INTEGRATED CIRCUITS

DATA SHEET

PCF881265 × 102 pixels matrix LCD driver

Product specification Supersedes data of 2000 Nov 22

2004 Feb 23

65×102 pixels matrix LCD driver

PCF8812

CONTENT	-s	10.5	Set Y address of RAM
1 2 3 4 5 6 7 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	FEATURES APPLICATIONS GENERAL DESCRIPTION ORDERING INFORMATION BLOCK DIAGRAM PINNING PIN FUNCTIONS Pin functions ROW 0 to ROW 64 row driver outputs COL 0 to COL 101 column driver outputs V _{SS1} and V _{SS2} : negative power supply rails V _{DD1} to V _{DD3} : positive power supply rails V _{LCDIN} : LCD power supply V _{LCDOUT} : LCD power supply	10.6 10.7 10.8 10.9 10.10 11 12 13 14 15 16 16.1 16.2 17	Set X address of RAM Set HV-generator stages Bias system Temperature control Set V _{OP} value LIMITING VALUES HANDLING DC CHARACTERISTICS AC CHARACTERISTICS AC CHARACTERISTICS APPLICATION INFORMATION BONDING PAD INFORMATION PCF8812U/2DA/2 PCF8812/2/F1 TRAY INFORMATION
7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.1.13 7.1.14	V _{LCDSENSE} : voltage multiplier regulation input (V _{LCD}) TEST1 to TEST5: test pads SDIN: serial data line SCLK: serial clock line D/\overline{\overline{C}}: mode select \overline{SCE}: chip enable OSC: oscillator \overline{RES}: reset FUNCTIONAL DESCRIPTION	17.1 18 19 20 21	Tray dimensions DEVICE PROTECTION DIAGRAM DATA SHEET STATUS DEFINITIONS DISCLAIMERS
8.1 8.2 8.3 8.4 8.5 8.6 9	Oscillator Address Counter (AC) Display Data RAM (DDRAM) Timing generator Display address counter LCD row and column drivers ADDRESSING Data structure		
10 10.1 10.2 10.3 10.3.1 10.3.2 10.3.3 10.4 10.4.1	INSTRUCTIONS Initialization Reset function Function set Bit PD Bit V Bit H Display control Bits D and E		

65 × 102 pixels matrix LCD driver

PCF8812

1 FEATURES

- 65 row and 102 column outputs
- Display data RAM 65 × 102 bits
- · On-chip:
 - Configurable 5 (4, 3 and 2) voltage multiplier generating V_{LCD} (external V_{LCD} also possible)
 - Generation of intermediate LCD bias voltages
 - Oscillator requires no external components (external clock also possible).
- · External reset input pin
- Serial interface maximum 4 Mbit/s
- · CMOS compatible inputs
- Mux rate: 1:65
- Logic supply voltage range V_{DD1} to V_{SS}:
 - 2.5 V to 5.5 V.
- \bullet High voltage generator supply voltage range V_{DD2} to V_{SS} and V_{DD3} to V_{SS}
 - 2.5 to 4.5 V.
- Display supply voltage range V_{LCD} to V_{SS}:
 - 4.5 to 9.0 V.
- Low power consumption, suitable for battery operated systems
- Temperature compensation of V_{LCD}
- Temperature range: $T_{amb} = -40 \, ^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$
- Slim chip layout, suited for Chip-On-Glass (COG) applications.

2 APPLICATIONS

• Telecom equipment.

3 GENERAL DESCRIPTION

The PCF8812 is a low power CMOS LCD controller driver, designed to drive a graphic display of 65 rows and 102 columns. All necessary functions for the display are provided in a single chip, including on-chip generation of LCD supply and bias voltages, resulting in a minimum of external components and low power consumption. The PCF8812 interfaces to microcontrollers via a serial bus interface.

4 ORDERING INFORMATION

TYPE NUMBER		PACKAGE				
I TPE NUMBER	NAME	DESCRIPTION	VERSION			
PCF8812U/2DA/2	tray	chip with bumps in tray	_			
PCF8812U/2/F1	tray	chip with bumps in tray	_			

65×102 pixels matrix LCD driver

PCF8812

5 BLOCK DIAGRAM

65 × 102 pixels matrix LCD driver

PCF8812

6 PINNING

SYMBOL	PAD	DESCRIPTION
RES	1	external reset input (active LOW)
ROW32 to ROW19	2 to 15	LCD row driver outputs
ROW0 to ROW18	18 to 36	LCD row driver outputs
COL0 to COL101	37 to 138	LCD column driver outputs
ROW50 to ROW33	139 to 156	LCD row driver outputs
ROW51 to ROW64	159 to 172	LCD row driver outputs
V_{DD1}	174 to 179	logic supply voltage
V _{DD3}	180	internal voltage generator supply voltage
V_{DD2}	181 to 193	internal voltage generator supply voltage
OSC	194	oscillator input
SDIN	195	serial data input
D/C	196	data or command input
SCE	197	chip enable input (active LOW)
TEST2	198	test 2 output
SCLK	199	serial clock input
V _{SS2}	200 to 213	negative power supply voltage 2
V _{SS1}	214 to 217	negative power supply voltage 1
TEST1	218	test 1 input
TEST5	219	test 5 input
TEST4	220	test 4 input
V _{SS1}	221 and 222	negative power supply voltage 1
TEST3	223	test 3 input and output
V _{LCDIN}	224 to 229	LCD supply voltage input
V _{LCDOUT}	230 to 236	LCD supply internal voltage multiplier output
VLCDSENSE	237	voltage multiplier regulation input
n.c.	16, 17, 157, 158 and 173	not connected

7 PIN FUNCTIONS

7.1 Pin functions

7.1.1 ROW 0 TO ROW 64 ROW DRIVER OUTPUTS
These pads output the row signals.

7.1.2 COL 0 TO COL 101 COLUMN DRIVER OUTPUTS These pads output the column signals.

7.1.3 V_{SS1} AND V_{SS2} : NEGATIVE POWER SUPPLY RAILS Supply rails V_{SS1} and V_{SS2} must be connected together.

7.1.4 V_{DD1} TO V_{DD3} : POSITIVE POWER SUPPLY RAILS

 V_{DD2} and V_{DD3} are the supply voltage for the internal voltage generator. Both have the same voltage and may be connected together outside of the chip. V_{DD1} is used as supply for the rest of the chip. V_{DD1} can be connected together with V_{DD2} and V_{DD3} but in this case care must be taken to respect the supply voltage range (see Chapter 13).

If the internal voltage generator is not used then V_{DD2} and V_{DD3} must be connected to V_{DD1} or connected to power.

7.1.5 V_{LCDIN}: LCD POWER SUPPLY

Positive power supply for the liquid crystal display. An external LCD supply voltage can be supplied using the V_{LCDIN} pad. In this case V_{LCDOUT} has to be left open-circuit and the internal voltage generator has to be programmed to zero. If the PCF8812 is in Power-down mode, the external LCD supply voltage has to be switched off.

7.1.6 V_{LCDOUT}: LCD POWER SUPPLY

Positive power supply for the liquid crystal display. If the internal voltage generator is used, the two supply rails V_{LCDIN} and V_{LCDOUT} must be connected together. If an external supply is used this pin must be left open-circuit.

7.1.7 $V_{LCDSENSE}$: VOLTAGE MULTIPLIER REGULATION INPUT (V_{LCD})

 $V_{\mbox{\scriptsize LCDSENSE}}$ is the input of the internal voltage multiplier regulation.

