Operadores Compactos y Teoría Espectral.

Denotamos por B^X a la bola cerrada de un espacio normado X.

Definición 1 (Operador Compacto). Sean X e Y espacios de Banach. Decimos que $T \in B(X,Y)$ es compacto si $\overline{T(B^X)}$ es compacto en Y. Denotamos por $B_c(X,Y)$ a la colección de operadores compactos.

Proposición 1. $B_c(X,Y)$ es un espacio de Banach.

Demostración. Basta probar que es cerrado en B(X,Y). Sean $(T_n) \in B_c(X,Y)$ tal que $T_n \to T \in B(X,Y)$. Debemos probar que $T \in B_c(X,Y)$. Recordar que en espacios métricos, tenemos la equivalencia

 $compacidad \iff secuencialmente compacto.$

Por lo tanto, probaremos que toda sucesión en $\overline{T(B^X)}$ tiene una subsucesión convergente.

Sea $\epsilon > 0$. Por la convergencia $T_n \to T$, existe N > 0 tal que

$$||T-T_N||<\frac{\epsilon}{2}.$$

Luego, por la compacidad de T_N , existen y_1, \ldots, y_k tal que

$$\overline{T_N(B^X)} = \bigcup B(y_i, \epsilon/2).$$

Se sigue que $T(B^X) \subset \bigcup B(y_i, \epsilon)$. Sea $(x_n)_n$ una sucesión en B^X . Luego, una subsucesión que está contenida en alguna de las finitas bolas. Vale decir, existe $z_1 \in \{y_i\}$ tal que

$$T(x_{n,1}) \subset B(z_1,\epsilon).$$

De esta subsucesión podemos tomar otra tal que $T(x_{n,2}) \subset B(z_2, \epsilon/2)$, donde z_2 sale de cubrir la bola $B(z_1, \epsilon)$ y elegir alguna que tenga infinitos miembros de la sucesión. Inductivamente, tendremos sucesiones

$$T(x_{n,k}) \subset B(z_k, \epsilon/k).$$

y tomando $\bar{x}_n = x_{n,n}$ concluimos que $T(\bar{x}_n)$ es convergente y por lo tanto T es secuencialmente compacto.

Definición 2 (Operador de Rango Finito). Un operador $T: X \to Y$ se dice de rango finito si rank T tiene dimensión finita.

Proposición 2. Todo operador de rango finito es compacto.

Demostración. Sea T de rango finito y $n=\dim \operatorname{rank} T.$ Luego, $\operatorname{rank} T\cong \mathbb{K}^n$ bajo el isomorfismo

$$\phi \colon \mathbb{K}^n \to \operatorname{rank} T$$

$$(a_1, \dots, a_n) \mapsto \sum a_i e_i$$

donde $(e_i)_{i=1}^n$ es base de rank T. Luego, ϕ^{-1} es isomorfismo continuo y por lo tanto $\phi^{-1}(\overline{T(B^X)})$ es cerrada y acotada en \mathbb{K}^n . Por Heine-Borel $\phi^{-1}(\overline{T(B^X)})$ es compacto y aplicando ϕ tenemos que $\overline{T(B^X)}$ es compacto.

Teorema 1. Sea X Banach y Y Hilbert. Si $T \in B_c(X,Y)$, entonces existe una sucesión $(T_n)_n$ de operadores de rango finito tal que $T_n \to T$.

Demostración. Sea $\epsilon > 0$. Por compacidad, existen y_1, \ldots, y_k tal que $\overline{T(B^X)} \subset \bigcup B(y_i, \epsilon)$. Definamos $F := Gen(y_1, \ldots, y_k)$ que es cerrado en Y. Luego, existe la proyección ortogonal a $F, P: Y \to Y$. Definamos el mapa $T_{\epsilon} = P \circ T$, que es de rango finito y por lo tanto compacto. Luego, si $x \in B^X$ tiene imagen $Tx \in B(y_i, \epsilon), ||Tx - y_i|| \le \epsilon$, se tiene que

$$||P(Tx) - P(y_i)|| \le ||Tx - y_i|| \le \epsilon.$$

Así, para cualquier $x \in B^X$, se cumple que

$$||Tx - T_{\epsilon}x|| \le ||Tx - y_j|| + ||y_j - T_{\epsilon}x|| \le 2\epsilon$$

donde y_j es tal que $Tx \in B(y_j, \epsilon)$.

