

FUZZY LOGIC

DR. AMALIA, ST, MT

Pertemuan 1 – Kecerdasan Buatan untuk DSAI

Outline

- Pendahuluan
- Fuzzy Logic

Kompus Merdeko

Referensi

PENILAIAN (7 kali pertemuan – sampai UTS)

Ele	men	Persen
Tuç	jas	10
Kea	aktifan Kelas	10
Pro	ject UTS	30
Tota	al	50

Referensi

- https://inst.eecs.berkeley.edu/~cs188/su22/assets/slides/Lecture1.pdf
- http://aima.cs.berkeley.edu/
- https://github.com/aimacode

Pendahuluan

Sci-Fi AI?

Komposisi Kecerdasan:

Kecerdasan Buatan ??

Mesin yang:

- Berpikir seperti manusia
 - Bertindak seperti manusia
 - Berpikir secara rasional
 - Bertindak secara rasional

Bertindak Secara Rasional: Konsep Agent

- Agent: sebuah sistem yang mempersepsi lingkungan (melalui sensor), dan mengambil tindakan yang mempengaruhi lingkungan (melalui effector).
- Rational agent: agent yang melakukan tindakan yang berakibat yang "terbaik". Tidak harus melalui proses penalaran logika.
- Konsep inilah yang (menurut Russell & Norvig) menjadi konsep utama seluruh AI...

Basis Pengetahuan

- Langkah pertama dalam membuat sistem kecerdasan buatan adalah membangun basis pengetahuan
- Digunakan oleh motor inferensi dalam menalar dan mengambil kesimpulan

Karakteristik Representasi Pengetahuan

- Dapat diprogram dengan bahasa komputer dan disimpan dalam memori
- Fakta dan pengetahuan lain yang terkandung di dalamnya dapat digunakan untuk melakukan penalaran

Bentuk Representasi Pengetahuan

- 1. Logika
 - Logika Proposisi
 - Logika Predikat
- 2. Aturan Produksi
- 3. Frame
- 4. Script

Contoh Logika Proposisi

Jika hujan turun sekarang maka saya tidak pergi ke pasar

"-" Kalimat tersebut dapat ditulis : p o q

Dimana:

- p = hujan turun
- q = saya tidak pergi ke pasar

Tabel Kebenaran Untuk Hubungan Logika

р	q	p ∧ q	p ∨ q	p → q	p ↔ q
Т	Т	Т	Т	Т	T
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	Т	Т

Tabel Kebenaran Untuk Hubungan Negasi

p	~p
T	F
F	Т

Fakta yang diketahui

p : Bumi adalah satu-satunya planet di jagat raya yang mempunyai kehidupan. (B)

q : Satu dekade sama dengan 10 tahun. (B)

$$r: 1 + 1 = 3. (S)$$

- 1. \overline{p} : Bumi bukan satu-satunya planet di jagat raya yang mempunyai kehidupan. (S)
- 2. $q \wedge r$: Satu dekade sama dengan 10 tahun dan 1 + 1 = 3. (S)
- 3. $q \lor r$: Satu dekade sama dengan 10 tahun atau 1 + 1 = 3. (B)
- 4. $q \rightarrow r$: Jika satu dekade sama dengan 10 tahun maka 1 + 1 = 3. (S)
- 5. $q \leftrightarrow r$: Satu dekade sama dengan 10 tahun jika dan hanya jika 1 + 1 = 3. (S)
- a. Satu dekade tidak sama dengan 10 tahun jika dan hanya jika $1 + 1 = 3 \rightarrow B/S$?
- b. Jika satu decade sama dengan 10 tahun maka bumi adalah satu-satunya planet di jagat raya yang memiliki kehidupan --? B/S?

Fuzzy Logic?

Fuzzy Logic adalah sebuah pendekatan dalam logika matematika dan kecerdasan buatan yang memungkinkan penalaran dengan ketidakpastian dan ambiguitas

Aplikasi Fuzzy Logic:

- Fuzzy Logic banyak digunakan dalam berbagai aplikasi seperti:
- Sistem kontrol otomatis: Misalnya, kontrol suhu, mesin cuci otomatis, dan sistem navigasi.
- Pengenalan pola dan klasifikasi data: Dalam sistem pengenalan wajah, suara, atau tulisan tangan.
- Sistem pendukung keputusan: Digunakan untuk membuat keputusan dalam situasi dengan ketidakpastian tinggi.

