

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 353 021 B2

(12)

NEW EUROPEAN PATENT SPECIFICATION

(43) Date of publication of the new patent specification: (51) Int. Cl. 6: **A23L 3/34**
18.10.95

(21) Application number: **89307537.4**

(22) Date of filing: **25.07.89**

(24) Controlled environment transportation of respiring comestibles.

(30) Priority: **29.07.88 NZ 225620**

(43) Date of publication of application:
31.01.90 Bulletin 90/05

(45) Publication of the grant of the patent:
31.03.93 Bulletin 93/13

(46) Mention of the opposition decision:
18.10.95 Bulletin 95/42

(64) Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(56) References cited:

EP-A- 0 224 469	WO-A-87/05782
DE-A- 3 140 337	FR-A- 2 520 592
US-A- 3 102 779	US-A- 4 642 996

PATENT ABSTRACTS OF JAPAN, vol. 4, no.
151 (C-28)(633), 23 Oct. 1980

(73) Proprietor: **TRANSFRESH CORPORATION**
607 Brunkin Avenue
Salinas
California 93902 (US)

(72) Inventor: **Harris, Samuel**
45 Evelyn Place
Northcote
Auckland 9 (NZ)

(74) Representative: **Ayers, Martyn Lewis Stanley**
et al
J.A. KEMP & CO.
14 South Square
Gray's Inn
London WC1R 5LX (GB)

EP 0 353 021 B2

Rank Xerox (UK) Business Services
(3.10/3.09/3.3.3)

Applicants: Mark Raymond Gibberd et al.
U.S. Serial No. 10/581,540
Filed: as §371 national stage of
PCT/AU2004/001706, filed December 3,
2004
Exhibit 12

Description

The present invention relates to improvements in and/or relating to the carriage of comestibles and/or plants whether cut or not (hereinafter simply "comestibles") and in particular to an apparatus applicable thereto including containers and related means and methods.

In New Zealand Patent Specification No. 205453 (US patent 4642996, Australian patent 567966 and other equivalents thereto) there is disclosed a system utilising shipping containers whereby the respiring comestible is loaded into a container, the container is then sealed sufficiently to ensure that less oxygen from ambient air can diffuse into the container than is required for respiration by the comestible, flushing the container (preferably with a nitrogen rich gas) to reduce the oxygen level in the container atmosphere below that of the ambient air and transporting the container while monitoring at least the carbon dioxide and oxygen levels (and preferably also the temperature) within the container and adjusting as necessary, (a) the oxygen content by positive infusion of ambient air into the container in response to such monitoring towards an optimum or predetermined value or range of values, (b) the carbon dioxide content by absorbing carbon dioxide from the atmosphere in the container in response to such monitoring towards an optimum or predetermined value or range of values and (c) the temperature, if monitored, by refrigeration in response to such monitoring towards an optimum or predetermined value or range of values.

The present invention recognises that the system disclosed in the aforementioned patent specification can further be improved, in particular in relation to control of the carbon dioxide presence in the container.

It is also recognised that while a system in accordance with the present invention is most appropriate for use with shipping "containers" where there is a wish to obviate the need for the transportation of pressurised or liquefied gases therewith, such a system is equally appropriate in other carriage spaces, eg. the cargo hold of an aircraft, ship, train or the like and therefore for the purposes of the present specification the word "container" as used herein relates not only to shipping containers but to any means defining a storage space for such comestibles.

In a system such as disclosed in the aforementioned patent specification the quantity of carbon dioxide capable of being absorbed is finite where reliance is placed upon a finite amount of a carbon dioxide absorbing medium such as, for example, a scrubbing unit including hydrated lime. Moreover there is also the prospect of carbon dioxide build up where for some reason or another a flow of the gaseous environment of the container can not be ducted through any such carbon dioxide scrubbing device.

It is therefore an object of the present invention to provide a method and related apparatus which will provide some safeguard in the event the carbon dioxide content of the container rises above a desirable level.

Accordingly the present invention, in one aspect, provides a method of transporting a quantity of a comestible which may be subject to degradation as a result of respiration during transportation, comprising the steps of:

(a) sealing or substantially sealing said quantity of the respiring comestible within a container, wherein "container" is defined as any means defining storage space for respiring comestibles, sufficiently to ensure that less oxygen of the ambient air can diffuse into the container than is required for full respiration by the respiring comestible, flushing the container with an oxygen low or oxygen free gas so as to provide a reduced oxygen level in the sealed or substantially sealed container, such flushing occurring before, during and/or after said sealing or substantial sealing, and

(b) transporting the container with the respiring comestible therein while (i) monitoring the oxygen level within said container and automatically adjusting the oxygen level as necessary by a positive infusion of ambient air into the container in response to such monitoring towards an optimum or predetermined value or range of values and (ii) monitoring the carbon dioxide level within said container and adjusting the carbon dioxide level as necessary in response to such monitoring towards an optimum or predetermined value or range of values without reliance upon flushing with an oxygen low or oxygen free gas, said adjustment being firstly by means of a scrubbing of the air within said container should said carbon dioxide level rise above a first predetermined value, and, secondly, should said carbon dioxide level rise above a second higher predetermined value, by the positive infusion of ambient air into the container.

Preferably said container is refrigerated and there is automatic adjustment of the temperature.

A further aspect of the present invention consists in an apparatus for transporting a quantity of respiring comestibles which may be degraded by respiration, said apparatus comprising:

transportable means defining a volume of a gaseous environment for said comestibles capable of being substantially sealed and in which the comestibles to be transported can be carried;

means to seal or substantially seal said volume after loading with said comestibles such that less

oxygen from the ambient air can diffuse into the environment than is required for the respiration;

means to enable flushing of the environment with an oxygen free or low gas to reduce the oxygen content thereof below that of ambient air;

means to monitor the oxygen content of the environment;

5 means to monitor the carbon dioxide content of the environment;

means responsive to the means to monitor said oxygen content to cause a positive infusion of ambient air into the environment should the oxygen content be or fall below a predetermined value;

means responsive to the means to monitor said carbon dioxide content to cause passage of gas within the environment through means to scrub at least some of the carbon dioxide therefrom should carbon dioxide content rise above a first predetermined value; and

10 means responsive to the means to monitor said carbon dioxide content to cause a positive infusion of ambient air into the environment should said carbon dioxide content not be maintained below a higher second predetermined value by said means to scrub at least some carbon dioxide from the environment.

15 Preferably said apparatus includes means to monitor the temperature of the environment and additionally means responsive to the means to monitor the temperature of the environment to adjust at least downwardly the temperature of the environment towards a predetermined value.

The environment may be within a container which defines a storage space for respiring comestibles.

