Game Theory

dan Struktur Pasar

AK2163 - Mikroekonomi

Dr. Lukman Hanif Arbi

Prodi Aktuaria

FMIPA ITB

29 Oktober, 2019

Kali Ini...

Permainan (Games)

Permainan Simultan (Simultaneous Games)

Studi Kasus - Duopoli

Kali Ini...

Permainan (Games)

Permainan Simultan (Simultaneous Games

Studi Kasus - Duopol

Permainan (Games)

Ciri utama suatu "permainan" adalah bahwa utilitas seseorang bergantung kepada pilihan diri sendiri dan pilihan pihak lain.

Permainan (Games)

Suatu permainan secara umum memiliki ketiga hal berikut:

- ► Sejumlah pemain
- ► Sejumlah strategi
- Sejumlah fungsi hasil bagi tiap pemain

Dominasi Strategi

- Diantara semua strategi yang ada, belum tentu semua dapat digunakan semua pemain
- Selain itu, bisa jadi bagi seorang pemain ada strategi yang
 lebih unggul (dominating) dan juga yang terungguli
 (dominated) dibanding strategi yang lain

Dominasi Strategi

- Strategi yang mutlak mengungguli strategi yang lain hingga ia menjadi strategi andalan disebut strategi dominan (dominant strategy)
- Strategi yang mutlak diungguli strategi yang lain hingga ia tidak pernah bisa diandalkan disebut strategi terdominasi mutlak (strictly dominated strategy)

Kesetimbangan Nash (Nash Equilibrium)

Nesetimbangan Nash adalah keadaan dimana ada strategi s_i^* yang memberi hasil terbaik setelah memperhitungkan strategi2 pemain yang lain s_{-i}^* :

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$

- Disebut kesetimbangan karena pemain i tidak berkenan menggubah strateginya (sudah mendapat "hasil terbaik")
- ▶ Bisa saja ada lebih dari satu titik setimbang Nash

Kali Ini...

Permainan (Games)

Permainan Simultan (Simultaneous Games)

Studi Kasus - Duopol

Permainan Simultan (Simultaneous Games)

- Dikatakan permainan simultan ketika pemain2 harus memilih strategi secara bersamaan
- Sebagai akibat, masing2 pemain bisa saja tahu semua strategi lawannya tapi belum tentu tahu strategi yang akan digunakan

Permainan Simultan (Simultaneous Games)

Katakanlah ada kasus sebagai berikut:

- Dua mahasiswa (A dan B) mengerjakan tugas kelompok
- Masing2 bisa memilih untuk mengeluarkan usaha c=2 atau tidak sama sekali
- lacktriangle Jika kedua mahasiswa kerja, dihasilkan tugas yang bernilai b=6
- ▶ Jika hanya satu mahasiswa yang kerja, dihasilkan tugas yang bernilai b = 3
- ightharpoonup Jika tidak ada yang kerja, dihasilkan tugas yang bernilai b=0

Representasi Tabel/Matriks

Kasus ini dapat direpresentasikan sebagai berikut:

	K	TK
K	4, 4	1, 3
TK	3, 1	0, 0

Analisa Permainan Simultan

Setiap strategi masing2 pemain dianalisa:

- Jika diketahui mahasiswa B akan kerja, mahasiswa A akan lebih memilih kerja (u=4) dibanding tidak kerja (u=3)
- lacktriangle Jika diketahui mahasiswa B tidak akan kerja, mahasiswa A akan lebih memilih kerja (u=1) dibanding tidak kerja (u=0)
- A akan selalu kerja (strategi dominan)
- Demikian juga B karena permainan ini simetris
- Ketika kedua mahasiswa memilih untuk bekerja, alternatifnya tidak menawarkan manfaat yang lebih baik - karena ini adalah hasil terbaik, disebut kesetimbangan Nash

Analisa Permainan Simultan

- Maka strategi yang digunakan pemain sangat bergantung pada manfaat yang dapat diperolehnya
- Namun biarpun strategi dominan dapat menghasilkan kesetimbangan *Nash*, hasil tersebut belum tentu yang terbaik secara mutlak

Dilema Tawanan (Prisoners' Dilemma)

Perhatikan kasus berikut:

	K	TK
K	3, 3	0, 4
TK	4, 0	1, 1

Dilema Tawanan (Prisoners' Dilemma)

- Iska diketahui mahasiswa B akan kerja, mahasiswa A akan lebih memilih tidak kerja (u=4) dibanding kerja (u=3)
- lack Jika diketahui mahasiswa B tidak akan kerja, mahasiswa A akan lebih memilih tidak kerja (u=1) dibanding kerja (u=0)
- A akan selalu memilih untuk tidak kerja (strategi dominan)
- Demikian juga B karena permainan ini simetris
- Strategi dominan kedua mahasiswa membawa mereka ke suatu kesetimbangan Nash tapi tidak memberi hasil terbaik

Permainan Diktator

- Selama ini kita berasumsi bahwa tiap pemain memperhitungkan strategi pemain lain tapi tidak hasil pemain lain
- Permainan diktator memiliki aturan sebagai berikut:
 - 1. Dua pemain membagi sejumlah uang *m*
 - Pemain pertama menyebut suatu angka x dan pemain kedua hanya menyatakan setuju atau tidak setuju
 - 3. Jika pemain kedua setuju, pemain pertama mendapat x dan pemain kedua mendapat m-x
 - 4. Jika pemain kedua tidak setuju, sama2 tidak mendapat apa2

Permainan Diktator

Menurut Anda apa yang harusnya terjadi?

Kali Ini...

Permainan (Games)

Permainan Simultan (Simultaneous Games

Studi Kasus - Duopoli

Studi Kasus - Duopoli

- Analisa oligopoli belum tentu semudah monopoli maupun pasar persaingan sempurna
- Dalam pasar persaingan sempurna hanya ada satu strategi,
 yaitu mengikuti kondisi pasar
- Dalam monopoli hanya ada satu strategi, yaitu memilih strategi terbaik
- Jika hanya ada dua usaha yang bersaing, mereka bisa mempengaruhi keadaan pasar misalnya dengan perang harga (Bertrand) atau perang jumlah (Cournot)

Duopoli Bertrand (Bertrand Duopoly)

- Permintaan suatu pasar mengikuti fungsi $Q_D = a p$
- Tiap produsen memiliki biaya marjinal sejumlah c
- Konsumen hanya akan membeli dari produsen yang menawarkan harga terendah
- Jika sejumlah produsen menawarkan harga terendah,
 diasumsikan masing2 meladeni jumlah konsumen yang sama

Duopoli Bertrand (Bertrand Duopoly)

Katakanlah hanya ada dua produsen, maka fungsi hasil masing2 sebagai berikut:

- lacksquare Jika $p_i < p_{-i}$ maka $\pi_i = pq cq = (p-c)(a-p)$
- ightharpoonup Jika $p_i=p_{-i}$ maka $\pi_i=rac{1}{2}(p-c)(a-p)$
- ightharpoonup Jika $p_i > p_{-i}$ maka $\pi_i = 0$

Kesetimbangan Nash yang dihasilkan hanya satu, yaitu ketika

$$p_1=p_2=c$$

- Permintaan suatu pasar mengikuti fungsi $Q_D = a p$
- Dengan asumsi ada dua produsen, fungsi penawaran berupa jumlah fungsi penawaran masing $2\ Q_S=q_1+q_2$
- ▶ Tiap produsen memiliki biaya marjinal sejumlah c
- Maka keuntungan tiap produsen sebagai berikut:

$$\pi_{i} = pq - cq$$

$$= (p - c)q$$

$$\pi_{i} = (a - q_{1} - q_{2} - c)q_{i}$$

Tiap produsen akan menghasilkan jumlah optimal, misalnya untuk produsen pertama:

$$egin{aligned} \max_{q_1} & \pi_1 = (a-q_1-q_2-c)q_1 \ & rac{d\pi_1}{dq_1} = -q_1 + (a-q_1-q_2-c) = 0 \ & q_1^* = rac{1}{2}(a-q_2-c) \end{aligned}$$

Karena fungsi keuntungan produsen kedua memiliki struktur yang sama, jumlah optimalnya juga memiliki struktur yang sama:

$$q_2^* = rac{1}{2}(a - q_1 - c)$$

Perhatikan bahwa strategi suatu produsen bergantung pada strategi produsen yang satunya:

$$q_1^* = \frac{1}{2}(a - q_2 - c)$$

$$q_2^* = \frac{1}{2}(a - q_1 - c)$$

Inilah adalah ciri pokok suatu permainan!

Memasukkan q_2^* ke dalam q_1^* untuk menghasilkan q_1^* sebagai fungsi peubah eksogen:

$$q_1^* = \frac{1}{2}(a - \frac{1}{2}(a - q_1 - c) - c)$$
 $q_1^* = \frac{1}{3}(a - c)$

dan bagi produsen kedua:

$$q_2^* = \frac{1}{3}(a-c)$$

Pertemuan Berikut...

- ▶ Permainan berurutan (Sequential Games)
- Duopoli Stackelberg
- Kebijakan Antipakta
- Dampak struktur pasar