TD SIGNAL

Lundi 29 avril 2024:

1) Soit
$$u = z - T$$
, $z = u + T$; $f(z) = f(u + T)$ $\frac{dz}{du} = 1$ donc $dz = dc$

Bornes: $z = T \Rightarrow u = 0$ $z = T + a \Rightarrow u = a$ $\int_{0}^{a+T} F(x) dx = \int_{0}^{a} f(u+T) du$

Or $\forall u \in \mathbb{R}$, F(u+T) = F(u) donc $\int_{T}^{a+T} f(x) dx = \int_{T}^{a} F(u) du$

2) da fonction fin lest pas dependante au niveau de periodicité avec a . Utilisons danc une autu nethode.

Danc: # @ => Dev chaples

$$= \int_{a}^{T} f(x) dx + \int_{a}^{a} f(x) dx$$

$$= \int_{a}^{T} f(x) dx + \int_{a}^{a} f(x) dx$$

$$= \int_{a}^{T} f(x) dx + \int_{a}^{a} f(x) dx$$

Exercice 2:

· Plest Continue et (211) - périodique

En prenant le 6h de Dirichlet page 23, 6n a $\mathcal{G}(x) = \frac{1}{2} \left(\mathcal{G}(x^{-}) + \mathcal{G}(x^{+}) \right) \quad \text{avec} \quad x = \frac{\pi}{2}$ Nous avon vu à la question 2 que f(x)=f(xc+)=f(xc+)= pour = 17 $\int_{0}^{\infty} an = \int_{0}^{\infty} \left(\frac{\pi}{2}\right) = \frac{1}{2}\left(\frac{1}{2} + 1\right) = \frac{1}{2} \times 2 = 1$ Ains $\frac{4}{11} = \frac{1}{n=0} = \frac{1}{2n+1} = \frac{11}{4}$ Exo 6 2) of est continue sun J-TT, TT(Oh $\lim_{x\to\pi} f(x) = 0 = \lim_{x\to\pi^+} f(a)$ → of continue Sur (-11, 11) => La continue sur PR par 2TI-per. est en par morceaux

