CONCOURS COMMUN POLYTECHNIQUE (ENSI)

FILIERE MP

MATHEMATIQUES 1

EXERCICE 1

Q1 La fonction $f_1:(x,y)\mapsto x^2-y^2$ est de classe C^1 sur \mathbb{R}^2 en tant que polynôme, à valeurs dans \mathbb{R} et la fonction $f_2:t\mapsto \sin t$ est de classe C^∞ sur \mathbb{R} . Donc, la fonction $f=f_2\circ f_1$ est de classe C^1 sur \mathbb{R}^2 et en particulier, f est différentiable en tout point de \mathbb{R}^2 .

De même, la fonction g est de classe C^1 sur \mathbb{R}^2 car ses composantes le sont et en particulier, g est différentiable en tout point de \mathbb{R}^2 .

Soit $(x_0, y_0) \in \mathbb{R}^2$.

$$\begin{split} \operatorname{Jac}_{(x_0,y_0)}(f) &= \left(\begin{array}{cc} \frac{\partial f}{\partial x} \left(x_0, y_0 \right) & \frac{\partial f}{\partial y} \left(x_0, y_0 \right) \end{array} \right) = \left(\begin{array}{cc} 2x_0 \cos \left(x_0^2 - y_0^2 \right) & -2y_0 \cos \left(x_0^2 - y_0^2 \right) \end{array} \right) \\ &= 2 \cos \left(x_0^2 - y_0^2 \right) \left(\begin{array}{cc} x_0 - y_0 \end{array} \right), \end{split}$$

et en posant $g = (g_1, g_2)$

$$\operatorname{Jac}_{(x_0,y_0)}(g) = \left(\begin{array}{cc} \frac{\partial g_1}{\partial x} \left(x_0, y_0 \right) & \frac{\partial g_1}{\partial y} \left(x_0, y_0 \right) \\ \frac{\partial g_2}{\partial x} \left(x_0, y_0 \right) & \frac{\partial g_2}{\partial y} \left(x_0, y_0 \right) \end{array} \right) = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right).$$

 $\mathbf{Q2} \quad \mathrm{Pour} \; (x,y) \in \mathbb{R}^2, \; f \circ g(x,y) = \sin \left((x+y)^2 - (x-y)^2 \right) = \sin (4xy).$

Posons $h = f \circ g$. Soit $(x_0, y_0) \in \mathbb{R}^2$.

$$dh_{(x_0,y_0)} = \frac{\partial h}{\partial x}(x_0,y_0) dx + \frac{\partial h}{\partial y}(x_0,y_0) dy = 4y_0 \cos(4x_0y_0) dx + 4x_0 \cos(4x_0y_0) dy$$

ou encore

$$\forall (u,v) \in \mathbb{R}^2, \ dh_{(x_0,u_0)}(u,v) = 4\cos(4x_0y_0)(y_0u + x_0v).$$

$$\forall (x,y) \in \mathbb{R}^2, \ \forall (u,v) \in \mathbb{R}^2, \ d(f \circ g)_{(x,y)}(u,v) = 4\cos{(4xy)} \ (yu + xv).$$

Retrouvons ce résultat à partir des matrices jacobiennes de f et g. Soit $(x, y) \in \mathbb{R}^2$.

$$\begin{split} & \mathrm{Jac}_{(x,y)}(f \circ g) = \mathrm{Jac}_{g(x,y)}(f) \times \mathrm{Jac}_{(x,y)}(g) \\ & = 2\cos\left((x+y)^2 - (x-y)^2\right)\left(\begin{array}{cc} x+y & -(x-y) \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \\ & = 2\cos(4xy)\left(\begin{array}{cc} x+y-x+y & x+y+x-y \end{array}\right) = 4\cos(xy)\left(\begin{array}{cc} y & x \end{array}\right) \end{split}$$

et on retrouve $\frac{\partial f \circ g}{\partial x}(x,y) = 4y\cos(4xy)$ et $\frac{\partial f \circ g}{\partial y}(x,y) = 4x\cos(4xy)$.

EXERCICE 2

Q3 Pour $(p,q) \in (\mathbb{N}^*)^2$, posons $\mathfrak{u}_{p,q} = \frac{1}{n^2 q^2}$.

- Pour tout $(p,q) \in (\mathbb{N}^*)^2$, $u_{p,q} \in \mathbb{R}^+$. Pour tout $p \in \mathbb{N}^*$, la série de terme général $u_{p,q}$, $q \geqslant 1$, converge et

$$\sum_{q=1}^{+\infty} u_{p,q} = \frac{1}{p^2} \sum_{q=1}^{+\infty} \frac{1}{q^2} = \frac{\pi^2}{6p^2}.$$

• La série de terme général $\sum_{j=1}^{+\infty} u_{p,q} = \frac{\pi^2}{6p^2}$, $p \in \mathbb{N}^*$, converge et a pour somme $\frac{\pi^4}{36}$.

On sait alors que la suite $(u_{p,q})_{(p,q)\in\mathbb{N}^*}$ est sommable et que $\sum_{(p,q)\in\mathbb{N}^*} \frac{1}{p^2q^2} = \frac{\pi^4}{36}$.

 $\mathbf{Q4} \quad \mathrm{Pour}\; (\mathfrak{p},\mathfrak{q}) \in (\mathbb{N}^*)^2, \, \mathrm{posons}\; \nu_{\mathfrak{p},\mathfrak{q}} = \frac{1}{\mathfrak{p}^2 + \mathfrak{q}^2}. \, \, \mathrm{Pour}\; \mathrm{tout}\; (\mathfrak{p},\mathfrak{q}) \in (\mathbb{N}^*)^2, \, \nu_{\mathfrak{p},\mathfrak{q}} \in \mathbb{R}^+.$

Soit $p \in \mathbb{N}^*$. La série de terme général $\frac{1}{p^2+q^2}$, $q \geqslant 1$, converge et

$$\begin{split} \sum_{q=1}^{+\infty} \frac{1}{p^2 + q^2} \geqslant \sum_{q=1}^{+\infty} \frac{1}{p^2 + 2pq + q^2} &= \sum_{q=1}^{+\infty} \frac{1}{(p+q)^2} = \sum_{k=p+1}^{+\infty} \frac{1}{k^2} \\ \geqslant \sum_{k=p+1}^{+\infty} \frac{1}{k(k+1)} = \sum_{k=p+1}^{+\infty} \left(\frac{1}{k} - \frac{1}{k+1}\right) \\ &= \frac{1}{p+1} \text{ (série télescopique)}. \end{split}$$

La série de terme général $\frac{1}{p+1}$, $p \ge 1$, est divergente. Il en est de même de la série de terme général $\sum_{n=1}^{\infty} \frac{1}{p^2+q^2}$, $p \ge 1$. On en déduit que la suite $(v_{p,q})_{(p,q)\in\mathbb{N}^*}$ n'est pas sommable.

PROBLÈME : séries trigonométriques

Partie I - Exemples

Q6 Pour $n \in \mathbb{N}$, on pose : $\forall x \in \mathbb{R}$, $f_n(x) = \frac{1}{2^n} \cos(nx) + \frac{1}{3^n} \sin(nx)$.

Soit $n \in \mathbb{N}$. Pour tout $x \in \mathbb{R}$,

$$|f_n(x)| \leqslant \frac{1}{2^n} |\cos(nx)| + \frac{1}{3^n} |\sin(nx)| \leqslant \frac{1}{2^n} + \frac{1}{3^n} \leqslant 2 \times \frac{1}{2^n},$$

puis $\|f_n\|_{\infty} \le 2 \times \frac{1}{2^n}$. Puisque la série géométrique de terme général $2 \times \frac{1}{2^n}$, $n \in \mathbb{N}$, converge, la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement sur \mathbb{R} .

