Программа «Гидронамыв 1.0» представляет собой расчетную программу, предназначенную для автоматизированного расчета:

- производительности земснарядов
- параметров гидротранспорта грунта от карьера до карты намыва
- расчета водосбросных сооружений
- расчета параметров карт намыва при разработке грунта гидромеханизированным методом.

Программа была создана с целью облегчения и ускорения однообразных расчетов при проектировании гидромеханизированных карьеров, гидротранспорта песчаногравийных пород и гидроотвалов. Кроме того, программа позволяет на начальном этапе проектирования рассчитать основные проектные решения и проанализировать вариантную проработку возможности транспортировки грунта по пульпопроводам на заданное расстояние и геодезическую высоту для укладки его в отвал или штабель готовой продукции.

Программа создана на платформе, позволяющей производить вычисления on-line, не привязываясь к конкретному компьютеру пользователя, не требует активации, сложной установки и специализированных навыков. Для работы требуется подключение к сети Internet.

Вход в систему и работа в программе осуществляются с помощью логина и пароля, который пользователь получает после оплаты.

Программа состоит из следующих расчетных блоков (модулей):

№ блока	Наименование расчетного блока	Описание
1	Исходные данные	В данном разделе пользователем задаются основные исходные данные для расчета
2	Расчет производительности земснаряда.	В данном разделе производится расчет производительности земснаряда по гидросмеси и грунту в зависимости от средней плотности гидросмеси, расхода воды для обеспечения земснаряда, а также количество машиносмен на производстве добычных работ.
3	Расчет гидротранспорта грунта от карьера до карты намыва.	Расчет параметров гидротранспорта от карьера до карты намыва производится по методике Всесоюзного научно-исследовательского института

Рис.1. Интерфейс программы:

Программа "Гидронамыв 1.0"

Программа "Гидронамыв 1.0" представляет собой расчетную программу, предн

- производительности земснарядов
- параметров гидротранспорта грунта от карьера до карты намыва
- водосбросных сооружений на карте намыва
- основных параметров карт намыва при разработке грунта гидромеханизи

Порядок работы с программой:

1) Заполнение исходных данных.

Перед началом работы с программой вводятся исходные данные для расчета в табличной форме. Данные вводятся в соответствии с данными геологического отчета, справочных и технических данных. Необходимые справочные данные приведены в приложениях к настоящему руководству.

Если полезное ископаемое представлено различным фракционным составом, то в п 1.1,1.2,1.3 таблицы исходных данных, вводятся основные качественные характеристики фракций. На основании введенных данных для каждой фракции производится автоматический расчет средних показателей, используемых при дальнейших расчетах. Если полезное ископаемое представлено только одной фракцией или предполагается расчет только для одной качественной характеристики грунта, то вводятся значения характеристик в п 1.1.

При этом, даже если полезное ископаемое представлено одним видом, то для корректного дальнейшего расчета, значения плотности частиц и пористости породы в п 1.2 и 1.3 необходимо ввести такое же, как и в п 1.1.

При работе с программой, следует обратить внимание, что если в расчетных блоках присутствуют пустые поля значений или, программа не обновляет расчетные значения, то в окне ввода исходных данных поменять значения «стрелочкой» вверх или вниз в окне ввода данных. Расчет автоматически обновится.

$L_{ { m m}}$	200		М
$L_{ m rop}$	720	\$	М

Рис.2. Интерфейс блока 1 «Исходные данные для расчета»:

Блок 1. Исходные данные для расчета

№п.п.	Наименование	Обозначение	Количество	Ед. измерения
1	Полезное ископаемое, в т.ч.:	72	песок	
1.1	Песок мелкозернистый:			
a)	Коэффицент транспортабельности фракций	ϕ_1	0.2	-
б)	Процентное содержание в толще	P ₁	91	%
В)	Диаметр частиц	d	0.2	ММ
Γ)	Пористость породы	m	0.3	доли ед.
Д)	Плотность частиц породы	Ут	2.65	т/м3
1.2	Пылеватые и глинистые частицы			
a)	Коэффицент транспортабельности фракций	ϕ_2	0.02	-
б)	Процентное содержание в толще	P_2	4.08	%
В)	Диаметр частиц	d	0.1	ММ
Γ)	Пористость породы	m	0.4	доли ед.
Д)	Плотность частиц породы	Ут	2.7	т/м3
1.3	Гравий			
a)	Коэффицент транспортабельности фракций	ϕ_3	0.8	-
б)	Процентное содержание в толще	P_3	4.42	%
B)	Диаметр частиц	d	0.63	ММ
Γ)	Пористость породы	m	0.3	доли ед.
Д)	Плотность частиц породы	<i>У</i> т	2.65	т/м3

2	Общий объем добычи за весь период разработки карьера	Рдоб	13959359	мЗ
2.1	Сезонный объем добычи	Pce3	664740	мЗ
3	Средняя плотность породы в естественном залегании	γ	1.6	т/м3
4	Удельный расход воды на разработку грунта	q	7	м3/м3
5	Плотность воды	γ_0	1	т/м3
6	Тип земснаряда		Гидромех 2000	
7	Диаметр пульпопровода	D_{π}	0.426	М
8	Диаметр всасывающей трубы	D	0.6	М
9	Длина плавучего участка магистрального пульпопровода	L_{mr}	200	М
10	Длина участка берегового магистрального пульпопровода до карты намыва	$L_{\rm rop}$	700	М
11	Длина наклонного участка пульпопровода при переходе от плавучего к магистральному	$L_{\scriptscriptstyle \rm HaK}$	30	М
12	Угол наклона трубы (борта карьера)	α	30	град
13	Длина намывного распределительного пульпопровода на картах намыва	$L_{\scriptscriptstyle { m Ham}}$	150	М
14	Грунтовый насос	12	ГРаУ 2000-63	
15	Подача грунтового насоса по воде	Q _B	2000	м3/ч
16	Напор насоса	H_{o}	63	М
17	Геодезическая высота всасывания	h_{r}	-0.5	М
18	Глубина разработки грунта	h_n	13.5	М
19	Высота подъема гидросмеси	$h_{ m reom}$	10	М
20	Продолжительность смены	t	8	ч
	• "			

Рис. 3. Расчетная схема к исходным данным, с принятыми условными обозначениями

2) Расчет параметров земснаряда.

В данном блоке производится расчет производительности земснаряда по грунту и пульпе. В данном модуле, при расчете, можно изменять коэффициенты к расчету сменно1 производительности земснаряда.

