

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/11, 9/00, 5/10		A2	(11) International Publication Number: WO 97/15662 (43) International Publication Date: 1 May 1997 (01.05.97)
(21) International Application Number: PCT/US96/17480 (22) International Filing Date: 25 October 1996 (25.10.96)		(81) Designated States: AU, CA, JP, MX, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(30) Priority Data: 60/005,974 26 October 1995 (26.10.95) US 08/584,040 11 January 1996 (11.01.96) US			
(71) Applicants: RIBOZYME PHARMACEUTICALS, INC. [US/US]; 2950 Wilderness Place, Boulder, CO 80301 (US). CHIRON CORPORATION [US/US]; 4560 Horton Street, Emeryville, CA 94608 (US).			
(72) Inventors: PAVCO, Pamela; 705 Barberry Circle, Lafayette, CO 80026 (US). McSWIGGEN, James; 4866 Franklin Drive, Boulder, CO 80301 (US). STINCHCOMB, Dan; 7203 Old Post Road, Boulder, CO 80301 (US). ESCOBEDO, Jaime; 1470 Livorna Road, Alamo, CA 94507 (US).			
(74) Agents: HELLENKAMP, Amy, S. et al.; Lyon & Lyon L.L.P., Suite 4700, 633 West Fifth Street, Los Angeles, CA 90071-2066 (US).			
(54) Title: METHOD AND REAGENT FOR THE TREATMENT OF DISEASES OR CONDITIONS RELATED TO LEVELS OF VASCULAR ENDOTHELIAL GROWTH FACTOR RECEPTOR			
(57) Abstract <p>Nucleic acid molecule which modulates the synthesis, expression and/or stability of an mRNA encoding one or more receptors of vascular endothelial growth factor.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

DESCRIPTIONMethod and Reagent for the Treatment of Diseases or
Conditions Related to Levels of Vascular Endothelial
Growth Factor ReceptorBackground Of The Invention

This application is a continuation-in-part of Pavco et al., U.S. Serial No. 60/005,974 all of which is hereby incorporated by reference herein (including drawings).

5 This invention relates to methods and reagents for the treatment of diseases or conditions relating to the levels of expression of vascular endothelial growth factor (VEGF) receptor(s).

The following is a discussion of relevant art, none 10 of which is admitted to be prior art to the present invention.

VEGF, also referred to as vascular permeability factor (VPF) and vasculotropin, is a potent and highly specific mitogen of vascular endothelial cells (for a 15 review see Ferrara, 1993 *Trends Cardiovas. Med.* 3, 244; Neufeld et al., 1994 *Prog. Growth Factor Res.* 5, 89). VEGF induced neovascularization is implicated in various pathological conditions such as tumor angiogenesis, proliferative diabetic retinopathy, hypoxia-induced 20 angiogenesis, rheumatoid arthritis, psoriasis, wound healing and others.

VEGF, an endothelial cell-specific mitogen, is a 34-45 kDa glycoprotein with a wide range of activities that include promotion of angiogenesis, enhancement of 25 vascular-permeability and others. VEGF belongs to the platelet-derived growth factor (PDGF) family of growth factors with approximately 18% homology with the A and B chain of PDGF at the amino acid level. Additionally, VEGF contains the eight conserved cysteine residues common to 30 all growth factors belonging to the PDGF family (Neufeld et al., *supra*). VEGF protein is believed to exist

predominantly as disulfide-linked homodimers; monomers of VEGF have been shown to be inactive (Plouet et al., 1989 *EMBO J.* 8, 3801).

VEGF exerts its influence on vascular endothelial cells by binding to specific high-affinity cell surface receptors. Covalent cross-linking experiments with ¹²⁵I-labeled VEGF protein have led to the identification of three high molecular weight complexes of 225, 195 and 175 kDa presumed to be VEGF and VEGF receptor complexes (Vaisman et al., 1990 *J. Biol. Chem.* 265, 19461). Based on these studies VEGF-specific receptors of 180, 150 and 130 kDa molecular mass were predicted. In endothelial cells, receptors of 150 and the 130 kDa have been identified. The VEGF receptors belong to the superfamily of receptor tyrosine kinases (RTKs) characterized by a conserved cytoplasmic catalytic kinase domain and a hydrophylic kinase sequence. The extracellular domains of the VEGF receptors consist of seven immunoglobulin-like domains that are thought to be involved in VEGF binding functions.

The two most abundant and high-affinity receptors of VEGF are flt-1 (fms-like tyrosine kinase) cloned by Shibuya et al., 1990 *Oncogene* 5, 519 and KDR (kinase-insert-domain-containing receptor) cloned by Terman et al., 1991 *Oncogene* 6, 1677. The murine homolog of KDR, cloned by Mathews et al., 1991, *Proc. Natl. Acad. Sci., USA*, 88, 9026, shares 85% amino acid homology with KDR and is termed as flk-1 (fetal liver kinase-1). Recently it has been shown that the high-affinity binding of VEGF to its receptors is modulated by cell surface-associated heparin and heparin-like molecules (Gitay-Goren et al., 1992 *J. Biol. Chem.* 267, 6093).

VEGF expression has been associated with several pathological states such as tumor angiogenesis, several forms of blindness, rheumatoid arthritis, psoriasis and others. Following is a brief summary of evidence supporting the involvement of VEGF in various diseases:

1) Tumor angiogenesis: Increased levels of VEGF gene expression have been reported in vascularized and edema-associated brain tumors (Berkman et al., 1993 *J. Clin. Invest.* 91, 153). A more direct demonstration of the role 5 of VEGF in tumor angiogenesis was demonstrated by Jim Kim et al., 1993 *Nature* 362, 841 wherein, monoclonal antibodies against VEGF were successfully used to inhibit the growth of rhabdomyosarcoma, glioblastoma multiforme cells in nude mice. Similarly, expression of a dominant negative 10 mutated form of the flt-1 VEGF receptor inhibits vascularization induced by human glioblastoma cells in nude mice (Millauer et al., 1994, *Nature* 367, 576).

2) Ocular diseases: Aiello et al., 1994 *New Engl. J. Med.* 331, 1480, showed that the ocular fluid, of a majority 15 of patients suffering from diabetic retinopathy and other retinal disorders, contains a high concentration of VEGF. Miller et al., 1994 *Am. J. Pathol.* 145, 574, reported elevated levels of VEGF mRNA in patients suffering from retinal ischemia. These observations support a 20 direct role for VEGF in ocular diseases.

3) Psoriasis: Detmar et al., 1994 *J. Exp. Med.* 180, 1141 reported that VEGF and its receptors were over-expressed in psoriatic skin and psoriatic dermal micro-vessels, suggesting that VEGF plays a significant role in 25 psoriasis.

4) Rheumatoid arthritis: Immunohistochemistry and *in situ* hybridization studies on tissues from the joints of patients suffering from rheumatoid arthritis show an increased level of VEGF and its receptors (Fava et al., 30 1994 *J. Exp. Med.* 180, 341). Additionally, Koch et al., 1994 *J. Immunol.* 152, 4149, found that VEGF-specific antibodies were able to significantly reduce the mitogenic activity of synovial tissues from patients suffering from rheumatoid arthritis. These observations support a direct 35 role for VEGF in rheumatoid arthritis.

In addition to the above data on pathological conditions involving excessive angiogenesis, a number of

studies have demonstrated that VEGF is both necessary and sufficient for neovascularization. Takashita et al., 1995 *J. Clin. Invest.* 93, 662, demonstrated that a single injection of VEGF augmented collateral vessel development 5 in a rabbit model of ischemia. VEGF also can induce neovascularization when injected into the cornea. Expression of the VEGF gene in CHO cells is sufficient to confer tumorigenic potential to the cells. Kim et al., *supra* and Millauer et al., *supra* used monoclonal antibodies against 10 VEGF or a dominant negative form of flk-1 receptor to inhibit tumor-induced neovascularization.

During development, VEGF and its receptors are associated with regions of new vascular growth (Millauer et al., 1993 *Cell* 72, 835; Shalaby et al., 1993 *J. Clin. Invest.* 91, 2235). Furthermore, transgenic mice lacking either of the VEGF receptors are defective in blood vessel formation, infact these mouse do not survive; flk-1 appears to be required for differentiation of endothelial cells, while flt-1 appears to be required at later stages 20 of vessel formation (Shalaby et al., 1995 *Nature* 376, 62; Fung et al., 1995 *Nature* 376, 66). Thus, these receptors must be present to properly signal endothelial cells or their precursors to respond to vascularization-promoting stimuli.

25 All of the conditions listed above, involve extensive vascularization. This hyper-stimulation of endothelial cells may be alleviated by VEGF antagonists. Thus most of the therapeutic efforts for the above conditions have concentrated on finding inhibitors of the VEGF protein.

30 Kim et al., 1993 *Nature* 362, 841 have been successful in inhibiting VEGF-induced tumor growth and angiogenesis in nude mice by treating the mice with VEGF-specific monoclonal antibody.

Koch et al., 1994 *J. Immunol.* 152, 4149 showed that 35 the mitogenic activity of microvascular endothelial cells found in rheumatoid arthritis (RA) synovial tissue explants and the chemotactic property of endothelial cells

from RA synovial fluid can be neutralized significantly by treatment with VEGF-specific antibodies.

Ullrich et al., International PCT Publication No. WO 94/11499 and Millauer et al., 1994 *Nature* 367, 576 used a soluble form of flk-1 receptor (dominant-negative mutant) to prevent VEGF-mediated tumor angiogenesis in immuno-deficient mice.

Kendall and Thomas, International PCT Publication No. WO 94/21679 describe the use of naturally occurring or recombinantly-engineered soluble forms of VEGF receptors to inhibit VEGF activity.

Robinson, International PCT Publication No. WO 95/04142 describes the use of antisense oligonucleotides targeted against VEGF RNA to inhibit VEGF expression.

Jellinek et al., 1994 *Biochemistry* 33, 10450 describe the use of VEGF-specific high-affinity RNA aptamers to inhibit the binding of VEGF to its receptors.

Rockwell and Goldstein, International PCT Publication No. WO 95/21868, describe the use of anti-VEGF receptor monoclonal antibodies to neutralize the effect of VEGF on endothelial cells.

Summary Of The Invention

The invention features novel nucleic acid-based techniques [e.g., enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, 2-5A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups (Cook et al., U.S. Patent 5,359,051)] and methods for their use to down regulate or inhibit the expression of receptors of VEGF (VEGF-R).

In a preferred embodiment, the invention features use of one or more of the nucleic acid-based techniques to inhibit the expression of flt-1 and/or flk-1/KDR receptors.

By "inhibit" it is meant that the activity of VEGF-R or level of mRNAs or equivalent RNAs encoding VEGF-R is reduced below that observed in the absence of the nucleic acid. In one embodiment, inhibition with ribozymes

preferably is below that level observed in the presence of an enzymatically inactive RNA molecule that is able to bind to the same site on the mRNA, but is unable to cleave that RNA. In another embodiment, inhibition with anti-sense oligonucleotides is preferably below that level observed in the presence of for example, an oligonucleotide with scrambled sequence or with mismatches.

By "enzymatic nucleic acid molecule" it is meant an RNA molecule which has complementarity in a substrate binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave target RNA. That is, the enzymatic RNA molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. This complementary regions allow sufficient hybridization of the enzymatic RNA molecule to the target RNA and thus permit cleavage. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention. By "equivalent" RNA to VEGF-R is meant to include those naturally occurring RNA molecules in various animals, including human, mice, rats, rabbits, primates and pigs.

By "antisense nucleic acid" it is meant a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 *Nature* 365, 566) interactions and alters the activity of the target RNA (for a review see Stein and Cheng, 1993 *Science* 261, 1004).

By "2-5A antisense chimera" it is meant, an antisense oligonucleotide containing a 5' phosphorylated 2'-5'-linked adenylate residues. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which, in turn, cleaves the target RNA (Torrence et al., 1993 *Proc. Natl. Acad. Sci. USA* 90, 1300).

35 By "triplex DNA" it is meant an oligonucleotide that can bind to a double-stranded DNA in a sequence-specific manner to form a triple-strand helix. Formation of such

triple helix structure has been shown to inhibit transcription of the targeted gene (Duval-Valentin et al., 1992 *Proc. Natl. Acad. Sci. USA* 89, 504).

By "gene" it is meant a nucleic acid that encodes an
5 RNA.

By "complementarity" it is meant a nucleic acid that can form hydrogen bond(s) with other RNA sequence by either traditional Watson-Crick or other non-traditional types (for example, Hoogsteen type) of base-paired
10 interactions.

Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in *trans* (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor of gene expression, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme.

Ribozymes that cleave the specified sites in VEGF-R mRNAs represent a novel therapeutic approach to treat tumor angiogenesis, ocular diseases, rheumatoid arthritis, psoriasis and others. Applicant indicates that ribozymes
5 are able to inhibit the activity of VEGF-R (specifically flt-1 and flk-1/KDR) and that the catalytic activity of the ribozymes is required for their inhibitory effect. Those of ordinary skill in the art will find that it is
10 clear from the examples described that other ribozymes that cleave VEGF-R mRNAs may be readily designed and are within the invention.

In preferred embodiments of this invention, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of
15 a hepatitis delta virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or *Neurospora* VS RNA. Examples of such hammerhead motifs are described by Kossi et al., 1992, *AIDS Research and Human Retroviruses* 8, 183, of hairpin motifs by Hampel et al., EP0360257,
20 Hampel and Tritz, 1989 *Biochemistry* 28, 4929, and Hampel et al., 1990 *Nucleic Acids Res.* 18, 299, and an example of the hepatitis delta virus motif is described by Perrotta and Been, 1992 *Biochemistry* 31, 16; of the RNaseP motif by Guerrier-Takada et al., 1983 *Cell* 35, 849, *Neurospora* VS
25 RNA ribozyme motif is described by Collins (Saville and Collins, 1990 *Cell* 61, 685-696; Saville and Collins, 1991 *Proc. Natl. Acad. Sci. USA* 88, 8826-8830; Collins and Olive, 1993 *Biochemistry* 32, 2795-2799) and of the Group I intron by Cech et al., U.S. Patent 4,987,071. These
30 specific motifs are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene
35 RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule.

In a preferred embodiment the invention provides a method for producing a class of enzymatic cleaving agents which exhibit a high degree of specificity for the RNA of a desired target. The enzymatic nucleic acid molecule is 5 preferably targeted to a highly conserved sequence region of target mRNAs encoding VEGF-R proteins (specifically flt-1 and flk-1/KDR) such that specific treatment of a disease or condition can be provided with either one or several enzymatic nucleic acids. Such enzymatic nucleic 10 acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the ribozymes can be expressed from DNA and/or RNA vectors that are delivered to specific cells.

Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small nucleic acid motifs (e.g., antisense oligonucleotides, hammerhead or the hairpin ribozymes) are used for exogenous delivery. The simple structure of 20 these molecules increases the ability of the nucleic acid to invade targeted regions of the mRNA structure. However, these nucleic acid molecules can also be expressed within cells from eukaryotic promoters (e.g., Izant and Weintraub, 1985 *Science* 229, 345; McGarry and 25 Lindquist, 1986 *Proc. Natl. Acad. Sci. USA* 83, 399; Sullenger-Scanlon et al., 1991, *Proc. Natl. Acad. Sci. USA*, 88, 10591-5; Kashani-Sabet et al., 1992 *Antisense Res. Dev.*, 2, 3-15; Dropulic et al., 1992 *J. Virol.*, 66, 1432-41; Weerasinghe et al., 1991 *J. Virol.*, 65, 5531-4; 30 Ojwang et al., 1992 *Proc. Natl. Acad. Sci. USA* 89, 10802-6; Chen et al., 1992 *Nucleic Acids Res.*, 20, 4581-9; Sarver et al., 1990 *Science* 247, 1222-1225; Thompson et al., 1995 *Nucleic Acids Res.* 23, 2259). Those skilled in 35 the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of such nucleic acids can be augmented by their release from the primary transcript by a ribozyme (Draper

et al., PCT WO93/23569, and Sullivan et al., PCT WO94/02595, both hereby incorporated in their totality by reference herein; Ohkawa et al., 1992 Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993 Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994 J. Biol. Chem. 269, 25856).

Such nucleic acids are useful for the prevention of the diseases and conditions discussed above, and any other diseases or conditions that are related to the levels of 10 VEGF-R (specifically flt-1 and flk-1/KDR) in a cell or tissue.

By "related" is meant that the reduction of VEGF-R (specifically flt-1 and flk-1/KDR) RNA levels and thus reduction in the level of the respective protein will 15 relieve, to some extent, the symptoms of the disease or condition.

Ribozymes are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic 20 acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the ribozymes have binding arms which are complementary to the 25 sequences in Tables II to IX. Examples of such ribozymes also are shown in Tables II to IX. Examples of such ribozymes consist essentially of sequences defined in these Tables. By "consists essentially of" is meant that the active ribozyme contains an enzymatic center equivalent to 30 those in the examples, and binding arms able to bind mRNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage.

In another aspect of the invention, ribozymes that 35 cleave target RNA molecules and inhibit VEGF-R (specifically flt-1 and flk-1/KDR) activity are expressed from transcription units inserted into DNA or RNA vectors. The

- recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably,
- 5 the recombinant vectors capable of expressing the ribozymes are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of ribozymes. Such vectors might be repeatedly administered as necessary.
- 10 Once expressed, the ribozymes cleave the target mRNA. Delivery of ribozyme expressing vectors could be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any
- 15 other means that would allow for introduction into the desired target cell.

By "vectors" is meant any nucleic acid- and/or viral-based technique used to deliver a desired nucleic acid.

- Other features and advantages of the invention will
- 20 be apparent from the following description of the preferred embodiments thereof, and from the claims.

Description Of The Preferred Embodiments

First the drawings will be described briefly.

Drawings

- 25 Figure 1 is a diagrammatic representation of the hammerhead ribozyme domain known in the art. Stem II can be ≥ 2 base-pair long.
- Figure 2a is a diagrammatic representation of the hammerhead ribozyme domain known in the art; Figure 2b is
- 30 a diagrammatic representation of the hammerhead ribozyme as divided by Uhlenbeck (1987, *Nature*, 327, 596-600) into a substrate and enzyme portion; Figure 2c is a similar diagram showing the hammerhead divided by Haseloff and Gerlach (1988, *Nature*, 334, 585-591) into two portions;
- 35 and Figure 2d is a similar diagram showing the hammerhead

divided by Jeffries and Symons (1989, *Nucl. Acids. Res.*, 17, 1371-1371) into two portions.

Figure 3 is a diagrammatic representation of the general structure of a hairpin ribozyme. Helix 2 (H2) is 5 provided with at least 4 base pairs (i.e., n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or more bases (preferably 3 - 20 bases, i.e., m is from 1 - 20 or more). Helix 2 and helix 5 may be covalently linked by one or more bases (i.e., r is ≥ 1 base). Helix 1, 4 or 10 5 may also be extended by 2 or more base pairs (e.g., 4 - 20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, each N and N' independently is any normal or modified base and each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, 15 base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 can be of any size (i.e., o and p is each independently from 0 to any number, e.g., 20) as long as some base-pairing is 20 maintained. Essential bases are shown as specific bases in the structure, but those in the art will recognize that one or more may be modified chemically (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be 25 formed from two separate molecules, i.e., without a connecting loop. The connecting loop when present may be a ribonucleotide with or without modifications to its base, sugar or phosphate. "q" is ≥ 2 bases. The connecting loop can also be replaced with a non-nucleotide linker 30 molecule. H refers to bases A, U, or C. Y refers to pyrimidine bases. "—" refers to a covalent bond.

Figure 4 is a representation of the general structure of the hepatitis delta virus ribozyme domain known in the art.

35 Figure 5 is a representation of the general structure of the VS RNA ribozyme domain.

Figure 6 is a schematic representation of an RNaseH accessibility assay. Specifically, the left side of Figure 6 is a diagram of complementary DNA oligonucleotides bound to accessible sites on the target RNA.

- 5 Complementary DNA oligonucleotides are represented by broad lines labeled A, B, and C. Target RNA is represented by the thin, twisted line. The right side of Figure 6 is a schematic of a gel separation of uncut target RNA from a cleaved target RNA. Detection of target
10 RNA is by autoradiography of body-labeled, T7 transcript. The bands common to each lane represent uncleaved target RNA; the bands unique to each lane represent the cleaved products.

Figure 7 shows the effect of hammerhead ribozymes
15 targeted against flt-1 receptor on the binding of VEGF to the surface of human microvascular endothelial cells. Sequences of the ribozymes used are shown in Table II; the length of stem II region is 3 bp. The hammerhead ribozymes were chemically modified such that the ribozyme
20 consists of ribose residues at five positions (see Figure 11); U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four nucleotides at the 5' terminus contains phosphorothioate substitutions. Additionally, the 3' end
25 of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose. The results of two separate experiments are shown as separate bars for each set. Each bar represents the average of triplicate samples. The standard deviation is shown with error bars. For the flt-1 data, 500 nM
30 ribozyme (3:1 charge ratio with LipofectAMINE[®]) was used. Control 1-10 is the control for ribozymes 307-2797, control 11-20 is the control for ribozymes 3008-5585. The Control 1-10 and Control 11-20 represent the treatment of cells with LipofectAMINE[®] alone without any ribozymes.

- 35 Figure 8 shows the effect of hammerhead ribozymes targeted against KDR receptor on the binding of VEGF to KDR on the surface of human microvascular endothelial

cells. Sequences of the ribozymes used are shown in Table IV; the length of stem II region is 3 bp. The hammerhead ribozymes were chemically modified such that the ribozyme consists of ribose residues at five positions (see Figure 5 11); U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four nucleotides at the 5' terminus contains phosphorothioate substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic 10 deoxyribose. The Control 1-10 and Control 11-20 represent the treatment of cells with LipofectAMINE® alone without any ribozymes. Irrel. RZ, is a control experiment wherein the cells are treated with a non-KDR-targeted ribozyme complexed with Lipofectamine®. 200 nM ribozyme (3:1 15 charge ratio with LipofectAMINE®) was used. In addition to the KDR-targeted ribozymes, the effect on VEGF binding of a ribozyme targeted to an irrelevant mRNA (irrel. RZ) is also shown. Because the affinity of KDR for VEGF is about 10-fold lower than the affinity of flt-1 for VEGF, 20 a higher concentration of VEGF was used in the binding assay.

Figure 9 shows the specificity of hammerhead ribozymes targeted against flt-1 receptor. Inhibition of the binding of VEGF, urokinase plasminogen activator (UPA) and 25 fibroblast growth factor (FGF) to their corresponding receptors as a function of anti-FLT ribozymes is shown. The sequence and description of the ribozymes used are as described under Figure 7 above. The average of triplicate samples is given; percent inhibition as calculated below.

30 Figure 10 shows the inhibition of the proliferation of Human aortic endothelial cells (HAEC) mediated by phosphorothioate antisense oligodeoxynucleotides targeted against human KDR receptor RNA. Cell proliferation (O.D. 490) as a function of antisense oligodeoxynucleotide 35 concentration is shown. KDR 21AS represents a 21 nt phosphorothioate antisense oligodeoxynucleotide targeted against KDR RNA. KDR 21 Scram represents a 21 nt

phosphorothioate oligodeoxynucleotide having a scrambled sequence. LF represents the lipid carrier Lipofectin.

Figure 11 shows *in vitro* cleavage of flt-1 RNA by hammerhead ribozymes. A) diagrammatic representation of hammerhead ribozymes targeted against flt-1 RNA. The hammerhead (HH) ribozymes were chemically modified such that the ribozyme consists of ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 10 2'-O-methyl substitutions; four nucleotides at the 5' terminus contains phosphorothioate substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (designated as 3'-iH). 1358 HH-A and 4229 HH-A contain 3 base-paired stem II 15 region. 1358 HH-B and 4229 HH-B contain 4 base-paired stem II region. B) and C) shows *in vitro* cleavage kinetics of HH ribozymes targeted against sites 1358 and 4229 within the flt-1 RNA.

Figure 12 shows inhibition of human microvascular 20 endothelial cell proliferation mediated by anti-flt-1 hammerhead ribozymes. A) Diagrammatic representation of hammerhead (HH) ribozymes targeted against sites 1358 and 4229 within the flt-1 RNA. B) Graphical representation of the inhibition of cell proliferation mediated by 25 1358HH and 4229HH ribozymes.

Figure 13 shows inhibition of human microvascular endothelial cell proliferation mediated by anti-KDR hammerhead ribozymes. The figure is a graphical representation of the inhibition of cell proliferation mediated by 30 hammerhead ribozymes targeted against sites 527, 730, 3702 and 3950 within the KDR RNA. Irrelevant HH RZ is a hammerhead ribozyme targeted to an irrelevant target. All of these ribozymes, including the Irrelevant HH RZ, were chemically modified such that the ribozyme consists of 35 ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four

nucleotides at the 5' termini contain phosphorothioate substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (3'-iH).

5 Figure 14 shows *in vitro* cleavage of KDR RNA by hammerhead ribozymes. The hammerhead (HH) ribozymes were chemically modified such that the ribozyme consists of 10 ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide 15 positions contain 2'-O-methyl substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (designated as 3'-iH). 726 HH and 527 HH contain 4 base-paired stem II region. Percent 20 *in vitro* cleavage kinetics as a function of time of HH 25 ribozymes targeted against sites 527 and 726 within the KDR RNA is shown.

Figure 15 shows *in vitro* cleavage of KDR RNA by hammerhead ribozymes. The hammerhead (HH) ribozymes were chemically modified such that the ribozyme consists of 20 ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide 25 positions contain 2'-O-methyl substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (designated as 3'-iH). 3702 HH and 3950 HH contain 4 base-paired stem II region. Percent 30 *in vitro* cleavage kinetics as a function of time of HH 35 ribozymes targeted against sites 3702 and 3950 within the KDR RNA is shown.

Figure 16 shows *in vitro* cleavage of RNA by hammerhead ribozymes that are targeted to sites that are conserved between flt-1 and KDR RNA. The hammerhead (HH) ribozymes were chemically modified such that the ribozyme consists of ribose residues at five positions; U4 and U7 35 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (designated as 3'-iH).

FLT/KDR-I HH ribozyme was synthesized with either a 4 base-paired or a 3 base-paired stem II region. FLT/KDR-I HH can cleave site 3388 within flt-1 RNA and site 3151 within KDR RNA. Percent *in vitro* cleavage kinetics as a function of time of HH ribozymes targeted against sites 3702 and 3950 within the KDR RNA is shown.

Figure 17 shows inhibition of human microvascular endothelial cell proliferation mediated by anti-KDR and anti-flt-1 hammerhead ribozymes. The figure is a graphical representation of the inhibition of cell proliferation mediated by hammerhead ribozymes targeted against sites KDR sites-527, 726 or 3950 or flt-1 site 4229. The figure also shows enhanced inhibition of cell proliferation by a combination of flt-1 and KDR hammerhead ribozymes. 4229+527, indicates the treatment of cells with both the flt 4229 and the KDR 527 ribozymes. 4229+726, indicates the treatment of cells with both the flt 4229 and the KDR 726 ribozymes. 4229+3950, indicates the treatment of cells with both the flt 4229 and the KDR 3950 ribozymes. VEGF -, indicates the basal level of cell proliferation in the absence of VEGF. A, indicates catalytically active ribozyme; I, indicates catalytically inactive ribozyme. All of these ribozymes were chemically modified such that the ribozyme consists of ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four nucleotides at the 5' termini contain phosphorothioate substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (3'-iH).

Figure 18 shows the inhibition of VEGF-induced angiogenesis in rat cornea mediated by anti-flt-1 hammerhead ribozyme. All of these ribozymes were chemically modified such that the ribozyme consists of ribose residues at five positions; U4 position contains 2'-C-allyl modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four nucleotides at the 5' termini contain

phosphorothioate substitutions. Additionally, the 3' end of the ribozyme contains a 3'-3' linked inverted abasic deoxyribose (3'-iH). A decrease in the Surface Area corresponds to a reduction in angiogenesis. VEGF alone, 5 corresponds to treatment of the cornea with VEGF and no ribozymes. Vehicle alone, corresponds to the treatment of the cornea with the carrier alone and no VEGF. This control gives a basal level of Surface Area. Active 4229 HH, corresponds to the treatment of cornea with the flt-1 10 4229 HH ribozyme in the absence of any VEGF. This control also gives a basal level of Surface Area. Active 4229 HH + VEGF, corresponds to the co-treatment of cornea with the flt-1 4229 HH ribozyme and VEGF. Inactive 4229 HH + VEGF, corresponds to the co-treatment of cornea with a catalytically inactive version of 4229 HH ribozyme and VEGF. 15

Ribozymes

Ribozymes of this invention block to some extent VEGF-R (specifically flt-1 and flk-1/KDR) production and can be used to treat disease or diagnose such disease. 20 Ribozymes will be delivered to cells in culture, to cells or tissues in animal models of angiogenesis and/or RA and to human cells or tissues *ex vivo* or *in vivo*. Ribozyme cleavage of VEGF-R RNAs (specifically RNAs that encode flt-1 and flk-1/KDR) in these systems may alleviate 25 disease symptoms.

Target sites

Targets for useful ribozymes can be determined as disclosed in Draper et al., International PCT Publication No. WO 95/13380, and hereby incorporated by reference 30 herein in totality. Other examples include the following PCT applications which concern inactivation of expression of disease-related genes: WO 95/23225, WO 95/13380, WO 94/02595, incorporated by reference herein. Rather than repeat the guidance provided in those documents here, 35 below are provided specific examples of such methods, not

limiting to those in the art. Ribozymes to such targets are designed as described in those applications and synthesized to be tested *in vitro* and *in vivo*, as also described.

5 The sequence of human and mouse *flt-1*, *KDR* and/or *flk-1* mRNAs were screened for optimal ribozyme target sites using a computer folding algorithm. Hammerhead or hairpin ribozyme cleavage sites were identified. These sites are shown in Tables II to IX (all sequences are 5'
10 to 3' in the tables; X can be any base-paired sequence, the actual sequence is not relevant here). The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme. While mouse and human sequences can be screened and ribozymes thereafter designed, the human targeted sequences are of most utility. However, as discussed in Stinchcomb et al., "Method and Composition for Treatment of Restenosis and Cancer Using Ribozymes," filed May 18, 1994, U.S.S.N. 08/245,466, mouse targeted ribozymes may be useful to test
15 efficacy of action of the ribozyme prior to testing in humans. The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of ribozyme.

Hammerhead or hairpin ribozymes were designed that
25 could bind and cleave target RNA in a sequence-specific manner. The ribozymes were individually analyzed by computer folding (Jaeger et al., 1989 *Proc. Natl. Acad. Sci. USA*, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure.
30 Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core were eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity.

Referring to Figure 6, mRNA is screened for accessible cleavage sites by the method described generally in Draper et al., PCT WO93/23569, hereby incorporated by reference herein. Briefly, DNA oligonucleotides

complementary to potential hammerhead or hairpin ribozyme cleavage sites were synthesized. A polymerase chain reaction is used to generate substrates for T7 RNA polymerase transcription from human and mouse flt-1, KDR 5 and/or flk-1 cDNA clones. Labeled RNA transcripts are synthesized *in vitro* from the templates. The oligonucleotides and the labeled transcripts were annealed, RNaseH was added and the mixtures were incubated for the designated times at 37°C. Reactions are stopped and RNA 10 separated on sequencing polyacrylamide gels. The percentage of the substrate cleaved is determined by autoradiographic quantitation using a PhosphorImaging system. From these data, hammerhead or hairpin ribozyme sites are chosen as the most accessible.

15 Ribozymes of the hammerhead or hairpin motif were designed to anneal to various sites in the mRNA message. The binding arms are complementary to the target site sequences described above. The ribozymes were chemically synthesized. The method of synthesis used follows the 20 procedure for normal RNA synthesis as described in Usman et al., 1987 *J. Am. Chem. Soc.*, 109, 7845; Scaringe et al., 1990 *Nucleic Acids Res.*, 18, 5433; and Wincott et al., 1995 *Nucleic Acids Res.* 23, 2677-2684 and makes use 25 of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5'-end, and phosphoramidites at the 3'-end. Small scale synthesis were conducted on a 394 Applied Biosystems, Inc. synthesizer using a modified 2.5 μmol scale protocol with a 5 min coupling step for alkylsilyl protected nucleotides and 2.5 30 min coupling step for 2'-O-methylated nucleotides. Table XI outlines the amounts, and the contact times, of the reagents used in the synthesis cycle. A 6.5-fold excess (163 μL of 0.1 M = 16.3 μmol) of phosphoramidite and a 24-fold excess of S-ethyl tetrazole (238 μL of 0.25 M = 35 59.5 μmol) relative to polymer-bound 5'-hydroxyl was used in each coupling cycle. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by

colorimetric quantitation of the trityl fractions, were 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer: detritylation solution was 2% TCA in methylene chloride (ABI); capping 5 was performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution was 16.9 mM I₂, 49 mM pyridine, 9% water in THF (Millipore). B & J Synthesis Grade acetonitrile was used directly from the reagent bottle. S-Ethyl tetra-10 zole solution (0.25 M in acetonitrile) was made up from the solid obtained from American International Chemical, Inc.

Deprotection of the RNA was performed as follows. The polymer-bound oligoribonucleotide, trityl-off, was transferred 15 from the synthesis column to a 4mL glass screw top vial and suspended in a solution of methylamine (MA) at 65 °C for 10 min. After cooling to -20 °C, the supernatant was removed from the polymer support. The support was washed three times with 1.0 mL of EtOH:MeCN:H₂O/3:1:1, 20 vortexed and the supernatant was then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, were dried to a white powder.

The base-deprotected oligoribonucleotide was resuspended 25 in anhydrous TEA•HF/NMP solution (250 μL of a solution of 1.5mL N-methylpyrrolidinone, 750 μL TEA and 1.0 mL TEA•3HF to provide a 1.4M HF concentration) and heated to 65°C for 1.5 h. The resulting, fully deprotected, oligomer was quenched with 50 mM TEAB (9 mL) prior to anion exchange desalting.

30 For anion exchange desalting of the deprotected oligomer, the TEAB solution was loaded onto a Qiagen 500® anion exchange cartridge (Qiagen Inc.) that was prewashed with 50 mM TEAB (10 mL). After washing the loaded cartridge with 50 mM TEAB (10 mL), the RNA was eluted with 35 2 M TEAB (10 mL) and dried down to a white powder.

Inactive hammerhead ribozymes were synthesized by substituting a U for G, and a U for A₁₄ (numbering from

Hertel, K. J., et al., 1992, Nucleic Acids Res., 20, 3252).

The average stepwise coupling yields were >98% (Wincott et al., 1995 *Nucleic Acids Res.* 23, 2677-2684).

5 Hairpin ribozymes are synthesized in two parts and annealed to reconstruct the active ribozyme (Chowrira and Burke, 1992 *Nucleic Acids Res.*, 20, 2835-2840). Ribozymes are also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, 10 *Methods Enzymol.* 180, 51).

All ribozymes are modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2'-amino, 2'-C-allyl, 2'-flouro, 2'-O-methyl, 2'-H (for a review see Usman and Cedergren, 1992 *TIBS* 17, 15 34; Usman et al., 1994 *Nucleic Acids Symp. Ser.* 31, 163). Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Usman et al., PCT Publication No. WO95/23225, the totality of which is hereby incorporated herein by reference) and are resuspended in water.

20 The sequences of the ribozymes that are chemically synthesized, useful in this study, are shown in Tables II to IX. Those in the art will recognize that these sequences are representative only of many more such 25 sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity. Stem-loop IV sequence of hairpin ribozymes listed in for example Table III (5'-CACGUUGUG-3') can be altered (substitution, deletion, and/or insertion) to contain any 30 sequence, provided a minimum of two base-paired stem structure can form. The sequences listed in Tables II to IX may be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes are equivalent to the ribozymes described specifically in the Tables.

Optimizing Ribozyme Activity

Ribozyme activity can be optimized as described by Stinchcomb et al., supra. The details will not be repeated here, but include altering the length of the 5 ribozyme binding arms (stems I and III, see Figure 2c), or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., 1990 *Nature* 344, 565; Pieken et 10 al., 1991 *Science* 253, 314; Usman and Cedergren, 1992 *Trends in Biochem. Sci.* 17, 334; Usman et al., International Publication No. WO 93/15187; Rossi et al., International Publication No. WO 91/03162; Beigelman et al., 1995 *J. Biol Chem.* in press; as well as Sproat, US 15 Patent No. 5,334,711 which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules). Modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements are desired. (All these publications are hereby 20 incorporated by reference herein).

Sullivan, et al., supra, describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of 25 methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes 30 may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, 35 intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intra-

the cal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Sullivan et al., supra and Draper et al., supra which have been incorporated by reference herein.

5 Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA or RNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA
10 polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers,
15 silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990 Proc. Natl. Acad. Sci. U S A, 87, 6743-7; Gao and Huang 1993 Nucleic Acids Res.,
20 21, 2867-72; Lieber et al., 1993 Methods Enzymol., 217, 47-66; Zhou et al., 1990 Mol. Cell. Biol., 10, 4529-37; Thompson et al., 1995 supra). Several investigators have demonstrated that ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et
25 al., 1992 Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992 Proc. Natl. Acad. Sci. U S A, 89, 10802-6; Chen et al., 1992 Nucleic Acids Res., 20, 4581-9; Yu et al., 1993 Proc. Natl. Acad. Sci. U S A, 90, 6340-4; L'Huillier et al., 1992 EMBO J. 11, 4411-8; Lisziewicz et al., 1993
30 Proc. Natl. Acad. Sci. U. S. A., 90, 8000-4; Thompson et al., 1995 Nucleic Acids Res. 23, 2259). The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors,
35 viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors).

In a preferred embodiment of the invention, a transcription unit expressing a ribozyme that cleaves RNAs that encode flt-1, KDR and/or flk-1 are inserted into a plasmid DNA vector or an adenovirus or adeno-associated 5 virus DNA viral vector or a retroviral RNA vector. Viral vectors have been used to transfer genes and lead to either transient or long term gene expression (Zabner et al., 1993 Cell 75, 207; Carter, 1992 Curr. Opin. Biotech. 3, 533). The adenovirus, AAV or retroviral vector is 10 delivered as recombinant viral particles. The DNA may be delivered alone or complexed with vehicles (as described for RNA above). The recombinant adenovirus or AAV or retroviral particles are locally administered to the site of treatment, e.g., through incubation or inhalation in 15 vivo or by direct application to cells or tissues ex vivo. Retroviral vectors have also been used to express ribozymes in mammalian cells (Ojwang et al., 1992 *supra*; Thompson et al., 1995 *supra*).

flt-1, KDR and/or flk-1 are attractive nucleic 20 acid-based therapeutic targets by several criteria. The interaction between VEGF and VEGF-R is well-established. Efficacy can be tested in well-defined and predictive animal models. Finally, the disease conditions are serious and current therapies are inadequate. Whereas 25 protein-based therapies would inhibit VEGF activity nucleic acid-based therapy provides a direct and elegant approach to directly modulate flt-1, KDR and/or flk-1 expression.

Because flt-1 and KDR mRNAs are highly homologous in 30 certain regions, some ribozyme target sites are also homologous (see Table X). In this case, a single ribozyme will target both flt-1 and KDR mRNAs. At partially homologous sites, a single ribozyme can sometimes be designed to accommodate a site on both mRNAs by including 35 G/U basepairing. For example, if there is a G present in a ribozyme target site in KDR mRNA at the same position there is an A in the flt-1 ribozyme target site, the

ribozyme can be synthesized with a U at the complementary position and it will bind both to sites. The advantage of one ribozyme that targets both VEGF-R mRNAs is clear, especially in cases where both VEGF receptors may contribute to the progression of angiogenesis in the disease state.

"Angiogenesis" refers to formation of new blood vessels which is an essential process in reproduction, development and wound repair. "Tumor angiogenesis" refers to the induction of the growth of blood vessels from surrounding tissue into a solid tumor. Tumor growth and tumor metastasis are dependent on angiogenesis (for a review see Folkman, 1985 *supra*; Folkman 1990 *J. Natl. Cancer Inst.*, 82, 4; Folkman and Shing, 1992 *J. Biol. Chem.* 267, 10931).

Angiogenesis plays an important role in other diseases such as arthritis wherein new blood vessels have been shown to invade the joints and degrade cartilage (Folkman and Shing, *supra*).

"Retinopathy" refers to inflammation of the retina and/or degenerative condition of the retina which may lead to occlusion of the retina and eventual blindness. In "diabetic retinopathy" angiogenesis causes the capillaries in the retina to invade the vitreous resulting in bleeding and blindness which is also seen in neonatal retinopathy (for a review see Folkman, 1985 *supra*; Folkman 1990 *supra*; Folkman and Shing, 1992 *supra*).

Example 1: flt-1, KDR and/or flk-1 ribozymes

By engineering ribozyme motifs applicant has designed several ribozymes directed against flt-1, KDR and/or flk-1 encoded mRNA sequences. These ribozymes were synthesized with modifications that improve their nuclease resistance (Beigelman et al., 1995 *J Biol. Chem.* 270, 25702) and enhance their activity in cells. The ability of ribozymes to cleave target sequences *in vitro* was evaluated essentially as described in Thompson et al., PCT Publication

No. WO 93/23057; Draper et al., PCT Publication No. WO 95/04818.

Example 2: Effect of ribozymes on the binding of VEGF to flt-1, KDR and/or flk-1 receptors

5 Several common human cell lines are available that express endogenous flt-1, KDR and/or flk-1. flt-1, KDR and/or flk-1 can be detected easily with monoclonal antibodies. Use of appropriate fluorescent reagents and fluorescence-activated cell-sorting (FACS) will permit
10 direct quantitation of surface flt-1, KDR and/or flk-1 on a cell-by-cell basis. Active ribozymes are expected to directly reduce flt-1, KDR and/or flk-1 expression and thereby reduce VEGF binding to the cells. In this example, human umbilical cord microvascular endothelial
15 cells were used.

Cell Preparation:

Plates are coated with 1.5% gelatin and allowed to stand for one hour. Cells (e.g., microvascular endothelial cells derived from human umbilical cord vein) are
20 plated at 20,000 cells/well (24 well plate) in 200 ml growth media and incubated overnight (- 1 doubling) to yield ~40,000 cells (75-80% confluent).

Ribozyme treatment:

Media is removed from cells and the cells are washed
25 two times with 300 ml 1X PBS: Ca²⁺: Mg²⁺ mixture. A complex of 200-500 nM ribozyme and LipofectAMINE® (3:1 lipid: phosphate ratio) in 200 ml OptiMEM® (5% FBS) was added to the cells. The cells are incubated for 6 hr (equivalent to 2-3 VEGF-R turnovers).

30 ¹²⁵I VEGF binding assay:

The assay is carried out on ice to inhibit internalization of VEGF during the experiment. The media containing the ribozyme is removed from the cells and the cells

are washed twice with with 300 ml 1X PBS: Ca²⁺: Mg²⁺ mixture containing 1% BSA. Appropriate ¹²⁵I VEGF solution (100,000 cpm/well, +/- 10 X cold 1X PBS, 1% BSA) was applied to the cells. The cells are incubated on ice for 5 1 h. ¹²⁵I VEGF-containing solution is removed and the cells are washed three times with with 300 ml 1X PBS: Ca²⁺: Mg²⁺ mixture containing 1% BSA. To each well 300 ml of 100 mM Tris-HCl, pH 8.0, 0.5% Triton X-100 was added and the the mixture was incubated for 2 min. The ¹²⁵I VEGF-binding was 10 quantitated using standard scintillation counting techniques. Percent inhibition was calculated as follows:

Percent Inhibition =

$$\frac{\text{cpm } ^{125}\text{I VEGF bound by the ribozyme-treated samples}}{\text{cpm } ^{125}\text{I VEGF bound by the Control sample}} \times 100$$

15 Example 3: Effect of hammerhead ribozymes targeted against flt-1 receptor on the binding of VEGF

Hammerhead ribozymes targeted to twenty sites within flt-1 RNA were synthesized as described above. Sequence of the ribozymes used are shown in Table II; the length of 20 stem II region is 3 bp. The hammerhead ribozymes were chemically modified such that the ribozyme consists of ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four nucleo-25 tides at the 5' terminus contains phosphorothioate substitutions. Additionally, 3' end of the ribozyme contains a 3'-3' linked inverted abasic ribose.

Referring to Figure 7, the effect of hammerhead ribozymes targeted against flt-1 receptor on the binding 30 of VEGF to flt-1 on the surface of human microvascular endothelial cells is shown. The majority of the ribozymes tested were able to inhibit the expression of flt-1 and thereby were able to inhibit the binding of VEGF.

In order to determine the specificity of ribozymes 35 targeted against flt-1 RNA, the effect of five anti-flt-1 ribozymes on the binding of VEGF, UPA (urokinase plasmino-

gen activator) and FGF (fibroblast growth factor) to their corresponding receptors were assayed. As shown in Figure 9, there was significant inhibition of VEGF binding to its receptors on cells treated with anti-flt-1 ribozymes.

5 There was no specific inhibition of the binding of UPA and FGF to their corresponding receptors. These data strongly suggest that anti-flt-1 ribozymes specifically cleave flt-1 RNA and not RNAs encoding the receptors for UPA and FGF, resulting in the inhibition of flt-1 receptor expres-

10 sion on the surface of the cells. Thus the ribozymes are responsible for the inhibition of VEGF binding but not the binding of UPA and FGF.

Example 4: Effect of hammerhead ribozymes targeted against KDR receptor on the binding of VEGF

15 Hammerhead ribozymes targeted to twenty one sites within KDR RNA were synthesized as described above. Sequence of the ribozymes used are shown in Table IV; the length of stem II region is 3 bp. The hammerhead ribozymes were chemically modified such that the ribozyme

20 consists of ribose residues at five positions; U4 and U7 positions contain 2'-NH₂ modifications, the remaining nucleotide positions contain 2'-O-methyl substitutions; four nucleotides at the 5' terminus contains phosphorothioate substitutions. Additionally, the 3' end of the

25 ribozyme contains a 3'-3' linked inverted abasic deoxyribose.

Referring to Figure 8, the effect of hammerhead ribozymes targeted against KDR receptor on the binding of VEGF to KDR on the surface of human microvascular endothelial cells is shown. A majority of the ribozymes tested were able to inhibit the expression of KDR and thereby were able to inhibit the binding of VEGF. As a control, the cells were treated with a ribozyme that is not targeted towards KDR RNA (irrel. RZ); there was no specific inhibition of VEGF binding. The results from this control experiment strongly suggest that the inhibi-

tion of VEGF binding observed with anti-KDR ribozymes is a ribozyme-mediated inhibition.

Example 5: Effect of ribozymes targeted against VEGF receptors on cell proliferation

5 Cell Preparation:

24-well plates are coated with 1.5% gelatin (porcine skin 300 bloom). After 1 hr, excess gelatin is washed off of the plate. Microvascular endothelial cells are plated at 5,000 cells/well (24 well plate) in 200 ml growth media. The cells are allowed to grow for ~ 18 hr (~ 1 doubling) to yield ~10,000 cells (25-30% confluent).

Ribozyme treatment:

Media is removed from the cells, and the cells are washed two times with 300 ml 1X PBS: Ca²⁺: Mg²⁺ mixture.

15 For anti-flt-1 HH ribozyme experiment (Figure 12) a complex of 500 nM ribozyme; 15 mM LFA (3:1 lipid:phosphate ratio) in 200 ml OptiMEM (5% FCS) media was added to the cells. Incubation of cells is carried out for 6 hr (equivalent to 2-3 VEGF receptor turnovers).

20 For anti-KDR HH ribozyme experiment (Figure 13) a complex of 200 nM ribozyme; 5.25 mM LFA (3:1 lipid: phosphate ratio) in 200 ml OptiMEM (5% FCS) media was added to the cells. Incubation of cells is carried out for 3 hr.

25 Proliferation:

After three or six hours, the media is removed from the cells and the cells are washed with 300 ml 1X PBS: Ca²⁺: Mg²⁺ mixture. Maintenance media (contains dialyzed 10% FBS) +/- VEGF or basic FGF at 10 ng/ml is added to the cells. The cells are incubated for 48 or 72 h. The cells are trypsinized and counted (Coulter counter). Trypan blue is added on one well of each treatment as control.

As shown in Figure 12B, VEGF and basic FGF can stimulate human microvascular endothelial cell proliferation. However, treatment of cells with 1358 HH or 4229 HH ribozymes, targeted against flt-1 mRNA, results in a significant decrease in the ability of VEGF to stimulate endothelial cell proliferation. These ribozymes do not inhibit the FGF-mediated stimulation of endothelial cell proliferation.

Human microvascular endothelial cells were also treated with hammerhead ribozymes targeted against sites 527, 730, 3702 or 3950 within the KDR mRNA. As shown in Figure 13, all four ribozymes caused significant inhibition of VEGF-mediated induction of cell proliferation. No significant inhibition of cell proliferation was observed when the cells were treated with a hammerhead ribozyme targeted to an irrelevant RNA. Additionally, none of the ribozymes inhibited FGF-mediated stimulation of cell proliferation.

These results strongly suggest that hammerhead ribozymes targeted against either flt-1 or KDR mRNA can specifically inhibit VEGF-mediated induction of endothelial cell proliferation.

Example 6: Effect of antisense oligonucleotides targeted against VEGF receptors on cell proliferation (colorimetric assay)

Following are some of the reagents used in the proliferation assay:

Cells: Human aortic endothelial cells (HAEC) from Clonetics®. Cells at early passage are preferably used.

Uptake Medium: EBM (from Clonetics®); 1% L-Glutamine; 20 mM Hepes; No serum; No antibiotics.

Growth Medium: EGM (from Clonetics®); FBS to 20%; 1% L-Glutamine; 20 mM Hepes.

Cell Plating: 96-well tissue culture plates are coated with 0.2% gelatin (50 ml/well). The gelatin is incubated in the wells at room temperature for 15-30

minutes. The gelatin is removed by aspiration and the wells are washed with PBS:Ca²⁺: Mg²⁺ mixture. PBS mixture is left in the wells until cells are ready to be added. HAEC cells were detached by trypsin treatment and resuspended at 1.25 x 10⁴/ml in growth medium. PBS is removed from plates and 200 ml of cells (i.e. 2.5 x 10³ cells/well) are added to each well. The cells are allowed to grow for 48 hours before the proliferation assay.

Assay: Growth medium is removed from the wells. The 10 cells are washed twice with PBS:Ca²⁺: Mg²⁺ mixture without antibiotics. A formulation of lipid/antisense oligonucleotide (antisense oligonucleotide is used here as a non-limiting example) complex is added to each well (100 ml/well) in uptake medium. The cells are incubated for 15 2-3 hours at 37°C in CO₂ incubator. After uptake, 100 ml/well of growth medium is added (gives final FBS concentration of 10%). After approximately 72 hours, 40 ml MTS® stock solution (made as described by manufacturer) was added to each well and incubated at 37°C for 1-3 20 hours, depending on the color development. (For this assay, 2 hours was sufficient). The intensity of color formation was determined on a plate reader at 490 nM.

Phosphorothioate-substituted antisense oligodeoxy-nucleotides were custom synthesized by The Midland 25 Certified Reagent Company®, Midland, Texas. Following non-limiting antisense oligodeoxynucleotides targeted against KDR RNA were used in the proliferation assay:

KDR 21 AS: 5'-GCA GCA CCT TGC TCT CCA TCC-3'

SCRAMBLED CONTROL: 5'-CTG CCA ACT TCC CAT GCC TGC-3'

30 As shown in Figure 10, proliferation of HAEC cells are specifically inhibited by increasing concentrations of the phosphorothioate anti-KDR-antisense oligodeoxynucleotide. The scrambled antisense oligonucleotide is not expected to bind the KDR RNA and therefore is not expected 35 to inhibit KDR expression. As expected, there is no detectable inhibition of proliferation of HAEC cells

treated with a phosphorothioate antisense oligonucleotide with scrambled sequence.

Example 7: In vitro cleavage of flt-1 RNA by hammerhead ribozymes

5 Referring to Figure 11A, hammerhead ribozymes (HH) targeted against sites 1358 and 4229 within the flt-1 RNA were synthesized as described above.

RNA cleavage assay in vitro:

Substrate RNA was 5' end-labeled using [γ -³²P] ATP and
10 T4 polynucleotide kinase (US Biochemicals). Cleavage reactions were carried out under ribozyme "excess" conditions. Trace amount (\leq 1 nM) of 5' end-labeled substrate and 40 nM unlabeled ribozyme were denatured and renatured separately by heating to 90°C for 2 min and snap-cooling
15 on ice for 10-15 min. The ribozyme and substrate were incubated, separately, at 37°C for 10 min in a buffer containing 50 mM Tris-HCl and 10 mM MgCl₂. The reaction was initiated by mixing the ribozyme and substrate solutions and incubating at 37°C. Aliquots of 5 ml are taken
20 at regular intervals of time and the reaction is quenched by mixing with equal volume of 2X formamide stop mix. The samples are resolved on 20 % denaturing polyacrylamide gels. The results were quantified and percentage of target RNA cleaved is plotted as a function of time.

25 Referring to Figure 11B and 11C, hammerhead ribozymes targeted against sites 1358 and 4229 within the flt-1 RNA are capable of cleaving target RNA efficiently in vitro.

Example 8: In vitro cleavage of KDR RNA by hammerhead ribozymes

30 In this non-limiting example, hammerhead ribozymes targeted against sites 726, 527, 3702 and 3950 within KDR RNA were synthesized as described above. RNA cleavage reactions were carried out in vitro essentially as described under Example 7.

Referring to Figures 14 and 15, all four ribozymes were able to cleave their cognate target RNA efficiently in a sequence-specific manner.

Example 9: In vitro cleavage of RNA by hammerhead ribozymes targeted against cleavage sites that are homologous between KDR and flt-1 mRNA

Because flt-1 and KDR mRNAs are highly homologous in certain regions, some ribozyme target sites are also homologous (see Table X). In this case, a single ribozyme will target both flt-1 and KDR mRNAs. Hammerhead ribozyme (FLT/KDR-I) targeted against one of the homologous sites between flt-1 and KDR (flt-1 site 3388 and KDR site 3151) was synthesized as described above. Ribozymes with either a 3 bp stem II or a 4 bp stem II were synthesized. RNA cleavage reactions were carried out *in vitro* essentially as described under Example 7.

Referring to Figure 16, FLT/KDR-I ribozyme with either a 3 or a 4 bp stem II was able to cleave its target RNA efficiently *in vitro*.

Example 10: Effect of multiple ribozymes targeted against both flt-1 and KDR RNA on cell proliferation

Since both flt-1 and KDR receptors of VEGF are involved in angiogenesis, the inhibition of the expression of both of these genes may be an effective approach to inhibit angiogenesis.

Human microvascular endothelial cells were treated with hammerhead ribozymes targeted against sites flt-1 4229 alone, KDR 527 alone, KDR 726 alone, KDR 3950 alone, flt-1 4229 + KDR 527, flt-1 4229 + KDR 726 or flt-1 4229 + KDR 3950. As shown in Figure 17, all the combinations of active ribozymes (A) caused significant inhibition of VEGF-mediated induction of cell proliferation. No significant inhibition of cell proliferation was observed when the cells were treated with a catalytically inactive (I) hammerhead ribozymes. Additionally, cells treated

with ribozymes targeted against both flt-1 and KDR RNAs-flt-1 4229 + KDR 527; flt-1 4229 + KDR 726; flt-1 4229 + KDR 3950, were able to cause a greater inhibition of VEGF-mediated induction of cell proliferation when 5 compared with individual ribozymes targeted against either flt-1 or KDR RNA (see flt-1 4229 alone; KDR 527 alone; KDR 726 alone; KDR 3950 alone). This strongly suggests that treatment of cells with multiple ribozymes may be a more effective means of inhibition of gene expression.

10 Animal Models

There are several animal models in which the anti-angiogenesis effect of nucleic acids of the present invention, such as ribozymes, directed against VEGF-R mRNAs can be tested. Typically a corneal model has been 15 used to study angiogenesis in rat and rabbit since recruitment of vessels can easily be followed in this normally avascular tissue (Pandey et al., 1995 *Science* 268: 567-569). In these models, a small Teflon or Hydron disk pretreated with an angiogenesis factor (e.g. bFGF or 20 VEGF) is inserted into a pocket surgically created in the cornea. Angiogenesis is monitored 3 to 5 days later. Ribozymes directed against VEGF-R mRNAs would be delivered in the disk as well, or dropwise to the eye over the time course of the experiment. In another eye model, hypoxia 25 has been shown to cause both increased expression of VEGF and neovascularization in the retina (Pierce et al., 1995 *Proc. Natl. Acad. Sci. USA.* 92: 905-909; Shweiki et al., 1992 *J. Clin. Invest.* 91: 2235-2243).

In human glioblastomas, it has been shown that VEGF 30 is at least partially responsible for tumor angiogenesis (Plate et al., 1992 *Nature* 359, 845). Animal models have been developed in which glioblastoma cells are implanted subcutaneously into nude mice and the progress of tumor growth and angiogenesis is studied (Kim et al., 1993 35 *supra*; Millauer et al., 1994 *supra*).

Another animal model that addresses neovascularization involves Matrigel, an extract of basement membrane that becomes a solid gel when injected subcutaneously (Passaniti et al., 1992 *Lab. Invest.* 67: 519-528). When 5 the Matrigel is supplemented with angiogenesis factors such as VEGF, vessels grow into the Matrigel over a period of 3 to 5 days and angiogenesis can be assessed. Again, ribozymes directed against VEGF-R mRNAs would be delivered in the Matrigel.

10 Several animal models exist for screening of anti-angiogenic agents. These include corneal vessel formation following corneal injury (Burger et al., 1985 *Cornea* 4: 35-41; Lepri, et al., 1994 *J. Ocular Pharmacol.* 10: 273-280; Ormerod et al., 1990 *Am. J. Pathol.* 137: 1243-1252) 15 or intracorneal growth factor implant (Grant et al., 1993 *Diabetologia* 36: 282-291; Pandey et al. 1995 *supra*; Zieche et al., 1992 *Lab. Invest.* 67: 711-715), vessel growth into Matrigel matrix containing growth factors (Passaniti et al., 1992 *supra*), female reproductive organ neovascularization 20 following hormonal manipulation (Shweiki et al., 1993 *Clin. Invest.* 91: 2235-2243), several models involving inhibition of tumor growth in highly vascularized solid tumors (O'Reilly et al., 1994 *Cell* 79: 315-328; Senger et al., 1993 *Cancer and Metas. Rev.* 12: 303-324; 25 Takahasi et al., 1994 *Cancer Res.* 54: 4233-4237; Kim et al., 1993 *supra*), and transient hypoxia-induced neovascularization in the mouse retina (Pierce et al., 1995 *Proc. Natl. Acad. Sci. USA.* 92: 905-909).

The cornea model, described in Pandey et al. *supra*, 30 is the most common and well characterized anti-angiogenic agent efficacy screening model. This model involves an avascular tissue into which vessels are recruited by a stimulating agent (growth factor, thermal or alkalai burn, endotoxin). The corneal model would utilize the intra- 35 stromal corneal implantation of a Teflon pellet soaked in a VEGF-Hydrone solution to recruit blood vessels toward the pellet which can be quantitated using standard microscopic

and image analysis techniques. To evaluate their anti-angiogenic efficacy, ribozymes are applied topically to the eye or bound within Hydron on the Teflon pellet itself. This avascular cornea as well as the Matrigel 5 (see below) provide for low background assays. While the corneal model has been performed extensively in the rabbit, studies in the rat have also been conducted.

The mouse model (Passaniti et al., *supra*) is a non-tissue model which utilizes Matrigel, an extract of 10 basement membrane (Kleinman et al., 1986) or Millipore® filter disk, which can be impregnated with growth factors and anti-angiogenic agents in a liquid form prior to injection. Upon subcutaneous administration at body temperature, the Matrigel or Millipore® filter disk forms 15 a solid implant. VEGF embedded in the Matrigel or Millipore® filter disk would be used to recruit vessels within the matrix of the Matrigel or Millipore® filter disk which can be processed histologically for endothelial cell specific vWF (factor VIII antigen) immunohisto-20 chemistry, Trichrome-Masson stain, or hemoglobin content. Like the cornea, the Matrigel or Millipore® filter disk are avascular; however, it is not tissue. In the Matrigel or Millipore® filter disk model, ribozymes are administered within the matrix of the Matrigel or Millipore® 25 filter disk to test their anti-angiogenic efficacy. Thus, delivery issues in this model, as with delivery of ribozymes by Hydron-coated Teflon pellets in the rat cornea model, may be less problematic due to the homogeneous presence of the ribozyme within the respective matrix.

30 These models offer a distinct advantage over several other angiogenic models listed previously. The ability to use VEGF as a pro-angiogenic stimulus in both models is highly desirable since ribozymes will target only VEGFr mRNA. In other words, the involvement of other non-35 specific types of stimuli in the cornea and Matrigel models is not advantageous from the standpoint of understanding the pharmacologic mechanism by which the

anti-VEGFr mRNA ribozymes produce their effects. In addition, the models will allow for testing the specificity of the anti-VEGFr mRNA ribozymes by using either a- or bFGF as a pro-angiogenic factor. Vessel recruitment using FGF 5 should not be affected in either model by anti-VEGFr mRNA ribozymes. Other models of angiogenesis including vessel formation in the female reproductive system using hormonal manipulation (Shweiki et al., 1993 *supra*); a variety of vascular solid tumor models which involve indirect correlations with angiogenesis (O'Reilly et al., 1994 *supra*; 10 Senger et al., 1993 *supra*; Takahasi et al., 1994 *supra*; Kim et al., 1993 *supra*); and retinal neovascularization following transient hypoxia (Pierce et al., 1995 *supra*) were not selected for efficacy screening due to their 15 non-specific nature, although there is a correlation between VEGF and angiogenesis in these models.

Other model systems to study tumor angiogenesis is reviewed by Folkman, 1985 *Adv. Cancer. Res.* 43, 175.

flt-1, KDR and/or flk-1 protein levels can be 20 measured clinically or experimentally by FACS analysis. flt-1, KDR and/or flk-1 encoded mRNA levels will be assessed by Northern analysis, RNase-protection, primer extension analysis and/or quantitative RT-PCR. Ribozymes that block flt-1, KDR and/or flk-1 protein encoding mRNAs 25 and therefore result in decreased levels of flt-1, KDR and/or flk-1 activity by more than 20% *in vitro* will be identified.

Ribozymes and/or genes encoding them are delivered by either free delivery, liposome delivery, cationic lipid 30 delivery, adeno-associated virus vector delivery, adeno-virus vector delivery, retrovirus vector delivery or plasmid vector delivery in these animal model experiments (see above).

Patients can be treated by locally administering 35 nucleic acids targeted against VEGF-R by direct injection. Routes of administration may include, but are not limited to, intravascular, intramuscular, subcutaneous, intra-

articular, aerosol inhalation, oral (tablet, capsule or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery.

Example 11: Ribozyme-mediated inhibition of angiogenesis

5 in vivo

The purpose of this study was to assess the anti-angiogenic activity of hammerhead ribozymes targeted against flt-1 4229 site in the rat cornea model of VEGF induced angiogenesis (see above). These ribozymes have 10 either active or inactive catalytic core and either bind and cleave or just bind to VEGF-R mRNA of the flt-1 subtype. The active ribozymes, that are able to bind and cleave the target RNA, have been shown to inhibit (¹²⁵I-labeled) VEGF binding in cultured endothelial cells 15 and produce a dose-dependent decrease in VEGF induced endothelial cell proliferation in these cells (see Examples 3-5 above). The catalytically inactive forms of these ribozymes, wherein the ribozymes can only bind to the RNA but cannot catalyze RNA cleavage, fail to show 20 these characteristics. The ribozymes and VEGF were co-delivered using the filter disk method: Nitrocellulose filter disks (Millipore[®]) of 0.057 diameter were immersed in appropriate solutions and were surgically implanted in rat cornea as described by Pandey et al., *supra*. This 25 delivery method has been shown to deliver rhodamine-labeled free ribozyme to scleral cells and, in all likelihood cells of the pericorneal vascular plexus. Since the active ribozymes show cell culture efficacy and can be delivered to the target site using the disk method, 30 it is essential that these ribozymes be assessed for *in vivo* anti-angiogenic activity.

The stimulus for angiogenesis in this study was the treatment of the filter disk with 30 mM VEGF which is implanted within the cornea's stroma. This dose yields 35 reproducible neovascularization stemming from the pericorneal vascular plexus growing toward the disk in a

dose-response study 5 days following implant. Filter disks treated only with the vehicle for VEGF show no angiogenic response. The ribozymes was co-administered with VEGF on a disk in two different ribozyme concentrations. One concern with the simultaneous administration is that the ribozymes will not be able to inhibit angiogenesis since VEGF receptors can be stimulated. However, we have observed that in low VEGF doses, the neovascular response reverts to normal suggesting that the VEGF stimulus is essential for maintaining the angiogenic response. Blocking the production of VEGF receptors using simultaneous administration of anti-VEGF-R mRNA ribozymes could attenuate the normal neovascularization induced by the filter disk treated with VEGF.

15 Materials and Methods:

1. Stock hammerhead ribozyme solutions:

- a. flt-1 4229 (786 μ M) - Active
- b. flt-1 4229 (736 μ M) - Inactive

2. Experimantal solutions/groups:

- | | | | |
|----|---|------------|--|
| 20 | Group 1 | Solution 1 | Control VEGF solution: 30 μ M in
82mM Tris base |
| | Group 2 | Solution 2 | flt-1 4229 (1 μ g/ μ L) in 30 μ M
VEGF/82 mM Tris base |
| | Group 3 | Solution 3 | flt-1 4229 (10 μ g/ μ L) in 30 μ M
VEGF/82 mM Tris base |
| 25 | Group 4 | Solution 4 | No VEGF, flt-1 4229 (10 μ g/ μ L)
in 82 mM Tris base |
| | Group 5 | Solution 5 | No VEGF, No ribozyme in 82 mM
Tris base |
| 30 | 10 eyes per group, 5 animals (Since they have similar
molecular weights, the molar concentrations should be
essentially similar). | | |

Each solution (VEGF and RIBOZYMES) were prepared as a 2X solution for 1:1 mixing for final concentrations

above, with the exception of solution 1 in which VEGF was 2X and diluted with ribozyme diluent (sterile water).

3. VEGF Solutions

The 2X VEGF solution (60 μ M) was prepared from a stock of 0.82 μ g/ μ L in 50 mM Tris base. 200 μ L of VEGF stock was concentrated by speed vac to a final volume of 60.8 μ L, for a final concentration of 2.7 μ g/ μ L or 60 μ M. Six 10 μ L aliquots was prepared for daily mixing. 2X solutions for VEGF and Ribozyme was stored at 4°C until the day of the surgery. Solutions were mixed for each day of surgery. Original 2X solutions was prepared on the day before the first day of the surgery.

4. Surgical Solutions:

Anesthesia:

15 stock ketamine hydrochloride 100 mg/mL
stock xylazine hydrochloride 20 mg/mL
stock acepromazine 10 mg/mL

Final anesthesia solution: 50 mg/mL ketamine, 10 mg/mL xylazine, and 0.5 mg/mL acepromazine

20 5% povidone iodine for ophthalmic surgical wash
2% lidocaine (sterile) for ophthalmic administration (2 drops per eye)
sterile 0.9% NaCl for ophthalmic irrigation

5. Surgical Methods:

25 Standard surgical procedure as described in Pandey et al., supra. Filter disks were incubated in 1 μ L of each solution for approximately 30 minutes prior to implantation.

5. Experimental Protocol:

30 The animal cornea were treated with the treatment groups as described above. Animals were allowed to recover for 5 days after treatment with daily observation (scoring 0 - 3). On the fifth day animals were euthanized and

digital images of each eye was obtained for quantitaion using Image Pro Plus. Quantitated neovascular surface area were analyzed by ANOVA followed by two post-hoc tests including Dunnets and Tukey-Kramer tests for significance 5 at the 95% confidence level. Dunnets provide information on the significance between the differences within the means of treatments vs. controls while Tukey-Kramer provide information on the significance of differences within the means of each group.

10 Results are graphically represented in Figure 18. As shown in the figure, flt-1 4229 active hammerhead ribozyme at both concentrations was effective at inhibiting angiogenesis while the inactive ribozyme did not show any significant reduction in angiogenesis. A statistically 15 significant reduction in neovascular surface area was observed only with active ribozymes. This result clearly shows that the ribozymes are capable of significantly inhibiting angiogenesis *in vivo*. Specifically, the mechanism of inhibition appears to be by the binding and 20 cleavage of target RNA by ribozymes.

Diagnostic uses

Ribozymes of this invention may be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of flt-1, KDR 25 and/or flk-1 RNA in a cell. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using 30 multiple ribozymes described in this invention, one may map nucleotide changes which are important to RNA structure and function *in vitro*, as well as in cells and tissues. Cleavage of target RNAs with ribozymes may be used to inhibit gene expression and define the role 35 (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets

may be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted 5 to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other *in vitro* uses of ribozymes of this invention are well known in the art, and include 10 detection of the presence of mRNAs associated with flt-1, KDR and/or flk-1 related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.

In a specific example, ribozymes which can cleave 15 only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme will be used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild- 20 type and mutant RNA will be cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the "non-targeted" RNA species. The cleavage products from the synthetic substrates will also serve to generate size 25 markers for the analysis of wild-type and mutant RNAs in the sample population. Thus each analysis will require two ribozymes, two substrates and one unknown sample which will be combined into six reactions. The presence of cleavage products will be determined using an RNase protection assay so that full-length and cleavage fragments 30 of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in 35 target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., flt-1, KDR and/or flk-1) is adequate to establish

risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios 5 will be correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.

Other embodiments are within the following claims.

Table ICharacteristics of RibozymesGroup I Introns

Size: ~200 to >1000 nucleotides

- 5 Requires a U in the target sequence immediately 5' of the cleavage site.
Binds 4-6 nucleotides at 5' side of cleavage site.
Over 75 known members of this class. Found in *Tetrahymena thermophila* rRNA, fungal mitochondria, chloroplasts, phage
10 T4, blue-green algae, and others.

RNaseP RNA (M1 RNA)

Size: ~290 to 400 nucleotides

RNA portion of a ribonucleoprotein enzyme. Cleaves tRNA precursors to form mature tRNA.

- 15 Roughly 10 known members of this group all are bacterial in origin.

Hammerhead Ribozyme

Size: ~13 to 40 nucleotides.

- Requires the target sequence UH immediately 5' of the
20 cleavage site.

Binds a variable number of nucleotides on both sides of the cleavage site.

- 14 known members of this class. Found in a number of plant pathogens (virusoids) that use RNA as the infectious
25 agent (Figure 1 and 2)

Hairpin Ribozyme

Size: ~50 nucleotides.

Requires the target sequence GUC immediately 3' of the cleavage site.

- 30 Binds 4-6 nucleotides at 5' side of the cleavage site and a variable number to the 3' side of the cleavage site.
Only 3 known member of this class. Found in three plant pathogen (satellite RNAs of the tobacco ringspot virus,

arabis mosaic virus and chicory yellow mottle virus) which uses RNA as the infectious agent (Figure 3).

Hepatitis Delta Virus (HDV) Ribozyme

Size: 50-60 nucleotides (at present)

5 Sequence requirements not fully determined.

Binding sites and structural requirements not fully determined, although no sequences 5' of cleavage site are required.

Only 1 known member of this class. Found in human HDV
10 (Figure 4).

Neurospora VS RNA Ribozyme

Size: ~144 nucleotides (at present)

Cleavage of target RNAs recently demonstrated.

Sequence requirements not fully determined.

15 Binding sites and structural requirements not fully determined. Only 1 known member of this class. Found in Neurospora VS RNA (Figure 5).