Soit $p \ge 2$ fixé. Soit $x \in \mathbb{R}$. $\left| \frac{e^{ix}}{p} \right| = \frac{1}{p} < 1$. Donc, la série géométrique de terme général $\left(\frac{e^{ix}}{p} \right)^n$, $n \in \mathbb{N}$, converge et

$$\sum_{n=0}^{+\infty} \left(\frac{e^{ix}}{p} \right)^n = \frac{1}{1 - \frac{e^{ix}}{p}} = p \frac{p - e^{-ix}}{|p - e^{ix}|^2} = p \frac{p - \cos x + i \sin x}{(p - \cos x)^2 + \sin^2 x} = p \frac{p - \cos x + i \sin x}{p^2 + 1 - 2p \cos x}.$$

On en déduit que

$$\begin{split} \sum_{n=0}^{+\infty} \frac{1}{2^n} \cos(nx) &= \operatorname{Re} \left(\sum_{n=0}^{+\infty} \frac{1}{2^n} e^{inx} \right) = \operatorname{Re} \left(\sum_{n=0}^{+\infty} \left(\frac{e^{ix}}{2} \right)^n \right) \\ &= 2 \frac{2 - \cos x}{5 - 4 \cos x} \end{split}$$

et

$$\begin{split} \sum_{n=0}^{+\infty} \frac{1}{3^n} \sin(nx) &= \operatorname{Im} \left(\sum_{n=0}^{+\infty} \frac{1}{3^n} e^{inx} \right) = \operatorname{Im} \left(\sum_{n=0}^{+\infty} \left(\frac{e^{ix}}{3} \right)^n \right) \\ &= 3 \frac{\sin x}{10 - 6 \cos x} \end{split}$$

Finalement,

$$\forall x \in \mathbb{R}, \ \sum_{n=0}^{+\infty} \left(\frac{1}{2^n} \cos(nx) + \frac{1}{3^n} \sin(nx) \right) = \frac{4 - 2\cos x}{5 - 4\cos x} + \frac{3\sin x}{10 - 6\cos x}.$$

Q6 Pour $x \in \mathbb{R}$,

$$\begin{split} \phi(x) &= \exp(\cos x) \cos(\sin x) = \operatorname{Re}\left(\exp(\cos x)e^{i\sin x}\right) = \operatorname{Re}\left(e^{\left(e^{ix}\right)}\right) \\ &= \operatorname{Re}\left(\sum_{n=0}^{+\infty} \frac{\left(e^{ix}\right)^n}{n!}\right) = \operatorname{Re}\left(\sum_{n=0}^{+\infty} \frac{e^{inx}}{n!}\right) \\ &= \sum_{n=0}^{+\infty} \frac{\cos(nx)}{n!}. \end{split}$$

Q7 Pour $n \in \mathbb{N}$, posons $a_n = \frac{1}{n+1}$. La suite (a_n) est de limite nulle mais la série numérique de terme général $a_n \cos(n \times 0) = \frac{1}{n+1}$, $n \in \mathbb{N}$, diverge. Donc, la série de fonctions de terme général $x \mapsto a_n \cos(nx)$, $n \in \mathbb{N}$, ne converge pas simplement sur \mathbb{R} .

$$\begin{aligned} \mathbf{Q8} \quad \mathrm{Pour} \ n \in \mathbb{N}^* \ \mathrm{et} \ x \in \mathbb{R}, \ \mathrm{posons} \ f_n(x) &= \frac{\sin(nx)}{\sqrt{n}}. \ \mathrm{Pour} \ \mathrm{tout} \ n \in \mathbb{N}^*, \ \mathrm{en} \ \mathrm{posant} \ x_n = \frac{\pi}{2n} \\ \left\| f_n \right\|_{\infty} &= \sup \left\{ \frac{\left| \sin\left(nx\right) \right|}{\sqrt{n}}, \ x \in \mathbb{R} \right\} \geqslant \frac{\left| \sin\left(x_n\right) \right|}{\sqrt{n}} = \frac{1}{\sqrt{n}}, \end{aligned}$$

qui est le terme général d'une série divergente. Donc, la série de fonctions de terme général $x\mapsto \frac{\sin(nx)}{\sqrt{n}}, n\in\mathbb{N}^*$, ne converge pas normalement sur \mathbb{R} .

