Отчет о выполнении лабораторной работы 2.1.6 Эффект Джоуля-Томсона

Выполнил: Дедков Денис, группа Б01-109 14.02.2022

Цель работы

Определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; вычисление по результатам опытов коэффициентов Ван-дер-Ваальса a и b.

Оборудование и приборы

Трубка с пористой перегородкой; труба Дьюара; термостат; термометры; дифференциальная термопара; микровольтметр; балластный баллон; манометр.

Теоретическое введение

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

В работе исследуется изменение температуры углекислого газа при медленном его течении по трубке с пористой перегородкой (рис.). Трубка 1 хорошо теплоизолирована. Величина эффекта Джоуля—Томсона определяется по разности температуры газа до и после перегородки.

Рассмотрим стационарный поток газа между произвольными сечениями I и II трубки. Пусть, для определенности, через трубку прошел 1 моль углекислого газа; μ – его молярная масса. Молярные объемы газа, его давления и отнесенные к молю внутренние энергии газа в сечениях I и II обозначим соответственно V_1, P_1, U_1 и V_2, P_2, U_2 . Для того чтобы

ввести в трубку объем V_1 , над газом нужно совершить работу $A_1 = P_1 V_1$. Проходя через сечение II, газ сам совершает работу $A_2 = P_2 V_2$. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right). \tag{1}$$

В уравнении (1) учтено изменение как внутренней (первые члены в скобках), так и кинетической (вторые члены в скобках) энергии газа. Подставляя в (1) написанные выражения для A_1 и A_2 и перегруппировывая члены, найдем

$$H_1 - H_2 = (U_1 + P_1 V_1) - (U_2 + P_2 V_2) = \frac{1}{2} \mu (v_2^2 - v_1^2).$$
 (2)

Сделаем несколько замечаний. Прежде всего отметим, что в процессе Джоуля—Томсона газ испытывает в пористой перегородке существенное трение, приводящее к ее нагреву. Потери энергии на нагрев трубки в начале процесса могут быть очень существенными и сильно искажают ход явления. После того как температура трубки установится и газ станет уносить с собой все выделенное им в пробке тепло, формула (1) становится точной, если, конечно, теплоизоляция трубки достаточно хороша и не происходит утечек тепла наружу через ее стенки.

Второе замечание связано с правой частью (2). Процесс Джоуля—Томсона в чистом виде осуществляется лишь в том случае, если правой частью можно пренебречь, т. е. если макроскопическая скорость газа с обеих сторон трубки достаточно мала. У нас сейчас нет критерия, который позволил бы установить, когда это можно сделать. В силу сохранения энтропии в случае реального газа получаем:

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{T} - b}{C_P}.$$
 (3)

Из формулы (3) видно, что эффект Джоуля—Томсона для не очень плотного газа зависит от соотношения величин a и b, которые оказывают противоположное влияние на знак эффекта. Если силы взаимодействия между молекулами велики, так что превалирует «поправка на давление», то основную роль играет член, содержащий a, и

$$\frac{\Delta T}{\Delta P} > 0,$$

т. е. газ при расширении охлаждается ($\Delta T < 0$, так как всегда $\Delta P < 0$). В обратном случае (малые a)

$$\frac{\Delta T}{\Delta P} < 0,$$

т. е. газ нагревается ($\Delta T > 0$, так как по-прежнему $\Delta P < 0$).

Этот результат нетрудно понять из энергетических соображений. Как мы уже знаем, у идеального газа эффект Джоуля—Томсона отсутствует. Идеальный газ отличается от реального тем, что в нем можно пренебречь потенциальной энергией взаимодействия молекул. Наличие этой энергии приводит к охлаждению или нагреванию реальных газов при расширении. При больших a велика энергия притяжения молекул. Это означает, что потенциальная энергия молекул при их сближении уменьшается, а при удалении — при расширении газа — возрастает. Возрастание потенциальной энергии молекул происходит за счет их кинетической энергии — температура газа при расширении падает. Аналогичные рассуждения позволяют понять, почему расширяющийся газ нагревается при больших значениях b.

