Review questions

- 1. Find the gradient for the following functions
 - $(1) f(x, y, z) = \sin(xyz)$
 - (2) $f(x, y, z) = xe^y \cos z$
 - (3) $f(x, y, z) = y^2 e^{-2z}$
- 2. Find $\operatorname{div} \boldsymbol{F}$ and $\operatorname{curl} \boldsymbol{F}$
 - (1) $\mathbf{F} = \langle x^2, -2xy, yz^2 \rangle$
 - (2) $\mathbf{F} = \langle e^x \cos y, e^x \sin y, z \rangle$
- 3. Assuming that the required partial derivatives exist and are continuous, show that
 - (1) $\operatorname{div}(\operatorname{curl} \boldsymbol{F}) = 0$
 - $(2) \operatorname{curl}(\operatorname{grad} f) = 0$
- 4. (1) Evaluate $\int_C xy^2 dx + xy^2 dy$ along the path $C = C_1 \cup C_2$.
 - (2) Evaluate $\int_{C_3} xy^2 dx + xy^2 dy$ along C_3 .

- 5. Evaluate $\int_C y^3 dx + x^3 dy$; C is the curve x = 2t, $y = t^2 3$, $-2 \le t \le 1$.
- 6. Evaluate $\int_C xzdx + (y+z)dy + xdz$; C is the curve $x = e^t$, $y = e^{-t}$, $z = e^{2t}$, $0 \le t \le 1$.
- 7. Find the work done by the force F in moving a particle along the curve C.
 - (1) $F(x,y) = (x^3 y^3)\mathbf{i} + xy^2\mathbf{j}$; C is the curve $x = t^2, y = t^3, -1 \le t \le 0$.
 - (2) $F(x, y, z) = \langle 2x y, 2z, y z \rangle$; C is the curve $x = \sin \frac{\pi t}{2}$, $y = \sin \frac{\pi t}{2}$, z = t, $0 \le t \le 1$.
- 8. Determine whether the given field $\mathbf{F} \cdot d\mathbf{r}$ is exact. If so, find f such that $\mathbf{F} = \nabla f$.
 - (1) $\mathbf{F}(x,y) = <12x^2 + 3y^2 + 5y$, $6xy 3y^2 + 5x >$.
 - (2) $\mathbf{F}(x, y) = \langle 4y^2 \cos(xy^2), 8x \cos(xy^2) \rangle$.
 - (3) $F(x, y, z) = <3x^2, 6y^2, 9z^2 >$.
- 9. (1) $\int_{(-1,2)}^{(3,1)} (y^2 + 2xy) dx + (x^2 + 2xy) dy$
 - $(2)\int_{(0,0,0)}^{(\pi,\pi,0)}(\cos x + 2yz)dx + (\sin y + 2xz)dy + (z + 2xy)dz.$
- 10. Sketch the region *S* and evaluate the line integral by Green's theorem.
 - (1) $\oint_C 2xydx + y^2dy$, where *C* is the closed curve formed by $y = \frac{x}{2}$ and $y = \sqrt{x}$ between (0,0) and (4,2).
 - (2) $\oint_C xydx + (x+y)dy$, where C is the triangle with vertices (0,0), (2,0) and (0,1).

- 11. Find the area of the region S by using $A(s) = \frac{1}{2} \oint_C x dy y dx$.
 - (1) S is bounded by the curves y=4x and $y=2x^2$.
 - (2) S is bounded by $(x + y)^2 = ax$ and x-axis.
- 12. Evaluate the surface integral $\iint_S g(x, y, z) dA$, where g(x, y, z) = x and S: x + y + 2z = 4, $0 \le x \le 1, 0 \le y \le 1$.
- 13. Find the area of the surface $z = x^2 + y^2$ below the plane z=9.
- 14. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} dA$.
 - (1) $\mathbf{F} = \langle -x^2, y^2, 0 \rangle$, $S: \mathbf{r}(u, v) = \langle u, v, 3u 2v \rangle$, $0 \le u \le \frac{3}{2}$, $-2 \le v \le 2$.
 - (2) $\mathbf{F} = \langle \tan(xy), x, y \rangle, S: y^2 + z^2 = 1, 2 \le x \le 5, y \ge 0, z \ge 0.$
- 15. Evaluate the surface integral $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} dA$ by the divergence theorem.
 - (1) $F = \langle x^2, 0, z^2 \rangle$, S is the surface of the box $|x| \le 1$, $|y| \le 3$, $0 \le z \le 2$.
 - (2) $\mathbf{F} = \langle x, 2y + z, z + x^2 \rangle$, S is the surface of $1 \le x^2 + y^2 + z^2 \le 4$.
 - (3) $\mathbf{F} = \langle x^2, y^2, z^2 \rangle$, S is the surface of the solid bounded by x + y + z = 4, x = 0, y = 0, z = 0.
- 16. Verify Stokes's theorem for $F = \langle y, -x, yz \rangle$ if S is the paraboloid $z = x^2 + y^2$ with the circle $x^2 + y^2 = 1$, z = 1 as its boundary. Here we take the normal vector of the surface as upward.
- 17. Use Stokes's theorem to calculate $\iint_S (curl \mathbf{F}) \cdot \mathbf{n} dA$, where $\mathbf{F} = \langle xz^2, x^3, \cos(xz) \rangle$; S is the part of the ellipsoid $x^2 + y^2 + 3z^2 = 1$ above the xy-plane and \mathbf{n} is the upward normal vector.