Table II: Human flt1 VEGF Receptor-Hammerhead Ribozyme and Substrate Sequence

20	nt. Posi- tion	HH Ribozyme	Substrate
	10	GCCGAGAG CUGAUGA X GAA AGUGUCCG	CGGACACUC CUCUCGGC
	13	GGAGCCGA CUGAUGA X GAA AGGAGUGU	ACACUCCUC UCGGCUCC
25	15	GAGGAGCC CUGAUGA X GAA AGAGGAGU	ACUCCUCUC GGCUCCUC
	20	CCGGGGAG CUGAUGA X GAA AGCCGAGA	UCUCGGCUC CUCCCCGG
	23	CUGCCGGG CUGAUGA X GAA AGGAGCCG	CGGCUCCUC CCCGGCAG
	43	CCCGCUCC CUGAUGA X GAA AGCCGCCG	CGGCGGCUC GGAGCGGG
	54	GAGCCCCG CUGAUGA X GAA AGCCCGCU	AGCGGGCUC CGGGGCUC
30	62	CUGCACCC CUGAUGA X GAA AGCCCCGG	CCGGGGCUC GGGUGCAG
	97	CCCCGGGU CUGAUGA X GAA AUCCUCGC	GCGAGGAUU ACCCGGGG
	98	UCCCCGGG CUGAUGA X GAA AAUCCUCG	CGAGGAUUA CCCGGGGA

	113	CAGGAGAC CUGAUGA X GAA ACCACUUC	GAAGUGGUU GUCUCCUG
	116	AGCCAGGA CUGAUGA X GAA ACAACCAC	GUGGUJUGUC UCCUGGCU
	118	CCAGCCAG CUGAUGA X GAA AGACAACC	GGUUGUCUC CUGGCUGG
	145	CGCGCCCCU CUGAUGA X GAA AGGCCCG	CGGGCGCUC AGGGCGCG
5	185	GGCCGCCA CUGAUGA X GAA AGUCCGUC	GACGGACUC UGGCGGCC
	198	CGGCCAAC CUGAUGA X GAA ACCCGGCC	GGCCGGGUC GUUGGCCG
	201	CCCCGGCC CUGAUGA X GAA ACGACCCG	CGGGUCGUU GGCCGGGG
	240	GUGAGCGC CUGAUGA X GAA ACGCGGCC	GGCCGCGUC GCGCUCAC
	246	ACCAUGGU CUGAUGA X GAA AGCGCGAC	GUCGCGCUC ACCAUGGU
10	255	CAGUAGCU CUGAUGA X GAA ACCAUGGU	ACCAUGGUC AGCUACUG
	260	UGUCCCAG CUGAUGA X GAA AGCUGACC	GGUCAGCUA CUGGGACA
	276	CACAGCAG CUGAUGA X GAA ACCCCGGU	ACCGGGGUC CUGCUGUG
	294	AGACAGCU CUGAUGA X GAA AGCAGCGC	GCGCUGCUC AGCUGUCU
	301	GAGAAGCA CUGAUGA X GAA ACAGCUGA	UCAGCUGUC UGCUUCUC
15	306	CCUGUGAG CUGAUGA X GAA AGCAGACA	UGUCUGCUU CUCACAGG
	307	UCCUGUGA CUGAUGA X GAA AAGCAGAC	GUCUGCUUC UCACAGGA
	309	GAUCCUGU CUGAUGA X GAA AGAACAG	CUGCUUCUC ACAGGAUC
	317	CUGAACUA CUGAUGA X GAA AUCCUGUG	CACAGGAUC UAGUUCAG
	319	ACCUGAAC CUGAUGA X GAA AGAUCCUG	CAGGAUCUA GUUCAGGU
20	322	UGAACCCUG CUGAUGA X GAA ACUAGAUC	GAUCUAGUU CAGGUUCA
	323	UUGAACCU CUGAUGA X GAA AACUAGAU	AUCUAGUUC AGGUUCAA
	328	UAAAUUUUG CUGAUGA X GAA ACCUGAAC	GUUCAGGUU CAAAAUUA
	329	UAAAUUUU CUGAUGA X GAA AACCUGAA	UUCAGGUUC AAAAUUAA
	335	GAUCUUUU CUGAUGA X GAA AUUUGAA	UUCAAAAUU AAAAGAUC
25	336	GGAUCUUU CUGAUGA X GAA AAUUUUGA	UCAAAAUU AAAGAUCC
	343	CAGUUCAG CUGAUGA X GAA AUCUUUUA	AAAAAGAUC CUGAACUG
	355	GCCUUUUA CUGAUGA X GAA ACUCAGUU	AACUGAGUU UAAAAGGC
	356	UGCCUUUU CUGAUGA X GAA AACUCAGU	ACUGAGUUU AAAAGGCA
	357	GUGC CUUU CUGAUGA X GAA AAACUCAG	CUGAGUUUA AAAGGCAC
30	375	GCUUGCAU CUGAUGA X GAA AUGUGCUG	CAGCACAU AUGCAAGC
	400	GCAUUGGA CUGAUGA X GAA AUGCAGUG	CACUGCAUC UCCAAUGC
	402	CUGCAUUG CUGAUGA X GAA AGAUGCAG	CUGCAUCUC CAAUGCAG
	427	AGACCAAUU CUGAUGA X GAA AUGGGCUG	CAGCCCCAUA AAUGGUCU

434	CAGGCCAA CUGAUGA X GAA ACCAUUA	UAAAUGGUC UUUGCUG
436	UUCAGGCA CUGAUGA X GAA AGACCAU	AAUGGUCUU UGCCUGAA
437	UUUCAGGC CUGAUGA X GAA AAGACCAU	AUGGUCUUU GCCUGAAA
454	GCUUUCCU CUGAUGA X GAA ACUCACCA	UGGUGAGUA AGGAAAGC
5 477	GAUUUAGU CUGAUGA X GAA AUGCUCAG	CUGAGCAUA ACUAAAUC
481	GGCAGAUU CUGAUGA X GAA AGUUAUGC	GCAUAACUA AAUCUGCC
485	CACAGGCA CUGAUGA X GAA AUUUAGUU	AACUAAAUC UGCCUGUG
512	UACUGCAG CUGAUGA X GAA AUUGUUUG	CAAACAAUU CUGCAGUA
513	GUACUGCA CUGAUGA X GAA AAUUGUUU	AAACAAUUC UGCAGUAC
10 520	GGUAAAAG CUGAUGA X GAA ACUGCAGA	UCUGCAGUA CUUUAACC
523	CAAGGUUA CUGAUGA X GAA AGUACUGC	GCAGUACUU UAACCUUG
524	UCAAGGUU CUGAUGA X GAA AAGUACUG	CAGUACUUU AACCUUGA
525	UUCAAGGU CUGAUGA X GAA AAAGUACU	AGUACUUUA ACCUUGAA
530	CUGUGUUC CUGAUGA X GAA AGGUUAAA	UUUAACCUU GAACACAG
15 541	GUUUGCuu CUGAUGA X GAA AGCUGUGU	ACACAGCUC AAGCAAAC
560	AGCUGUAG CUGAUGA X GAA AGCCAGUG	CACUGGCUU CUACAGCU
561	CAGCUGUA CUGAUGA X GAA AAGCCAGU	ACUGGCUUC UACAGCUG
563	UGCAGCUG CUGAUGA X GAA AGAACCCA	UGGCUUCUA CAGCUGCA
575	CAGCUAGA CUGAUGA X GAA AUUJUGCAG	CUGCAAAUA UCUAGCUG
20 577	UACAGCUA CUGAUGA X GAA AUAUUUGC	GCAAAUAUC UAGCUGUA
579	GGUACAGC CUGAUGA X GAA AGAUAUU	AAAUAUCUA GCUGUACC
585	GAAGUAGG CUGAUGA X GAA ACAGCUAG	CUAGCUGUA CCUACUUC
589	CUUJUGAG CUGAUGA X GAA AGGUACAG	CUGUACCUA CUUCAAAG
592	CUUCUJUG CUGAUGA X GAA AGUAGGUA	UACCUACUU CAAAGAAG
25 593	UCUUCUJUU CUGAUGA X GAA AAGUAGGU	ACCUACUUC AAAGAAGA
614	AGAUUGCA CUGAUGA X GAA AUUCUGUU	AACAGAAUC UGCAAUCU
621	AAUAAUUA CUGAUGA X GAA AUUGCAGA	UCUGCAAUC UAAUAAUU
623	UAAAUAUA CUGAUGA X GAA AGAUJUGCA	UGCAAUCUA UAAUAAUJA
625	AAUAAAUA CUGAUGA X GAA AUAGAUUG	CAAUCUUA UAUUJUAUU
30 627	CUAAUAAA CUGAUGA X GAA AUUAUAGAU	AUCUAUUA UUUAAUAG
629	CACUAAUA CUGAUGA X GAA AUUAUAG	CUAAUUAUU UAUJAGUG
630	UCACUAAU CUGAUGA X GAA AAUUAUUA	UAUUAUUU AUUAGUGA
631	AUCACUAA CUGAUGA X GAA AAAUUAU	AUAUAAUUA UUAGUGAU

	633	GUAUCACU CUGAUGA X GAA AUAAAUAU	AUAUUUAUU AGUGAUAC
	634	UGUAUCAC CUGAUGA X GAA AAUAAAUA	UAUUUAUUA GUGAUACA
	640	UCUACCUG CUGAUGA X GAA AUCACUAA	UUAGUGAUA CAGGUAGA
	646	GAAAGGUC CUGAUGA X GAA ACCUGUAU	AUACAGGUA GACCUUUC
5	652	CUCUACGA CUGAUGA X GAA AGGUCUAC	GUAGACCUU UCGUAGAG
	653	UCUCUACG CUGAUGA X GAA AAGGUCUA	UAGACCUUU CGUAGAGA
	654	AUCUCUAC CUGAUGA X GAA AAAGGUCU	AGACCUUUC GUAGAGAU
	657	UACAUCUC CUGAUGA X GAA ACGAAAGG	CCUUUCGUA GAGAUGUA
	665	UUUCACUG CUGAUGA X GAA ACAUCUCU	AGAGAUGUA CAGUGAAA
10	675	AUJUCGGG CUGAUGA X GAA AUJUCACU	AGUGAAAUC CCCGAAAU
	684	AUGUGUAU CUGAUGA X GAA AUJUCGGG	CCCGAAAUU AUACACAU
	685	CAUGUGUA CUGAUGA X GAA AAUUUCGG	CCGAAAUUA UACACAUG
	687	GUCAUGUG CUGAUGA X GAA AUAAAUC	AAAAUUAUA CACAUGAC
	711	GGAAUGAC CUGAUGA X GAA AGCUCCCU	AGGGAGCUC GUCAUUCC
15	714	CAGGGAAU CUGAUGA X GAA ACGAGCUC	GAGCUCGUC AUUCCUG
	717	CGGCAGGG CUGAUGA X GAA AUGACGAG	CUCGUCAUU CCCUGCCG
	718	CCGGCAGG CUGAUGA X GAA AAUGACGA	UCGUCAUUC CCUGCCGG
	729	GGUGACGU CUGAUGA X GAA ACCCGGCA	UGCCGGGUU ACGUCACC
	730	AGGUGACG CUGAUGA X GAA AACCCGGC	GCCGGGUUA CGUCACCU
20	734	UGUUAGGU CUGAUGA X GAA ACGUAAAC	GGUUACGUC ACCUAACA
	739	AGUGAUGU CUGAUGA X GAA AGGUGACG	CGUCACCUA ACAUCACU
	744	GUAAACAGU CUGAUGA X GAA AUGUUAGG	CCUAACAUU ACUGUUAC
	750	UUAAAAGU CUGAUGA X GAA ACAGUGAU	AUCACUGUU ACUUAAA
	751	UUUUAAAG CUGAUGA X GAA AACAGUGA	UCACUGUUA CUUAAA
25	754	CUUUUUUA CUGAUGA X GAA AGUAACAG	CUGUUACUU UAAAAAAG
	755	ACUUUUUU CUGAUGA X GAA AAGUAACA	UGUUACUUU AAAAAAGU
	756	AACUUUUU CUGAUGA X GAA AAAGUAAC	GUUACUUUA AAAAGUU
	764	CAAGUGGA CUGAUGA X GAA ACUUUUUU	AAAAAGUUU UCCACUUG
	765	UCAAGUGG CUGAUGA X GAA AACUUUUU	AAAAAGUUU CCACUUGA
30	766	GUCAAGUG CUGAUGA X GAA AAACUUUU	AAAAGUUJC CACUUGAC
	771	AAAGUGUC CUGAUGA X GAA AGUGGAAA	UUUCCACUU GACACUUU
	778	AGGGAUCA CUGAUGA X GAA AGUGUCAA	UUGACACUU UGAUCCCU
	779	CAGGGAUCA CUGAUGA X GAA AAGUGUCA	UGACACUUU GAUCCUG

783	CCAUCAGG CUGAUGA X GAA AUCAAAGU	ACUUUGAUC CCUGAUGG
801	UCCCAGAU CUGAUGA X GAA AUGCGUUU	AAACGCAUA AUCUGGGA
804	CUGUCCCA CUGAUGA X GAA AUUAUGCG	CGCAUAAUC UGGGACAG
814	GCCCUUUC CUGAUGA X GAA ACUGUCCC	GGGACAGUA GAAAGGGC
5 824	AUAUGAUG CUGAUGA X GAA AGCCCCUU	AAAGGGCUU CAUCAUAU
825	GAUAUGAU CUGAUGA X GAA AAGCCUU	AAGGGCUUC AUCAUAUC
828	UUUGAUAU CUGAUGA X GAA AUGAAGCC	GGCUUCAUC AUAUCAAA
831	GCAUJUGA CUGAUGA X GAA AUGAUGAA	UUCAUCUA UCAAAUGC
833	UUGCAUUU CUGAUGA X GAA AUAUGAUG	CAUCAUAUC AAAUGCAA
10 845	UUUCUUUG CUGAUGA X GAA ACCUGCA	UGCAACGUA CAAAGAAA
855	AGAAGCCC CUGAUGA X GAA AUJUCUUU	AAAGAAAUA GGGCUUCU
861	CAGGUCAAG CUGAUGA X GAA AGCCCUAU	AUAGGGCUU CUGACCUG
862	ACAGGUCA CUGAUGA X GAA AAGCCCUA	UAGGGCUUC UGACCUGU
882	UGCCCAUU CUGAUGA X GAA ACUGUUGC	GCAACAGUC AAUGGGCA
15 892	CUUAUACA CUGAUGA X GAA AUGCCCAU	AUGGGCAUU UGUJUAAG
893	UCUUUAUAC CUGAUGA X GAA AAUGCCCA	UGGGCAUUU GUUAAGA
896	UUGUCUUA CUGAUGA X GAA ACAAAUGC	GCAUUJUGUA UAAGACAA
898	GUUUGUCU CUGAUGA X GAA AUACAAA	AUJUGUUA AGACAAAC
908	GUGUGAGA CUGAUGA X GAA AGUJUGUC	GACAAACUA UCUCACAC
20 910	AUGUGUGA CUGAUGA X GAA AUAGUUJUG	CAAACUAUC UCACACAU
912	CGAUGUGU CUGAUGA X GAA AGAUAGUU	AACUAUCUC ACACAUCG
919	GGUUUGUC CUGAUGA X GAA AUGUGUGA	UCACACAU CACAAACC
931	UAUGAUJUG CUGAUGA X GAA AUUGGUUU	AAACCAAUA CAAUCAUA
936	ACAUCUAU CUGAUGA X GAA AUUGUAUU	AAUACAAUC AUAGAUGU
25 939	UGGACAUC CUGAUGA X GAA AUGAUJUG	ACAAUCAUA GAUGUCCA
945	CUUAUJUG CUGAUGA X GAA ACAUCUAU	AUAGAUGUC CAAUAAG
951	GGUGUGCU CUGAUGA X GAA AUUUGGAC	GUCCAAAUA AGCACACC
969	AGUAAUUU CUGAUGA X GAA ACUGGGCG	CGCCCAGUC AAAUUACU
974	CUCUAAGU CUGAUGA X GAA AUJUGACU	AGUAAAUA ACUUAGAG
30 975	CCUCUAAG CUGAUGA X GAA AAUJUGAC	GUCAAAUA CUJAGAGG
978	UGGCCUCU CUGAUGA X GAA AGUAAUJU	AAAUUACUU AGAGGCCA
979	AUGGCCUC CUGAUGA X GAA AAGUAAU	AAUACUUA GAGGCCAU
988	GACAAGAG CUGAUGA X GAA AUGGCCUC	GAGGCCAU CUCUUGUC

	991	GAGGACAA CUGAUGA X GAA AGUAUGGC	GCCAUACUC UUGUCCUC
	993	UUGAGGAC CUGAUGA X GAA AGAGUAUG	CAUACUCUU GUCCUCAA
	996	CAAUUGAG CUGAUGA X GAA ACAAGAGU	ACUCUJGUC CUCAAUUG
	999	GUACAAUU CUGAUGA X GAA AGGACAAG	CUUGUCCUC AAUJGUAC
5	1003	AGCAGUAC CUGAUGA X GAA AUUGAGGA	UCCUCAAUU GUACUGCU
	1006	GGUAGCAG CUGAUGA X GAA ACAAUJUGA	UCAAUJGUA CUGGUACC
	1012	GGGAGUGG CUGAUGA X GAA AGCAGUAC	GUACUGCUA CCACUCCC
	1018	GUUCAAGG CUGAUGA X GAA AGUGGUAG	CUACCACUC CCUUGAAC
	1022	UCGUGUUC CUGAUGA X GAA AGGGAGUG	CACUCCUU GAACACGA
10	1035	GUCAUJUG CUGAUGA X GAA ACUCUCGU	ACGAGAGUU CAAAUGAC
	1036	GGUCAUUU CUGAUGA X GAA AACUCUCG	CGAGAGUUC AAAUGACC
	1051	AUCAGGGU CUGAUGA X GAA ACUCCAGG	CCUGGAGUU ACCCUGAU
	1052	CAUCAGGG CUGAUGA X GAA AACUCCAG	CUGGAGUUA CCCUGAUG
	1069	AGCUCUCU CUGAUGA X GAA AUUUUUUU	AAAAAAAUA AGAGAGCU
15	1078	CCUUACGG CUGAUGA X GAA AGCUCUCU	AGAGAGCUU CCGUAAGG
	1079	GCCUUACG CUGAUGA X GAA AAGCUCUC	GAGAGCUUC CGUAAGGC
	1083	CGUCGCCU CUGAUGA X GAA ACGGAAGC	GCUUCCGUA AGGCGACG
	1095	CUJUGGUC CUGAUGA X GAA AUUCGUCG	CGACGAAUU GACCAAAG
	1108	GGCAUGGG CUGAUGA X GAA AUUGCUUU	AAAGCAAUU CCCAUGCC
20	1109	UGGCAUGG CUGAUGA X GAA AAUJGCUU	AAGCAAUUC CCAUGCCA
	1122	CUGUAGAA CUGAUGA X GAA AUGUJGGC	GCCAACAUUA UUCUACAG
	1124	CACUGUAG CUGAUGA X GAA AUAUGUUG	CAACAUUU CUACAGUG
	1125	ACACUGUA CUGAUGA X GAA AAAUUGUU	AAACAUAUUC UACAGUGU
	1127	GAACACTUG CUGAUGA X GAA AGAAAUG	CAUAAUCUA CAGUGUUC
25	1134	AUAGUAAG CUGAUGA X GAA ACACUGUA	UACAGUGUU CUUACUAU
	1135	AAUAGUAA CUGAUGA X GAA AACACUGU	ACAGUGUUC UUACUAUU
	1137	UCAAUAGU CUGAUGA X GAA AGAACACU	AGUGUJCUU ACUAUUGA
	1138	GUCAAUAG CUGAUGA X GAA AAGAACAC	GUGUJCUUA CUAUUGAC
	1141	UUUGUCAA CUGAUGA X GAA AGUAAGAA	UUCUUACUA UUGACAAA
30	1143	AUUUJGUC CUGAUGA X GAA AUAGUAAG	CUUACUAUU GACAAAAU
	1173	CAAGUAAA CUGAUGA X GAA AGUCCUUU	AAAGGACUU UAUACUUG
	1174	ACAAGUAA CUGAUGA X GAA AAGUCCUU	AAGGACUUU AUACUJGU
	1175	GACAAGUA CUGAUGA X GAA AAAGUCCU	AGGACUUUA UACUJGUC

	1177	ACGACAAG CUGAUGA X GAA AUAAAGUC	GACUUUAUA CUUGUCGU
	1180	UACACGAC CUGAUGA X GAA AGUAUAAA	UUUAUACUU GUCGUGUA
	1183	CCUUACAC CUGAUGA X GAA ACAAGUAU	AUACUJUGUC GUGUAAGG
	1188	CCACUCCU CUGAUGA X GAA ACACGACA	UGUCGUGUA AGGAGUGG
5	1202	AUUUGAAU CUGAUGA X GAA AUGGUCCA	UGGACCAUC AUUCAAAAU
	1205	CAGAUUUG CUGAUGA X GAA AUGAUGGU	ACCAUCAUU CAAACUG
	1206	ACAGAUUU CUGAUGA X GAA AAUGAUGG	CCAUCAUUC AAAUCUGU
	1211	UGUUAACA CUGAUGA X GAA AUUUGAAU	AUUCAAAUC UGUUAACA
	1215	GAGGUGUU CUGAUGA X GAA ACAGAUUU	AAAUCUGUU AACACCUC
10	1216	UGAGGUGU CUGAUGA X GAA AACAGAUU	AAUCUGUUA ACACCUCA
	1223	UAUGCACU CUGAUGA X GAA AGGUGUUA	UAACACCUC AGUGCAUA
	1231	AUCAUUAUA CUGAUGA X GAA AUGCACUG	CAGUGCAUA UAUAUGAU
	1233	UUAUCAUA CUGAUGA X GAA AUAUGCAC	GUGCAUUAUA UAUGAUAA
	1235	CUUUAUCA CUGAUGA X GAA AUUAUGC	GCAUUAUAUA UGAUAAAG
15	1240	GAAUGCUU CUGAUGA X GAA AUCAUUAUA	UAUAUGAUUA AAGCAUUC
	1247	CAGUGAUG CUGAUGA X GAA AUGCUUUA	UAAAGCAUU CAUCACUG
	1248	ACAGUGAU CUGAUGA X GAA AAUGCUUU	AAAGCAUUC AUCACUGU
	1251	UUCACAGU CUGAUGA X GAA AUGAAUGC	GCAUUCAUCAUC ACUGUGAA
	1264	CUGUUUUC CUGAUGA X GAA AUGUUUCA	UGAAAACAUC GAAAACAG
20	1281	ACGGUUUJC CUGAUGA X GAA AGCACCUG	CAGGUGCUU GAAACCGU
	1290	UGGCCAGC CUGAUGA X GAA ACGGUUUC	GAAACCGUA GCUGGCAA
	1304	GCCGGUAA CUGAUGA X GAA ACCGCUUG	CAAGCGGUC UUACCGC
	1306	GAGCCGGU CUGAUGA X GAA AGACCGCU	AGCGGUCUU ACCGGCUC
	1307	AGAGCCGG CUGAUGA X GAA AAGACCGC	GCGGUCUUA CCGGCUCU
25	1314	UUCAUAGA CUGAUGA X GAA AGCCGGUA	UACCGGCUC UCUAUGAA
	1316	CUUUCAUA CUGAUGA X GAA AGAGCCGG	CCGGCUCUC UAUGAAAG
	1318	CACUUUCA CUGAUGA X GAA AGAGAGCC	GGCUCUCUA UGAAAGUG
	1334	GCGAGGGGA CUGAUGA X GAA AUGCCUUC	GAAGGCAUU UCCCUCGC
	1335	GGCGAGGG CUGAUGA X GAA AAUGCCUU	AAGGCAUUU CCCUCGCC
30	1336	CGGCGAGG CUGAUGA X GAA AAAUGCCU	AGGCAUUUC CCUCGCCG
	1340	CUUCCGGC CUGAUGA X GAA AGGGAAAU	AUUUCCUCU GCCGGAAG
	1350	AACCAUAC CUGAUGA X GAA ACUUCGG	CCGGAAGUU GUAUGGUU
	1353	UUUAACCA CUGAUGA X GAA ACAACUUC	GAAGUUGUA UGGUAAA

	1358	CAUCUUU CUGAUGA X GAA ACCAUACA	UGUAUGGUU AAAAGAUG
	1359	CCAUCUU CUGAUGA X GAA AACCAUAC	GUAUGGUUA AAAGAUGG
	1370	UCGCAGGU CUGAUGA X GAA ACCCAUCU	AGAUGGGUU ACCUGCGA
	1371	GUCGCAGG CUGAUGA X GAA AACCCAU	GAUGGGUUA CCUGCGAC
5	1388	AGCGAGCA CUGAUGA X GAA AUUUCUCA	UGAGAAAUC UGCUCGCU
	1393	CAAAUAGC CUGAUGA X GAA AGCAGAUU	AAUCUGCUC GCUAUUUG
	1397	GAGUAAA CUGAUGA X GAA AGCGAGCA	UGCUCGCUA UUJGACUC
	1399	ACGAGUCA CUGAUGA X GAA AUAGCGAG	CUCGCUAUU UGACUCGU
	1400	CACGAGUC CUGAUGA X GAA AAUAGCGA	UCGCUAUUU GACUCGUG
10	1405	GUAGCCAC CUGAUGA X GAA AGUCAAAU	AUUUGACUC GUGGCUAC
	1412	UUAACGAG CUGAUGA X GAA AGCCACGA	UCGUGGCUA CUCGUUAA
	1415	UAAUUAAC CUGAUGA X GAA AGUAGCCA	UGGCUACUC GUUAAUUA
	1418	UGAUAAAU CUGAUGA X GAA ACGAGUAG	CUACUCGUU AAUUAUCA
	1419	UUGAUAAU CUGAUGA X GAA AACGAGUA	UACUCGUUA AAUUAUCA
15	1422	UCCUUGAU CUGAUGA X GAA AUUAACGA	UCGUUAAUU AUCAAGGA
	1423	GUCCUUGA CUGAUGA X GAA AAUUAACG	CGUUAAUUA UCAAGGAC
	1425	ACGUCCUU CUGAUGA X GAA AAUAAUAA	UAAUUAUAC AAGGACGU
	1434	UCUUCAGU CUGAUGA X GAA ACGUCCUU	AAGGACGUA ACUGAAGA
	1456	GAUUGUAU CUGAUGA X GAA AUUCCUG	CAGGGAAUU AUACAAUC
20	1457	AGAUUGUA CUGAUGA X GAA AAUUCCCU	AGGGAAUJA UACAAUCU
	1459	CAAGAUUG CUGAUGA X GAA AAUAAUCC	GGAAUUAUA CAAUCUUG
	1464	CUCAGCAA CUGAUGA X GAA AUUGUUA	UAUACAAUC UUGCUGAG
	1466	UGCUCAGC CUGAUGA X GAA AGAUJUGUA	UACAAUCUU GCUGAGCA
	1476	GACGUUU CUGAUGA X GAA AUGCUCAG	CUGAGCAUA AAACAGUC
25	1484	ACACAUUU CUGAUGA X GAA ACUGUUUU	AAAACAGUC AAAUGUGU
	1493	GGUUUUUA CUGAUGA X GAA ACACAUUU	AAAUGUGUU UAAAAACC
	1494	AGGUUUUU CUGAUGA X GAA AACACAUU	AAUGUGUUU AAAAACCU
	1495	GAGGUUUU CUGAUGA X GAA AAACACAU	AUGUGUUUA AAAACCUC
	1503	GUGGCAGU CUGAUGA X GAA AGGUUUUU	AAAAACCUC ACUGCCAC
30	1513	GACAAUUA CUGAUGA X GAA AGUGGCAG	CUGCCACUC UAAUJUGUC
	1515	UUGACAAU CUGAUGA X GAA AGAGUGGC	GCCACUCUA AUJGUCAA
	1518	ACAUUGAC CUGAUGA X GAA AAUAGAGU	ACUCUAAUU GUCAUGU
	1521	UUCACAUU CUGAUGA X GAA ACAAUUAG	CUAAUJUGUC AAUGUGAA

	1539	UUUUCGUA CUGAUGA X GAA AUCUGGGG	CCCCAGAUU UACGAAAAA
	1540	CUUUUCGU CUGAUGA X GAA AAUCUGGG	CCCAGAUUU ACGAAAAG
	1541	CCUUUUCG CUGAUGA X GAA AAAUCUGG	CCAGAUUUU CGAAAAGG
	1556	GAAACGAU CUGAUGA X GAA ACACGGCC	GGCCGUGUC AUCGUUUC
5	1559	CUGGAAAC CUGAUGA X GAA AUGACACG	CGUGUCAUC GUUCCAG
	1562	GGUCUGGA CUGAUGA X GAA ACGAUGAC	GUCAUCGUU UCCAGACC
	1563	GGGUCUGG CUGAUGA X GAA AACGAUGA	UCAUCGUUU CCAGACCC
	1564	CGGGUCUG CUGAUGA X GAA AACGAUG	CAUCGUUUC CAGACCCG
	1576	UGGGUAGA CUGAUGA X GAA AGCCGGU	ACCCGGCUC UCUACCCA
10	1578	AGUGGGUA CUGAUGA X GAA AGAGCCG	CCGGCUCUC UACCCACU
	1580	CCAGUGGG CUGAUGA X GAA AGAGAGCC	GGCUCUCUA CCCACUGG
	1602	CAAGUCAG CUGAUGA X GAA AUUJUGCU	AGACAAAUC CUGACUUG
	1609	UGCGGUAC CUGAUGA X GAA AGUCAGGA	UCCUGACUU GUACCGCA
	1612	AUAUGCAG CUGAUGA X GAA ACAAGUCA	UGACUUGUA CCGCAUAU
15	1619	GGAUACCA CUGAUGA X GAA AUGCGGU	UACCGCAUA UGGUAUCC
	1624	UUGAGGGA CUGAUGA X GAA ACCAUAG	CAUAUGGUA UCCCUCAA
	1626	GGUUGAGG CUGAUGA X GAA AUACCAUA	UAUGGUAUC CCUCAACC
	1630	UGUAGGUU CUGAUGA X GAA AGGGAUAC	GUAUCCUC ACCUACAA
	1636	CUUGAUUG CUGAUGA X GAA AGGUUGAG	CUAACCUA CAAUCAAG
20	1641	AACCACUU CUGAUGA X GAA AUUGUAGG	CCUACAAUC AAGUGGUU
	1649	GGUGCCAG CUGAUGA X GAA ACCACUUG	CAAGUGGUU CUGGCACC
	1650	GGGUGCCA CUGAUGA X GAA AACCACUU	AAGUGGUUC UGGCACCC
	1663	AUUAUGGU CUGAUGA X GAA ACAGGGGU	ACCCCUGUA ACCAUAAU
	1669	GGAAUGAU CUGAUGA X GAA AUGGUUAC	GUAAACCAUA AUCAUUCC
25	1672	UUCGGAAU CUGAUGA X GAA AUUAUGGU	ACCAUAAUC AUUCCGAA
	1675	UGCUCUCG CUGAUGA X GAA AUGAUUAU	AUAAUCAUU CCGAAGCA
	1676	UUGCUUCG CUGAUGA X GAA AAUGAUUA	UAAUCAUUC CGAAGCAA
	1694	UGGAACAA CUGAUGA X GAA AGUCACAC	GUGUGACUU UUGUUCCA
	1695	UUGGAACA CUGAUGA X GAA AAGUCACA	UGUGACUUU UGUUCCAA
30	1696	AUUGGAAC CUGAUGA X GAA AAAGUCAC	GUGACUUU GUUCCAAU
	1699	AUUAUUGG CUGAUGA X GAA ACAAAAGU	ACUUUJGUU CAAUAAAU
	1700	CAUUAUUG CUGAUGA X GAA AACAAAAG	CUUUJGUUC CAAUAAUG
	1705	CUCUUCAU CUGAUGA X GAA AUUGGAAC	GUUCCAAUA AUGAAGAG

	1715	GGAUAAAG CUGAUGA X GAA ACUCUUCA	UGAAGAGUC CUUUAUCC
	1718	CCAGGAUA CUGAUGA X GAA AGGACUCU	AGAGUCCUU UAUCCUGG
	1719	UCCAGGAU CUGAUGA X GAA AAGGACUC	GAGUCCUUU AUCCUGGA
	1720	AUCCAGGA CUGAUGA X GAA AAAGGACU	AGUCCUUUA UCCUGGAU
5	1722	GCAUCCAG CUGAUGA X GAA AUAAAGGA	UCCUUUAUC CUGGAUGC
	1755	AUGCUCUC CUGAUGA X GAA AUUCUGUU	AACAGAAUU GAGAGCAU
	1764	CGCUGAGU CUGAUGA X GAA AUGCUCUC	GAGAGCAUC ACUCAGCG
	1768	CAUGCGCU CUGAUGA X GAA AGUGAUGC	GCAUCACUC AGCGCAUG
	1782	CCUUCUAU CUGAUGA X GAA AUUGCCAU	AUGGCAAUA AUAGAAGG
10	1785	UUUCCUUC CUGAUGA X GAA AUUAUGC	GCAAAUAUA GAAGGAAA
	1798	AGCCAUCU CUGAUGA X GAA AUUCUUUC	GAAAGAAUA AGAUGGCU
	1807	CAAGGUGC CUGAUGA X GAA AGCCAUCU	AGAUGGCUA GCACCUUG
	1814	CCACAACC CUGAUGA X GAA AGGUGCUA	UAGCACCUU GGUUGUGG
	1818	UCAGCCAC CUGAUGA X GAA ACCAAGGU	ACCUUGGUU GUGGCUGA
15	1829	AAAUCUJA CUGAUGA X GAA AGUCAGCC	GGCUGACUC UAGAAUJJ
	1831	AGAAAUC CUGAUGA X GAA AGAGUCAG	CUGACUCUA GAAUUCU
	1836	AUUCCAGA CUGAUGA X GAA AUUCUAGA	UCUAGAAUU UCUGGAAU
	1837	GAUCCAG CUGAUGA X GAA AAUUCUAG	CUAGAAUUU CUGGAAUC
	1838	AGAUUCCA CUGAUGA X GAA AAAUUCUA	UAGAAUUUC UGGAAUCU
20	1845	CAAAUGUA CUGAUGA X GAA AUUCCAGA	UCUGGAAUC UACAUUUG
	1847	UGCAAAUG CUGAUGA X GAA AGAUUCCA	UGGAAUCUA CAUJUUGCA
	1851	GCUAUGCA CUGAUGA X GAA AUGUAGAU	AUCUACAUU UGCAUAGC
	1852	AGCUAUGC CUGAUGA X GAA AAUGUAGA	UCUACAUUU GCAUAGCU
	1857	UUGGAAGC CUGAUGA X GAA AUGCAAAU	AUUUGCAUA GCUUCCAA
25	1861	UUUUAUJGG CUGAUGA X GAA AGCUAUGC	GCAUAGCUU CCAAUAAA
	1862	CUUUAUUG CUGAUGA X GAA AAGCUAUG	CAUAGCUUC CAAUAAAG
	1867	CCCAACUU CUGAUGA X GAA AUUGGAAG	CUUCCAAUA AAGUUGGG
	1872	ACAGUCCC CUGAUGA X GAA ACUUUAUJ	AAUAAAAGUU GGGACUGU
	1893	AAAAAGCTU CUGAUGA X GAA AUGUUUCU	AGAAAACAUUA AGCUUUUA
30	1898	UGAUUAUA CUGAUGA X GAA AGCUUAUG	CAUAAGCTUU UUUAUCA
	1899	GUGAUUAUA CUGAUGA X GAA AAGCUUAU	AUAAGCUUU UAUAIJCAC
	1900	UGUGAUAU CUGAUGA X GAA AAAGCUUA	UAAGCUUUU AUAVACACA
	1901	CUGUGAUUA CUGAUGA X GAA AAAAGCUU	AAGCUUUUA UAUCACAG

	1903	AUCUGUGA CUGAUGA X GAA AUAAAAGC	GCUUUUAUA UCACAGAU
	1905	ACAUCUGU CUGAUGA X GAA AUAUAAAA	UUUUUAUAC ACAGAUGU
	1925	UAACAUGA CUGAUGA X GAA ACCCAUUU	AAAUGGGUU UCAUGUUA
	1926	UUAACAUG CUGAUGA X GAA AACCCAUU	AAUGGGUUU CAUGUUA
5	1927	GUUAACAU CUGAUGA X GAA AAACCCAU	AUGGGUUUC AUGUUAAC
	1932	UCCAAGUU CUGAUGA X GAA ACAUGAAA	UUUCAUGUU AACUUGGA
	1933	UCCCAAGU CUGAUGA X GAA AACAUAGA	UUCAUGUUA ACUJUGGAA
	1937	UUUUUUC CUGAUGA X GAA AGUUAACA	UGUUAACUU GGAAAAAA
	1976	CUGUGCAA CUGAUGA X GAA ACAGUUUC	GAAACUGUC UUGCACAG
10	1978	AACUGUGC CUGAUGA X GAA AGACAGUU	AACUGUCUU GCACAGUU
	1986	AACUUGUU CUGAUGA X GAA ACUGUGCA	UGCACAGUU AACAAAGUU
	1987	GAACUUGU CUGAUGA X GAA AACUGUGC	GCACAGUUA ACAAGUUC
	1994	UGUAAUAG CUGAUGA X GAA ACUUGUU	UAAACAAGUU CUUUAACA
	1995	CUGUAAUA CUGAUGA X GAA AACUJGUU	AACAAGUUC UUAUACAG
15	1997	CUCUGUAU CUGAUGA X GAA AGAACUUG	CAAGUUCUU AUACAGAG
	1998	UCUCUGUA CUGAUGA X GAA AAGAACUU	AAGUUCUUA UACAGAGA
	2000	CGUCUCUG CUGAUGA X GAA AUAAGAAC	GUUCUUUA CAGAGACG
	2010	AUCCAAGU CUGAUGA X GAA ACGUCUCU	AGAGACGUU ACUUGGAU
	2011	AAUCCAAG CUGAUGA X GAA AACGUCUC	GAGACGUUA CUUGGAUU
20	2014	UAAAAUCC CUGAUGA X GAA AGUAACGU	ACGUUACUU GGAAUUUA
	2019	CGCAGUAA CUGAUGA X GAA AUCCAAGU	ACUUGGAUU UUACUGCG
	2020	CCGCAGUA CUGAUGA X GAA AAUCCAAG	CUUGGAUUU UACUGCGG
	2021	UCCGCAGU CUGAUGA X GAA AAAUCCAA	UUGGAUJJU ACUGCGGA
	2022	GUCCGCAG CUGAUGA X GAA AAAAUCCA	UGGAUUUUA CUGCGGAC
25	2034	CUGUUAUU CUGAUGA X GAA ACUGUCCG	CGGACAGUU AAUAACAG
	2035	UCUGUUAU CUGAUGA X GAA AACUGUCC	GGACAGUUA AUAACAGA
	2038	UGUUCUGU CUGAUGA X GAA AUUAACUG	CAGUAAAUA ACAGAACAA
	2054	UAAAACUG CUGAUGA X GAA AGUGCAUU	AAUGCACUA CAGUUAUJA
	2059	CUUGCUAL CUGAUGA X GAA ACUGUAGU	ACUACAGUA UUAGCAAG
30	2061	UGCUUGCU CUGAUGA X GAA AUACUGUA	UACAGUAUU AGCAAGCA
	2062	UUGCUUGC CUGAUGA X GAA AAUACTUGU	ACAGUAAUA GCAAGCAA
	2082	UCCUUAGU CUGAUGA X GAA AUGGCCAU	AUGGCCAUC ACUAAGGA
	2086	GUGCUCU CUGAUGA X GAA AGUGAUGG	CCAUCACUA AGGAGCAC

2096	GAGUGAUG CUGAUGA X GAA AGUGCUC	GGAGCACUC CAUCACUC
2100	UUAAGAGU CUGAUGA X GAA AUGGAGUG	CACUCCCAUC ACUCUUAA
2104	AAGAUUAA CUGAUGA X GAA AGUGAUGG	CCAUCACUC UUAAUCUU
2106	GUAAGAUU CUGAUGA X GAA AGAGUGAU	AUCACUCUU AAUCUUAC
5	2107 GGUAAGAU CUGAUGA X GAA AAGAGUGA	UCACUCUUAA AUCUUACC
	2110 GAUGGUAA CUGAUGA X GAA AUUAAGAG	CUCUAAAUC UUACCAUC
	2112 AUGAUGGU CUGAUGA X GAA AGAUUAAG	CUUAAUCUU ACCAUCAU
	2113 CAUGAUGG CUGAUGA X GAA AAGAUUAA	UAAAUCUUAA CCAUCAUG
	2118 ACAUUCAU CUGAUGA X GAA AUGGUAAG	CUUACCAUC AUGAAUGU
10	2127 UGCAGGGGA CUGAUGA X GAA ACAUUCAU	AUGAAUGUU UCCCUGCA
	2128 UUGCAGGG CUGAUGA X GAA AACAUUCA	UGAAUGUUU CCCUGCAA
	2129 CUUGCAGG CUGAUGA X GAA AAACAUUC	GAAUGUUUC CCUGCAAG
	2140 GGUGCCUG CUGAUGA X GAA AUCUUGCA	UGCAAGAUU CAGGCACC
	2141 AGGUGCCU CUGAUGA X GAA AAUCUUGC	GCAAGAUUC AGGCACCU
15	2150 UGCAGGCA CUGAUGA X GAA AGGUGCCU	AGGCACCUA UGCCUGCA
	2172 CCUGUGUA CUGAUGA X GAA ACAUUCCU	AGGAAUGUA UACACAGG
	2174 CCCCUGUG CUGAUGA X GAA AUACAUUC	GAAUGUUA CACAGGGG
	2190 UUCUGGAG CUGAUGA X GAA AUJUCUUC	GAAGAAAUC CUCCAGAA
	2193 UUCUUCUG CUGAUGA X GAA AGGAUUUC	GAAAUCUC CAGAAGAA
20	2208 CUGAUUGU CUGAUGA X GAA AUUUCUUU	AAAGAAAUU ACAAUCAAG
	2209 UCUGAUUG CUGAUGA X GAA AAUUCUUU	AAGAAAUA CAAUCAGA
	2214 UGAUCUCU CUGAUGA X GAA AUUGUAAU	AUUACAAUC AGAGAUCA
	2221 UGCUUCCU CUGAUGA X GAA AUCUCUGA	UCAGAGAUC AGGAAGCA
	2234 GCAGGAGG CUGAUGA X GAA AUGGUGCU	AGCACCAUA CCUCCUGC
25	2238 UUUCGCAG CUGAUGA X GAA AGGUAGG	CCAUACCUC CUGCGAAA
	2250 UGAUCACU CUGAUGA X GAA AGGUUUCG	CGAAACCUC AGUGAUCA
	2257 CACUGUGU CUGAUGA X GAA AUCACUGA	UCAGUGUAUC ACACAGUG
	2271 GAACUGCU CUGAUGA X GAA AUGGCCAC	GUGGCCAUC AGCAGUUC
	2278 AGUGGUGG CUGAUGA X GAA ACUGCUGA	UCAGCAGUU CCACCACU
30	2279 AAGUGGUG CUGAUGA X GAA AACUGCUG	CAGCAGUUC CACCACUU
	2287 ACAGUCUA CUGAUGA X GAA AGUGGUGG	CCACCACUU UAGACUGU
	2288 GACAGUCU CUGAUGA X GAA AAGUGGUG	CACCACUUU AGACUGUC
	2289 UGACAGUC CUGAUGA X GAA AAAGUGGU	ACCACUUJA GACUGUCA

	2296	AUJAGCAU CUGAUGA X GAA ACAGUCUA	UAGACUGUC AUGCUAAU
	2302	GACACCAU CUGAUGA X GAA AGCAUGAC	GUCAUGCUA AUGGUGUC
	2310	GGCUCGGG CUGAUGA X GAA ACACCAUU	AAUGGUGUC CCCGAGCC
	2320	AGUGAUCU CUGAUGA X GAA AGGCUCGG	CCGAGCCUC AGAUCACU
5	2325	AACCAAGU CUGAUGA X GAA AUCUGAGG	CCUCAGAUC ACUUGGUU
	2329	UUUAAAACC CUGAUGA X GAA AGUGAUCU	AGAUCACUU GGUUUAAA
	2333	UGUUUUUA CUGAUGA X GAA ACCAAGUG	CACUUGGUU UAAAAACA
	2334	UUGUUUUU CUGAUGA X GAA AACCAAGU	ACUUGGUU AAAAACAA
	2335	GUUGUUUU CUGAUGA X GAA AAACCAAG	CUUGGUUUA AAAACAAAC
10	2352	UCUUGUUG CUGAUGA X GAA AUUJUGUG	CACAAAAUA CAACAAGA
	2370	CCUAAAAU CUGAUGA X GAA AUUCCAGG	CCUGGAAUU AUUUUAGG
	2371	UCCUAAAA CUGAUGA X GAA AAUUCCAG	CUGGAAUUA UUUUAGGA
	2373	GGUCCUAA CUGAUGA X GAA AAUAAUCC	GGAAUJAUU UUAGGACC
	2374	UGGUCCUA CUGAUGA X GAA AAUAAUUC	GAUUJAUU UAGGACCA
15	2375	CUGGUCCU CUGAUGA X GAA AAUAAUU	AAUJAUUUU AGGACCAAG
	2376	CCUGGUCC CUGAUGA X GAA AAAUAAAU	AUUAUUUA GGACCAGG
	2399	UUUCAAUA CUGAUGA X GAA ACAGCGUG	CACGCTGUU UAUJUGAAA
	2400	CUUUCAAU CUGAUGA X GAA AACAGCGU	ACGCUGUUU AUUGAAAG
	2401	UCUUUCAA CUGAUGA X GAA AAACAGCG	CGCUGUUUA UUGAAAGA
20	2403	ACUCUUUC CUGAUGA X GAA AUAAACAG	CUGUUUAUU GAAAGAGU
	2412	UCUUCUGU CUGAUGA X GAA ACUCUUUC	GAAAGAGUC ACAGAAGA
	2433	CAGUGAUA CUGAUGA X GAA ACACCUUC	GAAGGUGUC UAUCACUG
	2435	UGCAGUGA CUGAUGA X GAA AGACACCU	AGGUGUCUA UCACUGCA
	2437	UUUGCAGU CUGAUGA X GAA AUAGACAC	GUGCUAUC ACUGCAAA
25	2465	UUUCCACA CUGAUGA X GAA AGCCUUC	GAAGGGCUC UGUGGAAA
	2476	GU AUGCUG CUGAUGA X GAA ACUUUCCA	UGGAAAGUU CAGCAUAC
	2477	GGUAUGCU CUGAUGA X GAA AACUUUCC	GGAAAGUUC AGCAUACC
	2483	CAGUGAGG CUGAUGA X GAA AUGCUGAA	UUCAGCAUA CCUCACUG
	2487	UGAACAGU CUGAUGA X GAA AGGU AUGC	GCAUACCUC ACUGUUCA
30	2493	GUUCCUUG CUGAUGA X GAA ACAGUGAG	CUCACUGUU CAAGGAAC
	2494	GGUUCCUU CUGAUGA X GAA AACAGUGA	UCACUGUUUC AAGGAACC
	2504	ACUUGUCC CUGAUGA X GAA AGGUUCCU	AGGAACCUC GGACAAGU
	2513	CCAGAUUA CUGAUGA X GAA ACUUGUCC	GGACAAGUC UAAUCUGG

	2515	CUCCAGAU CUGAUGA X GAA AGACUUGU	ACAAGUCUA AUCUGGAG
	2518	CAGCUCCA CUGAUGA X GAA AUUAGACU	AGUCUAAUC UGGAGCUG
	2529	GUUAGAGU CUGAUGA X GAA AUCAGCUC	GAGCUGAUC ACUCUAAC
	2533	GCAUGUUA CUGAUGA X GAA AGUGAUCA	UGAUCACUC UAACAUGC
5	2535	GUGCAUGU CUGAUGA X GAA AGAGUGAU	AUCACUCUA ACAUGCAC
	2560	CCAGAAGA CUGAUGA X GAA AGUCGCAG	CUGCGACUC UCUUCUGG
	2562	AGCCAGAA CUGAUGA X GAA AGAGUCGC	GCGACUCUC UUCUGGCC
	2564	GGAGCCAG CUGAUGA X GAA AGAGAGUC	GACUCUCUU CUGGCUCC
	2565	AGGAGCCA CUGAUGA X GAA AAGAGAGU	ACUCUCUUC UGGCUCCU
10	2571	GUUAAUAG CUGAUGA X GAA AGCCAGAA	UUCUGGCUC CUAAUAAAC
	2574	AGGGUAAA CUGAUGA X GAA AGGAGCCA	UGGCUCCUA UUAACCCU
	2576	GGAGGGUU CUGAUGA X GAA AUAGGAGC	GCUCUCAUU ACCCUCC
	2577	AGGAGGGU CUGAUGA X GAA AAUAGGAG	CUCCUAAUA ACCCUCCU
	2583	CGGAUAAG CUGAUGA X GAA AGGGUAAA	UUAACCCUC CUUAUCCG
15	2586	UUUCGGAU CUGAUGA X GAA AGGAGGGU	ACCCUCUUU AUCCGAAA
	2587	UUUUCGGA CUGAUGA X GAA AAGGAGGG	CCCUCCUUJA UCCGAAAA
	2589	AUUUUUCG CUGAUGA X GAA AUAAGGAG	CUCCUUAUC CGAAAAAU
	2606	CAGAAGAA CUGAUGA X GAA ACCUUUUC	GAAAAGGUC UUCUUCUG
	2608	UUCAGAAG CUGAUGA X GAA AGACCUUU	AAAGGUCUU CUUCUGAA
20	2609	UUUCAGAA CUGAUGA X GAA AAGACCUU	AAGGUCUUC UUCUGAAA
	2611	UAUUUCAG CUGAUGA X GAA AGAAGACC	GGUCUUCUU CUGAAUA
	2612	UUAUUUCA CUGAUGA X GAA AAGAAGAC	GUCUUCUUC UGAAAUA
	2619	UCAGUCUU CUGAUGA X GAA AUUUCAGA	UCUGAAUA AAGACUGA
	2630	UUGAUAGG CUGAUGA X GAA AGUCAGUC	GACUGACUA CCUAUCAA
25	2634	AUAAUUGA CUGAUGA X GAA AGGUAGUC	GACUACCUA UCAAUUAU
	2636	UUAAUAAU CUGAUGA X GAA AUAGGUAG	CUACCUAUC AAUUAUAA
	2640	UCCAUUAU CUGAUGA X GAA AUUGAUAG	CUAUCAAUU AUAAUGGA
	2641	GUCCAUUA CUGAUGA X GAA AAUUGAUA	UAUCAAAUA UAAUGGAC
	2643	GGGUCCAU CUGAUGA X GAA AUAUJUGA	UCAAAUUA AUGGACCC
30	2661	UCCAAAGG CUGAUGA X GAA ACUUCAUC	GAUGAAGUU CCUUUGGA
	2662	AUCCAAAG CUGAUGA X GAA AACUUCAU	AUGAAGUUC CUUUGGAU
	2665	CUCAUCCA CUGAUGA X GAA AGGAACUU	AAGUUCCUU UGGAUGAG
	2666	GCUCAUCC CUGAUGA X GAA AAGGAACU	AGUUCCUUU GGAUGAGC

2688	UCAUAAGG CUGAUGA X GAA AGCCGCUC	GAGCGGCUC CCUUAUGA
2692	GGCAUCAU CUGAUGA X GAA AGGGAGCC	GGCUCCCCU AUGAUGCC
2693	UGGCAUCA CUGAUGA X GAA AAGGGAGC	GCUCCCUUA UGAUGCCA
2714	CCCGGGCA CUGAUGA X GAA ACUCCCAC	GUGGGAGUU UGCCCGGG
5	2715 UCCCCGGC CUGAUGA X GAA AACUCCCA	UGGGAGUUU GCCCGGGA
	2730 CCCAGUUU CUGAUGA X GAA AGUCUCUC	GAGAGACUU AAACUGGG
	2731 GCCCAGUU CUGAUGA X GAA AAGUCUCU	AGAGACUUA AACUGGGC
	2744 UUCCAAGU CUGAUGA X GAA AUUUGCAC	GGGCAAAUC ACUJUGGAA
	2748 CCUCUUCC CUGAUGA X GAA AGUGAUU	AAAUCACUU GGAAGAGG
10	2761 UUUUCCAA CUGAUGA X GAA AGCCCCUC	GAGGGCCUU UUGGAAAAA
	2762 CUUUUCCA CUGAUGA X GAA AAGCCCCU	AGGGGCUUU UGGAAAAG
	2763 ACUUUUCC CUGAUGA X GAA AAAGCCCC	GGGGCUUUU GGAAAAGU
	2775 GAUGCUUG CUGAUGA X GAA ACCACUUU	AAAGUGGUU CAAGCAUC
	2776 UGAUGCUU CUGAUGA X GAA AACCACUU	AAGUGGUUC AAGCAUCA
15	2783 CAAAUGCU CUGAUGA X GAA AUGCUUGA	UCAAGCAUC AGCAUUUG
	2789 UAAUGCCA CUGAUGA X GAA AUGCUGAU	AUCAGCAU UGGCAUUA
	2790 UUAAUGCC CUGAUGA X GAA AAUGCUGA	UCAGCAUU GGCAUUA
	2796 GAUUUCUU CUGAUGA X GAA AUGCCAAA	UUUGGCAUU AAGAAAUC
	2797 UGAUUUCU CUGAUGA X GAA AAUGCCAA	UJGGCAUUA AGAAAUC
20	2804 ACGUAGGU CUGAUGA X GAA AUUUCUUA	UAAGAAAUC ACCUACGU
	2809 CCGGCACG CUGAUGA X GAA AGGUGAUU	AAUCACCUA CGUGCCGG
	2864 GAGCUUUG CUGAUGA X GAA ACUCGCUG	CAGCGAGUA CAAAGCUC
	2872 AGUCAUCA CUGAUGA X GAA AGCUUJUGU	ACAAAGCUC UGAUGACU
	2886 AAGAUUUU CUGAUGA X GAA AGCUCAGU	ACUGAGCUA AAAAUCUU
25	2892 UGGGUCAA CUGAUGA X GAA AUUUUUAG	CUAAAAAUC UUGACCCA
	2894 UGUGGGUC CUGAUGA X GAA AGAUUUUU	AAAAAUCUU GACCCACA
	2904 UGGUGGCC CUGAUGA X GAA AUGUGGGU	ACCCACAUU GGCCACCA
	2914 CACGUUCA CUGAUGA X GAA AUGGUGGC	GCCACCAUC UGAACGUG
	2925 AGCAGGUU CUGAUGA X GAA ACCACGUU	AACGUGGUU AACCUUGCU
30	2926 CAGCAGGU CUGAUGA X GAA AACACACGU	ACGUGGUUA ACCUGCUG
	2962 CACCAUCA CUGAUGA X GAA AGGCCCUC	GAGGGCCUC UGAUGGUG
	2973 UAUUCAAC CUGAUGA X GAA AUCACCAU	AUGGUGAUU GUJGAAUA
	2976 CAGUAUUC CUGAUGA X GAA ACAAUAC	GUGAUUGUU GAAUACUG

	2981	AUUUGCAG CUGAUGA X GAA AUUCAACA	UGUJUGAAUA CUGCAAAU
	2990	GAUUUCCA CUGAUGA X GAA AUUUGCAG	CUGCAAAUA UGGAAAUC
	2998	GUUGGAGA CUGAUGA X GAA AUUCCAU	AUGGAAAUC UCUCCAAC
	3000	UAGUUGGA CUGAUGA X GAA AGAUUUCC	GGAAAUCUC UCCAACUA
5	3002	GGUAGUUG CUGAUGA X GAA AGAGAUUU	AAAUCUCUC CAACUACC
	3008	UCUUGAGG CUGAUGA X GAA AGUUGGAG	CUCCAACUA CCUCAAGA
	3012	UUGCUCUU CUGAUGA X GAA AGGUAGUU	AACUACCUC AAGAGCAA
	3029	GAAAAAAU CUGAUGA X GAA AGUCACGU	ACGUGACUU AUUUUUUC
	3030	AGAAAAAA CUGAUGA X GAA AAGUCACG	CGUGACUU UUUUUUCU
10	3032	UGAGAAAA CUGAUGA X GAA AUAAGUCA	UGACUJAUU UUUJCUCA
	3033	UUGAGAAA CUGAUGA X GAA AAUAAGUC	GACUUAUUU UUUUCUAA
	3034	GUUGAGAA CUGAUGA X GAA AAAUAAGU	ACUUAIUUU UUCUCAAC
	3035	UGUJUGAGA CUGAUGA X GAA AAAUAAG	CUUAUUUU UCUCACAA
	3036	UUGUJUGAG CUGAUGA X GAA AAAUAUA	UUAUUUUU CUCAACAA
15	3037	CUUGUJUGA CUGAUGA X GAA AAAAAUA	UAUUUUUUC UCAAACAAG
	3039	UCCUUGUU CUGAUGA X GAA AGAAAAAA	UUUUUUUCU ACAAGGAA
	3057	UCCAUGUG CUGAUGA X GAA AGUGCUGC	GCAGCACUA CACAUGGA
	3070	UUCUUUCU CUGAUGA X GAA AGGCUCCA	UGGAGCCUA AGAAAGAA
	3120	ACGCUAUC CUGAUGA X GAA AGUCUJUGG	CCAAGACUA GAUAGCGU
20	3124	GGUGACGC CUGAUGA X GAA AUCUAGUC	GACUAGAU GCGUCACC
	3129	CUGCUGGU CUGAUGA X GAA ACGCUAUC	GAUAGCGUC ACCAGCAG
	3146	AGCUCGCA CUGAUGA X GAA AGCUUUCG	CGAAAGCUU UGCCAGCU
	3147	GAGCUCGC CUGAUGA X GAA AAGCUUUC	GAAAGCUUU CGGAGCUC
	3155	GAAAGCCG CUGAUGA X GAA AGCUCGCA	UGCGAGCUC CGGCUUUC
25	3161	CUUCCUGA CUGAUGA X GAA AGCCGGAG	CUCCGGCUU UCAGGAAG
	3162	UCUUCCUG CUGAUGA X GAA AAGCCGGA	UCCGGCUUU CAGGAAGA
	3163	AUCUUCCU CUGAUGA X GAA AAAGCCGG	CCGGCUUUC AGGAAGAU
	3172	CAGACUUU CUGAUGA X GAA AUCUUCCU	AGGAAGAU AAAGUCUG
	3178	AUCACUCA CUGAUGA X GAA ACUUUUAU	AUAAAAGUC UGAGUGAU
30	3189	UCUUCCUC CUGAUGA X GAA ACAUCACU	AGUGAUGUU GAGGAAGA
	3205	ACCGUCAG CUGAUGA X GAA AUCCUCCU	AGGAGGAUU CUGACGGU
	3206	AACCGUCA CUGAUGA X GAA AAUCCUCC	GGAGGAUUC UGACGGUU
	3214	CUUGUAGA CUGAUGA X GAA ACCGUCAG	CUGACGGUU UCUACAAG

	3215	CCUUGUAG CUGAUGA X GAA AACCGUCA	UGACGGUUU CUACAAGG
	3216	UCCUUGUA CUGAUGA X GAA AAACCGUC	GACGGUUUC UACAAGGA
	3218	GCUCCUUG CUGAUGA X GAA AGAAACCG	CGGUUCUA CAAGGAGC
	3231	UCCAUAGU CUGAUGA X GAA AUGGGCUC	GAGCCCACU ACUAUGGA
5	3235	AUCUUCCA CUGAUGA X GAA AGUGAUGG	CCAUCACUA UGGAAGAU
	3244	AGAAAUCU CUGAUGA X GAA AUCUUCCA	UGGAAGAUC UGAUUUCU
	3249	CUGUAAGA CUGAUGA X GAA AUCAGAUC	GAUCUGAUU UCUUACAG
	3250	ACUGUAAG CUGAUGA X GAA AAUCAGAU	AUCUGAUUU CUUACAGU
	3251	AACUGUAA CUGAUGA X GAA AAAUCAGA	UCUGAUUUC UUACAGUU
10	3253	AAAACUGU CUGAUGA X GAA AGAAAUC	UGAUUUUCUU ACAGUUUU
	3254	GAAAACUG CUGAUGA X GAA AAGAAAUC	GAUUUCUUA CAGUUUUC
	3259	CACUUGAA CUGAUGA X GAA ACUGUAAG	CUUACAGUU UUCAAGUG
	3260	CCACUJUGA CUGAUGA X GAA AACUGUAA	UUACAGUUU UCAAGUGG
	3261	GCCACUUG CUGAUGA X GAA AAACUGUA	UACAGUUUU CAAGUGGC
15	3262	GGCCACUU CUGAUGA X GAA AAAACUGU	ACAGUUUUC AAGUGGCC
	3284	AAGACAGG CUGAUGA X GAA ACUCCAUG	CAUGGAGUU CCUGUCUU
	3285	GAAGACAG CUGAUGA X GAA AACUCCAU	AUGGAGUUC CUGUCUUC
	3290	UUCUGGAA CUGAUGA X GAA ACAGGAAC	GUUCCUGUC UUCCAGAA
	3292	CUUUCUGG CUGAUGA X GAA AGACAGGA	UCCUGUCUU CCAGAAAG
20	3293	ACUUUCUG CUGAUGA X GAA AAGACAGG	CCUGUCUUC CAGAAAGU
	3306	UCCCAGU CUGAUGA X GAA AUGCACUU	AAGUGCAUU CAUCGGGA
	3307	GUCCCCAU CUGAUGA X GAA AAUGCACU	AGUGCAUUC AUCCCCAC
	3310	CAGGUCCC CUGAUGA X GAA AUGAAUGC	GCAUCAUC GGGACCUG
	3333	GAUAAAAG CUGAUGA X GAA AUGUUUCU	AGAAACAUU CUUUUAUC
25	3334	AGAUAAAA CUGAUGA X GAA AAUGUUUC	GAAACAUUC UUUUAUCU
	3336	UCAGAUAA CUGAUGA X GAA AGAAUGUU	AACAUUCUU UUAUCUGA
	3337	CUCAGAUA CUGAUGA X GAA AAGAAUGU	ACAUUCUUU UAUCUGAG
	3338	UCUCAGAU CUGAUGA X GAA AAAGAAUG	CAUUCUUUU AUCUGAGA
	3339	UUCUCAGA CUGAUGA X GAA AAAAGAAU	AUUCUUUA UCUGAGAA
30	3341	UGUUCUCA CUGAUGA X GAA AUAAAAGA	UCUUUUUAUC UGAGAAC
	3363	AAAUCACA CUGAUGA X GAA AUCIUCAC	GUGAAGAUU UGUGAUUU
	3364	AAAUCAC CUGAUGA X GAA AAUCUUC	UGAAGAUUU GUGAUUUU
	3370	AAGGCCAA CUGAUGA X GAA AUCACAAA	UUUGUGAUU UUGGCCUU

	3371	CAAGGCCA CUGAUGA X GAA AAUCACAA	UUGUGAUUU UGGCCUUG
	3372	GCAAGGCC CUGAUGA X GAA AAAUCACA	UGUGAUUUU GGCCUUGC
	3378	UCCCGGGC CUGAUGA X GAA AGGCCAAA	UUUGGCCUU GCCCGGGA
	3388	CUUUAAAA CUGAUGA X GAA AUCCCGGG	CCCGGGAUA UUUUAAG
5	3390	UUCUUAAA CUGAUGA X GAA AAUCCCCG	CGGGAUUUU UAUAAAGAA
	3391	GUUCUUAU CUGAUGA X GAA AAUAUCCC	GGGAUAUUU AUAAGAAC
	3392	GGUUCUUA CUGAUGA X GAA AAAUAUCC	GGAUAUUA UAAGAACCC
	3394	GGGGUUCU CUGAUGA X GAA AUAAAUAU	AUAUUAUA AGAACCCCC
	3406	UCUCACAU CUGAUGA X GAA AUCGGGGU	ACCCCGAUU AUGUGAGA
10	3407	UUCUCACCA CUGAUGA X GAA AAUCGGGG	CCCCGAUUA UGUGAGAA
	3424	AAGUCGAG CUGAUGA X GAA AUCUCCUU	AAGGAGAUA CUCGACUU
	3427	AGGAAGUC CUGAUGA X GAA AGUAUCUC	GAGAUACTC GACUCCU
	3432	UUCAGAGG CUGAUGA X GAA AGUCGAGU	ACUCGACUU CCUCUGAA
	3433	UUUCAGAG CUGAUGA X GAA AAGUCGAG	CUCGACUUC CUCUGAAA
15	3436	CCAUUUCU CUGAUGA X GAA AGGAAGUC	GACIUCCUC UGAAAUGG
	3451	AGAUUCGG CUGAUGA X GAA AGCCAUC	GGAUUCCUC CCGAAUCU
	3458	CAAAGAUU CUGAUGA X GAA AUUCGGGA	UCCCGAAUC UAUCUUUG
	3460	GUCAAAGA CUGAUGA X GAA AGAUUCGG	CCGAAUCUA UCUUJUGAC
	3462	UUGUCAAA CUGAUGA X GAA AUAGAUUC	GAAUCUAUC UUUGACAA
20	3464	UUUUGUCA CUGAUGA X GAA AGAUAGAU	AUCUAUCUU UGACAAAAA
	3465	AUUUJUGUC CUGAUGA X GAA AAGAUAGA	UCUAUCUUU GACAAAAAU
	3474	GUGCTUGA CUGAUGA X GAA AUUUJUGUC	GACAAAAUC UACAGCAC
	3476	UGGUGCUG CUGAUGA X GAA AGAUUUUG	CAAAAUCA CAGCACCA
	3500	CUCCGUAA CUGAUGA X GAA ACCACACG	CGUGUGGUC UUACGGAG
25	3502	UACUCCGU CUGAUGA X GAA AGACCACA	UGUGGUCUU ACGGAGUA
	3503	AUACUCCG CUGAUGA X GAA AAGACCAC	GUGGUCUUA CGGAGUAU
	3510	CACAGCAA CUGAUGA X GAA ACUCCGUA	UACGGAGUA UUGCUGUG
	3512	CCCACAGC CUGAUGA X GAA AUACUCCG	CGGAGUAUU GCUGUGGG
	3525	AAGGAGAA CUGAUGA X GAA AUUUCCCA	UGGGAAAUC UUCUCCUU
30	3527	CUAAGGAG CUGAUGA X GAA AGAUUUCC	GGAAAUCUU CUCCUUAG
	3528	CCUAAGGA CUGAUGA X GAA AAGAUUUC	GAAAUCUUC UCCUUAGG
	3530	CACCUAAG CUGAUGA X GAA AGAAGAUU	AAUCUUCU CUUAGGUG
	3533	ACCCACCU CUGAUGA X GAA AGGAGAAG	CUUCUCCUU AGGUGGGU

	3534	GACCCACC CUGAUGA X GAA AAGGAGAA	UUCUCCUUA GGUGGGUC
	3542	GGUAUGGA CUGAUGA X GAA ACCCACCU	AGGUGGGUC UCCAUACC
	3544	UGGGUAUG CUGAUGA X GAA AGACCCAC	GUGGGUCUC CAUACCCA
	3548	CUCCUGGG CUGAUGA X GAA AUGGAGAC	GUCUCCAUUA CCCAGGAG
5	3558	UCCAUUJUG CUGAUGA X GAA ACUCCUGG	CCAGGAGUA CAAAUGGA
	3575	GACUGCAA CUGAUGA X GAA AGUCCUCA	UGAGGACUU UUGCAGUC
	3576	CGACUGCA CUGAUGA X GAA AAGUCCUC	GAGGACUUU UGCAGUCG
	3577	GCGACUGC CUGAUGA X GAA AAAGUCCU	AGGACUUUU GCAGUCGC
	3583	CCUCAGGC CUGAUGA X GAA ACUGCAAA	UUUGCAGUC GCCUGAGG
10	3613	GUACUCAG CUGAUGA X GAA AGCUCUCA	UGAGAGCUC CUGAGUAC
	3620	GAGUAGAG CUGAUGA X GAA ACUCAGGA	UCCUGAGUA CUCUACUC
	3623	CAGGAGUA CUGAUGA X GAA AGUACUCA	UGAGUACUC UACUCCUG
	3625	UUCAGGAG CUGAUGA X GAA AGAGUACU	AGUACUCUA CUCCUGAA
	3628	GAUUUCAG CUGAUGA X GAA AGUAGAGU	ACUCUACUC CUGAAAUC
15	3636	AUCUGAUA CUGAUGA X GAA AUUUCAGG	CCUGAAAUC UAUCAGAU
	3638	UGAUCUGA CUGAUGA X GAA AGAUUUCA	UGAAAUCUA UCAGAUCA
	3640	CAUGAUCU CUGAUGA X GAA AUAGAUUU	AAAUCUAUC AGAUCAUG
	3645	UCCAGCAU CUGAUGA X GAA AUCUGAUA	UAUCAGAUC AUGCUGGA
	3689	GUUCUGCA CUGAUGA X GAA AUCUUGGC	GCCAAGAUU UGCAGAAC
20	3690	AGUUCUGC CUGAUGA X GAA AAUCUUGG	CCAAGAUUU GCAGAACU
	3699	UUUUCCAC CUGAUGA X GAA AGUUCUGC	GCAGAACUU GUGGAAAA
	3711	AAAUCACC CUGAUGA X GAA AGUUUUUC	GAAAAACUA GGUGAUUU
	3718	UUGAAGCA CUGAUGA X GAA AUCACCUA	UAGGUGAUU UGCCUJCAA
	3719	CUUGAAGC CUGAUGA X GAA AAUCACCU	AGGUGAUUU GCUUCAAG
25	3723	UUUGCIJUG CUGAUGA X GAA AGCAAAUC	GAUUGCUU CAAGCAAA
	3724	AUUUGCUU CUGAUGA X GAA AAGCAAAU	AUUUGCUUC AAGCAAAU
	3735	UCCUGUJUG CUGAUGA X GAA ACAUUUGC	GCAAAUGUA CAACAGGA
	3748	GUAGUCUU CUGAUGA X GAA ACCAUCCU	AGGAUGGUA AAGACUAC
	3755	UUGGGAUG CUGAUGA X GAA AGUCUAAA	UAAAGACUA CAUCCCAA
30	3759	UUGAUUJGG CUGAUGA X GAA AUGUAGUC	GACUACAUC CCAAUCAA
	3765	AUGGCAUU CUGAUGA X GAA AUUGGGAU	AUCCCAAUC AAUGCCAU
	3774	CCUGUCAG CUGAUGA X GAA AUGGCAUU	AAUGCCAUUA CUGACAGG
	3787	AAACCCAC CUGAUGA X GAA AUUUCUG	CAGGAAAUA GUGGGUUU

	3794	AGUAUGUA CUGAUGA X GAA ACCCACUA	UAGUGGGUU UACAUACU
	3795	GAGUAUGU CUGAUGA X GAA AACCCACU	AGUGGGUUU ACAUACUC
	3796	UGAGUAUG CUGAUGA X GAA AAACCCAC	GUGGGUUUA CAUACUCA
	3800	GAGUUGAG CUGAUGA X GAA AUGUAAAAC	GUUUACAUA CUCAACUC
5	3803	CAGGAGUU CUGAUGA X GAA AGUAUGUA	UACAUACUC AACUCCUG
	3808	GAAGGCAG CUGAUGA X GAA AGUUGAGU	ACUCAACTC CUGCCUUC
	3815	CCUCAGAG CUGAUGA X GAA AGGCAGGA	UCCUGCCUU CUCUGAGG
	3816	UCCUCAGA CUGAUGA X GAA AAGGCAGG	CCUGCCUUC UCUGAGGA
	3818	AGUCCUCA CUGAUGA X GAA AGAAGGCA	UGCCUUCUC UGAGGACU
10	3827	CCUUGAAG CUGAUGA X GAA AGUCCUCA	UGAGGACUU CUUCAAGG
	3828	UCCUUGAA CUGAUGA X GAA AAGUCCUC	GAGGACUUC UUCAAGGA
	3830	UUUCCUUG CUGAUGA X GAA AGAAGUCC	GGACUUCUU CAAGGAAA
	3831	CUUCCUU CUGAUGA X GAA AAGAAGUC	GACUUCUUC AAGGAAAG
	3841	AGCUGAAA CUGAUGA X GAA ACUUUCCU	AGGAAAGUA UUUCAGCU
15	3843	GGAGCUGA CUGAUGA X GAA AUACUUUC	GAAAGUAIUU UCAGCUCC
	3844	CGGAGCUG CUGAUGA X GAA AAAACUUU	AAAGUAIUU CAGCUCCG
	3845	UCGGAGCU CUGAUGA X GAA AAAUACUU	AAGUAIUUC AGCUCCGA
	3850	AAACUUUCG CUGAUGA X GAA AGCUGAAA	UUUCAGCUC CGAAGUUU
	3857	CUGAAUUA CUGAUGA X GAA ACUUCGGA	UCCGAAGUU UAAUUCAG
20	3858	CCUGAAUU CUGAUGA X GAA AACUUCGG	CCGAAGUUU AAUUCAGG
	3859	UCCUGAAU CUGAUGA X GAA AAACUUCG	CGAAGUUUA AUUCAGGA
	3862	GCUUCCUG CUGAUGA X GAA AUUAAAACU	AGUUUAAUU CAGGAAGC
	3863	AGCUUCCU CUGAUGA X GAA AAUAAAAC	GUUUAAUUC AGGAAGCU
	3872	CAUCAUCA CUGAUGA X GAA AGCUUCCU	AGGAAGCUC UGAUGAUG
25	3882	ACAUAUCA CUGAUGA X GAA ACAUCAUC	GAUGAUGUC AGAUAUGU
	3887	CAUJUACA CUGAUGA X GAA AUCUGACA	UGUCAGAUJA UGUAAAUG
	3891	AAAGCAUJ CUGAUGA X GAA ACAUACU	AGAUUAUGUA AAUGCUUU
	3898	GAACUUGA CUGAUGA X GAA AGCAUJUA	UAAAUGCUU UCAAGUUC
	3899	UGAACUUG CUGAUGA X GAA AAGCAUUU	AAAUGCJJU CAAGUUC
30	3900	AUGAACUTU CUGAUGA X GAA AAAGCAUU	AAUGCJUUC AAGUUCAU
	3905	GGCUCAUG CUGAUGA X GAA ACUUGAAA	UUUCAAGUUU CAUGAGCC
	3906	AGGCUCAU CUGAUGA X GAA AACUUGAA	UUCAAGUUC AUGAGCCU
	3924	AAGGUUUU CUGAUGA X GAA AUUCUUUC	GAAAGAAUC AAAACCUU

