MATH 3332, Chapter 5 Exercise — Part 2

Problems:

1. Suppose that $X \sim N(0,1)$. Name the distribution of X^2 with all parameters of the distribution specified.

Formula. If $X \sim N(0,1)$, then $X^2 \sim \chi^2(1)$.

Hint. Apply the formula directly.

Answer. $\chi^2(1)$

2. X_1, X_2, \dots, X_9 are iid N(0,1) random variables. ("iid" is the short for "independent and identically distributed.") Name the distribution of $T = X_1^2 + \dots + X_9^2$ with all parameters of the distribution specified.

Formula.

- (a) If $X \sim N(0, 1)$, then $X^2 \sim \chi^2(1)$.
- (b) If $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, and X,Y are independent, then $X+Y \sim \chi^2(m+n)$.

Hint. Apply the formula (a) first, and then apply formula (b).

Answer. $\chi^2(9)$

3. X is a random variable with $\chi^2(20)$ distribution.

Y is a random variable with N(0,1) distribution.

X and Y are independent.

Name the distribution of $T = \frac{Y}{\sqrt{X/20}}$ with all parameters specified.

Formula. If $X \sim N(0,1)$, $Y \sim \chi^2(n)$, and X,Y are independent, then $X/\sqrt{Y/n}$ has Students's t-distribution of n degrees of freedom.

Hint. Apply the formula directly.

Answer. *t*-distribution with 20 degrees of freedom

4. X is a random variable with N(2,3) distribution.

Name the distribution of 2X + 3 with all parameters specified.

Formula.

- (a) If $X \sim N(\mu, \sigma^2)$, then $cX \sim N(c\mu, c^2\sigma^2)$.
- (b) If $X \sim N(\mu, \sigma^2)$, then $X + c \sim N(\mu + c, \sigma^2)$.

Hint. Apply formula (a) first to get the distribution of 2X, then apply formula (b).

Answer. N(7, 12)

5. X is a random variable with N(3,1) distribution. Y is a random variable with N(4,2) distribution. X and Y are independent.

Name the distribution of T = X + 3Y with all parameters specified.

Formula.

- (a) If $X \sim N(\mu, \sigma^2)$, then $cX \sim N(c\mu, c^2\sigma^2)$.
- (b) If $X\sim N(\mu_1,\sigma_1^2)$, $Y\sim N(\mu_2,\sigma_2^2)$, and X,Y are independent, then $X+Y\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)$.

Hint. Apply formula (a) to get the distribution of 3Y, then apply formula (b).

Answer. N(15, 19)

6. X_1, X_2, \dots, X_{15} are iid N(6,2) distributions.

$$S^{2} = \frac{1}{14} \sum_{i=1}^{15} (X_{i} - \bar{X})^{2}.$$

Name the distribution of $T = 7S^2$ with all parameters specified.

Formula. If the population $X \sim N(\mu, \sigma^2)$, and X_1, \dots, X_n are a random sample of size n from the population X, then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1).$$

Here, S^2 is the sample variance.

Hint. Collect the information n=15 and $\sigma^2=2$ from the problem, then apply the formula directly.

Answer. $\chi^2(14)$

7. X is a random variable with $\chi^2(7)$ distribution. Y is a random variable with $\chi^2(8)$ distribution. X and Y are independent.

Name the distribution of T = X + Y with all parameters specified.

Formula. If $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, and X,Y are independent, then $X+Y \sim \chi^2(m+n)$.

Hint. Apply the formula directly.

Answer. $\chi^2(15)$

8. X is a random variable with $\chi^2(6)$ distribution.

Y is a random variable with $\chi^2(8)$ distribution.

X and Y are independent.

Name the distribution of $T = \frac{X/6}{Y/8}$ with all parameters specified.

Formula. If $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, and X,Y are independent, then

$$\frac{X/m}{Y/n}$$

has the F-distribution with m and n degrees of freedom.

Hint. Apply the formula directly.

Answer. F distribution with 6 and 8 degrees of freedom

9. X_1, X_2, X_3 are iid geometric(1/3) distributions.

Name the distribution of $T = X_1 + X_2 + X_3$ with all parameters specified.

Formula.

