Math for AI (Linear Algebra and Differential Calculus)

Vector and Matrix:

to process various input and output at once

❖ 1. Scalar, Vector, Matrix, Tensor

- Scalar: Any real number, or any quantity that can be measured using a single real number.
 - ex) length, width, temperature
- Vector: A vector is an object that has both a magnitude and a direction.

ex) 2D coordinate plane :
$$\vec{a} = [2,1], \vec{b} = [1,2]$$

❖ 1. Scala, Vector, Matrix, Tensor

- Vector : column vector, row vector
 - **column vector**: n by 1 matrix consisting of a single column of n elements

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n = \mathbb{R}^{n \times 1}$$

- **row vector**: 1 by n matrix consisting of a single row of n elements

$$\mathbf{x}^T = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \in \mathbb{R}^{1 \times n}$$

❖ 1. Scala, Vector, Matrix, Tensor

 Matrix: a rectangular array of numbers, symbols, or expression, arranged in rows and columns.

$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \\ 5 & 2 \end{bmatrix}$$

■ Tensor : a type of data structure used in linear algebra. you can calculate arithmetic operations with tensors. → multidimensional data array

6d-tensor

https://rekt77.tistory.com/102 https://machinelearningmaster y.com/introduction-to-tensorsfor-machine-learning/

❖ 1. Scala, Vector, Matrix, Tensor

Rank	Math entity	Python example
0	Scalar (magnitude only)	s = 483
1	Vector (magnitude and direction)	v = [1.1, 2.2, 3.3]
2	Matrix (table of numbers)	m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3	3-Tensor (cube of numbers)	t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]]
n	n-Tensor (you get the idea)	

❖ 2. Addition, Subtraction, Magnitude of Vector

 Addition and Subtraction of Vector: element-wise addition of vector and element-wise subtraction of vector

$$C = A + B$$
: Element-wise addition, i.e., $C_{ij} = A_{ij} + B_{ij}$

• A, B, C should have the same size, i.e., A, B, $C \in \mathbb{R}^{m \times n}$

ex)
$$\vec{a} = [3,2], \vec{b} = [1,4]$$

 $\vec{a} + \vec{b} = [3+1, 2+4] = [4,6], \vec{a} - \vec{b} = [3-1, 2-4] = [2,-2]$

addition of vector ($\vec{x} + \vec{y}$) is called **parallelogram rule** \leftarrow \vec{x}, \vec{y} form the sides of a parallelogram and $\vec{x} + \vec{y}$ is one of the diagonals

❖ 2. Addition, Subtraction, Magnitude of Vector

 Magnitude (or Length or Norm) of Vector: magnitude of a vector is represented by the length of the arrow

• Norm: compute the length of the vector a

$$\|\mathbf{a}\| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

- ex) when
$$\vec{a}$$
 is [3,2], $||\vec{a}|| = \sqrt{3^2 + 2^2} = \sqrt{13}$

❖ 3. Dot Product of Vectors

• Dot product of two vector \vec{a} and \vec{b} : The dot product can be defined algebraically or geometrically. These two definitions is equal. Dot product is denoted by '.'

Algebraic definition :

The dot product of two vectors $\mathbf{a} = [a_1, a_2, ..., a_n]$ and $\mathbf{b} = [b_1, b_2, ..., b_n]$ is defined as $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + \cdots + a_1b_n$.

ex) when
$$\vec{a}$$
 is (1,3,-2) and \vec{b} is (4,2,1),
 $(1,3,-2) \cdot (4,2,1) = 1*4 + 3*2 + (-2)*1 = 8$

❖ 3. Dot Product of Vectors

• Geometric definition : based on the notions of magnitude ($||\vec{a}||$) and angle($\cos\theta$)

$$\mathbf{a} \cdot \mathbf{b} = \begin{cases} \|\mathbf{a}\| \|\mathbf{b}\| \cos \measuredangle(\mathbf{a}, \mathbf{b}) & \mathbf{a} \neq \mathbf{0} \land \mathbf{b} \neq \mathbf{0} \\ \mathbf{0} & \mathbf{a} = \mathbf{0} \lor \mathbf{b} = \mathbf{0} \end{cases}$$

- $||\vec{a}||$: the magnitude of a vector \vec{a} .
- $||\vec{b}||$: the magnitude of a vector \vec{b} .
- $\cos\theta$: the angle of \vec{a} and \vec{b}

❖ 4. Cosine Similarity

- Cosine Similarity: measure of similarity between two non-zero vectors by measuring the cosine of the angle between them.

$$\mathbf{A} \cdot \mathbf{B} = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta \quad \rightarrow \quad \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

❖ 4. Cosine Similarity

- Cosine similarity's properties:
 - measure of similarity between two vectors that measures the cosine of the angle between them.
 - cosine similarity is neatly bounded in [0, 1]
 - cosine similarity of -1: two vectors diametrically opposed
 cosine similarity of 0: two vectors oriented at 90° relative to each other

cosine similarity of 1: two vectors with the same orientation

Cosine similarity:

Cosine similarity:

Cosine similarity :

https://wikidocs.net/24603

❖ 1. Matrix Addition and Product

Matrix addition:

$$C = A + B$$
: Element-wise addition, i.e., $C_{ij} = A_{ij} + B_{ij}$

- A, B, C should have the same size, i.e., $A, B, C \in \mathbb{R}^{m \times n}$
- 예) If we have

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix}$$

then we can calculate C = A + B by

$$\mathbf{C} = \mathbf{A} + \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 10 \\ 8 & 11 \\ 9 & 12 \end{bmatrix} = \begin{bmatrix} 8 & 12 \\ 11 & 15 \\ 14 & 18 \end{bmatrix}$$

1. Matrix Addition and Product

■ Matrix product: If A is an m × n matrix and B is an n × p matrix, the matrix product C = AB is defined to be the m × p matrix

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj},$$

$$\mathbf{C} = \begin{pmatrix} a_{11}b_{11} + \dots + a_{1n}b_{n1} & a_{11}b_{12} + \dots + a_{1n}b_{n2} & \dots & a_{11}b_{1p} + \dots + a_{1n}b_{np} \\ a_{21}b_{11} + \dots + a_{2n}b_{n1} & a_{21}b_{12} + \dots + a_{2n}b_{n2} & \dots & a_{21}b_{1p} + \dots + a_{2n}b_{np} \\ \vdots & & \vdots & \ddots & \vdots \\ a_{m1}b_{11} + \dots + a_{mn}b_{n1} & a_{m1}b_{12} + \dots + a_{mn}b_{n2} & \dots & a_{m1}b_{1p} + \dots + a_{mn}b_{np} \end{pmatrix}$$

$$\mathbf{ex}$$

$$\mathbf{If we have} \quad \mathbf{A} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \text{ and } \mathbf{B} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

$$\mathbf{then} \quad \mathbf{AB} = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \mathbf{x} \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \\ \mathbf{C}_{22} & \mathbf{C}_{22} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \\ \mathbf{C}_{22} & \mathbf{C}_{22} \\ \mathbf{C}_{23} & \mathbf{C}_{22} \\ \mathbf{C}_{24} & \mathbf{C}_{24} \\ \mathbf{C}_{24} & \mathbf{C}_{24} \\ \mathbf{C}_{25} & \mathbf{C}_{25} \\ \mathbf{C}_{25} & \mathbf{C$$

❖ 2. Transpose of Matrix and Invertible Matrix

■ Transpose of matrix: operator which flips a matrix over its diagonal → switches the row and column indices of the matrix

ex)
$$A = \begin{bmatrix} 1 & 6 \\ 3 & 4 \\ 5 & 2 \end{bmatrix}$$
 $A^T = \begin{bmatrix} 1 & 3 & 5 \\ 6 & 4 & 2 \end{bmatrix}$

- If A is equal to A^T , A is called a **symmetric matrix**

❖ 2. Transpose of Matrix and Invertible Matrix

■ **Invertible matrix**: n-by-n square matrix A, if there exists an n-by-n square matrix B such that $AB = BA = I_n$. The matrix B is called the inverse of A

Example:

$$M = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$$
 and it's inverse is $M^{-1} = \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix}$ since $MM^{-1} = \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $M^{-1}M = \begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Therefore, $\begin{bmatrix} 4 & 3 \\ 3 & 2 \end{bmatrix}$ and $\begin{bmatrix} -2 & 3 \\ 3 & -4 \end{bmatrix}$ are inverses of each other

❖ 3. Transformation Matrix

■ **linear transformation :** mapping $V \rightarrow W$ between two modules (for example, two vector spaces)

linear transformation maps linear subspaces onto linear subspaces

 Invertible matrix: linear transformations can be represented by matrices.

