Advanced Sequential Circuit Design

NYCU-EE IC Lab Fall 2023

Lecturer : Jia-Yu, Lee

Outline

- ✓ Section 1- Timing
- **✓** Section 2- Designware

Outline

- ✓ Section 1- Timing
 - Setup/hold time
 - Pipeline
- ✓ Section 2- Designware

Recall

Des/Clust/Port	Wire Load Model	Library	
CNC	umc18_wl10	slow	
Point		Incr	Path
clock clk (rise ecclock network delacnt_reg_0_/CK (DFFcnt_reg_0_/Q (DFFFU784/Y (INVX8) U767/Y (NAND2X4) U786/Y (NAND2X4) U776/Y (BUFX8) U772/Y (OAI211X1) U771/Y (NAND2BX4) U832/Y (XNOR2X4) U366/Y (BUFX8) U834/Y (NAND2X4) U732/Y (BUFX20) U738/Y (OAI2BB2X4) U850/CO (ADDFHX4) U850/CO (ADDFHX4) U850/S (ADDFHX4) U852/S (ADDFHX4) U852/S (ADDFHX4) U860/S (ADDFHX4) U341/Y (NOR2X2) U862/Y (NOR2X4) U744/Y (NAND2X4) U742/Y (OAI21X4) U331/Y (BUFX8) U739/Y (AOI21X4) U372/Y (NAND2X1) U317/Y (OAI2BB1X1) F_reg_16_/D (DFFHO data arrival time clock clk (rise ecclock network delaclock uncertainty F reg_16_/CK (DFFHO dock uncertainty F reg_16_/CK (DFFH	gy (ideal) HQX4) HQX4) QX1)	0.00 1.00 0.00 0.47 0.11 0.15 0.08 0.20 0.21 0.23 0.28 0.30 0.21 0.14 0.19 0.16 0.49 0.38 0.43 0.15 0.22 0.13 0.22 0.13 0.22 0.13 0.22	0.00 1.00 1.00 1.47 1.58 f 1.73 r 1.80 f 2.01 f 2.21 r 2.44 f 2.72 f 3.01 r 3.22 r 3.36 f 3.56 f 3.72 r 4.59 r 5.02 r 5.17 f 5.39 r 5.52 f 6.49 f 6.49 f 6.49 f 6.49 f 6.49 f 6.90 r
library setup time data required time		-0.41	6.49 6.49
data required time data arrival time	;		6.49 -6.49
slack (MET)			0.00

Recall

✓ Launch Edge:

The clock rising edge used by Register 1 for generating data

✓ Latch Edge:

 The clock rising edge used by Register 2 for receiving data will introduce a delay of one clock cycle from Launch Edge

Timing Issue

✓ Terminology

- Setup time (t_{setup})

The time that the input signal must be stabilized before the clock edge.

- Hold time (t_{hold})

The time that the input signal must be stabilized after the clock edge.

Timing Issue

✓ Metastability

Timing Check (1/2)

✓ Setup time check

 The tool determines whether a data signal remains stable for a minimum specified time (i.e., violation region) before a transition in an enabling signal, such as a clock event.

✓ Hold time check

 The tool determines whether a data signal remains stable for a minimum specified time (i.e., violation region) after a transition in an enabling signal, such as a clock event.

Timing Check (2/2)

✓ Timing report: setup time

0.00	
3.08 -3.08	
3.08	
3.50 1 3.08	r
3.50	
2.00 4.00	
	2.00

✓ Timing report: hold time

Slacks should be MET! (non-negative)

clock CLK_2 (rise edge)	0.00	0.00
clock network delay (ideal)	4.00	4.00
clock uncertainty	1.00	5.00
<pre>IN_B_reg[20]/CK (EDFFXL)</pre>	0.00	5.00 r
library hold time	-0.19	4.81
data required time		4.81
data required time		4.81
data arrival time		-4.82
slack (MET)		0.01

✓ Data Arrival Time

The time at which data actually arrives at the input D of Register 2

✓ Clock Arrival Time

 The actual time at which the clock signal arrives at the input of Register 2

- Data required Time (setup time)
 - The latest time by which the data must be ready

Data Required Time = Clock Arrival Time - Tsu - Setup Uncertainty

✓ Data required Time (hold time)

Until what time at least does the data need to be maintained

Data Required Time = Clock Arrival Time + T_h + Hold Uncertainty

Setup Slack

Hold Slack

Timing Issue

✓ Terminology

Contamination delay

The minimum amount of time from an input changes until any output starts to change its value.

