Matrices

Previous Years' CBSE Board Questions

3.2 Matrix

VSA (1 mark)

- Construct a 2×2 matrix $A = [a_{ii}]$, whose elements are given by $a_{ii} = |(i)^2 - j|$.
- Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
- Write the element a₂₃ of a 3 × 3 matrix A = [a_{ii}] whose elements a_{ij} are given by $a_{ij} = \frac{|i-j|}{2}$. (Delhi 2015)
- The elements a_{ij} of a 3 \times 3 matrix are given by $a_{ij} = \frac{1}{2} |-3i+j|$. Write the value of element a_{32} . (AI 2014C)

3.3 Types of Matrices

VSA (1 mark)

- 5. If $\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$, find the value of x + y.
- 6. If $\begin{pmatrix} a+4 & 3b \\ 8 & -6 \end{pmatrix} = \begin{pmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{pmatrix}$, write the value of
- 7. If $\begin{bmatrix} x \cdot y & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$, write the value of (x + y + z). (Delhi 2014C) Ap

3.4 Operations on Matrices

MCQ

- 8. If $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$ and $A = B^2$, then x equals
 - (a) ±1
- (d) 2 (2023)
- 9. If $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 2 \end{bmatrix}$, then the value of (2x + y z) is
- (c) 3
- (d) 5 (2023)
- - (a) x = 1, y = 2
- (b) x = 2, y = 1
- (c) x = 1, y = -1
- (d) x = 3, y = 2
- 11. If A is a square matrix and A2 = A, then (I + A)2 3A is equal to
 - (a) 1
- (b) A
- (c) 2A
- (d) 31
 - (2023)

- 12. If $A = \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$, then (A 2I)(A 3I) is equal to

- (Term I, 2021-22)
- If order of matrix A is 2 × 3, of matrix B is 3 × 2, and of matrix C is 3 × 3, then which one of the following is not defined?
 - (a) C(A + B')
- (b) C(A + B')'
- (c) BAC
- (d) CB + A'

(Term I, 2021-22)

- 14. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$, then $A^5 A^4 A^3 + A^2$ is equal to
- (c) 4A
 - (Term I, 2021-22)
- If A is a square matrix such that A² = A, then (I A)³ + A is equal to
 - (a) I

- (b) O
- (c) I-A
- (d) I+A
- (2020)
- 16. If $A = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$, $X = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ and $Y = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, then AB + XY equals
 - (a) [28]
 - (b) [24]
- - (2020)

VSA (1 mark)

- 17. If A = [1 0 4] and B = 5, find AB. (2021) EV
- Find the order of the matrix A such that

$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}.$$

- 19. If $B = \begin{bmatrix} 1 & -5 \\ 0 & -3 \end{bmatrix}$ and $A + 2B = \begin{bmatrix} 0 & 4 \\ -7 & 5 \end{bmatrix}$, find the matrix (2021)
- 20. If $A + B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $A 2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$, then
- If A is a square matrix such that A² = I, then find the simplified value of $(A - I)^3 + (A + I)^3 - 7A$. (NCERT Exemplar, Delhi 2016) (An
- 22. If $\begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = A$, then write the order of matrix A
 - (Foreign 2016) Ap

23. Solve the following matrix equation for x:

$$\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$$
 (Delhi 2014)

24. If
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$
, find $(x - y)$. (Delhi 2014)

If A is a square matrix such that A² = A, then write the value of 7A - (I + A)³, where I is an identity matrix.

(AI 2014) EV

26. If $(2x \ 4)\begin{pmatrix} x \\ -8 \end{pmatrix} = 0$, find the positive value of x.

(Al 2014)

SAI (2 mark)

27. If
$$A = \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$$
 and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find scalar k so that $A^2 + I = kA$. (2020)

28. For what value of x is
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$$
?

$$B = \begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix}$$
 and $C = \begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$. (Delhi 2019)

SAII (3 mark)

30. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$
, then show that $A^3 - 23A - 40I = O$. (2023)

LAI (4 marks)

31. Let
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} B = \begin{pmatrix} 5 & 2 \\ 7 & 4 \end{pmatrix} C = \begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix}$$
 find a matrix D such that CD – AB = O. (Delhi 2017)

32. Find matrix A such that

$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}$$
 (Al 2017)

33. If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, find $A^2 - 5A + 4I$ and hence find a

matrix X such that $A^2 - 5A + 4I + X = 0$ (Delhi 2015) An

34. Three schools A, B and C organized a mela for collecting funds for helping the rehabilitation of flood victims. They sold hand made fans, mats and plates from recycled material at a cost of ₹ 25, ₹ 100 and ₹ 50 each. The number of articles sold are given below.

Article/School	A	В	C
Hand-fans	40	25	35
Mats	50	40	50
Plates	20	30	40

Find the funds collected by each school separately by selling the above articles. Also, find the total funds collected for the purpose.

