第8章 分类算法

《人工智能算法》

清华大学出版社 2022年7月

提纲

- ◆ 分类算法概述
- ◆ 决策树
- ◆ 支持向量机
- ◆ 贝叶斯分类
- ◆ 总结

分类算法概述(1)

◆ 电商平台面临的实际问题

- 如何快速精准地实现用户分群?(预测流失或VIP客户)
- 如何<mark>预测新产品的销量</mark>及喜爱该产品的客户?
- 如何对客户的某些特征进行分类(圈选具有共同特征的用户,提 供个性化的购物体验)

分类算法概述(2)

◆ 数据分类 (Classification)

目的:根据新数据样本的属性为其分配一个正确的类别

应用:图片识别、信誉证实、医疗诊断、异常检测、情感分析...

◆ 经典的单一分类算法

- 决策树 (Decision Tree)
- k-近邻(k-Nearest Neighbor)
- 支持向量机 (Support Vector Machine, SVM)
- 贝叶斯 (Bayesian) 分类
- 人工神经网络(Neural Network)
- 关联分类 (Association Classification)

提纲

- ◆ 分类算法概述
- ◆ 决策树
- ◆ 支持向量机
- ◆ 贝叶斯分类
- ◆ 总结

决策树(1)

◆ 基本概念

- 从实例中构造表示分类规则的决策树(描述属性与类别的关系)
- 类似于流程图的树结构

内部节点:一个属性变量上的测试

分枝:一个测试输出

决策树(2)

◆ 决策树构造算法

基本思想:基于贪心法递归地分裂输入变量空间的各个单元 关键步骤(以ID3为例):

- (1) 选择测试变量
 - ① 如果样本都在同一个类,则该节点成为叶子节点
 - ② 否则,选择信息增益最高的变量作为该节点的测试变量
- (2) 递归分裂
- (3) 递归分裂步骤停止,仅当下列条件之一成立
 - ① 给定节点的所有样本属于同一类
 - ② 没有剩余属性变量可用来进一步分裂样本
 - ③ 一个分枝没有样本

决策树(3)

◆ 决策树构造算法

选择测试变量:

设S是s个带类标记的数据样本的集合,F是n个属性变量的集合,有m个类 $\{c_1,\ldots,c_m\}$, s_i 是类 c_i 中的样本数,对每个样本分类的期望信息为:

$$I(s_1, \dots, s_m) = -\sum_{i=1}^m (p_i \cdot \log p_i)$$

设属性变量 $A = \{a_1, \dots, a_v\}$ ($A \in F$), 可用A将S划分为v个子集 $\{S_1, \dots, S_v\}$ 的熵或期望信息为:

$$E(A) = \sum_{j=1}^{v} \frac{s_{1j} + \dots + s_{mj}}{s} I(s_{1j} + \dots + s_{mj})$$

以A作为测试变量(即在A上分裂)所获得的信息增益为:

$$Gain(A) = I(s_1, \dots, s_m) - E(A)$$

决策树 (4)

→ 决策树构造算法

输入: S, 带有类标记的训练数据集;

F: 属性变量集; ε : 信息增益阈值

输出: T, 决策树(类标记)

步骤:

- 1. If S所有样本属于同个类 c_k Then
- 2. T为单节点树, c_k 为该节点的类标记
- 3. Return T
- 4. End if
- 5. If $F=\emptyset$ Then
- 6. T为单节点树,将S中实例最多的类 c_k 作为该节点的类标记
- 7. **Return** *T*
- 8. End If

- 9. $A_g \leftarrow \arg \max \{Gain(A), A \in F\}$
- 10. If $Gain(A_g) < \varepsilon$ Then
- 11. T为单节点树,通过多数表决将S中实例最多的类 c_k 作为该节点的类标记
- 12. **Return** *T*
- 13. **Else**
- 14. For j=0 To v Do //考察 A_g 的每一个可能取值
- 15. 得到S中在 A_g 上具有 a_j 值得样本集 S_j
- 16. createDecisionTree(S_j , $F \setminus \{A_0\}$, ε)
- 17. End For

决策树 (5)

◆ 决策树构造算法示例

由表中的训练数据集构造概念 "buys_computer"的决策树

age	income	student	credit_rating	Class: buys_computer
≤30	high	no	fair	no
≤30	high	no	excellent	no
31···40	high	no	fair	yes
>40	Medium	no	fair	yes
>40	low	yes	fair	yes
:	:	:	:	:
31···40	high	yes	fair	yes
>40	medium	no	excellent	no