3932	GUUCUUCA CUGAUGA X GAA AGGUUUUG	CAAAACCUU UGAAGAAC
3933	AGUUCUUC CUGAUGA X GAA AAGGUUUU	AAAACCUU GAAGAACU
3942	UUCGGUAA CUGAUGA X GAA AGUUCUUC	GAAGAACUUU UUACCGAA
3943	AUUCGGUA CUGAUGA X GAA AAGUUCUU	AAGAACUUU UACCGAAU
5	3944 CAUUCGGU CUGAUGA X GAA AAAGUUCU	AGAACUUUU ACCGAAUG
	3945 GCAUUCGG CUGAUGA X GAA AAAAGUUC	GAACUUUA CCGAAUGC
	3959 CAAACAUG CUGAUGA X GAA AGGUGGCA	UGCCACCUC CAUGUUUG
	3965 AGUCAUCA CUGAUGA X GAA ACAUGGAG	CUCCAUGUU UGAUGACU
	3966 UAGUCAUC CUGAUGA X GAA AACAUAGGA	UCCAUGUUU GAUGACUA
10	3974 CGCCCUGG CUGAUGA X GAA AGUCAUCA	UGAUGACUA CCAGGGCG
	3994 GGCCAACA CUGAUGA X GAA AGUGCUGC	GCAGCACUC UGUUGGCC
	3998 GAGAGGCC CUGAUGA X GAA ACAGAGUG	CACUCUGUU GGCCUCUC
	4004 GCAUGGGA CUGAUGA X GAA AGGCCAAC	GUUGGCCUC UCCC AUGC
	4006 CAGCAUGG CUGAUGA X GAA AGAGGCCA	UGGCCUCUC CCAUGCUG
15	4022 UCCAGGUG CUGAUGA X GAA AGCGCUUC	GAAGCGCUU CACCUGGA
	4023 GUCCAGGU CUGAUGA X GAA AAGCGCUU	AAGCGCUUC ACCUGGAC
	4052 UCUUGAGC CUGAUGA X GAA AGGCCUUG	CAAGGCCUC GCUCAAGA
	4056 UCAAUCUU CUGAUGA X GAA AGCGAGGC	GCCUCGCUC AAGAUUGA
	4062 CUCAAGUC CUGAUGA X GAA AUCUUGAG	CUCAAGAUU GACUUGAG
20	4067 UUACUCUC CUGAUGA X GAA AGUCAAUC	GAUUGACUU GAGAGUAA
	4074 UUACUGGU CUGAUGA X GAA ACUCUCAA	UUGAGAGUA ACCAGUAA
	4081 CUUACUUU CUGAUGA X GAA ACUGGUUA	UAACCAGUA AAAGUAAG
	4087 CGACUCCU CUGAUGA X GAA ACUUUUAC	GUAAAAGUA AGGAGUCG
	4094 ACAGCCCC CUGAUGA X GAA ACUCCUUA	UAAGGAGUC GGGGCUGU
25	4103 UGACAUCA CUGAUGA X GAA ACAGCCCC	GGGGCUGUC UGAUGUCA
	4110 GGCCUGCU CUGAUGA X GAA ACAUCAGA	UCUGAUGUC AGCAGGCC
	4123 AUGGCAGA CUGAUGA X GAA ACUGGGCC	GGCCCAGUU UCUGCCAU
	4124 AAUGGCAG CUGAUGA X GAA AACUGGGC	GCCCAGUUU CUGCCAUU
	4125 GAAUGGCA CUGAUGA X GAA AAACUGGG	CCCAGUUUC UGCCAUUC
30	4132 ACAGCUGG CUGAUGA X GAA AUGGCAGA	UCUGCCAUU CCAGCUGU
	4133 CACAGCUG CUGAUGA X GAA AAUGGCAG	CUGCCAUUC CAGCUGUG
	4149 CCUUCGCU CUGAUGA X GAA ACGUGCCC	GGGCACGUC AGCGAAGG
	4169 CGUAGGUG CUGAUGA X GAA ACCUGCGC	GCGCAGGUU CACCUACG

	4170	UCGUAGGU CUGAUGA X GAA AACUGCG	CGCAGGUUC ACCUACGA
	4175	CGUGGUCG CUGAUGA X GAA AGGUGAAC	GUUCACCUA CGACCACG
	4203	CAGCACGC CUGAUGA X GAA AUUUUCU	AGGAAAUC GCGUGCUG
	4214	GGGGCGGG CUGAUGA X GAA AGCAGCAC	GUGCUGCUC CCCGCCCC
5	4229	CCGAGUUG CUGAUGA X GAA AGUCUGGG	CCCAGACUA CAACUCGG
	4235	GGACCACC CUGAUGA X GAA AGUUGUAG	CUACAACUC GGUGGUCC
	4242	GAGUACAG CUGAUGA X GAA ACCACCGA	UCGGUGGGUC CUGUACUC
	4247	GGGUGGGAG CUGAUGA X GAA ACAGGACC	GGUCCUGUA CUCCACCC
	4250	GUGGGGGUG CUGAUGA X GAA AGUACAGG	CCUGUACUC CACCCAC
10	4263	AAACUCUA CUGAUGA X GAA AUGGGUGG	CCACCCAUU UAGAGUUU
	4265	UCAAACUC CUGAUGA X GAA AGAUGGGU	ACCCAUCUA GAGUUUGA
	4270	UCGUGUCA CUGAUGA X GAA ACUCUAGA	UCUAGAGUU UGACACGA
	4271	UUCGUGUC CUGAUGA X GAA AACUCUAG	CUAGAGUUU GACACGAA
	4284	CUAGAAA CUGAUGA X GAA AGGUUCG	CGAAGCCUU AUUUCUAG
15	4285	UCUAGAAA CUGAUGA X GAA AAGGCUUC	GAAGCCUUA UUUCUAGA
	4287	CUUCUAGA CUGAUGA X GAA AUUAGGC	AGCCUUUU UCUGAGAAG
	4288	GCUUCUAG CUGAUGA X GAA AAUAAGGC	GCCUUUUU CUAGAAGC
	4289	UGCUUCUA CUGAUGA X GAA AAAUAAGG	CCUUUUUC UAGAAGCA
	4291	UGUGCUUC CUGAUGA X GAA AGAAAUA	UUAUUUCUA GAAGCACA
20	4305	GGUUAUAA CUGAUGA X GAA ACACAU	ACAUGUGUA UUUAUACC
	4307	GGGGUUA CUGAUGA X GAA AUACACAU	AUGUGUAUU UAUACCCC
	4308	GGGGGUAU CUGAUGA X GAA AAUACACA	UGUGUAUU AUACCCCC
	4309	UGGGGGUA CUGAUGA X GAA AAAUACAC	GUGUAUUU UACCCCCA
	4311	CCUGGGGG CUGAUGA X GAA AAUAAUAC	GUAIUUJUAUU CCCCCAGG
25	4325	GCAAAAGC CUGAUGA X GAA AGUUUCU	AGGAAACUA GCUUUUGC
	4329	ACUGGCCA CUGAUGA X GAA AGCUAGUU	AACUAGCUU UUGCCAGU
	4330	UACUGGCA CUGAUGA X GAA AAGCUAGU	ACUAGCUUU UGCCAGUA
	4331	AUACUGGC CUGAUGA X GAA AAAGCUAG	CUAGCUUUU GCCAGUAU
	4338	AUGCAUAA CUGAUGA X GAA ACUGGCAA	UUGCCAGUA UUAUGCAU
30	4340	AUAUGCAU CUGAUGA X GAA AUACUGGC	GCCAGUAUU AUGCAUAU
	4341	UUAUAGCA CUGAUGA X GAA AAUACUGG	CCAGUAUUA UGCAUUAU
	4347	AACUUUA CUGAUGA X GAA AUGCAUAA	UUAUGCAUA UAUAAAGUU
	4349	AAAACUUA CUGAUGA X GAA AU AUGCAU	AUGCAUUAU UAAGUUUA

	4351	UGUAAAACU CUGAUGA X GAA AUUAUUGC	GCAUAUAAA AGUUUACA
	4355	AAGGUGUA CUGAUGA X GAA ACUUUAU	AUUAAGUU UACACCUU
	4356	AAAGGUGU CUGAUGA X GAA AACUUUA	UUAAGUUU ACACCUU
	4357	UAAAGGUG CUGAUGA X GAA AAACUUUA	AUAAGUUUA CACCUU
5	4363	GAAAGAUA CUGAUGA X GAA AGGUGUAA	UUACACCUU UAUCUUUC
	4364	GGAAAGAU CUGAUGA X GAA AAGGUGUA	UACACCUUU AUCUUUCC
	4365	UGGAAAGA CUGAUGA X GAA AAAGGUGU	ACACCUUUA UCUUUCCA
	4367	CAUGGAAA CUGAUGA X GAA AUAAAGGU	ACCUUUAUC UUUCCAUG
	4369	CCCAUGGA CUGAUGA X GAA AGAUAAAAG	CUUUAUCUU UCCAUGGG
10	4370	UCCCAUGG CUGAUGA X GAA AAGAUAAA	UUUAUCUUU CCAUGGGA
	4371	CUCCCAUG CUGAUGA X GAA AAAGAUAA	UUAUCUUUC CAUGGGAG
	4389	AUCACAAA CUGAUGA X GAA AGCAGCUG	CAGCUGCUU UJUGUGAU
	4390	AAUCACAA CUGAUGA X GAA AAGCAGCU	AGCUGCUU UUGUGAUU
	4391	AAAUCACA CUGAUGA X GAA AAAGCAGC	GCUGCUUUU UGUGAUUU
15	4392	AAAAUCAC CUGAUGA X GAA AAAAGCAG	CUGCUUUUU GUGAUUUU
	4398	AUAAAAGA CUGAUGA X GAA AUCACAAA	UUUGUGAUU UUUUUAAU
	4399	UAUUAAA CUGAUGA X GAA AAUCACAA	UUGUGAUU UUUUAAA
	4400	CUAUUAAA CUGAUGA X GAA AAAUCACA	UGUGAUUUU UUUAAUAG
	4401	ACUAUUAA CUGAUGA X GAA AAAUCAC	GUGAUUUUU UUAAUAGU
20	4402	CACUAUUA CUGAUGA X GAA AAAAUCA	UGAUUUUUU UAAUAGUG
	4403	GCACUAUU CUGAUGA X GAA AAAAACU	GAUJJUUUU AAUAGUGC
	4404	AGCACUAU CUGAUGA X GAA AAAAAGAU	AUJJUUUUUA AUAGUGCU
	4407	AAAAGCAC CUGAUGA X GAA AUUAAAAA	UUJJUUAAA GUGCUUUU
	4413	AAAAAAA CUGAUGA X GAA AGCACUAU	AUAGUGCUU UUUUUUUU
25	4414	AAAAAAA CUGAUGA X GAA AAGCACUA	UAGUGCUUU UUUUUUUU
	4415	CAAAAAAA CUGAUGA X GAA AAAGCACU	AGUGCUUUU UUUUUUUG
	4416	UCAAAAAAA CUGAUGA X GAA AAAAGCAC	GUGCUUUUU UUUUUUUGA
	4417	GUCAAAAA CUGAUGA X GAA AAAAGCA	UGCUUUUUU UUUUUGAC
	4418	AGUCAAAA CUGAUGA X GAA AAAAAGC	GCUUUUUUU UUUUGACU
30	4419	UAGUCAAA CUGAUGA X GAA AAAAAGAG	CUUUUUUUU UUJUGACU
	4420	UUAGUCAA CUGAUGA X GAA AAAAAGAA	UUUUUUUUU UUGACUAA
	4421	GUUAGUCA CUGAUGA X GAA AAAAAGAA	UUUUUUUUU UGACUAAC
	4422	UGUUAGUC CUGAUGA X GAA AAAAAGAA	UUUUUUUUU GACUAACA

	4427	AUUCUUGU CUGAUGA X GAA AGUCAAAA	UUUUGACUA ACAAGAAU
	4438	UCUGGAGU CUGAUGA X GAA ACAUUCUU	AAGAAUGUA ACUCCAGA
	4442	UCUAUCUG CUGAUGA X GAA AGUUACAU	AUGUAACUC CAGAUAGA
	4448	UAUUUCUC CUGAUGA X GAA AUCUGGAG	CUCCAGAUUA GAGAAAUA
5	4456	CUUGUCAC CUGAUGA X GAA AUUUCUCU	AGAGAAAUA GUGACAAG
	4476	UUUAGCAG CUGAUGA X GAA AGUGUUCU	AGAACACUA CUGCUEAA
	4482	UGAGGAUU CUGAUGA X GAA AGCAGUAG	CUACUGCUA AAUCCUCA
	4486	AAAC AUGAG CUGAUGA X GAA AUUUAGCA	UGCUEAAUC CUCAUGUU
	4489	AGUAACAU CUGAUGA X GAA AGGAUJUA	UAAAUCUC AUGUUACU
10	4494	CACUGAGU CUGAUGA X GAA ACAUGAGG	CCUCAUGUU ACUCAGUG
	4495	ACACUGAG CUGAUGA X GAA AACAUAGAG	CUCAUGUUA CUCAGUGU
	4498	CUAACACU CUGAUGA X GAA AGUAACAU	AUGUUACUC AGUGUJAG
	4504	AUUUCUCU CUGAUGA X GAA ACACUGAG	CUCAGUGUU AGAGAAAUA
	4505	GAUUUCUC CUGAUGA X GAA AACACUGA	UCAGUGUUUA GAGAAAUC
15	4513	UUAGGAAG CUGAUGA X GAA AUUUCUCU	AGAGAAAUC CUUCCUAA
	4516	GGUUUJAGG CUGAUGA X GAA AGGAUJUC	GAAAUCUU CCUAAACC
	4517	GGGUUUAG CUGAUGA X GAA AAGGAUJU	AAAUCUJC CUAAACCC
	4520	AUUGGGUU CUGAUGA X GAA AGGAAGGA	UCCUCCUA AACCCAAU
	4533	GAGCAGGG CUGAUGA X GAA AGUCAUUG	CAAUGACUU CCCUGCUC
20	4534	GGAGCAGG CUGAUGA X GAA AAGUCAUU	AAUGACUJC CCUGCUCC
	4541	GGGGGUUG CUGAUGA X GAA AGCAGGGA	UCCCUGCUC CAACCCCC
	4557	CGUGCCCU CUGAUGA X GAA AGGUGGCG	CGCCACCUJC AGGGCAGC
	4576	CUCAAUCA CUGAUGA X GAA ACUGGUCC	GGACCAGUU UGAUUGAG
	4577	CCUCAAUC CUGAUGA X GAA AACUGGUCC	GACCAGUUUA GAUUGAGG
25	4581	AGCUCCUC CUGAUGA X GAA AUCAAACU	AGUUUGAUU GAGGAGCU
	4598	CAUUGGGU CUGAUGA X GAA AUCAGUGC	GCACUGAUC ACCCAAUG
	4610	GGGUACGU CUGAUGA X GAA AUGCAUUG	CAAUGCAUC ACGUACCC
	4615	CAGUGGGG CUGAUGA X GAA ACGUGAUG	CAUCACGUA CCCCACUG
	4664	CUGGGGCU CUGAUGA X GAA ACGGGCUU	AAGCCCGUU AGCCCCAG
30	4665	CCUGGGGC CUGAUGA X GAA AACGGGCU	AGCCCGUUA GCCCCAGG
	4678	CAGCCAGU CUGAUGA X GAA AUCCCCUG	CAGGGGAUC ACUGGCUG
	4700	ACUCCCCA CUGAUGA X GAA AUGUJUGU	AGCAACAUJC UCGGGAGU
	4702	GGACUCCC CUGAUGA X GAA AGAUGUUG	CAACAUJC GGGAGUCC

	4709	UGCUAGAG CUGAUGA X GAA ACUCCCGA	UCGGGAGUC CUCUAGCA
	4712	GCCUGCUA CUGAUGA X GAA AGGACUCC	GGAGUCCUC UAGCAGGC
	4714	AGGCCUGC CUGAUGA X GAA AGAGGACU	AGUCCUCUA GCAGGCCU
	4723	ACAUGUCU CUGAUGA X GAA AGGCCUGC	GCAGGCCUA AGACAUGU
5	4802	GCGUCUCA CUGAUGA X GAA AUUCUUUC	GAAAGAAUU UGAGACGC
	4803	UGCGUCUC CUGAUGA X GAA AAUUCUUU	AAAGAAUUU GAGACGCA
	4840	GCAUJGCU CUGAUGA X GAA AGCCCCGU	ACGGGGCUC AGCAAUGC
	4852	GCCACUGA CUGAUGA X GAA AUGGCAUU	AAUGC CAUU UCAGUGGC
	4853	AGCCACUG CUGAUGA X GAA AAUGGCAU	AUGCCAUUU CAGUGGCC
10	4854	AAGCCACU CUGAUGA X GAA AAAUGGCA	UGCCAUUU AGUGGCCU
	4862	GAGCUGGG CUGAUGA X GAA AGCCACUG	CAGUGGCCU CCCAGCUC
	4863	AGAGCUGG CUGAUGA X GAA AAGCCACU	AGUGGCCUUC CCAGCUCU
	4870	AAGGGUCA CUGAUGA X GAA AGCUGGGA	UCCCAGCUC UGACCCUU
	4878	AAAUGUAG CUGAUGA X GAA AGGGUCAG	CUGACCCUU CUACAUUU
15	4879	CAAAUGUA CUGAUGA X GAA AAGGGUCA	UGACCCUUC UACAUUUG
	4881	CUCAAAUG CUGAUGA X GAA AGAAGGGU	ACCCUUCUA CAUJUGAG
	4885	GGCCCUCU CUGAUGA X GAA AUGUAGAA	UUCUACAUU UGAGGGCC
	4886	GGGCCUC CUGAUGA X GAA AAUGUAGA	UCUACAUUU GAGGGCCC
	4929	AUCCAGAA CUGAUGA X GAA AUGUCCCC	GGGGACAUU UUCUGGAU
20	4930	AAUCCAGA CUGAUGA X GAA AAUGUCCC	GGGACAUUU UCUGGAUU
	4931	GAAUCCAG CUGAUGA X GAA AAAUGUCC	GGACAUUUU CUGGAUUC
	4932	AGAAUCCA CUGAUGA X GAA AAAAUGUC	GACAUUUUC UGGAUUCU
	4938	CCUCCCCAG CUGAUGA X GAA AUCCAGAA	UUCUGGAUU CUGGGAGG
	4939	GCCUCCCA CUGAUGA X GAA AAUCCAGA	UCUGGAUUC UGGGAGGC
25	4963	AAAAAAGA CUGAUGA X GAA AUUJGUCC	GGACAAAAUA UCUUUUUU
	4965	CCAAAAAA CUGAUGA X GAA AUAUUJGU	ACAAAUUAUC UUUUUUJGG
	4967	UUCAAAAA CUGAUGA X GAA AGAUAUUU	AAAUAUCCU UUUJGGAA
	4968	GUUCCAAA CUGAUGA X GAA AAGAUAUU	AAUAUCUUU UJJGGAAC
	4969	AGUUCCAA CUGAUGA X GAA AAAGAUAU	AUAUCUUUU UJGGAACU
30	4970	UAGUUCCA CUGAUGA X GAA AAAAGAU	UAUCUUUUU UGGAACUA
	4971	UUAGUUCC CUGAUGA X GAA AAAAAGAU	AUCUUUUUU GGAACUAA
	4978	AUUGCUU CUGAUGA X GAA AGUUCCAA	UUGGAACUA AAGCAAAU
	4987	AGGUCUAA CUGAUGA X GAA AUUJGUUU	AAGCAAAUU UUAGACCU

	4988	AAGGUCUA CUGAUGA X GAA AAUUUGCU	AGCAAAUUU UAGACCUU
	4989	AAAGGUCU CUGAUGA X GAA AAAUUUGC	GCAAAUUUU AGACCUUU
	4990	UAAAAGGUC CUGAUGA X GAA AAAAUUUG	CAAUUUUUA GACCUUUA
	4996	CAUAGGUA CUGAUGA X GAA AGGUCUAA	UUAGACCUU UACCUAUG
5	4997	CCAUAGGU CUGAUGA X GAA AAGGUCUA	UAGACCUUU ACCUAUGG
	4998	UCCAUAGG CUGAUGA X GAA AAAGGUCU	AGACCUUUA CCUAUGGA
	5002	CACUUCCA CUGAUGA X GAA AGGUAAAAG	CUUUACCUA UGGAAGUG
	5013	GGACAUAG CUGAUGA X GAA ACCACUUC	GAAGUGGUU CUAUGUCC
	5014	UGGACAUUA CUGAUGA X GAA AACCAUU	AAGUGGUUC UAUGUCCA
10	5016	AAUGGACA CUGAUGA X GAA AGAACCAAC	GUGGUUCUA UGUCCAUU
	5020	UGAGAAUG CUGAUGA X GAA ACAUAGAA	UUCUAUGUC CAUUCUCA
	5024	CGAAUGAG CUGAUGA X GAA AUGGACAU	AUGUCCAUU CUCAUUCG
	5025	ACGAUAUG CUGAUGA X GAA AAUGGACA	UGUCCAUUC UCAUUCGU
	5027	CCACGAAU CUGAUGA X GAA AGAAUGGA	UCCAUUCUC AUJCGUGG
15	5030	AUGCCACG CUGAUGA X GAA AUGAGAAU	AUUCUCAUU CGUGGCAU
	5031	CAUGCCAC CUGAUGA X GAA AAUGAGAA	UUCUCAUUC GUGGCAUG
	5041	CAAAUCAA CUGAUGA X GAA ACAUGCCA	UGGCAUGUU UUGAUUJUG
	5042	ACAAAUCU CUGAUGA X GAA AACAUUGC	GGCAUGUUU UGAUJJUGU
	5043	UACAAAUC CUGAUGA X GAA AAACAUGC	GCAUGUUUU GAUJUGUA
20	5047	GUGCUACA CUGAUGA X GAA AUCAAAAC	GUUUGAUU UGUAGCAC
	5048	AGUGCUAC CUGAUGA X GAA AAUCAAAA	UUUUGAUU GUAGCACU
	5051	CUCAGUGC CUGAUGA X GAA ACAAAUCA	UGAUUUGUA GCACUGAG
	5069	UCAGAGUU CUGAUGA X GAA AGUGCCAC	GUGGCACUC AACUCUGA
	5074	UGGGCUCA CUGAUGA X GAA AGUUGAGU	ACUCAACUC UGAGCCC
25	5084	GCCAAAAG CUGAUGA X GAA AUGGGCUC	GAGCCCCAUU CUUUJGGC
	5087	GGAGCCAA CUGAUGA X GAA AGUAUUGGG	CCCAUACUU UUGGCUCC
	5088	AGGAGCCA CUGAUGA X GAA AAGUAUGG	CCAUACUUU UGGCUCCU
	5089	GAGGAGCC CUGAUGA X GAA AAAGUAUG	CAUACUUUU GGCUCCUC
	5094	UACUAGAG CUGAUGA X GAA AGCCAAAA	UUUJGGCUC CUCUAGUA
30	5097	UCUUACUA CUGAUGA X GAA AGGAGCCA	UGGCUCCUC UAGUAAGA
	5099	CAUCUUAC CUGAUGA X GAA AGAGGAGC	GCUCCUCUA GUAAGAUG
	5102	GUGCAUCU CUGAUGA X GAA ACUAGAGG	CCUCUAGUA AGAUGCAC
	5119	CUCUGGCCU CUGAUGA X GAA AGUUUUC	UGAAAACUU AGCCAGAG

	5120	ACUCUGGC CUGAUGA X GAA AAGUUUUC	GAAAACUUA GCCAGAGU
	5129	GACAACCU CUGAUGA X GAA ACUCUGGC	GCCAGAGUU AGGUJUGUC
	5130	AGACAACC CUGAUGA X GAA AACUCUGG	CCAGAGUUA GGUUGUCU
	5134	CUGGAGAC CUGAUGA X GAA ACCUAACU	AGUUAGGUU GUCUCCAG
5	5137	GGCCUGGA CUGAUGA X GAA ACAACCUA	UAGGUJUGUC UCCAGGCC
	5139	AUGGCCUG CUGAUGA X GAA AGACAACC	GGUUGUCUC CAGGCCAU
	5156	UUCAGUGU CUGAUGA X GAA AGGCCAUC	GAUGGCCUU ACACUGAA
	5157	UUUCAGUG CUGAUGA X GAA AAGGCCAU	AUGGCCUUA CACUGAAA
	5170	UAGAAUGU CUGAUGA X GAA ACAUUUUC	GAAAAUGUC ACAUUCUA
10	5175	CAAAAUAG CUGAUGA X GAA AUGUGACA	UGUCACAUU CUAUJJUG
	5176	CCAAAAUA CUGAUGA X GAA AAUGUGAC	GUCACAUJC UAUUUJUG
	5178	ACCCAAAA CUGAUGA X GAA AGAAUGUG	CACAUUCUA UUUJUGGU
	5180	AUACCCAA CUGAUGA X GAA AUAGAAUG	CAUUCUAUU UUGGGUAU
	5181	AAUACCCA CUGAUGA X GAA AAUAGAAU	AUUCUAUU UGGGUAUU
15	5182	UAAAUACCC CUGAUGA X GAA AAAUAGAA	UUCUAUUU GGGUAUUA
	5187	UAAUAIJAA CUGAUGA X GAA ACCCAAAA	UUUJUGGUUA UUAAUUAUA
	5189	UAAUAAUJ CUGAUGA X GAA AUACCCAA	UUGGGUAUU AAUAAUUA
	5190	CUAAUAAU CUGAUGA X GAA AAUACCCA	UGGGUAUUA AAUAAUAG
	5193	GGACUAAA CUGAUGA X GAA AAUAAUAC	GUAUUAAA UAUAGUCC
20	5195	CUGGACUA CUGAUGA X GAA AAUUAUUAU	AUUAUAAA UAGUCCAG
	5197	GUCUGGAC CUGAUGA X GAA AAUAAUUA	UAAUUAUUA GUCCAGAC
	5200	AGUGUCUG CUGAUGA X GAA ACUAAUUA	UAAUUAUAGUC CAGACACU
	5209	AUUGAGUU CUGAUGA X GAA AGUGUCUG	CAGACACUU AACUCAAU
	5210	AAUUGAGU CUGAUGA X GAA AAGUGUCU	AGACACUUA ACUAAUU
25	5214	AAGAAAUA CUGAUGA X GAA AGUUAAGU	ACUUAACUC AAUJUCUU
	5218	UACCAAGA CUGAUGA X GAA AUUGAGUU	AACUCAAUU UCUJUGGU
	5219	AUACCAAG CUGAUGA X GAA AAUUGAGU	ACUCAAUU CUUGGUAU
	5220	AAUACCAA CUGAUGA X GAA AAAUUGAG	CUCAAUUUC UUGGUAUU
	5222	AUAAUACC CUGAUGA X GAA AGAAAUG	CAAUUCUU GGUAUUAU
30	5226	CAGAAUAA CUGAUGA X GAA ACCAAGAA	UUCUUGGUUA UUAUUCUG
	5228	AACAGAAU CUGAUGA X GAA AUACCAAG	CUUGGUAUU AAUCUGUU
	5229	AAACAGAA CUGAUGA X GAA AAUACCAA	UUGGUAUUA UUCUGUUU
	5231	CAAAACAG CUGAUGA X GAA AAUAAUACC	GGUAUJAUU CUGUUUUG

	5232	GCAAAACA CUGAUGA X GAA AAUAAAUC	GUAUUAUUC UGUUUUGC
	5236	CUGUGCAA CUGAUGA X GAA ACAGAAUA	UAUUCUGUU UUGGCACAG
	5237	ACUGUGCA CUGAUGA X GAA AACAGAAU	AUUCUGUUU UGCACAGU
	5238	AACUGUGC CUGAUGA X GAA AAACAGAA	UUCUGUUU GCACAGUU
5	5246	UCACAAACU CUGAUGA X GAA ACUGUGCA	UGCACAGUU AGUUGUGA
	5247	UUCACAAAC CUGAUGA X GAA AACUGUGC	GCACAGUUU GUUGUGAA
	5250	UCUUUCAC CUGAUGA X GAA ACUAACUG	CAGUUAGUU GUGAAAGA
	5284	CUCCUCAG CUGAUGA X GAA ACUGCAUU	AAUGCAGUC CUGAGGAG
	5296	AUGGAGAA CUGAUGA X GAA ACUCUCCU	AGGAGAGUU UUCUCCAU
10	5297	UAUGGAGA CUGAUGA X GAA AACUCUCC	GGAGAGUUU UCUCCAUA
	5298	AUAUGGAG CUGAUGA X GAA AAACUCUC	GAGAGUUU CUCCAUAU
	5299	GAUAUGGA CUGAUGA X GAA AAAACUCU	AGAGUUUUC UCCAUAUC
	5301	UUGAUUAUG CUGAUGA X GAA AGAAAACU	AGUUUUCUC CAUAUCAA
	5305	CGUUUUGA CUGAUGA X GAA AUGGAGAA	UUCUCCAUU UCAAAACG
15	5307	CUCGUUUU CUGAUGA X GAA AUAUGGAG	CUCCAUAUC AAAACGAG
	5336	ACCUUAAU CUGAUGA X GAA ACCUUUUU	AAAAAGGUC AAUAAGGU
	5340	CUUGACCU CUGAUGA X GAA AUUGACCU	AGGUCAAUA AGGUCAAG
	5345	CUUCCCUU CUGAUGA X GAA ACCUUAUU	AAUAAGGUC AAGGGAAG
	5361	GGUAUAGA CUGAUGA X GAA ACGGGGUC	GACCCCGUC UCUALUACC
20	5363	UUGGUUAU CUGAUGA X GAA AGACGGGG	CCCCGUCUC UAUACCAA
	5365	GGUJUGGUA CUGAUGA X GAA AGAGACGG	CCGUCUCUA UACCAACC
	5367	UUGGUJUGG CUGAUGA X GAA AUAGAGAC	GUCUCUAUA CCAACCAA
	5382	UGUJUGGUG CUGAUGA X GAA AUUGGUUU	AAACCAAUU CACCAACCA
	5383	GUGUJUGGU CUGAUGA X GAA AAUUGGUU	AACCAAUUC ACCAACAC
25	5395	UGGGUCCC CUGAUGA X GAA ACUGUGUU	AACACAGUU GGGACCCA
	5417	ACGUGACU CUGAUGA X GAA ACUUCUG	CAGGAAGUC AGUCACGU
	5421	GGAAACGU CUGAUGA X GAA ACUGACUU	AAGUCAGUC ACGUUUCC
	5426	GAAAAGGA CUGAUGA X GAA ACGUGACU	AGUCACGUU UCCUUUJC
	5427	UGAAAAGG CUGAUGA X GAA AACGUGAC	GUCACGUU CCUUUJCA
30	5428	AUGAAAAG CUGAUGA X GAA AAACGUGA	UCACGUUUC CUUUUCAU
	5431	UAAAUGAA CUGAUGA X GAA AGGAAACG	CGUUUCCUU UUCAUUUA
	5432	UAAAUAUG CUGAUGA X GAA AAGGAAAC	GUUUCUUU UCAUUUAA
	5433	AUAAAUAUG CUGAUGA X GAA AAAGGAAA	UUUCUUUU CAUUAU

5434	CAUAAA CUGAUGA X GAA AAAAGGAA	UUCCUUJJC AUUJAAUG
5437	CCCCAUUA CUGAUGA X GAA AUGAAAAG	CUUUJCAUU UAAUGGGG
5438	UCCCCAUU CUGAUGA X GAA AAUGAAAA	UUUUCAUUU AAUGGGGA
5439	AUCCCCAU CUGAUGA X GAA AAAUGAAA	UUUCAUUJA AUGGGGAU
5	5448 GAUAGUGG CUGAUGA X GAA AUCCCCAU	AUGGGGAUU CCACUAUC
	5449 AGAUAGUG CUGAUGA X GAA AAUCCCCA	UGGGGAUUC CACUAUCU
	5454 GUGUGAGA CUGAUGA X GAA AGUGGAAU	AUUCCACUA UCUCACAC
	5456 UAGUGUGA CUGAUGA X GAA AUAGUGGA	UCCACUAUC UCACACUA
	5458 AUUAGUGU CUGAUGA X GAA AGAUAGUG	CACUAUCUC ACACUAAU
10	5464 UUUCAGAU CUGAUGA X GAA AGUGUGAG	CUCACACUA AUCUGAAA
	5467 UCCUUUCA CUGAUGA X GAA AUUAGUGU	ACACUAAUC UGAAAGGA
	5489 CGCCAGCU CUGAUGA X GAA AUGCUCUU	AAGAGCAUU AGCUGGCG
	5490 GCGCCAGC CUGAUGA X GAA AAUGCUCU	AGAGCAUUA GCUGGCGC
	5501 GUGCUUAA CUGAUGA X GAA AUGCGCCA	UGGCGCAUA UUAAGCAC
15	5503 AAGUGCUU CUGAUGA X GAA AUAUGCGC	GCGCAUAUU AAGCACUU
	5504 AAAGUGCU CUGAUGA X GAA AAUAUGCG	CGCAUAUUA AGCACUUU
	5511 GGAGCUUA CUGAUGA X GAA AGUGCUUA	UAAGCACUU UAAGCUCC
	5512 AGGAGCUU CUGAUGA X GAA AAGUGCUU	AAGCACUUU AAGCUCCU
	5513 AAGGAGCU CUGAUGA X GAA AAAGUGCU	AGCACUUJA AGCUCCUU
20	5518 UACUCAAG CUGAUGA X GAA AGCUUAAA	UUUAAGCUC CUUGAGUA
	5521 UUUUACUC CUGAUGA X GAA AGGAGCUU	AAGCUCCUU GAGUAAAA
	5526 CACCUUU CUGAUGA X GAA ACUCAAGG	CCUUGAGUA AAAAGGUG
	5537 AAAUUACA CUGAUGA X GAA ACCACCUU	AAGGUGGUUA UGUAAUUU
	5541 GCAUAAA CUGAUGA X GAA ACAUACCA	UGGU AUGUA AUUUAUGC
25	5544 CUUGCAUA CUGAUGA X GAA AUUACAU	UAUGUAUUU UAUGCAAG
	5545 CCUUGCAU CUGAUGA X GAA AAUUACAU	AUGUAUUUU AUGCAAGG
	5546 ACCUJUGCA CUGAUGA X GAA AAAUUACA	UGUAAUUUA UGCAAGGU
	5555 UGGAGAAA CUGAUGA X GAA ACCUUGCA	UGCAAGGUUA UUUCUCCA
	5557 ACUGGAGA CUGAUGA X GAA AUACCUUG	CAAGGUAUU UCUCAGU
30	5558 AACUGGAG CUGAUGA X GAA AAUACCUU	AAGGUAUUU CUCCAGUU
	5559 CAACUGGA CUGAUGA X GAA AAAUACCU	AGGU AUUUC UCCAGUUG
	5561 CCCAACUG CUGAUGA X GAA AGAAAUC	GUAUUUCUC CAGUUGGG
	5566 UGAGUCCC CUGAUGA X GAA ACUGGAGA	UCUCCAGUU GGGACUCA

	5573	AAUAUCCU CUGAUGA X GAA AGUCCCAA	UUGGGACUC AGGAUAUU
	5579	UUAACUAA CUGAUGA X GAA AUCCUGAG	CUCAGGAUA UUAGUUAA
	5581	CAUUAACU CUGAUGA X GAA AUAUCCUG	CAGGAUAUU AGUAAAUG
	5582	UCAUUAAC CUGAUGA X GAA AAUAUCCU	AGGAUAUUA GUUAAAUG
5	5585	GGCUCAUU CUGAUGA X GAA ACUAAUAU	AUAAUAGUU AAUGAGCC
	5586	UGGCUCAU CUGAUGA X GAA AACUAAUA	UAUUAGUUA AUGAGCCA
	5596	CUUCUAGU CUGAUGA X GAA AUGGCUCA	UGAGCCAUC ACUAGAAG
	5600	UUUUCUUC CUGAUGA X GAA AGUGAUGG	CCAUCACUA GAAGAAAA
	5615	CAGUUGAA CUGAUGA X GAA AUGGGCUU	AAGCCCAUU UUCAACUG
10	5616	GCAGUJUGA CUGAUGA X GAA AAUGGGCU	AGCCCACUU UCAACUGC
	5617	AGCAGUUG CUGAUGA X GAA AAAUGGGC	GCCCCUUUU CAACUGCU
	5618	AAGCAGUU CUGAUGA X GAA AAAAUGGG	CCCAUUUUUC AACUGCUU
	5626	AAGUUUCA CUGAUGA X GAA AGCAGUUG	CAACUGCUU UGAAACUU
	5627	CAAGUUUC CUGAUGA X GAA AAGCAGUU	AACUGCUU GAAACUUG
15	5634	CCCCAGGC CUGAUGA X GAA AGUUUCAA	UUGAAACUU GCCUGGGG
	5644	CAUGCUCU CUGAUGA X GAA ACCCCAGG	CCUGGGGUC UGAGCAUG
	5661	UGUCUCCC CUGAUGA X GAA AUUCCAU	AUGGGAAUA GGGAGACA
	5674	CCCUUUCC CUGAUGA X GAA ACCCUGUC	GACAGGGUA GGAAAGGG
	5688	CUGAAGAG CUGAUGA X GAA AGGCGCCC	GGGCGCCUA CUCUUCAG
20	5691	ACCCUGAA CUGAUGA X GAA AGUAGCG	CGCCUACUC UUCAGGGU
	5693	AGACCCUG CUGAUGA X GAA AGAGUAGG	CCUACUCUU CAGGGUCU
	5694	UAGACCCU CUGAUGA X GAA AAGAGUAG	CUACUCUUC AGGGUCUA
	5700	GAUCUUUA CUGAUGA X GAA ACCCUGAA	UUCAGGGUC UAAAGAUC
	5702	UUGAUCUU CUGAUGA X GAA AGACCCUG	CAGGGUCUA AAGAUCAA
25	5708	GCCCACUU CUGAUGA X GAA AUCUUUAG	CUAAAGAUC AAGUGGGC
	5719	AGCGAUCC CUGAUGA X GAA AGGCCAAC	GUGGGCCUU GGAUCGCU
	5724	AGCUUJAGC CUGAUGA X GAA AUCCAAGG	CCUUGGAUC GCUAAGCU
	5728	AGCCAGCU CUGAUGA X GAA AGCGAUCC	GGAUCGCCUA AGCUGGGCU
	5737	AUCAAACA CUGAUGA X GAA AGCCAGCU	AGCUGGGCUC UGUUJUGAU
30	5741	UAGCAUCA CUGAUGA X GAA ACAGAGCC	GGCUCUGUU UGAUGCUA
	5742	AUAGCAUC CUGAUGA X GAA AACAGAGC	GCUCUGUUU GAUGCUAU
	5749	UGCAUAAA CUGAUGA X GAA AGCAUCAA	UUGAUGCUA UUUUAUGCA
	5751	CUUGCAUA CUGAUGA X GAA AUAGCAUC	GAUGCUAUU UAUGCAAG

	5752	ACUUGCAU CUGAUGA X GAA AAUAGCAU	AUGCUAUUU AUGCAAGU
	5753	AACUUGCA CUGAUGA X GAA AAAUAGCA	UGCUAUUUA UGCAAGUU
	5761	UAGACCCU CUGAUGA X GAA ACUUGCAU	AUGCAAGUU AGGGUCUA
	5762	AUAGACCC CUGAUGA X GAA AACUUGCA	UGCAAGUUA GGGUCUAU
5	5767	AAUACAU A CUGAUGA X GAA ACCCUAAC	GUUAGGGUC UAUGUAUU
	5769	UAAAUA CA CUGAUGA X GAA AGACCCUA	UAGGGUCUA UGUAUUUA
	5773	AUCCUAAA CUGAUGA X GAA ACAUAGAC	GUCUAUGUA UUUAGGAU
	5775	GCAUCCUA CUGAUGA X GAA AUACAUAG	CUAUGUAUU UAGGAUGC
	5776	CGCAUCCU CUGAUGA X GAA AAUACAU A	UAUGUAUUU AGGAUGCG
10	5777	GCGCAUCC CUGAUGA X GAA AAAUACAU	AUGUAUUU A GGAUGCGC
	5788	CUGAAGAG CUGAUGA X GAA AGGCGCAU	AUGCGCCUA CUCUUCAG
	5791	ACCCUGAA CUGAUGA X GAA AGUAGGCG	CGCCUACUC UUCAGGGU
	5793	AGACCCUG CUGAUGA X GAA AGAGUAGG	CCUACUCUU CAGGGUCU
	5794	UAGACCCU CUGAUGA X GAA AAGAGUAG	CUACUCUUC AGGGUCUA
15	5800	GAUCUUUA CUGAUGA X GAA ACCCUGAA	UUCAGGGUC UAAAGAUC
	5802	UUGAUCUU CUGAUGA X GAA AGACCCUG	CAGGGUCUA AAGAUCAA
	5808	GCCCACUU CUGAUGA X GAA AUCUUUAG	CUAAAGAUC AAGUGGGC
	5819	AGCGAUCC CUGAUGA X GAA AGGCCAC	GUGGGCCUU GGAUCGCU
	5824	AGCUUAGC CUGAUGA X GAA AUCCAAGG	CCUUGGAUC GCUAAGCU
20	5828	AGCCAGCU CUGAUGA X GAA AGCGAUCC	GGAUCCGCUA AGCUGGGCU
	5837	AUCAAACA CUGAUGA X GAA AGCCAGCU	AGCUGGCUC UGUUUGAU
	5841	UAGCAUCA CUGAUGA X GAA ACAGAGCC	GGCUCUGUU UGAUGCUA
	5842	AUAGCAUC CUGAUGA X GAA AACAGAGC	GCUCUGUUU GAUGCUAU
	5849	UGCAUAAA CUGAUGA X GAA AGCAUCAA	UUGAUGCUA UUU AUGCA
25	5851	CUUGCAUA CUGAUGA X GAA AUAGCAUC	GAUGCUAUU U AUGCAAG
	5852	ACUUGCAU CUGAUGA X GAA AAUAGCAU	AUGCUAUUU AUGCAAGU
	5853	AACUUGCA CUGAUGA X GAA AAAUAGCA	UGCUAUUU UGCAAGUU
	5861	UAGACCCU CUGAUGA X GAA ACUUGCAU	AUGCAAGUU AGGGUCUA
	5862	AUAGACCC CUGAUGA X GAA AACUUGCA	UGCAAGUUA GGGUCUAU
30	5867	AAUACAU A CUGAUGA X GAA ACCCUAAC	GUUAGGGUC UAUGUAUU
	5869	UAAAUA CA CUGAUGA X GAA AGACCCUA	UAGGGUCUA UGUAUUUA
	5873	AUCCUAAA CUGAUGA X GAA ACAUAGAC	GUCUAUGUA UUUAGGAU
	5875	ACAUCCUA CUGAUGA X GAA AUACAUAG	CUAUGUAUU UAGGAUGU

	5876	GACAUCCU CUGAUGA X GAA AAUACAU	UAUGUAUUU AGGAUGUC
	5877	AGACAUCC CUGAUGA X GAA AAAUACAU	AUGUAUUUA GGAUGUCU
	5884	AAGGUGCA CUGAUGA X GAA ACAUCCUA	UAGGAUGUC UGCACCUU
	5892	GGCUGCAG CUGAUGA X GAA AGGUGCAG	CUGCACCUU CUGCAGCC
5	5893	UGGCUGCA CUGAUGA X GAA AAGGUGCA	UGCACCUUC UGCAGCCA
	5904	CAGCUUCU CUGAUGA X GAA ACUGGCUG	CAGCCAGUC AGAACGUG
	5930	GAAGCGAG CUGAUGA X GAA AUCCACUG	CAGUGGAUU GCUGCUUC
	5937	UCCCCAAG CUGAUGA X GAA AGCAGCAA	UUGCUGCUU CUUGGGGA
	5938	CUCCCCA CUGAUGA X GAA AAGCAGCA	UGCUGCUUC UUGGGGAG
10	5940	UUCUCCCC CUGAUGA X GAA AGAACGAG	CUGCUUCUU GGGGAGAA
	5953	AGGAAGCA CUGAUGA X GAA ACUCUUCU	AGAACAGUA UGCCUCCU
	5958	AUAAAAGG CUGAUGA X GAA AGCAUACU	AGUAUGCUCU CCUUUUAU
	5959	GAUAAAAG CUGAUGA X GAA AAGCAUAC	GUAAUGCUUC CUUUUAUC
	5962	AUGGAUAA CUGAUGA X GAA AGGAAGCA	UGCUUCCUU UUAUCCAU
15	5963	CAUGGAUA CUGAUGA X GAA AAGGAAGC	GUUCCUUUU UAUCCAUG
	5964	ACAUGGGAU CUGAUGA X GAA AAAGGAAG	CUUCCUUUU AUCCAUGU
	5965	UACAUGGA CUGAUGA X GAA AAAAGGAA	UUCCUUUUUA UCCAUGUA
	5967	AUJACAUG CUGAUGA X GAA AUAAAAGG	CCUUUUUAUC CAUGUAAU
	5973	AGUJAAA CUGAUGA X GAA ACAUGGAU	AUCCAUGUA AUJUAACU
20	5976	UACAGUUA CUGAUGA X GAA AUJACAUG	CAUGUAAUU UAACUGUA
	5977	CUACAGUU CUGAUGA X GAA AAUUACAU	AUGUAAUUU AACUGUAG
	5978	UCUACAGU CUGAUGA X GAA AAAUACAU	UGUAAUUUA ACUGUAGA
	5984	UCAGGUUC CUGAUGA X GAA ACAGUUA	UUAACUGUA GAACCUGA
	5996	GUUACUUA CUGAUGA X GAA AGCUCAGG	CCUGAGCUC UAAGUAAC
25	5998	CGGUUJACU CUGAUGA X GAA AGAGCUCA	UGAGCUCUA AGUAACCG
	6002	UCUUCGGU CUGAUGA X GAA ACUJAGAG	CUCUAAGUA ACCGAAGA
	6015	CAGAGGCA CUGAUGA X GAA ACAUUCUU	AAGAAUGUA UGCCUCUG
	6021	UAAGAACCA CUGAUGA X GAA AGGCAUAC	GUAAUGCCUC UGUUCUUA
	6025	CACAUAAAG CUGAUGA X GAA ACAGAGGC	GCCUCUGUU CUUAUGUG
30	6026	GCACAUAA CUGAUGA X GAA AACAGAGG	CCUCUGUUC UUAUGUGC
	6028	UGGCACAU CUGAUGA X GAA AGAACAGA	UCUGUUCUU AUGUGCCA
	6029	GUGGCACA CUGAUGA X GAA AAGAACAG	CUGUUCUUA UGUGCCAC
	6040	UAAAACAAG CUGAUGA X GAA AUGUGCA	UGCCACAAUC CUUGUUUA

	6043	CUUUAAC CUGAUGA X GAA AGGAUGUG	CACAUCCUU GUUUAAG
	6046	AGCCUUUA CUGAUGA X GAA ACAAGGAAU	AUCCUUGUU UAAAGGCCU
	6047	GAGCCUUU CUGAUGA X GAA AACAAAGGA	UCCUUGUUU AAAGGCUC
	6048	AGAGCCUU CUGAUGA X GAA AACAAAGG	CCUUGUUUA AAGGCUCU
5	6055	CAUACAGA CUGAUGA X GAA AGCCUUUA	UAAAGGCUC UCUGUAUG
	6057	UUCAUACA CUGAUGA X GAA AGAGCCUU	AAGGCUCUC UGUAUGAA
	6061	UCUCUUCA CUGAUGA X GAA ACAGAGAG	CUCUCUGUA UGAAGAGA
	6079	GUGCUGAU CUGAUGA X GAA ACGGUCCC	GGGACCGUC AUCAGCAC
	6082	AAUGUGCU CUGAUGA X GAA AUGACGGU	ACCGUCAUC AGCACAUU
10	6090	CACUAGGG CUGAUGA X GAA AUGUGCUG	CAGCACAUU CCCUAGUG
	6091	UCACUAGG CUGAUGA X GAA AAUGUGCU	AGCACAUUC CCUAGUGA
	6095	AGGCUCAC CUGAUGA X GAA AGGGAAUG	CAUUCCUA GUGAGCCU
	6104	GGAGCCAG CUGAUGA X GAA AGGCUCAC	GUGAGCCUA CUGGCUCC
	6111	GCUGCCAG CUGAUGA X GAA AGCCAGUA	UACUGGCUC CUGGCAGC
15	6124	UUCCACAA CUGAUGA X GAA AGCCGUG	CAGCGGCUU UUGUGGAA
	6125	CUUCCACA CUGAUGA X GAA AAGCCGU	AGCGGCUUU UGUGGAAG
	6126	UCUUCCAC CUGAUGA X GAA AAAGCCGC	GGGGCUUUU GUGGAAGA
	6137	UGGCUAGU CUGAUGA X GAA AGUCUUCC	GGAAGACUC ACUAGCCA
	6141	CUUCUGGC CUGAUGA X GAA AGUGAGUC	GACUCACUA GCCAGAAG
20	6166	GUGGAGAG CUGAUGA X GAA ACUGUCCC	GGGACAGUC CUCUCCAC
	6169	UUGGUGGA CUGAUGA X GAA AGGACUGU	ACAGUCCUC UCCACCAA
	6171	UCUUGGUG CUGAUGA X GAA AGAGGACU	AGUCCUCUC CACCAAGA
	6181	UGGAUJUA CUGAUGA X GAA AUCUUGGU	ACCAAGAAC UAAAUCCA
	6183	UUUGGAAU CUGAUGA X GAA AGAUCUUG	CAAGAUCUA AAUCCAAA
25	6187	UUUGUUUG CUGAUGA X GAA AUUAGAU	AUCUAAAUC CAAACAAA
	6204	UCUGGCUC CUGAUGA X GAA AGCCUGCU	AGCAGGCCUA GAGCCAGA
	6226	ACAACAAA CUGAUGA X GAA AUUUGUCC	GGACAAAC UUUGUUGU
	6228	GAACAAACA CUGAUGA X GAA AGAUIIUGU	ACAAACUJJ UGUUGUUC
	6229	GGAACAAAC CUGAUGA X GAA AAGAUUUG	CAAACUJJ GUUGUJUCC
30	6232	AGAGGAAC CUGAUGA X GAA ACAAAAGAU	AUCUUJGUU GUUCCUCU
	6235	AGAAGAGG CUGAUGA X GAA ACAACAAA	UUUGUJGUU CCUCUUCU
	6236	AAGAAGAG CUGAUGA X GAA AACAAACAA	UUGUUGUUC CUCUUCUU
	6239	GUAAAGAA CUGAUGA X GAA AGGAACAA	UUGUUCUCU UUCUUUAC

	6241	GUGUAAAG CUGAUGA X GAA AGAGGAAC	GUUCCUCUU CUUUACAC
	6242	UGUGUAAA CUGAUGA X GAA AAGAGGAA	UCCUCUUC UUUACACA
	6244	UAUGUGUA CUGAUGA X GAA AGAAGAGG	CCUCUUCUU UACACAUUA
	6245	GU AUGUGU CUGAUGA X GAA AAGAAGAG	CUCUUCUUU ACACAUAC
5	6246	CGUAUGUG CUGAUGA X GAA AAAGAAGA	UCUUCUUUA CACAUACG
	6252	GGUUUJCG CUGAUGA X GAA AUGUGUAA	UUACACAUUA CGCAAACC
	6280	AUJJUAUA CUGAUGA X GAA AUUGCAG	CUGGCAAUU UUAUAAAUAU
	6281	GAUJJUAUA CUGAUGA X GAA AAUUGCAG	UGGCAAUUU UAUAAAUC
	6282	UGAUJJUAU CUGAUGA X GAA AAAUUGC	GGCAAUUUU AUAAAUC
10	6283	CUGAUJUA CUGAUGA X GAA AAAUUGC	GCAAUUUUA UAAAUCAG
	6285	ACCUGAUU CUGAUGA X GAA AUAAAAAU	AAUUUUUAU AAUCAGGU
	6289	AGUUACCU CUGAUGA X GAA AUUUAUA	UUUAUAAAUC AGGUACU
	6294	CUUCCAGU CUGAUGA X GAA ACCUGAUU	AAUCAGGUU ACUGGAAG
	6308	CUGAGUJU CUGAUGA X GAA ACCUCCUU	AAGGAGGUU AAACUCAG
15	6309	UCUGAGUU CUGAUGA X GAA AACCUCCU	AGGAGGUUA AACUCAGA
	6314	UUUUUUCU CUGAUGA X GAA AGUUUAAC	GUUAAACUC AGAAAAAA
	6331	AAUUGACU CUGAUGA X GAA AGGUCUUC	GAAGACCUC AGUCAUU
	6335	AGAGAAUU CUGAUGA X GAA ACUGAGGU	ACCUCAGUC AAUCUCU
	6339	AAGUAGAG CUGAUGA X GAA AUUGACUG	CAGUCAAUU CUCUACUU
20	6340	AAAGUAGA CUGAUGA X GAA AAUUGACU	AGUCAAUUC UCUACUUU
	6342	AAAAAGUA CUGAUGA X GAA AGAAUUGA	UCAAUUCUC UACUUUUU
	6344	AAAAAAAG CUGAUGA X GAA AGAGAAUU	AAUUCUCUA CUUUUUUU
	6347	AAAAAAA CUGAUGA X GAA AGUAGAGA	UCUCUACUU UUUUUUUU
	6348	AAAAAAA CUGAUGA X GAA AAGUAGAG	CUCUACUUU UUUUUUUU
25	6349	AAAAAAA CUGAUGA X GAA AAAGUAGA	UCUACUUU UUUUUUUU
	6350	AAAAAAA CUGAUGA X GAA AAAAGUAG	CUACUUU UUUUUUUU
	6351	AAAAAAA CUGAUGA X GAA AAAAGUA	UACUUU UUUUUUUU
	6352	AAAAAAA CUGAUGA X GAA AAAAAGU	ACUUU UUUUUUUU
	6353	AAAAAAA CUGAUGA X GAA AAAAAG	CUUUUU UUUUUUUU
30	6354	AAAAAAA CUGAUGA X GAA AAAAAAAA	UUUUUU UUUUUUUU
	6355	GGAAAAAA CUGAUGA X GAA AAAAAAAA	UUUUUUU UUUUUUCC
	6356	UGGAAAAA CUGAUGA X GAA AAAAAAAA	UUUUUUU UUUUUCCA
	6357	UUGGAAAA CUGAUGA X GAA AAAAAAAA	UUUUUUU UUUUCCAA

	6358	UUUGGAAA CUGAUGA X GAA AAAAAAAA	UUUUUUUU UUCCAAA
	6359	AUUUGGAA CUGAUGA X GAA AAAAAAAA	UUUUUUUU UUCCAAAU
	6360	GAUJUGGA CUGAUGA X GAA AAAAAAAA	UUUUUUUU UCCAAUC
	6361	UGAUJUGG CUGAUGA X GAA AAAAAAAA	UUUUUUUU CCAAUCA
5	6362	CUGAUUUG CUGAUGA X GAA AAAAAAAA	UUUUUUUU CAAUCAG
	6368	UAUUAUCU CUGAUGA X GAA AUUUGGAA	UCCAAAUC AGAUAAUA
	6373	UGGGCUAU CUGAUGA X GAA AUCUGAUU	AAUCAGAUA AUAGCCCA
	6376	UGCUGGGC CUGAUGA X GAA AUUAUCUG	CAGAUAAUA GCCCAGCA
	6388	GUUAUCAC CUGAUGA X GAA AUJUGCUG	CAGCAAAUA GUGAUAAAC
10	6394	UUAUUJUGU CUGAUGA X GAA AUCACUAU	AUAGUGAUA ACAAAUAA
	6401	UAAGGUUU CUGAUGA X GAA AUJUGUUA	UAACAAUA AAACCUUA
	6408	GAACAGCU CUGAUGA X GAA AGGUUUUA	AAAAACCUU AGCUGUUC
	6409	UGAACAGC CUGAUGA X GAA AAGGUUUU	AAAACCUA GCUGUCA
	6415	AAGACAUG CUGAUGA X GAA ACAGCUAA	UUAGCUGUU CAUGUCUU
15	6416	CAAGACAU CUGAUGA X GAA AACAGCUA	UAGCUGUUC AUGCUUUG
	6421	GAAAUCAA CUGAUGA X GAA ACAUGAAC	GUUCAUGUC UUGAUUUC
	6423	UUGAAAUC CUGAUGA X GAA AGACAUGA	UCAUGUCUU GAUUUCAA
	6427	AUUAUTUGA CUGAUGA X GAA AUCAAGAC	GUCUUGAUU UCAAUAAU
	6428	AAUUAUUG CUGAUGA X GAA AAUCAAGA	UCUUGAUU CAAUAAUU
20	6429	UAAUUAUU CUGAUGA X GAA AAAUCAAG	CUUGAUUUC AAUAAUUA
	6433	GAAUJAAU CUGAUGA X GAA AUJGAAAU	AUUUCAAAUA AUJAAUUC
	6436	UAAGAAUU CUGAUGA X GAA AUUAUUGA	UCAAAUAAU AAUUCUUA
	6437	UUAAGAAU CUGAUGA X GAA AAUUAUUG	CAAUAAUUA AUUCUJAA
	6440	UGAUJUAAG CUGAUGA X GAA AUUAAUUA	UAAUUAUU CUUAAUCA
25	6441	AUGAUJAA CUGAUGA X GAA AAUUAUUA	AAUUAUUC UUAAUCAU
	6443	UAAUGAUU CUGAUGA X GAA AGAAUUA	UAAUUCUJJ AAUCAUUA
	6444	UAAAUGAU CUGAUGA X GAA AAGAAUUA	UAAUUCUJA AUCAUUA
	6447	CUCUJAAU CUGAUGA X GAA AUJAAGAA	UUCUJAAUC AUUAAGAG
	6450	GGUCUCUU CUGAUGA X GAA AUGAUUAA	UUAAUCAUU AAGAGACC
30	6451	UGGUCUCU CUGAUGA X GAA AAUGAUUA	UAAUCAUJA AGAGACCA
	6461	GUAUJUJAU CUGAUGA X GAA AUGGUCUC	GAGACCAUA AUAAUAC
	6464	GGAGUAUU CUGAUGA X GAA AUJAUGGU	ACCAUAAUA AAUACUCC
	6468	AAAAGGAG CUGAUGA X GAA AUJUAAUUA	UAAUAAAUA CUCCUUUU

	6471	UUGAAAAG CUGAUGA X GAA AGUAUUUA	UAAAUAUCUC CUUUUCAA
	6474	CUCUJGAA CUGAUGA X GAA AGGAGUAU	AUACUCCUU UUCAAGAG
	6475	UCUCUUGA CUGAUGA X GAA AAGGAGUA	UACUCCUUU UCAAGAGA
	6476	UUCUCUUG CUGAUGA X GAA AAAGGAGU	ACUCCUUUU CAAGAGAA
5	6477	UUUCUCUU CUGAUGA X GAA AAAAGGAG	CUCCUUUUC AAGAGAAA
	6497	ACAAUUCU CUGAUGA X GAA AUGGUUUU	AAAACCAUU AGAAUUGU
	6498	ACACAAUUC CUGAUGA X GAA AAUGGUUU	AAACCAUUA GAAUUGUU
	6503	UGAGUAAC CUGAUGA X GAA AUUCUAAU	AUUAGAAUU GUACUCA
	6506	AGCUGAGU CUGAUGA X GAA ACAAUUCU	AGAAUJGUU ACUCAGCU
10	6507	GAGCUGAG CUGAUGA X GAA AACAAUUC	GAAUUGUUA CUCAGCUC
	6510	AAGGAGCU CUGAUGA X GAA AGUAACAA	UUGUUACUC AGCUCCUU
	6515	GUUUGAAG CUGAUGA X GAA AGCTUGAGU	ACUCAGCUC CUUCAAAC
	6518	UGAGUUUG CUGAUGA X GAA AGGAGCUG	CAGCUCCUU CAAACUCA
	6519	CUGAGUUU CUGAUGA X GAA AAGGAGCU	AGCUCCUUC AAACUCAG
15	6525	ACAAACCU CUGAUGA X GAA AGUUJUGAA	UUCAAACUC AGGUJUGU
	6530	AUGCUACA CUGAUGA X GAA ACCUGAGU	ACUCAGGUU UGUAGCAU
	6531	UAIUGCAC CUGAUGA X GAA AACCGUGAG	CUCAGGUUU GUAGCAUA
	6534	AUGUAUGC CUGAUGA X GAA ACAAACCU	AGGUUUGUA GCAUACAU
	6539	GACUCAUG CUGAUGA X GAA AUGCUACA	UGUAGCAUA CAUGAGUC
20	6547	GAUGGAAUG CUGAUGA X GAA ACUCAUGU	ACAUGAGUC CAUCCAU
	6551	GACUGAUG CUGAUGA X GAA AUGGACUC	GAGUCCAUC CAUCAGUC
	6555	CUUUGACU CUGAUGA X GAA AUGGAUGG	CCAUCCAUC AGUCAAAG
	6559	CAUUCUUU CUGAUGA X GAA ACUGAUGG	CCAUCAGUC AAAGAAUG
	6570	CCAGAUGG CUGAUGA X GAA ACCAUUCU	AGAAUUGGUU CCAUCUGG
25	6571	UCCAGAUG CUGAUGA X GAA AACCAUUC	GAAUGGUUC CAUCUGGA
	6575	AGACUCCA CUGAUGA X GAA AUGGAACC	GGUUCCAUC UGGAGUCU
	6582	UACAUUAA CUGAUGA X GAA ACUCCAGA	UCUGGAGUC UUAAUGUA
	6584	UCUACAUU CUGAUGA X GAA AGACUCCA	UGGAGUCUU AAUGUAGA
	6585	UUCUACAU CUGAUGA X GAA AAGACUCC	GGAGUCUUA AUGUAGAA
30	6590	UUUCUJUC CUGAUGA X GAA ACAUUAAG	CUUAAUGUA GAAAGAAA
	6609	AUUAUJAC CUGAUGA X GAA AGUCUCCA	UGGAGACUU GUAAUAAU
	6612	CUCAUUAU CUGAUGA X GAA ACAAGUCU	AGACUUGUA AUAAUGAG
	6615	UAGCUCAU CUGAUGA X GAA AUJACAAG	CUJGUAAUA AUGAGCJA

	6623	UUUGUAAC CUGAUGA X GAA AGCUCAUU	AAUGAGCUA GUUACAAA
	6626	CACUUUGU CUGAUGA X GAA ACUAGCUC	GAGCUAGUU ACAAAGUG
	6627	GCACUUUG CUGAUGA X GAA AACUAGCU	AGCUAGUUA CAAAGUGC
	6637	UAAAUGAAC CUGAUGA X GAA AGCACUUU	AAAGUGCUU GUUCAUUA
5	6640	UUUJAAUG CUGAUGA X GAA ACAAGCAC	GUGCUUGUU CAUAAAAA
	6641	AUUUUAAU CUGAUGA X GAA AACAAAGCA	UGCJUGUUC AUUAAAUAU
	6644	GCUAUUUU CUGAUGA X GAA AUGAACAA	UUGUJCAUU AAAAUAGC
	6645	UGCUAUUU CUGAUGA X GAA AAUGAACAA	UGUUCAUUA AAAUAGCA
	6650	UUCAGUGC CUGAUGA X GAA AUUUUAAU	AUUAAAUAU GCACUGAA
10	6662	CAUGUUUC CUGAUGA X GAA AUUUUCAG	CUGAAAUAU GAAACAUG
	6674	UAUCAGUU CUGAUGA X GAA AUUCAUGU	ACAUGAAAU AACUGAUA
	6675	UUAUCAGU CUGAUGA X GAA AAUUCAUG	CAUGAAUAU ACTUGAUAA
	6682	UGGAAUAU CUGAUGA X GAA AUCAGUUA	UAACUGAUA AUAUUCCA
	6685	GAUUGGAA CUGAUGA X GAA AAUAUCAG	CUGAUAAUA UUCCAAUC
15	6687	AUGAUUJGG CUGAUGA X GAA AAUUAUAC	GAUAAUAAU CCIAUCAU
	6688	AAUGAUUG CUGAUGA X GAA AAUAAUUAU	AUAAUAAUUC CAAUCAUU
	6693	UGGCAAAAU CUGAUGA X GAA AUUGGAAU	AUUCCAAUC AUJUGCCA
	6696	AAAUGGCA CUGAUGA X GAA AUGAUUGG	CCAAUCAUU UGCCAUUU
	6697	UAAAUGGC CUGAUGA X GAA AAUGAUUG	CAAUCAUUU GCCAUUA
20	6703	UUGUCAUA CUGAUGA X GAA AUGGCAA	UUUGCCAUU UAUGACAA
	6704	UUUGUCAU CUGAUGA X GAA AAUGGCAA	UUGCCAUUU AUGACAAA
	6705	UUUJUGUCA CUGAUGA X GAA AAAUGGCA	UGCCAUUUUA UGACAAAA
	6719	UUAGUGCC CUGAUGA X GAA ACCAUUUU	AAAAUGGUU GGCACUAA
	6726	UUCUUJGU CUGAUGA X GAA AGUGCCAA	UUGGCACUA ACAAAGAA
25	6743	CUGAAAGG CUGAUGA X GAA AGUGCUCG	CGAGCACUU CCUUCAG
	6744	UCUGAAAG CUGAUGA X GAA AAGUGCUC	GAGCACUUC CUUUCAGA
	6747	AACUCUGA CUGAUGA X GAA AGGAAGUG	CACUUCUU UCAGAGUU
	6748	AAACUCUG CUGAUGA X GAA AAGGAAGU	ACUUCCTUU CAGAGUUU
	6749	GAAACUCU CUGAUGA X GAA AAAGGAAG	CUUCCUUUC AGAGUUUC
30	6755	AUCUCAGA CUGAUGA X GAA ACUCUGAA	UUCAGAGUU UCUGAGAU
	6756	UAUCUCAG CUGAUGA X GAA AACUCUGA	UCAGAGUUU CUGAGAUA
	6757	UUAUCUCA CUGAUGA X GAA AAACUCUG	CAGAGUUUC UGAGAUAA
	6764	ACGUACAU CUGAUGA X GAA AUCUCAGA	UCUGAGAUA AUGUACGU

	6769	GUUCCACG CUGAUGA X GAA ACAUUAUC	GAUAAUGUA CGUGGAAC
	6781	UCCACCCA CUGAUGA X GAA ACUGUUCC	GGAACAGUC UGGGUGGA
	6814	AAGACACA CUGAUGA X GAA ACTUUGCAC	GUGCAAGUC UGUGUCUU
	6820	ACUGACAA CUGAUGA X GAA ACACAGAC	GUCUGUGUC UUGUCAGU
5	6822	GGACUGAC CUGAUGA X GAA AGACACAG	CUGUGUCUU GUCAGUCC
	6825	CUUUGGACU CUGAUGA X GAA ACAAGACA	UGUCUUGUC AGUCCAAG
	6829	ACUUUCUUG CUGAUGA X GAA ACUGACAA	UUGUCAGUC CAAGAAGU
	6851	CUAAAAAUU CUGAUGA X GAA ACAUCUCG	CGAGAUGUU AAUJJUJAG
	6852	CCUAAAAAU CUGAUGA X GAA AACAUUCUC	GAGAUGUUA AUUUUAGG
	10	6855 GUCCCCUA CUGAUGA X GAA AUUAACAU	AUGUAAAUU UUAGGGAC
	6856	GGUCCCUA CUGAUGA X GAA AAUUAACA	UGUUAAUUU UAGGGACC
	6857	GGGUCCCCU CUGAUGA X GAA AAAUUUAC	GUUAAUUUU AGGGACCC
	6858	CGGGUCCC CUGAUGA X GAA AAAAUJAA	UUAAUUUUA GGGACCCG
	6872	UAGGAAAC CUGAUGA X GAA AGGCACGG	CCGUGCCUU GUUCCUA
15	6875	GGCUAGGA CUGAUGA X GAA ACAAGGCA	UGCTUUGUU UCCUAGCC
	6876	GGGCUAGG CUGAUGA X GAA ACAAGGCC	GCCUUGUUU CCUAGCCC
	6877	UGGGCUAG CUGAUGA X GAA AAACAAGG	CCUUGUUUC CUAGCCC
	6880	UUGUGGGC CUGAUGA X GAA AGGAAACA	UGUUUCCUA GCCCACAA
	6901	AUCUGUUU CUGAUGA X GAA AUGUUUGC	GCAAACAUC AACAGAU
	20	6910 CUAGCGAG CUGAUGA X GAA AUCUGUUU	AAACAGAU AUCGCUAG
	6913	AGGCUAGC CUGAUGA X GAA AGUAUCUG	CAGAUACUC GCUAGCCU
	6917	AAUGAGGC CUGAUGA X GAA AGCGAGUA	UACUCGCUA GCCUCAUU
	6922	AUJUAAA CUGAUGA X GAA AGGUAGC	GCUAGCCUC AUJUAAA
	6925	UCAAUUA CUGAUGA X GAA AUGAGGC	AGCCUCAUU UAAAUGA
25	6926	AUCAAUU CUGAUGA X GAA AAUGAGGC	GCCUCAUUU AAAUUGAU
	6927	AAUCAAUU CUGAUGA X GAA AAAUGAGG	CCUCAUUUA AAUJGAUU
	6931	CUUUAAC CUGAUGA X GAA AUUAAA	AUUAAAUA GAUJAAAG
	6935	CCUCCUU CUGAUGA X GAA AUCAUUU	AAAUUGAUU AAAGGAGG
	6936	UCCUCCUU CUGAUGA X GAA AAUCAUU	AAUJGAUU AAGGAGGA
	30	6951 CGGCCAAA CUGAUGA X GAA AUGCACUC	GAGUGCAUC UUJGGCCG
	6953	GUCGGCCA CUGAUGA X GAA AGAUGCAC	GUGCAUCUU UGGCCGAC
	6954	UGUCGGCC CUGAUGA X GAA AAGAUGCA	UGCAUCUUU GGCCGACA
	6970	CACACAGU CUGAUGA X GAA ACACCACU	AGUGGGUGUA ACUGUGUG

	7026	AACACACA CUGAUGA X GAA ACACCCAC	GUGGGUGUA UGUGUGUU
	7034	AUGCACAA CUGAUGA X GAA ACACACAU	AUGUGUGUU UUGUGCAU
	7035	UAUGCACA CUGAUGA X GAA AACACACA	UGUGUGUUU UGUGCAUA
	7036	UUAUGCAC CUGAUGA X GAA AAACACAC	GUGUGUUUU GUGCAUAA
5	7043	UAAAAGU CUGAUGA X GAA AUGCACAA	UUGUGCAUA ACUAUJUA
	7047	UCCUUAAA CUGAUGA X GAA AGUUAUGC	GCAUAACUA UUUAGGA
	7049	UUUCCUUA CUGAUGA X GAA AUAGUUAU	AUAACUAUU UAAGGAAA
	7050	GUUCCUU CUGAUGA X GAA AAUAGUUA	UAACUAUU AAGGAAAC
	7051	AGUUUCCU CUGAUGA X GAA AAAUAGUU	AACUAUUA AGGAAACU
10	7065	AACUUAAA CUGAUGA X GAA AUUCCAGU	ACUGGAAUU UAAAAGUU
	7066	UAACUUUA CUGAUGA X GAA AAUCCAG	CUGGAAUUU UAAAGUJA
	7067	GUAACUUU CUGAUGA X GAA AAAUUCCA	UGGAAUUUU AAAGUJAC
	7068	AGUAACUU CUGAUGA X GAA AAAAUUCC	GGAAUJJUA AAGUUACU
	7073	AUAAAAGU CUGAUGA X GAA ACUUUAAA	UUUAAAGUU ACUUUUAU
15	7074	UAUAAAAG CUGAUGA X GAA AACTUUUA	UUAAAGUUA CUUUUAUA
	7077	UUGUUAUA CUGAUGA X GAA AGUAACUU	AAGUUACUU UUAUACAA
	7078	UUUGUUAUA CUGAUGA X GAA AAGUAACU	AGUUACUUU UAUACAAA
	7079	GUUJGUAU CUGAUGA X GAA AAAGUAAC	GUUACUUUU AUACAAAC
	7080	GGUUJUGUA CUGAUGA X GAA AAAAGUAA	UUACUUUUUA UACAAACC
20	7082	UUGGUUUG CUGAUGA X GAA AUAAAAGU	ACUUUUUA CAAACCAA
	7095	GUAGCAUA CUGAUGA X GAA AUJCUUUGG	CCAAGAAUA UAUGCUAC
	7097	CUGUAGCA CUGAUGA X GAA AUAUUCUU	AAGAAUUA UGCUACAG
	7102	UAAUACUG CUGAUGA X GAA AGCAUAAA	UAUAUGCUA CAGAUUA
	7108	CUGUCUJA CUGAUGA X GAA AUCUGUAG	CUACAGAUUA UAAGACAG
25	7110	GUCUGUCU CUGAUGA X GAA AUAUCUGU	ACAGAUUA AGACAGAC
	7124	UAGGACCA CUGAUGA X GAA ACCAUGUC	GACAUGGUU UGGUCCUA
	7125	AUAGGACC CUGAUGA X GAA AACCAUGU	ACAUGGUUU GGUCCUAU
	7129	AAAUAUAG CUGAUGA X GAA ACCAAACC	GGUJUGGUC CUAJAUJJ
	7132	UAGAAAUA CUGAUGA X GAA AGGACCAA	UUGGUCCUA UAUUUCUA
30	7134	ACUAGAAA CUGAUGA X GAA AUAGGACC	GGUCCUAUA UUUCUAGU
	7136	UGACUAGA CUGAUGA X GAA AUAUAGGA	UCCUUAUUU UCUAGUCA
	7137	AUGACUAG CUGAUGA X GAA AAAAUAGG	CCUUAUUU CUAGUCAU
	7138	CAUGACUA CUGAUGA X GAA AAAAUAG	CUUAUUUC UAGUCAUG

	7140	AUCAUGAC CUGAUGA X GAA AGAAAUAU	AUAUJUCUA GUCAUGAU
	7143	UUCAUCAU CUGAUGA X GAA ACUAGAAA	UUUCUAGUC AUGAUGAA
	7155	AUACAAAA CUGAUGA X GAA ACAUUCAU	AUGAAUGUA UUUUGUAU
	7157	GUAUACAA CUGAUGA X GAA AUACAUUC	GAAUGUAUU UUGUJAUAC
5	7158	GGUAUACA CUGAUGA X GAA AAUACAUU	AAUGUAIUU UGUAUACC
	7159	UGGUAUAC CUGAUGA X GAA AAAUACAU	AUGUAUUUU GUAUACCA
	7162	AGAUGGUA CUGAUGA X GAA ACAAAAUA	UAUUJUGUA UACCAUCU
	7164	GAAGAUGG CUGAUGA X GAA AUACAAAA	UUUUGUUA CCAUCUUC
	7169	UAAAUGAA CUGAUGA X GAA AUGGUUA	UAUACCAUC UUCAUUA
10	7171	AUUUAUAG CUGAUGA X GAA AGAUGGU	UACCAUCUU CAUAAUAAU
	7172	UAUUUAU CUGAUGA X GAA AAGAUGGU	ACCAUCUUC AUAAUAAA
	7175	GUAAUUA CUGAUGA X GAA AUGAAGAU	AUCUUCAUA UAAUUAAC
	7177	AAGUAUUA CUGAUGA X GAA AAUAGAAG	CUUCAUUA AUAAUACUU
	7180	UUUAAGUA CUGAUGA X GAA AUUAAUAG	CAUAAUAAU UACUAAA
15	7182	UUUUUAAG CUGAUGA X GAA AUAAUUA	UAUAAUAAU CUUAAAAA
	7185	AUAUUUU CUGAUGA X GAA AGUAAUUAU	AAUAUACUU AAAAAUAU
	7186	AAUAUUU CUGAUGA X GAA AAGUAAUUA	AAUAUACUUA AAAAAUUU
	7192	UJAAGAAA CUGAUGA X GAA AUUUUAAA	UUAAAAAAA UUUCUAAA
	7194	AAUUAAGA CUGAUGA X GAA AUUUUUU	AAAAAAUUU UCUUAAUU
20	7195	CAAUUAAG CUGAUGA X GAA AAUAAAAU	AAAAAAUUU CUUAAUUG
	7196	CCAAUAAA CUGAUGA X GAA AAAUAAA	AAUAUUUUC UUAAUJUGG
	7198	UCCCAAUU CUGAUGA X GAA AGAAAUAU	AAUUUUCUU AAUUGGGA
	7199	AUCCCAAU CUGAUGA X GAA AAGAAAUA	UAUUJCUUA AUUGGGAU
	7202	CAAAUCCC CUGAUGA X GAA AUUAAGAA	UUCUUAAUU GGGAUUJUG
25	7208	CGAUUACA CUGAUGA X GAA AUCCCAAU	AUUGGGAUU UGUAAUCG
	7209	ACGAUJAC CUGAUGA X GAA AAUCCCAA	UUGGGAUUU GUAAUCGU
	7212	GGUACGAU CUGAUGA X GAA ACAAAUCC	GGAUUUGUA AUCGUACC
	7215	GUUGGUAC CUGAUGA X GAA AUUACAAA	UUUGUAAUC GUACCAAC
	7218	UAAGUJUGG CUGAUGA X GAA ACGAUUAC	GUAAUCGU CCAACUUA
30	7225	UAUCAAUU CUGAUGA X GAA AGUJUGGU	UACCAACUU AAUUGAU
	7226	UUAUCAAU CUGAUGA X GAA AAGUUGGU	ACCAACUUA AUUGAUAA
	7229	AGUUUUAUC CUGAUGA X GAA AUUAAGUU	AACUUAAUU GAUAAACU
	7233	GCCAAGUU CUGAUGA X GAA AUCAAUUA	UAUUUGUA AACUUGGC

	7238	CAGUUGCC CUGAUGA X GAA AGUUUAUC	GAUAAAACUU GGCAACUG
	7249	GAACAUAA CUGAUGA X GAA AGCAGUUG	CAACUGCUU UUAUGUUC
	7250	AGAACAUAA CUGAUGA X GAA AAGCAGUU	AACUGCUUU UAUGUUCU
	7251	CAGAACAU CUGAUGA X GAA AAAGCAGU	ACUGCUUUU AUGUUCUG
5	7252	ACAGAACAA CUGAUGA X GAA AAAAGCAG	CUGCUUUUA UGUUCUGU
	7256	GGAGACAG CUGAUGA X GAA ACAUAAAA	UUUUUAUGUU CUGUCUCC
	7257	AGGAGACA CUGAUGA X GAA AACAUAAA	UUUAUGUUC UGUCUCCU
	7261	UGGAAGGA CUGAUGA X GAA ACAGAAC	UGUUCUGUC UCCUUCCA
	7263	UAUGGAAG CUGAUGA X GAA AGACAGAA	UUCUGUCUC CUUCCAU
10	7266	AUUUAUGG CUGAUGA X GAA AGGAGACA	UGUCUCCUU CCAUAAA
	7267	AAUUUAUG CUGAUGA X GAA AAGGAGAC	GUCUCUUC CAUAAA
	7271	GAAAAAUU CUGAUGA X GAA AUGGAAGG	CCUUCCAUA AAUJJJUC
	7275	UUUUGAAA CUGAUGA X GAA AUJUAUGG	CCAUAUUU UUJCAAAA
	7276	AUUUJUGAA CUGAUGA X GAA AAUJUAUG	CAUAAAUUU UUCAAAA
15	7277	UAUUJUGA CUGAUGA X GAA AAAUUUAU	AUAAAUUUU UCAAAA
	7278	GUAUUUUG CUGAUGA X GAA AAAUUUUA	UAAAUUUUU CAAAUA
	7279	AGUAUUUU CUGAUGA X GAA AAAUUUUA	AAAUUUUUC AAAAUAC
	7285	UGAAUUAG CUGAUGA X GAA AUUUJUGAA	UUCAAAUA CUAAUCA
	7288	UGUUGAAU CUGAUGA X GAA AGUAUUUU	AAAUAACUA AUUCAACA
20	7291	CUUUGUUG CUGAUGA X GAA AUJAGUAU	AUACUAUUU CAACAAAG
	7292	UCUUJGUU CUGAUGA X GAA AAUJAGUA	UACUAUUUC AACAAAGA
	7308	AAAAAAA CUGAUGA X GAA AGCUUUUU	AAAAAGCUC UUUUUUU
	7310	GGAAAAAA CUGAUGA X GAA AGAGCUUU	AAAGCUCUU UUUUUUCC
	7311	AGGAAAAAA CUGAUGA X GAA AAGAGCUU	AAGCUCUUU UUUUUUCC
25	7312	UAGGAAAA CUGAUGA X GAA AAAGAGCU	AGCUCUUU UUUUCCUA
	7313	UUAGGAAA CUGAUGA X GAA AAAAGAGC	GCUCUUUUU UUJCCUAA
	7314	UUUAGGAA CUGAUGA X GAA AAAAGAGG	CUCUUUUUU UUCCUAAA
	7315	UUUUAGGA CUGAUGA X GAA AAAAAGA	UCUUUUUUU UCCUAAA
	7316	AUUUJAGG CUGAUGA X GAA AAAAAGAG	CUUUUUUUU CCUAAA
30	7317	UAUUJUAG CUGAUGA X GAA AAAAAGAA	UUUUUUUUC CUAAAUA
	7320	GUUUAUUU CUGAUGA X GAA AGGAAAAA	UUUUJUCCUA AAAUAAC
	7325	UUUGAGUU CUGAUGA X GAA AUUUJAGG	CCUAAAUA AACUAAA
	7330	AUAAAUUU CUGAUGA X GAA AGUJUAUU	AAUAAAACUC AAAUUAU

	7335	CAAGGAUA CUGAUGA X GAA AUUJUGAGU	ACUCAAAUU UAUCCUUG
	7336	ACAAGGAI CUGAUGA X GAA AUUJUGAG	CUCAAAUUU AUCCUJUGU
	7337	AACAAGGA CUGAUGA X GAA AAAUUUGA	UCAAAUUUA UCCUUGUU
	7339	UAAACAAG CUGAUGA X GAA AUAAAUUU	AAAUUUAUC CUUGUUUA
5	7342	CUCUAAAAC CUGAUGA X GAA AGGAUAAA	UUUAUCCUU GUUUAGAG
	7345	CUGCUCUA CUGAUGA X GAA ACAAGGAU	AUCCUUGUU UAGAGCAG
	7346	UCUGCUCU CUGAUGA X GAA AACAAGGA	UCCUUGUUU AGAGCAGA
	7347	CUCUGCUC CUGAUGA X GAA AAACAAGG	CCUUGUUUA GAGCAGAG
	7362	UUUUUCUU CUGAUGA X GAA AUUUUUCU	AGAAAAAUU AAGAAAAA
	10	7363 GUUUUUCU CUGAUGA X GAA AUUUUUC	GAAAAAUUA AGAAAAAC
	7373	CCAUUUCA CUGAUGA X GAA AGUUUUUC	GAAAACUUU UGAAAUGG
	7374	ACCAUUUC CUGAUGA X GAA AAGUUUUU	AAAAACUUU GAAAUGGU
	7383	UUUUUUGA CUGAUGA X GAA ACCAUUUC	GAAAUGGUC UCAAAAAA
	7385	AAUUUUUU CUGAUGA X GAA AGACCAUU	AAUGGUCUC AAAAAAUU
15	7393	UAUUUAGC CUGAUGA X GAA AUUUUUG	CAAAAAAUU GCUAAAUA
	7397	AAAAUAUU CUGAUGA X GAA AGCAAUU	AAAUUGCUA AAUAUUUU
	7401	AUUGAAAA CUGAUGA X GAA AUUAGCA	UGCUAAAUA UUUCAAU
	7403	CCAUUGAA CUGAUGA X GAA AUAUUAG	CUAAAUAUU UUCAAUGG
	7404	UCCAUUGA CUGAUGA X GAA AAUAUUA	UAAAUAUUU UCAAUGGA
	20	7405 UUCCAUJUG CUGAUGA X GAA AAUAUJJ	AAUAUJJUU CAAUGGAA
	7406	UUUCCAUU CUGAUGA X GAA AAAAUAUU	AAUAUJJUC AAUGGAAA
	7418	CUAACAUU CUGAUGA X GAA AGUUUUC	GGAAAACUA AAUGUUAG
	7424	GCUAAAACU CUGAUGA X GAA ACAUUUAG	CUAAAUGUU AGUUUAGC
	7425	AGCUAAAAC CUGAUGA X GAA AACAUUUA	UAAAUGUUA GUUUAGCU
25	7428	AUCAGCUA CUGAUGA X GAA ACUAAACAU	AUGUUAGUU UAGCUGAU
	7429	AAUCAGCU CUGAUGA X GAA AACUAACA	UGUUAGUUU AGCUGAUU
	7430	CAAUCAGC CUGAUGA X GAA AAACUAAC	GUUAGUUUA GCUGAUUG
	7437	CCCCAUAC CUGAUGA X GAA AUCAGCUA	UAGCUGAUU GUAUGGGG
	7440	AAACCCCA CUGAUGA X GAA ACAAUCAG	CUGAUUGUA UGGGGUUU
	30	7447 GGUUCGAA CUGAUGA X GAA ACCCAUA	UAUGGGGUU UUCGAACC
	7448	AGGUUCGA CUGAUGA X GAA AACCCCAU	AUGGGGUUU UCGAACCU
	7449	AAGGUUCG CUGAUGA X GAA AAACCCCA	UGGGGUUUU CGAACCUU
	7450	AAAGGUUC CUGAUGA X GAA AAAACCCC	GGGGGUUUC GAACCUUU

	7457	AAAAGUGA CUGAUGA X GAA AGGUUCGA	UCGAACCUU UCACUUUU
	7458	AAAAAGUG CUGAUGA X GAA AAGGUUCG	CGAACCUUU CACUUUUU
	7459	CAAAAAGU CUGAUGA X GAA AAAGGUUC	GAACCUUUC ACUUUUUG
	7463	CAAACAAA CUGAUGA X GAA AGUGAAAG	CUUUCACUU UUUGUUUG
5	7464	ACAAACAA CUGAUGA X GAA AAGUGAAA	UUUCACUUU UUGUUJGU
	7465	AACAAACA CUGAUGA X GAA AAAGUGAA	UUCACUUUU UGUUUUGUU
	7466	AAACAAAC CUGAUGA X GAA AAAAGUGA	UCACUUUUU GUUJGUUU
	7469	GUAAAACA CUGAUGA X GAA ACAAAAAG	CUUUUUGUU UGUUUUAC
	7470	GGUAAAAC CUGAUGA X GAA AACAAAAA	UUUUUGUUU GUUUUACC
10	7473	AUAGGUUA CUGAUGA X GAA ACAAACAA	UUGUUUGUU UUACCUAU
	7474	AAUAGGU CUGAUGA X GAA AACAAACA	UGUUJGUUU UACCUAUU
	7475	AAAUAGGU CUGAUGA X GAA AAACAAAC	GUUJGUUUU ACCUAUUU
	7476	GAAAUAGG CUGAUGA X GAA AAAACAAA	UUUGUUUUA CCUAAUUC
	7480	UUGUGAAA CUGAUGA X GAA AGGUAAAA	UUUJACCUA UUUCACAA
15	7482	AGUUGUGA CUGAUGA X GAA AUAGGUAA	UUACCUAUU UCACAACU
	7483	CAGUUGUG CUGAUGA X GAA AAUAGGU	UACCUAUUU CACAACUG
	7484	ACAGUUGU CUGAUGA X GAA AAAUAGGU	ACCUAUUUC ACAACUGU
	7495	UGGCAAUU CUGAUGA X GAA ACACAGUU	AACUGUGUA AAUUGCCA
	7499	UUAUUUGGC CUGAUGA X GAA AUUUACAC	GUGAAAUUU GCCAAUAA
20	7506	ACAGGAAU CUGAUGA X GAA AUUJGCAA	UUGCCAAUA AUUCCUGU
	7509	UGGACAGG CUGAUGA X GAA AUUAUUGG	CCAAUAAUU CCUGUCCA
	7510	AUGGACAG CUGAUGA X GAA AAUUAUUG	CAAUAAUJC CUGUCCAU
	7515	UUUUCAUG CUGAUGA X GAA ACAGGAAU	AUUCCUGUC CAUGAAAA
	7531	CACUGGAU CUGAUGA X GAA AUUUGCAU	AUGCAAAUU AUCCAGUG
25	7532	ACACUGGA CUGAUGA X GAA AAUUJGCA	UGCAAAUJA UCCAGUGU
	7534	CUACACUG CUGAUGA X GAA AUAAUUG	CAAUUAUJC CAGUGUAG
	7541	AAUUAUJC CUGAUGA X GAA ACACUGGA	UCCAGUGUA GAUAAUUU
	7545	GUCAAAUA CUGAUGA X GAA AUCUACAC	GUGUAGAUA UAUJUGAC
	7547	UGGUCAAA CUGAUGA X GAA AUAUCUAC	GUAGAUAAU UUUGACCA
30	7549	GAUGGUCA CUGAUGA X GAA AUAAUACU	AGAUAAUAU UGACCAUC
	7550	UGAUGGUC CUGAUGA X GAA AAUUAUAC	GAUAAUAUU GACCAUCA
	7557	CAUAGGGU CUGAUGA X GAA AUGGUCAA	UUGACCAUC ACCCUAUG
	7563	AAUAUCCA CUGAUGA X GAA AGGGUGAU	AUCACCCUA UGGAUAUU

	7569	CUAGCCAA CUGAUGA X GAA AUCCAUAG	CUAUGGAUA UJGGCUAG
	7571	AACUAGCC CUGAUGA X GAA AUAUCCAU	AUGGAUAUU GGCUAGUU
	7576	GGCAAAAC CUGAUGA X GAA AGCCAAUA	UAUUGGCUA GUUUUGCC
	7579	AAAGGCAA CUGAUGA X GAA ACUAGCCA	UGGCUAGUU UGCCUUUU
5	7580	UAAAAGCA CUGAUGA X GAA AACUAGCC	GGCUAGUUU UGCCUUUA
	7581	AUAAAAGC CUGAUGA X GAA AAACUAGC	GCUAGUUU GCCUUUAU
	7586	GCUUAAUA CUGAUGA X GAA AGGCAAAA	UUUUGCCUU UAUUAAGC
	7587	UGCUUAAU CUGAUGA X GAA AAGCAAA	UUUGCCUUU AUUAAGCA
	7588	UUGCUUAA CUGAUGA X GAA AAAGGCAA	UUGCCUUUA UUAAGCAA
10	7590	AUUUGCUU CUGAUGA X GAA AUAAAAGC	GCCUUUAUU AAGCAAAU
	7591	AAUUJGCU CUGAUGA X GAA AAUAAAAGG	CCUUUAUUA AGCAAAUU
	7599	CUGAAAUG CUGAUGA X GAA AUUJGCUU	AAGCAAAUU CAUUCAG
	7600	GCUGAAAU CUGAUGA X GAA AAUJGCU	AGCAAAUUC AUUCAGC
	7603	CAGGCUGA CUGAUGA X GAA AUGAAUUU	AAAUCAUU UCAGCCUG
15	7604	UCAGGCUG CUGAUGA X GAA AAUGAAUU	AAUUCAUUU CAGCCUGA
	7605	UUCAGGCU CUGAUGA X GAA AAAUGAAU	AUUCAUUUC AGCCUGAA
	7617	UAUAGGCA CUGAUGA X GAA ACAUUCAG	CUGAAUGUC UGCCUAUA
	7623	AGAAUAAUA CUGAUGA X GAA AGGCAGAC	GUCUGCCUA UAUAUUCU
	7625	AGAGAAUA CUGAUGA X GAA AUAGGCAG	CUGCCUAUA UAUUCUCU
20	7627	GCAGAGAA CUGAUGA X GAA AUAUAGGC	GCCUAUAUA UUCUCUGC
	7629	GAGCAGAG CUGAUGA X GAA AUAAUAG	CUAAUAUUU CUCUGCUC
	7630	AGAGCAGA CUGAUGA X GAA AAUAAUUA	UAUAAUUC UCUGCUCU
	7632	AAAGAGCA CUGAUGA X GAA AGAAUUA	UAUAAUUCUC UGCUCUUU
	7637	AAUACAAA CUGAUGA X GAA AGCAGAGA	UCUCUGCUC UUJGUAUU
25	7639	AGAAUACA CUGAUGA X GAA AGAGCAGA	UCUGCUCUU UGUAAUUCU
	7640	GAGAAUAC CUGAUGA X GAA AAGAGCAG	CUGCUCUUU GUAUUCUC
	7643	AAGGAGAA CUGAUGA X GAA ACAAAGAG	CUCUUUGUA UUCUCCUU
	7645	CAAAGGAG CUGAUGA X GAA AUACAAAG	CUUUGUAUU CUCCUUJUG
	7646	UCAAAGGA CUGAUGA X GAA AAUACAAA	UUUGUAUJC UCCUUJUGA
30	7648	GUUCAAAG CUGAUGA X GAA AGAAUACA	UGUAAUUCUC CUUJUGAAC
	7651	CGGGUUCA CUGAUGA X GAA AGGAGAAU	AUUCUCCUU UGAACCCCG
	7652	ACGGGUUC CUGAUGA X GAA AAGGAGAA	UUCUCCUUU GAACCCGU
	7661	GAUGUUUU CUGAUGA X GAA ACGGGUUC	GAACCCGUU AAAACAUC

90

7662 GGAUGUUU CUGAUGA X GAA AACGGGUU AACCCGUUA AAACAUCC

7669 UGCCACAG CUGAUGA X GAA AUGUUUUA UAAAACAUC CUGUGGCA

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 *Nucleic Acids Res.* 20 3252). The length of stem II
5 may be \approx 2 base-pairs.

Table III: Human f1t1 VEGF Receptor-Hairpin Ribozyme and Substrate Sequence

nt.	HP Ribozyme Sequence	Substrate
Position		
16	CGGGAGG AGAA GAGAGG ACCAGAGAAACACAGGUUGGGUACAUUACUGGU	CCUCUCG GCU CCUCCCG
5 39	CCGCUCGG AGAA GCCGCC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GGGGGG GCU CGGAGGG
180	CCGCCAGA AGAA GUCCUC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GAGGACG GAC UCUGGGG
190	AACGACCC AGAA GCCAGA ACCAGAGAAACACGGUUGGGUACAUUACUGGU	UCUGGGG GGC GGGUGUU
278	GCGGCAC AGAA GGACCC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GGGUCCU GCU GUGCGGC
290	GACAGCUG AGAA GGGCG ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GCGGGCU GCU CAGCGUC
10 295	AAGCAGAC AGAA GAGCAG ACCAGAGAAACACGGUUGGGUACAUUACUGGU	CUGCUCA GCU GUCUGUU
298	GAGAAGCA AGAA GCUGAG ACCAGAGAAACACGGUUGGGUACAUUACUGGU	CUCAGCU GUC UGCCUCUC
302	CUGUGAGA AGAA GACAGC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GCUGUCU GCU UCUCACAG
420	CAUUAUG AGAA GCUUCC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GGAAGCA GCC CAUAAAUG
486	CUUCCACA AGAA GAUTUA ACCAGAGAAACACGGUUGGGUACAUUACUGGU	UAAAUCU GGC UGUGGAAG
15 537	UUUGCUUG AGAA GUGUUC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GAACACA GCU CAAGCAA
565	AUUTTUGC AGAA GUAGAA ACCAGAGAAACACGGUUGGGUACAUUACUGGU	UUCUACA GCU GCAAAUAU
721	CGUAACCC AGAA GGGAAU ACCAGAGAAACACGGUUGGGUACAUUACUGGU	AUUCCU GGC GGGUACG
786	CGUUUUC AGAA GGAUC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GAUCCU GAU GGAAACG
863	CTUUCACAG AGAA GAAGCC ACCAGAGAAACACGGUUGGGUACAUUACUGGU	GGCUCU GAC CUGUGAAG

92

1056	UUUUUUC AGAA GGGUAA ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	UUACCCU GAU GAAAAAAA
1301	GCGGUAAA AGAA GCUUGC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	GCAAGCG GUC UUACCGGC
1310	UCAUAGAG AGAA GGUAAG ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	CUACCCG GCU CUCUAGA
1389	AAAUGCG AGAA GAUUC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	GAAAUUC GCU CGCUAUUU
5 1535	UUUCGUAA AGAA GGGGUU ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AACCCCA GAU UUACGAAA
1566	AGAGCCGG AGAA GGAAAC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	GUUCCA GAC CCGGCUCU
1572	GGGUAGAG AGAA GGGUCU ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AGACCCG GCU CUCUACCC
1604	CGGUACAA AGAA GGAUUU ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AAUCCU GAC UGUUACCG
1824	AUUCUAGA AGAA GCCACA ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	UGGGCU GAC UCUAGAAU
10 1908	UUJGGCAC AGAA GUGAUA ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	UAUCACA GAU GUCCAAA
1949	CUCCUCCC AGAA GCAUU ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AAUAGCC GAC GGAAGGAG
1973	CUGUGCAA AGAA GUUUC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	UGAAACU GUC UGGCACAG
2275	AGUGGUGG AGAA GCUGAU ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AUCAGCA GUU CCACCA CU
2321	ACCAAGUG AGAA GAGGCC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AGCCCUA GAU CACUJGUU
15 2396	UUUCAAUA AGAA GCGUGC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	GCACGCU GUU UAUUGAAA
2490	GUUCCUTG AGAA GUGAGG ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	CCUCACU GUU CAAGGAAC
2525	UUAGAGUG AGAA GCUCCA ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	UGGAGCU GAU CACUCUAA
2625	GAUAGGUU AGAA GCUUU ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	AAAGACU GAC UACCUAUC
2652	GGAACUUC AGAA GGGUCC ACCAGAGAAACACCGUUGGUACAUUACCUGGUA	GGACCCCA GAU GAAGUUCC

2684	CAUAAGGG AGAA GCUCAC ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	GUGAGCG GCU CCCUUUAG
2816	CAGCCACA AGAA GGCACG ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	CGUGCCG GAC UGUGGUG
2873	GCUCAGUC AGAA GGCUU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	AAGCUCU GAU GACUGAGC
2930	AGGCCUCC AGAA GGUUAA ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	UUACCU GCU GGGAGCCU
5 2963	CAAUCACC AGAA GAGGCC ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	GGCCUCU GAU GGUGAUTUG
3157	UUCCUGAA AGAA GGAGCU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	AGCUCCG GCU UUCAGGAA
3207	UAGAAACC AGAA GAAUCC ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	GGAUUCU GAC GGUUUCUA
3211	CUUGUAGA AGAA GUAGA ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	UCUCACG GUU UCUACAG
3245	UGUAAGAA AGAA GAUCUU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	AAGAUUCU GAU UUCUUCUA
10 3256	CACUUGAA AGAA GUAGA ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	UCUUACA GUU UUCAAGUG
3287	UUCUGGAA AGAA GGAACU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	AGUTCCU GUC UUCCAGAA
3402	CUCACAUU AGAA GGGUUC ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	GAACCCC GAU VAUGUGAG
3580	CCUCAGGC AGAA GCAAA ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	UUUUGCA GUC GCCUGAGG
3641	CCAGCAUG AGAA GAUAGA ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	UCUUAUCA GAU CAUGUGG
15 3655	UCUGUGCC AGAA GUCCAG ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	CUGGACU GCU GGCACAGA
3810	UCAGAGAA AGAA GGAGUU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	AACUCCU GCC UUCUCUGA
3846	AAUCUUGG AGAA GAAAU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	UAUUUCU GCU CCGAAGUU
3873	CUGACAUU AGAA GGCUU ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	AAGCUCU GAU GAUGUCAG
3995	GAGAGGCC AGAA GAGUGC ACCAGAGAAACACAGUUGGGUACAUUACCUGGU	GCACUCU GUU GGCCUCUC

94

4100	UGACAUCA AGAA GCCCG ACCAGAGAACACACGGUACAUUACCUUGUA	CGGGGU GUC UGAUGUCA
4104	CUGCUGAC AGAA GACAGC ACCAGAGAACACACGGUACAUUACCUUGUA	GGUGUCU GAU GUCAGCAG
4120	AUGGCAGA AGAA GGGCCU ACCAGAGAACACACGGUACAUUACCUUGUA	AGGGCCA GUU UCUGGCCAU
4135	GUGCCAC AGAA GAAUG ACCAGAGAACACACGGUACAUUACCUUGUA	CAUCCA GCU GUCCCCCAC
5 4210	GGGGGG AGAA GCAGC ACCAGGC ACCAGAGAACACACGGUACAUUACCUUGUA	GGUGGU GCU CCCCCCCC
4217	AGUCUGGG AGAA GGGAGC ACCAGAGAACACACGGUACAUUACCUUGUA	GCUCCCC GCC CCCAGACU
4224	GAGUUGUA AGAA GGGGC ACCAGAGAACACACGGUACAUUACCUUGUA	GCCCCCA GAC UACAACUC
4382	CAAAAAGC AGAA GGCUCC ACCAGAGAACACACGGUACAUUACCUUGUA	GGAGCCA GCU GCUUUUJUG
4385	UCACAAAA AGAA GCUGGC ACCAGAGAACACACGGUACAUUACCUUGUA	GCCAGGU GCU UUUUGUGA
10 4537	GGGGUUGG AGAA GGGAG ACCAGAGAACACACGGUACAUUACCUUGUA	CUUCCU GCU CCAACCCC
4573	CUCAAUCA AGAA GUCCU ACCAGAGAACACACGGUACAUUACCUUGUA	AGGACCA GUU UGAUUGAG
4594	AUUGGGUG AGAA GUCCAG ACCAGAGAACACACGGUACAUUACCUUGUA	CUGGACU GAU CACCCZAU
4628	GGCUGGAG AGAA GCAGGG ACCAGAGAACACACGGUACAUUACCUUGUA	UGGGCCA GCC CUGCAGCC
4636	GGGUUUUG AGAA GCAGGG ACCAGAGAACACACGGUACAUUACCUUGUA	CCCUGCA GCC CAAAAACC
15 4866	AGGGUCAG AGAA GGGAAG ACCAGAGAACACACGGUACAUUACCUUGUA	CUTUCCA GCU CUGACCCU
4871	GUAGAAGG AGAA GAGGUG ACCAGAGAACACACGGUACAUUACCUUGUA	CAGGUUCU GAC CCUTUCUAC
4905	CGCUGUCC AGAA GCUCU ACCAGAGAACACACGGUACAUUACCUUGUA	AGGAGCA GAU GGACAGCG
5233	CUGUGCAA AGAA GAAUAA ACCAGAGAACACACGGUACAUUACCUUGUA	UUAUUCU GUU UGGCACAG
5281	CUCCUCAG AGAA GCAUU ACCAGAGAACACACGGUACAUUACCUUGUA	AAAUGCA GUC CUGAGGGAG

			GAGGGCU GAU GGAGGAAA
5319	UUUCUCC AGAA GCCCUC ACCAGAGAACACACGGUACAUUACUGGU		AGACCCC GUC UCUAUACC
5358	GGUAUAGA AGAA GGGUCU ACCAGAGAACACACGGUACAUUACUGGU		CAACACA GUU GGGACCCA
5392	UGGUUCCC AGAA GUGUG ACCAGAGAACACACGGUACAUUACUGGU		UUCUCCA GUU GGGACUCA
5563	UGAGUCCC AGAA GGAA ACCAGAGAACACACGGUACAUUACUGGU		UUCAACU GCU UUGAACU
5 5622	AGUUUCAA AGAA GUUGAA ACCAGAGAACACACGGUACAUUACUGGU		UGGCUCU GUU UGAUGCUA
5738	UAGCAUCA AGAA GAGCCA ACCAGAGAACACACGGUACAUUACUGGU		UGGCUCU GUU UGAUGCUA
5838	UAGCAUCA AGAA GAGCCA ACCAGAGAACACACGGUACAUUACUGGU		GAUUGCU GCU UCUUGGGG
5933	CCCCAAGA AGAA GCAUC ACCAGAGAACACACGGUACAUUACUGGU		UGCCUCU GUU CUAUGUG
6022	CACAUAAAG AGAA GAGGA ACCAGAGAACACACGGUACAUUACUGGU		GGCAGGG GCU UUDUGGGA
10 6120	UCCACAAA AGAA GCGGCC ACCAGAGAACACACGGUACAUUACUGGU		UGGGACA GUC CUCUCAC
6163	GUGGAGAG AGAA GUCCCA ACCAGAGAACACACGGUACAUUACUGGU		UGUGACCA GCU GGCAAUU
6270	AAUUGCC AGAA GUCACA ACCAGAGAACACACGGUACAUUACUGGU		CUUAGCU GUU CAUGCUU
6412	AGAGACAUG AGAA GCUAAG ACCAGAGAACACACGGUACAUUACUGGU		UUACUCA GCU CCUUCAAA
6511	UUUGAAGG AGAA GAGUA ACCAGAGAACACACGGUACAUUACUGGU		UGGAAACA GUC UGGUGGGA
15 6778	UCCACCCA AGAA GUUCCA ACCAGAGAACACACGGUACAUUACUGGU		CUUGUCA GUC CAAGAAGU
6826	ACUTUCUTG AGAA GACAAG ACCAGAGAACACACGGUACAUUACUGGU		GGCAACU GCU UUUAGUU
7245	ACAUAAA AGAA GUUGCC ACCAGAGAACACACGGUACAUUACUGGU		AUGGUUCU GUC UCCUCCA
7258	UGGAAGGA AGAA GAACAU ACCAGAGAACACACGGUACAUUACUGGU		UUUAGCU GAU UGUUGGG
7433	CCCAUACA AGAA GCUAAA ACCAGAGAACACACGGUACAUUACUGGU		

96

7512	UUUUCAU GAGAA GGAAU ACCAGAGAAAACACACGUUGGGUACAUUACCUUGUA	AUUCCU GUC CAUGAAA
7606	GACAUUCA AGAA GAAAG ACCAGAGAAAACACACGUUGGGUACAUUACCUUGUA	CATUTCA GCC UGAUGUC
7618	AAUAAUUA AGAA GACAUU ACCAGAGAAAACACACGUUGGGUACAUUACCUUGUA	AUGUCU GCC UAUAUAU
7633	AUACAAAG AGAA GAGAAU ACCAGAGAAAACACACGUUGGGUACAUUACCUUGUA	AUUCUCU GCU CUTUGUAU

Table IV: Human KDR VEGF Receptor-Hammerhead Ribozyme and Substrate Sequence

nt. Posi- tion 5	HH Ribozyme Sequence	Substrate
21	CACAGGGC CUGAUGA X GAA ACGGCCAG	CUGGCCGUC GCCCUGUG
33	UCCACGCA CUGAUGA X GAA AGCCACAG	CUGUGGCUC UGGUGGGA
56	AACCCACA CUGAUGA X GAA AGGCGGCC	GGCCGCCUC UGUGGGUU
64	ACUAGGCA CUGAUGA X GAA ACCCACAG	CUGUGGGUU UGCCUAGU
10 65	CACUAGGC CUGAUGA X GAA AACCCACA	UGUGGGUUU GCCUAGUG
70	AGAAAACAC CUGAUGA X GAA AGGCAAAC	GUUUGCUC A GUGUUUCU
75	UCAAGAGA CUGAUGA X GAA ACACUAGG	CCUAGUGUU UCUCUUGA
76	AUCAAGAG CUGAUGA X GAA AACACUAG	CUAGUGUUU CUCUUGAU
77	GAUCAAGA CUGAUGA X GAA AAACACUA	UAGUGUUUC UCUJUGAUC
15 79	CAGAUCAA CUGAUGA X GAA AGAACAC	GUGUUUCUC UUGAUCUG
81	GGCAGAUC CUGAUGA X GAA AGAGAAC	GUUUCUCUU GAUCUGCC
85	CCUGGGCA CUGAUGA X GAA AUCAAGAG	CUCUUGAUC UGCCAGG
96	UGUAUGCU CUGAUGA X GAA AGCCUGGG	CCCAGGCUC AGCAUACA
102	UCUUUUUG CUGAUGA X GAA AUGCUGAG	CUCAGCAUA CAAAAAGA
20 114	AUUGUAAG CUGAUGA X GAA AUGUCUU	AAAGACAUUA CUUACAAU
117	UUAAUJUG CUGAUGA X GAA AGUAUGUC	GACAUACUU ACAAUUAA
118	CUUAAUUG CUGAUGA X GAA AAGUAUGU	ACAUACUUA CAAUUAAG
123	UUAGCCU CUGAUGA X GAA AUUGUAAG	CUUACAAUU AAGGCUAA
124	AUUAGCCU CUGAUGA X GAA AAUJUGUA	UUACAAUUA AGGCUAAU
25 130	AGUUGUAU CUGAUGA X GAA AGCCUAAA	UUAAGGCUA AUACAACU
133	AAGAGUUG CUGAUGA X GAA AUJAGCCU	AGGCUAAUA CAACUCUU
139	AAUUJUG CUGAUGA X GAA AGUJUGUAU	AUACAACUC UUCAAAUU
141	GUAAUJUG CUGAUGA X GAA AGAGUUGU	ACAACUCUU CAAUUAAC
142	AGUAAUJUG CUGAUGA X GAA AAGAGUUG	CAACUCUUC AAAUUAACU
30 147	CUGCAAGU CUGAUGA X GAA AUUJUGAAG	CUUCAAAUU ACUUGCAG
148	CCUGCAAG CUGAUGA X GAA AAUJUGAA	UUCAAAUUA CUUGCAGG
151	UCCCCUGC CUGAUGA X GAA AGUAAUUU	AAAUAACUU GCAGGGGA

170	GCCAGUCC CUGAUGA X GAA AGUCCCUC	GAGGGACUU GGACUGGC
180	UUGGGCCA CUGAUGA X GAA AGCCAGUC	GACUGGCCUU UGGCCCAA
181	AUUGGGCC CUGAUGA X GAA AAGCCAGU	ACUGGCCUU GGCCCAAU
190	ACUCUGAU CUGAUGA X GAA AUUGGGCC	GGCCCAAUA AUCAGAGU
5	193 GCCACUCU CUGAUGA X GAA AUUAUJGG	CCAAUAAUC AGAGUGGC
243	UUACAGAA CUGAUGA X GAA AGGCCAUC	GAUGGCCUC UUCUGUAA
245	UCUUACAG CUGAUGA X GAA AGAGGCCA	UGGCCUCUU CUGUAAGA
246	GUCUUACAC CUGAUGA X GAA AAGAGGCC	GGCCUCUUC UGUAAGAC
250	GAGUGUCU CUGAUGA X GAA ACAGAAGA	UCUUCUGUA AGACACUC
10	258 GGAAUUGU CUGAUGA X GAA AGUGUCUU	AAGACACUC ACAAUUCC
264	ACUUUJGG CUGAUGA X GAA AUJUGUGAG	CUCACAAUU CCAAAAGU
265	CACUUUUG CUGAUGA X GAA AAUUGUGA	UCACAAUUC CAAAAGUG
276	UCAUUUCC CUGAUGA X GAA AUCACUUU	AAAGUGAUC GGAAAUGA
296	AGCACUUG CUGAUGA X GAA AGGCCUCA	UGGAGCCUA CAAGUGCU
15	305 CCCGGUAG CUGAUGA X GAA AGCACUUG	CAAGUGCUU CUACCGGG
306	UCCCCGUA CUGAUGA X GAA AAGCACUU	AAGUGCUUC UACCGGGA
308	UUUCCCGG CUGAUGA X GAA AGAACGAC	GUGCUUCUA CCGGGAAA
323	CCGAGGCC CUGAUGA X GAA AGUCAGUU	AACUGACUU GGCCUCGG
329	AAAUGACC CUGAUGA X GAA AGGCCAAG	CUUGGCCUC GGCAUUU
20	333 ACAUAAA CUGAUGA X GAA ACCGAGGC	GCCUCGGUC AUUUAUGU
336	UAGACAU CUGAUGA X GAA AUGACCGA	UCGGUCAUU UAUGUCUA
337	AUAGACAU CUGAUGA X GAA AAUGACCG	CGGUCAUUU AUGUCUAU
338	CAUAGACA CUGAUGA X GAA AAAUGACC	GGUCAUJUA UGUCUAUG
342	UGAACAU CUGAUGA X GAA ACAUAAA	AUJUUAUGUC UAUGUUCA
25	344 CUUGAAC CUGAUGA X GAA AGACAUAA	UUAUGUCUA UGUUCAAG
348	UAAUCUUG CUGAUGA X GAA ACAUAGAC	GUCUAUGUU CAAGAUUA
349	GUAAUCUU CUGAUGA X GAA AACAUAGA	UCUAUGUUC AAGAUUAC
355	AGAUCUGU CUGAUGA X GAA AUCUUGAA	UUCAAGAUU ACAGAUCU
356	GAGAUCUG CUGAUGA X GAA AAUCUUGA	UCAAGAUUA CAGAUCUC
30	362 UAAAUGGA CUGAUGA X GAA AUCUGUA	UUACAGAUC UCCAUUUA
364	AAUAAAUG CUGAUGA X GAA AGAUCUGU	ACAGAUCUC CAUJUAUU
368	AAGCAAA CUGAUGA X GAA AUGGAGAU	AUCUCCAUU UAUUGCUU
369	GAAGCAAU CUGAUGA X GAA AAUGGAGA	UCUCCAUU AUUGCUC

	370	AGAAGCAA CUGAUGA X GAA AAAUGGAG	CUCCAUUU UUGCUCU
	372	ACAGAACG CUGAUGA X GAA AUAAAUGG	CCAUUUUU GCUUCUGU
	376	ACUAACAG CUGAUGA X GAA AGCAAUAA	UUAUUGCUU CUGUUAGU
	377	CACUAACA CUGAUGA X GAA AAGCAAAU	UAUUGCUC UGUUAGUG
5	381	UGGUACACU CUGAUGA X GAA ACAGAACG	GCUUCUGUU AGUGACCA
	382	UGGUUCAC CUGAUGA X GAA AACAGAACG	CUUCUGUUA GUGACCAA
	399	AUGUACAC CUGAUGA X GAA ACUCCAUG	CAUGGAGUC GUGUACAU
	404	CAGUAAAUG CUGAUGA X GAA ACACGACU	AGUCGUGUA CAUUACUG
	408	UUCUCAGU CUGAUGA X GAA AUGUACAC	GUGUACAUU ACUGAGAA
10	409	GUUCUCAG CUGAUGA X GAA AAUGUACAA	UGUACAUUA CUGAGAAC
	438	AGACAAUGG CUGAUGA X GAA AUCACCAC	GUGGUGAUU CCAUGUCU
	439	GAGACAUG CUGAUGA X GAA AAUCACCA	UGGUGAUUC CAUGUCUC
	445	GGACCCGA CUGAUGA X GAA ACAUGGAA	UUCCAUGUC UCGGGUCC
	447	AUGGACCC CUGAUGA X GAA AGACAUGG	CCAUGUCUC GGGUCCAU
15	452	UUGAAAUG CUGAUGA X GAA ACCCGAGA	UCUCGGGUC CAUUCAA
	456	AGAUUUGA CUGAUGA X GAA AUGGACCC	GGGUCCAUU UCAAAUCU
	457	GAGAUUUG CUGAUGA X GAA AAUGGACC	GGUCCAUUU CAAAUCUC
	458	UGAGAUUU CUGAUGA X GAA AAAUGGAC	GUCCAUUUC AAAUCUCA
	463	CACGUUGA CUGAUGA X GAA AUUUGAAA	UUUCAAAUC UCAACGUG
20	465	GACACGUU CUGAUGA X GAA AGAUUUGA	UCAAAUCUC AACGUGUC
	473	CACAAAGU CUGAUGA X GAA ACACGUUG	CAACGUGUC ACUUJUGUG
	477	CUUGCACA CUGAUGA X GAA AGUGACAC	GUGUCACUU UGUGCAAG
	478	UCUJUGCAC CUGAUGA X GAA AAGUGACA	UGUCACUUU GUGCAAGA
	488	UUUCUGGG CUGAUGA X GAA AUCUJUGCA	UGCAAGAUU CCCAGAAA
25	503	CAGGAACA CUGAUGA X GAA AUCUUUU	AAAGAGAUU UGUUCCUG
	504	UCAGGAAC CUGAUGA X GAA AAUCUCUU	AAGAGAUUU GUUCCUGA
	507	CCAUCAGG CUGAUGA X GAA ACAAAUCU	AGAUUJUGUU CCUGAUGG
	508	ACCAUCAG CUGAUGA X GAA AACAAAUC	GAUUJGUUC CUGAUGGU
	517	AAUUCUGU CUGAUGA X GAA ACCAUCAG	CUGAUGGUA ACAGAAUU
30	525	UCCCAGGA CUGAUGA X GAA AUUCUGUU	AACAGAAUU UCCUGGGA
	526	GUCCCAGG CUGAUGA X GAA AAUUCUGU	ACAGAAUUU CCUGGGAC
	527	UGUCCCAG CUGAUGA X GAA AAAUUCUG	CAGAAUJUC CUGGGACA
	548	GAAUAGUA CUGAUGA X GAA AGCCCUUC	GAAGGGCUU UACUAUUC

100

	549	GGAAUAGU CUGAUGA X GAA AAGCCC	UU AAGGGCUUU ACUAUUCC
	550	GGGAAUAG CUGAUGA X GAA AAAGCC	UU AGGGCUUUUA CUAUUCCC
	553	GCUGGGAA CUGAUGA X GAA AGUAAA	GC UUUACUA UUCCAGC
	555	UAGCUGGG CUGAUGA X GAA AUAGUAAA	UUUACUAUU CCCAGCUA
5	556	GUAGCUGG CUGAUGA X GAA AAUAGUAA	UUACUAUUC CCAGCUAC
	563	UGAUCAUG CUGAUGA X GAA AGCUGGGA	UCCCAGCUA CAUGAUCA
	570	GCAUAGCU CUGAUGA X GAA AUCAUGUA	UACAUGAUC AGCUAUGC
	575	UGCCAGCA CUGAUGA X GAA AGCUGAUC	GAUCAGCUA UGCUGGCA
	588	UCACAGAA CUGAUGA X GAA ACCAUGCC	GGCAUGGUC UUCUGUGA
10	590	CUUCACAG CUGAUGA X GAA AGACCAUG	CAUGGUCUU CUGUGAAG
	591	GCUUCACA CUGAUGA X GAA AAGACCAU	AUGGUCUUC UGUGAAGC
	606	UCAUCAUU CUGAUGA X GAA AUUUUUGC	GC AAAAUAU AAUGAUGA
	607	UUCAUCAU CUGAUGA X GAA AAUUUUUG	CA AAAAUAU AUGAUGAA
	619	AGACUGGU CUGAUGA X GAA ACUUUCAU	AUGAAAGUU ACCAGUCU
15	620	UAGACUGG CUGAUGA X GAA AACUUUCA	UGAAAGUUUA CCAGUCUA
	626	ACAUAAA CUGAUGA X GAA ACUGGUAA	UUACCAGUC UAUUAUGU
	628	GUACAUAA CUGAUGA X GAA AGACUGGU	ACCAGUCUA UUAUGUAC
	630	AUGUACAU CUGAUGA X GAA AUAGACUG	CAGUCUAUU AUGUACAU
	631	UAUGUACA CUGAUGA X GAA AAUAGACU	AGUCUAUUA UGUACAUUA
20	635	CAACUAUG CUGAUGA X GAA ACAUAAA	UAUUAUGUA CAUAGUUG
	639	ACGACAAC CUGAUGA X GAA AUGUACAU	AUGUACAUUA GUJUGUCGU
	642	ACAACGAC CUGAUGA X GAA ACUAUGUA	UACAUAGUU GUCGUUGU
	645	CCUACAAAC CUGAUGA X GAA ACAACUAU	AUAGUJUGUC GUUGUAGG
	648	UACCCUAC CUGAUGA X GAA ACGACAAC	GUJUGUCGUU GUAGGGUA
25	651	CUAUACCC CUGAUGA X GAA ACAACGAC	GU CGUJUGUA GGGUAUAG
	656	AAAUCUA CUGAUGA X GAA ACCCUAC	UGUAGGGUA UAGGAAUU
	658	AUAAAUC CUGAUGA X GAA AUACCCUA	UAGGGUAUA GGAUUUUAU
	663	ACAUCAUA CUGAUGA X GAA AUCCUAUA	UAUAGGAAU UAUGAUGU
	664	CACAUCAU CUGAUGA X GAA AAUCCUAU	AUAGGAAUUU AUGAUGUG
30	665	CCACAUCA CUGAUGA X GAA AAAUCCUA	UAGGAAUUA UGAUGUGG
	675	GGACUCAG CUGAUGA X GAA ACCACAUC	GAUGUGGUU CUGAGUCC
	676	CGGACUCA CUGAUGA X GAA AACCAACAU	AUGUGGUUC UGAGUCCG
	682	AUGAGACG CUGAUGA X GAA ACUCAGAA	UUCUGAGUC CGUCUCAU

101

	686	UUCGAUGA CUGAUGA X GAA ACGGACUC	GAGUCCGUC UCAUGGAA
	688	AAUUCCAU CUGAUGA X GAA AGACGGAC	GUCCGUCUC AUGGAAUU
	696	GAUAGUUC CUGAUGA X GAA AUUCCAUG	CAUGGAAUU GAACUAUC
	702	CCAACAGA CUGAUGA X GAA AGUUCAAU	AUUGAACUA UCUGUJUGG
5	704	CUCCAACA CUGAUGA X GAA AUAGUJUCA	UGAACUAUC UGUJUGGAG
	708	UUUUCUCC CUGAUGA X GAA ACAGAUAG	CUAUCUGUU GGAGAAAA
	720	UUUAAGAC CUGAUGA X GAA AGCUUUUC	GAAAAGCUU GUCUUAAA
	723	CAAUUUA CUGAUGA X GAA ACAAGCUU	AAGCUUGUC UUAAAUUG
	725	UACAAUUU CUGAUGA X GAA AGACAAGC	GCUUGUCUU AAAUUGUA
10	726	GUACAAUU CUGAUGA X GAA AAGACAAG	CUUGUCUUA AAUUGUAC
	730	UGCUGUAC CUGAUGA X GAA AUUUAAGA	UCUJAAAUU GUACAGCA
	733	UCUUGCUG CUGAUGA X GAA ACAAUUJA	UAAAUUGUA CAGCAAGA
	750	CCCACAUU CUGAUGA X GAA AGUUCAGU	ACUGAACUA AAUGUGGG
	762	UUGAAGUC CUGAUGA X GAA AUCCCCAC	GUGGGGAUU GACUJUCAA
15	767	CCCAGUUG CUGAUGA X GAA AGUCAAUC	GAUUGACUU CAACUGGG
	768	UCCCAGUU CUGAUGA X GAA AAGUCAAU	AUUGACUUC AACUGGGA
	779	AAGAAGGG CUGAUGA X GAA AUUCCAG	CUGGGAAUA CCCUUCUU
	784	CUUCGAAG CUGAUGA X GAA AGGGUAUU	AAUACCUU CUUCGAAG
	785	GCUUCGAA CUGAUGA X GAA AAGGGUAU	AUACCCUUC UUCGAAGC
20	787	AUGCUUCG CUGAUGA X GAA AGAAGGGU	ACCCUUCUU CGAAGCAU
	788	GAUGCUUC CUGAUGA X GAA AAGAAGGG	CCCUUCUUC GAAGCAUC
	796	CUUAUGCU CUGAUGA X GAA AUGCUUCG	CGAAGCAUC AGCAUAAG
	802	AAGUUJUCU CUGAUGA X GAA AUGCUGAU	AUCAGCAUA AGAAACUU
	810	CGGUUUUAC CUGAUGA X GAA AGUUUCUU	AAGAAACUU GUAAACCG
25	813	UCUCGGUU CUGAUGA X GAA ACAAGUUU	AAACUUGUA AACCGAGA
	825	UGGGUUUU CUGAUGA X GAA AGGUCUCG	CGAGACCUA AAAACCCA
	836	CACUCCCA CUGAUGA X GAA ACUGGGUU	AACCCAGUC UGGGAGUG
	857	UGCUCAAA CUGAUGA X GAA AUUUCUUC	GAAGAAAUU UUUGAGCA
	858	GUGCUCAA CUGAUGA X GAA AAUUCUU	AAGAAAUUU UUGAGCAC
30	859	GGUGCUCA CUGAUGA X GAA AAAUUCU	AGAAAUUUU UGAGCACC
	860	AGGUGUC CUGAUGA X GAA AAAUJUC	GAAAUUUU GAGCACC
	869	CUAUAGUU CUGAUGA X GAA AGGUGCUC	GAGCACC CUU AACUAUAG
	870	UCUAUAGU CUGAUGA X GAA AAGGUGCU	AGCACC CUU ACUAUAGA

874	ACCAUCUA CUGAUGA X GAA AGUUAAGG	CCUUAACUA UAGAUGGU
876	ACACCAUC CUGAUGA X GAA AUAGUUA	UUAACUUA GAUGGUGU
885	CUCGGGU CUGAUGA X GAA ACACCAUC	GAUGGUGUA ACCCGGAG
905	AGGUGUAC CUGAUGA X GAA AUCCUUGG	CCAAGGAUU GUACACCU
5	908 CACAGGUG CUGAUGA X GAA ACAAUCCU	AGGAUJUGUA CACCUGUG
923	GCCCACUG CUGAUGA X GAA AUGCUGCA	UGCAGCAUC CAGUGGGC
956	CCCUGACA CUGAUGA X GAA AUGUGCUG	CAGCACAUU UGUCAGGG
957	ACCCUGAC CUGAUGA X GAA AAUGUGCU	AGCACACAUU GUCAAGGGU
960	UGGACCCU CUGAUGA X GAA ACAAAUGU	ACAUUJUGUC AGGGUCCA
10	966 UUUUCAUG CUGAUGA X GAA ACCCUGAC	GUCAGGGUC CAUGAAAA
979	AGCAACAA CUGAUGA X GAA AGGUUUUU	AAAAACCUU UUGUJUGCU
980	AAGCAACA CUGAUGA X GAA AAGGUUUU	AAAACCUUU UGUJUGCUU
981	AAAGCAAC CUGAUGA X GAA AAAGGUUU	AAACCUUUU GUUGCUUU
984	CCAAAAGC CUGAUGA X GAA ACAAAAGG	CCUUUUGUU GCUUUJUGG
15	988 ACUUCCAA CUGAUGA X GAA AGCAACAA	UUGUJUGCUU UUGGAAGU
989	CACUJCCA CUGAUGA X GAA AAGCAACA	UGUUGCUUU UGGAAGUG
990	CCACUUCC CUGAUGA X GAA AAAGCAAC	GUUGCUUUU GGAAGUGG
1007	CCACCCAGA CUGAUGA X GAA AUJCCAU	CAUGGAAUC UCUGGUGG
1009	UUCCACCA CUGAUGA X GAA AGAUUCCA	UGGAAUCUC UGGUGGAA
20	1038 GGGAUJUCU CUGAUGA X GAA ACACGCUC	GAGCGUGUC AGAAUCCC
1044	UUCGCAGG CUGAUGA X GAA AUUCUGAC	GUCAGAAUC CCUGCGAA
1055	AACCAAGG CUGAUGA X GAA ACUUCGCA	UGCAGAAUA CCUUGGUU
1059	GGGUAAACC CUGAUGA X GAA AGGUACUU	AAGUACCUU GGUAACCC
1063	GGGUGGGU CUGAUGA X GAA ACCAAGGU	ACCUUGGUU ACCCACCC
25	1064 GGGGUGGG CUGAUGA X GAA AACCAAGG	CCUUGGUUA CCCACCCC
1080	UACCAUJUU CUGAUGA X GAA AUJUCUGG	CCAGAAAUA AAAUGGU
1088	CAUJJUUUA CUGAUGA X GAA ACCAUUUU	AAAAUGGU AAAAAAUG
1090	UCCAUUUU CUGAUGA X GAA AUACCAUU	AAUGGUUA AAAAAUGGA
1101	UCAAGGGG CUGAUGA X GAA AUJCCAUU	AAUGGAAUA CCCUUGA
30	1107 UUGGACUC CUGAUGA X GAA AGGGGUAU	AUACCCUU GAGUCAA
1112	UGUGAUUG CUGAUGA X GAA ACUCAAGG	CCUUGAGUC CAAUCACA
1117	AAUJUGUGU CUGAUGA X GAA AUJUGACU	AGUCCAAUC ACACAAUU
1125	CCCGCUUU CUGAUGA X GAA AUJUGUGUG	CACACAAUU AAAGCGGG

	1126	CCCCGCUU CUGAUGA X GAA AAUUGUGU	ACACAAUUA AAGCGGGG
	1140	AUCGUCAG CUGAUGA X GAA ACAUGCCC	GGGCAUGUA CUGACGAU
	1149	ACUUCCAU CUGAUGA X GAA AUCGUCAG	CUGACGAUU AUGGAAGU
	1150	CACUUCCA CUGAUGA X GAA AAUCGUCA	UGACGAUUA UGGAAGUG
5	1180	GACAGUGU CUGAUGA X GAA AUUJCCUG	CAGGAAAUU ACACUGUC
	1181	UGACAGUG CUGAUGA X GAA AAUJJUCCU	AGGAAAUUA CACUGUCA
	1188	GUAAGGAU CUGAUGA X GAA ACAGUGUA	UACACUGUC AUCCUUAC
	1191	UUGGUAAG CUGAUGA X GAA AUGACAGU	ACUGUCAUC CUUACCAA
	1194	GGAUUGGU CUGAUGA X GAA AGGAUGAC	GUCAUCCUU ACCAAUCC
10	1195	GGGAUUGG CUGAUGA X GAA AAGGAUGA	UCAUCCUUA CCAAUCCC
	1201	UGAAAUGG CUGAUGA X GAA AUUGGUAA	UUACCAAUC CCAUUUCA
	1206	UCCUUUGA CUGAUGA X GAA AUGGGAUU	AAUCCCAUU UCAAAGGA
	1207	CUCCUUUG CUGAUGA X GAA AAUGGGAU	AUCCCAUUU CAAAGGAG
	1208	UCUCCUUU CUGAUGA X GAA AAAUGGGA	UCCCAUUUC AAAGGAGA
15	1233	ACCAGAGA CUGAUGA X GAA ACCACAUG	CAUGUGGUC UCUCUGGU
	1235	CAACCAGA CUGAUGA X GAA AGACCACA	UGUGGUCUC UCUGGUUG
	1237	CACAACCA CUGAUGA X GAA AGAGACCA	UGGUCUCUC UGGUUGUG
	1242	ACAUACAC CUGAUGA X GAA ACCAGAGA	UCUCUGGUU GUGUAUGU
	1247	GUGGGACA CUGAUGA X GAA ACACAACC	GGUUGUGUA UGUCCCAC
20	1251	UGGGGUGG CUGAUGA X GAA ACAUACAC	GUGUAUGUC CCACCCCA
	1263	UUCUCACC CUGAUGA X GAA AUCUGGGG	CCCCAGAUU GGUGAGAA
	1274	AGAUUAGA CUGAUGA X GAA AUUUCUCA	UGAGAAUUC UCUAAUCU
	1276	AGAGAUUA CUGAUGA X GAA AGAUUUCU	AGAAAUUCU UAAUCUCU
	1278	GGAGAGAU CUGAUGA X GAA AGAGAUU	AAAUCUCUA AUCUCUCC
25	1281	ACAGGAGA CUGAUGA X GAA AUJAGAGA	UCUCUAAUC UCUCUGU
	1283	CCACAGGA CUGAUGA X GAA AGAUUAGA	UCUAAUCUC UCCUGUGG
	1285	AUCCACAG CUGAUGA X GAA AGAGAUUA	UAAUCUCUC CUGUGGAU
	1294	CUGGUAGG CUGAUGA X GAA AUCCACAG	CUGUGGAUU CCUACCAAG
	1295	ACUGGUAG CUGAUGA X GAA AAUCCACA	UGUGGAUUC CUACCAAGU
30	1298	CGUACUGG CUGAUGA X GAA AGGAAUCC	GGAUUCCUA CCAGUACG
	1304	UGGUGGCCG CUGAUGA X GAA ACUGGUAG	CUACCAGUA CGGCACCA
	1315	CAGCGUUU CUGAUGA X GAA AGUGGUGC	GCACCACUC AACGCUG
	1330	AUAGACCG CUGAUGA X GAA ACAUGUCA	UGACAUUGUA CGGUCUAU

	1335	AUGGCAUA CUGAUGA X GAA ACCGUACA	UGUACGGUC UAUGCCAU
	1337	GAAUUGCAG CUGAUGA X GAA AGACCGUA	UACGGUCUA UGCCAUUC
	1344	GGGGGAGG CUGAUGA X GAA AUGGCAUA	UAUGCCAUU CCUCCCCC
	1345	CGGGGGAG CUGAUGA X GAA AAUGGCAU	AUGCCAUUC CUCCCCCG
5	1348	AUGCGGGG CUGAUGA X GAA AGGAAUGG	CCAUUCCUC CCCCgCAU
	1357	GUGGAUGU CUGAUGA X GAA AUGCGGGG	CCCCGCAUC ACAUCCAC
	1362	UACCAGUG CUGAUGA X GAA AUGUGAUG	CAUCACAU CACUGGUA
	1370	ACUGCCAA CUGAUGA X GAA ACCAGUGG	CCACUGGUA UUGGCAGU
	1372	CAACUGCC CUGAUGA X GAA AUACCAGU	ACUGGUAUU GGCAgUUG
10	1379	CUUCCUCC CUGAUGA X GAA ACUGCCAA	UUGGCAGUU GGAGGAAG
	1416	GUACACUGA CUGAUGA X GAA ACAGCUUG	CAAGCUGUC UCAGUGAC
	1418	UUGUCACU CUGAUGA X GAA AGACAGCU	AGCUGUCUC AGUGACAA
	1433	CACAAGGG CUGAUGA X GAA AUGGGUUU	AAACCCAU A CCCUUGUG
	1438	UUCUUCAC CUGAUGA X GAA AGGGUAUG	CAUACCCUU GUGAAGAA
15	1466	CUCCCUGG CUGAUGA X GAA AGUCCUCC	GGAGGACUU CCAGGGAG
	1467	CCUCCUG CUGAUGA X GAA AAGUCCUC	GAGGACUUC CAGGGAGG
	1480	UUCAAUUU CUGAUGA X GAA AUUUCUC	GAGGAAAUA AAAUUGAA
	1485	UUAACUUC CUGAUGA X GAA AUUUUUAU	AAUAAAAAUU GAAGUUA
	1491	UUUUUUAU CUGAUGA X GAA ACUCAAU	AUUGAAGUU AAUAAAAA
20	1492	AUUUUUAU CUGAUGA X GAA AACUUCAA	UUGAAGUU AAUAAAAAU
	1495	UUGAUUUU CUGAUGA X GAA AUUAACUU	AAGUJAAUA AAAUCAA
	1501	AGCAAAAUU CUGAUGA X GAA AUUUUUAU	AUAAAAAAUC AAUUGCU
	1505	UUAGAGCA CUGAUGA X GAA AUUGAUU	AAAUCAAUU UGCUCUAA
	1506	AUUAGAGC CUGAUGA X GAA AAUUGAUU	AAUCAAUU GCUCUAAU
25	1510	UUCAAUUU CUGAUGA X GAA AGCAAAAU	AAUUJUGCUC UAAUUGAA
	1512	CCUJCAAU CUGAUGA X GAA AGAGCAAA	UUUGCUCUA AUUGAAGG
	1515	UUUCCUUC CUGAUGA X GAA AUUAGAGC	GCUCUAAUU GAAGGAAA
	1536	AGGGUACU CUGAUGA X GAA ACAGUUU	AAAACUGUA AGUACCCU
	1540	AACAAGGG CUGAUGA X GAA ACUUACAG	CUGUAAGUA CCCUUGUU
30	1545	UGGAUAAAC CUGAUGA X GAA AGGGUACU	AGUACCCUU GUJAUCCA
	1548	GCUUUGGAU CUGAUGA X GAA ACAAGGGU	ACCCUJUGUU AUCCAAGC
	1549	CGCUUUGGA CUGAUGA X GAA AACAAAGGG	CCCUUJGUUA UCCAAGCG
	1551	GCCGCUUG CUGAUGA X GAA AUACAAG	CUUGUUAUC CAAGCGGC

	1568	ACAAAGCU CUGAUGA X GAA ACACAUUU	AAAUGUGUC AGCUUUGU
	1573	UUUGUACA CUGAUGA X GAA AGCUGACA	UGUCAGCUU UGUACAAA
	1574	AUUUGUAC CUGAUGA X GAA AAGCUGAC	GUCAGCUU GUACAAA
	1577	CACAUUJG CUGAUGA X GAA ACAAAGCU	AGCUUJGUA CAAAUGUG
5	1593	ACUUUGUU CUGAUGA X GAA ACCGCUUC	GAAGCGGUC AACAAAGU
	1602	CCUCUCCC CUGAUGA X GAA ACUUUGUU	AACAAAGUC GGGAGAGG
	1623	UGGAAGGA CUGAUGA X GAA AUCACCCU	AGGGUGAUC UCCUUCCA
	1625	CGUGGAAG CUGAUGA X GAA AGAUCACC	GGUGAUCUC CUUCCACG
	1628	UCACGUGG CUGAUGA X GAA AGGAGAUC	GAUCUCCUU CCACGUGA
10	1629	GUCACGUG CUGAUGA X GAA AAGGAGAU	AUCUCCUUC CACGUGAC
	1645	AAUUUCAG CUGAUGA X GAA ACCCCUGG	CCAGGGGUC CUGAAAUU
	1653	UGCAAAGU CUGAUGA X GAA AUUUCAGG	CCUGAAAUU ACUUJGCA
	1654	UUGCAAAG CUGAUGA X GAA AAAUUCAG	CUGAAAUUA CUUJGCAA
	1657	AGGUUGCA CUGAUGA X GAA AGUAAUJJ	AAAUUJACUU UGCAACCU
15	1658	CAGGUUGC CUGAUGA X GAA AAGUAAJJ	AAUJACUUU GCAACCUG
	1697	ACCACAAA CUGAUGA X GAA ACACGCUC	GAGCGUGUC UUJUGUGGU
	1699	GCACCACA CUGAUGA X GAA AGACACGC	GCGUGUCUU UGUGGUGC
	1700	UGCACCCAC CUGAUGA X GAA AAGACACG	CGUGUCUUU GUGGUGCA
	1721	CAAACGUA CUGAUGA X GAA AUCUGUCU	AGACAGAUC UACGUUUG
20	1723	CUCAAACG CUGAUGA X GAA AGAUCUGU	ACAGAUCUA CGUUJUGAG
	1727	GGUUCUCA CUGAUGA X GAA ACCUAGAU	AUCUACGUU UGAGAAC
	1728	AGGUUCUC CUGAUGA X GAA AACGUAGA	UCUACGUUU GAGAACCU
	1737	UACCAUGU CUGAUGA X GAA AGGUUCUC	GAGAACCUC ACAUGGUA
	1745	CAAGCUUG CUGAUGA X GAA ACCAUGUG	CACAUGGUA CAAGCUUG
25	1752	UGUGGGCC CUGAUGA X GAA AGCUUGUA	UACAAGCUU GGCCCACA
	1765	GAUUGGCA CUGAUGA X GAA AGGCUGUG	CACAGCCUC UGCCAAUC
	1773	CCCACAUG CUGAUGA X GAA AUUGGCAG	CUGCCAAUC CAUGUGGG
	1787	GUGUGGGC CUGAUGA X GAA ACUCUCCC	GGGAGAGUU GCCCACAC
	1800	UUCUUGCA CUGAUGA X GAA ACAGGUGU	ACACCUGUU UGCAAGAA
30	1801	GUUCUUGC CUGAUGA X GAA AACAGGUG	CACCUGUUU GCAAGAAC
	1811	GAGUAUCC CUGAUGA X GAA AGUUCUUG	CAAGAACUU GGAUACUC
	1816	CCAAAGAG CUGAUGA X GAA AUCCAAGU	ACUUGGUA CUCUUJGG
	1819	UUJCCAAA CUGAUGA X GAA AGUAUCCA	UGGAUJACUC UUJUGGAA

	1821	AAUUUCCA CUGAUGA X GAA AGAGUAUC	GAUACUCUU UGGAAAUU
	1822	CAAUUCC CUGAUGA X GAA AAGAGUAU	AUACUCUUU GGAAAUJUG
	1829	UGGCAUUC CUGAUGA X GAA AUUUCCAA	UUGGAAAUU GAAUGCCA
	1844	UAUUAGAG CUGAUGA X GAA ACAUGGUG	CACCAUGUU CUCUAAUA
5	1845	CUAUUAGA CUGAUGA X GAA AACAUUGGU	ACCAUGUUC UCUAAUAG
	1847	UGCUALUA CUGAUGA X GAA AGAACAU	CAUGUUCUC UAAUAGCA
	1849	UGUGCUAU CUGAUGA X GAA AGAGAAC	UGUUCUCUA AUAGCACA
	1852	AUJUGUGC CUGAUGA X GAA AUUAGAGA	UCUCUAAUA GCACAAAU
	1866	AUGAUCAA CUGAUGA X GAA AUGUCAU	AAUGACAUU UUGAUCAU
10	1867	CAUGAUCA CUGAUGA X GAA AAUGUCAU	AUGACAUUU UGAUCAUG
	1868	CCAUGAUC CUGAUGA X GAA AAAUGUCA	UGACAUUUU GAUCAUGG
	1872	AGCUCCAU CUGAUGA X GAA AUCAAAAU	AUJUGAUC AUGGAGCU
	1881	GCAUUCUU CUGAUGA X GAA AGCUCCAU	AUGGAGCUU AAGAAUGC
	1882	UGCAUUCU CUGAUGA X GAA AAGCUCCA	UGGAGCUUA AGAAUGCA
15	1892	CCUGCAAG CUGAUGA X GAA AUGCAUUC	GAAUGCAUC CUUGCAGG
	1895	GGUCCUGC CUGAUGA X GAA AGGAUGCA	UGCAUCCUU GCAGGACC
	1913	GGCAGACA CUGAUGA X GAA AGUCUCCU	AGGAGACUA UGUCUGCC
	1917	GCAAGGCA CUGAUGA X GAA ACAUAGUC	GACUAUGUC UGCCUUGC
	1923	UCUUGAGC CUGAUGA X GAA AGGCAGAC	GUCUGCCUU GCUCAAGA
20	1927	CCUGUCUU CUGAUGA X GAA AGCAAGGC	GCUUUGCUC AAGACAGG
	1954	GACCACGC CUGAUGA X GAA AUGCUUU	AAAGACAUU GCGUGGUC
	1962	AGCUGCCU CUGAUGA X GAA ACCACGCA	UGCGUGGUC AGGCAGCU
	1971	AGGACTGU CUGAUGA X GAA AGCUGCCU	AGGCAGCUC ACAGUCU
	1977	CGCUCUAG CUGAUGA X GAA ACUGUGAG	CUCACAGUC CUAGAGCG
25	1980	ACACGCUC CUGAUGA X GAA AGGACUGU	ACAGUCCUA GAGCGUGU
	2001	UUUCCUGU CUGAUGA X GAA AUCCUGGG	CCCACGAUC ACAGGAAA
	2020	UGUCGUCU CUGAUGA X GAA AUUCUCCA	UGGAGAAUC AGACGACA
	2032	UUCCCCAA CUGAUGA X GAA ACUJUGUCC	CGACAAGUA UUGGGGAA
	2034	CUUUCCCC CUGAUGA X GAA AUACUUGU	ACAAGUAAU GGGGAAAG
30	2046	GAGACUUC CUGAUGA X GAA AUGCUUUC	GAAAGCAUC GAAGUCUC
	2052	GUGCAUGA CUGAUGA X GAA ACUUCGAU	AUCGAAGUC UCAUGCAC
	2054	CCGUGCAU CUGAUGA X GAA AGACUUCG	CGAAGUCUC AUGCACGG
	2066	GAUUCCCA CUGAUGA X GAA AUGCCGUG	CACGGCAUC UGGGAAUC

