

=> file medline biosis caplus

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	0.15	0.15

FILE 'MEDLINE' ENTERED AT 10:30:21 ON 22 DEC 2000

FILE 'BIOSIS' ENTERED AT 10:30:21 ON 22 DEC 2000
COPYRIGHT (C) 2000 BIOSIS(R)

FILE 'CAPLUS' ENTERED AT 10:30:21 ON 22 DEC 2000
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2000 AMERICAN CHEMICAL SOCIETY (ACS)

=> s micron

L1 21709 MICRON

=> s l1 (p) (array# or chip#)

L2 533 L1 (P) (ARRAY# OR CHIP#)

=> s l2 (p) (DNA or nucleic or oligo?)

L3 27 L2 (P) (DNA OR NUCLEIC OR OLIGO?)

=> dup rem 13

PROCESSING COMPLETED FOR L3

L4 22 DUP REM L3 (5 DUPLICATES REMOVED)

=> d 1-22 ti

L4 ANSWER 1 OF 22 MEDLINE

TI Focal extraction of surface-bound DNA from a microchip using
photo-thermal
denaturation.

L4 ANSWER 2 OF 22 BIOSIS COPYRIGHT 2000 BIOSIS DUPLICATE 1
TI The BARC biosensor applied to the detection of biological warfare
agents.

L4 ANSWER 3 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Arrays produced by DNA nanotechnology.

L4 ANSWER 4 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Randomly ordered, high-density, fiber-optic, microsensor-array sensors.

L4 ANSWER 5 OF 22 MEDLINE DUPLICATE 2
TI Active microelectronic chip devices which utilize controlled
electrophoretic fields for multiplex DNA hybridization and other genomic
applications.

L4 ANSWER 6 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI DNA nanostructure arrays.

L4 ANSWER 7 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Simplified fabrication of integrated CE on chips.

L4 ANSWER 8 OF 22 MEDLINE DUPLICATE 3
TI Discrimination of DNA hybridization using chemical force microscopy.

L4 ANSWER 9 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Elements for molecular information processing. Rotaxanes

L4 ANSWER 10 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Micromachined molds for microfluidic chips

L4 ANSWER 11 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Apparatus for the chemical synthesis of molecular arrays

L4 ANSWER 12 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Jet droplet device and method

L4 ANSWER 13 OF 22 MEDLINE
TI Analysis of biological particles using dielectrophoresis and impedance measurement.

L4 ANSWER 14 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Separation of DNA using ferrofluid array electrophoresis

L4 ANSWER 15 OF 22 CAPLUS COPYRIGHT 2000 ACS
TI Microclustering patterns of acetylcholine receptors on myotubes studied by spatial fluorescence autocorrelation

L4 ANSWER 16 OF 22 MEDLINE
TI A method for DNA sequencing by hybridization with oligonucleotide matrix.

L4 ANSWER 17 OF 22 MEDLINE
TI DNA primase from KB cells. Evidence for a novel model of primase catalysis by a highly purified primase/polymerase-alpha complex.

L4 ANSWER 18 OF 22 MEDLINE
TI Injection of DNA into liposomes by bacteriophage lambda.

L4 ANSWER 19 OF 22 MEDLINE
TI Morphological analyses of active genes and chromatin.

L4 ANSWER 20 OF 22 MEDLINE
TI Chromosomal replication of Drosophila virilis. II. Organization of active origins in diploid brain cells.

L4 ANSWER 21 OF 22 MEDLINE
TI Temporal analysis of the nuclear cycle by serial section electron microscopy of the fungus, Saprolegnia ferax.

L4 ANSWER 22 OF 22 MEDLINE
TI Characterization of the replicative structures of the DNA of a herpesvirus (pseudorabies).

