Linear Modelling in R

Andre Archer
Northwestern University
Research Computing Services

Format of the Online Workshop

- In this workshop, I will be using Google Slides and live coding in RStudio
 - I will be using the Rmd file, linear_model_code.Rmd, to teach the workshop.
- If you have an questions, please put them in the chat.
 - There are TAs monitoring the chat. They will respond to questions.
 - If necessary, I will be interrupted by a TA.

Contents

- 1) Data Description
- 2) Goals of this workshop
- 3) Linear Regression
 - a) Linear Model with a constant term only
 - b) Linear Model with Total Volume
 - c) Linear Model with Total Volume and Type
 - d) Linear Model with Total Volume and Type interaction
 - e) Linear Model with Total Volume and Year
- 4) Conclusion and Next Steps
- 5) Exercises

Data Description

Data we are working with

- Dataset contains 18729 samples of avocado prices and volume sold across U.S. cities
- The dataset set contains variables:
 - AveragePrice average price of avocado
 - TotalVolume total volume sold
 - Type whether the avocado was organic or conventional
 - Year year in which the recording was made
 - Region region in the U.S. the recording was made
 - Month month in the recording was made

Goals of this workshop

Goal

- 1) I would like to predict average price as function of total volume sold (proxy for demand) and other explanatory variables
- 2) I would also like to understand the effects of total volume, type and year on the average price

Why Linear Model is appropriate

- 1) I would like to predict average price as function of total volume sold (proxy for demand), Type and Year
 - Linear model expresses the response variable as a function of explanatory variable

Average Price =
$$\beta_0 + \beta_1$$
Total Volume + β_2 Type + β_3 Year + . . .

- \circ Linear fitting learns the coefficients, $eta_0,\,eta_1,\,eta_2,\,eta_3\dots$, from data
- 2) I would also like to understand the effects of total volume, type and year on the average price
 - After fitting, we can interpret the coefficients.
 - \circ For example, holding all other variables fixed, average price changes by β_1 when total volume increase by 1.

Linear Model with a constant term

Scatter plot of Average Price vs. Total Volume

Scatter plot of Average Price vs. Total Volume

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!

Linear Modeling with a constant term only

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- As a first pass, let's fit the data to a flat line.

AveragePrice = β_0

Linear Modeling with a constant term only

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- As a first pass, let's fit the data to a flat line.

```
Average Price = \beta_0 Estimate Std. Error t value Pr(>|t|) (Intercept) 1.405978 0.002981 471.7 <2e-16 ***
```


- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- Let's have a second go at it. Let's fit
 AveragePrice to a straight line function of
 Total Volume.

AveragePrice = $\beta_0 + \beta_1$ Total Volume

Let's do this in R!

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- Let's have a second go at it. Let's fit
 AveragePrice to a straight line function of
 Total Volume.

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- Let's have a second go at it. Let's fit
 AveragePrice to a straight line function of
 Total Volume.

```
\label{eq:AveragePrice} AveragePrice = \beta_0 + \beta_1 Total \ Volume Estimate Std. Error t value Pr(>|t|) (Intercept) 2.565532 0.012193 210.42 <2e-16 *** TotalVolume -0.102463 0.001056 -97.03 <2e-16 ***
```


- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- Let's have a second go at it. Let's fit
 AveragePrice to a straight line function of
 Total Volume.

Average Price = $2.566 - 0.102 \times \text{Total Volume}$

We can use the model to:

1) plot the straight line fit

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- Let's have a second go at it. Let's fit
 AveragePrice to a straight line function of
 Total Volume.

Average Price = $2.566 - 0.102 \times \text{Total Volume}$

We can use the model to:

- 1) plot the straight line fit
- 2) predict Average Price values

- The data looks like a linear of function of total volume
- Let's fit it to a linear model!
- Let's have a second go at it. Let's fit
 AveragePrice to a straight line function of
 Total Volume.

