應數三數值分析 2020 秋, 期末考解答

學號:,	姓名:
, mu	7 - 1 -

本次考試共有8頁(包含封面),有9題。如有缺頁或漏題,請立刻告知監考人員。

考試須知:

- 請在第一及最後一頁填上姓名學號,並在每一頁最上方屬名,避免釘書針斷裂後考卷遺失。
- 不可翻閱課本或筆記。
- 僅可以使用電子計算機,不可用手機替代。
- 計算題請寫出計算過程,閱卷人員會視情況給予部份分數。 沒有計算過程,就算回答正確答案也不會得到滿分。答卷請清楚乾淨,儘可能標記或是框出最終答案。

高師大校訓:誠敬弘遠

誠,一生動念都是誠實端正的。 敬,就是對知識的認真尊重。 宏,開拓視界,恢宏心胸。 遠,任重致遠,不畏艱難。

請尊重自己也尊重其他同學,考試時請勿東張西望交頭接耳,亦不可使用允許範圍之外的物件。

- 1. (20 points) For $f(x) = e^{2x}$.
 - (a) Use three-point midpoint formula with h = 0.1 to approximate f'(1.2) and calculate the exact error and the error bound.

Answer: $f'(1.2) = \underline{22.193635}$, exact error = $\underline{0.147282}$, error bound = $\underline{0.179519}$

(b) Find a proper h such that the error bound will smaller than 0.0001.

Answer: h = 0.0026

$$f'(x_0) = \frac{1}{2h} [-f(x_0 - h) + f(x_0 + h)] - \frac{h^2}{6} f^{(3)}(\xi_0), \text{ hence},$$

$$f'(1.2) \approx \frac{1}{2h} [-f(x_0 - h) + f(x_0 + h)] = \frac{1}{0.2} [-f(1.1) + f(1.3)] = 22.193635.$$

$$f'(x) = 2e^{2x} \Rightarrow f'(1.2) = 22.04635$$
. Then the actual error = $|22.193635 - 22.046353| = 0.147282$

$$f^{(3)}(x) = 8e^{2x} \Rightarrow M = 8e^{2 \times 1.3} = 107.709904.$$

Then the error bound =
$$\max_{1.1 \le \xi_0 \le 1.3} \left| \frac{h^2}{6} f^{(3)}(\xi_0) \right| = \frac{0.1^2}{6} M = 0.179519.$$

The error bound
$$< 10^{-1}$$
, i.e. $\max_{1.2-h \le \xi_0 \le x_0+h} \left| \frac{h^2}{6} f^{(3)}(\xi_0) \right| < 10^{-1}$. Therefore, $h > 0.0026$.

2. (15 points) The quadrature formula $\int_0^2 f(x)dx = c_0f(0) + c_1f(1) + c_2f(2)$ is exact for all polynomials of degree less than or equal to 2. Determine c_0, c_1 , and c_2 .

Answer: $c_0 = \underline{1/3}, c_1 = \underline{4/3}, c_2 = \underline{1/3}$

Let $f(x) = ax^2 + bx + c$.

$$\int_0^2 f(x)dx = \frac{8}{3}a + 2b + 2c$$

$$c_0 f(0) + c_1 f(1) + c_2 f(2) = c_0 \times c + c_1 \times (a + b + c) + c_2 \times (4a + 2b + c)$$
$$= (c_1 + 4c_2)a + (c_1 + 2c_2)b + (c_0 + c_1 + c_2)c$$

$$\begin{cases} c_1 + 4c_2 = 8/3 \\ c_1 + 2c_2 = 2 \\ c_0 + c_1 + c_2 = 2 \end{cases}$$

3. (15 points) Romberg integration is used to approximate $\int_0^1 f(x)dx$. If $R_{11} = 4$ and $R_{22} = 5$, find f(1/2) = ?

Answer: $f(1/2) = \underline{\qquad 5.5}$.

$$R_{2,2} = R_{2,1} + \frac{R_{2,1} - R_{1,1}}{4 - 1} = 5$$
. Since $R_{1,1} = 4, R_{2,1} = \frac{19}{4}$

$$R_{2,1} = \frac{1}{2} [R_{1,1} + h_1 \sum_{i=1}^{1} f(a + (2i - 1)h_2)] = \frac{1}{2} (4 + f(\frac{1}{2})) \Rightarrow f(\frac{1}{2}) = 5.5$$

- 4. (20 points) Consider the definite integral $\int_1^3 (x+1)^4 + e^x dx$. It is desired to approximate it within 10^{-1} accuracy using the Composite Simposon's rule.
 - (a) Determine the possible smallest n value. Where n is the number of the subintervals.

Answer: n = 4Note that $f^{(4)}(x) = 24 + e^x$.

$$E = \left| \frac{b - a}{180} h^4 f^{(4)}(\xi) \right| = \left| \frac{3 - 1}{180} \left(\frac{2}{n} \right)^4 (24 + e^{\xi}) \right| \le \frac{2^5}{180n^4} \max_{1 \le \xi \le 3} |24 + e^{\xi}| = \frac{2^5}{180n^4} |24 + e^3|$$

$$\le 7.8374 \frac{1}{n^4} \le 10^{-4} \Rightarrow n \ge 2.9754$$

Since n should be an even number, we have $n \geq 4$.

(b) Calculate the approximation by using the n value that you have found in (a).

Answer: 215.78977 ...

 $n = 4, h = \frac{3-1}{4} = 0.5, x_0 = 1, x_1 = 1.5, x_2 = 2, x_3 = 2.5, x_4 = 3.$

$$\int_{1}^{3} (x+1)^{4} + e^{x} dx \approx \frac{0.5}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + f(x_{4})] \approx 215.78977$$

(c) Evaluate the actual error, is it less than 10^{-1} .

Answer: actual error = $0.022522 < 10^{-1}$.

$$\int_{1}^{3} (x+1)^{4} + e^{x} dx = \frac{(x+1)^{5}}{5} + e^{x} \Big|_{1}^{3} = 215.767255$$

actual error = $|215.767255 - 215.78977| = 0.022522 < 10^{-1}$

5. (15 points) Use **three point Gaussian quadrature** to approximate, $\int_0^1 xe^{x^2} dx$. You may use the table below. You do not need to simplify your answer.

Points	Weighting Function	Factors Arguments
2	c1 = 1.000000000	x1 = -0.577350269
	c2 = 1.000000000	x2 = 0.577350269
3	c1 = 0.555555556	x1 = -0.774596669
	c2 = 0.888888889	x2 = 0.000000000
	c3 = 0.555555556	x3 = 0.774596669
4	c1 = 0.347854845	x1 = -0.861136312
	c2 = 0.652145155	x2 = -0.339981044
	c3 = 0.652145155	x3 = 0.339981044
	c4 = 0.347854845	x4 = 0.8611363123

What is the highest order polynomial that this formula will provide an exact answer for?

Answer: the highest order = 5 ,

approximate = ____

Since we use 3 points, $2 \times 3 - 1 = 5$.

from [1, 0] to [-1, 1], we let t = 2x - 1, then dt = 2dx. Let

$$g(t) = \left(\frac{t+1}{2}\right)e^{(\frac{t+1}{2})^2}$$

$$\int_0^1 x e^{x^2} dx = \int_{-1}^1 \frac{1}{2} g(t) dt \approx c_1 g(x_1) + c_2 g(x_2) + c_3 g(x_3),$$

where

x1 = -0.774596669	c1 = 0.55555556
x2 = 0.000000000	c2 = 0.888888889
x3 = 0.774596669	c3 = 0.555555556

6. (15 points) The following data give approximations to the integral $M = \int_0^{\pi} \sin(x) dx$ $N_1(h) = 1.570796, N_1(h/2) = 1.896119, N_1(h/4) = 1.974232, N_1(h/8) = 1.993570.$ Assuming $M = N_1(h) + K_1h^2 + K_2h^4 + K_3h^6 + K_4h^8 + O(h^10)$, construct an extrapolation table to determine $N_4(h)$.

Answer: $N_4(h) = \underline{\qquad \qquad 1.99999}$, and draw the table below.

