同学们好

重要内容回顾:

薛定谔方程的一维定态应用

- 能量量子化
- 无限深势阱驻波解
- 对势垒的隧道效应
- 一维线性谐振子势壁穿透

$$E_n = (n + \frac{1}{2}) \hbar \omega = (n + \frac{1}{2}) h v$$

$$k = \frac{n\pi}{a}, \psi(x) = \sqrt{\frac{2}{a}} \sin kx$$

$$\Psi(x,t) = \sqrt{\frac{2}{a}} \sin \frac{n \pi x}{a} e^{-\frac{i}{\hbar}Et}$$

$$|\Psi(x,t)|^2 = \frac{2}{a}\sin^2\frac{n\pi x}{a}$$

原子中的电子 原子的壳层结构

要求: 思路,重要结论

- 一、氢原子中电子的波函数及其概率分布
- 1. 氢原子的定态薛定谔方程
- 學逐數 $V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$

设电子质量m, 代入三维定态薛定谔方程

得
$$\left(-\frac{\hbar^2}{2m}\nabla^2 - \frac{e^2}{4\pi\,\varepsilon_0 r}\right)\psi = E\psi$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

■ 球坐标下的定态薛定谔方程

$$x = r\sin\theta\cos\varphi$$

$$y = r \sin \theta \sin \varphi$$

$$z = r \cos \theta$$

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$= \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

$$\frac{\hbar^{2}}{2m} \left[\frac{\partial^{2} \psi}{\partial r^{2}} + \frac{2}{r} \frac{\partial \psi}{\partial r} + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial \psi^{2}}{\partial \varphi^{2}} \right] + \left(E + \frac{e^{2}}{4\pi \varepsilon_{0} r} \right) \psi = 0$$

 $y = r \sin \theta \sin \phi$

■ 分离变量法求解定态方程

将 $\psi(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi)$

代入方程,得

$$\frac{\mathrm{d}\Phi^2}{\mathrm{d}^2\varphi} + m_l^2\Phi = 0$$

$$\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}\theta} \right) + \left(\lambda - \frac{m_l^2}{\sin^2\theta} \right) \Theta = 0$$

$$\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial R}{\partial r}) + \left[\frac{2m}{\hbar^2} \left(E + \frac{e^2}{4\pi \varepsilon_0 r} \right) - \frac{\lambda}{r^2} \right] R = 0$$

$2. 三个量子数<math>n, l, m_l$

$$\psi_{n,l,m_l}(r,\theta,\varphi) = R_{n,l}(r) \cdot \Theta_{l,m_l}(\theta) \cdot \Phi_{m_l}(\varphi)$$
 径向函数 角谐函数
波函数 $\Psi(\vec{r},t) = \psi(r,\theta,\varphi) e^{-\frac{\mathrm{i}E}{\hbar}t} = R(r) \cdot \Theta(\theta) \cdot \Phi(\varphi) e^{-\frac{\mathrm{i}E}{\hbar}t}$

■能量量子化和主量子数(principle quantum number)

$$E_n = -\frac{1}{n^2} \left(\frac{me^4}{8\varepsilon_0^2 h^2} \right) = -\frac{13.6}{n^2} \text{ eV}$$
 $n = 1, 2, 3, \dots$

- 能量是量子化的;
- 当主量子数 $n \to \infty$ 时, $E_n \to$ 连续值。

E > 0 能量可连续取值

—— 氢原子电离, 电子为自由电子

■ 角动量量子化和角量子数(orbital quantum number)

轨道角动量大小: $L = \sqrt{l(l+1)}\hbar$

轨道量子数: $l=0,1,2,\cdots,(n-1)$

原子内电子能级的名称

n l	0 \$	1 p	2 d	f	4 g	5 h	6 <i>i</i>	
1(K)	1 <i>s</i>				考虑相对论效应			
2(L)	2s	2p			J #	E = E		
3(M)	3s	3 <i>p</i>	3 <i>d</i>		42			51
4(N)	4s	4 <i>p</i>	4 <i>d</i>	4 <i>f</i>	技	(n + 0.7)	ℓ大小排	yij
5(O)	5 <i>s</i>	5 <i>p</i>	5 <i>d</i>	5 <i>f</i>	5 <i>g</i>			
6(P)	6 <i>s</i>	6 <i>p</i>	6 <i>d</i>	6 <i>f</i>	6 <i>g</i>	6 <i>h</i>		
7(Q)	7 <i>s</i>	7 <i>p</i>	7 <i>d</i>	7 <i>f</i>	7 <i>g</i>	7 <i>h</i>	7i	

