

Evolution of production and consumption means

Distribution Network: Yesterday

Figure 1: Radial distribution network of 69 nœuds [1]

Distribution Network: Yesterday

Figure 1: Radial distribution network of 69 nœuds [1]

Distribution Network: Today

Figure 1: Radial distribution network of 69 nœuds [1]

Distribution Network: Today

Distribution Network: Tomorow

Figure 1: Radial distribution network of 69 nœuds [1]

Research Context

PV inverter tripping

→ Wasted Energy 😝

Tripping Cause:

MPPT controller +

overvoltage protection

► Strengthening the electrical grid → Costly

Source de l'image : Sieds.fr

Solutions

Strengthening the electrical grid

Leveraging the flexibility of low-carbon technologies (LCTs)

Solutions: Decentralized Control

Leveraging the flexibility of low-carbon technologies (LCTs) through an optimal control

Implemented right now

Solutions: Decentralized Control

Leveraging the flexibility of low-carbon technologies (LCTs) through an optimal control

Implemented right now

→ Sub-optimal results

Solutions: Centralized Control

Centralized control?

- Requires communication links between the centralized controller and ALL network nodes
 → Scalability issue
- Requires significant computing infrastructure
- Single point of failure

→ Distributed Control

Smart Meters

Measure voltages, currents and powers

Smart Meters

Measure voltages, currents and powers

Communicate with microcontrollers

Micro Controllers

Computes the new setpoints and send them to the different devices

Communication Lines

Allow microcontrollers to communicate with each other to reach a consensus

Real time optimization allows to deal with varying conditions

Research Context

Ultimate Objective:

Demonstrate ability of online distributed controllers to address operation problems in distribution networks.

Research Context

Ultimate Objective:

Demonstrate ability of online distributed controllers to address operation problems in distribution networks.

→ We need a large scale and accurate simulation tool for comparison.

Proposed Architecture

