Lecture 21: Reinforcement Learning

Three Kinds of Learning

Supervised learning

• Given labeled examples (x, y), learn to predict y given x

Unsupervised learning

• Given unlabeled examples x, uncover structure in x

Reinforcement learning

Learning from sequence of interactions with the environment

Sequential Decision Making

Make a sequence of decisions to maximize a real-valued reward

Examples

- Driving a car
- Making movie recommendations
- Treating a patient over time
- Navigating a webpage

Sequential Decision Making

- Machine learning almost always aims to inform decision making
 - Only show user an image if it contains a pet
 - Help a doctor make a treatment decision
- Reinforcement learning is about sequences of decisions
- Naïve strategy: Predict future and optimize decisions accordingly
 - But decisions affect forecasts
 - If we show the user too many cats, they might get bored of cats!
- Solution: Jointly perform prediction and optimization

Ross & Bagnell 2011

Ross & Bagnell 2011

Ross & Bagnell 2011

- Distribution shift is **fundamental** to the problem
 - Repeat: Improve policy \rightarrow distribution shifts \rightarrow improve policy \rightarrow ...
 - This is with a human expert in the loop! Without the expert, we must start off acting randomly
- Generally, using expert data where available is promising (called "imitation learning")
 - Caveat: Limited by human performance (e.g., AlphaGo Zero significantly outperforms AlphaGo, which was pretrained on expert games)

Reinforcement Learning Problem

- At each step $t \in \{1, ..., T\}$:
 - Observe **state** $s_t \in S$ and **reward** $r_t \in \mathbb{R}$
 - Take action $a_t = \pi(s_t) \in A$
- Goal: Learn a policy $\pi: S \to A$ that maximizes discounted reward sum:

$$R_T = \sum_{t=1}^T \gamma^t \cdot r_t$$

Reinforcement Learning Problem

state: joint angles

actions: motor torques

dynamics: robot physics

reward: average speed

state: current stock

actions: how much to purchase

dynamics: demand at each store

reward: profit

(a) Early t	raining	(b) Mid training	(c) Late training	(d) Test
Debit Card Contin	ue .	First Name First Name Continue	Continue	Forgot user name. Forgot password. Continue
Credit Card			From	
Payment		To	O Debit Card	Enter Captcha
		Last Name	Credit Card	Remember me Stay logged in
Login and Checkout		Last Name	Payment	Password
				Password
			Full name	Username
	Get it today!	Continue	Address	Usemame
	Gaming workstation	Address	Address	HOME
	Deal of the Day	Address	First Name	
			First Name	
Contin	ue		Last Name	
			Last Name	
rom				
			То	

Web navigation (e.g., book a flight)

SLIDING

FINGER GAITING

Robotics (e.g., Rubik's cube manipulation)

Steering microscope to separate molecules

Actor Measurements

| Control policy | Physical policy | Physical parameters | Physical policy | Physical parameters | Physical para

Controlling magnetic fields to stabilize plasma (in simulation)

Degrave et al 2022, Magnetic control of tokamak plasmas through deep reinforcement learning

https://www.science.org/doi/10.1126/sciadv.abb6987

- Power grids: Reinforcement learning for demand response
 - A review of algorithms and modeling techniques, J. Vázquez-Canteli, Z. Nagy
- Recommender systems
 - https://github.com/google-research/recsim
- Many potential applications
 - https://arxiv.org/abs/1904.12901

Reinforcement Learning Problem

- At a high level, we need to specify the following:
 - State space: What are the observations the agent may encounter?
 - Action space: What are the actions the agent can take?
 - Transitions/dynamics: How the state is updated when taking an action
 - Rewards: What rewards the agent receives for taking an action in a state
- For most of today, assume state and action spaces are finite

Toy Example

- Grid map with solid/open cells
- State: An open grid cell
- Actions: Move North, East, South, West

Toy Example

Dynamics

- Move in chosen direction, but not deterministically!
- Succeeds 80% of the time
- 10% of the time, end up 90° off
- 10% of the time, end up -90° off
- The agent stays put if it tries to move into a solid cell or outside the world
- At terminal states, any action ends episode (or rollout)

Toy Example

Rewards

- At terminal state, agent receives the specified reward
- For each timestep outside terminal states , the agent pays a small cost, e.g., a "reward" of -0.03

(stays still because blocked)

Action= "N" Result="E" Reward = -0.03

Action= "N" 2
Result="N"
Reward = -0.03
1 START

3

- Our random trajectory happened to end in the right place!
- Optimal policy? No!
 - Only succeeded by random chance

