knn

March 5, 2024

```
[2]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive')
     # TODO: Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = 'cs231n/assignments/assignment1/'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd /content/drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). /content/drive/My Drive/cs231n/assignments/assignment1/cs231n/datasets /content/drive/My Drive/cs231n/assignments/assignment1

1 k-Nearest Neighbor (kNN) exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

The kNN classifier consists of two stages:

- During training, the classifier takes the training data and simply remembers it
- During testing, kNN classifies every test image by comparing to all training images and transfering the labels of the k most similar training examples
- The value of k is cross-validated

In this exercise you will implement these steps and understand the basic Image Classification pipeline, cross-validation, and gain proficiency in writing efficient, vectorized code.

```
[3]: # Run some setup code for this notebook.
     import random
     import numpy as np
     from cs231n.data_utils import load_CIFAR10
     import matplotlib.pyplot as plt
     # This is a bit of magic to make matplotlib figures appear inline in the
      \rightarrownotebook
     # rather than in a new window.
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # Some more magic so that the notebook will reload external python modules;
     # see http://stackoverflow.com/questions/1907993/
      \rightarrow autoreload-of-modules-in-ipython
     %load_ext autoreload
     %autoreload 2
```

```
[4]: # Load the raw CIFAR-10 data.
     cifar10 dir = 'cs231n/datasets/cifar-10-batches-py'
     # Cleaning up variables to prevent loading data multiple times (which may cause_
      →memory issue)
     try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
     except:
       pass
     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
     # As a sanity check, we print out the size of the training and test data.
     print('Training data shape: ', X_train.shape)
     print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
```

Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)

```
[5]: # Visualize some examples from the dataset.
    # We show a few examples of training images from each class.
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
     num_classes = len(classes)
    samples_per_class = 7
    for y, cls in enumerate(classes):
        idxs = np.flatnonzero(y_train == y)
        idxs = np.random.choice(idxs, samples_per_class, replace=False)
        for i, idx in enumerate(idxs):
            plt_idx = i * num_classes + y + 1
            plt.subplot(samples_per_class, num_classes, plt_idx)
            plt.imshow(X_train[idx].astype('uint8'))
            plt.axis('off')
            if i == 0:
                plt.title(cls)
    plt.show()
```



```
[6]: # Subsample the data for more efficient code execution in this exercise
   num_training = 5000
   mask = list(range(num_training))
   X_train = X_train[mask]
   y_train = y_train[mask]

   num_test = 500
   mask = list(range(num_test))
   X_test = X_test[mask]
   y_test = y_test[mask]

# Reshape the image data into rows
   X_train = np.reshape(X_train, (X_train.shape[0], -1))
   X_test = np.reshape(X_test, (X_test.shape[0], -1))
   print(X_train.shape, X_test.shape)
```

(5000, 3072) (500, 3072)

```
[7]: from cs231n.classifiers import KNearestNeighbor

# Create a kNN classifier instance.

# Remember that training a kNN classifier is a noop:

# the Classifier simply remembers the data and does no further processing classifier = KNearestNeighbor()

classifier.train(X_train, y_train)
```

```
[8]: from google.colab import drive drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps:

- 1. First we must compute the distances between all test examples and all train examples.
- 2. Given these distances, for each test example we find the k nearest examples and have them vote for the label

Lets begin with computing the distance matrix between all training and test examples. For example, if there are **Ntr** training examples and **Nte** test examples, this stage should result in a **Nte** x **Ntr** matrix where each element (i,j) is the distance between the i-th test and j-th train example.

Note: For the three distance computations that we require you to implement in this notebook, you may not use the np.linalg.norm() function that numpy provides.

First, open cs231n/classifiers/k_nearest_neighbor.py and implement the function compute_distances_two_loops that uses a (very inefficient) double loop over all pairs of (test, train) examples and computes the distance matrix one element at a time.

```
[9]: # Open cs231n/classifiers/k_nearest_neighbor.py and implement
# compute_distances_two_loops.

# Test your implementation:
dists = classifier.compute_distances_two_loops(X_test)
print(dists.shape)
```

(500, 5000)

```
[10]: # We can visualize the distance matrix: each row is a single test example and
    # its distances to training examples
    plt.imshow(dists, interpolation='none')
    plt.show()
```


Inline Question 1

Notice the structured patterns in the distance matrix, where some rows or columns are visibly brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)

- What in the data is the cause behind the distinctly bright rows?
- What causes the columns?

YourAnswer:

Answer 1

It can be a photo which is very different from every photo in the train set so that the L2 distance for every pixel of each photo in the train is large when compared to the test photo.

Answer 2

The cause for that is that the photo in the train set is largely different from each photo in the test set, or to be precise the L2 distance of the photo in the train set is largely different from each photo in the test set.

```
[11]: # Now implement the function predict_labels and run the code below:
    # We use k = 1 (which is Nearest Neighbor).
    y_test_pred = classifier.predict_labels(dists, k=1)

# Compute and print the fraction of correctly predicted examples
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
```

```
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 137 / 500 correct => accuracy: 0.274000

You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5:

```
[12]: y_test_pred = classifier.predict_labels(dists, k=5)
num_correct = np.sum(y_test_pred == y_test)
accuracy = float(num_correct) / num_test
print('Got %d / %d correct => accuracy: %f' % (num_correct, num_test, accuracy))
```

Got 139 / 500 correct => accuracy: 0.278000

You should expect to see a slightly better performance than with k = 1.

Inline Question 2

We can also use other distance metrics such as L1 distance. For pixel values $p_{ij}^{(k)}$ at location (i, j) of some image I_k ,

the mean μ across all pixels over all images is

$$\mu = \frac{1}{nhw} \sum_{k=1}^{n} \sum_{i=1}^{h} \sum_{j=1}^{w} p_{ij}^{(k)}$$

And the pixel-wise mean μ_{ij} across all images is

$$\mu_{ij} = \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)}.$$

The general standard deviation σ and pixel-wise standard deviation σ_{ij} is defined similarly.

Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply. To clarify, both training and test examples are preprocessed in the same way.

- 1. Subtracting the mean μ ($\tilde{p}_{ij}^{(k)} = p_{ij}^{(k)} \mu$.)
- 2. Subtracting the per pixel mean μ_{ij} ($\tilde{p}_{ij}^{(k)} = p_{ij}^{(k)} \mu_{ij}$.)
- 3. Subtracting the mean μ and dividing by the standard deviation σ .
- 4. Subtracting the pixel-wise mean μ_{ij} and dividing by the pixel-wise standard deviation σ_{ij} .
- 5. Rotating the coordinate axes of the data, which means rotating all the images by the same angle. Empty regions in the image caused by rotation are padded with a same pixel value and no interpolation is performed.

Your Answer:

None of the preprocessing steps above will change the performance of a KNN classifier except 5.

Your Explanation: 1. By subtracting the mean from each pixel in the train set and test set the L1 norm is now the L1 norm that we had before but on top of that we just add the difference between the means of the train set and test set.

$$|x_{train}^{'}-x_{test}^{'}|=|x_{train}+\mu-x_{test}-\mu|=|x_{train}-x_{test}+\mu-\mu|=|x_{train}-x_{test}|$$

2. Subtracting the pex pixel mean μ_{ij} will have the same results as subtracting the mean μ :

$$|p_{train.ij}^{(k)'} - p_{test.ij}^{(k)'}| = |p_{train.ij}^{(k)} + \mu_{ij} - p_{test.ij}^{(k)} - \mu_{ij}| = |p_{train.ij}^{(k)} - p_{test.ij}^{(k)} + \mu_{ij} - \mu_{ij}| = |p_{train.ij}^{(k)} - p_{test.ij}^{(k)}| + \mu_{ij} - \mu_{ij}| = |p_{train.ij}^{(k)} - \mu_{ij}|$$

3. Same as 1. but just dividing each variable with deviation $\sigma > 0$ doesn't change the outcome it just scales the results.

$$|x_{train}^{'}-x_{test}^{'}|=|\frac{1}{\sigma}x_{train}+\frac{1}{\sigma}\mu-\frac{1}{\sigma}x_{test}-\frac{1}{\sigma}\mu|=\frac{1}{\sigma}|x_{train}-x_{test}+\mu-\mu|=\frac{1}{\sigma}|x_{train}-x_{test}|$$

4. Same as 2. but just dividing each variable with deviation $\sigma > 0$ doesn't change the outcome it just scales the results.

$$|p_{train,ij}^{(k)'} - p_{test,ij}^{(k)'}| = |\frac{1}{\sigma_{ij}}p_{train,ij}^{(k)} + \frac{1}{\sigma_{ij}}\mu_{ij} - \frac{1}{\sigma_{ij}}p_{test,ij}^{(k)} - \frac{1}{\sigma_{ij}}\mu_{ij}| = \frac{1}{\sigma_{ij}}|p_{train,ij}^{(k)} - p_{test,ij}^{(k)} + \mu_{ij} - \mu_{ij}| = \frac{1}{\sigma_{ij}}|p_{train,ij}^{(k)} - p_{test,ij}^{(k)} - p_{$$

5. Rotating all pictures by the same value would result in smaller L1 distance between two pictures because the empty regions in the picture would be padded by the same pixel value which would result in L1 being zero in the newly padded areas.

