: 30.07.2024 DATE

DT/NT:

LESSON: MACHINE LEARNING

SUBJECT: DECISION TREE (CART)

BATCH: 247

DATA SCIENCE

DECISION TREE

Where We Are?

Decision Tree

Decision Tree Example

TEST DATA

DECISION TREE

Entire population (30 instances) • :16 ☆:14 $p() = 16/30 \approx 0.53$ $p(\mbox{$\frac{1}{1}$}) = 14/30 \approx 0.47$ Balance < 50K Balance ≥ 50K • :12 ☆:1 ☆:13 $p() = 4/17 \approx 0.24$ $p() = 12/13 \approx 0.92$

 $p(\ \) = 13/17 \approx 0.76$

 $p(\ \ \) = 1/13 \approx 0.08$

Gini Impurity

Max Gini Impurity = 1 - 1/n n = number of classes Max gini impurity is **0.5** for binary class

Very impure group

 $1 - [(16/29)^2 + (13/29)^2] = 0.4946$

Less impure

 $1 - [(12/14)^2 + (2/14)^2] = 0.244$

Minimum impurity

$$1 - [(12/12)^2 + (0/12)^2] = 0$$

Another commonly used formula is:

Gini impurity =
$$1 - \Sigma (p(i) * (1 - p(i)))$$

Gini=
$$1-\sum_{i=1}^{C}(p_i)^2$$

Gini Impurity of the right leaf
$$= 1-\left(\frac{2}{2+1}\right)^2-\left(\frac{1}{2+1}\right)^2$$

$$= 0.444$$

Age	Ability	Footballer (tiny stars) No		
10	Yes			
8	No	No		
6	Yes	Yes		
6	No	No		
8	Yes	Yes		
8	Yes	Yes		
6	Yes	Yes		
10	Yes	No		
10	No	No		
6	No	No		
8 6 .0	Yes Yes Yes No	Yes Yes No No		

Selection Feature For Root Node With Gini Impurity

Sorting Age : 6 - 8 - 10Sorting Ability : 0 - 1

Age	Ability	Footballer (tiny stars) No		
10	1			
8	0	No		
6	1	Yes		
6	0	No		
8	1	Yes		
8	1	Yes		
6	1	Yes		
10	1	No		
10	0	No		
6	0	No		

For Age Feature

For Ability Feature

Yes
No
Ability < 0.5

False

1-[(0/4)²+(4/4)²] = 0
1-[(4/6)²+(2/6)²] = 0.44

 $4/10 \times 0.5 + 6/10 \times 0.44 = 0.464$

 $7/10 \times 0.49 + 3/10 \times 0 = 0.34$

 $4/10 \times 0 + 6/10 \times 0.44 = 0.26$

Root Node

The formula for Entropy is shown below:

$$E(S) = -p_{(+)}^{\log p}(-) - p_{(-)}^{\log p}(-)$$

Here,

- p₊ is the probability of positive class
- p_{_} is the probability of negative class
- S is the subset of the training example

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play Golf				
Yes	No			
9	5			

Entropy(PlayGolf) = Entropy (5,9)

= Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

= 0.94

$$E(T, X) = \sum_{c \in X} P(c)E(c)$$

		Play Golf		
		Yes	No	
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14

$$E(PlayGolf, Outlook) = P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3)$$

$$= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971$$

$$= 0.693$$

Information Gain

Information Gain

Information Gain(T,X) = Entropy(T) - Entropy(T, X)

```
IG(PlayGolf, Outlook) = E(PlayGolf) - E(PlayGolf, Outlook)
= 0.940 - 0.693
= 0.247
```


Pruned Tree

Original Tree

Pruned Tree

Karar ağacının nasıl bölüneceğini nasıl belirleriz?

• Karar ağaçlarında bölünme (veya dal ayrımı), veri setindeki homojenliği maksimize etmek için yapılır.

 Yani, bir ağacın her bir dalında, sonucun mümkün olduğunca bir sınıfa özgü olması hedeflenir.

 Bu, bilgi kazancı (Information Gain), Gini saflığı (Gini Impurity), veya entropi gibi ölçümler kullanılarak belirlenir.

Tea break... 10:00 Inteletions for PowerPoint by Flow Signalation (td. Pile controls when stopped 55