1444 FORMULA SHEET

Constants:
$$g = 9.80 \frac{m}{s^2}$$
 $G = 6.673 \times 10^{-11} N \cdot m^2 / kg^2$ $e = 1.60 \times 10^{-19} C$ $k_c = 9.00 \times 10^9 N \cdot m^2 / C^2$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2} \qquad \mu_0 = 4\pi \times 10^{-7} \frac{T \cdot m}{A} \qquad h = 6.63 \times 10^{-34} \ J \cdot s \qquad \hbar = 1.055 \times 10^{-34} \ J \cdot s$$

$$m_{electron} = 9.11 \times 10^{-31} kg$$
 $m_{proton} = 1.67 \times 10^{-27} kg$ $c = 3.00 \times 10^8 \ m/s$
Metric Multipliers: Pico $p = 10^{-12}$ Micro $\mu = 10^{-6}$ Centi $c = 10^{-2}$ Mega $M = 10^{-6}$

Nano
$$n = 10^{-9}$$
 Milli $m = 10^{-3}$ Kilo $k = 10^3$ Giga $G = 10^9$

Conversion Equivalents:

$$1.00 \text{ inch} = 2.54 \text{ cm}$$
 $1.00 \text{ ft.} = 30.5 \text{ cm}$ $1.00 \text{ m} = 3.28 \text{ ft.} = 39.4 \text{ inches}$ $1.00 \text{ cm} = 0.394 \text{ inches}$ $1.00 \text{ km} = 0.621 \text{ miles}$ $1.00 \text{ mile} = 5280 \text{ ft} = 1.61 \text{ km}$

1 Rev =
$$2\pi \, \text{rad} = 360^{\circ}$$
 $1eV = 1.60 \times 10^{-19} \, J$ $k_c = \frac{1}{4\pi\varepsilon_0}$

Trigonometric Relations:

For Right Triangles:
$$Sin\theta = \frac{Opp}{Hyp} = \frac{B}{C}$$
 $Cos\theta = \frac{Adj}{Hyp} = \frac{A}{C}$ $Tan\theta = \frac{Opp}{Adj} = \frac{B}{A}$ $A^2 + B^2 = C^2$

For All Triangles:
$$\frac{Sin(\alpha)}{A} = \frac{Sin(\beta)}{B} = \frac{Sin(\gamma)}{C}$$

$$C^2 = A^2 + B^2 - 2AB \cdot Cos(\gamma)$$

<u>Vector Relations</u> (assuming θ defined with respect to the positive x-axis)

$$V_x = |\vec{V}| \cdot Cos\theta$$
 $V_y = |\vec{V}| \cdot Sin\theta$ $|\vec{V}| = \sqrt{V_x^2 + V_y^2}$ $\theta = Tan^{-1} \left(\frac{V_y}{V_x}\right)$

Vector Dot and Cross Products (assuming θ is the angle between the vectors)

$$\vec{A} \times \vec{B} = \det \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}$$

$$\begin{aligned} & \hat{i} \times \hat{i} = 0 & \hat{j} \times \hat{i} = -\hat{k} & \hat{k} \times \hat{i} = \hat{j} \\ & \hat{i} \times \hat{j} = \hat{k} & \hat{j} \times \hat{j} = 0 & \hat{k} \times \hat{j} = -\hat{i} \\ & \hat{i} \times \hat{k} = -\hat{j} & \hat{j} \times \hat{k} = \hat{i} & \hat{k} \times \hat{k} = 0 \end{aligned}$$

$$\mid \vec{A} \times \vec{B} \mid = \mid \vec{A} \parallel \vec{B} \mid Sin\theta \qquad \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z = \mid \vec{A} \mid \mid \vec{B} \mid Cos\theta$$

Kinematic Equations in 1 Dimension:
$$x = x_0 + \bar{v}t$$
 $\bar{v} = \frac{\Delta x}{\Delta t} = \frac{x - x_0}{t - t_0}$ $\bar{a} = \frac{\Delta v}{\Delta t} = \frac{v - v_0}{t - t_0}$

$$\mathbf{v}_{\text{inst}} = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} \qquad \mathbf{a}_{\text{inst}} = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = \frac{d^2 x}{dt^2} \qquad \int a \cdot dt = v \qquad \int v \cdot dt = x$$

Kinematic Equations in 1 Dimension with Constant Acceleration:

$$v = v_0 + at$$
 $x = x_0 + \frac{1}{2}(v + v_0)t$ $x = x_0 + v_0t + \frac{1}{2}at^2$ $v^2 = v_0^2 + 2a(x - x_0)$ $\overline{v} = \frac{1}{2}(v + v_0)$

