Claims

 A method of adhering or sealing surfaces, said method comprising applying to at least one surface, a compound of formula (I)

where R^1 is CH and R^6 is a bond, or R^1 and R^6 together form an electron withdrawing group;

 R^2 and R^3 are independently selected from $(CR^8'R^8)_n$, or a group CR^9R^{10} , $-(CR^8'R^8CR^9R^{10})$ - or $-(CR^9R^{10}CR^8'R^8)$ - where n is 0, 1 or 2, R^8 and R^8 are independently selected from hydrogen or alkyl, and either one of R^9 or R^{10} is hydrogen and the other is an electron withdrawing group, or R^9 and R^{10} together form an electron withdrawing group,

 R^4 and R^5 are independently selected from CH or CR^{11} where R^{11} is an electron withdrawing group, and

R⁷ is hydrogen, an optionally substituted hydrocarbyl group, a perhaloalkyl group or a functional group;

the dotted lines indicate the presence or absence of a bond, and X^1 is a group CX^2X^3 where the dotted line bond to which it is attached is absent and a group CX^2 where the dotted line bond to which it is attached is present, Y^1 is a group CY^2Y^3 where the dotted line bond to which it is attached is absent and a group CY^2 where the dotted line bond to which it is attached is present, and X^2 , X^3 , Y^2 and Y^3 are independently selected from

hydrogen and fluorine;
provided that at least one of (a) R¹ and R⁶ or (b) R² and R³ or

(c) R⁴ and R⁵ includes an electron withdrawing group;
and where necessary, a polymerisation initiator, allowing the compound of formula (I) to polymerise in contact with a second surface such that the said surfaces are adhered or sealed.

15

20

25

. 5

2. A method according to claim 1 wherein the compound of formula (I) is a compound of formula (IA)

where R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , X^2 , X^3 , Y^2 and Y^3 are as defined in claim 1.

- 10 3. A method according to claim 1 or claim 2 wherein the compound of formula (I) is polymerised under the influence of radiation or an electron beam, or by reaction with a chemical initiator.
- 15 4. A method according to claim 3 wherein the compound of formula (I) is polymerisable under the influence of ultra violet or thermal radiation.
- 5. A method according to claim 4 wherein the compound of 20 formula (I) is curable under the influence of ultraviolet light.
 - 6. A method according to claim 5 which comprises a polymerisation initiator which is a photoinitiator.
- 25 7. A method according to any one of the preceding claims wherein \mathbb{R}^1 and \mathbb{R}^6 form an electron withdrawing group.
 - 8. A method according according to claim 7 wherein in the compound of formula (I), R^2 and R^3 are groups $(CR^8'R^8)_n$ and R^4 and R^5 are CH groups.

30

- 9. A method according to claim 7 or claim 8 wherein in the compound of formula (I), R^1 is a heteroatom or a substituted heteroatom which has electron withdrawing properties.
- 5 10. A method according to claim 9 where R^1 is a $N^*R^{12}(Z^{m-})_{1/m}$, $S(O)_pR^{13}$, B or $P(O)_qR^{14}$ where R^{12} , R^{13} and R^{14} are independently selected from hydrogen or hydrocarbyl, Z is a anion of valency m, p is 0, 1 or 2, and q is 0, 1, 2 or 3.
- 10 11. A method according to claim 10 where R^1 is a $N^+R^{12}(Z^{m-})_{1/m}$ group where R^{12} , Z and m are as defined in claim 8.
 - 12. A method according to claim 10 or claim 11 where Z is halogen.
 - 13. A method according to claim 11 or claim 12 where R^{12} is alkyl.
- 14. A method according to any one of claims 1 to 8 where R^1 is 20 -a group CH and R^6 is a group -C(0)0- or -OC(0)- or -S(0)2-.
 - 15. A method according to claim 14 where R^1 is a group CH and R^6 is a group -C(0)0- or -OC(0)-
- 25 16. A method according to any one of claims 1 to 8 wherein R¹ is nitrogen, R⁶ is C(O), C(S) or S(O)₂.
 - 17. A method according to claim 16 where the compound of formula (I) is a compound of structure (II)

(II)

30

15

₹.

where R^7 is as defined in claim 1 and $-R^{19}$ — is C(0), C(S) or $S(0)_2$.

