RNA-Sequencing

BOHTA 2019 Kristoffer Vitting-Seerup

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

What is RNA

All cells in an organism have the same DNA

Exercise:

• 3 minutes with neighbour:

Why sequence RNA at all?

What is RNA

What is RNA

--- Regulation

RNA-sequencing

- Sequencing of purified RNA
- Called RNA-seq, whole cell sequencing, Next generation sequencing etc.
- A method to characterise, qualitatively and quantitatively, a RNA population in a sample
- More importantly samples can be compared!
- Furthermore these RNA-populations can be quite specific

History of RNA-analysis

- 1977: Northern Blot (low sensitivity, low throughput, hard to quantify)
- 1977 Sanger sequencing highly accurate low throughput - not quantitative - expensive
- 1987: Microarray (high-throuput, low cost, low dynamic range, low specificity)
- 1997: qPCR (high dynamic range, low throughput)
- 2005: 5' RNA-seq (high spec., high dynamic range, high specificity)
- 2009: Paired-end sequencing (high spec., high dynamic range, high specificity)
- 2013: Single cell RNA-seq
- 2014: Long read RNA-seq

Gene vs Isoform

- It is quite hard to define a gene because you can always find biological exceptions to rules
- One suggestion, that will be used here, is that a gene is a loci from which one or more transcripts originate (strand specific). Furthermore these transcripts should share some exon information

Gene vs Isoform

The terms "transcript" and "isoform" is here used interchangeably

Exercise:

5 minutes with neighbour:

What do you gain by profiling the transcriptome with <u>isoform</u> resolution (compared to gene resolution)?

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

Conceptual Overview

- Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

Conceptual Overview

- Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

RNA molecules of interest esign: 1. fragmentation of RNA RNA fragments 2. random priming to make sscDNA (first-strand synthesis) **Experiment** sscDNA 3. construction of dscDNA (second-strand synthesis) dscDNA 4. size selection short long Gel cutout 16 sequencing

Note: Random primers they do not cause biases

Conceptual Overview

- Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company or institution)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

Sequencing: Single vs paired end

Exercise

3 minutes with neighbour:

Why are paired en sequencing (mostly) preferred to single end sequencing?

Hint 1: Does reads map uniquely?

Hint 2: Think about the transcript

structure

Some Terminology

Goal: Quantify number of Fragments

Conceptual Overview

- 1. Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company or institution)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

Conceptual Overview

- 1. Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

Tool: FastQC

- Fast and comprehensive quality control of FASTQ files
- The one we already told you about (might accidentally have been called FastX QC)
- Links:
 - tool and examples of good and poor quality:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

- Manual:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/Help/

Recap

• 3 min with neighbour:

Why can it a good idea to perform quality trimming before mapping RNA-seq reads to the genome?

Conceptual Overview

- 1. Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

Mapping

TCGGCGATTCAGTCTCAGAATCGA

Read

TCAGTCTCAGAATCGAGATACGATTACGATATCGAGATACGATCGGCGATTCAGTCTCAGAATCGAGATACAGAGCGA

Genome

Mapping

Read

TCGGCGATTCAGTCTCAGAATCGA TCAGTCTCAGAATCGAGATACGATATCGAGATACGATCGGCGATTCAGTCTCAGAATCGAGATACAGAGCGA

Genome

Individual basepair matching

Mapping

Read

TCGGCGATTCAGTCTCAGAATCGA TCAGTCTCAGAATCGAGATACGATATCGAGATACGATCGGCGATTCAGTCTCAGAATCGAGATACAGAGCGA

Genome

Individual basepair matching

Mappers

Naturally modern algorithms are a lot smarter than that:

- Clever genome indexing
- Allows for mismatches
- Consider quality score
- Consider position in read
- Considers read pairs
- Etc

Aligned Reads

- Reads can be divided into 4:
 - 1. Reads not mapping
 - 2. Reads mapping uniquely
 - 3. Multi-mappers

Uniquely Mapped Reads

Side Note: Real Data

Transcripts:

Mapped Reads:

Mapping of Reads

- Reads can be divided into 4:
 - 1. Reads not mapping
 - 2. Reads mapping perfectly
 - 3. Multi-mappers
 - 4. Reads that maps to two (or more) exons (junction spanning reads)

Mapping: Junction-Spanning Reads

Conceptual Overview

- 1. Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

Expression estimation

Total read count: 15

NB: Only uniquely mapping!

