RESPONSE TO NON-FINAL OFFICE ACTION APPL. NO.: 10/520,963 DOCKET NO.: MTV-055.01

In the Claims:

(currently amended) A compound represented by formula I:

wherein,

n is 1, 3, or 4:

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl);

 R^1 and R^2 are independently H, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃; or R^1 and R^2 taken together are C(CH₃)₂, P(O)OH, or P(O)OR⁵;

R3 is amino, -N3, or -NH3X:

R⁴ represents independently for each occurrence [[H,]] alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃, or -P(O)(OR⁵)₂;

 R^5 represents independently for each occurrence H, $[[Li^+,]]Li^+$, Na^+ , K^+ , Rb^+ , Cs^+ , aryl, or an optionally substituted alkyl group; and

X is a halogen, alkyl carboxylate, or aryl carboxylate.

- (canceled)
- 3. (original) The compound of claim 1, wherein n is 3.
- 4. (original) The compound of claim 1, wherein R is H.

- 5. (original) The compound of claim 1, wherein R¹ and R² taken together are P(O)OR⁵.
- 6. (original) The compound of claim 1, wherein R³ is N₃.
- (original) The compound of claim 1, wherein R³ is -NH₃X.
- (currently amended) The compound of claim 1, wherein R⁴ represents independently for each occurrence [[H,]] -CH₂Ph, or -Si(alkyl)₃.
- (currently amended) The compound of claim 1, wherein R⁴ represents independently for each occurrence [[H,]] -CH₂Ph, -or P(O)OR⁵; and R⁵ is an optionally substituted alkyl group.
- 10. (previously presented) A compound selected from the group consisting of:

PAGE 5

RESPONSE TO NON-FINAL OFFICE ACTION APPL. NO.: 10/520,963
DOCKET NO.: MTV-055.01

11. (currently amended) A compound represented by formula II:

wherein.

n is [[1,]] 3, or 4;

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃;

R1 is -(CH2)mCH=CH2 or trichloroacetimidate; and

m is 1-6.

- 12. (canceled)
- 13. (original) The compound of claim 11, wherein n is 3.
- 14. (original) The compound of claim 11, wherein m is 3.
- (original) The compound of claim 11, wherein R represents independently for each occurrence -CH₂-aryl or -Si(alkyl)₃.
- (original) The compound of claim 11, wherein R represents independently for each occurrence benzyl or -Si(iPr)₃.
- (previously presented) The compound of claim 11, wherein R¹ is trichloroacetimidate and R represents independently for each occurrence benzyl or -Si(iPr)₃.
- (previously presented) The compound of claim 11, wherein said compound of formula
 II is selected from the group consisting of:

RESPONSE TO NON-FINAL OFFICE ACTION APPL. NO.: 10/520,963 DOCKET NO.: MTV-055.01

19. (currently amended) A method comprising the step of:

$$R^7 \underset{RO}{\text{RO}} SR^6$$
 admixing a compound represented by
$$R_3 \qquad \text{with a compound represented}$$

by R^2O OR , followed by the addition, together or separately of N-

RESPONSE TO NON-FINAL OFFICE ACTION APPL. No.: 10/520,963 DOCKET No.: MTV-055.01

iodosuccinimide and silver triflate, thereby forming a compound represented by

R represents independently for each occurrence H, alkyl, aryl, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)₃;

 R^1 and R^2 are independently H, -CH₂-aryl, -C(O)-alkyl, -C(O)-aryl, -Si(alkyl)₃; or R^1 and R^2 taken together are C(CH₃)₂, P(O)OH, or P(O)OR⁵;

R³ is amino, -N₃, or -NH₃X;

R⁵ represents independently for each occurrence H, [[Li⁺,]] Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺, aryl, or an optionally substituted alkyl group;

R6 is alkyl or aryl;

R7 is alkyl, aryl, -CH2-aryl, -C(O)-alkyl, -C(O)-aryl, or -Si(alkyl)3; and

X is a halogen, alkyl carboxylate, or aryl carboxylate.

- (original) The method of claim 19, wherein R is -CH₂-aryl.
- 21. (original) The method of claim 19, wherein R¹ and R² taken together are C(CH₃)₂.
- 22. (original) The method of claim 19, wherein R³ is -N₃.
- 23. (original) The method of claim 19, wherein R⁶ is alkyl.
- 24. (original) The method of claim 19, wherein R⁷ is -C(O)-alkyl.
- (original) The method of claim 19, wherein R is benzyl, R¹ and R² taken together are C(CH₃)₂, and R³ is -N₃.
- 26. (original) The method of claim 19, wherein R is benzyl, R^1 and R^2 taken together are $C(CH_3)_2$, R^3 is -N₃, and R^6 is ethyl.
- (previously presented) A method of preparing a tetrasaccharide, comprising the steps of:

DOCKET NO.: MTV-055.01

covalently binding a mannopyranoside to a solid support to provide a first substrate, reacting said first substrate with a mannopyranose trichloroacetimidate to give a disaccharide bound to said solid support, reacting said disaccharide with a mannopyranose trichloroacetimidate to give a triisaccharide bound to said solid support, reacting said trisaccharide with a mannopyranose trichloroacetimidate to give a tetrasaccharide bound to said solid support, and cleaving said tetrasaccharide from said solid support.

- (original) The method of claim 27, wherein said mannopyranoside is bound to said solid support through a glycosidic linkage.
- (original) The method of claim 27, wherein said tetrasaccharide is cleaved from said solid support using Grubbs' catalyst.
- 30. (previously presented) The method of claim 27, wherein said tetrasaccharide is