Probabilités

Chapitre 11 : Chaînes de Markov

Lucie Le Briquer

8 décembre 2017

Table des matières

1	Premiers exemples	1
2	Formalisation 2.1 Définitions	3 4
3	Existence de chaînes de Markov à μ_0 , $\mathbb Q$ fixé	8
4	Comportement asymptotique des chaînes de Markov 4.1 Existence de mesures invariantes 4.2 Exemples 4.3 Comportement asymptotique	27

1 Premiers exemples

Une filtration canonique $\mathcal{F}_n = \sigma(X_0, ..., X_n)$ structure le temps : pour un instant n, le présent, on a \mathcal{F}_n =événements du passé, X_{n+1} dans le futur.

Idée. Une chaîne de Markov est un processus tel que le futur ne dépend du passé qu'au travers du présent.

Exemple. Par exemple on veut modéliser la vie d'un hamster. Chaque il est dans un des trois états {dormir, manger, faire de la roue}.

- Après avoir mangé, il dort avec probabilité $\frac{3}{4}$, il joue avec probabilité $\frac{1}{4}$.
- Après avoir dormi, il mange avec probabilité $\frac{1}{2}$, il dort à nouveau avec probabilité $\frac{1}{3}$, il joue avec probabilité $\frac{1}{6}$.
- Après avoir joué, il mange avec probabilité $\frac{1}{2}$, il dort avec probabilité $\frac{1}{2}$.

Et ce, indépendamment du passé.

Soit X_n l'état du hamster dans la n-ième heure. $X_n \in \{\text{Mange, Dort, Joue}\}$. $X = (X_n)_{n \in \mathbb{N}}$ sera une chaîne de Markov.

Représentation graphique.

Si on numérote les états Mange= 1, Dort= 2, Joue= 3; toutes les données sont codées dans la matrice 3×3 :

$$\mathbb{Q} = \mathbb{P}(\text{passer de } i \text{ à } j) = \begin{pmatrix} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

appelé noyau (ou matrice) de transition.

But. Quelle proportion de temps passe-t-il à manger?

Que vaut
$$\lim_{n \to +\infty} \frac{1}{b} \sum_{i=0}^{n-1} \mathbb{1}_{X_i=1}$$
?

2 Formalisation

2.1 Définitions

Définition 1 (noyau de transition) –

Soit E un ensemble fini ou infini dénombrable qu'on appelera espace d'état. \mathbb{Q} est un noyau de transition sur E (ou matrice de transition) si \mathbb{Q} : $E \times E \longrightarrow [0,1]$ et tel que :

$$\forall x \in E, \ \sum_{y \in E} \mathbb{Q}(x, y) = 1$$

Remarque. Si E fini, on identifie E à $\{1,...,n\}$. Alors un noyau de transition sur E s'identifie à la matrice $(\mathbb{Q}(i,j))_{1\leqslant i,j\leqslant n}$. C'est une "matrice stochastique", i.e. coefficients dans [0,1] et somme sur les lignes =1.

Remarque. $\mathbb{Q}(x,.)$ est une suite de nombre positifs de somme 1, s'identifie à une mesure de probabilité. On veut que ce soit la loi de X_{n+1} si $X_n = x$.

Définition 2 (chaîne de Markov homogène) –

Si $\mathbb Q$ est un noyau de transition sur l'espace d'état E (fini ou infini dénombrable) et μ_0 une mesure de probabilité sur E. Alors $X=(X_n)_{n\in\mathbb N}\in E^\mathbb N$ est la chaîne de Markov de mesure initiale μ_0 et de noyau de transition $\mathbb Q$ si :

$$\mathbb{P}(X_{n+1} = y \mid X_0 = x_0, ..., X_n = x_n) = \mathbb{Q}(x_n, y)$$

pour tout $x_0,...,x_n,y$ tels que $\mathbb{P}(X_0=x_0,...,X_n=x_n)\neq 0$. Et $X_0\sim \mu_0$.

Remarque.

- \bullet Martingales processus à valeurs dans $\mathbb R$
- \bullet Chaînes de Markov —> processus à valeurs dans un espace discret (graphe)

Remarque. Cette définition correspond aux chaînes de Markov *homogènes*. En toute généralité, on demande :

$$\mathbb{P}(X_{n+1} = y \mid ..., X_n = x_n) = Q_n(x_n, y)$$

avec (Q_n) une famille de noyau de transition. On supposera toujours nos chaînes homogènes.

2.2 Exemples

Exemple. Soit $S_n^x = x + X_1 + ... + X_n$ marche aléatoire où $x \in \mathbb{Z}^d$ et $(X_i)_{i \geqslant 1}$ v.a. indépendantes dans \mathbb{Z}^d de même loi μ . Alors :

$$\mathbb{P}(S_{n+1}^x = y \mid (S_0^x, ..., S_n^x) = x_0, ..., x_n) = \mathbb{P}(S_n^x + X_{n+1} = y \mid (S_0^x, ..., S_n^x) = x_0, ..., x_n)$$

$$= \mathbb{P}(x_n + X_{n+1} = y \mid (S_0^x, ..., S_n^x) = x_0, ..., x_n)$$

$$= \mathbb{P}(X_{n+1} = y - x_n) \quad \text{par indépendance}$$

$$= \mu(\{y - x_n\})$$

(si $\mathbb{P}(S_0^x,...,S_n^x=x_0,...,x_n)\perp$). Donc S^x est une chaîne de Markov de mesure initiale δ_x et de noyau de transition $\mathbb{Q}(x,y)=\mu(\{y-x\})$.

Contre-exemple. Regardons:

- $(S_n^0)_{n\geqslant 1}$ la marche aléatoire simple issue de 0 avec $S_n^0=X_1+\ldots+X_n$ et $\mathbb{P}(X_i=1)=\mathbb{P}(X_i=-1)=\frac{1}{2}.$
- Soit Z indépendant de S tel que $\mathbb{P}(Z=1)=\mathbb{P}(Z=-1)=\frac{1}{2}.$

Considérons $Y_n = Z|S_n^0|$. Alors au temps n on a :

avec une probabilité $\frac{1}{2}$

avec une probabilité $\frac{1}{2}$

 Y_n n'est pas une chaîne de Markov, on a bien $\forall x \in \mathbb{Z} \mathbb{P}(Y_{n+1} = x \pm 1 \mid Y_n = x) = \frac{1}{2}$ si $\mathbb{P}(Y_n = x) \neq 0$.

Mais:

$$\mathbb{P}(Y_3 = 1 \mid \underbrace{(Y_0, Y_1, Y_2) = (0, 1, 0)}_{\text{implique } Z = 1}) = 1$$

$$\mathbb{P}(Y_3 = 1 \mid \underbrace{(Y_0, Y_1, Y_2) = (0, -1, 0)}_{\text{implique } Z = -1}) = 0$$

Contre-exemple. (autre contre-exemple)

 S_n^0 marche simple issue de 0. Considérer $V_n = \sup_{0 \le k \le n} S_k^0$. Montrer que V_n n'est pas une chaîne de Markov.

Exemple. (processus de Galton-Watson)

$$\left\{\begin{array}{ll} Z_0=1\\ Z_n=X_1^n+\ldots+X_{Z_{n-1}}^n \end{array}\right.\quad\text{où }(X_j^n)_{n\geqslant 1,\ j\geqslant 1} \text{ v.a.i. de loi }\mu\text{ probabilit\'e sur }\mathbb{N}$$

Alors,

$$\mathbb{P}(Z_{n+1} = y \mid (Z_0, ..., Z_n) = x_0, ..., x_n)$$

$$= \mathbb{P}(X_1^{n+1} + ... + X_{x_n}^{n+1} = y \mid (Z_0, ..., Z_n) = x_0, ..., x_n)$$

$$\stackrel{=}{=} \mathbb{P}(\underbrace{X_1^{n+1} + ... + X_{x_n}^{n+1}}_{\sim \mu^{*x_n}} = y)$$

$$= \mu^{*s_n}(\{y\})$$

Donc Z est une chaîne de Markov de noyau de transition $\mu^{*x}(\{y\})$.

Exemple. (marche aléatoire sur un graphe)

Si $\mathcal{G}=(S,A)$ où S est un ensemble non vide de sommets, et A un ensemble de (x,y,p) arêtes orientées pondérées avec pour x fixé $\sum_{y,(x,y,p)\in A}p=1$. Alors la marche aléatoire sur ce graphe est la chaîne de Markov de noyau de transition :

$$\mathbb{Q}(x,y) = \left\{ \begin{array}{ll} p & & \mathrm{si}\ (x,y,p) \in A \\ 0 & & \mathrm{sinon} \end{array} \right.$$

Reste à montrer l'existence. Toute chaîne de Markov se représente par un graphe avec $S={\rm espace}$ d'état.

2.3 Renforcement

On veut renforcer "ne dépend du passé qu'au travers du présent".

Propriété 1

E espace d'état, \mathbb{Q} noyau de transition.

X C.M. (chaîne de Markov) de noyau de transition $\mathbb Q$

$$\Leftrightarrow \forall n \in \mathbb{N}, \ \forall p \in \mathbb{N}^*, \ \forall (y_1, \dots, y_p) \in E^p, \ \forall x_n \in E, \ \forall A \in \mathcal{F}_n^X, \ \text{ si } \mathbb{P}(X_n = x_n, A) \neq 0,$$

$$\text{alors} \quad \mathbb{P}\Big((X_{n+1}, \dots, X_{n+p}) = (y_1, \dots, y_p) \mid X_n = x_n, A\Big) = \mathbb{Q}(x_n, y_1) \times \mathbb{Q}(y_1, y_2) \times \dots \times \mathbb{Q}(y_{p-1}, y_p)$$

$$\Leftrightarrow \forall n \in \mathbb{N}, \ \forall x_0, \dots, x_n \in E^{n+1}, \ \mathbb{P}(X_0 = x_0, \dots, X_n = x_n) = \mathbb{P}(X_0 = x_0) \times \mathbb{Q}(x_0, x_1) \times \dots \times \mathbb{Q}(x_{n-1}, x_n)$$

Preuve.

• (i)
$$\Rightarrow$$
 (ii) : récurrence sur p

- si $p = 1$: $A \in \sigma(X_0, \dots, X_n)$ donc $\exists \Gamma \subset E^{n+1}$ tel que $A = \{X_0, \dots, X_n \in \Gamma\}$

$$\mathbb{P}(X_{n+1} = y_1 \mid X_n = x_n, A)$$

$$= \frac{1}{\mathbb{P}(X_n = x_n, A)} \mathbb{P}(X_{n+1} = y_1, X_n = x_n, A)$$

$$= \frac{1}{\mathbb{P}(X_n, x_n, A)} \sum_{z_0, \dots, z_n \in \Gamma} \mathbb{P}\left(X_{n+1} = y, X_n = x_n, (X_0, \dots, X_n) = (z_0, \dots, z_n)\right)$$

$$= \frac{1}{\mathbb{P}(X_n = x_n, A)} \sum_{z_0, \dots, z_{n-1} \in \Gamma(x_n)} \mathbb{P}\left(X_{n+1} = y \mid X_n = x_n, (X_0, \dots, X_{n-1}) = z_0, \dots, z_{n-1}\right)$$

$$= \mathbb{P}(X_n = x_n, (X_0, \dots, X_{n-1}) = z_0, \dots, z_{n-1})$$

$$= \mathbb{P}(X_n = x_n, A) \sum_{z_0, \dots, z_n \in \Gamma} \mathbb{P}(X_n, x_n, (X_0, \dots, X_n) = z_0, \dots, z_n)$$

$$= \mathbb{P}(X_n, y)$$

$$= \mathbb{P}(X_n, y)$$

$$- p \Rightarrow p + 1$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p+1} = y_1, \dots, y_{p+1} \mid X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+p+1} = y_{p+1} \mid X_{n+1}, \dots, X_{n+1} = y_1, \dots, y_p, X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_p \mid X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_p \mid X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_p \mid X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_p \mid X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_p \mid X_n = x_n, A)$$

$$= \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_p \mid X_n = x_n, A)$$

Sauf si $\{X_{n+1}, \ldots, X_{n+p} = y_1, \ldots, y_p\}$ incompatible avec $\{X_n = x_n, A\}$, dans ce cas les termes = 0 donc ok.

• $(ii) \Rightarrow (iii) : ok$

 $= \mathbb{Q}(y_p, y_{p+1}) \times \mathbb{Q}(x_0, y_1) \times \ldots \times \mathbb{Q}(y_{p-1}, y_p)$

•
$$(iii) \Rightarrow (i)$$
:

$$\mathbb{P}(X_{n+1} = y \mid \underbrace{X_0, \dots, X_n = x_0, \dots, x_n})$$

$$= \frac{\mathbb{P}(X_0, \dots, X_{n+1} = x_0, \dots, x_n, y)}{\mathbb{P}(X_0, \dots, X_n = x_0, \dots, x_n)}$$

$$= \frac{\mathbb{P}(X_0, x_0) \times \mathbb{Q}(x_0, x_1) \times \mathbb{Q}(x_{n-1}, x_n) \times \mathbb{Q}(x_n, y)}{\mathbb{P}(X_0, x_0) \times \mathbb{Q}(x_0, x_1) \times \mathbb{Q}(x_{n-1}, x_n)}$$

$$= \mathbb{Q}(x_n, y)$$

Remarque. La loi d'une C.M X est déterminée par la mesure initiale μ_0 et la matrice de transition \mathbb{Q} . La loi de X correspond à la probabilité sur \mathcal{C} la tribu cylindrique, elle est déterminée par ses valeurs :

$$\mathbb{P}((X_0,\ldots,X_n)\in A)$$
 avec $A\subseteq E^{n+1}$

Or,

$$\mathbb{P}((X_0,\ldots,X_n)\in A)=\sum_{x_0,\ldots,x_n\in A}\mu_0(\{x_0\})\times\mathbb{Q}(x_0,x_1)\times\ldots\times\mathbb{Q}(x_{n-1},x_n)$$

Interprétation de $\mathbb{Q}: \mathbb{Q}(x,y) = \mathbb{P}(X_{n+1} = y \mid X_n = x).$

2.4 Plusieurs pas

Comment faire d'un coup plusieurs pas?

