MAE116 – Noções de Estatística Grupo B/D - 2º semestre de 2020 – Gabarito

Lista de exercícios 9 – Teste de hipóteses I - C L A S SE

MAE116 — Noções de Estatística Grupo B/D - 2º semestre de 2020 — Gabarito

Lista de exercícios 9 – Teste de hipóteses I - C L A S SE

Exercício 1

Uma universidade pretende ampliar o número de pesquisadores que realizam intercâmbio no exterior. Para tanto, foram implementadas algumas políticas de incentivo ao programa de extensão no exterior. Antes das mudanças, havia a constatação de que 35% dos pesquisadores, dessa universidade, haviam feito intercâmbio em países estrangeiros. Depois de 3 anos das novas medidas serem adotadas, foram selecionados, aleatoriamente, pesquisadores da universidade com o intuito de verificar se a proporção de intercâmbio no exterior havia aumentado.

a) Formule o problema como um problema de teste de hipóteses.

 H_0 : p = 0.35

 H_1 : p > 0.35

p: proporção de pesquisadores que realizam intercâmbio no exterior três anos após a adoção das novas medidas.

b) Suponha que 68 pesquisadores foram entrevistados após 3 anos das novas medidas, dos quais 31 disseram que haviam realizado intercâmbio em países estrangeiros. Qual é a estimativa pontual de p? Qual é a conclusão com base em um nível de significância α de 5%?

b.1) Estimativa pontual de *p*:
$$n = 68$$
; $\hat{p}_{obs} = \frac{31}{68} = 0,4559$.

b.2) Definamos a região crítica, isto é, $RC = \{\hat{p} \ge a\}$.

Sob H0 (p = 0,35),
$$\hat{p} \sim N(0,35; \frac{0,35 \times 0,65}{68})$$
, aprox.

 $\alpha = P(\text{erro tipo I}) = P(\text{rejeitar } H_0 | H_0 \text{ verdadeira}) = P(\hat{p} \in RC | H_0 \text{ verdadeira})$

$$= P(\hat{p} \ge a \mid p = 0.35) \to P\left(Z \ge \frac{\mathbf{a} - \mathbf{0.35}}{\sqrt{\frac{\mathbf{0.35} \times (\mathbf{1} - \mathbf{0.35})}{68}}}\right) = 0.05 \leftrightarrow P(Z > \mathbf{z}) = 0.05.$$

Exercício 1b) (continuação)

Logo, $P(Z < z) = 0.95 \leftrightarrow A(z) = 0.95$.

Procurando na tabela da distribuição normal temos que z = 1,64.

$$\frac{a - 0.35}{\sqrt{\frac{0.35 \times 0.65}{68}}} = 1.64 \rightarrow a = 0.35 + 1.64 \sqrt{\frac{0.35 \times 0.65}{68}} = 0.35 + 0.0578 = 0.4078.$$

Portanto, $RC = \{\hat{p} \geq 0.4078\}$. Como $\hat{p}_{obs} \in RC$ então H_0 é rejeitada, isto é, concluímos ao nível de significância de 5% que há evidências de que depois de 3 anos das novas medidas serem adotadas, o número de pesquisadores que realizam intercâmbio no exterior aumentou.

	Segurida decimar de 2										
		O	1	2	3	4	5	6	7	8	9
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
Parte inteira e primeira decimal de z	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962		0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
	3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
	3.6	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.7	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
	3.9	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

c) Se a hipótese nula for rejeitada, estime *p* por meio de um intervalo de confiança com coeficiente de confiança de 90%.

$$IC(p;90\%) = \left[\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \; ; \; \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$
$$= \left[0.4559 - 1.64\sqrt{\frac{0.4559(0.5441)}{68}} \; ; \; 0.4559 + 1.64\sqrt{\frac{0.4559(0.5441)}{68}}\right]$$

$$= [0,3568; 0,5550]$$

MAE116 – Noções de Estatística Grupo B/D - 2º semestre de 2020 – Gabarito

Lista de exercícios 9 – Teste de hipóteses I - C L A S SE

Exercício 2

A depressão é um mal que assola nossos tempos. A doença ganha grande atenção de governos e laboratórios, dadas suas repercussões sociais e econômicas. Um laboratório farmacêutico sabe que 30% daqueles que realizam o tratamento para depressão com determinado medicamento ganham peso como efeito colateral de seu uso, após 3 meses. Desenvolveu-se uma nova fórmula para o referido remédio, com o objetivo de diminuir o mencionado efeito colateral (aumento de peso). Para analisar se esta proporção diminuiu, 300 pacientes, tratados com o novo medicamento, foram entrevistados.

a) Formule esse problema como um teste de hipóteses especificando quem é p.

$$H_0$$
: $p = 0.3$

$$H_1$$
: $p < 0.3$

p: proporção de pessoas que realizam tratamento para depressão com o novo medicamento e ganham peso como efeito colateral de seu uso após 3 meses.

b) Quais são os significados dos erros tipo I e tipo II para o problema?