Write one value generated by the above situation. (Delhi 2015)

35. To promote the making of toilets for women, an organisation tried to generate awareness through (i) house calls (ii) letters and (iii) announcements. The cost for each mode per attempt is given below:

The number of attempts made in three villages X, Y and Z are given below:

Find the total cost incurred by the organisation for the three villages separately, using matrices. Write one value generated by the organisation in the society. (AI 2015)

36. If
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$,

then find the values of a and b. (Fore

37. In a parliament election, a political party hired a public relations firm to promote its candidates in three ways-telephone, house calls and letters. The cost per contact (in paise) is given in matrix A as

The number of contacts of each type made in two cities X and Y is given in matrix B as

Telephone House call Letters

B =

1000 500 5000 City X

3000 1000 10000 City Y

Find the total amount spent by the party in the two cities. What should one consider before casting his/her vote-party's promotional activity or their social activities? (Foreign 2015)

38. If
$$\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = 0$$
, find x. (Delhi 2015C)

39. A trust fund, ₹ 35,000 is to be invested in two different types of bonds. The first bond pays 8% interest per annum which will be given to orphanage and second bond pays 10% interest per annum which will be given to an N.G.O. (Cancer Aid Society). Using matrix multiplication, determine how to divide ₹ 35,000 among two types of bonds if the trust fund obtains an annual total interest of ₹ 3,200. What are the values reflected in this question? (AI 2015C) EV

3.5 Transpose of a Matrix

MCQ

- 40. If $A = \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, where A^T is the transpose of
 - the matrix A, then (a) x = 0, y = 5
- (b) x = y
- (c) x + y = 5
- (d) x = 5, y = 0
- (2023)
- 41. If a matrix A = [1 2 3], then the matrix AA' (where A' is the transpose of A) is
 - (a) 14

- (2023)
- 42. If P is a 3 × 3 matrix such that P' = 2P + I, where P' is the transpose of P, then
- (a) P=1 (b) P=-1 (c) P=21 (d) P=-21

(Term I, 2021-22)

VSA (1 mark)

- 44. If A is a matrix of order 3 × 2, then the order of the matrix A' is ___ (2020) U
- 3.6 Symmetric and Skew Symmetric Matrices

VSA (1 mark)

45. A square matrix A is said to be symmetric, if __

value of $(a+b+c)^2$ is

47. If the matrix $A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \end{bmatrix}$ is skew symmetric, find

the values of 'a' and 'b'. (2018)

48. Matrix A= 3 1 3 is given to be symmetric,

find values of a and b.

(Delhi 2016) Ap

- 49. If $A = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix}$ is written as A = P + Q, where P is a symmetric matrix and Q is a skew symmetric matrix, then write the matrix P.
- 50. Express the matrix $A = \begin{bmatrix} 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}$ as the sum of a

symmetric and a skew symmetric matrix.

(AI 2015C) (EV

51. Write a 2 × 2 matrix which is both symmetric and skew symmetric. (Delhi 2014C)

SAI (2 marks)

- 52. If the matrix $\begin{bmatrix} 0 & 6-5x \\ x^2 & x+3 \end{bmatrix}$ is symmetric, find the value
- 53. For the matrix $A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$, verify that

(i) (A + A') is a symmetric matrix.

(ii) (A - A') is a skew-symmetric matrix.

- 54. If A and B are symmetric matrices, such that AB and BA are both defined, then prove that AB - BA is a skew symmetric matrix. (Al 2019) An
- 55. Show that all the diagonal elements of a skew symmetric matrix are zero. (Delhi 2017) (An

3.7 Invertible Matrices

MCQ

 If for a square matrix A, A² – A + I = O, then A⁻¹ equals (b) A+1 (c) I-A (d) A-1 (2023)

SA II (3 marks)

- - $A^3 4A^2 3A + 11I = 0$. Hence find A^{-1} .

CBSE Sample Questions

3.3 Types of Matrices

MCQ

- If $A = [a_{ij}]$ is a skew-symmetric matrix of order n, then
 - (a) $a_{ij} = \frac{1}{a_{ii}} \forall i, j$
- (b) $a_{ij} \neq 0 \ \forall i,j$
- (c) $a_{ij} = 0$, where i = j (d) $a_{ij} \neq 0$ where i = j
- 2. If $\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}$, then value of
 - (a) 8
- (b) 10
- (c) 4 (d) -8

(Term I, 2021-22) Ap

- Given that matrices A and B are of order $3 \times n$ and $m \times 5$ respectively, then the order of matrix C = 5A + 3B is
 - (a) 3 × 5 and m = n
- (b) 3×5
- (c) 3×3
- (d) 5 × 5 (Term I, 2021-22)

3.4 Operations on Matrices

MCQ

- If $A = [a_{ii}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, & \text{when } i \neq j \\ 0, & \text{when } i = j \end{cases}$, then A^2 is
 - (a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(Term I, 2021-22) 🕕

5. If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k,

a and b respectively are

- (a) -6, -12, -18
- (b) -6, -4, -9
- (c) -6, 4, 9
- (d) -6, 12, 18

(Term I, 2021-22) (Ap)

 If A is square matrix such that A² = A, then (I + A)³ - 7A is equal to

- (a) A
- (b) I+A
- (c) I-A
- (d) I (Term I, 2021-22)
- 7. Given that $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and $A^2 = 3I$, then
 - (a) $1 + \alpha^2 + \beta y = 0$
- (b) $1 \alpha^2 \beta y = 0$
- (c) $3 \alpha^2 \beta y = 0$
- (d) $3 + \alpha^2 + \beta y = 0$

(Term I, 2021-22) Ap

VSA (1 mark)

- If A and B are matrices of order $3 \times n$ and $m \times 5$ respectively, then find the order of matrix 5A - 3B, given that it is defined. (2020-21) Ap
- Given that A is a square matrix of order 3 × 3 and |A| = -4. Find |adj A|. (2020-21) An

3.7 Invertible Matrices

- If A, B are non-singular square matrices of the same order, then $(AB^{-1})^{-1} =$

 - (a) A-1B (b) A-1B-1 (c) BA-1
- (2022-23)

11. If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, then

- (a) A⁻¹ = B
- (c) $B^{-1} = B$
- (d) $B^{-1} = \frac{1}{4}A$

(Term I, 2021-22) Ap

SAI (2 marks)

12. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = 0$. Hence (2020-21) Ap find A-1.

