19 RÉPUBLIQUE FRANÇAISE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

N° de publication :

.

2 730 990

commandes de reproduction)

(21) N° d'enregistrement national :

95 02102

(51) Int Clf : C 03 C 17/34

(12)

DEMANDE DE BREVET D'INVENTION

A1

22) Date de dépôt : 23.02.95.

(30) Priorité :

1 Demandeur(s): SAINT GOBAIN VITRAGE SOCIETE ANONYME — FR.

(43) Date de la mise à disposition du public de la demande : 30.08.96 Bulletin 96/35.

(56) Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.

(80) Références à d'autres documents nationaux apparentés :

(2) Inventeur(a): ANDERSON CHARLES EDWARD et MACQUART PHILIPPE.

(73) Titulaire(s) :

4 Mandataire : SAINT GOBAIN RECHERCHE.

(54) SUBSTRAT TRANSPARENT A REVETEMENT ANTI-REFLETS.

£7) L'invention a pour objet un substrat verrier (1) comportant sur au moins une de ses taces un revêtement anti-reflets (6) fait d'un empllement de couches minces de matériau d'électrique d'indices de rétraction alternativement forts et faibles. En vue de prévenir la modification des propriétés optiques du revêtement (6) au cas où le substrat (1) est soumis à un traitement thermique du type trempe, bombage ou recuit, la (les) couche(s) (4) de l'empilement susceptible(s) de détérioration au contact d'ions alcalins du type lons sodium est (sont) séparée(s) du substrat (1) par au moins une couche taisant partie du revêtement anti-reflets (6) et faisant "écran " à la diffusion des alcalins.

- 1 -

5

SUBSTRAT TRANSPARENT A REVETEMENT ANTI-REFLETS

10

15

20

25

30

L'invention concerne les substrats transparents, tout particulièrement verriers, qui sont munis d'un revêtement anti-reflets, ainsi que leur mode de fabrication. Elle concerne également leur utilisation, notamment en tant que vitrages. Un revêtement anti-reflets est usuellement constitué d'un empilement de couches minces interférentielles, en général une alternance de couches à haut et bas indices de réfraction. Déposé sur un substrat transparent, un tel revêtement a pour fonction d'en diminuer sa réflexion lumineuse, donc d'en augmenter sa transmission lumineuse. Un substrat ainsi revêtu voit donc s'accroître son ratio lumière transmise/lumière réfléchie, ce qui améliore la visibilité des objets placés derrière lui.

On peut alors l'employer dans de nombreux applications, par exemple pour protéger un tableau éclairé par une lumière placée derrière l'observateur, ou pour constituer ou faire partie d'une vitrine de magasin, afin de mieux distinguer ce qui se trouve dans la vitrine, même lorsque l'éclairage intérieur est faible par rapport à l'éclairage extérieur.

Les performances d'un revêtement anti-reflets peuvent être mesurées ou évaluées suivant différents critères. Viennent en premier, bien sûr, les critères optiques. On peut considérer qu'un « bon » revêtement anti-reflets doit pouvoir abaisser la réflexion lumineuse d'un substrat en verre clair standard jusqu'à une valeur donnée, par exemple 2%, voire 1% et moins. De même, il peut être important que ce revêtement conserve au substrat une colorimétrie satisfaisante, par exemple très neutre, très proche de celle du substrat nu. D'autres critères secondaires peuvent aussi être pris en compte suivant

10

15

20

25

30

l'application envisagée, notamment la durabilité chimique et/ou mécanique du revêtement, le coût des matériaux utilisés ou des techniques à employer pour le fabriquer.