Définition 3 (produit de chaînes de Markov)

Si $\mathbb S$ et $\mathbb Q$ sont deux noyaux de transitions sur E. On définit :

$$\mathbb{S}\cdot\mathbb{Q}\colon x,y\longmapsto \sum_{y\in E}\mathbb{S}(x,y)\mathbb{Q}(y,z)$$

Remarque. Tout est positif. C'est un noyau de transition :

$$\sum_{z} (\mathbb{S} \cdot \mathbb{Q})(x, z) = \sum_{y, z} \mathbb{S}(s, y) \mathbb{Q}(y, z) = \sum_{y} \mathbb{S}(x, y) \underbrace{\left(\sum_{z} \mathbb{Q}(y, z)\right)}_{-1} = 1$$

Donc $(\mathbb{S} \cdot \mathbb{Q})(x, z) \in [0, 1]$.

Définition 4 —

Si \mathbb{Q} est un noyau de transition on note $\mathbb{Q}^1 = \mathbb{Q}$ et $\mathbb{Q}^{n-1} = \mathbb{Q} \cdot \mathbb{Q}^n$.

Remarque. Par convention, $\mathbb{Q}^0(x,y) = \mathbb{1}_{\{x=y\}}$.

Remarque. $\mathbb{S},\mathbb{Q}\longrightarrow\mathbb{S}\cdot\mathbb{Q}$ est associative :

$$((\mathbb{S}\cdot\mathbb{Q})\cdot\mathbb{R})(x,y) = \sum_{(z,t)\in E^2} \mathbb{S}(x,z)\mathbb{Q}(z,t)\mathbb{R}(t,y)$$

Remarque. Si E est fini et qu'on identifie la matrice de transition avec de vraies matrices alors cette opération est le vrai produit matriciel.

Propriété 2 -

Si X C.M. de transition \mathbb{Q} , $\forall n, p, \ \forall A \in \mathcal{F}_n^X$:

$$\mathbb{P}(X_{n+p} = y \mid X_n = x_n, A) = \mathbb{Q}^p(x_n, y)$$

Remarque. Une conséquence est que $(X_{np})_{n\in\mathbb{N}}$ est une chaîne de Markov de noyau de transition \mathbb{Q}^p . \mathbb{Q}^p transition de p pas de la chaîne.

Preuve.

$$\mathbb{P}(X_{n+p} = y \mid X_n = x_n, A)
= \sum_{y_1, \dots, y_{p-1} \in E^{p-1}} \mathbb{P}(X_{n+1}, \dots, X_{n+p} = y_1, \dots, y_{p-1}, y \mid X_n = x_n, A)
= \sum_{y_1, \dots, y_{p-1} \in E^{p-1}} \mathbb{Q}(x_n, y_1) \mathbb{Q}(y_1, y_2) \dots \mathbb{Q}(y_{p-1}, y)
= \mathbb{Q}^p(x_n, y)$$

Exemple. (revenons au hamster)

Si initialement il mange (1), quelle est la probabilité que 7 heures plus tard il dorme (2)?

$$\mathbb{P}(X_7 = 2 \mid X_0 = 1 = (\mathbb{Q}^7)_{1,2})$$

 $\mathbb Q$ est explicite donc c'est du calcul matriciel. Pour de grandes puissances on aura intérêt à diagonaliser la matrice.

Quelle est la probabilité que jusqu'au jour 7 il ne dorme pas?

$$\mathbb{P}(X_n \neq 2, \ \forall 1 \leqslant n \leqslant 7 \mid X_0 = 1) = \mathbb{P}((X_1, \dots, X_7) = (3, 1, 3, 1, 3, 1, 3) \mid X_0 = 1)$$

$$= \mathbb{Q}(1, 2)^4 \mathbb{Q}(2, 1)^3$$

$$= \left(\frac{1}{4}\right)^4 \left(\frac{1}{2}\right)^3$$

$$= \frac{1}{2048}$$

3 Existence de chaînes de Markov à μ_0 , \mathbb{Q} fixé

Théorème 1 (réalisation canonique des C.M.) —

Soit \mathbb{Q} noyau de transition sur E. Soit $\Omega_0 = E^{\mathbb{N}}$ et \mathcal{C} la tribu cylindrique. $\exists (\mathbb{P}_x)_{x \in E}$ une famille de probabilités telle que si $X \colon \Omega_0 \longrightarrow \Omega_0$ est l'identité alors la loi de X sur $(\Omega, \mathcal{C}, \mathbb{P}_x)$ est celle d'une C.M. de transition \mathbb{Q} et de mesure initiale δ_x .

Preuve.

Soient $(Z_y^n)_{n\in\mathbb{N},\ y\in E}$ des v.a. indépendantes et $Z_y^n\sim\mathbb{Q}(y,\cdot),\ Z_y^n\in E.$ Soit $X_0=x$ et pour $n\geqslant 1$ $X_n=Z_{X_{n-1}}^n.$ $X_0\sim\delta_x.$

$$\mathbb{P}(X_{n+1} = x_{n+1} \mid X_0, \dots, X_n = x_0, \dots, x_n) = \mathbb{P}(Z_{X_n}^{n+1} = x_{n+1} \mid X_0, \dots, X_n = x_0, \dots, x_n)$$

$$= \mathbb{P}(Z_{x_n}^{n+1} = x_{n+1} \mid \underbrace{X_0, \dots, X_n = x_0, \dots, x_n}_{\in \sigma(Z_y^k \mid k \leqslant n)})$$

$$\stackrel{=}{\underset{\text{idp}}{}} \mathbb{Q}(x_n, x_{n+1})$$

On définit \mathbb{P}_x = la loi de X, identité sur $\Omega_0, \mathcal{C}, \mu_X = \mathbb{P}_x$ a même loi que X donc ok. \square

Remarque. $X \sim \mathbb{P}_x \Leftrightarrow X$ C.M. de transition \mathbb{Q} et $X_0 = x$ p.s. On peut changer le point de départ en cageant \mathbb{P}_x .

Définition 5

Si μ est une probabilité sur E, on définit :

$$P_{\mu} = \sum_{x \in E} \mu(\{x\}) \mathbb{P}_x$$

qui est une probabilité sur $E^{\mathbb{N}}$.

Remarque. Si sur $(E^{\mathbb{N}}, \mathcal{C}, \mathbb{P}_{\mu})$ X est l'identité alors X est une CM de transition \mathbb{Q} et $X_0 \sim \mu$. Car :

$$\mathbb{P}_{\mu}((X_0, \dots, X_n) = x_0, \dots, x_n) = \sum_{x \in E} \mu(\{x\}) \underbrace{\mathbb{P}_{x}((X_0, \dots, X_n) = x_0, \dots, x_n)}_{0 \text{ si } x_0 \neq x}$$

$$= \mu(\{x_0\}) \mathbb{P}_{x_0}((X_1, \dots, X_n) = x_1, \dots x_n)$$

$$= \mu(\{x_0\}) \mathbb{Q}(x_1, x_2) \dots \mathbb{Q}(x_{n-1}, x_n)$$

caractérise bien CM \mathbb{Q} , μ_0 .

Remarque. Différence avec ce qu'on a fait jusque là lorsqu'on travaille avec la réalisation canonique :

- on travaille avec un espace de probabilité fixé $(E^{\mathbb{N}}, \mathcal{C}, \mathbb{P}_{\mu})$ (\mathbb{P}_{μ} une famile de probabilités)
- \bullet notations:
 - $-\mathbb{E}_x$ espérance sous \mathbb{P}_x
 - $-\mathbb{E}_{\mu}$ espérance sous \mathbb{P}_{μ}

On y gagne en souplesse en permettant de changer le point de départ.

Remarque. Si on prouve pour un certain événement A, $\forall \mu$, $X \in A$ \mathbb{P}_{μ} p.s. (propriété de la réalisation canonique), alors on a prouvé que pour toute CM Y de transition \mathbb{Q} , $Y \in A$ p.s.

Intérêt de la réalisation canonique. Pouvoir renforcer la propriété que le futur ne dépend du passé qu'au travers du présent. On a deux énoncés traduisant cela : les propriétés de Markov simple et forte.

Définition 6 (shift) -

$$\theta \colon \left\{ \begin{array}{ccc} E^{\mathbb{N}} & \longrightarrow & E^{\mathbb{N}} \\ (x_0, x_1, \ldots) & \longmapsto & (x_1, x_2, \ldots) \end{array} \right.$$

Remarque. On a si $x=(x_0,x_1,\ldots)$, $\theta^n x=(x_n,x_{n+1},\ldots)$. Si $X=(X_n)_{n\in\mathbb{N}}$ est un procesus, on voir $\theta^n X=(X_n,X_{n+1},\ldots)$ comme le futur.

Propriété 3 (de Markov simple) –

 \mathbb{Q} transition sur E, sous la réalisation canonique. $\forall B \in \mathcal{C}, \ \forall A \in \mathcal{F}_n^X, \ \forall x \in E, \ \forall \mu$ probabilité sur E:

$$\mathbb{P}_{\mu}(\theta^{n}X \in B \mid X_{n} = x, A) = \mathbb{P}_{x}(X \in B)$$

(si
$$\mathbb{P}_{\mu}(X_n = x, A) \neq 0$$

Remarque. $\Leftrightarrow \mathbb{P}_{\mu}(\theta^n X \in B, X_n = x, A) = \mathbb{P}_x(X \in B)\mathbb{P}_{\mu}(X_n = x, A)$

Preuve.

On veut identifier la loi de $\theta^n X : (E^{\mathbb{N}}, \mathcal{C}, \mathbb{P}_{\mu}(.|A, X_n = x)) \longrightarrow E^{\mathbb{N}}$ et celle de $X : (E^{\mathbb{N}}, \mathcal{C}, \mathbb{P}_x) \longrightarrow E^{\mathbb{N}}$. Donc il suffit de le vérifier sur une classe génératrice stable par \cap finie.

Soit $B = \{(x_0, x_1, \dots) | x_0 = b_0, \dots x_p = b_p\}$ où b_0, \dots, b_p sont des éléments de E fixés. Cela forme une classe stable par \cap finie qui engendre tout.

$$\mathbb{P}_{\mu}((X_n, \dots, X_{n+p} = (b_0, \dots, b_p) \mid X_n = x, A) = \mathbb{P}_{x}((X_0, \dots, X_p) = b_0, \dots, b_p)$$

C'est le cas puisque l'on sait que les deux valent $\mathbb{1}_{b_0=x}\mathbb{Q}(b_0,b_1)\dots\mathbb{Q}(b_{p-1},b_p)$.

Remarque. (reformulations)

Sous les mêmes hypothèses $\forall f$ mesurable borné :

$$\mathbb{E}_{\mu}[f(\theta^n X)|\mathcal{F}_n^X]\mathbb{1}_{X_n=x} = \mathbb{E}_x[f(X)]\mathbb{1}_{X_n=x} \quad \mathbb{P}_{\mu} \text{ p.s.}$$

Autre reformulation qui en découle :

$$\mathbb{E}_{\mu}[f(\theta^{n}X)|\mathcal{F}_{n}^{X}] = \underbrace{\mathbb{E}_{X_{n}}[f(X)]}_{(*)} \quad \mathbb{P}_{\mu} \text{ p.s.}$$

où (*) est la v.a. qui vaut $\sum_x \mathbb{E}_x[f(X)]\mathbbm{1}_{X_n=x}$

Preuve. $\mathbb{E}_x[f(X)]$ est \mathcal{F}_n -mesurable. Il suffit de montrer le résultat pour $f=\mathbb{1}_B$ on l'aura alors pour tous les f étagées par linéarité puis pour tout f par TCM. Alors pour $A \in \mathcal{F}_n^X$,

$$\mathbb{E}_{\mu}[\underbrace{\mathbb{1}_{\theta^{n}X \in B}}_{f(\theta^{n}X)}\mathbb{1}_{A}] = \sum_{x \in E} \mathbb{P}_{\mu}(\theta^{n}X \in B, A, X_{n} = x)$$

$$= \sum_{x \in E} \mathbb{P}_{x}(X \in B)\mathbb{P}_{\mu}(A, X_{n} = x)$$

$$= \mathbb{E}_{\mu}\Big[\sum_{x \in E} \mathbb{P}_{x}(X \in B)\mathbb{1}_{X_{n} = x}\mathbb{1}_{A}\Big]$$

$$\mathcal{F}_{x-\text{mesurable}}$$

Donc:

$$\mathbb{E}_{\mu}[f(\theta^{n}X)|\mathcal{F}_{n}^{X}] = \sum_{x \in E} \mathbb{E}_{x}[f(X)]\mathbb{1}_{X_{n}=x} \quad \mathbb{P}_{\mu} \text{ p.s.}$$

On multiplie alors des deux côtés par $\mathbb{1}_{X_n=x}$.

