550(537)	OP D3.0 IMI D5.3 JL 300(064 •	IMI GP INC NJL D1.2 IN 287) D3.6N	iP Ni	C D t R O t D a t	Climb 015.2 urn L R064° or abo rack 09.6ML approc	SSED straig IMI at EFT c D11.41 ove, th 244° J at ach agolding	ht ah 1200 and di MLJ a nen fly to R 1800 gain o	ead to rect to to 1500 y on 244° or ab	oove, oove,
GP INC D5.5 I D7.9N 550(537)	OP 03.0 IMI 05.3 JL 300(064.	NOP MAPE IMI GP INC NJL D1.2 IM 287) D3.6N.	OP MI IL NJI	C D t R O t D a t	MIS Climb 015.2 urn L R064° or abo rack 09.6ML approc	SSED straig IMI at EFT c D11.41 ove, th 244° J at	APPR ht ah 1200 and di MLJ a nen fly to R 1800 gain o	ead to rect to to 1500 y on 244° or ab	oove, oove,
	5	1.9	0-0.3 -4	7					
C	D		FAI			OP) 8.0k	m		
3(60) 0/800		GS in	kt km/h	80 150	100 185	120 220	140 260	160 295	180 335
<u> </u>		⊢ Time r	nin:sec	3:14	2:35	2:09	1:51	1:37	1:26
160(147) 2200	160(147) 2400	Rate of de	escent m/s	2.2	2.7	3.2	3.8	4.3	4.9
450(435) 4400	520(505) 5000	●RVR 55	 Missed approach climb gradient RVR 550 can be implemented when using approved AP or FD for approach. Changes: New APP06 added. 						
	160(147) 2200 450(435)	160(147) 160(147) 2200 2400 450(435) 520(505)	Time r 160(147) 160(147) 2200 2400 Rate of do 450(435) 520(505) Missed © RVR 55	160(147) 160(147) 2200 2400 Rate of descent m/s 450(435) 520(505) RVR 550 can be	Time min:sec 3:14 160(147) 2200 2400 Rate of descent m/s 2.2 9 Missed approach climb RVR 550 can be imple	Time min:sec 3:14 2:35	Time min:sec 3:14 2:35 2:09 160(147) 2200 2400 Rate of descent m/s 2.2 2.7 3.2 450(435) 520(505) 4400 5000 5000 6 7 7 7 7 7 7 7 7 7	Time min:sec 3:14 2:35 2:09 1:51 160(147) 2200 2400 Rate of descent m/s 2.2 2.7 3.2 3.8 450(435) 520(505) Missed approach climb gradient RVR 550 can be implemented when usin	Time min:sec 3:14 2:35 2:09 1:51 1:37 160(147) 2200 2400 Rate of descent m/s 2.2 2.7 3.2 3.8 4.3 450(435) 520(505) Missed approach climb gradient GRYR 550 can be implemented when using approach approach approach approach approach using approach