1. Overview

Based on the descriptive and exploratory analysis done in notebook 00_data_understanding, this Python Script will work on preprocessing the data, preparing it so that we can then work on the model training in the future.

2. Data Understanding

2.1 Data Description

This file will use the df_train_transform excel sheet created in the previous notebook: 00_data_understanding

2.2 Import Necessary Libraries

```
In [1]:
          1 # pip install category_encoders
In [2]:
          1 import pandas as pd
          2 import numpy as np
          3 import matplotlib.pyplot as plt
          4 %matplotlib inline
          5 import seaborn as sns
          6 from sklearn.preprocessing import OneHotEncoder
          7 from category_encoders import TargetEncoder
          8 from sklearn.preprocessing import StandardScaler
          9
            from sklearn.model_selection import train_test_split
         10
         11
         12 import pickle
         13 import warnings
         14
            warnings.filterwarnings('ignore')
         15
```

3. Code

3.1 Import the database

Out[3]:

	amount_tsh	gps_height	population	basin	region	public_meeting	permit	extraction_typ
0	6000.0	1390	109	lake nyasa	iringa	1.0	0.0	
1	0.0	1399	280	lake victoria	mara	NaN	1.0	
2	25.0	686	250	pangani	manyara	1.0	1.0	
3	0.0	263	58	ruvuma southern coast	mtwara	1.0	1.0	sub
4	0.0	0	0	lake victoria	kagera	1.0	1.0	

3.2 Class Imbalance checking

Class distribution of status_group: functional 32259 non functional 22824 functional needs repair 4317 Name: status_group, dtype: int64

```
In [5]: 1 # Check class distribution in y_train
2 print("Class distribution of status_group:")
3 print(df['status_group'].value_counts(normalize=True))
```

Class distribution of status_group:
functional 0.543081
non functional 0.384242
functional needs repair 0.072677
Name: status_group, dtype: float64

We decide to group together into a same class functional needs repair and functional. In this way, we have a binary classification problem

```
In [6]:
          1 # Replace 'functional needs repair' with 'functional'
            df['status_group'] = df['status_group'].replace('functional needs repair']
          4 # Verify changes by checking the class distribution again in y_train and y
            print("Class distribution in y_train after replacement:")
            print(df['status_group'].value_counts(normalize=True))
        Class distribution in y_train after replacement:
```

functional 0.615758 non functional 0.384242

Name: status_group, dtype: float64

To have further insight, let's do a bar graph representation of the distribution of the target variable

```
class_distribution = df['status_group'].value_counts(normalize=True)
In [7]:
          3 # Plotting the bar plot
          4 plt.figure(figsize=(10, 6))
            sns.barplot(x=class_distribution.index, y=class_distribution.values, palet
          6 plt.xlabel('Status Group')
            plt.ylabel('Proportion')
            plt.title('Distribution of Functional and Non-Functional Pumps')
          9 plt.ylim(0, 1)
         10 plt.show()
```


3.3 Define predictor and target variables

```
In [8]: 1 y = df['status_group']
2 X = df.drop('status_group', axis=1)
```

3.4 Do a train test split

```
In [9]: 1 # Split the data into training and testing sets
2 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, r
```

3.5 Dealing with null values

```
1 # For train data
In [10]:
           2 (X_train.isna().sum()/len(df))*100
Out[10]:
         amount tsh
                                       0.000000
         gps_height
                                       0.000000
         population
                                       0.000000
         basin
                                       0.000000
         region
                                       0.000000
         public_meeting
                                       4.526936
         permit
                                       4.106061
         extraction_type_class
                                       0.000000
                                       0.000000
         management_group
         payment_type
                                       0.000000
         quality_group
                                       0.000000
         quantity_group
                                       0.000000
         source type
                                       0.000000
                                       0.000000
         waterpoint_type
         funder_type
                                       0.000000
         installer_type
                                       0.000000
         scheme_management_grouped
                                       0.000000
         dtype: float64
```

Column 'public_meeting'

```
In [11]: 1 X_train["public_meeting"].value_counts(normalize=True)
Out[11]: 1.0     0.908813
          0.0     0.091187
         Name: public_meeting, dtype: float64
```

```
In [12]:
           1 # Given that the null values are only 6%, lets replace them with the mode
           2
           3 # Calculate the mode of the 'public_meeting' column
             public_meeting_mode = X_train['public_meeting'].mode()[0]
           6 # Fill missing values in 'public_meeting' of X_train with the mode from X_
             X_train['public_meeting'].fillna(public_meeting_mode, inplace=True)
           7
           9 # Fill missing values in 'public_meeting' of X_test with the mode from X_t
          10 X_test['public_meeting'].fillna(public_meeting_mode, inplace=True)
          11
          12 # Convert the 'public_meeting' column to type object in both X_train and X
          13 X_train['public_meeting'] = X_train['public_meeting'].astype(object)
          14 | X_test['public_meeting'] = X_test['public_meeting'].astype(object)
          16 # Verify if all NA values are filled
             print(df['public_meeting'].value_counts(normalize=True))
         1.0
                0.909838
         0.0
                0.090162
         Name: public_meeting, dtype: float64
In [13]:
           1 public_meeting_mode
Out[13]: 1.0
```

Column 'permit'

```
In [15]:
           1 # Given that the null values are only 5%, lets replace them with the mode
           2
           3 # Calculate the mode of the 'permit' column
           4 | permit_mode = X_train['permit'].mode()[0]
           6 # Fill missing values in 'permit' of X_train with the mode of X_train
           7 X_train['permit'].fillna(permit_mode, inplace=True)
           9 # Fill missing values in 'permit' of X_test with the mode of X_train
          10 | X_test['permit'].fillna(permit_mode, inplace=True)
          11
          12 # Convert the 'permit' column to type object in both X_train and X_test
          13 X_train['permit'] = X_train['permit'].astype(object)
          14 | X_test['permit'] = X_test['permit'].astype(object)
          16 # Verify if all NA values are filled
             print(X train['permit'].value counts(normalize=True))
                0.704272
         1.0
                0.295728
         0.0
         Name: permit, dtype: float64
In [16]:
           1 permit_mode
Out[16]: 1.0
```

