

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 736 326 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:

08.08.2001 Bulletin 2001/32

(51) Int Cl.7: **B01J 23/75**, B01J 23/745, C07C 1/04

(21) Application number: 96302437.7

(22) Date of filing: 04.04.1996

(54) Fischer-Tropsch catalysts containing iron and cobalt

Eisen und Kobalt enthaltende Fischer-Tropschkatalysatoren Catalyseurs Fischer-Tropsch contenant du fer et du cobalt

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
NL PT SE
Designated Extension States:
AL LT LV SI

(30) Priority: 07.04.1995 ZA 9502903

(43) Date of publication of application: 09.10.1996 Bulletin 1996/41

(73) Proprietor: Sasol Technology (Proprietary)
Limited
2196 Johannesburg (ZA)

(72) Inventors:

 Espinoza, Rafael Luis Sasoiburg (ZA)

 Visagle, Jacobus Lucas Sasolburg (ZA) Van Berge, Peter Jacobus Vaal Park, Sasolburg (ZA)

 Bolder, Franciscus Hermanus Sasolburg (ZA)

 (74) Representative: Marshall, Monica Anne et al J.A. KEMP & CO.
 14 South Square Gray's Inn London WC1R 5JJ (GB)

(56) References cited:

EP-A- 0 127 220 EP-A- 0 434 284 EP-A- 0 266 898 EP-A- 0 535 790

US-A- 4 413 064

Remarks:

The file contains technical information submitted after the application was filed and not included in this specification

P 0 736 326 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

10

15

25

35

45

50

[0001] THIS INVENTION relates to catalysts. It relates in particular to a process for preparing a Fischer-Tropsch catalyst, and to a Fischer-Tropsch catalyst prepared by the process.

[0002] The Applicant is aware of US 4,413,064 which teaches the conversion of synthesis gas to hydrocarbons in a diesel fuel boiling range, by reacting the synthesis gas in the presence of a catalyst obtained by contacting particulate alumina, firstly, with an aqueous impregnation solution of a cobalt salt, and, secondly, with a non-aqueous organic impregnation solution of a ruthenium salt and a salt of thorium or lanthanum. The Applicant is also aware of EP 0535790 which teaches the preparation of a cobalt containing hydrocarbon synthesis catalyst such as titania extrudates containing an alumina binder and impregnated with cobalt and rhenium.

[0003] According to a first aspect of the invention, there is provided a process for preparing, a Fischer-Tropsch catalyst, which process consists of subjecting a slurry comprising a particulate alumina carrier, water and an active component selected from the group consisting in cobalt (Co), iron (Fe) and mixtures thereof, to treatment to impregnate the alumina carrier with the active component; drying the impregnated carrier; and calcining the dried impregnated carrier, thereby to obtain the Fischer-Tropsch catalyst, characterized in that

- (i) the impregnation is effected under a sub-atmospheric pressure environment; and
- (ii) the drying is effected under a sub-atmospheric pressure environment.

[0004] The sub-atmospheric pressure environment during the impregnation may be at a pressure less than 20 kPa (a), and preferably at a pressure less than 10 kPa(a). Likewise, the sub-atmospheric pressure environment during the drying may be at a pressure less than 20 kPa(a), and preferably at a pressure less than 10 kPa(a).

[0005] The drying temperature is limited by the lower limit of the decomposition temperature of the active component, which is typically a nitrate salt so that the drying temperature is typically 70°C-90°C.

[0006] The sub-atmospheric pressure environments can thus be obtained by placing the slurry in a suitable enclosed vessel, and drawing the required sub-atmospheric pressure or vacuum on the vessel.

[0007] While the impregnation and drying in the sub-atmospheric pressure or vacuum environments or conditions can be effected in two separate or distinct steps, they can, if desired, be effected in a single step, so that the impregnation is effected while the drying takes place.

[0008] The drying in the sub-atmosphereic pressure environment may be continued until the moisture content of the impregnated carrier is below 20% by mass. Thereafter, the impregnated carrier may be dried further under non-sub-atmospheric pressure conditions to remove more water, particularly water of crystallization. The further drying may be effected by passing a drying medium, eg air, in co-current or counter-current fashion over the impregnated carrier. The drying temperature may then be between 100°C and 180°C. Thus, for example, the further drying may be effected by means of hot air used to fluidize and dry the particulate carrier, eg in a tubular reactor, in which case the air flow is co-current. Instead, however, the further drying may be effected in a counter-current air drier, which may be a catalyst spray drier.

[0009] The calcination of the dried impregnated carrier thus converts or decomposes the active component to its oxide form. Thus, for example, the active component can be used in the form of a salt, eg Co(NO₃)₂, with the salt then being decomposed to the oxide of the active component, eg Co₃O₄. The calcining is thus effected in a calciner. For example, the calciner can be mounted to the lower end of a spray drier used for further drying of the carrier as hereinbefore described, with the dried carrier then falling directly into the calciner.

[0010] If desired, the calcined catalyst may be re-slurried with water together with at least one of the following: the active component, another active component, or a dopant as hereinafter described, with the resultant impregnated carrier then again being subjected to drying and calcination, as hereinbefore described.

[0011] The process may include forming the slurry. In particular, the active component may initially be in the form of a water soluble compound of the component, and may then be dissolved in at least some of the water, prior to forming the slurry with the alumina carrier, so that formation of the slurry will then involve intimate admixing of the alumina carrier and a solution of the active component compound. Supersaturation during impregnation, which results in active component precursor crystallization, should be avoided during impregnation/drying. The supersaturation aspect is addressed through the slurry impregnation, while the vacuum drying at \sim 75°C of the aqueous solution addresses the precursor crystallization aspect. Thus, the purpose is to inhibit or prevent the diffusion of the catalyst precursor to the outer rim of the carrier body during drying (which would result in an egg-shell distribution) and which is enhanced by slow drying rates. Vacuum drying of an aqueous impregnation solution at \sim 75°C overcomes this problem, thereby also eliminating the option of using more volatile solvents, eg acetone, alcohol, etc, the use of which is also complicated by aspects such as: poorer solubilities of nitrates, for example -35% less Co(NO₃)₂ is soluble in acetone as compared to water at room temperature; and the presence of high quantities of crystal waters, eg Co(NO₃)₂.6H₂O.

[0012] While the alumina carrier will typically not be structurally promoted, it is, however, envisaged that it can contain

a structural promoter such as magnesium (Mg) or cerium (Ce) if desired, eg if it is desired to enhance the attrition resistance of the resultant catalyst which is obtained from the process of the invention.

[0013] Irrespective of whether or not the alumina carrier is structurally promoted, the process of the invention may, however, be categorized thereby that no promoter to enhance the activity of the resultant catalyst or to modify its selectivity, such as potassium (K), chromium (Cr), magnesium (Mg), zirconium (Zr), ruthenium (Ru), thorium (Th), hafnium (Hf), cerium (Ce), rhenium (Re), uranium (U), vanadium (V), titanium (Ti), manganese (Mn), nickel (Ni), molybdenum (Mo), wolfram (W), lanthanum (La), palladium (Pd), uranium (U), praseodymium (Pr), neodymium (Nd) or other elements from groups IA or IIA of the periodic table of the elements, is added to the slurry or to the impregnated carrier. Thus, the resultant catalyst will then contain no such synthesis enhancing promoter(s). As a result, the calcination of the dried impregnated carrier may be effected at a relatively low temperature, eg at a temperature below 350°C, and even below 300°C.

[0014] When the catalyst is to be used in a slurry bed reactor, it may be washed with a suitable washing medium, eg water, after the calcination, to remove unwanted contaminants, such as cobalt, which may have formed on the external surface of the catalyst in the form of a shell of cobalt, ie without alumina being present in the shell. This washing is preferably effected with agitation, which may be achieved through boiling of the water in which the catalyst is washed. Changing the water from time to time speeds up the procedure.

15

25

40

50

[0015] The process may include reducing the calcined catalyst, eg by subjecting it to heat treatment under the influence of a reducing gas such as hydrogen.