Since the approximation formula with truncation error contain only the even powers of h. We have

$$N_j(h) = N_{j-1} \left(\frac{h}{2}\right) + \frac{\left[N_{j-1}\left(\frac{h}{2}\right) - N_{j-1}(h)\right]}{4^{j-1} - 1}$$

$N_1(h) = 1.570796$			
$N_1(\frac{h}{2}) = 1.896119$	$N_2(h) = 2.00456$		
$N_1(\frac{\bar{h}}{4}) = 1.974232$	$N_2(\frac{h}{2}) = 2.00026$	$N_3(h) = 1.99977$	
$N_1(\frac{h}{8}) = 1.993570$	$N_2(\frac{\bar{h}}{2}) = 2.00001$	$N_3(\frac{h}{2}) = 1.99999$	$N_4(h) = 1.99999$

第二部份,額外加分題

7. (15 points) Use the Newton's Method to find a solution within $\epsilon = 10^{-4}$ for the function $f(x) = x - \cos(x) = 0$ where $0 \le x \le \frac{\pi}{2}$, starting with $p_0 = 0$

the Newton's Method is

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$
 for $n \ge 1$.

 $p_1 = 0$

 $p_2 = 0.7503638$

 $p_3 = 0.7391128$

 $p_4 = 0.739085$

8. (15 points) Let $f(x) = \sin(e^x - 2)$. Find the Hermite polynomial that agrees with the function and its derivative at the points $x_0 = 0.8, x_1 = 1.0$. Then use your function to approximate f(0.9). Answer: $f(0.9) = \underline{0.44392477}$

the Hermite polynomial = $0.2236 + 2.169(x - 0.8) + 0.0155(x - 0.8)^2 - 3.2177(x - 0.8)^2(x - 1)$.

```
\sin(e^{0.8} - 2) = 0.22363362

\sin(e^{0.8} - 2) = 0.22363362 2.16917528

\sin(e^{1.0} - 2) = 0.65809197 2.17229172 0.01558224

\sin(e^{1.0} - 2) = 0.65809197 2.04669647 -0.62797625 -3.21779244
```

 $0.2236 + 2.169(0.9 - 0.8) + 0.0155(0.9 - 0.8)^2 - 3.2177(0.9 - 0.8)^2(0.9 - 1) \approx 0.44392477$

9. (20 points) The iterative method to solve f(x) = 0, given by the fixed-point method g(x) = x, where

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} - \frac{f''(p_{n-1})}{2f'(p_{n-1})} \left[\frac{f(p_{n-1})}{f'(p_{n-1})} \right]^2 \text{ for } n = 1, 2, 3, ...,$$

has g'(p) = g''(p) = 0. This will generally yield cubic $(\alpha = 3)$ convergence.

Expanding g(x) in Taylor polynomial for $x \in [p - \delta, p + \delta]$ gives

$$g(x) = g(p) + g'(p)(x - p) + \frac{g''(p)}{2!}(x - p)^2 + \frac{g'''(\xi)}{3!}(x - p)^3$$

where ξ lies between x and p. The problem gave g'(p) = g''(p) = 0 imply that

$$g(x) = p + \frac{g'''(\xi)}{6}(x-p)^3$$

In particular, when $x = p_n$,

$$p_{n+1} = g(p_n) = p + \frac{g'''(\xi_n)}{6}(p_n - p)^3$$

with ξ_n lies between p_n and p. Thus $p_{n+1} - p = \frac{g'''(\xi_n)}{6}(p_n - p)^3$ Since

$$g(x) = x - \frac{f(x)}{f'(x)} - \frac{f''(x)}{2f'(x)} \left[\frac{f(x)}{f'(x)} \right]^2$$
 and $f(x) = e^x - x - 1$

, we have $|g'(x)| \leq k < 1$ on $[p-\delta, p+\delta]$ and g maps $[p-\delta, p+\delta]$ into itself, it follows from the Fixed-Point Theorem that $\{p_n\}_{n=0}^{\infty}$ converges to p. But ξ_n is between p and p_n for each n, so $\{\xi_n\}_{n=0}^{\infty}$ also converges to p, and we have $\lim_{n\to\infty} g'''(\xi_n) = g'''(p)$ Thus

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lim_{n \to \infty} \frac{|g'''(\xi_n)||p_n - p|^{3 - \alpha}}{6} = \frac{|g'''(p)| \times 0}{6} = 0, \text{ for } \alpha = 1, 2$$

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^3} = \lim_{n \to \infty} \frac{|g'''(\xi_n)|}{6} = \frac{|g'''(p)|}{6}$$

Hence, if $g'''(p) \neq 0$, fixed-point iteration exhibits cubic convergence with asymptotic error constant |g'''(p)|.

學號: _

, 姓名:

Question:	1	2	3	4	5	6	7	8	9	Total
Points:	20	15	15	20	15	15	15	15	20	150
Score:										