cloudera

DataFrames: The Extended Cut

Wes McKinney @wesmckinn

Open Data Science Conference, 2015-05-31

This talk

- Some commentary / notes on all the data frame interfaces out there
- Community / collaboration challenges
- Opinions

Disclaimer: This is a nuanced discussion

Who am I?

- Originator of pandas (2008)
- Financial analytics in R / Python starting 2007
- · 2010-2012
 - Hiatus from gainful employment
 - Make pandas ready for primetime
 - Write "Python for Data Analysis"
- 2013-2014: DataPad with Chang She & co
- 2014 : Open source development @ Cloudera

Data frame, in brief

- A table-like data structure
- An API / user interface for the table
 - Selecting data
 - Math and relational algebra (join, filter, etc.)
 - File / database IO
 - ad infinitum

Some axes of comparison

- Data structure internals (types, in-memory representation, etc.)
- Basic table API
- Relational algebra support
- Group-by / split-apply-combine API
- Performance, memory use, evaluation semantics
- Missing data
- Data tidying / ETL tools
- IO utilities
- Domain specific tools (e.g. time series)

•

The Great Data Tool Decoupling™

- Thesis: over time, user interfaces, data storage, and execution engines will decouple and specialize
- In fact, you should really want this to happen
 - Share systems among languages
 - Reduce fragmentation and "lock-in"
 - Shift developer focus to usability
- Prediction: we'll be there by 2025; sooner if we all get our act together

Crafting quality data tools

Quality / usefulness is usually forged by the fire of battle

Real world use cases and social proof trump theory

Eat that dog food

When in doubt? Look at the test suite.

Data frames, circa 2015

- Tight coupling amongst
 - User API
 - In-memory data representation
 - Serialization/deserialization tools
 - Analytics / computation
 - Code evaluation semantics
- Code sharing amongst languages fairly difficult, rarely happens in practice

In-memory representation a major problem

- Any algorithms written against a data frame implementation assume a particular custom
 - Memory layout
 - Type system (+ missing data representation)
 - Memory management strategy
- Due to organic growth of libraries / language ecosystems, there was never an effort to reach any design consensus
- Downstream symptoms: benchmark-driven development

Lies, damn lies, and benchmarks

- Usual targets of benchmarking:
 - IO (CSV and database reading)
 - Joins
 - Aggregation / group-by operations
- What's actually being tested
 - Quality of algorithm implementation
 - Data representation
 - Memory access patterns / CPU cache efficiency

Example: group-by-aggregate

```
SELECT a, sum(b) AS total
FROM df
GROUP BY 1

df.groupby('a')
   .b.sum()

df %>% group_by('a')
   %>% summarise(total=sum(b))
```

What's actually being benchmarked

- CPU/IO efficiency for for scanning a and b columns
- Speed to push a values through a hash table (quality of hash table impl now an issue)
- Time to sum b values given known categorization (using hash table)
- Speed of creating result data frame

Data types

- Primitive value types
 - Number (integer, floating point)
 - Boolean
 - String (UTF-8), Binary
 - Timestamp
- Complex / nested types
 - Lists
 - Structs
 - Maps

Data types

Example Table Row

```
'name': {
  `first': `Wes',
  `last': `McKinney'
'age': 30
'numbers': [1, 2, 3, 4]
'addresses': [
 { 'city': 'New York',
   `state': 'NY' },
  { 'city': 'San Francisco',
  'state': 'CA' },
'keys': [('foo', 27), ('baz', 35)]
```

Table schema

```
struct<
 name: struct<
    first: string,
    last: string
 age: int32,
 numbers: list<int32>,
  addresses: list<struct<
      city: string,
      state: string
   >>,
 keys: map<string, int>
```

Table memory layout

- Columnar
 - Faster for analytics, single-column scans
 - Projections (column add/remove) cheap
 - Row appends harder
 - Operations across single rows are slower
- Row-oriented
 - Slower single-column scans
 - Projections expensive
 - Row appends easier
 - Operations across single rows are faster

Serialization and protocols

- Text-based formats
 - CSV/TSV, JSON
- Binary formats
 - Avro
 - Thrift
 - Protocol buffers
 - Parquet (related: ColumnIO and RecordIO at Google)
 - ORCFile
 - HDF5
 - Language specific: NumPy, bcolz, Rdata, etc.

