Valutare la probabilità di tunneling

L'Hamiltoniana sarà:

$$H(\hat{p}, \hat{x}) = K(\hat{p}) + V(\hat{x}) = \frac{\hat{p}^2}{2m} + V_0 \left(\left(\frac{\hat{x}}{d} \right)^2 - 1 \right)^2$$
 (1)

Paramentri importanti della simulazione sono:

$$\omega_{0} = \frac{V_{0}}{\hbar} \qquad \qquad \omega_{d} = \sqrt{\frac{8V_{0}}{md^{2}}}$$

$$\lambda = \frac{\omega_{0}}{\omega_{d}} \qquad \qquad \bar{\beta} = \frac{V_{0}}{k_{B}T} = \beta\hbar\omega_{0} \qquad \qquad \bar{t} = \omega_{0}t$$
(2)

$$\lambda = \frac{\omega_0}{\omega_d} \qquad \bar{\beta} = \frac{V_0}{k_B T} = \beta \hbar \omega_0 \qquad \bar{t} = \omega_0 t \qquad (3)$$

Ridimensionando

Half thermodinamics

Definendo il proiettore rigth:

$$\Theta(\hat{x})$$
 t.c. $\Theta(\hat{x})|x\rangle = |x\rangle$ $x \ge 0$ (4)

$$\Theta(\hat{x})|x\rangle = 0 x < 0 (5)$$

E l'Hamiltoniana di buca singola:

$$\tilde{H}(\hat{p},\hat{x}) = \Theta(\hat{x})H(\hat{p},\hat{x})\Theta(\hat{x}) \tag{6}$$

La matrice densità di un sistema termalizzato ma isolato in una buca sarà $\frac{1}{\tilde{Z}}e^{-\beta \tilde{H}}$. La probabilità di trovare il sistema nella buca left è Tr $[\Theta(-\hat{x})\hat{\rho}]$. Possiamo quindi scrivere la probabilità di trovare la particella nella buca sinistra dopo un tempo t:

$$P(t,\beta,\lambda) = \frac{1}{\tilde{Z}} \operatorname{Tr} \left[\Theta(-\hat{x}) e^{-i\frac{H}{\hbar}t} e^{-\beta \tilde{H}} e^{i\frac{H}{\hbar}t} \right]$$
 (7)

Espandendo anche $\tilde{Z} = \text{Tr} \left[e^{-\beta \tilde{H}} \right]$:

$$P(t,\beta,\lambda) = \frac{\operatorname{Tr}\left[\Theta(-\hat{x})e^{-i\frac{H}{\hbar}t}e^{-\beta\tilde{H}}e^{i\frac{H}{\hbar}t}\right]}{\operatorname{Tr}\left[e^{-i\frac{H}{\hbar}t}e^{-\beta\tilde{H}}e^{i\frac{H}{\hbar}t}\right]} = \frac{\int_{x=0}^{+\infty} \mathrm{d}x f(x)}{\int_{x=-\infty}^{+\infty} \mathrm{d}x f(x)}$$
(8)

Path integrals

Possiamo riscrivere la f in termini di integrali su cammini chiusi:

$$f(x) = \langle x | e^{-i\frac{H}{\hbar}t} e^{-\beta \tilde{H}} e^{i\frac{H}{\hbar}t} | x \rangle = \|N_t\|^2 N_E \oint dx_i dx_i' dy_i e^{i\frac{S[x_i] - S[x_i']}{\hbar} - \frac{1}{\hbar} S_E[y_i]}$$
(9)

Dove le condizioni sui cammini sono:

$$x_{N_t} = x'_{N_t} = x \tag{10}$$

$$x_0 = y_0 \quad x_0' = y_{N_E} \tag{11}$$

$$y_i \ge 0 \tag{12}$$

e le lunghezze di x, x', y sono rispettivamente $t, t, \beta \hbar$. Per ottenere una misura reale notiamo che per ogni cammino vi è quello percorso in senso opposto, il cui peso è il complesso coniugato. Quindi:

$$f(x) = \|N_t\|^2 N_E \oint \mathrm{d}x_i \mathrm{d}x_i' \mathrm{d}y_i \cos\left(\frac{S[x_i] - S[x_i']}{\hbar}\right) e^{-\frac{1}{\hbar}S_E[y_i]}$$
(13)

$$\equiv \|N_t\|^2 N_E \oint dx_i dx_i' dy_i \operatorname{sign} \cos \left(\frac{S[x_i] - S[x_i']}{\hbar}\right) D(x_i, x_i', y_i)$$
(14)

Dove D è definito positivo, può quindi essere usata come peso per estrarre i cammini.

