PC 1 : Probabilités discrètes

Les exercices 1 et 6 sont corrigés pour vous donner un exemple de rédaction.

1 Événements, probabilités et indépendance

Exercice 1 (ÉVÉNEMENTS INDÉPENDANTS). Soit $\Omega := \{\omega_1, \omega_2, \omega_3, \omega_4\}$ un ensemble à quatre éléments, muni de la probabilité uniforme \mathbb{P} . On définit les événements $A := \{\omega_1, \omega_2\}$, $B := \{\omega_1, \omega_3\}$ et $C := \{\omega_2, \omega_3\}$. Montrer que A, B et C sont indépendants deux à deux. Comparer $\mathbb{P}(A \cap B \cap C)$ et $\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C)$.

Solution. Pour chaque $i \in \{1, ..., 4\}$, on a par définition $\mathbb{P}(\{w_i\}) = 1/|\Omega| = 1/4$. D'une part, $\mathbb{P}(A) = \mathbb{P}(\{\omega_1\} \cup \{\omega_2\}) = \mathbb{P}(\{\omega_1\}) + \mathbb{P}(\{\omega_2\}) = 1/2$ et, de même, $\mathbb{P}(B) = \mathbb{P}(C) = 1/2$. D'autre part, $A \cap B = \{\omega_1\}$ et donc $\mathbb{P}(A \cap B) = 1/4$. Donc, on a montré que $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, d'où l'indépendance de A et B. Les événements A et C sont indépendants pour la même raison, de même que B et C sont indépendants.

Comme $A \cap B \cap C = \emptyset$, on a $\mathbb{P}(A \cap B \cap C) = 0$. En revanche, $\mathbb{P}(A)\mathbb{P}(B)\mathbb{P}(C) = 1/8$. Cela implique que A, B et C ne sont pas mutuellement indépendants.

Exercice 2. Soit Ω un ensemble fini ou dénombrable et soit \mathbb{P} une mesure de probabilité quelconque sur Ω . On fixe deux événements A et B.

- 1. Supposons que $\mathbb{P}(A) = \frac{3}{4}$ et $\mathbb{P}(B) = \frac{1}{3}$, montrer que $\frac{1}{12} \leq \mathbb{P}(A \cap B) \leq \frac{1}{3}$. Exhiber des exemples qui montrent que les deux bornes peuvent être atteintes.
- 2. Montrer que si $A \cup B = \Omega$, alors

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) - \mathbb{P}(A^c)\mathbb{P}(B^c).$$

Exercice 3 (CONDITIONNEMENT). L'exercice suivant est très classique et a de nombreuses variantes. Il illustre l'utilité d'une formulation mathématique rigoureuse pour éviter des pièges et des paradoxes dus à des raisonnements spécieux.

Une famille a deux enfants. On suppose les 4 configurations (ω_1, ω_2) avec ω_i le sexe du *i*-ème enfant. On suppose que la probabilité d'avoir une fille est égale à celle d'avoir un garçon.

- 1. Montrer que la probabilité pour que les deux enfants soient des filles sachant que le plus jeune enfant est une fille vaut $\frac{1}{2}$.
- 2. Montrer que la probabilité pour que les deux enfants soient des filles sachant que l'enfant plus âgé est une fille vaut $\frac{1}{2}$.
- 3. Montrer que la probabilité pour que les deux enfants soient des filles sachant que l'un des enfants est une fille vaut $\frac{1}{3}$.

2 Borel-Cantelli

Exercice 4 (LIMITE SUPÉRIEURE D'ENSEMBLES). Soit $(A_n)_{n\geq 1}$ une suite d'événements.

1. Que représentent les événements

$$\bigcap_{k\geq 1} \bigcup_{n\geq k} A_n \quad \text{et} \quad \bigcup_{k\geq 1} \bigcap_{n\geq k} A_n$$

respectivement? Le premier est noté $\limsup_{n\to\infty} A_n$ et le second $\liminf_{n\to\infty} A_n$.

- 2. Si l'espace Ω est \mathbb{R} , donner $\limsup_{n\to\infty}A_n$ et $\liminf_{n\to\infty}A_n$ dans les trois cas suivants :
 - (a) $A_n = [-1/n, 3 + 1/n],$
 - (b) $A_n = [-2 (-1)^n, 2 + (-1)^n],$
 - (c) $A_n = p_n \mathbb{N}$, où $(p_n)_{n \geq 1}$ est la suite ordonnée des nombres premiers et $p_n \mathbb{N} = \{0, p_n, 2p_n, \ldots\}$ est l'ensemble des multiples de p_n .
- 3. Comparer les événements $\limsup_{n\to\infty} (A_n \cup B_n)$ et $\limsup_{n\to\infty} (A_n \cap B_n)$ respectivement avec $\limsup_{n\to\infty} A_n$ et $\limsup_{n\to\infty} B_n$.

Exercice 5 (RETOURS EN ZÉRO D'UNE MARCHE ALÉATOIRE). Soit $p \in]0,1[$ et soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires (mutuellement) indépendantes et de même loi donnée par :

$$\mathbb{P}(X_1 = 1) = p$$
 et $\mathbb{P}(X_1 = -1) = 1 - p$.

On note $S_n = X_1 + \cdots + X_n$, $n \ge 1$. Montrer que si $p \ne \frac{1}{2}$, alors avec probabilité 1 la suite $(S_n)_{n\ge 1}$ ne prend la valeur 0 qu'un nombre fini de fois. Peut-on conclure aussi facilement lorsque $p = \frac{1}{2}$?

On pourra faire appel à la formule de Stirling : $n! \sim \sqrt{2\pi n} (n/e)^n$ lorsque $n \to \infty$.

3 Variables aléatoires

Exercice 6 (Une autre formule pour l'espérance). Soit X une variable aléatoire à valeurs dans \mathbb{N} .

1. Montrer que l'espérance de X est finie si et seulement si la série $\sum_{n} \mathbb{P}(X > n)$ est convergente, et dans ce cas on a

$$\mathbb{E}[X] = \sum_{n \ge 0} \mathbb{P}(X > n).$$

Application : on considère une urne avec N boules numérotées de 1 à N, on tire successivement n $(n \in \mathbb{N}^*)$ boules avec remise et on note $X_N^{(n)}$ le plus grand numéro sorti.

- 2. Calculer $\mathbb{P}(X_N^{(n)} \leq k)$ pour tout $k \geq 1$ et en déduire la valeur de $\mathbb{E}[X_N^{(n)}]$.
- 3. L'entier $n \geq 1$ étant fixé, montrer que la suite $(N^{-1}\mathbb{E}[X_N^{(n)}])_{N\geq 1}$ converge et calculer sa limite.

Solution. 1. C'est une simple application du théorème de Fubini pour les séries à termes positifs : comme $X \ge 0$, on peut toujours définir $\mathbb{E}[X] \in [0, +\infty]$, et alors en remarquant que $k = \sum_{n=0}^{k-1} 1$ pour tout $k \ge 0$ (une somme vide étant nulle), on a en échangeant deux séries à termes positifs :

$$\mathbb{E}[X] = \sum_{k \ge 0} k \, \mathbb{P}(X = k) = \sum_{k \ge 0} \sum_{n = 0}^{k - 1} \mathbb{P}(X = k) = \sum_{n \ge 0} \sum_{k > n} \mathbb{P}(X = k) = \sum_{n \ge 0} \mathbb{P}(X > n),$$

où la dernière égalité provient du fait que l'événement $\{X > n\}$ est la réunion disjointe des $\{X = k\}$ pour k > n.

2. On a $\{X_N^{(n)} \leq k\}$ si et seulement si les n boules, qui sont tirées indépendamment et uniformément au hasard, sont toutes plus petites que k, de sorte que

$$\mathbb{P}(X_N^{(n)} \le k) = \left(\frac{k}{N}\right)^n \quad \text{pour tout } 0 \le k \le N.$$

On en déduit que

$$\mathbb{E}[X_N^{(n)}] = \sum_{k=0}^{N} 1 - \left(\frac{k}{N}\right)^n = N + 1 - \sum_{k=1}^{N} \left(\frac{k}{N}\right)^n.$$

3. Pour tout $N \geq 1$, on a (somme de Riemann)

$$\frac{\mathbb{E}[X_N^{(n)}]}{N} = \frac{N+1}{N} - \frac{1}{N} \sum_{k=0}^{N} \left(\frac{k}{N}\right)^n \underset{N \to \infty}{\longrightarrow} 1 - \int_0^1 x^n \mathrm{d}x = 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

Exercice 7 (LOI GÉOMÉTRIQUE). On modélise le jeu de pile ou face par une suite $(X_n)_{n\geq 1}$ de variables aléatoires (mutellement) indépendantes de loi de Bernoulli de paramètre $p\in]0,1[$, en codant 1 pour succès (pile) et 0 pour échec (face) : $\mathbb{P}(X_1=1)=1-\mathbb{P}(X_1=0)=p$.

- 1. On pose $T_1 = \inf\{n \geq 1 : X_n = 1\}$. Que représente la variable aléatoire T_1 , quelle est sa loi, sa moyenne, sa variance?
- 2. Soit $k \geq 2$; on s'intéresse à la variable T_k définie par $T_k = \inf\{n \geq 1 : \sum_{i=1}^n X_i = k\}$ représentant l'instant où le joueur réalise son k-ème succès. Déterminer la loi de T_k .
- 3. Posons $T_0 = 0$ et $\Delta_k = T_k T_{k-1}$ pour $k \ge 1$. Montrer que les variables aléatoires Δ_k sont indépendantes et de même loi.

Exercice 8 (ESPÉRANCE CONDITIONNELLE). Soit X_1, X_2 des variables aléatoires indépendantes de loi de Poisson de paramètre respectif $\theta_1 > 0$ et $\theta_2 > 0$.

- 1. Calculer la loi $\mathbb{P}(X_1 + X_2 = k)$ pour tout $k \geq 0$; quelle est la loi de $X_1 + X_2$?
- 2. Calculer $\mathbb{E}(z^{X_1} \mid X_1 + X_2)$ pour z > 0; quelle est la loi conditionnelle de X_1 sachant $X_1 + X_2$?
- 3. Calculer $\mathbb{E}(X_1 \mid X_1 + X_2)$.

4 Rappel et précisions : indépendance mutuelle de variables aléatoires

Dans l'exercice 7 question 3., on demande de montrer l'indépendance des variables aléatoires Δ_k . Pour cela, comme vu pendant la PC1 du lundi 17 avril 2023, il faut prouver que pour tout $k \geq 1$, pour tous entiers $n_1, \dots, n_k \in \mathbb{N}^*$, on a

$$\mathbb{P}[\{\Delta_1 = n_1\} \cap \dots \cap \{\Delta_k = n_k\}] = \prod_{i=1}^k \mathbb{P}[\Delta_i = n_i.$$
 (1)

En effet, lorsqu'il s'agit d'événements, l'indépendance mutuelle doit être vérifiée sur n'importe quel sous-ensemble parmi ces événements (définition 1.28 du poly, et exercice 1 ci-dessus comme illustration). Lorsqu'il s'agit de définir des variables aléatoires mutuellement indépendantes, voir la définition 5.10 du poly : la définition implique la probabilité des événements $\{X_i \in A_i\}$ avec A_i borélien (voir cours 2 pour la définition des boréliens). Dans le cas d'un espace de probabilités fini ou dénombrable, on vérifie facilement, grâce à la formule des probabilités totales, qu'il suffit de vérifier la propriété pour des singletons, ce qui correspond à (1).