Математический анализ

Содержание

1	Основы математического анализа 3				
	1.1	Математическая логика	3		
		1.1.1 Логические символы	3		
	1.2	Теория множеств	3		
		1.2.1 Символы теории множеств	4		
		1.2.2 Операции со множествами	4		
		1.2.3 Способы задания множества	4		
		1.2.4 Числовые множества	4		
	1.3	Промежутки	5		
		1.3.1 Виды промежутков	5		
		1.3.2 Конечные и бесконечные окрестности	5		
2	Чис	словая последовательность	6		
	2.1	Предел последовательности	7		
		2.1.1 Геометрический смысл	7		
	2.2	Свойства сходящихся последовательностей	8		
		2.2.1 Предел последовательности $x_n = (1 + \frac{1}{n})$	9		
3	Пре	едел функции	10		
	3.1	Ограниченная функция	11		
	3.2	Основные теоремы о пределах	11		
4	Бес	конечно малые функции	15		
	4.1	Свойства бесконечно малых функций	15		
-					
5	Арі дел	ифметические операции над функциями, имеющими конечный пре-	18		
6	_	едел функции	20		
	6.1	Односторонние пределы			
	6.2	Пределы на бесконечности			
	6.3	Бесконечные пределы			
		6.3.1 Бесконечный предел на бесконечности	22		
7	Бес	конечно малые и бесконечно большие функции	22		
	7.1	Связь бесконечно малой и бесконечно большой функций	22		
	7.2	Первый замечательный предел	22		
	7.3	Второй замечательный предел	25		
	7.4	Сравнение бесконечно малых и бесконечно больших функций	27		
	7.6	Свойства эквивалентных бесконечно малых функций	28		
8	Her	грерывность функции. Точки разрыва	31		
	8.1	Односторонняя непрерывность	32		
	8.2	Классификация точек разрыва	33		
	8.3	Свойства непрерывных функций в точке	35		
	8.4	Непрерывность элементарных функций	37		
	8.5	Свойства функций непрерывных на промежутке	38		

9	Про	оизводная функции	39
	9.1	Понятие производной	39
	9.2	Односторонние производные	40
	9.3	Геометрический смысл производной. Уравнение касательной и нормали к	
		графику функции	42
		9.3.1 Уравнение касательной	43
		9.3.2 Выводы	43
		9.3.3 Уравнение нормали	44
		9.3.4 Замечание	44
		9.3.5 Угол между двумя пересекающимися кривыми	45
	9.4	Дифференцируемость функции в точке	46
	9.5	Правила дифференцирования	47
	9.6	Производная сложной функции	50
	9.7	Производная обратной функции	51
	9.8	Производная высших порядков	52
10	Диф	фференциал функции	53
	10.1	Понятие дифференциала	53
	10.2	Геометрический смысл дифференциала	54
	10.3	Инвариантность формы первого дифференциала	54
	10.4	Дифференциал высшего порядка	55
	0		- 0
11	Осн	овные теоремы дифференциального исчисления	56
12	Paci	крытие неопределённостей	60
		Правило Лопиталя-Бернулли	60
		Сравнение показательной, степенной и логарифмической функции на беско-	00
		нечности	61
			0.1
13	Фор	омула Тейлора	62
	13.1	Формула Тейлора. Многочлены Тейлора	62
		13.1.1 Формула Тейлора с остаточным членом в форме Пеано	65
		13.1.2 Формула Тейлора с остаточным членом в форме Лагранжа	65
	13.2	Формула Маклорена	66
	13.3	Разложения основных элементарных функций по формулам Маклорена	66
		$13.3.1 y = e^x \dots \dots \dots \dots \dots \dots \dots \dots \dots $	66
		$13.3.2 y = \sin x \dots \dots$	67
		$13.3.3 y = \cos x \dots \dots$	68
		13.3.4 $y = (1+x)^{\alpha} \dots \dots$	69
		13.3.5 $y = \ln(1+x)$	69
14		ледование функции	70
	14.1	Вертикальные, наклонные, горизонтальные асимптоты	70
		14.1.1 Вертикальные асимптоты	70
		14.1.2 Наклонные асимптоты	71
		14.1.3 Горизонтальные асимптоты	72
		Исследование функции по первой производной	72
		Экстремумы функции	74
	14 4	Исследование функции по второй производной	77

Модуль №1

Элементарные функции и пределы

1 Основы математического анализа

Математический анализ — изучение через размышление

Объект математического анализа - функция

В математическом анализе используются символы из математической логики и теории множеств.

1.1 Математическая логика

Объект изучения математической логики - высказывание.

Определение 1. Высказывание — повествовательное предложение, относительно которого можно сказать, истинно оно или ложно. Обозначаются заглавными буквами латинского алфавита.

Пример. 2+3=5 – истинно, 3<0 – ложно

1.1.1 Логические символы

- \wedge конъюнкция (логическое "И")
- ∨ дизъюнкция (логическое "ИЛИ")
- ⇒ импликация ("если А то В")
- 👄 эквивалентность или равносильность ("тогда и только тогда")

Кванторы - общее название для логических операций

- 🗄 существует
- ∄ не существует
- !З существует единственный элемент
- ∀ для каждого

1.2 Теория множеств

Определение 1. Множество — совокупность объектов, связанных одним и тем же свойством. Обозначаются заглавными латинскими буквами. Элементы множества обозначаются строчными латинскими буквами.

1.2.1 Символы теории множеств

- ∈ принадлежит
- ∉ не принадлежит
- С включает
- ⊆ включает, возможно равенство
- = тождественное равенство (для любого значения переменной)
- \bullet \varnothing пустое множество

1.2.2 Операции со множествами

- U объединение множеств
- \cap пересечение множеств

Примечание.

$$A \cup B = \{x \colon x \in A \land x \in B\}$$
$$A \cap B = \{x \colon x \in A \lor x \in B\}$$

Определение 2. Подмножество — множество A называется подмножеством B, если каждый элемент множества A является элементом множества B.

Определение 3. Универсальное множество — такое множество, подмножествами которого являются все рассматриваемые множества.

1.2.3 Способы задания множества

1. Перечислить все элементы:

$$A = \{1, 2, 3, 4, \ldots\}.$$

2. Указание свойства, которым обладают все элементы множества:

$$B = \{x \colon Q(x)\}.$$

1.2.4 Числовые множества

- $\mathbb{N} = \{1, 2, 3, 4\}$ множество натуральных чисел
- $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}$ множество целых чисел
- $\mathbb{Q}=\{x: x=\frac{m}{n}, m\in \mathbb{Z}n\in \mathbb{N}\}$ множество рациональных чисел
- $\mathbb{I} = \{\pi, \sqrt{2} \ldots \}$ множество иррациональных чисел
- ullet $\mathbb{R}=\mathbb{Q}\cup\mathbb{I}$ множество действительных чисел

Примечание. Порядок вложенности: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

1.3 Промежутки

Определение 1. Промежуток — подмножество X множества \mathbb{Q} , где $\forall x_1, x_2 \in X$ этому множеству принадлежат все x, где $x_1 < x < x_2$.

1.3.1 Виды промежутков

- 1. Отрезок $[a; b] = \{x \in \mathbb{R} : a \le x \le b\}$
- 2. Интервал $(a; b) = \{x \in \mathbb{R} : a < x < b\}$
- 3. Полуинтервал $[a;b) = \{x \in \mathbb{R} : a \le x < b\}; (-\infty,b] = \{x \in \mathbb{R} : x \le b\}$

1.3.2 Конечные и бесконечные окрестности

Пусть $x_0 \in \mathbb{R}$, δ и ε — малые положительные величины

Определение 2. Окрестностью точки x_0 называется любой интервал, содержащий эту точку

Определение 3. δ -окрестностью $S(x_0; \delta)$ точки x_0 называется интервал с центром в точке x_0 и длиной 2δ .

$$S(x_0; \delta) = (x_0 - \delta; x_0 + \delta)$$

Определение 4. ε -окрестностью $S(x_0, \varepsilon)$ точки x_0 называется интервал с центром в точке x_0 и длиной 2ε .

$$S(x_0; \varepsilon) = (x_0 - \varepsilon; x_0 + \varepsilon)$$

Определение 5. Окрестностью $+\infty$ называется любой интервал вида:

$$S(+\infty) = (a; +\infty), \ a \in \mathbb{R}, \ a > 0.$$

Определение 6. Окрестностью $-\infty$ называется любой интеграл вида:

$$S(-\infty) = (-\infty; -a), \ a \in \mathbb{R}, \ a > 0.$$

Определение 7. Окрестностью ∞ называется любой интервал вида

$$S(\infty) = (-\infty; -a) \cup (a; +\infty), \ a \in \mathbb{R}, \ a > 0.$$

5

2 Числовая последовательность

Определение 1. Числовая последовательность — это <u>бесконечное</u> множество числовых значений, которое можно упорядочить (перенумеровать).

Задать последовательность — указать формулу или правило, по которой $\forall n \in \mathbb{N}$ можно записать соответствующий элемент последовательности.

Примечание. Множество значений последовательности может быть конечным или бесконечным, но число число элементов последовательности всегда бесконечно.

Пример.
$$1, -1, 1, -1, 1... \leftarrow$$
 Число элементов: бесконечно Значений последовательности: два

Пример.
$$\frac{x_n = (-1)^{n+1}}{2,2,2,2,2,\dots}$$
 — Число элементов: бесконечно Значений последовательности: одно

Определение 2. Последовательность чисел $\{x_n\}$ называется **неубывающей**, если каждый последующий член $x_{n+1} \geq x_n, \forall n \in \mathbb{N}$.

Пример.
$$1, 2, 3, 4, 4, 5, 5, \dots$$

Определение 3. Последовательность чисел $\{x_n\}$ называется **возрастающей**, если каждый последующий член $x_{n+1} > x_n, \ \forall n \in \mathbb{N}.$

Определение 4. Последовательность чисел $\{x_n\}$ называется **невозрастающей**, если каждый последующий член $x_{n+1} \leq x_n, \ \forall n \in \mathbb{N}$.

Пример.
$$\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \dots$$

Определение 5. Последовательность чисел $\{x_n\}$ называется **убывающей**, если каждый последующий член $x_{n+1} < x_n, \ \forall n \in \mathbb{N}$.

Пример.
$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$$

Определение 6. Возрастающие и убывающие последовательности называются **строго монотонными**.

Определение 7. Неубывающие, возрастающие, невозрастающие и убывающие последовательности называются **монотонными**.

Пример. Немонотонная последовательность: 1, 2, 3, 2, 1...

Пример. Постоянная последовательность: $1, 1, 1, 1, 1, \dots$

2.1 Предел последовательности

Определение 8. Число a называется пределом последовательности $\{x_n\}$, если для любого положительного числа ε найдется натуральное число $N\left(\varepsilon\right)$, такое, что если порядковый номер n члена последовательности станет больше $N(\varepsilon)$, то имеет место неравенство $|x_n-a|<\varepsilon$.

$$\lim_{x \to \infty} x_n = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N}) : (\forall n > N(\varepsilon)) \Rightarrow |x_n - a| < \varepsilon.$$

Примечание. Т.е. начиная с номера $N(\varepsilon)+1$ все элементы последовательности $\{x_n\}$ попадают в ε -окрестность точки a.

2.1.1 Геометрический смысл

$$|x_n - a| < \varepsilon$$

$$-\varepsilon < x_n - a < \varepsilon$$

$$a - \varepsilon < x_n < a + \varepsilon$$

$$\forall n > N(\varepsilon)$$

Какой бы малый ε мы не взяли, бесконечное количество элементов последовательности $\{x_n\}$ попадают в ε -окрестность точки a, причем чем $\varepsilon \downarrow$, тем $N(\varepsilon) \uparrow$.

Рис. 1: Геометрический смысл предела последовательности

Пример. Рассмотрим последовательность
$$x_n = \frac{1}{n+1} = \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots \right\}$$

$$\lim_{n \to \infty} x_n = a \lim_{n \to \infty} \frac{1}{n+1} = 0$$

Пусть $\varepsilon = 0.3$, $x_n \in (a - \varepsilon; a + \varepsilon)$, т.е. (-0.3; 0.3)

Получается два элемента $x_1, x_2 \notin (-0.3, 0.3) \downarrow$

$$N(\varepsilon) = 2$$

$$N(\varepsilon) + 1 = 3$$

$$x_3, x_4, x_5 \dots \in (-0.3, 0.3)$$

Определение 9. Последовательность, имеющая предел, называется сходящейся.

Определение 10. Последовательность $\{x_n\}$ называется ограниченной снизу (сверху), если $\exists m \in \mathbb{R} (M \in \mathbb{R})$, что для всех $\forall n \in \mathbb{N}$ выполнено неравенство $x_n \geq m$ $(x_n \leq M)$

Определение 11. Последовательность x_n называется ограниченной, если она ограничена и сверху, и снизу, т.е. $\forall n \in \mathbb{N}, m \leq x_n \leq M$ или $|x_n| \leq M$.

Определение 12. Последовательность $\{x_n\}$ называется фундаментальной, если для любого $\varepsilon > 0$ \exists свой порядковый номер $N(\varepsilon)$ такой, что при всех $n \geq N(\varepsilon)$ и $m \geq N(\varepsilon)$ выполнено неравенство $|x_n - x_m| < \varepsilon$.

$$\forall \varepsilon > 0 \exists N(\varepsilon) \quad \forall n \geq N(\varepsilon) \quad \forall m \geq N(\varepsilon) \implies |x_n - x_m| < \varepsilon$$

Теорема 1 (Критерий Коши существования предела последовательности). Для того, чтобы последовательность была сходящейся, необходимо и достаточно она была фундаментальной.

$$\{x_n\}$$
 - сходится \iff $\{x_n\}$ - фундаментальная.

2.2 Свойства сходящихся последовательностей

Теорема 2 (О существовании единственности предела последовательности). Любая сходящаяся последовательность имеет единственный предел.

Доказательство (Аналитическое доказательство).

Пусть $\{x_n\}$ - сходящаяся последовательность.

Рассуждаем методом от противного. Пусть последовательность $\{x_n\}$ более одного предела.

$$\lim_{n \to \infty} = a$$

$$\lim_{n \to \infty} = b$$

$$a \neq b$$

$$\lim_{n \to \infty} = a \iff (\forall \varepsilon_1 > 0)(\exists N_1(\varepsilon_1) \in N)(\forall n > N_1(\varepsilon_1) \implies |x_n - a| < \varepsilon_1)$$
 (1)

$$\lim_{n \to \infty} = b \iff (\forall \varepsilon_2 > 0)(\exists N_2(\varepsilon_2) \in N)(\forall n > N_2(\varepsilon_2) \implies |x_n - b| < \varepsilon_2)$$
 (2)

Выберем $N = max\{N_1(\varepsilon_1), N_2(\varepsilon_2)\}.$

Пусть

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{|b-a|}{3}$$

$$3\varepsilon = |b - a| = |b - a + x_n - x_n| =$$

$$= |(x_n - a) - (x_n - b)| \le |x_n - a| + |x_n - b| < \varepsilon_1 + \varepsilon_2 = 2\varepsilon$$

$$3\varepsilon < 2\varepsilon$$

Противоречие. Значит, предположение не является верным \implies последовательность x_n имеет единственный предел.

Доказательство (Геометрическое доказательство).

Нельзя уложить бесконечное число членов последовательности x_n в две непересекающиеся окрестности.

Теорема 3 (Об ограниченности сходящейся последовательности).

Любая сходящаяся последовательность ограничена.

Доказательство.

По определению сходящейся последовательности

$$\lim_{n \to \infty} = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) \in \mathbb{N})(\forall n > N(\varepsilon) \implies |x_n - a| < \varepsilon).$$

Выберем в качестве $M = max\{|x_1|, |x_2|, ..., |x_n|, |a-\varepsilon|, |a+\varepsilon|\}.$

Тогда для $\forall n \in \mathbb{N}$ будет верно $|x_n| \leq M$ – это и означает, что последовательность x_n - ограниченная.

Теорема 4 (Признак сходимости Вейерштрасса).

Ограниченная монотонная последовательность сходится.

2.2.1 Предел последовательности $x_n = (1 + \frac{1}{n})$

Теорема 5.

Последовательность $x_n = \left(1 + \frac{1}{n}\right)$ имеет предел равный e.

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e$$

3 Предел функции

Определение 1. Окрестностью, из которой исключена точка x_0 называется **проко- лотой окрестностью**.

$$\mathring{S}(x_0;\delta) = S(x_0;\delta) \setminus x_0$$

Определение 2 (Определение функции по Коши или на языке ε и δ).

Число a называется пределом функции y = f(x) в точке x_0 , если $\forall \varepsilon > 0$ найдется δ , зависящее от ε такое что $\forall x \in \mathring{S}(x_0; \delta)$ будет верно неравенство $|f(x) - a| < \varepsilon$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0) (\exists \delta(\varepsilon) > 0) (\forall x \in \mathring{S}(x_0; \delta) \implies |f(x) - a| < \varepsilon)$$

Эквивалентные записи определения

$$\dots \forall x \in \mathring{S}(x_0; \delta) \Longrightarrow \dots$$
$$\dots \forall x \neq x_0, |x - x_0| < \varepsilon \Longrightarrow \dots$$
$$\dots \forall x, 0 < |x - x_0| < \delta \Longrightarrow \dots$$

$$\dots \implies |f(x) - a| < \varepsilon$$

 $\dots \implies f(x) \in \mathring{S}(a, \varepsilon)$

Геометрический смысл предела функции

Если для $\forall \mathring{S}(a;\varepsilon)$ найдется $\mathring{S}(x_0;\delta)$, то соответствующее значение функции лежат в $\mathring{S}(a;\varepsilon)$ (полоса 2ε):

$$\forall x_1 \in \mathring{S}(x_0; \delta) \implies |f(x_1) - a| < \varepsilon$$

Определение 3 (Определение предела функции по Гейне или на языке последовательностей).

Число a называется пределом y = f(x) в точке x_0 , если эта функция определена в окрестности точки a и \forall последовательности x_n из области определения этой функции, сходящейся к x_0 соответствующая последовательность функций $\{f(x_n)\}$ сходится к a.

$$\lim_{x \to x_0} = a \iff (\forall x_n \in D_f)(\lim_{n \to \infty} x_n = x_0 \implies \lim_{n \to \infty} f(x_n) = a)$$

Геометрический смысл

$$\forall x_n \lim_{n \to \infty} x_n = x_0$$

Для любых точек x, достаточно близких к точке x_0 (на языке математики $\lim_{n\to\infty} x_n = x_0$) соответствующие значения $f(x_n)$ достаточно близко расположены к a (на языке математики $-\lim_{n\to\infty} f(x_n) = a$)

Примечание. Определение предела функции по Коши и по Гейне эквивалентны.

3.1 Ограниченная функция

Определение 4. Функция называется **ограниченной** в данной области изменения аргумента x, если $\exists M \in \mathbb{R}, \ M > 0, \ |f(x)| \leq M$.