[&]quot;buys_computer"有2个类: c_1 代表 "yes", c_2 代表 "no"; c_1 有9个样本, c_2 有5个样本。

决策树 (6)

◆ 决策树构造算法示例

(1) 根据公式 $I(s_1, \dots, s_m)$ 计算对给定的样本进行分类所需要的期望值

$$I(s_1, s_2) = I(9, 5) = -\left(\frac{9}{14}\right) \times \log\left(\frac{9}{14}\right) - \left(\frac{5}{14}\right) \times \log\left(\frac{5}{14}\right)$$

- (2) 根据公式E(A)和Gain(A)计算 "age" 变量的信息增益
 - 对于"30": $s_{11} = 2$, $s_{21} = 3$, 则 $I(s_{11}, s_{21}) = 0.971$
 - 对于 "31…40": $s_{12} = 4$, $s_{22} = 0$, 则 $I(s_{12}, s_{22}) = 0$
 - 対于 ">40": $s_{13} = 3$, $s_{23} = 2$, 则 $I(s_{13}, s_{23}) = 0.971$

所以,
$$E(age) = \left(\frac{5}{14}\right) \times I(s_{11}, s_{21}) + \left(\frac{4}{14}\right) \times I(s_{21}, s_{22}) + \left(\frac{5}{14}\right) \times I(s_{13}, s_{23}) = 0.694$$
。

相应地, $Gain(age) = I(s_1, s_2) - E(age) = 0.246$ 。

类似地,可以计算出:

Gain(income)=0.029, Gain(student) =0.151, Gain(credit_rating)= 0.048

决策树 (7)

◆ 决策树构造算法示例

(3) 由于 "age"具有最高的信息增益,则选择它为测试变量,创建 "age" 节点,进行第一次分裂,最终可构造出决策树

决策树(8)

◆ 分类规则提取

可从已经构造好的决策树中提取形如If-Then的分类规则,每条从根节点到叶子节点的路径对应一个规则

沿着从根节点到叶子节点的路径,可提取出如下的分类规则:

If age="\le 30" and student="no" Then buys_computers="no"

If age="\le 30" and student="yes" Then buys computers="yes"

If age="31 ··· 40" **Then** buys_computers="yes"

提纲

- ◆ 分类算法概述
- ◆ 决策树
- ◆ 支持向量机
- ◆ 贝叶斯分类
- ◆ 总结

支持向量机(1)

◆ 基本概念

- ✓ 二分类模型: 在样本空间中找出一个超平面来对数据进行分类, 并使分类误差尽可能小。
- ✓ 分离超平面: 比所在数据空间小一维的空间,在二维数据空间中是一条直线,在三维数据空间中就是一个平面。

分离超平面将两类训练样本分开 训练集有两个特征和两类标签:

- 特征一用 x_1 表示,特征二用 x_2 表示
- 用 "+"表示正例,用 "-"表示负例

支持向量机(2)

◆ 训练算法

(1) 训练数据

一个特征空间上线性可分的数据集 $D = \{(x_1, y_1), ..., (x_n, y_n)\}$,其中 $x_i \in \mathbb{R}^n$, $y_i = \{+1, -1\}$,i = 1, 2, ..., n。 x_i 为第i个训练样本的特征向量, y_i 为 x_i 的类标记, (x_i, y_i) 称为样本点。当 $y_i = +1$ 时,称 x_i 为正例;当 $y_i = -1$ 时,称 x_i 为负例。

(2) 寻找最大间隔超平面

通过线性方程 $\mathbf{w}^T x + b = 0$ 来描述分离超平面,其中 $\mathbf{w} = (\mathbf{w_1}; ...; \mathbf{w_d})$ 为决定超平面方向的法向量,b为决定超平面与原点之间距离的位移项。

分类策略函数为:

 $f(x) = \text{sign}(\mathbf{w}^{T}x + b)$, $\text{sign}(\cdot)$ 为符号函数。

支持向量机(3)

◆ 训练算法

给定数据集D和超平面(\mathbf{w}, b), 超平面关于样本点(x_i, y_i)的几何间隔为:

$$\gamma_i = \frac{y_i(\mathbf{w}^T x^i + b)}{\|\mathbf{w}\|}, i = 1, \dots, n$$

若超平面(**w**, b)能将所有样本点正确分类,则 $y_i(\mathbf{w}^T x_i + b) > 0$ 若 $y_i = +1$,则正例 x_i 满足约束条件 $\mathbf{w}^T x_i + b > 0$; 若 $y_i = -1$,则负例 x_i 满足约束条件 $\mathbf{w}^T x_i + b < 0$ 。

