

第五讲 高斯函数

例1. 如果[x]=3, [y]=2, [z]=1, 求[x+y-z]的所有可能值.

解: 由题意, $3 \le x < 4$, $2 \le y < 3$, $1 \le z < 2$. 所以3 < x + y - z < 6.

构造
$$x=3, y=2, z=1.1$$
,则 $[x+y-z]=3$; $x=3, y=2, z=1$,则 $[x+y-z]=4$;

$$x = 3.9, y = 2.9, z = 1$$
, $\mathbb{M}[x + y - z] = 5$.

综上可得所求值为3、4、5.

例2. 若实数
$$r$$
 使得 $\left[r + \frac{3}{20}\right] + \left[r + \frac{4}{20}\right] + \dots + \left[r + \frac{19}{20}\right] = 40$,求 $\left[20r\right]$.

解: 易知,
$$[r] \le \left[r + \frac{k}{20}\right] \le \left[r + 1\right] = [r] + 1$$
, 从而 $\left[r + \frac{k}{20}\right] = [r]$ 或 $[r] + 1$.

则 $17[r] \le 40 \le 17([r]+1)$,解得 [r] = 2.

由
$$\left[r+\frac{3}{20}\right]$$
, $\left[r+\frac{4}{20}\right]$, ..., $\left[r+\frac{19}{20}\right]$ 单调不减,设这 17 项中前 a 项等于 2,其余 b 项等于 3.

则
$$\begin{cases} a+b=17 \\ 2a+3b=40 \end{cases}$$
,解得 $\begin{cases} a=11 \\ b=6 \end{cases}$.

故
$$\left[r + \frac{13}{20}\right] = 2$$
, $\left[r + \frac{14}{20}\right] = 3$, 从丽 $r + \frac{13}{20} < 3$, $r + \frac{14}{20} \ge 3$.

解得
$$\frac{46}{20} \le r < \frac{47}{20}$$
, 故 $46 \le 20r < 47$, [20r] = 46.

例3. 解方程: (1)
$$2x-[x]=\frac{16}{5}$$
. (2) $x^3-[x]=3$.

(1) 解:由
$$x \le 2x - [x] < x + 1$$
,整理得 $\frac{11}{5} < x \le \frac{16}{5}$,于是 $[x] = 2,3$.若 $[x] = 2$,则 $2x - 2 = \frac{16}{5}$,解得 $x = \frac{13}{5}$.若 $[x] = 3$,则 $2x - 3 = \frac{16}{5}$,解得 $x = \frac{31}{10}$.检验它们均满足要求.

(2)
$$\mathbf{M}$$
: $\mathbf{H} x^3 - x \le x^3 - [x] < x^3 - x + 1$, \mathbf{E} \mathbf{H} $\mathbf{$

利用
$$f(x)=x^3-x$$
 估算可得 $x \ge 2$ 和 $x < 1$ 时无解,故 $[x]=1$.

从而
$$x^3 = 4$$
 , 故 $x = \sqrt[3]{4}$. 检验其满足要求.

例4. 求证:对正整数 n, $2^{n-1} \mid n!$ 当且仅当 $n = 2^k$, 其中 k 为某个自然数.

证: 当
$$n=2^k$$
 时, $L_2(n!)=\sum_{i\geq 1}\left[\frac{n}{2^i}\right]=\sum_{i\geq 1}\left[2^{k-i}\right]=\sum_{i=1}^k\left[2^{k-i}\right]=\sum_{i=0}^{k-1}2^i=2^k-1=n-1$,从而 $2^{n-1}\mid n!$ 时,不妨设 $2^k\leq n<2^{k+1}$ $(k\geq 0)$.

一方面有, $L_{2}(n!) \ge n-1$.

另一方面,
$$L_2(n!) = \sum_{i \ge 1} \left[\frac{n}{2^i} \right] = \sum_{i = 1}^k \left[\frac{n}{2^i} \right] \le \sum_{i = 1}^k \frac{n}{2^i} = n \left(1 - \frac{1}{2^k} \right) = n - \frac{n}{2^k} \le n - 1$$
. 则 $L_2(n!) = n - 1$,故 $n - \frac{n}{2^k} = n - 1$,从而 $n = 2^k$.

例5. 已知 x 是实数,前 1000 个正整数当中有多少个可以表示成[2x]+[4x]+[6x]+[8x]的形式?

注意到 f(x) 不减, 其图象为阶梯状, 且 f(x+1) = f(x) + 20.

注意 f(0) = 0 且 f(1) = 20, 在区间 (0,1] 中, 函数值在 $x = \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{4}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8}, \frac{1}{6}, \frac{2}{6}, \frac{4}{6}, \frac{5}{6}, 1$ 共 12 处发生 改变. 故 f(x) 在 1~20 中恰取到 12 个不同值.

于是 1~1000 中能取 600 个不同值.

例6. 对任意正整数
$$n$$
 和实数 x ,求证: $\left[x\right] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = \left[nx\right]$.

证: 设
$$\frac{k}{n} \le \{x\} < \frac{k+1}{n}$$
 (这里 $0 \le k \le n-1$). 于是 $[nx] = n[x] + k$.

左边从
$$[x]$$
到 $\left[x+\frac{n-k-1}{n}\right]$ 这 $n-k$ 项的值为 $[x]$,从 $\left[x+\frac{n-k}{n}\right]$ 到 $\left[x+\frac{n-1}{n}\right]$ 这 k 项的值为 $[x]+1$.相加即可得证.

例7.
$$\overline{a} \left[\frac{1^2}{1000} \right], \left[\frac{2^2}{1000} \right], \left[\frac{3^2}{1000} \right], \dots, \left[\frac{999^2}{1000} \right]$$
中,一共有多少个不同的整数?

$$\mathbb{R}: \ \diamondsuit \ a_k = \frac{k^2}{1000} \ (k = 1, 2, \dots, 999)$$

解: 令
$$a_k = \frac{k^2}{1000}$$
 ($k = 1, 2, \dots, 999$)
当 $k \le 500$ 时, $a_k - a_{k-1} = \frac{2k-1}{1000} < 1$,故[a_1],[a_2],…,[a_{500}]取遍从[a_1]到[a_{500}]的所有整数.
而[a_1] = 0,[a_{500}] = 250,故一共有 251 种取值.

而
$$[a_1]=0$$
, $[a_{500}]=250$,故一共有 251 种取值.

当
$$k \ge 501$$
时, $a_k - a_{k-1} = \frac{2k-1}{1000} > 1$,故 $[a_{501}], [a_{502}], \dots, [a_{999}]$ 都是互不相同的整数.

故一共有251+499=750个不同的整数.