

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКРЫТИЯМ
ПРИ ГКНТ СССР

(19) SU (11) 1681860 A1

(51) A 61 L 2/16, 2/20

ВСЕСОЮЗНАЯ
МАТЕРИАЛ-ТЕХНИЧЕСКАЯ
БИБЛИОТЕКА

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

1

(21) 4631777/13

(22) 04.01.89

(46) 07.10.91, Бюл. № 37

(71) Всесоюзный научно-исследовательский институт биологического приборостроения
(72) В.П. Никольская, С.Н. Семенов, Н.И. Королев и К.В. Титова

(53) 614.484(088.8)

(56) Патент США № 4169123,
кл. A 61 L 13/00, A 61 K 33/40, опублик. 1979.

(54) СПОСОБ ДЕКОНТАМИНАЦИИ ПОВЕРХНОСТЕЙ

2

(57) Изобретение относится к обеззараживанию поверхностей технологического оборудования и может быть использовано в микробиологической, медицинской и пищевой промышленности. Цель изобретения – инактивация споровых форм микроорганизмов и ускорение деконтаминации. Способ включает обработку поверхностей оборудования парами перекиси водорода, причем в качестве источника паров перекиси водорода используют пероксогидрат фторида аммония при нагреве до 70–86°C, а деконтаминацию поверхностей осуществляют при давлении получаемой газовой среды от 0,8 до 1 атм в течение 120 мин. 6 табл.

Изобретение относится к обеззараживанию поверхностей технологического оборудования и может быть использовано в микробиологической, медицинской и пищевой промышленности.

Цель изобретения – инактивация споровых форм микроорганизмов и ускорение деконтаминации.

Способ включает обработку поверхностей оборудования парами перекиси водорода, причем в качестве источника паров перекиси водорода используют пероксогидрат фторида аммония при нагреве до 70–86°C, а деконтаминацию поверхностей осуществляют при давлении получаемой газовой среды от 0,8 до 1 атм в течение 120 мин.

Пероксогидрат фторида аммония ($\text{NH}_4\text{F} \cdot \text{H}_2\text{O}_2$) представляет собой белое кристаллическое вещество, содержащее 47,89% перекиси водорода и 22,53% активного кислорода. Вещество обладает способ-

ностью выделять перекись водорода в газовую fazу. При 40°C за 2 ч в газовую fazу выделяется 30% H_2O_2 , остальная перекись водорода сохраняется связанный с твердым веществом. При 60°C за 2 ч в газовую fazу переходит до 90% H_2O_2 , содержащейся в пероксогидрате фторида аммония.

Обработка по данному способу подвергают поверхности приборов и оборудования, эксплуатируемые в условиях микробной контаминации, обработка которых дезинфицирующим в виде аэрозоля затруднена.

В качестве тест-объекта используют устойчивую форму микроорганизмов-спироэктозию спор антрацойда (штамм 250) при концентрации спироэктозии 10^7 сп/мл.

Пример. Тест-поверхности, контактированные спорами *B. anthracoides* в многократной повторяемости образцов, помещают в герметичные камеры, в которые подают парогазовую fazу, содержащую перекись во-

(19) SU (11) 1681860 A1

водорода, образующуюся в результате термического превращения пероксигидрата фторида аммония в реакторе, соединенном с камерами системой шлангов. Для циркуляции парогазовой фазы деконтаминации в системе используют насос, установленный на входе в реактор.

Время инкубации подвергнутых обработке тест-объектов составляет 1–7 сут при 28–37°C.

Результаты обработки тест-поверхностей, контаминированных спорами антрацоида (концентрация суспензии $n \cdot 10^7$ сп/мл) представлены в табл. 1 – 3.

При температуре разложения твердого носителя $60 \pm 5^\circ\text{C}$ не происходит полного перехода перекиси водорода из твердого носителя в парогазовую фазу, поэтому не достигается полноты деконтаминации тест-поверхностей.

При температуре разложения твердого носителя $95 \pm 5^\circ\text{C}$ на отдельных тест-поверхностях наблюдается единичный рост микроорганизмов, так как при увеличении температуры разложения твердого носителя выше 86°C уменьшается содержание перекиси водорода в парогазовой фазе.

