Série Temporelle Exercices Corrigés CH3-CH4

Josephson Junior R.

February 25, 2024

Table des matières

- Test de racines unitaires
 - Exercice 1
 - Solution 1
 - Exercice 2 (Examen 2022-2023)
 - Solution 2
- Box et Jenkins
 - Exercice 3
 - Solution 3
 - Q°5 Examen 2022-2023
 - Réponse à Q°5

Augmented Dickey-Fuller Unit Root Test on INVEST

Null Hypothesis: INVEST has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on AIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	-0.730833	0.9647
Test critical values:	1% level	-4.161144	
	5% level	-3.506374	
	10% level	-3.183002	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INVEST)

Method: Least Squares Date: 02/16/23 Time: 17:28 Sample (adjusted): 1966 2013

Included observations: 48 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INVEST(-1) C @TREND("1965")	-0.053683 13223883 27963928	0.073454 2.38E+08 19362694	-0.730833 0.055599 1.444217	0.4687 0.9559 0.1556
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.090652 0.050237 7.20E+08 2.33E+19 -1045.529 2.243003 0.117877	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Qui Durbin-Wats	ent var criterion erion nn criter.	2.99E+08 7.39E+08 43.68873 43.80568 43.73292 2.053789

Null Hypothesis: INVEST has a unit root

Exogenous: Constant

Lag Length: 5 (Automatic - based on AIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	iller test statistic 1% level 5% level 10% level	2.433190 -3.592462 -2.931404 -2.603944	1.0000

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INVEST)

Method: Least Squares Date: 02/16/23 Time: 17:29 Sample (adjusted): 1971 2013

Included observations: 43 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INVEST(-1) D(INVEST(-1)) D(INVEST(-2)) D(INVEST(-3)) D(INVEST(-4)) D(INVEST(-5))	0.118500 -0.238766 -0.140547 0.070949 -0.502944 -0.360534	0.048701 0.178918 0.159240 0.186700 0.186734 0.204426	2.433190 -1.334502 -0.882615 0.380013 -2.693369 -1.763642	0.0201 0.1904 0.3833 0.7062 0.0107 0.0863
С	-2.84E+08	3.09E+08	-0.920453	0.3635
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.259728 0.136349 7.18E+08 1.86E+19 -934.0468 2.105129 0.076708	Mean depen S.D. depend Akaike info d Schwarz crite Hannan-Quir Durbin-Wats	ent var riterion erion nn criter.	3.36E+08 7.73E+08 43.76962 44.05633 43.87535 1.954584

Null Hypothesis: INVEST has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on AIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu	ller test statistic	3.259445	0.9996
Test critical values:	1% level	-2.614029	
	5% level	-1.947816	
	10% level	-1.612492	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INVEST)

Method: Least Squares Date: 02/16/23 Time: 17:30 Sample (adjusted): 1966 2013

Included observations: 48 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
INVEST(-1)	0.040924	0.012556	3.259445	0.0021
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.048190 0.048190 7.21E+08 2.44E+19 -1046.625 2.155361	Mean depend S.D. depende Akaike info c Schwarz crite Hannan-Quir	ent var riterion erion	2.99E+08 7.39E+08 43.65103 43.69001 43.66576

Null Hypothesis: D(INVEST) has a unit root

Exogenous: None

Lag Length: 3 (Automatic - based on AIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ıller test statistic 1% level 5% level 10% level	-2.595557 -2.618579 -1.948495 -1.612135	0.0106

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(INVEST,2)

Method: Least Squares Date: 02/16/23 Time: 17:31 Sample (adjusted): 1970 2013

Included observations: 44 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(INVEST(-1)) D(INVEST(-1),2) D(INVEST(-2),2) D(INVEST(-3),2)	-0.642859 -0.232731 -0.136483 0.248333	0.247677 0.243306 0.216520 0.183234	-2.595557 -0.956537 -0.630350 1.355281	0.0131 0.3445 0.5321 0.1829
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.499729 0.462209 7.95E+08 2.53E+19 -962.0495 1.980355	Mean depen S.D. depend Akaike info d Schwarz crit Hannan-Quir	ent var riterion erion	23599225 1.08E+09 43.91134 44.07354 43.97149

Interpretation du test ADF

Pour rappel le test ADF permet de trouver la forme de non-stationnarité d'une série chronique donnée à travers trois équations (**voir cours**).

