MATHF-105 : Probabilités Résumé

R. Petit

Année académique 2015 - 2016

Contents

1	Rap	pels	
	1.1	Rappe	l sur les séries
		1.1.1	Exemple sur les séries
		1.1.2	Conclusion de la suite géométrique
	1.2	Rappe	ls d'analyse
2	Esp	aces de	e probabilités
	2.1	Définit	iion
		2.1.1	Loi uniforme sur un ensemble fini (ou dénombrable)
		2.1.2	Loi uniforme sur un ensemble infini (intervalle)
	2.2		es
		2.2.1	Modèles discrets
		2.2.2	Modèles continus (à densité)
		2.2.3	Divergence sur la fonction Gamma d'Euler
		2.2.4	Retour aux modèles stochastiques
	2.3	Notion	de variables aléatoires
		2.3.1	Cas discret
		2.3.2	Cas absolument continu
	2.4		ème de de Moivre-Laplace

1 Rappels

1.1 Rappel sur les séries

Les fonctions logarithmique et exponentielle ont un développement de Taylor exact. Pour la fonction logarithmique, on a, pour $x \in (-1,1)$:

$$\log(1-x) = -\sum_{k>1} \frac{x^k}{k}.$$

Si on pose $S_n := \sum_{k=1}^n u_k$, on a $(S_n)_{n \in \mathbb{N}}$, la suite des sommes partielles, et $n \mapsto S_n$, une application croissante si (u_n) est une suite positive. Il y a donc deux situations distinctes possibles :

- (S_n) est une suite bornée $(\exists M \in \mathbb{R} \text{ t. q. } \forall n \in \mathbb{N} : S_n \leq M)$ et donc converge vers $S \in \mathbb{R}$;
- (S_n) n'est pas bornée $(\forall M \in \mathbb{R} : \exists n \in \mathbb{N} \text{ t. q. } S_n > M)$ et donc diverge vers $+\infty$.

1.1.1 Exemple sur les séries

Prenons $u_n := x^n$, avec x > 0.

- Si x = 1, on a $n \to +\infty \Rightarrow S_n \to +\infty$;
- si $x \neq 1$, on a $(1-x)S_n = x x^{n+1}$, et donc :

$$S_n := x \frac{1 - x^n}{1 - x}.$$

- Si x < 1, alors $x^n \to 0$ pour $n \to +\infty$, et donc $S_n \to \frac{x}{1-x}$;
- si x > 1, alors $x^n \to +\infty$ pour $n \to +\infty$, et donc $S_n \to +\infty$.

1.1.2 Conclusion de la suite géométrique

On voit alors:

$$\sum_{n\geq 1} x^n = \begin{cases} \frac{x}{1-x} & \text{si } x \in [0,1) \\ +\infty & \text{sinon} \end{cases}.$$

Si la suite commence à l'indice 0, on a :

$$\sum_{n>0} x^n = 1 + \sum_{n>1} x^n = \begin{cases} 1 + \frac{x}{1-x} = \frac{1}{1-x} & \text{si } x \in [0,1) \\ +\infty & \text{sinon} \end{cases}.$$

1.2 Rappels d'analyse

Définition 1.1. Une fonction $f: X \to Y$ est dite mesurable si :

$$\forall A \subset \mathcal{B}(Y) : \{ \omega \in \Omega \text{ t. q. } X(\omega) \in A \} \in \mathcal{F},$$

où $\mathcal{B}(Y)$ représente la tribu des boréliens (voir définition 2.9).

2 Espaces de probabilités

2.1 Définition

Définition 2.1. L'ensemble Ω est l'espace des chances, l'ensemble des résultats possibles d'un phénomène aléatoire.

Remarque.

- Ω peut être fini (dénombrable) ou infini ;
- $\Omega = \{0,1\}^{\mathbb{N}}$ est l'ensemble des suites à valeur dans $\{0,1\}$;
- ullet Ω peut être un espace dit fonctionnel quand le résultat d'une expérience est une fonction.

Définition 2.2. Un événement E est un ensemble de réalisations possibles à une expérience tel que $E \subseteq \Omega$.

Remarque. L'ensemble $\mathcal{P}(\Omega)$ n'est pas toujours dénombrable. Et donc l'ensemble $\mathcal{P}(\Omega)$ est-il le bon ensemble pour décrire les événements ?

- Si $|\Omega| \in \mathbb{N}$: oui ;
- $\operatorname{si} |\Omega| \notin \mathbb{N}$: non.

