

FORMELSAMMLUNG FWL

Wintersemester 22/23

Name: Tony Pham

Letzte Änderung: 12. November 2022

Lizenz: GPLv3

Inhaltsverzeichnis

1		ndlagen 1
	1.1	Differentialoperatoren
		1.1.1 Rechenregeln
		1.1.2 Spezielle Vektorfelder
	1.2	Vektorrechnung
		1.2.1 Betrag, Richtungswinkel, Normierung
		1.2.2 Skalarprodukt
		1.2.3 Kreuzprodukt
	1.3	Logarithmische Maße
	1.4	Randbedingung
	1.5	Vergleich/Umrechnung
	1.6	Kartesische Koordinaten
	1.7	Zylinderkoordinaten
	1.8	Kugelkoordinaten
2		kwell-Gleichungen 5
	2.1	Integralsätze
3	Feld	
	3.1	E-Felder an Grenzflächen
	3.2	Elektrostatik
		3.2.1 Potential Gleichung
		3.2.2 Green'sche Funktionen
	3.3	Magnetostatik
		3.3.1 Vektorpotential in Abhängigkeit von der Stromdichte
		3.3.2 Biot-Savart-Gesetz
		3.3.3 Elektrischer Dipol
		3.3.4 Magnetischer Dipol
	3.4	Skineffekt
4	Wel	
	4.1	Ausbreitung
		4.1.1 Allgemein
		4.1.2 Im leeren Raum(Vakuum)
		4.1.3 Im verlustlosen/idealen Dielektrika
		4.1.4 Im Dielektrika mit geringem Verlust
		4.1.5 Im guten Leiter
	4.2	Übergang
		4.2.1 Zwischen Dielektrika mit geringem Verlust
	4.3	Poyntingvektor
		4.3.1 Leistung
		4.3.2 Leistung nach Dämpfung
		4.3.3 Leistung vom Kabel transportiert
	4.4	dÀlembertsche Gleichung (allg.)
	4.5	Helmholtz-Gleichungen (Frequenzbereich)
		4.5.1 Zeitbereich
		4.5.2 Frequenzbereich (harmonisch)
	4.6	Wellenzahl
	4.7	Wellenlänge
	4.8	Phasengeschwindigkeit
	1.0	4.8.1 Gruppengeschwindigkeit
	4.9	Polarisation
	-	Verlustlose Polarisation
		Totalrefexion
		Grenzwinkel
	4.14	Senkrechter Einfall
		4.14.1 Senkrechter Einfall ideales/verlustl. Dielekt
		4.14.2 Spezialfall Medium 1 ist Luft
		4.14.3 Spezialfall Medium 2 ist Luft
		4.14.4 Spezialfall beide Medien NICHT magnetisch
		4.14.5 Spezialfall Medium 2 idealer Leiter

	4.16	5 Stehwellenverhältnis	12
_			
5	Leit 5.1	itungen Leitungsparameter	13 13
	5.1	5.1.1 Parallele Platten	
		11	
	5.2	5.1.3 Koaxial Leitung	
	3.2	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		*:=	
		9	
	5.3	5.2.3 vernachlässigbarer Leitwertbelag	
	5.5		
		5.3.1 Vorgehen Eingangswiderstand	
		5.3.2 Reflexionsfaktor entlang einer Leitung	
		5.3.4 Leistung	
		5.3.5 Gleichspannungswert (=Endwert)	
		5.3.6 Position von Extrema	
		5.3.7 Spezialfall: Angepasste Leitung	
		5.3.8 Spezialfall: Kurzgeschlossene Leitung	15
		5.3.9 Spezialfall: Leerlaufende Leitung	15
	<u>.</u> .	5.3.10 Spezialfall: Ohm'sch abgeschlossene Leitung	
	5.4	1 0	
	5.5	Kettenmatrix einer Leitung	15
6	Smi	nith-Diagramm	16
U	6.1		
	6.2		
	6.3	- '	
	6.4		
	0.4	von Last zu guene	
7	Wel	ellenleiter	17
7	We l 7.1		
7			17
7		Koaxial Leiter 7.1.1 Wellenwiderstand	17 17
7		Koaxial Leiter . 7.1.1 Wellenwiderstand 7.1.2 Dämpfung	17 17 17
7	7.1	Koaxial Leiter	17 17 17
7	7.1	Koaxial Leiter	
7	7.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen	
7	7.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen	
7	7.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter	
7	7.1 7.2 7.3	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss	
7	7.1 7.2 7.3 7.4	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss	
8	7.1 7.2 7.3 7.4 7.5	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser	
	7.1 7.2 7.3 7.4 7.5	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol 8.1.1 Allgemein	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol 8.1.1 Allgemein	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser ntennen Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld	
	7.1 7.2 7.3 7.4 7.5 Ant	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser tennen Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser tennen Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser **Netnen** Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand Magnetischer Dipol Magnetischer Dipol	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser **Tennen** Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand Magnetischer Dipol 8.2.1 Fernfeld	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser **Nemen** Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand Magnetischer Dipol 8.2.1 Fernfeld 8.2.2 Abgestrahlte Leistung im Fernfeld 8.2.3 Nahfeld 8.2.3 Nahfeld	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser **Nemen** Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand Magnetischer Dipol 8.2.1 Fernfeld 8.2.2 Abgestrahlte Leistung im Fernfeld 8.2.2 Abgestrahlte Leistung im Fernfeld 8.2.3 Nahfeld	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser **Tennen** Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand Magnetischer Dipol 8.2.1 Fernfeld 8.2.2 Abgestrahlte Leistung im Fernfeld 8.2.3 Nahfeld Lineare Antenne 8.3.1 Dipolantenne	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter 7.1.1 Wellenwiderstand 7.1.2 Dämpfung Mikrostreifenleiter 7.2.1 Effektive Permittivitätszahl 7.2.2 Schmale Streifen 7.2.3 Breite Streifen Hohlleiter VSWR (Voltage Standing Wave Ratio) und Return Loss Lichtwellenleiter oder Glasfaser **Tennen** Herz'scher Dipol 8.1.1 Allgemein 8.1.2 Nahfeld 8.1.3 Fernfeld 8.1.4 Abgestrahlte Leistung im Fernfeld 8.1.5 Strahlungswiderstand 8.1.6 Verlustwiderstand Magnetischer Dipol 8.2.1 Fernfeld 8.2.2 Abgestrahlte Leistung im Fernfeld 8.2.3 Nahfeld Lineare Antenne 8.3.1 Dipolantenne 8.3.1 Dipolantenne Antennenkenngrößen	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter . 7.1.1 Wellenwiderstand . 7.1.2 Dämpfung . Mikrostreifenleiter . 7.2.1 Effektive Permittivitätszahl . 7.2.2 Schmale Streifen . 7.2.3 Breite Streifen . Hohlleiter . VSWR (Voltage Standing Wave Ratio) und Return Loss . Lichtwellenleiter oder Glasfaser . **Teennen** Herz'scher Dipol . 8.1.1 Allgemein . 8.1.2 Nahfeld . 8.1.3 Fernfeld . 8.1.4 Abgestrahlte Leistung im Fernfeld . 8.1.5 Strahlungswiderstand . 8.16 Verlustwiderstand . Magnetischer Dipol . 8.2.1 Fernfeld . 8.2.2 Abgestrahlte Leistung im Fernfeld . 8.2.3 Nahfeld . 8.2.3 Nahfeld . 8.3.1 Dipolantenne . 8.3.1 Dipolantenne . 8.3.1 Dipolantenne . 8.4.1 Abgestrahlte Leistung . 8.4.1 Abgestrahlte Leistung .	
	7.1 7.2 7.3 7.4 7.5 Ant 8.1	Koaxial Leiter . 7.1.1 Wellenwiderstand . 7.1.2 Dämpfung . Mikrostreifenleiter . 7.2.1 Effektive Permittivitätszahl . 7.2.2 Schmale Streifen . 7.2.3 Breite Streifen . Hohlleiter . VSWR (Voltage Standing Wave Ratio) und Return Loss . Lichtwellenleiter oder Glasfaser . **Teennen** Herz'scher Dipol . 8.1.1 Allgemein . 8.1.2 Nahfeld . 8.1.3 Fernfeld . 8.1.4 Abgestrahlte Leistung im Fernfeld . 8.1.5 Strahlungswiderstand . 8.16 Verlustwiderstand . Magnetischer Dipol . 8.2.1 Fernfeld . 8.2.2 Abgestrahlte Leistung im Fernfeld . 8.2.3 Nahfeld . 8.2.3 Nahfeld . 8.3.1 Dipolantenne . 8.3.1 Dipolantenne . 8.3.1 Dipolantenne . 8.4.1 Abgestrahlte Leistung . 8.4.1 Abgestrahlte Leistung .	

		8.4.5 Richtfunktion/Richtfaktor	19
		8.4.6 Gewinn	
		8.4.7 Wirksame Antennenfläche	19
	8.5	Bezugsantennen	19
	8.6	Senden und Empfangen	19
		8.6.1 Freiraumdämpfung/Freiraumdämpfungsmaß	20
		8.6.2 Leistungspegel/Freiraumpegel	20
	8.7	Antennentabelle	21
9	Einl	heiten	22

1 Grundlagen

1.1 Differentialoperatoren

Nabla-Operator

$$\nabla = \vec{\nabla} = \begin{pmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{pmatrix}$$

Laplace-Operator

$$\Delta = \vec{\nabla} \cdot \vec{\nabla} = \text{div (grad)} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

 $\mathbf{Divergenz} \ \mathrm{div:} \ \mathrm{Vektorfeld} \to \mathrm{Skalar}$

Quelldichte, gibt für jeden Punkt im Raum an, ob Feldlinien entstehen oder verschwinden.

Rotation rot: Vektorfeld \rightarrow Vektorfeld

Wirbeldichte, gibt für jeden Punkt im Raum Betrag und Richtung der Rotationsgeschwindigkeit an.

$$\begin{bmatrix}
 \cot \vec{F} = \nabla \times \vec{F}
 \end{bmatrix} = \begin{pmatrix}
 \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\
 \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \\
 \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}
 \end{pmatrix} = \begin{pmatrix}
 \vec{e}_x & \vec{e}_y & \vec{e}_z \\
 \frac{\partial}{\partial x} & \frac{\partial}{\partial x} & \frac{\partial}{\partial z} \\
 \vec{F}_x & \vec{F}_y & \vec{F}_z
 \end{bmatrix}$$

Gradient grad: Skalarfeld \to Vektor/Gradientenfeld zeigt in Richtung steilster Anstieg von ϕ

$$\boxed{\operatorname{grad} \phi = \nabla \cdot \phi} = \begin{pmatrix} \frac{\partial \phi / \partial x}{\partial \phi / \partial y} \\ \frac{\partial \phi / \partial y}{\partial \phi / \partial z} \end{pmatrix} = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

1.1.1 Rechenregeln

 ϕ, ψ : Skalarfelder \vec{A}, \vec{B} : Vektorfelder

$$\begin{array}{lll} \nabla \cdot (\vec{A} \times \vec{B}) & = & (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A} \\ \nabla \cdot (\phi \cdot \psi) & = & \phi(\nabla \psi) + \psi(\nabla \phi) \\ \nabla \cdot (\phi \cdot \vec{A}) & = & \phi(\nabla \vec{A}) + \vec{A}(\nabla \phi) \\ \nabla \times (\phi \cdot \vec{A}) & = & \nabla \phi \times \vec{A} + \phi(\nabla \times \vec{A}) \end{array}$$

1.1.2 Spezielle Vektorfelder

quellenfreies Vektorfeld \rightarrow Vektorpotential:

$$\operatorname{div} \vec{F} = \operatorname{div}(\operatorname{rot} \vec{E}) = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{rot} \vec{E}$$

wirbelfreies Vektorfeld \rightarrow Skalar
potential:

$$\operatorname{rot} \vec{F} = \operatorname{rot}(\operatorname{grad} \phi) = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi$$

quellen- und wirbelfreies Vektorfeld:

$$\operatorname{rot} \vec{F} = 0 \quad \operatorname{div} \vec{F} = 0$$

$$\operatorname{div}(\operatorname{grad} \phi) = \Delta \phi = 0 \quad \Leftrightarrow \quad \vec{F} = \operatorname{grad} \phi$$

