Inhaltsverzeichnis

I.	Affi	Affine Algebraische Varietäten			
	I.1.	Algebraische Ergänzungen	1		
	I.2.	Affine Algebraische Mengen	4		
		Die Zariskitopologie			

1. Affine Algebraische Varietäten

I.1. Algebraische Ergänzungen

Ringe sind kommutativ (mit 1), Ringhomomorphismen $\varphi: A \to B$ erfüllen $\varphi(1) = 1$. Erzeugte Ideale

$$\langle a_1, \dots, a_n \rangle = \sum_{i=1}^n A a_i = \left\{ \sum_{i=1}^n a_i b_i \mid b_1, \dots, b_n \in A \right\}$$

I.1.1 Definition.

Sei A ein Ring, sei $I \subseteq A$ ein Ideal

- (a) $\sqrt{I} := \{a \in A \mid \exists n \geq 1 \text{ mit } a^n \in I\}$ ist ein Ideal in A, genannt das <u>Radikal</u> von I. Ist $I = \sqrt{I}$, so heißt I ein <u>Radikalideal</u>.
- (b) $\text{Nil}(A) := \sqrt{\{0\}}$ heißt das <u>Nilradikal</u> von A. Die Elemente von Nil(A) heißen die nilpotenten Elemente von A.
- (c) Der Ring A heißt reduziert, wenn $Nil(A) = \{0\}$ ist

Beweis. (a) Seien $a, b \in \sqrt{I}$, etwa $a^m \in I, b^n \in I$. Dann

$$(a+b)^{m+n} = \sum_{i+j=m+n} {m+n \choose i} \underbrace{a^i b^j}_{\in I} \in I \implies a+b \in \sqrt{I}$$

Und $(ac)^m = a^m c^m \in I$ für $c \in A \implies ac \in \sqrt{I}$

I.1.2 Bemerkung.

- $I \subseteq \sqrt{I}$
- Jedes Primideal ist ein Radikalideal.
- $A = \mathbb{Z}, n = p_1^{e_1} \cdots p_r^{e_r}$ mit p_i prim, $e_i \ge 1$, dann ist $\sqrt{\langle n \rangle} = \langle p_1 \cdots p_r \rangle$

I.1.3 Lemma.

Seien $I, I_1, I_2 \subseteq A$ Ideale.

- (a) $\sqrt{I_1 \cap I_2} = \sqrt{I_1} \cap \sqrt{I_2}$
- (b) $\sqrt{I} = \langle 1 \rangle \iff I = \langle 1 \rangle$
- (c) Ist $J \supseteq I$ ein weiteres Ideal, dann ist $\sqrt{J/I} = \sqrt{J}/I$ (in A/I).

Insbesondere: Der Ring A/I ist reduziert genau dann, wenn $I = \sqrt{I}$

Beweis. Aufgabe 4.

I.1.4 Satz.

Für jedes Ideal $I \subseteq A$ ist

$$\sqrt{I} = \bigcap_{\substack{\mathfrak{p} \in \mathrm{Spec}(A) \\ \mathfrak{p} \supseteq I}} \mathfrak{p}$$

Die Radikalideale sind also die Durchschnitte von Primidealen.

Beweis.

"⊆": Aus $I\subseteq \mathfrak{p}$ und \mathfrak{p} prim folgt $\sqrt{I}\subseteq \sqrt{\mathfrak{p}}=\mathfrak{p}$

" \supseteq ": Sei $t \in A, t \notin \sqrt{I}$, sei $A_t := A_S$ mit $S := \{1, t, t^2, \ldots\}$.

Sei $\varphi: A \to A_t, \varphi(a) = \frac{a}{1}$. Dann ist $IA_t := I_t := \left\{\frac{a}{t^n} \mid a \in I, n \geq 0\right\}$ ein Ideal in A_t und $1 \notin IA_t$ [Angenommen, $1 = \frac{1}{1} = \frac{a}{t^n}$ mit $a \in I \implies \exists m: t^m(t^n - a) = 0$, d.h. $t^{m+n} = at^m \in I \not\downarrow$].

Also existiert ein maximales Ideal \mathfrak{m} von A_t mit $IA_t \subseteq \mathfrak{m} \implies \mathfrak{p} := \varphi^{-1}(\mathfrak{m}) \in \operatorname{Spec}(A)$ mit $I \subseteq \mathfrak{p}$ und $t \notin \mathfrak{p}$.