■ 角动量空间量子化和磁量子数(Magnetic quantum number)

电子轨道角动量 \bar{L} 在空间取向只能沿一些不连续的特殊方向,使 \bar{L} 在z方向分量 L_z 取值量子化

轨道角动量z分量: $L_z = m_l \hbar$

磁量子数: $m_l = 0, \pm 1, \pm 2, \dots, \pm l$

- · 对于同一L,它在 z方向的投影可以 取2l+1个值,因此 L与z方向的夹角θ 也只可能是2l+1个 确定值;
- L在空间的取向是 量子化的。

$$L = \sqrt{2(2+1)}\hbar = \sqrt{6}\hbar$$

轨道角动量空间"量子化"示意图

经典
$$\mu = I \cdot S = \frac{e\omega}{2\pi} \cdot \pi r^2$$

$$L = J\omega = mr^2\omega$$

$$\vec{\mu} = -\frac{e}{2m}\vec{L}$$

量子
$$\mu = \frac{e}{2m} \sqrt{l(l+1)}\hbar$$
 $(l=0,1,2,...n-1)$

$$\mu_z = \frac{e}{2m} L_z = \frac{e}{2m} m_l \hbar$$

$$(m_l = 0, \pm 1 \cdots \pm l)$$

玻尔磁子:
$$\mu_B = \frac{e}{2m}\hbar$$

$$\mu = \sqrt{l(l+1)} \ \mu_B \qquad \mu_z = m_l \mu_B$$

$$\mu_z = m_l \mu_B$$

■电子状态

$$\sum_{l=0}^{n-1} (2l+1) = n^2$$

能级简并:一个能级对应一个以上状态(波函数)

简并度(degeneracy)
$$\sum_{l=0}^{n-1} (2l+1) = n^2$$

能级简并产生的原因:

- 口 电子所处的势能具有球对称性;
- 口 库仑力具有比一般有心力场更高的对称性.

3. 氢原子中电子的概率分布

$$P(\vec{r}) = \left| \psi(\vec{r}) \right|^2 \mathrm{d}V$$

概率密度

$$|\psi|^2 = |R(r) \cdot \Theta(\theta) \cdot \Phi(\varphi)|^2$$

体积元 dV = ?

 $dV = r^2 \sin\theta \, dr \, d\theta \, d\varphi$

电子在体积元dV中出现的概率

$$|\psi|^2 \cdot dV = |R|^2 r^2 dr |\Theta \cdot \Phi|^2 \sin \theta d\theta d\phi$$
 径向概率 角向概率

■电子径向概率分布

$$P_{nl}(r)dr = R^2_{nl}(r)r^2dr$$

 $在r\to\infty$ 和 $r\to0$,概率为零.

电子在离核r不同处出现的概率不等,某些极大值与玻尔轨道半径 $r = n^2 a_0$ 对应,,说明玻尔理论只是量子结果不完全的近似。

最概然半径(most propable radius): 概率取极大值的位置

氢原子基态(1s)的最可几半径为 $a_0 = 0.0529$ nm

■概率的角分布

 $P(\theta, \varphi) = |Y_{l,m_l}(\theta, \varphi)|^2 \sin\theta \, d\theta \, d\varphi = |\Theta_{l,m_l}(\theta) \cdot \Phi_{m_l}(\varphi)|^2 \sin\theta \, d\theta \, d\varphi$

电子在某方向上单位立体角内出现的概率对z轴旋转对称分布

p电子的概率角分布

部分 $Y_{lm_l}(\theta,\varphi)$ 函数:

$$l = 0, m_l = 0$$
$$Y_{0, 0} = \frac{1}{\sqrt{4\pi}}$$

$$l = 2, m_l = 2$$

$$Y_{2,2} = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{2i\varphi}$$

$$l=1, m_l=1$$

$$Y_{1, 1} = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\varphi}$$

$$l=2, m_l=1$$

$$Y_{2,1} = -\sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta \, \mathrm{e}^{\mathrm{i}\varphi}$$

$$l = 1, m_l = 0$$

$$Y_{1, 0} = \sqrt{\frac{3}{4\pi}} \cos \theta$$

$$l = 2, m_l = 0$$

$$Y_{2,0} = \sqrt{\frac{5}{16\pi}} (3\cos^2\theta - 1)$$

■氢原子的电子云

电子在核外不是按一定的轨道运动,量子力学不能断言电子一定出现在核外某确切位置,只给出电子在核外各处出现的概率,其形象描述——"电子云"(点击看图)

——每瞬间氢原子核外电子照片的叠加电子出现概率大处:雾点密度大电子出现概率小处:雾点密度小

视频1:48

小结: 氢原子系统的量子化

主量子数: n = 1,2,3... 表征能量量子化

$$E = -\frac{1}{n^2} \left(\frac{me^4}{32\pi^2 \varepsilon_0^2 \hbar^2} \right) = \frac{E_1}{n^2}$$
 $E_1 = -13.6 \text{ eV}$

角量子数: l = 0,1,2,...n-1 表征角动量量子化

$$L = \sqrt{l(l+1)}\hbar$$
 可取 n 个值

对氢原子系统能量有影响 $E = E(n, \ell)$

磁量子数: $m_l = 0,\pm 1,\pm 2,...\pm l$ 表征角动量空间取向量子化

$$L_z = m_l \hbar \qquad \qquad \mathbf{可取}(2l+1)$$
个值

"轨道"磁矩量子化

$$\mu = \sqrt{l(l+1)} \ \mu_B \qquad \mu_z = m_l \mu_B \qquad \mu_B = \frac{e}{2m} \hbar$$

二、电子的自旋 施特恩-盖拉赫实验

1. 电子自旋提出的实验基础

1925年Uhlenbeck和Goudsmit 提出电子自旋(electron spin)。

G.E. Uhlenbeck 1900-1988

S.A. Goudsmit 1902-1979

磁场如何作用于原子的?

Pieter Zeeman 1865-1943

(2) 碱金属光谱的精细结构

碱金属的每一条光谱线是 由两条或三条线组成。

能级跃迁不会出现这种精细结构. 什么原因引起?

(3) Stern-Gerlach实验(1922年)

s态的银原子经过狭缝 和不均匀磁场后,分裂成上 下对称的两束.

Otto Stern 1888-1969 **1943年获Nobel**奖

Walter Gerlach 1889-1979

目的: 研究角动量空间量子化

原子射线在非均匀磁场中偏转 $\vec{M} = \vec{\mu} \times \vec{B}$

无空间量子化: 屏上得连成一片原子沉积

存在空间量子化:屏上得(21+1)条分离原子沉积

实验结果无法用上述三个量子数解释:

Ag: 5s n = 5, l = 0, $m_l = 0$, $\mu = 0$

分裂不是由于轨道磁矩与外场相互作用引起

2. 电子自旋

对应的经典模型及解释:

电子绕自身轴自旋, 具有内禀角动量, 分裂是自旋磁矩与磁场相互作用的结果. *\S*

(1) 电子自旋角动量S的大小

与"轨道"角动量类比

令
$$S = \sqrt{s(s+1)}\hbar$$
 $S_z = m_s\hbar$ $|m_s| \le s$ 取(2s+1)个值

由史特恩-盖拉赫实验

$$2s+1=2$$
 $s=\frac{1}{2}$ $m_s=\pm\frac{1}{2}$

s: 自旋量子数(spin quantum number)

(2) 自旋角动量的空间量子化

$$S_z = m_s \hbar \qquad m_s = \pm \frac{1}{2}$$

ms: 自旋磁量子数

(spin magnetic quantum number)

(3) 每个电子具有自旋磁矩 μ_s , 它和自旋角动量S的 关系:

$$\mu_s = \frac{-e}{m}S$$

 μ_s 在空间中任意方向的投影: $\mu_{s_z} = \pm \frac{e\hbar}{2m} = \pm \mu_B$

玻尔磁子 $\mu_B = 0.927 \times 10^{-23} \, \text{A} \cdot \text{m}^2$

原子中电子状态的四个量子数 (n, l, m_l, m_s)

