

Radio Interferometric Studies of Cool Evolved Stellar Winds

Eamon O'Gorman

Trinity College Dublin November 15, 2013

Supervisor: Prof. Graham Harper

Mass-loss Across the H-R Diagram

Image Credit: S. R. Cranmer

Traditional Diagnostics of Mass Loss

- Optical and UV spectroscopy: Full "P Cygni" profiles or blueshifted absorption
- IR continuum: SED excess
- Molecular lines: mm, sub-mm (disk averaged)
- Centimeter continuum:
 If v_{terminal} is known, provides ionized mass rate

Carpenter et al., (1999)

Stellar Radio Emission

Radio Sky at 4.85 GHz (300ft Green Bank)

Credit: NRAO/AUI

$$(P_{radio}/P_{optical})_{\odot} \sim 10^{-15}$$

 $S_{_{\upsilon=4.6~GHz}} \sim 40~\mu Jy~at~\alpha~Cen$ (not detectable with 'old' VLA!)

Red Giants and Red Supergiants

	Red Giants	Red Supergiants
Mass (M ₀)	~ 0.4 → ~ 8	~8 → ~ 40
Radius (R₀)	~ 50	~ 500
Lifetime (yr)	~ 10 ⁹	~ 5x10 ⁵
dM/dt (M _o yr ⁻¹)	~ 10 ⁻¹⁰	~ 10 ⁻⁵
Total dM/dt (M₀)	~ 0.1	~ 5

Red Giants and Red Supergiants

	Red Giants	Red Supergiants
Mass (M ₀)	~ 0.4 → ~ 8	~8 → ~ 40
Radius (R₀)	~ 50	~ 500
Lifetime (yr)	~ 10 ⁹	~ 5x10 ⁵
dM/dt (M _o yr ⁻¹)	~ 10 ⁻¹⁰	~ 10 ⁻⁵
Total dM/dt (M₀)	~ 0.1	~ 5

$$V_{teminal} \sim 0.3 V_{*escape}$$
 $H_P/R \sim 10^{-2}$
 $T_{wind} < 10^4 K$

No coronae. Insufficient dust opacity. Small pulsation amplitudes.

Red Giants and Red Supergiants

	Red Giants	Red Supergiants
Mass (M ₀)	~ 0.4 → ~ 8	~8 → ~ 40
Radius (R ₀)	~ 50	~ 500
Lifetime (yr)	~ 10 ⁹	~ 5x10 ⁵
dM/dt (M _o yr ⁻¹)	~ 10 ⁻¹⁰	~ 10 ⁻⁵
Total dM/dt (M₀)	~ 0.1	~ 5

$$v_{teminal} \sim 0.3 v_{*escape}$$
 $H_p/R \sim 10^{-2}$
 $T_{wind} < 10^4 K$

No coronae. Insufficient dust opacity. Small pulsation amplitudes.

Overview:

- 1. Red Supergiants (i.e., Betelgeuse)
- 1 (a): millimeter (CSE)
- 1 (b): centimeter (inner wind)

- 2. Red Giants (i.e., Arcturus and Aldebaran)
- 2 (a): centimeter (inner wind)
- 2 (b): thermal balance

1.

Betelgeuse

(Chiavassa et al., 2011)

"Straight wall" Annual Straight wall"	Direction of travel Inner envelope
Betelgeuse	© ESA/Herschel/PACS/MESS

Spectral Type	M2 lab
Log(L/L _o)	5.12
Distance	197 ± 45 parsec
Mass (birth)	~20 M _☉
Mass (current)	~15 - 18 M _o
Mass loss rate	$3 \times 10^{-6} M_{\odot} \text{ yr}^{-1}$
Rotational Period	17 years
Photospheric Radius	22.5 mas (950 $\rm R_{\odot}$)
Photospheric Temperature	3,600 K (cool star)
Origin	O-type main sequence
Fate	Supernova Type II
¹² C/ ¹³ C	6 ± 1

(Decin et al., 2013)

1 (a): Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - A fast, low column flow, S2, moving at 17 km s⁻¹
 - A slower, high column flow, S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined

1 (a): Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - A fast, low column flow, S2, moving at 17 km s⁻¹
 - A slower, high column flow, S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined
- Plez & Lambert (2002) appear to detect S2 shell at 50"
- IRAM 30 m (θ_{HPBW} ~12") fails to resolve S2 shell at 1.3 mm
- Single dish ¹²C¹⁶O mm-observations reveal only high velocity S2 shell.
- Signature of S1 shell not obvious at mm wavelengths.

