FACULTAD DE CIENCIAS EXACTAS, NATURALES Y AMBIENTALES CATÁLOGO STEM • ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA

RESUMEN NO. 5: ESPACIOS VECTORIALES Andrés Merino • Periodo 2025-1

1. ESPACIOS VECTORIALES

DEFINICIÓN 1: Espacio Vectorial.

Dados un campo \mathbb{R} , un conjunto no vacío \mathbb{E} y dos operaciones

llamadas suma y producto, respectivamente; se dice que $(E, \oplus, \odot, \mathbb{R})$ es un espacio vectorial si cumplen las siguientes propiedades

ı. **asociativa de la suma:** para todo $x, y, z \in E$ se tiene que

$$(x \oplus y) \oplus z = x \oplus (y \oplus z);$$

II. **conmutativa de la suma:** para todo $x, y \in E$ se tiene que

$$x \oplus y = y \oplus x$$
;

III. **elemento neutro de la suma:** existe un elemento de E, denotado por O_E o simplemente O, tal que para todo $x \in E$ se tiene que

$$x \oplus 0 = 0 \oplus x = x$$
;

IV. **inverso de la suma:** para todo $x \in E$, existe un elemento de E, denotado por -x, tal que

$$x \oplus (-x) = 0$$
;

v. **distributiva del producto I:** para todo $x,y \in E$ y todo $\alpha \in \mathbb{R}$ se tiene que

$$\alpha \odot (x \oplus y) = \alpha \odot x + \alpha \odot y$$

VI. **distributiva del producto II:** para todo $x \in E$ y todo $\alpha, \beta \in \mathbb{R}$ se tiene que

$$(\alpha + \beta) \odot x = \alpha \odot x \oplus \beta \odot x;$$

VII. **asociativa del producto:** para todo $x \in E$ y todo $\alpha, \beta \in \mathbb{R}$ se tiene que

$$(\alpha\beta)\odot x = \alpha\odot (\beta\odot x);$$

VIII. **elemento neutro del producto:** para todo $x \in E$ se tiene que

$$1 \odot x = x$$
,

donde $1 \in \mathbb{R}$ es el elemento neutro multiplicativo de \mathbb{R}

Utilizamos los símbolos \oplus y \odot para enfatizar el hecho de que, en general, las operaciones definidas no son la suma y el producto estándar que utilizamos. Si no existe riesgo de confusión, utilizaremos la notación

A

$$x \oplus y = x + y$$
 y $\alpha \odot x = \alpha x$

y diremos que el espacio vectorial es $(E, +, \cdot, \mathbb{R})$, es más, en caso de que no exista ambigüedad en las operaciones utilizadas se dirá simplemente que E es un espacio vectorial.

TEOREMA 1.

Los siguientes conjuntos son espacios vectoriales en el campo \mathbb{R} :

- \mathbb{R}^n , con $n \in \mathbb{N}^*$;
- $\mathbb{R}^{m \times n}$, con $m, n \in \mathbb{N}^*$;
- $\mathfrak{F}(I) = \{f \colon I \to \mathbb{R} : f \text{ es una función}\}, \text{ con } I \subseteq \mathbb{R}.$
- $\mathbb{R}_n[x]$ el conjunto de todos los polinomio de grado menor igual que n en la variable x, con $n \in \mathbb{N}$;

TEOREMA 2.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial, se tiene que para todo $\mathfrak{u}\in E$ y todo $\alpha\in\mathbb{R}$, se tiene que

- I. 0u = 0;
- II. $\alpha 0 = 0$;
- III. si $\alpha u = 0$ entonces $\alpha = 0$ o u = 0;
- IV. (-1)u = -u.

1.1 Subespacios

DEFINICIÓN 2: Subespacio Vectorial.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $W\subset E$ un conjunto no vacío de E. Si W es un espacio vectorial con respecto a las operaciones de E, entonces se dice que W es un subespacio de E.

TEOREMA 3.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y W un subconjunto no vacío de E. Entonces W es un subespacio de E si y sólo si se cumplen las siguientes condiciones:

- si $u, v \in W$, entonces $u + v \in W$; u
- si $\alpha \in \mathbb{R}$ y $\mathfrak{u} \in W$, entonces $\alpha \mathfrak{u} \in W$.

DEFINICIÓN 3: Combinación lineal.

Sean $(E, +, \cdot, \mathbb{R})$ un espacio vectorial, $k \in \mathbb{N}^*$ y $v_1, v_2, \dots, v_k \in E$. Se dice que un vector $v \in E$ es una combinación lineal de v_1, v_2, \dots, v_k si

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k$$

para algunos $\alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}$.

DEFINICIÓN 4.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $S=\{\nu_1,\nu_2,\ldots,\nu_k\}\subset E$. Al conjunto conjunto de todos los vectores en E que son combinaciones lineales de los vectores de S se lo llama cápsula de S y se denota por span(S), es decir

$$span(S) = \{\alpha_1\nu_1 + \alpha_2\nu_2 + \cdots + \alpha_k\nu_k : \alpha_1, \alpha_2, \dots, \alpha_k \in \mathbb{R}\}.$$

A

A este conjunto también se lo conoce como *clausura lineal* y su notación viene de su nombre en inglés, *linear span*. También se utiliza la notación $\langle S \rangle$.

TEOREMA 4.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $S\subset E$. Se tiene que span(S) es un subespacio vectorial de E.