名称	符号	取值	物理意义	对应的经 典模型
主量子数	n	1,2…	决定电子能量的主要部分 n同称为同一壳层,如K,L,M	轨道"
角量子数	l	0,1,n-1 可取n个值	决定电子"轨道"角动量 $ \vec{L} = \sqrt{l(l+1)}\hbar$ 对电子能量有影响	运动
磁量子数	m_l	0,±1,···± <i>l</i> 可取2 <i>l</i> +1个值	决定"轨道"角动量在外场中的取向 $L_s=m_l\hbar$	
自 旋磁量子数	$m_{_S}$	$\pm \frac{1}{2}$	决定电子"自旋"角动量在'外场中的取向 $S_z=m_s\hbar$	'自旋"

 $\psi_{n,l,m_l,m_s}(r,\theta,\varphi,s_z) = R_{n,l}(r) \cdot \Theta_{l,m_l}(\theta) \cdot \Phi_{m_l} \chi_{m_s}(s_z)$

三、泡利原理 多电子原子的壳层结构

- 1. 决定原子中电子状态的四个量子数 (n, l, m_l, m_s)
- 2. 电子分布遵循的两个基本原理
- 1) 泡利不相容原理

(Pauli exclusion principle)

在同一原子中,不可能有两个或两个以上的电子处在完全相同的量子态,即不可能具有完全相同的四个量子数 (n, l, m_l, m_s)

W. Pauli 1900-1958

同一支壳层(subshell) l相同

 m_l 的可能值为 -l, (-l+1), ...,0, ...(l-1), l,

最多 2(2*l*+1)**个电子**

同一壳层(shell) l 的可能值为 0,1,2...(n-1) 共有 n 个值同一支壳层, m_l 的可能值为 (2l+1)个而 m_s 的取值为 -1/2 和 1/2,有两个值

同一
$$n$$
下共有 $z_n = \sum_{l=0}^{n-1} 2(2l+1) = 2n^2$ 个量子态

例:基态氢原子有2个量子态

$$(n, l, m_l, m_s) = (1, 0, 0, \frac{1}{2}), (1, 0, 0, -\frac{1}{2})$$

第一激发态氢原子有8个量子态

$$(n, l, m_l, m_s) = (2,0,0,\pm \frac{1}{2}), (2,1,0,\pm \frac{1}{2})$$

$$(2,1,1,\pm\frac{1}{2}), (2,1,-1,\pm\frac{1}{2})$$

2) 能量最小原理

正常情况下,原子中电子趋向于占有最低能级,原子系统能量最小时最稳定 ---- 基态

电子不完全是按照K、L、M、N、... 等主壳层次序排列,而是按下列次序在 各个分壳层上排列:

接n+0.7l大小排列

四、元素周期表

练习:

- 1. n = 3时可能出现的轨道角动量为 $0, \sqrt{2\hbar}, \sqrt{6\hbar}$ 该壳层最多容纳 18 个电子
- 2. D支壳层电子轨道角动量的可能值为 $\sqrt{6\hbar}$ 角动量在外场方向投影的可能值为 $0, \pm \hbar, \pm 2\hbar$ 该支壳层最多容纳 ____10__ 个电子

3. Stern-Gerlach实验的解释

考虑质量为M,处于s态的银原子以速度v经过狭缝后进入z方向的磁场,则通过距离d所经历的时间t = d/v.

磁矩与磁场的作用能: $W = -\mu B$

作用力:
$$f = -\frac{\partial W}{\partial z} = \frac{\partial \mu \cdot \mathbf{B}}{\partial z} = \mu_{s_z} \frac{\partial B}{\partial z} = \pm \mu_B \frac{\partial B}{\partial z}$$

加速度:
$$a = \frac{f}{M} = \pm \frac{\mu_B}{M} \frac{\partial B}{\partial z}$$
 氢原子分裂为两束

若原子偏离中心的距离为D,则有

$$D = \frac{1}{2}at^2 = \pm \frac{\mu_B}{2M} \frac{\partial B}{\partial z} \left(\frac{d}{v}\right)^2$$