- Tableau 1 : Ce que vous devez voir dans le tableau 1 est que si le coefficient lié au terme de trend est significatif ou pas. Le tableau 1 concerne test de significativité de β. En regardant la valeur du t-Statistic qui est de 1.444217 on remarque que |t_Stat| < |t_critical| donc le coefficient β est non-significatif c-à-d β = 0.
- Tableau 2 : On passe maintenant au test de significativité de la constante contenu dans le modèle. La valeur du t-Statistic est de -0.920453. On remarque que |t_Stat| < |t_critical| ce qui veut dire que la constante n'est pas significatif (c = 0).

- Tableau 3 : Ici on test $\phi=1$ contre $\phi\neq 1$. Il faut attention dans la prise de décision ici si $\mathbf{t_{(ADF)}}>\mathbf{t^c}$ on accepte H0. On voit que la valeur du $\mathbf{t_{(ADF)}}=3.259445$ qui est $>t^c$ alors on accepte H0 c-à-d il existe une racine unitaire. Il s'agit d'un modèle DS sans dérive : $y_t=y_{t-1}+\varepsilon_t$.
- Tableau 4: Ici c'est pour savoir si notre méthode de stationnarisation a bien marché ou pas. En regardant la valeur du t Statistic = -2.5955757 on remarque qu'elle est < t critical(5%) donc on peut rejter H0. La série est stationnaire par différenciation d'ordre 1.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Null Hypothesis: Ch Exogenous: Consta Lag Length: 0 (Auto	HOMAGE has a un int imatic - based on	nit root SIC, maxlag=	7)	
			t-Statistic	Prob.
Augmented Dickey- Test critical values:	Fuller test statistic 1% level 5% level 10% level		-2.113249 -3.670170 -2.963972 -2.621007	0.2411
*MacKinnon (1996)	one-sided p-value	es.		
Method: Least Squar Sample (adjusted): 1 Included observation: Variable	992 2021	ments Std Ermr	A Charles	
CHOMAGE(-1)		- 101 - 1101	t-Statistic	Prob.
CHOMAGE(-1)	-0.296913 4.500548	0.140501 2.120385	-2.113249 2.122514	0.043
Augmented D Juli Hypothesis: D(CF xogenous: Constant ag Length: 0 (Automa		unit root		E)
Null Hypothesis: D(CH exogenous: Constant	HOMAGE) has a	unit root		E)
Mull Hypothesis: D(CF ixogenous: Constant ag Length: 0 (Automatical) ugmented Dickey-Fu	HOMAGE) has a atic - based on S	unit root	7) t-Statistic	
Juli Hypothesis: D(CH xogenous: Constant ag Length: 0 (Automa	HOMAGE) has a atic - based on S	unit root	7) t-Statistic	Prob.*

Réponse à Q°2

Une serié integrée d'ordre d est une série chronique stationnaire après **d différenciation**. Elle s'écrit comme suite :

$$\Delta^d Y_t \ ou \ (1-L)^d Y_t \ où \ Y_t \sim \text{ARIMA}(\textbf{p},\textbf{d},\textbf{q})$$

Réponse à Q°3

Le modèle retenu pour effectuer le test ADF est :

$$CHOMAGE_t = \phi \ CHOMAGE_{t-1} + c + \varepsilon_t$$

Il s'agit d'un processus DS. En regardant de près les résultats du test ADF on conclut que le modèle admet une racine unitaire ($\phi=1$) car $\mathbf{t}-\mathbf{Statitic}>\mathbf{t}-\mathbf{Critical}$ pour CHOMAGE(-1). De plus en resonnant sur la valeur du Prob (**P-value**) qui est égale à 0.0428 (<5%) donc on accepte HO pour le test de significativité de la constante.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q

Le modèle est de type **DS sans dérive** :

$$CHOMAGE_t = CHOMAGE_{t-1} + \varepsilon_t$$

Réponse à Q°4

	Statistique	cal-	Statistique tabulée	Ordre
	culée			
Chômage	-2.113249		-2.963972	0
Δ Chômage	-5.426297		-2.967767	1

On donne les corrélogrammes de deux série chronique. Identifier les modèles correspondants.

