Распределенные методы второго порядка с быстрой скоростью сходимости и компрессией

Московский физико-технический институт Кафедра Интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов В.В.

Апрель, 2021

Постановка задачи

Оптимизационная задача

Определить оптимальные параметры модели машинного обучения путем решения оптимизационной задачи:

$$\min_{x \in \mathbb{R}^d} \left\{ P(x) := f(x) + \frac{\lambda}{2} ||x||^2 \right\},\tag{1}$$

где x — параметры модели, а f — функция потерь.

Предполагается, что данные для обучения распределены между n клиентами, каждый клиент $i\in\{1,\dots,n\}$ имеет доступ к m векторам признаков объектов $a_{ij}\in\mathbb{R}^d$, $j\in\{1,\dots,m\}$. Функция f имеет вид

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad f_i(x) = \frac{1}{m} \sum_{j=1}^{m} f_{ij}(x), \qquad f_{ij}(x) = \varphi_{ij}(a_{ij}^{\top} x).$$
 (2)

Работы по теме

- Konstantin Mishchenko, Eduard Gorbunov, Martin Takac, and Peter Richtarik. Distributed learning with compressed gradient differences. arXiv:1901.09269, 2019.
 - Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik.

 Acceleration for compressed gradient descent in distributed and federated optimization.

 In International Conference on Machine Learning, 2020.
- Rixon Crane and Fred Roosta.

 DINGO: Distributed Newton-type method for gradient-norm optimization.

 Advances in Neural Information Processing Systems, volume 32, pages 9498.
- Rustem Islamov, Xun Qian, and Peter Richtarik.

 Distributed second order methods with fast rates and compressed communication.

 arXiv:2102.07158, 2021.

Модель распределенной оптимизации

Достоинства и недостатки модели

- + Возможно обучать модели на больших объемах данных, распределенных между устройствами;
- Возможно параллелизовать вычисления на устройствах;
- Скорость обмена данными между Клиентом и Сервером намного медленнее, чем скорость вычислений на самих устройствах и сервере.

Архитектура модели «Клиент-Сервер».

Мотивация

Существующие подходы и их недостатки

- Скорость сходимости методов первого порядка зависит от числа обусловленности поставленной оптимизационной задачи;
- Скорость сходимости методов второго порядка зависит от числа обусловленности поставленной оптимизационной задачи;
- Стоимость коммуникации между сервером и клиентом для методов второго порядка очень дорогая.

Цель

Предложить эффективный с точки зрения коммуникации метод второго порядка, чья скорость сходимости не зависит от числа обусловленности.

Предположения и структура Гессианов

Предположение

Поставленная оптимизационная задача имеет хотя бы одно решение x^* . Для всех i,j функция потерь $\varphi_{ij}:\mathbb{R}\to\mathbb{R}$ является дважды непрерывно дифференцируемой функцией с v-липшецевой второй производной.

Гессианы функций

Гессианы функций f_{ij}, f_i, f соответственно имеют вид

$$\mathbf{H}_{ij}(x) = \boldsymbol{\varphi}''(a_{ij}^{\top}x)(x)a_{ij}a_{ij}^{\top}, \quad \mathbf{H}_{i}(x) = \frac{1}{m}\sum_{i=1}^{m}\mathbf{H}_{ij}(x), \quad \mathbf{H}(x) = \frac{1}{n}\sum_{i=1}^{n}\mathbf{H}_{i}(x).$$
(3)

Основная идея: NEWTON-STAR

NEWTON-STAR

Предположим, что Серверу известен Гессиан $\mathbf{H}(x^*)$ функции f в оптимуме. Шаг метода NEWTON-STAR имеет вид:

$$x^{k+1} = x^k - (\nabla^2 P(x^*))^{-1} \nabla P(x^k) = x^k - (\mathbf{H}(x^*) + \lambda \mathbf{I})^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k \right).$$
 (4)

Teopema о сходимости NEWTON-STAR

Предположим, что $\mathbf{H}(x^*) \succeq \mu^* \mathbf{I}, \mu^* \geq 0$, причем $\mu^* + \lambda > 0$. Тогда NEWTON-STAR сходится локально квадратично

$$||x^{k+1} - x^*|| \le \frac{v}{2(\mu^* + \lambda)} \left(\frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m ||a_{ij}||^3 \right) ||x^k - x^*||^2.$$
 (5)

Свойства NEWTON-STAR

Достоинства и недостатки NEWTON-STAR

- Локальная квадратичная сходимость, наследованная от стандартного метода Ньютона;
- Стоимость коммуникаций между Сервером и Клиентом $\mathscr{O}(d)$ такая же, как и у градиентных методов. Каждый клиент пересылает серверу только градиент $\nabla f_i(x^k)$;
- Метод имеет только теоретическую значимость, Гессиан в оптимуме не известен.

