Algoritmo: α Distance Borderline-ADASYN-SMOTE Mejorado

Algoritmo: α Distance Borderline-ADASYN-SMOTE Mejorado

Referencia base: Feng & Li, 2021.

Mejora incorporada: filtrado adicional de muestras ruidosas basado en umbral de α'_n .

1. División de vecinos:

Para cada muestra minoritaria p_i , obtener sus m vecinos más cercanos y dividirlos en:

- Vecinos de clase minoritaria: cantidad pnum
- Vecinos de clase mayoritaria: cantidad nnum

2. Cálculo de pesos inversos:

Para cada vecino p_i de p_i , calcular el peso basado en la distancia:

$$\alpha_j = \frac{1}{\operatorname{dist}(p_i, p_j)}$$

3. Suma de pesos por clase:

$$\alpha_p' = \sum \alpha_j$$
 (de vecinos minoritarios), $\alpha_n' = \sum \alpha_j$ (de vecinos mayoritarios)

4. Identificación inicial de muestras peligrosas:

Si $\alpha_n' > \alpha_p'$, entonces p_i se considera una muestra potencialmente peligrosa.

5. Filtrado de muestras ruidosas (mejora propuesta):

Calcular el umbral de ruido θ como el percentil 25 de todos los α'_n del conjunto de muestras minoritarias.

Si $\alpha'_n < \theta$, entonces p_i se considera una muestra ruidosa y se descarta del conjunto peligroso.

Ejemplo:

Supongamos que para un subconjunto de muestras minoritarias, los valores de α_n' son:

$$\alpha'_n = [0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.70, 0.90]$$

La cantidad total de valores es n=9. Para calcular el percentil 25 (primer cuartil), usamos la fórmula:

$$P_{25} = \frac{25}{100} \cdot (n+1) = 0.25 \cdot 10 = 2.5$$

El percentil 25 se encuentra entre las posiciones 2 y 3 (valores 0.15 y 0.20), por lo tanto:

$$\theta = 0.15 + 0.5 \cdot (0.20 - 0.15) = 0.175$$

Cualquier muestra con $\alpha'_n < 0.175$ será considerada ruidosa y no se utilizará para la generación de muestras sintéticas.

Por lo tanto, los valores $\alpha'_n = 0.10$ y 0.15, al ser menores que $\theta = 0.175$, corresponden a muestras ruidosas. Estas muestras serán descartadas del conjunto de muestras peligrosas, y no participarán en los siguientes pasos de generación sintética.

6. Cálculo total de ejemplos sintéticos:

$$G = (N - n) \cdot \beta$$

Donde:

- N: número de muestras de la clase mayoritaria
- n: número de muestras de la clase minoritaria
- $\beta \in [0, 1]$: proporción deseada de balance.

7. Distribución proporcional del total:

Para cada muestra peligrosa no ruidosa p_i , calcular:

$$r_i = \frac{\Delta_i}{m}, \quad \hat{r}_i = \frac{r_i}{\sum r_i}, \quad g_i = \hat{r}_i \cdot G$$

Donde:

- Δ_i : número de vecinos mayoritarios de p_i
- m: cantidad total de vecinos
- r_i : proporción de vecinos mayoritarios para p_i
- \hat{r}_i : proporción normalizada
- g_i : cantidad de muestras sintéticas a generar para p_i

8. Generación de muestras sintéticas:

Para cada p_i , generar g_i muestras sintéticas mediante interpolación:

$$s = p_i + \lambda \cdot (p_z - p_i), \quad \lambda \in [0, 1]$$

Donde p_z es un vecino minoritario aleatorio de p_i .