If the internal voltage generator is used then $V_{LCDSENSE}$ must be connected to V_{LCDOUT} . If a external supply voltage is used then the $V_{LCDSENSE}$ can be let open-circuit or connected to ground.

65 × 102 pixels matrix LCD driver

PCF8812

7.1.8 TEST1 TO TEST5: TEST PADS

TEST1, TEST3, TEST4 and TEST5 must be connected to V_{SS} , TEST2 must be left open-circuit. Not accessible to user.

7.1.9 SDIN: SERIAL DATA LINE

Serial data input line.

7.1.10 SCLK: SERIAL CLOCK LINE

Input for the clock signal 0 to 4 Mbit/s.

7.1.11 D/\overline{C} : MODE SELECT

Input to select either command/address or data input.

7.1.12 SCE: CHIP ENABLE

The enable pin allows data to be clocked in; the signal is active LOW.

7.1.13 OSC: OSCILLATOR

When the on-chip oscillator is used this input must be connected to V_{DD} . An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to V_{SS} the display is not clocked and may be left in a DC state. To avoid this the chip should always be put into Power-down mode before stopping the clock.

7.1.14 **RES**: RESET

This signal will reset the device and must be applied to properly initialize the chip; the signal is active LOW.

8 FUNCTIONAL DESCRIPTION

8.1 Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to V_{DD} . An external clock signal, if used, is connected to this input.

8.2 Address Counter (AC)

The address counter assigns addresses to the display data RAM for writing. The X address X6 to X0 and the Y address Y3 to Y0 are set separately. After a write operation the address counter is automatically incremented by 1 according to the V flag (see Chapter 9).

8.3 Display Data RAM (DDRAM)

The PCF8812 contains a 65×102 bit static RAM which stores the display data. The RAM is divided into 8 banks of 102 bytes ($8 \times 8 \times 102$ bits) and one bank of 102 bits (1×102 bits). During RAM access, data is transferred to the RAM via the serial interface. There is a direct correspondence between the X address and the column output number.

8.4 Timing generator

The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not affected by operations on the data buses.

8.5 Display address counter

The display is generated by continuously shifting rows of RAM data to the dot matrix LCD via the column outputs.

The display status (all dots on/off and normal/inverse video) is set by bits E and D in the command 'display control' (see Table 2).

8.6 LCD row and column drivers

The PCF8812 contains 65 row and 102 column drivers, which connect the appropriate LCD bias voltages in sequence to the display in accordance with the data to be displayed. Figure 2 shows typical waveforms. Unused outputs should be left unconnected.

65×102 pixels matrix LCD driver

PCF8812

65 × 102 pixels matrix LCD driver

PCF8812

9 ADDRESSING

65 × 102 pixels matrix LCD driver

PCF8812

Data is downloaded in bytes into the RAM matrix of the PCF8812 as indicated in Figs.3, 4, 5 and 6. The display RAM has a matrix of 65×102 bits. The columns are addressed by the address pointer. The address ranges are: X0 to X101 (110 0101b) and Y0 to Y8 (1000b). Addresses outside of these ranges are not allowed. In vertical addressing mode (bit V = 1) the Y address increments after each byte (see Fig.6). After the last

Y address (Y8) Y8 wraps around to Y0 and X increments to address the next column. In horizontal addressing mode (bit V=0) the X address increments after each byte (see Fig.5). After the last X address (X101) X wraps around to X0 and Y increments to address the next row. After the very last address (X101, Y8) the address pointers wrap around to address X0, Y0.

9.1 Data structure

65 × 102 pixels matrix LCD driver

PCF8812

10 INSTRUCTIONS

The instruction format is divided into two modes: If pad D/\overline{C} (data or command select) is set LOW the current byte is interpreted as a command (see Table 1). The general format of the data stream is shown in Fig.7. If pad D/\overline{C} is set HIGH the data bytes that follow are stored in the display data RAM. After every data byte the address counter is incremented automatically. The level of the D/\overline{C} signal is read during the last bit period of each data byte. Each instruction can be sent to the PCF8812 in any order. The MSB of a byte is transmitted first. One possible command stream used to set-up the LCD driver is shown in Fig.8. The serial interface is initialized when pad SCE is HIGH. In this state SCLK clock pulses have no effect and no power is consumed by the serial interface. A negative edge on pad SCE enables the serial interface and indicates the start of a data transmission.

Figures 9 and 10 show the serial bus protocol for the transmission of one byte and several bytes respectively:

- When pad SCE is HIGH, SCLK clock pulses are ignored and the serial interface is initialized
- SDIN is sampled at the positive edge of SCLK

- Pad D/C indicates whether the byte is a command (pad D/C = 0) or RAM data (pad D/C = 1). The state of D/C is read during the eighth SCLK pulse period
- If pad SCE stays LOW after the last bit of a command or data byte, the serial interface expects bit DB7 of the next byte at the next positive edge of SCLK (see Fig.11).
 If pad SCLK goes LOW after the last data bit (bit DB0), either:
 - A rising clock edge is required to latch the last data bit
 - Or the last bit is latched when pad SCE goes HIGH (see Fig.12).
- You can set the address pointer to a specific address, using the appropriate commands, at any time (see Table 1). A special case is when the current address pointer location is at the last address (x101 and y8). In this case you must send a No Operation Command (NOP) before setting the new address.
- A reset pulse RES interrupts the transmission. No data is written into the RAM and the registers are cleared.
 If pad SCE is LOW after the positive edge of pad RES, the serial interface is ready to receive bit 7 of a command or data byte as shown in Fig.11.

65×102 pixels matrix LCD driver

PCF8812

65×102 pixels matrix LCD driver

PCF8812

65×102 pixels matrix LCD driver

PCF8812

Table 1 Instruction set

INCTRUCTION	D/C	COMMAND BYTE(1)						DECODIDETION		
INSTRUCTION	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DESCRIPTION
(H = 0 or 1)		!		ļ.	<u>I</u>			<u>I</u>	Į.	
NOP	0	0	0	0	0	0	0	0	0	no operation
Function set	0	0	0	1	0	0	PD	V	Н	power-down control; entry mode; extended instruction set control (H)
Write data	1	D7	D6	D5	D4	D3	D2	D1	D0	writes data to display RAM
(H = 0)										
Reserved	0	0	0	0	0	0	1	Х	Х	do not use
Display control	0	0	0	0	0	1	D	0	Е	sets display configuration
Set V _{OP} range	0	0	0	0	1	0	0	0	PRS	V _{LCD} programming range select
Set Yaddress of RAM	0	0	1	0	0	Y ₃	Y ₂	Y ₁	Y ₀	sets Y address of RAM; 0 ≤ Y ≤ 8
Set X address of RAM	0	1	X6	X5	X4	ХЗ	X2	X1	X0	sets X address part of RAM; $0 \le X \le 101$
(H = 1)				•		•	•	•	•	
Reserved	0	0	0	0	0	0	0	0	1	do not use
Reserved	0	0	0	0	0	0	0	1	Х	do not use
Temperature control	0	0	0	0	0	0	1	TC ₁	TC ₀	set temperature coefficient (TCx)
Set voltage multiplier factor	0	0	0	0	0	1	0	S ₁	S ₀	# of HV-gen voltage multiplication
Bias system	0	0	0	0	1	0	BS ₂	BS ₁	BS ₀	set bias system (BSx)
Reserved	0	0	1	Х	Х	Х	Х	Х	Х	do not use (reserved for test)
Set V _{OP}	0	1	V _{OP} 6	V _{OP} 5	V _{OP} 4	V _{OP} 3	V _{OP} 2	V _{OP} 1	V _{OP} 0	write V _{OP} to register

