Teorema 5.4.4

Sean $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, n vectores en \mathbb{R}^n y sea A una matriz de $n \times n$ cuyas columnas son $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ Entonces, $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ son linealmente independientes si y sólo si la única solución al sistema homogéneo $A\mathbf{x} = \mathbf{0}$ es la solución trivial $\mathbf{x} = \mathbf{0}$.

Demostración

Éste es el teorema 5.4.3 para el caso m = n.

Teorema 5.4.5

Sea A una matriz de $n \times n$. Entonces det $A \neq 0$ si y sólo si las columnas de A son linealmente independientes.

Demostración

Del teorema 5.4.4 y del teorema de resumen (más adelante), las columnas de A son linealmente independientes \Leftrightarrow 0 es la única solución a A**x** = 0 \Leftrightarrow det $A \neq 0$. Aquí, \Leftrightarrow significa "si y sólo si".

El teorema 5.4.5 nos lleva a extender nuestro teorema de resumen.

Teorema 5.4.6 Teorema de resumen (punto de vista 6)

Sea A una matriz de $n \times n$. Entonces las ocho afirmaciones siguientes son equivalentes; es decir, cada una implica a las otras siete (de manera que si una es cierta, todas son ciertas).

- i) A es invertible.
- ii) La única solución al sistema homogéneo Ax = 0 es la solución trivial (x = 0).
- iii) El sistema $Ax = \mathbf{b}$ tiene una solución única para cada vector de dimensión n **b**.
- iv) A es equivalente por renglones a la matriz identidad de $n \times n$, I_n .
- v) A es el producto de matrices elementales.
- vi) La forma escalonada por renglones de A tiene n pivotes.
- vii) $\det A \neq 0$.
- viii) Las columnas (y renglones) de A son linealmente independientes.

Demostración

La única parte que no se ha demostrado hasta el momento es que los renglones de A son linealmente independientes \Leftrightarrow det $A \neq 0$. Las columnas son independientes \Leftrightarrow det $A \neq 0$ \Leftrightarrow det $A^{\mathsf{T}} = \det A \neq 0$ (vea el teorema 3.2.4) \Leftrightarrow las columnas de A^{T} son linealmente independientes. Pero las columnas de A^{T} son los renglones de A. Esto completa la prueba.

El siguiente teorema combina las ideas de independencia lineal y conjuntos generadores en \mathbb{R}^n .