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
_		1	-0.718	-0.718	2577.6	0.00
	—	2	0.661	0.302	4766.6	0.00
		3	-0.555	-0.015	6305.7	0.00
—		4	0.478	-0.006	7450.1	0.00
		5		-0.014	8314.1	0.00
—		6	0.345	-0.028	8909.1	0.00
		7	-0.298	-0.003	9353.9	0.00
—		8	0.247	-0.010	9659.3	0.00
_		9	-0.208	0.004	9876.5	0.00
=		10	0.178	0.008	10036.	0.00
•		11	-0.144	0.012	10140.	0.00
		12	0.115	-0.017	10206.	0.00
•		13	-0.092	0.003	10248.	0.00
		14	0.064	-0.020	10269.	0.00
	1	15	-0.039	0.022	10276.	0.00
4		16	0.024	0.003	10279.	0.00
•		17	-0.010	0.000	10280.	0.00
	1 1	18	0.002	0.002	10280.	0.00
	1 4	19	0.009	0.007	10280.	0.00
	1 1	20	-0.020	-0.014	10282.	0.00
1		21	0.019	-0.012	10284.	0.00
•	1 4	22	-0.023	0.003	10287.	0.00

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prol
_		1 -0.394	-0.394	776.33	0.00
	•	2 0.277	0.144	1159.8	0.0
		3 0.348	0.602	1764.0	0.0
	l -	4 -0.207	0.154	1979.2	0.0
_		5 0.268	-0.127	2338.3	0.0
	I -	6 0.005	-0.203	2338.4	0.0
		7 0.005	0.006	2338.5	0.0
		8 0.012	-0.090	2339.2	0.0
•		9 -0.005	-0.106	2339.3	0.0
		10 0.015	0.046	2340.4	0.0
•	—	11 -0.012	0.211	2341.1	0.0
•		12 -0.002	0.079	2341.1	0.0
		13 0.007	-0.081	2341.4	0.0
		14 -0.019	-0.105	2343.1	0.0
•	1 1	15 -0.001	-0.033	2343.1	0.0
•	l (16 -0.001	-0.027	2343.1	0.0
	1 1	17 -0.024	-0.045	2346.0	0.0
1		18 0.021	0.065	2348.2	0.0
	 	19 -0.017	0.133	2349.5	0.0
		20 0.001	0.055	2349.5	0.0
	•	21 0.011	-0.063	2350.2	0.0
	I	22 -0.021	-0.098	2352.4	0.0

Identification

- Tableau Gauche: On remarque que l'autocorrélation partielle est nulle à partir 3 et que l'autocorrélation simple diminue lentement. Il s'agit donc d'un processus AR(2).
- Tableau Droite : On remaque que la valeur de la fonction d'autocorrélation est nulle à partir de 6 et que l'autorrélation partielle diminie lentement. Il s'agit donc d'un processus MA(5).

Remarque

Un processus AR(p) est determiné par sa fonction d'autocorrélation partielle.

Un processus MA(q) est determiné par sa fonction d'autocorrélation simple.

Sample (adjusted) Included observation Autocorrelation	1992 2021 ns. 30 after adjustmen Partial Correlation	ts AC	PAC	Q-Stat	Prob
		2 -0 093 3 -0 147 4 -0 037 5 0 016 6 -0 210 7 -0 016 8 -0 036 9 0 266 10 -0 079 11 -0 022 12 -0 022 14 0 04 15 -0 05 16 0 00 17 -0 01 18 0 03 19 -0 03 20 -0 02 21 -0 02 22 -0 02 23 0 0 23	-0.158 -0.066 -0.025 -0.025 -0.072 -0.0113 -0.013 -0.013 -0.013 -0.041 -0.044 -0.012 -0.027 -0.045 -0.003 -0.045 -0.003 -0.045 -0.003	6 8421 6 8422 2 6 8506 7 6 9742 7 7 179 7 1179 7 1179 7 1616 4 7 163	0.887 0.924 0.947 0.962 0.976 0.983 0.991 0.999 0.999 0.999 0.999

Indentification

On remarque que la valeur de la fonction d'autocorrélation partielle diminue lentement et que la fonction d'autocrrélation simple s'annule à partir de 23 (on peut dire).

C'est un processus de type MA(23).