

Vektorromsaksiomene

 $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$ for alle vektorer \mathbf{u} , \mathbf{v} og \mathbf{w} . (Vektoraddisjon er en assosiativ operasjon.) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for alle vektorer \mathbf{u} og \mathbf{v} . aksiomer (Vektoraddisjon er en kommutativ operasjon.) for addisjon Det finnes en vektor $\mathbf{0}$ slik at $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for alle vektorer \mathbf{u} . (Vektoraddisjon har et *identitetselement*.) For hver vektor \mathbf{u} finnes en vektor $-\mathbf{u}$ slik at $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. (Vektoraddisjon har *inverser* for alle elementer.) (V5) $(ab) \cdot \mathbf{u} = a \cdot (b \cdot \mathbf{u})$ for alle vektorer \mathbf{u} og alle skalarer a og b. (Skalarmultiplikasjon er kompatibel med multiplikasjon av skalarer.) (V6)aksiomer $1 \cdot \mathbf{u} = \mathbf{u}$ for alle vektorer \mathbf{u} . for (Tallet 1 er identitetselement for skalarmultiplikasjon.) skalarmulti $a \cdot (\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$ for alle vektorer \mathbf{u} og \mathbf{v} , og alle skalarer a. plikasjon (Skalarmultiplikasjon er ${\it distributiv}$ over addisjon av vektorer.) $(a + b) \cdot \mathbf{u} = a\mathbf{u} + b\mathbf{u}$ for alle vektorer \mathbf{u} , og alle skalarer a og b.

(Skalarmultiplikasjon er distributiv over addisjon av skalarer.)

