Дисперсионный анализ.

- **1** Пусть ξ_{k_1,k_2} случайная величина, имеющая распределение Фишера F_{k_1,k_2} . Доказать, что $\xi_{k_1,k_2} \xrightarrow{d} 1$ при $k_1,k_2 \to \infty$.
- **2** Пусть X_1, \ldots, X_n и Y_1, \ldots, Y_m выборки из функций распределения F(x) и $G(x) = F(x-\theta)$ соответственно. Рассмотрим основную гипотезу $H_0: \theta = 0$ и альтернативу $H_1: \theta \neq 0$. Доказать, что критерий Уилкоксона является состоятельным критерием проверки H_0 против H_1 .
- **3** Выданы выборки X_1, \ldots, X_n и Y_1, \ldots, Y_m . Определив, являются они парными или независимыми, нормальными или произвольными, проверить гипотезу об их однородности (если они признаны не гауссовскими то гипотезу об отсутствии сдвига) с помощью статистической процедуры, контролирующей FWER на уровне 0.1.
- 4 Выданы выборки X_1, \ldots, X_n и Y_1, \ldots, Y_m . Определив, являются ли они парными или независимыми, нормальными или произвольными, проверить гипотезу об их однородности с помощью статистической процедуры, контролирующей FDR на уровне 0.1.
- **5** Пусть X_1, \ldots, X_n и Y_1, \ldots, Y_n две независимые выборки из распределения Стьюдента t_{10} . Рассмотрим критерий Стьюдента $\{|T| > u_{1-\alpha/2}\}$, где $u_{1-\alpha/2} (1-\alpha/2)$ -квантиль из распределения t_{2n-2} . Можно ли пользоваться критерием Стьюдента для проверки гипотезы об однородности данных выборок? С помощью моделирования определить, как ведёт себя уровень значимости данного критерия при $n \to \infty$.
- 6 Используя то, что при верности гипотезы $H_0: F = G$ статистика критерия Смирнова не зависит от F, и предполагая, что размер выборок равный и равен n, найти такое минимальное n, что распределение статистики критерия Смирнова неотличимо от распределения Колмогорова на уровне значимости $\alpha = 0.05$ (количество выборок для каждого n взять равным 100). Т.е. фактически нужно выяснить минимальное n, при котором можно пользоваться приближением в теореме Смирнова.

Замечание. Возможно, вам пригодится явный вид статистики критерия Смирнова:

$$D_{n,m} = \max \left\{ \max_{i=1,\dots,n} \left\{ \frac{i}{n} - G_m^*(X_i) \right\}, \max_{i=1,\dots,n} \left\{ \frac{j}{m} - F_n^*(Y_j) \right\} \right\},$$

где выборки $X=(X_1,\ldots,X_n)$ и $Y=(Y_1,\ldots,Y_m)$ из функций распределения F и G соответственно, а F_n^* и G_m^* – их эмпирические функции распределения.