[0016] It is usually desired that the resultant catalyst must comply geometrically with certain requirements in order to obtain a desired activity and/or selectivity, without the use of synthesis enhancing promotors, as hereinbefore described. Thus, for example, the catalyst may have a specified minimum pore size, typically a pore size of at least 12nm. If the alumina carrier geometry is such that these geometric requirements in respect of the resultant catalyst will not be met, then the process may include pretreating the alumina carrier appropriately. Thus, the process may include pretreating the particulate alumina carrier or substrate prior to forming the slurry thereof with the water and the active component, to modify the average diameter of its pores, ie its pore size, and/or to modify its chemical phase.

[0017] This pretreatment may comprise chemically pretreating the carrier and/or precalcining it prior to the slurry formation. When the carrier is chemically pretreated, this may involve treating it with ammonia. In particular, the ammonia treatment may comprise forming a paste by admixing the alumina carrier with water; spraying ammonia onto the paste; optionally, spraying more water onto the ammoniated paste, with simultaneous mixing, eg kneading, of the paste; extruding the paste; drying it; and then calcining it. This calcination may be effected at a temperature between 200°C and 1000°C, preferably between 500°C and 900°C. An acid, such as acetic acid, may be added to the paste, if desired.

[0018] When the carrier is precalcined without chemical pretreatment thereof as hereinbefore described, this calcination may also be effected at a temperature between 200°C and 1000°C, preferably between 500°C and 900°C. More particularly, the pretreatment may then comprise admixing the alumina carrier with water and an acid such as acetic acid; spraying additional water onto the mixture while mixing, eg kneading, it further; extruding the resultant paste; drying the extruded paste; and then effecting the calcination thereof. The water and acid initially mixed with the carrier may be in the form of dilute acid solution.

[0019] Naturally, the extrusion of the paste can be dispensed with if desired, eg if the resultant catalyst is to be used in a slurry bed reactor.

[0020] The alumina carrier or support may be that prepared by a spray-drying technique, provided that it has been subjected to the calcination temperature hereinbefore referred to, either during manufacture thereof, or subsequently during pretreatment thereof as hereinbefore described. Thus, a commercially available alumina support, such as the spray dried alumina support available from CONDEA Chemie GmbH of überseering 40, 22297 Hamburg, Germany.

[0021] The alumina carrier is thus characterized thereby that it is used in a relatively pure form, containing at most only minor proportions of impurities or undesired substances such as titania and/or silica, and/or a minor proportion of a structural promotor as hereinbefore described. Furthermore, the process may be characterized thereby that the alumina carrier is the only carrier, ie that the alumina is not used in conjunction with other carriers or supports such as titania or silica.

[0022] The mass proportion of active component to alumina carrier in the slurry may be between 5:100 and 60:100, typically between 10:100 and 45:100.

[0023] The process may include adding to the slurry or to the impregnated uncalcined carrier or to the calcined catalyst, as a dopant, a minor proportion of an agent capable of enhancing the reducibility of the active component. The dopant may instead, or additionally, be added to the slurry which is formed when the calcined catalyst is reslurried as hereinbefore described. The dopant may comprise copper (Cu) and/or platinum (Pt). The mass proportion of the dopant, when present, to active component may be between 0,005:100 and 10:100, typically between 0,1:100 and 5,0:100 for copper, and between 0,01:100 and 0,3:100 for platinum.

[0024] According to a second aspect of the invention, there is provided a process for preparing a Fischer-Tropsch

catalyst, which process comprises subjecting a slurry comprising a particulate alumina carrier, water and an active catalyst component selected from the group consisting in cobalt (Co), iron (Fe) and mixtures thereof, to treatment to impregnate the alumina carrier with the active component; drying the impregnated carrier; and calcining the dried impregnated carrier, thereby to obtain the Fischer-Tropsch catalyst, characterized in that

- (i) the impregnation is effected under a sub-atmospheric pressure environment;
- (ii) the drying is effected under a sub-atmospheric pressure environment;
- (iii) a more volatile solvent than water is not present during the impregnation and drying; and
- (iv) no promoter to enhance the activity of the catalyst or to modify its selectivity, and which is selected from the group consisting in potassium (K), chromium (Cr), magnesium (Mg), zirconium (Zr), ruthenium (Ru), thorium (Th), hafnium (Hf), cerium (Ce), rhenium (Re), uranium (U), vanadium (V), titanium (Ti), manganese (Mn), nickel (Ni), molybdenum (Mo), wolfram (W), lanthanum (La), palladium (Pd), uranium (U), praseodymium (Pr), neodymium (Nd) or other elements from groups IA or IIA of the periodic table of the elements, is added to the slurry or to the impregnated carrier.

[0025] The invention extends also to a Fischer-Tropsch catalyst, when produced by the process according to the invention.

[0026] The catalyst has high specific activity, and is suitable for the selective conversion of synthesis gas, utilizing Fischer-Tropsch reaction conditions in fixed or slurry catalyst beds, to high molecular weight saturated hydrocarbons, ie waxes.

[0027] The invention will now be described in more detail with reference to the following non-limiting examples, and with reference to the accompanying drawings, in which

FIGURE 1 shows a plot of wax selectivity vs activity in respect of the catalysts of Examples 1 to 8;

FIGURE 2 shows a plot of wax selectivity vs pore size in respect of the catalysts of Examples 5, 7, 9, 10 and 11;

FIGURE 3 shows a plot of wax selectivity vs pore size in respect of the catalysts of Examples 36 to 59; and

FIGURE 4 shows a plot of percentage CO conversion vs selectivity in respect of the catalysts of Example 60.

[0028] In the examples hereunder, a series of cobalt supported catalysts on alumina were prepared and tested for their activity in the conversion of synthesis gas into hydrocarbons.

Fixed Bed Tests:

5

10

15

25

30

35

40

50

55

[0029] These tests were performed using 40m ℓ of catalyst. The catalyst was either crushed and sieved extrudates to particle sizes ranging from imm to 1,7mm, or spray dried to particle sizes ranging between 0,05mm and 0,15mm. A tubular reactor was used, and had an internal diameter of 1cm and a length of 100cm. The top part of the reactor was filled with an inert material to act as a pre-heater for the gas feed. The feed gas consisted of hydrogen and carbon monoxide in an H $_2$ /CO molar ratio of 2/1. The hydrogen and carbon monoxide accounted for about 84% (molar basis) of the feed. The other 16% was composed of inert gases, mainly methane (14,5%) and nitrogen (about 1%). The reactor was surrounded by an aluminium jacket which was electrically heated. The feed flow was controlled by means of Brooks mass flowmeters, and the Gas Hourly Space Velocity (GHSV) used in all the experiments was 4200 h⁻¹, based on total feed flow. The waxy products were collected in a condenser at about 18 bar and 130°C. This was followed by a condenser at about 18 bar and 20°C for the liquid products.

Slurry Phase Tests:

[0030] Between 10 and 30g of catalyst, spray-dried to particle sizes ranging between 38 μ m to 150 μ m, was suspended in 300m ℓ molten wax and loaded in a CSTR with an internal volume of 500m ℓ . The feed gas consisted of hydrogen and carbon monoxide in a H₂/CO molar ratio of 2/1. This reactor was electrically heated and sufficiently high stirrer speeds were employed so as to eliminate any gas-liquid mass transfer limitations. The feed flow was controlled by means of Brooks mass flow meters, and space velocities ranging between 1 and 3 m³ $_{\rm n}$ /h/kg catalyst were used. GC analyses of the permanent gases as well as the volatile overhead hydrocarbons were used in order to characterize the product spectra.

[0031] All catalysts were reduced, prior to synthesis, in a fixed bed reactor at a pure hydrogen space velocity of 2 500 h⁻¹ and pressures ranging between 1 and 10 bar. The temperature was increased from room temperature to 350°C to 400°C at a rate of 1°C/min, after which isothermal conditions were maintained for 6 to 16 hours.

