Tugas Pratikum 1 Modul 1

Github Daffa Pandu Dewanata:

https://github.com/daffapandu2304/pratikum1-metnum

Tugas Pratikum Modul 1

A. Script Metode Bagi Dua

Gambar 1. Hasil Scripct Python Metode Bagi Dua

```
| File Edit Selection View | Go Run Terminal Help | Biseksizyy Frafixom1-methum-Visual Studio Code | TERMINAL | Selection | Secondary | Se
```

Gambar 2. Hasil Scripct Python Metode Bagi Dua

METODE NUMERIK

```
| File Edit Selection View | Go Run Terminal Help | bickstays pratitions | reminal Help | bickstays pratitions | reminal Help | bickstays | M | variety | regularisisty | variety | variet
```

Gambar 3. Hasil Scripct Python Metode Bagi Dua

Gambar 4. Hasil Scripct Python Metode Bagi Dua

Kelas: TIF3A6

Gambar 5. Hasil Scripct Python Metode Bagi Dua

Scripct Metode Bagi Dua

```
# -*- coding: utf-8 -*-
@author: Daffa Pandu Dewanata 202010225242 TF3A6
print ("")
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas : TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #untuk memanggil bilangan eksponen natural(e)
#Mendefinisikan fungsi
def f(x):
```

Kelas: TIF3A6

```
METODE NUMERIK
```

```
return e**x-5*x**2
#Seri Input Nilai Awal yang dikonversi ke pecehan
x0 = float(input('x0: '))
x1 = float(input('x1: '))
eps = float(input('epsilon : '))
#Metode Bagi Dua
def bisection(x0,x1,eps):
  step = 1
  print('\n\n*** --Metode Bagi Dua-- ***')
  condition = True
  while condition:
    x2 = (x0 + x1)/2
    print('lterasi-%d, x2 = \%0.6f \text{ dan } f(x2) = \%0.6f' \% \text{ (step, } x2, f(x2)))
    if f(x0) * f(x2) < 0:
       x1 = x2
    else:
       x0 = x2
    step = step + 1
    condition = abs(f(x2)) > eps
    print('\n Akar Persamaan tersebut : %0.8f' % x2)
#menggambar fungsi
rr= np.linspace(0, 2, 100) #masukan nilai tebakan awal
plt.plot(rr, f(rr))
plt.show()
plt.savefig("fungsi.png") #untuk menyimpan gambar fungsi
#Pengecekan nilai awal
if f(x0) * f(x1) > 0.0:
  print (' Nilai yang diprediksi tidak mengurung akar')
  print ('Silahkan mencoba ulang nilai baru')
else:
  bisection (x0,x1,eps)
```

Tugas Pratikum Modul 2

B. Script Metode Regulafalsi

Gambar 1. Hasil Scripct Python Metode Regulafalsi

```
⊳ ৺ ৳ Ⅲ …
D
                                                                                                                                                                                                                      *** --Metode Regulafasi-- ***
Iterasi-1, x2 = 0.146941 and f(x2) = 1.050327
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.14694058 Iterasi-2, x2 = 0.289410 and f(x2) = 0.916848
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.40534585
Iterasi-4, x2 = 0.486738 and f(x2) = 0.442429
                                                                                                                                                                                                                       Akar Persamaan tersebut : 0.48673845
Iterasi-5, x2 = 0.538029 and f(x2) = 0.265253
                                                            import numpy as np
import matplotlib.pyplot as plt
from math import e #Untuk memanggil bilangan eksponen natural (e)
# Mendefinisikan fungsi
def f(x):
    return e**x-5*x**2
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.53802875
Iterasi-6, x2 = 0.568146 and f(x2) = 0.151043
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.56814572 
 Iterasi-7, x2 = 0.585092 and f(x2) = 0.083492
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.58509231
Iterasi-8, x2 = 0.594398 and f(x2) = 0.045394
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.59439820 Iterasi-9, x2 = 0.599440 and f(x2) = 0.024459
                                                              def regulafalse(x0,x1,eps):
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.59943963 
 Iterasi-10, x2 = 0.602151 and f(x2) = 0.013114
                                                                     step = 1
print('\n\n*** --Metode Regulafasi-- ***')
                                                                                                                                                                                                                      Akar Persamaan tersebut : 0.60215073 Iterasi-11, x2 = 0.603603 and f(x2) = 0.007013
                                                                     condition = Tr
while condition
                                                                          Akar Persamaan tersebut : 0.60360287 Iterasi-12, x2 = 0.604379 and f(x2) = 0.003745
```

