1 Set A

1. For function $f(x) = e^x$, at $x_0 = 2$, find the truncation error for backward difference (h = 1, h = 0.1, h = 0.01, h = 0.001) and figure out the relationship of error with the order of h. (5 marks)

ANS: Derivative of e^x is e^x . So $f'(x) = e^x$. f'(2) = 7.38905609893Now using backward difference formula we find out derivative for each of the h value. And by subtracting the backward difference from the exact derivative at $x_0 = 2$ we find the truncation error.

h	Backward difference	Truncation error
1	4.67077427047	2.71828182846
0.1	7.03161656651	0.35743953241
0.01	7.35223366211	0.03682243682
0.001	7.38536280208	0.00369329684

We can see that the error is linear in h.

2. A rocket has been launched, and its velocities at different times are collected. From these data, the acceleration of the rocket, a(t) at t = 16sec is calculated numerically by using different methods (h=1) as shown in the table below:

Difference method	Forward	Backward	Central
a (t=16)	33.88008462692784	32.898426118911345	33.38925537291959

Now, if the velocity of a rocket as function of time obey the equation below: where v is in m/s and t is in seconds,

$$v(t) = 1900 \ln(\frac{12 * 10^4}{12 * 10^4 - 2000t}) - 9.8t \tag{1}$$

find the truncation errors for the acceleration at t=16sec for Forward, Backward and Central Difference methods. (4.5 marks)

ANS:

$$a(t) = 1900 * 2000 \frac{12 * 10^4 - 2000t}{(12 * 10^4 - 2000t)^2} - 9.8$$
 (2)

Following above equation, a(t = 16) = 33.381818

Method	Truncation error
forward	-0.4982664451096639
backward	0.48339206290683023
central	-0.007437191101416829

(1)
$$f(m) = 2x - \cos(nx)$$
, [-1,1]

(a)
$$f(-1) = -2.540302$$

 $f(0) = -1$

$$f(1) = 1.459698$$

rooot lies between and 1.

$$=)2x^{3}-2x^{2}-3x+3=0$$

$$= 3n = 2n^3 - 2n^2 + 3$$

$$\frac{1}{3} x = \frac{2x^3 - 2x^2 + 3}{3} = g_1(x)$$

$$=\frac{3\pi-3}{2(n^2-n)}=g_2(n)$$

(c) mosts
$$\Rightarrow f(\alpha) = 2\alpha^{2} = 2\alpha^{2} = 3\alpha + 3$$

 $\Rightarrow 0 = 2\alpha^{2} = 2\alpha^{2} = 3\alpha + 3$
 $\Rightarrow 2\alpha^{2}(\alpha - 1) = 0$
 $\Rightarrow (2\alpha^{2} = 3)(\alpha - 1) = 0$

Set 1

Α

Newton's Method

Xk	f(Xk)
5	-1089.6331584
4.5031916	-399.0121859
4.0118120	-144.9610192
3.5348442	-51.5387238
3.0946337	-17.2706414
2.7388409	-4.9136136
2.5326224	-0.8872290
2.4763778	-0.0480822
	5 4.5031916 4.0118120 3.5348442 3.0946337 2.7388409 2.5326224

В

Aitken Acceleration

K	Xk	f(Xk)
0	5	-1089.6331584
1	4.5031916	-399.0121859
2	4.0118120	-144.9610192
2(^)	-40.4646674	7
3	9.8654072 x 10^36	Math Error

Set 1 Question 4

a)
$$F(1) = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}$$
 $A(2) = F(1)*A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & -1 \end{pmatrix}$, $F(2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$

b)
$$L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$

c) A(3) = F(2)*A(2) =
$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{pmatrix}$$
 = U,

$$Ly=b \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 20 \\ 17 \end{pmatrix} \Rightarrow y_1 = 6, y_2 = 8, y_3 = -9$$

$$Ux=y \qquad \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \\ -9 \end{pmatrix} \Rightarrow x_3 = 3, x_2 = 2, x_1 = 1$$

$$\begin{bmatrix} 1 & 100 \\ 1 & 220 \\ 1 & 430 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} 70 \\ 180 \\ 300 \end{bmatrix}$$

$$A \qquad 2c \qquad b$$

$$\rho_1 = U_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$q = \frac{\rho_1}{|\rho_1|} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$$

