АлГем

Сергей Григорян

13 января 2025 г.

Содержание

1	Лег	кция 14	4
	1.1	Алгебраические структуры	4
	1.2	Сравнения и вычеты	6
2	Лен	кция 15	9
	2.1	Характеристика поля	9
	2.2	Гомоморфизим и изоморфизм групп	12
	2.3	Простое подполе	13
3	Лен	кция 16	16
	3.1	Линейные пр-ва	16
		3.1.1 Подпр-во ЛП	17
		3.1.2 Подполе лин. объектов системы векторов	18
		3.1.3 Базис	19
4	Лен	кция 17	21
	4.1	Конечномерные ЛП	21
		4.1.1 Изоморфизм ЛП	24
5	Лен	сция 18	27
	5.1	Элементарные преобразования строк матрицы	29
	5.2	Метод Гаусса	31
6	Лег	кция 19 (СКИП)	32
7	Лен	кция 20	32
	7.1	Применения рангов матрицы	32
		7.1.1 Применнеие рангов к исследованию квадр. матрицы	
		на обратимость	35
	7.2	Операции над подпространствами	36
8	Лег	хция 21 (СКИП))	39
9	Лег	кция 22	39
	9 1	Сопряжённое пр-во	39

10	Лекция 24(вроде)	39
	10.1 Операции над ЛО	42
	10.2 Ранг лин. отображения	43
	10.3 Изменение матр. ЛО при замене базисов	43
11	Лекция 26	45
	11.1 Определители произовльного порядка	45
	11.2 Полилинейные кососимметрические ф-иии	47

1 Лекция 14

1.1 Алгебраические структуры

Определение 1.1. Группой наз-ся мн-во G с опред. на нём бинарной алг. операцией. (Обозначим как $*: G \times G \to G$ - отображение) Кроме того, * удовл. след. св-вам:

- I) Ассоциативность: (a * b) * c = a * (b * c)
- II) \exists нейтрального эл-та e отн-но *:

$$a * e = e * a = a$$

III) \exists обратный эл-т a^{-1} :

$$a * a^{-1} = a^{-1} * a = e$$

<u>Пример.</u> 1) $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+)$ - 0 нейтр. эл-т, $\forall a \to -a$ - противоположеный (обратный) эл-т.

- 2) $(\mathbb{R}\setminus\{0\},*),(\mathbb{Q}\setminus\{0\},*)$
- 3) $(\mathbb{R},*)$ не группа, нарушается III для 0
- 4) Пусть X произв. мн-во, S(X) мн-во всех вз. однозн. отобр. $X \to X$:

$$\phi, \psi$$
 - вз. одн. отобр.

$$(\phi \cdot \psi)(x) = \phi(\psi(x))$$

Тогда:

$$(S(X), \circ)$$
 - $e(x) = x$

$$e(x)$$
 —

5) $\Pi ycmv X = \{1, 2, \dots n\}$

$$\phi\colon \{\,1,2,\dots n\,\} \to \{\,1,2,\dots n\,\}\,$$
 - подстановка

$$S(\{1,2,\ldots n\})=S_n$$
 - симметрич. группа степени $n.$

Утверждение 1.1. Во всякой группе G нейтральный эл-т единственный.

Доказательство.

$$e = e * e' = e'$$

Определение 1.2. Пусть G группа. Эл-т b наз-ся левым обратным к a, если b*a=e

Эл-т c наз-ся правым обратным к a, если c*a=e

Утверждение 1.2. $\forall a \in G$ левый обратный κ нему совпад. c правым обратным κ нему u совпад. c a^{-1}

Доказательство.

$$b * a = e, a * c = e$$

 $c = e * c = (b * a) * c = b * (a * c) = b * e = b$
 $\Rightarrow b * a = a * b = e \Rightarrow b = a^{-1}$

В част-ти, для каждого эл-та а обратный эл-т единственный.

Определение 1.3. Мн-во R с опред. на нём бинарной алг. операциями "+" и "*" наз-ся кольцом, если эти операции удовл. св-вам:

- а) (R,+) абелева группа (т. е. группа с комутативностью).
- b) Ассоц. *
- с) Левая и правая дистрибутивность * отн-но +:

$$(a+b)*c = a*c + b*c$$

$$a*(b+c) = a*b + a*c$$

<u>Пример.</u> 1) $(\mathbb{Z}, +, *), (\mathbb{Q}, +, *), (\mathbb{R}, +, *)$ - θ - нейтр. эл-т + 2) $(M_n(\mathbb{R}), +, *)$

Определение 1.4. Если в $R \; \exists 1 \in R, \; \text{т. ч.}$:

$$1*a = a*1 = a, \forall \in R$$

то 1 наз-ся единицей кольца.

1.2 Сравнения и вычеты

Определение 1.5. Назовём $a, b \in Z$ сравнимыми по модулю n ($n \in \mathbb{N}, n > 1$), если a и b имеют равные остатки при делении на n.

Обозначение.

$$a \equiv b \pmod{n} \iff a - b = qn, q \in \mathbb{Z}$$

$$2 \equiv 17 \pmod{5}$$
$$3 \equiv 0 \pmod{3}$$

Замечание. Сравнения по одному и другому mod можно складывать и умножать:

$$\begin{cases} a_1 \equiv b_1 \pmod{n} \\ a_2 \equiv b_2 \pmod{n} \end{cases} \Rightarrow \begin{cases} a_1 \pm a_2 \equiv b_1 \pm b_2 \pmod{n} \\ a_1 \cdot a_2 \equiv b_1 \cdot b_2 \pmod{n} \end{cases}$$

Доказательство.

$$(a_1 \pm a_2) - (b_1 \pm b_2) = (a_1 - b_1) \pm (a_2 - b_2) = q_1 n \pm q_2 n = n(q_1 \pm q_2) : n$$
$$a_1 a_2 = (b_1 + q_1 n)(b_2 + q_2 n) = (b_1 b_2 + (q_2 b_1 + q_1 b_2 + q_1 q_2 n) n) : n$$
$$\Rightarrow a_1 a_2 - b_1 b_2 : n$$

Обозначение.

$$a \in \mathbb{Z}$$

 $\{\,a+n\cdot q\,\}\Rightarrow \overline{a}$ - класс вычетов a по модулю n

Классы вычетов по модулю $n \to \mathbb{Z}_n$:

$$\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}$$

Замечание.

$$\overline{a} + \overline{b} = \overline{a + b}$$

$$\overline{a} \cdot \overline{b} = \overline{a \cdot \overline{b}}$$

Проверка коректности:

$$\begin{cases} a \equiv a_1 \pmod{n} \\ b \equiv b_1 \pmod{n} \end{cases} \Rightarrow \overline{a} + \overline{b} \stackrel{?}{=} \overline{a_1} + \overline{b_1}$$

$$a + b \equiv a_1 + b_1$$

$$\overline{a} + \overline{b} \equiv \overline{a + b} \equiv \overline{a_1 + b_1} \equiv \overline{a_1} + \overline{b_1}$$

Утверждение 1.3. *Мн-во* Z_n *классов* вычетов по мод. n явл-ся кольцом \overline{c} операциями" + " * "

Доказательство. Опер-ция опр-на и кореектна:

$$(\mathbb{Z}_n,+)$$
 - абелева группа

 $\overline{0}$ - нейтральный эл-т

Определение 1.6. Пусть R - кольцо с 1. Эл-т $a \in R$ - обратимый $\iff \exists b \in R : a * b = b * a = 1$

Определение 1.7. R^* - мн-во всех обратимых эл-ов кольца R с 1.

Утверждение 1.4. R^* - группа с операцией умножения.

Доказательство. Покажем, что если a обратим, то обратный к нему эл-т b тоже обратим:

$$a*b=b*a=1\Rightarrow\;$$
 по опр-ю это верно

$$\Rightarrow a \in R^* \Rightarrow b \in R^*$$

Покажем теперь, что если $a, b \in R^* \Rightarrow a * b \in R^*$:

$$a, b \in R^* \Rightarrow a^{-1}, b^{-1} \in R^*$$

 $(ab)^{-1} = b^{-1}a^{-1}$
 $abb^{-1}a^{-1} = a * 1 * a^{-1} = 1$
 $\Rightarrow a \cdot b \in R^*$

Задача 1.1. Z_n^* - мн-во всех классов вычетов, взаимно простых с n.

Утверждение 1.5. B любом кольце R:

$$0 * a = a * 0 = 0, \forall a \in R$$

Доказательство.

$$0 * a + 0 * a = (0 + 0) * a = 0 * a$$

 $0 * a = 0$

Следствие 1.1. Если R - ненулевое кольцо c 1. То $0 \neq 1$:

Доказательство. От прот. пусть 0 = 1:

 $\forall a \in R \colon a = a * 1 = a * 0 = 0 \Rightarrow R$ - нулевое. Противоречие!!!

Следствие 1.2. *Если* R *ненулевое кольцо* c 1, *mo* $0 \notin R^*$

Определение 1.8. Мн-во F с опред. на нём бинарными алг. операциями +, * наз-ся **полем**, если:

- 1) (F,+) абелева группа с нейтр. эл-ом 0.
- 2) $(F \setminus \{0\}, *)$ абелева группа с нейтр. эл-ом 1.
- (a+b)c = ac + bc дистрибутивность.

Замечание. В любом поле содерж. 0 и 1. \Rightarrow $|F| \ge 2$

Замечание.

$$F^* = F \backslash \left\{\, 0\, \right\}\,$$
 - мультипликативная группа поля

Определение 1.9. Поле - это коммутативное колько с 1, у кот. каждый ненулевой эл-т обратим.

Пример. 1) $(\mathbb{Q}, +, *)$ - поле рац. чисел.

- 2) $(\mathbb{R},+,*)$ поле действ. чисел.
- 3) $(\mathbb{C},+,*)$ поле комплексных чисел.

4) (Boolean)

Утверждение 1.6. В поле нет делителей нуля.

