Linear Algebra — Homework 13

27 Dec 2023 Due: 4 Jan 2024

Textbook Problems. These problems will not be graded, but you must submit solutions to receive full credit for the homework.

Problem 6.2.7. Write down all 2×2 matrices that have eigenvectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Problem 6.2.9. Suppose G_{k+2} is the average of the two previous numbers G_{k+1} and G_k :

$$\begin{array}{ccc} G_{k+2} = \frac{1}{2}G_{k+1} + \frac{1}{2}G_k \\ G_{k+1} = G_{k+1} \end{array} & \longrightarrow & \left[\begin{array}{c} G_{k+2} \\ G_{k+1} \end{array} \right] = A \left[\begin{array}{c} G_{k+1} \\ G_k \end{array} \right].$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Find the limit as $n \to \infty$ of the matrices $A^n = X\Lambda^n X^{-1}$.
- (c) If $G_0 = 0$ and $G_1 = 1$, show that $\lim_{k \to \infty} G_k = \frac{2}{3}$.

Problem 6.2.15. $A^k = X\Lambda^k X^{-1}$ approaches the 0 matrix as $k \to \infty$ if and only if every λ has absolute value less than _____. Which of these matrices has $A^k \to 0$?

$$A_1 = \begin{bmatrix} 0.6 & 0.9 \\ 0.4 & 0.1 \end{bmatrix}$$
 and $A_2 = \begin{bmatrix} 0.6 & 0.9 \\ 0.1 & 0.6 \end{bmatrix}$.

Problem 6.2.16. Find Λ and X to diagonalize A_1 in Problem 6.2.15. What is the limit of Λ^k as $k \to \infty$? What is the limit of $X\Lambda^kX^{-1}$? In the columns of this limiting matrix you see the _____.

Problem 6.2.30. The "Cayley-Hamilton Theorem" states that if $p(\lambda)$ is the characteristic polynomial of an $n \times n$ matrix A, then the $n \times n$ matrix p(A) is the zero matrix.

- (a) If $A = \begin{bmatrix} a & b \\ 0 & d \end{bmatrix}$, then the determinant of $A \lambda I$ is $(\lambda a)(\lambda d)$. Check that $(A aI)(A dI) = zero\ matrix$, as predicted by the Cayley-Hamilton Theorem.
- (b) Test the Cayley-Hamilton Theorem on the Fibonacci matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. The theorem predicts that $A^2 A I = 0$, since the polynomial $\det(A \lambda I)$ is $\lambda^2 \lambda 1$.

Problem 6.3.4. A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people. The movement between rooms is proportional to the difference v - w:

$$\frac{dv}{dt} = w - v$$
 and $\frac{dw}{dt} = v - w$.

Show that the total v(t)+w(t) is constant (40 people). Find the matrix in $d\mathbf{u}/dt=A\mathbf{u}$ and its eigenvalues and eigenvectors. What are v and w at t=1 and $t=\infty$?

Problem 6.3.21. Write $A = \begin{bmatrix} 1 & 4 \\ 0 & 0 \end{bmatrix}$ in the form $X\Lambda X^{-1}$. Find e^{At} from $Xe^{\Lambda t}X^{-1}$.

Problem 6.4.8. Find all orthogonal matrices that diagonalize $S = \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$.

Problem 6.4.21. Find the eigenvector matrices Q for S and X for B. Show that X is still invertible at d=1, even though $\lambda=1$ is repeated. Are those eigenvectors perpendicular?

$$S = \begin{bmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} -d & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & d \end{bmatrix} \qquad \text{have} \qquad \lambda = 1, d, -d.$$

Graded Problem.

Find an orthonormal basis of \mathbb{R}^3 consisting of eigenvectors for the symmetric matrix:

$$A = \left[\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 3 & -2 \\ 1 & -2 & 3 \end{array} \right].$$

Then compute the matrix power A^N for any positive integer N.