Note

1. See Table 2 for explanation of symbols.

65 × 102 pixels matrix LCD driver

PCF8812

Table 2 Explanations for symbols in Table 1

BIT		0	1	RESET STATE
PD		chip is active	chip is in Power-down mode	1
V		horizontal addressing	vertical addressing	0
Н		use basic instruction set	use extended instruction set	0
PRS		V _{LCD} programming range; LOW	V _{LCD} programming range; HIGH	0
D, E	00	display blank		D = 0
	10	normal mode		
	01	all display segments on		E = 0
	11	inverse video mode		
TC1 to 00 TC0		V _{LCD} temperature coefficient 0		TC1 to TC0 = 00
	01	V _{LCD} temperature coefficient 1		
	10	V _{LCD} temperature coefficient 2		
	11	V _{LCD} temperature coefficient 3		
S1 to S0	00	2 × voltage multiplier		S1 to S0 = 00
	01	3 × voltage multiplier		
	10	4 × voltage multiplier		
	11	5 × voltage multiplier		
V _{OP} 6 to V _{OP} 0		V _{LCD} programming		V _{OP} 6 to V _{OP} 0 = 0000000
BS2 to BS0		bias system		BS2 to BS0 = 000

10.1 Initialization

Immediately following power-on, all internal registers as well as the RAM content are undefined; a reset pulse must be applied.

Reset is accomplished by applying an external reset pulse (active LOW) at the pad $\overline{\text{RES}}$. When reset occurs within the specified time, all internal registers are reset, however the RAM is still undefined. The state after reset is described in Section 10.2.

The \overline{RES} input must be $\leq 0.3 V_{DD}$ when V_{DD} reaches $V_{DD(min)}$ (or higher) within a maximum time t_{VHRL} after V_{DD} going HIGH (see Fig.16).

10.2 Reset function

After reset the LCD driver has the following state:

• Power-down mode (bit PD = 1)

- Horizontal addressing (bit V = 0)
- Normal instruction set (bit H = 0)
- Display blank (bit E = D = 0)
- Address counter bits X6 to X0 = 0; bits Y3 to Y0 = 0
- Temperature control mode (bits TC1 to TC0 = 0)
- Bias system (bits BS2 to BS0 = 0)
- V_{LCD} is equal to 0; the HV-generator is switched off (bits V_{OP}6 to V_{OP}0 = 0 and bit PRS = 0)
- After power-on; RAM data is undefined; the reset signal does not change RAM content
- All LCD outputs at V_{SS} (display off).

65 × 102 pixels matrix LCD driver

PCF8812

10.3 Function set

10.3.1 BIT PD

When bit PD = 0:

- All LCD outputs at VSS (display off)
- Bias generator and V_{LCD} generator off; V_{LCD} can be disconnected
- · Oscillator off (external clock possible)
- · Serial bus; command; etc. function
- RAM contents not cleared; RAM data can be written
- V_{I CD} discharged to V_{SS} in Power-down mode.

10.3.2 BIT V

When bit V = 0, the horizontal addressing is selected. The data is written into the DDRAM as shown in Fig.5. When bit V = 1, the vertical addressing is selected. The data is written into the DDRAM as shown in Fig.6.

10.3.3 BIT H

When bit H=0 the commands 'display control', 'set Y address', 'set X address' and set the PRS bit (low or high range of the high voltage generator) can be performed, when bit H=1 the other commands can be executed. The commands 'write data' and 'function set' can be executed when bit H=0 or 1.

10.4 Display control

10.4.1 BITS D AND E

The bits D and E select the display mode (see Table 2).

10.5 Set Y address of RAM

Bits Y[3:0] define the Y address vector address of the display RAM (see Table 3).

Table 3 X or Y address range (note 1)

Y3	Y2	Y1	Y0	CONTENT	ALLOWED X RANGE
0	0	0	0	bank 0 (display RAM)	0 to 101
0	0	0	1	bank 1 (display RAM)	0 to 101
0	0	1	0	bank 2 (display RAM)	0 to 101
0	0	1	1	bank 3 (display RAM)	0 to 101
0	1	0	0	bank 4 (display RAM)	0 to 101
0	1	0	1	bank 5 (display RAM)	0 to 101
0	1	1	0	bank 6 (display RAM)	0 to 101
0	1	1	1	bank 7 (display RAM)	0 to 101
1	0	0	0	bank 8 (display RAM)	0 to 101

Note

1. In bank 8 only the LSB is accessed.

10.6 Set X address of RAM

The X address points to the columns. The range of X is 0 to 101 (65H).

10.7 Set HV-generator stages

The PCF8812 incorporates a software configurable voltage multiplier. After reset (\overline{RES}) the voltage multiplier is set to $2 \times V_{DD2}$. Other voltage multiplier factors are set via the command 'Set voltage multiplier factor' (see Tables 1 and 2).

65 × 102 pixels matrix LCD driver

PCF8812

10.8 Bias system

The bias voltage levels are set in the ratio of R - R - nR - R - R giving a $\frac{1}{(n+4)}$ bias system. Different multiplex rates require different factors 'n' (see Table 4). This is programmed by BS2 to BS0. For MUX1 to MUX65 the optimum bias value 'n' is given by: $n = \sqrt{65} - 3 = 5.062 = 5$ resulting in $\frac{1}{9}$ bias.

Table 4 Programming the required bias system

BS2	BS1	BS0	n	RECOMMENDED MUX RATE
0	0	0	7	1 to 100
0	0	1	6	1 to 80
0	1	0	5	1 to 65
0	1	1	4	1 to 48
1	0	0	3	1 to 40 or 1 to 34
1	0	1	2	1 to 24
1	1	0	1	1 to 18 or 1 to 16
1	1	1	0	1 to 10 or 1 to 9 or 1 to 8

Table 5 LCD bias voltage

SYMBOL	BIAS VOLTAGES	BIAS VOLTAGES FOR n = 5 (1/9 BIAS)
V1	V _{LCD}	V _{LCD}
V2	$\frac{(n+3)}{(n+4)}$	$^{8}/_{9} \times V_{LCD}$
V3	$\frac{(n+2)}{(n+4)}$	$^{7/_{9}} \times V_{LCD}$
V4	$\frac{2}{(n+4)}$	2 /9 × V _{LCD}
V5	$\frac{1}{(n+4)}$	$^{1}/_{9} \times V_{LCD}$
V6	V _{SS}	V _{SS}

65 × 102 pixels matrix LCD driver

PCF8812

10.9 Temperature control

Due to the temperature dependency of the liquid crystals viscosity the LCD controlling voltage V_{LCD} must be increased with lower temperature to maintain optimum contrast. There are 4 different temperature coefficients available in the PCF8812 (see Fig.13). The coefficients are selected by bits TC1 to TC0. Table 6 shows the typical values of the different temperature coefficients. The coefficients are proportional to the programmed V_{LCD} .

10.10 Set V_{OP} value

The operating voltage V_{LCD} can be set by software. The generated voltage is dependent on temperature, programmed Temperature Coefficient (TC) and the programmed voltage at reference temperature (T_{cut}).

$$V_{LCD(T)} = (a + V_{OP} \times b)(1 + (T - T_{cut}) \times TC)$$
 (1)

The voltage at reference temperature $V_{LCD}(T = T_{cut})$ can be calculated as follows:

$$V_{LCD}(T = T_{cut}) = (a + V_{OP} \times b)$$
 (2)

The parameters are explained in Table 6. The maximum voltage that can be generated is dependent on the V_{DD2} voltage and the display load current. Two overlapping V_{LCD} ranges are selectable via the command 'HV-gen control'. For the LOW (PRS = 0) range $a = a_1$ and for the HIGH (PRS = 1) range $a = a_2$ with steps equal to 'b' in both ranges. It should be noted that the charge pump is turned off if V_{OP} 6 to 0 and the bit PRS are all set to zero (see Fig.14).