1.2 Vektorrechnung

${\bf 1.2.1}\quad {\bf Betrag,\ Richtungswinkel,\ Normierung}$

Betrag

$$|\vec{r}| = r = \sqrt{r_x^2 + r_y^2 + r_z^2}$$

Richtungswinkel

$$\cos(\alpha) = \frac{a_x}{|\vec{a}|} \qquad \cos(\beta) = \frac{a_y}{|\vec{a}|} \qquad \cos(\gamma) = \frac{a_z}{|\vec{a}|}$$

Normierung, Einheitsvektor

$$\vec{e}_a = \frac{\vec{a}}{|\vec{a}|}, \quad |\vec{e}_a| = 1$$

1.2.2 Skalarprodukt

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos(\varphi) \qquad \vec{a} \cdot \vec{b} = 0$$

$$\cos(\varphi) = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z}{|\vec{a}| \cdot |\vec{b}|}$$

1.2.3 Kreuzprodukt

$$\begin{split} A_{Para} &= |\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\varphi) \\ \vec{a} \times \vec{b} &= \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \times \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix} = \begin{pmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{pmatrix} \end{split}$$

1.3 Logarithmische Maße

- dBm=1mW
- $dB\mu V = 1\mu V$
- dBmV=1mV
- $dBi \rightarrow Isotropic$

 $\mathbf{Dezibel} \; [\mathrm{dB}]$

$$1 dB = 0, 1151 Np$$

$$X[dB] = 20 \cdot \log \left(\frac{U_1}{U_2}\right) \qquad X[dB] = 10 \cdot \log \left(\frac{P_1}{P_2}\right)$$

$$U_1 = U_2 \cdot 10^{\frac{X}{20 dB}} \qquad P_1 = P_2 \cdot 10^{\frac{X}{10 dB}}$$

Neper [Np]

$$X[Np] = \ln\left(\frac{U_1}{U_2}\right) \qquad X[Np] = \frac{1}{2} \cdot \ln\left(\frac{P_1}{P_2}\right)$$

$$U_1 = U_2 \cdot e^X \qquad P_1 = P_2 \cdot e^{2X}$$

$$1Np \triangleq 8.686dB$$

1.4 Randbedingung

Dirichlet-RB	Funktion nimmt an den Rändern einen bestimmten Wert an (Bsp.: $\rho_r = 5V$)
Neumann-RB	Die Normalableitung der Fkt. nimmt an den Rändern einen bestimmten Wert an

1.5 Vergleich/Umrechnung

Kart.	Zyl.	Kug.
x	$r\cos\varphi$	$r\sin\vartheta\cos\varphi$
\overline{y}	$r\sin\varphi$	$r\sin\vartheta\sin\varphi$
\overline{z}	z	$r\cos\vartheta$
$\sqrt{x^2 + y^2}$	r	
$\frac{y}{x}$	φ	
\overline{z}	z	
$dx\cos\varphi + dy\sin\varphi$	dr	
$dy\cos\varphi - dx\sin\varphi$	$rd\varphi$	
dz	dz	
$\sqrt{x^2 + y^2 + z^2}$		r
$\arctan \frac{y}{x}$		φ
$\arctan \frac{\sqrt{x^2 + y^2}}{z}$		θ
$\frac{dx\sin\vartheta\cos\varphi}{dy\sin\vartheta\sin\varphi+dz\cos\vartheta} +$		dr
$dy\cos\varphi - dx\sin\varphi$		$r\sin\vartheta d\varphi$
$\frac{dx\cos\vartheta\cos\varphi + dy\cos\vartheta\sin\varphi - dz\sin\vartheta}{dx\cos\vartheta\sin\varphi - dz\sin\vartheta}$		$rd\vartheta$

1.6 Kartesische Koordinaten

Skalarfeld:

$$\phi = \phi(x; y; z)$$

Vektorfeld:

$$\vec{F} = \vec{F}(x; y; z) = F_x \vec{e}_x + F_y \vec{e}_y + F_z \vec{e}_z$$

Rechtssystem:

$$\vec{e}_x \times \vec{e}_y = \vec{e}_z$$

Linienelemente:

$$ds = \sqrt{dx^2 + dy^2 + dz^2}$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial x} \vec{e}_x + \frac{\partial \phi}{\partial y} \vec{e}_y + \frac{\partial \phi}{\partial z} \vec{e}_z$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} \right] \vec{e}_x + \left[\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} \right] \vec{e}_y + \left[\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} \right] \vec{e}_z$$

Laplace Operator:

$$\Delta = \nabla \cdot \nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\Delta \vec{E} = \operatorname{grad} \operatorname{div} \vec{E} - \operatorname{rot} \operatorname{rot} \vec{E} = \Delta E_x \vec{e}_x + \Delta E_y \vec{e}_y + \Delta E_z \vec{e}_z$$

$$= \left[\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2} \right] \vec{e}_x + \left[\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2} \right] \vec{e}_y + \left[\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2} \right] \vec{e}_z$$

1.7 Zylinderkoordinaten

Skalarfeld:

$$\phi = \phi(r; \varphi; z)$$

Vektorfeld:

$$\vec{F} = \vec{F}(r; \varphi; z) = F_r \vec{e}_r + F_\varphi \vec{e}_\varphi + F_z \vec{e}_z$$

Linienelemente:

$$ds = \sqrt{dr^2 + r^2 d\varphi^2 + dz^2}$$

Volumenelemente:

$$dv = r dr d\varphi dz$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial \phi}{\partial \varphi} \vec{e}_\varphi + \frac{\partial \phi}{\partial z} \vec{e}_z$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \vec{D}_r \right) + \frac{1}{r} \cdot \frac{\partial \vec{D}_{\varphi}}{\partial \varphi} + \frac{\partial \vec{D}_z}{\partial z}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \left[\frac{1}{r} \cdot \frac{\partial E_z}{\partial \varphi} - \frac{\partial E_{\varphi}}{\partial z} \right] \vec{e}_r + \left[\frac{\partial E_r}{\partial z} - \frac{\partial E_z}{\partial r} \right] \vec{e}_{\varphi} + \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \cdot E_{\varphi} \right) - \frac{\partial E_r}{\partial \varphi} \right] \vec{e}_z$$

Laplace Operator:

$$\Delta\phi = \frac{1}{r} \cdot \frac{\partial}{\partial r} \left(r \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \cdot \frac{\partial^2 \phi}{\partial \varphi^2} + \frac{\partial^2 \phi}{\partial z^2}$$

$$\vec{E} = \left[\Delta E_r - \frac{2}{r^2} \frac{\partial E_{\varphi}}{\partial \varphi} - \frac{E_r}{r^2} \right] \vec{e}_r + \left[\Delta E_{\varphi} + \frac{2}{r^2} \frac{\partial E_r}{\partial \varphi} - \frac{E_{\varphi}}{r^2} \right] \vec{e}_{\varphi} + [\Delta E_z] \vec{e}_z$$

1.8 Kugelkoordinaten

Skalarfeld:

$$\phi = \phi(r; \vartheta; \varphi)$$

Vektorfeld:

$$\vec{F} = \vec{F}(r; \vartheta; \varphi) = F_r \vec{e}_r + F_{\vartheta} \vec{e}_{\vartheta} + F_{\omega} \vec{e}_{\omega}$$

Linienelement:

$$ds = \sqrt{dr^2 + r^2 \sin^2 \vartheta d\varphi^2 + r^2 d\vartheta^2}$$

Volumenelement:

$$dv = r^2 \sin \vartheta dr d\vartheta d\varphi$$

Gradient:

$$\operatorname{grad} \phi \equiv \nabla \phi = \frac{\partial \phi}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial \phi}{\partial \vartheta} \vec{e_\vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial \phi}{\partial \varphi} \vec{e_\varphi}$$

Divergenz:

$$\operatorname{div} \vec{D} \equiv \nabla \vec{D} = \frac{1}{r^2} \frac{\partial (r^2 D_r)}{\partial r} + \frac{1}{r \sin \vartheta} \frac{\partial (\sin \vartheta \cdot D_\vartheta)}{\partial \vartheta} + \frac{1}{r \sin \vartheta} \frac{\partial D_\varphi}{\partial \varphi}$$

Rotation:

$$\operatorname{rot} \vec{E} \equiv \nabla \times \vec{E} = \frac{1}{r \sin \vartheta} \left[\frac{\partial \left(\sin \vartheta \cdot E_{\varphi} \right)}{\partial \vartheta} - \frac{\partial E_{\vartheta}}{\partial \varphi} \right] \vec{e}_{r} + \frac{1}{r} \left[\frac{1}{\sin \vartheta} \frac{\partial E_{r}}{\partial \varphi} - \frac{\partial r E_{\varphi}}{\partial r} \right] \vec{e}_{\vartheta} + \frac{1}{r} \left[\frac{\partial \left(r E_{\vartheta} \right)}{\partial r} - \frac{\partial E_{r}}{\partial \vartheta} \right] \vec{e}_{\varphi}$$

Laplace Operator:

$$\Delta\phi = \frac{1}{r^2} \left\{ \frac{\partial}{\partial r} \left(r^2 \cdot \frac{\partial \phi}{\partial r} \right) + \frac{1}{\sin\vartheta} \cdot \frac{\partial}{\partial\vartheta} \left(\sin\vartheta \cdot \frac{\partial\phi}{\partial\vartheta} \right) + \frac{1}{\sin^2\vartheta} \cdot \frac{\partial^2\phi}{\partial\varphi^2} \right\}$$

Laplace Operator in Kugelkoordinaten, angewandt auf einen Vektor:

$$\Delta \vec{E} = \left[\Delta E_r - \frac{2}{r^2} E_r - \frac{2}{r^2 \sin \vartheta} \frac{\partial \left(\sin \vartheta \cdot E_\vartheta \right)}{\partial \vartheta} - \frac{2}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_r$$

$$+ \left[\Delta E_\vartheta - \frac{E_\vartheta}{r^2 \sin^2 \vartheta} + \frac{2}{r^2} \frac{\partial E_r}{\partial \vartheta} - \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\varphi}{\partial \varphi} \right] \vec{e}_\vartheta$$

$$+ \left[\Delta E_\varphi - \frac{E_\varphi}{r^2 \sin^2 \vartheta} + \frac{2}{r^2 \sin \vartheta} \frac{\partial E_r}{\partial \varphi} + \frac{2 \cot \vartheta}{r^2 \sin \vartheta} \frac{\partial E_\vartheta}{\partial \varphi} \right] \vec{e}_\varphi$$

2 Maxwell-Gleichungen

differentielle Form

Integralform

$$\operatorname{div} \mathbf{D} = \nabla \cdot \mathbf{D} = \rho$$

$$\iint_{\partial V} \mathbf{D} \cdot d\mathbf{a} = \iiint_{V} \rho \cdot dV = Q(V)$$

Gaußsches Gesetz: Das elektrische Feld ist ein Quellenfeld. Die Ladung Q bzw. die Ladungsdichte ρ ist Quelle des elektrischen Feldes.

Der (elektrische) Fluss durch die geschlossene Oberfläche & eines Volumens V ist gleich der elektrischen Ladung in seinem Inneren.

$$\operatorname{div} \mathbf{B} = \nabla \cdot \mathbf{B} = 0$$

$$\iint_{\partial V} \mathbf{B} \cdot d\mathbf{a} = 0$$

Das magnetische Feld ist quellenfrei. Es gibt keine magnetischen Monopole.

Der mag. Fluss durch die geschlossene Oberfläche ∂V eines Volumens V entspricht der magnetischen Ladung in seinem Inneren, nämlich Null, da es keine magnetischen Monopole gibt.

$$\mathsf{rot}\,\mathbf{E} = \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\oint_{\partial A} \mathbf{E} \cdot d\mathbf{s} = - \iint_A rac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{a} = - rac{d\Phi_{ ext{eing.}}}{dt}$$

Induktionsgesetz: Jede zeitlichen Änderung eines Magnetfeldes bewirkt ein elektrisches Wirbelfeld. Die induzierte Umlaufspannung bzgl. der Randkurve ∂A einer Fläche A ist gleich der negativen zeitlichen Änderung des magnetischen Flusses durch diese Fläche.

$$rot H = \nabla \times H = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t}$$

$$\oint_{\partial A} \mathbf{H} \cdot d\mathbf{s} = \iint_{A} \mathbf{j} \cdot d\mathbf{a} + \iint_{A} \frac{\partial \mathbf{D}}{\partial t} \cdot d\mathbf{a}$$

Amperesches Gesetz: Jeder Strom und jede zeitlichen Änderung des elektrischen Feldes (Verschiebungsstrom) bewirkt ein magnetisches Wirbelfeld.

