DP2 READING GROUP

Longye Tian

September 2024

Available at https://github.com/longye-tian

MONOTONE SEQUENCES

Definition

Let *V* be a poset.

A sequence $(v_n)_{n\geq 1}$ is called **increasing** if $v_n \lesssim v_{n+1}$ for all $n \in \mathbb{N}$.

We write

$$v_n \uparrow v = \bigvee_n v_n$$

A sequence $(v_n)_{n\geq 1}$ is called **decreasing** if $v_{n+1} \lesssim v_n$ for all $n \in \mathbb{N}$.

We write

$$v_n \downarrow v = \bigwedge_n v_n$$

Let (u_n) , (v_n) be sequence in V. Prove

1)
$$v_n \uparrow v, v_n \lesssim u_n \lesssim v \implies \bigvee_n u_n = v$$

Proof.

Define (w_n) be a sequence in V such that $w_n = v$ for all $n \in \mathbb{N}$.

Then the claim follows from Exercise 1.1.6.

2)
$$v_n \downarrow v, v \lesssim u_n \lesssim v_n \implies \bigwedge_n u_n = v$$

CLOSED UNDER POINTWISE SUPREMA

Definition

We say that V is **closed under pointwise suprema** if, for every increasing sequence $(v_n) \subset V$ that is bounded above, the pointwise supremum

$$s(x) = \sup_{n} v_n(x)$$

is an element of V.

Lemma

Let $V \subset \mathbb{R}^X$ be closed under pointwise suprema, let (v_n) be a sequence in V and let $v \in V$. Then,

$$v_n(x) \uparrow v(x)$$
 in \mathbb{R} for all $x \in X \iff v_n \uparrow v$

Proof.

$$(\Longrightarrow)$$

$$v_n(x) \uparrow v(x) \implies v_n(x) \le v_{n+1}(x), \ \forall x \in X \implies v_n \le v_{n+1}$$

By Exercise 1.1.7., we know $\bigvee_n v_n = v$.

$$(\longleftarrow)$$

$$v_n \uparrow v \implies v_n \le v_{n+1} \implies v_n(x) \le v_{n+1}(x) \ \forall x \in X$$

Let *s* be the pointwise supremum, by closed under pointwise suprema, $s \in V$.

We have
$$v_n \le s \le v \implies s = v$$

MAPPING OVER POSETS - ORDER PRESERVING MAPS

Definition

A self-map S on poset $V = (V, \lesssim)$ is called **order preserving** on V if

$$v, w \in V, v \lesssim w \implies Sv \lesssim Sw$$

Let (V, \lesssim) be a poset and let S be the set of all order preserving self-map on V.Let \lesssim be the pointwise order on S, i.e., $Sv \lesssim Tv \implies S \lesssim T$ Prove

1)
$$S \in S \implies S^k \in S \ \forall k \in \mathbb{N}$$

Proof.

Let $v, w \in V, v \lesssim w$.

$$S \in S \implies Sv \lesssim Sw \implies S(Sv) \lesssim S(Sw) \implies S^2v \lesssim S^2w$$
. Then by induction.

EXERCISE 1.1.12 CONTINUE

2)
$$S, T \in S, S \lesssim T \implies S^k \lesssim T^k \text{ for all } k \in \mathbb{N}$$

Proof.

From 1), S^k , $T^k \in S \ \forall k \in \mathbb{N}$.

We have,

$$\underbrace{S \precsim T \implies Sv \precsim Tv}_{\text{definition}} \implies \underbrace{S(Sv) \precsim S(Tv)}_{S \in \mathbb{S}} \underbrace{\surd T(Tv)}_{S \precsim T} \implies S^2 \precsim T^2$$

Then by induction.

ORDER STABILITY

Definition

Let V be a poset and S be a self-map on V and has a unique fixed point in $\bar{V} \in V$. We call S

- **upward stable** on *V* if $v \in V$, $v \lesssim Sv \implies v \lesssim \overline{v}$
- strongly upward stable on V if $v \in V, v \lesssim Sv \implies S^n v \uparrow \bar{v}$
- **downward stable** on *V* if $v \in V$, $Sv \lesssim v \implies \bar{v} \lesssim v$
- strongly upward stable on V if $v \in V$, $Sv \lesssim v \implies S^n v \downarrow \bar{v}$
- **order stable** on *V* if *S* is both upward and downward stable.
- **strongly order stable** on *V* if *S* is both strongly upward and strongly downward stable.

Consider the self-map on \mathbb{R}^k defined by Sv = r + Av for some $r \in \mathbb{R}^k$ and A is a bounded positive linear operator with $\rho(A) < 1$. Prove that S is strongly order stable on \mathbb{R}^k

Proof.

First, we find the unique fixed point of S, $v = Sv = r + Av \implies \underbrace{v = (I - A)^{-1}r}_{NSI}$

Second, we show S is strongly upward stable. Let $w \in \mathbb{R}^k$, $w \le Sw$

$$w \le Sw = r + Aw \xrightarrow{Aw \le Ar + A^2W} \implies Sw = r + Aw \le r + Ar + A^2W = S^2w$$
A is positive

We have $S^n w \leq S^{n+1} w$, and we have $S^n w \to v$ hence $S^n w \uparrow v$.

ORDERED VECTOR SPACE

Definition

Let E be a vector space and let \leq be a partial order on E. We call (E, \leq) an **ordered vector space** if the order is preserved under addition and nonnegative scalar multiplication that is if

- 1. $u \le v, \alpha \in \mathbb{R}$ with $\alpha \ge 0 \implies \alpha u \le \alpha v$
- 2. $u \le v \implies u + b \le v + b$ for any $b \in E$

POSITIVE CONE

Definition

The **positive cone** of *E*, typically denoted as E_+ is all $v \in E$ with $v \ge 0$.

Exercise

Let S be the vector space of all $n \times n$ matrices (with addition and scalar multiplication defined in the obvious way) and let N be the negative semidefinite matrices in S. As in §2.1.4.3, we impose the Loewner partial order, writing $A \ge B$ when $A - B \in N$. Show that (S, \ge) is an ordered vector space.

Proof.

To show that (S, \geq) is an ordered vector space, we need to prove that the Loewner partial order preserves addition and nonnegative scalar multiplication.

(i) For $\alpha \ge 0$ and $A \ge B$: $\alpha(A - B) \in N$ (since N is closed under nonnegative scalar multiplication) Thus, $\alpha A - \alpha B \in N$, which means $\alpha A \ge \alpha B$ (ii) For $A \ge B$ and $C \in S$: $(A + C) - (B + C) = A - B \in N$ Thus, $A + C \ge B + C$

Therefore, (S, \geq) is an ordered vector space.

Exercise

Let X be any nonempty set and let \mathbb{R}^X be the vector space of real-valued functions on X. Let \leq be the pointwise partial order. Show that (\mathbb{R}^X, \leq) is an ordered vector space.

Proof.

To show that (\mathbb{R}^X, \leq) is an ordered vector space:

(i) For
$$\alpha \ge 0$$
 and $f \le g$: $(\alpha f)(x) = \alpha(f(x)) \le \alpha(g(x)) = (\alpha g)(x)$ for all $x \in X$

(ii) For
$$f \le g$$
 and $h \in \mathbb{R}^X$: $(f + h)(x) = f(x) + h(x) \le g(x) + h(x) = (g + h)(x)$

for all
$$x \in X$$

Therefore, (\mathbb{R}^X, \leq) is an ordered vector space.

Exercise

Let (E, \leq) be an ordered vector space and fix $u, v, w \in E$. Prove that

- (i) $u \ge 0$ and $v \ge 0$ implies $u + v \ge 0$,
- (ii) $u \ge v$ implies $-v \ge -u$,
- (iii) $(u \lor v) + w = (u + w) \lor (v + w)$, and
- (iv) $\alpha(u \vee v) = (\alpha u) \vee (\alpha v)$ whenever $\alpha \geq 0$.

Proof.

(i) $u \ge 0$ and $v \ge 0$ implies $u + v \ge 0$: By the properties of ordered vector spaces, $u \ge 0$ implies $u + v \ge 0 + v = v \ge 0$ (ii) $u \ge v$ implies $-v \ge -u$:

$$u \ge v \implies u - u \ge v - u \implies 0 \ge v - u \implies 0 - v \ge v - u - v \implies -v \ge v - u \ge v - u$$

-u

Ш

EXERCISE 1.1.18 CONTINUE

Proof.

(iii)
$$(u \lor v) + w = (u + w) \lor (v + w)$$
: Let $z = (u \lor v) + w$. Then $z \ge u + w$ and

$$z \ge v + w$$
. Also, for any $y \ge u + w$ and $y \ge v + w$, we have $y - w \ge u \lor v$, so

$$y \ge z$$
. Thus, $z = (u + w) \lor (v + w)$

(iv)
$$\alpha(u \vee v) = (\alpha u) \vee (\alpha v)$$
 for $\alpha \geq 0$:
First, we show $\alpha(u \vee v) \geq (\alpha u) \vee (\alpha v)$ for $\alpha \geq 0$.

