Changepoint Analysis Using R

Robert Maidstone

16 October, 2018

What are Changepoints?

Change in mean

```
set.seed(14)
m<-5
n<-1000
true_cps <- c(0,sort(sample(1:(n-1),m)),n)
means <- rnorm(m+1,0,4)
y<-c()
for(i in 1:(m+1)){
    j <- (true_cps[i]+1):true_cps[i+1]
    y[j]<-rnorm(length(j),means[i],1)
}</pre>
```


Change in mean

```
set.seed(14)
m<-5
n<-1000
true_cps <- c(0,sort(sample(1:(n-1),m)),n)
means <- rnorm(m+1,0,4)
y<-c()
for(i in 1:(m+1)){
    j <- (true_cps[i]+1):true_cps[i+1]
    y[j]<-rnorm(length(j),means[i],1)
}</pre>
```


Change in variance

```
set.seed(12)
m<-5
n<-1000
true_cps <- c(0,sort(sample(1:(n-1),m)),n)
sd <- runif(m+1,1,20)
y<-c()
for(i in 1:(m+1)){
    j <- (true_cps[i]+1):true_cps[i+1]
    y[j]<-rnorm(length(j),0,sd[i])
}</pre>
```


Change in variance

```
set.seed(12)
m<-5
n<-1000
true_cps <- c(0,sort(sample(1:(n-1),m)),n)
sd <- runif(m+1,1,20)
y<-c()
for(i in 1:(m+1)){
    j <- (true_cps[i]+1):true_cps[i+1]
    y[j]<-rnorm(length(j),0,sd[i])
}</pre>
```


Change in trend

```
set.seed(110)
m < -3
n<-1000
true_cps <- c(0,sort(sample(1:(n-1),m)),n)</pre>
slope \leftarrow rnorm(m+1,0,.01)
intercept <- rnorm(1,0,1)</pre>
y<-c()
for(i in 1:(m+1)){
  j <- (true_cps[i]+1):true_cps[i+1]</pre>
  if(i==1){
  for(jind in j){
    y[jind]<-intercept+(jind-true_cps[i])*
      slope[i] + rnorm(1,0,1)
  }else{
    for(jind in j){
      y[jind]<-y[j[1]-1]+(jind-true_cps[i])*</pre>
         slope[i] + rnorm(1,0,1)
```


Change in trend

```
set.seed(110)
m < -3
n<-1000
true_cps <- c(0, sort(sample(1:(n-1),m)),n)
slope \leftarrow rnorm(m+1,0,.01)
intercept <- rnorm(1,0,1)</pre>
y<-c()
for(i in 1:(m+1)){
  j <- (true_cps[i]+1):true_cps[i+1]</pre>
  if(i==1){
  for(jind in j){
    y[jind]<-intercept+(jind-true_cps[i])*
      slope[i] + rnorm(1,0,1)
  }else{
    for(jind in j){
      y[jind]<-y[j[1]-1]+(jind-true_cps[i])*</pre>
         slope[i] + rnorm(1,0,1)
```


Real World Examples

(a) Copy number at genomic positions in a human breast tumor sample (Chen & Wang, 2009).

(b) Rotation of a bacterial flagella motor (Maidstone, 2016).

Genome of the breast tumor S1514 [39].

Many changepoint methods

Many different changepoint algorithms exist

- Exhaustive Search
- Optimal Partitioning
- PELT
- FPOP (and R-FPOP)
- CROPS
- Segment Neighbourhood Search
- pDPA
- SNIP

- Binary Segmentation
- WBS
- CBS
- SMUCE
- SMOP
- ED-PELT
- E-Divisive
- ECP

Cost function representation

Most changepoint detection methods boil down to minimising the sum of some cost function, $C(\cdot)$, over the segments.

$$\min_{ au_{1:m},m} \left[\sum_{j=0}^{m+1} \mathcal{C}(\mathbf{y}_{ au_j+1: au_{j+1}})
ight]$$

This cost function could be a number of things:

- Negative log-likelihood,
- 2 Negative posterior,
- 3 Minimum Description Length.

Dynamic Programming Methods

Optimal Partitioning: Optimisation based sum of optimal up to last changepoint and the cost between last changepoint and current time (plus a penalty to avoid over fitting).

$$F(\tau^*) = \min_{0 < \tau < \tau^*} [F(\tau) + \mathcal{C}(\mathbf{y}_{(\tau+1):\tau^*}) + \beta].$$

Segment Neighbourhood Search: Optimisation for k segments based on optimal for k-1 segments plus cost for new segment.

$$q_{1,j}^k = \min_{v \in \{1,\dots,j-1\}} [q_{1,v}^{k-1} + q_{v+1,j}^1].$$

Optimal Partitioning using Rigaill's Pruning

Input: A set of data of the form, (y_1, y_2, \dots, y_n) where $y_i \in \mathbb{R}$.

A measure of fit $\gamma(\cdot,\cdot)$,

A penalty β which does not depend on the number or location of changepoints.

Initialise: Let n = length of data, and set $F(0) = -\beta$, cp(0) = 0,

$$LOC = \{0\}, D = [\min_{1 \le i \le n} (y_i), \max_{1 \le i \le n} (y_i)], Set_0 = D,$$

$$Cost_0(\mu, 0) = F(0) + \beta = 0$$

Iterate: for $\tau^* = 1, \dots, n$

1 Update functions $Cost_{\tau}(\mu, \tau^*)$ for all $\tau \in LOC$.

2 Set $F(\tau^*) = \min_{\tau \in LOC}(\min_{\mu \in Set_{\tau}}[Cost_{\tau}(\mu, \tau^*)]).$

3 Let $\tau' = \arg\min_{\tau \in LOC}(\min_{\mu \in Set_{\tau}}[Cost_{\tau}(\mu, \tau^*)]).$

4 Set $Cost_{\tau^*}(\mu, \tau^*) = F(\tau^*) + \beta$ and $Set_{\tau^*} = D$.

5 Set $cp(\tau^*) = (cp(\tau'), \tau')$.

6 Update LOC.

Output: The changepoints recorded in cp(n).

refs

 Chen, J., & Wang, Y.-P. (2009). A Statistical Change Point Model Approach for the Detection of DNA Copy Number Variations in Array CGH Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics / IEEE, ACM, 6(4), 529–541. http://doi.org/10.1109/TCBB.2008.129