Die mag. Umlaufspannung bzgl. der Randkurve ∂A der Fläche A entspricht dem von dieser Fläche eingeschlossenen Strom. (inkl. Verschiebungsstrom)

Durchflutungsgesetz:

Elek. Strom ist Ursache für ein magn. Wirbelfeld.

Induktionsgesetz:

Ein sich zeitlich änderndes Magnetfeld erzeugt ein elek. Wirbelfeld.

$$\oint_s \vec{H} \cdot d\vec{s} = \Theta = I = \iint_A \vec{J} \cdot d\vec{A} = \frac{d\Phi_e}{dt}$$

$$\boxed{\oint_s \vec{E} \cdot d\vec{s} = u_{ind} = -\frac{d}{dt} \iint_A \vec{B} \cdot d\vec{A} = -\frac{d\Phi_m}{dt}}$$

Differentielle ohmsche Gesetz:

Bewegte elektrische Ladung erzeugt Magnetfeld Bei isotropen Stoffen sind ε u. μ Skalare:

$$rot\vec{H} = \vec{J} = \sigma \cdot \vec{E}$$

 $\mu = \mu_0 \cdot \mu_r$

Integralsätze Fundamentalsatz der Analysis

2.1

Gauß: Vektorfeld das aus Oberfläche von Volumen strömt muss aus Quelle in Volumen

 $\varepsilon = \varepsilon_0 \cdot \varepsilon_r$

Stokes: innere Wirbel kompensieren \rightarrow Rand betrachten

$$\int_{a}^{b} \operatorname{grad} F \cdot d\vec{s} = F(b) - F(a)$$

$$\iiint_{V} \operatorname{div} \vec{A} \cdot dV = \oiint_{\partial V} \vec{A} \cdot d\vec{a}$$

$$\iint_{A} \operatorname{rot} \vec{A} \cdot d\vec{a} = \oint_{\partial A} \vec{A} \cdot d\vec{r}$$

3 Felder

Materialgleichungen

$$\boxed{ \vec{J} = \kappa \vec{E} = \left[\frac{A}{m^2} \right] } \quad \boxed{ \vec{B} = \mu \vec{H} = [T] } \quad \boxed{ \vec{D} = \varepsilon \vec{E} = \left[\frac{C}{m^2} \right] }$$

Feldunterscheidung

$$\begin{array}{lll} \vec{E}(x,y,z) & \widehat{=} & \text{statisches Feld} \\ \vec{E}(x,y,z,t) & \widehat{=} & \text{station\"ares Feld} \\ \vec{E}(x,y,z,t) \cdot \cos(\omega t - \beta z) & \widehat{=} & \text{Welle} \end{array}$$

3.1 E-Felder an Grenzflächen

Dielektrische Grenzfläche

Querschichtung: $D_{1n} = D_{2n}$

$$\iint \vec{D} \cdot d\vec{a} = 0$$

Längsschichtung: $E_{1t} = E_{2t}$

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Schrägschichtung: $\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{E_{1t}/E_{1n}}{E_{2t}/E_{2n}} = \frac{\varepsilon_1}{\varepsilon_2}$

Grenzfläche dielektrischer Leiter

Längsschichtung: $E_{1t} = E_{2t}$

$$\oint \vec{E} \cdot d\vec{s} = 0$$

Querschichtung: $D_{1n} = \frac{Q}{A}$

Grenzfläche an magn. Feldern

Querschichtung: $B_{1n} = B_{2n}$

Längsschichtung: $H_{1t} = H_{2t}$

$$\oint\! \vec{H}\cdot d\vec{s} = 0$$

Schrägschichtung: $\frac{\tan(\alpha_1)}{\tan(\alpha_2)} = \frac{\mu_1}{\mu_2}$

3.2 Elektrostatik

 \bullet wirbelfreies Feld \to Elektrische Ladungen sind Quellen des Feldes

3.2.1 Potential Gleichung

$$\operatorname{div}\operatorname{grad}\varphi = -\frac{\rho}{\varepsilon}$$

 \Rightarrow **Poisson-Gleichung** mit $\rho = 0$

\rightarrow Laplace-Gleichung

$$\begin{split} \Delta \varphi + \underbrace{\underbrace{\frac{\operatorname{grad} \varepsilon \cdot \operatorname{grad} \varphi}{\varepsilon}}_{=0, \text{ wenn homogen}} &= -\frac{\rho(x,y,z)}{\varepsilon} \\ \frac{d^2 \varphi}{dx^2} + \frac{d^2 \varphi}{dy^2} + \frac{d^2 \varphi}{dz^2} &= -\frac{\rho(x,y,z)}{\varepsilon} \end{split}$$

3.2.2 Green'sche Funktionen

Potential einer Punktladung

$$\varphi(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r} \qquad [V]$$

E-Feld einer Punktladung

$$\vec{E}(r) = \frac{Q}{4\pi\varepsilon_0 \cdot r^2} \cdot \vec{e}_r \qquad \left\lceil \frac{V}{m} \right\rceil$$

D-Feld einer Punktladung

$$\vec{D}(r) = \frac{Q}{4\pi \cdot r^2} \cdot \vec{e}_r \qquad \left[\frac{As}{m^2} \right]$$

Potentialfeld einer Ladungsverteilung mit $\varphi(\infty) = 0$

$$\varphi(x, y, z) = \frac{1}{4\pi\varepsilon} \iiint_{V'} \frac{\rho(x', y', z')}{|\vec{r} - \vec{r}'|} dV'$$

mit der Green'schen Funktion $G(\vec{r}, \vec{r}') = \frac{1}{4\pi\varepsilon|\vec{r}-\vec{r}'|}$

$$\varphi(x, y, z) = \iiint_{V'} G(\vec{r}' \vec{r}') \rho(\vec{r}') dV'$$

3.3 Magnetostatik

- \bullet Wirbelfeld, quellenfrei und hat immer geschlossene Feldlinien.
- Nach $rot\vec{H}=j \to \text{nur}$ wirbelfrei wenn j=0
- \bullet Damit Skalar
potential φ_m existiert muss H wirbelfrei
- keine magnetischen Monopole $grad\vec{B} = 0$
- Vektorpotential $\vec{A}=$ Maß für Φ_{magn} durch Fläche A

Coulomb-Eichung

$$\Delta \vec{A} = -\mu \vec{J}$$
$$\vec{B} = \cot \vec{A}$$

3.3.1 Vektorpotential in Abhängigkeit von der Stromdichte

$$\vec{A}(x,y,z) = \frac{\mu}{4\pi} \iiint_{V'} \frac{\vec{J}\left(x',y',z'\right)}{|\vec{r}-\vec{r}'|} dV'$$

3.3.2 Biot-Savart-Gesetz

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \operatorname{grad} \frac{1}{|\vec{r} - \vec{r}''|} \times \mathrm{d}\vec{s}'$$

mit grad
$$\frac{1}{|\vec{r}-\vec{r}^{\,\prime}|}=-\frac{\vec{r}-\vec{r}^{\,\prime}}{|\vec{r}-\vec{r}^{\,\prime}|^3}$$

$$\vec{H} = \frac{I}{4\pi} \oint_{C'} \frac{\mathrm{d}\vec{s}' \times (\vec{r} - \vec{r}')}{\left|\vec{r} - \vec{r}'\right|^3}$$

 \vec{r} : Aufpunkt \vec{r}' : Quellpunkt

3.3.3 Elektrischer Dipol

$$\begin{split} \varphi &= \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \\ &= \frac{Q}{4\pi\varepsilon_0} \cdot \frac{r_2 - r_1}{r^2} & \qquad \varphi \approx \frac{Qd\cos\theta}{4\pi\varepsilon_0 r^2} \\ \vec{E} &= -\nabla\varphi & \qquad = \frac{1}{4\pi\varepsilon_0} \cdot \left(\frac{3(\vec{p} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{p}}{r^3}\right) \end{split}$$

3.3.4 Magnetischer Dipol

I entlang Leiter

$$\begin{split} A(r) &= \frac{\mu_0 \cdot I}{4\pi} \int \frac{d\vec{s}}{|\vec{r} - \vec{s}|} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \\ \vec{B} &= \nabla \times \vec{A} = \frac{\mu_0}{4\pi} \left(\frac{3(\vec{m} \cdot \vec{r})\vec{r}}{r^5} - \frac{\vec{m}}{r^3} \right) \end{split}$$

3.4 Skineffekt

Äquivalente Leiterschichtdicke (Amp: $A \cdot \frac{1}{e}$):

$$\delta = \frac{1}{\sqrt{\pi\mu\sigma f}} = \sqrt{\frac{2}{\omega\mu\sigma}} \qquad [m]$$

Widerstand/Oberflächenwiderstand:

$$R_{AC} = rac{l}{\sigma \cdot A_{ t eff}}$$
 $R_{DC} = rac{l}{\sigma \pi R^2}$ $R_F = rac{1}{\sigma \delta}$

Feldstärke verglichen mit der Oberfläche:

$$H\left(x,t\right) = H_{0} \cdot e^{-x/\delta} \cdot \cos\left(\omega t - \frac{x}{\delta}\right)$$

analog für E-Feld

Leistung verglichen mit der Oberfläche:

$$P(x,t) = \frac{1}{2} \cdot E_0 \cdot e^{-x/\delta} \cdot H_0 \cdot e^{-x/\delta}$$

Amplitude und Phase bezogen auf δ :

Amplitude:
$$x = \delta \cdot \ln(\text{Dämpfung}[\])$$

Phase: $\varphi = -\frac{x}{\delta}$

Effektive Fläche:

$$\begin{split} A_{\text{eff}} &= A_{\text{ges}} - A_{\sigma} = R^2 \pi - (R - \delta)^2 \pi \\ &= 2 \cdot \pi \delta \left(R - \frac{\delta}{2} \right) \end{split}$$

Wenn die Länge nicht gegeben ist oder nach Wieviel % nimmt der Widerstand bei einer bestimmten Frequenz, kann dies mit der folgenden Formel berechnet werden:

Bessel-Funktion:

$$\begin{split} \frac{R_{AC}}{R_{DC}} &= \begin{cases} 1 + \frac{1}{3}x^4 & \text{für} & x < 1 \\ x + \frac{1}{4} + \frac{3}{64x} & \text{für} & x > 1 \end{cases} \\ \frac{X_{AC}}{R_{DC}} &= \begin{cases} x^2 \left(1 - \frac{x^4}{6}\right) & \text{für} & x < 1 \\ x - \frac{3}{64x} + \frac{3}{128x^2} & \text{für} & x > 1 \end{cases} \\ \boxed{x = \frac{r_0}{2\delta}} \qquad r_0 \hat{=} \text{ Außendurchmesser} \end{split}$$

4 Wellen

- Ausbreitungsphänomen von E und H
- Ausbreitungsgeschw. kleiner c_0
- raumzeitlicher Vorgang $cos(\omega t \beta z)$
- Energie- ohne Materietransport
- Poyntingvektor $\vec{S} = \vec{E} \times \vec{H}$ Einheit[S]= $\frac{W}{m^2}$ Falls $\vec{E} \perp \vec{H}$ und $\vec{S} \perp \vec{E}$ und $\vec{S} \perp \vec{H}$

Wellengleichung

$$\vec{E}(z,t) = \underbrace{E_0 \cdot e^{-\alpha z}}_{\text{Amplitude}} \cdot \underbrace{e^{-\alpha z}}_{\text{Deit- und Raumabhängigkeit}} \cdot \vec{e}_z$$

Komplexer Amplitudenvektor

$$\boxed{\underline{\vec{E}}(z,t) = E_0 \cdot e^{-\alpha z} \cdot e^{j(\omega t - \beta z)} \cdot \vec{e}_z = E_0 \cdot e^{-\underline{\gamma}z} \cdot e^{j\omega t} \cdot \vec{e}_z}$$

Fortpflanzungskonstante γ

$$\underline{\gamma = \alpha + j\beta}$$

 α : Dämpfungskonstante [Np/m]

 β : Phasenkonstante [rad/m]

 v_p : Phasengeschwindigkeit [m/s]

 v_g : Gruppengeschwindigkeit [m/s]

 λ : Wellen [m]

4.1 Ausbreitung

4.1.1 Allgemein

$$\lambda = \frac{2\pi}{\beta} \qquad E_2 = E_1 e^{-\alpha z}$$

$$v_p = \lambda \cdot f = \frac{\omega}{\beta}$$

$$\alpha = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} - 1\right)}$$

$$\beta = \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2}} + 1\right)}$$

$$\underline{Z}_F = \underline{\frac{E}{H}} = \sqrt{\frac{j\omega\mu}{\sigma + j\omega\varepsilon}}$$

