Mechanical Engineering Series

Frederick F. Ling Editor-in-Chief

Mechanical Engineering Series

- J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, 2nd ed.
- P. Basu, C. Kefa, and L. Jestin, **Boilers and Burners: Design and Theory**
- J.M. Berthelot, Composite Materials: Mechanical Behavior and Structural Analysis
- I.J. Busch-Vishniac, Electromechanical Sensors and Actuators
- J. Chakrabarty, **Applied Plasticity**
- K.K. Choi and N.H. Kim, Structural Sensitivity Analysis and Optimization 1: Linear Systems
- K.K. Choi and N.H. Kim, Structural Sensitivity Analysis and Optimization 2: Nonlinear Systems and Applications
- G. Chryssolouris, Laser Machining: Theory and Practice
- V.N. Constantinescu, Laminar Viscous Flow
- G.A. Costello, **Theory of Wire Rope**, 2nd Ed.
- K. Czolczynski, Rotordynamics of Gas-Lubricated Journal Bearing Systems
- M.S. Darlow, Balancing of High-Speed Machinery
- W. R. DeVries, Analysis of Material Removal Processes
- J.F. Doyle, Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability
- J.F. Doyle, Wave Propagation in Structures:
 Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd ed.
- P.A. Engel, Structural Analysis of Printed Circuit Board Systems
- A.C. Fischer-Cripps, **Introduction to Contact Mechanics**
- A.C. Fischer-Cripps, Nanoindentations, 2nd ed.
- J. García de Jalón and E. Bayo, **Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge**
- W.K. Gawronski, Advanced Structural Dynamics and Active Control of Structures
- W.K. Gawronski, Dynamics and Control of Structures: A Modal Approach

Rajesh Rajamani

Vehicle Dynamics and Control

Rajesh Rajamani University of Minnesota, USA

Editor-in-Chief
Frederick F. Ling
Earnest F. Gloyna Regents Chair Emeritus in Engineering
Department of Mechanical Engineering
The University of Texas at Austin
Austin, TX 78712-1063, USA
and
Distinguished William Howard Hart
Professor Emeritus
Department of Mechanical Engineering,
Aeronautical Engineering and Mechanics
Rensselaer Polytechnic Institute
Troy, NY 12180-3590, USA

Vehicle Dynamics and Control by Rajesh Rajamani

ISBN 0-387-26396-9 e-ISBN 0-387-28823-6 Printed on acid-free paper. ISBN 9780387263960

© 2006 Rajesh Rajamani

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11012085

springeronline.com

Mechanical Engineering Series

Frederick F. Ling Editor-in-Chief

The Mechanical Engineering Series features graduate texts and research monographs to address the need for information in contemporary mechanical engineering, including areas of concentration of applied mechanics, biomechanics, computational mechanics, dynamical systems and control, energetics, mechanics of materials, processing, production systems, thermal science, and tribology.

Advisory Board/Series Editors

Advisory Bourd/Series Editors	
Applied Mechanics	F.A. Leckie University of California, Santa Barbara
	D. Gross Technical University of Darmstadt
Biomechanics	V.C. Mow Columbia University
Computational Mechanics	H.T. Yang University of California, Santa Barbara
Dynamic Systems and Control/ Mechatronics	D. Bryant University of Texas at Austin
Energetics	J.R. Welty University of Oregon, Eugene
Mechanics of Materials	I. Finnie University of California, Berkeley
Processing	K.K. Wang Cornell University
Production Systems	GA. Klutke Texas A&M University
Thermal Science	A.E. Bergles Rensselaer Polytechnic Institute
Tribology	W.O. Winer Georgia Institute of Technology

Series Preface

Mechanical engineering, and engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on page vi of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology.

Preface

As a research advisor to graduate students working on automotive projects, I have frequently felt the need for a textbook that summarizes common vehicle control systems and the dynamic models used in the development of these control systems. While a few different textbooks on ground vehicle dynamics are already available in the market, they do not satisfy all the needs of a control systems engineer. A controls engineer needs models that are both simple enough to use for control system design but at the same time rich enough to capture all the essential features of the dynamics. This book attempts to present such models and actual automotive control systems from literature developed using these models.