Il est connu de la demande de brevet WO-92/04185 un revêtement antireflets déposé sur un substrat transparent et constitué d'une alternance de couches à haut indice en oxyde de niobium et bas indice en oxyde de silicium. Ses performances optiques sont intéressantes. Utiliser de l'oxyde de niobium est avantageux sur le plan industriel, car c'est un matériau qui se dépose plus vite que d'autres oxydes à haut indice du type oxyde de titane par des techniques sous vide connues, du type pulvérisation cathodique réactive. Cependant un tel empilement s'est avéré sensible à tout traitement thermique: à haute température, ses propriétés optiques se modifient de manière défavorable, notamment sur le plan de sa colorimétrie en réflexion. C'est un inconvénient dans la mesure où l'on peut vouloir conférer au substrat, tout particulièrement verrier, et déjà muni de son revêtement, des propriétés mécaniques ou esthétiques qui ne peuvent être obtenues que par des traitements thermiques à des températures qui peuvent approcher la température de ramollissement du verre. Il peut s'agir notamment d'un bombage pour conférer un certain galbe au substrat, d'un recuit pour le durcir, ou d'une trempe pour éviter de blesser en cas de bris.

Le but de l'invention est alors de pallier cet inconvénient, en cherchant à mettre au point un nouveau type de revêtement multicouches anti-reflets qui soit performant optiquement, et qui conserve ses performances que son substrat porteur soit ensuite soumis ou non à un traitement thermique.

L'invention a pour objet un substrat verrier comportant sur au moins une de ses faces un revêtement anti-reflets comprenant un empilement de couches minces de matériau diélectrique d'indices de réfraction alternativement forts et faibles. L'invention consiste à prévenir la modification des propriétés optiques du revêtement au cas où le substrat est soumis à un traitement thermique du type trempe, bombage ou recuit, en prévoyant que la (les) couche(s) de l'empilement qui est (sont) susceptible(s) de détérioration au contact d'ions alcalins du type ions sodium soit (soient) séparée(s) du substrat par au moins

10

15

20

25

30

une couche qui fait partie du revêtement anti-reflets et qui fait « écran » à la diffusion des ions alcalins.

Il s'est en effet avéré, de manière surprenante, que la modification défavorable de l'aspect optique des revêtements anti-reflets sous l'effet de la chaleur était due à la diffusion d'ions alcalins provenant du verre, ces ions venant s'insérer dans au moins certaines des couches du revêtement, et de fait les détériorer en les modifiant structurellement. La solution selon l'invention a alors consisté non pas à bannir du revêtement anti-reflet tout matériau « sensible » aux ions alcalins, mais plutôt à l'isoler de la surface du verre par une couche « écran » bloquant le processus de diffusion des alcalins. Cette couche est en outre choisie de manière à pouvoir remplir, en parallèle, une fonction optique adéquate dans un revêtement anti-reflets. Il ne s'agit donc pas d'une couche additionnelle venant compliquer la structure d'un revêtement anti-reflets habituel, ce qui est très avantageux sur le plan industriel.

Ces couches « écran » permettent donc de fabriquer des revêtements anti-reflets aptes à supporter sans modification optique notable des traitements thermiques, alors même qu'ils comprennent des matériaux sensibles aux alcalins mais présentant beaucoup d'autres avantages par ailleurs. Ainsi, les revêtements anti-reflets de l'invention comprennent de préférence des couches d'oxyde de niobium en tant que couches à haut indice de réfraction, mais disposées dans le revêtement de manière à ne pas pouvoir être en contact avec les alcalins du verre. L'oxyde de niobium est en effet un matériau intéressant, qui, comme évoqué précédemment, se dépose assez rapidement par pulvérisation cathodique réactive, présente un indice de réfraction suffisamment élevé et une durabilité notamment mécanique, satisfaisante.

De préférence, les revêtements anti-reflets selon l'invention sont conçus de manière à ce que, d'une part, les couches de matériau diélectrique dites à faible indice aient un indice de réfraction compris entre 1,38 et 1,68, et, d'autre part les couches de matériau diélectrique dites à fort indice aient un indice de réfraction d'au moins 1,85 et notamment compris entre 2 et 2,45. L'effet anti-reflet n'est en effet pleinement obtenu que s'il y a une différence

10

15

20

25

30

d'indice de réfraction significative entre les couches à haut et bas indices qui se trouvent alternées.

