Relación entre integración y derivación

1.1 La derivada de una integral indefinida. Primer teorema fundamental del cálculo

Teorema Primer Teorema fundamental del cálculo. Sea f una función que es integrable en [a, x] para cada x en [a, b]. **1.1** Sea c tal que $a \le c \le b$ y definamos una nueva función A del siguiente modo:

$$A(x) = \int_{c}^{x} f(t) dt$$
 si $a \le x \le b$

Existe entonces la derivada A'(x) en cada punto x del intervalo abierto (a,b) donde f es continua, y para tal x tenemos

$$A'(x) = f(x) \tag{1.1}$$

Interpretación geométrica: La figura 5.1 (Apostol, capítulo 5) muestra la gráfica de una función f en un intervalo [a,b]. En la figura, h es positivo y

$$\int_{x}^{x+h} f(t) dt = \int_{0}^{x+h} f(t) dt - \int_{0}^{x} f(t) dt = A(x+h) - A(x).$$

El ejemplo es el de una función continua en todo el intervalo [x, x + h]. Por consiguiente, por el teorema del valor medio para integrales, tenemos

$$A(x+h) - A(x) = hf(z)$$
, donde $x \le z \le x + h$.

Luego, resulta

$$\frac{A(x+h) - A(x)}{h} = f(z). {(1.2)}$$

Puesto que $x \le z \le x + h$, encontramos que $f(z) \to f(x)$ cuando $h \to 0$ con valores positivos. Si $h \to 0$ con valores negativos, se razona en forma parecida. Por consiguiente, A'(x) existe y es igual a f(x). Demostración.- Sea x un punto en el que f es continua y supuesta x fija, se forma el cociente:

$$\frac{A(x+h)-A(x)}{h}$$
.

Para demostrar el teorema se ha de probar que este cociente tiende a f(x) cuando $h \to 0$. El numerador es:

$$A(x+h) - A(x) = \int_0^{x+h} f(t) dt - \int_c^x f(t) dt = \int_x^{x+h} f(t) dt.$$

Si en la última integral se escribe f(t) = f(x) - [f(t) - f(x)] resulta:

$$A(x+h) - A(x) = \int_{x}^{x+h} f(x) dt + \int_{x}^{x+h} [f(t) - f(x)] dt$$
$$= hf(x) + \int_{x}^{x+h} [f(t) - f(x)] dt,$$

de donde

(5.3)
$$\frac{A(x+h) - A(x)}{h} = f(x) + \frac{1}{h} \int_{x}^{x+h} [f(t) - f(x)] dt.$$
 (1.3)

Por tanto, para completar la demostración de (5.1) es necesario demostrar que

$$\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} [f(t) - f(x)] dt = 0.$$

En esta parte de la demostración es donde se hace uso de la continuidad de f en x.

Si se designa por G(h) el último término del segundo miembro de (5.3), se trata de demostrar que $G(h) \to 0$ cuando $h \to 0$. Aplicando la definición de límite, se ha de probar que para cada $\epsilon > 0$ existe un $\delta > 0$ tal que

$$G(h) < \epsilon$$
 siempre que $0 < h < \delta$. (1.4)

En virtud de la continuidad de f en x, dado un ϵ existe un número positivo δ tal que:

$$|f(t) - f(x)| < \frac{1}{2}\epsilon. \tag{1.5}$$

siempre que

$$x - \delta < t < x + \delta. \tag{1.6}$$

Si se elige h de manera que $0 < h < \delta$, entonces cada t en el intervalo [x, x+h] satisface (5.6) y por tanto (5.5) se verifica para cada t de este intervalo. Aplicando la propiedad $|\int_x^{x+h}| \le \int_x^{x+h} |g(t)| \ dt$, cuando g(t) = g(t) - f(x), de la desigualdad en (5.5) se pasa a la relación:

$$\left| \int_{x}^{x+h} \left[f(t) - f(x) \right] dt \right| \leq \int_{x}^{x+h} \left| f(t) - f(x) \right| dt \leq \int_{x}^{x+h} \frac{1}{2} \epsilon dt = \frac{1}{2} h \epsilon < h \epsilon.$$

Dividiendo por h se ve que (5.4) se verifica para $0 < h < \delta$. Si h < 0, un razonamiento análogo demuestra que (5.4) se verifica siempre que $0 < |h| < \delta$, lo que completa la demostración.

1.2 Teorema de la derivada nula

Si una función f es constante en un intervalo (a,b), su derivada es nula en todo el intervalo (a,b). Ya hemos demostrado este hecho como una consecuencia inmediata de la definición de derivada. También se demostró, como parte c) del teorema 4.7, el recíproco de esa afirmación que aquí se presenta como teorema independiente.

Teorema Teorema de la derivada nula. Si f'(x) = 0 para cada x en un intervalo abierto I, es f constante en I.

Este teorema, cuando se utiliza combinando con el primer teorema fundamental del cálculo, nos conduce al segundo teorema fundamental.

1.3 Funciones primitivas y segundo teorema fundamental del cálculo

Definición de función primitiva. Una función P se llama primitiva (o antiderivada) de una función f en un intervalo abierto I si la derivada de P es f, esto es, si P'(x) = f(x) para todo x en I.

Decimos una primitiva y no la primitiva, porque si P es una primitiva de f también lo es P+k para cualquier constante k. Recíprocamente, dos primitivas cualesquiera P y Q de la misma función f sólo pueden diferir en una constante por que su diferencia P-Q tiene la derivada

$$P'(x) - Q'(x) = f(x) - f(x) = 0.$$

para toda x en I y por tanto, según el teorema 5.2

Teorema Segundo teorema fundamental del cálculo. Supongamos f continua en un intervalo abierto I, y sea P una primitiva cualquiera de f en I. Entonces, para cada c y cada x en I, tenemos

$$P(x) = P(c) + \int_{c}^{x} f(t) dt.$$

Demostración.- Sea $A(x) = \int_c^x f(t) \ dt$. Puesto que f es continua en cada x de I, el primer teorema fundamental nos dice que A'(x) = f(x) para todo x de I. Es decir, A es primitiva de f en I. Luego, ya que dos primitivas de f pueden diferir tan sólo en una constante, debe ser A(x) - P(x) = k para una cierta constante k. Cuando x = c esta fórmula implica -P(c) = k, ya que A(c) = 0. Por consiguiente, A(x) - P(x) = -P(c), de lo que obtenemos $P(x) = P(c) + \int_c^x f(t) \ dt$. es constante en I.

