Un modello fully abstract del PCF

Grilletti Gianluca Barbarino Giovanni

Università di Pisa

December 3, 2014

I tipi di PCF

I tipi di PCF sono definiti ricorsivamente a partire dalle seguenti clausole:

- Nat e Bool sono tipi (i tipi base)
- Se S e T sono tipi, $S \times T$ è un tipo
- Se S e T sono tipi, $S \rightarrow T$ è un tipo

Esempio

- Nat × Nat
- ullet (Nat imes Bool) o Bool
- ullet Nat o Nat o Nat (da intendere Nat o (Nat o Nat))
- ullet (Nat o Nat) o Nat o Nat

Grammatica per generare i termini di PCF

$$< nat_exp > ::= \underline{0}|\underline{1}|\underline{2}| \dots | < nat_exp > + < nat_exp > \\ < bool_exp > ::= true|false|Eq? < nat_exp > < nat_exp > \\ < \sigma \rightarrow \tau_exp > ::= \lambda(x:\sigma). < \tau_exp > \\ < \sigma \times \tau_exp > ::= << \sigma_exp > , < \tau_exp > > \\ < \sigma_exp > ::= < \sigma_var > | \\ if < bool_exp > then < \sigma_exp > else < \sigma_exp > | \\ < \sigma_application > | < \sigma_projection > | < \sigma_fixed_point > \\ < \sigma_application > ::= < \tau \rightarrow \sigma_exp > < \tau_exp > | \\ < \sigma_projection > ::= < \tau \rightarrow \sigma_exp > | Proj_2 < \tau \times \sigma_exp > \\ < \sigma_fixed_point > ::= Y_{\sigma} < \sigma \rightarrow \sigma_exp >$$

Con t:T indichiamo che il termine t è di tipo T

Esempio

- (n+m)+n: Nat
- $Eq?(\underline{n})(\underline{m})$: Bool
- \bullet < true, \underline{n} >: Bool \times Nat
- $Proj_1 < true, \underline{n} >: Bool$
- $\lambda(x:Nat).x+1:Nat \rightarrow Nat$ (indichiamolo con Succ)
- Succ(n): Nat
- $if[Eq?(\underline{n})(\underline{m})]$ then $[\underline{n}]$ else[Succ] non è ben formato
- $if[Eq?(\underline{n})(\underline{m})]$ then $[\underline{n}]$ else $[Succ(\underline{n})]$: Nat
- $\lambda(x : Nat).if[Eq?(\underline{0})(x)]$ then[true] else[false] : $Nat \rightarrow Bool$ (Indichiamolo con IsZero)
- Y[Succ]: Nat
- Y[IsZero] non è ben formato

Programmi

Un programma di PCF è un termine:

- ben formato
- chiuso
- di tipo Nat o Bool (tipi osservabili)

Esempio

- $Eq?(\underline{n})(\underline{m})$: Bool è un programma
- Y[Succ] : Nat è un programma
- $Succ: Nat \rightarrow Nat$ non è un programma (tipo non osservabile)
- x + n: Nat non è un programma (non è chiuso)

Semantica operazionale

Diamo le seguenti regole di riduzione:

add
$$\underline{n} + \underline{m} \to \underline{n} + \underline{m}$$

Eq? $Eq?(\underline{n})(\underline{n}) \to true$
 $Eq?(\underline{n})(\underline{m}) \to false \text{ (per } n \text{ ed } m \text{ distinti)}$
cond $if[true] \quad then[M] \quad else[N] \to M$
 $if[false] \quad then[M] \quad else[N] \to N$
proj $Proj_1 < M, N > \to M$
 $Proj_2 < M, N > \to N$
 $\alpha \quad \lambda(x:\sigma).M \to \lambda(y:\sigma).[y/x]M \text{ (con } y \text{ non libera in } M)$
 $\beta \quad [\lambda(x:\sigma).M](N) \to [N/x]M$
 $\gamma \quad \gamma \to \lambda(f:\sigma \to \sigma).f(\gamma_{\sigma}f)$

- ullet Indichiamo con wo la chiusura transitiva della relazione wo
- Diciamo che un termine *N* è in forma normale se non può essere ridotto tramite le regole sopra introdotte
- Dato un termine M, diciamo che la sua valutazione rispetto alla semantica operazionale è N se
 - N è in forma normale
 - \bullet $M \rightarrow N$

E lo indichiamo con Eval(M) = N

Proprietà di Church-Rosser

Se $M woheadrightarrow N_1$ e $M woheadrightarrow N_2$, allora esiste P tale che $N_1 woheadrightarrow P$ e $N_2 woheadrightarrow P$

Questo risultato assicura l'unicità della valutazione Non sempre però un termine ha una forma normale, in questo caso scriviamo Eval(M) = undef

II linguaggio PCF

00000000000000

Esempio

$$Y(\lambda x.5) \rightarrow [\lambda x.5](Y(\lambda x.5))$$

 $\rightarrow 5$

Quindi $Eval(Y(\lambda x.5)) = 5$

Esempio

Posto $F \equiv \lambda f.\lambda x.f(x+1)$

$$Y(F) \rightarrow F(Y(F))$$

$$\rightarrow \lambda x. Y(F)(x+1)$$

$$\rightarrow \lambda x. [\lambda y. Y(F)(y+1)](x+1)$$

$$\rightarrow \lambda x. Y(F)(x+2)$$

$$\rightarrow \dots$$

Si può mostrare che non esistono riduzioni ad una forma normale; quindi Eval(Y(F)) = undef

II linguaggio PCF

000000000000000

Equivalenza osservazionale

Definiamo un contesto come un termine in cui compare un "buco" indicato con []

Esempio

$$C[\] \equiv \lambda(x : Nat).x + [\]$$

Porre il termine n nel contesto C[] significa considerare il termine

$$C[\underline{n}] \equiv \lambda(x : Nat).x + \underline{n}$$

Diciamo che due termini M ed N sono osservazionalmente equivalenti se per ogni contesto C[] si ha Eval(C[M]) = Eval(C[N]) e lo indichiamo con $M \stackrel{\text{obs}}{=} N$

Diciamo che una funzione parziale $f : \mathbb{N} \to \mathbb{N}$ è *calcolabile* se esiste un programma per computer¹ P tale che:

- Se f(n) = m, allora il programma P con input n termina con output m
- Se f(n) non è definita, allora il programma P con input n non termina

Teorema della Fermata

Non esiste un algoritmo per capire se un generico programma termini o meno

¹Con computer si intende una macchina a registri (URM); idealmente, un computer con infinita memoria

Data una funzione parziale calcolabile f, esiste un termine di PCF t tale che

- Se f(n) = m, allora $Eval(t(\underline{n})) = \underline{m}$
- Se f(n) non è definito, allora $Eval(t(\underline{n})) = undef$

Fatto

Non esiste un algoritmo per capire se un generico termine di PCF ammetta una forma normale

Fatto

Non esiste un algoritmo per capire se due termini di PCF siano osservazionalmente equivalenti

Full Abstraction

Diciamo che un modello per PCF è Fully Abstract se e solo se per ogni coppia di termini M e N:

$$M \stackrel{\mathsf{obs}}{=} \mathsf{N} \Leftrightarrow \llbracket \mathsf{M} \rrbracket = \llbracket \mathsf{N} \rrbracket$$

Diciamo che un modello per PCF è intensionally fully abstract se:

- È algebrico
- Gli elementi compatti sono definibili in PCF

Teorema

Dato un modello $\mathcal I$ intensionally fully abstract, esiste una relazione di equivalenza pprox tale che $\mathcal E=\mathcal I/pprox$ sia un modello fully abstract

A questo punto vorremmo un modello per PCF tale che:

- Sia fully abstract
- 2 Il modello sia *definibile* (cioè ogni elemento del modello sia interpretazione di un termine di PCF)
- Il modello sia minimale (cioè esista una "immersione" in ogni altro modello fully abstract)

Il modello che andremo a considerare si basa sulla teoria dei giochi. Un **gioco** è una 4-upla $A = (M_A, \lambda_A, P_A, \approx_A)$ dove:

Il modello che andremo a considerare si basa sulla teoria dei giochi. Un **gioco** è una 4-upla $A = (M_A, \lambda_A, P_A, \approx_A)$ dove:

• M_A è l'insieme delle mosse

I giochi

Il modello che andremo a considerare si basa sulla teoria dei giochi. Un **gioco** è una 4-upla $A = (M_A, \lambda_A, P_A, \approx_A)$ dove:

- M_A è l'insieme delle mosse
- λ_A è una funzione da M_A all'insieme $\{O, P\} \times \{Q, A\}$; in particolare:
 - O indica il giocatore "opponent" e P il giocatore "player"
 - Q indica una domanda e A una risposta

Il modello che andremo a considerare si basa sulla teoria dei giochi. Un **gioco** è una 4-upla $A = (M_A, \lambda_A, P_A, \approx_A)$ dove:

- M_A è l'insieme delle mosse
- λ_A è una funzione da M_A all'insieme $\{O, P\} \times \{Q, A\}$; in particolare:
 - O indica il giocatore "opponent" e P il giocatore "player"
 - Q indica una domanda e A una risposta
- Una partita è una stringa finita di mosse tale che:
 - La prima mossa è di O
 - P e O si alternano
 - In ogni sottostringa iniziale, il numero di risposte deve essere al più uguale al numero di domande (bracketing condition)

I giochi

Il modello che andremo a considerare si basa sulla *teoria dei giochi*. Un **gioco** è una 4-upla $A = (M_A, \lambda_A, P_A, \approx_A)$ dove:

- M_A è l'insieme delle mosse
- λ_A è una funzione da M_A all'insieme $\{O, P\} \times \{Q, A\}$; in particolare:
 - O indica il giocatore "opponent" e P il giocatore "player"
 - Q indica una domanda e A una risposta
- Una partita è una stringa finita di mosse tale che:
 - La prima mossa è di O
 - P e O si alternano
 - In ogni sottostringa iniziale, il numero di risposte deve essere al più uguale al numero di domande (bracketing condition)
- P_A è un sottoinsieme prefix-closed di partite; chiameremo P_A
 l'insieme delle partite valide

Il modello che andremo a considerare si basa sulla teoria dei giochi. Un **gioco** è una 4-upla $A = (M_A, \lambda_A, P_A, \approx_A)$ dove:

- M_A è l'insieme delle mosse
- λ_A è una funzione da M_A all'insieme $\{O, P\} \times \{Q, A\}$; in particolare:
 - O indica il giocatore "opponent" e P il giocatore "player"
 - Q indica una domanda e A una risposta
- Una partita è una stringa finita di mosse tale che:
 - La prima mossa è di O
 - P e O si alternano
 - In ogni sottostringa iniziale, il numero di risposte deve essere al più uguale al numero di domande (bracketing condition)
- P_A è un sottoinsieme prefix-closed di partite; chiameremo P_A l'insieme delle partite valide
- $\bullet \approx_A$ è una relazione di equivalenza sulle partite valide

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$
- $P_A = \{\epsilon, *_1, *_1n_1, *_1*_2, *_1*_2n_2, *_1*_2n_2, *_1*_2n_2\}$
- $\bullet \approx_A = id_A$

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ);$ $(*_2, PQ); (n_1, PA); (n_2, OA)$
- $P_A = \{ \epsilon, *_1, *_1 n_1,$ $*_1*_2$, $*_1*_2$, n_2 , $*_1*_2$, n_2 , n_1
- $\bullet \approx_A = id_A$

voio ai Gioco

Possiamo rappresentare partite accettabili tramite il Tavolo di Gioco

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$
- $P_A = \{\epsilon, *_1, *_1 n_1, *_{1*2}, *_1 *_2 n_2, *_1 *_2 n_2 n_1\}$
- $\bullet \approx_A = id_A$

*1

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ);$ $(*_2, PQ); (n_1, PA); (n_2, OA)$
- $P_A = \{\epsilon, *_1, *_1 n_1,$ $*_1*_2$, $*_1*_2$, n_2 , $*_1*_2$, n_2 , n_1
- $\bullet \approx_A = id_A$

Tavolo di Gioco

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ);$ $(*_2, PQ); (n_1, PA); (n_2, OA)$
- $P_A = \{\epsilon, *_1, *_1 n_1,$ $*_1*_2$, $*_1*_2$, n_2 , $*_1*_2$, n_2 , n_1
- $\bullet \approx_{\Delta} = id_{\Delta}$

Tavolo di Gioco

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$
- $P_A = \{\epsilon, *_1, *_1 n_1, *_1 *_2, *_1 *_2 n_2, *_1 *_2 n_2 n_1\}$
- $\approx_A = id_A$

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

•
$$M_A = \{*_1, *_2, n_1, n_2\}$$

•
$$\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$$

•
$$P_A = \{\epsilon, *_1, *_1 n_1, *_1 *_2, *_1 *_2 n_2, *_1 *_2 n_2 n_1\}$$

$$\bullet \approx_A = id_A$$

Bracketing condition:

$$*_1 *_2 n_2 n_1$$
 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow$
 $(\quad (\quad) \quad)$

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

•
$$M_A = \{*_1, *_2, n_1, n_2\}$$

•
$$\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$$

•
$$P_A = \{\epsilon, *_1, *_1 n_1, *_{1*2}, *_1 *_2 n_2, *_1 *_2 n_2 n_1\}$$

•
$$\approx_A = id_A$$

Bracketing condition: $\begin{pmatrix} *_1 & *_2 & n_2 & n_3 \\ \downarrow & \downarrow & \downarrow & \downarrow \\ (& (&) &) \end{pmatrix}$

Ad ogni risposta è associata naturalmente una domanda

Una **strategia** σ è un insieme di partite di lunghezza pari (l'ultima mossa è di P) tali che:

Strategie

Una **strategia** σ è un insieme di partite di lunghezza pari (l'ultima mossa è di P) tali che:

ullet σ sia prefix-closed sulle partite di lunghezza pari

Strategie

Una **strategia** σ è un insieme di partite di lunghezza pari (l'ultima mossa è di P) tali che:

- ullet σ sia prefix-closed sulle partite di lunghezza pari
- σ sia history free, cioè
 - sab, $tac \in \sigma \Rightarrow b = c$
 - $sab, t \in \sigma, ta \in P_A \Rightarrow tab \in \sigma$

Una **strategia** σ è un insieme di partite di lunghezza pari (l'ultima mossa è di P) tali che:

- \bullet σ sia prefix-closed sulle partite di lunghezza pari
- σ sia history free, cioè
 - sab. tac $\in \sigma \Rightarrow b = c$
 - sab, $t \in \sigma$, $ta \in P_A \Rightarrow tab \in \sigma$

La condizione di history free, rende le strategie esprimibili tramite una funzione parziale a loro associata:

$$f: M^{O} \rightharpoonup M^{P}$$

$$sab \in \sigma \Rightarrow f_{\sigma}(a) = b$$

$$X = \{ab \mid f(a) = b\} \rightarrow \sigma_{f} = < X > b$$

Strategie

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$
- $P_A = \{\epsilon, *_1, *_1 n_1, *_{1*2}, *_1 *_2 n_2, *_1 *_2 n_2 n_1\}$
- $\bullet \approx_A = id_A$

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ);$ $(*_2, PQ); (n_1, PA); (n_2, OA)$
- \bullet $P_A = \{\epsilon, *_1, *_1 n_1, *_1 n_1, *_2 n_2, *_3 n_1, *_4 n_2, *_5 n_2 \}$ $*_1*_2, *_1*_2 n_2, *_1*_2 n_2 n_1$
- $\bullet \approx_{\Delta} = id_{\Delta}$

Esempi di strategie:

$$\sigma = \{\epsilon, *_1 n_1\} \leftrightarrow f_{\sigma}(*_1) = n_1$$

$$\tau = \{\epsilon, *_1 *_2, *_1 *_2 n_2 n_1\} \leftrightarrow f_{\tau}(*_1) = *_2, f_{\tau}(n_2) = n_1$$

Estendiamo la relazione \approx alle strategie, ponendo:

Estendiamo la relazione \approx alle strategie, ponendo:

- $\underline{\sigma \preccurlyeq_s \tau}$ se per ogni $sab \in \sigma$ e $s' \in \tau$ t.c. $sa \approx s'a'$, esiste b' tale che $\underline{s'a'b'} \in \tau$ e $sab \approx s'a'b'$
- $\sigma \approx_s \tau$ sse $\sigma \preccurlyeq_s \tau \land \tau \preccurlyeq_s \sigma$