Доказательство. Пусть $a \cdot b = 0, a \neq 0, b \neq 0$:

$$a \cdot b = 0 \Rightarrow a = 0 \cdot b^{-1} = 0!!!$$

 ${ {\bf Teopema} \over cmoe.} \ {\bf 1.1.} \ {\it Кольцо} \ {\it классов вычетов} \ {\mathbb Z}_n \ {\it явл-ся полем} \iff n$ - npo-

Доказательство. а) Необходимость. Пусть n - сост. $\Rightarrow \exists p,q>1 \colon n=pq$

 $\overline{p}\cdot\overline{q}=\overline{p\cdot q}=\overline{n}=\overline{0}\Rightarrow\overline{p},\overline{q}$ - делители 0 - противоречие с тем, что \mathbb{Z}_n - поле!!!

b) Дост. Пусть n - простое, покажем, что $(\mathbb{Z}_n \setminus \{0\}, \cdot)$ - абелева группа. Нетривиальная часть: покажем, что $\forall \overline{a} \neq \overline{0}, \exists$ обратимый. Для этого покажем, что:

$$\overline{0}\cdot\overline{a},\overline{1}\cdot\overline{a},\ldots,\overline{(n-1)}\overline{a}$$
 - попарно различны.

Пусть $\overline{k}\overline{a} = \overline{l}\overline{a}$, б. о. о. $0 \le k < l \le n-1$.

$$\overline{(l-k)a} = \overline{o} \iff n|(l-k)a$$

Однако $n\not|a,\Rightarrow n|(l-k)\Rightarrow l=k!!!\Rightarrow \exists b\colon \overline{b}\overline{a}=\overline{a}\overline{b}=\overline{1}$ и $\overline{b}\neq\overline{0}$

2 Лекция 15

2.1 Характеристика поля

F - поле.

$$\exists 0, 1 \in F, 0 \neq 1$$

 $1 + 1 + 1 + \dots + 1 = n_F$

Положим:

$$0_F = 0$$

$$(-n_F) = -(n_F), n \in \mathbb{N}$$

Лемма 2.1.

$$(n+m)_F = n_F + m_F$$
$$(nm)_F = n_F \cdot m_F$$

Доказательство. n > 0, m > 0:

$$(1+1+\ldots+1)(1+1+\ldots+1)=1+1+\ldots+1$$

<u>Определение</u> **2.1. Хар-кой поля** F наз-ся наим. <u>натур.</u> число $n \in \mathbb{N}$, т. ч.:

$$n_F = 0$$

Если $\forall n \in \mathbb{N}, n_F \neq 0$, то говорят, что хар-ка равна 0.

Пример. $\mathbb{Z}_p \colon \overline{1} + \overline{1} + \ldots + \overline{1} = \overline{0} = \overline{p}$ Поля: $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ имеют хар-ку 0.

Обозначение. char(F) - xap-ка поля F

Утверждение 2.1. Если поле F имеет ненулевую хар-ку $(char(F) \neq 0)$, то char(F) = p, где p - простое число.

Доказательство. От прот., пусть char(F) = n, n - составное:

$$n = p \cdot q, 1 < p, q < n$$

 $n_F = p_F \cdot q_F = 0!!!(\Pi$ рот-е, т. к. в поле нет делителей нуля.) $\Rightarrow char(F)$ - простое.

Определение 2.2. Пусть G - группа/кольцо/поле. Непустое подмн-во $\overline{H} \subset G$ наз-ся подгруппой/подкольцом/подполем, если оно само является группой/кольцом/полем, отн-но операции, опр-ой на G.

Утверждение 2.2. Если H - подгруппа в группе G, то $e_G = e_H$.

Доказательство.

$$e_H \cdot e_H = e_H$$

В G для e_H есть обратный e_H^{-1} :

$$e_H = e_H \cdot e_G = e_G$$

<u>Следствие</u> **2.1.** У подкольца 0 совпадает с 0 кольца, а у всякого подполя 0 и 1 совпадают с 0 и 1 поля.

$$(F,+)$$
 - аб. гр. с нейтр. эл-ом 0

$$(F,*)$$
 - аб. гр. с нейтр. эл-ом 1

Утверждение 2.3 (Критерий подгруппы). *Непустое подмн-во Н в груп-* $ne\ G$ явл. $nod rpynnoй\ в$ ней \iff

a) H замкнуто отн-но групповой оп-ции в G (*)

$$\forall a,b \in H(a*b \in H)$$

b) H замкнуто отн-но взятия обратного эл-та, т. е.:

$$\forall a \in H(a^{-1} \in H)$$

Доказательство. 1) **Необх.** Пусть H - подгруппа в G [$H \le G$] - очев., по опр-ю подгруппы.

2) Дост. $H \neq \emptyset$ и выполн-ся усл-я a), b)

$$a)\iff$$
 "*"
опр-на в H

- Ассоц-ть вып-ся в H, т. к. вып-ся в G
- $\forall a \in H, \exists a^{-1} \in H$
- $\ \forall a \in H \Rightarrow \exists a^{-1} \in H \Rightarrow a * a^{-1} = e \in H$

<u>Утверждение</u> **2.4.** Пусть G - группа/кольцо/поле. Пусть G_i - подгруппа/подкольцо/подполе G. Тогда:

$$\bigcap_i G_i$$
 - $nodepynna/nodkoльцо/nodnoле$

Доказательство. Докажем для поля F:

$$\forall i, F_i \leq F$$

$$(F_i,+)$$
 - аб. группа \Rightarrow

$$\forall i \colon \begin{cases} \forall a, b \in F_i \Rightarrow a + b \in F_i \\ \forall a \in F_i \Rightarrow -a \in F_i \end{cases} \to \bigcup_i (F_i, +) \text{ - a6. rpynna.}$$

 $\forall i \colon (F_i^*,*)$ - аб. группа $\Rightarrow \forall a,b \in F_i^* \Rightarrow a*b \in F_i, a^{-1} \in F_i \Rightarrow (\bigcap_i F_i^*)$ - аб. группа.

2.2 Гомоморфизим и изоморфизм групп.

Пусть $(G_1,*), (G_2,*)$ - группы.

Определение 2.3. Отображение $\phi: G_1 \to G_2$ наз-ся гомоморфизмом, если ϕ сохраняет в этих группах операции.

$$\forall a, b \in G_i \hookrightarrow \phi(a \circ b) = \phi(a) * \phi(b)$$

Определение 2.4. Отобр. $\phi:X o Y$ наз-ся инъективным, если:

$$\forall a,b \in X \colon a \neq b \hookrightarrow \phi(a) \neq \phi(b)$$

Определение 2.5. Отобр. $\phi: X \to Y$ наз-ся сюрьективным, если:

$$\phi(X) = Y, (\forall y \in Y, \exists x \in X : \phi(x) = y)$$

Определение 2.6. Отобр. $\phi: X \to Y$ наз-ся биективным, если оно С + $\overline{\mathrm{U}}$.

Определение 2.7. Изоморфизм - биективный гомоморфизм.

<u>Замечание</u>. $Bc\ddot{e}$ перечисленное для групп переносится на кольца и поля.

Утверждение 2.5. При гомоморфизме групп $f: G_1 \to G_2$:

а) Нейтральный эл-т переходит в нейтральный:

$$f(e_{G_1}) = e_{G_2}$$

 $b) \ \phi$ - коммутирует со взятием обратно эл-та:

$$\phi(a^{-1}) = \phi^{-1}(a)$$

Доказательство. a) *- умножение:

$$e_1 * e_1 = e_1 \Rightarrow \phi(e_1) \cdot \phi(e_1) = \phi(e_1) = \phi^{-1}(e_1)$$

$$\phi(e_1) = \phi(e_1) \cdot e_2 = e_2$$

b)
$$a \cdot a^{-1} = a^{-1} \cdot a = e_1$$

$$\phi(a)\phi(a^{-1}) = \phi(a^{-1})\phi(a) = e_2$$

$$\phi(a^{-1}) = \phi^{-1}(a)$$

<u>Следствие</u> **2.2.** При гомоморфизме полей 0 и 1 первого поля переходят 6 0 и 1 второго.

2.3 Простое подполе

Определение 2.8. Поле F наз-ся **простым**, если оно не имеет подполей, отличных от него самого.

Пример. Поле $\mathbb Q$ и $\mathbb Z_p$ - простые поля.

Доказательство. Пусть $M\subset \mathbb{Q}$ - простое.

$$0, 1 \in M$$

$$1+1+\ldots+1=n\in M\Rightarrow \frac{1}{n}\in M\Rightarrow \frac{m}{n}\in M\Rightarrow \mathbb{Q}\subset M$$

 $\Rightarrow M=\mathbb{Q}$

Аналогично, пусть $N \subset \mathbb{Z}_p$:

$$\overline{0}, \overline{1} \in N \Rightarrow k * \overline{1} = \overline{1} + \overline{1} + \dots + \overline{1} \in N \Rightarrow \mathbb{Z}_p \subset N \Rightarrow \mathbb{Z}_p = N$$

Теорема 2.2. Всякое поле содержит пустое подполе, и притом только 1.

Доказательство. F содержит подполя F_i ($F_i \subset F$). Положим:

$$D = \bigcap_{F_i \leq F} F_i \Rightarrow D \leq F$$
, причём D в любом другом подполе поля F

Почему D простое подполе?

От прот., пусть $M \leq D \leq F \Rightarrow M \leq F \land D \not\subset M!!$, т. е. есть подполе F, в кот. нет D - противоречие.

Почему оно единственно?

