Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Source:

Spring and Durum Wheat Quality Laboratory USDA, Agricultural Research Service Harris Hall, NDSU Fargo, North Dakota 58105

UNITED STATES DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE in cooperation with STATE AGRICULTURAL EXPERIMENT STATION

QUALITY EVALUATION OF HARD RED SPRING WHEAT CULTIVARS 1991 CROP¹/

by

G.A. Hareland, L.A. Grant, A. Ostenson, W.J. Newell, W.J. Erickson, J.G. Wear, E. Winter²/, and M. Skunberg³/

This report represents cooperative investigations on the quality of Hard Red Spring Wheat Cultivars from the 1991 crop. Some of the results presented have not been sufficiently confirmed to justify varietal release. Confirmed results will be published through established channels. Cooperators submitting samples for analysis have been given analytical data on their samples prior to release of this report. This report is primarily a tool for use by cooperators and their official staff and to those individuals having direct and special interest in the development of agricultural research programs.

This report was compiled by the Agricultural Research Service, U. S. Department of Agriculture. Special acknowledgment is made to the North Dakota State University for use of their facilities and the services provided in support of these studies. The report is not intended for publication and should not be referenced in either literature citations or quoted in publicity and advertising. Use of the data may be granted for certain purposes upon written request to the agency or agencies involved.

- Research Food Technologist, Research Chemist, Biological Science Technician, Physical Science Technicians, and Secretary, USDA/ARS Hard Red Spring & Durum Wheat Quality Lab., NDSU, Fargo, ND.
- 3/ Food Technologist, Dept. of Cereal Science & Food Technology, NDSU, Fargo, ND.

TABLE OF CONTENTS

Contents	Page No.
Cooperating Agencies	3-4
Introduction	6
Source of the Samples	7
Table of Varieties and Crosses	9
Methods	10-12
Discussion	13-18
Uniform Regional Nursery Samples	19
Field Plot Nursery Samples	20
Explanation of Abbreviations, 1991 Crop	21
Footnotes to Tables	22
Reference Mixogram Patterns	23
HRS Wheat Quality Tables 1 - 68	20

1991 COOPERATING AGENCIES AND STATIONS

The cooperative agencies and stations conducting the varietal plot and nursery experiments from which the 1991 spring wheat samples were received are listed below:

University of California, Davis Imperial Valley

New York State College of Agriculture and Life Science Cornell University

Ithaca

Minnesota Agricultural Experiment Station
Crookston, Morris, St. Paul

Montana Agricultural Experiment Station

Bozeman, Sidney, Havre

North Dakota Agricultural Experiment Station

Minot, Langdon, Dickinson, Williston,
Carrington, Prosper, Casselton

South Dakota Agricultural Experiment Station

Redfield, Brookings, Selby

Idaho Agricultural Experiment Station
Aberdeen

Wyoming Agricultural Experiment Station
Powell

1991 COOPERATING AGENCIES AND STATIONS (cont.)

Washington Agricultural Experiment Station
Pullman

Wisconsin Agricultural Experiment Station
Madison

A complete list of all cooperating agencies, stations, and personnel for the year will be found in the report by R. H. Busch, et al., Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1991.4

^{4/} Busch, R. H. Wheat Varieties Grown in Cooperative Plot and Nursery Experiments in the Spring Wheat Region in 1991. Agricultural Research Service, U. S. Department of Agriculture and State Agricultural Experiment Station, St. Paul, MN.

INTRODUCTION

Samples of standard cultivars and new selections of hard red spring wheat grown in cooperative experiments in spring wheat regions of the United States are milled each year by the USDA/ARS, Wheat Quality Laboratory. Wheat and their corresponding flours are evaluated for physical and chemical properties, and the flours are baked to determine bread characteristics. The purpose of this report is to make available to the cooperators and other interested parties, quality data on the standard varieties and new selections of hard red spring wheat from the 1991 crop.

The same general format and techniques were used in evaluating the wheat as outlined in quality reports from previous years. The same computer scoring system has been used for the past several years, hence some faulting values differ slightly from earlier years. In general, data contained in this report are comparable to data in past reports. Statistical data is included for each cultivar and experimental line from the Uniform Regional Nurseries.

The evaluation of a wheat sample involves the analysis of kernel characteristics, milling performance, and baking performance. A brief description of testing methods employed is shown on pages 10 to 12 of this report. The various characteristics and any outstanding features or deficiencies of each cultivar are evaluated from results of these tests. No specific comments are made regarding mixogram patterns derived from samples. However, reference mixograms, shown on page 23, illustrate ranges from which sample mixograms may be compared.

SOURCE OF THE 1991 CROP SAMPLES

Tests were performed on 1622 samples which were received from 22 stations in 10 states. However, data on 938 samples is excluded from this report, because the information was of interest only to plant breeders at specific experiment stations.

Data presented in this report represents the evaluation of spring wheats received from Field Plot Nurseries and Uniform Regional Nurseries. The following stations were cooperators:

California:

Imperial Valley

Idaho:

Aberdeen

Minnesota:

Crookston, Morris and St. Paul

Montana:

Bozeman, Sidney and Havre

New York:

Ithaca

North Dakota:

Minot, Langdon, Dickinson, Prosper

Williston, Carrington, and Casselton

South Dakota:

Redfield, Brookings and Selby

Washington:

Pullman Madison

Wisconsin: Wyoming:

Powell

UNIFORM REGIONAL NURSERY TRIALS

The geographical areas from which the samples were received are shown on page 8. Spring wheat cultivars and experimental lines included in the Uniform Regional Nursery trials are listed on page 9. The Western and Midwestern areas were comprised of four stations each, the Northeastern area five stations, and the Southeastern area six stations. The geographical areas tend to represent the movement of wheat in the market. Contrary to previous reports which presented data on wheat blends from these geographical areas, samples tested from the 1991 crop were not blended. Included in this report is statistical data on quality factors of each cultivar or experimental line from each geographical location.

Georgraphical areas from which wheat samples were obtained.

ENTRIES IN THE UNIFORM REGIONAL HARD RED SPRING WHEAT PERFORMANCE NURSERY

The 32 entries in the 1991 URHRSWPN are listed below:

Entry No.	Cross or Variety	CI No. or Selection No.	Year Entered	Source
1.	Marquis	3561	1929	Canada
2.	Chris	13751	1969	USDA-MN
3.	Stoa	23732	1987	ND
4.	Era**	13986	1972	USDA-MN
5.	Butte 86	20300	1987	ND
6.	SD3055	ND604/SD2971	1990	SD
7.	SD3056	ND604/SD2971	1990	SD
8.	SD3080	Butte 86/SD3004	1991	SD
9.	SD8072	SD8052/SD2971	1991	SD
10.	SD8073	SD8052/SD2971	1991	SD
11.	SD8074	SD8052/SD2971	1991	SD
12.	MN87150**	MN82008/Vance	1990	USDA-MN
13.	MN88170**	MN84139/MN74103	1991	USDA-MN
14.	MN88189**	MN84139/MN84565	1991	USDA-MN
15.	MN88320**	MN84377/Wheaton	1991	USDA-MN
16.	MN88334**	MN4436/Vance	1991	USDA-MN
17.	ND655**	Stoa's'/ND617's'	1990	ND
18.	ND657**	ND622's'/Cutless	1990	ND
19.	ND662**	ND603//ND517-2*7/Agent	1991	ND
20.	ND671	Stoa's'/ND620	1991	ND
21.	ND672**	Grandin/ND620's'	1991	ND
22.	XW398A4	MN7375/SD2903	1991	NDSUDF
23.	N86-0542**	Nordic/Norseman	1990	AGRIPRO
24.	N87-0306**	HS81-0074/MN7357	1991	AGRIPRO
25.	N88-3136	Sinton/Stoa	1991	AGRIPRO
26.	N88-3034	Sinton/Stoa	1991	AGRIPRO
27.	N87-467**	Wheaton/Probrand 711	1991	AGROPRO
28.	FA987-350**	MSFRSP	1991	WPB
29.	CI982-309**	MSFRSP	1991	WPB
30.	AC-Minto	BW120(Col/BW63//Kat/BW552)	1990	AGRICAN
31.	BW148	BW83 (ND499/RL4137) ND585	1991	AGRICAN
32.	ID367	,	1991	ID

^{**} Semidwarf

METHODS

Following are terminologies and testing methods used in the evaluation process:

<u>Test Weight Per Bushel</u> - The weight per Winchester bushel of cleaned, dry wheat subsequent to passing the sample through a Carter-Day dockage tester.

<u>1000-Kernel Weight</u> - The weight of 1000 kernels was determined by counting, using a Seedburo seed counter, the number of kernels in 10 g samples of cleaned, hand-picked wheat. $^{5/}$

<u>Kernel Size</u> - The percentages of the size of kernels (large, medium and small) were determined using a wheat sizer as described by Shuey⁶/.

The sieves of the sizer were clothed as follows:

Top Sieve - Tyler #7 with 2.92 mm opening Middle Sieve - Tyler #9 with 2.24 mm opening Bottom Sieve - Tyler #12 with 1.65 mm opening

Milling - The samples were cleaned by passing the wheat through a Carter-Day dockage tester and through a modified Forster scourer (Model 6). The clean, dry samples were pretempered to 12.5% moisture for at least 72 hours, then tempered to 15.5% moisture and allowed to stand overnight prior to milling.

Mention of a trademark name or a proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products that may also be suitable.

^{6/} Shuey, William C. A Wheat Sizing Technique for Predicting Flour Milling Yield. Cereal Science Today 5:71-72,75 (1960).

The Uniform Nursery Regional spring wheat samples were milled in a Brabender Quadrumat Junior mill. The mill was equipped with a #18 wire on the drum sieve from which the overs were classified as bran. The throughs of the #18 wire were rebolted for one minute on a Strand sifter equipped with a #60 Tyler sieve. The throughs of the #60 wire were classified as flour and the overs were classified as crude shorts.

The Field Plot Nursery samples were milled on a Buhler continuous experimental mill. The Buhler mill had been slightly modified for better comparison with commercial milling operations. Break scalping sieves were clothed with #54 stainless steel wire. Reduction scalping sieves were clothed with #58, #66 and #105 stainless steel wire for the first, second and third reductions, respectively. All flour sieves were clothed with #135 stainless steel wire.

The six flour streams obtained from Buhler milled wheat were combined and represented patent flour. The extraction of a good milling wheat using this flow is approximately 68% and is comparable to a commercial "long patent" extraction flour. At a 68% flour extraction, changes in flour ash are most sensitive to changes in percent extraction.

Hardness Test - Wheat hardness scores are determined according to AACC Method 39-70A. The procedure involves grinding the wheat samples in a Udy grinder and obtaining reflectance data from a Technicon 400 near infrared analyzer. Wavelengths used were 1680 nm and 2230 nm. This procedure was developed by Mr. Karl Norris, USDA, Beltsville through a co-operative research project in which the Hard Red Spring and Durum Wheat Quality Laboratory also participated. Hard red spring wheats generally have scores between 60 and 85.

<u>Protein Content</u> - Wheat and flour proteins were determined from NIR reflectance data, the Kjeldahl procedure, or Leco Nitrogen determinations. Nitrogen values, as determined the Kjeldahl procedure or Leco, were multplied by 5.7 to calculate protein values.

<u>Mineral or Ash Content</u> - Wheat or flour ash was determined by measuring the residual weight of minerals remaining after incinerating the sample for approximately 16 hours at 575°C. The results were reported as percentages of the sample weights.

Mixograph Analysis - Mixograms for each flour sample were determined by using 30 g of flour and adding 20 cc of water. The sensitivity spring setting was set at 10. All mixograms were run with constant weight of flour and volume of water. Absorptions reported were adjusted according to the peak heights of the mixograms. Correction factors were determined from a series of flours by varying the amount of absorption.

<u>Mixogram Patterns</u> - Reference mixogram patterns shown on page 24 illustrate the different types of mixograms that were obtained. A single number is assigned each pattern to characterize and simplify the classification of the curves. The larger numbers indicate stronger curve characteristics.

Baking Procedure and Formula - Following is the baking formula used:

100% flour 3% Non-fat Dry Milk

2% salt 3% yeast

5% sugar 2% shortening (Crisco, melted)

Samples were mixed to optimum dough development in National Manufacturing mixers, the micro mixer for 25 g samples and the 100 g special mixer for 100 g samples. Bromate (10 ppm) for oxidation and barley malt flour (0.106%) for enzymatic supplement were added to each sample. All doughs were moulded in a Roll-Er-Up moulder. Samples undergo 3 hour fermentation, 1 hour proof and 20 minute bake time.

<u>Absorption</u> - The amount of water, expressed as percent of flour, required for optimum dough consistency.

<u>Crumb Color</u> - A value was determined by comparing the crumb color of the tested sample with the crumb color of a baking standard. The standard flour was an equal blend of the variety Len grown at Casselton and Minot, ND, and Crookston, MN.

<u>Loaf Volume</u> - The volume of the baked loaf as determined by rapeseed displacement.

All values (protein, ash and absorption) were reported on a 14% moisture basis.

DISCUSSION

The following discussion presents the basic techniques and criteria used in the quality evaluation of the Hard Red Spring Wheat cultivars. Evaluations are based on the categories of kernel characteristics, milling performance, and baking score.

Each evaluation category is important. For example, a sample could be of a sufficiently poor quality for a given category to suggest elimination from future testing. However, a sample submitted for the first time and found to be questionable should be tested again to confirm previous evaluations. A sample which is consistently rated as questionable should be discarded.

Five kernel characteristics (test weight, 1000 kernel weight, percent small kernels, wheat ash, and wheat protein) were independent variables used to calculate the dependent variable, wheat score. Four milling characteristics (percent extraction, ash content @ 65% extraction, flour protein, and milling character) were used to calculate the dependent variable, mill score. Seven characteristics (mixogram pattern, bake absorption, mixing time, dough characteristics, crumb color, crumb grain, and loaf volume) were used to calculate the dependent variable, bake score. These three dependent variables become independent variables used to calculate a dependent variable, the general evaluation, which is an overall general score.

The current computer program used by the Wheat Quality Laboratory was designed and implemented to perform the analysis and tabulation of data generated from each station. The program has been in operation for nine years and utilizes the Statistical Analysis Systems (SAS Institute, In., SAS Circle, Box 8000, Cary, NC 27511). If

Wheat samples are tested and data collected on 18 quality factors or variables. The computer program then grades each factor against predetermined faulting values and assigns major (MJ) or minor (MI) faults where applicable. The data is then broken down into 3 major areas which relate more directly to agronomic, industrial, and consumer requirements. Each sample is assigned a score of 4 in the areas of Wheat Characteristics, Milling Characteristics, and Baking Characteristics. The program then adjusts the score (4 = Good promise, 3 = Some promise, 2 = Little promise, 1 = No promise) depending upon the number of major and/or minor faults assigned to that sample.

Nolte, L.L., Youngs, V.L., Crawford, R.D., and Kunerth, W. H. 1985. Computer program evaluation of hard red spring wheat. Cereal Foods World 30:227-229.

A general score is a numerical score of 1-4 and is determined by calculating the mean of the other 3 scores - wheat characteristics, milling characteristics, and baking characteristics.

The following tables list the variables used in each scoring area and their specific faulting and scoring values.

WHEAT SCORE

<u>Variables Included</u>	Faulti Minor	ng Limits <u>Major</u>	Effect of Minor	on Score Major
Test Weight (#/bu)	57.9	56.9	-	-1
1000 Kernel Weight (g)	Mean-2.1	Mean-5.1	-	-1
Small Kernels (%)	8	18	-	-1
Wheat Ash (%)	1.71	1.81	-	-
Wheat Protein (%)	13.9	12.9	-1	-2

MILL SCORE

<u>Variables Included</u>	Fault: Minor	ing Limits Major		Effect Minor	on	Score Major
Flour Extraction ^a / (%)	Mean-2.1	Mean-4.1		-1		-2
Flr. Ash @ 65% Ex. ^{b/} (g) Large Samples Small Samples	.47 .57	.51 .61		-		-1 -1
Flour Protein (%)	12.9	12.4	-1		-1	
Milling Character ^{c/}	3	2		-1		-2

<u>a</u>/ The mean, or average, is calculated using the standards tested with that station.

b/ Large samples are milled on a Buhler experimental mill, and small samples are milled on a Quadrumat Jr. experimental mill.

Different values are used to compensate for differences in the efficiency of the two mills and their respective procedures.

c/ 5 = Normal. 4 = Normal-soft. 3 = Soft-normal. 2 = Soft.
1 = Gritty. 0 = Very soft.

BAKE SCORE

<u>Variables Included</u>	<u>Faultin</u> <u>Minor</u>	ng Limits <u>Major</u>	Effect of Minor	n Score Major
Mixogram Pattern ^a /	2,7 or 8	1,or 9-11	-	-1
Bake Absorption (%)	61.9	60.4	-1	-2
Mix Time (min.)	5.75-8.00 or	over 8.00	-1	-2
	2.00-2.75	0-1.75	-1	-2
Dough Characteristicb/	6	4 or less	-	-2
Crumb Color ^c /	75	50 or less	-	-1
Crumb Grain ^d /	80	50 or less	-	-1
Loaf Volume ^e / (cc) Lg.	Mean-55	Mean-105	-1	-2
Sm.	Mean-21	Mean-31		-2

a/ Refer to reference mixograms for numerical curve pattern.
(1 = very weak, 11 = very strong)

- \underline{b} / 9 = Elastic. 7 = Slightly pliable.
 - 5 = Very pliable. 4 = Bucky 2 = Very, very pliable. 0 = Dead.
- c/ 100 = Soft, white
 - 80 = Soft, slightly creamy
 - 60 = Creamy
 - 40 = Very creamy
 - 20 = Dull, very gray
- <u>d</u>/ 100 = Close, elongated, and uniform cells; fine grain and thin walls; soft texture.
 - 80 = Slightly open, elongated cells; fine grain and thin walls; soft texture.
 - 60 = Open, elongated to round cells; fine grain and thick walls; slightly coarse texture.
 - 40 = Open, round cells; coarse grain and thick walls; coarse to rough texture.
 - 20 = Irregular, open and large cells; coarse grain and thick walls; rough or soggy texture.
- Average values are calculated using the standards tested with that station. "Lg." refers to the faulting and scoring values for 100 g. loaves. "Sm." refers to the faulting and scoring values for 25 g. (pup) loaves.

All samples were compared with a milling and baking standard representative of the crop year. Agronomic and climatic conditions of the individual locations can affect the quality of the wheat such that the evaluation of all samples, including commercial cultivars, harvested from these locations may be classified as questionable to unsatisfactory. Therefore, the evaluation ratings from one station may not be compared with ratings from other stations, but only provide a comparison within that station. For example, an area may produce low protein wheat with large and plump kernels, good milling performance, and good kernel characteristics, but with low flour protein and unsatisfactory baking performance such as short mixing time, low loaf volume, and weak dough characteristics. The wheat from this area could not be considered a strong spring wheat and would not maintain the quality expected from the spring wheat producing area. An acceptable variety should have tolerance to a wide range of environmental conditions.

Kernel Characteristics are important in determining the initial value of wheat. Poor kernel characterisitics could disqualify a new variety from further consideration. Because of the present wheat grading system, high test weight is desirable. Plump kernels are desirable because of their high ratio of endosperm to bran. Low 1000-kernel weight and small kernel size distribution affect milling performance due to their high ratio of bran to endosperm. Wheat ash is an important factor when comparing one cultivar against other standard cultivars. Wheat with a high mineral content may yield flour with a high ash content. Wheat protein quality and quantity must be considered as an important characteristic when comparing cultivars grown at the same location. Wheats with low protein values are undesirable since protein affects baking performance.

Milling Performance is a very important characteristic of spring wheats. Low extraction and high flour ash are major factors unacceptable under commercial milling operations. Flour mineral contents are reported at a constant extraction of 65% so that flour extraction rates among cultivars are easily compared. As a general rule, an increase of 0.01% in ash content is equivalent to an increase of approximately 2% in flour extraction.

Milling characteristics: Wheat comprising soft kernels requires different milling techniques when compared with wheat of uniform hard kernels. On commercial mills flowed for hard vitreous spring wheats, the introduction of soft wheats into the mill will result in milling problems. Likewise, a sample which is extremely hard and vitreous will mill differently. Both types of wheat (soft and vitreous) require different roll pressures, clothing, sifter surface, and temper to be milled properly. The blending of normal bread wheats with soft wheats or extremely hard, vitreous wheats is undesirable since they are not compatible in the milling operation. Normal to soft score indicates that the sample shows a tendency toward softness of character on the flour mill stocks and extraction. Adjustments would either have to be made in the milling flow or in tempering procedures to compensate for differences in kernel hardness. Properties of soft wheat may or may not be compatible with other wheats. Therefore, maintaining pure varieties with uniform milling characteristics is important.

The amount of protein recovered in flour from wheat is important. High protein wheats yielding low protein flours are not desirable. Such wheats would contain much of the protein distributed in the outer portion of the kernels resulting in excessive protein in the feed streams. Therefore, higher protein wheat would be necessary to yield a flour with protein content comparable to that of a wheat that yields optimum flour protein.

Mixogram Patterns are important in estimating the strength and mixing tolerance or potential mixing tolerance of a flour. From the standard mixogram patterns shown on page 23, patterns 6 - 8 indicate flours with optimum mixing tolerance and gluten strength. Mixogram patterns 9 - 11 indicate flour samples with long mixing times, and strong gluten characteristics, whereas, patterns 1 - 5 indicate flours with weak gluten characteristics and short mixing times. Both the pattern and length of the curve are important, and both must be considered in the evaluation. Abnormal curves, such as sway-back or long initial times to incorporate water, indicate undesirable characteristics.

Baking Evaluation takes into account the flour water absorption, mixing time, dough characteristics, loaf volume, crumb texture, and machinability. Flour samples with low water absorptions would be unsatisfactory. Samples with extremely short mixing times would relate to weak gluten characteristics and be considered undesirable. Samples evaluated in the minimal range for these values require further testing to determine whether definite deficiencies exist.

Doughs having mellow to weak properties show a tendency towards weakness. Doughs having mellow to strong properties show a tendency to be strong, whereas, doughs having strong to mellow properties show a tendency to be mellow. Since these characteristics are evaluated by subjective means, the tendencies are estimated which allows for double grades.

The crumb grain or appearance of the interior of the loaf shows how well the sample stood up during baking and may indicate some deficiencies which have been observed during the baking test. Crumb grain is likely related to gluten protein properties (quantity and quality).

Bread loaf volume indicates potential strength of doughs in a different manner than mixing time or dough characteristics. Optimum loaf volume demonstrates the capacity, or lack thereof, for the dough to expand under pressure and to contain the entrapped gases during expansion. Weak doughs are like balloons which burst when blown up. They tend to collapse and yield breads with low loaf volumes, or yield breads with extremely large volumes containing large holes in the interior. Low protein flours produce extensible doughs which exhibit properties similar to putty. These doughs do not expand adequately during fermentation or baking and thus produce bread with low loaf volumes. Tough and very bucky doughs are bound too tightly and impede expansion of the gases resulting in breads with low loaf volume. Loaf volume is a characteristic probably related to gluten functionality in the dough.

Statistical Data including mean, SD, minimum and maximum values, variance, and coefficient of variation are shown for each cultivar within the four geographical areas - Northeast, Southeast, Midwest, and West. This data provides information on the variability of each selection within the Uniform Regional Nurseries for each of the parameters measured.

UNIFORM REGIONAL NURSERY SAMPLES - 1991 CROP

Discussion of URN

A total of 615 URN samples were received from 19 stations in 8 states. Twenty-seven URN selections were experimental lines and the remainder were commercial cultivars. Along with the experimental lines, the cultivars Butte 86, Chris, Era, Marquis, and Stoa were included in the statistical analysis of the URN samples. Each sample was evaluated for kernel characteristics, milling performance, and baking properties. Some selections were not included in the baking evaluation because of poor kernel characteristics or rheological dough properties.

Data from the northeastern area were from five stations -- Prosper, Langdon, Minot, and Carrington, North Dakota, and Crookston, Minnesota. Quality data of the spring wheat cultivars and experimental lines is shown in Tables 1-5. Statistical data is shown on Tables 6-16.

Data from the southeastern area were from six stations -- Brookings, Redfield, and Selby, South Dakota, Morris and St. Paul, Minnesota, and Madison, Wisconsin. Quality data of the spring wheat cultivars and experimental lines is shown in Tables 17-22. Statistical data is shown on Tables 23-33.

Data from the midwestern area were from four stations -- Williston and Dickinson, North Dakota, Powell, Wyoming, and Sidney, Montana. Quality data of spring wheat cultivars and experimental lines is shown in Tables 34-37. Statistical data is shown on Tables 38-48.

Data from the western area are from four stations -- Havre and Bozeman, Montana, Aberdeen, Idaho, and Pullman, Washington. Quality data of spring wheat cultivars and experimental lines is shown in Tables 49-52. Statistical data is shown on Tables 53-63.

FIELD PLOT NURSERY SAMPLES - 1991 CROP

Sixty-nine samples were received from three states at four stations. Quality data for the individual samples is shown in Tables 64-67.

Casselton, Langdon and Minot - North Dakota

Three commercial cultivars were received from Langdon, four from Casselton, and five from Minot. Data for these selections is shown in Tables 64-66. Len was used as the standard for comparison.

Ithaca - New York

Twenty selections were received from this station. Data for these samples is shown in Table 67. Stoa was used as the standard for comparison.

Imperial Valley - California

Thirty-seven selections were received from this station. Data for these samples is shown in Table 68. Yecora Rojo was used as the standard for comparison.

EXPLANATION OF ABBREVIATIONS LISTED UNDER THE HEADINGS AND THOSE THAT MAY BE LISTED UNDER MINOR AND MAJOR DEFICIENCIES ON COMPUTER PRINTOUT

TW = Test Weight

KW = 1,000 Kernel Weight

LG = Large Kernels

SM = Small Kernels

WHT ASH = Wheat Ash

WP; WHT PRO = Wheat Protein

EX = Flour Extraction

A65 = Ash at 65% Flour Extraction

FP; FLR PRO = Flour Protein

MC; MILL CHAR = Milling Characteristics

MIX ABS = Mixograph Absorption

MX: MIX PAT = Mixograph Pattern Score

BA; BAKE ABS = Actual Bake Absorption

MT: MIX TIME = Actual Dough Mixing Requirements

DC; DOUGH CHAR = Dough Handling Characteristics

CC; CRUMB COLOR = Standard 80

CG; CRUMB GRAIN = Standard 85

LV; LOAF VOL = Loaf Volume

FOOTNOTES FOR TABLES

These footnotes are applicable for specified column headings in all tables that follow

Column Heading	Footnote
WHT ASH, WHT PRO, ASH @ 65%, FLR PRO, BAKE ABS (100 G loaf)	14% Moisture basis.
MILL CHAR	5 = Normal. 4 = Normal-soft. 3 = Soft- normal. 2 = Soft. 1 = Gritty. 0 = Very soft.
MIX PAT	Refer to reference mixograms for numerical curve pattern. (1 = Very weak 11 = Very strong.)
DOUGH CHAR	<pre>9 = Elastic. 7 = Slightly pliable. 5 = Very pliable. 4 = Bucky. 2 = Very, very pliable. 0 = Dead.</pre>
CRUMB COLOR	100 = Soft, white 80 = Soft, slightly creamy 60 = Creamy 40 = Very creamy 20 = Dull, very gray
CRUMB GRAIN	<pre>100 = Close, elongated, and uniform cells; fine grain and thin walls; soft texture. 80 = Slightly open, elongated cells; fine grain and thin walls; soft texture. 60 = Open elongated to round cells; fine grain and thick walls; slightly coarse texture. 40 = Open round cells; coarse grain and thick walls; coarse to rough texture. 20 = Irregular open and large cells, coarse grain and thick walls; rough or soggy texture.</pre>

STANDARD MIXOGRAM PATTERNS

TABLE 1		ď	QUALITY DATA STATE=NORTH	DAT			SPRING WHEAT OTA STATION=	G WHEAT SAMPLES STATION=PROSPER	MPLES OSPER	1 NURSEI	1991 CROP SERY=UNIFORM	P ORM				
>	STD	EST WT /BU	148	SIZ	ING SM	WHT ASH	WHT PRO	HARD-	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO %	MILL	MILL SCORE ***	MIX ABS	MIX
BUTTE 86	. S	- 0	29.	44	1	. 8	14.3		4	2.	0.44	14.1	5	4	10	
		58.7	21.9	18	12	1.90	15.4	61	4	55.5	Š	14.6	2.0	• ~	58.2	1 m
ERA	ល	2	8	9	24	κ,	15.1		_	3	0.70		4	-	7) M
MARQUIS		56.5	Ξ.	8	13	9.			-1	5.	0.57	2.	2	7	5.	'
STOA	ഗ	8	4.	18	9	1.81	14.9	9	4	0	0.47		2	ক	6	4
0.5		61.5	9	20	1	1.82		54	4	-	. 4	5.	2	4	8	' m
SD 3056		ij.	i	20	0	1.76	15.0	80	4	0	0.50	4	5	4	0	m
0.8		8	6	46	П	1.74		7.1	4	0	. 4	4.	5	4	0	m
07		0	7.	31	2	1.97		75	4	0	5	4.	2	4	8	m
SD 8073		0	0		, ,	1.87		19	4		0.52	4.	2	4	61.1	4
SD 8074		2.	0	45	7	. 7		73	4	3	4.	۳,	5	4	2.	ις
MN 87150		0	8		4	٠.		51	٣	9.	4.	3	5	4	7.	7
MN 88170		9	0	48	2	1.79		6.2	٣	9	4.	2.	2	٣	7.	7
		i.	5		0	. 7		61	٣	9	4.	3.	2	47	8	(F)
		т е	ä		0	. 7		72	٣	ش	4.	3	2	খ	0	(**)
		\vdash	2		7	9.		59	4	4.	4.	د	2	4	7.	2
		2	Η.		က	9.		97	4	9	4.	5	2	4	0	(*)
		;	2.		0	8	16.4	72	₽"	ж Э	4.	9	5	4	-	4
ND 662		2.	4		0	1.66		7.0	4		0.41	5.	2	4	0	
		٠ ش	0		0	1.66	15.6	69	4	3,	4.	5.	2	4	2.	(*)
		5	0	43	7	٠.		81	47	3	4.	ش	2	4	9	(*)
		9	÷		2	1.96	14.4	21	4	0	.5	4	2	4	0	(*)
w		ω	9		か	9		59	m	2.	. 2	3	S	4	6	(*)
_		0	<u>.</u>		1	8		7.0	4	5.	٠ 4	4.	2	4	0	m
w.		2	6		0	8		54	4	5.	4.	4.	5	4	9.	(*)
œ		ω	&		2	9		62	4	3	4.	9	2	4	0	m
7-467		7 .	6	26	٣	6.		45	4	÷	.5	33	5	4	7.	2
FA 987-350		&	2.		7	φ.		55	4	8	5	4	2	4	8	2
982-30		8	0	7	18	4.	15.0	52	2	-	9 .	5	5	1	6	4
Σ U		58.6	0	46	7	1.90		73	4		0.54	5.	5	4	8	(C)
ব			0			8	16.4	7.8	4	2.	4.	9	5	4	9.	(*)
D 03		9	ر	æ	10	۲.	٠.	52	m		.5	3	5	က	9	m

	щ	BAKE	MIX	DOUGH	CRUMB	CRUMB	LOAF	BAKE	GENERAL	i i		DEFICIENCIES-	IENCIE	SS		1
VARIETY	STD A	ABS	TIME	CHAR	COLOR	GRAIN	NOL	SCORE ***	SCORE ***	63	TW KW SM WP EX	A65 FP	MC MX	BA MT	၁၁ ၁၀	CG LV
30 gaaa10			0	c	L	i.			1	i 		1	! ! !	1	1	1 1
0	מ		ů.	ות	80		α	7					M	EW		
CHRIS		20		o	80		æ	2			MI			MJ		M
ERA	co u,	7	0.	O	80	85	0	2			MU MU MU MU	MJ		E.M.		!
MARQUIS	ω,	5.	.5	2	80	80	8	٦			Σ	MIMI	X	·Σ	Σ	M
\circ	s S	6	0.	6	80	80	6	2				:		Z X	1	Į L
SD 3055	u,	8	. 2	6	80		-	2) <u> </u>		1 1
SD 3056	w	0.09	3.75	6	80	80	204	5	, e,) T		Z Z
	w	0	0	6	80		0	٠ ٣) L		1 1
SD 8072	u,	8	. 2	6	75		6	5	•					M.T.	Σ	
	Ψ	Ξ.	0.	6	80		œ	m) <u>F</u>		
	v	2.	0.	6	80	85	8	4						1		71.7
	u,	7	. 2	7	80	80	6	-			±₩		Σ	М.Т		M
MN 88170	۵,	7.	. 2	5	80		-	-			×	×	Σ	M.T. M.T	×	7 1.7
MN 88189	u,	8	.5	6	80		0	7			Σ	:			711	Α.
MN 88320	v	0	. 5	6	80		Φ	7			Σ) T		Į X
MN 88334	ω,	7.	. 2	7	80		8	7			!		×	N. F.		717
9	Ψ	0	. 7	6	80	80	6	m						M T		T M
9	Ψ	1	. 7	6	80		\vdash	m						Ι Σ		717
	v	0	6.25	6	80		8	Н					M	MJ MT		
9	w	2.	.5	6	85	75	\vdash	4								МТ
9	Δ,	6	0.	7	80		9	2						MJ		!
~	w w	0	. 5	თ	80		9	2		•		MI		MJ		MI
N86-0542	.,	٠ 0	.5	6	80	85	9	7			MI			MJ MI		!
9	v	0	. 2	6	80		0	ო								
8-313	Δ,	6	٠.7	7	85		2	7						MJ		MI
N88-3034	Ψ	0	5	თ	80	80	0	2				,		MJ		X
7-467	ш,		. 2	7	80		0	2			MI			MJ		
987-35	ш,	ж Э	. 2	7	85	70	0	2			٠		M	D.W.		M
	Δ,	9	0:	7	80	85	σ	٦			MJ MI MJ	MJ		M.J. M.		:
Ξ	α,	ж 8	.5	7	80		6	7				,				Ψ.
W 148	Δ,	9.	. 2	7	80		8	2						. F.W		Ι Σ
ID 0367	u,	9	0.	7	80	85	6	-			IM IM	Ψ		M.I. M.I.		1
												4				
		ΨL	KW	SM	WP	EX A	65 FP	MC	XM	BA	MIX TIME (MT)	DC	S	Ü	I,V	
MINOR FAULTING VALUES	ALUES	57.9	22.2	80	13.9 5					61.9	.00	2	75	80	175	
MAJOR FAULTING V.	VALUES	56.9	19.2	٦	12.9		1.2	2	9		NDER 1 75		. L	, r.	165	
*** 1=NO PROMISE	2=LITTLE		PROMISE	3.	SOME PROMISE	4	ac	(H		•	•	>	>	>	7	

		BAKE	MIX	DOUGH	CRUMB	CRUMB	LOAF	BAKE	GENERAL	ا			-DEFI	DEFICIENCIES-	 S.		1 1 1 1	1
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE		TW KW	SM WP EX A	A65 FP	MC MX	BA MT	r DC	ຄວ ວວ	ΓΛ
BUTTE86 CHRIS ERA MARQUIS	တ တ	0.10.7	3.25 2.50 4.25 3.50		80 80 85 80	8 85 85 85	200 187 191 191	0000			M M M M M M M M M M M M M M M M M M M	MI MJ	I W	M M	M MU MI	! ! !	I W	
817 818 818 832 833	w	63.1 55.8 60.0 58.2 57.9 56.5	4.25 4.25 4.25	. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	885 80 80 75	88 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	209 187 171 202 192 181 203	14440040	44028288 00070768			E I E	M IM	MJ MI MI	M M M M M M M M M M M M M M M M M M M	MJ MJ MI	MI MI	Ψ
N87-0306 N87-467 N88-3034 N88-3136		. 6	7.22.2	0 C 0 0 0	00000	80 75 75 80	217 210 226 208	m 0 m 0 r			MJ MI		MI		NAME		EEEE	
200700		10000	50.0.7.5.	N 01 4 1 - 0 0	8 8 8 8 0 C	85 75 85 85 85	201 220 192 200 212 212	n 4r 4 60 60 60			E M			MI	MI MJ MI MI MI	M J	M M	
SD3056 SD8072 SD8073 SD8074 SD3080		00801.	3.50 4.25 7.00 2.50	997797	8 8 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 85 80 80 85 85	207 208 199 197 222 212	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			MM M	HE H			MI MI MI MI MI MI MI MI MI		M M I M	
EW148 CI982-309 FA987-350 ID0367 XW398A4		7 2	7.00.	02776	8 8 8 8 0 0 0	90 90 85 75	215 194 211 206 220	ਅਜਜਜਜ			M M M M M M M M M M M M M M M M M M M	M M M M M M M M M M M M M M M M M M M			MI MJ MI MJ MI MJ MI	ΣΣ	M	
DEFICIENCIES MINOR FAULTING VALUES MAJOR FAULTING VALUES *** 1=NO PROMISE 2=LI	VALUES VALUES VALUES	TW 57.9 56.9 TTLE	KW 25.8 22.8 PROMISE	SM 8 18 E 3=SO	.9 .9 .9	EX A 9 60.9 . 9 58.9 . PROMISE 4=	65 FP 57 12.9 61 12.4 GOOD PR	P MC .9 3 .4 2 PROMISE.	MX 2,7,8 (1,9-11 (BA 61.9 60.4	MIX TII 5.75-8.00 UNDER 1.7	ME (MT) 2.00-2 5 OVER 8	.75 6	C CC 75	80 80 50	LV 179 169		

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	SM	WHT ASH	WHT PRO	HARD-	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX %	FLR PRO %	MILL	MILL SCORE ***	MIX ABS	MIX
BUTTE 86	ß	3.	9	65	0	2	16.1	7.1	4	5.	4	15.1	1 1 1 1 1 1 1	4	61.4	3
CHRIS		9	24.2	20	4	1.69	16.4	64	2				2	4	0	m
ERA	S	ъ 8	5.	22	7	9	14.4	09	~	8	5		2	4	9	0 0
MARQUIS		0.	ж •	17	9	1.83	15.4	57	8	3	.5		2	(*)	2	2 6
	ഗ	Ή.	2.	4 4	0	2		64	4	7.	٠,		2	4	6	1 4
10		2	9	74	0	4		59	4	9	4		2	4	0	· (m
SD3056		62.0	37.0	16	0	1.50	15.8	19	4	65.7	4	14.8	2	4	59.6	2
m		ъ.	5.	09	0	1.48		67	4	4	4.		2	c	0	ı m
		٠,	9	73	0	1.45		97	4	9	4.		2	4	9	7
~		2	36.4	71	0			75	4	9	4.		2	4	0	2
74		ж •	2	21	0			7.0	4	5.	4.		2	4	8	c
715		ή.	2.	21	0			48	4	4	ω.		2	2	8	-
1.7		9	٦.	41	7			49	4	7	٣.		2	4	9	ı
818		1.	7	7.0	0			53	4	7.	ς,		2	4	5	2
\sim		2.	32.7	61	0	1.49	13.8	54	m	8			5	2	80	2
33		e.	7.	33	m	4		22	4	7 .	ω.		2	4	7	2
ND655		ص	-	28	0			59	4	9	4.		2	4	6	2
ND657		÷.	2.	20	0	2		99	4	5.	. 4		2	4	0	m
ND662		Ξ.	2.	22	0	2		28	4	4.	4.	•	5	3	9	3
ND671		3	ij	09	0	2		6.5	4	3	ε,		2	8	i.	က
~		2	9	53	П			71	4	4	4		5	က	8	4
A 4		5	4	09	0	9		46	4	7.	4.		2	4	φ.	က
-05		0	0	42	2	2		99	4	5.	4.		2	4	5	2
-030		÷	4	61	٦	2		20	4	5.	ω.	4	5	4	7	3
-313		ش	2.	09	0	5		20	4	4	٣.		2	8	8	2
8-303		0	9		0			52	4	9	4		2	4	6	2
-4		2.	4.		0	ヸ		40	4	5.	4		2	4	7	2
A98		0	5.	09	0	1.56		40	4	'n	ε.		2	m	7	2
I982-30		4.	5.		3	7		51	2	2.	5		2	2	6	4
MINT		9.	8	34	2	1.68		19	4	Ĺ.	4		5	2	-	2
W148			1.		0	7	16.9		4	ω,	4.		5	٣	8	2
ID0367		9	ω,	80	8	7			2	2	4		5	2	5	2

TABLE 3 (CONT)

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=UNIFORM

Name		BAKE	MIX	роисн	CRUMB	CRUMB	LOAF	BAKE	GENERAL			DE	FICIE	-DEFICIENCIES	-		
S S S S S S S S S S	VARIETY		TIME		COLOR	GRAIN	VOL	SCORE ***	1	69	KW SM	EX A6	Ω,	XX			50
S S S S S S S S S S	9 8	61.	0.0	6			195	m	3.7		1		 	Σ : !		1	MI
S S S S S S S S S S		56.	, 0		08		202	7 0	7.7						25		
S 50.3 4.50 9 80 80 205 2 3.3	SING	55.	0.	7	80		185	2 6	2.5		2 2	I			2 5		
Secondary Color		59.	.5	თ	80		205	2 2	, m		CH	111			2 5		-
Secondary Seco	10	0	.5	6	80		220	7	. e					ΞΣ	2 5		T 1
Color	SD3056	6	٠.	7	85		203	2	3.3						2 =		TH
2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SD3080		. 5	6	80		216	2	3.0			MI			2 2		
19 19 19 19 19 19 19 19	SD8072	٠ ص	. 2	7	82		209	2	3.3						2 2		
19	SD8073	0	3.5	6	80		196	2	3,3						2 2		
Secondary Color	কা ।	&	5.2	თ	85		188	2	3.3						2 2		Ψ
170 170	15	e C	3.0	7	90		170		2.3				MI		2 2		
Secondary Seco	7	9	1.7	2	85		172		3.0				!			M	Σ
20. 58.6 3.00 7 80 90 183 2 2.3 MI MI MJ MJ MI MJ MJ MI MJ MJ MI MJ	8	5.	4.2	7	90		187	2	3,3							!	•
String S	32	о В	3.0	7	80		183	7	2.3		~		MJ		2		
Secondary Seco	33	7.	3.0	7	80		172	-	3.0						2 2		M
Color Colo	ND655	6	4.0	თ	85		192	2	3,3						2		
2 56.9 7.00 7 80 80 180 1 2.7 MI	ND657	0	4.2	თ	80		217	~	3.7								: E
Colorado	ND662	9	7.0	7	80		180	-4	2.7			MI		Σ			: E
24 58.6 5.25 9 90 85 189 2 3.0 MI MJ	ND671	;	w S	6	85		214	m	3,3			MI		Σ			Σ
58.6 6.00 7 85 80 196 1 3.0 55.3 5.50 7 85 85 183 2 3.3 57.9 4.00 9 85 183 2 3.3 3136 58.2 4.25 9 80 80 213 2 3.3 MI MJ MI	~	ъ В	5.2	თ	9.0		189	7	3.0			Ψ		Σ			:
0542 55.3 5.50 7 85 85 183 2 3.3 0582 57.9 4.00 9 85 85 195 2 3.3 3.3 MI MI MJ MJ MJ MJ MJ MJ MJ MJ	3 A	8	0.9	7	85		196	-	3.0					Σ			Σ
-0306 57.9 4.00 9 85 85 195 2 3.3 MI	-05	5.	5.5	7	82		183	2	3,3								1
-3136 58.2 4.25 9 80 90 213 2 3.0 MI	-030	7.	4.0	6	85		195	2	3.3						2 2		
-3034 59.0 3.25 9 80 85 205 2 3.3 MI -467 57.3 4.75 7 80 80 194 2 3.3 87-350 57.6 4.00 7 85 70 185 2 3.0 87-350 57.6 4.00 7 85 70 185 2 3.0 87-350 57.6 4.00 7 85 70 185 2 3.0 87-350 57.6 4.00 7 85 70 185 2 2.7 87-350 57.6 4.00 7 85 80 217 1 1.7 87-350 57.6 4.00 7 85 80 217 1 1.7 87-350 57.6 4.00 7 85 85 197 1 2.7 87-350 57.6 4.00 7 85 85 197 1 2.7 87-350 57.6 4.00 7 85 85 197 1 2.7 87-350 57.6 4.00 7 85 85 197 1 2.7 87-350 67-3	-313	ъ В	4.2	თ	80		213	2	9.°0			MI			2 2		
1467 57.3 4.75 7 80 80 194 2 3.3 MI	-303	ნ	3.2	б ,	80		205	2	3,3		M				: 13		
87-350 57.6 4.00 7 85 70 185 2 3.0 MI MJ	-46	7.	4.7	7	80		194	7	3,3						2 3		Σ
2-309 59.6 5.75 9 85 80 217 1 1.7 MJ MJ MJ MJ MJ MJ MI MJ MJ MI MJ	87-	7	4.0	7	85		185	7	3.0	-		M			2 5		1 ×
INTO 57.9 3.25 9 85 85 203 2 2.7 MI MJ	82-	9	5.7	თ	85		217	-	1.7			Σ					M
55.3 5.50 9 85 85 197 1 2.7 MJ MJ MJ MJ MJ MJ J7 1 55.3 5.50 9 80 70 196 2 2.0 MJ	AC MINTO	7.	3.2	6	85		203	2	2.7			MJ					:
367 55.3 5.50 9 80 70 196 2 2.0 MJ MJ MI MJ MJ ME EX 'A65 FP MC MX BA MIX TIME (MT) DC CC CG LV DR FAULTING VALUES 57.9 29.2 8 13.9 65.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 179 OR FAULTING VALUES 56.9 26.2 18 12.9 63.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 169 18 NO MI	ന	е 8	2.7	6	85		197	П	2.7			MI					
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG CR FAULTING VALUES 57.9 29.2 8 13.9 65.0 .57 12.9 3 2.7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 FAULTING VALUES 56.9 26.2 18 12.9 63.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1=N0 PROWING 2-1 must be approximate 2-1 must	D036	5	5.5	თ	80		196	2	2.0		MJ	ДЩ					MI
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG OR FAULTING VALUES 57.9 29.2 8 13.9 65.0 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 OR FAULTING VALUES 56.9 26.2 18 12.9 63.0 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 18 NO BOMISE 2-france provides																	
OR FAULTING VALUES 27.3 25.2 8 13.9 63.0 .5/ 12.9 3 2/7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 80 80 80 80 80 80 80 80 80 80 80 80	DEFICIENCIES	ML T	KW	,		EX · A	5 FP		XX.	BA	TIME	()	DC	ນ	5 D	ΓΛ	
1 = NO DELANTED 3-TRUTE DECARED 3-TOTAL 3-TOTA	MAJOR FAIITHING VAL	. 6	26.00	4 C	ם ת	0.0	1 12.		ν. Σ		3.00)-2.7	9 4	75	80	179	
	1-NO DECMINE		١.	4 (•	V		1-6'		1.15	0.0	7	20	20	FPA	

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=CARRINGTON NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ	ING SM %	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX	MIX
	1			1	1	!				1		1 1	1		; ; ; ;	1 1
BUTTE 86	S	•	დ	36	7	. 7	•	7.0	4	4	4.	14.5	2	4	-	4
CHRIS		6	8	11		Τ.	•	59	Н	9	9.	15.4	2	-	0	· (*)
ERA	ಬ	7 .	9	12	20	٣.		52	7	6	ω.		2	2		m
MARQUIS		9.	7 .	9		٠,	•	29	-1	9	7.	15.4	2	-		. ~
STOA	ഗ	9	27.2		6	ω.		61	٣	4	4.	•	2	1 4	. 2	7
10		7.	9		6	8		49	4	0	4.	14.8	2	m	0	4
SD3056		8	28.4	40	9	1.80	14.8	29	4	62.0	0.51	14.8	2	4	61.8	4.
m		9	27.2		10	. 7		28	4	8	4.	a	2	2	0	7
~		6	30.4		7	8		62	4	о 8	.5	14.5	2	2	,—i	m
		7.	8		9	ω.		8 9	4	9	.5		2	2	٦.	ক
74		9	9		4	٠.		61	4	2.	4		5	4	0	2
15		2	2.		16	9		44	7	5.	3		5	2	6	2
17		2.	9		80	6.		49	2	4.	4		2	4	0	2
_		4	_		9	æ		48	٣	4		13.6	5	4	1.	m
32		7 .	4		10	ω.		21	ო	9.	4.		2	2	0	m
33		<u>ب</u>	ij		19	σ.	•	48	7	2.	.5		2	2	9	2
ND655		7.	5.		6	8		99	4	Ξ.	4		5	4	0	m
ND657		5.	9		6	6.		61	٣	0	4		2	٣	2.	Ω
ND662		4.	4		15	0.		21	٣	ش	3		2	4	7	5
ND671		0	7.		9	٦.		64	4	ش	ω,	14.8	5	4	Ξ.	2
~		υ.	ش		12	0.		7.1	٣	7.	.5	14.8	2	2	0	2
3 A 4		4.	2		11	0	•	49	3	6	9.	13.8	2	2	1	2
N86-0542		i	2 .		18	٦.		51	7	е 8	9 .		2	7	0	4
030		4	4		10	6.		20	m	ij	.5	14.2	2	4	7.	m
313		7	ъ Ф		7	œ	5.	48	4	4.	4.		2	4	-	2
303		0	ش		۵	۳,		52	٣	2.	9.		2	٣	3	4
167		2	ش		17	0.	4	37	2	9	9.	13.8	5	2	6	e
1		2.	<u>.</u>		15	0.	4	40	3	9	.5	14.4	2	٣	8	7
2-30		7	Ϊ.		17	٦.	4.	49	2	9	7.	14.7	2	٦	1.	4
-MINT		6	0		11	. 2	9	09	٣	9	. 7	16.2	Ω	7	1	٣
BW-148		7	5		œ	6.		7.0	4	3	. 5	16.5	2	4	0	4
036		0	÷	6	13	0.	4	45	m	ъ •	. 5		2	٣	57.9	3

QUALITY DATA OF SPRING WHEAT SAMPLES STATE=NORTH DAKOTA STATION=CARRINGTON NURSERY=UNIFORM

Name		B	BAKE	MIX	DOUGH	CRUMB	CRUMB	LOAF	BAKE	GENERAL	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			1	DEFICIENCIES-	CIEN	CIES-		1	
\$ 61.1 3.50 7 85 85 178 1 3.7	VARIETY	l l	(A)	(c)	HAR	COLOR	GRAIN	NOL	SCORE ***	SCORE ***	F			EX	65 F			H		
\$ 60.0 2.75 7 8 0 85 178 1 1.0 HJ	86	٧		r.	7	α u	α	178	~		! ! ! !	 	1 1 1	1 1 1	1	 			1	1
S 60.0 4.25 7 8 8 8 10 10 2 1.7		ט פ	•	, [- [-	0 0	0 0	7 7 0) -		;		1	:	:		Ξ			
S 60.0 2.75 7 8 90 85 199 2 1.7 HJ	2	9 (~ r	000	0 0	100	٦ (Ξ		Z.	2	3		Œ			
S 62.5 3.75 5 8 8 85 188 1 1.0 HJ		י ס	٥.		_	80	82	180	7		Σ		MJ	M	Z		Σ	_		
S 60.2 3.75 7 80 8 188 4 3.7 MJ MI	SIO	9	0.		2	80	85	180	-1		Σ		MJ	MJ	MJ		M	M	MI	
61.8 3.75 9 80 80 193 3 3.3 MI			.5		7	80	85	188	4		Σ		MI						!	
61.8 3.75 9 80 65 190 3 3.7 HI MJ HI MJ HI	SD3055	9	٠.		6	80	80	193	٣		Σ	н	MI	Ж			M			M.
61.1 4.25 9 80 75 195 3 3.0 HI HJ HJ HI HJ HI	SD3056	ف	8.		6	80	82	190	3								Σ			*
61.1 4.25 9 80 85 190 3 3.0 HI HIJ HIJ HIJ HIJ HIJ HIJ HIJ HIJ HIJ	SD3080	9	.5		6	80	75	195	m				MI	MJ						×
Color Colo	SD8072	9	۲.		6	80	85	190	3					M						7::
60.1 5.00 7 80 85 172 2 3.3 HJ HI MJ	SD8073	9			7	80	80	180	က		Σ	I		MJ	MI		Ψ			M
Color Colo	SD8074	9			7	80	85	172	2								Σ			:
60.8 1.75 2 80 85 175 1 2.3 MJ MI	7	9			7	80	80	183	2		Σ				MI					M
61.1 3.50 9 85 202 3 3.3 MJ MI	MN88170	9			7	80	85	175	Н		Σ	ט						X	M.T	!
Secondary Seco	MN88189	9		•	6	82	85	202	٣		Σ	ט								
Section Sect	MN88320	وَ		•	7	80	85	182	2		Σ	Ι			Ξ		Σ			
60.5 4.00 7 85 85 195 3 3.7 MI	MN88334	Ñ			2	80	85	178	2		Σ								I.K	
62.1 4.25 9 80 85 202 4 3.3 MJ MI	ND655	وَ		•	7	85	8 2	195	က		Σ		MI						!	
Color Colo	ND657	و			6	80	85	202	4		Σ	רי	MI	М						
Column C	ND662	٥		•	7	80	85	193	e		Σ	ט	MI		MI		M			
60.8 4.75 7 85 85 194 3 2.7 MJ MI MJ MJ MJ MI MJ	ND671	9			6	82	82	188	ო								M			
Color Colo		َ			7	82	82	194	Э		Σ	J	MI	MJ			M			
FORTING VALUES 57.9	XW398A4	9			6	82	80	212	က		Σ	J	MI	MI	MJ		M			MI
57.6 5.00 7 80 85 201 2 3.0 MJ MI	N86-0542	9			7	80	82	198	e		Σ				ΜĴ		M			
13136 61.8 3.50 9 80 85 210 3 3.7 MI MJ	N87-0306	Ω		•	7	80	85	201	2		Σ	J	MI				M	_		
13034 63.7 2.75 9 80 85 215 3 3.0 MJ MI MJ	N88-3136	ف			6	80	85	210	m		Σ	I					MI			
1467 59.6 3.75 5 80 80 196 2 2.0 MJ MJ MJ MI MJ MI	N88-3034	9			6	80	82	215	٣		Σ	J	MI		MJ					
58.6 4.00 5 80 90 190 2 2.7 MJ MI	-467	2		0	2	80	80	196	7		Σ	ט	MJ	MI	MJ		M		I	MI
61.4 4.50 5 80 90 197 3 2.0 MJ MI MJ MJ MJ MJ MI	FA987-350	2			2	80	90	190	2	•	Σ	J	MI	M	MI				H	
61.4 2.50 5 80 85 190 2 2.0 MJ MI MI MJ MJ MJ MI	CI982-309	ف			2	80	90	197	٣		Σ		MJ	MJ	MJ		MI		4I	
60.8 2.75 5 80 85 182 2 3.3 MI	AC-MINTO	ف		. 5	2	80	8 2	190	2		Σ		MI	MJ	MJ		M	M	Ţ	
57.9 5.50 7 80 85 197 2 2.7 MJ MI MI MI MI MJ MJ TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG 57.9 23.0 8 13.9 60.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 TTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.		9		. 7	2	80	85	182	2		Σ	н	MI				M	Σ	Ţ	
TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG 57.9 23.0 8 13.9 60.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 TTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	00	Ω		.5	7	80	85	197	2		Σ		MI	MI	МІ		Œ	!	!	
TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG 57.9 23.0 8 13.9 60.6 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 TTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.																				
56.9 20.0 18 12.9 58.6 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 TTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	DEFICIENCIES MINOR FAULTING VA		TW 57.9	KW 23.0		WP 13.9 6	A.		MC ~	MX B	7	MIX	IME	0	Ľ	ي د ر	CC		LV	
1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	MAJOR FAULTING VA		56.9	20.0		12.9 5	• •		2 0	9-11 60	OND	. [5 0	1 00	, 0	2 4	50		5.4	
	1=NO PROMISE	2=LIT		ROMISE	3=80		4=	ш	OMISE.			1	,	1	,		,		•	

TABLE 4 (CONT)

11	t 1 1		1 0	1 0	1 0 1 1										1	
VARIETY	STD	WT	K.WT	S12 LG	SM	ASH	PRO	HAKU- NESS	SCORE	FLR	ASH (4 65%EX	FLR	MILL	MILL	MIX	MIX
		#/BU	G.	ð0	æ	æ	Эę		*	90	ap o) %) *) *	a de	1
8	ß	57.6	9	31	4	. 9			4	9.	1 4	14.6	5	4	i	3 7
CHRIS		57.2	23.3	20	7		15.3		4	2.	4.		2	m	59,3	4
ERA	ខ	52.4	0	12	1.4	. 1			m	7.	9.		2	т	60.3	4
MARQUIS		54.9	21.6	12	6	0.			2	٦.	9 .		5	٦	9	m
STOA	တ	55.4	4.	16	8	6.			m	Ţ.	.5		2	2	0	2
SD3055		58.2	7.	41	٦	8			4	5.	4.		2	4	H	4
SD3056		51.5	27.6	34	٣	6.			ক	5.	9.		5	4	-	4
SD3080		57.4	23.8	20	10	6.			Þ	9	. 5	5.	2	4	0	ব
SD8072		54.6	22.4	16	80	٦.			က	9	9.	4	5	٣	-	4
SD8073		55.0	22.6	22	9	0.			m	5.	9.	4	5	٣	2	Ŋ
SD8074		9	5.	27	2	6.			٣	9	. 5	3	5	2	1	4
MN87150		1	20.6	9	15	0.			m	5.	.5	4.	5	2	7	2
MN88170		1	23.5		11	0.			e	8	.5	ω,	5	4	6	2
MN88189		4	27.5		ო	9.	15.1		က	9	.5	4	5	4	0	ব্য
MN88320		9	24.2	13	8	6.			က	8	.5		5	4	6	m
MN88334		6	24.3		7	. 7			4	5.	4.	ω,	2	4	7.	2
ND655		8	23.7		7	6.			4	4.	.5	5.	2	4	2.	4
ND657		5.	25.8		4	0.			m	ä	. 5	5.	2	4	4	4
ND662		9	29.7		7	8.			4	4	.5	4.	5	4	i.	9
ND671		57.6	24.4		2	۲.			4	9	. 5	5.	2	4	4	2
		ω.	25.5		2	8			4	8	.5	۳,	2	4	0.	4
		ਯਾ	24.2		80	۲.			٣	7.	9 .	4.	2	٣	3,	2
		4	23.6		10	.9			ო	7	9.		2	က	0	4
-030		4	23.0		10	٦,			٣	0	.5		2	4	5.	9
-313			26.1	56	2	6.			4	8	.5		2	4	0	4
-3		Ω.	4.		4	ij.			٣	0	.5		2	4	7.	4
46		m	23.8	7	12	٦			٣	4	9.		2	m	0	2
7-350		4	5	23	10	. 2			m	9	. 5		2	4	0	ゼ
CI982-309		54.5	4	18	7	6.	15.3		က	٦.	. 5		5	2	6	4
AC-MINTO		56.2	28.5	39	Н	1.87	15.3	64	m	0.09	0.52	14.4	5	4		3
48		58.9	7.	33	2	6.	15.9		4	7.	.5		2	4	-	٣
ID0367		54.0	24.0	10	7	0.	14.3	54	m	4	. 5	13.6	2	4	58.6	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=CROOKSTON NURSERY=UNIFORM

VARIETY													1111	DEF TOTENOTES	11101	1 1	1	1
	STD A	ABS	TIME	CHAR	COLOR	GRAIN	NOL	SCORE ***	SCORE ***	(·)	TW KW SM	WP EX	A65 FP	MC MX	(BA MT	DC	ອວ ວວ	G LV
BUTTE 86	8	2.	3.00	6	75		-	4	1 .	 	 	! ! ! !	! ! !	 	 			!
STORE		,-	Ľ	a		0 0	10	• (•		71.7						11	
		•		n (0 (7)	•			Ψ			Ξ		π	
	n D		•	ית			7	2			MJ MI MI	_	MJ		M		4I	
MARQUIS	u,	÷	٠.7	6			0	2			MJ MI MI	C.M.I.M.J	MJ MI		E.M			
STOA	s 6	0	0.	6	75	85	~	٣			:	:			Z :		1	
3D3055	w	-	7	σ			10	~ ر					111		7 7			,
2020		i –	٠,	0			4 (n (Ξ		MI MI	-
9000		⊣ (7.	י ת			7	٦٦			MI		MI		M		MI	
08080	w	0	0	ტ			2	m			MI	_			MI		MI MI	_
SD8072	Ψ	÷	٠,2	6		06	\vdash	٣			IM DM		M.T		Σ			
108073	9	2	0.	ი				4					Σ.		:		1 2	
3D8074	ш,	7	.5	σ			-	, ,			2 2	- 7	2 1		7			,
IN87150	u		, (10	4 (1 !					_
00 T 00 W	, .	•	9 (٠ ١		90)	7			W.	LM I	MI	MI			MI MI	_
INSST / U	ι, ,	٠,	7.	c.			σ	1			MJ PM	_	MI	MI	MJ M	I WI	MI	MI
188189	9	0	.2	6			Ч	2			MJ				MJ		MI MI	
ന	ш,	0	0.	თ			0	7			IM CM				Z.			1
833	u,	7	0.	7			9	1						Σ			: ×	M
LO.	9	5	. 7	6			2	4									MI MI	
ND657	w	61.4	4.75	6	75	85	229	m	3,3		MJ		MI		Σ			4
ND662	w	ä	. 7	6			Ч	2	•						MTMT		. Σ	
	Ψ	4	.5	6			2	4			¥		MT				T X	
_	•	0	0	σ			10	' (*	•		7:		1		17		= >	- ·
Œ		· ~	, LC	σ			1 0	n (•				-			,	T !	٦,
7-054	, ч) c		٠.) ,	n (•				2 :		M		Σ	_
0 0				n (٦,	7	٠		TW CW	_	2		M		Ξ	
000		٠ د	•	J.			~	4				_					MI MI	н
88-3	Ψ.	0	. 2	6			7	2			MI				MJ		MI	
-303	u,	7	.5	6			3	2			MJ				M.J		×	
46	w	0	. 7	6			2	1					M.J		M.T.M.		Σ.	
FA87-350	w	0	0	6			0	2			M.T.						I M	_
CI982-309	ш,	6	7	6			ا	۱ ۳-	•			7	-		27			4
C-MINTO	4	_	_	. σ			1 -	1 (2 7	011	111				,	
3W1 48	, «	A		٦ ٥		0 0	40	4 C			C E		;		2 2	_	Τ W	
	, .		. (١ (U (7	٠				ПП				Σ	I W I
9	,	. α	7.	ת		0.8	0	-	•		ſΨ		MI		MJ MI	—	M	ы
(2)	ro	A.T.	K	SM	WP	EX	65	M	×	E E	MIT XIME	4E (MT)	2	טט		L.V		
FAULTING	VALUES	57.9	21.6		13.9 53.9		57 12.9	· ·		61.9		2.00-2	7.	75	200	-		
MAJOR FAULTING	VALUES		18.6	-	C		61 12		1 0 1		ב ו מממו	0				1 -		

TABLE 5 (CONT)

MAJOR FAULTING VALUES 56.9 18.6 18 12.9 51.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

NORTHEAST REGION

0
H
z
H
Σ
1
U
Ø
11
\succ
H
M
\vdash
ĸ
ø
>
1

VARIABLE	MEAN	STD DEV	INIMU	MAXIMUM	VARIANCE	CV
TW LG SM WHT WHT WHT EXTR FL PRO MIXO MIXO	56.000000 27.3200000 39.4000000 1.9000000 16.1600000 68.200000 59.7400000 15.7400000 2.8000000 2.8000000	4.1755239 3.765233 4.5276926 0.2131901 0.5319774 6.8337398 2.2311432 0.7987490 0.7987491 1.504917	49.0000000 20.7000000 22.0000000 1.6800000 15.3000000 60.0000000 56.0000000 14.4000000 2.0000000 57.9000000 190.0000000	\$9.7000000 \$6.0000000 11.0000000 2.2500000 16.600000 77.000000 61.900000 61.3000000 16.3000000 51.4000000	17.435000 162.8000000 20.5000000 0.0454500 0.2830000 46.7000000 4.9780000 0.097000 0.6380000 0.226500000	7.4562927 13.7819755 32.3840364 150.9230856 11.2205293 3.2919396 10.0201464 3.7347560 17.9070142 5.0746444 15.9719141 2.5251538
VARIABLE	MEAN	STD DEV	- VARIETY=BUTTE	86 MAXIMI	RI	CA
I 3 FERE XXXI	000000000000000000000000000000000000000	2.2345022 3.7340222 2.7748874 0.1572260 0.7092249 7.1902712 2.5637863 0.0109545 0.3563706 0.3563706	7.6000000 1.5800000 1.5800000 4.3000000 0.0000000 4.1000000 4.1000000 0.0000000 0.0000000	63.100000 65.000000 7.000000 1.960000 16.100000 65.700000 65.700000 15.1000000 62.1000000	993000 943000 943000 700000 024720 503000 770000 1127000 7170000	1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
VARIABLE	MEAN	STD DEV	VARIETY=BW14 MINIMUM	MAXIMUM	VARIANCE	CV
3 FFEF XXA	0000400040000	4212 8149 8614 8633 7683 7682 7682 3639 4827 6354 6710	00000 00000 00000 00000 00000 00000 0000	00000	035000 035000 000000 0005830 005830 005830 0058330 002330 300000 3370000	2000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

- 1
1
- 1
1
i
i
i
i
'
**
S
Ξ
2
CH
\ddot{z}
11
\times
H
(T)
Н
RI
A
5
1
i
1
1
i
- 1
ı
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.5000000	3.4154063	49.8000000	58.7000000	11.6650000	6.1538852
K WT	22.2600000	2.5402756	18.0000000	24.2000000	6.4530000	11,4118400
LG	18.0000000	4.0620192	11.0000000	21,0000000	16.5000000	22.5667733
SM	10.000000	9.1923882	2.0000000	25.0000000	84.5000000	91,9238816
WHT ASH	1.8260000	0.2199545	1.5600000	2.1400000	0.0483800	12.0457032
WHT PRO	15.6800000	0.4969909	15.3000000	16.4000000	0.2470000	3,1695851
HARD	64.0000000	4.3011626	59.000000	70,0000000	18,5000000	6.7205666
EXTR	58.1000000	4.8862051	52.9000000	65.2000000	23.8750000	8.4099915
FL_ASH	0.5300000	0.0827647	0.4700000	0.6700000	0.0068500	15,6159862
FL_PRO	15.2600000	0.8590693	14.2000000	16.3000000	0.7380000	5,6295496
MIXO	3.0000000	0.7071068	2.0000000	4.0000000	0.5000000	23.5702260
BAKE_ABS	60.1800000	1.2316655	58.2000000	61.3000000	1.5170000	2.0466360
LOAF VOL	192.6000000	11.7601020	178.0000000	207.0000000	138.3000000	6.1059720

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	51.6600000	3.1816662	47.8000000	54.5000000	10.1230000	6.1588584
K WT	23.5200000	2.7334959	20.2000000	26,0000000	7.4720000	11,6220065
LG	18.2000000	8.2583291	7.0000000	28,0000000	68,2000000	45,3754348
SM	9.8000000	7.1902712	3,0000000	18,0000000	51,7000000	73.3701143
WHT ASH	2.0260000	0.2615913	1.7900000	2.4100000	0.0684300	12,9117120
WHT PRO	15.0000000	0.3937004	14.4000000	15.4000000	0.1550000	2.6246693
HARD	53.2000000	4.2071368	49.0000000	60.0000000	17.7000000	7.9081519
EXTR	54.7400000	4.6203896	51.2000000	62.0000000	21,3480000	8,4406094
FL_ASH	0.6020000	0.0973139	0.5100000	0.7200000	0.0094700	16,1651038
FL PRO	14.7600000	0.3847077	14.3000000	15.2000000	0.1480000	2,6064206
MIXO	4.0000000	0	4.0000000	4.0000000	0	0
BAKE ABS	59.4400000	1.3667480	57,6000000	61,4000000	1.8680000	2,2993741
LOAF VOL	203.4000000	10.7377838	194,0000000	217,0000000	115,3000000	5.2791464

-- VARIETY=C1982309 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	53.0000000	3.9198214	47.5000000	58.4000000	15.3650000	7.3958895
K_WT	21.1600000	2.7437201	18.5000000	25.3000000	7.5280000	12.9665411
LG	13.0000000	5.7445626	6.0000000	22,0000000	33.0000000	44.1889434
SM	14.6000000	7.4027022	7.0000000	24.0000000	54.8000000	50.7034398
WHTASH	2.0780000	0.2874369	1.6800000	2.3400000	0.0826200	13.8323845
WHT_PRO	14.8200000	0.3834058	14.4000000	15.3000000	0.1470000	2.5870836
HARD	62.0000000	7.1063352	55.0000000	74,0000000	50.5000000	11,4618310
EXTR	59.7800000	5.5088111	53.1000000	68,0000000	30.3470000	9.2151407
FL_ASH	0.6560000	0.1372224	0.5000000	0.8600000	0.0188300	20.9180560
FL_PRO	14.0600000	0.5899152	13.2000000	14.6000000	0.3480000	4.1956988
MIXO	3.0000000	0.7071068	2,0000000	4.0000000	0.5000000	23.5702260
BAKE ABS	58.6200000	1.7152259	56.2000000	60.3000000	2.9420000	2.9260081
LOAF VOL	203.8000000	16.0530371	190.0000000	229.0000000	257.7000000	7.8768582
	,					

- VARIETY=ERA --

NORTHEAST REGION

TABLE 8

VARIABLE	MEAN	STD DEV		_	RIANC	υ
TW K_WT LG SM	140 020 600 200	359 968 415 079	.900000		10.2630000 23.0370000 330.3000000 39.7000000	1465
WHT_ASH WHT_PRO HARD	.906000 .140000 .600000	.253436 .403732 .848728	1.560000 4.600000 0.000000	2.230000 5.700000 8.000000	0.064230 0.163000 8.300000	.296767 .666661 .840178
EXTR FL_ASH FL_PRO	9.140000 0.512000 4.660000	.740985	.3900000.	3.600000 0.570000	.513000	4.634740
MIXO BAKE_ABS LOAF_VOL	2.600000 8.600000	.883176 .883176	2.000000 7.600000 5.000000	4.000000 0.0000000 8.000000	. 1030000 . 7800000 . 300000	.189196 .401045 .507126
		! ! ! !		1		
VARIABLE	MEAN	TD DE	INIMU	AXIM	ARIANC	υ
TW K_WT LG	1400	2.2908514 1.0945319 1.6733201	5000	56.2000000 24.0000000 12.0000000	5.2480000 1.1980000 2.8000000	4.2313472 4.7300426 17.8012772
WHT ASH WHT PRO	1.964000 4.360000	.148425 .378153	3.000000 1.780000 4.0000000	3.000000 2.100000 4.800000	.700000 .022030 .143000	5.138428 7.557284 2.633380
HARD EXTR	.280000	.043631	8.0000000	7.000000	.592000	6.151869
FL_ASH FL_PRO	548000	.456070	.400000	.590000	.004620	2.403390
MIXU BAKE ABS LOAF VOL	.120000	.707106 .277497 .041523	2.0000000 5.300000 4.000000	.000000.	.500000 .632000 .500000	.570226 .236515 .020761
1		1 1	- VARIETY=MARQUI	1 0	1	
VARIABLE	A I	TD DE	INIMU	AXI	RIANC	Ö
TW K WT	8000	.925	3000	0.200000	.41200	7.1016
L G	00000	.557438	00000009	2.000000	43.000000	441834
WHT ASH	000	89604	1.830000	000	0.035950	5.810999 9.480242
2	00000	.058052	000000.	5.8000000 7.0000000	.648000	8.768746
EXTR FL ASH	20000 04000	.635335	9.100000	3.800000	1.75700,0	.168413
FL_PRO	00000	.327780	2.600000	.400000	.763000	4.414436 9.376978
BAKE ABS	56.940000	.894427	5.300000	3.0000000	0.800000 4.053000	.267799
LUAF VOL	9.400000	2000				

OKTHEAST REGION	VARIETY=MN87150
4	

TABLE 9

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	NO.
TW	56.4400000	4.1088928	51.8000000	61.0000000	16.8830000	7.2801077
K WT	26.8200000	4.9454019	20.6000000	32,5000000	24.4570000	18.4392316
LG	25.4000000	19,7306868	6.0000000	57,0000000	389.3000000	77.6798691
SM	7.2000000	7.7265775	0	16.0000000	59.7000000	107.3135765
WHT_ASH	1.7600000	0.2487971	1.4800000	2.0700000	0.0619000	14.1361992
WHT PRO	14.1200000	0.4086563	13.8000000	14.8000000	0.1670000	2.8941667
HARD	51.8000000	6.2209324	44.0000000	59.0000000	38.7000000	12.0095220
EXTR	57.9600000	7.7063610	45.7000000	64.9000000	59.3880000	13.2959990
FL_ASH	0.5060000	0.0826438	0.3800000	0.5900000	0.0068300	16.3327696
FL_PRO	13.3200000	0.5761944	12.7000000	14.1000000	0.3320000	4.3257839
MIXO	1.4000000	0.5477226	1.0000000	2.0000000	0.3000000	39.1230398
BAKE ABS	57.1000000	2.7631504	53.5000000	61,0000000	7.6350000	4.8391425
LOAF_VOL	187.4000000	13.0499042	170.0000000	206.0000000	170.3000000	6.9636629

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.6600000	3.6691961	51.5000000	59.7000000	13.4630000	6.5921597
K_WT	28.3800000	3.1728536	23.5000000	31,0000000	10.0670000	11,1798929
LG	34.0000000	13.1719399	13.0000000	48.0000000	173.5000000	38.7409996
SM	4.8000000	4.4384682	1.0000000	11.0000000	19.7000000	92.4680876
WHT ASH	1.7900000	0.2198863	1.5100000	2.0600000	0.0483500	12.2841528
WHT_ PRO	14.2800000	0.4266146	13.8000000	14.7000000	0.1820000	2.9874971
HARD	57.8000000	8,1055537	49.0000000	65.0000000	65.7000000	14.0234492
EXTR	63.8400000	3.6596448	58.1000000	67.6000000	13,3930000	5.7325263
FL ASH	0.4800000	0.0710634	0.3800000	0.5800000	0.0050500	14.8048650
FL PRO	13,1400000	0.4159327	12.5000000	13.5000000	0.1730000	3,1653934
MIXO	1.4000000	0.5477226	1,0000000	2.0000000	0.3000000	39.1230398
BAKE ABS	58.9200000	1.5674821	56.9000000	60.8000000	2,4570000	2,6603565
LOAF VOL	178.0000000	8.9442719	171.0000000	193.0000000	80.0000000	5.0248719

-- VARIETY=MN88170 ---

ru 4.	1.7800000	2 7061500				
	800000	7. / CDTDDU	54.2000000	61.9000000	14.3350000	6.5618007
	000000	4.7367711	27.5000000	37.700000	22.4370000	14 9048806
	00000	19,1702895	24.0000000	70.0000000	367.5000000	41.6745424
	00000	2.4899799	0	000000009	6.200000	113.1809054
	200000	0.1759261	1.5100000	1,9600000	0.0309500	10.0529212
	800000	0.5718391	13.8000000	15,1000000	0.3270000	3.9220791
	000000	5.5407581	48.0000000	61,0000000	30.700000	10.1108724
	800000	4.3424647	56.4000000	67.0000000	18.8570000	6.7978471
	480000	0.0732803	0.3600000	0.5500000	0.0053700	16.3572062
FL_PRO 14.02	200000	0.3346640	13.6000000	14.4000000	0.1120000	2.3870472
	000000	0.8366600	2.0000000	4.0000000	0.700000	29.8807152
ro	58.6000000	2,1295539	55.5000000	61,1000000	4.5350000	3.6340511
LOAF VOL 202.00	02.0000000	9.9749687	187,0000000	215.0000000	89.5000000	4.9381033

-- VARIETY=MN88189 --

VARIETY=MN88320 NORTHEAST REGION

TABLE 10

TW 59 K_WT 28 LG 40	28.4200000 10.6000000 3.8000000	2.9022405				
24	.4200000 .6000000 .8000000	00000	56.9000000	63,4000000	8.4230000	4.8564935
4	. 6000000	3.1519328	24.2000000	32.7000000	14.0770000	13.2017341
S. W.	.8000000	17.1697408	19.0000000	61,0000000	294.8000000	42.2900020
		4.8166378	0	10.0000000	23.2000000	126.7536271
	1.7280000	0.1776795	1.4900000	1.9200000	0.0315700	10.2823777
WHT PRO 13	13.8400000	0.3646917	13.4000000	14.4000000	0.1330000	2,6350553
	0000009.	8.0808415	54.0000000	72,0000000	65.3000000	12,7057257
9	2.7200000	3.9908646	58,3000000	68,6000000	15.9270000	6.3629856
	0.4720000	0.0420714	0.4000000	0.5100000	0.0017700	8.9134254
FL_PRO 12	12.7400000	0.4335897	12.3000000	13.3000000	0.1880000	3,4033726
	2.6000000	0.5477226	2.0000000	3.0000000	0.3000000	21,0662522
10	59.2200000	0.9338094	57.9000000	60.0000000	0.8720000	1.5768480
LOAF VOL 190	.90,2000000	10.1833197	182.0000000	207.0000000	103.7000000	5.3540061

ARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.9000000	3.7101213	53.7000000	63.2000000	13.7650000	6.2990175
WT	24.6000000	2.4010414	21.2000000	27.7000000	5,7650000	9.7603311
5	21.0000000	8.2764727	13.0000000	33,0000000	68,5000000	39,4117747
Σ	8.4000000	6.1481705	3.0000000	19,0000000	37.8000000	73,1925055
HT ASH	1.6820000	0.1567482	1.4700000	1.9100000	0.0245700	9.3191561
HT_PRO	14.5400000	0.2073644	14.3000000	14.8000000	0.0430000	1.4261652
ARD	57.0000000	5,7879185	48.0000000	63.000000	33.5000000	10.1542429
XTR	61.9600000	5.7155927	52.5000000	67,1000000	32,6680000	9.2246493
LASH	0.4300000	0.0509902	0.3700000	0.5100000	0.0026000	11.8581849
L_PRO	13.6200000	0.1303840	13.5000000	13.8000000	0.0170000	0.9572984
OXI	1.8000000	0.4472136	1.0000000	2.0000000	0.2000000	24.8451997
AKE ABS	57.0400000	0.6503845	56.2000000	57,6000000	0.4230000	1,1402253
OAF VOL	181.8000000	7.8549348	172.0000000	193.000000	61.7000000	4.3206462

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.2600000	2.6264044	57 6000000	000000000000000000000000000000000000000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		4 1 0 2 0 3 0 3 3		0000000000	00000000	4.5004040
EM-X	27.9600000	3.3125519	23.7000000	31,4000000	10.9730000	11.8474674
LG	39.8000000	15,1393527	20.0000000	58,000000	229.2000000	38.0385746
SM	4.0000000	3.8729833	0	0000000 6	15 0000000	06 8245837
WHT ASH	1.7400000	0.1595306	1.5100000	0000000	0.005000	00.0243037
WHT PRO	15.5400000	0.4393177	14 8000000	0000040.41	102000	J. 1004231
HARD	0000000	- HOODE		13.300000	0.1330000	6110/20.2
CARI	000000000	11109/6.6	0000000.90	77.0000000	91.7000000	14.3353469
EXTR	64.2400000	2.2322634	61.4000000	66,5000000	4.9830000	3.4748808
FL_ASH	0.4500000	0.0479583	0.4000000	0.5200000	0.0023000	10.6574034
FL_PRO	15.2400000	0.2302173	14.9000000	15 500000	0.0530000	1 5106121
MIXO	3.2000000	0.8366600	2.0000000	4 0000000	0 200000	26 1456258
BAKE ABS	60.900000	1.0559356	59.6000000	2222222	1 1150000	1 7338844
LOAF VOL	201,8000000	12 3166554	192 0000000	000000000000000000000000000000000000000	151 700000	1000001
			00000000	223.000000	TOT: LOODOO	0.10333/I
		1111111111111				

- VARIETY=ND655 -

NORTHEAST REGION

-- VARIETY=ND657 --

EAN STD DEV HINIMUM HI	XIMUM VARIANCE	000000 0 3.470000 5.366209 000000 12.1650000 12.152738 000000 247.7000000 124.721912 000000 14.0000000 124.721912 000000 0.0379700 10.601682 000000 20.5000000 6.658371 000000 3.7670000 3.099450 000000 0.0027300 10.534153 000000 0.700000 19.920476 000000 0.4680000 13.13452		XIMUM VARIANCE	00000 11.2170000 5.707 00000 16.2520000 13.446 00000 232.7000000 37.946 00000 40.2000000 166.851 00000 0.0328200 166.851 00000 0.1730000 2.707 00000 27.3000000 8.373	00000 0.0039700 13.18157 00000 0.1380000 2.51682 00000 2.2000000 28.52384 00000 3.7970000 3.26287 00000 214.3000000 7.56146	XIMUM VARIANCE	000000 244.800000 13.238931 000000 244.800000 13.238931 000000 244.800000 137.870462 800000 0.0632300 14.336132 000000 24.700000 7.507416 000000 12.842000 5.741066
EAN STD DE STD D	INIMUM M.	55.0000000 61.3 57.0000000 51.0 17.0000000 51.0 1.5500000 2.0 15.6000000 16.4 61.0000000 65.0 0.4400000 0.5 15.0000000 16.1 3.0000000 62.1 0.50000000 0.5	ARIETY=ND662	MINIMUM	4.0000000 62.2 4.0000000 34.6 8.0000000 55.0 0 15.0 1.5600000 2.0 4.80000000 15.8 7.0000000 70.0	0.4100000 0.5 14.2000000 15.1 3.0000000 7.0 56.9000000 61.4 80.0000000 218.0	ARIETY=ND671	7.6000000 63.5 4.40000000 31.0 4.0000000 60.0 1.5500000 2.1 5.1000000 16.5 6.4000000 66.0 0.3800000 0.5
- XIOOOOOOOOOO I	EAN STD DE	000 15.738487 000 15.738487 000 15.738487 000 0.334664 000 0.334664 000 1.940876 000 0.052249 000 0.052249 000 0.052249 000 0.052249		EAN STD DE	000 3.349179 000 4.031376 000 15.254507 000 6.340347 000 0.181162 000 5.224940 000 1.339776	000 0.063007 000 0.371483 000 1.483239 000 1.948589 000 14.638989	AN STD DE	000 0.52494 000 15.646085 000 15.646085 000 3.033150 000 0.251455 000 4.969909 000 3.583573 000 0.661815

TABLE 12			NORTHEAST REGION	NO.		
		1 1 1 1 1 1 1 1 1 1 1	VAKIEII=NDO/2	7		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.7000000	2.6981475	55.8000000	62,3000000	7.2800000	4.5195101
K_WT	27.1000000	3.0919250	23.0000000	30.5000000	9.5600000	11,4093172
LG	35,8000000	16.0374562	15.0000000	53.0000000	257.2000000	44.7973636
SM	3.8000000	4.9699095	0	12.0000000	24.7000000	130,7870909
WHT ASH	1.7800000	0.1656804	1.5900000	2.0200000	0.0274500	9.3078885
WHT PRO	15.2600000	0.6877500	14.5000000	16.2000000	0.4730000	4.5068804
HARD	77.0000000	6.5192024	71.0000000	86.0000000	42.5000000	8.4664966
EXTR	61.3000000	2.9874738	57.7000000	64.9000000	8.9250000	4.8735299
FLASH	0.5080000	0.0580517	0.4200000	0.5600000	0.0033700	11.4275002
FL_PRO	14.2200000	1.0207840	13.1000000	15.4000000	1.0420000	7.1785092
MIXO	4.6000000	1.5165751	3.0000000	7.0000000	2.3000000	32.9690237
BAKE ABS	59.9400000	1.0573552	58.600000	60.8000000	1.1180000	1.7640227
LOAF_VOL	201.0000000	14.1067360	189.0000000	220,0000000	199.0000000	7.0182766

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	55.8800000	3.5884537	51.3000000	60.3000000	12.8770000	6.4217139
K WT	25.8200000	3.0268796	22.4000000	30,2000000	9,1620000	11.7230038
LG	24.0000000	11.6619038	11.0000000	42.0000000	136,0000000	48.5912658
SM	8.0000000	6.3245553	2.0000000	18.0000000	40.0000000	79.0569415
WHT ASH	1.8760000	0.2242320	1.5800000	2.1800000	0.0502800	11.9526665
WHT PRO	14.1000000	0.2121320	13.9000000	14.4000000	0.0450000	1.5044825
HARD	57.8000000	6.3796552	51,0000000	68,0000000	40.700000	11,0374657
EXTR	61,1600000	3.2913523	57.3000000	65.4000000	10.8330000	5.3815440
FL ASH	0.5560000	0.0890505	0.4400000	0.6600000	0.0079300	16,0162855
FL_PRO	13.3400000	0.2509980	13,1000000	13.6000000	0.0630000	1.8815443
MIXO	3.2000000	0.8366600	2.0000000	4.0000000	0.700000	26.1456258
BAKE_ABS	58.8800000	2.1182540	55.3000000	60.800000	4.4870000	3.5975781
LOAF_VOL	198.0000000	10.3440804	183,0000000	211,0000000	107.0000000	5.2242830

VARIETY=N86-0542

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.1800000	3.7419246	54.200000	61.8000000	14.0020000	6.5441144
K_WT	27.7200000	4.9901904	23.0000000	34.5000000	24.9020000	18.0021298
LG	30.4000000	20.6591384	0000000.6	61.0000000	426.8000000	67,9576922
SM	5.4000000	4.5055521	1.0000000	10.000000	20,3000000	83.4361506
WHTASH	1.8480000	0.2233159	1.5400000	2,1500000	0.0498700	12.0841948
WHT PRO	15.2600000	0.4827007	14.7000000	15.9000000	0.2330000	3,1631765
HARD	58.4000000	8.7635609	50.000000	70.0000000	76.8000000	15.0060975
EXTR	62.6400000	2.5793410	60.0000000	65.7000000	6,6530000	4.1177219
FL ASH	0.4800000	0.0754983	0.3900000	0.5600000	0.0057000	15,7288217
FL_PRO	14.6400000	0.4037326	14.2000000	15.2000000	0.1630000	2.7577362
MIXO	3.8000000	1,3038405	3,0000000	6.0000000	1.7000000	34.3115916
BAKE ABS	60.4400000	3.0204304	57.6000000	65,1000000	9.1230000	4.9974031
LOAF VOL	209.2000000	14.6355731	195,0000000	231,0000000	214.2000000	6.9959718

VARIETY=N87-0306

TABLE 13

ч
V
1
α
2
H
5
ŕ-
E X
-
D.
d
N
-
l
i

NORTHEAST REGION

CV	7.1991428 7.0275108 75.6033689 93.9164884 14.3336759 2.7417143 12.9214638 6.9095384 17.1862550 2.8442566 40.8248290 1.9351627 5.9526049	CV	6.8180362 6.8180362 28.4130860 105.4092553 13.6620560 0.8038474 9.4185864 3.5658120 16.7332005 11.3448811 26.1456258 4.0900935 6.0162694		4.7615688 9.0172455 30.3144827 168.5083432 10.3050575 2.4248115 15.0445156 4.4563318 10.2842445 2.8371943 33.5345713 2.1830880
VARIANCE	16.2880000 21.5770000 340.3000000 48.3000000 0.0730800 0.1520000 17.788000 0.0088700 0.1470000 1.29300000 149.2000000	i 🔁	14.6300000 5.9170000 64.2000000 10.0000000 0.0711200 0.0170000 5.0530000 0.0070000 0.0070000 0.7000000 6.1070000	VARIANCE	173000 100000 100000 100000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
MAXIMUM	62.2000000 34.5000000 17.0000000 2.1800000 14.9000000 51.000000 65.400000 13.9000000 5.0000000 224.000000	034	60.1000000 36.0000000 8.0000000 2.3000000 16.400000 65.000000 65.000000 16.5000000 16.5000000 16.5000000 236.0000000	136	
MINIMUM	52.2000000 7.0000000 7.0000000 1.4900000 14.0000000 54.7000000 13.0000000 2.0000000 57.3000000 194.0000000	TY=N8	50.2000000 16.0000000 1.670000 16.1000000 52.0000000 0.4000000 16.0000000 0.4000000 57.3000000	VARIETY=N88-3 MINIMUM	000000000000000000000000000000000000000
STD DEV	4.0358394 4.6451050 18.4472220 6.9498201 0.270331 0.3898718 5.5045436 4.2175822 0.3898718 1.2247449 1.12247449 1.1371016	STD DEV	3.8249183 2.43249183 8.0124902 3.1622777 0.266833 0.1303840 5.5946403 2.2478879 0.0836660 0.2167948 0.8366600	STD DEV	5884 7992 4780 3315 8116 6469 2403 0838 4669 1593 1793 1706 7321
MEAN	56.0600000 27.2800000 24.4000000 7.4000000 1.8860000 14.2200000 61.0400000 61.0400000 13.4800000 13.4800000 205.2000000	MEAN	26.1000000 28.2000000 3.0000000 1.9520000 16.220000 63.0400000 0.59.400000 16.1200000 16.1200000 2.2000000	MEAN	60.040000 47.000000 1.8000000 1.7580000 15.0400000 63.0200000 63.0200000 63.0200000 63.0200000 63.0200000 63.0200000 63.0200000
VARIABLE	TW K.WT LG SM WHT_ASH WHT_PRO HARD EXTR FL_ASH FL_PRO MIXO BAKE_ABS LOAF_VOL	VARIABLE	TW K_WT LG SM WHT_ASH WHT_PRO HARD EXTR FL_ASH FL_PRO MIXO BAKE_ABS LOAF_VOL	VARIABLE	TW K_WT LG SM WHT_ASH WHT_PRO HARD EXTR FL_ASH FL_PRO MIXO MIXO BAKE_ABS

- VARIETY=SD3055

NORTHEAST REGION

TABLE 14

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	0
TW	59.6800000	1.9253571	57.9000000	62.0000000	3.7070000	3 226136
K_WT	30.7200000	4.1823438	26.7000000	36.900000	17.492000	13 614400
LG	51.6000000	15.2741612	35,0000000	74.0000000	233.3000000	29.601087
SM	2.2000000	3.8340579	0	0000000.6	14.700000	174.275359
WHT ASH	1.7420000	0.1709386	1,4800000	1.8800000	0.0292200	9.812777
WHT_PRO	15.6200000	0.4919350	14.9000000	16.200000	0.242000	3 149391
HARD	56.6000000	5.1283526	49.0000000	62.000000	26.300000	60081.0
EXTR	61.3000000	3.8619943	55,7000000	66.400000	14 9150000	6 300153
FL ASH	0.4420000	0.0294958	0.400000	0.470000	0.0082000	6 673249
FL_PRO	15.3200000	0.3962323	14.8000000	15.900000	0 157000	7 58637
MIXO	3.4000000	0.5477226	3,0000000	4.0000000	0.300000	16 109487
BAKE ABS	60.4000000	1.2103718	58,6000000	61.8000000	1.4650000	701601010
LOAF_VOL	213.6000000	11.5887877	193.0000000	220,0000000	134.3000000	5.425462

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW		2.0092287	57.5000000	62.0000000	4.0370000	3.3723208
K_WT	31.3000000	3.7363083	27,6000000	37.0000000	13.960000	11.9370873
LG		16.6733320	34.0000000	76,0000000	278,0000000	32.0641000
SM		2.6832816	0	6.0000000	7.2000000	149.0711985
WHT ASH		0.1559487	1.5000000	1.9200000	0.0243200	9.0039671
WHT_PRO		0.4816638	14.8000000	15,8000000	0.2320000	3.1236302
HARD		7.9686887	67,0000000	85.0000000	63.5000000	10.6249183
EXTR		3,6013886	55.7000000	65.700000	12.970000	5.8846219
FL ASH		0.0482701	0.4800000	0.6000000	0.0023300	9.3546654
FL_PRO		0.2167948	14.4000000	14.900000	0.0470000	1.4768040
MIXO		0.8366600	2.0000000	4.0000000	0.700000	26.1456258
BAKE ABS		0.9262829	59,6000000	61,8000000	0.8580000	1.5270077
LOAF VOL		13.7222447	190.0000000	228,0000000	188.3000000	6.6483744

VARIETY=SD3056

TW 61.1000000 2.8861739 57.4000000 63.9000000 4.7236889 K_WT 30.3400000 5.1834352 23.8000000 64.900000 26.8680000 4.7236889 LG 44.2000000 5.1834352 23.8000000 64.000000 26.8680000 17.0844929 SM 4.2000000 18.7403308 20.000000 64.000000 28.200000 126.4373147 WHT_ASH 1.680000 0.1870829 1.4800000 1.920000 28.200000 126.4373147 WHT_BRD 67.200000 0.1870829 1.4800000 16.400000 28.700000 1.1358851 EXTR 60.3400000 3.3849668 56.000000 71.000000 28.700000 7.9720805 FL_ASH 0.4360000 0.4560702 0.4560000 0.456070 0.2030000 2.988643 MIXO 4.2000000 0.3271085 60.000000 15.7000000 0.1070000 2.9123039 BAKE_ABS 60.5200000 0.222.000000 121.200000 18.439643 18.604396 1.0090000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
30.3400000 5.1834352 23.800000 35.600000 26.8680000 18.7403308 20.0000000 64.0000000 26.8680000 18.7403308 20.0000000 64.0000000 25.8680000 18.7403308 20.0000000 64.0000000 25.8000000 25.3103672 15.300000 19.000000 19.000000 28.2000000 15.7600000 0.1870829 11.4800000 16.4000000 0.2030000 0.2030000 67.2000000 0.4505552 15.3000000 16.4000000 0.2030000 0.2030000 60.3400000 0.4565931 58.0000000 64.5000000 11.4580000 0.4956991 0.4000000 0.5100000 0.2080000 0.2080000 15.2000000 0.4560702 14.60000000 15.7000000 0.2080000 0.2080000 0.3271085 60.0000000 222.0000000 121.2000000 0.3271085 60.0000000 222.0000000 121.2000000 0.3271085	TW	61.1000000	2.8861739	57.4000000	63.9000000	8 330000	0 7 3 5 8 8 9
44.2000000 18.7403308 20.0000000 64.000000 351.200000 4.2000000 5.3103672 0 10.000000 28.200000 1 ASH 1.680000 0.1870829 1.480000 1.920000 0.0350000 PRO 15.760000 0.4505552 15.300000 16.400000 0.203000 67.2000000 5.3572381 58.000000 71.000000 28.700000 5.4000000 3.3849668 56.000000 11.4580000 0.024700 30 15.2600000 0.4560702 14.6000000 15.700000 0.2080000 4.2000000 1.6431677 3.0000000 7.000000 2.700000 ASS 60.5200000 0.3271085 60.000000 222.000000 121.200000	K_WT	30.3400000	5.1834352	23.8000000	35.6000000	26.8680000	17.0844929
4.2000000 5.3103672 0 10.000000 28.200000 1.680000 0.1870829 1.480000 1.9200000 28.200000 0.15.760000 0.4505552 15.300000 16.400000 0.2030000 67.2000000 5.3572381 58.000000 71.000000 28.700000 60.3400000 3.3849668 56.000000 64.500000 11.458000 15.2600000 0.4560702 14.6000000 0.510000 0.2024700 15.2600000 1.6431677 3.0000000 7.000000 0.1070000 BS 60.5200000 0.3271085 60.000000 222.000000 121.200000 0L 212.2000000 11.0090872 195.000000 222.000000 121.2000000	LG	44.2000000	18.7403308	20.0000000	64,0000000	351,200000	47.3989386
H 1.6800000 0.1870829 1.4800000 1.920000 0.0350000 0.0350000 0.0350000 0.0350000 0.0350000 0.0350000 0.2530000 0.2530000 0.2530000 0.2530000 0.2030000 0.2030000 0.2030000 0.2030000 0.33849668 56.000000 0.4500000 0.0496991 0.4000000 0.5100000 0.0510000 0.024700 0.0450000 0.4560000 0.4560000 0.4560000 0.4560000 0.3571085 60.000000 0.222.0000000 0.11.0090872 195.0000000 0.222.0000000 121.2000000	SM	4.2000000	5.3103672	0	10,0000000	28.2000000	126.4373147
0 15.7600000 0.4505552 15.300000 16.400000 0.2030000 67.2000000 5.3572381 58.000000 71.000000 28.700000 60.3400000 3.3849668 56.000000 64.500000 11.4580000 0.4380000 0.0496991 0.400000 0.510000 0.0024700 15.2600000 0.4560702 14.600000 15.700000 0.2080000 85 60.5200000 0.3271085 60.000000 2.7000000 0L 212.2000000 11.0090872 195.000000 222.000000 121.2000000	WHT_ASH	1.6800000	0.1870829	1.4800000	1.9200000	0.0350000	11,1358851
67.2000000 5.3572381 58.000000 71.000000 28.700000 60.3400000 3.3849668 56.000000 64.500000 11.4580000 0.4380000 0.0496991 0.400000 0.510000 0.0024700 15.2600000 0.4560702 14.600000 15.700000 0.2080000 4.2000000 1.6431677 3.0000000 7.0000000 2.7000000 0.3271085 60.000000 222.000000 121.2000000 0. 212.2000000 11.0090872 195.000000 222.000000 121.2000000	WHT_PRO	15.7600000	0.4505552	15.3000000	16.4000000	0.2030000	2.8588529
60.340000 3.3849668 56.000000 64.500000 11.458000 0.438000 0.0496991 0.400000 0.510000 0.002470 15.260000 0.4560702 14.600000 15.700000 0.208000 4.2000000 1.6431677 3.0000000 7.000000 2.700000 BS 60.5200000 0.3271085 60.000000 222.000000 121.200000 0L 212.2000000 11.0090872 195.000000 222.000000 121.2000000	HARD	67.2000000	5.3572381	58,0000000	71.0000000	28.700000	7.9720805
0.4380000 0.0496991 0.4000000 0.510000 0.0024700 1 15.2600000 0.4560702 14.6000000 15.700000 0.2080000 1.2080000 4.2000000 1.6431677 3.0000000 7.0000000 2.7000000 3.7000000 BS 60.5200000 0.3271085 60.0000000 60.8000000 0.1070000 OL 212.2000000 11.0090872 195.0000000 222.0000000 121.2000000	EXTR	60.3400000	3,3849668	56.000000	64,5000000	11.4580000	5.6098223
15.2600000 0.4560702 14.6000000 15.7000000 0.2080000	FL_ASH	0.4380000	0.0496991	0.4000000	0.5100000	0.0024700	11,3468252
4.20000001.64316773.00000007.0000002.7000003.70000060.52000000.327108560.000000060.8000000.1070000212.200000011.0090872195.000000222.000000121.2000000	FL_PRO	15.2600000	0.4560702	14.6000000	15.7000000	0.2080000	2.9886643
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MIXO	4.2000000	1.6431677	3.0000000	7.0000000	2,7000000	39.1230398
212,2000000 11,0090872 195,0000000 222,0000000 121,2000000	BAKE ABS	60.5200000	0.3271085	60.000000	60.800000	0.1070000	0.5404966
	LOAF VOL	212.2000000	11.0090872	195.0000000	222.0000000	121.2000000	5 1880712

