TD N° 5: Les Algorithmes de Tri

Exercice 1

Ecrire un programme qui permet de trier un tableau de n entiers en utilisant la méthode de <u>tri par sélection</u> du minimum. Le principe consiste à rechercher la position du minimum du tableau, à échanger ce minimum avec la première case du tableau courant, et à répéter le même travail à partir de l'indice suivant.

Le principe du tri par sélection est illustré dans l'exemple suivant : On considère le tableau : 1ère itération, on considère le tableau à partir de l'indice 0, on repère le min et on le permute avec la 1ère case 2ème itération, on considère le tableau à partir de l'indice 1, et on refait le même traitement 3ème itération, on considère le tableau à partir de l'indice 2, et on refait le même traitement 4ème itération, on considère le tableau à partir de l'indice 3, et on refait le même traitement 5ème itération, on considère le tableau à partir de l'indice 4, et on refait le même traitement (pas de permutation le min est déjà à la première position !!) 6ème itération, on considère le tableau à partir de l'indige 5, et on refait le même traitement 7ème itération, on considère le tableau à partir de l'indice 6, et on refait le même traitement

Cours : Algorithmique et Programmation C						TD N° 5 : L	es Algorith	mes de Tri			
1	2	3	5	6	7	8	11	10	9		
8ème itération, on considère le tableau à partir de l'indice 7, et on refait le même traitement											
1	2	3	5	6	7	8	11	10	9		
1	2	3	5	6	7	8	9	10	11		
9 ^{ème} itéra	9 ^{ème} itération, on considère le tableau à partir de l'indice 8, et on refait le même traitement										
1	2	3	5	6	7	8	9	10	11		
(pas de pe	(pas de permutation le min est déjà à la première position !!)										
1	2	3	5	6	7	8	9	10	11		

Il n'est pas nécessaire de faire une itération pour traiter la dernière case, car elle contient certainement la plus grande valeur.

Remarque : En suivant le même principe on peut faire un tri par sélection du max, il s'agît de repérer la plus grande valeur et de la permuter à chaque étape avec la dernière case du tableau courant, répéter alors le même processus à partir de l'indice précédent.

Exercice 2

Ecrire un programme qui permet de trier un tableau en effectuant un **tri par Bulles**. Le principe est le suivant : comparer les valeurs successives du tableau deux par deux, et effectuer une permutation à chaque fois qu'une valeur est supérieure à la suivante. Répéter ce traitement jusqu'à ce qu'il n'y ait plus de permutations possibles.

Le fonctionnement de l'algorithme sur l'exemple précédent est illustré comme suit :

Tableau initial											
5	8	11	2	6	1	3	7	10	9		
	•	•				•	•	•			
1 ^{ère} itération :											
5	8	11	2	6	1	3	7	10	9		
5	8	11	2	6	1	3	7	10	9		
5	8	2	11	6	1	3	7	10	9		
5	8	2	6	11	1	3	7	10	9		
5	8	2	6	1	11	3	7	10	9		
5	8	2	6	1	3	11	7	10	9		
5	8	2	6	1	3	7	11	10	9		
5	8	2	6	1	3	7	10	11	9		
5	8	2	6	1	3	7	10	9 📥	11		

indice de la dernière permutation effectuée

Cours : Algorithmique et Programmation C					TD N° 5 : Les Algorithmes de Tri					
2 ^{ème} itération :										
5	8	2	6	1	3	7	10	9	11	
5	2	8	6	1	3	7	10	9	11	
5	2	6	8	1	3	7	10	9	11	
5	2	6	1	8	3	7	10	9	11	
5	2	6	1	3	8	7	10	9	11	
5	2	6	1	3	7	8	10	9	11	
5	2	6	1	3	7	8	10	9	11	
5	2	6	1	3	7	8	9	10	11	

indice de la dernière permutation

3ème itération:

	• Itel wildin •									
2	5	6	1	3	7	8	9	10	11	
2	5	6	1	3	7	8	9	10	11	
2	5	1	6	3	7	8	9	10	11	
2	5	1	3	6	7	8	9	10	11	
2	5	1	3	6	7	8	9	10	11	
2	5	1	3	6	7	8	9	10	11	
2	5	1	³ 📥	6	7	8	9	10	11	

indice de la dernière permutation

4ème itération :

	. 1001 001011										
2	5	1	3	6	7	8	9	10	11		
2	1	5	3	6	7	8	9	10	11		
2	1	3	5	6	7	8	9	10	11		

indice de la dernière permutation

5^{ème} itération:

1	2	3	5	6	7	8	9	10	11
1	2	3	5	6	7	8	9	10	11

indice de la dernière permutation

Il n'est pas nécessaire de faire une autre itération car la première du tableau contient forcément la plus petite valeur, puisque le tri bulle a propagé à chaque fois les valeurs max vers la fin du tableau.

Remarque : ce tri permet de gagner en terme de nombre d'itérations, il suffit alors de repérer l'indice où a eu lieu la dernière permutation et à l'itération suivante s'arrêter à cet indice, puisque tous les indices supérieurs sont forcément triés (puisqu'il n'y a pas eu de permutation).

Exercice 3

Ecrire un programme qui permet de trier un tableau en utilisant la méthode de <u>tri par insertion</u>. Le tri par insertion est basé sur les principes suivants : dans le tableau à insérer, on suppose qu'une partie a été triée et qu'il reste à trier l'autre partie. La partie triée est appelée 'séquence destination' et la partie qui reste à trier est appelée 'séquence source'. A chaque étape, un élément de la séquence source est inséré dans la séquence destination de manière à ce que celle-ci reste triée. Le processus est répété jusqu'à la fin de la séquence source.

 a_0 , a_1 , a_2 , a_3 , a_{i-1} , a_i , a_{i+1} ,..... a_n séquence destination séquence source (triée) (non triée)

Exercices d'entraînement

Exercice 4

Écrire un programme permettant de saisir puis de trier en ordre croissant un tableau de caractères.