Clase I Consider Ceros de Funciones de una Variable

10.1 Método de Regula Falsi

Los métodos de **Newton-Rapson** y de la **Secante** son métodos relativamente rápidos en cuanto a su **convergencia** pero tienen el inconveniente que no tenemos asegurada dicha convergencia.

Recordemos el Teorema donde nos dice si el **cero** es simple $(f'(\hat{x}) \neq 0)$, existe un **entorno del cero** \hat{x} tal que para cualquier valor inicial x_0 perteneciente a dicho entorno, el método de **Newton-Rapson** es **convergente**. El problema es que hallar dicho entorno es un problema mucho más difícil que hallar el **cero** en sí.

Por dicho motivo, con la finalidad de asegurar la convergencia de la sucesión $(x_n)_n$ tenemos el método de **Regula Falsi** que usa las ventajas de los métodos de la **bisección** y de la **secante**.

En pocas palabras, el método de **Regula Falsi** supone que hay un cambio de signo entre x_{n-2} y x_{n-1} , es decir, $f(x_{n-2}) \cdot f(x_{n-1}) < 0$ y hallar x_n usando el método de la secante. Como x_n estará entre x_{n-2} y x_{n-1} habrá un cambio de signo de f entre x_{n-2} y x_n o entre x_{n-1} y x_n . Dependiendo de dónde esté el cambio de signo, cambia el valor de x_{n-1} .

Más concretamente, el método de **Regula Falsi** consiste en los pasos siguientes: Se dan los pasos desde el paso n-1 para pasar al paso n

O Sean x_{n-2} y x_{n-1} tal que $f(x_{n-2}) \cdot f(x_{n-1}) < 0$. No suponemos ningún

Julián Andrés Rincón Penagos Jarincon Apps

Marzo de 2024 Métodos Numéricos

orden sobre x_{n-2} y x_{n-1} , es decir, podemos tener $x_{n-2} < x_{n-1}$ o $x_{n-1} < x_{n-2}$

O Calculamos x_n según el método de la secante:

$$x_n = x_{n-1} - \frac{f(x_{n-1}) \cdot f(x_{n-1} - x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

10.1.1 Pasos del Método

- O **Caso 1.** Si $f(x_n) \cdot f(x_{n-2}) < 0$ tenemos un cambio de signo de f en el intervalo $\langle x_{n-2}, x_n \rangle$. En este caso, cambiamos el orden de x_{n-2} y x_{n-1} y la sucesión quedará ..., $x_{n-1}, x_{n-2}, x_n, \ldots$
- O **Caso 2.** Si $f(x_n) \cdot f(x_{n-1}) < 0$, tenemos un cambio de signo de f en el intervalo $\langle x_{n-1}, x_n \rangle$. En este caso, no hacemos nada y la sucesión quedará ..., $x_{n-2}, x_{n-1}, x_n, ...$
- O Volvemos al paso inicial para hallar x_{n+1}
- O Y así sucesivamente

Ejercicio 1:

Crear un *programa* en **Python** que muestre el proceso gráfico del método de **Regula-Falsi** para encontrar el cero de la función $f(x) = e^{-x} + \sin^2(x) - \cos(x)$ con condiciones iniciales $x_0 = 4$ y $x_1 = 6$

El gráfico anterior ilustra el método de Regula Falsi.

- O Empezamos con $x_0 = 1$ y $x_1 = 2$ donde observamos que hay un cambio de signo de la función f. Más concretamente, $f(x_0) < 0$ y $f(x_1) > 0$
- O Hallamos el punto x_2 usando el método de la Secante y vemos que estamos en el Caso 2. La sucesión será por tanto $x_1 = 2, x_0 = 1, x_2 = 1$
- O Hallamos x_3 usando el método de la secante con los puntos $(x_0f(x_0)) = (1, f(1))$ y $(x_2, f(x_2))$ y vemos que volvemos a estar en el caso 2. La sucesión serpa por tanto $x_1 = 2$, x_2 , $x_0 = 1$, x_3
- O Y así sucesivamente.