VARIETY=5D3080

NORTHEAST REGION

- VARIETY=SD8072

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.1200000	3.0621888	54,6000000	63.1000000	9.3770000	5.1796156
K WT	30.0800000	5.5323594	22.4000000	36.6000000	30,6070000	18,3921521
LG	45.0000000	23.2056028	16.0000000	73.0000000	538,5000000	51,5680062
SM	3.4000000	3.8470768	0	8.0000000	14.8000000	113,1493180
WHT ASH	1.8280000	0.2487368	1.4500000	2.1000000	0.0618700	13,6070464
WHT PRO	15.4400000	0.5029911	14.7000000	16.0000000	0.2530000	3.2577141
HARD	72.4000000	7.0213959	62,0000000	80.0000008	49.3000000	9.6980606
EXTR	60.4600000	3.7280021	56.3000000	66.2000000	13.8980000	6,1660638
FL_ ASH	0.5240000	0.0779744	0.4300000	0.6300000	0.0060800	14.8806021
FL_PRO	14.7800000	0.2683282	14.5000000	15.2000000	0.0720000	1,8154814
MIXO	3.0000000	0.7071068	2.0000000	4.0000000	0.500000	23,5702260
BAKE ABS	60.1600000	1.4570518	58.2000000	61,4000000	2.1230000	2.4219611
LOAF VOL	202.2000000	11.3666178	190.000000	214.0000000	129.2000000	5.6214727

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.4000000	2.8451713	55.0000000	62.2000000	8.0950000	4.8718687
K WT	29.9200000	5.0662609	22.6000000	36,4000000	25.6670000	16.9326903
LG	45.8000000	19.0052624	22.0000000	71.0000000	361,2000000	41.4962062
SM	2.6000000	3.1304952	0	6.0000000	0000008.6	120.4036603
WHT ASH	1.8140000	0.2277718	1.4700000	2,0900000	0.0518800	12,5563294
WHT PRO	14.9000000	0.3162278	14.4000000	15,2000000	0.1000000	2.1223340
HARD	71.4000000	5.5946403	65.0000000	79,0000000	31,3000000	7.8356307
EXTR	60.5200000	4.3372803	55.7000000	66,0000000	18.8120000	7,1666891
FL_ASH	0.5280000	0.0779102	0.4100000	0.6200000	0.0060700	14.7557206
FL_PRO	14.2800000	0.1788854	14.2000000	14.6000000	0.0320000	1,2526991
MIXO	3.8000000	1.0954451	2.0000000	5.0000000	1.2000000	28.8275030
BAKE ABS	61.0800000	0.7726578	60.00000.09	62,1000000	0.5970000	1.2649930.
LOAF VOL	192.2000000	8.7863531	180.0000000	200,0000000	77.2000000	4.5714636

- VARIETY=SD8073

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.0200000	2.8278967	56.9000000	63.2000000	0000799 7	4 7115907
K_WT	29.6400000	2.6754439	25,5000000	32.900000	7.1580000	9.0254639
LG	45,2000000	11.1445054	27.0000000	57.0000000	124.2000000	24.6559853
SM	2.0000000	2.3452079	0	5.0000000	5.5000000	117.2603940
WHT_ASH	1.7240000	0.1453616	1.5100000	1.9200000	0.0211300	8.4316484
WHT PRO	14.8200000	0.6723095	14.2000000	15,8000000	0.4520000	4.5365010
HARD	71.0000000	6.5192024	61,0000000	79.0000000	42,5000000	9.1819752
EXTR	59.7800000	6.3558634	49.1000000	65,3000000	40.3970000	10.6320901
FLASH	0.4760000	0.0577062	0.4200000	0.5700000	0.0033300	12,1231412
FL_PRO	14.0200000	0.5585696	13.5000000	14.8000000	0.3120000	3.9840913
MIXO	4.4000000	0.8944272	3.0000000	5,0000000	0.8000000	20,3278907
BAKE ABS	59.3400000	1.8174157	57.9000000	62,1000000	3,3030000	3.0627161
LOAF VOL	190.8000000	15.8018986	172.0000000	214.0000000	249.7000000	8.2819175

- VARIETY=SD8074 --

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

- VARIETY=STOA

NORTHEAST REGION
TABLE 16

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.8600000	2.2864820	55.4000000	61.4000000	5.2280000	3.9517491
K WT	27.3400000	3,3283630	24.2000000	32.6000000	11.0780000	12,1739684
r.g	26.8000000	11.1892806	16.0000000	44.0000000	125.2000000	41.7510470
SM	5.0000000	3.8729833	0	9.0000000	15,0000000	77.4596669
WHT ASH	1.7940000	0.1700882	1.5200000	1.9900000	0.0289300	9,4809483
WHT_PRO	15.1200000	0.3768289	14.7000000	15.7000000	0.1420000	2.4922545
HARD	64.2000000	2.5884358	61,0000000	68.000000	6.7000000	4.0318315
EXTR	61.4200000	6.0329926	51.7000000	67.5000000	36.3970000	9.8225214
FL_ASH	0.4720000	0.0641872	0.3900000	0.5700000	0.0041200	13.5989886
FL_PRO	14.8400000	0.5366563	14.3000000	15.7000000	0.2880000	3.6162824
MIXO	4.4000000	0.5477226	4.0000000	5.0000000	0.3000000	12.4482399
BAKE ABS	61.0600000	1.6979399	59.3000000	63.1000000	2,8830000	2,7807729
LOAF_VOL	202.0000000	9.4868330	188,0000000	211,0000000	0000000.06	4.6964520

VARIABLE	MEAN	STD DEV	MUMINIM	MAXIMIM	VARIAN(*F)	(1)
					TONGTHE	
TW	57.8200000	3.5017139	54.2000000	62.4000000	12.2620000	6.0562329
K_WT	28.8800000	4.3390091	24.2000000	34.6000000	18.8270000	15.0242697
ГG	34.2000000	17.9916647	11.0000000	60.0000000	323.7000000	52.6072068
SM	4.4000000	4.8270074	0	11.0000000	23.3000000	109.7047126
WHT ASH	1.9420000	0.2094517	1.6100000	2.1600000	0.0438700	10.7853587
WH'T PRO	14.6200000	0.4658326	14.2000000	15.3000000	0.2170000	3.1862694
HARD	53.8000000	10.6160256	46.0000000	71.0000000	112.7000000	19.7323896
EXTR	60.8200000	3.8401823	57.1000000	67.3000000	14.7470000	6,3140123
FL ASH	0.5660000	0.1006479	0.4100000	0.000089.0	0.0101300	17,7823147
FL_PRO	14.2800000	0.3271085	13.8000000	14.6000000	0.1070000	2.2906761
MIXO	3.8000000	1.0954451	3.0000000	5.0000000	1,2000000	28.8275030
BAKE ABS	60.6800000	1.6813685	58.6000000	63,1000000	2.8270000	2,7708775
LOAF VOL	206.6000000	10.1882285	196.0000000	220.0000000	103.8000000	4.9313788
11111111						

- VARIETY=XW398A4 --

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=BROOKINGS NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	S12]	N I N I N I N I N I N I N I N I N I N I	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX ABS	MIX
E 8	ល	9	9	39	2	7.	5.	75	8	9.	.5	1 4	5	 	1 -	5
CHRIS		4	÷		4	8	5.	29	3	2.	. 5		2	4	0	্ ব
ERA	ß	ش	0	6	14	6.	4.	89	3	6	.5	4	Ŋ	4	7	4
MARQUIS		52.7	19.8	80	11	1.72	14.2	69	3	61.5	0.56	13.4	2	4	55.5	5
	လ	9	ش		80	ω.	5.	69	3	2.	.5	4	2	4	0	1 4
		ж •	4		ω	. 7	4.	99	3	5.	.5	4	2	2	9	· ~
7		2.	5.		4	ω.	ል.	54	3	8	. 5	ش	2	4	8	2
_		5.	8	39	7	8	4.	53	٣	8	4.		5	4	7.	4
MN88320		. 9	4		9	٠.	4.	09	٣	9	.5	3	2	3	7.	٣
MN88334		9	е 8		11	. 7	4.	63	٣	0	. 4	4	5	4	9	2
ND655		9	4.		9	6.	5	63	3	ъ 8	.5	4	5	4	9.	4
ND657		4	7 .		4	9	9	16	٣	5.	9.	9	2	Н	0	5
ND662		5.	ς.		9	٦.	5.	7.0	٣	9.	. 5	4	2	4	9	7
ND671		ъ В	9		ന	9.	4.	99	4	0	٠.4	4	2	4	9.	Ω
		4	2.		11	9.	4.	7.0	က	۳.	9 .		4	2	5	4
N87-467		2	9		2	0.	4.	44	3	ش	.5	3.	4	2	9	٣
N860542		2	5		11	0 •	4	09	3	9	. 5	4.	4	2	9.	2
N870306		2.	4		2	6.	5.	6.2	3	5.	. 5	4.	4	2	9.	5
N883034		2	4.		2	0.	5	64	٣	7 .	.5	9	2	e	5.	4
N883136		9	4.		9	8	5	67	æ	4.	.5	4	5	2	0.	٣
SD3055		2	7.		4	٠.	5	22	3	7.	.5	5.	2	٣	0.	4
SD3056		2	9		4	. 7	4.	16	e	9	5	4	2	4	ij	4
SD3080		œ	7		9	9.	5.	8 9	4	7.	4.	4	2	٣	0	4
SD8072		9	7 .		Н	ω.	4.	73	٣		.5	ش	2	4	8	3
SD8073		4.	7		7	ο.	5	7.8	٣	0	. 5	4	2	4	-	4
SD8074		4.	ش		4	8	4.	71	٣	ъ 6	5	3	2	4	8	2
XW398A4		Ϊ.	4.		9	6.	5.	51	3	7 .	9.	4.	5	2	-	4
AC-MINTO		4	5.		4	6.	5.	71	3	7.	9.	5	2	2	0	٣
m		5	5		4	6.	9	73	٣	8	9.	5.	5	٣	ij.	4
CI982309		7.	7.		21	0.	5.	99	 1	9	9.	4.	2	2	9	5
735		0	4.	22	10	6.	4.	48	٣	5.	9.	4.	2	2	9	m
10		0	0	9	12	6.	4	53	3	8	.5	e m	2	٣	7.	4

TABLE 17

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=BROOKINGS NURSERY=UNIFORM

TABLE 17 (CONT)

1	C CG LV		
1	၁၁ ၁၀	MI MI MI 169	101
	BA MT	AND	
-DEFICIENCIES	X	D Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	0
FICIE	FP MC	D 0 4	r
DE	A65	M M M M M M M M M M M M M M M M M M M	•
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	WP EX	M M MAGANA M M M M M M M M M M M M M M M M M M	á
	M WS	MI WI	
	TW KW	111 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
	F 1	SULUCICIO COCCUCIO COCCUCICO COCCUCI	
). L	(A)	BA 60.19	•
GENERAL	SCORE ***	MX WX	1
BAKE	SCORE ***	DESTRUCTION OF THE PROPERTY OF	PROMISE.
LOAF	VOL	1189 1200 1200 1200 1200 1200 1200 1200 120	
MB L	V NI	A A S S S S S S S S S S S S S S S S S S	4=600
CRU	GRA	8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ISE
скимв	COLOR	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
		∞ ∞ ∡	= S0
DOUGH	E CHAR		ISE 3
MIX	TIME	W U 4 W 4 W 4 4 W 4 4 W 4 4 4 W 4 4 W 4 W	PROM
BAKE	ABS	8 5 5 5 6 9 1	TTLE
	STD	A A	
	VARIETY	11	11

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=REDFIELD NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	ING SM %	WHT (WHT PRO	HARD- NESS	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX ABS	MIX PAT
TTE8		0		41	 m c	1.75	13.5	83		1.	.5	12.1	5	2	7.	2
ERA	Ø	~ m	. 6	9	17	0 0			4 ⊢	59°53	0.56	14.4	υu	4 1 C	56.9	m
MARQUIS		4	8	4	19	1.83			ı —		9		ט ער	7		ი
STOA	ഗ	8	5.	19	7	æ			٣	-	.5		· ις	۱ ۳		4 M
2		7	7.	22	2				3	٦.	9.		2	m	. 2	2
17		٠. ت	9		7		13.2		2	3.	. 5	12.4	2	2	4	7
818			0		1				m	7.	.5	•	2	٣	9	3
m		6	9		9				2	Ξ.	• 9		2	2	5	-1
833		ω,	4		ტ				3	2.	.5		2	٣	4.	7
0		0	5		7		•		4	0.	.5		2	4	5.	2
ND657		ω	ж Э	36	7				4	7.	9 .		2	٣	0	٣
		7	9		7				4	ش	4.		2	4	9	4
_		0	5.		8	8			m	9.	4.	•	2	4	7.	٣
72		α	2.		12	æ			m	8	.5	•	2	-1	5.	٣
46		5	4.		10	0.			7	0.	.5		2	4	7.	2
24		5.	ж Э	56	9	0.	•		2	0.	.5		2	m	5	2
N870306		56.2	9		15				2	0	. 5		2	4	8	٣
\sim		4	٠ د		10	0.			m	6	3		2	4	7	2
m		6	9		9				3	7.	. 5		2	٣	5.	7
SD3055		о Ф	7		7				4	8	.5		2	٣	8	2
SD3056		8	5.		80				4	1.	.5		2	4	0	m
SD3080		0	7		6				3	8	. 4		2	٣	8	က
SD8072		6	7.		ო	δ			٣	9.	. 5		2	2	9	7
SD8073		51.9	7.	33	4		•		m	9.	9.		5	ო	8	2
		7.	9		4	8			e	9	.5		2	2	5.	2
XW398A4		9	7.		7	6.			2	8	9.		2	٣	7.	က
AC-MINTO		4	2		11	0			٣	2.	9.		4	1	5.	2
		7	5.	23	7	6.			4	7.	9.		2	2	0	4
323		51.3	8	4	20	2.21	13.9			51.5	. 7	13.5	4	1	9.	4
8735		4.	4.	18	11	9			2	7.	9.		5	2	6	2
ID0367		ж Э	6	4	20		13.5	64	٦	4.	9.	12.9	4	7	2	2

TABLE 18

		BAKE	MIX	ропсн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	AL		1	1	-DEFIC	-DEFICIENCIES	ES	1	1
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE ***	运	TW KW	SM WP	EX A	65 FP	MC MX	ва мт	၁၁ ၁၀	CG PA
BUTTE86 CHRIS	w w	9.0	3.50	6 6 6	80		9 2	225							MI	Σ Σ Σ		! ! !
ERA MARQUIS STOA MN81150 MN88170		55735 5735 56.00 56.00		-22-25	0 8 8 8 8 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0		77876	717777			MU M		M M	MJ MI MJ MI MJ MJ MJ MJ	X XX	MJ MJ MJ MI	MI MI	
MN88320 MN88334 ND655 ND657			2.50.2.	. സ സ യ യ <i>4</i>) & & & & & & & & & & & & & & & & & & &		8 7 8 6 9	1 H H R R F			i ;	MI MI	E W	MI MJ MI MI MI	M UM IM	CCCCCC	MI Z	МІ
ND671 ND672 N87-467 N860542 N870306		0 - 2 6		12227	9 8 8 8 6 9 5 0 5 0 0		700000	12122			M DM DM	M M M M M M M M M M M M M M M M M M M	М	MI MJ	ΜX	E DE	C CMMIM	
N883034 N883136 SD3055 SD3056 SD3080 SD8072 SD8073		55.5 55.5 60.3 56.9 55.9	7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	81811818	880 880 880 70 70 75	9 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	194 188 189 179 161 165	2222222			Z Z X X		I W W	IM M IM LA IM	EEE EEE		M D M I M I M I M I M I M I M I M I M I	
XW398A4 AC-MINTO BW148 CI982309 FA987350			5.00 3.50 5.50 4.25	90000000	000000		. ထ ထ ထ ထ တ ဂ ၊	100000					E E E E		E E E			ΨI
DUSE/ DEFICIENCI: INOR FAULTING AJOR FAULTING ** 1=NO PROMI	ALUES ALUES 2=LI	55.8 TW 57.9 56.9	.25 KW 22.8 19.8 OMIS	9 80 SM WP 8 13,9 18 12.9 E 3=SOME PR	80 WP EX 13.9 58.5 12.9 56.5 ME PROMISE	7, 4	A65 FP .57 12.9 .61 12.4	নে •	•	BA 61.9 60.4	MJ MJ MIX 1 5.75-8.C UNDER 1.	TIME (MT 00 2.00-75 OVER	(MT) .00-2.	MJ MI DC 75 6	MI CC 75	MJ MI CG 80 50	LV 150 140	Σ

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=SOUTH DAKOTA STATION=SELBY NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ] LG	ING SM	WHT ASH &	WHT PRO	HARD- NESS	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX ABS	MIX
E 86	ß	61.4	2.		0	. 4	13.6	92	3	2.	- 4	1 %	5	4	1.6	3 1
CHRIS		59.4		20	2	. 5	14.7	7.1	4	6	4.	ক	2	4	8	m
ERA	S	26.7	3		11	. 7	13.8	72	2	7.	9.	ω,	5	т	5	m
MARQUIS		57.4	Ξ.	7		9 °	13.4	75	2	1.	4.	2.	2	2	m	5
	ß	0	&	56	m	9.	14.1	74	4	7.	4.	3	2	4	7.	m
15		ω.	0	28	7	.5		53	3	9.	4	3	2	4	9	2
		57.8	29.5	33	4	1.58	13.2	62	٣	62.7	0.50	12.5	Ω	т	57.9	5
818		9.	5	20	2	9.	13.8	89	٣	0	. 4	3.	2	4	9	4
332		÷	6	38	٣	.5	13.1	19	٣	9.	. 5	4	5	2	33	2
333		6		56	9	٠.4		16	٣	9.09	4.	3.	2	4	5.	2
0		2.	~ &	38	4	. 5		78	4	4.	4.	4.	2	4	8	4
2		0	m	48	2	. 7		9 8	4	٦,	. 5	5.	5	4	1.	5
LO		თ		31	4	.5		75	4	3	4	4.	5	4	5.	7
ND671		2.	ъ 6	33	7		13.7	16	٣	61.7	4.	3	2	4		2
72		9.	2	56	7	9.		98	4	8	. 5	2.	2	3	5.	4
-46		е В	0	23	7	٠.		52	е	6	.5	2.	5	e	9	3
0.5		7	· 0	38	4	9.		7.1	m	7.	.5	2.	2	٣	9	٣
\sim		ω.		29	4	.5		72	4	0	4.	ω,	5	4	0.	5
~		&	~ œ	25	က	æ		78	4	8	. 5	δ.	2	4	9	m
N883136			6	42	7	٠.	•	7.1	4	0	. 5	4.	2	4	8	4
SD3055		0		26	П		•	8 2	4	0.	. 4	4.	5	4	9.	m
SD3056		-	m	28	7	. 5	14.8	93	4	8	.5	ب	2	4	8	က
SD3080		5	<u>.</u>	44	m	٠,		74	4	8	. 4	3	2	4	7.	4
SD8072		÷	~ m	29	7	. 5		8 4	4	2.	4.	ع	2	4	7	က
_		-i	2	22	-	.5		8 9	4	1.	4.	3	2	4	, 6	4
07		ä		49	Н	.5	•	84	4	2.	4.	ω,	2	4	8	2
XW398A4		&		27	2	. 7		99	٣	4.	9 •	33	4	-1	7.	m
AC-MINTO		е В	ထ	39	٣	• 6	•	74	4	4.	.5	4	2	. 2	7	4
8		0	9	37	4	9.		8 9	4	ä	. 5	5.	Ŋ	4	0	2
I9823		5		æ	15	8	14.2	29	7	9	.5		2	٣	0	9
A98735		о В	ω	35	4	9.		29	ო	2.	4.	3	2	4	9	m
ID0367		2		7	15	٠.	13.7	09	1	56.4	9 •	2.	2	7	5.	4

QUALITY DATA OF SPRING WHEAT SAMPLES
STATE=SOUTH DAKOTA STATION=SELBY NURSERY=UNIFORM

	BAKE	MIX	роисн	CRUMB	CRUM	B LOAF	BAKE	GENERAL	AL -		DEFICIENCIES	INCIES	-	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VARIETY ST	STD ABS	TIME	CHAR	COLOR	GRAIN	TOO	SCOR	E SCORE	E	TW KW SM WP EX A6	55 FP MC	X	BA MT	၁၁ ၁၀	CG LV
	L	(ď	ć		1					; 	1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
o a) t	ה ה	7.	י ת	80	08	-				MI		2	MJ		MI
IS	58.		6	80		σ				MI		Σ	M.J		×
ERA	55.	0.	7	80		8				MI MI	LM.	, ≥	Σ.		711
MARQUIS	5.	0.	2	80		8		- 4		IM IM I'M	Σ.Υ	Σ.		Į.	
STOA	59.	. 5	7	80		8					2		2 7	T E	
MN87150	9	.5	2	80		8				±×.				1	ПП
MN88170	7.	. 2		80		9				TW LW	I M	117		T :	
MN88189	9	. 7		80		0					TH		TH CH	I I	
32	3	. 7	· Δ	75		8				T X	Z		2 7		
\sim	5.	5	5	80		00				1 1	OLI		2 2	TW TW	
ND655	8	0	7	06		000				TI.			2 2	ĭμ	,
10	1.	0.	6	80		0						±, ≥) L		H K
ND662	5.	0.	6	80		8						M	LM LM		ш
	8	. 7	6	90		œ				M					
_	5.	0.	Ŋ	80		8		- 4		IW	M	. 2	M.T.M.T	M.	
-46	9	.5	7	80		7					M	. Σ		711	
8605	9	.2	6	80		8				MI MI	MI MI	. 2	M.I. M.I		
87030	60.5	4.50	6	80	85	194	٣	3.7				. 2			
	6	0.	6	80		9						. 2	M.J.		M
L3	8	0.	6	80		ø						, Σ	Z.		111
10	9.	0.	6	80		8						. Σ	Σ.		M
10	8	. 2	6	80		6						, Σ	. T		MI
SD3080	7	. 2	6	85		7						. Σ	MJ MT		Σ
_	7	0.	6	80		7						Σ			4
0.7	٦,	0.	6	80		∞						, 2	MI		μ
307	œ	0.	6	80		8						. 2	E W		1
XW398A4	7	0.	6	80		8					MG	. 2	MJ MI		
$\mathbf{\Sigma}$	7 .	0.	6	85		8				MJ		2			M.
W148	0	0.	6	90		0						,2.	M.		MI
I982	0	.5	6	80		8				M IM IM CM CM	MI	2	MJ MI		
A98735	9		7	80		9				MI		2			
1D0367	5.	. 5	6	80		9				MI	MJ MI	2	MJ MI		
EFICIENCI	TW	X	SM	WP	EX A	65	Σ	XM	ВА	MIX TIME (MT)	DC	ပ္	SC	ΓΛ	
FAULTING	57.	9 26.0	æ	3.9	56.8	21	9 3	2,7,8	61.9	5.75-8.00 2.00-2.7	9 51	75	80	157	
MAJOR FAULTING VALUE	s 56.	23.	18	ο.	4	61 12		64,	60.4	OVER 8	.00	20	50	147	

TABLE 19 (CONT)

*** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=MORRIS NURSERY=UNIFORM

4																
>		TES WT #/B		SIZI	ING SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	ा ह्य ह्य	ASH A 65%EX	FLR PRO	MILL	MILL	MIX	MIX
BUTTE 86	S	4.	3 .	13	7	. 9	6 .	9		5.	.5	4.	5	4	10	- e
CHRIS		ω,	6	11	12	8	9	63	3	ω,	2	5	. 10	4	8	· ~
ERA	ß	2.	4.	٣	32	. 2	9	61	2	9	ω.	5	S.	-	0	ν 2
MARQUIS		7.	9	9	16	6.	5.	20	2	2.	7.	4	2	е	7.	m
	S	ω	7	2	18	0.	9	59	2	0	. 5	9	2	4	0	4"
SD3055			2.	24	9	6.	•	99	c		.5		2	4		m
iO.		2.	ش	24	7	6.	9	72	3	5.	9 .	5	2	8	6	4
m		5.	3		9	8	5	89	m	0	.5	4	2	4	8	5
_		1.	0		8	0.	9	6 9	٣	6	5	5.	5	4	5.	2
		Ξ.	7		9	0.	5.	09	3	4.	9 .	4	5	3	1.	2
~		Ξ.	0		æ	ω.	5.	09	٣	5.	5	4	2	4	0	2
15		9	7 .	4	23	0.	5.	36	2	9	9.	4.	5	2	7.	~
81		7	9.		13	0.	5.	52	3	3	9 .	۳,	2	3	0	m
818		6	ij	10	12	0.	5	48	3	2.	.5	4	2	4	0	4
832		0	6		12	6.	5.	99	3	9.	9 .	3.	5	8	0	m
83		.	8	9	18	.8		52	2	2	. 5	4	5	4	9	2
ND655		6	9	7	21	٦.	6.	59	2	4.	9 .	9	2	7	1.	ゼ
ND657		7	0	14	6	. 2		62	c	0	9.	9	2	٣	Ή.	5
ND662		Ξ.	ij	13	13	6.	9	54	m	ω	9 .	5.	2	2	7.	4
ND671		ij	8	10	14	0.	9	57	က	ω,	9.	5.	5	4	1.	5
ND672		9	5	2	23	٦.	9	09	2	0	9 .	5.	2	က	9.	4
98A4		4	9	7	20	٠,	5.	37	2	ش	8	4	2	1	9	m
-054		9	8	80	20	۲.	5.	51	2	9	. 7	4.	2	٦	9	4
-030		7.	7.	9	14	۲.	7 .	22	က	0.	9.	9	5	3	33.	2
- 3		;	9.	15	œ	0.	9	52	٣		.5	5.	5	4	8	٣
03		9	9.	6	6	۲.	7.	99	က	9	5	7.	2	4	÷	4
-46		ij	9	2	23	. 2	ŝ	30	2	8	. 7		2	2	0	٣
A987-3		5	7 .	7	20	. 2	9	38	2		9 .		2	٦	6	4
I982-30		0	3		30	۳,	9	37	2		9.		5	٣	0	2
HINT		50.5	22.0	30	2	2.01	16.6	6.5	٣	54.7		15.6	2	c	0	4
ω		2.	3			0.	9	65	m		. 5		2	4	57.3	4
3		4	5.	2	29	0.	9	39	7	6	9.		2	٦	4	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=MORRIS NURSERY=UNIFORM

WELCHENTY STD ABS TTME CHAR COLOR GRAIN VOL. SCORE SCORE TWEN SM MP EX A65 FP NC MX BA NT DC CC CG IV CC IV CC CG IV CC IV CC IV CC IV CC			משום מושם	DOOG	CRUMB	CROM	B LUAF	BAKE	GENERAL	i	1		D	-DEFICIENCIES	NCIES		1	1 1 1
S 60.3 3.25 7 80 85 212 2 3.0 HJ HI	I.	t I	TIME		COLOR	GRAI	!	SCOR!	1	: : : : :	W KE	W W	A6	Д	X	æ	ບ	υ
\$ 60.5 3.25 9 80 85 210 2 3.0 MJ MJ MJ MJ MJ MJ MJ M	8	60.	3.2	7	80			2			Σ				. <u>.</u>		[]] [1 1 1
S 60.1 3 .2.05 9 8 243 2 1.7 Mid H M M M M M M M M M M M M M M M M M M	HRIS	ъ Ф	3.0	7	80		$\overline{}$	2			, T	11			. 2	2 13		
S 57.3 3.00 5 80 90 216 2.3 3.0 HJ	RA	.09	3.2	6	80		4	2			M				. 2	2 =		
\$ 60.0 5 3.50 5 80 75 222 2 2.7	ARQUIS		3.0	2	80		\neg	7			1				. 2	2 5	7	
\$57.9 3.50 9 80 0.235 2.3.0 N3 N1		.09	3.5	2	80		\vdash	m				. Ţ	Σ		. 2	2 =	Z E	×
\$9.0 0 9 75 85 222 2.7 H3 H3 H1 H1 H1 H1 H3 H3 H1 H1 H3 H4 H3 H1 H3 H4 H3 H1 H3 H4 H3 H4 H3 H4 H3 H4 H3 H4 H3 H4 H4 H3 H4 H3 H4	D3055		3.5	6	80		~	2				2	ΞΣ		_ ≥	1 5	1 11	Ξ×
\$5.5.2 \$ 0.00 \$ 9 \$ 0.213 \$ 2.3 \$ 3.0 \$ 6.7 \$ 6.5 \$ 6.0 \$ 6.5 \$ 2.2 \$ 3.0 \$ 6.7 \$ 6.5 \$ 6.	D3056		4.0	6	75		2	2			Σ		Į K		. 2	2 -	7	
Section Sect	D3080		5.0	6	80		2	2			Σ		2		. ≥	2 =	LIL	
61.4 4.75 9 75 85 235 3 3.0 MJ MI MJ	D8072		4.2	7	80		\leftarrow	2				1I	M		. 2	2 =		
Second Street	D8073		4.7	6	75		\sim	~					M		. Σ	2 =	Σ	,
STORING STORY ST	9291		5.0	7	75		\vdash	2				11			Σ.	. C	Σ	
Color Colo	7.1		3.0	7	75		3	2					—		2	2	Σ	
Color State Color State Stat	81		2.2	2	75		\vdash	7							Σ		Н	
1	8 I 8		3.2	6	75		3	2				11	MI		Σ			
1	32		3.7	7	80		2	2				11	MJ		Σ,	IJ		Σ
61.8 3.25 9 75 85 258 3 2.0 MJ	ا ر <u>د</u>		2.7	S	75		0	7				4.3			-		н	
Secondary Seco	Ω (3.2	6	75		2	٣										
ST.9 7.00 9 80 85 212 1 2.0 MJ MI MI MJ	10657		3.7	6	75		2	٣				4I	MJ		Σ	II	M	,
61.8 3.25 5 80 80 228 3 3.3 MJ MI MJ MJ MJ MJ MJ MJ MJ MI	D662		7.0	o :	80		\vdash	7	•						2.			
12	T/90		3.2	2	80		2	m				11	M		Σ	II	MI	MI
12 59.6 4.00 5 75 80 238 2 1.7 MJ MJ MJ MJ MJ MJ MI	106/2		4. د	S.	75		2	2			MI	13	MJ		2	IJ		
136 63.1 3.75 9 80 80 261 4 3.3 MJ	W3V8A4		4.0	2	75		3	2							Σ	13		
136 59.1 5.75 9 80 261 4 3.3 MJ MI MJ MJ MI MJ MI MJ MI MJ MI MJ MI MJ MI MJ MJ MI MJ	0 0 0 0		4. c	ກ (7.0		m 1	2							Σ.	<u></u>		
13.6	~ 0		7	n (20 1		٠	4				11	MJ					Ψ
10.34 61.1 3.25 9 75 80 253 3 3.3 MJ MI MJ MI MJ	n c		4 · U	יים	75		d.	2				11			Σ	13	M	
60.0 3.75 2 60 70 224 1 1.7 MJ	-303		3.2	6	75		2	m				II	MI		Σ	H	M	
-350 59.6 4.00 5 75 85 236 2 1.7 MJ MJ MJ MJ MJ MI MI MJ MJ MI MJ	8/-46/		3.7	2	09		8	٦							2	IJ		
-309 60.3 4.50 2 70 80 227 1 2.0 MJ MI MJ	A987-350		4.0	2	75		\sim	2							2	5		
NTO 60.0 2.75 7 80 80 223 1 2.3 MJ MJ MJ MJ MJ MJ MJ MI MJ MJ MI MJ MI MJ MI MI MJ MI MI MI MJ MJ MI MI MI MJ MJ MI MI MI MJ MJ MJ MI MI MI MI MJ MJ MJ MI MI MI MI MJ MJ MJ MJ MI MI MI MI MJ MJ MJ MJ MJ MI MI MI MI MJ MJ MJ MJ MJ MI MI MI MJ MJ MJ MJ MJ MJ MJ MJ MJ MI MI MJ	O٦		4.5	2	70		$^{\circ}$	7			M				2			
57.3 3.25 7 75 85 223 2 3.0 MJ 7 54.3 5.25 5 75 85 212 2 1.7 MJ MI MJ MJ MJ MI	C-MINTO		2.7	7	80		2	1					MJ		. Σ	Σ		
7 EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1.9-11 60.4 INDER 1 75 OVER 8 00 4 50 50 13.2	148		3.2	7	75		2	2			MJ				2		M	
EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 20 FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1.9-11 60.4 INDER 1 75 0VER 8 00 4 50 50 19	036		5.2	2	75		\leftarrow	2			J MI				Σ	2	Н	
EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG L FAULTING VALUES 57.9 16.1 8 13.9 48.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 20 FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1.9-11 60.4 INDER 1.75 OVER 8 00 4 50 50 19																		
FAULTING VALUES 56.9 13.1 18 12.9 46.9 .61 12.4 2 1.9-11 60.4 HINDER 1 75 0VER 8 00 4 50 50 10	12	ALUES	-	SM	പ		65 FP	Σ	MX '	BA		IME (MI	,	DC	CC	500	J	
	FAULTING		13.	1 18	. 0		61 12.		9-1	- c		2.0	7.7.	٥٧	0 4	0 0	\supset	

TABLE 20 (CONT)

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=ST. PAUL NURSERY=UNIFORM

BUTTE 86 S 54.3 CHRIS S 54.1 ERA MARQUIS S 54.1 MARQUIS S 54.9 STOA SD3055 SD3056 SD3056 SD3056 SD3072 SD8072 SD8073 SD8073 SD8074 MN87150 MN88120 MN88320 MN88320 MN88320 MN88334 ND655 ND662 ND665 ND667 ND671 ND672 ND672 ND672 NB670 N86-0542	223 223 236 236 237 236 237 236 237	17 17 17 17 15 15 15 15 15 15 15 15 15 15 15 15 15	1		P 1		1	ρ	P	ъ				
1.5 S 54. 1.6 S 54. 2.7 S 54. 3.8 S 54. 3.9 S 55. 3.4 S 57.	23. 23. 29. 29. 29. 27. 27.	1014r	2	.10	5.		 	5.	9.		5		6 .	4
S 54. S 53. S 54. S 53. S 54. S 54. S 54. S 54. S 55. S 54. S 55. S 54. S 55.	23. 22. 22. 22. 22. 23.	2 H 4 R	80	.23	9			7.	7 .		2	М	0	4
S 53. S 54. S 55.	22. 28. 29. 29. 27.	444	7	.07	9			4	. 5		2	4	0	4
8 54. 9 50. 9 70. 9 8 9. 9 9 9 9. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	29. 28. 30. 27.	4 T	8	90.	4.			4	9.		2	m	3	2
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28. 30. 27. 27.	2	0	.08	9			3	. 5		5	4	7.	2
55 27 28 38 40 50 50 50 50 50 50 50 50 50 5	29. 30. 27. 27.)	ᆫ	00.	9			9	.5		2	4,	8	2
2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	28. 30. 29. 27.	2	7	2.03	16.2	11	m	56.8	0.61	15.1	5	٣	57.9	7
2 3 4 50 70 89 84 84 84 84 84 87 87 87 87 87 87 87 87 87 87	30. 29. 27. 28.	4	٦	.94	9			7.	.5		2	4	7.	ო
3 4 50 70 89 84 84 84 84 84 87 87 87 87 87 87 87	29. 27. 27.	2	-1	90.	9			1:	. 5		5	4	7.	2
4 55. 50 55. 70 55. 84 57. 84 57. 84 57. 84 57.	27.	4	П	.02	5.			8	9 .		2	m	9	m
50 39 50 50 54 54 54 54 55 55	27.	m	-	96.	5			5.	. 5		5	4	9	ო
70 89 80 84 84 87 87 87 87 84 87 87 87 87	28.	m	4	. 84	4.			7 .	.5		2	4	4	2
89 55. 84 56. 84 57. 84 57. 85. 842 55.	c	n	2	66.	4.			4.	.5		2	ო	œ	2
20 34 57. 57. 55. 55. 542 55.	26.	5	٦	.83	4			7 .	4.		2	4	9	7
34 57. 57. 55. 55. 54. 55.	28.	ヤ	4	.85	4.			9	. 5		5	٣	6	2
57. 55. 57. 54. 542 55.	24.	2	4	.82	4.			7.	4		2	4	m.	Н
55. 57. 54. 542 55.	25.	m	ა	.05	5.			7	.5		2	4	6	m
55. 57. 54. 542 55.	28.	4	0	.07	9			æ	. 5	9	2	4	0.	m
57. 57. 542 55.	27.	m	2	.98	9			6	. 4		2	4	8	4
57. 14 55. 542 55.	27.	c	7	.97	9			6	4.		5	4	1.	4
55. 542 55.	25.	m	2	.04	5			4	.5		2	4	&	٣
542 55.	28.	m	Н	.08	4.			0	9 .		2	2	5.	7
	28.	m	7	.02	<u>ب</u>			9.	٠. 4		2	m	7.	٣
306 56.	28.	m	m	.98	5.			ä	4		2	4	9	٣
136 56.	26.	4	2	.03	5.			7.	4.		2	4	9	m
)34 52.	23.	2	4	60.	9			8	4		2	4	2	4
7-467 54.	27.	٣	٣	.95	4.			6	5		2	m	9	2
987-350 53.	26.	m	Ŋ	90.	5.			2	.5		2	4	9	2
-309 51.	22.	Н	10	.08	4.			5.	9		5	٣	7	4
å	25.	m	4	.17	7			5	7.		2	٣	ί,	m
55.	27.	က	-1	.13	7.			4	9		2	m	2	2
7 51.	21.	٦	12	00.	4			Ţ	9		ۍ.	· cr	· ·	4

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MINNESOTA STATION=ST. PAUL NURSERY=UNIFORM

	BAKE	E MIX	DOUGH	CRUMB	CRUMB	LOAF	BAKE	GENERAL.	1		SETENSITER	TENCT	č		
VARIETY	STD ABS	TIM	E CHAR	COLOR	GRAIN	VOL	SCORE	SCORE	1	TW KW SM WP EX	A65 FP	MC MX		מב מב	CG LV
	e i	HEL	1 1 1	1	1 1	2	k	* *	1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		
ከ1114 86	ď	2		o		0	c			1					1 1 1 1 1
•		, ,				0	7				Z.		MJ		ΨI
CHRIS	60.	6.2 8				9	2			MJ MI MI	MC		MI MI		MI
	0	3 4.0				8	2			MJ MI					X :
MARQUIS	س	8 5.0				æ	2				F.W	×			1 7
STOA	7.	6 3.0			85	7	2			:	× ×	I ×			TΕ
SD3055	8	6 3.2				_	0) T	711	2 2	2 2	2	
SD3056		9 3.2	5	75	8 5	196	0	2 . C			7	E	2 2	Ξ ;	ΠŢ
SD3080	_	9 4 7				0	10				CE	E	2 :	ТШ	
SD8072					- a	7 0	4 (7 7 3		;	Σ :		MI
SD8073	. 0	, c				0	7 (DE :		MI	MC		
7 7 0 0 0 0	•				0 0	0 1	7			Ψ.	M		MJ		
T L	٠,	υ. υ. υ				7	2			MJ	MI		MJ	MI	
CT/	4	3 2.7				8	-1			MJ		Ψ	MJ MI		
817	ω	2 2.0			80	7	1			M	MI	M		E.M.	. Σ
818	9	9 3.2				8	2			E.M.		Σ.		2	
832	9	3 3.0			85	9	2			M.T	Σ	×	D E		71.7
MN88334	ω,	8 3.0				7	-) <u>⊢</u>	•	I X		- 7	
ND655	9	0 3.5			7.5	6	0			: X		21.		2	171
ND657	0	8 2.7				σ	10			× ×					T E
ND662	· œ	0 2 9				n a	1 (2 7			TH TH		I :
ND671		1 200				0 0	٦ ر	٠		E			2		Ψ
NDE		10				7	n (MI			MI		MI
4 6	. o	0.0 2				α	7			ΨI			MJ		
98A4	2	5 5.7				8	-1			IM UM	MJ	MI	MJ MI		
	7	3 4.0			82	8	2			MJ	M		MJ	M	
N87-0306	6	3 4.0				9	2			MJ			MJ		M
8 - 313	ნ	3 3.5				6	2			E.M.			N. I.	Σ	
88-303	2.	5 3.0			7.0	0	4			N.			2	Ξ Σ	T X
N87-467	9	2 4.0					2	•		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	×	H	- 7		
A987-35	g	5 5.0				0	1 0			2	MT	= = =	2 2	1 1 2	
982-	7	3 5.7				10	1			17	1 7	TIL		2	
-MINTO	_	8 2 5				٦,	4 0				2 2		THE CH	Ξ :	
W148		,,,				40	7 (E C	OE:		MI MI	Ψ	Ψ
0 C C C C C C C C C C C C C C C C C C C	,	7.7			80	∞	'n			Œ	M	MI	M		MI
100367	00	6 5.0				σ	2			MJ MI MI	MJ		MG		
(±)	ı	3	.×.	WP	×	5 FP		ЖЖ	BA	MIX TIME (MT)	Q	υ	SS		
MINOR FAULTING VALUES	5.7	. 9 23	8 9 6	<u>ه</u> ه			3 5	,7,8	61.9	8.00 2.00-	2.75 6	75	80	164	
- 1) E	7000) r	, (•	7 7	7	, 9-11	· o	.15 OVER	00.	ç	20	2	
2011	71117-7		ال ال	SOME PROF	KOMISE 4=(=G00D PRO	PROMISE.								

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WISCONSIN STATION=MADISON NURSERY=UNIFORM

	STD	TEST WT #/BU	K.WT G.	S123 LG #6	N S S S S S S S S S S S S S S S S S S S	ASH &	PRO %	NESS	WHEAT SCORE ***	EXT &	ASH (6 65%EX %	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX PAT
ω ω		5.	4.	23			٠ ،	7.0	3	2.	.5		5	4	7.	
CHRIS		55.5	19.4	æ	12	1.87	16.3	71	3	53.1	0.58	16.1	2	4	0.09) M
	ß	5.	1.	10				9	m	9	.5		S	4	7	4
MARQUIS		4	9.	2		1.96		62	2	Ξ.	9.		2	2	· &	'n
STOA	ល	7	2.	12				7.1	4	ω.	.5		2	4	0	4
SD 3055		8	5.	56	2			09	4	4	.5		2	4	0	4
SD 3056		7.	7.		4	1.80		80	4	5.	.5		2	4	-	m
SD 3080		о 8	5	21	7			7.8	4	5.	.5		5	4	4	9
SD 8072		9	4		c			75	m	ä	9.		2	m	9.	m
SD 8073			4		က			16	٣	2.	9.		2	4	2.	4
1999		5.	.	15	9			7.0	٣	4	0.57		2	4,	4	9
MN 87150		5	4	18	5	1.86		99	m	۳.	. 5	-	2	4	7.	2
~		ش	2.		2			52	m	8			2	4	0	2
~		5.	7.	40	2			61	٣	4.	. 5		2	4	φ.	က
\sim		4.	2.			1.89	•	64	က	٦.	9.		2	4	8	2
~		9	0	6	14			7.1	m	7.	4.		2	4	9	2
ND 655		7	6				5.	65	4	5.	. 5		S	4	9.	m
ND 657			9	31	4		17.1	73	4	7.	9.		2	2	0.	e
ND 662		δ.	1.	æ	œ		9	7.1	m	4	.5		2	4	7.	5
ND 671		9	0	16	∞		9	61	٣	5.	.5		2	4	4	5
		7	1.		8		9	75	4	۲.	5		2	m	8	4
-		7 .	9	23	4	6	5.	52	4	ω,	9.		2	m	9.	c
N86-0542		2	e m		ω	σ	5.	28	٣	7.	5		2	4	-	4
$\overline{}$		5	4		4		9	28	٣	3	.5		2	4	2.	5
~		ω.	4	32	2	8	5.	62	4	7 .	. 5		2	4	9.	2
\sim		ش	Ξ.	80	6	0	9	68	٣	5.	.5		S	4	0	2
_		4.	2	15	6	θ,	5.	48	m	5	9 .		2	٣	9	m
87-35		9	8	10	21	7	9	52	2	7.	9.		2	1	6	m
982		4.	Ξ.	7	13	0.	7.	09	က	3	• 6		2	٣	4	7
MINT		۳,	1.	13	9	9		69	٣	7	9.		2	7	0	4
W 14		9	3	17	m			16	ო	ش	9.		5	٣	2.	4
ID 0367		.	Ф	7	23	1.88	15.1	61	2	9	9.		2	٣	9	m

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WISCONSIN STATION=MADISON NURSERY=UNIFORM

Name		144	BAKE	MIX	роисн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	AL -		1	; ; ; ;	DEF	-DEFICIENCIES	IES			
8 6 62 5 3 00 0 7 8 5 8 6 199 4 3.7 MJ MI	VARIETY	1	SO 1	(+3 t	CHAR	COLOR	GR		SCORE		E				65	P MC	вА		ນ	LV
S S S S S S S S S S	86		2.	0	7		85	199	4	1	i i i i i		 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1	! ! !	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
S 57.6 4.75 9 80 85 210 2 3.0 HJ HI HJ	S		0	. 2	6		80	203	5						M		I.M.		×	
S S S S S S S S S S	ERA		7.	. 7	6		85	210	2						:		Σ		H	
S 60.0 5.50 9 80 82 191 2 3.3 MI	n	۷,	8	. 2	6		85	207	7					MI	M		×			
Second Color	OA		0.	. 5	6		85	191	2						:		D.W.			
Second Color	305	J	0	. 2	6		75	227	٣								M		M	
100 100	305	~	1.	. 2	7		80	214	က			MI			MI		X		E	
1,	308	ų	4	.5	6		9.0	225	4								:		•	
1.50	807	_,	9	.5	6		85	206	2			MJ		M	MI		M.			
1.5 1.5	807	•	2.	.5	6		75	208	4			MJ			MI		:		X	
150	80	J	1.	0.	თ		80	203	2			M			M			Ψ	-	
17.0 60.0 2.50 5 80 80 182 1 2.7 MJ MJ MJ MJ MJ MJ MJ M	8715	4,	7.	5	6		85	206	2			MJ			:	Σ	Σ	:	4	
189 58.6 4.75 9 80 85 211 2 3.0 MJ MI MI MI MI MI MI MI	8817	•	0	.5	2		80	182	-			MJ			M	Σ	Σ	Σ		
13	8818	u. 1	8	. 7	6		85	211	2			M					E E	:		
334 56.9 4.75 9 75 90 186 2 3.0 HJ MI NI HJ MI HJ	8832		ω.	ŝ	თ		85	201	2			MJ	MI		MI	Σ			Σ	
Second	8833	<u>.</u> ,	9	. 7	თ		9.0	186	2						:	: Σ			: ×	
Color Colo	65	-,	9	0.	6		85	218	2										7 : :	
2 57.3 8.25 9 85 80 216 1 2.7 HJ HI HI HI HJ	65	J	0	.5	6		85	190	2					MJ	M		Σ			
11 64.0 4.75 7 80 85 207 4 3.7 MJ MI	99		7	. 2	6		80	216	Н			MJ	M		M			M.I.	M	
2 58.6 6.50 9 90 85 204 1 2.7 MI	67	·	4	. 7	7		85	207	4						!			?	1	
844 59.0 7.50 9 80 85 205 1 2.7 MI	67	41	8	.5	6		85	204	7					X				M		
542 61.1 5.75 9 75 85 195 2 3.0 MJ MI	398A	4,	6	.5	0		85	205	-			×	:	•	Σ			. F		
316 62.7 6.50 9 90 85 210 3 3.3 MJ 136 59.3 4.00 9 80 85 213 2 3.3 MJ 137 60.3 3.75 9 80 85 213 2 3.3 MJ 138 60.3 3.75 9 80 85 213 2 3.0 MJ 139 80 85 216 2 3.0 MJ 130 MJ 131 MJ 132 MJ 133 MJ 134 MJ 135 MJ 137 MJ 138 MJ 138 MJ 139 MJ 14 MJ 15 MJ 15 MJ 16 MJ 17 MJ 18	6 - 054	•	1.	7.	6		85	195	2			X.	M		2			I E	M	
136 59.3 4.00 9 80 85 213 2 3.3 MJ MI MI MI MI MI MI MJ	7-030	·	2.	. 5	6		85	210	m			M						Ι Έ	1	
034 60.3 3.75 9 80 90 205 2 3.0 MJ MI MI MI MI MI MI MI MJ	8-313		9	0.	6		85	213	2			2				Σ	Σ.	1		
67 59.3 6.50 9 85 85 205 1 2.3 MJ MI MJ	8-303	•	0.	١.	6		06	205	2			MJ	M		M	Σ				
-350 59.6 4.75 9 80 85 216 2 1.7 MJ	1-467		9	.5	6		85	205	7			MJ	MI		MJ		M	MI		
-309 61.8 6.00 9 80 75 224 2 2.7 MJ MI MJ MI MI MI MI MI MI MI MI MYO 60.0 3.25 9 80 85 197 2 2.0 MJ	987-35	47	9.	. 7	6		8 5	216	2					M	M			!		
NTO 60.0 3.25 9 80 85 197 2 2.0 MJ	982-30	J	ŀ.	0.	σ		75	224	2						M	Σ	IMI	MT	X	
8 62.5 3.25 7 85 80 197 4 3.3 MJ	M	J	0.	. 2	6		85	197	2			M		MJ	C.W.		ıΞ	1	4	
57 56.5 6.50 7 80 80 198 1 2.0 MJ MI MJ MJ MJ MI MJ	W 148	4	2.	. 2	7		80	197	4			M.		2	X		217		M	
EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG LV FAULTING VALUES 57.9 20.9 8 13.9 51.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 179 FAULTING VALUES 56.9 17.9 18 12.9 49.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 169 END PROMISE 2 ELITATE PROMISE 3 SOME DROMISE 4 COOD PROMISE 2	D 036	47	9	5	7		80	198	-						X			Ε.	T X	
EFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG FAULTING VALUES 57.9 20.9 8 13.9 51.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 1 FAULTING VALUES 56.9 17.9 18 12.9 49.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1 = NO PROMISE 2 ELITTIE PROMISE 3 SOME DROMISE 4 COOD PROMISE 2) 1	ł						2			711	111	
FACILING VALUES 57.3 20.3 6 13.3 31.3 .3/ 12.9 3 2,7/,6 61.9 5.75-8.00 2.00-2.75 6 75 80 1 FAULTING VALUES 56.9 17.9 18 12.9 49.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1 =NO PROMISE 2=1,1771.E PROMISE 3=SOME DROMISE 4=COOD BOOMISE	DEFICIENCIES	27.17.0	3	3 0	SM	WP	« ×	65 FP		XX t	BA	C		(MT)	t		ບເ		Δ,	
NOTIFIED TO THE PROPERTY SECURE TO THE TOTAL TENT OF THE TOTAL TOT	MAJOR FAULTING V	ALUES		17.9	9 0	20	•	5/ 12.		9,1,	-i c	5.75-8		2.00- Gave	` .		ъ В п	0 0	5 .	
	ENO PROMIS		Ω	MOG	ا ا ا	9 11	5	44 AAAAA	10	4		a	7 . 7	N EF			2	7	D 0	

