GEL-2002

ÉLECTRONIQUE DES COMPOSANTS DISCRETS

GIF-2000

ÉLECTRONIQUE POUR INGÉNIEURS INFORMATICIENS

EXAMEN PARTIEL Le 8 mars 2013 De 10h30 à 12h20 Local VCH-2850

Documents autorisés	- Livre «Microelectronic Circuits», Sedra & Smith - Une feuille format lettre (8.5 po. x 11 po.) manuscrite, recto-verso
Remarques	 Écrivez proprement et lisiblement La démarche de votre solution doit être clairement expliquée Les tensions et les courants doivent être bien identifiés sur les schémas Les courbes doivent être faites avec soins

Problème no. 1 (25 points)

a) La diode D₁ dans le circuit suivant est une LED (Light-Emitting Diode) qui émet de la lumière bleue (C503B-BAS).

Les caractéristiques typiques de cette LED sont données dans le tableau suivant.

Characteristics		Color	Symbol	Condition	Unit	Minimum	Typical	Maximun
Forward Voltage		Blue/Green	V _F	I _F = 20 mA	V		3.2	4.0
Reverse Current		Blue/Green	IR	V _R = 5 V	μА			100
Dominant Wavelength		Blue	$\lambda_{_{D}}$	I _f = 20 mA	nm	465	470	480
araniant wavelength		Green	A _D	I _F = 20 mA	nm	520	527	535
	Blue	C503B-BAS/BAN (15 degree)	I _v	$I_{\rm F} = 20 \text{mA}$	mcd	5860	11000	
Luminous Intensity	Green	C503B-BCS/BCN (30 degree)	I_{φ}	I _F = 20 mA	mcd	2130	4100	
		C503B-GAS/GAN (15 degree)	I_{v}	$I_{\rm F}$ = 20 mA	mcd	16800	34000	
	C. CCII	C503B-GCS/GCN (30 degree)	I_v	$I_p = 20 \text{ mA}$	mcd	5860	12500	
50% Power Angle	C	503B-BAS/BAN/GAS/GAN	281/2	$I_p = 20 \text{ mA}$	deg		15	
3	C!	503B-BCS/BCN/GCS/GCN	201/2	$I_r = 20 \text{ mA}$	deg		30	

Choisir la valeur de R₁ pour avoir un courant de 20 mA dans la LED. (6 points)

Calculer la puissance dissipée dans la LED dans ce cas. (4 points)

b) Considérons le circuit régulateur de tension suivant.

Les caractéristiques typiques de la diode Zener 1N4732A sont données dans le tableau suivant.

Electrical Chara	acteristics	Ta=	= 25°C unles	s otherwise noted
-------------------------	-------------	-----	--------------	-------------------

Device	V _Z (\	/) @ I _Z	(Note 1)	Test Current	Max. Ze	ener Imp	edance	Leak		Non-Repetitive
Device	Min.	Тур.	Max.	I _Z (mA)	Z _Z @Ι _Z (Ω)	Z _{ZK} @ I _{ZK} (Ω)	I _{ZK} (mA)	I _R (μA)	V _R (V)	Current I _{ZSM} (mA) (Note 2
1N4728A	3.135	3.3	3.465	76	10	400	1	100	1	1380
1N4729A	3.42	3.6	3.78	69	10	400	1	100	1	1260
1N4730A	3.705	3.9	4.095	64	9	400	1	50	1	1190
1N4731A	4.085	4.3	4.515	58	9	400	1	10	1	1070
1N4732A	4.465	4.7	4.935	53	8	500	1	10	1	970

- Calculer la tension V_{z0}. (4 points)
- Tracer un circuit équivalent du régulateur. (4 points)
- Déterminer la tension de sortie V_0 pour deux valeurs de la charge: R_L = infinie et R_L = 50 Ω (7 points)

Problème no. 2 (25 points)

a) Considérons le circuit suivant.

On désire obtenir le point de fonctionnement suivant: $I_C = 4$ mA et $V_{CE} = 5$ V. En supposant que $V_{BE} = 0.7$ V, **déterminer** les valeurs des résistances R_E et R_C . (11 points)

b) Considérons le circuit suivant.

On mesure la tension VD pour deux valeurs différentes de VGG

$V_{GG}(V)$	$V_{D}(V)$
2.20	8.75
2.45	5

- À partir de ces mesures, **calculer** la tension de seuil de conduction V_t et le paramètre de transconductance k_n . (6 points)
- Tracer la caractéristique de transfert i_D - v_{GS} (4 points) (Remarque: Il faut bien identifier les points particuliers sur cette courbe)
- Calculer la transconductance g_m à un courant I_D = 10 mA (4 points)

Problème no. 3 (25 points)

Considérons l'amplificateur à transistor bipolaire suivant.

- a) Déterminer le point de fonctionnement (I_C, V_{CE}) du transistor. (5 points)
- b) Calculer les paramètres r_{π} et g_m du modèle "petit signal" en π du transistor. (4 points)

Tracer un circuit équivalent petit signal de l'amplificateur utilisant le modèle en π du transistor. (5 points)

c) À l'aide du circuit équivalent petit signal, calculer la résistance d'entrée R_{in}, la résistance de sortie R_o et le gain en

tension (sans charge)
$$A_{vo} = \frac{v_o}{v_i}\Big|_{R_L = \infty}$$
 de l'amplificateur. (7 points)

Calculer la tension de sortie v_0 lorsqu'une charge de 4.7 k Ω est connectée. (4 points)

Problème no. 4 (25 points)

Considérons l'amplificateur à MOSFET suivant.

a) Le MOSFET T_1 a une tension de seuil de conduction V_t égale à 2 V.

On mesure: $V_{GS} = 2.5 \text{ V}$.

Déterminer le point de fonctionnement (ID, VDS) du MOSFET. (5 points)

b) Calculer la transconductance g_m du MOSFET (à I_D = valeur calculée dans la question a) (3 points)

En supposant que la résistance r_0 du MOSFET est très grande par rapport à R_D , **tracer** un circuit équivalent petit signal de l'amplificateur. (6 points)

c) À l'aide du circuit équivalent petit signal, calculer la résistance d'entrée R_{in}, la résistance de sortie R_o et le gain en

tension (sans charge) $A_{vo} = \frac{v_o}{v_i}\Big|_{R_L = \infty}$ de l'amplificateur. (7 points)

Calculer la tension de sortie v_0 lorsqu'une charge de $1.8~k\Omega$ est connectée. (4 points)