=> d 11, 12 bib ab

L4 ANSWER 11 OF 22 CAPLUS COPYRIGHT 2000 ACS
AN 1998:180793 CAPLUS
DN 128:252336
TI Apparatus for the chemical synthesis of molecular arrays

IN Gamble, Ronald C.; Theriault, Thomas P.; Baldeschwieler, John D.
 PA Incyte Pharmaceuticals, Inc., USA; Gamble, Ronald C.; Theriault, Thomas
 P.; Baldeschwieler, John D.
 SO PCT Int. Appl., 43 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9810858	A1	19980319	WO 1997-US16594	19970916
	W:	AT, AU, BR, CH, CN, DE, DK, ES, FI, GB, IL, JP, KR, MX, NO, NZ, RU, SE, SG, US, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
	RW:	GH, KE, LS, MW, SD, SZ, UG, ZW, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG			
	US 5981733	A	19991109	US 1996-714867	19960916
	AU 9745839	A1	19980402	AU 1997-45839	19970916
	EP 946282	A1	19991006	EP 1997-944316	19970916
	R:	BE, DE, ES, FR, GB, IT, NL			

PRAI US 1996-714867 19960916
 WO 1997-US16594 19970916

AB An app. for the automated synthesis of mol. arrays. A jetting device is employed along with a reaction chamber to dispense reagents used in the synthesis onto the substrate. A positioning system moves the substrate from the jet to the reaction chamber. A controller controls the movement of the substrate and the application of the reagents so that the synthesis is carried out according to a pre-detd. procedure. The app. will synthesize oligodeoxyribonucleotide in an array of micron-size spots according to a pattern selected by the operator immediately prior to synthesis.

L4 ANSWER 12 OF 22 CAPLUS COPYRIGHT 2000 ACS
 AN 1997:776110 CAPLUS
 DN 128:32105
 TI Jet droplet device and method
 IN Gamble, Ronald C.; Theriault, Thomas P.; Baldeschwieler, John
 PA Incyte Pharmaceuticals, Inc., USA; Gamble, Ronald C.; Theriault, Thomas
 P.; Baldeschwieler, John
 SO PCT Int. Appl., 37 pp.
 CODEN: PIXXD2
 DT Patent
 LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9744134	A1	19971127	WO 1997-US8135	19970513
	W:	AT, AU, BR, CN, DE, DK, ES, FI, GB, IL, JP, KR, MX, NO, NZ, RU, SE, SG, US, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM			
	RW:	GH, KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG			
	AU 9731250	A1	19971209	AU 1997-31250	19970513
	EP 898495	A1	19990303	EP 1997-926493	19970513
	R:	BE, DE, ES, FR, GB, IT, NL			
	JP 2000513266	T2	20001010	JP 1997-542504	19970513
	US 6001309	A	19991214	US 1998-79871	19980515
PRAI	US 1996-649535		19960517		
	WO 1997-US8135		19970513		
AB	Devices and method are provided for precise redn. of arrays of microspots. A pulse jetting device is employed having a capillary of micron dimensions, with a portion of the capillary proximal to the jetting orifice circumferentially surrounded by a piezoelec. transducer. By appropriate design of the capillary, orifice and piezoelec. transducer,				

droplets can be formed on a surface, sep'd. by as little as 80 .mu. center-to-center, and living at least about a 15 .mu. spacing at the border. The subject substrate arrays can be used for providing miniaturized arrays of reagents, such as nucleic acids, for detecting the presence of homologous sequences in a sample.

=> d 3, 6-8 bib ab

L4 ANSWER 3 OF 22 CAPLUS COPYRIGHT 2000 ACS
AN 2000:797746 CAPLUS
TI Arrays produced by DNA nanotechnology.
AU Seeman, Nadrian C.
CS Department of Chemistry, New York University, New York, NY, 10003, USA
SO Abstr. Pap. - Am. Chem. Soc. (2000), 220th, PHYS-571
CODEN: ACSRAL; ISSN: 0065-7727
PB American Chemical Society
DT Journal; Meeting Abstract
LA English
AB Nanotechnol. is the science of well-structured materials and their components. DNA nanotechnol. employs branched motifs and sticky ends to achieve these aims. A central goal of DNA nanotechnol. is the self-assembly of periodic matter. We have constructed micron-sized 2-dimensional DNA arrays in three different motifs. In the first motif, we have used double crossover mols. decorated with DNA hairpins that protrude from the plane of the 2-D array and are visible in the AFM. We can change the pattern by changing the components, and by modification after assembly. We have used triple crossover mols. whose rotation leads to different patterns in the AFM. We have generated arrays from parallelograms predicated on Holliday junction analogs that contain cavities whose sizes can be tuned. We can program aperiodic assemblies to represent the results of logical operations. We have performed two cumulative XOR operations, with high fidelity.