Kinematic Equations in 2 Dimensions:
$$\vec{r} = \vec{r}_0 + \vec{v}_{avg}t$$
 $\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r} - \vec{r}_0}{t - t_0}$ $\vec{a} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v} - \vec{v}_0}{t - t_0}$

$$\vec{\mathbf{v}}_{\text{inst}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} \qquad \vec{\mathbf{a}}_{\text{inst}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{r}}{dt^2} \qquad \int \vec{a} \cdot dt = \vec{v} \qquad \int \vec{v} \cdot dt = \vec{r}$$

Kinematics in 2 Dimensions with Constant Acceleration.

$$v_{x} = v_{0x} + a_{x}t \qquad x = x_{0} + \frac{1}{2}(v_{x} + v_{0x})t \qquad x = x_{0} + v_{0x}t + \frac{1}{2}a_{x}t^{2} \qquad v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0}) \qquad \overline{v}_{x} = \frac{1}{2}(v_{x} + v_{0x})$$

$$v_{y} = v_{0y} + a_{y}t \qquad y = y_{0} + \frac{1}{2}(v_{y} + v_{0y})t \qquad y = y_{0} + v_{0y}t + \frac{1}{2}a_{y}t^{2} \qquad v_{y}^{2} = v_{0y}^{2} + 2a_{y}(y - y_{0}) \qquad \overline{v}_{y} = \frac{1}{2}(v_{y} + v_{0y})$$

$$Forces: \qquad \sum \vec{F} = m\vec{a} \qquad \sum F_{x} = ma_{x} \qquad \sum F_{y} = ma_{y} \qquad \vec{W} = m\vec{g} \qquad \vec{g}_{Apparent} = \vec{g} - \vec{a}_{Frame}$$

Work:
$$W = \vec{F} \cdot \vec{s} = F \cdot s \cdot Cos(\theta)$$
 Translational Kinetic Energy: $KE = \frac{1}{2}mv^2$

Gravitational PE:
$$U_{GRAV} = mgh$$
 Conservation on Energy: $W_{NC} = \Delta KE + \Delta U$ **Power**: $P = \frac{W}{t}$

Coulomb's Law:
$$\left| \vec{F} \right| = k_c \frac{|Q_1||Q_2|}{r^2}$$
 Electric Field: $\vec{E} = \frac{\vec{F}}{q}$ $\vec{F} = q\vec{E}$

E (Point Charge):
$$|\vec{E}| = k_c \frac{|Q|}{r^2}$$
 Electric Potential: $V_{ab} = \frac{U_{ab}}{q} = -\frac{W_{ab}}{q}$ $\Delta U = q \cdot \Delta V$

Electric Potential (Point Charge):
$$V = k_c \frac{Q}{r}$$
 Electric Potential (in uniform E field): $\Delta V = -Ed$

Electric Fields and Potentials:
$$V = -\int \vec{E} \cdot d\vec{l}$$
 $E_x = -\frac{\partial V}{\partial x}$ $E_y = -\frac{\partial V}{\partial y}$ $E_z = -\frac{\partial V}{\partial z}$

Electric Potential Energy (Point Charges):
$$U = k_c \frac{Q_1 Q_2}{r}$$
 Gauss's Law: $\Phi_E = \oint \vec{E} \cdot d\vec{A} = \frac{Q_{Enclosed}}{\mathcal{E}_0}$

Capacitance:
$$Q = CV$$
 Capacitor Energy Storage: $PE = \frac{1}{2}QV = \frac{1}{2}CV^2 = \frac{Q^2}{2C}$

Parallel Plate Capacitor:
$$C = \frac{k_d \varepsilon_0 A}{d} = \frac{\varepsilon A}{d}$$
 E Field Energy Density: $\frac{PE}{volume} = \frac{1}{2} \varepsilon_0 E^2$

Electric Current:
$$I = \frac{dq}{dt}$$
 Ohm's Law: $V = IR$ **Resistance**: $R = \rho \frac{L}{A}$ $R = R_0[1 + \alpha(T - T_0)]$

Electric Power:
$$P = IV = I^2R = \frac{V^2}{R}$$
 Battery Terminal Voltage: $V_T = \mathcal{E} - Ir$

Resistors In Series: $R_{EQ} = R_1 + R_2$ **Resistors In Parallel**: $\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_2}$ or $R_{EQ} = \frac{R_1 \cdot R_2}{R_1 + R_2}$

<u>Kirchoff's Junction Rule</u>: At any junction point, the sum of all currents entering a junction must equal the sum of all currents leaving the junction.

