Optimization and Computational Linear Algebra for Data Science Lecture 4: Norm and inner product

Warning: This material is not meant to be lecture notes. It only gathers the main concepts and results from the lecture, without any additional explanation, motivation, examples, figures...

1 Norm

Definition 1.1 (Norm)

Let V be a vector space. A norm $\|\cdot\|$ on V is a function from V to $\mathbb{R}_{\geq 0}$ that verifies the following points:

- (i) Triangular inequality: $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$.
- (ii) Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$ for all $\alpha \in \mathbb{R}$ and $v \in V$.
- (iii) Positive definiteness: if ||v|| = 0 for some $v \in V$, then v = 0.

Example 1.1. One can consider various norms over \mathbb{R}^n :

- The Euclidean norm $||x||_2 \stackrel{\text{def}}{=} \sqrt{\sum_{i=1}^n x_i^2}$.
- The ℓ_1 norm $||x||_1 \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i|$.
- More generally, given $p \ge 1$, the ℓ_p -norm $||x||_p \stackrel{\text{def}}{=} \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$.
- The infinity-norm $||x||_{\infty} \stackrel{\text{def}}{=} \max(|x_1|, \dots, |x_n|)$.

2 Inner product

Definition 2.1 (Inner product)

Let V be a vector space. An inner product on V is a function $\langle \cdot, \cdot \rangle$ from $V \times V$ to \mathbb{R} that verifies the following points:

- (i) Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$.
- (ii) Linearity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \alpha v,w\rangle=\alpha\langle v,w\rangle$ for all $u,v,w\in V$ and $\alpha\in\mathbb{R}.$
- (iii) Positive definiteness: $\langle v, v \rangle \geq 0$ with equality if and only if v = 0.

Example 2.1.

• For $V = \mathbb{R}^n$, the Euclidean inner product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i = x^\mathsf{T} y$ is an inner product.

• If V is the set of all continuous functions on [0,1], then $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$ is an inner product.

Proposition 2.1 (Norm induced by an inner product)

If $\langle \cdot, \cdot \rangle$ is an inner product on V then $||v|| \stackrel{\text{def}}{=} \sqrt{\langle v, v \rangle}$ is a norm on V. We say that the norm $||\cdot||$ is induced by the inner product $\langle \cdot, \cdot \rangle$.

Remark 2.1. The Euclidean norm $\|\cdot\|_2$ on $V = \mathbb{R}^n$ is induced by the Euclidean inner product $x \cdot y = \sum_{i=1}^n x_i y_i$. Indeed, for $x \in \mathbb{R}^n$,

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x \cdot x}.$$

Exercise 2.1. Let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n , and let $\| \cdot \|$ be the induced norm by $\langle \cdot, \cdot \rangle$.

(a) Show that for all $x, y \in \mathbb{R}^n$ we have

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
.

(b) Deduce from the previous question that the ℓ_1 norm $\|\cdot\|_1$ and the infinity norm $\|\cdot\|_{\infty}$ are **not** induced by an inner product.

Theorem 2.1 (Cauchy-Schwarz inequality)

Let $\|\cdot\|$ be the norm induced by the inner product $\langle\cdot,\cdot\rangle$ on the vector space V. Then for all $x,y\in V$:

$$|\langle x, y \rangle| \le ||x|| \, ||y||. \tag{1}$$

Moreover, there is equality in (1) if and only if x and y are linearly dependent, i.e. $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbb{R}$.

Proof. If x = 0 or y = 0 the result is obvious, we assume therefore to be in the case where $x \neq 0$ and $y \neq 0$. For $t \in \mathbb{R}$ we define the function $f(t) = ||tx - y||^2$. Since the norm $||\cdot||$ is induced by the inner product $\langle \cdot, \cdot \rangle$ we have

$$f(t) = \langle tx - y, tx - y \rangle = t^2 ||x||^2 - 2t \langle x, y \rangle + ||y||^2.$$

f is therefore a quadratic function of t. Notice that f is non-negative because $f(t) = ||tx-y||^2 \ge 0$. This gives that its discriminant Δ is non-positive:

$$\Delta = (2\langle x, y \rangle)^2 - 4||x||^2 ||y||^2 \le 0,$$

which proves (1). We have equality in (1) if and only if $\Delta = 0$ that is if and only if f admits a zero α , which is equivalent to $\alpha x - y = 0$, i.e. $y = \alpha x$.

3 Orthogonality

In this section we consider an inner product $\langle \cdot, \cdot \rangle$ (that induces a norm $\| \cdot \|$) on a vector space V. For simplicity one may think of $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ to be the usual Euclidean dot product and norm on $V = \mathbb{R}^n$.

Definition 3.1 (Orthogonality)

- We say that vectors x and y are orthogonal if $\langle x, y \rangle = 0$. We write then $x \perp y$.
- We say that a vector x is orthogonal to a set of vectors $A \subset V$ if x is orthogonal to all the vectors in A, i.e. $\forall y \in A$, $\langle x, y \rangle = 0$. We write then $x \perp A$.
- More generality we say that $A \subset V$ and $B \subset V$ are orthogonal if $\langle x, y \rangle = 0$ for all $x \in A$ and all $y \in B$. As before, we write $A \perp B$.