Рис.4. Интерфейс блока «Расчет производительности земснаряда»

Блок 2. Расчет производительности земснаряда

№п.п.	Наименование/Расчетная формула	Значение	Ед. измерения
1	Средняя плотность гидросмеси: $\gamma_z = \frac{\gamma_0 \times q + \gamma_m \times (1-m)}{q + (1-m)} =$	1.146	т/м3
где:	γ_0 - плотность воды	1	т/м3
	q - удельный расход воды	7	м3/м3
	m - средняя пористость породы, доли ед	0.33	доли ед.
	γ_m - средняя плотность частиц породы	2.67	т/м3
2	Производительность земснаряда по гидросмеси: $Q_{I,J} = \frac{Q_s}{\gamma_z} =$	1745.2	м3/ч
где:	\mathcal{Q}_{e} - подача грунтового насоса по воде, м3/ч	2000	м3/ч
	γ_z - средняя плотность гидросмеси	1.146	т/м3
3	Расчетная техническая производительность земснаряда по породе (грунту): $Q_{\Pi J} = \frac{Q_{\Gamma J}}{q + (1-m)} =$	228	м3/ч
где:	\mathcal{Q}_{zs} - производительность земснаряда по гидросмеси	1745.2	м3/ч
	q - удельный расход воды	7	м3/м3
	${f m}$ - средняя пористость породы, доли ед	0.33	доли ед.
4	Расчетная сменная производительность земснаряда по грунту: $\mathcal{Q}_{_{CM}} = \mathcal{Q}_{_{H,3}} \times t \times K_{_{CM}} \times K_{_{M}} \times K_{_{J}} \times K_{_{RE}} =$	1300	м3/смена
где:	$Q_{\pi 3}$ - расчетная техническая производительность земснаряда по породе (грунту)	228	м3/ч
	t - продолжительность смены	8	Ч
	Ксм - коэффициент использования внутрисменного времени	0.75	-
	Кмс - коэффициент учитывающий межсменные и другие простои	0.95	-
	Кз - коэффициент, учитывающий засоренность забоя	1	
	Кпс - коэффициент, учитывающий работу земснаряда совместно со станциями перекачивания	1	-
5	Количество машиносмен на добычных работах для одного земснаряда за один сезон разработки карьера: $T = \frac{P_{co.}}{Q_{co.}} =$	511	машиносмен
где:	$P_{ m ces.}$ - сезонный объем добычи	664740	мЗ
	$Q_{\scriptscriptstyle GM}$ - расчетная сменная производительность земснаряда по грунту	1300	м3/смена
6	Количество машиносмен на добычных работах для одного земснаряда за весь период разработки карьера: $T = \frac{P_{bool}}{Q_{cu}} =$	10738	машиносмен
где:	$P_{_{m{\phi}m{\phi}m{\phi}}}$ - общий объем добычи за весь период разработки карьера	13959359	мЗ
	$\mathcal{Q}_{\scriptscriptstyle ext{ iny M}}$ - расчетная сменная производительность земснаряда по грунту	1300	м3/сутки
7	Расход воды для обеспечения земснаряда: $\mathcal{Q}_\epsilon = \mathcal{Q}_{ns} imes q + \sum q_n =$	1756	м3/ч
где:	$Q_{\pi 3}$ - расчетная производительность земснаряда по грунту	228	м3/ч
	q - удельный расход воды	7	м3/м3
	$\sum q_{\scriptscriptstyle n}$ - сумма потерь воды на фильтрацию и испарение	159.6	мЗ

3) Расчет гидротранспорта грунта от карьера до карты намыва.

Расчет параметров гидротранспорта от карьера до карты намыва производится по методике Всесоюзного научно-исследовательского института гидротехники им. Б.Е.Веденеева (ВНИИГ) и применяется для случаев гидравлического транспортирования песчаных, гравийных и галечных грунтов, а также продуктов дробления плотностью 2,6-2,7 т/м3 при средней крупности 0,25-70мм.

В данном разделе производится расчет основных параметров гидротранспорта: критической и действительной скорости в пульпопроводе; расчет удельных потерь при движении гидросмеси, определение потерь напора в гидротранспортной системе и др. На основании рассчитанных параметров гидротранспорта определяется требуемое количество грунтовых насосов в гидротранспортной системе и возможность транспортировки грунта на заданное расстояние и укладку в отвал на заданную высоту.

В данном блоке можно менять значение коэффициента гидравлических сопротивлений, длину всасывающей трубы земснаряда, остаточный напор на конце трубопровода.

Рис.5. Интерфейс блока «Расчет гидротранспорт от карьера до карты намыва»

Блок 3. Расчет гидротранспорта грунта от карьера до карты намыва (производится по методике Всесоюзного научно-исследовательского института гидротехники им. Б.Е.Веденеева (ВНИИГ)

№п.п.	Наименование/Расчетная формула	Значение	Ед. измерения Прим.
1	Средневзвешенный коэффициент транспортабельности: $\varphi_{\varphi}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_3}{100}=\frac{\varphi_1*P_1+\varphi_2*P_2}{100}=\frac{\varphi_1*P_1+\varphi_1+\varphi_2*P_2}{100}=\frac{\varphi_1*P_1+\varphi_1+\varphi_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_2}{100}=\frac{\varphi_1*P_1+\varphi_1+\varphi_2}{100}=\varphi_1*P_1+\varphi_1+\varphi_1+\varphi_1+\varphi_1+\varphi_1+\varphi_1+\varphi_1+\varphi_1+\varphi_1+\varphi$	0.22	
где:	$arphi_1 \ arphi_2 \ arphi_3 \ $ - коэффиценты транспортабельности фракций для каждого слоя		-
	$P_1 \; P_2 \; P_3 \;$ - процентное содержание в толще для каждого слоя		%
2	Критическая скорость гидросмеси в пульповоде, м/с: $\mathcal{V}_{sp}=8^{\circ}_{\lambda}\sqrt{D_{\pi}}$ * $\sqrt[4]{S_{0}}$ * $\sqrt[4]{S_{0}}$ * $\sqrt[4]{S_{0}}$ = .	3.11	M/C
где:	D_{π} - диаметр пульпопровода	0.426	М
	$S_{\scriptscriptstyle 0}$ - объемная консистенция гидросмеси	0.087	-
	$arphi_{\!\scriptscriptstyle (\!p\!)}$ - средневзвешенный коэффициент транспортабельности	0.22	
3	Объемная консистенция гидросмеси: $S_0 = \frac{\gamma_z - \gamma_0}{\gamma_T - \gamma_0} =$	0.087	-
где:	γ_z - средняя плотность гидросмеси	1.15	т/м3
	γ_0 - плотность воды	1	т/м3
	γ_m - средняя плотность частиц породы	2.67	т/м3
4	Действительная скорость в пульпопроводе: $\nu_{\mathcal{A}} = \frac{4*Q_{zz}}{\pi^*D_n^{-2}*3600} =$	3.4	M/C
где:	\mathcal{Q}_{zz} - производительность земснаряда по гидросмеси	1745.2	м3/ч
	$D_{\mathfrak{n}}$ - диаметр пульпопровода	0.426	М
5	Проверка отношения действительной скорости к критической: $\dfrac{v_{\mathcal{I}}}{v_{arphi}}=$	1.09	- Проверка условия $V_{\mathcal{J}} > V_{sp}$
6	Оптимальная скорость в пульпопроводе при заданном диаметре: ν_{o} = 5.5 * $\sqrt{S_{o}$ * φ_{cp} * D_{η} =	2.48	м/с

где:	\mathcal{S}_0 - объемная консистенция гидросмеси	0.09	
	$arphi_{gp}$ - средневзвешенный коэффициент транспортабельности	0.22	-
	D_{π^-} диаметр пульпопровода	0.426	M
7	Удельные потери напора при движении гидросмеси: $i_n=i_0\Bigg[1+2*\Bigg(rac{ u_0}{ u_A}\Bigg)^3\Bigg]=$	0.028	М
где:	$i_0 = rac{\hat{\lambda}_0 \mathcal{V}_A^2}{2gD_n}$ - удельные потери напора при движении воды в пульповоде	0.016	М
	$ u_{0}$ - оптимальная скорость в пульпопроводе	2.48	M/C
	$ u_{\mathcal{J}}$ - действительная скорость в пульпопроводе	3.4	M/C
	$\lambda_0^{}$ - коэффициент гидравлических сопротивлений	0.0115	-
	D_{π} - диаметр пульпопровода	0.426	М
	·g - ускорение свободного падения	9.80	M/c2
8	Потери напора, м, во всасывающем трубопроводе земснаряда: $H_{\mathrm{sc}} = h_{\mathrm{r}} * \frac{\gamma_{\mathrm{c}}}{\gamma_{\mathrm{0}}} + h_{\mathrm{n}} * \left(\frac{\gamma_{\mathrm{c}}}{\gamma_{\mathrm{0}}} - 1 \right) + i_{\mathrm{n.sc}} * l_{\mathrm{sc}} + h_{\mathrm{m}} + \frac{v_{\mathrm{sc}}^2}{2g} * \frac{\gamma_{\mathrm{c}}}{\gamma_{\mathrm{0}}} + h_{\mathrm{n}} + h_{\mathrm{m}} + \frac{v_{\mathrm{c}}^2}{2g} * \frac{\gamma_{\mathrm{c}}}{\gamma_{\mathrm{0}}} + h_{\mathrm{n}} + h_{\mathrm{m}} + \frac{v_{\mathrm{c}}^2}{2g} * \frac{\gamma_{\mathrm{c}}}{\gamma_{\mathrm{0}}} + h_{\mathrm{n}} + \frac{v_{\mathrm{c}}^2}{2g} * \frac{v_{\mathrm{c}}}{2g} * v_{\mathrm{$	2.73	М
где:	$h_{\!\scriptscriptstyle T}$ - геодезическая высота всасывания	-0.5	М
	γ_z - средняя плотность гидросмеси	1.15	т/м3
	7₀ - плотность воды	1	т/м3
	h_n - глубина разработки	13.5	М
	$h_{\scriptscriptstyle M}=0.1$ * $h_{\scriptscriptstyle \parallel}$ - местные потери напора во всасывающей трубе	0.05	М
где:	$h_i = l_{sc} * i_n^{sc}$	0.46	М
	$I_{ m ec}$ - длина всасывающей трубы	20.00	М
	$ u_{\mathrm{sc}}$ - скорость во всасывающей трубе	1.72	M/C
	\hbar_{s_i} - потери напора в щели всасывания	1.00	М
9	Скорость во всасывающей трубе: $\nu_{\rm ec} = \frac{4*Q_{z.s.}}{\pi*D^2*3600}$	1.72	M/c
где:	$\mathcal{Q}_{z_{J}}$ - производительность земснаряда по гидросмеси	1745.2	м3/ч
	D - диаметр всасывающей трубы	0.6	М
10	Удельные потери напора во всасывающей трубе: $i_n^{sc}=i_0^{sc}*\left[1+2*\left(rac{V_0^{sc}}{V_{sc}} ight)^3 ight]$	0.023	M/M
где:	$i_0^{\mathfrak{sc}}$ - удельные потери напора во всасывающей трубе	0.0029	M/M
	${\cal V}_{\rm gc}$ - скорость во всасывающей трубе	1.72	M/C
	$ u_0^{\text{sc}} = 5,5 * \sqrt[4]{S_0 * \varphi_{cp} * D}$ - оптимальная скорость во всасывающем трубопроводе	2.61	M/C
	$oldsymbol{D}$ - диаметр всасывающей трубы	0.6	М
	$\mathcal{S}_{_0}$ - объемная консистенция гидросмеси	0.09	-
	$arphi_{\mathcal{Q}}$ - средневзвешенный коэффициент транспортабельности	0.22	
11	Удельные потери напора во всасывающей трубе: $i_0^{\it sc}=rac{\lambda_0\star v_{\it sc}^2}{2\star g\star D}$	0.0029	-
где:	$\lambda_0^{}$ - коэффициент гидравлических сопротивлений	0.0115	
	$ u_{ m ec}$ - скорость во всасывающей трубе	1.72	M/C
	$oldsymbol{D}$ - диаметр всасывающей трубы	0.6	М
12	Потери напора в гидротранспортной системе: $H_{nom} = H_{ac} + H_{nn} + H_{wax} + H_{wax} + H_{zop} + H_{nob} + H_{_M} + H_{ocm}$	59.75	м
где:	H_{sc} - потери напора во всасывающем трубопроводе	2.73	М
	H_{nz} - потери напора в плавучем трубопроводе	12	М
	$H_{ m wax}$ - потери напора в наклонном трубопроводе	0.79	М

