MEASURES OF DISPERSION

Series A Series B Series C

100

102

100

102

100

100

102

489 more

5 dispersion

5 dispersion

7 or 9 Jihosoft

100 more 98

$$= 100$$
 more 98

 $= 100$ mo

BeingGourav.com MEASURES OF DISPERSION STANDARD DEVIATION (S.D.) set of values Positive square root X, 7 of sumofsquared X 2 > de viation $\frac{x_n}{\sum x_i}$ $\frac{x_i}{\sum x_i$

MEASURES OF DISPERSION STANDARD DEVIATION (S.D.) 1 For Individual series S.D.= 0 = \(\int \((\time \)^2 \) Direct method SO=6= \[\leq d^2 - Jihosoft \] Shortcut method d = Xi-A = Assumed mean S.D. = (\(\frac{1}{2} \) \(\frac{1}{2} \)

MEASURES OF DISPERSION
STANDARD DEVIATION (S.D.)
O Fox Individual series
$S.D.=\sigma=\left[\sum_{i}(x_{i}-\overline{x})^{2}\right]$ Direct method
Find S.D. $(x-x)^{\frac{1}{2}}$ $x = \frac{84}{8}$ $x = \frac{1}{8}$ Jihosoft S.D. = $\sigma = \frac{84}{8}$
9 1 3 5 4 0 5 = 5 10.5
$8 \frac{1}{10} \frac{4}{10} = 3.24 \frac{40}{10}$
ZX=641 2(X=84

MEASURES OF DISPERSION STANDARD DEVIATION (S.D.) @ For Discrete series (a) $S.D = \sigma = \int \underbrace{\sum f_i(X_i - \overline{X})^2}_{N} \underbrace{\sum f_i = N = Total of all}_{N} \underbrace{\sum f_i = N = Total of all}_{frequencies}$ (b) $S.D. = \sigma = \int \underbrace{\sum f_i (X_i - \overline{X})^2}_{N \text{ Jihosoffv}} \underbrace{\sum f_i = N = Total of all}_{N \text{ Shortcut me thod}}$ Accomed mean

MEASURES OF DISPERSION STANDARD DEVIATION (S.D.) 3 Fox Continuous series d = mid-value(m) - A d = (m-A)

Combined Standard Deviation

$$\sigma_{12} = \int \frac{N_1(\sigma_1^2 + d_1^2) + N_2(\sigma_2^2 + d_2^2)}{N_1 + N_2}$$

$$d_1 = |\overline{X}_1 - \overline{X}_{12}|$$
 where $\overline{X}_{12} = \frac{N_1 \overline{X}_1 + N_2 \overline{X}_2}{N_1 + N_2}$

$$Varianu = (S.D.)^2$$

= $\sigma^2 > 0$

a. An algebraic test was given to 400 high school children of whom 150 were boys and 250 were girls

So were boys and 250 were girls
$$N_1 = 150 \qquad N_2 = 250$$

$$X_1 = 72 \qquad X_2 = 73 \qquad \text{find mean and S.D.}$$

$$X_1 = 72 \qquad X_2 = 73 \qquad \text{of (ombined group.}$$

$$\sigma_1 = 7 \qquad \sigma_2 = 6.4 \qquad \text{of (ombined group.}$$

$$\sigma_{12} = \sqrt{\frac{N_1(\sigma_1^2 + d_1^2) + N_2(\sigma_2^2 + d_2^2)}{N_1 + N_2}}$$

Combined mean

$$\frac{Sol^{N_1}}{X_{12}} = \frac{N_1 X_1 + N_2 X_2}{N_1 + N_2}$$

$$\overline{X}_{12} = (150)(72) + (250)(73)$$

Jihosoft

$$X_{12} = \frac{10800 + 18250}{400}$$
 $X_{12} = \frac{72.625}{400}$

An algebraic test was given to Goo high school children of whom 150 were boys and 250 were girls

$$N_1 = 150$$
 $N_2 = 250$ $X_1 = 72$ $X_2 = 73$

$$X_1 = 72$$
 $X_2 = 73$ $X_3 = 73$ $X_4 = 73$ $X_5 = 6.4$

Combined Standard Deviation

$$G_{12} = \begin{bmatrix} N_1(G_1^2 + d_1^2) + N_2(G_2^2 + d_2^2) \\ N_1 + N_2 \end{bmatrix}$$

$$G_{12} = \begin{bmatrix} 150(49 + 0.396825) + 250(40.964 \\ 0.140625) \end{bmatrix}$$

$$G_{12} = \begin{bmatrix} 150(49 + 0.396825) + 250(40.964 \\ 0.140625) \end{bmatrix}$$

$$G_{12} = \begin{bmatrix} 1708.59375 + 13099515625 \\ 400 \end{bmatrix}$$

$$G_{12} = \begin{bmatrix} 17683.75 = 6.65 \\ 400 \end{bmatrix}$$

$$G_{12} = \begin{bmatrix} 17683.75 = 6.65 \\ 400 \end{bmatrix}$$

$$G_{12} = \begin{bmatrix} 17683.75 = 6.65 \\ 400 \end{bmatrix}$$

$$G_{13} = \begin{bmatrix} 17683.75 = 6.65 \\ 400 \end{bmatrix}$$

$$G_{14} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{15} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{16} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{17} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{18} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{18} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{18} = \begin{bmatrix} 17683.75 \\ 400 \end{bmatrix}$$

$$G_{19} = \begin{bmatrix} 17683.75$$

Variance and (oefficient of Variation ((.V.)