Gambar 2. Hasil Scripct Python Metode Regulafalsi

METODE NUMERIK

```
| File | Edit | Selection | View | Go | Run | Terminal | Help | regulataktpy-prathum1-metrum-Vaoual Studio Code | Park |
```

Gambar 3. Hasil Scripct Python Metode Regulafalsi

Gambar 4. Hasil Scripct Python Metode Regulafalsi

METODE NUMERIK

Gambar 5. Hasil Scripct Python Metode Regulafalsi

Scripct Metode Regulafalsi

```
# -*- coding: utf-8 -*-
@author: Daffa Pandu Dewanata 202010225242 TF3A6
print ("")
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas: TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #Untuk memanggil bilangan eksponen natural (e)
# Mendefinisikan fungsi
def f(x):
  return e**x-5*x**2
#Mendifinisikan fungsi
x0 = float(input('x0: '))
x1 = float(input('x1: '))
eps = float(input('epsilon: '))
#Metode Regulafasi
def regulafalse(x0,x1,eps):
```

regulafalse(x0,x1,eps)

Kelas : TIF3A6

```
METODE NUMERIK
```

```
step = 1
  print('\n\n*** --Metode Regulafasi-- ***')
  condition = True
  while condition:
    x2 = x1-(f(x1)*(x1-x0)/(f(x1)-f(x0)))
    print('lterasi-%d, x2 = \%0.6f and f(x2) = \%0.6f' % (step, x2, f(x2)))
    if f(x0) * f(x2) < 0:
       x1 = x2
    else:
      x0 = x2
       step = step + 1
       condition = abs(f(x2)) > eps
    print('\n Akar Persamaan tersebut: %0.8f' % x2)
# Menggambar Fungsi
rr= np.linspace(0, 2, 100) #Masukan Nilai tebakan Awal
plt.plot(rr, f(rr))
plt.show()
plt.savefig("fungsi.png") #Untuk menyimpan gambar fungsi
# Pengecekan nilai awal
if f(x0) * f(x1) > 0.0:
  print('Nilai yang di prediksi tidak mengurung akar')
  print('Silahkan mencoba ulang prediksi nili baru')
else:
```

Tugas Pratikum Modul 3

C. Script Metode NewtonRapshon

Gambar 1. Hasil Scripct Python Metode NewtonRapshon

Scripct Metode NewtonRapshon

```
# -*- coding: utf-8 -*-
"""

@author: Daffa Pandu Dewanata 202010225242 TF3A6
"""

print ("")
print ("Nama : Daffa Pandu Dewanata")
print ("Kelas : TIF3A6")
print ("NPM : 202010225242")
print ("")
print ("")

import numpy as np
import matplotlib.pyplot as plt
```

Kelas : TIF3A6

METODE NUMERIK

```
from math import e #Untuk memanggil bilangan eksponen natural (e)
# Mendefinisikan fungsi
def f(x):
  return e**x-5*x**2
#Mendefinisikan Turunan Fungsi
def DF(x):
  return e**x-10*x
#Metode Newton-Raphson
def newtonRaphson(x0,eps):
  step = 0
  print('\n\n*** --Metode Newson Raphson-- ***')
  xn = x0
  for n in range(0,100): #Maksimal iterasi adalah 100
    fxn=f(xn)
    if abs(fxn) < eps:
      print('\n Akar Persamaan tersebut : %0.8f' % xn)
      return xn
    Dfxn=DF(xn)
    if Dfxn == 0:
      print('Solusi tidak ditemukan')
      return None
    xn=xn-(fxn/Dfxn)
    step = step + 1
    print('Iterasi-%d, x = \%0.8f dan f(x) = \%0.8f' % (step, xn, f(xn)))
  print('Iterasi maksimum, solusi tidak di temukan')
#Sesi Input Nilai awal yang di konversi kepecahan
x0 = float(input('x0: '))
eps = float(input('epsilon : '))
newtonRaphson(x0,eps)
```

Kelas: TIF3A6

Tugas Pratikum Modul 4

D. Script Metode Secant

```
metode Secant
ef Secant(x0,x1,eps, N):
          x2 = x1 - ((f(x1)^*(x1-x8))/(f(x1)-f(x8)))
ncint('Iterasi-%d, x = \%8.8f dan f(x) = \%8.8f % (step, x2, f(x2)))
```