	$H_{\scriptscriptstyle{\mathrm{MBM}^{\prime}}}$, потери напора в намывном трубопроводе на раструбных соединениях	6.3		М	
	$H_{\scriptscriptstyle{500}}$ - потери напора на горизонтальных участках магистрального трубопровода	19.	6	М	
	$H_{{}_{{}^{{}_{{}^{{}}{}}}{}^{{}^{{}}}}}$ - потери напора на подъем гидросмеси (геодезия подъема гидросмеси)	11.	46	М	
	$H_{\scriptscriptstyle M}$. местные потери напора в трубопроводе	3.8	7	M	
	$H_{\infty m}$ - остаточный напор на конце трубопровода	3.0	0	M	
13	Потери напора в плавучем пульпопроводе: $H_{ni}=2*i_n*L_{ni}$	12	0	M	
где:	i_n - удельные потери напора при движении гидросмеси	0.0	3	M	
	$L_{ m nn}$ - длина плавучего пульпопровода	200		M	
14	Потери напора в наклонном трубопроводе: $H_{\text{NoR}} = \left[i_0 + (i_n - i_0) * \cos lpha \right] * L_{\text{NoR}}$	0.7		M	
где:	i_0 - удельные потери напора при движении воды в пульпопроводе	0.0		М	
	i_n - удельные потери напора при движении гидросмеси	0.0	28	М	
	а - угол наклона трубы	30		град.	
	$L_{ m Bax}$ - длина наклонного участка трубы при переходе от плавучего пульпопровода к береговому (магистральному)	30		М	
15	Потери напора в намывном трубопроводе на раструбных соединениях: $H_{\text{\tiny NGM}} = 1.5*i_n*L_{\text{\tiny NGM}}$	6.3		М	
где:	i_n - удельные потери напора при движении гидросмеси	0.0	28	М	
	$L_{{\scriptscriptstyle { m HBM}}}$ - длина намывного трубопровода на картах намыва	150)	М	
16	Потери напора в магистральном пульпопроводе на горизонтальных участках: $H_{zop}=i_n*L_{zop}$	19.	6	М	
где:	i_n - удельные потери напора при движении гидросмеси	0.0	28	М	
	$L_{ m rop}$ - длина горизонтальных участков магистрального трубопровода	700)	М	
17	Потери напора на подъем гидросмеси (геодезия подъема гидросмеси): $H_{nod}=h_{2000}*rac{\gamma_c}{\gamma_0}$	11.	46	М	
где:	$h_{ m reoz}$ - высота подъема гидросмеси	10	М		
где:	$h_{ ext{reog.}}$ - высота подъема гидросмеси γ_z - средняя плотность гидросмеси	10	м т/м3		
где:					
где:	γ_z - средняя плотность гидросмеси	1.146	т/м3		
	γ_z - средняя плотность гидросмеси γ_0 - плотность воды	1.146	т/м3		
18	${\cal Y}_2$ - средняя плотность гидросмеси ${\cal Y}_0 \ \ $ - плотность воды ${\bf Mecтныe} \ {\bf notepu \ Hanopa \ B \ tpy6onposoge:} \ H_{_M} = 0.1*(H_{_{NS}} + H_{_{NSM}} + H_{_{20p}})$	1.146	T/M3 T/M3		
18	Y_z - средняя плотность гидросмеси $Y_0 \ -$ плотность воды $ \text{Местные потери напора в трубопроводе: } H_{xx} = 0,1*(H_{xx} + H_{xxx} + H_{xxx} + H_{xxy}) $ H_{xx} - потери напора в плавучем трубопроводе	1.146 1 3.87	T/M3 T/M3		
18	${\cal Y}_2$ - средняя плотность гидросмеси ${\cal Y}_0 - {\rm плотность \ воды}$ Местные потери напора в трубопроводе: $H_{_{MZ}} = 0,1*(H_{_{MZ}} + H_{_{MSK}} + H_{_{MSM}} + H_{_{20p}})$ $H_{_{MZ}}$ - потери напора в плавучем трубопроводе $H_{_{MK}} - {\rm потери \ напора \ в \ наклонном \ трубопроводе}$	1.146 1 3.87 12 0.79	T/M3 T/M3 M M		
18	Y_{z} - средняя плотность гидросмеси $Y_{0} - \text{плотность воды}$ Местные потери напора в трубопроводе: $H_{M} = 0,1*(H_{RS} + H_{NSS} + H_{NSS} + H_{NSS})$ H_{RS} - потери напора в плавучем трубопроводе $H_{NSS} - \text{потери напора в наклонном трубопроводе}$ H_{NSS} - потери напора в намывном трубопроводе на раструбных соединениях	1.146 1 3.87 12 0.79 6.3	T/M3 T/M3 M M M		Округл. до целового
18	Y_2 - средняя плотность гидросмеси $Y_0 - \text{плотность воды}$ Местные потери напора в трубопроводе: $H_{_{MB}} = 0.1*(H_{_{RB}} + H_{_{MBM}} + H_{_{NBM}} + H_{_{NBM}} + H_{_{NBM}})$ $H_{_{RB}} - \text{потери напора в плавучем трубопроводе}$ $H_{_{NBM}} - \text{потери напора в наклонном трубопроводе}$ $H_{_{NBM}} - \text{потери напора в намывном трубопроводе на раструбных соединениях}$ $H_{_{NBM}} - \text{потери напора на горизонтальных участках}$	1.146 1 3.87 12 0.79 6.3	T/M3 T/M3 M M M M		Округл. до целового
18 где:	Y_2 - средняя плотность гидросмеси Y_0 - плотность воды $ Mec \text{тные потери напора в трубопроводе: } H_{M} = 0,1*(H_{M} + H_{MM} + H_{MM} + H_{MM} + H_{MM}) $	1.146 1 3.87 12 0.79 6.3 19.6	T/M3 T/M3 M M M M M M M		Округл. до целового
