Федеральное государственное автономное образовательное учреждение

высшего образования

«Национальный исследовательский университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Вариант №103 Курсовая работа часть №2 по дисциплине Дискретная математика

> Выполнил Студент группы Р3115 Владимир Мацюк Преподаватель: Поляков Владимир Иванович

1 Вариант

Условия, при которых $f=1$	$3 \le x_4 1 x_5 - x_1 x_2 x_3 < 6$
Условия, при которых $f = d$	$ x_4 1 x_5 - x_1 x_2 x_3 = 0$

2 Задание

1. Составить таблицу истинности заданной булевой функции.

N	$x_1 x_2 x_3 x_4 x_5$	x_41x_5	$(x_41x_5)_{10}$	$x_1 x_2 x_3$	$(x_1x_2x_3)_{10}$	$ x_41x_5 - x_1x_2x_3 $	f
0	00000	010	2	000	0	2	0
1	00001	011	3	000	0	3	1
2	00010	110	6	000	0	6	0
3	00011	111	7	000	0	7	0
4	00100	010	2	001	1	1	0
5	00101	011	3	001	1	2	0
6	00110	110	6	001	1	5	1
7	00111	111	7	001	1	6	0
8	01000	010	2	010	2	0	d
9	01001	011	3	010	2	1	0
10	01010	110	6	010	2	4	1
11	01011	111	7	010	2	5	1
12	01100	010	2	011	3	1	0
13	01101	011	3	011	3	0	d
14	01110	110	6	011	3	3	1
15	01111	111	7	011	3	4	1
16	10000	010	2	100	4	2	0
17	10001	011	3	100	4	1	0
18	10010	110	6	100	4	2	0
19	10011	111	7	100	4	3	1
20	10100	010	2	101	5	3	1
21	10101	011	3	101	5	2	0
22	10110	110	6	101	5	1	0
23	10111	111	7	101	5	2	0
24	11000	010	2	110	6	4	1
25	11001	011	3	110	6	3	1
26	11010	110	6	110	6	0	d
27	11011	111	7	110	6	1	0
28	11100	010	2	111	7	5	1
29	11101	011	3	111	7	4	1
30	11110	110	6	111	7	1	0
31	11111	111	7	111	7	0	d

- 2. Представить булеву функцию в аналитическом виде с помощью КДНФ и ККНФ.
 - $\bullet \quad \text{KДH\Phi:} \ (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge x_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge x_3 \wedge x_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3 \wedge x_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3 \wedge x_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3 \wedge x_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge x_2 \wedge \bar{x}_3 \wedge x_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_2 \wedge \bar{x}_3 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar{x}_4 \wedge \bar{x}_5) \vee (\bar{x}_1 \wedge \bar$
 - $\bullet \quad \text{KKH} \Phi \colon (x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5) \wedge (x_1 \vee x_2 \vee x_3 \vee \bar{x}_4 \vee x_5) \wedge (x_1 \vee x_2 \vee x_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (x_1 \vee x_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5) \wedge (x_1 \vee x_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5) \wedge (x_1 \vee x_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5) \wedge (x_1 \vee \bar{x}_2 \vee x_3 \vee x_4 \vee \bar{x}_5) \wedge (x_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5) \wedge (x_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee x_2 \vee x_3 \vee x_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee x_2 \vee x_3 \vee x_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee x_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_4 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee \bar{x}_3 \vee$

3. Найти МДНФ и/или МКНФ методом Квайна — Мак-Класки.

№	K^0		№	K^1			№	K^2		№	Z(f)
1	00001		1	0x110	2 - 7		1	x10x0	2 - 14	1	00001
2	00110	√	2	010x0	3 - 4	√	2	01x1x	4 - 10	2	10011
3	01000	√	3	x1000	3 - 11	√	3	x11x1	8 - 18	3	0x110
4	01010	\	4	0101x	4 - 5	\	4	11x0x	13 - 17	4	1x100
5	01011	\	5	01x10	4 - 7	\				5	x10x0
6	01101	√	6	x1010	4 - 13	√				6	01x1x
7	01110	\	7	01x11	5 - 8	\				7	x11x1
8	1111	√	8	011x1	6 - 8	√				8	11x0x
9	10011		9	x1101	6 - 15	√					
10	10100	✓	10	0111x	7 - 8	✓					
11	11000	√	11	x11111	8 - 16	√					
12	11001	√	12	1x100	10 - 14						
13	11010	√	13	1100x	11 - 12	√					
14	11100	√	14	110x0	11 - 13	√					
15	11101	√	15	11x00	11 - 14	√					
16	11111	√	16	11x01	12 - 15	√					
			17	1110x	14 - 15	√					
	·		18	111x1	15 - 16	√					

Импликантная таблица:

	0-кубы											
Простые	0	0	0	0	0	0	1	1	1	1	1	1
импликанты	0	0	1	1	1	1	0	0	1	1	1	1
(максимальные	0	1	0	0	1	1	0	1	0	0	1	1
кубы)	0	1	1	1	1	1	1	0	0	0	0	0
	1	0	0	1	0	1	1	0	0	1	0	1
00001	(*)											
10011							(*)					
0X100		(*)			*							
1X100								(*)			*	
X10X0			*						*			
01X1X			*	(*)	*	*						
X11X1						*						*
11X0X									*	(*)	*	*

Ядро покрытия:

$$T = \left\{ \begin{array}{c} 00001\\ 0x110\\ 1x100\\ 01x1x\\ 11x0x\\ 10011 \end{array} \right\}, \ C_{min}(f) = \left\{ \begin{array}{c} 00001\\ 0x110\\ 1x100\\ 01x1x\\ 11x0x\\ 10011 \end{array} \right\}$$

$$S_a = 24, \ S_b = 30$$

$$f = (x_1x_2\bar{x}_4) \vee (\bar{x}_1x_2x_4) \vee (x_1x_3\bar{x}_4\bar{x}_5) \vee (\bar{x}_1x_3x_4\bar{x}_5) \vee (x_1\bar{x}_2\bar{x}_3x_4x_5) \vee (\bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4x_5)$$

4. Найти МДНФ и МКНФ на картах Карно.

	000	001	011	010	110	111	101	100
00	0	1	0	0	1	0	0	0
01	d	0	1	1	1	1	d	0
11	1	1	0	d	0	d	1	1
10	0	0	1	0	0	0	0	1

Минимизированная ДНФ:

$$f = (x_1 x_2 \bar{x}_4) \lor (\bar{x}_1 x_2 x_4) \lor (x_1 x_3 \bar{x}_4 \bar{x}_5) \lor (\bar{x}_1 x_3 x_4 \bar{x}_5) \lor (x_1 \bar{x}_2 \bar{x}_3 x_4 x_5) \lor (\bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 x_5)$$

$$S_a = 24, \ S_b = 30$$

Минимизированная КНФ:

$$f = (\bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_4 \vee x_5) \wedge (x_1 \vee \bar{x}_2 \vee \bar{x}_4 \vee x_5) \wedge (x_1 \vee x_2 \vee x_4) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4) \wedge (\bar{x}_1 \vee x_3 \vee \bar{x}_4) \wedge (x_1 \vee x_3 \vee x_4) \wedge (x_1 \vee x_4 \vee x_$$

- 5. Преобразовать МДН Φ и МКН Φ к форме, обеспечивающей минимум цены схемы.
 - Факторное преобразование для МДНФ:

$$\begin{split} (x_1x_2\bar{x}_4) \vee (\bar{x}_1x_2x_4) \vee (x_1x_3\bar{x}_4\bar{x}_5) \vee (\bar{x}_1x_3x_4\bar{x}_5) \vee (x_1\bar{x}_2\bar{x}_3x_4x_5) \vee (\bar{x}_1\bar{x}_2\bar{x}_3\bar{x}_4x_5) = \\ &= (x_2(x_1\bar{x}_4 \vee \bar{x}_1x_4)) \vee (x_3\bar{x}_5(x_1\bar{x}_4 \vee \bar{x}_1x_4)) \vee (\bar{x}_2\bar{x}_3x_5(x_1x_4 \vee \bar{x}_1\bar{x}_4)) \\ &\qquad \qquad \varphi = x_1\bar{x}_4 \vee \bar{x}_1x_4 \\ &\qquad \qquad (x_2\varphi) \vee (x_3\bar{x}_5\varphi) \vee (\bar{x}_2\bar{x}_3x_5\neg\varphi) \\ &\qquad \qquad S_Q^F = 13, \ S_Q^\varphi = 7 \end{split}$$

• Факторное преобразование для МКНФ:

$$\begin{split} (\bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_5) \wedge (\bar{x}_1 \vee \bar{x}_2 \vee x_4 \vee x_5) \wedge (x_1 \vee \bar{x}_2 \vee \bar{x}_4 \vee x_5) \wedge (x_1 \vee x_2 \vee x_4) \wedge (\bar{x}_1 \vee x_2 \vee \bar{x}_4) \wedge (\bar{x}_1 \vee x_3 \vee \bar{x}_4) \wedge (x_1 \vee x_3 \vee x_4) = \\ &= (\bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_5) \wedge (\bar{x}_2 \vee x_5 \vee ((\bar{x}_1 \vee x_4) \wedge (x_1 \vee \bar{x}_4))) \wedge (x_2 \vee ((x_1 \vee x_4) \wedge (\bar{x}_1 \vee \bar{x}_4))) \wedge (x_3 \vee (\bar{x}_1 \vee \bar{x}_4) \wedge (x_1 \vee x_4)) \\ &\qquad \qquad \varphi = (x_1 \vee x_4) \wedge (\bar{x}_1 \vee \bar{x}_4) \\ &= (\bar{x}_2 \vee \bar{x}_3 \vee \bar{x}_5) \wedge (\bar{x}_2 \vee x_5 \vee \neg \varphi) \wedge (x_2 \vee \varphi) \wedge (x_3 \vee \varphi) = \\ &\qquad \qquad S_Q^F = 15, \ S_Q^\varphi = 7 \end{split}$$

6. По полученной форме построить комбинационную схему в булевом базисе. Определить задержку схемы.

$$S_Q = 20, \ \tau = 5t$$

7. Построить схемы с минимальной ценой в универсальных базисах и сокращенных булевых базисах. Определить задержку каждой из схем. Синтез комбинационных схем в универсальных базисах Базис (И-HE)

$$\begin{split} \varphi &= x_1 \bar{x}_4 \vee \bar{x}_1 x_4 = \neg \neg (x_1 \bar{x}_4 \vee \bar{x}_1 x_4) = \neg (\neg (x_1 \wedge \bar{x}_4) \wedge \neg (\bar{x}_1 \wedge x_4)) = \\ &= (x_1 | \bar{x}_4) | (\bar{x}_1 | x_4) \\ f &= (x_2 \varphi) \vee (x_3 \bar{x}_5 \varphi) \vee (\bar{x}_2 \bar{x}_3 x_5 (x_1 x_4 \vee \bar{x}_1 \bar{x}_4)) = \\ &= (x_2 | \varphi) | (x_3 | \bar{x}_5 | \varphi) | (\bar{x}_2 | \bar{x}_3 | x_5 | ((x_1 | x_4) | (\bar{x}_1 | \bar{x}_4))) \\ S_Q &= 25, \tau = 4t \end{split}$$

8. Построить схему в базисе Жегалкина. Определить цену и задержку.

$$\begin{split} \varphi &= x_1 \bar{x}_4 \vee \bar{x}_1 x_4 \\ \varphi &= x_1 \oplus x_4 \\ f &= (x_2 \varphi) \vee (x_3 \bar{x}_5 \varphi) \vee (\bar{x}_2 \bar{x}_3 x_5 \neg \varphi) \\ f &= x_5 \oplus x_3 x_5 \oplus x_2 x_5 \oplus x_2 x_3 x_5 \oplus \varphi x_5 \oplus \varphi x_3 \oplus \varphi x_2 \oplus \varphi x_2 x_5 \oplus \varphi x_2 x_3 \\ S_Q &= 33, \ \tau = 4 \end{split}$$

9. Построить схему в универсальном базисе с учетом заданного коэффициента объединения по входам. Определить цену и задержку схемы.

$$S_Q=38,\ \tau=6$$

10. Выполнить анализ построенных схем, определив их реакцию на заданные комбинации входных сигналов.