实验六叠加定理的验证

一、预习思考题

- 1. 在叠加原理实验中,要令 U_1 、 U_2 ,分别单独作用,应如何操作?可否直接将不作用的电源(U_1 或 U_2)短接置零?
- 在叠加原理中,当某个电源单独作用时,另一个不作用的电压源处理为端路,将开关 K_1,K_2 分别投向短路侧,可实现 U_1 、 U_2 的单独作用
- 不可以,这样会造成电源短路
- 实验电路中,若有一个电阻器改为二极管,试问叠加原理的迭加性与齐次性还成立吗?为什么?
- 不成立,二极管反向时等效为开路,属于非线性元件,叠加原理的叠加性与齐次性并不成立,因为 叠加原理只适用于线性电路。

二、实验报告

连接R5时

相关变量	U1	U2	I1	12	13	UAB	UCD	UAD	UDE	UEA
U1单独作 用	12.0	0.0	8.69	-2.40	6.30	2.39	0.81	3.20	4.41	4.45
U2单独作 用	0	6.0	-1.071	3.60	2.46	-3.59	-1.20	1.23	-0.59	-0.77
U1、U2共 同作用	12.0	6.0	7.48	1.16	8.71	-1.2	-0.4	4.43	3.80	3.84
2U2单独 作用	0	12.0	-2.2	7.18	4.9	-7.17	-2.4	2.45	-1.19	-1.25

连接二极管时

相关变量	U1	U2	I1	12	13	UAB	UCD	UAD	UDE	UEA

U1单独作 用	12.0	0	8.60	-2.33	6.29	0	0.63	3.16	4.43	4.46
U2单独作 用	0	6.0	0	0	0	0	-6.10	0	0	0
U1、U2 共同作用	12.0	6.0	7.86	0	7.87	0	-2.11	3.98	3.98	4.07
2U2单独 作用	0	12.0	0	0	0	0	-12.08	0	0	0

3. 根据实验数据表格,进行分析、比较,归纳、总结实验结论,即验证线 性电路的叠加性与齐次性。

相关变量	U1	U2	I1	12	13	UAB	UCD	UAD	UDE	UEA
U1单独作 用	12	0	8.69	-2.4	6.3	2.39	0.81	3.2	4.41	4.45
U2单独作 用	0	6	-1.071	3.6	2.46	-3.59	-1.2	1.23	-0.59	-0.77
单独作用 叠加	12	6	7.619	1.2	8.76	-1.2	-0.39	4.43	3.82	3.68
U1、U2 共同作用	12	6	7.48	1.16	8.71	-1.2	-0.4	4.43	3.8	3.84
ΔU共 — <i>U</i> 叠	0	0	-0.139	-0.04	-0.05	0	-0.01	0	-0.02	0.16
2U2单独 作用	0	12	-2.2	7.18	4.9	-7.17	-2.4	2.45	-1.19	-1.25

叠加性:

可以发现图中灰色U1和U2电源单独作用的曲线和U1、U2共同作用几乎重合 $\Delta U_{
m H}-U_{
m B}$ 误差折线图的值非常的小,并且与平均值的偏差小,可以验证线性电路中的叠加定理叠加性。

齐次性:

图三中可以发现2U2单独作用和U2单独作用的两倍的不同变量值曲线是接近重合的,验证了线性电路叠加定理的齐次性。

2. 可以计算出,具体及吓		
U、V。共同作用时,各包器完作	产大学.	
PR, = I, P, = 28534.7W	PR, = I2 R2 = 686.256W	PR3=13/R3=8690.691
$P_{R,+} = I_1^2 R_1 = 28534.7W$ $P_{R,+} = \frac{V_{DE}}{R_4} = 7364.4W$	PR = I, R = 686.256W PR = UED = 81.6W	
U、U、单独作用(电源作用音	(alt)	
$\frac{P_R = (T_{i1}^2 + I_{i2})R_i =}{P_{Rin} = \frac{U_{DEI} + U_{DE2}}{U_{DEI} + U_{DE2}} =}$	$P_{R_2} = (I_2 + I_{22})R_2$ $P_{R_1} = (U_{cb1} + U_{cb2})$	PR3=(131+12)R=
1K4- D.	+K5= - Rt	
对各电器宏件功率对比可知	济沙埃性电路的叠	加州生

4. 各电阻器所消耗的功率能否用叠加原理计算得出?试用上述实验数据, 进行计算并作结论。

电阻器名称	R1	R2	R3	R4	R5
R对应阻值	510	1000	510	510	330
U1单独作用	38513.21	5760	20241.9	0.058934	0.001988
U2单独作用	584.9909	6609.6	3086.316	177.531	734.4
单独作用叠加	39098.2	12369.6	23328.22	177.5899	734.402
U1、U2共同作用	28534.7	686.256	38690.69	7364.4	81.6
2U2单独作用	2468.4	26291.72	12245.1	722.211	2937.6

不能,因为各电阻器消耗的功率与I或者U有平方成正比关系,相关功率计算的公式不是线性的

5. 通过实验步骤6及分析表格6-2的数据,你能得出什么样的结论?

可以明显发现图中灰色U1和U2电源单独作用的曲线和U1、U2共同作用有所偏离, $\Delta U_{
m H} - U_{
m B}$ 误差折线图的值较大,并且与平均值的偏差较大,可以验证当非线性元件(如二极管)加入电路后,非线性电路中不满足叠加定理。

6. 请利用叠加原理对该电路将表格6-1中的参数进行理论计算,并将理论 计算结果与实验测量结果相对比,请保留电路简化和原始计算过程。

计算采用excel表格自动计算得出,这里我们给出对应的公式

相关变量	l1	12	13	UAB	UCD	UAD	UDE	UFA

U1单独作用	8.642	-2.395	6.247	2.395	0.79	3.186	4.407	4.407
U2单独作用	-1.198	3.593	2.395	-3.593	-1.185	1.221	-0.61	-0.61
U1和U2单独作 用之和	7.444	1.198	8.642	-1.198	-0.395	4.407	3.797	3.797
U1、U2共同作 用	7.48	1.16	8.71	-1.2	-0.4	4.43	3.8	3.84

7. 心得体会及其它。

通过这次实验,我深入理解了叠加定理与齐次性原理的实际应用。叠加定理的验证不仅帮助我们 理解了

电路的线性特性,也说明了电源之间的相互作用如何影响整体电路的行为。尽管实验结果略有误差, 但

通过理论计算和实验数据的对比,验证了叠加定理的有效性。通过加入非线性元件(如二极管)后,我意识到叠加定理并不适用于所有电路,特别是涉及到非线性元件时。