The control system topics covered in the book include cruise control, adaptive cruise control, anti-lock brake systems, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire models and tire-road friction estimation. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically.

As the worldwide use of automobiles increases rapidly, it has become ever more important to develop vehicles that optimize the use of highway and fuel resources, provide safe and comfortable transportation and at the same time have minimal impact on the environment. To meet these diverse and often conflicting requirements, automobiles are increasingly relying on electromechanical systems that employ sensors, actuators and feedback control. It is hoped that this textbook will serve as a useful resource to researchers who work on the development of such control systems, both in

the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.

An up-to-date errata for typographic and other errors found in the book after it has been published will be maintained at the following web-site:

http://www.menet.umn.edu/~rajamani/vdc.html

I will be grateful for reports of such errors from readers.

Rajesh Rajamani Minneapolis, Minnesota May 2005

Contents

Dedication	V
Preface	ix
Acknowledgments	xxv
1. INTRODUCTION	1
1.1 Driver Assistance Systems	2
1.2 Active Stability Control Systems	2
1.3 Ride Quality	4
1.4 Technologies for Addressing Traffic Congestion	5
1.4.1 Automated highway systems	6
1.4.2 Traffic friendly adaptive cruise control	6
1.4.3 Narrow tilt-controlled comuuter vehicles	7
1.5 Emissions and Fuel Economy	9
1.5.1 Hybrid electric vehicles	10
1.5.2 Fuel cell vehicles	11

	References	11
2.	LATERAL VEHICLE DYNAMICS	15
	2.1 Lateral Systems Under Commercial Development	15
	2.1.1 Lane departure warning	16
	2.1.2 Lane keeping systems	17
	2.1.3 Yaw stability control systems	18
	2.2 Kinematic Model of Lateral Vehicle Motion	20
	2.3 Bicycle Model of Lateral Vehicle Dynamics	27
	2.4 Motion of Particle Relative to a rotating Frame	33
	2.5 Dynamic Model in Terms of Error with Respect to Road	35
	2.6 Dynamic Model in Terms of Yaw Rate and Slip Angle	39
	2.7 From Body-Fixed to Global Coordinates	41
	2.8 Road Model	43
	2.9 Chapter Summary	46
	Nomenclature	47
	References	48
3.	STEERING CONTROL FOR AUTOMATED LANE KEEPING	51
	3.1 State Feedback	51
	3.2 Steady State Error from Dynamic Equations	55
	3.3 Understanding Steady State Cornering	59
	3.3.1 Steering angle for steady state cornering	59
	3.3.2 Can the vaw angle error be zero?	64

Contents	xiii
3.3.3 Is non-zero yaw error a concern?	65
3.4 Consideration of Varying Longitudinal Velocity	66
3.5 Output Feedback	68
3.6 Unity feedback Loop System	70
3.7 Loop Analysis with a Proportional Controller	72
3.8 Loop Analysis with a Lead Compensator	79
3.9 Simulation of Performance with Lead Compensator	83
3.10 Analysis if Closed-Loop Performance	84
3.10.1 Performance variation with vehicle speed	84
3.10.2 Performance variation with sensor location	86
3.11 Compensator Design with Look-Ahead Sensor Measuremen	t 88
3.12 Chapter Summary	90
Nomenclature	90
References	92
4. LONGITUDINAL VEHICLE DYNAMICS	95
4.1 Longitudinal Vehicle Dynamics	95
4.1.1 Aerodynamic drag force	97
4.1.2 Longitudinal tire force	99
4.1.3 Why does longitudinal tire force depend on slip?	101
4.1.4 Rolling resistance	104
4.1.5 Calculation of normal tire forces	106
4.1.6 Calculation of effective tire radius	108