Ordine fra strategie

Estendiamo la relazione \approx alle strategie, ponendo:

- $\underline{\sigma \preccurlyeq_s \tau}$ se per ogni $sab \in \sigma$ e $s' \in \tau$ t.c. $sa \approx s'a'$, esiste b' tale che $\underline{s'a'b'} \in \tau$ e $sab \approx s'a'b'$
- $\sigma \approx_{s} \tau$ sse $\sigma \preccurlyeq_{s} \tau \land \tau \preccurlyeq_{s} \sigma$

In particolare, la definizione porta alcune conseguenze:

- \preccurlyeq_s è un preordine sulle strategie; di conseguenza \approx_s è una relazione di equivalenza parziale
- Nel caso l'equivalenza \approx del gioco sia l'identità, l'ordine tra strategie si può vedere come inclusione di insiemi o tra le funzioni parziali. Intuitivamente, $\sigma \preccurlyeq_s \tau$ se τ può fare più mosse di σ

Gioco $A = (M_A, \lambda_A, P_A, \approx_A)$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$
- $P_A = \{\epsilon, *_1, *_1n_1, *_{1*2}, *_1*_2n_2, *_1*_2n_2n_1\}$
- $\approx_A = id_A$

$$\sigma = \{\epsilon, *_1 n_1\} \leftrightarrow f_{\sigma}(*_1) = n_1$$

$$\tau = \{\epsilon, *_1 *_2, *_1 *_2 n_2 n_1\} \leftrightarrow f_{\tau}(*_1) = *_2, f_{\tau}(n_2) = n_1$$

Gioco $A = (M_A, \lambda_A, P_A, \approx_A)$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ); (*_2, PQ); (n_1, PA); (n_2, OA)\}$
- $P_A = \{\epsilon, *_1, *_1 n_1, *_1 *_2, *_1 *_2 n_2, *_1 *_2 n_2 n_1\}$
- $\approx_A = id_A$

$$\sigma = \{\epsilon, *_1 n_1\} \leftrightarrow f_{\sigma}(*_1) = n_1$$

$$\tau = \{\epsilon, *_1 *_2, *_1 *_2 n_2 n_1\} \leftrightarrow f_{\tau}(*_1) = *_2, f_{\tau}(n_2) = n_1$$

$$\sigma \not\preccurlyeq_{S} \tau, \sigma \not\preccurlyeq_{S} \tau$$

Ordine fra strategie

Gioco $A = (M_A, \lambda_A, P_A, \approx_A)$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ);$ $(*_2, PQ); (n_1, PA); (n_2, OA)$
- \bullet $P_A = \{\epsilon, *_1, *_1 n_1,$ $*_1*_2$, $*_1*_2$, n_2 , $*_1*_2$, n_2 , n_1
- $\bullet \approx_{\Delta} = id_{\Delta}$

$$\sigma = \{\epsilon, *_{1}*_{2}\} \leftrightarrow f_{\sigma}(*_{1}) = *_{2}$$

$$\tau = \{\epsilon, *_{1}*_{2}, *_{1}*_{2} n_{2}n_{1}\} \leftrightarrow f_{\tau}(*_{1}) = *_{2}, f_{\tau}(n_{2}) = n_{1}$$

Ordine fra strategie

Gioco
$$A = (M_A, \lambda_A, P_A, \approx_A)$$

- $M_A = \{*_1, *_2, n_1, n_2\}$
- $\lambda_A = \{(*_1, OQ);$ $(*_2, PQ); (n_1, PA); (n_2, OA)$
- \bullet $P_A = \{\epsilon, *_1, *_1 n_1,$ $*_1*_2$, $*_1*_2$, n_2 , $*_1*_2$, n_2 , n_1
- $\bullet \approx_{\Delta} = id_{\Delta}$

$$\sigma = \{\epsilon, *_{1}*_{2}\} \leftrightarrow f_{\sigma}(*_{1}) = *_{2}$$

$$\tau = \{\epsilon, *_{1}*_{2}, *_{1}*_{2} n_{2}n_{1}\} \leftrightarrow f_{\tau}(*_{1}) = *_{2}, f_{\tau}(n_{2}) = n_{1}$$

$$\sigma \leq_{5} \tau$$

$$\bullet \ M_{A\otimes B}=M_{A}\coprod M_{B}$$

- $M_{A\otimes B}=M_{A}\coprod M_{B}$
- $\bullet \ \lambda_{A\otimes B} = \lambda_A \coprod \lambda_B$

- $M_{A\otimes B}=M_{A}\coprod M_{B}$
- $\lambda_{A\otimes B} = \lambda_A \coprod \lambda_B$
- ullet $P_{A\otimes B}$ sono tutte le partite s tali che $s|_{M_A}\in P_A\wedge s|_{M_B}\in P_B$
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B

- $M_{A\otimes B}=M_A\coprod M_B$
- $\bullet \ \lambda_{A \otimes B} = \lambda_A \coprod \lambda_B$
- ullet $P_{A\otimes B}$ sono tutte le partite s tali che $s|_{M_A}\in P_A\wedge s|_{M_B}\in P_B$
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Dati due giochi A e B definiamo il gioco $A \otimes B$ come:

- $M_{A\otimes B}=M_A\coprod M_B$
- $\lambda_{A\otimes B} = \lambda_A \coprod \lambda_B$
- ullet $P_{A\otimes B}$ sono tutte le partite s tali che $s|_{M_A}\in P_A\wedge s|_{M_B}\in P_B$
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Proprietà

Dati due giochi A e B definiamo il gioco $A \otimes B$ come:

- $M_{A\otimes B}=M_A\coprod M_B$
- $\lambda_{A\otimes B} = \lambda_A \coprod \lambda_B$
- ullet $P_{A\otimes B}$ sono tutte le partite s tali che $s|_{M_A}\in P_A\wedge s|_{M_B}\in P_B$
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Proprietà

• Il prodotto tensore è associativo

Dati due giochi $A \in B$ definiamo il gioco $A \otimes B$ come:

- $M_{A\otimes B}=M_A\coprod M_B$
- $\lambda_{A\otimes B} = \lambda_A \coprod \lambda_B$
- $P_{A \otimes B}$ sono tutte le partite s tali che $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Proprietà

- Il prodotto tensore è associativo
- Esiste un elemento neutro I, ossia il gioco vuoto

Dati due giochi A e B definiamo il gioco $A \otimes B$ come:

- $M_{A\otimes B}=M_A\coprod M_B$
- $\lambda_{A\otimes B} = \lambda_A \prod \lambda_B$
- $P_{A \otimes B}$ sono tutte le partite s tali che $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Proprietà

- Il prodotto tensore è associativo
- Esiste un elemento neutro I, ossia il gioco vuoto
- Solamente il giocatore O può cambiare componente di gioco

operazioni tra giochi

Il gioco $A \otimes B$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $\bullet \ \ B \ \mathsf{con} \ \ P_B = \{\epsilon, \ *_O, \ *_O 0_P, \ *_O 1_P, \ \ *_O \ 2_P, \ *_O 3_P, \ \dots \}$

- $A \text{ con } P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$

- $A \operatorname{con} P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \operatorname{con} P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{\epsilon, *_{\mathbf{O}}, *_{\mathbf{O}} \checkmark_P, *_{\mathbf{O}} \times_P \}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

$$\bullet \ M_{A\multimap B}=M_A\coprod M_B$$

II gioco $A \rightarrow B$

Dati due giochi $A \in B$ definiamo il gioco $A \multimap B$ come:

$$\bullet \ M_{A\multimap B}=M_A\coprod M_B$$

$$\bullet \ \lambda_{A \multimap B}^{\mathit{QA}} = \lambda_{A}^{\mathit{QA}} \coprod \lambda_{B}^{\mathit{QA}}$$

$$\lambda_{A \multimap B}^{OP} = \overline{\lambda_A^{OP}} \coprod \lambda_B^{OP}$$

•
$$M_{A\multimap B}=M_A\coprod M_B$$

•
$$\lambda_{A \to B}^{QA} = \lambda_A^{QA} \coprod \lambda_B^{QA}$$

 $\lambda_{A \to B}^{OP} = \overline{\lambda_A^{OP}} \coprod \lambda_B^{OP}$

- $P_{A \otimes B}$ sono tutte le partite s tali che:
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B

$$\bullet \ M_{A\multimap B}=M_A\coprod M_B$$

•
$$\lambda_{A \to B}^{QA} = \lambda_A^{QA} \coprod \lambda_B^{QA}$$

 $\lambda_{A \to B}^{OP} = \overline{\lambda_A^{OP}} \coprod \lambda_B^{OP}$

- $P_{A \otimes B}$ sono tutte le partite s tali che:
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Dati due giochi A e B definiamo il gioco $A \multimap B$ come:

•
$$M_{A\multimap B}=M_A\coprod M_B$$

•
$$\lambda_{A \to B}^{QA} = \lambda_A^{QA} \coprod \lambda_B^{QA}$$

 $\lambda_{A \to B}^{OP} = \overline{\lambda_A^{OP}} \coprod \lambda_B^{OP}$

- $P_{A \otimes B}$ sono tutte le partite s tali che:
 - $s|_{M_A} \in P_A \wedge s|_{M_B} \in P_B$
 - Per ogni domanda in A, la risposta deve essere in A; lo stesso con B
- $s \approx_{A \otimes B} t \Leftrightarrow s|_A \approx_A t|_A \wedge s|_B \approx_B t|_B \wedge fst(s) = fst(t)$

Proprietà

Solamente il giocatore P può cambiare componente di gioco

operazioni tra giochi

Il gioco $A \multimap B$

Il gioco *A* → *B*

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$

- $A \text{ con } P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

- $A \operatorname{con} P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \text{ con } P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

$$P=O_A$$
 O A \rightarrow B $O=P_A$ P

- $A \text{ con } P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \text{ con } P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

$$P=O_A$$
 A
 O
 $O=P_A$
 P

- $A \text{ con } P_A = \{ \epsilon, *_O, *_O \checkmark_P, *_O \times_P \}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

$$P=O_A$$
 O A $O=P_A$ P

Il gioco *A* ⊸ *B*

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$

II gioco $A \multimap B$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$

II gioco $A \multimap B$

- A con $P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \text{ con } P_B = \{\epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$

- $A \operatorname{con} P_A = \{\epsilon, *_O, *_O \checkmark_P, *_O \times_P\}$
- $B \operatorname{con} P_B = \{ \epsilon, *_O, *_O 0_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

II gioco !A

- $M_{!A} = \omega \times M_A$
- $\lambda_{!A}(i,a) = \lambda_A(a)$
- s è una partita di $P_{!A}$ se e solo se:
 - $\forall i \in \omega, s |_i \in P_A$
 - Se una domanda è nella componente i, la sua risposta deve essere nella componente i (indexed bracketing condition)
- $s \approx_{!A} t$ sse esiste $\pi : \omega \to \omega$ permutazione tale che $s|_i \approx_A t|_{\pi(i)} \wedge (\pi \circ fst)(s) = fst(t)$

Proprietà

• Solamente il giocatore O può cambiare componente di gioco

Nota: concettualmente il gioco !A si comporta come se avessimo infinite copie di A tensorizzate $A \otimes A \otimes A \otimes A \otimes \ldots$ con la relazione $\approx_{!A}$

operazioni tra giochi

operazioni tra giochi

$$A \Rightarrow B \equiv !A \multimap B$$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{ \epsilon, \text{ pull, pull click, pull bang} \}$
- Life = B con $P_B = \{ \epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$

$$A_2$$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{ \epsilon, \text{ pull, pull click, pull bang} \}$
- Life = B con $P_B = \{ \epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1$$
, $f(click_n) = \underline{pull}_{n+1} \forall n$, $f(bang_n) = n_P$

$$\otimes A_1$$

$$A_3 \otimes A_2 \otimes A_1 \otimes B$$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{ \epsilon, \text{ pull, pull click, pull bang} \}$
- Life = B con $P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots \}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1, \quad f(click_n) = \underline{pull}_{n+1} \forall n, \quad f(bang_n) = n_P$$

 $A_3 \otimes A_2 \otimes A_1 - 0$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{\epsilon, \text{ pull}, \text{ pull click}, \text{ pull bang}\}$
- Life = B con $P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1$$
, $f(click_n) = \underline{pull}_{n+1} \forall n$, $f(bang_n) = n_P$

P A₃ O

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{\epsilon, \text{ pull, pull click, pull bang}\}$
- Life = B con $P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1$$
, $f(click_n) = \underline{pull}_{n+1} \forall n$, $f(bang_n) = n_P$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{\epsilon, \text{ pull}, \text{ pull click}, \text{ pull bang}\}$
- Life = B con $P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1, \quad f(click_n) = \underline{pull}_{n+1} \forall n, \quad f(bang_n) = n_P$$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{\epsilon, \text{ pull, pull click, pull bang}\}$
- Life = B con $P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1, \quad f(click_n) = \underline{pull}_{n+1} \forall n, \quad f(bang_n) = n_P$$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{\epsilon, \text{ pull, pull click, pull bang}\}$
- Life = B con $P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_1, \quad f(click_n) = \underline{pull}_{n+1} \forall n, \quad f(bang_n) = n_P$$

$$A \Rightarrow B \equiv !A \multimap B$$

- $Gun = A \text{ con } P_A = \{\epsilon, \text{ pull, pull click, pull bang}\}$
- Life = $B \text{ con } P_B = \{\epsilon, *_O, *_O \checkmark_P, *_O 1_P, *_O 2_P, *_O 3_P, \dots\}$
- Strategia Roulette Russa:

$$f(*_O) = \underline{pull}_2$$
, $f(click_{2n}) = \underline{pull}_{2n+2} \forall n$, $f(bang_{2n}) = n_P$

•
$$\sigma$$
; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, \ s|_{A,B} \in \sigma, \ s|_{B,C} \in \tau\}$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

La strategia σ ; τ

Date σ strategia di $A \multimap B$ e τ di $B \multimap C$, allora

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, \ s|_{A,B} \in \sigma, \ s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

strategie importanti

La strategia σ ; τ

Date σ strategia di $A \multimap B$ e τ di $B \multimap C$, allora

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

La strategia σ ; τ

Date σ strategia di $A \multimap B$ e τ di $B \multimap C$, allora

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, \ s|_{A,B} \in \sigma, \ s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

Data a stratogia di A o P o a di P o C allor

Date σ strategia di $A \multimap B$ e τ di $B \multimap C$, allora

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, \ s|_{A,B} \in \sigma, \ s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, \ s|_{A,B} \in \sigma, \ s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, s|_{A,B} \in \sigma, s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

StrateBia 0, 7

Date σ strategia di $A \multimap B$ e τ di $B \multimap C$, allora

- σ ; $\tau = \{s|_{A,C} : s \in (M_A \coprod M_B \coprod M_C)^*, \ s|_{A,B} \in \sigma, \ s|_{B,C} \in \tau\}$
- σ ; τ è una strategia di $A \multimap C$

La strategia *copycat* su $A \multimap A$

Dato A, è sempre possibile costruire la strategia *copycat* su $A \multimap A$:

Dato A, è sempre possibile costruire la strategia copycat su $A \multimap A$:

•
$$id_A = \{s \in P_{A \multimap A} : s|_1 = s|_2\}$$

La strategia *copycat* su $A \multimap A$

Dato A, è sempre possibile costruire la strategia copycat su $A \multimap A$:

- $id_A = \{s \in P_{A \multimap A} : s|_1 = s|_2\}$
- la strategia consiste nel copiare le mosse di *O* sull'altra componente, quindi la funzione parziale associata a questa strategia è

$$f(x_1) = x_2, \quad f(x_2) = x_1 \quad \forall x \in M_A$$

La strategia *copycat* su $A \multimap A$

Dato A, è sempre possibile costruire la strategia copycat su $A \multimap A$:

- $id_A = \{s \in P_{A \multimap A} : s|_1 = s|_2\}$
- la strategia consiste nel copiare le mosse di *O* sull'altra componente, quindi la funzione parziale associata a questa strategia è

$$f(x_1) = x_2, \quad f(x_2) = x_1 \quad \forall x \in M_A$$

• Data σ strategia di $A \multimap B$, avremo che id_A ; $\sigma = \sigma$

Definiamo \mathcal{G} la categoria tale che:

La categoria dei giochi ${\cal G}$

Definiamo \mathcal{G} la categoria tale che:

ullet \mathcal{G}_0 sono i giochi

- ullet \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \to B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_{\mathsf{s}} \sigma \}/\approx_{\mathsf{s}}$

