Failure under variable loading

- Mechanical components are subjected to loads which vary with time
 - Shafts, connecting rod, push rods etc.
- The stresses fluctuate between some level and continue for long periods
- Parts subjected to such variable loading has been observed to fail after some number of load cycles even when the stresses are well below that required for yielding or failure- Fatigue failure
- Fatigue failure is **sudden** in nature
- Parts have to be designed to avoid fatigue failure during their expected service life

Mechanism: Stage 1

- One or more micro-cracks initiate at sites of stress concentration
 - Holes, section changes, scratches, tool marks
 - Material defects like voids or inclusions
- The cracks form due to cyclic plastic deformation at a microscopic level: Strain hardening leads to loss of ductility and crack formation.
- These cracks are too small to be detected

Mechanism: Stage 2

- The micro cracks after many load cycles grow into a major macro-crack
- This crack extends in size with every load cycle
- This leads to formation of striations on the fracture surface
- The fracture surfaces also have parallel markings, beach marks which clearly converge to the point of initiation of the crack

Mechanism: Stage 3

- After many cycles, the crack reaches a size large enough that the remaining cross-section cannot withstand the load
- This leads to sudden fracture often in a brittle manner
- ➤ Design for variable loading: Given the loads and the expected life (number of load cycles) design the part such that it will not fail by
 - o Fatigue failure before its expected life
 - o Yielding or rupture at the first load cycle

ice	Factor a	Exponent
h	<i>S_{ut},</i> MPa	b
d	1.58	-0.085

$$k_a = aS_{ut}^b \begin{array}{cccc} & Ground & 1.58 & -0.085 \\ & Machined or cold-drawn & 4.51 & -0.265 \\ & Hot-rolled & 57.7 & -0.718 \\ & As-forged & 272. & -0.995 \end{array}$$

Surface factor

Size factor

For Bending and Torsion

$$k_b = \begin{cases} \left(\frac{d}{7.62}\right)^{-0.107} = 1.243 d^{-0.107}; \ 2.79 \le d \le 51 \text{ mm} \\ 1.51 d^{-0.157}; \ 51 < d \le 254 \text{ mm} \end{cases}$$

For axial loading, $k_b = 1$

Reliability, %	Reliability Factor k_e
50	1.000
90	0.897
95	0.868
99	0.814
99.9	0.753
99.99	0.702
99.999	0.659
99.9999	0.620

Combined stresses

Calculte the mid range component of stress due

to axial load ($\sigma_{\text{m-axial}}$), bending, ($\sigma_{\text{m-bening}}$) and torsion (τ_{m})

Calculte the amplitude component of stress due

to axial load ($\sigma_{\mbox{\tiny a-axial}}$), bending, ($\sigma_{\mbox{\tiny a-bening}}$) and torsion ($\tau_{\mbox{\tiny a}}$

Determine $K_{t-axial}$, $K_{t-bending}$ and $K_{s-torsion}$

Determine q and q_s and calculate $K_{f-axial},\,K_{f-bending}$ and $K_{fs-torsion}$

Increase the mid range component and amplitude component of each stress by multiplying with respective fatigue SCF Calculate the von-Mises stress for mid-range component,

$$\sigma_{\rm m}' = \left(\left(\sigma_{\rm m-axial} \times K_{f-axial} + \sigma_{\rm m-bening} \times K_{f-bending} \right)^2 + 3 \left(\tau_{\rm m} \times K_{fs-torsion} \right)^2 \right)^{1/2}$$

Calculate the von-Mises stress for mid-range component

$$\sigma_{a}' = \left(\left(\sigma_{a-\text{axial}} \times K_{f-\text{axial}} + \sigma_{a-\text{bening}} \times K_{f-\text{bending}} \right)^{2} + 3 \left(\tau_{a} \times K_{fs-\text{torsion}} \right)^{2} \right)^{1/2}$$

Use these in MGL