20 A third aspect of the invention provides a gas controller for a container, wherein "container" is defined as any means defining a storage space for respiring comestibles, having means for extraction of CO₂ from the container air and means for exchange of ambient air with container air, said controller comprising:

a microprocessor, read-only memory and read-write memory connected to a common communication bus;

25 a carbon dioxide detector for monitoring the level of carbon dioxide in the container air;

an oxygen detector for monitoring the level of oxygen in the container air;

means for connecting the output of said detectors to said bus; and

30 an output port connected to said bus for output from said microprocessor of control signals which activate/deactivate said means for extraction and means for exchange;

wherein said microprocessor executes a program stored in said read-only memory which program:

(a) monitors said carbon dioxide and oxygen level;

35 (b) activates/deactivates said means for extraction if said carbon dioxide level rises above/falls below a predetermined carbon dioxide high limit or range of limits;

(c) activates/deactivates said means for exchange if said carbon dioxide level rises above/falls below a predetermined carbon dioxide high limit or range of limits; and

(d) activates/deactivates said means for exchange if said oxygen level falls below/rises above a predetermined oxygen level or range of levels.

One preferred form of the present invention will now be described with reference to the accompanying drawings in which:

Figure 1 is a block diagram of a controller which may be used to implement the present invention; and

Figures 2 and 3 are flow diagrams for portions of the controller microprocessor program.

40 The controller, hereinafter described, is now preferred to be used in connection with the container systems described in the aforementioned specifications, particularly with reference to Figures 1-7 of those specifications, as a replacement for the controller described in relation to Figures 8-10 of those specifications. Such figures and the description thereof is hereby incorporated by way of reference.

45 The controller is a microprocessor based unit which measures, controls, displays and logs levels of carbon dioxide and oxygen in a container as hereinbefore defined, particularly a refrigerated marine shipping container. Control of the gas levels may be achieved via solenoid valves built into the container and connected to the controller. In the case of CO₂, valves are provided to (i) allow passage of container air through a scrubber unit in order to prevent the CO₂ level of the container air rising above a predetermined level, and (ii) allow an infusion of ambient air to the container should the CO₂ level rise above a higher predetermined level, such as in the event of failure of the scrubber action. In the case of O₂, the external valves of (ii) allow an infusion of ambient air to the container in order to prevent the O₂ level of the container air from falling below a predetermined level. The controller is intended to be portable and of a size and shape to fit in the electrical power control box of such containers.

50 Referring to Figure 1, the controller schematically comprises a microprocessor 1 which operates according to a program stored in read-only memory 2. The microprocessor reads and writes to and from read/write memory 3 and a removable cassette in cassette unit 4. A gas pump 5 continuously draws air from the container through inlet 15 and consecutively through O₂ detector 6 and CO₂ detector 7. Outlet 16 may return the sampled air to the container or its surroundings. A temperature detector 8 monitors

approximately the temperature of the controller itself. Analog multiplexer 9 passes any of the three detector output signals to analog-to-digital converter 10 in response to commands by the microprocessor. The selected detector signal is then passed to the microprocessor on a common data/address bus 11.

Microprocessor 1 calculates actual CO₂ and O₂ levels by applying corrections to the detected levels as necessary depending on the detectors used. The CO₂ and O₂ levels according to the most recent sample are then shown on display 12, and may at suitable intervals be stored on the cassette, in addition to the detected temperature and the time according to real time clock 13. The microprocessor compares the actual CO₂ and O₂ levels with predetermined setpoints, these being preferred levels which vary with particular combustibles. Action of the container valves is controlled by the microprocessor.

It has been practical to group combustibles commonly transported by container into two categories, having preferred CO₂ levels greater or less than 3% by volume of the container air. A high CO₂ limit is defined for each category, above which unacceptable damage to the combustibles occurs. When the preferred level is less than 3% the high limit is 5%, and when the preferred level is greater than 3% the high limit is 5% plus the preferred level.

That part of the microprocessor program which enacts the present invention will now be described with reference to the flow charts of figures 2 and 3.

In Figure 2, action may be taken in respect of the container CO₂ and O₂ levels, provided that the container is not undergoing defrosting. The microprocessor then proceeds to compare the CO₂ level with the CO₂ setpoint and then with the CO₂ high limit value. If the CO₂ high limit is exceeded, ambient air is drawn into the container to lower the container air CO₂ level, otherwise the O₂ level is compared with the O₂ setpoint. CO₂ high limit control thus overrides O₂ level control. In making each comparison and operating valves if necessary, program execution passes to the routine shown in Figure 3.

Referring to Figure 3, the microprocessor calculates an error equal to the deviation of the CO₂ or O₂ level from the corresponding setpoint, and calculates a control value equal to the error magnitude less the deadband amplitude. If the control value is negative the error is within the deadband and the existing valve status is maintained. If the control value is positive, the error is outside the deadband and action may be taken as follows. If the CO₂ level and setpoint are being compared, a positive error indicates that the level is undesirably high and the scrubber valve should be opened or remain open, while a negative error indicates that the level is below the setpoint and the scrubber valve should be closed or remain closed. If the O₂ level and setpoint are being compared, a positive error indicates that the level is above the setpoint and the external valve should be closed, while a negative error indicates that the level is undesirably low and the external valves should be opened or remain open.

Principal features of a specific embodiment of the invention will now be described. In this embodiment the microprocessor 1 is an Intel 8085 8-bit processor. The other components of the controller shown in figure 1 interface with the data/address bus via an 8255 programmable peripheral interface, except that the external ports 15 include an 8251 programmable communications interface for connection of the controller to a further microprocessor if desired. The ROM 2 in which the microprocessor program is stored comprises two 32K 2732 EPROMS while the RAM 3 comprises a 2K 6116 static RAM. The analog multiplexer 9 and analog-to-digital converter 10 comprise 4051 and ADC0802 chips respectively. The setpoints for a particular container load are stored in the cassette after input from a portable computer via the 8251 interface as noted above, an the controller cannot exercise the routine of figure 2 unless the cassette is in place. Deadband values (O₂:±0.3%, CO₂:±0.5%) are stored in the EPROMS and are not varied between loads.

A "Teledyne" type A5 microfuel cell detects oxygen in the container air up to 25% by volume and with 10% accuracy of reading. The cell output is temperature dependent for which compensation is achieved via a thermistor in the cell output circuit.

A four filament "Gowmac" thermal conductivity cell is used to detect the presence of carbon dioxide in the container air up to 25% by volume. Each filament of the detector comprises one arm of a resistance bridge, two filaments being used for gas measurement and two filaments for reference. Such a detector is not intrinsically CO₂ sensitive but also reflects the O₂ and NO₂ levels of the container air. The microprocessor therefore compensates the conductivity cell output according to the detected O₂ level and an estimate of the N₂ level. The CO₂ detector is also temperature dependent for which further compensation is made by the microprocessor via the output of temperature detector 8. Overall, the CO₂ level obtained with 1%

EP 0 353 021 B2

accuracy.

A "Wisa" * vibrator type pump draws container air through the detectors at 0.2-0.5 l/min. The air is filtered before passage through the CO₂ detector.

