L05.01 Hashing II

50.004 Introduction to Algorithms
Ioannis Panageas (ioannis@sutd.edu.sg)

ISTD, SUTD

CLRS Ch 11.3-11.4

Slides by A.Binder and based on Dr. Simon LUI

Recap last lecture ...

- Chained hash:
 - an array s.t. each entry is a linked list
 - a hash function that maps keys onto array indices
 - Map n keys from a very large key space onto hash table of size m
- may have hash collisions
 - Hash operations: insert, delete as O(1) worst case
 - Search O(n) worst, O(1+ α) average case (simple uniform hashing assumption)
 - When combined with table doubling: O(1) average case
 - Amortized costs for table doubling+ insertions: also O(1)
- Good hash functions: close to simple uniform hashing assumption each key has equal chance to end up in any of the bins ... ensures on average equal load across the whole table

Today

- Open addressing hashing without linked lists
 - Different probing strategies
- Cuckoo hashing O(1) search worst case
- Other uses of hashes / cryptographic hashes
 - File tampering
 - Digital message signing with hashed messages
- Universal hashing

Worse case discussion

Assume |U|=N, hash table size = I, N > ILemma: Then for any hash function h there exist at least N/I keys that hash on the same position (collide)

For any hash function we can find $\geq N/I$ keys that collide

 An alternative to deal with collisions than doubly linked lists?

Open addressing

- Do away with doubly linked lists, one array entry
 = one element
- Pay a price:
 - can fill table with at most n=l elements, then must do table doubling ...
 - Need to search for free slots if A[h(x.key)] is used "Probing"
 - Replace hash function h(k) by a hash function
 h(k,i) with a parameter i that allows to search for the next slot

Example – linear probing

- k key to be inserted
- $g(k) = k \mod 10$
- $h(k,i) = (g(k)+i) \mod 10$ i index for probing, start with <math>h(k,i=0)

Open addressing algorithms

Linear probing

$$h(k,i) = (h'(k)+i) \mod m$$

Quadratic probing

$$h(k,i) = (h'(k) + c_1 i + c_2 i^2) \mod m$$

Double hashing

$$h(k,i) = (h_1(k) + i h_2(k)) \bmod m$$

$$h_1(k) = k \mod 13$$

$$h_2(k) = 1 + k \mod 11$$

$$k = 14$$
: $h_1(14) = 1, h_2(14) = 4$

We probe positions 1, 1+4, 1+2x4, 1+3x4, ...

Example – linear probing

- $h(k,i) = (h'(k)+i) \mod 11$
- $H'(k) = k \mod 11$

$$h(28)=28\%11=6$$
 $h(47)=47\%11=3$
 $h(20)=20\%11=9$
 $h(36)=36\%11=3$
 $h(43)=43\%11=10$
 $h(23)=23\%11=1$
 $h(25)=25\%11=3$
 0
 1
 2
 4
 5
 6
 28
 7
 8
 9
 20
 10

0	
1	
3	
	47
4 5 6	36
5	
6	28
7	
8	
9	20
10	

0	
1	23
2	
3	47
4	36
5	
5	28
7	
8	
9	20
10	43

0	54
1	23
2	
3	47
4	36
5	25
6	28
7	
8	
9	20
10	43

insert 36

insert 43,23

insert 25,54

Example – quadratic probing

- $h(k,i) = (h'(k)+c_1i + c_2i^2) \mod 7$ $c_1=0$, $c_2=1$
- $H'(k) = k \mod 11$

Questions

A. Linear probing

Consider the hash table in the picture with some keys already inserted. Where will you insert k=17 when $h'(k) = k \mod 13$?

- 1. location 2
- 2. location 6
- 3. location 10

B. Quadratic probing

Where will you insert k=17 when $h'(k) = k \mod 13$,

$$c1 = 2, c2 = 1$$
?

