Hyperparameters

Try random values: Don't use a grid

Appropriate scale for hyperparameters

$$d = 0.0001 \dots, 1$$

$$\frac{1}{10^{-14}} \frac{1}{10^{-14}} \frac$$

Hyperparameters for exponentially weighted averages

$$0.9$$
 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.999
 0.9 0.9 0.999
 0.9 0.9

Babysitting one model models in parallel Panda Training many models in parallel Caviar Andrew Ng

Normalizing inputs to speed up learning

Implementing gradient descent

for t=1 num Mini Botches

Compare Formal pap = n X 8+3.

The each hilder lay, use BN to report 2 test with 2 test.

Use bookpape a copt dwin, dxis dxis, dying

Update points wise: = win a dwin

Pas: = pros a dpin

Bus: = 2 test a dpin

Bus: = 2 test a dpin

Books w/ mount, Rouspape, Adam.

the parameters Beta and Gamma that Batch Norm added to algorithm.

Learning on shifting input distribution

Batch Norm as regularization

- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
- on just that mini-batch.

 This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- This has a slight regularization effect.

Batch Norm as regularization

- Each mini-batch is scaled by the mean/variance computed on just that mini-batch.
 This adds some noise to the values z^[l] within that
- This adds some noise to the values $z^{[l]}$ within that minibatch. So similar to dropout, it adds some noise to each hidden layer's activations.
- · This has a slight regularization effect.

Mini-both: 64 -> 512

Batch Norm at test time

$$\mu = \frac{1}{\widehat{m}} \sum_{i} z^{(i)}$$

$$\sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$\Rightarrow z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \varepsilon}} \leftarrow$$

$$\Rightarrow \tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

 $\Rightarrow \mu = \frac{1}{m} \sum_{i} z^{(i)}$ $\Rightarrow \sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$ $\Rightarrow z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \leftarrow$ $\Rightarrow \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$ $\Rightarrow \frac{1}{$

Batch Norm at test time

$$\Rightarrow \mu = \frac{1}{m} \sum_{i} z^{(i)}$$

$$\Rightarrow \sigma^{2} = \frac{1}{m} \sum_{i} (z^{(i)} - \mu)^{2}$$

$$\Rightarrow z_{\text{norm}}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^{2} + \varepsilon}} \leftarrow$$

$$\Rightarrow \tilde{z}^{(i)} = \gamma z_{\text{norm}}^{(i)} + \beta$$

M,
$$C^2$$
: estimate way exponetially weighted average (across unini-battle).

X⁸¹³, X^{813} , X^{813} , X^{813} , ...

P₁ O_L O_Z O_Z
 C^2
 C^2

Understanding softmax

$$z^{[L]} = \begin{bmatrix} 5 \\ 2 \\ -1 \\ 3 \end{bmatrix} \qquad t = \begin{bmatrix} e^5 \\ e^2 \\ e^{-1} \\ e^3 \end{bmatrix}$$

$$z^{[L]} = \begin{bmatrix} e^5/(e^5 + e^2 + e^{-1} + e^3) \\ e^2/(e^5 + e^2 + e^{-1} + e^3) \\ e^{-1}/(e^5 + e^2 + e^{-1} + e^3) \\ e^3/(e^5 + e^2 + e^{-1} + e^3) \end{bmatrix} = \begin{bmatrix} 0.842 \\ 0.002 \\ 0.114 \end{bmatrix}$$

Gradient descent with softmax

Deep learning frameworks

- Caffe/Caffe2
- CNTK
- · DL4J
- Keras
- Lasagne
- mxnet
- PaddlePaddle
- TensorFlow
- Theano
- Torch

Choosing deep learning frameworks

- Ease of programming (development and deployment)
- Running speed
- Truly open (open source with good governance)