- **Propriété 4** (de Markov forte) —

 \mathbb{Q} noyau de transition sur $E,\,T$ temps d'arrêt par rapport à $\mathcal{F}^X,\,A\in\mathcal{F}_T,\,B$ quelconque. Alors :

$$\mathbb{P}_{\mu}(\theta^TX\in B\mid T<+\infty,X_T=x,A)=\mathbb{P}_x(X\in B)$$
 (si $\mathbb{P}_x(T<+\infty,X_T=x,A)\neq 0$)

Remarque. plus utile:

$$\mathbb{P}_{\mu}(\theta^T X \in B, X_T = x, T < +\infty, A) = \mathbb{P}_{x}(X \in B)\mathbb{P}_{\mu}(X_T = x, T < +\infty, A)$$

Preuve.

$$\mathbb{P}_{\mu}(\theta^{T}X \in B, X_{T} = x, \underbrace{T < +\infty}_{= \sqcup_{n \in \mathbb{N}} \{T = n\}}, A) = \sum_{n \in \mathbb{N}} \mathbb{P}_{\mu}(\theta^{n}X \in B, X_{n} = x, \underbrace{(T = n \cap A)}_{\in \mathcal{F}_{n}^{X}})$$

$$= \sum_{\text{Markov simple}} \sum_{n \in \mathbb{N}} \mathbb{P}_{x}(x \in B) \mathbb{P}_{\mu}(X_{n} = x, T = n, A)$$

$$= \mathbb{P}_{x}(x \in B) \sum_{n \in \mathbb{N}} \mathbb{P}_{\mu}(X_{n} = x, T = n, A)$$

$$= \mathbb{P}_{x}(X \in B) \mathbb{P}_{\mu}(X_{T} = x, T < +\infty, A)$$

Remarque. (reformulation)

 $\forall f$ mesurable borné :

$$\mathbb{E}_{\mu}[f(\theta^T X) \mid \mathcal{F}_T] \mathbb{1}_{T < +\infty, X_T = x} = \mathbb{E}_x[f(X)] \mathbb{1}_{X_T = x, T < +\infty} \quad \mathbb{P}_{\mu} \text{ p.s.}$$

Preuve. Soit $A \in \mathcal{F}_T$.

$$\mathbb{E}_{\mu}[f(\theta^{T}X) \underbrace{\mathbb{1}_{T < +\infty, X_{T} = x}}_{=\sum_{n \in \mathbb{N}} \mathbb{1}_{T = n, X_{n} = x}} \mathbb{1}_{A}] = \sum_{n \in \mathbb{N}} \mathbb{E}_{\mu}[f(\theta^{n}X)\mathbb{1}_{T = n, A}\mathbb{1}_{X_{n} = x}]$$

$$= \sum_{n \in \mathbb{N}} \mathbb{E}_{\mu}\Big[\mathbb{E}_{\mu}[f(\theta^{n}X) \mid \mathcal{F}_{n}]\mathbb{1}_{T = n, A}\mathbb{1}_{X_{n} = x}\Big]$$

$$= \sum_{n \in \mathbb{N}} \mathbb{E}_{\mu}\Big[\mathbb{E}_{\mu}[f(\theta^{n}X) \mid \mathcal{F}_{n}]\mathbb{1}_{T = n, A}\mathbb{1}_{X_{n} = x}\Big]$$

$$= \mathbb{E}_{x}[f(X)]\underbrace{\sum_{n \in \mathbb{N}} \mathbb{E}_{\mu}[\mathbb{1}_{T < +\infty}\mathbb{1}_{A}\mathbb{1}_{X_{T} = x}]}_{\mathbb{E}_{\mu}[\mathbb{1}_{T < +\infty}\mathbb{1}_{A}\mathbb{1}_{X_{T} = x}]}$$

Donc:

$$\mathbb{E}_{\mu}[f(\theta^T X) \underbrace{\mathbb{1}_{X_T = x} \mathbb{1}_{T < +\infty}}_{\mathcal{F}_n - \text{mesurable}} | \mathcal{F}_n] = \mathbb{E}_x[f(X)] \mathbb{1}_{T < +\infty} \mathbb{1}_{X_T = x} \quad \mathbb{P}_{\mu} \text{ p.s.}$$

D'où le résultat.

Objectif Savoir si un CM X passe souvent en un point ou non.

Définition 7 -

Soit \tilde{T}_x ="premier retour en x" = $\inf\{n \ge 1 \mid X_n = x\}$

Remarque. $\tilde{T}_x \neq \text{la première atteinte de } x$. Si $X_0 = x$ on a quand même $\tilde{T}_x > 0$.

Définition 8

$$N_x=$$
 "nombre de passage en x " = Card $\{n\in\mathbb{N}\mid X_n=x\}=\sum_{n\geqslant 0}\mathbbm{1}_{X_n=x}$

Exemple. On a vu que si X est la MAS sur \mathbb{Z} alors elle passe une infinité de fois sur chaque site : $\forall x, y \ N_y = +\infty \ \mathbb{P}_x$ p.s. et $\tilde{T}_y < +\infty \ \mathbb{P}_x$ p.s. (partant de x je passe en y et même une infinité de fois).

- **Propriété 5** (récurrent transitoire) —

 $\mathbb Q$ noyau de transition sur E, si $x\in E,$ il y a deux possibilités :

- $\tilde{T}_x < +\infty$ \mathbb{P}_x p.s. (on revient toujours en x), alors $N_x = +\infty$ \mathbb{P}_x p.s., on dit alors que x est récurrent
- ou bien $\mathbb{P}_x(\tilde{T}_x = x) > 0$ alors $N_x < +\infty$ \mathbb{P}_x p.s., on dit que x est transitoire (et même $N_x \sim \mathcal{G}(\mathbb{P}_x(\tilde{T}_x = +\infty))$, $\mathbb{E}_x[N_x] = \frac{1}{\mathbb{P}_x(\tilde{T}_x = +\infty)}$)

Preuve.

Les deux conditions s'excluent, $X_0 = x \mathbb{P}_x$ p.s. donc $N_x \geqslant 1 \mathbb{P}_x$ p.s. Calculons pour $k \geqslant 1$:

$$\mathbb{P}_{x}(N_{x} \geqslant k+1) = \mathbb{P}_{x}(N_{x} \geqslant k+1, \tilde{T}_{x} < +\infty) + \underbrace{\mathbb{P}_{x}(N_{x} \geqslant k+1, \tilde{T}_{x} = +\infty)}_{=0 \ \tilde{I}_{x} = +\infty \Rightarrow N_{x} = 1)}_{=0 \ \tilde{I}_{x} = +\infty \Rightarrow N_{x} = 1)}$$

$$= \mathbb{P}_{x}(N_{x} \geqslant k+1, \tilde{T}_{x} < +\infty)$$

$$= \mathbb{P}_{x}\left(\underbrace{n_{x}(X)}_{1+n_{x}(\theta^{\tilde{T}_{x}}X) \text{ car } X_{0} = x}_{1+n_{x}(\theta^{\tilde{T}_{x}}X) \text{ car } X_{0} = x}\right)$$

$$= \mathbb{P}_{x}\left(n_{x}(\theta^{\tilde{T}_{x}}X) \geqslant k, \tilde{T}_{x} < +\infty, X_{\tilde{T}_{x}} = x\right)$$

$$\underset{\text{Markov fort}}{=} \mathbb{P}_{x}(n_{x}(X) \geqslant k)\mathbb{P}_{x}(\tilde{T}_{x} < +\infty, X_{\tilde{T}_{x}} = x)$$

où $N_x = n_x(X)$ avec $n_x(y_0, y_1, ...) = \sum_{n \in \mathbb{N}} \mathbb{1}_{y_n = x}$. Donc :

$$\mathbb{P}_x(N_x \geqslant k+1) = \mathbb{P}_x(N_x \geqslant k)\mathbb{P}_x(\tilde{T}_x < +\infty)$$

Donc puisque $\mathbb{P}_x(N_x \geqslant 1) = 1$:

$$\mathbb{P}_x(N_x \geqslant k) = \mathbb{P}_x(\tilde{T}_x < +\infty)^{k-1}$$

- Si $\tilde{T}_x < +\infty$ \mathbb{P}_x p.s. alors $\mathbb{P}_x(N_x \geqslant k) = 1$ donc $N_x = +\infty$ \mathbb{P}_x p.s.
- Si $\mathbb{P}_x(\tilde{T}_x < +\infty) < 1$:

$$\begin{split} \mathbb{P}_x(N_x = k) &= \mathbb{P}_x(N_x \geqslant k) - \mathbb{P}_x(N_x \geqslant k+1) \\ &= \mathbb{P}_x(\tilde{T}_x < +\infty)^{k-1} \mathbb{P}_x(\tilde{T}_x = +\infty) \\ &= (1 - \mathbb{P}_x(\tilde{T}_x = +\infty))^{k-1} \mathbb{P}_x(\tilde{T}_x = +\infty) \end{split}$$

 $\mathbb{E}[f(\theta^T X)|\mathcal{F}_T] \mathbb{1}_{T<+\infty,X_T=x}.$

$$\mathbb{P}_{\mu}(\theta^T X \in B, A, X_T = x, T < +\infty) = \mathbb{E}_{\mu}[\mathbb{E}[\mathbb{1}_{\theta^T X \in B} | \mathcal{F}_T] \mathbb{1}_{X_T = x} \mathbb{1}_{T < +\infty} \mathbb{1}_A] = \mathbb{E}_{\mu}[\mathbb{E}_x[\mathbb{1}_{X \in B}] \mathbb{1}_{X_T = x, T < +\infty, A}]$$

Remarque. On a proué :

$$\mathbb{P}_x(N_x = k) = \mathbb{P}_x(\tilde{T}_x < +\infty)^{k-1} \mathbb{P}_x(\tilde{T}_x = +\infty)$$

signifie $\mathbb{P}(k \text{ passages en } x) = \mathbb{P}(\text{on revient } k-1 \text{ fois puis on s'échappe})$. La propriété de Markov permet de découper dans le temps en événements indépendants.

Cas peu intéressant.

Si
$$\mathbb{Q} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & 0 & \frac{1}{2} & \frac{1}{2}\\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

L'étude se ramène à 2 chaînes de Markov disjointes.

Autre cas. Partant de x on va avec 1 chance sur 2 en hat et on ne va jamais vers le bas. On voudrait une notion qui dise si 2 sites peuvent communiquer entre eux.

Définition 9

 $\mathbb Q$ fixé. On définit le potentiel de la marche par $U\colon E\times E\longrightarrow E$:

$$U(x,y) = \mathbb{E}_x \left[\underbrace{N_y}_{=\sum \mathbb{1}_{X_n = y}} \right] = \sum_{n=0}^{+\infty} \mathbb{P}_x(X_n = y) = \sum_{n=1}^{+\infty} Q^n(x,y)$$

On a une équivalence pour $x \neq y$ dans E

$$\mathbb{P}_{x}(\tilde{T}_{y} < +\infty) > 0 \Leftrightarrow \mathbb{P}_{x}(\exists n \geq 0, X_{n} = y) > 0$$

$$\Leftrightarrow \exists n \geq 0, \ \mathbb{P}_{x}(X_{n} = y) \neq 0$$

$$\Leftrightarrow \exists n \geq 0, \ Q^{n}(x, y) \neq 0$$

$$\Leftrightarrow U(x, y) \neq 0$$

Si c'est vrai on note $x \rightsquigarrow y$ "x communique avec y" (dans la représentation graphique, il existe un chamine de $x \grave{a} y$). On note \Longleftrightarrow la relation d'équivalence engendrée.

On dit que \mathbb{Q} est *irréductible* s'il y a une seule classe pour cette relation.

Propriété 6 —

$$k \text{ récurrent } \Leftrightarrow U(x,x) = +\infty$$

Preuve

$$x \text{ récurrent} \Rightarrow N_x = +\infty \mathbb{P}_x \text{ p.s.} \Rightarrow \underbrace{\mathbb{E}_x[N_x]}_{=U(x,x)} = +\infty$$

$$x \text{ transitoire} \Rightarrow U(x,x) = \mathbb{E}_x[N_x] = \frac{1}{\mathbb{P}_x(\tilde{T}_x = +\infty)} < +\infty$$

Applications. (MAS sur \mathbb{Z}^d)

• $d = 1: S = x + Y_1 + \ldots + Y_n$ avec $(Y_i)_{i \ge 1}$ indépendant de loi $\mathbb{P}(Y_i = 1) = \mathbb{P}(Y_i = -1) = \frac{1}{2}$ est une CM sur \mathbb{Z} de transition :

$$\begin{cases} \mathbb{Q}(i, i+1) = \frac{1}{2} \\ \mathbb{Q}(i, i-1) = \frac{1}{2} \\ Q(i, j) = 0 \text{ sinon} \end{cases}$$

Calculons U(y,y).

$$U(y,y) = \sum_{n=0}^{+\infty} \mathbb{P}_y(X_n = y) = \sum_{n=0}^{+\infty} \mathbb{P}(\underbrace{Y_1 + \ldots + Y_n = 0}_{\emptyset \text{ si } n \text{ impair}}) = \sum_{n=0}^{+\infty} \mathbb{P}(S_{2n}^0 = 0)$$

Or,

$$\mathbb{P}(S_{2n}^{0} = 0) = \mathbb{P}\left(\underbrace{\operatorname{Card}\{1 \leqslant i \leqslant 2n \mid Y_{i} = 1\}}_{\sim \mathcal{B}(2n, 1/2)} = n\right)$$

$$= \binom{2n}{n} \frac{1}{2^{2n}} = \frac{2n!}{n! n!} \frac{1}{4^{n}}$$

$$\stackrel{\left(\frac{2n}{2}\right)^{2n}}{\sim} \frac{\sqrt{2\pi 2n}}{\sqrt{2\pi n} \sqrt{2\pi n}} \frac{1}{4^{n}} = \frac{1}{\sqrt{\pi n}}$$
Stirling $\frac{\left(\frac{n}{2}\right)^{n} \left(\frac{n}{2}\right)^{n} \sqrt{2\pi n} \sqrt{2\pi n}}{\sqrt{2\pi n} \sqrt{2\pi n}} \frac{1}{4^{n}} = \frac{1}{\sqrt{\pi n}}$

Ainsi $U(y,y) = \sum_{n\geqslant 0} \frac{1}{\sqrt{\pi n}} (1+o(1)) = +\infty$. On retrouve bien que tous les sites sont récurrents.

