PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-104750

(43) Date of publication of application: 02.04.2004

(51)Int.Cl.

H04L 9/32

(21)Application number: 2003-022985

(71)Applicant: HITACHI LTD

(22)Date of filing:

31.01.2003

(72)Inventor: MIYAZAKI KUNIHIKO

OMOTO CHIKAHIRO

ITO SHINJI

TANIMOTO KOICHI YOSHIURA YUTAKA

(30)Priority

Priority number : 2002207696

Priority date: 17.07.2002

Priority country: JP

(54) VERIFY METHOD OF DIGITAL SIGNATURE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a verify method which is so constituted that the reliability of signature history may be reflected appropriately, in hysteresis signature which performs verify based on signature history, to provide a mediation method and a mediator instrument which solve dispute involving the correctness of a signature based on the verify method, and to provide a history management method which reduces load of signer's signature history management. SOLUTION: Reliability is set in signature preparation recording which constitutes signature history. The reliability of signature history is computed from the set reliability, and computed reliability is output as the reliability of verify result. The verify method which is so constituted that the reliability of signature history may be reflected appropriately, and the mediation method and the mediator instrument which solve dispute involving the correctness of a signature can be provided. The load of storage of signature history in a signer can

be reduced by installing a signature history storage service instrument.

図8 メッセージと署名生成履歴を 信頼度付きで検証する ヒステリンス署名付きメッセー

LEGAL STATUS

[Date of request for examination]

31.01.2006

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-104750 (P2004-104750A)

(43) 公開日 平成16年4月2日(2004.4.2)

(51) Int.C1.7

H04L 9/32 FI

HO4L 9/00 675B テーマコード (参考)

5J104

審査請求 未請求 請求項の数 8 OL (全 20 頁)

(21) 出願番号

特願2003-22985 (P2003-22985)

(22) 出願日

平成15年1月31日 (2003.1.31) (31) 優先權主張番号 特願2002-207696 (P2002-207696)

(32) 優先日

平成14年7月17日 (2002.7.17)

(33) 優先権主張国

日本国(JP)

(出願人による申告) 国等の委託研究の成果に係る特許 出願(平成14年度通信·放送機構「次世代証拠基盤技 術に関する研究開発」委託研究、産業活力再生特別措置 法第30条の適用を受けるもの)

(71) 出願人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(74) 代理人 100075096

弁理士 作田 康夫

(72) 発明者 宮崎 邦彦

> 神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作所システム開発研究所

(72) 発明者 大本 周広

> 東京都江東区新砂一丁目6番27号 株式 会社日立製作所公共システム事業部内

> > 最終頁に続く

(54) 【発明の名称】ディジタル署名の検証方法

(57) 【要約】

【課題】署名履歴に基づいて検証を行うヒステリシス署 名において、署名履歴の信頼度を適切に反映するように 構成された検証方法と、当該検証方法に基づいて署名の 正当性をめぐる係争を解決する調停方法および調停者装 置を提供する。また署名者の署名履歴管理の負荷を軽減 する履歴管理方法を提供する。

【解決手段】署名履歴を構成する署名生成記録に信頼度 を設定し、設定された信頼度から、署名履歴の信頼度を 算出し、算出された信頼度を検証結果の信頼度として出 力する。署名履歴の信頼度を適切に反映するように構成 された検証方法や、署名の正当性をめぐる係争を解決す る調停方法および調停者装置を提供可能となる。また、 署名履歴保管サービス装置を設けることにより、署名者 における署名履歴の保管の負荷を軽減可能となる。

【選択図】 図8

【特許請求の範囲】

【請求項1】

メッセージに対するディジタル署名を検証するディジタル署名の検証方法であって、

ディジタル署名生成者側の装置において、

メッセージあるいはそのハッシュ値に、ディジタル署名生成者が所有する秘密鍵を作用させ、当該メッセージに対するディジタル署名を生成する署名生成ステップと、

生成したディジタル署名とメッセージとを含むディジタル署名付きメッセージを配布するとともに、当該ディジタル署名付きメッセージのログデータをログリストに登録する登録ステップと、を有し、

ディジタル署名検証者側の装置において、

配布されたディジタル署名付きメッセージを、検証対象ディジタル署名付きメッセージと して受け付ける検証対象受付ステップと、

前記検証対象ディジタル署名付きメッセージを配布したディジタル署名者のログリストを 取得する履歴取得ステップと、

前記検証対象ディジタル署名付きメッセージのログデータが、前記ログリストに登録されているか否かを調べる履歴有無検証ステップとを備え、

登録されている場合は、さらに、前記ログリストに含まれるログデータの信頼度を設定する個別信頼度設定ステップと、

設定された個別信頼度から前記ログリストの信頼度を算出する履歴信頼度算出ステップと

当該検証対象ディジタル署名付きメッセージが前記ディジタル署名生成者側装置により配布されたものであることを、信頼度付きで認証する検証ステップと、を有することを特徴とするディジタル署名の検証方法。

【請求項2】

メッセージに対するディジタル署名に関する係争を解決する調停方法であって、

調停において、

調停依頼者装置から調停対象となるディジタル署名付きメッセージを受け付ける要求受付 ステップと、

前記調停対象となるディジタル署名付きメッセージに関するログリストを入手する履歴入 手ステップと、

請求項1記載の検証ステップと、

前記検証ステップの出力である信頼度に基づき、調停結果を出力する調停ステップと、 を有することを特徴とする調停方法。

【請求項3】

ディジタル署名の検証装置であって、

検証対象となるディジタル署名付きメッセージを受け付ける検証対象受付手段と、

前記検証対象ディジタル署名付きメッセージを配布したディジタル署名者のログリストを取得する履歴取得手段と、

前記検証対象ディジタル署名付きメッセージのログデータが、前記ログリストに登録されているか否かを調べる履歴有無検証手段と、

前記登録がされている場合は、前記ログリストに含まれるログデータの信頼度を設定する 個別信頼度設定手段と、

設定された個別信頼度から前記ログリストの信頼度を算出する履歴信頼度算出手段と、

当該検証対象ディジタル署名付きメッセージが前記ディジタル署名生成者側装置により配布されたものであることを、信頼度付きで認証する検証手段と、

を備えることを特徴とするディジタル署名の検証装置。

【請求項4】

メッセージに対するディジタル署名に関する係争を解決する調停者装置であって、

調停対象となるディジタル署名付きメッセージを受け付ける要求受付手段と、前記調停対 象となるディジタル署名付きメッセージに関するログリストを取得する履歴取得手段と、 10