18 где: 19	${\cal Y}_2$ - средняя плотность гидросмеси ${\cal Y}_0$ - плотность воды $ {\sf Mecтные} \ {\sf notepu} \ {\sf напора} \ {\sf в трубопроводе} : H_{{\scriptscriptstyle M}} = 0,1^*(H_{{\scriptscriptstyle RB}} + H_{{\scriptscriptstyle NGM}} + H_{{\scriptscriptstyle NGM}} + H_{{\scriptscriptstyle NGM}}) $ $H_{{\scriptscriptstyle RB}}$ - потери напора в плавучем трубопроводе $ H_{{\scriptscriptstyle NGK}} - {\sf потери} \ {\sf напора} \ {\sf в наклонном} \ {\sf трубопроводе} $ $H_{{\scriptscriptstyle NGM}}$ - потери напора в намывном трубопроводе на раструбных соединениях $ H_{{\scriptscriptstyle NGP}} - {\sf потери} \ {\sf напора} \ {\sf на пора на горизонтальных участках} $ Число грунтовых насосов в гидротранспортной системе для обеспечения необходимого напора: $H_{{\scriptscriptstyle NGM}} = H_{{\scriptscriptstyle NGM}} + H_{{\scriptscriptstyle NGM}} = H_{{\scriptscriptstyle NGM}} = H_{{\scriptscriptstyle NGM}} + H_{{\scriptscriptstyle NGM}} = H_$	1.146 1 3.87 12 0.79 6.3 19.6 1	T/M3 T/M3 M M M M M M M		Округл. до целового
18 где: 19 где: 20	Y_{c} - средняя плотность гидросмеси Y_{0} - плотность воды Y_{0} - плотность воды Y_{0} - плотность воды Y_{0} - потери напора в трубопроводе: Y_{0} = 0,1* (Y_{0} + $Y_{$	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48	T/M3 T/M3 M M M M M M M M M M M M M M M M M M		Округл. до целового
18 где: 19 где: 20	Y_{c} - средняя плотность гидросмеси Y_{c} - плотность воды	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48	T/M3 T/M3 M M M M M M M M M M M M M M M M M M		Округл. до целового
18 где: 19 где: 20	Y_{\circ} - средняя плотность гидросмеси Y_{\circ} - плотность воды Y_{\circ} - плотность воды Y_{\circ} - плотность воды Y_{\circ} - потери напора в трубопроводе: Y_{\circ} - потери напора в плавучем трубопроводе Y_{\circ} - потери напора в наклонном трубопроводе Y_{\circ} - потери напора в наклонном трубопроводе Y_{\circ} - потери напора в наклонном трубопроводе на раструбных соединениях Y_{\circ} - потери напора в намывном трубопроводе на раструбных соединениях Y_{\circ} - потери напора на горизонтальных участках Y_{\circ} - потери напора в гидротранспортной системе для обеспечения необходимого напора: Y_{\circ} - Y_{\circ} - потери напора в гидротранспортной системе Y_{\circ} - потери напора в гидротранспортной системе Y_{\circ} - средняя плотность гидросмеси Y_{\circ} - средняя плотность гидросмеси	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48 63 1.15	T/M3 T/M3 M M M M M M M M M M T/M3 M M M M M M M M M M M M M M M M M M		Округл. до целового
18 где: 19 где: 20	Y_{c} - средняя плотность гидросмеси Y_{0} - плотность воды	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48 63 1.15	T/M3 T/M3 M M M M M M M M M M T/M3 M M M M M M M M M M M M M M M M M M		Округл. до целового
18 где: 19 где: 20 где:	Y_{c} - средняя плотность гидросмеси Y_{0} - плотность воды Y_{0} - плотность воды Y_{0} - плотность воды Y_{0} - потери напора в трубопроводе: Y_{0} = 0,1* (Y_{0} + $Y_{$	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48 63 1.15 1 0.89	T/M3 T/M3 M M M M M M M T/M3 M M T/M3		Округл. до целового
18 где: 19 где: 20 где:	Y_{c} - средняя плотность видросмеси Y_{0} - плотность воды Y_{0} - плотность воды Y_{0} - плотность воды Y_{0} - потери напора в трубопроводе: Y_{0} = 0,1*(Y_{0} + Y_{0	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48 63 1.15 1 0.89	T/M3 T/M3 T/M3 T/M3 T/M3 T/M3		Округл. до целового
18 где: 19 где: 20 где:	$\gamma_{\rm c}$ - средняя плотность гидросмеси $\gamma_{\rm c}$ - плотность воды Местные потери напора в трубопроводе: $H_{\rm sig} = 0.1*(H_{\rm mi} + H_{\rm sign} + H_{\rm sign} + H_{\rm sign})$ $H_{\rm mi}$ - потери напора в плавучем трубопроводе $H_{\rm sign}$ - потери напора в наклонном трубопроводе $H_{\rm sign}$ - потери напора в намывном трубопроводе $H_{\rm sign}$ - потери напора в намывном трубопроводе на раструбных соединениях $H_{\rm sign}$ - потери напора на горизонтальных участках Число грунтовых насосов в гидротранспортной системе для обеспечения необходимого напора: $n = \frac{H_{\rm min}}{H_c}$ $H_{\rm nom}$ - потери напора в гидротранспортной системе Напор земснаряда по гидросмеси: $H_{\rm r} = H_0 * \frac{Y_{\rm r}}{Y_0} * A_1$ H_0 - напор земснаряда по воде Y_c - средняя плотность гидросмеси Y_c - плотность воды $A_1 = 1 - 0.05 * \frac{Y_{\rm r} - Y_0}{Y_0} * K_{\rm rp} * K_{\rm sext}$ - коэффициент, учитывающий дополнительные гидравлические потери в грунтовом насосе Y_c - средняя плотность гидросмеси Y_c - плотность воды	1.146 1 3.87 12 0.79 6.3 19.6 1 59.75 64.48 63 1.15 1 0.89	T/M3 T/M3 T/M3 T/M3 T/M3 T/M3		Округл. до целового

