Matemáticas I <u>Actividad I</u>

Derivadas de operaciones con funciones.

Aplicando la definición de derivada se obtienen las siguientes fórmulas:

Derivada de una suma o diferencia: $(f \pm g)' = f' \pm g'$

<u>Derivada de un producto:</u> (f.g)' = f'.g + g'.f

Derivada de un cociente: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g - g' \cdot f}{g^2}$

Derivada de una función compuesta: Regla de la cadena.

Sea la función compuesta $(g \circ f)(x) = g[f(x)]$

$$(g \circ f)'(x) = g'[f(x)].f'(x)$$

Cálculo de derivadas.

Aplicando la definición, a través del límite, y teniendo en cuenta la regla de la cadena, se obtienen las derivadas de las siguientes funciones:

TIPO	FUNCIÓN	DERIVADA
Tipo potencial	$y = x^a$	$y' = ax^{a-1}$
	$y = f^a$	$y' = af^{a-1}.f'$

- $y = x^4$;

- $y = \frac{\sqrt{x}}{x^2}$; $y = (3x^2 2)^5$; $y = \sqrt[3]{x^2 3}$; $y = \frac{1}{(2x + 5)^2}$;

TIPO	FUNCIÓN	DERIVADA
Tipo raíz cuadrada	$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$

Matemáticas I Actividad I

	$y = \sqrt{f}$	$y' = \frac{f'}{2\sqrt{f}}$
ı		$=\sqrt{J}$

Ejercicio:

TIPO	FUNCIÓN	DERIVADA
Tipo exponencial	$y = e^x$	$y'=e^x$
	$y = e^f$	$y = e^f . f'$
	$y = a^x$	$y = a^x . La$
	$y = a^f$	$y = a^f . f' . La$

Ejercicios:

- $y = e^{-x}$;

- $y = e^{3x+2}$; $y = 2^x$; $y = 5^{x^2+1}$;

TIPO	FUNCIÓN	DERIVADA
	y = Lx	$y' = \frac{1}{x}$
	y = Lf	$y' = \frac{f'}{f}$
Tipo logarítmico	$y = \log_a x$	$y' = \frac{1}{x} \cdot \frac{1}{La}$
	$y = \log_a f$	$y' = \frac{f'}{f} \cdot \frac{1}{La}$

Ejercicios:

- $\bullet \quad y = L(2x^3 + 5x);$
- $y = \log_2 x$;
- $\bullet \quad y = \log_3(4x+1);$

Matemáticas I Actividad I

TIPO	FUNCIÓN	DERIVADA
	y = senx	$y' = \cos x$
Tipo seno	y = senf	$y' = \cos f \cdot f'$

Ejercicios:

- y = sen(4x 1);
- $y = sen^3 x$; $y = (sen x)^3$;
- $y = sen x^2$;
- $\bullet \quad y = sen^2(2x^3 + 2x);$

TIPO	FUNCIÓN	DERIVADA
	$y = \cos x$	y' = -senx
Tipo coseno	$y = \cos f$	$y' = -senf \cdot f'$

Ejercicios:

- $y = \cos 5x$;
- $y = \cos \sqrt{x}$;

TIPO	FUNCIÓN	DERIVADA
Tipo tangente	y = tgx	$y' = \frac{1}{\cos^2 x} = 1 + tg^2 x$
	y = tgf	$y' = \frac{1}{\cos^2 f} \cdot f'$

Ejercicios:

- y = tg5x;
- $y = tg^2 x$; $y = (tg x)^2$;

TIPO	FUNCIÓN	DERIVADA
	y = ctgx	$y' = \frac{-1}{sen^2 x}$
Tipo cotangente	y = ctgf	$y' = \frac{-1}{sen^2 f} \cdot f'$

Matemáticas I Actividad I

Ejercicios:

- $\bullet \quad y = ctg \ x^2;$
- $y = \underline{ctg} e^x$;

TIPO	FUNCIÓN	DERIVADA
Funciones arco	y = arcsenx	$y' = \frac{1}{\sqrt{1 - x^2}}$
	y = arcsenf	$y' = \frac{1}{\sqrt{1 - f^2}} \cdot f'$
	$y = \arccos x$	$y' = \frac{-1}{\sqrt{1 - x^2}}$
	$y = \arccos f$	$y' = \frac{-1}{\sqrt{1 - f^2}} \cdot f'$
	y = arctgx	$y' = \frac{1}{1+x^2}$
	y = arctgf	$y' = \frac{1}{1+f^2}.f'$

Ejercicios:

- $y = arcsen x^2$;
- $y = arctg(e^x)$;
- $y = arc \cos 5x$;