TSPi Quality Plan - Form SUMQ

Name	นายวิรัตน์ สากร	Date	4 ก.ย. 2564
Team	4	Instructor	อ.อภิสิทธิ์ แสงใส
Part/Level	System	Cycle	1
Summary Rates		Plan	Actual
LOC/hour		>200	8991/201.7 = 44.58
% Reuse (% of t	total LOC)	 ไม่ทราบข้อมูล	ไม่ทราบข้อมูล
% New Reuse (9	% of N&C LOC)	ไม่ทราบข้อมูล	ไม่ทราบข้อมูล
Percent Defect F	Free (PDF)		
In compile		>10%	2.7%
In unit test		>50%	ไม่ทราบข้อมูล
In build and inte	egration	>70%	57.14%
In system test		>90%	ไม่ได้ดำเนินการ
Defect/page			
Requirements re	eview	<0.5	38/144 = 0.26
HLD review		<3.0	327/141 = 2.32
Defects/KLOC			
DLD review		ไม่ได้ดำเนินการ	ไม่ได้ดำเนินการ
DLD inspection		ไม่ได้ดำเนินการ	ไม่ได้ดำเนินการ
Code review		6	64/8.991 = 7.12
Compile		<10	117/8.991 = 13.01
Code inspection		<7.5	6/8.991 = 0.67
Unit test		<5	ไม่ได้ดำเนินการ
Build and integr	ation	<0.5	65/8.991 = 7.23
System test		<0.2	ไม่ได้ดำเนินการ
Total develop	ment	75-150	252/8.991 = 28.03
Defect Ratios			
Code review/Compile		>2.0	64/117 = 0.55
DLD review/Unit	t test	>2.0	ไม่ได้ดำเนินการ
Development tir	me ratios (%)		
Requirements review		>0.25	ไม่ได้ดำเนินการ
HLD review		>0.5	ไม่ได้ดำเนินการ

DLD/code	>1.0	ไม่ได้ดำเนินการ
DLD review/DLD	>0.5	ไม่ได้ดำเนินการ
Code review/code	>0.5	40.6/201.7 = 0.20
A/FR	1	(40.6+15.1+7)/(37.8) = 8.04
Review rates		
DLD lines/hour	<100	ไม่ได้ดำเนินการ
Code LOC/hour	<200	8991/40.6 = 221.45
Requirement pages/hour	<20	144/15.1 = 9.54
HLD pages/hour	<5	141/7 = 20.14
Inspection rates		ไม่ได้ดำเนินการ
DLD lines/hour	<100	PRIPAINI IPPRITILI IR
Code LOC/hour	<200	8991/เวลาที่ทีม 2 ตรวจ

(continued)

TSPi Quality Plan - Form SUMQ (continued)

Name	นายวิรัตน์ สากร	Date	4 ก.ย. 2564	
Team	4	Instructor	อ.อภิสิทธิ์ แสงใส	
Part/Level	System	Cycle	1	
Defect-injection	Rates (Defects/Hr.)	Plan	Actual	
Requirements		0.25	38/201.7 = 0.19	
HLD		0.25	327/201.7 = 1.62	
DLD		2.0	ไม่ได้ดำเนินการ	
Code		4.0	98/201.7 = 0.49	
Compile		0.3 2/201.		
Unit test		0.2	0/201.7 = 0	
Build and integr	ration	0.1	65/201.7 = 0.32	
System test		0.07	ไม่ได้ดำเนินการ	
Defect-removal	Rates (Defects/Hr.)			
Requirements re	eview	0.5	38/201.7 = 0.19	
HLD review		0.5	327/201.7 = 1.62	
DLD review		2.0	ไม่ได้ดำเนินการ	
DLD inspection		0.5	ไม่ได้ดำเนินการ	
Code review		6.0	3/201.7 = 0.01	
Compile		5.0	117/201.7 = 0.58	
Code inspection		5.0	6/201.7 = 0.02	
Unit test		3.0	11/201.7 = 0.05	
Build and integr	ration	1.0	0/201.7 = 0	
System test		0.5	ไม่ได้ดำเนินการ	
Phase Yields				
Requirements review		70%	38/567 = 6.70%	
HLD review		70%	327/567 = 57.67%	
Test development		70%	11/567 = 1.94%	
DLD inspection		ไม่ได้ดำเนินการ	ไม่ได้ดำเนินการ	
Code review		70%	3/567 = 0.52%	
Compile		50%	117/567 = 20.63%	

Code inspection	70%	1/567 = 0.18%
Unit test	90%	11/567 = 1.94%
Build and integration	80%	0/567 = 0%
System test	ไม่ได้ดำเนินการ	ไม่ได้ดำเนินการ
Process Yields		
% before compile	>75%	64.89%
% before unit test	>85%	85.7%
% before build and integration	>97.5%	87.64%
% before system test	>99%	87.64%
% before system delivery	>99.5%	ไม่ได้ดำเนินการ