Keunggulan Fuzzy Logic:

- Fleksibilitas: Dapat menangani ketidakpastian dan ambiguitas yang sering ditemukan dalam situasi dunia nyata.
- Representasi Natural: Lebih dekat dengan cara berpikir manusia, yang sering kali tidak kaku dan bersifat kontinyu.
- Kombinasi dengan Al Lainnya: Fuzzy Logic sering dikombinasikan dengan metode lain dalam Al seperti Neural Networks untuk menciptakan sistem yang lebih cerdas dan adaptif.

Konsep Utama dalam Fuzzy Logic:

- 1. Fuzzy Sets (Himpunan Fuzzy):
- Dalam Fuzzy Logic, himpunan fuzzy digunakan untuk merepresentasikan konsep-konsep yang tidak memiliki batasan yang jelas. Setiap elemen dalam himpunan fuzzy memiliki derajat keanggotaan yang menunjukkan seberapa kuat elemen tersebut termasuk dalam himpunan tersebut. Misalnya, dalam himpunan "tinggi," seseorang dengan tinggi 170 cm mungkin memiliki derajat keanggotaan 0,7, sedangkan seseorang dengan tinggi 180 cm mungkin memiliki derajat keanggotaan 0,9.
- 2. Membership Function (Fungsi Keanggotaan):

Fungsi ini digunakan untuk menentukan derajat keanggotaan suatu elemen dalam himpunan fuzzy. Bentuk fungsi keanggotaan bisa bervariasi, seperti linear, segitiga, atau Gaussian.

Konsep Utama dalam Fuzzy Logic:

- 3. Logical Operations (Operasi Logika Fuzzy):
- Operasi dasar dalam Fuzzy Logic, seperti AND (konjungsi), OR (disjungsi), dan NOT (komplemen), dilakukan dengan cara yang berbeda dibandingkan logika klasik, mengingat derajat kebenaran bisa bervariasi. Misalnya, dalam operasi AND, jika dua pernyataan memiliki nilai kebenaran 0,7 dan 0,5, hasil operasi AND mungkin adalah 0,5 (nilai minimum dari keduanya).
- 4. Fuzzy Inference System (Sistem Inferensi Fuzzy):

Proses pengambilan keputusan dalam Fuzzy Logic dilakukan melalui sistem inferensi fuzzy, di mana aturan-aturan berbasis logika fuzzy digunakan untuk menginterpretasikan input dan menghasilkan output.Contoh: "Jika suhu tinggi (0,8) dan kelembaban rendah (0,6), maka nyalakan kipas dengan kecepatan sedang (0,7)."

Konsep Utama dalam Fuzzy Logic:

5. Defuzzification:

Setelah melakukan inferensi fuzzy, hasilnya sering kali masih dalam bentuk fuzzy (nilai antara 0 dan 1). Defuzzification adalah proses mengubah nilai fuzzy ini menjadi nilai yang tegas atau deterministik, yang bisa diterapkan dalam keputusan nyata.

Fuzzification

Pemetaan (Proses Fuzzy)

Inference

KEPUTUSAN

De-Fuzzification

Fuzzy Inference

D

C

B

A

Batas tinggi badan:

150 cm → orang yang tidak tinggi 180 cm → orang yang tinggi

- A adalah orang yang tinggi dengan tinggi badan 181 cm,
- Apakah B dengan 179 cm dianggap orang yang pendek?

Kecepatan motor X cukup cepat → ?? km/ jam Suhu kamar Y sangat dingin → ?? celsius

degree of membership atau derajat kebenaran

VS

Crisp logic

180 cm → orang yang tinggi

A: orang yang tinggi dengan tinggi badan 181 cm,

B: orang yang tidak tinggi (pendek) dengan tinggi badan 179 cm

Tinggi ba

Crisp vs Fuzzy

Degree of membership

Name	Height, cm	Crisp	Fuzzy
Chris	208	1	1.00
Mark	205	1	1.00
John	198	1	0.98
Tom	181	1	0.82
David	179	0	0.78
Mike	172	0	0.24
Bob	167	0	0.15
Steven	158	0	0.06
Bill	155	0	0.01
Peter	152	0	0.00

Negnevitsky, M. (2011). Artificial Intelligence: A Guide to Intelligent Systems

Crisp (a) and fuzzy (b) sets of 'tall men'

