Limiti con gli sviluppi di Taylor

Esercizio 1 Si consideri la funzione $f(x) = (2x - \sin x) \ln(1 + 3x)$.

- (a) Determinare lo sviluppo di Maclaurin arrestato al terzo ordine per f(x);
- (b) determinare la parte principale e l'ordine di infinitesimo di f(x) per $x \to 0$ (rispetto al campione standard);
- (c) calcolare il seguente limite:

$$\lim_{x \to 0} \frac{f(x)}{1 - \cos x}$$

Svolgimento:

- (a) Per $x \to 0$ si ha $\sin x = x + o(x^2)$ e $\ln(1+3x) = 3x \frac{9x^2}{2} + o(x^2)$, dunque $(2x \sin x) \ln(1+3x) = (2x x + o(x^2))(3x \frac{9x^2}{2} + o(x^2)) =$ $= (x + o(x^2))(3x \frac{9x^2}{2} + o(x^2)) = 3x^2 \frac{9x^3}{2} + o(x^3), \ x \to 0.$
- (b) La parte principale dello sviluppo per $x \to 0$ è $p(x) = 3x^2$, l'ordine d'infinitesimo è $\alpha = 2$. Si ha che $f(x) \sim p(x), x \to 0$.
- (c) Dal fatto che $\cos x=1-\frac{x^2}{2}+o(x^3),\ x\to 0$ abbiamo che $1-\cos x\sim\frac{x^2}{2},\ x\to 0$. Per quanto ottenuto dai punti precedenti abbiamo:

$$\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = \lim_{x \to 0} \frac{p(x)}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{3x^2}{\frac{x^2}{2}} = 6.$$

Esercizio 2 Si consideri la funzione $f(x) = \frac{1}{1-x^4} e^{x^2} - 1$.

- (a) Determinare lo sviluppo di Maclaurin arrestato al quarto ordine per f(x);
- (b) determinare la parte principale e l'ordine di infinitesimo di f(x) per $x \to 0$ (rispetto al campione standard);
- (c) calcolare il seguente limite:

$$\lim_{x \to 0} \frac{f(x) - x^2}{\sin^4 x}$$

Svolgimento:

(a)

$$\frac{1}{1-x^4}e^{x^2} - 1 = (1+x^4/2 + o(x^4))(1+x^2 + x^4 + o(x^4)) - 1 = x^2 + \frac{3}{2}x^4 + o(x^4), \ x \to 0.$$

(b) La parte principale dello sviluppo per $x\to 0$ è $p(x)=x^2$, l'ordine d'infinitesimo è $\alpha=2$. Si ha che $f(x)\sim p(x),\ x\to 0$.

1

(c) $f(x) - x^2 = \frac{3}{2}x^4 + o(x^4)$, $x \to 0$, per cui $f(x) - x^2 \sim \frac{3}{2}x^4$, $x \to 0$. Inoltre $\sin^4 x = x^4 + o(x^4) \sim x^4$, $x \to 0$, otteniamo allora:

$$\lim_{x \to 0} \frac{f(x) - x^2}{\sin^4 x} = \lim_{x \to 0} \frac{\frac{3}{2}x^4}{x^4} = \frac{3}{2}.$$

Esercizio 3 Si consideri la funzione $f(x) = x \ln(1-x) + \sin^2 x$.

- (a) Determinare lo sviluppo di Maclaurin arrestato al quarto ordine per f(x);
- (b) determinare la parte principale e l'ordine di infinitesimo di f(x) per $x \to 0$ (rispetto al campione standard);
- (c) calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{f(x) + \frac{1}{2}x^3}{\sin^3 x}$$

Svolgimento:

- (a) $x \ln(1-x) + \sin^2 x = x(-x \frac{x^2}{2} \frac{x^3}{3} + o(x^3)) + (x \frac{x^3}{3!} + o(x^4))^2 = -\frac{1}{2}x^3 \frac{2}{3}x^4 + o(x^4).$
- (b) La parte principale dello sviluppo per $x \to 0$ è $p(x) = -\frac{1}{2}x^3$, l'ordine d'infinitesimo è $\alpha = 3$. Si ha che $f(x) \sim p(x), x \to 0$.
- (c) $f(x) + \frac{1}{2}x^3 = -\frac{2}{3}x^4 + o(x^4), \ x \to 0$, per cui $f(x) + \frac{1}{2}x^3 \sim -\frac{2}{3}x^4, \ x \to 0$. Inoltre $\sin^3 x = x^3 + o(x^3) \sim x^3, \ x \to 0$, otteniamo allora:

$$\lim_{x \to 0^+} \frac{f(x) + \frac{1}{2}x^3}{\sin^3 x} = \lim_{x \to 0^+} \frac{-\frac{2}{3}x^4}{x^3} = 0.$$

Esercizio 4 Si consideri la funzione $f(x) = x \ln(1+x) - 1 + \cos^2 x$.

