Aonde você quer chegar? Vai com a

Quem Sou eu?

Sistemas Dicotômicos

O mundo apresenta situações com dois estados apenas, que mutuamente se excluem.

E situações como:

Morno, azul royal, parta entre aberta?

São situações estritamente dicotômicas, com dois estados excludentes bem definidos.

1	0
SIM	NÃO
DIA	NOITE
PRETO	BRANCO
LIGADO	DESLIGADO

Interruptores

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

https://www.mundodaeletrica.com.br/como-instalar-interruptor-paralel

Fechado

https://www.mundodaeletrica.com/ligacao-em-serie-descubra-com

Interruptores

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

Aberto

a

Ligados em série

Fechado

Interruptores Simples

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

0 + 0 = 0	$0 \cdot 0 = 0$
0 + 1 = 1	0 • 1 = 0
1 + 0 = 1	1 • 0 = 0
1 + 1 = 1	1 • 1 = 1
a + b = b + a	a • b = b • a
a + a' = 1	a • a' = 0
a + 0 = a	a • 0 = 0
a + 1 = 1	a • 1 = a

Interruptores Composto

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

Lógica e álgebra de Boole - Jacob Daghlian - Editora Atlas

Interruptores Composto

Dispositivo ligado a um circuito elétrico, que pode assumir estados de fechado (1) ou aberto (0).

Lógica e álgebra de Boole - Jacob Daghlian - Editora Atlas

Exercício

Determine a ligação do seguinte circuito

Exercício

Determine a ligação do seguinte circuito

Solução (a+b).c+(n.p)

Relação Algébrica e Diagrama de Venn

Expressão	Símbolo	Diagrama de Venn	Expressão Algébrica		Tabela Verda	
				Α	В	Output
			0	0	0	
AND			$A \cdot B$	0	1	0
			TOWER PROCESS	1	0	0
				1	1	1
				А	В	Output
OR	⊅ -		A + B	0	0	0
				0	1	1
				1	0	1
				1	1	1
		100		А	В	Output
	1			0	0	0
XOR	□) >−		$A \oplus B$	0	1	1
			HITTEREN	1	0	1
				1	1	0
	_			A	1	Output
NOT	\ >		\overline{A}	()	1
NOT				1		0

Relação Algébrica e Diagrama de Venn

				A	В	Output
				0	0	1
NAND			$\overline{A \cdot B}$	0	1	1
				1	0	1 0
		100		1	1	0
				Α	В	Output
				0	0	1
NOR —			$\overline{A+B}$	0	1	0
				1	0	0 0
				1	1	0
				А	В	Output
	7			0	0	1
XNOR) >o-		$\overline{A \oplus B}$	0	1	0
				1	0	0
				1	1	1
				11	V	Output
BUF	-		A	C)	0
				1	e e	1

Conectivos

Con	ectivos	 	ímbolo		Tradução	
Não			~		Negação	
E :			۸		Conjunção	
.Ou		 · ·	V		Disjunção	
SeEntão	· ·	: :	→		Condicional	
Se, e Some	ente se	 · · · · · · · · · · · · · · · · · · ·	\leftrightarrow	· · · · · · · · · · · · · · · · · · ·	Bicondicional	
OuOu	· :	 . : . :	<u>v</u>		Disjunção Exclusiva	

Conectivos: Conjunção (∧)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

$$2^2 = 4 Linhas$$

Proposição: Vou andar de bicicleta E vou andar de patins

р	q	$p \wedge q$	Tradução
V	V	Falou a verdade	V
V	F	Mentiu	F
F	V	Mentiu	F
F	F	Mentiu	F

Conectivos: Disjunção (v)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: Vou andar de bicicleta OU vou andar de patins

р	q	$p \lor q$	Tradução
V	V	Falou a verdade	V
V	F	Falou a verdade	V
F	V	Falou a verdade	V
F	F	Mentiu	F

Conectivos: Disjunção Exclusiva (<u>V</u>)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

Proposição: Ou Vou andar de bicicleta OU vou andar de patins

р	q	<i>p</i> <u>∨</u> <i>q</i>	Tradução
V	V	Mentiu	F
V	F	Falou a verdade	V
F	V	Falou a verdade	V
F	F	Mentiu	F

