

CANSAT EDUCATION

Prof. Alim Rüstem Aslan & Barış Beynek & Onur Öztekin

Istanbul Technical University

Space System Design and Testing Laboratory

Content of the Course

- What is a CanSat?
- CanSat Subsystems and components
- Arduin IDE
- Blink code test with ESP32
- How to use breadboard
- Pressure & altitude measurement
- Angular rates and acceleration measurement
- Magnetic field measurement
- Storing collected data on SD card
- Using buzzer
- Position accusation with GPS receiver.
- Receive data from CanSat to ground station.
- Using Camera
- Integrating the CanSat on a prototype board.
- Flight
- Reports (Mass Budget), Graphs(Temp, Press, Altitude, etc)
- Optional! Write your own ground station.

What is required for this course?

- At least 2 laptop for every team.
- Internet connection for all laptops

- Everyone should participate to handson work
- Work as a team
- Be careful with soldering iron

Wiring Diagram of an Example Satellite

Relationship between the subsystems

Architecture of On-Board Systems

Hardware Design Flow

HW design, step-by-step

- Input
 - High level tasks
 - Radiation environment (given the orbit, lifetime and epoch)
 - Max power, mass, envelope etc.
 - External interface requirements
 - Power and data
- Output
 - Specification
 - Component selection
 - Architectural design
 - Detailed design

ESP32-WROOM-32

- Xtensa®32-bit LX6 microprocessor
- 240 MHz CPU Frequency
- 520 kB SRAM
- 4 MB Flash
- Operation temperature -40 ° C 125 ° C
- 3.3V Logic
- ADC (16), SPI (2), I2C (1), UART (1), PWM (32), SDIO (50 Mhz)
- WiFi Transciever 802.11BGN HT40
- -98 dBm minimum sensitivity
- 150Mbps maximum transfer speed
- Wifi Range up to 500m
- Has embedded antenna
- Frequency Range 2.4Ghz to 2.5Ghz

ESP32-WROOM-32

Communication Protocols

12C

I2C_SCL

CLK OUT3

CLK OUT2

I2C_SDA

SPI_MISO

HS1_DATA6

HS1_DATA5

HS1_DATA4

- SPI
- **UART**

ESP32 CAM Module

ESP32-CAM board specifications:

- •Wireless Module- ESP32-S WiFi 802.11 b/g/n
- •32Mbit SPI flash, 4MBit PSRAM
- •External Storage micro SD card slot up to 4GB
- •Camera
 - OV2640 sensor
 - Image Format JPEG(OV2640 support only), BMP, grayscale
 - LED flash light
- Power Consumption
 - Flash LED off 180mA @ 5V
 - Flash LED on to maximum brightness- 310mA @ 5V
 - Deep-sleep 6mA @ 5V min.
 - Modem-sleep 20mA @ 5V min.
 - Light-sleep 6.7mA @ 5V min.
- •Dimensions 40.5 x 27 x 4.5 mm
- •Weight- 10 grams
- •Temperature Range Operating: -20 °C ~ 85 °C; storage: -40 °C ~ 90 °C @ < 90 % RH

BMP 180 Pressure Sensor

•Dimensions: 21mm x 18mm

•1.8V - 3.6V Supply Bus

•Low Power Consumption- 1Hz'de 0.5uA

•I2C Interface

Calibrated

•Pressure Scale: 300hPa - 1100hPa (+ 9000m - -500m)

MPU 6050 Accelerometer & Gyro

- •MPU-6050 (3-axis Gyroscope+ 3-axis accelerometer)
- •Power Input: 3.3V 5V
- •I2C protocol
- •Measurement scale for angular rate: 250 500 1000 2000 ° / s
- •Measurement scale for accelerometer: 2 4 8 16g

HMC5883L Magnetometer

•Input Voltage: 3.3V -5V

•I2C protocol

•Measurement Scale: ±1,3-8 Gauss

•Board Dimensions: 14x13mm

https://pdf.direnc.net/upload/hmc5883l-3-axis-digital-compass-ic.pdf

https://drive.google.com/file/d/1qSMR_wpKw_oKWemaDlCTBbArQjQ5hMzj/view

CP2102 Uart-USB Converter

•Used for uploading code to the ESP32 Camera Module

•USB TTL Converter

Used for logic 3.3V and 5V

SD Card Adapter & SD Card

- Works with 5V
- Used to store collected sensor data

• 16-32 GB Storage

NEO-6M GPS Module

•Voltage: 3.3V

•Size: 36mm * 24mm

•interface: UART

Buzzer Board

- 3.3V 5V operating voltage
- Makes noise when supplied with power.
- It is used for to find the CanSat after landing

9V BATTERY

• Voltage: 9V

• Supply power to CanSat during Flight.