Optimal Policy

- Optimal policy: Following π^* maximizes total reward received
 - **Discounted:** Future rewards are downweighted
 - In expectation: On average across randomness of environment and actions

Markov Decision Process (MDP)

- An MDP (S, A, P, R, γ) is defined by:
 - Set of states $s \in S$
 - Set of actions $a \in A$
 - Transition function $P(s' \mid s, a)$ (also called "dynamics" or the "model")
 - Reward function R(s, a, s')
 - Discount factor $\gamma < 1$
- Also assume an initial state distribution D(s)
 - Often omitted since optimal policy does not depend on D

Markov Decision Process (MDP)

• Goal: Maximize cumulative expected discounted reward:

$$\pi^* = \max_{\pi} J(\pi)$$
 where $J(\pi) = \mathbb{E}_{\zeta} \left[\sum_{t=0}^{\infty} \gamma^t \cdot r_t \right]$

- Expectation over **episodes** $\zeta = (s_0, a_0, r_0, s_1, ...)$, where
 - $s_0 \sim D$
 - $a_t = \pi(s_t)$
 - $s_{t+1} \sim P(\cdot | s_t, a_t)$
 - $r_t = R(s_t, a_t, s_{t+1})$

Markov Decision Process (MDP)

- **Planning:** Given P and R, compute the optimal policy π^*
 - Purely an optimization problem! No learning
- Reinforcement learning: Compute the optimal policy π^* without prior knowledge of P and R

Policy Value Function

• Policy Value Function: Expected reward if we start in s and use π :

$$V^{\pi}(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^{t} \cdot r_{t} \mid s_{0} = s\right)$$

Bellman equation:

$$V^{\pi}(s) = \sum_{s' \in S} P(s' \mid s, \pi(s)) \cdot \left(R(s, \pi(s), s') + \gamma \cdot V^{\pi}(s')\right)$$
current value
$$\text{expectation} \quad \text{current reward +} \quad \text{over next state} \quad \text{discounted future reward}$$

Optimal Value Function

• Optimal value function: Expected reward if we start in s and use π^* :

$$V^*(s) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s\right)$$

• Bellman equation:

Optimal policy selects action that maximizes future expected reward from state *s*

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot \left(R(s, a, s') + \gamma \cdot V^*(s') \right)$$
current value

expectation
over next state

current reward +
discounted future reward

Optimal Value Function

Bellman equation:

$$V^*(s) = \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot (R(s, a, s') + \gamma \cdot V^*(s'))$$

- Do not need to know the optimal policy π^* !
- Strategy: Compute V^* and then use it to compute π^*
 - Caveat: Latter step requires knowing P

Policy Action-Value Function

• Policy Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then use π thereafter:

$$Q^{\pi}(s,a) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s, a_0 = a\right)$$

Bellman equation:

$$Q^{\pi}(s, \mathbf{a}) = \sum_{s' \in S} P(s' \mid s, \mathbf{a}) \cdot \left(R(s, \mathbf{a}, s') + \gamma \cdot Q^{\pi}(s', \pi(s')) \right)$$

Optimal Action-Value Function

• Optimal Action-Value Function (or Q function): Expected reward if we start in s, take action a, and then act optimally thereafter:

$$Q^*(s,a) = \mathbb{E}\left(\sum_{t=0}^{\infty} \gamma^t \cdot r_t \mid s_0 = s, a_0 = a\right)$$

Bellman equation:

$$Q^*(s,a) = \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q^*(s',a') \right)$$

Relationship

• We have

$$V^{\pi}(s) = Q^{\pi}(s, \pi(s))$$

• Similarly, we have

$$V^*(s) = \max_a Q^*(s, a)$$

Q Iteration

• We have

$$\pi^*(s) = \max_{a \in A} Q^*(s, a)$$

• Strategy: Compute Q^* and then use it to compute π^*

Q Iteration

- Initialize $Q_1(s,a) \leftarrow 0$ for all s,a
- For $i \in \{1,2,...\}$ until convergence:

$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

0.72

-0.72

Now we have $Q_1(s, a)$ for all (s, a)

-0.72

0

-0.09

After 1000 iterations:

Q Iteration

- Information propagates outward from terminal states
- Eventually all state-action pairs converge to correct Q-value estimates

Aside: Value Iteration

- Analogous to Q-Policy iteration but for computing the value function
- Initialize $V_1(s) \leftarrow 0$ for all s
- For $i \in \{1,2,...\}$ until convergence:

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s' \mid s, a) \cdot \left(R(s, a, s') + \gamma \cdot V_i(s') \right)$$

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$$

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$$

Example MDP						V_1						V_2			
3				+1	3	0	0	0	+1	3	0	0	0.72	+1	
2				-1	2	0		0	-1	2	0		0	-1	
1					1	0	0	0	0	1	0	0	0	0	
'	1	2	3	4	'	1	2	3	4		1	2	3	4	
	$V_2(\langle 4,3 \rangle) \leftarrow 1$								$V_2(\langle 4,2 \rangle) \leftarrow -1$						

$$V_{i+1}(s) \leftarrow \max_{a \in A} \sum_{s' \in S} P(s'|s,a) [R(s,a,s') + \gamma V_i(s')]$$

Example MDP					V_2						<i>V</i> ₃			
3				+1	3	0	0	0.72	+1	3	0	0.52	0.78	+1
2				-1	2	0		0	-1	2	0		0.43	-1
1					1	0	0	0	0	1	0	0	0	0
	1	2	3	4	•	1	2	3	4		1	2	3	4

Reinforcement Learning

 Q iteration can be used to compute the optimal Q function when P and R are known

How can we adapt it to the setting where these are unknown?

Model-Based Reinforcement Learning

- Step 1: Estimate $\hat{P} \approx P$ and $\hat{R} \approx R$ from samples
 - What policy to use to gather data?
 - Need to take action a in state s to obtain an observation of $P(\cdot | s, a)!$
 - More on this later

	(1,1)	(1,2)	(1,3)	(2,1)	(2,2)	(2,3)	(3,1)	(3,2)	(3,3)	(4,1)	(4,2)	(4,3)
(1,1), N	0.1	0.8	0	0.1	0	0	0	0	0	0	0	0
(1,1), E	0.1	0.1	0	0.8	0	0	0	0	0	0	0	0
(1,1), S	0.9	0	0	0.1	0	0	0	0	0	0	0	0

• Step 2: Compute optimal policy $\hat{\pi} \approx \pi^*$ for \hat{P} and \hat{R}

Model-Free Reinforcement Learning

• Can we learn π^* without explicitly learning P and R?

Q Learning

- Can we extend Q Iteration to the setting where P and R are unknown?
- **Observation:** Every time you take action a from state s, you obtain one sample $s' \sim P(\cdot | s, a)$ and observe R(s, a, s')
- Use single sample instead of full P

• Can we learn π^* without explicitly learning P and R?

$$Q_{i+1}(s,a) \leftarrow \sum_{s' \in S} P(s' \mid s,a) \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right)$$

• Can we learn π^* without explicitly learning P and R?

$$Q_{i+1}(s,a) \leftarrow \mathbb{E}_{s' \sim P(\cdot \mid S,a)} \left[R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a') \right]$$

Q Learning update:

$$Q_{i+1}(s,a) \leftarrow R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')$$

- **Q Iteration:** Update for all (s, a, s') at each step
- **Q Learning:** Update just for current (s, a), and approximate with the state s' we actually reached (i.e., a single sample $s' \sim P(\cdot | s, a)$)

- **Problem:** Forget everything we learned before (i.e., $Q_i(s, a)$)
- Solution: Incremental update:

$$Q_{i+1}(s,a) \leftarrow (1-\alpha) \cdot Q_i(s,a) + \alpha \cdot \left(R(s,a,s') + \gamma \cdot \max_{a' \in A} Q_i(s',a')\right)$$

Sample
$$R + \gamma \max Q = 0+0.9 \times 0.72 = 0.648$$

After 100,000 actions:
$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

Policy for Gathering Data

- Strategy 1: Randomly explore all (s, a) pairs
 - Not obvious how to do so!
 - E.g., if we act randomly, it may take a very long time to explore states that are difficult to reach
- Strategy 2: Use current best policy
 - Can get stuck in local minima
 - E.g., we may never discover a shortcut if it sticks to a known route to the goal

Policy for Gathering Data

• ϵ -greedy:

- Play current best with probability $1-\epsilon$ and randomly with probability ϵ
- Can reduce ϵ over time
- Works okay, but exploration is undirected

Visitation counts:

- Maintain a count N(s, a) of number of times we tried action a in state s
- Choose $a^* = \arg\max_{a \in A} \left\{ Q(s, a) + \frac{1}{N(s, a)} \right\}$, i.e., inflate less visited states

Summary

 Q iteration: Compute optimal Q function when the transitions and rewards are known

 Q learning: Compute optimal Q function when the transitions and rewards are unknown