От прот., пусть D и D' - 2 простых подполя $\Rightarrow D \cap D'$ - подполе поля F.

$$D \cap D' \subset D, D' \Rightarrow D \cap D' = D, D' \Rightarrow D = D'$$

Теорема 2.3 (Об описании простых подполей). *a)* $Ecnu \, char(F) = 0,$ $mo \, evo \, npocmoe \, nodnone \, D \, usomop \phi ho \, \mathbb{Q}$

b) Если char(F)=p,p - простое, то его простое подполе D изоморфно \mathbb{Z}_p

Доказательство. a) $0, 1 \in D$. Если $n_F = 0 \Rightarrow n = 0$

$$\Rightarrow 1+1+\ldots+1=n_F\in D\Rightarrow \exists$$
 вложение $\mathbb Z$ в $F\colon n\vdash n_F$

Это гомоморфизм, т. к.:

$$(n+m) = n_F + m_F$$

$$(n \cdot m)_F = n_F \cdot m_F$$

Пусть $n_F = m_F \Rightarrow (n \cdot m)_F = 0 \Rightarrow n - m = 0 \Rightarrow n = m$ Покажем, что и поле $\mathbb Q$ может быть изоморфно вложено в $F \Rightarrow$ Нужно построить инъективный гомоморфизм: Определеим соотв.: $\mathbb Q \to \frac{m}{n}, m \in \mathbb Z, n \in \mathbb N \mapsto$ решение ур-я $n_F \cdot x = m_F$, т. е. $x = m_F \cdot n_F^{-1}$

1) Сохранение сложения:

Проверим:

$$\frac{m}{n_1}, \frac{m_2}{n_2} \Rightarrow \frac{m_1}{n_1} + \frac{m_2}{n_2} = \frac{m_1 n_2 + m_2 n_1}{n_1 n_2} \mapsto (n_{1_F} n_{2_F}) y = m_{1_F} n_{2_F} + m_{2_F} n_{1_F}$$

$$\frac{m_1}{n_1} \mapsto n_{1_F} x_1 = m_{1_F}$$

$$\frac{m_2}{n_2} \mapsto n_{2_F} x_2 = m_{2_F}$$

$$x_1 + x_2 \stackrel{?}{=} y$$

Домножим ур-ия с x_1 и x_2 на n_2 и n_1 соотв. и сложим их:

$$n_{1_F}n_{2_F}(x_1+x_2) = m_{1_F}n_{2_F} + m_{2_F}n_{1_F}$$

Т. к. решение единственно, то $y = x_1 + x_2$

2) Сохрание умножения:

$$\frac{m_1}{n_1} \cdot \frac{m_2}{n_2} \mapsto n_1 n_2 y = m_1 m_2$$
$$y \stackrel{?}{=} x_1 x_2$$

Перемножим ур-ия с x-ми:

$$n_{1_F}n_{2_F}x_1x_2=m_{1_F}m_{2_F}\Rightarrow y=x_1x_2,\,$$
 т. к. решение единственно

3) Инъективность

$$\frac{m_1}{n_1} \mapsto \text{ решение } n_{1_F} x = m_{1_F} \Rightarrow x = n_{1_F}^{-1} m_{1_F}$$
 $\frac{m_2}{n_2} \mapsto x \colon n_{2_F} x = m_{2_F} \Rightarrow x = n_{2_F}^{-1} m_{2_F}$

$$\Rightarrow n_1m_2=n_2m_1\Rightarrow (n_1m_2-n_2m_1)=0$$

$$char(F)=0\Rightarrow n_2m_1=n_1m_2\Rightarrow \frac{n_2}{m_2}=\frac{n_1}{m_1}$$

$$\Rightarrow \exists \ \mathrm{B}\ F \ \mathrm{подполе}\ D_F\cong \mathbb{Q}$$

b)
$$char(F) = p \bowtie 0, 1 \in F \Rightarrow n_F \in F, \forall n$$

$$\Rightarrow \{0_F, \dots, (p-1)_F\} \cong \mathbb{Z}_p$$

Тогда в D_F есть простое подполе, изом. $\mathbb{Z}_p \Rightarrow D_F \cong \mathbb{Z}_p$

3 Лекция 16

3.1 Линейные пр-ва

Пусть F - поле.

Определение 3.1. ЛП (линейным пр-вом) над полем F наз-ся мн-во \overline{V} , на кот. опр-ны оп-ции:

а) Сложение эл-ов из

$$V: \forall a, b \in V \hookrightarrow a + b \in V$$

b) Умножение эл-ов V на число из F:

$$\forall \lambda \in F, a \in V, \lambda a \in V$$

- с) $(V_1, +)$ абелева группа.
- d) Унитарность:

$$1*a=a, \forall a \in V$$

е) Ассоциативность отн-но скалярного множителя:

$$(\lambda \cdot \mu)a = \lambda \cdot (\mu a), \forall \lambda, \mu \in \mathit{F}, a \in \mathit{V}$$

f) Дистрибутивность:

$$(\lambda + \mu)a = \lambda a + \mu a$$

g)

$$\lambda(a+b) = \lambda a + \lambda b$$

Эл-ты ЛП принято называть **векторами**. $\overline{0}$ - нулевой вектор.

Пример. 0) Нулевое пр-во $\{\overline{0}\}$:

$$\overline{0} + \overline{0} = \overline{0}$$

$$\lambda \overline{0} = \overline{0}$$

1) $M_{m \times n}(F)$ - лин. пр-во отн-но естественных операций.

$$M_{m imes 1}(F) = \left\{ egin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{pmatrix}
ight\} = F^m$$
 - арифметическое пр-во над F раз-ти m

- 2) $V_i, i = 1, 2, 3. F = \mathbb{R}$
- 3) F[x] np-во мн-нов c коэфф-ми из nоля F

$$F_n[x] = \{ f(x) \in F[x] \mid deg(f) \le n \}$$

3.1.1 Подпр-во ЛП

Пусть V - ЛП на поле F.

Определение 3.2. Непустое подмн-во $W \subset V$, наз-ся подпр-вом в V, если оно само явл-ся ЛП отн-но операций, опред. в V.

Обозначение. $W \leq V$ - W подпр-во V

Утверждение 3.1. Если $W \le V$, то $0_W = 0_V$, и если для $w \in W, -w$ - ему прот. вектор в W, то он же явл-ся прот. вектором в V.

Доказательство. Было доказано в терминах подгрупп.

Утверждение 3.2 (Критерий подпр-ва). *Непустое подмн-во* $W \subset V$ над F - nodnp-во в $V \iff$

а) W замкнуто от-но сложения, т. е.:

$$\forall a, b \in W \hookrightarrow a + b \in W$$

b) W замкнуто от-но умножения на скаляр, т. е.:

$$\forall \lambda \in F, \forall a \in W \hookrightarrow \lambda a \in W$$

 \Leftarrow) Пусть усл-ия a и b вып-ся. Верно ли:

$$W \stackrel{?}{\leq} V$$
 $a \in W$: $(-1)a \in W$. Покажем, что $(-1)a = -a$ $(-1)a + a = (-1)a + 1$; $a = (-1 + 1)a = 0$ $a = \overline{0}$

$$(-1)a + a = (-1)a + 1 \cdot a = (-1+1)a = 0a = \overline{0}$$

 $a + (-a) = \overline{0} \Rightarrow \overline{0} \in W$

Из этих следствий следует верность критерия подпр-ва.

<u>Следствие</u> 3.1. Пересечение любого числа подпр-в ЛП V само явл-ся nodnp-вом.

Доказательство. $W_i \leq V \Rightarrow \bigcap_i W_i \leq V$

3.1.2 Подполе лин. объектов системы векторов

Пусть S - произв. сист. векторов из V (возм. бесконечное)

Определение 3.3. Линейная оболочка системы S наз-ся наименьшая по включению подпр-во в V, содерж. S

Обозначение.

$$< S > = \bigcap_{W \leq V, S \leq W} W$$

Утверждение 3.3. $\langle S \rangle = \{ \sum_{i=1}^n \alpha_i s_i \mid s_i \in S, \alpha_i \in F, n \in \mathbb{Z}_+ \}$

Замечание. Если n=0, то рассм. $\overline{0}$

Доказательство.

$$L = \left\{ \left. \sum_{i=1}^{n} \alpha_{i} s_{i} \right| s_{i} \in S, \alpha_{i} \in F, n \in \mathbb{Z}_{+} \right\}$$

$$s_i \in S \Rightarrow 1 \cdot s_i \in L \Rightarrow \forall s \in S, s \in L$$

Покажем, что $L \leq V \wedge S \subset L$:

$$\sum_{i} \alpha_{i} s_{i} \in L, \sum_{i} \beta_{i} s_{i} \in L \Rightarrow \sum_{i} (\alpha_{i} + \beta_{i}) s_{i} \in L$$

$$\lambda(\sum \alpha_i s_i) = \sum_i (\lambda \alpha_i) s_i \Rightarrow L \le V$$

По опред. $\Rightarrow < S > \subset L$. Теперь покажем $L \subset < S > :$

$$s_i \in S, \forall i \Rightarrow s_i \in \langle S \rangle$$

 $T. \ \kappa. < S >$ - подпр-во V

$$\Rightarrow \alpha \cdot s_i \in < S >, \forall \alpha \in F \Rightarrow \sum_i \alpha_i s_i \in < S > \Rightarrow L \subset < S >$$

Определение 3.4. Если < S >= V, то говорят, что V порождено S.

Определение 3.5. ЛП V наз-ся конечно-порождённым, если оно имеет конечное порождающее мн-во

3.1.3 Базис

Определение 3.6. Пусть V - ЛП над F. Базисом в V наз-ся уп. система векторов $G = \begin{pmatrix} e_1 & e_2 & e_3 & \dots & e_n \end{pmatrix}$, если вып-ны усл-ия:

а) G - ЛНЗ над F (т. е. $\sum_i \alpha_i e_i = \overline{0} \iff \alpha_i = 0 \in F, \forall i$).

b) Каждый вектор пр-ва V представим в виде ЛК векторов G. Это усл-ие равносильно следующему:

$$< \{e_1, \ldots, e_n\} > = V$$

Пример. 1) F^n базис:

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots e_n = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \sum_{i=1}^n \alpha_i e_i$$

2) $F_n[x]$ базис:

$$1, x, x^2, \ldots, x^n$$

Утверждение 3.4. Всякое конечнопорождённое ЛП V имеет базис.

Доказательство. Среди все конечных мн-во, порождающих V, выберем наименьшее по мощности. (мощность конечного мн-ва - это число его эл-ов). $\Rightarrow S_0$. Явл-ся ли S_0 базисом?

Если S_0 ЛЗ, то $\exists s_0 \in S_0$, представимый как ЛК остальных эл-ов мнва $\Rightarrow S_0 \subset < S_0 \setminus \{s_0\} > \Rightarrow < S_0 \setminus \{s_0\} > = V$. Но это противоречие с тем, что S_0 - наименьшее по мощности. $\Rightarrow S_0$ - ЛНЗ.

Утверждение 3.5 (Основная лемма теории ЛП). V - ЛП над F. $V = (u_1 \ldots u_n)$ и $W = (w_1 \ldots w_m)$. Известно, что $\forall w_i \in W$ - представим как ЛК векторь V. Тогда, если m > n, то сист. W - ЛЗ

Доказательство. Индукция по n:

• База: n = 1

$$V = (u)$$

По усл-ию:

$$w_1 = \lambda_1 u, w_2 = \lambda_2 u, \dots w_m = \lambda_m u$$

Если $\exists \lambda_i = 0$, то W - ЛЗ. Иначе возьмём ЛК:

$$\lambda_2 w_1 - \lambda_1 w_2 + 0 w_3 + 0 w_4 + \ldots + 0 w_m = 0 \Rightarrow W$$
 - ЛЗ

• Переход: пусть утв. справедливо, для V, т. ч. |V|=n-1. Докажем, для |V|=n:

$$w_1 = \sum_{i=1}^n \lambda_{1i} u_i$$

:

$$w_j = \sum_{i=1}^n \lambda_{ji} u_i$$

Для каждого i=2,m, отнимем от w_i $w_1\cdot \frac{\lambda_{1i}}{\lambda_{11}}.$ Таким образом перейдем к системам:

$$\overline{V} = \begin{pmatrix} u_2 & \dots & u_n \end{pmatrix}, \overline{W} = \begin{pmatrix} w_2 - w_1 \cdot \frac{\lambda_{1i}}{\lambda_{11}} & \dots \end{pmatrix}$$

По предположению индукции: \overline{W} - $\Pi 3 \Rightarrow W$ - $\Pi 3$.