4.2 Driveline Dynamics	111
4.2.1 Torque converter	112
4.2.2 Transmission dynamics	114
4.2.3 Engine dynamics	116
4.2.4 Wheel dynamics	118
4.3 Chapter Summary	120
Nomenclature	120
References	122
5. INTRODUCTION TO LONGITUDINAL CONTROL	123
5.1 Introduction	123
5.1.1 Adaptive cruise control	124
5.1.2 Collision avoidance	125
5.1.3 Automated highway systems	125
5.2 Benefits of Longitudinal Automation	126
5.3 Cruise Control	128
5.4 Upper Level Controller for Cruise Control	130
5.5 Lower Level for Cruise Control	133
5.5.1 Engine torque calculation for desired acceleration	134
5.5.2 Engine control	137
5.6 Anti-Lock Brake Systems	137
5.6.1 Motivation	137
5.6.2 ABS functions	141

(Contents	XV

	5.6.3 Deceleration threshold based algorithms	142
	5.6.4 Other logic based ABS control systems	146
	5.6.5 Recent research publications on ABS	148
	5.7 Chapter Summary	148
	Nomenclature	149
	References	150
6.	ADAPTIVE CRUISE CONTROL	153
	6.1 Introduction	153
	6.2 Vehicle Following Specifications	155
	6.3 Control Architecture	156
	6.4 String Stability	158
	6.5 Autonomous Control with Constant Spacing	159
	6.6 Autonomous Control with the Constant Time-Gap Policy	162
	6.6.1 String stability of the CTG spacing policy	164
	6.6.2 Typical delay values	167
	6.7 Transitional Trajectories	169
	6.7.1 The need for a transitional controller	169
	6.7.2 Transitional controller design through $R - \dot{R}$ diagrams	s 172
	6.8 Lower Level Controller	178
	6.9 Chapter Summary	180
	Nomenclature	180
	References	181

Appendix 6.A	183
7. LONGITUDINAL CONTROL FOR VEHICLE PLATOONS	187
7.1 Automated Highway Systems	187
7.2 Vehicle Control on Automated Highway Systems	188
7.3 Longitudinal Control Architecture	189
7.4 Vehicle Following Specifications	191
7.5 Background on Norms of Signals and Systems	193
7.5.1 Norms of signals	193
7.5.2 System norms	194
7.5.3 Use of system norms to study signal amplification	195
7.6 Design Approach for Ensuring String Stability	198
7.7 Constant Spacing with Autonomous Control	200
7.8 Constant Spacing with Wireless Communication	203
7.9 Experimental Results	206
7.10 Lower Level Controller	208
7.11 Adaptive Controller for Unknown Vehicle Parameters	209
7.11.1 Redefined notation	209
7.11.2 Adaptive controller	211
7.12 Chapter Summary	214
Nomenclature	215
References	216
Appendix 7.A	218

Contents	xvii
ELECTRONIC STABILITY CONTROL	221
8.1 Introduction	221
8.1.1 The functioning of a stability control system	221
8.1.2 Systems developed by automotive manufacturers	223
8.1.3 Types of stability control systems	223
8.2 Differential Braking Systems	224
8.2.1 Vehicle model	224
8.2.2 Control architecture	229
8.2.3 Desired yaw rate	230
8.2.4 Desired side-slip angle	231
8.2.5 Upper bounded values of target yaw rate and slip angle	233
8.2.6 Upper controller design	235
8.2.7 Lower Controller design	238
8.3 Steer-By-Wire Systems	240
8.3.1 Introduction	240
8.3.2 Choice of output for decoupling	241
8.3.3 Controller design	244
8.4 Independent All Wheel Drive Torque Distribution	247
8.4.1 Traditional four wheel drive systems	247
8.4.2 Torque transfer between left and right wheels	248
8.4.3 Active control of torque transfer to all wheels	249
8.5. Chapter Summary	251

8.