$$Q_2 = \frac{P_2}{|P_2|} = \frac{1}{3\sqrt{62}} \begin{bmatrix} -150 \\ -30 \\ 180 \end{bmatrix} = \begin{bmatrix} -5\sqrt{62}/62 \\ -\sqrt{62}/62 \\ 3\sqrt{62}/31 \end{bmatrix}$$

$$P_2 = \begin{bmatrix} -150 \\ -30 \\ 180 \end{bmatrix}$$

$$R = Q^{T}A$$

$$= \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -5\sqrt{62/62} & -\sqrt{62/62} & 3\sqrt{62/31} \end{bmatrix} \begin{bmatrix} 1 & 100 \\ 1 & 220 \\ 1 & 430 \end{bmatrix}$$

$$R = \begin{bmatrix} \sqrt{3} & 250\sqrt{3} \\ 0 & 30\sqrt{62} \end{bmatrix} = \begin{bmatrix} 1.732 & 433.013 \\ 0 & 236.220 \end{bmatrix}$$

$$\begin{cases}
\zeta = Q^{T} b \\
3 250 \overline{3} \\
0 30 \overline{62}
\end{cases}
\begin{bmatrix}
\alpha_{0} \\
\alpha_{1}
\end{bmatrix} = \begin{bmatrix}
1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\
-5\sqrt{62}/62 & -\sqrt{62}/62 & 3\sqrt{62}/3
\end{bmatrix}
\begin{bmatrix}
70 \\
180 \\
300
\end{bmatrix}$$

$$\begin{bmatrix}
\sqrt{3} 250 \overline{3} \\
0 30 \sqrt{62}
\end{bmatrix}
\begin{bmatrix}
\alpha_{0} \\
\alpha_{1}
\end{bmatrix} = \begin{bmatrix}
550/\sqrt{3} \\
635\sqrt{2}/\sqrt{3}
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{0} \\
\alpha_{1}
\end{bmatrix} = \begin{bmatrix}
\sqrt{3} 250 \overline{3} \\
0 30 \overline{62}
\end{bmatrix}^{-1}
\begin{bmatrix}
550/\sqrt{3} \\
635\sqrt{2}/\sqrt{3}
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha_{0} \\
\alpha_{1}
\end{bmatrix} = \begin{bmatrix}
1175/93 \\
127/186
\end{bmatrix} = \begin{bmatrix}
12.634 \\
0.683
\end{bmatrix}$$

(c)
$$f(x) = 12.634 + 0.683 x$$

 $f(1500) = 12.634 + 0.683(1500)$
 $= 1037.134$

1) Find out the actual Integral of twelow. wi min me interval [1.4]

$$\begin{array}{lll}
\text{Q} & \int_{-\infty}^{4} \ln x \, dx &= \left[x \ln x - x \right]_{+1}^{4} = \left[4 \ln x - 4 - \ln x \ln x + 1 \right] \\
&= \left[\frac{3 \ln x - 3}{4} \right] \left[4 \ln (4) - 3 - \ln (1) \right] \\
&= 3.5452
\end{array}$$

Use Composite Newton-wifes Mestrod. - and m=4.

bene,
$$a = 1$$
, $b = 4$
 $m = 4$, so, $h = \frac{b-4}{m} = \frac{3}{4}$
 $x_0 = a = 1$
 $x_2 = \frac{7}{4} + \frac{3}{4} = \frac{13}{4} \times 4 = \frac{13}{4} \times 4 = \frac{13}{4}$
 $x_1 = \frac{3}{4}$
 $x_1 = \frac{3}{4}$
 $x_2 = \frac{13}{4}$
 $x_3 = \frac{13}{4}$

$$C_{1,4} = \frac{h}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + f(x_4) \right]$$

$$= \frac{34}{2} \left[1 + 2\ln(\frac{h}{2}) + 2\ln(\frac{5}{2}) + 2\ln(\frac{5}{2}) + 2\ln(\frac{13}{4}) + 2\ln(\frac{4}{2}) \right]$$

$$= 236662$$

$$= 2.8858$$

Ennon: ?

$$\frac{\left(\frac{1.4 - A \cdot 400}{4.4}\right) \times 1009}{2.8858 - 2.5452} \times 1009.$$
= $\frac{2.8858 - 2.5452}{2.8858} \times 1009.$