L4 ANSWER 6 OF 22 CAPLUS COPYRIGHT 2000 ACS
AN 2000:795362 CAPLUS
TI DNA nanostructure arrays.
AU Seeman, Nadrian C.
CS Department of Chemistry, New York University, New York, NY, 10003, USA
SO Abstr. Pap. - Am. Chem. Soc. (2000), 220th, IEC-113
CODEN: ACSRAL; ISSN: 0065-7727
PB American Chemical Society
DT Journal; Meeting Abstract
LA English
AB Nanotechnol. produces well-structured materials and their components. DNA nanotechnol. employs branched motifs and sticky ends to achieve these aims. A central goal of DNA nanotechnol. is the self-assembly of periodic matter. We have constructed micron-sized 2-dimensional DNA arrays in three different motifs. In one motif, we have used double crossover mols. decorated with DNA hairpins that protrude from the plane of the 2-D array and are visible in the AFM. We can change the pattern by changing the components, and by restriction, ligation or annealing after assembly. The rotation of triple crossover mols. leads to further patterns in the AFM. We have generated arrays from parallelograms predicated on Holliday junction analogs that contain tunably sized cavities. We also can program aperiodic assemblies to represent the results of logical operations. We have performed two cumulative XOR operations, with high fidelity.

L4 ANSWER 7 OF 22 CAPLUS COPYRIGHT 2000 ACS
AN 2000:326889 CAPLUS

TI Simplified fabrication of integrated CE on chips.
AU Zhao, Dong S.; McCormick, Matthew T.; Kuhr, Werner G.
CS Department of Chemistry, UC, Riverside, CA, 92521, USA
SO Book of Abstracts, 219th ACS National Meeting, San Francisco, CA, March 26-30, 2000 (2000), ANYL-096 Publisher: American Chemical Society, Washington, D. C.
CODEN: 69CLAC
DT Conference; Meeting Abstract
LA English
AB One of the major barriers that exists for the implementation of on-chip devices is the difficulty of creating the **micron**-sized structures in glass or fused silica, which are currently prep'd. with expensive, specialized nanolithog. and silicon-based etching processing. An alternative procedure involves the creation of **micron**-scale molds using simple machining on a wide variety of substrates with **micron** resoln., was previously described for manufg. integrated microfluidic elements¹. These molds are then used to cast PDMS microfluidic systems for capillary electrophoresis. This process has been simplified and makes it possible to design, produce a mold, and to fabricate a microfluidic system in polydimethylsiloxane (PDMS) in less than 8 h. The performance of microfluidic systems prep'd. in this way is evaluated by examg. the performance of a capillary electrophoresis sepn. of .PHI.X 174 DNA/Hae fragments with resoln. comparable to that obtained using a fused silica capillary.

Refs.

1. HPCE 99 Abstr. P492.

L4 ANSWER 8 OF 22 MEDLINE DUPLICATE 3
AN 1999284819 MEDLINE
DN 99284819
TI Discrimination of DNA hybridization using chemical force microscopy.
AU Mazzola L T; Frank C W; Fodor S P; Mosher C; Lartius R; Henderson E
CS Department of Chemistry, Stanford University, Stanford, California 94305, USA.
SO BIOPHYSICAL JOURNAL, (1999 Jun) 76 (6) 2922-33.
Journal code: A5S. ISSN: 0006-3495.
CY United States
DT Journal; Article; (JOURNAL ARTICLE)
LA English
FS Priority Journals
EM 199909
EW 19990903
AB Atomic force microscopy (AFM) can be used to probe the mechanics of molecular recognition between surfaces. In the application known as "chemical force" microscopy (CFM), a chemically modified AFM tip probes a surface through chemical recognition. When modified with a biological ligand or receptor, the AFM tip can discriminate between its biological binding partner and other molecules on a heterogeneous substrate. The strength of the interaction between the modified tip and the substrate is governed by the molecular affinity. We have used CFM to probe the interactions between short segments of single-strand DNA (**oligonucleotides**). First, a latex microparticle was modified with the sequence 3'-CAGTTCTACGATGGCAAGTC and epoxied to a standard AFM cantilever. This **DNA**-modified probe was then used to scan substrates containing the complementary sequence 5'-GTCAAGATGCTACCGTTAG. These substrates consisted of **micron**-scale, patterned **arrays** of one or more distinct **oligonucleotides**. A strong friction interaction was measured between the modified tip and both elements of surface-bound **DNA**. Complementary **oligonucleotides** exhibited a stronger friction than the noncomplementary sequences within the patterned **array**. The friction force correlated with the measured strength of adhesion (rupture force) for the tip- and **array**-bound **oligonucleotides**. This result is consistent with the formation of a greater number of hydrogen bonds for the complementary sequence, suggesting that the

friction arises from sequence-specific interaction (hybridization) of

=> s (micron# or submicron# or micrometer# or nanometer#) and (array# or chip# or biochip# or support#) and (DNA or RNA or nucleic or oligonucleotide# or oligo# or probe# or protein# or polypeptide# or peptide#)

113 FILE AEROSPACE
24 FILE AGRICOLA
2 FILE ALUMINIUM
2 FILE ANABSTR
1 FILE APILIT
1 FILE APILIT2
8 FILE APIPAT
8 FILE APIPAT2
7 FILE AQUASCI
12 FILES SEARCHED...
6 FILE BABS
6 FILE BIOBUSINESS
1 FILE BIOCOMMERCE
110 FILE BIOSIS
19 FILE BIOTECHABS
19 FILE BIOTECHDS
30 FILE BIOTECHNO
20 FILES SEARCHED...
872 FILE CANCERLIT
222 FILE CAPLUS
25 FILES SEARCHED...
10 FILE CEABA-VTB
80 FILE CEN
6 FILE CIN
103 FILE COMPENDEX
7 FILE COMPUAB
2 FILE COMPUSCIENCE
35 FILES SEARCHED...
18 FILE DKILIT
35 FILE DGENE
43 FILES SEARCHED...
6 FILE ELCOM
2 FILE EMA
3 FILE EMBAL
78 FILE EMBASE
50 FILES SEARCHED...
80 FILE ENERGY
4 FILE ENTEC
33 FILE ESBIOTBASE
4408 FILE EUROPATFULL
54 FILES SEARCHED...
3 FILE FROSTI
59 FILES SEARCHED...
3 FILE GEOREF
356 FILE IFIPAT
66 FILES SEARCHED...
278 FILE INSPEC
12 FILE INSPHYS
81 FILE INVESTTEXT
1 FILE IPA
2 FILE ISMEC
47 FILE JICST-EPLUS
73 FILES SEARCHED...
1 FILE KOSMET
24 FILE LIFESCI

6012 FILE MEDLINE
 5 FILE METADEX
 17 FILE NIOSHTIC
 82 FILES SEARCHED...
 388 FILE NLDB
 64 FILE NTIS
 3 FILE OCEAN
 1 FILE PAPERCHEM2
 89 FILES SEARCHED...
 22 FILE PATOSEP
 8 FILE PATOSWO
 8 FILE PHIN
 3 FILE PIRA
 1 FILE POLLUAB
 778 FILE PROMT
 96 FILES SEARCHED...
 4 FILE RAPRA
 178 FILE SCISEARCH
 3 FILE SIGLE
 7 FILE SOLIDSTATE
 1 FILE TEXTILETECH
 645 FILE TOXLINE
 106 FILES SEARCHED...
 16 FILE TOXLIT
 1 FILE TRIBO
 1 FILE TULSA
 1 FILE UFORDAT
 3 FILE ULIDAT
 19647 FILE USPATFULL
 344 FILE WPIDS
 114 FILES SEARCHED...
 344 FILE WPINDEX

