

Algebra homologiczna

Zima 2023-24

1 Wstęp

1.1 Kompleksy łańcuchowe

Niech R będzie dowolnym pierścieniem, natomiast A, B, C będą R-modułami. Mając ciąg

$$A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C$$

mówimy, że jest on *dokładny*, jeśli ker(g) = im(f). W szczególności implikuje to, że g \circ f = gf : A \rightarrow C jest homomorfizmem zerowym.

Definicja 1.1: Kompleks łańcuchowy

Rozważmy rodzinę $C=\{C_n\}_{n\in\mathbb{Z}}$ R-modułów wraz z mapami $d=d_n:C_n\to C_{n-1}$ takimi, że każde złożenie

$$[d_{n-1} \circ d_n =] d \circ d : C_n \rightarrow C_{n-2}$$

jest zerowe. Wówczas każdą mapę d_n nazywamy **różniczkami** C, a rodzina C jest **kompleksem łańcuchowym**.

Jądra każdego d_n nazywamy n-*cyklami* C i oznaczamy $Z_n = Z_n(C)$, natomiast obraz każdego d_{n+1} jest nazywany n-*granicą* C i oznacza się jako $B_n = B_n(C)$. Ponieważ $d_n \circ d_{n+1} = 0$, to

$$0 \subseteq B_n \subseteq Z_n \subseteq C_n$$
.

Definicja 1.2: Homologia

n-tym modułem homologii kompleksu C nazywamy iloraz $H_n(C) = Z_n/B_n$.

Problem 1.1

Ustalmy $C_n = \mathbb{Z}/8$ dla $n \ge 0$ i $C_n = 0$ dla n < 0. Dla n > 0 niech d_n posyła $x \mod 8$ do $4x \mod 8$. Pokaż, że tak zdefiniowane C jest kompleksem łańcuchowym $\mathbb{Z}/8$ -modułów i policz moduły homologii.

Rozwiązanko

Zauważyć, że $d_{n-1}d_n=0$ jest nietrudno dla $n\leq 1$ ($d_{n-1}d_n:C_n\to C_{n-2}=0$). Z kolei dla dowolnego n>1 i dowolnego $x\in C_n$ wiemy, że $d_n(x)=4x\mod 8$. Jeśli x było oryginalnie liczbą parzystą, to od razu widać, że $d_n(x)=0$. Z kolei gdy x jest nieparzyste, to wówczas

$$d_{n-1}d_n(x) = d_{n-1}(4x \mod 8) = 16x \mod 8 = 8 \cdot (2x) \mod 8 = 0,$$

a więc $d_{n-1}d_n = 0$.

Homologie dla n < 2 są trywialne, natomiast dla n \geq 2 wszystkie są takie same (gdyż funkcje d_n jak i moduły C_n nie ulegają zmianie wraz z n). Wystarczy więc przyjrzeć się Z_1/B_1

$$\mathsf{C}_0 = \mathbb{Z}/8 \, \xleftarrow[\mathsf{d}_1]{} \; \mathsf{C}_1 = \mathbb{Z}/8 \, \xleftarrow[\mathsf{d}_2]{} \; \mathsf{C}_2 = \mathbb{Z}/8$$

 Z_1 to liczby parzyste w \mathbb{Z} /8 (kernel d_1), natomiast B_1 to liczby podzielne przez 4, ale nie przez 8 w C_1 . W takim razie, $Z_1/B_1 = \{4\}$.