Определение 5. Если $\nexists M \in \mathbb{R}, M > 0$, то функция f(x) называется неограниченной.

Определение 6. Функция называется **локально ограниченной** при $x \to x_0$, если существует проколотая окрестность с центром в точке x_0 , в которой данная функция ограничена.

3.2 Основные теоремы о пределах

Теорема 1 (О локальной ограниченности функции, имеющей конечный предел). Функция, имеющая конечный предел, локально ограничена.

Доказательство.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

Распишем:

$$\begin{array}{ll} -\varepsilon < f(x) - a < \varepsilon \\ a - \varepsilon < f(x) < a + \varepsilon \end{array} \quad \forall x \in \mathring{S}(x_0, \delta)$$

Выберем $M = max\{|a - \varepsilon|, |a + \varepsilon|\}$

$$|f(x)| \le M, \quad \forall x \in \mathring{S}(x_0, a)$$

Что и требовалось доказать.

Теорема 2 (О единственности предела функции).

Если функция имеет конечный предел, то он единственный.

Доказательство.

Предположим, что функция имеет более одного предела, например 2 - а и b. Тогда:

$$\lim_{x \to x_0} = a \tag{1}$$

$$\lim_{x \to x_0} = b \tag{2}$$

 $a \neq b$, пусть b > a

$$(1) \iff (\forall \varepsilon_1 > 0)(\exists \delta_1(\varepsilon_1) > 0)(\forall x \in \mathring{S}(x_0, \delta_1) \implies |f(x) - a| < \varepsilon_1)$$

$$(2) \iff (\forall \varepsilon_2 > 0)(\exists \delta_2(\varepsilon_2) > 0)(\forall x \in \mathring{S}(x_0, \delta_2) \implies |f(x) - b| < \varepsilon_2)$$

Распишем:

$$(1) \implies a - \varepsilon_1 < f(x) < a + \varepsilon_1, \forall x \in \mathring{S}(x_0, \delta_1)$$

(2)
$$\implies b - \varepsilon_2 < f(x) < b + \varepsilon_2, \forall x \in \mathring{S}(x_0, \delta_2)$$

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда $\forall x \in \mathring{S}(x_0, \delta)$ будет верно (1) и (2) одновременно.

Пусть
$$\varepsilon_1 = \varepsilon_2 = \varepsilon = \frac{b-a}{2}$$
:

(1)
$$\Longrightarrow f(x) < a + \varepsilon_1 = a + \frac{b-a}{2} = \frac{a+b}{2}$$

(2)
$$\implies f(x) > b - \varepsilon_2 = b - \frac{b - a}{2} = \frac{a + b}{2}$$

 $\forall x \in \mathring{S}(x_0, \delta)$

Мы получили противоречие. Это означает, что предположение не является верным. Функция имеет единственный предел. ■

Теорема 3 (О сохранении функцией знака своего предела).

Если $\lim_{x\to x_0}=a\neq 0$, то $\exists \mathring{S}(x_0,\delta)$ такая, что функция в ней сохраняет знак своего предела.

$$\lim_{x \to x_0} f(x) = a \neq 0 \to \begin{cases} a > 0 \\ a < 0 \end{cases} \implies \begin{cases} f(x) > 0 \\ f(x) < 0 \end{cases} \quad \forall x \in \mathring{S}(x_0, \delta)$$

Доказательство.

Пусть a > 0. Выберем $\varepsilon = a > 0$.

$$\lim_{x \to x_0} = a \iff (\forall \varepsilon = a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon = a)$$

Распишем:

$$-a < f(x) - a < a$$

$$\boxed{0 < f(x) < 2a}$$

Знак у функции f(x) и числа a - одинаковые. Пусть a < 0. Выберем $\varepsilon = -a$.

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon = -a)(\exists \delta(x) > 0)(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |f(x) - a| < \varepsilon = -a)$$

Распишем:

$$-a < f(x) - a < a$$
$$-2a < f(x) < 0$$

Знак у функции f(x) и числа a - одинаковые.

Значит, f(x) сохраняет знак своего предела $\forall x \in \mathring{S}(x_0, \delta)$

Следствие 3.1. Если функция y = f(x) имеет предел в точке x_0 и знакопостоянна в $\mathring{S}(x_0, \delta)$, тогда её предел не может иметь с ней противоположные знак.

Теорема 4 (О предельном переходе в неравенстве).

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\forall x \in \mathring{S}(x_0, \delta)$ верно f(x) < g(x). Тогда $\forall x \in \mathring{S}(x_0, \delta)$ имеет место неравенство $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

Доказательство.

По условию $f(x) < g(x), \forall x \in \mathring{S}(x_0, \delta)$.

Введём функцию $F(x) = f(x) - g(x) < 0, \forall x \in \mathring{S}(x_0, \delta)$. Т.к. f(x) и g(x) имеют конечные пределы в точке x_0 , соответственно и функция F(x) имеет конечный предел в точке

 x_0 (как разность f(x) и g(x)). По следствию $\mathbf{3.1} \implies \lim_{x \to x_0} F(x)$ Подставим F(x) = f(x) - g(x): $\lim_{x \to x_0} (f(x) - g(x)) \le 0 \implies \lim_{x \to x_0} f(x) - \lim_{x \to x_0} g(x) \le 0 \implies \lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$

Пример. Пусть f(x) = 0, $g(x) = x^2$ и $x_0 = 0$.

$$\forall x \in \mathring{S}(x_0, \delta) \qquad 0 < x^2$$

$$\lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} x^2 = 0$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x)$$

$$\lim_{x \to 0} f(x) \le \lim_{x \to 0} g(x)$$

В теореме знак строгий переходит в нестрогий!

Теорема 5 (О пределе промежуточной функции).

Пусть существуют конечные пределы функций f(x) и g(x) в точке x_0 и $\lim_{x \to x_0} f(x) = a$ и $\lim_{x \to x_0} g(x) = a$, $\forall x \in \mathring{S}(x_0, \delta)$ верно неравенство $f(x) \le h(x) \le g(x)$. Тогда $\lim_{x \to x_0} h(x) = a$.

Доказательство.

По условию:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_1(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$
 (1)

$$\lim_{x \to x_0} g(x) = a \iff (\forall \varepsilon > 0)(\exists \delta_2(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |g(x) - a| < \varepsilon)$$
 (2)

Выберем $\delta_0 = min\{\delta, \delta_1, \delta_2\}$, тогда (1), (2) и $f(x) \leq h(x) \leq g(x)$ верны одновременно $\forall x \in \mathring{S}(x_0, \delta_0)$.

$$(1) \quad a - \varepsilon < f(x) < a + \varepsilon$$

(2)
$$a - \varepsilon < g(x) < a + \varepsilon$$

$$f(x) \le h(x) \le g(x)$$

$$\implies a - \varepsilon_1 < f(x) \le h(x) \le g(x) < a + \varepsilon_2$$

$$\implies \forall x \in \mathring{S}(x_0, \delta_0) \qquad a - \varepsilon < h(x) < a + \varepsilon$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_0(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta_0 \implies |h(x) - a| < \varepsilon)$$
 \implies по определению предела
$$\lim_{x \to x_0} h(x) = a$$

Теорема 6 (О пределе сложной функции).

Если функция y = f(x) имеет предел в точке x_0 равный a, то функция $\varphi(y)$ имеет предел в точке a, равный C, тогда сложная функция $\varphi(f(x))$ имеет предел в точке x_0 , равный C.

$$\left. \begin{array}{l} y = f(x) \\ \lim_{x \to x_0} f(x) = a \\ \lim_{y \to a} \varphi(y) = C \end{array} \right\} \implies \lim_{x \to x_0} \varphi(f(x)) = C$$

Доказательство.

$$\lim_{y \to a} \varphi(y) \iff (\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall y \in \mathring{S}(a, \delta_1) \implies |\varphi(y) - a| < \varepsilon)$$
 (1)

Выберем в качестве ε в пределе найденное δ_1 :

$$\lim_{x \to x_0} f(x) = a \iff (\forall \delta_1 > 0)(\exists \delta_2 > 0)(\forall x : 0 < |x - x_0| < \delta_2 \implies |f(x) - a| < \delta_1 \quad (2)$$

В итоге:

$$(\forall \varepsilon > 0)(\exists \delta_2 > 0)(\forall x \colon 0 < |x - x_0| < \delta_2 \implies |\varphi(f(x)) - c| < \varepsilon)$$

Что равносильно:

$$\lim_{x \to x_0} \varphi(f(x)) = c$$

4 Бесконечно малые функции

Определение 1. Функция называется **бесконечно малой** при $x \to x_0$, если пределфункции в этой точке равен 0. Кратко - **б.м.ф.** или **б.м.в**.

$$\lim_{x \to x_0} f(x) = 0$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon))(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| < \varepsilon)$$

Примечание.

- Стремление аргумента может быть любое, главное, чтобы предел был равен нулю.
- Бесконечно малые функции обозначаются $\alpha(x), \beta(x), \gamma(x) \dots$

Пример.

$$y = x - 2$$
$$\lim_{x \to 2} (x - 2) = 0$$

y = x - 2 является бесконечно малой при $x \to 2$.

Пример.

$$y = \sin(x)$$
$$\lim_{x \to 0} \sin(x) = 0$$

 $y = \sin(x)$ является бесконечно малой при $x \to 0$.

Пример.

$$y = \sin\left(\frac{1}{x}\right)$$
$$\lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = 0$$

 $y = \sin\left(\frac{1}{x}\right)$ является бесконечно малой при $x \to \infty$.

4.1 Свойства бесконечно малых функций

Теорема 1 (О сумме конечного числа бесконечно малых функций).

Конечная сумма бесконечно малых функции есть бесконечно малая функция.

Доказательство.

Пусть дано конечное число бесконечно малых функций, например, две: $\alpha(x)$, $\beta(x)$. Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) = 0 \qquad \lim_{x \to x_0} \beta(x) = 0$$

Нужно доказать, что: $\lim_{x\to x_0} (\alpha(x) + \beta(x)) = 0$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff \left(\forall \varepsilon_1 = \frac{\varepsilon}{2} > 0 \right) \left(\exists \delta_1 > 0 \right) \left(\forall x \in \mathring{S}(x_0, \delta_1) \Rightarrow |\alpha(x)| < \frac{\varepsilon}{2} \right) \quad (1)$$

$$\lim_{x \to x_0} \beta(x) = 0 \iff \left(\forall \varepsilon_2 = \frac{\varepsilon}{2} > 0 \right) \left(\exists \delta_2 > 0 \right) \left(\forall x \in \mathring{S}(x_0, \delta_2) \Rightarrow |\beta(x)| < \frac{\varepsilon}{2} \right) \tag{2}$$

Выберем $\delta = min\{\delta_1, \delta_2\}$. Тогда (1) и (2) верны одновременно. Получаем:

$$(\forall \varepsilon > 0)(\exists \delta > 0) \left(\forall x \in \mathring{S}(x_0, \delta) \Rightarrow |\alpha(x) + \beta(x)| \le |\alpha(x)| + |\beta(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \right)$$

Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} (\alpha(x) + \beta(x)) = 0$$

Теорема 2 (О произведении бесконечно малой функций на локально ограниченную). Произведение бесконечно малой функции на локальной ограниченную есть величина бесконечно малая.

Доказательство.

Пусть $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, а функция f(x) при $x \to x_0$ является локально ограниченной. Доказываем, что:

$$\alpha(x) \cdot f(x) = 0$$

Распишем:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff \left(\forall \varepsilon_1 = \frac{\varepsilon}{M} > 0 \right) \left(\exists \delta_1 > 0 \right) \left(\forall x \in \mathring{S}(x_0, \delta_1) \Rightarrow |\alpha(x)| < \varepsilon_1 = \frac{\varepsilon}{M} \right) \tag{1}$$

$$M \in \mathbb{R}, M > 0$$

$$\forall x \in \mathring{S}(x_0, \delta_2) \implies |f(x)| < M \tag{2}$$

Выберем $\delta = min\{\delta_1, \delta_2\}$, тогда (1) и (2) верны одновременно. В итоге получаем:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x) \cdot f(x)| = |\alpha(x)| \cdot |f(x)| < \frac{\varepsilon}{M} \cdot M < \varepsilon$$

Тогда по определению бесконечно малой функции:

$$\lim_{x \to x_0} \alpha(x) \cdot f(x) = 0$$

Пример.

$$\lim_{x \to \infty} \frac{\sin(x)}{x} = \lim_{x \to \infty} \frac{1}{x} \cdot \sin(x) = 0$$

T.к. $\sin(x)$ при $x \to \infty$ является локально ограниченной $\sin(x) \le 1$.

Теорема 3 (О связи функции, её предела и бесконечно малой).

Функция y = f(x) имеет конечный предел в точке x_0 тогда и только тогда, когда её можно представить в виде суммы предела и некоторой бесконечно малой функции.

$$\lim_{x \to x_0} f(x) = a \iff f(x) = a + \alpha(x)$$
, где $\alpha(x) -$ б.м.ф при $x \to x_0$

Доказательство (Необходимость).

Дано:

$$\lim_{x \to x_0} f(x) = a$$

Доказать:

$$f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф. при $x \to x_0$

Распишем:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon)$$

Обозначим $f(x) - a = \alpha(x)$, тогда:

$$\lim_{x \to x_0} f(x) = a \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

По определению бесконечно малой функции $\alpha(x)$ - бесконечно малая функция. Из обозначения следует, что:

$$f(x) = a + \alpha(x)$$

где $\alpha(x)$ - бесконечно малая функция при $x \to x_0$.

Доказательство (Достаточность).

Дано:

$$f(x)=a+lpha(x)$$
, где $lpha(x)$ - б.м.ф. при $x o x_0$

Доказать:

$$\lim_{x \to x_0} f(x) = a$$

По определению б.м.ф.:

$$\lim_{x \to x_0} \alpha(x) = 0 \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \implies |\alpha(x)| < \varepsilon)$$

С учётом введённого обозначения:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\mathring{S}(x_0, \delta) \implies |f(x) - a| < \varepsilon) \iff \lim_{x \to x_0} f(x) = a$$

Следствие 3.1. Т.к. любая бесконечно малая функция локально ограничена, то произведение двух бесконечно малых функций есть бесконечно малая функция.

Следствие 3.2. Произведение бесконечно малой функции на константу есть величина бесконечно малая.

Арифметические операции над функциями, имеющи-5 ми конечный предел

Пусть f(x) и g(x) имеют конечные пределы в точке x_0 .

Теорема 4.

Предел суммы (разности) двух функций, имеющих конечные пределы равен сумме (разности) пределов.

$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

Теорема 5 (О пределе отношения функций).

Предел отношения двух функций, имеющих конечный предел, равен частному их пределов при условии, что предел в знаменателе отличен от нуля.

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \ \lim_{x \to x_0} g(x) \neq 0$$

Теорема 6 (О пределе произведения функций).

Предел произведения функций равен произведению пределов.

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Доказательство.

Пусть:

$$\lim_{x \to x_0} f(x) = a \tag{1}$$

$$\lim_{x \to x_0} f(x) = b \tag{2}$$

$$\lim_{x \to \infty} f(x) = b \tag{2}$$

По теореме о связи функции, её предела и бесконечно малой функции:

$$(1) \implies f(x) = a + \alpha(x)$$
, где $\alpha(x)$ - б.м.ф.

$$(2) \implies f(x) = b + \beta(x)$$
, где $\beta(x)$ - б.м.ф.

Рассмотрим:

$$f(x) \cdot g(x) = (a + \alpha(x))(b + \beta(x))$$

$$f(x) \cdot g(x) = ab + \underbrace{a \cdot \beta(x) + b\alpha(x) + \alpha(x) \cdot \beta(x)}_{\gamma(x)}$$

$$f(x) \cdot g(x) = ab + \gamma(x)$$

По следствию из теоремы 3:

$$a \cdot \beta(x) = \text{б.м.ф.}$$
 при $x \to 0$

$$b \cdot \alpha(x) = \text{б.м.ф.}$$
 при $x \to 0$

$$\alpha(x) \cdot \beta(x) =$$
б.м.ф. при $x \to 0$

По теореме о сумме конечного числа с б.м.ф.:

$$\gamma(x) =$$
 б.м.ф. при $x \to 0$

Далее расписываем предел:

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} (f(x) \cdot g(x))$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} ab + \lim_{x \to x_0} \gamma(x)$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = ab + 0$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = ab$$

Следствие 6.1.

$$\lim_{x \to x_0} (c \cdot f(x)) = c \cdot \lim_{x \to x_0} f(x)$$

6 Предел функции

6.1 Односторонние пределы

Определение 1. Число A_1 называется пределом функции y = f(x) в точке x_0 слева, если:

$$\lim_{x \to x_0 -} f(x) = A_1 \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in (x_0 - \delta, x_0) \implies |f(x) - A_1| < \varepsilon)$$

Определение 2. Число A_2 называется пределом функции y = f(x) в точке x_0 **справа**, если:

$$\lim_{x \to x_0 +} f(x) = A_2 \iff (\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in (x_0, x_0 + \delta) \implies |f(x) - A_2| < \varepsilon)$$

Примечание. Пределы справа и слева называют односторонними пределами.

Теорема 1 (О существовании предела функции в точке).

Функция y = f(x) в точке x_0 имеет конечный предел тогда и только тогда, когда существуют пределы справа и слева и они равны между собой.

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0+} f(x) = \lim_{x \to x_0-} f(x)$$

6.2 Пределы на бесконечности

Определение 3. Число a называется пределом функции y=f(x) при $x\to +\infty,$ если:

$$\lim_{x \to +\infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x > N \implies |f(x) - a| < \varepsilon)$$

где N — большое число, N > 0, $N \in \mathbb{R}$.

Определение 4. Число a называется пределом функции y=f(x) при $x \to -\infty,$ если:

$$\lim_{x \to -\infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x < -N) \implies |f(x) - a| < \varepsilon)$$

где N — большое число, N > 0, $N \in \mathbb{R}$.

Примечание.

$$\lim_{x \to +\infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x > N \implies |f(x) - a| < \varepsilon)$$

$$\lim_{x \to -\infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x < -N \implies |f(x) - a| < \varepsilon)$$

$$\lim_{x \to \infty} f(x) = a \iff (\forall \varepsilon > 0)(\exists N(\varepsilon) > 0)(\forall x \in |x| > N \implies |f(x) - a| < \varepsilon)$$

6.3 Бесконечные пределы

Определение 5. Функция y = f(x) имеет бесконечный предел при $x \to x_0$, если:

$$\lim_{x \to x_0} f(x) = \infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| > M)$$

где M — большое число, $M>0,\ M\in\mathbb{R},$ а δ - малое число.

