Méthodes Numériques pour la Finance

Corrélations et dépendances

Ioane Muni Toke

Laboratoire MICS, Chaire de Finance Quantitative, CentraleSupélec, France

Option Mathématiques Appliquées, Majeure Finance CentraleSupélec Octobre - Décembre 2017

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation Mesures de dépendances

Un modèle de risque de crédit

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation Mesures de dépendances

Un modèle de risque de crédit

Simulation de browniens corrélés I

Construction de browniens corrélés

Soit $W = (W_1, \dots, W_d)$ un mouvement brownien de dimension d.

Soit $\rho = (\rho_{ij})_{1 \le i,j \le d}$ une matrice de corrélation, i.e. une matrice symétrique, définie positive, de coefficients à valeurs dans [-1,1] et de diagonale unité.

Soit L la matrice triangulaire inférieure obtenue par décomposition de Cholesky de la matrice ρ symétrique définie positive : $\rho = LL^*$.

Alors les coordonnées du processus $B_t = \mathbf{L} W_t$ à valeurs dans \mathbb{R}^d sont des mouvements browniens corrélés suivant la matrice de corrélation $\boldsymbol{\rho}$, i.e. vérifiant $\forall i,j,\langle B_i,B_j\rangle_t = \rho_{ij}t$.

Simulation de browniens corrélés II

- La méthode de simulation découle immédiatement du résultat précédent.
- De façon générale, la méthode permet de simuler un vecteur de gaussiennes corrélées à partir d'un vecteur de gaussiennes indépendantes.
- ▶ Dans le cas d=2 et $\boldsymbol{\rho}=\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, on a $\mathbf{L}=\begin{pmatrix} 1 & 0 \\ \rho & \sqrt{1-\rho^2} \end{pmatrix}$.

Black & Scholes multidimensionnel I

➤ On considère le modèle de type Black & Scholes à d actifs sous la probabilité risque-neutre :

$$\forall i = 1, \ldots, d, \ dS_i(t) = rS_i(t)dt + \sigma_iS_i(t)dB_i(t)$$

avec $(B_i)_{i=1,\dots,d}$ d mouvements browniens de matrice de corrélation $\rho = (\rho_{ij})_{1 \le i,i \le d}$.

D'après ce qui précède,

$$\forall i = 1, \ldots, d, \ dS_i(t) = rS_i(t)dt + \sigma_i S_i(t) \sum_{k=1}^d I_{ik} dW_k(t)$$

avec $(W_k)_{k=1,\ldots,d}$ un mouvement brownien de dimension d.

Black & Scholes multidimensionnel II

- ▶ Le résultat précédent permet d'évaluer par Monte Carlo des options sur le panier de sous-jacents.
- ightharpoonup Cas d=2:

$$dS_{1}(t) = rS_{1}(t)dt + \sigma_{1}S_{1}(t)dW_{1}(t)$$

$$dS_{2}(t) = rS_{2}(t)dt + \sigma_{2}S_{2}(t)\left(\rho dW_{1}(t) + \sqrt{1 - \rho^{2}}dW_{2}(t)\right)$$

avec (W_1, W_2) un mouvement brownien de dimension 2.

Options classiques : maximum du panier, moyenne du panier, minimum du panier, etc.

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation

Un modèle de risque de crédit

- Développement : une implémentation C++ de simulation d'un modèle de type Black & Scholes en 2D
- ▶ Rapport : Tracer en fonction de ρ le prix à la monnaie d'une option d'achat de strike K et de maturité T sur
 - (a) le maximum du panier;
 - (b) la moyenne du panier;
 - (c) le minimum du panier.

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation Mesures de dépendances

Un modèle de risque de crédit

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques

Simulation
Mesures de dépendances

Un modèle de risque de crédit

Première approche I

Théorème de Sklar

Soit F la fonction de répartition de la loi d'un vecteur aléatoire X de dimension n. Soient F_1, \ldots, F_n les fonctions de répartition des lois marginales de X.

Alors il existe une fonction $C: \mathbb{R}^n \to [0,1]$, appelée *copule*, telle que

$$\forall (x_1,\ldots,x_n) \in \mathbb{R}^n, F(x_1,\ldots,x_n) = C(F_1(x_1),\ldots,F_n(x_n)).$$

Le copule est unique si les F_i sont continues.

