Martedì 9 Novembre 2021 – Prof. Guido Proietti (Modulo di Teoria)

	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Quale delle seguenti relazioni di ricorrenza descrive la complessità dell'algoritmo Fibonacci2? a) T(n) = 2T(n/2) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1 b) T(n) = 2T(n/4) + O(1) se $n \ge 2$, T(1) = O(1) se n = 1 c) T(n) = 2 + T(n-1) + T(n-2) se $n \ge 3$, T(1) = T(2) = 1 se n = 1 d) T(n) = 2 + T(n-1) se $n \ge 2$, T(1) = 1 se n = 1
- 2. Siano f(n) e g(n) i costi dell'algoritmo InsertionSort2 nel caso migliore e Quicksort in quello medio, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:

```
*a) f(n) = o(g(n)) b) f(n) = \Theta(g(n)) c) f(n) = \omega(g(n)) d) f(n) = \Omega(g(n))
```

3. Si consideri l'algoritmo di ricerca binaria di un elemento in un insieme ordinato di n elementi. Quale delle seguenti opzioni descrive in modo corretto il numero di confronti nel caso migliore, peggiore e medio?

```
a) T_{\text{best}}(n) = 1, T_{\text{worst}}(n) = \lfloor \log n \rfloor + 1, T_{\text{avg}}(n) = \Theta(1) *b) T_{\text{best}}(n) = 1, T_{\text{worst}}(n) = \lfloor \log n \rfloor + 1, T_{\text{avg}}(n) = \Theta(\log n) c) T_{\text{best}}(n) = 1, T_{\text{worst}}(n) = \lfloor \log n \rfloor + 1, T_{\text{avg}}(n) = \log n d) T_{\text{best}}(n) = 1, T_{\text{worst}}(n) = \lfloor \log n \rfloor, T_{\text{avg}}(n) = \Theta(n)
```

- 4. Per $n=2^k$, la soluzione dell'equazione di ricorrenza $T(n)=3\cdot T(n/2)+n, T(1)=\Theta(1)$, è: a) $\Theta(n^{\log_3 2})$ *b) $\Theta(n^{\log 3})$ c) $\Theta(n\log n)$ d) $\Theta(n)$
- 5. Siano f(n) e g(n) i costi degli algoritmi MERGE-SORT e QUICKSORT nel caso peggiore, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:

```
*a) f(n) = o(g(n)) b) f(n) = \Theta(g(n)) c) f(n) = \omega(g(n)) d) f(n) = \Omega(g(n))
```

6. Qual è la complessità temporale dell'algoritmo RADIX SORT applicato ad un array A di n elementi in cui l'elemento massimo è pari ad $k = n^4 + n^3 - 3$?

```
a) \Theta(n^4) *b) \Theta(n) c) O(n^7) d) \Theta(n \log n)
```

7. Quale tra i seguenti rappresenta lo pseudocodice dell'algoritmo HEAPSORT:

```
\text{H\'eapsort}(A)
Heapsort(A)
                                                                     H_{\text{EAPSORT}}(A)
                                                                                                        \text{H\'eapsort}(A)
Heapify(A)
                                   Heapify(A)
                                                                     Heapify(A)
                                                                                                        Heapify(A)
heapsize[A] = n
                                   heapsize[A] = n
                                                                      heapsize[A] = n
                                                                                                         heapsize[A] = n
for (i = n) down to 1 do
                                   for (i = n) down to 2 do
                                                                      for (i = n) down to 2 do
                                                                                                        for (i = n) down to 2 do
 scambia A[1] con A[i]
                                    scambia A[n] con A[i]
                                                                       scambia A[1] con A[i]
                                                                                                          scambia A[1] con A[i]
 heapsize[A] = heapsize[A] - 1
                                    heapsize[A] = heapsize[A] - 1
                                                                       heapsize[A] = heapsize[A] - 1
                                                                                                          heapsize[A] = heapsize[A] - 1
                                    Fixheap(1, A)
                                                                                                          Fixheap(n, A)
 Fixheap(1, A)
```

- 8. Quale tra i seguenti algoritmi non è ottimo se applicato al problema descritto?
 - a) HeapSort per ordinare una sequenza di n interi arbitrari
 - *b) MERGESORT per ordinare una sequenza di n interi con valori compresi tra 1 e n^c
 - c) Algoritmo di ricerca sequenziale per cercare un elemento in una sequenza di n interi non ordinati
 - d) Integer Sort per ordinare una sequenza di n interi con valori O(n)
- 9. Quale tra le seguenti affermazioni è falsa?
 - a) Un albero d-ario quasi completo di n nodi ha altezza $\Theta(\log_d n)$
 - b) Un albero binario completo di n nodi ha esattamente $\lceil n/2 \rceil$ foglie
 - c) Il numero di nodi interni di un albero strettamente binario è pari al numero di foglie meno 1
 - *d) Un albero binario di n nodi ha al più $\lfloor n/2 \rfloor$ nodi interni
- 10. Sia H un heap binomiale di 31 elementi, e si supponga che l'elemento minimo nell'heap sia contenuto nell'albero binomiale B_3 di H. A seguito della cancellazione del minimo da H, quante operazioni di fusione vengono eseguite nella procedura ristruttura()?
 - a) 1 b) 2 *c) 3 d) 4

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
c										
d										