Each detector output is read by the microprocessor approximately once every second and a running average for each level is calculated to overcome noise, the detector outputs being compensated as noted previously. The latest averages are displayed on the front panel of the controller and compared with the setpoints. The container CO₂ and O₂ levels and controller temperature are recorded on the cassette approximately every 8 hours when the container and controller are in use. There is provision to monitor and record the temperature within the container through a further communications port in the container, not shown in figure 1, if desired.

Appendix I is a portion of an 8085 assembly language program listing in which lines 222-335 correspond approximately to the flow chart of Figure 2.

Appendix II is a portion of an 8085 assembly language program listing in which lines 1134-1168 carry out CO₂ level compensation for the CO₂ detector temperature, lines 117-1200 carry out CO₂ level compensation in accord with the O₂ level, and lines 1219-1272 correspond approximately to the flow chart of Figure 3.

It is believed that apparatus and methods in accordance with the present invention define widespread application in the transportation industry.

20

25

30

35

40

45

50

55

APPENDIX 1

815-II 6030/8030 MACRO ASSEMBLER, V4.1
RANGFRESH 300 SERIES CONTROLLER

TFCVF

	LOC	OBJ	LINE	SOURCE STATEMENT
5				
	00C0 C00505	C	214	CALL LOG
	00C3 AF		215	XRA A
	00C4 31e400	D	216	STA LOGF ;AND RESET LOG FLAG
			217	
10			218	; COMPENSATE AND SCALE INPUTS
	00C7 C0A005	C	219	MAIN1: CALL TFCMP
			220	
			221	; CONTROL OUTPUTS
	00CA 3A0430		222	LDA PORTA
	00CD 47		223	MOV B,A
	00CE E620		224	ANI DFFST ;DEFROSTING?
75	00D0 CAA301	C	225	JZ DPPTR ;YES, EXIT
			226	
	00D3 78		227	MOV A,B
	00D4 E620		228	ANI CART ;CARTRIDGE INSERTED
20	00D6 C2A301	C	229	JNZ DPPTR 1NO, EXIT
			230	
			231	; DO CONTROL ACTION ON CO2
	00D9 110A40		232	LXI D,ESPCO2 ;GET CO2 SET POINT
	00DC CD1E08	C	233	CALL SPCV ;CONVERT
			234	
25	00DF 012300	D	235	LXI B,TC02 ;CO2 VALUE
	00E2 113300	D	236	LXI D,TMP ;SET POINT
	00E3 214300	C	237	LXI H,0BCO2 ;DEADBAND
	00E8 5E00		238	MVI A,0 ;NEGATIVE CONTROL ACTION
	00EA C02B07	C	239	CALL CTLA
			240	
30	00ED DA0201	C	241	JC CON3
	00F0 79		242	MOV A,C
	00F1 B7		243	CRA A
	00F2 3A0530		244	LDA PORTB
	00F3 CAF000	C	245	JZ CON1
	00F8 E6F2		246	ANI NOT RYCO2
35	00FA C0FF00	C	247	JMP CON2
	01FB F604		248	CON1: ORI RYCO2
	00FF 320530		249	CON2: STA PORTB
			250	
	0102 213300	D	251	CON3: LXI H,TMP ;CLEAR TEMP
	0103 0604		252	MVI B,4
	0107 CD0000	E	253	CALL CLRM
40			254	
			255	;CHECK CO2 LIMIT
	010A 110A40		256	LXI D,ESPCO2 ;GET CO2 SET POINT
	010D CD1E08	C	257	CALL SPCV ;CONVERT
			258	
45	0110 013300	D	259	; SET POINT < 3%
	0113 116F00	C	260	LXI B,TMP ;SET POINT
	0115 213700	D	261	LXI D,FCJ ; - 3%
	0119 CD0000	E	262	LXI H,JMP+4
	011C 3A3A00	D	263	CALL SUB32
	011F 0F		264	LDA TMP+7 ;GET SIGN BIT
	0120 DA3501	C	265	RRC ;-VE
50			266	JC CON4 ;YES, SET TO 5%
			267	
			268	> 3% SET POINT = SET POINT + 5%

BIS-II 8080/8085 MACRO ASSEMBLER, V4.1 TFCVF
TRANSFRESH 300 SERIES CONTROLLER

	LOC	OBJ	LINE	SOURCE STATEMENT
5				
	0123	013300	D 269	LXI B,TMP ;SET POINT =
	0125	115300	C 270	LXI D,PCS ;SET POINT +
	0129	115300	D 271	LXI H,TMP+5 ;5%
	012C	CD0000	E 272	CALL A0932
10	012F	115300	D 273	LXI D,TMP+5 ;-> SETPOINT + 5%
	0132	C33501	C 274	JMP CON5
			275	
			276	; < 5% SET POINT = 5%
	0135	115300	C 277	CON4: LXI D,PCS ;-> 5%
			278	
15	0138	012300	D 279	CON5: LXI B,TCO2 ;-> CO2 COMPENSATED
	013B	214B00	C 280	LXI H,PC1 ;-> DEADBAND
	013E	3500	281	MVI A,O ;CONTROL +VE
	0140	CDBE07	C 282	CALL CTLA
			283	
			284	; DO CONTROL ACTION
20	0143	DASB01	C 285	JC CON6 ;ACTION REQUIRED, NO ->
	0146	79	286	MOV A,C ;ON OR OFF
	0147	B7	287	ORA A
	0148	3A0530	288	LDA PORTB ;GET PORT
	014B	CA5301	C 289	JZ CONA ;OFF ->
	014E	ESFD	290	ANI NOT RYTB ;LIMIT OFF
	0150	C35501	C 291	JMP CONB
	0153	F5C2	292	ORI RYTB ;LIMIT ON
	0155	320530	293	STA PORTB
			294	
	0158	3A0530	295	CON6: LDA PORTB ;CHECK LIMIT
	015B	E302	296	ANI RYTB ;LIMIT SET?
30	015D	CA6B01	C 297	JZ CONC ;NO, CONT
	0160	3A0530	298	LDA PORTB ;GET PORT AGAIN
	0163	F601	299	ORI RY02 ;YES, SET RY02
	0165	320530	300	STA PORTB
	0168	C3A001	C 301	JMP DPTR ;NEXT FUNCTION
			302	
35	016B	213300	D 303	CONC: LXI H,TMP ;CLEAR TEMP
	016E	0408	304	MVI B,B
	0170	CD0000	E 305	CALL CLR
			306	
			307	; DO CONTROL ACTION ON OXYGEN
	0173	110E40	D 308	LXI D,ESP02 ;OXYGEN SET POINT
	0176	CD1502	C 309	CALL SPCV ;CONVERT
40			310	
			311	;POINT TO APPROPRIATE O2 CELL FOR CONTROL
	0179	210500	D 312	LXI H,AC2A ;-> C2A
	017C	3A6700	D 313	LDA O2CF ;FLAG SET?
	017F	B7	314	ORA A
	0180	CA8601	C 315	JZ CON7 ;NO, CONT
45			316	
	0183	210F00	D 317	LXI H,A02B ;YES POINT TO REF
			318	
	0186	44	319	CON7: MOV B,H ;H,L -> O2 VALUE TO USE
	0187	4D	320	MOV C,L ;TRANSFER TO B,C
50	0188	113300	D 321	LXI D,TMP ;-> O2 SET-POINT
	018B	214700	C 322	LXI H,D902 ;-> O2 DEAD BAND
	018E	3EFF	323	MVI A,0FFH

