Math 415 - Lecture 11

Column space, Solution to $A\mathbf{x} = b$

Friday September 18th 2015

Textbook: Chapter 2.1, 2.2.

Suggested practice exercises: Chapter 2.1: 3, 21, 28. Chapter 2.2: 33 and additional exercises at the end of this lecture.

Khan Academy videos: Introduction to the Null Space of a Matrix, Calculating the Null Space of a Matrix, Column Space of a Matrix

1 Review

Definition. The **nullspace** of an $m \times n$ matrix A, written as Nul(A), is the set of all solutions to the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

$$Nul(A) = \{ \mathbf{x} : \mathbf{x} \in \mathbb{R}^n \text{ and } A\mathbf{x} = \mathbf{0} \}.$$

Theorem 1. The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n . Equivalently, the set of all solutions \mathbf{x} to the system $A\mathbf{x} = \mathbf{0}$ is a subspace of \mathbb{R}^n .

For example

$$\operatorname{Nul}\left(\begin{bmatrix} 3 & 6 & 6 & 3 & 9 \\ 6 & 12 & 13 & 0 & 3 \end{bmatrix}\right) = \operatorname{Nul}\left(\begin{bmatrix} 1 & 2 & 0 & 13 & 33 \\ 0 & 0 & 1 & -6 & -15 \end{bmatrix}\right).$$

This corresponds to the solution:

$$x_1 = -2x_2 - 13x_4 - 33x_5$$
$$x_3 = 6x_4 + 15x_5.$$

Write this as a linear combination:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2x_2 - 13x_4 - 33x_5 \\ x_2 \\ 6x_4 + 15x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -13 \\ 0 \\ 6 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -33 \\ 0 \\ 15 \\ 0 \\ 1 \end{bmatrix}.$$

This means that

$$\operatorname{Nul}(A) = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -13\\0\\6\\1\\0 \end{bmatrix}, \begin{bmatrix} -33\\0\\15\\0\\1 \end{bmatrix} \right\}.$$

Remark. If $Nul(A) \neq \{0\}$, then the number of vectors in the spanning set for Nul(A) equals the number of free variables in $A\mathbf{x} = \mathbf{0}$.

In this example, we had 3 free variables $(x_2, x_4, \text{ and } x_5)$ so there were 3 vectors in the spanning set for Nul(A). More about this later!

2 Column Spaces

Definition. The **column space**, written as Col(A), of an $m \times n$ matrix A is the set of all linear combinations of the columns of A. If $A = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{bmatrix}$,

then $Col(A) = Span \{ \mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n} \}.$

Example 1. • If $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then $Col(A) = Span(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix})$. This is all of \mathbb{R}^2 !

- If $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, then $Col(A) = \operatorname{Span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}) = \operatorname{Span}(\begin{bmatrix} 1 \\ 0 \end{bmatrix})$. This is the x_1 axis in \mathbb{R}^2 !
- If $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, then $Col(A) = \operatorname{Span}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix})$. This is the zero subspace of \mathbb{R}^2 !

Theorem 2. The column space of an $m \times n$ matrix A is a subspace of \mathbb{R}^m .

Why is it a subspace? Because it is a Span!

Remark. If A is $m \times n$ (m rows, n columns) then

- Col(A) is a subspace of the output space \mathbb{R}^m .
- Nul(A) is a subspace of the input space \mathbb{R}^n .

Theorem 3. Let A be an $m \times n$ matrix. **b** is in Col(A) iff there is an

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
 in \mathbb{R}^n such that $A\mathbf{x} = \mathbf{b}$.

Proof. Suppose $A\mathbf{x} = \mathbf{b}$. Then

$$\mathbf{b} = A\mathbf{x} = \underbrace{x_1\mathbf{a_1} + x_2\mathbf{a_2} + \dots + x_n\mathbf{a_n}}_{(lin.\ comb.\ of\ \mathbf{a_1},\dots,\mathbf{a_n})}.$$

Example 2. Find a matrix A such that W = Col(A) where

$$W = \left\{ \begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} : x, y \in \mathbb{R} \right\}.$$

Solution.

$$\begin{bmatrix} x - 2y \\ 3y \\ x + y \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + y \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}.$$

So

$$W = \operatorname{Span} \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\3\\1 \end{bmatrix} \right\} = \operatorname{Col} \left(\begin{bmatrix} 1&-2\\0&3\\1&1 \end{bmatrix} \right).$$

Therefore

$$A = \begin{bmatrix} 1 & -2 \\ 0 & 3 \\ 1 & 1 \end{bmatrix}.$$

3 Nul(A) and solutions to Ax = b

Theorem 4. Let A be an $m \times n$ matrix, let $\mathbf{b} \in \mathbb{R}^m$, and let $\mathbf{x_p} \in \mathbb{R}^n$ such that

$$A\mathbf{x}_{\mathbf{p}} = \mathbf{b}.$$

Then the set of solutions $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{b}\}$ is exactly

$$\mathbf{x_p} + Nul(A)$$
.

So every solution of $A\mathbf{x} = \mathbf{b}$ is of the form

$$x_p + x_n$$

where $\mathbf{x_n}$ is some vector in Nul(A).

