C3 With Diagram Easy Answers P3

1 (i) State $u - v$ is $-3 + i$ EITHER: Carry out multiplication of numerator and			В1		
		4 – 2i, or equivalent	M1		
		Obtain answer $\frac{1}{2} + \frac{1}{2}i$, or any equivalent	A1		
	OR:	Obtain two equations in x and y , and solve for x or for y	M1		
		Obtain answer $\frac{1}{2} + \frac{1}{2}i$, or any equivalent	A1		3
(ii)	State arg	nument is $\frac{1}{4}\pi$ (or 0.785 radians or 45°)	A1√		1
(iii)		t OC and BA are equal (in length) t OC and BA are parallel or have the same direction	B1 B1		2
(iv)	EITHER:	Use fact that angle AOB = arg u – arg v = arg(u/v) Obtain given answer (or 45°)	M1 A1		
	OR:	Obtain tan AOB from gradients of OA and OB and the $tan(A \pm B)$ formula	M1		
		Obtain given answer (or 45°)	A1		
	OR:	Obtain cos <i>AOB</i> by using the cosine rule or a scalar product Obtain given answer (or 45°)	M1 A1		
	OR:	Prove angle $OAB = 90^{\circ}$ and $OA = AB$	M1		
	ISR: Obta	Derive the given answer (or 45°) aining a value for angle <i>AOB</i> by calculating	A1		2
	=	- arctan $\left(\frac{1}{2}\right)$ earns a maximum of B1.]			
	arotari(o)	9709/03/0/N/04	[Tr	urn (over
		37 03/03/07/W04	Į.	ui ii (JVC1
2	(i)	Use quadratic formula, or the method of completing the square, or the			
		substitution $z = x + iy$ to find a root, using $i^2 = -1$ Obtain a root, e.g. $2 + i$	M1 A1		
		Obtain the other root –2 + i	A1	3	
		[Roots given as ± 2 + i earn A1 + A1 .]			
	(ii)	Obtain modulus $\sqrt{5}$ (or 2.24) of both roots Obtain argument of 2 + i as 26.6° or 0.464 radians	B1 √		
		(allow ±1 in final figure)	B1 √		
		Obtain argument of –2 + i as 153.4° or 2.68 radians	B1 √	2	
		(allow ± 1 in final figure) [SR: in applying the follow through to the roots obtained in (i), if both roots are real or pure imaginary, the mark for the moduli is not available and only $\mathbf{B1}$ is given if both arguments are correct; also if one of the two roots is real or pure imaginary and the other is neither then $\mathbf{B1}$ is given if both moduli are correct and $\mathbf{B1}$ if both arguments are correct.]	ВТУ	3	
	(iii)	Show both roots on an Argand diagram in relatively correct positions [This follow through is only available if at least one of the two roots is of the form $x + iy$ where $xy \neq 0$.]	B1 √	1	

© UCLES 2005 9709/3/M/J/05

3

(i)

Substitute x = 1 + 2i and attempt expansions

© UCLES 2007 9709/03/M/J/07

M1

6	(i)	to find a ro Obtain a r	ratic formula, or completing the square, or the substitution $z = x + iy$ oot, using $i^2 = -1$ oot, e.g. $1 - \sqrt{3}i$ e other root, e.g. $-1 - \sqrt{3}i$	M1 A1 A1	3
					3
	(ii)	Represent	both roots on an Argand diagram in relatively correct positions	B1√	1
	(iii)		ulus of both roots is 2 ment of $1 - \sqrt{3}i$ is -60° (or 300° , $-\frac{1}{3}\pi$, $-\frac{5}{3}\pi$)	B1√ B1√	
		State argu	ment of $-1 - \sqrt{3}i$ is -120° (or 240° , $-\frac{2}{3}\pi$, $-\frac{4}{3}\pi$)	B 1√	3
	(iv)	[The A ma	mplete justification of the statement arks in (i) are for the final versions of the roots. Allow $(\pm 2 - 2\sqrt{3}i)/2$ swer. The remaining marks are only available for roots such that $xy \neq 0$.] wers to (iii) in polar form as a misread]	B1	1
			© UCLES 2009	9709/03/	√l/J/09
7	(i)	State modu State argur	alus is 2 ment is $\frac{1}{6}\pi$, or 30°, or 0.524 radians	B1 B1	[2]
	(ii)	(a) State	answer $3\sqrt{3} + i$	B1	
		(b) <i>EITH</i>	ER: Multiply numerator and denominator by $\sqrt{3} - i$, or equivalent Simplify denominator to 4 or numerator to $2\sqrt{3} + 2i$ Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent	M1 A1 A1	
		OR 1:	Obtain two equations in x and y and solve for x or for y Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$	M1 A1	
		OR 2:	Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent Using the correct processes express iz^*/z in polar form Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$	A1 M1 A1	
			Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$, or equivalent	A1	[4]
	(iii)	EITHER:	B in relatively correct positions Use fact that angle $AOB = \arg(iz^*) - \arg z$ Obtain the given answer	B1 M1 A1	
		OR 1:	Obtain tan \hat{AOB} from gradients of OA and OB and the correct $tan(A - B)$ formula Obtain the given answer	M1 A1	
		OR 2:	Obtain cos \hat{AOB} by using correct cosine formula or scalar product Obtain the given answer	M1 A1	[3]

© UCLES 2010 9709/31/O/N/10

8	(i)	Obtain 3	multiplication and use $i^2 = -1$ 3 + 4i 5 for <u>modulus</u>	M1 A1 B1	[3]
	(ii)	and 1	omplete circle with centre corresponding to their w^2 radius corresponding to their $ w^2 $ ne correct region	B1√ B1√ cwo B1	[3] /N/10
9	(i)	Either Or	Expand $(1+2i)^2$ to obtain $-3+4i$ or unsimplified equivalent Multiply numerator and denominator by $2-i$ Obtain correct numerator $-2+11i$ or correct denominator 5 Obtain $-\frac{2}{5}+\frac{11}{5}i$ or equivalent Expand $(1+2i)^2$ to obtain $-3+4i$ or unsimplified equivalent Obtain two equations in x and y and solve for x or y Obtain final answer $x=-\frac{2}{5}$ Obtain final answer $y=\frac{11}{5}$	B1 M1 A1 A1 B1 M1 A1	[4]
	(ii)		circle entre at relatively correct position, following their u rele passing through the origin u	M1 A1√ [*] A1 9709/31/N	[3] //J/12

(a)	EITHER:	Use quadratic formula to solve for	M1	
		$w \text{ Use } i^2 = -1$	M1	
		Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$	A1	
		Multiply numerator and denominator of an answer by $-2i + 1$, or equivalent	M1	
		Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	
	OR1:	Multiply the equation by $1-2i$	M1	
		Use $i^2 = -1$	M1	
		Obtain $5w^2 + 4w(1-2i) - (1-2i)^2 = 0$, or equivalent	A1	
		Use quadratic formula or factorise to solve for w	M1	
		Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	
	OR2:	Substitute $w = x + iy$ and form equations for real and imaginary parts	M1	
		Use $i^2 = -1$	M1	
		Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e.	A1	
		Form equation in x only or y only and solve	M1	
		Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1	[5]
(b)		ircle with centre 1 + i	B1	
		ircle with radius 2	B 1	
	Show hal	f-line arg $z = \frac{1}{4}\pi$	B 1	
	Show hal	f-line arg $z = -\frac{1}{4}\pi$	B 1	
	Shade the	correct region	B 1	[5]

© UCLES 2016 9709/31/O/N/16

11(a)	Square $x + iy$ and equate real and imaginary parts to 8 and -15	M1				
	Obtain $x^2 - y^2 = 8$ and $2xy = -15$					
	Eliminate one unknown and find a horizontal equation in the other					
	Obtain $4x^4 - 32x^2 - 225 = 0$ or $4y^4 + 32y^2 - 225 = 0$, or three term equivalent	A1				
	Obtain answers $\pm \frac{1}{\sqrt{2}}(5-3i)$ or equivalent	A1				
		5				
11(b)	Show a circle with centre 2+i in a relatively correct position	B1				
	Show a circle with radius 2 and centre not at the origin	B1				
	Show line through i at an angle of $\frac{1}{4}\pi$ to the real axis	B1				
	Shade the correct region	B1				
		4				

