Proof 4

nibir@nibirsan.org

Prove that every odd natural number is of one of the forms 4n+1 or 4n+3, where n is an integer.

Proof

Let n be any integer.

Now, every integer 4n is even $\because 4n = 2(2n)$. Therefore the integer 4n + 1 must be **odd**.

Again, every integer 4n + 2 is even $\therefore 2(2n + 1)$. Therefore the integer 4n + 3 must be **odd**.

There is no other permutation available.

Because the above conclusion is true for integers, it is also true for the natural numbers since $\mathbb{N} \subset \mathbb{Z}$.

Hence, every odd natural number is in the form 4n + 1 or 4n + 3.