Detailed **SOLUTIONS**

- 1. Here, $a_{11} = |(1)^2 1| = 0$, $a_{12} = |(1)^2 2| = 1$, $a_{21} = |(2)^2 - 1| = 3$ and $a_{22} = |(2)^2 - 2| = 2$
- \therefore Required matrix = $\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$

Key Points (**)

- A matrix is written as A = [a_{ii}]_{m×nt} where ai is an element lying in the ith row and jth column.
- 2. As, matrix is of order 2 × 2, so there are 4 entries

Each entry has 3 choices i.e., 1, 2 or 3. So, the number of ways to make such matrices is $3 \times 3 \times 3 \times 3 = 81$.

- 3. Here, $a_{ij} = \frac{|i-j|}{2}$: $a_{23} = \frac{|2-3|}{2} = \frac{1}{2}$ [For i = 2, j = 3]
- 4. Here, $a_{ij} = \frac{1}{2} |-3i+j|$

$$a_{32} = \frac{1}{2}|-3.3+2| \quad [For i = 3, j = 2]$$
$$= \frac{1}{2}|-9+2| = \frac{1}{2}|-7| = \frac{7}{2}$$

5. Here,
$$\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$

By equality of two matrices, we get x-y=-1, z=4, 2x-y=0, w=5

Solving these equations for x and y, we get x = 1, y = 2 : x + y = 1 + 2 = 3.

Answer Tips

- Two matrices A = [a_{ij}] and B = [b_{ij}] are said to equal if they are of a same order and a_{ij} = b_{ij} ∀i, j.
- 6. Given, $\begin{pmatrix} a+4 & 3b \\ 8 & -6 \end{pmatrix} = \begin{pmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{pmatrix}$

By equality of two matrices, we get a+4=2a+2, 3b=b+2, -6=a-8b

On solving these equations, we get a = 2, b = 1. So, a - 2b = 0.

7. Here, $\begin{bmatrix} x \cdot y & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$

By equality of two matrices, we get

$$x \cdot y = 8, w = 4, z + 6 = 0, x + y = 6$$

 $\Rightarrow z = -6, x + y = 6 \Rightarrow x + y + z = 6 - 6 = 0.$

8. (c): Wehave, $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}$

$$\therefore B^2 = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} x^2 & 0 \\ x+1 & 1 \end{bmatrix}$$

Now, it is given that $A = B^2$

$$\Rightarrow \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} x^2 & 0 \\ x+1 & 1 \end{bmatrix}$$

On comparing, we get

$$x^2 = 1$$
 and $x + 1 = 2 \implies x = \pm 1$ and $x = 1$

∴ x = 1

9. (d):
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \\ 2 \end{bmatrix}$$

y+z=3 ...(ii) z=2 ...(iii)

⇒ y + 2 = 3 [Using (ii) and (iii)]

 $\Rightarrow y = 1 \qquad ...(iv)$ $\Rightarrow y + 1 + 2 = 6 \qquad \text{[Using (i) (iii) and (iii)]}$

 \Rightarrow x + 1 + 2 = 6 [Using (i), (iii) and (iv)] \Rightarrow x = 3

So, $2x + y - z = (2 \times 3) + 1 - 2 = 6 + 1 - 2 = 5$

10. (b): We have, $x\begin{bmatrix} 1 \\ 2 \end{bmatrix} + y\begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$

$$\begin{bmatrix} x+2y \\ 2x+5y \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$$

 \Rightarrow x + 2y = 4 ...(i) and 2x + 5y = 9 ...(ii) Solving (i) and (ii), we get x = 2, y = 1

11. (a): Given that
$$A^2 = A$$

Consider $(I + A)^2 - 3A$
 $= I^2 + A^2 + 2AI - 3A$
 $= I + A + 2A - 3A$ [:: $I^2 = I$, $A^2 = A$ (given)]
 $= I$

12. (d)

13. (a): Consider
$$C(A+B')$$
 i.e., $C_{3\times3}(A_{2\times3}+B'_{2\times3})$
= $C_{3\times3}(A+B')_{2\times3}$

Here, number of columns in the matrix C is 3 and number of rows in the matrix (A + B') is 2. So, it is not defined.

14. (d)

Now,
$$(I - A)^3 + A = (I - A)(I - A)(I - A) + A$$

$$= (I \cdot I - I \cdot A - A \cdot I + A \cdot A)(I - A) + A$$

=
$$(I - A - A + A)(I - A) + A$$
 [: $I \cdot A = A \cdot I = A$ and $A^2 = A$]

$$= (I - A)(I - A) + A$$

$$= (I - A - A + A) + A = (I - A) + A = I$$

16. (a): Consider,
$$AB = \begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6-6+8 \end{bmatrix} = \begin{bmatrix} 8 \end{bmatrix}$$

and XY=[1 2 3]
$$\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$$
=[2+6+12]=[20]

$$AB + XY = [8] + [20] = [28]$$

17. Consider,
$$AB = \begin{bmatrix} 1 & 0 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = [2+0+24] = [26]$$

18. We have,
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}_{3\times 2} A = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}_{3\times 2}$$