I.1.5 Korollar.

$$Nil(A) = \bigcap_{\mathfrak{p} \in Spec(A)} \mathfrak{p}$$

I.1.6 Definition.

Sei R ein Ring

- (a) Eine <u>R-Algebra</u> ist ein Ringhomomorphismus $\varphi:R\to A$ (in einen Ring A). Sprechweise "A ist eine R-Algebra".
- (b) Seien $\alpha: R \to A, \beta: R \to B$ zwei R-Algebren. Ein Homomorphismus von R-Algebren (oder R-Homomorphismus) von A nach B ist ein Ringhomomorphismus $\varphi: A \to B$ mit $\varphi \circ \alpha = \beta$.
- (c) R-Algebren A, B heißen isomorph (als R-Algebren), wenn es einen bijektiven R-Homomorphismus $\varphi: \overline{A \to B}$ gibt.

I.1.7 Beispiel.

- 1. Sei $R \subseteq A$ Teilring, dann ist A eine R-Algebra via Inklusion.
- 2. Sei A eine R-Algebra, dann gibt es eine Bijektion

$$\operatorname{Hom}(R[x_1,\ldots,x_n],A) \to A \times \cdots \times A = A^n$$

$$\varphi \mapsto (\varphi(x_1),\ldots,\varphi(x_n))$$

3. Zwei R-Algebren können als Ring isomorph sein, ohne es als R-Algebren zu sein (Aufgabe 2).

I.1.8 Lemma.

Für jede R-Algebra $\alpha: R \to A$ sind äquivalent:

- (i) $\exists n \in \mathbb{N} : \exists a_1, \dots, a_n \in A$, so dass A als Ring von $\alpha(R)$ und a_1, \dots, a_n erzeugt wird.
- (ii) $\exists n \in \mathbb{N} : \exists$ surjektiver Homomorphismus $R[x_1, \dots, x_n] \to A$ von R-Algebran.

Gelten (i) und (ii), so heißt die R-Algebra A endlich erzeugt.

Beweis. Einfach (verwende 1.7.2)

I.1.9 Bemerkung.

Ist die R-Algebra A als R-Modul endlich erzeugt, so auch als R-Algebra. Die Umkehrung ist im Allgemeinen falsch (Beispiel A = R[x]).

I.1.10 Definition.

Sei $\varphi:A\to B$ ein A-Algebra

- (a) $b \in B$ heißt ganz über A, falls es eine Identität $b^n + \varphi(a_1)b^{n-1} + \cdots + \varphi(a_n) = 0$ gibt $(n \in \mathbb{N}, a_i \in A)$.
- (b) Die A-Algebra B heißt ganz, wenn jedes $b \in B$ ganz über A ist. Leicht zu sehen: $b \in B$ ist ganz über A genau dann, wenn A[b] (:= der von $\varphi(A)$ und b erzeugte Teilring von B) als A-Modul endlich erzeugt ist.

I.1.11 Satz.

Sei B eine A-Algebra. Dann ist $C:=\{b\in B\mid b \text{ ganz "über }A\}$ ein Teilring von B, genannt der ganze Abschluss von A in B.

I.1.12 Definition.

Ein Ring heißt <u>noethersch</u>, wenn jedes Ideal von A endlich erzeugt ist.

Beispiel: Hauptidealringe sind noethersch. Ist A noethersch, so auch A/I und A_S (I Ideal, $S \subseteq A$ multiplikative Menge).

I.1.13 Theorem. Hilbertscher Basissatz

Ist A noethersch, so auch A[x].

I.1.14 Korollar.

Ist A noethersch, so ist auch jede endlich erzeugte A-Algebra noethersch.

Beweis. 1.13 und 1.8(ii)

1.2. Affine Algebraische Mengen

k: (fixierter) Grundkörper, \overline{k} : (ein) algebraischer Abschluss von k. Sei $k \subseteq K$ eine (beliebige) Körpererweiterung mit K algebraisch abgeschlossen (z.B. $K = \overline{k}$). Sei $n \in \mathbb{N}, \underline{x} = (x_1, \dots, x_n), k[\underline{x}] = k[x_1, \dots, x_n]$.

I.2.1 Definition.

- (a) $\mathbb{A}^n := K^n$ der *n*-dimensionale affine Raum
- (b) Sei $P \subseteq k[\underline{x}]$ eine Menge von Polynomen, dann schreibe

$$\mathcal{V}(P) := \mathcal{V}_{\mathbb{A}^n}(P) := \{ \xi \in K^n \mid \forall p \in P : p(\xi) = 0 \}$$

Varietät von P.

