1. (1p) Adăugați ponderi - numere naturale mai mari decât 3 - pe muchiile grafului din figura de mai jos care nu au încă ponderi, astfel încât graful să aibă exact doi arbori parțiali de cost minim (justificați).

- **2.** (**1p**) Care dintre următoarele afirmații sunt adevărate? Justificați (complexitatea algoritmilor studiați se presupune cunoscută, nu trebuie demonstrată în justificare)
 - a) Algoritmul Bellman-Ford are complexitate mai bună decât algoritmul lui Dijkstra pentru grafuri orientate ponderate cu ponderi pozitive
 - b) O ordonare (sortare) topologică a vârfurilor unui graf orientat fără circuite se termină cu un vârf cu grad extern 0
 - c) Un graf neorientat conex cu n vârfuri are cel puțin n muchii
 - d) Un graf eulerian poate avea mai multe componente conexe
- **3.** (**1p**) a) Fie G un graf neorientat conex cu gradul maxim al unui vârf 6. Care este numărul maxim de culori folosite de algoritmul Greedy de colorare a vârfurilor lui G prezentat la curs, dacă vârfurile sunt ordonate folosind strategia Smallest First? Justificați.
- b) Exemplificați (cu explicații) algoritmul Greedy de colorare cu vârfurile ordonate folosind strategia Smallest First pentru graful următor.

4. (**1,5p**) Definiți noțiunile de flux, tăietură minimă și lanț nesaturat/drum de creștere. Ilustrați pașii algoritmului Ford-Fulkerson pentru rețeaua din figura următoare (unde pe un arc e sunt trecute valorile f(e)/c(e) reprezentând flux/capacitate), pornind de la fluxul indicat și alegând la fiecare pas un s-t lanț f-nesaturat de lungime minimă (algoritmul Edmonds-Karp). Indicați o tăietură (s-t tăietură) minimă în rețeaua (se vor indica vârfurile din bipartiție, arcele directe, arcele inverse). Mai există și o altă s-t tăietură minimă în această rețea? Justificați răspunsurile

5. (**2p**) **a**) Descrieți algoritmul Floyd-Warshall pentru determinarea de distanțe într-un graf orientat ponderat cu n vârfuri, detaliind următoarea schemă (se vor respecta numele variabilelor din schemă):

Inițializarea matricelor D de distanțe și P de predecesori

pentru $\mathbf{i} \leftarrow 1$, n execută

pentru $\mathbf{x} \leftarrow 1$, n execută

pentru $\mathbf{y} \leftarrow 1$, n execută

........

- b) Presupunem că n>3. Ce reprezintă valoarea D[x][y] după încheierea execuției pasului la care i=3 (ce semnifică)?
- c) La finalul execuției pseudocodului de mai sus pentru un graf cu 8 vârfuri se obțin matricele următoare:

									_							
D=	0	8	1	∞	∞	∞	∞	∞	P =	0	1	1	0	0	0	0
	2	0	3	∞	∞	∞	∞	∞		2	0	1	0	2	0	0
	∞	∞	0	∞	∞	∞	∞	∞		3	3	0	0	0	0	0
	5	3	6	-1	2	3	-6	4		2	5	1	7	4	5	8
	2	0	3	-4	-1	0	-9	1		2	5	1	7	4	5	8
	1	-1	2	-5	-2	-1	-10	0		2	5	1	7	4	5	8
	10	8	11	4	7	8	-1	9		2	5	1	7	4	5	8
	-1	-3	0	-7	-4	-3	-12	-2		2	5	1	7	4	5	8

Adăugați în pseudocod instrucțiunile necesare pentru ca algoritmul să testeze existența unui circuit cu cost negativ în graf, și, în caz afirmativ, să afișeze unul, și ilustrați-le pe graful dat ca exemplu (cu explicații).

6. (**1p**) Este corect următorul algoritm de determinare a unui arbore parțial de cost minim al unui graf conex ponderat G = (V, E, w)? Justificați (fără a apela în justificare la modul de funcționare al altor algoritmi; rezultatele folosite trebuie demonstrate și trebuie explicat modul în care se folosesc)

 \mathbf{T} = (V, E = \emptyset) - inițial V conține toate vârfurile și nu conține nicio muchie

pentru i = 1, |V|-1

- 1. Alege o componentă conexă C al lui T care conține vârful i
- 2. Alege o muchie de cost minim e cu o extremitate în C și cealaltă nu și adaugă e la T
- 7. (1,5p).a) Indicați fețele hărții următoare și gradul fiecărei fețe.

b) Fie M=(V, E, F) o hartă conexă cu n>3 vârfuri și m muchii. Arătați că dacă orice vârf din M are gradul 3 și orice față are gradul 3 sau 6 atunci sunt exact 4 fețe de grad 3.