this chapter and Chapter 23 independently of each other, you might find it useful to read them together.

16.1 An activity-selection problem

Our first example is the problem of scheduling several competing activities that require exclusive use of a common resource, with a goal of selecting a maximum-size set of mutually compatible activities. Suppose we have a set $S = \{a_1, a_2, \ldots, a_n\}$ of n proposed *activities* that wish to use a resource, such as a lecture hall, which can serve only one activity at a time. Each activity a_i has a *start time* s_i and a *finish time* f_i , where $0 \le s_i < f_i < \infty$. If selected, activity a_i takes place during the half-open time interval $[s_i, f_i)$. Activities a_i and a_j are *compatible* if the intervals $[s_i, f_i)$ and $[s_j, f_j)$ do not overlap. That is, a_i and a_j are compatible if $s_i \ge f_j$ or $s_j \ge f_i$. In the *activity-selection problem*, we wish to select a maximum-size subset of mutually compatible activities. We assume that the activities are sorted in monotonically increasing order of finish time:

$$f_1 \le f_2 \le f_3 \le \dots \le f_{n-1} \le f_n$$
 (16.1)

(We shall see later the advantage that this assumption provides.) For example, consider the following set S of activities:

For this example, the subset $\{a_3, a_9, a_{11}\}$ consists of mutually compatible activities. It is not a maximum subset, however, since the subset $\{a_1, a_4, a_8, a_{11}\}$ is larger. In fact, $\{a_1, a_4, a_8, a_{11}\}$ is a largest subset of mutually compatible activities; another largest subset is $\{a_2, a_4, a_9, a_{11}\}$.

We shall solve this problem in several steps. We start by thinking about a dynamic-programming solution, in which we consider several choices when determining which subproblems to use in an optimal solution. We shall then observe that we need to consider only one choice—the greedy choice—and that when we make the greedy choice, only one subproblem remains. Based on these observations, we shall develop a recursive greedy algorithm to solve the activity-scheduling problem. We shall complete the process of developing a greedy solution by converting the recursive algorithm to an iterative one. Although the steps we shall go through in this section are slightly more involved than is typical when developing a greedy algorithm, they illustrate the relationship between greedy algorithms and dynamic programming.

The optimal substructure of the activity-selection problem

We can easily verify that the activity-selection problem exhibits optimal substructure. Let us denote by S_{ij} the set of activities that start after activity a_i finishes and that finish before activity a_j starts. Suppose that we wish to find a maximum set of mutually compatible activities in S_{ij} , and suppose further that such a maximum set is A_{ij} , which includes some activity a_k . By including a_k in an optimal solution, we are left with two subproblems: finding mutually compatible activities in the set S_{ik} (activities that start after activity a_i finishes and that finish before activity a_k starts) and finding mutually compatible activities in the set S_{kj} (activities that start after activity a_k finishes and that finish before activity a_j starts). Let $A_{ik} = A_{ij} \cap S_{ik}$ and $A_{kj} = A_{ij} \cap S_{kj}$, so that A_{ik} contains the activities in A_{ij} that finish before a_k starts and A_{kj} contains the activities in A_{ij} that start after a_k finishes. Thus, we have $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$, and so the maximum-size set A_{ij} of mutually compatible activities in S_{ij} consists of $|A_{ij}| = |A_{ik}| + |A_{kj}| + 1$ activities.

The usual cut-and-paste argument shows that the optimal solution A_{ij} must also include optimal solutions to the two subproblems for S_{ik} and S_{kj} . If we could find a set A'_{kj} of mutually compatible activities in S_{kj} where $|A'_{kj}| > |A_{kj}|$, then we could use A'_{kj} , rather than A_{kj} , in a solution to the subproblem for S_{ij} . We would have constructed a set of $|A_{ik}| + |A'_{kj}| + 1 > |A_{ik}| + |A_{kj}| + 1 = |A_{ij}|$ mutually compatible activities, which contradicts the assumption that A_{ij} is an optimal solution. A symmetric argument applies to the activities in S_{ik} .

This way of characterizing optimal substructure suggests that we might solve the activity-selection problem by dynamic programming. If we denote the size of an optimal solution for the set S_{ij} by c[i, j], then we would have the recurrence

$$c[i, j] = c[i, k] + c[k, j] + 1$$
.

Of course, if we did not know that an optimal solution for the set S_{ij} includes activity a_k , we would have to examine all activities in S_{ij} to find which one to choose, so that

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset, \\ \max_{a_k \in S_{ij}} \{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset. \end{cases}$$
 (16.2)

We could then develop a recursive algorithm and memoize it, or we could work bottom-up and fill in table entries as we go along. But we would be overlooking another important characteristic of the activity-selection problem that we can use to great advantage.

