Contents

Pı	reface	xxvii
1	Intro	uction 1
	1.1	What is machine learning? 1
	1.2	Supervised learning 1
		.2.1 Classification 2
		.2.2 Regression 8
		.2.3 Overfitting and generalization 12
		.2.4 No free lunch theorem 13
	1.3	Jusupervised learning 14
		.3.1 Clustering 14
		.3.2 Discovering latent "factors of variation" 15
		.3.3 Self-supervised learning 16
		.3.4 Evaluating unsupervised learning 16
	1.4	Reinforcement learning 17
	1.5	Data 19
		.5.1 Some common image datasets 19
		.5.2 Some common text datasets 21
		.5.3 Preprocessing discrete input data 23
		.5.4 Preprocessing text data 24
		.5.5 Handling missing data 26
	1.6	Discussion 27
		.6.1 The relationship between ML and other fields 27
		.6.2 Structure of the book 28
		.6.3 Caveats 28
Ι	Fou	dations 29
2	Prob	bility: Univariate Models 31
	2.1	ntroduction 31
		2.1.1 What is probability? 31

X CONTENTS

	2.1.2	Types of uncertainty 31
	2.1.3	Probability as an extension of logic 32
2.2	Rando	m variables 33
	2.2.1	Discrete random variables 33
	2.2.2	Continuous random variables 34
	2.2.3	Sets of related random variables 36
	2.2.4	Independence and conditional independence 37
	2.2.5	Moments of a distribution 38
	2.2.6	Limitations of summary statistics * 41
2.3	Bayes'	rule 43
	2.3.1	Example: Testing for COVID-19 44
	2.3.2	Example: The Monty Hall problem 45
	2.3.3	Inverse problems * 47
2.4	Bernou	alli and binomial distributions 47
	2.4.1	Definition 47
	2.4.2	Sigmoid (logistic) function 48
	2.4.3	Binary logistic regression 50
2.5	Catego	rical and multinomial distributions 51
	2.5.1	Definition 51
	2.5.2	Softmax function 52
	2.5.3	Multiclass logistic regression 53
	2.5.4	Log-sum-exp trick 54
2.6	Univar	iate Gaussian (normal) distribution 55
	2.6.1	Cumulative distribution function 55
	2.6.2	Probability density function 56
	2.6.3	Regression 57
	2.6.4	Why is the Gaussian distribution so widely used? 58
	2.6.5	Dirac delta function as a limiting case 58
2.7		other common univariate distributions * 59
	2.7.1	Student t distribution 59
	2.7.2	·
	2.7.3	1
	2.7.4	
	2.7.5	
	2.7.6	P
2.8		ormations of random variables * 64
		Discrete case 64
	2.8.2	Continuous case 64
	2.8.3	Invertible transformations (bijections) 65
	2.8.4	Moments of a linear transformation 67
	2.8.5	The convolution theorem 68
	2.8.6	Central limit theorem 69
0.0	2.8.7	Monte Carlo approximation 70
2.9	Exercis	ses 71

CONTENTS xi

3	Prol	bability:	Multivariate Models 75
	3.1	Joint di	stributions for multiple random variables 75
		3.1.1	Covariance 75
		3.1.2	Correlation 76
		3.1.3	Uncorrelated does not imply independent 77
		3.1.4	Correlation does not imply causation 77
		3.1.5	Simpson's paradox 78
	3.2	The mu	ltivariate Gaussian (normal) distribution 79
		3.2.1	Definition 79
		3.2.2	Mahalanobis distance 81
		3.2.3	Marginals and conditionals of an MVN * 82
		3.2.4	Example: conditioning a 2d Gaussian 83
		3.2.5	Example: Imputing missing values * 83
	3.3	Linear	Gaussian systems * 84
		3.3.1	Bayes rule for Gaussians 85
		3.3.2	Derivation * 85
		3.3.3	Example: Inferring an unknown scalar 86
		3.3.4	Example: inferring an unknown vector 88
		3.3.5	Example: sensor fusion 89
	3.4	-	ponential family * 90
		3.4.1	Definition 90
		3.4.2	Example 91
		3.4.3	Log partition function is cumulant generating function 92
		3.4.4	Maximum entropy derivation of the exponential family 92
	3.5		e models 93
		3.5.1	Gaussian mixture models 94
	0.0	3.5.2	Bernoulli mixture models 95
	3.6		ilistic graphical models * 96
		3.6.1	Representation 97
		3.6.2	Inference 99
	3.7	3.6.3 Exercise	Learning 100 es 100
	3.7	Exercise	es 100
4	Stat	istics	103
	4.1	Introdu	ction 103
	4.2	Maximu	ım likelihood estimation (MLE) 103
		4.2.1	Definition 103
		4.2.2	Justification for MLE 104
		4.2.3	Example: MLE for the Bernoulli distribution 106
		4.2.4	Example: MLE for the categorical distribution 107
		4.2.5	Example: MLE for the univariate Gaussian 107
		4.2.6	Example: MLE for the multivariate Gaussian 108
		4.2.7	Example: MLE for linear regression 110
	4.3		eal risk minimization (ERM) 111
		4.3.1	Example: minimizing the misclassification rate 111

