Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 18 martie 2017

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a XI-a

Problema 1. Fie $(a_n)_{n\geq 1}$ un şir de numere reale astfel încât $a_1>2$ şi $a_{n+1}=1+\frac{2}{a}$, pentru orice $n \geq 1$.

- a) Arătați că $a_{2n-1} + a_{2n} > 4$, oricare ar fi $n \ge 1$ și că $\lim_{n \to \infty} a_n = 2$.
- b) Determinați cel mai mare număr real a pentru care inegalitatea

$$\sqrt{x^2 + a_1^2} + \sqrt{x^2 + a_2^2} + \sqrt{x^2 + a_3^2} + \dots + \sqrt{x^2 + a_n^2} > n\sqrt{x^2 + a^2}$$

este adevărată oricare ar fi $x \in \mathbb{R}$ și oricare ar fi $n \in \mathbb{N}^*$.

Gazeta Matematică

b) Pentru
$$x=0$$
 rezultă $a<\frac{a_1+\ldots+a_n}{n}$, deci $a\leq \lim_{n\to\infty}\frac{a_1+\ldots+a_n}{n}=2\ldots\ldots 1$ p

 $+a_{2n}^2+2\sqrt{(x^2+a_{2n-1}^2)(x^2+a_{2n}^2)}>2x^2+16$. Cum $a_{2n-1}+a_{2n}>4$ implică $a_{2n-1}^2+a_{2n}^2>8$, e suficient să arătăm că $a_{2n-1}a_{2n}\geq 4$, ceea ce rezultă din $a_{2n-1}>2$ și $a_{2n}=1+2/a_{2n-1}\ldots 2\mathbf{p}$

Problema 2. a) Arătați că există funcțiile $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to \mathbb{R}$ cu proprietățile $f \circ g = g \circ f$, $f \circ f = g \circ g$ și $f(x) \neq g(x), \forall x \in \mathbb{R}$.

b) Arătați că dacă $f: \mathbb{R} \to \mathbb{R}$ și $g: \mathbb{R} \to \mathbb{R}$ sunt funcții continue cu proprietățile $f \circ g = g \circ f$ şi $f(x) \neq g(x), \forall x \in \mathbb{R}$, atunci $(f \circ f)(x) \neq (g \circ g)(x), \forall x \in \mathbb{R}$.

Soluţie. a) Funcţiile
$$f(x) = \begin{cases} -1, x < 0 \\ 1, x \ge 0 \end{cases}$$
, $g(x) = \begin{cases} 1, x < 0 \\ -1, x \ge 0 \end{cases}$ îndeplinesc cerinţa $\mathbf{2p}$

b) Funcția h = f - g este continuă și nu se anulează, deci fie h(x) > 0, $\forall x \in \mathbb{R}$, fie

În cazul $f(x) > g(x), \forall x \in \mathbb{R}$ rezultă $f(f(x)) > g(f(x)) = f(g(x)) > g(g(x)), \forall x \in \mathbb{R}$. În cazul $f(x) < g(x), \forall x \in \mathbb{R}, f(f(x)) < g(f(x)) = f(g(x)) < g(g(x)), \forall x \in \mathbb{R} \dots 4p$

Problema 3. Se consideră două matrice $A, B \in M_2(\mathbb{R})$ ce nu comută.

- a) Știind că $A^3 = B^3$, arătați că A^n și B^n au aceeași urmă, pentru orice număr natural nenul n.
- b) Dați exemplu de două matrice $A, B \in M_2(\mathbb{R})$ ce nu comută, astfel ca pentru orice număr natural nenul n, A^n și B^n să fie diferite dar să aibă aceeași urmă.

Soluție. a) Din $A^3 = B^3$ reiese det $A = \det B = d$ și din formula Hamilton-Cayley obținem

rezultă
$$A^* = BC$$
 cu $B = \begin{pmatrix} b_1 & 0 & \dots & 0 \\ b_2 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_n & 0 & \dots & 0 \end{pmatrix}, C = \begin{pmatrix} c_1 & c_2 & \dots & c_n \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} \dots \mathbf{1p}$

$$(A^*)^2 = (BC)(BC) = B(CB)C = BDC$$
, cu $D = \begin{pmatrix} t & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$, cu $t = \sum_{i=1}^n b_i c_i = \operatorname{tr} A^* \dots \mathbf{1p}$