El teorema 5.3 nos indica cómo encontrar una primitiva P de una función continua f. Integrando f desde un punto fijo c a un punto arbitrario x y sumando la constante P(c) obtenemos P(x). Pero la importancia real del teorema radica en que poniendo $P(x) = P(c) + \int_c^x f(t) \, dt$ en la forma

$$\int_{c}^{x} f(t) dt = P(x) - P(c).$$

Se ve que podemos calcular el valor de una integral mediante una simple substracción si conocemos una primitiva *P*.

Como consecuencia del segundo teorema fundamental, se pueden deducir las siguientes fórmulas de integración.

Ejemplo Integración de potencias recionales. La fórmula de integración

1.1

$$\int_{a}^{b} x^{n} dx = \frac{b^{n+1} - a^{n+1}}{n+1} \qquad (n = 0, 1, 2, ...)$$

se demostró directamente en la Sección 1.23 (Spivak) a partir de la definición de integral. Aplicando el segundo teorema fundamental, puede hallarse de nuevo este resultado y además generalizarlo para exponentes racionales. En primer lugar se observa que la función *P* definida por

$$P(x) = \frac{x^{n+1}}{n+1}$$

tiene como derivada $P'(x) = x^n$ para cada n entero no negativo. De esta igualdad válida para todo número real x, aplicando $\int_c^x f(t) dt = P(x) - P(c)$ se tiene

$$\int_{a}^{b} x^{n} dx = P(b) - P(a) = \frac{b^{n+1} - a^{n+1}}{n+1}$$

para cualquier intervalo [a,b]. Esta fórmula, demostrada para todo entero $n \ge 0$ conserva su validez para todo entero negativo excepto n=-1, que se excluye puesto que el denominador aparece n+1. Para demostrar $\int_a^b x^n \ dx = \frac{b^{n+1}-a^{n+1}}{n+1} \ (n=0,1,2,\ldots)$ para n negativo, basta probar que $P(x) = \frac{x^{n+1}}{n+1}$ implica $P'(x) = x^n$ cuando n es negativo $x \ne -1$, lo cual es fácil de verificar derivando P como función racional. Hay que tener en cuenta que si $P(x) = x^n$ es negativo se deben excluir aquellos intervalos $P(x) = x^n$ que contienen el punto $P(x) = x^n$ que contienen el punto $P(x) = x^n$ que tener en cuenta que si $P(x) = x^n$ que contienen el punto $P(x) = x^n$ que tener en cuenta que si $P(x) = x^n$ que tener en c

El resultado del ejemplo 3 de la Sección 4.5, permite extender $\int_a^b x^n dx = \frac{b^{n+1} - a^{n+1}}{n+1}$ (n = 0, 1, 2, ...) a todos los exponentes racionales (excepto -1) siempre que el integrando esté definido en todos los puntos del intervalo [a, b] en consideración.

Ejemplo Integración de seno y coseno. Puesto que la derivada del seno es el coseno y la del coseno menos el seno, 1.2 el segundo teorema fundamental da las fórmulas siguientes:

$$\int_{a}^{b} \cos x \, dx = \sin x \Big|_{a}^{b} = \sin b - \sin a,$$

$$\int_{a}^{b} \operatorname{sen} x \, dx = -\cos x \bigg|_{a}^{b} = -\cos b + \cos a.$$

Estas fórmulas se conocían ya, pues se demostraron en el capítulo 2 a partir de la definición de integral. Se obtienen otras fórmulas de integración a partir de los ejemplos 1 y 2 tomando sumas finitas de términos de la forma Ax^n , $B \operatorname{sen} x$, $C \operatorname{cos} x$, donde A, B, $C \operatorname{son}$ constantes.

1.4 Propiedades de una función deducida de propiedades de su derivada

Si una función f tiene derivada continua f' en un intervalo abierto I, el segundo teorema fundamental afirma que

$$f(x) = f(c) + \int_{c}^{x} f'(t) dt$$

cualesquiera que sean x y c en I.

Propiedad Supóngase que f' es continua y no negativa en I. Si x > c, entonces $\int_c^x f'(t) \ dt \ge 0$, y por tanto $f(x) \ge f(c)$. Es decir, si la derivada es continua y no negativa en I, la función es creciente en I.

En el teorema 2.9 se demostró que la integral indefinida de una función creciente es convexa. Por consiguiente, si f' es continua y creciente en I, la igualdad $f(x) = f(c) + \int_c^x f'(t) dt$ demuestra que f es convexa en I. Análogamente, f es cóncava en los intervalos en los que f' es continua y decreciente.

1.5 Ejercicios

En cada uno de los Ejercicios del 1 al 10, encontrar una primitiva de f; es decir, encontrar una función P tal que P'(x) = f(x) y aplicar el segundo teorema fundamental para calcular $\int_a^b f(x) \, dx$.

1.
$$f(x) = 5x^3$$
.

Respuesta.- Por el ejemplo 5.1 (Apostol) se define a P como,

$$P(x) = \frac{x^{n+1}}{n+1}.$$

Por lo que la función primitiva de $5x^3$, esta dada por:

$$P(x) = 5\frac{x^{3+1}}{3+1} = 5\frac{x^4}{4}.$$

Esta función es primitiva de f ya que:

$$P'(x) = 5\frac{x^4}{4} = 5x^3.$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} 5x^{3} dx = P(b) - P(a)$$

$$= \frac{5}{4}b^{4} - \frac{5}{3}a^{4}.$$

$$= \frac{5}{4}(b^{4} - a^{4}).$$

2.
$$f(x) = 4x^4 - 12x$$
.

