EE5175: Image Signal Processing Lab-12

Non-local Means Filtering

In this experiment, we will implement non-local means (NLM) filtering algorithm for the application of denoising.

You are given a noisy image, **g** (krishna_0_001.png), corresponding to a latent image, **f** (krishna.png), corrupted with additive Gaussian noise of mean 0 and variance 0.001. Your task is to apply NLM filtering on **g** following the steps in the given pseudocode to arrive at the denoised image, **f**.

The parameters of the algorithm are the search neighbourhood radius W, the similarity neighbourhood radius W_{sim} and the filter parameter σ_{NLM} . A radius of W at a pixel denotes a window size of $(2W+1)\times(2W+1)$ around that pixel. The same applies to W_{sim} .

- Q1. Show plots between the PSNR between \mathbf{f} and $\hat{\mathbf{f}}$ (y-axis) for different NLM filter parameter values $\sigma_{NLM} = 0.1$ to 0.5 in steps of 0.1 (x-axis) for the following search radius and similarity radius settings:
 - (a) $W = 3, W_{sim} = 3,$
 - (b) $W = 5, W_{sim} = 3.$

Show two plots in the same window with two different colours corresponding to (a) and (b). Compare the PSNR plots with the baseline PSNR between the noisy image \mathbf{g} and the latent image \mathbf{f} .

Q2. We will now compare NLM filtering with the traditional Gaussian filtering. Denoise **g** using space-invariant Gaussian filter with $\sigma_g = 0.1$ to 0.5 in steps of 0.1 having a kernel window size of 7×7 for all σ_g values. Calculate the PSNR between the denoised images and **f**. Add this plot to the plot window in **Q1**.

For the following filtering settings: (a) W = 5, $W_{sim} = 3$, $\sigma_{NLM} = 0.5$ for the NLM filtering, and (b) $\sigma_g = 1.0$ for Gaussian filtering, and at the following pixel locations **p**: (i) row = 31, column = 46, and (ii) row = 38, column = 58, (total four combinations), do **Q3** and **Q4**.

- **Q3.** Show the 11×11 filter (kernel) as an image.
- **Q4.** Show the 11×11 image patch from the noisy image and the denoised images.

Pseudocode:

Read the noisy image \mathbf{g} and the latent image \mathbf{f} in the intensity range [0,1] for every pixel position \mathbf{p} do

// Obtain similarity neighbourhood around p

Take the RGB patch \mathcal{N}_p around \mathbf{p} of radius W_{sim} in the image \mathbf{g} Vectorize the patch \mathcal{N}_p as a column vector \mathbf{V}_p

- // Form the filter $\mathbf{w_p}$ at pixel \mathbf{p} .
- // It can be formed as a 1D vector and visualized as a 2D matrix.
- // We form a single filter for all three colour components.

for every pixel position \mathbf{q} around \mathbf{p} within radius W do

// Obtain similarity neighbourhood around q

Take the RGB patch \mathcal{N}_q around \mathbf{q} of radius W_{sim} in the image \mathbf{g} Vectorize the patch \mathcal{N}_q as a column vector \mathbf{V}_q

The value of the filter \mathbf{w}_p for the position \mathbf{q} is given by

$$\mathbf{w}_{\mathbf{p}}(q) = \exp\left(\frac{-\left(\mathbf{V}_{p} - \mathbf{V}_{q}\right)^{T}\left(\mathbf{V}_{p} - \mathbf{V}_{q}\right)}{\sigma_{NLM}^{2}}\right)$$

end for

Normalize $\mathbf{w_p} \leftarrow \mathbf{w_p} / \sum \mathbf{w_p}$

// Obtain search neighbourhood patch around p

Take the RGB patches $\mathcal{N}_p^W(\mathtt{R})$, $\mathcal{N}_p^W(\mathtt{G})$, $\mathcal{N}_p^W(\mathtt{B})$ around \mathbf{p} of radius W in the image \mathbf{g} separately Vectorize them as column vectors $\mathbf{V}_p^W(\mathtt{R})$, $\mathbf{V}_p^W(\mathtt{G})$, $\mathbf{V}_p^W(\mathtt{G})$

- // Calculate the filtered output at pixel **p**
- // Use the same filter for all colour channels

The intensity at the output pixel **p** for each colour channel is given by

$$\mathbf{\hat{f}}(\mathbf{p},\mathtt{R}) = \mathbf{V}_p(\mathtt{R})^T\mathbf{w_p}$$

$$\mathbf{\hat{f}}(\mathbf{p}, \mathbf{G}) = \mathbf{V}_p(\mathbf{G})^T \mathbf{w_p}$$

$$\mathbf{\hat{f}}(\mathbf{p},\mathtt{B}) = \mathbf{V}_p(\mathtt{B})^T\mathbf{w_p}$$

- // Calculate the PSNR
- // MSE : Mean Squared Error
- // PSNR : Peak Signal-to-Noise Ratio
- // The operation here assumes f and \hat{f} are column vectors.

MSE= $(\mathbf{f} - \hat{\mathbf{f}})^T (\mathbf{f} - \hat{\mathbf{f}})$ /(total number of pixels including all colour channels) PSNR= $10 \log_{10} \left(\frac{1}{MSE} \right)$

end for

Note:

The general formula for PSNR is $10 \log_{10} \left(\frac{\text{MAX} * \text{MAX}}{\text{MSE}} \right)$, where MAX is the maximum image intensity value. We use MAX=1 in this experiment.