TABLE 22 (CONT)

SOUTHEAST REGION

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	53.9833333	2.4935249	50,5000000	58,2000000	6.2176667	4.6190644
K WT	24.2000000	2.7597101	21.0000000	28.4000000	7,6160000	11,4037609
LG	25.1666667	11.6518954	9.0000000	39.000000	135,7666667	46.2989222
SM	5.5000000	2.8809721	3.0000000	11.0000000	8,3000000	52,3813101
WHT ASH	1.9650000	0.1670629	1.6700000	2.1700000	0.0279100	8.5019268
WHT PRO	16.0166667	1.1016654	14.7000000	17.2000000	1,2136667	6.8782439
HARD	70.000000	4.5607017	65.0000000	76,0000000	20,8000000	6.5152881
EXTR	53.7333333	3.5612732	47.2000000	57.4000000	12.6826667	6.6276796
FL ASH	0.6283333	0.0604704	0.5400000	0.7300000	0.0036567	9,6239329
FL_PRO	15.5500000	1.0212737	14.3000000	16.9000000	1.0430000	6.5676766
MIXO	3,3333333	0.8164966	2.0000000	4.0000000	0.6666667	24.4948974
BAKE ABS	59.1000000	2.2768399	55.5000000	61.8000000	5.1840000	3.8525210
LOAF_VOL	197.0000000	16.8878655	180,0000000	223,0000000	285, 2000000	8 5725205

VARIABLE MEAN TW 57.066667 K_WT 27.166667 G 31.66667 SM 4.5000000 WHT_ASH 1.806667 WHT_PRO 15.0000000	MEAN 	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
LWT 27.1666 CWT 27.1666 LG 31.6666 SM 4.500C AHT_ASH 1.8066 AHT_PRO 15.000C	5667					
K_WT 27.1666 LG 31.6666 SM 4.5000 WHT_ASH 1.8066	1999	3.0223611	54.3000000	61.4000000	9.1346667	5.2961935
JG 31.6666 SM 4.5000 WHT_ASH 1.8066 WHT_PRO 15.0000	2999	3.7924486	23.1000000	32,3000000	14.3826667	13.9599336
MY_ASH 1.8066 WHT_PRO 15.0000		13.8948432	17.0000000	51,0000000	193.0666667	43.8784521
NHT_PRO 15.0000	000	3.6193922	0	10,0000000	13,1000000	80,4309381
MT_PRO 15.0000	2999	0.2057831	1.4900000	2.1000000	0.0423467	11.3902061
	0000	1.1916375	13.5000000	16,3000000	1.4200000	7.9442502
1ARD 74.000C	0000	12.7121989	55,0000000	92,0000000	161.6000000	17.1786471
SXTR 57.7500	0000	4.0267853	52,1000000	62,6000000	16.2150000	6.9727884
L_ASH 0.5366	2999	0.0683130	0.4200000	0.6300000	0.0046667	12,7291314
"L_PRO 14.0333	3333	1.1893976	12.1000000	15,2000000	1.4146667	8.4755174
41XO 3.3335	3333	1.0327956	2.0000000	5,0000000	1.0666667	30.9838668
SAKE_ABS 60.0500	0000	1.9086645	56.9000000	62,5000000	3.6430000	3.1784587
OAF_VOL 186.8333	3333	18.1043273	163.0000000	212,0000000	327,7666667	9,6900949

-- VARIETY=BUTTE 86

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
77	56.2500000	2.4679951	52.8000000	60.3000000	6.0910000	4.3875469
K_WT	25.6666667	2.5920391	23.0000000	29.6000000	6.7186667	10.0988536
70	27.5000000	8.8713020	17.0000000	38.0000000	78,7000000	32,2592802
-	4.1666667	2.1369761	1.0000000	7.0000000	4.5666667	51.2874254
IT_ASH	1.9500000	0.1555635	1.6900000	2.1300000	0.0242000	7.9776150
T_PRO	16.3833333	0.7859177	15.2000000	17.4000000	0.6176667	4.7970563
IRD	76.666667	8.8694231	65,0000000	89,0000000	78.6666667	11,5688128
TR	56.9500000	2.7142218	53.8000000	61,1000000	7.3670000	4.7659733
ASH	0.6000000	0.0644981	0.5200000	0.6600000	0.0041600	10,7496770
PRO	15.8000000	0.5549775	15.1000000	16,6000000	0.3080000	3.5125157
OX	3.8333333	0.9831921	2.0000000	5.0000000	0.9666667	25.6484891
KE ABS	60.6666667	1.9294213	57.3000000	62,5000000	3,7226667	3.1803648
AF VOL	195.8333333	15,7786776	180.0000000	223 0000000	248.9666667	8 0571971

- VARIETY=BW148

-- VARIETY=CHRIS --SOUTHEAST REGION

TABLE 24

SOUTHEAST REGION

-- VARIETY=FA987350 ----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	52.0500000	4.4858667	45.4000000	58.1000000	20.1230000	8.6183798
K_WT	23.1500000	4.4175785	17.7000000	28.7000000	19,5150000	19.0824126
LG	21,0000000	11.7643529	7.0000000	35.0000000	138,4000000	56.0207283
SM	11,8333333	7.2502874	4.0000000	21.0000000	52,5666667	61.2700339
WHT ASH	1,9933333	0.2014613	1.6500000	2,2300000	0.0405867	10,1067556
WHT PRO	15.0500000	1.1878552	13.7000000	16.4000000	1,4110000	7.8927256
HARD	53.1666667	9.8674549	38.0000000	67,0000000	97.3666667	18.5594763
EXTR	53.2833333	6.6381975	44.6000000	62,4000000	44.0656667	12.4583001
FL_ASH	0.6000000	0.0687023	0.4800000	0.6700000	0.0047200	11.4503760
FL_PRO	14.3000000	1.0807405	13.0000000	15,6000000	1.1680000	7.5576258
MIXO	2.8333333	0.7527727	2.0000000	4.0000000	0.5666667	26.5684466
BAKE ABS	58.0833333	1.4661742	56.5000000	59,6000000	2,1496667	2.5242597
LOAF_VOL	204.5000000	18.1190507	191.0000000	236.0000000	328,3000000	8.8601715

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CO
TW	51.4333333	3.9505274	44.0000000	55.2000000	15.6066667	7.6808698
K WT	19.4666667	2.5858590	15,2000000	22.4000000	6.686667	13.2835222
LG	5,3333333	3.4448028	2.0000000	11.0000000	11,8666667	64.5900534
SM	18.5000000	6.7749539	12.0000000	29.0000000	45.9000000	36.6213723
WHT ASH	1.9233333	0.1127239	1.7300000	2.0500000	0.0127067	5.8608588
WHT PRO	14.5166667	0.9432214	13.5000000	16,0000000	0.8896667	6.4975070
HARD	54.3333333	9.3309521	39.0000000	64.0000000	87.0666667	17.1735314
EXTR	54.4166667	7.5998465	39.7000000	61,5000000	57.7576667	13.9660272
FL_ASH	0.6400000	0.0357771	0.5900000	0.000069.0	0.0012800	5.5901699
FL_PRO	13.7000000	0.7924645	12.9000000	15,0000000	0.6280000	5.7844125
MIXO	3.5000000	0.8366600	2.0000000	4.0000000	0.700000	23.9045722
BAKE ABS	56.4333333	1.5108497	54.3000000	58,6000000	2.2826667	2.6772292
LOAF VOL	197.1666667	8.2077199	188.0000000	212,0000000	67.3666667	4.1628334

-- VARIETY=ID367 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	53.5166667	3.2908459	47.6000000	57.4000000	10.8296667	6.1491982
K_WT	19.700000	2.0746084	16.5000000	22,4000000	4.3040000	10.5310071
LG	7.5000000	3.9370039	4.0000000	15,0000000	15,5000000	52,4933858
SM	14.0000000	5.0199602	8.0000000	20,0000000	25,2000000	35.8568583
WHT_ASH	1.8700000	0.1512614	1.6800000	2,0600000	0.0228800	8.0888430
WHT_PRO	14.6166667	1.0778064	13.4000000	16.2000000	1,1616667	7.3738181
HARD	65,3333333	9.6471066	50.000000	75.0000000	93.0666667	14.7659796
EXTR	56,3166667	4.4047323	51,0000000	61,5000000	19.4016667	7.8213654
FL_ASH	0.6116667	0.0752108	0.4900000	0.700000	0.0056567	12 2961460
FL_PRO	13.4666667	1.0385888	12.2000000	14.8000000	1.0786667	7.7122930
MIXO	2.1666667	0.7527727	1.0000000	3.0000000	0.566667	34.7433532
BAKE ABS	55,7000000	1.9748418	53.5000000	58,6000000	3.900000	3.5454969
LOAF_VOL	189.1666667	18.7341044	166.0000000	216.0000000	350.9666667	9.9034913
	11111111111111					

- VARIETY=MAROUIS

A D D D D D D D D D D D D D D D D D D D			VARIETY=MN871	50		
VAPIABLE						
2004144	MEA	TD DE	MINI	MAXIMU	RIANC	
TW X	41666	37054	.400	8.7000	.1016	8.0316
LG	0.000000	.217631	4.0000	3.000000	4.400000	08815
SM MS	.833333	.678975	2.0000	3.00000	8.96666	8.02947
WHI DRO	1./93333 4 483333	0064E	1.5100	2.050000	0.031346	9.87267
HARD	.833333	0.457851	0000.9	7.000000	0.821556 09 36666	.25863
EXTR	5.500000	.174939	6.9000	1.700000	6.780000	9.32421
FL_ASH	0.556666	0.053166	0.4900	0.630000	0.002826	9.55085
FL PRO	783333	.658533	3.0000	4.400000	.433666	4.77775
8	2.33333	.516397	2.0000	3.000000	.266666	.13133
LOAF VOL	.000000	.471599	3000		000	2,341437 9,235799
	1	1	RIETY	70		
VARIABLE	MEA	STD DE	MINIM	MAXI	VARIANC	
TW	.483333	.349278	7.600000	7.8000	1.217666	.26228
K WT	5.150000	.492134	9.700000	9.2000	12.195000	3.88522
N C	4.500000	.802777	000000.	9.0000	.700000	.09296
WHT ASH	845000	163064	1 580000	3.0000	4.966666	6.32018
WHT PRO	.150000	.816700	3.200000	5.1000	0.026390	17173
HARD	.500000	.089204	4.000000	7.0000	5,900000	69949
EXTR	200000	.334974	3.100000	4.7000	8.792000	7.20095
FL ASH	.573333	.063456	0.500000	0.6900	0.004026	1.06791
MIND	166666	.595818	2.400000	3.9000	0.355000	4.56566
BAKE ARS	2.100000 R 216666	0470040	7.000000	3.0000	0.166666 3.833666	8.84222
LOAF_VOL	182,833333	18,3893085	000	217.0000000	338.1666667	3.4085694
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i i i			68		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VARIABLE	EA	TD DE	OMINI	AXIM	TANC	
TW	5.	1 00	20000	8000	1 =	
K WT	.266666	.857845	1.200000	5.20000	3 598666	6 59856 6 59856
LG	9,166666	.042651	0.00000.0	7.00000	7.366666	0.95996
SM	333333	.273952	1,000000	2.00000	18.266666	8.21856
WHT ASH	.853333	.140807	1.640000	2.08000	0.019826	7.59751
HARD	2222	832866	000000	5.70000	0.693666	.67218
EXTR	.916666	963387	2.900000		791666	1.09333U
FL_ASH	.525000	.054680	0.470000	0.59000	0.00101.0	0.41540
FL PRO	.000000	.363318	3.600000	4.50000	0.132000	2.59512
MIXO	3.333333	.816496	2.000000	4.00000	9999999	4.49489
LOAF VOL	000001.	.327780	6.50000	.00000	.763000	2,29918

SOUTHEAST REGION

1	
1	
1	
:	
!	
l	
1	
1	
!	
!	
1	
1	
1	
!	
!	
1	
I	
1	
1	
ł	
ł	
ı	
>	
V	
2	
0	
0	
-	
-	
ī	
-	
-	
-1	
-	
7	
1	
T V V	
ANA	
APV	
AAN	
APV	
ANA	
ARKI	
ARIV	
ANN	
TWWA	
NWA	
ANN	
AAN	
TWY.	
TVW.	
TVW.	
INGA	
INGA	
INGA	
INGA	
TWA	
TWWA	
INA	
INA	
TNEA	
NAV	
NAV	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	cv
TW	56.1500000	3,8103806	50.0000000	61.0000000	14.5190000	6.7860740
K WT	25,1333333	3.9439405	19.1000000	29.7000000	15.5546667	15.6920710
LG	30,3333333	11.9443152	14.0000000	49.0000000	142.666667	39.3768634
SM	6.8333333	3.4880749	3.0000000	12.0000000	12,1666667	51.0449989
WHTASH	1.8100000	0.1503330	1.5300000	1.9600000	0.0226000	8.3056886
WHT_PRO	14.1000000	1.0881176	12.6000000	15,3000000	1.1840000	7.7171464
HARD	66,1666667	8.6813977	56.0000000	79,0000000	75.3666667	13.1205004
EXTR	56.0000000	4.7438381	49.1000000	61,7000000	22.5040000	8.4711395
FL_ASH	0.5616667	0.0475044	0.5000000	0.6100000	0.0022567	8.4577541
FL_PRO	12.8500000	0.9418068	11.7000000	13.900000	0.8870000	7.3292356
MIXO	2,1666667	0.7527727	1.0000000	3.0000000	0.5666667	34.7433537
BAKE ABS	57.5166667	2.4045097	53.8000000	60,3000000	5.7816667	4.1805442
LOAF_VOL	198.3333333	15.8703077	183.0000000	225.0000000	251,8666667	8.0018358

-
C
•
0
٠.
C
-
C
7
-
-
-
- 1
2
-
-
C
r.
-
-
-
L
_
40
-
-

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
ΙW	56.8500000	2.3097619	53.0000000	59.8000000	5.3350000	4.0629057
K_WT	23.7500000	3.8625121	18.2000000	28.1000000	14.9190000	16.2632090
LG	16.3333333	8.1404341	00000009	26,0000000	66.266667	49.8393922
SM	10.3333333	5.1639778	4.0000000	18,0000000	26.666667	49.9739787
WHT_ASH	1.7416667	0.1328784	1.4900000	1.8700000	0.0176567	7.6293813
WHT_PRO	14.5500000	0.8961027	13.5000000	15.6000000	0.8030000	6.1587813
HARD	65.333333	8.9591666	52.0000000	76,0000000	80.2666667	13.7130101
EXTR	58.5000000	3.3178306	52,9000000	62,0000000	11.0080000	5.6715053
FLASH	0.4850000	0.0258844	0.4500000	0.5200000	0.000670000	5.3369811
FL_PRO	13.7666667	0.6377042	12.8000000	14,3000000	0.4066667	4.6322340
MIXO	1.6666667	0.5163978	1.0000000	2.0000000	0.2666667	30.9838668
BAKE_ABS	56.0500000	1.8875911	53.8000000	59,0000000	3.5630000	3.3676914
LOAF_VOL	182.5000000	11.5195486	170.0000000	202,0000000	132.700000	6.3120814

-1
S
5
9
z
н
>
H
闰
H
œ
K

49.1000000 62.0000000 16.1000000 28.80000000 1.59000000 21.0000000 1.5900000 2.18000000 14.0000000 16.9000000 15.9000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.5000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.50000000 16.500000000 16.500000000 16.500000000 16.500000000 16.500000000 16.5000000000000000000000000000000000000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
23.3666667 4.5723809 16.1000000 28.800000 23.0000000 11.7303026 7.0000000 38.000000 9.5000000 6.6558245 4.000000 21.000000 1.903333 0.2018580 1.590000 2.180000 15.316667 1.0534072 14.000000 16.900000 67.333333 6.9474216 59.000000 78.000000 67.350000 0.0605805 0.4600000 0.6430000 14.833333 1.0576704 13.500000 16.500000 59.016667 1.9333046 55.800000 2.8000000 201.666667 31.2452663 180.00000 28.000000	TW	57.1166667	4.4228573	49.1000000	62.0000000	19.5616667	7.7435494
23.0000000 11.7303026 7.0000000 38.000000 9.500000 6.6558245 4.000000 21.000000 1.903333 0.2018580 1.590000 2.1800000 15.316667 1.0534072 14.000000 16.900000 67.333333 6.9474216 59.000000 78.000000 0.5350000 0.0605805 0.4600000 0.630000 14.833333 1.0576704 13.500000 16.500000 59.0166667 1.9333046 55.800000 61.800000 201.666667 31.2452663 180.00000 78.00000	K_WT	23.3666667	4.5723809	16.1000000	28,8000000	20.9066667	19.5679637
9.5000000 6.6558245 4.0000000 21.0000000 1.903333 0.2018580 1.5900000 2.1800000 2.1800000 15.316667 1.0534072 14.0000000 16.9000000 67.333333 6.9474216 59.0000000 78.000000 0.5550000 0.665805 0.4600000 0.6300000 14.833333 0.0576704 13.5000000 16.5000000 3.333333 0.8164966 2.0000000 0.58.000000 2.8164966 7.85.8000000 2.8164966 7.8000000 2.8164966 3.8000000 2.8164966 7.80000000 2.8164966 7.80000000 2.80000000 2.8164966 7.80000000 2.80000000 2.8164966 7.80000000 2.800000000 2.80000000 2.80000000 2.80000000 2.80000000 2.80000000 2.80000000 2.80000000 2.80000000 2.800000000 2.800000000 2.800000000 2.800000000 2.800000000 2.800000000 2.800000000 2.800000000 2.800000000 2.80000000000	LG	23.0000000	11.7303026	7.0000000	38,0000000	137,6000000	51,0013158
1.903333 0.2018580 1.5900000 2.1800000 15.316667 1.0534072 14.0000000 16.9000000 67.333333 6.9474216 59.0000000 78.0000000 40.5350000 0.0605805 0.4600000 0.6300000 16.5000000 14.833333 1.0576704 13.50000000 16.5000000 259.016667 1.933304 55.80000000 258.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.0000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.00000000 278.000000000000000000000000000000000000	SM	9.5000000	6.6558245	4.0000000	21.0000000	44.3000000	70.0613107
15.3166667 1.0534072 14.0000000 16.9000000 67.333333 6.9474216 59.0000000 78.0000000 78.0000000 67.333333 6.9474216 59.0000000 78.0000000 67.00000000 67.0000000 67.0000000 67.00000000 67.00000000 67.0000000000	WHT_ASH	1.9033333	0.2018580	1.5900000	2.1800000	0.0407467	10,6055010
67.333333 6.9474216 59.0000000 78.0000000 57.616667 7.0499409 44.5000000 64.4000000 16.530000 16.530000 14.833333 1.0576704 13.5000000 16.500000 3.333333 0.8164966 55.8000000 61.8000000 201.666667 31.2452663 180.0000000 258.000000	WHT PRO	15.3166667	1.0534072	14.0000000	16.9000000	1.1096667	6.8775223
57.6166667 7.0499409 44.5000000 64.4000000 0.5350000 0.0605805 0.4600000 0.6300000 14.8333333 1.0576704 13.5000000 16.5000000 3.3333333 0.8164966 2.0000000 4.0000000 59.0166667 1.9333046 55.8000000 61.800000 201.6666667 31.2452663 180.000000 28.000000	HARD	67.3333333	6.9474216	59.000000	78.0000000	48.2666667	10.3179528
0.5350000 0.0605805 0.4600000 0.6300000 14.8333333 1.0576704 13.5000000 16.5000000 3.3333333 0.8164966 2.0000000 4.0000000 59.0166667 1.9333046 55.8000000 258.0100000 258.0100000 258.0100000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.010000000 258.01000000 258.01000000 258.01000000 258.01000000 258.010000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.01000000 258.010000000 258.010000000 258.010000000 258.010000000 258.010000000 258.010000000 258.0100000000000000000000000000000000000	EXTR	57.6166667	7.0499409	44.5000000	64.4000000	49.7016667	12,2359402
14.833333 1.0576704 13.5000000 16.5000000 3.3333333 0.8164966 2.0000000 4.0000000 59.0166667 1.9333046 55.8000000 61.8000000 201.6666667 31.2452663 180.0000000 258 0000000	FLASH	0.5350000	0.0605805	0.4600000	0.6300000	0.0036700	11.3234626
3.333333 0.8164966 2.00000000 4.0000000 59.0166667 1.9333046 55.8000000 61.8000000 201.6666667 31.2452663 180.0000000 258.000000	FL_PRO	14.8333333	1.0576704	13.5000000	16,5000000	1.1186667	7,1303622
59.0166667 1.9333046 55.8000000 61.8000000 201.6666667 31.2452663 180.0000000 258 0000000 47	MIXO	3.333333	0.8164966	2.0000000	4.0000000	0.6666667	24.4948974
201.6666667 31.2452663 180.0000000 258 0000000 97	BAKE_ABS	59.0166667	1.9333046	55.8000000	61,8000000	3.7376667	3,2758621
	LOAF VOL	201.6666667	31.2452663	180.0000000	258,0000000	976.2666667	15.4935205

TABLE 28

SOUTHEAST REGION

TW 27.5166667 LG 34.1666667 SM 3.5000000 WHT_ASH 1.9750000 WHT_PRO 16.4166667 HARD 74.5000000 EXTR 55.2500000	1	4.5079559 4.3087895 1.6002874	֡		VARIANCE	
OE HED	-	187895 102874	47.6000000	60.800000	20.3216667	8.1102655
3 27 2	-	02874	20.2000000	33.4000000	18.565667	15.6588351
27 7 1			14.0000000	48.0000000	134.5666667	33.9520605
17		3.0822070	0	9,000000	9.5000000	88.0630572
5 7 1		0.1501666	1.7600000	2.2000000	0.0225500	7.6033708
<i>C</i> 10		0.7704977	15.5000000	17.3000000	0.5936667	4.6933869
ın ·		30349	62.0000000	86,0000000	62.3000000	10.5946777
		5.5251244	47.4000000	61,9000000	30.5270000	10.0002252
		0.0651153	0.5000000	0.000069.0	0.0042400	11.0364885
FL_PRO 16.1000000		0.4732864	15.5000000	16,8000000	0.2240000	2.9396670
MIXO 4.0000000		1.0954451	3.0000000	5.0000000	1.200000	27.3861279
BAKE_ABS 60.6333333		0.4457204	60.00000.09	61.1000000	0.1986667	0.7351078
LOAF_VOL 206.833333	3 2	5.2936092	190.000000	257.0000000	639.7666667	12.2289811