Première approche II

- ▶ Inverse généralisé de $F : F^{-1}(p) = \inf\{x \in \mathbb{R} : F(x) \ge p\}$
- ▶ On vérifie que $\forall (u_1, \ldots, u_n) \in [0, 1]^n$,

$$C(u_{1},...,u_{n}) = F(F_{1}^{-1}(u_{1}),...,F_{n}^{-1}(u_{n}))$$

$$= \mathbf{P}(X_{1} \leq F_{1}^{-1}(u_{1}),...,X_{n} \leq F_{n}^{-1}(u_{n}))$$

$$= \mathbf{P}(F_{1}(X_{1}) \leq u_{1},...,F_{n}(X_{n}) \leq u_{n})$$

$$= \mathbf{P}(U_{1} \leq u_{1},...,U_{n} \leq u_{n}),$$

avec U_i des v.a. de loi uniforme sur [0,1].

► Autrement dit, un copule est la fonction de répartition d'une loi de dimension *n* de marginales uniformes sur [0, 1].

Premiers exemples I

- ▶ La remarque "Un copule est une fonction de répartition d'une loi de dimension *n* de marginales uniformes sur [0,1]" donne une première méthode construction de copules.
- ► Copule indépendant :

$$C(u_1,\ldots,u_n)=u_1\ldots u_n$$

en choisissant les U_i indépendantes.

► Copule comonotone :

$$C(u_1,\ldots,u_n)=\min(u_1,\ldots,u_n)$$

en choisissant les U_i égales presque sûrement.

Construction à partir de lois jointes connues I

- ▶ Une autre méthode de construction de copules est donnée par l'égalité $C(u_1, ..., u_n) = F(F_1^{-1}(u_1), ..., F_n^{-1}(u_n))$.
- ► Copule gaussien, construit avec *F*_i gaussiennes centrées réduites corrélées :
 - ▶ En dimension n = 2, avec le coefficient de corrélation $\rho \in [0, 1]$:

$$C(u_1, u_2) = \int_{-\infty}^{\Phi^{-1}(u_1)} \int_{-\infty}^{\Phi^{-1}(u_2)} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right) dx dy,$$

où Φ est la fonction de répartition de la loi normale centrée réduite.

• Si $\rho = 0$, on retrouve le copule indépendant.

Construction à partir de lois jointes connues II

► Copule de Student :

▶ En dimension 2 de paramètre $\rho \in [0,1], \nu \in \mathbb{R}_+^*$:

$$C(u_1, u_2) = \int_{-\infty}^{t_{\nu}^{-1}(u_1)} \int_{-\infty}^{t_{\nu}^{-1}(u_2)} \frac{1}{2\pi\sqrt{1-\rho^2}} \left(1 + \frac{x^2 - 2\rho xy + y^2}{\nu(1-\rho^2)}\right)^{-\frac{\nu+2}{2}} dx dy,$$

où t_{ν} est la fonction de répartition de la loi de Student à ν degrés de liberté.

Copules archimédiens I

Copules archimédiens

Soit $\varphi: \mathbb{R}_+ \to [0,1]$ une fonction continue, strictement décroissante, convexe, telle que $\varphi(0)=1$ et $\lim_{t\to +\infty} \varphi(t)=0$. Alors la fonction C définie par :

$$\forall (u_1, u_2) \in [0, 1]^2, \quad C(u_1, u_2) = \varphi \left(\varphi^{-1}(u_1) + \varphi^{-1}(u_2) \right)$$

est un copule de dimension 2.

• Énoncé similaire mais conditions plus techniques sur φ si n>2

Copules archimédiens II

▶ Copule de Clayton de paramètre $\delta > 0$, avec $\varphi(x) = (1 + \delta x)^{-\frac{1}{\delta}}$:

$$C(u_1, u_2) = \left(u_1^{-\delta} + u_2^{-\delta} - 1\right)^{-1/\delta}.$$

► Copule de Gumbel de paramètre $\delta \ge 1$, avec

$$\varphi(x) = \exp\left(-x^{\frac{1}{\delta}}\right)$$
:

$$C(u_1, u_2) = \exp\left[-\left((-\ln u_1)^{\delta} + (\ln u_2)^{\delta}\right)^{1/\delta}\right].$$

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques

Simulation

Mesures de dépendances

Un modèle de risque de crédit

Simulation de copules I

Le copule gaussien de matrice de corrélation ho peut être simulé avec l'algorithme suivant :

- 1. Par Cholesky, calculer L telle que $\mathbf{LL}^* = \rho$.
- 2. Simuler $U = (U_1, \dots, U_n)$ des uniformes indépendantes.
- 3. $Z = (\Phi^{-1}(U_1), \dots, \Phi^{-1}(U_n))$ est un vecteur de gaussiennes indépendantes.
- 4. Y = LZ est un vecteur de gaussiennes corrélées selon ρ .
- 5. $U = (\Phi(Y_1), \dots, \Phi(Y_n))$ est un vecteur de marginales uniformes liées selon le copule gaussien de corrélation ρ .