1. Fuzzification

Definisi Crisp set

 $f_A(x): X \to 0, 1,$

where

$$f_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Crisp set A untuk X ... characteristic function $f_A(x)$

Contoh Tinggi Badan untuk crisp set A orang yang tinggi ... $A = \{x \ge 180 \text{ cm}\}$

Crisp logic

Definisi Fuzzy set

$$\mu_A(x): X \to [0,1],$$

where

 $\mu_A(x) = 1$ if x is totally in A; $\mu_A(x) = 0$ if x is not in A; $0 < \mu_A(x) < 1$ if x is partly in A. Fuzzy set A untuk X ... membership function $\mu_A(x)$ lkut grafik fungsi keanggotaan A

Fuzzy logic

... $\mu_A(179) = 0.78$

Fungsi Keanggotaan: Segitiga (a, b, c)

$$\mu(x) = \begin{cases} 0 & x \le a \text{ or } x \ge c \\ \frac{x - a}{b - a} & a < x \le b \\ \frac{c - x}{c - b} & b < x < c \end{cases}$$

Untuk average, nilai a=165, b=175, c=185 Jika tinggi = 181, b = 175 < x = 181 < c = 185

$$\mu(181) = \frac{c - x}{c - b} = \frac{185 - 181}{185 - 175} = 0.4$$

Fungsi Keanggotaan: Trapesium (a, b, c, d)

Kriteria x	$\mu(x)$
$x \le a$ atau $x \ge d$	0
$b \le x \le c$	1
$a \le x \le b$	$\frac{x-a}{b-a}$
$c \le x \le d$	$\frac{d-x}{d-c}$

Untuk tall, nilai a=180, b=c=d=190

Jika tinggi = 181,
$$a = 180 \le x = 181 \le b = 190$$

$$\mu(181) = \frac{x - a}{b - a} = \frac{181 - 180}{190 - 180} = 0.1$$

Jika tinggi A = 181 cm, maka A \rightarrow tall / average?

$$\mu_{average \ or \ tall}(181) = \\
max[\mu_{average}(181), \mu_{tall}(181)] = \\
\mu_{avera/e}(181) \ or \ \mu_{tall}(181) = ??$$

$$max[\mu_{average}(181), \mu_{tall}(181)] = \mu_{avera/e}(181) \text{ or } \mu_{tall}(181) = ??$$

fuzzines

$$\mu_{avera/e \cap tall}(181) = max[\mu_{average}(181), \mu_{tall}(181)] = max[0.1, 0.4] = 0.4 ... masuk ke fuzzy set A = average$$

Jika ada >1 fuzzy set digunakan logical operator

Degree of membership

0.0

150

0.8

Short

160

Average

180

170

190

Kampus

200

210

Tall

- 2. Inference
- 3. De-Fuzzification

Fuzzy Inference:

Sistem Fuzzy → TomatoPicker

Redness

Absent **Ambivalent** Strong

•

hard medum soft

- under-ripe
- nipe
- over-ripe

redness = 7.8firmness = 6.7maturity = ??

Sistem Fuzzy → TomatoPicker

 R_1 : $redness_{strong} + firmness_{medium} = maturity_{ripe}$

 R_2 : $redness_{strong} + firmness_{soft} = maturity_{overripe}$

 R_3 : $redness_{absent} + firmness_{hard} = maturity_{underipe}$

redness = 7.8 and firmness = 6.7

maturity = ??

 R_4 : redness_{strong}

- $+ firmness_{medium}$
- $= maturity_{ripe}$

Tomato Picker

Untuk $redness_{stron\&}$, nilai a=6, b=c=d=8 Jika redness = 7.8, memenuhi syarat $a \le x \le b$

$$\mu_{redness\&stron)}(7.8) = \frac{x-a}{b-a} = \frac{7.8-6}{8-6} = 0.9$$

Untuk $redness_{ambivalent}$, nilai a=2, b=4, c=6, d=8

$$\mu_{redness\&ambivalent}(7.8) = \frac{d\&x}{d\&c} = \frac{2\&3.2}{2\&5} = 0.1$$

 $\mu_{redness/stron\&}$ (7.8) or $\mu_{redness/ambivalent}$ (7.8) = max (0.9, 0.1) = 0.9 \rightarrow redness – strong

Untuk *firmness*:

 $\mu_{0 \text{firm}ness/medium} \text{ or } \mu_{0 \text{firm}ness/so0t}$ $= \max(0.65, 0.35) = 0.65 \rightarrow \text{firmness} - \text{medium}$

memenuhi

 R_1 : $redness_{strong}$ and $firmness_{medium}$ = $maturity_{ripe}$ dengan nilai min (0.9, 0.65) = 0.65

redness = 7.8 and firmness = 6.7maturity = ??