Respuesta.- Por el ejemplo 5.1 (Apostol) se define a P como,

$$P(x) = \frac{x^{n+1}}{n+1}.$$

Por lo que la función primitiva de $4x^4 - 12x$, esta dada por:

$$P(x) = 4\frac{x^{4+1}}{4+1} - 12\frac{x^{1+1}}{1+1}$$
$$= \frac{4}{5}x^5 - 6x^2.$$

Esta función es primitiva de f ya que:

$$f(x) = \frac{4}{5}x^5 - 6x^2$$
$$= 4x^4 - 12x.$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} 4x^{4} - 12x \, dx = P(b) - P(a)$$

$$= \frac{4}{5}b^{5} - 6b^{2} - \left(\frac{4}{5}a^{5} - 6a^{2}\right)$$

$$= \frac{4}{5}(b^{5} - a^{5}) - 6(b^{2} - a^{2}).$$

3.
$$f(x) = (x+1)(x^3-2)$$
.

Respuesta.- Por el ejemplo 5.1 (Apostol) se define a P como,

$$P(x) = \frac{x^{n+1}}{n+1}.$$

Por lo que la función primitiva de $(x+1)(x^3-2)=x^4+x^3-2x-2$, esta dada por:

$$P(x) = \frac{x^{4+1}}{4+1} + \frac{x^{3+1}}{3+1} - 2\frac{x^{1+1}}{1+1} - 2\frac{x^{0+1}}{0+1}$$
$$= \frac{x^5}{5} + \frac{x^4}{4} - 2x^2 - 2x.$$

Esta función es primitiva de f ya que,

$$P'(x) = \frac{x^5}{5} + \frac{x^4}{4} - 2x^2 - 2x$$
$$= x^4 + x^3 - 2x - 2$$
$$= (x+1)(x^3 - 2).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) dx$, tenemos

$$\int_{a}^{b} (x+1)(x^{3}-2) dx = P(b) - P(a)$$

$$= \frac{b^{5}}{5} + \frac{b^{4}}{4} - 2b^{2} - 2b - \left(\frac{a^{5}}{5} + \frac{a^{4}}{4} - 2a^{2} - 2a\right)$$

$$= \frac{1}{5} (b^{5} - a^{5}) + \frac{1}{4} (b^{4} - a^{4}) - (b^{2} - a^{2}) - 2(b - a).$$

4.
$$f(x) = \frac{x^4 + x - 3}{x^3}$$
, $x \neq 0$.

Respuesta.- Podemos reescribir la función *f* como:

$$f(x) = \frac{x^4 + x - 3}{x^3} = \left(x^4 + x - 3\right)x^{-3} = x + x^{-2} - 3x^{-3}.$$

Por el ejemplo 5.1 (Apostol) se define a *P* como,

$$P(x) = \frac{x^{n+1}}{n+1}.$$

Por lo que la función primitiva de $x + x^{-2} - 3x^{-3}$, esta dada por:

$$P(x) = \frac{x^{1+1}}{1+1} + \frac{x^{-2+1}}{-2+1} - \frac{3x^{-3+1}}{-3+1}$$
$$= \frac{x^2}{2} - x^{-1} + \frac{3x^{-2}}{2}.$$

Esta función es primitiva de f ya que,

$$P'(x) = x + x^{-2} - 3x^{-3} = \frac{x^4 + x - 3}{x^3} = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= \frac{b^{2}}{2} - b^{-1} + \frac{3b^{-2}}{2} - \left(\frac{a^{2}}{2} - a^{-1} + \frac{3a^{-2}}{2}\right)$$

$$= \frac{1}{2} (b^{2} - a^{2}) - (b^{-1} - a^{-1}) + \frac{3}{2} (b^{-2} - a^{-2})$$

$$= \frac{1}{2} (b^{2} - a^{2}) - \left(\frac{1}{a} - \frac{1}{b}\right) + \frac{3}{2} \left(\frac{1}{a^{2}} - \frac{1}{b^{2}}\right).$$

5.
$$f(x) = (1 + \sqrt{x})^2$$
, $x > 0$.

Respuesta.- Dado que x > 0. Reescribimos la función f como:

$$f(x) = 1 + 2\sqrt{x} + |x| \implies f(x) = 1 + 2x^{\frac{1}{2}} + x$$

Como x > 0, entonces |x| = x. Luego, por el ejemplo 5.1 (Apostol) tenemos,

$$P(x) = 1\frac{x^{0+1}}{0+1} + \frac{2x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{x^{1+1}}{1+1}$$
$$= x + \frac{4x^{\frac{3}{2}}}{3} + \frac{x^2}{2}.$$

Esta función es primitiva de f ya que,

$$P'(x) = 1 + \frac{3}{2} \frac{4x^{\frac{3}{2}-1}}{3} + \frac{2x^2}{2} = 1 + 2x^{\frac{1}{2}} + x = (1 + \sqrt{x})^2 = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= x + \frac{4b^{\frac{3}{2}}}{3} + \frac{b^{2}}{2} - \left(x + \frac{4a^{\frac{3}{2}}}{3} + \frac{a^{2}}{2}\right)$$

$$= \frac{4}{3} \left(b^{\frac{3}{2}} - a^{\frac{3}{2}}\right) + \frac{1}{2} \left(b^{2} - a^{2}\right) + (b - a).$$

6.
$$f(x) = \sqrt{2x} + \sqrt{\frac{1}{2}x}, \quad x > 0.$$

Respuesta.- Por el ejemplo 5.1 (Apostol) tenemos,

$$P(x) = \frac{\sqrt{2}x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{\sqrt{\frac{1}{2}}x^{\frac{1}{2}+1}}{\frac{1}{2}+1}$$
$$= \frac{2\sqrt{2}x^{\frac{3}{2}}}{3} + \frac{2\sqrt{\frac{1}{2}}x^{\frac{3}{2}}}{3}$$

Esta función es primitiva de f ya que,

$$P'(x) = \frac{3}{2} \frac{2\sqrt{2}x^{\frac{3}{2}-1}}{3} + \frac{3}{2} \frac{2\sqrt{\frac{1}{2}}x^{\frac{3}{2}-1}}{3} = \sqrt{2x} + \sqrt{\frac{1}{2}x} = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= \frac{2\sqrt{2}b^{\frac{3}{2}}}{3} + \frac{2\sqrt{\frac{1}{2}}b^{\frac{3}{2}}}{3} - \left(\frac{2\sqrt{2}a^{\frac{3}{2}}}{3} + \frac{2\sqrt{\frac{1}{2}}a^{\frac{3}{2}}}{3}\right)$$

$$= \left(\frac{2\sqrt{2}}{3} + \frac{2\sqrt{\frac{1}{2}}}{3}\right)b^{\frac{3}{2}} - \left(\frac{2\sqrt{2}}{3} + \frac{2\sqrt{\frac{1}{2}}}{3}\right)a^{\frac{3}{2}}$$

$$= \frac{2}{\sqrt{2}}\left(b^{\frac{3}{2}} - a^{\frac{3}{2}}\right).$$

7.
$$f(x) = \frac{2x^2 - 6x + 7}{2\sqrt{x}}$$
 $x > 0$.