20

30

40

20

前記調停対象ディジタル署名付きメッセージのログデータが、前記ログリストに登録されているか否かを調べる履歴有無検証手段と、

前記登録がされている場合は、前記ログリストに含まれるログデータの信頼度を設定する 個別信頼度設定手段と、

設定された個別信頼度から前記ログリストの信頼度を算出する履歴信頼度算出手段と、

前記信頼度に基づき、調停結果を出力する調停手段と、

を備えることを特徴とする調停者装置。

【請求項5】

ディジタル署名生成者が使用するディジタル署名生成者側装置がメッセージに対して作成するディジタル署名の生成履歴であるログリストを、ログリスト保管側装置において管理する方法であって、

前記ディジタル署名生成者側装置において、

前記ログリスト保管者側装置に対して、前記ログリストの登録を要求するステップを有し

前記ログリスト保管者側装置において、

前記ディジタル署名生成者側装置から前記ログリストを受け付けるステップと、

当該ログリストまたはログリスト登録要求データに付された前記ディジタル署名者のディジタル署名の有効性を検証するステップと、

受け付けた前記ログリストと、登録されている前記ディジタル署名者の登録済みログリストとの整合性を検証するステップと、

前記整合性を確認した前記ログリストを前記ディジタル署名者の前記登録済みログリスト に追記するステップと、

を有することを特徴とするログリストの管理方法。

【請求項6】

請求項5に記載のログリストの管理方法であって、

前記ログリスト保管者側装置において、

前記整合性を確認し、前記ログリストを前記ディジタル署名者の前記登録済みログリストに追記したこと前記ディジタル署名者側装置へ通知するステップと、

前記ディジタル署名者側装置において、

前記ログリストに含まれる最新のログデータを除く他のログデータを削除するステップと 3

を有することを特徴とするログリストの管理方法。

【請求項7】

ディジタル署名生成者が使用するディジタル署名生成者側装置が、メッセージに対して作成してディジタル署名受信者側装置へ送信したディジタル署名を、ログリスト保管者側装置が検証するディジタル署名の検証方法であって、

前記ディジタル署名生成者側の装置において、

メッセージあるいはそのハッシュ値に、前記ディジタル署名生成者が所有する秘密鍵を作用させ、当該メッセージに対するディジタル署名を生成する署名生成ステップと、

生成した前記ディジタル署名と前記メッセージとを含むディジタル署名付きメッセージを 前記ディジタル署名受信者側装置へ送信するとともに、当該ディジタル署名付きメッセー ジのログデータをログリストに登録する登録ステップと、

前記ログリスト保管者側装置に対して、前記ログリストの登録を要求するステップを有し

前記ディジタル署名受信者側装置において、

前記ディジタル署名付きメッセージを受信するステップと、

前記ログリスト保管者側装置に対して、当該ディジタル署名付きメッセージの検証代行を 依頼するステップを有し、

前記ログリスト保管者側装置において、

前記ディジタル署名生成者側装置から前記ログリスト登録要求を受け付けるステップと、50

20

30

40

50

前記ログリスト登録要求に含まれる前記ログリストまたは当該ログリスト登録要求に付された、前記ディジタル署名者が生成したディジタル署名の有効性を検証するステップと、受け付けた前記ログリストと、既に登録済みの当該ディジタル署名者のログリストとの整合性を検証するステップと

前記ディジタル署名受信者側装置から前記ディジタル署名受信者側装置が受信した前記ディジタル署名付きメッセージの検証依頼を受け付けるステップと、

前記登録済みの前記ディジタル署名者のログリストを用いて、当該検証を依頼された前記ディジタル署名付きメッセージが、前記ディジタル署名生成者側装置により生成されたものであることを認証する検証ステップと、

を有することを特徴とするログリストの管理方法。

【請求項8】

ディジタル署名生成者が使用するディジタル署名生成者側装置が、メッセージに対して作成してディジタル署名受信者側装置へ送信したディジタル署名を検証するログリスト保管者側装置であって、

前記ディジタル署名生成者側装置からログリスト登録要求を受け付ける手段と、

前記ログリスト登録要求に含まれる前記ログリストまたは当該ログリスト登録要求に付された、前記ディジタル署名者が生成したディジタル署名の有効性を検証する手段と、

受け付けた前記ログリストと、既に登録済みの当該ディジタル署名者のログリストとの整 合性を検証する手段と

前記ディジタル署名受信者側装置から前記ディジタル署名受信者側装置が受信した前記ディジタル署名付きメッセージの検証代行依頼を受け付ける手段と、

前記登録済みの前記ディジタル署名者のログリストを用いて、当該検証代行を依頼された前記ディジタル署名付きメッセージが、前記ディジタル署名生成者側装置により生成されたものであることを認証する検証手段と、

を有することを特徴とするログリスト保管者側装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は情報セキュリティに関する。

[0002]

【従来の技術】

電子署名の安全性を高める技術として、署名生成時にその記録を履歴として残しておき、 また、新たに署名を生成する際には、その時点における履歴データを反映させることによ り、署名間に論理的な連鎖関係を構築する技術(これをヒステリシス署名と呼ぶ)がある

[0003]

上記ヒステリシス署名技術については、特許文献1などに開示されている。

[0004]

また、信頼できる第三者機関が文書の作成、送信等の否認防止のためのサービスを提供する技術が、たとえば、非特許文献 1 などに開示されている。

[0005]

【特許文献1】

特開2001-331104号公報

【非特許文献1】

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission), "INTERNATIONAL STANDARD ISO/IEC 13888-2 Information technology — Security techniques — Non-repudiation — Part 2: Mechanisms using

40

50

symmetric techniques", first edition, ($\mathcal{A}\mathcal{A}$), 1998.4.1

[0006]

【発明が解決しようとする課題】

上記ヒステリシス署名技術では、署名の検証を行う際に、当該に関する署名履歴を利用している。したがって、この署名履歴の信頼度を適切に反映するように構成されたヒステリシス署名の検証方法が望まれている。

[00007]

また、上記ヒステリシス署名により生成された署名履歴を長期にわたり保管することは、 一般的な署名者や、署名者側装置にとっては負担が大きい。したがって、一般利用者の署 名履歴保管の負荷を軽減する保管方法が望まれている。

[0008]

また、非特許文献 1 は、信頼できる第三者機関に対し送られてきた保証対象データに対して、その存在を保証するトークンを生成して返送する否認防止サービスを開示しており、データの保管については述べていない。また、上記サービスは、ヒステリシス署名の有効性を保証するためのサービスとしては、保証対象データとなる署名履歴のチェック方法などに不十分な点がある。

[0009]

【課題を解決するための手段】

本発明は、署名履歴の信頼度を適切に反映するように構成されたヒステリシス署名の検証 20 方法を提供する。

[0010]

また、本発明は、署名者側装置に代わり署名履歴(署名生成履歴ともいう)を長期にわたり信頼性の高い状態で保管し、署名者側装置の署名履歴保管の負荷を軽減する署名履歴保管サービスを実現する技術を提供する。

[0011]

