

Şekerleri Dağıtmak

Khong Teyze yakındaki bir okulun öğrencileri için n kutu şeker hazırlamaktadır. Kutular 0'dan n-1'e numaralandırılmıştır ve başlangıçta boştur. i ($0 \le i \le n-1$) numaralı kutunun c[i] şekerlik bir kapasitesi vardır.

Khong Teyze kutuları hazırlamak için q gün harcar. j. günde ($0 \le j \le q-1$), üç tamsayı ile belirtilen bir hamle yapar $l[j], \ r[j]$ ve $v[j], \ 0 \le l[j] \le r[j] \le n-1$ ve $v[j] \ne 0$. $l[j] \le k \le r[j]$ şartını sağlayan her k kutusu için:

- Eğer v[j]>0 ise, Khong Teyze k numaralı kutuya birer birer, ya tam olarak v[j] şeker eklenmiş olana kadar ya da kutu dolana kadar, şeker ekler. Diğer bir deyişle, bu hamleden önce kutuda p tane şeker varsa, hamle sonunda $\min(c[k], p+v[j])$ tane şeker olacaktır.
- Eğer v[j] < 0 ise, Khong Teyze k numaralı kutudan birer birer, ya tam olarak -v[j] şeker çıkarılmış olana kadar ya da kutu boşalana kadar, şeker çıkarır. Diğer bir deyişle, bu hamleden önce kutuda p tane şeker varsa, hamle sonunda $\max(0, p + v[j])$ tane şeker olacaktır.

Sizin göreviniz q gün sonunda her kutuda kaçar tane şeker olacağını hesaplamaktır.

Implementasyon Detayları

Aşağıdaki fonksiyonu implement etmelisiniz:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: n uzunluğunda bir array. $0 \le i \le n-1$ için, c[i], i numaralı kutunun kapasitesini gösterir.
- $l,\ r$ ve v: her biri q uzunluğunda üç tane array. j. günde, $0 \le j \le q-1$ için, Khong Teyze $l[j],\ r[j]$ ve v[j] tamsayıları ile belirtilen ve yukarıda detayları verilmiş hamleyi gerçekleştirir.
- Bu fonksiyon n uzunluğunda bir array dönmelidir. Bu array s olsun. $0 \le i \le n-1$ için, s[i] değeri, q gün sonunda i numaralı kutudaki şeker sayısını göstermelidir.

Örnekler

Örnek 1

Aşağıdaki çağrıyı göz önüne alınız:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

0 numaralı kutunun 10 şekerlik bir kapasitesi, 1 numaralı kutunun 15 şekerlik bir kapasitesi ve 2 numaralı kutunun da 13 şekerlik bir kapasitesi varmış.

0. günün sonunda, 0 numaralı kutuda $\min(c[0],0+v[0])=10$ şeker, 1 numaralı kutuda $\min(c[1],0+v[0])=15$ şeker ve 2 numaralı kutuda da $\min(c[2],0+v[0])=13$ şeker olur.

1. günün sonunda, 0 numaralı kutuda $\max(0,10+v[1])=0$ şeker ve 1 numaralı kutuda $\max(0,15+v[1])=4$ şeker kalır. 2>r[1] olduğu için 2 numaralı kutudaki şeker sayısında bir değişiklik olmaz. Her günün sonundaki şeker sayıları aşağıda gösterilmiştir:

Day	Box 0	Box 1	Box 2
0	10	15	13
1	0	4	13

Görüldüğü üzere, bu fonksiyon [0,4,13] array'ini dönmelidir.

Kısıtlar

- $1 \le n \le 200\,000$
- $1 \le q \le 200\,000$
- $1 \le c[i] \le 10^9$ (her $0 \le i \le n-1$ için)
- $0 \leq l[j] \leq r[j] \leq n-1$ (her $0 \leq j \leq q-1$ için)
- $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (her $0 \leq j \leq q-1$ için)

Altgörevler

- 1. (3 puan) $n, q \leq 2000$
- 2. (8 puan) $\,v[j]>0$ (her $\,0\leq j\leq q-1\,$ için)
- 3. (27 puan) $c[0]=c[1]=\ldots=c[n-1]$
- 4. (29 points) l[j]=0 ve $\,r[j]=n-1$ (her $\,0\leq j\leq q-1$ için)
- 5. (33 puan) Ek kısıt bulunmamaktadır.

Örnek Grader

Örnek grader girdiyi aşağıdaki formatta okur:

- satır 1: *n*
- satır 2: c[0] c[1] ... c[n-1]
- satır 3: *q*
- $\bullet \ \ \mathsf{satur} \ \ 4+j \ (\ 0 \leq j \leq q-1) \text{:} \quad l[j] \ r[j] \ v[j]$

Örnek grader cevaplarınızı aşağıdaki formatta basar:

• satır 1: s[0] s[1] ... s[n-1]