

Circuit Analysis and Design

Academic year 2019/2020 - Semester 1 - Presentation 7

Masood Ur-Rehman, Qammer H. Abbasi, Guodong Zhao

{masood.urrehman, qammer.abbasi, guodong.zhao}@glasgow.ac.uk

"A good student never steal or cheat"

Agenda

- Introduction
- Superposition principle
- Source transformations
- Summary

Introduction

- The theorems are superposition principle, source transformation, Thévenin's theorem, Norton's theorem, and maximum power transfer.
- If a circuit contains more than one source, the circuit can be analyzed by summing the response from each source with all other sources deactivated. This is called the superposition principle.
- A voltage source with a series resistor is interchangeable with a current source in parallel to a resistor : **source transformation.**
- According to Thévenin's theorem, a given circuit is equivalent to a voltage source V_{th} and a series resistor R_{th} between terminals a and b.
- According to Norton's theorem, a given circuit is equivalent to a current source I_n and a parallel resistor R_n between terminals a and b.
- The load resistance R_L that maximizes the power delivered to the load is given by the Thévenin equivalent resistance R_{th} .

Superposition Principle

- Suppose that a circuit has N independent sources with N ≥ 2.
- Create N circuits from the original circuit with only one independent source by deactivating the other N-1 independent sources.
- Deactivating a current source is to open-circuit it and deactivating a voltage source is to short-circuit it.
- The unknown voltages and currents of the original circuit can be found by adding the voltages and currents from the N circuits with one independent source: superposition principle.
- The superposition principle reveals the contribution of each source to the voltages and currents in the circuit.
- It makes it easier to interpret the response of the circuit because we can trace the sources of the response.

Superposition Principle

 Consider a circuit with a voltage source V_s, a current source I_s, and two resistors R₁ and R₂.

Finding V₁ and I using superposition principle?

- Deactivate the current source by removing it from the circuit.
- The circuit contains only one independent source V_s.
- Applying the voltage divider rule,
 V₁₁= V_s×R₂/(R₁+R₂)=5 × 2/5 = 2 V
- The contribution of the voltage source to the voltage across R₂ is 2 V.
- Applying Ohm's law, $I_a = V_s/(R_1 + R_2) = 5 / 5k = 1 \text{ mA}$

Superposition Principle

- Deactivate the voltage source by short-circuiting.
- The circuit contains only one independent source I_s.
- Applying the current divider rule, we obtain the current through R_2 : $I_2 = I_s \times R_1/(R_1 + R_2) = 5m \times 3/5 = 3 \text{ mA}$
- The voltage across R_2 is given by $V_{12} = R_2 I_2 = 2000 \times 0.003 = 6 \text{ V}$
- The contribution of the current source to the voltage across R₂ is 6 V.
- Applying KCL \rightarrow $I_b = -(I_s I_2) = -2 \text{ mA}$
- The voltage across R₂ is given by the sum of V_{11} and $V_{12} \rightarrow$ $V = V_{11} + V_{12} = 2 V + 6 V = 8 V$
- The current I is the sum of I_a and $I_b \rightarrow$ $I = I_a + I_b = -1 \text{ mA}$

- Use superposition principle to find V₁ in the circuit.
- When the current source is deactivated, the circuit reduces to $^{\wp}$.

•
$$R_a = R_1 || R_3 = 4 \times 16/20 \text{ k}\Omega = 3.2 \text{ k}\Omega$$

$$V_{11} = V_s \times R_a/(R_2 + R_a)$$

 $V_{11} = 10 \times 3.2/10 = 3.2 \text{ V}$

- When the voltage source is deactivated,
 the circuit reduces to .
- $R_a = R_1 || R_3 = 4 \times 16/20 \text{ k}\Omega = 3.2 \text{ k}\Omega$
- $R_b = R_a \parallel R_2 = 3.2 \times 6.8/10 = 2.176 \text{ k}\Omega$
- Ohm's law \rightarrow $V_{12} = R_b \times I_s = 2.176 \times 2.5 = 5.44 V$
- The voltage V_1 is the sum of V_{11} and V_{12} : $V_1 = V_{11} + V_{12} = 3.2 \text{ V} + 5.44 \text{ V} = 8.64 \text{ V}$