P. An analysis of monthly wage gives the following Results

firm A firm B

No of workers

Average daily wages

Varianuof Distributionof wages

(a) which firm Pay larger wage bill ? (b) In which firm A or B is there greater variability in individual wages?

Variance and coefficient of Variation ((.V.) P. An analysis of monthly wage gives the following Results firm A firm B No of workers NI=500 Nz=600 Average daily wages RS. 186 RS. 175 Variance of
Distribution of = 81 52=100 = 10

Wages

(a) which firm Pay larger wage bill ?

(b) In which firm A or B is there greater variability in individual wages? (a) firm A Average dailywage = Total wage Paid
No of workless 186 = T.W.P. 500 (Tw.P) = 93000/-

Firm B

Average

daily wage = T. W.P.

No of workers

175 = T. W.P.

600

T. W.P. = 1,05,000 B

firm B has large 8

Wage bill.

Variance and coefficient of Variation ((.V.) Q. An analysis of monthly wage gires firmB the following Results C.V.B = 52 x 100 firm A firm B No of workers N=500 N=600 = 10 × 100 Average daily wages RS 186 RS 175 Variance of
Distribution of 52 81 52=100

Wages

(a) which firm Pay larger wage bill ?

(b) In which firm A or B is there (5.71)-2 firm B has greater Variability in Individual wages greater variability in individual O wages? (b) firm A $CV_A = \frac{61}{X_1} \times 100 = \frac{9}{186} \times 100$

Variance and coefficient of Variation (C.V.)

Q. find which team A or B is more consistent in its performance:

No. of Goal Scored in a math	Team A	toot ball match I
0	₹ 7	17
1	9	6
4	8	5
3	1 1	3
9	assumedm	ean, A=2

	433	S. I S. C. III.	
Sol > For TA		1511	fd?
X + d	= X-A d <	-54	108
0 27 -	1	-9	0
1 8	9 1	5	5
3 5) 4	8	16
414		2fd 50	Efd =
		12-7	1 1 - 1

$C_{A} = \frac{6\pi}{X_{A}} \times 100$
$G_{A}=S \cdot D_{A}= \sqrt{\frac{\xi f d^{2}}{\xi f}} \left(\frac{\xi f d}{\xi f}\right)^{2}$
$\overline{X}_A = A + \frac{\xi f \lambda}{\xi f}$
d = X - A Assumedan

Variance and coefficient of Variation ((.V.)
Q. find which team A or B is more consistent in its performance:	C. VA = 54 × 100
No. of Goal Number of football match Pla Scored Teams	lycd X _A
in a math leam A 17 0 27 1 9	
8574	$6A = \frac{138}{53} - \left(-\frac{50}{53}\right)^2$
Soln For Team A Soln For Team A Id= X-A d fd fd	$G_A = \left[2.60 - (-0.94)^2 \right]$
x f d=x-2 d +d +	GA = 72.60 - 0.8836
98 -10 0 050	1 54 = 51.7164
3 4 2 4 2 5fd= XA=2-0.	$X_{A} = A + \underbrace{\xi f d}_{\xi f} (shortcut)$
$\frac{2f}{53}$ $= -50$ 138 $X_A = 1.06$	$X_A = \frac{1}{2}$
	$\overline{X}_A = 2 + \left(-\frac{50}{53}\right)$

Variance and coefficient of Variation (C.V.)

Q. find which team A or B is more consistent in its performance:

No. of Goal Scored	Number of I Team A	Team B
in a math	27	17
1	9	9
2	8	65
3	5	3
4	4	1 - 2 - 2

C. VA = \(\frac{6a}{X}\times 100\)
$C.V.A = \frac{1.31}{1.06} \times 100$
$=\frac{131}{1.06}$
[C.V.A = 123.67]

	44		
	am A	1611	fd?
x1 f d=	X-A d	1-54	108
0 37 -	2 7	-9	9
1 2	5 19	15	5
3 5 3	1 4	8	16_
4 4 7		Std	Efd =
2f=	1	1=-50	138

$$X_{A} = 2 - 0.94$$
 $X_{A} = 1.06$
 $X_{A} = 1.06$

Variance and coefficient of Variation ((.V.)
Q. find which team A or B is more Consistent in its performance: CVA = 5A × 100
No. of Goal Number of football match Played Scored In a math Team A Team B C.V. A = 1.31 x 100
0 27 9 9 - 131
$\frac{2}{3}$ $\frac{8}{5}$ $\frac{6}{5}$ $\frac{1.06}{2}$ $\frac{1.06}{4}$ $\frac{1.06}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{1}{9}$ $\frac{1}{4}$ $\frac{1}{$
Sol > Fox Team 3 d fd fd (.V.B = 50 x 100)
0 17 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10
N= 9