## Computer Security and The Internet

#### CHAPTER 1 SECURITY CONCEPTS AND **PRINCIPLES**

#### PRESENTED BY

18701046



Department Computer Science & Engineering

### 1.1 Fundamental Goals of Computer Security



### What is Computer Security

- Reliability
- Redundancy

### Six High-Level Computer Security Goals

- Confidentiality
- Integrity
- Authorization
- Availability
- ► Authentication
- Accountability



### 1.2 Computer Security Policies and Attacks



### Distinguishing between Two Terms

- ► Trusted VS Trustworthy
- Confidentiality Vs Privacy and Anonymity

### Security-specific terminology

- Assets
- ► Theory
- Attacks
- ► Threat
- Controls

# 1.3. Risk, Risk Assessment, and Modeling Expected



Risk: Depends on threat agent, probability of attack, and expected loss. Risk equation: R = T.V.C



Figure 1: Risk Equation

- Risk Assessment Challenge
- Risk Rating Matrix

Losses

| C (cost or impact)             | P (probability) |     |          |      |        |
|--------------------------------|-----------------|-----|----------|------|--------|
| NSS                            | V.LOW           | LOW | MODERATE | HIGH | V.HIGH |
| V.LOW (negligible)             | 1               | 1   | 1        | 1    | 1      |
| LOW (limited)                  | 1               | 2   | 2        | 2    | 2      |
| MODERATE (serious)             | 1               | 2   | 3        | 3    | 3      |
| HIGH (severe or catastrophic)  | 2               | 2   | 3        | 4    | 4      |
| V.HIGH (multiply catastrophic) | 2               | 3   | 4        | 5    | 5      |

Figure 2: Risk Rating Matrix

### 1.4.Adversary modeling and security analysis



Adversarial modeling is the technique of **identifying attackers** based on mal-intent and suspicious behaviors.

#### Adversary attributes:

- Objectives
- Methods Capabilites
- Funding levels
- Outsider vs Insiders Security analysis:

#### Security evaluation:

- ► Black Box Testing
- White Box Testing



Figure 3: Security analysis and the software development lifecycle.

### 1.5. Threat Modelling



A threat model identifies **threats**, **threat agents**, and **attack vectors** that the target system considers in scope to defend against—known from the **past**, or **anticipated**.

- Architectural diagrams
- Attack trees
- Stride
- Checklists



Figure 4: Examples of threat modeling approaches.

### 1.5. Threat Modelling



#### **Architectural Diagram**

- ▶ Data flow diagram
- User workflow
- Lifecycle



Figure 5: Password-authenticated account lifecycle.

#### Attack trees

- Attack goal
- Attack vector

Others: Checklist, STRIDE...



Figure 6: Attack tree.

### 1.6. Model-reality gaps and real-world outcomes



#### Quality of a Threat Model

- Invalid assumptions
- Focus on the wrong threats
- Hotel safebox

#### What is your Threat Model

- Online trading fraud, Phishing one-time passwords, Bypassing perimeter defenses
- Iterative Process: Hard and soft keyloggers

#### Real Outcomes and Security Analysis

- ► The security goal is not met
- ► The resulting system is secure
- ► An unanticipated simple attack still succeeds

### 1.6. Model-reality gaps and real-world outcomes



### Security Analysis and Key Questions

- What assets are valuable?
- What potential attacks put them at risk?
- How can potentially damaging actions be stopped?

#### Others

- ► Testing is Necessarily Incomplete
- Security is Unobservable
- Assurance is Difficult, Partial



Figure 7: Security analysis in context.

### 1.7 Design principles for computer security



- Simplicity and Necessity
- ► Safe Defaults
- Open Design
- Complete Mediation
- ► Isolated Compartments
- Least Privilege
- Modular Design
- Small Trusted Bases
- ▶ Time Tested Tool
- ► Least Surprise

- User By In
- Sufficient Work Factor
- Defense In Depth
- Evidence Production
- Datatype Validation
- Remnant Removal
- Trust Anchor Justification
- ► Independent Confirmation
- ► Request Response Integrity
- ► Reluctant Allocation

### 1.8. Why computer security is hard



- intelligent, adaptive adversary
- ▶ no rulebook
- defender-attacker asymmetry
- scale of attack
- connectivity
- pace of technology evolution
- software complexity

- developer training and tools
- cost beats quality
- managing secrets is difficult
- non-expert users (human factors)
- security not designed in
- ▶ introducing new exposures
- government obstacles





Computer Security and The Internet