4 Лекция 17

4.1 Конечномерные $\Pi\Pi$

Определение 4.1. Линейное пр-во V над F наз-ся n-мерным (или раз-мерности n), если в V сущ-ет ЛНЗ система, сост. из n векторов, а всякая система, векторов, сост. из n+1 вектора - ЛЗ.

Если же $\forall n \in \mathbb{N}$ в пр-ве $V \ni \Pi$ НЗ система из n векторов, то V наз-ся бесконечномерным.

Обозначение.

$$dim_F V = n$$
 или $dim_F V = \infty$

Теорема 4.1. Пусть V - конечномерное ЛП над F. Тогда любые два базиса в V обязательно имеют одинаковое число векторов. (или равномощны)

Причём их кол-во равно dim_FV .

Доказательство. а) Если G и Q - базисы, имеющие разное число элов, то базис, с большим числом веткоров - $\Pi 3$, по основой лемме.

b) Покажем, что число векторов в базисе $G = dim_F V$.

$$G = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix}, - \Pi H 3$$

Покажем, что любая сист. из $W\colon |W|=n+1$ - ЛНЗ $\Rightarrow dim_F V=n$

<u>Замечание</u>. Иногда размерность определяют как число базисных векторов.

 ${f \underline{3}}$ амечание. B np-ве $\left\{ \,\overline{0} \,\right\}$ - nycmoй базис. $|\emptyset|=0\Rightarrow dim_F\left\{ \,\overline{0} \,\right\}=0$

Пример. 1) V_i , i = 1, 2, 3, $dimV_i = i$

2)

$$F^{n} = \left\{ \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix} \right\}, dim F^{n} = n$$

Базис:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

3)

$$M_{m \times n}(F), dim M_{m \times n} = m \cdot n$$

4)

 $F_n[x]$ - мн-ны с коэффициентами из поля $F, dim F_n[x] = n+1$ Базис: $1, x, x^2, \ldots, x^n$

5) \mathbb{C} - над \mathbb{C} : $dim_{\mathbb{C}}\mathbb{C} = 1$. Базис: 1 \mathbb{C} - над \mathbb{R} : $dim_{\mathbb{R}}\mathbb{C} = 2$. Базис: 1, i

$$z = a \cdot 1 + b \cdot i, a, b \in \mathbb{R}$$

6) \mathbb{R} над \mathbb{Q} - бесконечномерное ЛП. Докажем бесконечномерность от противного:

 \mathcal{A} оказательство. Пусть $dim_{\mathbb{Q}}\mathbb{R}=n$. Выберем произвольное число

$$r\in\mathbb{R},r\longleftrightarrow egin{pmatrix} lpha_1\\ lpha_2\\ \ldots\\ lpha_n \end{pmatrix},lpha_i\in\mathbb{Q}.$$
 Т. е. $\mathbb{R}\cong\mathbb{Q}^n$ - счётно, что противоречит континуальности \mathbb{R} .

Теорема 4.2. Пусть S - произв. система (конеч. или бесконечная) система векторов в конечномерном ЛП V над F. Тогда макс. ЛНЗ подсистема S_0 в S образует базис s < S > 0.

 $(P.\ S.\ Maксимальная,\ m.\ e.\ ecлu$ добавить ещё один вектор, то она станет $\mathcal{A}3$).

Доказательство. По т. из прошлой лекции, каждый вектор из < S > представим в виде ЛК веткоров из S. Покажем, что $\forall s \in S$ представим в виде ЛК вект. из S_0 .

- $s \in S_0$ очев
- $s \in S \backslash S_0$. Рассм. (S_0, s) . Она ЛЗ по соглашению максимальности. Тогда вектор s представим в виде ЛК векторов из S_0 .

<u>Следствие</u> 4.1. ЛП V над F конечномерное $\iff V$ - конечнопорождённое.

Доказательство. а) Необх. Пусть $dim_FV<\infty$. Тогда конечный базис - это порождающая система.

b) Дост. Пусть V - конечнопорождённое $\stackrel{Th}{\Rightarrow} \exists$ конечный базис \Rightarrow его мощность $= dim_F V$

Теорема 4.3. Любую ЛНЗ систему векторов конечномерного ЛП V можно дополнить до базиса в V.

Доказательство. Пусть S состоит из всех векторов V. Тогда < S >= V. Пусть S_0 - ЛНЗ подсистема в S. Пусть $|S_0| = k$, т. е. S_0 сост. из k векторов. Если S_0 - макс. ЛНЗ подсистема в S, то, по предыдущей теореме, это базис. Иначе $\exists S_{k+1} \in S$, т. ч. $S_1 = (S_0, S_{k+1})$ - ЛНЗ. Если S_1 - макс. ЛНЗ подсист., то S - базис в < S >. Т. к. V - конечномерное, то этот процесс оборвётся за конечное число шагов, т. к. не сущ-ет ЛНЗ подсистемы из больше чем $dim_F V$ векторов.

V - конечном. ЛП над F, $G = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix}$ - базис в V.

$$a \in V, a = \sum_{i=1}^{n} \alpha_i e_i = E \cdot \alpha, \alpha = \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} \in F^n$$

<u>Утверждение</u> **4.1.** а) Для каждого вектора $a \in V$, его коорд. столбец отн-но базиса G определён одно-но.

b) При сложении векторов, их коорд. столбцы складываются, а при умножении вектора на $\lambda \in F$, коорд. столбец умнож. на λ .

Доказательство.

$$a = G\alpha, b = G\beta$$
$$a + b = G\alpha + G\beta = G(\alpha + \beta)$$
$$\lambda a = \lambda G\alpha = G(\lambda \alpha)$$

4.1.1 Изоморфизм ЛП

Определение 4.2. Пусть V и W - ЛП над F. Тогда $\phi:V\to W$. Наз-ся изоморфизмом, если:

- a) ϕ биективно
- b) ϕ сохр. определённые в V и W оп-ции:

$$\phi(a+b) = \phi(a) + \phi(b)$$

$$\forall \lambda \in F, \phi(\lambda a) = \lambda \phi(a)$$

Замечание. $\phi(\overline{0_v}) = \overline{0_w}$

Теорема 4.4. Пусть V - конечном. ЛП над F и $dim_F V = n$. Тогда $V \cong F^n$ (изоморфно).

Доказательство. Фикс. $G = \begin{pmatrix} e_1 & e_2 & \dots & e_n \end{pmatrix}$ - базис в V_0 .

$$V\ni a \stackrel{\phi}{\longleftrightarrow} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, \text{ т. ч. } a=G\alpha$$

 $\phi:V\to F^n$ по пред. утв. сохр. + и $\cdot\lambda$

Проверим биективность:

• ϕ - инъективно?

$$\phi(a) = \phi = \beta = \phi(b) \Rightarrow \phi(a - b) = \phi(a) - \phi(b) = \alpha - \beta = 0 \Rightarrow$$
$$a - b = G \cdot 0 = \overline{0} \Rightarrow a = b$$

• ϕ - Сюрьективно?

$$\forall \alpha \in F^n \colon \exists a = G\alpha \Rightarrow \phi(a) = \alpha$$

Ч. Т. Д.

Следствие 4.2 (Теорема об изоморфизме лин. пр-в). Два конечном. ЛП $\overline{V_1}$ и $\overline{V_2}$ над \overline{F} изоморфны $\iff dim_F V_1 = dim_F V_2$

Доказательство. а) Необх. Пусть $dim_F V_1 = n \Rightarrow G = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix}$ - базис в V_1 .

 \exists изоморф. $\phi: V_1 \to V_2$. $\phi(G) = (\phi(e_1) \dots \phi(e_n))$ - базис ли в V_2 ?

$$\forall b \in V_2 : b = \phi(a) = \phi(G \cdot \alpha) = \phi(G) \cdot \alpha$$

$$\phi(G)$$
 - ЛНЗ $\left(\phi\left(\sum_i \alpha_i e_i\right) = \sum_i \alpha_i \phi(e_i)\right)$

Т. к. при изоморф. ЛНЗ \mapsto ЛНЗ.

$$\Rightarrow dim_F V_2 = n$$

b) По предыдущей теореме, $V_1 \cong F^n \cong V_2$. Тогда $V_1 \cong V_2 (\phi \circ \psi^{-1} - \text{композиция изоморфизмов}).$

<u>Следствие</u> **4.3.** *Если пр-ва рассм. над одним и тем же полем, то единственной существенной хар-ой этих пр-в является размерность.*

Теорема 4.5. Пусть F - конечное поле, m. ч. char(F) = p - простое. $Tor \partial a \exists n \in \mathbb{N}, m$. ч. $|F| = p^n$

Доказательство. Было док-но, что в $F, \exists D_F \cong \mathbb{Z}_p, |\mathbb{Z}_p| = p$. Рассм. поле F как ЛП над полем D_F .

$$dim_{D_F}F=n,G$$
 - базис F над D_F

$$\forall a \in F, a = G \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix}, \alpha \in D_F^n, |F| = \left| \left\{ \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \right\}, \alpha_i \in D_F \right| = p \times p \dots p \times p = p^n$$

Замечание. Пусть V - ЛП размерности m над конечным полем $F\colon |F|=p^n$. Тогда $|V|=p^{nm}$

Доказательство.

$$G = (e_1 \dots e_n)$$

$$V \ni v = G \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

$$|V| = p^n \times \dots \times p^n = (p^n)^m = p^{nm}$$

Вывод: конечномерное ЛП над конечным полем, содержит конечное число элементов.

5 Лекция 18

F - поле

<u>Определение</u> **5.1.** Система линейных ур-ий (СЛУ) - система ур-ий, сост. из ур-ий первой степени:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(1)

Причём, $a_{ij}, b_i \in F$

Обозначение.

$$A \in M_{m \times n}(F)$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$

$$B \in F^m$$

Тогда система записывается в формате:

$$AX = B$$

Расширенной матрицей А наз-ся:

$$\widetilde{A} = (A|B) \in M_{m \times (n+1)}(F)$$

<u>Определение</u> **5.2.** СЛУ наз-ся **совместной**, если она имеет хотя одно решение. Если она не имеет решений, то она **несовместна**.

