Tentamen Vektoralgebra MAA150 - TEN2 Datum: 2017-01-12 Hjälpmedel: penna, sudd och linjal

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar.

- Visa att z = i/2 är en rot till $p(z) = 1 + 4z + 4z^2 + 16z^3$, och faktorisera sedan p(z) i linjära faktorer. (5p)
- 2 Låt $T: \mathbb{R}^3 \to \mathbb{R}^4$ vara den linjära transformationen $T(\mathbf{x}) = A\mathbf{x}$ där

$$A = \begin{bmatrix} -2 & 1 & -3 \\ 4 & 2 & -2 \\ 2 & 2 & -3 \\ 2 & 0 & 1 \end{bmatrix}, \text{ och } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

- a. Bestäm en bas för värderummet till T. (3p)
- **b.** Avgör om (4, 4, 5, -1) tillhör värderummet till T. (2p)
- 3 Underrummet V till \mathbb{R}^3 som ges av $V = \{(x, y, z) \in \mathbb{R}^3 : 4x 2y + z = 0\}$ har basen $B = \{(1, 4, 4), (-1, 2, 8)\}.$
- **a.** Bestäm koordinatvektorn för $\mathbf{u} = (1, -1, -6)$ i basen B. (3p)
- **b.** Visa att B bildar en bas till V. (3p)
- 4 Bestäm en matris P som diagonaliserar matrisen A och ange matrisen D som uppfyller $A = PDP^{-1}$, då (5p)

$$A = \begin{bmatrix} 1 & 0 \\ 9 & 4 \end{bmatrix}.$$

5 För vilka värden på $a \in \mathbb{R}$ blir $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linjärt oberoende då $\mathbf{v}_1 = (1, 2, a, 1),$ $\mathbf{v}_2 = (-1, 1, 0, 1),$ och $\mathbf{v}_3 = (1, a, 1, 1).$ (4p)

Divsion of Mathematics and applied mathematics Mälardalen University Examiner: Mats Bodin

Examination Vector algebra
MAA150 - TEN2
Date: Jan 12, 2017
Exam aids: pencil,
eraser and ruler

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

- Show that z = i/2 is a root to $p(z) = 1 + 4z + 4z^2 + 16z^3$, and then factor p(z) into linear factors. (5p)
- **2** Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ where

$$A = \begin{bmatrix} -2 & 1 & -3 \\ 4 & 2 & -2 \\ 2 & 2 & -3 \\ 2 & 0 & 1 \end{bmatrix}, \text{ and } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3.$$

- **a.** Find a basis for the range of T. (3p)
- **b.** Determine if (4, 4, 5, -1) is in the range of T. (2p)
- **3** The subspace V of \mathbb{R}^3 given by $V = \{(x, y, z) \in \mathbb{R}^3 : 4x 2y + z = 0\}$ has $B = \{(1, 4, 4), (-1, 2, 8)\}$ as basis.
 - **a.** Find the coordinate vector of $\mathbf{u} = (1, -1, -6)$ relative to B. (3p)
 - **b.** Show that B is a basis for V. (3p)
- 4 Find a matrix P that diagonalize the matrix A and state the matrix D that satisfies $A = PDP^{-1}$, where (5p)

$$A = \begin{bmatrix} 1 & 0 \\ 9 & 4 \end{bmatrix}.$$

For what values of $a \in \mathbb{R}$ is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ linearly independent when $\mathbf{v}_1 = (1, 2, a, 1)$, $\mathbf{v}_2 = (-1, 1, 0, 1)$, and $\mathbf{v}_3 = (1, a, 1, 1)$. (4p)

MAA150 Vektoralgebra, HT2016

Assessment criteria for TEN2 2017-01-12

General assessment criteria

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

Points may be deducted for erroneous mathematical statements, calculations, or failure to use proper mathematical notation.

Assessment problems

1. [5 points]

Showing that i/2 is a root (1p), finding the root -i/2 with motivation (1p), concluding that $z^2 + 1/4$ is a factor (1p), finding the remaining root with long division and correct answer (2p)

2. [5 points]

- a. Correct method; e.g. relevant row-operations (2p), finding a basis (1p)
- **b.** A condition for the vector being in the range of T (1p), checking the condition (1p)

3. [6 points]

- **a.** Equation for the coordinates (1p), finding the coordinates (1p), correct coordinate vector (1p)
- **b.** Conditions for B being a basis with motivation (1p), checking the conditions (2p)

4. [5 points]

Correct eigenvalues (1p), method of finding the eigenvectors (2p), giving the correct matrices P and D (2p)

5. [4 points]

Condition for linear independence (1p), solving the relevant equation (2p), finding values of a with motivation (1p)

MAA150: TEN 2 2017-01-12

(1) == 1/2, p(2)=1+42+422+1623

 $P(i/2) = 1 + 4(i) + 4(i)^{2} + 16(i)^{3} = 1 + 2i - 2 - 2i = 0 (1p)$

Since p(z) is a real polynomial $\overline{z} = \overline{i} = -i$ is (1p) also a root. Then both

 $(z-\frac{i}{z})$ and $(z+\frac{i}{z})$ are factors in p(z)and therefore also

 $(2-i)\cdot(2+\frac{1}{2})=2^2+\frac{1}{4}$ (1p) We use long division to find the remaining Wheav factor. (In total 3 roots since deg(P)=3.)

1623+422+12+1 [22+1] -(1623+42)

So P(Z) = (Z2+4). (16Z+4).

Answer: P(2)=(2+=)·(2-=)·(162+4)

Cuedu: (22+4) (162+4) = 1623+422+42+1 = p(2) oh!

2017-01-12 MAAISO: TEN2 (2p) 1 1 leading ones Therefore $B = \{(-2,4,2,2), (1,2,2,0)\}$ is a basis for the range of T. (1P) b) v=(4, 4,5,-1) is in the range of T iff v is a linear combination of (-2,4,2,2) and (1,2,2,0), i.e there exist constants k, and kz (1p) K₁. [-2] + k₁ [2] = [4] . Solving this gives which has a solution. Awswer a) B= {(-2,4,2,2),(1,2,2,0)} is a basis for V.

b) (4,4,5,-1) is in the range of T.

MAA150; TEN2 2017-01-12

MAAISO.: TEN 2 2017-01-12

(4) A= 10 To diagonalize A we need to find evapourables and evapouractors. (CE) $det(A-hJ) = \begin{vmatrix} 1-k & 0 \\ 9 & 4-k \end{vmatrix} = (1-k) \cdot (4-h) = 0$ (2) h=1 or h=4. (1.p) Eigenverbors: $(A - KI)\overline{V} = \overline{O}$, where $\overline{V} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ $|\lambda = 1| \begin{bmatrix} 0 & 0 & 0 & 0 \\ 9 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \hline \rangle v_1 = -t, i.e \quad \overline{v} = \begin{bmatrix} -t \\ 3t \end{bmatrix} = t \cdot \begin{bmatrix} -1 \\ 3t \end{bmatrix}$ so [3] is an edgen vector for 1=1. $|\lambda=4| -300 | v | 100 | (2p)$ |q 0 0 | v | 000 | (2p)Then $v = \begin{bmatrix} 0 \\ t \end{bmatrix} = t \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ So $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigen-vector for d=4. Then $P = \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix} \text{ and } D = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$ (2p) $A.P = \begin{bmatrix} 1 & 0 \\ 9 & 4 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & 4 \end{bmatrix}, P.D = \begin{bmatrix} -1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 3 & 4 \end{bmatrix} oh',$ MAA150: TEN2 2017-01-12