さらに、署名履歴保管サービス提供者側装置は、署名者側装置から登録を要求された署名履歴データに対して、登録要求時点において、当該署名者側装置が過去に生成し署名履歴保管サービス提供者側装置が既に保管済みのデータとの整合性を検証し、または、当該署名者用の公開鍵証明書の有効性検証を含む署名検証処理を行うことにより、その時点での署名履歴の正当性を確認してから、実際に署名履歴を保管する。これらのどちらか、または、両方のステップによって、たとえ長期経過後であってもヒステリシス署名の有効性をより確実に検証可能となる。

[0012]

また、本発明は、ヒステリシス署名つきメッセージを保持する利用者である署名検証代行依頼者からの依頼をうけ検証処理を代行する、署名検証代行サービスを実現する技術を提供する。

[0013]

本発明の一態様によれば、ヒステリシス署名検証において、検証に利用される署名生成履歴 (ログリストという) に含まれる各署名生成記録 (ログデータという) に対し個別信頼度を設定し、個別信頼度から署名生成履歴の信頼度を算出し、これを検証結果の信頼度として出力する、ヒステリシス署名の検証方法を提供する。

[0014]

また本発明の一態様によれば、ある署名の真偽をめぐって二者(あるいはそれ以上)の間で係争が起こったときに、上記ヒステリシス署名の検証方法にしたがって出力された検証結果の信頼度に基づき、調停結果を出力する調停方法を提供する。

[0015]

また本発明の他の態様によれば、署名履歴保管サービスが提供される。このサービスによれば、署名者は、作成したログデータを、ログデータが作成されるたび、あるいは、いくつかのログデータが作成された後の定期的あるいは不定期的なある時点に、署名履歴保管

サービス提供者側装置である履歴管理装置にログデータを預託することができる。また、依頼を受けた署名履歴保管サービス提供者は、履歴管理装置を用いて、預託されたログデータの正当性(既預託分との整合性、預託時点における署名の有効性、など)を検証し保管する。

[0016]

また本発明の他の態様によれば、さらに、署名検証代行サービス、が提供される。このサービスによれば、ヒステリシス署名つきメッセージの所有者が使用する署名検証代行依頼者側装置からの署名検証代行依頼に応じて、署名履歴保管サービス提供者が、自らの履歴管理装置が保持する、当該ヒステリシス署名つきメッセージの署名者の署名生成履歴を用いて、ヒステリシス署名つきメッセージの正当性を検証する。

[0017]

なお、本発明において、メッセージとは、ディジタル署名を施す対象となるディジタルデータを指す。

[0018]

【発明の実施の形態】

図1は、本発明の第1実施形態が適用されたシステムの概略図である。

[0019]

図示するように、ネットワーク 5 を介して、ヒステリシス署名を生成する署名者が利用する装置である署名者装置 1 と、前記署名者装置 1 において生成された署名生成履歴を管理する履歴管理装置 2 と、前記署名者が生成した署名の正当性に関し調停を依頼する調停依頼者が利用する調停依頼者装置 3 と、依頼に応じて署名の正当性判定を行い調停する調停者装置 4 とが接続されている。なお図 1 には、それぞれの装置が一台ずつ存在する場合を示しているが、一般には複数存在していてよい。

[0020]

図2は、署名者装置1の概略構成を示した図である。

[0021]

署名者装置1は、CPU11と、CPU11のワークエリアとして機能するRAM12と、ハードディスク装置などの外部記憶装置13と、CD-ROMやFDなどの可搬性を有する記憶媒体15からデータを読取る読取り装置14と、キーボードやマウスなどの入力装置16と、ディスプレイなどの表示装置17と、ネットワークを介して他の装置と通信を行うための通信装置18と、上述した各構成要素間のデータ送受を司るインターフェイス20を備えた、一般的な構成を有する電子計算機21で構築することができる。

[0022]

署名者装置1の外部記憶装置13に格納されるのは、メッセージに対するディジタル署名を生成し、生成されたディジタル署名(ヒステリシス署名)を付したヒステリシス署名付きメッセージを配布し、また、履歴管理装置2に対し署名生成記録の登録を依頼するための、署名付きメッセージ作成PG(プログラム)131である。これは、RAM12上にロードされ、CPU11により、署名付きメッセージ作成処理部111というプロセスとして具現化される。

[0023]

履歴管理装置2、調停依頼者装置3、調停者装置4も署名者装置1と同様の構成を備える

[0024]

履歴管理装置2の外部記憶装置13に格納されるのは、署名者装置1から登録を依頼された署名生成記録を受信し、当該署名生成記録を署名履歴として登録する履歴登録PG(プログラム)132と、署名者装置1や、調停依頼者装置3や、調停者装置4からの要求に応じて、自履歴管理装置2が管理する署名履歴を送信する履歴送信PG(プログラム)133である。これらは、RAM12上にロードされ、CPU11により履歴登録処理部112や履歴送信処理部113というプロセスとして具現化される。

[0025]

40

10

調停依頼者装置3の外部記憶装置13に格納されるのは、調停対象となるヒステリシス署名付きメッセージに関する署名履歴を履歴管理装置2に要求し受信する履歴要求PG(プログラム)134と、調停対象となるヒステリシス署名付きメッセージとそれに関する署名履歴を調停者装置4に送信し、調停を依頼する調停依頼PG(プログラム)135である。これは、RAM12上にロードされ、CPU11により履歴要求処理部114や調停依頼処理部115というプロセスとして具現化される。

[0026]

調停者装置4の外部記憶装置13に格納されるのは、各調停依頼者装置3からヒステリシス署名付きメッセージとそれに関する署名履歴を受信し、最も信頼度の高い調停依頼者を判定する調停PG(プログラム)136である。これらは、RAM12上にロードされ、CPU11により調停処理部116というプロセスとして具現化される。

10

[0027]

各プログラムは、予め外部記憶装置13に格納されていても良いし、必要に応じて、読取り装置14を介して記憶媒体15から、または通信装置18とネットワークを介して、他の装置から導入されても良い。

[0028]

本実施例においては、署名者装置1、履歴管理装置2、調停依頼者装置3、調停者装置4 を、それぞれ独立した装置としているが、これと異なっていてもよい。たとえば、署名者 装置1の機能と履歴管理装置2の機能が同一装置上で実現されていてもよい。この場合、 署名者の署名生成記録を署名者自身によって管理できるため、履歴管理装置2に対し署名 生成記録の登録を依頼する必要がなくなる。

20

[0029]

あるいは、履歴管理装置2の機能と調停者装置4の機能を同一装置上に実現してもよい。この場合、調停依頼者が調停者装置4に対し、調停を依頼するときに、事前に調停対象となるヒステリシス署名付きメッセージに関する署名履歴を入手する必要がなくなるため、効率的である。また、通常、取引の際には、双方向でデータがやり取りされることを考えると、同一人が、ある場面においては署名者であり、別の場面においては調停依頼者となることも考えられる。このような場合には、署名者装置1の機能と調停依頼者装置3の機能を同一装置上に実現すればよい。