<u>Определение</u> **5.3.** Совместная СЛУ наз-ся **определённой**, если она имеет **единтсвенное решение**, и **неопределённой** — иначе.

Утверждение 5.1. Всякое решение X системы (1) - это набор коэф., c кот. столбец B свобоных членов, представляется в виде JK столбцов матрицы A.

 \mathcal{A} оказательство. Стобцы матрицы AX - это ЛК столбцов A с коэф. из X

<u>Следствие</u> **5.1.** Если столбцы A - ЛH3, то система (1) имеет не более чем одно решение.

Доказательство. Если A - несовместна, то следствие верно. Иначе: Пусть $X_1 \neq X_2$ — два решения.

$$AX_1 = b$$

$$AX_2 = b$$

$$\Rightarrow AX_1 - AX_2 = A(X_1 - X_2) = 0$$
, причём $X_1 - X_2 \neq 0$

Получили, что есть нетрив. ЛК столбоцов матрицы A, дающая 0, что противоречит ЛНЗ столбцов A.

Определение 5.4. Системе:

$$AX = B$$

Соотв. однородная система:

$$AX = 0$$

Утверждение 5.2. *Мн-во* V_0 *решений однородной* CЛУ явл-ся подпр-ом $\overline{e}\ F^n\ (V_0 \le F^n)$

Доказательство.

$$X_1, X_2 \in V_0$$

$$AX_1 + AX_2 = A(X_1 + X_2) = 0 \Rightarrow (X_1 + X_2) \in V_0$$

$$AX_1 = 0 \Rightarrow \lambda AX_1 = 0, \lambda \in F$$

$$X = 0 \in V_0$$

$$\Rightarrow V_0 \leq F^n$$

Утверждение 5.3. Пусть даны: неоднородн система AX = B и $V_b - e\ddot{e}$ мн-во решений. Пусть также $X_0 -$ частное решение этой СЛУ. Пусть AX = 0 соотв. однородн. СЛУ и V_0 - $e\ddot{e}$ решения. Тогда:

$$V_b = X_0 + V_0$$

$$X_0 + V_0 = \{ X_0 + u \mid u \in V_0 \}$$
$$A(X_0 + u) = AX_0 + Au = AX_0 = B \Rightarrow X_0 + u \in V_b$$

$$() \forall X \in V_b$$

$$AX = B = AX_0 \Rightarrow A(X - X_0) = B \Rightarrow X - X_0 \in V_0 \Rightarrow X \in V_0 + X_0$$

5.1 Элементарные преобразования строк матрицы

Определение 5.5. Элементарные преобразования (ЭП) строк матрицы $\overline{M_{m \times n}(F)}$ — это преобразования 3-ех типов:

I тип: $(i \neq j)$: К i-ой строке M прибавляем j-ую строку, умноженную на $\lambda \in F$:

$$\overline{a_i} \mapsto \overline{a_i} + \lambda \overline{a_j}$$

II тип: $(i \neq j)$: перемена местами i-ой и j-ой строки:

$$\overline{a_i} \leftrightarrow \overline{a_i}$$

III тип: i-ая строка умножается на $\lambda \neq 0$.

<u>Утверждение</u> **5.4.** ЭП строк $M \iff умножению M$ слева на одну из элементарных матрии.

 E_{ij} - матрица с 1 в (i;j) и 0 в других местах

I mun:

$$D_{ij} = E + \lambda E_{ij}$$

II mun:

$$P_{ij} = E - E_{ii} - E_{jj} + E_{ij} + E_{ji}$$

III mun:

$$Z_i = E + E_{ii} \cdot \lambda$$

Утверждение 5.5. Все матрицы ЭП обратимы.

Доказательство.

$$D_{ij}^{-1}(\lambda) = D_{ij}(-\lambda)$$
$$P_{ij}^{-1} = P_{ij}$$
$$Z_i^{-1}(\lambda) = Z_i(\lambda^{-1})$$

<u>Задача</u> **5.1.** Показать, что если совершать умножение матрицы M на матрицы Θ П нужно размера **справа**, то получатся Θ П столбцов.

Определение 5.6. Для строки $(a_1 \ a_2 \ \dots \ a_n)$, первый ненулевой её эл-т наз-ся лидером. (или ведущим элементом)

Пример.

$$(0 \ 0 \ 0 \ \underline{7} \ 4 \ 0 \ 0)$$

Определение 5.7. Матрица $A_{m \times n}$ наз-ся **ступенчатой**, если выполняются два условия:

- а) Если a_{ij} и $a_{i+1,k}$ лидеры 2-х соседний строк, то j < k
- b) Ниже нулевой строки A могут расп-ся только нулвые строки A.

Теорема 5.1. Всякую матрицу можно привести к ступенчатому виду \overline{c} помощью конечного числа ЭП строк.

Док-во: **Прямой ход метода Гаусса**. $A_{m\times n}$. Доказывать будем индукцией по m (числу строк).

База: m=1 - очев., т. к. одна строка — это уже ступеначатая матрица.

Предп. инд.: Пусть дана матрица размер $(m-1) \times n$ - утв. справедливо. Д-ем для матр. $m \times n$.

Найдём в матрице A лидера строки с наименьшим номером столбца. При необходимости, передвинем его на 1-ую строку A. Пусть теперь a_{1k} - лидер первой строки. Используя ЭП I типа, обнулим k-ые члены строк ниже. Мысленно уберём 1-ую строку и применим предп. инд-ции к оставшейся матрице. Получили матрицу ступ. вида.

Определение 5.8. Ступенчатая матрица A наз-ся упрощённой, если вып-ся два усл-ия:

- а) Лидеры всех строк равны 1.
- b) Столбцы, содерж. лидеров строк, содержат только нулевые эл-ты, за искл. лидера, кот. равен 1

Теорема 5.2. Всякую ненулевую матрицу, можно привести к упрощ. виду, с помощью конечного числа $Э\Pi$ строк.

 \mathcal{A} ок-во: **Обратный ход метода Гаусса**. Приведём A к ступенч. виду. Пусть $a_{1k_1}, a_{2k_2}, \ldots, a_{rk_r}$ — лидеры строк ступ. матрицы A'.

Для каждого $i = \overline{1,r}$ умножим i-ую строку на $\frac{1}{a_{ik_i}}$. Тогда лидеры станут равны 1.

Затем, будем идти от r-ой строки к 1-ой. Для i-ой строки, обнулим эл-ты a_{jk_i} над ней ЭП I-ого типа. Получили нужный вид.

Теорема 5.3. Если от СЛУ (A|B) перейти к СЛУ (A'|B') с помощью конечного числа ЭП строк, то эти системы эквив-ны.

Доказательство. Дост-но док-ть для одно ЭП:

$$\exists \ \Im M \ Q \colon (A'|B') = (QA|QB)$$

V - мн-во решений СЛУ (A|B). V' - мн-во решений СЛУ (A'|B').

$$X_0 \in V \Rightarrow AX_0 = B \Rightarrow QAX_0 = QB \Rightarrow A'X_0 = B' \Rightarrow X_0 \in V'$$
$$X_0' \in V' \Rightarrow A'X_0' = B' \Rightarrow Q^{-1}A'X_0' = Q^{-1}B' \Rightarrow AX_0' = B \Rightarrow X_0' \in V$$

5.2 Метод Гаусса

$$AX = B$$

 $\widetilde{A}=(A|B)$ - расширенная матрицы

I шаг: Приведём \widetilde{A} к ступ. виду $\widetilde{A}_{\text{ступ.}}$

I случай: В $\widetilde{A}_{\text{ступ.}}$ есть лидер в столбце своб. членов \Rightarrow СЛУ несовм.

II случай: В $\widetilde{A}_{\text{ступ.}}$ такого лидера нет. Покажем, что СЛУ совместна. Пусть лидеры в $\widetilde{A}_{\text{ступ.}}$: $a_{1k_1},a_{2k_2},\dots a_{rk_r}$

Определение 5.9. Назовём $x_{k_1}, x_{k_2}, \dots, x_{k_r}$ — главными (базисными), а остальные — свободными (параметрические).

$$1 \le k_1 < \ldots < k_r \le n$$

II, а) Все неизв. — главные (свободных нет). Тогда r = n:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Тогда $x_i = b_i$

6 Лекция 19 (СКИП)

7 Лекция 20

7.1 Применения рангов матрицы

Определение 7.1. Минор M_{ij} наз-ся невырожденным если $\operatorname{rk} M_{ij} =$

Определение 7.2. Рангом матрицы по минору наз-ся максимальный порядок среди порядков всех невырожденных миноров.

$$\operatorname{rk}_M A$$

Теорема 7.1 (Фробениуса). Для \forall матрицы A:

$$\operatorname{rk}_r A = \operatorname{rk}_c A = \operatorname{rk}_M A$$

Утверждение 7.1. Минор явл-ся невырожденным \iff его $\det \neq 0$

Рассм. однородн систему:

$$AX = 0$$

$$V = X_0 + V_0$$

 X_0 - частн. реш, V_0 - общ. реш. однородн. матрицы.

Определение 7.3. Матрица F наз-ся фунд. матрицей системы AX=0, если по столбцам этой матрицы располагаются коор-т столбцы базиса пр-ва $V_0 \iff$

- a) AF = 0
- b) Столбцы F ЛНЗ.
- с) Каждое решение X_0 однор. системы $AX = 0 \Pi K$ стобцов F.

<u>Замечание</u>. Если система AX = 0 имеет только тривиальное решение, то говорят, что фунд. матрицы не сущ-ет.

Если $\operatorname{rk} A = r$, то имеем r — главных неизвестных, n - r = d — свободных неизвестных.

 ${
m {f Teopema}\over (-D)}$ 7.2. Для упрощ. системы $(E_r|D)X=0,\ \phi$ унд. матрица $\Phi=$

Доказательство. а)

$$AF = (E_r \ D) \begin{pmatrix} -D \\ E_d \end{pmatrix} = E_r \cdot (-D) + D \cdot E_d = -D + D = 0$$

b)
$$\Phi\begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_d \end{pmatrix} = \begin{pmatrix} -D \\ E_d \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_d \end{pmatrix} = \begin{pmatrix} * \\ \vdots \\ * \\ \lambda_1 \\ \vdots \\ \lambda_d \end{pmatrix} = 0 \Rightarrow \lambda_i = 0, \forall i$$

$$X_0 \in V_0 \Rightarrow X_0 = \begin{pmatrix} * \\ \vdots \\ * \\ x_1 \\ \vdots \\ x_d \end{pmatrix}$$

$$V_0 \ni Y_0 = \Phi \begin{pmatrix} x_1 \\ \dots \\ x_d \end{pmatrix} = \begin{pmatrix} -D \\ E_d \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} = \begin{pmatrix} * \\ \vdots \\ * \\ x_1 \\ \vdots \\ x_d \end{pmatrix} \Rightarrow Y_0 = X_0$$

Следствие 7.1.

 $\dim V_0 = d = n - \operatorname{rk} A$

Теорема 7.3 (Кронекера-Капелли). *СЛУ АХ* = $B - coвместна \iff rk A = rk (A B)$

Доказательство. Приведём $(A \ B)$ к ступенч. виду. СЛУ явл. совм. (Гаусс) \iff нет лидера в столбце свою. членов.

Теорема 7.4 (Критерий определённости совм. СЛУ). Совместная СЛУ определенна, если её ранг равен числу неизвестных.

Теорема 7.5. Пусть C = AB, тогда $\operatorname{rk} C \leq \min(\operatorname{rk} A, \operatorname{rk} B)$

Доказательство. i-ая строка C явл-ся ЛК строк $B\Rightarrow\dim rows(C)\leq\dim rows(B)\iff \mathrm{rk}\,C\leq\mathrm{rk}\,B$ Аналогично, $\mathrm{rk}\,C\leq\mathrm{rk}\,A\Rightarrow\mathrm{rk}\,C\leq\min(\mathrm{rk}\,A,\mathrm{rk}\,B)$

7.1.1 Применнеие рангов к исследованию квадр. матрицы на обратимость

Определение 7.4. $A \in M_n(\mathbb{F})$ наз-ся обратимой $\iff \exists A^{-1} \in M_n(\mathbb{F})$:

$$A^{-1}A = AA^{-1} = E_n$$

Определение 7.5. Матрица A наз-ся обратимой слева, если $\exists B \in M_n(\mathbb{F}) \colon BA = \overline{E}$, справа $-\exists C \in M_n(\mathbb{F}) \colon AC = E$

Теорема 7.6 (Об обратной матрице). Следующие условия на квадратиую матрицу $A_{n \times n}$ эквив-ны:

- 1) A обратима
- 2) А обратима слева или справа.
- 3) A невырожед.
- 4) А приводится к E_n с помощью ЭП только строк или только столбцов.
- 5) А представима в виде произведения элементарных матриц.

Доказательство.

- $1 \Rightarrow 2$) Очев.
- $2\Rightarrow 3)$ Пусть $B\cdot A=E$. При этом ранг $E=n\leq min(\operatorname{rk} A,\operatorname{rk} B)\leq \operatorname{rk} A\leq n$. Получаем $\operatorname{rk} A=n\Rightarrow A$ невырожд.
- $3 \Rightarrow 4$) Приведём невырожд. матрицу к упрощ. виду. Получим $A_{\text{упрощ.}} = E_n$. Чтобы получить преобразования через строки, вместо столбцов (или наоборот):

$$Q_k \cdot \ldots \cdot$$

 $4 \Rightarrow 5$) Из п. 4, получаем:

$$\exists Q_1, \dots, Q_k \colon Q_k \cdot \dots \cdot Q_1 A = E$$
$$\Rightarrow A = Q_1^{-1} \cdot \dots \cdot Q_k^{-1} E$$

$$5 \Rightarrow 1)$$

$$A = T_1 \cdot \ldots \cdot T_k \Rightarrow A^{-1} = T_k^{-1} \cdot \ldots \cdot T_1^{-1}$$

$$AA^{-1} = A^{-1}A = E$$

Следствие 7.2. Вырожденные матрицы необратимы

Следствие 7.3. Произведение двух невырож. матриц невырожд.

Следствие 7.4. *Мн-во всех невырожс. матриц образует группу отн-но операции* " \cdot "

Доказательство. Операция определена по предыдущему следствию. Ассоцитавность выполняется. Нейтральный элемент — E. Обратные матрицы также невырождены.

Обозначение. $GL_n(\mathbb{F})$ — General Linear Group.

7.2 Операции над подпространствами

V - конечномерн. пр-во

Определение 7.6. Пересечением подпр-в U и W наз-ся мн-во:

$$U \cap W = \{ x \in V \mid x \in U \land x \in W \}$$

Утверждение 7.2.

$$U \cap W \leq V$$

Доказать сам-но.

Замечание. Объединение двух подпр-вом не явл-ся подпр-вом в общем случае.

Определение 7.7. Алг. сумма подпр-в U, W:

$$U + W = \{ x_1 + x_2 \mid x_1 \in U, x_2 \in W \}$$

Утверждение 7.3.

$$U + W \le V$$

Доказательство. а)

$$x, y \in U + W \Rightarrow x = x_1 + x_2, y = y_1 + y_2$$

Где $x_1, y_1 \in U, x_2, y_2 \in W$

$$x + y = x_1 + x_2 + y_1 + y_2 = (x_1 + y_1) + (x_2 + y_2) \Rightarrow x + y \in U + W$$

b) Остальное док-ть сам-но.

Определение 7.8. $U_i \leq V, \forall i = \overline{1,n}$

$$\sum_{i=1}^{n} U_i = \left\{ \left. \sum_{i=1}^{n} x_i \, \right| \, x_i \in U_i \, \right\}$$

Утверждение 7.4. Пусть $U_i = < S_i >, i = \overline{1, n}$. Тогда

$$\sum_{i=1}^{n} U_i = \langle S_1 \cup S_2 \dots \cup S_n \rangle$$

Определение 7.9. Объединение упор. систем векторов подразумевается конкатенация этих систем (приписывание).

Утверждение 7.5. Пусть $L = \langle \bigcup_{i=1}^{n} S_i \rangle$.

$$U_i = \langle S_i \rangle \subseteq L \Rightarrow U_1 + \dots U_n \leq L$$

B обратную сторону:

$$L = \langle \bigcup_{i=1}^{n} S_i \rangle \subset \langle \bigcup_{i=1}^{n} U_i \rangle = U_1 + \dots + U_n$$

$$\Rightarrow \sum_{i=1}^{n} U_i = \langle \bigcup_{i=1}^{n} S_n \rangle$$

Следствие 7.5.

$$\dim(\sum_{i=1}^{n} U_i) \le \sum_{i=1}^{n} \dim U_i$$

Доказательство. Пусть S_i — базис в U_i . $\dim(\sum_{i=1}^n U_i)$ равна мощности макс. ЛНЗ подсистеме $\bigcup_{i=1}^n S_i \le$ мощности $\bigcup_{i=1}^n S_i \le$

$$\leq \left| \bigcup_{i=1}^{n} S_i \right| \leq \sum_{i=1}^{n} |S_i| = \sum_{i=1}^{n} \dim U_i$$

Следствие 7.6. $\dim(\sum_{i=1}^n U_i) = \sum_{i=1}^n \dim U_i \iff$ когда объединение базисов в U_i дает базис в $\sum_{i=1}^n U_i$

Определение 7.10. Пусть $U_i \leq V$. $\sum_{i=1}^n U_i$ наз-ся прямой суммой подпр-в, если $\forall x \in \sum_{i=1}^n U_i$:

$$\exists ! (x_1, x_2, \dots, x_k), x_i \in U_i : x = \sum_{i=1}^n x_i$$

Обозначение.

$$\bigoplus_{i=1}^n U_i$$
 - прямая сумма

Определение 7.11 (ЛНЗ для подпр-в). Подпр-ва $U_1, \dots U_n$ наз-ся ЛНЗ, если:

$$\sum_{i=1}^{n} x_i = \overline{0}, x_i \in U_i \iff \forall i \colon x_i = \overline{0}$$

Теорема 7.7 (О характризации прямой суммы подпр-в). Пусть $U_i \le V_i, i = \overline{1, k}$. Тогда следующие условия эквив-ны:

1)

$$\sum_{i=1}^{n} U_i = \bigoplus_{i=1}^{n} U_i$$

2)

$$\forall i = \{ 1, \dots, n \} : U_i \cap (\sum_{j=1, j \neq i}^n U_j) = \{ \overline{0} \}$$

3)

$$U_1,\ldots,U_n-\Pi H3$$

- 4) Объединение базисов U_i даёт базис в сумме U_i
- 5) $\sum_{i=1}^{n} \dim U_i = \dim(\sum_{i=1}^{n} U_i)$

8 Лекция 21 (СКИП))

9 Лекция 22

9.1 Сопряжённое пр-во

V - ЛП над F

$$f: V \to F$$

Определение 9.1. f — линейный функционал (ЛФ), если соблюдаются:

1) Аддитивность:

$$\forall x, y \in V \colon f(x+y) = f(x) + f(y)$$

2) Однородность:

$$\forall \lambda \in F, \forall x \in V : f(\lambda x) = \lambda f(x)$$

Определение 9.2. V^* —

10 Лекция 24(вроде)

Утверждение 10.1. $ЛO \phi: U \to V - u$ н σ ективн $o \iff \ker \phi = \{\overline{0}\}$

Доказательство.

• Необх.: пусть ϕ - инъективно $\Rightarrow \forall x \neq \overline{0} \hookrightarrow$

$$\phi(x) \neq \phi(\overline{0}) = \overline{0} \Rightarrow \ker \phi = \{\overline{0}\}\$$

• Дост.: пусть $\ker \phi = \{\overline{0}\}$. Покажем, что ϕ - инъективно. Пусть $\exists x_1, x_2 \in V \colon \phi(x_1) = \phi(x_2)$

$$\hookrightarrow \phi(x_1) - \phi(x_2) = \phi(x_1 - x_2) = \overline{0} \Rightarrow x_1 = x_2$$

<u>Следствие</u> **10.1.** Пусть $\phi: V \to W - \mathcal{I}O$, кот. удовл. одному из двух условий экв-ных условий утв-я (10.1). Тогда ϕ переводит ЛНЗ в ЛНЗ.

Доказательство. Пусть система x_1, \dots, x_n — ЛНЗ. От прот., пусть:

$$\phi(x_1),\ldots,\phi(x_n)-\Pi 3$$

Тогда ∃ нетрив. ЛК:

$$\lambda_1 \phi(x_1) + \lambda_2 \phi(x_2) + \ldots + \lambda_n \phi(x_n) = \overline{0}$$

$$\phi(\lambda_1 x_1 + \ldots + \lambda_n x_n) = \overline{0} \Rightarrow \sum_{i=1}^n \lambda_i x_i = \overline{0} \in \ker \phi, \exists i \colon \lambda_i \neq 0$$

Прот. с тем, что $x_1, ..., x_n - ЛН3$.

Теорема 10.1 (Теорема о гомоморфизмах ЛП). Пусть $\phi: V \to W$ - ЛО. Пусть $V = \ker \phi \oplus U$. Тогда \exists канонический изоморфизм пр-в U на $\operatorname{Im} \phi$. Более того, если:

$$\phi|_U \colon U \to \operatorname{Im} \phi - u$$
зоморфизм

Доказательство. $\phi(U) \subseteq \operatorname{Im} \phi$???

Теорема 10.2 (О ядре и образе Π О). $\phi: V \to W - \Pi$ О. Тогда справ-во:

$$\dim \ker \phi + \dim \operatorname{Im} \phi = \dim V$$

Доказательство. Пусть, как в теореме (10.1), $V = \ker \phi \oplus U$:

$$\phi|_U \colon U \to \operatorname{Im} \phi \Rightarrow \dim V = \dim \operatorname{Im} \phi$$

По т. (10.1):

$$\dim V = \dim \ker V + \dim V = \dim \ker \phi + \dim \operatorname{Im} \phi$$

<u>Замечание</u>. Верно ли, что если $\phi: V \to V$, то $\hookrightarrow V = \ker \phi \oplus \operatorname{Im} \phi$. Нет, это не так.

Определение 10.1 (Матрицы Π O). $\phi: V \to W$. Пусть

$$G = \begin{pmatrix} e_1 & \dots & e_n \end{pmatrix}$$
 — базис V

$$G' = \begin{pmatrix} f_1 & \dots & f_m \end{pmatrix}$$
 — базис W

$$W \ni \phi(e_1) = a_{11}f_1 + \dots + a_{m1}f_m$$

$$\vdots$$

$$\phi(e_n) = a_{n1}f_1 + \dots + a_{nm}f_m$$

$$A_{\phi} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \dots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in M_{m \times n}(F)$$

Можно записать иначе:

$$\begin{pmatrix} \phi(e_1) \\ \vdots \\ \phi(e_n) \end{pmatrix} = A_{\phi}^T \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix}$$
$$\begin{pmatrix} \phi(e_1) & \dots & \phi(e_n) \end{pmatrix} = \begin{pmatrix} f_1 & \dots & f_n \end{pmatrix} A_{\phi}$$
$$\phi(G) = f \cdot A_{\phi}$$

Определение 10.2. Построенная матрица A_{ϕ} наз-ся матрицей ЛО ϕ отн-но базисов G и G'

$$\phi \longleftrightarrow_{(G,G')} A_{\phi}$$

Утверждение 10.2.

$$\phi \colon V \to W$$

 Πycm ь G — базис в V, f — базис в W

$$\phi \underset{(G,G')}{\longleftrightarrow} A_{\phi}, V \ni x \underset{G}{\longleftrightarrow} \alpha, \phi(x) \underset{f}{\longleftrightarrow} \beta$$

Tог $\partial a \beta = A_{\phi} \alpha$

Доказательство.

$$x = G\alpha, \phi(x) = f\beta$$
$$\phi(x) = \phi(G\alpha) = \phi(G) \cdot \alpha = f \cdot A_{\phi} \cdot \alpha \Rightarrow \beta = A_{\phi}\alpha$$

10.1 Операции над ЛО

Пусть $\mathcal{L}(V,W)$ — мн-во всех ЛО из V в W. (или hom(V,W))

$$\phi, \psi \in \mathcal{L}(V, W)$$

$$\Rightarrow (\phi + \psi)(x) = \phi(x) + \psi(x)$$

$$(\lambda \phi)(x) = \lambda \phi(x)$$

Покажем аддитивность:

$$(\phi + \psi)(x + y) = \phi(x + y) + \psi(x + y) = \phi(x) + \phi(y) + \psi(x) + \psi(y) =$$
$$= (\phi + \psi)(x) + (\phi + \psi)(y)$$

<u>Замечание</u>. Легко проверить выполнение аксиом ЛП для V, W, причём в кач-ве нулевого вектора выступет нулевое отображение.

Утверждение 10.3. Соответствие:

$$\phi \longleftrightarrow_{(G,G')} A_{\phi}$$

явл-ся изоморфизмом пр-ва $\mathcal{L}(V,W)$ на пр-во $M_{m \times n}(F)$

Доказательство. а) Сохранение "+"?

$$(\phi + \psi)(G) = ((\phi + \psi)(e_1) \dots (\phi + \psi)(e_n)) =$$

$$= (\phi(e_1) + \psi(e_1) \dots \phi(e_n) + \psi(e_n))$$

$$= (\phi(e_1) \dots \phi(e_n)) + (\psi(e_1) \dots \psi(e_n)) = f \cdot A_{\phi} + f \cdot A_{\psi} =$$

$$= f(A_{\phi} + A_{\psi})$$

b) Биективность? Инъективность возникает из того, что только 0 имеет нулевую матрицу.

Сюрьективность? $\forall A \in M_{m \times n}(F) \exists ! \exists A, \text{ со столбцами вида } \phi(e_1), \dots, \phi(e_n)$

Следствие 10.2.

$$\dim \mathcal{L}(V, W) = \dim M_{m \times n} = m \cdot n = \dim W \cdot \dim V$$

10.2 Ранг лин. отображения

Определение 10.3. $\phi \colon V \to W - \Pi O$. Ранг $\phi(\operatorname{rk} \phi)$ наз-ся размерностью пр-во $\operatorname{Im} \phi$

Теорема 10.3 (О ранге лин. отображения). $\phi: V \to W - \mathcal{I}O$. Тогда $\operatorname{rk} \phi$ равен $\operatorname{rk} A_{\phi}$ не зависимо от выбора базисов в V и W.

Доказательство. Вспомним рав-во:

$$\operatorname{Im} \phi = <\phi(e_1), \ldots, \phi(e_n)>$$
, где E — базис V

$$\forall i : \phi(e_i) \in \operatorname{Im} \phi \Rightarrow \supseteq$$

 \subseteq ? Пусть $y\in {\rm Im}\, \phi.$ Тогда $\exists x\in V\colon y=\phi(x)=\phi(\sum_{i=1}^n x_ie_i)=$

$$= \sum_{i=1}^{n} x_i \phi(e_i) \in \langle \phi(e_1), \dots, \phi(e_n) \rangle$$

$$\operatorname{rk} \phi = \dim \operatorname{Im} \phi = \dim \langle \phi(e_1), \dots, \phi(e_n) \rangle = \operatorname{rk} A_{\phi}$$

10.3 Изменение матр. ЛО при замене базисов

Теорема 10.4. Пусть $\phi: V \to W - ЛО$. Пусть G, G' - базисы $V, G' = GS, (m. e. S = S_{G \to G'})$

Пусть F, F' - базисы W, F' = FT

Пусть $\phi \longleftrightarrow_{(G,F)} A_{\phi} u \phi \longleftrightarrow_{(G',F')} A'_{\phi}$

Тогда:

$$A_{\phi}' = T^{-1} \cdot A_{\phi} \cdot S$$

Доказательство.

$$\phi(G) = F \cdot A_{\phi} \text{ и } \phi(G') = F' \cdot A'_{\phi}$$

$$F = F' \cdot T^{-1}$$

Имеем:

$$\phi(G') = \phi(GS) = \phi(G) \cdot S = F \cdot A_{\phi} \cdot S = F' \cdot T^{-1} \cdot A_{\phi} \cdot S$$
$$\Rightarrow A'_{\phi} = T^{-1} \cdot A_{\phi} \cdot S$$

Следствие 10.3. Пусть T и S невырожденные матрицы, m. ч.:

$$T^{-1} \cdot A \cdot S = u_{Meem\ cmblc}$$

Тогда:

$$\operatorname{rk}(T^{-1} \cdot A \cdot S) = \operatorname{rk} A$$

Доказательство.

$$A = A_{\phi}, \phi \colon V \to W$$
$$\operatorname{rk}(A_{\phi}) = \operatorname{rk}(T^{-1} \cdot A_{\phi} \cdot S)$$

Т. к. ранг не зависит от выбранных базисов.

К какому наиболее простому виду можно привести матрицу отображения подоходящей заменой базиса? Ответ: к единичному диагональному виду.

Теорема 10.5. Пусть $\phi: V \to W - \mathcal{I}O$. Тогда в V и $W \exists G, F$ — базисы, m. q.:

$$\phi \underset{(G,F)}{\longleftrightarrow} \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}, r = \operatorname{rk} \phi$$

Доказательство. Пусть $V=U\oplus\ker\phi,\,U$ — прямое дополнение к $\ker\phi$

$$\phi|_U\colon U\to \operatorname{Im}\phi$$

Выберем в пр-ве V базис, согласованный с разл. в \oplus , т. е.:

$$e_1, \dots e_r$$
 — базис в U, e_{r+1}, \dots, e_n — базис в $\ker \phi$

$$f_1 = \phi(e_1), \dots, f_r = \phi(e_r)$$
 — базис в $\operatorname{Im} \phi$

И дополним его до базиса в W

$$f_{r+1},\ldots,f_n$$

Покажем, что пара базисов (E,F) — искомая пара базисов.

$$\phi(e_1) = f_1 = 1 \cdot f_1 + 0 \cdot f_2 + \dots + 0 \cdot f_n$$

$$\phi(e_2) = f_2 = 0 \cdot f_1 + 1 \cdot f_2 + 0 \cdot f_3 + \dots + 0 \cdot f_n$$

$$\vdots$$

$$\phi(e_r) = 0 \cdot f_1 + 0 \cdot f_2 + \dots + 0 \cdot f_{r-1} + 1 \cdot f_r + 0 \cdot f_{r+1} + \dots + 0 \cdot f_n$$

$$\phi(e_{r+i}) = \overline{0}, \forall i > 0$$

11 Лекция 26

11.1 Определители произовльного порядка

$$\sigma \colon M \to M$$
 — подстановка

Утверждение 11.1. Следующие три определения эквив-ны: подстановка наз-ся **чётной**, если:

- 1) Чётности верхней и нижней строк совпадают
- 2) $n_1 + n_2$ чётно, где n_i число инверсий в i-ой строке (i=1,2)
- 3) Она раскладывается в произведение чётного числа транспозиций Доказательство.

$$1\iff 2$$
) $n_1+n_2\in 2\mathbb{Z}\iff \binom{n_1}{n_2}=\binom{\mathrm{H}}{\mathrm{H}}\vee \binom{n_1}{n_2}=\binom{\mathrm{H}\mathrm{H}}{\mathrm{H}\mathrm{H}}\iff \mathrm{Ч\"{e}}$ тность строк совпадет

 $1 \iff 3)$ Т. к. каждая транспозиция меняет чётность кол-ва инверсий, то число множителей в произведении чётно.

