In this section, we describe how to apply Bayesian parameter estimation for the Rao-Blackwellized Particle Filters developed in ?? to ?? using a Metropolis-within-Gibbs sampling scheme.

We build upon the discrete-time conditionally gaussian state space models given by ??, with the extension that the matrices governing the model dynamics $A(\theta)$, $b(\theta)$, $C(\theta)$ and $d(\theta)$ all depend on some parameter vector θ of fixed dimension.

In the context of our project, we define the parameter estimation problem as estimating the parameter vector $\boldsymbol{\theta} = \{\theta, \sigma, \sigma_{obs}\}$, given observations up to time T (i.e. $y_{1:T}$)

$$p(\boldsymbol{\theta}, \lambda_{0:k}|y_{1:k}) \tag{1}$$

We construct a Markov Chain to target the joint distribution of the sample parameters $\boldsymbol{\theta}$ and RBPF latent states $\lambda_{1:T}^{(i)}$ given by ?? using Gibbs Sampling by iteratively performing the following steps:

1. We draw $\boldsymbol{\theta}$ iteratively using a Metropolis Hastings step to target the required marginal distribution for θ_j given by Equation 2.

$$\theta_{j} \sim p(\theta_{j}|\theta_{-j}, \lambda_{0:T}, y_{1:T})$$

$$\propto p(y_{1:T}|\boldsymbol{\theta}, \lambda_{0:T}^{*}) p(\lambda_{0:T}^{*}|\boldsymbol{\theta}) p(\theta_{j}|\theta_{-j})$$
(2)

Here, we denote $\theta_{-j} = \boldsymbol{\theta} \setminus \theta_j$ and using $\lambda_{0:T}^*$ to make explicit the notion that a single realisation of $\lambda_{0:T}$ is being used.

We can sample from this probability distribution using a Metropolis-Hastings step, with proposal density $q(\theta_j^*|\theta_i')$, where θ_j' is the current sample of parameter θ_j and θ_j^* is the current proposal for θ_j .

For the Metropolis-Hastings step, we accept the current proposal θ_j^* with acceptance probability $\min(1, \alpha)$, with α given by:

$$\alpha = \frac{p(y_{1:T}|\theta_{-j}, \theta_j^*, \lambda_{0:T}^*)p(\lambda_{0:T}^*|\theta_{-j}, \theta_j^*)p(\theta_j^*|\theta_{-j})q(\theta_j'|\theta_j^*)}{p(y_{1:T}|\theta_{-j}, \theta_j', \lambda_{0:T}^*)p(\lambda_{0:T}^*|\theta_{-j}, \theta_j')p(\theta_j'|\theta_{-j})q(\theta_j^*|\theta_j')}$$
(3)

2. With the accepted parameter vector $\boldsymbol{\theta_{accepted}}$ from step 1, we can then look to sample another realisation of $\lambda_{0:T}^*$ by first drawing a set of weighted samples $\left\{w_T^{(i)}, \lambda_{0:T}^{(i)}\right\}$ from the RBPF, denoted by denoted by Equation 4.

$$\left\{ w_T^{(i)}, \lambda_{0:T}^{(i)} \right\} \sim p(\lambda_{0:T} | y_{1:T}, \boldsymbol{\theta_{accepted}}) \tag{4}$$

Using the weighted samples $\left\{w_T^{(i)}, \lambda_{0:T}^{(i)}\right\}$ as an importance-sampling estimate of $p(\lambda_{0:T}|y_{1:T}, \boldsymbol{\theta_{accepted}})$, we then draw a particular realisation $\lambda_{0:k}^*$ using multinomial sampling by selecting $\lambda_{0:T}^{(i)}$ with probability $w_T^{(i)}$

For each time step, we thus obtain joint samples $\{\theta, \lambda_{0:T}^*\}$, which can be marginalised to obtain samples from the posterior distribution of parameters.

List of Figures

List of Tables