软件板通用协议

一、概述

此协议是极空主动均衡保护板 RS485/RS232/UART 接口通用协议,波特率为 9600bps。

二、帧结构

在通信过程中,保护板始终为从机,远端设备为主机。所有的通信只能是主机发起,从机应答。为了便于区分,约定由主机发出的帧为配置帧,保护板发出的帧为应答帧。

配置帧包含起始位、状态位、命令码、数据长度、数据内容、校验、停止位几个部分。帧结构如下:

起始位 状态位 命令码	数据长度数据1		停止位
-------------	---------	--	-----

其中:

- 1) 起始位:1字节,表示一帧数据开始,固定为0xDD;
- 2) 状态位: 1字节,状态为0xA5表示读取,状态为0x5A表示写入。
- 3) 命令码:1字节,在通信过程中通过命令码来区分该配置帧所携带的数据内容,各命令码与所携带的数据对应关系如下:

状态位	命令码	数据内容
	0x03	读取基本信息及状态
0xA5	0x04	读取电池单体电压
UXAS	0x05	读取保护板硬件版本号
	0x06	读取保护板用户私有数据
0x5A	0xE1	MOS 控制指令

- 4) 数据长度: 1字节,表示该帧携带数据的有效长度。
- 5)数据内容: N字节,该帧数据所携带的内容,当数据长度为0时,无该部分。
- 6)校 验: 2字节,校验字段为"命令码 + 长度字节 + 数据段内容",校验方式为上述字段加和结果再取反加 1,高位在前,低位在后。
- 7) 停 止 位: 1字节,表示一帧数据结束,固定为0x77;

应答帧包含起始位、状态位、命令码、数据长度、数据内容、校验、停止位几个部分。帧结构如下:

起始位	命令码	状态位	数据长度	数据内容	校验	停止位
-----	-----	-----	------	------	----	-----

其中:

- 1) 起始位: 1字节,表示一帧数据开始,固定为0xDD;
- 2) 命 令 码: 1字节,是该帧所响应的配置帧的命令码。
- 3) 状态位: 1字节, 0x00表示正确, 0x80表示错误。
- 4)数据长度: 1字节,表示该帧携带数据的有效长度。
- 5)数据内容: N字节,该帧数据所携带的内容,当数据长度为0时,无该部分。
- 6)校 验: 2字节,校验字段为"命令码 + 长度字节 + 数据段内容",校验方式为上述字段加和结果再取反加 1,高位在前,低位在后。
- 7) 停 止 位: 1字节,表示一帧数据结束,固定为0x77;

三、通信示例

1) 读取基本信息及状态

主 机 发 送: DD A5 03 00 FF FD 77

BMS 响 应: DD 03 00 1B 17 00 00 00 02 D0 03 E8 00 00 20 78 00 00 00 00 00 10 48 03 0F 02 0B 76 0B 82 FB FF 77

红色为被校验字节,为所有的字节的总和;后面2个为校验结果,为前面所有校验数据加和的结果再取反+1。

应答帧数据内容结构如下:

数据内容	长度	说明
总电压	2 Byte	单位: 10mV; 高字节在前, 低字节在后。
总电流	2 Byte	单位: 10mA; 通过电流判断电池充放电状态,充电为正,放电为负。
剩余容量	2 Byte	单位: 10mAh;
标称容量	2 Byte	单位: 10mAh;
循环次数	2 Byte	单位:次;

生产日期	2 Byte	采用 2 个字节传送比如 0x2068,其中日期为最低 5 为: 0x2028&0x1F=8 表示日期;月份(0x2068>>5)
生月期	2 Byte	&0x0f= 0x03 表示 3 月;年份就为 2000+ (0x2068>>9) = 2000 + 0x10 = 2016;
均衡状态	2 Byte	每一个 bit 则表示每一串均衡, 0 为关闭, 1 为打开 表示 1~16 串
均衡状态_高	2 Byte	每一个 bit 则表示每一串均衡, 0 为关闭, 1 为打开 表示 17~32 串, 最高支持 32 串
保护状态	2 Byte	每一个 bit 表示一种保护状态, 0 为未保护, 1 发生保护 详见注 1:
保留	1 Byte	
剩余电量	1 Byte	表示剩余容量百分比
FET 控制状态	1 Byte	MOS 指示状态, bit0 表示充电, bit1 表示放电, 0 表示 MOS 关闭, 1 表示打开
电池串数	1 Byte	电池串数
NTC 个数	1 Byte	NTC 个数
N个NTC内容	2*N Byte	单位 0.1K 采用绝对温度传输, 2731+(实际温度*10), 0 度 = 2731 25 度 = 2731+25*10 = 2981;

注1:保护状态说明:

BIT0	单体过压保护	BIT 5	充电低温保护	BIT 10	短路保护
BIT 1	单体欠压保护	BIT 6	放电过温保护	BIT 11	前端检测 IC 错误
BIT 2	整组过压保护	BIT 7	放电低温保护	BIT 12	软件锁定 MOS
BIT 3	整组欠压保护	BIT 8	充电过流保护	BIT 13~	BIT 15 预留
BIT 4	充电过温保护	BIT 9	放电过流保护		

2) 读取电池单体电压

主机发送: DD A5 04 00 FF FC 77

BMS 响应: DD 04 00 1E 0F 66 0F 63 0F 63 0F 64 0F 3E 0F 63 0F 37 0F 5B 0F 65 0F 3B 0F 63 0F 63 0F 66 0F 3D F9 F9 77 应答帧数据内容结构如下:

数据内容	长度	数据说明
第一串单体电压	2Byte	单位 mV, 高位在前

第二串单体电压	2Byte	单位 mV, 高位在前
第三串单体电压	2Byte	单位 mV, 高位在前
第N串单体电压	2Byte	单位 mV, 高位在前

3) 读取保护板硬件软件版本号

主机发送: DD A5 05 00 FF FB 77

BMS 响应: DD 05 00 0A 30 31 32 33 34 35 36 37 38 39 FD E9 77

应答帧数据内容结构如下:

数据长度 N	数据说明
BYTE N	回复内容为 ASCII 码(比如硬件版本为 H-XXXX)

4) 读取保护板用户私有数据

机发发送: DD A5 06 00 FF FA 77

BMS 响应: DD 06 00 0A 30 31 32 33 34 35 36 37 38 39 FD E9 77

应答帧数据内容结构如下:

数据长度 N	数据说明
BYTE N	回复内容为 ASCII 码(比"23562455")

5) 控制 MOS 指令

主机发送控制 MOS 指令:

主机发送: DD 5A E1 02 00 XX CH CL 77

BMS 响应: DD E1 00 00 CH CL 77

其中 XX 与 MOS 动作对照表如下:

XX 的值	MOS 的动作
0x00	解除软件关闭 MOS 管动作
0x01	软件关闭充电 MOS,解除软件关闭放电 MOS
0x02	软件关闭放电 MOS,解除软件关闭充电 MOS
0x03	软件同时关闭充放电 MOS

例: 主机端发送 DD 5A E1 02 00 02 FF 1B 77 则表示软件关闭放电 MOS;