Simulation de copules II

Observation : Soit C un copule de dimension 2 admettant une densité c :

$$\forall (u,v) \in [0,1]^2, C(u,v) = \int_{]0,u]} \int_{]0,v]} c(s,t) dt ds.$$

Alors avec $c_U = \mathbf{1}_{[0,1]}$ (marginales uniformes),

$$\frac{\partial C}{\partial u}(u,v) = \int_{]0,v]} c(u,t) dt = \int_{]0,v]} \frac{c(u,t)}{c_U(u)} dt$$
$$= \int_{]0,v]} c_{V|U=u}(t) dt = \mathbf{P}(V \le v|U=u).$$

► Conséquence : on peut simuler le copule C en simulant U uniforme puis $V = \left(\frac{\partial C}{\partial u}\right)^{-1} (U, Z)$ avec Z uniforme.

Simulation de copules III

▶ Principe général : Simulation par récurrence avec :

$$\mathbf{P}(U_k = u_k | U_1 = u_1, \dots, U_{k-1} = u_{k-1})
= \frac{\partial C_{u_1 \dots u_{k-1}}(u_1, \dots, u_k, 1, \dots, 1)}{\partial C_{u_1 \dots u_{k-1}}(u_1, \dots, u_{k-1}, 1, \dots, 1)}$$

Simulation de copules IV

Le copule de Clayton de dimension n et de paramètre δ peut être simulé avec l'algorithme suivant :

- 1. S = 0
- 2. Simuler U_1 uniforme.
- 3. Pour i = 2, ..., n:
 - (i) $S = S + U_{i-1}^{-\delta} 1$.
 - (ii) Simuler V uniforme.
 - (iii) $U_i = \left[(1+S)V^{\frac{-\delta}{1+(i-1)\delta}} S \right]^{-1/\delta}$.

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation

Mesures de dépendances

Un modèle de risque de crédit

Tau de Kendall I

Tau de Kendall

Soit $(X_i, Y_i)_{i=1,...,n}$ un échantillon aléatoire i.i.d du couple de v.a. (X, Y). On pose

$$\begin{aligned} N_{+} &= \sharp \left\{ (i,j) \in \mathbb{N}^{2} : i < j, (X_{i} < X_{j} \land Y_{i} < Y_{j}) \lor (X_{i} > X_{j} \land Y_{i} > Y_{j}) \right\} \\ N_{+} &= \sharp \left\{ (i,j) \in \mathbb{N}^{2} : i < j, (X_{i} < X_{j} \land Y_{i} > Y_{j}) \lor (X_{i} > X_{j} \land Y_{i} < Y_{j}) \right\} \end{aligned}$$

On appelle alors au de Kendall la quantité

$$au_{(X,Y)} = 2 \frac{N_+ - N_-}{n(n-1)}$$

- ▶ $\tau_{(X,Y)} \in [-1,1]$
- $au_{(X,Y)}$ est une mesure d'ordre : $au_{(X,Y)}=1$ si les échantillons sont rangés dans le même ordre, $au_{(X,Y)}=-1$ si les rangements sont inversés.

Tau de Kendall II

▶ Si X et Y sont liées par un copule C, alors

$$\tau_{(X,Y)} = 4 \int_{[0,1]\times[0,1]} C(u,v) \, dC(u,v) - 1$$

- Pour un copule gaussien : $\tau_{(X,Y)} = \frac{2}{\pi} \arcsin \rho_{(X,Y)}$
- Pour un copule de Clayton : $\tau_{(X,Y)} = \frac{\delta}{\delta + 2}$

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation Mesures de dépendances

Un modèle de risque de crédit

Un modèle de risque de crédit I

*n*th-to-default

On appelle n^{th} -to-default le produit dérivé couvrant le risque de crédit sur un panier d'actifs (prêts, obligations, etc.) avec les caractéristiques suivantes :

- Nombre d'actifs couverts : d
- ► Maturité *T*
- ▶ Nominal $N = (N_1, ..., N_d)$
- ▶ Taux de recouvrement $R = (R_1, ..., R_d)$
- Payoff : Si l'actif i du panier est le n-ième actif du panier à faire défaut avant la maturité T du produit, le détenteur du produit dérivé reçoit la prime $N_i(1-R_i)$.
- Sans perte de généralité, on suppose N_i = 1 et R_i = 0 pour tout i. On supposera également pour simplifier que le taux sans risque est nul : r = 0.