- (c) Eine Teilmenge $V \subseteq \mathbb{A}^n$ heißt <u>affine k-Varietät</u>, falls $\exists P \subseteq k[\underline{x}]$ mit $V = \mathcal{V}(P)$.
- (d) Sind $W \subseteq V \subseteq \mathbb{A}^n$ affine k-Varietäten, so heißt W eine k-Untervarietät von V.

I.2.2 Lemma.

Sei $P \subseteq k[\underline{x}]$ eine Menge, sei $I := \langle P \rangle$ (das von P erzeugte Ideal in $k[\underline{x}]$). Dann ist $\mathcal{V}(P) = \mathcal{V}(\sqrt{I})$.

Beweis.

"⊇": klar

"⊆": Sei $\xi \in \mathcal{V}(P)$, sei $f \in \sqrt{I}$, also $f^m = g_1 p_1 + \cdots + g_r p_r$ mit $m \in \mathbb{N}, g_i \in k[\underline{x}], p_i \in P$. Auswerten in ξ liefert:

$$f(\xi)^m = \sum_{i=1}^r g_i(\xi) \underbrace{p_i(\xi)}_{=0} = 0$$

Also $f(\xi) = 0$.

I.2.3 Korollar.

Jede affine k-Varietät hat die Form $V = \mathcal{V}(f_1, \dots, f_r)$ mit endlich vielen $f_1, \dots, f_r \in k[\underline{x}]$

Beweis.

Sei $V = \mathcal{V}(P)$ mit einer Teilmenge $P \subseteq k[\underline{x}]$. Sei $\langle P \rangle = \langle f_1, \dots, f_r \rangle$ mit $f_i \in k[\underline{x}]$ (Hilberscher Basissatz). Dann ist $V = \mathcal{V}(f_1, \dots, f_r)$ mit Lemma 2.2

I.2.4 Lemma.

- (a) \emptyset , \mathbb{A}^n sind affine k-Varietäten.
- (b) Sind $V_1, V_2 \subseteq \mathbb{A}^n$ affine k-Varietäten, so auch $V_1 \cup V_2$.
- (c) Sind $V_{\lambda} \subseteq \mathbb{A}^n$ affine k-Varietäten für $\lambda \in \Lambda$, so auch $\bigcap_{\lambda \in \Lambda} V_{\lambda}$.

(d) Sind $V \subseteq \mathbb{A}^m, W \subseteq \mathbb{A}^n$ affine k-Varietäten, so auch $V \times W \subseteq \mathbb{A}^m \times \mathbb{A}^n = \mathbb{A}^{m+n}$.

Beweis.

- (a) $\emptyset = \mathcal{V}(1), \mathbb{A} = \mathcal{V}(0)$
- (b) Seien $V_i = \mathcal{V}(I_i)$ mit $I_i \subseteq k[\underline{x}]$ Ideale (i = 1, 2).

Behauptung: $V_1 \cup V_2 = \mathcal{V}(I_1 \cap I_2)$.

Begründung:

"⊂": klar

"⊇": Sei $\xi \in \mathcal{V}(I_1 \cap I_2)$. Ohne Einschränkung $\xi \notin V_1$, also gibt es $f \in I_1$ mit $f(\xi) \neq 0$. Für jedes $g \in I_2$ ist $fg \in I_1 \cap I_2$, also nach Voraussetzung ist $f(\xi) g(\xi) = 0$. Also ist $g(\xi) = 0$, also $\xi \in \mathcal{V}(I_2) = V_2$.

(c)

$$\bigcap_{\lambda \in \Lambda} \mathcal{V}(I_{\lambda}) = \mathcal{V}\left(\bigcup_{\lambda \in \Lambda} I_{\lambda}\right)$$

(d) Sei $V = \mathcal{V}_{\mathbb{A}^m}(I)$ mit $I \subseteq k[x_1, \dots, x_m]$. Sei $W = \mathcal{V}_{\mathbb{A}^n}(J)$ mit $J \subseteq k[y_1, \dots, y_n]$. Dann ist $V \times W = \mathcal{V}_{\mathbb{A}^m \times \mathbb{A}^n}(I \cup J)$

I.2.5 Korollar.

Sind I_1, I_2, I_λ ($\lambda \in \Lambda$) Ideale in $k[\underline{x}]$, so ist

(a) $\mathcal{V}(I_1) \cup \mathcal{V}(I_2) = \mathcal{V}(I_1V_2) = \mathcal{V}(I_1 \cap I_2)$

(b)
$$\bigcap_{\lambda \in \Lambda} \mathcal{V}(I_{\lambda}) = \mathcal{V}\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right)$$

I.2.6 Definition.

