STA261 - Module 4 Intervals and Model Checking

Rob Zimmerman

University of Toronto

July 26-28, 2022

Uncertainty in Point Estimates

- In Module 2, we learned how to produce the "best" point estimates of θ possible using statistics of our data
- The "best" unbiased estimator $\hat{\theta}(\mathbf{X})$ is the one that has the lowest possible variance among all unbiased estimators of θ
- But even so, suppose we observe $\mathbf{X} = \mathbf{x}$ and calculate $\hat{\theta}(\mathbf{x})$; how do we know this is close to the true θ ?
- We can't know for sure
- ullet But we can use the data to get a range of plausible values of heta

Random Sets

- \bullet Suppose for now that $\Theta\subseteq\mathbb{R}$
- If $\hat{\theta}(\mathbf{X})$ is a continuous random variable, then $\mathbb{P}_{\theta}\left(\theta=\hat{\theta}(\mathbf{X})\right)=0$
- But we can try to find a random set $C(\mathbf{X}) \subseteq \mathbb{R}$ based on \mathbf{X} such that $\mathbb{P}_{\theta} (\theta \in C(\mathbf{X})) = 0.95$, for example
- Example 4.1: Let $X \sim \mathcal{N}\left(\mu,1\right)$ where $\mu \in \mathbb{R}$. Show that the region $C(X) = (X + z_{0.025}, X + z_{0.975})$ satisfies $\mathbb{P}_{\mu}(\mu \in C(X)) = 0.95$.

Interval Estimators and Confidence Intervals

- Definition 4.1: An **interval estimate** of a parameter $\theta \in \Theta \subseteq \mathbb{R}$ is any pair of statistics $L, U : \mathcal{X}^n \to \mathbb{R}$ such that $L(\mathbf{x}) \leq U(\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}^n$. The random interval $(L(\mathbf{X}), U(\mathbf{X}))$ is called an **interval estimator**.
- Example 4.2:
- Definition 4.2: Suppose $\alpha \in [0,1]$. An interval estimator $(L(\mathbf{X}), U(\mathbf{X}))$ is a $(\mathbf{1} \alpha)$ -confidence interval for θ if $\mathbb{P}_{\theta} (L(\mathbf{X}) < \theta < U(\mathbf{X})) \geq 1 \alpha$ for all $\theta \in \Theta$. We refer to 1α as the **confidence level** of the interval.
- Example 4.3:

One-Sided Intervals

- Definition 4.3: A lower one-sided confidence interval is a confidence interval of the form $(L(\mathbf{X}), \infty)$. An **upper one-sided** confidence interval is a confidence interval of the form $(-\infty, U(\mathbf{X}))$.
- Example 4.4: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, 1\right)$. Find a lower one-sided 0.5-confidence interval for μ .

Confidence Intervals: Warmups

- The reason for the " $\geq 1 \alpha$ " in the definition is that $\mathbb{P}_{\theta} (L(\mathbf{X}) \leq \theta \leq U(\mathbf{X}))$ may not be free of θ , depending on the choices of $L(\mathbf{X})$ and $U(\mathbf{X})$
- \bullet The lower bound means we want $1-\alpha$ confidence even in the "worst case"; equivalently,

$$\inf_{\theta \in \Theta} \mathbb{P}_{\theta} \left(L(\mathbf{X}) \le \theta \le U(\mathbf{X}) \right) \ge 1 - \alpha$$

• Example 4.5: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathrm{Unif}\,(0,\theta)$, where $\theta > 0$. Find $a \in \mathbb{R}$ such that $(aX_{(n)}, 2aX_{(n)})$ is a 95% confidence interval for θ .

Poll Time!

Some Confidence Intervals Are Better Than Others

- A confidence interval is only useful when it tells us something we didn't know before collecting the data
- Example 4.6: Suppose $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \mathsf{Bernoulli}\,(\theta)$, where $\theta \in (0,1)$. Find a 100% confidence interval for θ .

