%config InlineBackend.figure format = 'retina'

Individual predictor training - Horizon: 5 datapoints

This Jupyter notebook is the first out of three notebooks that are used to train the individual predictors to benchmark the system performance. In total, 15 individual predictors will be trained on stock and index data. For the benchmarking process, predictors from the predictors/Lpy and predictors/Lpy are trained. Each predictor will be served with an input batch that is used to dertmine the forecast estimation. The input size will be set at 20 data points (20 trading days). Furthermore, 3 forecasting horizions are considered: 5, 30 and 60 datapoints into the future

In [2]: Xrun ../tools/dataloader.py Xrun ../tools/predictorsI.py Xrun ../tools/predictorsIII.py

Dataset

The first dataset used is the stock price of Ford Motor Company (F). Prices are in USD and listed on NYSE - Nasdaq. The data is extracted via the Yahoo Finance API accessed via the pandas data reader function. The adjusting closing price was used to train the following predictors.

Link to website: https://uk finance.vahoo.com/quote/E/history?p=E

data = DataLoader('F', '2010-01-01', '2018-01-01')
prices = data.get_adjclose()

In [4]: print(data)

Total count of rows: 2013 Start: 2010-01-01 End: 2018-01-01

In [5]: | data.statistics()

	High	Low	Open	Close	Volume	Adj Close
count	2013.000000	2013.000000	2013.000000	2013.000000	2.013000e+03	2013.000000
mean	13.614367	13.325782	13.482623	13.471868	4.781743e+07	9.834059
std	2.189850	2.183796	2.189163	2.185088	3.550829e+07	1.612406
min	9.030000	8.820000	8.990000	8.920000	7.128800e+06	6.123986
25%	11.910000	11.600000	11.790000	11.760000	2.745320e+07	8.703906
50%	13.280000	13.000000	13.140000	13.150000	3.782080e+07	10.073213
75%	15.450000	15.170000	15.300000	15.280000	5.442480e+07	11.056963
max	18.969999	18.610001	18.809999	18.790001	4.808795e+08	12.847414

In [6]: data.plotting_grid()

predictor1 = BasicUnivariatePredictor(20, 5, prices) predictor1.create_lstm()
predictor1.model_blueprint()

Model: "sequential"

Output Shape	Param #
(None 20 40)	6729
(None, 20, 50)	18200
(None, 50)	20200
(None, 5)	255
	(None, 20, 40) (None, 20, 50) (None, 50)

Trainable params: 45,375 Non-trainable params: 0

In [8]: predictor1.fit_model(80, 0)

6/3/2021 ModelTraining

In [9]: predictor1.show_performance()

Out[8] <tensorflow.python.keras.callbacks.History at 0x2c1daa4ae50>

In [10]: predictor1.save_model()

In [12]: predictor2 = BasicUnivariatePredictor(20, 5, prices) predictor2 = Basiconivariater
predictor2.create_mlp()
predictor2.model_blueprint()

Model: "sequential_2"

Layer (type)	Output Sha	ipe	Param #
dense_5 (Dense)	(None, 50))	1050
dense_6 (Dense)	(None, 25)	,	1275
dense_7 (Dense)	(None, 25)	,	650
dense_8 (Dense)	(None, 5)		130
Total params: 3.105			

Trainable params: 3,105 Non-trainable params: 0

In [13]: predictor2.fit_model(80, 0)

Out[13]: <tensorflow.python.keras.callbacks.History at 0x2c1e7878b80>

In [14]: predictor2.show_performance()

In [15]: predictor2.save_model()

INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets

In [16]: predictor3 = BasicUnivariatePredictor(20, 5, prices) predictor3.create_cnn()
predictor3.model_blueprint()

Model: "convential 3"

Layer (type)	Output	Shape	Param #
conv1d (Conv1D)	(None,	19, 64)	192
conv1d_1 (Conv1D)	(None,	18, 32)	4128
max_pooling1d (MaxPooling1D)	(None,	9, 32)	0
flatten (Flatten)	(None,	288)	0
dense_9 (Dense)	(None,	50)	14450
dense 10 (Dense)	(None.	5)	255

In [17]: predictor3.fit_model(80, 0)

Out[17]: <tensorflow.python.keras.callbacks.History at 0x2clea46fd90:

In [18]: predictor3.show_performance()

2/4

In [19]: predictor3.save_model()

INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets

In [20]: predictor4 = BasicUnivariatePredictor(20, 5, prices) predictor4.create_bilstm() predictor4.model_blueprint()

Model: "sequential 4"

Layer (type)	Output Shape	Param #
bidirectional (Bidirectional	(None, 20, 100)	20800
lstm_4 (LSTM)	(None, 50)	30200
dense_11 (Dense)	(None, 5)	255

Total params: 51,255 Trainable params: 51,255 Non-trainable params: 0

In [21]: predictor4.fit_model(80, 0)

Out[21]: <tensorflow.python.keras.callbacks.History at 0x2c1e20680d0>

In [22]: predictor4.show_performance()

INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets

In [24]: predictor5 = HybridUnivariatePredictor(2, 28, 5, prices) predictor5.create_cnnistm() predictor5.model_blueprint()

Model: "sequential 5"

Layer (type)	Output	Shape	Param #
time_distributed (TimeDistri	(None,	None, 9, 64)	192
time_distributed_1 (TimeDist	(None,	None, 8, 32)	4128
time_distributed_2 (TimeDist	(None,	None, 4, 32)	0
time_distributed_3 (TimeDist	(None,	None, 128)	0
lstm_5 (LSTM)	(None,	None, 50)	35800
lstm_6 (LSTM)	(None,	25)	7600
dense_12 (Dense)	(None,	5)	130
Total params: 47,850 Trainable params: 47,850 Non-trainable params: 0			

In [25]: predictor5.fit_model(80, 0)

Out[25]: <tensorflow.python.keras.callbacks.History at 0x2c1eb7a7b50>

In [26]: predictor5.show_performance()

In [27]: predictor5.save_model()

INFO:tensorflow:Assets written to: C:\Users\Max\Documents\GitHubPrivate\arguing-predictors\notebooks\assets local host: 8888/nbconvert/html/Documents/GitHubPrivate/arguing-predictors/notebooks/Model Training.ipynb?download=false

3/4

local host: 8888/nbconvert/html/Documents/GitHubPrivate/arguing-predictors/notebooks/Model Training.ipynb? download=false