Définition 2.3. \mathcal{F} est la classe des événements. On mesure la *probabilité d'occurrence* d'un événement $A \in \mathcal{F}$. On introduit une fonction d'ensemble \mathbb{P} où :

$$\mathbb{P}: \mathcal{F} \to [0,1]: A \mapsto \mathbb{P}(A).$$

On impose:

- $(i) \mathbb{P}(\emptyset) = 0 ;$
- (ii) $\mathbb{P}(\Omega) = 1$;
- (iii) $\forall A, B \in \mathcal{F} : A \cap B = \emptyset \Rightarrow \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$.

Proposition 2.4. Soient $A_1, \ldots, A_n \in \mathcal{F}$. On a :

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} (-1)^{i-1} \sum_{1 \le k_1 < \dots < k_i \le n} \mathbb{P}\left(\bigcap_{\gamma=1}^{i} A_{k_{\gamma}}\right).$$

2.1.1 Loi uniforme sur un ensemble fini (ou dénombrable)

Définition 2.5. Soient $m < n \in \mathbb{N}$. On définit l'intervalle entier [m, n] par :

$$[\![m, n]\!] : \{x \in \mathbb{N} \text{ t. q. } m \le x \le n\}.$$

Définition 2.6. Soit $\Omega = [1, n]$. Soit $A \subseteq \Omega$. La loi uniforme est donnée par :

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{|A|}{n}.$$

Remarque. Il arrive que |A| soit difficile à déterminer et qu'il faille aller chercher du côté de l'analyse combinatoire.

2.1.2 Loi uniforme sur un ensemble infini (intervalle)

Définition 2.7. Soit $\Omega = [0,1]$ et soit $A = [a,b] \subseteq \Omega$. La loi uniforme est donnée par :

$$\mathbb{P}(A) = (b - a).$$

Remarque. La définition de loi uniforme sur un intervalle fait intervenir la notion de mesure et donc de mesurabilité. Or il existe des parties de Ω sur lesquelles la mesure n'a pas de sens. En général, $\mathcal{P}(\Omega)$ est trop grand, et il faut donc remplacer l'utilisation de l'ensemble des parties par la notion de tribu.

Définition 2.8. Soit Ω un ensemble de chances et $\mathcal{F} \subseteq \mathcal{P}(\Omega)$ une famille de parties de Ω . On dit que \mathcal{F} est une tribu s'il respecte les trois propriétés suivantes :

- $\emptyset \in \mathcal{F}$;
- $\forall A: A \in \mathcal{F} \Rightarrow A^{\complement} \in \mathcal{F}$;
- $\forall A_1, \dots, A_n, \dots : A_1, \dots, A_n, \dots \in \mathcal{F} \Rightarrow \bigcup_{k>1} A_k \in \mathcal{F}.$

Une autre appellation pour une tribu est une σ -algèbre.

Remarque.

- On remarque que $\mathcal{P}(\Omega)$ est une tribu, mais une tribu trop grande pour être intéressante;
- Soit $A \in \mathcal{P}(\Omega)$. Alors $T := \{\emptyset, A, A^{\complement}, \mathcal{P}(\Omega)\}$ est une tribu. T est la plus petite tribu contenant A, et on l'appelle la **tribu engendrée par** A, que l'on note $\sigma(A)$.

Définition 2.9. Soit I une partie de $\mathcal{P}(\Omega)$. On appelle la *tribu engendrée par I* la plus petite tribu contenant I et on la note $\sigma(I)$.

En prenant $I := \{$ intervalles ouverts de $[0,1]\}$, on obtient $\sigma(I)$ que l'on appelle **tribu des boréliens**. ¹

Définition 2.10. Soit Ω un ensemble de chances et $\mathcal{F} \subset \mathcal{P}(\Omega)$ une tribu sur Ω . Une probabilité sur (Ω, \mathcal{F}) est une fonction \mathbb{P} définie par :

$$\mathbb{P}: \mathcal{F} \to [0,1]: A \mapsto \mathbb{P}(A),$$

où \mathbb{P} satisfait :

- $(i) \mathbb{P}(\emptyset) = 0$;
- (ii) $\forall A \in \mathcal{F} : \mathbb{P}(aA) + \mathbb{P}(A^{\complement}) = 1$;
- (iii) $\forall A_1, \ldots, A_n, \ldots$ disjoints deux à deux, on a :

$$\mathbb{P}\left(\bigcup_{k\geq 1} A_k\right) = \sum_{k\geq 1} \mathbb{P}(A_k).$$

Définition 2.11. On appelle $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilités.

Remarque. Probabiliser un expérience revient à déterminer :

- Ω , l'espace des chances ;
- \mathcal{F} , la classe des événements ;
- \mathbb{P} , la fonction d'ensembles sur \mathcal{F} .

¹Le nom de borélien vient du mathématicien français Émile Borel suite à ses travaux sur la théorie de la mesure.

2.2 Modèles

2.2.1 Modèles discrets

Remarque. On prend Ω un ensemble fini ou dénombrable. On prend également $\mathcal{F} = \mathcal{P}(\Omega)$.

Si Ω est fini, on parle de tirages, et si Ω est infini dénombrable, on parle de populations.

On pose:

$$\mathbb{P}: \{k\} \mapsto p_k \in [0, 1],$$

où:

$$\sum_{k \in \Omega} p_k = 1$$

et pour $A = \{k_1, \ldots, k_n\} \in \mathcal{F}$:

$$\mathbb{P}(A) = \sum_{\gamma=1}^{n} p_{k_{\gamma}}.$$

Définition 2.12 (Modèle de Bernoulli). On prend $\Omega = \{0, 1\}$ où :

$$\begin{cases} p_0 &= 1 - p \\ p_1 &= p \end{cases}.$$

Remarque. Il est évident que $p + (1 - p) = 1 = P(\Omega)$.

Définition 2.13 (Modèle binomial). On prend $\Omega = \llbracket 0, N \rrbracket$ (et donc $\mathcal{F} = \mathcal{P}(\Omega)$) et $p \in [0, 1]$. Le modèle binomial est défini par $p_k = \binom{n}{k} p^k (1-p)^{N-k}$ pour tout $k \in \llbracket 0, N \rrbracket$.

Remarque. On remarque que $\sum_{k\geq 1} p_k = 1$ car les p_k représentent les termes du binôme de Newton $(p+(1-p))^N = 1^N = 1$.

Définition 2.14 (Modèle géométrique). On prend $\Omega = \mathbb{N}$, $\mathcal{F} = \mathcal{F}(\Omega) \simeq \mathbb{R}$, et $p \in (0,1)$. Le modèle géométrique est défini par $p_k = (1-p)^{k-1}p$ pour tout $k \in \mathbb{N}$.

Remarque. On remarque que :

$$\sum_{k\geq 1} p_k = \sum_{k\geq 1} p(1-p)^{k-1} = p \sum_{k\geq 0} (1-p)^k = p \frac{1}{1-(1-p)} = \frac{p}{p} = 1,$$

où on utilise la formule de la somme des termes d'une suite géométrique u définie par $u_n = u_{n-1}q$ pour $n \ge 1$ (avec 0 < q < 1) qui donne :

$$\sum_{k=0}^{N} u_k = u_0 \frac{1 - q^{N+1}}{1 - q},$$

et pour la série, il suffit de passer à la limite :

$$\lim_{N \to +\infty} \sum_{k=0}^{N} u_k = \lim_{N \to +\infty} u_0 \frac{1 - q^{N+1}}{1 - q} = u_0 \frac{1}{1 - q}.$$

Définition 2.15 (Modèle de Poisson). On prend $\Omega = \mathbb{N}$, $\mathcal{F} = \mathcal{P}(\Omega)$, et un paramètre $\lambda \in \mathbb{R}_0^+$. Le modèle poissonien est défini par $p_k = \exp(-\lambda)\frac{\lambda^k}{k!}$ pour tout $k \in \mathbb{N}$.

Remarque. On remarque que $\mathbb{P}(\Omega) = 1$ en utilisant la formule de Taylor de l'exponentielle :

$$\exp(x) = \sum_{k>0} \frac{x^k}{k!}.$$

On a effectivement:

$$\mathbb{P}(\Omega) = \sum_{k \ge 0} \mathbb{P}(\{k\}) = \sum_{k \ge 0} p_k = \sum_{k \ge 0} \exp(-\lambda) \frac{\lambda^k}{k!} = \exp(-\lambda) \exp(\lambda) = 1.$$

2.2.2 Modèles continus (à densité)

Remarque. On prend Ω un intervalle (fini ou infini²) sur \mathbb{R} , et $\mathcal{F} = \mathcal{B}(I)$, la tribu des boréliens sur I^3 .

Définition 2.16. Soit $f: I \to \mathbb{R}^+$ une fonction intégrable telle que $\int_{\mathbb{R}} f(x) dx = 1$. Soit $A \in \mathcal{F}$, on pose $\mathbb{P}(A) = \int_A f(x) dx$. f est appelée fonction de densité de modèle stochastique.

