Heart Rate Prediction Using Time series analysis

The goal of this study is to use the time series method to analyze heart rate predictions. A time series is a collection of observations spanning a period of time. How we come across heart rate variations per minute is a basic example of time series. We'll look at what a time series is, what methods are used to forecast them, and what makes time series data so unique, a complicated issue in data science.

To achieve a better prediction and forecast for this project, I implemented the SARIMA Model. First, we must clean the data after importing all of the essential libraries (Figure 1)

```
[1] !pip install pmdarima
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import statsmodels.api as sm
import itertools
from sklearn.metrics import mean_squared_error
from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt
from scipy.spatial.distance import cdist
```

Figure 1. Importing the libraries

Reading the CSV File using Pandas

Figure 2 Reading the CSV file

Removing the Outliers from the dataset

```
[4] og_data=data_f.loc[data_f['Lifetouch Heart Rate']<= 500 ]
    print(og_data)
          Timestamp (GMT) Lifetouch Heart Rate ... Oximeter SpO2 Oximeter Pulse
         17/08/2015 15:09
                                         139 ...
                                                            NaN
                                                                            NaN
        17/08/2015 15:10
                                                                          140.0
    1
                                          144 ...
                                                            92.0
    2
         17/08/2015 15:11
                                          140 ...
                                                            89.0
                                                                          144.0
         17/08/2015 15:12
                                          138 ...
                                                            93.0
                                                                          141.0
    4
         17/08/2015 15:13
                                          133 ...
                                                            94.0
                                                                          134.0
                                          ... ...
    221 17/08/2015 18:50
                                          159 ...
                                                                            NaN
                                                             NaN
    222 17/08/2015 18:51
                                          151 ...
                                                            NaN
                                                                            NaN
    223 17/08/2015 18:52
                                          140 ...
                                                            NaN
                                                                            NaN
    224 17/08/2015 18:53
                                                                            NaN
                                          140 ...
                                                             NaN
    225 17/08/2015 18:54
                                          138 ...
                                                             NaN
                                                                            NaN
    [218 rows x 5 columns]
```

Figure 3 Dropping the Unnecessary Data

Figure 4 Plotting the Lifetouch Heart Rate

Applying the dickey fuller test to check whether the data is stationary or not

Dickey Fuller Test [13] from statsmodels.tsa.stattools import adfuller def adfuller_test(database): dftest = adfuller(database, autolag = 'AIC') print("1. ADF : ",dftest[0]) print("2. P-Value : ", dftest[1]) print("3. Num Of Lags : ", dftest[2]) print("4. Num Of Observations Used For ADF Regression and Critical Values Calculation :", dftest[3]) print("5. Critical Values :",dftest[4]) for key, val in dftest[4].items(): print("\t",key, ": ", val) [14] adfuller_test(og_data['Lifetouch Heart Rate']) 1. ADF : -2.3604265607058403 2. P-Value : 0.1532185464358677 3. Num Of Lags : 1 4. Num Of Observations Used For ADF Regression and Critical Values Calculation : 216 5. Critical Values : {'1%': -3.4609922013325267, '5%': -2.875015740963014, '10%': -2.5739524288408777} 1%: -3.4609922013325267 5%: -2.875015740963014 10%: -2.5739524288408777

Figure 5 Checking the Stationarity using Dickey-Fuller Test

As we can see the P-value is greater than 0.05 so it is not stationary

Applying the Differencing to the Data

▼ Differencing method

Figure 6 Differencing method to make the data stationary

```
[18] adfuller_test(og_data['Minutes Difference'].dropna())

1. ADF: -3.9855979424262286

2. P-Value: 0.001782924622948355

3. Num Of Lags: 15

4. Num Of Observations Used for ADF Regression and Critical Values Calculation: 198

5. Critical Values: ('1%': -3.468151713286316, '5%': -2.876250632135043, '10%': -2.574611347821651})

1%: -3.468151712268518

5%: -2.876250632135043

10%: -2.574611347821651

[19] og_data['Lifetouch Heart Rate_diff_4'] = og_data['Lifetouch Heart Rate'] - og_data['Lifetouch Heart Rate'].shift(4)

og_data['Lifetouch Heart Rate_diff_4'].dropna().plot()

/usr/local/lib/python3.7/dist-packages/lpykene_llauncher.py:1: SettingsithCopyWarning:
A value is trying to be set on a copy of a size from a DateFrame.

Try using .loc[row_indexer_col_indexer] = value instead

See the caveats in the documentation: https://candsa.pydata.org/candsa-docs/stable/user_guide/indexing.html@returning.a:

""Entry point for launching an Tpython kernel.

cantplotlib.axes__subplots.AxesSubplot at 0x7fa3286c9710>
```

Figure 7 Checking again the data is stationary or not after differencing method

Applying the Transformation

→ Tranforming the data

Figure 8 Transforming the data

After differencing and transforming, Now Lets's run once again the dickey fuller test.