xii CONTENTS

	4.3.2	Surrogate loss 112
4.4	Other ϵ	estimation methods * 112
	4.4.1	The method of moments 112
	4.4.2	Online (recursive) estimation 114
4.5	Regular	rization 116
	4.5.1	Example: MAP estimation for the Bernoulli distribution 117
	4.5.2	Example: MAP estimation for the multivariate Gaussian * 118
	4.5.3	Example: weight decay 119
	4.5.4	Picking the regularizer using a validation set 120
	4.5.5	Cross-validation 121
	4.5.6	Early stopping 123
	4.5.7	Using more data 123
4.6	Bayesia	n statistics * 124
	4.6.1	Conjugate priors 125
	4.6.2	The beta-binomial model 125
	4.6.3	The Dirichlet-multinomial model 133
	4.6.4	The Gaussian-Gaussian model 137
	4.6.5	Beyond conjugate priors 140
	4.6.6	Credible intervals 141
	4.6.7	Bayesian machine learning 143
	4.6.8	Computational issues 147
4.7	Frequer	ntist statistics * 150
	4.7.1	Sampling distributions 150
	4.7.2	Gaussian approximation of the sampling distribution of the MLE 151
	4.7.3	Bootstrap approximation of the sampling distribution of any estimator 151
	4.7.4	Confidence intervals 153
	4.7.5	Caution: Confidence intervals are not credible 154
	4.7.6	The bias-variance tradeoff 155
4.8	Exercis	es 160
Deci	sion Th	neory 163
5.1		an decision theory 163
0.1	5.1.1	Basics 163
	5.1.1	Classification problems 165
	5.1.3	ROC curves 167
	5.1.4	Precision-recall curves 170
	5.1.5	Regression problems 172
	5.1.6	Probabilistic prediction problems 173
5.2		an hypothesis testing 175
J	5.2.1	Example: Testing if a coin is fair 176
	5.2.2	Bayesian model selection 177
	5.2.3	Occam's razor 178
	5.2.4	Connection between cross validation and marginal likelihood 179
	5.2.5	Information criteria 180
5.3		ntist decision theory 182

5

		5.3.1	Computing the risk of an estimator 182
		5.3.2	Consistent estimators 185
		5.3.3	Admissible estimators 185
	5.4	Empiric	al risk minimization 186
		5.4.1	Empirical risk 186
		5.4.2	Structural risk 188
		5.4.3	Cross-validation 189
		5.4.4	Statistical learning theory * 189
	5.5	Frequen	tist hypothesis testing * 191
		5.5.1	Likelihood ratio test 191
		5.5.2	Null hypothesis significance testing (NHST) 192
		5.5.3	p-values 193
		5.5.4	p-values considered harmful 193
		5.5.5	Why isn't everyone a Bayesian? 195
	5.6	Exercise	s 197
6	Info	rmation	Theory 199
	6.1	Entropy	199
		6.1.1	Entropy for discrete random variables 199
		6.1.2	Cross entropy 201
		6.1.3	Joint entropy 201
		6.1.4	Conditional entropy 202
		6.1.5	Perplexity 203
		6.1.6	Differential entropy for continuous random variables * 204
	6.2		entropy (KL divergence) * 205
		6.2.1	Definition 205
		6.2.2	Interpretation 206
		6.2.3	Example: KL divergence between two Gaussians 206
		6.2.4	Non-negativity of KL 206
		6.2.5	KL divergence and MLE 207
		6.2.6	Forward vs reverse KL 208
	6.3		information * 209
		6.3.1	Definition 209
		6.3.2	Interpretation 210
		6.3.3	Example 210
		6.3.4	Conditional mutual information 211
		6.3.5	MI as a "generalized correlation coefficient" 212
		6.3.6	Normalized mutual information 213
		6.3.7	Maximal information coefficient 213
		6.3.8	Data processing inequality 215
		6.3.9	Sufficient Statistics 216
		6.3.10	Fano's inequality * 217
	6.4	Exercise	es 218
7	Line	ar Algel	ora 221