72 FILES HAVE ONE OR MORE ANSWERS, 117 FILES SEARCHED IN STNINDEX

L1 QUE (MICRON# OR SUBMICRON# OR MICROMETER# OR NANOMETER#) AND (ARRAY# OR
 CH
 IP# OR BIOCHIP# OR SUPPORT#) AND (DNA OR RNA OR NUCLEIC OR
 OLIGONUCLEO
 TIDE# OR OLIGO# OR PROBE# OR PROTEIN# OR POLYPEPTIDE# OR PEPTIDE#)

=> d rank

F1	19647	USPATFULL
F2	6012	MEDLINE
F3	4408	EUROPATFULL
F4	872	CANCERLIT
F5	778	PROMT
F6	645	TOXLINE
F7	388	NLDB
F8	356	IFIPAT
F9	344	WPIDS
F10	344	WPINDEX
F11	278	INSPEC
F12	222	CAPLUS
F13	178	SCISEARCH
F14	113	AEROSPACE
F15	110	BIOSIS
F16	103	COMPENDEX
F17	81	INVESTTEXT
F18	80	CEN
F19	80	ENERGY
F20	78	EMBASE
F21	64	NTIS
F22	47	JICST-EPLUS

F23	35	DGENE
F24	33	ESBIOBASE
F25	30	BIOTECHNC
F26	24	AGRICOLA
F27	24	LIFESCI
F28	22	PATOSEP
F29	19	BIOTECHABS
F30	19	BIOTECHDS
F31	18	DKILIT
F32	17	NIOSHTIC
F33	16	TOXLIT
F34	12	INSPHYS
F35	10	CEABA-VTB
F36	8	APIPAT
F37	8	APIPAT2
F38	8	PATOSWO
F39	8	PHIN
F40	7	AQUASCI
F41	7	COMPUAB
F42	7	SOLIDSTATE
F43	6	BABS
F44	6	BIOBUSINESS
F45	6	CIN
F46	6	ELCOM
F47	5	METADEX
F48	4	ENTEC
F49	4	RAPRA
F50	3	EMBAL
F51	3	FROSTI
F52	3	GEOREF
F53	3	OCEAN
F54	3	PIRA
F55	3	SIGLE
F56	3	ULIDAT
F57	2	ALUMINIUM
F58	2	ANABSTR
F59	2	COMPUSCIENCE
F60	2	EMA
F61	2	ISMEC
F62	1	APILIT
F63	1	APILIT2
F64	1	BIOCOMMERCE
F65	1	IPA
F66	1	KOSMET
F67	1	PAPERCHEM2
F68	1	POLLUAB
F69	1	TEXTILETECH
F70	1	TRIBO
F71	1	TULSA
F72	1	UFORDAT

=> file f4-40

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	6.30	6.45

FILE 'CANCERLIT' ENTERED AT 08:03:32 ON 28 DEC 2000

FILE 'PROMT' ENTERED AT 08:03:32 ON 28 DEC 2000
COPYRIGHT (C) 2000 Gale Group. All rights reserved.

FILE 'TOXLINE' ENTERED AT 08:03:32 ON 28 DEC 2000

FILE 'NLDB' ENTERED AT 08:03:32 ON 28 DEC 2000

This Page is inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT OR DRAWING
- BLURED OR ILLEGIBLE TEXT OR DRAWING
- SKEWED/SLANTED IMAGES
- COLORED OR BLACK AND WHITE PHOTOGRAPHS
- GRAY SCALE DOCUMENTS
- LINES OR MARKS ON ORIGINAL DOCUMENT
- REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: hole punched over text

**IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents *will not* correct images
problems checked, please do not report the
problems to the IFW Image Problem Mailbox**