4.1.2 Im leeren Raum(Vakuum)

$$\alpha = 0$$

$$\beta = \frac{\omega}{c_0}$$

$$\lambda = \frac{c_0}{f}$$

$$v_p = c_0$$

$$\underline{Z}_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120\pi\Omega \approx 377\Omega$$

4.1.3 Im verlustlosen/idealen Dielektrika

verlustlos: $\sigma=0,$ maximale Wirkleistung Z_F rein reel \rightarrow ebene Welle

$$\alpha = 0$$

$$\beta = \frac{\omega}{c_0} \sqrt{\mu_r \varepsilon_r} = \omega \sqrt{\mu \varepsilon} = \frac{2\pi}{\lambda}$$

$$\lambda = \frac{c_0}{f} \frac{1}{\sqrt{\mu_r \varepsilon_r}}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}}$$

$$\boxed{\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}}}$$

4.1.4 Im Dielektrika mit geringem Verlust

geringer Verlust: $0 < \sigma \ll \omega \varepsilon$

$$\alpha \approx \frac{\sigma}{2} \cdot \sqrt{\frac{\mu}{\varepsilon}} = \frac{\sigma}{2} \cdot Z_{F0}$$

$$\beta \approx \omega \sqrt{\mu \varepsilon} \left(1 + \frac{1}{8} \cdot \frac{\sigma^2}{\omega^2 \varepsilon^2} \right)$$

$$\lambda = \frac{c_0}{f} \cdot \frac{1}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$v_p = \frac{c_0}{\sqrt{\mu_r \varepsilon_r}} \cdot \frac{1}{1 + \frac{1}{8} \left(\frac{\sigma}{\omega \varepsilon} \right)^2}$$

$$\underline{Z}_F = \sqrt{\frac{\mu}{\varepsilon}} \left(1 - \frac{j\sigma}{\omega \varepsilon} \right)^{-1/2} \approx Z_{F0} \left(1 + \frac{j\sigma}{2\omega \varepsilon} \right)$$

4.1.5 Im guten Leiter

geringer Verlust: $\sigma \gg \omega \varepsilon$

$$\alpha \approx \beta \approx \sqrt{\frac{\omega\mu\sigma}{2}} = \frac{1}{\delta} \sim \sqrt{f}$$

$$\lambda = 2\pi\sqrt{\frac{2}{\omega\mu\sigma}} = 2\pi\delta$$

$$v_p = \frac{2\pi}{\beta} = \omega\delta$$

$$\boxed{\underline{Z}_F = \sqrt{\frac{j\omega\mu}{\sigma}} \approx \frac{1+j}{\sigma \cdot \delta}}$$

4.2 Übergang

4.2.1 Zwischen Dielektrika mit geringem Verlust

$$\lambda_{1} = \frac{\lambda_{0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad \lambda_{2} = \frac{\lambda_{0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$= \frac{\lambda_{1} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

$$\beta_{1} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r1}\varepsilon_{r1}} \qquad \beta_{2} = \frac{2\pi}{\lambda_{0}} \cdot \sqrt{\mu_{r2}\varepsilon_{r2}}$$

$$Z_{F1} = \frac{Z_{F0}}{\sqrt{\mu_{r1}\varepsilon_{r1}}} \qquad Z_{F2} = \frac{Z_{F0}}{\sqrt{\mu_{r2}\varepsilon_{r2}}}$$

4.3 Poyntingvektor

gibt Leistungsfluss einer EM-Welle und Richtung der Energieströmung an.

Zeitbereich	Frequenzbereich	
$ec{S} = ec{E} imes ec{H}$	$ec{S}=rac{1}{2}(ec{E} imesec{H}^*)$	
$\vec{S}_{av} = \overline{\vec{S}(t)} = \frac{1}{T} \int_0^T \vec{S}(t) dt$	$\vec{S}_{av} = \frac{1}{2} \operatorname{Re} \left\{ \underline{\vec{E}} \times \underline{\vec{H}}^* \right\}$	
Leistungsflussdichte $S_{av} = \vec{S}_{av} $		

$$\begin{split} \vec{S} &= \vec{E} \times \vec{H} & \left[\frac{\mathbf{W}}{\mathbf{m}^2} \right] \\ \vec{S}_{\mathrm{av}} &= \frac{1}{2} \cdot Re\{\vec{E} \times \vec{H}^*\} \\ S_{AV} &= \frac{1}{2} \cdot E \cdot H = \\ &= \frac{1}{2} \cdot \frac{E^2}{Z_{F0}} = \\ &= \frac{1}{2} \cdot H^2 \cdot Z_{F0} \\ &= \frac{P}{A_{\mathtt{Fläche}}} \end{split}$$

4.3.1 Leistung

$$P = \iint \vec{S}_{av} d\vec{a}$$
$$= Re \{ \underline{U} \cdot \underline{I}^* \}$$
$$w_e = 1/_2 \cdot \mu \cdot H^2$$
$$w_e = 1/_2 \cdot \varepsilon \cdot E^2$$

4.3.2 Leistung nach Dämpfung

$$P_1 = P_0 \cdot e^{-2\alpha z}$$

4.3.3 Leistung vom Kabel transportiert

$$P = \frac{\hat{U}^2}{2 \cdot Z_L}$$

4.4 dÀlembertsche Gleichung (allg.)

$$\begin{split} \Delta \vec{E} - \kappa \mu \frac{\partial \vec{E}}{\partial t} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} &= \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} - \kappa \mu \frac{\partial \vec{H}}{\partial t} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} &= 0 \end{split}$$

Isolator, ideales Dielektrikum, Nichtleiter $\kappa = 0$

$$\begin{split} \Delta \vec{E} &= \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} + \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} &= \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} \end{split}$$

sehr gute Leiter

$$\begin{split} \Delta \vec{E} &= \kappa \mu \frac{\partial \vec{E}}{\partial t} + \operatorname{grad} \frac{\rho}{\varepsilon} \\ \Delta \vec{H} &= \kappa \mu \frac{\partial \vec{H}}{\partial t} \end{split}$$

4.5 Helmholtz-Gleichungen (Frequenzbereich)

$$\Delta \underline{\vec{E}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{E}} = \operatorname{grad} \frac{\rho}{\varepsilon}$$
$$\Delta \underline{\vec{H}} - (\kappa \mu \cdot j\omega - \varepsilon \mu \cdot \omega^2) \cdot \underline{\vec{H}} = 0$$

4.5.1 Zeitbereich

$$\begin{split} \Delta \vec{E} - \varepsilon \mu \frac{\partial^2 \vec{E}}{\partial t^2} &= 0 \\ \Delta \vec{H} - \varepsilon \mu \frac{\partial^2 \vec{H}}{\partial t^2} &= 0 \end{split}$$

4.5.2 Frequenzbereich (harmonisch)

$$\Delta \underline{\vec{E}} + \varepsilon \mu \omega^2 \cdot \underline{\vec{E}} = 0$$
$$\Delta \vec{H} + \varepsilon \mu \omega^2 \cdot \vec{H} = 0$$

Zeitabhängigkeit harmonisch:

$$\Delta \vec{H} = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{H}$$
$$\Delta \vec{E}i = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{E} + grad\frac{\rho}{\varepsilon}$$

keine Raumladung $\rho = 0$

$$\Delta \vec{E} = (j\omega\mu\sigma - \omega^2\varepsilon\mu)\vec{E}$$

Ebene Wellen

$$\Delta \vec{E} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\sigma + j\omega\varepsilon)\vec{E}$$
$$\Delta \vec{H} = \frac{\partial \vec{E}}{\partial z^2} = j\omega\mu(\sigma + j\omega\varepsilon)\vec{H}$$

4.6 Wellenzahl

Im Vakuum: $k_0 = \frac{\omega}{c_0}$

$$k = \frac{\omega}{v_p} = \frac{2\pi f}{v_p} = |\vec{k}|$$
$$= \frac{\omega \cdot n}{c_0} = n \cdot k_0 = \frac{1}{\sqrt{\mu_r \cdot \varepsilon_r}} \cdot k_0 = k_r \cdot k_0$$

4.7 Wellenlänge

$$\lambda = \frac{\lambda_0}{\sqrt{\mu_r \cdot \varepsilon_r}} = \frac{2\pi}{k} = \frac{v_p}{f} = [m]$$
$$= \frac{\lambda_0}{n} = \frac{2\pi}{n \cdot k_0}$$
$$\lambda_0 = \frac{c_0}{f} = \frac{2\pi}{k_0}$$

4.8 Phasengeschwindigkeit

$$\frac{dz}{dt} = v_p = c = \frac{\omega}{k} = \frac{1}{\sqrt{\mu_r \mu_0 \varepsilon_r \varepsilon_0}} \qquad v_{p, \texttt{Medium} \leq c_0}$$

4.8.1 Gruppengeschwindigkeit

$$v_g = \frac{d\omega}{dk} = \frac{\text{Wegstück der Wellengruppe}}{\text{Laufzeit der Wellengruppe}}$$

$$\begin{split} E_1(z,t) &= E \cos((\omega_0 - \Delta \omega)t - (\beta_0 - \Delta \beta)z) \\ E_2(z,t) &= E \cos((\omega_0 + \Delta \omega)t - (\beta_0 + \Delta \beta)z) \\ \downarrow \\ E(z,t) &= 2E \cdot \underbrace{\cos(\omega_0 t - \beta_0 z)}_{\text{Grundfrequenz } \omega} \cdot \underbrace{\cos(\Delta \omega t - \Delta \beta z)}_{\text{Einhüllende } \Delta \omega} \\ v_p &= \frac{\omega_0}{\beta_0} \\ v_g &= \frac{\Delta \omega}{\Delta \beta} \end{split}$$

4.9 Polarisation

Lineare	wenn der Endpunkt des E-Vektors eine Li- nie beschreibt	H oder E
Elliptische	Endpunkt des E- Vektors eine Ellipse beschreibt	$E \neq H$
Kreisförmige	der Endpunkt des E- Vektors einen Kreis be- schreibt	E = H

4.10 Verlustlose Polarisation

$$\begin{split} Z_F &= \sqrt{\frac{\mu}{\varepsilon}} \\ r_s &= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_i - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_t}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_t + \sqrt{\varepsilon_{r1}} \cos \theta_i} \\ t_s &= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_t + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i} \\ r_p &= \frac{\sqrt{\varepsilon_{r1}} \cdot \cos \theta_t - \sqrt{\varepsilon_{r2}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cos \theta_t} \\ t_p &= \frac{2 \cdot \sqrt{\varepsilon_{r1}} \cdot \cos \theta_i}{\sqrt{\varepsilon_{r2}} \cdot \cos \theta_i + \sqrt{\varepsilon_{r1}} \cdot \cos \theta_t} \\ \end{split}$$

4.11 Totalrefexion

$$\sin \theta_g = \frac{n_2}{n_1} = \frac{\sqrt{\varepsilon_{r2}\mu_{r2}}}{\varepsilon_{r1}\mu_{r1}}$$

4.12 Grenzwinkel

$$\alpha_g = \sin^{-1}\left(\sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}}\right)$$

4.13 Brewster-/Polarisationswinkel, r = 0

- Snelliusche Brechungsgesetz
- Paralleler Reflexionskoeffizient:

$$\mu_{r1} = \mu_{r2}$$

$$\sin \theta_b = \sqrt{\frac{\varepsilon_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\mu_1(\varepsilon_1^2 - \varepsilon_2^2)}}$$

$$\tan \theta_b = \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} = \frac{n_2}{n_1}$$

• Senkrechter Reflexionskoeffizient:

$$\frac{\varepsilon_{r1} = \varepsilon_{r2}}{\sin \theta_b} = \sqrt{\frac{\mu_2(\mu_2 \varepsilon_1 - \mu_1 \varepsilon_2)}{\varepsilon_1(\mu_2^2 - \mu_1^2)}}$$

$$\tan \theta_b = \sqrt{\frac{\mu_2}{\mu_1 + \mu_2}}$$

$$\frac{\sin\vartheta_2}{\sin\vartheta_1} = \frac{k_h}{k_g} = \sqrt{\frac{\mu_{r1}\varepsilon_{r1}}{\mu_{r2}\varepsilon_{r2}}} = \frac{n_1}{n_2} = \frac{v_{p,2}}{v_{p,1}} = \frac{\lambda_2}{\lambda_1}$$

