

```
æ _0.025
                      -0.050
                                        0
                                                                    20
                                                                                                                                                            80
                                                                                                                                                                                         100
                  1 model = ARIMA(['Name'] == 'Apple inc.', order=(1, 1, 1)) # ARIMA(1, 2, 1) model
2 model_fit = model.fit()
   In-[28]:
                  1 forecast = model_fit.forecast(steps=12)
   In [70]:
                  t plt.plot(indux, (numeric data['Last Sale']), label='Original')
l plt.plot(indux[-12:] + len(numeric data), forecast, label='Forecast')
 in [109]
                  anonths = pd.date_range(start=numeric_data.index[-1], periods=13, freq='N').strftime('ND %9')
plt.xticks(np.arange(len(index), len(index) + 13), wonths, rotation=43)
plt.xlabel('line')
plt.ylabel('Share Price')
plt.legend()
                  10 plt.show()
                                                                                                          Original
                     1.2
                                                                                                          Forecast
                     1.0
                      0.8
                  Share Price
                      0.6
                     0.4
                      0.2
                      0.0
                Dickey - Fuller Test
In [114]: I apple_stock = (SMA['Mase'] == 'Apple Inc.')
 In [195]: I result = adfuller(apple_stock)
                C:\Users\naray\anaconda3\lib\site-packages\statemodels\regression\linear_model.py:924: Nonlinewarming: divide by zero encountered in log -11f + -nobs2^n np.log(2^n np.pi) - mobs2^n np.log(ssr / nobs) - mobs2
```

```
In [148]: 1 SMA_2 + SMA.dropna(axis = 1)

In [141]: 1 SMA_2.shape

Got[141]: (182, 56)
```

ACF and PACF

C:\Users\naray\anaconda3\lib\site-packages\matplotlib\axes_base.py:2480: UserMarning: Warning: converting a masked element to
man.

xys = op.asarray(xys)

C:\Users\naray\anaconda\$\lib\site-packages\statsmodels\graphics\tsaplots.py:348: FutureWarning: The default method 'ye' can pro duce PACF values outside of the [-1,1] interval. After 8.13, the default will change tounadjusted Yulo-Walker ('yem'). You can use this method now by setting method='yem'.

warnings.warni

< >

Activate Win

<---->

Assets

#1

PL

S #

T

Ε

11

0

< >

Debt

Debt to Equity

Debt to Assets

Debt to Ebitda

Debt to Revenue

Longterm Debt to Assets

<---->

<---->

Inventory

<---->

Finance

Free Float Percentage

Q.

Pu

ΠŤ

Effective I..

0

Interest Coverage Sector Sector Interest C. 100 2K 50

3

1K

0

pu

3

00

<--->

Price

Price Earnings Growth

Com... Com... Heal... Info... Utilii...

Price to Book Ratio

Price to Earnings Ratio

Price to Earnings Ratio NRI

Price to Free Cashflow

Price to Operating Cashflow

Year over Year Analysis

0

Comm

Consu.

Utilities

Inform.

Indust.

Health

Consu

Consu.

Comm.

Utilities

Inform.

Health

Consu.

indust.

<-----

Market Trend

5

0

Į.

8