For MUX 1 to 65 the optimum operating voltage of the liquid can be calculated as follows;

$$V_{LCD} = \frac{1 + \sqrt{65}}{\sqrt{2} \times \left(1 - \frac{1}{\sqrt{65}}\right)} \times V_{th} = 6.85 \times V_{th}$$
 (3)

where V_{th} is the threshold voltage of the liquid crystal material used.

Table 6 Typical values for parameters for the HV-generator programming

SYMBOL	VALUE	UNIT
a1	2.94 (bit PRS = 0)	V
a2	6.75 (bit PRS = 1)	V
b	0.03	V
T _{cut}	27	°C

As the programming range for the internally generated V_{LCD} allows values above the maximum allowed V_{LCD} (9 V) the user has to ensure, while setting the V_{OP} register and selecting the Temperature Compensation (TC), that under all conditions and including all tolerances that V_{LCD} remains below 9 V.

65×102 pixels matrix LCD driver

PCF8812

65 × 102 pixels matrix LCD driver

PCF8812

11 LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); see notes 1 and 2

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{DD1}	supply voltage		-0.5	+6.5	V
$V_{DD2,}V_{DD3}$	supply voltage for internal voltage generator		-0.5	+4.5	V
V _{LCD}	LCD supply voltage range		-0.5	+9.0	V
Vi	all input voltages		-0.5	V _{DD} + 0.5	V
I _{SS}	ground supply current		-50	+50	mA
I _I , I _O	DC input or output current		-10	+10	mA
P _{tot}	total power dissipation		_	300	mW
Po	power dissipation per output		_	30	mW
T _{stg}	storage temperature		-65	+150	°C
V _{esd}	electrostatic handling voltage	note 3	_	±1900	V
		note 4	_	±200	V

Notes

- 1. Stresses above those listed under limiting values may cause permanent damage to the device.
- Parameters are valid over operating temperature range unless otherwise specified. All voltages are referenced to V_{SS} unless otherwise specified.
- 3. Human body model: $R_s = 1.5 \text{ k}\Omega$; C = 100 pF.
- 4. Machine model: R_s = 10 Ω ; C = 200 pF; L = 0.75 mH.

12 HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However it is good practice to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").

65×102 pixels matrix LCD driver

PCF8812

13 DC CHARACTERISTICS

 V_{DD} = 2.5 to 5.5 V; V_{SS} = 0 V; V_{LCD} = 4.5 to 9.0 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{DD1}	supply voltage		2.5	_	5.5	V
$V_{DD2,} V_{DD3}$	supply voltage for internal voltage generator	LCD voltage internally generated (voltage generator enabled)	2.5	_	4.5	V
V _{LCDIN}	LCD input supply voltage	LCD voltage externally supplied (voltage generator disabled)	4.5	_	9.0	V
V _{LCDOUT}	LCD output supply voltage	LCD voltage internally generated (voltage generator enabled); note 1	4.5	_	9.0	V
I _{DD(tot)}	total supply current	normal display mode; $V_{DD1} = 2.8 \text{ V; } V_{LCD} = 7.6 \text{ V; } f_{SCLK} = 0; T_{amb} = 25 \text{ °C; no} $ display load; $4 \times \text{charge pump; } $ notes 2 and 3	-	220	350	μА
		Power-down mode; with internal or external V _{LCD} supply voltage; note 4	_	1.5	-	μА
I _{LCDIN}	supply current from external V _{LCD}	V_{DD1} = 2.8 V; V_{LCD} = 7.6 V; f_{SCLK} = 0; T = 25 °C; no display load; notes 2, 3 and 5	-	30	-	μА
Logic			•	•	•	
V _{IL}	LOW-level input voltage		V _{SS}	_	0.3V _{DD}	V
V _{IH}	HIGH-level input voltage		0.7V _{DD}	-	V _{DD}	V
I _{IL}	input leakage current	$V_I = V_{DD1}$ or V_{SS1}	-1	_	+1	μΑ
Column an	d row outputs					
R _{col}	column output resistance	I _L = 10 μA; outputs tested one at a time	-	12	20	kΩ
R _{row}	row output resistance	I _L = 10 μA; outputs tested one at a time	_	12	20	kΩ
V _{bias(col)}	column bias tolerance		-100	0	+100	mV
$V_{bias(row)}$	row bias tolerance		-100	0	+100	mV

65×102 pixels matrix LCD driver

PCF8812

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
LCD supply	voltage generator				•	•
V _{LCD(tol)}	V _{LCD} tolerance internally generated	$\begin{split} V_{DD1} &= 2.8 \text{ V; } V_{LCD} = 7.6 \text{ V;} \\ f_{SCLK} &= 0; T_{amb} = 25 \text{ °C;} \\ display load &= 10 \mu\text{A;} \\ notes 3, 6 \text{ and } 7 \end{split}$	-300	0	+300	mV
TC	V _{LCD} temperature coefficient	V_{DD1} = 2.8 V; f_{SCLK} = 0; T_{amb} = -20 to +70 °C; display load = 10 μ A; note 3				
		coefficient 0	_	0×10^{-3}	_	1/°C
		coefficient 1	_	-0.76×10^{-3}	_	1/°C
		coefficient 2	_	-1.05×10^{-3}	_	1/°C
ı		coefficient 3	_	-2.10×10^{-3}	_	1/°C

Notes

- The maximum possible V_{LCD} voltage that may be generated is dependent on the supply voltage to the internal voltage generator, temperature and (display) load.
- 2. Internal clock.
- 3. f_{SCLK} = 0 means no serial clock.
- 4. During power-down all static currents are switched off.
- 5. If external V_{LCD} ; the display load current is not transmitted to I_{DD} .
- 6. Tolerance depends on the temperature; (typical null at T_{amb} = 27 °C, maximum tolerance values are measured at the temperature range limit, maximum tolerance is proportional to V_{LCD}).
- 7. For TC1 to TC3.

14 AC CHARACTERISTICS

 V_{DD} = 2.5 to 5.5 V; V_{SS} = 0 V; V_{LCD} = 4.5 to 9.0 V; T_{amb} = -40 to +85 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
f _{OSC}	oscillator frequency	$V_{DD1} = 2.8 \text{ V; } T_{amb} = -20 \text{ to } +70 ^{\circ}\text{C}$	22	38	67	kHz
f _{clk(ext)}	external clock frequency		20	38	67	kHz
f _{frame}	frame frequency	f _{OSC} or f _{clk(ext)} = 38 kHz; note 1	-	73	_	Hz
t _{VHRL}	V _{DD} to RES LOW	see Fig.16	0	_	1	μs
t _{RW}	RES LOW pulse width	see Fig.16	500	_	_	ns
Serial bus ti	ming characteristics; see Fig	.15			•	•
f _{SCLK}	clock frequency	V_{DD1} = 3.0 V ±10 %; all signal timing is based on 20 % to 80 % of V_{DD} and a maximum rise and fall time of 10 ns	0	_	4.0	MHz
t _{cyc(clk)}	clock cycle time		250	_	_	ns
t _{PWH1}	SCLK pulse width HIGH		100	_	_	ns
t _{PWL1}	SCLK pulse width LOW		100	_	_	ns
t _{S2}	SCE set-up time		60	_	_	ns
t _{H2}	SCE hold time		100	_	_	ns
t _{PWH2}	SCE minimum HIGH time		100	_	_	ns

65×102 pixels matrix LCD driver

PCF8812

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
t _{H5}	SCE start hold time	note 2	100	_	_	ns
t _{S3}	D/C set-up time		100	_	_	ns
t _{H3}	D/C hold time		100	_	_	ns
t _{S4}	SDIN set-up time		100	_	_	ns
t _{H4}	SDIN hold time		100	_	_	ns

Notes

1.
$$f_{frame} = \frac{f_{clk(ext)}}{520}$$

2. t_{H5} is the time from the previous SCLK positive edge (irrespective of the state of \overline{SCE}) to the negative edge of \overline{SCE} (see Fig.15).

