Coordinate Geometry

10^{th} Maths - Chapter 7

This is Problem-4 from Exercise 7.2

1. Find the ratio in which the line segement joining the points $\begin{pmatrix} -3\\10 \end{pmatrix}$ and $\begin{pmatrix} 6\\-8 \end{pmatrix}$ is divided by $\begin{pmatrix} -1\\6 \end{pmatrix}$.

Solution:

The input parameters for this problem are available in Table (1)

Symbol	Value	Description
P	$\begin{pmatrix} -3\\10 \end{pmatrix}$	First point
Q	$\begin{pmatrix} 6 \\ -8 \end{pmatrix}$	Second point
R	$\begin{pmatrix} -1 \\ 6 \end{pmatrix}$	Desired point

Table 1

Using section formula,

$$\mathbf{R} = \frac{\mathbf{Q} + \mathbf{n}\mathbf{P}}{1+n} \tag{1}$$

Substituting the values of P, Q and R in eq-1

$$\binom{-1}{6} = \frac{\binom{-3}{10} + \mathbf{n} \binom{6}{-8}}{1+\mathbf{n}}$$
 (2)

$$\implies \begin{pmatrix} -1 \\ 6 \end{pmatrix} = \frac{1}{1+\mathbf{n}} \left(\begin{pmatrix} -3 \\ 10 \end{pmatrix} + \mathbf{n} \begin{pmatrix} 6 \\ -8 \end{pmatrix} \right) \tag{3}$$

Simplifying the eq-3 yeilds,

$$-1 = \frac{-3 + 6\mathbf{n}}{1 + \mathbf{n}}$$

$$\implies \mathbf{n} = \frac{2}{7}$$
(4)

and also,

$$6 = \frac{10 - 8\mathbf{n}}{1 + \mathbf{n}}$$

$$\implies \mathbf{n} = \frac{2}{7}$$
(5)

Hence the ratio \mathbf{n} is $\frac{2}{7}$.

Figure 1