XiV CONTENTS

7.1	Introdu	action 221
	7.1.1	Notation 221
	7.1.2	Vector spaces 224
	7.1.3	Norms of a vector and matrix 226
	7.1.4	Properties of a matrix 228
	7.1.5	Special types of matrices 231
7.2	Matrix	multiplication 234
	7.2.1	Vector–vector products 234
	7.2.2	Matrix-vector products 235
	7.2.3	Matrix-matrix products 235
	7.2.4	Application: manipulating data matrices 237
	7.2.5	Kronecker products * 240
	7.2.6	Einstein summation * 240
7.3	Matrix	inversion 241
	7.3.1	The inverse of a square matrix 241
	7.3.2	Schur complements * 242
	7.3.3	The matrix inversion lemma * 243
	7.3.4	Matrix determinant lemma * 243
	7.3.5	Application: deriving the conditionals of an MVN * 244
7.4		alue decomposition (EVD) 245
	7.4.1	Basics 245
	7.4.2	Diagonalization 246
	7.4.3	Eigenvalues and eigenvectors of symmetric matrices 247
	7.4.4	Geometry of quadratic forms 248
	7.4.5	Standardizing and whitening data 248
	7.4.6	Power method 250
	7.4.7	Deflation 251
	7.4.8	Eigenvectors optimize quadratic forms 251
7.5	_	ar value decomposition (SVD) 251
	7.5.1	Basics 251
	7.5.2	Connection between SVD and EVD 252
	7.5.3	Pseudo inverse 253
	7.5.4	SVD and the range and null space of a matrix * 254
	7.5.5	Truncated SVD 256
7.6		matrix decompositions * 256
		LU factorization 256
	7.6.2	QR decomposition 257
		Cholesky decomposition 258
7.7		g systems of linear equations * 258
	7.7.1	Solving square systems 259
	7.7.2	Solving underconstrained systems (least norm estimation) 259
- 0	7.7.3	Solving overconstrained systems (least squares estimation) 26.
7.8		calculus 261
	7.8.1	Derivatives 262
	7.8.2	Gradients 262

		7.8.3	Directional derivative 263
		7.8.4	Total derivative * 263
		7.8.5	Jacobian 263
		7.8.6	Hessian 264
		7.8.7	Gradients of commonly used functions 265
	7.9	Exercise	es 266
3	Opti	imizatio	n 269
	8.1	Introdu	ction 269
		8.1.1	Local vs global optimization 269
		8.1.2	Constrained vs unconstrained optimization 27.
		8.1.3	Convex vs nonconvex optimization 271
		8.1.4	Smooth vs nonsmooth optimization 275
	8.2	First-or	der methods 276
		8.2.1	Descent direction 278
		8.2.2	Step size (learning rate) 278
		8.2.3	Convergence rates 280
		8.2.4	Momentum methods 281
	8.3	Second-	order methods 283
		8.3.1	Newton's method 283
		8.3.2	BFGS and other quasi-Newton methods 284
		8.3.3	Trust region methods 285
	8.4	Stochas	tic gradient descent 286
		8.4.1	Application to finite sum problems 287
		8.4.2	Example: SGD for fitting linear regression 287
		8.4.3	Choosing the step size (learning rate) 288
		8.4.4	Iterate averaging 291
		8.4.5	Variance reduction * 291
		8.4.6	Preconditioned SGD 292
	8.5	Constra	ined optimization 295
		8.5.1	Lagrange multipliers 296
		8.5.2	The KKT conditions 297
		8.5.3	Linear programming 299
		8.5.4	Quadratic programming 300
		8.5.5	Mixed integer linear programming * 301
	8.6		al gradient method * 301
		8.6.1	Projected gradient descent 302
		8.6.2	Proximal operator for ℓ_1 -norm regularizer 303
		8.6.3	Proximal operator for quantization 304
		8.6.4	Incremental (online) proximal methods 305
	8.7		optimization * 306
		8.7.1	The general algorithm 306
		8.7.2	The EM algorithm 306
		8.7.3	Example: EM for a GMM 309
	8.8	Blackbo	ox and derivative free optimization 313

