BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI-HYDERABAD CAMPUS FIRST SEMESTER 2020-2021 COURSE HANDOUT- (QM I)

Date: 17.08.2020

Course No. : PHY F242

Course Title : Quantum Mechanics I
Instructor-in-Charge : Subhash Karbelkar
Instructor : Subhash Karbelkar

Course Description: Origin of the quantum theory - black body radiation, photoelectric effect, Compton scattering, electron diffraction, Bohr model of hydrogen atom, Frank-Hertz experiment, Bohr-Sommerfeld quantization condition; notion of wave function, statistical interpretation of the wave function, issues of normalization, the Heisenberg uncertainty relation; Schrodinger equation, stationary states and time independent Schrodinger equation, energy eigenvalues and eigen-functions, one-dimensional problems – potential wells, potential barriers, the harmonic oscillator; Hilbert space formalism – state vectors, Dirac's bra-ket notation, observables as Hermitian operators, eigenvalues and eigenstates of Hermitian operators, the measurement postulate, Three dimensional problems- Particle in a three-dimensional Box, The Schrodinger equation in spherical polar coordinates, Angular momentum and spherical harmonics, The hydrogen atom.

Scope & Objectives:

The course on QM I aims to

- provide a thorough basic understanding of the fundamental principles of quantum physics,
- furnish insight in the microscopic structure of matter and
- develop an ability to employ the principles of quantum mechanics to solve a variety of simple quantum systems

Text Book:

T1: Introduction to Quantum Mechanics (Second edition) by D J Griffiths, LPE, Pearson

Reference Books:

R1: Modern Quantum Mechanics by J J Sakurai, **R2:** Quantum Physics (2nd. Edition), Stephen Gasiorowicz, **R3:** Principles of Quantum Mechanics, R Shankar

Course Plan

Number of lectures	Learning Objectives	Topics to be covered	Text Book Section/s		
3	The Schroedinger equation	The Schroedinger equation and	1.1 to 1.2		
		statistical interpretation of wavefunction,			
3	continued	Probability and continuity equation for it	1.3-1.4		

2	Uncertainty principle	Momentum and uncertainty principle	1.5-1.6
3	Time independent Schroedinger equation	Stationary states, Continuity (or otherwise) conditions, one dimensional piecewise constant potentials: delta function potential	I ` II
3	continued	infinite and finite square well potentials,	2.6
4	The harmonic oscillator	The harmonic oscillator	2.3
5	Formalism	Hilbert space, observables, Hermitian operators	3.1-3.3
4	Generalized statistical interpretation	Generalized statistical interpretation, the uncertainty principle, Dirac notation	3.4-3.6
5	Spherically symmetric potentials	Schroedinger equation in spherical coordinates	4.1
3	The Hydrogen atom	The hydrogen atom	4.2
7	Angular momentum	Commutation relations, eigenvalues and eigen functions	4.3

Evaluation Scheme:

EC No	Evaluation scheme	Duration (minutes)	Weig htage	Date, Time	Nature
			(%)		
1	TEST 1	30	15	September 10 –September 20 \$	OB
2	TEST 2	30	15	October 09 – October 20 \$	OB
3	TEST 3	30	15	November 10 – November 20 \$	OB
4	TUT TESTS/QUIZES/ASSIGN MENTS		30	Evenly spaced \$	ОВ
5	Comprehensive examination	120	25	As announced in the Timetable	OB

\$:During scheduled class hour

First four listed components, with the exception of assignments if any, will be conducted during scheduled class hour.

- Notices: Notices for the course will be uploaded only on CMS.
- All submissions to be sent by email to snkarbelkar@hyderabad.bits-pilani.ac.in with subject line QM1 component name your name. please see details in CMS.
- For doubts please connect with whatsapp 9649604370
- All components are Open book.
- Make-up Policy: Very strict to genuine cases only i.e. No make up for tut tests.
 - **(i) Sickness leading to hospitalization**. (No make up for stomach-ache, diarrhea, vomiting, head-ache unless seriousness is verified by medical test.)
 - (ii) prior intimation & permission.

- (iii) request for granting make up must reach me on or before the actual time of the concerned component; please send email snkarbelkar@gmail.com stating reason/s and the earliest date make up can be conducted. Attach pictures of documentary proof in support of such request.
- **Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge PHY F242