An Efficient Local Search Algorithm for Large GD Advertising Inventory Allocation with Multilinear Constraints

Anonymous Author(s)

Table 1: Results of LS-IMP for solving real-world ad benchmark under different parameter settings. P0 is the parameter in paper.

Donomoton			Total	Total	A	A
Parameter	t	ζ	Total	Total	Avg	Avg
settings				#win (300s)		
Po	100	100	860	764	16.4	62.8
P1	50	10	848	755	15.7	61.7
P2	75	10	858	754	15.8	62.2
P3	100	10	854	750	15.5	62.1
P4	125	10	855	748	15.9	61.2
P5	150	10	845	745	15.2	61.8
P6	200	10	846	757	15.1	62.3
P7	50	50	867	759	16.2	64.1
P8	75	50	852	774	16.3	62.8
P9	100	50	857	747	16.3	61.3
P10	125	50	878	745	16.5	64.4
P11	150	50	864	762	16.7	62.1
P12	200	50	859	776	16.0	63.0
P13	50	80	850	759	16.3	62.0
P14	75	80	876	769	16.6	61.9
P15	100	80	847	759	16.2	62.3
P16	125	80	840	764	16.6	62.5
P17	150	80	851	744	16.8	63.1
P18	200	80	848	746	15.8	63.7
P19	50	100	867	784	16.1	62.5
P20	75	100	869	753	16.1	62.4
P21	125	100	873	773	16.1	62.1
P22	150	100	839	788	15.8	63.4
P23	200	100	861	757	16.5	63.8
P24	50	200	861	775	16.4	62.1
P25	75	200	870	759	16.0	62.0
P26	100	200	852	740	16.3	61.2
P27	125	200	852	781	16.2	63.0
P28	150	200	836	769	16.0	61.1
P29	200	200	850	778	16.2	63.3
P30	50	500	855	758	15.1	61.3
P31	75	500	852	750	15.7	62.1
P32	100	500	844	756	15.1	61.6
P33	125	500	852	742	15.4	61.5
P34	150	500	841	752	15.9	61.0
P35	200	500	853	750	15.6	61.7

Table 2: Results of LS-IMP for solving real-world ad benchmark 20 times. P0 is the result in paper.

Parameter	Total	Total	Total	Avg	Avg
settings	#win (60s)	#win (300s)	#win (1000s)	_	#FR (60s)
P0	860	764	614	16.4	62.8
P1	858	765	616	16.32	62.95
P2	860	762	614	16.4	63.52
P3	861	761	618	16.44	63.80
P4	856	761	616	16.24	62.38
P5	855	768	612	16.2	62.1
P6	861	759	615	16.44	63.81
P7	857	765	610	16.28	62.67
P8	863	766	618	16.52	64.38
P9	857	759	611	16.28	62.67
P10	858	766	614	16.32	62.95
P11	864	761	611	16.56	64.67
P12	863	768	616	16.52	64.38
P13	858	765	610	16.32	62.95
P14	857	768	612	16.28	62.67
P15	856	768	613	16.24	62.38
P16	862	767	613	16.48	64.1
P17	860	759	612	16.4	63.52
P18	861	760	609	16.44	63.83
P19	861	762	611	16.44	63.87
P20	855	765	610	16.2	62.1

Table 3: The numeric comparsion in minlplib instances, all instance is a minimize problem, all solver report the best objective function found within time limit.

Gurobi-Heur

Gurobi-Exact

LS-IMP

cutoff = 60s									
sonet17v4	1233700	1182604.5	1182604.5						
sonet18v6	3709850	3562770	3389110						
sonet19v5	2590910	2557780	2528144						
sonet20v6	3747400	3311060	3480810						
sonet21v6	8317140	7701520	7731250						
sonet22v4	2698220	2386630	2397132						
sonet23v6	8411680	7474600	7197950						
sonet24v2	5073420	6763260	5060259						
sonet25v5	7852600	7185020	7064664						
	cutoff	$\hat{s} = 300s$							
sonet17v4	1184730	1182604.5	1182604.5						
sonet18v6	3389110	3389110	3389110						
sonet19v5	2590910	2549380	2528144						
sonet20v6	3658580	3311060	3390200						
sonet21v6	7908790	7600750	7600750						
sonet22v4	2517840	2379970	2387835						
sonet23v6	8411680	7150690	7078810						
sonet24v2	3312580	3312580	3312579						
sonet25v5	7525050	7093900	7064664						

Instance

Table 4: The number of instances which can find the optimal solution. #opt column is the number where solver can find the optimal solution. #gap is the average gap rate between the best found solution and optimal solution.