- Use superposition principle to find V_1 in the circuit.
- When I_s and V_{s2} are deactivated, the circuit reduces to P.
- $R_a = R_4 || R_5 = 48 \times 12/(48 + 12) = 9.6 \text{ k}\Omega$

$$R_b = R_3 + R_a = 49.6 \text{ k}\Omega$$

$$R_c = R_2 || R_b = 40 \times 49.6/(40 + 49.6) = 22.1429 \text{ k}\Omega$$

- When V_{s1} and V_{s2} are deactivated, the circuit reduces to \emptyset .
- $R_a = R_4 || R_5 = 48 \times 12/(48 + 12) = 9.6 \text{ k}\Omega$ $R_d = R_1 || R_2 = 22.5 \times 40/(22.5 + 40) = 14.4 \text{ k}\Omega$ $R_e = R_3 + R_d = 54.4 \text{ k}\Omega$
- Current divider rule:

$$I_3 = I_s \times R_a/(R_a + R_e) = 0.15 \text{ mA}$$

· Ohm's law:

$$V_{12} = R_d I_3 = 2.16 \text{ V}$$

- When V_{s1} and I_{s} are deactivated, the circuit reduces to \emptyset .
- $R_d = R_1 || R_2 = 22.5 \times 40/(22.5 + 40) = 14.4 \text{ k}\Omega$ $R_e = R_3 + R_d = 54.4 \text{ k}\Omega$ $R_f = R_4 || R_e = 48 \times 54.4/(48 + 54.4) = 25.5 \text{ k}\Omega$
- Voltage divider rule:

$$V_{23} = V_{s2} \times R_f/(R_5 + R_f) = 13.6 \text{ V}$$

 $V_{13} = V_{23} \times R_d/(R_3 + R_d) = 3.6 \text{ V}$

The voltage V₁ is given by

$$V_1 = V_{11} + V_{12} + V_{13} = 4.96 \text{ V} + 2.16 \text{ V} + 3.6 \text{ V} = 10.72 \text{ V}$$

- Use superposition principle to find V_0 in the circuit.
- When I_{s2} is deactivated, the circuit reduces to P.
- $V = (V_{11} V_{01}) \times R_2/(R_2 + R_3) = (V_{11} V_{01})/3$
- Node 1 \rightarrow $-0.004 + \frac{V_{11}}{4000} + \frac{V_{11} V_{01}}{3000} = 0$ Multiply by 12000 \rightarrow 7V₁₁ 4V₀₁ = 48 (1)
- Node 2 $\Rightarrow \frac{V_{01} V_{11}}{3000} + \frac{V_{01}}{3000} + 0.01 \frac{V_{11} V_{01}}{3} = 0$ Multiply 3000 $\Rightarrow -8V_{01} + 9V_{11} = 0 \Rightarrow$

$$V_{11} = (8/9)V_{01}(2),$$

$$(2) \rightarrow (1): (7 \times 8/9) V_{01} - 4V_{01} = 48 \Rightarrow$$

$$(20/9) V_{o1} = 48 \Rightarrow V_{o1} = 48 \times 9/20 = 21.6V$$

- When I_{s1} is deactivated, the circuit reduces to the one shown in Figure 4.15.
- $V = (-V_{22}) \times R_2/(R_1 + R_2) = (-V_{22})/5$
- Node 2: $\frac{V_{22}}{5000} 0.002 + \frac{V_{22} V_{02}}{2000} = 0$ Multiply by 10000: $7V_{22} 5V_{02} = 20$ (3)
- Node 3: $\frac{V_{02} V_{22}}{2000} + \frac{V_{02}}{3000} + 0.01 \frac{-V_{22}}{5} = 0$ Multiply 6000: $3V_{02} 3V_{22} + 2V_{02} 12V_{22} = 0$,

$$V_{22} = (1/3)V_{02}$$
 (4), Substitute Equation (4) into Equation (3) \rightarrow (7/3) $V_{02} - 5V_{02} = 20 \Rightarrow (-8/3)V_{02} = 20 \Rightarrow V_{02} = -60/8 = -7.5 V$

•
$$V_0 = V_{01} + V_{02} = 21.6 \text{ V} - 7.5 \text{ V} = 14.1 \text{ V}$$

- A circuit consisting of a voltage source with voltage V_s and a series resistor with resistance R_s , is equivalent to a circuit consisting of a current source with current V_s/R_s and a parallel resistor with resistance R_s .
- Equivalence means that the circuits have the same open-circuit voltage across a and b, the same short-circuit current through a and b, and the same resistance looking into the circuit from a and b after deactivating the source.
- A circuit consisting of a current source with current I_s and a parallel resistor with resistance R_s is equivalent to a circuit consisting of a voltage source with voltage I_sR_s and a series resistor with resistance R_s .