Lossy / text-based formats

- Like CSV, JSON, etc.
- Can be read "easily" by anyone
- Expensive to read (parse) and write/generate
- Expensive to infer correct schema if not known
 - Still must validate parsed data, even if you know the schema
- Not a high fidelity format
 - Schema must be known
 - Data can be easily lost-in-translation
 - CSV cannot easily handle nested schemas

Binary data formats

- Some, like Parquet and ORCFile, are columnar / analytics-oriented
- Others (Avro, Thrift, Protobuf), designed for more general data transport and remote procedure calls (RPC) in distributed systems
- Language-specific formats generally don't have full-featured reader-writers outside the primary language

Data representation across languages

- R: list of named R arrays (each containing data of a primitive R type)
 - Data frames have an implicit schema, but user does not interact with
 - Limited support for nested type values (JSON-like data)
- pandas: complex, but fundamentally data stored in NumPy arrays
 - No explicit table schema; NumPy complexities largely hidden from user
 - Limited / no built-in support for nested type values
- Missing / NULL values handled on a type-by-type basis (sometimes not at all)

Missing data

- R: uses special values to encode NA
- Python pandas: special values, but does not work for all types
- For arbitrary type data, best approach is to use a bit or byte to represent nullness/not-nullness

I am actively working to address infrastructural issues that have prevented collaboration / code sharing in tabular data tools

Some awesome R data frame stuff

- "Hadley Stack"
 - dplyr, tidyr
 - legacy: plyr, reshape2
 - ggplot2
- data.table (data.frame + indices, fast algorithms)
- xts: time series

R data frames: rough edges

- Copy-on-write semantics
- API fragmentation / inconsistency
 - Use the "Hadley stack" for improved sanity
- Factor / String dichotomy
 - stringsAsFactors=FALSE a blessing and curse
- Somewhat limited type system

dplyr

- Composable table API
- Good example of what the "decoupled" future might look like
 - New in-memory R/RCpp execution engine
 - SQL backends for large subset of API

Spark DataFrames

- R/pandas-inspired API for tabular data manipulation in Scala, Python, etc.
- Logical operation graphs rewritten internally in more efficient form
- Good interop with Spark SQL
- Some interoperability with pandas
- Partial API Decoupling!
- Low-level internals (DataFrame ~ RDD[Row]) are ... not the best

pandas

- Several key data structures, data frame among them
- Considerably more complex internals than other data frame libraries
- Some good things
 - Born of need
 - A "batteries included" approach
 - Hierarchical axis labeling: addresses some hard use cases at expense of semantic complexity
 - Strong time series support

pandas: rough edges

- Axis labelling can get in the way for folks needing "just a table"
- Ceded control of its type system / data rep'n from day 1 to NumPy
- Inefficient string handling (uses NumPy object arrays)
- Missing data handling less precise than other tools
- No C API; very difficult for external tools to interact with pandas objects

blaze

- Open source Python project run by Continuum Analytics
- Bespoke type system ("datashape") supporting many kinds of nested schemas
- Data expression API with many execution backends (SQL, pandas, Spark, etc.)
- Does not have a "native" backend (was to be the—now aborted?—libdynd project)
- Another good example of the "decoupled" future

libdynd

- Next-gen NumPy-in-C++ project started by Continuum in 2011 to be a native backend for Blaze, appears not to be actively pursued
- Implements the new datashape protocol
- Standalone C++11/14 library, with deep Python binding
- Lots of interesting internals / implementation ideas

bcolz: the new carray / ctable

- Compressed in-memory / on disk columnar table structure
- Outgrowth of
 - carray (compressed-in-memory NumPy array)
 - blosc (multithreaded shuffling compression library)

Julia: DataFrames.jl

- Started by Harlan Harris & co
- Part of broader JuliaStats initiative
 - More R-like than pandas-like
 - Very active: > 50 contributors!
- Still comparatively early
 - Less comprehensive API
 - More limited IO capabilities

Other data frames

- Saddle (Scala)
 - Dev'd by Adam Klein (ex-AQR) at Novus Partners (fintech startup)
 - Designed and used for financial use cases
- Deedle (F# / .NET)
 - Dev'd by AK's colleagues at BlueMountain (hedge fund)
- GraphLab / Dato
 - Really good C++ data frame with Python interface
 - Dual-licensed: AGPL + Commercial
- That's not all! Haskell, Go, etc...

We're not done yet

- The future is JSON-like
 - Support for nested types / semi-structured data is still weak
- Wanted: Apache-licensed, community standard C/C++ data frame data structure and analytics toolkit that we all use (R, Python, Julia)
- Bring on the Great Decoupling

cloudera Thank you

@wesmckinn