VEHICLE	DYNAMICS AND	CONTROL
		00111101

	٠	٠	•
VV	1	1	1
ΔV	1	1	1

Nomeclature	252
References	255
9. MEAN VALUE MODELING OF SI AND DIESEL ENGI	NES 257
9.1 SI Engine Model Using Parametric Equations	258
9.1.1 Engine rotational dynamics	259
9.1.2 Indicated combustion torque	260
9.1.3 Friction and pumping losses	261
9.1.4 Manifold pressure equation	262
9.1.5 Outflow rate from intake manifold	263
9.1.6 Inflow rate into intake manifold	263
9.2 SI Engine Model Using Look-Up Maps	265
9.2.1 Introduction to engine maps	266
9.2.2 Second order engine model using engine map	es 270
9.2.3 First order engine model using engine maps	271
9.3 Introduction to Turbocharged Diesel Engine Maps	273
9.4 Mean Value Modeling of Turbocharged Diesel Engir	nes 274
9.4.1 Intake manifold dynamics	275
9.4.2 Exhaust manifold dynamics	275
9.4.3 Turbocharger dynamics	276
9.4.4 Engine crankshaft dynamics	277
9.4.5 Control system objectives	278
9.5 Lower Level Controller with SI Engines	279

Contents	xix

	9.6	Chapter Summary	281
	Nom	enclature	282
	Refe	rences	284
10.		IGN AND ANALYSIS OF PASSIVE AUTOMOTIVE PENSIONS	287
	10.1	Introduction to Automotive Suspensions	287
		10.1.1 Full, half and quarter car suspension models	287
		10.1.2 Suspension functions	289
		10.1.3 Dependent and independent suspensions	291
	10.2	Modal Decoupling	293
	10.3	Performance Variables for a Quarter Car Suspension	295
	10.4	Natural Frequencies and Mode Shapes for the Quarter Car	297
	10.5	Approximate Transfer Functions Using Decoupling	299
	10.6	Analysis of Vibrations in the Sprung Mass Mode	305
	10.7	Analysis of Vibrations in the Unsprung Mass Mode	307
	10.8	Verification Using the Complete Quarter Model	308
		10.8.1 Verification of the influence of suspension stiffness	308
		10.8.2 Verification of the influence of suspension damping	310
		10.8.3 Verification of the influence of tire stiffness	313
	10.9	Half-Car and Full-Car Suspension Models	315
	10.10	0 Chapter Summary	321
	Nom	nenclature	322
	Refe	rences	323

11.	ACT	IVE AUTOMOTIVE SUSPENSIONS	325
	11.1	Introduction	325
	11.2	Active Control: Trade-Offs and Limitations	328
		11.2.1 Transfer functions of interest	328
		11.2.2 Use of the LQR Formulation and its relation to H_2 Optimal Control	328
		11.2.3 LQR formulation for active suspension design	330
		11.2.4 Performance studies of the LQR controller	332
	11.3	Active System Asymptotes	339
	11.4	Invariant Points and Their Influence on the Suspension	
		Problem	341
	11.5	Analysis of Trade-Offs Using Invariant Points	343
		11.5.1 Ride quality/ road holding trade-offs	344
		11.5.2 Ride quality/ rattle space trade-offs	345
	11.6	Conclusions on Achievable Active System Performance	346
	11.7	Performanceof a Simple Velocity Feedback Controller	348
	11.8	Hydraulic Actuators for Active Suspensions	350
	11.9	Chapter Summary	352
	Nom	nenclature	353
	Refe	rences	354
12.	SEM	II-ACTIVE SUSPENSIONS	357
	12.1	Introduction	357
	12.2	Semi-Active Suspension Model	359