Extensions

- Various strategies for exploring the state space during learning
- Next time: Handling large or continuous state spaces

Curse of Dimensionality

- How large is the state space?
 - **Gridworld:** One for each of the *n* cells
 - **Pacman:** State is (player, ghost₁, ..., ghost_k), so there are n^k states!
- **Problem:** Learning in one state does not tell us anything about the other states!
- Many states → learn very slowly

State-Action Features

- Can we learn across state-action pairs?
- Yes, use features!
 - $\phi(s,a) \in \mathbb{R}^d$
 - Then, learn to predict $Q^*(s,a) \approx Q_{\theta}(s,a) = f_{\theta}(\phi(s,a))$
 - Enables generalization to similar states

Neural Network Q Function

- Examples: Distance to closest ghost, distance to closest dot, etc.
 - Can also use neural networks to **learn** features (e.g., represent Pacman game state as an image and feed to CNN)!

Deep Q Learning

• Learning: Gradient descent with the squared Bellman error loss:

$$\left(\underbrace{\left(R(s,a,s') + \gamma \cdot \max_{a'} Q_{\theta}(s',a')\right) - Q_{\theta}(s,a)}^{2}\right)^{2}$$
"Label" y

Deep Q Learning

- Iteratively perform the following:
 - Take an action a_i and observe (s_i, a_i, s_{i+1}, r_i)

 - $y_i \leftarrow r_i + \gamma \cdot \max_{a' \in A} Q_{\theta}(s_{i+1}, a')$ $\phi \leftarrow \phi \alpha \cdot \frac{d}{d\theta} (Q_{\theta}(s_i, a_i) y_i)^2$
- **Note:** Pretend like y_i is constant when taking the gradient
- For finite state setting, recover incremental update if the "parameters" are the Q values for each state-action pair

Experience Replay Buffer

Problem

- Sequences of states are highly correlated
- Tend to overfit to current states and forget older states

Solution

- Keep a replay buffer of observations (as a priority queue)
- Gradient updates on samples from replay buffer instead of current state

Advantages

- Breaks correlations between consecutive samples
- Can take multiple gradient steps on each observation

Priority Queue

Deep Q Learning with Replay Buffer

Iteratively perform the following:

- Take an action a_i and add observation (s_i, a_i, s_{i+1}, r_i) to replay buffer D
- For $k \in \{1, ..., K\}$:
 - Sample $(s_{i,k}, a_{i,k}, s_{i+1,k}, r_{i,k})$ from D

 - $y_{i,k} \leftarrow r_{i,k} + \gamma \cdot \max_{a' \in A} Q_{\theta}(s_{i+1,k}, a')$ $\phi \leftarrow \phi \alpha \cdot \frac{d}{d\theta} (Q_{\theta}(s_{i,k}, a_{i,k}) y_{i,k})^2$

Target Q Network

Problem

• Q network occurs in the label y_i !

•
$$\phi \leftarrow \phi - \alpha \cdot \frac{d}{d\theta} \left(Q_{\theta}(s_i, a_i) - r_i + \gamma \cdot \max_{a' \in A} Q_{\theta}(s_{i+1}, a') \right)^2$$

• Thus, labels change as Q network changes

Solution

- Use a separate **target Q network** for the occurrence in y_i
- Only update target network occasionally

•
$$\phi \leftarrow \phi - \alpha \cdot \frac{d}{d\theta} \left(\underbrace{Q_{\theta}(s_i, a_i)}_{Q_{\theta}(s_i, a_i)} - r_i + \gamma \cdot \max_{a' \in A} \underbrace{Q_{\theta'}(s_{i+1}, a')}_{Q_{\theta'}(s_{i+1}, a')} \right)^2$$
Original Q Network

Target Q Network

Deep Q Learning with Target Q Network

- Iteratively perform the following:
 - Take an action a_i and add observation (s_i, a_i, s_{i+1}, r_i) to replay buffer D
 - For $k \in \{1, ..., K\}$:
 - Sample $(s_{i,k}, a_{i,k}, s_{i+1,k}, r_{i,k})$ from D
 - $y_{i,k} \leftarrow r_{i,k} + \gamma \cdot \max_{a' \in A} Q_{\theta'}(s_{i+1,k}, a')$
 - $\phi \leftarrow \phi \alpha \cdot \frac{d}{d\theta} \left(Q_{\theta}(s_{i,k}, a_{i,k}) y_{i,k} \right)^2$
 - Every N steps, $\theta' \leftarrow \theta$

Deep Q Learning for Atari Games

Image Sources: