Algoritmos e Estruturas de Dados III

Aula 6.2 - Hashing Dinâmico

Prof. Hayala Curto 2022

Hash Dinâmico Definições

- Quando o arquivo de dados cresce ou diminui com frequência (muitas inclusões e exclusões), o índice também precisará ser ajustado.
- Uma tabela hash estática, para crescer, precisa reposicionar todos os registros.
- Basicamente, refazer todo o índice!

- Uma tabela hash extensível é uma tabela hash em que apenas alguns registros afetados (aqueles do bucket) precisam ser reposicionados.
- O diretório **sempre** tem tamanho equivalente a uma potência de dois

Diretório

Buckets

	Chave	End.	Chave	End.	Chave	End.
2	4	E0	24	E1	16	E2
:2						
2	6	E3	22	E4	10	E5
2	7	E6	31	E7		

$$h(k) = k \mod 2^p$$

Diretório

Buckets

$$h(k) = k \mod 2^p$$
Função Hash depende de p

Diretório

Buckets

	Chave	End.	Chave	End.	Chave	End.
2	4	E0	24	E1	16	E2
2						
2	6	E3	22	E4	10	E5
2	7	E6	31	E7		

$$h(k) = k \mod 2^p$$

Buckets com total de elementos fixo

Inserção

Diretório

Buckets

	Chave	End.	Chave	End.	Chave	End.
2	4	E0	24	E1	16	E2
:2						
2	6	E3	22	E4	10	E5
2	7	E6	31	E7		

$$h(k) = k \mod 2^p$$

$$h(9) = 9 \mod 2^2$$

$$h(9) = 9 \bmod 4$$

$$h(9) = 1$$

Diretório

Buckets

	Chave	End.	Chave	End.	Chave	End.
2	4	E0	24	E1	16	E2
:2	9	E8				
2	6	E3	22	E4	10	E5
:2	7	E6	31	E7		

$$h(k) = k \mod 2^p$$

$$h(9) = 9 \mod 2^2$$

$$h(9) = 9 \mod 4$$

$$h(9) = 1$$

Diretório

Buckets

	Chave	End.	Chave	End.	Chave	End.
2	4	E0	24	E1	16	E2
2	9	E8				
2	6	E3	22	E4	10	E5
2	7	E6	31	E7		

$$h(k) = k \mod 2^p$$

 $h(20) = 20 \mod 2^2$
 $h(20) = 20 \mod 4$
 $h(20) = 0$

Diretório

 $h(k) = k \mod 2^p$ $h(20) = 20 \mod 2^2$ $h(20) = 20 \mod 4$ h(20) = 0

Buckets

Chave	End.	Chave	End.	Chave	End.			
4	E0	24	E1	16	E2			
9	E8		1					
6	ES	22		10	E5			
7	7 Não cabe no							
bucket 0!								

Adicionar chave 20 V

Buckets

	Chave	End.	Chave	End.	Chave	End.
2	4	E0	24	E1	16	E2
2	9	E8				
2	6	E3	22	E4	10	E5
2	7	E6	31	E7		

Buckets

Adicionar chave 20

111

Hayala Curto

Algoritmos e Estruturas de Dados III

Buckets

Adicionar chave 20

111

Diretório

Buckets

_						
	Chave	End.	Chave	End.	Chave	End.
3	24	E1	16	E2		
2	9	E8				
2	6	E3	22	E4	10	E5
2	7	E6	31	E7		
3	4	E0	20	E9		

Buckets

Adicionar chave 26

$$h(k) = 26 \mod 8$$

 $h(26) = 2$

111

Buckets

Adicionar chave 26

111

Algoritmos e Estruturas de Dados III

111

Hayala Curto Algoritmos e Estruturas de Dados III

Adicionar chave 26

111

Buckets

	Chave	End.	Chave	End.	Chave	End.
3	24	E1	16	E2		
!	9	E8				
3	10	E5	26	E10		
	7	E6	31	E7		
,	4	E0	20	E9		
;	6	E3	22	E4		

Deletando

Deletando chaves

Buckets

	Chave	End.	Chave	End.	Chave	End.
;	24	E1	16	E2		
. [9	E8				
,	10	E5	26	E10		
	7	E6	31	E7		
,	4	E0	20	E9		
,	6	E3	22	E4		

Deletando chaves

Deletando a chave 22

111

Chave	End.	Chave	End.	Chave	End.
24	E1	16	E2		
9	E8				
10	E5	26	E10		
7	E6	31	E7		
4	E0	20	E9		
6	E3				

Diretório

Chave

24

Juntando os buckets 2 e 5

Tenho 3 elementos e o bucket cabe 3 elementos

24				
9				
10	E5	26	E10	
7	E6	31	E7	
4	E0	20	E9	
6	E3			

Buckets

	Chave	End.	Chave	End.	Chave	End.
;	24	E1	16	E2		
:	9	E8				
!	10	E5	26	E10	6	E3
	7	E6	31	E7		
,	4	E0	20	E9		

Buckets

	Chave	End.	Chave	End.	Chave	End.
	24	E1	16	E2		
	9	E8				
	10	E5	26	E10	6	E3
	7	E6	31	E7		
•	4	E0	20	E9		

Buckets

	Chave	End.	Chave	End.	Chave	End.
	24	E1	16	E2		
	9	E8				
:	10	E5	26	E10	6	E3
	7	E6	31	E7		
	4	E0	20	E9		

Conclusões

Hashing – Hash Dinâmico

- O diretório cresce, sem precisarmos reposicionar todos os registros (do índice)
- O índice (lista de buckets) cresce de acordo com a necessidade
- Como não há encadeamento dos buckets, não há perda de eficiência

Hashing – Hash Dinâmico

• Qual a melhor estrutura auxiliar para índices:

Árvore B, B+, B* ou Hash Dinâmico?

Hashing – Hash Dinâmico

• Qual a melhor estrutura auxiliar para índices?

Você só pode acessar elementos por sua chave primária em uma tabela de hash. Isso é mais rápido do que com um algoritmo de árvore (**O(1) em vez de log(n**)), mas você não pode selecionar **intervalos** (tudo entre x e y).

Os algoritmos de árvore suportam isso em Log(n), enquanto os índices de hash podem resultar em uma varredura completa da tabela O(n).

A sobrecarga dos índices de hash geralmente é maior.

Os algoritmos de árvore geralmente são mais fáceis de manter, crescer com dados, escalar, etc.