Respuesta.- Reescribimos la función *f* como:

$$f(x) = \frac{x^2}{x^{\frac{1}{2}}} - \frac{3x}{x^{\frac{1}{2}}} + \frac{7}{2x^{\frac{1}{2}}}$$
$$= x^2 x^{-\frac{1}{2}} - 3x x^{-\frac{1}{2}} + \frac{7}{2} x^{-\frac{1}{2}}$$
$$= x^{\frac{3}{2}} - 3x^{\frac{1}{2}} + \frac{7}{2} x^{-\frac{1}{2}}.$$

Por el ejemplo 5.1 (Apostol) tenemos,

$$P(x) = \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} - \frac{3x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + \frac{7}{2} \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}$$
$$= \frac{2x^{\frac{5}{2}}}{5} - 2x^{\frac{3}{2}} + 7x^{\frac{1}{2}}$$

Esta función es primitiva de f ya que,

$$P'(x) = \frac{5}{2} \cdot \frac{2x^{\frac{5}{2}-1}}{5} - \frac{3}{2} \cdot 2x^{\frac{3}{2}-1} + \frac{1}{2} \cdot 7x^{\frac{1}{2}-1}$$
$$= \frac{2x^{\frac{3}{2}}}{2} - \frac{6x^{\frac{1}{2}}}{2} + \frac{7}{2}x^{-\frac{1}{2}}.$$
$$= \frac{2x^2 - 6x + 7}{2\sqrt{7}} = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= \frac{2b^{\frac{5}{2}}}{5} - 2b^{\frac{3}{2}} + 7b^{\frac{1}{2}} - \left(\frac{2a^{\frac{5}{2}}}{5} - 2a^{\frac{3}{2}} + 7a^{\frac{1}{2}}\right)$$

$$= \frac{2}{5} \left(b^{\frac{5}{2}} - a^{\frac{5}{2}}\right) - 2\left(b^{\frac{3}{2}} - a^{\frac{3}{2}}\right) + 7\left(b^{\frac{1}{2}} - a^{\frac{1}{2}}\right).$$

8.
$$f(x) = 2x^{\frac{1}{3}} - x^{-\frac{1}{3}}, \quad x > 0.$$

Respuesta.- Por el ejemplo 5.1 (Apostol) tenemos,

$$P(x) = 2\frac{x^{\frac{1}{3}+1}}{\frac{1}{3}+1} - \frac{x^{-\frac{1}{3}+1}}{-\frac{1}{3}+1}$$
$$= \frac{3x^{\frac{4}{3}}}{2} - \frac{3x^{\frac{2}{3}}}{2}$$

Esta función es primitiva de f ya que,

$$P'(x) = \frac{4}{3} \cdot \frac{3x^{\frac{4}{3}-1}}{2} - \frac{2}{3} \cdot \frac{3x^{\frac{2}{3}-1}}{2}$$
$$= 2x^{\frac{1}{3}} - x^{-\frac{1}{3}} = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= \frac{3b^{\frac{4}{3}}}{2} - \frac{3b^{\frac{2}{3}}}{2} - \left(\frac{3a^{\frac{4}{3}}}{2} - \frac{3a^{\frac{2}{3}}}{2}\right)$$

$$= \frac{3}{2} \left(b^{\frac{4}{3}} - a^{\frac{4}{3}}\right) - \frac{3}{2} \left(b^{\frac{2}{3}} - a^{\frac{2}{3}}\right).$$

9.
$$f(x) = 3 \operatorname{sen} x + 2x^5$$
.

Respuesta.- Claramente podemos ver que,

$$P(x) = -3\cos x + \frac{1}{3}x^6,$$

es una función primitiva ya que,

$$P'(x) = 3 \sin x + 2x^5 = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= -3\cos b + \frac{1}{3}b^{6} - \left(-3\cos a + \frac{1}{3}a^{6}\right)$$

$$= -3(\cos b - \cos a) + \frac{1}{3}\left(b^{6} - a^{6}\right).$$

10.
$$f(x) = x^{\frac{4}{3}} - 5\cos x$$
.

Respuesta.- Claramente podemos ver que,

$$P(x) = \frac{3}{7}x^{\frac{7}{3}} - 5\sin x,$$

es una función primitiva ya que,

$$P'(x) = x^{\frac{4}{3}} - 5\cos x = f(x).$$

Luego, aplicando el segundo teorema fundamental para calcular $\int_a^b f(x) \ dx$, tenemos

$$\int_{a}^{b} f(x) dx = P(b) - P(a)$$

$$= \frac{3}{7} b^{\frac{7}{3}} - 5\sin b - \left(\frac{3}{7} a^{\frac{7}{3}} - 5\sin a\right)$$

$$= \frac{3}{7} \left(b^{\frac{7}{3}} - a^{\frac{7}{3}}\right) - 5\left(\sin b - \sin a\right).$$

11. Demostrar que no existe ningún polinomio f cuya derivada esté dada por la fórmula $f'(x) = \frac{1}{x}$.

Demostración.- Supongamos lo contrario. Sea $f'(x) = \frac{1}{x}$, $x \in \mathbb{R}$, entonces podemos hallar su primitiva de la siguiente manera:

$$P(x) = \frac{x^{n+1}}{n+1}, n \in \mathbb{N} \quad \Rightarrow \quad f(x) = \frac{x^{-1+1}}{-1+1} = \frac{x^0}{0}.$$

Lo cual es un absurdo. Por lo tanto no existe ningún polinomio f cuya derivada esté dada por la fórmula $f'(x)=\frac{1}{x}$.

