Logika dla informatyków

Egzamin końcowy (pierwsza część)

1 lutego 2019 czas pisania: 90 min

Zadanie 1 (2 punkty). Jeśli istnieją takie spełnialne formuły φ i ψ , że formuła $\varphi \Leftrightarrow \psi$ jest spełnialna a formuła $(\neg \varphi) \Leftrightarrow \psi$ jest sprzeczna, to w prostokąt poniżej wpisz dowolny przykład takich formuł. w przeciwnym przypadku wpisz uzasadnienie, dlaczego takie formuły nie istnieją.

$$\varphi=p,\,\psi=p$$

Zadanie 2 (2 punkty). Nie używając spójnika " \Rightarrow " wpisz w prostokąt poniżej formułę w negacyjnej postaci normalnej równoważną formule $p \Rightarrow \neg (q \Rightarrow \neg r)$.

$$\neg p \lor (q \land r)$$

Zadanie 3 (2 punkty). Czy formuła $p \lor q$ jest logiczną konsekwencją zbioru formuł $\{q \Rightarrow \neg p, \neg p \Rightarrow \neg q\}$? W prostokąt poniżej wpisz odpowiedź oraz dowód jej poprawności.

Nie. Wartościowanie σ t.że $\sigma(p) = \mathsf{F}, \sigma(q) = \mathsf{F}$ spełnia ten zbiór a nie spełnia $p \vee q$.

Zadanie 4 (2 punkty). Jeśli istnieją niepuste i rozłączne zbiory $A, B \subseteq \mathbb{N}$ spełniające podany warunek, to w odpowiedni prostokąt wpisz dowolne takie zbiory. W przeciwnym razie wpisz słowo NIE. Symbol \subsetneq oznacza ścisłe zawieranie: $X \subsetneq Y$ jest równoważne $X \subseteq Y \land X \neq Y$.

- (a) $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ NIE
- (b) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$ $A = \{1\}, B = \{2\}$
- (c) $\mathcal{P}(A) \cup \mathcal{P}(B) \supsetneq \mathcal{P}(A \cup B)$ NIE

Zadanie 5 (2 punkty). Jeśli istnieje taka rodzina $\{A_i\}_{i\in\mathbb{N}}$ podzbiorów \mathbb{N} , że dla każdego $i\in\mathbb{N}$ zbiór A_i jest nieskończony, $\bigcup_{i=0}^{\infty}\bigcap_{j=i}^{\infty}A_j=\emptyset$ oraz $\bigcup_{i=0}^{\infty}A_i=\mathbb{N}$, to w prostokąt niżej wpisz przykład dowolnej takiej rodziny. W przeciwnym przypadku wpisz uzasadnienie, dlaczego taka rodzina nie istnieje.

$$A_i = \{ n \in \mathbb{N} \mid n \ge i \}$$

Zadanie 6 (2 punkty). W podany prostokąt wpisz liczbę takich relacji równoważności R na zbiorze $\{a,b,c,d,e\}$, że $\langle a,b\rangle \in R \land \langle b,c\rangle \not\in R \land \langle c,d\rangle \not\in R \land \langle b,d\rangle \not\in R$.

Zadanie 7 (2 punkty). Różnicę symetryczną \div zbiorów A i B definiujemy następująco:

$$A \doteq B = (A \setminus B) \cup (B \setminus A).$$

Nie używając słów języka naturalnego (czyli używając jedynie symboli matematycznych) uzupełnij poniższy tekst tak, aby otrzymać poprawny dowód następującego twierdzenia: Dla dowolnych zbiorów X,Y,Z zachodzi inkluzja $X \,\dot{\,}\, Z \subseteq (X \,\dot{\,}\, Y) \cup (Y \,\dot{\,}\, Z).$

Dowód. Dowód przeprowadzimy wprost. Weźmy dowolne zbiory X,Y,Z oraz element $x \in X - Z$. Z definicji różnicy symetrycznej mamy $x \in X \setminus Z$ lub $x \in Z \setminus X$. Rozważmy dwa przypadki:

- (1) $x \in X \setminus Z$ |. Z definicji różnicy zbiorów mamy $x \in X$ oraz $x \notin Z$ Rozważmy dwa przypadki. Przypadek (1a): $x \in Y$ Z definicji różnicy zbiorów mamy $x \in Y \setminus Z$, a stad $x \in Y \stackrel{\cdot}{-} Z$. Zatem i z definicji różnicy symetrycznej $x \in (X \div Y) \cup (Y \div Z)$ Przypa-Z definicji różnicy zbiorów mamy dek (1b): $x \in X \setminus Y$, a stąd i z definicji różnicy $x \in (X \doteq Y) \cup (Y \doteq Z)$ symetrycznej $x \in X \stackrel{.}{\cdot} Y$. Zatem
- (2) $x \in Z \setminus X$. Tutaj dowód jest symetryczny do przypadku (1): wystarczy zamienić miejscami wszystkie wystąpienia X i Z.

Zadanie 8 (2 punkty). Dla zbiorów A, B i $C \subseteq A \times B$ definiujemy $A_C = \{a \in A \mid \exists b \in B \ \langle a, b \rangle \in C\}$ oraz $B_C = \{b \in B \mid \exists a \in A \ \langle a, b \rangle \in C\}$. Czy dla dowolnych takich zbiorów zachodzi równość $A_C \times B_C = C$? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontrprzykład.

$$A = B = \mathbb{N}, C = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle\}$$

Zadanie 9 (2 punkty). Niech R będzie taką relacją binarną na zbiorze A, że R; R = R. Czy z tego wynika, że R jest przechodnia? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontrprzykład.

Tak. Załóżmy, że R;R=R, weźmy dowolne $x,y,z\in A$ i załóżmy, że xRy oraz yRz. Wtedy z definicji złożenia relacji xR;Rz a stąd i z równości R;R=R dostajemy xRz.

Zadanie 10 (2 punkty). Rozważmy relację $R = \{\langle 1, 3 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 1 \rangle\}$. W prostokąt poniżej wpisz wyliczoną wartość przechodniego domknięcia relacji R.

```
\{\langle 1,1\rangle, \langle 1,3\rangle, \langle 2,1\rangle, \langle 2,2\rangle, \langle 2,3\rangle, \langle 3,1\rangle, \langle 3,3\rangle\}
```

Zadanie 11 (2 punkty). Rozważmy zbiór M miast i relację $P \subseteq M \times M$ informującą o bezpośrednich połączeniach kolejowych pomiędzy miastami. W prostokąt poniżej wpisz taką formułę φ w negacyjnej postaci normalnej, że $\{\langle m_1, m_2 \rangle \in M \times M \mid \varphi\}$ jest zapytaniem relacyjnego rachunku dziedzin oznaczającym wykaz par miast, między którymi nie istnieje połączenie z mniej niż dwiema przesiadkami.

$$\neg P(m_1, m_2) \land \forall m. \neg P(m_1, m) \lor \neg P(m, m_2)$$

Zadanie 12 (2 punkty). Niech V będzie niepustym zbiorem zmiennych zdaniowych, a φ spełnialną formułą rachunku zdań zawierającą wyłącznie zmienne ze zbioru V. Niech ψ będzie formułą otrzymaną z φ przez zastąpienie każdego wystąpienia zmiennej p literałem $\neg p$, dla wszystkich zmiennych $p \in V$. Niech \mathcal{V}_{φ} będzie zbiorem wszystkich wartościowań $\sigma: V \to \{\mathsf{T}, \mathsf{F}\}$ spełniających formułę φ , a \mathcal{V}_{ψ} zbiorem wszystkich wartościowań spełniających formułę ψ .

Jeśli dla wszystkich formuł φ istnieje bijekcja pomiędzy zbiorami \mathcal{V}_{φ} i \mathcal{V}_{ψ} , to w prostokąt poniżej wpisz dowolną taką bijekcję. W przeciwnym przypadku wpisz odpowiedni kontrprzykład.

$$F: \mathcal{V}_{\varphi} \to \mathcal{V}_{\psi}, \quad F(\sigma): V \to \{\mathsf{T}, \mathsf{F}\}, \quad (F(\sigma))(p) = \begin{cases} \mathsf{T}, & \text{jeśli } \sigma(p) = \mathsf{F} \\ \mathsf{F}, & \text{wpp} \end{cases}$$

Zadanie 13 (2 punkty). Niech $F: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ będzie dana wzorem (F(f,g))(n) = f(n) + g(n) dla $n \in \mathbb{N}$. Jeśli funkcja F ma funkcję odwrotną, to w prostokąt poniżej wpisz tę funkcję. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

F nie jest różnowartościowa. Np dla f i g zdefiniowanych wzorami f(n)=0 i g(n)=1 mamy $\langle f,g\rangle \neq \langle g,f\rangle$ oraz F(f,g)=F(g,f).

