Задача A. k-я порядковая статистика

Имя входного файла: kth.in
Имя выходного файла: kth.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дан массив, содержащий n целых чисел. Вам нужно найти в этой массиве k-й по счету минимальный элемент (k=0..n-1), то есть элемент, который после сортировки массива по неубыванию окажется на k-м месте от начала массива (индексация элементов начинается с нуля). Решение должно иметь сложность O(n) в среднем.

Элементы массива a_i задаются при помощи псевдослучайного генератора по формуле: $a_i = (1103515245a_{i-1} + 12345) \bmod 2^{31}$, то есть все элементы массива задаются одним начальным значением a_0 . Для заполнения элементов массива начальными значениями следует использовать следующую функцию:

```
void fill(vector<int> & a, int n, int start)
{
    a.resize(n);
    a[0] = start;
    for (int i = 1; i < n; ++i)
        a[i] = (1103515245LL * a[i - 1] + 12345) % (1LL << 31);
}</pre>
```

Формат входных данных

Программа получает на вход три целых числа n, a_0 и k. n — количество элементов в массиве, $1 \leqslant n \leqslant 2 \cdot 10^7$. a_0 — значение первого элемента в массиве, $0 \leqslant a_0 < 2^{31}$. k — индекс искомого элемента, $0 \leqslant k < n$.

Формат выходных данных

Программа должна вывести одно целое число — k-й минимум в данной последовательности.

Примеры

kth.in	kth.out
5 123456789 2	850994577

Замечание

В примере из условия массив (до сортировки) имеет вид {123456789, 231794730, 1126946331, 1757975480, 850994577}.

Задача В. Количество инверсий

Имя входного файла: inverse.in Имя выходного файла: inverse.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i,j) таких, что i < j и $a_i > a_j$.

Формат входных данных

Первая строка входного файла содержит натуральное число n ($1 \le n \le 50\,000$) — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A — целых неотрицательных чисел, не превосходящих 10^6 .

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

inverse.in	inverse.out
5	0
6 11 18 28 31	
8	28
999994 999989 999982 999972 999969	
999961 999954 999950	

Задача С. Anti-qsort test

Имя входного файла: anti-qsort.in Имя выходного файла: anti-qsort.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Рассмотрим алгоритм быстрой сортировки Хоара, с выбором в качестве барьерного элемента среднего элемента на отрезке (q = A[(1 + r) / 2]):

```
void qsort(vector<int> & a, int left, int right)
// Сортировка A[left...right] включительно
    if (right <= left)</pre>
        return;
    int q = A[(1 + r) / 2];
    int i = left;
    int j = right;
    while (i <= j) {
        while (a[i] < q)
            ++i;
        while (q < a[j])
             --j;
        if (i <= j) {
            swap(a[i], a[j]);
            ++i;
             --j;
        }
    qsort(a, left, j);
    qsort(a, i, right);
}
```

По данному числу n составьте тест, являющийся перестановкой чисел от 1 до n, на котором этот алгоритм выполняет наибольшее число сравнений (подсчитываются сравнения a[i] < q u q < a[j].

Формат входных данных

Программа получает на вход одно целое число $n, 1 \le n \le 70\,000$.

Формат выходных данных

Программа должна вывести перестановку чисел от 1 до n, на котором данная реализация алгоритма быстрой сортировки Хоара будет выполнять наибольшее число сравнений.

Можно вывести любой из возможных ответов.

anti-qsort.in	anti-qsort.out
3	1 3 2

Задача D. Свадьбы

Имя входного файла: weddings.in Имя выходного файла: weddings.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Одна очень предприимчивая и симпатичная девушка решила собрать себе денег на роскошную жизнь. У нее есть N поклонников, про каждого из них она узнала размер его состояния P_i . Девушка намерена выйти замуж и сразу же развестись с некоторыми из своих поклонников. По законам страны в случае развода каждый из супругов получает ровно половину их общего состояния.

Девушка хочет путем заключения браков и разводов получить со своих поклонников как можно больше денег.

Формат входных данных

Первая строка входных данных содержит число N — количество поклонников ($1 \le N \le 10^5$). Вторая строка содержит содержит N целых чисел $X_1, ..., X_N$ — размеры состояний поклонников ($0 \le X_i \le 10^6$). Вторая строка содержит одно число Y — состояние девушки ($0 \le X_i \le 10^6$).

Формат выходных данных

Программа должна вывести одно действительное число — максимальную сумму денег, которая может оказаться у девушки в результате махинаций.

weddings.in	weddings.out	
2	7.5	
5 10		
5		
3	2.125	
1 3 2		
0		
1	2.0	
1		
2		

Задача Е. Коньки

Имя входного файла: skates.in Имя выходного файла: skates.out Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

В ЛКШ-Зима школьники любят ходить на каток. В прокате коньков есть много коньков самых разных размеров. Школьник может надеть коньки любого размера, который не меньше размера его ноги. Известны размеры всех коньков и размеры ног школьников. Определите, какое наибольшее число школьников сможет одновременно пойти покататься.

Формат входных данных

Первая строка входных данных содержит число N — количество коньков в прокате $(1 \leqslant N \leqslant 10^5)$. Во второй строке записано N чисел — размеры коньков. В третьей строке содержится число M — количество школьников в ЛКШ $(1 \leqslant M \leqslant 10^5)$, четвертая строка содержит размеры их ног. Размеры коньков и ног — натуральные числа, не превосходящие 100.

Формат выходных данных

Выведите единственное число — наибольшее количество школьников, которое сможет пойти на каток.

skates.in	skates.out
4	2
41 40 39 42	
42 41 42	