Примечание.

$$\lim_{x \to x_0} f(x) = +\infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies f(x) > M)$$
$$\lim_{x \to x_0} f(x) = -\infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies f(x) < -M)$$

Пример.

$$y = \operatorname{arctg}(x), \ x \to \infty$$
$$\lim_{x \to +\infty} \operatorname{arctg}(x) = \frac{\pi}{2}$$
$$\lim_{x \to -\infty} \operatorname{arctg}(x) = -\frac{\pi}{2}$$

Пример.

$$y = \ln(x), \ x \to 0$$
$$\lim_{x \to 0-} = \nexists$$
$$\lim_{x \to 0+} = -\infty$$

Пример.

$$y = \sqrt{-x}, \ x \to 0$$

$$\lim_{x \to 0+} = \nexists$$

$$\lim_{x \to 0-} = 0$$

Пример.

$$y = \frac{1}{|x - 2|}, \ x \to 2$$

$$\lim_{x \to 2+} \frac{1}{|x - 2|} = +\infty$$

$$\lim_{x \to 2-} \frac{1}{|x - 2|} = +\infty$$

Определение 6. Функция y = f(x) называется бесконечно большой функцией (далее - **б.б.ф.**) если:

$$\lim_{x \to x_0} f(x) = \infty$$

6.3.1Бесконечный предел на бесконечности

$$\lim_{x \to \infty} = \infty \iff (\forall M > 0)(\exists N(M) > 0)(\forall x \in |x| > N \implies |f(x)| > M)$$

Бесконечно малые и бесконечно большие функции 7

7.1Связь бесконечно малой и бесконечно большой функций

Теорема 1 (О связи бесконечно малой и бесконечно большой функции).

Если $\alpha(x)$ - бесконечно большая функция при $x \to x_0$, то $\frac{1}{\alpha(x)}$ - бесконечно малая функция при $x \to x_0$.

Доказательство.

По условию $\alpha(x)$ - б.б.ф. при $x \to x_0$. По определению:

$$\lim_{x \to x_0} \alpha(x) = \infty \iff (\forall M > 0)(\exists \delta(M) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x)| > M)$$

Рассмотрим неравенство:

$$|\alpha(x)| > M, \ \forall x \in \mathring{S}(x_0, \delta)$$

Обозначим $\varepsilon = \frac{1}{M}$.

$$|\alpha(x) > M| \implies \frac{1}{|\alpha(x)|} < \frac{1}{M} \implies \left| \frac{1}{\alpha(x)} \right| < \frac{1}{M} < \varepsilon$$

В итоге получаем:

$$\forall x \in \mathring{s}(x_0, \delta) \implies \left| \frac{1}{\alpha(x)} \right| < \varepsilon$$

Что по определению является бесконечно малой функцией.

7.2Первый замечательный предел

Теорема 2.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Доказательство. Рассмотрим $\lim_{x\to 0+}\frac{\sin(x)}{x}=1$. Потом $\lim_{x\to 0-}\frac{\sin(x)}{x}=1$.

Пусть α - угол в радианах, $x \to 0, x \in \left(0, \frac{\pi}{2}\right)$.

Окружность R=1.

Отложим луч OK под углом к оси oX равным x, где $O(0,0), K \in$ окружности. $KH \perp OA$.

Рассмотрим $\triangle OKH$: OA = 1 как радиус. $\sin(x) = \frac{KH}{OA} = KH$.

Рассмотрим $\triangle OLA$: OA = 1 как радиус. $\operatorname{tg}(x) = \frac{L\bar{A}}{OA} = LA$.

Из геометрических построений:

$$S_{\triangle OKA} < S_{secOKA} < S_{\triangle OLA}$$

$$S_{\triangle OKA} = \frac{1}{2}OA \cdot KH = \frac{1}{2}\sin(x) = \frac{\sin(x)}{2}$$
$$S_{secOKA} = \frac{1}{2}OA \cdot OK \cdot KA = \frac{1}{2} \cdot x = \frac{x}{2}$$
$$S_{\triangle OLA} = \frac{1}{2}OA \cdot LA = \frac{1}{2} \cdot 1 \cdot \operatorname{tg}(x) = \frac{tg(x)}{2}$$

$$\frac{\sin(x)}{2} < \frac{x}{2} < \frac{\operatorname{tg}(x)}{2} \quad | \cdot 2$$

$$\sin(x) < x < tg(x)$$

$$x \to 0+ \implies \begin{cases} \sin(x) > 0 \\ \operatorname{tg}(x) > 0 \end{cases} \implies \sin(x) < x < \operatorname{tg}(x) \quad | : \sin(x)$$

$$1 < \frac{x}{\sin(x)} < \frac{1}{\cos(x)}$$

$$\cos(x) < \frac{\sin(x)}{x} < 1$$

По теореме о предельном переходе в неравенстве:

$$\lim_{x \to 0+} \cos(x) \le \lim_{x \to 0+} \frac{\sin(x)}{x} \le 1$$

По теореме о промежуточной функции:

$$\lim_{x \to 0+} \cos(x) = 1 \implies \lim_{x \to 0+} \frac{\sin(x)}{x} = 1$$

Аналогично для $\lim_{x\to 0-}\frac{\sin(x)}{x}=1$. Т.к. односторонние пределы равны:

$$\lim_{x \to 0+} \frac{\sin(x)}{x} = \lim_{x \to 0-} \frac{\sin(x)}{x} = 1 \iff \lim_{x \to x_0} \frac{\sin(x)}{x} = 1$$

Следствие 2.1.

$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{\operatorname{tg}(x)}{x} = \lim_{x \to 0} \frac{\sin(x)}{x \cos(x)} = \lim_{x \to 0} \frac{\sin(x)}{x} \cdot \frac{1}{\cos(x)} = \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot \frac{1}{1} = 1$$

Следствие 2.2.

$$\lim_{x \to 0} \frac{\arcsin x}{x} = 1$$

Доказательство

$$\lim_{x\to 0}\frac{\arcsin x}{x}=\left|\begin{matrix} t=\arcsin(x)\\x\to 0,t\to 0\end{matrix}\right|=\lim_{t\to 0}\frac{\arcsin(\sin t)}{\sin t}=\lim_{t\to 0}\frac{t}{\sin t}=\lim_{t\to 0}\frac{1}{\frac{\sin t}{t}}=\frac{1}{1}=1$$

Следствие 2.3.

$$\lim_{x \to 0} \frac{\arctan x}{x}$$

Доказательство

$$\lim_{x \to 0} \frac{\operatorname{arctg} x}{x} = \begin{vmatrix} x = \operatorname{tg} t \\ x \to 0, \ t \to 0 \end{vmatrix} = \lim_{t \to 0} \frac{\operatorname{arctg}(\operatorname{tg} t)}{\operatorname{tg} t} = \lim_{t \to 0} \frac{t}{\operatorname{tg} t} = \lim_{t \to 0} \frac{1}{\frac{\operatorname{tg} t}{t}} = \frac{1}{\lim_{t \to 0} \frac{\operatorname{tg} t}{t}} = \frac{1}{1} = 1$$

Следствие 2.4.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \begin{vmatrix} \sin^2 \frac{x}{2} = \frac{1 - \cos(x)}{2} \\ 1 - \cos(x) = 2\sin^2 \frac{x}{2} \end{vmatrix} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{x^2} = 2\lim_{x \to 0} \left(\frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2} \cdot \frac{\left(\frac{x}{2}\right)^2}{x^2} \right) = 2 \cdot \frac{1}{4} = \frac{1}{2}$$

7.3 Второй замечательный предел

Теорема 3.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Следствие 3.1.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$

Доказательство.

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \begin{vmatrix} \frac{1}{x} = t, & x = \frac{1}{t} \\ x \to 0, & t \to \infty \end{vmatrix} = \lim_{t \to \infty} \left(1 + \frac{1}{t} \right)^t = e$$

Следствие 3.2.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

Доказательство.

$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=\lim_{x\to 0}\left(\frac{1}{x}\cdot\ln(1+x)\right)=\lim_{x\to 0}\left(\ln\left(1+x\right)^{\frac{1}{x}}\right)\stackrel{\text{c.t. 4.1}}{=\!=\!=\!=}\ln e=1$$

Следствие 3.3.

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \frac{1}{\ln a}$$

$$\lim_{x \to 0} \frac{\log_a(1+x)}{x} = \lim_{x \to 1} \frac{\ln(1+x)}{\ln a \cdot x} = \frac{1}{\ln a} \lim_{x \to 0} \frac{\ln(1+x)}{x} = \frac{\text{cs. 4.2}}{\ln a} \cdot 1 = \frac{1}{\ln a}$$

Следствие 3.4.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

Доказательство.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \begin{vmatrix} e^x - 1 = t \\ e^x = t + 1 \\ x = \ln(t+1) \\ x \to 0, \ t \to 0 \end{vmatrix} = \lim_{t \to 0} \frac{t}{\ln(1+t)} = \frac{1}{\lim_{t \to 0} \frac{\ln(1+t)}{t}} \xrightarrow{\text{сл. 4.2}} \frac{1}{1} = 1$$

Следствие 3.5.

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a$$

$$\lim_{x \to 0} \frac{a^x - 1}{x} = \begin{vmatrix} a^x - 1 = t \\ a^x = t + 1 \\ x = \log_a(1+t) \\ x \to 0, t \to 0 \end{vmatrix} = \lim_{t \to 0} \frac{t}{\log_a(1+t)} = \frac{1}{\lim_{t \to 0} \frac{\log_a(t+1)}{t}} \xrightarrow{\text{CJ. 4.3}} \frac{1}{\ln a} = \ln a$$

Сравнение бесконечно малых и бесконечно больших функций

Пусть даны функции $\alpha(x)$ и $\beta(x)$, которые являются б.м.ф. при $x \to x_0$.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Рассмотрим варианты:

 $\bullet \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$

 $\alpha(x)$ имеет более высокий порядок малости, чем $\beta(x)$.

$$\alpha(x) = o(\beta(x))$$
, при $x \to x_0$

• $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \infty$

 $\beta(x)$ имеет более высокий порядок малости, чем $\alpha(x)$.

$$\beta(x) = o(\alpha(x)), \text{ при } x \to x_0$$

 $\bullet \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$

lpha(x) и eta(x) - эквивалентны. $\boxed{lpha(x)\sim eta(x), \ \mathrm{при}\ x o x_0}$

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

• $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const$

 $\alpha(x)$ и $\beta(x)$ - одного порядка малости.

$$\alpha(x) = O(\beta(x))$$
 при $x \to x_0$

• $\sharp \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$

 $\alpha(x)$ и $\beta(x)$ - несравнимы.

Определение 1. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются функциями одного порядка малости, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = const \neq 0$$

Определение 2. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются **несравнимыми**, если:

$$\nexists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Определение 3. Две б.м.ф. $\alpha(x)$ и $\beta(x)$ называются **эквивалентными**, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$$

Определение 4. Если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$$

где $\alpha(x)$ и $\beta(x)$ – б.м.ф. при $x \to x_0$, то говорят, что функция $\alpha(x)$ имеет **более** высокий порядок малости, чем $\beta(x)$.

Определение 5. Б.м.ф. $\alpha(x)$ имеет **порядок малости** k относительно функции б.м.ф. $\beta(x)$, если:

$$\lim_{x \to x_0} \frac{\alpha(x)}{[\beta(x)]^k} = const \neq 0$$

где k – порядок малости.

7.6 Свойства эквивалентных бесконечно малых функций

Теорема 1.

Если $\alpha(x)\sim\beta(x)$, а $\beta(x)\sim\gamma(x)$, при $x\to x_0$, то $\alpha(x)\sim\gamma(x)$ при $x\to x_0$.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\gamma(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \beta(x)}{\gamma(x) \cdot \beta(x)} = \lim_{x \to 0} \frac{\alpha(x)}{\beta(x)} \cdot \frac{\beta(x)}{\gamma(x)} = 1 \cdot 1 = 1$$

$$\downarrow \downarrow$$

$$\alpha(x) \sim \gamma(x), \text{при } x \to x_0$$

Теорема 2 (Необходимое и достаточное условие эквивалентных бесконечно малых ϕ ункций).

Две функции $\alpha(x)$ и $\beta(x)$ эквивалентны тогда и только тогда, когда их разность имеет более высокий порядок малости по сравнению с каждой из них.

$$\alpha(x),\beta(x)$$
 - б.м.ф при $x\to x_0$
$$\alpha(x)\sim\beta(x)\iff \frac{\alpha(x)-\beta(x)=o(\alpha(x))}{\alpha(x)-\beta(x)=o(\beta(x))}$$
 при $x\to x_0$

Доказательство.

Необходимость.

Дано:

$$\alpha(x), \beta(x)$$
 - б.м.ф при $x \to x_0$

Доказать:

$$\alpha(x) - \beta(x) = o(\alpha(x))$$
, при $x \to x_0$

Доказательство:

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = \lim_{x \to x_0} \left(1 - \frac{\beta(x)}{\alpha(x)} \right) = 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} = 1 - \frac{1}{1} = 0$$

Доказательство.

Достаточность.

Дано:

$$\alpha(x) - \beta(x) = o(\beta(x))$$
, при $x \to x_0$

Доказать:

$$\alpha(x) \sim \beta(x)$$
, при $x \to x_0$

$$\lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} - 1 \right) = \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 = 0 \implies$$

$$\implies \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1 \implies \alpha(x) \sim \beta(x), \text{ при } x \to x_0$$

Теорема 3 (О сумме бесконечно малых разного порядка).

Сумма бесконечно малых функций разных порядков малости эквивалентна слагаемому низшего порядка малости.

$$\left. \begin{array}{l} \alpha(x),\beta(x) \text{ - б.м.ф при } x \to x_0 \\ \alpha(x) = o(\beta(x)), \text{ при } x \to x_0 \end{array} \right\} \implies \alpha(x) + \beta(x) \sim \beta(x), \text{ при } x \to x_0$$

Доказательство.

Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x) + \beta(x)}{\beta(x)} = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} + 1 \right) = \lim_{x \to x_0} \left(\frac{\alpha(x)}{\beta(x)} \right) + 1 = 0 + 1 = 1$$

Следствие 3.1. Сумма б.б.ф. разного порядка роста эквивалентна слагаемому высшего порядка роста.

Теорема 4 (О замене функции на эквивалентную под знаком предела).

Предел отношения двух б.м.ф. (б.б.ф) не изменится, если заменить эти функции на эквивалентные.

$$\begin{cases} \alpha(x), \beta(x) - \text{б.м.ф. при } x \to x_0 \\ \alpha(x) \sim \alpha_0(x) \\ \beta(x) \sim \beta_0(x) \end{cases} \implies \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \frac{\alpha_0(x)}{\beta(x)}$$

Доказательство.

Рассмотрим предел:

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x) \cdot \alpha_0(x) \cdot \beta_0(x)}{\beta(x) \cdot \alpha_0(x) \cdot \beta_0(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\alpha_0(x)} \cdot \lim_{x \to x_0} \frac{\beta_0(x)}{\beta(x)} \cdot \lim_{x \to x_0} \frac{\alpha_0(x)}{\beta_0(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

$$= 1 \cdot 1 \cdot 1 \cdot \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$$

Таблица 1: Таблица эквивалентных б.м.ф.

1.
$$\sin x \sim x$$
 при $x \to 0$; 6. $e^x - 1 \sim x$ $(x \to 0)$; 7. $a^x - 1 \sim x \cdot \ln a$ $(x \to 0)$; 8. $\ln(1+x) \sim x$ $(x \to 0)$; 8. $\ln(1+x) \sim x$ $(x \to 0)$; 9. $\log_a(1+x) \sim x \cdot \log_a e$ $(x \to 0)$; 10. $(1+x)^k - 1 \sim k \cdot x$, $k > 0$ $(x \to 0)$; 11. $a_0 + a_1x + a_2x^2 + \ldots + a_nx^2 \sim a_nx^2$ $(x \to 0)$ 12. $a_1x + a_2x^2 + \ldots + a_nx^n \sim a_1x$ $(x \to 0)$

Непрерывность функции. Точки разрыва 8

Определение 1. Функция f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке если:

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Примечание. Множество непрерывных функций в точке x_0 обозначается $C(x_0)$

$$f(x) \in C(x_0) \iff$$
 функция непрерывна в точке x_0

Пример.

$$\lim_{x \to 0} \sin(x) = \sin(x) = 0 \iff \sin(x) \in C(0)$$

Пример.

$$\operatorname{sgn} x = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \implies \operatorname{sgn} \notin C(0) \\ -1, & x < 0 \end{cases}$$

Определение 2. Функция y = f(x), определённая в некоторой окрестности точки x_0 , называется непрерывной в этой точке, если в достаточно малой окрестности точки x_0 значение функции близки к $f(x_0)$.

$$y = f(x) \in C(x_0)$$

$$\updownarrow$$

$$(\forall \varepsilon > 0)(\exists \delta(\varepsilon) > 0)(\forall x \in \mathring{S}(x_0, \delta) \implies |f(x) - f(x_0)| < \varepsilon)$$

Определение 3. Функция y = f(x) в некоторой окрестности точки x_0 называется непрерывной в этой точке, если выполняются условия:

1.
$$\exists \lim_{x \to x_0 +} f(x)$$

$$2. \quad \exists \lim_{x \to x_0 -} f(x)$$

1.
$$\exists \lim_{x \to x_0 +} f(x)$$

2. $\exists \lim_{x \to x_0 -} f(x)$
3. $\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x) = f(x)$

Определение 4. Пусть y = f(x) определена в некоторой точке в окрестности x_0 . Выберем произвольный x в этой окрестности. Тогда:

$$\boxed{\Delta x = x - x_0}$$
 — приращение аргумента $\boxed{\Delta y = f(x) - f(x_0)}$ — соответствующее приращение функции

Определение 5. Функция y = f(x) называется **непрерывной** в точке x_0 , если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

$$\lim_{\Delta x \to 0} \Delta y = 0$$

8.1 Односторонняя непрерывность

Определение 6. Функция y = f(x) определённая в правосторонней окрестности точки x_0 (математическим языком – $[x_0, x_0+\delta)$) называется **непрерывной справа** в этой точке, если:

$$\exists \lim_{x \to x_0 +} f(x) = f(x_0)$$

Определение 7. Функция y=f(x) определённая в левосторонней окрестности точки x_0 (математическим языком - $(x_0-\delta,x_0]$) называется **непрерывной слева** в этой точке, если:

$$\exists \lim_{x \to x_0 -} f(x) = f(x_0)$$

Теорема 1.

Для того, чтобы функция y = f(x) была непрерывна в точке x_0 необходимо и достаточно, чтобы она была непрерывна в этой точке справа и слева.

Определение 8. Функция y = f(x) называется непрерывной на интервале (a, b), если она непрерывна в каждой точке этого интервала.

Определение 9. Функция y = f(x) называется **непрерывной на отрезке** [a,b], если она:

- 1. Непрерывна на интервале (a, b)
- 2. Непрерывна в точке a справа
- 3. Непрерывна в точке b слева

Примечание.

- C(a,b) множество функций, непрерывных на интервале.
- C[a,b] множество функций, непрерывных на отрезке.
- C(X) множество функций, непрерывных на промежутке X.

8.2 Классификация точек разрыва

Определение 10. Пусть функция y = f(x) определена в некоторой проколотой окрестности точки x_0 , непрерывна в любой точке этой окрестности за исключением самой точки x_0 . Тогда точка x_0 называется точкой разрыва функции y = f(x).