** Rolling Statistics [25] og_data['sWA10'] = og_data['Lifetouch Heart Rate'].rolling(window = 10).mean() //usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer_oc].indexer] = value instead See the caveats in the documentation: https://gandas.gydata.org/gandas-docs/stable/user_guide/indexing_] ""Entry point for launching an Python kernel. (26) og_data['sWA10'].dropna().plot() (matplotlib.axes._subplots.AxesSubplot at 0x7fa32868d690) 185 180 185 187 188 188: -3.9353979424622286 2. P-Value: 0.00178924462248385 3. Num Of Lags: 15 4. Num Of Observations Used For ADF Regression and Critical Values Calculation: 198 5. Critical Value: ('18': -3.4638151713286316, '5W': -2.876250632135043, '10W': -2.574611347821651) 186: -3.574611347821651

Figure 9 Rolling statistics

As we can see the data is stationary after running the dickey fuller test.

Building the Auto-Regressive Model

Auto Regressive Model

Figure 10 Applying the Auto Regressive Model

Figure 11 To find the P Q Value

Considering the above graph Autocorrelation is 0(Q) and Partial autocorrelation is 1(P)

Building the SARIMA model

SARIMA Model

Split Data into Training and Testing

Figure 12 Building SARIMA Model

We got the better Prediction using the SARIMAX Model as we can see in Figure 13

```
start=len(train)
 end=len(train)+len(test)-1
 pred=model_fit.predict(start=start,end=end,typ='levels')
 pred.index=og_data.index[start:end+1]
 print(pred)
Timestamp (GMT)
 2015-08-17 18:25:00
                         154.459915
 2015-08-17 18:26:00
                         155.330284
 2015-08-17 18:27:00
                         153.943099
 2015-08-17 18:28:00
                         153.999252
 2015-08-17 18:29:00
                         156.354592
 2015-08-17 18:30:00
                         155.518042
 2015-08-17 18:31:00
                         152,281835
2015-08-17 18:32:00
2015-08-17 18:33:00
                         150.402909
                         149.019818
2015-08-17 18:34:00
2015-08-17 18:35:00
                         153.153542
                         155.939607
 2015-08-17 18:36:00
                         157.694661
 2015-08-17 18:37:00
                         159.022448
 2015-08-17 18:38:00
                         156.631373
 2015-08-17 18:39:00
                         155.709809
 2015-08-17 18:40:00
                         151.185641
 2015-08-17 18:41:00
                         149.384660
 2015-08-17 18:42:00
                         150.955696
2015-08-17 18:43:00
2015-08-17 18:44:00
                         151.545232
                         150.625153
2015-08-17 18:45:00
2015-08-17 18:46:00
                         152.038630
                         155.525982
 2015-08-17 18:47:00
                         156.924906
 2015-08-17 18:48:00
                         155.178493
 2015-08-17 18:49:00
                         155.101810
 2015-08-17 18:50:00
                         156.221319
 2015-08-17 18:51:00
                         157.839135
 2015-08-17 18:52:00
                         153.784816
 2015-08-17 18:53:00
                         145.733910
 2015-08-17 18:54:00
                         142.491386
 Name: predicted_mean, dtype: float64
```

Figure 13 Predictions

```
[37] pred.plot(legend=True)
     test['Lifetouch Heart Rate'].plot(legend=True)
     train['Lifetouch Heart Rate'].plot(legend=True)
     <matplotlib.axes._subplots.AxesSubplot at 0x7fa325064910>
      170
                predicted mean
                Lifetouch Heart Rate
               Lifetouch Heart Rate
      150
      140
      130
      120
      110
            15:30
                   16:00
                         16:30 17:00 17:30 18:00 18:30
                            Timestamp (GMT)
[38] test['Lifetouch Heart Rate'].mean()
```

Figure 14 Finding the Mean Squared Error

▼ Forecasting

Figure 15 Forecasting using SARIMA

Figure 16 Forecasting values

Conclusion

In this project, I have learned and implemented the Heart rate Prediction using Time series analysis. A major topic of this project is how SARIMAX can be useful when exogenous seasonality factors appear in the time series and you can get the most reliable forecasts and predictions.

Google Colab Link:

 $\underline{https://colab.research.google.com/drive/1NHOfP54roJEa1L8MlcpBbMMJtrJ6luMe?usp=sharing}$