			Gui	robi			LS-IMP			LS-IMP + Gurobi			
Dataset		Exact			Heur					30s + remaining tim			
	#opt	#feas	#gap	#opt	#feas	#gap	#opt	#feas	#gap	#opt	#feas	#gap	
				Busine	ess time	eframe:	cutofl	f = 60s					
\mathcal{D}_1	8	12	95.3%	10	12	95.5%	85	179	17.5%	84	179	17.6%	
\mathcal{D}_2	2	4	98.5%	9	26	90.1%	92	166	18.3%	89	166	18.4%	
\mathcal{D}_3	0	0	100%	13	43	85.0%	79	178	19.8%	77	178	19.9%	
\mathcal{D}_4	0	0	100%	4	29	95.0%	82	171	18.7%	78	171	18.9%	
\mathcal{D}_5	0	0	100%	8	41	84.5%	97	176	15.4%	94	176	15.6%	
Total/Avg	10	16	98.7%	44	151	90.2%	435	870	17.9%	422	870	18.0%	
	Extended time for research: cutoff = 300s												
\mathcal{D}_1	50	96	61.5%	12	17	91.6%	86	180	17.3%	90	180	16.5%	
\mathcal{D}_2	51	82	57.8%	18	44	85.5%	94	167	18.2%	101	167	17.7%	
\mathcal{D}_3	35	66	73.8%	13	56	76.0%	80	179	19.6%	85	179	18.9%	
\mathcal{D}_4	32	74	69.6%	12	43	82.5%	83	172	18.5%	87	172	18.0%	
\mathcal{D}_5	31	67	75.8%	15	53	79.1%	99	176	15.2%	103	176	15.0%	
Total	199	385	67.8%	70	213	82.9%	442	874	17.7%	466	874	17.2%	
			Exter	ided ti	ime for	resear	ch: cut	off = 1	000s				
\mathcal{D}_1	100	150	30.5%	30	81	65.8%	87	180	17.2%	113	180	13.5%	
\mathcal{D}_2	99	151	29.1%	32	91	63.2%	96	167	18.1%	110	167	16.5%	
\mathcal{D}_3	79	124	36.9%	28	87	67.2%	80	179	19.6%	95	179	15.5%	
\mathcal{D}_4	83	132	33.3%	31	71	70.5%	84	172	18.4%	90	172	17.5%	
\mathcal{D}_5	95	141	31.2%	28	90	63.5%	100	176	15.2%	106	176	14.3%	
Total	456	698	32.2%	149	420	63.5%	447	874	17.7%	514	874	15.4%	

Table 5: Continuous experiment. #feas_round is the number of continuous feasible instance after rounding solution. #vio_rate is the average constraint violated rate when rounding continuous solution to integer solution.

Dataset	Gurobi		Gurobi-Continuous						
Baraser	#feas	#feas	#feas_round	#vio_rate	#feas				
$\overline{\mathcal{D}_1}$	12	14	13	4.5%	179				
\mathcal{D}_2	4	6	5	3.1%	164				
\mathcal{D}_3	0	0	0	0	172				
\mathcal{D}_4	0	0	0	0	170				
\mathcal{D}_5	0	0	0	0	175				
Total	16	20	18	1.5%	860				
	Extende	d time f	or research: cu	itoff = 300s					
\mathcal{D}_1	96	98	79	4.6%	180				
\mathcal{D}_2	82	85	70	4.2%	167				
\mathcal{D}_3	66	66	56	3.3%	179				
\mathcal{D}_4	74	75	63	5.3%	172				
\mathcal{D}_5	67	68	55	6.3%	176				
Total	385	392	323	4.7%	874				
	Extended	l time fo	or research: cu	toff = 1000s					
\mathcal{D}_1	150	157	135	4.3%	180				
\mathcal{D}_2	151	158	135	4.1%	167				
\mathcal{D}_3	124	133	116	3.1%	179				
\mathcal{D}_4	132	141	124	4.9%	172				
\mathcal{D}_5	141	149	135	5.8%	176				
Total	698	738	646	4.4%	874				

Table 6: Continuous experiment using the heuristic version with Gurobi

	Gui	obi	Gurobi-Continuous									
Dataset	Exact	Heur		Exact			Heur					
	#feas	#feas	#feas	#feas_round	#vio_rate	#feas	#feas_round	#vio_rate	#feas			
				Business tin	neframe: cut	toff = 60)s					
\mathcal{D}_1	12	12	14	13	4.5%	99	80	4.3%	179			
\mathcal{D}_2	4	11	6	5	3.1%	96	78	3.8%	164			
\mathcal{D}_3	0	16	0	0	0	96	74	6.7%	172			
\mathcal{D}_4	0	5	0	0	0	84	67	3.2%	170			
\mathcal{D}_5	0	10	0	0	0	95	79	6.2%	175			
Total	16	54	20	18	1.8%	470	378	5.0%	860			
			Ex	ctended time fo	or research:	cutoff :	= 300s					
\mathcal{D}_1	96	17	98	79	4.6%	189	168	7.6%	180			
\mathcal{D}_2	82	44	85	70	4.2%	193	157	6.5%	167			
\mathcal{D}_3	66	56	66	56	3.3%	192	164	7.2%	179			
\mathcal{D}_4	74	43	75	63	5.3%	191	165	7.0%	172			
\mathcal{D}_5	67	53	68	55	6.3%	191	164	6.8%	176			
Total	385	213	392	323	4.7%	956	808	7.0%	874			
			Ex	tended time fo	r research:	cutoff =	1000s					
\mathcal{D}_1	150	81	157	135	4.3%	189	158	7.6%	180			
\mathcal{D}_2	151	91	158	135	4.1%	193	157	6.5%	167			
\mathcal{D}_3	124	87	133	116	3.1%	192	164	7.2%	179			
\mathcal{D}_4	132	71	141	124	4.9%	191	165	7.0%	172			
\mathcal{D}_5	141	90	149	135	5.8%	191	164	6.8%	176			
Total	698	420	738	646	4.4%	956	808	7.0%	874			

Table 7: The metric comparsion in the paper using Gurobi with continuous variable.