Определение 11. Если точка x_0 – точка разрыва функции y=f(x) и существуют конечные пределы $\lim_{x\to x_0+}f(x)$ и $\lim_{x\to x_0-}f(x)$, то x_0 называют **точкой І-го рода**.

Определение 12. Если точка x_0 – точка разрыва функции y=f(x) и не существуют конечные пределы $\lim_{x\to x_0+} f(x)$ и $\lim_{x\to x_0-} f(x)$ или $\lim_{x\to x_0} f(x) = \infty$, то x_0 называется точкой разрыва II-го рода.

Определение 13. Если точка x_0 – точка разрыва первого рода функции y = f(x), и предел $\lim_{x \to x_0 +} f(x) \neq \lim_{x \to x_0 -} f(x)$, то x_0 называется точкой конечного разрыва или точкой ckauka.

Определение 14. Если точка x_0 – точка разрыва первого рода функции y = f(x), и предел $\lim_{x \to x_0 +} f(x) = \lim_{x \to x_0 -} f(x)$, но $\neq f(x_0)$, то точка x_0 называется **точкой устранимого разрыва**.

Примеры

Пример.

$$y = \frac{|x-1|}{x-1}$$

$$D_f = \mathbb{R} \setminus \{1\}$$

$$x = 1 \cdot \text{точка разрыва}$$

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} \frac{|x-1|}{x-1} = \frac{x-1}{x-1} = 1$$

$$\lim_{x \to 1-} f(x) = \lim_{x \to 1-} \frac{|x-1|}{x-1} = \frac{1-x}{x-1} = -1$$

$$\lim_{x \to 1-} f(x) \neq \lim_{x \to 1-} f(x)$$

$$\updownarrow$$

$$x = 1 - \text{т.р. I рода, точка скачка}$$

$$\Delta f = \left| \lim_{x \to 1+} f(x) - \lim_{x \to 1-} f(x) \right| = |1-(-1)| = 2$$

Пример.

$$y = \frac{\sin(x)}{x}$$

$$D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} \frac{\sin(x)}{x} = 1$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0-} f(x)$$

$$\updownarrow$$

x=0 — т.р. І рода, устранимая точка разрыва

$$g(x) = \begin{cases} \frac{\sin(x)}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
$$f(x) \notin C(0)$$
$$g(x) \in C(0)$$

Пример.

$$y = e^{\frac{1}{x}}$$

$$D_f = \mathbb{R} \setminus \{0\}$$

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} e^{\frac{1}{x}} = e^{+\infty} = \infty$$

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} e^{\frac{1}{x}} = e^{-\infty} = 0$$

$$\lim_{x \to 0+} f(x) = \infty$$

$$\updownarrow$$

$$x = 0 - \text{т.р. II рода}$$

8.3 Свойства непрерывных функций в точке

Теорема 1.

Пусть функции:

$$y = f(x) y = g(x)$$
 $\in C(x_0)$

Тогда:

$$f(x) + g(x) \in C(x_0)$$
$$(f \cdot g)(x) \in C(x_0)$$

Доказательство.

По определению непрерывной функции:

$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\lim_{x \to x_0} g(x) = g(x_0)$$

Рассмотрим:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x) + f(x_0) = g(x_0)$$

$$\updownarrow$$

$$f(x) + g(x) \in C(x_0)$$

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0)$$

$$\updownarrow$$

$$(f \cdot g)(x) \in C(x_0)$$

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x_0)}$$

Теорема 2.

Пусть функция g(y) непрерывна в точке $y_0, y_0 = \lim_{x \to x_0} f(x)$.

Тогда
$$\lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right)$$

Доказательство.

Так как
$$g(y)\in C(y_0)$$
 , то $\lim_{x\to x_0}g(y)=g(y_0)$ По условию $\lim_{x\to x_0}f(x)=y_0$

 $(g(y_0) \to C, y_0 \to a)$

 \Rightarrow по теореме о пределе сложеной функции $\exists \lim_{x \to x_0} g(f(x)) = g(y_0)$

Подставляем в последнее равенство: $y_0 = \lim_{x \to x_0} f(x) : \lim_{x \to x_0} g(f(x)) = g\left(\lim_{x \to x_0} f(x)\right)$

Теорема 3 (О непрерывности сложной функции).

Пусть функция f(x) непрерывна в точке x_0 , а g(y) в точке y_0 , причём $y_0 = f(x_0)$. Тогда сложная функция F(x) = g(f(x)) непрерывна в точке x_0

Доказательство.

 $\Rightarrow g(f(x_0)) \in C(x_0)$

Так как $y = f(x) \in C(x_0) \Rightarrow \lim_{x \to x_0} f(x) = f(x_0)$ Так как $g(y) \in C(x_0) \Rightarrow \lim_{y \to y_0} g(y) = g(y_0), \ y_0 = f(x_0)$ Рассмотрим $\lim_{x \to x_0} F(x) = \lim_{x \to x_0} g(f(x)) \xrightarrow{\text{T.2}} g\left(\lim_{x \to x_0} f(x)\right) \xrightarrow{\text{непр. } f} g(f(x_0)) = F(x_0) \Rightarrow$

Теорема 4 (О сохранении знака непрерывной функции в окрестности точки). Если функция y = f(x) непрерывна в точке x_0 и $f(x_0) \neq 0$, то $\exists S(x_0)$, в которой знак значений функции совпадает со знаком $f(x_0)$

Доказательство.

Так как y = f(x) непрерывна в точке x_0 , то $\lim_{x \to x_0} f(x) = f(x_0)$

По теореме о сохранении знака своего предела $\Rightarrow \exists S(x_0)$, в которой знак значений функции совпадает со знаком $f(x_0)$.

 $(f(x_0) \to a)$

Примечание. На экзамене требуется доказать также и теорему о сохранении функции знака своего предела!

8.4 Непрерывность элементарных функций

Теорема 1.

Основные элементарные функции непрерывны в области определения

Доказательство.

Докажем её для функций $y = \sin x$ и $y = \cos x$, $Dy = \mathbb{R}$.

$$x_0 = 0$$
, $\lim_{x \to 0} \sin x = \sin 0 = 0 \implies y = \sin x \in C(0)$
 $x = x_0 + \Delta x, \ x \in D_f = R$

Соответствующее приращение функции

$$\Delta y = y(x) - y(y_0) = y(x_0 + \Delta x) - y(x_0) =$$

$$= \sin(x_0 + \Delta x) - \sin x_0 = 2\sin\frac{x_0 + \Delta x - x_0}{2}\cos\frac{x_0 + \Delta x + x_0}{2} =$$

$$= 2\sin\frac{\Delta x}{2}\cos\left(x_0 + \frac{\Delta x}{2}\right)$$

По теореме о произведении б.м.ф на ограниченную:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} 2 \sin \frac{\Delta x}{2} \cos \left(x_0 + \frac{\Delta x}{2} \right) = 0$$

$$\sin \frac{\Delta x}{2} \text{ б.м.ф при } \Delta x \to 0 - ?$$

$$\lim_{\Delta x \to 0} \sin \frac{\Delta x}{2} = \sin 0 = 0 \qquad \sin \frac{\Delta x}{2} \text{ б.м.ф при } \Delta x \to 0$$

$$\cos \left(x_0 + \frac{\Delta x}{2} \right) - \text{огр. функция} - ?$$

$$\left| \cos \left(x_0 + \frac{\Delta x}{2} \right) \right| \le 1 - \text{огр. функция}$$

Т.к. x_0 – произвольная точка из области определения, то $y = \sin x$ непрерывна на всей области определения

Замечание. Эта теорема доказывается для каждой из элементарных функций отдельно.

Теорема 2.

Элементарные функции непрерывны в области определения

Доказательство.

Доказательство данной теоремы следует из определения элементарных функций (это функции, полученные из основных элементарных функций с помощью операций «+», «-», «×» на число, операций композиции) предыдущей теоремы, теоремы об алгебраических свойствах непрерывных функций и теоремы о композиции непрерывных функций.

8.5 Свойства функций непрерывных на промежутке

Теорема 1 (об ограниченности непрерывной функции (**Первая теорема Вейер-** umpacca)).

Если функция y = f(x) непрерывна на [a,b], то она на этом отрезке ограничена. Кратко:

$$(f(x) \in C[a,b]) \Rightarrow (\exists M \in \mathbb{R}, M > 0)(\forall x \in [a,b]: |f(x)| \le M)$$

Теорема 2 (о достижении непрерывной функции наибольшего и наименьшего значений (Вторая теорема Вейерштрасса)).

Если функция y = f(x) непрерывна на [a, b], то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Кратко:

$$(f(x) \in C[a,b]) \Rightarrow (\exists x_*, x^* \in [a,b]: (\forall x \in [a,b] \Rightarrow m = f(x_*) \le f(x) \le f(x^*) = M)$$

Теорема 3 (о существовании нуля непрерывной функции (**Первая теорема Боль-** uaha-Kouu).

Если функция y=f(x) непрерывна на отрезке [a,b] и на концах отрезка принимает значения разных знаков, то $\exists \ c \in (a,b) \colon f(x)=0$ Кратко:

$$(f(x) \in C[a,b]) \wedge (f(x) \cdot f(b) < 0) \ \Rightarrow \ (\exists \ c \in (a,b)) \colon f(x) = 0$$

Теорема 4 (о промежуточном значении непрерывной функции (Вторая теорема Больцана-Коши)).

Если функция y=f(x) непрерывна на [a,b] и принимает на границах отрезка различные значения $(f(a)=A\neq f(b)=B)$, то $\forall C$, лежащего между A и B, $\exists \ c\in (a,b),\ f(c)=C$

Кратко:

$$(f(x) \in c[a,b]) \land (f(a) = A \neq f(b) = B) \implies (\forall C \in (A,B) \exists c \in (a,b) \ f(x) = C)$$

Теорема 5 (о существовании обратной к непрерывной функции).

Пусть y = f(x) непрерывна на интервале (a,b) и строго монотонна (возрастает/убывает) на этом интервале. Тогда в соответствующем (a,b) интервале значений функции существует обратная функция (обозначается $x = f^{-1}(y)$), которая также строго монотонна и непрерывна.

Модуль №2

Дифференциальное исчисление функции одной переменной

9 Производная функции

9.1 Понятие производной

Рассмотрим функцию y = f(x), определённую в некоторой окрестности точки x_0 .

Пусть x – произвольная точка из $S(x_0)$

 Δx – приращение аргумента

$$x = x_0 + \Delta x$$

$$\Delta x = x - x_0$$

Соответствующее приращение функции:

$$\Delta y = y(x_0 + \Delta x) - y(x_0)$$

Определение 1. Производной функции y = f(x) в точке x_0 называется предел отношения приращения функции к приращению аргумента при стремлении последнего к нулю.

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
 (1)

Определение 2.

Если предел (1) конечен, то функция y = f(x) в точке x_0 имеет конечную производную.

Если предел (1) бесконечен, то функция y = f(x) в точке x_0 имеет **бесконечную** производную.

Определение 3. Дифференцирование — процесс нахождения производной.

Примеры

Пример.
$$y = e^x$$
, $D_f = \mathbb{R}$

$$\forall x_0 \in D_f$$

 Δx – приращение аргумента

$$x = x_0 + \Delta x, \ x \in D_f$$

Соответствующее приращение функции:

$$\Delta y = y(x_0 + \Delta x) - y(x_0) = e^{x_0 + \Delta x} - e^{x_0} = e^{x_0}(e^{\Delta x} - 1)$$

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{e^{x_0}(e^{\Delta x} - 1)}{\Delta x} = \begin{vmatrix} e^{\Delta x} - 1 \sim \Delta x \\ \Delta x \to 0 \end{vmatrix} = \lim_{\Delta x \to 0} \frac{e^{x_0} \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} e^{x_0} = e^{x_0}$$

$$\Delta x \rightarrow 0$$

$$(e^x)' = e^x$$

Пример.
$$y = \sin x$$
, $D_f = \mathbb{R}$
 $\forall x_0 \in D_f$
 Δx – приращение аргумента
 $x = x_0 + \Delta x$, $x \in D_f$
Соответствующее приращение функции:
$$\Delta y = y(x_0 + \Delta x) - y(x_0) = \sin(x_0 + \Delta x) - \sin x_0 =$$

$$= 2\sin\frac{x_0 + \Delta x - x_0}{2}\cos\frac{x_0 + \Delta x + x_0}{2} = 2\sin\frac{\Delta x}{2}\cos\left(x_0 + \frac{\Delta x}{2}\right)$$

$$y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{2\sin\frac{\Delta x}{2}\cos\left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} = \begin{vmatrix} \sin\frac{\Delta x}{2} \sim \frac{\Delta x}{2} \\ \Delta x \to 0 \end{vmatrix} =$$

$$= \lim_{\Delta x \to 0} \frac{2 \cdot \frac{\Delta x}{2}\cos\left(x_0 + \frac{\Delta x}{2}\right)}{\Delta x} = \lim_{\Delta x \to 0} \cos\left(x_0 + \frac{\Delta x}{2}\right) = \cos x_0$$

$$(\sin x)' = \cos x$$

9.2 Односторонние производные

Определение 4. Производной функции y = f(x) в точке x_0 справа(слева) или правосторонней (левосторонней) производной называется предел отношения приращения функции к приращению аргумента при стремлении к нулю справа(слева).

$$y'_{+}(x_0) = \lim_{\Delta x \to 0+} \frac{\Delta y}{\Delta x}$$

$$y'_{-}(x_0) = \lim_{\Delta x \to 0-} \frac{\Delta y}{\Delta x}$$

Теорема 1 (О существовании производной функции в точке).

Функция y = f(x) в точке x_0 имеет производную тогда и только тогда, когда она имеет производные и справа, и слева, и они равны между собой.

$$y'(x_0) = y'_+(x_0) = y'_-(x_0)$$

Примеры

Пример. $y = |x|, x_0 = 0$

$$y = \begin{cases} x, & x > 0 \\ 0, & x = 0 \\ -x, & x < 0 \end{cases} \longrightarrow y' = \begin{cases} 1, & x > 0 \\ 0, & x = 0 = \operatorname{sgn} x \\ -1, & x < 0 \end{cases}$$

 $y'_+(0)=1$ т.к. производные конечные, но различные, $y'_-(0)=-1$ то $x_0=0$ называется **точкой излома**.

Геометрический смысл: ∄ касательной к графику функции в точке излома.

Пример. $y = x^{\frac{1}{3}}, x_0 = 0$

$$y' = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}}$$

$$y' = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}}$$

$$y'_+(0) = \frac{1}{0+} = +\infty$$
 $y'_-(0) = \frac{1}{0+} = +\infty$ \Rightarrow знаки бесконечностей совпадают, поэтому $x_0 = 0$ — точка бесконечной производной

$$y'(0) = y'_{+}(0) = y'_{-}(0) = +\infty$$

Геометрический смысл: В точке с бесконечной производной касательная к графику функции параллельна оси Oy и имеет вид $x = x_0$

Пример. $y = \sqrt[3]{x^2}$, $x_0 = 0$ $y' = \left(x^{\frac{2}{3}}\right)' = \frac{2}{3}x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$ $y'_{+}(0) = \frac{2}{3\cdot 0+} = +\infty$ знаки бесконечностей разные, поэтому $y'_{-}(0) = \frac{2}{3\cdot 0-} = -\infty$ называется **точкой возврата** или **заострения** 0

Геометрический смысл: ∄ касательной к функции в точке возврата/заострения.

9.3 Геометрический смысл производной. Уравнение касательной и нормали к графику функции

Пусть y = f(x) определена в $S(x_0)$.

 x_0

 $f(x_0) = y_0$

 $M(x_0, y_0)$

 Δx – приращение аргумента

 $x = x_0 + \Delta x$

 $y(x_0 + \Delta x)$

 $N(x_0 + \Delta x, y(x_0 + \Delta x))$

MN – секущая

При $\Delta x \to 0$ точка N движется вдоль графика функции y = f(x), а секущая MN вращается вокруг графика.

В пределе: N = M, а секущая MN = касательная

Рис. 3: Геометрический смысл производной

Определение 5. Если существует предельное положение секущей MN, когда точка N, перемещаясь вдоль графика функции, стремится к точке M — это положение секущей называется **касательной** к графику функции в точке M.

Рассмотрим $\triangle MNK$ (Рис. 3):

$$\operatorname{tg} \alpha = \frac{\Delta y}{\Delta x}$$

$$\lim_{\Delta x \to 0} \operatorname{tg} \alpha = \operatorname{tg} \alpha_0$$

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = y'(x_0)$$

$$\Rightarrow \left[\operatorname{tg} \alpha_0 = y'(x_0)\right]$$

 α — угол между секущей и положительным направлением оси Ox α_0 — угол между касательной и положительным направлением оси Ox

С другой стороны: прямая, проходящая через точку $M(x_0, y_0)$ с заданным угловым коэффициентом k имеет вид: $y - y_0 = k \cdot (x - x_0)$, где k – тангенс угла наклона прямой к положительному направлению оси Ox.

$$tg \alpha_0 = y'(x_0) = k$$

9.3.1 Уравнение касательной

Рассмотрим $\forall P(x,y)$ на касательной к графику функции y=f(x) в точке $M(x_0,y_0)$ (Рис. 4)

$$y = f(x)$$
 в точке $M(x_0, y_0)$ (Рис. 4) $\triangle MPK$: $\lg \alpha_0 = \frac{PK}{MK}$ $\lg \alpha_0 = \frac{y - y_0}{x - x_0}$ $y'(x_0) = \lg \alpha_0$ $y'(x_0) = \frac{y - y_0}{x - x_0}$ $y'(x_0) = \frac{y - y_0}{x - x_0}$ $y'(x_0) = \frac{y - y_0}{x - x_0}$

фику функции y=f(x) в точке $M(x_0,y_0)$

Рис. 4

9.3.2 Выводы

1. Геометрический смысл производной

Производная функции y = f(x) в точке x_0 равна тангенсу угла наклона касательной к положительному направлению оси Ox или угловому коэффициенту касательной.

$$y'(x_0) = \operatorname{tg} \alpha_0 = k$$

2. Механический (физический) смысл производной

Производная функции S=f(t) в точке t_0 равна мгновенной скорости в момент времени t_0 .

$$\upsilon(t_0) = S'(t)$$

9.3.3 Уравнение нормали

Определение 6. Нормалью к графику функции y = f(x) в точке x_0 называется прямая, перпендикулярная касательной к графику функции в этой точке.

$$l_1: y_1 = k_1 x + b_1$$

 $l_2: y_2 = k_2 x + b_2$
$$l_1 \perp l_2 \iff k_1 \cdot k_2 = -1$$

 $y-y_0=y'(x_0)\cdot (x-x_0)$ – уравнение касательной к графику функции y=f(x)

$$k_1 = y'(x_0) \implies k_2 = -\frac{1}{y'(x_0)} \implies y - y_0 = -\frac{1}{y'(x_0)}(x - x_0)$$

9.3.4 Замечание

Замечание. Касательная к графику функции существует не в любой точке (точка излома, точка заострения).