- 18. A method according to any one of claims 1 to 6 where R^2 and R^3 includes an electron withdrawing group.
 - 19. A method according to claim 18 where at least one of \mathbb{R}^2 or \mathbb{R}^3 include electron withdrawing groups \mathbb{R}^9 and \mathbb{R}^{10} .
- 10 20. A method according to claim 19 wherein R⁹ and R¹⁰ together form an oxo group.
- 21. A method according to any one of the preceding claims wherein R' comprises a hydrocarbyl group optionally substituted by a functional group.
 - 22. A method according to any one of the preceding claims wherein \mathbb{R}^7 includes an unsaturated moiety.
- 20 23. A method according to claim 22 wherein the unsaturated moiety is an aryl or alkenyl group, or a carbonyl substituent.
 - 24. A method according to claim 21 wherein R⁷ is an optionally substituted alkyl, alkenyl, alkynyl or aryl group.
 - 25. A method according to claim 24 wherein R⁷ is substituted by halogen, carboxy or salts thereof or acyloxy.
- 26. A method according to any one of claims 21 to 22 where R' is a perhaloalkyl group which comprises from 1 to 3 carbon atoms.
 - 27. A method according to claim 26 where R^7 is a perhalomethyl group.
- 35 28. A method according to claim 21 where R⁷ is a dialkenyl substituted amide.

25

29. A method according to claim 28 wherein the amide is of sub formula (III)

$$R^{12}$$
 R^{15} (III)

- where R^{19} is as defined in claim 16, R^{12} and R^{13} are selected from groups defined above for R^2 and R^3 in relation to formula (I) and R^{14} and R^{15} are selected from groups defined above as R^3 and R^4 in relation to formula (I).
- 10 30. A method according to claim 29 where R^{12} and R^{13} are $-CH_2-$ or $-CH_2CH_2-$ groups and R^{14} and R^{15} are -CH- groups.
 - 31. A method according to any one of claims 1 to 3 wherein the compound of formula (I) is a compound of formula (IV)

 R^{16} CH_{2} C(H) X^{1} [IV] CH_{2} C(H) Y^{1} $(Z^{m-})_{1/m}$

where \dot{X}^1 , \dot{Y}^1 , Z, m and the dotted lines are as defined in claim 2, the hydrogen atoms in bracket are absent when the dotted lines represent the presence of a bond, and R^{16} and R^{17} are independently selected from hydrogen and hydrocarbyl optionally substituted with hydroxy.

- 32. A method according to claim 31 wherein R^{16} and R^{17} are selected from alkyl, hydroxyalkyl and alkenyl.
- 25 33. A method according to claim 32 wherein R¹⁶ and R¹⁷ are prop-2-enyl or hydroxyalkyl.

15

20

€..

5

۲.

۲.

٠.

20

34. A method according to claim 33 wherein hydroxyalkyl is a group of formula $-C((CH_2)_dOH)_a(H)_b$ where a is an integer of from 1 to 3 and b is 0 or an integer of 1 or 2 provided that a+b is 3, and d is an integer of from 1 to 6.

35. A compound of formula

where R², R³, R⁴, R⁵, X¹ and Y¹ are as defined in claim 1 and R¹⁸

10 is an optionally substituted alkyl, alkenyl, alkynyl or aryl
group provided that where R² and R³ are both CH₂ and R⁴ and R⁵ are
both CH, R¹⁸ is other than methyl, chloromethyl, trichloromethyl
or trifluoromethyl.

- 15 36. The use of a compound of formula (I) as defined in claim 1 in an adhesive composition.
 - 37. The use of a compound of formula (I) as defined in claim 1 in a sealant composition.
 - 38. An article which includes at least two surfaces which are adhered together by means of a compound of formula (I) as defined in claim 1 which has been polymerised.
- 25 39. An article according to claim 38 wherein the surfaces comprise glass or metal surfaces or a mixture of these.
- 40. An article according to claim 38 or claim 39 wherein the polymerised compound of formula (I) provides an electrically 30 conducting layer.
 - 41. A biomedical adhesive which comprises a biocompatible compound of formula (I) as defined in claim 1.

42. The use of a compound of formula (I) as defined in claim 1 in a method according to any one of claims 1 to 34.