2074	UGGAGGGG CUGAUGA X GAA AUUCCAG	CUGGGAAUC CCCCUCCA
2080	GAUTUGUG CUGAUGA X GAA AGGGGGAU	AUCCCCCUC CACAGAUC
2088	AACCACAU CUGAUGA X GAA AUCUGUGG	CCACAGAUC AUGUGGUU
2096	UAUCUUUA CUGAUGA X GAA ACCACAUG	CAUGUGGUU UAAAGAUA
5	2097 UUAUCUUU CUGAUGA X GAA AACCACAU	AUGUGGUUU AAAGAUAA
	2098 AUUAUCUU CUGAUGA X GAA AAACCACA	UGUGGUUUA AAGAUAAU
	2104 GGUCUCAU CUGAUGA X GAA AUCUUUAA	UAAAAGAUA AUGAGACC
	2115 UCUUCUAC CUGAUGA X GAA AGGGUCUC	GAGACCUU GUAGAAGA
	2118 GAGUCUUC CUGAUGA X GAA ACAAGGGU	ACCCUUGUA GAAGACUC
	10 2126 CAAUGCUC CUGAUGA X GAA AGUCUUCU	AGAAGACUC AGGCAUUG
	2133 UUCAAUAC CUGAUGA X GAA AUGCCUGA	UCAGGCAUU GUAUUGAA
	2136 UCCUJCAA CUGAUGA X GAA ACAAUGCC	GGCAUUGUA UUGAAGGA
	2138 CAUCCUUC CUGAUGA X GAA AUACAAUG	CAUUGUAUU GAAGGAUG
	2160 CGGAUAGU CUGAUGA X GAA AGGUUCCG	CGGAACCUC ACUAUCCG
15	2164 UCUGCGGA CUGAUGA X GAA AGUGAGGU	ACCUCACUA UCCGCAGA
	2166 ACUCUGCG CUGAUGA X GAA AUAGUGAG	CUCACUAUC CGCAGAGU
	2196 CAGGUGUA CUGAUGA X GAA AGGCCUUC	GAAGGCCUC UACACCUG
	2198 GGCAGGUG CUGAUGA X GAA AGAGGCCU	AGGCCUCUA CACCUGCC
	2220 CAGCCAAG CUGAUGA X GAA ACACUGCA	UGCAGUGUU CUUGGCUG
	20 2221 ACAGCCAA CUGAUGA X GAA AACACUGC	GCAGUGUUC UUGGCUGU
	2223 GCACAGCC CUGAUGA X GAA AGAACACU	AGUGUUCUU GGCUGUGC
	2246 UUAUGAAA CUGAUGA X GAA AUGCCUCC	GGAGGCAUU UUCAUAAU
	2247 AUUAUGAA CUGAUGA X GAA AAUGCCUC	GAGGCAUUU UUCAUAAU
	2248 UAUUAUGA CUGAUGA X GAA AAAUGCCU	AGGCAUUUU UCAUAAUA
25	2249 CUAUUAUG CUGAUGA X GAA AAAAUGCC	GGCAUUUUU CAUAAUAG
	2250 UCUAUUAU CUGAUGA X GAA AAAAUGC	GCAUUUUUC AUAAUAGA
	2253 CCUUCUAU CUGAUGA X GAA AUGAAAAA	UUUUUCAUA AUAGAAGG
	2256 GCACCUUC CUGAUGA X GAA AUUAUGAA	UUCAUAAUA GAAGGUGC
	2282 UGAUUUCC CUGAUGA X GAA AGUUCGUC	GACGAACUU GGAAUCA
	30 2289 AGAAUAAA CUGAUGA X GAA AUUCCAA	UUGGAAAUC AUUAUUCU
	2292 ACUAGAAU CUGAUGA X GAA AUGAUUUC	GAAAUCUU AUUCUAGU
	2293 UACUAGAA CUGAUGA X GAA AAUGAUUJ	AAAUCUUA UUCUAGUA
	2295 CCUACUAG CUGAUGA X GAA AUAAUGAU	AUCAUUAUU CUAGUAGG

	2296	GCCUACUA CUGAUGA X GAA AAUAAUGA	UCAUUAUUC UAGUAGGC
	2298	GUGCCUAC CUGAUGA X GAA AGAAUAAA	AUUAUUCUA GUAGGCAC
	2301	GUCGUGCC CUGAUGA X GAA ACUAGAAU	AUUCUAGUA GGCACGAC
	2316	AACAUGGC CUGAUGA X GAA AUCACCGU	ACGGUGAUU GCCAUGUU
5	2324	GCCAGAAC CUGAUGA X GAA ACAUGGC	UGCAGUUU CUUCUGGC
	2325	AGCCAGAA CUGAUGA X GAA AACAUAGC	GCCAUGUUC UUCUGGCC
	2327	GUAGCCAG CUGAUGA X GAA AGAACAU	CAUGUUCUU CUGGCUAC
	2328	AGUAGCCA CUGAUGA X GAA AAGAACAU	AUGUUCUUC UGGCUACU
	2334	ACAAGAAC CUGAUGA X GAA AGCCAGAA	UUCUGGCUA CUUCUUGU
10	2337	AUGACAAAG CUGAUGA X GAA AGUAGCCA	UGGCUACUU CUUGUCAU
	2338	GAUGACAA CUGAUGA X GAA AAGUAGCC	GGCUACUUC UUGUCAUC
	2340	AUGAUGAC CUGAUGA X GAA AGAAGUAG	CUACUUCUU GUCAUCAU
	2343	AGGAUGAU CUGAUGA X GAA ACAAGAAC	CUUCUUGUC AUCAUCCU
	2346	CCUAGGAU CUGAUGA X GAA AUGACAAAG	CUUGUCAUC AUCCUAGG
15	2349	GUCCUAG CUGAUGA X GAA AUGAUGAC	GUCAUCAUC CUAGGGAC
	2352	ACGGUCCC CUGAUGA X GAA AGGAUGAU	AUCAUCCUA GGGACCGU
	2361	GCCCCGCU CUGAUGA X GAA ACGGUCCC	GGGACCGUU AAGCGGGC
	2362	GGCCCGCU CUGAUGA X GAA AACGGUCC	GGACCGUUA AGCAGGCC
	2396	UGGACAAG CUGAUGA X GAA AGCCUGUC	GACAGGCUA CUUGUCCA
20	2399	CGAUGGAC CUGAUGA X GAA AGUAGCCU	AGGUACUU GUCCAUCA
	2402	UGACGAUG CUGAUGA X GAA ACAAGUAG	CUACUUGUC CAUCGUCA
	2406	UCCAUGAC CUGAUGA X GAA AUGGACAA	UUGUCCAUC GUCAUGGA
	2409	GGAUCCAU CUGAUGA X GAA ACCGAUGGA	UCCAUCGUC AUGGAUCC
	2416	UUCAUCUG CUGAUGA X GAA AUCCAUCA	UCAUGGAUC CAGAUGAA
25	2427	UCCAAUUGG CUGAUGA X GAA AGUUCAUC	GAUGAACUC CCAUJUGGA
	2432	GUUCAUCC CUGAUGA X GAA AUGGGAGU	ACUCCCAUU GGAUGAAC
	2443	UCGUUCAC CUGAUGA X GAA AUGUUCAU	AUGAACAUU GUGAACGA
	2458	GGCAUCAU CUGAUGA X GAA AGGCAGUC	GACUGCCUU AUGAUGCC
	2459	UGGCAUCA CUGAUGA X GAA AAGGCAGU	ACUGCCUUA UGAUGCCA
30	2480	CUCUGGGG CUGAUGA X GAA AUUCCAU	AUGGGAAUU CCCCAGAG
	2481	UCUCUGGG CUGAUGA X GAA AAUUCCCA	UGGGAAUUC CCCAGAGA
	2502	GGCUUACC CUGAUGA X GAA AGGUUCAG	CUGAACCUA GGUAAGCC
	2506	AAGAGGGU CUGAUGA X GAA ACCUAGGU	ACCUAGGUAG AGCCUCUU

	2512	ACGGCCAA CUGAUGA X GAA AGCUUAC	GUAAGCCUC UUGGCCGU
	2514	CCACGGCC CUGAUGA X GAA AGAGGCUU	AAGCCUCUU GGCGUGG
	2528	CUUGGCCA CUGAUGA X GAA AGGCACCA	UGGUGCCUU UGGCCAAG
	2529	UCUUJGGCC CUGAUGA X GAA AAGGCACC	GGUGCCUUU GGCCAAGA
5	2541	UCUGCUUC CUGAUGA X GAA AUCUCUUG	CAAGAGAUU GAAGCAGA
	2555	CAAUUCCA CUGAUGA X GAA AGGCAUCU	AGAUGCCUU UGGAAUUG
	2556	UCAAUUCC CUGAUGA X GAA AAGGCAUC	GAUGCCUUU GGAAUUGA
	2562	GUCUUGUC CUGAUGA X GAA AUUCCAAA	UUUGGAAUU GACAAGAC
	2578	UGUCCUGC CUGAUGA X GAA AGUUGCUG	CAGCAACUU GCAGGACA
10	2589	UUGACUGC CUGAUGA X GAA ACUGUCCU	AGGACAGUA GCAGUCAA
	2595	AACAUUUU CUGAUGA X GAA ACUGCUAC	GUAGCAGUC AAAAUGUU
	2603	CUUCUUUC CUGAUGA X GAA ACAUUUUG	CAAAAUGUU GAAAGAAG
	2632	GAGAGCUC CUGAUGA X GAA AUGCUCAC	GUGAGCAUC GAGCUCUC
	2638	AGACAUGA CUGAUGA X GAA AGCUCGAG	AUCGAGCUC UCAUGUCU
15	2640	UCAGACAU CUGAUGA X GAA AGAGCUCG	CGAGCUCUC AUGUCUGA
	2645	UGAGUUCA CUGAUGA X GAA ACAUGAGA	UCUCAUGUC UGAACUCA
	2652	AGGAUCUU CUGAUGA X GAA AGUUCAGA	UCUGAACUC AAGAUCCU
	2658	UGAAUGAG CUGAUGA X GAA AUCUUGAG	CUCAAGAUC CUCAUUCA
	2661	AUAUGAAU CUGAUGA X GAA AGGAUCUU	AAGAUCCUC AUUCAUAU
20	2664	CCAAUAU CUGAUGA X GAA AUGAGGAU	AUCCUCAUU CAUAUUJGG
	2665	ACCAAAU CUGAUGA X GAA AAUGAGGA	UCCUCAUUC AAUUJGGU
	2668	GUGACAA CUGAUGA X GAA AUGAAUGA	UCAAUUCAUA UUGGUCAC
	2670	UGGUGACC CUGAUGA X GAA AUAUGAAU	AUUCAUAAU GGUCACCA
	2674	GAGAUGGU CUGAUGA X GAA ACCAAUAU	AUAUJGGUC ACCAUCUC
25	2680	CACAUUGA CUGAUGA X GAA AUGGUGAC	GUCACCAUC UCAAUGUG
	2682	ACCACAUU CUGAUGA X GAA AGAUGGUG	CACCAUCUC AAUGUGGU
	2691	AGAAGGUU CUGAUGA X GAA ACCACAUU	AAUGUGGUC AACCUUCU
	2697	GCACCUAG CUGAUGA X GAA AGGUUGAC	GUCAACCUU CUAGGUGC
	2698	GGCACCUA CUGAUGA X GAA AAGGUUGA	UCAACCUUC UAGGUGCC
30	2700	CAGGCACC CUGAUGA X GAA AGAAGGUU	AACCUUCUA GGUGCCUG
	2710	UGGCUUGG CUGAUGA X GAA ACAGGCAC	GUGCCUGUA CCAAGCCA
	2730	AUCACCAU CUGAUGA X GAA AGUGGCC	GGGCCACUC AUGGUGAU
	2739	AAUUCCAC CUGAUGA X GAA AUCACCAU	AUGGUGAUU GUGGAAUU

2747	AUUUGCAG CUGAUGA X GAA AUUCCACA	UGUGGAAUU CUGCAAAU
2748	AAUUJUGCA CUGAUGA X GAA AAUUCAC	GUGGAAUUC UGCAAAUU
2756	GGUUUCCA CUGAUGA X GAA AUUUGCAG	CUGCAAAUU UGGAAACC
2757	AGGUUUCC CUGAUGA X GAA AAUUGCA	UGCAAAUUU CGAAACCU
5	2768 GGUAAGUG CUGAUGA X GAA ACAGGUUU	AAACCTUGUC CACUUACC
	2773 CCUCAGGU CUGAUGA X GAA AGUGGACA	UGUCCACUU ACCUGAGG
	2774 UCCUCAGG CUGAUGA X GAA AAGUGGAC	GUCCACUUA CCUGAGGA
	2798 AGGGGACA CUGAUGA X GAA AUUCAUU	AAAUGAAUU UGUCCCCU
	2799 UAGGGGAC CUGAUGA X GAA AAUCAUU	AAUGAAUUU GUCCCCUA
10	2802 UUGUAGGG CUGAUGA X GAA ACAAAUUC	GAUUJUGUC CCCUACAA
	2807 UGGUCUUG CUGAUGA X GAA AGGGGACA	UGUCCCCUA CAAGACCA
	2828 CUUGACGG CUGAUGA X GAA AUCGUGCC	GGCACGAVU CCGUCAAG
	2829 CCUJUGACG CUGAUGA X GAA AAUCGUGC	GCACGAIUC CGUCAAGG
	2833 UUUCCCUU CUGAUGA X GAA ACGGAAUC	GAUUCCGUC AAGGGAAA
15	2846 CUCCAACG CUGAUGA X GAA AGUCUUUC	GAAAGACUA CGUUGGAG
	2850 AUUGCUC CUGAUGA X GAA ACGUAGUC	GACUACGUU GGAGCAAU
	2859 UCCACAGG CUGAUGA X GAA AUUGCUC	GGAGCAAUC CCUGUGGA
	2869 CCGUUUCA CUGAUGA X GAA AUCCACAG	CUGUGGAUC UGAAACGG
	2882 UGCUGUCC CUGAUGA X GAA AGCGCCGU	ACGGCGCUU GGACAGCA
20	2892 CUACUGGU CUGAUGA X GAA AUGCUGUC	GACAGCAUC ACCAGUAG
	2899 GCUCUGGC CUGAUGA X GAA ACUGGUGA	UCACCAGUA GCCAGAGC
	2909 AGCUGGGCU CUGAUGA X GAA AGCUCUGG	CCAGAGCUC AGCCAGCU
	2918 CAAAUCCA CUGAUGA X GAA AGCUGGCC	AGCCAGCUC UGGAUUUG
	2924 CCUCCACA CUGAU'GA X GAA AUCCAGAG	CUCUGGAUU UGUGGAGG
25	2925 UCCUCCAC CUGAUGA X GAA AAUCCAGA	UCUGGAUUU GUGGAGGA
	2939 CACUGAGG CUGAUGA X GAA ACUUCUCC	GGAGAAGUC CCUCAGUG
	2943 ACAUCACU CUGAUGA X GAA AGGGACUU	AAGUCCCUC AGUGAUGU
	2952 UCUUCUUC CUGAUGA X GAA ACAUCACU	AGUGAUGUA GAAGAAGA
	2968 AUCUUCAG CUGAUGA X GAA AGCUUCCU	AGGAAGCUC CUGAAGAU
30	2977 CUUAUACA CUGAUGA X GAA AUCUUCAG	CUGAAGAUC UGUUAAG
	2981 AGUCCUUA CUGAUGA X GAA ACAGAUCU	AGAUCUGUA UAAGGGACU
	2983 GAAGUCCU CUGAUGA X GAA AUACAGAU	AUCUGUAUA AGGACUUC
	2990 AGGUUCAGG CUGAUGA X GAA AGUCCUUA	UAAGGACUU CCUGACCU

111

2991	AAGGUCAG CUGAUGA X GAA AAGUCCUU	AAGGACUUC CUGACCUU
2999	GAUGCUCC CUGAUGA X GAA AGGUCAGG	CCUGACCUU GGAGCAUC
3007	ACAGAUGA CUGAUGA X GAA AUGCUCCA	UGGAGCAUC UCAUCUGU
3009	UAACAGAU CUGAUGA X GAA AGAUGCUC	GAGCAUCUC AUCUGUUA
5	3012 CUGUAACA CUGAUGA X GAA AUGAGAUG	CAUCUCAUC UGUUACAG
	3016 GAAGCUGU CUGAUGA X GAA ACAGAUGA	UCAUCUGUU ACAGCUUC
	3017 GGAAGCUG CUGAUGA X GAA AACAGAUG	CAUCUGUUA CAGCUUCC
	3023 CCACUUGG CUGAUGA X GAA AGCUGUAA	UUACAGCUU CCAAGUGG
	3024 GCCACUUG CUGAUGA X GAA AAGCUGUA	UACAGCUUC CAAGUGGC
10	3034 CAUGCCCCU CUGAUGA X GAA AGCCACUU	AAGUGGCCUA AGGGCAUG
	3047 AUGCCAAG CUGAUGA X GAA ACUCCAUG	CAUGGAGUU CUUGGCAU
	3048 GAUGCCAA CUGAUGA X GAA AACUCCAU	AUGGAGUUC UUGGCAUC
	3050 GCGAUGCC CUGAUGA X GAA AGAACUCC	GGAGUUCUU GGCAUCGC
	3056 ACUUUCGC CUGAUGA X GAA AUGCCAAG	CUUGGCAUC GCGAAAGU
15	3067 CCUGUGGA CUGAUGA X GAA ACACUUUC	GAAAGUGUA UCCACAGG
	3069 UCCCUGUG CUGAUGA X GAA AUACACUU	AAGUGUAUC CACAGGGA
	3094 UAAGAGGA CUGAUGA X GAA AUUUCGUG	CACGAAAUA UCCUCUUA
	3096 GAUAAGAG CUGAUGA X GAA AUAUUUCG	CGAAAUAUC CUCUUAUC
	3099 UCCGAUAA CUGAUGA X GAA AGGAUAU	AAUAUCCUC UUAUCGGA
20	3101 UCUCGGAU CUGAUGA X GAA AGAGGAUA	UAUCCUCUU AUCGGAGA
	3102 UUCUCCGA CUGAUGA X GAA AAGAGGAU	AUCCUCUUA UCGGAGAA
	3104 UCUUCUCC CUGAUGA X GAA AUAAAGAGG	CCUCUUAUC GGAGAAGA
	3120 CAGAUUUU CUGAUGA X GAA ACCACGUU	AACGUGGUU AAAUCUG
	3121 ACAGAUUU CUGAUGA X GAA AACCACGU	ACGUGGUUA AAAUCUGU
25	3126 AAGUCACA CUGAUGA X GAA AUUJUAAC	GUAAAAAUC UGUGACUU
	3134 CCAAGCCA CUGAUGA X GAA AGUCACAG	CUGUGACUU UGGCUUJGG
	3135 GCRAAGCC CUGAUGA X GAA AAGUCACA	UGUGACUUU GGCUUJGGC
	3140 CCCGGGCC CUGAUGA X GAA AGCCAAAG	CUUJGGCUU GGCCCCGGG
	3151 UUUAUAAA CUGAUGA X GAA AUCCCGGG	CCCGGGAUUA UUUAUAAA
30	3153 UCUUJUAUA CUGAUGA X GAA AUAUCCCG	CGGGAUUUU UAUAAAAGA
	3154 AUCUUJUAU CUGAUGA X GAA AAUAUCC	GGGAUAUUU AUAAAAGAU
	3155 GAUCUUUA CUGAUGA X GAA AAAUAUCC	GGAUAUUA UAAAGAUC
	3157 UGGAUCUU CUGAUGA X GAA AUAAAUAU	AUAUUUJUAUA AAGAUCCA

	3163	AUAAUCUG CUGAUGA X GAA AUCUUUAU	AUAAAAGAUC CAGAUUAU
	3169	UCUGACAU CUGAUGA X GAA AUCUGGAU	AUCCAGAUU AUGUCAGA
	3170	UUCUGACA CUGAUGA X GAA AAUCUGGA	UCCAGAUUA UGUCAGAA
	3174	CCUUUUCU CUGAUGA X GAA ACAUAAUC	GAUUAUGUC AGAAAAGG
5	3190	AGGGAGGC CUGAUGA X GAA AGCAUCUC	GAGAUGCUC GCCUCCU
	3195	UUCAAAGG CUGAUGA X GAA AGGCGAGC	GCUCGCCUC CCUUUGAA
	3199	CCAUUUCA CUGAUGA X GAA AGGGAGGC	GCCUCCCCU UGAAAUGG
	3200	UCCAUUUC CUGAUGA X GAA AAGGGAGG	CCUCCCCUU GAAAUGGA
	3225	CUGUCAAA CUGAUGA X GAA AUUGUUUC	GAAACAAUU UUUGACAG
10	3226	UCUGUCAA CUGAUGA X GAA AAUUGUUU	AAACAAUUU UUGACAGA
	3227	CUCUGUCA CUGAUGA X GAA AAAUUGUU	AACAAUUUU UGACAGAG
	3228	ACUCUGUC CUGAUGA X GAA AAAAUUGU	ACAAUUUUU GACAGAGU
	3239	GGAUJUGUG CUGAUGA X GAA ACACUCUG	CAGAGUGUA CACAAUCC
	3246	UCACUCUG CUGAUGA X GAA AUUGUGUA	UACACAAUC CAGAGUGA
15	3258	AAAGACCA CUGAUGA X GAA ACGUCACU	AGUGACGUC UGGUCUUU
	3263	CACCAAAA CUGAUGA X GAA ACCAGACG	CGUCUGGGUC UUUUGGUG
	3265	AACACCAA CUGAUGA X GAA AGACCAGA	UCUGGGUCUU UGGGUGUU
	3266	AAACACCA CUGAUGA X GAA AAGACCAG	CUGGUCUUU UGGGUGUU
	3267	AAAACACC CUGAUGA X GAA AAAGACCA	UGGUCUUUU GGUGUUUU
20	3273	CACAGCAA CUGAUGA X GAA ACACCAAA	UUUGGUGUU UUGCUGUG
	3274	CCACAGCA CUGAUGA X GAA AACACCAA	UUGGUGUUU UGCUGUGG
	3275	CCCACAGC CUGAUGA X GAA AAACACCA	UGGUGUUUU GCUGUGGG
	3288	AAGGAAAA CUGAUGA X GAA AUUUCCA	UGGGAAAUA UUUUCCUU
	3290	CUAAGGAA CUGAUGA X GAA AUAUUUC	GGAAAUAUU UUCCUUAG
25	3291	CCUAAGGA CUGAUGA X GAA AAAUUUUC	AAAAUAUUU UCCUUAGG
	3292	ACCUAAGG CUGAUGA X GAA AAAUAUU	AAAUAUUUU CCUUAGGU
	3293	CACCUAAG CUGAUGA X GAA AAAAUUU	AAUAUUUUC CUUAGGUG
	3296	AAGCACCU CUGAUGA X GAA AGGAAAAU	AUUUUCUU AGGUGCUU
	3297	GAAGCACC CUGAUGA X GAA AAGGAAAA	UUUUCUUUA GGUGCUUC
30	3304	AUAUGGAG CUGAUGA X GAA AGCACCUA	UAGGUGCUU CUCCAUAU
	3305	GAUAUGGA CUGAUGA X GAA AAGCACCU	AGGUGCUUC UCCAUAUC
	3307	AGGAUAUG CUGAUGA X GAA AGAACAC	GUGCUUCUC CAUAUCCU
	3311	CCCCAGGA CUGAUGA X GAA AUGGAGAA	UUCUCCAUA UCCUGGGG

	3313	UACCCCAG CUGAUGA X GAA AUAUGGAG	CUCCAUUAUC CUGGGGUUA
	3321	UCAAAUCUU CUGAUGA X GAA ACCCCAGG	CCUGGGGUUA AAGAUUGA
	3327	UCUUCUAC CUGAUGA X GAA AUCUUUAC	GUAAAAGAUU GAUGAAGA
	3338	GCCUACAA CUGAUGA X GAA AUUCUUCA	UGAAGAAUU UUGUAGGC
5	3339	CGCCUACAC CUGAUGA X GAA AAUUCUUC	GAAGAAUUU UGUAGGCG
	3340	UCGCCUAC CUGAUGA X GAA AAAUUCUU	AAGAAUUUU GUAGGCAGA
	3343	CAAUCGCC CUGAUGA X GAA ACAAAAAU	AAUUUJUGUA GGCGAUUG
	3350	CUUCUUUC CUGAUGA X GAA AUCGCCUA	UAGGCGAUU GAAAGAAG
	3364	CCUCAUUC CUGAUGA X GAA AGUUCCUU	AAGGAACUA GAAUGAGG
10	3382	UGUAGUAU CUGAUGA X GAA AUCAGGGG	CCCCUGAUU AUACUACA
	3383	GUCUAGUA CUGAUGA X GAA AAUCAGGG	CCCUGAUUA UACUACAC
	3385	UGGUGUAG CUGAUGA X GAA AUAAUCAG	CUGAUUAUA CUACACCA
	3388	UUCUGGGUG CUGAUGA X GAA AGUAAAU	AUUAUACUA CACCAGAA
	3401	UGGUCUGG CUGAUGA X GAA ACAUUUCU	AGAAAUGUA CCAGACCA
15	3439	GGGUCUCU CUGAUGA X GAA ACUGGGCU	AGCCCAGUC AGAGACCC
	3452	ACUCUGAA CUGAUGA X GAA ACGUGGGU	ACCCACGUU UUCAGAGU
	3453	AACUCUGA CUGAUGA X GAA AACGUGGG	CCCACGUUU UCAGAGUU
	3454	CAACUCUG CUGAUGA X GAA AAACGUGG	CCACGUUUU CAGAGUJUG
	3455	CCAACUCU CUGAUGA X GAA AAAACGUG	CACGUUUUC AGAGUJUGG
20	3461	GUUCCACC CUGAUGA X GAA ACUCUGAA	UUCAGAGUU GGUGGAAC
	3472	AUUUCCCA CUGAUGA X GAA AUGUUCCA	UGGAACAUU UGGGAAAU
	3473	GAUUUCCC CUGAUGA X GAA AAUGUUCC	GGAACAUUU GGGAAAUC
	3481	UUGCAAGA CUGAUGA X GAA AUUUCCCA	UGGGAAAUC UCUUGCAA
	3483	GCUUGCAA CUGAUGA X GAA AGAUUUCC	GGAAAUCUC UUGCAAGC
25	3485	UAGCUUGC CUGAUGA X GAA AGAGAUUU	AAAUCUCUU GCAAGCUA
	3493	CUGAGCAU CUGAUGA X GAA AGCUUGCA	UGCAAGCUA AUGCUCAG
	3499	AUCCUGCU CUGAUGA X GAA AGCAUUAG	CUAAUGCUC AGCAGGAU
	3518	GAACAAUG CUGAUGA X GAA AGCUUUG	CAAAGACUA CAUUGUUC
	3522	GGAAGAAC CUGAUGA X GAA AUGUAGUC	GACUACAUU GUUCUUCC
30	3525	AUCGGAAG CUGAUGA X GAA ACAAUUGA	UACAUUGUU CUUCCGAU
	3526	UAUCGGAA CUGAUGA X GAA AACAAUGU	ACAUUUGUUC UUCCGAUA
	3528	GAUUAUCGG CUGAUGA X GAA AGAACAAU	AUUGUUCUU CCGAUUAUC
	3529	UGAUUAUCG CUGAUGA X GAA AAAAACAA	UUGUUCUUUC CGAUUAUC

	3534	GUCUCUGA CUGAUGA X GAA AUCGGAAG	CUUCCGAUA UCAGAGAC
	3536	AAGUCUCU CUGAUGA X GAA AUAUCGGA	UCCGAUAUC AGAGACUU
	3544	CAUGCUCU CUGAUGA X GAA AGUCUCUG	CAGAGACUU UGAGCAUG
	3545	CCAUGCUC CUGAUGA X GAA AAGUCUCU	AGAGACUUU GAGCAUGG
5	3562	GAGUCCAG CUGAUGA X GAA AUCCUCUU	AAGAGGAUU CUGGACUC
	3563	AGAGUCCA CUGAUGA X GAA AAUCCUCU	AGAGGAUUC UGGACUCU
	3570	GGCAGAGA CUGAUGA X GAA AGUCCAGA	UCUGGACUC UCUCUGCC
	3572	UAGGCAGA CUGAUGA X GAA AGAGUCCA	UGGACUCUC UCUGCCUA
	3574	GGUAGGCA CUGAUGA X GAA AGAGAGUC	GACUCUCUC UGCCUACC
10	3580	AGGUGAGG CUGAUGA X GAA AGGCAGAG	CUCUGCCUA CCUCACCU
	3584	AAACAGGU CUGAUGA X GAA AGGUAGGC	GCCUACCUUC ACCUGUUU
	3591	AUACAGGA CUGAUGA X GAA ACAGGUGA	UCACCUGUU UCCUGUAU
	3592	CAUACAGG CUGAUGA X GAA AACAGGUG	CACCUGUUU CCUGUAUG
	3593	CCAUCACG CUGAUGA X GAA AAACAGGU	ACCUGUUUC CUGUAUGG
15	3598	CUCCUCCA CUGAUGA X GAA ACAGGAAA	UUUCCUGUA UGGAGGAG
	3615	GGGUACACA CUGAUGA X GAA ACUUCCUC	GAGGAAGUA UGUGACCC
	3629	CAUAAUUG CUGAUGA X GAA AUUUGGGG	CCCCAAAUU CCAUUAUG
	3630	UCAUAAAUG CUGAUGA X GAA AAUUUGGG	CCCAAAUUC CAUUAUGA
	3634	GUUGUCAU CUGAUGA X GAA AUGGAAU	AAUUCCAUU AUGACAAC
20	3635	UGUUGUCA CUGAUGA X GAA AAUGGAAU	AUUCCAUUA UGACAACA
	3654	UACUGACU CUGAUGA X GAA AUJUCCUGC	GCAGGAAUC AGUCAGUA
	3658	CAGAUACU CUGAUGA X GAA ACUGAUUC	GAAUCAGUC AGUAUCUG
	3662	UCUGCAGA CUGAUGA X GAA ACUGACUG	CAGUCAGUA UCUGCAGA
	3664	GUUCUGCA CUGAUGA X GAA AUACUGAC	GUCAGUAUC UGCAGAAC
25	3676	CUUUCGCU CUGAUGA X GAA ACUGUUCU	AGAACAGUA AGCGAAAG
	3702	AAUGUUUU CUGAUGA X GAA ACACUCAC	GUGAGUGUA AAAACAUU
	3710	UAUCUUCA CUGAUGA X GAA AUGUUUU	AAAAACAUU UGAAGAUA
	3711	AUAUCUUC CUGAUGA X GAA AAUGUUUU	AAAACAUU GAAGAUAU
	3718	UAACGGGA CUGAUGA X GAA AUCUUCAA	UUGAAGAUA UCCGUUA
30	3720	UCUAACGG CUGAUGA X GAA AUAUCUUC	GAAGAUAUC CCGUUAGA
	3725	GUUCUUCU CUGAUGA X GAA ACGGGAUA	UAUCCCGUU AGAAGAAC
	3726	GGUUCUUC CUGAUGA X GAA AACGGGAU	AUCCCGUUA GAAGAACCC
	3741	AUUACUUU CUGAUGA X GAA ACUUCUGG	CCAGAAGUA AAAGUAAU

	3747	UCUGGGAU CUGAUGA X GAA ACUUUUAC	GUAAAAGUA AUCCCAGA
	3750	UCAUCUGG CUGAUGA X GAA AUUACUUU	AAAGUAAUC CCAGAUGA
	3778	AAGAACCA CUGAUGA X GAA ACCACUGU	ACAGUGGUA UGGUUCUU
	3783	GAGGCAAG CUGAUGA X GAA ACCAUACC	GGUAUGGUU CUUGCUC
5	3784	UGAGGCAA CUGAUGA X GAA AACCAUAC	GUAGGUUC UGCCCUA
	3786	UCUGAGGC CUGAUGA X GAA AGAACCAU	AUGGUUCUU GCCUCAGA
	3791	GCUCUUCU CUGAUGA X GAA AGGCAAGA	UCUUGCCUC AGAAGAGC
	3808	GUCUUCCA CUGAUGA X GAA AGUUUUCA	UGAAAACUU UGGAAGAC
	3809	UGUCUUCC CUGAUGA X GAA AAGUUUUC	GAAAACUUU GGAAGACA
10	3827	AUGGAGAU CUGAUGA X GAA AUUUGGUU	AACCAAAUU AUCUCCAU
	3828	GAUGGAGA CUGAUGA X GAA AAUUUGGU	ACCAAAUUA UCUCCAUC
	3830	AAGAUGGA CUGAUGA X GAA AUAUUUUG	CAAAUUAUC UCCAUUU
	3832	AAAAGAUG CUGAUGA X GAA AGAUAAAU	AAUUAUCUC CAUCUUUU
	3836	CACCAAAA CUGAUGA X GAA AUGGAGAU	AUCUCCCAUC UUUUGGUG
15	3838	UCCACCAA CUGAUGA X GAA AGAUGGAG	CUCCAUUU UJGGUGGA
	3839	UUCCACCA CUGAUGA X GAA AAGAUGGA	UCCAUCUUU UGGUGGAA
	3840	AUUCCACC CUGAUGA X GAA AAAGAUGG	CCAUCUUUU GGUGGAAU
	3872	AUGCCACA CUGAUGA X GAA ACUCCCUG	CAGGGAGUC UGUGGCAU
	3881	AGCCUUCU CUGAUGA X GAA AUGCCACA	UGUGGCAUC UGAAGGCU
20	3890	UCUGGUUU CUGAUGA X GAA AGCCUUCA	UGAAGGCUC AAACCAGA
	3908	CGGACUGG CUGAUGA X GAA AGCCGCUU	AAGCGGCUA CCAGUCCG
	3914	GAUAUCCG CUGAUGA X GAA ACUGGUAG	CUACCAGUC CGGAUAUC
	3920	CGGAGUGA CUGAUGA X GAA AUCCGGAC	GUCCGGUA UCACUCCG
	3922	AUCGGAGU CUGAUGA X GAA AUAUCCGG	CCGGAUUAUC ACUCCGAU
25	3926	UGUCAUCG CUGAUGA X GAA AGUGAUAU	AUAUCACUC CGAUGACA
	3950	CACUGGAG CUGAUGA X GAA ACACGGUG	CACCGUGUA CUCCAGUG
	3953	CCUCACUG CUGAUGA X GAA AGUACACG	CGUGUACUC CAGUGAGG
	3972	AGCUUUAA CUGAUGA X GAA AGUUCUGC	GCAGAACUU UJAAAGCU
	3973	CAGCUUUA CUGAUGA X GAA AAGUUCUG	CAGAACUUU UAAAGCUG
30	3974	UCAGCUUU CUGAUGA X GAA AAAGUUCU	AGAACUUUU AAAGCUGA
	3975	AUCAGCUU CUGAUGA X GAA AAAAGUUC	GAACUUUUA AAGCUGAU
	3984	CCAAUCUC CUGAUGA X GAA AUCAGCUU	AAGCUGUA GAGAUUGG
	3990	UGCACUCC CUGAUGA X GAA AUCUCUAU	AUAGAGAUU GGAGUGCA

4006	GGCUGUGC CUGAUGA X GAA ACCGGUUU	AAACCGGU A GCACAGCC
4020	GGCUGGAG CUGAUGA X GAA AUCUGGGC	GCCCAGAU U CUCAGGCC
4021	AGGCUGGA CUGAUGA X GAA AAUCUGGG	CCCAGAUUC UCCAGCCU
4023	UCAGGCUG CUGAUGA X GAA AGAAUCUG	CAGAUUCUC CAGCCUGA
5 4052	CAGGAGGA CUGAUGA X GAA AGCUCAGU	ACUGAGCUC UCCUCCUG
4054	AACAGGAG CUGAUGA X GAA AGAGCUCA	UGAGCUCUC CUCCUGUU
4057	UUAAACAG CUGAUGA X GAA AGGAGAGC	GCUCUCCUC CUGUUUAA
4062	UCCUUUUA CUGAUGA X GAA ACAGGAGG	CCUCCUGUU UAAAAGGA
4063	UUCCUUUU CUGAUGA X GAA AACAGGAG	CUCCUGUUU AAAAGGAA
10 4064	CUUCCUU CUGAUGA X GAA AAACAGGA	UCCUGUUUA AAAGGAAG
4076	GGGGUGUG CUGAUGA X GAA AUGCUUCC	GGAAGCAUC CACACCCC
4089	AUGUCCGG CUGAUGA X GAA AGUUGGGG	CCCCAACUC CGGGACAU
4098	UCUCAUGU CUGAUGA X GAA AUGUCCGG	CCGGACACU ACAUGAGA
4110	UCUGAGCA CUGAUGA X GAA ACCUCUCA	UGAGAGGUC UGCUCAGA
15 4115	CAAAAUCU CUGAUGA X GAA AGCAGACC	GGUCUGCUC AGAUUUUG
4120	CACUCAA CUGAUGA X GAA AUCUGAGC	GCUCAGAU UUGAAGUG
4121	ACACUUCA CUGAUGA X GAA AAUCUGAG	CUCAGAUUU UGAAGUGU
4122	AACACUUC CUGAUGA X GAA AAAUCUGA	UCAGAUUUU GAAGUGUU
4130	GAAAGAAC CUGAUGA X GAA ACACUUCA	UGAAGUGUU GUUCUUUC
20 4133	GUGGAAAG CUGAUGA X GAA ACAACACU	AGUGUUGUU CUUCCAC
4134	GGUGGAAA CUGAUGA X GAA AACAAACAC	GUGUUGUUC UUUCACC
4136	CUGGUGGA CUGAUGA X GAA AGAACAAAC	GUUGUUCUU UCCACCAG
4137	GCUGGUGG CUGAUGA X GAA AAGAACAA	UUGUUCUUU CCACCAGC
4138	UGCUGGUG CUGAUGA X GAA AAAGAACAA	UGUUCUUUC CACCAGCA
25 4153	AAUGCAGGC CUGAUGA X GAA ACUUCUG	CAGGAAGUA GCCGCAUU
4161	GAAAAUCA CUGAUGA X GAA AUGCGGCU	AGCCGCAUU UGAUUUUC
4162	UGAAAAAUC CUGAUGA X GAA AAUGCGGC	GCCGCAUUU GAUUUUC
4166	GAAAUGAA CUGAUGA X GAA AUCAAAUG	CAUUUGAU UUCAUUUC
4167	CGAAAUGA CUGAUGA X GAA AAUCAAAU	AUJUGAUUU UCAUUUC
30 4168	UCGAAAUG CUGAUGA X GAA AAAUCAAA	UUJUGAUUU CAUUC
4169	GUCGAAA CUGAUGA X GAA AAAUCAA	UUGAUUUJC AUJUCGAC
4172	GUUGUCGA CUGAUGA X GAA AUGAAAAU	AUUUCAUU UCGACAAC
4173	UGUUGUCG CUGAUGA X GAA AAUGAAAA	UUUCAUUU CGACAACA

117

4174	CUGUUGUC CUGAUGA X GAA AAAUGAAA	UUUCAUUUC GACAACAG
4194	UGCAGUCC CUGAUGA X GAA AGGUCCUU	AAGGACCUC GGACUGCA
4214	GCCUAGAA CUGAUGA X GAA AGCUGGCU	AGCCAGCUC UUCUAGGC
4216	AAGCCUAG CUGAUGA X GAA AGAGCUGG	CCAGCUCUU CUAGGCUU
5 4217	CAAGCCUA CUGAUGA X GAA AAGAGCUG	CAGCUCUUC UAGGCUUG
4219	CACAAGCC CUGAUGA X GAA AGAAGAGC	GCUCUUCUA GGCUUGUG

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 *Nucleic Acids Res.* 20 3252). The length of stem II may be \approx 2 base-pairs.

118

Table V: Human KDR VEGF Receptor-Hairpin Ribozyme and Substrate Sequences

nt.	Position	Hairpin Ribozyme Sequence	Substrate
11	CGACGGCC AGAA GCACCU	ACCAAGAAAACACAGUACGUUACAUUACGUUA	AGGUGCU GCU GGCCGUCG
5 18	CACAGGGC AGAA GCCAGC ACCAGAGAAACACAGUUGGGUACAUUACGUUA	GCUUGGCC GUC GCCCUGUG	
51	CCCACAGA AGAA GCCCCG ACCAGAGAAACACAGUUGGGUACAUUACGUUA	CCGGGCC GGC UCUGUGGG	
86	UGAGCCUG AGAA GAUCAA ACCAGAGAAACACAGUUGGGUACAUUACGUUA	UUGAUUCU GGC CAGGUCA	
318	GAGGCCAA AGAA GUUUCC ACCAGAGAAACACAGUUGGGUACAUUACGUUA	GGAAACU GAC UGGGCUC	
358	AAAUGGAG AGAA GUAAUC ACCAGAGAAACACAGUUGGGUACAUUACGUUA	GAUUAACA GAU CUCCAUU	
10 510	CUGUUACC AGAA GGAACA ACCAGAGAAACACAGUUGGGUACAUUACGUUA	UGUUCU GAU GGUAAACAG	
623	ACAUAAA AGAA GGUAAC ACCAGAGAAACACAGUUGGGUACAUUACGUUA	GTTAACCA GUC UAUUAUGU	
683	UUCCAUGA AGAA GACUCA ACCAGAGAAACACAGUUGGGUACAUUACGUUA	UGAGUCC GUC UCAUGGAA	
705	UUUUCUCC AGAA GAUAGU ACCAGAGAAACACAGUUGGGUACAUUACGUUA	ACAUUCU GUU GGAGAAAA	
833	CACUCCA AGAA GGGUUTU ACCAGAGAAACACAGUUGGGUACAUUACGUUA	AAACCCA GUC UGGGAGUG	
15 932	UCUUGGUC AGAA GCCCAC ACCAGAGAAACACAGUUGGGUACAUUACGUUA	GUGGGCU GAU GACCAAGA	
1142	CCAUAAUC AGAA GUACAU ACCAGAGAAACACAGUUGGGUACAUUACGUUA	AUGUACU GAC GAUUAUGG	
1259	UCUCACCA AGAA GGGGUG ACCAGAGAAACACAGUUGGGUACAUUACGUUA	CACCCCA GAU UGGUGAGA	
1332	AUGGCAUA AGAA GUACAU ACCAGAGAAACACAGUUGGGUACAUUACGUUA	AUGIACG GUC UAGCCAU	

119

1376	CUCUCCU AGAA GCAAU ACCAGAGAACACAGUUGGUACAUACCUGUA	AUUGCA GUU GGAGGAAG
1413	GUCACUGA AGAA GCUUGG ACCAGAGAACACAGUUGGUACAUACCUGUA	CCAAGCU GUC UCAGUGAC
1569	UUGUACAA AGAA GACACA ACCAGAGAACACAGUUGGUACAUACCUGUA	UGUGUCA GCU UUGUACAA
1673	GCUCAGUG AGAA GCAUGU ACCAGAGAACACAGUUGGUACAUACCUGUA	ACAUGCA GCC CACUGAGC
5 1717	AAACGUAG AGAA GUUCGG ACCAGUG ACCAGAGAACACAGUUGGUACAUACCUGUA	GCAGACA GAU CUACGUUU
1760	UUGGCAGA AGAA GUUGGC ACCAGAGAACACAGUUGGUACAUACCUGUA	GCCCCACA GCC UCUGCCAA
1797	UUCUTUGCA AGAA GGUGUG ACCAGAGAACACAGUUGGUACAUACCUGUA	CACACCU GUU UGCAAGAA
1918	UUGGCAA AGAA GACAU ACCAGAGAACACAGUUGGUACAUACCUGUA	UAUGUCU GCC UTGCUCAA
1967	GGACUGUG AGAA GCCUGA ACCAGAGAACACAGUUGGUACAUACCUGUA	UCAGGCC GCU CACAGUC
10 1974	CGCUCUAG AGAA GUGAGC ACCAGAGAACACAGUUGGUACAUACCUGUA	GCUCACA GUC CUAGAGCG
2021	UACUTUGUC AGAA GAUUCU ACCAGAGAACACAGUUGGUACAUACCUGUA	AGAAUCA GAC GACAAGUA
2084	ACACAAUG AGAA GUUGGAG ACCAGAGAACACAGUUGGUACAUACCUGUA	CUCCACA GAU CAUGUGGU
2418	GGGAGUUC AGAA GGAUCC ACCAGAGAACACAGUUGGUACAUACCUGUA	GGAUCCA GAU GAACUCC
2453	CAUCAUAA AGAA GUCCUU ACCAGAGAACACAGUUGGUACAUACCUGUA	AACGACU GCC UTAUGAUG
15 2492	CUAGGUUC AGAA GGUCUC ACCAGAGAACACAGUUGGUACAUACCUGUA	GAGACCG GCU GAACCUAG
2547	CCAAAGGC AGAA GCUUCA ACCAGAGAACACAGUUGGUACAUACCUGUA	UGAAAGCA GAU GCCUUUJGG
2765	GGUAAGUG AGAA GGUUUC ACCAGAGAACACAGUUGGUACAUACCUGUA	GAAACCU GUC CACUUAC
2914	AAAUCCAG AGAA GGCGUG ACCAGAGAACACAGUUGGUACAUACCUGUA	UCAGGCC GCU CUGGAUU
2993	GCUCCAAG AGAA GGAAAG ACCAGAGAACACAGUUGGUACAUACCUGUA	ACUUCU GAC CUUGGAGC

120

3019	CACUUGGA AGAA GUAACA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UGUUACA GCU UCCAAGUG
3165	CUGACAUU AGAA GGAUCU ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	AGAUCCA GAU UAUGUCAG
3378	GUAGUAUA AGAA GGGGCC ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	GGCCCCU GAU UAUACUAC
3404	CCAGCAUG AGAA GUUACA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UGUACCA GAC CAUGCUGG
5	3418 CCCGUGCC AGAA GUCCAG ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	CUGGACU GCU GGCACGGG
3575	GUGAGGU AGAA GAGAGA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UCUCUCU GCC UACCUCAC
3588	AUACAGGA AGAA GGUGAG ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	CUCACCU GUU UCCUGUAU
3689	CACUCACA AGAA GGCUCU ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	AGAGCCG GCC UGUGAGUG
3753	UGGUUGUC AGAA GGGAUU ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	AAUCCA GAU GACAACCA
10	3764 CACUGUCC AGAA GGUGU ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	ACAACCA GAC GGACAGUG
3911	GAUAUCCG AGAA GGUGAG ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	GCUACCA GUC CGGAUAVC
3927	UCUGUGUC AGAA GAGUGA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UCACUCC GAU GACACAGA
4011	AGAACUCUG AGAA GUCCUA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UAGGCACA GCC CAGAUUC
4016	GCUGGAGA AGAA GGGCUG ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	CAGGCCA GAU UCUCAGC
15	4025 CCGUGUCA AGAA GGAGAA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UUCUCCU GCC UGACACGG
4059	UCCUTUTA AGAA GGAGGA ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	UAAAAGGA
4111	AAAUCUG AGAA GACCUC ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	GAGGUUCU GCU CAGAUUU
4116	ACUUCAAA AGAA GGCGAG ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	CUGCUCA GAU UTUGAAGU
4195	UCCUGGCA AGAA GAGGUC ACCAGAGAAACACGGUUGGUUCAUUAUCCUGGU	GACCUUCG GAC UGCAGGGG

120

121

GGAGCCA GCU CUUCUAGC

CCUAGAAG AGAA GGCUCCC ACCAGAGAACACACCGUUGGUACAUUACCUUGUA

121

4210

Table VI: Mouse *flk-1* VEGF Receptor-Hammerhead Ribozyme and Substrate Sequence

nt. Posi tion	HH Ribozyme Sequence	Substrate
13	CCGUACCC CUGAUGA X GAA AUUCGCC	GGGCGAAUU GGGUACGG
18	GGGUCCCCG CUGAUGA X GAA ACCCAAUU	AAUUGGGUA CGGGACCC
31	UCGACCUC CUGAUGA X GAA AGGGGGGU	ACCCCCCUC GAGGUCGA
37	AUACCGUC CUGAUGA X GAA ACCUCGAG	CUCGAGGUC GACGGUAU
10 44	CUUAUCGA CUGAUGA X GAA ACCGUCGA	UCGACGGUA UCGAUAAAG
46	AGCUUAUC CUGAUGA X GAA AUACCGUC	GACGGUAUC GAUAAGCU
50	AUCAAGCU CUGAUGA X GAA AUCGAUAC	GUAUCCGAUA AGCUUGAU
55	UCGAUAUC CUGAUGA X GAA AGCUUAUC	GAUAAGCUU GAUAUCGA
59	GAAUUCGA CUGAUGA X GAA AUCAAGCU	AGCUUGAUUA UCGAAUUC
15 61	CCGAAUUC CUGAUGA X GAA AUAUCAAG	CUJUGAUUAUC GAAUUCGG
66	UGGGCCCG CUGAUGA X GAA AUUCGAUA	UAUCGAAUU CGGGCCCA
67	CUGGGCCC CUGAUGA X GAA AAUUCGAU	AUCGAAUUC GGGCCCAG
83	GGCUGCGG CUGAUGA X GAA ACACAGUC	GACUGUGUC CCGCAGCC
97	AGCCAGGU CUGAUGA X GAA AUCCCGGC	GCCGGGAUA ACCUGGCU
20 114	GUCCGCGG CUGAUGA X GAA AUCGGGUC	GACCCGAUU CCGCGGAC
115	UGUCCGCG CUGAUGA X GAA AAUCGGGU	ACCCGAUUC CGCGGACA
169	ACCGGGGA CUGAUGA X GAA AGCGCGGG	CCCGCGCUC UCCCCGGU
171	AGACCGGG CUGAUGA X GAA AGAGCGCG	CGCGCUCUC CCCGGUCU
178	CAGCGCAA CUGAUGA X GAA ACCGGGGA	UCCCCGGUC UUGCGCUG
25 180	CGCAGCGC CUGAUGA X GAA AGACCGGG	CCCGGUCUU GCGCUGCG
197	AGAGGC GG CUGAUGA X GAA AUGGCC	GGGGCCAUA CCGCCUCU
204	AAGUCACA CUGAUGA X GAA AGGGGU	UACCGCCUC UGUGACUU
212	CCGCAAAG CUGAUGA X GAA AGUCACAG	CUGUGACUU CUUUGC
213	CCCGCAAA CUGAUGA X GAA AAGUCACA	UGUGACUUC UUUGC
30 215	GGCCCGCA CUGAUGA X GAA AGAAGUCA	UGACUUCUU UGCGGGCC

123

216	UGGCCCGC CUGAUGA X GAA AAGAACUC	GACUUCUUU GCAGGCCA
241	CAGGCACA CUGAUGA X GAA ACUCCUUC	GAAGGAGUC UGUGCCUG
262	UGGGCACA CUGAUGA X GAA AGCCCAGU	ACUGGGCUC UGUGCCCA
306	GCGACAGC CUGAUGA X GAA AGCAGCGC	GCGCUGCUA GCUGUCGC
5	312 CACAGAGC CUGAUGA X GAA ACAGCUAG	CUAGCUGUC GCUCUGUG
	316 GAACCACA CUGAUGA X GAA AGCGACAG	CUGUCGCUC UGUGGUUC
	323 CCACGCAG CUGAUGA X GAA ACCACAGA	UCUGUGGUU CUGCGUGG
	324 UCCACGCA CUGAUGA X GAA AACCAACAG	CUGUGGUUC UGCGUGGA
	347 AACCCACA CUGAUGA X GAA AGGCGGCU	AGCCGCCUC UGUGGGUU
10	355 GCCAGUCA CUGAUGA X GAA ACCCACAG	CUGUGGGUU UGACUGGC
	356 CGCCAGUC CUGAUGA X GAA AACCCACA	UGUGGGUUU GACUGGCG
	367 AUGGAGAA CUGAUGA X GAA AUCGCCAG	CUGGCGAUU UUCUCCAU
	368 GAUGGAGA CUGAUGA X GAA AAUCGCCA	UGGCGAUUU UCUCCAUC
	369 GGAUGGAG CUGAUGA X GAA AAAUCGCC	GGCGAUUUU CUCCAUCC
15	370 GGGGAUGGA CUGAUGA X GAA AAAAUCGC	GCGAUUUUC UCCAUCCC
	372 GGGGGAUG CUGAUGA X GAA AGAAAAAU	GAUUUUCUC CAUCCCC
	376 CUUGGGGG CUGAUGA X GAA AUGGAGAA	UUCUCCAUU CCCCAAG
	387 UGUGUGCU CUGAUGA X GAA AGCUUGGG	CCCAAGCUC AGCACACA
	405 AUJUGUCAG CUGAUGA X GAA AUGUCUUU	AAAGACAUU CUGACAAU
20	414 UUJUGCCAA CUGAUGA X GAA AUJUGUCAG	CUGACAAUU UUGGCAAA
	415 AUJUGCCA CUGAUGA X GAA AAUJUGUCA	UGACAAUUU UGGCAAAU
	416 UAUUUGCC CUGAUGA X GAA AAAUUGUC	GACAAUUU GGCAAAUA
	424 AAGGGUUG CUGAUGA X GAA AUUUGCAC	UGGCAAAUA CAACCCUU
	432 GUAAUCUG CUGAUGA X GAA AGGGUUGU	ACAACCUU CAGAUUAC
25	433 AGUAAUCU CUGAUGA X GAA AAGGGUUG	CAACCCUUC AGAUUACU
	438 CUGCAAGU CUGAUGA X GAA AUCUGAAG	CUUCAGAUU ACUUGCAG
	439 CCUGCAAAG CUGAUGA X GAA AAUCUGAA	UUCAGAUU CUUGCAGG
	442 UCCCCUGC CUGAUGA X GAA AGUAAUCU	AGAUUACUU GCAGGGGA
	471 UUGGGCCA CUGAUGA X GAA AGCCAGUC	GACUGGCUU UGGCCCAA
30	472 AUUGGGCC CUGAUGA X GAA AAGCCAGU	ACUGGCUUU GGCCAAU

484	AUCACGCU CUGAUGA X GAA AGCAUUGG	CCAAUGCUC AGCGUGAU
493	UUCCUCAG CUGAUGA X GAA AUCACGCU	AGCGUGAUU CUGAGGAA
494	UUUCCUCA CUGAUGA X GAA AAUCACGC	GCGUGAUUC UGAGGAAA
507	GUCACCAA CUGAUGA X GAA ACCCUUUC	GAAAGGGUA UUGGGUGAC
5	509 CAGUCACC CUGAUGA X GAA AUACCCUU	AAGGGUAUU GGUGACUG
538	GCAGAAGA CUGAUGA X GAA ACUGUCAC	GUGACAGUA UCUUCUGC
540	UUGCAGAA CUGAUGA X GAA AUACUGUC	GACAGUAUC UUCUGCAA
542	UUUUGCAG CUGAUGA X GAA AGAUACUG	CAGUAUCUU CUGCAAAA
543	GUUUUGCA CUGAUGA X GAA AAGAUACU	AGUAUCUUC UGCAAAAC
10	555 GGAAUGGU CUGAUGA X GAA AGUGUUUU	AAAACACUC ACCAUUCC
561	ACCCUGGG CUGAUGA X GAA AUGGUGAG	CUCACCAUU CCCAGGGU
562	CACCCUGG CUGAUGA X GAA AAUGGUGA	UCACCAUUC CCAGGGUG
573	UCAUUUCC CUGAUGA X GAA ACCACCCU	AGGGUGGUU GGAAAUGA
583	GGCUCCAG CUGAUGA X GAA AUCAUUUC	GAAAUGUA CUGGAGCC
15	593 AGCACUUG CUGAUGA X GAA AGGCCUCA	UGGAGCCUA CAAGUGCU
602	CCC GGUAC CUGAUGA X GAA AGCACUUG	CAAGUGCUC GUACCGGG
605	CGUCCCCG CUGAUGA X GAA ACGAGCAC	GUGCUCCUA CCGGGACG
615	GCUAUGUC CUGAUGA X GAA ACGUCCCG	CGGGACGUC GACAUAGC
621	GUGGAGGC CUGAUGA X GAA AUGUCGAC	GUCGACAUA GCCUCCAC
20	626 AAACAGUG CUGAUGA X GAA AGGCUAUG	CAUAGCCUC CACUGUUU
633	UAGACAU CUGAUGA X GAA ACAGUGGA	UCCACUGUU UAUGUCUA
634	AUAGACAU CUGAUGA X GAA AACAGUGG	CCACUGUUU AUGUCUAU
635	CAUAGACA CUGAUGA X GAA AAACAGUG	CACUGUUUA UGUCUAUG
639	CGAACAU CUGAUGA X GAA ACAUAAAC	GUUUUJUGUC UAUJGUUCG
25	641 CUCGAACA CUGAUGA X GAA AGACAUAA	UUAUGUCUA UGUJUCGAG
645	UAAUCUCG CUGAUGA X GAA ACAUAGAC	GUCUAUGUU CGAGAUUA
646	GUAAUCUC CUGAUGA X GAA AACAUAGA	UCUAUGUUU GAGAUUAC
652	UGAUCUGU CUGAUGA X GAA AUCUCGAA	UUCGAGAUU ACAGAUCA
653	GUGAUCUG CUGAUGA X GAA AAUCUCGA	UCGAGAUUA CAGAUCAC
30	659 UGAAUGGU CUGAUGA X GAA AUCUGUAA	UUACAGAUC ACCAUUCA

125

665	AGGCGAUG CUGAUGA X GAA AUGGUGAU	AUCACCAUU CAUCGCCU
666	GAGGCGAU CUGAUGA X GAA AAUGGUGA	UCACCAUUC AUCGCCUC
669	ACAGAGGC CUGAUGA X GAA AUGAAUGG	CCAUUCAUC GCCUCUGU
674	CACUGACA CUGAUGA X GAA AGGCGAUG	CAUCGCCUC UGUCAGUG
5	678 UGGUCACU CUGAUGA X GAA ACAGAGGC	GCCUCUGUC AGUGACCA
	696 AUGUACAC CUGAUGA X GAA AUGCCAUG	CAUGGCAUC GUGUACAU
	701 CGGUGAUG CUGAUGA X GAA ACACGAUG	CAUCCGUGUA CAUCACCG
	705 UUCUCGGU CUGAUGA X GAA AUGUACAC	GUGUACAUUC ACCGAGAA
	735 CGGCAGGG CUGAUGA X GAA AUCACCAC	GUGGUGAUC CCCUGCCG
10	749 UUGAAAUC CUGAUGA X GAA ACCCUCGG	CCGAGGGUC GAUUUCAA
	753 AGGUUUGA CUGAUGA X GAA AUCGACCC	GGGUCGAUU UCAAACCU
	754 GAGGUUUG CUGAUGA X GAA AAUCGACC	GGUCGAUUU CAAACCUC
	755 UGAGGUUU CUGAUGA X GAA AAAUCGAC	GUCGAUUUC AAACCUCA
	762 GACACAUU CUGAUGA X GAA AGGUUUGA	UCAAACCUUC AAUGUGUC
15	770 CGCAAAGA CUGAUGA X GAA ACACAUUG	CAAUGUGUC UCUUJCG
	772 AGCGCAAA CUGAUGA X GAA AGACACAU	AUGUGUCUC UUUGCGCU
	774 CUAGCGCA CUGAUGA X GAA AGAGACAC	GUGUCUCUU UGCGCUAG
	775 CCUAGCGC CUGAUGA X GAA AAGAGACA	UGUCUCUUU GCGCUAGG
	781 UGGAUACC CUGAUGA X GAA AGCGCAAA	UUJCGCUA GGUAUCCA
20	785 UUUCUGGA CUGAUGA X GAA ACCUAGCG	CGCUAGGUA UCCAGAAA
	787 CUUUUCUG CUGAUGA X GAA AUACCUAG	CUAGGUAUC CAGAAAAG
	800 CCGGAACA CUGAUGA X GAA AUCUCUUU	AAAGAGAUU UGUUCCGG
	801 UCCGGAAC CUGAUGA X GAA AAUCUCUU	AAGAGAUUU GUUCCGGA
	804 CCAUCCGG CUGAUGA X GAA ACAAAUC	AGAUUJGUU CCGGAUGG
25	805 UCCAUCGG CUGAUGA X GAA AACAAAU	GAUUUGUUC CGGAUGGA
	822 UCCCAGGA CUGAUGA X GAA AUUCUGUU	AACAGAAUU UCCUGGGA
	823 GUCCCAGG CUGAUGA X GAA AAUUCUGU	ACAGAAUUU CCUGGGAC
	824 UGUCCCAG CUGAUGA X GAA AAAUUCUG	CAGAAUUUC CUGGGACA
	840 GUAAAGCC CUGAUGA X GAA AUCUCGCU	AGCGAGAUA GGCUUUAC
30	845 GGAGAGUA CUGAUGA X GAA AGCCUAUC	GAUAGGCUU UACUCUCC

	846	GGGAGAGU CUGAUGA X GAA AAGCCUAU	AUAGGCUUU ACUCUCCCC
	847	GGGGAGAG CUGAUGA X GAA AAAGCCUA	UAGGCUUUA CUCUCCCCC
	850	ACUGGGGA CUGAUGA X GAA AGUAAAAGC	GCUUUACUC UCCCCAGU
	852	UAACUGGG CUGAUGA X GAA AGAGUAAA	UUUACUCUC CCCAGUUA
5	859	GAUCAUGU CUGAUGA X GAA ACUGGGGA	UCCCCAGUU ACAUGAUC
	860	UGAUCAUG CUGAUGA X GAA AACUGGGG	CCCCAGUUUA CAUGAUCA
	867	GCAUAGCU CUGAUGA X GAA AUCAUGUA	UACAUGAUC AGCUAUGC
	872	UGCCGGCA CUGAUGA X GAA AGCUGAUC	GAUCAGCUA UGCCGGCA
	885	UCACAGAA CUGAUGA X GAA ACCAUGCC	GGCAUGGUC UUCUGUGA
10	887	CCUCACAG CUGAUGA X GAA AGACCAUG	CAUGGUCUU CUGUGAGG
	888	GCCUCACA CUGAUGA X GAA AAGACCAU	AUGGUCUUC UGUGAGGC
	903	UCAUCAUU CUGAUGA X GAA AUCUUUGC	GCAAAGAUC AAUGAUGA
	917	UAGACUGA CUGAUGA X GAA AGGUUUCA	UGAAACCUA UCAGUCUA
	919	GAUAGACU CUGAUGA X GAA AUAGGUUU	AAACCUAUC AGUCUAUC
15	923	ACAUGAUA CUGAUGA X GAA ACUGAUAG	CUAUCAGUC UAUCAUGU
	925	GUACAUCA CUGAUGA X GAA AGACUGAU	AUCAGUCUA UCAUGUAC
	927	AUGUACAU CUGAUGA X GAA AUAGACUG	CAGUCUAUC AUGUACAU
	932	CAACUAUG CUGAUGA X GAA ACAUGAUA	UAUCAUGUA CAUAGUUG
	936	ACCACAAAC CUGAUGA X GAA AUGUACAU	AUGUACAUUA GUUGUGGU
20	939	ACAACCAC CUGAUGA X GAA ACUAUGUA	UACAUAGUU GUGGUJUGU
	945	UAUCCUAC CUGAUGA X GAA ACCACAAAC	GUUGUGGUU GUAGGAUA
	948	CUAAUACC CUGAUGA X GAA ACAACCAC	GUGGUJUGUA CGAUUAUAG
	953	AAAUCUA CUGAUGA X GAA AUCCUACA	UGUAGGAUA UAGGAUUU
	955	AUAAAUCU CUGAUGA X GAA AUAUCCUA	UAGGAUUA GGAAUUAU
25	960	ACAUCAUA CUGAUGA X GAA AUCCUAAU	UAUAGGAUU UAUGAUGU
	961	CACAUCAU CUGAUGA X GAA AAUCCUAU	AUAGGAUUU AUGAUGUG
	962	UCACAUCA CUGAUGA X GAA AAAUCCUA	UAGGAUUUA UGAUGUGA
	972	GGGCUCAG CUGAUGA X GAA AUCACAU	GAUGUGAUU CUGAGCCC
	973	GGGGCUCA CUGAUGA X GAA AAUCACAU	AUGUGAUUC UGAGCCCC
30	993	GAUAGCUC CUGAUGA X GAA AUUCAUG	CAUGAAAUU GAGCUAUC

	999	CCGGCAGA CUGAUGA X GAA AGCUAAU	AUUGAGCUA UCUGCCGG
	1001	CUCCGGCA CUGAUGA X GAA AUAGCUA	UGACCUAUC UGCCGGAG
	1017	UUUAAGAC CUGAUGA X GAA AGUUUUUC	GAAAAACUU GUCUUAAA
	1020	CAAUUUA CUGAUGA X GAA ACAAGUUU	AAACUUGUC UUAAAUUG
5	1022	UACAAUUU CUGAUGA X GAA AGACAAGU	ACUUGUCUU AAAUUGUA
	1023	GUACAAUU CUGAUGA X GAA AAGACAAG	CUUGUCUUA AAUUGUAC
	1027	CGCUGUAC CUGAUGA X GAA AUUUAAGA	UCUUAUUU GUACAGCG
	1030	UCUCGCUG CUGAUGA X GAA ACAAUUU	UAAAUJUGUA CAGCGAGA
	1047	CCCACAAU CUGAUGA X GAA AGCUCUGU	ACAGAGCUC AAUGUGGG
10	1059	GUGAAAUC CUGAUGA X GAA AGCCCCAC	GUGGGCUU GAUUUCAC
	1063	CCAGGUGA CUGAUGA X GAA AUCAAGCC	GGCUUGAUU UCACCUGG
	1064	GCCAGGUG CUGAUGA X GAA AAUCAAGC	GCUUGAUUU CACCUGGC
	1065	UGCCAGGU CUGAUGA X GAA AAAUCAAG	CUUGAUUUC ACCUGGCA
	1076	AAGGUGGA CUGAUGA X GAA AGUGCCAG	CUGGCACUC UCCACCUU
15	1078	UGAAGGUG CUGAUGA X GAA AGAGUGCC	GGCACUCUC CACCUUCA
	1084	AGACUUUG CUGAUGA X GAA AGGUGGAG	CUCCACCUU CAAAGUCU
	1085	GAGACUUU CUGAUGA X GAA AAGGUGGA	UCCACCUUC AAAGUCUC
	1091	UAUGAUGA CUGAUGA X GAA ACUUUGAA	UUCAAAGUC UCAUCAUA
	1093	CUUAUGAU CUGAUGA X GAA AGACUUUG	CAAAGUCUC AUCAUAAG
20	1096	CUUCUUAU CUGAUGA X GAA AUGAGACU	AGUCUCAUC AUAAGAAG
	1099	AAUCUUCU CUGAUGA X GAA AUGAUGAG	CUCAUCAUA AGAAGAUU
	1107	CGGUUUAC CUGAUGA X GAA AUCUUCUU	AAGAAGAUU GUAAACCG
	1110	UCCCAGGU CUGAUGA X GAA ACAAUUU	AAGAUJUGUA AACCGGGA
	1130	UCCCAGGA CUGAUGA X GAA AGGUUUC	GAAACCCUU UCCUGGGA
25	1131	GUCCCAGG CUGAUGA X GAA AAGGGUUU	AAACCCUUU CCUGGGAC
	1132	AGUCCCAG CUGAUGA X GAA AAAGGGUU	AACCCUUUC CUGGGACU
	1154	UGCUCAAA CUGAUGA X GAA ACAUCUUC	GAAGAUGUU UUUGAGCA
	1155	GUGCUCAA CUGAUGA X GAA AACAUUU	AAGAUGUUU UUGAGCAC
	1156	GGUGCUC CUGAUGA X GAA AAACAUCU	AGAUGUUU UGAGCACC
30	1157	AGGUGCUC CUGAUGA X GAA AAAACAUC	GAUGUUUU GAGCACCU

	1166	CUAUJUGUC CUGAUGA X GAA AGGUGCUC	GAGCACCUU GACAAUAG
	1173	ACACUUUC CUGAUGA X GAA AUUGUCAA	UUGACAAUA GAAAGUGU
	1205	CACAGGUG CUGAUGA X GAA AUUCCCCU	AGGGGAAUA CACCUGUG
	1215	CUGGACGC CUGAUGA X GAA ACACAGGU	ACCUGUGUA GCGUCCAG
5	1220	GUCCACUG CUGAUGA X GAA ACGCUACA	UGUAGCGUC CAGUGGAC
	1236	UUUCUCUU CUGAUGA X GAA AUCAUCCG	CGGAUGAUC AAGAGAAA
	1246	AAAUGUUC CUGAUGA X GAA AUUUCUCU	AGAGAAAUA GAACAUUU
	1253	CUCGGACA CUGAUGA X GAA AUGUUCUA	UAGAACAUU UGUCCGAG
	1254	ACUCGGAC CUGAUGA X GAA AAUGUUCU	AGAACAUUU GUCCGAGU
10	1257	UGAACUCG CUGAUGA X GAA ACAAAUGU	ACAUUJUGUC CGAGUUCA
	1263	UUUGUGUG CUGAUGA X GAA ACUCGGAC	GUCCGAGUU CACACAAA
	1264	CUUUGUGU CUGAUGA X GAA AACUCGGA	UCCGAGUUC ACACAAAG
	1276	AGCAAUAUA CUGAUGA X GAA AGGCUUJG	CAAAGCCUU UUAUUGCU
	1277	AAGCAAUA CUGAUGA X GAA AAGGCCUU	AAAGCCUUU UAUUGCUU
15	1278	AAAGCAAU CUGAUGA X GAA AAAGGCUU	AAGCCUUUU AUUGCUUU
	1279	GAAAGCAA CUGAUGA X GAA AAAAGGCU	AGCCUUUUUA UUGCUUUC
	1281	CCGAAAGC CUGAUGA X GAA AUAAAAGG	CCUUUUAUU GCUUUCGG
	1285	ACUACCGA CUGAUGA X GAA AGCAAAUA	UUAUJGCUU UCGGUAGU
	1286	CACUACCG CUGAUGA X GAA AAGCAAUA	UAUUGCUUU CGGUAGUG
20	1287	CCACUACC CUGAUGA X GAA AAAGCAAU	AUUGCUUUC GGUAGUGG
	1291	CAUCCCAC CUGAUGA X GAA ACCGAAAG	CUUUCGGUA GUGGGAUG
	1304	CCACCAAA CUGAUGA X GAA AUUCAUC	GAUGAAAUC UUUGGUGG
	1306	UUCCACCA CUGAUGA X GAA AGAUUUC	UGAAAUCUU UGGUGGAA
	1307	CUUCCACC CUGAUGA X GAA AAGAUUUC	GAAAUCUU GGUGGAAG
25	1330	UCGGACUU CUGAUGA X GAA ACUGCCCA	UGGGCAGUC AAGUCCGA
	1335	GGGAUJCG CUGAUGA X GAA ACUUGACU	AGUCAAGUC CGAAUCCC
	1341	UUCACAGG CUGAUGA X GAA AUUCGGAC	GUCCGAAUC CCUGUGAA
	1352	AACUGAGA CUGAUGA X GAA ACUUCACA	UGUGAAGUA UCUCAGUU
	1354	GUAACUGA CUGAUGA X GAA AUACUUCA	UGAAGUAUC UCAGUUAC
30	1356	GGGUAAACU CUGAUGA X GAA AGAUACUU	AAGUAUCUC AGUUACCC