Определение 7. Кривая, имеющая касательную в любой точке рассматриваемого промежутка, называется **гладкой**.

Следствие 1.1. Если $y'(x_0) = \infty$ (Рис. 5а), то касательная к графику функции y = f(x) в точке x_0 параллельна Oy и имеет вид: $x = x_0$ (нормаль: $y = y_0$).

Следствие 1.2. Если $y'(x_0) = 0$ (Рис. 5b), то касательная к графику функции y = f(x) в точке x_0 параллельна Ox и имеет вид: $y = y_0$ (нормаль: $x = x_0$).

y = f(x) x_0

 $x = x_0$ касательная

 $y = y_0$ нормаль

(а) Следствие 1.1

 $y = y_0$ касательная

 $x = x_0$ нормаль

 y_0

(b) Следствие 1.2

 $x = x_0$

Рис. 5

9.3.5 Угол между двумя пересекающимися кривыми

Определение 8. Углом между двумя пересекающимися кривыми в точке с абсциссой x_0 называется угол между касательными, проведёнными в этой точке.

$$y=f_1(x)$$
 $y=f_2(x)$ $f_1\cap f_2=M_0(x_0,y_0)$ $y_1=k_1x+b_1$ – касательная к f_1 $y_2=k_2x+b_2$ – касательная к f_2 $arphi$ – угол между f_1 и f_2

Рис. 6

$$\begin{aligned}
& \text{tg } a_1 = k_1 = f_1'(x_0) \\
& \text{tg } a_2 = k_2 = f_2'(x_0)
\end{aligned} \qquad & \text{tg } \varphi = \text{tg}(\alpha_2 - \alpha_1) = \frac{\text{tg } \alpha_2 - \text{tg } \alpha_1}{1 + \text{tg } \alpha_2 \cdot \text{tg } \alpha_1} = \frac{k_2 - k_1}{1 + k_2 \cdot k_1} = \frac{y_2'(x_0) - y_1'(x_0)}{1 + y_2'(x_0) \cdot y_1'(x_0)}$$

$$\operatorname{tg} \varphi = \left| \frac{f_2'(x_0) - f_1'(x_0)}{1 + f_1'(x_0) \cdot f_2'(x_0)} \right|$$

Дифференцируемость функции в точке

Определение 1. Функция y = f(x) называется дифференцируемой в точке x_0 , если существует константа A такая, что приращение функции в этой точке представимо в виде:

$$\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Теорема 1 (Необходимое и достаточное условие дифференцируемости функции). Функция y=f(x) дифференцируема в точке x_0 тогда и только тогда, когда она имеет в этой точке конечную производную.

Доказательство (Необходимость).

Дано: y = f(x) дифференцируема в точке x_0

Доказать: $\exists y'(x_0)$ – конечное число

Т.к. y = f(x) дифференцируема в точке x_0 , то $\Delta y = A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$,

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{A \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x}{\Delta x} = \lim_{\Delta x \to 0} (A + \alpha(\Delta x)) = A + \lim_{\Delta x \to 0} \alpha(\Delta x) = A + A = A$$

 $\lim_{\Delta x \to 0} \frac{\Delta x}{\Delta y} = y'(x_0)$ – по определению производной в точке

$$y'(x_0) = A = const \; \Rightarrow \; \exists \; y'(x_0)$$
 – конечное число

Доказательство (Достаточность).

Дано: $\exists y'(x_0)$ – конечное число

Доказать: y = f(x) дифференцируема в точке x_0

Т.к. $\exists y'(x_0)$, то по определению производной: $y'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$

По теореме о связи функции, её предела и б.м.ф. $(\mathbf{c.17, T.3}) \Rightarrow \frac{\Delta y}{\Delta x} = y'(x_0) + \alpha(\Delta x),$

где
$$\alpha(\Delta x)$$
 – б.м.ф. при $\Delta x \to 0$
 $\Delta y = y'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где $\underbrace{y'(x_0)}_A$ – $const$ \Rightarrow

 $\Rightarrow y = f(x)$ дифференцируема в точке x_0

Следствие 1.1. Функция, выражающая дифференцируемость функции y = f(x) в точке x_0 примет вид:

$$\Delta y = y'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Теорема 2 (Связь дифференцируемости и непрерывности функции).

Если функция дифференцируема в точке x_0 , то она в этой точке непрерывна.

Доказательство.

Т.к. y = f(x) дифференцируема в точке x_0 , то $\Delta y = y'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$, где $y'(x_0) = const$, $\alpha(\Delta x) - 6$.м.ф. при $\Delta x \to 0$ Вычислим:

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(y'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \right) =$$

$$= y'(x_0) \cdot \lim_{\Delta x \to 0} \Delta x + \lim_{\Delta x \to 0} \alpha(\Delta x) \cdot \lim_{\Delta x \to 0} \Delta x = y'(x_0) \cdot 0 + 0 \cdot 0 = 0$$

По определению непрерывной функции y=f(x) непрерывна в точке x_0

Пример. $y = |x|, x_0 = 0$ является непрерывной, но не является дифференцируемой

9.5 Правила дифференцирования

Теорема 3 (Арифметические операции).

Пусть функции $u = u(x), \ v = v(x)$ дифференцируемы в точке x.

Тогда в этой точке дифференцируема их сумма/разность, произведение, частное (при условии $v \neq 0$) и справедливы равенства:

1.
$$(u \pm v)' = u' \pm v'$$

2.
$$(u \cdot v)' = u' \cdot v + v' \cdot u$$

3.
$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - v' \cdot u}{v^2}$$

Распишем приращения каждой из функций:

$$\begin{cases} \Delta u = u(x + \Delta x) - u(x) \\ \Delta v = v(x + \Delta x) - v(x) \end{cases} \Rightarrow \begin{cases} u(x + \Delta x) = \Delta u + u(x) \\ v(x + \Delta x) = \Delta v + v(x) \end{cases}$$

Доказательство (Производная произведения).

Пусть $y = u \cdot v$, тогда:

$$\Delta y = y(x + \Delta x) - y(x) = u(x + \Delta x) \cdot v(x + \Delta x) - u(x) \cdot v(x) =$$

$$= (\Delta u + u(x)) \cdot (\Delta v + v(x)) - u(x) \cdot v(x) =$$

$$= \Delta u \cdot \Delta v + \Delta u \cdot v(x) + \Delta v \cdot u(x) + u(x) \cdot v(x) - u(x) \cdot v(x) =$$

$$= \Delta u \cdot \Delta v + \Delta u \cdot v(x) + \Delta v \cdot u(x)$$

Вычислим:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta u \cdot \Delta v + \Delta u \cdot v(x) + \Delta v \cdot u(x)}{\Delta x} =$$

$$= \lim_{\Delta x \to 0} \left(\Delta u \frac{\Delta v}{\Delta x} + v(x) \frac{\Delta u}{\Delta x} + u(x) \frac{\Delta v}{\Delta x} \right) =$$

$$= \lim_{\Delta x \to 0} \Delta u \cdot \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + u(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} =$$

$$= 0 \cdot v'(x) + v(x) \cdot u'(x) + u(x) \cdot v'(x) = \boxed{v(x) \cdot u'(x) + u(x) \cdot v'(x)}$$

Т.к. функции u = u(x), v = v(x) дифференцируемы в точке x, то по теореме o cesзи дифференцируемости и непрерывности функции $(\mathbf{T.2}) \Rightarrow u = u(x)$ и v = v(x)

непрерывны в точке $x \Rightarrow$ по определению непрерывной функции:

Доказательство (Производная частного).

Пусть $y = \frac{u}{x}$, тогда:

$$\Delta y = y(x + \Delta x) - y(x) = \frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)} = \frac{u(x + \Delta x) \cdot v(x) - u(x) \cdot v(x + \Delta x)}{v(x + \Delta x) \cdot v(x)} =$$

$$= \begin{vmatrix} u(x + \Delta x) = u(x) + \Delta u \\ v(x + \Delta x) = v(x) + \Delta v \end{vmatrix} = \frac{(u(x) + \Delta u) \cdot v(x) - u(x) \cdot (v(x) + \Delta v)}{(\Delta v + v(x)) \cdot v(x)} =$$

$$= \underbrace{\frac{u(x) \cdot v(x) + \Delta u \cdot v(x) - u(x) \cdot v(x) - u(x) \cdot \Delta v}{v^2(x) + v(x) \cdot \Delta v}}_{v(x) + v(x) \cdot \Delta v} = \underbrace{\frac{\Delta u \cdot v(x) - \Delta v \cdot u(x)}{v^2(x) + v(x) \cdot \Delta v}}_{v(x) + v(x) \cdot \Delta v}$$

Вычислим предел:

$$y'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Delta u \cdot v(x) - \Delta v \cdot u(x)}{v^2(x) + v(x) \cdot \Delta v}}{\Delta x} = \lim_{\Delta x \to 0} \frac{v(x) \frac{\Delta u}{\Delta x} - u(x) \frac{\Delta v}{\Delta x}}{v^2(x) + v(x) \cdot \Delta v} =$$

$$= \frac{v(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} - u(x) \cdot \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x}}{v^2(x) - v(x) \lim_{\Delta x \to 0} \Delta v} = \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{v^2(x) + v(x) \cdot 0} =$$

$$= \frac{v(x) \cdot u'(x) - u(x) \cdot v'(x)}{v^2(x)}$$

Использовали: $\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = u'(x)$ $\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = v'(x)$ Так как v(x) – дифференцируема, то по теореме o связи дифференцируемости u

 $nenpepushocmu\ \phi y + \kappa u u \ (\mathbf{T.2})\ v(x)$ – непрерывна \Rightarrow по определению непрерывности

$$\lim_{\Delta x \to 0} \Delta v = 0$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - v' \cdot u}{v^2}$$

Теорема 4.

Производная от постоянной равна нулю

$$(C)' = 0, \quad C = const$$

Следствие 4.1. Константу можно выносить за знак производной.

$$(C \cdot f)' = C \cdot f', \quad C = const$$

Следствие 4.2. Производная функции $y = \frac{1}{\upsilon(x)}$ имеет вид:

$$\left[\left(\frac{1}{\upsilon(x)} \right)' = -\frac{1}{\upsilon^2} \cdot \upsilon'(x) \right]$$

Определение 2. Функция y = f(x) называется дифференцируемой на интервале (a;b), если она дифференцируема в каждой точке этого интервала.

9.6 Производная сложной функции

Теорема 5 (Производная сложной функции).

Пусть функция u = g(x) дифференцируема в точке x = a, а функция y = f(u) дифференцируема в соответствующей точке b = g(a).

Тогда сложная функция F(x) = f(g(x)) дифференцируема в точке x = a и

$$F'(x)\Big|_{x=a} = (f(g(x)))'\Big|_{x=a} = f'_u(b) \cdot g'_x(a)$$

Доказательство.

Так как функция u = g(x) дифференцируема в точке x = a, то по определению дифференцируемости, то:

$$\Delta u = g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x$$
(1)

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Так как функция y = f(u) дифференцируема в точке b, то по определению дифференцируемости, то:

$$\Delta y = f'(b) \cdot \Delta u + \beta(\Delta u) \cdot \Delta u$$
(2)

где $\beta(\Delta u)$ – б.м.ф. при $\Delta u \to 0$

Подставим (1) в (2):

$$\Delta y = f'(b) \cdot \left(g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \right) + \beta(\Delta u) \cdot \left(g'(a) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \right) =$$

$$= f'(b) \cdot g'(a) \cdot \Delta x + \Delta x \cdot \left(f'(b) \cdot \alpha(\Delta x) + g'(a) \cdot \beta(\Delta u) + \beta(\Delta u) \cdot \alpha(\Delta x) \right)' = \Delta F$$

Обозначим:

$$\gamma(\Delta x) = f'(b) \cdot \alpha(\Delta x) + g'(a) \cdot \beta(\Delta u) + \beta(\Delta u) \cdot \alpha(\Delta x)$$

В итоге получаем:

$$\Delta F = f'(b) \cdot g'(a) \cdot \Delta x + \gamma(\Delta x) \cdot \Delta x$$

 $f'(b) \cdot \alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$ (как произведение постоянной на б.м.ф)

Так как u=g(x) дифференцируема в точке x=a, то по теореме o ceязи $duфференци-руемости и непрерывности функции <math>(\mathbf{T.2}) \Rightarrow u=g(x)$ непрерывна в точке $x=a \Rightarrow 0$ по определению непрерывности $\lim_{\Delta x \to 0} \Delta u = 0$ или при $\Delta x \to 0$, $\Delta u \to 0$

$$g'(a) \cdot \beta(\Delta u) - \text{б.м.ф.}$$
 при $\Delta x \to 0$ (как произведение постоянной на б.м.ф.) $\beta(\Delta u) \cdot \alpha(\Delta x) - \text{б.м.ф.}$ при $\Delta x \to 0$ (как произведение двух б.м.ф.) $\Rightarrow \gamma(\Delta x) - \text{б.м.ф.}$ при $\Delta x \to 0$ (как сумма конечного числа б.м.ф.)

Вычислим предел:

$$\lim_{\Delta x \to 0} \frac{\Delta F}{\Delta x} = \lim_{\Delta x \to 0} \left(f'(b) \cdot g'(a) + \gamma(\Delta x) \right) = f'(b) \cdot g'(a) + 0 = f'(b) \cdot g'(a)$$

9.7 Производная обратной функции

Теорема 6 (Производная обратной функции).

Пусть функция y = f(x) в точке x = a имеет конечную и отличную от нуля производную f'(a) и пусть для неё существует однозначная обратная функция x = g(y), непрерывная в соответствующей точке b = f(a). Тогда существует производная обратной функции и она равна

$$g'(b) = \frac{1}{f'(a)}$$

Доказательство.

Так как функция x=g(y) однозначно определена \Rightarrow при $\Delta y\neq 0,\ \Delta x\neq 0$ Так как функция x=g(y) непрерывна в точке $b\Rightarrow\lim_{\Delta y\to 0}\Delta x=0$ или $\Delta x\to 0$ при $\Delta y\to 0$

$$g'(b) = \lim_{\Delta y \to 0} \frac{\Delta x}{\Delta y} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta y \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}} = \frac{1}{f'(a)}$$

$$y = \arcsin x$$
 $x = \sin y$ $y' = \frac{1}{x'}$ $y' = (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$ $x' = \cos y$ $\frac{1}{\sqrt{1 - x^2}} \stackrel{?}{=} \frac{1}{\cos y}$ $\cos^2 y + \sin^2 y = 1 \Rightarrow \cos^2 y = 1 - \sin^2 y \Rightarrow \cos y = \bigoplus \sqrt{1 - \sin^2 y}$ $y = \arcsin x$ $D_f = [-1; 1]$ $E_f = \left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$ $y \in \left[-\frac{\pi}{2}; \frac{\pi}{2} \right] \Rightarrow \cos y \ge 0$ $\cos y = \sqrt{1 - \sin^2 y}, \ \sin y = x \Rightarrow \cos y = \sqrt{1 - x^2}$ $\frac{1}{\sqrt{1 - x^2}} = \frac{1}{\sqrt{1 - x^2}}$

9.8 Производная высших порядков

Пусть y = f(x) дифференцируема на (a; b), тогда $\forall x \ (a, b)$ существует производная y' = f'(x).

Функция y'' = (y')' = f''(x) называется производной второго порядка или второй производной.

Определение 1. Производной n-го порядка или n-ой производной функции y=f(x) называется производная от (n-1)-ой производной функции y=f(x)

$$y^{(n)} = (y^{(n-1)})'$$

Пример.

$$y = e^{-kx}$$

$$y' = -ke^{-kx}$$

$$y'' = (-k)^{2} \cdot e^{-kx}$$

$$y''' = (-k)^{3} \cdot e^{-kx}$$

$$y^{(IV)} = (-k)^{4} \cdot e^{-kx}$$

$$\dots \dots$$

$$y^{(n)} = (-1)^{n} \cdot k^{n} \cdot e^{-kx}, \quad n = 1, 2, 3, \dots$$

Определение 2.

- C[a,b] количество непрерывных функций на [a;b]
- $C^1[a;b]$ множество функций, непрерывных вместе со своей производной на [a;b] или непрерывно-дифференцируемых.

Определение 3. Производная порядка выше первого называется **производной высшего порядка**.

Дифференциал функции 10

10.1 Понятие дифференциала

Пусть функция y = f(x) определена в окрестности точки x_0 и дифференцируема в точке

Тогда по определению дифференцируемой функции:

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x \tag{1}$$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

Если $f'(x_0) \neq 0$, то $f'(x_0) \cdot \Delta x$ – имеет один порядок малости, $\alpha(\Delta x) \cdot \Delta x$ – б.м.ф. более высокого порядка малости, чем $f(x_0) \cdot \Delta x$.

Тогда по теореме о сумме б.м. ϕ разного порядка малости (C.30, T.3) \Rightarrow $\Rightarrow \Delta y \sim f'(x_0) \cdot \Delta x$ при $\Delta x \to 0$.

По определению главной части $\Rightarrow f'(x_0) \cdot \Delta x$ – главная часть равенства (1) приращения функции Δy .

Определение 1. Дифференциалом функции y = f(x) в точке x_0 называется главная часть приращения функции Δy или первое слагаемое в равенстве (1).

$$dy = f'(x_0) \cdot \Delta x \tag{2}$$

Примечание.

1. Если $f'(x_0) = 0$, то dy = 0, но $f'(x_0) \cdot \Delta x$ уже не является главной частью приращения функции Δy .

Пусть y = x, тогда по определению дифференциала $\Rightarrow dy = (x)' \cdot \Delta x = 1 \cdot \Delta x$. С другой стороны: $y = x \implies |dx = \Delta x|$

Вывод: дифференциал независимой переменной равен её приращению.

2. Подставим $\Delta x = dx$ в (2):

$$dy = f'(x_0)dx$$
 (3)

Если y = f(x) дифференцируема на интервале (a; b), тогда $\forall x \in (a; b)$:

$$dy = f'(x)dx \tag{4}$$

$$dy = f'(x)dx$$

$$f'(x) = \frac{dy}{dx}$$
(5)

Вывод: производная функции представима в виде отношения дифференциалов функции и независимой переменной.

10.2Геометрический смысл дифференциала

Дифференциал функции y = f(x) в точке x_0 равен приращению ординаты касательной к графику функции в этой точке.

 $M_0(x_0, y_0)$

 Δx – приращение аргумента

M(x,y)

 $MK = \Delta y$

 $M_0K = \Delta x$

PK = dy

 $\Delta y = f'(x_0) \cdot \Delta x + \alpha(\Delta x) \cdot \Delta x,$

где $\alpha(\Delta x)$ – б.м.ф. при $\Delta x \to 0$

 $dy = f'(x_0) \cdot \Delta x$

 $y - y_0 = f'(x_0)(x - x_0)$ – уравнение касательной

 $f'(x_0)(x - x_0) = f'(x_0) \cdot \Delta x = f'(x_0)dx = dy$ $dy = \Delta y$

Рис. 7: Геометрический смысл дифференциала

10.3Инвариантность формы первого дифференциала

Формула первого дифференциала:

$$dy = f'(x)dx$$
 (3)

х – неизвестная переменная

Докажем, что формула (3) верна и в том случае, когда x – функция другой переменной.