<u>Kirchoff's Loop Rule</u>: The sum of the changes in potential around any closed path of a circuit must be zero.

RC Circuit (Charging): $V_C = V_{SS} \left(1 - e^{\frac{-t}{RC}} \right)$ $Q_C = Q_{SS} \left(1 - e^{\frac{-t}{RC}} \right)$ $I_C = I_0 e^{\frac{-t}{RC}}$

RC Circuit (Discharging): $V_C = V_0 e^{\frac{-t}{RC}}$ $Q_C = Q_0 e^{\frac{-t}{RC}}$ $I_C = I_0 e^{\frac{-t}{RC}}$ **Time Constant**: $\tau = RC$

Magnetic Force On Moving Charge: $F = qvB\sin\theta$ $\vec{F} = q\vec{v} \times \vec{B}$

<u>Circular Motion of Charged Particle in B Field</u>: $r = \frac{mv}{qB}$ <u>Biot-Savart</u>: $d\vec{B} = \frac{\mu_0 I}{4\pi} \cdot \frac{d\vec{l} \times \hat{r}}{r^2}$

Magnetic Force On Current Carrying Wire: $F = ILB\sin\theta$ $\vec{F} = I\vec{L} \times \vec{B}$

Magnetic Field From Current Carrying Wire: $B = \frac{\mu_0 I}{2\pi r}$ Ampere's Law: $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{ENC}$

Magnetic Force Between Two Parallel Wire: $\frac{F}{L} = \frac{\mu_0 I_1 I_2}{2\pi d}$

<u>Magnetic Field in Solenoid</u>: $B = \mu_0 In = \mu_0 I \frac{N}{L}$ <u>Torque On Current Loop</u>: $\tau = NIAB\sin\theta$

Magnetic Flux: $Φ_B = \vec{B} \cdot \vec{A} = BA \cos \theta$ Faraday's Law of Induction: $\mathcal{E} = -N \frac{dΦ_B}{dt}$

EMF in Moving Conductor: $\mathcal{E} = BLv$ **Electric Generators:** $\mathcal{E} = \omega NBA\sin(\omega t)$

<u>Transformers</u>: $\frac{V_s}{V_P} = \frac{N_s}{N_P}$ $\frac{I_s}{I_P} = \frac{N_P}{N_S}$ <u>Inductance</u>: $\mathcal{E} = -L\frac{dI}{dt}$

Solenoid Inductance: $L = \mu_0 n^2 A l = \frac{\mu_0 N^2 A}{l}$ **Inductor Energy:** $U = \frac{1}{2} L I^2$

RL Circuit (Charging): $I_L = I_{SS} \left(1 - e^{\frac{-Rt}{L}} \right)$ $V_L = V_0 e^{\frac{-Rt}{L}}$

RL Circuit (Discharging): $V_L = V_0 e^{\frac{-Rt}{L}}$ $I_L = I_0 e^{\frac{-Rt}{L}}$ **Time Constant**: $\tau = L/R$

Complex Numbers: $z = a + bi = |z| \angle \theta$ $a = |z| Cos\theta$ $b = |z| Sin\theta$ $|z| = \sqrt{a^2 + b^2}$ $\theta = Tan^{-1} \left(\frac{b}{a}\right)$

 $z_1 z_2 = |z_1||z_2| \angle (\theta_1 + \theta_2)$ $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \angle (\theta_1 - \theta_2)$

General AC Circuits: $V_0 = I_0 |z|$ $V_{RMS} = I_{RMS} |z|$ $P = V_{RMS} I_{RMS} = \frac{1}{2} V_0 I_0$ $V_{RMS} = \frac{V_0}{\sqrt{2}}$ $I_{RMS} = \frac{I_0}{\sqrt{2}}$

Inductors in AC Circuits: $X_L = \omega L = 2\pi f L$ $Z_L = i X_L$ $V_L = I X_L$

<u>Capacitors in AC Circuits</u>: $X_C = \frac{1}{\omega C} = \frac{1}{2\pi fC}$ $Z_C = -iX_C$ $V_C = IX_C$

Series RLC AC Circuit: $z = R + (X_L - X_C)i$ $|z| = \sqrt{R^2 + (X_L - X_C)^2}$ $\theta = Tan^{-1}\left(\frac{X_L - X_C}{R}\right)$

