

JSS MAHAVIDYAPEETHA JSS ACADEMY OF TECHNICAL EDUCATION, NOIDA DEPARTMENT OF INFORMATION TECHNOLOGY

CIA-I

AY 2020-21 (Even Semester)

Course : B.Tech Date : 11/05/2021 Semester : IV regular and lateral entry students Subject Code : KCS402

Subject: Theory of Automata & Formal Languages Max. Marks: 30

Time : 9:30 – 11:00 AM

COURSE OUTCOMES

- 211.1 Design deterministic and nondeterministic automata and regular expressions for specified regular languages
- 211.2 Convert among various notations for a regular language, such as DFAs, NFAs, and regular expressions.
- 211.3 Design grammar and PDA for CFL and state and prove their equivalence.
- 211.4 Design TM to recognize language and compute functions.
- 211.5 State and prove properties of regular, context free, recursive and recursive enumerable languages.
- 211.6 Explain the significance of the Universal Turing machine, Church-Turing thesis and concept of Undecidability.

Q.
No.
Questions
CO BL

PART- A: Attempt All Questions (5x1 = 5Marks)

1. How many substrings aab are in $ww^{R}w$, where w = aabbab?

CO1 3

2. Give the language of the following DFA

CO1 3

	a	b
→ p*	q	r
q	r	p
r	r	r

3. What is meant by equivalence of Moore and Mealy Machines?

- CO₂ 2
- 4. Use extended transition function to show the result of giving string w = 0011 as input to CO1 3 the following finite automata

5. Give the regular expression for the language $L = \{w \in \{0,1\}^* \text{ , such that } w \text{ ends with 1 and } CO1 4 \text{ does not contain the substring } 00\}$

PART-B: Attempt ANY THREE Questions (3x5 = 15Marks)

6. Construct a DFA to accept set of strings on {0,1} in which, every substring of 3 symbols CO1 4 has at most two zeros. (All strings of length <=2 are also in the language)

7. Give the epsilon closures of all the states in the following εNFA and construct DFA CO2 3 equivalent to it.

8. Minimize the following DFA

9. If R and S are two regular expressions, is $(RS + R)^*R = R(SR + R)^*$? Justify your CO2 4 answer.

PART-C: Attempt ANY ONE Question (1x10 = 10Marks)

CO₂

3

- 10. a) Design a DFA for accepting binary numbers whose decimal equivalent is divisible by 5 CO1 4
 - b) Convert the following NFA into a DFA

 CO2 3

	0	1
$\rightarrow q_0$	q_{0}, q_{1}	q_{0}, q_{3}
q_1	q_2	-
q ₂ (Final)	-	-
q_3	-	q_4
q ₄ (Final)	-	-

- 11. a) Design ε –NFA for the language of strings consisting of either 01 repeated one or more CO1 4 times, or 010 repeated one or more times over alphabets $\Sigma = \{0, 1\}$.
 - b) Convert the following Mealy Machine into an equivalent Moore Machine CO2 3

	a	output	b	Output
A (Start)	C	1	D	0
В	A	0	В	1
С	В	1	C	1
D	С	0	A	1