Gambar 1. Hasil Scripct Python Metode Secant

Scripct Metode Secant

```
# -*- coding: utf-8 -*-
@author: Daffa Pandu Dewanata 202010225242 TF3A6
print ("")
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas : TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #untuk memanggil bilangan eksponen natural (e)
#Mendefinisikan fungsi
```

```
METODE NUMERIK
Kelas: TIF3A6
def f(x):
  return e**x-5*x**2
#Metode Secant
def Secant(x0,x1,eps, N):
  step = 1
  condition = True
  while condition:
    if f(x0) == f(x1):
      print ('Solusi tidak di temukan')
      break
    x2 = x1 - ((f(x1)*(x1-x0))/(f(x1)-f(x0)))
    print('Iterasi-%d, x = \%0.8f dan f(x) = \%0.8f' % (step, x2, f(x2)))
    x0 = x1
    x1 = x2
    step = step+1
    if step > N:
      print('Divergen')
      break
    condition = abs(f(x2)) > eps
  print('\n Akar Persamaan tersebut : %0.8f' % x2)
#Sesi Input Nilai Awal yang dikonversi ke pecahan
```

x0 = float(input('x0: ')) x1 = float(input('x1: ')) N = int(input('Max Iter: ')) eps = float(input('epsilon: ')) Secant(x0,x1,eps, N)

Kelas: TIF3A6

Tugas Pratkum Latihan Soal

Hitunglah akar persamaan non linearf f (x) = e^{x^2} - $8x^2$ dengan metode :

- 1. Bagi dua, gunakan e = 0.00001 dan tebakan awal a = 0 dan b = 2.
- Regulafalsi, gunakan e = 0.00001 dan tebakan awal a = 0 dan b = 2.
- Newton Raphson, gunakan e = 0.00001 dan tebakan awal $x_0 = 0$. 3.
- Secant, gunakan e = 0.00001 dan tebakan awa $x_0 = 0$ dan $x_1 = 2$.
- Berdasarkan perhitungan 1 hingga 4, metode mana yang terbaik, dan berikan alasannya.

Jawaban:

1. Latihan Biseksi Metode Bagi Dua

Gambar 1. Hasil Scripct Python Latihan Metode Bagi Dua

METODE NUMERIK

Gambar 2. Hasil Scripct Python Latihan Metode Bagi Dua

Gambar 3. Hasil Scripct Python Latihan Metode Bagi Dua

Scripct Latihan Metode Bagi Dua

```
# -*- coding: utf-8 -*-
"""
@author: Daffa Pandu Dewanata 202010225242 TF3A6
"""
print ("")
```

```
METODE NUMERIK
NPM: 202010225242
Kelas: TIF3A6
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas : TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #Untuk memanggil bilangan eksponen natural (e)
#Mendifinisikan fungsi
def f(x):
  return e**2**x-8*x**2
#Sesi Input Nilai Awal yang di konversi ke pecahan
x0 = float(input('x0: '))
x1 = float(input('x1: '))
eps = float(input('epsilon: '))
#Metode Bagi Dua
def bisection(x0,x1,eps):
  step = 1
  print('\n\n*** --Metode Bagi Dua-- ***')
  condition = True
  while condition:
    x2 = (x0 + x1)/2
    print('Iterasi-%d, x2 = \%0.6f dan f(x2) = \%0.6f' % (step, x2, f(x2)))
    if f(x0) * f(x2) < 0:
      x1 = x2
    else:
      x0 = x2
    step = step + 1
    condition = abs(f(x2)) > eps
    print ('\n Akar Persamaan tersebut : %0.8f' % x2)
# Menggambar Fungsi
rr= np.linspace(0, 2, 100) #Masukan Nilai tebakan Awal
plt.plot(rr, f(rr))
plt.show()
plt.savefig("fungsi.png") #Untuk menyimpan gambar fungsi
# Pengecekan nilai awal
if f(x0) * f(x1) > 0.0:
  print('Nilai yang di prediksi tidak mengurung akar')
  print('Silahkan mencoba ulang prediksi nilai baru')
else:
  bisection(x0, x1, eps)
```

METODE NUMERIK

2. Latihan Biseksi Metode Regulafalsi

Gambar 1. Hasil Scripct Python Latihan Metode Regulafalsi

Gambar 2. Hasil Scripct Python Latihan Metode Regulafalsi

Kelas: TIF3A6

Gambar 3. Hasil Scripct Python Latihan Metode Regulafalsi

Scripct Latihan Metode Regulafalsi

```
# -*- coding: utf-8 -*-
@author: Daffa Pandu Dewanata 202010225242 TF3A6
print ("")
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas: TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #Untuk memanggil bilangan eksponen natural (e)
# Mendefinisikan fungsi
def f(x):
  return e**2**x-8*x**2
#Mendifinisikan fungsi
x0 = float(input('x0: '))
x1 = float(input('x1: '))
eps = float(input('epsilon: '))
#Metode Regulafasi
def regulafalse(x0,x1,eps):
  step = 1
  print('\n\n*** --Metode Regulafasi-- ***')
```

