IL 2022

A primer on cross-chain bridges and how to break one

Niv Yehezkel

Whoami:

- Security researcher
- Pasten CTF team member
- Working on a new web3 security startup

Once upon a time...

there was a single decentralized blockchain

6 years later...

A new general-purpose blockchain called Ethereum came to life

Fast forward to today -

A multi-chain present and future

What about cross-chain?

Blockchains are great but cannot trustlessly interact with each other

My argument for why the future will be *multi-chain*, but it will not be *cross-chain*: there are fundamental

* Recommended reading: https://twitter.com/VitalikButerin/status/1479501366192132099

Why even bother?

Interoperability
User Experience and Capital Efficiency

Bridges to the rescue!

Chain A Chain B

Chain A

1. Alice has 100 ETH she wants to move to Polygon

Bridge

Chain B

Chain A Chain B Chain A Bridge Chain B 1. Alice has 100 ETH she wants to move to Polygon 3. 100 ETH Deposit 100 ETH 2. Alice locks 100 ETH locked in a pool into the bridge

Chain A Chain B Chain A Bridge Chain B 1. Alice has 100 wrapped ETH tokens she wants to move back to chain A 3. Bridge sees alice 2. Alice **burns** her 100 burned her tokens and wrapped ETH tokens releases ETH from the pool on chain A Release 100 ETH

4. Alice gets

100 ETH

Bridges are cool

So how can we break them?
Starting with the Polygon PoS bridge

The Polygon chain

- Powered by Proof of Stake
- Polygon chain has so-called validator nodes powering it
- Validators stake tokens, mine new blocks in the chain and get rewarded for it

Polygon PoS bridge

- Bridges tokens to and from Ethereum to Polygon
- The bridge is composed by a set of contracts that are deployed on Ethereum and Polygon

- Moving assets from Ethereum to Polygon
 - Lock assets into Ethereum PoS bridge contracts
 - Validator nodes monitor Ethereum contracts logs
 - Wrapped assets are minted on Polygon

Polygon PoS bridge - cont.

- Withdrawing wrapped assets from Polygon back to Ethereum
 - Burn the asset on Polygon
 - Save the tx hash
 - Wait for a checkpoint to be sent to Ethereum
 - Submit a proof of the burn on Ethereum to release the asset

 How can the contracts on Ethereum trust the proof of something that happened on Polygon? What's even a checkpoint?

Checkpointing

Checkpointing is the process of merging the Polygon transactions into the Ethereum blockchain

Why consensus matters

- Checkpoints are accepted only if $\frac{1}{3} + 1$ of the total staking power of the validators signed the checkpoint
- Checkpoints are then used to verify proofs of burnt tokens in Polygon
- A malicious checkpoint can drain the pool of the bridge

Total staking power: 220

* 220 + 1 = 148
for a checkpoint
to be accepted

- There are currently 100 validator nodes on Polygon
- Running a validator node is a hassle
- Fortunately anyone can delegate any amount of tokens into any validator node
- Example:

Validator #1

Total staking power: 100

- There are currently 100 validator nodes on Polygon
- Running a validator node is a hassle
- Fortunately anyone can delegate any amount of tokens into any validator node
- Example:

Total staking

power: 170

- There are currently 100 validator nodes on Polygon
- Running a validator node is a hassle
- Fortunately anyone can delegate any amount of tokens into any validator node
- Example:

Total staking power: 220

To accept a new checkpoint submission - signed staking power on that submission has to be at least:

- There are currently 100 validator nodes on Polygon
- Running a validator node is a hassle
- Fortunately anyone can delegate any amount of tokens into any validator node
- Example:

Migrating delegator tokens

- A delegator can also migrate from one validator to another if he desires without needing to pull his tokens out
- Example:

Total staking power: 230

- Validators can unstake when they want to
- Total staking power counter has to decrease accordingly
- Example:

- Validators can unstake when they want to
- Total staking power counter has to decrease accordingly
- Example:

One counter to rule them all

- The total staking power counter is a very important number
- Recap: A checkpoint can be accepted only if $>= \frac{2}{3}$ * total staking power + 1 staking power has signed it

What if we could bypass that consensus check somehow?

- Validators can unstake when they want to
- Delegators can migrate when they want to
- Example:

Total staking power: 230

- Validators can unstake when they want to
- Delegators can migrate when they want to
- Example:

Total staking power: 170

- Validators can unstake when they want to
- Delegators can migrate when they want to
- Example:

- Validators can unstake when they want to
- Delegators can migrate when they want to
- Example:

- Validators can unstake when they want to
- Delegators can migrate when they want to
- Example:

Total staking power: 90

- Validators can unstake when they want to
- Delegators can migrate when they want to
- Example:

Total staking

Draining the bridge

- 1. Delegate X tokens into some validator
- 2. Catch a validator slot
- 3. Migrate your X tokens into that validator
- 4. Unstake the validator
- 5. Repeat step 2 to step 4 until $X \ge \frac{2}{3}$ * total staking power + 1
- 6. Submit a checkpoint signed by only you that drains all deposited tokens in the bridge
- 7. Profit billions of dollars

Summary

- Bridges are complex constructs, possibly with a locked value of billions of people's funds
- 2. Security audits are nice and all but are insufficient
- 3. The industry needs more (whitehat) eyes on critical infrastructure