Définition 2.17 (Loi uniforme continue). On prend I = [a, b] avec $a < b \mathfrak{B} \mathbb{R}$. Le modèle uniforme est défini par f constante :

$$f(x) = \begin{cases} 0 & \text{si } x \notin [a, b] \\ \frac{1}{b-a} & \text{si } x \in [a, b] \end{cases}.$$

Remarque. On remarque effectivement $\int_{\mathbb{R}} f(x) dx = 1$:

$$\int_{\mathbb{R}} f(x) \, \mathrm{d}x = \int_{-\infty}^{a} f(x) \, \mathrm{d}x + \int_{a}^{b} f(x) \, \mathrm{d}x + \int_{b}^{+\infty} f(x) \, \mathrm{d}x = 0 + \frac{1}{b-a} \int_{a}^{b} \mathrm{d}x + 0 = 1.$$

Définition 2.18 (Modèle exponentiel). ⁴ On prend $I = \mathbb{R}^+$ et $\lambda > 0$. Le modèle exponentiel est défini par :

$$f(x) = \begin{cases} \lambda \exp(-\lambda x) & \text{si } x \ge 0\\ 0 & \text{sinon} \end{cases}.$$

Remarque. On peut calculer l'intégrale impropre comme suit :

$$\int_{\mathbb{R}} f(x) dx = \int_{-\infty}^{0} f(x) dx + \int_{0}^{+\infty} f(x) dx = 0 + \lim_{M \to +\infty} \int_{0}^{M} f(x) dx$$
$$= \lim_{M \to +\infty} \left[-\exp(-\lambda x) \right]_{0}^{M} = \lim_{M \to +\infty} \left(1 - \exp(-\lambda M) \right) = 1.$$

Définition 2.19 (Modèle gaussien). ⁵ On prend $I = \mathbb{R}$, et $(\mu, \sigma) \in \mathbb{R} \times \mathbb{R}_0^+$. Le modèle gaussien est défini par :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

²On parle d'intervalle fini pour [a,b], avec $a < b \in \mathbb{R}$ et d'intervalle semi-infini pour $(-\infty,b]$ ou $[a,+\infty)$ et d'intervalle infini pour $(-\infty,+\infty) = \mathbb{R}$.

 $^{^3}$ Ou encore la tribu engendrée par les intervalles de I.

⁴Également appelé modèle des files d'attente.

⁵Également appelé modèle des erreurs ou encore modèle normal.

Remarque. Pour que $\mathbb P$ soit une probabilité, il faut que f soit définie positive. Or f est une exponentielle multipliée par un coefficient positif. Il faut également $\int_{\mathbb R} f(x) \, \mathrm{d}x = 1$, ce qui peut se vérifier par :

$$\int_{\mathbb{R}} f(x) \, \mathrm{d}x,$$

en posant $y := x - \mu$, et donc dy = dx:

$$\int_{\mathbb{R}} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{y^2}{2\sigma^2}\right) = \frac{1}{\sigma \sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{y^2}{2\sigma^2}\right).$$

En posant $z := \frac{y}{\sigma}$ (et donc $dz = \frac{dx}{\sigma}$), on obtient :

$$\int_{\mathbb{R}} f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \exp\left(-\frac{z^2}{2}\right) dz.$$

Une primitive de $\exp\left(-\frac{z^2}{2}\right)$ est :

$$\int_{-\infty}^{z} \exp\left(-\frac{x^2}{2}\right) \frac{\mathrm{d}x}{\sqrt{2\pi}} = \mathrm{Erf}(z).$$

On écrit alors :

$$\mathbb{P}(\Omega)^2 = \left(\int_{\mathbb{R}} \exp\left(-\frac{x^2}{2}\right) \frac{\mathrm{d}x}{\sqrt{2\pi}} \right) \left(\int_{\mathbb{R}} \exp\left(-\frac{y^2}{2}\right) \frac{\mathrm{d}y}{\sqrt{2\pi}} \right)$$
$$= \iint_{\mathbb{R}^2} \exp\left(-\frac{x^2 + y^2}{2}\right) \frac{\mathrm{d}x \, \mathrm{d}y}{2\pi}.$$

En passant en coordonnées polaires, on obtient :

$$\mathbb{P}(\Omega)^2 = \int_{-\pi}^{+\pi} \int_{\mathbb{R}} \exp\left(-\frac{r^2}{2}\right) \frac{r \, \mathrm{d}r \, \mathrm{d}\theta}{2\pi} = \int_{-\pi}^{+\pi} \frac{\mathrm{d}\theta}{2\pi} \int_{\mathbb{R}} r \exp\left(-\frac{r^2}{2}\right) \, \mathrm{d}r = \left[-\exp\left(-\frac{r^2}{2}\right)\right]_{0}^{+\infty} = 1.$$

On en déduit alors $\mathbb{P}(\Omega) = 1$ également. \mathbb{P} est donc bien une probabilité.

