Modèle standard et théories de jauge

PHY 575 B

Vincent Verbavatz & Mikael Frosini 14 novembre 2016

Table des matières

I\ Introduction	1
	de la matière
1. Cham	nps et formalisme Lagrangien
1.1.	Champs relativistes et champs quantiques
1.2.	Lagrangiens et champs
1.3.	Seconde quantification
2. Chan	np électromagnétique
2.1.	Formalisme tensoriel et équations de Maxwell
2.2.	Équations de Lagrange du champ électromagnétique
3. Chan	np de Klein-Gordon
3.1.	Équation de Klein-Gordon
3.2.	Champ de spin 0
-	ap de Dirac
4.1.	Équation de Dirac
4.1.	Channel de Dirac
	Champ de spin $\frac{1}{2}$
	tries
1. Syme 1.1.	
1.1. 1.2.	Symétries et invariances
1.2. 1.3.	Globales
1.3. 1.4.	Distinction abéliennes / non abéliennes
	sformations
2. Trans 2.1.	Cas de l'électromagnétisme
$\frac{2.1.}{2.2.}$	Transformations de jauge et lagrangien
2.3.	Dérivée covariante
_	ap de jauge
3.1.	Introduction au champ de jauge
3.2.	Lagrangien
3.3.	Quantification
3.3.	ndard et brisure de symétrie
	entation qualitative du modèle standard
1.1.	Symétries du modèle standard
1.2.	Matière
1.3.	Bosons de jauge
1.4.	Boson de Higgs
	actions électrofaibles.
2.1.	Lagrangien d'interaction
2.2.	Mécanisme de brisure de symétrie
2.3.	Interprétation
	action forte
3.1.	Symétrie de couleur
3.2.	Lagrangien d'interaction
3.2.	Remarque sur la portée d'interaction

$V\setminus$	Au delà du modèle standard
Α	Rappel sur le formalisme lagrangien classique
В	Boson de Higgs et énergie du vide

I\ Introduction

II\ Dynamique de la matière

- 1. Champs et formalisme Lagrangien
- 1.1. Champs relativistes et champs quantiques
- 1.2. Lagrangiens et champs
- 1.3. Seconde quantification
- 2. Champ électromagnétique
- 2.1. Formalisme tensoriel et équations de Maxwell
- 2.2. Équations de Lagrange du champ électromagnétique
- 3. Champ de Klein-Gordon
- 3.1. Équation de Klein-Gordon
 - > Principe de correspondance
- $\,\,\vartriangleright\,\,$ Équation de Klein-Gordon pour une particule libre de spin 0
 - > Optionnel: Limite non relativiste
- 3.2. Champ de spin 0

 - Quantification du champ
 - > Interprétation
- 4. Champ de Dirac
- 4.1. Équation de Dirac

- ⊳ Symétries de l'équation de Dirac
- 4.2. Champ de spin $\frac{1}{2}$
 - > Formalisme Lagrangien

III\ Théorie de Jauge

- 1. Symétries
- 1.1. Symétries et invariances
- 1.2. Globales
- 1.3. Locales
- 1.4. Distinction abéliennes / non abéliennes
- 2. Transformations
- 2.1. Cas de l'électromagnétisme
- 2.2. Transformations de jauge et lagrangien
- 2.3. Dérivée covariante
- Champ de jauge
- 3.1. Introduction au champ de jauge
- 3.2. Lagrangien
- 3.3. Quantification

IV\ Modèle standard et brisure de symétrie

- 1. Présentation qualitative du modèle standard
- 1.1. Symétries du modèle standard
- 1.2. Matière
- 1.3. Bosons de jauge
- 1.4. Boson de Higgs
- 2. Interactions électrofaibles
- 2.1. Lagrangien d'interaction
- 2.2. Mécanisme de brisure de symétrie
- 2.3. Interprétation
- 3. Interaction forte
- 3.1. Symétrie de couleur
- 3.2. Lagrangien d'interaction
- 3.3. Remarque sur la portée d'interaction
- $\mathbf{V} \setminus \mathbf{A}\mathbf{u}$ delà du modèle standard
- A Rappel sur le formalisme lagrangien classique
- B Boson de Higgs et énergie du vide

Références