From VM Consolidation to Data Center Consolidation

Xuanjia Qiu

Oct. 3, 2012

Outline

- Consolidation of virtual machines
- Consolidation of data centers

VM Consolidation

- Find out optimal placement of virtual machines onto physical servers in a data center
 - Power consumption is not proportional to the workload on a physical server
 - In order to save energy: allow to shut down more e physical servers or put them into low power consumption state

- Types of VM consolidation
 - Static consolidation
 - Semi-static consolidation
 - Dynamic consolidation
- Typically modeled as
 - Bin Packing problem (BP)
 - Stochastic Bin Packing problem(SBP)
- Consolidation schemes focus on CPU, memory, disk I/O, and/or network bandwidth

Bin Packing problem

Given a set of numbers $S = \{X_1, ..., X_n\}$ where $X_i \in (0, 1)$. Partition S into sets $S_1, ..., S_m$ (each set is called a bin. The sum of numbers in each bin does not exceed 1. Find a partition in which the numbers of bins is minimum.

- NP hard
- First Fit Decreasing (FFD)(proved a worst case performance ratio 11/9, tight)
- Only suitable for static consolidation

VM condensation with awareness of network bandwidth over-subscription

- Since VMs do not simultaneously use maximum of their nominal bandwidth, the capacity of the physical containers can be multiplexed
 - The standard deviation of the random variables that represents the total bandwidth demand is smaller than the sum of standard deviations of the individual variables (smoothing)

Stochastic Bin Packing

 Consolidation under the constraint of bandwidth subscription

Given: a set of items $S = \{X_1, ..., X_n\}$ where each item is a random variable. X_i are independent, and follow normal distribution $N(\mu_i, \sigma_i)$.

A packing of S to the bins is a partition of S into sets $S_1,...S_m$. A packing is feasible if for every bin j, $Pr[\sum_{i:X_i \in S_j} X_i > 1] \leq p$, where p is a given *overflow probability* (QoS constraint).

SBP is to find a feasible packing that consumes minimum number of bins.

- In IEEE INFOCOM 2011, Wang et al. [3] proposed an online algorithm with competitive ratio of $(1 + \epsilon)(1 + \sqrt{2})$
- In IEEE INFOCOM 2012, Breitgand et al. [6] proposed an online algorithm with competitive ratio $(2 + \epsilon)$

Online SBP algorithm

Lemma 3.1: A packing is feasible for a given overflow probability p if and only if for every bin j, $\sum_{i:X_i \in S_j} \mu_i + \beta \sqrt{\sum_{i:X_i \in S_j} \sigma_i^2} \le 1$, where $\beta = \Phi^{-1}(1-p)$ and the quantile function Φ^{-1} is the inverse function of the CDF Φ of $\mathcal{N}(0,1)$.

Denote the variance to mean ratio (VMR) of item i by $d_i = \frac{\sigma_i^2}{\mu_i}$.

- Framework of Algorithm:
 - Classify next item according to the VMR classes
 - Place the next item in the first bin of its class into which it can be feasibly packed according to Lemma 3.1. If no such bin exists, open a new bin in this class to pack this item.

Data Center Consolidation

- Perform a consolidation of applications across data centers and transform the IT infrastructure of an enterprise with multiple data centers into fewer data centers
- VM consolidation emerges in around 2007, which is relatively mature now. Interest on data center consolidation arises since the year of 2010, when a report on U.S. government data center condensation is published.
- Analogy:
 - Application group vs. VM
 - Data center vs. Physical Server

Model as a Linear Programming

Minimize:
$$\sum_{j=1}^{j=N} \sum_{i=1}^{i=M} X_{ij} \left(S_i(Q_j + \alpha E_j + \frac{T_j}{\beta}) + D_i W_j + L_{ij} \right)$$

Subject To: $1 \sum_{j=1}^{j=N} X_{ij} = 1, \forall 1 \leq i \leq M,$
 $2 \sum_{i=1}^{i=M} X_{ij} S_i \leq O_j, \forall 1 \leq i \leq N, \quad 3 \right) X_{ij} \in \{0, 1\}$

• Objective function:

Cost at data centers for space, power, labor, WAN communication and latency penalty

Constraints:

- (2): not exceed capacity of any data center
- (1)(3): every application group is assigned with a data center

Add-on of VPN

Minimize:
$$\sum_{j=1}^{j=N} \sum_{i=1}^{i=M} X_{ij} \left(S_i(Q_j + \alpha E_j + \frac{T_j}{\beta}) + D_i W_j + L_{ij} \right)$$

Subject To: $1 \sum_{j=1}^{j=N} X_{ij} = 1, \forall 1 \leq i \leq M,$
 $2 \sum_{i=1}^{i=M} X_{ij} S_i \leq O_j, \forall 1 \leq i \leq N, \quad 3 \right) X_{ij} \in \{0, 1\}$

• Replace D_iW_j by

$$\sum_{r=1}^{r=R} \left((C_{ir}D_i) / (\gamma * \sum_{r=1}^{r=R} C_{ir}) \right) (F_{jr})$$

 Leased VPN is charged based on communication distance and number of links

My comment

- The research on data center consolidation is in the preliminary state.
- Exploration directions:
 - Model overload of application groups as random variables
 - Various types of cost vary along time
 - Consider the interaction between application groups
 - Is dynamic consolidation of data center possible?

Reference

- [1] R. Singh, P. Shenoy, K. K. Ramakrishnan, R. Kelkar and H. Vin, "eTransform: Transforming Enterprise Data Centers by Automated Consolidation", in Proc. of ICDCS 2012
- [2] X. Meng, V. Pappas and L. Zhang, "Improving the Scalability of Data Center Networks with Traffic-aware Virtual Machine Placement", in Proc. of IEEE INFOCOM 2010
- [3] M. Wang, X. Meng and L. Zhang, "Consolidating Virtual Machines with Dynamic Bandwidth Demand in Data Centers", in Proc. of IEEE INFOCOM 2011
- [4] N. Bobroff, A. Kochut, and K. Beaty, "Dynamic Placement of Virtual Machines for Managing SLA Violations", in Proc. of 10th IFIP/IEEE Integrated Network Management, 2007 (IM '07)
- [5] M. Chen, H. Zhang, Y. Y. Su, X. Wang, G. Jiang and K. Yoshihira, "Effective VM Sizing in Virtualized Data Centers", in Proc. of IEEE/IFIP IM 2011, Dublin, Ireland, May 2011
- [6] D. Breitgand and A. Epstein, "Improving Consolidation of Virtual Machines with Risk-Aware Bandwidth Oversubscription in Compute Clouds", in Proc. of IEEE INFOCOM 2012