Tomato Picke

 R_n : redness_{strong} $+ firmness_{soft}$

 $= maturity_{overripe}$

Untuk

 $\mu_{redness/strong}$ (7.8) or $\mu_{redness/ambivalent}$ (7.8)

Dipilih $\mu_{redness/strong} = 0.9$

Untuk *firmness*:

 $\mu_{0 \text{frmness/medium}} \text{ or } \mu_{0 \text{firmness/soft}}$

Dipilih $\mu_{0 \text{firmness/soft}} = 0.35$

memenuhi

 R_4 : $redness_{strong} + firmness_{soft}$ $= maturity_{overripe}$ dengan nilai min 0.9, 0.35 R_s : $redness_{absent}$ + $firmness_{hard}$ $= maturity_{underripe}$

Overripe

Tidak ada fungsi keanggotaan yang memenuhi

Tomato Picker Sugeno fuzzy model IFxis AAVDy is BTHENz is k (nilai konstan) Ripe Under-ripe 0.65 3. De-Fuzzification R2 Overripe redness = 7.80.35firmness = 6.7

 $maturity = \frac{s*y.sz\{4z*y.|z\{n\}*y.sz\}}{s.} = 6.14 \text{ ada di area ripe}$

Tomat sudah cukup matang, sehingga layak petik

•

Weighted Average

scale	dom	skor
1	0.00	0.00
2	0.00	0.00
3	0.35	1.05
4	0.65	2.60
5	0.65	3.25
6	0.65	3.90
7	0.35	2.45
8	0.35	2.80
9	0.35	3.15
10	0.35	3.50
	3.70	22.70
		6.14

Diketahui nilai keanggotaan untuk variabel UMUR secara grafis seperti gambar berikut.

Seseorang yang berumur 40 tahun mempunyai nilai $\mu_{
m Muda}[40]$ dan $\mu_{
m Dewasa}[40]$ masing-masing sebesar \cdots

Dari garis merah pada grafik tersebut, dapat kita ketahui bahwa

$$\mu_{ ext{Muda}}[40] = rac{40 - 45}{25 - 45} = rac{-5}{-20} = rac{1}{4} = 0,25.$$

Dari garis biru pada grafik tersebut, dapat kita ketahui bahwa

$$egin{aligned} \mu_{
m Dewasa}[40] &= rac{40-35}{45-35} \ &= rac{5}{10} = rac{1}{2} = 0, 5. \end{aligned}$$

Jadi, seseorang yang berumur 40 tahun mempunyai nilai $\mu_{
m Muda}[40]$ dan $\mu_{
m Dewasa}[40]$ masing-masing sebesar $0.25~{
m dan}~0.5$

Tugas dikelas

Suatu perusahaan minuman akan memproduksi minuman jenis XYZ. Dari data 1 bulan terakhir, permintaan terbesar hingga mencapai 6000 botol/hari, dan permintaan terkecil sampai 500 botol/hari. Persediaan barang digudang terbanyak sampai 800 botol/hari, dan terkecil pernah sampai 200 botol/hari. Dengan segala keterbatasannya, sampai saat ini, perusahaan baru mampu memproduksi barang maksimum 9000 botol/hari, serta demi efisiensi mesin dan SDM tiap hari diharapkan perusahaan memproduksi paling tidak 3000 botol. Apabila proses produksi perusahaan tersebut menggunakan 4 aturan fuzzy sbb:

[R1]	IF Permintaan TURUN <u>And</u> Persediaan BANYAK
	THEN Produksi Barang BERKURANG;
{R2]	IF Permintaan TURUN <u>And</u> Persediaan SEDIKIT
	THEN Produksi Barang BERKURANG;
[R3]	IF Permintaan NAIK <u>And</u> Persediaan BANYAK
	THEN Produksi Barang BERTAMBAH;
[R4]	IF Permintaan NAIK <u>And</u> Persediaan SEDIKIT
	THEN Produksi Barang BERTAMBAH;

Berapa botol minuman jenis XYZ yang harus diproduksi, jika jumlah permintaan sebanyak 4500 botol, dan persediaan di gudang masih 700 botol?