12. Demostrar que $\int_0^x |t| \ dt = \frac{1}{2}x|x|$ para todo número real x.

Demostración.- Consideremos tres casos.

Caso 1. Si x = 0, entonces para ambos lados de la ecuación el resultado será 0, por lo que el resultado se cumple.

Caso 2. Si x > 0, entonces |t| = t para todo $t \in [0, x]$, así

$$\int_0^x |t| \ dt = \int_0^x t \ dt = \frac{1}{2}x^2 = \frac{1}{2}x|x|.$$

Caso 3. Si x < 0, entonces |t| = -t para todo $t \in [x, 0]$, así

$$\int_0^x |t| \ dt = -\int_0^x t \ dt = \int_x^0 t \ dt = \frac{1}{2} t^2 \Big|_x^0 = -\frac{1}{2} x^2 = \frac{1}{2} x |x|.$$

13. Demostrar que

$$\int_0^x (t + |t|)^2 dt = \frac{2x^2}{3}(x + |x|) \text{ para todo } x \text{ real.}$$

Demostración.- Consideremos dos casos.

Caso 1. Si $x \ge 0$ entonces t = |t| para todo $t \in [0, x]$ así,

$$\int_0^x (t+|t|)^2 dt = \int_0^x 4t^2 dt = \frac{4}{3}x^3 = \frac{2}{3}x^2(2x) = \frac{2}{3}x^2(x+|x|).$$

Caso 2. Si x < 0 entonces |t| = -t para todo $t \in [x, 0]$ así,

$$\int_0^x (t+|t|)^2 dt = \int_0^x (t-t)^2 dt = 0 = \frac{2}{3}x^2(x-x) = \frac{2}{3}x^2(x+|x|).$$

14. Una función f es continua para cualquier x y satisface la ecuación

$$\int_0^x f(t) dt = -\frac{1}{2} + x^2 + x \sin 2x + \frac{1}{2} \cos 2x.$$

para todo x. Calcular $f\left(\frac{1}{4}\pi\right)$ y $f'\left(\frac{1}{4}\pi\right)$.

Respuesta.- Sea,

$$A(x) = \int_0^x f(t) dt = -\frac{1}{2} + x^2 + x \sin 2x + \frac{1}{2} \cos 2x.$$

Por el primer teorema fundamental del cálculo la derivada de A(x) existe. Es decir,

$$A'(x) = f(x).$$

De donde,

$$f(x) = A'(x) = 2x + \sin(2x) + 2x\cos(2x) - \sin(2x) = 2x + 2x\cos(2x).$$

Luego, evaluando en $x = \frac{\pi}{4}$ tenemos

$$f\left(\frac{\pi}{4}\right) = A'\left(\frac{\pi}{4}\right) = \frac{\pi}{2} + \frac{\pi}{2}\cos\left(\frac{\pi}{2}\right) = \frac{\pi}{2}.$$

Por otro lado, derivamos f(x) y obtenemos

$$f(x) = 2x + 2x\cos(2x) \implies f'(x) = 2 + 2\cos(2x) - 4x\sin(2x).$$

Así,

$$f'\left(\frac{\pi}{4}\right) = 2 + 2\cos\left(\frac{\pi}{2}\right) - \pi \operatorname{sen}\left(\frac{\pi}{2}\right) = 2 - \pi.$$

15. Encontrar una función f y un valor de la constante c, tal que:

$$\int_{c}^{x} f(t) dt = \cos x - \frac{1}{2} \text{ para todo } x \text{ real.}$$

Respuesta.- Sea $f(t) = -\sin t$ y $c = \frac{\pi}{3}$. Entonces,

$$\int_{c}^{x} f(t) dt = \int_{\frac{\pi}{3}}^{x} (-\sin t) dt$$

$$= \cos t \Big|_{\frac{\pi}{3}}^{x}$$

$$= \cos x - \cos\left(\frac{\pi}{3}\right)$$

$$= \cos x - \frac{1}{2}.$$

16. Encontrar una función *f* y un valor de la constante *c*, tal que:

$$\int_{C}^{x} t f(t) dt = \operatorname{sen} x - x \cos x - \frac{1}{2} x^{2} \text{ para todo } x \text{ real.}$$

Respuesta.- Sea $f(t) = \operatorname{sen} t - 1$ y c = 0. Entonces,

$$\int_{c}^{x} tf(t) dt = \int_{0}^{x} (t \sin t - t) dt$$

$$= \left(\sin t - t \cos t - \frac{1}{2} t^{2} \right) \Big|_{0}^{x}$$

$$= \sin x - x \cos x - \frac{1}{2} x^{2}.$$

17. Existe una función f definida y continua para todo número real x que satisface una ecuación de la forma:

$$\int_0^x f(t) dt = \int_x^1 t^2 f(t) dt + \frac{x^{16}}{8} + \frac{x^{18}}{9} + c,$$

donde c es constante. Encontrar una fórmula explícita para f(x), y hallar el valor de la constante c.

Respuesta.- Sea $P(x) = \int_x^1 t^2 f(t) dt$. Entonces, usando los teoremas fundamentales del calculo, se tiene

$$f(x) = [P(1) - P(x)]' + 2x^{15} + 2x^{17} + 0 \quad \Rightarrow \quad f(x) = -x^2 f(x) + 2x^{15} + 2x^{17}$$
$$\Rightarrow \quad f(x) (x^2 + 1) = 2x^{15} (x^2 + 1).$$
$$\Rightarrow \quad f(x) = 2x^{15}.$$

Ahora, reemplazando f(x) en la ecuación inicial, se tiene

$$\int_0^x 2t^{15} dt = \int_x^1 t^2 \cdot 2t^{15} dt + \frac{x^{16}}{8} + \frac{x^{18}}{9} + c$$

$$\frac{t^{16}}{8} \Big|_0^x = \frac{t^{18}}{9} \Big|_x^1 + \frac{x^{16}}{8} + \frac{x^{18}}{9} + c$$

$$\frac{16}{8} = \frac{1}{9} - \frac{x^{18}}{9} + \frac{x^{16}}{8} + \frac{x^{18}}{9} + c$$

$$c = -\frac{1}{9}.$$

18. Una función f está definida para todo real x por la fórmula

$$f(x) = 3 + \int_0^x \frac{1 + \sin t}{2 + t^2} dt.$$

Sin intentar el cálculo de esta integral, hallar un polinomio cuadrado $p(x) = a + bx + cx^2$ tal que p(0) = f(0), p'(0) y p''(0) = f''(0).