4.14 Senkrechter Einfall $\theta_h = 0$

$$t = \frac{2 \cdot Z_{F2}}{Z_{F1} + Z_{F2}} \qquad r = \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}}$$

$$0 < t < 2$$
 $0 < |r| < 1$

Elektrisches Feld:

$$E_t = t \cdot E_h$$
$$E_r = r \cdot E_h$$

$$E_t = E_h + E_r$$

$$t \cdot E_h = E_h + r \cdot E_h$$

$$t = 1 + r$$

Magnetisches Feld:

$$H_t = t \cdot H_h$$
$$H_r = r \cdot H_h$$

$$H_{t} = H_{h} + H_{r}$$

$$\frac{t \cdot E_{h}}{Z_{F2}} = \frac{E_{h}}{Z_{F1}} - \frac{r \cdot E_{h}}{Z_{F1}}$$

$$\frac{t}{Z_{F2}} = \frac{1}{Z_{F1}} - \frac{r}{Z_{F1}}$$

4.14.1 Senkrechter Einfall ideales/verlustl. Dielekt. $\sigma = 0$

$$\mathrm{reel:}\ Z_F = \sqrt{\frac{\mu}{\varepsilon}}$$

$$\mathrm{imagin\ddot{a}r:}\ \ \gamma = j\omega\sqrt{\mu\varepsilon}$$

$$\begin{split} r &= \frac{Z_{F2} - Z_{F1}}{Z_{F1} + Z_{F2}} = \frac{\sqrt{\frac{\mu_2}{\varepsilon_2}} - \sqrt{\frac{\mu_1}{\varepsilon_1}}}{\sqrt{\frac{\mu_2}{\varepsilon_2}} + \sqrt{\frac{\mu_1}{\varepsilon_1}}} \\ t &= \frac{2Z_{F2}}{Z_{F1} + Z_{F2}} = \frac{2\sqrt{\varepsilon_{r1}\mu_{r2}}}{\sqrt{\varepsilon_{r1}\mu_{r2}} + \sqrt{\varepsilon_{r2}\mu_{r1}}} \end{split}$$

4.14.2 Spezialfall Medium1 ist Luft

$$\mu_{r1} = \varepsilon_{r1} = 1$$

$$r = \frac{\sqrt{\mu_{r2}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}}$$

$$t = \frac{2\sqrt{\mu_{r2}}}{\sqrt{\mu_{r2}} + \sqrt{\varepsilon_{r2}}}$$

4.14.3 Spezialfall <u>Medium2</u> ist Luft

$$\mu_{r2} = \varepsilon_{r2} = 1$$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\mu_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\mu_{r1}}}$$

$$t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\mu_{r1}} + \sqrt{\varepsilon_{r1}}}$$

4.14.4 Spezialfall <u>beideMedien</u> NICHT magnetisch

$$\mu_{r1} = \mu_{r2} = 1$$

$$r = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

$$t = \frac{2\sqrt{\varepsilon_{r1}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

4.14.5 Spezialfall <u>Medium2</u> idealer Leiter

$$Z_{F2} = 0$$

$$r = -1$$

$$t = 0$$

$$\overline{S} = 0$$

$$E_1 = -2j \cdot E_h \cdot \sin(\beta_1 z)$$

$$H_1 = 2 \cdot H_h \cdot \cos(\beta_1 z)$$

StehendeWelle

$$\rightarrow H_{max}$$
 und E_{min} bei $n \cdot \lambda/2$
 $\rightarrow H_{min}$ und E_{max} bei $(2n-1) \cdot \lambda/4$
 $\rightarrow 90^{\circ} Phasenverschiebung$

4.15 Stehwellenverhältnis

$$SWR = \frac{E_{\max}}{E_{\min}} = \frac{H_{\max}}{H_{\min}} = \frac{E_h + E_r}{E_h - E_r} = \frac{1 + |r|}{1 - |r|} \quad 1 < s < \infty$$

4.16 Senkrechte (E-Feld) Polarisation (H- 4.17 Parallel (E-Feld) Polarisation (H-Feld Feld parallel) senkrecht)

mit
$$Z_{F0}=120\pi pprox 377\Omega$$

$$Z_{Fn} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{rn}}}$$

$$\frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

 $n: \mathtt{Brechungsindex} \;\; ; \;\; \theta_h = \theta_r$

$$\frac{\sin \theta_t}{\sin \theta_h} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$
$$\sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

- magnetischer/elektrischer Reflexionsfaktor [1]
- magnetischer Transmissionsfaktor [1]
- elektrischer Transmissionsfaktor [1]

$$r_{s} = r_{es} = r_{ms} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{h} - Z_{F1} \cdot \cos \theta_{t}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= \frac{\cos \theta_{h} - \sqrt{\varepsilon_{r2}/\varepsilon_{r1} - \sin^{2} \theta_{h}}}{\cos \theta_{h} + \sqrt{\varepsilon_{r2}/\varepsilon_{r1} - \sin^{2} \theta_{h}}}$$

$$t_{ms} = Z_{F1} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= (1 - r_{s}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F1}}{Z_{F2}} \cdot t_{es}$$

$$t_{es} = Z_{F2} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{h} + Z_{F1} \cdot \cos \theta_{t}}$$

$$= 1 + r_{s}$$

$$E_r = r_s \cdot E_h$$

$$E_t = t_{es} \cdot E_h$$

$$H_r = r_s \cdot H_h$$

$$H_t = t_{ms} \cdot H_h$$

$$E_t = H_t \cdot Z_{F2}$$

$$E_h = H_h \cdot Z_{F1}$$

mit $Z_{F0}=120\pi\approx 377\Omega$

$$Z_{Fn} = Z_{F0} \cdot \frac{1}{\sqrt{\varepsilon_{rn}}}$$
$$\frac{Z_{F1}}{Z_{F2}} = \frac{\sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}}}$$

 $n: \mathtt{Brechungsindex} \;\; ; \;\; \theta_h = \theta_r$

$$\frac{\sin \theta_t}{\sin \theta_h} = \frac{\lambda_2}{\lambda_1} = \frac{\beta_1}{\beta_2} = \frac{n_1}{n_2}$$
$$\sin \theta_t = \sqrt{\frac{\varepsilon_{r1}}{\varepsilon_{r2}}} \cdot \sin \theta_h$$

- magnetischer/elektrischer Reflexionsfaktor [1]
- magnetischer Transmissionsfaktor [1]
- elektrischer Transmissionsfaktor [1]

$$r_{p} = r_{ep} = r_{mp} =$$

$$= \frac{Z_{F2} \cdot \cos \theta_{t} - Z_{F1} \cdot \cos \theta_{h}}{Z_{F2} \cdot \cos \theta_{t} + Z_{F1} \cdot \cos \theta_{h}} =$$

$$= \frac{\varepsilon_{r2} \cos \theta_{h} - \sqrt{\varepsilon_{r2}\varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}{\varepsilon_{r2} \cos \theta_{h} + \sqrt{\varepsilon_{r2}\varepsilon_{r1} - \varepsilon_{r1}^{2} \sin^{2} \theta_{h}}}$$

$$t_{mp} = Z_{F1} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= 1 + r_{p}$$

$$t_{ep} = Z_{F2} \cdot \frac{2 \cdot \cos \theta_{h}}{Z_{F1} \cdot \cos \theta_{h} + Z_{F2} \cdot \cos \theta_{t}}$$

$$= (1 - r_{p}) \cdot \frac{\cos \theta_{h}}{\cos \theta_{t}}$$

$$= \frac{Z_{F2}}{Z_{F1}} \cdot t_{mp}$$

$$E_r = r_p \cdot E_h$$

$$E_t = t_{ep} \cdot E_h$$

$$H_r = r_p \cdot H_h$$

$$H_t = t_{mp} \cdot H_h$$

$$E_t = H_t \cdot Z_{F2}$$

$$E_h = H_h \cdot Z_{F1}$$

5 Leitungen

Medium	C (pF/m)	L (nH/m)	ν (m/μs)	Ζ (Ω)	R for f≤ 1kHz (mΩ/m)
RG58/U Coaxial Cable	93.5	273	198	54	53
RG58C/U Coaxial Cable	101	252	198	50	50
RG59B/U Coaxial Cable	72.0	405	185	75	45
CAT-5 Twisted Pair (Solid)	49.2	495	203	100	180
Vacuum	8.85	1260	299	377	
Water	708	1260	34	42	[3]

5.1 Leitungsparameter

 $\sigma = \text{Leitwert des Dielektr.}$

 σ_c = Leitwert des Leiters

5.1.1 Parallele Platten

w = Platten Breite

d = Abstand zw. Platten

Für Sinus-Anregung:

$$\begin{split} I &= \frac{U}{Z_L} = \underbrace{\frac{U_0}{Z_L}}_{I_0} \cdot e^{-j\beta z \cdot e^{j\omega t}} \\ U &= \int \vec{E} d\vec{s} \overset{w \ge d}{=} E \cdot d \to E = \frac{U_0}{d} \cdot ^{-j\beta z} \cdot \vec{e_x} \\ I &= \oint \vec{H} d\vec{s} = H \cdot w \to H = \frac{I_0}{w} \cdot ^{-j\beta z} \cdot \vec{e_y} \end{split}$$

$R = \frac{2}{w\delta\sigma}$
$L = \frac{\mu d}{w}$
$G = \frac{\sigma w}{d}$
$C = \frac{w\varepsilon}{d}$

5.1.2 Doppelleitung:

a =Leiter Radius

d =Abstand zw. den Leitern

cosh am TR: MENU \rightarrow 1; OPTN \rightarrow 1 \rightarrow 5

$R = \frac{1}{\pi a \delta \sigma_c}$
$L = \frac{\mu}{\pi} \cosh^{-1} \frac{d}{2a}$
$G = \frac{\pi \sigma}{\cosh^{-1}(d/2a)}$
$C = \frac{\pi \varepsilon}{\cosh^{-1}(d/2a)}$

5.1.3 Koaxial Leitung

a = innen Radius b = außen Radius

$$\begin{split} \vec{H}(r,z) &= \frac{\hat{I}}{2\pi r} \cdot e^{-j\beta z} \cdot \vec{e}_{\varphi} \\ \vec{E}(r,z) &= \frac{\hat{I}}{2\pi r} \cdot Z_{F0} \cdot e^{-j\beta z} \cdot \vec{e}_{r} &= \frac{\hat{U}}{r \cdot \ln{(^{b}/_{a})}} \cdot e^{-j\beta z} \cdot \vec{e}_{r} \\ \vec{S}_{zeit.Mittel} &= \frac{1}{2} \cdot \left[\frac{\hat{I}}{2\pi r} \right]^{2} \cdot Z_{F0} \cdot \vec{e}_{z} \end{split}$$

$$R = \frac{1}{2\pi\delta\sigma_c} \left[\frac{1}{a} + \frac{1}{b} \right]$$

$$L = \frac{\mu}{2\pi} \ln \frac{b}{a}$$

$$G = \frac{2\pi\sigma}{\ln(b/a)}$$

$$C = \frac{2\pi\varepsilon}{\ln(b/a)}$$

Für beliebige Leitergeometrie gelten folgende Zusammenhänge:

$$LC = \mu \varepsilon$$
 und $\frac{G}{C} = \frac{\sigma}{\varepsilon}$

Innere Induktivität:

$$L_i = \frac{R}{w}$$

Leitungen gehen HIN und ZURÜCK!!! Länge verdoppeln!!!

