南京大学 电子科学与工程学院 全日制统招本科生 《信号与系统》期末考试试卷 闭卷

任课教师姓名: 李晨, 孙国柱 考试时间: 2013.1.6							
考生年级_		考生专业		考生学号		考生姓名	
题号	_	=	三	四	五.	六	总分
得分							
一. 填空题(20分)							
1.已 知 理 想 高 通 滤 波 器 $H(j\omega) = \begin{cases} e^{-j\omega t_0}, \omega > \omega_c \\ 0, \omega < \omega_c \end{cases}$, 则 其 冲 激 响 应							
h(n) =							
2.已 知 因 果 信 号 $f(t)$ 的 拉 氏 变 换 $F(s) = \frac{s+3}{2s^2 + 2s - 4}$, 则 $f(t)$ 的 初 值 $f(0_+) = \underline{\hspace{1cm}}$,终值 $f(\infty) = \underline{\hspace{1cm}}$							
J (V+), ス 田 J (ベ)							
3.已知因果信号 $f(t)$ 的拉氏变换为 $F(s) = \frac{1}{s^2 + s - 1}$, 求 $y_1(t) = \frac{df(\frac{1}{3}t - 2)}{dt}$ 的单边拉							
氏 变 换 $Y_1(s) = $, $y_2(t) = \int_0^t f(\tau)e^{\tau}d\tau$ 的 单 边 拉 氏 变 换							
$Y_2(s) = $					F.		
4.已知 $X(z) = \frac{z^{-2}}{1+z^{-2}} (z > 1)$,求其逆变换 $x(n) = \underline{\hspace{1cm}}$							
5 利用 z 变换求券积 $v(n) = a^n u(n) * [u(n) - u(n - N)] =$							

二. (15分) 已知某离散系统的差分方程为y(n)+1.5y(n-1)-y(n-2)=x(n-1)

(1)若该系统为因果系统,求其单位样值响应 h₁(n);

本题得分

(2)若该系统为稳定系统,求其单位样值响应 $h_2(n)$,并计算输入 $x(n) = (-0.5)^n u(n)$ 时的零状态响应 y(n)

三. (15 分)电路如图所示,已知 $R_1=R_2=R_3=2\Omega$, C=0.5F, $L_1=2H$, $L_2=6H$, M=2H,开关 K 在打开以前电路已处于稳态,K 在 t=0 时打开,求 $t\geq 0$ 时开关 两端电压 v(t)

四. (20 分)某因果 LTI 系统的微分方程为 $\frac{d^2r(t)}{dt^2} + 5\frac{dr(t)}{dt} + 6r(t) = \frac{d^2e(t)}{dt^2}$ 本题得分

- (1)求系统函数 $H(s) = \frac{R(s)}{E(s)}$, 画出零极点图, 判断系统稳定性, 并求冲激响应 h(t)
- (2)当输入 $e(t) = (1+e^{-t})u(t)$ 时,系统的完全响应为 $r(t) = (\frac{1}{3} + 4e^{-2t} \frac{4}{3}e^{-3t})u(t)$,求该系统起始状态值 $r(0_{-})$ 和 $r'(0_{-})$

五. (10 分) 已知 x(n) 傅里叶变换为 $X(e^{j\omega})$,求 $y(n) = \sum_{k=-\infty}^{\infty} x(k)$ 的傅里叶变换

本题得分

六. (20分) 已知某离散系统的单位阶跃响应为

本题得分

$$g(n) = (2^n + 3 \cdot 5^n + 10)u(n)$$

- (1)求系统函数 H(z) 和单位样值响应 h(n)
- (2)画 H(z) 的极零图,并粗略画出幅频响应曲线 $|H(j\omega)|$
- (3)求系统差分方程,画出使用延时器最少的系统框图
- (4)若激励为x(n) = 3[u(n) u(n-5)], y(-1) = 2, y(-2) = 4, 求全响应y(n)