4) Расчет водосбросных сооружений на карте намыва.

В данном разделе производится расчет водосбросных сооружений на карте намыва: пропускной способности и количества водосбросных колодцев в зависимости от производительности земснаряда по гидросмеси, расчет водосбросных труб. Рис.6. Интерфейс блока «Расчет водосбросных сооружений на карте намыва»

Блок 4. Расчет водосбросных сооружений на карте намыва

		Dilok	т. г че тот водосоростых осоружения на карте намыве	•				
		№п.п.	Наименование/Расчетная формула		Значение	Ед. измер	ения П	рим.
		1	Тип водосбросного шандорного колодца для расхода гидросмеси: $Q_{I,J} = \frac{Q_{I,J}}{3600}$		0.48	м3/сек		
		где:	$\mathcal{Q}_{z,\mathbf{j}}$ - производительность земснаряда по гидросмеси		1745.2	м3/ч		
			- Принимается двухсекционный шандорный колодец с высотой сливающегося слоя воды Но=0,25м					
		2	Расход воды через двухсекционный шандорный колодец: $Q_{\epsilon}=m^*b_{\epsilon}^*H_{\epsilon}^*\sqrt{2^*g^*H_{\epsilon}}$		0.55	м3/сек		
		где:	m - коэффициент расхода (0,3-0,55)		0.50	-		
			$b_{\epsilon}^{}$ - ширина водосливной части колодца		2.00	М		
			H_{ϵ} - высота слоя сливающейся воды на стенкой шандора (0,1-0,35м)		0.25	М		
		3	Число водосбросных колодцев на карте намыва: $n_{\rm x} = \frac{K_{\rm x} * Q_{IJ}}{Q_{\rm z}}$		1	шт		
		где:	K_{n} - коэффициент, учитывающий потери воды (0,8-0,85)		0.80	-		
			$\mathcal{Q}_{\hat{x}}$ - расход воды через двухсекционный шандорный колодец		0.55	м3/сек		
			\mathcal{Q}_{zs} - производительность земснаряда по гидросмеси		0.48	м3/сек		
		4	Расход воды через водосбросную трубу: $Q_{np} = \mu^* \omega^* \sqrt{2^* g^* H_{mp}}$		0.87	-		
		где:	$H_{\it mp}$ - напор воды над осью трубы		0.9	М		
			arphi - площадь поперечного сечения трубы		0.28	м2		
			μ - коэффициент расхода		0.74	-		
		5	Площадь поперечного сечения трубы: $_{\mathcal{O}}=rac{\pi^{\star}D_{np}^{2}}{4}$		0.28	м2		
		где:	D_{narphi} - диаметр водосбросной трубы		0.6	М		
6	Коэс	рфициент	расхода: $\mu = \frac{1}{\sqrt{1 + \lambda * \frac{l_{mp}}{D_{mp}}}}$	0.74	-			
где:	l_{mp} -	длина вод	осбросной трубы	33	М			
	D_{mp}	диаметр і	водосбросной трубы	0.6	М			
	2 - K	оэффицие	ент гидравлического сопротивления	0.015				
7	Pacx	од воды	через водосбросную трубу должен быть: $\mathcal{Q}_{np} \geq \mathcal{Q}_{\kappa}$	1.58			Проверка у	
где:	Q_{mp}	расход во	оды через водосбросную трубу	0.87	м3/сек			
	Q_x - p	оасход вод	ы через двухсекционный шандорный колодец	0.55	м3/сек			
8	Укло	н трубы:	$j_{mp} = \frac{Q_{mp}^2}{\omega^2 * C^2 * R_{mp}}$	0.021	-			
где:			оперечного сечения трубы	0.28	м2			
	R_{mp}	$=\frac{D_{mp}}{4}$ - гид	равлический радиус трубы	0.15	М			
	<i>C</i> =	$\frac{1}{n} * R^{y}_{mp}$ - KC	ээффициент Шези	55.61	-			
	n -	коэффици	ент, учитывающий шероховатость трубы	0.013	-			
	y -	показателі	ь степени	0.171			при <i>R</i> < 1 <i>м</i>	

5) Расчет основных параметров карты намыва.

В данном разделе определяются основные параметры пруда-отстойника, скорость движения и осаждения частиц в зависимости от фракционного состава, длина откоса намыва в зависимости от подачи гидросмеси на карту намыва, средний уклон поверхности пляжа намыва.

Задаются ширина потока гидросмеси, глубина потока гидросмеси, интенсивность намыва, глубина воды в пруду-отстойнике, максимальная и минимальная гидравлическая крупность частиц, коэффициент, зависящий от состава пород. Рис.7. Интерфейс блока «Расчет основных параметров карты намыва»

Блок 5. Расчет основных параметров карты намыва

	№п.п.	Наименование/Расчетная формула		Значение	Ед. измерения
	1	Скорость движения частиц по оси потока при входе в пруд-отстойник: $V_{nom} = \frac{Q_{cs}}{b^* h_n, *^3600}$		0.097	-
	где:	\mathcal{Q}_{zs} - производительность земснаряда по гидросмеси		1745.2	м3/ч
		b - ширина потока гидросмеси (при торцевом выпуске принимается 50м)		50	М
		h_{nz} - глубина потока гидросмеси на откосе намыва (из практики 0.1-0.2)		0.1	М
	2	Длина откоса намыва: $L_k = rac{Q_{,p}^{,\mathrm{cym}}}{b^* h_u}$		72.81	М
	где:	$\mathcal{Q}_{_{\mathcal{P}}}^{_{^{\mathrm{OTM}}}}=rac{\mathcal{Q}_{_{_{2,3}}}*_{t}*_{n_{_{CM}}}}{1-m+q}$ - суточная производительность земснаряда по грунту		3640.57	м3/сут
		b - ширина потока гидросмеси (при торцевом выпуске принимается 50м)		50	М
		$h_{\!\scriptscriptstyle R}$ - интенсивность намыва (для песка 0.1-1.0 м/сут)		1	м/сут
		\mathcal{Q}_{z_2} - производительность земснаряда по гидросмеси		1745.2	м3/ч
		t - продолжительность смены		8	Ч
		$n_{ m cat}$ - число смен в сутки		2	
		${f m}$ - средняя пористость породы		0.33	доли ед.
		q - удельный расход воды		7	м3/м3
	3	Минимальный путь осаждения частиц d=1,00мм на карте намыва: $L_{\min}=0.82*rac{V_{\min}}{W_{\max}}*H_{\eta p}$		1.1	М
	где:	$H_{\eta p}$ - глубина воды в пруду-отстойнике (1-5м)		1.5	М
		$W_{ m max}$ - максимальная гидравлическая крупность частиц		0.108	м/сек
		$V_{\scriptscriptstyle{{\it NOM}}}$ - скорость движения частиц по оси потока при входе в пруд-отстойник		0.097	м/сек
	Максималь	ный путь осаждения частицы $ ext{d=0.2}$ мм в пруду отстойнике карты: $L_{ ext{mix}}=1.18*rac{V_{ ext{nom.}}*}{W_{ ext{min}}}*H_{\eta p}$	9.04	м	
це:	V _{nom} - CKOPO	ть движения частиц по оси потока при входе в пруд-отстойник	0.097	м/сек	
	W_{\min} - миним	альная гидравлическая крупность частиц d=0.2мм	0.019	м/сек	
	H_{np} - глубина	в воды в пруду-отстойнике	1.5	М	
	Средний ук	пон намывной поверхности карты: $i_{cp}=rac{a*\sqrt[3]{\mathcal{S}_{g}}}{\sqrt{1,6*rac{\mathcal{Q}_{T,1}}{L_{k}}}}$	3.11	%	
це:	а - коэффи	џент , зависящий от состава пород	3.5		
	Q _{2,3} - расход	гидросмеси, подаваемый на карту	480	л/с	
	L_{k} - длина о	коса намыва	72.81	М	
	$S_e = \frac{\gamma_{T} - \gamma_0}{\gamma_{T} - \gamma_0}$	$*rac{\gamma_T}{\gamma_0}*100$ - консистенция гидросмеси	24	%	
	7₀ - плотно	сть воды	1	т/м3	
	√₂ - средняя	плотность гидросмеси	1.15	т/м3	
	γ_m - средня	плотность частиц породы	2.67	т/м3	

6) Сводные расчетные показатели.