Power Switch

• Used for cut the power from battery to CanSat.

Power and Data Cables

Cabling for prototype board.

Jumper cable will not be used for cabling.

Soldering Wire + Soldering Iron

 Soldering wire for connecting components on Prototype Board with a soldering Iron.

BreadBoard, Prototype Board, Connectors

BreadBoard

Prototype Board

Connectors

Jumper Cable

• Jumper cables are used for connect the sensors and ESP32 on breadboard.

- We have these types;
 - Male-Male
 - Female-Male
 - Female-Female

Arduino IDE

Download the Arduino IDE

Arduino IDE 2.3.1

The new major release of the Arduino IDE is faster and even more powerful! In addition to a more modern editor and a more responsive interface it features autocompletion, code navigation, and even a live debugger.

For more details, please refer to the **Arduino IDE 2.0 documentation**.

Nightly builds with the latest bugfixes are available through the section below.

SOURCE CODE

The Arduino IDE 2.0 is open source and its source code is hosted on **GitHub**.

DOWNLOAD OPTIONS

Windows Win 10 and newer, 64 bits

Windows MSI installer

Windows ZIP file

Linux Applmage 64 bits (X86-64)

Linux ZIP file 64 bits (X86-64)

macOS Intel, 10.14: "Catalina" or newer, 64 bits

macOS Apple Silicon, 11: "Big Sur" or newer, 64 bits

Release Notes

ArduSat

Arduino ESP32 Libraries

- Go to File/Preferences
- Paste the link to the Additional Boards Manager URLs:
- https://raw.githubusercontent.com/espressif/ arduino
 - -esp32/gh-pages/package_esp32_index.json
- Click OK
- Go to Board Manager (Tools/Board/Board Manager)
- Install "esp32 by Espressif Systems"

beynek@itu.edu.tr

CHOOSE BOARD

Your setttings should look like this.

CHOOSE PORT

 Choose the port that ESP32 is connected and choose ESP32 Dev Module for that port.

- If port cannot be seen, CP210x driver might be missing. You can download the driver from:
- https://www.silabs.com/developers/usb-to-uart-bridge-vcpdrivers?tab=downloads

Breadboard

- Why Use BreadBoards?
- An electronics breadboard (as opposed to the type on which sandwiches are made) is actually referring to a solderless breadboard.
- These are great units for making temporary circuits and prototyping, and they require absolutely no soldering. (Pluggable)

Breadboard (photo)

Breadboard (schematic)

BLINK CODE

- Upload: File/Examples/Basics/Blink
- Led is connected to pin D2

```
int LED BUILTIN = 2;
// the setup function runs once when you press reset or power the board
void setup() {
  // initialize digital pin LED BUILTIN as an output.
 pinMode(LED BUILTIN, OUTPUT);
// the loop function runs over and over again forever
void loop() {
  digitalWrite(LED BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000);
                                    // wait for a second
  digitalWrite (LED BUILTIN, LOW); // turn the LED off by making the voltage LOW
 delay(1000);
                                    // wait for a second
```


LIBRARIES

Copy an Paste the libraries that we provided to the location below.

• C:\Users\"UserName"\Documents\Arduino\libraries

CHECK LIBRARIES

BMP 180

- Pressure
- Temperature
- Altitude (Seal Level)

Pin Definition

BMP180	<u>ESP32</u>
GND	
3.3V	>3.3V
SCL	>D22
SDA	>D21

Ivame	Date modified	ıуре
■ 1.BLINK	14.07.2022 23:58	File folder
2.BMP	15.07.2022 00:10	File folder
3.BMP_MPU	15.07.2022 00:13	File folder
■ 4.BMP_MPU_HMC	15.07.2022 00:17	File folder
5.BMP_MPU_HMC_SD	15.07.2022 00:45	File folder
6.BMP_MPU_HMC_SD_BUZ	15.07.2022 01:39	File folder
₹ 7.BMP_MPU_HMC_SD_BUZ_GPS	15.07.2022 02:00	File folder
8.BMP_MPU_HMC_SD_BUZ_GPS_COM	15.07.2022 02:54	File folder
9.BMP_MPU_HMC_SD_BUZ_GPS_COM_CAM	15.07.2022 00:20	File folder