© UCLES 2017 9709/31/O/N/17

12(i)	State mdulus 2	B1
	State argument $-\frac{1}{3}\pi$ or $-60^{\circ} (\frac{5}{3}\pi \text{ or } 300^{\circ})$	B1
		2
12(ii)	EITHER: Expand $(1-(\sqrt{3})i)^3$ completely and process i^2 and i^3	(M1
	Verify that the given relation is satisfied	A1)
	OR: $u^3 = 2^3 \left(\cos(-\pi) + i\sin(-\pi)\right)$ or equivalent: follow their answers to (i)	(M1
	Verify that the given relation is satisfied	A1)
		2

12 (iii)	Show a circle with centre $1-(\sqrt{3})i$ in a relatively correct position	В1		
	Show a circle with radius 2 passing through the origin	B1		
	Show the line Re $z = 2$			
	Shade the correct region	B1		
		4		

© UCLES 2017 9709/32/O/N/17

		1
13(i)	Use quadratic formula, or completing the square, or the substitution $z = x + iy$ to find a root, using $i^2 = -1$	M1
	Obtain a root, e.g. $-\sqrt{6} - \sqrt{2i}$	A1
	Obtain the other root, e.g. $-\sqrt{6} - \sqrt{2i}$	A1
		3
13(ii)	Represent both roots in relatively correct positions	B1ft
		1
13(iii)	State or imply correct value of a relevant length or angle, e.g. <i>OA</i> , <i>OB</i> , <i>AB</i> , angle between <i>OA</i> or <i>OB</i> and the real axis	B1ft
	Carry out a complete method for finding angle <i>OAB</i>	M1
	Obtain $AOB = 60^{\circ}$ correctly	A1
		3
13(iv)	Give a complete justification of the given statement	B1
		1

Substitute i	n uv , expand the product and use $i^2 = -1$	M1	
Obtain ansv	$ver uv = -11 - 5\sqrt{3}i$	A1	
EITHER:	Substitute in u/v and multiply numerator and denominator by the conjugate of v , or equivalent	M1	
	Obtain numerator $-7 + 7\sqrt{3}i$ or denominator 7	A1	
	Obtain final answer $-1 + \sqrt{3}i$	A1	
OR:	Substitute in u/v , equate to $x + iy$ and solve for x or for y	M1	$\begin{cases} -3\sqrt{3} = \sqrt{3}x - 2y \\ 1 = 2x + \sqrt{3}y \end{cases}$
Obtain x =	$-1 \text{ or } y = \sqrt{3}$	A1	
Obtain fina	Obtain final answer $-1+\sqrt{3}$ i		
		5	

Show the points A and B representing u and v in relatively correct positions	B1	
Carry out a complete method for finding angle AOB , e.g. calculate $arg(u/v)$	M1	$OR: \tan a = \frac{-1}{3\sqrt{3}}, \tan b = \frac{2}{\sqrt{3}} \implies \tan(a-b) = \frac{3\sqrt{3} - \sqrt{3}}{1 - \frac{2}{9}}$
If using $\theta = \tan^{-1}(-\sqrt{3})$ must refer to $\arg(\frac{u}{v})$		$= -\sqrt{3}$ $\Rightarrow \theta = \frac{2\pi}{3}$
		$OR: \cos \theta = \frac{\begin{pmatrix} -3\sqrt{3} \\ 1 \end{pmatrix} \begin{pmatrix} \sqrt{3} \\ 2 \end{pmatrix}}{\sqrt{7}\sqrt{28}} = \frac{-9+2}{14} = \frac{-1}{2}$
		$\Rightarrow \theta = \frac{2\pi}{3}$ $OR: \cos \theta = \frac{28 + 7 - 49}{2\sqrt{28}\sqrt{7}} = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3}$
Prove the given statement	A1	Given answer so check working carefully
	3	

© UCLES 2018 9709/32/M/J/18

15(i)	Multiply numerator and denominator by $1 + \sqrt{3}i$, or equivalent	M1	
	$4i - 4\sqrt{3}$ and $3 + 1$	A1	
	Obtain final answer $-\sqrt{3} + i$	A1	
		3	

15(ii)	State that the modulus of u is 2	B1	
	State that the argument of u is $\frac{5}{6}\pi$ (or 150°)	B1	
		2	
15(iii)	Show a circle with centre the origin and radius 2	B1	
	Show u in a relatively correct position	B1	FT
	Show the perpendicular bisector of the line joining u and the origin	B1	FT
	Shade the correct region	B1	
		4	

© UCLES 2019 9709/33/M/J/19