The order of matrix A should be 2 × 2

19. Given,
$$B = \begin{bmatrix} 1 & -5 \\ 0 & -3 \end{bmatrix}$$
 and $A + 2B = \begin{bmatrix} 0 & 4 \\ -7 & 5 \end{bmatrix}$

$$\Rightarrow A+2\begin{bmatrix} 1 & -5 \\ 0 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ -7 & 5 \end{bmatrix}$$

$$\Rightarrow A + \begin{bmatrix} 2 & -10 \\ 0 & -6 \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ -7 & 5 \end{bmatrix} \Rightarrow A = \begin{bmatrix} -2 & 14 \\ -7 & 11 \end{bmatrix}$$

20. Given
$$A+B=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 ...(i)

and
$$A-2B = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$
 ...(ii)

(i) - (ii), we get

$$3B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}$$

$$\Rightarrow$$
 $3B = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}$

$$\Rightarrow B = \begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 2/3 \end{bmatrix}$$

From (i),

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} - B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} - \begin{bmatrix} 2/3 & -1/3 \\ 1/3 & 2/3 \end{bmatrix} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 1/3 \end{bmatrix}$$

21. Given, A2 = 1

.. The simplified value of (A - I)3 + (A + I)3 - 7A

 $= A^3 - I^3 - 3A^2I + 3AI^2 + A^3 + I^3 + 3A^2I + 3AI^2 - 7A$

 $=2A^3+6AI^2-7A=2AA^2+6AI-7A$

= 2AI + 6A - 7A = 2A - A = A

Concept Applied 6

⇒ I-A = A-I = A and A² = I

22. Given,
$$A = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$=[-2-1 \quad 1+3 \quad -2+3]\begin{bmatrix} 1\\0\\-1 \end{bmatrix} = [-3 \quad 4 \quad 1]\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$$

.. The order of matrix A = 1 × 1

23. Given,
$$\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} x-2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$\Rightarrow x-2=0 \Rightarrow x=2$$

Commonly Made Mistake (A)

 Check the order of matrices before multiplying two matrices.

24. We have,
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 6 & 8 \\ 10 & 2x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 7 & 8+y \\ 10 & 2x+1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

On comparing the corresponding elements, we get

8+y=0 and $2x+1=5 \Rightarrow y=-8$ and x=2 $\therefore x-y=2+8=10$

Key Points

If A ■ [a_{ij}]_{m=n} is a matrix and k is a scalar, then kA is another matrix which is obtained by multiplying each element of A by the scalar k.

25. Here, A2 = A

Now, $7A - (I + A)^3 = 7A - (I + A)(I + A)(I + A)$

 $= 7A - (I + A)(I \cdot I + I \cdot A + A \cdot I + A \cdot A)$

= 7A - (I + A)(I + A + A + A) (: I - A = A - I = A and $A^2 = A$)

= 7A - (I + A)(I + 3A)

 $= 7A - (I \cdot I + I \cdot (3A) + A \cdot I + A \cdot (3A))$

= 7A - (I + 3A + A + 3A) = 7A - I - 7A = -I

26. Here, $(2x 4) \begin{pmatrix} x \\ -8 \end{pmatrix} = 0$

 \Rightarrow 2x · x + 4 · (-8) = 0 \Rightarrow 2x² - 32 = 0

 \Rightarrow $x^2 = 16 = 4^2 \Rightarrow x = 4$

which is the required positive value of x.

27. We have, A2 + I = kA

$$\Rightarrow \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = k \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 11 & -8 \\ -4 & 3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = k \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 12 & -8 \\ -4 & 4 \end{bmatrix} = k \begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$$

$$\Rightarrow -4\begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix} = k\begin{bmatrix} -3 & 2 \\ 1 & -1 \end{bmatrix}$$

On comparing, we get k = -4

28. Given,
$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 6 & 2 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0 \Rightarrow 0 + 4 + 4x = 0 \Rightarrow x = -1$$

29. Let $A = \begin{bmatrix} x & y & z \\ p & q & r \end{bmatrix}$ [: B and Care matrices of order 2×3]

Given, 2A - 3B + 5C = 0

$$\Rightarrow 2A = 3B - 5C \Rightarrow A = \frac{1}{2}[3B - 5C] \qquad ...(i)$$

Now,
$$3B-5C=3\begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix} - 5\begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} -6 & 6 & 0 \\ 9 & 3 & 12 \end{bmatrix} - \begin{bmatrix} 10 & 0 & -10 \\ 35 & 5 & 30 \end{bmatrix} = \begin{bmatrix} -16 & 6 & 10 \\ -26 & -2 & -18 \end{bmatrix}$$

From (i), we get
$$A = \begin{bmatrix} -8 & 3 & 5 \\ -13 & -1 & -9 \end{bmatrix}$$

30. We have,
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

Now,
$$A^2 = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1+6+12 & 2-4+6 & 3+2+3 \\ 3-6+4 & 6+4+2 & 9-2+1 \\ 4+6+4 & 8-4+2 & 12+2+1 \end{bmatrix} = \begin{bmatrix} 19 & 4 & 8 \\ 1 & 12 & 8 \\ 14 & 6 & 15 \end{bmatrix}$$

Now,
$$A^3 = \begin{bmatrix} 19 & 4 & 8 \\ 1 & 12 & 8 \\ 14 & 6 & 15 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 19+12+32 & 38-8+16 & 57+4+8 \\ 1+36+32 & 2-24+16 & 3+12+8 \\ 14+18+60 & 28-12+30 & 42+6+15 \end{bmatrix} = \begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix}$$

Now,
$$A^3 - 23A - 40I = \begin{bmatrix} 63 & 46 & 69 \\ 69 & -6 & 23 \\ 92 & 46 & 63 \end{bmatrix} - \begin{bmatrix} 23 & 46 & 69 \\ 69 & -46 & 23 \\ 92 & 46 & 23 \end{bmatrix}$$

$$= \begin{bmatrix} 63-23-40 & 46-46-0 & 69-69-0 \\ 69-69-0 & -6+46-40 & 23-23-0 \\ 92-92-0 & 46-46-0 & 63-23-40 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0$$

Hence proved.