NEWTON-LEARN

Дополнительные предположения

Каждая функция ϕ_{ij} является выпуклой, параметр регуляризации λ положительный.

Основная идея метода

Аппроксимируем матрицу $\mathbf{H}(x^*)$ на шаге k матрицей \mathbf{H}^k вида

$$\mathbf{H}^{k} = \left(\frac{1}{n}\sum_{i=1}^{n}\frac{1}{m}\sum_{j=1}^{m}h_{ij}^{k}a_{ij}a_{ij}^{\top}\right), \quad x^{k+1} = x^{k} - \left(\mathbf{H}^{k} + \lambda \mathbf{I}\right)^{-1}\left(\frac{1}{n}\sum_{i=1}^{n}\nabla f_{i}(x^{k}) + \lambda x^{k}\right).$$
 (6)

Требования:

- $h_{ij}^k o oldsymbol{arphi}_{ij}''(a_{ij}^ op x^*)$ при $k o \infty$;
- обнолвение элементов вектора $h_i^k := (h_{i1}^k, \dots, h_{im}^k)$ должно быть мало, т.е вектор $h_i^{k+1} h_i^k$ разрежен.

Механизм обновления коэффицентов

Определение

Рандомизированное отображение $\mathscr{C}: \mathbb{R}^m \to \mathbb{R}^m$, удовлетворяющее условиям

$$\mathbb{E}\left[\mathscr{C}(h)\right] = h, \qquad \mathbb{E}\left[\left\|\mathscr{C}(h)\right\|^{2}\right] \leq \left(\omega + 1\right)\left\|h\right\|^{2}, \qquad \forall \ h \in \mathbb{R}^{m},\tag{7}$$

называется оператором несмещенной компрессии.

Пример: оператор Rand-r, выходом такого оператора являются случайно выбранные r элементов входа, домноженные на $\frac{m}{r}$. Для этого оператора параметр $\omega = \frac{m}{r} - 1$.

Введем
$$A_i := (a_{i1}^\top, \dots, a_{im}^\top), \varphi_i''(A_i x) := (\varphi_{i1}''(a_{i1}^\top x), \dots, \varphi_{i1}''(a_{im}^\top x))^\top.$$

Механизм обновления (DIANA-trick [1])

$$h_i^{k+1} = \left[h_i^k + \eta \mathscr{C}_i^k (\varphi_i^k (A_i x^k) - h_i^k) \right]_+. \tag{8}$$

Сходимость NEWTON-LEARN

Введем функцию Ляпунова $\Phi_1^k := \left\| x^k - x^* \right\|^2 + \frac{1}{3mn\eta v^2 R^2} \sum_{i=1}^n \left\| h_i^k - \pmb{\varphi}_i''(A_i x^*) \right\|^2$, где $R = \max_{i,j} \left\| a_{ij} \right\|$.

Teopema о сходимости NEWTON-LEARN

Пусть $\eta \leq \frac{1}{\omega+1}$ и $\left\|x^k - x^*\right\|^2 \leq \frac{\lambda^2}{12\nu^2R^6}$ для всех $k \geq 0$. Тогда выполнено

$$\mathbb{E}\left[\Phi_1^k\right] \leq \theta_1^k \Phi_1^0, \qquad \mathbb{E}\left[\frac{\left\|x^{k+1} - x^*\right\|^2}{\left\|x^k - x^*\right\|^2}\right] \leq \theta_1^k \left(6\eta + \frac{1}{2}\right) \frac{v^2 R^6}{\lambda^2} \Phi_1^0,$$

где
$$heta_1 = 1 - \min\left\{\frac{\eta}{2}, \frac{5}{8}\right\}$$
.

Лемма: при использовании оператора разреживания достаточно предположить, что $\left\|x^0-x^*\right\|^2 \leq \frac{\lambda^2}{12\nu^2R^6}.$

Эксперименты

Эксперименты проведены для логистической регрессии на различных наборах данных библиотке LIBSVM.

$$P(x) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \log\left(1 + \exp(-b_{ij} a_{ij}^{\top} x)\right) + \frac{\lambda}{2} ||x||^{2}, \quad a_{ij} \in \mathbb{R}^{d}, b_{ij} \in \{-1, 1\}.$$
 (9)

w8a, $\lambda=10^{-3}$

a9a, $\lambda=10^{-4}$

phishing, $\lambda=10^{-5}$

Результаты, выносимые на защиту

- Экспериментальное и теоретическое подтверждение сходимости предложенного метода;
- Экспериментальные данные показывают превосходство предложенного метода над существующими SOTA методами в терминах сложности коммуникаций;
- Придуман первый метод второго порядка в дистрибутивной оптимизации, скорость сходимости которого не зависитт от числа обусловленности функции.