Importing the required packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, precision_recal:
import joblib
import pickle
```

Loading the dataset

```
In [2]: df = pd.read_csv('flightdata.csv')
    df.head()
```

Out[2]:		YEAR	QUARTER	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	UNIQUE_CARRIER	TAIL_NUM	FL,
	0	2016	1	1	1	5	DL	N836DN	
	1	2016	1	1	1	5	DL	N964DN	
	2	2016	1	1	1	5	DL	N813DN	
	3	2016	1	1	1	5	DL	N587NW	
	4	2016	1	1	1	5	DL	N836DN	

5 rows × 26 columns

In [3]: df.info()

localhost:8888/nbconvert/html/PycharmProjects/Flight Delay Prediction/Flight Delay Prediction.ipynb?download=false

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11231 entries, 0 to 11230
Data columns (total 26 columns):
    Column
                        Non-Null Count Dtype
---
    -----
                        -----
0
    YEAR
                       11231 non-null int64
1
    QUARTER
                       11231 non-null int64
    MONTH
                       11231 non-null int64
    DAY_OF_MONTH
                      11231 non-null int64
                       11231 non-null int64
    DAY_OF_WEEK
    UNIQUE_CARRIER
                       11231 non-null object
    TAIL_NUM
                       11231 non-null object
6
    FL NUM
                       11231 non-null int64
7
    ORIGIN_AIRPORT_ID 11231 non-null int64
9
    ORIGIN
                      11231 non-null object
10 DEST_AIRPORT_ID
                      11231 non-null int64
11 DEST
                       11231 non-null object
12 CRS_DEP_TIME
                      11231 non-null int64
13 DEP_TIME
                      11124 non-null float64
14 DEP DELAY
                      11124 non-null float64
15 DEP_DEL15
                      11124 non-null float64
                      11231 non-null int64
16 CRS_ARR_TIME
17 ARR TIME
                       11116 non-null float64
                       11043 non-null float64
18 ARR_DELAY
19 ARR DEL15
                      11043 non-null float64
20 CANCELLED
                      11231 non-null float64
21 DIVERTED
                       11231 non-null float64
22 CRS_ELAPSED_TIME 11231 non-null float64
23 ACTUAL_ELAPSED_TIME 11043 non-null float64
24 DISTANCE
                       11231 non-null float64
25 Unnamed: 25
                        0 non-null
                                      float64
dtypes: float64(12), int64(10), object(4)
memory usage: 2.2+ MB
```

Performing Univariate Analysis

Using Pie Chart

```
In [4]: df['YEAR'].value_counts().plot(kind='pie', autopct='%.0f')
plt.show()
```


Performing Bivariate Analysis

Using scatterplot

```
In [5]: plt.scatter(df.DEP_DELAY, df.DEP_DEL15)
    plt.title('Departure Delay Analysis')
    plt.xlabel('DEP_DELAY')
    plt.ylabel('DEP_DEL15')
    plt.show()
```


Using lineplots

```
In [7]: fig, ax = plt.subplots(figsize=(10, 3))
    plt.subplot(1, 2, 1)
    plt.title('CRS_DEP_TIME')
    plt.plot(df.CRS_DEP_TIME)
    plt.subplot(1, 2, 2)
    plt.title('DEP_TIME')
    plt.plot(df.DEP_TIME)
    plt.show()
```



```
In [8]: fig, ax = plt.subplots(figsize=(10, 3))
    plt.subplot(1, 2, 1)
    plt.title('CRS_ARR_TIME')
    plt.plot(df.CRS_ARR_TIME)
    plt.subplot(1, 2, 2)
    plt.title('ARR_TIME')
    plt.plot(df.ARR_TIME)
    plt.show()
```



```
In [9]: fig, ax = plt.subplots(figsize=(10, 3))
    plt.subplot(1, 2, 1)
    plt.title('CRS_ELAPSED_TIME')
    plt.plot(df.CRS_ELAPSED_TIME)
    plt.subplot(1, 2, 2)
    plt.title('ACTUAL_ELAPSED_TIME')
    plt.plot(df.ACTUAL_ELAPSED_TIME)
    plt.show()
```


Performing Multivariate Analysis

Using pairplot

Using heatmap

Performing Descriptive Analysis

2]:	<pre>df.describe()</pre>											
		YEAR	QUARTER	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	FL_NUM	ORIG				
	count	11231.0	11231.000000	11231.000000	11231.000000	11231.000000	11231.000000					
	mean	2016.0	2.544475	6.628973	15.790758	3.960199	1334.325617					
	std	0.0	1.090701	3.354678	8.782056	1.995257	811.875227					
	min	2016.0	1.000000	1.000000	1.000000	1.000000	7.000000					
	25%	2016.0	2.000000	4.000000	8.000000	2.000000	624.000000					
	50%	2016.0	3.000000	7.000000	16.000000	4.000000	1267.000000					
	75%	2016.0	3.000000	9.000000	23.000000	6.000000	2032.000000					
	max	2016.0	4.000000	12.000000	31.000000	7.000000	2853.000000					
8	8 rows	× 22 colu	ımns									

Dropping unnecessary columns

In [13]:		= df[[' head()	FL_NUM',	'MONTH', 'DAY_0	OF_MONTH', 'DA	AY_OF_WE	EK', '	ORIGIN', '	DEST', 'DEP_[
Out[13]:		FL_NUM	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	ORIGIN	DEST	DEP_DEL15	CRS_ARR_TIM
	0	1399	1	1	5	ATL	SEA	0.0	214
	1	1476	1	1	5	DTW	MSP	0.0	143
	2	1597	1	1	5	ATL	SEA	0.0	121
	3	1768	1	1	5	SEA	MSP	0.0	133
	4	1823	1	1	5	SEA	DTW	0.0	60
4									•

Handling Missing Values

Checking for null values

```
In [14]:
         df.isnull().any()
         FL_NUM
                         False
Out[14]:
         MONTH
                         False
         DAY_OF_MONTH
                         False
         DAY_OF_WEEK
                         False
         ORIGIN
                         False
         DEST
                         False
         DEP_DEL15
                          True
         CRS_ARR_TIME
                         False
                          True
         ARR_DEL15
         dtype: bool
```

Replacing null values

```
In [15]: df.fillna(df['DEP_DEL15'].mode()[0], inplace=True)
    df.fillna(df['ARR_DEL15'].mode()[0], inplace=True)
```

Checking if the replacement is made

```
df.isnull().any()
In [16]:
         FL NUM
                          False
Out[16]:
         MONTH
                          False
         DAY_OF_MONTH
                          False
         DAY OF WEEK
                          False
         ORIGIN
                          False
         DEST
                          False
         DEP DEL15
                          False
         CRS_ARR_TIME
                          False
         ARR DEL15
                          False
         dtype: bool
```

Handling Outliers

```
In [17]: fig, ax = plt.subplots(figsize=(5, 6))
sb.boxplot(data=df['CRS_ARR_TIME'])
```


There are no outliers

Encoding

One Hot Encoding

Splitting dataset into Independent and Dependent Variables

```
In [20]: X = df.drop(columns=['ARR_DEL15'])
Y = df[['ARR_DEL15']]
```

Scaling the Independent Variables

```
In [21]:
    scale_crs = StandardScaler()
    X[['CRS_ARR_TIME']] = scale_crs.fit_transform(X[['CRS_ARR_TIME']])
    scale_flnum = StandardScaler()
    X[['FL_NUM']] = scale_flnum.fit_transform(X[['FL_NUM']])
    X.head()
```

Out[21]:		FL_NUM	MONTH	DAY_OF_MONTH	DAY_OF_WEEK	DEP_DEL15	CRS_ARR_TIME	ORIGIN_ATL
	0	0.079664	1	1	5	0.0	1.205371	1
	1	0.174510	1	1	5	0.0	-0.203612	0
	2	0.323555	1	1	5	0.0	-0.641431	1
	3	0.534188	1	1	5	0.0	-0.402620	0
	4	0.601935	1	1	5	0.0	-1.851405	0

```
In [22]: X.FL_NUM.value_counts()
        -0.549771
Out[22]:
         -0.918071
                    96
         0.808873
                    96
         -0.919302
                    95
         -0.532526
                    94
         1.865732
                    1
         0.242258
         0.195451
         0.212695
         1.608292
         Name: FL_NUM, Length: 690, dtype: int64
```

Converting the Independent and Dependent Variables to 1D Arrays

```
In [23]: X = X.values
Y = Y.values
```

Splitting dataset into Train and Test datasets

```
In [24]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2)
In [25]: X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
Out[25]: ((8984, 16), (2247, 16), (8984, 1), (2247, 1))
```

Building the Machine Learning Models

Logistic Regression

Support Vector Machine (Classifier)

KNN Classifier

Random Forest Classifier

Testing the Models

Logistic Regression

```
Y_pred_log_train = log_reg.predict(X_train)
In [30]:
         Y pred log test = log reg.predict(X test)
         pd.DataFrame(Y_pred_log_train).value_counts()
In [31]:
                7733
         0.0
Out[31]:
         1.0
                1251
         dtype: int64
         pd.DataFrame(Y_pred_log_test).value_counts()
In [32]:
         0.0
                1930
Out[32]:
         1.0
                 317
         dtype: int64
         Support Vector Machine (Classifier)
         Y_pred_svc_train = svc.predict(X_train)
In [33]:
         Y_pred_svc_test = svc.predict(X_test)
         pd.DataFrame(Y_pred_svc_train).value_counts()
In [34]:
         0.0
                7716
Out[34]:
         1.0
                1268
         dtype: int64
In [35]:
         pd.DataFrame(Y_pred_svc_test).value_counts()
                1926
         0.0
Out[35]:
         1.0
                 321
         dtype: int64
         KNN Classifier
         Y_pred_knn_train = knn.predict(X_train)
In [36]:
         Y_pred_knn_test = knn.predict(X_test)
         pd.DataFrame(Y_pred_knn_train).value_counts()
In [37]:
         0.0
                8599
Out[37]:
         1.0
                 385
         dtype: int64
         pd.DataFrame(Y pred knn test).value counts()
In [38]:
                2159
         0.0
Out[38]:
         1.0
                  88
         dtype: int64
         Random Forest Classifier
In [39]: Y_pred_rf_train = rf.predict(X_train)
         Y_pred_rf_test = rf.predict(X_test)
         pd.DataFrame(Y_pred_rf_train).value_counts()
In [40]:
                8517
         0.0
Out[40]:
         1.0
                 467
         dtype: int64
```

Evaluating the ML Models using Metrics

Logistic Regression

Classification Report

```
print(classification_report(Y_test, Y_pred_log_test))
In [42]:
                      precision
                                   recall f1-score
                                                      support
                           0.97
                                     0.94
                                               0.95
                  0.0
                                                         1983
                  1.0
                           0.64
                                     0.77
                                               0.70
                                                          264
                                               0.92
             accuracy
                                                         2247
                           0.80
                                     0.85
                                               0.83
                                                         2247
            macro avg
         weighted avg
                           0.93
                                     0.92
                                               0.92
                                                         2247
```

Accuracy, Precision, Recall, F1 Score

Checking for Overfitting and Underfitting

Testing Accuracy = 0.9212283044058746

```
In [44]: log_train_acc = accuracy_score(Y_train, Y_pred_log_train)
log_test_acc = accuracy_score(Y_test, Y_pred_log_test)
print('Training Accuracy =', log_train_acc)
print('Testing Accuracy =', log_test_acc)
Training Accuracy = 0.9200801424755121
```

There is no big variation in the training and testing accuracy. Therefore, the Logistic Regression model is not overfit or underfit.

```
In [45]: pd.crosstab(Y_test.ravel(), Y_pred_log_test)
```

```
Out[45]: col_0 0.0 1.0

row_0

0.0 1868 115

1.0 62 202
```

Support Vector Machine (Classifier)

Classification Report

```
print(classification_report(Y_test, Y_pred_svc_test))
In [46]:
                        precision
                                     recall f1-score
                                                         support
                   0.0
                             0.97
                                       0.94
                                                  0.95
                                                            1983
                   1.0
                             0.63
                                       0.77
                                                 0.69
                                                             264
                                                 0.92
                                                            2247
             accuracy
                                       0.85
                                                 0.82
                                                            2247
                             0.80
            macro avg
                                       0.92
                                                 0.92
         weighted avg
                             0.93
                                                            2247
```

Accuracy, Precision, Recall, F1 Score

Checking for Overfitting and Underfitting

```
In [48]: svc_train_acc = accuracy_score(Y_train, Y_pred_svc_train)
    svc_test_acc = accuracy_score(Y_test, Y_pred_svc_test)
    print('Training Accuracy =', svc_train_acc)
    print('Testing Accuracy =', svc_test_acc)
```

Training Accuracy = 0.9204140694568121 Testing Accuracy = 0.9203382287494437

There is no big variation in the training and testing accuracy. Therefore, the Support Vector Classifier model is not overfit or underfit.

```
In [49]: pd.crosstab(Y_test.ravel(), Y_pred_svc_test)
```

```
Out[49]: col_0 0.0 1.0

row_0

0.0 1865 118

1.0 61 203
```

KNN Classifier

Classification Report

```
print(classification_report(Y_test, Y_pred_knn_test))
In [50]:
                        precision
                                     recall f1-score
                                                         support
                   0.0
                             0.90
                                       0.98
                                                  0.94
                                                            1983
                   1.0
                             0.57
                                       0.19
                                                  0.28
                                                             264
                                                  0.89
                                                            2247
             accuracy
                             0.73
                                       0.59
                                                  0.61
                                                            2247
            macro avg
         weighted avg
                             0.86
                                       0.89
                                                  0.86
                                                            2247
```

Accuracy, Precision, Recall, F1 Score

Checking for Overfitting and Underfitting

```
In [52]: knn_train_acc = accuracy_score(Y_train, Y_pred_knn_train)
knn_test_acc = accuracy_score(Y_test, Y_pred_knn_test)
print('Training Accuracy =', knn_train_acc)
print('Testing Accuracy =', knn_test_acc)
```

Training Accuracy = 0.9065004452359751 Testing Accuracy = 0.8878504672897196

There is no big variation in the training and testing accuracy. Therefore, the KNN Classifier model is not overfit or underfit.

```
In [53]: pd.crosstab(Y_test.ravel(), Y_pred_knn_test)
```

```
Out[53]: col_0 0.0 1.0

row_0

0.0 1945 38

1.0 214 50
```

Random Forest Classifier

Classification Report

```
print(classification_report(Y_test, Y_pred_rf_test))
In [54]:
                        precision
                                     recall f1-score
                                                         support
                   0.0
                             0.91
                                       0.98
                                                  0.94
                                                            1983
                   1.0
                             0.66
                                       0.28
                                                  0.39
                                                             264
                                                  0.90
                                                            2247
             accuracy
                             0.79
                                       0.63
                                                  0.67
                                                            2247
            macro avg
                                       0.90
         weighted avg
                             0.88
                                                  0.88
                                                            2247
```

Accuracy, Precision, Recall, F1 Score

Checking for Overfitting and Underfitting

```
In [56]: rf_train_acc = accuracy_score(Y_train, Y_pred_rf_train)
    rf_test_acc = accuracy_score(Y_test, Y_pred_rf_test)
    print('Training Accuracy =', rf_train_acc)
    print('Testing Accuracy =', rf_test_acc)
Training Accuracy = 0.0003671445050401
```

Training Accuracy = 0.9002671415850401 Testing Accuracy = 0.8985313751668892

There is no big variation in the training and testing accuracy. Therefore, the Random Forest Classifier model is not overfit or underfit.

```
In [57]: pd.crosstab(Y_test.ravel(), Y_pred_rf_test)
```

Out[57]:	col_0	0.0	1.0
	row_0		
	0.0	1946	37
	1.0	191	73

On comparing the four models built, based on the performance metrics it is clear that Support Vector Classifier gives the highest performance. Hence, that model is chosen for deployment

Dumping the Chosen Model into pkl file

```
In [58]: joblib.dump(svc, 'model.pkl')
Out[58]: ['model.pkl']
```

Dumping the Scaling Modules into pkl file

```
In [59]: pickle.dump(scale_crs, open('crs_scale.pkl', 'wb'))
pickle.dump(scale_flnum, open('flnum_scale.pkl', 'wb'))
```