В табл.4 представлены сравнительные с известным способом результаты деконтаминации поверхностей, контаминированных споровой формой *B.anthracoides* шт.250.

Из табл.4 следует, что если время выдержки контаминированных тест-поверхностей в камерах с парогазовой фазой перекиси водорода, полученной в соответствии со способом, менее 2 ч, то на отдельных тест-поверхностях наблюдается рост микроорганизмов. При экспозиции 2 ч все тест-поверхности деконтаминированы полностью. Время выдержки выше 2 ч нецелесообразно, поскольку при экспозиции 2 ч достигается надежный деконтаминирующий эффект.

Сравнение воздействия парогазовой фазы, полученной при нагревании твердого носителя перекиси водорода и при нагревании растворов перекиси водорода, показывает, что при экспозиции (от 60 до 150 мин по известному способу) не удается осуществить деконтаминацию тест-поверхностей, а в предложенном способе полнота деконтаминации достигается при 120-минутной обработке поверхностей.

При температуре в реакторе $60 \pm 5^\circ\text{C}$ при одном и том же количестве твердого носителя перекиси водорода минимальная

величина избыточного давления в системе не превышает 0,8 атм. При разложении такого же количества твердого носителя при температуре $78 \pm 8^\circ\text{C}$ величина избыточного давления равна 1 атм. Снижение избыточного давления в системе до величины, меньшей 0,8 атм, приводит к резкому снижению степени деконтаминации поверхностей по сравнению с той, которую наблюдают при избыточном давлении 0,8 – 1 атм. Повышение давления свыше 1 атм требует мер по усилению герметизации системы.

Повышение температуры в реакторе выше указанных пределов способствует бурному разложению твердого носителя перекиси водорода в реакторе, резкому повышению избыточного давления до 2 атм и необходимости стравливания его через дренажный клапан во избежание нарушения герметичности. Это приводит к потере деконтаминации из системы и, следовательно, к снижению эффективности деконтаминации.

Пероксогидрат фторида аммония обладает большей величиной константы кинетики инактивации спор *B.anthracoides* (тест-объекта устойчивой формы микроорганизмов) по сравнению с перекисью водорода, что дополнительно повышает надежность деконтаминации поверхностей, обсемененных как вегетативной, так и споровой формой микроорганизмов (см.табл.5).

Исследования по изучению коррозионной активности пероксогидрата фторида аммония показывают стойкость представителей основных групп технических материалов к его воздействию (см.табл.6).

Твердый носитель перекиси водорода делает удобным хранение, транспортировку и использование его для деконтаминации труднодоступных поверхностей приборов и оборудования перекисью водорода.

Ф о р м у л а и з о б р е т е н и я

Способ деконтаминации поверхностей, включающий их обработку парами перекиси водорода, отличающийся тем, что, с целью инактивации споровых форм микроорганизмов и ускорения деконтаминации, в качестве источника паров перекиси водорода используют пероксогидрат фторида аммония при нагреве до 70 – 86°C , а деконтаминацию поверхности осуществляют при давлении получаемой газовой среды от 0,8 до 1 атм в течение 120 мин.

Таблица 1

Обработка тест-поверхностей при температуре разложения твердого носителя перекиси водорода $78 \pm 8^{\circ}\text{C}$, временная обработка 2 ч

Номер камеры	Тест-поверхности				
	1	2	3	4	5
1	-	-	-	-	-
2	-	-	-	-	-
3	-	-	-	-	-

Примечание. (+) – рост микроорганизмов.
(-) – отсутствие роста микроорганизмов.

Таблица 2

Обработка тест-поверхностей при температуре разложения твердого носителя перекиси водорода $60 \pm 5^{\circ}\text{C}$, время обработки 2 ч

Номер камеры	Тест-поверхности				
	1	2	3	4	5
1	+	-	-	+	-
2	-	+	-	-	+
3	+	+	-	-	-

Таблица 3

Обработка тест-поверхностей при температуре разложения твердого носителя перекиси водорода $95 \pm 5^{\circ}\text{C}$, время обработки 2 ч

Номер камеры	Тест-поверхности				
	1	2	3	4	5
1	+	-	-	-	-
2	-	-	-	-	-
3	-	+	-	-	+

Таблица 4

Результаты деконтаминации поверхностей

Способ	Тест-поверхность	Время деконтаминации, мин			
		60	90	120	150
Предлагаемый					
Перекись водорода, полученная при нагревании твердого носителя перекиси водорода $\text{NH}_4\text{F} \cdot \text{H}_2\text{O}_2$	1	+	+	-	-
	2	+	-	-	-
	3	+	-	-	-
	4	+	+	-	-
	5	-	+	-	-
Известный					
Перекись водорода, полученная при нагревании растворов перекиси водорода	1	++	+	++	++
	2	++	++	++	++
	3	++	++	++	++
	4	++	++	++	++
	5	++	++	++	++

Таблица 5

Константы кинетики инактивации спор *B.anthracoides* шт.250, п · 10⁷ сп/мл

Деконтаминирующее средство	Константа кинетики деконтаминации (K^{II})
Перекись водорода	0,0800 ± 0,0150
Перексогидрат фторида аммония	0,1984 ± 0,0037

Таблица 6

Коррозионная стойкость поверхностей различных материалов к действию раствора пероксогидрата фторида аммония (метод погружения)

Материал	Глубинный показатель скорости коррозии	Показатель стойкости по пятибалльной шкале
Сплав АМГ-3	0,7516 ± 0,0059	Стойкие
Сталь 12x18н10т	0	Весьма стойкие
Сталь х18н10т	0	То же

Составитель Е.Ильин

Редактор М.Стрельникова

Техред М.Моргентал

Корректор О.Кравцова

Заказ 3356

Тираж

Подписьное

ВНИИПИ Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва, Ж-35, Раушская наб., 4/5

Производственно-издательский комбинат "Патент", г. Ужгород, ул.Гагарина, 101

DERWENT-ACC-NO: 1992-232345

DERWENT-WEEK: 199228

COPYRIGHT 2009 DERWENT INFORMATION LTD

TITLE: Machinery surface decontamination used in microbiological and food industries by treatment with hydrogen peroxide vapour generated by heating ammonium fluoride peroxy-hydrate under prescribed vapour pressure

INVENTOR: KOROLEV N I; NIKOLSKAYA V P ; SEMENOV S N

PATENT-ASSIGNEE: BIOL INSTR MFR RES INST [BIOLR]

PRIORITY-DATA: 1989SU-4631777 (January 4, 1989)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE
SU 1681860 A1	October 7, 1991	RU

APPLICATION-DATA:

PUB-NO	APPL- DESCRIPTOR	APPL-NO	APPL-DATE
SU 1681860A1	N/A	1989SU- 4631777	January 4, 1989

INT-CL-CURRENT:

TYPE	IPC DATE
CIPS	A61L2/16 20060101
CIPS	A61L2/20 20060101

ABSTRACTED-PUB-NO: SU 1681860 A1

BASIC-ABSTRACT:

Surfaces of equipment used in e.g. food industry are decontaminated by exposing them to the H₂O₂ vapour generated by heating NH₄F.H₂O₂ (I) to 70-86 deg.C. The treatment is carried out under the H₂O₂ vapour pressure of 0.8-1.0 atmos. for 120 min.

USE/ADVANTAGE – The method is used in microbiological, medicinal and food industries. Quicker treatment leading to inactivation of bacteria in spore form is obtd. The kinetic decontamination constant of (I) is 0.1984 +/- 0.0037, compared with 0.0800 +/-0.0150 for H₂O₂. Bul.37/7.10.91

TITLE-TERMS: MACHINE SURFACE DECONTAMINATE
MICROBIOLOGICAL FOOD INDUSTRIAL
TREAT HYDROGEN PEROXIDE VAPOUR
GENERATE HEAT AMMONIUM FLUORIDE
PEROXO HYDRATE PRESCRIBED PRESSURE

DERWENT-CLASS: D14 D22 E36 P34

CPI-CODES: D03-J; D09-A01A; E31-E;

CHEMICAL-CODES: Chemical Indexing M3 *01*
Fragmentation Code C009 C100 C101
C408 C500 C730 C801 C804 C807
M411 M781 P200 Q261 R013 Markush
Compounds 9228E5101

**UNLINKED-DERWENT-REGISTRY-
NUMBERS:** ; 1732U ; 1732P

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: 1992-105015
Non-CPI Secondary Accession Numbers: 1992-176757