```
[13]: # Now lets speed up distance matrix computation by using partial vectorization
      # with one loop. Implement the function compute_distances_one_loop and run the
      # code below:
      dists_one = classifier.compute_distances_one_loop(X_test)
      # To ensure that our vectorized implementation is correct, we make sure that it
      # agrees with the naive implementation. There are many ways to decide whether
      # two matrices are similar; one of the simplest is the Frobenius norm. In case
      # you haven't seen it before, the Frobenius norm of two matrices is the square
      # root of the squared sum of differences of all elements; in other words,_{\sqcup}
       \hookrightarrow reshape
      # the matrices into vectors and compute the Euclidean distance between them.
      difference = np.linalg.norm(dists - dists_one, ord='fro')
      print('One loop difference was: %f' % (difference, ))
      if difference < 0.001:</pre>
          print('Good! The distance matrices are the same')
      else:
          print('Uh-oh! The distance matrices are different')
```

One loop difference was: 0.000000 Good! The distance matrices are the same

```
[23]: # Now implement the fully vectorized version inside compute_distances_no_loops
# and run the code
dists_two = classifier.compute_distances_no_loops(X_test)
```

```
# check that the distance matrix agrees with the one we computed before:
difference = np.linalg.norm(dists - dists_two, ord='fro')
print('No loop difference was: %f' % (difference, ))
if difference < 0.001:
    print('Good! The distance matrices are the same')
else:
    print('Uh-oh! The distance matrices are different')</pre>
```

No loop difference was: 0.000000 Good! The distance matrices are the same

```
[22]: # Let's compare how fast the implementations are
      def time_function(f, *args):
          Call a function f with args and return the time (in seconds) that it took \Box
       \hookrightarrow to execute.
          n n n
          import time
          tic = time.time()
          f(*args)
          toc = time.time()
          return toc - tic
      two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
      print('Two loop version took %f seconds' % two_loop_time)
      one_loop_time = time_function(classifier.compute_distances_one_loop, X_test)
      print('One loop version took %f seconds' % one_loop_time)
      no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
      print('No loop version took %f seconds' % no_loop_time)
      # You should see significantly faster performance with the fully vectorized
       ⇔implementation!
      # NOTE: depending on what machine you're using,
      # you might not see a speedup when you go from two loops to one loop,
      # and might even see a slow-down.
```

Two loop version took 36.695296 seconds One loop version took 51.186988 seconds No loop version took 0.960712 seconds

1.0.1 Cross-validation

We have implemented the k-Nearest Neighbor classifier but we set the value k = 5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation.

```
[47]: from re import X
    num_folds = 5
    k_{choices} = [1, 3, 5, 8, 10, 12, 15, 20, 50, 100]
    X_train_folds = []
    y_train_folds = []
     # TODO:
    # Split up the training data into folds. After splitting, X train folds and
     # y_train_folds should each be lists of length num_folds, where
     # y train folds[i] is the label vector for the points in X train folds[i].
     # Hint: Look up the numpy array_split function.
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
    for i in range(len(k_choices)):
      X_train_folds = np.array_split(X_train, num_folds)
      y_train_folds = np.array_split(y_train, num_folds)
     # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
     # A dictionary holding the accuracies for different values of k that we find
    # when running cross-validation. After running cross-validation,
     \# k\_to\_accuracies[k] should be a list of length num_folds giving the different
     # accuracy values that we found when using that value of k.
    k_to_accuracies = {}
    # TODO:
     \# Perform k-fold cross validation to find the best value of k. For each
     # possible value of k, run the k-nearest-neighbor algorithm num folds times,
     # where in each case you use all but one of the folds as training data and the #
     # last fold as a validation set. Store the accuracies for all fold and all
     # values of k in the k_to_accuracies dictionary.
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
    for i in range(len(k_choices)):
      accuracies = []
      for k in range(num folds):
        classifier = KNearestNeighbor()
        classifier.train(np.concatenate([x for cnt, x in enumerate(X_train_folds)_

cnt != k]))
        dists = classifier.compute_distances_no_loops(X_train_folds[k])
```

```
y_pred = classifier.predict_labels(dists, k_choices[i])
accuracies.append(np.sum(y_pred == y_train_folds[k]) /__
len(y_train_folds[k]))
k_to_accuracies[k_choices[i]] = accuracies

# ****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****

# Print out the computed accuracies
for k in sorted(k_to_accuracies):
    for accuracy in k_to_accuracies[k]:
        print('k = %d, accuracy = %f' % (k, accuracy))
```

```
k = 1, accuracy = 0.263000
k = 1, accuracy = 0.257000
k = 1, accuracy = 0.264000
k = 1, accuracy = 0.278000
k = 1, accuracy = 0.266000
k = 3, accuracy = 0.239000
k = 3, accuracy = 0.249000
k = 3, accuracy = 0.240000
k = 3, accuracy = 0.266000
k = 3, accuracy = 0.254000
k = 5, accuracy = 0.248000
k = 5, accuracy = 0.266000
k = 5, accuracy = 0.280000
k = 5, accuracy = 0.292000
k = 5, accuracy = 0.280000
k = 8, accuracy = 0.262000
k = 8, accuracy = 0.282000
k = 8, accuracy = 0.273000
k = 8, accuracy = 0.290000
k = 8, accuracy = 0.273000
k = 10, accuracy = 0.265000
k = 10, accuracy = 0.296000
k = 10, accuracy = 0.276000
k = 10, accuracy = 0.284000
k = 10, accuracy = 0.280000
k = 12, accuracy = 0.260000
k = 12, accuracy = 0.295000
k = 12, accuracy = 0.279000
k = 12, accuracy = 0.283000
k = 12, accuracy = 0.280000
k = 15, accuracy = 0.252000
k = 15, accuracy = 0.289000
k = 15, accuracy = 0.278000
k = 15, accuracy = 0.282000
k = 15, accuracy = 0.274000
```

```
k = 20, accuracy = 0.270000
     k = 20, accuracy = 0.279000
     k = 20, accuracy = 0.279000
     k = 20, accuracy = 0.282000
     k = 20, accuracy = 0.285000
     k = 50, accuracy = 0.271000
     k = 50, accuracy = 0.288000
     k = 50, accuracy = 0.278000
     k = 50, accuracy = 0.269000
     k = 50, accuracy = 0.266000
     k = 100, accuracy = 0.256000
     k = 100, accuracy = 0.270000
     k = 100, accuracy = 0.263000
     k = 100, accuracy = 0.256000
     k = 100, accuracy = 0.263000
[50]: # plot the raw observations
      for k in k_choices:
          accuracies = k_to_accuracies[k]
          plt.scatter([k] * len(accuracies), accuracies)
      # plot the trend line with error bars that correspond to standard deviation
      accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.
       →items())])
      accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.
       →items())])
     plt.errorbar(k choices, accuracies mean, yerr=accuracies std)
      plt.title('Cross-validation on k')
      plt.xlabel('k')
      plt.ylabel('Cross-validation accuracy')
     plt.show()
```


Got 141 / 500 correct => accuracy: 0.282000

Inline Question 3

Which of the following statements about k-Nearest Neighbor (k-NN) are true in a classification

setting, and for all k? Select all that apply. 1. The decision boundary of the k-NN classifier is linear. 2. The training error of a 1-NN will always be lower than or equal to that of 5-NN. 3. The test error of a 1-NN will always be lower than that of a 5-NN. 4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set. 5. None of the above.

YourAnswer:

2 is correct while 1, 3 and 4 are not.

Your Explanation:

- 1. The decision boundary for k-NN is not linear for all k. It is only linear for when k is equal to the half of the size of the train dataset and when the data is linearly separable.
- 2. Training error of 1-NN will always be zero because the model stores all the training data and when we give the model a point which it has stored in the training data the distance is zero thus resulting in the training error to be zero. Training error of 5-NN will most likely be > 0 because it takes five nearest points and based on their classes it makes a prediction about a given point.
- 3. Not true because the test points can be vastly different from train points thus we can't know if the error will be higher or lower. We can use cross-validation to determine that.
- 4. Not true because k-NN classifier makes its predictions based on the k nearest neighbors to a given point. So the time needed to classify a test example grows with the number of neighbors.

svm

March 5, 2024

```
[2]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive')
     # TODO: Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = 'cs231n/assignments/assignment1/'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd /content/drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

Mounted at /content/drive /content/drive/My Drive/cs231n/assignments/assignment1/cs231n/datasets /content/drive/My Drive/cs231n/assignments/assignment1

1 Multiclass Support Vector Machine exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

In this exercise you will:

- implement a fully-vectorized **loss function** for the SVM
- implement the fully-vectorized expression for its analytic gradient
- check your implementation using numerical gradient
- use a validation set to tune the learning rate and regularization strength
- optimize the loss function with SGD
- visualize the final learned weights

```
[3]: # Run some setup code for this notebook.
     import random
     import numpy as np
     from cs231n.data_utils import load_CIFAR10
     import matplotlib.pyplot as plt
     # This is a bit of magic to make matplotlib figures appear inline in the
     # notebook rather than in a new window.
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # Some more magic so that the notebook will reload external python modules;
     # see http://stackoverflow.com/questions/1907993/
      \rightarrow autoreload-of-modules-in-ipython
     %load ext autoreload
     %autoreload 2
```

1.1 CIFAR-10 Data Loading and Preprocessing

```
[4]: # Load the raw CIFAR-10 data.
     cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
     # Cleaning up variables to prevent loading data multiple times (which may cause_
      →memory issue)
     try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
     except:
       pass
     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
     # As a sanity check, we print out the size of the training and test data.
     print('Training data shape: ', X_train.shape)
     print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
```

Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)

```
[5]: # Visualize some examples from the dataset.
    # We show a few examples of training images from each class.
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
     num_classes = len(classes)
    samples_per_class = 7
    for y, cls in enumerate(classes):
        idxs = np.flatnonzero(y_train == y)
        idxs = np.random.choice(idxs, samples_per_class, replace=False)
        for i, idx in enumerate(idxs):
            plt_idx = i * num_classes + y + 1
            plt.subplot(samples_per_class, num_classes, plt_idx)
            plt.imshow(X_train[idx].astype('uint8'))
            plt.axis('off')
            if i == 0:
                plt.title(cls)
    plt.show()
```



```
[6]: # Split the data into train, val, and test sets. In addition we will
     # create a small development set as a subset of the training data;
     # we can use this for development so our code runs faster.
     num_training = 49000
     num validation = 1000
     num_test = 1000
     num_dev = 500
     # Our validation set will be num validation points from the original
     # training set.
     mask = range(num training, num training + num validation)
     X_val = X_train[mask]
     y_val = y_train[mask]
     # Our training set will be the first num train points from the original
     # training set.
     mask = range(num_training)
     X_train = X_train[mask]
     y_train = y_train[mask]
     # We will also make a development set, which is a small subset of
     # the training set.
     mask = np.random.choice(num_training, num_dev, replace=False)
     X dev = X train[mask]
     y_dev = y_train[mask]
     # We use the first num_test points of the original test set as our
     # test set.
     mask = range(num_test)
     X_test = X_test[mask]
     y_test = y_test[mask]
     print('Train data shape: ', X_train.shape)
     print('Train labels shape: ', y_train.shape)
     print('Validation data shape: ', X_val.shape)
     print('Validation labels shape: ', y_val.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
    Train data shape: (49000, 32, 32, 3)
    Train labels shape: (49000,)
    Validation data shape: (1000, 32, 32, 3)
    Validation labels shape: (1000,)
    Test data shape: (1000, 32, 32, 3)
    Test labels shape: (1000,)
```

```
[7]: # Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

# As a sanity check, print out the shapes of the data
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)
Training data shape: (49000, 3072)
```

Training data shape: (49000, 3072) Validation data shape: (1000, 3072) Test data shape: (1000, 3072) dev data shape: (500, 3072)

```
[8]: # Preprocessing: subtract the mean image
     # first: compute the image mean based on the training data
     mean_image = np.mean(X_train, axis=0)
     print(mean_image[:10]) # print a few of the elements
     plt.figure(figsize=(4,4))
     plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean_i
      \hookrightarrow image
     plt.show()
     # second: subtract the mean image from train and test data
     X_train -= mean_image
     X_val -= mean_image
     X_test -= mean_image
     X_dev -= mean_image
     # third: append the bias dimension of ones (i.e. bias trick) so that our SVM
     # only has to worry about optimizing a single weight matrix W.
     X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
     X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
     X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
     X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
     print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
```

[130.64189796 135.98173469 132.47391837 130.05569388 135.34804082 131.75402041 130.96055102 136.14328571 132.47636735 131.48467347]

(49000, 3073) (1000, 3073) (1000, 3073) (500, 3073)

1.2 SVM Classifier

Your code for this section will all be written inside cs231n/classifiers/linear_svm.py.

As you can see, we have prefilled the function svm_loss_naive which uses for loops to evaluate the multiclass SVM loss function.

```
[9]: # Evaluate the naive implementation of the loss we provided for you:
    from cs231n.classifiers.linear_svm import svm_loss_naive
    import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
    print('loss: %f' % (loss, ))
```

loss: 9.268878

The grad returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive. You will find it helpful to interleave your new code inside the existing function.

To check that you have correctly implemented the gradient, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you:

```
[10]: # Once you've implemented the gradient, recompute it with the code below
      # and gradient check it with the function we provided for you
      # Compute the loss and its gradient at W.
      loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)
      # Numerically compute the gradient along several randomly chosen dimensions, and
      \# compare them with your analytically computed gradient. The numbers should
       \rightarrow match
      # almost exactly along all dimensions.
      from cs231n.gradient_check import grad_check_sparse
      f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
      grad_numerical = grad_check_sparse(f, W, grad)
      # do the gradient check once again with regularization turned on
      # you didn't forget the regularization gradient did you?
      loss, grad = svm loss naive(W, X dev, y dev, 5e1)
      f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
      grad_numerical = grad_check_sparse(f, W, grad)
```

```
numerical: -18.354964 analytic: -18.354964, relative error: 3.845571e-12
numerical: 7.043812 analytic: 7.043812, relative error: 1.068768e-12
numerical: 10.592427 analytic: 10.592427, relative error: 9.860798e-12
numerical: -14.355168 analytic: -14.355168, relative error: 1.079766e-11
numerical: 15.825966 analytic: 15.825966, relative error: 5.342888e-12
numerical: -22.746612 analytic: -22.746612, relative error: 1.239894e-11
numerical: 16.805132 analytic: 16.805132, relative error: 6.537745e-12
numerical: -50.994951 analytic: -50.994951, relative error: 7.204223e-12
numerical: -7.265016 analytic: -7.265016, relative error: 4.715092e-11
numerical: 12.865312 analytic: 12.865312, relative error: 2.271031e-11
numerical: 26.731499 analytic: 26.731499, relative error: 2.349537e-12
numerical: -5.999835 analytic: -5.999835, relative error: 3.854119e-11
numerical: 3.322876 analytic: 3.322876, relative error: 9.037252e-11
numerical: -30.350396 analytic: -30.350396, relative error: 1.180258e-11
numerical: 15.172922 analytic: 15.172922, relative error: 5.657374e-12
numerical: 13.483699 analytic: 13.483699, relative error: 2.595141e-11
numerical: -6.780673 analytic: -6.780673, relative error: 9.805669e-13
numerical: -3.541026 analytic: -3.541026, relative error: 4.083829e-11
numerical: 16.072963 analytic: 16.072963, relative error: 1.944459e-12
numerical: -18.957989 analytic: -18.957989, relative error: 2.372100e-12
```

Inline Question 1

It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? How would change the margin affect of the frequency of this happening? Hint: the SVM loss function is not strictly speaking differentiable

YourAnswer: fill this in.

Naive loss: 9.268878e+00 computed in 0.104192s Vectorized loss: 9.268878e+00 computed in 0.011488s difference: -0.000000

```
[12]: | # Complete the implementation of sum_loss_vectorized, and compute the gradient
      # of the loss function in a vectorized way.
      # The naive implementation and the vectorized implementation should match, but
      # the vectorized version should still be much faster.
      tic = time.time()
      _, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
      toc = time.time()
      print('Naive loss and gradient: computed in %fs' % (toc - tic))
      tic = time.time()
      _, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
      toc = time.time()
      print('Vectorized loss and gradient: computed in %fs' % (toc - tic))
      # The loss is a single number, so it is easy to compare the values computed
      # by the two implementations. The gradient on the other hand is a matrix, so
      # we use the Frobenius norm to compare them.
      difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
      print('difference: %f' % difference)
```

Naive loss and gradient: computed in 0.110739s Vectorized loss and gradient: computed in 0.009769s difference: 0.000000

1.2.1 Stochastic Gradient Descent

We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss. Your code for this part will be written inside cs231n/classifiers/linear_classifier.py.

```
[13]: # In the file linear classifier.py, implement SGD in the function
      # LinearClassifier.train() and then run it with the code below.
      from cs231n.classifiers import LinearSVM
      svm = LinearSVM()
      tic = time.time()
      loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4,
                            num_iters=1500, verbose=True)
      toc = time.time()
      print('That took %fs' % (toc - tic))
     iteration 0 / 1500: loss 794.811372
     iteration 100 / 1500: loss 290.534947
     iteration 200 / 1500: loss 109.168642
     iteration 300 / 1500: loss 42.966439
     iteration 400 / 1500: loss 19.248250
     iteration 500 / 1500: loss 9.832400
     iteration 600 / 1500: loss 7.155941
     iteration 700 / 1500: loss 5.473584
     iteration 800 / 1500: loss 5.300172
     iteration 900 / 1500: loss 5.185341
     iteration 1000 / 1500: loss 5.078061
     iteration 1100 / 1500: loss 5.077830
     iteration 1200 / 1500: loss 5.291377
     iteration 1300 / 1500: loss 5.530250
     iteration 1400 / 1500: loss 5.360312
     That took 11.532079s
[14]: # A useful debugging strategy is to plot the loss as a function of
      # iteration number:
      plt.plot(loss_hist)
      plt.xlabel('Iteration number')
      plt.ylabel('Loss value')
      plt.show()
```



```
[15]: # Write the LinearSVM.predict function and evaluate the performance on both the
    # training and validation set
    y_train_pred = svm.predict(X_train)
    print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
    y_val_pred = svm.predict(X_val)
    print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))
```

training accuracy: 0.370531 validation accuracy: 0.371000

```
[23]: # Use the validation set to tune hyperparameters (regularization strength and # learning rate). You should experiment with different ranges for the learning # rates and regularization strengths; if you are careful you should be able to # get a classification accuracy of about 0.39 (> 0.385) on the validation set.

# Note: you may see runtime/overflow warnings during hyper-parameter search.
# This may be caused by extreme values, and is not a bug.

# results is dictionary mapping tuples of the form
```

```
# (learning rate, regularization strength) to tuples of the form
# (training accuracy, validation accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1  # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation
 -rate.
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the
# training set, compute its accuracy on the training and validation sets, and
# store these numbers in the results dictionary. In addition, store the best
# validation accuracy in best_val and the LinearSVM object that achieves this
# accuracy in best_svm.
# Hint: You should use a small value for num_iters as you develop your
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation
# code with a larger value for num iters.
# Provided as a reference. You may or may not want to change these
\rightarrowhyperparameters
learning_rates = [1e-7]
regularization strengths = [5e4, 4.5e4, 4e4, 3.5e4, 3e4]
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) *****
for lr in learning_rates:
 for reg in regularization_strengths:
   lin_clf = LinearSVM()
   lin_clf.train(X=X_train,
                y=y_train,
                learning_rate=lr,
                reg=reg,
                num_iters=2000)
   y_train_pred = lin_clf.predict(X_train)
   y_val_pred = lin_clf.predict(X_val)
   train_acc = np.mean(y_train == y_train_pred)
   val_acc = np.mean(y_val == y_val_pred)
   results[(lr, reg)] = (train_acc, val_acc)
   if best_val < val_acc:</pre>
     best_val = val_acc
     best_svm = lin_clf
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
```

```
# Print out results.
      for lr, reg in sorted(results):
          train_accuracy, val_accuracy = results[(lr, reg)]
          print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                      lr, reg, train_accuracy, val_accuracy))
      print('best validation accuracy achieved during cross-validation: %f' %⊔
       ⇒best val)
     lr 1.000000e-07 reg 3.000000e+04 train accuracy: 0.372184 val accuracy: 0.381000
     lr 1.000000e-07 reg 3.500000e+04 train accuracy: 0.361245 val accuracy: 0.366000
     lr 1.000000e-07 reg 4.000000e+04 train accuracy: 0.360102 val accuracy: 0.360000
     lr 1.000000e-07 reg 4.500000e+04 train accuracy: 0.363429 val accuracy: 0.371000
     lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.359143 val accuracy: 0.363000
     best validation accuracy achieved during cross-validation: 0.381000
[27]: # Visualize the cross-validation results
      import math
      import pdb
      # pdb.set_trace()
      x_scatter = [math.log10(x[0]) for x in results]
      y_scatter = [math.log10(x[1]) for x in results]
      # plot training accuracy
      marker_size = 100
      colors = [results[x][0] for x in results]
      plt.subplot(2, 1, 1)
      plt.tight layout(pad=3)
      plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
      plt.colorbar()
      plt.xlabel('log learning rate')
      plt.ylabel('log regularization strength')
      plt.title('CIFAR-10 training accuracy')
      # plot validation accuracy
      colors = [results[x][1] for x in results] # default size of markers is 20
      plt.subplot(2, 1, 2)
      plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
      plt.colorbar()
      plt.xlabel('log learning rate')
      plt.ylabel('log regularization strength')
      plt.title('CIFAR-10 validation accuracy')
```

plt.show()


```
[30]: # Evaluate the best sum on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)
```

linear SVM on raw pixels final test set accuracy: 0.363000

```
for i in range(10):
    plt.subplot(2, 5, i + 1)

# Rescale the weights to be between 0 and 255
    wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
    plt.imshow(wimg.astype('uint8'))
    plt.axis('off')
    plt.title(classes[i])
```


Inline question 2

Describe what your visualized SVM weights look like, and offer a brief explanation for why they look the way they do.

Your Answer:

The SVM weights look like a blurred image of the pictures that belong to that class. We can look at it as some sort of generalization of pictures that belong to that class.

softmax

March 5, 2024

```
[1]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive')
     # TODO: Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = 'cs231n/assignments/assignment1/'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd /content/drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

Mounted at /content/drive /content/drive/My Drive/cs231n/assignments/assignment1/cs231n/datasets /content/drive/My Drive/cs231n/assignments/assignment1

1 Softmax exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

This exercise is analogous to the SVM exercise. You will:

- implement a fully-vectorized loss function for the Softmax classifier
- implement the fully-vectorized expression for its analytic gradient
- check your implementation with numerical gradient
- use a validation set to tune the learning rate and regularization strength
- optimize the loss function with SGD
- visualize the final learned weights

```
[2]: import random
     import numpy as np
     from cs231n.data_utils import load_CIFAR10
     import matplotlib.pyplot as plt
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # for auto-reloading extenrnal modules
     # see http://stackoverflow.com/questions/1907993/
      \rightarrow autoreload-of-modules-in-ipython
     %load_ext autoreload
     %autoreload 2
[3]: def get CIFAR10 data(num training=49000, num validation=1000, num test=1000,
      \rightarrownum dev=500):
         11 11 11
         Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
```

```
it for the linear classifier. These are the same steps as we used for the
  SVM, but condensed to a single function.
  11 11 11
  # Load the raw CIFAR-10 data
  cifar10 dir = 'cs231n/datasets/cifar-10-batches-py'
  # Cleaning up variables to prevent loading data multiple times (which may u
→cause memory issue)
  try:
     del X_train, y_train
     del X_test, y_test
     print('Clear previously loaded data.')
  except:
     pass
  X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
  # subsample the data
  mask = list(range(num_training, num_training + num_validation))
  X_val = X_train[mask]
  y_val = y_train[mask]
  mask = list(range(num_training))
  X_train = X_train[mask]
  y_train = y_train[mask]
  mask = list(range(num_test))
  X_test = X_test[mask]
  y_test = y_test[mask]
```

```
mask = np.random.choice(num_training, num_dev, replace=False)
    X_dev = X_train[mask]
    y_dev = y_train[mask]
    # Preprocessing: reshape the image data into rows
    X_train = np.reshape(X_train, (X_train.shape[0], -1))
    X_val = np.reshape(X_val, (X_val.shape[0], -1))
    X_test = np.reshape(X_test, (X_test.shape[0], -1))
    X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
    # Normalize the data: subtract the mean image
    mean_image = np.mean(X_train, axis = 0)
    X_train -= mean_image
    X_val -= mean_image
    X_test -= mean_image
    X_dev -= mean_image
    # add bias dimension and transform into columns
    X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
    X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
    X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
    X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
    return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev
# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev =_
 ⇒get_CIFAR10_data()
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
print('dev data shape: ', X_dev.shape)
print('dev labels shape: ', y_dev.shape)
Train data shape: (49000, 3073)
Train labels shape: (49000,)
Validation data shape: (1000, 3073)
Validation labels shape: (1000,)
Test data shape: (1000, 3073)
Test labels shape: (1000,)
dev data shape: (500, 3073)
```

dev labels shape: (500,)

1.1 Softmax Classifier

Your code for this section will all be written inside cs231n/classifiers/softmax.py.

```
[16]: # First implement the naive softmax loss function with nested loops.
# Open the file cs231n/classifiers/softmax.py and implement the
# softmax_loss_naive function.

from cs231n.classifiers.softmax import softmax_loss_naive
import time

# Generate a random softmax weight matrix and use it to compute the loss.
W = np.random.randn(3073, 10) * 0.0001
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As a rough sanity check, our loss should be something close to -log(0.1).
print('loss: %f' % loss)
print('sanity check: %f' % (-np.log(0.1)))
```

loss: 2.338872

sanity check: 2.302585

Inline Question 1

Why do we expect our loss to be close to $-\log(0.1)$? Explain briefly.**

Your Answer:

Because we are trying to classify pictures in 10 classes and our classifier correctly classifies it 1 out of 10 times on average. We are initializing weights at random and the expected probability of a random classifier guessing a correct class is 1/10.

```
[17]: # Complete the implementation of softmax_loss_naive and implement a (naive)
# version of the gradient that uses nested loops.
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)

# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)
```

```
numerical: -0.052970 analytic: -0.052970, relative error: 4.238035e-07 numerical: -1.450298 analytic: -1.450298, relative error: 1.709823e-08 numerical: 0.770221 analytic: 0.770221, relative error: 2.116340e-08 numerical: -0.086194 analytic: -0.086194, relative error: 3.581466e-07
```

```
numerical: 1.620550 analytic: 1.620550, relative error: 3.362366e-08
     numerical: 0.420723 analytic: 0.420723, relative error: 4.638744e-08
     numerical: 1.478604 analytic: 1.478604, relative error: 2.253160e-08
     numerical: -0.763117 analytic: -0.763117, relative error: 2.279202e-08
     numerical: -0.127363 analytic: -0.127363, relative error: 2.224127e-07
     numerical: 2.021789 analytic: 2.021789, relative error: 1.290743e-08
     numerical: 1.119873 analytic: 1.119873, relative error: 3.558955e-08
     numerical: 0.695012 analytic: 0.695012, relative error: 1.374655e-08
     numerical: -0.139556 analytic: -0.139556, relative error: 3.558144e-07
     numerical: -0.728481 analytic: -0.728481, relative error: 4.250840e-08
     numerical: -5.410958 analytic: -5.410957, relative error: 7.602805e-09
     numerical: -2.395937 analytic: -2.395937, relative error: 1.019481e-08
     numerical: -5.825654 analytic: -5.825654, relative error: 1.325741e-08
     numerical: -0.749697 analytic: -0.749697, relative error: 5.654523e-08
     numerical: 2.607751 analytic: 2.607750, relative error: 2.022037e-08
     numerical: -3.634254 analytic: -3.634254, relative error: 3.394115e-09
[21]: # Now that we have a naive implementation of the softmax loss function and its_
      ⇔gradient,
      # implement a vectorized version in softmax_loss_vectorized.
      # The two versions should compute the same results, but the vectorized version \Box
       ⇔should be
      # much faster.
      tic = time.time()
      loss naive, grad naive = softmax loss naive(W, X dev, y dev, 0.000005)
      toc = time.time()
      print('naive loss: %e computed in %fs' % (loss naive, toc - tic))
      from cs231n.classifiers.softmax import softmax_loss_vectorized
      tic = time.time()
      loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.
       →000005)
      toc = time.time()
      print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))
      # As we did for the SVM, we use the Frobenius norm to compare the two versions
      # of the gradient.
      grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
      print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
      print('Gradient difference: %f' % grad_difference)
```

naive loss: 2.338872e+00 computed in 0.100734s vectorized loss: 2.338872e+00 computed in 0.012801s

Loss difference: 0.000000 Gradient difference: 0.000000