SIS-II 8080/8085 MACRO ASSEMBLER, V4.1
 TRANSFRESH 300 SERIES CONTROLLER

	LOC	OBJ	LINE	SOURCE STATEMENT
6				
	0190	C00607	C 324	CALL CTLA
			C 325	
	0193	DRAE01	C 326	JC DPTR
	0195	79	C 327	MOV A,C
10	0197	B7	C 328	ORA A
	0198	3AC530	C 329	LDA PORTB
	0199	CAAC01	C 330	JZ CONG
	019E	E6FE	C 331	ANI NOT RY02
	01A0	C0A501	C 332	JMP CONG?
	01A3	F601	C 333	ORI RY02
15	01A3	320530	C 334	STA PORTB
			C 335	
	01AB	112300	D 336	; SET DISPLAY POINTERS TO CO2 AND O2
	01AB	210800	D 337	DPTR: LXI D,TC02 ;-> CO2 AVERAGE
	01AE	3A6900	D 338	LXI H,A02A ;-> C2A AVERAGE
20	01B1	B7	D 339	LDA 02CF ;O2 CONTROL FLAG
	01B2	CAB801	C 340	ORA A ;SET?
	01B3	210F00	D 341	JZ KPR ;YES, LEAVE OA2
			D 342	LXI H,A02B ;NO, CHANGE TO O2B
			D 343	
	01B6	3A5500	D 344	; ANY KEYS PRESSED
25	01B8	B7	D 345	KPR: LDA KEYF
	01BC	CA1F02	C 346	ORA A
			C 347	JZ MAINS ;NO, CONT
			C 348	
	01BF	3A0430	C 349	; NOW SEE WHICH KEY
	01C2	E60F	D 350	LDA PORTC ;GET KEY
	01C4	210800	D 351	ANI OFH ;STRIP UPPER
30	01C7	110F00	D 352	LXI H,A02A ;-> O2A
	01CA	FE0D	D 353	LXI D,A02B ;-> O2B
	01CC	CA0902	C 354	CPI SWP1 ;O2A & O2B REQUIRED?
	01CF	211300	D 355	JZ KPRI1 ;YES, JUMP OUT
	01D2	111700	D 356	LXI H,AT1 ;NO, -> TEMP 1
35	01D3	FE07	D 357	LXI D,AT2 ;-> TEMP 2
	01D7	CA0902	C 358	CPI SWP3
	01DA	212700	D 359	JZ KPRI1
	01DD	111800	D 360	LXI H,TT4 ;TEMPS 3 & 4
	01E0	FE09	D 361	LXI D,AT3
	01E2	CA0902	C 362	CPI SWP4
40	01E3	B7	C 363	JZ KPRI1
	01E4	CA0902	C 364	ORA A ;KEY RELEASED?
	01E9	213200	D 365	JZ KPRI1 ;YES, EXIT
	01EC	0502	D 366	LXI H,TMP ;CLEAR TEMP
	01EE	C00000	E 367	MVI B,0
	01F1	110E40	C 368	CALL CLR1
45	01F4	CD1E09	C 369	LXI D,ESPC02 ;O2 SET POINT
	01F7	3A3400	D 370	CALL SPCV ;CONVERT
	01FA	323200	D 371	LDA TMP+1 ;GET VALUE
	01FD	110A40	D 372	STA TMP+3
	0200	CD1E09	C 373	LXI D,ESPC02 ;O2 SET POINT
	0203	213700	D 374	CALL SPCV
	0206	113300	D 375	LXI H,TMP+4
50			D 376	LXI D,TMP
			D 377	
			378	; KEY PRESSED

APPENDIX 2

IS-II 8080/6085 MACRO ASSEMBLER, V4.1 TFCVF
ANSFRESH 300 SERIES CONTROLLER

LOC	OBJ	LINE	SOURCE STATEMENT	
5			DCR	H
	C700 C28106	C 1121	JNZ	AVRG
		1122		
10	0703 3EFF	D 1123	MVI	A, OFFH ;SET FIRST TIME FLAG
	0705 328A00	D 1124	STA	FIRSTP
		1125		
		1126 ;NOW COMPENSATE THE AVERAGE VALUES		
		1127 ;EXPAND TEMPERATURE SCALE		
15	0708 011F00	D 1128 TFC02:	LXI	B, AT4 ;AVERAGE TEMP
	0702 11B307	C 1129	LXI	D, THR ; X 3 =
	070E 212700	D 1130	LXI	H, TT4 ;TRUE TEMPERATURE
	0711 CD0000	E 1131	CALL	MUL32
		1132		
		1133 ;COMPENSATE CO2 FOR TEMPERATURE		
20	0714 012700	D 1134	LXI	B, TT4 ;DELTA T
	0717 11C807	C 1135	LXI	D, X4
	071A 213D00	D 1136	LXI	H, TMP1
	071D CD0000	E 1137	CALL	SUB32
		1138		
		1139	LXI	B, TMP1 ;DELTA T X 200
	0723 11CF07	C 1140	LXI	D, K5
25	0726 213300	D 1141	LXI	H, TMP
	0729 CD0000	E 1142	CALL	MUL32
		1143		
	072C 010700	D 1144	LXI	B, AC02 ;CO2A X 1000
	072F 11D307	C 1145	LXI	D, K6
	0732 212500	D 1146	LXI	H, TC02
	0735 CD0000	E 1147	CALL	MUL32
30		1148		
	0738 012300	D 1149	LXI	B, TC02 ;(CO2A X 1000)
	0739 11E300	D 1150	LXI	D, TMP ; - ((TT4 - 64000) X 200)
	073E 212300	D 1151	LXI	H, TC02
	0741 CD0000	E 1152	CALL	SUB32
		1153		
35	0744 013D00	D 1154	LXI	B, TMP1 ;(TT4 - 64000)/569
	0747 11D707	C 1155	LXI	D, K7
	074A 213000	D 1156	LXI	H, TMP1
	074D CD0000	E 1157	CALL	DIV32
		1158		
40	0750 01D307	C 1157	LXI	B, K6 ;1000 - (DELTA T - 64000)
	0753 11D300	D 1160	LXI	D, TMP1 ;-----
	0756 213D00	D 1161	LXI	H, TMP1 ; ----- 55?
	0759 CD0000	E 1162	CALL	SUB32
		1163		
	075C 012300	D 1164	LXI	B, TC02 ;A - 0.2(DELTA T)
	075F 11E300	D 1165	LXI	D, TMP1 ;-----
45	0762 212300	D 1166	LXI	H, TC02 ; 1 - 0.0043(DELTA T)
	0765 CD0000	E 1167	CALL	DIV32
		1168		
		1169 ;COMPENSATE CO2 FOR O2 CONCENTRATION		
50	0768 010E00	D 1170	LXI	B, AO2A ;-> O2A
	0768 3A3900	D 1171	LDA	O2CF ;GET APPROPRIATE
	076E 57	1172	ORA	A ;O2 READING
	076F CA7307	C 1173	JZ	AVG1
	0772 010F00	D 1174	LXI	B, AO2B