- \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \rightarrow B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_s \sigma\}/\approx_s$
- Date $[\sigma]: A \to B$ e $[\tau]: B \to C$, $[\tau] \circ [\sigma] = [\sigma; \tau]$

- \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \to B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_s \sigma\}/\approx_s$
- Date $[\sigma]: A \to B$ e $[\tau]: B \to C$, $[\tau] \circ [\sigma] = [\sigma; \tau]$
- Il morfismo identico è dato dalla strategia id_A

La categoria dei giochi ${\cal G}$

Definiamo \mathcal{G} la categoria tale che:

- ullet \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \to B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_s \sigma\}/\approx_s$
- Date $[\sigma]: A \to B$ e $[\tau]: B \to C$, $[\tau] \circ [\sigma] = [\sigma; \tau]$
- Il morfismo identico è dato dalla strategia id_A

In particolare abbiamo che G:

- ullet \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \to B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_{s} \sigma\}/\approx_{s}$
- Date $[\sigma]: A \to B$ e $[\tau]: B \to C$, $[\tau] \circ [\sigma] = [\sigma; \tau]$
- Il morfismo identico è dato dalla strategia id_A

In particolare abbiamo che G:

• è dotata di un oggetto finale (1)

La categoria dei giochi ${\cal G}$

Definiamo \mathcal{G} la categoria tale che:

- \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \to B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_s \sigma\}/\approx_s$
- Date $[\sigma]: A \to B$ e $[\tau]: B \to C$, $[\tau] \circ [\sigma] = [\sigma; \tau]$
- Il morfismo identico è dato dalla strategia id_A

In particolare abbiamo che G:

- è dotata di un oggetto finale (1)
- è una categoria monoidale
 - (⊗ è un bifuntore associativo con elemento neutro)

La categoria dei giochi ${\cal G}$

Definiamo \mathcal{G} la categoria tale che:

- \mathcal{G}_0 sono i giochi
- dati due giochi A e B, i morfismi $A \to B$ sono $\{\sigma \text{ strategia di } A \multimap B \mid \sigma \approx_{\mathsf{s}} \sigma \}/\approx_{\mathsf{s}}$
- Date $[\sigma]: A \to B$ e $[\tau]: B \to C$, $[\tau] \circ [\sigma] = [\sigma; \tau]$
- Il morfismo identico è dato dalla strategia id_A

In particolare abbiamo che G:

- è dotata di un oggetto finale (1)
- è una categoria monoidale
 - (⊗ è un bifuntore associativo con elemento neutro)
- NON è una categoria cartesiana chiusa (mancano i prodotti)

Il gioco A&B

Dati due giochi A e B definiamo il gioco A&B come:

Il gioco A&B

Dati due giochi A e B definiamo il gioco A&B come:

- $M_{A\&B} = M_A \coprod M_B$
- $\bullet \ \lambda_{A\&B} = \lambda_A \coprod \lambda_B$
- $P_{A\&B} = P_A \coprod P_B$
- $\bullet \approx_{A\&B} = \approx_A \coprod \approx_B$

Dati due giochi A e B definiamo il gioco A&B come:

- $M_{A\&B} = M_A \coprod M_B$
- $\lambda_{A\&B} = \lambda_A \coprod \lambda_B$
- $P_{A\&B} = P_A \coprod P_B$
- $\bullet \approx_{A\&B} = \approx_A \coprod \approx_B$

Proprietà

Dati due giochi A e B definiamo il gioco A&B come:

- $M_{A\&B} = M_A \coprod M_B$
- $\bullet \ \lambda_{A\&B} = \lambda_A \coprod \lambda_B$
- $P_{A\&B} = P_A \coprod P_B$
- $\bullet \approx_{A\&B} = \approx_A \coprod \approx_B$

Proprietà

• Una partita di A&B è giocata su una sola delle due componenti

Dati due giochi A e B definiamo il gioco A&B come:

- $M_{A\&B} = M_A \coprod M_B$
- $\lambda_{A\&B} = \lambda_A \coprod \lambda_B$
- $P_{A\&B} = P_A \coprod P_B$
- $\bullet \approx_{A\&B} = \approx_A \coprod \approx_B$

Proprietà

- Una partita di A&B è giocata su una sola delle due componenti
- Ogni strategia di A&B è unione di una strategia di A e di una strategia di B (anche vuota)

Dato un gioco A, definiamo la strategia der su $!A \multimap A$:

Dato un gioco A, definiamo la strategia der su $!A \multimap A$:

• Se A_i è l'*i*-esima componente di !A, allora der_A^i si comporta come la strategia copycat su $A_i \multimap A \cong A \multimap A$, e non agisce sulle altre componenti

strategie *der* e †

Dato un gioco A, definiamo la strategia der su $A \rightarrow A$:

- Se A_i è l'*i*-esima componente di ! A_i , allora der_{Δ}^i si comporta come la strategia copycat su $A_i \multimap A \cong A \multimap A$, e non agisce sulle altre componenti
- Dato che le componenti di !A sono equivalenti, avremo che $der_{A}^{i} \approx_{s} der_{A}^{j} \forall i, j$, quindi lo indicheremo semplicemente con der_{A}

strategie *der* e †

Dato un gioco A, definiamo la strategia der su $A \rightarrow A$:

- Se A_i è l'*i*-esima componente di ! A_i , allora der_{Δ}^i si comporta come la strategia copycat su $A_i \multimap A \cong A \multimap A$, e non agisce sulle altre componenti
- Dato che le componenti di !A sono equivalenti, avremo che $der_{A}^{i} \approx_{s} der_{A}^{j} \forall i, j$, quindi lo indicheremo semplicemente con der_{A}

Data una strategia σ su $A \multimap B$, definiamo la strategia σ^{\dagger} su $A \multimap B$:

Dato un gioco A, definiamo la strategia der su $A \rightarrow A$:

- Se A_i è l'*i*-esima componente di ! A_i , allora der_{Δ}^i si comporta come la strategia copycat su $A_i \multimap A \cong A \multimap A$, e non agisce sulle altre componenti
- Dato che le componenti di !A sono equivalenti, avremo che $der_{A}^{i} \approx_{s} der_{A}^{j} \forall i, j$, quindi lo indicheremo semplicemente con der_{A}

Data una strategia σ su $A \rightarrow B$, definiamo la strategia σ^{\dagger} su $A \rightarrow B$:

categoria di co-Kleisli

•
$$K_!(\mathcal{G})_0 = \mathcal{G}_0$$

- $K_!(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_1(G)}(A, B) = Mor_G(!A, B)$

categoria di co-Kleisli

- $K_1(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_1(G)}(A, B) = Mor_G(!A, B)$
- Date due strategie σ e τ , $\tau \circ \sigma = \sigma \ \tau := \sigma^{\dagger}$; τ

- $K_!(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_1(G)}(A, B) = Mor_G(!A, B)$
- Date due strategie σ e τ , $\tau \circ \sigma = \sigma \, \mathring{\mathfrak{g}} \, \tau := \sigma^{\dagger}$; τ
- Dato un gioco A, il morfismo identico è der_A

Definiamo $K_!(\mathcal{G})$ la categoria di *co-Kleisli* di \mathcal{G} rispetto a ! In particolare:

- $K_!(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_!(G)}(A, B) = Mor_G(!A, B)$
- Date due strategie σ e τ , $\tau \circ \sigma = \sigma \, \mathring{\mathfrak{g}} \, \tau := \sigma^{\dagger}$; τ
- Dato un gioco A, il morfismo identico è der_A

In particolare $K_1(\mathcal{G})$ è una categoria cartesiana chiusa, cioè:

categoria di co-Kleisli

Definiamo $K_!(\mathcal{G})$ la categoria di *co-Kleisli* di \mathcal{G} rispetto a ! In particolare:

- $K_!(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_1(G)}(A, B) = Mor_G(!A, B)$
- Date due strategie σ e τ , $\tau \circ \sigma = \sigma \, \mathring{\mathfrak{g}} \, \tau := \sigma^{\dagger}$; τ
- Dato un gioco A, il morfismo identico è der_A

In particolare $K_1(\mathcal{G})$ è una categoria cartesiana chiusa, cioè:

• Dati due oggetti esiste il *prodotto* (A&B)

Definiamo $K_!(\mathcal{G})$ la categoria di *co-Kleisli* di \mathcal{G} rispetto a ! In particolare:

- $K_!(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_1(G)}(A, B) = Mor_G(!A, B)$
- Date due strategie σ e τ , $\tau \circ \sigma = \sigma \, \mathring{\mathfrak{g}} \, \tau := \sigma^{\dagger}$; τ
- Dato un gioco A, il morfismo identico è der_A

In particolare $K_1(\mathcal{G})$ è una categoria cartesiana chiusa, cioè:

- Dati due oggetti esiste il prodotto (A&B)
- Esiste un oggetto finale (1)

Definiamo $K_!(\mathcal{G})$ la categoria di *co-Kleisli* di \mathcal{G} rispetto a ! In particolare:

- $K_!(\mathcal{G})_0 = \mathcal{G}_0$
- Dati due giochi $A, B, Mor_{K_1(G)}(A, B) = Mor_G(!A, B)$
- Date due strategie σ e τ , $\tau \circ \sigma = \sigma \, \mathring{\mathfrak{g}} \, \tau := \sigma^{\dagger}$; τ
- Dato un gioco A, il morfismo identico è der_A

In particolare $K_1(\mathcal{G})$ è una categoria cartesiana chiusa, cioè:

- Dati due oggetti esiste il prodotto (A&B)
- Esiste un oggetto finale (1)
- Dati due oggetti, esiste l'esponente
 ("⇒" è tale che Mor_{K₁(G)}(A&B, C) ≅ Mor_{K₁(G)}(A, B ⇒ C))

order enrichement e razionalità

order enrichement e razionalità

Definiamo un pointed poset (ppo) come un poset con un minimo (generalmente indicato con \perp)

• Dati due oggetti $A, B, (Mor(A, B), \sqsubseteq_{A,B}, \bot_{A,B})$ è un pointed poset

- Dati due oggetti $A, B, (Mor(A, B), \sqsubseteq_{A,B}, \bot_{A,B})$ è un pointed poset
- Composizione, prodotto e currying sono monotoni

order enrichement e razionalità

Definiamo un pointed poset (ppo) come un poset con un minimo (generalmente indicato con \bot) Definiamo una categoria cartesiana chiusa C pointed poset enriched se:

- Dati due oggetti $A, B, (Mor(A, B), \sqsubseteq_{A,B}, \bot_{A,B})$ è un pointed poset
- Composizione, prodotto e currying sono monotoni
- Per ogni $f: A \to B$, per ogni gioco C, $\bot_{B,C} \circ f = \bot_{A,B}$

order enrichement e razionalità

Definiamo un pointed poset (ppo) come un poset con un minimo (generalmente indicato con \bot) Definiamo una categoria cartesiana chiusa C pointed poset enriched se:

- Dati due oggetti $A, B, (Mor(A, B), \sqsubseteq_{A,B}, \bot_{A,B})$ è un pointed poset
- Composizione, prodotto e currying sono monotoni
- Per ogni $f: A \to B$, per ogni gioco C, $\bot_{B,C} \circ f = \bot_{A,B}$

Definiamo una categoria cartesiana chiusa *C razionale* se:

- Dati due oggetti $A, B, (Mor(A, B), \sqsubseteq_{A,B}, \bot_{A,B})$ è un pointed poset
- Composizione, prodotto e currying sono monotoni
- Per ogni $f: A \to B$, per ogni gioco C, $\bot_{B,C} \circ f = \bot_{A,B}$

Definiamo una categoria cartesiana chiusa C razionale se:

• è ppo-enriched

order enrichement e razionalità

Definiamo un pointed poset (ppo) come un poset con un minimo (generalmente indicato con \bot) Definiamo una categoria cartesiana chiusa C pointed poset enriched se:

- Dati due oggetti $A, B, (Mor(A, B), \sqsubseteq_{A,B}, \bot_{A,B})$ è un pointed poset
- Composizione, prodotto e currying sono monotoni
- Per ogni $f: A \to B$, per ogni gioco C, $\perp_{B,C} \circ f = \perp_{A,B}$

Definiamo una categoria cartesiana chiusa C razionale se:

- è ppo-enriched
- per ogni $f: A \times B \rightarrow B$ si ha:
 - La catena $(f^{(k)}|k \in \omega)$ definita da $f^{(0)} = \perp_{A,B}$ e $f^{k+1} = f \circ \langle id_A, f^{(k)} \rangle$ ammette least upper bound f^{∇}
 - Dati $g: C \to A$ e $h: B \to D$, $g \circ f^{\nabla} \circ h = \bigsqcup_{k \in \omega} g \circ f^{(k)} \circ h$

esistenza del modello

Denotazione di PCF

Denotazione di PCF

Dato A gioco, date $[\sigma]$, $[\tau]$ classi di strategie di A, definiamo

$$[\sigma] \sqsubseteq [\tau] \Leftrightarrow \sigma \preccurlyeq_s \tau$$

Dato A gioco, date $[\sigma]$, $[\tau]$ classi di strategie di A, definiamo

$$[\sigma] \sqsubseteq [\tau] \Leftrightarrow \sigma \preccurlyeq_{\mathsf{s}} \tau$$

Teorema

 $K_!(\mathcal{G})$ con l'ordine \sqsubseteq è razionale

Denotazione di PCF

Dato A gioco, date $[\sigma]$, $[\tau]$ classi di strategie di A, definiamo

$$[\sigma] \sqsubseteq [\tau] \Leftrightarrow \sigma \preccurlyeq_{\mathsf{s}} \tau$$

Teorema

 $K_!(\mathcal{G})$ con l'ordine \sqsubseteq è razionale

Teorema

Sia C una categoria cartesiana chiusa razionale. Si ha che:

- Fissata la denotazione dei tipi base di PCF in C (ogni tipo viene denotato con un oggetto)
- Fissata la denotazione delle costanti di PCF in C (ogni termine di tipo τ viene denotato con un morfismo di $1 \to [\![\tau]\!]$)

allora la denotazione può essere estesa a tutti i termini di PCF

example

- $M_{Bool} = \{*, t, f\}$
 - $\lambda_{Bool} = \{(*, OQ); (t, PA); (f, PA)\}$
 - $P_{Bool} = \{\epsilon, *, *t, *f\}$
 - $\approx_{Bool} = id_{Bool}$

Nat

- $\bullet \ M_{Nat} = \{*, \underline{0}, \underline{1}, \dots\}$
- $\lambda_{Nat} = \{(*, OQ), (\underline{0}, PA), (\underline{1}, PA), \dots\}$
- $P_{Nat} = \{\epsilon, *, *\underline{0}, *\underline{1}, \dots\}$
- $\bullet \approx_{Nat} = id_{Nat}$

Per poter usare il teorema prima dobbiamo fissare la denotazione dei giochi e delle costanti Indichiamo con $\lceil\!\lceil\cdot\rceil\!\rceil$ la denotazione

Tipi

La denotazione di un tipo è un gioco

- [Bool] = Bool
- $[S \times T] = [S] \& [T]$
- $\bullet \ \llbracket S \to T \rrbracket = \llbracket S \rrbracket \Rightarrow \llbracket T \rrbracket$

La denotazione di un termine di tipo T è una strategia di $(1\&A_1\&\ldots\&A_n)\to T$

- ullet [true : Bool] = σ_{tt} : 1 o Bool
- $\llbracket \mathit{false} : \mathit{Bool} \rrbracket = \sigma_{\mathit{ff}} : 1 \to \mathit{Bool}$
- $lacksquare [n: \mathsf{Nat}] = \sigma_n: 1 o \mathsf{Nat}$
- $[M + N] = <\sigma_{add}, < [M], [N] >> ; App$
- $[Eq?MN] = <\sigma_{eq}, < [M], [N] >> \, App$
- [< s, t >] = < [[s], [[t]] >
- $[Proj_1 < s, t >] = [s]$
- $[Proj_2 < s, t >] = [t]$

La strategia σ_{tt} è la seguente

Denotazione di PCF

La strategia σ_{tt} è la seguente

• Alla domanda di O...

La strategia σ_{tt} è la seguente

- Alla domanda di O...
- ...P risponde tt

La strategia σ_{tt} è la seguente

- Alla domanda di O...
- ... P risponde tt

La strategia σ_n funziona allo stesso modo

$$\llbracket < s, t > \rrbracket$$

Dato il termine $\langle s, t \rangle$ ad esso associamo la strategia prodotto $\langle [s], [t] \rangle$. Ad esempio nel caso $\langle n, m \rangle$:

$$\llbracket < s, t >
rbracket$$

Dato il termine $\langle s, t \rangle$ ad esso associamo la strategia prodotto $\langle [s], [t] \rangle$.

Ad esempio nel caso [< n, m >]:

• Se *O* fa una domanda sulla prima componente. . .

 $\begin{array}{c}
 *_1 \\
O \\
 N_1 \& N_2
\end{array}$

$$\llbracket < s, t >
rbracket$$

Dato il termine $\langle s, t \rangle$ ad esso associamo la strategia prodotto $\langle [s], [t] \rangle$.

Ad esempio nel caso [< n, m >]:

- Se O fa una domanda sulla prima componente...
- ...P risponde usando la strategia [n]

$$\llbracket < s, t > \rrbracket$$

Dato il termine $\langle s, t \rangle$ ad esso associamo la strategia prodotto $\langle [s], [t] \rangle$.

Ad esempio nel caso [< n, m >]:

- Se O fa una domanda sulla prima componente...
- ...P risponde usando la strategia [n]
- Altrimenti risponde usando la strategia [m]

e
 O

• La domanda di *O* (*3)...

- La domanda di *O* (*3)...
- ...viene girata a N₁ da P.
 O risponde con il primo addendo

- La domanda di *O* (*3)...
- ...viene girata a N₁ da P.
 O risponde con il primo addendo

- La domanda di *O* (*3)...
- ...viene girata a N₁ da P.
 O risponde con il primo addendo

 P chiede il secondo addendo (*2,n). O risponde

- La domanda di *O* (*3)...
- ...viene girata a N₁ da P.
 O risponde con il primo addendo

 P chiede il secondo addendo (*2,n). O risponde

- La domanda di O (*3)...
- ... viene girata a N_1 da P. O risponde con il primo addendo

- P chiede il secondo addendo $(*_{2,n})$. O risponde
- P risponde alla domanda iniziale con la somma degli addendi

Denotazione di PCF

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \beta_{App}$$

$$\begin{array}{c|cccc}
P & P & O \\
N_1 & N_2 \Rightarrow N_3 & N_4 & N_5 & \Rightarrow & N_6 \\
O & O & P
\end{array}$$

App rappresenta l'applicazione tra termini. Nell'esempio:

*6

Denotazione di PCF

$$\llbracket N + M \rrbracket = <\sigma_{add}, < \llbracket N \rrbracket, \llbracket M \rrbracket >> \mathring{P}_{App}$$

$$\begin{array}{c|cccc}
P & P & O \\
N_1 & N_2 \Rightarrow N_3 & N_4 & N_5 & \Rightarrow & N_6 \\
O & O & P
\end{array}$$

App rappresenta l'applicazione tra termini. Nell'esempio:

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \mathring{P}_App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$\llbracket N + M \rrbracket = \langle \sigma_{add}, \langle \llbracket N \rrbracket, \llbracket M \rrbracket \rangle \rangle \mathring{App}$$

$$\begin{array}{c|c}
P \\
N_1 \& N_2 \Rightarrow N_3 \& P \\
O \\
O \\
\end{array}$$

$$\begin{array}{c}
N_4 \& N_5 \\
O \\
\end{array}$$

$$\begin{array}{c}
O \\
N_6 \\
P
\end{array}$$

$$\begin{array}{c}
N_1 & N_2 \\
N_3 & N_4 & N_5 \\
O \\
\end{array}$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \, \hat{S}App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> {}^{\circ}_{9}App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente O è costretto a muovere rispettando le regole di σ_{add} e < [[N]], [[M]] >

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \mathring{P}_App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> {}^{\circ}_{9}App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \mathring{P}_App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \mathring{P}_App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> {}^{\circ}_{9}App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> {}^{\circ}_{9}App$$

 Ogni mossa di O viene copiata da P sulla componente corrispondente

$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> {}^{\circ}_{9}App$

App rappresenta l'applicazione tra termini. Nell'esempio:

 Ogni mossa di O viene copiata da P sulla componente corrispondente O è costretto a muovere rispettando le regole di σ_{add} e < [[N]], [[M]] >

$$[\![N+M]\!] = <\sigma_{add}, <[\![N]\!], [\![M]\!] >> \mathring{P}_App$$

Notiamo che le sequenze di mosse su ogni singolo tavolo sono partite valide del gioco corrispondente, come richiesto da 3

$\llbracket Eq?mn rbracket$

$$\begin{array}{c}
P \\
N_1 \& N_2 \Rightarrow B_3 \\
O
\end{array}$$

$$\begin{array}{c}
P \\
N_4 \& N_5 \\
O
\end{array}$$

$$\Rightarrow \begin{array}{c}
O \\
B_6 \\
P
\end{array}$$

In modo analogo al precedente possiamo dare la strategia $[Eq?MN] = <\sigma_{eq}, <[M], [N] >> App$

In modo analogo al precedente possiamo dare la strategia $[Eq?MN] = \langle \sigma_{eq}, \langle [M], [N] \rangle \rangle App$

Per parlare di variabili occorre introdurre il concetto di ambiente

Ambiente

Dato il termine t:T, siano $x_1:S_1,\ldots,x_n:S_n$ le variabili libere che vi compaiono

Chiamiamo $\Pi = \{x_1 : S_1, \ldots, x_n : S_n\}$ l'ambiente di t

Con $\Delta \vdash t : T$ indichiamo che $\Pi \subseteq \Delta$

Lo scopo dell'ambiente quello di fare da *input*, cioé assegnare un valore alle variabili libere

Termini

- $[x:S] = Cc:1\&[S] \to [S]$
- $\llbracket \Pi \vdash \lambda(x:S).t:T \rrbracket = Cur(\llbracket t \rrbracket):1\&\llbracket \Pi \rrbracket \rightarrow \llbracket S \rrbracket \Rightarrow \llbracket T \rrbracket$ dove $\Pi,x:S \vdash t:T$
- $\llbracket \textit{if } B \textit{ then } M \textit{ else } N \rrbracket = < \textit{Cond}, < \llbracket B \rrbracket, \llbracket M \rrbracket, \llbracket N \rrbracket >>$ \$App
- [M(N)] = < [M], [N] > App

000000000000 Denotazione di PCF

$$egin{array}{c|c} \mathsf{P} & & \mathsf{O} \\ A & & N_1 & \rightarrow & N_2 \\ \mathsf{O} & & \mathsf{O} & & \mathsf{P} \end{array}$$

La strategia [x] consiste nel copiare le mosse di O sul primo tavolo (strategia copycat)

La strategia [x] consiste nel copiare le mosse di O sul primo tavolo (strategia copycat)

P copia le mosse di O tra i due tavoli

La strategia [x] consiste nel copiare le mosse di O sul primo tavolo (strategia copycat)

• P copia le mosse di O tra i due tavoli

La strategia [x] consiste nel copiare le mosse di O sul primo tavolo (strategia copycat)

- P copia le mosse di O tra i due tavoli
- O muove in maniera arbitraria

La strategia [x] consiste nel copiare le mosse di O sul primo tavolo (strategia copycat)

- P copia le mosse di O tra i due tavoli
- O muove in maniera arbitraria

La strategia [x] consiste nel copiare le mosse di O sul primo tavolo (strategia copycat)

- P copia le mosse di O tra i due tavoli
- O muove in maniera arbitraria

Le mosse di O nell'ambiente influenzano il comportamento di P durante la partita

Denotazione di PCF

$$\llbracket \Pi \vdash \lambda(\mathsf{x} : \mathsf{S}).t : \mathsf{T} \rrbracket = \mathsf{Cur}(\llbracket t \rrbracket) : 1 \& \llbracket \Pi \rrbracket \to \llbracket \mathsf{S} \rrbracket \Rightarrow \llbracket \mathsf{T} \rrbracket$$

$$\begin{array}{c|c}
P & O \\
\hline
A & O \\
O & O
\end{array}$$

Denotazione di PCF

$$\llbracket \Pi \vdash \lambda(\mathsf{x} : \mathsf{S}).t : \mathsf{T} \rrbracket = \mathsf{Cur}(\llbracket t \rrbracket) : 1 \& \llbracket \Pi \rrbracket \to \llbracket \mathsf{S} \rrbracket \Rightarrow \llbracket \mathsf{T} \rrbracket$$

$$\llbracket \Pi \vdash \lambda(x:S).t:T \rrbracket = Cur(\llbracket t \rrbracket):1 \& \llbracket \Pi \rrbracket \to \llbracket S \rrbracket \Rightarrow \llbracket T \rrbracket$$

