- (1) Subspaces of \mathbb{R}^n
 - (a) definition of a subspace of \mathbb{R}^n
 - (b) nullspace, eigenspace, orthogonal complement
 - (c) linear combinations and spans
 - (d) column space of a matrix, row space of a matrix
 - (e) the pivot columns of a matrix span its column space
 - (f) sums of subspaces, spanning sets of sums
- (2) Linear independence
 - (a) Linear dependence and independence
 - (b) n+1 vectors in \mathbb{R}^n are linearly dependent.
 - (c) The pivot columns of a matrix are linearly independent.
 - (d) orthogonal sets definition and linear independence
 - (e) linearly independent subspaces, direct sums of subspaces
 - (f) Two subspaces with zero intersection are linearly independent. In particular, W and W^\perp are linearly independent.
 - (g) Eigenspaces for distinct eigenvectors are linearly independent.
- (3) Basis and dimension
 - (a) definition of a basis of a subspace
 - (b) Every subspace of \mathbb{R}^n has a basis (containing a given linearly independent subset, contained in a given spanning set).
 - (c) Any two bases of a subspace of \mathbb{R}^n have the same size.
 - (d) coordinates vectors, change of basis matrices
 - (e) definition of dimension
 - (f) orthonormal sets, orthonormal bases
 - (g) bases of W and W^{\perp} , taken together, form a basis of \mathbb{R}^n .
 - (h) rank of a matrix, row rank equals column rank, rank-nullity theorem
 - (i) the four subspaces, $N(A^T) = C(A)^{\perp}$, $N(A) = C(A^T)^{\perp}$
- (4) Linear transformations
 - (a) definition, kernel, image
 - (b) the matrix of an endomorphism with respect to a basis, identifications of kernel and image with nullspace and column space, respectively
 - (c) defining a linear transformation by giving its values on a basis
 - (d) the matrix of a transformation subordinate to a direct sum decomposition
 - (e) similarity and diagonalizability
 - (f) projections and their diagonalizability
 - (g) the least-squares solutions
- (5) Spectral theory
 - (a) the spectral theorem, assuming n real eigenvalues, counted with multiplicity
 - (b) the matrix of a transformation with respect to bases of its domain and codomain
 - (c) the singular value decomposition (SVD), connection with the four subspaces
 - (d) applications of the SVD: pseudoinverse, low-rank approximations, principal component analysis, etc.
- (6) Abstract vector spaces

- (a) axioms, examples (subspaces of \mathbb{R}^n , polynomials, matrices, functions from a set to a vector space)
- (b) subspaces, function spaces, spaces of solutions to linear ODEs
- (c) finite-dimensional vector spaces, bases
- (d) linear transformations, isomorphism, a vector-space of dimension n is isomorphic to \mathbb{R}^n .
- (e) inner product spaces
- (f) orthogonal projection onto finite-dimensional subspaces
- (g) Fourier series

1. Subspaces of \mathbb{R}^n

• Definition: A subspace of \mathbb{R}^n is a subset U of \mathbb{R}^n that is closed under addition, i.e.,

if
$$u_1 \in U$$
 and $u_2 \in U$ then $u_1 + u_2 \in U$,

and closed under scalar multiplication, i.e.,

if
$$t \in \mathbb{R}$$
 and $u \in U$ then $tu \in U$.

• Example: Let

$$U = \{ u \in \mathbb{R}^3 : u_1 - 2u_2 = 3u_3 \}$$

- . Then U is a subspace of \mathbb{R}^3 .
- Definition: The nullspace N(A) of a matrix $A \in \mathbb{R}^{m \times n}$ is the set of all vectors $x \in \mathbb{R}^n$ such that Ax = 0:

$$N(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}.$$

- Theorem: N(A) is a subspace of \mathbb{R}^n
- $\{u \in \mathbb{R}^3 : u_1 2u_2 = 3u_3\} = N(\begin{bmatrix} 1 & -2 & -3 \end{bmatrix})$
- Prove that $\{x \in \mathbb{R}^n : Ax = b\}$ is a subspace of \mathbb{R}^n if and only if b = 0.
- Definition: Let $\lambda \in \mathbb{R}$. The λ -eigenspace $E_{\lambda}(A)$ of a matrix $A \in \mathbb{R}^{n \times n}$ is the set of all λ -eigenvectors of A:

$$E_{\lambda}(A) = \{x \in \mathbb{R}^n : Ax = \lambda x\}.$$

- Corollary: $E_{\lambda}(A)$ is a subspace of \mathbb{R}^n .
- Proof: $E_{\lambda}(A) = N(\lambda I A)$.
- Definition: Let S be a subset of \mathbb{R}^n . The orthogonal complement of S written S^{\perp} , is the set of vectors orthogonal to all elements of S:

$$S^{\perp} = \{ v \in \mathbb{R}^n : u \cdot v = 0 \text{ for all } u \in S \}$$