	Gurobi							Gurobi-Continuous						LS-IMP		
Dataset		Exact			Heur		Exact			Heur						
	#win	#UR	#FR	#win	#UR	#FR	#win	#UR	#FR	#win	#UR	#FR	#win	#UR	#FR	
					Bu	siness t	imefra	me: cut	off = 60	s						
\mathcal{D}_1	12	1.7%	5.8%	12	1.7%	5.8%	13	1.9%	6.0%	32	5.5%	15.7%	179	15.5%	64.7%	
\mathcal{D}_2	4	0.6%	1.9%	11	1.7%	5.7%	5	0.6%	1.9%	26	3.0%	9.6%	164	16.4%	60.7%	
\mathcal{D}_3	0	0	0	16	2.3%	9.0%	0	0	0	30	15.0%	36.0%	172	16.7%	62.0%	
\mathcal{D}_4	0	0	0	5	1.2%	5.0%	0	0	0	21	14.0%	35.0%	170	16.3%	61.6%	
\mathcal{D}_5	0	0	0	10	1.8%	4.8%	0	0	0	19	3.0%	9.8%	175	17.0%	$\boldsymbol{62.8\%}$	
Total/Avg	16	0.4%	1.9%	54	1.4%	4.9%	18	0.5%	1.6%	128	8.1%	21.2%	860	16.4%	62.8%	
				E	xtend	ed time	for res	search:	cutoff =	300s						
\mathcal{D}_1	69	7.7%	39.6%	13	1.8%	7.0%	67	7.5%	36.7%	40	5.9%	20.3%	146	17.7%	68.8%	
\mathcal{D}_2	61	6.0%	35.5%	24	2.6%	13.9%	66	6.3%	38.5%	35	3.7%	10.9%	141	17.7%	$\boldsymbol{62.8\%}$	
\mathcal{D}_3	42	5.1%	22.8%	17	4.3%	14.7%	39	4.7%	20.6%	37	16.3%	38.7%	159	18.1%	64.3%	
\mathcal{D}_4	47	5.9%	28.8%	17	2.4%	11.7%	53	6.9%	30.8%	29	15.4%	37.7%	153	16.6%	62.5%	
\mathcal{D}_5	42	5.3%	24.7%	21	3.4%	11.2%	46	5.7%	24.7%	31	6.4%	11.1%	165	17.3%	65.7%	
Total/Avg	261	6.0%	30.3%	92	2.7%	11.7%	271	6.2%	30.2%	144	9.5%	23.7%	764	17.5%	64.8%	
				E:	xtende	d time	for res	earch: c	utoff =	1000s						
\mathcal{D}_1	115	15.3%	62.3%	34	6.6%	24.1%	123	18.5%	66.7%	40	5.9%	20.3%	117	17.7%	68.9%	
\mathcal{D}_2	109	14.7%	61.3%	40	6.3%	28.4%	116	15.3%	64.5%	35	3.7%	10.9%	112	17.7%	62.9%	
\mathcal{D}_3	87	11.4%	46.8%	30	7.0%	25.2%	89	12.7%	50.6%	37	16.3%	38.7%	131	18.1%	64.4%	
\mathcal{D}_4	92	12.1%	52.6%	35	4.2%	22.2%	95	13.9%	55.8%	29	15.4%	37.7%	124	16.6%	62.6%	
\mathcal{D}_5	105	14.6%	55.6%	33	6.8%	23.8%	107	15.7%	56.7%	31	6.4%	11.1%	130	17.4%	66.0%	
Total/Avg	508	13.6%	55.7%	172	6.2%	24.7%	530	14.8%	58.8%	172	9.5%	23.7%	614	17.5%	65.0%	

Table 8: The metric using Lagrange multiple method

——————————————————————————————————————	Lagra	nge mu	ltiple m	ethod	LS-IMP					
Dataset	#feas	#win	#UR	#FR	#feas	#win	#UR	#FR		
		Busine	cutoff =	60s						
\mathcal{D}_1	4	0	0.4%	2.1%	179	179	15.5%	64.7%		
\mathcal{D}_2	4	0	0.4%	2.0%	166	166	16.4%	60.7%		
\mathcal{D}_3	0	0	0	0	178	178	16.7%	62.0%		
\mathcal{D}_4	0	0	0	0	171	171	16.3%	61.6%		
\mathcal{D}_5	0	0	0	0	176	176	17.0%	62.8%		
Total/Avg	8	0	0.08%	0.1%	870	870	16.4%	62.8%		
	Exte	ended ti	me for	researc	h: cuto	ff = 300	S			
\mathcal{D}_1	5	1	0.5%	2.5%	180	180	17.7%	68.8%		
\mathcal{D}_2	7	2	0.7%	3.6%	167	167	17.7%	62.8%		
\mathcal{D}_3	0	0	0	0	179	179	18.1%	64.3%		
\mathcal{D}_4	0	0	0	0	172	172	16.6%	62.5%		
\mathcal{D}_5	0	0	0	0	176	176	17.3%	65.7%		
Total/Avg	12	3	0.3%	1.2%	874	874	17.5%	64.8%		
	Exte	nded ti	me for r	esearc	h: cutof	f = 1000	Os			
\mathcal{D}_1	6	2	0.6%	3.2%	180	180	17.7%	68.9%		
\mathcal{D}_2	9	3	1.0%	6.2%	167	167	17.7%	62.9%		
\mathcal{D}_3	1	0	0.1%	0.4%	179	179	18.1%	64.4%		
\mathcal{D}_4	0	0	0	0	172	172	16.6%	62.6%		
\mathcal{D}_5	1	0	0.1%	0.5%	176	176	17.4%	66.0%		
Total/Avg	17	5	0.3%	2.2%	874	874	17.5%	65.0%		