129

	1360 AGCUGGGU CUGAUGA X GAA ACUGAGAU	AUCUCAGUU ACCCAGCU
	1361 GAGCUGGG CUGAUGA X GAA AACUGAGA	UCUCAGUUA CCCAGCUC
	1369 GAUAUCAG CUGAUGA X GAA AGCUGGGU	ACCCAGCUC CUGAUAUC
	1375 CCAUUUGA CUGAUGA X GAA AUCAGGAG	CUCCUGAUUA UCAAAUGG
5	1377 UACCAUU CUGAUGA X GAA AUAAUCAGG	CCUGAUUAUC AAAUGGUA
	1385 CAUUCUG CUGAUGA X GAA ACCAUUUG	CAAAUGGUA CAGAAAUG
	1404 UUGGACUC CUGAUGA X GAA AUGGGCCU	AGGCCCAUU GAGUCCAA
	1409 UGUAGUUG CUGAUGA X GAA ACUCAAUG	CAUUGAGUC CAACUACA
	1415 UCAUUGUG CUGAUGA X GAA AGUUGGAC	GUCCAACUA CACAAUGA
10	1425 UCGCCAAC CUGAUGA X GAA AUCAUUGU	ACAAUGAUU GUUGGCAGA
	1428 UCAUCGCC CUGAUGA X GAA ACAAUCAU	AUGAUJGUU GGCGAUGA
	1440 AUGAUGGU CUGAUGA X GAA AGUUCAUC	GAUGAACUC ACCAUCAU
	1446 ACUUCCAU CUGAUGA X GAA AUGGUGAG	CUCACCAUC AUGGAAGU
	1478 UGACCGUG CUGAUGA X GAA AGUUUUCU	AGGAAACUA CACGGUCA
15	1485 GUGAGGAU CUGAUGA X GAA ACCGUGUA	UACACGGUC AUCCUCAC
	1488 UUGGUGAG CUGAUGA X GAA AUGACCGU	ACGGUCAUC CUCACCAA
	1491 GGGUUGGU CUGAUGA X GAA AGGAUGAC	GUCAUCCUC ACCAACCC
	1503 UCCAUUGA CUGAUGA X GAA AUGGGGUU	AACCCCAUU UCAAUGGA
	1504 CUCCAUJUG CUGAUGA X GAA AAUGGGGU	ACCCCAUUU CAAUGGAG
20	1505 UCUCCAUU CUGAUGA X GAA AAAUGGGG	CCCCCAUUUC AAUGGAGA
	1530 ACCAGAGA CUGAUGA X GAA ACCAUGUG	CACAUGGUC UCUCUGGU
	1532 CAACCAGA CUGAUGA X GAA AGACCAUG	CAUGGUCUC UCUGGUUG
	1534 CACAACCA CUGAUGA X GAA AGAGACCA	UGGUCUCUC UGGUUGUG
	1539 ACAUUCAC CUGAUGA X GAA ACCAGAGA	UCUCUGGUU GUGAAUGU
25	1548 UGGGGUGG CUGAUGA X GAA ACAUUCAC	GUGAAUGUC CCACCCCA
	1560 UUCUCACC CUGAUGA X GAA AUCUGGGG	CCCCAGAUC GGUGAGAA
	1574 GCGAGAUC CUGAUGA X GAA AGGCUUUC	GAAAGCCUU GAUCUCGC
	1578 AUAGGCAGA CUGAUGA X GAA AUCAAGGC	GCCUJUGAUC UCGCCUAU
	1580 CCAUAGGC CUGAUGA X GAA AGAUCAAG	CUUGAUCUC GCCUAUGG
30	1585 GGAAUCCA CUGAUGA X GAA AGGCGAGA	UCUCGCCUA UGGAUUCC

130

	1591	CUGGUAGG CUGAUGA X GAA AUCCAUAG	CUAUGGAUU CCUACCAAG
	1592	ACUGGUAG CUGAUGA X GAA AAUCCAU	UAUGGAUUC CUACCAGU
	1595	CAUACUGG CUGAUGA X GAA AGGAAUCC	GGAUUCCUA CCAGUAUG
	1601	UGGUCCCCA CUGAUGA X GAA ACUGGUAG	CUACCAGUA UGGGACCA
5	1619	UGCAUGUC CUGAUGA X GAA AUGUCUGC	GCAGACAUU GACAUGCA
	1632	UUGGCGUA CUGAUGA X GAA ACUGUGCA	UGCACAGUC UACGCCAA
	1634	GGUUGGCG CUGAUGA X GAA AGACUGUG	CACAGUCUA CGCCAACC
	1645	GUGCAGGG CUGAUGA X GAA AGGGUUGG	CCAACCCUC CCCUGCAC
	1659	UACCACUG CUGAUGA X GAA AUGUGGUG	CACCACAUU CAGUGGU
10	1667	GCUGCCAG CUGAUGA X GAA ACCACUGG	CCAGUGGU A CUGGCAGC
	1677	GCUUCUUC CUGAUGA X GAA AGCUGCCA	UGGCAGCUA GAAGAACG
	1691	GUCUGUAG CUGAUGA X GAA AGCAGGCU	AGCCUGCUC CUACAGAC
	1694	CGGGUCUG CUGAUGA X GAA AGGAGCAG	CUGCUCCUA CAGACCCG
	1718	UACAAGCA CUGAUGA X GAA ACCGGCUU	AAGCCCGUA UGGUUGUA
15	1723	UUCUUUAC CUGAUGA X GAA AGCAUACG	CGUAUGCUU GUAAAAGAA
	1726	CCAUUCUU CUGAUGA X GAA ACAAGCAU	AUGCUJUGUA AAGAAUUGG
	1750	CCCCUGGA CUGAUGA X GAA AUCCUCCA	UGGAGGAUU UCCAGGGG
	1751	CCCCCUGG CUGAUGA X GAA AAUCCUCC	GGAGGAUUU CCAGGGGG
	1752	CCCCCCCUG CUGAUGA X GAA AAAUCCUC	GAGGAUUUC CAGGGGGG
20	1770	GUGACUUC CUGAUGA X GAA AUCUJGUU	AACAAGAUC GAAGUCAC
	1776	UUUUUGGU CUGAUGA X GAA ACUUCGAU	AUCGAAGUC ACCAAAAAA
	1790	UCAGGGCA CUGAUGA X GAA AUUGGUUU	AAACCAAUA UGCCUGA
	1800	UUUCCUUC CUGAUGA X GAA AUCAGGGC	GCCCUGAUU GAAGGAAA
	1821	AGCGUACU CUGAUGA X GAA ACAGUUUU	AAAACUGUA AGUACGCU
25	1825	GACCAGCG CUGAUGA X GAA ACUUAACAG	CUGUAAGUA CGCUGGUC
	1833	GCUUGGAU CUGAUGA X GAA ACCAGCGU	ACGCUGGUC AUCCAAGC
	1836	GCAGCUUG CUGAUGA X GAA AUGACCAG	CUGGUCAUC CAAGCUGC
	1853	ACAACGCU CUGAUGA X GAA ACACGUUG	CAACGUGUC AGCGUUGU
	1859	AUJUGUAC CUGAUGA X GAA ACGCUGAC	GUCAGCGUU GUACAAAU
30	1862	CACAUUUG CUGAUGA X GAA ACAACGCU	AGCGUUGUA CAAAUGUG

	1878	GCUUUGUU CUGAUGA X GAA AUGGUUC	GAAGCCAUC AACAAAGC
	1905	AAGGAGAU CUGAUGA X GAA ACCCUCUC	GAGAGGGUC AUCUCCUU
	1908	UGGAAGGA CUGAUGA X GAA AUGACCCU	AGGGUCAUC UCCUUCCA
	1910	CAUGGAAG CUGAUGA X GAA AGAUGACC	GGUCAUCUC CUUCCAUG
5	1913	UCACAUGG CUGAUGA X GAA AGGAGAUG	CAUCUCCUU CCAUGUGA
	1914	AUCACAUG CUGAUGA X GAA AAGGAGAU	AUCUCCUUC CAUGUGAU
	1923	GGACCCCU CUGAUGA X GAA AUCACAUG	CAUGUGAUC AGGGGUCC
	1930	AAUUCAG CUGAUGA X GAA ACCCCUGA	UCAGGGGUC CUGAAAUU
	1938	UGCACAGU CUGAUGA X GAA AUUUCAGG	CCUGAAAUU ACUGUGCA
10	1939	UUGCACAG CUGAUGA X GAA AAUUCAG	CUGAAAUUA CUGUGCAA
	1982	ACAACAGG CUGAUGA X GAA ACACACUC	GAGUGUGUC CCUGUUGU
	1988	CAGUGCAC CUGAUGA X GAA ACAGGGAC	GUCCCUGUU GUGCACUG
	2008	CUCAAACG CUGAUGA X GAA AUUUCUGU	ACAGAAAUJA CGUUUGAG
	2012	GGUUCUCA CUGAUGA X GAA ACGUAUUU	AAAUAACGUU UGAGAACCC
15	2013	AGGUUCUC CUGAUGA X GAA AACGUAUU	AAUACGUUU GAGAACCU
	2022	UACCACGU CUGAUGA X GAA AGGUUCUC	GAGAACCUUC ACGUGGUA
	2030	CAAGCUUG CUGAUGA X GAA ACCACGUG	CACGUGGUA CAAGCUUG
	2037	UGUGAGCC CUGAUGA X GAA AGCUUGUA	UACAAGCUU GGCUCACAA
	2042	UUGCCUGU CUGAUGA X GAA AGCCAAGC	GCUUGGCUC ACAGGCCAA
20	2054	UGUGGACC CUGAUGA X GAA AUGUUGCC	GGCAACAUUC GGUCCACA
	2058	CCCAUGUG CUGAUGA X GAA ACCGAUGU	ACAUCGGUC CACAUGGG
	2072	GUGUGAGU CUGAUGA X GAA AUUCGCC	GGGCGAAUC ACUCACAC
	2076	ACUGGGUGU CUGAUGA X GAA AGUGAUUC	GAAUCACUC ACACCAGU
	2085	UUCUUGCA CUGAUGA X GAA ACUGGUGU	ACACCAGUU UGCAAGAA
25	2086	GUUCUUGC CUGAUGA X GAA AACUGGUG	CACCAGUUU GCAAGAAC
	2096	GAGCAUCC CUGAUGA X GAA AGUUCUUG	CAAGAACUU GGAUGCUC
	2104	UUUCCAAA CUGAUGA X GAA AGCAUCC	UGGAUGCUC UUUGGAAA
	2106	AGUUUCCA CUGAUGA X GAA AGAGCAUC	GAUGCUCUU UGGAAACU
	2107	CAGUUUCC CUGAUGA X GAA AAGAGCAU	AUGCUCUUU GGAAACUG
30	2129	UGUUAGAA CUGAUGA X GAA ACAUGGUG	CACCAUGUU UUCUAACA

	2130	CUGUUAGA CUGAUGA X GAA AACAUUGGU	ACCAUGUUU UCUAACAG
	2131	GCUGUUAG CUGAUGA X GAA AAACAUGG	CCAUGUUUU CUAACAGC
	2132	UGCUGUUA CUGAUGA X GAA AAAACAUG	CAUGUUUUC UAACAGCA
	2134	UGUGCUGU CUGAUGA X GAA AGAAAACA	UGUUUUCUA ACAGCACA
5	2151	ACAAUCAA CUGAUGA X GAA AUGUCAUU	AAUGACAU C UGAUUGU
	2153	CCACAAUC CUGAUGA X GAA AGAUGUCA	UGACAU CUU GAUUGUGG
	2157	AAUGCCAC CUGAUGA X GAA AUCAAGAU	AUCUJGAUU GU GCAUU
	2165	CAUUCUGA CUGAUGA X GAA AUGCCACA	UGUGGCAUU UCAGAAUG
	2166	GCAUUCUG CUGAUGA X GAA AAUGCCAC	GUGGCAUUU CAGAAUGC
10	2167	GGCAUUCU CUGAUGA X GAA AAAUGCCA	UGGCAUUC AGAAUGCC
	2177	CCUGCAGA CUGAUGA X GAA AGGCAUUC	GAAUGCUC UCUGCAGG
	2179	GUCCUGCA CUGAUGA X GAA AGAGGCAU	AUGCCUCUC UGCAGGAC
	2198	AGCAAACA CUGAUGA X GAA AGUCGCCU	AGGCGACUA UGUUUGCU
	2202	GCAGAGCA CUGAUGA X GAA ACAUAGUC	GACUAUGUU UGCUCUGC
15	2203	AGCAGAGC CUGAUGA X GAA AACAUAGU	ACUAUGUUU GCUCUGCU
	2207	CUUGAGCA CUGAUGA X GAA AGCAAACA	UGUUUGCUC UGCUCUAG
	2212	CUUAUCUU CUGAUGA X GAA AGCAGAGC	GCUCUGCUC AAGAUAG
	2218	GGUCUUCU CUGAUGA X GAA AUCUUGAG	CUCAAGAU A AGAAGACC
	2239	GACCAGGC CUGAUGA X GAA AUGCUUU	AAAGACAUU GCCUGGUC
20	2247	AGCUGUUU CUGAUGA X GAA ACCAGGCA	UGCCUGGUC AAACAGCU
	2256	AGGAUGAU CUGAUGA X GAA AGCUGUUU	AAACAGCUC AUCAUCCU
	2259	UCUAGGAU CUGAUGA X GAA AUGAGCUG	CAGCUCAUC AUCCUAGA
	2262	CGCUCUAG CUGAUGA X GAA AUGAUGAG	CUCAUCAUC CUAGAGCG
	2265	AUGCGCUC CUGAUGA X GAA AGGAUGAU	AUCAUCCUA GAGCGCAU
25	2286	UUUCCGGU CUGAUGA X GAA AUCAUGGG	CCCAUGAUC ACCGGAAA
	2296	AUUCUCCA CUGAUGA X GAA AUUUCCGG	CCGGAAAUC UGGAGAAU
	2305	UGUUGUCU CUGAUGA X GAA AUUCUCCA	UGGAGAAUC AGACAACA
	2319	GUCUCGCC CUGAUGA X GAA AUGGUUGU	ACAACCAUU GGCGAGAC
	2331	GUCACUUC CUGAUGA X GAA AUGGUCUC	GAGACCAUU GAAGUGAC
30	2341	UGCUGGGC CUGAUGA X GAA AGUCACUU	AAGUGACUU GCCCAGCA

	2351	GAUUUCCA CUGAUGA X GAA AUGCUGGG	CCCAGCAUC UGGAAAUC
	2359	UGGGGUAG CUGAUGA X GAA AUUUCAG	CUGGAAAUC CUACCCCA
	2362	GUGUGGGG CUGAUGA X GAA AGGAUUUC	GAAAUCUA CCCCACAC
	2373	AACCAUGU CUGAUGA X GAA AUGUGGG	CCACACAUU ACAUGGUU
5	2374	GAACCAUG CUGAUGA X GAA AAUGUGUG	CACACAUUA CAUGGUUC
	2381	UGUCUUUG CUGAUGA X GAA ACCAUGUA	UACAUGGUU CAAAGACA
	2382	UUGUCUUU CUGAUGA X GAA AACCAUGU	ACAUGGUUC AAAGACAA
	2403	GAAUCUUC CUGAUGA X GAA ACCAGGGU	ACCCUGGUUA GAAGAUUC
	2410	AAUGCUCUG CUGAUGA X GAA AUCUUCUA	UAGAAGAUU CAGGCAUU
10	2411	CAAUGCCU CUGAUGA X GAA AAUCUUCU	AGAAGAUUC AGGCAUUG
	2418	CUCAGUAC CUGAUGA X GAA AUGCCUGA	UCAGGCAUU GUACUGAG
	2421	UCUCUCAG CUGAUGA X GAA ACAAUGCC	GGCAUUGUA CUGAGAGA
	2449	CCUGCGGA CUGAUGA X GAA AGUCAGGU	ACCUGACUA UCCGCAGG
	2451	ACCCUGCG CUGAUGA X GAA AUAGUCAG	CUGACTAUC CGCAGGGU
15	2481	CAGGUGUA CUGAUGA X GAA AGGCCUCC	GGAGGCCUC UACACCUG
	2483	GGCAGGUG CUGAUGA X GAA AGAGGCCU	AGGCCUCUA CACCUGCC
	2505	CAGCCAAG CUGAUGA X GAA ACAUUGCA	UGCAAUGUC CUUGGCUG
	2508	GCACAGCC CUGAUGA X GAA AGGACAUU	AAUGUCCUU GGCUGUGC
	2532	AUUAUGAA CUGAUGA X GAA AGCGUCUC	GAGACGCUC UUCAUAAU
20	2534	CUAUUAUG CUGAUGA X GAA AGAGCGUC	GACGCUCUU CAUAAUAG
	2535	UCUAAUUAU CUGAUGA X GAA AAGAGCGU	ACGCUCUUC AUAAUAGA
	2538	CCUUCUAU CUGAUGA X GAA AUGAAGAG	CUCUUCAUA AUAGAAGG
	2541	GCACCUUC CUGAUGA X GAA AUUAUGAA	UUCAUAAUA GAAGGUGC
	2567	UGACUUCC CUGAUGA X GAA AGUJUGGUC	GACCAACUU GGAAGUCA
25	2574	AGGAUAAU CUGAUGA X GAA ACUUCCAA	UUGGAAGUC AUUAUCCU
	2577	ACGAGGAU CUGAUGA X GAA AUGACUUC	GAAGUCAUU AUCCUCGU
	2578	GACGAGGA CUGAUGA X GAA AAUGACUU	AAGUCAUUA UCCUCGUC
	2580	CCGACGAG CUGAUGA X GAA AUAAUGAC	GUCAUUAUC CUCGUCGG
	2583	GUGCCGAC CUGAUGA X GAA AGGAUAAU	AUUAUCCUC GUCGGCAC
30	2586	GCAGUGCC CUGAUGA X GAA ACGAGGAU	AUCCUCGUC GGCACUGC

	2601 AACAUUGC CUGAUGA X GAA AUCACUGC	GCAGUGAUU GCCAUGUU
	2609 GCCAGAAC CUGAUGA X GAA ACAUUGCA	UGC CAUGUU CUUCUGGC
	2610 AGCCAGAA CUGAUGA X GAA AACAUUGC	GCC AUGUUC UUCUGGCC
	2612 GGAGCCAG CUGAUGA X GAA AGAACAU	CAUGUUCUU CUGGCCUCC
5	2613 AGGAGCCA CUGAUGA X GAA AAGAACAU	AUGUUCUUC UGGCUCCU
	2619 ACAAGAAC CUGAUGA X GAA AGCCAGAA	UUCUGGCUC CUUCUUGU
	2622 AUGACAAG CUGAUGA X GAA AGGAGCCA	UGGCUCUUU CUUGUCAU
	2623 AAUGACAA CUGAUGA X GAA AAGGAGCC	GGCUCCUUC UUGUCAUU
	2625 ACAAUAGAC CUGAUGA X GAA AGAACAGG	CUCCUUCUU GUCAUUGU
10	2628 AGGACAAU CUGAUGA X GAA ACAAGAAC	CUUCUUGUC AUJUGUCCU
	2631 CGUAGGAC CUGAUGA X GAA AUGACAAG	CUUGUCAUU GUCCUACG
	2634 GUCCGUAG CUGAUGA X GAA ACAAUAGAC	GUCAUUGUC CUACGGAC
	2637 ACGGUCCG CUGAUGA X GAA AGGACAAU	AUUGUCCUA CGGACCGU
	2646 GCCCGCUU CUGAUGA X GAA ACGGUCCG	CGGACCGUU AAGCGGGC
15	2647 GGCCCGCU CUGAUGA X GAA AACGGUCC	GGACCGUUA AGCGGGCC
	2681 UAGACAAG CUGAUGA X GAA AGCCUGUC	GACAGGCUA CUUGUCUA
	2684 CAAUAGAC CUGAUGA X GAA AGUAGCCU	AGGCUCACUU GUCUAUUG
	2687 UGACAAUA CUGAUGA X GAA ACAAGUAG	CUACUUGUC UAUUGUCA
	2689 CAUGACAA CUGAUGA X GAA AGACAAAGU	ACUUGUCUA UUGUCAUG
20	2691 UCCAUAGAC CUGAUGA X GAA AUAGACAA	UUGUCUAAU GUCAUGGA
	2694 GGAUCCAU CUGAUGA X GAA ACAAUAGA	UCUAUUGUC AUGGAUCC
	2701 UUCAUCUG CUGAUGA X GAA AUCCAUGA	UCAUGGAUC CAGAUGAA
	2711 CCAAGGGC CUGAUGA X GAA AUUCAUCU	AGAUGAAUU GCCCUJUGG
	2717 GCUCAUCC CUGAUGA X GAA AGGGCAAU	AUUGCCUU GG AUGAGC
25	2738 CAUAAGGC CUGAUGA X GAA AGCGUUC	UGAACCGUU GCCUUAUG
	2743 GGCAUCAU CUGAUGA X GAA AGGCAAGC	GCUUGCCUU AUGAUGCC
	2744 UGGCAUCA CUGAUGA X GAA AAGGCAAG	CUUGCCUU UGAUGCCA
	2765 CCCUGGGG CUGAUGA X GAA AUUCCAC	GUGGGAAUUU CCCCAGGG
	2766 UCCCUGGG CUGAUGA X GAA AAUUCCCA	UGGGAAUUC CCCAGGG
30	2787 GGUUUUCC CUGAUGA X GAA AGUUUCAG	CUGAAACUA GGAAAACC

	2797	GCGGCCAA CUGAUGA X GAA AGGUUUUC	GAAAACCUC UUGGCCGC
	2799	CCGCGGCC CUGAUGA X GAA AGAGGUUU	AAACCUUU GGCGCGG
	2813	CUUGGCCG CUGAUGA X GAA AGGCACCG	CGGUGCCUU CGGCCAAG
	2814	ACUUGGCC CUGAUGA X GAA AAGGCACC	GGUGCCUUC GGCCAAGU
5	2826	UCUGCCUC CUGAUGA X GAA AUCACUUG	CAAGUGAUU GAGGCAGA
	2839	AAUUCCAA CUGAUGA X GAA AGCGUCUG	CAGACGUU UUGGAAUU
	2840	CAAUCCA CUGAUGA X GAA AAGCGUCU	AGACGUUU UGGAAUUG
	2841	UCAAUUCC CUGAUGA X GAA AAAGCGUC	GACGCUUU GGAAUUGA
	2847	GUCUUGUC CUGAUGA X GAA AUUCCAAA	UUUGGAAUU GACAAGAC
10	2863	UGUUUUGC CUGAUGA X GAA AGUCGCUG	CAGCGACUU GCAAAACA
	2874	UUGACGGC CUGAUGA X GAA ACUGUUUU	AAAACAGUA GCCGUCAA
	2880	AAACAUCUU CUGAUGA X GAA ACGGCUAC	GUAGCCGUC AAGAUGUU
	2888	CUUCUUUC CUGAUGA X GAA ACAUCUUG	CAAGAUGUU GAAAGAAG
	2917	GAGGGCUC CUGAUGA X GAA AUGCUCGC	GCGAGCAUC GAGCCCUC
15	2925	UCAGACAU CUGAUGA X GAA AGGGCUCG	CGAGCCCUC AUGUCUGA
	2930	UGAGUUCA CUGAUGA X GAA ACAUGAGG	CCUCAUGUC UGAACUCA
	2937	AGGAUCUU CUGAUGA X GAA AGUUCAGA	UCUGAACUC AAGAUCCU
	2943	UGGAUGAG CUGAUGA X GAA AUCUUGAG	CUCAAGAUC CUCAUCCA
	2946	AUGUGGAU CUGAUGA X GAA AGGAUCUU	AAGAUCCUC AUCCACAU
20	2949	CCAAUGUG CUGAUGA X GAA AUGAGGAU	AUCCUCAUC CACAUUUGG
	2955	UGGUGACC CUGAUGA X GAA AUGUGGAU	AUCCACAUU GGUCACCA
	2959	GAGAUGGU CUGAUGA X GAA ACCAAUGU	ACAUUUGGUC ACCAUCUC
	2965	CACAUUGA CUGAUGA X GAA AUGGUGAC	GUCACCAUC UCAAUGUG
	2967	ACCACAUU CUGAUGA X GAA AGAUGGUG	CACCAUCUC AAUGUGGU
25	2982	GCGCCUAG CUGAUGA X GAA AGGUUCAC	GUGAACCUUC CUAGGCCG
	2985	CAGGCGCC CUGAUGA X GAA AGGAGGUU	AACCUCCUA GGCGCCUG
	3013	CACCAUGA CUGAUGA X GAA AGGCCUC	GAGGGCCUC UCAUGGUG
	3015	AUCACCAU CUGAUGA X GAA AGAGGCC	GGGCCUCUC AUGGUGAU
	3024	AAUUCCAC CUGAUGA X GAA AUCACCAU	AUGGUGAUU GUGGAAUU
30	3032	ACUUGGCAG CUGAUGA X GAA AUUCCACA	UGUGGAAUU CUGCAAGU

	3033 AACUUGCA CUGAUGA X GAA AAUUCCAC	GUGGAAUUC UGCAAGUU
	3041 GGUUUCCA CUGAUGA X GAA ACUUGCAG	CUGCAAGUU UGGAAACC
	3042 AGGUUUCC CUGAUGA X GAA AACUUGCA	UGCAAGUU GGAAACCU
	3051 UAAGUTUGA CUGAUGA X GAA AGGUUUCC	GGAAACCUA UCAACUUA
5	3053 AGUAAGUU CUGAUGA X GAA AUAGGUUU	AAACCUAUC AACUUACU
	3058 CCGUAAGU CUGAUGA X GAA AGUUGAU	UAUCAACUU ACUUACGG
	3059 CCCGUAAG CUGAUGA X GAA AAGUUGAU	AUCAACUUA CUUACGGG
	3062 UGCCCGU CUGAUGA X GAA AGUAAGUU	AACUUACUU ACGGGGCA
	3063 UUGCCCCG CUGAUGA X GAA AAGUAAGU	ACUUACUUA CGGGGCAA
10	3083 AGGGAACA CUGAUGA X GAA AUUCAUU	AAAUGAAUU UGUUCCCU
	3084 UAGGGAAC CUGAUGA X GAA AAUCAUU	AAUGAAUU GUUCCUA
	3087 UUAUAGGG CUGAUGA X GAA ACAAAUUC	GAAUJUGUU CCCUAUAA
	3088 CUUAUAGG CUGAUGA X GAA AACAAAUU	AAUUJGUUC CCUUAAG
	3092 UGCUCUUA CUGAUGA X GAA AGGGAAAC	UGUUCCUA UAAGAGCA
15	3094 UUJGCUCU CUGAUGA X GAA AUAGGGAA	UUCCUUA AGAGCAAA
	3113 CCUGGGCG CUGAUGA X GAA AGCGUGCC	GGCACGCCUU CCGCCAGG
	3114 CCCUGGGCG CUGAUGA X GAA AACGUGC	GCACGCCUUC CGCCAGGG
	3131 CCCAACG CUGAUGA X GAA AGUCCUUG	CAAGGACUA CGUUGGGG
	3135 AGCUCCCC CUGAUGA X GAA ACCUAGUC	GACUACGUU GGGGAGCU
20	3144 UCCACGGA CUGAUGA X GAA AGCUCCCC	GGGGAGCUC UCCGUGGA
	3146 GAUCCACG CUGAUGA X GAA AGAGCUCC	GGAGCUCUC CGUGGAUC
	3154 UCUUUUCA CUGAUGA X GAA AUCCACGG	CCGUGGAUC UGAAAAGA
	3167 UGCUGUCC CUGAUGA X GAA AGCGUCUU	AAGACGCCUU GGACAGCA
	3177 CUGCUGGU CUGAUGA X GAA AUGCUGUC	GACAGCAUC ACCAGCAG
25	3194 AGCUGGGCA CUGAUGA X GAA AGCUCUGG	CCAGAGCUC UGCCAGCU
	3203 CAAAGCCU CUGAUGA X GAA AGCUGGCA	UGCCAGCUC AGGCUUUG
	3209 CCUCAACA CUGAUGA X GAA AGCCUGAG	CUCAGGCCUU UGUUGAGG
	3210 UCCUCAAC CUGAUGA X GAA AAGCCUGA	UCAGGCCUU GUUGAGGA
	3213 UUCUCCUC CUGAUGA X GAA ACAAAGCC	GGCUUUGUU GAGGAGAA
30	3224 CACUGAGC CUGAUGA X GAA AUUUCUCC	GGAGAAAUC GCUCAGUG

	3228	ACAUACACU CUGAUGA X GAA AGCGAUUU	AAAUCGCUC AGUGAUGU
	3237	UCUUCCUC CUGAUGA X GAA ACAUCACU	AGUGAUGUA GAGGAAGA
	3253	UUCUUCAG CUGAUGA X GAA AGCUUCUU	AAGAACUU CUGAAGAA
	3254	GUUCUUCA CUGAUGA X GAA AAGCUUCU	AGAACGUUC UGAAGAAC
5	3266	AGUCCUUG CUGAUGA X GAA ACAGUUCU	AGAACUGUA CAAGGACU
	3275	AGGUCAGG CUGAUGA X GAA AGUCCUUG	CAAGGACUU CCUGACCU
	3276	AAGGUUCAG CUGAUGA X GAA AAGUCCUU	AAGGACUUC CUGACCUU
	3284	GAUGCUCC CUGAUGA X GAA AGGUCAGG	CCUGACCUU GGAGCAUC
	3292	ACAGAUGA CUGAUGA X GAA AUGCUCCA	UGGAGCAUC UCAUCUGU
10	3294	UAACAGAU CUGAUGA X GAA AGAUGCUC	GAGCAUCUC AUCUGUUA
	3297	CUGUAACA CUGAUGA X GAA AUGAGAUG	CAUCUCAUC UGUUACAG
	3301	GAAGCUGU CUGAUGA X GAA ACAGAUGA	UCAUCTGUU ACAGCUUC
	3302	GGAAGCUG CUGAUGA X GAA AACAGAUG	CAUCUGUUA CAGCUUCC
	3308	CCACUJUGG CUGAUGA X GAA ACCUGUAA	UUACAGCUU CCAAGUGG
15	3309	GCCACUUG CUGAUGA X GAA AAGCUGUA	UACAGCUUC CAAGUGGC
	3319	CAUGCCCU CUGAUGA X GAA AGCCACUU	AAGUGGCUA AGGGCAUG
	3332	AUGCCAAG CUGAUGA X GAA ACUCCAUG	CAUGGAGUU CUUGGCAU
	3333	GAUGCCAA CUGAUGA X GAA AACUCCAU	AUGGAGUUC UUGGCAUC
	3335	UUGAUGCC CUGAUGA X GAA AGAACUCC	GGAGUUCUU GGCAUCAA
20	3341	ACUUCCUU CUGAUGA X GAA AUGCCAAG	CUUGGCAUC AAGGAAGU
	3352	CCUGUGGA CUGAUGA X GAA ACACUUCC	GGAAGUGUA UCCACAGG
	3354	UCCCUGUG CUGAUGA X GAA AUACACUU	AAGUGUAUC CACAGGGA
	3381	GAUAGGAG CUGAUGA X GAA AUGUUUCG	CGAAACAUU CUCCUAUC
	3382	CGAUAGGA CUGAUGA X GAA AAUGUUUC	GAAACAUUC UCCUAUCG
25	3384	UCCGAUAG CUGAUGA X GAA AGAAUGUU	AAACAUUCUC CUAUCGGA
	3387	UUCUCCGA CUGAUGA X GAA AGGAGAAU	AUUCUCCUA UC GGAGAA
	3389	UCUUCUCC CUGAUGA X GAA AUAGGAGA	UCUCCUAUC GGAGAAGA
	3405	CAGAUCUU CUGAUGA X GAA ACCACAUU	AAUGUGGUU AAGAUCUG
	3406	ACAGAUCU CUGAUGA X GAA AACCACAU	AUGUGGUUA AGAUCUGU
30	3411	AAGUCACA CUGAUGA X GAA AUCUUAAC	GUUAAGAUC UGUGACUU

	3419	CCAAGCCG CUGAUGA X GAA AGUCACAG	CUGUGACUU CGGCUUUGG
	3420	GCCAAGCC CUGAUGA X GAA AAGUCACA	UGUGACUUC GGCUUGGC
	3425	CCCGGGCC CUGAUGA X GAA AGCCGAAG	CUUCGGCUU GGCCCAGGG
	3438	UCUUUAUA CUGAUGA X GAA AUGUCCCG	CGGGACAUU UAUAAAGA
5	3439	GUCUUUAU CUGAUGA X GAA AAUGUCCC	GGGACAUUU AUAAAGAC
	3440	GGUCUUUA CUGAUGA X GAA AAAUGUCC	GGACAUUUUA UAAAGACC
	3442	CGGGUCUU CUGAUGA X GAA AUAAAUGU	ACAUUAUA AAGACCCG
	3454	UCUGACAU CUGAUGA X GAA AUCCGGGU	ACCCGGAUU AUGUCAGA
	3455	UUCUGACA CUGAUGA X GAA AAUCCGGG	CCCGGAUUA UGUCAGAA
10	3459	CCUUUUCU CUGAUGA X GAA ACAUAAUC	GAUUAUGUC AGAAAAGG
	3480	UUCAAAGG CUGAUGA X GAA AGUCGGC	GCCCCACUC CCUUUGAA
	3484	CCACUTCA CUGAUGA X GAA AGGGAGUC	GACUCCUU UGAAGUGG
	3485	UCCACUUC CUGAUGA X GAA AAGGGAGU	ACUCCUUU GAAGUGGA
	3510	CUGUAAA CUGAUGA X GAA AUGGUUUC	GAAACCAUU UUUGACAG
15	3511	UCUGUCAA CUGAUGA X GAA AAUGGUUU	AAACCAUUU UUGACAGA
	3512	CUCUGUCA CUGAUGA X GAA AAAUGGUU	AACCAUUUU UGACAGAG
	3513	ACUCUGUC CUGAUGA X GAA AAAAUGGU	ACCAUUUUU GACAGAGU
	3522	AUUGUGUA CUGAUGA X GAA ACUCUGUC	GACAGAGUA UACACAAU
	3524	GAUUUGUG CUGAUGA X GAA AUACUCUG	CAGAGUAUA CACAAUUC
20	3531	UCGCUCUG CUGAUGA X GAA AUJUGUGUA	UACACAAUU CAGAGCGA
	3532	AUCGCUCU CUGAUGA X GAA AAUUGUGU	ACACAAUUC AGAGCGAU
	3548	CACCGAAA CUGAUGA X GAA ACCACACA	UGUGUGGUC UUUCGGUG
	3550	CACACCGA CUGAUGA X GAA AGACCCACA	UGUGGUCUU UCAGUGUG
	3551	ACACACCG CUGAUGA X GAA AAGACCCAC	GUGGUCUUU CGGUGUGU
25	3552	AACACACC CUGAUGA X GAA AAAGACCA	UGGUCUUUC GGUGUGUU
	3560	CCCAGAGC CUGAUGA X GAA ACACACCG	CGGUGUGUU GCUCUGGG
	3564	AUUUCCA CUGAUGA X GAA AGCAACAC	GUGUUGCUC UGGGAAAU
	3573	AAGGAAAA CUGAUGA X GAA AUUUCCA	UGGGAAAUUA UUUUCUU
	3575	CUAAGGAA CUGAUGA X GAA AUAUUUC	GGAAAUAUU UUCCUUAG
30	3576	CCUAAGGA CUGAUGA X GAA AAUAUUUC	GAAAUAUUU UCCUUAGG

	3577	ACCUAAGG CUGAUGA X GAA AAAUAUU	AAAUAUUU CCUUAGGU
	3578	CACCUAAG CUGAUGA X GAA AAAAUAUU	AAUAUUUUC CUJAGGUG
	3581	AGGCACCU CUGAUGA X GAA AGGAAAAU	AUUUUCUU AGGUGCUC
	3582	GAGGCACC CUGAUGA X GAA AAGGAAAA	UUUUCUUA GGUGCCUC
5	3590	GGUAUGGG CUGAUGA X GAA AGGCACCU	AGGUGCCUC CCCAUACC
	3596	CCCCAGGG CUGAUGA X GAA AUGGGGAG	CUCCCCAUA CCCUGGGG
	3606	UCAAUCUU CUGAUGA X GAA ACCCCAGG	CCUGGGGUC AAGAUUGA
	3612	UCUUCAUC CUGAUGA X GAA AUCUUGAC	GUCAAGAUU GAUGAAGA
	3623	UCCUACAA CUGAUGA X GAA AUUCUUA	UGAAGAAUU UUGUAGGA
10	3624	CUCCUACA CUGAUGA X GAA AAUUCUUC	GAAGAAUUU UGUAGGAG
	3625	UCUCCUAC CUGAUGA X GAA AAAUUCUU	AAGAAUUUU GUAGGAGA
	3628	CAAUCUCC CUGAUGA X GAA ACAAAAUU	AAUUUUGUA GGAGAUUG
	3635	CUUCUUUC CUGAUGA X GAA AUCUCCUA	UAGGAGAUU GAAAGAAG
	3649	CCGCAIUC CUGAUGA X GAA AGUUCCUU	AAGGAACUA GAAUGCAG
15	3661	GUAGUCAG CUGAUGA X GAA AGCCCGCA	UGCGGGCUC CUGACUAC
	3668	GGGUAGUG CUGAUGA X GAA AGUCAGGA	UCCUGACUA CACUACCC
	3673	UUCUGGGG CUGAUGA X GAA AGUGUAGU	ACUACACUA CCCCAGAA
	3686	UGGUCUGG CUGAUGA X GAA ACAUUUCU	AGAAAUGUA CCAGACCA
	3734	CUGAAAAC CUGAUGA X GAA AGGGUCUC	GAGACCCUC GUUUUCAG
20	3737	ACUCUGAA CUGAUGA X GAA ACGAGGGU	ACCCUCGUU UUCAGAGU
	3738	AACUCUGA CUGAUGA X GAA AACGAGGG	CCCUUGUUU UCAGAGUU
	3739	CAACUCUG CUGAUGA X GAA AAACGAGG	CCUCGUUUU CAGAGUUG
	3740	CCAACUCU CUGAUGA X GAA AAAACGAG	CUCGUUUUC AGAGUUGG
	3746	GCUCCACC CUGAUGA X GAA ACUCUGAA	UUCAGAGUU GGUGGAGC
25	3757	GUUUCCCA CUGAUGA X GAA AUGCUCCA	UGGAGCAUU UGGGAAAC
	3758	GGUJJUCC CUGAUGA X GAA AAUGCUC	GGAGCAUUU GGGAAACC
	3768	GCUJUGCAG CUGAUGA X GAA AGGUUUC	GGAAACCUC CUGCAAGC
	3803	GAACAAUA CUGAUGA X GAA AGUCUUUG	CAAAGACUA UAUJGUUC
	3805	AAGAACAA CUGAUGA X GAA AUAGUCUU	AAGACUAUA UUGUUCUU
30	3807	GGAAGAAC CUGAUGA X GAA AUAUAGUC	GACUAUAUU GUUCUUCC

140

3810	AUUGGAAG CUGAUGA X GAA ACAAUUA	UAUAUUGUU CUUCCAAU
3811	CAUUGGAA CUGAUGA X GAA AACAAUAU	AUAUUGUUC UUCCAAUG
3813	GACAUUGG CUGAUGA X GAA AGAACAAU	AUUGUUCUU CCAAUGUC
3814	UGACAUUG CUGAUGA X GAA AAGAACAA	UUGUUCUUC CAAUGUCA
5	3821 GUGUCUCU CUGAUGA X GAA ACAUUGGA	UCCAAUGUC AGAGACAC
	3847 GAGUCCAG CUGAUGA X GAA AUCCUCUU	AAGAGGAUU CUGGACUC
	3848 AGAGUCCA CUGAUGA X GAA AAUCCUCU	AGAGGAUUC UGGACUCU
	3855 GGCAGGGA CUGAUGA X GAA AGUCCAGA	UCUGGACUC UCCCUGCC
	3857 UAGGCAGG CUGAUGA X GAA AGAGUCCA	UGGACUCUC CCUGCCUA
10	3865 AGGUGAGG CUGAUGA X GAA AGGCAGGG	CCCUGCCUA CCUCACCU
	3869 AAACAGGU CUGAUGA X GAA AGGUAGGC	GCCUACCUC ACCUGUUU
	3876 AUACAGGA CUGAUGA X GAA ACAGGUGA	UCACCUGUU UCCUGUAU
	3877 CAUACAGG CUGAUGA X GAA AACAGGUG	CACCUGUUU CCUGUAUG
	3878 CCAUACAG CUGAUGA X GAA AAACAGGU	ACCUGUUUC CUGUAUGG
15	3883 UUCCUCCA CUGAUGA X GAA ACAGGAAA	UUUCCUGUA UGGAGGAA
	3914 CAUAAUUGG CUGAUGA X GAA AUUUGGGG	CCCCAAAUU CCAUUAUG
	3915 UCAUAAUG CUGAUGA X GAA AAUUUGGG	CCCAAAUUC CAUUAUGA
	3919 GUUGUCAU CUGAUGA X GAA AUGGAAUU	AAUUCCAUU AUGACAAC
	3920 UGUUGUCA CUGAUGA X GAA AAUGGAAU	AUUCCAUUA UGACAACA
20	3939 UAAUGACU CUGAUGA X GAA AUUCCUGC	GCAGGAAUC AGUCAUUA
	3943 GAGAUAAU CUGAUGA X GAA ACUGAUUC	GAAUCAGUC AUUAUCUC
	3946 CUGGAGAU CUGAUGA X GAA AUGACUGA	UCAGUCAUU AUCUCCAG
	3947 UCUGGAGA CUGAUGA X GAA AAUGACUG	CAGUCAUU UCUCAGA
	3949 GUUCUGGA CUGAUGA X GAA AUAAUGAC	GUCAUJAUC UCCAGAAC
25	3951 CUGUUCUG CUGAUGA X GAA AGAUAAUG	CAUUAUCUC CAGAACAG
	3961 CUUUCGCU CUGAUGA X GAA ACUGUUCU	AGAACAGUA AGCGAAAG
	3987 AAUGUUUU CUGAUGA X GAA ACACUCAC	GUGAGUGUA AAAACAUU
	3995 UAUCUUCA CUGAUGA X GAA AUGUUUU	AAAAACAUU UGAAGAU
	3996 AUAUCUUC CUGAUGA X GAA AAUGUUUU	AAAACAUU GAAGAUAU
30	4003 CAAUGGGA CUGAUGA X GAA AUCUCAA	UUGAAGAUUA UCCCAUUG

	4005 UCCAAUUGG CUGAUGA X GAA AUAUCUUC	GAAGAUUAUC CCAUUGGA
	4010 GUUCCUCC CUGAUGA X GAA AUGGGAUA	UAUCCCCAUU GGAGGAAC
	4026 AUCACUUU CUGAUGA X GAA ACUUCUGG	CCAGAAAGUA AAAGUGAU
	4035 UCAUCUGG CUGAUGA X GAA AUCACUUU	AAAGUGAUC CCAGAUGA
5	4068 GAUGCAAG CUGAUGA X GAA ACCAUCCC	GGGAUGGUC CUUGCAUC
	4071 UCUGAUGC CUGAUGA X GAA AGGACCAU	AUGGUCCUU GCAUCAGA
	4076 GCUCUUCU CUGAUGA X GAA AUGCAAGG	CCUUGCAUC AGAAGAGC
	4093 GUCUUCCA CUGAUGA X GAA AGUUUUCA	UGAAAACUC UGGAAGAC
	4112 AUGGAGAU CUGAUGA X GAA AUUUGUUC	GAACAAAUU AUCUCCAU
10	4113 GAUGGAGA CUGAUGA X GAA AAUUGUUU	AACAAAUUA UCUCCAUC
	4115 AAGAUGGA CUGAUGA X GAA AUAAUUG	CAAUAUUAUC UCCAUCUU
	4117 AAAAGAUG CUGAUGA X GAA AGAUAAUU	AAUUAUCUC CAUCUUUU
	4121 CACCAAAA CUGAUGA X GAA AUGGAGAU	AUCUCCAUC UUUUGGUG
	4123 UCCACCAA CUGAUGA X GAA AGAUGGAG	CUCCAUUU UUGGUGGA
15	4124 UUCCACCA CUGAUGA X GAA AAGAUGGA	UCCAUCUUU UGGUGGAA
	4125 AUUCCACC CUGAUGA X GAA AAAGAUGG	CCAUCUUUU GGUGGAAU
	4144 CCUGCUUU CUGAUGA X GAA ACUGGGCA	UGCCCAAGUA AAAGCAGG
	4157 AGGCCACA CUGAUGA X GAA ACUCCUG	CAGGGAGUC UGUGGCCU
	4166 AGCCUUCC CUGAUGA X GAA AGGCCACA	UGUGGCCUC GGAAGGCU
20	4175 UCUGGUUG CUGAUGA X GAA AGCCUUCC	GGAAGGCUC CAACCAGA
	4193 CAGACUGG CUGAUGA X GAA AGCCACUG	CAGUGGCUA CCAGUCUG
	4199 GAUACCCA CUGAUGA X GAA ACUGGUAG	CUACCAGUC UGGGUAAUC
	4205 CUGAGUGA CUGAUGA X GAA ACCCAGAC	GUCUGGGUA UCACUCAG
	4207 AUCUGAGU CUGAUGA X GAA AUACCCAG	CUGGGUAUC ACUCAGAU
25	4211 UGUCAUCU CUGAUGA X GAA AGUGAUAC	GUAUCACUC AGAUGACA
	4235 CGCUGGAG CUGAUGA X GAA ACACGGUG	CACCGUGUA CUCCAGCG
	4238 CGUCGCUG CUGAUGA X GAA AGUACACG	CGUGUACUC CAGCGACG
	4257 AUCUUJAA CUGAUGA X GAA AGUCCUGC	GCAGGACUU UUAAAGAU
	4258 CAUCUUUA CUGAUGA X GAA AAGUCCUG	CAGGACUUU UAAAGAUG
30	4259 CCAUCUUU CUGAUGA X GAA AAAGUCCU	AGGACUUUU AAAGAUGG

	4260	ACCAUCUU CUGAUGA X GAA AAAAGUCC	GGACUUUUA AAGAUGGU
	4281	UCAGCGUG CUGAUGA X GAA ACUGCAGC	GCUGCAGUU CACGCUGA
	4282	GUCAGCGU CUGAUGA X GAA AACUGGAG	CUGCAGUUC ACGCUGAC
	4292	UGGUCCCCU CUGAUGA X GAA AGUCAGCG	CGCUGACUC AGGGACCA
5	4311	CAGGAGGU CUGAUGA X GAA AGCUGGAG	CUGCAGCUC ACCUCCUG
	4316	UUAAAACAG CUGAUGA X GAA AGGUGAGC	GCUCACCUC CUGUUUUA
	4321	UCCAUUUA CUGAUGA X GAA ACAGGAGG	CCUCCUGUU UAAAUGGA
	4322	UUCCAUUU CUGAUGA X GAA AACAGGAG	CUCCUGUUU AAAUGGAA
	4323	CUUCCAUU CUGAUGA X GAA AAACAGGA	UCCUGUUUA AAUGGAAG
10	4336	CGGGACAG CUGAUGA X GAA ACCACUUC	GAAGUGGUUC CUGUCCCG
	4341	GGAGCCGG CUGAUGA X GAA ACAGGACC	GGUCCUGUC CGGGCUCC
	4348	UGGGGGCG CUGAUGA X GAA AGCCGGGA	UCCCGGCUC CGCCCCCA
	4360	AUUUCCAG CUGAUGA X GAA AGUUGGGG	CCCCAACUC CUGGAAAU
	4369	UCUCUCGU CUGAUGA X GAA AUUUCAG	CUGGAAAUC ACGAGAGA
15	4387	GAAAACU CUGAUGA X GAA AGCAGCAC	GUGCUGCUU AGAUUUUC
	4388	UGAAAAUC CUGAUGA X GAA AAGCAGCA	UGCUGCUUA GAUUUUCA
	4392	CACUJGAA CUGAUGA X GAA AUCUAAGC	GUUAGAUU UUCAAGUG
	4393	ACACUJGA CUGAUGA X GAA AAUCUAAG	CUUAGAUUU UCAAGUGU
	4394	AACACUUG CUGAUGA X GAA AAAUCUAA	UUAGAUUUU CAAGUGUU
20	4395	CAACACUU CUGAUGA X GAA AAAAUCUA	UAGAUUUUC AAGUGUUG
	4402	GAAAGAAC CUGAUGA X GAA ACACUUGA	UCAAGUGUU GUUCUUUC
	4405	GUGGAAAG CUGAUGA X GAA ACAACACU	AGUGUUGUU CUUCCAC
	4406	GGUGGAAA CUGAUGA X GAA AACAAACAC	GUGUUGUUC UUCCACC
	4408	GUGGUGGA CUGAUGA X GAA AGAACAAAC	GUUGUUCUU UCCACCAC
25	4409	GGUGGUGG CUGAUGA X GAA AAGAACAA	UUGUUCUUU CCACCACC
	4410	GGGUGGUG CUGAUGA X GAA AAAGAACAA	UGUUCUUUC CACCACCC
	4425	AAUGUGGC CUGAUGA X GAA ACTUCCGG	CCGGAAGUA GCCACAUU
	4433	GAAAUA CUGAUGA X GAA AUGUGGCU	AGCCACAUU UGAUUUUC
	4434	UGAAAAUC CUGAUGA X GAA AAUGUGGC	GCCACAUUU GAUUUUCA
30	4438	AAAUGAA CUGAUGA X GAA AUCAAUG	CAUUUGAUU UUCAUUUU

	4439	AAAAAUGA CUGAUGA X GAA AAUCAAAU	AUUJGAUUU UCAUUUUU
	4440	CAAAAUG CUGAUGA X GAA AAAUCAAA	UUUGAUUUU CAUJJUUG
	4441	CCAAAAAU CUGAUGA X GAA AAAAUCAA	UUGAUUUUC AUUUUUGG
	4444	CCUCACAA CUGAUGA X GAA AUGAAAAU	AUUUCAUU UUUGGAGG
5	4445	UCCUCCAA CUGAUGA X GAA AAUGAAAA	UUUUCAUUU UGGAGGGA
	4446	CUCCUCCA CUGAUGA X GAA AAAUGAAA	UUUCAUUUU UGGAGGAG
	4447	CCUCCUCC CUGAUGA X GAA AAAAUGAA	UUCAUUUU GGAGGAGG
	4461	UGCAGUCU CUGAUGA X GAA AGGUCCU	AGGGACCUC AGACUGCA
	4477	CUGAGGAC CUGAUGA X GAA AGCUCCUU	AAGGAGCUU GUCCUCAG
10	4480	GCCCUGAG CUGAUGA X GAA ACAAGCUC	GAGCUUGUC CUCAGGGC
	4483	AAUGCCCU CUGAUGA X GAA AGGACAAG	CUUGUCCUC AGGGCAUU
	4491	UCUCUGGA CUGAUGA X GAA AUGCCUG	CAGGGCAUU UCCAGAGA
	4492	UUCUCUGG CUGAUGA X GAA AAUGCCU	AGGGCAUUU CCAGAGAA
	4493	CUUCUCUG CUGAUGA X GAA AAAUGCCC	GGGCAUUUC CAGAGAAG
15	4525	GUAGAGUC CUGAUGA X GAA ACACAUUC	GAAUGUGUU GACUCUAC
	4530	AGAGAGUA CUGAUGA X GAA AGUCAACA	UGUUGACUC UACUCUCU
	4532	AAAGAGAG CUGAUGA X GAA AGAGUCAA	UUGACUCUA CUCUCUUU
	4535	GGAAAAGA CUGAUGA X GAA AGUAGAGU	ACUCUACUC UCUUUUCC
	4537	AUGGAAAA CUGAUGA X GAA AGAGUAGA	UCUACUCUC UUUUCCAU
20	4539	GAAUGGAA CUGAUGA X GAA AGAGAGUA	UACUCUCUU UCCAUUC
	4540	UGAAUGGA CUGAUGA X GAA AAGAGAGU	ACUCUCUUU UCCTAUCA
	4541	AUGAAUUG CUGAUGA X GAA AAAGAGAG	CUCUCUUU CCAUCAU
	4542	AAUGAAUG CUGAUGA X GAA AAAAGAGA	UCUCUUUUC CAUCAUU
	4546	UUUAAAUG CUGAUGA X GAA AUGGAAAA	UUUCCAUU CAUUAAA
25	4547	UUUUAAAU CUGAUGA X GAA AAUGGAAA	UUUCCAUUC AUUUAAAA
	4550	GACUUUJA CUGAUGA X GAA AUGAAUUG	CCAUCAUU UAAAAGUC
	4551	GGACUUUU CUGAUGA X GAA AAUGAAUG	CAUUCAUU AAAAGUCC
	4552	AGGACUUU CUGAUGA X GAA AAAUGAAU	AUJCAUUA AAAGUCCU
	4558	UUUAUAG CUGAUGA X GAA ACUUUUAA	UUAAAAGUC CUUAUAA
30	4561	ACAUUAUA CUGAUGA X GAA AGGACUUU	AAAGUCCUA UAUAAUGU

	4563	GCACAUUA CUGAUGA X GAA AUAGGACU	AGUCCUUA UAAUGUGC
	4565	GGGCACAU CUGAUGA X GAA AUAUAGGA	UCCUAUUA AUGUGCCC
	4583	GGUAGUGA CUGAUGA X GAA ACCACAGC	GCUGUGGUUC UCACUACC
	4585	CUGGUAGU CUGAUGA X GAA AGACCACA	UGUGGUUCUC ACUACCAG
5	4589	UUAACUGG CUGAUGA X GAA AGUGAGAC	GUCUCACUA CCAGUJAA
	4595	UUUGCUUU CUGAUGA X GAA ACUGGUAG	CUACCAGUU AAAGCAAA
	4596	UUUUGCUU CUGAUGA X GAA AACUGGUA	UACCAGUJA AAGCAAAA
	4609	GUGUUUGA CUGAUGA X GAA AGUCUUUJ	AAAAGACUU UCAAACAC
	4610	CGUGUUJUG CUGAUGA X GAA AAGUCUUU	AAAGACUUU CAAACACG
10	4611	ACGUGUUU CUGAUGA X GAA AAAGUCUU	AAGACUUUC AAACACGU
	4625	GGAGGACA CUGAUGA X GAA AGUCCACG	CGUGGACUC UGUCCUCC
	4629	UCUJGGAG CUGAUGA X GAA ACAGAGUC	GACUCUGUC CUCCAAGA
	4632	ACUUCUJG CUGAUGA X GAA AGGACAGA	UCUGUCCUC CAAGAAGU
	4654	GUUUCACA CUGAUGA X GAA AGGUGCCG	CGGCACCUC UGUGAAC
15	4668	GCCCAUJC CUGAUGA X GAA AUCCAGUU	AACUGGAUC GAAUGGGC
	4683	AACACACA CUGAUGA X GAA AGCAUUGC	GCAAUGCUU UGUGUGUU
	4684	CAACACAC CUGAUGA X GAA AAGCAUUG	CAAUGCUUU GUGUGUUG
	4691	CCAUCUC CUGAUGA X GAA ACACACAA	UUGUGUGUU GAGGAUGG
	4709	GGCCCUGG CUGAUGA X GAA ACAUCUCA	UGAGAUGUC CCAGGGCC
20	4722	GGUAGACA CUGAUGA X GAA ACUCGGCC	GGCCGAGUC UGUCUACC
	4726	CCAAGGUA CUGAUGA X GAA ACAGACUC	GAGUCUGUC UACCUUGG
	4728	CUCCAAGG CUGAUGA X GAA AGACAGAC	GUCUGUCUA CCUJGGAG
	4732	AAGCCUCC CUGAUGA X GAA AGGUAGAC	GUCUACCUU GGAGGCCU
	4740	CCUCCACA CUGAUGA X GAA AGCCUCCA	UGGAGGCCU UGUGGAGG
25	4741	UCCUCCAC CUGAUGA X GAA AAGCCUCC	GGAGGCCUUU GUGGAGGA
	4758	UUGGCUCA CUGAUGA X GAA AGCCCGCA	UGCAGGGCUA UGAGCCAA
	4771	CCACACUU CUGAUGA X GAA ACACUUGG	CCAAGUGUU AAGUGUGG
	4772	CCCACACU CUGAUGA X GAA AACACUUG	CAAGUGUUA AGUGUGGG
	4811	CUCCGAGC CUGAUGA X GAA ACUJUGCGC	GCGCAAGUC GCUCGGAG
30	4815	CGCUCUCC CUGAUGA X GAA AGCGACUU	AAGUCGCUC GGAGAGCG

	4826	CAGGUCC CUGAUGA X GAA ACCGCUCU	AGAGCGGUU GGAGCCUG
	4844	GCCAGCAC CUGAUGA X GAA AUGCAUCU	AGAUGCACU UGGCUGGC
	4854	CUCCACCA CUGAUGA X GAA AGCCAGCA	UGCUGGCUC UGGUGGAG
	4870	CAGGCCAC CUGAUGA X GAA AGCCCACC	GGUGGGCUU GUGGCCUG
5	4880	CGUUUCCU CUGAUGA X GAA ACAGGCCA	UGGCCUGUC AGGAAACG
	4908	CAAAACCA CUGAUGA X GAA ACCCUGCC	GGCAGGGUU UGGUUUUG
	4909	CCAAAACC CUGAUGA X GAA AACCCUGC	GCAGGGUUU GGUUUUJGG
	4913	CCUUCCAA CUGAUGA X GAA ACCAAACC	GGUUJUGGUU UUGGAAGG
	4914	ACCUUCCA CUGAUGA X GAA AACCAAAC	GUUUGGUUU UGGAAGGU
10	4915	AACCUUCC CUGAUGA X GAA AAACCAAA	UUUGGUUUU GGAAGGUU
	4923	AGCACGCA CUGAUGA X GAA ACCUUCCA	UGGAAGGUU UGCGUGCU
	4924	GAGCACGC CUGAUGA X GAA AACCUUCC	GGAAAGGUUU GCGUGCUC
	4932	ACUGUGAA CUGAUGA X GAA AGCACGCA	UGCGUGCUC UUCACAGU
	4934	CGACTUGUG CUGAUGA X GAA AGAGCACG	CGUGCUCUU CACAGUCC
15	4935	CCGACTUGU CUGAUGA X GAA AAGAGCAC	GUGCUCUUC ACAGUCGG
	4941	UGUAACCC CUGAUGA X GAA ACUGUGAA	UUCACAGUC GGGUUACAA
	4946	UCGCCUGU CUGAUGA X GAA ACCCGACU	AGUCGGGUU ACAGGCAGA
	4947	CUCGCCUG CUGAUGA X GAA AACCCGAC	GUCGGGUUA CAGGCAGAG
	4957	CCACAGGG CUGAUGA X GAA ACUCGCCU	AGGCGAGUU CCCUGUGG
20	4958	GCCACAGG CUGAUGA X GAA AACUCGCC	GGCGAGUUC CCUGUGGC
	4969	GAGUAGGA CUGAUGA X GAA ACGCCACA	UGUGGCGUU UCCUACUC
	4970	GGAGUAGG CUGAUGA X GAA AACGCCAC	GUGGCGUUU CCUACUCC
	4971	AGGAGUAG CUGAUGA X GAA AAACGCCA	UGGCGUUUC CUACUCCU
	4974	AUUAGGAG CUGAUGA X GAA AGGAAACG	CGUUUCCUA CUCCUAAU
25	4977	CUCAUUAG CUGAUGA X GAA AGUAGGAA	UUCCUACUC CUAAUGAG
	4980	ACUCUCAU CUGAUGA X GAA AGGAGUAG	CUACUCCUA AUGAGAGU
	4989	CCGGAAGG CUGAUGA X GAA ACUCUCAU	AUGAGAGUU CCUUCGGG
	4990	UCCGGAAG CUGAUGA X GAA AACUCUCA	UGAGAGUUC CUUCCGGA
	4993	GAGUCCGG CUGAUGA X GAA AGGAACUC	GAGUUCCUU CGGGACUC
30	4994	AGAGUCCG CUGAUGA X GAA AAGGAACU	AGUUCCUUC CGGACUCU

5001	ACACGUAA CUGAUGA X GAA AGUCCGGA	UCCGGACUC UUACGUGU
5003	AGACACGU CUGAUGA X GAA AGAGUCCG	CGGACUCUU ACGUGUCU
5004	GAGACACG CUGAUGA X GAA AAGAGUCC	GGACUCUUA CGUGUCUC
5010	GGCCAGGA CUGAUGA X GAA ACACGUAA	UUACGUGUC UCCUGGCC
5	5012 CAGGCCAG CUGAUGA X GAA AGACACGU	ACGUGUCUC CUGGCCUG
	5046 GAAGGAGC CUGAUGA X GAA AGCUGCAU	AUGCAGCUU GCUCCUUC
	5050 UGAGGAAG CUGAUGA X GAA AGCAAGCU	AGCUUGCUC CUUCCUCA
	5053 AGAUGAGG CUGAUGA X GAA AGGAGCAA	UUGCUCUU CCUCAUCU
	5054 GAGAUGAG CUGAUGA X GAA AAGGAGCA	UGCUCCUUC CUCAUCUC
10	5057 UGAGAGAU CUGAUGA X GAA AGGAAGGA	UCCUUCUC AUCUCUCA
	5060 GCCUGAGA CUGAUGA X GAA AUGAGGAA	UUCCUCAUC UCUCAGGC
	5062 CAGCCUGA CUGAUGA X GAA AGAUGAGG	CCUCAUCUC UCAGGCUG
	5064 CACAGCCU CUGAUGA X GAA AGAGAUGA	UCAUCUCUC AGGCUGUG
	5076 UCUGAAU CUGAUGA X GAA AGGCACAG	CUGUGCCUU AAUUCAGA
15	5077 UUCUGAAU CUGAUGA X GAA AAGGCACA	UGUGCCUA AUUCAGAA
	5080 GGUUCUG CUGAUGA X GAA AUUAAGGC	GCCUUAAUU CAGAACAC
	5081 GGUGUJCU CUGAUGA X GAA AAUUAAGG	CCUUAUUC AGAACACC
	5105 CCUCUGCC CUGAUGA X GAA ACGUUCCU	AGGAACGUC GGCAGAGG
	5116 CCCGUCAG CUGAUGA X GAA AGCCUCUG	CAGAGGCUC CUGACGGG
20	5135 GUUCUCAC CUGAUGA X GAA AUUCUUCG	CGAAGAAUU GUGAGAAC
	5156 GAAACCU CUGAUGA X GAA AGUUUCUG	CAGAAACUC AGGGUUUC
	5162 CCAGCAGA CUGAUGA X GAA ACCCUGAG	CUCAGGGUU UCUGCUGG
	5163 CCCAGCAG CUGAUGA X GAA AACCCUGA	UCAGGGUUU CUGCUGGG
	5164 ACCCAGCA CUGAUGA X GAA AAACCCUG	CAGGGUJUC UGCUGGGU
25	5203 AACCCUCA CUGAUGA X GAA ACCUGCCA	UGGCAGGUC UGAGGGUU
	5211 UGACAGAG CUGAUGA X GAA ACCCUCAG	CUGAGGGUU CUCUGUCA
	5212 UUGACAGA CUGAUGA X GAA AACCCUCA	UGAGGGUUC UCUGUCAA
	5214 ACUUGACA CUGAUGA X GAA AGAACCCU	AGGGUUCUC UGUCAAGU
	5218 CGCCACUU CUGAUGA X GAA ACAGAGAA	UUCUCUGUC AAGUGGCG
30	5229 UGAGCCUU CUGAUGA X GAA ACCGCCAC	GUGGCAGGU AAGGCUCA

	5236	ACCAGCCU CUGAUGA X GAA AGCCUUUA	UAAAGGCUC AGGCUGGU
	5247	AGAGGAAG CUGAUGA X GAA ACACCAGC	GCUGGUGUU CUUCCUCU
	5248	UAGAGGAA CUGAUGA X GAA AACACCAG	CUGGUGUUC UUCCUCUA
	5250	GAUAGAGG CUGAUGA X GAA AGAACACC	GGUGUUCUU CCUCUAUC
5	5251	AGAUAGAG CUGAUGA X GAA AAAAACAC	GUGUUCUUC CUCUAUCU
	5254	UGGAGAUA CUGAUGA X GAA AGGAAGAA	UUCUUCCUC UAUCUCCA
	5256	AGUGGAGA CUGAUGA X GAA AGAGGAAG	CUUCCUCUA UCUCCACU
	5258	GGAGUGGA CUGAUGA X GAA AUAGAGGA	UCCUCUAUC UCCACUCC
	5260	CAGGAGUG CUGAUGA X GAA AGAUAGAG	CUCUAUCUC CACUCCUG
10	5265	CCUGACAG CUGAUGA X GAA AGUGGAGA	UCUCCACUC CUGUCAGG
	5270	GGGGGCCU CUGAUGA X GAA ACAGGAGU	ACUCCUGUC AGGCCCCC
	5283	AUACUGAG CUGAUGA X GAA ACUUGGGG	CCCCAAGUC CUCAGUAU
	5286	AAAAUACU CUGAUGA X GAA AGGACUUG	CAAGUCCUC AGUAUUUU
	5290	AGCUAAAA CUGAUGA X GAA ACUGAGGA	UCCUCAGUA UUUUAGCU
15	5292	AAAGCUAA CUGAUGA X GAA AUACUGAG	CUCAGUAUU ULAGCUUU
	5293	CAAAGCUA CUGAUGA X GAA AAUACUGA	UCAGUAUUU UAGCUUUG
	5294	ACAAGCU CUGAUGA X GAA AAAUACUG	CAGUAUUUU AGCUUJGU
	5295	CACAAAGC CUGAUGA X GAA AAAAUACU	AGUAUUUUU GCUUUGUG
	5299	AAGCCACA CUGAUGA X GAA AGCUAAAA	UUUUAGCUU UGUGGCUU
20	5300	GAAGCCAC CUGAUGA X GAA AAGCUAAA	UUUAGCUUU GUGGCUUC
	5307	CCAUCAGG CUGAUGA X GAA AGCCACAA	UUGUGGCUU CCUGAUGG
	5308	GCCAUCAG CUGAUGA X GAA AAGCCACA	UGUGGCUC CUGAUGGC
	5325	CCAAUJAA CUGAUGA X GAA AUUUUUCU	AGAAAAAUC UUAAUJGG
	5327	AACCAAUU CUGAUGA X GAA AGAUUUUU	AAAAAAUCUU AAUUGGUU
25	5328	CAACCAAU CUGAUGA X GAA AAGAUUUU	AAAAACUUA AUUGGUUG
	5331	AACCAACC CUGAUGA X GAA AUUAAGAU	AUCUUAUUU GGUUGGUU
	5335	AGCAAACC CUGAUGA X GAA ACCAAUUA	UAAUUGGUU GGUUUGCU
	5339	GGAGAGCA CUGAUGA X GAA ACCAACCA	UGGUUGGUU UGCUCUCC
	5340	UGGAGAGC CUGAUGA X GAA AACCAACC	GGUUGGUUU GCUCUCCA
30	5344	UAUCUGGA CUGAUGA X GAA AGCAAACC	GGUUUGCUC UCCAGAUA

	5346	AUUAUCUG CUGAUGA X GAA AGAGCAAA	UUUGCUCUC CAGAUAAU
	5352	CUAGUGAU CUGAUGA X GAA AUCUGGAG	CUCCAGAU AUCACUAG
	5355	UGGCUAGU CUGAUGA X GAA AUUAUCUG	CAGAUAAUC ACUAGCCA
	5359	AAUCUGGC CUGAUGA X GAA AGUGAUUA	UAAUCACUA GCCAGAUU
5	5367	AAUUUCGA CUGAUGA X GAA AUCUGGCC	AGCCAGAUU UCGAAAUU
	5368	UAAUJUCG CUGAUGA X GAA AAUCUGGC	GCCAGAUUU CGAAAUA
	5369	GUAAUUC CUGAUGA X GAA AAAUCUGG	CCAGAUUUC GAAAUUAC
	5375	AAAAAAAGU CUGAUGA X GAA AUUUCGAA	UUCGAAAUU ACUUUUUA
	5376	CUAAAAAG CUGAUGA X GAA AAUUCGAA	UCGAAAUA CUUUUJAG
10	5379	CGGCUAAA CUGAUGA X GAA AGUAAUUU	AAAUUACUU UUUAGCCG
	5380	UCGGCUAA CUGAUGA X GAA AAGUAAUU	AAUUACUUU UUAGCCGA
	5381	CUCGGCUA CUGAUGA X GAA AAAGUAAU	AUUACUUUU UAGCCGAG
	5382	CCUCGGCU CUGAUGA X GAA AAAAGUAA	UUACUUUUU AGCCGAGG
	5383	ACCUCGGC CUGAUGA X GAA AAAAGUAA	UACUUUUUA GCCGAGGU
15	5392	GUUAUCAU CUGAUGA X GAA ACCUCGGC	GCCGAGGUU AUGAUAAAC
	5393	UGUUAUCA CUGAUGA X GAA AACCUCCG	CCGAGGUUA UGAUAACA
	5398	GUAGAUGU CUGAUGA X GAA AUCAUAAC	GUUAUGAU A CAUCUAC
	5403	AUACAGUA CUGAUGA X GAA AUGUUAUC	GAUAAACAUC UACUGUAU
	5405	GGAUACAG CUGAUGA X GAA AGAUGUUA	UAACAUCAU CUGUAUCC
20	5410	CUAAAGGA CUGAUGA X GAA ACAGUAGA	UCUACUGUA UCCUUUAG
	5412	UUCUAAAG CUGAUGA X GAA AUACAGUA	UACUGUAUC CUUUAGAA
	5415	AAAUUCUA CUGAUGA X GAA AGGAUACA	UGUAUCCUU UAGAAUUU
	5416	AAAAUUCU CUGAUGA X GAA AAGGAUAC	GUAUCCUUU AGAAUUUU
	5417	AAAAAUUC CUGAUGA X GAA AAAGGAUA	UAUCCUUUA GAAUJUUA
25	5422	UAGGUUAA CUGAUGA X GAA AUUCUAAA	UUUAGAAUU UUAACCUA
	5423	AUAGGUUA CUGAUGA X GAA AAUUCUAA	UUAGAAUUU UAACCUAU
	5424	UAUAGGUU CUGAUGA X GAA AAAUUCUA	UAGAAUUUU AACCUALUA
	5425	UUAUAGGU CUGAUGA X GAA AAAAUUCU	AGAAUUUUJA ACCUUAUA
	5430	UAGUUUUJA CUGAUGA X GAA AGGUJAAA	UUUAACCUA UAAAACUA
30	5432	CAUAGUUU CUGAUGA X GAA AUAGGUUA	UAACCUAUUA AACCUAUG

149

5438	AGUAGACA CUGAUGA X GAA AGUUUUAU	AUAAAACUA UGUCUACU
5442	AACCAGUA CUGAUGA X GAA ACAUAGUU	AACUAUGUC UACUGGUU
5444	GAAACCAG CUGAUGA X GAA AGACAUAG	CUAUGUCUA CUGGUUUC
5450	CAGGCAGA CUGAUGA X GAA ACCAGUAG	CUACUGGUU UCUGCCUG
5	5451 ACAGGCAG CUGAUGA X GAA AACCAGUA	UACUGGUUU CUGCCUGU
	5452 CACAGGCA CUGAUGA X GAA AAACCAGU	ACUGGUUUC UGCCUGUG

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 *Nucleic Acids Res.* 20 3252). The length of stem II may be \geq 2 base-pairs.