• $d=2: S_n^x=x+X_1+\ldots+X_n\in\mathbb{Z}^2$ avec X_i indépendants et $X_i\sim\mathcal{U}()\{(1,0),(0,1),(-1,0),(0,-1)\}$. rotation d'angle $\frac{\pi}{4}$ et dilatation de $\sqrt{2}$ (opération noté φ , linéaire). On se déplace désormais selon les diagonales. On pose $\tilde{Y}=\varphi(\tilde{Y})$ et $\tilde{S}_n^0=\tilde{Y}_1+\ldots+\tilde{T}_n=\varphi(S_n^0)$. Désormais :

$$\tilde{Y}_i \sim \mathcal{U}\{(1,1), (1,-1), (-1,1), (-1,-1)\} = \left(\frac{1}{2}(\delta_1 + \delta_{-1})\right) \otimes \left(\frac{1}{2}(\delta_1 + \delta_{-1})\right)$$

Donc en notant $\tilde{S}_n^0 = (\tilde{S}_n^{0,1}, \tilde{S}_n^{0,2})$ et $\tilde{S}_n^{0,k} = \sum_{i=1}^n \tilde{Y}_i^k$ $(k \in \{1,2\})$, on a $\tilde{S}_n^{0,1}$ et $\tilde{S}_n^{0,2}$ indépendants et de loi la MAS sur \mathbb{Z} .

$$U(y,y) = \sum_{n \leqslant 0} \mathbb{P}(S_n^0 = 0_{\mathbb{Z}^2}) \underset{\text{parit\'e}}{=} \sum_{n \geqslant 0} \mathbb{P}(S_{2n}^0 = 0) = \sum_{n \geqslant 0} \mathbb{P}(\tilde{S}_{2n}^0 = 0_{\mathbb{Z}^2})$$

Donc:

$$U(y,y) \underset{\text{idp}}{=} \sum_{n \geq 0} \mathbb{P}(\tilde{S}_{2n}^{0,1} = 0) \mathbb{P}(\tilde{S}_{2n}^{0,2} = 0) = \sum_{n \geq 0} \frac{1}{\sqrt{\pi n}} (1 + o(1)) \frac{1}{\sqrt{\pi n}} (1 + o(1)) \sim \sum_{n} \frac{1}{n} = \infty$$

Donc tout site est récurrent pour la MAS dans \mathbb{Z}^2

• $d \geqslant 3$ dans le cas de la MA sur les diagonales : on prend $(\tilde{Y}_i)_{i\geqslant 1}$ indépendant uniforme sur $\{(x_1,\ldots,x_d)\mid x_i\in\{-1,1\}\}.$ $\tilde{S}_n^x=x+\tilde{Y}_1+\ldots+\tilde{T}_n$, ses coordonnées sont indépendantes et sont des MAS sur \mathbb{Z} . Alors comme précédemment :

$$\begin{split} U(y,y) &= \sum_{n\geqslant 0} \mathbb{P}(\tilde{S}_{2n}^0 = 0) \\ &= \sum_{\substack{1 \text{dp} \\ n\geqslant 0}} \mathbb{P}(\tilde{S}_{2n}^{0,1} = 0) \times \dots \mathbb{P}(\tilde{S}_{2n}^{0,d} = 0) \\ &= \sum_{\substack{n\geqslant 0}} \left(\frac{1}{\sqrt{\pi n}}(1+o(1))\right)^d < +\infty \quad \text{ pour } d\geqslant 3 \end{split}$$

Tout site est transitoire.

 \triangle Cela ne permet pas de savoir si c'est aussi le cas pour la MAS sur \mathbb{Z}^d .

• d quelconque pour la MAS : soient (Y_i) indépendants dans \mathbb{Z}^d , $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ la base canonique. $Y_i \sim \mathcal{U}(\{e_1, -e_1, \dots, e_d, -e_d\})$.

$$S_n = Y_1 + \ldots + Y_n$$
 MAS sur \mathbb{Z}^d issur de 0

on ne peut revenir en 0 qu'au bout d'un nombre pair de pas. Calculons U(0,0):

$$U(0,0) = \sum_{n \ge 0} = \sum_{n \ge 0} \mathbb{P}(S_n = 0) = \sum_{n \ge 0} \mathbb{P}(S_{2n} = 0)$$

Calculons $\phi_{S_{2n}}$.

$$\phi_{Y_1}(\underbrace{\lambda}_{\in \mathbb{R}^d}) = \mathbb{E}[e^{i\langle \lambda, Y_1 \rangle}]$$

$$= \frac{1}{2d} \left(e^{i\langle \lambda | e_1 \rangle} + e^{i\langle \lambda | - e_1 \rangle} + \dots + e^{i\langle \lambda | e_d \rangle} + e^{i\langle \lambda | - e_d \rangle} \right)$$

$$= \frac{1}{2} (\cos(\lambda_1) + \dots + \cos(\lambda_d))$$

Donc par indépendance :

$$\phi_{S_{2n}}(\lambda) = \phi_{Y_1 + \dots Y_{2n}}(\lambda) = \left(\frac{\cos(\lambda_1) + \dots \cos(\lambda_d)}{d}\right)^{2n}$$

Or:

$$\varphi_{S_{2n}}(\lambda) = \mathbb{E}[e^{i\langle\lambda|S_{2n}\rangle}] = \sum_{k\in\mathbb{Z}^d} e^{i\langle\lambda|k\rangle} \mathbb{P}(S_{2n} = k)$$

En intégrant :

$$\int_{\lambda \in [-\pi,\pi]^d} \varphi_{S_{2n}}(\lambda) d\lambda = (2\pi)^d \mathbb{P}(S_{2n} = 0)$$

Donc:

$$U(0,0) = \sum_{n\geqslant 0} \mathbb{P}(S_{2n} = 0)$$

$$= \frac{1}{(2\pi)^d} \sum_{n\geqslant 0} \int_{[-\pi,\pi]^d} \phi_{S_{2n}}(\lambda) d\lambda$$

$$= \frac{1}{(2\pi)^d} \sum_{n\geqslant 0} \int_{[-\pi,\pi]^d} \underbrace{\frac{\cos(\lambda_1) + \dots + \cos(\lambda_d)}{d}}_{\in [0,1]} d\lambda$$

$$= \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} \underbrace{\frac{1}{1 - \left(\frac{\cos(\lambda_1) + \dots + \cos(\lambda_d)}{d}\right)^2}}_{(*)}$$

Problème : $(*) \longrightarrow +\infty$ lorsque les $\lambda_i \longrightarrow 0$ ou π . Restreignons les bornes de l'intégrale :

$$\begin{split} U(0,0) &= \frac{1}{(2\pi)^d} \Biggl(\int_{]-\varepsilon,\varepsilon[^d} \frac{1}{1 - \Bigl(\frac{\cos(\lambda_1) + \dots + \cos(\lambda_d)}{d}\Bigr)^2} \lambda \\ &+ \int_{(\pi+]-\varepsilon,\varepsilon[)^d} \frac{1}{1 - \Bigl(\frac{\cos(\lambda_1) + \dots + \cos(\lambda_d)}{d}\Bigr)^2} \lambda \\ &+ I \Biggr) \quad \text{avec } I < +\infty \end{split}$$

Par symétrie $\lambda \mapsto \pi - \lambda$ les deux premières intégrales sont égales. Alors :

$$U(0,0) < +\infty \Leftrightarrow \frac{1}{(2\pi)^d} \int_{]-\varepsilon,\varepsilon[^d} \frac{1}{1 - \left(\frac{\cos(\lambda_1) + \dots + \cos(\lambda_d)}{d}\right)^2} \lambda < +\infty$$

Comme $\cos x = 1 - \frac{x^2}{2} + o(x^2)$, on a:

$$1 - \left(\frac{\cos \lambda_1 + \dots + \cos \lambda_d}{d}\right)^2 = 1 - \left(\frac{1 - \lambda_1^2/2 + \dots + 1 - \lambda_d^2/2}{d} + o(\varepsilon^2)\right)^2$$
$$= 1 - \left(1 - \frac{\lambda_1^2 + \dots + \lambda_d^2}{2d} + o(\varepsilon^2)\right)^2$$
$$= \frac{\lambda_1^2 + \dots + \lambda_d^2}{2d} + o(\varepsilon^2)$$

Ainsi:

$$U(0,0)<+\infty \ \Leftrightarrow \ \int_{]-\varepsilon,\varepsilon[^d}\frac{1}{\|\lambda\|_2^2}d\lambda \ \Leftrightarrow \ \int_{\|\lambda\|<\varepsilon}\frac{1}{\|\lambda\|_2^2}d\lambda$$

Changement de coordonnée polaire dans \mathbb{R}^n , f mesurable positif

$$\int_{\mathbb{R}^n} f(\|x\|) dx = c_n \int_{r>0} f(r) r^{n-1} dr$$

Ici
$$U(0,0)<+\infty\Leftrightarrow\ldots\Leftrightarrow\int_0^\varepsilon n^{d-3}<+\infty\Leftrightarrow d\geqslant 3$$

Propriété 7 —

- x récurrent et $x \leadsto y \Rightarrow y$ récurent et $y \leadsto x$. De plus $N_y = +\infty$ \mathbb{P}_x p.s.
- y transitoire et $x \leadsto y \Rightarrow x$ transitoire. Et $\forall z,\ N_y < +\infty \ \mathbb{P}_x$ p.S.
- être transitoire ou récurrent est une propriété de classe :

si $x \leftrightarrow y$ alors x récurrent $\Leftrightarrow y$ récurrent

Preuve.

 $x \rightsquigarrow y \text{ donc } \exists n \text{ tel que } \mathbb{P}_x(X_n = y) > 0, \text{ or } (X_n = y) \subseteq (\tilde{T}_y < +\infty), \text{ donc } :$

$$\begin{split} 0 < \mathbb{P}_x(\tilde{T}_y < +\infty) &= \mathbb{P}_x(\tilde{T}_y < +\infty, N_x = +\infty) \quad \text{car x récurrent donc $N_x = +\infty$ \mathbb{P}_x p.s.} \\ &= \mathbb{P}_x(\tilde{T}_y < +\infty, n_x(\theta^{\tilde{T}_y}(X)) = +\infty, \underbrace{X_{\tilde{T}_y} = y}_{\text{gratuit}}) \\ &= \underset{\text{Markov fort}}{\mathbb{P}_y(n_x(X) = +\infty)} \mathbb{P}_x(\tilde{T}_y < +\infty, X_{\tilde{T}_y = y}) \end{split}$$

Ainsi:

$$0 < \mathbb{P}_x(\tilde{T}y < +\infty) = \mathbb{P}_y(N_x = +\infty)\mathbb{P}_x(\tilde{T}_y < +\infty)$$

Donc $N_x = +\infty$ \mathbb{P}_y p.s. donc $U(y, x) = +\infty$ donc $y \rightsquigarrow x$.

On a $x \rightsquigarrow y$ donc $\exists l, \ \mathbb{Q}^l(x,y) > 0$ et $y \rightsquigarrow x$ donc $\exists p, \ \mathbb{Q}^p(y,x) > 0$. Calculons :

$$U(y,y) = \sum_{n\geqslant 0} \mathbb{Q}^n(y,y) \geqslant \sum_{n\geqslant 0} \mathbb{Q}^{l+n+p}(y,y) \geqslant \sum_{n\geqslant 0} \mathbb{Q}^l(y,x) \mathbb{Q}^n(x,x) \mathbb{Q}^p(x,y)$$

Donc,

$$U(y,y) \geqslant \underbrace{\mathbb{Q}^l(y,x)U(x,x)\mathbb{Q}^p(x,y)}_{>0} = +\infty$$

Aisni y est récurrent.

On a vu que x récurrent et $x \rightsquigarrow y \Rightarrow N_x = +\infty$ \mathbb{P}_y p.s. On sait y récurrent et $y \rightsquigarrow x$ donc $N_y = +\infty$ \mathbb{P}_x p.s.

Contraposée:

$$\left\{\begin{array}{ll} x \leadsto y \\ y \text{ transitoire} \end{array}\right. \Rightarrow x \text{ transitoire}$$

Calculons si y transitoire et $z \neq y$:

$$\begin{split} U(z,y) &= \mathbb{E}_z[N_y] \\ &= \mathbb{E}_z\big[\mathbbm{1}_{\tilde{T}_y < +\infty} N_y\big] + \underbrace{\mathbb{E}_z\big[\mathbbm{1}_{\tilde{T}_y = +\infty} N_y\big]}_{=0} \\ &= \mathbb{E}_z\Big[\mathbb{E}_z\big[n_y(\theta^{\tilde{T}_y}X) \mid \mathcal{F}_{\tilde{T}_y}\big]\mathbbm{1}_{\tilde{T}_y < +\infty, X_{\tilde{T}_y} = y}\Big] \\ &= \mathbb{E}_z\Big[\mathbb{E}_y[n_y(X)]\mathbbm{1}_{\tilde{T}_y < +\infty, X_{\tilde{T}_y} = y}\Big] \\ &= \mathbb{E}_y[N_y]\mathbb{P}_z(\tilde{T}_y < +\infty) \end{split}$$

Bilan:

$$U(z,y) = \underbrace{U(y,y)}_{<+\infty \text{ car transitivte}} \mathbb{P}_z(\tilde{T}_y < +\infty) < +\infty$$

donc $\mathbb{E}_z[N_y] < +\infty$ donc $N_y < +\infty \mathbb{P}_z$ p.s.

Définition 10

Soient \mathbb{Q}, E fixés.

- \bullet On dit que $\mathbb Q$ est irréductible s'il n'y a qu'une seule classe dans E.
- \bullet On dit que $\mathbb Q$ est réccurent si en plus tous les points sont récurrents.
- Et sinon (tous les points sont transitoires) on dit que $\mathbb Q$ est transitoire.

Remarque. On attribue aussi les attributs irréductible, transitoire, récurrent au processus X.

