LAB----->

Integrity Constraints

6. Write the query to implement the concept of Integrity constraints.

Q: How do you enforce a primary key constraint in SQL?

A: `CREATE TABLE table name (column name datatype PRIMARY KEY);`

Q: How do you enforce a foreign key constraint in SQL?

A: `CREATE TABLE table_name (column_name datatype, FOREIGN KEY (column_name) REFERENCES other_table(other_column));`

Creating Views

7. Write the guery to create the views.

Q: How do you create a view in SQL?

A: `CREATE VIEW view_name AS SELECT column1, column2 FROM table_name WHERE condition;`

Triggers

8. Perform the queries for triggers.

Q: How do you create a trigger in SQL?

A: `CREATE TRIGGER trigger_name AFTER INSERT ON table_name FOR EACH ROW BEGIN --trigger actions END;`

Data Manipulation

9. Perform the following operations for demonstrating insertion, updating, and deletion.

Q: How do you insert a record into a table in SQL?

A: `INSERT INTO table name (column1, column2) VALUES (value1, value2);`

Q: How do you update a record in SQL?

A: `UPDATE table_name SET column1 = value1 WHERE condition;`

Q: How do you delete a record in SQL?

A: `DELETE FROM table name WHERE condition;`

Referential Integrity Constraints

10. Using the referential integrity constraints.

Q: What is referential integrity in SQL?

A: It ensures that a foreign key value always points to an existing, valid record in another table.

Q: How do you define a foreign key constraint in SQL?

A: `CREATE TABLE table_name (column_name datatype, FOREIGN KEY (column_name) REFERENCES other_table(other_column));`

User and Role Management

11. Write the query for creating the users and their roles.

Q: How do you create a user in SQL?

A: `CREATE USER 'username'@'host' IDENTIFIED BY 'password';`

Q: How do you assign a role to a user in SQL?

A: `GRANT role_name TO 'username'@'host';`

LECTURE ---->

Transaction Processing

1. Introduction-Transaction State

Q: What are the states of a transaction?

A: Active, Partially Committed, Committed, Failed, Aborted.

2. Transaction Properties

Q: What are the ACID properties of a transaction?

A: Atomicity, Consistency, Isolation, Durability.

3. Concurrent Executions

Q: Why is concurrency control necessary?

A: To ensure data consistency and isolation in a multi-user environment.

4. Need of Serializability

Q: Why is serializability important in transactions?

A: It ensures that concurrent transactions result in a database state that would be obtained if the transactions were executed serially.

5. Conflict vs. View Serializability

Q: What is conflict serializability?

A: It ensures that the order of conflicting operations is the same as in some serial order.

- **Q:** What is view serializability?
- **A:** It ensures that the outcome of transactions is the same as in some serial order.

6. Testing for Serializability

- **Q:** How can you test for conflict serializability?
- **A:** By constructing a precedence graph and checking for cycles.

7. Recoverable Schedules

- **Q:** What is a recoverable schedule?
- **A:** A schedule where transactions commit only after all transactions whose changes they read have committed.

8. Cascadeless Schedules

- **Q:** What is a cascadeless schedule?
- **A:** A schedule where transactions read only the committed data to prevent cascading rollbacks.

Concurrency Control

1. Lock-based Protocols

- **Q:** What is a two-phase locking protocol?
- **A:** A protocol with two phases: growing (acquiring locks) and shrinking (releasing locks).

2. Timestamp-based Protocols

- **Q:** How do timestamp-based protocols ensure serializability?
- **A:** By ordering transactions based on their timestamps.

3. Validation-based Protocols

- **Q:** What are the phases of a validation-based protocol?
- **A:** Read phase, validation phase, and write phase.

4. Deadlock Handling

- **Q:** How can deadlocks be prevented?
- **A:** By using methods like wait-die and wound-wait schemes.

Database Failure and Recovery

1. Database Failures

- **Q:** What are the common types of database failures?
- **A:** Transaction failure, system crash, and media failure.

2. Recovery Schemes: Shadow Paging

- **Q:** How does shadow paging work?
- **A:** It maintains a shadow copy of the database pages and ensures atomicity by switching between current and shadow pages.

3. Log-based Recovery

Q: What is the purpose of log-based recovery?

A: To record all transaction operations for use in rollback and crash recovery.

4. Recovery with Concurrent Transactions

- **Q:** How is recovery managed with concurrent transactions?
- **A:** Using techniques like write-ahead logging (WAL) and checkpointing.