Wireshark

Capture output

Setting Capture Options

The most useful capture options we will consider are:

- 1. **Network interface** As we explained before, we will only analyze packets coming through **eth0**, either incoming or outcoming.
 - 2. **Capture filter** This option allows us to indicate what kind of traffic we want to monitor by port, protocol, or type.

Before we proceed with the tips, it is important to note that some organizations forbid the use of **Wireshark** in their networks. That said, if you are not utilizing Wireshark for personal purposes make sure your organization allows its use.

For the time being, just select etho from the dropdown list and click **Start** at the button. You will start seeing all traffic passing through that interface. Not really useful for monitoring purposes due to the high amount of packets inspected, but it's a start.

Monitor Network Interface Traffic

In the above image, we can also see the **icons** to list the available interfaces, to **stop** the current capture, and to **restart** it (red box on the **left**) and to configure and edit a filter (red box on the **right**). When you hover over one of these icons, a tooltip will be displayed to indicate what it does.

We will begin by illustrating capture options, whereas tips #7 through #10 will discuss how to do actually do something useful with a capture.

#1 - Inspect HTTP Traffic

Type http in the filter box and click **Apply**. Launch your browser and go to any site you wish:

Inspect HTTP Network Traffic

To begin every subsequent tip, stop the live capture and edit the capture filter.

#2 – Inspect HTTP Traffic from a Given IP Address

In this particular tip, we will prepend ip==192.168.0.10&& to the filter stanza to monitor HTTP traffic between the local computer and 192.168.0.10:

Inspect

HTTP Traffic on IP Address

#3 – Inspect HTTP Traffic to a Given IP Address

Closely related with #2, in this case, we will use ip.dst as part of the capture filter as follows:

ip.dst==192.168.0.10&&http

	Filter:	ip.dst==19	▼ Expression		
No.		Time	Source	Destination	Protocol Ler
		4.717700	192.168.0.105	192.168.0.10	НТТР
	6306	50.284976	192.168.0.105	192.168.0.10	HTTP
	6715	55.112873	192.168.0.105	192.168.0.10	HTTP
	8661	67.300023	192.168.0.105	192.168.0.10	HTTP
	16206	126.814798	192.168.0.105	192.168.0.10	HTTP

Monitor HTTP Network Traffic to IP Address

To combine tips #2 and #3, you can use ip.addr in the filter rule instead of ip.src or ip.dst.

#4 – Monitor Apache and MySQL Network Traffic

Sometimes you will be interested in inspecting traffic that matches either (or both) conditions whatsoever. For example, to monitor traffic on TCP ports **80** (webserver) and **3306** (MySQL / MariaDB database server), you can use an or condition in the capture filter:

tcp.port==80||tcp.port==3306

Monitor Apache and MySQL Traffic

In tips #2 and #3, | | and the word or produce the same results. Same with and the word and.

TIP #5 – Reject Packets to Given IP Address

To exclude packets not matching the filter rule, use I and enclose the rule within parentheses. For example, to exclude packages originating from or being directed to a given IP address, you can use:

!(ip.addr == 192.168.0.10)

TIP #6 – Monitor Local Network Traffic (192.168.0.0/24)

The following filter rule will display only local traffic and exclude packets going to and coming from the Internet:

ip.src==192.168.0.0/24 and ip.dst==192.168.0.0/24

	Expression +	F					
No.	Time	Source	Destination	Protocol I	Length Info		٨
	34765 138.630619563	192.168.0.103	192.168.0.1	DNS	77 Standard	query 0xc72e	
	34787 138.685728620	192.168.0.1	192.168.0.103	DNS	270 Standard	query respons	
	34790 138.685912708	192.168.0.103	192.168.0.1	DNS		query 0xe482	
	34803 138.727963462	192.168.0.1	192.168.0.103	DNS	142 Standard	query respons	
	35087 139.705507865	192.168.0.103	192.168.0.1	DNS	81 Standard	query 0x4a97	
	35089 139.707957765	192.168.0.1	192.168.0.103	DNS	257 Standard	query respons	
	35092 139.708096923	192.168.0.103	192.168.0.1	DNS		query 0xa435	
	35094 139.710093841	192.168.0.1	192.168.0.103	DNS	241 Standard	query respons	
	38465 153.634018807	192.168.0.103	192.168.0.1	DNS	77 Standard	query 0x644d	
	38472 153.644734084	192.168.0.1	192.168.0.103	DNS	270 Standard	query respons	
	38475 153.644904181	192.168.0.103	192.168.0.1	DNS	77 Standard	query 0x7260	
	38479 153.658135858	192.168.0.1	192.168.0.103	DNS		query respons	
	42338 168.640439297	192.168.0.103	192.168.0.1	DNS		query 0x4745	100
	42349 168.666574747	192.168.0.1	192.168.0.103	DNS	270 Standard	query respons	
	42352 168.666801519	192.168.0.103	192.168.0.1	DNS		query 0xeaff	
	42371 168.701301485	192.168.0.1	192.168.0.103	DNS	142 Standard	query respons	

Monitor Local Network Traffic

TIP #7 – Monitor the Contents of a TCP Conversation

To inspect the contents of a **TCP** conversation (data exchange), right-click on a given packet and choose Follow **TCP** stream. A window will pop-up with the content of the conversation. This will include **HTTP** headers if we are inspecting web traffic, and also any plain text credentials transmitted during the process if any.

```
Follow TCP Stream
Stream Content
GET / HTTP/1.1
Host: 192.168.0.10
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:50.0
Accept: text/html,application/xhtml+xml,application/xml;q=0
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Upgrade-Insecure-Requests: 1
If-Modified-Since: Sat, 27 Aug 2016 23:19:35 GMT
Cache-Control: max-age=0
HTTP/1.1 304 Not Modified
Server: nginx/1.6.2
Date: Thu, 23 Feb 2017 01:12:26 GMT
Last-Modified: Sat, 27 Aug 2016 23:19:35 GMT
Connection: keep-alive
ETag: "57c22007-363"
                                                            Monitor TCP
```

Conversation

TIP #8 – Edit Coloring Rules

By now I am sure you already noticed that each row in the capture window is colored. By default, **HTTP** traffic appears in the **green** background with black text, whereas **checksum** errors are shown in **red** text with a black background. If you wish to change these settings, click the **Edit** coloring rules icon, choose a given filter, and click **Edit**.

Customize Wireshark Output in Colors

TIP #9 – Save the Capture to a File

Saving the contents of capture will allow us to be able to inspect it with greater detail. To do this, go to $File \rightarrow Export$ and choose an export format from the list:

