Implementable coupling of Lévy process and Brownian motion

Jevgenijs Ivanovs (Aarhus University) joint work with Jorge González Cázares and Vladimir Fomichov

Applied Probability Days (online), 7 July 2021

Problem formulation

Consider a Lévy process $X=(X(t),t\geqslant 0)$ with $\mathbb{E}X(1)=0,\mathbb{E}X(1)^2=1.$

Problem

Construct a standard Brownian motion W on the same probability space (or its extension) such that:

- ▶ $\mathbb{E} \sup_{t \in [0,1]} |X(t) W(t)|^2$ is small,
- ▶ Brownian trajectories can be efficiently generated given a path of X.

Comments:

- ▶ Other loss metrics can be used,
- ▶ Partial knowledge of *X* trajectory will be required.
- ▶ Comonotonic coupling of X(1) and W(1) produces minimal $\mathbb{E}|X(1)-W(1)|^2$.

Illustration I: drifted compound Poisson

Figure: Three pairs of paths corresponding to 0.05, 0.50, 0.95 quantiles.

Application I: stress testing and stochastic programming

Estimate a (tight) upper bound on the respective Wasserstein distance:

$$d_{\mathcal{W}}^2(X, W) \leqslant \mathbb{E} \sup_{t \in [0,1]} |X(t) - W(t)|^2.$$

Applications:

- ▶ Model risk [Blanchet & Murthy 19]: Brownian baseline model with a neighborhood containing a given Lévy model.
- ▶ Distributionally robust optimization [Esfahani & Kuhn 18]: allow for some freedom in the model to mitigate the optimizer's curse (links to regularization).

Application II: multilevel Monte Carlo

Estimate $\mathbb{E}g(X)$ by sampling an approximation $g(X_n)$ and control the bias. Standard approximation [Asmussen & Rosinski 01]: replace small jump martingale by a scaled Brownian motion.

MLMC [Giles 15]:

- ▶ sample $g(X_n)$ and $g(X_{n+1})$ jointly in a way that the level variance $\operatorname{Var}[g(X_{n+1}) g(X_n)] \leq L^2 \cdot \mathbb{E} \sup_{t \in [0,1]} |X_{n+1}(t) X_n(t)|^2$ is small,
- no significant increase in the cost,

Problem: couple the martingale of jumps in $[-\varepsilon_n, -\varepsilon_{n+1}) \cup (\varepsilon_{n+1}, \varepsilon_n]$ with a scaled Brownian motion.

5/19

Literature: existence of couplings

Lévy processes and random walks:

- ▶ [Skorokhod]: if $X_n(1) \stackrel{d}{\to} W(1)$ then there exists a coupling with $\sup_{t \in [0,1]} |X_n(t) W(t)| \stackrel{\mathbb{P}}{\to} 0$.
- ► [Strassen 64]: random walk approximation by *W* underlying the functional LIL and based on Skorokhod's embedding.
- ► [Komlós, Major, Tusnády 75]: Hungarian embedding or the KMT coupling (based on conditional distributions).
- ► [Khoshnevisan 93]: construction of a drifted Poisson process *X* from *W* (more general construction induces dependence between inter-arrivals and subsequent jumps).

Main coupling: reordering of Brownian increments

Input:

- ▶ integer $k \ge 1$ (number of increments),
- ▶ k increments $\Delta_i^k X = X(i/k) X((i-1)/k)$,
- \blacktriangleright the law of X(1) or the ability to simulate from that.

Construction:

- Let W'(1) be (nearly) comonotonically coupled with X(1),
- ▶ Take an independent Brownian bridge $W'(t) tW'(1), t \in [0, 1]$,
- ▶ Define W by reordering the k increments of W' according to the ordering of $\Delta_i^k X$.

Main coupling: details of construction

- ▶ Take k independent uniforms U_1, \ldots, U_k (for breaking ties),
- Let π be an a.s. unique random permutation on $\{1, \ldots, k\}$ such that for all $i \neq j$:

$$\Delta_{\pi(i)}^k W' < \Delta_{\pi(j)}^k W'$$
 iff $\Delta_i^k X < \Delta_j^k X$ or $\Delta_i^k X = \Delta_j^k X$, $U_i < U_j$.

▶ Define W by setting W(0) := 0 and

$$W(t) \coloneqq W\left(\frac{i-1}{k}\right) + W'\left(\frac{\pi(i)-1}{k} + t - \frac{i-1}{k}\right) - W'\left(\frac{\pi(i)-1}{k}\right)$$
 when $\frac{i-1}{k} < t \leqslant \frac{i}{k}$.

Hierarchical/recursive construction is possible!

On the choice of k

- ▶ k = 1: only the end-points are coupled, but the Brownian bridge is independent of X.
- ▶ $k = \infty$: the same if X has no Brownian component [González Cázares & Ivanovs 21] this is a way to recover the Brownian part of a Lévy process.

Goal: asymptotic theory suggesting an adequate choice of k!

Illustration II

$$\Pi^0(\mathrm{d}x) = \left(0.4|x|^{-\alpha-1}\mathbf{1}_{\{x\in(-\varepsilon_1,-\varepsilon_2)\}} + 0.6x^{-\alpha-1}\mathbf{1}_{\{x\in(\varepsilon_2,\varepsilon_1)\}}\right)\mathrm{d}x, \quad \alpha = 1.5$$

Figure: Root-mean-squared-maximal distances between X and W. Left: four processes X. Right: second-level reordering with $k_2 \in \{1, 4, 16\}$.

Auxiliary method: comonotonic coupling of increments

Comonotonic coupling of $\zeta_1 = X(1/k)$ and $\zeta_2 = W(1/k)$ with cdf's F_i :

$$\zeta_2 = h(\zeta_1, U), \qquad h(x, u) = F_2^{-1} (\mathbb{P}(\zeta_1 < x) + u \mathbb{P}(\zeta_1 = x)).$$

Construction:

- ▶ Take Brownian increments $h(\Delta_i^k X, U_i)$ comonotonically coupled with ΔX_i^k ; the same U_i used for ties.
- Accumulate these increments and use independent Brownian bridges to define $\widehat{W}(t)$.

Lemma

The processes W and \hat{W} are standard Brownian motions and their increments have the same ordering:

$$\Delta_i^k W < \Delta_j^k W$$
 iff $\Delta_i^k \widehat{W} < \Delta_j^k \widehat{W}$

with probability 1.

Result: a trivariate process (X, W, \widehat{W}) , and not just two couplings! \widehat{W} is less appealing, but its quality analysis is simpler.

Proximity of the two Brownian bridges

Lemma

It holds that

$$\mathbb{E}\max_{1\leqslant i\leqslant k}\left|\left[W(\tfrac{i}{k})-\tfrac{i}{k}W(1)\right]-\left[\widehat{W}(\tfrac{i}{k})-\tfrac{i}{k}\widehat{W}(1)\right]\right|^2=\mathrm{O}(\log\log k/k),\quad k\to\infty,$$

uniformly for all processes X.

Brownian discretization error $O(\log k/k)$ yields:

$$\mathbb{E}\sup_{t\in[0,1]}\Bigl|\bigl[W(t)-tW(1)\bigr]-\bigl[\widehat{W}(t)-t\widehat{W}(1)\bigr]\Bigr|^2=\mathrm{O}(\log k/k)$$

Asymptotic equivalence of the two coupling methods

- ▶ A sequence of Lévy processes $X_n \stackrel{d}{\rightarrow} W$,
- ▶ integers $k_n \to \infty$,
- coupled Brownian motions W_n , \widehat{W}_n .

Theorem

Assume

$$\mathbb{E}\sup_{t\in[0,1]}|X_n(t)-\widehat{W}_n(t)|^2=\mathrm{O}(\varepsilon_n)$$

for some $\varepsilon_n \downarrow 0$. Then also

$$\mathbb{E}\sup_{t\in[0,1]}|X_n(t)-W_n(t)|^2=\mathrm{O}(\varepsilon_n),$$

given it is true for t = 1 and $\log k_n/k_n = O(\varepsilon_n)$.

Note: true when W and \widehat{W} are swapped.

Asymptotic quality

Assumption:

$$\mathbb{E}X_n(1)=0, \quad \mathbb{E}X_n^2(1)=1, \quad \mathbb{E}X_n^4(1)<\infty.$$

Under mild conditions $X_n \stackrel{d}{\to} W$ implies $\mu_{4,n} := \int_{\mathbb{R}} x^4 \Pi_n(\mathrm{d}x) \to 0$, where Π_n is the Lévy measure of X_n .

Theorem

Under the above conditions we have

$$\mathbb{E}\sup_{t\in[0,1]}|X_n(t)-\widehat{W}_n(t)|^2=\mathrm{O}(k_n\mu_{4,n}+\log k_n/k_n).$$

Corollary

Taking
$$k_n \sim \sqrt{|\log \mu_{4,n}|/\mu_{4,n}}$$
 yields

$$\mathbb{E} \sup_{t \in [0,1]} |X_n(t) - W_n(t)|^2 = O(\log k_n/k_n) = O(\sqrt{\mu_{4,n}|\log \mu_{4,n}|}).$$

Proof ingredients

By Doob's maximal inequality and comonotonic coupling bound:

$$\begin{split} & \mathbb{E} \max_{i \leqslant k_n} \lvert X_n(i/k_n) - \widehat{W}_n(i/k_n) \rvert^2 \leqslant 4 \mathbb{E} \lvert X_n(1) - \widehat{W}_n(1) \rvert^2 \\ & = 4k_n \mathbb{E} \lvert X_n(1/k_n) - \widehat{W}_n(1/k_n) \rvert^2 \leqslant 4 C k_n \mu_{4,n}. \end{split}$$

Non-trivial discretization bound (for fixed n):

$$\mathbb{E} \sup_{t \in [0,1]} (X(t) - X^{[k]}(t))^2 \leqslant C(k\mu_4 + \log k/k).$$

Note: discretization error $\sup_{t\in[0,1]}\left(X(t)-X^{[k]}(t)\right)$ converges to the largest jump a.s.

Illustration III: the bounds are good!

- ▶ thresholds: $\varepsilon_{1,n} = 2^{-n}$ and $\varepsilon_{2,n} = 2^{-n-1}$.
- ▶ the optimal root-mean-squared-maximal distance d_n^* and k_n^* .

Figure: Left: $\log d_n^*$ (solid) and theoretical $\log(\mu_{4,n}|\log \mu_{4,n}|)/4$ (dashed). Right: $\log k_n^*$ (solid) and $\log(|\log \mu_{4,n}|/\mu_{4,n})/2$ (dashed).

Limiting regimes

▶ Zooming-out regime: $X_n(t) = X(nt)/\sqrt{n}$.

$$\mathbb{E} \sup_{t \in [0,1]} |X_n(t) - W_n(t)|^2 = O(\sqrt{\log n/n}),$$

choosing $k_n \sim \sqrt{n \log n}$.

▶ Small jump Gaussian approximation: $\sigma_{\varepsilon}^2 \coloneqq \int_{[-\varepsilon,\varepsilon]} x^2 \Pi(\mathrm{d}x), \ \frac{\varepsilon}{\sigma_{\varepsilon}} \to 0$, and scaled $X_{\varepsilon}(t)$ to have variance t.

$$\mathbb{E} \sup_{t \in [0,1]} |X_{\varepsilon}(t) - W_{\varepsilon}(t)|^2 = O\left(\frac{\varepsilon}{\sigma_{\varepsilon}} \sqrt{|\log\left(\frac{\varepsilon}{\sigma_{\varepsilon}}\right)|}\right),$$

choosing $k_{\varepsilon} \sim \sigma_{\varepsilon} \varepsilon^{-1} \sqrt{|\log \varepsilon|}$.

BG index $\beta \in (0,2]$ and RV yields $O(\varepsilon^{\beta_-/2}), \beta_- < \beta$.

•

Multilevel MC: mean complexity $\mathbb{E}\mathcal{C}_{\delta}$

There exists an MLMC algorithm with RMSE $\leq \delta$ s.t.

$$\mathbb{E}C_{\delta} \stackrel{\log}{\sim} (1/\delta)^{p}, \qquad \delta \downarrow 0.$$

- Our coupling (intermediate jumps): $p = (5 4/\beta) \vee 2$,
- ▶ Standard independent sampling: $p = (6 4/\beta) \lor 2$,
- ▶ $\beta \in [0, 2]$ is the Blumenthal–Getoor index.

Figure: Dashed when $g(X_n)$ can be simulated exactly.

Conclusions

- Two asymptotically equivalent algorithms for construction of Brownian paths
 - reordering of Brownian increments,
 - comonotonic coupling of increments.
- ▶ asymptotic analysis as $X_n \stackrel{d}{\rightarrow} W$,
- adequate choice of k,
- implications for various limiting regimes,
- ▶ MLMC application: $\mathbb{E}C_\delta \stackrel{\log}{\sim} (1/\delta)^{p_0-1}$.

Thank you!