Application. Les MAS sur \mathbb{Z}^d sont irréductibles et elles sont récurrentes si d=1 ou 2 pour tout x,y $N_y=+\infty$ \mathbb{P}_x p.s. Elles sont transitoires si $d\geqslant 3,$ $N_y<+\infty$ \mathbb{P}_x p.s. Alors :

$$\operatorname{Card}\{n\mid \|X_n\|\leqslant R\} = \sum_{\|y\|\leqslant R} N_y \quad \mathbb{P}_x \text{ p.s.}$$

 $\underline{\lim}_n ||X_n|| \geqslant R \mathbb{P}_x$ p.s. Vrai pour tout R donc :

$$||X_n|| \xrightarrow[n \to +\infty]{} +\infty \mathbb{P}_x \text{ p.s.}$$

Théorème 2 (décomposition d'une chaîne de Markov) -

Si \mathbb{Q} , E fixés. Soit :

$$\mathcal{T} = \{x \in E \mid x \text{ transitoire}\}$$
 $\mathcal{R} = \{x \in E \mid x \text{ récurrent}\} = \mathcal{R}_1 \cup \dots \mathcal{R}_n \cup \dots$

où les \mathcal{R}_i sont les classes d'équivalence pour \iff .

Alors on a:

- $\forall n, X_n \in \mathcal{T} \text{ et } (N_y < +\infty, \ \forall y \in E), \ (N_y == 0, \ \forall y \in \mathcal{R})$
- ou bien $T = \inf\{n | X_n \in \mathcal{R}\} < +\infty$, et si i est tel que $X_T \in \mathcal{R}_i$ alors :

$$-N_y < +\infty \ \forall y \in \mathcal{T}$$

$$- N_y = 0 \ \forall y \in \mathcal{R} \backslash \mathcal{R}_i$$

$$-N_y = +\infty \ \forall y \in \mathcal{R}_i$$

 \mathbb{P}_x p.s. pour tout x.

Preuve.

Si $x \in \mathcal{R}_i$, $\forall y \notin \mathcal{R}_i$, $x \not\rightsquigarrow y$ donc $N_y = 0$ \mathbb{P}_x p.s., mais si $y \in \mathcal{R}_i$, $x \rightsquigarrow y$ alors $N_y = +\infty$ \mathbb{P}_x p.s. Soit:

$$A_i = \{ \forall y \in \mathcal{R}_i, \ N_y = +\infty, \ \forall y \notin \mathcal{R}_i, \ N_y = 0 \}$$

On a $\forall x \in \mathcal{R}_i$, $\mathbb{P}_x(A_i) = 1$.

Si $x \in \mathcal{T}$, soit $T_i = \inf\{n \mid X_n \in \mathcal{R}_i\}$ ceux qui sont finis sont distincts, soit $T = \inf\{T_i\}$. Si $T = +\infty$ ok, sinon si $T < +\infty$, $\exists i$ tel que $T = T_i$.

$$\mathbb{P}_x\Big(T<+\infty,\ \forall n\geqslant T,\ X_n\in\mathcal{R}_i, (N_y=+\infty,\forall y\in\mathcal{R}_i), (N_y=0,\forall y\in\mathcal{R}\backslash\mathcal{R}_i)\Big)$$

$$=\mathbb{P}_x\Big(T<+\infty,\ \bigsqcup_{y\in\mathcal{R}_i}X_T=y,\ \theta^TX\in A_i\Big)$$

$$=\sup_{y\in\mathcal{R}_i}\mathbb{P}_x\Big(\theta^TX\in A_i,\ T<+\infty,\ X_T=y\Big)$$

$$=\sup_{Markov\ fort}\underbrace{\mathbb{P}_y(A_i)\mathbb{P}(T<+\infty,\ X_T=y)}_{=1}$$

$$=\mathbb{P}(T=T_i<+\infty)$$

Remarque. Si E fini, $\mathbb Q$ irréductible alors $\mathbb Q$ récurrent car :

$$\sum_{y\in E} N_y = \sum_{y\in E} \sum_{n\geqslant 0} \mathbbm{1}_{X_n=y} = \sum_{n\geqslant 0} \sum_{y\in E} \mathbbm{1}_{X_n=y} = +\infty$$

Si \mathbb{Q} était transitoire elle serait finie \mathbb{P}_x p.s.

4 Comportement asymptotique des chaînes de Markov

Que devient X_n lorsque $n \to +\infty$?

• Comportement p.s. de X_n peu intéressant, E discret donc si $X_n \xrightarrow[n \to +\infty]{\text{p.s.}} X_\infty$ alors X_n est constant à partir d'un certain rang donc X_n s'arrête sur un site x tel que $\mathbb{Q}(x,y) = \mathbb{1}_{y=X}$; un tel site est appelé point absorbant

Par exemple dans le processus de Galton-Watson 0 est absorbant et si $\mathbb{E}[X_j] \leqslant 1$ et de loi $\neq \delta_1$ alors $Z_n \xrightarrow[n \to +\infty]{\text{p.s.}} 0$

- Convergence en loi. μ_{X_n} loi sur E. A-t-elle une limite μ_{∞} ?
- Temps d'occupation. Correspond à la proportion du temps passé en un site :

$$\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{X_n = y} \xrightarrow[n \to +\infty]{} \mu_{\infty}(y) \, \mathbb{P}_x \text{ p.s. ?}$$

Désormais si ν est une mesure sur E, on notera $\nu(x) = \nu(\{x\})$.

Calculons $\mu_{X_{n+1}}$ à partir de μ_{X_n} :

$$\mu_{X_{n+1}}(y) = \mathbb{P}(X_{n+1} = y) = \sum_{x \in E} \underbrace{\mathbb{P}(X_n = x, X_{n+1} = y)}_{\mathbb{P}(X_{n+1} = y | X_n = x) \mathbb{P}(X_n = x)} = \sum_{x \in E} \mathbb{Q}(x, y) \mu_{X_n}(x) = \sum_{x \in E} \mu_{X_n}(x) \mathbb{Q}(x, y)$$

Définition 11

- Si E est fini = $\{e_1, \ldots, e_n\}$, on identifie une mesure ν sur E et le vecteur ligne $(\nu(e_1), \ldots, \nu(e_n))$.
- Pour E quelconque, $\mathbb Q$ noyau de transition et ν mesure sur E on définit la mesure $\nu \mathbb Q$ sur E par :

$$(\nu \mathbb{Q})(y) = \sum_{x \in E} \nu(x) \mathbb{Q}(x, y)$$

Remarque. Ceci coïncide avec le calcul matriciel.

Remarque. On définit cela pour des ν mesures par forcément de probabilité mais telles que $\nu(y) < +\infty \ \forall y \ (\text{mais éventuellement } \nu(E) = +\infty).$

On a $\mu_{X_{n+1}} = \mu_{X_n} \mathbb{Q}$, par récurrence immédiate $\mu_{X_n} = \mu_{X_0} \mathbb{Q}^n$. On s'attend à ce que μ_{X_n} converge vers un point fixe de $\mu \mapsto \mu \mathbb{Q}$.

Définition 12 (mesure invariante) -

 \mathbb{Q} fixé, μ mesure sur E avec $\mu(y) < +\infty \ \forall y$ et $\mu(E) \neq 0$, est dite invariante si $\mu\mathbb{Q} = \mu$.

Ce sont les bons candidats pour les mesures limites.

Propriété 8

 $\mathbb Q$ fixé, Xréalisation canonique, μ probabilité, alors :

(i) μ est invariante

$$\Leftrightarrow$$
 (ii) $\exists \mu_0$ tel que sous \mathbb{P}_{μ_0} , $x_n \xrightarrow[n \to +\infty]{(\mathcal{L})} Z$ v.a. $\sim \mu$

$$\Leftrightarrow$$
 (iii) Si $X_n \sim \mu$ alors $\forall k \geqslant n, X_k \sim \mu$

Preuve.

$$(i) \Rightarrow (ii) : \text{Soit } \mu_0 = \mu, \text{ alors } \mu_{X_n} = \mu_{X_0} \mathbb{Q}^n = \mu \text{ donc } X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \mu$$

 $(iii) \Rightarrow (ii)$: On pose $\mu_0 = \mu$ donc $\forall n, \ \mu_{X_n} = \mu$

$$(i) \Rightarrow (iii) : \text{Si } X_n \sim \mu, \text{ et } k \geqslant n, \, \mu_{X_k} = \mu_{X_n} \mathbb{Q}^{k-n} = \mu$$

$$(ii) \Rightarrow (i) : \text{Si } X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \mu, \ X_{n+1} \xrightarrow[n \to +\infty]{(\mathcal{L})} Z. \ \mu_{X_{n+1}}(y) \xrightarrow[n \to +\infty]{} \mu(y), \text{ or } :$$

$$\mu_{X_{n+1}}(y) = (\mu_{X_n}\mathbb{Q})(y) = \sum_{x} \underbrace{\mu_{X_n}(x)}_{x \to +\infty} \mathbb{Q}(x,y)$$

Donc par Fatou:

$$\sum_{x \in E} \mu(x) \mathbb{Q}(x,y) = \sum_{x \in E} \underline{\lim} \mu_{X_n}(x) \mathbb{Q}(x,y) \leqslant \underline{\lim} \sum_{x \in E} \mu_{X_n}(x) \mathbb{Q}(x,y) = \mu(y)$$

En sommant en y:

$$\underbrace{\sum_{y \in E} \sum_{x \in E} \mu(x) \mathbb{Q}(x,y)}_{=\sum_{x \in E} \mu(x) = 1} \leqslant \sum_{y \in E} \mu(y) = 1$$

Si une des inégalités était stricte on aurait 1 < 1 ce qui est absude. Ce sont donc des égalités. \Box

Désormais on cherche les mesures invariantes donc à résoudre $\mu \mathbb{Q} = \mu$. Donc on veut connaître les conditions d'existence et d'unicité de cette équation.

Application.

$$\mathbb{Q} = \begin{pmatrix} 0 & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

La somme sur les lignes vaut 1 donc :

$$\mathbb{Q}\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}1\\1\\1\end{pmatrix}$$

Donc 1 est une valeur propre de \mathbb{Q} donc aussi de \mathbb{Q}^T , ainsi $\exists \mu$ vecteur ligne telle que $\mathbb{Q}^T \mu^T = \mu^T$, donc $\mu \mathbb{Q} = \mu$. C'est bien une mesure invariante si les coefficients sont positifs.

Réduction de \mathbb{Q} . \mathbb{Q} a trois valeurs propres :

1,
$$x = \frac{-1 + i\sqrt{2}}{3}$$
, $y = \frac{-1 - i\sqrt{2}}{3}$ $|x|, |y| < 1$

un vecteur propre associé à 1 pour \mathbb{Q}^T est $(\frac{1}{3},\frac{1}{2},\frac{1}{6})^T$ Donc $\mu=(\frac{1}{3},\frac{1}{2},\frac{1}{6})$ est une mesure invariante.

$$\mathbb{Q}^{T} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & y \end{pmatrix} P^{-1} \quad \text{avec } P = \begin{pmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{6} \end{pmatrix}$$

$$(\mathbb{Q}^{T})^{n} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & x^{n} & 0 \\ 0 & 0 & y^{n} \end{pmatrix} P^{-1} \xrightarrow[n \to +\infty]{} P \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} = \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{6} & 0 & 0 \end{pmatrix} P^{-1}$$

$$\mu_{X_{n}}^{T} = (\mathbb{Q}^{T})^{n} \mu^{T} \xrightarrow[n \to +\infty]{} \begin{pmatrix} \frac{1}{3} & 0 & 0 \\ \frac{1}{2} & 0 & 0 \\ \frac{1}{6} & 0 & 0 \end{pmatrix} P^{-1} \mu_{0}^{T} = \alpha \mu_{0}^{T}$$

Donc:

$$\underbrace{\sum_{i=1}^{3} \mu_{X_n}(i)}_{n \to +\infty} \underbrace{\alpha \sum_{i=1}^{3} \mu(i)}_{n \to +\infty}$$

Donc $\alpha = 1$, donc $\mu_{X_n}(i) \xrightarrow[n \to +\infty]{} \mu(i)$.

Sur E, \mathbb{Q} noyau de transition. X C.M. de transition \mathbb{Q} . On sait que si $X_n \xrightarrow[n \to +\infty]{} Z \sim \mu$ alors μ mesure invariante ($\mu \mathbb{Q} = \mu$) de probabilité. Objectifs.

- existence et unicité des mesures invariantes
- comment les trouver?

- Définition 13 -

 $\mathbb{Q},\ E$ fixés. μ mesure sur
 E est dite $symétrique,\ ou\ réversible$ si :

$$\forall x, y, \ \mu(x)\mathbb{Q}(x, y) = \mu(y)\mathbb{Q}(y, x)$$

Propriété 9

 μ réversible $\Rightarrow \mu$ invariante

Intérêt. Il est plus facile de trouver des mesures réversibles, mais il y a plein de cas sans mesures réversibles.

Remarque. Le nom vient du fait que si μ est une mesure réversible alors sous \mathbb{P}_{μ} :

$$(X_0,\ldots,X_n)\stackrel{\mathcal{L}}{=} (X_n,X_{n-1},\ldots,X_0)$$

Preuve.

Si μ est réversible alors :

$$\begin{split} (\mu \mathbb{Q})(y) &= \sum_{z} \mu(z) \mathbb{Q}(z,y) \\ &= \sum_{z} \mu(y) \mathbb{Q}(y,z) \\ &= \mu(y) \underbrace{\sum_{z} \mathbb{Q}(y,z)}_{=1} = \mu(y) \end{split}$$

Exemple. Si S est la M.A.S. sur \mathbb{Z}^d

$$\mathbb{Q}(x,y) = \begin{cases} & \frac{1}{2d} & \text{si } ||x - y||_1 = 1\\ 0 & \text{sinon} \end{cases}$$

Cherchons les mesures symétriques. On doit avoir :

$$\forall x, y, \ \mu(x)\mathbb{Q}(x, y) = \mu(y)\mathbb{Q}(y, x)$$

Donc $\forall x, y$, tels que $||x - y||_1 = 1$ $\mu(x) \frac{1}{2d} = \mu(y) \frac{1}{2d}$ i.e. $\mu(x) = \mu(y)$. Par connexité on obtient :

$$\forall x, \ \mu(x) = \mu(0)$$

Donc $\mu = \alpha \mu_{\text{comptage}}$ qui n'est pas une probabilité.