Observemos que de esta forma $(x_n)_n$ siempre converge hacia el cero \hat{x} , hecho que no teníamos asegurado con el método de la **secante**.

10.1.2 Pseudocódigo

- 1. Ingresar x_0 , x_1 , tol y maxItera
- 2. Iniciar el contador de iteraciones en 2, n=2
- 3. Calcular el valor de la función f en $x=x_0$, $y_0=f\left(x_0\right)$
- 4. Calcular el valor de la función f en $x=x_1$, $y_1=f\left(x_1\right)$
- 5. Para n=2 hasta maxItera repetir
 - a) Calcular el siguiente valor de la sucesión x_n , $x = x_1 \frac{y_1(x_1 x_0)}{(y_1 y_0)}$
 - b) Si $\min(|x-x_1|, |x-x_0|) < tol$. Si el valor x calculado cumple la condición de tolerancia.
 - 1) **Imprimir** el valor de x
 - 2) Finalizar el algoritmo
 - c) Actualizar el valor de y, y = f(x)
 - d) **Si** $y \cdot y_1 < 0$. Si el cambio de signo esta en el intervalo $\langle x_1, x_2 \rangle$
 - 1) El nuevo x_0 será el valor antiguo de x_1 , $x_0 = x_1$
 - 2) El nuevo valor de y_0 será el de y_1 , $y_0 = y_1$
 - 3) El nuevo x_1 será el valor de x, $x_1 = x$
 - 4) El nuevo valor de y_1 será el valor de y, $y_1 = y$
 - e) **Imprimir**: El método no alcanzo la convergencia deseada con maxItera iteraciones.
 - f) Finalizar

Este pseudocódigo necesita un poco de explicación respecto al algoritmo que se hemos dados antes.

Básicamente, empezamos con dos valores x_0 y x_1 donde hay un cambio de signo de la f y calculamos el nuevo valor de x.

A continuación, tenemos que redefinir los nuevos x_0 y x_1 dependiendo de dónde esté el cambio de signo:

O Si estamos en el caso 1, es decir, $f(x_1) \cdot f(x) < 0$, basta que definamos el "nuevo" x_0 como x_1 y el "nuevo" x_1 como x y tendremos que volverá a haber un cambio de signo entre x_0 y x_1 .

Marzo de 2024 Métodos Numéricos

O Si estamos en el caso 2, es decir, $f(x_0) \cdot f(x) < 0$, basta que definamos el "nuevo" x_1 como x y tendremos que volverá a haber un cambio de signo entre x_0 y x_1 .

Ejemplo 1:

Vamos a hallar un cero de la función $f(x) = e^{-x} - \frac{2}{x} + 1$ con condiciones iniciales $x_0 = 1$ y $x_1 = 2$ ya que existe un cambio de signo en el intervalo $\langle x_0, x_1 \rangle$: $f(x_0) = f(1) = -0.6321206$, f(x) = 0.1353353

Los resultados se muestran en la tabla siguiente

$\lceil n \rceil$	x_n	$ f(x_n) $	$ x_n - x_{n-1} $
0	2	0.1353353	
1	1.8236572	0.0647369	0.1763428
2	1.7471408	0.0295441	0.0765164
3	1.7137801	0.0131725	0.0333607
4	1.6992095	0.0058101	0.0145706
5	1.6928413	0.0025503	0.0063682
6	1.6900572	0.0011171	0.0027841
7	1.6888399	0.0004888	0.0012173
8	1.6883076	0.0002138	0.0005323
9	1.688749	0.0000935	0.0002328

Cuadro 10.1: Cálculo de las sucesiones del método Regula Falsi

10.1.3 Convergencia

Observemos que la convergencia es más lenta que el método de la **secante** debido básicamente a que tenemos que asegurarnos del cambio de signo en el intervalo $\langle x_{n-2}, x_{n-1} \rangle$.

Sin embargo, la convergencia está asegurada siempre, cosa que no podemos decir lo mismo del método de la **secante**.