[0030]

30

なお、本実施例においては、署名者装置1が複数台存在する場合には、履歴管理装置2は、それら複数の署名者装置1の署名生成記録を管理するようにしてもよい。このような複数の署名者装置1の署名生成履歴を管理する場合については、後述の第2実施形態の説明において、署名履歴保管サービス装置として、詳しく述べる。

[0031]

図3は、署名者装置1の署名付きメッセージ作成PG131の処理フローを示す。

ステップ301:はじめ。

ステップ302:署名対象メッセージを作成する。

ステップ303:署名対象メッセージに対しヒステリシス署名を生成する。

ステップ304:ステップ303で生成された署名に関する署名生成記録 (ログデータ) を履歴管理装置2に送る(登録を依頼する)。

ステップ305: (必要であれば) ヒステリシス署名付きメッセージを公開鍵証明書をつけて受信者装置に送る。

ステップ306:おわり。

[0032]

なお、ステップ 3 0 5 における受信者装置は、図 1 には図示されていない。たとえば、署名対象メッセージが、取引契約書である場合、当該契約書の受け取り手である取引相手の装置がこれに該当する。受信者装置の概略構成は、図 2 と同様でよい。また、調停依頼者が受信者となり、調停依頼者装置と受信者装置とが同じであっても良い。

[0033]

また、ステップ303におけるヒステリシス署名の生成は、具体的には以下に示す「ヒステリシス署名生成処理」の手順に従って実現可能である。なお説明にあたっては、以下の記法を用いる。また、署名者をAliceと称することにする。

[0034]

「記法」

Sign_K() : 署名生成鍵 K を用いた、従来の電子署名方法 (例: R S A 署名、

DSA署名、ECDSA署名など)における署名生成処理

Verify_K() : 署名検査鍵 Kを用いた、従来の電子署名方法における署名検査処理

h () : 一方向性ハッシュ関数 (例: SHA-1ハッシュ関数、MD 5 ハッシュ関数 10 など)

A | | B : 二つのデータA, Bを連結したデータ

Ks: Aliceの署名生成鍵

Kv: Aliceの署名検査鍵

n : Aliceがヒステリシス署名生成を行った回数

IV: 初期値

Mn: n番目の署名対象メッセージ

Sn: n番目のヒステリシス署名付きメッセージ

Rn: m 番目のヒステリシス署名生成記録

Hn: n回目のヒステリシス署名生成を行った後の署名生成履歴(1回目からn20回目までのヒステリシス署名生成記録を連結したデータ。

[0035]

「ヒステリシス署名生成処理」

ステップ 3 0 3 1 : (署名生成フェーズ)署名対象メッセージMnのハッシュ値h (Mn)を算出する。

ステップ 3 0 3 2 : 保存してある署名生成履歴 H n-1 に含まれる最新の署名生成記録 R n-1 のハッシュ値 h (R n-1) を算出する。ただし、1 回目のヒステリシス署名生成処理においては、以降の手順でハッシュ値 h (R n-1) の代わりに初期値 I V を用いる

ステップ 3 0 3 3 : ステップ 3 0 3 1 、 3 0 3 2 で算出した二つのハッシュ値を連結した 3 データ

h (Mn) | | h (Rn-1) に対して、署名生成鍵 Ksを用いて従来の署名生成処理を行い、電子署名付きメッセージ

Sign_Ks (h (Mn) | h (Rn-1)) を生成する。

ステップ3034:署名対象メッセージMn,最新の署名生成記録のハッシュ値h(Rn-1),および電子署名付きメッセージ

S i g n _ K s (h (M n) | | h (R n - 1)) を連結し、ヒステリシス署名付きメッセージ

Sn=Mn | | h (Rn-1) | | Sign_Ks (h (Mn) | | h (Rn-1)) を 生成する。

ステップ 3 0 3 5 : (署名生成履歴更新フェーズ) 二つのハッシュ値 h (M n), h (R n - 1) と電子署名付きメッセージ

Sign_Ks (h (Mn) | | h (Rn-1))とを連結し、署名生成記録

 $Rn = h (Mn) | | h (Rn-1) | | Sign_Ks (h (Mn) | | h (Rn-1)) を生成する。$

ステップ3036:保存してある署名生成履歴 Hn-1と署名生成記録 Rnとを連結し、署名生成履歴

 $Hn = Hn - 1 \mid Rn$ を生成して保存する。

[0036]

なお上記ステップ3031では、署名対象メッセージMnのハッシュ値h(Mn)を算出 5

20

30

しているが、署名生成処理Sign_K()が許容するのであれば、以降の処理で、ハッシュ値のかわりに、署名対象メッセージMnそのものを用いてもよい。署名生成処理Sign_K()が許容する例としては、たとえば、入力データ長にあわせて署名生成処理Sign_K()を繰り返し適用することにより任意長のデータを許容可能とする方法などがある。

[0037]

また、上記のヒステリシス署名生成方法では、Aliceがヒステリシス署名生成を行った回数n、つまり、ある署名生成記録が何番目の署名生成記録であるかを示すインデックスが、署名生成記録に明示的には含まれていない。

[0038]

しかし、以下に示す方法を用いて、上記インデックスが含まれるようにしてもよい。たとえば、ステップ3033での署名対象メッセージとして、

h (Mn) | | h (Rn-1) の代わりに、

h (Mn) | | h (Rn-1) | | nを使うようにし、ステップ 3 0 3 4 でのヒステリシス署名付きメッセージ

Sn=Mn | | h (Rn-1) | | Sign_Ks (h (Mn) | | h (Rn-1)) の代わりに、

Sn=Mn | | h (Rn-1) | | Sign_Ks (h (Mn) | | h (Rn-1) | | n) | | nとし、また、署名生成記録

R n = h (M n) | | h (R n - 1) | | S i g n _ K s (h (M n) | | h (R n - 1)) の代わりに、

 $Rn = h (Mn) | | h (Rn - 1) | | Sign_Ks (h (Mn) | | h (Rn - 1) | | n) | | n \ge th ts$

上記のように処理することにより、署名検証処理等において、署名生成履歴中から必要な 署名生成記録を検索することが容易になる。

[0039]

図4は、履歴管理装置2の履歴登録PG132の処理フローを示す。

ステップ401:はじめ。

ステップ 4 0 2 : 署名者装置 1 から署名生成記録を受信する (登録依頼を受け付ける)。 (署名者を A l i c e とする)

ステップ403: すでに登録済みのAliceの署名生成履歴 (ログリスト) との整合性 をチェックし整合していればステップ405へ。そうでなければ404へ。

ステップ404:「登録失敗」という結果を署名者装置1に返し、おわり。

ステップ 4 0 5 : ステップ 4 0 2 で受け付けた署名生成記録を A l i c e の署名生成履歴に追記する。

ステップ406:「登録成功」という結果を署名者装置1に返す。

ステップ407:おわり。

[0040]

