

2016 Bored of Studies Trial Examinations

Mathematics Extension 1

3rd October 2016

General Instructions

- Reading time 5 minutes.
- Working time 2 hours.
- Write using black or blue pen. Black pen is preferred.
- Board-approved calculators may be used.
- A reference sheet has been provided.
- Show all necessary working in Questions 11 14.

Total Marks - 70

Section I Pages 1 – 6

10 marks

- Attempt Questions 1 10
- Allow about 15 minutes for this section.

Section II Pages 7 – 18

60 marks

- Attempt Questions 11 14
- Allow about 1 hour 45 minutes for this section.

Total marks - 10

Attempt Questions 1 – 10

All questions are of equal value

Shade your answers in the appropriate box in the Multiple Choice answer sheet provided.

1 Which of the following equations best represents the graph below?

- (A) $y = \sin(\sin^{-1} x).$
- (B) $y = \sin^{-1}(\sin x).$
- (C) $y = e^{\ln x}$.
- (D) $y = \ln(e^x)$.
- 2 Let P(x) and Q(x) be polynomials with real coefficients.

Which of the following statements is ALWAYS true?

- (A) If P(x) and Q(x) have the same set of roots, then P(x) = Q(x).
- (B) If P(0) = Q(0), then P(x) and Q(x) have the same constant term.
- (C) If $\frac{P(x)}{Q(x)}$ has a constant remainder, then P(x) and Q(x) have the same degree.
- (D) If P(x) is an even function and P(x) = Q'(x), then Q(x) is an odd function.

3 Let α , β and γ be the real roots of the polynomial P(x), satisfying

$$\alpha\beta\gamma = 1$$

$$\alpha + \beta + \gamma = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

Which of the following statements is NOT always true?

- (A) The sum of the roots of P(x) has magnitude at least 3.
- (B) The sum of the squares of the roots of P(x) is at least 3.
- (C) One of the roots of P(x) is x = 1.
- (D) One of the roots of P(x) is the reciprocal of the other root.
- 4 Consider the binomial expansion of $(ax+b)^n$, where n is a positive integer and a,b>0. The coefficient of x^n is the largest in the binomial expansion.

Which of the following statements is true?

- (A) $n \ge \frac{a}{b}$.
- (B) $n \le \frac{a}{b}$.
- (C) $n \ge \frac{b}{a}$.
- (D) $n \le \frac{b}{a}$.

- 5 Let p be the probability of success in a trial. If the probability of having k successes in n trials is higher than the probability of having the same number of successes in n-1 trials, which of the following is true?
 - (A) $p < \frac{k}{n-1}$.
 - (B) $p > \frac{k}{n-1}$.
 - (C) $p < \frac{k}{n}$.
 - (D) $p > \frac{k}{n}$.
- 6 Let P be a point that divides the interval AB externally in the ratio m:n, where the length of AP is larger than the length of BP. What ratio does the point B divide the interval PA internally?
 - (A) n:(m-n).
 - (B) (m-n):n.
 - (C) m:(m-n).
 - (D) (m-n): m.

7 Which of the following best represents the graph of $y = \tan^{-1} \left(\frac{x}{1 + \sqrt{1 + x^2}} \right)$?

- **8** Which of the following is the correct value of $\int_0^{2\pi} \sin^4 \theta \, d\theta ?$
 - (A) $\frac{3\pi}{16}$.
 - (B) $\frac{3\pi}{8}$.
 - (C) $\frac{3\pi}{4}$.
 - (D) $\frac{3\pi}{2}$.
- **9** A particle moves in simple harmonic motion with amplitude 0.5 units, period π and centre of motion at x = 1.

Which of the following is a possible displacement-time equation of the particle?

- $(A) x = \cos(2t) + 1.$
- (B) $x = \frac{\sin(t)}{2} + 1.$
- (C) $x = \frac{\sin(t)\cos(t)}{2} + 1.$
- (D) $x = \sin^2(t) + \frac{1}{2}$.