- Theorem: Suppose $S = \{v_1, \dots, v_m\}$. Then S^{\perp} is a subspace of \mathbb{R}^n .
- Proof: $S^{\perp} = N \begin{pmatrix} v_1^t \\ \vdots \\ v_m^t \end{pmatrix}$.
- Definition: Let S be a subset of \mathbb{R}^n . A linear combination of elements of S is a finite sum of the of the form

$$t_1u_1+\cdots+t_ku_k,$$

where $t_j \in \mathbb{R}$ and $u_j \in S$.

- Theorem: A subset U of \mathbb{R}^n is a subspace of \mathbb{R}^n if and only if U is closed under linear combinations, i.e., if and only if every linear combination of elements of U is, itself, an element of U.
- Definition: Let S be a subset of \mathbb{R}^n . The span of S, written $\langle S \rangle$, is the set of all linear combinations of elements of S.
- Theorem: $\langle S \rangle$ is a subset of \mathbb{R}^n .
- Proof: It suffices to show that $\langle S \rangle$ is closed under linear combinations, i.e.: a linear combination of linear combinations of elements of S is a linear combination of elements of S.
- Exercise: Prove that $u \in \langle v_1, \dots, v_k \rangle$ if and only if

$$\langle u, v_1, \dots, v_k \rangle = \langle v_1, \dots, v_k \rangle.$$

- Theorem: $\langle S \rangle$ is the smallest subspace of \mathbb{R}^n containing S, i.e., if U is a subset of \mathbb{R}^n and $S \subseteq U$ then $\langle S \rangle \subseteq U$.
- Corollary: A subset U of \mathbb{R}^n is a subspace of \mathbb{R}^n if and only if $U = \langle U \rangle$.
- Exercise: Suppose $\langle S_1 \rangle = \langle S_2 \rangle$. Must S_1 equal S_2 ?
- Definition: Let S be a subset of \mathbb{R}^n and let U be a subspace of \mathbb{R}^n . We say that S spans U or that S is a spanning set of U if $U = \langle S \rangle$.
- Find vectors v_1, \ldots, v_k such that $\{v_1, \ldots, v_k\}$ spans N(A), where $A = \ldots$
- Find a finite spanning set for $E_{\lambda}(A)$, where $A = \dots$ and $\lambda = \dots$
- Find a vector v_1 such $\{v_1\}$ spans $\left\{\begin{bmatrix} 2\\-3\end{bmatrix}\right\}^{\perp}$.
- Find a vector v_1 such $\{v_1\}$ spans $\left\{\begin{bmatrix}2\\-3\\1\end{bmatrix},\begin{bmatrix}-1\\1\\1\end{bmatrix}\right\}^{\perp}$
- Can you find two vectors v_1 and v_2 such $\{v_1, v_2\}$ spans $\left\{\begin{bmatrix}2\\-3\\1\end{bmatrix}\right\}^{\perp}$. Two unit vectors? Two orthogonal vectors? Two orthogonal unit vectors? A single vector?
- Let $A \in \mathbb{R}^{m \times n}$. The *column space of* A, written C(A), is the set of vectors of the form Ax, where $x \in \mathbb{R}^n$:

$$C(A) = \left\{ Ax : x \in \mathbb{R}^{m \times n} \right\} \subseteq \mathbb{R}^m$$