Основные расчетные показатели по всем блокам, сведенные в таблицу. Данную таблицу можно экспортировать в Word.

Рис.8. Интерфейс блока «Сводные расчетные показатели»

Основные расчетные показатели

♣ Скачать в Word

⊻ Скачат	S B WOOD		
№п.п.	Наименование	Ед. измерения	Значение
	1. Расчетные параметры работы земснаряда		
1.1	Средняя плотность гидросмеси	т/м3	1.146
1.2	Производительность земснаряда по гидросмеси	м3/ч	1745
1.3	Техническая производительность земснаряда по породе (грунту)	м3/ч	228
1.4	Сменная производительность земснаряда по породе (грунту)	м3/смена	1300
	2. Расчетные параметры гидротранспортной системы		
2.1	Диаметр пульпопровода	М	0.426
2.2	Критическая скорость гидросмеси в пульпопроводе	M/C	3.11
2.3	Действительная скорость гидросмеси в пульпопроводе	M/C	3.4
2.4	Удельные потери напора при движении гидросмеси	М	0.028
2.5	Потери напора во всасывающем трубопроводе земснаряда	М	2.73
2.6	Скорость во всасывающем трубопроводе земснаряда	M/C	1.72
2.7	Потери напора в гидротранспортной системе	М	59.75
2.8	Напор земснаряда по гидросмеси	М	64.48
2.9	Требуемое число насосов в гидротранспортной системе	шт	1
	3. Расчетные параметры карты намыва		
3.1	Длина откоса намыва	М	72.81
3.2	Средний уклон намывной поверхности карты	%	3.11
3.3	Консистенция гидросмеси	%	24
	4. Расчетные параметры водосбросных сооружений на карте намыва		
4.1	Расход гидросмеси	м3/с	0.48
4.2	Расход воды через водосбросной колодец	м3/с	0.55
4.3	Число водосбросных колодцев	шт	1
4.4	Расход воды через водосбросную трубу	м3/с	0.87
4.5	Уклон водосбросной трубы		0.021

Справочные данные.

Приложение А (к Блоку 1):

1) Значения коэффициента транспортабельности грунта (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

Значения коэффициента транспортабельности грунта

Крупность									
фракции									
грунта <i>d</i> ,									n 40
мм	0,0150,1	0,10,25	0,250,5	0,5—1	12	23	35	510	Более 10
φ _{cp}	0,02	0,2	0,4	0,8	1,2	1,5	1,8	1,9	2,0

2) Значения плотности и пористости пород (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

Значения плотности и пористости горных пород

Порода	γ, т/м³	m, %
Галька	2,67	30
Гравий	2,65	2530
Песок	2,65	3040
Супесь	2,70	40—45
Суглинок	2,71	45—50
Глина	2,75	5060
Торф	1,6	До 90

3) Расход воды при работе земснаряда по данным таблицы 2.22 ОНТП 18-85 Таблица 2.22

Расход воды, м ³ , на разработку г транспортирование 1 м ³ грунта			
7			
9			
11			
14			
18			
22			
26			
30			

4) Характеристика стальных электросварных труб (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

 Таблица 7.46

 Характеристика стальных электросварных труб

Наружный диа-	Масса 1 м	Давление P _y , МПа, для труб группы					
метр × толщина	трубы, кг		·	T:	·	г	γ .
стенки трубы, мм		1	2	. 3	4	5	6
108 × 3	7,77	2,5	-	-	-	_	
$108 \times 4,5$	10,26	_	_	-		2,5	
$133 \times 3,5$	11,18	2,5	– .				
133 × 4	12,73		-	Vindo game.	-	2,5	
426 × 6	62,14	1,6	_	-	-	-	
426 × 7	72,33	_	0,6	-	-	1,6	_
426 × 9	92,56	<u> </u>	1; 1,6	-	-	1,6	1,6
478 × 6	69,84	_	_	-			
478 × 7	81,31	_	0,6	_	1,6		
429 × 6	77,53	1,6	-	1,6		-	
478 × 9	104,09	-	1; 1,6	-		1,6	1,6
529 × 7	90,28	-	0,6	-	1,6	_	
529 × 9	115,62	-	1; 1,6	-	_	1,6	1,6
630 × 6	92,33	1,6	_	-			
630 × 8	122,7	1,6			1,6		
630 × 9	137,8	_	0,6; 1		_	1,6	1
630 × 10	152,9		1,6				1,6
720 × 8	140,5	1,6	_	_	1,6	r Australia.	
720 × 9	157,8		0,6,1	1,6		1,6	1
720 × 11	192,3		1,6	_	هنبيت		1,6
820 × 8	160,2	_	1,6	_	_		
820 × 9	180,0	1,6	0,6; 1	_	1,6	1,6	1,6
820 × 12	239,1	_	1,6	_		sylming.	1,6
920 × 8	179,9	1,6	_	_	_	_	
920 × 9	202,2	1,6	1,6	1,6	-	1,6	0,6
920 × 10	224,4	*****	l	· —	1,6	1,6	1
920 × 12	268,7	_	1,6		_		1,6
1020 × 9	224,4	1,6	0,6	_	_	1,6	0,6
1020 × 10	249,1	_	1	1,6	_		1
1020 × 11	273,7			_	1,6	1,6	
1020 × 14	347,3		1,6			Marketone	1,6
1120×9	246,6	1,6	0,6	_	_	1,6	0,6
1120×11	300,8		I		_		1
1120 × 14	381,9	1,6	1,6	_	_		1,6
1220 × 10	298,4	1,6	0,6	_	_	1,6	0,6
1220 × 12	357,5	<u> </u>	1,0	_	_		1
1220 × 14	416,4		1,6		_		1,6
1420 × 10	347,7	0,6; 1	0,6			1,6	0,6
1420 × 12	416,7	1,6	1	·	_		1

Приложение Б (к Блоку 2):

1) Поправочные коэффициенты к расчету производительности земснаряда (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6) где N — число рабочих дней в году; n_{cm} — число рабочих смен в сутки; t — продолжительность смены, ч; K_{cm} — коэффициент использования внутрисменного времени в зависимости от способа укладки грунта и вида насыпи; $K_{\text{мс}}$ — коэффициент, учитывающий межсменные, цельносуточные и другие простои (принимают равным 0.9); $K_{\text{п. c}}$ — коэффициент, учитывающий работу земснаряда совместно с перекачивающими станциями (принимают при работе: одной ступени перекачки — 1,05; двух ступеней — 1,1; трех ступеней — 1,15); K_3 — коэффициент, учитывающий засоренность грунта в карьерах пнями, корнями, топляками, деревьями, валунами, камнями, болотной и водяной растительностью, вызывающими простои установок гидромеханизации продолжительностью более 5 % длительности рабочей смены при общей продолжительности остановок (СНиП IV-5—80, техническая часть, п. 3.155 — 3.159): свыше 5 % — $K_3 \le 10$ —1,02; 10—15 % — $K_3 = 1,05$; 15—20 % $--K_3 = 1,1$; 20-25 % $--K_3 = 1,15$; 25-30 % $--K_3 = 1,2$.

