Exercice - Densité, fonction de répartition

On considère la fonction f définie par

$$f(x) = \begin{cases} \frac{4}{3}(1-x)^{\frac{1}{3}} & \text{si } 0 \leqslant x \leqslant 1\\ 0 & \text{sinon.} \end{cases}$$

1. Montrer que f est une densité d'une variable aléatoire Y.

Il faut et il suffit de vérifier que f est positive intégrable et $\int_{\mathbb{R}} f = 1$. Le premier point est immédiat. La fonction f est intégrable sur \mathbb{R} car elle est continue par morceaux à support compact. Enfin, on a

$$\int_{\mathbb{R}} f(x)dx = \int_{0}^{1} \frac{4}{3} (1-x)^{1/3} dx = \left[-(1-x)^{4/3} \right]_{0}^{1} = 1.$$

2. Déterminer la fonction de répartition F de la variable Y.

Par définition, pour tout $y \in \mathbb{R}$, on a $F_Y(y) = \int_{-\infty}^y f(t)dt$. Alors

- si $y < 0, F_Y(y) = 0$
- si $0 \le y \le 1$, $F_Y(y) = \int_0^y \frac{4}{3} (1-x)^{1/3} dx = \left[-(1-x)^{4/3} \right]_0^y = 1 (1-y)^{4/3}$
- si y > 1, $F_Y(y) = 1$.
- 3. Calculer l'espérance de la variable Y.

L'espérance de Y se calcule de la manière suivante:

$$\mathbb{E}(Y) = \int_{\mathbb{R}} y f(y) dy = \int_{0}^{1} \frac{4}{3} y (1 - y)^{1/3} dy,$$

et par intégration par parties,

$$\mathbb{E}(Y) = \left[-y(1-y)^{4/3} \right]_0^1 + \int_0^1 (1-y)^{4/3} dy = \left[\frac{-3}{7} (1-y)^{7/3} \right]_0^1 = \frac{3}{7}.$$

4. Calculer la probabilité de l'événement $[0.488 < Y \le 1.2]$.

Méthode 1:

$$P(0.488 < Y < 1.2) = \int_{0.488}^{1.2} f(y)dy = \int_{0.488}^{1.2} \frac{4}{3} (1-y)^{1/3} dy = \left[-(1-y)^{4/3} \right]_{0.488}^{1}$$
$$= (1 - 0.488)^{1/3} = 0.8$$

Méthode 2:

$$P(0.488 < Y < 1.2) = F_Y(1.2) - F_Y(0.488)$$

$$= 1 - [1 - (1 - 0.488)^{1/3}]$$

$$= (1 - 0.488)^{1/3}$$

$$= 0.8$$