LITERATURE SURVEY

Mentor:Ms.R.K.Aishwaryalakshmi,A.P/CSE, National Engineering College,Kovilpatti.

Team Members: Vaishnupriya S - 1912034 Swetha S - 1912031 Serena Sofranica P - 1912025

Preethi R - 1912020

S.NO.	Author	Title	Source	Findings
1.	Samihan	Application of	IEEE XPLORE	In this paper, for soil
	Deshmukh,Deves	Data Analytics	2019	health analysis they
	h,Dhannawat,Moh	in Agriculture	5th	compared prediction
	it Dalvi	Sector for Soil	International	of different soil
		Health Analysis	Conference on	elements with
			Computing	different machine
			Communication	learning algorithms.
			Control and	This survey will be
			Automation	very useful for those
			(ICCUBEA)	who are building
				products related to soil
				health analysis and
				prediction.
2.	M.Chandraprabha	Machine	IEEE	In this paper,we
	,Rajesh Kumar	learning based	2018	observed that, various
	Dhanaraj	Pedantic	5th IEEE	algorithm operates
		Analysis of	International	well with different
		Predictive	Conference on	factors but when
		Algorithms in	Parallel,	considering error rates
		Crop Yield	Distributed and	as performance
		Management	Grid	measure, recurrent
			Computing	neural network (RNN)
			(PDGC)	works well when
				compared to other
				algorithms. When
				considering accuracy
				as performance
				measure, BayesNet

3.	Aakash G Ratkal, Gangadhar Akalwadi, Vinay N Patil,Kavi Mahesh -	Farmer's Analytical Assistant	2016 IEEE International Conference on Cloud Computing in Emerging Markets	performs very well for rice crop and produces an accuracy of 97.53%. In this paper,it is intended to help farmers to make educated choices about the crop which he plans to grow next. We have implemented features like production prediction and price prediction which will help the farmer make a reasonable estimate of the price and yield he may get.
4.	Cristanel Razafimandimby, Valeria Loscri, Anna Maria Vegni, Alessandro Neri	Efficient Bayesian Communication Approach For Smart Agriculture Applications	IEEE 2017	In this paper, we observed that they presented an inference-based approach —namely, BIA— applied to the PEACH network, with the aim of avoiding useless data transmission. The

				strong correlation between temperature and humidity data was taken into account for this study.
5.	V.Roopa,C. Emilin Shyni	Data Driven Approach For	IEEE 2017	In this paper,we observed that they
		Farm Re-		digitize farming and
		Modeling		agricultural activities
		Using		so that the farmers can
		Prediction		check on the
		Analytics		requirements of the
				crops and correctly
				predict their
				growth.The proposed
				system is being
				modeled such that the
				field area is being set
				up with sensors being
				located at specific
				locations, drones are
				set up for weekly monitoring.
6.	NamgiriSuresh,N.	Crop Yield	IEEE	In this paper,it showed
0.	V.K.Ramesh,Syed	Prediction	2019	that practical use of
	Inthiyaz,P. Poorna	Using Random	2010	data mining
	Priya,Kurra	Forest		techniques in
	Nagasowmika,	Algorithm		predicting crop yield

Plamen a Angelov,Raul - 1 2019	Self-Organising and Self- Learning Model for Soybean Yield Prediction	IEEE 2021 7th International Conference on Advanced Computing & Communication Systems (ICACCS)	based on climate input parameters. The built website is user-friendly, and that reliability of prediction in all of the other grains and regions chosen in the analysis should be above 75 percent, indicating greater predictive performance In this paper, the ALMMo-1 system is implemented to predict soybean crop yields from factors that affect the yield. The model achieves high accuracy. The model evolves and updates with each data sample entry, improving memory and computation efficiency.
--------------------------------	---	---	--

8.	Shivi	Big Data	IEEE 2018	In this paper,it
	Sharma,Hemraj	Analytics for	5th IEEE	presents a hybrid
	Saini	Crop Prediction	International	model i.e.
		Mode Using	Conference on	SVM_GWO that uses
		Optimization	Parallel,	a combinational
		Technique	Distributed and	approach for
			Grid	improving the
			Computing(PD	classification
			GC	accuracy, recall,
				precision, f-measure
				by selecting the
				optimal parameters
				settings in SVM.
9.	Shreya V.	Crop Yield	IEEE	In this paper,the final
	Bhosale, Ruchita	Prediction	2018 Fourth	result contains crop
	A. Thombare,	Using Data	International	names which is
	Prasanna G.	Analytics and	Conference on	suggested in that
	Dhemey, Anagha	Hybrid	Computing	region for specified
	N. Chaudhari	Approach	Communication	rainfall as well as land
			Control and	of farmer in acres. The
			Automation	predicted yield as crop
				count attribute is
				displayed in kg/acre
				format. The attribute
				yield describes the
				average production of
				that crop in 1 acre.
10.	Potnuru Sai	Crop Yield	IEEE 2020	This paper predicts the
	Nishant, Pinapa	Prediction based	International	yield of almost
	Sai Venkat, Bollu	on Indian	Conference for	all kinds of crops that
	Lakshmi, Avinash,	Agriculture	Emerging	are planted in India.

	B. Jabber	using Machine	Technology	The paper uses
		Learning	(INCET)	advanced
				regression techniques
				like Kernel Ridge,
				Lasso and ENet
				algorithms to predict
				the yield and uses the
				concept of Stacking
				Regression for
				enhancing the
				algorithms to give a
				better
				prediction.
11.	D Ramesh,B	Analysis of crop	2015	In this paper,they
	Vishnu Vardhan	yield prediction	(IJRET)Internat	create a user friendly
		using data	ional Journal of	interface for farmers,
		mining	Research in	which gives the
		Techniques	Engineering	analysis of rice
			and Technology	production based on
				available
				data.Here,they use
				Multiple Linear
				Regression technique
				and Data Mining
				method namely
				Density-based
				clustering technique
				were take up for the
				estimation of crop
				yield analysis.

12.	B M Sagar,	Agriculture	2018	In this paper, it has
	Cauvery N K	Data Analytics	Indonesian	been observed that
		in Crop Yield	Journal of	analysis has been done
		Estimation	Electrical	on agriculture
			Engineering	soils,hidden patterns
			and Computer	discovery using data
			Science	set related to climatic
				conditions and crop
				yields data. The
				activities of
				agriculture field are
				numerous like weather
				forecasting, soil
				quality assessment,
				seeds selection, crop
				yield prediction.The
				survey outcomes
				indicate the need for
				improved techniques
				in crop yield analytics.
13.	Jharna Majumdar,	Analysis of	2017	In this paper,we
	Sneha	agriculture data	Springer open,	observed that,they
	Naraseeyappa and	using data	Journal Of Big	used data mining
	Shilpa Ankalaki	mining	Data	techniques PAM,
		techniques		CLARA and
				DBSCAN to obtain
				the optimal climate
				requirement of wheat
				like optimal range of
				best temperature,
				worst temperature and

				rain fall to achieve
				higher production of
				wheat crop. The
				clustering quality
				metrics, DBSCAN
				·
				gives the better
				clustering quality than
				PAM and CLARA,
				CLARA gives the
				better clustering
				quality than the PAM.
14.	V. Spandana, V.S.	Supervised	IEEE 2020	The proposed
	Vaishnavi,K.	Machine	Proceedings of	technique helps
	Neha,V.G.R.R.	learning	the Fifth	farmers to acquire
	Devi	Approach for	International	apprehension in the
		Crop Yield	Conference on	requirement and price
		Prediction in	Communication	of different crops. It
		Agriculture	and Electronics	helps farmers in
		Sector	Systems	decision making of
			(ICCES)	which crop to
				cultivate in the field.
				The more increase in
				accuracy results in
				more profit to the crop
				yield. This work is
				employed to search
				out the gain
				knowledge about the
				crop that can be
				deployed to make an
				efficient and useful
				EIIICIEIII dilu useiui

				harvesting.
15.	Mummaleti	An Ensemble	IEEE XPLORE	In this paper, they
	Keerthana, K J M	Algorithm for	2021	have taken top 10
	Meghana,	Crop Yield	3rd	crops which solves
	Siginamsetty	Prediction	International	majority of
	Pravallika,		Conference on	consequences when
	Modepalli		Intelligent	the parameters consist
	Kavitha		Communication	of the location and
			Technologies	weather conditions.
			and Virtual	The accuracy in
			Mobile	prediction of different
			Networks	kind of crops across
			(ICICV)	the world will guide
				farmers to make a
				clear decision in
				choosing a suitable
				crop for yield.