Respuesta.- Sea $p(0) = a + b \cdot 0 + c \cdot 0^2 = a$. Luego calculemos f(0), como sigue

$$f(0) = 3 + \int_0^0 \frac{1 + \sin t}{2 + t^2} dt = 3.$$

Dado que f(0) = p(0) tenemos

$$a = 3$$
.

Después, sea

$$p'(x) = b + 2cx \Rightarrow p'(0) = b$$

Por el primer teorema fundamental del cálculo,

$$f'(x) = \left(3 + \int_0^x \frac{1 + \sin t}{2 + t^2} dt\right)' = \frac{1 + \sin x}{2 + x^2}.$$

Luego, $f'(0) = \frac{1}{2}$. Ya que f'(0) = p'(0), entonces $b = \frac{1}{2}$. Finalmente,

$$p''(x) = 2c \quad \Rightarrow \quad f''(0) = 2c.$$

Calculemos f''(0), como sigue

$$f''(0) = \frac{\cos x(2+x^2) - 2x(1+\sin x)}{(2+x^2)^2}$$

De donde

$$f''(0) = \frac{1 \cdot (2+0) - 0(1+0)}{(2+0)^2} = \frac{1}{2}.$$

Dado que f''(0) = p''(0), entonces

$$c=\frac{1}{4}.$$

Así,

$$p(x) = 3 + \frac{1}{2}x + \frac{1}{4}x^2.$$

19. Dada una función g, continua para todo x, tal que g(1) = 5 e $\int_0^1 g(t) \ dt = 2$. Póngase $f(x) = \frac{1}{2} \int_0^x (x-t)^2 \ dt$, demostrar que

$$f'(x) = x \int_0^x g(t) dt - \int_0^x tg(t) dt$$

y calcular f''(1) y f'''(1).

Demostración.- Podemos reescribir f de la siguiente manera,

$$f(x) = \frac{1}{2} \int_0^x (x - t)^2 dt$$

$$= \frac{1}{2} \int_0^x \left[x^2 g(t) - 2xt g(t) + t^2 g(t) \right] dt$$

$$= \frac{1}{2} \int_0^x x^2 g(t) dt - \int_0^x xt g(t) dt + \int_0^x t^2 g(t) dt$$

$$= \frac{x^2}{2} \int_0^x g(t) dt - x \int_0^x t g(t) dt + \frac{1}{2} \int_0^x t^2 g(t) dt.$$

De donde sacamos x de la integral ya que no depende de t. Después, usando la regla del producto y el teorema 1.1, sacamos la derivada de x.

$$f'(x) = \left(\frac{x^2}{2}\right)' \int_0^x g(t) + \frac{x^2}{2} \left(\int_0^x g(t) dt\right)' - x' \int_0^x tg(t) dt - x \left(\int_0^x tg(t) dt\right)' + \frac{1}{2} \left(\int_0^x t^2g(t)\right)'$$

$$= x \int_0^x g(t) dt + \frac{x^2}{2} g(x) - \int_0^x tg(t) dt - x^2g(x) + \frac{x^2}{2} g(x)$$

$$= x \int_0^x g(t) dt - \int_0^x tg(t) dt.$$

Luego, calculamos f'' y f''':

$$f''(x) = \int_0^x g(t) dt + xg(x) - xg(x)$$
$$= \int_0^x g(t) dt$$

$$f'''(x) = \left(\int_0^x g(t)\right)'$$
$$= g(x).$$

Por lo tanto,

$$f''(1) = \int_0^1 g(t) dt = 2$$

$$f'''(1) = g(1) = 4.$$

20. Sin calcular las siguientes integrales indefinidas, hallar la derivada f'(x) en cada caso si f(x) es igual a

(a)
$$\int_0^x (1+t^2)^{-3} dt$$
.

Respuesta.- Sea

$$A(x) = \int_0^x (1+t^2)^{-3} dt.$$

Entonces por el primer teorema fundamental del calculo (teorema 1.1),

$$f'(x) = A'(x) = (1 + x^2)^{-3}$$
.

(b)
$$\int_0^{x^2} (1+t^2)^{-3} dt$$
.

Respuesta.- Sea

$$A(x) = \int_0^{x^2} (1+t^2)^{-3} dt.$$

Entonces, por teorema 1.1

$$f'(x) = A'(x^2) = 2xA'(x^2) = (2x)\left[1 + (x^2)^2\right]^{-3} = 2x(1 + x^4)^{-3}.$$

(c)
$$\int_{x^3}^{x^2} (1+t^2)^{-3} dt$$
.

Respuesta.- Reescribamos la integral como,

$$f(x) = \int_{x^3}^{x^2} \left(1 + t^2\right)^{-3} dt = \int_0^{x^2} - \int_0^{x^3} \left(1 + t^2\right)^{-3} dt.$$

Así,

$$f(x) = A\left(x^2\right) - A\left(x^3\right).$$

Por lo tanto,

$$f'(x) = [A(x^2)]' - [A(x^3)]'$$

$$= (2x)A'(x^2) + (3x^2)A'(x^3)$$

$$= (2x)(1+x^4)^{-3} - (3x^2)(1+x^6)^{-3}$$

21. Sin calcular la integral, calcular f'(x) si f está definida por la fórmula

$$f(x) = \int_{x^3}^{x^2} \frac{t^6}{1 + t^4} dt.$$

Respuesta.- Sea

$$A(x) = \int_0^x \frac{t^6}{1 + t^4} dt.$$

Entonces, por el primer teorema fundamental del calculo (teorema 1.1),

$$A'(x) = \frac{x^6}{1 + x^4}.$$

Así, usando la linealidad de la integral

$$f(x) = \int_{x^3}^{x^2} \frac{t^6}{1+t^4} dt$$
$$= \int_0^{x^2} \frac{t^6}{1+t^4} dt - \int_0^{x^3} \frac{t^6}{1+t^4} dt$$
$$= A(x^2) - A(x^3).$$