Définition 2.20. On a défini une probabilité sur $(R^+, (R^+))$ via la fonction $f(r) = r \exp\left(-\frac{r^2}{2}\right)$. On l'appelle la *probabilité de Rayleigh*.

2.2.3 Divergence sur la fonction Gamma d'Euler

Définition 2.21 (Fonction Gamma d'Euler). La fonction Gamma d'Euler est définie comme suit :

$$\Gamma: \mathbb{R}_0^+ \to \mathbb{R}: x \mapsto \int_0^{+\infty} \exp(-x) x^{t-1} \, \mathrm{d}x.$$

Remarque. On note $\gamma := -\Gamma'(1) > 0$ la constante d'Euler-Mascheroni. La question $\gamma \stackrel{?}{\in} \mathbb{Q}$ est toujours ouverte.

Proposition 2.22. $\forall t > 0 : \Gamma(t+1) = t\Gamma(t)$.

 $D\'{e}monstration$. Soit t > 0. Par l'intégration par parties, on a :

$$\Gamma(t+1) = \int_0^{+\infty} \exp(-x)x^t \, dx = \left[-x^t \exp(-x) \right]_0^{+\infty} + t \int_0^{+\infty} \exp(-x)x^{t-1} \, dx = t\Gamma(t).$$

Remarque. Par la proposition 2.22, on peut définir la factorielle de tout nombre naturel par :

$$\forall n \in \mathbb{N}^* : n! = \Gamma(n+1)$$

Proposition 2.23 (Formule des compléments). Soit $t \in (0,1)$. Alors :

$$\Gamma(t)\Gamma(1-t) = \frac{\pi}{\sin(\pi t)}.$$

2.2.4 Retour aux modèles stochastiques

Définition 2.24 (Modèle Gamma). ⁶ On prend $\Omega = \mathbb{R}^+$. Le modèle Gamma est défini par :

$$f_t(x)\frac{x^t - \exp(-x)}{\Gamma(t)}.$$

2.3 Notion de variables aléatoires

2.3.1 Cas discret

Définition 2.25. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Une variable aléatoire discrète⁷ est une application $X : \Omega \to E$ où E est un ensemble fini ou infini dénombrable. On demande à cette application d'être mesurable.

Remarque.

- Bien souvent, on a $E = \Omega$, et $X(\omega) = \omega$. Dans ce cas, on *identifie* l'espace des chances avec l'espace d'arrivée. La probabilité \mathbb{P} s'appelle alors la **loi** de la variable aléatoire X.
- Il arrive parfois que l'espace de probabilités soit plus gros que l'espace d'état.

Définition 2.26. Plus formellement, la **loi** d'une v.a.d. X est l'ensemble :

$$\{\mathbb{P}(X=x) \text{ t. q. } x \in E\}.$$

Définition 2.27. Pour toute valeur $k \in E$ que peut prendre la variable aléatoire X, on note $\mathbb{P}(X = k)$ la probabilité que la variable X prenne la valeur k. C'est équivalent à $\mathbb{P}(X(\omega) = k)$ pour $\omega \in \Omega$.

Définition 2.28. Lorsqu'une v.a.d. X suit une certaine loi \mathcal{L} , on note $X \sim \mathcal{L}$.

Par exemple, une variable Y suivant une poisson de paramètre λ se note $Y \sim \mathcal{P}(\lambda)$.

 $^{^6}$ Le modèle Γ est une généralisation du modèle exponentiel (définition 2.18).

⁷Souvent écrite v.a.d. ou V.A.-D.

2.3.2 Cas absolument continu

Définition 2.29. Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Une variable aléatoire absolument continue⁸ est une application $X : \Omega \to \mathbb{R}$ mesurable au sens où :

$$\forall A \in \mathcal{B}(\mathbb{R}) : \{ \omega \in \Omega \text{ t. q. } X(\omega) \in A \} \in \mathcal{F},$$

et absolument continue au sens où :

$$\exists f_X : \mathbb{R} \to \mathbb{R}^+$$

mesurable et telle que :

$$\int_{\mathbb{R}} f_X(x) \, \mathrm{d}x = 1,$$

avec:

$$\mathbb{P}(X \in A) = \int_{A} f_X(x) \, \mathrm{d}x. \tag{1}$$

Définition 2.30. On appelle f_X la densité de X.