We have,
$$u \lor v \ge u$$
, $u \lor v \ge v \implies \alpha(u \lor v) \ge \alpha u$, $\alpha(u \lor v) \ge \alpha v \implies$

$$\alpha(u \vee v) \geq (\alpha u) \vee (\alpha v).$$

Second, we show
$$\alpha(u \vee v) \leq (\alpha u) \vee (\alpha v)$$
 for $\alpha \geq 0$:

We have

$$(\alpha u) \vee (\alpha v) \geq \alpha u; (\alpha u) \vee (\alpha v) \geq \alpha v \implies \frac{1}{\alpha} [(\alpha u) \vee (\alpha v)] \geq u, \frac{1}{\alpha} [(\alpha u) \vee (\alpha v)] \geq u, \frac{1}{\alpha} [(\alpha u) \vee (\alpha v)] \geq u \vee v \implies (\alpha u) \vee (\alpha v) \geq \alpha (u \vee v) \quad \Box$$

Exercise

Prove that

(i) if
$$u_n \uparrow 0$$
 and $v_n \uparrow 0$, then $u_n + v_n \uparrow 0$

Proof.

$$u_n \le u_{n+1}, v_n \le v_{n+1} \implies u_n + v_n \le u_{n+1} + v_n \le u_{n+1} + v_{n+1} \implies (u_n + v_n)$$
 is increasing.

Then, we show
$$\bigvee_n (u_n + v_n) \leq 0$$
:

$$u_n \leq 0 \implies u_n + v_n \leq v_n \implies \bigvee_n \bigl(u_n + v_n\bigr) \leq \bigvee_n v_n = 0$$

Now, we show that 0 is the least upper bound of $(u_n + v_n)$. Let w be an upper

bound of
$$u_n + v_n$$
, i.e., $u_n + v_n \le w \ \forall n \implies (\bigvee_n w_n) + v_n \le w \ \forall n \implies$

$$\bigvee_n u_n + \bigvee_n v_n \le w \implies 0 \le w.$$

EXERCISE 1.1.19 CONTINUE

Exercise

(ii) if $u_n \uparrow u$ and $b \in E$, then $u_n + b \uparrow u + b$.

Proof.

 $u_n \uparrow u \implies u_n \le u_{n+1} \implies u_n + b \le u_{n+1} + b \implies (u_n + b)$ is increasing

Now we prove u + b is the least upper bound of $(u_n + b)$:

Let w be any upper bound of $(u_n + b)$, then we have

$$u_n + b \le w \ \forall n \implies (\bigvee_n u_n) + b \le w \implies u + b \le w$$

LEMMA 1.1.12

Let (u_n) , (v_n) be sequences in the ordered vector space E and let α , β be nonnegative constants. Then

1.
$$u_n \uparrow u, v_n \uparrow v \implies \alpha u_n + \beta v_n \uparrow \alpha u + \beta v$$

2.
$$u_n \uparrow u \implies -u_n \downarrow -u$$

Proof.

From Exercise 1.1.19

PARTIAL ORDER INDUCED BY CONE

Definition

Let E be any vector space. A nonempty subset C is called a **cone** if

- 1. C is convex
- 2. $x \in C, -x \in C \implies x = 0$
- 3. $x \in C, \alpha \ge 0 \implies \alpha x \in C$

A partial order is introduced into a vector space *E* by first choosing a pointed convex cone *C* on *E* and stating that

$$u \le v \iff v - u \in C$$

Exercise

With \leq defined as above, show that (E, \leq) is an ordered vector space and that C is the positive cone of (E, \leq) .

Proof.

Part 1. Let $b \in E$ and $\alpha \in \mathbb{R}_+$.

1.
$$u \le v \implies v - u \in C \implies (v + b) - (u - b) = v - u \in C \implies u + b \le v + b$$

2.
$$u \le v \implies v - u \in C \implies \alpha(v - u) \in C \implies \alpha v - \alpha u \in C \implies \alpha u \le \alpha v$$

Part 2: WTS
$$v \in C \implies v > 0$$
:

$$v \in C \implies v - 0 \in C \implies 0 < v$$

CLOSED PARTIAL ORDER

Definition

A partial order \lesssim on topological space V is called **closed** if, given any two nets $(u_{\alpha})_{\alpha \in \Lambda}$ and $(v_{\alpha})_{\alpha \in \Lambda}$ contained in V,

$$u_{\alpha} \rightarrow u, v_{\alpha} \rightarrow v, u_{\alpha} \lesssim v_{\alpha} \ \forall \ \alpha \in \Lambda \implies u \lesssim v$$

Exercise

Continuing the previous exercise, show that if E is a normed linear space and C is closed in E, then \leq is a closed partial order (see page 31).

