[Linear Regression] (CheatSheet)

1. Basic Linear Regression with statsmodels

- Simple Linear Regression: statsmodels.api.OLS(y, X).fit()
- Summary of Regression Results: results.summary()
- **Predictions**: results.predict(X_new)
- Residuals: results.resid
- Regression Plot: seaborn.regplot(x, y)

2. Linear Regression with scikit-learn

- Fit Linear Model: sklearn.linear_model.LinearRegression().fit(X, y)
- Coefficients and Intercept: model.coef_, model.intercept_
- **Predictions**: model.predict(X_new)
- R-squared Score: model.score(X, y)
- Mean Squared Error: sklearn.metrics.mean_squared_error(y_true, y_pred)

3. Data Preprocessing for Linear Regression

- Standard Scaling:
 - sklearn.preprocessing.StandardScaler().fit_transform(X)
- Polynomial Features:
 - sklearn.preprocessing.PolynomialFeatures(degree).fit_transform(X)
- Train-Test Split: sklearn.model_selection.train_test_split(X, y)
- Handling Missing Values: pandas.DataFrame.fillna()
- One-Hot Encoding for Categorical Variables: pandas.get_dummies()

4. Diagnostics and Model Checking

- Plotting Residuals: seaborn.residplot(x, y)
- Checking for Homoscedasticity:

```
statsmodels.stats.diagnostic.het_breuschpagan(residuals,
model.model.exog)
```

Normality Test of Residuals: scipy.stats.shapiro(residuals)

- Outliers Detection (e.g., Cook's distance): statsmodels.stats.outliers_influence.OLSInfluence(model).cooks_dist ance
- Cross-Validation Scores: sklearn.model_selection.cross_val_score(model, X, y)

5. Regularization Techniques

- Ridge Regression: sklearn.linear_model.Ridge(alpha).fit(X, y)
- Lasso Regression: sklearn.linear_model.Lasso(alpha).fit(X, y)
- Elastic Net: sklearn.linear_model.ElasticNet(alpha, 11_ratio).fit(X, y)
- Grid Search for Hyperparameter Tuning: sklearn.model_selection.GridSearchCV()

6. Multivariate Linear Regression

- Multiple Linear Regression: statsmodels.api.OLS(y, sm.add_constant(X)).fit()
- Partial Regression Plots: statsmodels.graphics.regressionplots.plot_partregress(y, X, exog_idx)

7. Advanced Linear Models

- Generalized Linear Models (GLM): statsmodels.api.GLM(y, X, family).fit()
- Quantile Regression: statsmodels.regression.quantile_regression.QuantReg(y, X).fit(q)
- Robust Regression: statsmodels.robust.robust_linear_model.RLM(y, X).fit()

8. Interaction Effects and Nonlinearity

- Interaction Terms: X['interaction'] = X['feature1'] * X['feature2']
- Non-linear Transformations of Predictors: numpy.log(X), numpy.sqrt(X)

Model Interpretation

- Feature Importance: abs(model.coef_)
- Coefficients Interpretation: beta coefficients in results.summary()
- Effects of Categorical Variables: one-hot encoded coefficients

10. Model Selection and Evaluation

- AIC and BIC: results.aic, results.bic
- Adjusted R-squared: 1 (1 model.score(X, y)) * ((len(y) 1) / (len(y) X.shape[1] 1))
- F-Test for Model Significance: results.f_pvalue
- Stepwise Regression (Forward, Backward): stepwise_selection(X, y)
 # Custom function

11. Prediction and Confidence Intervals

- Confidence Interval of Predictions:
 - results.get_prediction(X_new).conf_int()
- Prediction Interval: prediction_interval(model, X_new, alpha) #
 Custom function

12. Visualization of Linear Models

- Coefficient Plot: plot_coefficients(model, feature_names) # Custom function
- Scatter Plot with Regression Line: seaborn.lmplot(x, y, data)
- Partial Dependence Plot:

sklearn.inspection.plot_partial_dependence(model, X, features)

13. Handling Large Datasets

- Stochastic Gradient Descent for Linear Regression:
 - sklearn.linear_model.SGDRegressor().fit(X, y)
- Mini-Batch Gradient Descent:

sklearn.linear_model.SGDRegressor(mini_batch_size)

14. Working with Time Series

• Linear Regression with Time Series Data: Handle time-based features and trends in data

Lag Features and Autoregression: df['lag_feature'] = df['feature'].shift(periods)

15. Practical Challenges and Solutions

- Handling Multicollinearity: Variance Inflation Factor (VIF) calculation
- Dealing with Non-Stationarity in Time Series: Differencing or transformation

16. Integrating with Machine Learning Pipelines

• Using Linear Regression in Pipelines:

```
sklearn.pipeline.Pipeline(steps=[('scaler', StandardScaler()),
('regressor', LinearRegression())])
```

17. Cross-Validation and Model Selection

• K-Fold Cross-Validation:

```
sklearn.model_selection.cross_val_score(model, X, y, cv=5)
```