65×102 pixels matrix LCD driver

PCF8812

15 APPLICATION INFORMATION

 Table 7
 Programming example

	SERIAL BUS BYTE										
STEP			, ;	SERIA	L BUS	BALE	•			DISPLAY	OPERATION
O I E I	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DIOI LAI	OI ERATION
1	start										SCE is going LOW
2	0	0	0	1	0	0	0	0	1		function set; bit PD = 0, bit V = 0; select extended instruction set (bit H = 1 mode)
3	0	0	0	0	1	0	0	0	1		set charge pump range HIGH (bit PRS = 1)
4	0	1	0	0	1	1	1	0	0		set V _{OP} ; V _{OP} is set to 7.6 V
5	0	0	0	1	0	0	0	0	0		function set; bit PD = 0; bit V = 0; select normal instruction set (bit H = 0 mode)
6	0	0	0	0	0	1	1	0	0		display control; set normal mode (bit D = 1; bit E = 0).
7	1	1	1	1	1	1	0	0	0	MGS405	data write; Y and X are initialized to 0 by default, they are not set here

65×102 pixels matrix LCD driver

PCF8812

CTED			;	SERIA	L BUS	ВҮТЕ	:			DICDI AV	ODEDATION
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION
8	1	1	0	1	0	0	0	0	0	MGS406	data write
9	1	1	1	1	0	0	0	0	0	MGS407	data write
10	1	0	0	0	0	0	0	0	0	MGS407	data write
11	1	1	1	1	1	1	0	0	0	MGS409	data write
12	1	0	0	1	0	0	0	0	0	MGS410	data write
13	1	1	1	1	1	1	0	0	0	MGS411	data write

65×102 pixels matrix LCD driver

PCF8812

CTED			;	SERIA	L BUS	BYTE	E			DICDI AV	ODEDATION
STEP	D/C	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	DISPLAY	OPERATION
14	0	0	0	0	0	1	1	0	1	MGS412	display control; set inverse video mode (bit D = 1; bit E = 1)
15	0	1	0	0	0	0	0	0	0	MGS412	set X-address of RAM; set address to 0000000
16	1	0	0	0	0	0	0	0	0	MGS414	data write

65×102 pixels matrix LCD driver

PCF8812

65 × 102 pixels matrix LCD driver

PCF8812

The required minimum value for the external capacitors in an application with the PCF8812 are as follows:

 $C_{VLCD} = 100 \text{ nF (minimum)}$

 C_{VDD} ; C_{VDD1} ; $C_{VDD2} = 1 \mu F$ (minimum).

Higher capacitor values are recommended for ripple reduction.

16 BONDING PAD INFORMATION

The PCF8812 is manufactured using n-well CMOS technology. The substrate is at V_{SS} potential.

The pinning of the PCF8812 is optimized for single plane wiring, such as chip-on-glass display modules; display size: 65×102 pixels.

16.1 PCF8812U/2DA/2

Table 8 Bonding pad dimensions

NAME	DIMENSION
Pad pitch	63 μm
Pad size; aluminium	56 × 90 μm
Bump dimensions	42 × 81 × 15 (± 3) μm
Wafer thickness; without bumps	381 (± 25) μm

Table 9 Bonding pad locations for PCF8812U/2DA/2 All x and y coordinates represent the position of the centre of each pad (in μ m) with respect to the origin (x/y = 0/0) of the chip (see Fig.20).

SYMBOL	PAD	COORD	INATES
STWIBOL	PAD	х	у
RES_B	1	+3483	+841.1
ROW 32	2	+3843	+841.1
ROW 31	3	+3906	+841.1
ROW 30	4	+3969	+841.1
ROW 29	5	+4032	+841.1
ROW 28	6	+4095	+841.1
ROW 27	7	+4158	+841.1
ROW 26	8	+4221	+841.1
ROW 25	9	+4284	+841.1
ROW 24	10	+4347	+841.1
ROW 23	11	+4410	+841.1
ROW 22	12	+4473	+841.1
ROW 21	13	+4536	+841.1
ROW 20	14	+4599	+841.1
ROW 19	15	+4662	+841.1
n.c.	16	+4788	+841.1
n.c.	17	+4819.5	-841.1

CVMPOL	DAD	COORD	INATES
SYMBOL	PAD	х	у
ROW 0	18	+4504.5	-841.1
ROW 1	19	+4441.5	-841.1
ROW 2	20	+4378.5	-841.1
ROW 3	21	+4315.5	-841.1
ROW 4	22	+4252.5	-841.1
ROW 5	23	+4189.5	-841.1
ROW 6	24	+4126.5	-841.1
ROW 7	25	+4063.5	-841.1
ROW 8	26	+4000.5	-841.1
ROW 9	27	+3937.5	-841.1
ROW 10	28	+3874.5	-841.1
ROW 11	29	+3811.5	-841.1
ROW 12	30	+3748.5	-841.1
ROW 13	31	+3685.5	-841.1
ROW 14	32	+3622.5	-841.1
ROW 15	33	+3559.5	-841.1
ROW 16	34	+3496.5	-841.1
ROW 17	35	+3433.5	-841.1
ROW 18	36	+3370.5	-841.1
COL 0	37	+3244.5	-841.1

65×102 pixels matrix LCD driver

PCF8812

SYMBOL	PAD	COORD	INATES
STWIBOL	PAD	x	у
COL 1	38	+3181.5	-841.1
COL 2	39	+3118.5	-841.1
COL 3	40	+3055.5	-841.1
COL 4	41	+2992.5	-841.1
COL 5	42	+2929.5	-841.1
COL 6	43	+2866.5	-841.1
COL 7	44	+2803.5	-841.1
COL 8	45	+2740.5	-841.1
COL 9	46	+2677.5	-841.1
COL 10	47	+2614.5	-841.1
COL 11	48	+2551.5	-841.1
COL 12	49	+2488.5	-841.1
COL 13	50	+2425.5	-841.1
COL 14	51	+2362.5	-841.1
COL 15	52	+2299.5	-841.1
COL 16	53	+2236.5	-841.1
COL 17	54	+2173.5	-841.1
COL 18	55	+2110.5	-841.1
COL 19	56	+2047.5	-841.1
COL 20	57	+1984.5	-841.1
COL 21	58	+1921.5	-841.1
COL 22	59	+1858.5	-841.1
COL 23	60	+1795.5	-841.1
COL 24	61	+1732.5	-841.1
COL 25	62	+1606.5	-841.1
COL 26	63	+1543.5	-841.1
COL 27	64	+1480.5	-841.1
COL 28	65	+1417.5	-841.1
COL 29	66	+1354.5	-841.1
COL 30	67	+1291.5	-841.1
COL 31	68	+1228.5	-841.1
COL 32	69	+1165.5	-841.1
COL 33	70	+1102.5	-841.1
COL 34	71	+1039.5	-841.1
COL 35	72	+976.5	-841.1
COL 36	73	+913.5	-841.1
COL 37	74	+850.5	-841.1
COL 38	75	+787.5	-841.1
COL 39	76	+724.5	-841.1