- 1. location 2
- 2. location 7
- 3. location 12

C. Double hashing

Where will you insert k=14 when $h1(k) = k \mod 13$, $h2(k) = 1+(k \mod 11)$?

- 1. location 2
- 2. location 9
- 3. location 10

Open Adressing performance

- Uniform hashing assumption: each key is equally likely to have any of m! permutations of {0,...,m-1} as probe sequence
- With above: Insertion: $1/(1-\alpha)$ probe steps on average
- Search:
 - $-1/(1-\alpha)$ probe steps on average for unsuccessful search
 - $-1/\alpha \log(1/(1-\alpha))$ probe steps on average for successful search

Open addressing vs chaining

- Open addressing:
 - Better cache performance (no pointers to off regions needed when objects are "small", e.g. integers, floats)

Chaining:

- Less sensitive to hash function choices
 - When keys are clustering in parts of the table, then linear/quadratic probing will have many steps
- Less sensitive to high load factors
 - In practice open adressing needs alpha to be kept small, rule of thumb: like 50-70%, otherwise $1/(1-\alpha)$ becomes a nightmare

Cuckoo Hashing

- Uses 2 hash functions $h_1(k), h_2(k)$, where $h_1(k) \neq h_2(k)$
- Key k stored either in $T[h_1(k)]$ or in $T[h_2(k)]$
- Lookup: Just look at at most 2 places! O(1)
- Insertion:

If $T[h_1(k)]$ empty, store the key there else if $T[h_2(k)]$ empty, store the key there If both full, store key in $T[h_1(k)]$ and move key that was there to its other location (bumping out the key that might be there, etc)

- If α <1 insertion succeeds with high probability
- If insertion loops: rehash the entire table (or double table size)
- Insertion takes constant time on average

Example of cuckoo hashing

$$h_1(A) = 0, h_2(A) = 3$$

$$h_1(B) = 3, h_2(B) = 8$$

x bumps A, A bumps B, B funds an empty location

Bumping H creates a cycle - vehash everything

Cuckoo Hashing

- Search is O(1) worst-case, not average
- Insertion is O(n) worst-case (average performance is better)

Other hashing use cases

- File modification check
 - Was your data x tampered that is stored somewhere?
 - Compute hash before you upload,
 - Check by rehashing

– Problem: when an attacker succeeds to fool you?

Other hashing use cases

- File modification check
 - Was your data x tampered that is stored somewhere?
 - Compute hash before you upload,
 - Check by rehashing

- Problem: when an attacker succeeds to fool you?
- if he finds an x' such that h(x)=h(x') for the given x

Digital signatures

- A has public key PK_A , private key SK_A . A can sign a message M by private key to obtain a signature s:
- For large messages a hash h(M) instead of M is signed. $s = sign(h(M), SK_A)$.
- recipient can verify that M was signed by A.
 - B runs a function verify(h(M),s, PK_A)
- Problem: attacker wants to pretend that Alice signed document D2, that the attacker owns. what can he try to do?
- Side info: attacker does not want to show D2 to Alice, no way to let alice sign D2 directly.

Digital signatures

- A has public key PK_A , private key SK_A . A can sign a message M by private key to obtain a signature s:
- For large messages a hash h(M) instead of M is signed.

$$s = sign(h(M), SK_A)$$
.

- recipient can verify that M was signed by A.
 - B runs a function verify(h(M),s, PK_A)
- Problem: attacker can try to find a document D1 such that h(D1)=h(D2), then ask Alice to sign D1 to obtain s
- Then reuse s with D2

Commitment check:

- I want to assure somebody that I committed a sum x of SGD for some project, and that I did not change that sum afterwards on the bank account.
- I do not want to disclose the sum.
- Give the person the right to ask the bank to see a hash z=h(x) of the account balance instead

 Problem: don't want that my ominous partner can reverse the hash, e.g. find that x that created the hash value z.

Commitment check:

 I want to assure somebody that I committed a sum x of SGD for some project, and that I did not change that sum afterwards on the bank account.

