République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et des Concours Service des Examens

Baccalauréat 2016

Session Complémentaire

Honneur – Fraternité – Justice

Séries : C & TMGM Epreuve : Mathématiques Durée : 4 heures Coefficients : 9 & 6

(0,5 pt)

(0,5 pt) (0,75 pt)

(0,75 pt)

(0,25 pt)

(0,25 pt)

(0,25 pt)

(0,25 pt)

(0,5 pt)

(0,5 pt)

(0,25 pt)

(0,25 pt)

(0.75 pt)

(0.5 pt)

(0,75 pt)

(0,25 pt)

(0.5 pt)

(0,25 pt)

(0,5 pt)

Exercice 1 (5 points)

Le plan complexe est muni d'un repère orthonormé (O; u, v).

Pour tout nombre complexe z on pose: $P(z) = z^3 - (1+3i)z^2 + 2iz + 6 - 2i$.

- b) Déterminer deux nombres a et b tels que pour tout $z \in \mathbb{C}$ on a : $P(z) = (z-1+i)(z^2+az+b)$.
- c) En déduire l'ensemble des solutions de l'équation P(z) = 0.
- 2) Soit A, B et C les points d'affixes respectives $z_A = -1 + i$, $z_B = 1 i$ et $z_C = 1 + 3i$.
- a) Placer les points A, B et C et déterminer la nature du triangle ABC.
- b) Déterminer l'affixe du point G barycentre du système {(A,2);(B,1);(C,1)}.
- c)Déterminer et construire l'ensemble Γ des points M du plan tels que :

$$2MA^2 + MB^2 + MC^2 = 16$$
.

d) Déterminer et construire l'ensemble Δ des points M du plan tels que :

$$-2MA^2 + MB^2 + MC^2 = 16$$
.

- 3) Soit s la similitude directe de centre C qui transforme A en B.
- a) Déterminer l'écriture complexe de s.
- b) Déterminer le rapport et un angle de s.
- 4) On considère la parabole P de foyer A et de directrice (BC).
- a) Déterminer l'axe focal et le sommet de P.
- b) Tracer P et P' dans le repère précédent où P' = s(P).
- c) Donner des équations cartésiennes de Pet P' dans le repère précédent.

Exercice 2 (5 points)

Soit f la fonction définie sur \mathbb{R} par: $f(x) = (1+x)e^{-x}$.

Soit (C) la courbe représentative de f dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

1.a) Vérifier que :
$$\lim_{x \to -\infty} f(x) = -\infty$$
, $\lim_{x \to -\infty} \frac{f(x)}{x} = +\infty$ et $\lim_{x \to +\infty} f(x) = 0$.

- b) Interpréter les limites précédentes.
- 2.a) Dresser le tableau de variation de f et représenter sa courbe (C).
- b) Calculer l'aire A du domaine plan délimité par (C), l'axe des abscisses et les droites d'équations respectives x=-1 et x=0.
- 3) Soit la fonction f_n définie sur \mathbb{R} par $f_n(x) = \frac{\left(1+x\right)^n e^{-x}}{n!}$ où n est entier naturel non nul.

Montrer que pour tout
$$x \in [-1;0]$$
 on a : $0 \le f_n(x) \le \frac{e}{n!}$.

- 4) Soit la suite (I_n) définie pour tout $n \in \mathbb{N}^*$ par : $I_n = \int_{-1}^0 f_n(x) dx = \int_{-1}^0 \frac{\left(1+x\right)^n e^{-x}}{n!} dx$.
- a) En interprétant graphiquement I_1 , donner sa valeur (On pourra utiliser A.2)).
- b) Montrer, à l'aide d'une intégration par parties, que pour tout $n \in \mathbb{N}^*$: $I_{n+1} = I_n \frac{1}{(n+1)!}$.
- 5) Soit la suite (U_n) définie pour tout $n \in \mathbb{N}^*$ par : $U_n = \sum_{k=0}^n \frac{1}{k!}$.
- a) Montrer que pour tout $n \in \mathbb{N}^*$: $I_n = e U_n$. (0.5 pt)
- b) Démontre que pour tout $n \in \mathbb{N}^*$: $0 \le I_n \le \frac{e}{n!}$. En déduire $\lim_{n \to +\infty} I_n$.
- c) En déduire $\lim_{n\to\infty} U_n$.