150

Table VII: Mouse *flk-1* VEGF Receptor-Hairpin Ribozyme and Substrate Sequences

nt.	HP Ribozyme Sequence	Substrate
Position		
5 74	GGGACACA AGAA GGGCCC ACCAGAGAACACAGUUGGUACAUUACUGUA	GGGCCA GAC UGUGUCC
88	GUUAUCC AGAA GCGGGA ACCAGAGAACACAGUUGGUACAUUACUGUA	UCCCGCA GCC GGGAUAAAC
105	GAAUUCGG AGAA GCGAGG ACCAGAGAACACAGUUGGUACAUUACUGUA	CCUGGU GAC CGGAUUC
110	UCCGCGGA AGAA GGUCAG ACCAGAGAACACAGUUGGUACAUUACUGUA	CUGACC GAU UCCGCGGA
125	CGGCUGUC AGAA GUGUCC ACCAGAGAACACAGUUGGUACAUUACUGUA	GGACACC GCU GACAGCCG
10 132	CCAGGCCG AGAA GUAGG ACCAGAGAACACAGUUGGUACAUUACUGUA	GCUGACA GCC GGGCUGG
138	CUGGUCC AGAA GCGGCU ACCAGAGAACACAGUUGGUACAUUACUGUA	AGCCGG GCU GGAGCCAG
175	CAGGCCAA AGAA GGGGAG ACCAGAGAACACAGUUGGUACAUUACUGUA	CUCCCCG GUC UGGCGCUG
199	GUCACAGA AGAA GUAUUG ACCAGAGAACACAGUUGGUACAUUACUGUA	CCAUACC GCC UCUGUGAC
309	CACAGAGC AGAA GCUAGC ACCAGAGAACACAGUUGGUACAUUACUGUA	GCUAGCU GUC GCUCUGUG
15 342	CCACACAGA AGAA GCUCGG ACCAGAGAACACAGUUGGUACAUUACUGUA	CCGAGCC GCC UCUGUGGG
434	UGCAAGUA AGAA GAAGGG ACCAGAGAACACAGUUGGUACAUUACUGUA	CCCUUCA GAU UACUUGCA
630	UAGACAUAGAA GUUGGAG ACCAGAGAACACAGUUGGUACAUUACUGUA	CUCCACU GUU U AUGUCUA
655	GAUUGGUG AGAA GUAAUC ACCAGAGAACACAGUUGGUACAUUACUGUA	GAUUACA GAU CACCAUUC
739	CGACCCUC AGAA GGGGAU ACCAGAGAACACAGUUGGUACAUUACUGUA	AUCCCCU GCC GAGGGUCG

151

151

807	CUGGUTUCC AGAA CGAACCA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UGUUCCG GAU GGAAACAG
920	ACAUGAUA AGAA GAUAGG ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	CCUAUCA GUC UAUCAUGU
1002	UUUUCUCC AGAA GAUAGC ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	GCUAUCAU GGC GGAGAAAA
1229	UCUUGAUC AGAA GUCCAC ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	GUGGAGC GAU GAUCAAGA
5 1365	AUAUCAGG AGAA GGGUAA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UUACCCA GCU CCUGAUAU
1556	UCUCACCG AGAA GGGUG ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	CACCCCA GAU CGGUGAGA
1629	UUGGCCUA AGAA GUGGAU ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	AUGCCACA GUC UACGCCAA
1687	UCUGUAGG AGAA GGCUDC ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	GAAGCCU GCU CCUACAGA
1696	UUGGCCGG AGAA GUAGGA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UCCUACA GAC CCGGCCAA
10 1796	UUCUUUCA AGAA GGGCAU ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	AUGCCU GAU UGAAGGAA
1950	GGCUGGGC AGAA GGUGGC ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	GCAACCU GCU GCCCAGCC
1953	GUUCCCCU AGAA GCAGGU ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	ACCUGGU GCC CAGCCAAC
1985	CAGGGCAC AGAA GGGACA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UGUCCU GUU GUCCACUG
2055	CCCAUGUG AGAA GAUGUU ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	AACAUUG GUC CACAUUGG
15 2082	UUCUUGCA AGAA GGUGUG ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	CACACCA GUU UGCAAGAA
2208	UUAAUCUUG AGAA GAGCAA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UUGCCUU GCU CAAGAUAA
2252	GGAUUGAUG AGAA GUUUGA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UCAAACA GCU CAUCAUCC
2444	UGCGGAUA AGAA GGUUCU ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	GGAACCU GAC UAUCCGCA
2639	GCUUAAACG AGAA GUAGGA ACCAGAGAAAACACACCGUUUUGGGGUACAUUACCUGGUA	UCCUACG GAC CGUUAAGC

152

2703	GGCAAUUC AGAA GGAUCC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GGAUCCA GAU GAAUUGC
2777	CUAGUUUC AGAA GGUCCC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GGGACCG GCU GAAACUAG
2832	CCAAAAGC AGAA GCCUCA ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UGAGGCCA GAC GCUUUUGG
3199	AAAGCCUG AGAA GGCAGA ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UCUGCCA GCU CAGGCCUU
5 3278	GCUCCAAG AGAA GGAAGU ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	ACUUCU GAC CUUGGAGC
3304	CACUUGGA AGAA GUAAAC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UGUUACA GCU UCCAAGUG
3421	CCGGGCCA AGAA GAAGUC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GACUUUG GCU UGGCCCGG
3450	CUGACAU A AGAA GGGUCU ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	AGACCCG GAU UAUGUCAG
3475	CAAAGGG A AGAA GGCAUC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GAUGCCC GAC UCCCCUUG
10 3663	GUAGUGUA AGAA GGAGCC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GGCUCU GAC UACACUAC
3689	CCAGCAUG AGAA GGUACA ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UGUACCA GAC CAUGCUGG
3703	CUCAUGCC AGAA GUCCAG ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	CUGGACU GCU GGCAUGAG
3860	GUGAGGU A AGAA GGGAGA ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UCUCCU GCC UACCUCAC
3873	AUACAGGA AGAA GGUGAG ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	CUCACU GUU UCCUGUAU
15 4038	UGGUGUC AGAA GGGAUC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GAUCCA GAU GACGCCA
4181	ACCCACUG AGAA GGUGGG ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	CCAACCA GAC CAGUGGU
4196	GAUACCCA AGAA GGUGGC ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	GCUACCA GUC UGGGUAUIC
4212	UCUGUGUC AGAA GAGUGA ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UCACUCA GAU GACACAGA
4278	UCAGCGUG AGAA GCAGCA ACCAGAGAAACACCGUUUGGUUACAUUACCUUGUA	UGCUGCA GUU CACCGCUGA

153

4287	GUCCCCUGA AGAA GCGUGA ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	UCACGGCU GAC UCAGGGAC
4307	AGGAGGG AGAA GCAGUG ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	CACUGCA GCU CACCUUU
4318	UCCAUUUA AGAA GGAGGU ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	ACCUUU GUU UAAAUGGA
4338	GGAGGCCGG AGAA GGACCA ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	UGGUCCU GUC CGGGCUCC
5 4344	GGGGCCGG AGAA GGGACA ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	UGUCCCG GCU CGCCCCC
4349	GAGUUGGG AGAA GAGCG ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	CGGCUCC GCC CCCAACUC
4383	AAAUCUA AGAA GCACCU ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	AGGUGCU GCU UAGAUUUU
4462	UCCUUGCA AGAA GAGGU ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GACCUCA GAC UGCAAGGA
4574	GAGACCAC AGAA GGGCAC ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GUGCCU GCU GUGGUCUC
10 4626	UCUJGGAG AGAA GAGUCC ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GGACUCU GUC CUCCAAGA
4723	CCAAGGU AGAA GACUCG ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	CGAGUCU GUC UACCUUGG
4823	CAGGCCUCC AGAA GCUCUC ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GAGAGCG GUU GGAGCCUG
4836	CACAAUGC AGAA CCAGGC ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GCCUGCA GAU GCAUTUGUG
4896	ACCCUGCC AGAA GCCUUU ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	AAAGGGCG GCC GGAGGGU
15 4938	UGUAAACC AGAA GUGAAG ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	CUCACCA GUC GGGUUACA
4996	ACGUAAAGA AGAA GGAAAGG ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	CCUUCGG GAC UCUUAGU
5042	AAGGAGCA AGAA GCAUCA ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	UGAUGCA GCU UGCUCCU
5118	UCGGCCCC AGAA GGAGCC ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GGCUCCU GAC GGGCCGA
5165	CUCCACCC AGAA GAAAACC ACCAGAGAAAACACACGUTUGGGUACAUUACCUGGU	GGUUUCU GCU GGGUGGAG

5310	UUUCGCC	AGAA	GGAAAGC	ACCAAGAAAACACACGUUGGUACAUUACCUGGUAA	GUUUCCU	GAU	GGCAGAAA
53363	AUUUCGAA	AGAA	GGCUAG	ACCAAGAAAACACACGUUGGUACAUUACCUGGUAA	CUAGCCA	GAU	UUCGAAAU
5453	AGCACACACA	AGAA	GAAAACC	ACCAAGAAAACACACGUUGGUACAUUACCUGGUAA	GGUUUCU	GCC	UGUGUGGU

Table VIII: Mouse flt-1 VEGF Receptor-Hammerhead Ribozyme and Substrate Sequence

nt. Posi- tion 5	HH Ribozyme Sequence	Substrate
17	GUGAGCAA CUGAUGA X GAA ACGCGGCC	GGCCGCGUC UUGCUCAC
19	UGGUGAGC CUGAUGA X GAA AGACGCGG	CCGGCGUCUU GCUCACCA
23	ACCAUGGU CUGAUGA X GAA AGCAAGAC	GUCUUGCUC ACCAUGGU
32	CAGCAGCU CUGAUGA X GAA ACCAUGGU	ACCAUGGUC AGCUGCUG
10 53	UAAGGCAA CUGAUGA X GAA ACCGCGGU	ACCGCGGUC UGCCUUA
55	CGUAAGGC CUGAUGA X GAA AGACCGCG	CGCGGUCUU GCCUUACG
60	CAGCGCGU CUGAUGA X GAA AGGCAAGA	UCUUGCCUU ACGCGCUG
61	GCAGCGCG CUGAUGA X GAA AAGGCAAG	CUUGCCUU CGCGCUGC
71	AGACACCC CUGAUGA X GAA AGCAGCGC	GCGCUGCUC GGGUGUCU
15 78	GAGAAGCA CUGAUGA X GAA ACACCCGA	UCGGGUGUC UGCUUCUC
83	CCUGUGAG CUGAUGA X GAA AGCAGACA	UGUCUGCUU CUCACAGG
84	UCCUJUGA CUGAUGA X GAA AACGAGAC	GUCUGCUUC UCACAGGA
86	UAUCCUGU CUGAUGA X GAA AGAACGAG	CUGCUUCUC ACAGGAUA
94	CUGAGCCA CUGAUGA X GAA AUCCUGUG	CACAGGAUA UGGCUCAG
20 100	UCGACCCU CUGAUGA X GAA AGCCAUAU	AUAUGGCUC AGGGUCGA
106	UUAAACUUC CUGAUGA X GAA ACCCUGAG	CUCAGGGUC GAAGUAAA
112	GCACUUUU CUGAUGA X GAA ACUUCGAC	GUCGAAGUU AAAAGUGC
113	GGCACUUU CUGAUGA X GAA AACUUCGA	UCGAAGUUA AAAGUGCC
132	GCCUUUUUA CUGAUGA X GAA ACUCAGUU	AACUGAGUU UAAAAGGC
25 133	UGCCUUUU CUGAUGA X GAA AACUCAGU	ACUGAGUUU AAAAGGCA
134	GUGCCUUU CUGAUGA X GAA AAACUCAG	CUGAGUUUA AAAGGCAC
152	GCUUGCAU CUGAUGA X GAA ACAUGCUG	CAGCAUGUC AUGCAAGC
171	GAGAAAGA CUGAUGA X GAA AGUCUGGC	GCCAGACUC UCUUUCUC
173	UUGAGAAA CUGAUGA X GAA AGAGUCUG	CAGACUCUC UUUCUCAA
30 175	ACUUGAGA CUGAUGA X GAA AGAGAGUC	GACUCUCUU UCUCAAGU
176	CACUUGAG CUGAUGA X GAA AAGAGAGU	ACUCUCUUU CUCAAGUG
177	GCACUUGA CUGAUGA X GAA AAAGAGAG	CUCUCUUUC UCAAGUGC

	179	CUGCACUU CUGAUGA X GAA AGAAAGAG	CUCUUUCUC AAGUGCAG
	205	GAGACCAU CUGAUGA X GAA AGUGGGCU	AGCCCACUC AUGGUCUC
	211	UGGGCAGA CUGAUGA X GAA ACCAUGAG	CUCAUGGUC UCUGCCCA
	213	CGUGGGCA CUGAUGA X GAA AGACCAUG	CAUGGUCUC UGCCACCG
5	254	GGGGGAGU CUGAUGA X GAA AUGCUCAG	CUGAGCAUC ACUCCCCC
	258	CGAUGGGG CUGAUGA X GAA AGUGAUGC	GCAUCACUC CCCCAUCG
	265	CACAGGCC CUGAUGA X GAA AUGGGGGA	UCCCCCAUC GGCCUGUG
	282	UJGCCUGU CUGAUGA X GAA AUCCCUCC	GGAGGGAUUA ACAGGCAA
	292	UGCUGCAG CUGAUGA X GAA AUJGCCUG	CAGGCAAUU CUGCAGCA
10	293	GUGCUGCA CUGAUGA X GAA AAUJGCCU	AGGCAAUUC UGCAGCAC
	304	CCAAGGUC CUGAUGA X GAA AGGUGCUG	CAGCACCUU GACCUUGG
	310	CCGUGUCC CUGAUGA X GAA AGGUCAAG	CUUGACCUU GGACACGG
	341	CAGGUGUA CUGAUGA X GAA AGGCCCCU	ACGGGCCUC UACACCUG
	343	UACAGGUG CUGAUGA X GAA AGAGGCC	GGGCCUCUA CACCUGUA
15	351	GAGGUauc CUGAUGA X GAA ACAGGUGU	ACACCUGUA GAUACCUC
	355	UAGGGAGG CUGAUGA X GAA AUCUACAG	CUGUAGAUUA CCUCCUA
	359	GAUGUAGG CUGAUGA X GAA AGGUaucu	AGAUACCUC CCUACAUC
	363	AGUAGAUG CUGAUGA X GAA AGGGAGGU	ACCUCCUA CAUCUACU
	367	UCGAAGUA CUGAUGA X GAA AUGUAGGG	CCCUACAUUC UACUUCGA
20	369	CUUCGAAG CUGAUGA X GAA AGAUGUAG	CUACAUCAUA CUJCGAAG
	372	UJUCUUCG CUGAUGA X GAA AGUAGAUG	CAUCUACUU CGAAGAAA
	373	UUUUUCUUC CUGAUGA X GAA AAGUAGAU	AUCUACUUC GAAGAAAA
	394	AGAUUGAA CUGAUGA X GAA AUUCCGCU	AGCGGAAUC UUCAAUCU
	396	GUAGAUUG CUGAUGA X GAA AGAUUCCG	CGGAAUCUU CAAUCUAC
25	397	UGUAGAUU CUGAUGA X GAA AAGAUUCC	GGAAUCUUC AAUCUACA
	401	AAUAUGUA CUGAUGA X GAA AUJGAAGA	UCUUCAAUC UACAUUUU
	403	CAAAUAUG CUGAUGA X GAA AGAUUGAA	UUCAAUCUA CAUAUUJUG
	407	CUAACAAA CUGAUGA X GAA AUGUAGAU	AUCUACAUUA UUUGUUAG
	409	CACUAACA CUGAUGA X GAA AAUAGUAG	CUACAUUU UGUUAGUG
30	410	UCACUAAC CUGAUGA X GAA AAUAUGUA	UACAUUUU GUJAGUGA
	413	GCAUCACU CUGAUGA X GAA ACAAAUUA	AUAUJGUUU AGUGAUGC
	414	UGCAUCAC CUGAUGA X GAA AACAAUUA	UAUUUGUUA GUGAUGCA
	429	UAUGAAAG CUGAUGA X GAA ACUCCUG	CAGGGAGUC CUUCAUA

157

432	CUCUAUGA CUGAUGA X GAA AGGACUCC	GGAGUCCUU UCAUAGAG
433	UCUCUAUG CUGAUGA X GAA AAGGACUC	GAGUCCUUU CAUAGAGA
434	AUCUCUAU CUGAUGA X GAA AAAGGACU	AGUCCUUUC AUAGAGAU
437	UGCAUCUC CUGAUGA X GAA AUGAAAGG	CCUUUCAUA GAGAUGCA
5 455	AGUUJUGGG CUGAUGA X GAA AUGUCAGU	ACUGACAUU CCCAAACU
464	AUGUGCAC CUGAUGA X GAA AGUUUGGG	CCCAAACUU GUGGCACAU
491	GGGAUGAU CUGAUGA X GAA AGCUGUCU	AGACAGCUC AUCAUCCC
494	CAGGGGAU CUGAUGA X GAA AUGAGCUG	CAGCUCAUC AUCCCCUG
497	CGGCAGGG CUGAUGA X GAA AUGAUGAG	CUCAUCAUC CCCUGCCG
10 514	CGUJUGGGU CUGAUGA X GAA ACCUCACC	GGUGACGUC ACCCAACG
524	GUGACUGU CUGAUGA X GAA ACCUUGGG	CCCAACGUC ACAGUCAC
530	UUUAGGGU CUGAUGA X GAA ACUGUGAC	GUCACAGUC ACCCUAAA
536	AACUUUUU CUGAUGA X GAA AGGGUGAC	GUCACCCUA AAAAGUU
544	CAAAUGGA CUGAUGA X GAA ACUUUUUU	AAAAAAGUU UCCAUUUG
15 545	UCAAAUUGG CUGAUGA X GAA AACUUUUU	AAAAAGUUU CCAUUJUGA
546	AUCAAAUAG CUGAUGA X GAA AAACUUUU	AAAAGUUUC CAUUUGAU
550	GAGUAUCA CUGAUGA X GAA AUGGAAAC	GUUCCAUU UGAUACUC
551	AGAGUAUC CUGAUGA X GAA AAUGGAAA	UUUCCAUU GAUACUCU
555	GGUAAGAG CUGAUGA X GAA AUCAAAUG	CAUUUGAU CUCUUACC
20 558	AGGGGUAA CUGAUGA X GAA AGUAUCAA	UUGAUACUC UUACCCCU
560	UCAGGGGU CUGAUGA X GAA AGAGUAUC	GAUACUU ACCCCUGA
561	AUCAGGGG CUGAUGA X GAA AAGAGUAU	AUACUCUA CCCUGAU
581	UCCCAUGU CUGAUGA X GAA AUUCUUJUG	CAAAGAAUA ACAUGGGA
594	GCCUCUCC CUGAUGA X GAA ACUGUCCC	GGGACAGUA GGAGAGGC
25 604	CUAUUAUA CUGAUGA X GAA AGCCUCUC	GAGAGGCUU UAUAAUAG
605	GCUAUUAU CUGAUGA X GAA AAGCCUCU	AGAGGCUUU AUAAUAGC
606	UGCUALUA CUGAUGA X GAA AAAGCCUC	GAGGCUUUA UAAUAGCA
608	UUUGCUAL CUGAUGA X GAA AUAAAGCC	GGCUUUUAU AUAGCAAA
611	GCAUJUGC CUGAUGA X GAA AUUAUAAA	UUUAUAAUA GCAAAUGC
30 625	UCUCUUUG CUGAUGA X GAA ACGUUGCA	UGCAACGUA CAAAGAGA
635	AGCAGUCC CUGAUGA X GAA AUCUCUUU	AAAGAGAUU GGACUGCU
662	UGCCCGUU CUGAUGA X GAA ACGGUGGC	GCCACCGUC AACGGGCA
676	UUGUCUGG CUGAUGA X GAA ACAGGUGC	GCACCUGUA CCAGACAA

	688	GGGUCAGA CUGAUGA X GAA AGUUJUGUC	GACAAACUA UCUGACCC
	690	AUGGGUCA CUGAUGA X GAA AUAGUUJUG	CAAACUAUC UGACCCAU
	699	GGUCUGCC CUGAUGA X GAA AUGGGUCA	UGACCCAUC GGCAGACC
	711	UAGGAAUUG CUGAUGA X GAA AUUGGUCU	AGACCAAUA CAAUCCUA
5	716	ACAUCUAG CUGAUGA X GAA AUUGUAUU	AAUACAAUC CUAGAUGU
	719	UGGACAUC CUGAUGA X GAA AGGAUUGU	ACAAUCCUA GAUGUCCA
	725	CGUAUUUG CUGAUGA X GAA ACAUCUAG	CUAGAUGUC CAAAUCG
	731	GGCGGGCG CUGAUGA X GAA AUUUGGAC	GUCCAAUA CGCCCGCC
	758	UGCCCGUG CUGAUGA X GAA AGCAGUCU	AGACUGCUC CACGGGCA
10	771	GAGGACAA CUGAUGA X GAA AGUCUGCC	GGCAGACUC UUGUCCUC
	773	UUGAGGAC CUGAUGA X GAA AGAGUCUG	CAGACUCUU GUCCUCAA
	776	CAGUUGAG CUGAUGA X GAA ACAAGAGU	ACUCUUGUC CUCAACUG
	779	GUGCAGUU CUGAUGA X GAA AGGACAAG	CUUGUCCUC AACUGCAC
	803	CUCGUAUU CUGAUGA X GAA AGCUCCGU	ACGGAGCUC AAUACGAG
15	807	CACCCUUCG CUGAUGA X GAA AUUGAGCU	AGCUAAUA CGAGGGUG
	831	ACCAGGGU CUGAUGA X GAA AUUCCAGC	GCUGGAAUU ACCCUGGU
	832	UACCAGGG CUGAUGA X GAA AAUCCAG	CUGGAAUUA CCCUGGUA
	840	AGUUGCUU CUGAUGA X GAA ACCAGGGU	ACCCUGGUA AAGCAACU
	849	UGCUCUCU CUGAUGA X GAA AGUUGCuu	AAGCAACUA AGAGAGCA
20	859	GCCUUAAUA CUGAUGA X GAA AUGCUCUC	GAGAGCAUC UAUAGGC
	861	CUGCCUUA CUGAUGA X GAA AGAUGCUC	GAGCAUCUA UAAGGCAG
	863	CGCUGCCU CUGAUGA X GAA AUAGAUGC	GCAUCUAAAGCAGCG
	875	CUCCGGUC CUGAUGA X GAA AUCCGCUG	CAGCGGAUU GACCGGAG
	888	GUUGUGGG CUGAUGA X GAA AUGGUCC	GGAGCCAuu CCCACAAC
25	889	UGUUGUGG CUGAUGA X GAA AAUGGCUC	GAGCCAUC CCACAACA
	904	CACUGUGG CUGAUGA X GAA ACACAUUG	CAAUGUGUU CCACAGUG
	905	ACACUGUG CUGAUGA X GAA AACACAUU	AAUGUGUUC CACAGUGU
	914	AUCUUAAG CUGAUGA X GAA ACACUGUG	CACAGUGUU CUJAAGAU
	915	GAUCUAAA CUGAUGA X GAA AACACUGU	ACAGUGUUC UUAAGAUC
30	917	UUGAUCUU CUGAUGA X GAA AGAACACU	AGUGUUCUU AAGAUCAA
	918	GUUGAUCU CUGAUGA X GAA AAGAACAC	GUGUUCUUA AGAUCAAC
	923	ACAUUGUJU CUGAUGA X GAA AUCUUAAG	CUUAAGAUC AACAAUGU
	953	CAGGUGUA CUGAUGA X GAA AGCCCCUU	AAGGGGCUC UACACCUG

159

955	GACAGGUG CUGAUGA X GAA AGAGCCCC	GGGGCUCUA CACCUGUC
963	CUUCACGC CUGAUGA X GAA ACAGGUGU	ACACCUGUC GCGUGAAG
979	GGAACGAG CUGAUGA X GAA ACCCACUC	GAGUGGGUC CUCGUUCC
982	ACUGGAAAC CUGAUGA X GAA AGGACCCA	UGGGUCCUC GUUCCAGU
5 985	AAGACUGG CUGAUGA X GAA ACGAGGAC	GUCCUCGUU CCAGUCUU
986	AAAGACUG CUGAUGA X GAA AACGAGGA	UCCUCGUUC CAGUCUUU
991	UGUUGAAA CUGAUGA X GAA ACUGGAAC	GUUCCAGUC UUUCAACA
993	GGUGUJUGA CUGAUGA X GAA AGACUGGA	UCCAGUCUU UCAACACC
994	AGGUGUJUG CUGAUGA X GAA AAGACUGG	CCAGUCUUU CAACACCU
10 995	GAGGUGUU CUGAUGA X GAA AAAGACUG	CAGUCUUUC AACACCUUC
1003	CAUGCACG CUGAUGA X GAA AGGUGUUG	CAACACCUUC CGUGCAUG
1015	CUUUUUCA CUGAUGA X GAA ACACAUGC	GCAUGUGUA UGAAAAAG
1027	CACUGAUG CUGAUGA X GAA AUCCUUUU	AAAAGGAUU CAUCAGUG
1028	ACACUGAU CUGAUGA X GAA AAUCCUUU	AAAGGAUUC AUCAGUGU
15 1031	UUCACACU CUGAUGA X GAA AUGAAUCC	GGAUUCAUC AGUGUGAA
1044	CUGCJUCC CUGAUGA X GAA AUGUUUCA	UGAAACAUC GGAAGCAG
1084	GCCGAUAG CUGAUGA X GAA ACCGUCUU	AAGACGGUC CUAUCGGC
1087	ACAGCCGA CUGAUGA X GAA AGGACCGU	ACGGUCCUA UCGGCUGU
1089	GGACAGCC CUGAUGA X GAA AUAGGACC	GGUCCUAUC GGCUGUCC
20 1096	CUUUCAUG CUGAUGA X GAA ACAGCCGA	UCGGCUGUC CAUGAAAG
1114	GGGAGGGG CUGAUGA X GAA AGGCCUUC	GAAGGCCUU CCCUCCCC
1115	GGGGAGGG CUGAUGA X GAA AAGGCCUU	AAGGCCUUUC CCCUCCCCC
1120	UUUCUGGG CUGAUGA X GAA AGGGGAAG	CUUCCCCUC CCCAGAAA
1130	AACCAUAC CUGAUGA X GAA AUUUCUGG	CCAGAAAUC GUAUGGUU
25 1133	UUUAACCA CUGAUGA X GAA ACGAUUUC	GAAAUCGUA UGGUAAAA
1138	CAUCUUU CUGAUGA X GAA ACCAUACG	CGUAUGGUU AAAAGAUG
1139	CCAUCUU CUGAUGA X GAA AACCAUAC	GUAUGGUUA AAAGAUGG
1150	UUGCAGGC CUGAUGA X GAA AGCCAUCU	AGAUGGCUC GCCUGCAA
1162	CAGACUUC CUGAUGA X GAA AUGUJUGCA	UGCAACAUU GAAGUCUG
30 1168	AGCGAGCA CUGAUGA X GAA ACUUCAAU	AUUGAAGUC UGCUCGCU
1173	CAAAUAGC CUGAUGA X GAA AGCAGACU	AGUCUGCUC GCUAUUUG
1177	GUACCAAA CUGAUGA X GAA AGCGAGCA	UGCUCGCUA UUJGGUAC
1179	AUGUACCA CUGAUGA X GAA AUAGCGAG	CUCGCUAUU UGGUACAU

	1180	CAUGUACC CUGAUGA X GAA AAUAGCGA	UCGCUAUUU GGUACAU
	1184	UAGCCAUG CUGAUGA X GAA ACCAAAUA	UAUJUGGUA CAUGGC
	1192	UUAAUGAG CUGAUGA X GAA AGCAUGU	ACAUGGCUA CUCAUUA
	1195	UAAAUAUU CUGAUGA X GAA AGUAGCCA	UGGCUACUC AUJUAU
5	1198	UGAUAAUU CUGAUGA X GAA AUGAGUAG	CUACUCAUU AAUUAUCA
	1199	UUGAUAAU CUGAUGA X GAA AAUGAGUA	UACUCAUUA AUUAUCAA
	1202	UCUUUGAU CUGAUGA X GAA AUUAAUGA	UCAUUAUU AUCAAAGA
	1203	AUCUUJGA CUGAUGA X GAA AAUUAUG	CAUUAUUA UCAAAGAU
	1205	ACAUCUJJ CUGAUGA X GAA AUAAUUA	UUAAUUAUC AAAGAUGU
10	1237	AGAUCGUA CUGAUGA X GAA AGUCCCCU	AGGGGACUA UACGAUCU
	1239	CAAGAUCG CUGAUGA X GAA AUAGUCCC	GGGACUAUA CGAUCUUG
	1244	CCCAGCAA CUGAUGA X GAA AUCGUUA	UAUACGAUC UUGCUGGG
	1246	UGCCCAAGC CUGAUGA X GAA AGAUCGUA	UACGAUCUU GCUGGGCA
	1256	GACUGCUU CUGAUGA X GAA AUGCCCAG	CUGGGCAUA AAGCAGUC
15	1264	AUAGCCUU CUGAUGA X GAA ACUGCUUU	AAAGCAGUC AAGGCUAU
	1271	UUUUUAAA CUGAUGA X GAA AGCCUUGA	UCAAGGCUA UUUAAAAA
	1273	GGUUUUUA CUGAUGA X GAA AUAGCCUU	AAGGCUAUU UAAAAACC
	1274	AGGUUUUU CUGAUGA X GAA AAUAGCCU	AGGCUAUUJ AAAAACCU
	1275	GAGGUUUU CUGAUGA X GAA AAAUAGCC	GGCUAUUA AAAACCUC
20	1283	GUGGCAGU CUGAUGA X GAA AGGUUUUU	AAAAACCU C ACUGCCAC
	1293	UACAAUGA CUGAUGA X GAA AGUGGCAG	CUGCCACUC UCAUUGUA
	1295	UUUACAAU CUGAUGA X GAA AGAGUGGC	GCCACUCUC AUUGUAAA
	1298	ACGUUUAC CUGAUGA X GAA AUGAGAGU	ACUCUCAUU GUAAACGU
	1301	UUCACGUU CUGAUGA X GAA ACAAUGAG	CUCAUUGUA AACGUGAA
25	1314	GUAGAUCU CUGAUGA X GAA AGGUUUC	UGAAAACCUC AGAUCUAC
	1319	UUUUCGUA CUGAUGA X GAA AUCUGAGG	CCUCAGAUC UACGAAAA
	1321	ACUUUUCG CUGAUGA X GAA AGAUCUGA	UCAGAUCUA CGAAAAGU
	1330	AGGACACG CUGAUGA X GAA ACUUUUCG	CGAAAAGUC CGUGUCCU
	1336	GAAGCGAG CUGAUGA X GAA ACACGGAC	GUCCGUGUC CUCGCUUC
30	1339	UUGGAAGC CUGAUGA X GAA AGGACACG	CGUGUCCUC GCUUCCAA
	1343	GGGCUUGG CUGAUGA X GAA AGCGAGGA	UCCUCGCUU CCAAGCCC
	1344	UGGGCUUG CUGAUGA X GAA AAGCGAGG	CCUCGCUUC CAAGCCCA
	1356	CGGAUAGA CUGAUGA X GAA AGGUGGGC	GCCCACCU C UCUAUCCG

1358	AGCGGAUA CUGAUGA X GAA AGAGGUGG	CCACCUCUC UAUCCGCU
1360	CCAGCGGA CUGAUGA X GAA AGAGAGGU	ACCUCUCUA UCCGCUGG
1362	GCCCAGCG CUGAUGA X GAA AUAGAGAG	CUCUCUAUC CGCUGGGC
1382	CAAGUGAG CUGAUGA X GAA ACUUGUCU	AGACAAGUC CUCACUUG
5	1385 GUGCAAGU CUGAUGA X GAA AGGACUUG	CAAGUCCUC ACUUGCAC
	1389 CACGGUGC CUGAUGA X GAA AGUGAGGA	UCCUCACUU GCACCGUG
	1399 GGAUGCCA CUGAUGA X GAA ACACGGUG	CACCGUGUA UGGCAUCC
	1406 GGCGGAGG CUGAUGA X GAA AUGCCAUA	UAUGGCAUC CCUCGGCC
	1410 UGUUJGGCC CUGAUGA X GAA AGGGAUGC	GCAUCCCUC GGCCAACA
10	1421 AGCCACGU CUGAUGA X GAA AUJGUUUGG	CCAACAAUC ACGUGGCCU
	1430 GGGUGCCA CUGAUGA X GAA AGCCACGU	ACGUGGCUC UGGCACCC
	1443 AUUGUGGU CUGAUGA X GAA ACAGGGGU	ACCCUGUC ACCACAAU
	1452 UUUGGAGU CUGAUGA X GAA AUJUGUGGU	ACCACAAUC ACUCCAAA
	1456 UUUUUUJUG CUGAUGA X GAA AGUGAUUG	CAAUCACUC CAAAGAAA
15	1468 AGAAGUCA CUGAUGA X GAA ACCUUUCU	AGAAAGGUA UGACUUCU
	1474 CAGUGCAG CUGAUGA X GAA AGUCAUAC	GU AUGACUU CUGCACUG
	1475 UCAGUGCA CUGAUGA X GAA AAGUCAUA	UAUGACUUC UGCACUGA
	1495 GGAUAAAAG CUGAUGA X GAA AUJCUUCA	UGAAGAAUC CUUUAUCC
	1498 CCAGGGAUA CUGAUGA X GAA AGGAUUCU	AGAAUCCUU UAUCUUGG
20	1499 UCCAGGGAU CUGAUGA X GAA AAGGAUUC	GAAUCCUUU AUCCUGGA
	1500 AUCCAGGA CUGAUGA X GAA AAAGGAUU	AAUCUUUA UCCUGGAU
	1502 GGAUCCAG CUGAUGA X GAA AUAAAAGGA	UCCUUUAUC CUGGAUCC
	1509 GCUGCGUG CUGAUGA X GAA AUCCAGGA	UCCUGGAUC CCAGCAGC
	1522 UGUUJUCCU CUGAUGA X GAA AGUUGCUG	CAGCAACUU AGGAAACA
25	1523 CUGUUUCC CUGAUGA X GAA AAGUJGCU	AGCAACUUUA GGAAACAG
	1535 AUGCUCUC CUGAUGA X GAA AUUCUGUU	AACAGAAUU GAGAGCAU
	1544 CGCUGAGA CUGAUGA X GAA AUGCUCUC	GAGAGCAUC UCUCAGCG
	1546 UGCUGUGA CUGAUGA X GAA AGAUGCUC	GAGCAUCUC UCAGCGCA
	1548 CAUGCGCU CUGAUGA X GAA AGAGAUGC	GCAUCUCUC AGCGCAUG
30	1562 CCUUCUAU CUGAUGA X GAA ACCGUCAU	AUGACGGUC AUAGAAGG
	1565 GUUCCUUC CUGAUGA X GAA AUGACCGU	ACGGUCAUA GAAGGAAC
	1578 AACCGUCU CUGAUGA X GAA AUUJGUUC	GAACAAAAUA AGACGGUU
	1586 AAUGUGCU CUGAUGA X GAA ACCGUCUU	AAGACGGUU AGCACAUU

	1587	CAAUGUGC CUGAUGA X GAA AACCGUCU	AGACGGUUA GCACAUUG
	1594	CCACCACC CUGAUGA X GAA AUGUGCUA	UAGCACAUU GGUGGUGG
	1609	GGGUCUGA CUGAUGA X GAA AGUCAGCC	GGCUGACUC UCAGACCC
	1611	AGGGGUCU CUGAUGA X GAA AGAGUCAG	CUGACUCUC AGACCCU
5	1625	CAGCUGUA CUGAUGA X GAA AUUCCAGG	CCUGGAAUC UACAGCUG
	1627	GGCAGCUG CUGAUGA X GAA AGAUUCCA	UGGAAUCUA CAGCUGCC
	1642	UUUUAUUG CUGAUGA X GAA AGGCCCGG	CCGGGCCUU CAAUAAAA
	1643	AUJJUJAUU CUGAUGA X GAA AAGGCCCG	CGGGCCUJC AAUAAAUAU
	1647	CCCUAUUU CUGAUGA X GAA AUUGAAGG	CCUCAAAUA AAAUAGGG
10	1652	ACAGUCCC CUGAUGA X GAA AUUUUAUU	AAUAAAUA GGGACUGU
	1673	UAAAAAUU CUGAUGA X GAA AUGUUUCU	AGAAACAUUA AAAUUUUA
	1678	UGACAUAA CUGAUGA X GAA AUUUUAUG	CAUAAAUAU UUAUGUCA
	1679	GUGACAUAA CUGAUGA X GAA AUUUUUAU	AUAAAUAUU UAUGUCAC
	1680	UGUGACAU CUGAUGA X GAA AAAUUUUA	UAAAAUUUU AUGUCACA
15	1681	CUGUGACA CUGAUGA X GAA AAAUUUUU	AAAAUUUUUA UGUCACAG
	1685	ACAUCUGU CUGAUGA X GAA ACAUAAAA	UUJUAUGUC ACAGAUGU
	1705	AAACGUGA CUGAUGA X GAA AGCCAUUC	GAAUGGCUU UCACGUUU
	1706	GAAACGUG CUGAUGA X GAA AAGCCAUU	AAUGGCUUU CACGUUUC
	1707	GGAAACGU CUGAUGA X GAA AAAGCCAU	AUGGCUUUC ACGUUUCC
20	1712	UCCAAGGA CUGAUGA X GAA ACCGUGAAA	UUUCACGUU UCCUUGGA
	1713	UJCCAAGG CUGAUGA X GAA AACCGUGAA	UUCACGUUU CCUUGGAA
	1714	UUJCCAAG CUGAUGA X GAA AAACGUGA	UCACGUUUC CUUGGAAA
	1717	UCUUUUCC CUGAUGA X GAA AGGAAACG	CGUUUCCUU GGAAAAGA
	1756	CCACACAG CUGAUGA X GAA ACAGUUUC	GAAACUGUC CUGUGUGG
25	1766	AAUUUAUU CUGAUGA X GAA ACCACACA	UGUGUGGUC AAUAAAUAU
	1770	CAGGAAUU CUGAUGA X GAA AUUGACCA	UGGUCAAAUA AAUJCCUG
	1774	UGUACAGG CUGAUGA X GAA AUUUAUUG	CAAUAAAUAU CCUGUACCA
	1775	CUGUACAG CUGAUGA X GAA AUUUUAUU	AAUAAAUAUC CUGUACAG
	1780	UGUCUCUG CUGAUGA X GAA ACAGGAAU	AUUCCUGUA CAGAGACA
30	1790	AUCCAGGU CUGAUGA X GAA AUGUCUCU	AGAGACAUU ACCUGGAU
	1791	AAUCCAGG CUGAUGA X GAA AAUGUCUC	GAGACAUUA CCUGGAUU
	1799	CGUAGCAG CUGAUGA X GAA AUCCAGGU	ACCUGGAUU CUGCUACG
	1800	CCGUAGCA CUGAUGA X GAA AAUCCAGG	CCUGGAUUC UGCUACGG

	1805	ACUGUCCG CUGAUGA X GAA AGCAGAAU	AUUCUGCUA CGGACAGU
	1814	CUGUJGUU CUGAUGA X GAA ACUGUCCG	CGGACAGUU AACAAACAG
	1815	UCUGUJGU CUGAUGA X GAA AACUGUCC	GGACAGUUA ACAACAGA
	1836	GCUGAUAC CUGAUGA X GAA AUGGUGCA	UGCACCAUA GUAUCAGC
5	1839	CUUGCUGA CUGAUGA X GAA ACUAUGGU	ACCAUAGUA UCAGCAAG
	1841	UGCUJGUU CUGAUGA X GAA AUACUAUG	CAUAGUAUC AGCAAGCA
	1866	GUAAUCUU CUGAUGA X GAA AGUGGUGG	CCACCACUC AAGAUUAC
	1872	GAUGGAGU CUGAUGA X GAA AUCUJUGAG	CUCAAGAUU ACUCCAUC
	1873	UGAUGGAG CUGAUGA X GAA AAUCUJUGA	UCAAGAUU CUCCAUCA
10	1876	GAGUGAUG CUGAUGA X GAA AGUAAUCU	AGAUUACUC CAUCACUC
	1880	UUCAGAGU CUGAUGA X GAA AUGGAGUA	UACUCCAUC ACUCUGAA
	1884	AAGGUUCA CUGAUGA X GAA AGUGAUGG	CCAUCACUC UGAACCUU
	1892	UUGAUGAC CUGAUGA X GAA AGGUUCAG	CUGAACCUU GUCAUCAA
	1895	UUCUUGAU CUGAUGA X GAA ACAAGGUU	AACCUUGUC AUCAAGAA
15	1898	ACGUUCUU CUGAUGA X GAA AUGACAAG	CUJUGUCAUC AAGAACGU
	1909	CUUCUAGA CUGAUGA X GAA ACACGUUC	GAACGUGUC UCUAGAAG
	1911	GUCUUCUA CUGAUGA X GAA AGACACGU	ACGUGUCUC UAGAAGAC
	1913	GAGUCUUC CUGAUGA X GAA AGAGACAC	GUGUCUCUA GAAGACUC
	1921	AGGUGCCC CUGAUGA X GAA AGCUUUCU	AGAAGACUC GGGCACCU
20	1930	UGCACCGA CUGAUGA X GAA AGGUGCCC	GGGCACCUA UGCGUGCA
	1952	CCUGUGUA CUGAUGA X GAA AUGUUCCU	AGGAACAUU UACACAGG
	1954	CCCCUGUG CUGAUGA X GAA AUAUGUUC	GAACAUUA CACAGGGG
	1970	UUCCGAAG CUGAUGA X GAA AUGUCUUC	GAAGACAUC CUUCGGAA
	1973	GUCUJCCG CUGAUGA X GAA AGGAUGUC	GACAUCCUU CGGAAGAC
25	1974	UGUCUJUCC CUGAUGA X GAA AAGGAUGU	ACAUCUUC GGAAGACA
	1988	CUAACCGAG CUGAUGA X GAA ACUUCUGU	ACAGAAGUU CUCGUUAG
	1989	UCUAACGA CUGAUGA X GAA AACUUCUG	CAGAAGUUC UCGGUUAGA
	1991	UCUCUAAAC CUGAUGA X GAA AGAACUUC	GAAGUUCUC GUUAGAGA
	1994	GAAUCUCU CUGAUGA X GAA ACGAGAAC	GUUCUCGUU AGAGAUUC
30	1995	CGAAUCUC CUGAUGA X GAA AACGAGAA	UUCUCGUUA GAGAUUCG
	2001	CGCUJCCG CUGAUGA X GAA AUCUCUAA	UUAGAGAUU CGGAAGCG
	2002	GCGCUJUCC CUGAUGA X GAA AAUCUCUA	UAGAGAUUC GGAAGCGC
	2021	AGGUUUJUG CUGAUGA X GAA AGCAGGUG	CACCUGCUU CAAAACCU

	2022	GAGGUUUU CUGAUGA X GAA AAGCAGGU	ACCUGCUUC AAAACCUC
	2030	UAGUCACU CUGAUGA X GAA AGGUUUUG	CAAAACCUC AGUGACUA
	2038	AGACCUCG CUGAUGA X GAA AGUCACUG	CAGUGACUA CGAGGUCU
	2045	CUGAUGGA CUGAUGA X GAA ACCUCGUA	UACGAGGUC UCCAUCAG
5	2047	CACUGAUG CUGAUGA X GAA AGACCUCG	CGAGGGUCUC CAUCAGUG
	2051	GAGCCACU CUGAUGA X GAA AUGGAGAC	GUCUCCAUC AGUGGCUC
	2059	AGGUCGUA CUGAUGA X GAA AGCCACUG	CAGUGGCUC UACGACCU
	2061	UAAGGUUCG CUGAUGA X GAA AGAGCCAC	GUGGCUCUA CGACCUUA
	2068	GACAGUCU CUGAUGA X GAA AGGUCGUA	UACGACCUU AGACUGUC
10	2069	UGACAGUC CUGAUGA X GAA AAGGUCGU	ACGACCUUA GACUGUCA
	2076	UCUAGCUU CUGAUGA X GAA ACAGUCUA	UAGACUGUC AAGCUAGA
	2082	GACACCUC CUGAUGA X GAA AGCUUJGAC	GUCAAGCUA GAGGUGUC
	2090	GGCGCGGG CUGAUGA X GAA ACACCUCU	AGAGGUGUC CCCGCGCC
	2100	AGUGAUCU CUGAUGA X GAA AGGCGCGG	CCGCGCCUC AGAUCACU
15	2105	AACCAAGU CUGAUGA X GAA AUCUGAGG	CCUCAGAUC ACUUGGUU
	2109	UUUGAACC CUGAUGA X GAA AGUGAUCU	AGAUCACUU GGUUCAAA
	2113	UGUUUUJUG CUGAUGA X GAA ACCAAGUG	CACUUGGUU CAAAAACA
	2114	UUGUUUUU CUGAUGA X GAA AACCAAGU	ACUUGGUUC AAAAACAA
	2132	UCUUGUUG CUGAUGA X GAA AUUUJUGUG	CACAAAUA CAACAAGA
20	2150	CCUAAAAU CUGAUGA X GAA AUUCCCGG	CCGGGAAUU AUUUJAGG
	2151	UCCUAAAA CUGAUGA X GAA AAUCCCG	CGGGAAUA UUUUAGGA
	2153	GGUCCUAA CUGAUGA X GAA AUAAUUCC	GGAAUUAUU UUAGGACC
	2154	UGGUCCUA CUGAUGA X GAA AAUAAUUC	GAAUUAUU UAGGACCA
	2155	CUGGUCCU CUGAUGA X GAA AAAUAAUJ	AAUUAUUU AGGACCAAG
25	2156	CCUGGUCC CUGAUGA X GAA AAAUAAAU	AUUAAUUUA GGACCAGG
	2179	UUUCAAUA CUGAUGA X GAA ACAGCGUG	CACGCUGUU UAUUGAAA
	2180	CUUUCAAU CUGAUGA X GAA AACAGCGU	ACGCUGUUU AUJGAAAG
	2181	UCUUUCAA CUGAUGA X GAA AACAGCG	CGCUGUUUA UJGAAAGA
	2183	ACUCUUJC CUGAUGA X GAA AUAAACAG	CUGUUJAUU GAAAGAGU
30	2192	UCCUCUGU CUGAUGA X GAA ACUCUUUC	GAAAGAGUC ACAGAGGA
	2213	CACCUAAU CUGAUGA X GAA ACACCCUC	GAGGGUGUC UAUAGGUG
	2215	GGCACCUA CUGAUGA X GAA AGACACCC	GGGUGUCUA UAGGUGCC
	2217	UCGGCACC CUGAUGA X GAA AUAGACAC	GUGUCUUA GGUGCCGA

	2263	CGGUGAGG CUGAUGA X GAA AGGCUGCG	CGCAGCCUA CCUCACCG
	2267	UGCACGGU CUGAUGA X GAA AGGUAGGC	GCCUACCUUC ACCGUGCA
	2284	ACUUGUCU CUGAUGA X GAA AGGUUCCU	AGGAACCUC AGACAAGU
	2293	CCAGGUUU CUGAUGA X GAA ACUUGUCU	AGACAAGUC AAACCUGG
5	2309	GUGAGCGU CUGAUGA X GAA AUCAGCUC	GAGCUGAUC ACGCUCAC
	2315	GUGCACGU CUGAUGA X GAA AGCGUGAU	AUCACGCUC ACGUGGCAC
	2342	AGCCAAAA CUGAUGA X GAA AGGGUCGC	GCGACCCUC UUUUGGCCU
	2344	GGAGCCAA CUGAUGA X GAA AGAGGGUC	GACCCUCUU UGGCUCC
	2345	AGGAGCCA CUGAUGA X GAA AAGAGGGU	ACCCUCUUU UGGCUCCU
10	2346	AAGGAGCC CUGAUGA X GAA AAAGAGGG	CCCUCUUUU GGCUCUCCU
	2351	GUUAGAAG CUGAUGA X GAA AGCCAAAA	UUUUGGCUC CUUCUAAC
	2354	AGAGUUAG CUGAUGA X GAA AGGAGCCA	UGGCUCUUU CUAACUCU
	2355	GAGAGUUA CUGAUGA X GAA AAGGAGCC	GGCUCCUUC UAACUCUC
	2357	AAGAGAGU CUGAUGA X GAA AGAAGGAG	CUCUUCUA ACUCUCUU
15	2361	GAUGAAGA CUGAUGA X GAA AGUUAGAA	UUCUAACUC UCUUCAUC
	2363	CUGAUGAA CUGAUGA X GAA AGAGUUAG	CUAACUCUC UUCAUCAG
	2365	UUCUGAUG CUGAUGA X GAA AGAGAGUU	AACUCUCUU CAUCAGAA
	2366	UUUCUGAU CUGAUGA X GAA AAGAGAGU	ACUCUCUUC AUCAGAAA
	2369	AGUUUUUCU CUGAUGA X GAA AUGAAGAG	CUCUUCAU CAGAAAACU
20	2386	CGGAAGAA CUGAUGA X GAA ACCGCUUC	GAAGCGGUC UUCUUCCG
	2388	UUCGGAAG CUGAUGA X GAA AGACCGCU	AGCGGUCUU CUUCCGAA
	2389	CUUCGGAA CUGAUGA X GAA AAGACCGC	GCGGUCUUC UUCCGAAG
	2391	UACUUCGG CUGAUGA X GAA AGAAGACC	GGUCUUCUU CCGAAGUA
	2392	UUACUTUCG CUGAUGA X GAA AAGAAGAC	GUCUUCUUC CGAAGUAA
25	2399	UCUGUCUU CUGAUGA X GAA ACUUCGGA	UCCGAAGUA AAGACAGA
	2410	UUGACAGG CUGAUGA X GAA AGUCUGUC	GACAGACUA CCUGUCAA
	2416	UAAUGAUU CUGAUGA X GAA ACAGGUAG	CUACCUGUC AAUCAUUA
	2420	UCCAUAUU CUGAUGA X GAA AUJGACAG	CUGUCAAUC AUUAUGGA
	2423	GGGUCCAU CUGAUGA X GAA AUGAUUGA	UCAAUCAUU AUGGACCC
30	2424	UGGGUCCA CUGAUGA X GAA AAUGAUUG	CAAUCAUUA UGGACCCA
	2441	UCCAGGGG CUGAUGA X GAA ACUUCAU	GAUGAAGUU CCCCUGGA
	2442	AUCCAGGG CUGAUGA X GAA AACUUCAU	AUGAAGUUC CCCUGGAU
	2473	UGGCAUCA CUGAUGA X GAA AGGCAGC	GCUGCCCCUA UGAUGCCA

166

	2494	CCCGUGCA CUGAUGA X GAA ACUCCCAC	GUGGGAGUU UGCACGGG
	2495	UCCCCGUGC CUGAUGA X GAA AACUCCCA	UGGGAGUUU GCACGGGA
	2516	GAUUJUGCC CUGAUGA X GAA AGUUUCAG	CUGAAACUA GGCAAAUC
	2524	UUCCGAGC CUGAUGA X GAA AUJUGCCU	AGGCAAAUC GCUCGGAA
5	2528	CCUCUJUCC CUGAUGA X GAA AGCGAUUU	AAAUCGCUC GGAAGAGG
	2541	UUUCCCAA CUGAUGA X GAA AGCCCCUC	GAGGGGCUU UUGGGAAA
	2542	CUUUCCCA CUGAUGA X GAA AAGCCCCU	AGGGGCUUU UGGGAAAG
	2543	ACUUUCCC CUGAUGA X GAA AAAGCCCC	GGGGCUUUU GGGAAAGU
	2552	GCUUGAAC CUGAUGA X GAA ACUUUCCC	GGGAAAGUC GUUCAAGC
10	2555	GAGGCCUUG CUGAUGA X GAA ACGACUUU	AAAGUCGUU CAAGCCUC
	2556	AGAGGCCUU CUGAUGA X GAA AACGACUU	AAGUCGUUC AAGCCUCU
	2563	CAAAUGCA CUGAUGA X GAA AGGCUUGA	UCAAGCCUC UGCAUUUG
	2569	UAAUGCCA CUGAUGA X GAA AUGCAGAG	CUCUGCAUU UGGCAUUA
	2570	UUAAAUGCC CUGAUGA X GAA AAUGCAGA	UCUGCAUUU GGCAUUA
15	2576	GAUUUCUU CUGAUGA X GAA AUGCCAAA	UUUGGCAUU AAGAAAUC
	2577	UGAUUUJUC CUGAUGA X GAA AAUGCCAA	JUGGCAUUA AGAAAUC
	2584	AGGUGGGU CUGAUGA X GAA AUUJCUUA	UAAGAAAUC ACCCACC
	2617	CCUCUJUC CUGAUGA X GAA ACAUCUUC	GAAGAUGUU GAAAGAGG
	2644	GAGCUUJUG CUGAUGA X GAA ACUCACUG	CAGUGAGUA CAAAGCUC
20	2652	GGUCAUCA CUGAUGA X GAA AGCUUJUG	ACAAAGCUC UGAUGACC
	2666	AAGAUCUU CUGAUGA X GAA AGUUCGGU	ACCGAACUC AAGAUCUU
	2672	UGGGUCAA CUGAUGA X GAA AUCUUGAG	CUAAGAUC UUGACCCA
	2674	UGUGGGUC CUGAUGA X GAA AGAUCUJG	CAAGAUCUU GACCCACA
	2684	UGAUGGCC CUGAUGA X GAA AUGUGGGU	ACCCACAAUC GGCAUCA
25	2691	AUUCAGAU CUGAUGA X GAA AUGGCCGA	UCGGCCAUC AUCUGAAU
	2694	CACAUUCA CUGAUGA X GAA AUGAUGGC	GCCAUCAUC UGAAUGUG
	2705	AGGAGGUU CUGAUGA X GAA ACCACAUU	AAUGUGGUU AACCUCCU
	2706	CAGGAGGU CUGAUGA X GAA AACCACAU	AUGUGGUUA ACCUCCUG
	2711	GCUCCCAG CUGAUGA X GAA AGGUUAAC	GUUAACCUUC CUGGGAGC
30	2742	CACCAUCA CUGAUGA X GAA AGGCCUC	GAGGGCCUC UGAUGGUG
	2753	UAUUCCAC CUGAUGA X GAA AUCACCAU	AUGGUGAUC GUGGAAUA
	2761	AUUUGCAG CUGAUGA X GAA AUUCCACG	CGUGGAAUA CUGCAAAU
	2770	GGUUUCCG CUGAUGA X GAA AUUJUGCAG	CUGCAAAUA CGGAAACC

	2782	GGUAGUUG CUGAUGA X GAA ACAGGUUU	AAACCUGUC CAACUACC
	2788	UCUUGAGG CUGAUGA X GAA AGUUGGAC	GUCCAACUA CCUCAAGA
	2792	UUGCUCUU CUGAUGA X GAA AGGUAGUU	AACUACCUC AAGAGCAA
	2809	GACAGAAU CUGAUGA X GAA AGUCACGU	ACGUGACUU AUUCUGUC
5	2810	AGACAGAA CUGAUGA X GAA AAGUCACG	CGUGACUUA UUCUGUCU
	2812	UGAGACAG CUGAUGA X GAA AUAAGUCA	UGACUUAUU CUGUCUCA
	2813	UUGAGACA CUGAUGA X GAA AAUAAGUC	GACUUUAUC UGUCUCAA
	2817	CUUGUUGA CUGAUGA X GAA ACAGAAUA	UAUUCUGUC UCAACAAG
	2819	UCCUJGUU CUGAUGA X GAA AGACAGAA	UUCUGUCUC ACAAGGAA
10	2836	CCAUUAUGC CUGAUGA X GAA AGGCUGCG	CGCAGCCUU GCAUAUGG
	2841	GAGCUCCA CUGAUGA X GAA AUGCAAGG	CCUUGCAUA UGGAGCUC
	2849	UCUUUCUU CUGAUGA X GAA AGCUCCAU	AUGGAGCUC AAGAAAGA
	2900	ACACUGUC CUGAUGA X GAA AGGGGGGG	CCCCGCCUA GACAGUGU
	2909	GAGCUGCU CUGAUGA X GAA ACACUGUC	GACAGUGUC AGCAGCUC
15	2917	UGACACUU CUGAUGA X GAA AGCUGCUG	CAGCAGCUC AAGUGUCA
	2924	GAGCTUGGU CUGAUGA X GAA ACACUUGA	UCAAGUGUC ACCAGCUC
	2932	GGAAGCUG CUGAUGA X GAA AGCTUGGUG	CACCAGCUC CAGCUUCC
	2938	CUUCAGGG CUGAUGA X GAA AGCTUGGAG	CUCCAGCUU CCCUGAAG
	2939	UCUUCAGG CUGAUGA X GAA AAGCUGGA	UCCAGCUUC CCUGAAGA
20	2982	CUCACTGU CUGAUGA X GAA AUCCUCGU	ACGAGGAUU ACAGUGAG
	2983	UCUCACUG CUGAUGA X GAA AAUCCUCG	CGAGGAUUA CAGUGAGA
	2993	UGCUUUGGA CUGAUGA X GAA AUCUCACU	AGUGAGAUC UCCAAGCA
	2995	GCUGCUUG CUGAUGA X GAA AGAUCUCA	UGAGAUCUC CAAGCAGC
	3008	UCCAUGGU CUGAUGA X GAA AGGGGCUG	CAGCCCCUC ACCAUGGA
25	3026	CUGUAGGA CUGAUGA X GAA AUCAGGUC	GACCUGAUU UCCUACAG
	3027	ACUGUAGG CUGAUGA X GAA AAUCAGGU	ACCUGAUUU CCUACAGU
	3028	AACUGUAG CUGAUGA X GAA AAAUCAGG	CCUGAUUUC CUACAGUU
	3031	GGAAACUG CUGAUGA X GAA AGGAAAUC	GAUUJCCUA CAGUUUCC
	3036	CACUJUGGA CUGAUGA X GAA ACUGUAGG	CCUACAGUU UCCAAGUG
30	3037	CCACUJUGG CUGAUGA X GAA AACUGUAG	CUACAGUUU CCAAGUGG
	3038	GCCACUUG CUGAUGA X GAA AAACUGUA	UACAGUUUC CAAGUGGC
	3061	AGGACAGA CUGAUGA X GAA ACUCCAUG	CAUGGAGUU UCUGUCCU
	3062	GAGGACAG CUGAUGA X GAA AACUCCAU	AUGGAGUUU CUGUCCUC

168

3063	GGAGGACA CUGAUGA X GAA AAACUCCA	UGGAGUUUC UGUCCUCC
3067	UUCUGGAG CUGAUGA X GAA ACAGAAAC	GUUUCUGUC CUCCAGAA
3070	ACUUUCUG CUGAUGA X GAA AGGACAGA	UCUGUCCUC CAGAAAGU
3083	UCCCGAUG CUGAUGA X GAA AUGCACUU	AAGUGCAUU CAUCGGGA
5	3084 GUCCCCAU CUGAUGA X GAA AAUGCACU	AGUGCAUUC AUCGGGAC
	3087 CAGGUCCC CUGAUGA X GAA AUGAAUGC	GCAUUCAUC GGGACCUG
	3110 GAUAAAAG CUGAUGA X GAA AUGUUUCU	AGAAACAUUC CUUUUAUC
	3113 UCAGAUAA CUGAUGA X GAA AGGAUGUU	AACAUCCUU UUAUCUGA
	3114 CUCAGAUAA CUGAUGA X GAA AAGGAUGU	ACAUCCUUU UAUCUGAG
10	3115 UCUCAGAU CUGAUGA X GAA AAAGGAUG	CAUCUUUU AUCUGAGA
	3116 UUCUCAGA CUGAUGA X GAA AAAAGGAU	AUCCUUUUUA UCUGAGAA
	3118 UGUUUCUCA CUGAUGA X GAA AUAAAAGG	CCUUUUUAUC UGAGAAC
	3140 AAGUCGCA CUGAUGA X GAA AUCUUCAC	GUGAAGAUU UGCGACUU
	3141 AAAGUCGC CUGAUGA X GAA AAUCUUCA	UGAAGAUUU GCGACUUU
15	3148 CCAGGCCA CUGAUGA X GAA AGUCGCAA	UUGCGACUU UGGCCUGG
	3149 GCCAGGCC CUGAUGA X GAA AAGUCGCA	UGCGACUUU GGCCUGGC
	3165 CUUAAA CUGAUGA X GAA AUCCCGGG	CCCGGGAUUA UUUUAUAG
	3167 UUCUUAUA CUGAUGA X GAA AUAUCCCC	CGGGAUAUU UAAAGAAG
	3168 GUUCUUAU CUGAUGA X GAA AAUAUCCC	GGGAUAUU AUAAGAAC
20	3169 GGUUCUUA CUGAUGA X GAA AAAUAUCC	GGAUUUUA UAAGAACCC
	3171 AGGGUUCU CUGAUGA X GAA AUAAAUAU	AUAUUUAUA AGAACCU
	3183 CCUCACAU CUGAUGA X GAA AUCAGGGU	ACCCUGAUU AUGUGAGG
	3184 UCCUCACA CUGAUGA X GAA AAUCAGGG	CCCUGAUUA UGUGAGGA
	3201 AAGUCGAG CUGAUGA X GAA AUCUCCUC	GAGGAGAUUA CUCGACUU
25	3204 GGGAGUC CUGAUGA X GAA AGUAUCUC	GAGAUACUC GACUUC
	3209 UUUAGGG CUGAUGA X GAA AGUCGAGU	ACUCGACUU CCCUAAA
	3210 UUUUAGGG CUGAUGA X GAA AAGUCGAG	CUCGACUUC CCCUAAA
	3215 AUCCAUUU CUGAUGA X GAA AGGGGAAG	CUUCCCCUA AAAUGGAU
	3228 GGAAUCAG CUGAUGA X GAA AGCCAUC	GGAUGGCUC CUGAAUCC
30	3235 CAAAGAUG CUGAUGA X GAA AUUCAGGA	UCCUGAAUC CAUCUUUG
	3239 UUGUCAAA CUGAUGA X GAA AUGGAUUC	GAAUCCAUUC UUUGACAA
	3241 CCUUGUCA CUGAUGA X GAA AGAUGGAAU	AUCCAUUU UGACAAGG
	3242 ACCUUGUC CUGAUGA X GAA AAGAUGGA	UCCAUCUU GACAAGGU

	3251	GUGCUGUA CUGAUGA X GAA ACCUUGUC	GACAAGGUC UACAGCAC
	3253	UGGUGCUG CUGAUGA X GAA AGACCUUG	CAAGGUCUA CAGCACCA
	3277	CGCCAUG CUGAUGA X GAA ACCACACA	UGUGUGGUC CUAUGGCG
	3280	ACACGCCA CUGAUGA X GAA AGGACCAC	GUGGUCCUA UGGCGUGU
5	3289	CCCACAGC CUGAUGA X GAA ACACGCCA	UGGCUGUUU GCUGUGGG
	3302	AAGGAGAA CUGAUGA X GAA AUCUCCCA	UGGGAGAUC UUCUCCUU
	3304	CUAAGGAG CUGAUGA X GAA AGAUCUCC	GGAGAUUU CUCCUUAG
	3305	CCUAAGGA CUGAUGA X GAA AAGAUCUC	GAGAUCUUC UCCUUAGG
	3307	CCCCUAAG CUGAUGA X GAA AGAAGAUC	GAUCUUCUC CUUAGGGG
10	3310	AACCCCCU CUGAUGA X GAA AGGAGAAG	CUUCUCCUU AGGGGGUU
	3311	GAACCCCC CUGAUGA X GAA AAGGAGAA	UUCUCCUA GGGGGUUC
	3318	GUAUGGAG CUGAUGA X GAA ACCCCCUA	UAGGGGGUU CUCCAUAC
	3319	GGUAUGGA CUGAUGA X GAA AACCCCCU	AGGGGGUUC UCCAUACC
	3321	UGGGUAUG CUGAUGA X GAA AGAACCCC	GGGGUUCUC CAUACCCA
15	3325	CUCCUGGG CUGAUGA X GAA AUGGAGAA	UUCUCCUA CCCAGGAG
	3352	GGCUGCAG CUGAUGA X GAA AGCUUCA	UGAAGACUU CUGCAGCC
	3353	CGGCUGCA CUGAUGA X GAA AAGCUUUC	GAAGACUUC UGCAGCCG
	3397	GUGUGGCA CUGAUGA X GAA ACUCCGGG	CCCGGAGUA UGCCACAC
	3413	AUUJUGUA CUGAUGA X GAA AUUUCAGG	CCUGAAAUC UACCAAU
20	3415	UGAUUJUGG CUGAUGA X GAA AGAUUUCA	UGAAAUCUA CCAAUCA
	3422	UCCAACAU CUGAUGA X GAA AUJUGGUA	UACCAAUC AUGUJUGG
	3427	AGCAAUCC CUGAUGA X GAA ACAUGAUU	AAUCAUGUU GGAIJUGCU
	3432	GUGCCAGC CUGAUGA X GAA AUCCAACA	UGUUGGAUU GCUGGCAC
	3466	GUUCAGCA CUGAUGA X GAA ACCGGGGC	GCCCCGGUU UGCUGAAC
25	3467	AGUUCAGC CUGAUGA X GAA AACCGGGG	CCCCGGUUU GCUGAACU
	3476	UUCUCCAC CUGAUGA X GAA AGUUCAGC	GCUGAACUU GUUGGAGAA
	3488	AGGUUCACC CUGAUGA X GAA AGUJUCUC	GAGAAACUU GGUGACCU
	3500	UJGGCUJG CUGAUGA X GAA AGCAGGUC	GACCUGCUU CAAGCCAA
	3501	GUUGGCUU CUGAUGA X GAA AAGCAGGU	ACCUGCUUC AAGCCAAC
30	3512	UCCUGUJG CUGAUGA X GAA ACGUUGGC	GCCAACGUC CAACAGGA
	3531	GGGGAUGU CUGAUGA X GAA AUCUUC	GGAAAGAUU ACAUCCCC
	3532	GGGGGAUG CUGAUGA X GAA AAUCUUC	GAAAGAUUA CAUCCCC
	3536	UUGAGGGG CUGAUGA X GAA AUGUAAUC	GAUJACAUUC CCCCUCAA

170

3542	AUGGCAUU CUGAUGA X GAA AGGGGGAU	AUCCCCUC AAUGCCAU
3551	CUAGUCAG CUGAUGA X GAA AUGGCAUU	AAUGCCAU A CUGACUAG
3558	ACUGUUUC CUGAUGA X GAA AGUCAGUA	UACUGACUA GAAACAGU
3567	UGUGAAGC CUGAUGA X GAA ACUGUUUC	GAAACAGUA GCUUCACA
5	3571 AGUAUGUG CUGAUGA X GAA AGCUACUG	CAGUAGCUU CACAUACU
	3572 GAGUAUGU CUGAUGA X GAA AAGCUACU	AGUAGCUUC ACAUACUC
	3577 GGGUCGAG CUGAUGA X GAA AUGUGAAG	CUUCACAU A CUCGACCC
	3580 UGGGGGUC CUGAUGA X GAA AGUAUGUG	CACAUACUC GACCCCCA
	3592 CCUCAGAG CUGAUGA X GAA AGGUGGGG	CCCCACCUU CUCUGAGG
10	3593 UCCUCAGA CUGAUGA X GAA AAGGUGGG	CCCACCUUC UCUGAGGA
	3595 GGUCCUCA CUGAUGA X GAA AGAAGGUG	CACCUUCUC UGAGGACC
	3605 UCCUUGAA CUGAUGA X GAA AGGUCCUC	GAGGACCUU UUCAAGGA
	3606 GUCCUUGA CUGAUGA X GAA AAGGUCCU	AGGACCUUU UCAAGGAC
	3607 CGUCCUUG CUGAUGA X GAA AAAGGUCC	GGACCUUUU CAAGGACG
15	3608 CCGUCCUU CUGAUGA X GAA AAAAGGUC	GACCUUUUC AAGGACGG
	3619 GAUCUGCA CUGAUGA X GAA AGCCGUCC	GGACGGCUU UGCAGAUC
	3620 GGAUCUGC CUGAUGA X GAA AAGCCGUC	GACGGCUUU GCAGAUCC
	3627 AAAAUGUG CUGAUGA X GAA AUCUGCAA	UUGCAGAUC CACAUUUU
	3633 GGAAUGAA CUGAUGA X GAA AUGUGGAU	AUCCACAUU UUCAUUCC
20	3634 CGGAAUGA CUGAUGA X GAA AAUGUGGA	UCCACAUUU UCAUUCGG
	3635 CCGGAAUG CUGAUGA X GAA AAAUGUGG	CCACAUUUU CAUUCGG
	3636 UCCGGAAU CUGAUGA X GAA AAAAUGUG	CACAUUUUC AUUCCGGA
	3639 GCUUCCGG CUGAUGA X GAA AUGAAAAU	AUJJUCAUU CCCGAAGC
	3640 AGCUUCCG CUGAUGA X GAA AAUGAAAA	UUUUCAUUC CGGAAGCU
25	3649 CAUCAUCA CUGAUGA X GAA AGCUUCCG	CGGAAGCUC UGAUGAUG
	3664 CGUUUACA CUGAUGA X GAA AUCUCACA	UGUGAGAUA UGUAAACG
	3668 AAAGCGUU CUGAUGA X GAA ACAUAUCU	AGAUUAUGUA AACGCUUU
	3675 GAAUJUGA CUGAUGA X GAA AGCGUUUA	UAAAACGCUU UCAAAUUC
	3676 UGAAUJUG CUGAUGA X GAA AAGCGUUU	AAACGCUUU CAAAUUCA
30	3677 AUGAAUJU CUGAUGA X GAA AAAGCGUU	AACGCUUUC AAAUUCAU
	3682 GGCUCUAG CUGAUGA X GAA AUUJUGAA	UUUCAAAUU CAUGAGCC
	3683 AGGCUCAU CUGAUGA X GAA AAUJUGAA	UUCAAAUUC AUGAGCCU
	3701 AAGGUUUU CUGAUGA X GAA AUUCUUUC	GAAAGAAUC AAAACCUU

	3709	GCUCCUCA CUGAUGA X GAA AGGUUUUG	CAAAACCUU UGAGGAGC
	3710	AGCUCCUC CUGAUGA X GAA AAGGUUUU	AAAACCUUU GAGGAGCU
	3719	UUCGGUGA CUGAUGA X GAA AGCUCCUC	GAGGAGCUU UCACCGAA
	3720	GUUCGGUG CUGAUGA X GAA AAGCUCCU	AGGAGCUUU CACCGAAC
5	3721	AGUUCGGU CUGAUGA X GAA AAAGCUCC	GGAGCUUUC ACCGAACU
	3730	UGGAGGUG CUGAUGA X GAA AGUUCGGU	ACCGAACUC CACCUCCA
	3736	CAAACAUG CUGAUGA X GAA AGGUGGAG	CUCCACCUC CAUGUUUG
	3742	AGUCCUCA CUGAUGA X GAA ACAUGGAG	CUCCAUGUU UGAGGACU
	3743	UAGUCCUC CUGAUGA X GAA AACAUUGGA	UCCAUGUUU GAGGACUA
10	3751	CCAGCUGA CUGAUGA X GAA AGUCCUCA	UGAGGACUA UCAGCUGG
	3753	GUCCAGCU CUGAUGA X GAA AUAGUCCU	AGGACUAUC AGCUGGAC
	3765	CAGAGUGC CUGAUGA X GAA AGUGUCCA	UGGACACUA GCACUCUG
	3771	GCCCAGCA CUGAUGA X GAA AGUGCUAG	CUAGCACUC UGCUGGGC
	3781	GCAAGGGG CUGAUGA X GAA AGCCCAGC	GCUGGGCUC CCCUUGC
15	3787	GCUUCAGC CUGAUGA X GAA AGGGGGAG	CUCCCCUUU GCUGAAGC
	3799	UCCAGGUG CUGAUGA X GAA ACCGCUUC	GAAGCGGUU CACCUGGA
	3800	GUCCAGGU CUGAUGA X GAA AACCGCUU	AAGCGGUUC ACCUGGAC
	3829	UCUUUCAUG CUGAUGA X GAA AGGCCUUG	CAAGGCCUC CAUGAAGA
	3839	CUCAAGUC CUGAUGA X GAA AUCUUCAU	AUGAAGAUU GACUUGAG
20	3844	CUAUUCUC CUGAUGA X GAA AGUCUAUC	GAUAGACUU GAGAAUAG
	3851	UUACUCGC CUGAUGA X GAA AUUCUCAA	UUGAGAAUA GCGAGUAA
	3858	CUUGCUUU CUGAUGA X GAA ACUCGCUA	UAGCGAGUA AAAGCAAG
	3878	AGAUCGGA CUGAUGA X GAA AGUCCCGC	GCGGGACUU UCCGAUCU
	3879	CAGAUCCG CUGAUGA X GAA AAGUCCCG	CGGGACUUU CCGAUCUG
25	3880	GCAGAUCG CUGAUGA X GAA AAAGUCCC	GGGACUUUC CGAUCUGC
	3885	CCUCGGCA CUGAUGA X GAA AUCGGAAA	UUUCCGAUC UGCCGAGG
	3901	AGAACGCAG CUGAUGA X GAA AGCUGGGC	GCCCAGCUU CUGCUUCU
	3902	GAGAAGCA CUGAUGA X GAA AAGCUGGG	CCCAGCUUC UGCUUCUC
	3907	AGCUGGGAG CUGAUGA X GAA AGCAGAAG	CUUCUGCUU CUCCAGCU
30	3908	CAGCUGGA CUGAUGA X GAA AAGCAGAA	UUCUGCUUC UCCAGCUG
	3910	CACAGCUG CUGAUGA X GAA AGAAGCAG	CUGCUUCUC CAGCUGUG
	3926	ACGGGCCU CUGAUGA X GAA AUGUGGCC	GGCCACAUU AGGCCCCGU
	3949	CCAGCUCA CUGAUGA X GAA AUUCAUCG	CGAUGAAUC UGAGCUGG