31. We have,
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$

Let
$$D = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Now, CD - AB = O

$$\therefore \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2a+5c & 2b+5d \\ 3a+8c & 3b+8d \end{bmatrix} = \begin{bmatrix} 10-7 & 4-4 \\ 15+28 & 6+16 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2a+5c-3 & 2b+5d \\ 3a+8c-43 & 3b+8d-22 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

On comparing the corresponding elements, we get

$$2a + 5c - 3 = 0$$

and 3a + 8c - 43 = 0

Also, 2b + 5d = 0

and 3b + 8d - 22 = 0

Solving (i) and (ii), we get

$$a = -191$$
, $c = 77$

Solving (iii) and (iv), we get b = -110, d = 44

$$D = \begin{bmatrix} -191 & -110 \\ 77 & 44 \end{bmatrix}$$

32. Given that,
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}$$

Let
$$X = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix}_{3 \times 2}$$
 and $Y = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}_{3 \times 2}$

As order of X is 3×2 , then A should be of order 2×2 , so that we get Y matrix of order 3×2 .

$$Let A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Now,
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2a-c & 2b-d \\ a+0 & b+0 \\ -3a+4c & -3b+4d \end{bmatrix} = \begin{bmatrix} -1 & -8 \\ 1 & -2 \\ 9 & 22 \end{bmatrix}$$

On comparing the corresponding elements, we get

$$2a-c=-1$$
 ...(i)
 $2b-d=-8$...(ii)
 $a=1$...(iii)

and
$$b = -2$$
 ...(iv)

Substituting a = 1 in (i), we get c = 3and substituting b = -2 in (ii), we get d = 4

and substituting
$$b = -2$$
 in (ii), we get $d = 4$

33. Given,
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} - 5 \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} + 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
5 & -1 & 2 \\
9 & -2 & 5 \\
0 & -1 & -2
\end{bmatrix} - \begin{bmatrix}
10 & 0 & 5 \\
10 & 5 & 15 \\
5 & -5 & 0
\end{bmatrix} + \begin{bmatrix}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{bmatrix}$$

$$\begin{bmatrix}
9 & -1 & 2 \\
9 & 2 & 5 \\
0 & -1 & 2
\end{bmatrix} - \begin{bmatrix}
10 & 0 & 5 \\
10 & 5 & 15 \\
5 & -5 & 0
\end{bmatrix} = \begin{bmatrix}
-1 & -1 & -3 \\
-1 & -3 & -10 \\
-5 & 4 & 2
\end{bmatrix}$$

Since,
$$A^2 - 5A + 4I + X = O \Rightarrow X = -(A^2 - 5A + 4I)$$

Answer Tips 🥒

...(iii)

...(iv)

- O is the additive identity.
- 34. The number of articles sold by each school can be written in the matrix form as

$$X = \begin{bmatrix} 40 & 25 & 35 \\ 50 & 40 & 50 \\ 20 & 30 & 40 \end{bmatrix}$$

The cost of each article can be written in the matrix form as $Y = [25 \ 100 \ 50]$

The fund collected by each school is given by

Therefore, the funds collected by schools A, B and C are ₹7000, ₹6125 and ₹7875 respectively.

Thus, the total funds collected

= ₹ (7000 + 6125 + 7875) = ₹ 21000

The situation highlights the helping nature of the students.

35. Let $\not\in A$, $\not\in B$ and $\not\in C$ be the cost incurred by the organisation for villages X, Y and Z respectively. Then, we get the matrix equation as

$$\begin{bmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 50 \\ 20 \\ 40 \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \end{bmatrix}$$
$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 400 \times 50 + 300 \times 20 + 100 \times 40 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} B \\ C \end{bmatrix} = \begin{bmatrix} 300 \times 50 + 250 \times 20 + 75 \times 40 \\ 500 \times 50 + 400 \times 20 + 150 \times 40 \end{bmatrix}$$
$$= \begin{bmatrix} 20,000 + 6,000 + 4,000 \\ 15,000 + 5,000 + 3,000 \\ 25,000 + 8,000 + 6,000 \end{bmatrix} = \begin{bmatrix} 30,000 \\ 23,000 \\ 39,000 \end{bmatrix}$$

These are the costs incurred by the organisation for villages X, Y and Z respectively.

The value generated by the organisation in the society is cleanliness.

Key Points (🗘

The product of two matrices A and B is defined if the number of columns of A is equal to the number of rows of B.

