Domain and Range

Summary

1. Domain: all possible input; Range: all possible output.

Domain (Visual)

The **domain** of a function is the set of all possible inputs (usually x) of the function.

In other words, **domain** is all possible *x*-coordinates on the function's graph.

Example 1. Determine the domain of each. Write your answer as an inequality or a compound inequality.

(a)

(b)

(c)

(d)

Domain (Equations)

For most of the functions in this section of the notes, the domain will be all real numbers.

However, there are 2 exceptions:

- 1. Functions with a variable in the denominator: denominator $\neq 0$
- 2. Functions inside a square root: $\sqrt{\geq 0}$

Example 2. State the domain of each.

(a)
$$f(x) = 3x - 2$$

(a)
$$f(x) = 3x - 2$$
 (b) $g(x) = 6x^2 + 4$

(c)
$$h(x) = \sqrt{x-7}$$

(d)
$$j(x) = \sqrt{2x+4}$$

(e)
$$m(x) = \frac{5}{x-2}$$

(f)
$$p(x) = \frac{3}{x+9}$$

Range (Visual)

The **range** of a function is the set of all possible outputs (usually y) of the function.

In other words, **range** is all possible *y*-coordinates on the function's graph.

Example 3. Determine the range of each. Write your answer as an inequality or a compound inequality.

(b)

(c)

(d)

