INTELIGENCIA ARTIFICIAL Algoritmos de búsqueda

Búsquedas no informadas

J. Marcos Moreno-Vega

Овјетічо:

Proponer, implementar y evaluar búsquedas no informadas para encontrar un camimo entre dos vértices de un grafo.

TAREAS:

Además de las tareas descritas en el presente documento, los alumnos tendrán que realizar las modificaciones que se planteen durante la corrección de la práctica.

Corrección:

Semana del 17 al 21 de octubre.

Evaluación:

Código fuente y memoria: hasta 5 puntos. Si el día de la corrección falta algún código o este es incorrecto, la práctica se calificará como No apta.

Modificación propuesta el día de la corrección: hasta 5 puntos.

Lenguaje de programación:

A elección del alumnado.

Problema del camino entre dos vértices de un grafo

Sea dado un grafo G = (V, E), donde V es el conjunto de vértices y E es el conjunto de aristas (|V| = n, |E| = m). Cada arista (i, j) $\in E$ tiene asociada una distancia o coste d(i, j). Se desea encontrar un camino que conecte el vértice origen v_0 con el vértice destino v_d .

Implementación

Las instancias del problema se suministrarán en un fichero de texto con el siguiente formato: en la primera fila se encuentra el número de vértices, n; a continuación, se enumeran las distancias, d(i, j), entre los pares de vértices. Se asume que las distancias son simétricas, es decir, que d(i, j) = d(j, i), $\forall i, j \in V$. Además, d(i, i) = 0, $\forall i \in V$ y d(i, j) = -1 si no hay una arista que conecte al vértice i con el vértice j.

Por ejemplo, si n = 5, el fichero de texto para el grafo de la figura 1(a) contendría los datos mostrados en la figura 1(b) (solo la primera columna; la segunda describe qué representa cada dato):

Figura 1: Grafo y su representación

Tareas

- a) Diseñar e implementar una búsqueda en amplitud para el problema de encontrar un camino que conecte dos vértices de un grafo.
 - Debe poder indicarse, cómodamente, cuáles son los vértices origen y destino.
- b) Analizar el comportamiento de la búsqueda en amplitud en términos del tamaño del grafo (número de vértices y aristas).

Qué debe presentar el alumno

- a) Código fuente, debidamente comentado, y fichero ejecutable.
- b) Una memoria en formato pdf en la que se describan brevemente la búsqueda en amplitud implementada enumerando las estructuras de datos usadas y cualquier elemento necesario para comprender dicha implementación.
- c) La memoria debe incluir también tablas o gráficas de resultados que muestren el comportamiento de la búsqueda sobre diferentes instancias del problema. En la figura 2 se muestra el formato de estas tablas de resultados.
 - En este caso se han considerado seis grafos (instancias ID_1 , ID_2 , ..., ID_6), de diferentes tamaños, con varias combinaciones de vértices origen y destino. En la tabla se mostrará el camino encontrado para ir desde el vértice v_o al vértice v_d , su longitud y los nodos generados e inspeccionados por la búsqueda en amplitud.

Instancia	п	m	v_o	v_d	Camino	Distancia	Nodos generados	Nodos inspeccionados
$\overline{ID_1}$	10	5	1	10				
ID_1	10	5	2	7				
ID_2	10	10	1	8				
ID_2	10	10	3	9				
ID_3	10	15	1	6				
ID_3	10	15	3	7				
ID_4	20	10	7	10				
ID_4	20	10	1	8				
ID_5	20	20	2	9				
ID_5	20	20	3	9				
ID_6	20	50	1	5				
ID_6	20	50	4	10				

Figura 2: Búsqueda en amplitud. Tabla de resultados