5.2 Allgemeine Lösung Leitungsgleichung

$$\begin{split} \underline{U}(z) &= U_h e^{\gamma z} + U_r e^{-\gamma z} = U_h e^{\gamma d} + U_r e^{-\gamma d} \\ \underline{I}(z) &= I_h e^{\gamma z} + I_r e^{-\gamma z} = \frac{U_h}{Z_L} e^{\gamma d} - \frac{U_r}{Z_L} e^{-\gamma d} \\ \underline{Z}_L &= \frac{U_h}{I_h} = \sqrt{\frac{R + j\omega L}{G + j\omega C}} \\ \underline{\gamma} &= j\omega \sqrt{LC} \cdot \sqrt{\frac{RG}{j^2\omega^2 LC} + \frac{G}{j\omega C} + \frac{R}{j\omega L} + 1} \\ &= \sqrt{(R + j\omega L) \cdot (G + j\omega C)} \\ \lambda &= \frac{2\pi}{\beta} \\ v_p &= \frac{\omega}{\beta} \\ l_{\text{elektr.}} &= \beta \cdot l \\ \alpha &= \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2} + 1}\right)} \\ \beta &= \omega \cdot \sqrt{\frac{\mu \varepsilon}{2} \cdot \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \cdot \varepsilon^2} + 1}\right)} \end{split}$$

Verlustlose Übertragungsleitung

$$\begin{split} &\underline{\gamma} = j\omega\sqrt{LC} = j\beta \\ &Z_L = \frac{U_h}{U_r} = \sqrt{\frac{L}{C}} \\ &v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c_0}{\sqrt{\mu_r\varepsilon_r}} \\ &\lambda = \frac{2\pi}{\beta} = \frac{1}{f\sqrt{LC}} = \frac{v_p}{f} = \frac{c_0}{f\sqrt{\mu_r\varepsilon_r}} \end{split}$$

vernachlässigbarer Widerstandsbelag

	Ebene Welle
$G \leftrightarrow \sigma$ $C \leftrightarrow \epsilon$	$\alpha = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \epsilon^2}} - 1 \right)}$
$L \leftrightarrow \mu$	$\beta = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \epsilon^2}} + 1 \right)}$

Verlustarmes

	$G\ll \omega C$	$G\gg \omega C$	$G = \omega C$
α	$rac{G}{2}\sqrt{rac{L}{C}}$	$\sqrt{\frac{\omega GL}{2}}$	$0,455 \omega \sqrt{LC}$
β	$\omega\sqrt{LC}\left(1+\frac{1}{8}\frac{G^2}{\omega^2C^2}\right)$	$\sqrt{\frac{\omega GL}{2}}$	1,1 $\omega\sqrt{LC}$
v_p	$\frac{1}{\sqrt{LC}}$	$\sqrt{\frac{2\omega}{GL}}$	$\frac{0,91}{\sqrt{LC}}$

	Dielektrikum	Guter Leiter
	$\sigma \ll \omega \epsilon$	$\sigma\gg\omega\epsilon$
α	$\frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\frac{\omega\mu\sigma}{2}}=\frac{1}{\delta}$
β	$\omega\sqrt{\mu\epsilon}\left(1+\frac{1}{8}\frac{\sigma^2}{\omega^2\epsilon^2}\right)$	$\sqrt{\frac{\omega\mu\sigma}{2}}=\frac{1}{\delta}$
v_p	$\frac{1}{\sqrt{\mu\epsilon}}$	$\omega\delta$

5.2.3 vernachlässigbarer Leitwertbelag

Verlustarmes

	$R\ll \omega L$	$R \gg \omega L$	$R = \omega L$
α	$\frac{R}{2}\sqrt{\frac{C}{L}}$	$\sqrt{\frac{\omega RC}{2}}$	$0,455 \omega \sqrt{LC}$
β	$\omega\sqrt{LC}\left(1+\frac{1}{8}\frac{R^2}{\omega^2L^2}\right)$	$\sqrt{\frac{\omega RC}{2}}$	1,1 $\omega\sqrt{LC}$
v_p	$\frac{1}{\sqrt{LC}}$	$\sqrt{\frac{2\omega}{RC}}$	$\frac{0,91}{\sqrt{LC}}$

	Dielektrikum	
	$\sigma \ll \omega \epsilon$	$\sigma\gg\omega\epsilon$
α	$\frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$	$\sqrt{\frac{\omega\mu\sigma}{2}} = \frac{1}{\delta}$
β	$\omega\sqrt{\mu\epsilon}\left(1+\frac{1}{8}\frac{\sigma^2}{\omega^2\epsilon^2}\right)$	$\sqrt{\frac{\omega\mu\sigma}{2}}=\frac{1}{\delta}$
v_p	$\frac{1}{\sqrt{\mu\epsilon}}$	$\omega\delta$

Guter Leiter

Übertragungsleitung mit Last

$$U(z) = U_h \cdot e^{\gamma z} + U_r \cdot e^{-\gamma z} = U_h \cdot e^{\gamma d} + U_r \cdot e^{-\gamma d}$$

$$I(z) = I_h \cdot e^{\gamma z} + I_r \cdot e^{-\gamma z} = \frac{U_h}{Z_L} e^{\gamma d} - \frac{U_r}{Z_L} e^{-\gamma d}$$

5.3.1 Vorgehen Eingangswiderstand

Wenn mit Smithdiagramm gearbeitet wird liefert dieses Schritte 3 und 4

1. Lastimpedanz

$$\underline{Z}_A = \frac{1}{\frac{1}{R_A} + j\omega C_A}$$

2. Reflexion am Leitungsende

$$\underline{r}_A = \underline{r}(z=0) = \frac{Z_A - \underline{Z}_L}{Z_A + \underline{Z}_L}$$

3. Reflexion am Leitungsanfang

$$\underline{r}_E = \underline{r}(z = d) = \underline{r}_A \cdot e^{-j2\beta d}$$

4. Bestimmung der Impedanz

$$\underline{Z}_E = \underline{Z}_L \cdot \frac{1 + \underline{r}_E}{1 - \underline{r}_E}$$

5. Eingangswiderstand

$$\underline{Z}_E = \frac{1}{\frac{1}{\underline{Z}_E} + j\omega C_E}$$

5.3.2 Reflexionsfaktor entlang einer Leitung

$$\begin{array}{c} \text{ungswelle} \\ \alpha = \omega \sqrt{\frac{LC}{2} \left(\sqrt{1 + \frac{R^2}{\omega^2 L^2}} - 1 \right)} \\ \beta = \omega \sqrt{\frac{LC}{2} \left(\sqrt{1 + \frac{R^2}{\omega^2 L^2}} + 1 \right)} \end{array} \\ \begin{array}{c} R \leftrightarrow \sigma \\ \Delta = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \epsilon^2}} - 1 \right)} \\ \beta = \omega \sqrt{\frac{\mu \epsilon}{2} \left(\sqrt{1 + \frac{\sigma^2}{\omega^2 \epsilon^2}} + 1 \right)} \end{array} \\ \begin{array}{c} r_E = r_A^{-2\gamma l} = r_A e^{-2\alpha l} e^{-j2\beta l} \\ \alpha = -\frac{\ln(r_A)}{2l} [\text{Np/m}] \end{array} \\ \beta = \frac{\phi_2 - \phi_1}{2l} [\text{rad/m}] \end{array}$$

5.3.3 Stehwellenverhältnis

siehe auch Kap. 6.1

$$SWR = \frac{U_{\text{max}}}{U_{\text{min}}} = \frac{I_{\text{max}}}{I_{\text{min}}} = \frac{1 + |r(z)|}{1 - |r(z)|} = \frac{|U_H| + |U_R|}{|U_H| - |U_R|}$$

$$= \frac{R_{max}}{Z_L}$$

$$SWR^{-1} = \frac{R_{min}}{Z_L} \qquad |r_A| = \frac{SWR + 1}{SWR - 1}$$

5.3.4 Leistung

$$\begin{split} P_A &= P_H - P_R \\ &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} - \frac{1}{2} \cdot \frac{\hat{U}_r^2}{Re\{Z_L\}} \\ &= \frac{1}{2} \cdot \frac{\hat{U}_h^2}{Re\{Z_L\}} \cdot \left(1 - r^2\right) \\ &= P_{\max} \cdot \left(1 - r^2\right) \\ &= \underline{U}_A \cdot \underline{I}_A^* \\ P_V &= P_q - P_A \\ I(z) &= \hat{I} \cdot e^{-\alpha z} \angle \beta z \end{split}$$

5.3.5 Gleichspannungswert (=Endwert)

$$U_A = U_q \cdot \frac{R_A}{R_i + R_A}$$

5.3.6 Position von Extrema

$$\boxed{r_A = |r_A| \cdot e^{-j\theta_r}} \to \theta_r \text{ in rad}$$

$$f_{\min} \to \text{Minimum(Knoten) der Spannungen}$$

$$f_{\max} \to \text{Maximum(Bäuche) der Spannungen}$$

$$\begin{split} \lambda_{\min/\max} &= \frac{c_0}{f_{\min/\max}\sqrt{\mu_{r1}\varepsilon_{r1}}} \\ z_{\min} &= \frac{-n \cdot \lambda_{\min}}{2} \longrightarrow n = -\frac{2z}{\lambda_{\min}} \\ z_{\max} &= \frac{-(2n+1)\lambda_{\max}}{4} \longrightarrow n = -\frac{4z + \lambda_{\max}}{2 \cdot \lambda_{\max}} \\ z &= \frac{\lambda_{\min} \cdot \lambda_{\max}}{4(\lambda_{\min} - \lambda_{\max})} \end{split}$$

5.3.7 Spezialfall: Angepasste Leitung

$$Z_A = Z_L = Z(z)$$
 $r_A = 0 o \text{reflexionsfrei}$
 $SWR = 1$
 $U(z) = U_h \cdot e^{j\beta z}$
 $I(z) = I_h \cdot e^{j\beta z}$
 $= \frac{U_h}{Z_L} \cdot e^{j\beta z}$

5.3.8 Spezialfall: Kurzgeschlossene Leitung

$$\begin{split} Z_A &= 0 \\ Z(z) &= j Z_L \cdot \tan(\beta z) & \to \text{rein imagin\"{a}r} \\ r_A &= -1 \\ \text{SWR} &= \infty \\ U(z) &= U_h \cdot 2j \sin(\beta z) & \to U(z=0) = 0 \\ \hat{U}_E &= \hat{U}_{generator} \cdot \frac{Z_E}{Z_{generator} + Z_E} \\ I(z) &= U_h \cdot 2\cos(\beta z) & \to I(z=0) = I_A = \frac{2U_h}{Z_L} \end{split}$$

5.3.9 Spezialfall: Leerlaufende Leitung

$$\begin{split} Z_A &= \infty \\ Z(z) &= -j Z_L \cdot \cot(\beta z) & \to \text{rein imagin\"ar} \\ r_A &= 1 \\ \text{SWR} &= \infty \\ U(z) &= U_h \cdot 2\cos(\beta z) & \to U(z=0) = 0 \\ I(z) &= U_h \cdot 2j\sin(\beta z) & \to I(z=0) = I_A = \frac{2 \cdot U_h}{Z_L} \end{split}$$

5.3.10 Spezialfall: Ohm'sch abgeschlossene Leitung

$$r_A = \mathtt{reell}$$

$$rac{R_A > Z_L}{} o heta_r = 0 o r_A$$
 ist negativ $ho z_{ exttt{max}} = rac{\lambda}{2} \cdot n$

$$\frac{R_A < Z_L}{\rightarrow \theta_r = \pi}$$

$$\rightarrow z_{\texttt{min}} = \frac{\lambda}{2} \cdot n$$

5.4 Mehrfachreflexionen bei fehlender Anpassung

$$u_{1r} = r_A \cdot u_{1h}$$

$$u_{2h} = r_I \cdot u_{1r} = r_I \cdot r_A \cdot u_{1h}$$

$$u_{2r} = r_A \cdot u_{2h} = r_I \cdot r_A^2 \cdot u_{1h}$$

$$u_{3h} = r_I \cdot u_{2r} = r_I^2 \cdot r_A^2 \cdot u_{1h}$$

Reflexionsfaktor Leitungsanfang: $\underline{r}_I = \frac{R_I - Z_L}{R_I + Z_L}$ Reflexionsfaktor Leitungsende: $\underline{r}_A = \frac{R_A - Z_L}{R_A + Z_L}$ Hinlaufende Welle $u_{1h} = \hat{u}_G \cdot \frac{Z_L}{Z_L + R_I}$ Signallaufzeit: $t_d = \frac{l}{c_0} \cdot \sqrt{\mu_r \varepsilon_r}$ $= \frac{l}{v_p}$

5.5 Kettenmatrix einer Leitung

$$A = \begin{bmatrix} \cosh(\gamma l) & Z_L \sinh(\gamma l) \\ \\ \frac{1}{Z_L} \sinh(\gamma l) & \cosh(\gamma l) \end{bmatrix}$$

6 Smith-Diagramm

Allgemein 6.1

m: Anpassungsfaktor

s: inverser Anpassungsfaktor

 \underline{r} : Reflexionsfaktor 1 : Anpassungspunkt

$$z(z) = r_A \cdot e^{-j2\beta z}$$

$$Z(z) = Z_L \cdot \frac{Z_A + jZ_L \cdot \tan(\beta z)}{Z_L + jZ_A \cdot \tan(\beta z)}$$

$$\text{mit}\beta = \frac{2\pi}{\lambda}$$

auch ohne Quelle gültig!

$$\begin{split} \underline{z}_n &= \frac{\underline{Z}_n}{Z_L} \\ \underline{r}_n &= \frac{\underline{Z}_n - Z_L}{\underline{Z}_n + Z_L} = \frac{\underline{z}_n - 1}{\underline{z}_n + 1} = \frac{1 - \underline{y}_n}{1 + \underline{y}_n} \\ m &= \frac{1 - |\underline{r}|}{1 + |\underline{r}|} \\ s &= \frac{1}{m} \end{split}$$