Average Price = $2.566 - 0.102 \times \text{Total Volume}$

We can use the model to:

- 1) plot the straight line fit
- 2) predict Average Price values
- 3) do model comparison using ANOVA

Model Comparison using ANOVA

- Adding any explanatory variable will reduce the sum of squares of the residuals
 - Often, it is important to know if the reduction in sum of squares is meaningful.
 - We use ANOVA to tell if the reduction in sum of square is statistically significant

Statistical Output of Linear Models in R

The statistical output of the summary function are close to true if

- we have sufficient data
- the response variable is normally distributed
- a linear model describes the average behaviour of the response variable
- each response variable has the same standard deviation, etc.

Linear Model with Total Volume and

Scatter plot of Price vs. Total Volume for each type of avocado

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

$$Average Price = \beta_0 + \beta_1 Total\ Volume + \beta_2 Type$$

$$Type = 0 \ \text{if conventional}$$

$$Type = 1 \ \text{if organic}$$

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

AveragePrice =
$$\beta_0 + \beta_1$$
Total Volume + β_2 Type

• If conventional,

AveragePrice =
$$\beta_0 + \beta_1$$
Total Volume

If organic,

AveragePrice =
$$\beta_0 + \beta_2 + \beta_1$$
Total Volume

Let's do this in R!

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume + \beta_2Type Estimate Std. Error t value Pr(>|t|) (Intercept) 1.744565 0.022081 79.01 <2e-16 *** TotalVolume -0.044627 0.001662 -26.86 <2e-16 *** Typeorganic 0.332961 0.007620 43.70 <2e-16 ***
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

```
Average Price = \beta_0 + \beta_1 Total \ Volume + \beta_2 Type Estimate Std. Error t value Pr(>|t|) (Intercept) 1.744565 0.022081 79.01 <2e-16 *** Total Volume -0.044627 0.001662 -26.86 <2e-16 *** Typeorganic 0.332961 0.007620 43.70 <2e-16 ***
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume + \beta_2Type
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.744565 0.022081 79.01 <2e-16 ***
TotalVolume -0.044627 0.001662 -26.86 <2e-16 ***
Typeorganic 0.332961 0.007620 43.70 <2e-16 ***
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

Average Price = $1.744 - 0.044 \times \text{Total Volume} + 0.33 \times \text{Type}$

• If conventional,

Average Price = $1.744 - 0.044 \times \text{Total Volume}$

• If organic,

Average Price = $2.074 - 0.044 \times \text{Total Volume}$

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

Average Price = $1.744 - 0.044 \times \text{Total Volume} + 0.33 \times \text{Type}$

• If conventional,

Average Price = $1.744 - 0.044 \times \text{Total Volume}$

If organic,

Average Price = $2.074 - 0.044 \times \text{Total Volume}$

We can use the model to:

- 1) plot the straight line fit
- 2) predict Average Price values
- 3) do model comparison using ANOVA

- The previous model assumes that curves have the same slopes but are shifted up/down from each other
- What if it's possible for the curves to have different slopes? How do we include this in our model?

Linear Model with Total Volume and

Type interaction

Linear Modeling with an interaction term

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

AveragePrice = $\beta_0 + \beta_1$ Total Volume + β_2 Type + β_3 Total Volume × Type

Type = 0 if conventional
Type = 1 if organic

Linear Modeling with an interaction term

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

AveragePrice = $\beta_0 + \beta_1$ Total Volume + β_2 Type + β_3 Total Volume × Type

If conventional,

AveragePrice =
$$\beta_0 + \beta_1$$
Total Volume

If organic,

AveragePrice =
$$\beta_0 + \beta_2 + (\beta_1 + \beta_3) \times \text{Total Volume}$$

Let's do this in R!

Linear Modeling with an interaction term

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

AveragePrice = $\beta_0 + \beta_1$ Total Volume + β_2 Type + β_3 Total Volume × Type

