딥러닝 모델과 블랙리터만 포트폴리오를 사용해 노인들을 위한 포트폴리오생성

블랙리터만 모델의 경우 투자자의 견해 + 기존 시장 수익률의 결합으로 새로운 기대 수익률을 생성하는 모델임.

이를 위해서는 예상 수익률과 견해 설정이 필요한데 노인들의 경우 안전한 자산을 선호하다보니 예상수익률이 별로 높지 않고 코드로 구현해보니 이 부분에서 오류가 나는 경우가 많이 발생함.

또한 기대수익률을 극대화하는 방향으로 최적화 하기에 위험 최소화, 변동성 최소화와는 맞지 않음.

이 때문에 포트폴리오를 두 가지(안정형,공격형)으로 분리해서 안정형은 딥러닝 모델로 공격형은 블랙리터 만 모델을 활용하는 것이 좋을 것이라 생각함. 따라서 사전에 위험 허용도, 투자기간, 목표 수익률 등의 정보를 미리 받는 방식이 좋을 것 같음(음성 혹은 보기 쉬운 UI)

딥러닝 모델의 경우 다중신경망을 이용한 모델을 이용해서 예시로 만들어보았음.

이 외에도 LSTM모델 혹은 Transformer모델을 사용할 수 있을 것이라 예상.

또한 포트폴리오의 최대 낙폭, 변동성등을 시각화 하여 리스크 관리 시스템을 추가하고 배당데이터를 같이 시각화하면 좋을 것 같음.

직접 한국 주식 내 배당금을 주는 안전한 주식, etf, 채권등을 찾아가면서 데이터를 찾아서 전처리 하는 것이

제일 중요한 일일 것 같음.

딥러닝 모델 코드 결과 예시 사진)

Portfolio Volatility (Annualized): 6.25% Maximum Drawdown: -22.37% Value at Risk (95%): -0.59%

리스크 기	준 초과: 포트폴리오	조정 필요		
포트폴리오 가중치 조정 완료:				
	predicted_return	volatility	weight	
Ticker				
AGG	-0.023593	0.002988	0.417353	
BND	-0.020415	0.003050	0.353765	
TIP	-0.012058	0.003675	0.173387	
LQD	-0.010234	0.004873	0.110996	
GLD	-0.007999	0.009765	0.043292	
TLT	-0.007165	0.009647	0.039249	
SPY	-0.000675	0.010796	0.002704	
XLV	0.002075	0.010195	-0.008800	
XLU	0.010948	0.011101	-0.052119	
IYR	0.023532	0.012746	-0.079829	

블랙리터만 모델)

최적 포트폴리오 가중치:

AAPL: 7.64%

AMZN: 2.48%

BND: 5.22%

GLD: 1.26%

G00GL: 1.60%

JNJ: 7.04%

JPM: 6.81%

KO: 12.35%

MSFT: 16.97%

PG: 5.72%

TLT: 0.00%

V: 11.70%

XLU: 11.13%

XLV: 0.00% XOM: 10.08%