Expression estimation exercise

- 5 minutes with neighbour:
- You are analysing 2 genes (gene A and B) in two conditions (condition 1 and 2) on the basis of an <u>single end</u> RNA-seq experiment that resulted the following number of reads (= fragments):

	Condition 1	Condition 2
Gene A	1000	3000
Gene B	2000	4000

Question: Is the following statement correct?

Both gene A and B are more expressed in condition 2. Explain why/why not.

FPKM

- A common measure of expression in RNA-seq:
 - FPKM Fragments <u>Per Kilobase transcript per Million</u> mapped reads
 - Analogous to RPKM, just adjusted to multiple reads originating from same fragment (paired end sequencing)
 - Allows comparison of different genes and between samples

Conceptual Overview

- 1. Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification
 - D. Post analysis

But what about isoforms?

Rember: Solution

What do you gain by profiling the transcriptome with isoform resolution (compared to gene resolution)?

- Greater details
- Alternative splicing
- Isoform switching
- Sequence analysis (e.g. protein domains (Pfam))
- Improved gene-level analysis

Types of Isoform Analysis

- 1. Predict new isoforms (reconstruct)
- 2. Quantify annotated (aka known) isoforms

Types of Isoform Analysis

- 1. Predict new isoforms (reconstruct)
- 2. Quantify annotated (aka known) isoforms

Remember: Junction-Spanning Reads

Isoform Reconstruction - Concept

Which isoform is expressed more?

Isoform Reconstruction - Reality

Mapping:

Isoform deconvolution

Types of Isoform Analysis

- 1. Predict new isoforms (reconstruct)
- 2. Quantify annotated (aka known) isoforms

Quantify Annotated Isoforms

A tough problem

Quantify Annotated Isoforms

A tough problem

Solution: Pseudo-allignment

Pseudo Allignment

TTCAGTCTCAGAATCGA GATACGATTACG ATATCGAGATACGATCGGCG
AGAATCGA ATATCGAGAT
ATATCGAGAT

AGAATCGA GATACGATTACG ATATCGAGAT

TTCAGTCTCAGAATCGAGATACGATTACGATATCGAGATACGATCGGCG AGAATCGAATATCGAGAT AGAATCGAGATACGATTACGATATCGAGAT

Pseudo Allignment

TACGAT Read

TTCAGTCTCAGAATCGAGATACGATTACGATATCGAGATACGATCGGCG

AGAATCGAATATCGAGAT

Reference Transcriptome

AGAATCGAGATACGATATCGAGAT

Pseudo Allignment

TACGAT
TTCAGTCTCAGAATCGAGATACGATTACGATATCGAGATACGATCGGCG

Match

TACGAT AGAATCGAATATCGAGAT

No match

Reference Transcriptome

Match

TACGAT AGAATCGAGATACGATATCGAGAT

Mapping

Naturally modern algorithms are a lot smarter than that:

- Clever transciptome indexing
- Advanced read matching which considers read pairs
- Advanced quantification algorithm
- Bias corrections
- Etc

TPM / TxPM

- Currently the best measure of expression in RNA-seq:
 - TPM <u>Transcript Per Million</u>
 - Not the same as sometimes used for CAGE!!!
 - Analogous to FPKM except also normalised for other features biasing the FPKM measure

Isoform vs Gene quantification

Improved gene level analysis

- 1. Multi-mapping reads can be counted
- Counting uniquely mapping reads is problematic as genes differ in terms of how large a fraction of the gene is uniquely mappable
- 3. Isoform switches are a problem

Exercise:

5 minuts with your neighbour:

When counting uniquely mapping reads and normalising via (RPKM/FPKM) what problem(s) would the isoform switch illustrated below cause for quantification in the two conditions?