<u>Index of Refraction</u>: $c = \frac{1}{\sqrt{\epsilon_{H}}} = \lambda f$ $v_{EM} = \frac{1}{\sqrt{\epsilon_{H}}} = \lambda' f = \frac{\lambda f}{n} = \frac{c}{n}$ $\lambda' = \frac{\lambda}{n}$

Law of Reflection: $\theta_i = \theta_R$ **Snell's Law:** $n_1 Sin \theta_1 = n_2 Sin \theta_2$ **Total Int. Refl.:** $Sin \theta_1 = \frac{n_2}{n_2}$

Energy Density: $\frac{\vec{E} \ Energy}{V_{Olume}} = \frac{1}{2} \varepsilon_0 E^2$ $\frac{\vec{B} \ Energy}{V_{Olume}} = \frac{B^2}{2\mu_0}$

Electromagnetic Waves: $E_0 = cB_0$ $E_{RMS} = cB_{RMS}$ $\frac{Total \, Energy}{Volume} = \frac{1}{2} \varepsilon_0 E_{RMS}^2 + \frac{1}{2 \mu_0} B_{RMS}^2 = \varepsilon_0 E_{RMS}^2 = \frac{B_{RMS}^2}{\mu_0}$

Doppler Effect for EM Waves: $f_0 = f_s \left(1 \pm \frac{V_{REL}}{c} \right)$ **Polarization:** $|E| = E_0 Cos \theta$

<u>Mirrors/Lenses</u>: $|f| = \frac{R}{2}$ $\frac{1}{f} = \frac{1}{d_1} + \frac{1}{d_2}$ <u>Magnification</u>: $M = \frac{h_i}{h_2} = -\frac{d_i}{d_2}$

Lens Sign Conventions: Focal Length (f): "+" for converging, "-" for diverging

Object Distance (do): "+" on left (real), "-" on right (virtual) Image Distance (d_i): "+" on right (real), "-" on left (virtual) Magnification (M): "+" upright, "-" inverted

Double Slit Interference: $d \sin \theta = \begin{cases} m\lambda & Constructive \\ (m+1/2)\lambda & Destructive \end{cases}$ Small Angle Approximation $\sin \theta = \frac{Y}{I}$ $\sin \theta = \frac{Y}{I}$

Single Slit Interference: $d \sin \theta = \begin{cases} (m+1/2)\lambda & Constructive \\ m\lambda & Destructive \end{cases}$

Thin Film Interference: $2t + \left\{\frac{1}{2}\lambda_F\right\} = \begin{cases} m\lambda_F & Constructive \\ (m+1/2)\lambda_F & Destructive \end{cases}$ with $\lambda_F = \frac{\lambda}{n}$

 $2d\sin\theta = \begin{cases} m\lambda & Constructive \\ (m+1/2)\lambda & Destructive \end{cases}$ Bragg (X-Ray) Diffraction:

Special Relativity: $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$ $\Delta t = \gamma \Delta t_0$ $L = \frac{1}{\gamma} L_0$ $m = \gamma m_0$ $p = mv = \gamma m_0 v$

 $V_{AC} = \frac{V_{AB} + V_{BC}}{1 + \frac{V_{AB} \cdot V_{BC}}{2}} \qquad E^2 = p^2 c^2 + m_0^2 c^4 \qquad E_0 = m_0 c^2 \qquad E = \gamma m_0 c^2 \qquad KE = (\gamma - 1) m_0 c^2$

Quantum Energy/Momentum: $E = hf = \frac{hc}{r^2} = pc$ $p = \frac{h}{r^2}$

Photoelectric Effect: $KE_{Max} = hf - W_0$ **Compton Effect**: $\lambda' - \lambda = \frac{h}{mc}(1 - Cos\theta)$

Bohr Radius/Energy: $r_0 = \frac{\varepsilon_0 h^2}{\pi m_e^2}$ $r_n = n^2 r_0$ $E_0 = -\frac{e^4 m_e}{8\varepsilon_0^2 h^2} Z^2 = -(13.6 eV) Z^2$ $E_n = \frac{E_0}{n^2}$

<u>Heisenberg Uncertainty</u>: $(\Delta x)(\Delta p) \ge \frac{h}{4\pi} = \frac{\hbar}{2}$ $(\Delta E)(\Delta t) \ge \frac{h}{4\pi} = \frac{\hbar}{2}$