ЛАБОРАТОРНА РОБОТА №8

ДОСЛІДЖЕННЯ МЕТОДІВ КОМП'ЮТЕРНОГО ЗОРУ

Мета роботи: використовуючи спеціалізовані бібліотеки та мову програмування Руthon навчитися обробляти зображення за допомогою бібліотеки OpenCV. Хід роботи:

Завдання 2.1. Завантаження зображень та відео в OpenCV

```
import cv2
# LOAD AN IMAGE USING 'IMREAD'
img = cv2.imread("Tarnopolskiy.jpg")
# DISPLAY
cv2.imshow("Frame", img)
cv2.waitKey(0)
```

Завдання 2.2. Дослідження перетворень зображення

cvtColor: Цей метод призначений для конвертації кольорових просторів у зображеннях. Наприклад, він може перетворити зображення з одного кольорового простору в інший: з RGB у відтінки сірого, з RGB у HSV і т.д. Результатом його застосування може бути змінене зображення у новому кольоровому просторі.

GaussianBlur: Цей метод використовується для розмиття зображення з допомогою гаусового фільтру. Він зменшує шум та деталі на зображенні, згладжує його. Результатом застосування цього методу ϵ зображення з меншою різницею між сусідніми пікселями, що може бути корисним для подальшого аналізу зображень, наприклад, виявлення контурів або об'єктів.

3мн.	Арк.	№ докум.	Підпис	Дата	ДУ «Житомирська політехніка».24. <mark>123.15</mark> .0 – Лр8		<mark>5</mark> .0 — Лр8	
Розроб.		Тарнопольський				Лim.	Арк.	Аркушів
Пере	евір.	Маєвський О.В.			Звіт з		1	
Керіє	зник					_		
Н. контр.			·		лабораторної роботи ФІКТ Гр. І		KI-21-1	
Зав.	каф.					, p		

Canny: Метод Canny використовується для виявлення границь на зображенні. Він використовує алгоритм знаходження границь, який включає кілька етапів: згладжування гаусовим фільтром, визначення градієнтів інтенсивності пікселів, підсилення та пригнічення границь, виявлення потенційних границь та їхнє припорядкування. Результатом є зображення, на якому виділені границі об'єктів або контурів.

dilate: Метод dilate використовується для розширення областей об'єктів на зображенні. Він робить об'єкти на зображенні більшими, збільшуючи їхню площу шляхом додавання пікселів до меж об'єктів. Результатом є зображення з розширеними областями об'єктів.

erode: Метод erode використовується для зменшення областей об'єктів на зображенні. Він зменшує розмір об'єктів шляхом видалення пікселів з їхніх меж. Результатом є зображення з зменшеними областями об'єктів.

Завдання 2.3. Вирізання частини зображення

```
import cv2
img = cv2.imread("Tarnopolskiy.jpg")
print(img.shape)
imgResize = cv2.resize(img, (1000, 450))
print(imgResize.shape)
imgCropped = img[20:350, 250:460]
cv2.imshow("Image", img)
cv2.imshow("Image Cropped", imgCropped)
cv2.waitKey(0)
```


Завдання 2.4. Розпізнавання обличчя на зображенні

 $Ap\kappa$.

		Тарнопольський			
		Маєвський О.В.			ДУ «Житомирська політехніка».24. <mark>123.15</mark> .00 — Лр8
Змн.	Арк.	№ докум.	Підпис	Дата	

```
import cv2
faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
img = cv2.imread('Tarnopolskiy.jpg')
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)
for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 2)
cv2.imshow("Result", img)
cv2.waitKey(0)
```


Завдання 2.5. Розпізнавання об'єктів на зображенні за допомогою методів зіставлення шаблонів (Template Matching)

		Тарнопольський		
		Маєвський О.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

cv.TM_CCOEFF

Matching Result

Detected Point

cv.TM_CCOEFF_NORMED

Matching Result

Detected Point

cv.TM_CCORR

Matching Result

Detected Point

		Тарнопольський		
		Маєвський О.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

cv.TM_CCORR_NORMED

Matching Result

Detected Point

cv.TM_SQDIFF

Matching Result

Detected Point

cv.TM_SQDIFF_NORMED

Matching Result

Detected Point

cv.TM_CCOEFF - Коефіцієнт кореляції Пірсона. Вираховує кореляцію між шаблоном та регіонами зображення.

cv.TM_CCOEFF_NORMED - Нормалізований коефіцієнт кореляції Пірсона. Тут значення нормалізовані до діапазону від -1 до 1.

cv.TM_CCORR - Коефіцієнт кореляції. Порівнюєє шаблон і частини зображення,

		Тарнопольський			
		Маєвський О.В.			ДУ «Житомирська політехніка».24. <mark>123.15</mark> .00 – Лр8
Змн.	Арк.	№ докум.	Підпис	Дата	

шукаючи максимальну кореляцію.

cv.TM_CCORR_NORMED - Нормалізований коефіцієнт кореляції. Значення також нормалізовані до діапазону від 0 до 1.

cv.TM_SQDIFF - Квадрат різниці. Він шукає мінімальне значення суми квадратів різниць між шаблоном і регіонами зображення.

cv.TM_SQDIFF_NORMED - Нормалізований квадрат різниці. Тут значення нормалізовані до діапазону від 0 до 1, де найменше значення вказує на найкраще зібрання.

Завдання 2.6. Сегментація зображення алгоритмом водорозподілу

```
import numpy as np
cv2.imshow("coins", img)
cv2.waitKey(0)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
cv2.imshow("coins bin ", thresh)
cv2.waitKey(0)
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH OPEN, kernel, iterations=2)
sure bg = cv2.dilate(opening, kernel, iterations=3)
dist transform = cv2.distanceTransform(opening, cv2.DIST L2, 5)
ret, sure fg = cv2.threshold(dist transform, 0.7 * dist transform.max(), 255, 0)
sure fg = np.uint8(sure fg)
unknown = cv2.subtract(sure bg, sure fg)
cv2.imshow("coins ", opening)
cv2.waitKey(0)
ret, markers = cv2.connectedComponents(sure fg)
markers = markers + 1
markers[unknown == 255] = 0
markers = cv2.watershed(img, markers)
img[markers == -1] = [255, 0, 0]
cv2.imshow("coins markers", img)
cv2.waitKey(0)
```

		Тарнопольський		
		Маєвський О.В.		
Змн.	Арк.	№ докум.	Підпис	Дата

Висновки: в ході виконання лабораторної роботи було досліджено та отримано знання, уміння та навики, щодо особливостей використання спеціалізованих бібліотек та мову програмування Python навчитися обробляти зображення за допомогою бібліотеки OpenCV.

		Тарнопольський		
		Маєвський О.В.		
Змн.	Арк.	№ докум.	Підпис	Дата