Partie II - Propriétés

Q9 Pour $n \in \mathbb{N}$ et $x \in \mathbb{R}$, posons $f_n(x) = a_n \cos(nx) + b_n \sin(nx)$. Pour $n \in \mathbb{N}$ et pour tout réel x,

$$|f_n(x)| \le |a_n| |\cos(nx)| + |b_n| |\sin(nx)| \le |a_n| + |b_n|.$$

Donc, pour tout $n \in \mathbb{N}$, $\|f_n\|_{\infty} \leq |a_n| + |b_n|$ qui est, par hypothèse, le terme général d'une série numérique convergente. Donc, la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement (et en particulier, uniformément et simplement) sur \mathbb{R} .

Q10 Le résultat est clair si a = b = 0. Sinon, pour tout x réel,

$$|a\cos x+b\sin x|=\sqrt{\alpha^2+b^2}\left|\frac{\alpha}{\sqrt{\alpha^2+b^2}}\cos x+\frac{b}{\sqrt{\alpha^2+b^2}}\sin x\right|=\sqrt{\alpha^2+b^2}|\cos (x-\alpha)|$$

où α est un réel tel que $\cos(\alpha) = \frac{\alpha}{\sqrt{a^2 + b^2}}$ et $\sin(\alpha) = \frac{b}{\sqrt{a^2 + b^2}}$ (α existe car $\left(\frac{a}{\sqrt{a^2 + b^2}}\right)^2 + \left(\frac{b}{\sqrt{a^2 + b^2}}\right)^2 = 1$). Mais alors, pour tout réel α

$$|a\cos x + b\sin x| = \sqrt{a^2 + b^2} |\cos (x - \alpha)| \leqslant \sqrt{a^2 + b^2}$$

avec égalité effectivement obtenue si $x = \alpha$. Donc, le maximum sur \mathbb{R} de la fonction $x \mapsto |a\cos x + b\sin x|$ existe et est égal à $\sqrt{a^2 + b^2}$.

Q11 Par hypothèse, la série de fonctions de terme général $x \mapsto a_n \cos(nx) + b_n \sin(nx)$, $n \in \mathbb{N}$, converge normalement sur \mathbb{R} . D'après la question précédente, on en déduit que la série numérique de terme général $\sqrt{a_n^2 + b_n^2}$, $n \in \mathbb{N}$, converge. Puisque pour tout $n \in \mathbb{N}$,

$$|a_n| = \sqrt{a_n^2} \leqslant \sqrt{a_n^2 + b_n^2}$$

la série numérique de terme général $|a_n|$, $n \in \mathbb{N}$, converge ou encore la série numérique de terme général a_n , $n \in \mathbb{N}$, converge absolument. De même, puisque pour tout $n \in \mathbb{N}$, $|b_n| \le \sqrt{a_n^2 + b_n^2}$, la série numérique de terme général b_n , $n \in \mathbb{N}$, converge absolument. En particulier, les suites (a_n) et (b_n) convergent vers 0.

Q12 Chaque fonction $f_n: x \mapsto a_n \cos(nx) + b_n \sin(nx)$, $n \in \mathbb{N}$, est continue sur \mathbb{R} et la série de fonctions de terme général f_n , $n \in \mathbb{N}$, converge normalement et en particulier uniformément sur \mathbb{R} vers la fonction $f = \sum_{n=0}^{+\infty} f_n$. Donc la fonction f est continue sur \mathbb{R} .