Un modèle de risque de crédit II

Modèle simple

On suppose:

- que le temps de défaut τ_i de l'actif i suit une loi de fonction de répartition F_i ;
- que les v.a. $1 F_i(\tau_i)$ (de loi uniforme) sont liées par un copule C.
- Le prix p du FTD vaut alors :

$$p = \mathbf{P}(\exists i \in \{1, ..., d\} : \tau_i < T)$$

$$= 1 - \mathbf{P}(\forall i \in \{1, ..., d\} : \tau_i \ge T)$$

$$= 1 - \mathbf{P}(\forall i \in \{1, ..., d\} : F_i(\tau_i) \ge F_i(T))$$

$$= 1 - \mathbf{P}(\forall i \in \{1, ..., d\} : 1 - F_i(\tau_i) \le 1 - F_i(T))$$

$$= 1 - C(1 - F_1(T), ..., 1 - F_d(T)).$$

Un modèle de risque de crédit III

- ► Si on sait simuler le copule C, alors on peut alors évaluer le n-th-to-default par Monte Carlo.
- Si le copule est explicitement connu, on peut trouver une formule analytique.
- Dans le cas particulier du copule de Clayton :

$$egin{split}
ho &= 1 - C(1 - F_1(T), \dots, 1 - F_d(T)) \ &= 1 - \left\{ 1 + \delta \sum_{i=1}^d rac{1}{\delta} \left((1 - F_i(T))^{-\delta} - 1
ight)
ight\}^{-rac{1}{\delta}} \ &= 1 - \left\{ \sum_{i=1}^d (1 - F_i(T))^{-\delta} - (d-1)
ight\}^{-rac{1}{\delta}} \ . \end{split}$$

Options multi-sous-jacents

TP 5 Partie 1

Copules

Quelques éléments théoriques Simulation Mesures de dépendances

Un modèle de risque de crédit

TP 5 Partie 2 I

Simulation de copules

- (a) Simuler un copule gaussien en dimension 2 et tracer le nuage de points obtenu pour différentes valeurs de ρ .
- (b) Simuler un copule de Clayton en dimension 2 et tracer le nuage de points obtenu pour différentes valeurs de δ .
- 2. On considère un first-to-default (FTD) sur N actifs. On suppose que le temps de défaut τ_i de l'actif i suit une loi exponentielle de paramètre $\lambda_i > 0$. On suppose également que les $(1 F_i(\tau_i))$ sont liés selon un copule C gaussien de matrice de la matrice de corrélation "flat" $\rho = (\rho_{ij})_{1 \leq i,j \leq n}$ vérifiant $\rho_{ij} = \rho$ pour tout $i \neq j$.
 - (a) Tracer la convergence du prix Monte Carlo en fonction du nombre de simulations.
 - (b) Tracer le prix en fonction de ρ . On donnera les expressions explicites des prix dans les cas limites $\rho \to 0$ et $\rho \to 1$.
 - (c) Tracer le prix en fonction de la maturité T.
 - (d) Tracer le prix en fonction de ρ pour un nombre d'actifs $N \in \{5, 10, 15, 20\}$.

TP 5 Partie 2 II

- (e) On note λ l'intensité de défaut "globale", telle que le prix du FTD sur un actif (n=1) avec $\lambda_1=\lambda$ soit égal au prix du FTD sur N actifs. Tracer λ en fonction de ρ .
- (f) Facultatif: Tracer le prix du n^{th} -to-default en fonction de n.
- 3. On considère un first-to-default (FTD) sur N actifs en supposant que C est un copule de Clayton de paramètre δ .
 - (a) Tracer la convergence du prix Monte Carlo en fonction du nombre de simulations.
 - (b) Tracer le prix en fonction de δ .
 - (c) Tracer le prix en fonction de la maturité T.
 - (d) Tracer le prix en fonction de δ pour un nombre d'actifs $N \in \{5, 10, 15, 20\}$.
 - (e) Tracer λ en fonction de δ .
 - (f) Comparer les prix obtenus avec ceux obtenus avec le copule gaussien dans le cas N = 2 (utilisation du tau de Kendall).

TP 5 Partie 2 III

- Pour aller plus loin
 - Autres copules (Gumbel, Student, Frank, etc.)
 - Autres mesures de dépendances (rho de Spearman, tail dependence, etc.)