Plusieurs modes de réalisation de la couche « écran » selon l'invention existent. De manière générale, plus elle va se trouver proche de la surface du verre et plus elle va pouvoir stopper au plus vite la diffusion des ions alcalins à travers l'empilement.

Tout d'abord, cette couche écran peut être une des couches à faible indice de l'empilement, notamment la « première» couche à faible indice, c'est-à-dire la couche à faible indice la plus proche du verre. De préférence, cette première couche a une épaisseur optique comprise entre 45 et 60 nm. Elle peut être constituée de différents matériaux qui tous ont un faible indice et stoppent la migration des alcalins, et qui sont notamment choisis parmi l'oxyde de silicium SiO₂, l'oxyde d'aluminium dopé du type Al₂O₃:F ou un mélange de ces composés.

Un revêtement anti-reflets a usuellement comme première couche une couche à haut indice. Quand la couche écran est une couche à faible indice, il est donc important que la couche à haut indice sur laquelle elle se trouve généralement disposée soit choisie en un matériau qui est apte à conserver sensiblement les mêmes caractéristiques, notamment optiques, en cas de traitement thermique. Si ce matériau doit ne pas se détériorer au contact d'ions alcalins, il peut cependant légèrement se modifier sur le plan cristallographique notamment, tant que cela n'a pas de répercussions néfastes sur ses propriétés optiques. Des matériaux tels que l'oxyde d'étain SnO₂, éventuellement dopé, ou à base d'oxyde de zinc ZnO peuvent convenir.

Un autre mode de réalisation peut consister à choisir comme couche « écran » une couche à haut indice de réfraction, notamment la toute première qui se trouve au contact du verre. Elle « protège » aussi toutes les autres couches de l'empilement contre l'attaque par les ions alcalins. Elle a de préférence une épaisseur optique comprise entre 25 et 50 nm. On peut la choisir à base de nitrure de silicium Si₃N₄ ou de nitrure d'aluminium AIN, deux matériaux d'indice proche de 2, bloquant les ions alcalins et inertes vis-à-vis d'eux.

10

15

. 20

25

2730990

- 5 -

Un revêtement anti-reflets selon l'invention peut comprendre seulement deux séquences successives de couches à fort et faible indices. Quatre couches peuvent en effet suffir pour obtenir un effet reflet tout-à-fait remarquable. Dans ce cas, la première séquence comprend la couche « écran » (soit une couche à faible indice, soit une couche à haut indice), et la seconde séquence comprend de l'oxyde de niobium, notamment d'une épaisseur optique comprise entre 245 et 290 nm, et une dernière couche à faible indice du type SiO₂ ou mélange d'oxyde de silicium et d'aluminium, notamment d'une épaisseur optique comprise entre 120 et 150 nm.

Un exemple de cette configuration peut être l'empilement suivant :

verre/SnO₂/SiO₂/Nb₂O₅/SiO₂

la couche « écran » en SiO_2 « protégeant » la couche en Nb_2O_5 qui la recouvre, la couche de SnO_2 restant globalement inerte aux alcalins et ne se dégradant pas sous l'effet de la chaleur.

Selon un troisième mode de réalisation, la couche « écran » selon l'invention se substitue complètement à la première séquence de couches à fort et faible indices, et présente un indice de réfraction intermédiaire, notamment compris entre 1,7 et 1,8. Elle a de préférence une épaisseur optique comprise entre 80 et 120 nm. Une telle couche à indice intermédiaire a un effet optique très similaire à celui d'une séquence couche haut indice/couche bas indice, et présente l'avantage de diminuer le nombre global de couches de l'empilement. Elle est avantageusement à base d'un mélange d'oxyde de silicium et d'étain, ou de silicium et de zinc ou encore à base d'oxynitrure de silicium. La proportion relative entre les différents constituants de ces matériaux permet d'ajuster l'indice de réfraction de la couche.