1 (a): Betelgeuse: Circumstellar Environment

- At least two recent mass loss phases
- Two distinct shells spectrally resolved at 4.6 μm:
 - A fast, low column flow, S2, moving at 17 km s⁻¹
 - A slower, high column flow, S1, moving at 10 km s⁻¹
 - Spatial extent not directly determined
- Plez & Lambert (2002) appear to detect S2 shell at 50"
- IRAM 30 m (θ_{HPBW} ~12") fails to resolve S2 shell at 1.3 mm
- Single dish ¹²C¹⁶O mm-observations reveal only high velocity S2 shell.
- Signature of S1 shell not obvious at mm wavelengths.

Goal 1 (a): Measure both the spatial scales and the velocities of Betelgeuse's outflow region using $^{12}C^{16}O$ J = 2-1 line as a tracer to sort out puzzling evidence.

CARMA

Combined Array for Research in Millimeter-wave Astronomy

Cedar Flat, eastern California (~ 2,200 m)

15 element interferometer (9 x 6.1 m + 6 x 10.4 m antennas)

Merger of two independent arrays: BIMA + OVRO (2007)

105 baselines (n(n-1)/2) with 5 configurations ($B_{min} = 8 \text{ m}$ and $B_{max} = 2 \text{ km}$)

Three bands: 7 mm, 3 mm and 1.3 mm

Credit: 2009 John Carlstrom

mm Observations

Date	Config	Tracks	Time (hr)	Resolution (")	Max Scale (")
Jun 07	D	5	8.4	2.1	15
Jul 09	Е	1	3.2	4.4	19
Nov 09	С	5	8.4	0.9	6

- 1 MHz/1.3 km s⁻¹ resolution
- 0.5 MHz/0.65 km s⁻¹ resolution

1 (a): Individual Configurations

Theoretical Shell

Combined Configuration

Combined Configurations

$$r_{\text{chan}} = R_{\text{S2}} \sin \left[\cos^{-1} \left(\frac{v_{\text{chan}}}{V_{\text{S2}}} \right) \right]$$

No present at low absolute velocities

S1 Flow

1 (a): Higher CO rotational lines

$$F_{10-9} / F_{16-15} \rightarrow T_{exc S1} = 220 K$$

Bernat *et al.*, (1979)
$$T_{\text{exc S1}} = 200^{+50}_{-10} \text{ K}$$

Conclusions

- The high spatial resolution C configuration resolves out extended emission leaving us with S1 emission profile.
- Multiple CARMA configurations provide the high spatial resolution needed to study the inner S1 shell while also ensuring that larger structures (i.e. S2 shell) are not resolved out.

	S1	S2
Outflow Velocities (km s ⁻¹)	2.1	15
Maximum Spatial Extent (")	4 → 6	17
Age (yr)	400 → 600	1100

1 (b): Betelgeuse at cm wavelengths

1 (b): Betelgeuse with e-MERLIN (5.2 cm)

Goal 1 (b): Analyse high resolution archival cm data to look for signatures of hotspots.

1 (b): Betelgeuse with e-MERLIN (5.2 cm)

Astrometric solution of Harper *et al.*, (2008)

1 (b): Betelgeuse with e-MERLIN (5.2 cm)

1 (b): Betelgeuse with VLA – Pie Town

Variability

w/l (cm)	Variability
0.7	23%
1.3	27%
2.0	32%
3.5	21%
6.2	35%

Thermal Profile (beam averaged)

$$F_{\nu} = \frac{\pi k \phi^2 T_b}{2\lambda^2}$$

1 (b): Betelgeuse with VLA – Pie Town

e-MERLIN

w/l (cm)	Resolution (")
5.2	80 x 60

VLA + Pie Town

w/l (cm)	Resolution (")
0.7	40 x 25
1.3	80 x 40
2.0	120 x 90
3.5	200 x 130
6.2	380 x 270

No asymmetries in maps between 1.3 and 6.2 cm.

1 (b): Betelgeuse with VLA – Pie Town

e-MERLIN

w/l (cm)	Resolution (")
5.2	80 x 60

VLA + Pie Town

w/l (cm)	Resolution (")
0.7	40 x 25
1.3	80 x 40
2.0	120 x 90
3.5	200 x 130
6.2	380 x 270

No asymmetries in maps between 1.3 and 6.2 cm.

