Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и Квантовой Информатики

Спецкурс: системы и средства параллельного программирования.

Отчёт № 2. Анализ влияния кеша в алгоритм умножения блочной матрицы и оценка эффекта

Работу выполнил **Тони Кастильо Мартин**

Постановка задачи и формат данных.

Снимать необходимо информацию о промахах кэша (1 и 2 уровней), числе процессорных тактов, числе FLOP-ов и TLB, в зависимости от размеров блока (фиксированный или по формуле из лекций) и двух порядков индексов, для 5 квадратных матриц.

Задача: Реализовать последовательный алгоритм блочного матричного умножения и оценить влияние кэша на время выполнения программы. Дополнить отчёт результатами сбора информации с аппаратных счётчиков, используя систему PAPI.

Формат командной строки: <имя файла матрицы A><имя файла матрицы B><имя файла матрицы C><режим, порядок индексов><размер блока>

Режимы: 7 - ijk, 8 - ikj Размер: 1- формула.

Формат файла-матрицы: Матрица представляются в виде бинарного файла следующего формата:

<u> </u>		
Тип	Значение	Описание
Число типа char	T – f (float)	Тип элементов
Число типа size_t	N – натуральное число	Число строк матрицы
Число типа size_t	М – натуральное число	Число столбцов матрицы
Массив чисел типа Т	$N \times M$ элементов	Массив элементов матрицы

Элементы матрицы хранятся построчно.

Описание алгоритма.

Математическая постановка: Алгоритм матричного умножения ($A \times B = C$) можно представить в следующем алгоритме:

Анализ времени выполнения: Для оценки времени выполнения программы использовалась функция:

- 1- PAPI_start_counters().
- 2- PAPI_flops()
- 3- PAPI ipc()

и следующие события:

- 1- PAPI_L1_DCM
- 2- PAPI_L1_DCA
- 3- PAPI L2 DCM

Для повышения надёжности экспериментов опыты проводились несколько раз (10). **Верификация:** Для проверки корректности работы программы использовались тестовые данные.

Основные функции:

- Разбор командной строки. В рамках функции осуществляется анализ и разбор командной строки.
- Чтение файлов матриц. В рамках функции осуществляется анализ совместимости входных матриц и их чтение.
- Перемножение матриц. В рамках функции осуществляется перемножение матриц в соответствие с выбранным порядком индексов суммирования.

Результаты выполнения.

Результаты:

Проводилось перемножение двух матриц размерами 2000х2000.

1- Зависимость времени выполнения рабочих циклов: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj. представлена на графике (время в секундах).

2- Зависимость промахов кэша L1: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj. представлена на графике (время в секундах).

3- Зависимость промахов кэша L2: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj. представлена на графике (время в секундах).

4- Зависимость процессорных тактов: для размера блока 32х32 и порядка индексов ijk; для размера блока 32х32 и порядка индексов ikj; для размера оптимального блока, определённого по формуле, и порядка индексов ikj. представлена на графике (время в секундах).

5- Зависимость FLOP: для размера блока 32х32 и порядка индексов іјк; для размера блока 32х32 и порядка индексов ікј; для размера оптимального блока, определённого по формуле, и порядка индексов ікј. представлена на графике (время в секундах).

Основные выводы.

Исследования показывают, что изменения порядка индексов суммирование оказывает влияние на время выполнения программы.

Наименьшее время выполнения рабочих циклов при следующем порядке индексов -ijk, для размера оптимального блока 32.

Наименьшее время промахов кэша L1 при следующем порядке индексов — ikj, для размера оптимального блока, определённого по формуле.

Наименьшее время промахов кэша L2 при следующем порядке индексов – ikj, для размера оптимального блока, определённого по формуле

Наименьшее время выполнения процессорных тактов при следующем порядке индексов — ikj, для размера оптимального блока, определённого по формуле

Наименьшее время выполнения FLOP при следующем порядке индексов – ijk, для размера оптимального блока 32

Система не поддерживает подробный сбор информации с аппаратных счётчиков (TLB - Translation Lookaside Buffer)