Attention, Transformers and Indirection

Neural Networks CSCI 4850/5850

High-Dimensional Space – Distractions

Source: thiscatdoesnotexist.com

Source: izzcat.com

Source: cnet.com

Competing Features – Distractions

Source: thiscatdoesnotexist.com

Source: amazon.com

Temporal Relations – Distractions

Every morning, suit, you are waiting on a chair to be filled by my vanity, my love, my hope, my body.

- Excerpt from 'Ode to my suit'
 - Author: Pablo Neruda
 - Translator: Margaret Peden

What is the subject of this poem?

Source: http://www.reedfurnituredesign.com/blog/2015/1/valet-chair

Traditional Attention Mechanisms

Dimensional Attention

Dopamine Response to Conditioned Stimulus (CS) and Reward (R) (Shultz et al., 1997)

Attention – Filtering Out the Irrelevant

Dosovitskiy, Alexey, et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929 (2020).

Self-Attention – Compare All-to-All

Keys (K)

Vaswani, Ashish, et al. "Attention is all you need." arXiv preprint arXiv:1706.03762 (2017).

Multiple Filters? – Multihead Attention

Transform the input several different ways (Linear) and then apply self-attention: results are combined together (Concat + Linear) for a more robust embedding capable of focusing attention on several types of features.

Embedded

Patches

Best Case Scenario – Transfer Learning

Pretrained embedding model

NLP Examples: **BERT, mBERT, RoBERTa**

Position Embeddings

Arbitrary Sequence Lengths?

Dai, Zihang, et al. "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context." arXiv preprint arXiv:1901.02860 (2019).

Utilizes relative position encodings to allow arbitrary time-scales for position tokens

Rae, Jack, et al. "Compressive Transformers for Long-Range Sequence Modelling." arXiv preprint arXiv:1911.05507 (2019).

Zaheer, Manzil, et al. "Big Bird: Transformers for Longer Sequences." arXiv preprint arXiv:2007.14062 (2021).

Speed/Memory Issues?

Wu et al. "Fastformer: Additive Attention Can Be All You Need" (2021). https://arxiv.org/abs/2108.09084

RBFs determines complexity and is independent of sequence length

Martins, Marinho, and Martins "∞-former: Infinite Memory Transformer" (2021). https://arxiv.org/abs/2109.00301

Overcoming Existing Context Limits

Model	#Param	PPL
Grave et al. (2016b) - LSTM	-	48.7
Bai et al. (2018) - TCN	-	45.2
Dauphin et al. (2016) - GCNN-8	-	44.9
Grave et al. (2016b) - LSTM + Neural cache	-	40.8
Dauphin et al. (2016) - GCNN-14	-	37.2
Merity et al. (2018) - QRNN	151M	33.0
Rae et al. (2018) - Hebbian + Cache	-	29.9
Ours - Transformer-XL Standard	151M	24.0
Baevski and Auli (2018) - Adaptive Input [⋄]	247M	20.5
Ours - Transformer-XL Large	257M	18.3

Table 1: Comparison with state-of-the-art results on WikiText-103. $^{\circ}$ indicates contemporary work.

Model	#Param	bpc
Ha et al. (2016) - LN HyperNetworks	27M	1.34
Chung et al. (2016) - LN HM-LSTM	35M	1.32
Zilly et al. (2016) - RHN	46M	1.27
Mujika et al. (2017) - FS-LSTM-4	47M	1.25
Krause et al. (2016) - Large mLSTM	46M	1.24
Knol (2017) - cmix v13	-	1.23
Al-Rfou et al. (2018) - 12L Transformer	44M	1.11
Ours - 12L Transformer-XL	41M	1.06
Al-Rfou et al. (2018) - 64L Transformer	235M	1.06
Ours - 18L Transformer-XL	88M	1.03
Ours - 24L Transformer-XL	277M	0.99

Table 2: Comparison with state-of-the-art results on enwik8.

Model	#Param	bpc
Cooijmans et al. (2016) - BN-LSTM	-	1.36
Chung et al. (2016) - LN HM-LSTM	35M	1.29
Zilly et al. (2016) - RHN	45M	1.27
Krause et al. (2016) - Large mLSTM	45M	1.27
Al-Rfou et al. (2018) - 12L Transformer	44M	1.18
Al-Rfou et al. (2018) - 64L Transformer	235M	1.13
Ours - 24L Transformer-XL	277M	1.08

Table 3: Comparison with state-of-the-art results on text8.

Model	#Param	PPL
Shazeer et al. (2014) - Sparse Non-Negative	33B	52.9
Chelba et al. (2013) - RNN-1024 + 9 Gram	20B	51.3
Kuchaiev and Ginsburg (2017) - G-LSTM-2	-	36.0
Dauphin et al. (2016) - GCNN-14 bottleneck	-	31.9
Jozefowicz et al. (2016) - LSTM	1.8B	30.6
Jozefowicz et al. (2016) - LSTM + CNN Input	1.04B	30.0
Shazeer et al. (2017) - Low-Budget MoE	~5B	34.1
Shazeer et al. (2017) - High-Budget MoE	~5B	28.0
Shazeer et al. (2018) - Mesh Tensorflow	4.9B	24.0
Baevski and Auli (2018) - Adaptive Input [⋄]	0.46B	24.1
Baevski and Auli (2018) - Adaptive Input [⋄]	1.0B	23.7
Ours - Transformer-XL Base	0.46B	23.5
Ours - Transformer-XL Large	0.8B	21.8

Table 4: Comparison with state-of-the-art results on One Billion Word. ♦ indicates contemporary work.