Conectivos: Condicional (\rightarrow)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

$$2^2 = 4 Linhas$$

Proposição: Se Vou andar de bicicleta então vou andar de patins

р	q	$p \rightarrow q$	Tradução
V	V	Falou a verdade	V
V	F	Mentiu	F
F	V	Falou a verdade	V
F	F	Falou a verdade	V

Conectivos: Bicondicional (↔)

p: Vou andar de bicicleta

q: Vou andar de patins

 2^n , onde n é o número de proposições Portanto:

$$2^2 = 4 Linhas$$

Proposição: Vou andar de bicicleta se e somente se vou andar de patins

р	q	$p \leftrightarrow q$	Tradução
V	V	Falou a verdade	V
V	F	Mentiu	F
F	V	Mentiu	F
F	F	Falou a verdade	V

Conectivos: Negação

p: Vou andar de bicicleta

 2^n , onde n é o número de proposições Portanto:

 $2^2 = 4 Linhas$

р	~p
V	F
V	F
F	V
F	V

Em que ordem resolvemos?

- 1. Conectivos dentro de parênteses, dos mais internos para os mais externos
- 2. ' ou ~
- 3. ^ ou U
- 4. →
- 5. ↔

Exemplo

Determinar a tabela verdade para $(\sim p \land \sim q) \rightarrow F$

р	q	~q	~p	(~ <i>p</i> ∧ ~ <i>q</i>)	F	$(\sim p \land \sim q) \to F$
V	V	F	F	F	F	V
V	F	V	F	F	F	V
F	V	F	V	F	F	V
F	F	V	V	V	F	F

Exemplo E SE INVERTERMOS A CONDICIONAL? MUDA O V

Determinar a tabela verdade para $F \rightarrow (\sim p \land \sim q)$

р	q	~q	~p	$(\sim p \land \sim q)$	F	$F \to (\sim p \land \sim q)$
V	V	F	F	F	F	V
V	F	V	F	F	F	V
F	V	F	V	F	F	V
F	F	V	V	V	F	V

Exemplo 2 Determinar a tabela verdade para $p \lor (q \lor r)$

р	q	r	$(q \lor r)$	$p \lor (q \lor r)$		
V	V	V	V	V		
V	V	F	V	V		
V	F	V	V	V		
V	F	F	F	V		
F	V	V	V	V		
F	V	F	V	V		
F	F	V	V	V		
F	F	F	F	F		
UniCesumar						

Exemplo 2 Determinar a tabela verdade para $(p \lor q) \lor r$

р	q	r	$p \lor q$	$(p \lor q) \lor r$
V	V	V	V	V
V	V	F	V	V
V	F	V	V	V
V	F	F	V	V
F	V	V	V	V
F	V	F	V	V
F	F	V	F	V
F	F	F	F	F

Uma das aplicações da Lógica é em circuitos elétricos e eletrônicos simulados por meio de chaves. Os circuitos de chaveamento são representados por meio de chaves que ligam e desligam conforme o estado binário "Verdadeiro (1) ou Falso (0)" da sentença Lógica. Considerando a expressão de um circuito dada por $A \rightarrow (B \land C)$ determine quando a saída do circuito será 1 (ou V).

 $A \longrightarrow (B \land C)$

Α	В	С	$(B \wedge C)$	$\mathbf{A} \to (\mathbf{B} \wedge \mathbf{C})$
V	٧	٧	V	V
V	٧	F	F	F
V	F	٧	F	F
V	F	F	F	F
F	٧	٧	V	V
F	٧	F	F	V
F	F	٧	F	V
F	F	F	F	V

Em uma competição de natação, os atletas em questão estão concorrendo por medalhas ao primeiro, segundo e terceiro colocado:

a) Primeiro lugar: Ouro

b) Segundo lugar: Prata

c) Terceiro lugar: Bronze

Cada atleta passará por chaves que determinarão a competição final. Cada atleta só passará para a próxima fase se na fase anterior tiver vencido. Pensando nessa situação elabore uma equação lógica e uma tabela que simule as possibilidades dessa competição

Α	В	С	$A \wedge B$	$A \wedge C$	$B \wedge C$	$A \wedge B \wedge C$
V	V	V	V	V	V	V
V	V	F	V	F	F	F
V	F	V	F	V	F	F
V	F	F	F	F	F	F
F	V	V	F	F	V	F
F	V	F	F	F	F	F
F	F	V	F	F	F	F
F	F	F	F	F	F	F

