teorema di Cauchy	
◯ T Teorema di Lagrange o del Valor Medio	
□ T Teorema sulle Funzioni a Derivata Nulla	
→ T Teorema sul Limite della Derivata	
Applicazioni del Calcolo Differenziale	
T Teareme di de l'Henitel 0/0 a v a	
☐ T Teorema di de l'Hopital $0/0, x \to a$	
\bigcirc T Teorema di de l'Hopital $0/0, x \to +\infty$	
$igcup_{oxed{E}}$ Teorema di de l'Hopital $\ell/+\infty, x o a$	
\bigcirc E Teorema di de l'Hopital $\ell/+\infty, x \to +\infty$	
D Polinomio di Taylor	
\bigcap T Se f è derivabile n volte in c , allora per $j=0,1,\ldots,n$ si ha $T_{c,n}^{(j)}(c)=f^{(j)}(c)$	
\bigcirc T Se $f(c)=0$ e $f'(x)=o(x-c ^{lpha})$ per $x o c$ allora $f(x)=o(x-c ^{lpha+1})$ per $x o c$	
$igcap {f T} { m Se} \ f^{(j)}(c) = 0 \ { m per} \ j = 0, 1, \ldots, n \ { m allora} \ f(x) = o((x-c)^n) \ { m per} \ x o c$	
☐ T Formula di Taylor con resto nella forma di Peano	
igcup T Sia f derivabile n volte in $[a,b]$ e $n+1$ in $]a,b[$ e sia g continua in $[a,b]$ e derivabile in $]a,b[$, allora esiste	
$c \in]a,b[ext{ tale che } (f(b)-T_{a,n}(b))g'(c)=(g(b)-g(a))f^{(n+1)}(c)rac{(b-c)^n}{n!}$	
☐ T Formula di Taylor con resto nella forma di Lagrange	
Parte di Cupini	
Parte di Cupini	
Generalità	
◯ D Funzioni Pari e Dispari	
○ D Funzioni Periodiche	
○ D Trasformazioni elementari	
○ D Grafici di Funzioni Elementari	
Limiti	
☐ T Numero di Nepero	
☐ T Criterio del Rapporto	
☐ T Criterio della Radice	
Asintotici e Trascurabili	
□ D Asintotici	
□ D Trascurabili	

→ T Sostituzione degli Asintotici nel Prodo	tto
---	-----