- A good confidence interval shouldn't be any longer than necessary
- \bullet We interpret the length of the interval as a measure of how accurately the data allow us to know the true value of θ

Bringing Back Hypothesis Tests

- In Module 3, we learned about test statistics and rejection regions for hypothesis tests
- Pick some arbitrary $\theta_0 \in \Theta$, and suppose we want a level- α test of $H_0: \theta = \theta_0$ versus $H_A: \theta \neq \theta_0$ using a test statistic $T(\mathbf{X})$
- ullet This means finding a rejection region $R_{ heta_0}$ such that

$$\mathbb{P}_{\theta_0}(T(\mathbf{X}) \in R_{\theta_0}) \le \alpha$$

ullet This is equivalent to finding an acceptance region $A_{ heta_0}=R_{ heta_0}^c$ such that

$$\mathbb{P}_{\theta_0}(T(\mathbf{X}) \in A_{\theta_0}) \ge 1 - \alpha$$

Confidence Intervals Via Test Statistics

• If the statement $T(\mathbf{X}) \in A_{\theta_0}$ can be manipulated into an equivalent statement of the form $L(\mathbf{X}) < \theta_0 < U(\mathbf{X})$, then

$$\mathbb{P}_{\theta_0}(L(\mathbf{X}) < \theta_0 < U(\mathbf{X})) \ge 1 - \alpha$$

- But $\theta_0 \in \Theta$ was arbitrary!
- So if we did this right, we must have

$$\mathbb{P}_{\theta}\left(L(\mathbf{X}) \leq \theta \leq U(\mathbf{X})\right) \geq 1 - \alpha \quad \text{for all } \theta \in \Theta$$

 This method of finding confidence intervals is called inverting a hypothesis test

Famous Examples: Z-Intervals

• Example 4.7: Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$ where $\mu \in \mathbb{R}$ and σ^2 is known. Find a $(1-\alpha)$ -confidence interval for μ by inverting the two-sided Z-test.

Famous Examples: One-Sided Z-Intervals

• Example 4.8: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$ where $\mu \in \mathbb{R}$ and σ^2 is known. Find a lower one-sided $(1-\alpha)$ -confidence interval for μ by inverting an appropriate one-sided Z-test.

Famous Examples: t-Intervals

• Example 4.9: Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find a $(1-\alpha)$ -confidence interval for μ by inverting the two-sided t-test.

Famous Examples: One-Sided *t*-Intervals

• Example 4.10: Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \mathcal{N}\left(\mu, \sigma^2\right)$ where $\mu \in \mathbb{R}$ and $\sigma^2 > 0$. Find an upper one-sided $(1-\alpha)$ -confidence interval for μ by inverting an appropriate one-sided t-test.

An LRT-Based Interval

• Example 4.11: Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pdf $f_{\theta}(x) = e^{-(x-\theta)} \cdot \mathbbm{1}_{x \geq \theta}$, where $\theta \in \mathbb{R}$. Find a $(1-\alpha)$ -confidence interval for θ .

Functions of the Data and the Parameter

 In constructing our confidence intervals, we've often encountered statements that look like

$$\mathbb{P}_{\theta} \left(a < Q(\mathbf{X}, \theta) < b \right) \ge 1 - \alpha,$$

where $Q:\mathcal{X}^n \times \Theta \to \mathbb{R}$ is a function of the data \mathbf{X} and the parameter θ , and a,b are constants

- \bullet We were able to choose those constants a and b because we knew exactly what the distribution of $Q(\mathbf{X},\theta)$ was
- We could then "invert" the statement $a < Q(\mathbf{X}, \theta) < b$ to produce a confidence interval for θ
- Example 4.12:
- Example 4.13:

Pivotal Quantities

- ullet The key in these examples was that the distribution of $Q(\mathbf{X}, heta)$ is free of heta
- Definition 4.4: A random variable $Q(\mathbf{X}, \theta)$ is a **pivotal quantity** (or **pivot**) for θ if its distribution is free of θ .
- So if $\mathbf{X} \sim f_{\theta_1}$ and $\mathbf{Y} \sim f_{\theta_2}$, then $Q(\mathbf{X}, \theta_1) \stackrel{d}{=} Q(\mathbf{Y}, \theta_2)$
- Every ancillary statistic is a pivotal quantity
- Example 4.14:
- Example 4.15:

Poll Time!

Confidence Intervals from Pivotal Quantities

• Example 4.16: Let $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \operatorname{Exp}(\lambda)$, $\lambda > 0$. Show that $Q(\mathbf{X}, \lambda) = 2\lambda \sum_{i=1}^n X_i$ is a pivotal quantity, and use it to find a $1 - \alpha$ confidence interval for λ .

Finding Pivotal Quantities

- ullet There's no all-purpose strategy to finding pivotal quantities, but there's a neat trick that sometimes lets us pull one out of the pdf of a statistic $T(\mathbf{X})$
- Theorem 4.1: Suppose that $T(\mathbf{X}) \sim f_{\theta}$ is univariate and continuous, such that the pdf can be expressed as

$$f_{\theta}(t) = g(Q(t,\theta)) \cdot \left| \frac{\partial}{\partial t} Q(t,\theta) \right|$$

for some function $g(\cdot)$ which is free of θ and some function $Q(t,\theta)$ which is continuously differentiable and one-to-one as a function of t (i.e., with θ fixed). Then $Q(T(\mathbf{X}),\theta)$ is a pivot.

Proof.

Finding Pivotal Quantities: Examples

• Example 4.17: Let $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \mathsf{Unif}(0, \theta)$ where $\theta > 0$. Find a pivotal quantity based on $T(\mathbf{X}) = X_{(n)}$, and use it to construct a $1 - \alpha$ confidence interval for θ .

Finding Pivotal Quantities: Examples

• Example 4.18: Let $X \sim f_{\theta}(x) = \frac{2(\theta - x)}{\theta^2} \cdot \mathbb{1}_{0 \leq x \leq \theta}$, where $\theta > 0$. Find a pivotal quantity based on X, and use it to construct a $1 - \alpha$ confidence interval for θ .

Confidence Intervals: Interpretations

- Confidence intervals are almost as widely misinterpreted as *p*-values
- \bullet Suppose that in a published scientific study, you see a stated 95% confidence interval such as (0.932,1.452)
- How do you interpret this correctly?

- Should we be surprised if we try and reproduce the study and calculate a 95% confidence interval of (0.824, 1.734)?
- What about (-0.232, 1.440)?

Poll Time!

Confidence Intervals: Interpretations

• Here are ten observed 95% Z-intervals for μ calculated from ten random samples of size n=15 from a $\mathcal{N}\left(\mu,1\right)$ distribution:

Questioning Our Assumptions...

- All of the theory we've done up to this point has depended on the assumption of an underlying statistical model
- When we say "Suppose $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} f_{\theta} \ldots$ ", we're assuming the data follows one of the distributions in the parametric family $\{f_{\theta}: \theta \in \Theta\}$ and only the parameter θ is unknown
- \bullet If we get the statistical model wrong, then any inferences we make about θ are likely to be completely invalid
- So it's extremely important to be able to check that statistical model assumption

Nothing Is Certain

• Of course, we can't know for sure that a model is correct

•

- But we can perform checks that give us confidence in our assumptions
- This is called model checking
- We will study two kinds of model checks: visual diagnostics and goodness-of-fit tests

Histograms: Preliminaries

- Suppose we have iid data X_1, X_2, \ldots, X_n , which we hypothesize are distributed according to a cdf F_{θ}
- ullet Let's group the range of the data into bins $[h_1,h_2],(h_2,h_3],\ldots,(h_{m-1},h_m]$
- By the law of large numbers,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \in (h_j, h_{j+1}]} \xrightarrow{p} \mathbb{P}\left(X \in (h_j, h_{j+1}]\right)$$

ullet So if n is large and we're correct about F_X , then

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \in (h_j, h_{j+1}]} \approx F_{\theta}(h_{j+1}) - F_{\theta}(h_j)$$

The Histogram Density Function

• If, in addition, we believe F_{θ} is continuous with pdf f_{θ} , then there exists $h^* \in (h_j, h_{j+1})$ such that

$$\frac{1}{n(h_{j+1}-h_j)} \sum_{i=1}^n \mathbb{1}_{X_i \in (h_j,h_{j+1}]} \approx \frac{F_{\theta}(h_{j+1}) - F_{\theta}(h_j)}{h_{j+1}-h_j} = f_{\theta}(h^*)$$

• Definition 4.5: Given data X_1, \ldots, X_n and a partition $h_1 < h_2 < \cdots < h_m$, the **density histogram function** is defined as

$$\hat{f}_n(t) = \begin{cases} \frac{1}{n(h_{j+1} - h_j)} \sum_{i=1}^n \mathbb{1}_{X_i \in (h_j, h_{j+1}]}, & t \in (h_j, h_{j+1}] \\ 0, & \text{otherwise} \end{cases}$$

Histograms

- If we believe that our observed data x_1,\ldots,x_n are realizations of $X_1,X_2,\ldots,X_n\stackrel{iid}{\sim}f_{\theta}$, then the observed $\hat{f}_n(t)$ should look like a "discretized" version of $f_{\theta}(t)$
- ...and the resemblance should improve as n gets larger and each bin size $h_{j+1}-h_j$ gets smaller
- Definition 4.6: A plot of a density histogram function $\hat{f}_n(t)$ with vertical lines drawn at each h_j is called a **histogram**. A histogram where each bin width $h_{j+1} h_j = 1$ is called a **relative frequency plot**.

Histograms: An Example

ullet Here's a histogram (n=100) overlaid with three hypothesized pdfs; which is more likely to have generated the data?

Poll Time!

Empirical CDFs

- ullet We might prefer to deal with the cdf $F_{ heta}$ instead
- ullet If we fix any $t\in\mathbb{R}$, then the law of large numbers says that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \le t} \xrightarrow{p} \mathbb{P}_{\theta} \left(X \le t \right)$$

• So if n is large and we're correct about F_{θ} , then

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \le t} \approx F_{\theta}(t)$$

• Definition 4.7: Given observations X_1, \ldots, X_n , the **empirical distribution** function (ecdf) is defined as

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{X_i \le t}$$

Empirical CDFs Are Nice

- If we believe that our observed data x_1,\ldots,x_n are realizations of $X_1,X_2,\ldots,X_n\stackrel{iid}{\sim} F_\theta$, then $\hat{F}_n(t)$ should look like $F_\theta(t)$
- In fact, a famous result called the **Glivenko-Cantelli theorem** says that if F_X really is the true cdf, then $\hat{F}_n(t) \longrightarrow F_\theta(t)$ as $n \to \infty$ in a *much* stronger sense than convergence in probability
- Theorem 4.2: For any fixed $t \in \mathbb{R}$, the ecdf $\hat{F}_n(t)$ is an unbiased estimator of $F_{\theta}(t)$, and it has a lower variance than $\mathbb{1}_{X_i \leq t}$.

Proof.

Empirical CDFs: An Example

ullet Here's an ecdf (n=50) overlaid with two hypothesized cdfs; which is more likely to have generated the data?

Poll Time!

Bringing Back Ancillarity and Sufficiency

- We know from Module 1 that if ${\bf X} \sim f_{\theta}$, the distribution of an ancillary statistic $S({\bf X})$ is free of θ
- But if we've gotten the model $\{f_{\theta}: \theta \in \Theta\}$ wrong, $S(\mathbf{X})$ could very well depend on θ !
- \bullet So some ancillary statistics provide a model check: if our realization $S(\mathbf{x})$ is "surprising", we have evidence against the model being true
- ullet Similarly, if $T(\mathbf{X})$ is sufficient for heta, then $\mathbf{X} \mid T(\mathbf{X}) = t$ shouldn't depend on heta
- This leads to the idea of residual analysis
- Loosely speaking, residuals are based on the information in the data that is left over after we have fit the model

Residual Plots

• Example 4.19: Let X_1,\ldots,X_n be a random sample from a suspected $\mathcal{N}\left(\mu,\sigma^2\right)$ distribution, where $\mu\in\mathbb{R}$ and σ^2 is known. If we're correct, then $R(\mathbf{X})=(X_1-\bar{X},\ldots,X_n-\bar{X})$ is ancillary for μ , because

$$X_i - \bar{X} \sim \mathcal{N}\left(0, \frac{n-1}{n}\sigma^2\right), \quad i = 1, \dots, n$$

and therefore standardized residuals

$$R_i^*(\mathbf{X}) := \frac{X_i - \bar{X}}{\sqrt{\frac{n-1}{n}\sigma^2}} \sim \mathcal{N}(0,1).$$

So if we're right about $\mathcal{N}\left(\mu,\sigma^2\right)$, then a scatterplot of the residuals shouldn't exhibit any discernable pattern, and should mostly stay within (-3,3)

Residual Plots

• Example 4.20: Here are two standardized residual plots constructed from two samples (n=100) with equal variances σ^2 ; which looks more like it came from a $\mathcal{N}\left(\mu,\sigma^2\right)$ distribution?

Probability Plots

- Probability plots extend this idea
- We need a fundamental result of probability theory first
- Theorem 4.3 (**Probability integral transform**): Let X be a continuous random variable with cdf $F_{\theta}(x)$, and let $U = F_{\theta}(X)$. Then $U \sim \mathsf{Unif}(0,1)$.
- The order statistics of $U_1,\dots,U_n\stackrel{iid}{\sim} \mathrm{Unif}\,(0,1)$ follow a Beta distribution: $U_{(j)}\sim \mathrm{Beta}\,(j,n-j+1)$, and so $\mathbb{E}\left[U_{(j)}\right]=\frac{j}{n+1}$
- This suggests a recipe:

Probability Plots

• Example 4.21: Here are two probability plots constructed from the standardized residuals as before, using $F_{\theta}(x) = \Phi(x)$. Which looks more like it came from a $\mathcal{N}\left(\mu,\sigma^2\right)$ distribution?

Q-Q Plots

- We could also go in the other direction by looking at the quantiles
- Definition 4.8: Let X be a random variable with cdf F_{θ} . The **inverse cdf** (or the **quantile function**) is defined by $F_{\theta}^{-1}(t) = \inf\{x : F_{\theta}(x) \ge t\}$.
- ullet When X is continuous, the inverse cdf is simply the functional inverse of $F_{ heta}$
- There are plenty of software algorithms that can estimate the quantiles from a sample x_1,\ldots,x_n
- If we hypothesize $X_1, \dots, X_n \sim F_\theta$ and we can compute F_θ^{-1} , then we have another recipe for model checking:

Q-Q Plots

• Example 4.22: Here are two Q-Q plots constructed from the standardized residuals as before, using $F_{\theta}^{-1}(x) = \Phi^{-1}(x)$. Which looks more like it came from a $\mathcal{N}\left(\mu,\sigma^2\right)$ distribution?

Q-Q Plots

- Q-Q plots are most frequently used as a test for Normality
- But technically there's no reason why we can't use them to compare any two distributions, observed or hypothesized
- ...provided we can actually compute (or estimate) their quantiles, of course
- Q-Q plots are particularly useful when we want to see how the "outliers" in our data compare to the extreme values predicted by the tails of a hypothesized distribution

Goodness of Fit Tests

- Instead of using visual diagnostics, we can use hypothesis tests as model checks
- This time, the null hypothesis H_0 is that the model $\{f_\theta:\theta\in\Theta\}$ for our data is "correct"
- ullet As usual, we have a test statistic $T(\mathbf{X})$ that follows some known distribution under H_0
- An observed value $T(\mathbf{x})$ which is very unlikely under H_0 (as quantified by a p-value) provides evidence that the model is wrong
- Such hypothesis tests are called goodness of fit tests

Towards a Foundational Test

- Suppose we observe iid random variables W_1,W_2,\ldots,W_n taking values in sample space $\mathcal{X}=\{1,2,\ldots,k\}$, which we think of as *labels* or *categories*
- We want to test whether the W_i 's are distributed according to some hypothesized probability measure \mathbb{P}_0 on \mathcal{X}
- Let $X_i = \sum_{j=1}^n \mathbb{1}_{W_j=i}$ and let $p_i = \mathbb{P}_0(\{i\})$ so that under H_0 ,

$$(X_1, X_2, \dots, X_k) \sim \mathsf{Multinomial}(n, p_1, \dots, p_k)$$

Now define

$$R_i = \frac{X_i - \mathbb{E}\left[X_i\right]}{\sqrt{\mathsf{Var}\left(X_i\right)}} \stackrel{H_0}{=} \frac{X_i - np_i}{\sqrt{np_i(1 - p_i)}}$$

• Since $R_i \stackrel{d}{\longrightarrow} \mathcal{N}\left(0,1\right)$ under H_0 , it's tempting to think $\sum_{i=1}^k R_i^2 \stackrel{d}{\longrightarrow} \chi^2_{(k)}$, but that's not true

Pearson's Chi-Squared Test

- Instead, we have the following result
- Theorem 4.4: If $(X_1, X_2, \dots, X_k) \sim \mathsf{Multinomial}(n, p_1, \dots, p_k)$, then

$$\sum_{i=1}^{k} (1 - p_i) R_i^2 = \sum_{i=1}^{k} \frac{(X_i - np_i)^2}{np_i} \xrightarrow{d} \chi_{(k-1)}^2.$$

• The statistic $\chi^2(\mathbf{X})=\sum_{i=1}^k \frac{(X_i-np_i)^2}{np_i}$ is called a **chi-square statistic**, and it's almost always written as

$$\chi^2 = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$$

• The chi-squared test is an approximate test, because the test statistic only has the $\chi^2_{(k-1)}$ distribution in the limit (more on this in Module 5)

A Famous Example: Fisher and Mendel's Pea Data

- Mendelian laws of inheritance establish relative frequencies of dominant and recessive phenotypes across new generations
- Gregor Mendel was known for his pioneering experiments with pea plants in the mid-1800s
- If you cross smooth, yellow male peas with wrinkled, green female peas, Mendelian inheritance predicts these relative frequencies of traits in the progeny:

	Yellow	Green
Smooth	$\frac{9}{16}$	$\frac{3}{16}$
Wrinkled	$\frac{3}{16}$	$\frac{1}{16}$

A Famous Example: Fisher and Mendel's Pea Data

 Mendel crossed 556 such pairs of peas together and recorded the following counts:

	Yellow	Green
Smooth	315	108
Wrinkled	102	31

• Example 4.23: Do these results support the predicted frequencies?

Extending the Chi-Squared Test

- What if our hypothesized distribution is not categorical, but quantitative?
- We can still use a chi-squared test but how?
- The trick is to partition the sample space \mathcal{X} into k disjoint subsets $\mathcal{X}_1,\ldots,\mathcal{X}_k$, and let $X_i=\sum_{j=1}^n\mathbb{1}_{W_j\in\mathcal{X}_i}$ and $p_i=\mathbb{P}_0(\mathcal{X}_i)$
- The finer our partition, the better we can distinguish between distributions
- But of course, we need to increase our sample size accordingly so that each category gets sufficiently "filled" with data

A Famous Example: Testing for Uniformity

• There are many reasons why we might want to test whether some data U_1,\ldots,U_n arises from a Unif (0,1) distribution

• We can use a chi-squared test for this by binning [0,1] into k equal-sized sub-intervals of length 1/k, and letting $X_i = \sum_{j=1}^n \mathbbm{1}_{U_j \in (\frac{i-1}{k},\frac{i}{k}]}$ and $p_i = 0$

A Famous Example: Testing for Uniformity

• Example 4.24: How can we test whether an iid sequence U_1, U_2, \ldots arises from a Unif (0,1) distribution using 10 categories?

Other Goodness of Fit Tests

- Pearson's chi-squared isn't the only goodness of fit test out there; there are countless others
- Many apply to one particular parametric family specifically

 Others are completely generic and test for equality between any two distributions

 \bullet These latter tests allow us to compare an ecdf \hat{F}_n to a hypothesized cdf F_{θ}

Other Goodness of Fit Tests

- In most cases, the distribution of the test statistic under H_0 is only known in the limit as $n \to \infty$
- Even then, cutoffs often can't be calculated exactly and require simulations to approximate
- When there's more than one test out there for the same thing, it's always a good idea to read up on the benefits/drawbacks of each one before deciding which to use
- One might have a lower probability of Type I error, another might higher power for lower sample sizes, another might be more robust to outliers, and so on