Erro tipo I: Rejeitar H_0 sendo H_0 verdadeira. Dizer que a nova fórmula do referido remédio diminui o efeito colateral (aumento de peso) nas pessoas que realizam o tratamento para depressão com ele, quando na verdade não diminui esse efeito colateral.

Erro tipo II: não rejeitar H_0 sendo H_1 verdadeira. Dizer que a nova fórmula do referido remédio não diminui o efeito colateral (aumento de peso) nas pessoas que realizam o tratamento para depressão com ele, quando na verdade diminui esse efeito colateral.

c) Construa a região crítica do teste considerando um nível de significância de 1%.

n=300. A região crítica é dada por $RC=\{\hat{p}\leq a\}$.

 $\alpha = P(\hat{p} \in RC, sendo H_0 \ verdadeira) = P(\hat{p} \le a \mid p = 0.30) \rightarrow$

$$P\left(Z \le \frac{\mathbf{a} - \mathbf{0}, \mathbf{3}}{\sqrt{\frac{\mathbf{0}, \mathbf{3} \times (\mathbf{1} - \mathbf{0}, \mathbf{3})}{\mathbf{300}}}}\right) = 0.01 \iff P(Z \le -z) = 0.01.$$

Logo, $P(Z > z) = 0.01 \leftrightarrow A(z) = 0.99$.

Procurando na tabela da distribuição normal temos que z = 2,32.

Exercício 2c) (continuação)

$$\frac{a - 0.3}{\sqrt{\frac{0.3 \times 0.7}{300}}} = -2.32 \to a = 0.3 - 2.32 \sqrt{\frac{0.3 \times 0.7}{300}} = 0.3 - 0.0614 = 0.2386.$$

Portanto, $RC = \{\hat{p} \le 0.2386\}$.

d) Se, dentre 300 pacientes tratados com o novo medicamento, 225 não apresentarem aumento de peso, qual será a decisão a ser tomada? Justifique.

$$\hat{p}_{obs} = \frac{300 - 225}{300} = 0.25.$$

Como $\widehat{p}_{obs} \notin RC$ então H_0 não é rejeitada.

Logo, concluímos ao nível de significância de 1% que não há evidências de que o novo medicamento diminua o efeito colateral (aumento de peso).

e) Qual seria a conclusão se aumentarmos α de 1% para 10 %?

A região crítica é dada por $RC = \{\hat{p} \leq b\}$.

$$\alpha = P(\hat{p} \in RC, sendo H_0 \ verdadeira) = P(\hat{p} \le b \mid p = 0.30) \rightarrow$$

$$P\left(Z \le \frac{b - 0.3}{\sqrt{\frac{0.3 \times (1 - 0.3)}{300}}}\right) = 0.1 \leftrightarrow P(Z \le -z) = 0.1.$$

Logo, $P(Z > z) = 0.1 \leftrightarrow A(z) = 0.90$.

Procurando na tabela da distribuição normal temos que z = 1, 28.

Exercício 2e) (continuação)

$$\frac{b - 0.3}{\sqrt{\frac{0.3 \times 0.7}{300}}} = -1.28 \rightarrow b = 0.3 - 1.28 \sqrt{\frac{0.3 \times 0.7}{300}} = 0.3 - 0.0339 = 0.2661.$$

Portanto, $RC = \{\hat{p} \le 0.2661\}$.

Como $\hat{p}_{obs} \in RC$ então H_0 é rejeitada ao nível de significância de 10%. Logo, concluímos que há evidências de que o novo medicamento diminui o efeito colateral (aumento de peso).