CVMDOL	DAD	COORD	INATES
SYMBOL	PAD	х	у
COL 40	77	+661.5	-841.1
COL 41	78	+598.5	-841.1
COL 42	79	+535.5	-841.1
COL 43	80	+472.5	-841.1
COL 44	81	+409.5	-841.1
COL 45	82	+346.5	-841.1
COL 46	83	+283.5	-841.1
COL 47	84	+220.5	-841.1
COL 48	85	+157.5	-841.1
COL 49	86	+94.5	-841.1
COL 50	87	-31.5	-841.1
COL 51	88	-94.5	-841.1
COL 52	89	-157.5	-841.1
COL 53	90	-220.5	-841.1
COL 54	91	-283.5	-841.1
COL 55	92	-346.5	-841.1
COL 56	93	-409.5	-841.1
COL 57	94	-472.5	-841.1
COL 58	95	-535.5	-841.1
COL 59	96	-598.5	-841.1
COL 60	97	-661.5	-841.1
COL 61	98	-724.5	-841.1
COL 62	99	-787.5	-841.1
COL 63	100	-850.5	-841.1
COL 64	101	-913.5	-841.1
COL 65	102	-976.5	-841.1
COL 66	103	-1039.5	-841.1
COL 67	104	-1102.5	-841.1
COL 68	105	-1165.5	-841.1
COL 69	106	-1228.5	-841.1
COL 70	107	-1291.5	-841.1
COL 71	108	-1354.5	-841.1
COL 72	109	-1417.5	-841.1
COL 73	110	-1480.5	-841.1
COL 74	111	-1543.5	-841.1
COL 75	112	-1606.5	-841.1
COL 76	113	-1732.5	-841.1
COL 77	114	-1795.5	-841.1
COL 78	115	-1858.5	-841.1

65×102 pixels matrix LCD driver

PCF8812

CVMPOL	DAD	COORD	INATES
SYMBOL	PAD	х	у
COL 79	116	-1921.5	-841.1
COL 80	117	-1984.5	-841.1
COL 81	118	-2047.5	-841.1
COL 82	119	-2110.5	-841.1
COL 83	120	-2173.5	-841.1
COL 84	121	-2236.5	-841.1
COL 85	122	-2299.5	-841.1
COL 86	123	-2362.5	-841.1
COL 87	124	-2425.5	-841.1
COL 88	125	-2488.5	-841.1
COL 89	126	-2551.5	-841.1
COL 90	127	-2614.5	-841.1
COL 91	128	-2677.5	-841.1
COL 92	129	-2740.5	-841.1
COL 93	130	-2803.5	-841.1
COL 94	131	-2866.5	-841.1
COL 95	132	-2929.5	-841.1
COL 96	133	-2992.5	-841.1
COL 97	134	-3055.5	-841.1
COL 98	135	-3118.5	-841.1
COL 99	136	-3181.5	-841.1
COL 100	137	-3244.5	-841.1
COL 101	138	-3307.5	-841.1
ROW 50	139	-3433.5	-841.1
ROW 49	140	-3496.5	-841.1
ROW 48	141	-3559.5	-841.1
ROW 47	142	-3622.5	-841.1
ROW 46	143	-3685.5	-841.1
ROW 45	144	-3748.5	-841.1
ROW 44	145	-3811.5	-841.1
ROW 43	146	-3874.5	-841.1
ROW 42	147	-3937.5	-841.1
ROW 41	148	-4000.5	-841.1
ROW 40	149	-4063.5	-841.1
ROW 39	150	-4126.5	-841.1
ROW 38	151	-4189.5	-841.1
ROW 37	152	-4252.5	-841.1
ROW 36	153	-4315.5	-841.1
ROW 35	154	-4378.5	-841.1

CVMDOL	DAD	COORD	INATES
SYMBOL	PAD	х	у
ROW 34	155	-4441.5	-841.1
ROW 33	156	-4504.5	-841.1
n.c.	157	-4819.5	-841.1
n.c.	158	-4788	-841.1
ROW 51	159	-4662	-841.1
ROW 52	160	-4599	-841.1
ROW 53	161	-4536	-841.1
ROW 54	162	-4473	-841.1
ROW 55	163	-4410	-841.1
ROW 56	164	-4347	-841.1
ROW 57	165	-4284	-841.1
ROW 58	166	-4221	-841.1
ROW 59	167	-4158	-841.1
ROW 60	168	-4095	-841.1
ROW 61	169	-4032	-841.1
ROW 62	170	-3969	-841.1
ROW 63	171	-3906	-841.1
ROW 64	172	-3843	-841.1
n.c.	173	-3645	-841.1
V_{DD1}	174	-3501	-841.1
V _{DD1}	175	-3429	-841.1
V_{DD1}	176	-3357	-841.1
V_{DD1}	177	-3285	-841.1
V_{DD1}	178	-3213	-841.1
V_{DD1}	179	-3141	-841.1
V_{DD3}	180	-2925	-841.1
V_{DD2}	181	-2781	-841.1
V_{DD2}	182	-2709	-841.1
V_{DD2}	183	-2637	-841.1
V_{DD2}	184	-2565	-841.1
V_{DD2}	185	-2493	-841.1
V _{DD2}	186	-2421	-841.1
V_{DD2}	187	-2349	-841.1
V_{DD2}	188	-2277	-841.1
V_{DD2}	189	-2205	-841.1
V_{DD2}	190	-2133	-841.1
V_{DD2}	191	-2061	-841.1
V_{DD2}	192	-1989	-841.1
V_{DD2}	193	-1917	-841.1

65×102 pixels matrix LCD driver

PCF8812

SYMBOL	PAD	COORD	INATES
STWIDOL	PAD	x	у
OSC	194	-1701	-841.1
SDIN	195	-1485	-841.1
D/C	196	-1269	-841.1
SCE	197	-1053	-841.1
TEST2	198	-837	-841.1
SCLK	199	-621	-841.1
V _{SS2}	200	-477	-841.1
V _{SS2}	201	-405	-841.1
V _{SS2}	202	-333	-841.1
V _{SS2}	203	-261	-841.1
V _{SS2}	204	-189	-841.1
V _{SS2}	205	-117	-841.1
V _{SS2}	206	-45	-841.1
V _{SS2}	207	+27	-841.1
V _{SS2}	208	+99	-841.1
V _{SS2}	209	+171	-841.1
V _{SS2}	210	+243	-841.1
V _{SS2}	211	+315	-841.1
V _{SS2}	212	+387	-841.1
V _{SS2}	213	+459	-841.1
V _{SS1}	214	+603	-841.1
V _{SS1}	215	+675	-841.1
V _{SS1}	216	+747	-841.1
V _{SS1}	217	+819	-841.1
TEST1	218	+1035	-841.1
TEST5	219	+1467	-841.1