Exemple. (urnes d'Ehrenfest)

Notons N le nombre de boules et X_n le nombre de boules rouges au bout de n étapes. À chaque étape n choisit une boule uniformément parmi les N et on change sa couleur. X C.M. sur $E = \{0, 1, \ldots, N\}$ avec :

$$\begin{cases} & \mathbb{Q}(i,i+1) = \frac{N-i}{N} \\ & Q(i,i-1) = \frac{i}{N} \\ & Q(i,j) = 0 \end{cases}$$
 sinon

Cherchons μ réversible :

$$\mu(i)\mathbb{Q}(i,j) = \mu(j)\mathbb{Q}(j,i)$$

On doit donc avoir pour tout $i \in \{1, ..., N\}$:

$$\mu(i-1)\mathbb{Q}(i-1,i) = \mu(i)\mathbb{Q}(i,i-1) \quad \Rightarrow \quad \mu(i-1)\frac{N-i+1}{N} = \mu(i)\frac{i}{N}$$

$$\mu(i) = \mu(i-1)\frac{N+1-i}{i}$$

$$= \mu(i-2)\frac{N+1-(i-1)}{i-1}\frac{N+1-i}{i}$$

$$= \dots$$

$$= \mu(0)\frac{N+1-1}{1}\frac{N+1-2}{2} \times \dots \times \frac{N+1-i}{i}$$

$$= \mu(0)\frac{N!}{(N-i)!i!}$$

Les mesures symétriques sont les mesures μ telles que pour un certain α , $\forall i$, $\mu(i) = \alpha \binom{N}{i}$. Il y a une probabilité réversible pour $\alpha = \frac{1}{2^N}$, $\mu = \mathcal{B}(N, 1/2)$.

4.1 Existence de mesures invariantes

Dans le cas fini chercher μ invariante correspond à résoudre $\mu \mathbb{Q} = \mu$ donc à chercher un vecteur propre à gauche pour la valeur propre 1.

- Propriété 10 ——

Si E est fini, alors il existe une mesure invariante pour \mathbb{Q} .

Preuve.

Le somme des lignes vaut 1, donc :

$$\mathbb{Q}\begin{pmatrix}1\\\vdots\\1\end{pmatrix}=\begin{pmatrix}1\\\vdots\\1\end{pmatrix}$$

Donc 1 est une valeur propre de \mathbb{Q} , donc aussi de \mathbb{Q}^T . Ainsi, $\exists v = (v_1, \dots, v_p)$ avec $p = \operatorname{Card}(E)$ tel que $v\mathbb{Q} = v$. Il reste à montrer qu'on peut trouver w un vecteur à coefficients positifs tel que $w\mathbb{Q} = w$. Posons $w_i = |v_i|$. $w = (w_1, \dots, w_p)$ est à coefficients positifs. Et on a :

$$A_i = \sum_{j=1}^p w_j \mathbb{Q}_{j,i} - w_i$$

$$= \sum_{j=1}^p |v_j| \mathbb{Q}_{j,i} - |v_i|$$

$$\geqslant \left| \sum_{j=1}^p v_j \mathbb{Q}_{j,i} \right| - |v_i|$$

$$= |v_i| - |v_i| = 0$$

Donc $\forall i, A_i \geqslant 0$. Or:

$$\sum_{i=1}^{p} A_i = \sum_{i,j} w_j \mathbb{Q}_{j,i} - \sum_{i} w_i = \sum_{j} w_j - \sum_{i} w_i = 0$$

Alors $\forall i, A_i = 0$. Donc $w\mathbb{Q} - w = 0$. w s'identifie alors à une mesure invariante.

Remarque. Automatiquement sur un espace fini, si μ est une mesure invariante alors $\frac{\mu}{\mu(E)}$ est une probabilité invariante.

Théorème 3

 \mathbb{Q} , E fixés. Si $x \in E$ est un point récurrent, on définit :

 $\nu_x(y)$ = "nombre moyen de passages en y lors d'une boucle de x à x"

$$= \mathbb{E}_x \left[\sum_{n=0}^{\tilde{T}_x - 1} \mathbb{1}_{X_n = y} \right]$$

C'est une mesure invariante. Et $\nu_x(y) > 0 \iff y \iff x$.

Remarque.

$$u_x(x) = 1$$

$$\nu_x(y) = \mathbb{E}_x \left[\sum_{n=1}^{\tilde{T}_x} \mathbb{1}_{X_{n-1} = y} \right]$$

Preuve.

Calculons $\nu_x \mathbb{Q}$.

$$\begin{split} \nu_x \mathbb{Q}(y) &= \sum_{z \in E} \nu_x(z) \mathbb{Q}(z,y) \\ &= \sum_{z \in E} \mathbb{E}_x \left[\sum_{n=0}^{\tilde{T}_x - 1} \mathbb{1}_{X_n = Z} \mathbb{Q}(z,y) \right] \\ &= \sum_{z \in E} \sum_{n=0}^{+\infty} \mathbb{P}_x \Big(\underbrace{\tilde{T}_x < n}_{\in \mathcal{F}_n}, \ X_n = z \Big) \mathbb{Q}(z,y) \\ &= \sum_{z \in E} \sum_{n=0}^{+\infty} \mathbb{P}_x \Big(\tilde{T}_x < n, \ X_n = z, \ X_{n+1} = y \Big) \\ &= \sum_{n=0}^{+\infty} \mathbb{P}_x \Big(\tilde{T}_x > n, \ X_{n+1} = y \Big) \qquad \text{Fubini} \geqslant 0 \text{ puis } \bigsqcup \{X_n = z\} = \Omega \\ &= \mathbb{E}_x \left[\sum_{m=1}^{+\infty} \mathbb{1}_{\tilde{T}_x \geqslant m+1} \mathbb{1}_{X_m = y} \right] \\ &= \mathbb{E}_x \left[\sum_{m=1}^{\tilde{T}_x} \mathbb{1}_{X_m = y} \right] \\ &= \nu_x(y) \end{split}$$

On sait $\nu_x(x) = 1 > 0$.

• si $x \not \rightarrow y$ alors $\nu_x(y) = 0$ $(X_n \neq y \ \forall n \ \mathbb{P}_x \ \text{p.s.})$

• si $x \leadsto y$ alors $\exists n$ tel que $\mathbb{Q}^n(x,y) > 0$ alors :

$$\nu_x(y) = (\nu_x \mathbb{Q}^n)(y) = \sum_z \nu_x(z) \mathbb{Q}^n(z, y) \geqslant \nu_x(x) \mathbb{Q}^n(x, y) > 0$$

Remarque. Si \mathbb{Q} :

Alors $\forall \alpha, \beta, \ \alpha + \beta = 1, \ \alpha \geqslant 0, \ \beta \geqslant 0, \ \mu = \alpha(\frac{1}{\delta}_1 + \frac{1}{2}\delta_2) + \beta\delta_3$ est une probabilité invariante.

Théorème 4 -

Si $\mathbb Q$ irréductible et récurrente alors il existe une unique (à facteur multiplicatif près) mesure invariante.

Preuve.

Soit μ une mesure invariante et soit x tel que $\mu(x) > 0$, on peut supposer quitte à la multiplier que $\mu(x) = 1$. Montrons que $\mu = \nu_x$.

Si c'est vrai alors comme $\forall y \ x \iff y$ on a $\mu(y) < 0 \ \forall y$ donc pour n'importe quel $y \ \mu = \mu(y)\nu_y$: ils sont tous proportionnels.

Montrons par récurrence sur k que $\forall y$:

$$\mu(y) \geqslant \mathbb{E}_x \left[\sum_{n=0}^{(\tilde{T}_x - 1) \wedge k} \mathbb{1}_{X_n = y} \right] \quad (**)$$

Calculons pour $y \neq x$.

$$\begin{split} (\mu \mathbb{Q})(y) &= \sum_{z} \mu(z) \mathbb{Q}(z,y) \\ &\geqslant \sum_{H.R.} \sum_{z} \mathbb{E}_{x} \left[\sum_{n=0}^{k} \mathbb{1}_{\tilde{T}_{x} > n} \mathbb{1}_{X_{n} = z} \right] \mathbb{Q}(z,y) \\ &= \sum_{z \in E} \sum_{n=0}^{k} \mathbb{P}_{x} \Big(\tilde{T}_{x} > 0, \ X_{n} = z \Big) \mathbb{Q}(z,y) \\ &= \sum_{z \in E} \sum_{n=0}^{k} \mathbb{P}_{x} \Big(\tilde{T}_{x} > 0, \ X_{n} = z, \ X_{n+1} = y \Big) \\ &= \sum_{n=0}^{k} \mathbb{E}_{x} \left[\mathbb{1}_{\tilde{T}_{x} > n} \mathbb{1}_{X_{n+1} = y} \right] = \mathbb{E}_{x} \left[\sum_{m=1}^{k+1} \mathbb{1}_{\tilde{T}_{x} \geqslant m} \mathbb{1}_{X_{m} = y} \right] \\ &= \mathbb{E}_{x} \left[\sum_{m=1}^{\tilde{T}_{x} \wedge (k+1)} \mathbb{1}_{X_{m} = y} \right] \qquad (*) = 0 \text{ si } m = 0 \text{ ou } \tilde{T}_{x} \text{ car } x \neq y \\ &= \mathbb{E}_{x} \left[\sum_{m=0}^{\tilde{T}_{x} \wedge (k+1)} \mathbb{1}_{X_{m} = y} \right] \end{split}$$

Donc (**) est vrai, on prend sa limite \uparrow en k. Par TCM $\mu(y) \geqslant \nu_x(y)$.

Soit $y \in E$, $y \leadsto x$ donc $\exists n$ tel que $\mathbb{Q}^n(y,x) > 0$. Calculons :

$$1 = \mu(x) = (\mu \mathbb{Q}^n)(x) = \sum_{z \in E} \mu(z) \mathbb{Q}^n(z, x) \geqslant \sum_{z \in E} \nu_x(z) \mathbb{Q}^n(z, x) = (\nu_x \mathbb{Q}^n)(x) = 1$$

Si pour un certain z on avait $\mu(z)\mathbb{Q}^n(z,y) > \nu_x(z)\mathbb{Q}^n(z,y)$ alors on aurant 1 > 1. Absurde. Donc il n'y que des égalités. Donc $\mu(y)\mathbb{Q}^n(z,y) = \nu_x(y)\mathbb{Q}^n(z,y)$, ainsi $\mu(y) = \nu_x(y)$. Ainsi $\mu = \nu_x$. \square

Remarque. Application à la M.A.S. sur \mathbb{Z} et \mathbb{Z}^2 : μ_{comptage} est invariante et la chaîne est irréductible récurrente donc il n'y a pas de probabilité invariante.

Théorème 5 (classification des noyaux irréductibles) -

Q irréductible. Il y a trois possibilités :

- 1. $\mathbb Q$ est irréductible transitoire. En particulier $\forall x,y,\ N_y<+\infty\ \mathbb P_x$ p.s. Alors il n'y a pas de probabilité invariante.
- 2. \mathbb{Q} est irréductible récurrent. En particulier $\forall x, y, N_y = +\infty \mathbb{P}_x$ p.s. Il existe des mesures invariantes (unique à un facteur près).
 - (a) $\exists \nu$ une probabilité invariante. On dit que $\mathbb Q$ est récurrent positif et on a :

$$\forall x, \ \mathbb{E}_x[\tilde{T}_x] = \frac{1}{\nu(x)}$$

(b) Ces mesures invariantes vérifient $\mu(E) = +\infty$. On dit que \mathbb{Q} est récurrent nul.

$$\forall x, \ \mathbb{E}_x[\tilde{T}_x] = +\infty$$

Preuve.

1. Il n'y a pas de probabilité invariante dans le cas transitoire. En effet, si μ était une telle probabilité, sous \mathbb{P}_{μ} , X vérifie $\forall n,\ X_n \sim \mu$:

$$\underbrace{\mathbb{P}_{\mu}(X_n = y)}_{=\mu(y)} = \sum_{x} \mu(x) \mathbb{P}_{x}(X_n = y) = \sum_{x} \mu(x) \mathbb{E}_{x} \left[\underbrace{\mathbb{1}_{X_n = y}}_{\stackrel{\text{p.s.}}{n \to +\infty}} \right] \xrightarrow[n \to +\infty]{} 0 \text{ par TCD}$$

Donc $\mu(y) = 0 \ \forall y$. Absurde.

2. Dans le cas récurrent, les mesures invariantes sont $\{\alpha\mu \mid \alpha > 0\}$ pour un certain μ qui vérifie $\mu(E) = +\infty$ (récurrent nul) ou $\mu(E) < +\infty$ (récurrent positif).

Soit $x \in E$, on sait que ν_x est invariante.

$$\begin{split} \nu_x(E) &= \sum_{y \in E} \nu_x(y) \\ &= \sum_{y \in E} \mathbb{E}_x \left[\sum_{n=0}^{\tilde{T}_x - 1} \mathbbm{1}_{X_n = y} \right] \\ & \mathbb{E}_{\text{Fubini}} \geqslant &0_x \left[\sum_{n=0}^{\tilde{T}_x - 1} \mathbbm{1} \right] \qquad \text{car } \sum_y \mathbbm{1}_{X_n = y} = 1 \\ &= \mathbb{E}_x[\tilde{T}_x] \end{split}$$

Si $\nu_x(E)=+\infty$: cas récurrent nul, $\mathbb{E}_x[\tilde{T}_x]=+\infty$. Si $\nu_x(E)<+\infty$: cas récurrent porifi, alors $\nu(y)=\frac{\nu_x(y)}{\nu_x(E)}$ est une probabilité invariante et :

$$u(x) = \frac{\nu_x(x)}{\nu_x(E)} = \frac{1}{\nu_x(E)} = \frac{1}{\mathbb{E}_x[\tilde{T}_x]}$$

4.2 Exemples

Exemple. (urnes d'Ehrenfest)

N particules entre deux pièces, X_n est le nombre de particules à gauche à chaque étape, une particule prise au hasard change de pièce. Modèle équivalent venant de la physique $\nu = \mathcal{B}(N, 1/2)$ est une probabilité invariante, donc la chaîne est irréductible récurrente positive.

On retrouve l'idée que l'on ne verra jamais toutes les particules se rassembler dans la pièce de droite $(X_n = 0)$. En effet le temps typique entre deux moments où la pièce de gauche est vide est :

$$\mathbb{E}_0[\tilde{T}_0] = \frac{1}{\nu(0)} = \frac{1}{\binom{N}{0} \frac{1}{2^N}} = 2^N$$

À comparer au temps typique qui sépare deux instants où il y a l'équilibre (supposons N pair, $X_n = \frac{N}{2}$) :

$$\mathbb{E}_{\frac{N}{2}}[\tilde{T}_{\frac{N}{2}}] = \frac{1}{\nu\left(\frac{N}{2}\right)} = \frac{1}{\left(\frac{N}{\frac{N}{2}}\right)\frac{1}{2^{N}}} \sim \frac{\sqrt{\pi N}}{2} \ll 2^{N}$$

Exemple.

$$E = \mathbb{Z}$$

$$\begin{cases} \mathbb{Q}(i, i+1) = p \\ \mathbb{Q}(i, i-1) = 1 - p \\ \mathbb{Q}(i, j) = 0 \end{cases}$$
 sinon

Si $0 , <math>\mathbb Q$ irréductible. Cherchons μ une mesure symétrique.

$$\mu(i)\mathbb{Q}(i,i+1) = \mu(i+1)\mathbb{Q}(i+1,i) \qquad \Rightarrow \qquad \mu(i)\frac{p}{1-p}\mu(i+1)$$

Donc:

$$\mu(i) = \left(\frac{p}{1-p}\right)^i \mu(0) \quad \text{pour } i \in \mathbb{Z}$$

définit une solution. Le modèle étant invariant par translation on soupçonne que la mesure de comptage est invariante. Vérifions. On doit avoir $\mu_x(i) = \sum_j \mu_j(j) \mathbb{Q}(j,i) = \mu_c(i-1)p + \mu_c(i+1)(1-p)$, ok puisque 1 = p+1-p.

Pour $p \neq \frac{1}{2}$ on a donc deux mesures invariantes $\mu(i) = \left(\frac{p}{1-p}\right)^i$ et μ_c . Donc la chaîne est transitoire. On a donc pas toujours unicité des mesures invariantes.

Exemple.

$$\begin{cases} & \mathbb{Q}(i, i+1) = p_i \\ & \mathbb{Q}(i, 0) = 1 - p_i \\ & \mathbb{Q}(i, j) = 0 \end{cases} \text{ sinon}$$

 \mathbb{Q} irréductible si $\forall i, \ 0 < p_i < 1$. Cherchons μ mesure invariante. Pour $i \geqslant 1$ on doit avoir $\mu(i) = \sum_j \mu(j) \mathbb{Q}(j,i) = \mu(i-1)p_{i-1}$. Donc :

$$\mu(i) = \mu(0) \times p_0 \times \ldots \times p_{i-1}$$

et pour i = 0:

$$\mu(0) = \sum_{j} \mu(j) \mathbb{Q}(j,0)$$

$$= \sum_{k \geqslant 0} \mu(0) \times p_0 \times \dots \times p_{i-1} (1 - p_j)$$

$$= \lim_{N \to +\infty} \mu(0) \sum_{j=0}^{N} (p_0 \times \dots \times p_{j-1} - p_0 \times \dots \times p_j)$$

$$= \mu(0) \lim_{N \to +\infty} (1 - p_0 \times \dots \times p_N)$$

$$= \mu(0) \left(1 - \prod_{i=0}^{+\infty} p_i\right)$$

Si $\prod_{i=0}^{+\infty} p_i > 0$, par exemple $p_i = \exp\left(-\frac{1}{(1+i)^2}\right) (\prod p_i = e^{-\frac{\pi^2}{6}} > 0)$. Alors:

$$\mu(0) = \mu(0) \underbrace{\left(1 - \prod_{i=0}^{+\infty} p_i\right)}_{0 < .. < 1}$$

Donc $\mu(0) = 0$, ainsi $\mu \equiv 0$. Donc il n'y a pas de mesure invariante, donc la chaîne est transitoire.

Exemple.

Marche biaisée avec un mur à gauche.

$$\begin{cases} \mathbb{Q}(0,1) = 1 \\ \mathbb{Q}(0,i) = 0 \text{ sinon} \\ \mathbb{Q}(i,i+1) = p \\ \mathbb{Q}(i,i-1) = 1 - p \\ \mathbb{Q}(i,j) = 0 \text{ sinon} \end{cases}$$

Si $0 <math>\mathbb Q$ est irréductible. Calculons les μ invariantes. Donc vérifient pour $i \geqslant 2$:

$$(p+(1-p))\mu(i) = \mu(i-1)p + \mu(i+1)(1-p) \ \Rightarrow \ p(\mu(i)-\mu(i-1)) = (1-p)(\mu(i+1)-\mu(i))$$

donx $\mu(i+1) - \mu(i)$ suite géométrique de raison $\frac{p}{1-p}$. Alors :

$$\mu(i+1) - \mu(i) = \left(\frac{p}{1-p}\right)^{i-1} (\mu(2) - \mu(1))$$

En i = 0: $\mu(0) = (1 - p)\mu(1)$. En i = 1: $\mu(1) = \mu(0) + (1 - p)\mu(2)$. En combinant on obtient :

$$\mu(2) - \mu(1) = \frac{\mu(1) - 2\mu(0)}{1 - p}$$

Fixons $\mu(0) = 1$, $\mu(1) = \frac{1}{1-p}$.

$$\mu(i) = \mu(1) + \sum_{j=1}^{i-1} \mu(j+1) - \mu(j)$$

$$= \mu(1) + \sum_{j=1}^{i-1} \left(\frac{p}{1-p}\right)^{j-1} (\mu(2) - \mu(1))$$

$$= \dots = \left(\frac{p}{1-p}\right)^{i} \mu(0)$$

- Si $p < \frac{1}{2}$, la géométrique (décalée de 1) de paramètre $\frac{p}{1-p}$ est invariante \longrightarrow cas récurrent positif.
- Si $p=\frac{1}{2}$, la mesure de comptage est invariante, on est dans le cas récurrent nul car :

$$(X_n)_n \stackrel{\mathcal{L}}{=} (|S_n|)_{n \in \mathbb{N}}$$

où S_n est la M.A.S. sur \mathbb{Z} .

• Si $p > \frac{1}{2}$: cas transitoire. Tant qu'on ne trouve pas 0 la loi est la même que la marche biaisée sur \mathbb{Z} qui a une probabilité > 0 de ne jamais toucher 0 et de partir à l'infini.

4.3 Comportement asymptotique

Comportement de X_n lorsque n tend vers l'infini.

Théorème 6 (limite des temps d'occupation)

 \mathbb{Q} irréductible récurrent (positif ou nul). Soit μ mesure invariante (unique à une constante multiplicative près). Soit $f: E \longrightarrow \mathbb{R}, f \in \mathcal{L}^1(\mu)$. Alors si X est une C.M. de transition \mathbb{Q} :

$$\frac{1}{n}\big(f(X_1)+\ldots+f(X_n)\big)\xrightarrow[n\to+\infty]{\text{p.s.}}\left\{\begin{array}{cc} \int f(x)d\nu(x) & \text{si r\'ecurrent positif et ν proba invariante}\\ 0 & \text{si r\'ecurrent nul} \end{array}\right.$$

Remarque. Cas particulier : on se fixe $y \in E$ et $f(x) = \mathbb{1}_{x=y}$. Alors ce résultat dit :

$$\underbrace{\frac{\operatorname{Card}\{1 \leqslant i \leqslant n \mid X_i = y\}}{n}}_{\text{"proportion du temps passs\'e en }y"} \xrightarrow[n \to +\infty]{\text{p.s.}} \left\{ \begin{array}{l} \nu(y) & \text{si on est r\'ecurrent positif} \\ 0 & \text{sinon} \end{array} \right.$$

Remarque. C'est une généralisation de la L.F.G.N. Si μ est une probabilité sur \mathbb{R} , μ discrète avec $\mu(\overline{A})=0$ pour A dénombrable, avec $\int |x|d\mu(x)<+\infty$ et X_1,\ldots,X_n,\ldots une suite de v.a.i.i.d. $\sim \mu$. Alors $X=(X_i)_{i\geqslant 1}$ C.M. :

$$\mathbb{P}(X_1,\ldots,X_n=x_1,\ldots,x_n)=\prod \mu(\{x_i\})$$

donc c'est une C.M. de transition $\mathbb{Q}(x,y) = \mu(\{y\})$.

Le résultat sur cette chaîne de Markov et pour f(x) = x redonne la L.F.G.N. On est dans le cas récurrent positif avec μ probabilité invariante.

Remarques.

- On peut supposer $f \ge 0$ dans un premier temps puis $f = (f_+ f_-)$
- On va prouver le résultat sous la réalisation canonique et \mathbb{P}_x p.s. Car si on a un événement A qui est \mathbb{P}_x p.s. $\forall x \in E$, on a :

$$\mathbb{P}_{\mu}(A) = \sum_{x} \mu(x) \underbrace{\mathbb{P}_{x}(A)}_{=1} = \sum_{x} \mu(x) = 1$$

donc on aura $A \mathbb{P}_{\mu}$ p.s. $\forall \mu$ probabilité sur E.

Preuve.

On travaille sous $\mathbb{P}_x.$ On s'intéresse à :

$$\frac{1}{n}\Big(f(X_1)+\ldots+f(X_{\tilde{T}_x^n})\Big)$$

où $\tilde{T}_x^1 = \tilde{T}_x = \inf\{n > 0 \mid X_n = x\}$ et $\tilde{T}_x^p = \inf\{n > \tilde{T}_x^{p-1} \mid X_n = x\}$ le p-ième retour en x.

$$\frac{1}{n} \Big(f(X_1) + \dots + f(X_{\tilde{T}_x^n}) \Big) = \frac{1}{n} \sum_{k=1}^n \left(\sum_{j=\tilde{T}_x^{k-1}+1}^{\tilde{T}_x^k} f(X_j) \right)
= \frac{1}{n} \Big(Y_1 + \dots + Y_n \Big)$$

où $Y_k = \sum_{j=\tilde{T}_x^{k-1}+1}^{\tilde{T}_x^k} f(X_j)$ est la somme des valeurs de f lors de la k-ième exploration.

Étudions la loi de $(Y_1, \ldots, Y_n, \ldots)$.

E dénombrable, f(E) dénombrable. $Y_i \in \left\{ \sum \text{ finie d'éléments de } f(E) \right\}$ dénombrable. On veut trouver $\mathbb{P}(Y_1 = y_1, \dots, Y_n = y_n)$.

$$\begin{split} \tilde{T}_{x}^{1} &= t(X) & \text{où } t(x_{0}, x_{1}, \ldots) = \inf\{n > 0 \mid x_{n} = x\} \\ \tilde{T}_{x}^{p} &= \inf\{n > \tilde{T}_{x}^{p-1} \mid X_{n} = x\} \\ &= \tilde{T}_{x}^{p-1} + \inf\{n > 0 \mid X_{\tilde{T}_{x}^{p-1} + n} = x\} \\ &= \tilde{T}_{x}^{p-1} + t(\theta^{\tilde{T}_{x}^{p-1}} X) \end{split}$$

Et alors,

$$Y_1 = y(X) \qquad \text{où } y(x) = \sum_{j=1}^{t(x)} f(x_j)$$

$$Y_k = \sum_{j=\tilde{T}_x^{k-1}+1}^{\tilde{T}_x^k} f(X_j) = \sum_{j=\tilde{T}_x^{k-1}+1}^{\tilde{T}_x^{k-1}} f(X_j) = \sum_{j=\tilde{T}_x^{k-1}+j'}^{t(\theta^{\tilde{T}_x^{k-1}}X)} f\left(\theta^{\tilde{T}_x^{k-1}}X\right) = y(\theta^{\tilde{T}_x^{k-1}}X)$$

Ainsi

$$\mathbb{P}_{x}\Big((Y_{1},\ldots,Y_{n})=y_{1},\ldots,y_{n}\Big)$$

$$=\mathbb{P}_{x}\Big((Y_{1},\ldots,Y_{n-1})=(y_{1},\ldots,y_{n-1}),\ y(\theta^{\tilde{T}_{x}^{n-1}}X)=y_{n},\ X_{\tilde{T}_{x}^{n-1}}=x,\ \tilde{T}_{x}^{n-1}<+\infty\Big)$$
Markov forte
$$=\mathbb{P}_{x}\Big((Y_{1},\ldots,Y_{n-1})=(y_{1},\ldots,y_{n-1})\Big)\underbrace{\mathbb{P}_{x}\big(y(X)=y_{n}\big)}_{\mathbb{P}_{x}(Y_{1}=y_{n})}$$

récurrence =
$$\mathbb{P}_x(Y_1 = y_1) \times \ldots \times \mathbb{P}_x(Y_1 = y_n)$$

Sous \mathbb{P}_x , les $(Y_i)_{i\geqslant 1}$ sont des v.a. indépendantes et de même loi, elles sont de plus positives (car on a supposé $f\geqslant 0$). Et :

$$\begin{split} \mathbb{E}[Y_1] &= \mathbb{E}\left[\sum_{k=1}^{\tilde{T}_x} f(X_j)\right] = \mathbb{E}\left[\sum_{y \in E, \ 1 \leqslant j \leqslant \tilde{T}_x} \mathbb{1}_{X_j = y} f(y)\right] \\ &= \sum_{y \in E} f(y) \mathbb{E}\left[\sum_{j=1}^{\tilde{T}_x} \mathbb{1}_{X_j = y}\right] = \int f d\nu_x < +\infty \ \mathrm{car} \ f \in \mathcal{L}^1 \end{split}$$