- (a) Determinare lo sviluppo di Maclaurin arrestato al quarto ordine per f(x);
- (b) determinare la parte principale e l'ordine di infinitesimo di f(x) per $x \to 0$ (rispetto al campione standard);
- (c) calcolare il seguente limite:

$$\lim_{x \to 0^+} \frac{f(x) + \frac{1}{2}x^3}{\tan(x^4)}$$

Svolgimento:

- (a) $x \ln(1+x) 1 + \cos^2 x = x(x \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)) 1 + (1 \frac{x^2}{2} + \frac{x^4}{4!} + o(x^5))^2 = -\frac{1}{2}x^3 + \frac{2}{3}x^4 + o(x^4).$
- (b) La parte principale dello sviluppo per $x\to 0$ è $p(x)=-\frac{1}{2}x^3$, l'ordine d'infinitesimo è $\alpha=3$. Si ha che $f(x)\sim p(x),\ x\to 0$.

(c) $f(x) + \frac{1}{2}x^3 = +\frac{2}{3}x^4 + o(x^4), \ x \to 0$, per cui $f(x) + \frac{1}{2}x^3 \sim \frac{2}{3}x^4, \ x \to 0$. Inoltre $\tan x^4 = x^4 + o(x^4) \sim x^4, \ x \to 0$, otteniamo allora:

$$\lim_{x \to 0^+} \frac{f(x) + \frac{1}{2}x^3}{\tan x^4} = \lim_{x \to 0^+} \frac{\frac{2}{3}x^4}{x^4} = \frac{2}{3}.$$

Esercizio 5 Si considerino le funzioni $f(x) = \ln(1 + 2\tan^2 x)$, $g(x) = \sin^2 \sqrt{3}x$.

- (a) Determinare lo sviluppo di Maclaurin arrestato al terzo ordine per f(x), indicando la parte principale di f e l'ordine di infinitesimo;
- (b) determinare lo sviluppo di Maclaurin arrestato al terzo ordine per g(x), indicando la parte principale di g e l'ordine di infinitesimo;
- (c) calcolare il seguente limite:

$$\lim_{x \to 0} \frac{f(x) - g(x)}{1 - \cos x}$$

Svolgimento:

- (a) Si ha $2\tan x = 2(x + o(x^2))$, $2\tan^2 x = 2(x + o(x^2))^2 = 2x^2 + o(x^3)$ e $f(x) = \ln(1 + 2\tan^2 x) = \ln(1 + 2x^2 + o(x^3)) = 2x^2 + o(x^3)$, $x \to 0$. Allora $p(x) = 2x^2$, e l'ordine di infinitesimo è $\alpha = 2$.
- (b) $\sin^2 \sqrt{3}x = (\sqrt{3}x + o(x^2))^2 = 3x^2 + o(x^3)$. Abbiamo $p(x) = 3x^2$, e l'ordine di infinitesimo è $\alpha = 2$.
- (c) $f(x) g(x) = -x^2 + o(x^3) \simeq -x^2$, $x \to 0$, si ha:

$$\lim_{x \to 0} \frac{f(x) - g(x)}{1 - \cos x} = \lim_{x \to 0} \frac{-x^2}{x^2/2} = -2.$$

Esercizio 6 Si considerino le funzioni $f(x) = e^{2x^2} - 1$, $g(x) = x \ln(1 + 2x + 3x^2)$.

- (a) Determinare lo sviluppo di Maclaurin arrestato al terzo ordine per f(x), indicando la parte principale di f e l'ordine di infinitesimo;
- (b) Determinare lo sviluppo di Maclaurin arrestato al terzo ordine per g(x), indicando la parte principale di g e l'ordine di infinitesimo;
- (c) determinare la parte principale delle funzioni f(x) g(x) e f(x)g(x) per $x \to 0$.

Svolgimento:

(a)
$$f(x) = e^{2x^2} - 1 = 2x^2 + o(x^3)$$
, (f è pari). $p(x) = 2x^2$, $\alpha = 2$.

(b)
$$g(x) = x \ln(1 + 2x + 3x^2) = x(2x + 3x^2 + \frac{(2x + 3x^2)^2}{2} + o(x^2)) = 2x^2 + x^3 + o(x^3)$$
. $p(x) = 2x^2$, $\alpha = 2$.

(c)
$$f(x) - g(x) = 2x^2 + o(x^3) - (2x^2 + x^3 + o(x^3)) = x^3 + o(x^3)$$
, con $p(x) = x^3$, $\alpha = 3$.
 $f(x)g(x) = (2x^2 + o(x^3))(2x^2 + x^3 + o(x^3)) = 4x^4 + o(x^5)$, con $p(x) = 4x^4$, $\alpha = 4$.

Esercizio 7 Si consideri la funzione

$$f(x) = \ln(1+x)\sin^2\sqrt{x} - x^2$$
.

- (a) Determinare l'ordine di infinitesimo e la parte principale di f(x) per $x \to 0$;
- (b) calcolare il valore del limite:

$$\lim_{x \to 0^+} \frac{F(x)}{\frac{1}{4}x^4} \quad \text{dove} \quad F(x) = \int_0^x f(t) \, dt \ , \ x \ge 0.$$

Svolgimento:

(a)
$$\ln(1+x)\sin^2\sqrt{x} - x^2 = (x-x^2/2 + o(x^2))(\sqrt{x} - x\sqrt{x}/3! + o(x^2))^2 - x^2 = -5/6x^3 + o(x^{7/2}) = -5/6x^3 + o(x^3)$$
. Abbiamo $p(x) = -5/6x^3$, $\alpha = 3$.

(b) Applicando prima De L'Hopital e poi lo sviluppo ottenuto si ha:

$$\lim_{x \to 0^+} \frac{F(x)}{\frac{1}{4}x^4} = \lim_{x \to 0^+} \frac{f(x)}{x^3} = \lim_{x \to 0^+} \frac{-5/6x^3}{x^3} = -5/6.$$

Esercizio 8 Si consideri la funzione $f(x) = \ln(1 + 2x - x^2) - 2x \cos x$.

- (a) determinare lo sviluppo di McLaurin arrestato al terzo ordine;
- (b) determinare la parte principale e l'ordine di infinitesimo di f(x) per $x \to 0$;
- (c) stabilire la convergenza del seguente integrale improprio: $\int_0^1 \frac{f(x) + 3x^2}{x^4} dx.$

Esercizio 9 Si consideri la funzione

$$f(x) = (\sin 2x)^2 - 4x \ln(1+x).$$

- (a) Determinare l'ordine di infinitesimo e la parte principale di f(x) per $x \to 0$;
- (b) stabilire la convergenza del seguente integrale improprio:

$$\int_0^1 \frac{f(x)}{\tan x^5} \, dx$$

Esercizio 10 Usando gli sviluppi di Taylor, determinare il valore dei seguenti limiti:

$$a) \lim_{x \to 0} \frac{x^2 - \sin x^2}{x^6 - \tan^8 x} \quad ; \quad b) \lim_{x \to 0} \left(\frac{\sin^2 x - \tan^2 x}{x(e^{\sin x - x} - 1)} \right)^{\frac{1}{3}}$$

$$c) \lim_{x \to 0} \frac{\sqrt{1 + x - \tan x} - 1}{\cos 3x - 1} \quad ; \quad d) \lim_{x \to 0} \frac{2\cos x - 2 + x^2}{\sqrt{1 + \sin^4 x} - 1}$$

$$e) \lim_{x \to 0} \frac{e^{2x} - 1 - 2x}{1 - \cos x + x^2} \quad ; \quad f) \lim_{x \to 0} \frac{e^x - \sin x - \cos x}{\tan x^2}$$

$$g) \lim_{x \to 0} \frac{e^x \ln (1 + x) - x}{x^2} \quad ; \quad h) \lim_{x \to +\infty} \frac{\ln (e^{2x} - e^x) - 2x}{\sin (\frac{1}{x^2})}$$

i)
$$\lim_{x \to 0} \frac{\sin x - xe^{x^2}}{x^3}$$
 ; l) $\lim_{x \to 0} \frac{\sqrt{1 + 2x} - e^x}{1 - x - e^{-x}}$

Svolgimento:

a) $\sin x^2 = x^2 - x^6/3! + o(x^9)$; $\tan x = x + o(x^2)$, $\tan^8 x = (x + o(x^2))^8 = x^8 + o(x^9)$.