Denotazione di PCF

$$\llbracket \Pi \vdash \lambda(\mathsf{x} : \mathsf{S}).t : \mathsf{T} \rrbracket = \mathsf{Cur}(\llbracket t \rrbracket) : 1 \& \llbracket \Pi \rrbracket \to \llbracket \mathsf{S} \rrbracket \Rightarrow \llbracket \mathsf{T} \rrbracket$$

$$\llbracket \Pi \vdash \lambda(x:S).t:T \rrbracket = Cur(\llbracket t \rrbracket):1\&\llbracket \Pi \rrbracket \to \llbracket S \rrbracket \Rightarrow \llbracket T \rrbracket$$

$$\begin{array}{c}
n_1 & *_2 \\
P & A \\
O & N_1 \\
O & N_2 \\
\hline
N_2 & n_2
\end{array}$$

$$\llbracket \Pi \vdash \lambda(\mathsf{x} : \mathsf{S}).t : \mathsf{T} \rrbracket = \mathsf{Cur}(\llbracket t \rrbracket) : 1 \& \llbracket \Pi \rrbracket \to \llbracket \mathsf{S} \rrbracket \Rightarrow \llbracket \mathsf{T} \rrbracket$$

Notiamo che una strategia $\sigma:A\&B\to C$ può essere canonicamente interpretata come una strategia di $A\to B\Rightarrow C$ Chiamiamo la strategia ottenuta $Cur(\sigma)$

*4

$$\begin{array}{ccc}
P & & & O \\
B_1 \& N_2 \& N_3 & \Rightarrow & & & \\
O & & & P
\end{array}$$

La strategia cond rappresenta il costrutto if ... then ... else ...

• Alla domanda di O, P controlla la guardia (B_1)

$$\begin{array}{ccc}
 & *_{1} & & & \\
P & & & & \\
B_{1} \& N_{2} \& N_{3} & \Rightarrow & & \\
O & & & P
\end{array}$$

• Alla domanda di O, P controlla la guardia (B_1)

- Alla domanda di O, P controlla la guardia (B₁)
- Se la guardia risulta vera P consulta N_2 , altrimenti N_3

- Alla domanda di O, P controlla la guardia (B_1)
- Se la guardia risulta vera P consulta N_2 , altrimenti N_3

- Alla domanda di O, P controlla la guardia (B_1)
- ullet Se la guardia risulta vera P consulta N_2 , altrimenti N_3
- P copia la risposta data su N₄

- Alla domanda di O, P controlla la guardia (B_1)
- ullet Se la guardia risulta vera P consulta N_2 , altrimenti N_3
- P copia la risposta data su N₄

Teorema

La semantica dei giochi data finora è sound, cioè:

$$ullet$$
 se $\llbracket s \rrbracket = \llbracket t \rrbracket$

• se s e t sono costruiti senza usare il ricursore Y

allora
$$s \stackrel{\text{obs}}{=} t$$

Ricursore

ullet Definiamo Θ come segue

$$[\![F:(A\to A)\Rightarrow A\vdash \lambda(f:A\to A).f(F(f))]\!] = \\ \Theta:1\&((A\Rightarrow A)\Rightarrow A)\to (A\Rightarrow A)\Rightarrow A$$

$$\bullet \ \llbracket Y \rrbracket = \Theta^{\triangledown} : 1 \to (A \Rightarrow A) \Rightarrow A$$

Notiamo che per le definizioni date precedentemente si ha $\llbracket Y \rrbracket = \bigsqcup_{n \in \omega} \llbracket Y^{(n)} \rrbracket$ dove:

$$Y^{(0)} \equiv \lambda(f: A \to A). \perp_A$$
$$Y^{(k+1)} \equiv \lambda(f: A \to A).f(Y^{(k)}(f))$$

Esempio

Secondo la nostra semantica si ha $[Y(\lambda x.5)] = \sigma_5$?

$$Y^{(0)}(\lambda x.5) \twoheadrightarrow \perp_{Nat}$$

 $\llbracket Y^{(0)}(\lambda x.5) \rrbracket = \{\epsilon\}$

$$Y^{(1)}(\lambda x.5) \rightarrow [\lambda x.5](Y^{(0)}(\lambda x.5))$$

$$\rightarrow 5$$

$$[Y^{(1)}(\lambda x.5)] = \sigma_5$$

$$[Y(\lambda x.5)] = \sigma_5$$

Esempio

Posto $F \equiv \lambda f \cdot \lambda x \cdot f(x+1)$ secondo la nostra semantica si ha $[Y(F)] = {\epsilon}$?

$$Y^{(0)}(F) \twoheadrightarrow \bot_{N \to N}$$
$$\llbracket Y^{(0)}(F) \rrbracket = \{\epsilon\}$$

Supponiamo $Y^{(k)}(F) \rightarrow \perp_{N \rightarrow N}$

$$Y^{(k+1)}(F) \rightarrow F(Y^{(k)}(F))$$

$$\rightarrow F(\bot_{N\to N})$$

$$\rightarrow \lambda x. \bot_{N\to N} (x+1)$$

$$\rightarrow \lambda x. \bot_{N}$$

$$\equiv \bot_{N\to N}$$

Quindi possiamo affermare $[Y(F)] = \bigsqcup_{n \in \omega} [Y^{(n)}(F)] = \bigsqcup_{n \in \omega} {\{\epsilon\}} = {\{\epsilon\}}$

Intensional full abstraction

Teorema

Per ogni tipo τ di PCF, posto $T = \llbracket \tau \rrbracket$, si ha che $1 \to T$ è un dl-domain; in particolare $\mathcal{M}(K_!(\mathcal{G}))$ è un modello algebrico

Teorema

 $\mathcal{M}(K_!(\mathcal{G}))$ è un modello intensionally fully abstract di PCF

Full abstraction

Definiamo il gioco di Sierpinsky Σ tale che:

•
$$M_{\Sigma} = \{q, a\}$$
 dove $\lambda_{\Sigma}(q) = OQ$ e $\lambda_{\Sigma}(a) = PA$

•
$$P_{\Sigma} = \{\epsilon, q, qa\}$$
 e $\approx_{\Sigma} = id_{P_{\Sigma}}$

Definiamo il preordine \lesssim_A sulle strategie del gioco A:

$$x \lesssim_A y \Leftrightarrow \forall \alpha \to \Sigma.x; \alpha \preccurlyeq_{\Sigma} y; \alpha$$

Definiamo $\mathcal{E} = K_!(\mathcal{G})/\lesssim$, cioè la categoria tale che:

•
$$\mathcal{E}_0 = K_!(\mathcal{G})_0$$

•
$$Mor_{\mathcal{E}}(A, B) = Mor_{K_{!}(\mathcal{G})}(A, B) / \lesssim_{A \Rightarrow B}$$

Teorema

 ${\mathcal E}$ è un modello fully abstract per PCF

Universalità

Definiamo un gioco A effettivamente dato se:

- Esiste una mappa $e_A: \omega \to M_A$ suriettiva; chiamiamo questa funzione codifica
- Rispetto alla codifica le seguenti funzioni sono calcolabili:
 - λ_A (rispetto a qualche codifica di $\{P, O, Q, A\}$)
 - la funzione caratteristica di P_A
 - la funzione caratteristica di \approx_A

Definiamo una strategia ricorsiva se la sua funzione parziale associata è calcolabile

Definiamo \mathcal{G}_{rec} la categoria dei giochi effettivamente dati con morfismi le strategie ricorsive

Fatti

- Possono essere definite le categorie $K_1(\mathcal{G}_{rec})$ ed \mathcal{E}_{rec} con ragionamenti analoghi ai precedenti
- ullet \mathcal{E}_{rec} è un modello fully abstract per PCF

Universalità

- Ogni strategia di $\mathcal{M}(\mathcal{E}_{rec})$ è definibile in PCF, cioè è interpretazione di un termine di PCF
- $\mathcal{M}(\mathcal{E}_{rec})$ è un oggetto iniziale della categoria FAMOD(PCF)