متحانات الشهادة الثانوية العامة فرع علوم الحياة

وزارة التربية والتعليم العالي المديرية العامة للتربية دائرة الامتحانات

عدد المسائل : أربع مسابقة في مادة الرياضيات الاسم: المدة: ساعتان الرقم:

ملاحظة: يُسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو اختزان المعلومات أو رسم البيانات. يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة)

I- (4 points)

Dans Le plan complexe rapporté à un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$, on donne les points E et F d'affixes $z_E = \frac{\sqrt{3}+1}{4} - \frac{\sqrt{3}-1}{4}i$ et $z_F = \frac{1}{2} + \frac{1}{2}i$.

- 1) a- Calculer $(z_E)^2$ et trouver le module et un argument de $(z_E)^2$.
 - b- Déterminer le module de z_E et vérifier que $-\frac{\pi}{12}$ est un argument de z_E .
 - c- Déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.

2) Soit
$$Z = \frac{z_E}{z_F}$$
.

- a- Ecrire sous forme exponentielle z_E , z_F et Z.
- b- Montrer que le triangle OEF est équilatéral.

II- (4 points)

Dans l'espace rapporté à un repère orthonormé direct(O; i, j, k), on donne les points A (4; 0; 0), B (0; 4; 0) et C (0; 0; 4).

- 1) Ecrire une équation du plan (ABC).
- 2) Calculer l'aire du triangle ABC.
- 3) Soit F et G les milieux respectifs de [AC] et [BC].
 - a- Donner un système d'équations paramétriques de la droite (FG).
 - b- Le plan d'équation z = 0 et le plan (OFG) se coupent suivant une droite (d). Démontrer que les droites (d) et (FG) sont parallèles.
 - c- Calculer la distance entre les deux droites (d) et (AB).

III- (4 points)

les 80 élèves des classes terminales d'une école sont répartis dans trois sections SG, SV et ES selon le tableau suivant :

	SG	SV	ES
Filles	8	18	10
Garçons	12	14	18

La direction de l'école choisit au hasard un groupe formé de 3 élèves de ces classes pour participer à une émission télévisée.

- 1) Quel est le nombre de groupes possibles ?
- 2) On désigne par X la variable aléatoire égale au nombre de garçons dans le groupe choisi. Déterminer la loi de probabilité de X.
- 3) Montrer que la probabilité de choisir un groupe comprenant une fille de chaque section est $\frac{18}{1027}$.
- 4) Le groupe choisi est formé de 3 filles, quelle est la probabilité qu'elles soient d'une même section ?

IV- (8 points)

Soit f la fonction définie, sur IR, par : $f(x) = x + 2 - e^{-x}$ et (C) sa courbe représentative dans un repère orthonormé (O; i, j).

- 1) a- Calculer $\lim_{x \to +\infty} f(x)$ et démontrer que la droite (d) d'équation y = x + 2 est une asymptote à (C).
 - b- Calculer $\lim_{x \to -\infty} f(x)$ et donner, sous forme décimale, les valeurs de f(-1,5) et f(-2).
- 2) Calculer f'(x) et dresser le tableau de variations de f.
- 3) Ecrire une équation de la tangente (T) à (C) au point A d'abscisse 0.
- 4) Montrer que l'équation f(x) = 0 admet une racine unique α et vérifier que -0, $5 < \alpha < -0.4$.
- 5) Tracer (d), (T) et (C).
- 6) On désigne par g la fonction réciproque de f, sur IR.
 - a- Tracer la courbe représentative (G) de g dans le repère (O; \vec{i} , \vec{j}).
 - b- On désigne par $A(\alpha)$ l'aire du domaine limité par la courbe (C), l'axe des abscisses et les deux droites d'équations $x=\alpha$ et x=0.

Montrer que A(
$$\alpha$$
) = $(-\frac{\alpha^2}{2} - 3\alpha - 1)$ unités d'aire.

c- Déduire l'aire du domaine limité par la courbe (G), l'axe des abscisses et les deux droites d'équations x=0 et x=1.