Theorem 3.1 (Pythagorean theorem)

Let $x, y \in V$. Then

$$x \perp y \iff ||x + y||^2 = ||x||^2 + ||y||^2.$$

Definition 3.2 (Orthogonal and orthonormal families of vectors)

Let v_1, \ldots, v_k be vectors of V. We say that the family of vectors (v_1, \ldots, v_k) is

- orthogonal if the vectors v_1, \ldots, v_n are pairwise orthogonal, i.e. $\langle v_i, v_j \rangle = 0$ for all $i \neq j$.
- orthonormal if it is orthogonal and if all the v_i have unit norm: $||v_1|| = \cdots = ||v_k|| = 1$.

Orthonormal basis are particularly convenient for computing coordinates of vectors:

Proposition 3.1

Assume that $\dim(V) = n$ and let (v_1, \ldots, v_n) be an **orthonormal** basis of V. Then the coordinates of a vector $x \in V$ in the basis (v_1, \ldots, v_n) are $(\langle v_1, x \rangle, \ldots, \langle v_n, x \rangle)$:

$$x = \langle v_1, x \rangle v_1 + \dots + \langle v_n, x \rangle v_n.$$

Moreover

$$||x|| = \sqrt{\langle v_1, x \rangle^2 + \dots + \langle v_n, x \rangle^2}.$$

4 Orthogonal projection and distance to a subspace

We assume in this section that $V = \mathbb{R}^n$ and that $\langle \cdot, \cdot \rangle$, $\| \cdot \|$ are respectively the Euclidean dot product and Euclidean norm.

Definition 4.1 (Orthogonal projection and distance to a subspace)

Let S be a subspace of \mathbb{R}^n . The orthogonal projection of a vector x onto S is defined as the vector $P_S(x)$ is S that minimizes the distance to x:

$$P_S(x) \stackrel{\text{def}}{=} \underset{y \in S}{\arg \min} \|x - y\|.$$

The distance of x to the subspace S is then defined as

$$d(x, S) \stackrel{\text{def}}{=} \min_{y \in S} ||x - y|| = ||x - P_S(x)||.$$

Proposition 4.1

Let S be a subspace of \mathbb{R}^n and let (v_1,\ldots,v_k) be an **orthonormal basis** of S. Then for all $x \in \mathbb{R}^n$,

$$P_S(x) = \langle v_1, x \rangle v_1 + \dots + \langle v_k, x \rangle v_k.$$

In other words, if we let

$$V = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_k \\ | & | & & | \end{pmatrix} \in \mathbb{R}^{n \times k},$$

then P_S is a linear transformation whose matrix is VV^{T} :

$$\forall x \in \mathbb{R}^n, \quad P_S(x) = VV^\mathsf{T} x.$$

Proof. Let us add vectors v_{k+1}, \ldots, v_n to the basis (v_1, \ldots, v_k) to obtain an orthonormal basis of \mathbb{R}^n . (This is made possible by the Gram-Schmidt orthonormalization principle that we will see in the next lecture.) Let $\alpha_1 = \langle x, v_1 \rangle, \dots, \alpha_n = \langle x, v_n \rangle$ be the coordinates of x in the basis (v_1, \ldots, v_n) . Let $y \in S$, and let β_1, \ldots, β_k be its coordinates in the basis (v_1, \ldots, v_k) . By Proposition 3.1:

$$||x - y||^2 = \sum_{i=1}^k (\alpha_i - \beta_i)^2 + \sum_{i=k+1}^n \alpha_i^2.$$

Minimizing this quantity over $y \in S$ is equivalent to minimizing it over the coordinates β_1, \ldots, β_k of y. The minimum is uniquely achieved for $\beta_i = \alpha_i$ for all i, hence

$$P_S(x) \stackrel{\text{def}}{=} \underset{y \in S}{\arg \min} \|x - y\| = \alpha_1 v_1 + \dots + \alpha_k v_k = \langle v_1, x \rangle v_1 + \dots + \langle v_k, x \rangle v_k.$$

The second part of the proposition is a rewritting of this last equation, obtained by noticing that

$$V^{\mathsf{T}}x = \begin{pmatrix} -v_1 - \\ \vdots \\ -v_k - \end{pmatrix} x = \begin{pmatrix} \langle v_1, x \rangle \\ \vdots \\ \langle v_k, x \rangle \end{pmatrix}.$$

Corollary 4.1

For all $x \in \mathbb{R}^n$,

- x P_S(x) is orthogonal to S.
 ||P_S(x)|| ≤ ||x||.

Definition 4.2 (Orthogonal complement)

Let S be a subspace of \mathbb{R}^n . The orthogonal complement of S is defined by

$$S^{\perp} \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \, | \, x \perp S\} = \{x \in \mathbb{R}^n \, | \, \forall y \in S, \, \langle x, y \rangle = 0\}.$$

Proposition 4.2

Let S be a subspace of \mathbb{R}^n . Then S^{\perp} is also a subspace of \mathbb{R}^n with dimension

$$\dim(S^{\perp}) = n - \dim(S).$$