315-II 5060/8065 MACRO ASSEMBLER, V4.1
TRANSFRESH 300 SERIES CONTROLLER

TFCVF

LOC	OBJ	LINE	SOURCE STATEMENT		
5		1175			
		1176	;COMPENSATE CO2 DATA		
	0775 115B07	C 1177	Avg1:	LXI	D,TEN ;CO2 / 10
	0773 213D00	D 1178		LXI	H,TMP1
	0778 CD0000	E 1179		CALL	DIV32
10		1180			
	077E 012D00	D 1181		LXI	B,TC02 ;CO2 + 02/10
	0781 113D00	D 1182		LXI	D,TMP1
	0784 213D00	D 1183		LXI	H,TMP1
	0787 CD0000	E 1184		CALL	ADD32
		1185			
15	078A 013D00	D 1186		LXI	B,TMP1 ;(CO2 + 02/10) - 2(UNITS)
	078D 11AF07	C 1187		LXI	D,TWOU
	0790 213D00	D 1188		LXI	H,TMP1
	0793 CD0000	E 1189		CALL	SUBS2
		1190			
	0796 013D00	D 1191		LXI	B,TMP1 ;(CO2 - 2 + 02/10)
	0797 118707	C 1192		LXI	D,NINE ;-----
20	079C 213D00	D 1193		LXI	H,TMP1 / 9
	079F CD0000	E 1194		CALL	DIV32
		1195			
	07A2 013D00	D 1196		LXI	B,TMP1 ;(CO2 - 2 + 02/10) X 10/9
	07A5 11BB07	C 1197		LXI	D,TEN
	07A8 212D00	D 1198		LXI	H,TC02
25	07AB CD0000	E 1199		CALL	MUL32
		1200			
	07AE C9	1201		RET	
		1202			
	07AF 7C14	1203	TWOU:	DW	5244,0 ;TWO (UNITS)
	07B1 0060				
30	07B3 0300	1204	THR:	DW	3,0 ;THREE
	07B5 0000				
	07B7 0900	1205	NINE:	DW	9,0 ;NINE
	07B9 0000				
	07B9 0A00	1206	TEN:	DW	10,0 ;TEN
	07BD 0000				
35	07BF ED17	1207	K1:	DW	6125,0 ;CONSTANT 1
	07C1 0000				
	07C3 39E8	1208	K2:	DW	22535,0 ;CONSTANT 2
	07C5 0000				
	07C7 1000	1209	K3:	DW	15,0 ;CONSTANT 3
	07C9 0000				
	07CB 00FA	1210	K4:	DW	64000,0 ;CONSTANT 4
40	07C5 0000				
	07CF 1400	1211	K5:	DW	20,0 ;CONSTANT 5
	07D1 0000				
	07D3 E803	1212	K6:	DW	1000,0 ;CONSTANT 6
	07D5 0000				
	07D7 3902	1213	K7:	DW	527,0 ;CONSTANT 7
45	07D9 0000				
		1214			
		1215	*****		
		1216			
		1217	CLTA:-	CONTROL ACTION SUBROUTINE	
		1218			

50

55

IIS-II 8080/8085 MACRO ASSEMBLER, V4.1 TFCVF
VANFRESH 300 SERIES CONTROLLER.

	LOC	CBJ	LINE	SOURCE STATEMENT		
5			1219	;ENTER: BC -> INPUT VARIABLE		
			1220	;DE -> SET-POINT VALUE		
			1221	;HL -> DEADBAND VALUE		
			1222	A = CONTROL ACTION, 00=WE, FF=-VE		
			1223			
10			1224	;EXIT: CARRY, NO ACTION ERROR<DEADBAND		
			1225	C = ACTION 00(OFF), FF(ON).		
			1226			
			1227			
			1228			
15	07DB F5		1229	CTLA: PUSH PGW ;SAVE ACTION		
	07DC E5		1230	PUSH H . ;SAVE DEADBAND POINTER		
			1231			
	07ED 213300	D	1232	;ENTER3 WITH BC, DE SET		
	07E0 CD0000	E	1233	LXI H,TMP ;ERROR		
			1234	CALL SUB32		
20	07E3 AF		1235			
	07E4 326800	D	1236	XRA A ;RESET		
			1237	STA NEGF ;NEGATIVE FLAG		
	07E7 213400	D	1238			
	07EA 7E		1239	LXI H,TMP+3		
	07EB 07		1240	MOV A,M ;ERROR -VE?		
25	07EC D2FA07	C	1241	RLC		
	07EF 3EFF		1242	JNC M:1 A,OFFH ;NO, ->		
	07F1 326800	D	1243	M:1 A,OFFH ;YES,		
	07F4 213300	D	1244	STA NEGF ;NEGATIVE FLAG		
	07F7 CD0000	E	1245	LXI H,TMP		
			1246	CALL COMPFL ;MAKE POSITIVE		
			1247			
30	07FA 013300	D	1248	LXI B,TMP ;ERROR		
	07FD 01		1249	POP D ;DEADBAND		
	07FE 213300	D	1250	LXI H,TMP ;CONTROL REINITIATED		
	0801 CD0000	E	1251	CALL SUB32		
			1252			
35	0804 CA2600	C	1253	LDA TMP+3 ;ERROR < DEADBAND?		
	0807 07		1254	RLC		
	0808 C1		1255	POP B ;GET ACTION		
	0809 D8		1256	RE ;ERROR < DEADBAND, RETURN		
	080A 70		1257	MOV A,B		
	080B 67		1258	ORA A		
	080C CA1108	C	1259	JZ 4+5 ;ACTION + OR -		
	080F 3EFF		1260	MVI A, OFFH ;ACTION +,RETURN WITH 00H		
	0811 4F		1261	MVI A, OFFH ;ACTION -,RETURN WITH OFFH		
40	0812 3A6800	D	1262	MOV C,A ;PUT ACTION IN C		
	0815 B7		1263	LDA NEGF ;WAS ERROR -VE?		
	0816 CA1C08	C	1264	ORA A		
	0819 7F		1265	JZ 4+6 ;NO, ->		
	081A 2F		1266	MOV A,C ;YES, COMPLEMENT		
45	081B 4F		1267	CMA		
			1268	MOV C,A		
			1269			
	081C AF		1270	XRA A ;CLEAR ACTION FLAG		
	081D C9		1271	RET		
			1272			
			1273			

