3.1) 12) 8b) 14e) 15s) 15g) 12) a) $a := \sqrt{\frac{400}{16}} \rightarrow 5$ $b := \sqrt{\frac{400}{25}} \rightarrow 4$ $g(x) := k \cdot x + d$ $e := \sqrt{a^2 + b^2} \to \sqrt{41}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \to \frac{y^2}{16} + \frac{x^2}{25} = 1$ $ellipse'(x) := \frac{\mathrm{d}}{\mathrm{d}x} ellipse(x) \rightarrow \begin{bmatrix} \frac{-(4 \cdot x)}{5 \cdot \sqrt{-x^2 + 25}} \\ \frac{4 \cdot x}{5 \cdot \sqrt{-x^2 + 25}} \end{bmatrix}$ $\begin{bmatrix} k \ d \end{bmatrix} := \begin{bmatrix} g(0) = 4 \\ g(5) = 0 \end{bmatrix} \xrightarrow{solve, k, d} \begin{bmatrix} -\frac{4}{5} \ 4 \end{bmatrix}$ $g(x) := k \cdot x + d \rightarrow -\frac{4 \cdot x}{5} + 4$ $S_1 \coloneqq \begin{bmatrix} -a \\ 0 \end{bmatrix} \to \begin{bmatrix} -5 \\ 0 \end{bmatrix} \quad S_2 \coloneqq \begin{bmatrix} a \\ 0 \end{bmatrix} \to \begin{bmatrix} 5 \\ 0 \end{bmatrix} \quad S_3 \coloneqq \begin{bmatrix} 0 \\ b \end{bmatrix} \to \begin{bmatrix} 0 \\ 4 \end{bmatrix} \quad S_4 \coloneqq \begin{bmatrix} 0 \\ -b \end{bmatrix} \to \begin{bmatrix} 0 \\ -4 \end{bmatrix}$ $t(x) := k_1 \cdot x + d_1$ $ellipse(x) := \frac{\mathrm{d}}{\mathrm{d}x} ellipse(x)_0 \to \frac{-(4 \cdot x)}{5 \cdot \sqrt{-x^2 + 25}}$ $x_e \coloneqq ellipse'(x) = \frac{-4}{5} \xrightarrow{solve, x} \frac{5 \cdot \sqrt{2}}{2} \qquad x_n \coloneqq ellipse'(x) = \left(\frac{-4}{5}\right)^{-1} \xrightarrow{solve, x} \frac{125 \cdot \sqrt{881}}{881}$ $ellipse\left(x_{e}\right)_{0} \xrightarrow{float} 2.8284271247461900976 \qquad ellipse\left(x_{n}\right)_{0} \xrightarrow{float} 2.1562147856934690827$

15q)															
D	ie Symn	netrie	achse	eine	r Para	bel ve	erläuf	t nor	mal	zur	Leitl	inie			
	Diese .	Aussa	ge ist	False	ch da	die S	ymme	triea	chs	e ein	er				
	Parabe	el durc	ch dei	n Sch	eitelp	unkt v	, verläu	ft ur	nd p	aralle	el zu	r			
	Leitlini								•						