MACHINE LEARNING - THE BASICS IN R

Jan-Philipp Kolb

22 Mai, 2019

Introduction round

Please tell us shortly...

- ▶ Where are you from? What are you studying/working?
- ▶ What is your experience level in R/other programming languages?
- ▶ What are your expectations of this course?
- ▶ Where do you think you can use Machine Learning in the future?

Preliminaries

- ▶ This topic is huge we concentrate on presenting the applications in R
- Usually we have big differences in knowledge and abilities of the participants - please tell, if it is too fast or slow.
- We have many exercises because at the end you can only learn on your own
- ▶ We have many **examples** try them!
- ▶ If there are questions always ask
- ▶ R is more fun together ask your neighbor

CONTENT OF THIS SECTION

▶ The first section is about laying the foundations in R. We will need all things covered later on.

TOPICS SECTION:

- ▶ Why R is a good choice
- Constraints of R-usage
- ▶ R is modular
- Import and export of data

Why R is a good choice ...

- because it is an open source language
- outstanding graphs graphics, graphics, graphics
- relates to other languages R can be used in combination with other programs - e.g. data linking
- ...R can be used for automation
- Vast Community you can use the intelligence of other people;-) and new statistical methodologies are implemented quite fast
- ▶ Because R can be combined with other programs like PostgreSQL or Python

Constraints

NEWER MODULES IN PYTHON

- Machine learning is a field that changes rapidly.
- ▶ Some new tools are first developed in Python.
- ► The package reticulate offers the possibility to use these modules from an R environment.
- Good news Python is also Open Source

BIG DATA

- Especially if you work with web data, you quickly have to deal with large amounts of data.
- ► Therefore one must fall back on databases and parallelization strategies, which can be used in R.

R IS MODULAR

```
Install Packages from CRAN Server.
install.packages("lme4")
Install packages from Bioconductor Server.
source("https://bioconductor.org/biocLite.R")
biocLite(c("GenomicFeatures", "AnnotationDbi"))
INSTALL PACKAGES FROM GITHUB
install.packages("devtools")
library(devtools)
devtools::install github("koalaverse/vip")
```

PREPARATION - PACKAGES

```
library(dplyr)
library(magrittr)
```

IMPORT .CSV DATA

THE READ.CSV COMMAND

▶ Use read.csv2 for German data

?read.csv
?read.csv2

USING A PATH TO IMPORT DATA

```
path1<-"https://raw.githubusercontent.com/"
path2<- "thomaspernet/data_csv_r/master/data/"
dname <- "titanic_csv.csv"
titanic <- read.csv(paste0(path1,path2,dname))</pre>
```

SAVE THE DATASET

save(titanic,file="../data/titanic.RData")

THE TITANIC DATASET

pclass	‡	survived :	name \$	sex ‡	age ‡	sibsp ‡	parch ‡	ticket ‡	fare ‡	cabin ‡	embarked ‡	home.dest
1			Allen, Miss. Elisab	female	29.0000			24160	211.3375			St Louis, MO
1			Allison, Master. H	male	0.9167			113781	151.5500	C22 C26		Montreal, PQ / Chesterville, ON
1			Allison, Miss. Hele	female	2.0000			113781	151.5500			Montreal, PQ / Chesterville, ON
1			Allison, Mr. Hudso	male	30.0000			113781	151.5500	C22 C26		Montreal, PQ / Chesterville, ON
1			Allison, Mrs. Huds	female	25.0000			113781	151.5500			Montreal, PQ / Chesterville, ON
1			Anderson, Mr. Harry	male	48.0000			19952	26.5500			New York, NY
1			Andrews, Miss. Ko	female	63.0000			13502	77.9583			Hudson, NY
1			Andrews, Mr. Tho	male	39.0000			112050	0.0000	A36		Belfast, NI
1	ι	1	Appleton, Mrs. Ed	female	53.0000	2	0	11769	51.4792	C101	S	Bayside, Queens, NY

THE FUNCTION SCAN TO IMPORT DATA

scan has an easy way to distinguish comments from data

?scan

EXAMPLE DATASET

```
cat("TITLE extra line", "# a comment","2 3 5 7", "11 13 17",
    file = "../data/ex.data", sep = "\n")
```

IMPORT DATA AND SKIP THE FIRST LINE

```
pp<-scan("../data/ex.data",skip=1,quiet=TRUE)
pp <- scan("../data/ex.data",comment.char="#", skip = 1,quiet =</pre>
```

THE DOWNLOAD THE DATA FROM UCI.

```
path1 <- "http://archive.ics.uci.edu/ml/"
path2 <- "machine-learning-databases/00243/"
dname <- 'yacht_hydrodynamics.data'

url<- paste0(path1,path2,dname)
Yacht_Data <- readr::read_table(file = url)</pre>
```

Built in datasets

- A sample dataset is often provided to demonstrate the functionality of a package.
- ▶ These records can be loaded using the data command.

data(iris)

▶ There is also a **RStudio Add-In** that helps to find a built-in dataset.

install.packages("datasets.load")

EXKURS RSTUDIO ADDINS

Oben rechts befindet sich ein Button Addins

EXERCISE

Load the the built-in dataset swiss and answer the following questions:

- ▶ How many observations and variables are available?
- ▶ What is the scale level of the variables?

Create an interactive data table

THE R-PACKAGE DATA. TABLE

GET AN OVERVIEW

```
data(airquality)
head(airquality)
```

```
Ozone Solar.R Wind Temp Month Day
##
## 1
        41
                190
                     7.4
                            67
                                    5
## 2
        36
                118 8.0
                            72
                                    5
                                        2
                                    5
                                        3
## 3
        12
                149 12.6
                            74
                                    5
## 4
        18
                313 11.5
                            62
                                        4
        NA
                 NA 14.3
                            56
                                    5
                                        5
## 5
        28
                 NA 14.9
                            66
                                    5
                                        6
##
```

OVERVIEW WITH DATA. TABLE

```
library(data.table)
(airq <- data.table(airquality))</pre>
```

```
##
       Ozone Solar.R Wind Temp Month Day
          41
                     7.4
                           67
                                  5
##
    1:
                 190
                 118 8.0 72
                                  5
##
    2:
          36
                                  5
                                     3
   3:
          12
                149 12.6 74
##
                                  5
##
    4:
          18
                313 11.5 62
                                     4
##
   5:
          NA
                 NA 14.3
                           56
                                  5
                                     5
##
##
  149:
          30
                 193 6.9
                           70
                                    26
## 150:
          NA
                 145 13.2
                           77
                                    27
## 151:
          14
                191 14.3
                          75
                                    28
## 152:
          18
                131 8.0
                           76
                                    29
## 153:
          20
                 223 11.5
                           68
                                    30
```

Jan-Philipp Kolb

Machine Learning - the basics in R

How to get help

▶ I use duckduckgo:

R-project + "what I want to know"

this works of course for all search engines!

R-project + "what I want to know"

EXERCISE

- Draw 8 random numbers from the uniform distribution and save them in a vector x
- Compute the logarithm of x, return suitably lagged and iterated differences,
- compute the exponential function and round the result

[1] 0.9 0.9 1.6 0.2 3.2 0.8 0.2

THE PIPE OPERATOR

```
library(magrittr)

# Perform the same computations on `x` as above
x %>% log() %>%
    diff() %>%
    exp() %>%
    round(1)

## [1] 0.9 0.9 1.6 0.2 3.2 0.8 0.2
```

HOW TO DEAL WITH MISSING VALUES

?na.omit

airq

##		Ozone	Solar.R	Wind	Temp	${\tt Month}$	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
##	4:	18	313	11.5	62	5	4
##	5:	NA	NA	14.3	56	5	5
##							
##	149:	30	193	6.9	70	9	26
##	150:	NA	145	13.2	77	9	27
##	151:	14	191	14.3	75	9	28
##	152:	18	131	8.0	76	9	29
##	153	20	223	11 5	68	9	30

Jan-Philipp Kolb

MACHINE LEARNING - THE BASICS IN R

THE COMMAND NA.OMIT

na.omit(airq)

##		Ozone	Solar.R	Wind	Temp	Month	Day
##	1:	41	190	7.4	67	5	1
##	2:	36	118	8.0	72	5	2
##	3:	12	149	12.6	74	5	3
##	4:	18	313	11.5	62	5	4
##	5:	23	299	8.6	65	5	7
##							
##	107:	14	20	16.6	63	9	25
##	108:	30	193	6.9	70	9	26
##	109:	14	191	14.3	75	9	28
##	110:	18	131	8.0	76	9	29
##	111:	20	223	11.5	68	9	30

Jan-Philipp Kolb

MACHINE LEARNING - THE BASICS IN R

CLEAN THE TITANIC DATA SET

- ► Add label to the variable pclass.
- ▶ 1 becomes Upper, 2 becomes MIddle and 3 becomes lower

FACTOR(SURVIVED,...:

- Add label to the variable survived.
- ▶ 1 Becomes No and 2 becomes Yes
- ▶ na.omit(): Remove the NA observations

GET AN OVERVIEW OF THE DATA

glimpse(clean_titanic)

Observations: 1,045

```
## Variables: 13
## $ X
                                    <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
## $ pclass <fct> Upper, Upper
## $ survived <fct> Yes, Yes, No, No, Yes, Yes, No, Yes, No
                                                     <fct> "Allen, Miss. Elisabeth Walton", "Allison,
## $ name
## $ sex
                                                    <fct> female, male, female, male, female, male, f
## $ age
                                                    <dbl> 29.0000, 0.9167, 2.0000, 30.0000, 25.0000,
## $ sibsp
                                                     <int> 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0
## $ parch
                                                     <int> 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0
## $ ticket
                                                     <fct> 24160, 113781, 113781, 113781, 113781, 1995
## $ fare
                                                     <dbl> 211.3375, 151.5500, 151.5500, 151.5500, 151
## $ cabin
                                                     <fct> B5, C22 C26, C22 C26, C22 C26, C22 C26, E12
## $ embarked <fct> S, S, S, S, S, S, S, S, C, C, C, C, S, S
```

\$ home.dest <fct> "St Louis, MO", "Montreal, PQ / Chestervill

EXAMPLE DATA - HOUSING VALUES IN SUBURBS OF BOSTON

library(MASS) bdat <- Boston</pre>

•	crim ‡	zn ‡	indus ‡	chas ‡	nox ‡	rm ÷	age ‡	dis ‡	rad ‡	tax ‡	ptratio ‡	black ‡	Istat ‡	medv ‡
1	0.00632	18.0	2.31	0	0.5380	6.575	65.2	4.0900		296	15.3	396.90	4.98	24.0
2	0.02731	0.0	7.07		0.4690	6.421	78.9	4.9671		242	17.8	396.90	9.14	21.6
3	0.02729	0.0	7.07		0.4690	7.185	61.1	4.9671		242	17.8	392.83	4.03	34.7
4	0.03237	0.0	2.18		0.4580	6.998	45.8	6.0622		222	18.7	394.63	2.94	33.4
5	0.06905	0.0	2.18		0.4580	7.147	54.2	6.0622			18.7	396.90	5.33	36.2
6	0.02985	0.0	2.18		0.4580	6.430	58.7	6.0622		222	18.7	394.12	5.21	28.7
7	0.08829	12.5	7.87		0.5240	6.012	66.6	5.5605			15.2	395.60	12.43	22.9
8	0.14455	12.5	7.87		0.5240	6.172	96.1	5.9505		311	15.2	396.90	19.15	27.1
9	0.21124	12.5	7.87		0.5240	5.631	100.0	6.0821			15.2	386.63	29.93	16.5
10	0.17004	12.5	7.87		0.5240	6.004	85.9	6.5921		311	15.2	386.71	17.10	18.9
11	0.22489	12.5	7.87		0.5240	6.377	94.3	6.3467			15.2	392.52	20.45	15.0
12	0.11747	12.5	7.87		0.5240	6.009	82.9	6.2267		311	15.2	396.90	13.27	18.9
13	0.09378	12.5	7.87		0.5240	5.889	39.0	5.4509			15.2	390.50	15.71	21.7
14	0.62976	0.0	8.14	0	0.5380	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4

NORMALIZE YOUR DATA

Compute Maximum and Minimum per column

```
maxs <- apply(bdat, 2, max)
mins <- apply(bdat, 2, min)</pre>
```

SCALE - SCALING AND CENTERING OF MATRIX-LIKE OBJECTS

THE SCALED DATA

THE COMMAND SAMPLE

- We can use this command to draw a sample.
- We need the command later to split our dataset into a test and a training dataset.

```
sample(1:10,3,replace=T)
## [1] 2 9 1
sample(1:10,3,replace=T)
## [1] 7 5 6
```

Set a seed

- set.seed is the recommended way to specify seeds.
- ▶ If we set a seed, we get the same result for random events.
- ▶ This function is mainly required for simulations.

```
set.seed(234)
sample(1:10,3,replace=T)
## [1] 8 8 1
set.seed(234)
sample(1:10,3,replace=T)
## [1] 8 8 1
```

TIME MEASUREMENT

```
start_time <- Sys.time()
ab <- runif(10000000)
end_time <- Sys.time()
end_time - start_time
## Time difference of 0.384038 secs</pre>
```

HOW MANY CORES ARE AVAILABLE

```
library(doParallel)
detectCores()
## [1] 4
```

Make Cluster.

```
cl <- makeCluster(detectCores())</pre>
registerDoParallel(cl)
start_time <- Sys.time()</pre>
ab <- runif(1000000)
end_time <- Sys.time()</pre>
end time - start time
## Time difference of 0.3160312 secs
stopCluster(cl)
?parallel::makeCluster
```

RESOURCES

- ► Course materials for the Data Science Specialization
- ▶ Data wrangling ** vignette dplyr** -
- ► The usage of pipes magrittr vignette