Un exemple de configuration d'empilement utilisant ce type de couche « écran » peut être le suivant :

verre/SiO_xN_y/Nb₂O₅/SiO₂

Là encore, la couche « écran » en SiO_xN_y « protège » efficacement la couche 30 de Nb_2O_5 qui la recouvre.

Quelque soit le mode de réalisation choisi, l'invention permet la fabrication de substrats verriers porteurs d'un empilement anti-reflets présentant une réflexion lumineuse R_L d'au plus 1%, réflexion qui est

10

15

20

25

30

annie Ling

2730990

conservée à 0,2% près, et même à ± 0,1% près si le substrat verrier subit ensuite un traitement thermique du type bombage, trempe, recuit. De même, leur colorimétrie en réflexion reste quasiment inchangée (notament dans la tonalité des bleus ou bleus-verts), avec selon le système colorimétrique (L*, a*, b*), des variations de a* et b* en réflexion d'au plus 1,5 en valeurs absolues. Globalement, les traitements thermiques n'affectent donc pas l'aspect optique en réflexion de ce type d'empilement anti-reflets, si l'on prend comme référence la sensibilité de l'oeil humain.

- 6 -

Il en découle toute une série d'avantages : une seule configuration de revêtement anti-reflets suffit pour fabriquer des vitrages aussi bien bombés que non bombés, trempés que non trempés.

Il devient inutile d'avoir, d'une part, un type de revêtement dépourvu de couches sensibles aux alcalins pour les substrats à traiter thermiquement, et d'autre part un type de revêtement pouvant posséder ce type de couche, par exemple en Nb₂O₅, pour les substrats non destinés à être traités thermiquement. Cela facilite donc la gestion des stocks et permet d'adapter très rapidement la production à des vitrages soit traités, soit non traités, à la demande, sans plus avoir à se préoccuper du type de revêtement anti-reflets.

Un autre avantage est que l'on peut assembler indifféremment, sur une façade de bâtiment, dans une vitrine par exemple, des vitrages à revêtement anti-reflets, les uns traités thermiquement, les autres non traités thermiquement : l'oeil ne pourra pas détecter de disparité dans l'aspect optique global de l'assemblage de vitrages.

Il devient également possible de vendre les vitrages revêtus non traités thermiquement, en laissant à la discrétion de l'acheteur le soin de les traiter thermiquement, en pouvant lui garantir une constance dans leurs propriétés optiques. De préférence, chacune des faces du substrat verrier est recouverte d'un empilement anti-reflets selon l'invention, afin d'obtenir l'effet anti-reflet maximal,

L'invention a aussi pour objet les vitrages incorporant les substrats revêtus, qu'ils soient monolithiques, feuilletés, ou multiples à lame(s) de gaz intercalaire(s).

10

15

20

25

30

Ces vitrages peuvent être utilisés aussi bien en tant que vitrages intérieurs ou extérieurs de bâtiment qu'en tant que verre de protection d'objet du type tableau, ou qu'en tant que vitrages automobiles.

L'invention a également pour objet le procédé de fabrication des substrats verriers à revêtement anti-reflets. Un procédé consiste à déposer l'ensemble des couches, successivement les unes après les autres, par une technique sous vide, notamment par pulvérisation cathodique assistée par champ magnétique. Ainsi, on peut déposer les couches d'oxyde par pulvérisation réactive du métal en question en présence d'oxygène, et les couches de nitrure en présente d'azote.

Un autre choix peut consister à déposer tout ou partie des couches de l'empilement, notamment la ou les premières couches, par une technique de pyrolyse de précurseurs adaptés.

