第十四周作业参考解答及补充

作业

1. (习题 4.2.2)

证明:

- (1) $S_n = \langle (12), (13), \dots, (1n) \rangle$, $\mathbb{P}[S_n] = \mathbb{P}[S_n] + \mathbb{P$
- (2) S_n 可由 (12) 和 (123…n) 生成, 即

$$S_n = \langle (1\ 2), (1\ 2\ 3\cdots n) \rangle.$$

proof

- (1) 这是教材推论 4.2.2 的直接结果, 任意置换总能写成有限个对换的乘积, 而 (i j) = (1 i)(1 j)(1 i).
- (2) 由 (1), 只需证明 (13), · · · , (1 n) 都可以被 (12) 和 (12···n) 生成. 事实上 $(1n) = (12···n)^{-1}(12)(12···n)$, (1i) = (1(i+1))(i(i+1))(1(i+1)),且 $(i(i+1)) = (12···n)^{-(n-i+1)}(12)(12···n)^{n-i+1}$, 2 < i < n(其实就是把 i 和 i+1 先移到 1 和 2 的位置上,用 (12) 对换,再移回去).

2. (习题 4.2.4)

设 $A_n = \{\pi \in S_n \mid \varepsilon_{\pi} = 1\} \subseteq S_n$, 证明:

- (1) $A_n \triangleleft S_n$ (即 $A_n \in S_n$ 的正规子群);
- (2) A_n 由 3-循环生成,事实上, $A_n = \langle (1\,2\,3), (1\,2\,4), \cdots (1\,2\,n) \rangle$.(提示: 利用 $(a\,b)$ · $(b\,c) = (a\,b\,c), (a\,b) \cdot (c\,d) = (a\,b) \cdot (b\,c) \cdot (b\,c) \cdot (c\,d)$.)

proof

- (1) $\pi \mapsto \varepsilon_{\pi}$ 实际上是一个群同态 $S_n \to \{1, -1\} \cong \mathbb{Z}/2\mathbb{Z}$. 而 A_n 恰好是这个同态的 kernel.
- (2) 根据提示有 $(a\ b)(c\ d) = (abc)(bcd)$, 因此所有的 3-循环能生成 A_n , 只需说明任意 3-循环在 $\langle (1\ 2\ 3),\ (1\ 2\ 4),\ \cdots (1\ 2\ n) \rangle$ 中. 我们可以做拆解, 对

 $i, j, k \neq 1, 2$, 反复用上面的等式凑出来 (12 m).

$$(1 j k) = (k 1)(1 j) = (k 1)(1 2)(1 2)(2 k)(2 k)(1 j) = (1 2 k)(1 2 k)(1 j)(2 k)$$
$$= (1 2 k)(1 2 k)(1 j)(1 2)(1 2)(2 k) = (1 2 k)(1 2 k)(1 2 j)(1 2 k)$$

同样的可以凑出

$$(i j k) = (i j)(1 j)(1 j)(j k) = (1 i j)(1 j k)$$

3. (习题 4.2.5)

群 G 中的两个元素 x, y 称为在 G 中共轭, 如果存在 $a \in G$, 使 $axa^{-1} = y$. 试证明:

(1) $\forall \pi \in S_n \alpha = (i_1 i_2 \cdots i_r) \in S_n$ 有公式

$$\pi \cdot \alpha \cdot \pi^{-1} = (\pi(i_1) \ \pi(i_2) \cdots \pi(i_r)).$$

- (2) 所有 3-循环在 S_n 中相互共轭. (所以 S_n 中包含 3-循环的正规子群必包含 A_n .)
- (3) 如果 $n \ge 5$, 则所有 3-循环在 A_n 中相互共轭, 即对于任意 3-循环 $x, y \in A_n$, 存在 $a \in A_n$, 使 $axa^{-1} = y$.

proof

- (1) 按定义验证,若 $\pi \cdot \alpha \cdot \pi^{-1}(i) = \pi(\alpha(\pi^{-1}(i)))$. 若 $i \notin \{\pi(i_1), \pi(i_2), \cdots, \pi(i_r)\} \iff \pi^{-1}(i) \notin \{i_1, i_2, \cdots, i_r\}, 则 \pi(\alpha(\pi^{-1}(i))) = \pi(\pi^{-1}(i)) = i$. 反之 $i \in \{\pi(i_1), \pi(i_2), \cdots, \pi(i_r)\},$ 有 $\pi(\alpha(\pi^{-1}(i))) = \pi(\alpha(i_k)) = (\pi(i_1) \pi(i_2) \cdots \pi(i_r))(i)$.
- (2) (1) 的推论. 若 α 是 3-循环, 任意的 $\pi \in S_n$, $\pi \alpha \pi^{-1}$ 仍是 3-循环. 具体来说, 对两个 3-循环 $\alpha_1 = (a_1 \ b_1 \ c_1)$ 和 $\alpha_2 = (a_2 \ b_2 \ c_2)$, 则令 $\pi = \begin{pmatrix} a_1 \ b_1 \ c_1 & \cdots \\ a_2 \ b_2 \ c_2 & \cdots \end{pmatrix}$ 即可.
- (3) 设 $x = (i_1 i_2 i_3), y = (j_1 j_2 j_3)$. 当 $n \ge 5$ 时, 由 (2), 考虑

