ISCAE – LIU RT2-IG2-IG2FP-DI2

TD N°1

EXERCICE1:

On se propose de calculer une valeur approchée de $\sqrt{5}$ en appliquant la méthode de newton à l'équation : $x^2-5=0$, $pour \ x>0$

- 1) Formuler la suite (x_n) de Newton
- 2) En prenant x_0 = 2 comme valeur initiale, donner les 3 premiers décimaux de $\sqrt{5}$
- 3) Même question en utilisant la méthode de la sécante.

EXERCICE2:

Déterminer la suite des premiers trois itérés des méthodes de dichotomie dans l'intervalle [1,3] et de Newton avec x_0 =2 pour l'approximation du zéro de la fonction $f(x) = x^2 - 5$. Combien de pas de dichotomie doit-on effectuer pour améliorer d'un ordre de grandeur la précision de l'approximation de la racine ?

Exercice3:

Considérons l'équation : $x(1 + e^x) = e^x$

- 1. Montrer que cette équation admet une unique solution réelle α dans [0,1]
- 2. Ecrire la méthode de newton pour approcher la solution α
- 3. Proposer une autre itération du point fixe pour approcher α . montrer que cette itération converge vers α pour tout $x_0 \in [0,1]$

Exercice4:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^2 $sur\mathbb{R}$. On suppose que f' ne s'annule pas. On appelle $(x_n)_{n \in \mathbb{N}}$ la suite de newton définie par f à partir d'un élément $x_0 \in \mathbb{R}$ fixé.

- 1. Donner l'équation cartésienne de la droite D_n tangente au graphe de f au point $(x_n, f(x_n))$.
- 2. Justifier que D_n coupe l'axe des abscisses, et donner l'expression de x_{n+1} .
- 3. On étudie plus précisément la suite obtenue en partant de $f(x) = x^2 2$ et $x_0=1$
 - a. Donner l'expression $x_{n+1}=\varphi(x_n)$ en fonction de x_n . justifier que la suite x_n est bien définie.
 - b. Montrer par récurrence que $x_n \ge 1$ puis que $\left|x_{n+1} \sqrt{2}\right| \le \frac{1}{2} \left|x_n \sqrt{2}\right|^2$
 - c. Déduisez-en que $\left|x_{n+1} \sqrt{2}\right| \le \frac{1}{2^{2^n}}$
 - d. Combien de décimales exactes de $\sqrt{2}$ obtient-on avec x_5 ?