Il peut s'agir d'une pyrolyse en phase solide, en ayant recours à des précurseurs sous forme de poudre (par exemple du dibutyltrifluorure d'étain pour faire de l'oxyde d'étain), sous forme liquide en dissolvant le(s) précurseur(s) dans un solvant, ou sous forme gazeuse. Dans ce dernier cas, le précurseur est mis sous forme gazeuse. Il peut par exemple s'agir de tétraorthosilicate TEOS ou de SiH₄ pour faire de l'oxyde de silicium. La pyrolyse peut s'effectuer directement et en continu sur le ruban de verre float chaud, les couches suivantes étant alors déposées ultérieurement sur le verre une fois découpé, par une technique sous vide du type pulvérisation cathodique.

Les détails et caractéristiques avantageuses de l'invention vont maintenant ressortir des exemples suivants non limitatifs, à l'aide de la figure 1.

Cette figure, très schématique, représente en coupe un substrat surmonté d'un empilement anti-reflets selon l'invention (les proportions entre l'épaisseur du substrat et celles des couches n'ont pas été respectées pour en faciliter la lecture). En fait, chacune des faces du substrat est munie d'un empilement identique, mais un seul empilement a été représenté pour plus de clarté.

On précise que dans ces exemples, les dépôts successifs de couches minces se font par pulvérisation cathodique réactive assistée par champ

- 9 verre/SnO₂/SiO₂/Nb₂O₅/SiO₂

Les trois dernières couches sont obtenues comme précédemment, avec le même indice. La première est obtenue par pulvérisation cathodique réactive en présence d'oxygène à partir d'une cible d'étain, son indice est d'environ 2.

Le tableau 2 ci-dessous indique, pour chacune des couches de l'empilement, numérotée en référence à la figure 1, la gamme d'épaisseurs géométriques préférée en nm ainsi que son épaisseur précise sélectionnée dans ladite gamme.

TABLEAU 2

	EXEMPLE 1 SELON L'INVENTION	
	Gamme préférée	Epaisseur
SnO ₂ (2)	15 - 25	19
SiO ₂ (3)	30 - 38	33
Nb ₂ O ₅ (4)	110 - 130	115
SiO ₂ (5)	80 - 90	88

10

5

Les substrats revêtus selon l'exemple comparatif et selon l'exemple 1 sont ensuite soumis à un traitement thermique du type recuit consistant en un chauffage pendant 1 heure à une température de 550°C.

Les tableaux 3 et 4 ci-dessous indiquent, pour chacun des deux substrats, avant puis après traitement thermique, les données photométriques suivantes :

- valeur de réflexion lumineuse R_L en %, selon l'illuminant D₆₅, à incidence normale,
- valeurs de a*_(R), b*_(R) et L* en réflexion, sans unité, selon le système de colorimétrie (L, a*, b*)

- 10 -TABLEAU 3

	EXEMPLE COMPARATIF		
	Avant traitement thermique	Après traitement thermique	
R _L	0,7	0,5	
a* _(R)	- 2,8	3,5	
b* _(R)	0,0	- 2	
L* _(R)	6,5	5	

TABLEAU 4

	EXEMPLE 1 SEL	EXEMPLE 1 SELON L'INVENTION		
	Avant traitement thermique	Après traitement thermique		
R _L	0,55	0,66		
a* _(R)	- 6,55	- 7,94		
b* _(R)	- 0,47	+ 0,89		
L* _(R)	4,98	5,98		

5 EXEMPLE 2 SELON L'INVENTION

15

Cet exemple utilise un revêtement anti-reflets tri-couche, suivant la séquence suivante :

verre/SiO_xN_y/Nb₂O₅/SiO₂

Les deux dernières couches sont faites comme les couches de Nb₂O₅ et 10 SiO₂ des exemples précédents. La première couche est obtenue par pulvérisation cathodique réactive en présence d'une atmosphère O₂/N₂ à partir d'une cible de silicium dopé à l'aluminium ou au bore.