36. We have,
$$A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$

Consider,
$$(A + B) = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix} = \begin{bmatrix} 1+a & 0 \\ 2+b & -2 \end{bmatrix}$$

Now,
$$(A + B)^2 = \begin{bmatrix} 1+a & 0 \\ 2+b & -2 \end{bmatrix} \begin{bmatrix} 1+a & 0 \\ 2+b & -2 \end{bmatrix}$$

$$= \begin{bmatrix} (1+a)^2 & 0 \\ (2+b)(1+a-2) & 4 \end{bmatrix} = \begin{bmatrix} (1+a)^2 & 0 \\ (2+b)(a-1) & 4 \end{bmatrix}$$

Now, consider
$$A^2 = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1-2 & -1+1 \\ 2-2 & -2+1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$A^{2} + B^{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} a^{2} + b & a - 1 \\ ab - b & b + 1 \end{bmatrix} = \begin{bmatrix} a^{2} + b - 1 & a - 1 \\ ab - b & b \end{bmatrix}$$

It is given that, $(A + B)^2 = A^2 + B^2$

$$\therefore \begin{bmatrix} (1+a)^2 & 0 \\ (2+b)(a-1) & 4 \end{bmatrix} = \begin{bmatrix} a^2+b-1 & a-1 \\ ab-b & b \end{bmatrix}$$

On comparing the corresponding elements, we get $a-1=0 \Rightarrow a=1$ and b=4

And $(1 + a)^2 = a^2 + b - 1$ and (2 + b)(a - 1) = ab - b are also satisfied by a = 1 and b = 4

Therefore, a = 1 and b = 4.

 The total amount spent by the party in two cities X and Yis represented in the matrix equation by matrix Cas, C=BA

$$\Rightarrow \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1000 & 500 & 5000 \\ 3000 & 1000 & 10000 \end{bmatrix} \begin{bmatrix} 140 \\ 200 \\ 150 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1000 \times 140 + 500 \times 200 + 5000 \times 150 \\ 3000 \times 140 + 1000 \times 200 + 10000 \times 150 \end{bmatrix}$$
$$= \begin{bmatrix} 990000 \\ 2120000 \end{bmatrix}$$

- ⇒ X = 990000 paise, Y = 2120000 paise
- ∴ X = ₹ 9900 and Y = ₹ 21200

i.e., Amount spent by the party in city X and Y are ₹ 9900 and ₹ 21200 respectively. One should consider about the social activities of a political party before casting his/her

38. Here,
$$\begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} x \\ 3 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} 2x & 3 \end{bmatrix} \begin{bmatrix} x+6 \\ -3x \end{bmatrix} = 0$$

$$\Rightarrow$$
 2x (x + 6) + 3 (-3x) = 0 \Rightarrow 2x² + 12x - 9x = 0

$$\Rightarrow 2x^2 + 3x = 0 \Rightarrow x(2x + 3) = 0 \Rightarrow x = 0, \frac{-3}{2}.$$

Trust fund = ₹ 35,000

Let ξ x be invested in the first bond and then ξ (35,000 – x) will be invested in the second bond.

Interest paid on the first bond = 8% = 0.08 Interest paid on the second bond = 10% = 0.10

Total annual interest = ₹ 3,200

:. In matrices,[x 35,000-x]
$$\begin{bmatrix} 0.08 \\ 0.10 \end{bmatrix}$$
 = [3,200]

$$\Rightarrow x \times 0.08 + (35,000 - x) \times 0.10 = 3,200$$

$$\Rightarrow x \times \frac{8}{100} + (35,000 - x) \times \frac{10}{100} = 3,200$$

$$\Rightarrow$$
 8x + 3,50,000 - 10x = 3,20,000

$$\Rightarrow$$
 2x = 30,000 \Rightarrow x = 15,000

₹ 15,000 should be invested in the first bond and ₹ 35,000 - ₹ 15,000 = ₹ 20,000 should be invested in the second bond.

The values reflected in this question are:

- Spirit of investment.
- (ii) Giving charity to cancer patients.
- (iii) Helping the orphans living in the society.

$$\Rightarrow \begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix} = \begin{bmatrix} 5 & y \\ x & 0 \end{bmatrix}$$

On comparing, we get x = y.

$$A' = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

So,
$$AA' = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = [1+4+9] = [14]$$

42. (b): We have,
$$P' = 2P + I$$
 ...(i)

Now,
$$(P')' = (2P+1)' = 2P'+1$$

$$\Rightarrow P = 2(2P+1)+1$$
 [Using (i)]

43. (b): We have,
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

and A + A' = I

$$\Rightarrow \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} + \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow$$
 $2\cos\alpha = 1 \Rightarrow \cos\alpha = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{3}$

- 44. If A is a matrix of order 3×2 , then the order of the matrix A' is 2×3 .
- 45. A square matrix A is said to be symmetric, if A' = A.

46. Given,
$$A = \begin{bmatrix} 0 & a & 1 \\ -1 & b & 1 \\ -1 & c & 0 \end{bmatrix}$$

A is a skew-symmetric matrix.

$$\Rightarrow \begin{bmatrix} 0 & -1 & -1 \\ a & b & c \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -a & -1 \\ 1 & -b & -1 \\ 1 & -c & 0 \end{bmatrix}$$

By comparing on both sides, we get a = 1,

$$b=-b \implies 2b=0 \implies b=0; c=-1$$

Now,
$$(a+b+c)^2 = (1+0-1)^2 = 0$$

47. A square matrix A is said to be skew symmetric matrix if $\Delta' = -\Delta$

Now,
$$A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$$
 $\therefore A' = \begin{bmatrix} 0 & 2 & b \\ a & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix}$

From (i), A + A' = O

$$\Rightarrow \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 2 & b \\ a & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix} = 0$$

$$\Rightarrow \begin{bmatrix} 0 & 2+a & b-3 \\ a+2 & 0 & 0 \\ b-3 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\Rightarrow a+2=0 \& b-3=0 : a=-2 \& b=3$$

Answer Tips

- If A [a_{ij}] be a m×n matrix, then the matrix obtained by interchanging the rows and columns of A is called the transpose of A.
- 48. Given, $A = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$
- : A is symmetric. : A' = A

$$\Rightarrow \begin{bmatrix} 0 & 3 & 3a \\ 2b & 1 & 3 \\ -2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 2b & -2 \\ 3 & 1 & 3 \\ 3a & 3 & -1 \end{bmatrix}$$

On comparing the corresponding elements, we get $a = \frac{-2}{3}$ and $b = \frac{3}{3}$.