Ist $\mathcal{V} \subseteq \mathbb{A}^n$ eine Teilmenge, so heißt $\mathfrak{I}(V) = \mathfrak{I}_k(V) := \{ f \in k[\underline{x}] \mid \forall \xi \in V : f(\xi) = 0 \}$ das (Verschwindungs-)Ideal von V.

I.2.7 Lemma.

Seien $V, V_1, V_2 \subseteq \mathbb{A}^n$ Teilmengen

- (a) $\mathfrak{I}_k(V)$ ist ein Radikalideal in $k[\underline{x}]$. Ist V eine affine k-Varietät, so ist $\mathcal{V}(\mathfrak{I}_k(V)) = V$.
- (b) Aus $V_1 \subseteq V_2$ folgt $\mathfrak{I}_k(V_2) \subseteq \mathfrak{I}_k(V_1)$. Ist V_2 eine affine k-Varietät, so gilt auch $\mathfrak{I}_k(V_2) \subseteq \mathfrak{I}_k(V_1) \implies V_1 \subseteq V_2$.

- (c) $\mathfrak{I}_k(V_1 \cup V_2) = \mathfrak{I}_k(V_1) \cap \mathfrak{I}_k(V_2)$.
- (d) Jede absteigende Folge $V_1 \supseteq V_2 \supseteq \cdots$ von affinen k-Varietäten in \mathbb{A}^n wird stationär.

Beweis.

(a) $\mathfrak{I}_k(V)$ ist ein Radikalideal: klar.

Sei $V = \mathcal{V}(I)$ eine affine k-Varietät mit I Ideal. Dann ist $I \subseteq \mathfrak{I}_k(V)$, also $\mathcal{V}(\mathfrak{I}_k(V)) \subseteq \mathcal{V}(I) = V$. Umgekehrt ist $V \subseteq \mathcal{V}(\mathfrak{I}_k(V))$ trivial.

(b) \Longrightarrow " ist trivial.

", \leftarrow " (falls V eine affine k-Varietät ist) folgt aus

$$V_1 \subseteq \mathcal{V}(\mathfrak{I}(V_1)) \subseteq \mathcal{V}(\mathfrak{I}(V_2)) \stackrel{(a)}{=} V_2.$$

- (c) offensichtlich.
- (d) $\mathfrak{I}(V_1) \subseteq \mathfrak{I}(V_2) \subseteq \cdots$ wird stationär, weil $k[\underline{x}]$ noethersch ist. Ist $\mathfrak{I}(V_i) = \mathfrak{I}(V_{i+1})$, so auch $V_i = V_{i+1}$ nach (b).

I.2.8 Beispiel.

1. $\Im(\emptyset) = \langle 1 \rangle = k[\underline{x}]$

 $\mathfrak{I}(\mathbb{A}^n)=\{0\} \ (\text{Ist } 0 \neq f \in k[\underline{x}], \text{ so existient } \xi \in K^n \text{ mit } f(\xi) \neq 0, \text{ wegen } |K|=\infty)$

2. Einige Beispiele:

$$\begin{array}{c|cccc} f & \mathcal{V}(f) \\ \hline x_1^2 + x_2^2 - 1 & \\ x_1 x_2 & \\ x_2^2 - x_1^2 - x_1^3 & \\ x_2^2 - x_1^3 & \\ x_1^2 + x_2^2 & \\ \end{array}$$

In
$$\mathbb{A}^3$$
:

$$\frac{f}{x_1^2 + x_2^2 - 1} \\
x_1^2 + x_2^2 - x_3^2 - 1 \\
x_1^2 - x_2^2 x_3$$

3. Ist $V = \mathcal{V}(f)$ mit $f \in k[\underline{x}] \setminus k$, so heißt V eine Hyperfläche in \mathbb{A}^n .

- 4. Ist $V = \mathcal{V}_{\mathbb{A}^n}(f_1, \dots, f_r)$ mit $\deg(f_i) = 1$, so heißt (ist) V ein affin-linearer Teilraum des \mathbb{A}^n .
- 5. Endliche Teilmengen von k^n sind affine k-Varietäten in \mathbb{A}^n : Ist $\xi = (\xi_1, \dots, \xi_n) \in k^n$, so ist $\{\xi\} = \mathcal{V}(x_1 \xi_1, \dots, x_n \xi_n)$.
- 6. Rational parametrisierte Varietäten:

$$\mathcal{V}(x_1^2 - x_2^3 = \left\{ (t^2, t^3) \mid t \in \mathbb{A}^n \right\})$$

$$\mathcal{V}(x_1^2 - x_2^2 - 1) = \left\{ \left(\frac{t^2 + 1}{t^2 - 1}, \frac{2t}{t^2 - 1} \right) \mid t \in \mathbb{A}^n \setminus \{\pm 1\} \right\} \cup \{(1, 0)\}$$

I.2.9 Theorem. (Hilbertscher Nullstellensatz, körpertheoretische Form)

Sei $k \subseteq F$ eine Körpererweiterung. Ist F als k-Algebra endlich erzeugt, so ist $k \subseteq F$ endlich algebraisch.

Beweis.

Es gibt $0 \neq \alpha_1, \ldots, \alpha_n \in F$ mit $F = k[\alpha_1, \ldots, \alpha_n]$. Durch Induktion nach n zeigen wir F/k ist algebraisch.

n=1: Es gibt $p\in k[\alpha_1]$ mit $\frac{1}{\alpha_1}=p(\alpha_1)$, also ist α_1 algebraisch über k.

 $n-1 \to n$: Es ist auch $F = k(\alpha_1)[\alpha_2, \dots, \alpha_n]$. Durch Induktion sind $\alpha_2, \dots, \alpha_n$ algebraisch über $k(\alpha_1)$. Es genügt daher zu zeigen, dass α_1 algebraisch über k ist. Es gibt Gleichungen

$$u_i \alpha_i^{d_i} + \sum_{j=1}^{d_i - 1} v_{ij} \alpha_i^j = 0$$

in F $(i=1,\ldots,n)$ mit $u_i,v_{ij}\in k[\alpha_1],u_i\neq 0$. Dividiere durch u_i , daraus folgt, dass α_i ganz über $k[\alpha_1,\frac{1}{u_i}]\subseteq k(\alpha_1)$ ist $(i=2,\ldots,n)$. Für $u:=u_2\cdots u_n$ gilt also $0\neq u\in k[\alpha_1]$ und α_2,\ldots,α_n sind ganz über $k[\alpha_1,\frac{1}{u}]$. Also ist $k[\alpha_1,\frac{1}{u}]\subseteq F$ eine ganze Ringerweiterung. Angenommen α_i ist transzendent über k. Wähle $f\in k[\alpha_1]$ irreduzibel mit $f\nmid u$. Es gibt eine Ganzheitsgleichung für $\frac{1}{f}$: $\left(\frac{1}{f}\right)^m+b_1\left(\frac{1}{f}\right)^{m-1}+\cdots+b_m=0$ in F mit $b_1,\ldots b_m\in k[\alpha_1,\frac{1}{u}]$. Multiplizieren mit f^m und einer hohen Potenz von u liefert eine Gleichung $u^N+c_1f+\cdots+c_mf^m=0$ mit $N\geq 0,c_1,\ldots,c_m\in k[\alpha_1]$. Widerspruch zu $f\nmid u$ und f irreduzibel.

I.2.10 Korollar.

Ist k ein Körper, A eine endlich erzeugte k-Algebra. Dann ist für jedes maximale Ideal \mathfrak{m} von A A/\mathfrak{m} eine endliche Körpererweiterung von k.

Beweis.

 A/\mathfrak{m} ist eine endlich erzeugte k-Algebra (und Körpererweiterung), also $[A/\mathfrak{m}:k]<\infty$ nach 2.9.

I.2.11 Korollar. (Hilbertscher Nullstellensatz, geometrische Form) Für jedes Ideal $I \neq \langle 1 \rangle$ in $k[\underline{x}]$ ist $\mathcal{V}(I) \neq \emptyset$.

Beweis.

Es gibt ein maximales Ideal $\mathfrak{m} \subseteq k[\underline{x}]$ mit $I \subseteq \mathfrak{m}$, also $\left[\frac{k[\underline{x}]}{\mathfrak{m}} : k\right] < \infty$ nach Korollar 2.10. Es gibt eine k-Einbettung $\varphi : k[\underline{x}]/\mathfrak{m} \to K$. Setze $\xi_i := \varphi(x_i + \mathfrak{m}) \in K$ (i = 1, ..., n), $\xi := (\xi_1, ..., \xi_n)$.

Behauptung: $\xi \in \mathcal{V}(I)$.

