LECTURE 4

Author

Tom Jeong

January 15, 2025

Contents

1	Polynomials in Fields	2
2	Eisenstein's Criterion	3

1 Polynomials in Fields

$$p(x) \in K(x)$$

$$p = f \cdot g, f, g \in K(x)$$

$$\partial f, \partial g > 0$$

$$\partial f, \partial g < \partial p$$

$$\operatorname{case } 1 \ \partial p = 2$$

$$p = f \cdot g$$

$$\partial f = \partial g = 1$$

$$p \text{ is irreduciable } \leftrightarrow p \text{ doesn't have units in } K \text{ (quadrati formula)}$$

$$\operatorname{case } 2: \partial p = 3$$

$$\partial f = 1,$$

$$\partial g = 2$$

$$p \text{ is irrudicible } \leftrightarrow p \text{ doens't have a root in } K$$

$$\operatorname{case } 3: \partial p = 4$$

$$\partial f = 2, \partial g = 2 \text{ or } \partial f = 1, \partial g = 3$$

$$\mathbb{Q}[x]$$

Lemma 1.1 (Gauss' Lemma).

 $h \in \mathbb{Z}[x]$ irriducible \Rightarrow h is irreducible in $\mathbb{Q}[x]$

 (\Leftarrow) : is this true? (no)

$$h = f \cdot g$$

 $h = 2x + 2 = 2(x+1)$ where $\partial f, \partial g < \partial h$

 $p \in \mathbb{Z}[x]$?

this constant is not a unit.

Proof.

Suppose $h = f \cdot g$ where $f, g \in \mathbb{Q}[x]$. Clear denominators in f, g.

There is the smallest positive integer k such that $k \cdot h = \bar{f} \cdot \bar{g}$ where $\bar{f}, \bar{g} \in \mathbb{Z}[x]$

There is a prime p dividing k. Let's look at $kh = \bar{f}\bar{g}$ in $\mathbb{Z}_p(x)$

in \mathbb{Z}_p , $0 = \bar{f}_p \cdot \bar{g}_p$ Z: integral domain, so either one must be 0,

 $\bar{f}_p = 0$ or $\bar{g}_p = 0 \rightarrow$ either all coefficients of \bar{f} or all coefficients of \bar{g} iare divisible by $p \rightarrow k$ can be reduced. contradiction.

2 Eisenstein's Criterion

$$h \in \mathbb{Z}[x]$$

 $h = a_0 + a_1 x + \dots + a_n x^n$

suppose that there exists a prime p such that:

- 1. $p|a_0,\ldots,a_{n-1}|$
- 2. $p \nmid a_n$
- 3. p^2 / a_0
- $\to f$ is irreducible in $\mathbb{Q}[x]$

Proof.

suffice to show that h is irridubcible in $\mathbb{Z}[x]$ (Gauss lemma) Suppose $h = f \cdot g$, where $f, g \in \mathbb{Z}[x]$ and $\partial f, \partial g < \partial h$ Let's look at $h = fg \mod p$

 $h_p = f_p g_p$

 $a_n x^n = f_p g_p$

 $a_n \not\equiv 0 \mod p$

look $a_0, p \mid a_o, p^2 \nmid a_0$

 $\rightarrow p$ divides constant term g, f or g but not both

WLOG,

 $p \mid \text{constant term of } g \text{ and } p \nmid \text{constant term of } g \rightarrow g_p \text{ is a polynomial with a constant term}$

$$a_n x^n = f_p \cdot g_p$$

 $\mathbb{Z}_p(x)$ UFD but we have two different factorizations.. contradiction