- 10.1 1) Supposons que F soit une primitive de f, c'est-à-dire que F'(x) = f(x) pour tout $x \in D_f$.

 Alors, pour tout $x \in D_f$, (F(x) + c)' = F'(x) + 0 = F'(x) = f(x), ce qui signifie que F + c est aussi une primitive de f.
 - 2) Soient F_1 et F_2 deux primitives de f. Alors $\left(F_2(x) - F_1(x)\right)' = F_2'(x) - F_1'(x) = f(x) - f(x) = 0$ pour tout $x \in D_f$. Il en résulte que la fonction $F_2 - F_1$ est une fonction constante : il existe ainsi $c \in \mathbb{R}$ tel que $F_2 - F_1 = c$, d'où il suit $F_2 = F_1 + c$.

Analyse : primitives Corrigé 10.1