Por lo tanto, usando la regla de la cadena concluimos que,

$$f'(x) = \left[A\left(x^{2}\right)\right]' - \left[A\left(x^{3}\right)\right]'$$

$$= (2x) A'\left(x^{2}\right) - \left(3x^{2}\right)\left(x^{3}\right)$$

$$= (2x) \frac{x^{12}}{1+x^{8}} - \left(3x^{2}\right) \frac{x^{18}}{1+x^{12}}$$

$$= \frac{2x^{13}}{1+x^{8}} - \frac{3x^{20}}{1+x^{12}}.$$

22. En cada caso, calcular f(2) si f es continua y satisface la fórmula dada para todo $x \ge 0$.

(a)
$$\int_0^x f(t) dt = x^2(1+x)$$
.

Respuesta.- Ya que,

$$\int_0^x f(t) dt = x^2 (1+x) = x^3 + x^2.$$

Tomemos la derivada de ambos lados,

$$f(x) = 3x^2 + 2x.$$

Por lo tanto,

$$f(2) = 16.$$

(b)
$$\int_0^{x^2} f(t) dt = x^2 (1+x)$$
.

Respuesta.- Ya que,

$$\int_0^{x^2} f(t) dt = x^2 (1+x) = x^3 + x^2.$$

Tomamos la derivada de ambos lados como se observa en la parte (b) del ejercicio 20, Spivak, capítulo 5. Para obtener

$$2xf\left(x^2\right) = 3x^2 + 2x \quad \Rightarrow \quad f\left(x^2\right) = \frac{3}{2}x + 1.$$

Por lo tanto,

$$f(2) = f\left(\sqrt{2}^2\right) = \frac{3\sqrt{2}}{2} + 1.$$

(c)
$$\int_0^{f(x)} t^2 dt = x^2 (1+x)$$
.

Respuesta.- Tenemos,

$$\int_0^{f(x)} t^2 dt = x^2 (1+x) = x^3 + x^2.$$

Evaluando la integral de la parte izquierda,

$$\int_0^{f(x)} t^2 dt = \frac{1}{3} \Big|_0^{(x)} = \frac{1}{3} [f(x)]^3.$$

Por lo tanto,

$$f(2) = 36^{\frac{1}{3}}.$$

(d)
$$\int_0^{x^2(1+x)} f(t) dt = x$$
.

Respuesta.- Tenemos,

$$\int_0^{x^2(1+x)} f(t) \ dt = x.$$

Tomando la derivada de ambos lados,

$$(3x^2 + 2x) f(x^3 + x^2) = 1 \implies f(x^3 + x^2) = \frac{1}{3x^2 + 2x}.$$

Entonces, por el hecho de que

$$x^3 + x^2 = 2 \quad \Leftrightarrow \quad x = 1,$$

ya que que el polinomio cúbico $x^3 + x^2 - 2 = 0$ tiene sólo una raíz real en x = 1. Entonces,

$$f(2) = \frac{1}{5}.$$

23. La base de un sólido es el conjunto de ordenadas de una función no negativa f en el intervalo [0, a]. Todas las secciones perpendiculares a ese intervalo son cuadrados. El volumen del sólido es

$$a^3 - 2a\cos a + \left(2 - a^2\right)\sin a$$

para todo $a \ge 0$. Suponiendo que f es continua en [0, a], calcular f(a).

Respuesta.- Tenemos la expresión,

$$V = a^3 - 2a\cos a + (2 - a^2)\sin a.$$

Sabemos que podemos calcular el volumen como la integral de 0 a a del área de cada sección transversal. Dado que las secciones transversales son cuadrados y la longitud del borde en la base está dada por f(x) (ya que la base es el conjunto ordenado de f, la longitud de la base de una sección transversal en un punto x es f(x) - 0 = f(x)). Sabemos que el área de cada sección transversal es $[f(x)]^2$. Por lo tanto, tenemos otra expresión para el volumen del sólido dada por

$$V = \int_0^a \left[f(x) \right]^2 dx.$$

Igualando estas dos expresiones para el volumen y diferenciando ambos lados tenemos

$$a^{3} - 2a\cos a + (2 - a^{2})\sin a = \int_{0}^{x} [f(x)]^{2} dx \Rightarrow 3a^{2} - a^{2}\cos a = [f(a)]^{2}$$
$$\Rightarrow f(a) = a(3 - \cos a)^{\frac{1}{2}}.$$

24. Un mecanismo impulsa una partícula a lo largo de una recta. Está concebido de manera que la posición de la partícula en el instante t a partir del punto inicial 0 en la recta está dado por la fórmula $f(t)=\frac{1}{2}t^2+2t$ sen t. El mecanismo trabaja perfectamente hasta el instante $t=\pi$ en surge una avería inesperada. A partir de ese momento la partícula se mueve con velocidad constante (1a velocidad adquirida en el instante $t=\pi$). Calcular: a) su velocidad en el instante $t=\pi$; b) su aceleración en el instante $t=\frac{1}{2}\pi$; c) su aceleración en el instante $t=\frac{5}{2}\pi$; e) Hallar el instante $t>\pi$ en el que la partícula vuelve al punto inicial O, o bien demostrar que nunca regresa a O.

Respuesta.-

a) Ya que la velocidad de la partícula es dada por la derivada de la posición, tenemos

$$v(t) = f'(t) = t + 2 \sin t + 2t \cos t.$$

$$v(\pi) = \pi + 2 \sin(\pi) + 2\pi \cos(\pi) = \pi - 2\pi = -\pi.$$

b) La aceleración es la derivad de la velocidad del inciso a). Por lo tanto,

$$a(t) = v'(t) = 1 + 2\cos t + 2\cos t - 2t\sin t.$$

= 1 + 4\cos t - 2t\sen t.

para
$$a\left(\frac{\pi}{2}\right)$$
,

$$a\left(\frac{\pi}{2}\right) = 1 + 4\cos\left(\frac{\pi}{2}\right) - \pi \sin\left(\frac{\pi}{2}\right).$$

= $1 + \pi$.