```
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         1.753568
                                    0.032210
TotalVolume
                         -0.045312
                                    0.002438 -18.584
                                                       < 2e-16
Typeorganic
                         0.318321
                                    0.038891
                                                8.185
                                                       2.9e-16
TotalVolume: Typeorganic
                         0.001279
                                    0.003332
                                                0.384
                                                         0.701
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume + \beta_2Type + \beta_3Total Volume × Type
     Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
     (Intercept)
                                1.753568
                                           0.032210
     TotalVolume
                               -0.045312
                                            0.002438 -18.584 < 2e-16
     Typeorganic
                                0.318321
                                                              2.9e-16
                                            0.038891
                                                       8.185
     TotalVolume: Typeorganic
                               0.001279
                                           0.003332
                                                       0.384
                                                                 0.701
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume + \beta_2Type + \beta_3Total Volume × Type
     Coefficients:
                               Estimate Std. Error t value Pr(>|t|)
     (Intercept)
                                1.753568
                                           0.032210
     TotalVolume
                               -0.045312
                                           0.002438 -18.584 < 2e-16
    Typeorganic
                               0.318321
                                           0.038891
                                                       8.185
                                                              2.9e-16
     TotalVolume: Typeorganic
                               0.001279
                                           0.003332
                                                       0.384
                                                                 0.701
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume + \beta_2Type + \beta_3Total Volume × Type
     Coefficients:
                                Estimate Std. Error t value Pr(>|t|)
     (Intercept)
                                1.753568
                                           0.032210
     TotalVolume
                               -0.045312
                                           0.002438 -18.584
                                                              < 2e-16
     Typeorganic
                                0.318321
                                            0.038891
                                                       8.185
                                                              2.9e-16
     TotalVolume:Typeorganic 0.001279
                                            0.003332
                                                       0.384
                                                                 0.701
```


- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

Average Price = $1.753 - 0.045 \times \text{Total Volume} + 0.32 \times \text{Type} + 0.0012 \times \text{Total Volume} \times \text{Type}$

If conventional,

Average Price = $1.75 - 0.045 \times \text{Total Volume}$

If organic,

Average Price = $2.07 - 0.046 \times \text{Total Volume}$

- Each type of avocado appear to follow its own linear model
- How do we write this mathematically?

Average Price =
$$1.753 - 0.045 \times \text{Total Volume} + 0.32 \times \text{Type} + 0.0012 \times \text{Total Volume} \times \text{Type}$$

If conventional,

Average Price =
$$1.75 - 0.045 \times \text{Total Volume}$$

If organic,

Average Price =
$$2.07 - 0.046 \times \text{Total Volume}$$

We can use the model to:

- 1) plot the straight line fit
- 2) predict Average Price values
- 3) do model comparison using ANOVA

Linear Model with Total Volume and Year

- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

AveragePrice = $\beta_0 + \beta_1$ Total Volume+ β_2 Year2016+ β_3 Year2017+ β_4 Year2018

Year2016 = 1 if Year = 2016

Year2016 = 0 if Year is not 2016

- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

AveragePrice = $\beta_0 + \beta_1$ Total Volume+ β_2 Year2016+ β_3 Year2017+ β_4 Year2018

Year2017 = 1 if Year = 2017

Year2017 = 0 if Year is not 2017

- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume+\beta_2Year2016+\beta_3Year2017+\beta_4Year2018

Year2018 = 1 if Year = 2018

Year2018 = 0 if Year is not 2018
```


- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

AveragePrice = $\beta_0 + \beta_1$ Total Volume+ β_2 Year2016+ β_3 Year2017+ β_4 Year2018

If year is 2015,

AveragePrice =
$$\beta_0 + \beta_1$$
Total Volume

If year is 2016,

Average
Price =
$$\beta_0 + \beta_2 + \beta_1$$
Total Volume

• If year is 2017,

AveragePrice =
$$\beta_0 + \beta_3 + \beta_1$$
Total Volume

If year is 2018,

AveragePrice =
$$\beta_0 + \beta_4 + \beta_1$$
Total Volume

Let's do this in R!

- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume+\beta_2Year2016+\beta_3Year2017+\beta_4Year2018
                  Estimate Std. Error t value Pr(>|t|)
    (Intercept)
                  2.529083
                              0.012072
                                          209,497
                              0.001023 -101.963 < 2e-16 ***
    TotalVolume -0.104349
    Year2016
                 -0.008084
                              0.005966
                                           -1.355
                                                      0.175
    Year2017
                  0.182901
                              0.005947
                                           30.757
                                                    < 2e-16 ***
    Year2018
                  0.041271
                              0.009755
                                            4.231 2.34e-05 ***
```


- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume+\beta_2Year2016+\beta_3Year2017+\beta_4Year2018
                  Estimate Std. Error t value Pr(>|t|)
    (Intercept)
                  2.529083
                               0.012072
                                          209,497
                              0.001023 -101.963 < 2e-16 ***
    TotalVolume -0.104349
    Year2016
                 -0.008084
                              0.005966
                                           -1.355
                                                      0.175
    Year2017
                  0.182901
                              0.005947
                                           30.757
                                                    < 2e-16
    Year2018
                  0.041271
                               0.009755
                                            4.231 2.34e-05 ***
```


- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume+\beta_2Year2016+\beta_3Year2017+\beta_4Year2018
                  Estimate Std. Error
                                          t value Pr(>|t|)
    (Intercept)
                  2.529083
                              0.012072
                                          209,497
    TotalVolume -0.104349
                              0.001023 -101.963
                                                   < 2e-16 ***
    Year2016
                 -0.008084
                              0.005966
                                           -1.355
                                                      0.175
    Year2017
                  0.182901
                              0.005947
                                           30.757
                                                    < 2e-16
    Year2018
                  0.041271
                               0.009755
                                            4.231 2.34e-05 ***
```


- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume+\beta_2Year2016+\beta_3Year2017+\beta_4Year2018
                   Estimate Std. Error/
                                          t value Pr(>|t|)
    (Intercept)
                  2.529083
                               0.012072
                                          209,497
    TotalVolume -0.104349
                               0.001023 -101.963
                                                    < 2e-16 ***
    Year2016
                 -0.008084
                               0.005966
                                            -1.355
                                                       0.175
    Year2017
                   0.182901
                               0.005947
                                            30.757
                                                     < 2e-16
    Year2018
                   0.041271
                               0.009755
                                            4.231 2.34e-05 ***
```


- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

```
AveragePrice = \beta_0 + \beta_1Total Volume+\beta_2Year2016+\beta_3Year2017+\beta_4Year2018
                  Estimate Std. Error
                                          t value Pr(>|t|)
    (Intercept)
                  2.529083
                               0.012072
                                          209,497
    TotalVolume -0.104349
                               0.001023 101.963
                                                    < 2e-16 ***
    Year2016
                 -0.008084
                               0.005966
                                           -1.355
                                                      0.175
    Year2017
                  0.182901
                               0.005947
                                           30.757
                                                    < 2e-16
                               0.009755
    Year2018
                  0.041271
                                            4.231 2.34e-05 ***
```


- Each recording year of avocado appear to follow their own linear model
- How do we write this mathematically?

Average Price =
$$2.52 - 0.104 \times \text{Total Volume} - 0.008 \times \text{Year} 2016 + 0.18 \times \text{Year} 2017 + 0.041 \times \text{Year} 2018$$

Conclusion and Next Steps

- We found reasonable linear models of average price using total volume, year and type.
- Going further, you might want to consider
 - Model selection, eg. LASSO, ridge regression, -- workshop on this in the summer
 - Goodness of fit measures: AIC, BIC, R², adjusted R²
 - Statistical tests for goodness of fit
 - Checking MLE conditions

Exercises

- 1. Open the file linear_model_exercises.Rmd
- 2. Get cracking!