令
$$y_i(w^Tx_i + b) \ge 1$$
,则约束条件表示为:
$$\begin{cases} \mathbf{w}^Tx_i + b \ge +1, y_i = +1 \\ \mathbf{w}^Tx_i + b \le -1, y_i = -1 \end{cases}$$

支持向量机(4)

◆ 训练算法

支持向量:与超平面几何间隔最小且满足约束条件的样本点 $\min_{i=1,\ldots,n} \gamma_i$

样本点到超平面的最小几何间隔为 $\frac{1}{\|w\|}$

两个异类支持向量到超平面距离之和为 $\frac{2}{\|w\|}$,称为间隔

求解最大间隔分离超平面,可表示为以下最优化问题:

$$\max_{w,b} \frac{2}{\|w\|}$$
 s.t. $y_i(w^T x_i + b) \ge 1$, $i = 1, ..., n$

由于 $\max_{w,b} \frac{2}{\|w\|}$ 和 $\min_{w,b} \frac{1}{2} \|w\|^2$ 等价,训练SVM的最优化问题如下:

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 \quad \text{s.t. } (\mathbf{w}^T x_i + b) \ge 1, \ i = 1, ..., n$$

支持向量机(5)

◆ 训练算法

(3) 软间隔最大化

硬间隔: 分离超平面能正确划分所有样本

软间隔:

允许某些点不满足约束,可对每个样本点 (x_i, y_i) 引入松弛变量 $\xi_i \ge 0$,则约束条件变为: $y_i(\mathbf{w}^T x_i + b) \ge 1 - \xi_i$

实际情况下

几乎不存在

目标函数变为: $\min_{\boldsymbol{w},b,\xi_i} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i=1}^N \xi_i$,正常数C称为惩罚系数

优化目标: $(\frac{1}{2}||w||^2 ||w||^2 ||w||$

支持向量机(6)

◆ 训练算法

0/1损失函数: 非凸和非连续, 是单位跃迁函数, 目标函数求解难。

常用凸连续函数替代损失函数来取代"0/1损失函数"。

常用的替代损失函数:

- 1. hinge损失: $l_{\text{hinge}}(z) = \max(0, 1-z)$
- 2. 指数损失: $l_{\exp}(z) = \exp(-z)$
- 3. 对率损失: $l_{\log}(z) = \exp(1 + \exp(-z))$

支持向量机(7)

◆ 训练算法

输入: D, 训练数据集; C, 惩罚系数

输出: f(x), 分类决策函数

步骤:

1. 构造线性支持向量机原始最优化问题:

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2$$

s. t. $y_i(\mathbf{w}^T x_i + b) \ge 1, i = 1, ..., n$

2. 使用拉格朗日乘子求解对偶问题:

$$\max_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j (x_i * x_j) - \sum_{i=1}^{N} \alpha_i$$

s.t.
$$\sum_{i=1}^{N} \alpha_i \alpha_j = 0$$
, $0 \le \alpha_i \le C$, $i = 1, ..., n$

3. 计算法向量w*和位移项b*:

$$\mathbf{w}^* = \sum_{i=1}^{N} \alpha_i^* y_i x_i b^* = y_i - \sum_{i=1}^{N} y_i \alpha_i^* (x_i * x_j)$$

4. 计算最大间隔分离超平面以及分类决策函数:

$$\mathbf{w}^* x + b^* = 0$$

$$f(x) = \operatorname{sign}(\mathbf{w}^* x + b^*)$$
Return $f(x)$ \circ

时间复杂度 $O(n^3)$ 空间复杂 度 $O(n^2)$

支持向量机(8)

◆ 核函数

- 原始样本空间可能不存在能正确划分两类样本的超平面
- <mark>经过空间转换</mark>,在高维空间解决线性问题等价于在低维空间中解 决非线性问题

名称	表达式	参数	
线性核	$k(x_i, x_j) = x_i^T x_j$	/	
多项式核	$k(x_i, x_j) = (x_i^T x_j)^d$	d ≥ 1为多项式的次数	
高斯核	$k(x_i, x_j) = \exp(-\frac{\ x_i - x_j\ ^2}{2\sigma^2})$	σ > 0为高斯核的带宽	
拉普拉斯核	$k(x_i, x_j) = \exp(-\frac{\ x_i - x_j\ }{\sigma})$	$\sigma > 0$	
Sigmoid	$k(x_i, x_j) = \tanh(\beta x_i^T x_j + \theta)$	$\beta > 0, \theta < 0$	

提纲

- ◆ 分类算法概述
- ◆ 决策树
- ◆ 支持向量机
- 贝叶斯分类
- ◆ 总结

贝叶斯分类(1)

◆ 基本概念

- 一类以贝叶斯定理为基础、用概率论和统计学知识进行分类的算法
- 包括朴素贝叶斯分类、链增强朴素贝叶斯分类、树增强朴素贝叶斯分类等

◆ 朴素贝叶斯分类

- 贝叶斯分类器中最简单、应用最为广泛的算法之一
- 由于假设特征之间相互独立,所以称为"朴素贝叶斯"
- 分类时对每个类别计算 $P(c_k)P(x_i|c_k)$,以 $P(c_k)P(x_i|c_k)$ 的最大项作为 待预测样本X所属的类别

贝叶斯分类(2)

◆ 贝叶斯分类的基本思想

- 设数据集 $D=\{x_1,...,x_i,...,x_{n(D)}\}$,样本 x_i 的属性 集合 $X_i=\{x_{i1},...,x_{in}\}$,类别集合 $C=\{c_1,c_2...,c_m\}$, 即样本可分为m个类别
- 网络结构含有属性集合 $X=\{x_1,...,x_i,...,x_n\}$ 和类别集合 $C=\{c_1,...,c_k,...,c_m\}$ 。对于属性集合为 $\{x_1,x_2,...,x_n\}$ 的待预测数据样本X,使 $P(c_k|x_1,...,x_n)$

最大的分类任务称为贝叶斯分类:

$$C(X) = \underset{c_k \in C}{\operatorname{arg max}} \{ P(c_k | x_1, \dots, x_n) \}$$

 c_k 的后验概率为:

$$P(c_k|x_1,...,x_n) = \frac{P(c_k,x_1,...,x_n)}{P(x_1,...,x_n)} = \frac{P(x_1,...,x_n|c_k)P(c_k)}{P(x_1,...,x_n)}$$

没有变量独立假设

时计算需指数时间

贝叶斯分类(3)

◆ 朴素贝叶斯分类的基本思想

- 设在给定类别变量下属性变量之间条件独立,朴素贝叶斯分类使 $P(c_k|x_1,...,x_n)$ 最大

- 每个属性只有唯一的类 c_k 作为其父节点,这意味 着给定类 c_k 时, $x_1, x_2, ..., x_n$ 条件独立,即

$$P(x_1, ..., x_n | c_k) = \prod_{i=1}^n P(x_i | c_k)$$

贝叶斯分类(4)

◆ 朴素贝叶斯分类的基本思想

- 为了降低 $P(c_k|x_1,...,x_n)$ 的计算复杂度,根据条件独立性将联合概率分解为:

$$P(c_k, x_1, ..., x_n) = P(c_k)P(x_1, ..., x_n | c_k) = P(c_k) \prod_{i=1}^n P(x_i | c_k)$$

- 根据联合概率的分解形式,对于给定的待预测样本*X*,朴素贝叶斯分类形式表示为:

$$C(X) = \arg\max_{c_k \in C} \left\{ P(c_k) \prod_{i=1}^n P(x_i | c_k) \right\}$$

贝叶斯分类(5)

- ◆ 朴素贝叶斯分类的训练算法
 - 关键步骤:
 - ① 确定特征属性、获取样本数据集
 - ② 训练分类器,分别计算每个类别的概率 $P(c_k)$ 和每个属性在该类别下的条件概率 $P(x_i|c_k)$
 - ③ 对每个类别计算 $P(c_k)\prod_{i=1}^n P(x_i|c_k)$,以 $P(c_k)\prod_{i=1}^n P(x_i|c_k)$ 的最大项作为X所属的类别

步骤②中的参数估计,包括**类别概率估计** $\hat{P}(c_k)$ 和**条件概率估计** $\hat{P}(c_k|x_i)$

贝叶斯分类(6)

◆ 朴素贝叶斯分类的训练算法

属性值为离散型:

类别概率估计: $\hat{P}(c_k)=n(c_k)/n(D)$; 其中, $n(c_k)$ 为第 c_k 类中样本的数量,n(D)为样本总数

条件概率估计: $\hat{P}(x_i|c_k)=n(x_i|c_k)/n(c_k)$; 其中, $n(x_i|c_k)$ 为第 c_k 类中属性为 x_i 的样本数量

- 属性值为连续型:

类别概率估计: $\hat{P}(c_k)=n(c_k)/n(D)$; 其中, $n(c_k)$ 为第 c_k 类中样本的数量,n(D)为样本总数

条件概率估计:
$$\hat{P}(x_i|c_k) = \frac{1}{\sqrt{2\pi}\sigma_{c_k}} exp\left\{-\frac{\left(x_i - \mu_{c_k}\right)^2}{2\sigma_{c_k}^2}\right\}$$
; 其中,

 $\hat{P}(x_i|c_k)\sim N(\mu_{c_k},\sigma_{c_k}^2)$, μ_{c_k} 和 $\sigma_{c_k}^2$ 分别为 c_k 类中 x_i 的均值和方差

贝叶斯分类(7)

◆ 朴素贝叶斯分类的训练算法

输入: D, 数据样本集; X, 待预测数据的属性集合; C, 类别集合

输出:C(X) //以 $P(x|y_i)P(y_i)$ 最大项作为X所属类别

步骤:

- 1. 统计D中样本的总数n(D)
- 2. 统计D中每类样本的数量 $n(c_k)$
- 3. 统计D中第 c_k 类中属性为 x_i 的样本数量 $n(x_i|c_k)$
- 4. 统计X中属性的总数n
- $5. \ \widehat{P}(x_i|c_k) \leftarrow 1$
- 6. $P(c_k|X) \leftarrow \emptyset$

- 7. **For** k=0 **To** $n(c_k)$ **Do**
- 8. $\widehat{P}(c_k) \leftarrow n(c_k)/n(D)$ //类别概率估计
- 9. **For** j=i **To** n **Do**
- 10. $\hat{P}(x_i|c_k) \leftarrow (n(x_i|c_k)/n(c_k)) \times \hat{P}(x_i|c_k)$
- 11. $\widehat{P}(c_k|X) \leftarrow \widehat{P}(c_k) \times \widehat{P}(x_i|c_k)$
- 12. $P(c_k|X) \leftarrow P(c_k|X) \cup \widehat{P}(c_k|X)$
- 13. End For
- 14. End For
- $15.C(X) = \arg\max\{P(c_k|X)\}\$

贝叶斯分类(8)

▶ 朴素贝叶斯分类示例

任务: 已知某人身高"高"、体重"中"和鞋码"中",预测其性别。

设"男"和"女"为2个类别,用 c_1 和 c_2 表示;属性集合为"身高"、"体重"和"鞋码",用 x_1 、 x_2 和

 x_1 表示。分类步骤如下:

编号	身高	体重	鞋码	性别
1	高	重	大	男
2	高	重	大	男
3	中	中	大	男
4	中	中	中	男
5	矮	轻	小	女
6	矮	轻	小	女
7	矮	中	中	女
8	中	中	中	女

① 类别概率估计:

类别为"男"的概率为 $\hat{P}(c_1)=1/2$,类别为"女"的概率为 $\hat{P}(c_2)=1/2$.

②条件概率估计:

性别为"男"、身高"高"、体重"中"、鞋码"中"的概率为

 $\hat{P}(x_1, x_2, x_3|c_1) = \hat{P}(x_1|c_1)\hat{P}(x_2|c_1)\hat{P}(x_3|c_1)$

 $=(1/2)\times(1/2)\times(1/4)=1/16$

性别为"女"、身高"高"、体重"中"、鞋码"中"的概率为

 $\hat{P}(x_1, x_2, x_3|c_2) = \hat{P}(x_1|c_2) \times \hat{P}(x_2|c_2) \times \hat{P}(x_3|c_2) = 0$

③ 类别预测:

由于 $\hat{P}(c_1) \times \hat{P}(x_1, x_2, x_3 | c_1) > \hat{P}(c_2) \times \hat{P}(x_1, x_2, x_3 | c_2)$, 此 人性别为"男"。

提纲

- ◆ 分类算法概述
- ◆ 决策树
- ◆ 支持向量机
- ◆ 贝叶斯分类
- ◆ 总结

总结

◆ 决策树

优点: 易于理解和解释,可处理混合类型的变量,对缺失值不敏感且灵活性好。

缺点: 贪心法的解可能不是最优值, 会出现过拟合。

◆ 支持向量机

优点:全局最优值,泛化能力强,算法简单且鲁棒。

缺点: 样本数量大时, 存储和计算的开销较大。

朴素贝叶斯

<mark>优点</mark>: 时空开销小,能处理多分类任务,对缺失数据不太敏感,结果可解释、容易理解。

缺点:决策存在错误率,对输入数据的表达形式很敏感。

结语

谢谢!