- c) Sabemos por el enunciado del problem que v(t)=c para $t>\pi$, donde c es una constante. Ya que v'(t)=0 para $t>\pi$, se sigue que la aceleración en el tiempo $t=\frac{3}{2}\pi$ es 0.
- d) Para encontrar la posición en el tiempo $t=\frac{5}{2}\pi$, consideremos el movimiento de la partícula en dos intervalos de tiempo: El tiempo de 0 a π y el tiempo desde π hasta $\frac{5}{2}\pi$. Durante el intervalo de tiempo $[0,\pi]$ la posición es dado por la siguiente función

$$f(t) = \frac{1}{2}t^2 + 2t\operatorname{sen} t.$$

Para el tiempo $t=\pi$, sabemos que la partícula se mueve con velocidad constante de $f'(\pi)$. Por lo que su posición cambia por $\frac{3}{2}\pi f'(\pi)$, durante el intervalo de tiempo $[\pi,\frac{5}{2}\pi]$. Por lo tanto, la posición en el tiempo $t=\frac{5}{2}\pi$ viene dado por

$$f\left(\frac{5\pi}{2}\right) = f(\pi) + \left(\frac{3\pi}{2}\right)f'(\pi)$$
$$= \frac{\pi^2}{2} - \frac{3\pi^2}{2}$$
$$= -\pi^2.$$

e) Se nos pide encontrar $t > \pi$ tal que g(t) = 0, donde

$$g(t) = f(\pi) + (t - \pi)v(\pi).$$

En la parte d), obtuvimos $f(\pi) = \frac{1}{2}\pi^2$ y $v(\pi) = -\pi$. Por lo tanto,

$$\frac{1}{2}\pi^2 - \pi(t-\pi) = 0$$

$$\frac{1}{2}\pi^2 - \pi t + \pi^2 = 0$$

$$t\pi = \frac{3}{2}\pi^2$$

$$t = \frac{3}{2}\pi.$$

25. Una partícula se desplaza a lo largo de una recta. Su posición en el instante t en f(t). Cuando $0 \le t \le 1$, la posición viene dada por la integral

$$f(t) = \int_0^t \frac{1 + 2 \sin \pi x \cos \pi x}{1 + x^2} dx.$$

(No intente el cálculo de esta integral.) Para $t \ge 1$, la partícula se mueve con aceleración constante (la aceleración adquirida en el instante t = 1). Calcular: a) su aceleración en el instante t = 2; b) su velocidad cuando t = 1; c) su velocidad cuando t > 1; d) la distancia f(t) - f(1) cuando t > 1.

Respuesta.-

a) Dado que la aceleración en el tiempo $t \ge 1$ es constante, la aceleración en el tiempo t = 2 es la misma que la aceleración en tiempo t = 1. Para encontrar la aceleración en el tiempo t = 1, diferenciamos dos veces f(t) y lo evaluamos en t = 1,

$$f(t) = \int_0^t \frac{1 + 2\sin(\pi x)\cos(\pi x)}{1 + x^2} dx.$$

$$f'(t) = \frac{1 + 2\sin(\pi x)\cos(\pi x)}{1 + x^2}$$
$$= \frac{1 + \sin(2\pi t)}{1 + t^2}.$$

$$f''(t) = \frac{(1+t^2) \left[\cos(2\pi t) - 2t \left(1 + \sin^2(\pi t)\right)\right]}{(1+t^2)^2}$$

$$f''(1) = \frac{4\pi - 2}{4}$$
$$= \pi - \frac{1}{2}.$$

b) De la parte (a) sabemos que $f'(t) = v(t) = \frac{1 + \mathrm{sen}(2\pi t)}{1 + t^2}$. Por lo que la velocidad en el tiempo t = 1 es

$$v(1) = f'(1) = \frac{1 + \operatorname{sen}(2\pi \cdot 1)}{1 + 1^2} = \frac{1}{2}.$$

c) Podemos encontrar la velocidad en el tiempo t > 1, determinando la velocidad en el tiempo t = 1 y añadiendo la velocidad para moverse con la aceleración constante. Por lo tanto, tenemos

$$v(t) = v(1) + (t-1) \cdot a(t), \qquad t > 1.$$

Sabemos que t>1. Así $a(t)=a(1)=\pi-\frac{1}{2}$. También conocemos que $v(t)=\frac{1}{2}$. De donde,

$$v(t) = \frac{1}{2} + (t-1)\left(\pi - \frac{1}{2}\right), \qquad t > 1.$$

d) Nos pide que encontremos f(t) - f(1) cuando t > 1. Notemos que,

$$f(t) - f(1) = v(1)(t-1) + \frac{1}{2}a(t)(t-1)^2,$$
 $t > 1.$

Dado que $v(1) = \frac{1 + \operatorname{sen}(2\pi)}{1 + 1} = \frac{1}{2}$, tenemos

$$f(t) - f(1) = v(1)(t-1) + \frac{1}{2}a(t)(t-1)^2, \quad t > 1.$$

Entonces,

$$f(t) - f(1) = \frac{1}{2}(t-1) + \frac{1}{2}\left(\pi - \frac{1}{2}\right)(t-1)^2, \quad t > 1.$$

- **26.** En cada uno de los casos siguientes encontrar una función f (con segunda derivada f'' continua) que satisfaga a todos las condiciones indicadas, o bien explicar por qué no es posible encontrar una tal función.
 - (a) f''(x) > 0 para cada x, f'(0) = 1, f'(1) = 0.

Respuesta.-

(b) f''(x) > 0 para cada x, f'(0) = 1, f'(1) = 3.

Respuesta.-

(c) f''(x) > 0 para cada x, f'(0) = 1, $f(x) \le 100$ para cada positivo x.

Respuesta.-

(d) f''(x) > 0 para cada x, f'(0) = 1, $f(x) \le 100$ para cada negativo x.

Respuesta.-