	3967	AACAGCAG CUGAUGA X GAA ACUCCUUU	AAAGGAGUC CUGCUGUU
	3975	GGGUUGGAG CUGAUGA X GAA ACAGCAGG	CCUGCUGUU CUCCACCC
	3976	GGGGUGGA CUGAUGA X GAA AACAGCAG	CUGCUGUUC UCCACCCC
	3978	UGGGGGUG CUGAUGA X GAA AGAACAGC	GCUGUUCUC CACCCCCA
5	3991	CGGAGUUG CUGAUGA X GAA AGUCUGGG	CCCAGACUA CAACUCCG
	3997	ACACCACG CUGAUGA X GAA AGUUGUAG	CUACAACUC CGUGGUGU
	4006	AGGAGUAC CUGAUGA X GAA ACACCACG	CGUGGUGUU GUACUCCU
	4009	GGGAGGAG CUGAUGA X GAA ACAACACC	GGUGUUGUA CUCCUCCC
	4012	GCGGGGAG CUGAUGA X GAA AGUACAAC	GUUGUACUC CUCCCCGC
10	4015	CGGGCGGG CUGAUGA X GAA AGGAGUAC	GUACUCCUC CCCGCCCG
	4027	AGAACGUU CUGAUGA X GAA AGGCGGGC	GCCCGCCUA AAGCUUCU
	4033	CUGGUGAG CUGAUGA X GAA AGCUUUAG	CUAAAGCUU CUCACCAG
	4034	GCUGGUGA CUGAUGA X GAA AACUUUA	UAAAGCUUC UCACCAGC
	4036	GGGCUGGU CUGAUGA X GAA AGAAGCUU	AAGCUUCUC ACCAGCCC
15	4066	AUGUAUAA CUGAUGA X GAA ACUGUCAG	CUGACAGUA UUAUACAU
	4068	AGAUGUAU CUGAUGA X GAA AUACUGUC	GACAGAUUU AUACAUCU
	4069	UAGAUGUA CUGAUGA X GAA AAUACUGU	ACAGUAUUA UACAUCUA
	4071	CAUAGAUG CUGAUGA X GAA AAUAAUACU	AGUAAUUAUA CAUCUAUG
	4075	AACUCAUA CUGAUGA X GAA AUGUAUAA	UUAUACAUC UAUGAGUU
20	4077	UAAACUCA CUGAUGA X GAA AGAUGUAU	AUACAUCUA UGAGUUUA
	4083	UAGGUGUA CUGAUGA X GAA ACUCAUAG	CUAUGAGUU UACACCUA
	4084	AUAGGUGU CUGAUGA X GAA AACUCAUA	UAUGAGUUU ACACCUAU
	4085	AAUAGGUG CUGAUGA X GAA AAACUCAU	AUGAGUUUA CACCUAUU
	4091	GAGCGGAA CUGAUGA X GAA AGGUGUAA	UUACACCUA UUCCGCUC
25	4093	UGGAGCGG CUGAUGA X GAA AUAGGUGU	ACACCUAUU CCGCUCCA
	4094	GUGGAGCG CUGAUGA X GAA AAUAGGUG	CACCUAUUC CGCUCCAC
	4099	CUCCUGUG CUGAUGA X GAA AGCGGAAU	AUUCCGCUC CACAGGAG
	4117	GUCACGAA CUGAUGA X GAA AGCAGCUG	CAGCUGCUU UUCGUGAC
	4118	GGUCACGA CUGAUGA X GAA AAGCAGCU	AGCUGCUUU UCGUGACC
30	4119	AGGUACAG CUGAUGA X GAA AAAGCAGC	GCUGCUUUU CGUGACCU
	4120	AAGGUACAC CUGAUGA X GAA AAAAGCAG	CUGCUUUUC GUGACCUU
	4128	CACGAUUA CUGAUGA X GAA AGGUACAG	CGUGACCUU UAAAUCGUG
	4129	GCACGAUU CUGAUGA X GAA AAGGUAC	GUGACCUUU AAUCGUGC

	4130	AGCACGAU CUGAUGA X GAA AAAGGUCA	UGACCUUUA AUCGUGCU
	4133	AAAAGCAC CUGAUGA X GAA AUUAAAGG	CCUUUAAUC GUGCUUUU
	4139	AAACAAAA CUGAUGA X GAA AGCACGAU	AUCGUGCUU UUUUGUUU
	4140	AAAACAAA CUGAUGA X GAA AAGCACGA	UCGUGCUUU UUUGUUUU
5	4141	AAAAACAA CUGAUGA X GAA AAAGCACG	CGUGCUUUU UUGUUUUU
	4142	AAAAAACAC CUGAUGA X GAA AAAAGCAC	GUGCUUUU UGUUUUUU
	4143	AAAAAAAC CUGAUGA X GAA AAAAGCA	UGCUUUUU GUUUUUUG
	4146	AAACAAAA CUGAUGA X GAA ACAAAAAA	UUUUUUGUU UUUUGUUU
	4147	AAAACAAA CUGAUGA X GAA AACAAAAA	UUUUJUGUU UUUGUUUU
10	4148	CAAAACAA CUGAUGA X GAA AACAAAAA	UUJJUGUUU UUGUUUUG
	4149	ACAAAACA CUGAUGA X GAA AAAACAAA	UUUGUUUUU UGUUUUGU
	4150	AACAAAAC CUGAUGA X GAA AAAACCAA	UUGIJUUUUU GUUUUGUU
	4153	ACAAACAA CUGAUGA X GAA ACAAAAAA	UUUUUJUGUU UUGUUUGU
	4154	AACAAACA CUGAUGA X GAA AACAAAAA	UUUUUJUGUU UGUUUUGU
15	4155	CAACAAAC CUGAUGA X GAA AACAAAAA	UUUJUGUUU GUUUGUUG
	4158	CAACAAACA CUGAUGA X GAA ACAAAACA	UGUUUJUGUU UGUJGUUG
	4159	GCAACAAAC CUGAUGA X GAA AACAAAAC	GUUUUGUUU GUUGUUGC
	4162	ACAGCAAC CUGAUGA X GAA ACAACCAA	UUGUUJUGUU GUJUGCUGU
	4165	AAAACAGC CUGAUGA X GAA ACAACAAA	UUUGUJUGUU GCUGUUUU
20	4171	UUAGUCAA CUGAUGA X GAA ACAGCAAC	GUJGCUGUU UJGACUAA
	4172	GUUAGUCA CUGAUGA X GAA AACAGCAA	UUGCUGUUU UGACUAAAC
	4173	UGUUAGUC CUGAUGA X GAA AAACAGCA	UGCUGUUUU GACUAACA
	4178	AUUCUJUGU CUGAUGA X GAA AGUCAAAA	UUUJUGACUA ACAAGAAU
	4189	ACUGGGGU CUGAUGA X GAA ACAUUCUU	AAGAAUGUA ACCCCAGU
25	4198	ACGUCACU CUGAUGA X GAA ACUGGGGU	ACCCCAGUU AGUGACGU
	4199	CACGUCAC CUGAUGA X GAA AACUGGGG	CCCCAGUUU GUGACGUG
	4216	AACAAUAG CUGAUGA X GAA AUUCUUC	UGAAGAAUA CUAAUUGUU
	4219	UCUAACAA CUGAUGA X GAA AGUAAUUC	AGAAUJACUA UUGUUJAGA
	4221	UCUCUAAAC CUGAUGA X GAA AUAGUAUU	AAUACUAAU GUJAGAGA
30	4224	AUUCUCU CUGAUGA X GAA ACAAUAGU	ACUAUJUGUU AGAGAAA
	4225	GAUUCUC CUGAUGA X GAA AACAAUAG	CUAUUGUUA GAGAAAUC
	4233	GCGGGGGG CUGAUGA X GAA AUUUCUCU	AGAGAAAUC CCCCCCGC
	4249	GUUACCCU CUGAUGA X GAA AGGCCUJG	CAAAGCCUC AGGGUAAC

	4255	GUCCAGGU CUGAUGA X GAA ACCCUGAG	CUCAGGGUA ACCUGGAC
	4282	GGUCGCCA CUGAUGA X GAA AGGCACC	AGGUGCUC UGGCGACC
	4323	GCUGGCAGG CUGAUGA X GAA AGGGUGGG	CCCACCCUC CCUGCAGC
	4341	ACUGCCUC CUGAUGA X GAA AGUCCCAC	GUGGGACUA GAGGCAGU
5	4350	AAUGGGCU CUGAUGA X GAA ACUGCCUC	GAGGCAGUA AGCCCCAUU
	4358	CAUGAGCU CUGAUGA X GAA AUGGGCUU	AAGCCCCAUU AGCUCAUG
	4359	CCAUGAGC CUGAUGA X GAA AAUGGGCU	AGCCCCAUUA GCUCAUGG
	4363	GCAGGCCAU CUGAUGA X GAA AGCUAAAUG	CAUJAGCUC AUGGCUGC
	4387	GAGAGACA CUGAUGA X GAA AGCAGGUC	GACCUGCUC UGUCUCUC
10	4391	AUAAGAGA CUGAUGA X GAA ACAGAGCA	UGCUCUGUC UCUCUUAU
	4393	CCAUAAGA CUGAUGA X GAA AGACAGAG	CUCUGUCUC UCUUAUGG
	4395	CUCCAUAA CUGAUGA X GAA AGAGACAG	CUGUCUCUC UUAUGGAG
	4397	UCCUCCAU CUGAUGA X GAA AGAGAGAC	GUCUCUCUU AUGGAGGA
	4398	UUCUCCA CUGAUGA X GAA AAGAGAGA	UCUCUCUUA UGGAGGAA
15	4445	GCAUCCCA CUGAUGA X GAA AGCCUUUU	AAAAGGCUU UGGGAUGC
	4446	CGCAUCCC CUGAUGA X GAA AAGCCUUU	AAAGGCUUU GGGGAUGC
	4456	ACAGGACG CUGAUGA X GAA ACGCAUCC	GGAUGCGUC CGUCCUGU
	4460	CUCCACAG CUGAUGA X GAA ACGGACGC	GCGUCCGUC CUGUGGAG
	4487	GCAUAGCG CUGAUGA X GAA AGCCCCU	AGGGGGCUC CGCUAUGC
20	4492	AAGUGGCA CUGAUGA X GAA AGCGGAGC	GCUCCGCUA UGCCACUU
	4500	AGUCACUG CUGAUGA X GAA AGUGGCAU	AUGCCACUU CAGUGACU
	4501	AAGUCACU CUGAUGA X GAA AAGUGGCA	UGCCACUUC AGUGACUU
	4509	GGAGUGAG CUGAUGA X GAA AGUCACUG	CAGUGACUU CUCACUCC
	4510	AGGAGUGA CUGAUGA X GAA AAGUCACU	AGUGACUUC UCACUCCU
25	4512	CCAGGAGU CUGAUGA X GAA AGAACUCA	UGACUUCUC ACUCCUGG
	4516	GAGGCCAG CUGAUGA X GAA AGUGAGAA	UUCUCACUC CUGGCCUC
	4524	AAACAGCG CUGAUGA X GAA AGGCCAGG	CCUGGCCUC CGCUGUUU
	4531	GGGCCCGA CUGAUGA X GAA ACAGCGGA	UCCGCGUU UCGGGCCCC
	4532	GGGGCCCCG CUGAUGA X GAA AACAGCGG	CCGCGUUU CGGGCCCCC
30	4533	GGGGGCCCC CUGAUGA X GAA AACAGCG	CGCUGUUUC GGGCCCCC
	4543	CCUCUJUGG CUGAUGA X GAA AGGGGGCC	GGCCCCCUU CCAAGAGG
	4544	ACCUCUUG CUGAUGA X GAA AAGGGGGC	GCCCCCUUC CAAGAGGU
	4553	UGCUCUGA CUGAUGA X GAA ACCUCUUG	CAAGAGGU UAAGAGCA

175

	4555	UCUGGCUCU CUGAUGA X GAA AUACCUCU	AGAGGUAUC AGAGCAGA
	4577	GUCUAGGA CUGAUGA X GAA ACCGUCCU	AGGGACGUU UCCUAGAC
	4578	GGUCUAGG CUGAUGA X GAA AACGUCCC	GGGACGUUU CCUAGACC
	4579	UGGUCUAG CUGAUGA X GAA AAACGUCC	GGACGUUUC CUAGACCA
5	4582	CCCUGGGUC CUGAUGA X GAA AGGAAACG	CGUUUCCUA GACCAGGG
	4598	UUCCCGAG CUGAUGA X GAA ACAUGUGC	GCACAUGUU CUCGGGAA
	4599	GUUCCCCGA CUGAUGA X GAA AACAUUG	CACAUGUUC UCAGGAAC
	4601	UGGUUCCCC CUGAUGA X GAA AGAACAU	CAUGUUCUC GGGAACCA
	4614	UUAAGAUU CUGAUGA X GAA ACUGUGGU	ACCACAGUU AAUCUAAA
10	4615	UUUAAGAU CUGAUGA X GAA AACUGUGG	CCACAGUUA AUCUAAA
	4618	AGAUUUAA CUGAUGA X GAA AUUAACUG	CAGUAAAUC UAAAAUCU
	4620	AAAGAUUU CUGAUGA X GAA AGAUUAAC	GUUAUCUU AAAUCUUU
	4621	AAAAGAUU CUGAUGA X GAA AAGAUUAA	UAAAUCUUA AAUCUUUU
	4625	CGGGAAAA CUGAUGA X GAA AUUUAAGA	UCUUAAAUC UUUUCCCG
15	4627	CCCGGGAA CUGAUGA X GAA AGAUUUAA	UAAAAUCUU UUCCCGGG
	4628	UCCCGGGA CUGAUGA X GAA AAGAUUUA	UAAAUCUUU UCCCGGGA
	4629	CUCCCGGG CUGAUGA X GAA AAAGAUUJ	AAAUCUUUU CCCGGGAG
	4630	ACUCCCGG CUGAUGA X GAA AAAAGAUJ	AAUCUUUUC CCGGGAGU
	4639	CAACAGAA CUGAUGA X GAA ACUCCCGG	CCGGGAGUC UUCUGUUG
20	4641	GACAACAG CUGAUGA X GAA AGACUCCC	GGGAGUCUU CUGUUGUC
	4642	AGACAACA CUGAUGA X GAA AAGACUCC	GGAGUCUUC UGUUGUCU
	4646	AAACAGAC CUGAUGA X GAA ACAGAAGA	UCUUCUGUU GUCUGUUU
	4649	GGUAAAACA CUGAUGA X GAA ACAACAGA	UCUGUUGUC UGUUUACC
	4653	GGAUGGUA CUGAUGA X GAA ACAGACAA	UUGUCUGUU UACCAUCC
25	4654	UGGAUGGU CUGAUGA X GAA AACAGACA	UGUCUGUUU ACCAUCCA
	4655	UUGGAUGG CUGAUGA X GAA AAACAGAC	GUCUGUUUA CCAUCCAA
	4660	AUGCUUUG CUGAUGA X GAA AUGGUAAA	UUUACCAUC CAAAGCAU
	4669	AUGUUAAA CUGAUGA X GAA AUGCUUUG	CAAAGCAUA UUUAAACAU
	4671	ACAUGUUA CUGAUGA X GAA AUAUGCU	AAGCAUAAA UAACAU
30	4672	CACAUGUU CUGAUGA X GAA AAUAUGCU	AGCAUAAA AACAU
	4673	ACACAUUG CUGAUGA X GAA AAAUAUGC	GCAUAAA ACAUGUGU
	4682	CCCCCACU CUGAUGA X GAA ACACAU	ACAUGUGUC AGUGGGGG
	4698	CAGAAGCC CUGAUGA X GAA AGGCCAC	GUGGCGCUU GGCUUCUG

	4703	GGCCUCAG CUGAUGA X GAA AGCCAAGC	GCUJUGGCCU CUGAGGCC
	4704	UGGCCUCA CUGAUGA X GAA AAGCCAAG	CUUGGCCUUC UGAGGCCA
	4720	GAACUGAU CUGAUGA X GAA AUGGUCU	AGAGCCAUC AUCAGUUC
	4723	GAGGAACU CUGAUGA X GAA AUGAUGGC	GCCAUCAUC AGUUCCUC
5	4727	ACUAGAGG CUGAUGA X GAA ACUGAUGA	UCAUCAGUU CCUCUAGU
	4728	CACUAGAG CUGAUGA X GAA AACUGAUG	CAUCAGUUC CUCUAGUG
	4731	UCUCACUA CUGAUGA X GAA AGGAACUG	CAGUUCCUC UAGUGAGA
	4733	CAUCUCAC CUGAUGA X GAA AGAGGAAC	GUUCCUCUA GUGAGAUG
	4745	AUGACCUC CUGAUGA X GAA AUGCAUCU	AGAUGCAUU GAGGUCAU
10	4751	UUGGGUAU CUGAUGA X GAA ACCUCAAU	AUUGAGGUC AUACCCAA
	4754	AGCUUUGGG CUGAUGA X GAA AUGACCUC	GAGGUCAUA CCCAAGCU
	4763	AGGCCUGC CUGAUGA X GAA AGCUUUGGG	CCCAAGCUU GCAGGCCU
	4777	AGUAUJCG CUGAUGA X GAA AGGUCAGG	CTUGACCUU CGCAUACU
	4778	CAGUAUGC CUGAUGA X GAA AAGGUCAG	CUGACCUUC GCAUACUG
15	4783	GUGAGGAG CUGAUGA X GAA AUGCGAAG	CUUCGCAUA CUGCUCAC
	4789	CUCCCCGU CUGAUGA X GAA AGCAGUAU	AUACUGCUC ACGGGGAG
	4799	GACCACUU CUGAUGA X GAA ACUCCCCG	CGGGGAGUU AAGUGGUC
	4800	GGACCACU CUGAUGA X GAA AACUCCCC	GGGGAGUUUA AGUGGUCC
	4807	CCAAACUG CUGAUGA X GAA ACCACUUA	UAAGUGGUC CAGUUUUGG
20	4812	CUAGGCCA CUGAUGA X GAA ACUGGACC	GGUCCAGUU UGGCCUAG
	4813	ACUAGGCC CUGAUGA X GAA AACUGGAC	GUCCAGUUU GGCCUAGU
	4819	AACCUUAC CUGAUGA X GAA AGGCCAAA	UUUGGCCUA GUAAGGUU
	4822	GGCAACCU CUGAUGA X GAA ACUAGGCC	GGCCUAGUA AGGUUGCC
	4827	CAGUAGGC CUGAUGA X GAA ACCUUACU	AGUAAGGUU GCCUACUG
25	4832	CCCAUCAG CUGAUGA X GAA AGGCAACC	GGUUGCCUA CUGAUGGG
	4843	UGGCCUUUU CUGAUGA X GAA AGCCCAUC	GAUGGGCUC AAAAGCCA
	4855	CUGUUUUA CUGAUGA X GAA AUGUGGCC	AGCCACAUU UUAAACAG
	4856	CCUGUUUA CUGAUGA X GAA AAUGUGGC	GCCACAUUU UAAACAGG
	4857	ACCUGUUU CUGAUGA X GAA AAAUGGG	CCACAUUUU AAACAGGU
30	4858	AACCUGUU CUGAUGA X GAA AAAAUGUG	CACAUUUUA AACAGGUU
	4866	UGAGAUAA CUGAUGA X GAA ACCUGUU	AAACAGGUU UUAUCUCA
	4867	UUGAGAUU CUGAUGA X GAA AACCGUU	AACAGGUUU UAUCUCAA
	4868	CUUGAGAU CUGAUGA X GAA AAACCUGU	ACAGGUUUU AUCUCAAG

	4869	ACUUGAGA CUGAUGA X GAA AAAACCUG	CAGGUUUUA UCUCAAGU
	4871	AUACUUGA CUGAUGA X GAA AUAAAACC	GGUUUUUAUC UCAAGUAU
	4873	UAAUACUU CUGAUGA X GAA AGAUAAAA	UUUUAUUCUC AAGUAUUA
	4878	UAAUUAAC CUGAUGA X GAA ACUUGAGA	UCUCAAGUA UAAAUAAA
5	4880	UAAUUAUU CUGAUGA X GAA AUACUUGA	UCAAGUAUU AAUAAAUA
	4881	CUAAUAAU CUGAUGA X GAA AAUACUUG	CAAGUAUUA AAUAAAAG
	4884	UGUCUAAU CUGAUGA X GAA AUUAAAAC	GUAAUAAAUA UAUAGACA
	4886	CUUGUCUA CUGAUGA X GAA AUAAAUAU	AUAAAUAUA UAGACAAG
	4888	GUCUUGUC CUGAUGA X GAA AUAAAUAU	UAAAUAUA GACAAGAC
10	4900	UAAUGCAU CUGAUGA X GAA AGUGUCUU	AAGACACUU AUGCAUUA
	4901	AUAAUGCA CUGAUGA X GAA AAGUGUCU	AGACACUU UAUGCAUUA
	4907	AACAGGAU CUGAUGA X GAA AUGCAUAA	UUAUGCAUU AUCCUGUU
	4908	AAACAGGA CUGAUGA X GAA AAUGCAUA	UAUGCAUUA UCCUGUUU
	4910	UAAAACAG CUGAUGA X GAA AUAAAUGC	UGCAUUAUC CUGUUUUA
15	4915	AUAAUAAA CUGAUGA X GAA ACAGGAAU	UAUCCUGUU UUAAAUAU
	4916	GAUAAUAA CUGAUGA X GAA AACAGGAU	AUCCUGUUU UUAAAUAUC
	4917	GGAUAAAU CUGAUGA X GAA AAACAGGA	UCCUGUUUU UUAAAUAUCC
	4918	UGGAUAAA CUGAUGA X GAA AAAACAGG	CCUGUUUUUA UUAAAUC
	4920	AUJGGAUA CUGAUGA X GAA AUAAAACA	UGUUUUUAUA UAUCCAAU
20	4922	UCAUUGGA CUGAUGA X GAA AUAAAUA	UUUUAAAUA UCCAAUGA
	4924	AUUCAUUG CUGAUGA X GAA AUAAAUA	UUAAAUAUC CAAUGAAU
	4933	CCCAGUUA CUGAUGA X GAA AUUCAUUG	CAAUGAAUA UAAUCUGGG
	4935	GCCCCAGU CUGAUGA X GAA AUUUCAU	AUGAAUUA ACUGGGGC
	4948	UGACUCUU CUGAUGA X GAA ACUCGCC	GGCGAGUUU AAGAGUCA
25	4949	AUGACUCU CUGAUGA X GAA AACUCGCC	GGCGAGUUUA AGAGUCAU
	4955	UAGACCAU CUGAUGA X GAA ACUCUUA	UUAAGAGUC AUGGUCUA
	4961	CUUUUCUA CUGAUGA X GAA ACCAUGAC	GUCAUGGUC UAGAAAAG
	4963	CCCUUUJC CUGAUGA X GAA AGACCAUG	CAUGGUCUA GAAAAGGG
	4974	UACAGAGA CUGAUGA X GAA ACCCCUU	AAAGGGGUU UCUCUGUA
30	4975	GUACAGAG CUGAUGA X GAA AACCCUU	AAGGGGUUU CUCUGUAC
	4976	GGUACAGA CUGAUGA X GAA AAACCCCU	AGGGGUUUC UCUGUACC
	4978	UGGGUACA CUGAUGA X GAA AGAAACCC	GGGUUUCUC UGUACCCA
	4982	GAUUUGGG CUGAUGA X GAA ACAGAGAA	UUCUCUGUA CCCAAUUC

	4990	ACCAAGCCC CUGAUGA X GAA AUUUGGGU	ACCCAAAUC GGGCUGGU
	4999	CUUUGGUCC CUGAUGA X GAA ACCAGCCC	GGGCUGGUU GGACCAAG
	5029	GCUGGGAC CUGAUGA X GAA ACCACUCU	AGAGUGGUU GUCCCAGC
	5032	AUAGCUGG CUGAUGA X GAA ACAACCAC	GUGGUUGUC CCAGCUAU
5	5039	AGUAACUA CUGAUGA X GAA AGCUGGGA	UCCCAGCUA UAGUUACU
	5041	UUAGUAAC CUGAUGA X GAA AUAGCUGG	CCAGCUAUA GUUACUAA
	5044	AGUUUAGU CUGAUGA X GAA ACUAUAGC	GCUAUAGUU ACUAAACU
	5045	UAGUUUAG CUGAUGA X GAA AACUUAUAG	CUAUAGUUA CUAAACUA
	5048	GAGUAGUU CUGAUGA X GAA AGUAACUA	UAGUUACUA AACUACUC
10	5053	UGGGUGAG CUGAUGA X GAA AGUUUAGU	ACUAAACUA CUCACCCA
	5056	CUUUGGGU CUGAUGA X GAA AGUAGUUU	AAACUACUC ACCCAAAG
	5066	GAGGUCCC CUGAUGA X GAA ACUUUGGG	CCCAAAGUU GGGACCUC
	5074	AAGCCAGU CUGAUGA X GAA AGGUCCCA	UGGGACCUC ACUGGGCUU
	5082	GUAAAGAG CUGAUGA X GAA AGCCAGUG	CACUGGCUU CUCUUUAC
15	5083	AGUAAAGA CUGAUGA X GAA AAGCCAGU	ACUGGCUUC UCUUUACU
	5085	GAAGUAAA CUGAUGA X GAA AGAACCCA	UGGCUUCUC UUUACUUC
	5087	AUGAAGUA CUGAUGA X GAA AGAGAACG	GUUUCUCUU UACUUCAU
	5088	GAUGAAGU CUGAUGA X GAA AAGAGAACG	CUUCUCUUU ACUUCAUC
	5089	UGAUGAAG CUGAUGA X GAA AAAGAGAA	UUCUCUUUA CUUCAUCA
20	5092	CCAUGAUG CUGAUGA X GAA AGUAAAAGA	UCUUUACUU CAUCAUGG
	5093	UCCAUGAU CUGAUGA X GAA AAGUAAAAG	CUUUACUUC AUCAUGGA
	5096	AAAUCCAU CUGAUGA X GAA AUGAAGUA	UACUUCAUC AUGGAUUU
	5103	GAUGGUGA CUGAUGA X GAA AUCCAUAG	UCAUGGAUU UCACCAUC
	5104	GGAUGGGUG CUGAUGA X GAA AAUCCAUG	CAUGGAUUU CACCAUCC
25	5105	GGGAUGGU CUGAUGA X GAA AAAUCCAU	AUGGAUUUC ACCAUCCC
	5111	UGCCUUGG CUGAUGA X GAA AUGGUGAA	UUCACCAUC CCAAGGCA
	5122	UCCUCUCA CUGAUGA X GAA ACUGGCCUU	AAGGCAGUC UGAGAGGA
	5134	AUACUCUU CUGAUGA X GAA AGCUCCUC	GAGGAGCUA AAGAGUAU
	5141	UGGGCUGA CUGAUGA X GAA ACUCUUUA	UAAAGAGUA UCAGCCCC
30	5143	UAUGGGCU CUGAUGA X GAA AUACUCUU	AAGAGUAUC AGCCCAUA
	5151	UUAAUAAA CUGAUGA X GAA AUGGGCUG	CAGCCCAUA UUUAUUAA
	5153	GUUUAUA CUGAUGA X GAA AUAUGGGC	GCCCCAUUU UAUUAAGC
	5154	UGCUUUAA CUGAUGA X GAA AAUAUGGG	CCCAUAUUU AUUAAGCA

	5155	GUGCUUAA CUGAUGA X GAA AAAUAUGG	CCAUUUUA UUAAGCAC
	5157	AAGUGCuu CUGAUGA X GAA AUAAAUAU	AUAUUUAUu AAGCACUU
	5158	AAAGUGCU CUGAUGA X GAA AAUAAAUA	UAUUUAAUUA AGCACUUU
	5165	GGAGCAUA CUGAUGA X GAA AGUGCUUA	UAAGCACUU UAUGCUCC
5	5166	AGGAGCAU CUGAUGA X GAA AAGUGCuu	AAGCACUUU AUGCUCCU
	5167	AAGGAGCA CUGAUGA X GAA AAAGUGCU	AGCACUUUA UGCUCUCCU
	5172	GUGCCAAG CUGAUGA X GAA AGCAUAAA	UUUAUGCUC CUUGGCAC
	5175	GCUGUGCC CUGAUGA X GAA AGGAGCAU	AUGCUCCUU GGACAGC
	5195	GCAUAAAUA CUGAUGA X GAA ACACAUCA	UGAUGUGUA AUUUUAGC
10	5198	CUUGCAUA CUGAUGA X GAA AUUACACA	UGUGUAAUUA UAUGCAAG
	5199	GCUUGCAU CUGAUGA X GAA AAUUACAC	GUGUAAUUUA AUGCAAGC
	5200	AGCUUGCA CUGAUGA X GAA AAAUACAC	UGUAAUUUA UGCAAGCU
	5209	UGGAGAGG CUGAUGA X GAA AGCUUGCA	UGCAAGCUC CCUCUCCA
	5213	UAGCUGGA CUGAUGA X GAA AGGGAGCU	AGCUCCCUC UCCAGCua
15	5215	CCUAGCUG CUGAUGA X GAA AGAGGGAG	CUCCUCUC CAGCUAGG
	5221	CUGAGUCC CUGAUGA X GAA AGCUGGAG	CUCCAGCUA GGACUCAG
	5227	AAUAUCCU CUGAUGA X GAA AGUCCUAG	CUAGGACUC AGGAUAAU
	5233	UUGACUAA CUGAUGA X GAA AUCCUGAG	CUCAGGAUA UUAGUCAA
	5235	CAUUGACU CUGAUGA X GAA AUAUCCUG	CAGGAUAAU AGUCAAUG
20	5236	UCAUUGAC CUGAUGA X GAA AAUAUCCU	AGGAUAAUUA GUCAAUGA
	5239	GGCUCAUU CUGAUGA X GAA ACUAAUUAU	AUAUUAGUC AAUGAGCC
	5250	UUCCUUUU CUGAUGA X GAA AUGCUCA	UGAGCCAUC AAAAGGAA
	5273	AAAUAAGA CUGAUGA X GAA AGGUUUUU	AAAACCua UCUUAAUU
	5275	GAAAAUAA CUGAUGA X GAA AUAGGUUU	AAACCuaUC UUAUUUUC
25	5277	AUGAAAAU CUGAUGA X GAA AGAUAGGU	ACCUAUCUU AUUUUCAU
	5278	GAUGAAAA CUGAUGA X GAA AAGAUAGG	CCUAUCUUUA UUUUCAUC
	5280	CAGAUGAA CUGAUGA X GAA AUAAGAU	UAUCUUAAU UUCAUCUG
	5281	ACAGAUGA CUGAUGA X GAA AAUAAGAU	AUCUUAAUU UCAUCUGU
	5282	AACAGAUG CUGAUGA X GAA AAAUAAGA	UCUUUAAUUU CAUCUGUU
30	5283	AAACAGAU CUGAUGA X GAA AAAUAAG	CUUAAUUUC AUCUGUUU
	5286	AUGAAACA CUGAUGA X GAA AUGAAAAU	AUJJUCAUC UGUUUCAU
	5290	AGGUAUGA CUGAUGA X GAA ACAGAUGA	UCAUCUGUU UCAUACCU
	5291	AAGGUUAUG CUGAUGA X GAA AACAGAUG	CAUCUGUUJ CAUACCUU

180

5292	CAAGGUAU CUGAUGA X GAA AAACAGAU	AUCUGUUUC AUACCUUG
5295	AGACAAGG CUGAUGA X GAA AUGAAACA	UGUUUCAUA CCUUGUCU
5299	CCCCAGAC CUGAUGA X GAA AGGUUAUGA	UCAUACCUU GUCUGGGG
5302	AGACCCCA CUGAUGA X GAA ACAAGGUA	UACCUUGUC UGGGGUCU
5	5309 CGUCAUUA CUGAUGA X GAA ACCCCAGA	UCUGGGGUC UAAUGACG
5311	AUCGUCAU CUGAUGA X GAA AGACCCCA	UGGGGUCUA AUGACGAU
5331	CCCAUGUC CUGAUGA X GAA ACCCUGUU	AACAGGGUA GACAUGGG
5350	CCCUUUUC CUGAUGA X GAA ACCCUGUC	GACAGGGUA GAAAAGGG
5367	.ACCCAAA CUGAUGA X GAA AGCGGGCA	UGCCCGCUC UUUGGGGU
10	5369 AGACCCCA CUGAUGA X GAA AGAGCGGG	CCGCUCUU UGGGGUCU
5370	UAGACCCC CUGAUGA X GAA AAGAGCGG	CCGCUCUUU GGGGUCUA
5376	CAUCUCUA CUGAUGA X GAA ACCCCAAA	UUUGGGGUC UAGAGAUG
5378	CUCAUUCU CUGAUGA X GAA AGACCCCA	UGGGGUCUA GAGAUGAG
5395	AUUUUAGA CUGAUGA X GAA ACCCAGGG	CCCUGGGUC UCUAAAAU
15	5397 CCAUUUUA CUGAUGA X GAA AGACCCAG	CUGGGUCUC UAAAUUGG
5399	AGCCAUUU CUGAUGA X GAA AGAGACCC	GGGUCUCUA AAAUGGCU
5408	UUCUAAGA CUGAUGA X GAA AGCCAUUU	AAAUGGCUC UCUUAGAA
5410	ACUUCUAA CUGAUGA X GAA AGAGCCAU	AUGGCUCUC UUAGAAGU
5412	CAACUUCU CUGAUGA X GAA AGAGAGCC	GGCUCUCUU AGAAGUUG
20	5413 ACAACUUC CUGAUGA X GAA AAGAGAGC	GCUCUCUUA GAAGUUGU
5419	GCACAUAC CUGAUGA X GAA ACUUCUAA	UUAGAAGUU GUAUGUGC
5422	UUUGCACA CUGAUGA X GAA ACAACUUC	GAAGUUGUA UGUGCAAA
5432	CAGACCAU CUGAUGA X GAA AUUJGCAC	GUGCAAUUA AUGGUCUG
5433	ACAGACCA CUGAUGA X GAA AAUJUGCA	UGCAAUUA UGGUCUGU
25	5438 AGCACACCA CUGAUGA X GAA ACCAUAAU	AUUAUGGUC UGUGUGCU
5447	CACGACCU CUGAUGA X GAA AGCACACCA	UGUGUGCUU AGGUCGUG
5448	GCACGACC CUGAUGA X GAA AAGCACAC	GUGUGCUUA GGUCGUGC
5452	GUGUGCAC CUGAUGA X GAA ACCUAAGC	GCUUAGGUC GUGCACAC
5475	CCAGCUGU CUGAUGA X GAA ACCGGCUC	GAGCCGGUC ACAGCUGG
30	5497 AAAGCAGC CUGAUGA X GAA AUUCAUCG	CGAUGAAUA GTUGCUUU
5504	CUCUCCCA CUGAUGA X GAA AGCAGCUA	UAGCUCUU UGGGAGAG
5505	GCUCUCCC CUGAUGA X GAA AAGCAGCU	AGCUCUUU GGGAGAGC
5524	UAAGUGGC CUGAUGA X GAA AGCAUGCU	AGCAUGCUA GCCACUUA

	5531	AGAGAAUU CUGAUGA X GAA AGUGGCUA	UAGGCCACUU AAUUCUCU
	5532	CAGAGAAU CUGAUGA X GAA AAGUGGCU	AGCCACUUA AUUCUCUG
	5535	GGUCAGAG CUGAUGA X GAA AUUAAGUG	CACUUAAUU CUCUGACC
	5536	CGGUUCAGA CUGAUGA X GAA AAUUAAGU	ACUUAUUC UCUGACCG
5	5538	CCCGGUCA CUGAUGA X GAA AGAAUAAA	UUAAUUCUC UGACCGGG
	5554	GUACCCAU CUGAUGA X GAA AUGCUGGC	GCCAGCAUC AUGGUAC
	5561	GGAGCAGG CUGAUGA X GAA ACCCAUGA	UCAUGGGUA CCUGCUCC
	5568	ACACAGGG CUGAUGA X GAA AGCAGGU	UACCUGCUC CCCUGUGU
	5577	GGAUGGGG CUGAUGA X GAA ACACAGGG	CCCUGUGUA CCCCAUCC
10	5584	ACCUUAAG CUGAUGA X GAA AUGGGGU	UACCCCAUC CUUAAGGU
	5587	AAAACCUU CUGAUGA X GAA AGGAUGGG	CCCAUCCUU AAGGUUUU
	5588	GAAAACCU CUGAUGA X GAA AAGGAUGG	CCAUCCUUA AGGUUUUJC
	5593	AGACAGAA CUGAUGA X GAA ACCUUAAG	CUUAAGGUU UUCUGUCU
	5594	CAGACAGA CUGAUGA X GAA AACCUUAA	UUAAGGUUU UCUGUCUG
15	5595	UCAGACAG CUGAUGA X GAA AAACCUUA	UAAGGUUUU CUGUCUGA
	5596	AUCAGACA CUGAUGA X GAA AAAACCUU	AAGGUUUUUC UGUCUGAU
	5600	UCUCAUCA CUGAUGA X GAA ACAGAAAA	UUUUCUGUC UGAUGAGA
	5627	UCAGUGGG CUGAUGA X GAA AUUGCACU	AGUGCAAUC CCCACUGA
	5660	UGCACCAA CUGAUGA X GAA AGCCACAG	CUGUGGCUC UUGGGUGCA
20	5662	AGUGCACC CUGAUGA X GAA AGAGCCAC	GUGGCUCUU GGUGCACU
	5671	UGGCUGGU CUGAUGA X GAA AGUGCACC	GGUGGCACUC ACCAGCCA
	5685	UACUUGUC CUGAUGA X GAA AGUCCUGG	CCAGGACUA GACAAGUA
	5693	CCCUUUCC CUGAUGA X GAA ACUUGUCU	AGACAAGUA GGAAAGGG
	5704	GUGGCUAG CUGAUGA X GAA AGCCUUU	AAAGGGCUU CUAGCCAC
25	5705	UGUGGCCUA CUGAUGA X GAA AAGCCUU	AAGGGCUUC UAGCCACA
	5707	AGUGUGGC CUGAUGA X GAA AGAAGCCC	GGGCUUCUA GCCACACU
	5731	CCCUACCU CUGAUGA X GAA AUUUUCUU	AAGAAAAUC AGGUAGGG
	5736	GCCAGCCC CUGAUGA X GAA ACCUGAUU	AAUCAGGU AGGCUGGC
	5754	UGGACAAA CUGAUGA X GAA AUGCUUU	AAAGACAUUC UUUGUCCA
30	5756	AAUGGACA CUGAUGA X GAA AGAUGUCU	AGACAUUU UGUCCAUU
	5757	GAAUGGAC CUGAUGA X GAA AAGAUGUC	GACAUUUU GUCCAUUC
	5760	UGCGAAUG CUGAUGA X GAA ACAAAAGAU	AUCUUJUGUC CAUUCGCA
	5764	CUUUUGCG CUGAUGA X GAA AUGGACAA	UUGGUCCAUU CGCAAAAG

	5765	GCUUUUGC CUGAUGA X GAA AAUGGACA	UGUCCAUUC GCAAAAGC
	5775	GCCGACAA CUGAUGA X GAA AGCUUUUG	CAAAAGCUC UUGUCGGC
	5777	CAGCCGAC CUGAUGA X GAA AGAGCUUU	AAAGCUCUU GUCGGCUG
	5780	CUGCAGCC CUGAUGA X GAA ACAAGAGC	GCUCUUGUC GGCUGCAG
5	5794	GCCUGACU CUGAUGA X GAA ACACACUG	CAGUGUGUA AGUCAGGC
	5798	CAUCGCCU CUGAUGA X GAA ACUUACAC	GUGUAAGUC AGGCAGAUG
	5818	UUCUCUGG CUGAUGA X GAA AGCCUCUG	CAGAGGCUA CCAGAGAA
	5852	GGAUGAGA CUGAUGA X GAA ACCUCAGG	CCUGAGGUU UCUCAUCC
	5853	UGGAUGAG CUGAUGA X GAA AACCUCA	CUGAGGUU CUCAUCCA
10	5854	CUGGAUGA CUGAUGA X GAA AAACCUCA	UGAGGUUUC UCAUCCAG
	5856	AUCUGGAU CUGAUGA X GAA AGAAAACCU	AGGUUUCUC AUCCAGAU
	5859	GAUaucug CUGAUGA X GAA AUGAGAAA	UUUCUCAUC CAGAUUAUC
	5865	UUGCTUGGA CUGAUGA X GAA AUCUGGAU	AUCCAGAUUA UCCAGCAA
	5867	AAUUGCUG CUGAUGA X GAA AUaucugg	CCAGAUUAUC CAGCAAUU
15	5875	CACCCCCC CUGAUGA X GAA AUUGCUGG	CCAGCAAUU GGGGGGUG
	5896	GGACCAUC CUGAUGA X GAA AUGGUCUU	AAGACCAUA GAUGGUCC
	5903	UAAAUCAG CUGAUGA X GAA ACCAUCUA	UAGAUGGUC CUGUAUUA
	5908	CGGAAUAA CUGAUGA X GAA ACAGGACC	GGUCCUGUA UUAUUCCG
	5910	AUCGGAAU CUGAUGA X GAA AUACAGGA	UCCUGUAUU AUUCCGAU
20	5911	AAUCGGAA CUGAUGA X GAA AAUACAGG	CCUGUAUUA UUCCGAUU
	5913	AAAAUCGG CUGAUGA X GAA AUAAAUC	UGUAUUAUJ CCGAUJJUU
	5914	UAAAUCG CUGAUGA X GAA AAUAAAUC	GUAAUAUUC CGAUUUUA
	5919	AUUAUUAA CUGAUGA X GAA AUCGGAAU	AUUCGAUU UAAUAAU
	5920	GAUUAUJA CUGAUGA X GAA AAUCGGAA	UUCCGAUUU UAAUAAUC
25	5921	AGAUUAUU CUGAUGA X GAA AAAUCGGA	UCCGAUUUU AAUAAUCU
	5922	UAGAUUAU CUGAUGA X GAA AAAUCGG	CCGAUUUUUA AAUAAUCUA
	5925	AAUUAGAU CUGAUGA X GAA AUUAAAUAU	AUUUUAAAUA AUCUAAUU
	5928	ACGAUUA CUGAUGA X GAA AUUAUUAA	UUAAUAAAUC UAAUUCGU
	5930	UCACGAAU CUGAUGA X GAA AGAUUAAU	AAUAAUCUA AAUCGUGA
30	5933	UGAUCACG CUGAUGA X GAA AUUAGAUU	AAUCUAAUU CGUGAUCA
	5934	AUGAUCAC CUGAUGA X GAA AAUUAGAU	AUCUAAUC GUGAUCAU
	5940	CUCUAAA CUGAUGA X GAA AUCACGAA	UUCGUGAUC AUUAAGAG
	5943	AGUCUCUU CUGAUGA X GAA AUGAUCAC	GUGAUCAUU AAGAGACU

	5944	AAGUCUCU CUGAUGA X GAA AAUGAUCA	UGAUCAUUA AGAGACUU
	5952	AUUUACUA CUGAUGA X GAA AGUCUCUU	AAGAGACUU UAGUAAAUAU
	5953	CAUUUACU CUGAUGA X GAA AAGUCUCU	AGAGACUUU AGUAAAUG
	5954	ACAUUUAC CUGAUGA X GAA AAAGUCUC	GAGACUUJA GUAAAUGU
5	5957	GGGACAUU CUGAUGA X GAA ACUAAAGU	ACUUJAGUA AAUGUCCC
	5963	GGAAAAGG CUGAUGA X GAA ACAUUUAC	GUAAAUGUC CCUUUUCC
	5967	UGUGGGAA CUGAUGA X GAA AGGGACAU	AUGUCCUU UUCCCACA
	5968	UUGUGGGG CUGAUGA X GAA AAGGGACA	UGUCCUUU UCCCACAA
	5969	UUUGUGGG CUGAUGA X GAA AAAGGGAC	GUCCCUUUU CCCACAAA
10	5970	UUUUGUGG CUGAUGA X GAA AAAACGGGA	UCCCUUUUC CCACAAAA
	5981	CUUUUCUU CUGAUGA X GAA ACUUUJUGU	ACAAAAGUA AAGAAAAG
	5992	AAUCCCGA CUGAUGA X GAA AGCUUUUC	GAAAAGCUA UCGGGAUU
	5994	AGAAUCCC CUGAUGA X GAA AUAGCUUU	AAAGCUAUC GGGAUUC
	6000	AACCAGAG CUGAUGA X GAA AUCCCGAU	AUCGGGAUU CUCUGGUU
15	6001	GAACCAGA CUGAUGA X GAA AAUCCCGA	UCGGGAUUC UCUGGUUC
	6003	CAGAACCA CUGAUGA X GAA AGAAUCCC	GGGAUUCUC UGGUUCUG
	6008	UUAAGCAG CUGAUGA X GAA ACCAGAGA	UCUCUGGUU CUGCJUAA
	6009	UUUAAGCA CUGAUGA X GAA AACCAAGAG	CUCUGGUUC UGCJUAAA
	6014	AAGUCUUU CUGAUGA X GAA AGCAGAAC	GUUCUGCUU AAAGACUU
20	6015	UAAGUCUU CUGAUGA X GAA AAGCAGAA	UUCUGCUUA AAGACUUA
	6022	CCAAAGCU CUGAUGA X GAA AGUCUUUA	UAAAGACUU AGCUUUGG
	6023	UCCAAAGC CUGAUGA X GAA AAGUCUUU	AAAGACUUA GCUUUGGA
	6027	AGGCUCCA CUGAUGA X GAA AGCUAAGU	ACUJAGCUU UGGAGCCU
	6028	UAGGCUCC CUGAUGA X GAA AAGCUAAG	CUUAGCUUU GGAGCCUA
25	6036	AACUUUCA CUGAUGA X GAA AGGCUCCA	UGGAGCCUA UGAAAGUU
	6044	GGCUGAUC CUGAUGA X GAA ACUUUCAU	AUGAAAGUU GAUCAGCC

Where "X" represents stem II region of a HH ribozyme (Hertel et al., 1992 *Nucleic Acids Res.* 20 3252). The length of stem II may be ≥ 2 base-pairs.

184

Table IX: Mouse *f1c1* VEGF Receptor-Hairpin Ribozyme and Substrate Sequence

nt.	HP Ribozyme Sequence	Substrate
Position		
5 33	GUCCAGC AGAA GACCAU ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	AUGGUCA GCU GCUGGGAC
36	GGUGUCC AGAA GCUGAC ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	GUCAGCU GCU GGGACAC
50	UAAGGC AA AGAA GCGGUG ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	CACCCGG GUC UUGCCUUA
67	GACACCCG AGAA GCGCGU ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	ACGGCU GCU CGGGUGUC
79	CUGUGAGA AGAA GACACC ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	GGUGUCU GCU UCUCACAG
10 166	GAAGAGAGA AGAA GGCCUG ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	CAGGCCA GAC UCUCUUUC
197	CAUGAGUG AGAA GCCUCC ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	GGAGGCA GCC CACUCAUG
214	CGGUUCGUG AGAA GAGACC ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	GGUCUCU GCC CACGACCG
266	CUCCCA CA AGAA GAUGGG ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	CCCAUCG GCC UGUGGGAG
487	GGAUAG AUG AGAA GUCUUC ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	GAAGACA GCU CAUCAUCC
15 501	CGUCACCC AGAA GGGGAU ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	AUCCCCU GCC GGGUGACC
566	CUUUGCCC AGAA GGGGU ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	UACCCU GAU GGGCAAAG
640	GGCAGUUC AGAA GUCCUA ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	UAGGACU GCU GAACUGCG
691	GCCGAUGG AGAA GAUAGU ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	ACUAUCU GAC CCAUCGGC
703	UGUAUUG AGAA GCCGAU ACCAGAGAAACACAGUUCGGUACAUUACCUGUA	AUCGGCA GAC CAAUACAA

185

736	CUGGCTUC AGAA GGGUUA ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	UACGCCGC GCC GAGCCAG
754	GCCCGUGG AGAA GUUCUA ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	UGAGACU GCU CCACGGGC
766	GGACAAGA AGAA GCCCGU ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	ACGGGGCA GAC UCUUGUCC
871	UCGGGUCA AGAA GCUGCC ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	GGCAGGG GAU UGACCGGA
5 960	CUUCACCGC AGAA GGUGUA ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	UACACCU GUC GCGUGAAG
988	UGUGAAA AGAA GGAAAG ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	CGUUCCA GUC UUUCAACA
1051	CCUGCACCG AGAA GCUUCC ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	GGAAGGA GCC GGUGCAGG
1081	GCGGAUAG AGAA GUCUUC ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	GAAGAGC GUC CUAUCGGC
1090	UCAUGGAC AGAA GAUAGG ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	CCUAUCG GCU GUCCAUGA
10 1093	CUUCAUG AGAA GCGGAU ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	AUCGGCU GUC CAUGAAAG
1169	AAAUAGCG AGAA GACUUC ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	GAAGUCU GCU CGCUAUUU
1315	UUUCGUAG AGAA GAGGUU ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	AACCUCA GAU CUACGAAA
1363	UGCUGGCC AGAA GAUAGA ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	UCUAUCC GCU GGGCAGCA
1604	GUUCUGAGA AGAA GCCACC ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	GGUGGGU GAC UCUCAGAC
15 1612	UUCCAGGG AGAA GAGAGU ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	ACUCUCA GAC CCCUGGAA
1629	GGCCCGGC AGAA GUAGAU ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	AUCUACA GCU GCGGGGCC
1632	GAAGGGCC AGAA GCUGUUA ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	UACAGCU GCC GGGCCUUUC
1688	UUCCGGCAC AGAA GUGACA ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	UGUCACA GAU GUGCCGAA
1730	UCUCCUUC AGAA GGGCAUC ACCAGAGAAACACAGGUUGGUUACAUUACCUGGUUA	GAUGCCA GCC GAAGGAGA

186

1753	CCACACAG AGAA GUTUCA ACCAGAGAAACACACGUUGGGUACAUUACUGGU	UGAAACU GUC CUGUGUGG
2017	GGUUUUGA AGAA GGUGUG ACCAGAGAAACACGUUGGGUACAUUACUGGU	CACACCU GCU UCAAAACC
2101	ACCAAGUG AGAA GAGGGG ACCAGAGAAACACGUUGGGUACAUUACUGGU	CGCCCUA GAU CACUUGGU
2176	UUUCAAUA AGAA GCGUGC ACCAGAGAAACACGUUGGGUACAUUACUGGU	GCACGCU GUU UAUUGAAA
5 2258	GUGAGGU AGAA GCGCUU ACCAGAGAAACACGUUGGGUACAUUACUGGU	AAGCGCA GCC UACCUCAC
2305	UGAGGGUG AGAA GCUCCA ACCAGAGAAACACGUUGGGUACAUUACUGGU	UGGAGCU GAU CACGCUCA
2383	CGGAAGAA AGAA GCUUCA ACCAGAGAAACACGUUGGGUACAUUACUGGU	UGAAGCG GUC UUCUUCGG
2405	GACAGGU AGAA GUCUU ACCAGAGAAACACGUUGGGUACAUUACUGGU	AAAGACA GAC UACCUUGUC
2432	GGAACUUC AGAA GGGUCC ACCAGAGAAACACGUUGGGUACAUUACUGGU	GGACCCA GAU GAAGUUCC
10 2464	CAUAGGGC AGAA GUUCAC ACCAGAGAAACACGUUGGGUACAUUACUGGU	GUGAACG GCU GCCCUAUG
2467	CAUCAUAG AGAA GCCGUU ACCAGAGAAACACGUUGGGUACAUUACUGGU	AACGGCU GCC CUAUGAUG
2592	CACAGUCC AGAA GGUGGG ACCAGAGAAACACGUUGGGUACAUUACUGGU	CCCACCU GCC GGACUGUG
2596	CAGCCACA AGAA GGCAGG ACCAGAGAAACACGUUGGGUACAUUACUGGU	CCUGCCG GAC UGUGGCUG
2653	GUUUGGUC AGAA GAGGU ACCAGAGAAACACGUUGGGUACAUUACUGGU	AAGCUCU GAU GACCGAAC
15 2743	CGAUCACC AGAA GAGGCC ACCAGAGAAACACGUUGGGUACAUUACUGGU	GGCCUCU GAU GUGGAUCG
2779	GGUAGUUG AGAA GGUUUC ACCAGAGAAACACGUUGGGUACAUUACUGGU	GAAACCU GUC CAACUACC
2814	CUUGUUGA AGAA GAUUA ACCAGAGAAACACGUUGGGUACAUUACUGGU	UUUUUCU GUC UCAACAAG
2831	AU AUGCAA AGAA GCGUCC ACCAGAGAAACACGUUGGGUACAUUACUGGU	GGACGCA GCC UTGCAUAU
2895	ACUGUCUA AGAA GGGCUU ACCAGAGAAACACGUUGGGUACAUUACUGGU	AAGCCCC GCC UAGACAGU

187

2913 GACACUUG AGAA GGUGAC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 2928 GAAGCUGG AGAA GGUGAC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 2934 UUCAGGGG AGAA GGAGCU ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3001 UGGUGAGG AGAA GGUUGG ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 5 3022 UGUAGGAA AGAA GGUCUU ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3033 CACUUGGA AGAA GUAGGA ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3064 UUCUGGGG AGAA GAAACU ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3179 CUCACAUU AGAA GGGUUC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3357 CTUCAGGC AGAA GGAGAA ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 10 3360 UUCCUUCA AGAA GGUGCA ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3379 GGGUDUCU AGAA GGUGC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3463 GUUCAGCA AGAA GGGGCC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3496 UGGCUUGA AGAA GGUCAC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3553 UGUUUUCU AGAA GUAUUG ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 15 3615 AUCUGCAA AGAA GUCCUU ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3623 AA AUGUGG AGAA GCAAAG ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3650 CUCACAUU AGAA GAGCUU ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3754 UAGUGUCC AGAA GAUAGU ACCAGAGAACACACGUUGGGUACAUUACCUUGUA
 3772 GGGAGCCC AGAA GAGUGC ACCAGAGAACACACGUUGGGUACAUUACCUUGUA

187

GUACAGCA GCU CAAGUGUC
 GUCACCA GCU CCAGCUUC
 AGCUCCA GCU UCCCUGAA
 CCAAGCA GCC CCUCACCA
 AAGACCU GAU UUCCUACA
 UCCUACA GTU UCCAAGUG
 AGUJUCU GUC CUCCAGAA
 GAACCCU GAU UAUUGAG
 UTUCUGCA GCC GCCUGAAG
 UGGAGGC GCC UGAAGGAA
 GCAUGCG GAU GAGAACCC
 GGGCCCC GTU UGCUGAAC
 GUGACCU GCU UCAAGCCA
 CCAUACU GAC UAGAAACA
 AAGGACG GCU UGGAGAU
 CUUUGCA GAU CCACAUU
 AAGGCUU GAU GAUGUGAG
 ACUUAUCU GCU GGACACUA
 GCACUCU GCU GGGCUCCC

188

3796	UCCAGGUUC AGAA GUUUCA ACCAGAGAAAACACAGGUNUGGUUACAUUACUGGUU	UGAAGGG UGU CACCUUGGA
3881	CUCGGCAG AGAA GAAAGU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	ACUUUCC GAU CUGCCGAG
3886	UGGGCCUC AGAA GAUCGG ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	CCGAUCU GCC GAGGCCCA
3897	GAAGCGAGA AGAA GGGCCU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	AGGCCCA GCU UCUGCUUC
5 3903	GCUGGAGA AGAA GAAGCU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	AGCUUCU GCU UCUCGAC
3912	GUGGCCAC AGAA GGAGAA ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	UUCUCA GCU GUGGCCAC
3969	UGGAGAAC AGAA GGACUC ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	GAGUCU GCU GUUCUCCA
3972	GGGUGGAG AGAA GCAGGA ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	UCCUGCU GUU CUCCACCC
3986	GAGUUGUA AGAA GGGGGU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	ACCCCCA GAC UACAACUC
10 4018	UUUAGGG AGAA GGGAGG ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	CCUCCCC GCC CGCCUAAA
4022	AAGCUUUA AGAA GGCGGG ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	CCCGCCC GCC UAAAGCUU
4040	GUUGUGGG AGAA GGUGAG ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	CUCACCA GCC CCGACAAC
4053	CUGUCAGG AGAA GGUGGU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	ACAACCA GCC CCUGACAG
4095	UCCUGUGG AGAA GAAUAG ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	CUAUUCC GCU CCACAGGA
15 4110	CGAAAAGC AGAA GGCUCU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	GGAGCCA GCU GCUUUUCG
4113	UCACGAAA AGAA GCUGGG ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	GCCAGCU GCU UTUCUGUGA
4168	UUAGUCAA AGAA GCAACA ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	UGUUGU GUU UUGACUAA
4290	GGUGGGCG AGAA GUUCGCC ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	GGCGACG GCC CGCCCAAC
4294	GGCCGGUG AGAA GGCGGU ACCAGAGAAAACACGGUUGGGUACAUUACUGGUU	ACCGCCC GCC CACCGGCC

189

4329	AGUCCCAC AGAA GCAGGG ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	CCCUGCA GCU GUCCCCACU
4378	CAGGCG AGAA GUCCAU ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	AUGCACU GAC CUGGCUCUG
4383	AGAGACAG AGAA GGUCAG ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	CUGACCU GCU CUGGUCUCU
4388	AUAAGAGA AGAA GAGCG ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	CUGCUCU GUC UCUCUUAU
5 4457	CUCCACAG AGAA GACGCC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	UGGUUCC GUC CUGUGGAG
4525	CCCGAAC AGAA GAGGCC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	GGCCUCC GCU GUUCGGG
4528	GGGCCGA AGAA GCGGAG ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	CUCCGCU GUU UCGGGCCC
4643	AAACAGAC AGAA GAAGAC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	GUCUUCU GUU GUUCUGUU
4650	GGAUUGUA AGAA GACAAC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	GUUGUCU GUU UACCAUCC
10 4724	ACUAGAGG AGAA GAUGAU ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	AUCAUCA GUU CCUCUAGU
4771	AUGCGAAG AGAA GGCCUG ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	CAGGCCU GAC CUUCGCAU
4785	UCCCCGUG AGAA GU AUGC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	GCAUACU GCU CACGGGGAA
4809	CUAGGCCA AGAA GGACCA ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	UGGUCCA GUU UGGCCUAG
4834	UUGAGCCC AGAA GUAGGC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	GCCUACU GAU GGGCUCAA
15 4912	AUAUAUA AGAA GGAAUA ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	UUAUCCU GUU UUAUAUAU
5119	UCCUCUCA AGAA GCCUUG ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	CAAGGCA GUC UGAGAGGA
5144	UAAAUAUG AGAA GAUACU ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	AGUAUCA GCC CAUAUUA
5287	AGGUUAUG AGAA GAUGAA ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	UUCAUUCU GUU UCAUACCU
5363	CCCCAAAG AGAA GGCACC ACCAGAAAACACCGUUGGUUACAUUACCUUGUA	GGUGGCC GCU CUUUGGGG

189

190

190

5462	CGGGCUCC AGAA GGUGUG ACCAGAGAAACACAGGUUGGUACAUUACUGGU	CACACU GCC GGAGCCGG
5478	GUCUGCCC AGAA GUGACC ACCAGAGAAACACAGGUUGGUACAUUACUGGU	GGUCACA GCU GGGCAGAC
5486	UAUUCAUC AGAA GCCCAG ACCAGAGAAACACAGGUUGGUACAUUACUGGU	CUGGGCA GAC GAUGAUA
5500	UCUCCCCA AGAA GCUAU ACCAGAGAAACACAGGUUGGUACAUUACUGGU	AAUAGCU GCU UUGGGAGA
5 5539	CUGGCCCC AGAA GAGAAU ACCAGAGAAACACAGGUUGGUACAUUACUGGU	AUUCUCU GAC CGGCCAG
5564	CACAGGGG AGAA GUUACC ACCAGAGAAACACAGGUUGGUACAUUACUGGU	GGUACCU GCU CCCCUGUG
5597	UCUCAUCA AGAA GAAAAC ACCAGAGAAACACAGGUUGGUACAUUACUGGU	GUUUCU GUC UGAUGAGA
5601	CCAGUCUC AGAA GACAGA ACCAGAGAAACACAGGUUGGUACAUUACUGGU	UCUGUCU GAU GAGACUGG
5639	GGGCUGCA AGAA GUCUCA ACCAGAGAAACACAGGUUGGUACAUUACUGGU	UGAGACA GCC UGGAGCCC
10 5646	CCACAGUG AGAA GCAGGC ACCAGAGAAACACAGGUUGGUACAUUACUGGU	GCCUGCA GCC CACUGUGG
5781	CACACUGC AGAA GACAAG ACCAGAGAAACACAGGUUGGUACAUUACUGGU	CUGUGCG GCU GGAGUGUG
5829	CUGUUCUC AGAA GUUUUC ACCAGAGAAACACAGGUUGGUACAUUACUGGU	AGAAACG GAU GAGAACAG
5842	AAACCUCA AGAA GCUGUU ACCAGAGAAACACAGGUUGGUACAUUACUGGU	AACAGCA GCC UGAGGUUU
5915	UUAUAAA AGAA GAAUAA ACCAGAGAAACACAGGUUGGUACAUUACUGGU	UUAUUCU GAU UUUAAA
15 6010	AGUCUUA AGAA GAACCA ACCAGAGAAACACAGGUUGGUACAUUACUGGU	UGGUUCU GCU UAAAGACU

Table X: Homologous Hammerhead Ribozyme Target Sites Between Human flt-1 and KDR RNA

	nt. Posi- tion	flt-1 Target Sequence		nt. Posi- tion	KDR Target Sequence
	3388	CCGGGAU A UUUAUAA		3151	CCGGGAU A UUUAUAA
	2174	AAUGUAU A CACAGGG		3069	AgUGUAU c CACAGGG
	2990	UGCAAAU A UGGAAA		2756	UGCAAAU u UGGAAAc
	2693	CUCCCUU A UGAUGC		2459	CUGCCUU A UGAUGC
10	2981	GUUGAAU A CUGCAA		2747	GUgGAAU u CUGCAA
	1359	UAUGGUU A AAAGAUG		2097	UgUGGUU u AAAGAUa
	3390	GGGAUAU U UAUAAAGA		3153	GGGAUAU U UAUAAag
	3391	GGAUAUU U AUAAAGAA		3154	GGAUAUU U AUAAAGA
	2925	ACGUGGU U AACCUUGC		2691	AuGUGGU c AACCUuC
15	7140	UAUUUCU A GUCAUGA		2340	UAcUUUCU u GUCAUcA
	1785	CAAUAAU A GAAGGAA		1515	CucUAAU u GAAGGAA
	2731	GAGACUU A AACUGGG		768	uuGACUU c AACUGGG
	3974	GAUGACU A CCAGGGC		1466	GAgGACU u CCAGGGa
	6590	UUAAUGU A GAAAGAA		2603	aaAAUGU u GAAAGAA
20	6705	GCCAUUU A UGACAAA		3227	aCaAUUU u UGACAGA
	974	GUCAAAU U ACUUAGA		147	uUCAAAU U ACUUGcA
	1872	AUAAAAGU U GGGACUG		1602	AcAAAGU c GGGAgAG
	2333	ACUJUGGU U UAAAAAC		1088	AaaUGGU a UAAAAAU
	2775	AAGUGGU U CAAGCAU		1745	AcaUGGU a CAAGCuU
25	3533	UUCUCCU U AGGUGGG		3296	UUuUCCU U AGGUGcu
	3534	UCUCCUU A GGUGGGU		3297	UuUCCUU A GGUGCuU
	3625	GUACUCU A CUCCUGA		4054	GagCUCU c CUCCUGu
	1814	AGCACCU U GGUUGUG		1059	AGuACCU U GGUUacc
	2744	GGCAAAU C ACUUGGA		147	uuCAAAU u ACUUGcA
30	2783	CAAGCAU C AGCAUUU		796	gAAGCAU C AGCAUaa

192

3613	GAGAGCU C CUGAGUA	2968	GgaAGCU C CUGAagA
4052	AAGGCCU C GCUCAAG	1923	ucuGCCU u GCUCAAG
5305	UCUCCAU A UCAAAAC	456	ggUCCAU u UCAAAuC
7158	AUGUAUU U UGUAUAC	631	gUcUAUU a UGUAcAu
5 1836	CUAGAAU U UCUGGAA	1007	aUgGAAU c UCUGGug
2565	CUCUCUU C UGGCUCC	2328	uguUCUU C UGGCUaC
4250	CUGUACU C CACCCCA	3388	uUaUACU a CACCAGA
7124	ACAUGGU U UGGUCCU	3778	cagUGGU a UGGUuCU
436	AUGGUCU U UGCCUGA	1337	AcGGUCU a UGCCauu
10 2234	GCACCAU A CCUCCUG	1344	augCCAU u CCUCCcc
2763	GGGCUUU U GGAAAAG	990	uuGCUUU U GGAAguG
4229	CCAGACU A CAACUCG	767	auuGACU u CAACUgg
5301	GUUUUCU C CAUAUCA	3307	ugcUUUCU C CAUAUCC
6015	AGAAUGU A UGCCUCU	1917	AcuAUGU c UGCCUug
15 6095	AUUCCCU A GUGAGCC	1438	AUacCCU u GUGAaga
6236	UGUUGUU C CUCUUCU	76	UagUGUU u CUCUUga
5962	GCUUCCU U UUAUCCA	3099	auaUCCU c UUAUCgg
7629	UAUAUAU U CUCUGCU	3096	gAaAUAU c CUCUuaU

Lowercase letters are used to represent sequence variance
 20 between flt-1 and KDR RNA

Table XI: 2.5 μmol RNA Synthesis Cycle

Reagent	Equivalents	Amount	Wait Time*
Phosphoramidites	6.5	163 μL	2.5
S-Ethyl Tetrazole	23.8	238 μL	2.5
5 Acetic Anhydride	100	233 μL	5 sec
N-Methyl Imidazole	186	233 μL	5 sec
TCA	83.2	1.73 mL	21 sec
Iodine	8.0	1.18 mL	45 sec
Acetonitrile	NA	6.67 mL	NA

Claims

1. Nucleic acid molecule which modulates the synthesis, expression and/or stability of an mRNA encoding one or more receptors of vascular endothelial growth factor.
2. The nucleic acid of claim 1, wherein said receptor is flt-1, KDR and/or flk-1.
3. The nucleic acid of claim 1 or 2, wherein said molecule is an enzymatic nucleic acid molecule.
- 10 4. The nucleic acid molecule of claim 3, wherein, the binding arms of said enzymatic nucleic acid contain sequences complementary to the substrate nucleotide base sequences in any one of Tables II to IX.
- 15 5. The nucleic acid molecule of claims 3 or 4, wherein said nucleic acid molecule is in a hammerhead motif.
- 20 6. The enzymatic nucleic acid molecule of claim 3 or 4, wherein said nucleic acid molecule is in a hairpin, hepatitis Delta virus, group I intron, VS nucleic acid or RNaseP nucleic acid motif.
- 25 7. The enzymatic nucleic acid molecule of any of claims 3 or 4, wherein said ribozyme comprises between 12 and 100 bases complementary to the RNA of said region.
8. The enzymatic nucleic acid of claim 7, wherein said ribozyme comprises between 14 and 24 bases complementary to the RNA of said region.
- 20 9. Enzymatic nucleic acid molecule consisting essentially of any ribozyme sequence selected from those shown in Tables II to IX.

10. A mammalian cell including a nucleic acid molecule of any of claims 1, 2 or 3.

11. The cell of claim 10, wherein said cell is a human cell.

5 12. An expression vector comprising nucleic acid encoding the nucleic acid molecule of any of claims 1, 2, 3 or 4, in a manner which allows expression and/or delivery of that RNA molecule within a mammalian cell.

13. The expression vector of claim 12, wherein said
10 nucleic acid is an enzymatic nucleic acid.

14. A mammalian cell including an expression vector of any of claims 12 or 13.

15. The cell of claim 14, wherein said cell is a human cell.

15 16. A method for treatment of a patient having a condition associated with the level of flt-1, KDR and/or flk-1, wherein the patient, tissue donor or population of corresponding cells is administered a therapeutically effective amount of an enzymatic nucleic acid molecule of
20 claims 1, 2, 3 or 4.

17. A method for treatment of a condition related to the level of flt-1, KDR and/or flk-1 activity by administering to a patient an expression vector of claim 12.

18. The method of claims 16 or 17, wherein said
25 patient is a human.

19. The nucleic acid of claim 1 or 2, wherein said molecule is an antisense nucleic acid molecule.

196

20. The nucleic acid molecule of claim 19, wherein, said antisense nucleic acid contain sequences complementary to the substrate nucleotide base sequences in any one of Tables II to IX.

5 21. An expression vector comprising nucleic acid encoding the antisense nucleic acid molecule of any one of claims 19 or 20, in a manner which allows expression and/or delivery of that antisense RNA molecule within a mammalian cell.

10 22. A mammalian cell including an expression vector of claim 21.

23. The cell of claim 22, wherein said cell is a human cell.

1/20

FIG. 1.

FIG. 2a.

FIG. 2b.

FIG. 2c.

FIG. 2d.

3/20

FIG. 3.

4/20

FIG. 4.

5/20

NEUROSPORA VS RNA ENZYME

FIG. 5.

6/20

FIG. 6.

7/20

8/20

FIG. 8.

9/20

FIG. 9.

10/20

FIG. 10.

11/20

1358 HH-B Ribozyme

4229 HH-B Ribozyme

FIG. 1/A.

12/20

FIG. 11B.

13/20

FIG. 11C.

14/20

1358 HH (2'-Amino) Ribozyme**SUBSTITUTE SHEET (RULE 26)**

Uppercase = ribonucleotides
 Lower case = 2'-O-methyl nucleotides
 U = 2'-C-Allyl
 s = phosphorothioate linkages

1358 HH (2'-C-Allyl) Ribozyme**4229 HH (2'-C-Allyl) Ribozyme****FIG. 12A.**

Uppercase = ribonucleotides
 Lower case = 2'-O-methyl nucleotides
 U = 2'-C-Allyl
 s = phosphorothioate linkages

4229 HH (2'-C-Allyl) Ribozyme**FIG. 12A.**

15/20

16/20

17/20

FIG. 14.

FIG. 15.

18/20

FIG. 16.

	STEM II
■	3 bp
●	4 bp

19/20

FIG. 17.

20/20

FIG. 18.