CLAIM AMENDMENTS

1. (Currently Amended)

An image forming method comprising the steps of:

developing an electrostatic latent image formed on an image carrying member to form a toner image with toner particles comprising a resin prepared by a poly addition or polycondensation reaction of the toner particles having

an average circularity of 0.94 - 0.99, and

an average equivalent circle diameter of 2.6 - 7.4 µm,

of toner particles, and

a slope of a circularity compared to an equivalent circle diameter from -0.050 to -0.010;

transferring the formed toner image on a transfer $\label{eq:transfer} \text{material}_{T};$

collecting non-transferred toner remaining on the image carrying member for reuse; and

passing the collected non-transferred toner through a toner intermediate chamber, wherein the toner intermediate chamber is provided with a cylindrical or conical structure situated in the vertical direction which separates paper dust or toner granules toward the bottom of said toner intermediate chamber by utilizing spiraling flow of gas.

2-4. (Canceled)

5. (Currently Amended)

The image forming method of claim 1, wherein the toner comprises a resin and the resin is polyester, amorphous polyester, polyurethane, epoxy or polyol.

6. (Currently Amended)

The image forming method of claim 1, wherein the tener comprises a resin and the resin is amorphous polyester resin.

7. (Original)

The image forming method of claim 6, wherein the amorphous polyester resin is urethane modified polyester resin.

8. (Original)

The image forming method of claim 1, wherein the average circularity is from 0.95 to 0.98.

9. (Original)

The image forming method of claim 1, wherein the average equivalent circle diameter is $3.4-6.6\,\mathrm{\mu m}$.

10. (Original)

The image forming method of claim 1, wherein the slope of circularity against an equivalent circle diameter is -0.040 to -0.020.

11. (Currently Amended)

The image forming method of claim 1, wherein the toner contains a resin prepared by a polyaddition or polycondensation reaction and the resin contains polyester resin, amorphous polyester resin, polyurethane resin, epoxy resin or polyol resin; a slope of the circularity to an equivalent circle diameter of the toner particles being from 0.050 to 0.010, the average circularity being is 0.95 - 0.98; and the average equivalent circle diameter being is 3.4 - 6.6 µm.

12. (Previously Presented)

The image forming method of claim 11, wherein the toner intermediate chamber is equipped with a toner receiving port for receiving collected toner, a toner discharge port capable for discharging toner, from the intermediate chamber, a gas stream introducing inlet for introducing a gas stream into the intermediate chamber, and

at least a portion of said toner receiving port is situated vertically above said gas stream introducing inlet.

13. (Original)

The image forming method of claim 11, wherein the slope of circularity to an equivalent circle diameter is -0.040 to -0.020.

14. (Previously Presented)

The image forming method of claim 21, comprising a step of separation the paper dust and toner granules from the toner in the toner intermediate chamber, wherein the toner intermediate chamber has a cylindrical or conical structure.

15. (Canceled)

16. (Previously Presented)

The image forming method of claim 1, wherein the toner intermediate chamber comprises a toner receiving section capable of receiving collected toner, a toner discharging section capable of discharging separated toner and a gas stream introducing port capable of introducing a gas stream into the intermediate chamber.

17. (Original)

The image forming method of claim 16, wherein at least a part of the toner receiving section is situated at the upper portion in the vertical direction of the gas introducing inlet.

18. (Original)

The image forming method of claim 1, wherein the toner contains a releasing agent.

19. (Previously Presented)

The image forming method of claim 1, comprising a step of fixing the toner on the transfer material.

20. (Cancelled)

21. (Previously Presented)

An image forming method comprising the steps of:

developing an electrostatic latent image formed on an image carrying member to form a toner image with toner having an average circularity of 0.94 - 0.99, an average equivalent circle diameter of 2.6 - 7.4 μm of toner particles:

a slope of a circularity compared to an equivalent circle diameter of the toner particles is from -0.050 to -0.010,

the toner comprises a resin and the resin is polyester, amorphous polyester, polyurethane, epoxy or polyol,

transferring the formed toner image on a transfer $\mbox{material};$

collecting non-transferred toner remaining on the image carrying member for reuse; and

passing the collected non-transferred toner through a toner intermediate chamber.

22. (Previously Presented)

The image forming method of claim 21, wherein the toner comprises a resin and the resin is amorphous polyester resin.

23. (Previously Presented)

The image forming method of claim 21, wherein the average circularity is from 0.95 to 0.98.

24. (Previously Presented)

The image forming method of claim 21, wherein the average equivalent circle diameter is 3.4-6.6 um.

25. (Previously Presented)

The image forming method of claim 21, wherein the slope of circularity against an equivalent circle diameter is -0.040 to -0.020.

26. (Previously Presented)

The image forming method of claim 21 wherein the average circularity is from 0.95 to 0.98, and the average equivalent circle diameter is 3.4 - 6.6 μ m.