Issues in unifying nasal vowel markedness 12th Old World Conference in Phonology

Michael Dow Université de Montréal

January 29, 2015

- Introduction
- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis
- 6 Conclusion

- Phonetic motivation of nasal vowel phenomena in phonology
- Lowering in French $/fi^n/\to [f\tilde\epsilon]$ 'fine (masc.)' (vs. [fin] 'fine (fem.)')
 - "Relative markedness of high to mid vowels must drive lowering, supported by greater difficulty in nasal coupling on high vowels"
 - OR: "High nasal vowels are marked because they are harder to nasalize."
 - [NB: discredited explanation]

- Phonetic grounding not problematic *per se*, but runs the risk of:
 - Losing motivation upon further inspection/more sophisticated methodology
 - Reduplicating information in the grammar—or at worst, lacking unified principle
- Establishment of markedness hierarchies requires much more (and more phonological) evidence, but exceedingly difficult when data seem convoluted
- High level of idiosyncrasy in nasal vowel behavior (even just on surface)

- Recent instrumental/experimental findings cast even further doubt:
 - Imaging: Significant mismatch among transcribed vowel, acoustic output, and (re)configuration of oral articulators (esp. tongue).
 - \rightarrow How do we define the output vowel's quality? Input?
 - Nasal quantification: Global scores of nasality may require different thresholds for vowels of different heights, and high percentages of nasalization may not always be indicative of a *phonological* process.
 - \rightarrow How do we define the surface vowel's nasality?
- Attempts to establish a unified phonological theory of nasal vowels must first address these phonetic discrepancies (esp. within a modular approach)

Objectives & outline

- Problematize nasal vowels in phonology (in light of some phonetics-based issues):
 - Recovering underlying representations from conflicting surface evidence
 - ② Distinguishing oral from nasal vowels when nasal coupling is incomplete
- Sketch a preliminary solution as an example of a possible response & evaluate predictions made by its implementation in a stringent framework

Outline

- 1 Introduction
- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis
- 6 Conclusion

Acoustic effects of nasalization

- Immense body of literature on acoustic effects of nasality: cf. Shosted et al. 2011 for summary, Baken & Orlikof 2000 for exhaustive list
- Extra resonator introduces additional nasal poles and zeroes which interact with oral vowel structure
- Centralization effect: low vowel F1 lowered (raising perceived), high vowel F1 raised (lowering perceived).
- Unclear global F2 effects, but F2 lowering may increase perception of nasality (Delvaux 2009)
- Oral articulators can be (and are) reconfigured to shift the acoustic output

3—way mismatch among: articulatory configuration, acoustic output, and traditional transcription

(1) Transcription of French nasal vowels (minor diacritics removed)

		Acoustic	Articulatory
Example	Traditional	(Carignan 2014)	(Delvaux 2012)
paon 'peacock'	$[\tilde{lpha}]$	[õ]	$[\tilde{lpha}]$
pain 'bread'	$[ilde{arepsilon}]$	$[\widetilde{s}]$	$[ilde{ ilde{ ext{a}}}]$
pont 'bridge'	$[\widetilde{\mathfrak{z}}]$	$[ilde{ ilde{ ilde{o}}}]$	$[ilde{ ilde{ ilde{o}}}]$
brun 'brown'	$[ilde{ ilde{ ext{e}}}]$	_	$[ilde{ ilde{ ilde{E}}}]$

(2) Nasal vowel surface patterns & UR types in French

Surface type	Proposed UR	Example (traditional IPA)
$[\tilde{V}] \sim [VN]$	$/\mathrm{V^n}/$	$[katal\tilde{a}] \sim [katalan]$ 'Catalan (m., f.)'
$[\tilde{\mathbf{V}}] \sim [\tilde{\mathbf{V}}\mathbf{C}]$	$/ ilde{ m V}/$	$[p\tilde{\epsilon}] \sim [p\tilde{\epsilon}t]$ 'painted (m., f.)'
$[ilde{ m V}]$	$/ ilde{ m V}/$	$[m\tilde{\epsilon}]$ 'hand'

- NB: further evidence for such input types found in "disjointed" alternations; recall $[f\tilde{\epsilon}] \sim [fin]$ 'fine (m., f.)'.
- No (major) quality difference in quality between input types for identical surface vowels; only association of [+nasal] (e.g., $\langle \epsilon^n, \tilde{\epsilon} \rangle$)

Reanalysis?

Introduction

(3) Scale and consequences of reanalysis (example: pain-type)

Type	UR(s)	Phono. output
a.	$/\epsilon^{\rm n}, \tilde{\epsilon}/$	$[ilde{\epsilon}]$
b.	$/\epsilon^{\mathrm{n}}, ilde{\epsilon}/$	$[\widetilde{\mathfrak{F}}]$
c.	$/\epsilon^{ m n}, ilde{ m e}/$	$[\widetilde{\mathfrak{F}}]$
d.	$/\mathrm{e}^{\mathrm{n}}(?), \tilde{\mathrm{e}}/$	$[\widetilde{s}]$

- Traditional, "good faith" analysis (a.): alternations provide evidence for more abstract output. "Analogy" links non-alternating identical surface forms and articulatory & acoustic shifts are purely phonetic.
- Middle-of-the-road (b.): no reanalysis of input types, but lowering and centralization occur within phonology.

Reanalysis? (2)

Introduction

(4) Scale and consequences of reanalysis (example: pain-type)

Type	UR(s)	Phono. output
a.	$/\epsilon^{\rm n}, \tilde{\epsilon}/$	$[ilde{arepsilon}]$
b.	$/\epsilon^{\mathrm{n}}, ilde{\epsilon}/$	$[ilde{\mathbf{g}}]$
c.	$/\epsilon^{ m n}, ilde{ m e}/$	$[ilde{ ilde{\mathbf{g}}}]$
d.	$/\mathrm{e}^{\mathrm{n}}(?), \mathrm{ ilde{e}}/$	$[ilde{\mathbf{g}}]$

- Partial reanalysis (c.): same output (necessarily reflective of phonetic shift) belongs to input vowels of different qualities, in addition to feature association; lowering occurs in $/\epsilon^n$ / within phonology.
- Total reanalysis (d.): all surface forms come from vowel of same quality (association unclear); either raising occurs in feminine forms ([ɛn]) or funky allomorphy/suppletion comes into play.

- But which shifted vowel (between acoustic & articulatory)? Trends between form and function:
 - Contrastive nasality: increased acoustic salience in vowel space differences heightened between nasal and oral vowels (e.g. Hindi, French; Shosted et al. 2011, Carignan 2014) → acoustic and/or articulatory identity?
 - Allophonic: greater acoustic identity between output and oral congener canceling out acoustic effects of nasalization (American English; Carignan et al. 2011) → acoustic identity?
- Targeting of an articulatory configuration (over its acoustic result)?

So what?

- Room for debate, but (a.) still seems preferable, despite divergent/abstract phonological output:
 - Alternation such as [fee] ~ [fin] requires some (potentially dubious) extra legwork, e.g., intermediate representations, 3-to-1 correspondence, and/or "superlowering."
 - The listener must be able to unpack minor phonetic shifts into internalized abstractions — everything falls apart otherwise.
- In the absence of alternations or in the case of underdescribed languages, recovering phonemes from finer and finer phonetic description will require specific conventions.

Outline

- 1 Introduction
- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis
- 6 Conclusion

Methods

- Methods available for modeling nasal intensity and/or duration:
 - Motion detection: timing of nasalization gestures (e.g., velic lowering)
 - **Imaging:** velopharyngeal port opening size at any measured point
 - Acoustic: formant tracing (appearance of nasal poles/zeroes) & relationship between oral and nasal formants (e.g. Chen 1997)
 - Nasometric: nasalance at any given point (ratio of nasal to total energy)
 - Aerodynamic: ratio of nasal to total airflow

Global scores

- The latter two (split-level methods) can provide a global score, with respect to an arbitrary threshold (e.g. "vowel x is 90% nasal if 9/10 of its measured points meet certain criteria").
- Binary classification requires another threshold (e.g. "vowel x is nasal if it has a global score of 50% or more").
- Potential shortcoming: not all vowel qualities may have the same threshold for classification
- Two claims with reversed scales in each claim:
 - Articulatory preference: high vowels may require only a very low threshold (vs. a high one for low vowels)
 - Inherent length: low vowels preferred; high rates on high vowels may be accidental

Height & nasal coupling

- ullet Relationship between vowel height and nasality o articulatory preference for high nasal vowels:
 - Inherent velic position (independent of nasality) highest for high vowels, lowest for low vowels (e.g., Henderson 1984).
 - Nasal airflow "creeps in" on oral low vowels (e.g., Ohala 1975).
 - Extremely little velic movement necessary for nasality on high vowels, both in aerodynamic terms (e.g., Bell-Berti 1993) and for perception as nasal (House & Stevens 1956, Maeda 1982).

Height & global scores

- Global threshold may vary according to height: here, high threshold may be < low
- Compare nasalization measurements on contrastive nasal vowels: often incomplete or surprisingly low (e.g., Delvaux et al. 2008, Dow 2014)
- French dialects with multi-phased nasal vowels (e.g., Delvaux 2006, Clairet 2008)
- If complete (or even near-complete) nasalization not necessary, realization of/change to [+nasal] may be reflected in phonetics by different (minimal) scores, according to height

Length issues: background

- Preference of nasality on long vowels, both in diachronic change (e.g. Hajek 1992, 1997) and perceptual effects (e.g., Whalen & Beddor 1989)
- Evidence for inherent length, where low > mid > high \rightarrow length parameter favoring nasalization on low vowels (Hajek & Maeda 2000)
- Velum as a "sluggish" articulator (Bell-Berti 1993) with diminished control (Shelton et al. 1970) and minimal time to lower (224 to 280 ms (Bell-Berti 1980, Bell-Berti & Krakow 1991, Dalston & Seaver 1990))

- Minimal transition period + inherently short length of high vowels → high percentages of nasalization may merely be indicative of phonetic, not phonological nasalization
- In other words: x% on vowel A not necessarily = x% on vowel B, as a function of duration
- Multiple rate reading task (Solé 1992): does nasal duration increase with overall duration (phonological) or remain the same (phonetic)?
- Durational information may be worked into measurements...

Summary

- Phonological representations: in communication with phonetics but based on phonological evidence; can be abstract & substantially transformed by *phonetic* rules
- Oral or nasal? Further work on thresholds and duration needed, especially for contextually nasalized vowels.

Outline

- 1 Introduction
- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis
- 6 Conclusion

Considerations

- 3 major aspects: terms, directionality and members
- Terms: height? backness? sonority?
 - \rightarrow Sonority: assumption that nasal vowels mirror oral vowels to some degree
- Directionality: high > low? low > high? ... > central? \rightarrow high > low (i.e., low is never more marked than anything else): no inventory (allophonic & contrastive) in Ruhlen's (1975) survey excludes low nasal vowels; singleton low nasal vowel inventory possible
- **Members:** what distinctions are expected? \rightarrow front vs. back distinction in peripheral (non-low?) vowels: motivated by data in Dow (2014) but findings in Parker (2002) may provide less ad hoc support

(5) Nasal Vowel Markedness Hierarchy

High central	>	Mid central	>	High back	>	High front	>	Mid back	>	Mid front	>	Low
ĩ	>	õ	>	ũ	>	ĩ	>	õ	>	ẽ	>	ã

An example of each category is given. x > y' = y' is never more marked than x'

Predictions in stringency (e.g., de Lacy 2006):

- Impossibility of language without low nasal vowel
- Absence of true raising processes in prosodically prominent positions: troublesome (e.g., Beddor 1982), but requires trustworthy data and analysis
- What to do with minor height shifts (e.g., $/\tilde{e}/ \rightarrow [\tilde{\epsilon}]$)?

Outline

- Introduction
- 2 Issues in vowel quality
- 3 Issues in nasality quantification
- 4 Sketching an analysis
- 6 Conclusion

Conclusion

- Much remains to be done before a unified theory of nasal vowel markedness is feasible
- Issues in nasal vowel classification (stemming from quantification) seem to be most daunting, but parallels may exist in variable or incomplete phonetic indices of other phonological properties (e.g. [voice])
- Though the phonetic aspects of nasal vowels remain complicated, establishing a reliable empirical basis with phonology in mind is key

Acknowledgments

I would like to thank:

- My funding sources: NSF grant #1360758 and the departments of Linguistics and French & Italian at Indiana University
- My informants and others who helped in field work
- The members of my committee, especially Julie Auger
- Véronique Delvaux and Angélique Amelot
- Countless others, who helped with technical and theoretical aspects
- And the conference organizers and host institutions.
 Moltes gràcies!