TSPi Quality Plan Instructions - Form SUMQ

Purpose	- This form holds plan and actual quality data for parts or assemblies.	
General	- Where possible, establish goals based on your own historical data.	
	- Where data are not available, use the QUAL standard for guidance	
	(see Appendix G).	
	- Before making the quality plan, you must have a partially completed	
	SUMP form with size and development time data by process phase.	
Make the Quality	To make the quality plan, do the following:	
Plan	- Estimate the defects injected in each phase (use plan data and the	
	QUAL standard for defects injected per hour times hours spent by	
	phase).	
	- Estimate the yield for each defect-removal phase (QUAL standard).	
	- The defects removed in each phase are estimated as the number of	
	defects at phase entry, times the estimated yield for that phase,	
	divided by 100.	
	- Examine the defects/KLOC values for reasonableness.	
	- If the defects/KLOC values are not reasonable, adjust phase times,	
	defect injection rates, or yields (use QUAL standard for guidance).	
	- When the numbers appear reasonable, the quality plan is complete.	
Record Actual	To complete the quality plan with actual values, enter the following	
Quality Data	data:	
	- Record development time in the time log and summarize in SUMP.	
	- Record the defects found in the defect log and summarize in SUMP.	
	- Enter the size of each product produced and summarize in SUMP.	
	With the completed SUMP data, complete the SUMQ form with the TSPi	
	tool or as described below and in Chapter 5.	
TSPi Tool	- If you use the TSPi tool, it will complete all the SUMQ calculations.	
	- Without the tool, you will have to make the SUMQ calculations as	
	you complete each step described above.	
	- At part completion, make the quality calculations by following the	
	instructions below and in Chapter 5.	

Header	-	Enter your name, date, team name, and instructor's name.
	-	Name the part or assembly and its level.
	-	Enter the cycle number.
Summary Rates	-	LOC/hour: new and changed LOC divided by total development
		hours.
	-	% Reuse: the percentage of total LOC that was reused.
	-	% New Reuse: the percentage of new and changed LOC that was
		inserted in the reuse library.
Percent Defect	-	PDF refers to the percentage of a program's components that had no
Free (PDF)		defects in a development or test phase.
	-	Thus, if 3 of a program's 10 components had no defects in compile,
		that program would have a PDF of 30% in compile.
	-	Base the plan percent defect free (PDF) values on the QUAL
		standard.
Defects/page and	-	Set the defect/page and defect/KLOC plan values during planning.
Defects/KLOC	-	Defects/page are calculated as (no. of defects)/(no. of pages)
	-	Defects/KLOC are calculated as 1000*(no. of defects)/(N&C LOC).
Defect Ratios	-	These are the ratios of the number of defects found in various
		phases.
	-	Thus, the (code review)/compile ratio is the ratio of the defects
		found in code review to those found in compile.
	-	These ratios can also be calculated from the defects/KLOC values.
	-	When the denominator phase values are 0, enter "inf."

(continued)

TSPi Quality Plan Instructions - Form SUMQ (continued)

Development	Ī -	These are the ratios of the times spent in each development phase.
-	_	Thus, the DLD/code ratio is the ratio of the time spent in detailed
Time Ratios (%)		design to the time spent in coding a program.
	_	Calculate the planned and actual ratios from the SUMP date.
	_	When the denominator phase values are 0, enter "inf."
A /FD		·
A/FR	-	A/FR is calculated as the ratio of appraisal to failure time.
	_	Appraisal time is the time spent reviewing and inspecting programs.
	-	Failure time is the time spent compiling and testing programs.
	-	To calculate A/FR, divide the total detailed design review, code
		review, and inspection times by total compile and unit test times.
	-	Use the sum of personal review and total team inspection times.
	-	When the denominator phase values are 0, enter "inf."
Review and	-	Calculate the review and inspection rates by dividing the size of the
Inspection Rates		reviewed product by the total review or inspection time in hours.
	-	Make this calculation for each review and inspection.
	-	In planning, use the QUAL standard for guidance (Appendix G).
	-	When the denominator phase values are 0, enter "inf."
Defect Injection	-	The defect rates are calculated in defects injected per hour.
and Removal	-	Thus, for coding, if you spent 2 hours coding a 100 LOC module and
Rates		injected 12 defects, you would have injected 6 defects/hour.
nates	-	Similarly, if you spent 1 hour reviewing this module and found 4
		defects, you would have removed 4 defects/hour.
	-	Based on the QUAL standard, establish standard team rates.
Phase Yield	-	Phase yield refers to the percentage of the defects in the product
		that were removed in that phase.
	_	Thus, in reviewing a 100 LOC module, if the review found four and
		you later determine that there were 6 defects in the module, the
		phase yield would be 100*4/6=66.7%.
	_	In planning, use historical data to estimate the yield values needed
		for each defect-removal phase.
	_	After each phase, calculate the estimated yield values.
	<u> </u>	Salar pridate, cureature the estimated field values.

Process Yield

- Process yield refers to the percentage of the defects injected into a product that were removed before a given phase.
- Thus, for a 100 LOC module, if you later determine that a total of 8 defects were injected into a module before compile and 5 were removed before compile, the yield before compile would be 100*5/8=62.5%.
- In planning, use the QUAL standard or your own data to estimate the yield values for each defect-removal phase.