50

Claims

1. A method of transporting a quantity of a comestible which may be subject to degradation as a result of respiration during transportation, comprising the steps of:

55 (a) sealing or substantially sealing said quantity of the respiring comestible within a container, wherein 'container' is defined as any means defining storage space for respiring comestibles, sufficiently to ensure that less oxygen of the ambient air can diffuse into the container than is

required for full respiration by the respiring comestible, flushing the container with an oxygen low or oxygen free gas so as to provide a reduced oxygen level in the sealed or substantially sealed container, such flushing occurring before, during and/or after said sealing or substantial sealing, and
5 (b) transporting the container with the respiring comestible therein while (i) monitoring the oxygen level within said container and automatically adjusting the oxygen level as necessary by a positive infusion of ambient air into the container in response to such monitoring towards an optimum or predetermined value or range of values and (ii) monitoring the carbon dioxide level within said container and adjusting the carbon dioxide level as necessary in response to such monitoring towards an optimum or predetermined value or range of values without reliance upon flushing with
10 an oxygen low or oxygen free gas, said adjustment being firstly by means of a scrubbing of the air within said container should said carbon dioxide level rise above a first predetermined value, and, secondly, should said carbon dioxide level rise above a second higher predetermined value, by the positive infusion of ambient air into the container.

15 2. A method as claimed in claim 1 wherein said container is refrigerated and there is automatic adjustment of the temperature.

3. Apparatus for transporting a quantity of respiring comestibles which may be degraded by respiration, said apparatus comprising:
20 transportable means defining a volume of a gaseous environment for said comestibles capable of being substantially sealed and in which the comestibles to be transported can be carried;
 means to seal or substantially seal said volume after loading with said comestibles such that less oxygen from the ambient air can diffuse into the environment than is required for the respiration;
 means to enable flushing of the environment with an oxygen free or low gas to reduce the oxygen
25 content thereof below that of ambient air;
 means to monitor the oxygen content of the environment;
 means to monitor the carbon dioxide content of the environment;
 means responsive to the means to monitor said oxygen content to cause a positive infusion of ambient air into the environment should the oxygen content be or fall below a predetermined value;
30 means responsive to the means to monitor said carbon dioxide content to cause passage of gas within the environment through means to scrub at least some of the carbon dioxide therefrom should said carbon dioxide content rise above a first predetermined value; and
 means responsive to the means to monitor said carbon dioxide content to cause a positive infusion of ambient air into the environment should said carbon dioxide content not be maintained below a higher second predetermined value by said means to scrub at least some carbon dioxide from the
35 environment.

4. Apparatus as claimed in claim 3 wherein said environment is within a container which defines a storage space for respiring comestibles.
40

5. Apparatus as claimed in claim 3 wherein there is provided means to monitor the temperature of the environment and additionally means responsive to the means to monitor the temperature of the environment to adjust at least downwardly the temperature of the environment towards a predetermined value.

45

6. A gas controller for a container, wherein "container" is defined as any means defining a storage space for respiring comestibles, having means for extraction of CO₂ from the container air and means for exchange of ambient air with container air, said controller comprising:
50 a microprocessor, read-only memory and read-write memory connected to a common communication bus;
 a carbon dioxide detector for monitoring the level of carbon dioxide in the container air;
 an oxygen detector for monitoring the level of oxygen in the container air;
 means for connecting the output of said detectors to said bus; and
 an output port connected to said bus for output from said microprocessor of control signals which
55 activate/deactivate said means for extraction and means for exchange;
 wherein said microprocessor executes a program stored in said read-only memory which program:
 (a) monitors said carbon dioxide and oxygen level;

(b) activates/deactivates said means for extraction if said carbon dioxide level rises above/falls below a predetermined carbon dioxide level or range of levels;
(c) activates/deactivates said means for exchange if said carbon dioxide level rises above/falls below a predetermined carbon dioxide high limit or range of limits exceeding said carbon dioxide level or
5 range of levels; and
(d) activates/deactivates said means for exchange if said oxygen level falls below/rises above a predetermined oxygen level or range of levels.

7. A gas controller according to claim 6 wherein said activation/deviation comprises opening/closing of
10 solenoid valves.

8. A gas controller according to claim 6 or claim 7 wherein said predetermined levels are preferred levels
for transport of respiring comestibles within said container.

15 9. A gas controller according to any one of claims 6 to 8 wherein said predetermined carbon dioxide limit
is a limit above which unacceptable damage occurs to comestibles being transported in said container.

10. A gas controller according to any one of claims 6 to 9 wherein said means for connecting the output of
said detectors to said bus comprises an analog multiplexer in series with an analog-to-digital converter.
20

11. A gas controller according to any one of claims 6 to 10 wherein said program records at predetermined
intervals said carbon dioxide and oxygen levels in a removable memory element connected to said
microprocessor via said bus.

25 **Patentansprüche**

1. Verfahren zum Transport einer Menge eines Lebensmittels, das sich während des Transports infolge Atmung zersetzen kann, umfassend die folgenden Schritte:
(a) die Menge des atmenden Lebensmittels in einem Behälter dicht oder im wesentlichen dicht verschließen, wobei "Behälter" definiert ist als jede Einrichtung, die einen Lagerraum für atmende Lebensmittel aufweist, der mit hinreichender Sicherheit gewährleistet, daß weniger Sauerstoff aus der Umgebungsluft in den Behälter eindringen kann als von dem atmenden Lebensmittel zur vollständigen Atmung benötigt wird, Spülen des Behälters mit einem sauerstoffarmen oder sauerstofffreien Gas, so daß in dem dicht oder im wesentlichen dicht verschlossenen Behälter ein verminderter Sauerstoffgehalt erreicht wird, wobei das Spülen vor, während und/oder nach dem dichten oder im wesentlichen dichten Verschließen erfolgt, und
30 (b) Transportieren des Behälters mit dem darin enthaltenen atmenden Lebensmittel, während (i) der Sauerstoffgehalt in dem Behälter überwacht und der Sauerstoffgehalt nach Bedarf entsprechend dieser Überwachung durch zwangsläufiges Einleiten von Umgebungsluft in den Behälter automatisch auf einen optimalen oder vorbestimmten Wert oder Wertebereich reguliert wird, und (ii) Überwachen des Kohlendioxidgehalts in dem Behälter und Regulieren des Kohlendioxidgehalts nach Bedarf entsprechend dieser Überwachung auf einen optimalen oder vorbestimmten Wert oder Wertebereich, ohne daß zu diesem Zweck mit einem sauerstoffarmen oder sauerstofffreien Gas gespült wird, wobei die Regulierung zunächst durch Waschen der in dem Behälter befindlichen Luft erfolgt, wenn
35 der Kohlendioxidgehalt über einen ersten vorbestimmten Wert ansteigt, und zweitens, wenn der Kohlendioxidgehalt über einen zweiten höheren vorbestimmten Wert ansteigt, durch zwangsläufiges Einleiten von Umgebungsluft in den Behälter.
40