 Problem: don't want that partner can reverse the hash, e.g. find the sum x that created the hash value.

One solution: I do not hash x but I hash x+c, where c is a large random number that I will remember c is a so called salt → salted hashing (off lecture)

Cryptographic hashing functions

- What properties hash functions are desirable for such applications?
- One-way: given a hash z, it should be infeasible to find the x that created this hash: h(x)=z
- Collision-resistance: infeasible to find any pair x,x' such that h(x)=h(x')
- Target-collision-resistance:
 - Given some x it is infeasible to find an x' such that h(x')=h(x)
- Desired property: hash maps 2 close keys x,x' to very different locations

Universal hashing

 Problem: If hash function is known, then a malicious creator of keys can force O(n) insertion behaviour

• Solution: choose a function h at random from a function class $\mathcal{H} = \{h_1, ..., h_r\}$

What properties should that class have?

Universal hashing

• \mathcal{H} is universal collection of hash functions if for every fixed pair of keys $k_1 \neq k_2$ the number functions h causing a collision is bounded as:

$$|\{h \in \mathcal{H}: h(k_1) = h(k_2)\}| \le \frac{|\mathcal{H}|}{m}$$

• Theorem: for h drawn randomly from a uniform distribution over a universal collection of hash functions we have O(1+alpha) insertion time

Importance of that theorem?

• Theorem: for h drawn randomly from a uniform distribution over a universal collection of hash functions we have O(1+alpha) insertion time

 What does that mean for our search = O(1) result obtained by table doubling and amortization analysis?

Importance of that theorem?

- Theorem: for h drawn randomly from a uniform distribution over a universal collection of hash functions we have O(1+alpha) search time
- What does that mean for our search = O(1) result obtained by table doubling and amortization analysis?
- Can exchange in last lecture simple uniform hashing assumption with universal collection of hash functions !!! O(1) still holds!

Extra (out of syllabus): example of universal hash function

Universal hash functions

 $h(k) = ((ak + b) \mod p) \mod m$ m = size of hash table = arbitrary $p = \text{large prime s.t. all keys are in range } \{0,...,p-1\}$ $a \in \{1,...,p-1\}, b \in \{0,...,p-1\}, \text{ are chosen uniformly at random}$

We can prove: Prob_{a,b}
$$\{h_{a,b}(k) = h_{a,b}(l)\} \le \frac{1}{m}, \ \forall k, l$$

random choice of a, b for each experiment

(proof, out of curriculum)

- $r = (ak_1 + b) \mod p, s = (ak_2 + b) \mod p$
- Claim r!=s

By assumption: k1,k2 <=p-1, so k1-k2 in [-(p-1),p-1], so k1-k2 mod p != 0, then. Also a mod p !=0, therefore (p must be prime for that)

a (k1-k2) mod p !=0 ... and this is r-s mod p.

(a,b) with a!=0 <-> r,s with r!=s (p(p-1) elements) because a= (r-s) (k1-k2)^{-1} (this inverse exists in Z/Zp)

... its in CLRS, you need to know about multiplication of equivalence classes in Rings Z/Zp and fields (if p is a prime number, then the ring Z/Zp is a field, i.e. every class has an inverse A bit mathy+technical stuff)

Example of usage

- Built into most modern programming languages (Python, Perl, Java, C++,...)
- Example:
 - English dictionary for spelling corrections, definitions
 - Compilers: symbol tables (list of names and related info)
 - Network routers: port number -> socket id
 - virtual memory: virtual address -> physical address

Conclusions

- Hashing is an efficient way to keep average cost of operations to O(1)
- Collisions are unavoidable in practice and are solved by chaining
- Worse case $\Theta(n)$
- We have some simple ways to construct "good" hash functions
- Hashes are not first choice if worst case behaviour is important
 - Better worst case: Van Emde Boas Trees O(log log n) [not covered here]
- "Hashes kill caches"