

Determining DNA Health ★

19 more points to get your first star!

Rank: 2938780 | Points: 11/30

Problem Submissions Leaderboard Editorial 🛆

DNA is a nucleic acid present in the bodies of living things. Each piece of DNA contains a number of genes, some of which are beneficial and increase the DNA's total health. Each gene has a health value, and the total health of a DNA is the sum of the health values of all the beneficial genes that occur as a substring in the DNA. We represent genes and DNA as non-empty strings of lowercase English alphabetic letters, and the same gene may appear multiple times as a substring of a DNA.

Given the following:

- An array of beneficial gene strings, $genes = [g_0, g_1, \dots, g_{n-1}]$. Note that these gene sequences are not guaranteed to be distinct.
- An array of gene health values, $health = [h_0, h_1, \dots, h_{n-1}]$, where each h_i is the health value for gene g_i .
- A set of s DNA strands where the definition of each strand has three components, start, end, and d, where string d is a DNA for which genes $g_{start}, \ldots, g_{end}$ are healthy.

Find and print the respective total healths of the unhealthiest (minimum total health) and healthiest (maximum total health) strands of DNA as two space-separated values on a single line.

Input Format

The first line contains an integer, n, denoting the total number of genes.

The second line contains n space-separated strings describing the respective values of $g_0, g_1, \ldots, g_{n-1}$ (i.e., the elements of genes). The third line contains n space-separated integers describing the respective values of $h_0, h_1, \ldots, h_{n-1}$ (i.e., the elements of health). The fourth line contains an integer, s, denoting the number of strands of DNA to process.

Each of the s subsequent lines describes a DNA strand in the form start end d, denoting that the healthy genes for DNA strand d are $g_{start}, \ldots, g_{end}$ and their respective correlated health values are $h_{start}, \ldots, h_{end}$.

Constraints

- $1 < n, s < 10^5$
- $0 \le h_i \le 10^7$
- $0 \le first \le last < n$
- ullet 1 \leq the sum of the lengths of all genes and DNA strands \leq $2 imes 10^6$
- It is guaranteed that each g_i consists of lowercase English alphabetic letters only (i.e., a to z).

Output Format

Print two space-separated integers describing the respective total health of the unhealthiest and the healthiest strands of DNA.

Sample Input 0

```
6
a b c aa d b
1 2 3 4 5 6
3
1 5 caaab
0 4 xyz
2 4 bcdybc
```

0 19

Explanation 0

In the diagrams below, the ranges of beneficial genes for a specific DNA on the left are highlighed in green and individual instances of beneficial genes on the right are bolded. The total healths of the s=3 strands are:

1.

The total health of caaab is 3+4+4+2+6=19.

d = xyz, first = 0, last = 4										
indices	0	1	2	3	4	5			,	
genes	а	b	С	aa	d	b	gene	xyz		
health	1	2	3	4	5	6	value	0		
									٠.	

2.

The total health of xyz is 0, because it contains no beneficial genes.

d = bcdybc, first = 2, last = 4											
indices	0	1	2	3	4	5					
genes	a	b	С	aa	d	b	gene	b c dybc	bc d ybc	bcdyb c	
health	1	2	3	4	5	6	value	3	5	3	

3.

The total health of bcdybc is 3 + 5 + 3 = 11.

The unhealthiest DNA strand is xyz with a total health of 0, and the healthiest DNA strand is caaab with a total health of 19. Thus, we print 0 19 as our answer.

```
Change Theme Language C#  

1  using System.CodeDom.Compiler;
2  using System.Collections.Generic;
3  using System.Collections;
4  using System.ComponentModel;
5  using System.Diagnostics.CodeAnalysis;
6  using System.Globalization;
7  using System.IO;
8  using System.Linq;
9  using System.Reflection;
10  using System.Runtime.Serialization;
11  using System.Text.RegularExpressions;
```

```
using System; Text;
    class Solution
        public static void Main(string[] args)
            int n = Convert.ToInt32(Console.ReadLine().Trim());
            List<string> genes = Console.ReadLine().TrimEnd().Split(' ').ToList();
            List<int> health = Console.ReadLine().TrimEnd().Split(' ').ToList().Select
    (healthTemp => Convert.ToInt32(healthTemp)).ToList();
            int s = Convert.ToInt32(Console.ReadLine().Trim());
             for (int sItr = 0; sItr < s; sItr++)</pre>
                string[] firstMultipleInput = Console.ReadLine().TrimEnd().Split(' ');
                int first = Convert.ToInt32(firstMultipleInput[0]);
                int last = Convert.ToInt32(firstMultipleInput[1]);
                string d = firstMultipleInput[2];
            }
        }
    }
                                                                                    Line: 41 Col: 1
                                                                        Run Code
                                                                                      Submit Code
Test against custom input
```

Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy