1	2	3	4	1	2	3	4	5	CALIF

APELLIDO Y NOMBRE:

Condición: Libre Regular

Algebra II - Final 5 de diciembre de 2019

Justificar todas las respuestas. No se permite el uso de dispositivos electrónicos. Todos los resultados teóricos utilizados deben ser enunciados apropiadamente; en caso de utilizar resultados teóricos no dados en clase, los mismos deben demostrarse. Para aprobar se debe tener como mínimo 15 pts. en la parte teórica y 30 pts. en la parte práctica.

Parte Teórica (30 pts.)

- 1. (10 pts) Sea \mathbb{K} un cuerpo y sean V, W dos \mathbb{K} -espacios vectoriales, donde V es de dimensión finita. Sea $f: V \to W$ una transformación lineal. Probar que $\dim(\operatorname{Im} f) = \dim V \dim(\operatorname{Nu} f)$.
- 2. (10 pts) Sea \mathbbm{k} un cuerpo y V un \mathbbm{k} -espacio vectorial de dimensión finita. Dada una transformación lineal $f:V\to V$, definir su polinomio característico, y probar que el mismo no depende de la elección de una base de V.
- 3. (10 pts) Sea (V, \langle , \rangle) un \mathbb{R} -espacio vectorial de dimensión finita con producto interno y sea $S \subset V$ un subespacio. Definir S^{\perp} el espacio ortogonal a S, y probar que $S \oplus S^{\perp} = V$.
- 4. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (3 pts) Sea V es un \mathbb{R} -espacio vectorial, y $f:V\to V$ una transformación lineal. Si v_1,v_2,v_3 son autovectores no nulos con distintos autovalores, entonces el conjunto $\{v_1,v_2,v_3\}$ es linealmente independiente.
 - (b) (3 pts) Si V y W son \mathbb{k} -espacios vectoriales (para \mathbb{k} un cuerpo arbitrario), y $f:V\to W$ es una función que satisface que $f(v_1+v_2)=f(v_1)+f(v_2)$ para todo par de vectores $v_1,v_2\in V$ entonces f es una transformación lineal.

Parte Práctica (70 pts.)

1. (15 pts) Sea
$$A_n = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & -1 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix} \in M_{n \times n}(\mathbb{R}).$$
 Probar que det $A_n = n+1$ para todo $n \in \mathbb{N}$.

2. (15 pts) Si U, V y W son \mathbb{k} -espacios vectoriales, y $g: U \to V$, $f: V \to W$ son transformaciones lineales tales que $\operatorname{Im}(g) \cap \operatorname{Nu}(f) = \{0\}$ entonces $\operatorname{Nu}(f \circ g) = \operatorname{Nu}(g)$.

- 3. Consideramos en $M_{2\times 2}(\mathbb{R})$ la función $\Phi: M_{2\times 2}(\mathbb{R}) \times M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ dada por $\Phi(A, B) = \operatorname{tr}(AB^t)$.
 - (a) (8 pts) Probar que Φ es un producto interno.
 - (b) (6 pts) Sea S el subespacio generado por $\langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & -1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix} \rangle$. Dar una base ortogonal de S para el producto interno del ítem anterior.
 - (c) (6 pts) Dar una base de S^{\perp} .
- 4. Sean V un k-espacio vectorial de dimensión n y $T: V \to V$ una transformación lineal. Supongamos que existe un vector $\alpha \in V$ tal que $T^n(\alpha) = 0$ pero $T^{n-1}(\alpha) \neq 0$.
 - (a) (7 pts) Probar que $\mathbb{B} = \{\alpha, T(\alpha), T^2(\alpha), \dots, T^{n-1}(\alpha)\}$ es una base de V.
 - (b) (3 pts) Calcular la matriz de T en la base \mathbb{B} .
 - (c) (3 pts) Calcular la traza y el determinante de $[T]_{\mathbb{B}}$.
 - (d) (7 pts) Calcular los autovalores de T y sus correspondientes autoespacios. Decidir si T es diagonalizable.
- 5. (15 pts) Sea V un \mathbb{R} -espacio vectorial de dimensión finita y $\phi_1, \phi_2, \phi_3 \in V^*$. Sea $T: V \to \mathbb{R}^3$ la transformación lineal dada por $T(v) = (\phi_1(v), \phi_2(v), \phi_3(v)), v \in V$. Probar que T es suryectiva si y sólo si $\{\phi_1, \phi_2, \phi_3\}$ es linealmente independiente como vectores en V^* .

EJERCICIO PARA LIBRES El puntaje entre paréntesis es lo que se le resta al puntaje de la parte práctica en caso de no ser resuelto correctamente

Sea $f: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ la transformación lineal dada por $f(A) = A + A^t$.

- 1. (- 5pts) Hallar el polinomio característico de f.
- 2. (-5 pts) Hallar sus autovalores y los correspondientes autoespacios.
- 3. (-5 pts) Decidir si f es diagonalizable.

Justificar debidamente todas las respuestas