Introduction

Anat Levin

Department of Electrical Engneering
Technion

• 3D world -> 2D image. Loss of depth information

• 3D world -> 2D image. Loss of depth information

- 3D world -> 2D image. Loss of depth information
- Single view point
- Limited depth of field

- 3D world -> 2D image. Loss of depth information
- Single view point
- Limited depth of field
- Motion blur
- Limited spatial resolution
- Noise

Traditional Photography

Computational Camera

Redesign optics to account for computation

Compact camera

Video camera

Telescope

Microscope

Medical Imaging CT / MRI

Redesign optics to account for computation

Goal:

- Break bounds on traditional optics using computation
- Develop unified mathematical theory for computational cameras

Examples of computational imaging systems

Levin et al. Motion Invariant Photography SIGGRAPH, 2008.

Removing motion blur is hard:

- Need to know exact motion velocity (blur kernel)
- Need to segment image

Motion Invariant Photography

Levin et al. Motion Invariant Photography

Static camera
Unknown and
variable blur

Our parabolic input

Blur invariant to velocity

Our output after deblurring

NON-BLIND deblurring

Defocus blur

Depth and defocus

Challenges

• Hard to discriminate a smooth scene from defocus blur

• Hard to undo defocus blur

Input

Ringing with conventional deblurring algorithm

Coded aperture

Coded aperture (mask inside lens)

- make defocus patterns different from natural images and easier to discriminate
- defocus kernel preserves more high frequencies

Image of a defocused point light source

Image of a defocused point light source

Defocused images ≠ natural images

We have strong priors on natural images and can make defocused images look differently

Output #1: Depth map

Single input image:

Output #1: Depth map

Single input image:

Output #2: All-focused image

Burst Photography

- high dynamic range
- super-resolution
- noisy / blurry
- Focal stack

Light Fields and The Plenoptic Function

- camera arrays
- integral imaging
- coded masks
- refocus
- fourier slice photography

The Computational Camera Zoo

Goal: a unified mathematical framework

- Evaluate and compare computational cameras
- Systematically design new cameras

Conventional singlelens cameras

Stereo and trinocular cameras

Coded aperture

Plenoptic cameras

Lattice-focal lens

Computational illumination

Infer on the interaction between scene and light

MS Kinect One

Computational illumination

- time of flight
- structured illumination
- photometric stereo
- multi-flash photography
- microsoft kinect
- leap motion

Direct and Global Illumination

A: Direct

B: Interrelection

C: Subsurface

D: Volumetric

E: Diffusion

Direct and Global Components: Interreflections

Direct-global separation using highfrequency illumination

High Frequency Illumination Pattern

fraction of activated source elements

High Frequency Illumination Pattern

$$L^{\dagger}[c,i] = L_d[c,i] + \alpha L_g[c,i]$$

$$\overline{L}[c,i] = (1-\alpha) L_g[c,i]$$

fraction of activated source elements

Separation from Two Images

$$lpha=rac{1}{2}$$
: $L_d=L_{
m max}-L_{
m min}$, $L_g=2L_{
m min}$ direct global

Diffuse Interreflections

Diffusion

Volumetric Scattering

Specular

Interreflections

Subsurface Scattering

Scene

Direct Global

Peppers: Subsurface Scattering

Direct Global

Eggs: Diffuse Interreflections

Direct Global

Real Fake

Pink Carnation

Spectral Bleeding: Funt et al. 91

Global

Transient imaging: visualizing photons in motion

http://web.media.mit.edu/~raskar//trillionfps/

Transient imaging: visualizing photons in motion