The source transformations apply to dependent sources as well.
 Figures 4.19 and 4.20 show the equivalence of a voltage source and a series resistor, and a current source and a parallel resistor.

FIGURE 4.19

A dependent voltage source and a series resistor are equivalent to a dependent current source and a parallel resistor.

FIGURE 4.20

A dependent current source and a parallel resistor are equivalent to a dependent voltage source and a series resistor.

- We are interested in finding V_o using source transformation.
- I_s and R₁ can be transformed to a voltage source V_{s1} and a series resistor R₁.
 Let R_a = R₁+ R₂ = 2kΩ.
- V_{s1} and R_a can be transformed to a current source $I_{s1} = V_{s1}/R_a = 1.5 \text{ mA}$ and a parallel resistor R_a .

- I_{s3} and R_b can be transformed to a voltage source with voltage $V_{s2} = R_b I_{s3} = 4.2 \text{ V}$ and a series resistor R_b.
- obtain $V_0 = V_{s2} \times R_5 / (R_b + R_4 + R_5)$

According to the voltage divider rule, we $= 4.2 \text{ V} \times 1.8/(1.2 + 1.2 + 1.8) = 1.8 \text{ V}$

Source Transformation R_2 V_o . We are interested in finding V_o in the circuit. R_2 V_o R_3 V_o R_3 V_o V

- I_s and R₁ are transformed to V_{s1} with voltage 4 V and a series resistor R₁
- The voltage source 2v and series resistor R_3 can be transformed to a current source with current $2v/R_3$ and a parallel resistor R_3 .
- Let R_a be the equivalent resistance of the parallel connection of R_3 and R_4 . Then, we have $R_a = R_3 \mid\mid R_4 = 0.8 \text{ k}\Omega$.

- The current source with current $2v/R_3$ and a parallel resistor R_a can be transformed to a voltage source with voltage $2vR_a/R_3$ and a series resistor R_a .
- Collecting the voltage drops around the mesh, we obtain

$$-4 + 2000i + 2000i + 800i + 2(2000i)800/1000 = 0$$

$$i = 4/8000 = 0.5 \text{ mA}$$

• The voltage V_o is given by $V_o = V_s - 2000i - 2000i$ $V_o = 4 V - 1 V - 1 V = 2 V$

 Use source transformation to find V₁ in the circuit.

• V_s and R_1 are transformed to $I_{s1} = V_s/R_1 = 1$ mA and R_1 .

• I_s and R_4 are transformed to $V_{g\uparrow}$ ($= R_4I_s = 10 \text{ V}$ and R_4 .

• Let $R_b = R_3 + R_4 = 20 \text{ k}\Omega$. V_{s1} and R_b are transformed to $I_{s2} = V_{s1}/R_b = 0.5 \text{ mA}$ and R_b in parallel.

• $V_1 = R_c I_{s3} = 11.25 \text{ V}$

Use source transformation to find V and I for the circuit.

• $R_6 = R_1 + R_2 = 3 \text{ k}\Omega$.

 R_2

 $2 k\Omega$

 $3 k\Omega$

• Transform V_{s1} and R_6 to $I_{s3} = V_{s1}/R_6 = 2/3$ mA and R_6 .

•
$$R_7 = R_3 || R_6 = 15/8 k\Omega$$
, $I_{s4} = I_{s2} + I_{s3} = 11/3 \text{ mA}$.

- Transform I_{s4} and R_7 to $V_{s2} = R_7 I_{s4} = 55/8 \text{ V}$ and R_7 .
- $I = V_{s2}/(R_7 + R_4 + R_5) = 1 \text{ mA}$
- $V = R_5 I = 2 V$

Use source transformation to find V₁.

- Transform the current source and R_3 to a voltage source with voltage $0.005v \times 1000 = 5v$ and R_3 .
- $R_4 = R_2 + R_3 = 4 \text{ k}\Omega$

Transform current source 5v and R₄ to voltage source with current 5v/R₄ = 0.00125v and R₄.

- $R_{eq} = R_1 || R_4 = 1.3333 \text{ k}\Omega$
- Add the currents to get 0.003 0.00125v.
- $v = (0.003 0.00125v) \times 1333.3333 = 4 1.6667v$

•
$$V = V_1 = 4/2.66667 V = 1.5 V$$

0.003 - 0.00125 V

Req
1.3333 k Ω

Summary

- Superposition principle
- Source transformations
- What will we study in next lecture.