Making the greedy choice

What if we could choose an activity to add to our optimal solution without having to first solve all the subproblems? That could save us from having to consider all the choices inherent in recurrence (16.2). In fact, for the activity-selection problem, we need consider only one choice: the greedy choice.

What do we mean by the greedy choice for the activity-selection problem? Intuition suggests that we should choose an activity that leaves the resource available for as many other activities as possible. Now, of the activities we end up choosing, one of them must be the first one to finish. Our intuition tells us, therefore, to choose the activity in S with the earliest finish time, since that would leave the resource available for as many of the activities that follow it as possible. (If more than one activity in S has the earliest finish time, then we can choose any such activity.) In other words, since the activities are sorted in monotonically increasing order by finish time, the greedy choice is activity a_1 . Choosing the first activity to finish is not the only way to think of making a greedy choice for this problem; Exercise 16.1-3 asks you to explore other possibilities.

If we make the greedy choice, we have only one remaining subproblem to solve: finding activities that start after a_1 finishes. Why don't we have to consider activities that finish before a_1 starts? We have that $s_1 < f_1$, and f_1 is the earliest finish time of any activity, and therefore no activity can have a finish time less than or equal to s_1 . Thus, all activities that are compatible with activity a_1 must start after a_1 finishes.

Furthermore, we have already established that the activity-selection problem exhibits optimal substructure. Let $S_k = \{a_i \in S : s_i \geq f_k\}$ be the set of activities that start after activity a_k finishes. If we make the greedy choice of activity a_1 , then S_1 remains as the only subproblem to solve. Optimal substructure tells us that if a_1 is in the optimal solution, then an optimal solution to the original problem consists of activity a_1 and all the activities in an optimal solution to the subproblem S_1 .

One big question remains: is our intuition correct? Is the greedy choice—in which we choose the first activity to finish—always part of some optimal solution? The following theorem shows that it is.

¹We sometimes refer to the sets S_k as subproblems rather than as just sets of activities. It will always be clear from the context whether we are referring to S_k as a set of activities or as a subproblem whose input is that set.

Theorem 16.1

Consider any nonempty subproblem S_k , and let a_m be an activity in S_k with the earliest finish time. Then a_m is included in some maximum-size subset of mutually compatible activities of S_k .

Proof Let A_k be a maximum-size subset of mutually compatible activities in S_k , and let a_j be the activity in A_k with the earliest finish time. If $a_j = a_m$, we are done, since we have shown that a_m is in some maximum-size subset of mutually compatible activities of S_k . If $a_j \neq a_m$, let the set $A'_k = A_k - \{a_j\} \cup \{a_m\}$ be A_k but substituting a_m for a_j . The activities in A'_k are disjoint, which follows because the activities in A_k are disjoint, a_j is the first activity in A_k to finish, and $f_m \leq f_j$. Since $|A'_k| = |A_k|$, we conclude that A'_k is a maximum-size subset of mutually compatible activities of S_k , and it includes a_m .

Thus, we see that although we might be able to solve the activity-selection problem with dynamic programming, we don't need to. (Besides, we have not yet examined whether the activity-selection problem even has overlapping subproblems.) Instead, we can repeatedly choose the activity that finishes first, keep only the activities compatible with this activity, and repeat until no activities remain. Moreover, because we always choose the activity with the earliest finish time, the finish times of the activities we choose must strictly increase. We can consider each activity just once overall, in monotonically increasing order of finish times.

An algorithm to solve the activity-selection problem does not need to work bottom-up, like a table-based dynamic-programming algorithm. Instead, it can work top-down, choosing an activity to put into the optimal solution and then solving the subproblem of choosing activities from those that are compatible with those already chosen. Greedy algorithms typically have this top-down design: make a choice and then solve a subproblem, rather than the bottom-up technique of solving subproblems before making a choice.

A recursive greedy algorithm

Now that we have seen how to bypass the dynamic-programming approach and instead use a top-down, greedy algorithm, we can write a straightforward, recursive procedure to solve the activity-selection problem. The procedure RECURSIVE-ACTIVITY-SELECTOR takes the start and finish times of the activities, represented as arrays s and f, the index k that defines the subproblem S_k it is to solve, and

²Because the pseudocode takes s and f as arrays, it indexes into them with square brackets rather than subscripts.

