適應控制(HW5)_MRAS

0056C203廖育賢

OBJECTIVE - THE PROBLEM AND THE PURPOSE

此次報告我們以 Model-Reference 的方法可控制未知的受控體達到我們所需之輸出。

PROCEDURE

METHOD

首先我們計算 u(t),算出 desired ym(t)以及 y(t),並計算 error,使用 MIT rule 找到我們要更新的 控制器參數 θ_1 與 θ_2 ,重複以上步驟。

PROGRAM FLOW CHART

EQUATION

STSTEM MODEL:

$$\frac{dy}{dx} = -ay + bu$$

CLOSED LOOP SYSTEM

$$\frac{dy_m}{dt} = -a_m y_m + b_m u_c$$

CONTROLLER

$$\mathbf{u}(\mathbf{t}) = \theta_1 u_c(t) - \theta_2 y(t)$$

MIT RULE

$$e = y - y_m$$

$$J(\theta) = \frac{1}{2}e^2$$

$$\frac{d\theta_1}{dt} = -\gamma (\frac{a_m}{\frac{d}{dt} + a_m} u_c) e$$

$$\frac{d\theta_2}{dt} = \gamma (\frac{a_m}{\frac{d}{dt} + a_m} y)e$$

SIMULATION RESULTS

PROGRAM CODES

% MARS	
% J(theta1,theta2)=0.5*error^2	
clc,clear;	
n=1;b=0.5;	
nm=2;bm=2;	
R=[0.2 1 5];%gamma	
uc(1:100)=1;	
uc(101:200)=-1;	
uc=[uc uc uc uc uc];	
uc=[uc uc uc uc uc];	
uc=[uc uc uc uc uc];	
s=0.1;	
ime=100;	
For s=1:1:3	
r=R(s);	
theta1(1)=0;	
theta2(1)=0;	
theta1_prime=0;	
theta2_prime=0;	
y(1)=0;	
ym(1)=0;	
i=0;	
for k=0:ts:(time-ts)	
i=i+1;	
u(i) = theta1(i)*uc(i) - theta2(i)*y(i);	
$y_prime=-a*y(i)+b*u(i);$	
ym_prime=-am*ym(i)+bm*uc(i);	
y(i+1)=y(i)+y_prime*ts;	

 $ym(i+1) = ym(i) + ym_prime*ts;$

```
e=y(i+1)-ym(i+1);
  theta1\_double\_prime=(\ -am*theta1\_prime-r*am*uc(i+1)*e\ );
  theta2\_double\_prime=(\ -am*theta2\_prime+r*am*y(i+1)*e\ );
  theta1\_prime=theta1\_prime+theta1\_double\_prime*ts;
  theta2\_prime=theta2\_prime+theta2\_double\_prime*ts;
  theta1(i+1)=theta1(i)+theta1\_prime*ts;
  theta2(i+1) \!\!=\! theta2(i) \!\!+\! theta2\_prime*ts;
figure,
subplot(411)
plot(0:ts:time,y);
hold on
plot(0:ts:time,ym);
suptitle(['MRAS: \gamma=',num2str(r)])
ylabel('y,ym')
text(1.5,0.2145,' y')
text(1.7, 1.4,'ym')
%axis([-inf, inf, -1.5, 1.5])
subplot(412)
plot(0:ts:time-ts,u);
ylabel('u')
text(65, 1,' u')
axis([-inf, inf, -7, 7])
subplot(413)
plot (0:ts:time, theta1);\\
ylabel("theta\_1"), title(["theta\_1(100)=",num2str(theta1(1001))])\\
subplot(414)
plot(0:ts:time,theta2);
xlabel('time'), ylabel('\theta\_2'), title(['\theta\_2(100)=', num2str(theta2(1001))])
if r==1 && time>=500
  figure
  plot(theta1, theta2), xlabel("\theta\_1'), ylabel("\theta\_2')
  title('Relation\ between\ \backslash theta\_1\ and\ \backslash theta\_2')
  hold on,plot(theta1,theta1-(a/b))
```

```
axis([-inf,\,inf,\,-1,\,inf]) end end
```

GRAPH

GAMMA=1

GAMMA=0.2

圖二

GAMMA=5

圖三

GAMMA=0.01

圖四

GAMMA=20

圖五

RELATION BETWEEN THETA (GAMMA=1,TIME=500)

圖六

t = 100	Theta1	Theta2
gamma = 0.2	2.2579	0.2059
gamma= 1	3.2858(optimum:4)	1.2848(optimum:2)
gamma= 5	4.0241	2.0232
gamma = 0.01	0.7406	0.1258
gamma= 20	22.85	20.85

表一

CONCLUSION-ANALYSIS

比較圖一至圖五,可以看到越大的 gamma 值,theta 修正量越大,y 越快追到 ym,但 gamma 若太大(如圖五),系統很不穩定,control 訊號 u 也耗能大;gamma 太小(如圖四),雖 然 u 耗能小,但是 y 根本達不到 desired ym;以 gamma=1 來說,是目前最合適的結果,y 訊號 很漂亮,u 也可接受。

由圖六,由兩 theta 作圖,theta2=theta1-a/b (a=1,b=0.5),可得 theta 最後會停在斜直線的收斂點(3.96,1.96)上,此為 optimum θ 1=4 與 optimum θ 2=2 之值。

MRAS 目標是將 error=y-ym 收斂為零,而控制器的參數 theta 並不一定需要達到最佳值(如表一),因為我們的 command signal (u_c) 的平方,對時間的積分值隨著時間增加,影響 theta 變化量 Δ θ 的收斂情況,由 θ (t)= θ ° (optimum)+ Δ θ ,如果 Δ θ 收斂為零,我們將會得到最佳 θ ,影響 Δ θ 收斂之因素為 uc,此為 MRAS 的特性。