Laboratorium Podstaw Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	nie r	namy
Temat Laboratorium			Numer lab.	
Ćwiczenia wprowadzające			1	
Skład grupy ćwiczeniowej oraz numery indeksów				
Piotr Więtczak(132339), Robert Ciemny(136693), Kamil Basiukajc(136681)				
Uwagi			Ocena	

1 Ćwiczenia wprowadające

1.1 Rezystory

W tym ćwiczeniu należy odczytać wartość rezystancji na podstawie kodu paskowego rezystorów lub oznaczeń oraz dokonać pomiaru wartości rezystancji przy pomocy multimetru RIGOL DM3051, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 1

Tablica 1: Wartości odczytów i pomiarów rezystancji

R	Barwa/oznaczenia	Odczyt	Pomiar
R_1	żółty - fioletowy - czewony - złoty	$4.7k\Omega$	$4.634k\Omega$
R_2	czerwony - czarny - zielony - złoty	$2M\Omega$	$2.009M\Omega$
R_3	czerwony - czerwony - czerwony - złoty	$2.2k\Omega$	$2.132k\Omega$
R_4	czerwony - czerwony - brązowy - złoty	220Ω	219.320Ω
R_5	brązowy - czarny - czerwony - złoty	$1k\Omega$	0.976Ω
R_6	10R	10Ω	10.71Ω

1.2 Kondensatory

W tym ćwiczeniu należy odczytać wartość pojemności kondensatorów na podstawie ich oznaczeń oraz dokonać pomiaru wartości pojemności przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 2.

Tablica 2: Wartości odczytów i pomiarów pojemności

C	Oznaczenia	Odczyt	Pomiar
C_1	$47\mu F$ $35V$	47μF	44.31μF
C_2	$100\mu F$ 63V	100μF	99.14μF
C_3	$2.2\mu F$ 50V	2.2μF	2.131μF
C_4	22μF 25V	22μF	22.081μF
C ₅	103 10nF	10 <i>nF</i>	9.22 <i>nF</i>
C_6	102 1nF	1nF	0.912 <i>nF</i>

1.3 Cewki

W tym ćwiczeniu należy dokonać pomiaru indukcyjności wybranej cewki przy pomocy mostka pomiarowego, pamiętając przy tym o poprawnym zapisaniu jednostek podczas wypełniania tabeli 3.

Tablica 3: Wartości odczytów i pomiarów indukcyjności

L	Pomiar	
L_1	30.8	μΗ

2 Obwody

2.1 Obliczanie rezystancji zastępczej

2.1.1 Cel

W tym ćwiczeniu należy obliczyć rezystancję zastępczą od strony zacisków AB dla schematu przedstawionego na rys. 1 oraz zapisać pełne wyprowadzenie wzoru rezystancji zastępczej

Rysunek 1: Obwód rezystancyjny

2.1.2 Wyprowadzenie wzoru i obliczenie rezystancji zastępczej

2.2 Budowanie obwodów rezystancyjnych

2.2.1 Cel

Celem tego ćwiczenia jest:

- Przy pomocy stykowej płytki prototypowej zbudować wszystkie obwody pokazane na rysunkach 2, 4, 6, 8, 10, 12.
- Przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji dokonać pomiaru rezystancji zastępczej od strony zacisków AB.
- Wyprowadzić wzory na poszczególne rezystancje zastępcze od strony zacisków AB.
- Napisać z czego wynikają różnice między pomiarem, a obliczeniami.

2.2.2 Obwód (a)

Rysunek 2: (a)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 3.

Rysunek 3: obwód (a)

Pomiar rezystancji

Dla obwodu z rysunku 2 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $0.808k\Omega$.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 2

$$R_{23} = R_2 + R_3$$

$$R_z = \frac{1}{\frac{1}{R_{23}} + \frac{1}{R_1}} = \frac{(R_2 + R_3)R_1}{R_1 + R_2 + R_3}$$

$$R_z = \frac{(2200\Omega + 2200\Omega)1000\Omega}{1000\Omega + 2200\Omega + 2200\Omega} = \frac{4400000\Omega}{5400\Omega} \approx 814.8148\Omega$$

2.2.3 Obwód (b)

Rysunek 4: (b)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 5.

Rysunek 5: obwód (b)

Pomiar rezystancji

Dla obwodu z rysunku 4 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik $95.5k\Omega$.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 4

$$R_{12} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$R_{1235} = R_{12} + R_3 + R_5$$

$$R_z = \frac{1}{\frac{1}{R_4} + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} + R_3 + R_5}$$

$$R_z = \frac{1}{\frac{1}{1000}} + \frac{1}{\frac{1}{10000} + \frac{1}{22000}} + \frac{10000 + 1000}{151} \approx 94.70$$

2.2.4 Obwód (c)

Rysunek 6: (c)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 7.

Pomiar rezystancji

Dla obwodu z rysunku 6 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 2161.56Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 6

$$R_z = R_1$$

$$R_z = 2200\Omega$$

fritzing

Rysunek 7: obwód (c)

2.2.5 Obwód (d)

Rysunek 8: (d)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 9.

fritzing

Rysunek 9: obwód (d)

Pomiar rezystancji

Dla obwodu z rysunku 8 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 739.36Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 8

$$R_z = R_1$$

$$R_z = 2200\Omega$$

2.2.6 Obwód (e)

Rysunek 10: (e)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 11.

Rysunek 11: obwód (e)

Pomiar rezystancji

Dla obwodu z rysunku 10 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 69Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 10

$$R_z = R_1$$

$$R_z = 2200\Omega$$

2.2.7 Obwód (f)

Rysunek 12: (f)

Budowa obwodu przy pomocy stykowej płytki prototypowej

Budowa obwodu przy pomocy stykowej płytki prototypowej została przedstawiona w programie Fritzig na rysunku 13.

Pomiar rezystancji

Dla obwodu z rysunku 12 dokonano pomiaru rezystancji od strony zacisków AB przy pomocy Multimetru RIGOL skonfigurowanego do pomiaru rezystancji. Multimert wskazał wynik 69Ω.

Wyprowadzenie wzoru na rezystancje zastępcze dla obwodu z rysunku 12

$$R_z = R_1$$

$$R_z = 2200\Omega$$

fritzing

Rysunek 13: obwód (e)

3 Pomiary napięcia

3.1 Pomiar wartości napięć wyjściowych z zasilacza

Tablica 4: Wartości odczytów i pomiarów

U[V]	Odczyt[V]	Pomiar[V]
1		
3		
4.5		
11		
13		
25		
28		