MPU 6050

- Accelaration
- Angular Accelaration

MPU6050	ESP32
GND	>GND
3.3V	>3.3V
SCL	>D22
SDA	>D21

HMC5883L

- Magnetic Field 3 Axis
- Magnetic North (Compass)

HMC5883L	ESP32
GND	>GND
3.3V	>3.3V
SCL	>D22
SDA	>D21

SD Card

• Store Sensor Data

SD Card	ESP32
GND	>GND
3.3V	>3.3V
CS	>D5
MOSI	>D23
SCK	>D18
MISO	>D19

Buzzer

 Used for to ease to find the CanSat after landing.

Beacons on satellite.

Buzzer	ESP32
GND	
3.3V	>3.3V
I/O	>D4

GPS Module

- When GPS Receiver fixed with GPS satellites the Green led begins to blink.
- It may take up to 10 minutes on clear sky.
- It has Embedded patch antenna.

Ground Station

- When CanSat deployed from multicopter, all sensor data will be received from our ground stations.
- Every Team has a different MAC address.

Ground Station Mac Address

- A new ESP32 for Ground Station
- Connect ESP32 to Computer with another micro-USB cable.
- Choose the new COM port.
- Upload and Run the code "getmacadress"
- Open serial monitor to find your mac address. Save it for later.

Ground Station Get Data

- Upload and run the "receiver" code.
- Ground Station is ready for receiving data.
- Open Serial Monitor.
- When data is received, it will ve displayed on Serial Monitor.
- Don't forget to save your data from Serial Monitor and to SD Card.

CanSat EPS32

- After finishing the ground station,
- We have to upload the new code to our CanSat.

ESP32 CAM

Connect FTDI to your computer

ESP32 CAM	FTDI	
5V	→ 5V	
GND	→GND	A STATE OF THE STA
UOR	→ TX	
UOT	→ RX	
IO 0	→ GND	(on ESPCAM)

- Connect FTDI to your computer
- Choose the new COM port.
- We have to upload the new code "Camera"

ESP32 CAM

• If you have problems while uploading the code, press reset button when "uploading" text seem on the Arduino Interface.

Testing Camera

- Remove the IO0 GND cable.
- Restart the camera with reset button.
- Take an image for every 1-5 seconds.
- We will take images during flight.

CanSat Connection Diagram

BMP180	<u>ESP32</u>
GND	>GND
3.3V	>3.3V
SCL	>D22
SDA	>D21

GND---->GND

3.3V---->3.3V

SCL---->D22

SDA----->D21

BATTERY
9V(RED)→VIN(ESP32
$GND(BLACK)-\rightarrow SWITCH-\rightarrow GND(ESP32)$

SD Card	ESP32
GND	>GND
3.3V	>VIN
CS	>D5
MOSI	>D23
SCK	>D18
MISO	>D19

BATTERY	ESP32CAM
9V(RED)	→5V (CAM)
GND(BLACK)-→SWI	TCH-→GND(CAM)

Battery Connections

- You can use any leg of the switch, it works both ways.
- Battery should be connected to VIN pin on the ESP32 NOT 3.3V.
- When the Battery is connected to the ESP 32 you shouldn't connect usb cable to the ESP32.

VARTA
SUPER
HEAVY DUTY

BATTERY-----

9V(RED)-----→VIN(ESP32)

GND(BLACK)---→SWITCH---→GND(ESP32)

VIN

Design Constraints

- Camera should look through sideways or of the CanSat or downwards.
- GPS antenna shouldn't look through ground.
- All the components except power switch, should fit inside the the CanSat structure.
- Main SD Card and Camera Sd card shuld be reachable after assembly.

MASS BUDGET

- Find(or guess) the mass of the components and fill the table
- Check if your CanSat inside the mass limits.

Component	Mass	Margin	Total Mass
ESP32			10001111000
BMP180			
MPU6050			
HMC5883			
GPS Board			
Buzzer			
SD Card			
Module			
SD Card			
Battery			
Cables			
Solder			
Prototype			
Board			
Structure			
Switch			
Others			

FLIGHT

- Flush your sd cards.
- Be sure your battery have enough power.

- Show your Mass Budget
- Draw graphs for;
 - Temperature
 - Angular Rates
 - Accelerations
 - Magnetic fields
 - Altitude
 - Pressure
- Show the location of your CanSat with using latitude and longitude you get during the flight with any web based program.