3.6 Doing target enconder on the categorical columns

Let's perform a one hot enconder on the categorical columns that have less than 6 categories

X_train

Let's do a code to apply one hot enconder on the columns that have less than 6 variables and a target enconder on the columns that have more than 6 variables. The reason why we decide to not apply target encoding to all the columns directly is to avoid overfitting

```
In [18]:
             # Check if 'y_train' and 'y_test' need to be converted to a numeric type
             if y train.dtype == 'object':
                  y_train = y_train.astype('category').cat.codes
              if y_test.dtype == 'object':
           5
                  y_test = y_test.astype('category').cat.codes
           6
           7
             # Capture categorical columns from X_train for encoding
             categorical columns = X train.select dtypes(include=['object', 'category']
           9
          10 # Initialize encoders
             target_encoder = TargetEncoder()
          12
          13
             # Encoding the categorical columns in X_train and X_test
          14
             for col in categorical columns:
          15
                  if X_train[col].nunique() <= 6:</pre>
          16
                      # Apply OneHotEncoder for columns with 6 or fewer unique values
          17
                      X_train = pd.get_dummies(X_train, columns=[col], drop_first=True)
          18
                      X_test = pd.get_dummies(X_test, columns=[col], drop_first=True)
          19
                  else:
          20
                      # Apply TargetEncoder for columns with more than 6 unique values
          21
                      X_train[col] = target_encoder.fit_transform(X_train[col], y_train)
                      X_test[col] = target_encoder.transform(X_test[col])
          22
          23
                      pickle.dump(target_encoder, open(f"model_objects/{col}_target_encoder)
          24
          25 # Display the DataFrame to check the results
          26
             X_train.head()
          27
```

Out[18]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment_1
3607	50.0	2092	160	0.346722	0.315956	0.300187	0.277
50870	0.0	0	0	0.346722	0.443875	0.309484	0.475
20413	0.0	0	0	0.485901	0.398196	0.805243	0.475
52806	0.0	0	0	0.311216	0.398196	0.300187	0.226
50091	300.0	1023	120	0.432348	0.398697	0.805243	308.0

5 rows × 34 columns

3.7 Dealing with numerical columns

X_train

```
In [19]:
           1 # Capture numerical columns
           2 numerical_columns = X_train.select_dtypes(include=['int64', 'float64']).cd
             # Initialize the StandardScaler
             scaler = StandardScaler()
           7 # Fit and transform the numerical columns
             scaler.fit(X_train[numerical_columns])
           9
             X_train[numerical_columns] = scaler.transform(X_train[numerical_columns])
          10
          11
          12 # Save the fitted variables
          13 pickle.dump(scaler, open(f"model_objects/numerical_columns_scaler.pkl", 'w
          14
          15 # Display the DataFrame to check the results
          16 X_train.head()
```

Out[19]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment <u></u>
3607	-0.084999	2.053863	-0.041306	-0.540016	-0.633090	-0.521411	-0.89
50870	-0.100621	-0.965049	-0.379739	-0.540016	0.555492	-0.463637	0.77
20413	-0.100621	-0.965049	-0.379739	1.471270	0.131062	2.617222	0.77
52806	-0.100621	-0.965049	-0.379739	-1.053126	0.131062	-0.521411	-1.30
50091	-0.006889	0.511216	-0.125914	0.697368	0.135714	2.617222	-0.64

5 rows × 34 columns

10

X_test

Out[22]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment _.
2980	-0.100621	-0.965049	-0.379739	0.205860	-0.699807	2.617222	1.09
5246	-0.100621	-0.965049	-0.379739	0.205860	1.453840	-0.463637	0.77
22659	-0.097497	1.452101	-0.066689	-0.540016	-0.633090	-0.521411	-0.89
39888	-0.100621	-0.965049	-0.379739	1.471270	0.131062	-0.463637	0.77
13361	-0.084999	0.635320	0.117334	-0.540016	0.663779	1.165688	-0.89

5 rows × 34 columns

3.8 Concatenate train on one side and test on the other

3.9 Concatenate everything in one dataframe

Out[24]:

	amount_tsh	gps_height	population	basin	region	extraction_type_class	payment _.
0	-0.084999	2.053863	-0.041306	-0.540016	-0.633090	-0.521411	-0.89
1	-0.100621	-0.965049	-0.379739	-0.540016	0.555492	-0.463637	0.77
2	-0.100621	-0.965049	-0.379739	1.471270	0.131062	2.617222	0.77
3	-0.100621	-0.965049	-0.379739	-1.053126	0.131062	-0.521411	-1.30
4	-0.006889	0.511216	-0.125914	0.697368	0.135714	2.617222	-0.64
59395	-0.038133	1.596408	0.741319	-1.230325	-1.769052	-0.521411	-1.30
59396	0.055600	1.704639	-0.062458	-0.569630	-1.180350	-0.521411	-0.64
59397	-0.100621	-0.965049	-0.379739	0.335579	0.103144	-0.521411	0.77
59398	-0.100621	-0.038596	-0.377623	0.697368	0.135714	-0.521411	0.77
59399	-0.100621	1.098547	-0.377623	-0.569630	0.234762	-0.521411	0.77

59400 rows × 36 columns

4. Export the data

```
In [25]: 1 data_processed.to_excel('df_data_processed.xlsx', index=False)
```