Коэффициент K_{cm} внутрисменного использования земснаряда по времени при безэстакадном и низкоопорном способах намыва (ЕНиР 2-2, табл. 11) приведен ниже.

Вид работ	K_{cm}
Сброс пульпы в водоем или отвал	0,85
без устройства обвалования	
Укладка грунта в отвал с устройством	0,8
обвалования, намыв сооружений под воду	
или односторонний намыв сооружений	
Намыв широкопрофильных частей	0,75
сооружений, площадей или штабелей	
Намыв узкопрофильных частей	0,6
сооружений или штабелей	

Приложение В (к Блоку 3):

1) Значения коэффициента гидравлических сопротивлений (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

Значения коэффициента гидравлических сопротивлений

2) Значения коэффициента Кгр (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

Таблица 10.15

Значения коэффициентов Кгр

Размер фракций, мм	80—20	20—5	3—5	21	10,5	0,50,25	0,250,1	0,10,05
Krp	8,1	1,7	1,5	1,2	0,75	0,4	1,0	0,07

3) Значения коэффициента Кзем (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

Таблица 10.16

Значения коэффициентов Кзен

Марка земсна- ряда		10ГРУ -8Л	12P- 7	3ГМ- 1	3ΓM- 2		3ГМ- 1М-350А		16ГРУ -8Л	20P- 11	500- 60	1000- 80
Кзен	12	16	22	14	15	14	19	13	19	11	12	20

Приложение Г (к Блоку 5):

1) Ориентировочные значения среднего уклона намываемой поверхности по данным таблицы 2.49 ОНТП 18-85

Ориентировочные значения среднего уклона намываемой поверхности для различных грунтов приведены в табл. 2.49.

Таблица 2.49

Грунт	Повер	хности
	надводные	подводные
Гравий с песком	0,70-0,50	1,00-0,70
Песок:		
крупнозернистый	0,20-0,10	0,30-0,20
среднезернистый	0,07-0,06	0,20-0,15
мелкозернистый	0,04-0,03	0,15-0,10
Супесь легкая	0,03-0,01	0,07-0,015
Глинистые грунты	0,015-0,007	0,003

2) Опытные значения гидравлической крупности частиц (И.М. Ялтанец "Проектирование открытых гидромеханизированных и дражных разработок месторождений", 3-е издание, М., МГГУ, 2003г (ISBN 5-7418-0198-6)

Таблица 10.17

Опытные значения гидравлической крупности частиц

Диаметр частиц, мм	Гидравлическая крупность, см/с, при температуре воды, °С						
	5	10	15	20			
	Данны	е В.Н. Гончаров	na				
30,0	_	73,6	_	_			
27,5	_	70,6	_	_			
25,0	-	67,2	-	_			
22,5		63,2					
20,0	_	60,2	_	_			
17,5	_	56,2	_	_			

Программа «Гидронамыв 1.0». Руководство пользователя.

Диаметр частиц, мм	Гидравличес	кая крупность, с	м/с, при темпера	туре воды, °С
	5	10	15	20
15,0	_	52,0		_
12,5	_	47,7	_	-
10,0		42,5		
9,0	_	40,3		
8,0		38,0		
7,0		35,5		
6,0		32,8		
5,0		30,0		
4,0		26,8	_	
,,,	Данны	і е А.А. Саркися	l H	l
3,5	24,05	24,53	25,05	25,55
3,0	22,25	22,75	23,25	23,75
2,5	20,42	20,92	21,42	21,92
2,0	18,25	18,75	19,25	19,75
1,75	16,82	17,32	17,82	18,35
1,5	15,15	15,65	16,15	16,65
1,25	13,30	13,80	14,30	14,80
1,0	11,20	11,68	12,17	12,66
0,9	10,32	10,79	11,26	11,73
0,85	9,84	10,29	10,75	11,20
0,8	9,36	9,81	10,25	10,69
0,775	9,13	9,56	10,00	10,43
0,75	8,81	9,23	9,65	10,07
0,65	7,48	7,88	8,27	8,66
0,6	6,78	7,16	7,53	7,90
0,5	5,34	5,67	6,00	6,33
0,4	3,97	4,26	4,55	4,84
0,375	3,62	3,90	4,18	4,46
0,35	3,24	3,50	3,72	4,04
0,325	2,87	3,12	3,37	3,62
0,3	2,51	2,74	2,97	3,22

Программа «Гидронамыв 1.0». Руководство пользователя.

Диаметр частиц, мм	Гидравлическая крупность, см/с, при температуре воды, °C						
	5	10	15	20			
0,275	2,16	2,38	2,60	2,88			
0,25	1,84	2,05	2,26	2,46			
0,2	1,26	1,45	1,62	1,78			
0,15	0,79	0,92	1,04	1,17			
0,14	0,69	0,81	0,93	1,06			
0,13	0,60	0,72	0,83	0,94			
0,125	0,55	0,66	0,78	0,89			
0,12	0,51	0,62	0,72	0,83			
0,11	0,46	0,54	0,62	0,71			
1,0	0,385	0,46	0,535	0,61			
0,095	0,344	0,414	0,484	0,554			
0,0925	0,334	0,397	0,460	0,523			
0,09	0,315	0,375	0,435	0,495			
0,085	0,282	0,336	0,390	0,444			
0,08	0,252	0,300	0,348	0,396			
0,075	0,224	0,266	0,308	0,350			
0,07	0,194	0,232	0,270	0,308			
0,0685	0,185	0,222	0,259	0,296			
0,065	0,168	0,201	0,233	0,266			
0,0615	0,151	0,180	0,210	0,239			
0,06	0,146	0,173	0,200	0,228			
	Данные Е	В. Архангельс	кого	***			
0,057	0,132	0,157	0,182	0,206			
0,05	0,106	0,124	0,148	0,160			
0,02	0,017	0,020	0,022	0,026			
0,01	0,0043	0,0049	0,0056	0,0064			
0,005	0,0011	0,0012	0,0014	0,0016			
0,003		_	0,0005	_			
0,001	0,000426	0,00049	0,00005	0,000064			