Pour $x \in \mathbb{R}$,

$$f(x+2\pi) = \sum_{n=0}^{+\infty} \left(a_n \cos(nx + 2n\pi) + b_n \sin(nx + 2n\pi) \right) = \sum_{n=0}^{+\infty} \left(a_n \cos(nx) + b_n \sin(nx) \right) = f(x)$$

et donc f est 2π -périodique. Finalement, $f \in \mathcal{C}_{2\pi}$.

Q13 Soit $n \in \mathbb{N}^*$.

$$\int_{-\pi}^{\pi} \cos^2(nx) \ dx = \frac{1}{2} \int_{-\pi}^{\pi} (1 + \cos(2nx)) \ dx = \pi + \frac{1}{2} \left[\frac{\sin(2nx)}{2n} \right]_{-\pi} \pi = \pi.$$

On note que pour n = 0, $\int_{-\pi}^{\pi} \cos^2(nx) dx = 2\pi$.

Soient k et n deux entiers naturels pas nécessairement distincts (erreur d'énoncé). La fonction $x \mapsto \sin(kx)\cos(nx)$ est impaire et donc $\int_{-\pi}^{\pi} \sin(kx)\cos(nx) \, dx = 0$.

Q14 Soit $n \in \mathbb{N}^*$. Par hypothèse, la série de fonctions de terme général $x \mapsto f_k(x)\cos(nx) = a_k\cos(kx)\cos(nx) + b_k\sin(kx)\cos(nx)$, converge normalement sur \mathbb{R} et donc uniformément sur le segment $[-\pi,\pi]$. On peut intégrer terme à terme et on obtient

$$\begin{split} \alpha_n(f) &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \ dx = \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\sum_{k=0}^{+\infty} \left(a_k \cos(kx) + b_k \sin(kx) \right) \right) \cos(nx) \ dx \\ &= \frac{1}{\pi} \sum_{k=0}^{+\infty} \left(\int_{-\pi}^{\pi} \cos(kx) \cos(nx) \ dx + \int_{-\pi}^{\pi} \sin(kx) \cos(nx) \ dx \right) = \frac{1}{\pi} \times \pi a_n \\ &= a_n. \end{split}$$

De même,

$$\alpha_0(f) = \frac{1}{\pi} \sum_{k=0}^{+\infty} \left(\int_{-\pi}^{\pi} \cos(kx) \, dx + \int_{-\pi}^{\pi} \sin(kx) \, dx \right) = \frac{1}{\pi} \times 2\pi a_0$$

$$= 2a_0.$$

Q15 Puisque la série de fonctions de terme général u_n , $n \in \mathbb{N}$, converge normalement sur \mathbb{R} vers la fonction g, la question précédente, appliquée à la fonction g, montre immédiatement que pour tout $n \in \mathbb{N}$, $\alpha_n(g) = \alpha_n(f)$ et $\beta_n(g) = \beta_n(f)$.

Q16 Soit $f \in \mathcal{C}_{2\pi}$ telle que la série de fonctions trigonométriques de l'énoncé converge normalement sur \mathbb{R} . D'après la question précédente, pour tout $n \in \mathbb{N}$, $\alpha_n(g) = \alpha_n(f)$ et $\beta_n(g) = \beta_n(f)$ ou encore $\alpha_n(f-g) = 0$ et $\beta_n(f-g)$ (la linéarité des applications α_n et β_n étant claire). D'après le résultat admis par l'énoncé, f-g=0 et donc f=g.

Q17 Supposons f paire. Pour tout $n \in \mathbb{N}$, la fonction $x \mapsto f(x)\sin(nx)$ est impaire et donc pour tout $n \in \mathbb{N}$, $\beta_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin(nx) \, dx = 0$. De même, pour tout $n \in \mathbb{N}$, la fonction $x \mapsto f(x)\cos(nx)$ est impaire et donc pour tout $n \in \mathbb{N}$, $\alpha_n(f) = \frac{2}{\pi} \int_{0}^{\pi} f(x)\cos(nx) \, dx$.