Summary

- Quality control of FASTQ files is always needed
- Gene/isoform quantification should almost always be done with pseudo aligners
- To get gene/isoform expression a lot of normalisation is needed (library size, feature length etc)
- There are good tools for doing all of this

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

Conceptual Overview

- 1. Experiment -> RNA-Seq libraries (lab-work)
- 2. Sequencing (company)
- 3. Data analysis (you)
 - A. QC and Trimming
 - B. Mapping
 - C. Quantification

Focus for today (pseudo-allignment)

- D. Post analysis
 - Isoform analysis
 - PCA
 - Clustering
 - Differential expression analysis

RNA-seq exercise

Find in the document "rnaseq_quantification_exercise_wo_solutions.docx"

On Absalon and do the exercise

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

Isoform Switching

Isoform Fraction (IF values)

IF= isoform_exp / gene_exp

Expression	TxPM	IF
Isoform 1	10	0.1
Isoform 2	90	0.9
Gene (total)	100	1

Extra important with accurate abundance estimats!

Isoform Switching

Isoform Fraction (IF values)

	IF1 (Condition 1)	IF2 (Condition 2)	dlF (IF2 - IF1)
Isoform 1	0.2	0.8	+0.6
Isoform 2	0.8	0.2	-0.6
Gene (total)	1	1	0

Isoform Switching

- A IF value measures how much an isoform contribute to the parent gene expression
- A dIF values measures the change, between conditions, in how much an isoform contribute to the parent gene expression!
- Both values can be interpreted as the (change in) the relative importance of an isoform

Isoform Switching

Remember the difference between p-values and effect size

Protein Domains

PFAM

- Database of protein domains
- Tool for finding protein domains in amino acid sequence

Only ~11% of scientific articles from the start of 2016 analysing RNA-seq data does so at isoform resolution

Systematic High throughput Analysis of Isoform Switches

- there is an R package for that

IsoformSwitchAnalyzeR

An R package which from full-length isoform quantifications:

- 1. Identify isoform switches
- 2. Combine multiple sources of annotations
- 3. Prediction functional consequences

Showcase: Data

- RNA-seq data from ~6000 Cancer Patients and Healthy Controls
- Covering 12 Cancer Types

The Abundance of Isoform Switching in Cancers

Across 12 cancer types 2334 different genes (18.81 % of tested) have significant changes in isoform usage with predicted functional consequences

The Abundance of Isoform Switching in Cancers

Isoform Switches vs Gene Expression

Gene with Isoform Swtiches
With predicted functional consequences

Isoform Switching vs Patient Survival

Isoform Switching vs Patient Survival

Summary

- You can do systematic high throughput analysis of isoform switches with functional consequences
- Isoform Switches (with functional consequences) are extremely common
- Isoform switches and changes in gene expression are NOT mutually exclusive
- Isoform Switches (with functional consequences) seems to be biologically relevant

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

Isoform Switch Analysis Exercise

```
Absalon / Files / RNA-seq / isoform_switch_excecise_wo_solutions.pdf
```

Agenda

- 1. Introduction to RNA-seq
- 2. RNA-seq workflow
 - 1. Do-it-yourself exercise
- 3. Isoform Switch Analysis
 - 1. Do-it-yourself exercise
- 4. Perspective

Nanopore/PacBio

- Is a new technology that allows for sequencing of full length RNA molecules
- Meaning no need to fragment the RNA during the library preparation
- Meaning no need for assembler tools (since we already would know the transcript structure) (although new tools will be needed)
- Prospect: Will revolutionise transcriptome profiling

*Seq

- In this course we have talked about DNA reseqencing, CHiP-seq, CAGE-seq and RNAseq
- But there are currently hundreds *-seq methods

 The all profile different aspects of cell biology, ranging from "Identifying ribosome position", over "RNA structure probing" to "long-range interaction of chromatin"

Continuos development and improvement of analysis tools

- A few years ago RNA-seq could only be used to find genes - now you have isoform resolution and analysis of alternative splicing
- The CAGE method was recently shown to also enable detection of active enhancers (http://www.nature.com/nature/journal/v507/n7493/full/nature12787.html)
- Systematic analysis of isoform switches

Single-Cell Sequencing

- Recent breakthroughs now allows us to do high throughput sequencing of single cells
- This really enables us to understand cell heterogeneity as well as the actual mechanisms behind diseases

Bulk RNA-Seq scRNA-Seq scRNA-Seq

Analysis of Analsis of Gell types

Single-Cell Sequencing

Price of Sequencing

Summary

More and more sequenced based methods +

Sequencing based methods become better and better

+

Analysis tools becomes better and better

+

Sequencing become cheaper and cheaper

High throughput methods is, and will continue to be even more so, a standard tool in all cell biology

The End