Intuïtieve mens-machineinterface met live actieherkenning

Master of Science in de industriële wetenschappen: informatica Bert De Saffel

prof. dr. ir. Peter Veelaert & prof. dr. ir. Wilfried Philips ing. Sanne Roegiers & ing. Dimitri van Cauwelaert

04 april 2019

Inhoudsopgave

- Context
- Probleemstellingen
- Methodologie

Actieherkenning met de Kinect sensor

Inhoudsopgave

Context

- Probleemstellingen
- Methodologie

3/16

- Oorzaken van ernstige arbeidsongevallen in 2015
 - Verlies van controle over een machine of voertuig
 - ② Uitglijden of struikelen
 - 4 Het tillen of neerzetten van lasten
 - Vrijkomen van giftige producten

- Oorzaken van ernstige arbeidsongevallen in 2015
 - Verlies van controle over een machine of voertuig
 - ② Uitglijden of struikelen
 - 4 Het tillen of neerzetten van lasten
 - Vrijkomen van giftige producten
- Gevolgen
 - Langdurige ongeschiktheid
 - Permanente letsels
 - Sterfgeval

Figuur: Frequentiegraad ernstige arbeidsongevallen in de privésector.

- Mogelijke oplossing
 - Het inzetten van robotica in gevaarlijke omgevingen

Actieherkenning met de Kinect sensor

- Mogelijke oplossing
 - Het inzetten van robotica in gevaarlijke omgevingen
 - Hoe besturen?
 - Remote control
 - Autonoom
 - Actieherkenning

• De verplaatsing van een robot uitvoeren met enkel actieherkenning

- De verplaatsing van een robot uitvoeren met enkel actieherkenning
- Met de kinect sensor
 - Kan skeletbeelden genereren vanuit RGB-D data

Actieherkenning met de Kinect sensor

Inhoudsopgave

- 2 Probleemstellingen
- Methodologie

8/16

Probleemstellingen

- Verschillen in lichaamsbouw mogelijk (klein vs groot)
- Verschillen in camerahoek

Probleemstellingen

- Verschillen in lichaamsbouw mogelijk (klein vs groot)
- Verschillen in camerahoek
- Real-time actieherkenning
 - De actie herkennen op het moment dat deze uitgevoerd wordt

Onderzoek

- De features moeten rotatie- en lichaamsinvariant zijn
- Actie moet vroeg genoeg herkend worden om live te kunnen classificeren

Inhoudsopgave

Context

- 2 Probleemstellingen
- Methodologie

Actieherkenning met de Kinect sensor

Methodologie

Actieherkenning met de Kinect sensor

Dataset

• Welke acties?

Dataset

- Welke acties?
- Frame drops
 - Verouderde hardware
 - Te hoge resolutie

Experimenteerfase

- Verschillende features uittesten op eigen dataset
 - HOJ3D
 - COV3DJ
 - EigenJoints
- Combineren met verschillende methoden om temporale informatie te behouden
 - Sliding Window
 - Dynamic Time Warping
 - Hidden Markov Model
- Zoeken naar verbeteringen
 - Combinatie van features
 - Dimensiereductie

Evaluatie

Confusion matrix

• Accuracy: $\frac{TP+TN}{TP+FP+FN+TN}$ • Precision: $\frac{TP}{TP+FP}$ • Recall: $\frac{TP}{TP+FN}$

• F1 score: $2\frac{P \cdot R}{P+R}$

Vragen, opmerkingen, ...?

