

SUMMARY AND RECAP

SYCL KEY CONCEPTS

- SYCL is a single-source, cross-platform abstraction C++ programming model
 - Device code and host code exist in the same file
 - Can target multiple heterogeneous APIs, such as OpenCL
 - Implementations enable these APIs by implementing SYCL backends
- SYCL provides high-level abstractions over common boilerplate code
 - Platform/device selection
 - Based on the OpenCL platform model
 - Buffer creation and data movement, USM
 - Dependency management and scheduling

SYCL GPU BEST PRACTICES

- GPUs are massively parallel throughput devices
 - Important to give a GPU lots of work, thousands or millions of workitems
- Optimize Memory First
 - Monitor and minimize data transfer costs to or from the GPU
 - Improve performance by rearrange data or computation for locality
- Optimize Compute Next
 - Prefer smaller data types, trade precision for performance

SYCL_{TM}

USEFUL LINKS

- SYCL2020 Specification
- sycl.tech community
- AdaptiveCPP:
 - https://github.com/AdaptiveCpp/AdaptiveCpp
 - SYCL extensions
- oneAPI Data Parallel C++ compiler:
 - https://github.com/intel/llvm
 - https://tinyurl.com/dpcpp-ext
- DPC++ books:
 - https://tinyurl.com/dpcpp-book
 - http://tinyurl.com/dpcpp-book-2
- Code Samples:
 - https://github.com/oneapi-src/Velocity-Bench
 - https://github.com/oneapi-src/oneAPI-samples

QUESTIONS

