Maxilab

Warrick Ball

August 16, 2018

For the Maxilab, we're going to create our own target values to fit. MESA allows you to add these by defining my_var1, my_var2 or my_var3 in run_star_extras.f and specifying target values and uncertainties in inlist_astero_search_controls. We will use weighted mean large and small separations (denoted $\Delta\nu$ and $\delta\nu$, respectively) derived directly from the mode frequencies. We'll define the large separation by

$$\Delta \nu_{n,0} = \nu_{n,0} - \nu_{n-1,0} \tag{1}$$

and the small separation by

$$\delta\nu_{n,02} = \nu_{n,0} - \nu_{n-1,2} \tag{2}$$

These definitions are for a given radial order whereas we want an average. To keep things smooth, let's define an average large separation by

$$\langle \Delta \nu \rangle = \sum_{n} e^{-\frac{1}{2} \left(\frac{\nu_{n-1/2,0} - \nu_{\text{max}}}{\Delta \nu_{\text{as}}}\right)^{2}} (\nu_{n,0} - \nu_{n-1,0})$$
 (3)

where $\Delta\nu_{\rm as}$ is the asymptotic large frequency separation and I've used the shorthand $\nu_{n-1/2,0} = (\nu_{n,0} - \nu_{n-1,0})/2$. (You can defined any other weight you like for the average.)

We can define an average small separation by

$$\langle \delta \nu \rangle = \sum_{n} e^{-\frac{1}{2} \left(\frac{\nu_{n,0} - \nu_{\text{max}}}{\Delta \nu_{\text{as}}}\right)^{2}} \left(\nu_{n,0} - \nu_{n-1,2}\right) \tag{4}$$

1 Setting up

The run_star_extras.f in the lab materials is already set up to call GYRE to compute the frequencies.¹

- In case you forgot earlier, copy the file extras_support.f from the lab materials to \$MESA_DIR/star/astero/src.²
- Copy run_star_extras.f from the lab materials to the src/ subdirectory of your working directory.

¹If you think you're skilled enough, I encourage you to try to implement this yourself from scratch. It doesn't require that much code but you'll need to look through the available functions and subroutines in \$MESA_DIR/star/astero/src/ to determine what to call.

²This fixes a minor bug that prevents us adding data to the history files.

- Modify run_star_extras.f to apply the weight function defined above to small_sep and large_sep.³
- Add these two items to the history by changing how_many_extra_history_columns and data_for_extra_history_columns. You'll need to import the data for the history columns with something like use astero_data, only: my_var1, my_var2.
- Determine the observed values of $\langle \Delta \nu \rangle$ and $\langle \delta \nu \rangle$ and add them to inlist_astero_search_controls.⁴
- The my_var* values are treated as part of χ^2_{spectro} , so we don't need χ^2_{seismo} anymore. Change chi2_seismo_fraction appropriately.
- Finally, you can tweak gyre.in to control the frequency range to be tested.

2 Running

You're now ready to run again! As before, start with search_type = 'use_first_values' before you get carried away. If that works, go ahead and start an iterative run. Also, because astero isn't using the full $\chi^2_{\text{spectro}} \to \Delta \nu \to \nu_{n,0} \to \nu_{n,\ell}$ logic, you may have to tweak your timestep controls in inlist_astero_search_controls.

3 Plotting

Now that your run is ready, we can clean up the plots again.

- Because it isn't doing anything, switch off the echelle diagram.
- Use the History_Track1 plot in PGSTAR to plot the large separation against the small separation.⁵
- Add a target box to the $\Delta \nu \delta \nu$ diagram.

4 Bringing it all together

You now have two different ways of fitting the asteroseismic data: either using the individual frequencies or the averaged information. Let your iterative methods evaluate a few models and see how the parameters in the two cases compare.

³If you're struggling, you can skip this step but the large and small separations won't be smooth functions.

⁴These don't need to be exactly correct: after all, you don't know exactly what $\Delta\nu_{\rm as}$ and $\nu_{\rm max}$ are but you can estimate them closely enough from the data.

⁵This is sometimes referred to as a *JCD diagram* or asteroseismic HR diagram.