• Leave-One-Out Cross-Validation:

```
sklearn.model_selection.LeaveOneOut()
```

• Hyperparameter Tuning with GridSearchCV:

```
sklearn.model_selection.GridSearchCV(estimator, param_grid)
```

18. Diagnostic Plots

- **Residual Plot**: seaborn.residplot(x, y, lowess=True)
- Q-Q Plot for Residuals: scipy.stats.probplot(residuals, plot=plt)
- Leverage Plot:

```
statsmodels.graphics.regressionplots.influence_plot(model,
criterion="cooks")
```

19. Advanced Feature Engineering

• Feature Interaction and Polynomial Terms:

```
sklearn.preprocessing.PolynomialFeatures(include_bias=False).fit_tr
ansform(X)
```

• Automatic Feature Selection:

sklearn.feature_selection.RFE(estimator, n_features_to_select)

20. Preprocessing and Feature Scaling

Normalization (MinMax Scaling):

sklearn.preprocessing.MinMaxScaler().fit_transform(X)

Robust Scaling (handling outliers):

sklearn.preprocessing.RobustScaler().fit_transform(X)

21. Regularization and Penalization Techniques

• LassoCV for Optimal Alpha:

sklearn.linear_model.LassoCV(alphas).fit(X, y)

• RidgeCV for Optimal Alpha:

sklearn.linear_model.RidgeCV(alphas).fit(X, y)

ElasticNetCV for Optimal Alpha and L1 Ratio:

sklearn.linear_model.ElasticNetCV(alphas, l1_ratio).fit(X, y)

22. Assumptions of Linear Regression

- Linearity Test: Plotting observed vs. predicted values
- Independence Test: Durbin-Watson test
- Homoscedasticity Test: Breusch-Pagan test
- Normality Test for Residuals: Kolmogorov-Smirnov test

23. Working with Non-linear Data

- Transformation of Target Variable: numpy.log(y) or numpy.sqrt(y)
- Generalized Additive Models (GAMs): pygam.LinearGAM().fit(X, y)

24. Model Interpretability

- Feature Importance in Linear Models: np.abs(model.coef_)
- SHAP Values for Linear Regression: shap.LinearExplainer(model, X).shap_values(X_new)

25. Ensemble Methods

- Averaging Multiple Linear Models: Averaging predictions from different models
- Stacking Linear Models: sklearn.ensemble.StackingRegressor(estimators)

26. Error Metrics and Model Evaluation

- Mean Absolute Error (MAE): sklearn.metrics.mean_absolute_error(y_true, y_pred)
- Root Mean Squared Error (RMSE): numpy.sqrt(sklearn.metrics.mean_squared_error(y_true, y_pred))
- Mean Squared Logarithmic Error (MSLE): sklearn.metrics.mean_squared_log_error(y_true, y_pred)

27. Time Series Regression

- Lag Features for Time Series: df['lag_feature'] = df['feature'].shift(1)
- Rolling Window Features: df['rolling_mean'] = df['feature'].rolling(window=5).mean()

28. Handling Sparse Data

- Sparse Matrix Handling: scipy.sparse.csr_matrix(X)
- Linear Regression with Sparse Data: sklearn.linear_model.LinearRegression().fit(X_sparse, y)

29. Deployment and Persistence of Model

- Model Serialization with joblib: joblib.dump(model, 'model.pkl')
- Model Deserialization: model = joblib.load('model.pkl')

30. Performance Improvement

- Parallel Computing for Large Datasets: LinearRegression(n_jobs=-1)
- Batch Gradient Descent for Large Datasets: Implementing batch or mini-batch gradient descent

31. Reporting and Visualization

- Coefficient Path Plot: Plotting coefficient magnitude vs. regularization strength
- Prediction Error Plot: Yellowbrick's PredictionError(model)

32. Extensions and Related Models

- Partial Least Squares Regression: sklearn.cross_decomposition.PLSRegression()
- Ridge Regression with Polynomial Features: Pipeline with PolynomialFeatures and Ridge

33. Advanced Statistical Techniques

• Quantile Regression:

statsmodels.regression.quantile_regression.QuantReg(y, X).fit(q=0.5)

• Instrumental Variable Regression:
linearmodels.iv.IV2SLS(dependent, exog, endog, instruments)

34. Working with Categorical Variables

- Encoding and Including Categorical Variables: pandas.get_dummies()
- ANOVA for Categorical Features Impact: statsmodels.api.ols('y ~ C(categorical_feature)', data).fit()

35. Model Diagnostics and Validation

• Cross-Validation for Linear Regression:

sklearn.model_selection.cross_val_score(model, X, y, cv=5)

Learning Curve to Diagnose Model Performance:
 sklearn.model_selection.learning_curve(model, X, y)

36. Multicollinearity Handling

• Variance Inflation Factor (VIF) Calculation:

statsmodels.stats.outliers_influence.variance_inflation_factor(X,
i)

37. Interaction with Domain Knowledge

• Incorporating Domain Insights into Model: Modifying features or model based on domain expertise