Proof. Let $\mathbf{x_p} \in \mathbb{R}^n$ such that $A\mathbf{x_p} = \mathbf{b}$. Suppose \mathbf{x} is also in \mathbb{R}^n with $A\mathbf{x} = \mathbf{b}$. Then

$$A(\mathbf{x} - \mathbf{x}_{\mathbf{p}}) = A\mathbf{x} - A\mathbf{x}_{\mathbf{p}} = \mathbf{b} - \mathbf{b} = \mathbf{0}.$$

Therefore, $\mathbf{x} - \mathbf{x_p} = \mathbf{x_n}$ is in Nul(A), so $\mathbf{x} = \mathbf{x_p} + \mathbf{x_n}$.

Remark. We often call $\mathbf{x_p}$ a particular solution of $A\mathbf{x} = \mathbf{b}$. The theorem then says that every solution to $A\mathbf{x} = \mathbf{b}$ is the sum of one particular solution $\mathbf{x_p}$ and all the solutions to $A\mathbf{x} = \mathbf{0}$ (the null space).

Example 3. Let
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 5 \\ 5 \end{bmatrix}$. Solve $A\mathbf{x} = \mathbf{b}$.

Step 1 : Reduce $A\mathbf{x} = \mathbf{b}$ to $U\mathbf{x} = \mathbf{c}$.

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 & 2 \mid 1 \\ 2 & 6 & 9 & 7 \mid 5 \\ -1 & -3 & 3 & 4 \mid 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \mid 1 \\ 0 & 0 & 3 & 3 \mid 3 \\ 0 & 0 & 6 & 6 \mid 6 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \mid 1 \\ 0 & 0 & 3 & 3 \mid 3 \\ 0 & 0 & 0 & 0 \mid 0 \end{bmatrix}.$$

$$\begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}.$$

Step 2: Find a particular solution to $U\mathbf{x} = \mathbf{c}$.

$$\begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

Could pick any value for the free variables $(x_2 \text{ and } x_4)$. Trick: Set them both to 0. Then

$$3x_3 = 3 \Rightarrow x_3 = 1.$$

 $x_1 + 3x_3 = 1 \Rightarrow x_1 = -2.$

So
$$\mathbf{x_p} = \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix}$$
 is a particular solution to $A\mathbf{x} = \mathbf{b}$.

Step 3: Find all the solutions to $A\mathbf{x} = \mathbf{0}$ to find Nul(A).

$$\begin{bmatrix} U \mid \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 & 2 \mid 0 \\ 0 & 0 & 3 & 3 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 3 & 2 \mid 0 \\ 0 & 0 & 1 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & 0 & -1 \mid 0 \\ 0 & 0 & 1 & 1 \mid 0 \\ 0 & 0 & 0 & 0 \mid 0 \end{bmatrix}.$$

Every vector in Nul(A) is of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -3x_2 + x_4 \\ x_2 \\ -x_4 \\ x_4 \end{bmatrix} = x_2 \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}.$$

Step 4: To find all the solutions to $A\mathbf{x} = \mathbf{b}$, add a particular solution $\mathbf{x}_{\mathbf{p}}$ to the null space of A. So the set of solutions is

$$\mathbf{x_p} + Nul(A)$$
.

$$\begin{bmatrix} -2\\0\\1\\0 \end{bmatrix} + \operatorname{Span} \left\{ \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix} \right\}.$$

and each solution \mathbf{x} is of the form

$$\mathbf{x} = \begin{bmatrix} -2\\0\\1\\0 \end{bmatrix} + x_2 \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 1\\0\\-1\\1 \end{bmatrix}.$$

Remark. • If A is a matrix with echelon form U, then Nul(A) = Nul(U). Why? Because Nul(A) is the set of solutions of Ax = 0, which is the same as the space of solutions of Ux = 0 (That is the point of echelon form matrices!) which is Nul(U).

• Not true that Col(A) = Col(U)! Why?

Example 4. Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
. Then $U = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$.

$$Col(A) = \operatorname{Span}\begin{bmatrix}1\\2\end{bmatrix}, \quad Col(U) = \operatorname{Span}\begin{bmatrix}1\\0\end{bmatrix}$$

Additional Exercises

- 1. True or false?
 - (i) The solutions to $A\mathbf{x} = \mathbf{0}$ form a vector space. True. This is the null space Nul(A).
 - (ii) The solutions to $A\mathbf{x} = \mathbf{b}$ form a vector space. False, unless $\mathbf{b} = 0$.
- 2. Find an explicit description for Nul(A) where

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}.$$

3. Show that the given set W is a subspace (by showing that W is the column space or null space of some matrix A) or find a specific example that shows that W is not a subspace.

(i)
$$W_1 = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : 5x - 1 = y + 2z \right\}.$$

(ii)
$$W_2 = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} : a = 2b + c, \ 2a = c - 3d \right\}.$$

- 4. Let $A = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$. Find a smallest spanning set for W = Col(A). Find a matrix B such that W = Nul(B).
- 5. Let $B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Find a smallest spanning set for W = Nul(A). Find a matrix B such that W = Col(B)