Problem

Define A_{LBA} = { $\langle M,w\rangle$ | M is an LBA that accepts input w}. Show that A_{LBA} is PSPACE-complete.

Step-by-step solution

Step 1 of 4

<u>PSPACE – complete</u>: A language B is PSPACE – complete if it satisfies two conditions.

- 1. B is in PSPACE, and
- 2. every A in PAPACE is polynomial time reducible to B.

If B satisfies condition 2, we say that B is PSPACE- hard

Comment

Step 2 of 4

Given language is

$$A_{LBA} = \{\langle M, w \rangle\} M$$
 is an LBA that accepts input $w \}$

A linear bound automation (LBA) is one – tape, one – head *NTM*.

We need to show that A_{LBA} is PSPACE - complete.

That means A_{LBA} has to satisfy the 2 conditions of *PSPACE*-complete.

Comment

Step 3 of 4

(i) $A_{LBA} \in PSPACE$:

To show $A_{\mathit{LBA}} \in \mathit{PSPACE}$, we need to construct a deterministic Turing machine that decides A_{LBA} in polynomial space.

Let T be the Turing machine (TM) that decides A_{LBA} in polynomial space.

T can be constructed as follows.

$$T =$$
 on input $\langle M, w \rangle$

Where M is a
$$TM\left(Q,\Sigma,\Gamma,\delta,q_0,q_{accept},q_{reject}\right)$$
 and $w\in\Sigma^*$

1. Take a step count S and initialize S to O.

2. While
$$S < |Q| \cdot |w| \cdot |\Gamma|^{|w|}$$

- (i) Simulate M on w
- (ii) If M runs out of |w| bounded tape then reject.
- (iii) accept if M could in this step.
- (iv) increment S.
- 3. Reject."

This machine T runs in polynomial space since the extra counter assumes values at most exponential in the length of the input word.

Thus we constructed a TMT to decide A_{LBA} in polynomial space.

Therefore $A_{\it LBA}$ C	= PSPACE
Comment	
	Step 4 of 4
ii) A _{LBA} is <i>PSPA</i>	ACE – hard:
_et <i>L</i> ∈ <i>PSPACE</i>	
_et <i>M</i> be <i>TM</i> that	decides L in space at most n^k
clearly $L \leq_P A_{LB,l}$	$^{\prime d}$ by giving a reduction that maps w to $\left\langle M,wL_{\parallel}^{\mid w \mid^{k-1}} ight angle$.
Thus every <i>L</i> in <i>F</i>	PSPACE is polynomial time reducible to A_{LBA} .
Hence $^{A_{LBA}}$ is P	PSPACE-hard.
From (i) and (ii)	A _{LBA} is PSPACE - complete
Comments (2)	