Занятие № 6. Числовые характеристики случайных величин и их свойства.

© Составитель: $\partial . \phi . - м.н.$, проф. Рябов П.Е.

Желательно, там, где есть ответ, придумать способ док-ва статистической устойчивости полученного ответа.

6.1. Распределение случайной величины X задано таблицей

X	7	8	11	14	15	
P	0, 25	0, 2	0, 1	0, 2	0,25	•

Найдите математическое ожидание $\mu = \mathbb{E}(X)$, среднее квадратичное отклонение $\sigma = \sigma_X$ и вероятность $\mathbb{P}(|X - \mu| < \sigma)$.

- **6.2.** Независимые случайные величины X_1,\dots,X_4 могут принимать только значения 0 и 1. При этом $\mathbb{P}(X_i=0)=0,4$, $i=1,\dots,4$. Найдите математическое ожидание $\mathbb{E}\left[2^{X_1+\dots+X_4}\right]$.
- **6.3.** Независимые случайные величины X_1, X_2, \ldots, X_{10} принимают только целые значения $-6, -5, \ldots, 3, 4$. Найдите математическое ожидание $\mathbb{E}(X_1 \cdot X_2 \cdots X_{10})$, если известно, что возможные значения равновероятны.
- **6.4.** Независимые случайные величины X_1,\ldots,X_{90} могут принимать только значения 0 и 1. При этом $\mathbb{P}(X_i=0)=0,7$, $i=1,\ldots,90$. Найдите математическое ожидание $\mathbb{E}[(X_1+\ldots+X_{90})^2]$.
- **6.5.** Для независимых случайных величин X_1, \ldots, X_4 известно, что их математические ожидания $\mathbb{E}(X_i) = -1$, дисперсии $\text{Var}(X_i) = 3$, $i = 1, \ldots, 4$. Найдите дисперсию произведения $\text{Var}(X_1 \cdots X_4)$.
- **6.6.** Подбрасываются три различных симметричных кубика: с четырьмя гранями, с шестью гранями и двенадцатью гранями. Обозначим через S сумму выпавших очков. Найдите математическое ожидание $\mathbb{E}(S)$ и дисперсию Var(S). Разыграйте эксперимент на Python и найдите среднее значение суммы выпавших очков. Постройте график зависимости среднего значения суммы от числа экспериментов.
- 6.7. Подбрасываются четыре симметричные игральные кости (с шестью гранями). Обозначим через X минимальное значение выпавших очков (например, если выпало на первой кости 1, на второй -2, на третьей -6, на четвертой -1, тогда минимальное значение составляет 1). Найдите (аналитически) математическое ожидание $\mathbb{E}(X)$ и дисперсию Var(X). Разыграйте эксперимент на Python и найдите среднее значение такой величины. Постройте график зависимости среднего значения от числа экспериментов.

Ответ: $\mathbb{E}(X) = 1.7554$; Var(X) = 0.910079.

6.8. Подбрасываются четыре симметричные игральные кости (с шестью гранями). Обозначим через X максимальное значение выпавших очков (например, если выпало на первой кости 1, на второй -2, на третьей -6, на четвертой -1, тогда максимальное значение составляет 6). Найдите (аналитически) математическое ожидание $\mathbb{E}(X)$ и дисперсию Var(X). Разыграйте эксперимент на Python и найдите среднее значение такой величины. Постройте график зависимости среднего значения от числа экспериментов.

Ответ: $\mathbb{E}(X) = 5.2446$; Var(X) = 0.910079.

6.9. Подбрасываются четыре симметричные игральные кости (с шестью гранями). Обозначим через S сумму наибольших трех выпавших очков (например, если выпало на первой кости 1, на второй -2, на третьей -6, на четвертой -1, тогда значение такой суммы составляет 9). Найдите (аналитически) математическое ожидание $\mathbb{E}(S)$. Разыграйте эксперимент на Python и найдите среднее значение такой суммы. Постройте график зависимости среднего значения суммы от числа экспериментов.

Ответ: 12.2446;

- **6.10.** Вероятность повышения цены акции за один рабочий день на 2% равна 0,4, вероятность повышения на 0,2% равна 0,4, а вероятность понижения на 4% равна 0,2. Найдите математическое ожидание изменения цены акции за 100 рабочих дней, считая, что начальная цена акции составляет $1\,000$ рублей, а относительные изменения цены за различные рабочие дни независимые случайные величины.
- **6.11.** События A, B и C имеют вероятности: $\mathbf{P}(A)=0,4$, $\mathbf{P}(B)=0,3$, $\mathbf{P}(C)=0,2$. Эти события попарно независимы, но все три одновременно наступить не могут. Пусть X индикатор A, Y индикатор B, Z индикатор C, а V=2X+4Y+6Z. Найдите: 1) математическое ожидание $\mathbb{E}(V)$; 2) дисперсию $\mathrm{Var}(V)$.
- **6.12.** Внутри квадрата площади 100 расположены треугольник и круг. Площади этих фигур даны: треугольник 43, круг 60. Также известно, что площадь пересечения треугольника и круга равна 17. В квадрате случайным независимым образом выбираются точки $\omega_1,...,\omega_6$. Определим случайные величины: X_i индикатор попадания ω_i в треугольник, Y_i индикатор попадания ω_i в круг, $Z_i = X_i + Y_i$, i = 1,...,6. Определим также сумму $U = Z_1 + ... + Z_6$ и произведение $V = Z_1...Z_6$. Найдите: 1) математическое ожидание $\mathbb{E}(U)$; 2) дисперсию $\mathrm{Var}(U)$; 3) математическое ожидание $\mathbb{E}(V)$; 4) дисперсию $\mathrm{Var}(V)$.
- **6.13.** Случайные величины X_i , где i=1,2,3, независимы и одинаково распределены. Их общее распределение задано таблицей

X_i	3	6	9	10	
P	0,15	0,45	0,15	0,25	•

Пусть $S = X_1 + X_2 + X_3$. Найдите: 1) математическое ожидание $\mathbb{E}(S)$; 2) наименьшее число MedMin, для которого $\mathbb{P}(S \leqslant MedMin) \geqslant 0.5$; 3) наибольшее число MedMax, для которого $\mathbb{P}(S \geqslant MedMax) \geqslant 0.5$; 4) наименьшее число ModMin, вероятность которого, $\mathbb{P}(S = ModMin)$, максимальна; 5) наибольшее число ModMax, вероятность которого, $\mathbb{P}(S = ModMax)$, максимальна.