Clase 06 - Análisis de varianza Curso Análisis de datos con R para Biociencias.

Dra. Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

15 January 2023

PLAN DE LA CLASE

1.- Introducción

- ¿Qué es un análisis de varianza?.
- Hipótesis y supuestos.
- Interpretar resultados de análisis de varianza con R.
- Pruebas a posteriori.

2.- Práctica con R y Rstudio cloud

- Realizar pruebas de hipótesis: Anova y posteriores.
- Realizar gráficas avanzadas con ggplot2.

ANOVA

¿Qué es un análisis de varianza?

Herramienta básica para analizar el efecto de uno o más factores (cada uno con dos o más niveles) en un experimento.

HIPÓTESIS EN UNA ANOVA

Hipótesis factor 1

 $\mathbf{H_0}: \alpha_{1.1} = \alpha_{1.2} = \alpha_{1.3}$

Hipótesis factor 2

 $\mathbf{H_0}:\,\beta_{2.1}=\beta_{2.2}=\beta_{2.3}$

Hipótesis interacción

 $H_0: \alpha^*\beta = 0$

Hipótesis Alternativa

H_A: No todas las medias son iguales

ANOVA PARA COMPARAR MEDIAS

¿Por qué se llama ANOVA si se comparan medias?

Por que el estadístico **F** es un cociente de varianzas.

$$\mathbf{F} = rac{\sigma_{entregrupos}^2}{\sigma_{dentrogrupos}^2}$$

Mientras mayor es el estadístico **F**, más es la diferencia de medias entre grupos.

SUPUESTOS DE UNA ANOVA

- 1) Independencia de las observaciones.
- 2) Normalidad.
- 3) Homocedasticidad: homogeneidad de las varianzas.

TEST POSTERIORES (PRUEBAS A POSTERIORI)

¿Para qué sirven?

Para identificar que pares de niveles de uno o más factores son significativamente distintos entre sí.

¿Cuando usarlos?

Sólo cuando se rechaza H_0 del ANOVA.

Tukey test

Es uno de los más usados, similar al *t-test*, pero corrige la tasa de error por el número de comparaciones.

ESTUDIO DE CASO: CRECIMIENTO DE PLANTAS

► PlantGrowth {datasets}

ANOVA A UNA VÍA (UN CRÍTERIO DE CLASIFICACIÓN)

```
res.aov <- lm(weight ~ group, data = my_data)
anova (res.aov)
## Analysis of Variance Table
##
## Response: weight
##
            Df Sum Sq Mean Sq F value Pr(>F)
## group 2 3.7663 1.8832 4.8461 0.01591 *
## Residuals 27 10.4921 0.3886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
```

COMPARACIONES MÚLTIPLES

```
fit_anova <- aov(res.aov)
tk <- TukeyHSD(fit_anova)</pre>
```

Table 1: Prueba de Tukey.

Trat.	Contraste	H0	Diferencia	IC-bajo	IC-alto	p-ajustado
group	trt1-ctrl	0	-0.37	-1.06	0.32	0.39
group	trt2-ctrl	0	0.49	-0.20	1.19	0.20
group	trt2-trt1	0	0.86	0.17	1.56	0.01

ESTUDIO DE CASO: GUINEA PIGS

► ToothGrowth {datasets}

OJ: Orange juice - VC: Vitamin C

ANOVA DOS VIAS CON INTERACCIÓN

res.aov2 <- $lm(len \sim dose * supp, data = my_data1)$

```
anova(res.aov2)
Analysis of Variance Table
Response: len
          Df Sum Sq Mean Sq F value Pr(>F)
dose 2 2426.43 1213.22 92.000 < 2.2e-16 ***
supp 1 205.35 205.35 15.572 0.0002312 ***
dose:supp 2 108.32 54.16 4.107 0.0218603 *
Residuals 54 712.11 13.19
Signif. codes:
0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
```

PRÁCTICA ANÁLISIS DE DATOS

► El trabajo práctico se realiza en Posit.cloud.

Guía 06 Anova y posteriores

RESUMEN DE LA CLASE

- Elaborar hipótesis de anova
- Realizar análisis de varianza
 - ▶ 1 factor.
 - 2 factores y con interacción.
 - pruebas a posteriori
- Realizar gráficas avanzadas con ggplot2