# Deep Learning

Tips from the Boad

**CRASH COURSE** 

Kyle Kastner

Université de Montréal - MILA Intern - IBM Watson @ Yorktown Heights

# **Automation Spectrum**

Introspection Statistics

Machine Learning

Automation

Deep Learning



# **Basic Anatomy**

- Weights (W, V)
- Biases (**b**, **c**)



- Init weights randomly, biases can start at 0
- Morph features using non-linear functions
  - o layer\_1\_out = tanh(dot(W, X) + b)
  - layer\_2\_out = tanh(dot(V, layer\_1\_out) + c) ...
- Backpropagation to "step" values of W,V,b,c

## **General Guidelines**

- Prefer rectified activation (ReLU)
  - o def relu(X): return X \* (X > 0)
- Optimization
  - RMSProp w. momentum, ADaM (easiest to tune)
  - Stochastic Gradient Descent w. momentum (harder)
- Regularize with Dropout
  - https://www.cs.toronto.edu/~hinton/csc2535/notes/lec6a.ppt
- Great initialization reference
  - https://plus.google.com/+SoumithChintala/posts/RZfdrRQWL6u





**ENCODE** 

DECODE







Conditioning, Visually



## In Practice...



- Conditioning is a strong signal
  - p(x\_hat | z) vs. p(x\_hat | z, y)
- Can give control or add prior knowledge
- Classification is an even stronger form
  - Prediction is learned by maximizing  $p(y \mid x)$ !
  - In classification, don't worry about forming a useful z

# **Conditioning Feedforward**

- Concatenate features
  - concatenate((X\_train, conditioning), axis=1)
  - p(y | X\_1 ... X\_n, L\_1 ... L\_n)
- One hot label L (scikit-learn label binarize)
- Could also be real valued
- Concat followed with multiple layers to "mix"



# **Convolution and Recurrence**

- Exploit structure and prior knowledge
  - Locality, neighbors have key information (convolution)
  - Sequence, ordering is crucial (recurrence)
- Convolution (Not discussed here)
- Recurrence
  - p(y | X\_1 ... X\_n) can be seen as:
  - $\circ$  ~ p(y | X\_1) \* p(y | X\_2, X\_1) \* p(y | X\_3, X\_2, X\_1) ...

#### More on Recurrence

- Hidden state (s\_t) encodes sequence info
  - X\_1 ... X\_t, but compressed
- Recurrence similar to
  - Hidden Markov Model (HMM)
  - Kalman Filter





## Yet More On Recurrence

- Initialize hidden state to be orthogonal
  - Use U from U, S, V = svd(randn\_init)
- Long short term memory or gated recurrent
  - {LSTM, GRU} fancy recurrent activations
- {Sentences, dialogues, sounds} are sequences
  - Many-to-one (sequence recognition)
  - Many-to-many (sequence to sequence)
  - One-to-many (sequence generation)
  - Many-to-one-to-many (encode-decode)

# **Parameterizing Distributions**

- sigmoid -> Bernoulli
- softmax -> Multinomial
- linear, linear -> Gaussian with mean, log\_var
- softmax, linear, linear -> Gaussian mixture
- Depends crucially on the cost
- Can combine with recurrence
  - Learned, dynamic distributions over sequences
  - Incredibly powerful

## Where is it used?

- Image classification (conv)
- Text-to-text translation (rec encode-decode)
- Q&A systems / chatbots (rec encode-decode)
- Speech recognition (rec or conv)
- Speech synthesis (rec with GMM output)



## **Future Directions**

- Attention
- Dedicated memory
  - Separate "what" from "where"
  - Similar to attention
- Combine with reinforcement learning
  - No more labels?
  - Deep Q Learning playing Atari from video!
  - https://www.youtube.com/watch?v=V1eYniJ0Rnk#t=1m12s



A giraffe standing in a forest with trees in the background.

