

СБОРНИК СТАТЕЙ ПО МАТЕРИАЛАМ

ІХ МЕЖДУНАРОДНОЙ

НАУЧНО- ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ

СОВРЕМЕННАЯ МЕДИЦИНА: НОВЫЕ ПОДХОДЫ И АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

Москва, 2018

СОВРЕМЕННАЯ МЕДИЦИНА: НОВЫЕ ПОДХОДЫ И АКТУАЛЬНЫЕ ИССЛЕДОВАНИЯ

Сборник статей по материалам IX международной научно-практической конференции

№ 3 (8) Март 2018 г.

Издается с июля 2017 года

Москва 2018

СЕКЦИЯ 7.

НАРКОЛОГИЯ

МЕТАБОЛИЗМ СЕРОТОНИНА В УСЛОВИЯХ ПРИЕМА ЭТАНОЛА

Уселёнок Глеб Олегович

старший преподаватель кафедры психиатрии и наркологии УО «Витебский государственный медицинский университет», Республика Беларусь, г. Витебск

Марцинкевич Яна Сергеевна

студент лечебного факультета УО «Витебский государственный медицинский университет», Республика Беларусь, г. Витебск

Марцинкевич Александр Францевич

старший преподаватель кафедры общей и клинической биохимии УО «Витебский государственный медицинский университет», Республика Беларусь, г. Витебск

Серотонин выполняет важную функцию в регуляции центральной нервной системы: участвует в формировании настроения, обуславливая эйфорию в высоких концентрациях и вызывая депрессию при малых. Под контролем серотонина находится аппетит, сон и эмоции человека. Известно также, что опьяняющее действие алкоголя связано, в том числе, с воздействием на серотониновые рецепторы [1]. В условиях приема этанола возникает дисбаланс в обмене серотонина и других нейротрансмиттеров, что приводит к развитию изменений в психике и поведенческих реакциях.

Экспериментально показано, что даже однократное употребление этилового спирта способно увеличить активность серотониновых рецепторов в нейронах головного мозга [2]. Вместе с тем, данный факт может быть обусловлен либо увеличением высвобождения серотонина, либо торможением его деградации. Так как этанол не может использоваться в качестве прекурсора для синтеза серотонина, вероятно, его концентрация возрастает за счет снижения распада.

В норме серотонин под воздействием УДФ-глюкуронозилтрансферазы может конъюгироваться с глюкуроновой кислотой, образуя неактивный продукт, выводимый с мочой. Альтернативным способом инактивации (рисунок 1) является окислительное дезаминирование посредством моноаминоксидазы, в результате чего образуется 5-гидроксииндолальдегид (5HIAL), дальнейшее превращение которого опосредуется окислением до 5-гидроксииндолуксусной кислоты (5HIAA). Некоторая фракция 5HIAL, тем не менее, может восстанавливаться до соответствующего спирта, 5-гидрокситриптофола (5HTOL), доля которого, впрочем, незначительна — количество 5HIAA может превышать содержание 5HTOL в 50 и более раз [3].

Рисунок 1. Схема ферментативного распада серотонина

Вероятно, вследствие малой представленности в основных метаболических путях биологические свойства 5HTOL в доступных литературных источниках описаны незначительно. Вместе с тем, продукция значительного количества NADH⁺ в результате окисления этилового спирта до ацетальдегида и затем ацетальдегида до уксусной кислоты, способствует сдвигу равновесия [5HTOL]/[5HIAL] в сторону образования 5-гидрокситриптофола. Это послужило основой для разработки тест-систем определения факта недавней алкоголизации [3].

Тем не менее, по мнению авторов, гиперпродукция 5HTOL не может не оказать воздействия на систему нейромедиации, в первую очередь, вследствие структурного подобия серотонина и его метаболита. Таким образом, нами была выдвинута гипотеза, согласно которой 5HTOL может являться субстратом для УДФ-глюкуронозилтрансферазы и вытеснять из активного центра фермента серотонин.

Результатом описанного процесса будет повышение уровня серотонина вследствие торможения его распада.

Вместе с тем, принимая во внимание участие серотонина в формировании аддиктивного поведения [4], можно предположить, что указанные выше гипотетические нарушения в серотонинергической системе способны являться предиктором развития алкогольной зависимости.

Для подтверждения выдвинутой гипотезы, нами был проведен молекулярный докинг, описывающий взаимодействие серотонина и 5-гидрокситриптофола с УДФ-глюкуронозилтрансферазой, структура которой (206L) была получена из Protein Data Bank.

Оценка взаимодействия между субстратом и ферментом проводилась с использованием консольной утилиты Auto Dock Vina [5]. Полученные в результате конформации субстрата в активном центре использовались для построения фармакофора в программном комплексе LigandScout [6].

Так как распределение исследуемых признаков отличалось от нормального, для анализа использовался непараметрический H-критерий Вилкоксона (различия считались статистически значимыми при р < 0.05).

В результате проведенного моделирования было показано, что энергия фермент-субстратного комплекса для серотонина равна -4.48±0.56 ккал/моль, в то время как для 5-гидрокситриптофола данная величина составила -4.69±0.53 ккал/моль (рисунок 2).

Рисунок 2. Распределение энергии связывания 5-гидрокситриптофола и серотонина с УДФ-глюкуронозилтрансферазой

Вместе с тем, полученные результаты имели статистически значимые отличия (р = 0,00033), что указывает на большее сродство 5HTOL к УДФ-глюкуронозилтрансферазе, в сравнении с серотонином.

Для подтверждения возможности вытеснения серотонина под действием 5HTOL, было произведено моделирование структуры фармакофора УДФ-глюкуронозилтрансферазы. Полученные результаты согласуются с эмпирическими данными [5] об участии в катализируемой реакции аминокислотных остатков в регионе 373-379, а также показывают схожесть между гидрофобными регионами, определяющими, вероятно, фиксацию субстрата в активном центре (рисунок 3).

Рисунок 3. Фармакофорные группы для серотонина (A) и 5-гидрокситриптофола (B)

Примечательно, что во взаимодействии с обеими субстратами принимают участие одни и те же аминокислотные остатки — триптофан-356, аланин-377 и изолейцин-380. Интересным представляется то, что несмотря на дополнительную связь между ионизированной группой серотонина и остатком аспарагиновой кислоты в положении 401, фермент-субстратный комплекс 5HTOL с УДФ-глюкуронозилтрансферазой, обладает большей стабильностью.

Таким образом можно заключить, что в результате проведенных исследований было приведено теоретическое обоснование возможности влияния употребления этилового спирта на метаболизм серотонина. Полученные результаты, возможно, предоставят дополнительную информацию об особенностях формирования аддиктивного поведения.

Список литературы:

 Sari Y. Role of the Serotonergic System in Alcohol Dependence: From Animal Models to Clinics / Y. Sari [et al.] // Progress in Molecular Biology. – Elsevier Inc, 2011. – V. 98. – P. 401-443.

- McBride W.J. Serotonin, dopamine and GABA involvement in alcohol drinking of selectively bred rats / W.J. McBride [et al.] // Alcohol. – Bethesda, 1990. – V. 7. – P. 199-205.
- 3. Helander A. 5-Hydroxytryptophol (5HTOL), a New Sensitive Urinary Test of Recent Alcohol Consumption / A. Helander, O. Beck, S. Borg // 14th, International conference on alcohol, drugs and traffic safety. Annency, 1997. P. 223-228.
- 4. Müller C.P. The role of serotonin in drug use and addiction / C.P. Müller, J. Homberg // Behavioural Brain Research. − 2015. − №277. − P. 146-192.
- Trott O. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading / O. Trott, A.J. Olson // Journal of Computational Chemistry. – 2010. – № 31. – P. 455-461.
- 6. Wolber G. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters / G. Wolber, T. Langer // J. Chem. Inf. Model. 2005. № 45 (1). P. 160–169.