Se una funzione f(x) è derivabile in un punto x_0 allora essa è ivi anche continua

Hp:
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

 $con f'(x_0)$ che esiste ed è finita

Th:
$$\lim_{x \to x_0} f(x) = f(x_0)$$

enunciato

dimostrazione

Consideriamo la seguente identità:	$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$	
Calcoliamo il limite per $x \to x_0$ di entrambi i membri	$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \left[f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \right]$	
A secondo membro applichiamo i teoremi sulla somma e sul prodotto di limiti	$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x_0) + \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \cdot \lim_{x \to x_0} (x - x_0)$	
	$\lim_{x \to x_0} f(x_0) = f(x_0)$	perché $f(x_0)$ è una costante
Passiamo al calcolo dei limiti del secondo membro	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$	per l'ipotesi di derivabilità
	$\lim_{x \to x_0} (x - x_0) = x_0 - x_0 = 0$	per calcolo
Per cui si ha:	$\lim_{x \to x_0} f(x) = f(x_0) + f'(x_0) \cdot 0$	
Quindi la tesi	$\lim_{x \to x_0} f(x) = f(x_0)$	

Il teorema NON è invertibile.

Consideriamo ad esempio la funzione y=|x|. Nel punto $x_0=0$ la funzione è continua ma non derivabile perché la derivata sinistra è diversa da quella destra, infatti $f'_{-}|x| = -1$ ed $f'_{+}|x| = 1$