$$\lim_{x \to 0} \frac{x^2 - \sin x^2}{x^6 - \tan^8 x} = \lim_{x \to 0} \frac{x^6 / 3!}{x^6} = 1/6.$$

b) $\sin^2 x = (x - x^3/3! + o(x^4))^2 = x^2 - 1/3 x^4 + o(x^5)$; $\tan^2 x = (x + x^3/3 + o(x^4))^2 = x^2 + 2/3 x^4 + o(x^5)$; $e^{\sin x - x} = e^{-x^3/3! + o(x^4)} = 1 - x^3/3! + o(x^3)$, $x(e^{\sin x - x} - 1) = -x^4/3! + o(x^4)$. Segue allora:

$$\lim_{x \to 0} \left(\frac{\sin^2 x - \tan^2 x}{x(e^{\sin x - x} - 1)} \right)^{\frac{1}{3}} = \lim_{x \to 0} \left(\frac{-x^4}{-x^4/3!} \right)^{\frac{1}{3}} = 6^{1/3}.$$

- c) R.:0;
- d) $R.: \frac{1}{6};$
- e) R.: 4/3;
- f) R.: 1;
- $g) R.: \frac{1}{2};$

h) $\ln(e^{2x} - e^x) - 2x = \ln e^{2x}(1 - e^{-x}) - 2x = 2x + \ln(1 - e^{-x}) - 2x = \ln(1 - e^{-x})$, ponendo $e^{-x} = t \to 0$, per $x \to +\infty$, si ha $\ln(1 - t) = -t + o(t)$, cioè $\ln(1 - e^{-x}) \sim e^{-x}$, $x \to +\infty$. Allo stesso modo ponendo $1/x^2 = s \to 0$, per $x \to +\infty$, si ha $\sin 1/x^2 \sim 1/x^2$, $x \to +\infty$. Si ha allora:

$$\lim_{x \to +\infty} \frac{\ln(e^{2x} - e^x) - 2x}{\sin(\frac{1}{x^2})} = \lim_{x \to +\infty} \frac{-e^{-x}}{\frac{1}{x^2}} = \lim_{x \to +\infty} -x^2 e^{-x} = 0.$$

- i) R.: -7/6;
- l) R. : -2.

Esercizio 11 Determinare il valore di α in modo che il limite sia finito:

a)
$$\lim_{x \to 0} \frac{e^x + \alpha \sin x + \cos x - 2}{x^3}$$
 ; b) $\lim_{x \to 0} \frac{\sin^2 x - x^2 + \alpha x^4}{x^5}$

c)
$$\lim_{x \to 0} \frac{\ln \frac{1+x^2}{1-x^2} - \alpha x}{x^2}$$
 ; d) $\lim_{x \to 1} \frac{x^2 - 1 - \alpha \ln x}{(1-x)^2}$

Svolgimento:

a) $e^x = 1 + x + x^2/2 + x^3/3! + o(x^3)$; $\sin x = x - x^3/3! + o(x^4)$; $\cos x = 1 - x^2/2 + o(x^3)$. Segue allora che $e^x + \alpha \sin x + \cos x - 2 = (1 + \alpha)x + (1 - \alpha)x^3/3! + o(x^3)$. Per $\alpha = -1$ si ha:

$$\lim_{x \to 0} \frac{e^x + \alpha \sin x + \cos x - 2}{x^3} = \lim_{x \to 0} \frac{2x^3/3!}{x^3} = \frac{1}{3}.$$

Per $\alpha \neq -1$ il valore del limite è infinito.

b) $\sin^2 x - x^2 + \alpha x^4 = (x - x^3/3! + x^5/5!)^2 = (\alpha - 1/3) x^4 + 1/90 x^6 + o(x^7)$. Per $\alpha = 1/3$ si ha:

$$\lim_{x \to 0} \frac{\sin^2 x - x^2 + \alpha x^4}{x^5} = \lim_{x \to 0} \frac{1/90 \, x^6}{x^5} = 0$$

mentre il limite è infinito per $\alpha \neq 1/3$. c) $\ln \frac{1+x^2}{1-x^2} - \alpha x = \ln (1+x^2) - \ln (1-x^2) - \alpha x = 2x^2 - \alpha x + o(x^2)$. Per $\alpha = 0$,

$$\lim_{x \to 0} \frac{\ln \frac{1+x^2}{1-x^2} - \alpha x}{x^2} = \lim_{x \to 0} \frac{2x^2}{x^2} = 2.$$

Il limite risulta invece infinito nel caso $\alpha \neq 0$.

d) Poniamo $x-1=t\to 0$, per $x\to 1$. Si deve calcolare allora il

$$\lim_{t \to 0} \frac{(t-1)^2 - 1 - \alpha \ln(1+t)}{t^2}.$$

Abbiamo $(t-1)^2 - 1 - \alpha \ln(1+t) = (2-\alpha)t + (1+\alpha/2)t^2 + o(t^2)$, e per $\alpha = 2$ si ottiene

$$\lim_{t \to 0} \frac{(t-1)^2 - 1 - \alpha \ln(1+t)}{t^2} = \lim_{t \to 0} \frac{2t^2}{t^2} = 2.$$

Il valore del limite è infinito se $\alpha \neq 2$.

