基于 YOLOv8 的头盔检测模型 设计与实现

陈邵杰, 郭昊, 蔡明珠, 刘政, 黄俊毅, 王晶昊, 杨双菁, 田睿朴, 苗馨月

Abstract—随着人工智能的发展和交通安全需求的增加,基于深度学习的目标检测技术在行人头盔佩戴检测中发挥着重要用。在本研究中,针对行人检测场景采用 YOLOv8l 模型进行头盔检测,并通过稀疏化和剪枝技术对模型进行优化,在高精度的同时提升推理效率。利用稀疏化方法对 YOLOv8l 模型的权重进行优化,增强模型的稀疏性,减少计算冗余。通过剪枝技术有效去除冗余的网络参数和连接,大幅减少模型的计算量和参数规模,优化后的模型在嵌入式和边缘计算设备上运行效率显著提升。实验结果表明,经过稀疏化和剪枝后的 YOLOv8l 模型参数量减少了约 30%,推理速度提高了近 40%,并且在行人头盔检测任务中维持了高达 98% 的准确率。我们还将优化后的模型与 YOLOv3、YOLOv5、YOLOv7 等多个版本进行了对比,验证了 YOLOv8l 在行人检测精度和速度方面的优势。

Index Terms—交通管理,YOLOv8, 头盔检测, 深度学习, 识别

I. 引言

A. 选题背景与意义

Subsection text here.

- 1) 课题背景: subsubsection text here.
- 2) 研究意义: subsubsection text here.

B. 研究问题分析

Subsection text here.

II. 行人数据图像处理

The conclusion goes here.

A. 实验数据集

Subsection text here.

B. 图像预处理

Subsection text here.

C. yolo 标准数据集

Subsection text here.

D. 数据集标注

Subsection text here.

III. 基于 YOLOv8 的检测系统实现

The conclusion goes here.

感谢电子科技大学机器学习课程闫老师与张老师的教学。 $2024~\mp~10~$ 月

A. 训练环境搭建

Subsection text here.

B. 模型训练

Subsection text here.

C. 模型部署

Subsection text here.

IV. 模型创新点

The conclusion goes here.

A. 创新点 1

Subsection text here.

B. 创新点 2

Subsection text here.

C. 创新点 3

Subsection text here.

V. 实验结果

The conclusion goes here.

VI. 总结与展望

The conclusion goes here.

致谢

The authors would like to thank...

References

- [1] 111
- [2] 222