Begründung:

Für $f \in k[\underline{x}]$ ist $\varphi(f + \mathfrak{m}) = f(\xi)$, denn $f \in I \implies f \in \mathfrak{m} \implies f(\xi) = 0$.

I.2.12 Bemerkung.

Haben $f_1, \ldots, f_r \in k[\underline{x}]$ <u>keine</u> gemeinsame Nullstelle in \mathbb{A}^n , so existieren $g_1, \ldots, g_r \in k[\underline{x}]$ mit $f_1g_1 + \cdots + f_rg_r = 1$.

I.2.13 Theorem. Hilbertscher Nullstellensatz, Idealtheoretische Version Für jedes Ideal $I \subseteq k[\underline{x}]$ ist $\mathfrak{I}(\mathcal{V}(I)) = \sqrt{I}$.

NB: Aus 2.13 folgt sofort wieder 2.11

Beweis. $I \subseteq \mathfrak{I}(\mathcal{V}(I))$ ist klar, also auch $\sqrt{I} \subseteq \mathfrak{I}(\mathcal{V}(I))$. Umgekehrt sei $0 \neq f \in \mathfrak{I}(\mathcal{V}(I))$. Sei J :=das von I und von tf - 1 erzeugte Ideal in $k[\underline{x}, t] = k[x_1, \dots, x_n, t]$. Es ist $\mathcal{V}_{\mathbb{A}^{n+1}}(J) \neq \emptyset$, denn sei $(\xi, \tau) \in \mathbb{A}^n \times \mathbb{A}^1$ mit $(\xi, \tau) \in \mathcal{V}(J)$, dann $\xi \in \mathcal{V}(I)$ und $\tau \underbrace{f(\xi)}_{0} = 1$,

Widerspruch. Also $J = \langle 1 \rangle$ in $k[\underline{x}, t]$.

Nach 2.11 haben wir eine Identität $1 = p \cdot (tf - 1) + \sum_{i=1}^{r} q_i f_i$ mit $r \geq 0, p, q_1, \dots, q_r \in k[\underline{x}, t], f_1, \dots, f_r \in I$. Substituiere dann $t = \frac{1}{f}$, d.h. betrachte den $k[\underline{x}]$ -Homomorphismus $\varphi : k[\underline{x}, t] \to k[\underline{x}, \frac{1}{f}] \subseteq k(\xi)$ mit $\varphi(t) = \frac{1}{f}$. Das gibt

$$1 = \sum_{i=1}^{r} \varphi(q_i) f_i$$

in $k[\underline{x}, \frac{1}{f}]$. Dabei ist $\varphi(q_i) = \frac{g_i}{f^{e_i}}$ mit $e_i \geq 0, f_i \in k[\underline{x}]$. Multipliziere (*) mit einer hohen Potenz von f. Es folgt $f^e \in \langle f_1, \dots, f_r \rangle \subseteq I$ (in $k[\underline{x}]$), also $f \in \sqrt{I}$.

I.2.14 Beispiel.

Sei $V = \mathcal{V}(f)$ eine Hyperfläche, $f \in k[\underline{x}] \setminus k$. Dann ist $\mathfrak{I}(V) = \langle g \rangle$ mit $\langle g \rangle = \sqrt{\langle f \rangle}$, g ist das Produkt der <u>verschiedenen</u> irreduziblen Faktoren von f.

I.2.15 Korollar.

Für Ideale $I, J \subseteq k[\underline{x}]$ gilt $\mathcal{V}(I) \subseteq \mathcal{V}(J) \iff \sqrt{I} \supseteq \sqrt{J}$.

Beweis. $V(I) \subseteq V(J) \iff \Im(V(I)) \supseteq \Im(V(J)) \stackrel{2.13}{\Longleftrightarrow} \sqrt{I} \supseteq \sqrt{J}$

I.2.16 Korollar.

$$\left\{ \begin{array}{l} \text{affine } k\text{-Variet\"{a}ten} \\ V\text{in } \mathbb{A}^n \end{array} \right\} \rightarrow \left\{ \begin{array}{l} \text{Ideale } I \subseteq k[\underline{x}] \\ \text{mit } \sqrt{I} = I \end{array} \right\}$$

$$V \mapsto \Im(V)$$

ist eine (\subseteq -umkehrende) Bijektion mit Umkehrabbildung $\mathcal{V}(I) \leftarrow I$

Beweis. 2.7 und 2.13.
$$\Box$$

I.2.17 Korollar.