なお、ステップ 4 0 3 における整合性のチェックは、具体的には以下のようにして実現可能である。なお、ステップ 4 0 2 で受信した署名生成記録 H n とし、ステップ 4 0 3 の時点ですでに登録済みの A 1 i c e の署名生成履歴を H n - 1 とする。

[0041]

まず、署名生成履歴をHn-1のなかの最新の署名生成記録Hn-1のハッシュ値h(Hn-1)を算出する。次に、算出したハッシュ値h(Hn-1)が、ステップ 402で受信した署名生成記録Hnの中のハッシュ値h(Hn-1)と一致するか否かを確認する。一致すれば、整合していると判定し、そうでなければ整合していないと判定する。

[0042]

図5は、履歴管理装置2の履歴送信PG133の処理フローを示す。

ステップ501:はじめ。

ステップ 5 0 2 : 履歴送信要求 (署名者名、要求履歴範囲 (何番目から何番目までか) な 50

どを含む)を受け付ける。

ステップ 5 0 3 : 要求を受け付けた範囲の署名生成記録からなる署名生成履歴を要求者に送信する。

ステップ504:おわり。

[0043]

図6は、調停依頼者装置3の履歴要求PG134の処理フローを示す。

ステップ601:はじめ。

ステップ 6 0 2 : 調停依頼対象となるヒステリシス署名付きメッセージに関する署名生成履歴の送信を、履歴管理装置 2 に要求する。(当該ヒステリシス署名の署名者名、要求範囲(例: 当該ヒステリシス署名に関する署名生成記録から、現時点での最新の署名生成記録までの全ての署名生成記録からなる署名生成履歴)を送る。)

ステップ603:履歴管理装置2から、署名生成履歴を受信する。

ステップ604:おわり。

[0044]

図7は、調停依頼者装置3の調停依頼PG135の処理フローを示す。

ステップ701:はじめ。

ステップ 7 0 2 : 調停者装置 4 に対し、調停依頼対象となるヒステリシス署名付きメッセージと、履歴管理装置 2 から入手した、当該ヒステリシス署名付きメッセージに関する署名生成記録を含む署名生成履歴を送信し、調停を依頼する。

ステップ 7 0 3 : 調停結果を受信する。

ステップ704:おわり。

[0045]

図8は、調停者装置4の調停PG136の処理フローを示す。

ステップ801:はじめ。

ステップ802:ヒステリシス署名付きメッセージに関する係争を行っている調停依頼者 が使用する調停依頼者装置3 (一般には複数)から調停要求を受け付ける。

ステップ803: それぞれの調停依頼者装置3から受け付けたヒステリシス署名付きメッセージと署名生成履歴を信頼度付きで検証する。ステップ804: もっとも高い信頼度となったヒステリシス署名付きメッセージを提出した調停依頼者の名前を、調停結果として出力する。 (調停依頼者装置3達に送信する)

ステップ805:おわり。

[0046]

なお、上記ステップ803における検証処理は、具体的には以下に示す「ヒステリシス署 名検証処理」の手順に従って実現可能である。

[0047]

「ヒステリシス署名検証処理」

まず、ヒステリシス署名付きメッセージSnの検証を、次のように行う。

ステップ 8 0 3 1 : ヒステリシス署名付きメッセージ S n に含まれる署名対象メッセージ M n のハッシュ値 h (M n) を算出する。

ステップ8032:ステップ8031で算出したハッシュ値 h (Mn) と、ヒステリシス 署名付きメッセージSnに含まれるハッシュ値 h (Rn-1) および電子署名付きメッセ ージSignKs (h (Mn) | | h (Rn-1))

と、Alice の公開鍵証明書に含まれる署名検査鍵Kvとを用いて従来の署名検証処理を行う。検証できなければ検証失敗として終了。

ステップ8033: A l i c e の署名生成履歴 H n のなかに、検証対象となっているヒステリシス署名付きメッセージに対応する署名生成記録

Rm = h (Mm) | | h (Rm - 1) | | SignKs (h (Mn) | | h (Rm - 1)

が含まれていることを確認する。確認できなければ、検証失敗として終了。

ステップ8034: k = m とし、以下の署名生成履歴 H n の整合性検証を行う。

20

10

30

20

40

50

(i)署名生成履歴Hnに含まれる署名生成記録Rk-1のハッシュ値h(Rk-1)を算出する。

(ii)署名生成記録Rkの中のハッシュ値h(Rk-1)が、上で算出したh(Rk-1)と同じ値であることを確認する。確認できなければ、ステップ8035へ。

ステップ8035:署名生成履歴 H n のうち整合性が確認できた署名生成記録 R m, , R k について、それぞれの信頼度を設定する。

ステップ8036:ステップ8035で設定された各署名生成記録の信頼度から、検証対象となる署名に対応する署名生成記録Rmの信頼度を算出し、これを検証結果(「検証成功」)の信頼度として出力する。

[0048]

なお、上記のステップ 8 0 3 5 で設定する署名生成記録の信頼度は、たとえば、次に述べる個別信頼度とすればよい。

[0049]

署名生成記録 R i の個別信頼度とは、R i の検査手順によって決まる値

f_rely(Ri) = (pind(Ri), qind(Ri), tind(Ri)) のことである。ただし、

pind (Ri), qind (Ri), tind (Ri) は,他の署名生成記録とは独立に,以下で定義される。

pind (Ri):Ri が正当であるとき、当該検査手順によって「正当」と判定される確率

(1/2 <= pind(Ri) <= 1)

qind(Ri):Ri が偽造であるとき、当該検査手順によって「正当」と判定される確率

(0 < = q i n d (R i) < = 1/2)

tind (Ri):当該検査手順によるRi の判定結果 (Ri が「正当」と判定されたときtind (Ri) = 1, Ri が「偽造」と判定されたときtind (Ri) = 0)

なお、判断材料がない等の理由により、ある署名生成記録 R i の検査ができない場合には、個別信頼度は、

 $f_rely(Ri) = (1/2, 1/2, 1)$ と設定するものとする。

[0050]

また、上記のステップ 8 0 3 6 で算出する検証対象となる署名に対応する署名生成記録 Rmの信頼度とは、たとえば次にのべる署名生成履歴の信頼度とすればよい。

[0051]

署名生成履歴 Hn の署名生成記録 Rm に関する信頼度とは、Rm が実際に正当である確率 f_post_rely (Rm) のことである。 f_post_rely (Rm) については、次の命題が成り立つ。

[0052]

(命題1)

f _ p o s t _ r e l y (R m) > = Π _ { i = m, , , k } P i n d (R i) / (Π _ { i = m, , , k } P i n d (R i) + Π _ { i = m, , , k } Q i n d (R i)) \cdots (式 1)