```
[26]: # Use the validation set to tune hyperparameters (regularization strength and
     # learning rate). You should experiment with different ranges for the learning
     # rates and regularization strengths; if you are careful you should be able to
     # get a classification accuracy of over 0.35 on the validation set.
     from cs231n.classifiers import Softmax
     results = {}
     best val = -1
     best softmax = None
     # Use the validation set to set the learning rate and regularization strength.
     # This should be identical to the validation that you did for the SVM; save
     # the best trained softmax classifer in best_softmax.
     # Provided as a reference. You may or may not want to change these
      →hyperparameters
     learning_rates = [1e-7, 2.5e-6]
     regularization_strengths = [2.5e4, 3e4, 3.5e4, 4e4]
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
     for lr in learning_rates:
       for reg in regularization_strengths:
         lin_clf = Softmax()
         lin_clf.train(X=X_train,
                     y=y_train,
                     learning_rate=lr,
                     reg=reg,
                     num iters=2000)
         y_train_pred = lin_clf.predict(X_train)
         y_val_pred = lin_clf.predict(X_val)
         train_acc = np.mean(y_train == y_train_pred)
         val_acc = np.mean(y_val == y_val_pred)
         results[(lr, reg)] = (train_acc, val_acc)
         if best_val < val_acc:</pre>
          best_val = val_acc
           best_softmax = lin_clf
     # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
     # Print out results.
     for lr, reg in sorted(results):
         train_accuracy, val_accuracy = results[(lr, reg)]
         print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
```

```
lr, reg, train_accuracy, val_accuracy))

print('best validation accuracy achieved during cross-validation: %f' %

⇔best_val)
```

```
lr 1.000000e-07 reg 2.500000e+04 train accuracy: 0.324388 val accuracy: 0.340000
lr 1.000000e-07 reg 3.000000e+04 train accuracy: 0.324469 val accuracy: 0.329000
lr 1.000000e-07 reg 3.500000e+04 train accuracy: 0.325918 val accuracy: 0.341000
lr 1.000000e-07 reg 4.000000e+04 train accuracy: 0.314184 val accuracy: 0.330000
lr 2.500000e-06 reg 2.500000e+04 train accuracy: 0.276796 val accuracy: 0.293000
lr 2.500000e-06 reg 3.000000e+04 train accuracy: 0.295245 val accuracy: 0.301000
lr 2.500000e-06 reg 3.500000e+04 train accuracy: 0.287857 val accuracy: 0.302000
lr 2.500000e-06 reg 4.000000e+04 train accuracy: 0.277367 val accuracy: 0.289000
best validation accuracy achieved during cross-validation: 0.341000
```

```
[28]: # evaluate on test set
# Evaluate the best softmax on test set
y_test_pred = best_softmax.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
```

softmax on raw pixels final test set accuracy: 0.328000

Inline Question 2 - True or False

Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.

Your Answer:

True

Your Explanation:

Because if the hinge loss is ≤ 0 of the new datapoint then the SVM loss is unchanged.

```
plt.imshow(wimg.astype('uint8'))
plt.axis('off')
plt.title(classes[i])
```


two_layer_net

March 5, 2024

```
[1]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive')
     # TODO: Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = 'cs231n/assignments/assignment1/'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd /content/drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

Mounted at /content/drive /content/drive/My Drive/cs231n/assignments/assignment1/cs231n/datasets /content/drive/My Drive/cs231n/assignments/assignment1

1 Fully-Connected Neural Nets

In this exercise we will implement fully-connected networks using a modular approach. For each layer we will implement a forward and a backward function. The forward function will receive inputs, weights, and other parameters and will return both an output and a cache object storing data needed for the backward pass, like this:

```
def layer_forward(x, w):
    """ Receive inputs x and weights w """
    # Do some computations ...
    z = # ... some intermediate value
    # Do some more computations ...
    out = # the output
```

```
cache = (x, w, z, out) # Values we need to compute gradients
return out, cache
```

The backward pass will receive upstream derivatives and the cache object, and will return gradients with respect to the inputs and weights, like this:

```
def layer_backward(dout, cache):
    """
    Receive dout (derivative of loss with respect to outputs) and cache,
    and compute derivative with respect to inputs.
    """
    # Unpack cache values
    x, w, z, out = cache

# Use values in cache to compute derivatives
    dx = # Derivative of loss with respect to x
    dw = # Derivative of loss with respect to w
return dx, dw
```

After implementing a bunch of layers this way, we will be able to easily combine them to build classifiers with different architectures.

```
[2]: # As usual, a bit of setup
     from __future__ import print_function
     import time
     import numpy as np
     import matplotlib.pyplot as plt
     from cs231n.classifiers.fc_net import *
     from cs231n.data_utils import get_CIFAR10_data
     from cs231n.gradient_check import eval_numerical_gradient,_

eval_numerical_gradient_array
     from cs231n.solver import Solver
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # for auto-reloading external modules
     # see http://stackoverflow.com/questions/1907993/
      \Rightarrow autoreload-of-modules-in-ipython
     %load ext autoreload
     %autoreload 2
     def rel_error(x, y):
       """ returns relative error """
```

```
return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

```
[3]: # Load the (preprocessed) CIFAR10 data.

data = get_CIFAR10_data()
for k, v in list(data.items()):
    print(('%s: ' % k, v.shape))

('X_train: ', (49000, 3, 32, 32))
    ('y_train: ', (49000,))
    ('X_val: ', (1000, 3, 32, 32))
    ('y_val: ', (1000,))
    ('X_test: ', (1000, 3, 32, 32))
    ('y_test: ', (1000,))
```

2 Affine layer: forward

Open the file cs231n/layers.py and implement the affine_forward function.

Once you are done you can test your implementation by running the following:

```
[4]: # Test the affine forward function
     num_inputs = 2
     input\_shape = (4, 5, 6)
     output dim = 3
     input_size = num_inputs * np.prod(input_shape)
     weight_size = output_dim * np.prod(input_shape)
     x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape)
     w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape),_
      →output_dim)
     b = np.linspace(-0.3, 0.1, num=output_dim)
     out, _ = affine_forward(x, w, b)
     correct_out = np.array([[ 1.49834967,  1.70660132,  1.91485297],
                             [ 3.25553199, 3.5141327, 3.77273342]])
     # Compare your output with ours. The error should be around e-9 or less.
     print('Testing affine_forward function:')
     print('difference: ', rel_error(out, correct_out))
```

Testing affine_forward function: difference: 9.769849468192957e-10

3 Affine layer: backward

Now implement the affine_backward function and test your implementation using numeric gradient checking.

```
[5]: # Test the affine backward function
     np.random.seed(231)
     x = np.random.randn(10, 2, 3)
     w = np.random.randn(6, 5)
     b = np.random.randn(5)
     dout = np.random.randn(10, 5)
     dx num = eval numerical gradient array(lambda x: affine forward(x, w, b)[0], x, u
      →dout)
     dw_num = eval_numerical_gradient_array(lambda w: affine_forward(x, w, b)[0], w,_
      →dout)
     db num = eval numerical gradient array(lambda b: affine forward(x, w, b)[0], b, u
     _, cache = affine_forward(x, w, b)
     dx, dw, db = affine_backward(dout, cache)
     print("dx_num.shape", dx_num.shape)
     # The error should be around e-10 or less
     print('Testing affine_backward function:')
     print('dx error: ', rel_error(dx_num, dx))
     print('dw error: ', rel_error(dw_num, dw))
     print('db error: ', rel_error(db_num, db))
```

```
dx_num.shape (10, 2, 3)
Testing affine_backward function:
dx error: 5.399100368651805e-11
dw error: 9.904211865398145e-11
db error: 2.4122867568119087e-11
```

4 ReLU activation: forward

Implement the forward pass for the ReLU activation function in the relu_forward function and test your implementation using the following:

```
# Compare your output with ours. The error should be on the order of e-8
print('Testing relu_forward function:')
print('difference: ', rel_error(out, correct_out))
```

Testing relu_forward function: difference: 4.999999798022158e-08

5 ReLU activation: backward

Now implement the backward pass for the ReLU activation function in the relu_backward function and test your implementation using numeric gradient checking:

```
[7]: np.random.seed(231)
    x = np.random.randn(10, 10)
    dout = np.random.randn(*x.shape)

    dx_num = eval_numerical_gradient_array(lambda x: relu_forward(x)[0], x, dout)

    _, cache = relu_forward(x)
    dx = relu_backward(dout, cache)

# The error should be on the order of e-12
    print('Testing relu_backward function:')
    print('dx error: ', rel_error(dx_num, dx))
```

Testing relu_backward function: dx error: 3.2756349136310288e-12

5.1 Inline Question 1:

We've only asked you to implement ReLU, but there are a number of different activation functions that one could use in neural networks, each with its pros and cons. In particular, an issue commonly seen with activation functions is getting zero (or close to zero) gradient flow during backpropagation. Which of the following activation functions have this problem? If you consider these functions in the one dimensional case, what types of input would lead to this behaviour? 1. Sigmoid 2. ReLU 3. Leaky ReLU

5.2 Answer:

Really negative or positive values would affect the value of the gradient with the Sigmoid activation function (Vanishing gradient problem).

6 "Sandwich" layers

There are some common patterns of layers that are frequently used in neural nets. For example, affine layers are frequently followed by a ReLU nonlinearity. To make these common patterns easy, we define several convenience layers in the file cs231n/layer_utils.py.

For now take a look at the affine_relu_forward and affine_relu_backward functions, and run the following to numerically gradient check the backward pass:

```
[8]: from cs231n.layer_utils import affine_relu_forward, affine_relu_backward
     np.random.seed(231)
     x = np.random.randn(2, 3, 4)
     w = np.random.randn(12, 10)
     b = np.random.randn(10)
     dout = np.random.randn(2, 10)
     out, cache = affine_relu_forward(x, w, b)
     dx, dw, db = affine_relu_backward(dout, cache)
     dx_num = eval_numerical_gradient_array(lambda x: affine_relu_forward(x, w,__
      \hookrightarrowb)[0], x, dout)
     dw num = eval_numerical_gradient_array(lambda w: affine relu_forward(x, w,__
      \hookrightarrowb)[0], w, dout)
     db_num = eval_numerical_gradient_array(lambda b: affine_relu_forward(x, w,_
      →b)[0], b, dout)
     # Relative error should be around e-10 or less
     print('Testing affine relu forward and affine relu backward:')
     print('dx error: ', rel_error(dx_num, dx))
     print('dw error: ', rel_error(dw_num, dw))
     print('db error: ', rel_error(db_num, db))
```

Testing affine_relu_forward and affine_relu_backward:

dx error: 2.299579177309368e-11
dw error: 8.162011105764925e-11
db error: 7.826724021458994e-12

7 Loss layers: Softmax and SVM

Now implement the loss and gradient for softmax and SVM in the softmax_loss and svm_loss function in cs231n/layers.py. These should be similar to what you implemented in cs231n/classifiers/softmax.py and cs231n/classifiers/linear_svm.py.

You can make sure that the implementations are correct by running the following:

```
[9]: np.random.seed(231)
   num_classes, num_inputs = 10, 50
   x = 0.001 * np.random.randn(num_inputs, num_classes)
   y = np.random.randint(num_classes, size=num_inputs)

dx_num = eval_numerical_gradient(lambda x: svm_loss(x, y)[0], x, verbose=False)
   loss, dx = svm_loss(x, y)
```

Testing svm_loss:

loss: 8.999602749096233

dx error: 1.4021566006651672e-09

Testing softmax_loss: loss: 2.302545844500738

dx error: 9.483503037636722e-09

8 Two-layer network

Open the file cs231n/classifiers/fc_net.py and complete the implementation of the TwoLayerNet class. Read through it to make sure you understand the API. You can run the cell below to test your implementation.

```
[17]: np.random.seed(231)
N, D, H, C = 3, 5, 50, 7
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)

std = 1e-3
model = TwoLayerNet(input_dim=D, hidden_dim=H, num_classes=C, weight_scale=std)

print('Testing initialization ... ')
W1_std = abs(model.params['W1'].std() - std)
b1 = model.params['b1']
W2_std = abs(model.params['W2'].std() - std)
b2 = model.params['b2']
assert W1_std < std / 10, 'First layer weights do not seem right'
assert np.all(b1 == 0), 'First layer biases do not seem right'
assert W2_std < std / 10, 'Second layer weights do not seem right'
assert np.all(b2 == 0), 'Second layer biases do not seem right'</pre>
```

```
print('Testing test-time forward pass ... ')
model.params['W1'] = np.linspace(-0.7, 0.3, num=D*H).reshape(D, H)
model.params['b1'] = np.linspace(-0.1, 0.9, num=H)
model.params['W2'] = np.linspace(-0.3, 0.4, num=H*C).reshape(H, C)
model.params['b2'] = np.linspace(-0.9, 0.1, num=C)
X = np.linspace(-5.5, 4.5, num=N*D).reshape(D, N).T
scores = model.loss(X)
correct_scores = np.asarray(
  [[11.53165108, 12.2917344, 13.05181771, 13.81190102, 14.57198434, 15.
 →33206765, 16.09215096],
   [12.05769098, 12.74614105, 13.43459113, 14.1230412, 14.81149128, 15.
 →49994135, 16.18839143],
   [12.58373087, 13.20054771, 13.81736455, 14.43418138, 15.05099822, 15.
 →66781506, 16.2846319 ]])
scores_diff = np.abs(scores - correct_scores).sum()
assert scores_diff < 1e-6, 'Problem with test-time forward pass'
print('Testing training loss (no regularization)')
y = np.asarray([0, 5, 1])
loss, grads = model.loss(X, y)
correct_loss = 3.4702243556
assert abs(loss - correct loss) < 1e-10, 'Problem with training-time loss'
model.reg = 1.0
loss, grads = model.loss(X, y)
correct loss = 26.5948426952
assert abs(loss - correct_loss) < 1e-10, 'Problem with regularization loss'
# Errors should be around e-7 or less
for reg in [0.0, 0.7]:
  print('Running numeric gradient check with reg = ', reg)
  model.reg = reg
  loss, grads = model.loss(X, y)
  for name in sorted(grads):
    f = lambda _: model.loss(X, y)[0]
    grad_num = eval_numerical_gradient(f, model.params[name], verbose=False)
    print('%s relative error: %.2e' % (name, rel_error(grad_num, grads[name])))
Testing initialization ...
Testing test-time forward pass ...
Testing training loss (no regularization)
Running numeric gradient check with reg = 0.0
W1 relative error: 1.83e-08
W2 relative error: 3.31e-10
b1 relative error: 9.83e-09
```

```
b2 relative error: 4.33e-10
Running numeric gradient check with reg = 0.7
W1 relative error: 2.53e-07
W2 relative error: 2.85e-08
b1 relative error: 1.00e+00
b2 relative error: 1.00e+00
```

9 Solver

Open the file cs231n/solver.py and read through it to familiarize yourself with the API. After doing so, use a Solver instance to train a TwoLayerNet that achieves about 36% accuracy on the validation set.

```
[11]: input_size = 32 * 32 * 3
   hidden_size = 50
   num_classes = 10
   model = TwoLayerNet(input_size, hidden_size, num_classes)
   solver = None
    # TODO: Use a Solver instance to train a TwoLayerNet that achieves about 36% #
    # accuracy on the validation set.
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
   solver = Solver(model, data,
                update_rule='sgd',
                optim_config={
                  'learning_rate': 1e-4,
                },
                lr_decay=0.95,
                num_epochs=5, batch_size=200,
                print_every=100)
   solver.train()
    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) *****
    END OF YOUR CODE
```

```
(Iteration 1 / 1225) loss: 2.301725

(Epoch 0 / 5) train acc: 0.145000; val_acc: 0.140000

(Iteration 101 / 1225) loss: 2.241923

(Iteration 201 / 1225) loss: 2.187425

(Epoch 1 / 5) train acc: 0.267000; val_acc: 0.243000

(Iteration 301 / 1225) loss: 2.056790

(Iteration 401 / 1225) loss: 1.937978

(Epoch 2 / 5) train acc: 0.294000; val_acc: 0.303000

(Iteration 501 / 1225) loss: 1.924555
```

```
(Iteration 601 / 1225) loss: 1.933743

(Iteration 701 / 1225) loss: 1.832777

(Epoch 3 / 5) train acc: 0.336000; val_acc: 0.315000

(Iteration 801 / 1225) loss: 1.960827

(Iteration 901 / 1225) loss: 1.832752

(Epoch 4 / 5) train acc: 0.340000; val_acc: 0.350000

(Iteration 1001 / 1225) loss: 1.739182

(Iteration 1101 / 1225) loss: 1.940517

(Iteration 1201 / 1225) loss: 1.848443

(Epoch 5 / 5) train acc: 0.355000; val_acc: 0.373000
```

10 Debug the training

With the default parameters we provided above, you should get a validation accuracy of about 0.36 on the validation set. This isn't very good.

One strategy for getting insight into what's wrong is to plot the loss function and the accuracies on the training and validation sets during optimization.

Another strategy is to visualize the weights that were learned in the first layer of the network. In most neural networks trained on visual data, the first layer weights typically show some visible structure when visualized.

```
[12]: # Run this cell to visualize training loss and train / val accuracy

plt.subplot(2, 1, 1)
plt.title('Training loss')
plt.plot(solver.loss_history, 'o')
plt.xlabel('Iteration')

plt.subplot(2, 1, 2)
plt.title('Accuracy')
plt.plot(solver.train_acc_history, '-o', label='train')
plt.plot(solver.val_acc_history, '-o', label='val')
plt.plot([0.5] * len(solver.val_acc_history), 'k--')
plt.xlabel('Epoch')
plt.legend(loc='lower right')
plt.gcf().set_size_inches(15, 12)
plt.show()
```



```
[13]: from cs231n.vis_utils import visualize_grid

# Visualize the weights of the network

def show_net_weights(net):
    W1 = net.params['W1']
    W1 = W1.reshape(3, 32, 32, -1).transpose(3, 1, 2, 0)
    plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))
    plt.gca().axis('off')
    plt.show()

show_net_weights(model)
```


11 Tune your hyperparameters

What's wrong? Looking at the visualizations above, we see that the loss is decreasing more or less linearly, which seems to suggest that the learning rate may be too low. Moreover, there is no gap between the training and validation accuracy, suggesting that the model we used has low capacity, and that we should increase its size. On the other hand, with a very large model we would expect to see more overfitting, which would manifest itself as a very large gap between the training and validation accuracy.

Tuning. Tuning the hyperparameters and developing intuition for how they affect the final performance is a large part of using Neural Networks, so we want you to get a lot of practice. Below, you should experiment with different values of the various hyperparameters, including hidden layer size, learning rate, numer of training epochs, and regularization strength. You might also consider

tuning the learning rate decay, but you should be able to get good performance using the default value.

Approximate results. You should be aim to achieve a classification accuracy of greater than 48% on the validation set. Our best network gets over 52% on the validation set.

Experiment: You goal in this exercise is to get as good of a result on CIFAR-10 as you can (52% could serve as a reference), with a fully-connected Neural Network. Feel free implement your own techniques (e.g. PCA to reduce dimensionality, or adding dropout, or adding features to the solver, etc.).

