Question: Show that A is decidable iff $A \leq_m 0^*1^*$. Answer: ----SETP1----**Decidability** Assume $B = 0^{\circ}1^{\circ}$. Thus it is required to prove that A is decidable iff $A \leq_m B$. Solution can be divided into two parts. **1:** If A is decidable then $A \leq_m B$. **2:** If $A \leq_m B$ then A is decidable. ----SETP2----**Part 1:** If A is decidable then $A \leq_m B$. Proof: Firstly define a function f as follows: $f(s) = 01 \text{ if } s \in A$ f(s) = 10 otherwise. Since A is decidable, decider can be used for A to compute f. Also, $s \in A$ iff $f(s) \in B$. Hence, f is mapping reduction from A to B. ----SETP3----**Part 2:** If $A \leq_m B$, then A is decidable. Proof: Since $A \leq_m B$, there exist a function f, such that $w \in A$ iff $f(w) \in B$. Now consider Turing Machine M: M = On input w1. Compute f(w)2. If f(w) is in form of $0^{\circ}1^{\circ}$, then accept, Otherwise, reject. Now $\Leftrightarrow f(w)$ is of the form 0^*1^* $\Leftrightarrow M$ accept w.

Thus, M decides A.