La couche de SiO_xN_y a un indice de réfraction d'environ 1,75. Le tableau 5 ci-dessous indique pour chacune des trois couches leurs gammes d'épaisseur géométrique préférées ainsi que leurs épaisseurs précises.

15

2730990

- 11 -TABLEAU 5

	EXEMPLE 2	
	Gamme préférée	Epaisseur
SiO _x N _y (7)	55 - 65	61
Nb ₂ O ₅ (3)	100 - 110	104
SiO ₂ (4)	80 - 90	86

Le substrat est apte à supporter le même type de traitement thermique que celui subi dans les exemples précédents, sans modification notable de son aspect en réflexion.

De tous ces résultats peuvent être tirées les conclusions suivantes. Du tableau 4, on voit que :

- les revêtements anti-reflets selon l'invention confèrent aux substrats verriers des valeurs de réflexion lumineuse très faibles, inférieures à 1 % (à comparer à la réflexion lumineuse d'environ 8% qu'auraient ces mêmes substrats sans revêtement),
- leur couleur en réflexion est également très neutre, notamment dans les bleus-verts très atténués en ce qui concerne l'exemple 1, ce qui est une tonalité esthétique, recherchée actuellement, notamment pour les vitrages équipant des bâtiments,
- leurs caractéristiques optiques ne se modifient pas, ou très peu, lorsque les substrats sont soumis à un traitement à forte température, et tout particulièrement leur aspect en réflexion.

Ainsi, la variation dans la valeur de R_L, notée ΔR_L, est minime, de l'ordre de 0,1%. Et ce qui est peut-être plus important encore, c'est que leur colorimétrie favorable en réflexion est maintenue : la variation du facteur a*, notée Δa* est en valeurs absolues inférieure à 1,35. La variation du facteur b* notée Δb* est du même ordre. Si l'on calcule la valeur de ΔE à partir des données du tableau 4, valeur définie par $\sqrt{\Delta L^{*2} + \Delta a^{*2} + \Delta b^{*2}}$, c'est-à-dire la racine carrée de la somme des carrés des variations de a*, b* et L*, on trouve la valeur de 2,2, valeur qui atteint les limites de la sensibilité de l'oeil humain, qui n'arrive donc pas, ou à peine, à faire la distinction entre un substrat à

10

15

. 20

2730990

- 12 -

empilements anti-reflets traité thermiquement et le même substrat non-traité, restant dans les deux cas dans une tonalité bleue-verte.

Cela n'est pas le cas de l'exemple comparatif 1. Si l'on se reporte au tableau 3, on voit en effet que le traitement thermique modifie notablement l'aspect en réflexion du substrat : dans l'exemple selon l'invention, la tonalité bleue-verte était maintenue, alors que dans cet exemple comparatif, la couleur en réflexion bascule du vert au mauve/violet, tonalité peu appréciée sur le plan esthétique. Ce changement de couleur est parfaitement repérable par un observateur : si l'on calcule pour cet exemple comparatif, la valeur de ΔΕ précédemment définie, on aboutit à un chiffre d'environ 7,7, valeur appartenant à la plage de sensibilité de l'oeil humain.

Les raisons de ce changement d'aspect sont que la première couche d'oxyde de niobium, c'est-à-dire la plus proche du verre, subit sous l'effet de diffusion des ions sodium Na⁺ à haute température, une modification structurelle très importante : elle se transforme en un sel de sodium ne présentant plus aucune des propriétés de l'oxyde de départ.

L'invention permet donc d'établir un compromis, en conservant dans ses empilements anti-reflets des oxydes du type Nb₂O₅ sensibles aux alcalins, mais en prévoyant de les isoler du verre par des couches « écran » adaptées, ceci afin de fabriquer des vitrages que l'on peut sans crainte durcir, bomber ou tremper après dépôt des empilements.

E.P.