1.3 Regolarizzare la misura

Tuttavia è ancora oscillante, ciò rende la convergenza di metropolis problematica. Possiamo trovare una misura approssimata:

$$\int dx \cos(f(x))g(x) \approx \iint dx dy \cos(f(x))e^{-\frac{1}{2}\alpha(x-y)^2}g(y)$$

dove l'approssimazione è valida se $\alpha \gg \omega_M^2$, essendo ω_M la massima frequenza ad apparire nella sequenza di fourier di g.

$$\int \mathrm{d}x \cos(f(x)) e^{-\frac{1}{2}\alpha(x-y)^2} \approx \int \mathrm{d}x \cos\left(f(y) + \frac{\partial f}{\partial x}x\right) e^{-\frac{1}{2}\alpha(x-y)^2} = \cos(f(y)) e^{-\frac{1}{2\alpha}\left(\frac{\partial f}{\partial x}\right)^2}$$

la condizione per l'applicabilità è ora che la serie di fourier si possa tagliare al primo termine, ovvero $\alpha\gg\left(\frac{\partial^2 f}{\partial x^2}\right)^2$. Il calcolo si può estendere a N dimensioni sostituendo $\frac{\partial^2 f}{\partial x^2}\to\sum_i\frac{\partial^2 f}{\partial x_i^2}$ e $\left(\frac{\partial f}{\partial x}\right)^2\to\sum_i\left(\frac{\partial f}{\partial x_i}\right)^2$. La seconda condizione, sostituendo le espressioni per S e approssimando $x_i\approx d$ e $N\gg 1$, si mostra essere equivalente a $\alpha\gg\frac{1}{4d^2}$, come ci si poteva aspettare da considerazioni dimensionali. Per la prima invece si può procedere così: $g=e^{-S_E},\,S_E$ è sostanzialmente maggiore di 1 se x è maggiore di d, quindi la distribuzione g è limitata in uno spazio 2d. La sua trasformata avrà quindi dimensioni caratteristiche $\frac{1}{2d}$, ridandoci lo stesso limite precedente, ovvero che i cammini siano limitati alla zona quanto-meccanica. Definiamo quindi $\tilde{\alpha}\equiv 4\alpha d^2$, e riprendendo f:

$$f(x) = \|N_t\|^2 N_E \oint dx dx' dy \left(\cos \left(\frac{S[x] - S[x']}{\hbar} \right) e^{\frac{2d^2}{\hbar^2 \tilde{\alpha}} \left[\left(\frac{\partial S[x]}{\partial x} \right)^2 + \left(\frac{\partial S[x']}{\partial x'} \right)^2 \right]} \right) e^{-\frac{1}{\hbar} S_E[y] - \frac{2d^2}{\hbar^2 \tilde{\alpha}} \left[\left(\frac{\partial S[x]}{\partial x} \right)^2 + \left(\frac{\partial S[x']}{\partial x'} \right)^2 \right]}$$

$$(15)$$

Abbiamo quindi una misura sui cammini positiva e non oscillante, che dovrebbe limitare il metropolis ai cammini importanti. Inoltre essa è esponenziale, permettendo di valutare i rapporti tra probabilità tramite semplici differenze, ed esse grazie alla differenziazione sono locali (appare solo il termine $x_{i-1}x_{i+1}$, che connette i secondi vicini). Ritornando al rapporto precedente:

$$P(t,\beta,\lambda) = \frac{\oint \mathrm{d}x \mathrm{d}x' \mathrm{d}y \left(\Theta(-x_{N_T}) \cos\left(\frac{S[x] - S[x']}{\hbar}\right) e^{\frac{2d^2}{\hbar^2 \tilde{\alpha}} \left[\left(\frac{\partial S[x]}{\partial x}\right)^2 + \left(\frac{\partial S[x']}{\partial x'}\right)^2\right]}\right) e^{-\frac{1}{\hbar} S_E[y] - \frac{2d^2}{\hbar^2 \tilde{\alpha}} \left[\left(\frac{\partial S[x]}{\partial x}\right)^2 + \left(\frac{\partial S[x']}{\partial x'}\right)^2\right]}}{\oint \mathrm{d}x \mathrm{d}x' \mathrm{d}y \left(\cos\left(\frac{S[x] - S[x']}{\hbar}\right) e^{\frac{2d^2}{\hbar^2 \tilde{\alpha}} \left[\left(\frac{\partial S[x]}{\partial x}\right)^2 + \left(\frac{\partial S[x']}{\partial x'}\right)^2\right]}\right) e^{-\frac{1}{\hbar} S_E[y] - \frac{2d^2}{\hbar^2 \tilde{\alpha}} \left[\left(\frac{\partial S[x]}{\partial x}\right)^2 + \left(\frac{\partial S[x']}{\partial x'}\right)^2\right]}}$$