- (a) The Geometric(p) distribution is the Negative Binomial distribution with parameters (1, p).
- (b) If $X \sim \text{Negative Binomial}(m, p)$, $Y \sim \text{Negative Binomial}(n, p)$, and X, Y are independent, then $X + Y \sim \text{Negative Binomial}(m + n, p)$.

Hint. Apply the formula (a), then (b).

Answer. Negative Binomial (3, 1/3)

10. Suppose that $X \sim Binomial(4,1/3)$, $Y \sim Binomial(5,1/3)$, X and Y are independent. Name the distribution of X+Y with all parameters specified.

Formula. If $X \sim Binomial(m,p) \ Y \sim Binomial(n,p)$, and X,Y are independent, then $X+Y \sim Binomial(m+n,p)$.

Hint. Apply the formula directly.

Answer. Binomial (9, 1/3)

11. Suppose that $X \sim Negative\ Binomial(4, 1/3)$,

 $Y \sim Negative\ Binomial(5,1/3),\ X$ and Y are independent. Name the distribution of X+Y with all parameters specified.

Formula. If $X \sim \mathsf{Negative} \; \mathsf{Binomial}(m,p), \; Y \sim \mathsf{Negative} \; \mathsf{Binomial}(n,p), \; \mathsf{and} \; X,Y \; \mathsf{are} \; \mathsf{independent}, \; \mathsf{then} \; X+Y \sim \mathsf{Negative} \; \mathsf{Binomial}(m+n,p).$

Hint. Apply the formula directly.

Answer. Negative Binomial (9, 1/3)

12. Suppose that $X \sim \text{Student's } t\text{-distribution with 5 degrees of freedom. Name the distribution of } X^2 \text{ with all parameters specified.}$

Formula. If $X \sim Student's$ t-distribution with n degrees of freedom, then X^2 has the F-distribution with 1 and n degrees of freedom.

Hint. Apply the formula directly.

Answer. *F*-distribution with 1 and 5 degrees of freedom

13. Suppose that X, Y, Z are mutually independent, and

$$E(X) = 3$$
, $E(Y) = -4$, $E(Z) = 11$.

Find the expectation of 2X + 5Y + Z.

Formula.
$$E(aX + bY) = aE(X) + bE(Y)$$
.

Hint. Apply the formula directly.

14. Suppose that X, Y, Z are mutually independent, and

$$Var(X) = 3$$
, $Var(Y) = 4$, $Var(Z) = 11$.

Find the variance of 2X + 5Y + Z.

Formula. If X, Y are independent, then

$$Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y).$$

Hint. Apply the formula directly.

15. Suppose that X,Y,Z are iid Gamma(2,3) distributions. Name the distribution of X+Y+Z with all parameters specified.

Formula. If $X \sim \text{Gamma}(\alpha_1, \beta)$, $Y \sim \text{Gamma}(\alpha_2, \beta)$, and X, Y are independent, than $X + Y \sim \text{Gamma}(\alpha_1 + \alpha_2, \beta)$.

Hint. Apply the formula directly.

Answer. $\mathsf{Gamma}(6,3)$

16. Suppose that X, Y, Z are iid Exponential(3) distributions. Name the distribution of X + Y + Z with all parameters specified.

Formula.

- (a) If $X \sim \mathsf{Exponential}(\beta)$ distribution, then $X \sim \mathsf{Gamma}(1, \beta)$.
- (b) If $X \sim \mathsf{Gamma}(\alpha_1, \beta)$, $Y \sim \mathsf{Gamma}(\alpha_2, \beta)$, and X, Y are independent, than $X + Y \sim \mathsf{Gamma}(\alpha_1 + \alpha_2, \beta)$.

Hint. Apply formula (a) first, then (b).

Answer. Gamma(3,3)

17. Suppose that X and Y are independent random variables, and suppose that $X \sim Poisson(4)$, $Y \sim Poisson(6)$. Name the distribution of X+Y with all parameters specified.

Formula. If $X \sim \mathsf{Poisson}(\lambda_1)$, $Y \sim \mathsf{Poisson}(\lambda_2)$, and X, Y are independent, then $X + Y \sim \mathsf{Poisson}(\lambda_1 + \lambda_2)$.

Hint. Apply the formula directly.

Answer. Poisson(10)