

Spatial distribution in MSI

Instrument response estimation, image correction, and resolution and clustering

Xavier Loizeau

Contents

MSI spatial distribution: a proposal for modelling

General framework

The (under) sampling case

The oversampling case

What is the point?

Instrument response estimation

Image correction

Contents

MSI spatial distribution: a proposal for modelling

General framework

The (under) sampling case

The oversampling case

What is the point

The sample distribution

Figure: Spatial distribution f_X in m^{-2} and a sample $(X_1, ..., X_n)$ from it

General framework

The sampling design

- ▶ Discrete sampling: the laser stops at q different spots $(y_1, ..., y_q)$ for a fixed duration t_0 ;
- ► Continuous sampling: the laser is driven along a path Γ and its position at time t is $\Gamma(t)$;

Figure: Sampling design $(y_1, ..., y_q)$ in spot mode

Figure: Sampling design Γ in raster mode

The ionisation phenomenon I

Figure: Laser irradiance I(x) in $W.m^{-2}$

Figure: Ionisation probability function $\mathcal{F}_{\mathbb{P}}(t,y_r-X)$

The ionisation phenomenon II

Figure: Ionisation probability function $\mathcal{F}_{\mathbb{P}}(t_0,y-x)$ for different values of t_0

The (under) sampling case

Where will we see the molecule?

Recorded position: Y is the position of the laser when the molecule is detected;

$$\mathbb{P}(Y = y_r) = (\mathscr{F}_{\mathbb{P}}(t_0, \cdot) \star f_x)(y_r)$$

Figure: The sampling design

for the region -	(g) (d) (d) (d)	ď
	CBX db AB ABA	8
	× des × des × des × des × des	'g"
	× fte > gco > gco > gco > fco > fco >	~ g*

The (under)sampling case

Distribution of the observation

Image:

- ► 1 pixel = 1 laser position
- $\blacktriangleright \text{ pixel } r \text{ contains } Z_r = \frac{1}{n} \sum_{p=1}^n \mathbb{1}_{\{Y_p = y_r\}}$

$$\mathbb{P}(Z_r = p) = \binom{n}{n \cdot p} \cdot ((\mathscr{I}_{\mathbb{P}}(t_0, \cdot) \star f_X)(y_r))^{n \cdot p} \cdot (1 - (\mathscr{I}_{\mathbb{P}}(t_0, \cdot) \star f_X)(y_r))^{n \cdot (1-p)}$$

$$\mathbb{E}\left[Z_r\right] = (\mathcal{I}_{\mathbb{P}}(t_0,\cdot) \star f_X)(y_r)$$

$$\mathbb{V}\left[Z_r\right] \leq \frac{1}{4 \cdot n}$$

Oversampling: where will we see the molecule?

Recorded position: Y is the position of the laser when the molecule is detected;

$$\mathbb{P}(Y=y_r) = (\mathcal{I}_{\mathbb{P}}(t_0,\cdot) \star f_X)(y_r) \cdot \prod_{s=1}^{r-1} (1 - (\mathcal{I}_{\mathbb{P}}(t_0,\cdot) \star f_X)(y_s))$$

Figure: The sampling design

Oversampling: Distribution of the observation

$$\mathbb{P}(Z_r = p) = \binom{n}{n \cdot p} \cdot (\mathbb{P}(Y = y_r))^{n \cdot p} \cdot (1 - \mathbb{P}(Y = y_r))^{n \cdot (1 - p)}$$

$$\mathbb{E}[Z_r] = (\mathbb{P} \star f_X)(y_r) \cdot \prod_{s=1}^{r-1} (1 - (\mathbb{P} \star f_X)(y_s))$$

$$\mathbb{V}[Z_r] \le \frac{1}{4 \cdot n}$$

Contents

MSI spatial distribution: a proposal for modelling

What is the point?
Instrument response estimation
Image correction

Spectra of data

11

Figure: Spectra of the data in 2D

Figure: Spectra of the data in 1D

Figure: Adaptive shrinkage estimator in 1D

Figure: Edge in 1D

14

Figure: Spectra of the edge in 2D

Figure: Spectra of the edge in 1D

Noise estimation

Ionisation probability function estimate in 1D

Figure: Adaptive shrinkage estimator of $\mathscr{F}_{\mathbb{P}}(t_0,\cdot)$ in 1D

Figure: Adaptive shrinkage estimator of $\mathscr{F}_{\mathbb{P}}(t_0,\cdot)$ in 1D

Noise estimation

Progress in this direction

- complete implementation in 2D;
- estimate quantiles of $\mathscr{F}_{\mathbb{P}}$;
- ightharpoonup confidence bands for $\mathcal{F}_{\mathbb{P}}$;
- ▶ far future (spatial statistic): from estimations of $\mathcal{F}_{\mathbb{P}}$ for a set of parameters (time, laser profile, end-member nature,...) estimate it for new values of parameters.

Image correction

- ► <u>Given:</u> an estimate $\widehat{\mathcal{F}}_{\mathbb{P}}$ of $\mathcal{F}_{\mathbb{P}}$ and an image $(Z_r)_{r \in [1,q]}$ of a sample with unknown end-member spatial distribution f_X ;
- ► <u>Goal</u>: estimate f_X by deconvolving $\widehat{\mathcal{F}}_{\mathbb{P}}$ from $(Z_r)_{r \in [1,q]}$.