2. Verfahren nach Anspruch 1, bei dem der Behälter gekühlt wird und eine automatische Temperaturregelung erfolgt.

45 3. Verfahren zum Transport einer Menge atmender Lebensmittel, die sich durch Atmung zersetzen können, wobei die Vorrichtung folgendes umfaßt:
50 eine transportable Einrichtung, die ein Volumen einer gasförmigen Umgebung für die Lebensmittel aufweist, das im wesentlichen dicht verschlossen werden kann, und in dem die zu transportierenden Lebensmittel getragen werden können;
55 eine Einrichtung, mit der das Volumen bzw. der Hohlraum nach dem Beschricken mit den Lebensmitteln dicht oder im wesentlichen dicht verschlossen wird, so daß weniger Sauerstoff aus der Umgebungsluft

EP 0 353 021 B2

in den Hohlraum eindringen kann als für die Atmung erforderlich ist;
eine Einrichtung, mit der der Hohlraum mit einem sauerstofffreien oder sauerstoffarmen Gas gespült werden kann, um seinen Sauerstoffgehalt unter den der Umgebungsluft abzusenken;
eine Einrichtung zur Überwachung des Sauerstoffgehalts in dem Hohlraum;

5 eine Einrichtung zur Überwachung des Kohlendioxidgehalts in dem Hohlraum;
eine Einrichtung, die in Abhängigkeit von der Einrichtung zur Überwachung des Sauerstoffgehalts eine zwangsläufige Einleitung von Umgebungsluft in den Hohlraum veranlaßt, wenn der Sauerstoffgehalt einen vorbestimmten Wert besitzt oder unter diesen abfällt;

10 eine Einrichtung, die in Abhängigkeit von der Einrichtung zur Überwachung des Kohlendioxidgehalts Gas in dem Hohlraum durch die Einrichtung strömt lässt, um wenigstens etwas von dem Kohlendioxid herauszuwaschen, wenn der Kohlendioxideinhalt über einen ersten vorbestimmten Wert ansteigt; und
eine Einrichtung, die in Abhängigkeit von der Einrichtung zur Überwachung des Kohlendioxidgehalts eine zwangsläufige Einleitung von Umgebungsluft in den Hohlraum veranlaßt, wenn der Kohlendioxideinhalt von der Einrichtung, die wenigstens etwas von dem Kohlendioxid aus dem Hohlraum herauswäscht, nicht unter einem höheren zweiten vorbestimmten Wert gehalten wird.

15

4. Vorrichtung nach Anspruch 3, bei der der Hohlraum sich in einem Behälter befindet, der einen Lagerraum für atmende Lebensmittel aufweist.

20 5. Vorrichtung nach Anspruch 3, bei der eine Einrichtung zur Überwachung der Temperatur in dem Hohlraum vorgesehen ist und außerdem eine Einrichtung, die in Abhängigkeit von der Einrichtung zur Überwachung der Temperatur in dem Hohlraum die Temperatur in dem Hohlraum wenigstens nach unten auf einen vorbestimmten Wert reguliert.

25 6. Gasregler für einen Behälter, wobei "Behälter" definiert ist als jede Einrichtung, die einen Lagerraum für atmende Lebensmittel aufweist, umfassend eine Einrichtung zum Extrahieren von CO₂ aus der Behälterluft und eine Einrichtung zum Austausch von Umgebungsluft mit Behälterluft, wobei der Regler folgendes umfaßt:
einen Mikroprozessor, einen Nur-Lese-Speicher und einen Schreib-Lese-Speicher, die mit einem gemeinsamen Datenübertragungsbuss verbunden sind;

30 eine Kohlendioxiddetektor zur Überwachung des Kohlendioxideinhals in der Behälterluft;
einen Sauerstoffdetektor zur Überwachung des Sauerstoffgehalts in der Behälterluft;
eine Einrichtung, die den Ausgang der Detektoren mit dem Bus verbindet; und
einen Ausgabebaustein, der mit dem Bus verbunden ist, um von dem Mikroprozessor Steuersignale abzusetzen, die die Extraktioneinrichtung und die Austauscheinrichtung aktivieren bzw. deaktivieren;
- 35 - wobei der Mikroprozessor ein Programm ausführt, das in dem Nur-Lese-Speicher gespeichert ist, wobei das Programm

35 a) den Kohlendioxideinhalt und den Sauerstoffgehalt überwacht;
b) die Extraktioneinrichtung aktiviert bzw. deaktiviert, wenn der Kohlendioxideinhalt einen vorbestimmten Wert oder Wertebereich übersteigt oder unter diesen abfällt;
c) die Austauscheinrichtung aktiviert bzw. deaktiviert, wenn der Kohlendioxideinhalt einen vorbestimmten Höchstwert oder Grenzwertbereich für den Kohlendioxideinhalt übersteigt oder unter diesen abfällt, der höher ist als der genannte Wert oder Wertebereich; und
d) die Austauscheinrichtung aktiviert bzw. deaktiviert, wenn der Sauerstoffgehalt unter einen vorbestimmten Wert oder Wertebereich absinkt oder diesen übersteigt.

40

45 7. Gasregler nach Anspruch 6, bei dem das Aktivieren/Deaktivieren das Öffnen/Schließen von Magnetventilen umfaßt.

50 8. Gasregler nach Anspruch 6 oder Anspruch 7, bei dem die vorbestimmten Werte bevorzugte Werte für den Transport atmender Lebensmittel in dem Behälter sind.

55 9. Gasregler nach einem der Ansprüche 6 bis 8, bei dem der vorbestimmte Kohlendioxidgrenzwert ein Grenzwert ist, über dem die in dem Behälter transportierten Lebensmittel in inakzeptabler Weise beschädigt werden.

10. Gasregler nach einem der Ansprüche 6 bis 9, bei dem die Einrichtung zum Verbinden des Ausgangs der Detektoren mit dem Bus einen Analogmultiplexer umfaßt, der mit einem A/D-Wandler in Reihe

geschaltet ist.

11. Gasregler nach einem der Ansprüche 6 bis 10, bei dem das Programm in vorbestimmten Abständen den Kohlendioxid- und Sauerstoffgehalt in ein herausnehmbares Speicherelement schreibt, das über den Bus mit dem Mikroprozessor verbunden ist.

