Maths for Computing

Lecture 3: Introduction to Matrices

Manuele Leonelli

School of Human Sciences and Technology, IE University

Today's Objective

- Introduce functions
- ▶ Define various components of a function
- ► Discuss properties of functions

Matrices

A matrix is a table of real numbers. We say that a matrix has dimension $n \times m$ if it has n rows and m columns.

$$m{A} = egin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,m} \\ a_{2,1} & a_{2,2} & \dots & a_{2,m} \\ \dots & \dots & \dots \\ a_{n,1} & a_{n,2} & \dots & a_{n,m} \end{pmatrix}$$

A is often expressed as $\mathbf{A} = (a_{i,j})_{n \times m}$ or simply $\mathbf{A} = (a_{i,j})$ where $a_{i,j}$ is the element of **A** in the *i*-th row and *j*-th column.

A vector is a matrix with only one row (**row vector**) or only one column (**column vector**). Vectors are usually denoted by small bold letters like x or y.

Construct the 4 × 3 matrix $\mathbf{A} = (a_{i,j})_{4\times3}$ with $a_{i,j} = 2i - j$.

Construct the 4 × 3 matrix $\mathbf{A} = (a_{i,j})_{4\times3}$ with $a_{i,j} = 2i - j$.

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -1 \\ 3 & 2 & 1 \\ 5 & 4 & 3 \end{pmatrix}$$

Some Special Matrices

- ► The zero matrix $\mathbf{0}$ denotes the $n \times m$ matrix consisting of only zeros
- A square matrix has n = m, i.e. same number of rows and columns
- ▶ In a square matrix $\mathbf{A} = (a_{i,j})_{n \times n}$, the elements $a_{1,1}, a_{2,2}, \dots, a_{n,n}$ constitute the main diagonal
- A square matrix $\mathbf{A} = (a_{i,j})_{n \times n}$ is symmetric if $a_{i,j} = a_{j,i}$ for all $i \neq j$, i.e. it is symmetric about the main diagonal
- ► The identity matrix of order n denoted by In or simply I is the n × n matrix having ones along the main diagonal and zeros elsewhere.
- ► A square matrix is called *lower triangular* (or upper) if the elements above (or below) the main diagonal are zero.

Examples

$$I_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$L = \begin{pmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{pmatrix}$$

$$U = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix}$$

Matrix addition and multiplication by a scalar

Consider two matrices $\mathbf{A} = (a_{i,j})_{n \times m}$ and $\mathbf{B} = (b_{i,j})_{n \times m}$.

- ► **A** and **B** are said to be of the same order (same dimension)
- ▶ $\mathbf{A} = \mathbf{B}$ if $a_{i,j} = b_{i,j}$ for all i and j. Otherwise $\mathbf{A} \neq \mathbf{B}$.
- ▶ The sum $\mathbf{A} + \mathbf{B}$ is defined as

$$\mathbf{A} + \mathbf{B} = (a_{i,j} + b_{i,j})_{n \times m}$$

▶ If $\alpha \in \mathbb{R}$

$$\alpha \mathbf{A} = (\alpha \mathbf{a}_{i,j})_{n \times m}$$

Properties of summation and multiplication by scalar

Let **A**, **B** and **C** be $n \times m$ matrices and let $\alpha, \beta \in \mathbb{R}$.

$$ightharpoonup (A+B)+C=A+(B+C)$$

$$\triangleright$$
 $A + B = B + A$

$$ightharpoonup A + 0 = A$$

▶
$$A + (-1)A = 0$$

$$\blacktriangleright$$
 $(\alpha + \beta)\mathbf{A} = \alpha\mathbf{A} + \beta\mathbf{A}$

Matrix Product

Compatible Matrices

The product of two matrices \boldsymbol{A} and \boldsymbol{B} , denoted as $\boldsymbol{A}\boldsymbol{B}$ can be defined if the dimensions of the two matrices are $m \times n$ (\boldsymbol{A}) and $n \times p$ (\boldsymbol{B}), i.e. the number of columns of \boldsymbol{A} is the same as the number of rows of \boldsymbol{B} .

Call C = AB, then C is $m \times p$ matrix $C = (c_{i,j})_{m \times p}$ with entries

$$c_{i,j} = \sum_{r=1}^{n} a_{i,r} b_{r,j} = a_{i,1} b_{1,j} + a_{i,2} b_{2,j} + \dots + a_{i,n} b_{n,j}$$

Notice that if AB exists, it does not follow that BA does as well.

