LF - Kyb 19tro 2011

d) (1): Kirchof 290 (2): Momentbaloure 290 V) Monovariabelt, en imagang (4) c) La dt ia = -Raia - KEWm + Kp (io-ia) La de la = Radia - KE Win + Kpat (-la) La d'ia = Padtia - KE (Kmia-Jul) - Kpolti La de la = - Radela - Vo de la - KEKM ia + KEM La de la + (Ra+Kp) dia + KEKM ia = KE ML Tata dia + Ratky dia + KEKIN ia = KE ML $\int_{1+2}^{2} i_{\alpha} + 25\omega_{0} \frac{d}{dt} i_{\alpha} + \omega_{0}^{2} i_{\alpha} = \frac{KE}{J_{m}L_{q}} M_{L}$

$$\omega_o^2 = \frac{K \bar{\epsilon} K_m}{L_a J_m} \Rightarrow \omega_o = \sqrt{\frac{K \bar{\epsilon} K_m}{L_a J_m}}$$

$$25 \omega_{o} = \frac{R_{\alpha} + K_{p}}{L_{\alpha}}$$

$$25 \frac{K_{E}K_{m}}{L_{a}} = \frac{R_{\alpha} + K_{p}}{L_{a}}$$

$$5 = \frac{1}{2} \frac{L_{a}J_{m}}{K_{E}K_{m}} \left(\frac{R_{\alpha} + K_{p}}{L_{a}}\right)$$

$$5 = \frac{1}{2} \sqrt{\frac{J_{m}}{K_{E}K_{m}L_{a}}} \left(R_{\alpha} + K_{p}\right)$$

e)
$$S = \frac{1}{2} \sqrt{\frac{0.01}{1.1.1}} \left(10 + K_p \right)$$

 $1 = \frac{1}{2} \cdot 0.1 \left(10 + K_p \right)$
 $1 = 0.05 \cdot 10 + 0.05 K_p$
 $1 = 0.5 + 0.05 K_p$
 $0.5 = 0.05 K_p \implies K_p = 10$

136r. g.

ganslee god Uttelling.

Mange muligestar

b)
$$K_{kp}=20$$

 $b = 70$ Leser ar figur: $T_{k}=2$
 $F_{va} = 7$ Tabell: $K_{p}=0.6$ $K_{pk}=\frac{18}{2}$
 $T_{i}=0.5$ $T_{k}=1$
 $T_{d}=0.125$ $T_{k}=0.25$ E_{i}

Fra notat:
$$K_i = \frac{18}{T_i} = \frac{18}{7} = \frac{18}{1}$$

 $K_d = K_P T_d = 18.0,25 = 4.53$

glattet, samplet signal forsinhet

$$T = T/2$$
, $T : samplings tid$.

b) Enten lose
$$\dot{x} = ax + b$$
, eller linshe at $x(t) = X_{stasjoner} (1 - e^{-t/\tau})$
 $\dot{x}(t) = X_{s} (1 - e^{-T/\tau}) = X_{s} (1 - e^{-\tau})$

$$0.63$$

c) F.ebs vil Van der Pols ligning (elis i hompandium) ha et vstabilt lihevehtspunht, men løsningen til systemet vil være en periodish vlineær svingning. Så svaret er: Nei:-)

(3)

$$x + k_1 x = k_2 u$$

 $x = -k_1 x + k_2 u$
 $x = -\frac{1}{a} = -\frac{1}{-k_1} = \frac{1}{k_1}$
 $x = -\frac{b}{a} = -\frac{k_2}{-k_1} = \frac{k_2}{k_1}$

$$U = K_{p}(x_{v-x})$$

$$\dot{X} + k_{1} \times = k_{2} K_{p}(x_{v-x})$$

$$0 + k_{1} \times_{3} = k_{2} K_{p} \times_{r} = k_{2} K_{p} \times_{r}$$

$$\times_{3} = \frac{k_{2} K_{p}}{k_{1} + k_{2} K_{p}} \times_{r}$$

lim x₅ = x_r, men pådrag vil gå i K_p = x_r, men pådrag vil gå i

d)
$$\dot{x} = -k_1 \times + k_2 \left(\frac{k_1(x_1 - x) + k_1}{(x_1 - x(1))} \frac{(x_1 - x(1))}{(x_1 - x(1))} \frac{(x_1 - x_1)}{(x_1 - x_1)} \frac{(x_1 - x_1)}$$

Logikkstyring - Garasjeport

Motoren til en garasjeport styres via et styrepanel bestående av tre brytere og èn varsellampe, som vist i figur 1. Disse brytere er utgjør ingangssignaler til systemet og angir følgende inngangssignaler (\mathbf{p})

- 1. Gå opp (Åpne)
- 2. Gå ned (Lukk)
- 3. Stopp

I tillegg er systemet utstyrt med endebrytere i hver ende av portføringen som sikrer at motoren stanses når garasjeporten er helt åpen eller helt lukket. Endebryterene representeres ved to inngangssignaler

- 4. Øvre ende (helt åpen)
- 5. Nedre ende (helt lukket)

Tilstandene (\mathbf{q}) som systemet kan befinne seg i er gitt ut fra en logisk kombinasjon av de fem inngangssignalene gitt ovenfor. Disse tilstandene er henholdsvis

- 1. I ro ved nedre ende
- 2. I ro ved øvre ende
- 3. I ro i mellomstilling
- 4. Underveis oppover
- 5. Underveis nedover

Figure 1: Styrepanel til en garasjeport bestående av tre brytere og èn varsellampe (markert med rødt rutenett).

Oppgave A

Se figur 3.

Oppgave B

Huffman-tabell

Tilstander \mathbf{q}_i	Innganger \mathbf{p}_j				
	1. Gå opp	2. Gå ned	3. Stopp	4. Øvre ende	5. Nedre ende
1. I ro ved nedre ende	4/O	1/-	1/-	(1/-)	1/-
2. I ro ved øvre ende	2/-	5/N	2/-	2/-	(2/-)
3. I ro i mellomstilling	4/O	$5/\mathrm{N}$	3/-	1/-	2/-
4. Underveis oppover	4/-	4/-	3/S	1/S	(3/S)
5. Underveis nedover	5/-	5/-	3/S	(3/S)	$2/\mathrm{S}$

Oppgave C

Figure 2: Logisk krets

Boolsk uttrykk:

$$Varsellampe = \left(Obstruksjon \cdot \overline{\phi vre\ edb.}\right) \cdot \left(Obstruksjon \cdot \overline{Nedre\ edb.}\right)$$

Figure 3: Tilstandsdiagram. Kvadratene angir tilstander og piler angir aksjoner.