# Forecast probabilities - work in progress

Nicolas Blöchliger, Institute of Medical Microbiology, University of Zurich 07/06/2016

## Contents

| 1        | Goa |                                           | 1  |
|----------|-----|-------------------------------------------|----|
| <b>2</b> | Mat | terials and methods                       | 1  |
|          | 2.1 | Model                                     | 1  |
|          | 2.2 | Data                                      | 2  |
|          | 2.3 | Probabilities of misclassification errors | 3  |
| 3        | Res | m cults                                   | 4  |
|          | 3.1 | Beta-lactams                              | 5  |
|          | 3.2 | Aminoglycosides                           | 17 |
|          | 3.3 | Quinolones                                | 19 |
|          | 3.4 | Tetracyclines                             | 22 |
| 4        | Арр | pendix                                    | 26 |
|          | 4.1 | Clinical breakpoints                      | 26 |
|          | 4.2 | Distributions for beta-lactams            | 26 |

## 1 Goal

Compute the probability that a strain is susceptible according to official breakpoints given an observed diameter y.

## 2 Materials and methods

#### 2.1 Model

We assume:

• The distribution of the true diameter X is a mixture of  $n \ge 2$  components with weights  $w_i = p(C = i)$ , where C encodes the component. The true diameter is 6 mm for the first component and normally distributed for the other components:

$$p_i(x) = f_X(x|C=i) = \begin{cases} \delta_6(x) & \text{if } i = 1, \\ \phi(x; \mu_i, \sigma_i^2) & \text{else,} \end{cases}$$

where

$$\delta_6(x) = \begin{cases} \infty & \text{if } x = 6 \text{ mm,} \\ 0 & \text{else.} \end{cases}$$

Thus,

$$f_X(x) = w_1 \delta_6 + \sum_{i=2}^n w_i \phi(x; \mu_i, \sigma_i^2).$$

• We observe Y = X + E, where E models technical error. E is zero for the first component and normally distributed and independent of X with mean  $\mu_E = 0$  and constant variance  $\sigma_E^2$  for the other components. The conditional density of Y given the component C is therefore

$$f_Y(y|C=i) = \begin{cases} \delta_6(y) & \text{if } i=1, \\ p_i * \phi(\cdot; 0, \sigma_E^2) = \phi(y; \mu_i, \sigma_i^2 + \sigma_E^2) & \text{else.} \end{cases}$$

Thus,

$$f_Y(y) = w_1 \delta_6 + \sum_{i=2}^n w_i \phi(y; \mu_i, \sigma_i^2 + \sigma_E^2).$$

Note that we do not account for the fact that the observed data are rounded to integer values.

#### 2.1.1 Estimation of model parameters

- We estimate  $w_1$  as the fraction of data points in the sample that are equal to 6 mm.
- For  $n=2,\ldots,10$ , the parameters of the normally distributed components of Y, i.e.  $w_i$ ,  $\mu_i$ , and  $\sigma_i^2 + \sigma_E^2$ , are estimated by fitting a normal mixture model of n-1 components to the data in the sample with diameters greater than 6 mm. Based on the Bayesian information criterion, the best best value of n is selected. Values of n that resulted in models that did not satisfy  $\sigma_i > 0$  were excluded. We use the R package mclust.
- Estimates for the variance of the error  $\sigma_E^2$  will be taken from independent work in order to obtain  $\sigma_i^2$ . For the time being we use  $\sigma_E^2 = 1$  mm.

#### 2.1.2 Limitations of the model

- The model does not account for the fact that  $X \ge 6$  mm. As long as the means of the the normally distributed components are sufficiently large (say  $\mu_i 6$  mm  $> 2\sigma$ ), this should not cause problems.
- The model does not account for the fact that  $Y \leq 40$  mm. As long as the means of the normally distributed components are sufficiently small (say  $40 \text{ mm} \mu_i > 2\sigma$ ), this should not cause problems.
- The error is assumed to be normally distributed with constant variance. This assumption is obviously violated if X is close to 6 or 40 mm. It is also violated for antibiotics like CPD, for which diameters are distorted in order to avoid additional laborious tests.
- The distributions of all but the first component are assumed to be normal.

#### 2.2 Data

Raw data for the beta-lactams was obtained from Giorgia Valsesia on 11.03.2016. It contains measurements for 9766 E. coli strains collected from January 2010 until March 2014.

Raw data for the aminoglycosides was obtained from Giorgia Valsesia on 15.03.2016. It contains measurements for 3521 E. coli strains.

Raw data for the quinolones was obtained from Giorgia Valsesia on 18.05.2015. It contains measurements for 9761 E. coli strains collected from February 2011 until May 2014.

Raw data for the tetracyclines was obtained from Giorgia Valsesia on 18.05.2015. It contains measurements for 10662 E. coli strains collected from January 2010 until May 2014.

The following 24 antibiotics were used:

| antibiotic                    | abbreviation |
|-------------------------------|--------------|
| ampicillin                    | AM10         |
| cephalothin                   | KF           |
| cefoxitin                     | FOX          |
| cefpodoxime                   | CPD          |
| amoxicillin - clavulanic acid | AMC          |
| piperacillin - tazobactam     | TPZ          |
| cefuroxime                    | CXM          |
| cefotaxime                    | CTX          |
| ceftazidime                   | CAZ          |
| ceftriaxone                   | CRO          |
| cefepime                      | FEP          |
| ertapenem                     | ETP          |
| imipenem                      | IPM          |
| meropenem                     | MEM          |
| kanamycin                     | KAN          |
| gentamicin                    | GEN          |
| tobramycin                    | TOB          |
| nalidixic acid                | NAL          |
| norfloxacin                   | NOR          |
| ciprofloxacin                 | CIP          |
| levofloxacin                  | LEV          |
| minocycline                   | MI           |
| tetracycline                  | TE           |
| tigecycline                   | TGC          |

#### 2.3 Probabilities of misclassification errors

The probabilities of very major and major misclassification errors based on offical CBPs are given by

$$p(\text{very major error}) = p(X < \text{CBP}_R \text{ and } Y \ge \text{CBP}_S) \text{ and}$$
  
 $p(\text{major error}) = p(X \ge \text{CBP}_S \text{ and } Y < \text{CBP}_R).$ 

Additionally, we compute probabilities of misclassification errors if the prediction of S is more conservative:

$$p(\text{very major error}) = p(X < \text{CBP}_{R} \text{ and } Y \ge \text{CBP}_{S} + 2 \text{ mm}) \text{ and}$$
  
$$p(\text{major error}) = p(X \ge \text{CBP}_{S} \text{ and } Y < \text{CBP}_{R}).$$

Finally, if strains with observed diameters in the ZTU are classified as I, probabilities of misclassification errors are given by

$$p(\text{very major error}) = p(X < Z_R \text{ and } Y \ge Z_S)$$
 and  $p(\text{major error}) = p(X \ge Z_S \text{ and } Y < Z_R),$ 

where  $Z_R$  is the minimum of CBP~R and the left boundary of the ZTU and  $Z_S$  is the maximum of CBP~S and the right boundary of the ZTU.

## 3 Results

In the figures on the next pages, dashed vertical lines indicate CBPs according to http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST\_files/Breakpoint\_tables/v\_6.0\_Breakpoint\_table.xls (13.05.2016, see Appendix). The figures are organized as follows.

- Top-left: Histogram of sample and the estimated density of Y (black) and its components (coloured). The contribution from the first component ( $\delta_6$ ) is visualised as a uniform distribution with support [5.5 mm, 6.5 mm].
- Middle-left: Empirical cumulative distribution function (cdf) of Y (grey), its estimate (black) and estimated cdfs for the components of Y (coloured).
- Bottom-left: Q-Q plot. If the estimated density of Y explained the data perfectly, all point would lie on the identity line (grey).
- Top-right: Histogram of sample and the estimated density of X for various values of  $\sigma_E$ .
- Bottom-right:  $p(X \ge \text{CBP}_S|Y = y)$ , i.e. the probability that the true diameter is above the CBP defining susceptibility given an observed diameter y. Observed diameters for which this probability is in [0.025, 0.975] are defined to be in a zone of technical uncertainty (ZTU). The ZTU is highlighted in red, and its properties are summarised in Tab. 38.

All analysis is restricted to the antibiotics for which CBPs are available.

## 3.1 Beta-lactams

#### 3.1.1 AM10

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.00    | 0.00             | 0.47   |
| 2         | 9.97    | 1.62             | 0.03   |
| 3         | 17.70   | 3.07             | 0.10   |
| 4         | 19.95   | 1.73             | 0.11   |
| 5         | 22.62   | 2.20             | 0.27   |
| 6         | 25.45   | 7.32             | 0.02   |

Official CBPs: 14 mm and 14 mm. ZTU: [11.5 mm, 15.2 mm].

Table 3: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 3.0e-03     | 2.0e-03          |
| CBP_S increased by 2mm | 3.0e-03     | 6.7e-05          |
| I for ZTU              | 8.9e-05     | 1.3e-04          |



## 3.1.2 FOX

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.0              | 0.01   |
| 2         | 23.3    | 6.3              | 0.18   |
| 3         | 25.6    | 2.6              | 0.81   |

Official CBPs: 19 mm and 19 mm. ZTU: [15.9 mm, 20.2 mm].

Table 5: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 6.4e-03<br>6.4e-03<br>7.2e-05 | 3.9e-03<br>2.1e-04<br>3.7e-04 |



## 3.1.3 AMC

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.01   |
| 2         | 17.8    | 4.82             | 0.36   |
| 3         | 22.5    | 2.60             | 0.63   |

Official CBPs: 19 mm and 19 mm. ZTU: [15.9 mm, 20.4 mm].

Table 7: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 3.4e-02<br>3.4e-02<br>4.0e-04 | 2.2e-02<br>1.2e-03<br>1.4e-03 |



### 3.1.4 TPZ

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.00   |
| 2         | 22.9    | 5.12             | 0.23   |
| 3         | 23.8    | 2.07             | 0.38   |
| 4         | 26.0    | 2.96             | 0.39   |

Official CBPs: 17 mm and 20 mm. ZTU: [16.4 mm, 21.1 mm].

Table 9: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 1.2e-04     | 3.4e-05          |
| CBP_S increased by 2mm | 1.2e-04     | 1.4e-07          |
| I for ZTU              | 9.3e-05     | 4.9e-07          |



### 3.1.5 CXM

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.09   |
| 2         | 22.0    | 5.75             | 0.11   |
| 3         | 24.6    | 2.54             | 0.80   |

Official CBPs: 18 mm and 18 mm. ZTU: [14.8 mm, 19.1 mm].

Table 11: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 4.6e-03<br>4.6e-03<br>3.9e-05 | 2.6e-03<br>1.4e-04<br>2.9e-04 |



## 3.1.6 CTX

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.05   |
| 2         | 13.4    | 3.96             | 0.06   |
| 3         | 27.1    | 2.24             | 0.31   |
| 4         | 29.6    | 1.82             | 0.32   |
| 5         | 34.1    | 2.30             | 0.26   |

Official CBPs: 17 mm and 20 mm. ZTU: [17.3 mm, 21.9 mm].

Table 13: Probabilities of misclassification errors.

| basis for prediction                    | major error        | very major error   |
|-----------------------------------------|--------------------|--------------------|
| official CBPs<br>CBP_S increased by 2mm | 1.6e-05<br>1.6e-05 | 6.1e-05<br>7.9e-07 |
| I for ZTU                               | 1.6e-05            | 2.7e-07            |



#### 3.1.7 CAZ

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.02   |
| 2         | 14.2    | 3.36             | 0.06   |
| 3         | 26.1    | 1.99             | 0.36   |
| 4         | 28.0    | 3.32             | 0.56   |

Official CBPs: 19 mm and 22 mm. ZTU: [18.9 mm, 22.7 mm].

Table 15: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 1.5e-05<br>1.5e-05<br>1.5e-05 | 4.6e-06<br>2.6e-09<br>7.4e-08 |



#### 3.1.8 CRO

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.04   |
| 2         | 12.2    | 3.24             | 0.06   |
| 3         | 30.8    | 2.88             | 0.90   |

Official CBPs: 20 mm and 23 mm. ZTU: [19.4 mm, 23.2 mm].

Table 17: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 1.0e-05<br>1.0e-05<br>8.1e-06 | 4.7e-06<br>3.2e-08<br>9.9e-07 |



### 3.1.9 FEP

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.00   |
| 2         | 16.9    | 3.54             | 0.08   |
| 3         | 28.4    | 2.47             | 0.29   |
| 4         | 31.3    | 1.74             | 0.31   |
| 5         | 34.9    | 2.11             | 0.31   |

Official CBPs: 21 mm and 24 mm. ZTU: [20.8 mm, 25 mm].

Table 19: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 3.3e-05     | 2.8e-05          |
| CBP_S increased by 2mm | 3.3e-05     | 1.0e-07          |
| I for ZTU              | 3.3e-05     | 5.1e-07          |



3.1.10 ETP

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.00   |
| 2         | 30.4    | 3.85             | 0.29   |
| 3         | 29.5    | 1.92             | 0.20   |
| 4         | 33.1    | 2.06             | 0.29   |
| 5         | 37.6    | 1.70             | 0.22   |

Official CBPs: 22 mm and 25 mm. ZTU: [19.9 mm, 26.3 mm].

Table 21: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 2.1e-04     | 1.8e-05          |
| CBP_S increased by 2mm | 2.1e-04     | 4.1e-07          |
| I for ZTU              | 9.7e-06     | 6.3e-07          |



### 3.1.11 IPM

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 28.7    | 2.23             | 0.45   |
| 2         | 31.4    | 3.24             | 0.55   |

Official CBPs: 16 mm and 22 mm. ZTU: [16.2 mm, 21.9 mm].

Table 23: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 1.1e-09     | 5.6e-14          |
| CBP_S increased by 2mm | 1.1e-09     | 2.8e-17          |
| I for ZTU              | 1.1e-09     | 1.4e-14          |



#### 3.1.12 MEM

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 30.8    | 3.18             | 0.23   |
| 2         | 29.7    | 1.70             | 0.20   |
| 3         | 32.5    | 1.56             | 0.28   |
| 4         | 36.2    | 1.99             | 0.29   |

Official CBPs: 16 mm and 22 mm. ZTU: [16.3 mm, 22.3 mm].

Table 25: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 6.2e-10     | 3.2e-14          |
| CBP_S increased by 2mm | 6.2e-10     | 1.7e-17          |
| I for ZTU              | 6.2e-10     | 2.0e-15          |



## 3.2 Aminoglycosides

#### 3.2.1 GEN

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.04   |
| 2         | 17.0    | 7.05             | 0.09   |
| 3         | 22.5    | 1.34             | 0.86   |

Official CBPs: 14 mm and 17 mm. ZTU: [14.3 mm, 18.4 mm].

Table 27: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 5.7e-06<br>5.7e-06<br>5.7e-06 | 4.9e-06<br>2.8e-09<br>4.4e-09 |



#### 3.2.2 TOB

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.03   |
| 2         | 11.8    | 2.61             | 0.07   |
| 3         | 21.0    | 1.65             | 0.90   |

Official CBPs: 14 mm and 17 mm. ZTU: [14.6 mm, 17.5 mm].

Table 29: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 7.4e-06<br>7.4e-06<br>7.4e-06 | 5.1e-05<br>1.9e-07<br>4.0e-06 |



## 3.3 Quinolones

#### 3.3.1 NOR

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.19   |
| 2         | 11.8    | 2.53             | 0.04   |
| 3         | 28.8    | 3.98             | 0.33   |
| 4         | 32.2    | 2.09             | 0.24   |
| 5         | 36.8    | 1.68             | 0.21   |

Official CBPs: 19 mm and 22 mm. ZTU: [17.3 mm, 23.5 mm].

Table 31: Probabilities of misclassification errors.

| basis for prediction             | major error        | very major error   |
|----------------------------------|--------------------|--------------------|
| official CBPs                    | 1.3e-04            | 1.0e-05<br>2.2e-07 |
| CBP_S increased by 2mm I for ZTU | 1.3e-04<br>1.4e-05 | 2.2e-07<br>2.2e-07 |



#### 3.3.2 CIP

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.16   |
| 2         | 12.0    | 3.18             | 0.06   |
| 3         | 33.6    | 4.55             | 0.78   |

Official CBPs: 19 mm and 22 mm. ZTU: [17.5 mm, 23 mm].

