Machine Learning

TSIA-SD 210 - P3 Lecture 2 - 2. Methodology

Florence d'Alché-Buc

Contact: florence.dalche@telecom-paristech.fr, 2A Filière SD, Télécom ParisTech,Université of Paris-Saclay, France

Table of contents

- 1. Introduction
- 2. Model Evaluation and selection
- 3. References

Outline

Introduction

Model Evaluation and selection

Statistical learning: a methodology

- Three main problems to be solved :
 - Representation problem: determine in which representation space the data will be encoded and determine which family of mathematical functions will be used
 - Optimization problem (focus of the course): formulate the learning problem as an optimization problem, develop an optimization algorithm
 - Evaluation problem: provide a performance estimate

Statistical learning for supervised classification

Two main family of approaches:

- 1. Discriminant approaches : just find a classifier which does not estimate the Bayes classifier
- 2. Generative probabilistic approaches that are built to model $h(x) = \hat{P}(Y=1|x)$ using $\hat{p}(x|Y=1)$, $\hat{p}(x|Y=-1)$ and prior probabilities.

Outline

Introduction

Model Evaluation and selection

Model selection or model evaluation

Evaluation metrics

- Define an evaluation metric for performance measure: for instance classification error, Area under the ROC Curve end so on...
- It may happen that the evaluation metric is different from the loss function: why? the target loss is not convex, you use a surrogate loss

Model Selection:

- Choose the "complexity" of the model you want to use for learning
- How ? Selection of the hyperparameter value on validation set (never on test set)

Model Evaluation:

- Once the hyperparameter is chosen, the learning algorithm is applied, we get a classifier
- This classifier must be evaluated on a test set

First example

A linear classifier in 2D space:

$$h(x) = \operatorname{signe}(\beta_1 x_1 + \beta_2 x_2 + \beta_0) \tag{1}$$

$$\operatorname{mixing} \sum_{n=1}^{n} |f(x_n h(x_n))| + \lambda \|\beta\|^2$$

Learning
$$h_{\beta}$$
 by minimizing $\sum_{i=1}^{n} L(y_i, h(x_i)) + \lambda \|\beta\|_2^2$ OR $\sum_{i=1}^{n} L(y_i, h(x_i)) + \lambda \|\beta\|_1$

Cross-validation 1

Nota Bene: $\mathcal S$ dataset devoted to the model construction: either training dataset itself or a validation set In any case, NEVER on the TEST set!

Divide $\mathcal S$ into B folds of the (approximatively) B equal folds $S_{b=1},\dots,D_{b=B}$ avec $|D_b|=n/B$. Data are uniformly drawn without replacement.

Cross-validation

- 1. For a given λ
- 2. For $b \in \{1, ..., B\}$:
 - Train the model parameterized by λ on all the data except sauf D_b to get an estimator $\hat{h}_{\lambda,n}^b$
 - Compute on the remaining data i.e. D_b (test) the empirical risk with the chosen evaluation metric

$$R_{n,b}(\lambda) = \frac{1}{n/B} \sum_{j \in D_b} L(x_j, y_j, \hat{h}_{\lambda,n}^b)$$

3. Compute the Cross-validation risk associated to the model with λ value

$$R_{n,CV}^{B}(\lambda) = \frac{1}{B} \sum_{b=1}^{k} R_{n,b}(\lambda)$$

How to find the value of λ ?

Repeat this procedure on all $\lambda \in \Lambda$ taken on a discrete grid and eventually choose:

$$\hat{\lambda}_{n,B} = \arg\min_{\lambda \in \Lambda} R_{n,CV}(\lambda). \tag{2}$$

Selection: training error versus test error

First do model selection either on a specific validation set or on the training set itself Then, learn from \mathcal{S}_{train} using $\tilde{\lambda}$, selected by CV Eventually, test on \mathcal{S}_{test}

 ${\sf Err}_{CV,val}$ tells us how much generalization error we can wait for, when learning on a dataste of sier errornous dit à quel type d'erreur en généralisation nous attendre en $n_{val}-n_{val}/B$. ${\sf Err}_{\mathcal{S}_{app}}$ tells us to which extent the classifier has succeeded on training data

 $\mathsf{Err}_{\mathcal{S}_{\mathsf{test}}}$ tells us to which extent the classifier is able to succeed on test data

Evaluation and model selection in scientific papers

Usually, many people take $\mathcal{S}_{\textit{val}} = \mathcal{S}_{\textit{train}}$ and do Cross-validation selection on the training set it self

Many splits Train/Test (usually 10): empirical mean and error bars are presented

Outline

Introduction

Model Evaluation and selection

- Performance evaluation / model selection
 - Chapter 4 and 7 of Elements of statistical learning, Hastie, Tlbshirani and Friedman.
 - A.-L. Boulesteix, Ten rules for reducing overoptimistic reporting in methodological computational research, http://journals.plos.org/ploscompbiol/article/file?id=10. 1371/journal.pcbi.1004191&type=printable