Proof.

Let (u_n) , (v_n) be two sequences in E such that $u_n \to u$, $v_n \to v$ and $u_n \le v_n$ for all n.

Then, we have $v_n - u_n \in C = E_+ \forall n$, we want to show $v - u \in E_+$.

Since C is closed,

 $\lim_{n\to\infty} (v_n - u_n) = \lim_{n\to\infty} v_n - \lim_{n\to\infty} u_n = v - u \in C.$

Exercise

Show conversely that if (E, \leq) is an ordered vector space, then the positive cone in E is a (pointed convex) cone.

Proof.

We first show that E_+ is convex. Let $\lambda \in [0,1]$, $u, v \in E_+$, we have

$$u, v \in E_+ \implies u, v \ge 0 \implies \lambda u, (1 - \lambda)v \ge 0 \implies \lambda u + (1 - \lambda)v \ge 0$$

Secondly, we show $x \in E_+, -x \in E_+ \implies x = 0$:

$$x \in E_+ \implies x \ge 0, -x \in E_+ \implies x \le 0 \implies x = 0$$

Last, we show that $x \in E_+$, $\alpha \in \mathbb{R}_+ \implies \alpha x \in E_+$.

$$x \in E_+ \implies x \ge 0 \implies \alpha x \ge 0 \implies \alpha x \in E_+$$

POSITIVE OPERATOR

Definition

A linear operator T mapping ordered vector space E to itself is called **positive** if T is invariant on the positive cone. That is, if $u \in E, u \ge 0 \implies Tu \ge 0$

Exercise

Prove that a linear operator mapping E to itself is positive if and only if it is order preserving.

Proof.

Let
$$u, v \in E$$
 and $u \ge v$

$$(\Longrightarrow)$$

$$u \geq v \implies u - v \geq 0 \implies T(u - v) \geq 0 \underbrace{\qquad \qquad Tu - Tv \geq 0} \implies Tu \geq Tv.$$

linear

$$(\longleftarrow)$$

$$u \ge v \implies Tu \ge Tv \implies Tu - Tv \ge 0 \implies T(u - v) \ge 0$$

Exercise

Show that, for a linear operator $A: E \rightarrow E$, TFAE

- (i) A is order continuous on E.
- (ii) $Av_n \downarrow Av$ whenever $(v_n) \subset E$ and $v_n \downarrow v \in E$.
- (iii) $Av_n \downarrow 0$ whenever $(v_n) \subset E$ and $v_n \downarrow 0$.

Proof.

$$(i) \Rightarrow (ii) v_n \downarrow v \in E \Rightarrow -v_n \uparrow -v \in E \text{ by [L1.1.12]}. Then,$$

$$-Av_n = A(-v_n) \uparrow A(-v) = -Av \implies Av_n \downarrow Av$$

$$(ii) \Rightarrow (iii)$$
 since $A0 = 0$, we get (iii) .

$$(iii) \Rightarrow (i) v_n \downarrow 0 \implies -v_n + v \uparrow v$$
. Let $u_n = -v_n + v$. Then

$$Av_n \downarrow 0 \implies -Av_n + Av \uparrow Av \implies Au_n \uparrow Av$$

ORDER CONTINUITY

Definition

We call a map S from poset V to poset W **order continuous** on V if

$$v_n \uparrow v \implies Sv_n \uparrow Sv$$

In other words, if $(v_n) \subset V$ with $v_n \uparrow v \in V$, then $Sv = \bigvee_n Sv_n \in W$

CONCAVITY AND CONVEXITY

Definition

A self-map S on a convex subset C of ordered vector space $E := (E, \leq)$ is **convex** on C if

$$S(\lambda v + (1 - \lambda)v') \le \lambda Sv + (1 - \lambda)Sv'$$
 whenever $v \le v' \in C$ and $0 \le \lambda \le 1$

The self-map S is called **concave** on C if

$$\lambda Sv + (1 - \lambda)Sv' \le S(\lambda v + (1 - \lambda)v')$$
 whenever $v \le v' \in C$ and $0 \le \lambda \le 1$