the size n of the original problem. It returns a maximum-size set of mutually compatible activities in S_k . We assume that the n input activities are already ordered by monotonically increasing finish time, according to equation (16.1). If not, we can sort them into this order in $O(n \lg n)$ time, breaking ties arbitrarily. In order to start, we add the fictitious activity a_0 with $f_0 = 0$, so that subproblem S_0 is the entire set of activities S. The initial call, which solves the entire problem, is RECURSIVE-ACTIVITY-SELECTOR (s, f, 0, n).

```
RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n)
```

```
1 m = k + 1

2 while m \le n and s[m] < f[k] // find the first activity in S_k to finish

3 m = m + 1

4 if m \le n

5 return \{a_m\} \cup \text{RECURSIVE-ACTIVITY-SELECTOR}(s, f, m, n)

6 else return \emptyset
```

Figure 16.1 shows the operation of the algorithm. In a given recursive call RECURSIVE-ACTIVITY-SELECTOR (s, f, k, n), the **while** loop of lines 2–3 looks for the first activity in S_k to finish. The loop examines $a_{k+1}, a_{k+2}, \ldots, a_n$, until it finds the first activity a_m that is compatible with a_k ; such an activity has $s_m \geq f_k$. If the loop terminates because it finds such an activity, line 5 returns the union of $\{a_m\}$ and the maximum-size subset of S_m returned by the recursive call RECURSIVE-ACTIVITY-SELECTOR (s, f, m, n). Alternatively, the loop may terminate because m > n, in which case we have examined all activities in S_k without finding one that is compatible with a_k . In this case, $S_k = \emptyset$, and so the procedure returns \emptyset in line 6.

Assuming that the activities have already been sorted by finish times, the running time of the call Recursive-Activity-Selector(s, f, 0, n) is $\Theta(n)$, which we can see as follows. Over all recursive calls, each activity is examined exactly once in the **while** loop test of line 2. In particular, activity a_i is examined in the last call made in which k < i.

An iterative greedy algorithm

We easily can convert our recursive procedure to an iterative one. The procedure RECURSIVE-ACTIVITY-SELECTOR is almost "tail recursive" (see Problem 7-4): it ends with a recursive call to itself followed by a union operation. It is usually a straightforward task to transform a tail-recursive procedure to an iterative form; in fact, some compilers for certain programming languages perform this task automatically. As written, RECURSIVE-ACTIVITY-SELECTOR works for subproblems S_k , i.e., subproblems that consist of the last activities to finish.

Figure 16.1 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities given earlier. Activities considered in each recursive call appear between horizontal lines. The fictitious activity a_0 finishes at time 0, and the initial call RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11), selects activity a_1 . In each recursive call, the activities that have already been selected are shaded, and the activity shown in white is being considered. If the starting time of an activity occurs before the finish time of the most recently added activity (the arrow between them points left), it is rejected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call, RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11), returns \emptyset . The resulting set of selected activities is $\{a_1, a_4, a_8, a_{11}\}$.

The procedure GREEDY-ACTIVITY-SELECTOR is an iterative version of the procedure RECURSIVE-ACTIVITY-SELECTOR. It also assumes that the input activities are ordered by monotonically increasing finish time. It collects selected activities into a set *A* and returns this set when it is done.

```
GREEDY-ACTIVITY-SELECTOR (s, f)

1  n = s.length

2  A = \{a_1\}

3  k = 1

4  for m = 2 to n

5  if s[m] \ge f[k]

6  A = A \cup \{a_m\}

7  k = m

8 return A
```

The procedure works as follows. The variable k indexes the most recent addition to A, corresponding to the activity a_k in the recursive version. Since we consider the activities in order of monotonically increasing finish time, f_k is always the maximum finish time of any activity in A. That is,

$$f_k = \max\{f_i : a_i \in A\} \ . \tag{16.3}$$

Lines 2–3 select activity a_1 , initialize A to contain just this activity, and initialize k to index this activity. The **for** loop of lines 4–7 finds the earliest activity in S_k to finish. The loop considers each activity a_m in turn and adds a_m to A if it is compatible with all previously selected activities; such an activity is the earliest in S_k to finish. To see whether activity a_m is compatible with every activity currently in A, it suffices by equation (16.3) to check (in line 5) that its start time s_m is not earlier than the finish time f_k of the activity most recently added to A. If activity a_m is compatible, then lines 6–7 add activity a_m to A and set k to m. The set A returned by the call Greedy-Activity-Selector (s, f) is precisely the set returned by the call Recursive-Activity-Selector (s, f).

Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n activities in $\Theta(n)$ time, assuming that the activities were already sorted initially by their finish times.

Exercises

16.1-1

Give a dynamic-programming algorithm for the activity-selection problem, based on recurrence (16.2). Have your algorithm compute the sizes c[i, j] as defined above and also produce the maximum-size subset of mutually compatible activities.