Impedanz/Admetanz umrechnen

Im Smithchart spiegeln (Phase $\pm 180^{\circ}/\pm \pi$)

6.3 Zusammenschaltungen

6.4 $Lastseite \rightarrow Quelle$

- 1. Z_L ins Diagramm einzeichen
- 2. Lastimpedanz bestimmen, wenn zB Parallelschaltung
- 3. Normieren

$$\underline{z}_a = \frac{\underline{Z}_A}{Z_L}$$

- 4. Ins Chart eintragen
- 5. Linie vom Mittelpunkt durch \underline{z}_a nach außen Ablesen und Notieren:
 - \rightarrow Relative Länge $\left\lceil \frac{l}{\lambda} \right\rceil$
 - →Relativer Winkel
- 6. Kreis einzeichen

Ablesen und Notiere:

- →Maxima: rechter Schnittpunkt mit Re-Achse
- →Minima: linker Schnittpunkt mit Re-Achse
- →Rexlexionsfaktor abmessen und aus Skala oben aus-
- 7. Um Leitungslänge im UZS laufen \rightarrow Linie vom Mittelpunkt durch neuen Punkt nach außen

Ablesen und Notieren:

- →Relativer Winkel
- 8. Wenn $\alpha \neq 0$
 - \rightarrow Dämpung ausrechen \rightarrow Um Faktor nach innen Spiralieren
- 9. Dieser Punkt ist \underline{z}_e
- 10. Eingangsimpedanz ablesen

$$\underline{Z}_E = \underline{z}_e \cdot Z_L$$

7 Wellenleiter

7.1 Koaxial Leiter

7.1.1 Wellenwiderstand

 $\begin{aligned} \mathbf{D} &= \mathbf{A}\mathbf{u}\mathbf{\beta}\mathbf{e}\mathbf{n}\mathbf{d}\mathbf{u}\mathbf{r}\mathbf{c}\mathbf{h}\mathbf{m}\mathbf{e}\mathbf{s}\mathbf{s}\mathbf{r}\\ \mathbf{d} &= \mathbf{I}\mathbf{n}\mathbf{n}\mathbf{e}\mathbf{n}\mathbf{d}\mathbf{u}\mathbf{r}\mathbf{c}\mathbf{h}\mathbf{m}\mathbf{e}\mathbf{s}\mathbf{s}\mathbf{r} \end{aligned}$

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln \frac{D}{d}$$

7.1.2 Dämpfung

Ohm'sche Verluste $R \ll \omega L$

$$\alpha_0 = \frac{\sqrt{\frac{f \cdot \mu}{\pi \cdot \sigma}}}{120\Omega} \cdot \frac{\sqrt{\varepsilon_r}}{D} \cdot \frac{1 + \frac{D}{d}}{\ln \frac{D}{d}}$$

<u>Dielektrische Verluste</u> $G \ll \omega C, \tan \delta = (^G/_{\omega C})$

$$\alpha_d = \pi \sqrt{\varepsilon_r} \cdot \tan \delta \cdot \frac{f}{c_0} \sim f$$

7.2 Mikrostreifenleiter

w := Leiterbahnbreiteh := Substratbreite

7.2.1 Effektive Permittivitätszahl

Unterschiedliche Phasengeschwindigkeit \rightarrow Dispersion

$$\varepsilon_{r, \text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2\sqrt{1 + 10 \cdot \frac{\mathbf{h}}{\mathbf{w}}}}$$

Je größer $\frac{\mathbf{w}}{\mathbf{h}}$ desto mehr nähert sich $\varepsilon_{r,\mathtt{eff}}$ an ε_r und

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_{r,\text{eff}} \cdot \mu_{r,\text{eff}}}}$$

7.2.2 Schmale Streifen (ca $20-200\Omega$)

$$Z_L = \frac{60\Omega}{\sqrt{\varepsilon_{r,eff}}} \cdot \ln\left(\frac{8h}{w} + \frac{w}{4h}\right)$$

7.2.3 Breite Streifen (ca 20-200 Ω)

$$Z_L = \frac{120\pi\Omega}{\sqrt{\varepsilon_{r, \text{eff}}}} \cdot \frac{1}{\frac{\text{w}}{\text{h}} + 2,42 - 0,44 \cdot \frac{\text{h}}{\text{w}} + \left(1 - \frac{\text{h}}{\text{w}}\right)^6}$$

7.3 Hohlleiter

$$f_c = \frac{c_0}{2a}$$

7.4 VSWR (Voltage Standing Wave Ratio) und Return Loss

VSWR

$$s = VSWR = \frac{1 + |r|}{1 - |r|} \ge 1$$
 $|r| = \frac{s - 1}{s + 1}$

Return Loss

$$\alpha_r = -20\log(r)dB$$

Missmatch Loss

$$ML = -10\log(1 - r^2)dB$$

7.5 Lichtwellenleiter oder Glasfaser

APF := All Plastic Fiber

POF := Polymerfaser

LWL := Lichtwellenleiter

 $B \cdot l := \text{Bandbreitenlängenprodukt}$

Dispersion:

Die von der Frequenz des Lichts abhängende Ausbreitungsgeschwindigkeit des Lichts in Medien. Dies hat zur Folge, dass Licht an Übergangsflächen unterschiedlich stark gebrochen wird. Somit verflacht sich beispielsweise ein (Dirac-)Impuls zu einer Gauß'schen Glocke.

Stufenprofil:

Multimode: leichtes Einkoppeln, geringes $B \cdot l$ wegen Modendispersion

Single/Monomode: schwieriges Einkoppeln, großes $B \cdot l,$ keine Modendispersion

Gradientenprofil:

Multimode: Kompromiss beim Einkoppeln und Reichweite mit $B \cdot l$

Bandbreitenlängenprodukt:

$$B' = B \cdot l\left[\frac{MHz}{km}\right] = \text{konstant}$$

$$B \sim \frac{1}{l}$$
 und $l \sim \frac{1}{B}$

Bandbreite ist gegen Übertragungslänge austauschbar, solange Dämpfung keine Rolle spielt.

8 Antennen

8.1 Herz'scher Dipol

$$\vec{p} = Q \cdot \vec{d}$$

8.1.1 Allgemein

$$\begin{split} \vec{H} &= -\frac{I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \theta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2} \right) \vec{e}_{\phi} \\ \vec{E} &= -\frac{Z_F I_0 \Delta l' \beta^2}{2\pi} e^{-j\beta R} \cdot \cos \theta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{R} \\ &= -\frac{Z_F I_0 \Delta l' \beta^2}{4\pi} e^{-j\beta R} \cdot \sin \theta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3} \right) \vec{e}_{\theta} \end{split}$$

8.1.2 Nahfeld(Fresnel-Zone):

$$\frac{\lambda}{2\pi R} \gg 1$$
 oder $\beta R \ll 1$

Überwiegend **Blindleistungsfeld**, da E zu H 90° phasenverschoben

$$\begin{split} \vec{H} &\approx \frac{I_0 \Delta l'}{4\pi R^2} \cdot \sin \theta \cdot \vec{e}_{\phi} \\ \vec{E} &\approx \frac{I_0 \Delta l'}{2\pi j \omega \varepsilon R^3} \cos \theta \cdot \vec{e}_{R} \\ &+ \frac{I_0 \Delta l'}{4\pi j \omega \varepsilon R^3} \sin \theta \cdot \vec{e}_{\theta} \end{split}$$

8.1.3 Fernfeld(Fraunhofer-Zone):

$$\frac{\lambda}{2\pi R} \ll 1$$
 oder $\beta R \gg 1$

Überwiegend **Wirkleistungsfeld**, \vec{S} nach außen somit Kugelwelle

mit
$$\eta = Z_{F0}$$

$$H \approx j \frac{\beta I_0 \Delta l'}{4\pi R} \cdot e^{-j\beta R} \cdot \sin \theta \cdot \vec{e}_{\phi}$$
$$E \approx j \frac{\beta Z_F I_0 \Delta l'}{4\pi R} \cdot e^{-j\beta R} \cdot \sin \theta \cdot \vec{e}_{\theta}$$

8.1.4 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\mathrm{rad}} &= \frac{Z_{F0} I_0^2 \beta^2 (\Delta l')^2}{12\pi} \\ &= \frac{I_0^2 Z_F \pi}{3} \cdot \frac{\Delta l'^2}{\lambda^2} \\ &= 40 \pi^2 \Omega \cdot \left(\frac{I_0 \Delta l'}{\lambda}\right)^2 \\ S_{av} &= \frac{Z_F I_0^2 \beta^2 (\Delta l')^2}{32 \pi^2 R^2} \cdot \sin^2 \theta \cdot \vec{e}_R \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

8.1.5 Strahlungswiderstand

$$R_S = \frac{2}{3}\pi Z_F \left(\frac{\Delta l'}{\lambda}\right)^2 = 80\pi^2 \Omega \left(\frac{\Delta l'}{\lambda}\right)^2$$

8.1.6 Verlustwiderstand

$$R_v = \frac{l}{\sigma \cdot A_\delta}$$

8.2 Magnetischer Dipol

$$\vec{m} = \vec{I}\pi \vec{a}^2 \vec{e}_z$$
 $m = I \cdot A$

$$\vec{A} = \frac{\mu m}{4\pi R^2} (1 + j\beta R) e^{-j\beta R} \sin \theta \cdot \vec{e_{\phi}}$$
$$\Delta l \to \beta \pi \ a^2$$

$$\vec{H} = -\frac{j\omega\mu\beta^2 m}{2\pi Z_{F0}} e^{-j\beta R} \cdot \cos\theta \left(\frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3}\right) \vec{e}_R$$

$$= -\frac{j\omega\mu\beta^2 m}{4\pi Z_{F0}} e^{-j\beta R} \cdot \sin\theta \left(\frac{1}{(j\beta R)} + \frac{1}{(j\beta R)^2} + \frac{1}{(j\beta R)^3}\right) \vec{e}_\theta$$

$$\vec{E} = \frac{j\omega\mu\beta^2 m}{4\pi} e^{-j\beta R} \sin\theta \left(\frac{1}{j\beta R} + \frac{1}{(j\beta R)^2}\right) \vec{e}_\phi$$

8.2.1 Fernfeld

$$\begin{split} E &\approx -\frac{\beta m \omega \mu}{4\pi R} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\phi} \\ H &\approx -\frac{\beta m \omega \mu}{4\pi R Z_{F0}} e^{-j\beta R} \sin \theta \cdot \vec{e}_{\theta} \end{split}$$

8.2.2 Abgestrahlte Leistung im Fernfeld

$$\begin{split} P_{\rm rad} &= \frac{Z_F \beta^4 m^2}{12\pi} \\ &= \frac{m^2 \mu \omega^4}{12\pi v_p^3} \\ S_{av} &= \frac{Z_F \beta^4 m^2}{32\pi^2 R^2} \cdot \sin^2 \theta \cdot \vec{e}_R \\ &= \frac{1}{2} \operatorname{Re} \left\{ \vec{E} \times \vec{H}^* \right\} \end{split}$$

8.2.3 Nahfeld

$$E \approx -\frac{jm\omega\mu}{4\pi R^2} \sin\theta \cdot \vec{e}\phi$$

$$H \approx \frac{m}{4\pi R^3} (2\cos\theta \cdot \vec{e}_R + \sin\theta \cdot \vec{e}_\theta)$$

8.3 Lineare Antenne

$$I(z') = I_0 \cdot \sin \left[\beta \left(\frac{L}{2} - |z'|\right)\right]$$

8.3.1 Dipolantenne

$$\begin{split} \vec{H} &= j \cdot \frac{I_0}{2\pi R} \cdot e^{-j\beta R} \cdot \frac{\cos\left[\left(\frac{\beta L}{2}\right)\cos\theta\right] - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \cdot \vec{e}_{\phi} \\ \vec{E} &= H \cdot Z_F \cdot \vec{e}_{\theta} \\ I_0 &= \sqrt{\frac{2 \cdot P_{Send}}{R_S}} \end{split}$$

 ${\bf Die\ mittlere\ Strahlungsleistungsdichte}$

$$\vec{S}_{av} = \frac{Z_F I_0^2}{8\pi^2 R^2} \left(\frac{\cos\left(\frac{\beta L}{2}\cos\theta\right) - \cos\left(\frac{\beta L}{2}\right)}{\sin\theta} \right)^2 \cdot \vec{e}_R$$