$$(16)$$

Dove le uniche restrizioni sul cammino sono le lunghezze delle tre parti $(t, t \in \beta \hbar)$ e la positività degli y_i . Il parametro $\tilde{\alpha}$ è variabile: esso non influisce sul lungo termine il risultato, ma varia l'affidabilità della simulazione. $\tilde{\alpha}$ molto alto porta il metropolis ad esaminare percorsi x_i molto improbabili, mentre un valore troppo basso gli impedirà di esaminare percorsi di gran importanza in un cammino finito.

1.4 WKB estimate

Si può usare una stima della probabilità di tunnelling WKB per capire per quali valori di β, λ e \bar{t} la simulazione finirà in tempi ragionevoli. Dato che siamo interessati a tempi alti, limitiamo lo studio a livelli della buca singola, dai tempi caratteristici molto più lunghi. La probabilità di attraversare la barriera in WKB è:

$$p_{WKB}(\bar{E},\lambda) = e^{-2\int_{-ad}^{ad} dx \sqrt{\frac{2m}{\hbar^2}(V(x) - E)}} = e^{-8\lambda \int_{-a}^{a} dy \sqrt{(y^2 - 1)^2 - \bar{E}}}$$
(17)

con $a=\sqrt{1-\sqrt{\bar{E}}}, E=\bar{E}V_0, E$ è l'energia della particella. Per stimare $P(\bar{t},\bar{E},\lambda)$ modellizziamo la particella come un sistema stocastico a due stati con una probabilità su unità di tempo $2\pi\omega_d p$ di cambiare stato:

$$P_{WKB}(t, \bar{E}, \lambda) = \frac{1}{2} - \frac{1}{2}e^{-4\pi\omega_d p_{WKB}t}$$
 (18)

Mediando infine sui livelli energetici:

$$P_{WKB}(t,\bar{\beta},\lambda) = \frac{1}{Z} \sum_{n=0}^{\infty} P_{WKB} e^{-\bar{\beta}\bar{E}} = \frac{1}{2} - \frac{1}{2Z} \sum_{n=\frac{1}{2}}^{\infty} e^{-4\pi\omega_d p_{WKB}t - \bar{\beta}\frac{n}{\lambda}}$$
(19)

Dove abbiamo posto $p_{WKB} = 1$ per $\bar{E} > 1$.

1.5 Stima di P

Se eseguendo la simulazione otteniamo M campioni, di cui m hanno effettuato il tunnelling, la distribuzione di probabilità per P è:

$$\frac{(M+1)!}{(M-m)!m!}(1-P)^{M-m}P^m \tag{20}$$

Con media $\langle P \rangle = \frac{m+1}{M+2} \approx \frac{m+1}{M}$ e deviazione quadratica $\sigma^2 = \frac{(M-(m-1))(m+1)}{(M+2)^2(M+3)} \approx \frac{m+1}{M^2}$. Se vogliamo osservare l'effetto con precisione k la condizione da imporre è $\sigma^2 \leq k^2 \langle P \rangle^2$, che espressa in termini di m è:

$$m \geq \frac{M+1-k^2(M+3)}{1+k^2(M+3)} \approx \frac{1-k^2}{k^2}$$

Possiamo esprimere la probabilità di fallimento come una somma cumulativa su tutti gli m minori del limite:

$$P_s = \sum_{m=0}^{m_{max}} P(m) = \sum_{m=0}^{m_{max}} {M \choose m} (1 - P)^{M-m} P^m$$
 (21)

Per stimarlo passiamo nel limite di P molto piccolo: $M \gg m$. Sostituiamo $\binom{M}{m} \approx \frac{\left(eP\left(\frac{M}{m} + \frac{1}{2}\right)\right)^m}{\sqrt{2\pi m}}$ e arriviamo a:

$$P_{s} = (1 - P)^{M} \sum_{m=0}^{m_{max}} \frac{\left(eP\left(\frac{M}{m} + \frac{1}{2}\right)\right)^{m}}{\sqrt{2\pi m}}$$
 (22)