OVERDOL	T	COORD	INATES
SYMBOL	PAD	х	у
TEST4	220	+1827	-841.1
V _{SS1}	221	+1899	-841.1
V _{SS1}	222	+1971	-841.1
TEST3	223	+2043	-841.1
V _{LCDIN}	224	+2259	-841.1
V _{LCDIN}	225	+2331	-841.1
V _{LCDIN}	226	+2403	-841.1
V _{LCDIN}	227	+2475	-841.1
V _{LCDIN}	228	+2547	-841.1
V _{LCDIN}	229	+2619	-841.1
V _{LCDOUT}	230	+2763	-841.1
V _{LCDOUT}	231	+2835	-841.1
V _{LCDOUT}	232	+2907	-841.1
V _{LCDOUT}	233	+2979	-841.1
V _{LCDOUT}	234	+3051	-841.1
V _{LCDOUT}	235	+3123	-841.1
V _{LCDOUT}	236	+3195	-841.1
VLCDSENSE	237	+3267	-841.1
Alignment marks			
Alignment Mark 1		+4666.5	-819.7
Alignment Mark 2		-4666.5	-819.7
Alignment Mark 3		-3744	+818.7
Alignment Mark 4		+3744	+818.7

16.2 PCF8812/2/F1

Table 10 Bonding pad dimensions

NAME	DIMENSION
Pad pitch	70 μm
Pad size; aluminium	$62 \times 100 \ \mu m$
Bump dimensions	$50 \times 90 \times 17.5 \ (\pm 5) \ \mu m$
Wafer thickness; without bumps	381 (± 25) μm

65×102 pixels matrix LCD driver

PCF8812

Table 11 Bonding pad locations for PCF8812/2/F1 All x and y coordinates represent the position of the centre of each pad (in μ m) with respect to the origin (x/y = 0/0) of the chip (see Fig.20).

CVMDO	PAD	COORDINATES	
SYMBOL		х	у
RES	1	+3870	+934.6
ROW 32	2	+4270	+934.6
ROW 31	3	+4340	+934.6
ROW 30	4	+4410	+934.6
ROW 29	5	+4480	+934.6
ROW 28	6	+4550	+934.6
ROW 27	7	+4620	+934.6
ROW 26	8	+4690	+934.6
ROW 25	9	+4760	+934.6
ROW 24	10	+4830	+934.6
ROW 23	11	+4900	+934.6
ROW 22	12	+4970	+934.6
ROW 21	13	+5040	+934.6
ROW 20	14	+5110	+934.6
ROW 19	15	+5180	+934.6
n.c.	16	+5320	+934.6
n.c.	17	+5355	-934.6
ROW 0	18	+5005	-934.6
ROW 1	19	+4935	-934.6
ROW 2	20	+4865	-934.6
ROW 3	21	+4795	-934.6
ROW 4	22	+4725	-934.6
ROW 5	23	+4655	-934.6
ROW 6	24	+4585	-934.6
ROW 7	25	+4515	-934.6
ROW 8	26	+4445	-934.6
ROW 9	27	+4375	-934.6
ROW 10	28	+4305	-934.6
ROW 11	29	+4235	-934.6
ROW 12	30	+4165	-934.6
ROW 13	31	+4095	-934.6
ROW 14	32	+4025	-934.6
ROW 15	33	+3955	-934.6
ROW 16	34	+3885	-934.6
ROW 17	35	+3815	-934.6
ROW 18	36	+3745	-934.6

CVMDOL	DAD	COORDINATES	
SYMBOL	PAD	х	у
COL 0	37	+3605	-934.6
COL 1	38	+3535	-934.6
COL 2	39	+3465	-934.6
COL 3	40	+3395	-934.6
COL 4	41	+3325	-934.6
COL 5	42	+3255	-934.6
COL 6	43	+3185	-934.6
COL 7	44	+3115	-934.6
COL 8	45	+3045	-934.6
COL 9	46	+2975	-934.6
COL 10	47	+2905	-934.6
COL 11	48	+2835	-934.6
COL 12	49	+2765	-934.6
COL 13	50	+2695	-934.6
COL 14	51	+2625	-934.6
COL 15	52	+2555	-934.6
COL 16	53	+2485	-934.6
COL 17	54	+2415	-934.6
COL 18	55	+2345	-934.6
COL 19	56	+2275	-934.6
COL 20	57	+2205	-934.6
COL 21	58	+2135	-934.6
COL 22	59	+2065	-934.6
COL 23	60	+1995	-934.6
COL 24	61	+1925	-934.6
COL 25	62	+1785	-934.6
COL 26	63	+1715	-934.6
COL 27	64	+1645	-934.6
COL 28	65	+1575	-934.6
COL 29	66	+1505	-934.6
COL 30	67	+1435	-934.6
COL 31	68	+1365	-934.6
COL 32	69	+1295	-934.6
COL 33	70	+1225	-934.6
COL 34	71	+1155	-934.6
COL 35	72	+1085	-934.6
COL 36	73	+1015	-934.6
COL 37	74	+945	-934.6
COL 38	75	+875	-934.6

65×102 pixels matrix LCD driver

PCF8812

CVMDOL	SYMBOL PAD	COORDINATES		
STMBOL		х	у	
COL 39	76	+805	-934.6	
COL 40	77	+735	-934.6	
COL 41	78	+665	-934.6	
COL 42	79	+595	-934.6	
COL 43	80	+525	-934.6	
COL 44	81	+455	-934.6	
COL 45	82	+385	-934.6	
COL 46	83	+315	-934.6	
COL 47	84	+245	-934.6	
COL 48	85	+175	-934.6	
COL 49	86	+105	-934.6	
COL 50	87	-35	-934.6	
COL 51	88	-105	-934.6	
COL 52	89	-175	-934.6	
COL 53	90	-245	-934.6	
COL 54	91	-315	-934.6	
COL 55	92	-385	-934.6	
COL 56	93	-455	-934.6	
COL 57	94	-525	-934.6	
COL 58	95	-595	-934.6	
COL 59	96	-665	-934.6	
COL 60	97	-735	-934.6	
COL 61	98	-805	-934.6	
COL 62	99	-875	-934.6	
COL 63	100	-945	-934.6	
COL 64	101	-1015	-934.6	
COL 65	102	-1085	-934.6	
COL 66	103	-1155	-934.6	
COL 67	104	-1225	-934.6	
COL 68	105	-1295	-934.6	
COL 69	106	-1365	-934.6	
COL 70	107	-1435	-934.6	
COL 71	108	-1505	-934.6	
COL 72	109	-1575	-934.6	
COL 73	110	-1645	-934.6	
COL 74	111	-1715	-934.6	
COL 75	112	-1785	-934.6	
COL 76	113	-1925	-934.6	
COL 77	114	-1995	-934.6	

CVMDOL	DAD	COORDINATES	
SYMBOL	PAD	х	у
COL 78	115	-2065	-934.6
COL 79	116	-2135	-934.6
COL 80	117	-2205	-934.6
COL 81	118	-2275	-934.6
COL 82	119	-2345	-934.6
COL 83	120	-2415	-934.6
COL 84	121	-2485	-934.6
COL 85	122	-2555	-934.6
COL 86	123	-2625	-934.6
COL 87	124	-2695	-934.6
COL 88	125	-2765	-934.6
COL 89	126	-2835	-934.6
COL 90	127	-2905	-934.6
COL 91	128	-2975	-934.6
COL 92	129	-3045	-934.6
COL 93	130	-3115	-934.6
COL 94	131	-3185	-934.6
COL 95	132	-3255	-934.6
COL 96	133	-3325	-934.6
COL 97	134	-3395	-934.6
COL 98	135	-3465	-934.6
COL 99	136	-3535	-934.6
COL 100	137	-3605	-934.6
COL 101	138	-3675	-934.6
ROW 50	139	-3815	-934.6
ROW 49	140	-3885	-934.6
ROW 48	141	-3955	-934.6
ROW 47	142	-4025	-934.6
ROW 46	143	-4095	-934.6
ROW 45	144	-4165	-934.6
ROW 44	145	-4235	-934.6
ROW 43	146	-4305	-934.6
ROW 42	147	-4375	-934.6
ROW 41	148	-4445	-934.6
ROW 40	149	-4515	-934.6
ROW 39	150	-4585	-934.6
ROW 38	151	-4655	-934.6
ROW 37	152	-4725	-934.6
ROW 36	153	-4795	-934.6