(ただし、 Π _{i=m,,,k} Xi は、XmからXkまでの総積をあらわす。すなわち、 Π _{i=m,,k} Xi = Xm×…×Xkである。Pind (Ri)は、tind (Ri) = 1 の時はpind (Ri)、tind (Ri) = 0 の時は1-pind (Ri)で、Qind (Ri)は、tind (Ri) = 1 の時は1-pind (Ri) = 0 の時は1-pind (Ri) とする。)が成り立つ。

[0053]

(証明の概略) 今、署名生成記録 R i と R i + 1 が連鎖しているとし、それぞれ適切な検査手順によって正当であると判定されたとする。すなわち、

 $f_rely(Rj) = (pind(Rj), qind(Rj), 1)$ (j = i, i+1) であったとする。このとき、Ri+1が実際に正当である確率を、

f_post_rely(Ri+1) と書くと、他に条件がなければ、

[0054]

一方、Ri が実際に正当である確率を考える。Ri はRi+1 と連鎖しており、また、Ri+1 が実際に正当である確率が分かっている。ハッシュ関数の一方向性から、Ri が実際に正当であることの事前確率

を満たす。したがって、Ri が実際に正当である確率

f_post_rely(Ri)は、

f_post_rely(Ri) = f_pri_rely(Ri) pind(Ri)
/ (f_pri_rely(Ri) pind(Ri) + (1 - f_pri
_rely(Ri)) qind(Ri))>= f_post_rely(Ri+1)
pind(Ri) / (f_post_rely(Ri+1) pind(Ri)
+ (1 - f_post_rely(Ri+1)) qind(Ri)) = pin
d(Ri+1) pind(Ri) / (pind(Ri+1) pind(Ri)
+ qind(Ri+1) qind(Ri))

となる。これを繰り返し適用すればよい。(証明終わり)

命題1より、署名生成記録Rmの信頼度は、上記(式1)の右辺の値で下から評価できることが分かる。したがって、たとえば、上記のステップ8036で算出する検証対象となる署名に対応する署名生成記録Rmの信頼度を、上記(式1)の右辺の値とすれば、署名の検証結果を適切に評価することが可能となる。

[0055]

本実施例に述べた信頼度付きヒステリシス署名検証方法に従えば、署名履歴の信頼度を適切に判定した検証方法が実現可能となる。また、この検証方法に基づいて判定を行うことにより、ヒステリシス署名付きメッセージをめぐる係争を解決する調停方法および調停者装置を提供可能となる。

[0056]

次に、本発明を署名履歴サービスへ適用する第2実施形態について説明する。

[0057]

本実施形態におけるシステムの概略図を図1に示す。ただし、本実施形態においては、第1実施形態における履歴管理装置2は各署名者装置1と同一の装置の上で実現されているものとする。また、第1実施形態では説明しなかった、複数の署名者装置1から履歴登録要求を受け付けて署名履歴を保管と管理を行う署名履歴保管サービス装置6と、署名履歴保管サービス装置6と、署名履歴保管サービス装置6に署名者装置1から受信したヒステリシス署名つきメッセージの署名検証代行を依頼する検証代行依頼者装置7とが、履歴管理装置2とは別に、ネットワーク5を介して接続されている。なお、調停依頼者装置3と調停者装置4については、本実施形態では説明しないが、必要に応じて、たとえば第1実施形態と同様の調停者装置を設けてもよい。

[0058]

図 9 は、本実施形態における署名履歴保管サービス装置 6 の構成を示した図である。基本的な構成は、第 1 実施形態における履歴管理装置 2 の構成と同様である。

[0059]

署名履歴保管サービス装置6の外部記憶装置13に格納されるのは、署名者装置1から登

録を依頼された署名生成記録(ログデータともいう)を受信し、当該署名生成記録を署名生成履歴(ログリストともいう)として登録する履歴登録プログラム(以下、プログラムをPGと記す)901と、署名者装置1などからの要求に応じて、当該署名履歴保管サービス装置6が管理する署名履歴を送信する履歴送信PG902と、ヒステリシス署名つきメッセージを保持する署名検証代行依頼者からの要求に応じて、署名検証処理を代行して行う署名検証代行PG903と、署名管理装置の利用者の登録処理を行う、利用者登録PG904である。なお、履歴送信PG902は、第1実施形態における履歴送信PG133と基本的に同様である。履歴登録PG901と署名検証代行PG903については、以下の説明の中で詳細に述べる。

[0060]

上記各プログラムは、RAM12上にロードされ、CPU11が実行することにより履歴登録処理部911や履歴送信処理部912や署名検証代行処理部913や利用者登録処理部914というプロセスとして具現化される。外部記憶装置13には、さらに登録を依頼された署名生成記録を格納するための履歴格納領域905が設けられ、署名者ごとに署名履歴(たとえば、ユーザA署名履歴9051、ユーザB署名履歴9052)が格納される

[0061]

本実施例における署名者装置1の構成は、基本的に第1実施形態の署名者装置1の構成と同様であるが、外部記憶装置13に格納されるプログラムとして、履歴登録要求PG13 7が追加されている。

[0062]

検証代行依頼者装置7も署名者装置1と同様の構成を備える。その外部記憶装置13に格納されるのは、当該装置7が保持するヒステリシス署名付きメッセージの検証を署名履歴保管サービス装置6に依頼する署名検証要求PG906である。

[0063]

署名履歴保管サービス装置 6 と検証代行依頼者装置 7 が備える各プログラムは、予め外部記憶装置 1 3 に格納されていても良いし、必要に応じて、読取り装置 1 4 を介して記憶媒体 1 5 から、または通信装置 1 8 と通信媒体(すなわちネットワーク 5 またはそれを伝搬する搬送波)により、他の装置から導入されても良い。

[0064]

図10は、本実施例における、署名者装置1が、履歴保管サービスを提供する署名履歴保管サービス装置6に対し、履歴登録を依頼するときの処理フローを示したものである。以下のフローの内、ユーザAの署名者装置1の処理は、履歴登録要求PG137の実行により、また、署名履歴保管サービス装置6の処理は、履歴登録PG901の実行により実現される。なお以下では履歴登録を依頼する署名者をユーザAとする。

(ユーザAの署名者装置1の処理)

ステップ10001:はじめ。

ステップ10002:登録依頼の意思を示す電子データである「預託依頼書」を作成。

[0065]

預託依頼書は、登録依頼の意思を示す電子データの他、さらに、時刻情報、ユーザ名、署名者装置1を識別する情報、署名者装置1のネットワークへの接続状況を示す情報(例:IPアドレス)、登録依頼の対象となる署名生成記録の個数や何番目の署名生成記録であるかを示す情報、などを含んで構成されてもよい。