Как следует из формулы (3), при температуре

$$T_i = \frac{2a}{Rb}$$

коэффициент $\mu_{\text{Д-T}}$ обращается в нуль. По формулам связи параметров газа Ван-дер-Ваальса с критическими параметрами получаем:

$$T_{\text{инв}} = \frac{27}{4} T_{\text{кp}}.\tag{4}$$

При температуре $T_{\text{инв}}$ эффект Джоуля–Томсона меняет знак: ниже температуры инверсии эффект положителен ($\mu_{\text{Д-T}} > 0$, газ охлаждается), выше $T_{\text{инв}}$ эффект отрицателен ($\mu_{\text{Д-T}} < 0$, газ нагревается).

Экспериментальная установка

Рис. 1: Схема установки

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рисунке 1. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается исследуемый газ. Трубка имеет длину 80 мм и сделана из нержавеющей стали, обладающей, как известно, малой теплопроводностью. Диаметр трубки d=3 мм, толщина стенок 0,2 мм. Пористая перегородка расположена в конце трубки и представляет собой стеклянную пористую пробку со множеством узких и длинных каналов. Пористость и толщина пробки (l=5 мм) подобраны так, чтобы обеспечить оптимальный поток газа при перепаде давлений $\Delta P \leqslant 4$ атм (расход газа составляет около $10~{\rm cm}^3/{\rm c}$); при этом в результате эффекта Джоуля—Томсона создается достаточная разность температур.

Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется термометром $T_{\rm B}$, помещенным в термостате. Требуемая температура воды устанавливает-

ся и поддерживается во время эксперимента при помощи контактного термометра T_{κ} .

Давление газа в трубке измеряется манометром М и регулируется вентилем В (при открывании вентиля В, т. е. при повороте ручки против часовой стрелки, давление P_1 повышается). Манометр М измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Так как углекислый газ после пористой перегородки выходит в область с атмосферным давлением P_2 , то этот манометр непосредственно измеряет перепад давления на входе и на выходе трубки $\Delta P = P_1 - P_2$.

Разность температур газа до перегородки и после нее измеряется дифференциальной термопарой медь – константан. Константановая проволока диаметром 0,1 мм соединяет спаи 8 и 9, а медные проволоки (того же диаметра) подсоединены к цифровому вольтметру 7. Отвод тепла через проволоку столь малого сечения пренебрежимо мал. Для уменьшения теплоотвода трубка с пористой перегородкой помещена в трубу Дьюара 3, стенки которой посеребрены, для уменьшения теплоотдачи, связанной с излучением. Для уменьшения теплоотдачи за счет конвекции один конец трубы Дьюара уплотнен кольцом 4, а другой закрыт пробкой 10 из пенопласта. Такая пробка практически не создает перепада давлений между внутренней полостью трубы и атмосферой.

Ход работы

Проведя измерения, занесем точки в таблицу 1. Построим графики полученных зависимостей (см. рис. 2). Из графиков заключаем - зависимость с достаточной точностью можно считать линейной.

Перейдем к расчету зависимостей. Обработку проведем методом наименьших квадратов:

$$y=Ax+B,$$
 где
$$A=rac{r_{xy}}{\sigma_x^2}, \label{eq:AxB}$$
 $B=\overline{y}-A\overline{x}.$

Для оценки погрешностей используем следующие формулы:

$$\Delta A = t_{n-1,p} \sqrt{\frac{1}{n-2} \left(\frac{\sigma_y^2}{\sigma_x^2} - A^2\right)},$$
$$\Delta B = \Delta A \sqrt{\sigma_x^2 + \overline{x}^2},$$

	$20^{\circ}C$			$30^{\circ}C$		40°C			
ΔP , Πa	V, мкВ	ΔT ,K	ΔP , Πa	V, мкВ	ΔT ,K	ΔP , Πa	V, мкВ	ΔT ,K	
4.00	130	3.19	4.00	125	3.00	4.00	115	2.76	
3.60	115	2.83	3.55	105	2.52	3.60	100	2.40	
3.20	97	2.38	3.15	88	2.12	3.15	84	2.02	
2.85	82	2.01	2.80	73	1.75	2.80	68	1.63	
2.40	60	1.47	2.45	58	1.39	2.45	56	1.35	
2.00	48	1.18	2.00	45	1.08	2.05	43	1.03	
$45^{\circ}C$			50°C						
ΔP , Πa	V, мкВ	ΔT ,K	ΔP , Πa	V, мкВ	ΔT ,K				
4.00	113	2.66	4.00	113	2.59				
3.65	102	2.40	3.60	96	2.20				
3.20	85	2.00	3.20	81	1.86				
2.75	68	1.60	2.80	66	1.51				
2.35	52	1.22	2.40	52	1.19				
2.05	42	0.99	2.00	38	0.87				

