

# **Veriscite:**A Resource for Scientific Claim Verification

**JDSE 2025** 

Lucía Catalán Gris, Kim Gerdes 25 September, 2025

LISN, Université Paris-Saclay, Orsay 91400, France

#### **Table of contents**

- 1. Context and Motivation
- 2. The Veriscite Dataset
  - 2.1. Input articles
  - 2.2. Claim extraction
  - 2.3. Claim simplification
  - 2.4. Claim generation
- 3. Conclusion and future work

# 1. Context and motivation

# **Fact-checking**

The task of assessing whether a factual claim is valid based on evidence.

# Examples:

- 1. Newspaper's articles
- COVID-19 vaccination tweets
- 3. Climate change tweets
- 4. Presidential candidates' statements

#### **FACT-CHECKING**

# **Fact-checking**

The task of assessing whether a factual claim is valid based on evidence.

## Examples:

- 1. Newspaper's articles
- COVID-19 vaccination tweets
- 3. Climate change tweets
- 4. Presidential candidates' statements



# **Academic Fact-Checking**

Assessing whether a claim from an **academic source** is valid based on evidence.

# Types of claims in a paper:

- 1. Scientific statements
- 2. Logic reasoning
- Citation claims



# **Academic Fact-Checking**

Assessing whether a claim from an **academic source** is valid based on evidence.

# Types of claims in a paper:

- 1. Scientific statements
- 2. Logic reasoning
- Citation claims



## **Academic Fact-Checking: Differences in tasks**

# Scientific statement Verification

- Evidence: more than one relevant academic articles
- 2. Verify if the meaning of the claim itself it's true or not.

# Citation claim Verification

- Evidence: the referenced article
   (appears in the references section)
- 2. Verify if the cited author meant to claim that or not.

#### Citation Claim Verification

Is what the author says about the cited article verified in the referenced article?



#### **Citation Claim Verification**

 Scientists are required to explicitly cite all the claims in their publications that were inspired or used in earlier works (Nicolaisen, 2007).

 That claim should be connected to a reference in the bibliography section of the article.

#### Other datasets

| Dataset                                 | # Claims | Claim Origin   | <b>Evidence Source</b> | Domain         |
|-----------------------------------------|----------|----------------|------------------------|----------------|
| SCIFACT (Wadden et al., 2020)           | 1,409    | Researchers    | Research papers        | Biomedical     |
| PUBHEALTH (Kotonya and Toni, 2020b)     | 11,832   | Fact-checkers  | Fact-checking sites    | Public health  |
| CLIMATE-FEVER (Diggelmann et al., 2020) | 1,535    | News articles  | Wikipedia articles     | Climate change |
| HEALTHVER (Sarrouti et al., 2021)       | 1,855    | Search queries | Research papers        | Health         |
| COVID-FACT (Saakyan et al., 2021)       | 4,086    | Reddit posts   | Research, news         | COVID-19       |
| CoVERT (Mohr et al., 2022)              | 300      | Twitter posts  | Research, news         | Biomedical     |

Table 1: Datasets for the task of scientific fact-checking and claim verification

#### **Motivation**

#### **Peer Review:**

- → Near universal application for evaluating scientific articles before publication.
- → It's mostly a manual process.

#### **Problems:**

- 1. Explosion of submissions co-written by ChatGPT.
- 2. It's very slow.
- 3. Most reviewers don't have time to check all the citations inside the paper.

# Why the Computational Linguistics domain?

- 1. We know it.
- It's largely unexplored; most academic fact-checking is conducted in the biomedical domain.
- There are fewer open-source databases available for it compared to other fields.