```
[26]: best_model = None
     # TODO: Tune hyperparameters using the validation set. Store your best trained \square
      →#
     # model in best_model.
                                                                          Ш
      →#
     #
                                                                          ш
      →#
     # To help debug your network, it may help to use visualizations similar to the ...
      →#
     # ones we used above; these visualizations will have significant qualitative
     # differences from the ones we saw above for the poorly tuned network.
      ⇔#
     #
     # Tweaking hyperparameters by hand can be fun, but you might find it useful to u
     # write code to sweep through possible combinations of hyperparameters
     # automatically like we did on thexs previous exercises.
                                                                          ш
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
     optimizers = ['sgd'] #, 'sqd_momentum', 'rmsprop', 'adam']
     learning_rates = [1e-3]
     hidden_size = 100
     model = TwoLayerNet(input_size, hidden_size, num_classes)
     for optim in optimizers:
      for lr in learning rates:
        solver = Solver(model, data,
                      update rule=optim,
```

```
(Iteration 1 / 1225) loss: 2.303942

(Epoch 0 / 5) train acc: 0.140000; val_acc: 0.144000

(Epoch 1 / 5) train acc: 0.443000; val_acc: 0.409000

(Epoch 2 / 5) train acc: 0.472000; val_acc: 0.451000

(Epoch 3 / 5) train acc: 0.475000; val_acc: 0.462000

(Epoch 4 / 5) train acc: 0.502000; val_acc: 0.480000

(Epoch 5 / 5) train acc: 0.553000; val_acc: 0.485000
```

12 Test your model!

Run your best model on the validation and test sets. You should achieve above 48% accuracy on the validation set and the test set.

```
[27]: y_val_pred = np.argmax(best_model.loss(data['X_val']), axis=1)
print('Validation set accuracy: ', (y_val_pred == data['y_val']).mean())
```

Validation set accuracy: 0.485

```
[28]: y_test_pred = np.argmax(best_model.loss(data['X_test']), axis=1)
print('Test set accuracy: ', (y_test_pred == data['y_test']).mean())
```

Test set accuracy: 0.504

12.1 Inline Question 2:

Now that you have trained a Neural Network classifier, you may find that your testing accuracy is much lower than the training accuracy. In what ways can we decrease this gap? Select all that apply.

- 1. Train on a larger dataset.
- 2. Add more hidden units.
- 3. Increase the regularization strength.
- 4. None of the above.

YourAnswer: 1 and 3 will decrease the gap, but 2 not necessarily.

Your Explanation: 1. It is always better to have more training examples because the network will achieve higher acuraccy on unseen data. Furthermore we can look as having more data as some sort of regularization mechanism.

- 2. Adding more hidden units can lead to overfitting on our training dataset because we have a more complex model, but sometimes to capture the underlying structure of the data we need a more complex model if we want it to perform well.
- 3. Increasing the regularization strength will prevent our model from overfitting on our training dataset and decrease the acuraccy, thus we can generalize better on unseen data and achieve a higher test acuraccy.

features

March 5, 2024

```
[14]: # This mounts your Google Drive to the Colab VM.
      from google.colab import drive
      drive.mount('/content/drive')
      # TODO: Enter the foldername in your Drive where you have saved the unzipped
      # assignment folder, e.g. 'cs231n/assignments/assignment1/'
      FOLDERNAME = 'cs231n/assignments/assignment1/'
      assert FOLDERNAME is not None, "[!] Enter the foldername."
      # Now that we've mounted your Drive, this ensures that
      # the Python interpreter of the Colab VM can load
      # python files from within it.
      import sys
      sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
      # This downloads the CIFAR-10 dataset to your Drive
      # if it doesn't already exist.
      %cd /content/drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
      !bash get datasets.sh
      %cd /content/drive/My\ Drive/$FOLDERNAME
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). /content/drive/My Drive/cs231n/assignments/assignment1/cs231n/datasets /content/drive/My Drive/cs231n/assignments/assignment1

1 Image features exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

We have seen that we can achieve reasonable performance on an image classification task by training a linear classifier on the pixels of the input image. In this exercise we will show that we can improve our classification performance by training linear classifiers not on raw pixels but on features that are computed from the raw pixels.

All of your work for this exercise will be done in this notebook.

1.1 Load data

Similar to previous exercises, we will load CIFAR-10 data from disk.

```
[3]: from cs231n.features import color histogram hsv, hog feature
     def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
         # Load the raw CIFAR-10 data
         cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
         # Cleaning up variables to prevent loading data multiple times (which may u
      ⇔cause memory issue)
         try:
            del X_train, y_train
            del X_test, y_test
            print('Clear previously loaded data.')
         except:
            pass
         X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
         # Subsample the data
         mask = list(range(num_training, num_training + num_validation))
         X_val = X_train[mask]
         y_val = y_train[mask]
         mask = list(range(num_training))
         X_train = X_train[mask]
         y_train = y_train[mask]
         mask = list(range(num_test))
         X_test = X_test[mask]
```

```
y_test = y_test[mask]
return X_train, y_train, X_val, y_val, X_test, y_test
X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data()
```

1.2 Extract Features

For each image we will compute a Histogram of Oriented Gradients (HOG) as well as a color histogram using the hue channel in HSV color space. We form our final feature vector for each image by concatenating the HOG and color histogram feature vectors.

Roughly speaking, HOG should capture the texture of the image while ignoring color information, and the color histogram represents the color of the input image while ignoring texture. As a result, we expect that using both together ought to work better than using either alone. Verifying this assumption would be a good thing to try for your own interest.

The hog_feature and color_histogram_hsv functions both operate on a single image and return a feature vector for that image. The extract_features function takes a set of images and a list of feature functions and evaluates each feature function on each image, storing the results in a matrix where each column is the concatenation of all feature vectors for a single image.

```
[4]: from cs231n.features import *
     num_color_bins = 10 # Number of bins in the color histogram
     feature fns = [hog feature, lambda img: color histogram hsv(img,
      →nbin=num_color_bins)]
     X train feats = extract features(X train, feature fns, verbose=True)
     X_val_feats = extract_features(X_val, feature_fns)
     X_test_feats = extract_features(X_test, feature_fns)
     # Preprocessing: Subtract the mean feature
     mean_feat = np.mean(X_train_feats, axis=0, keepdims=True)
     X_train_feats -= mean_feat
     X_val_feats -= mean_feat
     X_test_feats -= mean_feat
     # Preprocessing: Divide by standard deviation. This ensures that each feature
     # has roughly the same scale.
     std feat = np.std(X train feats, axis=0, keepdims=True)
     X_train_feats /= std_feat
     X_val_feats /= std_feat
     X_test_feats /= std_feat
     # Preprocessing: Add a bias dimension
     X_train_feats = np.hstack([X_train_feats, np.ones((X_train_feats.shape[0], 1))])
     X val_feats = np.hstack([X_val_feats, np.ones((X_val_feats.shape[0], 1))])
     X_test_feats = np.hstack([X_test_feats, np.ones((X_test_feats.shape[0], 1))])
```

```
Done extracting features for 1000 / 49000 images
Done extracting features for 2000 / 49000 images
Done extracting features for 3000 / 49000 images
Done extracting features for 4000 / 49000 images
Done extracting features for 5000 / 49000 images
Done extracting features for 6000 / 49000 images
Done extracting features for 7000 / 49000 images
Done extracting features for 8000 / 49000 images
Done extracting features for 9000 / 49000 images
Done extracting features for 10000 / 49000 images
Done extracting features for 11000 / 49000 images
Done extracting features for 12000 / 49000 images
Done extracting features for 13000 / 49000 images
Done extracting features for 14000 / 49000 images
Done extracting features for 15000 / 49000 images
Done extracting features for 16000 / 49000 images
Done extracting features for 17000 / 49000 images
Done extracting features for 18000 / 49000 images
Done extracting features for 19000 / 49000 images
Done extracting features for 20000 / 49000 images
Done extracting features for 21000 / 49000 images
Done extracting features for 22000 / 49000 images
Done extracting features for 23000 / 49000 images
Done extracting features for 24000 / 49000 images
Done extracting features for 25000 / 49000 images
Done extracting features for 26000 / 49000 images
Done extracting features for 27000 / 49000 images
Done extracting features for 28000 / 49000 images
Done extracting features for 29000 / 49000 images
Done extracting features for 30000 / 49000 images
Done extracting features for 31000 / 49000 images
Done extracting features for 32000 / 49000 images
Done extracting features for 33000 / 49000 images
Done extracting features for 34000 / 49000 images
Done extracting features for 35000 / 49000 images
Done extracting features for 36000 / 49000 images
Done extracting features for 37000 / 49000 images
Done extracting features for 38000 / 49000 images
Done extracting features for 39000 / 49000 images
Done extracting features for 40000 / 49000 images
Done extracting features for 41000 / 49000 images
Done extracting features for 42000 / 49000 images
Done extracting features for 43000 / 49000 images
Done extracting features for 44000 / 49000 images
Done extracting features for 45000 / 49000 images
Done extracting features for 46000 / 49000 images
Done extracting features for 47000 / 49000 images
Done extracting features for 48000 / 49000 images
```