Donc par la L.F.G.N. :

$$\frac{1}{n} \sum_{j=1}^{\tilde{T}_x^n} f(X_j) \xrightarrow[n \to +\infty]{} \int f d\nu_x \quad \mathbb{P}_x - \text{p.s.}$$

 $\bullet\,$ Si on est dans le cas récurrent positif, on a en prenant f=1 :

$$\underbrace{\frac{1}{n} \sum_{j=1}^{\tilde{T}_n^n} 1}_{\frac{\tilde{T}_n^n}{n}} \xrightarrow[n \to +\infty]{} \int 1 d\nu_x = \nu(E) \quad \mathbb{P}_x - \text{p.s.}$$

Pour tout $p \in \mathbb{N}^*$, $\exists N_p \in \mathbb{N}^*$ tel que :

$$\tilde{T}_x^{N_p-1}\leqslant p<\tilde{T}_x^{N_p}$$

Alors.

$$\frac{N_p - 1}{p} \underbrace{\frac{\sum_{j=1}^{\tilde{T}_x^{N_p - 1}} f(X_j)}{N_p - 1}}_{\mathbb{P}_x \text{ p.s.}} \leqslant \frac{1}{p} \sum_{j=1}^p f(X_j) \leqslant \frac{N_p}{p} \underbrace{\frac{\sum_{j=1}^{\tilde{T}_x^{N_p}} f(X_j)}{N_p}}_{\mathbb{P}_x \text{ p.s.}} \underbrace{\int f d\nu_x}_{N_p \to +\infty} f f d\nu_x$$

Comme $\frac{N_p}{p} \leqslant \frac{N_p}{N_p-1} \frac{N_p-1}{\tilde{T}_x^{N_p-1}} \sim \frac{1}{\nu_x(E)}$, on obtient que le membre de droite est $\sim \leqslant \int f d\nu$, idem à gauche. Par encadrement on a le résultat voulu.

• Cas récurrent nul. $E = \{e_1, e_2, \ldots\}$. Fixons l. Prenons $f(x) = \mathbb{1}_{x \in \{e_1, \ldots, e_l\}} \in \mathcal{L}^1(\mu)$.

$$\frac{1}{n} \sum_{i=1}^{\tilde{T}_x^n} \mathbb{1}_{x \in \{e_1, \dots, e_l\}} \xrightarrow[n \to +\infty]{\mathbb{P}_x \text{ p.s.}} \nu_x(\{e_1, \dots, e_l\})$$

Soit $g \in \mathcal{L}^1(\mu)$, $g \geqslant 0$.

$$0 \leqslant \frac{1}{p} \sum_{j=1}^{p} g(X_j) \leqslant \underbrace{\frac{N_p - 1}{p}}_{\leqslant \frac{N_p - 1}{\sum_{j=1}^{\tilde{T}_x^{N_p - 1}} f(X_j)}} \sim \underbrace{\frac{N_p}{N_p - 1}}_{\sim 1} \underbrace{\frac{\sum_{j=1}^{\tilde{T}_x^{N_p}} g(X_j)}{N_p}}_{p \to +\infty} \underbrace{\int g d\nu_x}_{s \to +\infty}$$

car $\sum_{j=1}^{\tilde{T}_x^{N_p-1}} f(X_j) \leqslant \sum_{j=1}^p f(X_j) \leqslant p$ puisque $f \in \{0,1\}$. Donc :

$$0 \leqslant \limsup \frac{1}{p} \sum_{i=1}^{p} g(X_j) \leqslant \frac{\int g d\nu_x}{\nu_x(\{e_1, \dots, e_l\})} \quad \mathbb{P}_x - \text{p.s.}$$

Vrai pour tout l. En faisant tendre l vers $+\infty$, $\nu_x(\{e_1,\ldots,e_l\}) \xrightarrow[l\to+\infty]{} \nu_x(E) = +\infty$. Donc le membre de droite $\xrightarrow[l\to+\infty]{} 0$. D'où le résultat.

Limité en loi de X_n . Problème :

$$\mathbb{Q} = \begin{pmatrix} 0 & p & 0 & 1-p \\ 1-q & 0 & q & 0 \\ 0 & 1-r & 0 & r \\ s & 0 & 1-s & 0 \end{pmatrix}$$

Il n'y a pas de convergence en loi $\mathbb{P}(X_n \in \{1,3\}) = \begin{cases} 1 & \text{si } n \text{ pair} \\ 0 & \text{sinon} \end{cases}$.

Définition 14 (période) —

Si \mathbb{Q} est irréductible. Si $x \in E$, les *périodes de x* sont :

$$\mathcal{P}_x = \{ n \in \mathbb{N}^* \mid \mathbb{Q}^n(x, x) > 0 \}$$

Comme $\mathbb{Q}^{n+m}(x,x) \geqslant \mathbb{Q}^n(x,x)\mathbb{Q}^m(x,x)$ on a :

$$\underbrace{\mathcal{P}_x + \mathcal{P}_x}_{\text{somme des éléments de } \mathcal{P}_x} \subset \mathcal{P}_x$$

 $\mathcal{P}_x - \mathcal{P}_x$ est un groupe $= d_x \mathbb{Z}$ avec $d_x \in \mathbb{N}^*$. On appelle ce d_x la période de x.

- Propriété 11 -

- $d_x = \operatorname{pgcd}(\mathcal{P}_x)$
- d_x ne dépend pas de x
- si $d = d_x = 1$ on dit que la chaîne est *apériodique* et alors :

$$\forall x, y, \exists n_0 \in \mathbb{N}^*, \forall n \geqslant n_0, \mathbb{Q}^n(x, y) > 0$$

Preuve.

- $d_x\mathbb{Z} = \mathcal{P}_x \mathcal{P}_x$. Si $p \in \mathcal{P}_x$, $p + p \in \mathcal{P}_x$ donc $2p p \in \mathcal{P}_x \mathcal{P}_x$. Ainsi $\mathcal{P}_x \subseteq d_x\mathbb{Z}$. d_x divise donc tous les éléments de \mathcal{P}_x . Et si q divise tous les éléments de \mathcal{P}_x alors il divise ceux de $\mathcal{P}_x \mathcal{P}_x = d_x\mathbb{Z}$, donc $q|d_x$. Alors $d_x = \operatorname{pgcd}(\mathcal{P}_x)$.
- $\forall x, y, x \iff y \text{ donc } \exists p, q \text{ tels que } \mathbb{Q}^p(x, y) > 0 \text{ et } \mathbb{Q}^q(y, x) > 0. \text{ Si } n \in \mathcal{P}_x : \mathbb{Q}^n(x, x) > 0.$

$$0 < \mathbb{Q}^q(y,x)\mathbb{Q}^n(x,x)\mathbb{Q}^p(x,y) \leqslant \mathbb{Q}^{n+p+q}(y,y)$$

Donc $n+p+q \in \mathcal{P}_y$. Donc $\mathcal{P}_x+p+q \subseteq \mathcal{P}_y$. Par différence, $d_x\mathbb{Z} \subseteq d_y\mathbb{Z}$ et donc $d_y|d_x$. Par symétrie $d_x=d_y$.

• Pour x = y. $d_x = 1 = p - q$ où $p, q \in \mathcal{P}_x$. Si $n \ge q^2$,

$$n = q^2 + \underbrace{\alpha q + r}_{\text{div euc par } q} = q^2 + \alpha q + r(p - q) = \underbrace{q(q - r)}_{\geqslant 0} + \alpha q + rp$$

Alors:

$$\mathbb{Q}^{n}(x,x) \geqslant (\mathbb{Q}^{q}(x,x))^{q-r} \times (\mathbb{Q}^{q}(x,x))^{\alpha} \times (\mathbb{Q}^{p}(x,x))^{r} > 0$$

- Pour $x \neq y$:

$$\mathbb{Q}^n(x,y) \underset{\text{pour } n \geqslant p}{\geqslant} \underbrace{\mathbb{Q}^p(x,y)}_{>0 \text{ pour } p \text{ bien choisit}} \times \underbrace{\mathbb{Q}^{np}(y,y)}_{>0 \text{ pour } n \text{ assez grand}}$$

Théorème 7

Si $\mathbb Q$ irréductible récurrent positif de probabilité invariante ν et $\mathbb Q$ apériodique, alors si X C.M. de transition $\mathbb Q$:

$$X_n \xrightarrow[n \to +\infty]{(\mathcal{L})} Z \sim \nu$$
 et même $\sum_{y \in E} \left| \mathbb{P}(X_n = y) - \nu(y) \right| \xrightarrow[n \to +\infty]{} 0$

Preuve.

On va définir Z et Y deux C.M. de transition \mathbb{Q} telles que Z a même loi que X et $Y_n \sim \nu \ \forall n$ et si $T = \inf\{n \mid Z_n = Y_n\}$ alors $(Z_n = Y_n \ \forall n \geqslant T)$ p.s.

1. Montrons que si $T < +\infty$ p.s. alors c'est bon :

$$\begin{split} & \sum_{y \in E} \left| \mathbb{P}(X_n = y) - \nu(y) \right| = \sum_{y \in E} \left| \mathbb{P}(Z_n = y) - \mathbb{P}(Y_n = y) \right| \\ & = \sum_{y \in E} \left| \mathbb{P}(Z_n = y, T \leqslant n) + \mathbb{P}(Z_n = y, T > n) - \mathbb{P}(Y_n = y, T \leqslant n) - \mathbb{P}(Y_n = y, T > n) \right| \\ & = \sum_{y \in E} \left| \mathbb{P}(Z_n = y, T > n) - \mathbb{P}(Y_n = y, T > n) \right| \\ & \leqslant \sum_{y \in E} \mathbb{P}(Z_n = y, T > n) + \mathbb{P}(Y_n = y, T > n) \\ & = 2\mathbb{P}(T > n) \xrightarrow[n \to +\infty]{} 0 \quad \text{car } T < +\infty \text{ p.s.} \end{split}$$

2. Construction de Z, Y.

Soient $(\xi_{n,y}^2)_{y\in E,n\geqslant 1}$ et $(\xi_{n,y}^Y)_{y\in E,n\geqslant 1}, \xi_0^2, \xi_0^Y$ v.a. indépendantes à valeurs dans E avec :

$$\begin{aligned} \xi_0^Y \sim \nu & \quad \text{et} \quad & \xi_{x,y}^Y \sim \mathbb{Q}(y,\cdot) \\ \xi_0^2 \sim \mu_{X_0} & \quad \text{et} \quad & \xi_{x,y}^Z \sim \mathbb{Q}(y,\cdot) \end{aligned}$$

Posons:

$$\begin{cases} Y_0 = \xi_0^Y \\ Y_n = \xi_{n, Y_{n-1}}^Y \text{ si } n \geqslant 1 \end{cases} \begin{cases} Z_0 = \xi_0^Z \\ Z_n = \begin{cases} \xi_{n, Z_{n-1}} & \text{si } Z_{n-1} \neq Y_{n-1} \\ \xi_{n, Z_{n-1}}^Y & \text{si } Z_{n-1} = Y_{n-1} \end{cases}$$

On a Y C.M. de transition \mathbb{Q} et de mesure initiale ν . La définition de Z force $Z_n = Y_n \ \forall n \geqslant T$. On montre (à faire en exercice) que Z C.M. de transition \mathbb{Q} qui a la même loi que X.

3. Montrons que $T<+\infty$ p.s. On doit montrer que deux C.M. de transition $\mathbb Q$ indépendantes Y et Z se rencontrent p.s. (Y et Z non indépendants mais ils le sont jusqu'à leur rencontre). Faisons comme s'ils étaient indépendants.

$$\mathbb{P}((Z_0, Y_0), \dots, (Z_n, Y_n) = (x_0, y_0), \dots, (x_n, y_n))
= \mathbb{P}(Z_0, \dots, Z_n = x_0, \dots, x_n) \mathbb{P}(Y_0, \dots, Y_n = y_0, \dots, y_n)
= \mathbb{P}((Z_0, Y_0) = (x_0, y_0)) \prod_{i=0}^{n-1} \mathbb{Q}(x_i, x_{i+1}) \mathbb{Q}(y_i, y_{i+1})$$

Donc (Z_n, Y_n) C.M. sur $E \times E$ de transition $\tilde{\mathbb{Q}}((x, y), (x', y')) = \mathbb{Q}(x, x')\mathbb{Q}(y, y')$. Pour n assez grand :

$$\tilde{\mathbb{Q}}^n\big((x,y),(x',y')\big) = \underbrace{\mathbb{Q}^n(x,x')}_{\text{par apériodicité}} \underbrace{\mathbb{Q}^n(y,y')}_{\text{idem}} > 0$$

Donc \tilde{Q} est irréductible.

$$(\nu \otimes \nu \cdot \tilde{\mathbb{Q}})(x,y) = \sum_{x',y'} \nu(x')\nu(y')\tilde{\mathbb{Q}}((x',y'),(x,y))$$
$$= \sum_{x'} \nu(x')\mathbb{Q}(x',x) \sum_{y'} \nu(y')\mathbb{Q}(y',y)$$
$$= \nu(x)\nu(y) = (\nu \otimes \nu)(x,y)$$

 $\nu\otimes\nu$ probabilité qui est $\tilde{\mathbb{Q}}$ invariante donc $\tilde{\mathbb{Q}}$ récurrent positif donc si $x\in E$ $T=\inf\{n\mid Y_n=Z_n\}\leqslant\inf\{n\mid (Y_n,Z_n)=(x,x)\}<+\infty$ p.s. (car $\tilde{\mathbb{Q}}$ récurrent positif).