Table 33: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 1.3e-04<br>1.3e-04<br>3.8e-05 | 5.7e-05<br>3.8e-06<br>8.0e-06 |



### 3.3.3 LEV

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 6.0     | 0.00             | 0.05   |
| 2         | 11.6    | 2.56             | 0.17   |
| 3         | 29.1    | 4.13             | 0.33   |
| 4         | 32.6    | 2.04             | 0.22   |
| 5         | 37.2    | 1.93             | 0.23   |

Official CBPs: 19 mm and 22 mm. ZTU: [17.7 mm, 23.5 mm].

Table 35: Probabilities of misclassification errors.

| basis for prediction   | major error | very major error |
|------------------------|-------------|------------------|
| official CBPs          | 1.2e-04     | 1.5e-05          |
| CBP_S increased by 2mm | 1.2e-04     | 2.9e-07          |
| I for ZTU              | 2.9e-05     | 2.9e-07          |



## 3.4 Tetracyclines

### 3.4.1 TGC

| component | mean/mm | $\mathrm{sd/mm}$ | weight |
|-----------|---------|------------------|--------|
| 1         | 21.5    | 1.69             | 1      |

Official CBPs: 15 mm and 18 mm. ZTU: [7.8 mm, 15.7 mm].

Table 37: Probabilities of misclassification errors.

| basis for prediction                           | major error                   | very major error              |
|------------------------------------------------|-------------------------------|-------------------------------|
| official CBPs CBP_S increased by 2mm I for ZTU | 1.5e-05<br>1.5e-05<br>5.8e-18 | 4.1e-13<br>2.1e-15<br>4.1e-13 |



Table 38: Official CBPs (EUCAST) and zones of technical uncertainty (ZTUs) derived from our model. The weight of the ZTU is defined as the fraction of data points that lie in the ZTU.

| antibiotic           | CBP_S/mm | CBP_R/mm | ZTU: width/mm | ZTU: weight/% |
|----------------------|----------|----------|---------------|---------------|
| AM10                 | 14       | 14       | 3.7           | 2.82          |
| FOX                  | 19       | 19       | 4.3           | 5.72          |
| AMC                  | 19       | 19       | 4.5           | 27.29         |
| TPZ                  | 20       | 17       | 4.7           | 13.91         |
| CXM                  | 18       | 18       | 4.3           | 3.69          |
| CTX                  | 20       | 17       | 4.6           | 1.30          |
| CAZ                  | 22       | 19       | 3.8           | 4.52          |
| CRO                  | 23       | 20       | 3.8           | 0.88          |
| FEP                  | 24       | 21       | 4.2           | 4.83          |
| ETP                  | 25       | 22       | 6.4           | 5.41          |
| IPM                  | 22       | 16       | 5.7           | 0.02          |
| MEM                  | 22       | 16       | 6.0           | 0.12          |
| $\operatorname{GEN}$ | 17       | 14       | 4.1           | 1.22          |
| TOB                  | 17       | 14       | 2.9           | 2.22          |
| NOR                  | 22       | 19       | 6.2           | 3.17          |
| CIP                  | 22       | 19       | 5.5           | 2.18          |
| LEV                  | 22       | 19       | 5.8           | 3.17          |
| TGC                  | 18       | 15       | 7.9           | 0.00          |

AMC and TPZ have ZTUs with exceptionally high weights.

## very major error



## major error



# 4 Appendix

## 4.1 Clinical breakpoints

Table 39: Clinical breakpoints (CBPs).

| antibiotic | CBP_S/mm | CBP_R/mm |
|------------|----------|----------|
| AM10       | 14       | 14       |
| KF         | NA       | NA       |
| FOX        | 19       | 19       |
| CPD        | NA       | NA       |
| AMC        | 19       | 19       |
| TPZ        | 20       | 17       |
| CXM        | 18       | 18       |
| CTX        | 20       | 17       |
| CAZ        | 22       | 19       |
| CRO        | 23       | 20       |
| FEP        | 24       | 21       |
| ETP        | 25       | 22       |
| IPM        | 22       | 16       |
| MEM        | 22       | 16       |
| KAN        | NA       | NA       |
| GEN        | 17       | 14       |
| TOB        | 17       | 14       |
| NAL        | NA       | NA       |
| NOR        | 22       | 19       |
| CIP        | 22       | 19       |
| LEV        | 22       | 19       |
| TE         | NA       | NA       |
| MI         | NA       | NA       |
| TGC        | 18       | 15       |

## 4.2 Distributions for beta-lactams



Figure 1: Distributions of diameters for beta-lactams.