Dai, Zihang, et al. "Transformer-xl: Attentive language models beyond a fixed-length context." arXiv preprint arXiv:1901.02860 (2019).

Parisotto, Emilio, et al. "Stabilizing transformers for reinforcement learning." International Conference on Machine Learning. PMLR, 2020.

Current SOA

Currently Supported (started August, 2024)

Attention Variant Support No Bias No Bias Alibi Alibi Softcap Softcap . . .

https://pytorch.org/blog/flexattention/

Dao et al., 2022 - https://github.com/Dao-AlLab/flash-attention
Already up to version 3 – as of July 2024
(only supports specific hardware)

A100 FP16 H100 FP8

Unsupervised Learning: Generative Pretrained Transformer (GPT)

- Vaswani et al., 2017 Transformer architecture
- Radford et al., 2018 and Brown et al., 2020
- Simple *generative training* and *testing* procedure, perfectly suited for the *transformer* architecture.
- Very large model, very large data set

2. Cat

3. Ran

4. Fast

1. Cat

2 Par

z. Kan

3. Fast

4. <STOP>

The [P(duck), P(cat), P(fast), P(no), ...]
The cat [P(duck), P(cat), P(ran), ...]
The cat ran [P(fast), P(quickly), P(slowly), P(no) ...]

GPT-3 (Brown et al. 2020)

[To do a "farduddle" means to jump up and down really fast. An example of a sentence that uses the word farduddle is:] One day when I was playing tag with my little sister, she got really excited and she started doing these crazy farduddles.

[A "yalubalu" is a type of vegetable that looks like a big pumpkin. An example of a sentence that uses the word yalubalu is:]

I was on a trip to Africa and I tried this yalubalu vegetable that was grown in a garden there. It was delicious.

[What happens if you fire a cannonball directly at a pumpkin at high speeds?]

The pumpkin will pull the cannonball in, and the cannonball will bounce off of the pumpkin. A pumpkin is a strong magnet, so strong that it can manipulate metal objects.

14

Generative Models

- Expanded the idea of patch-based structure to multiscale patches
- GANs (both generator and discriminatory) constructed purely from residual transformer blocks

Jiang, Chang, and Wang. "TransGAN: Two Pure Transformers Can Make One Strong GAN, and That Can Scale Up" (under review)

State-of-theArt https://arxiv.org/abs/2102.07074

Unstructured Data (Sets)

Set Attention Block

Multihead Attention Block (MAB)

Induced Set Attention Block

Lee et al. "Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks" ICML (2019).

https://arxiv.org/abs/1810.00825

- Set-based Data?
 - Groups of points
 - (general embeddings?)
 - Groups of images
 - Groups of sentences (captioning)
- Problems

- Changing the order of the inputs impacts which weights are used and therefore how the data is encoded
- Traditional loss functions are not permutation invariant
 - Changing the order of the output results in a matching problem (which permutation is it?)
- Solutions
 - Transformers
 - Remove position encodings and they naturally produce permutation equivariant transforms
 - No matter that order the input data is presented in, it's encoded in the same manner
 - Hungarian Loss and Chamfer Loss
 - More computationally expensive, but expressive loss functions
 - H is O(n^3) and C is O(n^2) approximation trade-off

Generative Models (for Sets)

- Generate sets of arbitrary cardinatily
- No need to expensive loss function
- General embeddings for set-structured data

Stelzner, Kersting, and Kosiorek. "Generative Adversarial Set Transformers" ICML (2020). https://www.ml.informatik.tu-darmstadt.de/papers/stelzner2020ood_gast.pdf

Another Type/Use of Attention — Indirection

Kriete, Trenton, et al. "Indirection and symbol-like processing in the prefrontal cortex and basal ganglia." Proceedings of the National Academy of Sciences 110.41 (2013): 16390-16395.

Indirection – Transfer Learning

Table 1: Parameter Descriptions and Values Name Value Description

Indirection – Standard Neural Networks

Jovanovich, 2017 http://jewlscholar.mtsu.edu/xmlui/handle/mtsu/5561

Indirection – Emergent Symbols

Webb, Taylor W., Ishan Sinha, and Jonathan D. Cohen. "Emergent Symbols through Binding in External Memory." arXiv preprint arXiv:2012.14601 (2020).

Webb, Taylor, et al. "Learning representations that support extrapolation." International Conference on Machine Learning. PMLR, 2020.

Transformer Limitations

- The **transformer** is also a **clear improvement in extrapolation** compared to existing recurrent networks
- Note: quantifiable difference of a qualitatively different behavior
- Extrapolation abilities do not extend to true indirection
- However, working memory can currently still overcome this limitation by providing the correct inductive bias
- Perhaps, this property emerges spontaneously when training on large data sets: so-called induction heads? Olsson et al., 2022: https://arxiv.org/abs/2209.11895

Miller, Naderi, Mullinax and Phillips (2022) CogSci