65×102 pixels matrix LCD driver

PCF8812

CVMDOL	1BOL PAD	COORE	COORDINATES		
SYMBOL		х	у		
ROW 35	154	-4865	-934.6		
ROW 34	155	-4935	-934.6		
ROW 33	156	-5005	-934.6		
n.c.	157	-5355	-934.6		
n.c.	158	-5320	+934.6		
ROW 51	159	-5180	+934.6		
ROW 52	160	-5110	+934.6		
ROW 53	161	-5040	+934.6		
ROW 54	162	-4970	+934.6		
ROW 55	163	-4900	+934.6		
ROW 56	164	-4830	+934.6		
ROW 57	165	-4760	+934.6		
ROW 58	166	-4690	+934.6		
ROW 59	167	-4620	+934.6		
ROW 60	168	-4550	+934.6		
ROW 61	169	-4480	+934.6		
ROW 62	170	-4410	+934.6		
ROW 63	171	-4340	+934.6		
ROW 64	172	-4270	+934.6		
n.c.	173	-4050	+934.6		
V_{DD1}	174	-3890	+934.6		
V_{DD1}	175	-3810	+934.6		
V_{DD1}	176	-3730	+934.6		
V_{DD1}	177	-3650	+934.6		
V_{DD1}	178	-3570	+934.6		
V_{DD1}	179	-3490	+934.6		
V_{DD3}	180	-3250	+934.6		
V_{DD2}	181	-3090	+934.6		
V_{DD2}	182	-3010	+934.6		
V_{DD2}	183	-2930	+934.6		
V_{DD2}	184	-2850	+934.6		
V_{DD2}	185	-2770	+934.6		
V_{DD2}	186	-2690	+934.6		
V_{DD2}	187	-2610	+934.6		
V_{DD2}	188	-2530	+934.6		
V_{DD2}	189	-2450	+934.6		
V_{DD2}	190	-2370	+934.6		
V_{DD2}	191	-2290	+934.6		
V_{DD2}	192	-2210	+934.6		

EVMBOL	PAD	DAD	COORDINATES		INATES
SYMBOL		х	у		
V_{DD2}	193	-2130	+934.6		
OSC	194	-1890	+934.6		
SDIN	195	-1650	+934.6		
D/C	196	-1410	+934.6		
SCE	197	-1170	+934.6		
TEST2	198	-930	+934.6		
SCLK	199	-690	+934.6		
V _{SS2}	200	-530	+934.6		
V _{SS2}	201	-450	+934.6		
V _{SS2}	202	-370	+934.6		
V _{SS2}	203	-290	+934.6		
V _{SS2}	204	-210	+934.6		
V _{SS2}	205	-130	+934.6		
V _{SS2}	206	-50	+934.6		
V _{SS2}	207	+30	+934.6		
V _{SS2}	208	+110	+934.6		
V _{SS2}	209	+190	+934.6		
V _{SS2}	210	+270	+934.6		
V _{SS2}	211	+350	+934.6		
V _{SS2}	212	+430	+934.6		
V _{SS2}	213	+510	+934.6		
V _{SS1}	214	+670	+934.6		
V _{SS1}	215	+750	+934.6		
V _{SS1}	216	+830	+934.6		
V _{SS1}	217	+910	+934.6		
TEST1	218	+1150	+934.6		
TEST5	219	+1630	+934.6		
TEST4	220	+2030	+934.6		
V _{SS1}	221	+2110	+934.6		
V _{SS1}	222	+2190	+934.6		
TEST3	223	+2270	+934.6		
V _{LCDIN}	224	+2510	+934.6		
V _{LCDIN}	225	+2590	+934.6		
V _{LCDIN}	226	+2670	+934.6		
V _{LCDIN}	227	+2750	+934.6		
V _{LCDIN}	228	+2830	+934.6		
V _{LCDIN}	229	+2910	+934.6		
V _{LCDOUT}	230	+3070	+934.6		
V _{LCDOUT}	231	+3150	+934.6		

65×102 pixels matrix LCD driver

PCF8812

SYMBOL	PAD	COORDINATES	
STWIDOL		х	у
V _{LCDOUT}	232	+3230	+934.6
V _{LCDOUT}	233	+3310	+934.6
V _{LCDOUT}	234	+3390	+934.6
V _{LCDOUT}	235	+3470	+934.6
V _{LCDOUT}	236	+3550	+934.6
VLCDSENSE	237	+3630	+934.6
Alignment marks			
Alignment Mark 1		+5185	-910.8
Alignment Mark 2		-5185	-910.8
Alignment Mark 3		-4160	+909.7
Alignment Mark 4		+4160	+909.7

65

Philips Semiconductors

- (1) The alignment marks are circular with a diameter of 90 $\mu \text{m}.$
- (2) Maximum chip size: 1.92×9.84 mm.

PCF8812U/2/F1

- (1) The alignment marks are circular with a diameter of 100 $\mu\text{m}.$
- (2) Maximum chip size: 2.1×10.9 mm.

Fig.20 Bonding pad locations.

Product specification

65×102 pixels matrix LCD driver

PCF8812

17 TRAY INFORMATION

65×102 pixels matrix LCD driver

PCF8812

17.1 Tray dimensions

PCF8812U/2DA/2

DIMENSION	DESCRIPTION	VALUE
А	pocket pitch; x direction	13.97 mm
В	pocket pitch; y direction	4.06 mm
С	pocket width; x direction	9.94 mm
D	pocket width; y direction	2.02 mm
E	tray width; x direction	50.8 mm
F	tray width; y direction	50.8 mm
G	distance from cut corner to pocket (1 and 1) centre	11.43 mm
Н	distance from cut corner to pocket (1 and 1) centre	5.08 mm
J	tray thickness	3.96 mm
K	tray cross-section	1.78 mm
L	tray cross-section	2.49 mm
М	pocket depth	0.89 mm
х	no. pockets in x direction	3
у	no. pockets in y direction	11

PCF8812/2/F1

DIMENSION	DESCRIPTION	VALUE
Α	pocket pitch; x direction	13.77 mm
В	pocket pitch; y direction	4.37 mm
С	pocket width; x direction	11.04 mm
D	pocket width; y direction	2.24 mm
E	tray width; x direction	50.8 mm
F	tray width; y direction	50.8 mm
G	distance from cut corner to pocket (1 and 1) centre	11.68 mm
Н	distance from cut corner to pocket (1 and 1) centre	5.74 mm
J	tray thickness	3.96 mm
K	tray cross-section	1.78 mm
L	tray cross-section	2.49 mm
M	pocket depth	0.89 mm
х	no. pockets in x direction	3
у	no. pockets in y direction	10

65×102 pixels matrix LCD driver

PCF8812

18 DEVICE PROTECTION DIAGRAM

65 × 102 pixels matrix LCD driver

PCF8812

19 DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

20 DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

21 DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

65 × 102 pixels matrix LCD driver

PCF8812

Bare die — All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R15/02/pp41

Date of release: 2004 Feb 23

Document order number: 9397 750 12333

Let's make things better.

Philips Semiconductors