# 2. The Veriscite Dataset

## Input articles

100 open-access articles drawn from two journals:

- > 50 from Glossa
- 50 from Computational Linguistics



## **Dataset construction process**



#### **Claim Extraction**



Article

#### **Claim Extraction**

|                                        | N found | Example                                                                                                                                                     |
|----------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sentences<br>(claims) with<br>citation | 9.800   | Associative learning is a fundamental mechanism that holds strong explanatory power for general learning in both humans and other animals (Pavlov 1949, []) |
| References                             | 7.489   | Pavlov, Ivan P. 1949. Conditioned responses.<br>Readings in General Psychology,<br>pages 249–267. https://doi.org/10<br>.1037/11352-036                     |

## **Automatic Claim Simplification**



## **Automatic Claim Simplification**

**TASK**: Each statement about a cited article is split into atomic claims.

MODEL: GPT-5

|                         | N found | Example                                                                                                                                                                                                                                                                                                                 |  |
|-------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sentences with citation | 9.800   | Associative learning is a fundamental mechanism that holds strong explanatory power for general learning in both humans and other animals (Pavlov 1949, [])                                                                                                                                                             |  |
| Atomic claims           | 13.021  | <ol> <li>The paper supports the view that associative learning is a fundamental mechanism.</li> <li>The paper provides evidence that associative learning has strong explanatory power for general learning.</li> <li>The paper provides evidence that associative learning accounts for learning in humans.</li> </ol> |  |

#### **Claim Generation**

**TASK**: To add nuanced and false claims to the dataset, we generate 5 variants of the previous claims.

MODEL: GPT-5

|                         | Example                                                                                                                                                                                                                                                                                                                 |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sentences with citation | Associative learning is a fundamental mechanism that holds strong explanatory power for general learning in both humans and other animals (Pavlov 1949, [])                                                                                                                                                             |  |  |
| Atomic claims           | <ol> <li>The paper supports the view that associative learning is a fundamental mechanism.</li> <li>The paper provides evidence that associative learning has strong explanatory power for general learning.</li> <li>The paper provides evidence that associative learning accounts for learning in humans.</li> </ol> |  |  |

### Claim Generation: The paper supports the view that associative learning is a fundamental mechanism.

|   | Description                                                                 | Example                                                                                                                                                      |
|---|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Oposite claim                                                               | Associative learning is not a fundamental mechanism and has little explanatory power for general learning in humans or other animals.                        |
| 2 | More general claim (not necessarily true)                                   | Learning processes can be explained by a small set of universal mechanisms shared across species.                                                            |
| 3 | More specific claim (a fortiori true                                        | Classical conditioning, as a form of associative learning, provides strong explanatory power for certain types of learning in both humans and other animals. |
| 4 | Similar claim in the same<br>domain, but cannot be true<br>at the same time | General learning in humans and other animals is primarily explained by innate cognitive structures, not associative mechanisms.                              |
| 5 | Paraphrase necessarily true if the claim is true                            | The view presented is that associative learning underlies and explains much of how humans and other animals learn.                                           |

#### Veriscite dataset

New open dataset for citation verification in scientific articles:

- Focus on computational linguistics.
- 65,105 atomic claims about cited articles.
  - Labeled as True, False, or NEI (Not Enough Information)
  - Together with the reference and URL of the cited work

# 4. Conclusion and future work

#### Conclusion

- First step toward building a comprehensive benchmark for scientific fact-checking.
- Complementary challenge: given a text without references, predicting where citations should appear

#### **Future work**

- 1. Developing a typology for the claims.
- 2. We are setting up two human verification processes:
  - Manual claim simplification step to assess the quality of atomic claims generated by GPT-5
  - Human claim verification to critically review the assigned labels from the typology.

#### References

Nicolaisen, J. (2007), Citation analysis. Ann. Rev. Info. Sci. Tech., 41: 609-641. https://doi.org/10.1002/aris.2007.1440410120

Juraj Vladika and Florian Matthes. 2023. Scientific Fact-Checking: A Survey of Resources and Approaches. In Findings of the Association for Computational Linguistics: ACL 2023, pages 6215–6230, Toronto, Canada. Association for Computational Linguistics.

Anna Jon-And, Jérôme Michaud; Usage-based Grammar Induction from Minimal Cognitive Principles. Computational Linguistics 2024; 50 (4): 1375–1414. doi: https://doi.org/10.1162/coli\_a\_00528

# Thank you for listening