(a) Seien $V_{\lambda} \subseteq \mathbb{A}^n$ ($\lambda \in \Lambda$) affine k-Varietäten, dann ist

$$\Im\left(\bigcap_{\lambda\in\Lambda}V_{\lambda}\right)=\sqrt{\sum_{\lambda\in\Lambda}\Im(V_{\lambda})}.$$

(b) Seien $V \subseteq \mathbb{A}^m, W \subseteq \mathbb{A}^n$ affine k-Varietäten, dann ist $\mathfrak{I}(V \times W) = \sqrt{I}$ mit $I := \text{das von } \mathfrak{I}(V) \subseteq k[\underline{x}] \text{ und } \mathfrak{I}(W) \subseteq k[\underline{y}]$ erzeugte Ideal in $k[x_1, \ldots, x_n, y_1, \ldots, y_n]$.

I.3. Die Zariskitopologie

I.3.1 Definition.

- (a) Die k-Zariskitopologie auf \mathbb{A}^n hat genau die affinen k-Varietäten in \mathbb{A}^n als abgeschlossene Mengen. Diese Mengen nennen wir auch die k-abgeschlossenen Mengen.
- (b) Für eine Teilmenge $X\subseteq \mathbb{A}^n$ definieren wir die k-Zariskitopologie auf X als die Relativtopologie .

Bemerkung: Vergleiche Lemma 2.4(a)-(c). Die offenen k-Varietäten in \mathbb{A}^n sind stabil unter endlicher Vereinigung und beliebigem Schnitt (und enthält \emptyset).

- **I.3.2 Bemerkung.** 1. Für $X \subseteq \mathbb{A}^n$ sei $\overline{X} := \text{der Abschluss von } X$ in der k-Zariskitopologie. Es ist $\overline{X} = \mathcal{V}(\mathfrak{I}(X))$, denn " \subseteq " ist klar und $\mathcal{V}(\mathfrak{I}(X)) \subseteq \mathcal{V}(\mathfrak{I}(\overline{X})) \stackrel{2.7(a)}{=} \overline{X}$
 - 2. Für $f \in k[\underline{x}]$ ist $D(f) = D_{\mathbb{A}^n}(f) = \{\xi \in \mathbb{A}^n \mid f(\xi) \neq 0\} = \mathbb{A}^n \setminus \mathcal{V}(f)$ eine k-offene Menge. Jede k-offene Menge hat die Form $D(f_1) \cup \cdots \cup D(f_r)$ mit $f_i \in k[\underline{x}]$
 - 3. Die Zariskitopologie ist "sehr nicht-Hausdorff", z.B. $k = \mathbb{C} = K$. Die abgeschlossenen Mengen in \mathbb{A}^1 sind nur \mathbb{A}^1 sowie alle endlichen Mengen.
 - 4. Die Zariskitopologie auf $\mathbb{A}^n \times \mathbb{A}^n$ ist <u>nicht</u> die Produkttopologie! (Aufgabe 7)
 - 5. Ist $k \subseteq E \subseteq K$ ein Zwischenkörper, so ist die E-Zariskitopologie im allgemeinen strikt feiner als die k-Zariskitopologie.

I.3.3 Definition.

Sei X ein topologischer Raum.

- (a) X heißt <u>irreduzibel</u>, falls $X \neq \emptyset$ und gilt: Sind $X_1, X_2 \subseteq X$ abgeschlossen und $X = X_1 \cup X_2$, so ist $X_1 = X$ oder $X_2 = X$. Andernfalls heißt X <u>reduzibel</u>.
- (b) $Y \subseteq X$ heißt eine irreduzible Komponente von X, falls Y irreduzibel, aber jede echte Obermenge von Y in X reduzibel ist.

I.3.4 Lemma.

Sei $X \neq \emptyset$ ein topologischer Raum.

- (a) Es sind äquivalent
 - (i) X ist irreduzibel
 - (ii) jede offene Menge $\neq \emptyset$ in X ist dicht in X.
 - (iii) Je zwei nichtleere offenen Mengen in X haben nichtleeren Schnitt.
- (b) Für $Y \subseteq X$ gilt Y ist irreduzibel genau dann, wenn \overline{Y} irreduzibel ist.
- (c) Die irreduziblen Komponenten von X sind abgeschlossen

I.3.5 Bemerkung.

- 1. \mathbb{A}^n ist irreduzibel: Für $f, g \in k[\underline{x}] \setminus k$ ist $D(f) \cap D(g) = D(fg) \neq \emptyset$.
- 2. Ein Hausdorffraum X ist irreduzibel genau dann, wenn |X|=1.