10

15

20

30

- 13 - **REVENDICATIONS**

- 1. Substrat verrier (1) comportant sur au moins une de ses faces un revêtement anti-reflets (6) fait d'un empilement de couches minces de matériau diélectrique d'indices de réfraction alternativement forts et faibles, caractérisé en ce qu'en vue de prévenir la modification des propriétés optiques dudit revêtement (6) au cas où ledit substrat (1) est soumis à un traitement thermique du type trempe, bombage ou recuit, la (les) couche(s) (4) de l'empilement susceptible(s) de détérioration au contact d'ions alcalins du type ions sodium est (sont) séparée(s) dudit substrat (1) par au moins une couche faisant partie du revêtement anti-reflets (6) et faisant « écran » à la diffusion des alcalins.
- 2. Substrat verrier (1) selon la revendication 1, caractérisé en ce que les couches de matériau diélectrique dites à faible indice (3, 5) ont un indice de réfraction compris entre 1,38 et 1,68 et en ce que les couches de matériau diélectrique dites à fort indice (2, 4) ont un indice de réfraction d'au moins 1,85, notamment compris entre 2 et 2,45.
- 3. Substrat verrier (1) selon l'une des revendications 1 ou 2, caractérisé en ce que la (les) couche(s) (4) susceptible(s) de détérioration au contact d'ions alcalins est (sont) celle(s) à fort indice et à base d'oxyde de niobium Nb₂O₅.
- 4. Substrat verrier (1) selon l'une des revendications précédentes, caractérisé en ce que la couche « écran » est une couche à faible indice de l'empilement (6), notamment la première (3), de préférence ayant une épaisseur optique d'environ 45 à 60 nm.
- 5. Substrat verrier (1) selon la revendication 4, caractérisé en ce que la couche « écran » (3) à faible indice de réfraction est à base d'oxyde de silicium, d'oxyde d'aluminium dopé du type Al₂O₃:F ou d'un mélange de ces matériaux.
 - 6. Substrat verrier (1) selon la revendication 4 ou 5, caractérisé en ce que la couche « écran » (3) à faible indice est disposée sur une couche (2) à fort indice choisie dans un matériau conservant sensiblement les mêmes caractéristiques, notamment optiques, en cas de traitement thermique du

15

20

25

substrat, et qui est notamment choisi à base d'oxyde d'étain SnO₂ éventuellement dopé ou à base d'oxyde de zinc ZnO.

- 7. Substrat verrier (1) selon l'une des revendications 1 à 3, caractérisé en ce que la couche « écran » est une couche à fort indice de l'empilement (6), notamment la première (2), de préférence ayant une épaisseur optique de 25 à 50 nm.
- 8. Substrat verrier (1) selon la revendication 7, caractérisé en ce que la couche « écran » à fort indice est à base de nitrure de silicium Si₃N₄ ou de nitrure d'aluminium AIN.
- 9. Substrat verrier (1) selon l'une des revendications précédentes, caractérisé en ce que le revêtement anti-reflets (6) comprend deux séquences successives de couches à fort et faible indices, la première séquence (2, 3) comprenant la couche « écran », la seconde séquence (4, 5) comprenant une couche d'oxyde de niobium, notamment d'environ 245 à 290 nm d'épaisseur optique, et une couche à faible indice du type SiO₂ ou mélange d'oxydes de silicium et d'aluminium, notamment de 120 à 150 nm d'épaisseur optique.
 - 10. Substrat verrier (1) selon la revendication 9, caractérisé en ce que le revêtement anti-reflets (6) comprend la séquence SnO₂/SiO₂/Nb₂O₅/SiO₂.
- 11. Substrat verrier (1) selon l'une des revendications 1 à 3, caractérisé en ce que la couche « écran » (7) se substitue à la première séquence (2, 3) de couches à fort et faible indices, en présentant un indice de réfraction intermédiaire compris entre 1,7 et 1,8, et de préférence une épaisseur optique de 80 à 120 nm.
- 12. Substrat verrier (1) selon la revendication 11, caractérisé en ce que la couche « écran » (7) à indice intermédiaire est à base d'un mélange d'oxydes de silicium et d'étain, ou de silicium et de zinc, ou encore à base d'oxynitrure de silicium.
 - 13. Substrat verrier (1) selon la revendication 12, caractérisé en ce que le revêtement anti-reflet (6) comprend la séquence SiO₂N₂/Nb₂O₅/SiO₂.
- 30 14. Substrat verrier (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un revêtement anti-reflets (6) sur chacune de ses faces.