1.3 Train SVM on features

Using the multiclass SVM code developed earlier in the assignment, train SVMs on top of the features extracted above; this should achieve better results than training SVMs directly on top of raw pixels.

```
[6]: # Use the validation set to tune the learning rate and regularization strength
    from cs231n.classifiers.linear classifier import LinearSVM
    learning rates = [1e-9, 1e-8, 1e-7]
    regularization_strengths = [5e4, 5e5, 5e6]
    results = {}
    best_val = -1
    best_svm = None
    # TODO:
    # Use the validation set to set the learning rate and regularization strength.
    # This should be identical to the validation that you did for the SVM; save
    # the best trained classifer in best sum. You might also want to play
    # with different numbers of bins in the color histogram. If you are careful
    # you should be able to get accuracy of near 0.44 on the validation set.
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
    for lr in learning_rates:
      for reg in regularization_strengths:
        lin_clf = LinearSVM()
        lin_clf.train(X=X_train_feats,
                    y=y_train,
                    learning_rate=lr,
                    reg=reg,
                    num_iters=2000)
        y_train_pred = lin_clf.predict(X_train_feats)
        y_val_pred = lin_clf.predict(X_val_feats)
        train_acc = np.mean(y_train == y_train_pred)
        val_acc = np.mean(y_val == y_val_pred)
        results[(lr, reg)] = (train_acc, val_acc)
        if best_val < val_acc:</pre>
         best_val = val_acc
         best_svm = lin_clf
    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
```

```
lr 1.000000e-09 reg 5.000000e+04 train accuracy: 0.082918 val accuracy: 0.073000 lr 1.000000e-09 reg 5.000000e+05 train accuracy: 0.094122 val accuracy: 0.095000 lr 1.000000e-09 reg 5.000000e+06 train accuracy: 0.411898 val accuracy: 0.406000 lr 1.000000e-08 reg 5.000000e+04 train accuracy: 0.110000 val accuracy: 0.105000 lr 1.000000e-08 reg 5.000000e+05 train accuracy: 0.416306 val accuracy: 0.422000 lr 1.000000e-08 reg 5.000000e+06 train accuracy: 0.404633 val accuracy: 0.399000 lr 1.000000e-07 reg 5.000000e+04 train accuracy: 0.414347 val accuracy: 0.421000 lr 1.000000e-07 reg 5.000000e+05 train accuracy: 0.405510 val accuracy: 0.405000 lr 1.000000e-07 reg 5.000000e+06 train accuracy: 0.355796 val accuracy: 0.372000 best validation accuracy achieved: 0.422000
```

0.424

```
[8]: # An important way to gain intuition about how an algorithm works is to
     # visualize the mistakes that it makes. In this visualization, we show examples
     # of images that are misclassified by our current system. The first column
     # shows images that our system labeled as "plane" but whose true label is
    # something other than "plane".
    examples_per_class = 8
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', _
     for cls, cls_name in enumerate(classes):
        idxs = np.where((y_test != cls) & (y_test_pred == cls))[0]
        idxs = np.random.choice(idxs, examples_per_class, replace=False)
        for i, idx in enumerate(idxs):
            plt.subplot(examples_per_class, len(classes), i * len(classes) + cls +
      →1)
            plt.imshow(X_test[idx].astype('uint8'))
            plt.axis('off')
            if i == 0:
                plt.title(cls name)
    plt.show()
```


1.3.1 Inline question 1:

Describe the misclassification results that you see. Do they make sense?

Your Answer:

Some misclassifications make sense, we can see that in the top left corner a ship is misclassified as a plane. It could be because of the sky in the picture. Same goes for the bottom left corner.

1.4 Neural Network on image features

Earlier in this assignment we saw that training a two-layer neural network on raw pixels achieved better classification performance than linear classifiers on raw pixels. In this notebook we have seen that linear classifiers on image features outperform linear classifiers on raw pixels.

For completeness, we should also try training a neural network on image features. This approach should outperform all previous approaches: you should easily be able to achieve over 55% classification accuracy on the test set; our best model achieves about 60% classification accuracy.

```
[15]: # Preprocessing: Remove the bias dimension
     # Make sure to run this cell only ONCE
     print(X_train_feats.shape)
     X_train_feats = X_train_feats[:, :-1]
     X_val_feats = X_val_feats[:, :-1]
     X_test_feats = X_test_feats[:, :-1]
     print(X_train_feats.shape)
     (49000, 155)
     (49000, 154)
[26]: from cs231n.classifiers.fc_net import TwoLayerNet
     from cs231n.solver import Solver
     input_dim = X_train_feats.shape[1]
     hidden dim = 500
     num_classes = 10
     data = {
         'X_train': X_train_feats,
         'y_train': y_train,
         'X_val': X_val_feats,
         'y_val': y_val,
         'X_test': X_test_feats,
        'y_test': y_test,
     }
     net = TwoLayerNet(input_dim, hidden_dim, num_classes)
     best net = None
     # TODO: Train a two-layer neural network on image features. You may want to
     # cross-validate various parameters as in previous sections. Store your best
     # model in the best net variable.
     # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) *****
     optimizers = ['sgd'] #, 'sgd_momentum', 'rmsprop', 'adam']
     learning_rates = [0.5, 0.2, 0.1]
     model = TwoLayerNet(input dim, hidden size, num classes)
     best val acc = None
     for optim in optimizers:
       for lr in learning_rates:
        model = TwoLayerNet(input_dim, hidden_size, num_classes)
```

```
(Iteration 1 / 980) loss: 2.302591
(Epoch 0 / 20) train acc: 0.108000; val_acc: 0.079000
(Epoch 1 / 20) train acc: 0.376000; val_acc: 0.366000
(Epoch 2 / 20) train acc: 0.498000; val_acc: 0.481000
(Epoch 3 / 20) train acc: 0.516000; val_acc: 0.520000
(Epoch 4 / 20) train acc: 0.524000; val_acc: 0.507000
(Epoch 5 / 20) train acc: 0.564000; val acc: 0.521000
(Epoch 6 / 20) train acc: 0.556000; val_acc: 0.535000
(Epoch 7 / 20) train acc: 0.538000; val_acc: 0.528000
(Epoch 8 / 20) train acc: 0.556000; val_acc: 0.545000
(Epoch 9 / 20) train acc: 0.548000; val_acc: 0.548000
(Epoch 10 / 20) train acc: 0.571000; val acc: 0.550000
(Epoch 11 / 20) train acc: 0.591000; val_acc: 0.547000
(Epoch 12 / 20) train acc: 0.579000; val acc: 0.551000
(Epoch 13 / 20) train acc: 0.596000; val_acc: 0.560000
(Epoch 14 / 20) train acc: 0.609000; val acc: 0.559000
(Epoch 15 / 20) train acc: 0.600000; val_acc: 0.565000
(Epoch 16 / 20) train acc: 0.654000; val_acc: 0.561000
(Epoch 17 / 20) train acc: 0.612000; val_acc: 0.571000
(Epoch 18 / 20) train acc: 0.622000; val_acc: 0.576000
(Epoch 19 / 20) train acc: 0.625000; val_acc: 0.574000
(Epoch 20 / 20) train acc: 0.614000; val_acc: 0.563000
(Iteration 1 / 980) loss: 2.302578
(Epoch 0 / 20) train acc: 0.121000; val_acc: 0.109000
(Epoch 1 / 20) train acc: 0.157000; val_acc: 0.186000
(Epoch 2 / 20) train acc: 0.284000; val_acc: 0.312000
(Epoch 3 / 20) train acc: 0.411000; val_acc: 0.390000
(Epoch 4 / 20) train acc: 0.453000; val_acc: 0.434000
(Epoch 5 / 20) train acc: 0.480000; val acc: 0.478000
(Epoch 6 / 20) train acc: 0.502000; val_acc: 0.496000
(Epoch 7 / 20) train acc: 0.522000; val acc: 0.513000
(Epoch 8 / 20) train acc: 0.520000; val_acc: 0.518000
(Epoch 9 / 20) train acc: 0.531000; val_acc: 0.516000
```

```
(Epoch 11 / 20) train acc: 0.521000; val_acc: 0.523000
     (Epoch 12 / 20) train acc: 0.530000; val_acc: 0.516000
     (Epoch 13 / 20) train acc: 0.545000; val_acc: 0.517000
     (Epoch 14 / 20) train acc: 0.535000; val acc: 0.520000
     (Epoch 15 / 20) train acc: 0.537000; val_acc: 0.523000
     (Epoch 16 / 20) train acc: 0.534000; val acc: 0.523000
     (Epoch 17 / 20) train acc: 0.569000; val_acc: 0.520000
     (Epoch 18 / 20) train acc: 0.555000; val_acc: 0.522000
     (Epoch 19 / 20) train acc: 0.564000; val_acc: 0.531000
     (Epoch 20 / 20) train acc: 0.557000; val_acc: 0.526000
     (Iteration 1 / 980) loss: 2.302586
     (Epoch 0 / 20) train acc: 0.108000; val_acc: 0.082000
     (Epoch 1 / 20) train acc: 0.105000; val_acc: 0.107000
     (Epoch 2 / 20) train acc: 0.227000; val_acc: 0.240000
     (Epoch 3 / 20) train acc: 0.246000; val_acc: 0.264000
     (Epoch 4 / 20) train acc: 0.290000; val_acc: 0.298000
     (Epoch 5 / 20) train acc: 0.325000; val_acc: 0.337000
     (Epoch 6 / 20) train acc: 0.387000; val_acc: 0.370000
     (Epoch 7 / 20) train acc: 0.412000; val acc: 0.397000
     (Epoch 8 / 20) train acc: 0.463000; val_acc: 0.410000
     (Epoch 9 / 20) train acc: 0.443000; val acc: 0.439000
     (Epoch 10 / 20) train acc: 0.468000; val_acc: 0.446000
     (Epoch 11 / 20) train acc: 0.483000; val acc: 0.463000
     (Epoch 12 / 20) train acc: 0.500000; val_acc: 0.478000
     (Epoch 13 / 20) train acc: 0.523000; val_acc: 0.484000
     (Epoch 14 / 20) train acc: 0.481000; val_acc: 0.487000
     (Epoch 15 / 20) train acc: 0.490000; val_acc: 0.491000
     (Epoch 16 / 20) train acc: 0.482000; val_acc: 0.502000
     (Epoch 17 / 20) train acc: 0.510000; val_acc: 0.503000
     (Epoch 18 / 20) train acc: 0.495000; val_acc: 0.502000
     (Epoch 19 / 20) train acc: 0.490000; val_acc: 0.510000
     (Epoch 20 / 20) train acc: 0.532000; val_acc: 0.509000
[27]: # Run your best neural net classifier on the test set. You should be able
      # to get more than 55% accuracy.
      y_test_pred = np.argmax(best_net.loss(data['X_test']), axis=1)
      test_acc = (y_test_pred == data['y_test']).mean()
      print(test_acc)
```

(Epoch 10 / 20) train acc: 0.537000; val_acc: 0.517000

0.554