Note que quando aumentamos o nível de significância (probabilidade de se cometer o erro tipo I) a conclusão mudou e terminamos rejeitando H_0 .

f) Se a amostra fosse de tamanho 580 e com a mesma proporção amostral encontrada no item (d), qual seria a conclusão ao nível de significância de 1%?

$$n=580$$
. A região crítica é dada por $RC=\{\hat{p}\leq c\}$.

$$\alpha = P(\hat{p} \in RC, sendo H_0 \ verdadeira) = P(\hat{p} \le c \mid p = 0.30) \rightarrow$$

$$P\left(Z \le \frac{\mathbf{c} - \mathbf{0}, \mathbf{3}}{\sqrt{\frac{\mathbf{0}, \mathbf{3} \times (\mathbf{1} - \mathbf{0}, \mathbf{3})}{\mathbf{580}}}}\right) = 0.01 \iff P(Z \le -z) = 0.01.$$

Logo,
$$P(Z > z) = 0.01 \leftrightarrow A(z) = 0.99$$
.

Procurando na tabela da distribuição normal temos que z = 2,32.

Exercício 2f) (continuação)

$$\frac{c - 0.3}{\sqrt{\frac{0.3 \times 0.7}{580}}} = -2.32 \to c = 0.3 - 2.32 \sqrt{\frac{0.3 \times 0.7}{580}} = 0.3 - 0.0441 = 0.2559.$$

Portanto, $RC = \{\hat{p} \le 0.2559\}$.

Como $\widehat{p}_{obs} = 0.25 \in RC$, então H_0 é rejeitada.

Logo, concluímos ao nível de significância de 1% que há evidências de que o novo medicamento diminui o efeito colateral (aumento de peso).

MAE116 — Noções de Estatística Grupo B/D - 2º semestre de 2020 — Gabarito

Lista de exercícios 9 – Teste de hipóteses I - C L A S SE

Exercício 3

Em certo município foi feita uma pesquisa em 2016 e constatou-se que 25% das crianças participavam de atividades esportivas nos centros esportivos municipais. A prefeitura, em 2017, com o intuito de verificar se essa participação se alterou, realizou uma pesquisa com 60 crianças e constatou que 24 participavam de atividades esportivas.

a) Formule esse problema como um problema de teste de hipóteses, especificando quem é o parâmetro testado.

 H_0 : p = 0.25

 $H_1: p \neq 0.25$

p: proporção de crianças que participavam de atividades esportivas nos centros esportivos em certo município em 2017.

- b) Conclua o teste estatístico com base em um nível de significância de 4%.
- b.1) Estimativa pontual de p: n = 60; $\hat{p}_{obs} = \frac{24}{60} = 0.40$.
- b.2) Definamos a região crítica, isto é, $RC = \{\hat{p} \le a \text{ ou } \hat{p} \ge b\}$.
- $\alpha = P(\hat{p} \in RC, sendo H_0 \ verdadeira) = P(\hat{p} \le a \text{ ou } \hat{p} \ge b \mid p = 0.25).$

Uma vez que \hat{p}_{obs} é maior que 0,25 é interessante encontrar o valor de b tal que

$$P\left(Z \ge \frac{b - 0.25}{\frac{0.25 \times (1 - 0.25)}{60}}\right) = \frac{0.04}{2} = 0.02 \iff P(Z > \mathbf{z}) = 0.02,$$

Logo, $P(Z < z) = 0.98 \leftrightarrow A(z) = 0.98$.

Procurando na tabela da distribuição normal temos que z = 2,05.

Exercício 3b) (continuação)

$$\frac{b - 0.25}{\sqrt{\frac{0.25 \times 0.75}{60}}} = 2.05 \rightarrow b = 0.25 + 2.05 \sqrt{\frac{0.25 \times 0.75}{60}} = 0.25 + 0.1146 = 0.3646.$$

Portanto, $RC = \{\hat{p} \le a \text{ ou } \hat{p} \ge 0.3646\}$.

Como $\widehat{p}_{obs} \in RC$ então H_0 é rejeitada.

Concluímos ao nível de significância de 4% que há evidências de que o número de crianças que participaram de atividades esportivas nos centros esportivos municipais em 2017 aumentou em relação ao ano de 2016.

MAE116 — Noções de Estatística Grupo B/D - 2º semestre de 2020 — Gabarito

Lista de exercícios 9 – Teste de hipóteses I - C L A S SE

Exercício 3

c) Estime a proporção de crianças p que participam de atividades esportivas em 2017, por meio de um intervalo de confiança com coeficiente de confiança de 96%.

$$IC(p; 90\%) = \left[\hat{p} - z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \; ; \; \hat{p} + z\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$$
$$= \left[0.4 - 2.05\sqrt{\frac{0.4(1-0.4)}{60}} \; ; \; 0.4 + 2.05\sqrt{\frac{0.4(1-0.4)}{60}}\right]$$

= [0,2703; 0,5297]