If T is a linear transformation mapping \mathbb{R}^n to \mathbb{R}^m and \vec{x} is a column vector with n entries, then

$$T(\vec{x}) = A\vec{x}$$

for some $m \times n$ matrix A, called **the transformation of T**

❖ 3. Transformation Matrix

Example 1: Transformation matrix for scale

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ 2y \end{bmatrix}$$

• Example 2: Transformation matrix for rotation by an angle θ clockwise about the origin the functional form

$$\left[egin{array}{c} x' \ y' \end{array}
ight] = \left[egin{array}{ccc} \cos heta & \sin heta \ -\sin heta & \cos heta \end{array}
ight] \left[egin{array}{c} x \ y \end{array}
ight]$$

https://neutrium.net/mathematics/basics-of-affine-transformation/ https://en.wikipedia.org/wiki/Transformation_matrix

Function and Differential Calculus:

How to converge for the optimization

1. Function and Loss Function

❖ 1. Function

• Function's definition: a relation between sets that associates to every element of the first set exactly one element of the second set.

1. Function and Loss Function

❖ 2. Composition of Function

■ **Definition of Composite Function :** operation that takes two functions f and g and produces a new function h such that h(x) = g(f(x))

 $g \circ f$, the **composition** of f and g. For example, $(g \circ f)(c) = \#$.

Properties of Function composition :

•
$$f \circ (g \circ h) = (f \circ g) \circ h$$

•
$$g \circ f \neq f \circ g$$

1. Function and Loss Function

❖ 3. Loss Function

- **loss function**: a function that maps an event or values of one or more variables onto a real number intuitively representing some "cost" associated with the event.
- optimization problem → seeking to minimize a loss function.

loss functions and optimization

- step 1: loss function's setting.
- step 2: loss function's partial differential calculation
- step 3: find global minimum of the loss function using gradient descent

❖ 1. Derivative

■ The **derivative** of a function of a real variable measures **the sensitivity to change (gradient)** of the function value (output value) with respect to a change in its argument (input value)

$$gradient = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

$$1. \ \frac{d}{dx}(c) = 0$$

2.
$$\frac{d}{dx}[cf(x)] = cf'(x)$$

3.
$$\frac{d}{dx}[f(x)+g(x)] = f'(x)+g'(x)$$

4.
$$\frac{d}{dx}[f(x)-g(x)] = f'(x)-g'(x)$$

5.
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x)+g(x)f'(x)$$

6.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

7.
$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

$$8. \ \frac{d}{dx}(x^n) = nx^{n-1}$$

❖ 2. Chain Rule

• **Definition**: formula to compute the derivative of a composite function.

Suppose
$$F(x) = f(g(x)),$$

$$F'(x) = f'(g(x))g'(x) < -Lagrange's notation$$

$$rac{dy}{dx} = rac{dy}{du} \cdot rac{du}{dx}$$
 <- Leibniz's notation

❖ 2. Chain Rule

• example : $f = (g(x))^2$, $g = (2x^2 + 3x + 1)$

solution:

$$\frac{df}{dg} = \frac{d}{dg} (g(x))^2 = 2g(x)$$

$$\frac{dg}{dx} = \frac{d}{dx} (2x^2 + 3x + 1) = 4x + 3$$

$$\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx} = 2(2x^2 + 3x + 1)(4x + 3)$$

❖ 2. Chain Rule

■ example : $f = (g(h))^2$, $g = (h(x))^2$, h = (2x + 1)

solution:

$$\frac{df}{dg} = \frac{d}{dg} (g(h))^2 = 2g(h)$$

$$\frac{dg}{dh} = \frac{d}{dh} (h(x))^2 = 2h(x)$$

$$\frac{dh}{dx} = \frac{d}{dx} (2x+1) = 2$$

$$\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dh} \cdot \frac{dh}{dx} = 2(2x+1)^2 * 2(2x+1) * 2$$

$$= 8(2x+1)^3$$

❖ 3. Partial Derivative

- Functions used in machine learning → have multi-variable
- derivative of function having multi-variable → Partial Derivative

예)
$$f(x,y) = x^2 + 3xy + 2y^2$$

$$\frac{\partial f}{\partial x} = 2x + 3y, \qquad \frac{\partial f}{\partial y} = 3x + 4y$$

3. Gradient Descent

❖ 1. Gradient Descent of single variable

3. Gradient Descent

❖ 2. Gradient Descent of multi-variable

Gradient Descent

f(x) = nonlinear function of x