Q18 Graphe de f.

f est dans $C_{2\pi}$ et est paire. Donc, pour tout x réel,

$$\begin{split} f(x) &= \frac{\alpha_0(f)}{2} + \sum_{n=1}^{+\infty} \left(\alpha_n(f)\cos(nx) + \beta_n(f)\sin(nx)\right) = \frac{\alpha_0(f)}{2} + \sum_{n=1}^{+\infty} \alpha_n(f)\cos(nx). \\ \alpha_0(f) &= \frac{2}{\pi} \int_0^\pi f(x) \ dx = \frac{2}{\pi} \int_0^\pi x^2 \ dx = \frac{2}{\pi} \times \frac{\pi^3}{3} = \frac{2\pi^2}{3} \ \text{puis, pour } n \in \mathbb{N}^*, \ \text{une double intégration par parties, licite, fournit} \\ \alpha_n(f) &= \frac{2}{\pi} \int_0^\pi x^2 \cos(nx) \ dx = \frac{2}{\pi} \left(\left[x^2 \frac{\sin(nx)}{n} \right]_0^\pi - \int_0^\pi 2x \frac{\sin(nx)}{n} \ dx \right) \\ &= \frac{4}{n\pi} \int_0^\pi x(-\sin(nx)) \ dx = \frac{4}{n\pi} \left(\left[x \frac{\cos(nx)}{n} \right]_0^\pi - \int_0^\pi \frac{\cos(nx)}{n} \ dx \right) \\ &= \frac{4}{n\pi} \times \frac{\pi \cos(n\pi)}{n} - 0 = \frac{4(-1)^n}{n^2}. \end{split}$$

Finalement, pour tout réel x,

$$f(x) = \frac{\alpha_0(f)}{2} + \sum_{n=1}^{+\infty} \alpha_n(f) \cos(nx) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx).$$

De plus, puisque la série numérique de terme général $\frac{1}{n^2}$, $n \ge 1$, converge, la série de fonctions ci-dessus converge normalement sur \mathbb{R} .

Q19 Pour
$$x = 0$$
, on obtient $0 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2}$ et donc
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\frac{\pi^2}{12}.$$

Ensuite,

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} + \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = \sum_{n=1}^{+\infty} \frac{1 + (-1)^n}{n^2}$$
$$= \sum_{n=1}^{+\infty} \frac{2}{(2p)^2} = \frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

et donc
$$\frac{1}{2}\sum_{n=1}^{+\infty}\frac{1}{n^2}=-\sum_{n=1}^{+\infty}\frac{(-1)^n}{n^2}=\frac{\pi^2}{12}$$
 puis

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

On en déduit encore

$$\sum_{n=1}^{+\infty} \frac{1}{(2n+1)^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} - \sum_{n=1}^{+\infty} \frac{1}{(2n)^2} = \left(1 - \frac{1}{4}\right) \frac{\pi^2}{6} = \frac{\pi^2}{8}.$$

Q20 La fonction $f: x \mapsto \frac{\ln(1+x)}{x}$ est continue sur]0,1] et prolongeable par continuité en 0 ($\frac{\ln(1+x)}{x} \underset{x\to 0}{\sim} 1$). Donc, la fonction f est intégrable sur]0,1] et en particulier sur]0,1[.