Contents	XXI

	12.3	Theoretical Results: Optimal Semi-Active Suspensions	362
		12.3.1 Problem formulation	362
		12.3.2 Problem definition	364
		12.3.3 Optimal solution with no constraints on damping	365
		12.3.4 Optimal solution in the presence of constraints	368
	12.4	Interpretation of the Optimal Semi-Active Control Law	369
	12.5	Simulation Results	372
	12.6	Calculation of Transfer Function Plots with Semi-Active Suspensions	375
	12.7	Performance of Semi-Active Suspension Systems	378
		12.7.1 Moderately weighted ride quality	378
		12.7.2 Sky hook damping	380
	12.8	Chapter Summary	383
	Nom	nenclature	383
	Refe	rences	384
13.	LAT	ERAL AND LONGITUDINAL TIRE FORCES	387
	13.1	Tire Forces	387
	13.2	Tire Structure	390
	13.3	Longitudinal Tire Force at Small Slip Ratios	391
	13.4	Lateral Tire Force at Small Slip Angles	395
	13.5	Introduction to the Magic Formula Tire Model	398
	13.6	Development of Lateral Tire Model for Uniform Normal	
		Force Distribution	400

	13.6.1 Lateral forces at small slip angles	402
	13.6.2 Lateral forces at large slip angles	405
	13.7 Development of Lateral Tire Model for Parabolic Normal Pressure Distribution	409
	13.8 Combined Lateral and Longitudinal Tire Force Generation	417
	13.9 The Magic Formula Tire Model	421
	13.10 Dugoff's Tire Model	425
	13.10.1 Introduction	425
	13.10.2 Model equations	426
	13.10.3 Friction Circle Interpretation of Dugoff's Model	427
	13.11 Dynamic Tire Model	429
	13.12 Chapter Summary	430
	Nomenclature	430
	References	432
14.	TIRE-ROAD FRICTION MEASUREMENT ON HIGHWAY VEHICLES	433
	14.1 Introduction	433
	14.1.1 Definition of tire-road friction coefficient	433
	14.1.2 Benefits of tire-road friction estimation	434
	14.1.3 Review of results on tire-road friction coefficient estimation	435
	14.1.4 Review of results on slip-slope based approach to frict estimation	ion 436
	14.2 Longitudinal Vehicle Dynamics and Tire Model for Friction Estimation	438

Contents	xxiii
14.2.1 Vehicle longitudinal dynamics	438
14.2.2 Determination of the normal force	439
14.2.3 Tire model	440
14.2.4 Friction coefficient estimation for both traction	
and braking	442
14.3 Summary of Longitudinal Friction identification Approach	ch 446
14.4 Identification Algorithm Design	447
14.4.1 Recursive least-squares (RLS) identification	447
14.4.2 RLS with gain switching	449
14.4.3 Conditions for parameter updates	450
14.5 Estimation of Accelerometer Bias	451
14.6 Experimental Results	454
14.6.1 System hardware and software	454
14.6.2 Tests on dry concrete surface	455
14.6.3 Tests on concrete surface with loose snow covering	ng 457
14.6.4 Tests on surface consisting of two different friction	n
levels	459
14.6.5 Hard braking test	460
14.7 Chapter Summary	461
Nomenclature	462
References	464
Index	467

Acknowledgments

I am deeply grateful to Professor Karl Hedrick for introducing me to the field of Vehicle Dynamics and Control and for being my mentor when I started working in this field. My initial research with him during my doctoral studies has continued to influence my work. I am also grateful to Professor Max Donath at the University of Minnesota for his immense contribution in helping me establish a strong research program in this field.

I would also like to express my gratitude to my dear friend Professor Darbha Swaroop. The chapters on longitudinal control in this book are strongly influenced by his research results. I have had innumerable discussions with him over the years and have benefited greatly from his generosity and willingness to share his knowledge.

Several people have played a key role in making this book a reality. I am grateful to Serdar Sezen for highly improving many of my earlier drawings for this book and making them so much more clearer and professional. I would also like to thank Vibhor Bageshwar, Jin-Oh Hahn and Neng Piyabongkarn for reviewing several chapters of this book and offering their comments. I am grateful to Lee Alexander who has worked with me on several research projects in the field of vehicle dynamics and contributed to my learning.

I would like to thank my parents Vanaja and Ramamurty Rajamani for their love and confidence in me. Finally, I would like to thank my wife Priya. But for her persistent encouragement and insistence, I might never have returned from a job in industry to a life in academics and this book would probably have never been written.