[0032] The catalysts were prepared according to the following examples:

Example 1

[0033] 50g Alumina powder was added to 70m ℓ distilled water. To this 50g Co(NO₃)₂·6H₂O was added. The mixture was kneaded thoroughly and extruded. The extrudates were dried in an oven for 2 to 3 hours at 100°C and thereafter calcined at 350°C for 16 hours. The alumina powder was that obtained from Degussa AG under the designation "Degussa Aluminium Oxide C"

Example 2

10 [0034] In a similar manner to Example 1, a catalyst was prepared by impregnation, drying and calcining, except that 42.5g, instead of 50g, Co(NO₃)₂·6H₂O was added to the alumina and water mixture.

Example 3

[0035] In a similar manner to Example 1, a catalyst was prepared but 37.5g, rather than 50g, Co(NO₃)₂·6H₂O was 15 added to the alumina.

Example 4

20 [0036] In a similar manner to Example 1, a catalyst was prepared, but 20g Cr(NO₃)₃·9H₂O was added as a promoter.

Example 5

[0037] 50g of the same alumina powder as used in Example 1, was added to 70mℓ distilled water. To this mixture 25 25g Co(NO₃)₂-6H₂O and 6.1g Mg(NO₃)₂-6H₂O were added. The mixture was kneaded and extruded similarly to Example 1.

Example 6

[0038] A catalyst was prepared in a similar manner to Example 1, but 0.35g KNO₃ was added as a promoter. 30

Example 7

[0039] A catalyst was prepared in a similar manner to Example 5, but 0.4g KNO3 was added in place of the Mg 35 $(NO_3)_2 - 6H_2O$.

Example 8

45

50

55

[0040] A catalyst was prepared in a similar manner to Example 1, but 4.9g Th(NO₃)₄·5H₂O was added as a promoter. [0041] The characteristics of the catalysts of Examples 1 to 8, as well as their performance in fixed bed Fischer-40 Tropsch synthesis, are presented in Table 1.

ABLE 1

Catalyst Examples. (Particle sizes varied between 1.0 and 1.7	Active metal content (g Co per	Pn	Promoter	Fischer-Trop	Fischer-Tropsch fixed bed synthesis performance at 18 bar and a GHSV of 4 200 h ⁻¹	erformance at 18
mm with a pore size of 24 nm)	100g Al ₂ O ₃)	Element	Promotion level (expressed per 100g Al ₂ O ₃)	Reaction temperature (°C)	Fischer-Tropsch activity expressed as m mol H ₂ O formed per m catalyst per h	Mass % reactor wax selectivity (~ C ₁₉₊)
-	20		•	225	11.1	32
2	17		•	220	7.5	37
m	15	•	•	220	5.6	4
4	20	ඊ	5.2 g	220	3.0	64
٠,	01	Mg	1.2 g	220	2.6	45
٧.	10	Mg	1.2 g	215	1.6	23
•	50	×	0.3 g	220	5.0	4
7	10	×	0.3 g	220	2.1	57
7	10	X	0.3 g	215	1.3	63
80	20	T.	4.0 g	218	4.4	\$

[0042] It can thus be seen that there is a strong correlation between the wax selectivity (defined here as the fraction of hydrocarbons condensed at 130°C at 18 bar) and the activity of the catalyst. This correlation is independent of the

nature of the promoter and also independent of the addition of a promoter. This is more clearly indicated in Figure 1 which graphically shows the data of Table 1.

[0043] Additional supported cobalt catalysts were prepared according to the following procedure in order to cover a range of pore sizes.

Example 9

[0044] A catalyst was prepared in a similar manner to Example 1 but 12.5g Mg(NO₃)₂-6H₂O was added as a promoter.

10 Example 10

5

20

25

30

35

40

45

50

55

[0045] A catalyst was prepared in a similar manner to Example 5 except that 4.0g Zr(IV) acetylacetonate was added in the place of the $Mg(NO_3)_2$ -6H₂O.

15 Example 11

[0046] A catalyst was prepared in a similar manner to Example 1, but 0.85g KNO₃ was added as a promoter.
[0047] These catalysts were dried, calcined and tested for their fixed bed synthesis behaviour in a similar fashion to the catalysts of Examples 1 to 8. The physical characteristics and the catalytic activity of the catalysts are presented in table 2.

ARTE 2

Catalyst Examples [Particle sizes	Active metal content (g Co per 100g Al ₂ O ₃)	н	Promoter	Pore size (am)	Fischer-Tropsch fixed bed synthesis performance at 18 bar, 220°C, and a GHSV of 4 200 h	bed synthesis , 220°C, and 200 h ⁻¹
varied between		Element	Promotion level (expressed per 100g Al ₂ O ₃)		Fischer-Tropsch activity expressed as m mol H ₂ O formed per me catalyst per h	Mass % reactor wax selectivity (~ C ₁₉₊)
6	20	Mg	2.4g	21.5	2.5	24
10	01	Zc	1.5g	22.5	2.1	30
s	01	Mg	1.28	24.0	2.6	8
7.	10	×	0.3g	24.3	2.1	S7
11	20	K	0.7g	25.9	2.3	19

[0048] From Table 2 it can thus be seen that for a given activity (ie \sim 2 m mol H₂O/m ℓ cat/h), reactor wax selectivity is a strong function of average catalyst pore size. This relationship is independent of the type of promoter added. This is more clearly illustrated in Figure 2, which graphically illustrates the results shown in Table 2.

[0049] In Examples 1 to 11, use was made of furned Al_2O_3 which was co-extruded with the catalytically active components. An alternative approach is to extrude (or spray dry) and calcine the Al_2O_3 support separately as a first preparation step, prior to impregnation with the active component(s). This procedure allows for more freedom with respect to tailoring of the support geometry.

[0050] For this application, precipitated Al₂O₃, supplied by Condea Chemie GmbH, under their designations 'Pural

SB alumina', 'Puralox SCCa 5/150, or Puralox HP 5/180' was used. The average pore size of the support was increased by the following pretreatment techniques: by calcination and/or by chemical treatment with an alkaline compound such as ammonia. Examples 12 to 35 thus are directed to pretreated supports.

5 Example 12

10

15

20

25

35

40

45

50

55

[0051] 125mℓ acetic acid diluted with 1.7ℓ distilled water was added to 2 kg Pural SB alumina powder obtained from Condea. Another 1.2ℓ water was sprayed on while kneading the mixture. The alumina was extruded, dried at 120°C for 12 hours, and calcined at 600°C for 16 hours, to produce a pretreated support.

Example 13

[0052] A support was prepared in a similar manner to the support of Example 12, but using a calcination temperature of 700°C, instead of 600°C.

Example 14

[0053] A support was prepared in a similar manner to the support of Example 12, but using a calcination temperature of 800°C, instead of 600°C.

Example 15

[0054] 125m ℓ acetic acid diluted with 1.4 ℓ distilled water was added to 2 kg Pural SB alumina in a mixer. 250m ℓ Ammonia (12.5 vol %) was sprayed onto this alumina paste. A further 1.2 ℓ water was sprayed onto the alumina while kneading the paste. The alumina was then extruded, dried at 120°C for 12 hours, and calcined at 600°C for 16 hours.

Example 16

[0055] A support was prepared in a similar manner to the support of Example 15, but using a calcination temperature of 700°C, instead of 600°C.

Example 17

[0056] A support was prepared in a similar manner to the support of Example 15, but using a calcination temperature of 800°C, instead of 600°C.

Example 18

[0057] 19ml CH₃COOH was diluted to 210ml with distilled water. 20g of Zr(NO₃)₄·5H₂O was dissolved into this solution. This solution was then sprayed onto 300g Pural SB alumina while mixing in a mixer. 180ml of a 1.8 vol % ammonia solution was then sprayed onto the alumina while kneading the paste. The paste was then extruded, dried at 120°C for 2 hours and calcined at 750°C for 16 hours.