Таблица 1: Данные

Рис. 2: Температура от давления

Температура	\overline{x}	σ_x^2	\overline{y}	σ_y^2	r_{xy}	A	ΔA	B	ΔB
$20^{\circ}C$	3.008	0.464	2.179	0.502	0.482	1.039	0.028	-0.948	0.087
$30^{\circ}C$	2.992	0.445	1.979	0.428	0.435	0.979	0.033	-0.948	0.101
40°C	3.008	0.438	1.867	0.356	0.394	0.901	0.019	-0.844	0.059
$45^{\circ}C$	3.000	0.475	1.812	0.361	0.414	0.872	0.013	-0.804	0.039
50°C	3.000	0.467	1.705	0.342	0.399	0.855	0.015	-0.861	0.046

Таблица 2: Обработка

Таблица 3:

T^{-1}, K^{-1}	$\mu, \frac{K}{\text{atm}}$
0.003411	1.039176
0.003299	0.978513
0.003193	0.900994
0.003143	0.871827
0.003095	0.855177

Рис. 3: Нахождение постоянных a и b

где n - количество измерений, $t_{n-1,p}$ - коэффициент Стьюдента По угловому коэффициенту получаем значения $\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P} = A$. Для нахождения коэффициентов a и b газа, перепишем зависимость 3 в виде:

$$\mu_{\text{Д-T}} = \frac{2a}{C_P T} - \frac{b}{C_P}.\tag{5}$$

Для приведенной выше зависимости 5 легко провести линеаризацию, рассмотрев $\mu_{\text{Д-Т}}\left(\frac{1}{T}\right)$. Пересчет занесем в таблицу 3. Построим график, чтобы убедится, что зависимость вообще можно считать линейной. Проведем обработку методом наименьших квадратов (см. таблицу 4), откуда получаем

$$\mu_{\text{Д-T}} = A\frac{1}{T} + B,\tag{6}$$

\overline{x}		σ_x^2	\overline{y}	σ_y^2	r_{xy}	A	ΔA	B	ΔB
0.00)3	1.30e-08	0.929	4.82e-03	0.000	607.622	$3.020 \mathrm{e}{+01}$	-1.032	0.098

Таблица 4: Обработка для $\mu\left(\frac{1}{T}\right)$

где

$$A = \frac{2a}{C_P T} = (61 \pm 3) \cdot 10^2 \text{ atm}^{-1},$$

$$B = -\frac{b}{C_P} = (-1.0 \pm 0.1) \text{ } K \cdot \text{atm}^{-1}.$$

Проведем расчет коэффициентов a и b:

$$a = (1.01 \pm 0.06) \frac{H \cdot \text{M}^2}{\text{MOJIb}^2}$$

$$b = (41 \pm 4) \cdot 10^1 \frac{\text{cm}^3}{\text{модь}}$$

Для критической температуры получаем:

$$T_{\mathrm{\kappa p}} = \frac{8a}{27Rb} \approx 90 \mathrm{\ K}$$

Вывод

Несмотря на достаточно маленькие погрешности видно, что значения коэффициентов сильно отличаются от табличных $a_{\rm таб.}=0.36\frac{H\cdot {\rm M}^2}{{\rm моль}^2}$ и $b_{\rm таб.}=42.2\frac{{\rm cM}^3}{{\rm моль}}.$

Однако видно, что данная модель весьма неплохо описывает качественное поведение процесса. Графики оказались линейными, а погрешности коэффициентов зависимости малы. Объяснить различие можно попробовать большой систематической погрешностью.

Для уточнения результатов стоит обратить внимание на точность измерения температуры и особенно давления.