49. Given,
$$A = \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix} \Rightarrow A' = \begin{bmatrix} 3 & 7 \\ 5 & 9 \end{bmatrix}$$

∴ P is symmetric matrix. So, $P = \frac{1}{2}(A + A')$

$$P = \frac{1}{2} \begin{bmatrix} 3 & 5 \\ 7 & 9 \end{bmatrix} + \begin{bmatrix} 3 & 7 \\ 5 & 9 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 3+3 & 5+7 \\ 7+5 & 9+9 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 6 & 12 \\ 12 & 18 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 9 \end{bmatrix}$$

Hence, the matrix $P = \begin{bmatrix} 3 & 6 \\ 6 & 9 \end{bmatrix}$

Concept Applied (6)

- A square matrix A = [a_{ij}] is said to be symmetric if A' = A, that is [a_{ij}] = [a_{ji}] for all possible values of i and j.
- 50. We know that a square matrix A can be written as

$$A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$$

Out of which $\frac{1}{2}(A+A^T)$ is symmetric and $\frac{1}{2}(A-A^T)$ is skew symmetric matrix,

.. For the given matrix

$$A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix} \text{ and } A^T = \begin{bmatrix} 2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4 \end{bmatrix}$$

$$A+A^{T} = \begin{bmatrix} 4 & 11 & -5 \\ 11 & 6 & 3 \\ -5 & 3 & 8 \end{bmatrix} \text{ and } A-A^{T} = \begin{bmatrix} 0 & -3 & -7 \\ 3 & 0 & 7 \\ 7 & -7 & 0 \end{bmatrix}$$

Hence, $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A - A^T)$

$$= \begin{bmatrix} 2 & 11/2 & -5/2 \\ 11/2 & 3 & 3/2 \\ -5/2 & 3/2 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -3/2 & -7/2 \\ 3/2 & 0 & 7/2 \\ 7/2 & -7/2 & 0 \end{bmatrix}$$

In above case, first is symmetric and the second is skew symmetric matrix.

51. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is a 2 × 2 symmetric as well as skew symmetric matrix.

52. Let,
$$A = \begin{bmatrix} 0 & 6-5x \\ x^2 & x+3 \end{bmatrix}$$

A is symmetric, then A' = A

$$\therefore \begin{bmatrix} 0 & x^2 \\ 6-5x & x+3 \end{bmatrix} = \begin{bmatrix} 0 & 6-5x \\ x^2 & x+3 \end{bmatrix}$$

On comparing both sides, we get

$$\Rightarrow x^2 = 6 - 5x \Rightarrow x^2 + 5x - 6 = 0$$

$$\Rightarrow$$
 $(x+6)(x-1)=0 \Rightarrow x=-6, 1$

53. Given,
$$A = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}$$

(i)
$$A' = \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}$$

$$A+A'=\begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix}+\begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix}=\begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix}$$

$$\therefore (A+A')' = \begin{bmatrix} 2 & 11 \\ 11 & 14 \end{bmatrix}$$

∴ (A+A') is a symmetric matrix.

(ii)
$$A-A' = \begin{bmatrix} 1 & 5 \\ 6 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 6 \\ 5 & 7 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$(A-A')' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = -(A-A')$$

⇒ (A - A') is a skew symmetric matrix.

Concept Applied 6

- A square matrix A = [a_{ij}] is said to be skew symmetric if A' = -A i.e. [a_{ij}] = -[a_{ij}] for all possible values of i and j
- 54. Given, A and B are symmetric matrices.
- ∴ A'= A and B'= B

Now,
$$(AB-BA)' = (AB)' - (BA)' = (B'A') - (A'B')$$

= $(BA-AB)$ [:: A' = A and B' = B]

$$=-(AB-BA)$$

Thus, (AB-BA)' = -(AB-BA)

Hence,(AB - BA) is a skew symmetric matrix.