Example 19

[0058] A solution of 100g $4Mg(CO_3)-Mg(OH_2)-4H_2O$, $160m\ell$ CH₃COOH and 150m ℓ distilled water was sprayed onto 300g Pural SB alumina while mixing it in a mixer. This was then followed by spraying 220m ℓ of 12.5 vol % ammonia onto the kneading mixture. After extruding the paste, the extrudates were dried at 120°C for 2 hours, and calcined at 750°C for 16 hours.

Example 20

[0059] A solution of 30g Zr(NO₃)₄·5H₂O in 210m ℓ distilled water was sprayed onto 300g of Pural SB alumina while mixing in a mixer. While kneading this mixture, 180m ℓ of a 3.5 vol % ammonia solution was sprayed onto it. The paste was then extruded, dried at 120°C for 2 hours, and calcined at 750°C for 16 hours.

Example 21

[0060] A support was prepared in a similar manner to the support of Example 18, but instead of 20g $Zr(NO_3)_4$ - $5H_2O$, 30g $Mg(NO_3)_2$ - $6H_2O$ was used.

Example 22

[0061] A support was prepared in a similar manner to the support of Example 18, but instead of 20g $Zr(NO_3)_4$ -5 H_2O , 9g KNO_3 was used.

Example 23

10

15

25

35

45

55

[0062] A support was prepared in a similar manner to the support of Example 18, but instead of 20g $Zr(NO_3)_4$ -5 H_2O , 20g $Mn(NO_3)_2$ -4 H_2O was used.

Example 24

[0063] Puralox SCCa 5/150 support was calcined at 750°C for 16 hours.

20 Example 25

[0064] Puralox SCCa 5/150 support was calcined at 800°C for 16 hours.

Example 26

[0065] Puralox SCCa 5/150 support was calcined at 900°C for 16 hours.

Example 27

30 [0066] Puralox SCCa 5/150 support was calcined at 1 000°C for 16 hours.

Example 28

[0067] Puralox HP 5/180 support was calcined at 600°C for 16 hours.

Example 29

[0068] Puralox HP 5/180 support was calcined at 700°C for 16 hours.

40 Example 30

[0069] Puralox HP 5/180 support was calcined at 750°C for 16 hours.

Example 31

[0070] Puralox HP 5/180 support was calcined at 800°C for 16 hours.

Example 32

50 [0071] Puralox HP 5/180 support was calcined at 900°C for 16 hours.

Example 33

[0072] Puralox HP 5/180 support was calcined at 1 000°C for 16 hours.

Example 34

[0073] Puralox HP 5/180 support was calcined at 1 100°C for 16 hours.

Example 35

10

15

20

25

30

35

[0074] A support was prepared in a similar manner to the support of Example 15, but using a calcination temperature of 750°C, instead of 600°C.

[0075] The physical properties of the pretreated supports of Examples 12 to 35 are given in Table 3.

TABLE 3

Example	Calcination Temperature °C	BET area m²/g	Pore Volume mℓ/g	Average pore size nm
12	600	213	0.46	8.6
13	700	193	0.46	9.5
14	800	165	0.44	10.6
15	600	211	0.54	10.2
16	700	192	0.54	11.2
17	800	161	0.52	12.9
18	7 50	201	0.48	9.6
19	750	157	0.46	11.2
20	750	143	0.44	12.3
21	7 50	185	0.51	10.9
22	750	189	0.50	10.5
23	750	198	0.49	9.9
24	750	155	0.48	12.5
25	800	143	0.50	12.9
26	900	134	0.48	15.0
27	1 000	100	0.35	16.1
28	600	180	0.65	14.4
29	700	169	0.65	15.5
30	750	172	0.65	12.5
31	800	133	0.64	19.2
32 '	900	116	0.61	21.1
33	1 000	92	0.52	21.9
34	1 100	60	0.25	16.0
35	750	130	0.55	16.0

Increasing calcination temperature thus decreased the surface area of the supports. This effect was very similar for both types of support, ie with and without ammonia treatment.

[0076] The average pore size increased with an increase in the calcination temperature. The catalysts prepared with ammonia show a higher average pore size than the catalysts prepared in the absence of ammonia.

[0077] The supports of Examples 12 to 35 were impregnated with cobalt to determine the effect of their average pore size on wax selectivity. The following procedure was used:

[0078] 50g of support was added to a solution of 50g $Co(NO_3)_2 \cdot 6H_2O$ and 0.05g $Pt(NH_3)_4$ $(NO_3)_2$ in 50 to $70m\ell$ distilled water. The water was evaporated at 70°C under vacuum in a rotary evaporator. The catalyst was calcined at 350°C in a counter-current airflow for 6 hours.

[0079] The average pore sizes as well as reactor wax selectivities, as obtained in the tubular fixed bed reactor used in Examples 1 to 11, are shown in Table 4.

50

EP 0 736 326 B1

		·		
5		arbons, oil during tests	200-208°C 18 bar 2500-3500 h ⁻¹ 10-20	
10		Mass & liquid hydrocarbons, drained as wax and oil is $\sim C_S^+$) as measured during fixed bed reactor tests		44884466886466866866866686666666666666
15		Mass % li draine (ie ~ C ₅ +) fixed l	Reaction Conditions: Temperature: Pressure: GHSV: Vol% CO conversion:	
20		<u> </u>		
25		Average pore size (nm)		8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	l		el r	
	TABLE 4	Promoter	Promotion level (expressed per 100g Al ₂ 03	
35		C4	Element	1
40		Support	<u>Bxample</u>	25222222222222222222222222222222222222
45		catalysts savaried 11.7 µm sbetween m2/g)		
50		20 Co/100 Al ₂ O ₃ cs (Particle sizes between 0.1 and with pore volumes 0.32 and 0.44 n	Bxample	36 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
55		Tipe 3		

[0080] From Table 4 it can be seen that for a given activity, the reactor wax selectivity is a function of average catalyst pore size, independent of the type of promoter used (ie Zr, Mg, Mn, or K). This is more clearly illustrated in Figure 3, which summarizes the results shown in Table 4.

[0081] These tubular fixed bed synthesis Examples thus show that the main variables affecting wax selectivity from a cobalt based Fischer-Tropsch catalyst are the average pore size diameter of the support or carrier and the intrinsic catalyst activity.

[0082] In Examples 60 to 65 hereunder, commercially available spraydried and calcined Al_2O_3 Puralox SCCa 5/150 was used. This material was calcined at a temperature between 600°C and 700°C during manufacture thereof. This Al_2O_3 support material had a pore size of 12.5 nm which, as seen in Figure 3, is optimal from a wax selectivity and catalyst activity point of view. All the physical properties of this support material are listed in Table 5.

TABLE 5

Physical property	Al ₂ O ₃ , Puralox SCCa 5/150 (used as selected support for the preparation of slurry phase Fischer-Tropsch catalysts)
Pore size	12.5 nm
Surface area	150 m²/g
Pore volume	0.5 mℓ/g
Particle size distribution	45 - 150 μm
Crystalline phase	Gamma

Six catalyst samples were prepared with this support.

Example 60

15

20

25

30

35

40

45

55

[0083] 40g Co(NO₃)₂·6H₂O was dissolved in 50m ℓ distilled water, and 50g Al₂O₃ Puralox SCCa 5/150 was suspended in this solution. This slurry was treated for- 2.5 hours at 75°C and 2 to 5 kPa in a rotary evaporator to impregnate the alumina carrier and to dry the impregnated carrier. The dried impregnated carrier was dried further and calcined at 230°C for 2 hours in an air flow of $1.5\ell_{\rm n}/{\rm min}$. The resultant calcined sample was re-slurried in a solution that was made up by having dissolved 35g Co(NO₃)₂·6H₂O and 50 mg Pt(NH₃)₄(NO₃)₂ in 50m ℓ of distilled water. This slurry was again vacuum treated for \sim 2.5 hours at 75°C and 2 to 5 kPa until free flowing in a rotary evaporator. The dried impregnated carrier was calcined at 230°C for 2 hours in an air flow of $1.5\ell_{\rm n}/{\rm min}$.

Example 61

[0084] $40g \, \mathrm{Co}(\mathrm{NO_3})_2 \cdot 6\mathrm{H_2O}$ was dissolved in $50m\ell$ distilled water, and $50g \, \mathrm{Al_2O_3}$ Puralox SCCa 5/150 was suspended in this solution. This slurry was treated for - 2.5 hours at 75°C and 2 to 5 kPa in a rotary evaporator to impregnate the alumina carrier and to dry the impregnated carrier. The dried impregnated carrier was calcined at 380° C for 5 hours in an air flow of $1.5\ell_{rr}/\mathrm{min}$. The calcined sample was re-slurried in a solution that was made up by having dissolved $35g \, \mathrm{Co}(\mathrm{NO_3})_2 \cdot 6\mathrm{H_2O}$ in $50m\ell$ distilled water. This slurry was again vacuum treated for ~ 2.5 hours at 75° C and 2 to 5 kPa in a rotary evaporator, followed by calcination at 380° C for 5 hours in an air flow of $1.5\ell_{rr}/\mathrm{min}$. The calcined sample was re-slurried in a solution that was made up by having dissolved $0.8g \, \mathrm{Ru}$ (III) acetylacetonate in $50m\ell$ acetone. This slurry was again vacuum treated, ie dried, until free flowing at 75° C and 2 to 5 kPa in a rotary evaporator, followed by a final calcination step at 330° C for 4 hours in an air flow of $1.5\ell_{rr}/\mathrm{min}$.

Example 62

[0085] 40g CO(NO₃) $_2$ ·6H $_2$ O and 1.2g perrhenic acid (HReO $_4$) was dissolved in 50m ℓ distilled water, and 50g Al $_2$ O $_3$ Puralox SCCa 5/150 was suspended in this solution. This slurry was vacuum treated for \sim 2.5 hours at 75°C in a rotary evaporator to impregnate the alumina carrier and to dry the impregnated carrier, followed by calcination at 350°C for 5 hours in an air flow of 1.5 $\ell_{\rm m}$ /min. This calcined sample was re-slurried in a solution that was made up by having dissolved 35g CO(NO $_3$)·6H $_2$ O and 0.8g perrhenic acid in 50m ℓ distilled water. This slurry was again vacuum dried for \sim 2.5 hours at 75°C until free flowing in a rotary evaporator, followed by calcination at 350°C for 5 hours in an air flow of $1.5\ell_{\rm m}$ /min.

Example 63

[0086] 29.6g Co(NO₃)₂·6H₂O and 30 mg Pt(NH₃)₄(NO₃)₂ was dissolved in 50m ℓ distilled water, and 50g Puralox SCCa 5/150 was suspended in this solution. The slurry was vacuum treatedfor \sim 2.5 hours at 75°C and 2 to 5 kPa in a rotary evaporator to impregnate the alumina carrier and to dry the impregnated carrier. The dried impregnated carrier was calcined at 230°C for 2 hours in an air flow of 1.5 ℓ _n/min. The calcined sample was re-slurried in a solution that was made up by having dissolved 19.8g Co(NO₃)₂·6H₂O and 20 mg Pt(NH₃)₄(NO₃)₂ in 50m ℓ of distilled water. This slurry was again vacuum dried for \sim 2.5 hours at 75°C and 2 to 5 kPa until free flowing in a rotary evaporator. The dried impregnated sample was calcined at 230°C for 2 hours in an air flow of 1.5 ℓ _n/min.

Example 64

10

15

20

25

35

45

50

[0087] This Example was similar to Example 61 with the following differences:

1st impregnation	30g Co(NO ₃) ₂ ·6H ₂ O was used instead of 40g Co(NO ₃) ₂ ·6H ₂ O
2nd impregnation	20g Co(NO ₃) ₂ ·6H ₂ O was used instead of 35g Co(NO ₃) ₂ ·6H ₂ O
3rd impregnation	0.55 g R u (I I I) acetylacetonate was used instead of 0.8g Ru (III) acetylacetonate

[0088] Thus, Examples 60 to 64 were prepared by means of slurry impregnation, ie impregnation solution in excess of the total available alumina carrier pore volume.

Example 65

[0089] 26 kg Al₂O₃ Puralox SCCa 5/150 was inciplent impregnated with a 12.5ℓ aqueous solution containing 13.9 kg Co(NO₃)₂·6H₂O and 8.6g Pt(NH₃)₄(NO₃)₂. This impregnated sample was dried at 80°C for 10 hours in an air flow of 40ℓ_n/min, followed by calcination at 240°C for 4 hours in an air flow of 250ℓ_n/min. In inciplent impregnation, the volume of the impregnation solution used, le the aqueous solution referred to above, is equal to the pore volume of the alumina carrier.

[0090] A second incipient impregnation step followed during which this sample was impregnated with 11.3 ℓ of an aqueous solution containing 12.1 kg Co(NO₃)₂·6H₂O and 8.6g Pt(NH₃)₄(NO₃)₂. Drying and calcination was performed similarly to the first step.

[0091] A third and final incipient impregnation step followed during which this sample was impregnated with 13.2¢ of an aqueous solution containing 14.2 kg Co(NO₃)₂·6H₂O and 8.6g Pt(NH₃)₄(NO₃)₂, followed by the same drying and calcination steps as described above.

[0092] The preparation method of Example 60 was successfully scaled up to pilot plant scale, more or less on the same scale as that of Example 65. Proper vacuum drying proved to be an important parameter in the case of the scaled up version of the slurry impregnation option. The final moisture content of this dried impregnated catalyst should be less than \sim 20 mass %. This permits calcination where the dried impregnated catalyst is first passed through a counter current air drier (residence time of \sim 1min) set at 180°C, falling directly into a tubular calciner unit set at 250°C. The air flow through the calciner was set at \sim 8 dm_n³/kg cat/min at a superficial velocity of \sim 5 cm/s. Proper calcination required calcination periods in excess of 3 hours, preferably \sim 6 hours.

[0093] Examples 60, 63 and 65 were "unpromoted". Small quantities of Pt were added to assist with catalyst reduction. These quantities could vary between 0.03g Pt and 0.08g Pt per 100g Al₂O₃, and could be co-impregnated throughout all the impregnation steps (eg Example 65) or concentrated in the final impregnation step (eg Example 60).

[0094] The slurry phase Fischer-Tropsch activities of catalyst Examples 60 to 65 are listed in Table 6.

Catalyst Sample	Active metal content (g Co per 100g Al ₂ 0 ₃)	Pr	Promoter	Fischer- 20 bar, (Feed gas:	H E CL R	Fischer-Tropsch slurry phase synthesis performance at 220°C, 20 bar, and at a space velocity of 2.0 m ³ /h/kg catalyst. eed gas: 33.3 vol& CO and 66.7 vol & H ₂)	nthesis of 2.0 vol % H ₂)
		Blement	Promotion level	After 100 hours on line	hours on	After 400 hours on line	hours on
		·	(expressed per $100g$ Al $_2$ O $_3$)	Vol % CO Conversion	Produc- tivity kg HC/kg Cat/h	vol % co conversion	Produc- tivity kg HC/kg Cat/h
09	30	Pt	0.059	87	0.349	84	0.336
61	30	Ru	0.419	77	0.307	. 70	0.281
62	30	Re	3.09	20	0.281	NA	NA
63	20	P.	0.059	73	0.291	63	0.250
64	20	Ru	0.28g	73	0.288	63	0.252
65	31	Pt	0.059	77	0.310	NA	NA

[0095] The following conclusions are evident from Table 6:

Ru or Re promotion, which can be expensive at the required levels, does not result in enhanced specific Fischer-Tropsch activities at a cobalt content of \sim 20 mass % (ie 30g Co/100g Al₂O₃).

Applying a reported cobalt based Fischer-Tropsch kinetic equation, such as:

5

10

15

40

45

55

$$r_{FT} = (k_{FT} P_{H_2} P_{CO}) / (1 + \beta.P_{CO})^2,$$

shows that intrinsic activity is linearly proportional to the cobalt content of a m Co/0.05 Pt/100 Al₂O₃ catalyst (Al₂O₃ Puralox SCCa 5/150) up to a level of m = 30 (ie constant cobalt utilization). At higher cobalt loadings (ie m > 30) cobait utilization is diminished.

In the preparation of the m Co/0.05 Pt/100 Al₂O₃ catalyst, the method of slurry impregnation (eg Example 60) is preferred with respect to incipient wetness impregnation (eg Example 65). The former impregnation method resulting in a catalyst with an intrinsic Fischer-Tropsch activity level \sim 1.35 times higher than the latter.

[0096] A selectivity investigation on this preferred cobalt slurry phase catalyst (ie Example 60) was performed and modelled. Table 7 provides an example of best fitted Schulz-Flury modelled selectivities of this catalyst, at representative synthesis conditions.

TABLE 7

			TADEL 7			
20	% CO conversion at 220°C and 20 bar with a feed composed of 67 vol % H ₂ and 33 vol % CO	Mass % s	selectivities of t	he catalyst sample 3	6 after 400 hours o	n line
		Fuelgas C ₁ -C ₂	LPG C ₃ -C ₄	Gasoline C ₅ -C ₁₁	Diesel C ₁₂ -C ₁₈	Wax C ₁₉ +
25	94	28	18	34	14	6
	84	13	12	32	21	22
	68	8	9	26	21	36
	54	6	7	24	21	42
30	44	6	7	22	20	45
	37	5	6	22	20	47
	32	5	6	21	20	48
	28	5	6	21	19	49
	23	5	6	20	19	50
35	18	4	6	· 20	19	51
	15	4	6	20	19	51

[0097] A graphical illustration of table 7 is presented in Figure 4, which underlines the dependence between activity and selectivity, as also deduced from figure 1 for the fixed bed application.

[0098] With respect to wax quality, slurry impregnation method (eg is described in the preparation of Example 60) is superior to the incipient wetness impregnation option (eg as described in the preparation of Example 65).

[0099] The reaction wax produced by catalyst Example 65, contained suspended sub-micron Co₃O₄ particles, at cobalt concentration level of \sim 100 ppm, which could not be removed by means of filtration through a Whatmans 42 filter paper. This also impacted negatively on the wax colour, and an undesirable saybolt colour of -16 (ie darkest indicator) was determined for the filtered reactor wax. The origin of these sub-micron Co₃O₄ contaminant, was traced back to the presence of a clearly defined shell containing Co and no Al (\sim 1 μ m thick as observed through a SEM investigation), uniformly encapsulating the spray-dried γ Al₂O₃ spheres.

[0100] A thorough washing of the calcined catalyst Example 65, successfully removed this unwanted cobalt enriched material, without exerting any influence on the specific Fischer-Tropsch activity. This is despite of the fact that up to -8% of the original cobalt content could be washed out.

[0101] Details of water washing procedure:

[0102] Experience gained during the washing of \sim 5 kg of catalyst Example 65 (ie after the final calcination step and before reduction), has shown that at least 25% of water is required per kg of catalyst.

[0103] Procedures that must be adhered to during the washing are:

The water must be agitated to a limited degree, and this can be achieved through boiling.

- Changing water from time to time speeds up the procedure, eventually becoming clear, thus the recommended 25ℓ per kg of catalyst.
- [0104] The unwanted situation of wax contamination has been proved to be almost absent in the case of slurry phase impregnated catalysts (eg sample 60), viz: catalysts with more homogeneous cobalt distribution throughout the particles, encapsulated by a far less pronounced cobalt oxide shell, is produced.
 - **[0105]** A water washing step is, however, still to be recommended in order to ensure a high quality wax. Wax produced by a washed slurry impregnated 30 Co/0.05 Pt/100 Al_2O_3 catalyst contained only 1 to 3 ppm cobalt resulting in a saybolt colour of 10, after filtration through a Whatmans 42 filter paper.
- [0106] Thus, very active cobalt based (fixed bed and slurry phase) Fischer-Tropsch catalysts can be prepared in a relatively inexpensive and easy manner, eg no expensive wax selectivity promoters are required in accordance with the invention.

15 Claims

20

25

- A process for preparing a Fischer-Tropsch catalyst, which process consists of subjecting a slurry comprising a
 particulate alumina carrier, water and an active component selected from the group consisting in cobalt (Co), iron
 (Fe) and mixtures thereof, to treatment to impregnate the alumina carrier with the active component; drying the
 impregnated carrier; and calcining the dried impregnated carrier, thereby to obtain the Fischer-Tropsch catalyst,
 characterized in that
 - (i) the impregnation is effected under a subatmospheric pressure environment; and
 - (ii) the drying is effected under a sub-atmospheric pressure environment.
- 2. A process according to Claim 1, characterized in that the sub-atmospheric pressure environment during both the impregnation and the drying is at a pressure less than 20 kPa(a).
- 30 3. A process according to Claim 1 or Claim 2, characterized in that the impregnation and drying in the sub-atmospheric pressure environments is effected in a single step, so that the impregnation is effected while the drying takes place.
- 4. A process according to any one of Claims 1 to 3 inclusive, characterized in that the drying in the sub-atmospheric pressure environment is continued until the moisture content of the Impregnated carrier is below 20% by mass, whereafter the impregnated carrier is dried further under non-sub-atmospheric pressure conditions by passing a drying medium in co-current or counter-current fashion over the impregnated carrier at a drying temperature between 100°C and 180°C.
- 40 5. A process according to any one of Claims 1 to 4 inclusive, characterized in that it includes adding to the slurry, as a dopant, copper (Cu) and/or platinum (Pt) which are capable of enhancing the reducibility of the active component, with the mass proportion of the dopant to active component being between 0,005:100 and 10:100.
- 6. A process according to any one of Claims 1 to 5 inclusive, characterized in that the calcined catalyst is re-slurried with water together with at least one of the following: the active component, another active component, and/or, as a dopant, a minor proportion of an agent capable of enhancing the reducibility of the active component, with this slurry being subjected to a sub-atmospheric pressure environment, to impregnate the catalyst further, with the further impregnated catalyst being dried under a sub-atmospheric pressure environment, and with the dried further impregnated catalyst being calcined.
 - A process according to any one of Claims 1 to 6 inclusive, characterized in that the calcination of the dried impregnated carrier is effected at a temperature below 350°C.
 - 8. A process according to any one of Claims 1 to 7 inclusive, characterized in that it includes washing the catalyst with a washing medium, to remove unwanted surface contaminants therefrom.
 - A process according to any one of Claims 1 to 8 inclusive, characterized in that it includes forming the slurry by
 dissolving a water soluble compound of the active component in water, prior to forming the slurry with the alumina

carrier, and forming of the slurry by intimately admixing the alumina carrier and the solution of the active component compound.

- 10. A process according to any one of Claims 1 to 9 inclusive, characterized in that the mass proportion of active component to alumina carrier in the slurry is between 5:100 and 60:100.
- 11. A process according to any one of Claims 1 to 10 inclusive, characterized in that the pore size of the particulate alumina carrier is such that the resultant catalyst has a pore size of at least 12 nm.
- 12. A process according to claim 11, characterized in that the particulate alumina carrier has been chemically pretreated with ammonia.
 - 13. A process according to any one of Claims 1 to 12 inclusive, characterized in that a more volatile solvent than water is not present during the impregnation and drying.
 - 14. A process according to any one of Claims 1 to 13 inclusive, characterized in that no promoter to enhance the activity of the catalyst or to modify its selectivity, and which is selected from the group consisting in potassium (K), chromium (Cr), magnesium (Mg), zirconium (Zr), ruthenium (Ru), thorium (Th), hafnium (Hf), cerium (Ce), rhenium (Re), uranium (U), vanadium (V), titanium (Ti), manganese (Mn), nickel (Ni), molybdenum (Mo), wolfram (W), lanthanum (La), palladium (Pd), uranium (U), praseodymium (Pr), neodymium (Nd) or other elements from groups IA or IIA of the periodic table of the elements, is added to the slurry or to the impregnated carrier.
 - 15. A process according to claim 1, which process comprises subjecting a slurry comprising a particulate alumina carrier, water and an active catalyst component selected from the group consisting in cobalt (Co), iron (Fe) and mixtures thereof, to treatment to impregnate the alumina carrier with the active component; drying the impregnated carrier; and calcining the dried impregnated carrier, thereby to obtain the Fischer-Tropsch catalyst, characterized in that
 - (i) the impregnation is effected under a sub-atmospheric pressure environment;
 - (ii) the drying is effected under a sub-atmospheric pressure environment;
 - (iii) a more volatile solvent than water is not present during the impregnation and drying; and
 - (iv) no promoter to enhance the activity of the catalyst or to modify its selectivity, and which is selected from the group consisting in potassium (K), chromium (Cr), magnesium (Mg), zirconium (Zr), ruthenium (Ru), thorium (Th), hafnium (Hf), cerium (Ce), rhenium (Re), uranium (U), vanadium (V), titanium (Ti), manganese (Mn), nickel (Ni), molybdenum (Mo), wolfram (W), lanthanum (La), palladium (Pd), uranium (U), praseodymium (Pr), neodymium (Nd) or other elements from groups iA or IIA of the periodic table of the elements, is added to the slurry or to the impregnated carrier.

40 Patentansprüche

5

15

20

25

30

35

45

- 1. Verfahren zur Herstellung eines Fischer-Tropsch-Katalysators, das darin besteht, dass man eine Aufschlämmung, die einen teilchenförmigen Aluminiumoxid-Träger, Wasser und eine aktive Komponente, ausgewählt aus der Gruppe, die besteht aus Kobalt (Co), Eisen (Fe) und Mischungen davon, umfasst, einer Behandlung unterwirft, um den Aluminiumoxid-Träger mit der aktiven Komponente zu imprägnieren, den imprägnierten Träger trocknet und den getrockneten imprägnierten Träger calciniert, wodurch man den Fischer-Tropsch-Katalysator erhält, dadurch gekennzeichnet, dass
 - (i) die Imprägnierung in einer Atmosphärenunterdruck-Umgebung durchgeführt wird und
 - (ii) das Trocknen in einer Atmosphärenunterdruck-Umgebung durchgeführt wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Atmosphärenunterdruck der Umgebung während der Imprägnierung und während der Trocknung ein Druck von weniger als 20 kPa (a) ist.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Imprägnierung und die Trocknung in Atmosphärenunterdruck-Umgebungen in einer einzigen Stufe durchgeführt werden, so daß die Imprägnierung bewirkt wird, während die Trocknung stattfindet.

4. Verfahren nach einem der Ansprüche 1 bis einschließlich 3, dadurch gekennzeichnet, dass das Trocknen in der Atmosphärenunterdruck-Umgebung fortgesetzt wird, bis der Feuchtigkeitsgehalt des imprägnierten Trägers unter 20 Massenprozent liegt, wonach der imprägnierte Träger unter Nicht-Atmosphärenunterdruck-Bedingungen welter getrocknet wird, indem man ein Trocknungsmedium im Gleichstrom- oder Gegenstrom über den imprägnierten Träger strömen lässt bei einer Trocknungs-Temperatur zwischen 100 und 180°C.

5

10

15

25

30

35

45

- 5. Verfahren nach einem der Ansprüche 1 bis einschließlich 4, dadurch gekennzeichnet, dass es die Zugabe von Kupfer (Cu) und/oder Platin (Pt) als Dotierungsmittel zu der Aufschlämmung umfasst, die in der Lage sind, die Reduzierbarkeit der aktiven Komponente zu verbessern, wobei das Massenverhältnis zwischen Dotlerungsmittel und aktiver Komponente zwischen 0,005:100 und 10:100 liegt.
- 6. Verfahren nach einem der Ansprüche 1 bis einschließlich 5, dadurch gekennzeichnet, dass der calcinierte Katalysator mit Wasser wieder aufgeschlämmt wird zusammen mit mindestens einem der folgenden Vertreter: der aktiven Komponente, einer weiteren aktiven Komponente und/oder, als Dotierungsmittel, einem geringen Mengenanteil eines Agens, das in der Lage ist, die Reduzierbarkeit der aktiven Komponente zu verbessern, wobei diese Aufschlämmung einer Atmosphärenunterdruck-Umgebung ausgesetzt wird, um den Katalysator welter zu imprägnieren, der weiter imprägnierte Katalysator in einer Atmosphärenunterdruck-Umgebung getrocknet wird und der getrocknete, weiter imprägnierte Katalysator calciniert wird.
- Verfahren nach einem der Ansprüche 1 bis einschließlich 6, dadurch gekennzeichnet, dass die Calcinierung des getrockneten imprägnlerten Trägers bei einer Temperatur unter 350°C durchgeführt wird.
 - 8. Verfahren nach einem der Ansprüche 1 bis einschließlich 7, dadurch gekennzeichnet, dass es umfasst das Waschen des Katalysators mit einem Waschmedium, um unerwünschte Oberflächen-Verunreinigungen davon zu entfernen.
 - 9. Verfahren nach einem der Ansprüche 1 bis einschließlich 8, dadurch gekennzeichnet, dass es umfasst die Bildung der Aufschlämmung durch Auflösen einer wasserlöslichen Verbindung der aktiven Komponente in Wasser vor Bildung der Aufschlämmung mit dem Aluminiumoxid-Träger und die Bildung der Aufschlämmung durch Inniges Vermischen des Aluminiumoxid-Trägers mit der Lösung der aktiven Komponenten-Verbindung.
 - 10. Verfahren nach einem der Ansprüche 1 bis einschließlich 9, dadurch gekennzeichnet, dass das Massenverhältnis zwischen der aktiven Komponente und dem Aluminiumoxid-Träger in der Aufschlämmung zwischen 5:100 und 60:100 liegt.
 - 11. Verfahren nach einem der Ansprüche 1 bis einschließlich 10, dadurch gekennzeichnet, dass die Porengröße des teilchenförmigen Aluminiumoxid-Trägers so ist, dass der resultierende Katalysator eine Porengröße von mindestens 12 nm hat.
- 40 12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der teilchenförmige Aluminiumoxid-Träger mit Ammoniak chemisch vorbehandelt worden ist.
 - 13. Verfahren nach einem der Ansprüche 1 bis einschließlich 12, dadurch gekennzeichnet, dass ein flüchtigeres Lösungsmittel als Wasser während der Imprägnierung und Trocknung nicht vorhanden ist.
 - 14. Verfahren nach einem der Ansprüche 1 bis einschließlich 13, dadurch gekennzeichnet, dass kein Promotor zur Erhöhung der Aktivität des Katalysators oder zur Modifizierung seiner Selektivität, ausgewählt aus der Gruppe, die besteht aus Kallum (K), Chrom (Cr), Magnesium (Mg), Zirkonium (Zr), Ruthenium (Ru), Thorium (Th), Hafnlum (Hf), Cer (Ce), Rhenium (Re), Uran (U), Vanadin (V), Titan (Ti), Mangan (Mn), Nickel (Ni), Molybdän (Mo), Wolfram (W), Lanthan (La), Palladium (Pd), Uran (U), Praseodym (Pr), Neodym (Nd) oder anderen Elementen der Gruppen IA oder IIA des Periodischen Systems der Elemente, der Aufschlämmung oder dem imprägnierten Träger zugesetzt wird.
- 15. Verfahren nach Anspruch 1, das darin besteht, dass man eine Aufschlämmung, die einen teilchenförmigen Aluminiumoxid-Träger, Wasser und eine aktive Katalysator-Komponente, ausgewählt aus der Gruppe, die besteht aus Kobalt (Co), Eisen (Fe) und Mischungen davon umfasst, einer Behandlung unterwirft, um den Aluminiumoxid-Träger mit der aktiven Komponente zu imprägnieren, den imprägnierten Träger trocknet und den getrockneten imprägnierten Träger calciniert, um dadurch den Fischer-Tropsch-Katalysator zu erhalten.

