University of Toronto

Worst-case Time Complexity: Proving Asymptotic Bounds.

Let t(x) be the number of steps taken by algorithm \mathcal{A} on input x. Let T(n) be the worst-case time complexity of algorithm \mathcal{A} :

$$T(n) = \max_{\substack{\text{all inputs } x \text{ of size } n}} t(x) = \max \{t(x) : x \text{ is an input of size } n\}$$

1. To prove that T(n) is O(g(n)), one must show that there is a constant c > 0, and an input size $n_0 > 0$, such that for all $n \ge n_0$:

$$T(n) < c \cdot q(n)$$

- $\Leftrightarrow \max \{t(x) : x \text{ is an input of size } n\} \le c \cdot g(n)$
- \Leftrightarrow For every input x of size $n, t(x) \leq c \cdot g(n)$
- \Leftrightarrow For every input of size n, \mathcal{A} takes at most $c \cdot g(n)$ steps
- 2. To prove that T(n) is $\Omega(g(n))$, one must show that there is a constant c > 0, and an input size $n_0 > 0$, such that for all $n \ge n_0$:

$$T(n) \ge c \cdot g(n)$$

- $\Leftrightarrow \qquad \max \ \{t(x): x \text{ is an input of size } n\} \geq c \cdot g(n)$
- \Leftrightarrow For some input x of size $n, t(x) \ge c \cdot g(n)$
- \Leftrightarrow For some input of size n, \mathcal{A} takes at least $c \cdot g(n)$ steps

IN SUMMARY:

Let T(n) be the worst-case time complexity of algorithm \mathcal{A} .

- 1. T(n) is O(g(n)) iff $\exists c > 0$, $\exists n_0 > 0$, such that $\forall n \geq n_0$: for every input of size n, \mathcal{A} takes at most $c \cdot g(n)$ steps.
- 2. T(n) is $\Omega(g(n))$ iff $\exists c > 0$, $\exists n_0 > 0$, such that $\forall n \geq n_0$: for *some* input of size n, \mathcal{A} takes at least $c \cdot g(n)$ steps.
- 3. T(n) is $\Theta(g(n))$ iff T(n) is O(g(n)) and T(n) is $\Omega(g(n))$.