Pour tout réel x de]0,1[,

$$f(x) = \frac{1}{x} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^{n-1}}{n}.$$

 $\mathrm{Pour}\ n\in\mathbb{N}^*\ \mathrm{et}\ x\in]0,1[,\ \mathrm{posons}\ f_n(x)=\frac{(-1)^{n-1}x^{n-1}}{n}\ \mathrm{de\ sorte\ que}\ f=\sum_{n=1}^{+\infty}f_n.$

- Chaque fonction f_n , $n \in \mathbb{N}^*$, est continue par morceaux sur]0, 1[.
- La série de fonctions de terme général f_n , $n \in \mathbb{N}^*$, converge simplement sur]0,1[vers la fonction f et de plus, la fonction f est continue par morceaux sur]0,1[.
- Enfin,

$$\sum_{n=1}^{+\infty} \int_0^1 |f_n(x)| \ dx = \sum_{n=1}^{+\infty} \int_0^1 \frac{x^{n-1}}{n} \ dx = \sum_{n=1}^{+\infty} \frac{1}{n^2} < +\infty$$

D'après un théorème d'intégration terme à terme et d'après la question précédente,

$$\int_{0}^{1} f(x) dx = \sum_{n=1}^{+\infty} \int_{0}^{1} f_{n}(x) dx = \sum_{n=1}^{+\infty} (-1)^{n-1} \int_{0}^{1} \frac{x^{n-1}}{n} dx = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{2}}$$
$$= -\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n^{2}} = \frac{\pi^{2}}{12}$$

Q21 La question 18 fournit un exemple de série trigonométrique qui converge normalement sur \mathbb{R} vers une fonction f, continue sur \mathbb{R} et 2π -périodique mais non dérivable sur \mathbb{R} car non dérivable en les $(2k+1)\pi$, $k \in \mathbb{Z}$. Donc, la somme d'une série trigonométrique qui converge normalement sur \mathbb{R} n'est pas nécessairement dérivable sur \mathbb{R} .

Supposons de plus que les séries numériques de termes généraux respectifs $\mathfrak{n}\mathfrak{a}_n$ et $\mathfrak{n}\mathfrak{b}_n$ soient absolument convergentes. En particulier, les séries numériques de termes généraux \mathfrak{a}_n et \mathfrak{b}_n sont absolument convergentes (car pour tout $\mathfrak{n} \in \mathbb{N}$, $|\mathfrak{a}_n| \leq |\mathfrak{n}\mathfrak{a}_n|$ et $|\mathfrak{b}_n| \leq |\mathfrak{n}\mathfrak{b}_n|$).

- La série de fonctions de terme général $f_n: x \mapsto a_n \cos(nx) + b_n \sin(nx), n \in \mathbb{N}$, est converge normalement et en particulier simplement sur \mathbb{R} vers la fonction $f = \sum_{n=0}^{+\infty} f_n$.
- Chaque fonction f_n , $n \in \mathbb{N}$, est dérivable sur \mathbb{R} .
- La série des dérivées $f'_n: x \mapsto nb_n \cos(nx) na_n \sin(nx), n \in \mathbb{N}$, est normalement et en particulier uniformément convergente sur \mathbb{R} (car les séries numériques de termes généraux respectifs nb_n et $-na_n$ sont absolument convergentes).

D'après le théorème de dérivation terme à terme, f est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = \sum_{n=1}^{+\infty} (nb_n \cos(nx) - na_n \sin(nx)).$$

Q22 La série numérique de terme général $\frac{n}{3^n}$, $n \in \mathbb{N}$, est absolument convergente. Donc, la fonction $f: x \mapsto \sum_{n=0}^{+\infty} \frac{\sin(nx)}{3^n}$ est dérivable sur \mathbb{R} et pour tout réel x,

$$f'(x) = \sum_{n=0}^{+\infty} \frac{n}{3^n} \cos(nx).$$

Donc, pour tout réel x,

$$\begin{split} \sum_{n=0}^{+\infty} \frac{n}{3^n} \cos(nx) &= \left(\frac{3 \sin x}{10 - 6 \cos x}\right)' = \frac{3}{2} \left(\frac{\sin x}{5 - 3 \cos x}\right)' = \frac{3}{2} \times \frac{\cos x (5 - 3 \cos x) - \sin x (3 \sin x)}{(5 - 3 \cos x)^2} \\ &= \frac{3}{2} \times \frac{5 \cos x - 3}{(5 - 3 \cos x)^2}. \end{split}$$