Теорема 1 (Инвариантность формы первого дифференциала).

Форма записи первого дифференциала не зависит от того, является ли x независимой переменной или функцией другого аргумента.

Доказательство.

Пусть y=f(x), тогда можно задать сложную функцию $F(t)=y=f(\varphi(t))$

По определению дифференциала функции:

$$dy = F'(t)dt (6)$$

По теореме о производной сложной функции (C.50, T.5):

$$F'(t) = f'(x) \cdot \varphi'(t) \tag{7}$$

Подставим (7) в (6):

$$dy = f'(x) \cdot \varphi(t)dt \tag{8}$$

По определению дифференцируемой функции:

$$dx = x\varphi'(t)dt \tag{9}$$

Подставим (9) в (8):

$$dy = f'(x)dx$$

10.4 Дифференциал высшего порядка

Пусть функция y=f(x) дифференцируема на (a;b), тогда $\forall x\in (a;b)\Rightarrow\ dy=f'(x)dx$ Дифференциал – это функция:

$$dy = y(x)$$

Определение 2. Вторым дифференциалом или **дифференциалом второго по**рядка называется дифференциал от первого дифференциала.

$$d^2y = d(dy)$$

Определение 3. n-ым дифференциалом или дифференциалом n-го порядка называется дифференциал от дифференциала (n-1)-го порядка.

$$d^n y = d(d^{n-1}y), \quad n = 2, 3, \dots$$

Следствие 1.1. Свойством инвариантности обладает только первый дифференциал.

11 Основные теоремы дифференциального исчисления

Теорема 1 (Теорема Ферма (о нулях производной)).

Пусть функция y = f(x) определена на промежутке X и во внутренней точке c этого промежутка достигает наибольшего или наименьшего значения. Если в этой точке существует производная f'(c), то f'(c) = 0.

Доказательство.

Пусть функция y = f(x) в точке x = c принимает наибольшее значение на промежутке $X \Rightarrow \forall x \in X \Rightarrow f(x) \leq f(c)$

Дадим приращение Δx в точке x = c, тогда $f(c + \Delta x) \leq f(c)$.

Пусть
$$\exists f'(c) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{y(c + \Delta x) - y(c)}{\Delta x}$$

Рассмотрим два случая:

1. $\Delta x > 0$, $\Delta x \to 0+$, $x \to c+$

$$f'_{+}(c) = \lim_{\Delta x \to 0+} \frac{y(c + \Delta x) - y(c)}{\Delta x} = \left(\frac{-}{+}\right) \le 0$$

2. $\Delta x < 0$, $\Delta x \to 0-$, $x \to c-$

$$f'_{-}(c) = \lim_{\Delta x \to 0-} \frac{y(c + \Delta x) - y(c)}{\Delta x} = \left(\frac{-}{-}\right) \ge 0$$

По теореме о существовании производной функции в точке (С.40, Т.1):

$$f'(c) = f'_+(c) = f'_-(c) = 0$$

Геометрический смысл теоремы Ферма

Касательная к графику функции y = f(x) в точке (c, f(c)) параллельна оси абсцисс. f(c) – наибольшее значение функции

Теорема 2 (Теорема Ролля).

Пусть y = f(x)

- 1. непрерывна на [a; b]
- 2. дифференцируема на (a; b)

3.
$$f(a) = f(b)$$

Тогда
$$\exists \ c \in (a;b) \colon f'(c) = 0$$

Доказательство.

Так как функция y = f(x) непрерывна на [a; b], то по теореме Beйepumpacca (**C.38**, **T.2**) она достигает на этом отрезке своего наибольшего и наименьшего значений. Возможны два случая:

1. Наибольшее и наименьшее значения достигаются на границе, то есть в точке a и в точке b

$$M=m$$
, где $\dfrac{m$ – наименьшее M – наибольшее $\Rightarrow y=f(x)=const$ на $[a;b]$ \Rightarrow $\forall x\in (a;b)\colon f'(x)=0$

2. Наибольшее или наименьшее значение достигается во внутренней точке (a;b). Тогда для функции y=f(x) справедлива теорема Φ ерма $(\mathbf{T.1}) \Rightarrow \exists c \in (a;b) \colon f'(c)=0$

Следствие 2.1. Если f(a) = f(b) = 0, то между двумя нулями функции существует хотя бы один нуль производной.

Теорема 3 (Теорема Лагранжа).

Пусть функция y = f(x)

- 1. непрерывна на [a; b]
- 2. дифференцируема на (a;b)

Тогда $\exists c \in (a;b): |f(b) - f(a)| = f'(c) \cdot (b-a)$

Доказательство.

Рассмотрим вспомогательную функцию: $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (x - a)$

F(x) непрерывна на [a;b] как сумма непрерывных функций.

Существует конечная производная функции F(x).

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} \Rightarrow$$
 по необходимому и достаточному (С.46, Т.1) \Rightarrow условию дифференцируемости

 $\Rightarrow F(x)$ – дифференцируема на (a;b)

Покажем, что F(a) = F(b):

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (a - a) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{b - a} \cdot (b - a) = f(b) - f(a) - f(b) + f(a) = 0$$

 \Rightarrow F(x) удовлетворяет условиям теоремы Ponns (T.2)

По теореме Ролля $\Rightarrow \exists c \in (a;b)$ F'(c) = 0

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$$

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

$$f(b) - f(a) = f'(c) \cdot (b - a)$$

Геометрический смысл теоремы Лагранжа

Теорема 4 (Теорема Коши).

Пусть функции f(x) и $\varphi(x)$

- 1. непрерывны на [a; b]
- 2. дифференцируемы на (a;b)
- 3. $\forall x \in (a;b) : \varphi'(x) \neq 0$

Тогда $\exists c \in (a;b)$:

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

Доказательство.

Рассмотрим вспомогательную функцию:

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \cdot \left(\varphi(x) - \varphi(a)\right)$$

- 1. F(x) непрерывна на [a;b] как линейная комбинация непрерывных функций
- 2. F(x) дифференцируема на (a;b) как линейная комбинация дифференцируемых функций
- 3. F(a) = F(b)

$$F(a) = f(a) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \cdot (\underbrace{\varphi(a) - \varphi(a)}_{0}) = 0$$

$$F(b) = f(b) - f(a) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \cdot \left(\varphi(b) - \varphi(a)\right) = f(b) - f(a) - f(b) + f(a) = 0$$

Функция F(x) удовлетворяет условию теоремы *Ролля* (**Т.2**).

По теореме $Ponns \Rightarrow \exists c \in (a;b) \colon F'(c) = 0$

Вычислим
$$F'(x) = f'(x) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \cdot \varphi'(x)$$

$$F'(c) = f'(c) - \frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \cdot \varphi'(c) = 0$$

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} \cdot \varphi'(c) = f'(c)$$

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

$$\frac{f(b) - f(a)}{\varphi(b) - \varphi(a)} = \frac{f'(c)}{\varphi'(c)}$$

12 Раскрытие неопределённостей

12.1 Правило Лопиталя-Бернулли

Теорема 1.

Пусть f(x) и $\varphi(x)$:

1. определены и дифференцируемы в $\mathring{S}(x_0)$

2.
$$\lim_{x \to x_0} f(x) = 0$$
; $\lim_{x \to x_0} \varphi(x) = 0$

3.
$$\forall x \in \mathring{S}(x_0) \colon \varphi'(x) \neq 0$$

4.
$$\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$
, A — конечное или ∞

Тогда
$$\exists \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$

Доказательство.

Доопределим функции f(x) и $\varphi(x)$ в точке x_0 нулём.

Пусть
$$\begin{cases} f(x_0) = 0\\ \varphi(x_0) = 0 \end{cases}$$

По условию 2)
$$\Rightarrow \begin{cases} \lim\limits_{x \to x_0} f(x) = 0 = f(x_0) \\ \lim\limits_{x \to x_0} \varphi(x) = 0 = \varphi(x) \end{cases}$$
 по определению непрерывной \Rightarrow функции в точке, $f(x)$ и $\varphi(x)$ непрерывны в точке x_0 .

По условию 1) функции f(x) и $\varphi(x)$ дифференцируемы в $\mathring{S}(x_0) \Rightarrow$ по теореме о связи дифференцируемости и непрерывности (C.47, T.2) $\Rightarrow f(x)$ и $\varphi(x)$ непрерывны в $\mathring{S}(x_0)$.

Таким образом, f(x) и $\varphi(x)$ непрерывны в $S(x_0)$.

функции f(x) или $\varphi(x)$ удовлетворяют условию теоремы Komu (**T.4**) на $[x_0; x]$. По теореме $Komu \exists c \in (x_0; x)$:

$$\frac{f(x) - f(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{f'(c)}{\varphi'(c)} \tag{*}$$

Так как
$$f(x_0) = 0$$
, $f(x_0) = 0 \Rightarrow \left[\frac{f(x)}{\varphi(x)} = \frac{f'(c)}{\varphi'(c)} \right]$ (*)

Так как
$$\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$
:

Правая часть (*):
$$\lim_{c \to x_0} \frac{f'(c)}{\varphi'(c)} \stackrel{4)}{=} A$$

Левая часть (*):
$$\lim_{x\to x_0} \frac{f(x)}{\varphi(x)} = \lim_{c\to x_0} \frac{f'(c)}{\varphi'(c)} = A$$

Получаем, что
$$\lim_{x\to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x\to x_0} \frac{f'(x)}{\varphi'(x)} = A$$

Теорема 2.

Пусть функции f(x) и $\varphi(x)$:

- 1. определены и дифференцируемы в $S(x_0)$
- 2. $\lim_{x \to x_0} f(x) = \infty$, $\lim_{x \to x_0} \varphi(x) = \infty$
- 3. $\forall x \in \mathring{S}(x_0) \colon \varphi'(x) \neq 0$
- 4. $\exists \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$

Тогда
$$\exists \lim_{x \to x_0} \frac{f(x)}{\varphi(x)} = \lim_{x \to x_0} \frac{f'(x)}{\varphi'(x)} = A$$

12.2Сравнение показательной, степенной и логарифмической функции на бесконечности

$$f(x) = x^n, \ n \in \mathbb{N}$$
 Пусть $g(x) = a^x, \ a > 1$ $x \to +\infty$

$$h(x) = \ln x$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{x \to +\infty} \frac{x^n}{a^x} = \left(\frac{\infty}{\infty}\right) \xrightarrow{\underline{\mathcal{I}} - \mathbf{B}} \lim_{x \to +\infty} \frac{n \cdot x^{n-1}}{a^x \cdot \ln a} = \left(\frac{\infty}{\infty}\right) \xrightarrow{\underline{\mathcal{I}} - \mathbf{B}}$$

$$\frac{\exists \overline{A-B}}{\exists \overline{B-B}} \dots = \frac{\exists \overline{A-B}}{\exists \overline{B-B}} \lim_{x \to +\infty} \frac{n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1}{a^x (\ln a)^n} = \frac{n!}{\ln^n a} \cdot \lim_{x \to +\infty} \frac{1}{a^x} = \frac{n!}{\ln^n a} \cdot 0 = 0$$

 a^x растёт быстрее, чем x^n при $x \to +\infty$ или $x^n = o(a^x)$ при $x \to +\infty$

$$\lim_{x\to +\infty}\frac{h(x)}{f(x)}=\lim_{x\to +\infty}\frac{\ln x}{x^n}=\left(\frac{\infty}{\infty}\right)=\lim_{x\to +\infty}\frac{\frac{1}{x}}{n\cdot x^{n-1}}=\frac{1}{n}\cdot\lim_{x\to +\infty}\frac{1}{x^n}=\frac{1}{n}\cdot 0=0$$

 x^n растёт быстрее, чем $\ln x$ при $x \to +\infty$ или $\ln x = o(x^n)$ при $x \to +\infty$

Вывод: 1.
$$g(x) = a^x$$
 , $a > 1$

Вывод: 1.
$$g(x)=a^x$$
 , $a>1$? $f(x)=x^n$, $n\in\mathbb{N}$? $x\to +\infty$ 3. $h(x)=\ln x$

$$3. \quad h(x) = \ln x$$

Формула Тейлора 13

Формула Тейлора. Многочлены Тейлора 13.1

Теорема 1.

Пусть функция y = f(x) n раз дифференцируема в точке x_0 и определена в некоторой окрестности этой точки. Тогда $\forall x \in S(x_0)$ имеет место формула Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \frac{f'''(x_0)}{3!} \cdot (x - x_0)^3 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + R_n(x)$$
(1)

Кратко: $f(x) = P_n(x) + R_n(x)$, где

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \frac{f'''(x_0)}{3!} \cdot (x - x_0)^3 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n \qquad \qquad - \text{многочлен Тейлора} \qquad x \to x_0$$

 $R_n(x)$ — остаточный член формулы Тейлора

Доказательство.

Покажем, что такой многочлен существует. Будем искать многочлен Тейлора в виде:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + a_4(x - x_0)^4 + \dots + a_n(x - x_0)^n$$
(2)

 $a_1, a_2, \dots, a_n - const$ Пусть выполнено условие: $\begin{cases} P_n(x_0) = f(x_0) \\ P'_n(x_0) = f'(x_0) \\ P''_n(x_0) = f''(x_0) \\ \dots \\ P^{(n)}(x_0) = f^{(n)}(x_0) \end{cases}$ (3)

 $f'(x_0), f''(x_0), \ldots, f^{(n)}(x_0)$ – существуют, так как y=f(x) n раз дифференцируема в

Вычислим $P'_n(x), \dots, P^{(n)}_n(x)$:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + a_3(x - x_0)^3 + a_4(x - x_0)^4 + \dots + a_n(x - x_0)^n$$

$$P'_n(x) = a_1 \cdot 1 + a_2 \cdot 2(x - x_0) + a_3 \cdot 3(x - x_0)^2 + a_4 \cdot 4(x - x_0)^3 + \dots + a_n \cdot n(x - x_0)^{n-1}$$

$$P''_n(x) = a_2 \cdot 2 \cdot 1 + a_3 \cdot 3 \cdot 2(x - x_0) + a_4 \cdot 4 \cdot 3(x - x_0)^2 + \dots + a_n \cdot n \cdot (n-1)(x - x_0)^{n-2}$$

$$P''_n(x) = a_3 \cdot 3 \cdot 2 \cdot 1 + a_4 \cdot 4 \cdot 3 \cdot 2(x - x_0) + \dots + a_n \cdot n \cdot (n-1) \cdot (n-2)(x - x_0)^{n-3}$$

$$\dots$$

$$P_n^{(n)}(x) = a_n \cdot n(n-1) \cdot (n-2) \cdot \dots \cdot 1 = a_n \cdot n!$$

$$P_n^{(n)}(x) = a_n \cdot n(n-1) \cdot (n-2) \cdot \dots \cdot 1 = a_n \cdot n!$$

$$\begin{aligned}
x &= x_0 \\
P_n(x_0) &= a_0 \\
P'_n(x_0) &= 1 \cdot a_1 \\
P''_n(x_0) &= 1 \cdot 2 \cdot a_2 \\
P'''_n(x_0) &= 1 \cdot 2 \cdot 3 \cdot a_3 \\
\vdots \\
P_n^{(n)}(x_0) &= n! \cdot a_n
\end{aligned}
\stackrel{(3)}{\Longrightarrow} \begin{cases}
P_n(x_0) &= a_0 = f(x_0) \\
P'_n(x_0) &= 1 \cdot a_1 = f'(x_0) \\
P''_n(x_0) &= 1 \cdot 2 \cdot a_2 = f''(x_0) \\
P'''_n(x_0) &= 1 \cdot 2 \cdot 3 \cdot a_3 = f'''(x_0) \\
\vdots \\
P_n^{(n)}(x_0) &= n! \cdot a_n = f^{(n)}(x_0)
\end{aligned}$$

Выразим
$$a_0, a_1, \dots, a_n$$
:
$$\begin{cases} a_0 = f(x_0) \\ a_1 = \frac{f'(x_0)}{1!} \\ a_2 = \frac{f''(x_0)}{2!} \\ a_3 = \frac{f'''(x_0)}{3!} \\ \dots \\ a_n = \frac{f^{(n)}(x_0)}{n!} \end{cases}$$

Подставим a_0, a_1, \ldots, a_n в (2):

$$P_n(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 +$$

$$+ \frac{f'''(x_0)}{3!} \cdot (x - x_0)^3 + \ldots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$$
— многочлен Тейлора

Теорема 2.

Пусть функция y = f(x) n раз дифференцируема в точке x_0 , тогда

$$x \to x_0$$
 $R_n(x) = o((x - x_0)^n)$ — форма Пеано.

Доказательство.

Формула Тейлора:

$$f(x) = P_n(x) + R_n(x)$$

$$R_n(x) = f(x) - P_n(x)$$

В силу условия (3):

Вычислим:

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \left(\frac{0}{0}\right) \xrightarrow{\underline{\text{II-B}}} \lim_{x \to x_0} \frac{R'_n(x)}{n \cdot (x - x_0)^{n-1}} = \left(\frac{0}{0}\right) \xrightarrow{\underline{\text{II-B}}} \dots =$$

$$= \lim_{x \to x_0} \frac{R_n^{(n)}(x)}{n \cdot (n-1) \cdot \dots \cdot 1} = \frac{1}{n!} \lim_{x \to x_0} R_n^{(n)}(x) = \frac{1}{n!} \cdot R_n^{(n)}(x_0) = \frac{1}{n!} \cdot 0 = 0$$

Вывод: $R_n(x) = o((x - x_0)^n)$ при $x \to x_0$

Теорема 3.

Пусть функция y = f(x) (n+1) раз дифференцируема в $S(x_0)$, $\forall x \in S(x_0) \colon f^{(n+1)}(x) \neq 0$. Тогда:

$$R_n(x) = rac{f^{(n+1)}(c)}{(n+1)'} \cdot (x-x_0)^{n+1},$$
 где $c \in S(x_0)$

Доказательство.

$$f(x) = P_n(x) + R_n(x)$$

Будем искать:

$$R_n(x) = \frac{\varphi(x)}{(n+1)!} \cdot (x-x_0)^{n+1}$$
, где $\varphi(x)$ – неизвестная функция

Вспомогательная функция:

$$F(t) = P_n(t) + R_n(t) - f(x) =$$

$$= f(t) + \frac{f'(t)}{1!} \cdot (x - t) + \frac{f''(t)}{2!} \cdot (x - t)^2 + \ldots + \frac{f^{(n)}(t)}{n!} \cdot (x - t)^n +$$

$$+ \frac{\varphi(x)}{(n + 1)!} \cdot (x - t)^{n+1} - f(x), \quad t - \text{переменная}$$

$$\begin{array}{c|c}
S(x_0) & t \\
\hline
x_0 & x
\end{array}$$

Функция F(t) удовлетворяет условию теоремы Pолля (C.57, T.2) на $[x_0; x] \mid [x; x_0]$

- 1. F(t) непрерывна на $[x_0; x] \mid [x; x_0]$. По условию функция f(x) (n+1) раз дифференцируема в $S(x_0) \Rightarrow$ по теореме о связи дифференцируемости и непрерывности (C.47, T.2): $f(t), f'(t), \ldots, f^{(n)}(t)$ непрерывны на $[x_0; x] \mid [x; x_0]$ F(t) непрерывна на $[x_0; x] \mid [x; x_0]$ как сумма непрерывных функций
- 2. F(t) дифференцируема на $(x_0; x) \mid (x; x_0)$ По условию $y = f(x) \ (n+1)$ раз дифференцируема в $S(x_0) \Rightarrow f(t), f'(t), \ldots, f^{(n)}(t)$ – дифференцируемы на $(x_0; x) \mid (x; x_0)$. F(t) – дифференцируема как сумма дифференцируемых функций.

3.
$$F(x) = f(x) - f(x) = 0$$

$$F(x_0) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + \frac{\varphi(x)}{(n+1)!} \cdot (x - x_0)^{n+1} - f(x) = f(x) - f(x) = 0$$

По теореме *Ролля*: $\exists c \in (x; x_0) \mid c \in (x_0; x) \colon F'(c) = 0$ Вычислим F'(t):

$$F'(t) = f'(t) + \left(\frac{f''(t)}{1!} \cdot (x - t) + \frac{f'(t)}{1!} \cdot (-1)\right) + \left(\frac{f'''(t)}{2!} \cdot (x - t)^2 + \frac{f''(t)}{2!} \cdot 2 \cdot (x - t) \cdot (-1)\right) + \dots + \left(\frac{f^{(n+1)}(t)}{n!} \cdot (x - t)^n + \frac{f^{(n)}(t)}{n!} \cdot n \cdot (x - t)^{n-1} \cdot (-1)\right) + \frac{\varphi(x)}{(n+1)!} \cdot (n+1) \cdot (x - t)^n \cdot (-1)$$

$$F'(c) = \frac{f^{(n+1)}(c)}{n!} \cdot (x - c)^n - \frac{\varphi(x)}{n!} \cdot (x - c)^n = 0$$

$$\frac{f^{(n+1)}(c)}{n!} \cdot (x - c)^n = \frac{\varphi(x)}{n!} \cdot (x - c)^n$$

$$\varphi(x) = f^{(n+1)}(c), \quad c \in (x_0; x) \mid c \in (x; x_0)$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \cdot (x - x_0)^{n+1}, \quad \forall \ c \in S(x_0)$$

Иногда $c = x_0 + \Theta(x - x_0)$ Θ – малый параметр $\Theta \in (0; 1)$

13.1.1 Формула Тейлора с остаточным членом в форме Пеано

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + o\left((x - x_0)^n\right)$$

13.1.2 Формула Тейлора с остаточным членом в форме Лагранжа

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + \frac{f^{(n+1)}(x_0 + \Theta(x - x_0))}{(n+1)!} \cdot (x - x_0)^{n+1}$$

13.2 Формула Маклорена

Формула Маклорена — это частный случай формулы Тейлора при $x_0=0$

$$f(x) = f(0) + \frac{f'(0)}{1!} \cdot x + \ldots + \frac{f^{(n)}(0)}{n!} \cdot x^n + R_n(x)$$

$$R_n(x)=o\left(x^n
ight)$$
 — форма Пеано
$$R_n(x)=rac{f^{(n+1)}(\Theta x)}{(n+1)!}\cdot x^{n+1}$$
— форма Лагранжа
$$c=x_0+\Theta(x-x_0)\Big|_{x_0=0}=0+\Theta(x-0)=\Theta x \qquad \Theta\in (0;1) \qquad \Theta$$
— малый параметр

13.3 Разложения основных элементарных функций по формулам Маклорена

13.3.1
$$y = e^x$$

$$y = f(x) = e^x$$
, $x_0 = 0$, $f(0) = e^0 = 1$

$$\begin{cases} f'(x) = e^x \\ f''(x) = e^x \\ f'''(x) = e^x \\ \vdots \\ f^{(n)}(x) = e^x \end{cases} \longrightarrow \begin{cases} f'(0) = 1 \\ f''(0) = 1 \\ \vdots \\ f'''(0) = 1 \\ \vdots \\ f^{(n)}(0) = 1 \end{cases}$$

$$e^x = 1 + \frac{1}{1!} \cdot x + \frac{1}{2!} \cdot x^2 + \frac{1}{3!} \cdot x^3 + \ldots + \frac{1}{n!} \cdot x^n + R_n(x)$$
 $R_n(x) = o(x^n)$ – форма Пеано $R_n(x) = \frac{f^{(n+1)}(\Theta x)}{(n+1)!} \cdot x^{n+1} = \frac{e^{\Theta x}}{(n+1)!} \cdot x^{n+1}$ – формула Лагранжа

Следствия:

1.
$$e^{-x} = 1 - \frac{1}{1!} \cdot x + \frac{1}{2!} \cdot x^2 - \frac{1}{3!} \cdot x^3 + \dots + \frac{(-1)^n}{n!} \cdot x^n + R_n(x)$$
 $n = 0, 1, 2, \dots$

2.
$$\operatorname{sh} x = \frac{1}{2} \left(e^x - e^{-x} \right) = \frac{1}{1!} \cdot x + \frac{1}{3!} \cdot x^3 + \frac{1}{5!} \cdot x^5 + \dots + \frac{1}{(2n+1)!} \cdot x^{2n+1} + R_{2n+2} \quad n = 0, 1, 2, \dots$$

3.
$$\operatorname{ch} x = \frac{1}{2} \left(e^x + e^{-x} \right) = 1 + \frac{1}{2!} \cdot x^2 + \frac{1}{4!} \cdot x^4 + \dots + \frac{1}{(2n)!} \cdot x^{2n} + R_{2n+1} \qquad n = 0, 1, 2, \dots$$

4.
$$a^x = 1 + \frac{\ln a}{1!} \cdot x + \frac{\ln^2 a}{2!} \cdot x^2 + \ldots + \frac{\ln^n a}{n!} \cdot x^n + R_n(x)$$
 $n = 0, 1, 2, \ldots$

5.
$$\sinh^2 x = \left(\frac{e^x - e^{-x}}{2}\right)^2 = \frac{1}{4} \cdot \left(e^{2x} - 2 + e^{-2x}\right) = \frac{1}{2} \cdot \frac{e^{2x} + e^{-2x}}{2} - \frac{1}{2} = \frac{1}{2} \cdot (\cosh 2x - 1)$$

6.
$$\operatorname{ch}^2 x = \left(\frac{e^x + e^{-x}}{2}\right)^2 = \frac{1}{4} \cdot \left(e^{2x} + 2 + e^{-2x}\right) = \frac{1}{2} \cdot \frac{e^{2x} + e^{-2x}}{2} + \frac{1}{2} = \frac{1}{2} \cdot (\operatorname{ch} 2x + 1)$$

13.3.2
$$y = \sin x$$

$$y = f(x) = \sin x, \ x_0 = 0$$

$$f(0) = \sin 0 = 0$$

$$\begin{cases}
f'(x) = \sin 0 = 0 \\
f''(x) = \cos x = \sin \left(x + 1 \cdot \frac{\pi}{2}\right) \\
f'''(x) = -\sin x = \sin \left(x + 2 \cdot \frac{\pi}{2}\right) \\
f'''(x) = -\cos x = \sin \left(x + 3 \cdot \frac{\pi}{2}\right)
\end{cases}$$

$$\begin{cases}
f'(0) = 1 \\
f''(0) = 0 \\
f'''(0) = -1
\end{cases}$$

$$f^{(IV)}(x) = \sin x = \sin \left(x + 4 \cdot \frac{\pi}{2}\right)$$

$$f^{(IV)}(x) = \cos x = \sin \left(x + 5 \cdot \frac{\pi}{2}\right)$$

$$\vdots$$

$$f^{(IV)}(0) = 0 \\
f^{(IV)}(0) = 0$$

$$f^{(V)}(0) = 1$$

$$\vdots$$

$$f^{(n)}(0) = \sin \frac{\pi n}{2}$$

$$\sin x = 0 + \frac{1}{1!} \cdot x + \frac{0}{2!} \cdot x^2 - \frac{1}{3!} \cdot x^3 + \frac{0}{4!} \cdot x^4 + \frac{1}{5!} \cdot x^5 + \dots + \frac{\sin \frac{\pi n}{2}}{n!} \cdot x^n + R_n(x) \quad n = 2k, \ k \in \mathbb{N}$$

$$\sin \frac{\pi n}{2} = \begin{cases} 0, & n = 2k, \ k \in \mathbb{N} \\ 0, & n = 2k, \ k \in \mathbb{N} \end{cases}$$

$$\sin \frac{\pi n}{2} = \begin{cases} 0, & n = 2k, \ k \in \mathbb{N} \\ (-1)^{k+1}, & n = 2k-1, \ k \in \mathbb{N} \end{cases}$$

$$\sin x = \frac{1}{1!} \cdot x - \frac{1}{3!} \cdot x^3 + \frac{1}{5!} \cdot x^5 + \dots + \frac{(-1)^{k+1}}{(2k-1)!} \cdot x^{2k-1} + R_{2k}(x)$$

$$R_{2k}(x) = o\left(x^{2k}\right)$$

$$R_{2k}(x) = o\left(x^{2k}\right)$$

$$R_{2k}(x) = R_n(x) = \frac{f^{(n+1)}(\Theta x)}{(n+1)!} \cdot x^{n+1} = \frac{f^{(2k+1)}(\Theta x)}{(2k+1)!} \cdot x^{2k+1} = \frac{\sin\left(\Theta x + (2k+1) \cdot \frac{\pi}{2}\right)}{(2k+1)!} \cdot x^{2k+1} = \frac{\sin\left(\Theta x + \pi k + \frac{\pi}{2}\right)}{(2k+1)!} \cdot x^{2k+1} = \frac{\cos\left(\Theta x + \pi k\right)}{(2k+1)!} \cdot x^{2k+1} = \frac{(-1)^k \cdot \cos\Theta x}{(2k+1)!} \cdot x^{2k+1}$$

13.3.3
$$y = \cos x$$

$$y = f(x) = \cos x$$
, $x_0 = 0$, $f(0) = \cos 0 = 1$

$$f(0) = \cos 0 = 1$$

$$\begin{cases}
f'(x) = -\sin x = \cos\left(x + 1 \cdot \frac{\pi}{2}\right) \\
f''(x) = -\cos x = \cos\left(x + 2 \cdot \frac{\pi}{2}\right)
\end{cases}$$

$$\begin{cases}
f''(x) = -\cos x = \cos\left(x + 2 \cdot \frac{\pi}{2}\right) \\
f'''(x) = \sin x = \cos\left(x + 3 \cdot \frac{\pi}{2}\right)
\end{cases}$$

$$\begin{cases}
f''(0) = 0 \\
f'''(0) = -1
\end{cases}$$

$$f'''(0) = 0
\end{cases}$$

$$\begin{cases}
f''(0) = 0
\end{cases}$$

$$f'''(0) = 0
\end{cases}$$

$$f'''(0) = 0
\end{cases}$$

$$f'''(0) = 0$$

$$f^{(IV)}(0) = 1$$

$$f^{(V)}(0) = 0$$

$$\vdots$$

$$\cos x = 1 + \frac{0}{1!} \cdot x - \frac{1}{2!} \cdot x^2 + \frac{0}{3!} \cdot x^3 + \frac{1}{4!} \cdot x^4 + \frac{0}{5!} \cdot x^5 + \dots + \frac{\cos \frac{\pi n}{2}}{n!} \cdot x^n + R_n(x)$$

$$\cos \frac{\pi n}{2} = \begin{cases} 0, & n = 2k - 1, \ k \in \mathbb{N} \\ (-1)^k, & n = 2k, \ k \in \mathbb{N} \end{cases}$$

$$\cos x = 1 - \frac{1}{2!} \cdot x^2 + \frac{1}{4!} \cdot x^4 + \dots + \frac{(-1)^k}{(2k)!} \cdot x^{2k} + R_{2k+1}(x)$$

$$R_{2k+1}(x) = o(x^{2k+1})$$

$$R_{2k+1}(x) = \delta(x^{-1})$$

$$R_{2k+1}(x) = R_n(x) = \frac{f^{(n+1)}(\Theta x)}{(n+1)!} \cdot x^{n+1} = \frac{f^{(2k+2)}(\Theta x)}{(2k+2)!} \cdot x^{2k+2} = \frac{\cos\left(\Theta x + (2k+2) \cdot \frac{\pi}{2}\right)}{(2k+2)!} \cdot x^{2k+2} = \frac{\cos\left(\Theta x + \pi k + \pi\right)}{(2k+2)!} \cdot x^{2k+2} = \frac{-\cos(\Theta x + \pi k)}{(2k+2)!} \cdot x^{2k+2} = \frac{(-1) \cdot (-1) \cdot \cos\Theta x}{(2k+2)!} \cdot x^{2k+2} = \frac{(-1)^{k+1} \cdot \cos\Theta x}{(2k+2)!} \cdot x^{2k+2}$$

$$= \frac{(-1)^{k+1} \cdot \cos\Theta x}{(2k+2)!} \cdot x^{2k+2}$$

13.3.4
$$y = (1+x)^{\alpha}$$

$$f(x) = (1+x)^{\alpha}, \quad \alpha \in \mathbb{R}$$

$$x_{0} = 0$$

$$\begin{cases}
f'(x) = \alpha \cdot (1+x)^{\alpha-1} \\
f''(x) = \alpha \cdot (\alpha-1) \cdot (1+x)^{\alpha-2} \\
f'''(x) = \alpha \cdot (\alpha-1) \cdot (\alpha-2) \cdot (1+x)^{\alpha-3}
\end{cases} \longrightarrow \begin{cases}
f(0) = 1 \\
f''(0) = \alpha \\
f''(0) = \alpha \cdot (\alpha-1) \\
f'''(0) = \alpha \cdot (\alpha-1) \\
f'''(0) = \alpha \cdot (\alpha-1) \\
f'''(0) = \alpha \cdot (\alpha-1) \cdot (\alpha-2)
\end{cases}$$

$$f^{(n)}(x) = \alpha \cdot (\alpha-1) \cdot \dots \cdot (\alpha-(n-1)) \cdot (1+x)^{\alpha-n} \\
f^{(n)}(x) = \alpha \cdot (\alpha-1) \cdot \dots \cdot (\alpha-(n-1)) \cdot (1+x)^{\alpha-(n+1)}
\end{cases}$$

$$f(x) = f(0) + \frac{f'(0)}{1!} \cdot x + \frac{f''(0)}{2!} \cdot x^{2} + \dots + \frac{f^{(n)}(0)}{n!} \cdot x^{n} + R_{n}(x)$$

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!} \cdot x + \frac{\alpha \cdot (\alpha-1)}{2!} \cdot x^{2} + \frac{\alpha \cdot (\alpha-1) \cdot (\alpha-2)}{3!} \cdot x^{3} + \dots + \frac{\alpha \cdot (\alpha-1) \cdot \dots \cdot (\alpha-(n-1))}{n!} \cdot x^{n} + R_{n}(x)$$

$$R_n(x) = o(x^n)$$
 — форма Пеано

$$R_n(x) = \frac{f^{(n+1)} \cdot (\Theta x)}{(n+1)!} \cdot x^{n+1} = \frac{\alpha \cdot (\alpha-1) \cdot \ldots \cdot (\alpha-n)}{(n+1)!} \cdot (1+\Theta x)^{\alpha-(n+1)} \cdot x^{n+1} - \text{форма Лагранжа}$$

13.3.5
$$y = \ln(1+x)$$

$$y = f(x) = \ln(1+x)$$
 $x_0 = 0$ $f(0) = \ln 1 = 0$

$$\begin{cases} f'(x) = \frac{1}{1+x} = (1+x)^{-1} \\ f''(x) = (-1) \cdot (1+x)^{-2} \\ f'''(x) = (-1) \cdot (-2) \cdot (1+x)^{-3} \\ f^{(IV)}(x) = (-1) \cdot (-2) \cdot (-3) \cdot (1+x)^{-4} \\ \vdots \\ f^{(n)}(x) = (-1)^{n+1} \cdot (n-1)! \cdot (1+x)^{-n} \end{cases} \longrightarrow \begin{cases} f'(0) = 1 = 0! \\ f''(0) = -1 \cdot (-1) \cdot 1! \\ f'''(0) = 2 = 2! \\ f^{(IV)}(0) = (-1) \cdot 3! \\ \vdots \\ f^{(n)}(0) = (-1)^{n+1} \cdot (n-1)! \end{cases}$$

$$\ln(1+x) = 0 + \frac{0!}{1!} \cdot x - \frac{1!}{2!} \cdot x^2 + \frac{2!}{3!} \cdot x^3 - \frac{3!}{4!} \cdot x^4 + \dots + \frac{(-1)^{n+1} \cdot (n-1)!}{n!} \cdot x^n + R_n(x)$$

$$n! = (n-1)! \cdot n$$

$$n! = (n-1)! \cdot n$$

$$\ln(1+x) = \frac{1}{1} \cdot x - \frac{1}{2} \cdot x^2 + \frac{1}{3} \cdot x^3 - \dots + \frac{(-1)^{n+1}}{n} \cdot x^n + R_n(x)$$

$$R_n(x) = o(x^n)$$
 – форма Пеано

$$R_n(x) = \frac{f^{(n+1)} \cdot (\Theta x)}{(n+1)!} \cdot x^{n+1} = \frac{(-1)^{n+2} \cdot n! \cdot (1+\Theta x)^{-(n+1)}}{(n+1)!} \cdot x^{n+1} = \frac{(-1)^{n+2} \cdot (1+\Theta x)^{-(n+1)}}{n+1} \cdot x^{n+1}$$
форма Лагранжа

14 Исследование функции

14.1 Вертикальные, наклонные, горизонтальные асимптоты

Определение 1. Асимптотой графика функции y = f(x) называется прямая, расстояние до которой от точки, лежащей на графике, стремится к нулю при удалении от начала координат.

14.1.1 Вертикальные асимптоты

Определение 2. Прямая x=a называется вертикальной асимптотой графика функции y=f(x), если хотя бы один из пределов $\lim_{x\to a+} f(x)$, $\lim_{x\to a-} f(x)$ равен ∞ .

Примеры

Вывод: Вертикальные асимптоты ищем среди точек разрыва функции и граничных точек.

14.1.2 Наклонные асимптоты

Определение 3. Прямая y=kx+b называется наклонной асимптотой графика функции y=f(x) при $x\to\pm\infty$, если функция $f(x)=kx+b+\alpha(x)$, где $\alpha(x)=6$.м.ф. при $x\to\pm\infty$.

Теорема 1 (Необходимое и достаточное условие существования наклонных асимптот).

График функции y = f(x) имеет при $x \to \pm \infty$ наклонную асимптоту тогда и только тогда, когда существуют два конечных передела:

$$\begin{cases} \lim_{x \to \pm \infty} \frac{f(x)}{x} = k \\ \lim_{x \to \pm \infty} (f(x) - k \cdot x) = b \end{cases}$$
 (*)

Доказательство (Необходимость).

Дано: y = kx + b — наклонная асимптота

Доказать: ∃ конечные пределы (*)

По условию kx + b наклонная асимптота \Rightarrow по определению наклонной асимптоты: $f(x) = kx + b + \alpha(x)$, где $\alpha(x) - 6$.м.ф. при $x \to \pm \infty$.

Рассмотрим:

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{kx + b + \alpha(x)}{x} = \lim_{x \to \pm \infty} \left(k + b \cdot \frac{1}{x} + \frac{1}{x} \cdot \alpha(x) \right) =$$

$$= k + b \cdot \lim_{x \to \pm \infty} \frac{1}{x} + \lim_{x \to \pm \infty} \frac{1}{x} \cdot \alpha(x) = k + b \cdot 0 + 0 = k$$

Рассмотрим выражение:

$$f(x) - k \cdot x = kx + b + \alpha(x) - kx = b + \alpha(x)$$

Вычислим:

$$\lim_{x \to \pm \infty} \left(f(x) - k \cdot x \right) = \lim_{x \to \pm \infty} \left(b + \alpha(x) \right) = b + \lim_{x \to \pm \infty} \alpha(x) = b + 0 = b$$

Доказательство (Достаточность).

Дано: ∃ конечные пределы (*)

Доказать: y = kx + b — наклонная асимптота

 \exists конечный предел: $\lim_{x \to \pm \infty} (f(x) - kx) = b$

По теореме о связи функции, её предела и б.м.ф. (**С.17**, **Т.3**) \Rightarrow

 $\Rightarrow f(x) - kx = b + \alpha(x)$, где $\alpha(x)$ – б.м.ф. при $x \to \pm \infty$.

Выразим $f(x) = kx + b + \alpha(x)$, где $\alpha(x)$ – б.м.ф. при $x \to \pm \infty$.

По определению наклонной асимптоты $\Rightarrow y = kx + b$ — наклонная асимптота графика функции y = f(x).

Горизонтальные асимптоты

Определение 4. Прямая y = b называется горизонтальной асимптотой функции y = f(x), если $\lim_{x \to +\infty} f(x) = b$.

Следствие. Горизонтальные асимптоты являются частным случаем наклонных асимптот при k=0.

14.2 Исследование функции по первой производной

Определение 1. Функция y = f(x), определённая на (a; b), возрастает (убывает) на этом интервале, если:

$$\forall x_1, x_2 \in (a; b) : x_2 > x_1 \implies f(x_2) > f(x_1) \quad (f(x_2) < f(x_1))$$

Определение 2. Функция y = f(x), определённая на (a; b), не убывает (не возрастает) на этом интервале, если:

$$\forall x_1, x_2 \in (a; b) : x_2 > x_1 \implies f(x_2) \ge f(x_1) \quad \Big(f(x_2) \le f(x_1) \Big)$$

Определение 3. Невозрастающая, неубывающая, возрастающая, убывающая функции называются монотонными.

Определение 4. Возрастающая и убывающая функции называются строго монотонными.

Теорема 1 (Необходимое и достаточное условие невозрастания | неубывания дифференцируеммой функции).

Дифференцируемая на интервале (a;b) функция y=f(x) не возрастает (не убывает) на этом интервале тогда и только тогда, когда $\forall x \in (a;b)$:

$$f'(x) \le 0 \quad \Big(f'(x) \ge 0\Big)$$

Доказательство (Необходимость).

Дано: y = f(x) не возрастает на (a; b)

Доказать: $\forall x \in (a;b) \colon f'(x) \stackrel{(\geq)}{\leq} 0$

 $\forall x \in (a;b)$

 Δx — приращение аргумента

 $\Delta y = y(x + \Delta x) - y(x)$ — приращение функции

Случаи:

1. $\Delta x > 0$

Так как y = f(x) не возрастает на (a;b):

$$y(x + \Delta x) \stackrel{(\geq)}{\leq} y(x)$$
$$\Delta y = y(x + \Delta x) - y(x) \stackrel{(\geq)}{\leq} 0$$

Тогда:

$$\boxed{\frac{\Delta y}{\Delta x} = \left(\frac{-}{+}\right) \stackrel{(\geq)}{\leq} 0}$$

 $2. \Delta x < 0$

Так как y = f(x) не возрастает на (a;b):

$$y(x + \Delta x) \stackrel{(\leq)}{\geq} y(x)$$
$$\Delta y = y(x + \Delta x) - y(x) \stackrel{(\leq)}{\geq} 0$$

Тогда:

$$\boxed{\frac{\Delta y}{\Delta x} = \left(\frac{+}{-}\right) \stackrel{(\geq)}{\leq} 0}$$

По теореме о предельном переходе в неравенстве (С.12, Т.4):

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \stackrel{(\geq)}{\leq} 0$$

По определению производной: $f'(x) \stackrel{(\geq)}{\leq} 0$

Доказательство (Достаточность).

Дано: $\forall x \in (a;b) \colon f'(x) \stackrel{(\geq)}{\leq} 0$

(убывает) Доказать: y = f(x) не возрастает на (a; b)

 $\forall x_1, x_2 \in (a; b) : x_2 > x_1$

Рассмотрим $[x_1; x_2]$.

Функция y = f(x) на $[x_1, x_2]$ удовлетворяет условиям теоремы Лагранжа (C.58, T.3):

1. Непрерывность на $[x_1; x_2]$

По условию y = f(x) дифференцируема на (a; b). По теореме о связи дифферениируемости и непрерывности функции (C.47, T.2) $\Rightarrow y = f(x)$ непрерывна на $|x_1; x_2|$.

2. Дифференцируемость на $(x_1; x_2)$

Так как по условию. y = f(x) дифференцируема на (a; b), по теореме π $\exists \ c \in (x_1; x_2)$:

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Так как $x_2 > x_1$, то $x_2 - x_1 > 0$.

По условию $f'(x) \stackrel{(\geq)}{\leq} 0, \, \forall x \in (a;b) \ \Rightarrow \ f'(c) \stackrel{(\geq)}{\leq} 0.$

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \overset{(\geq)}{\leq} 0 \implies f(x_2) - f(x_1) \overset{(\geq)}{\leq} 0$$
 при $x_2 > x_1$

 $f(x_2)\stackrel{(\geq)}{\leq} f(x_2)$ при $x_2>x_1\Rightarrow$ по определению функция y=f(x) не возрастает на (a;b).

Примечание (*к доказательству*). Записи в скобках над словом или символом — это то, что используется в доказательстве для неубывания.

Теорема 2 (Необходимое условие строгой монотонности).

Если дифференцируемая на (a;b) функция y = f(x) возрастает (убывает) на этом интервале, то $\forall x \in (a;b) \colon f'(x) \ge 0 \quad \big(f'(x) \le 0 \big).$

Теорема 3 (Достаточное условие строгой монотонности).

Если для дифференцируемой на (a;b) функции y=f(x) выполнены условия:

- 1. $\forall x \in (a; b) : f'(x) \ge 0 \quad (f'(x) \le 0)$
- 2. f'(x) не обращается в нуль ни на каком промежутке $Y \leq (a;b)$

то функция y = f(x) возрастает (убывает) на (a; b).

14.3 Экстремумы функции

Определение 1. Пусть y = f(x) определена на $(a; b), x_0 \in (a; b)$. Тогда:

- 1. Если $\exists \, \mathring{S}(x_0), \, \forall x \in \mathring{S}(x_0) \colon f(x) \leq f(x_0), \, \text{то} \quad \begin{array}{ll} x_0 \mathbf{точка} \,\, \mathbf{локального} \,\, \mathbf{максимумa}, \\ y_0 = y(x_0) \mathbf{локальный} \,\, \mathbf{максимуm}. \end{array}$
- 2. Если $\exists \, \mathring{S}(x_0), \, \forall x \in \mathring{S}(x_0) \colon f(x) \geq f(x_0), \, \text{то} \quad \begin{array}{l} x_0 \mathbf{точка} \,\, \mathbf{локального} \,\, \mathbf{минимумa}, \\ y_0 = y(x_0) \mathbf{локальный} \,\, \mathbf{минимуm}. \end{array}$

Определение 2. Точки локального максимума и локального минимума называются **точками экстремума**.

Определение 3. Локальный максимум и локальный минимум называется **экстремумами**.

Теорема 1 (Необходимое условие существования эксремума).

Если функция y = f(x) дифференцируема на (a; b) и $x_0 \in (a; b)$ существует экстремум, To $f'(x_0) = 0$

Пример.

$$y=x^2$$
, $x_0=0$ — точка минимума

$$y'=2x$$

$$y'(0) = 0$$

Пример.

$$y=x^3, \quad x_0=0$$
 — не является точкой экстремума $y'=3x^2$

$$y' = 3x^2$$

$$y'(0) = 0$$

Определение 4. Точки, в которых производная функции обращается в нуль, называются стационарными.

$$f'(x_0) = 0$$
 x_0 — стационарная точка

Определение 5. Точки, в которых производная функции обращается в нуль или не существует, называются критическими точками 1-го порядка.

$$y = |x|, \quad x_0 = 0$$
 — точка минимума.

$$\not\equiv y'$$

$$y'_+ = 1$$

$$y'_{+} = 1$$

 $y'_{-} = -1$

Пример.

Пример.
$$y = x^{\frac{2}{3}}, \quad x_0 = 0 - \text{точка минимума}.$$

$$y' = \frac{2}{3} \cdot x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$$

$$y'(0) = \nexists$$

$$y' = \frac{2}{3} \cdot x^{-\frac{1}{3}} = \frac{2}{3\sqrt[3]{x}}$$

$$y'(0) = \sharp$$

Вывод

Точки экстремума могут быть двух видов:

1.
$$f'(x) = 0$$
 — гладкий экстремум;

$$2. \ \nexists f'(x) - \mathbf{octpый}$$
 экстремум.

Теорема 2 (Первый достаточный признак локального экстремума).

Пусть y = f(x) непрерывна в $S(x_0)$, где x_0 — критическая точка 1-го порядка; дифференцируема в $\mathring{S}(x_0)$. Тогда если производная функции меняет свой знак при переходе через точку x_0 , то x_0 — точка экстремума. Причём:

- 1. если при $x < x_0$: f'(x) > 0, а при $x > x_0$: f'(x) < 0, то x_0 точка максимума;
- 2. если при $x < x_0$: f'(x) < 0, а при $x > x_0$: f'(x) > 0, то x_0 точка минимума.

Доказательство.

 $\forall x \in S(x_0).$

• Пусть $x > x_0$. Рассмотрим $[x_0; x]$.

Тогда функция y = f(x) удовлетворяет условиям теоремы Лагранжа (C.58, T.3):

- 1. непрерывна на $[x_0; x]$ По условию функция непрерывна в $S(x_0) \Rightarrow y = f(x)$ непрерывна на $[x_0; x]$.
- 2. дифференцируема на $(x_0; x)$ По условию y = f(x) дифференцируема в $\mathring{S}(x_0) \Rightarrow y = f(x)$ дифференцируема на $(x_0; x)$.

По теореме Лагранжа $\exists c \in (x_0; x) \colon f(c) = \frac{f(x) - f(x_0)}{x - x_0}$

Так как $x > x_0$, то $x - x_0 > 0$.

По условию 1) при $x>x_0\colon f'(x)\stackrel{(>)}{<}0\ \Rightarrow$

$$\Rightarrow f'(c) = \frac{f(x) - f(x_0)}{x - x_0} \stackrel{(>)}{<} 0 \Rightarrow f(x) - f(x_0) \stackrel{(>)}{<} 0 \Rightarrow f(x) \stackrel{(>)}{<} f(x_0)$$

(минимума) (минимума)

По определению строгого максимума, x_0 — точка максимума.

• Пусть $x < x_0$, тогда рассматриваем $[x; x_0]$. y = f(x) на $[x; x_0]$ удовлетворяет теореме Лагранжа.

По теореме *Лагранжа*: $\exists c \in (x; x_0) : f'(c) = \frac{f(x_0) - f(x)}{x_0 - x}$

Так как $x < x_0$, то $x - x_0 < 0 \implies x_0 - x > 0$.

По условию 1) при $x < x_0 : f'(x) > 0 \Rightarrow$

$$\Rightarrow f'(c) = \frac{f(x_0) - f(x)}{x_0 - x} \stackrel{(<)}{>} 0 \Rightarrow f(x_0) - f(x) \stackrel{(<)}{>} 0 \Rightarrow f(x_0) \stackrel{(<)}{>} f(x)$$

По определению строго локального максимума, x_0 — точка строгого локального (минимума) максимума $\Rightarrow \forall x \in S(x_0) \colon x_0$ — точка строгого локального максимума.

Примечание (*к доказательству*). Записи в скобках над словом или символом — это то, что используется в доказательстве для случая строго локального минимума.

Теорема 3 (Второй достаточный признак локального экстремума).

Пусть функция y = f(x) дважды дифференцируема в точке x_0 и $f'(x_0) = 0$. Тогда:

- 1. если $f''(x_0) < 0$, то x_0 точка строгого максимума;
- 2. если $f''(x_0) > 0$, то x_0 точка строгого минимума.

Доказательство.

Представим функцию y = f(x) в $S(x_0)$ по формуле Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + o\left((x - x_0)^2\right)$$

Так как $f'(x_0) = 0$, то:

$$f(x) = f(x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + o\left((x - x_0)^2\right)$$
$$f(x) - f(x_0) = \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + o\left((x - x_0)^2\right)$$

Знак $f(x)-f(x_0)$ определяет $f''(x_0)$, так как $o\left((x-x_0)^2\right)$ — б.м.ф. при $x\to x_0$. Тогда:

- 1. если $f''(x_0) < 0$, то $f(x) f(x_0) < 0 \Rightarrow f(x) < f(x_0)$, $\forall x \in S(x_0)$, по определению строгого локального максимума x_0 точка строго локального максимума;
- 2. если $f''(x_0) > 0$, то $f(x) f(x_0) > 0 \Rightarrow f(x) > f(x_0) \quad \forall x \in S(x_0)$, по определению строгого локального минимума x_0 точка строгого локального минимума.

14.4 Исследование функции по второй производной

Определение 1. Говорят, что график функции y = f(x) на интервале (a; b) выпуклый или выпуклый вверх на этом интервале, если касательная к нему в любой точке этого интервала лежит выше графика функции.

Определение 2. Говорят, что график функции y = f(x) на интервале (a; b) вогнутый или выпуклый вниз на этом интервале, если касательная к нему в любой точке этого интервала лежит ниже графика функции.

Определение 3. Точкой перегиба называется точка графика функции y = f(x), при прохождении через которую меняется направление выпуклости графика функции (с выпуклости на вогнутость и наоборот).

Теорема 1 (Достаточное условие выпуклости графика функции).

Пусть функция y = f(x) дважды дифференцируема на интервале (a; b). Тогда:

- 1. Если f''(x) < 0, $\forall x \in (a; b)$, то график функции выпуклый вверх на этом интервале.
- 2. Если f''(x) > 0, $\forall x \in (a; b)$, то график функции выпуклый вниз на этом интервале.

Доказательство.

 $\forall x_0 \in (a; b), \ y_0 = f(x_0) \implies M_0(x_0, f(x_0))$

В точке M_0 построим касательную к графику функции y = f(x):

$$y - y_0 = y'(x_0)(x - x_0) \implies y$$
 уравнение касательной $y_{\text{к}} = f(x_0) + f'(x_0)(x - x_0)$

Представим функцию y = f(x) по формуле Тейлора с остаточным членом в форме Лагранжа:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(c)}{2!} \cdot (x - x_0)^2 \quad \forall c \in \mathring{S}(x_0)$$

Из представления для функции вычитаем уравнение касательной:

$$f(x) - y_{\kappa} = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(c)}{2!} \cdot (x - x_0)^2 - f(x_0) - f'(x_0)(x - x_0)$$

$$f(x) - y_{\kappa} = \frac{f''(c)}{2!} \cdot (x - x_0)^2$$

- 1. Так как по условию f''(x) < 0, $\forall x \in (a;b)$, то $f''(c) < 0 \Rightarrow f(x) y_{\kappa} < 0 \Rightarrow f(x) < y_{\kappa} \Rightarrow$ по определению выпуклой функции график функции y = f(x) выпуклый вверх.
- 2. Так как по условию f''(x) > 0, $\forall x \in (a;b)$, то $f''(c) > 0 \Rightarrow f(x) y_{\kappa} > 0 \Rightarrow f(x) > y_{\kappa} \Rightarrow$ по определению выпуклой функции график функции y = f(x) выпуклый вниз.

Теорема 2 (Необходимое условие существования точки перегиба).

Пусть функция y = f(x) в точке x_0 имеет непрерывную вторую производную и $M_0(x_0, f(x_0))$ — точка перегиба графика функции y = f(x). Тогда $f''(x_0) = 0$

Доказательство.

Доказываем методом от противного.

- Пусть $f''(x_0) > 0$. В силу непрерывности второй производной функции y = f(x) существует $S(x_0)$: $\forall x \in S(x_0)$: f''(x) > 0. Тогда по теореме о достаточном условии выпуклости графика функции (**T.1**) следует, что $\forall x \in S(x_0)$ функция выпукла вниз. Это противоречит условию, так как $M_0(x_0, f(x_0))$ точка перегиба.
- Пусть $f''(x_0) < 0$. В силу непрерывности второй производной функции y = f(x) существует $S(x_0)$: $\forall x \in S(x_0)$: f''(x) < 0. Тогда по теореме о достаточном условии выпуклости графика функции (**T.1**) следует, что $\forall x \in S(x_0)$ функция выпукла вверх. Это противоречит условию, так как $M_0(x_0, f(x_0))$ точка перегиба.

$$\psi$$

$$f''(x_0) = 0$$

Определение 4. Точки из области определения функции, в которых вторая производная функции равна нулю или не существует, называются **критическими точками 2-го порядка**.

Теорема 3 (Достаточное условие существования точки перегиба).

Если функция y = f(x) непрерывна в точке x_0 , дважды дифференцируема в $\check{S}(x_0)$ и вторая производная меняет знак при переходе аргумента x через точку x_0 , то точка $M_0(x_0, f(x_0))$ является точкой перегиба графика функции y = f(x).

Доказательство.

По условию существует $\mathring{S}(x_0)$, в которой вторая производная функции y=f(x) меняет свой знак при переходе аргумента x через точку x_0 . Это означает (по достаточному условию выпуклости графика функции (**T.1**)), что график функции y=f(x) имеет разные направления выпуклости по разные стороны от точки x_0 . По определению точки перегиба $M_0(x_0, f(x_0))$ является точкой перегиба графика функции y=f(x).