

6. Energy Storage Elements

- the Capacitor
- the Inductor
- Coupled Inductors
- dc steady state
- op-amp circuits with energy storage elements

Motivation

Capacitors and inductors are circuit elements that allow one to store and release electric energy, and they appear in most

circuits, here are just a few examples:

power sub-stations

audio + video circuits

digital integrated circuits

turbines

accelerometers, manometers and other sensors

ECSE-200

2

Today's Outline

- 6. Energy Storage Elements
- the Capacitor

Ideal capacitor: physically consists of two ideal conductors separated by an ideal insulator, with equal but opposite charges +/-q on each conductor

Ideal Capacitor: the **charge separation** q on an ideal capacitor is proportional to the voltage drop v across the capacitor

- the capacitor is a *passive* circuit element
- the constant of proportionality between charge
 and voltage is the capacitance, given the symbol C
- SI unit of capacitance is the Farad (abbreviated F)

Michael Faraday (1791-1867)

Although an insulator separates the conductors, a current i equal to the time rate of change of charge separation q can flow "through" the capacitor

$$v(t)$$
 $i(t)$
 $i(t)$

$$i = \frac{dq}{dt} = C\frac{dv}{dt}$$

- the voltage *v* and current *i* are defined above
 to satisfy *passive sign convention*
- the voltage v and current i are related to each other by a linear operator (differentiation / integration)

There are alternative but equivalent forms of the equations describing terminal behaviour of ideal capacitors.

differential form:

$$i = C \frac{dv}{dt} = \frac{dq}{dt}$$

integral form:

$$v(t) - v(t_0) = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau = \frac{q(t) - q(t_0)}{C}$$

ECSE-200

energy storage in the capacitor

Consider the energy *stored* in a capacitor. The instantaneous power *absorbed* (note the *passive sign convention*) by a capacitor is:

$$p(t) = i(t) \cdot v(t) = C \frac{dv(t)}{dt} v(t)$$

The energy absorbed by the capacitor from time t_0 to time t is:

$$W_{t_0 \to t} = \int_{t_0}^{t} p(t')dt' = \int_{t_0}^{t} Cv(t') \frac{dv(t')}{dt'}dt' = \int_{v(t_0)}^{v(t)} Cv(t')dv(t') = \frac{1}{2}Cv^2(t) - \frac{1}{2}Cv^2(t_0)$$

The energy absorbed is *stored* as electric potential energy U(t):

$$U(t) = \frac{1}{2}Cv^{2}(t) = \frac{1}{2}\frac{q^{2}(t)}{C} \qquad W_{t_{0} \to t} = U(t) - U(t_{0})$$

continuity of capacitor voltage

The current flow through a capacitor is:

$$i = C \frac{dv}{dt} = C \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t}$$

where we restate the definition of the derivative.

An instantaneous change in capacitor voltage (and charge separation) requires an infinite (unphysical) current. For a finite current to flow, we require that the capacitor voltage v(t) is continuous.

ECSE-200

continuity of capacitor voltage

Continuity of capacitor voltage ensures that:

- the current *i* is finite
- the power absorbed p = iv by the capacitor is finite
- the charge separation q is continuous, satisfying the conservation of charge
- the electric energy stored $U = \frac{1}{2} Cv^2$ is continuous, satisfying the **conservation of energy**

a note on notation

The notations t = 0+ and t = 0- are often used in circuit analysis. The value of a circuit variable x(t) as t approaches 0 from the past (left) or from the future (right) are identified separately:

A 47nF capacitor has a voltage across its terminals given by the following diagram. Plot the charge separation and current as a function of time.

Charge separation is given by q(t) = C v(t): 47nF×3V= 141nC

Current is given by i(t) = dq/dt, the slope of the charge-time plot:

t<0ms : dq/dt = 0A

0 < t < 1 ms : $dq/dt = -141 \mu A$

 $1ms < t < 4ms : dq/dt = -47\mu A$

4ms < t : dq/dt = 0A

A 100pF capacitor, initially uncharged, passes a current given in the diagram below. Plot the voltage as a function of time.

Use the integral form of the capacitor i-v relationship:

$$v(t)-v(0)=\frac{1}{C}\int_{0}^{t}i(t')dt'$$

$$v(t) - 0V = \frac{1}{100pF} \int_{0}^{t} 3\mu A dt' = 30 \frac{kV}{s} \cdot t \quad 0 < t < 2ms$$

•

$$v(t) - 0V = 60V + \frac{1}{100pF} \int_{2ms}^{t} 0 \ dt' = 60V$$
 2ms < t

capacitors in parallel

A parallel combination of capacitors has an equivalent capacitance C_{eq} .

Current through each capacitor: $i_m = C_m \frac{dv}{dt}$

Total current (KCL): $i_{total} = i_1 + i_2 + ... + i_N = (C_1 + C_2 + ... C_N) dv/dt$

Equivalent capacitance: $\frac{I_{total}}{dv/dt} = C_{eq} = C_1 + C_2 + ... + C_N$

capacitors in series

A series combination of capacitors has an equivalent capacitance C_{eq} .

Current through each capacitor: $i = C_m dv_m/dt$

Total voltage:

(time derivative of KVL)

$$\frac{dv_{total}}{dt} = \frac{dv_{1}}{dt} + \frac{dv_{2}}{dt} + ... + \frac{dv_{N}}{dt} = i \left(\frac{1}{C_{1}} + \frac{1}{C_{2}} + ... + \frac{1}{C_{N}} \right)$$

Equivalent capacitance:

$$\frac{dv_{total}/dt}{i} = \frac{1}{C_{eq}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{N}}$$

practical capacitors

There is a very wide variety of capacitors, each with characteristics (capacitance range, breakdown voltage, polarity, dielectric leakage, price) that distinguish them

electrolytic capacitors: large C / volume, polarity due to electrolyte, low cost, high leakage, high dielectric loss

ceramic capacitors: different ceramics with different temp. stability, moderate C / volume, high dielectric loss, usually low cost

thin-film capacitors: different polymer films with different temp. and humidity stability, moderate C / volume, very low dielectric loss, low leakage

variable capacitors: low C / volume, low leakage, high cost