Esercizio 12 Calcolare al variare di $\alpha > 0$ il valore dei seguenti limiti:

a)
$$\lim_{x \to 0^+} \frac{\tan^6 x + x \sin^\alpha x}{3x^2 - \ln(1 + 3x^2)}$$
 ; b) $\lim_{x \to 0^+} \frac{(x - \sin x)(e^{x - x^2} - 1 - \alpha x)}{x^{3\alpha + 1} \sin x}$

a)
$$3x^2 - \ln(1+3x^2) = 3x^2 - 3x^2 + 9/2x^4 + o(x^4) = 9/2x^4 + o(x^4) \sim 9/2x^4$$
, $x \to 0$.

 $\tan^6 x - x \sin^\alpha x = x^6 + x^{\alpha+1} + o(x^\beta), \ x \to 0, \ \cos \beta = \min(6, \alpha + 1).$ In particolare:

$$x^{6} + x^{\alpha+1} + o(x^{\beta}) = \begin{cases} 2x^{6} + o(x^{6}) & \alpha = 5\\ x^{6} + o(x^{6}) & \alpha > 5\\ x^{\alpha+1} & \alpha < 5 \end{cases}$$

Per $\alpha \geq 5$, si ha:

$$\lim_{x \to 0^+} \frac{\tan^6 x + x \sin^\alpha x}{3x^2 - \ln(1 + 3x^2)} = \lim_{x \to 0^+} \frac{Kx^6}{9/2 x^4} = 0, \ (k = 2 \text{ se } \alpha = 5; \ k = 1 \text{ se } \alpha > 5)$$

Per $\alpha < 5$, si ha:

$$\lim_{x \to 0^+} \frac{\tan^6 x + x \sin^\alpha x}{3x^2 - \ln(1 + 3x^2)} = \lim_{x \to 0^+} \frac{x^{\alpha + 1}}{9/2 x^4} = \begin{cases} 2/9 & \alpha = 3\\ 0 & 3 < \alpha < 5\\ +\infty & 0 < \alpha < 3 \end{cases}.$$

In conclusione:

$$\lim_{x \to 0^+} \frac{\tan^6 x + x \sin^\alpha x}{3x^2 - \ln(1 + 3x^2)} = \begin{cases} +\infty & 0 < \alpha < 3 \\ 2/9 & \alpha = 3 \\ 0 & \alpha > 3 \end{cases}.$$

$$\begin{array}{l} b) \; x^{3\alpha+1} \sin x \sim x^{3\alpha+2}, \; x \to 0. \\ e^{x-x^2} = 1 + (x-x^2) + \frac{(x-x^2)^2}{2} + o(x^2), \; x \to 0, \; e^{x-x^2} - 1 - \alpha x = x(1-\alpha) - x^2/2 + o(x^2), \; x \to 0. \\ x - \sin x = x^3/3! + o(x^4), \; x \to 0. \\ \text{Per } \alpha = 1, \; \text{abbaimo } \lim_{x \to 0^+} \frac{(x-\sin x)(e^{x-x^2}-1-\alpha x)}{x^{3\alpha+1}\sin x} = \lim_{x \to 0^+} \frac{-x^5/12}{x^5} = -\frac{1}{12}. \\ \text{Per } \alpha \neq 1, \; \text{abbiamo} \end{array}$$

$$\lim_{x \to 0^+} \frac{(x - \sin x)(e^{x - x^2} - 1 - \alpha x)}{x^{3\alpha + 1} \sin x} = \lim_{x \to 0^+} \frac{x(1 - \alpha)}{x^{3\alpha + 2}} = \lim_{x \to 0^+} \frac{(1 - \alpha)}{x^{3\alpha + 1}} = \left\{ \begin{array}{l} +\infty & 0 < \alpha < 1 \\ -\infty & \alpha > 1 \end{array} \right..$$

In conclusione:

$$\lim_{x \to 0^+} \frac{(x - \sin x)(e^{x - x^2} - 1 - \alpha x)}{x^{3\alpha + 1} \sin x} = \begin{cases} +\infty & 0 < \alpha < 1 \\ -1/12 & \alpha = 1 \\ -\infty & \alpha > 1 \end{cases}.$$