Обозначение. Знак подстановки:

$$\varepsilon \colon S_h \to \{\pm 1\}$$

$$\varepsilon(\sigma) = \begin{cases} 1, & ecnu \ \sigma - \forall \ddot{e}mho \\ -1, & ecnu \ \sigma - he \forall \ddot{e}mho \end{cases} = (-1)^{\operatorname{inv}(\sigma)} = (-1)^{\tau(\sigma)}$$

 $\operatorname{inv}(\sigma) - \operatorname{суммарное}$ число инверсий $(n_1 + n_2)$

 $au(\sigma)$ — размер минимального по кол-ву транспозиций разложения σ

<u>Утверждение</u> 11.2. Знак перестановки явл-ся гомоморфизмом мультипликативных групп:

$$\varepsilon(\sigma\cdot p)=\varepsilon(\sigma)\cdot\varepsilon(p)$$

Доказательство.

$$\sigma = \tau_1 \dots \tau_k$$

$$p = \tau'_1 \dots \tau'_s$$

$$\Rightarrow \sigma \cdot p = \tau_1 \dots \tau_k \cdot \tau'_1 \dots \tau'_s$$

$$\varepsilon(\sigma \cdot p) = (-1)^{k+s} = (-1)^k (-1)^s = \varepsilon(\sigma) \cdot \varepsilon(p)$$

Вспомним определитель 3-его порядка:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{21}a_{12}a_{33}$$

Сделаем сопоставление:

$$a_{i_1j_1}a_{i_2j_2}a_{i_3j_3} \mapsto \begin{pmatrix} i_1 & i_2 & i_3 \\ j_1 & j_2 & j_3 \end{pmatrix}$$

Слагаемое	Подстановка σ	$\varepsilon(\sigma)$
$a_{11}a_{22}a_{33}$	id	+1
$a_{12}a_{23}a_{31}$	$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$	+1
$a_{13}a_{21}a_{32}$	$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$	+1
:	<u>:</u>	:

На основании этой таблицы строиться формула общего вида (и соотв. определение):

$$\det A = |A| = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1\sigma(1)} a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$$

<u>Утверждение</u> 11.3. При транспонировании матрицы A её определитель не меняется. Пусть $a_{1\sigma(1)} \dots a_{n\sigma(n)}$ входит в состав $\det A$ (и соотв. в состав $\det(A^T)$)

$$\det A \to \varepsilon \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$
$$\det A^T \to \varepsilon \begin{pmatrix} \sigma(1) & \sigma(2) & \dots & \sigma(n) \\ 1 & 2 & \dots & n \end{pmatrix}$$

11.2 Полилинейные кососимметрические ф-ции

Определение 11.1. $f: V^n \to F$ наз-ся полилинейной, если она линейна по каждому из своих арг-ов:

$$V^n = \{ (a_1, \dots, a_n), a_i \in V \}$$
$$f(a_1, \dots, a_n) \in F$$

Линейность подразумевает:

1) Аддитивность:

$$f(\ldots, a_i + a_i', \ldots) = f(\ldots, a_i, \ldots) + f(\ldots, a_i', \ldots)$$

2) Однородность:

$$\forall \lambda \in F : f(\dots \lambda a_i \dots) = \lambda f(\dots a_i \dots)$$

Пусть char $F \neq 2$

Определение 11.2. Полилин. ф-ция $f \colon V^n \to F$ наз-ся кососимметрическим, если:

a)
$$f(\ldots a_i \ldots a_j \ldots) = -f(\ldots a_j \ldots a_i \ldots), i \neq j$$

b)
$$f(...a...a...) = 0$$

Доказательство.

a)
$$\Rightarrow$$
 b)
$$f(\dots a \dots a \dots) = -f(\dots a \dots a \dots)$$

Если char F = 2, то опр-е не пол-ся. Иначе всё ок.

$$b) \Leftarrow a$$

$$0 = f(\dots a_i + a_j \dots a_i + a_j) = f(\dots a_i \dots a_j \dots) + f(\dots a_i \dots a_i \dots) +$$

$$+ f(\dots a_j \dots a_j \dots) + f(\dots a_j \dots a_i \dots) =$$

$$= f(\dots a_i \dots a_j \dots) + f(\dots a_j \dots a_i \dots)$$

Замечание. В случае char F = 2, n. b) выбирается в кач-ве опр-я.

Утверждение 11.4. Пусть $f \colon V^n \to F$ — полилин. кососим., тогда $\forall \sigma \in S_n$

$$f(a_{\sigma(1)} \dots a_{\sigma(n)}) = \varepsilon(\sigma) f(a_1 \dots a_n)$$

Доказательство. Индукция по $\tau(\sigma)$:

База: $\tau(\sigma) = 1 \Rightarrow \sigma$ — очев.

Переход: Пусть для σ , т. ч. $\tau(\sigma) < k$, утв-е вып-ся. Тогда для $\tau(\sigma) = k$, утв-е верно, (делаем ещё один swap, чётность мен-ся, и утв-е верно)

Теорема 11.1 (О характеризации определителя его св-вам).

$$A \in M_n(F)$$

Тогда:

- а) $\det A$ полилин., кососим. ϕ -ция от строк (или столбцов) матрицы A
- b) Пусть $f: M_n(F) \to F$ полилин. кососим. ф-ция от строк (или столбцов) матрицы. Тогда:

$$f(A) = f(E) \cdot \det A$$
, где $E \, - \, e$ динич. матрица

Доказательство. а) Зафикс. все элем-ты, матрицы $A: a_{ij}, i > 1$:

$$\det A = \sum_{\sigma \in S_n} \varepsilon(\sigma) \cdot a_{1\sigma(1)} \dots a_{n\sigma(n)} = \sum_j \alpha_j a_{1j}$$

- лин. форма коорд. І строки.
 - 1) char $F \neq 2$. Проверим, что $\det A$ кососим ф-ция от строк A:

$$\det(\overline{a_1} \dots \overline{a_i} \dots \overline{a_j} \dots \overline{a_n}) \stackrel{?}{=} -\det(\overline{a_1} \dots \overline{a_j} \dots \overline{a_i} \dots \overline{a_n})$$

I.
$$a_{1\sigma(1)} \dots a_{i\sigma(i)} \dots a_{j\sigma(j)} \dots a_{n\sigma(n)} \mapsto \det A$$

II. $a_{1\sigma(1)} \dots a_{j\sigma(j)} \dots a_{i\sigma(i)} \dots a_{n\sigma(n)} \mapsto \det A'$
 $\Rightarrow \varepsilon(I) = -\varepsilon(II) \Rightarrow \det A' = -\det A$

2) $\operatorname{char} F = 2$

$$\det(\overline{a_1} \dots \overline{a_i} \dots \overline{a_j} \dots \overline{a_n}) \stackrel{?}{=} 0, (\overline{a_i} = \overline{a_j})$$

b)
$$e_{1} = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix}$$

$$e_{2} = \begin{pmatrix} 0 & 1 & \dots & 0 \end{pmatrix}$$

$$\vdots$$

$$e_{n} = \begin{pmatrix} 0 & 0 & \dots & 1 \end{pmatrix}$$

$$f(a_{1}, \dots, a_{n}) = f\left(\sum_{j_{1}} a_{1j_{1}}e_{j_{1}}, \sum_{j_{2}} a_{2,j_{2}}e_{j_{2}} \dots \sum_{j_{n}} a_{nj_{n}}e_{j_{n}}\right) =$$

$$= \sum_{j_{1}} \sum_{j_{2}} \dots \sum_{j_{n}} \varepsilon(j)a_{1}j_{1} \dots a_{nj_{n}}f(e_{1}, \dots, e_{n}) = \det Af(E)$$

Утверждение 11.5. а) Если над матрицей A совершить $Э\Pi$ строк I типа $(a_i \mapsto a_i + \lambda a_j)$, то опр-тель не меняется.

- b) При преобразованиях второго типа $(a_i \leftrightarrow a_j)$ опр-тель изменит свой знак.
- c) При преобразованиях третьего типа $(a_i \mapsto \lambda a_i)$ опр-тель умножается на λ

Доказательство. а)

$$\det(\overline{a_1} \dots \overline{a_i} + \lambda \overline{a_j} \dots \overline{a_n}) =$$

$$= \det(\overline{a_1} \dots \overline{a_i} \dots \overline{a_n}) + \lambda \det(\overline{a_1} \dots \overline{a_j} \dots \overline{a_j} \dots \overline{a_n}) =$$

$$= \det(\overline{a_1} \dots \overline{a_i} \dots \overline{a_n})$$

b) Из кососим.

с) Следсвие однородности.

Определение 11.3. Матрица $A \in M_n(F)$ наз-ся верхнетреугольной (нижнетреугольной), если $a_{ij} = 0, i > j(i < j)$

Утверждение 11.6. Определитель верхнетреугольной (нижнетреугольной) матрицы равен произведению эл-ов на главной диагонали.

Доказательство.

$$\varepsilon(\sigma)a_{1\sigma(1)}a_{2\sigma(2)}\dots a_{n\sigma(n)} \to \det A$$

Если $\sigma \neq e$, то $\exists i$, т. ч. $\sigma(i) < i \Rightarrow a_{i\sigma(i)} = 0$ (Легко док-ть от прот.) \Rightarrow единственное ненулевое произведение — произведение эл-ов главной диагонали.

Определение 11.4. Минором k-ого порядка матрицы A наз-ся $\det M^{i_1i_2...i_k}_{j_1j_2...j_k}$

Определение 11.5. Ранг матрицы по минорам наз-ся порядок её наи-большего ненулевого минора. ($\det M \neq 0$)

$$\operatorname{rk}_M A$$

Теорема 11.2 (Фробениус, 1873-75 гг.). Все 3 понятия ранга матрицы эквив-ны, т. е.:

$$\operatorname{rk}_r A = \operatorname{rk}_c A = \operatorname{rk}_M A$$