ステップ10003:「預託依頼書」に対しヒステリシス署名を生成する。(注:この時点での最新の署名記録、つまりこのステップで生成した「預託依頼書」に対する署名に対応する署名記録がn番目の署名記録であったとする。また前回履歴登録依頼をしたときに生成した「預託依頼書」に対応する署名記録がn'(<n)番目の署名記録であったとする。)

ステップ10004:ヒステリシス署名付き預託依頼書、預託依頼書の署名生成鍵に対応する公開鍵証明書、n'+1番目からn番目までの署名生成記録が含まれた署名履歴を、

10

20

30

署名管理装置2に送る。

(署名履歴保管サービス装置6の処理)

ステップ10005:送られてきた公開鍵証明書の有効性を検証する(有効なCA(認証局)の署名が付与されているか、有効期間内であるか、CA(認証局)によって無効化されていないか、など)。

ステップ10006:送られてきたヒステリシス署名付き預託依頼書が公開鍵証明書に含まれるユーザAの公開鍵によって正しく検証されるかをチェックする。(ステップ803 2に示した検証処理が正しく行えるかをチェックする。)

ステップ $1\ 0\ 0\ 0\ 7$: 送られてきた署名履歴の整合性検証をチェックする。(ステップ $8\ 0\ 3\ 4$ の処理をm=n ' $+\ 1$ として行う。)

ステップ $1\ 0\ 0\ 0\ 8$: 既に保管済みのユーザ A の署名 履歴 (n '番目までの署名 履歴) との整合性をチェックする。(署名生成記録 R n 'のハッシュ値 h (R n ')を算出し、署名生成記録 R n '+ 1 の中のハッシュ値 h (R n ')が、算出した h (R n ')と同じ値であることを確認する。)

ステップ 1 0 0 0 9 : ステップ 1 0 0 0 5 ~ 1 0 0 0 8 のチェックが O K であれば送られてきた署名履歴をユーザ A 署名履歴 9 0 5 1 に追記する。

ステップ10010:ユーザAに対し、署名履歴(n '+1~n番目の署名生成記録)を受け付け、整合性を確認し、署名履歴9051に追記した旨記された受付確認データ送信する。

(ユーザAの署名者装置1の処理)

ステップ10011:受付確認データを受信する。

ステップ10012: n'+1~n-1番目の署名生成記録を削除する。

ステップ10013:おわり。

[0066]

上記ステップ10012は、実行しなくてもよい。実行して一部の署名生成記録を削除すれば、ユーザAの署名者装置1の記憶領域を節約することができる。ユーザAの署名者装置1の記憶容量に応じて、削除するか、しないかを選択すればよい。

[0067]

以上の処理により、履歴保管サービス提供者が、署名者に代わり履歴を保管するため、署名者にとっては署名履歴保管の負荷が削減される(ステップ10012)。

[0068]

なお、ステップ10012において、n番目の署名生成記録を削除しないのは、次の署名(n+1番目の署名))) を生成をする際に、n番目の署名生成記録が必要となるからである。

[0069]

さらに、第三者機関である履歴保管サービス提供者が、署名履歴の連鎖構造に関し整合性を確認し(ステップ10007、10008)、また、最新の署名である「預託依頼書」に付された署名や対応する公開鍵証明書の有効性を確認するため(ステップ10005、10006)、登録を要求した署名履歴に対応する署名のうち、預託依頼書に付された署名と同一の鍵を用いて生成されたものについては、公開鍵証明書の有効期間内に生成されたことが保証されるようになる。

[0070]

上記のフローにおいては、「預託依頼書」を作成し(ステップ10002)、ヒステリシス署名を付与し(ステップ10003)、ヒステリシス署名付き預託依頼書を送付している(ステップ10004)が、これら3ステップを省略してもよい。この場合、ステップ10006での署名検証は、ヒステリシス署名付き預託依頼書に対して行うかわりに、送られてきた署名履歴の中の最新の署名記録に対して行う。なお、当該署名記録に対応する署名対象メッセージ自体は署名記録に含まれないが、そのハッシュ値は署名記録に含まれているため、これを用いてステップ10006の処理を行うことは可能である。

[0071]

50

10

20

署名履歴登録要求の頻度については、署名者装置1や署名管理装置2の記憶容量や処理能力あるいは両装置間のネットワーク5に確保できる通信品質状況等に応じて、適切に設定すればよい。一般に、登録要求の頻度が高いほど、署名者装置1の外部記憶装置13の記憶容量は少なくてすむ。また、署名履歴の信頼度を向上させるという観点からも、登録要求の頻度は高いほうが望ましい。本実施例によれば預託依頼書に付された署名と同一の鍵を用いて生成されたものについては公開鍵証明書の有効期間内に生成されたことを保証できるようになる、という点を考慮すると、署名履歴登録要求の頻度は、公開鍵証明書の頻度と同一もしくはそれより高い頻度で行うことが望ましい。ただし登録要求の頻度が高いほど、署名者装置1と署名履歴保管サービス装置6との間の通信回数は多くなる。

[0072]

署名履歴登録要求の頻度の具体的な一例として、ヒステリシス署名生成のたびごとに、履歴登録要求を行ってもよい。さらに預託依頼書を省略してもよい。このように、ヒステリシス署名生成のたびごとに履歴登録要求を行い、かつ、預託依頼書を省略した場合は、署名者装置1で管理する必要のある署名履歴は最新の署名履歴一つ分だけですむ。したがって、装置の記憶容量の節約と管理負荷の軽減が可能になる。さらに、署名者が生成した署名に対応する署名履歴は、常に署名履歴保管サービス装置6にも存在するという効果も得られる。

[0073]

さらには、ヒステリシス署名生成の際に必要となるn番目の署名生成記録、または、当該署名生成記録のハッシュ値も、必要に応じて署名履歴保管サービス装置6からネットワーク5を介して入手するようにシステムを構成してもよい。このようにすると、署名者装置1での署名履歴の管理が不要となる。あるいは、署名者装置1での署名管理機能を残したまま、署名履歴保管サービス装置6からネットワーク5を介して入手する上記機能を備えるように、システムを構成してもよい。この場合、署名者装置1で管理する署名履歴と、署名履歴保管サービス装置6から入手した署名履歴とを比較して、署名履歴保管サービス装置6において署名履歴の改ざんなど、何らかの不正がなかったかどうかを確認することができるようになる。

[0074]

また、署名履歴保管サービス装置6において、n番目の署名生成記録を送信するときに、 さらに、他の署名者の署名履歴に依存した情報も含めることにより、特開2001-33 1105号公報に開示された、複数署名者の署名履歴を交差させる処理を実現することも 可能である。なお、「交差させる」とは、ある署名者の署名履歴の情報を他の署名者の署 名履歴に反映させることを意味する。

[0075]