Remarque. La loi de X est donnée par (1).

Définition 2.31. On note $F_X(t) = \mathbb{P}(X \le t)$, ou encore $F_X(t) = \int_{-\infty}^t f(x) \, \mathrm{d}x$ (en prenant $A = (-\infty, t]$).

Remarque. La fonction $t \mapsto F_X(t)$ est continue et est (presque) partout dérivable avec :

$$\frac{\partial F_X}{\partial t}(t) = f_X(t) \ge 0.$$

Donc F_X est croissante avec :

$$\lim_{t \to -\infty} F_X(t) = 0,$$

et:

$$\lim_{t \to +\infty} F_X(t) = 1.$$

Remarque. On peut associer une fonction de répartition F_X à toute variable aléatoire X, même si X est une v.a.d. Dans ce cas, on construit F_X constante par morceaux (et présente donc des points de discontinuité).

Définition 2.32. Si F_X est continue, on dit que X est continue.

Remarque. Donc si X est continue, alors $\mathbb{P}(X=x) = F_X(x) - \lim_{y \to x} F_X(y) = 0$. Ce résultat peut également être observé en utilisant le fait que $\mathbb{P}(X=x) = \in_x^x f(x) \, \mathrm{d}x$, et une intégration sur un point est nulle. Remarque. Il existe des fonction continues nulle part dérivables. On peut donc avoir $F_X(t)$ continue mais pas sous la forme suivante :

$$F_X(t) = \int_{-\infty}^t f(x) \, \mathrm{d}x,\tag{2}$$

pour une fonction f_X donnée.

Définition 2.33. On dit qu'une variable fonction $f : \mathbb{R} \to \mathbb{R}$ est **absolument continue** si elle admet une représentation intégrale de type (2).

Définition 2.34. Soit E un ensemble. La fonction 1_E est appelée **fonction indicatrice** est est définie telle que :

$$\forall x : 1_E(x) = \begin{cases} 1 & \text{si } x \in E \\ 0 & \text{sinon} \end{cases}.$$

⁸Souvent écrite v.a.c. ou V.A.-C.

Exemples

1. Si $X_1 \sim U_{[a,b]}$ est une v.a.c. uniforme sur [a,b], alors :

$$F_{X_1}(t) = \begin{cases} 0 & \text{si } t \le a \\ t - a & \text{si } a < t < b . \\ 1 & \text{si } t > b \end{cases}$$

2. Si $X_2 \sim \operatorname{Exp}(\lambda)$ est une v.a.c. exponentielle de paramètre λ , alors :

$$F_{X_2}(t) = \int_{-\infty}^{t} \lambda \exp(-\lambda t) 1_{(0,+\infty)}(t) = -\exp(-\lambda t) 1_{(0,+\infty)}(t).$$

3. Si $x_3 \sim \mathcal{N}(\mu, \sigma^2)$ est une v.a.c. normale de moyenne μ est de variance σ^2 , alors :

$$F_{X_3}(t) = \int_{-\infty}^t f(x) dx = \operatorname{Erf}\left(\frac{t-\mu}{\sigma}\right).$$

4. Si $X_4 \sim \mathcal{C}$ est une v.a.c. de Cauchy de densité donnée par :

$$f_{X_4}(x) = \frac{1}{\pi(1+x^2)},$$

alors:

$$F_{X_4}(t) = \frac{1}{2} + \frac{1}{\pi}\arctan(t).$$

2.4 Théorème de de Moivre-Laplace

Soient $p \in (0,1)$ et $n \geq 1$. On pose $X_{n,p} \sim \mathcal{B}(n,p)$.

Soit $Y_{n,p}$ défini par :

$$Y_{n,p} := \frac{X_{n,p} - np}{\sqrt{np(1-p)}}.$$

On remarque que $Y_{n,p}$ est une binomiale renormalisée.

Théorème 2.35 (Théorème de de Moivre-Laplace). $Si \ t \in \mathbb{R}$, alors:

$$\mathbb{P}(Y_{n,p} \le t) \stackrel{n \to +\infty}{\to} F_{\mathcal{N}(0,1)}(t).$$