dadurch gekennzeichnet, dass

- (i) die Imprägnierung in einer Atmosphärenunferdruck-Umgebung durchgeführt wird;
- (ii) das Trocknen in einer Atmosphärenunterdruck-Umgebung durchgeführt wird;
- (iii) während der Imprägnierung und des Trocknens ein flüchtigeres Lösungsmittel als Wasser nicht vorhanden lst: und
- (iv) kein Promotor zur Erhöhung der Aktivität des Katalysators oder zur Modifizierung seiner Selektivität, ausgewählt aus der Gruppe, die besteht aus Kalium (K), Chrom (Cr), Magnesium (Mg), Zirkonium (Zr), Ruthenium (Ru), Thorium (Th), Hafnium (Hf), Cer (Ce), Rhenium (Re), Uran (U), Vanadin (V), Titan (Ti), Mangan (Mn), Nickel (Ni), Molybdän (Mo), Wolfram (W), Lanthan (La), Palladium (Pd), Uran (U), Praseodym (Pr), Neodym (Nd) oder anderen Elementen der Gruppen IA oder IIA des Periodischen Systems der Elemente, der Aufschlämmung oder dem Imprägnierten Träger zugesetzt wird.

Revendications

5

10

15

20

25

35

45

- 1. Procédé de préparation d'un catalyseur Fischer-Tropsch, lequel procédé consiste à soumettre une suspension comprenant un support en alumine particulaire, de l'eau et un composant actif choisi dans le groupe constitué du cobalt (Co), du fer (Fe) et de leurs mélanges, à un traitement pour imprégner le support en alumine avec le composant actif ; à sécher le support imprégné ; et à calciner le support imprégné séché, pour obtenir ainsi le catalyseur Fischer-Tropsch, caractérisé en ce que
 - (i) l'imprégnation est effectuée dans un environnement à pression sub-atmosphérique ; et
 - (ii) le séchage est effectué dans un environnement à pression sub-atmosphérique.
- Procédé selon la revendication 1, caractérisé en ce que l'environnement à pression sub-atmosphérique aussi bien pendant l'imprégnation que pendant le séchage est à une pression inférieure à 20 kPa(a).
- Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que l'imprégnation et le séchage dans les environnements à pression sub-atmosphérique sont effectués en une seule étape, de sorte que l'imprégnation est effectuée tandis que le séchage a lieu.
 - 4. Procédé selon l'une quelconque des revendications 1 à 3 incluses, caractérisé en ce que le séchage dans l'environnement à pression sub-atmosphérique est poursuivi jusqu'à ce que la teneur en eau du support imprégné soit inférieure à 20% en masse, après quoi le support imprégné est séché davantage dans des conditions de pression non sub-atmosphérique en faisant passer un milieu de séchage d'une manière à co-courant ou à contre-courant sur le support imprégné à une température de séchage comprise entre 100°C et 180°C.
- 5. Procédé selon l'une quelconque des revendications 1 à 4 incluses, caractérisé en ce qu'il comprend l'ajout à la suspension, en tant que dopant, du culvre (Cu) et/ou du platiné (Pt) qui sont capables de renforcer la réductibilité du composant actif, le rapport massique du dopant au composant actif étant compris entre 0,005:100 et 10:100.
 - 6. Procédé selon l'une quelconque des revendications 1 à 5 incluses, caractérisé en ce que le catalyseur calciné est remis en suspension dans de l'eau conjointement avec au moins l'un des composés sulvants : le composant actif, un autre composant actif, et/ou, en tant que dopant, une proportion mineure d'un agent capable de renforcer la réductibilité du composant actif, cette suspension étant exposée à un environnement à pression sub-atmosphérique, pour imprégner le catalyseur davantage, le catalyseur davantage imprégné étant séché dans un environnement à pression sub-atmosphérique, et le catalyseur davantage imprégné séché étant calciné.
- 7. Procédé selon l'une quelconque des revendications 1 à 6 incluses, caractérisé en ce que la calcination du support imprégné séché est effectuée à une température en dessous de 350°C.
 - 8. Procédé selon l'une quelconque des revendications 1 à 7 incluses, caractérisé en ce qu'il comprend le lavage du catalyseur avec un milieu de lavage, pour enlever de celui-ci des contaminants superficiels non voulus.
 - 9. Procédé selon l'une quelconque des revendications 1 à 8 incluses, caractérisé en ce qu'il comprend la formation de la suspension par dissolution d'un composé hydrosoluble du composant actif dans de l'eau, avant la formation de la suspension avec le support en alumine, et la formation de la suspension par mélange intime du support en

alumine et de la solution du composé du composant actif.

5

10

25

30

35

40

45

- 10. Procédé selon l'une quelconque des revendications 1 à 9 incluses, caractérisé en ce que le rapport massique du composant actif au support en alumine dans la suspension est compris entre 5:100 et 60:100.
- 11. Procédé selon l'une quelconque des revendications 1 à 10 incluses, caractérisé en ce que la taille de pore du support en alumine particulaire est telle que le catalyseur résultant a une taille de pore d'au moins 12 nm.
- 12. Procédé selon la revendication 11, caractérisé en ce que le support en alumine particulaire a été chimiquement prétraité avec de l'ammoniac.
 - 13. Procédé selon l'une quelconque des revendications 1 à 12 incluses, caractérisé en ce qu'il n'y a pas de solvant plus volatil que l'eau présent pendant l'imprégnation et le séchage.
- 14. Procédé selon l'une quelconque des revendications 1 à 13 incluses, caractérisé en ce qu'aucun promoteur destiné à renforcer l'activité du catalyseur ou à modifier sa sélectivité, et qui est choisi dans le groupe constitué du potassium (K), du chrome (Cr), du magnésium (Mg), du zirconium (Zr), du ruthénium (Ru), du thorium (Th), de l'hafnium (Hf), du cérium (Ce), du rhénium (Re), de l'uranium (U), du vanadium (V), du titane (Ti), du manganèse (Mn), du nickel (Ni), du molybdène (Mo), du tungstène (W), du lanthane (La), du palladium (Pd), du praséodyme (Pr), du néodyme (Nd) ou d'autres éléments appartenant aux groupes lA ou llA du tableau périodique des éléments, n'est ajouté à la suspension ou au support imprégné.
 - 15. Procédé selon la revendication 1, lequel procédé consiste à soumettre une suspension comprenant un support en alumine particulaire, de l'eau et un composant de catalyseur actif choisi dans le groupe constitué du cobalt (Co), du fer (Fe) et de leurs mélanges, à un traitement pour imprégner le support en alumine avec le composant actif; à sécher le support imprégné; et à calciner le support imprégné séché, pour obtenir ainsi le catalyseur Fischer-Tropsch, caractérisé en ce que
 - (i) l'imprégnation est effectuée dans un environnement à pression sub-atmosphérique ;
 - (ii) le séchage est effectué dans un environnement à pression sub-atmosphérique ;
 - (iii) aucun solvant plus volatil que l'eau n'est présent pendant l'imprégnation et le séchage : et
 - (iv) aucun promoteur destiné à renforcer l'activité du catalyseur ou à modifier sa sélectivité, et qui est choisi dans le groupe constitué du potassium (K), du chrome (Cr), du magnésium (Mg), du zirconium (Zr), du ruthénium (Ru), du thorium (Th), de l'hafnium (Hf), du cérium (Ce), du rhénium (Re), de l'uranium (U), du vanadium (V), du titane (Ti), du manganèse (Mn), du nickel (Ni), du molybdène (Mo), du tungstène (W), du lanthane (La), du palladium (Pd), du praséodyme (Pr), du néodyme (Nd) ou d'autres éléments appartenant aux groupes lA ou lIA du tableau périodique des éléments, n'est ajouté à la suspension ou au support imprégné.