I.3.6 Lemma.

Sei X ein topologischer Raum. Jede irreduzible Teilmenge von X ist in einer irreduziblen Komponente von X enthalten. Insbesondere ist X Vereinigung seiner irreduziblen Komponenten.

Beweis. Sei $Y \subseteq X$ irreduzibel. Betrachte $\mathcal{M} := \{Z \subseteq X \mid Z \text{ irreduzibel}, Z \supseteq Y\}$. Ist $(Z_i)_{i \in I}$ eine bezüglich Inklusion total geordnete Familie in \mathcal{M} , so ist $Z := \bigcup_{i \in I} Z_i$ irreduzibel, also $Z \in \mathcal{M}$: Benutze 3.4(a)(iii). Seien $U_1, U_2 \subseteq X$ offen mit $U_j \cap Z \neq \emptyset$ (j = 1, 2). Dann gibt es $i_1, i_2 \in I$ mit $U_1 \cap Z_{i_1} \neq \emptyset$ und $U_2 \cap Z_{i_2} \neq \emptyset$. Wir können erreichen, dass $i_1 = i_2 =: i$. Wegen Z_i irreduzibel ist $U_1 \cap U_2 \cap Z_i \neq \emptyset$.

I.3.7 Definition.

Ein topologischer Raum X heißt <u>noethersch</u>, wenn jede absteigende Folge $Z_1 \supseteq Z_2 \supseteq \cdots$ von abgeschlossenen Teilmengen von X stationär wird.

I.3.8 Lemma.

Es sind äquivalent:

- (i) X ist noethersch.
- (ii) Jedes System $\neq \emptyset$ aus abgeschlossenen Teilmengen hat ein minimales Element.
- (iii) Jede offene Menge in X ist quasikompakt

Beweis. (i) \iff (ii) ist klar, (i) \iff jede aufsteigende Folge offener Mengen wird stationär - Das ist (iii).

I.3.9 Bemerkung.

- 1. Jede affine k-Varietät ist ein noetherscher topologischer Raum.
- 2. Jeder Teilraum eines noetherschen Raumes ist noethersch.

I.3.10 Satz.

Ein noetherscher topologischer Raum hat nur endlich viele irreduzible Komponenten.

Beweis. Sei \mathcal{M} die Menge aller abgeschlossenen Mengen $\emptyset \neq Y \subseteq X$, die <u>nicht</u> Vereinigung von endlich vielen irreduziblen sind. Zu zeigen ist $\mathcal{M} = \emptyset$. Angenommen, $\mathcal{M} \neq \emptyset$. Nach 3.8(ii) existiert ein minimales $Y \in \mathcal{M}$. Y ist reduzible, etwa $Y = Y_1 \cup Y_2$ mit abgeschlossenen $Y_i \subsetneq Y$ (i = 1, 2). Also $Y_1, Y_2 \notin \mathcal{M}$, also $Y \notin \mathcal{M} \not \in \mathbb{A}$. Also $\mathcal{M} = \emptyset$, das heißt, es gibt irreduzible abgeschlossene $X_1, \ldots, X_r \subseteq X$ mit $X = X_1 \cup \cdots \cup X_r$. Ohne Einschränkung $X_i \not\subseteq X_j$ für $i \neq j$. Dann sind X_1, \ldots, X_r die irreduziblen Komponenten von X. Denn sei $Y \subseteq X$ eine irreduzible Teilmenge von $X \cdot Y = (Y \cap X_1) \cup \cdots \cup (Y \cap X_r)$, also $Y \cap X_i = Y$ für ein i, also $Y = X_i$.

I.3.11 Bemerkung. -

I.3.12 Korollar.

Sei $V \subseteq \mathbb{A}^n$ eine affine k-Varietät. Dann gibt es endlich viele irreduzible k-Varietäten $V_1, \ldots, V_r \subseteq \mathbb{A}^n$ mit $V = V_1 \cup \cdots \cup V_r$ und $V_i \not\subseteq V_j$ für $i \neq j$. Dadurch sind V_1, \ldots, V_r eindeutig bestimmt (bis auf Reihenfolge) und sind die k-irreduziblen Komponenten von V.

I.3.13 Satz.

Sei V eine affine k-Varietät. Dann ist V genau dann k-irreduzibel, wenn $\mathfrak{I}_k(V)$ ein Primideal in $k[\underline{x}]$ ist.

Beweis. Inhalt...