Example

It is often called row-column product

$$\begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & -2 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & -7 \end{pmatrix}$$

Consider the following 2 matrices \boldsymbol{A} and \boldsymbol{B} . Compute $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$. Is $\boldsymbol{B}\boldsymbol{A}$ defined?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 3 & 1 \\ 4 & -1 & 6 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 3 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Consider the following 2 matrices \boldsymbol{A} and \boldsymbol{B} . Compute $\boldsymbol{C} = \boldsymbol{A}\boldsymbol{B}$. Is $\boldsymbol{B}\boldsymbol{A}$ defined?

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 3 & 1 \\ 4 & -1 & 6 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 3 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}$$
$$\mathbf{C} = \begin{pmatrix} -1 & 2 \\ 8 & 5 \\ 5 & 14 \end{pmatrix}$$

BA is not defined

Powers of Matrices

If \bf{A} is a square matrix, because of associativity we can write $\bf{A}\bf{A}=\bf{A}^2$ and $\bf{A}\bf{A}\bf{A}=\bf{A}^3$, and so on. In general

$$\mathbf{A}^n = \underbrace{\mathbf{A}\mathbf{A}\cdots\mathbf{A}}_{n \text{ times}}$$

Transpose

The transpose matrix is the matrix where row and columns are interchanged.

If
$$\mathbf{A} = (a_{i,j})_{n \times m}$$
 then its transpose $\mathbf{A}^t = (a_{i,j}^t)_{m \times n}$.

The (i,j) element of \boldsymbol{A} is equal to the (j,i) element of \boldsymbol{A}^t , i.e. $a_{i,j}=a_{j,i}^t$.

Example

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 7 & -3 & 6 \end{pmatrix}$$
$$A^{t} = \begin{pmatrix} -1 & 7 \\ 3 & -3 \\ 2 & 6 \end{pmatrix}$$

The Determinant of Order 2

The determinant is a number associated to any square matrix.

$$2 \times 2$$

$$det(\mathbf{A}) = |\mathbf{A}| = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

The Determinant of Order 3

3×3

$$det \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix} =$$

$$a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{2,1}a_{3,2}a_{1,3}$$

$$-(a_{1,3}a_{2,2}a_{3,1} + a_{1,2}a_{2,1}a_{3,3} + a_{1,1}a_{3,2}a_{2,3})$$

This already gets messy!!

Expansion by Cofactors

$$|\mathbf{A}| = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix}$$

$$= a_{1,1} \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} - a_{1,2} \begin{vmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{vmatrix} + a_{1,3} \begin{vmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{vmatrix}$$

- ► Cofactor 1 is determined by deleting the first row and the first column
- Cofactor 2 is determined by deleting the first row and the second column
- ► Cofactor 3 is determined by deleting the first row and the third column

General Rule for Determinants

Let **A** be a $n \times n$ matrix.

The expansion of $|\mathbf{A}|$ in terms of the elements of the ith row is given by

$$|\mathbf{A}| = a_{i,1}C_{i,1} + a_{i,2}C_{i,2} + \cdots + a_{i,n}C_{i,n},$$

where $C_{i,j}$ is a cofactor.

A cofactor $C_{i,j}$ can be found as follows:

- ▶ Delete the i-th row and the j-th column from **A** and compute its determinant
- ▶ Multiply the determinant by the factor $(-1)^{i+j}$

Consider the matrix A

$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 & 2 \\ 6 & 1 & c & 2 \\ -1 & 1 & 0 & 0 \\ 5 & 2 & 0 & 3 \end{pmatrix}$$

- ▶ What is $C_{2,3}$?
- **▶** What is |**A**|?

Properties of Determinants

Let **A** and **B** be $n \times n$ matrices and $\alpha \in \mathbb{R}$.

- ▶ If all elements in a row (or column) of **A** are 0, then $|\mathbf{A}| = 0$
- $|\mathbf{A}| = |\mathbf{A}^t|$
- ightharpoonup |AB| = |A||B|
- $|\alpha \mathbf{A}| = \alpha^n |\mathbf{A}|$
- |I|=1
- ▶ If **A** is triangular (or diagonal) $|A| = \prod_{i=1}^n a_{i,i}$

Compute the determinant of the following matrix

$$\begin{pmatrix} a_1 - x & a_2 & a_3 & a_4 \\ 0 & -x & 0 & 0 \\ 0 & 1 & -x & 0 \\ 0 & 3 & 1 & -x \end{pmatrix}$$