

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

Лабораторная работа № 2

Дисциплина Моделирование

Тема _Распределение случайных величин_

Студент Ильясов И. М.

Группа ИУ7-73Б

Вариант 6

Преподаватель Рудаков И.В.

Формализация задачи

Равномерное распределение

Равномерное распределение непрерывной случайной величины — распределение, в котором значения случайной величины с двух сторон ограничены и в границах интервала имеют одинаковую вероятность. Плотность вероятности в данном интервале постоянна. Равномерное распределение обозначают $X \sim R(a, b)$, где $a, b \in \mathbb{R}$.

Функция распределения равномерной непрерывной случайной величины имеет следующий вид:

$$F(x) = \begin{cases} 0, & \text{если } x < a; \\ \frac{x-a}{b-a}, & \text{если } a \le x \le b; \\ 1, & \text{если } x > b. \end{cases}$$
 (1)

При этом плотность распределения определяется:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{если } a \le x \le b; \\ 0, & \text{иначе.} \end{cases}$$
 (2)

График плотности распределения и функции распределения равномерной непрерывной случайной величины приведены на рисунке 1.

Рисунок 1 — плотность распределения и функция распределения равномерной непрерывной случайной величины.

Нормальное распределение

Говорят, что случайная величина имеет **нормальное** распределение, если **функция** ее **плотности** имеет следующий вид:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$
 (3)

где
$$-\infty < x < +\infty$$
, $-\infty < \mu < +\infty$, $\sigma > 0$.

При этом функция распределения находится:

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx,$$
 (4)

где
$$-\infty < x < +\infty$$
, $-\infty < \mu < +\infty$, $\sigma > 0$.

Обозначают нормальное распределение $X \sim N(\mu, \sigma^2)$.

Математическое ожидание μ характеризует положение «центра тяжести» вероятностной массы нормального распределения. Получается, что график плотности распределения случайной величины, имеющей нормальное распределение, симметричен относительно $x = \mu$.

Дисперсия σ характеризует разброс значений случайной величины относительно «центра тяжести».

График плотности распределения и функции распределения нормальной случайной величины приведены на рисунке 2.

Рисунок 2 — плотность распределения и функция распределения нормальной случайной величины.

Результаты работы

Равномерное распределение

Рисунок 3 — графики функции распределения и плотности распределения равномерной случайной величины при a=-2, b=2.

Рисунок 4 — графики функции распределения и плотности распределения равномерной случайной величины при a=0,b=2.

Рисунок 5 – графики функции распределения и плотности распределения равномерной случайной величины при a=-3, b=7.

Рисунок 6 – графики функции распределения и плотности распределения равномерной случайной величины при a=0, b=1.

Нормальное распределение

Рисунок 7 — графики функции распределения и плотности распределения нормальной случайной величины при $\mu=0, \sigma=1$.

Рисунок 8 — графики функции распределения и плотности распределения нормальной случайной величины при $\mu=0$, $\sigma=6$.

Рисунок 9 — графики функции распределения и плотности распределения нормальной случайной величины при $\mu=5$, $\sigma=1$.

Рисунок 10 – графики функции распределения и плотности распределения нормальной случайной величины при $\mu=3, \sigma=8$.

Рисунок 11 — графики функции распределения и плотности распределения нормальной случайной величины при $\mu=3$, $\sigma=8$ (зеленый), $\mu=6$, $\sigma=2$ (красный), $\mu=1$, $\sigma=4$ (синий).

Вывод

В результате выполнения лабораторной работы с использованием программных средств были построены графики равномерного и нормального распределений и их функции плотности. Также было проведено сравнение этих графиков при разных значениях a,b (для равномерного распределения) и μ,σ (для нормального распределения).