$$a_1 = \begin{pmatrix} i_1 & i_2 & i_3 & i_4 & i_5 & \cdots \\ j_1 & j_2 & j_3 & j_4 & j_5 & \cdots \end{pmatrix}, a_2 = \begin{pmatrix} i_1 & i_2 & i_3 & i_4 & i_5 & \cdots \\ j_1 & j_2 & j_3 & j_5 & j_4 & \cdots \end{pmatrix}$$

则由 (2) 可知 k = 1, 2 都满足 $a_k x a_k^{-1} = y$, 但是 $a_2 = a_1(j_4, j_5)$, 即刚好差 一个对换, 那么 a_1, a_2 必然一奇一偶, 因此存在 $a \in A_n$ 使得 $axa^{-1} = y$.

4. (习题 4.2.7)

证明: 所有 4 阶群 G 都是交换群. 在同构意义下, G 要么是循环群, 要么同构于下述克莱因 4 元群:

$$V_4 = \{(1), (12)(34), (13)(24), (14)(23)\} \subseteq S_4.$$

(提示: 如果 $x^2 = 1$ 对 G 中所有元成立,则 $\forall a, b \in G$,有 $abab = 1 \implies ab = b^{-1}a^{-1} = b(b^{-1})^2 \cdot (a^{-1})^2 a = ba$.)

proof

对于这种阶很小的群, 我们可以直接分析 4 阶群的乘法表, 这其实和数独有点像. 乘法表的每一行或每一列是不能有相同元素的, 因为左乘映射是单的 $ga = gb \implies a = b$, 右乘也一样.

设 $G = \{e, a, b, c\}, e$ 是单位元. 那么首先有

由 1.3.10, G 有 2 阶元, 不妨设 $a^2 = e$, 则 $ab \neq e, a, b$, 只能是 c, ac, ba, ca 同理, 得到

此时若 $b^2 = e$, 则得到

否则 $b^2 = a$, 得到

第二种实际上是 $\mathbb{Z}/4\mathbb{Z}$ 是循环群, 生成元是 b 或者 c, 自然是交换群. 第一种 就是题干中的克莱因 4 元群.

注:

对于阶很大的群这种方法便不适用了. 事实上若 $|G| = p^2$,则 G 一定是 Abel 群,其中 p 是素数. 这是共轭作用得到的分类公式的直接推论. 即教材引理 4.2.2 证明的中间结果

$$|G| = C(G) + \sum_{O(x)>1} |O(x)|, \quad |O(x)| = [G: H_x]$$

这里的 H_x 是在共轭作用 $g \cdot x = gxg^{-1}$ 下的稳定子, 又称做 x 的中心化子 (所有和 x 交换的元素构成的子群), 和 1.2.4 是类似, 一般记作 C(x). 这个等式的每一项都是 |G| 的因子, 因此若 G 不是 Abel 群, 即 $C(G) \neq G$, 那么只能是|C(G)| = p. 但这是不可能的. 因为对 $x \notin C(G)$, |C(x)| 也是 p^2 的因子, 而按定义 C(G) 是严格包含于 C(x) 的, $C(G) \subsetneq C(x)$, 这意味着 |C(x)| > |C(G)| = p, 那么 $|C(x)| = p^2$, 这就矛盾了, 因为 $x \notin C(G)$, 所以 C(x) 不可能等于 G. 对一般的群作用 $G \times X \to X$, X 是有限集, 教材的引理 4.5.2 事实上可以表示为分类公式 (class formula)

$$|S| = |Z| + \sum_{|O(x)| > 1} [G : \operatorname{stab}(x)] = |Z| + \sum_{|O(x)| > 1} |O(x)|.$$

其中 Z 称为该群作用下的不动点集, $x \in Z \iff \operatorname{stab}(x) = G \iff O(x) = \{x\}$. 若 G 是 p-群, 则有

$$|Z| \equiv |S| \mod p$$