10 Consider the following velocity-time graph of a particle.

Which of the following is a possible velocity-displacement graph of the same particle?

(C)

(B)

(D)

All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) A glucose solution enters the bloodstream at a constant rate *r*. The human body metabolises the glucose and removes it from the bloodstream at a rate proportional to the concentration at the time. The concentration satisfies the differential equation

$$\frac{dC}{dt} = r - kC,$$

where k is positive. Let the initial concentration be C_0 .

(i) Show that the concentration at time t is

$$C = \frac{r}{k} - \left(\frac{r - kC_0}{k}\right) e^{-kt} .$$

2

3

3

- (ii) Suppose $C_0 < \frac{r}{k}$. Describe how C(t) changes, as t gets large.
- (b) Use the substitution $u = \sin x \cos x$ to find

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{\tan x} + \sqrt{\cot x} \, dx.$$

(c) Find the set of solutions to the inequality

$$\frac{\sqrt{x}}{|x-1|} > \frac{1}{\sqrt{x}-1} \,.$$

Question 11 continues on page 8

Question 11 (continued)

- (d) (i) Write down the general solution for θ if $\tan \theta = \alpha$.
 - (ii) Hence, or otherwise, show that if x and y are positive where 2xy > 1, then

$$\tan^{-1} x + \tan^{-1} y = \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right).$$

(e) Use mathematical induction to prove that

$$\sum_{k=1}^{2^n} \frac{1}{k} < n+1 \ .$$

3

for positive integer values of n.

End of Question 11

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) An inverted cone with semi-vertical angle θ holds some amount of water.

3

The volume of the water decreases at a rate proportional to the exposed area. At time t, the radius of the exposed area is r and the depth of the water from the vertex is h.

Show that the depth is decreasing at a constant rate.

(b) Suppose
$$\alpha + \beta + \gamma = \frac{\pi}{2}$$
.

Show that

 $\tan \alpha \tan \beta + \tan \beta \tan \gamma + \tan \alpha \tan \gamma = 1$.

Question 12 continues on page 10

(c) The diagram below shows $\triangle ABC$ where P, Q and R are the midpoints of AB, BC and AC respectively, shown in the diagram below.

Let S be the foot of the perpendicular from A onto BC.

Prove that *PRQS* is a cyclic quadrilateral.

Question 12 continues on page 11

Question 12 (continued)

(d) A particle X with displacement function x(t) is said to be *periodic* with period T if

$$x(t+T) = x(t)$$

The particle *X* moves in simple harmonic motion about the origin with period $\frac{2\pi}{n}$ and amplitude *A*.

(i) Another particle *Y* has the displacement equation

3

$$y(t) = (x(t)-b)^2,$$

where b is a constant.

Find the acceleration equation of particle Y in terms of the displacement y(t) and the constants n, A and b.

- (ii) Deduce that if b = 0, then particle Y also moves in simple harmonic motion.
- (iii) Show that if $b \neq 0$, then particle Y is periodic, but does not move in simple harmonic motion.

End of Question 12

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) A particle is projected from a cliff of height h with a fixed initial acute angle θ from the horizontal axis, with variable initial speed V.

The particle lands on the ground at an acute angle α at most 45° from the horizontal axis.

Show that $V^2 \ge 2gh$.

You may state, without proof, any relevant equations of motion.

Question 13 continues on page 13

(b) Let $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ be two points on the parabola $x^2 = 4ay$. The chord PQ subtends a right angle at the focus S, and the tangents at P and Q intersect at T.

Let the feet of the perpendiculars from T to the lines PS and QS be M and N respectively.

- (i) Find the coordinates of *T*.
- (ii) Find the equation of the chords *PS* and *QS*.
- (iii) Hence, or otherwise, prove that *SNTM* is a square.

Question 13 continues on page 14

Question 13 (continued)

(c) Consider a sequence of n identical dollar symbols and m-1 identical dots arranged in a row. The diagram below shows the case for when n=12 and m=5.