8.9 Exercises 314

TT	Linear	Model	315
	THE ALL	vioues	• • • • • • • • • • • • • • • • • • • •

	Line	ar Discı	riminant Analysis 317	
	9.1	Introdu	ction 317	
	9.2		an discriminant analysis 317	
		9.2.1	Quadratic decision boundaries 318	
		9.2.2	Linear decision boundaries 319	
		9.2.3	The connection between LDA and logistic regression 319	
		9.2.4	Model fitting 320	
		9.2.5	Nearest centroid classifier 322	
		9.2.6	Fisher's linear discriminant analysis * 322	
	9.3		Bayes classifiers 326	
		9.3.1	Example models 326	
		9.3.2	Model fitting 327	
		9.3.3	Bayesian naive Bayes 328	
		9.3.4	The connection between naive Bayes and logistic regression 32	9
	9.4		tive vs discriminative classifiers 330	
		9.4.1	Advantages of discriminative classifiers 330	
		9.4.2	Advantages of generative classifiers 331	
	0.5	9.4.3	Handling missing features 331	
	9.5	Exercise	es 332	
10	Logi	stic Reg	gression 333	
	10.1	Introdu	ction 333	
	10.2	D.		
		Binary	logistic regression 333	
		Binary 10.2.1	Linear classifiers 333	
			Linear classifiers 333 Nonlinear classifiers 334	
		10.2.1 10.2.2 10.2.3	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336	
		10.2.1 10.2.2 10.2.3 10.2.4	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339	
		10.2.1 10.2.2 10.2.3 10.2.4 10.2.5	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340	
		10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340	
		10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342	
		10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino 10.3.1	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344 Linear and nonlinear classifiers 345	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino 10.3.1 10.3.2	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344 Linear and nonlinear classifiers 345 Maximum likelihood estimation 345	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino 10.3.1 10.3.2 10.3.3	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344 Linear and nonlinear classifiers 345 Maximum likelihood estimation 345 Gradient-based optimization 347	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino 10.3.1 10.3.2 10.3.3 10.3.4	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344 Linear and nonlinear classifiers 345 Maximum likelihood estimation 345 Gradient-based optimization 347 Bound optimization 347	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344 Linear and nonlinear classifiers 345 Maximum likelihood estimation 345 Gradient-based optimization 347 Bound optimization 349	
	10.3	10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7 10.2.8 Multino 10.3.1 10.3.2 10.3.3 10.3.4	Linear classifiers 333 Nonlinear classifiers 334 Maximum likelihood estimation 336 Stochastic gradient descent 339 Perceptron algorithm 340 Iteratively reweighted least squares 340 MAP estimation 342 Standardization 343 omial logistic regression 344 Linear and nonlinear classifiers 345 Maximum likelihood estimation 345 Gradient-based optimization 347 Bound optimization 347	

CONTENTS xvii

10.4	Robust	logistic regression * 353
	10.4.1	Mixture model for the likelihood 353
	10.4.2	Bi-tempered loss 354
10.5	Bayesia	n logistic regression * 357
	10.5.1	Laplace approximation 357
	10.5.2	Approximating the posterior predictive 358
10.6	Exercise	es 361
11 Line	ar Regr	ression 365
11.1	Introdu	action 365
11.2	Least so	quares linear regression 365
	11.2.1	Terminology 365
	11.2.2	Least squares estimation 366
	11.2.3	Other approaches to computing the MLE 370
	11.2.4	Measuring goodness of fit 374
11.3	Ridge r	egression 375
	11.3.1	Computing the MAP estimate 376
	11.3.2	Connection between ridge regression and PCA 377
	11.3.3	Choosing the strength of the regularizer 378
11.4		egression 379
	11.4.1	MAP estimation with a Laplace prior (ℓ_1 regularization) 379
	11.4.2	Why does ℓ_1 regularization yield sparse solutions? 380
	11.4.3	Hard vs soft thresholding 381
	11.4.4	Regularization path 383
	11.4.5	Comparison of least squares, lasso, ridge and subset selection 384
	11.4.6	Variable selection consistency 386
	11.4.7	Group lasso 387
	11.4.8	Elastic net (ridge and lasso combined) 390
11 5	11.4.9	Optimization algorithms 391
11.5	_	sion splines * 393
	11.5.1	B-spline basis functions 393
	11.5.2	Fitting a linear model using a spline basis 395
	11.5.3	Smoothing splines 395 Generalized additive models 395
11 6	11.5.4	
11.6		
	11.6.1 $11.6.2$	Laplace likelihood 396 Student- t likelihood 398
		Huber loss 398
	11.6.3 $11.6.4$	RANSAC 398
11.7		an linear regression * 399
11.1	11.7.1	Priors 399
	11.7.1 $11.7.2$	Posteriors 399
	11.7.2	Example 400
	11.7.4	Computing the posterior predictive 400
	11.7.1	The advantage of centering 402

xviii CONTENTS

	11.7.6 Dealing with multicollinearity 403
44.0	11.7.7 Automatic relevancy determination (ARD) * 404
11.8	Exercises 405
12 Gen	eralized Linear Models * 409
12.1	Introduction 409
12.2	Examples 409
	12.2.1 Linear regression 410
	12.2.2 Binomial regression 410
	12.2.3 Poisson regression 411
12.3	GLMs with non-canonical link functions 411
	Maximum likelihood estimation 412
12.5	Worked example: predicting insurance claims 413
III D	Deep Neural Networks 417
	ral Networks for Structured Data 419 Introduction 419
13.2	Multilayer perceptrons (MLPs) 420 13.2.1 The XOR problem 421
	13.2.2 Differentiable MLPs 422
	13.2.3 Activation functions 422
	13.2.4 Example models 423
	13.2.5 The importance of depth 428
	13.2.6 The "deep learning revolution" 429
	13.2.7 Connections with biology 429
13.3	Backpropagation 432
	13.3.1 Forward vs reverse mode differentiation 432
	13.3.2 Reverse mode differentiation for multilayer perceptrons 434
	13.3.3 Vector-Jacobian product for common layers 436
	13.3.4 Computation graphs 438
13.4	Training neural networks 440
	13.4.1 Tuning the learning rate 441
	13.4.2 Vanishing and exploding gradients 441
	13.4.3 Non-saturating activation functions 442
	13.4.4 Residual connections 445
	13.4.5 Parameter initialization 446
40 5	13.4.6 Parallel training 447
13.5	Regularization 448
	13.5.1 Early stopping 448
	13.5.2 Weight decay 449
	13.5.3 Sparse DNNs 449
	13.5.4 Dropout 449
	13.5.5 Bayesian neural networks 451

13.6	13.5.6 Regularization effects of (stochastic) gradient descent * 453	51
	13.6.1 Radial basis function networks 453	
	13.6.2 Mixtures of experts 454	
13.7	Exercises 457	
14 Neu	ral Networks for Images 461	
14.1	Introduction 461	
14.2	Common layers 462	
	14.2.1 Convolutional layers 462	
	14.2.2 Pooling layers 469	
	14.2.3 Putting it all together 470	
	14.2.4 Normalization layers 470	
14.3	Common architectures for image classification 473	
	14.3.1 LeNet 473	
	14.3.2 AlexNet 475	
	14.3.3 GoogLeNet (Inception) 476	
	14.3.4 ResNet 477	
	14.3.5 DenseNet 478	
	14.3.6 Neural architecture search 479	
14.4	Other forms of convolution * 479	
	14.4.1 Dilated convolution 479	
	14.4.2 Transposed convolution 481	
	14.4.3 Depthwise separable convolution 482	
14.5	Solving other discriminative vision tasks with CNNs * 482	
	14.5.1 Image tagging 483	
	14.5.2 Object detection 483	
	14.5.3 Instance segmentation 484	
	14.5.4 Semantic segmentation 484	
	14.5.5 Human pose estimation 486	
14.6	Generating images by inverting CNNs * 487	
	14.6.1 Converting a trained classifier into a generative model 48	7
	14.6.2 Image priors 488	
	14.6.3 Visualizing the features learned by a CNN 490	
	14.6.4 Deep Dream 490	
	14.6.5 Neural style transfer 491	
15 Neu	ral Networks for Sequences 497	
15.1	Introduction 497	
15.2	Recurrent neural networks (RNNs) 497	
	15.2.1 Vec2Seq (sequence generation) 497	
	15.2.2 Seq2Vec (sequence classification) 500	
	15.2.3 Seq2Seq (sequence translation) 501	
	15.2.4 Teacher forcing 503	
	15.2.5 Backpropagation through time 504	