Zadanie 14 (2 punkty). Niech $f: A \to B$ i $g: B \to C$ będą takimi funkcjami, że złożenie gf jest "na". Załóżmy dodatkowo, że zbiory A, B i C są równoliczne. Czy z tego wynika, że funkcja f jest "na"? W prostokąt poniżej wpisz odpowiedź oraz odpowiednio dowód lub kontrprzykład.

Nie.
$$A = B = C = \mathbb{N}, f(n) = 2n, g(n) = \lfloor \frac{n}{2} \rfloor$$
 dla $n \in \mathbb{N}$

Zadanie 15 (2 punkty). Niech $F_f : \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ dla $f : \mathbb{N} \to \mathbb{N}$ będzie funkcją zdefiniowaną wzorem $F_f(A) = f^{-1}[A]$.

(a) Podaj przykład różnowartościowej funkcji f, dla której F_f jest funkcją różnowartościową lub wpisz słowo "NIE", jeśli taki przykład nie istnieje.

$$f(x) = x$$

(b) Podaj przykład różnowartościowej funkcji f, dla której F_f nie jest funkcją różnowartościową lub wpisz słowo "NIE", jeśli taki przykład nie istnieje.

$$f(x) = x + 1$$

Zadanie 16 (2 punkty). Na zbiorach $\mathbb{N}^{\mathbb{N}}$ i $\mathbb{Q}^{\mathbb{N}}$ definiujemy relacje równoważności \simeq_1 i \simeq_2 wzorami $f \simeq_1 g \iff \lim_{n \to \infty} (f(n) - g(n)) = 0$ oraz $f \simeq_2 g \iff \exists n_0 \forall n > n_0$. f(n) = g(n). Niech $z_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}$ i $z_{\mathbb{Q}} : \mathbb{N} \to \mathbb{Q}$ będą takimi funkcjami, że $z_{\mathbb{N}}(n) = 0$ i $z_{\mathbb{Q}}(n) = 0$ dla $n \in \mathbb{N}$. W prostokąty poniżej wpisz odpowiednio moce zbiorów klas abstrakcji relacji \simeq_1 i \simeq_2 oraz moce klas abstrakcji funkcji $z_{\mathbb{N}}$ i $z_{\mathbb{Q}}$.

$$\begin{split} |\mathbb{N}_{/\simeq_1}^{\mathbb{N}}| &= \quad \mathbf{c} & \qquad |\mathbb{N}_{/\simeq_2}^{\mathbb{N}}| &= \quad \mathbf{c} & \qquad |[z_{\mathbb{N}}]_{\simeq_1}| &= \quad \aleph_0 \\ \\ |\mathbb{Q}_{/\simeq_1}^{\mathbb{N}}| &= \quad \mathbf{c} & \qquad |\mathbb{Q}_{/\simeq_2}^{\mathbb{N}}| &= \quad \mathbf{c} & \qquad |[z_{\mathbb{Q}}]_{\simeq_1}| &= \quad \mathbf{c} \\ \\ |[z_{\mathbb{Q}}]_{\simeq_1}| &= \quad \mathbf{c} & \qquad |[z_{\mathbb{Q}}]_{\simeq_2}| &= \quad \aleph_0 \\ \end{split}$$

Zadanie 17 (2 punkty). Rozważmy funkcje $f: A \times B \to C$ i $g: C \to B^A$ oraz elementy $a \in A, b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie g(b) nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C jest $b \in C$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia g(c) jest B^A . W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE". Operator \circ oznacza składanie funkcji.

$$f(a,b)$$
 C $g(f(a,b))(c)$ NIE $(g(c))(b)$ NIE $g(b)$ NIE $(g\circ f)(a,b)$ B^A $(g\circ f)(a,b)$ B

Zadanie 18 (2 punkty). Na zbiorze $\{0,1\}^{\mathbb{N}}$ definiujemy porządek \preceq wzorem $f \preceq g \iff \forall n \ f(n) \leq g(n)$. W prostokąt poniżej wpisz izomorfizm pomiędzy porządkami $\langle \{0,1\}^{\mathbb{N}}, \preceq \rangle$ oraz $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ lub uzasadnienie, że taki izomorfizm nie istnieje.

$$F:\{0,1\}^{\mathbb{N}} o \mathcal{P}(\mathbb{N}), \qquad F(f) = \{n \in \mathbb{N} \mid f(n) = 1\}$$

Zadanie 19 (2 punkty). Jeśli istnieje niepusty porządek regularny $\langle P, \leq \rangle$, w którym każdy element ma następnik i każdy element ma poprzednik, to w prostokąt poniżej wpisz dowolny przykład takiego porządku. W przeciwnym przypadku wpisz uzasadnienie, że taki porządek nie istnieje.

Weźmy dowolny element $x_0 \in P$ i dla $n \in \mathbb{N}$ niech x_{n+1} będzie poprzednikiem x_n . Wtedy zbiór $\{x_n | n \in \mathbb{N}\}$ nie ma elementu minimalnego.

Zadanie 20 (2 punkty). W tym zadaniu f,g i h są symbolami funkcyjnymi, a,b są symbolami stałych, natomiast u,x,y i z są zmiennymi. W prostokąty obok tych spośród podanych par termów, które są unifikowalne, wpisz najogólniejsze unifikatory tych termów. W prostokąty obok termów, które nie są unifikowalne, wpisz słowo "NIE".

$$f(g(x,y),z) \stackrel{?}{=} f(u,a) \qquad [u/g(x,y),z/a] \qquad f(g(x,x),x) \stackrel{?}{=} f(y,a) \qquad [x/a, y/g(a,a)]$$

$$g(x,f(z,u)) \stackrel{?}{=} g(y,a) \qquad \text{NIE} \qquad f(f(x,b),y) \stackrel{?}{=} f(x,f(z,b)) \qquad \text{NIE}$$

Numer	indeksu:	,
-------	----------	---

WZORCOWY

Oddane zadania:

Logika dla informatyków

Egzamin końcowy (część druga)

1 lutego 2019 czas pisania: 120 min

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów.

Funkcja $f:A\to B$ jest quasi-bijekcjq, jeśli spełnia następujące dwa warunki:

- istnieje co najwyżej jeden taki element $b \in B$, że dla żadnego $a \in A$ nie zachodzi f(a) = b, oraz
- istnieje co najwyżej jeden taki dwuelementowy zbiór $\{a_1, a_2\} \subseteq A$, że $f(a_1) = f(a_2)$.

Dla ustalonego zbioru X definiujemy relację binarną \sim_q na zbiorze $\mathcal{P}(X)$ w następujący sposób:

$$A \sim_q B \stackrel{\text{df}}{\iff}$$
 istnieje quasi-bijekcja $f: A \to B$.

Ponadto zwrotne, symetryczne i przechodnie domknięcie relacji \sim_q oznaczamy $\sim_q^\#.$

Zadanie 21. Czy relacja \sim_q jest

- (a) zwrotna?
- (b) symetryczna?
- (c) przechodnia?

Czy którakolwiek z odpowiedzi zmieni się, jeśli relację \sim_q ograniczymy do zbioru $\mathcal{P}(X) \setminus \{\emptyset\}$? Wszystkie odpowiedzi należy uzasadnić, tzn. podać odpowiednie dowody lub kontrprzykłady.

Zadanie 22. Udowodnij, że jeśli A i B są skończonymi podzbiorami zbioru X, to $A \sim_q^\# B$.

Zadanie 23. Udowodnij, że jeśli A jest skończonym, a B nieskończonym podzbiorem X, to $A \not\sim_q^\# B$. Wskazówka: Przydatny może się okazać lemat z zadania 7, mówiący że dla dowolnych zbiorów X,Y,Z zachodzi inkluzja $X \doteq Z \subseteq (X \doteq Y) \cup (Y \doteq Z)$. Jeśli zdecydujesz się z niego skorzystać, nie musisz go dowodzić.