- Theorem: C(A) is the span of the set of column vectors of A.
- Corollary: C(A) is a subspace of \mathbb{R}^m .
- Definition: Let $A \in \mathbb{R}^{m \times n}$ and let U be a subspace of \mathbb{R}^n . The *image of* U under A, written AU, is the set of all matrix-vector products Au for $u \in U$:

$$AU = \{Au : u \in U\} \subset \mathbb{R}^m.$$

- Note that $C(A) = A\mathbb{R}^n$.
- Theorem: AU is a subspace of \mathbb{R}^m .
- Corollary: C(A) is a subspace of \mathbb{R}^m .
- Definition: The j-th column of A is a pivot column if the reduced row echelon form of A has a leading 1 in column j.
- Theorem: The pivot columns of A span C(A).
- Exercise: Suppose $AU_1 = AU_2$. Does it follow that $U_1 = U_2$?
- Definition: Let $A \in \mathbb{R}^{m \times n}$ and let V be a subspace of \mathbb{R}^m . The *inverse image of* U *under* A, written $A^{-1}V$, is the set of all vectors $x \in \mathbb{R}^n$ whose matrix-vector product with A belongs to V.

$$A^{-1}V = \{x \in \mathbb{R}^n : Ax \in V\} \subseteq \mathbb{R}^n.$$

- The inverse image $A^{-1}V$ is defined even if A^{-1} does not exist. However:
- \bullet Theorem: If A is invertible, then

$$A^{-1}V = \{A^{-1}v : v \in V\}.$$

- Note that $N(A) = A^{-1}\{0\}$
- Theorem: $A^{-1}V$ is a subspace of \mathbb{R}^n .
- Corollary: N(A) is a subspace of \mathbb{R}^n .
- Suppose $A^{-1}V_1 = A^{-1}V_2$. Does it follow that $V_1 = V_2$?
- Prove that $U \subseteq A^{-1}(AU)$ and that $A(A^{-1}V) \subseteq V$. Give counterexamples to show that equality does not hold, in general.
- Exercise: Suppose that $\{u_1, \ldots, u_k\}$ spans U. Prove that $\{Au_1, \ldots, Au_k\}$ spans AU.
- Exercise: Suppose that $\{v_1, \ldots, v_k\}$ spans V and that $u_1, \ldots, u_k \in \mathbb{R}^n$ are vectors such that $Au_1 = v_1, \ldots, Au_k = v_k$. Must $\{u_1, \ldots, u_k\}$ span $A^{-1}V$?
- Definition: Let U and V be subspaces of \mathbb{R}^n . The sum of U and V, written U+V is the set of sums u+v for $u\in U$ and $v\in V$:

$$U + V = \{u + v : u \in U, v \in V\} \subseteq \mathbb{R}^n.$$

- Theorem: U + V is a subspace of \mathbb{R}^n .
- $\langle S \rangle + \langle T \rangle = \langle S \cup T \rangle$.
- Definition: Let U_1, \ldots, U_k be subspaces of \mathbb{R}^n . The sum of U_1, \ldots, U_k is the set of sums $u_1 + \cdots + u_k$, where $u_j \in U_j$:

$$\sum_{j=1}^{k} U_j = U_1 + \dots + U_k = \{u_1 + \dots + u_k : u_1 \in U_1, \dots, u_k \in U_k\}.$$

- Theorem: $U_1 + \cdots + U_k$ is a subspace of \mathbb{R}^n .
- Exercise: $\langle S_1 \rangle + \cdots + \langle S_k \rangle = \langle S_1 \cup \cdots \cup S_k \rangle$
- Exercise: $\langle u_1, \dots, u_k \rangle = \langle u_1 \rangle + \dots + \langle u_k \rangle$
- Exercise: Prove that $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$. Generalize to k subspaces.

• Prove that $A(U_1 + U_2) = AU_1 + AU_2$ and that $A^{-1}(V_1 + V_2) = A^{-1}V_1 + A^{-1}V_2$. Generalize to k summands.

2. Linear dependence and independence

• Definition: Let $v_1, \ldots, v_k \in \mathbb{R}^n$. A linear dependence relation among v_1, \ldots, v_k is an identity of the form

$$t_1v_1 + \cdots + t_kv_k = 0,$$

where $t_1, \ldots, t_k \in \mathbb{R}$. Such a relation is trivial if $t_1 = 0, \ldots, t_k = 0$.

- A set S of vectors in \mathbb{R}^n is *linearly independent* if the only linear dependence relation among elements of S is the trivial one. Otherwise, it's *linearly dependent*.
- Theorem: S is linearly independent if and only if every element of $\langle S \rangle$ can be written uniquely as a linear combination of elements of S.
- A set S of <u>nonzero</u> vectors in \mathbb{R}^n is *orthogonal* if every pair of distinct vectors pair S are orthogonal, i.e.,

$$u \cdot v = 0$$
 for all $u, v \in S$ with $u \neq v$.

- Theorem: An orthogonal set is linearly independent.
- Theorem: Let $a_1, \ldots, a_n \in \mathbb{R}^m$ be distinct vectors. Then $\{a_1, \ldots, a_n\}$ is linearly independent if and only if the nullspace of the matrix

$$A := \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$

is zero.

- Corollary: Suppose u_1, \ldots, u_{k+1} are distinct vectors in $\langle v_1, \ldots, v_k \rangle$. Then $\{u_1, \ldots, u_k\}$ is linearly dependent.
- Corollary: A set of n+1 vectors in \mathbb{R}^n is linearly dependent.
- Theorem: Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent if and only if the vectors Av_1, \ldots, Av_k are.
- Corollary: The pivot columns of a matrix are linearly independent.
- Let $A \in \mathbb{R}^{m \times n}$ and let $v_1, \dots, v_k \in \mathbb{R}^n$. If Av_1, \dots, Av_k are linearly dependent (resp., independent), does it follow that v_1, \dots, v_k are?
- Linearly independent sets are "minimal" spanning sets:
- Theorem: Let U be a subspace of \mathbb{R}^n . A spanning set S of U is linearly independent if and only if no proper subset of S spans U.
- Definition: Subspaces U_1 and U_2 of \mathbb{R}^n are linearly independent if the pair (u_1, u_2) is linearly independent for all $u_1 \in U_1$ and all $u_2 \in U_2$.
- Theorem: U_1 and U_2 are linearly independent if and only if $U_1 \cap U_2 = \{0\}$.
- Corollary: Let λ_1 and λ_2 be distinct eigenvalues of A. Then the eigenspaces $E_{\lambda_1}(A)$ and $E_{\lambda_2}(A)$ are linearly independent.
- Definition: Subspaces U_1 and U_2 of \mathbb{R}^n are orthogonal if every element of U_1 is orthogonal to every element of U_2 , i.e.,

if
$$u_1 \cdot u_2 = 0$$
 for all $u_1 \in U_1$ and all $u_2 \in U_2$.

- Exercise: Let U_1 and U_2 be linearly independent subsets of \mathbb{R}^n and let S_1 and S_2 be subsets of U_1 and U_2 , respectively. Then $S_1 \cup S_2$ is linearly independent if and only if both S_1 and S_2 are linearly independent.
- Definition: Subspaces U_1, \ldots, U_k of \mathbb{R}^n are linearly independent if the sequence (u_1, \ldots, u_k) is linearly independent for all $u_1 \in U_1, \ldots, u_k \in U_k$.
- Definition: Subspaces U_1, \ldots, U_k of \mathbb{R}^n are *orthogonal* if they are pairwise orthogonal.
- Exercise: Suppose U_1, \ldots, U_j are orthogonal. Prove that U_i and $\sum_{j\neq i} U_j$ are orthogonal for all i.
- Theorem: The following are equivalent for subspaces U_1, \ldots, U_k of \mathbb{R}^n :
 - (1) U_1, \ldots, U_k are linearly independent.
 - (2) U_i and $\sum_{i\neq i} U_i$ are linearly independent for all i, i.e.,

$$U_i \cap \sum_{j \neq i} U_i = \{0\},\,$$

for all i.

- (3) Every element of $U_1 + \cdots U_k$ can be written uniquely in the form $u_1 + \cdots u_k$, where $u_1 \in U_1, \ldots, u_k \in U_k$.
- Theorem: Let $A \in \mathbb{R}^{n \times n}$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A. Then the eigenspaces $E_{\lambda_1}(A), \ldots, E_{\lambda_k}(A)$ are linearly independent.

3. Basis and dimension

- Definition: Let U be a nonzero subspace of \mathbb{R}^n . A set B of vectors in U is a basis of U if B is linearly independent and B spans U.
- Theorem/Example: The set of pivot columns of A is a basis of C(A).
- Theorem: Let U be a nonzero subspace of \mathbb{R}^n . Then U has a basis B with at most n elements.
- Proof: Let \mathcal{L} be the set of linearly independent subsets of U and let \mathcal{N} be the set of sizes of elements of \mathcal{L} , i.e.,

$$\mathcal{N} = \{ |S| : S \in \mathcal{L} \}.$$

Note that \mathcal{N} is nonempty: Since U is nonzero, it contains a nonzero vector v. Since a set consisting of a single nonzero vector is linearly independent, $\{v\} \in \mathcal{L}$. Thus, $1 = |\{v\}| \in \mathcal{N}$. Since each $S \in \mathcal{L}$ is a linearly independent subset of \mathbb{R}^n , $|S| \leq n$ for all $S \in \mathcal{L}$. It follows that \mathcal{N} is a nonempty subset of $\{1, \ldots, n\}$.

Let d be the largest element of \mathcal{N} and let $B \in \mathcal{L}$ be a linearly independent set with |B| = d. I claim, now, that B spans U. For suppose not. Then there is a nonzero vector $u \in U$ that does not belong to $\langle B \rangle$. But $0 \neq u \notin \langle B \rangle$ with B linearly independent implies $\{u\} \cup B$ is linearly independent. Thus, $\{u\} \cup B \in \mathcal{L}$. But, as $u \notin B$, $|\{u\} \cup B| = |B| + 1 > d$, contradicting the maximality of d. Therefore, B must span U. By its construction, B is linearly independent. Therefore, B is a basis of U.

Strengthen to get a basis containing a given linearly independent set.

- \bullet Every linearly independent subset of U is contained in a basis of U.
- Theorem: Let B be a minimal spanning set of U, i.e., a spanning subset none of whose proper subsets span U. Then B is a basis of U.
- Theorem: Let B_1 and B_2 be bases of a subspace U of \mathbb{R}^n . Then $|B_1| = |B_2|$.
- By ??, $|B_1| \leq |B_2|$ as B_1 is linearly independent and B_2 spans \mathbb{R}^n . Symmetrically, $|B_2| \leq |B_1|$ as B_2 is linearly independent and B_1 spans U. Therefore, $|B_1| = |B_2|$.
- Definition: Let U be a subspace of \mathbb{R}^n . The dimension of U, written dim U, is the size of any basis of U.
- Examples: dim $\mathbb{R}^n = n$. If $v \in \mathbb{R}^n$ is a nonzero vector, then dim $\langle v \rangle = 1$. If S is a linearly independent subset of \mathbb{R}^n , then dim $\langle S \rangle = |S|$.
- Theorem: If U_1 and U_2 are subspaces of \mathbb{R}^n with $U_1 \subseteq U_2$, then dim $U_1 \leq$ dim U_2 , with equality if and only if $U_1 = U_2$.
- Corollary: If S is a linearly independent subset of U with $|S| = \dim U$, then S is a basis of U.
- Corollary: Any linearly independent subset of \mathbb{R}^n with n elements is a basis of \mathbb{R}^n .
- Theorem: Let S be a subset of U. Then S is a basis of U if and only if any element of u can be written uniquely as a linear combination of elements of S.
- Definition: Let U be a d-dimensional subspace of \mathbb{R}^n with <u>ordered</u> basis $B = (b_1, \ldots, b_n)$ and let $u \in U$. The coordinate vector of u with respect to B, written $[u]_B$, is the vector

$$[u]_B = \begin{bmatrix} t_1 \\ \vdots \\ t_d \end{bmatrix}$$

characterized by the identity

$$u = t_1 b_1 + \dots + t_d b_d,$$

or, equivalently, by the identity

$$\begin{bmatrix} b_1 & \cdots & b_d \end{bmatrix} [u]_B = u.$$

• Convention: If $B = (b_1, \ldots, b_d)$ is a sequence of vectors, we use the same symbol, B, for the matrix whose j-th column if v_j , $j = 1, \ldots, d$:

$$B = \begin{bmatrix} b_1 & \cdots b_d \end{bmatrix}$$

• With this convention, $[u]_B$ is characterized by the identity

$$B[u]_B = u.$$

• Theorem: Let B be a basis of \mathbb{R}^n . Then

$$[u]_B = B^{-1}u.$$

• Definition: A set (resp., sequence) S of vectors in \mathbb{R}^n is orthonormal if its elements (resp., terms) are pairwise orthogonal unit vectors, i.e., B = $\{b_1,\ldots,b_d\}$ (resp., $B=(b_1,\ldots,b_d)$) is orthonormal if

$$b_i \cdot b_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

- Orthonormal sets/sequences are orthogonal and, thus, linearly independent.
- A sequence $B = (b_1, \ldots, B_d)$ is orthonormal if and only if

$$B^tB = I_d$$
.

If d = n, this means that B is invertible and $B^{-1} = B^t$. In this case, the identity

$$BB^t = I_n$$

holds, as well.

- \bullet Definition: B is an orthonormal basis of U if it is both an orthonormal set and a basis of B.
- Theorem: Let $B = (b_1, \ldots, b_d)$ be an orthonormal basis of U. Then

$$[u]_B = \begin{bmatrix} b_1 \cdot u \\ \vdots \\ b_d \cdot u \end{bmatrix} = B^t u.$$

- Theorem: Every orthonormal set in \mathbb{R}^n is contained in an orthonormal basis of \mathbb{R}^n .
- Theorem: Suppose $B = (b_1, \ldots, b_n)$ is an orthonormal basis of \mathbb{R}^n . Then $\langle b_1, \dots, b_k \rangle^{\perp} = \langle b_{k+1}, \dots, b_n \rangle.$
- Corollary: Let U be a subspace of \mathbb{R}^n . Then

$$\dim U^{\perp} = n - \dim U.$$

 \bullet Theorem: Let B and C be bases of U. Then there is a unique matrix $[B]_C \in \mathbb{R}^{d \times d}$ such that

$$[B]_C[u]_B = [u]_C$$

for all $\in U$.

- Definition: The matrix $[C]_B$ is called the *change of basis matrix on U from* B to C.
- Theorem:

 - (1) $[B]_B = I_d$ (2) $[D]_C[C]_B = [D]_B$. (3) $[C]_B = [B]_C^{-1}$
- Definition: Let $A \in \mathbb{R}^{m \times n}$. The rank of A, written r(A), is the dimension of its column space:

$$r(A) = \dim C(A)$$
.

The nullity of A, written n(A), is the dimension of its nullspace:

$$n(A) = \dim N(A).$$

- Let $\gamma \in \mathbb{R}^{m \times m}$ be invertible and let $A \in \mathbb{R}^{m \times n}$. Then:
 - (1) $R(\gamma A) = R(A)$,
 - (2) $C(\gamma A) = \gamma C(A)$.
- Theorem: Let $\gamma \in \mathbb{R}^{n \times n}$ be invertible and let $v_1, \ldots, v_k \in \mathbb{R}^n$. Then

$$\dim \langle \gamma v_1, \dots, \gamma v_k \rangle = \dim \langle v_1, \dots, v_k \rangle.$$

In particular, if V is a subspace of \mathbb{R}^n , then

$$\dim \gamma V = \dim V.$$

- Corollary: $r(\gamma A) = r(A)$.
- Theorem: (row rank = column rank) $\dim R(A) = \dim C(A)$.
- Proof: Let $\gamma \in \mathbb{R}^{m \times m}$ be an invertible matrix such that γA is in row echelon form. The nonzero rows of γA are linearly independent (why?) and, thus, form a basis for $R(\gamma A)$. Therefore, dim $R(\gamma A)$ is the number of nonzero rows in γA . But the number of nonzero rows in γA equals the number of pivot columns of B (why?) which, in turn, equals the rank of γA . Thus,

$$\dim R(\gamma A) = r(\gamma A).$$

But dim $R(A) = \dim R(\gamma A)$, by ??, and $r(\gamma A) = r(A)$, by ??. Therefore, dim R(A) = r(A).

•
$$N(A) = C(A^T)^{\perp}$$
. dim $N(A) = \dim C(A^T)^{\perp} = n - r(A^T) = n - r(A)$

4. Subspaces of \mathbb{R}^n

Let $\gamma \in \mathbb{R}^{m \times m}$ be an invertible matrix such that γA is in row echelon form. The nonzero rows of γA are linearly independent (why?) and, thus, form a basis for $R(\gamma A)$. Therefore, dim $R(\gamma A)$ is the number of nonzero rows in γA . But the number of nonzero rows in γA equals the number of pivot columns of B (why?) which, in turn, equals the rank of γA .

Let $\gamma \in \mathbb{R}^{m \times m}$ be an invertible matrix such that γA is in row echelon form. The nonzero rows of γA are linearly independent (why?) and, thus, form a basis for $R(\gamma A)$. Therefore, dim $R(\gamma A)$ is the number of nonzero rows in γA . But the number of nonzero rows in γA equals the number of pivot columns of B (why?) which, in turn, equals the rank of γA .