CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 15 NOVEMBRE 2016

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di grafo (semplice) e di albero.

Esercizio 2. Sia $S := \{n \in \mathbb{N} \mid (\forall X \subseteq \mathbb{N})(\{n\} \subseteq X)\}$. Descriverne gli elementi e calcolare |S|.

Esercizio 3. Sia A l'insieme delle applicazioni da \mathbb{Z}_5 a \mathbb{Z}_5 .

(i) Calcolare |A|.

Si definiscano due operazioni, $+ e \cdot$, in A ponendo, per ogni $f, g \in A$,

$$f + g \colon x \in \mathbb{Z}_5 \mapsto f(x) + g(x) \in \mathbb{Z}_5;$$
 $f \cdot g \colon x \in \mathbb{Z}_5 \mapsto f(x)g(x) \in \mathbb{Z}_5.$

- (ii) Date $f, g \in A$, definite ponendo $f(\bar{0}) = \bar{1}$ e $f(x) = \bar{2}$ per ogni $x \in \mathbb{Z}_5 \setminus \{\bar{0}\}; g(\bar{1}) = g(\bar{2}) = \bar{4}$ e $g(x) = \bar{2}$ per ogni $x \in \mathbb{Z}_5 \setminus \{\bar{1}, \bar{2}\}$, calcolare f + g ed $f \cdot g$, precisando le immagini di ogni elemento di \mathbb{Z}_5 .
- (iii) A risulta essere un anello. È commutativo? È unitario? Qual è l'elemento neutro in (A, +)?
- (iv) Per ogni $f \in A$, determinare l'opposto di f in A.
- (v) Caratterizzare gli elementi invertibili in A (attraverso una proprietà delle immagini). Calcolare $|\mathcal{U}(A)|$.
- (vi) Se possibile, determinare in A l'inverso del suo elemento f, definito da $f(\bar{2}) = \bar{3}$ e $f(x) = \bar{2}$ se $x \in \mathbb{Z}_5 \setminus \{\bar{2}\}.$
- (vii) L'insieme delle applicazioni iniettive appartenenti ad A è una parte chiusa in (A, +)?

Esercizio 4. Per ogni primo p si consideri, nell'anello di polinomi $\mathbb{Z}_p[x]$, la relazione di equivalenza σ_p definita ponendo, per ogni $f, g \in \mathbb{Z}_p[x]$, $f \sigma_p g$ se e solo se f e g hanno lo stesso grado.

- (i) Calcolare la cardinalità delle classi $[x^2]_{\sigma_7}$ e $[x^2 + \bar{3}x \bar{1}]_{\sigma_7}$ (in $\mathbb{Z}_7[x]$).
- (ii) In generale, per ogni primo p ed ogni polinomio $f \in \mathbb{Z}_p[x]$, calcolare $|[f]_{\sigma_p}|$.
- (iii) Vero o falso? Per ogni primo p ed ogni $f, g \in \mathbb{Z}_p[x]$,
 - (a) se $f \sigma_p g$, allora f e g sono associati;
 - (b) se f e g sono associati, allora f σ_p g;
 - (c) se $f \sigma_p g$ e $f = p_1 p_2 \cdots p_r$, $g = q_1 q_2 \cdots q_s$, dove $r, s \in \mathbb{N}^*$ e ciascuno dei polinomi p_i, q_j è irriducibile, allora esistono $i \in \{1, 2, \dots, r\}$ e $j \in \{1, 2, \dots, s\}$ tali che $p_i \sigma_p q_j$,
 - (d) scelti comunque $f_1, g_1 \in \mathbb{Z}_p[x]$, se $f \sigma_p f_1$ e $g \sigma_p g_1$, allora:
 - 1.) $(f+g) \sigma_p (f_1+g_1);$
 - $2.) (fg) \sigma_p (f_1g_1).$
- (iv) Per quali primi p (se ne esistono) i polinomi $f = \overline{60}x^4 + \overline{22}x^2 + \overline{8}x + \overline{7}$ e $g = \overline{210}x^3 + \overline{33}x^2 + \overline{10}x + \overline{5}$ di $\mathbb{Z}_p[x]$ verificano $f \sigma_p g$?

Esercizio 5. Si considerino le tre relazioni binare α , β , γ in \mathbb{N} definite da: per ogni $n, m \in \mathbb{N}$,

$$n \alpha m \iff \text{ogni divisore primo di } n \text{ divide } m;$$

$$n \beta m \iff (n \alpha m \wedge n < m);$$
 $n \gamma m \iff (n \alpha m \wedge n \geq m)$

Esattamente una tra queste è una relazione d'ordine (largo). Quale? (Spiegare in modo esauriente perché, e perché le altre non lo sono.) Rispetto ad essa,

- (i) è vero che, per ogni $n \in \mathbb{N}$, n^2 è in relazione con n?
- (ii) Si determinino gli eventuali elementi minimali, massimali, minimo, massimo e, se esiste, $\sup \{8, 27\}$.