	15.2.6	Vanishing and exploding gradients 505
	15.2.7	Gating and long term memory 506
	15.2.8	Beam search 509
15.3	1d CNN	$ m Ns \qquad 510$
	15.3.1	1d CNNs for sequence classification 510
	15.3.2	Causal 1d CNNs for sequence generation 511
15.4	Attenti	
	15.4.1	Attention as soft dictionary lookup 513
	15.4.2	Kernel regression as non-parametric attention 514
	15.4.3	Parametric attention 514
	15.4.4	Seq2Seq with attention 515
	15.4.5	Seq2vec with attention (text classification) 518
	15.4.6	Seq+Seq2Vec with attention (text pair classification) 518
	15.4.7	Soft vs hard attention 519
15.5	Transfo	rmers 520
	15.5.1	Self-attention 520
	15.5.2	Multi-headed attention 521
	15.5.3	Positional encoding 522
	15.5.4	Putting it all together 523
	15.5.5	Comparing transformers, CNNs and RNNs 525
	15.5.6	Transformers for images * 526
	15.5.7	Other transformer variants * 526
15.6	Efficien	t transformers * 527
	15.6.1	Fixed non-learnable localized attention patterns 527
	15.6.2	Learnable sparse attention patterns 528
	15.6.3	Memory and recurrence methods 529
	15.6.4	Low-rank and kernel methods 529
15.7	Langua	ge models and unsupervised representation learning 531
	15.7.1	ELMo 531
	15.7.2	BERT 532
	15.7.3	GPT 536
	15.7.4	
	15.7.5	Discussion 537
IV N	onpar	ametric Models 539
16 Exer	nplar-b	ased Methods 541
16.1	K neare	est neighbor (KNN) classification 541
	16.1.1	Example 542
	16.1.2	The curse of dimensionality 542
	16.1.3	Reducing the speed and memory requirements 544
	16.1.4	Open set recognition 544
16.2	Learnin	g distance metrics 545
	16.2.1	Linear and convex methods 546

Draft of "Probabilistic Machine Learning: An Introduction". August 27, 2021

		16.2.2 Deep metric learning 548
		16.2.3 Classification losses 548
		16.2.4 Ranking losses 549
		16.2.5 Speeding up ranking loss optimization 550
		16.2.6 Other training tricks for DML 553
	16.3	Kernel density estimation (KDE) 554
		16.3.1 Density kernels 554
		16.3.2 Parzen window density estimator 555
		16.3.3 How to choose the bandwidth parameter 556
		16.3.4 From KDE to KNN classification 557
		16.3.5 Kernel regression 557
17	Kerr	nel Methods * 561
	17.1	Mercer kernels 561
	1111	17.1.1 Mercer's theorem 562
		17.1.2 Some popular Mercer kernels 563
	17.2	
		17.2.1 Noise-free observations 568
		17.2.2 Noisy observations 569
		17.2.3 Comparison to kernel regression 570
		17.2.4 Weight space vs function space 571
		17.2.5 Numerical issues 571
		17.2.6 Estimating the kernel 572
		17.2.7 GPs for classification 575
		17.2.8 Connections with deep learning 576
		17.2.9 Scaling GPs to large datasets 577
	17.3	Support vector machines (SVMs) 579
		17.3.1 Large margin classifiers 579
		17.3.2 The dual problem 581
		17.3.3 Soft margin classifiers 583
		17.3.4 The kernel trick 584
		17.3.5 Converting SVM outputs into probabilities 585
		17.3.6 Connection with logistic regression 585
		17.3.7 Multi-class classification with SVMs 586
		17.3.8 How to choose the regularizer C 587
		17.3.9 Kernel ridge regression 588
	17 4	17.3.10 SVMs for regression 589
	17.4	Sparse vector machines 591
		17.4.1 Relevance vector machines (RVMs) 592
	175	17.4.2 Comparison of sparse and dense kernel methods 592
	17.5	Exercises 595
18	Tree	s, Forests, Bagging, and Boosting 597
	18.1	Classification and regression trees (CART) 597
		18.1.1 Model definition 597

CONTENTSxxii

	18.1.2 Model fitting 599
	18.1.3 Regularization 600
	18.1.4 Handling missing input features 600
	18.1.5 Pros and cons 600
18.2	0
	18.2.1 Stacking 602
	18.2.2 Ensembling is not Bayes model averaging 603
18.3	$ m Bagging \qquad 603$
18.4	Random forests 604
18.5	8
	18.5.1 Forward stagewise additive modeling 606
	18.5.2 Quadratic loss and least squares boosting 606
	18.5.3 Exponential loss and AdaBoost 607
	18.5.4 LogitBoost 610
	18.5.5 Gradient boosting 610
18.6	1 0
	18.6.1 Feature importance 615
	18.6.2 Partial dependency plots 617
V B	eyond Supervised Learning 619
۷ Б	cyona Supervisea Learning 013
19 Lea	rning with Fewer Labeled Examples 621
19.1	Data augmentation 621
	19.1.1 Examples 621
	19.1.2 Theoretical justification 622
19.2	Transfer learning 622
	19.2.1 Fine-tuning 623
	19.2.2 Adapters 624
	19.2.3 Supervised pre-training 625
	19.2.4 Unsupervised pre-training (self-supervised learning) 626
	19.2.5 Domain adaptation 631
19.3	0 1
	19.3.1 Self-training and pseudo-labeling 632
	19.3.2 Entropy minimization 633
	19.3.3 Co-training 636
	19.3.4 Label propagation on graphs 637
	19.3.5 Consistency regularization 638
	19.3.6 Deep generative models * 640
40.4	19.3.7 Combining self-supervised and semi-supervised learning 643
19.4	0
	19.4.1 Decision-theoretic approach 644
	19.4.2 Information-theoretic approach 644
10 =	19.4.3 Batch active learning 645
19.5	Meta-learning 645

 \mathbf{V}

CONTENTS xxiii

	19.5.1	Model-agnostic meta-learning (MAML) 646
19.6	Few-sho	ot learning 647
	19.6.1	Matching networks 648
19.7	Weakly	supervised learning 649
19.8	Exercise	es 649
20 Dim	ensional	lity Reduction 651
20.1	Principa	al components analysis (PCA) 651
	20.1.1	Examples 651
	20.1.2	Derivation of the algorithm 653
	20.1.3	Computational issues 656
	20.1.4	Choosing the number of latent dimensions 658
20.2	Factor a	analysis * 660
	20.2.1	Generative model 661
	20.2.2	Probabilistic PCA 662
	20.2.3	EM algorithm for FA/PPCA 663
	20.2.4	Unidentifiability of the parameters 665
	20.2.5	Nonlinear factor analysis 667
	20.2.6	Mixtures of factor analysers 668
	20.2.7	Exponential family factor analysis 669
	20.2.8	Factor analysis models for paired data 670
20.3	Autoene	coders 673
	20.3.1	Bottleneck autoencoders 674
	20.3.2	Denoising autoencoders 676
	20.3.3	Contractive autoencoders 676
	20.3.4	Sparse autoencoders 677
	20.3.5	Variational autoencoders 677
20.4	Manifol	d learning * 682
	20.4.1	What are manifolds? 683
	20.4.2	The manifold hypothesis 683
	20.4.3	Approaches to manifold learning 684
	20.4.4	Multi-dimensional scaling (MDS) 685
	20.4.5	Isomap 688
	20.4.6	Kernel PCA 689
	20.4.7	Maximum variance unfolding (MVU) 691
	20.4.8	Local linear embedding (LLE) 691
	20.4.9	Laplacian eigenmaps 692
		t-SNE 695
20.5		mbeddings 699
	20.5.1	Latent semantic analysis / indexing 699
	20.5.2	Word2vec 701
	20.5.3	GloVE 703
	20.5.4	Word analogies 704
	20.5.5	RAND-WALK model of word embeddings 705
	20.5.6	Contextual word embeddings 705