Revendications

1. Procédé de transport d'une quantité d'un produit comestible pouvant être sujet à altération en résultat d'une respiration durant le transport, comportant les étapes consistant à:
 - (a) enfermer hermétiquement ou sensiblement hermétiquement ladite quantité du produit comestible respirant à l'intérieur d'un récipient, ledit "récipient" étant défini comme étant un moyen quelconque délimitant une chambre de stockage pour des produits comestibles respirants, suffisamment pour assurer que moins d'oxygène de l'air ambiant que la quantité nécessaire pour une respiration complète du produit comestible respirant puisse diffuser dans le récipient, balayer le récipient avec un gaz pauvre en oxygène ou sans oxygène de manière à assurer un taux d'oxygène réduit dans le récipient hermétique ou sensiblement hermétique, un tel balayage se produisant avant, durant et/ou après ledit enfermement hermétique ou sensiblement hermétique, et
 - (b) transporter le récipient contenant le produit comestible respirant tout en (i) contrôlant le taux d'oxygène à l'intérieur dudit récipient et en réglant automatiquement le taux d'oxygène nécessaire par une injection positive d'air ambiant dans le récipient en réponse à ce contrôle vers une valeur ou fourchette de valeurs optimal ou prédéterminée et (ii) en contrôlant le taux de gaz carbonique à l'intérieur dudit récipient et en réglant le taux de gaz carbonique nécessaire en réponse à ce contrôle vers une valeur ou une fourchette de valeurs optimal ou prédéterminée indépendamment du balayage par un gaz pauvre en oxygène ou sans oxygène, ledit réglage étant tout d'abord effectué par épuration de l'air à l'intérieur dudit récipient au cas où ledit taux de gaz carbonique s'élève au-dessus d'une première valeur prédéterminée, et, en second lieu, au cas où ledit taux de gaz carbonique s'élève au-dessus d'une seconde valeur prédéterminée supérieure, par l'injection positive d'air ambiant dans le récipient.
2. Procédé selon la revendication 1, dans lequel ledit récipient est réfrigéré et possède un réglage automatique de la température.
3. Dispositif de transport d'une quantité de produits comestibles respirants pouvant être altérés par respiration, ledit dispositif comportant:
 - des moyens transportables délimitant un volume d'environnement gazeux pour lesdits produits comestibles pouvant être fermé pratiquement hermétiquement, et dans lesquels les produits comestibles devant être transportés peuvent être contenus;
 - des moyens pour fermer hermétiquement ou sensiblement hermétiquement ledit volume après chargement desdits produits comestibles de telle sorte que moins d'oxygène de l'air ambiant que la quantité nécessaire pour la respiration puisse diffuser dans l'environnement;
 - des moyens permettant un balayage de l'environnement avec un gaz pauvre en oxygène ou sans oxygène pour réduire la teneur en oxygène de celui-ci au-dessous de celle de l'air ambiant;
 - des moyens pour contrôler la teneur en oxygène de l'environnement;
 - des moyens pour contrôler la teneur en gaz carbonique de l'environnement;
 - des moyens sensibles aux moyens pour contrôler la teneur en oxygène pour provoquer une injection positive d'air ambiant dans l'environnement au cas où la teneur en oxygène est ou tombe au-dessous d'une valeur prédéterminée;
 - des moyens sensibles aux moyens pour contrôler ladite teneur en gaz carbonique pour provoquer un passage de gaz à l'intérieur de l'environnement à travers des moyens d'épuration d'au moins une partie du gaz carbonique de ceux-ci au cas où ladite teneur en gaz carbonique s'élève au-dessus d'une première valeur prédéterminée; et
 - des moyens sensibles aux moyens pour contrôler ladite teneur en gaz carbonique pour provoquer une injection positive d'air ambiant dans l'environnement au cas où ladite teneur en gaz carbonique n'est pas maintenue au-dessous d'une seconde valeur prédéterminée supérieure par lesdits moyens d'épuration d'au moins une partie du gaz carbonique de l'environnement.

4. Dispositif selon la revendication 3, dans lequel ledit environnement se trouve à l'intérieur d'un récipient délimitant une chambre de stockage pour des produits comestibles respirants.
5. Dispositif selon la revendication 3, dans lequel sont prévus des moyens pour contrôler la température de l'environnement et de plus des moyens sensibles aux moyens contrôlant la température de l'environnement pour régler au moins à la baisse la température de l'environnement vers une valeur prédéterminée.
10. Contrôleur de gaz pour un récipient, dans lequel ledit "récipient" est défini comme étant un moyen quelconque délimitant une chambre de stockage pour des produits comestibles respirants, possédant des moyens pour une extraction de CO₂ de l'air du récipient et des moyens d'échange d'air ambiant avec l'air du récipient, ledit contrôleur comportant:
 - un microprocesseur, une mémoire morte et une mémoire de lecture-écriture connectés à un bus de communication commun;
 - 15 un détecteur de gaz carbonique pour contrôler le taux de gaz carbonique dans l'air du récipient;
 - un détecteur d'oxygène pour contrôler le taux d'oxygène dans l'air du récipient;
 - des moyens pour relier la sortie desdits détecteurs audit bus; et
 - un point de connexion de sortie relié audit bus pour une délivrance depuis ledit microprocesseur de signaux de commande qui activent/désactivent lesdits moyens d'extraction et lesdits moyens d'échange;
 - 20 dans lequel ledit microprocesseur exécute un programme mémorisé dans ladite mémoire morte, lequel programme:
 - (a) contrôle ledit taux de gaz carbonique et d'oxygène;
 - (b) active/désactive lesdits moyens d'extraction si ledit taux de gaz carbonique s'élève au-dessus de/s'abaisse au-dessous d'une limite ou fourchette de limites de gaz carbonique prédéterminées;
 - 25 c) active/désactive lesdits moyens d'échange si ledit taux de gaz carbonique s'élève au-dessus de / s'abaisse au-dessous d'une limite ou fourchette de limites supérieure de gaz carbonique prédéterminées dépassant ladite limite ou fourchette de limites de gaz carbonique.
 - d) active/désactive lesdits moyens d'échange si ledit taux d'oxygène tombe au-dessous/s'élève au-dessus d'un taux ou d'une fourchette de taux d'oxygène prédéterminés.
30. 7. Contrôleur de gaz selon la revendication 6, dans lequel ladite activation/désactivation comporte l'ouverture/fermeture d'électro-vannes.
35. 8. Contrôleur de gaz selon la revendication 6 ou la revendication 7, dans lequel lesdits taux prédéterminés sont des taux préférés pour un transport de produits comestibles respirants à l'intérieur dudit récipient.
40. 9. Contrôleur de gaz selon l'une quelconque des revendications 6 à 8., dans lequel ladite limite prédéterminée de gaz carbonique est une limite au-dessus de laquelle une détérioration inadmissible est provoquée pour des produits comestibles transportés dans ledit récipient.
45. 10. Contrôleur de gaz selon l'une quelconque des revendications 6 à 9, dans lequel lesdits moyens reliant la sortie desdits détecteurs audit bus comportent un multiplexeur analogique en série avec un convertisseur analogique-numérique.
11. Contrôleur de gaz selon l'une quelconque des revendications 6 à 10, dans lequel ledit programme enregistre à des intervalles prédéterminés lesdits taux de gaz carbonique et d'oxygène dans un élément de mémoire amovible connecté audit microprocesseur par l'intermédiaire dudit bus

FIG.1

FIG. 2

FIG. 3