Explain why there are $\binom{n+m-1}{n}$ ways of arranging the dollar symbols and dots.

- (d) Travis has n identical coins. He distributes the n coins amongst his m friends.
 - (i) Use part (c) to explain why the number of ways that Travis may
 distribute the coins so that all his friends have at least one coin is

$$\binom{n-1}{m-1}$$
.

(ii) Hence, or otherwise, simplify the sum

$$\binom{m}{1}\binom{n-1}{0} + \binom{m}{2}\binom{n-1}{1} + \binom{m}{3}\binom{n-1}{2} + \dots + \binom{m}{m}\binom{n-1}{m-1}.$$

2

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) Consider the function

$$f(x) = \frac{1}{(x+1)(x+2)...(x+n)}$$
.

It is possible to express f(x) as the sum

$$f(x) = \sum_{k=1}^{n} \frac{A_k}{x+k},$$

where A_k is some real number.

(i) Show that 1

2

$$A_k = \frac{(-1)^{k-1}}{(k-1)!(n-k)!}.$$

(ii) Hence, or otherwise, simplify

 $\binom{n}{1} \frac{1}{n+1} - \binom{n}{2} \frac{2}{n+2} + \binom{n}{3} \frac{3}{n+3} - \binom{n}{4} \frac{4}{n+4} + \dots + \left(-1\right)^{n-1} \binom{n}{n} \frac{n}{n+n}.$

Question 14 continues on page 16

Question 14 (continued)

- (b) Let g(x) be a smooth continuous function in the domain \mathcal{D} : $a \le x \le b$, where g(a) = g(b).
 - (i) With the aid of a diagram, briefly explain why there exists $x = x_0 \text{ in } \mathcal{D} \text{ such that } g'(x_0) = 0.$
 - (ii) Let f(x) be a smooth continuous function defined in \mathcal{D} .

Define

$$g(x) = f(x) - [f(a) + (x-a)f'(a)] - \frac{f(b) - [f(a) + f'(a)(b-a)]}{(b-a)^2} (x-a)^2.$$

Use (i) to show that there exists $x = x_1$ in \mathcal{D} such that $g'(x_1) = 0$.

(iii) Hence, show that there exists $x = x_2$ in the interval $a \le x \le x_1$ such that

$$f(b) = f(a) + (b-a)f'(a) + \frac{(b-a)^2}{2}f''(x_2)$$

Question 14 continues on page 17

Question 14 (continued)

(c) Let f(x) be any smooth continuous function defined over the interval \mathcal{D} : $a \le x \le b$, with a real root $x = \alpha$ in \mathcal{D} and $f'(\alpha) \ne 0$.

Define
$$A(x) = x - \frac{f(x)}{f'(x)}$$
.

Let x_1 , x_2 , x_3 , ... be a sequence of numbers defined by the recurrence

$$A(x_k) = x_{k+1},$$

where k = 1, 2, 3, ..., with starting point x_0 .

(i) Use the result in (b) (iii) to show that there exists $x = \beta_k$ in \mathcal{D} such that

$$|x_{k+1} - \alpha| = \frac{(x_k - \alpha)^2}{2} |A''(\beta_k)|.$$

(ii) Hence show that if $|x_0 - \alpha| < 1$ and $|A''(\beta_k)| < 2$ for all k = 0, 1, 2, 3, ..., then $x_{k+1} \to \alpha$ as $k \to \infty$.

Question 14 continues on page 18

Question 14 (continued)

- (d) Let $f(x) = 1 \ln x$, which has x = e as a solution. Newton's Method is used to approximate e using the starting point $x_0 = 2.71$.
 - (i) Let A(x) be defined as in part (c).

1

Show that if 2 < x < 3, then

$$\frac{1}{3} < \left| A''(x) \right| < \frac{1}{2}.$$

(ii) Use part (c) to find how many applications of Newton's Method are needed to obtain an approximation of *e* that is guaranteed to be correct to *at least* 2016 decimal places.

End of Exam