10

15

2730990

- 15 -
- 15. Substrat verrier (1) selon l'une des revendications précédentes, caractérisé en ce qu'il présente une réflexion lumineuse R_L d'au plus 1% et une couleur bleue ou bleue-verte en réflexion, avec des variations de R_L d'au plus 0,1% et des variations de a^* et b^* en réflexion d'au plus 1,35 après traitement thermique du type bombage, trempe, recuit.
- 16. Vitrage monolithique, feuilleté ou multiple à lame(s) de gaz intercalaire(s), caractérisé en ce qu'il incorpore le substrat (1) à revêtement anti-reflets (6) selon l'une des revendications précédentes.
- 17. Application des substrats (1) à revêtement anti-reflets (6) selon l'une des revendications 1 à 15 à la fabrication de vitrages intérieurs ou extérieurs de bâtiment, ou de verres de protection d'objets type tableaux, ou de vitrages automobiles.
- 18. Procédé de fabrication du substrat verrier (1) à revêtement antireflets (6) selon l'une des revendications 1 à 15, caractérisé en ce qu'on
 dépose la ou les premières couches du revêtement par pyrolyse de précurseurs
 adaptés, notamment directement sur le ruban de verre float, et en ce qu'on
 dépose les couches suivantes par une techniques de dépôt sous vide du type
 pulvérisation cathodique, une fois le verre découpé.

المارية

:

2730990

1/1

FIG.1

REPUBLIQUE FRANÇAISE

2730990

INSTITUT NATIONAL

RAPPORT DE RECHERCHE **PRELIMINAIRE**

PROPRIETE INDUSTRIELLE

établi sur la base des dernières revendications

FA 510853 FR 9502102

DOCI ntigorio	UMENTS CONSIDERES COMME PERTINENTS Citation de decument avec indication, cu cas de bessin.	Revendications concuratus de la demande	
- Series	des parties pertinentes	cominée	
	EP-A-0 263 541 (PHILIPS GLOEILAMPENFABRIEKEN) 13 Avril 1988 * page 4, ligne 1 - ligne 20 *	1-5,9,15	
,Υ	MO-A-92 04185 (VITRATEC THIN FILMS INC.) 13 Mars 1992 * Te document en entier *	1-18	·
*-	US-A-4 995 893 (M:S. JENKINS ET AL.) 26 Février 1991 * colonne 1, ligne 22 - colonne 2, ligne 61 *	1-5,7-9, 11-18	
	US-A-2 617 741 (W.O.LYTLE) 11 Novembre 1952 * revendication 1 *	1-6,8	
	EP-A-0 544 577 (SAINT GOBAIN VITRAGE INTERNATIONAL) 2 Juin 1993 * revendications 8,9 *	5-13	
	CHENICAL ABSTRACTS, vol. 101, no. 8, 20 Août 1984 Columbus, Ohio, US; abstract no. 59131a, page 241; * abrégé * & JP-A-05 945 943 (JAPAN AUTO PARTS INDUSTRIES) 15 Mars 1984	6,10	DOMAINES TECHNIQUES RECHERCHES (bs.CL.6) CO3C
	Det Fathbassat & la nchech 9 Novembre 1995	Res	edijk, A
Y : pa	CATEGORIE DES DOCUMENTS CITES T : théorie ou parts E : document de la	ipo à la base de l evet bladdicions d	

1

- & : mimbre de la même famille, document correspondant