Sequence diagram ECU1:

STATE MACHINE DIGRAM ECU1:

Code example:

@startuml

[*]-->lights_init

state c <<choice>>

 $lights_init-->BCM_get_light_switch_sensor_value$

BCM_get_light_switch_sensor_value-->c

c-->light_switch_sensor_disabled: disable

c-->light_switch_sensor_value: enable

light_switch_sensor_value-->BCM_send_light_switch_sensor_value

BCM_send_light_switch_sensor_value-->BLOCKED

light_switch_sensor_disabled-->BLOCKED

BLOCKED-->[*]

@enduml

Code:

@startuml

[*]-->Idle

Idle --> speedsensor: [every 5 ms]

Idle --> Doorsensor: [every 10 ms]

Idle --> light_switch_sensor: [every 20 ms]

speedsensor--> BCM_send_speedsensor_state

Doorsensor--> BCM_send_Doorsensor_state

light_switch_sensor--> BCM_send_light_switch_sensor_state

BCM_send_speedsensor_state-->Idle

BCM_send_Doorsensor_state-->Idle

BCM_send_light_switch_sensor_state-->Idle

Idle-->[*]: [system shut down]

@enduml

ECU2:

State machine ECU2:

Code example:

@startuml

[*]-->lights_init

state c <<choice>>

lights_init-->BCM_get_light_switch_sensor_value

lights_init-->BCM_get_speed_sensor_value

lights_init-->BCM_get_Door_sensor_value

BCM_get_light_switch_sensor_value-->c

BCM_get_speed_sensor_value-->c

BCM_get_Door_sensor_value-->c

c-->lightONN: doorOpenedcarStopped||carMoving&lightPressed

c-->lightOFF: doorOPned&carmoving

c --> LightsOFF_after_3sec: doorClosedLightPressed

lightONN-->[*]

lightOFF-->[*]

LightsOFF_after_3sec-->[*] @enduml

@startuml

[*]-->Idle

Idle --> BCM_get_speedsensor:[every 5 ms]

Idle -->BCM_get_Doorsensor_state: [every 10 ms]

Idle -->BCM_get_light_switch_sensor_state: [every 20 ms]

state c <<choice>>

BCM_get_speedsensor--> c

BCM_get_Doorsensor_state--> c

BCM_get_light_switch_sensor_state--> c

c --> BuzzerONandLightsOFF:doorOPned&carmoving

c --> BuzzerOFFLightsON:doorOpenedcarStopped | | carMoving&lightPressed

c --> BuzzerONandLightsON: carStopped&lightPressed

c --> LightsOFF_after_3sec: doorClosedlightPressed

Buzzer ON and Lights OFF --> Idle

BuzzerOFFLightsON-->Idle

BuzzerONandLightsON-->Idle

LightsOFF_after_3sec-->Idle

Idle-->[*]: [system shut down]@enduml

Using simso

Choosing EDF scheduler

Assuming dead line =periodicity

Assuming execution time of each task equal 1 ms

id	Name	Task type	Abort on miss	Act. Date (ms)	Period (ms)	List of Act. dates (ms)	Deadline (ms)	WCET (ms)
1	TASK T1	Periodic 🔻	✓ Yes	0	10	-	10	1
2	TASK T2	Periodic 🔻	✓ Yes	0	5	-	5	1
3	TASK T3	Periodic 🔻	✓ Yes	0	20	-	20	1

	Total load	Payload	System load	
CPU 1	0.3500	0.3500	0.0000	
Average	0.3500	0.3500	0.0000	

Bus load:

Assume buad rate = 1mbps

Clock rate = 16 MHz

Number of bits

1 bit SOF

11 bit messages identifier

1 bit RTR

6 bit control field

8 bit data field

15 bit CRC sequence

1 bit ACK

2 BIT delima

7 bit EOP

3 bit IFS

Number of bit in a single msg is 55 bit

Bit time = 1/1000,000= 1us

Time to transfer one frame =55*1=55us

Making hyper period = 40ms

Taks1 one frame transfer every 5 ms so frame will transfer 8 times

Task2 frame transfer every 10 ms so frame will transfer 4 time

Task 3 frame transfer every20 ms so frame will transfer 2 time

Total Execution time = (8*55us+4*55us+2*55us)=770us

bus load= Total Execution time/ hyper period

bus load = 770 *10^(-6)/40*10^(-3) =0.19%