Ejemplo: Operadores de Hilbert-Schmidt: Consideremos dos espacios medibles $X_i = (\Omega_i, S_i, \mu_i)$ y K(x, y) en $L^2_{\mathbb{R}}(X_1 \times X_2)$. Suponga que $L^2(X_i)$ es separable. Mostraremos que el mapa

$$T_K f(x) := \int_{\Omega_2} K(x_1, x_2) f(x_2) d\mu_2(x_2),$$

donde $f \in L^2(X_2)$ es compacto. En primer lugar, veamos que es un operador lineal acotado de $L^2(X_2) \to L^2(X_1)$. La linealidad sale de la linealidad de la integral. Por otro lado

$$|T_K f(x)|^2 \le \int_{\Omega_2} |K(x_1, x_2)| |f(x_2)| d\mu_2(x_2)$$

$$\le \int_{\Omega_2} |K(x_1, x_2)|^2 d\mu_2(x_2) \int_{\Omega_2} |f(x_2)|^2 d\mu_2(x_2)$$

$$\le ||K||_{L^2(X_1 \times X_2)}^2 ||f||_{L^2(X_2)} \le \infty.$$

Así que $T_K f \in L^2(X_1)$ y T_K es un operador acotado. Ahora veamos que es compacto. Sea $(e_n^i)_n$ una base ortonormal de $L^2(X_i)$ y definamos $e_{n,m}(x_1,x_2) = e_n^1(x_1)e_n^2(x_2)$. Afirmamos que $e_{n,m}$ es una base ortonormal de $L^2(X_1 \times X_2)$.

Proposición 3. $S \circ T$ es compacto si $S \colon Y \to Z$ es continuo $y \ T \colon X \to Y$ es compacto o viceversa.

Demostración. Supongamos que S es continuo y T es compacto. Debemos probar que $S \circ T$ es compacto. Sea $(x_n)_n$ una sucesión en B^X . Luego, existe una sucesión x_{n_k} tal que $Tx_{n_k} \to y$. Por continuidad de S se tiene que $S(Tx_{n_k}) \to S(y)$.

Supongamos que S es compacto y T es continuo. Sea $(x_n)_n$ una sucesión en B^X . Luego, Tx_n es una sucesión en Y y $y_n := Tx_n/\|T\|$ es una sucesión en B^Y . Como S es compacto, existe una subsucesión y_{n_k} tal que $Sy_{n_k}/\to z$. Es decir, $S(Tx_{n_k})\to z\|T\|$, donde $Tx_{n_k}=y_{n_k}\|T\|$.

Teorema 2 (Schauder).

$$T \in B_c(X, Y) \iff T^* \in B_c(Y^*, X^*).$$

La teoría de Riesz-Fredholm

Teorema 3 (Alternativa de Fredholm). Sea X Banach y $T \in B_c(X, X)$. Entonces el operador $I - T \colon X \to X$ satisface:

- 1. ker(I-T) tiene dimensión finita.
- 2. $\operatorname{rank}(I-T)$ es cerrado en X y $\operatorname{rank}(I-T) = \ker(I-T^*)^{\perp}$.
- 3. $ker(I-T) = (0) \iff rank(I-T) = X$.
- 4. $\dim \ker(I T) = \dim \ker(I T^*)$.

Antes de probar el teorema, necesitamos el siguiente resultado.

Lema 1 (Riesz). Si X es un espacio normado y $F \subset X$ es cerrado y propio, entonces para todo $\epsilon > 0$ existe $u \in X$ unitario tal que $d(u, F) \ge 1 - \epsilon$.

Demostración. Sea $v \in X \setminus F$. Luego, d(v, F) > 0 y por lo tanto existe $v_0 \in F$ tal que $d(v, F) \le ||v - v_0|| \le \frac{d(v, F)}{1 - \epsilon}$. Sea $u := \frac{v - v_0}{||v - v_0||}$. Luego,

$$||u - f|| = \frac{1}{||v - v_0||} ||v - \underbrace{(v_0 + f||v - v_0||)}_{\in F}|| \ge 1 - \epsilon$$