XXIV

	20.6	Exercise	es	706							
21	Clust	ering	7	09							
	21.1	Introduc	ction	709	9						
		21.1.1	Eval	uating	the outp	out of	cluste	ring me	ethods	709	
	21.2	Hierarch	nical a	agglom	erative o	elusteri	ing	711			
		21.2.1	The	algorit	hm	712					
		21.2.2	Exai	nple	714						
		21.2.3	Exte	nsions	715						
	21.3	K means	s clus	tering	716						
		21.3.1	The	algorit	hm	716					
		21.3.2		_	716						
		21.3.3	Vect	or qua	ntization	7	18				
				_	ns++ al		m	719			
					loids alge	_		19			
		21.3.6		dup tr	_	720					
		21.3.7	_	_		er of o	eluster	s K	720		
	21.4	Clusteri					723				
		21.4.1	Mixt	ures of	f Gaussia	ans	724				
		21.4.2	Mixt	ures o	f Bernou	llis	727				
	21.5	Spectral	clust	tering ;	* 728	3					
		21.5.1	Norr	nalized	l cuts	728					
		21.5.2	Eige	nvecto	rs of the	graph	Lapla	cian er	code the	e clustering	729
		21.5.3	Exai	mple	730						
		21.5.4	Com	nection	with ot	her me	ethods	73	1		
	21.6	Bicluste	ring '	k 7	31						
		21.6.1	Basi	c biclu	stering	732					
		21.6.2	Nest	ed par	tition me	odels (Crosso	cat)	732		
22	Reco	mmend	er Sy	ystem	s 7	35					
	22.1	Explicit	feedl	oack	735						
		22.1.1	Data	sets	735						
		22.1.2	Colla	aborati	ive filteri	ng	736				
					orization	_	'37				
		22.1.4	Auto	encod	ers 7	39					
	22.2	Implicit	feedl	oack	741						
		22.2.1	Baye	esian p	ersonaliz	ed ran	king	741			
		22.2.2	Fact	orizatio	on mach	ines	742				
		22.2.3	Neur	ral mat	rix facto	rizatio	on	743			
	22.3	Leveragi	ing si	de info	rmation	74	13				
	22.4	Explora	$tion$ - ϵ	exploita	ation tra	deoff	744	1			
23	Grap	h Embe	eddir	ngs *	747	•					
	_	Introduc		74'	7						
	23.2				as an En	coder/	Decod	ler Pro	blem	748	
	20.2	Graph I	211100	admig ((111 1111	couci/	2000	.01 1 10	V10111	. 10	

Draft of "Probabilistic Machine Learning: An Introduction". August 27, 2021

	23.3	Shallow graph embeddings 750
		23.3.1 Unsupervised embeddings 751
		23.3.2 Distance-based: Euclidean methods 751
		23.3.3 Distance-based: non-Euclidean methods 752
		23.3.4 Outer product-based: Matrix factorization methods 752
		23.3.5 Outer product-based: Skip-gram methods 753
		23.3.6 Supervised embeddings 755
	23.4	Graph Neural Networks 756
		23.4.1 Message passing GNNs 756
		23.4.2 Spectral Graph Convolutions 757
		23.4.3 Spatial Graph Convolutions 757
		23.4.4 Non-Euclidean Graph Convolutions 759
	23.5	Deep graph embeddings 759
		23.5.1 Unsupervised embeddings 760
		23.5.2 Semi-supervised embeddings 762
	23.6	Applications 763
		23.6.1 Unsupervised applications 763
		23.6.2 Supervised applications 765
A	Nota	ation 767
	A.1	Introduction 767
	A.2	Common mathematical symbols 767
	A.3	Functions 768
		A.3.1 Common functions of one argument 768
		A.3.2 Common functions of two arguments 768
		A.3.3 Common functions of > 2 arguments 768
	A.4	Linear algebra 769
		A.4.1 General notation 769
		A.4.2 Vectors 769
		A.4.3 Matrices 769
		A.4.4 Matrix calculus 770
	A.5	Optimization 770
	A.6	Probability 771
	A.7	Information theory 771
	A.8	Statistics and machine learning 772
		A.8.1 Supervised learning 772
		A.8.2 Unsupervised learning and generative models 772
		A.8.3 Bayesian inference 772
	A.9	Abbreviations 773

Bibliography 792