¹ Algorytm oceniania oddanych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów, a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.

Logika dla informatyków 2018

Rozwiązanie zadania 22 z egzaminu zasadniczego

1 lutego 2019

Twierdzenie 1. Niech X będzie dowolnym zbiorem. Dla dowolnych skończonych podzbiorów $A,B\subseteq X$ zachodzi $A\sim_q^\# B.$

Przypomnijmy definicje: \underline{n} dla $n \in \mathbb{N}$ oznacza zbiór $\{i \in \mathbb{N} : i < n\}$. Zbiór A jest skończony, jeśli istnieje taka liczba $n \in \mathbb{N}$, że $A \sim \underline{n}$. Relacja $\sim_q^\#$ jest najmniejszą relacją równoważności zawierającą relację \sim_q . Mamy:

Lemat 1. Niech X będzie dowolnym zbiorem, a $n, m \in \mathbb{N}$ takimi liczbami naturalnymi, że $n \leq m$. Dla dowolnych takich podzbiorów $A, B \subseteq X$, że $A \sim \underline{n}$ i $B \sim \underline{m}$ zachodzi $A \sim_q^\# B$.

Dowód. Niech zbiór X i $n \in \mathbb{N}$ będą dowolne. Dowód przeprowadzimy przez indukcję¹ względem $m \ge n$.

Podstawa indukcji: m=n. Niech $A,B\subseteq X$ będą takie, że $A\sim\underline{n}$ i $B\sim\underline{m}=\underline{n}$. Relacja równoliczności jest przechodnia, zatem $A\sim B$, a więc istnieje bijekcja $f:A\to B$. Wprost z definicji każda bijekcja jest quasi-bijekcją, zatem istnieje quasi-bijekcja $f:A\to B$ i $A\sim_q B$. Stąd $A\sim_q^\# B$.

Niech $m \geq n$ będzie dowolne. Założenie indukcyjne: dla dowolnych takich podzbiorów $A, B \subseteq X$, że $A \sim \underline{n}$ i $B \sim \underline{m}$ zachodzi $A \sim_q^\# B$. Teza indukcji: dla dowolnych takich podzbiorów $A, B \subseteq X$, że $A \sim \underline{n}$ i $B \sim \underline{m+1}$ zachodzi $A \sim_q^\# B$. Dowód tezy indukcji: skoro $B \sim \underline{m+1}$, to istnieje bijekcja $f: \underline{m+1} \to B$. Niech $B' = f[\underline{m}] = B \setminus \{f(m)\}$. Funkcja $f \upharpoonright_{\underline{m}} : \underline{m} \to B'$ jest bijekcją, więc $B' \sim \underline{m}$. Stąd i z założenia indukcyjnego $A \sim_q^\# B'$. Funkcja $g: B' \to B$ dana wzorem g(b) = b dla $b \in B'$ jest różnowartościowa, a jedynym elementem zbioru B, który nie należy do jej obrazu, jest f(m). Zatem funkcja g jest quasi-bijekcją i $B' \sim_q B$. Zatem $B' \sim_q^\# B$. Relacja $\sim_q^\#$ jest przechodnia, więc skoro $A \sim_q^\# B'$ i $B' \sim_q^\# B$, to $A \sim_q^\# B$.

Dowód twierdzenia. Niech X będzie dowolny i niech $A, B \subseteq X$ będą dowolnymi skończonymi zbiorami. Istnieją więc takie liczby naturalne $n, m \in \mathbb{N}$, że $A \sim \underline{n}$ i $B \sim \underline{m}$. Jeśli $n \leq m$, to teza twierdzenia wynika wprost z lematu 1. W przeciwnym przypadku z lematu 1 mamy $B \sim_q^\# A$. Ponieważ relacja $\sim_q^\#$ jest symetryczna, to $A \sim_q^\# B$.

¹Korzystamy tu z następującej wersji zasady indukcji: Niech $n \in \mathbb{N}$. Jeśli $W \subseteq \mathbb{N}$ jest takim zbiorem, że $n \in W$ oraz $\forall m \geq n \ (m \in W \Rightarrow m+1 \in W)$, to $\forall m \geq n \ (m \in W)$.