## Takeaways and Opinions

- Can use deep learning like graphical modeling
  - Different tools, same conceptual idea
  - Conditional probability modeling is key
- Put knowledge in model structure, not features
- Let features be learned from data
- Use conditioning to control or constrain



# Thanks!

Repo with slides and links <a href="https://github.com/kastnerkyle/SciPy2015">https://github.com/kastnerkyle/SciPy2015</a> Slides will be uploaded to <a href="https://speakerdeck.com/kastnerkyle">https://speakerdeck.com/kastnerkyle</a>

sklearn-theano, a scikit-learn compatible library for using pretrained networks : <a href="http://sklearn-theano.github.io/">http://sklearn-theano.github.io/</a>

Neural network tutorial by @NewMu / Alec Radford : <a href="https://github.com/Newmu/Theano-Tutorials">https://github.com/Newmu/Theano-Tutorials</a>

Theano Deep Learning Tutorials: <a href="http://deeplearning.net/tutorial/">http://deeplearning.net/tutorial/</a>

## References and Links

Deep Learning Book (Goodfellow, Courville, Bengio): <a href="http://www.iro.umontreal.ca/~bengioy/dlbook/">http://www.iro.umontreal.ca/~bengioy/dlbook/</a>

Deep Learning Course (Courville): <a href="https://ift6266h15.wordpress.com/">https://ift6266h15.wordpress.com/</a>

Deep Learning Course (Larochelle): <a href="https://www.youtube.com/playlist?">https://www.youtube.com/playlist?</a>

list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

Encode Decode with Attention (Bahdanau, Cho, Bengio): http://arxiv.org/abs/1409.0473

Caption Generation (Xu, Ba, Kiros et. al.): <a href="http://arxiv.org/abs/1502.03044">http://arxiv.org/abs/1502.03044</a>

Generating Sequences with Recurrent Neural Networks (Graves): http://arxiv.org/abs/1308.0850

Depth Map Prediction From A Single Image (Eigen, Puhrsch, Fergus): http://arxiv.org/abs/1406.2283

Semi Supervised Learning (Kingma, Rezende, Mohamed, Welling): http://arxiv.org/abs/1406.5298

Neural Networks Coursera (Hinton): <a href="https://www.coursera.org/course/neuralnets">https://www.coursera.org/course/neuralnets</a>

Understanding The Difficulties in Training Deep Feedforward Networks (Glorot, Bengio): <a href="http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf">http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf</a>

Advances in Optimizing Recurrent Nerural Networks (Pascanu, Boulanger-Lewandowski, Bengio): <a href="http://arxiv.org/abs/1212.0901">http://arxiv.org/abs/1212.0901</a>

# **CUT SLIDES**

#### Where is it used?

- Image classification
- Text-to-text translation
- Q&A systems / chatbots
- Speech recognition
- Speech synthesis
- Usually many, many datapoints

# Deep Learning, Simple Concepts

- Universal function approximators
- Learn the features
- Expect hierarchy in learned features
  - $\circ$  y = h(g(f(x))
  - {h, g, f} are functions
- Classification
  - Learn  $p(y \mid x) = h(g(f(x)))$



## When To Use Feedforward

- Use for modeling p(y | X\_1 ... X\_n)
  - X\_1 ... X\_n represent features
- Initialize with Xavier method
  - +- 4 \* sqrt(6. / (in\_sz + out\_sz)) uniform
  - +- 0.01 uniform or 0.01 std randn can work
  - Great reference: <a href="https://plus.google.com/+SoumithChintala/posts/RZfdrRQWL6u">https://plus.google.com/+SoumithChintala/posts/RZfdrRQWL6u</a>

## **More on Convolution**

- S.O.
- Define size of feature map and how many
  - Similar to output size of feedforward layer
- Parameter sharing
  - Small filter moves over entire input
  - Local statistics consistent over all regions
- Condition by concatenating
  - Along "channel" axis
  - http://arxiv.org/abs/1406.2283

| <b>1</b> <sub>×1</sub> | 1,0         | 1,  | 0 | 0 |
|------------------------|-------------|-----|---|---|
| <b>O</b> <sub>×0</sub> | 1,          | 1,0 | 1 | 0 |
| <b>0</b> <sub>×1</sub> | <b>0</b> ×0 | 1,  | 1 | 1 |
| 0                      | 0           | 1   | 1 | 0 |
| 0                      | 1           | 1   | 0 | 0 |



Image Convolved Feature