Module 3 | Lesson 1 3 D GEOMETRY AND REFERENCE FRAMES

Coordinate Rotations

Vectors can be expressed in different coordinate frames:

The coordinates of the vector are related through a *rotation* matrix:

$$\mathbf{r}_b = \mathbf{C}_{ba}\mathbf{r}_a$$
 takes coordinates in frame a and rotates them into frame b

Transformations

How Can We Represent a Rotation?

Rotation matrix

$$\mathbf{C}_{ba} = \begin{bmatrix} b \\ \rightarrow 1 \\ b \\ \rightarrow 2 \\ b \\ \rightarrow 3 \end{bmatrix} \begin{bmatrix} a \\ \rightarrow_1 & a \\ \rightarrow_2 & \rightarrow_3 \end{bmatrix}$$

$$= \begin{bmatrix} b & \cdot a & b & \cdot a & b & \cdot a \\ \rightarrow_1 & \rightarrow_1 & \rightarrow_1 & \rightarrow_2 & \rightarrow_1 & \rightarrow_3 \\ b & \cdot a & b & \cdot a & b & \cdot a \\ \rightarrow_2 & \rightarrow_1 & \rightarrow_2 & \rightarrow_2 & \rightarrow_2 & \rightarrow_3 \\ b & \cdot a & b & \cdot a & b & \cdot a \\ \rightarrow_3 & \rightarrow_1 & \rightarrow_3 & \rightarrow_2 & \rightarrow_3 & \rightarrow_3 \end{bmatrix}$$
"direction cosine matrix"
(DCM)

$$\mathbf{C}_{ba} \in \mathcal{R}^{3 \times 3}$$

$$\mathbf{r}_b = \mathbf{C}_{ba} \mathbf{r}_a$$

$$\mathbf{C}_{ba} \mathbf{C}_{ba}^T = \mathbf{C}_{ba} \mathbf{C}_{ab} = \mathbf{1}$$

$$\mathbf{C}_{ba} \mathbf{C}_{ba}^T = \mathbf{C}_{ba} \mathbf{C}_{ab} = \mathbf{1}$$

How Can We Represent a Rotation?

2

Unit quaternions

$$\mathbf{q} = \begin{bmatrix} q_w \\ \mathbf{q}_v \end{bmatrix} = \begin{bmatrix} \cos \frac{\phi}{2} \\ \hat{\mathbf{u}} \sin \frac{\phi}{2} \end{bmatrix}$$
$$\|\mathbf{q}\| = 1$$

$$\mathbf{r}_{b} = \mathbf{C}(\mathbf{q}_{ba})\mathbf{r}_{a}$$

$$\mathbf{C}(\mathbf{q}) = (q_{w}^{2} - \mathbf{q}_{v}^{T}\mathbf{q}_{v})\mathbf{1} + 2\mathbf{q}_{v}\mathbf{q}_{v}^{T} + 2q_{w}[\mathbf{q}_{v}]_{\times}$$

$$where \quad [\mathbf{a}]_{\times} = \begin{bmatrix} 0 & -a_{z} & a_{y} \\ a_{z} & 0 & -a_{x} \\ -a_{y} & a_{x} & 0 \end{bmatrix}$$

Quaternion Multiplication and Rotations

Quaternions multiplication is a special operation that is *associative* but is not *commutative* in general (just like matrix multiplication!):

$$\mathbf{p} \otimes \mathbf{q} = \begin{bmatrix} p_w q_w - \mathbf{p}_v^T \mathbf{q}_v \\ p_w \mathbf{q}_v + q_w \mathbf{p}_v + [\mathbf{p}_v]_\times \mathbf{q}_v \end{bmatrix}$$
quaternion product operator

Sequential rotation operations can also be performed by taking advantage of quaternion multiplication:

$$C(p \otimes q) = C(p) C(q)$$

How Can We Represent a Rotation?

Euler angles

$$\mathbf{C}(\theta_3, \theta_2, \theta_1) = \mathbf{C}_3(\theta_3) \,\mathbf{C}_2(\theta_2) \,\mathbf{C}_1(\theta_1)$$

about the 3-axis

$$\mathbf{C}_3 = \begin{bmatrix} \cos \theta_3 & -\sin \theta_3 & 0 \\ \sin \theta_3 & \cos \theta_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \mathbf{C}_2 = \begin{bmatrix} \cos \theta_2 & 0 & \sin \theta_2 \\ 0 & 1 & 0 \\ -\sin \theta_2 & 0 & \cos \theta_2 \end{bmatrix} \quad \mathbf{C}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_1 & -\sin \theta_1 \\ 0 & \sin \theta_1 & \cos \theta_1 \end{bmatrix}$$

about the 2-axis

$$\mathbf{C}_2 = \begin{bmatrix} \cos \theta_2 & 0 & \sin \theta_2 \\ 0 & 1 & 0 \\ -\sin \theta_2 & 0 & \cos \theta_2 \end{bmatrix}$$

about the 1-axis

$$\mathbf{C}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_1 & -\sin \theta_1 \\ 0 & \sin \theta_1 & \cos \theta_1 \end{bmatrix}$$

Which Rotation Representation Should I Use?

	Rotation Matrix	Unit quaternion	Euler angles
Expression	C	$\mathbf{q} = \begin{bmatrix} \cos\frac{\phi}{2} \\ \hat{\mathbf{u}}\sin\frac{\phi}{2} \end{bmatrix}$	$\{\theta_3,\theta_2,\theta_1\}$
Parameters	9	4	3
Constraints	$\mathbf{CC}^T = 1$	$ \mathbf{q} = 1$	None*
Singularities?	No	No	Yes!
			For particular
			two Enter a

indistinguisherble.

Reference Frames | ECIF

Earth-Centred Inertial Frame

ECIF coordinate frame is fixed, Earth rotates about the z axis.

X	fixed w.r.t. stars	
У	fixed w.r.t. stars	
Z	true north	

Reference Frames | ECEF

Earth-Centred Earth-Fixed Frame

Reference Frames | Navigation

Reference Frames | Sensor & Vehicle

