Gluconeogenesis

Gluconeogenesis

Gluconeogenesis

- -Metabolic Pathways are Irreversible
- ΔG between the 1st & last metabolite is large (huge) & neg.
- If metabolite 1 and 2 are interconvertible (metab 1 → metab 2), the path from Metab 1 → Metab 2 must be different from that of Metab 2 → Metab 1

For example:

Glucose
$$\rightarrow$$
 2 Pyruvate $\Delta G = -42.3 \text{ kcal/mol}$

$$2ADP + 2P_i \rightarrow 2ATP$$
 $\Delta G = 24 \text{ kcal/mol}$

 $\Delta G = -18.3 \text{ kcal/mol}$

ΔG for glucose → pyruvate ≈ -20 kcal/mol!

Gluconeogenesis is not the reverse reaction of glycolysis, rather it must use a different pathway that is coupled to the input of energy

 Gluconeogenesis can use most of the enzymes of glycolysis in reverse, except for 3:

A. Pyruvate kinase

B. PFK

C. Hexokinase

The starting point for gluconeogenesis is pyruvate.

Pyruvate enters the mitochondria to initiate Gluconeogenesis

A. Circumventing Pyruvate Kinase - Conversion of Pyruvate to Phosphoenolpyruvate

- 1. Carboxylation of pyruvate to oxaloacetate √
- 2. Transport of oxaloacetate out of mitochondria

Inner mito. Memb.

3. Decarboxylation of Oxaloacetate followed by phosphorylation yields PEP

4. Overall Reaction

- Pyruvate + P_i → PEP
- ATP \longrightarrow ADP + P_i
- GTP \longrightarrow GDP + P_i

$$\Delta G^{\circ}$$
= 14.8 kcal/mol

$$\Delta G^{\circ} = -7.3$$

$$\Delta G^{\circ} = -7.3$$

+0.2 kcal/mol

High NADH favors Gluconeogenesis

B. Circumventing PFK – dephosphorylation of F1,6BP by

F1,6BPase **ATP ADP** PFK POCH₂ POCH₂ ÇH₂OH CH2OP HO HQ OH OH OH OH F1,6BP F₆P F1,6BPase H_2O

PFK reverse reaction:

F1,6 BP + ADP
$$\Longrightarrow$$
 F6P + ATP $\Delta G^{\circ} = +3.4 \text{ kcal/mol}$

Phosphoryl grp is transferred to ADP (to form ATP)

Dephosphorylation:

F1,6 BP +
$$H_2O \Longrightarrow F6P + PO_4$$
 $\Delta G^{\circ} = -3.9 \text{ kcal/mol}$

Phosphoryl grp is transferred to H₂O (to form PO₄³⁻)

C. Circumventing Hexokinase – dephosphorylation of G6P

- Mediated by G6Pase
- G6Pase is present only in liver and kidney
- Hence, these are the only tissues that can synthesize and secrete glucose into the blood

Glucose-6-phosphatase activity relies on multiple components.

A Defect in G6Pase Activity can be due to:

- 1. Defect in G6Pase itself
- 2. Defect in T1 transporter

Can Be distinguished by biochemical analysis:

Liver extracts treated by freeze-thawing results in release of ER proteins.

G6Pase Activity

Before F/T

After F/T

Defect in G6Pase

+

Defect in T1

Stoichiometry of Gluconeogenesis

- 2 Pyruvate
- 2 ATP Carboxylation of Pyruvate
- 2 GTP Synth. of PEP from oxaloacetate
- 2 ATP P'n of 3-PG to form 1,3 BPG
- 2 NADH reduction 1,3 BPG to Gly-3P
- 2 PO₄³⁻ are generated
- Glycolysis generates 2 ATP
- Gluconeogenesis uses 6 ATP/GTP

Diff. of 4 ATP's

$$4 \text{ ATP} \rightarrow \text{ADP} + P_i$$

$$\Delta G = -48 \text{ kcal/mol}$$

2 Pyruvate → 1 Glucose

$$\Delta G = +42$$

- 6 kcal/mol

Regulation of Gluconeogenesis

- Energy charge
- Levels of biosynthetic precursors
- Hormonal Control
 - 1. Allosteric Regulation

2. Transcriptional Regulation

- Allosteric Control achieved in seconds to minutes.
- Transcriptional Control hours to days.

- Thus Insulin promotes synthesis of glycolytic enzymes
- Glucagon inhibits synthesis of glycolytic enzymes, and promotes snythesis of gluconeogenic enzymes.

The Gluconeogenic Response is Activated Largely by the State of Feeding/Fasting

"Transamination"

*** The main substrate for gluconeogenesis in the fasting/starvation state is ALANINE***

Gluconeogenesis & Glycolysis can Occur at the Same Time in Different Organs

*** The main substrate during exercise is LACTATE***

Main producers of lactate:

Fast twitch muscle Red blood cells

Main consumers of lactate:

Liver: gluconeogenesis

Heart: oxidation as fuel

Slow twitch muscle: oxidation as fuel