Q-band (0.7 cm) maps using uniform weighting

1 (b):

Conclusions

- e-MERLIN has revealed two unresolved hotspots separated by 90 mas (i.e., 4 R_{star})
- Cooler one may be at the position of photosphere
- VLA + Pie Town data in good agreement with the findings of Lim et al. (1998) (i.e., mean thermal profile, asymmetries at 0.7 cm)
- No clear signature of e-MERLIN hotspots in any of the VLA + Pie Town data
 - Time dependant?

Opacity?
$$\frac{ au_{6.2\,\mathrm{cm}}}{ au_{0.7\,\mathrm{cm}}} \sim 100$$

2: Red Giant Radio Emission

- Currently cannot be spatially resolved at radio w/ls
- Wind & chromospheric properties (dM/dt, v_{ter}) generally determined by analysing strong chromospheric resonance lines.
- At cm/mm the thermal continuum Planck function depends linearly on T, unlike the UV.

α-Boo: Blue-shifted absorption component->outflow

ontinuum flux measurements at cm/mm: opacity is proportional to $\sim \lambda^{2.1} n_e^{n_{ion}}$.

Goal 2 (a): Observe two 'standard' red giants at all possible cm wavelengths allowing the wind temperature to be probed.

2 (a): The Karl G. Jansky Very Large Array

Credit: NRAO

- 27 25 m antennas, New Mexico. Max baseline ~ 36 km
- Full frequency coverage between 1.0 and 50 GHz
- Continuum sensitivity improvement over the VLA by factors of 5 to 20
- Spectral Capability: A minimum of 16,384 and a maximum of 4,194,304 channels

2 (a): Targets and Observations

Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III)

- Single, non-dusty and non-pulsating
- Nearby (~ 11 pc and 20 pc) with well known stellar parameters
- Semi-empirical 1-D chromospheric and wind models that can be directly tested

Open Shared Risk Observing (OSRO) – B config (128 MHz)

 α Boo: S \rightarrow Q band (13th Feb 2011 - 22nd Feb 2011) α Tau: S \rightarrow Q band (11th Feb 2011 - 13th Feb 2011)

Directors Discretionary Time (DDT) – B config (2 GHz)

α Boo: S & L band (July 2012)

Red Giant Radio Maps

Example: Aldebaran X (3 cm), C (6 cm), and S (10 cm) band

2 (a): Existing Models & Spectral Indices

 $\alpha = d \log F_{\nu}/d \log \nu$

Assume $n_e \sim r^{-p} \& T \sim r^{-n}$ then $\alpha = (4p-6.2-0.6n)$ (2p-1-1.35n)

Arcturus' Wind

Conclusions

- The most comprehensive set of multi-wavelength radio continuum observations of two *standard* red giants to date.
- Allows us to test theoretical and semi-empirical atmospheric models.
- Radio spectral indices allow flow properties to be investigated.
 - Optically thin wind for α Tau.
 - Rapidly cooling wind for α Boo.
- Analytical advection model used to develop new outer atmospheric model for α Boo.

2 (b): Thermal Energy Balance

- Olose to photosphere: $v^2(r) \ll v^2_{esc}(r)$
- To escape star: $v^2(r) > v^2_{esc}(r)$
- Energy added in the form of either heat or momentum

Goal 2 (b): Carry out a thermal energy balance to investigate possible heating mechanisms in Arcturus' inner outflow region.

Gas kinetic power law slope

2 (b): Cooling and Heating Processes

2 (b): Cooling and Heating Processes

Concluding Remarks

- Betelgeuse has two unique outflows. Why?
 - Unique epochs of mass-loss in the last ~1100 years.
 - Change in outflow properties at certain distances.
- Evidence for assymetries in both S1 and S2 flows
 - Formed during outflow?
 - Or from mass-loss process?
- e-MERLIN has provided the surprising result of a T_e > 5400 *hotspot* at 4 R_{star}. Episodic? No signature in VLA data. Evidence for giant convection cells.
- Multi-wavelength radio continuum observations provide spatial information from point sources. Provide wind diagnostics and updated outflow models.
- Understanding is improving and radio interferometry will continue to play a major role in future developments