このように、ある署名者の署名履歴を他の署名者の署名履歴と交差させることは、当該署名が確かに行われたという証拠を分散して持つことに他ならず、署名そのものを偽造しようとしたり、署名が施された時刻情報を改変しようとしたりするときの作業量を増大させ、かつ、それら不正を行うために複数の署名者、または複数の署名者装置を巻き込む必要を生じさせるため、不正を抑止する大きな効果が得られる。

[0076]

図11は本実施例における、署名者装置1から受信したヒステリシス署名つきメッセージを保持する署名検証代行依頼者が利用する検証代行依頼者装置7が、署名履歴保管サービス装置6に対し、署名検証代行を依頼するときのフローを示すものである。以下のフローの内、検証代行依頼者装置7の処理は、署名検証要求PG906により、そして署名履歴保管サービス装置6の処理は、署名検証代行PG903により実現される。なお以下の説明では、検証対象となる署名を生成した署名者をユーザAとする。

(署名検証要求 P G 9 0 6 の処理)

ステップ11001:はじめ。

ステップ11002:ユーザAのヒステリシス署名付きメッセージを署名履歴保管サービス装置6に対し送信し、署名検証の代行を依頼する。

10

20

30

40

20

40

50

(署名検証代行PG903の処理)

ステップ 1 1 0 0 3 : あらかじめ保管してあるユーザ A の署名履歴を利用し、検証の代行を依頼されたヒステリシス署名付きメッセージの検証を行う。

ステップ11004:検証結果を検証代行依頼者装置7に送る。

(署名検証要求 P G 9 0 6 の処理)

ステップ11005:検証結果を受け取る。

ステップ11006:おわり。

[0077]

上記の処理中のステップ11003におけるヒステリシス署名付きメッセージの検証は、 第1実施形態に示した「ヒステリシス署名検証処理」と同様にして行えばよい。なお、署 名履歴保管サービス装置6を信頼できると考えてよい場合には、ステップ8035、80 36における信頼度の設定、算出は省略して、結果は信頼できるものとみなしてもよい。

[0078]

さらには、署名履歴保管サービス装置6において、特開2001-331105号公報に開示された複数署名者の署名履歴を交差させる機能を実現している場合には、署名履歴交差が正しく行われているかどうかも含めて検証してもよい。

[0079]

なお、本実施形態では、署名検証代行処理を、履歴登録処理を行う署名履歴保管サービス装置6と同一の装置上で実現する例を示したが、署名検証代行処理は、署名履歴保管サービス装置6と連携した別の装置上に実現されてもよい。

[0080]

以上に示した本発明の一実施形態においては、署名生成機能は、各署名者が管理する署名者装置1内に設けられていたが、これには限定されない。たとえば、各署名者用の署名生成機能を署名者装置1から分離して、署名履歴保管サービス装置6内に設け、各署名者装置1は、署名履歴保管サービス装置6に対してヒステリシス署名生成を要求し、生成た署名を受け取る機能を設けてもよい。この場合、署名履歴保管サービス装置6には、ヒステリシス署名要求受付時に、パスワードや生体認証技術等により署名者を認証する処理を設けることが望ましい。このように、署名生成機能を第三者機関である署名履歴保管サービス装置6内に設けることにより、署名者にとっては、さまざまな署名者装置を利用して自身の署名を生成できるようになる。たとえば、署名者が複数のPC(Personal Computer)、携帯電話、PDA等の装置を所有している場合、どの装置からでも自身の署名を生成できることになる。

[0081]

以上に示した第2の実施形態においては、署名者に代わり、署名者が作成した署名履歴を長期にわたり信頼性の高い状態で保管する署名履歴保管サービスを提供することが可能となる。さらに、署名履歴を利用した署名検証処理を代行する署名検証代行サービスを提供することが可能となる。

[0082]

なお、上記第2の実施形態の各装置は、他の装置の機能を併せて備え、必要に応じて、異なる装置として機能してもよい。

[0083]

また、上記第1、第2の実施形態において、各装置が備える各プログラムは、予め外部記憶装置に格納されていても良いし、必要に応じて、読取り装置を介して記憶媒体から、または通信装置と通信媒体(すなわちネットワークまたはそれを伝搬する搬送波)により、他の装置から導入されても良い。

[0084]

【発明の効果】

本発明によれば、署名履歴の信頼度を適切に反映するように構成された検証方法を提供することが可能となる。また、この検証方法に基づいて署名の正当性をめぐる係争を解決する調停方法および調停者装置が提供可能となる。

【図面の簡単な説明】

- 【図1】本発明の実施形態が適用されたシステムの概略図である。
- 【図2】署名者装置1、履歴管理装置2、調停依頼者装置3、調停者装置4の概略構成を示した図である。
- 【図3】署名者装置の署名付きメッセージ作成PG131の処理フローを示す。
- 【図4】履歴管理装置の履歴登録PG132の処理フローを示す。
- 【図5】履歴管理装置の履歴送信PG133の処理フローを示す。
- 【図6】調停依頼者装置の履歴要求PG134の処理フローを示す。
- 【図7】調停依頼者装置の調停依頼PG135の処理フローを示す。
- 【図8】調停者装置の調停PG136の処理フローを示す。
- 【図9】署名履歴保管サービス装置6の概略構成を示した図である。
- 【図10】第2実施形態において署名者装置1が署名履歴保管サービス装置6に対し履歴登録を依頼するときのフローを示す。

【図11】第2実施形態において検証代行依頼者装置7が署名履歴保管サービス装置6に対し署名検証代行を依頼するときのフローを示す。

【符号の説明】

1 … 署名者装置、2 … 履歴管理装置、3 … 調停依頼者装置、4 … 調停者装置、6 … 署名履歴保管サービス装置、7 … 検証代行依頼者装置、11 … CPU、12 … RAM、13 … 外部記憶装置、14 … 読取装置、15 … 可搬性記憶媒体、16 … 入力装置、17 … 表示装置、18 … 通信装置、20 … インターフェイス、21 … 電子計算機、131 … 署名付きメッセージ作成PG、132 … 履歴登録プログラム、133 … 履歴送信プログラム、134 … 履歴要求プログラム、135 … 調停依頼プログラム、136 … 調停プログラム、137 … 履歴登録要求プログラム、901 … 履歴登録 PGプログラム、902 … 履歴送信プログラム、905 … 履歴格納領域、906 … 署名検証要求プログラム、137 … 履歴登録要求プログラム。

【図1】

図1 署名名装置1 履歴管理装置2 ネットワーク5 剥停佐頼者 調停名装置4

【図2】

20

【図7】

フロントページの続き

(72)発明者 伊藤 信治

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作所システム開発研究所内

(72) 発明者 谷本 幸一

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作所システム開発研究所内

(72) 発明者 吉浦 裕

神奈川県川崎市麻生区王禅寺1099番地 株式会社日立製作所システム開発研究所内 Fターム(参考) 5J104 AA08 LA03