DEF 1

DEF 2

- Clk-to-Q contamination delay (t_{ccq})
- Logic contamination delay (t_{cd})
- Propagation delay

The maximum amount of time from input changes until all output reaches steady state.

- Clk-to-Q propagation delay (t_{pcq})
- Logic propagation delay (t_{pd})

Timing Issue

Setup Time Criterion

- ✓ Setup time criterion: $(T_{cycle} + t_{skew}) > (t_{pcq} + t_{pd} + t_{setup})$
 - data required time = $T_{cycle} + t_{skew} t_{setup}$
 - data arrival time = $t_{pcq} + t_{pd}$
 - Slack = data required time data arrival time

Setup Time Criterion

- ✓ Setup time criterion: $(T_{cycle} + t_{skew}) > (t_{pcq} + t_{pd} + t_{setup})$
 - data required time = $T_{cycle} + t_{skew} t_{setup}$
 - data arrival time = $t_{pcq} + t_{pd}$
 - Slack = data required time data arrival time

Hold Time Criterion

- ✓ Hold time criterion: $(t_{ccq} + t_{cd}) > (t_{hold} + t_{skew})$
 - data required time = $t_{skew} + t_{hold}$
 - data arrival time = $t_{ccq} + t_{cd}$
 - Slack = data arrival time data required time

Hold Time Criterion

- ✓ Hold time criterion: $(t_{ccq} + t_{cd}) > (t_{hold} + t_{skew})$
 - data required time = $t_{skew} + t_{hold}$
 - data arrival time = $t_{ccq} + t_{cd}$
 - Slack = data arrival time data required time

When Timing Violation Occurs...

- ✓ Adjust data path to meet the constraints
 - Setup violation

 too many works in one cycle
 - Apply pipelining
 - Hold violation
 insufficient delay
 - add delays to the violated path, such as buffers/inverters/Muxes
- ✓ Increase clock period for setup violation
- ✓ In most practical cases, hold violations are fixed during the backend work (after clock tree synthesis)

Outline

- ✓ Section 1- Timing
 - Setup/hold time
 - Pipeline
- ✓ Section 2- Designware

Area: 1 unit

Time: 40 mins (Wash: 20 mins + Dry: 20 mins)

Wash and Dry = 40 mins

Area: 1 unit

Time: 160 mins

Wash and Dry = 40 mins

Time: 160 mins

Wash and Dry = 40 mins

Area: 1 unit

Time: 160 mins

Wash and Dry = 40 mins

Wash and Dry = 40 mins

Time: 80 mins

Wash 20 mins Area 0.7 units

Dry 20 mins Area 0.7 units Area: 1 unit

Time: 160 mins

Area: 1 unit

Time: 160 mins

Dry 20 mins

Time: 160 mins

Area: 1 unit

Time: 160 mins

Time: 100 mins

Basic

Area: 1 unit

Time: 160 mins

Parallel

Area: 2 units

Time: 80 mins

Pipeline:

Area: 0.7+0.7 = 1.4 units

Time: 100 mins

- √ a [7:0], b [7:0], c [3:0], d [3:0]
- \checkmark Q: (a + b + c + d) x 1000 iterations?

Basic

Parallel

Pipeline

- √ a [7:0], b [7:0], c [3:0], d [3:0]
- \checkmark Q: (a + b + c + d) x 1000 iterations?

Area: 24 units 4unit 5-bit 10unit Adder 9-bit **Basic** Time: $16 \times 1000 = 16000$ output 10-bit Adder Adder units **Parallel** Pipeline:

- √ a [7:0], b [7:0], c [3:0], d [3:0]
- \checkmark Q: (a + b + c + d) x 1000 iterations?

- √ a [7:0], b [7:0], c [3:0], d [3:0]
- \checkmark Q: (a + b + c + d) x 1000 iterations?

- √ a [7:0] , b [7:0] , c [3:0] , d [3:0]
- \checkmark Q: (a + b + c + d) x 1000 iterations?

Pipeline Speedup

Latency of single task

- ✓ Throughput → Speed Up ()
 - Potential speedup = Number pipe stages, if all stages are balanced.
 - Pipeline rate limited by slowest stage
 - Note the overhead of pipeline

Outline

- ✓ Section 1- Timing
- **✓** Section 2- Designware

Overview of DesignWare

✓ IP (Intellectual Property)

- Soft IP: RTL design, requires verification.
- Firm IP : Netlist resource, less used.
- Hard IP: GDSII format, high performance but technology dependent.

DesignWare library

- Provides synthesizable and verification IPs.
- Supports the method to optimize the area or the speed and reduce the timing.

DesignWare IP library categories

- Building Block IPs (formally called Foundation Library)
- CoreTools
- Implementation IPs
- Smart Model Library
- Memory Models
- AMBA OCB Family
- Verification IPs

DesignWare Building Block IPs (1/2)

✓ DesignWare building block IPs

 A collection of reusable IP blocks integrated into the SYNOPSYS synthesis environment.

Characteristics

- Pre-verified for quality and better quality of results (QOR) in synthesis, decreasing design and technology risk.
- Allows high-level optimization of performance during synthesis.
- Increased design reusability, productivity
- Parameterized in size and also in functionality for some IP
- Provide synthesizable models, simulation models, datasheets, and examples.

DesignWare Building Block IPs (2/2)

✓ Library categories

Basic Library : A set of components bundled with HDL

Compiler that implements several common

arithmetic and logic functions.

Logic : Combinational and sequential components

Math : Arithmetic and trigonometric components

Memory : Registers, FIFOs, and FIFO controllers, sync. And

async. RAMs and stack components.

DSP Library : Digital filters for digital signal processing (DSP)

applications, ex: FIR, IIR filter

Application Specific: Data integrity, interface, and JTAG components.

GTECH Library : Genetic technology library, a technology-

Independent, gate-level library.

Usage of DesignWare Building Block IP

✓ Usage of DesignWare Building Block IP

- Operator inference
 - Supply default function only, can not use special function.
- Instantiate IP
 - Use SYNOPSYS design compiler shell script.
 - Supply different architecture for implementation.
 - Applying pre-compiling sub-blocks speeds up the synthesis for large design.

Operator Inference (1/3)

✓ Operator inference

- Use the HDL operator in description, and the operator must include in *synthetic operator* definition.
- HDL compiler will infer synthetic operator in HDL code.
- HDL compiler supply high-level synthesis.
- The " / " operator is required for the DesignWare license.
- The HDL operator defined in standard synthetic operator:

Synthetic Operators	HDL Operator
adder	+, +1
subtractor	-, -1
comparator	==, <, <=, >, >=
multiplier	*
selector	If, case

Operator Inference (2/3)

✓ High-level synthesis

- Arithmetic optimization
 - Arithmetic level optimization, ex: a+b+c+d -> (a+b)+(c+d)

 Allows similar operations that do not overlap in time to be carried out by the same physical hardware.

Operator inference (3/3)

✓ High-level synthesis flow

Your HDL Source Code

Operator Inference

Synthetic Operator

Automatic Implementation Selection Based on Overall Design Constraints

Appropriate Implementation Selected in Each Case

Instantiate IP (1/9)

Instantiation IP

- To instantiate a synthetic module manually and explicitly.
- Need to include a reference to the synthetic module in HDL code.

SYNOPSYS online document

Command:

evince /usr/cad/synopsys/synthesis/cur/dw/doc/manuals/dwbb_userguide.pdf &

Instantiate IP (2/9)

- SYNOPSYS online document
 - Select section 2.0

SYNOPSYS°

DesignWare[®] Building Block IP
User Guide

DesignWare Building Blocks — Product Code: 2925-0

Instantiate IP (3/9)

2

DWBB Components

Table 2-1 summarizes all DWBB components and provides a link to the detailed datasheet.

Datasheets include coding examples for instantiation, as well as for operator and function inference, where appropriate.

Table 2-1 List of Design Ware Building Block IP

Component	Inference?	Description
Application Specific: Control Logic		
DW_arb_2t No 7		Two-Tier Arbiter with Dynamic/Fair-Among-Equal Scheme
DW_arb_dp	No	Arbiter with Dynamic Priority Scheme
DW_arb_fcfs	No	Arbiter with First-Come-First-Served Priority Scheme
DW_arb_rr	No	Arbiter with Round Robin Priority Scheme
DW_arb_sp No Arbiter with Static Priorit		Arbiter with Static Priority Scheme
Datapath: Arithmetic Co		
DW01_absval	Function	Absolute Value
DW01_add	Operator	Adder
DW01_addsub	Operator	Adder-Subtractor
DW_addsub_dx	No	Duplex Adder/Subtractor with Saturation and Rounding
DW01_ash	Function	Arithmetic Shifter
DW_bin2gray	Function	Binary to Gray Converter

Instantiate IP (4/9)

DW02_mult

Module name

Multiplier

Version, STAR and Download Information: IP Directory

Features and Benefits

- Parameterized word length
- Unsigned and signed (two's-complement) data operation

Description

DW02_mult is a multiplier that multiplies the operand A by B to produce the output, PRODUCT.

The control signal TC determines whether the input and output data is interpreted as unsigned (TC=0) or signed (TC=1) numbers.

Table 1-1 Pin Description

input & output

Pin Name		Width	Direction	Function
Α		A_width bit(s)	Input	Multiplier
В		B_width bit(s)	Input	Multiplicand
тс		1 bit	Input	Two's complement control 0 = unsigned 1 = signed
PRODUCT		A_width + B_width bit(s)	Output	Product A×B

Argument assignment: DW02_ mult #(N,N) mult01(..., ..., ...);

Table 1-2 Parameter Description

Parameter		Values Description	
_width		≥1	Word length of A
_width		≥1	Word length of B
	width	width	width ≥1

Instantiate IP (5/9)

Table 1-3	Synthesis Implementations
-----------	---------------------------

Implementation Name	Function	License Feature Required	
csa ^a	Carry-save array synthesis model	none	
pparch ^b	Delay-optimized flexible Booth Wallace	DesignWare	
apparch ^b	Area-optimized flexible Booth Wallace	DesignWare	

User implementation type specification

Table 1-4 Simulation Models

DW02.DW02_MULT_CFG_SIM dw/dw02/src/DW02_mult_sim.vhd		Function	
		Design unit name for VHDL simulation	
		VHDL simulation model source code	
		Verilog simulation model source code	

Simulation model path specification

Table 1-5 Functional Description

тс	A	В	PRODUCT	
0 A (unsigned)		B (unsigned)	A × B (unsigned)	
1 A (two's complement)		B (two's complement)	A × B (two's complement)	

Functional parameter specification

Instantiate IP (6/9)

✓ Instantiate module

 Instantiate the synthetic module and specify parameters defined in document.

HDL Usage Through Component Instantiation - Verilog

Instantiate IP (7/9)

✓ RTL behavior simulation

- Specify the behavioral simulation models (Table1-4).
 - Absolute path
 - Relative path

Absolute path

- `include "/usr/synthesis/dw/sim_ver/<model_name>.v "

`include /usr/synthesis/dw/sim_ver/DW02_mult.v"

Relative path

- `include "<model_name>.v "

```
'include "DW02 mult.v"
```

- Command: irun <file_name>.v –incdir <directory>
 - Ex: irun DW02_multi_inst.v –incdir /usr/synthesis/dw/sim_ver/

Instantiate IP (7/9)

```
VCS_RTL_SIM = vcs ${TIMESCALE} \
    -j${num_CPU_cores} \
    -sverilog \
    +v2k \
    -full64 \
    -Mupdate \
    -R \
    -debug_access+all \
    -y ${DW_SIM} \
    +libext+.v \
    -f ${source_file} \
    -o ${output file} \
    -1 ${log_file} \
    -P ${VERDI}/share/PLI/VCS/linux64/novas.tab \
       ${VERDI}/share/PLI/VCS/linux64/pli.a \
    +define+RTL \
    +notimingchecks
```

Instantiate IP (8/9)

Synthesis

Apply //synopsys translate_off //synopsys translate_on

```
//synopsys translate_off (DA synthesis off)
..... (the code won't be synthesis)
//synopsys translate_on (DA synthesis on)
```

✓ Set the implementation type of IP

User specify the implementation type of IP manually.

```
//synopsys dc_script_begin
//set_implementation wall U1 (instance name of IP)
implementation type from (Table1-3)
//synopsys dc_script_end
.....
```

Instantiate IP (9/9)

✓ Example

RTL/Gate simulation description

Reference

- ✓ https://blog.51cto.com/u_15076209/4702482?fbclid=lw-AR3V4tEEPMQ_NJKI-2AFvaEksIUzPBvww5E7yqvpRDmujNUTkDat7bBCKQ0
- ✓ https://zhuanlan.zhihu.com/p/278523793?fbclid=lwAR2
 W0cuazZ8Ci5G_C1QCMDMiBqBC42YasmEW67hLJZua
 RdU6VeCPjOuoYgE