METODE NUMERIK

```
condition = True
  while condition:
    x2 = x1-(f(x1)*(x1-x0)/(f(x1)-f(x0)))
    print('Iterasi-%d, x2 = \%0.6f and f(x2) = \%0.6f' % (step, x2, f(x2)))
    if f(x0) * f(x2) < 0:
       x1 = x2
    else:
      x0 = x2
       step = step + 1
       condition = abs(f(x2)) > eps
    print('\n Akar Persamaan tersebut: %0.8f' % x2)
# Menggambar Fungsi
rr= np.linspace(0, 2, 100) #Masukan Nilai tebakan Awal
plt.plot(rr, f(rr))
plt.show()
plt.savefig("fungsi.png") #Untuk menyimpan gambar fungsi
# Pengecekan nilai awal
if f(x0) * f(x1) > 0.0:
  print('Nilai yang di prediksi tidak mengurung akar')
  print('Silahkan mencoba ulang prediksi nilai baru')
else:
  regulafalse(x0,x1,eps)
```

3. <u>Latihan Biseksi Metode Newton Rapshon</u>

Gambar 1. Hasil Scripct Python Latihan Metode Newton Rapshon

Gambar 2. Hasil Scripct Python Latihan Metode Newton Rapshon

Scripct Latihan Metode Newton Rapshon

```
# -*- coding: utf-8 -*-
"""
@author: Daffa Pandu Dewanata 202010225242 TF3A6
```

Kelas: TIF3A6

```
print ("")
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas : TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #Untuk memanggil bilangan eksponen natural (e)
# Mendefinisikan fungsi
def f(x):
  return e**2**x-8*x**2
#Mendefinisikan Turunan Fungsi
def DF(x):
  return e**x-10*x
#Metode Newton-Raphson
def newtonRaphson(x0,eps):
  step = 0
  print('\n\n*** --Metode Newson Raphson-- ***')
  xn = x0
  for n in range(0,100): #Maksimal iterasi adalah 100
    fxn=f(xn)
    if abs(fxn) < eps:
      print('\n Akar Persamaan tersebut: %0.8f' % xn)
      return xn
    Dfxn=DF(xn)
    if Dfxn == 0:
      print('Solusi tidak ditemukan')
      return None
    xn=xn-(fxn/Dfxn)
    step = step + 1
    print('Iterasi-%d, x = \%0.8f dan f(x) = \%0.8f' % (step, xn, f(xn)))
  print('Iterasi maksimum, solusi tidak di temukan')
#Sesi Input Nilai awal yang di konversi kepecahan
x0 = float(input('x0: '))
eps = float(input('epsilon : '))
newtonRaphson(x0,eps)
```

Kelas: TIF3A6

4. Latihan Biseksi Metode Secant

```
ზ □ .
Metode Secant
def Secant(x0,x1,eps,):
    step - 1
    condition = True
    while condition:
        if f(x0) == f(x1):
            print ('Solusi tidak di temukan')
            break
                  x2 = x1 - ((f(x1)^*(x1-x0))/(f(x1)-f(x0)))
print('Iterasi-%d, x = \%0.8f dan f(x) = \%0.8f' % (step, x2, f(x2)))
```

Gambar 1. Hasil Scripct Python Latihan Metode Secant

Scripct Latihan Metode Secant

```
# -*- coding: utf-8 -*-
```

@author: Daffa Pandu Dewanata 202010225242 TF3A6

Kelas: TIF3A6

Secant(x0,x1,eps,)

```
METODE NUMERIK
NPM: 202010225242
```

```
print ("")
print ("")
print ("Nama: Daffa Pandu Dewanata")
print ("Kelas: TIF3A6")
print ("NPM: 202010225242")
print ("")
print ("")
import numpy as np
import matplotlib.pyplot as plt
from math import e #untuk memanggil bilangan eksponen natural (e)
#Mendefinisikan fungsi
def f(x):
  return e**2**x-8*x**2
#Metode Secant
def Secant(x0,x1,eps,):
  step = 1
  condition = True
  while condition:
    if f(x0) == f(x1):
       print ('Solusi tidak di temukan')
       break
    x2 = x1 - ((f(x1)*(x1-x0))/(f(x1)-f(x0)))
    print('Iterasi-%d, x = \%0.8f \text{ dan } f(x) = \%0.8f' \% \text{ (step, } x2, f(x2)))
    x0 = x1
    x1 = x2
    step = step+1
    condition = abs(f(x2)) > eps
  print('\n Akar Persamaan tersebut : %0.8f' % x2)
#Sesi Input Nilai Awal yang dikonversi ke pecahan
x0 = float(input('x0: '))
x1 = float(input('x1: '))
eps = float(input('epsilon: '))
```