Exercice 3 (5 points)

Exercice 3 (5 points)	
On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{e^{2x} - 1}{6e^x}$.	
Soit (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.	
1.a) Vérifier que fest impaire et que $\lim_{x\to -\infty} f(x) = -\infty$. En déduire $\lim_{x\to +\infty} f(x)$.	(0,75 pt)
b) Calculer $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphique ment.	(0,5 pt)
c) Dresser le tableau de variation de f.	(0,5 pt)
d) Montrer que l'équation $f(x) = x$ admet dans $\mathbb R$ trois solutions dont l'une α vérifie $2,8 < \alpha < 2,9$	(0,5 pt)
2.a) Montrer que f réalise une bijection de ${\mathbb R}$ sur un intervalle que l'on déterminera.	(0,25 pt)
b) Vérifier que pour tout réel $x: (f(x))^2 - (f'(x))^2 = -\frac{1}{9}$. En déduire l'expression de $(f^{-1})'(x)$.	(0,5 pt)
c) Soit x un réel que l'conque. Exprimer l'intégrale $I(x) = \int_0^x \frac{3}{\sqrt{9t^2 + 1}} dt$ en fonction de $(f^{-1})(x)$.	(0,25 pt)
3) Soit r la rotation de centre O et d'angle $\frac{\pi}{2}$. Pour tout point M(x,y) on note r(M) = M' et r(C) = C ₁	
a) Donner l'expression complexe de la rotation r puis écrire les coordonnées x',y' de M' en fonction de x et y.	(0,5 pt)
b) Montrer que (C_1) est la courbe représentative de la fonction h définie sur $ \mathbb{R} $ par :	
$h(x) = \ln(-3x + \sqrt{9x^2 + 1})$.	(0,25 pt)
c) Montrer que pour tout réel x , $h(-x) = f^{-1}(x)$. On note (C') la courbe représentative de f^{-1} dans le	
repère précédent.	(0,25 pt)
4.a) Montrer que les courbes (C) et (C') se coupent en deux points autres que l'origine.	(0,25 pt)
b) Construire, dans le même repère les courbes (C) et (C') et calculer en fonction de α l'aire du	(0,5 pt)
domaine plan délimité par ces deux courbes (a est le nombre indiqué en 1.d).	(0,2 pt)
Exercice 4 (5 points)	
Dans le plan orienté, on considère un triangle équilatéral direct ABC de centre G et de coté a $(a>0)$.	
I, J, K et L sont les milieux respectifs des segments [BC], [AC], [AB] et [AI] et D le symétrique de	
I par rapport à J.	
1) Faire une figure illustrant les données précédentes que l'on complétera au fur et à mes ure.	(0.75 pt)
 2.a) Montrer qu'il existe une unique rotation r₁ qui transforme B en C et I en J. b) Déterminer r₁(K) et déterminer le centre et un angle de r₁. 	(0,5 pt) (0,75 pt)
	(0,10 pt)
3) Soit r_2 la rotation de centre K et d'angle $\frac{h}{3}$.	
a) Déterminer $r_2(B)$ et $r_2(I)$.	(0,5 pt) (0,25 pt)
b) En déduire $r_2(C)$.	(0,23 pt)
4.a) Montrer qu'il existe un unique antidéplacement f du plan qui transforme B en C et I en J. b) Montrer que f est une symétrie glissante et donner sa forme réduite.	(0,5 pt) (0,5 pt)
c) Caractériser la transformation $g = f \circ r_1^{-1}$.	(0,25 pt)
5) On considère la transformation $\sigma = r_2 \circ r_1$ et on pose $\sigma(M) = M'$.	
a) Caractériser σ.	(0,25 pt) (0,25 pt)
b) Montrer que si M≠M' alors la droite (MM') passe par un point fixe que l'on déterminera.	(0,23 pt)
c) En déduire que le quadrilatère AMIM' est un parallélogramme.	(0,25 pt)
6) Pour tout point M du plan, on pose $r_1(M) = M_1$ et $r_2(M) = M_2$. Déterminer l'ensemble Γ des points M du plan pour les quels les points M, M_1 et M_2 sont alignés (On	(0.25 4)
	(0,25 pt)
pourra utiliser l'angle $\left(\overrightarrow{\mathbf{MG}}; \overrightarrow{\mathbf{MK}}\right)$).	

Fin.