Die gesamte Strahlungsleistung

$$P_{S} = \frac{Z_{F0}I_{0}^{2}}{4\pi} \int_{\theta=0}^{\theta=\pi} \frac{\left(\cos\left(\frac{\beta L}{2}\cos\theta\right) - \cos\left(\frac{\beta L}{2}\right)\right)^{2}}{\sin\theta} \cdot \vec{e}_{\theta}$$
$$= \int_{A} S_{AV} \cdot d\vec{a}$$
$$= \int_{\Phi=0}^{2\pi} \int_{\Theta=0}^{\pi} S_{AV}R^{2} \sin\Theta \cdot d\Theta \cdot d\Phi$$

Antennenkenngrößen

 $\underline{Z}_A := \text{Antennenimpedanz}$

 $R_V := Verlustwiderstand$

 $R_S := Strahlungswiderstand$

 $X_A := Antennenblindwiderstand$

D := Directifity/Richtfaktor

G := Gain/Gewinn

 $A_{eff} := Wirksame Antennenfläche$

Abgestrahlte Leistung

$$P_S = \frac{1}{2} \cdot I_A^2 \cdot R_S$$

8.4.2 Verlustleistung

8.4.1

$$P_V = \frac{1}{2} \cdot I_A^2 \cdot R_V$$

8.4.3Wirkungsgrad

$$\eta = \frac{P_S}{P_S + P_V} = \frac{R_S}{R_S + R_V}$$

8.4.4 Richtcharakteristik

 $C_i \stackrel{\wedge}{=} \text{isotroper Kugelstrahler als Bezugsgröße in Hauptab-}$ strahlrichtung

$$\begin{split} C(\vartheta,\varphi) &= \frac{E(\vartheta,\varphi)}{E_{\max}} = \frac{H(\vartheta,\varphi)}{H_{\max}} = \frac{U(\varphi,\vartheta)}{U_{\max}} \quad 0 \leq C(\vartheta,\varphi) \leq 1 \\ C_i(\vartheta,\varphi) &= \frac{E(\vartheta,\varphi)}{E_i} = \frac{H(\vartheta,\varphi)}{H_i} \qquad \qquad C_i > 1 \end{split}$$

8.4.5 Richtfunktion/Richtfaktor

In [dB] angeben!

$$\begin{split} D(\vartheta,\varphi) &= \frac{S(\vartheta,\varphi)}{S_i} \\ D(\vartheta,\varphi) &= C_i^2(\vartheta,\varphi) = D \cdot C^2(\vartheta,\varphi) \\ D &= \max\{D(\vartheta,\varphi)\} = \frac{S_{\max}}{S_i} \end{split}$$

8.4.6 Gewinn

$$G = \eta \cdot D$$
 [dB]

Wirksame Antennenfläche

$$A_{\rm eff} = \frac{\lambda^2}{4\pi} \cdot G = \frac{Z_{F0}}{4R_S} \cdot l_{\rm eff}^2$$

Bezugsantennen 8.5

$$g = 10 \cdot log(G) dB$$

mit P_0 : Eingangsleistung der Antenne

$G \rightarrow Bezugsantenne$:

Elementardipol zu Kugelstrahler

$$D = 1,50 \to g = 1,76 \text{dBi}$$

Halbwellendipol zu Kugelstrahler

$$D = 1,64 \rightarrow q = 2,15 \text{dBi}$$

EIRP: Eqivalent Isoropic Radiated Power

$$EIRP = P_0 \cdot G_i[dBi]$$

ERP: Eqivalent Radiated Power (verlustloser Halbwellendipol)

$$ERP = P_0 \cdot G_d[dBd]$$

Senden und Empfangen

Senden = transmit = TX

Empfangen = receive = RX

Tony Pham Wintersemester 22/23

$$\begin{split} \frac{P_{RX}}{P_{TX}} &= A_{\texttt{eff},RX} \cdot A_{\texttt{eff},TX} \cdot \frac{1}{\lambda^2 r^2} \\ &= D_{i,RX} \cdot \eta_{RX} \cdot D_{i,TX} \cdot \eta_{TX} \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \\ \hline \\ A_{\texttt{eff}}(\theta) &= G_{RX} \cdot \frac{\lambda^2}{4\pi} \underbrace{\frac{3}{2} \cdot \sin^2 \theta}_{D_{i,\theta}} \\ \\ P_{RX} &= S_{RX} \cdot A_{\texttt{eff}} \\ &= P_{TX} \cdot G_{TX} \cdot G_{RX} \cdot \left(\frac{\lambda}{4\pi r}\right)^2 \end{split}$$

8.6.1 Freiraumdämpfung/Freiraumdämpfungsmaß

$$F = \frac{P_{TX}}{P_{RX}} \cdot \left(\frac{4\pi d}{\lambda}\right)^2 \qquad [1]$$

$$a_0 = 20 \lg\left(\frac{4\pi d}{\lambda}\right) = 20 \lg\left(\frac{4\pi df}{c_0}\right) \qquad [\text{dB}]$$

$\bf 8.6.2 \quad Leistung spegel/Freiraumpegel$

$$L = 10 \lg \left(\frac{P}{1 \text{mW}} \right) \quad [\text{dBm}]$$

$$L_{RX} = L_{TX} + g_{TX} + g_{RX} - a_0 \quad [\text{dB}]$$

8.7 Antennentabelle

o.i Ameime	emabene						
Antennenart	Darstellung, Belegung	Richtfaktor, Gewinn Linear (in dB)	wirksame Antennen - fläche	effektive Höhe	Strahlungs- Widerstand	vertikales Richtdiagramm (3-dB-Bereich)	horizontales Richtdiagramm
isotrope Antenne	fiktiv	1:(0dB)	$\frac{\lambda^2}{4\pi} = 0.08\lambda^2$	_	_	+	+
Hertzscher Dipol, Dipol mit End- kapazität		1,5; (1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12 \lambda^2$	l	$80\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° &	$\begin{array}{c} 9 = 90^{\circ} \\ \mathbf{H}_{\mathbf{p}} \end{array}$
kurze Antenne mit Dachkapazität auf lei- tender Ebene $h << \lambda$	100	3;(4.8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	h	$160\left(\frac{\pi h}{\lambda}\right)^2\Omega$	E.v. Hg/ (45°) ⊗	ϑ-90° ⊗ E ϑ / Hφ
kurze Antenne auf leitender Ebene h << %	2000	3;(4,8dB)	$\frac{3\lambda^2}{16\pi} = 0.06\lambda^2$	<u>h</u> 2	$40\left(\frac{\pi\hbar}{\lambda}\right)^2\Omega$	145° N _H ρ ⊗	#=90°
2 /4 - Antenne auf leitender Ebene	1/4 3/4	3,28;(5,1dB)	0,065 2 ²	$\frac{\lambda}{2\pi} = 0.16 \lambda$	40Ω	139° Ng	+
kurzer Dipol / << %	, J. P	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	1/2	$20\left(\frac{\pi l}{\lambda}\right)^2\Omega$	90° ⊗ ⊗	+ H _g ∈ 90°
λ/2 - Dipol	2/2	1,64;(2,1dB)	0,13 λ ²	$\frac{\mathbf{\lambda}}{\mathbf{\pi}} = 0.32\mathbf{\lambda}$	73Ω	78° 8 8	H _p
λ -Dipol		2,41;(3,8dB)	0,19 2 ²	>> λ	200Ω	€# Hg ⊗	$+ \int_{H_{\varphi}}^{\mathfrak{F}=90^{\circ}} \otimes \varepsilon_{\vartheta}$
2 /2 -Schleifendipol	1/2 p	1,64;(2,1dB)	0.13 2 ²	$\frac{2\lambda}{\pi} = 0.64\lambda$	290Ω	178° ⊗ H _p	+
Schlitzantenne in Halbraum strahlend	2/2 9 9 0° 0° p	3,28;(5,1dB)	0,26 2 2	-	≈ 500 Ω	$\begin{array}{c} H_{\vartheta} \\ \hline 78^{\circ} & E_{\varphi} \\ \hline -90^{\circ} \leq \varphi \leq 90^{\circ} \end{array}$	∂=90° ⊗ H ₃ ,
kleiner Rahmen, n-Windungen, beliebige Form	Fläche A $\varphi = 0^{\circ} \bigcirc \bullet \varphi$	1,5;(1,8dB)	$\frac{3\boldsymbol{\lambda}^2}{8\boldsymbol{\pi}} = 0.12\boldsymbol{\lambda}^2$	<u>2πηΑ</u> λ	$\frac{31000 n^2 (\text{A/m})^2}{(\lambda/m)^4}$	φ = 90° Eυ	φ=0° 90°
Spulenantenne auf langem Ferritstab l >> D	$ \begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	1,5;(1,8dB)	$\frac{3\lambda^2}{8\pi} = 0.12\lambda^2$	$\frac{\pi^2 \cap \mu_r D^2}{2\lambda}$	19100 $n^2 \mu_{\rm r}^2 \left(\frac{D}{\lambda}\right)^4$	φ=90°	\$\varphi = 90°
Linie aus Hertzschen Dipolen $l >> \lambda$		$\approx \frac{4}{3} \frac{l}{\lambda}$	$\frac{/\lambda}{8} \approx 0.12/\lambda$	_	_	E. → ⊙ H _φ 50° λ//	$+ \underbrace{\begin{array}{c} \mathcal{F} = 90^{\circ} \\ \mathcal{E}_{\mathcal{V}} \otimes \\ \mathcal{H}_{\varphi} \end{array}}$
Zeile aus Hertzschen Dipolen l>>2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\approx \frac{8}{3} \frac{l}{\lambda}$	$\frac{l \lambda}{4} = 0.25 \lambda$	-		H ₂ √⊙ E _φ 51°2//	$\varphi = 0^{\circ}$ $\varphi = 90^{\circ}$ $\downarrow E_{\varphi}$ \bowtie \bowtie \bowtie \bowtie
einseitig strahlende Fläche $a>> \lambda$, $b>> \lambda$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\approx \frac{6.5 \cdot 10^6 ab}{\lambda^2}$	ab	-	-	51° λ /b φ=0°	\$ = 90°
Yagi - Uda-Antenne mit 4 Direktoren		≈5+10// 1	-	_	-	$ \begin{array}{c} $	$ \begin{array}{c} \vartheta = 90^{\circ} \\ \downarrow \downarrow \downarrow \downarrow \downarrow \\ H_{\varphi} & \otimes E_{\vartheta} \end{array} $

Tony Pham Wintersemester 22/23

9 Einheiten

Symbol	Größe	Einheit
A, W	Arbeit, Energie	J = VAs = Ws
$ec{A}$	mag. Vektorpotenzial	$\frac{Vs}{m} = \frac{T}{m} \ (\vec{B} = \nabla \times \vec{A})$
$ec{B}$	mag. Flussdichte	$T = \frac{Vs}{m^2}$
С	Kapazität	$F = \frac{As}{V}$
$ec{D}$	dielek. Verschiebung/Erregung	$\frac{As}{m^2}$
e, q, Q	(Elementar-)ladung	C = As
$ec{E}$	elek. Feldstärke	$\left \begin{array}{c} \frac{V}{m} \end{array} \right $
$ec{H}$	mag. Feldstärke/Erregung	$\frac{A}{m}$
$ec{J}$	Stromdichte	$\frac{A}{m^2}$
$ec{J}_F$	Flächenstromdichte	$\frac{A}{m}$
$ec{M}$	Drehmoment	J = Nm = VAs
F	Kraft	$\frac{kgm}{s} = N$
R_{mag}	mag. Widerstand	$\frac{S}{s} = \frac{A}{Vs}$
$ec{S}$	Poynting-Vektor	$\frac{W}{m^2}$
\mathbf{Z}	Wellenwiderstand	Ω
δ_s	Eindringtiefe	m
ε	Dielektrizitätskonstante	$\frac{As}{Vm}$
arphi	elek. Skalarpotenzial	V
$arphi_m$	mag. Skalarpotenzial	A
ho	Raumladungsdichte	$\frac{As}{m^3}$
ho	spez. Widerstand	$\frac{\Omega}{m} = \frac{VA}{m}$
κ,σ	elek. Leitfähigkeit	$\frac{S}{m} = \frac{A}{Vm}$
λ	Wellenlänge	m
μ	Permiabilitätskonstante	$\frac{Vs}{Am}$
Φ_e	elek. Fluss	C = As
Φ_m	mag. Fluss	$Wb = \frac{T}{m^2}$