55. Let $A = [a_{ij}]$ be a skew symmetric matrix.

Then, $a_{ii} = -a_{ii} \forall i, j$

$$\Rightarrow a_{ii} = -a_{ii} \forall i \Rightarrow 2a_{ii} = 0 \Rightarrow a_{ii} = 0 \forall i$$

$$\Rightarrow a_{11} = a_{22} = a_{33} = \dots = a_{nn} = 0$$

Pre-multiplying with A-1 on both sides, we get

$$(A^{-1}A) \cdot A - A^{-1} \cdot A + A^{-1} \cdot I = A^{-1} \cdot O$$

57.
$$A^2 = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix} = \begin{bmatrix} 28 & 37 & 26 \\ 10 & 5 & 1 \\ 35 & 42 & 34 \end{bmatrix}$$

Now,
$$A^3 - 4A^2 - 3A + 11I = \begin{bmatrix} 28 & 37 & 26 \\ 10 & 5 & 1 \\ 35 & 42 & 34 \end{bmatrix} - 4 \begin{bmatrix} 9 & 7 & 5 \\ 1 & 4 & 1 \\ 8 & 9 & 9 \end{bmatrix}$$
$$-3 \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix} + 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix}
28 & 37 & 26 \\
10 & 5 & 1 \\
35 & 42 & 34
\end{bmatrix} - \begin{bmatrix}
36 & 28 & 20 \\
4 & 16 & 4 \\
32 & 36 & 36
\end{bmatrix} - \begin{bmatrix}
3 & 9 & 6 \\
6 & 0 & -3 \\
3 & 6 & 9
\end{bmatrix} + \begin{bmatrix}
11 & 0 & 0 \\
0 & 11 & 0 \\
0 & 0 & 11
\end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence, $A^3 - 4A^2 - 3A + 11I = 0$

Now, $A^{-1}[A^3 - 4A^2 - 3A + 11I] = A^{-1}O$

$$\Rightarrow A^2 - 4A - 3A^{-1}A + 11A^{-1}I = O \Rightarrow A^2 - 4A - 3I + 11A^{-1} = O$$

$$\Rightarrow A^{-1} = \frac{-A^2 + 4A + 3I}{11}$$

$$\Rightarrow A^{-1} = \frac{1}{11} \begin{bmatrix} -9 & -7 & -5 \\ -1 & -4 & -1 \\ -8 & -9 & -9 \end{bmatrix} + \begin{bmatrix} 4 & 12 & 8 \\ 8 & 0 & -4 \\ 4 & 8 & 12 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\Rightarrow A^{-1} = \frac{1}{11} \begin{bmatrix} -2 & 5 & 3 \\ 7 & -1 & -5 \\ -4 & -1 & 6 \end{bmatrix} = \begin{bmatrix} -2/11 & 5/11 & 3/11 \\ 7/11 & -1/11 & -5/11 \\ -4/11 & -1/11 & 6/11 \end{bmatrix}$$

CBSE Sample Questions

- (c): In a skew-symmetric matrix, the (i, i)th element is negative of the (j, i)th element. Hence, the (i, i)th element = 0. (1)
- (a): From the definition of equality of two matrices, we have

$$2a+b=4$$
 ...(i) $a-2b=-3$...(ii) $5c-d=11$...(iii) $4c+3d=24$...(iv)

Solving (i) and (ii), we get

$$5a=5 \Rightarrow a=1,b=2$$

Solving (iii) and (iv), we get

$$19c = 57 \implies c = 3, d = 4$$

(b): We know that the sum of two matrices is defined only if both matrices have same order.

Here 5A + 3B is defined if A and B have same order.

$$\Rightarrow$$
 3×n=m×5 \Rightarrow n=5,m=3

So, order of matrix C is
$$3 \times 5$$
 and $m \neq n$.

(1)

(1)

4. (d): We have,
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0+1 & 0+0 \\ 0+0 & 1+0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (1)

5. (b): We have,
$$A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} \Rightarrow kA = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix} = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix}$$
 (Given)

(d): We have, (I+A)³ – 7A
 I³ + A³ + 3I²A + 3IA² – 7A = I + A·A + 3A + 3A – 7A

$$(:: A^2 = A)$$

= $I + A + 3A + 3A - 7A = I$ (1)

7. (c): We have, $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$

$$\Rightarrow A^{2} = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix} = \begin{bmatrix} \alpha^{2} + \beta \gamma & 0 \\ 0 & \gamma \beta + \alpha^{2} \end{bmatrix}$$

But $A^2 = 3I$

$$\Rightarrow \begin{bmatrix} \alpha^2 + \beta \gamma & 0 \\ 0 & \alpha^2 + \beta \gamma \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

$$\Rightarrow \alpha^2 + \beta \gamma = 3$$

$$\Rightarrow 3 - \alpha^2 - \beta \gamma = 0$$
(

For addition or subtraction of two matrices to be defined, the two matrices should be of same order.

∴ 3×n=m×5 ⇒ m=3 and n=5

So, order of matrix (5A - 3B) is 3×5 and $m \neq n$. (1)

9. We know, $|adjA| = |A|^{n-1}$, where $n \times n$ is the order of non-singular matrix A.

 (c): We know that if A and B are non-singular matries of same order, then

$$(AB)^{-1} = B^{-1}A^{-1}; (AB^{-1})^{-1} = (B^{-1})^{-1}A^{-1} = BA^{-1}$$
 (1)

11. (d): We have,

$$AB = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2+4+0 & 2-2+0 & -4+4+0 \\ 4-12+8 & 4+6-4 & -8-12+20 \\ 0-4+4 & 0+2-2 & 0-4+10 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I \implies B^{-1} = \frac{1}{6}A \tag{1}$$

12. We have, $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$

$$\therefore A^2 = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$$

Also,
$$-5A = \begin{bmatrix} -15 & -5 \\ 5 & -10 \end{bmatrix}$$
 and $7I = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$

Now, A2 - 5A + 71

$$= \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix} + \begin{bmatrix} -15 & -5 \\ 5 & -10 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$
 (1)

Now, $A^{-1}(A^2 - 5A + 7I) = A^{-1}O$

$$\Rightarrow A^{-1} = \frac{1}{7} \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$
 (1)