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW		2.6425367	51.6000000	59.6000000	6.9830000	4.7314891
K_WT	25.3666667	3,4529215	21.1000000	29.9000000	11.9226667	13.6120426
LG		10.5719755	8.0000000	36.0000000	111.7666667	48.4212620
SM		3.7771241	2.0000000	13.000000	14.2666667	56.6568619
WHT ASH	1.8416667	0.1444184	1.5800000	1.9800000	0.0208567	7.8417216
WHT PRO	7	0.8893818	14.1000000	16.4000000	0.7910000	5.7194972
HARD	9	7.4139508	54.0000000	75.0000000	54.9666667	10.8762115
EXTR	58.0666667	5.9922172	48.1000000	63,9000000	35.9066667	10.3195474
FL_ASH		0.0746771	0.4300000	0.6200000	0.0055767	14.3150957
FL_PRO	7	0.7949843	13.4000000	15,4000000	0.6320000	5.4080563
MIXO		1.4719601	4.0000000	7,0000000	2.1666667	28.4895512
BAKE_ABS	വ	1.1461530	55,3000000	58,6000000	1,3136667	2.0078592
LOAF VOL	٦	18.7661042	169.0000000	216,0000000	352,1666667	9.8166195

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.9833333	3.7917894	51,6000000	62,6000000	14.3776667	6.5394470
K_WT	24,6333333	4.1005691	18,7000000	29.4000000	16.8146667	16.6464238
LG	24.6666667	9.8319208	10.0000000	33.0000000	96.666667	39.8591384
SM	6.1666667	4.7504386	2,0000000	14,0000000	22.5666667	77.0341391
WHT_ASH	1.8833333	0.1963331	1.5100000	2.0800000	0.0385467	10.4247637
WHT_PRO	15.2833333	1,3556056	13.7000000	16.6000000	1.8376667	8.8698297
HARD	65.6666667	6.7131711	57.0000000	76.0000000	45.0666667	10.2231032
EXTR	58.2666667	3.2004166	53.4000000	61.700000	10.2426667	5 4927059
FL ASH	0.4900000	0.0644981	0.4100000	0.600000	0.0041600	13 1628698
FL_PRO	15.0166667	1.2952477	13.4000000	16.4000000	1.6776667	8.6254010
MIXO	4.5000000	0.8366600	3.0000000	5.0000000	0.700000	18 5924450
BAKE ABS	60.2833333	2,4895113	57.3000000	64.000000	6.1976667	4 1296843
LOAF VOL	197.6666667	17.5233178	181.0000000	228.0000000	307.0666667	8.8650849

VARIETY=ND671 -

SOUTHEAST REGION

2
-
9
z
П
\Rightarrow
H
E
Н
ĸ
d
>
-
i

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CA
TW	55.9500000	3.9210968	49.0000000	59,8000000	15.3750000	7.0082159
K_WT	21.9333333	3.5200379	15.6000000	25.2000000	12.3906667	16.0488049
rc	18.1666667	9.8674549	5.0000000	33,0000000	97,3666667	54.3162656
SM	11.0000000	6.4187226	5.0000000	23.0000000	41.2000000	58.3520238
WHT ASH	1.8650000	0.1975601	1.6100000	2,1200000	0.0390300	10.5930358
WHT PRO	15.0166667	1.2155931	13.3000000	16.5000000	1.4776667	8.0949598
HARD	74.5000000	9.5864488	60.0000000	86,0000000	91,9000000	12.8677165
EXTR	54.4166667	3.3078190	50.3000000	58.5000000	10.9416667	6.0786873
FL_ASH	0.5883333	0.0549242	0.5400000	0.690000	0.0030167	9.3355564
FL PRO	13.6000000	1.2132601	12.0000000	15.5000000	1.4720000	8.9210299
MIXO	3.6666667	0.5163978	3.0000000	4.0000000	0.2666667	14.0835758
BAKE ABS	57.0166667	1.8861778	55.0000000	59,3000000	3.5576667	3.3081166
LOAF_VOL	192.5000000	19,9874961	168,0000000	226.0000000	399.5000000	10.3831149

-- VARIETY=N86-0542 ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	ΛΩ .
TW	53.5833333	4.0106940	46.1000000	57.4000000	16.0856667	7.4849655
K_WT	25.3666667	4.5697556	18.300000	30,600000	20.8826667	18.0148054
LG	23.5000000	12.6134848	8,0000000	38.0000000	159,1000000	53.6744036
SM	8.5000000	6.4420494	2.0000000	20.0000000	41.5000000	75.7888160
WHT ASH	1.9783333	0.1650959	1.6700000	2.1700000	0.0272567	8.3452030
WHT_PRO	14.3333333	0.9831921	13.0000000	15.5000000	0,9666667	6.8594796
HARD	59,3333333	7.5277265	51,0000000	71.0000000	56.666667	12,6871795
EXTR	56.3000000	5.3310412	46.0000000	60.900000	28.4200000	9.4689897
FL_ASH	0.5733333	0.0828654	0.4900000	0.7200000	0.0068667	14.4532592
FL_PRO	13.6000000	1.0059821	12.5000000	14.8000000	1,0120000	7,3969273
MIXO	3.5000000	1.0488088	2.0000000	5.0000000	1.1000000	29.9659671
BAKE ABS	58.5000000	1.6480291	56.5000000	61,1000000	2.7160000	2.8171438
LOAF VOL	196.3333333	19.6333050	183.0000000	235.0000000	385,4666667	9586666*6

-- VARIETY=N87-0306 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	54.2500000	4.0618961	47.0000000	58,3000000	16.4990000	7.4873661
K WT		4.7659906	17.2000000	31,1000000	22,7146667	18,7883993
LG	24,3333333	10.6144556	6.0000000	38.0000000	112.6666667	43,6210502
SM		5.4680892	3.0000000	15,0000000	29.9000000	72.9078566
WHT ASH	1.9316667	0.2129241	1.5500000	2.1900000	0.0453367	11.0228173
WHT PRO		1.1826524	13.8000000	17.0000000	1.398667	7.7466314
HARD		7,3959448	55.0000000	73,0000000	54.7000000	11.4665811
EXTR	57.0666667	4.3715748	50.900000	61,3000000	19,1106667	7.6604699
FL_ASH		0.0742069	0.4900000	0.690000	0.0055067	13.1728257
FL_PRO	14.5000000	1.0954451	13.1000000	16,1000000	1,200000	7.5547939
MIXO	4.3333333	1.0327956	3.0000000	5.0000000	1.0666667	23.8337437
BAKE ABS		2.0284641	58.2000000	63,1000000	4.1146667	3,3546816
LOAF VOL	208.1666667	28,7083031	178.0000000	261,0000000	824.1666667	13.7910183
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

7
9
4
1
7
8
Z
11
\succ
₽
闰
\vdash
24
Ø
>
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
2	52.8500000	5.7916319	41.8000000	58,6000000	33.5430000	10.9586223
K_WT	24.7000000	4.7728398	16.3000000	30,1000000	22.7800000	19,3232382
Ö	19.0000000	9.7775252	5.0000000	34.0000000	95,6000000	51,4606592
Σ	9.5000000	7.0922493	3.0000000	23.0000000	50,3000000	74.6552557
WHT ASH	1.9866667	0.1731666	1.7400000	2.2700000	0.0299867	8.7164389
HT_PRO	14.3666667	0.8936815	13.5000000	15.6000000	0.7986667	6.2205211
IARD	47.6666667	9.8522417	30.000000	57.0000000	97,0666667	20,6690385
EXTR	56.1666667	4.6727579	48.6000000	60.900000	21.8346667	8.3194503
FL_ASH	0.5933333	0.0893682	0.5200000	0.7600000	0.0079867	15.0620482
PRO	13.5833333	0.8183316	12.7000000	14.6000000	0.6696667	6.0245274
OXI	2.6666667	0.5163978	2.0000000	3.0000000	0.2666667	19.3649167
AKE ABS	57.8000000	1.5594871	56.2000000	60.000000	2,4320000	2.6980746
OAF VOL	196.8333333	17.0928835	178.0000000	224.0000000	292,1666667	8.6839374

- 1	
- 1	
i	
- 1	
- 1	
- 1	
- 1	
4	
m	
0	
3	
-1	
8	
8	
z	
- 11	
\rightarrow	
60	
2	
K	
>	
- 1	
- i	
-i	
- 1	
1	
- 1	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	53.0166667	3.7112891	46.6000000	58.1000000	13.7736667	90820007
K WT	23,4833333	3.1141077	19.4000000	28,6000000	9.6976667	13.2609270
LG	16.0000000	7.2387844	8.0000000	25.0000000	52,4000000	45.2424027
SM	6.6666667	3.0110906	3.0000000	10,0000000	9.0666667	45.1663592
WHT ASH	2.0466667	0.0997330	1.8700000	2.1700000	0.0099467	4.8729468
WHT_PRO	16.1500000	1.0153817	14.4000000	17.4000000	1.0310000	6.2871932
HARD	65,0000000	7.8740079	56.0000000	78.0000000	62,0000000	12,1138583
EXTR	56.4000000	3.6027767	49.5000000	59.200000	12,9800000	6.3879020
FL_ASH	0.5516667	0.0371035	0.4900000	0.5900000	0.0013767	6.7257025
FL_PRO	16.1166667	1.0515069	14.6000000	17.5000000	1,1056667	6.5243445
MIXO	3.1666667	0.9831921	2.0000000	4.0000000	0.9666667	31.0481710
BAKE ABS	59.4333333	2.5216397	55.5000000	62,5000000	6.3586667	4.2428037
LOAF_VOL	207.3333333	22,8881338	192.0000000	253,0000000	523.8666667	11.0392928

- VARIETY=N88-3136

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
M	57.1000000	3.4974276	51.0000000	60,7000000	12.2320000	6.1250922
K WT	25,1833333		19,8000000	29 5000000	10 1176667	12 6306869
Ü	30,8333333		15.000000	42 0000000	1000/11:01	22 26 44 202
1 ×	2222222			42.000000	1000000	16784731
1.10	4.00000		7.000000	8.0000000	7.066667	61.3458524
VHT_ASH	1.8833333	0.1262801	1.7800000	2.0600000	0.0159467	6.7051387
WHT PRO	15.1833333	0.9745084	13.8000000	16.5000000	0.9496667	6.4182772
IARD	65.0000000		55.0000000	74.0000000	49.2000000	10.7911864
SXTR	56.1666667		50.2000000	60.000000	11.4906667	6 0352319
L ASH	0.5266667		4900000	000000000000000000000000000000000000000	~ O O O O O O O O	
000				0000000	1000100000	7778668.8
L PRO	14.6000000	0.8809086	13.3000000	15.9000000	0.7760000	6.0336207
11 X O	2.8333333	0.7527727	2.0000000	4.0000000	0.5666667	26.5684466
SAKE ABS	58.5500000	1.5833509	55,5000000	60,000000	2,5070000	2.7042714
LOAF_VOL	204.1666667	23.4044155	183,0000000	246.0000000	547.7666667	11,4633872

TABLE 31

SOUTHEAST REGION

						1
E	. V 6 6 6 6 6 6 6 6 6 6	2.9049383	52.8000000	60.9000000	8.4386667	1 20 -
LG	.166666	.717385	4.000000	1.40000 6.000000	.1//bbb	2/61/1.
	.000000	.529822	1.000000	7.000000	6.400000	3.245553
WHT ASH	.848343	.153025	1.580000	2.000000	.023416	.279083
HARD	833333	90/0/T°		. 600000	1.370666	.520908
EXTR	.016666	3,313256	2.100000		999996.	7.201491 F 911031
FL ASH	.515000	.037815	0.460000	0.570000	0.377666	242784
FL_PRO	.250000	.952365	.900000	300000	.907000	.245019
0	.000000	.894427	2.000000	4.000000	.800000	.814239
BAKE ABS	59.1166667	1.133872	000006.	60.500000	1.285666	1.918025
				00000000	999999	967997.
			VARIETY=SD30	5		
IABL	MEA	TD DE	INI	AXIM	IANC	^ 5
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	56.7166667	3.0155707	10	1 1000		
K_WT	9999	.525147	000	30000.	2.426666	2.74149
	99999	.648094	4.0000	8.00000	.566666	39938
	33333	.732520	1.0000	8.00000	7.466666	3.05815
WHT ASH	01666	.170577	1.5300	2.03000	.029096	.46775
WHIPE	16666	.881854	4.0000	.20000	0.777666	.75748
EXTR	00000	006701.	7.0000	3.00000	.566666	.62778
FL ASH	81666	.040207	0.5200	0.0000	0004000	91251
FL_PRO	99999	.744759	3000	10000	.554666	.18394
0.	99999	.752772	2.0000	4.00000	.566666	.77176
E_ABS	59.833333	.580717	57.9000	61.80000	2.498666	2.64186
LOAF VOL	999999	.383974	0000.6	.00000	9999999	6643
				80		1 1
H	MEA	STD DE	N	AXIM	υ	
i	58.550000	2.3813862	.400	62.0000000		4.0672693
.I.M.Y.	200000	.905856	3.0000	1.50000	.444000	0.683294
	833333	.867454	1.0000	4.00000	.366666	.053162
2	33333	.875181	0000	00000.6	.266666	3.909646
WHI DEC	748555	.183675	1.4300	1.94000	.033736	0.505744
HARD	500000	885871		. 80000	1.513666	.050021
EXTR	016666	1,0000.	2000		000007.	434/83
ASH	496666	.037738	0.4300	0.00000	0011286	000104.
FL_PRO	650000	.253395	3.2000	40000	571000	. 555599
MIXO	4.166666	.169045	0000	6.00000	999999	.057084
BAKE ABS	59.266666	.488105	7.3000	00000	100666	199152
LOAF VOL				00000	000007.	701001.

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

SOUTHEAST REGION

TABLE 32

1		D DE	INI	AXIMU	VARIANCE	CV
	.083333	.502		1.800	2,2656	.135306
WT	000	.255232	.7000	.000000	18.107000	5.558435
	000	.552945	5.0000	9.000000	4.000000	.443449
SH WHT ACH	222	180/00.	. 0000	000000.	.800000	6.922698
WHT PRO	15.0833333	.307542	3.2000	6.300000	.709666	0.064318 8.668788
HARD	333	.033254	.0000	4.000000	9.466666	.213870
EXTR	333	.934166	1.6000	.600000	.477666	.636210
FL ASH	333	.041190	0.4800	0.600000	0.001696	.511966
PRO	.266666	.358921	.2000	5.700000	.846666	9.525148
MIXO BAKE ABC	3.000000	.095445	2.0000	5.000000	.200000	.514837
LOAF_VOL	. 500000	0289	00	00000	7.500000	2.4453432 10.1699149
			- VARIETY=SD80	73	1 1	
				-		
VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	۸۵
	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1 1
E	.016666	.324705	.100000	.000000	.053666	5.935207
.I.w	0000000	4.109501	1.000000	2.900000	16.888000	.220374
		.414113	4.000000	5.000000	7.766666	0.225432
WHT ACH	862223	177288	550000	0000000	3.766666	8.498478
PR	000000	989949	3 600000	5 900000	0.031466	SCHERGE S
HARD	99	.571975	000000.	000000.6	. 766666	880055
EXTR	.816666	3.685331	2.100000	1.100000	13.581666	6.374167
FLASH	0.585000	.047644	0.490000	0.620000	0.002270	8.144361
FL PRO	33333	.864098	2.800000	4.900000	0.746666	6.113906
	3.666666	.032795	2.000000	5.000000	1.066666	8.167151
BAKE ABS	104 323233	0 0	58.6000000	62.50	2,0670	2.370497
		4.5/1000	000000.0	00000	99999	12.5442120
		1	- VARIETY=SD80	174		
VARIABLE	A	[1]	INI	AXIM	VARIANCE	CV
 	56.2000000	.410571	1.600	1.8000	1 632	6 0686331
WT	50000	4.0411632	.5000	00000	1000	6.004606
	999999.	.691846	4.0000	9.000000	7.466666	7.762256
	.000000	.756809	1,0000	8.000000	7.600000	.920243
WHT ASH	.823333	.130332	1.5800	1.960000	0.016986	7.148057
WHT FRO	. 833333	025020	3000	.900000	1.050666	6.910249
FYTE	716666	170120	0.0000	4.000000	5.466666	7.600570
ACH	7./16666 0 545000	0710170	4.0000	2.700000	0.049666	5.492557
PRO	816666	893121	2.2000	4 600000	0.002390	9070/6.
MIXO	4.333333	505545	2.0000	000000:5	2.266666	743353
BAKE ABS	.616666	.141417	8000	1.800000	585666	653056

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

SOUTHEAST REGION - VARIETY=STOA

TABLE 33

VARIABLE T	MEAN 5.8000000 4.4500000 7.666667 1.871667 5.133333 0.500000 6.283333 0.5383333 3.3333333 7.666667	STD DEV 4.2218479 4.5271404 14.3213128 6.2182527 0.1747474 1.2388166 6.4109282 4.765460		MAXIMUM 60.1000000	VARIANCE 17.8240000	7.5660357
22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2400711000045	4.2218479 4.5271404 14.3213128 6.2182527 0.1747474 1.2388166 6.4109282	28	60.1000000	17.8240000	.56
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40011000	4.5271404 14.3213128 6.2182527 0.1747474 1.2388166 6.4109282 4.7654660	7			
2 7 7 7 1 1 2	071509048671	14.3213128 6.2182527 0.1747474 1.2388166 6.4109282 4.75660		29.8000000	20.4950000	8.51
1 2 1	7 10 3 4 5 6 6 7 1	6.2182527 0.1747474 1.2388166 6.4109282 4.75460	5.0000000	46.0000000	205,1000000	69,8600624
1 2 1	1209048661	0.1747474 1.2388166 6.4109282 4.7654660	0	18,0000000	38.6666667	. ,
1 5 1	20904E0L	1.2388166 6.4109282 4.7654660	1.6400000	2.0800000	0.0305367	0.
5 1	09048661	6.4109282 4.7654660	1.1	16.6000000	1.5346667	8.1860130
1 5	904M0L1	4.7654660	59.0000000	78.0000000	41.1000000	9.0935151
1	0400ri	0 0425507	$\overline{}$	62,2000000	22,7096667	8.4669222
1	4 m 0 1 1	- 0000 # 0 • 0	0.4900000	0.5900000	0.0018967	8.0899201
	mori	1.1621819	12.8000000	16.1000000	1.3506667	8.1461345
	7.6	.816496	2.0000000	4.0000000	0.6666667	24.4948974
2	7.666666	8021	0	60.5000000	1.6590000	.170213
		.970806	171.0000000	217.0000000	255.0666667	8.5101990
VARIABLE	MEAN	Ω	MINIMUM	XIM	ARIA	CV
TW 5	작	. 2	44.5000000	58.6000000	27.2670000	9.6610200
WT 2	5.6500000	4.9358890	6.	31,0000000	24.3630000	19.2432319
2	0	.640987	7.0000000	31,0000000	74.6666667	.496660
	7.1666667		1.0000000	20.0000000	43.7666667	.311228
	2.0100000	0.2063008	1.7300000	2.3600000	0.0425600	1.4
PRO 1	4.7166667		13.6000000	15.8000000	0.8896667	.4092
S.	5.1666667		37.0000000	66.0000000	106.5666667	
S			43.8000000	58.6000000	29.0080000	.1429
FL ASH					0.0094700	4.4168
			13.3000000	15.1000000	0.7186667	5.9840619
	3.0000000		2.0000000	4.0000000	0.4000000	21.0818511
ABS 5	ω.			61.8000000	4.4986667	3.6215243
20	0.1666667	20,1337196	183.0000000	238.0000000	405.3666667	10.0584778

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=WILLISTON NURSERY=UNIFORM

	C	TEST	1000	SIZI	NG	1	WHT	HARD-	WHEAT	FLR	ASH @	FLR	MILL	MILL	MIX	MIX
	010	#/BU	. ເ	2 æ	E ar	E	가 자 %)	NE S	* * * * * * * * * * * * * * * * * * *	Ή Χ ≫	€ %	X %	CHAR	SCORE **	ABS	PAT
		0.	80	32	4	.5	1 -	85	4	7.	.5	15.3	5	3	1 8	2
BUTTE 86	ន	61.5	33.3	20	Н	1.70	17.2	11	4	9.95	0.53		2	m	59.0	7
CHRIS		0	2.	6	7	٠.7		63	m	9	4		2	٣	9	2
*CUTLESS		0	8	17	۲	9.		99	4	5.	.5		2	2	0	4
ERA	ഗ	9.	4.	13	7	. 7		52	4	3.	٣.		2	4	8	m
MARQUIS		0	5.	24	4	8		57	4	4	. 5		2	2	5	2
*NORDIC		ش	5.	20	7	.5		99	4	7.	4.		2	4	8	7
STOA	ស	i.	7.		٦	. 7		63	4	8.	4.		5	4	6	7
*VANCE		1	.	37	0	9		28	4,	2.	۳,	15.3	2	4	7.	2
SD3055		0	<u>.</u>		7	. 7	•	99	4	8	.5		2	4	0	7
SD3056		9	4		0	. 7		77	4	3	9.	9	5	н	0	2
SD3080		H	ij.		0	9.		99	4	9	.5	7.	2	٣	4	٣
SD8072		-	2		0	9.	•	73	4	9	.5	9	2	4	6	2
SD8073		ij.	2.		0	9.		84	4	9	.5	5.	S	4	0	m
SD8074		0	6		٣	9 .		8 9	4	9	.5	5.	Ŋ	٣	0	m
MN87150		8	о Ф		7	9.		20	4	5.	.5	5.	5	2	5.	-
MN88170		9	· Q	13	7	٠.		26	m	8	. 5		2	4	5.	٦
MN88189		თ	2	49	4	9.		63	₽"	0	٠ 4	5.	2	4	9	٣
MN88320		;	2.	52	4	9.	4	29	ታ	ļ.	4 .	5.	2	4	8	2
MN88334		0	9	14	2	.5		48	4	6	4.	4	2	4	4	٦
ND655		0.	6	36	2	. 7		7.0	4	9.	.5	7 .	2	4	6	2
ND657		6	6	31	٣	9.		6.7	4	5.	.5	9	2	٣	ä	m
ND662		0	2.	43	4	• 9		75	4	0.	.5	9	2	4	0.	7
ND671		Η.	÷		2	9.		69	4	7.	4.	7.	2	4	1.	e
ND672		-	<u>;</u>		e	. 7	7 .	81	4,	Ξ.	4.	9	5	4	3,	9
XW398A4		0	0	29	4	. 7	9	48	4	5.	5	9	2	٣	-	4
N86-0542		6	φ		9	. 7	5.	54	4	7.	4.	4.	2	٣	6	٣
N87-0306		7.	о Ф		9	. 7	9	53	4	9	4.	9	2	4	9	9
N88-3136		;	0		3	9	°	63	4	9	.5	9	2	m	8	2
N88-3034		7	7.		9	8.	7.	69	4	9	.5	7 .	2	4	6	2
		ж Ж	0		7	. 7	5.	41	4	0.	4.	5.	2	4	1.	4
FA987-350		0	÷		3	. 7	9	09	4	0	.5	5.	2	2	8	2
_		4.	4	15	10	8.		99	m	8	.5	9	2	2	0	2
AC-MINTO		ω	7.		c	. 7	7 .	71	4.	귝.	.5	ģ	2	2	7.	٣
BW1.48		6	9		က	φ.	7.	74	4	0.	9.	9	5	2	0	m
ID367		7	7 .		7	9.	5.		4	4	. 5	4.	2	2	9	က

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=WILLISTON NURSERY=UNIFORM

TABLE 34 (CONT)

	BAKE	(E MIX	х роисн	H CRUMB	CRUMB	3 LOAF	BAKE	GENERAL	ا		QD	EFICI	-DEFICIENCIES	1	1	1
VARIETY	STD AB	S TIM	TIME CHAR	COLOR	GRAIN	CC	SCORE ***	SCORE		TW KW SM	WP EX A65	स	MC MX B	BA MT	DC CC	AT 50
NOOTM& +	r, c			0		1 0	 	1				1 1	1		1	
BUTTE 86	S 59	.0 2	75 9	0 8	0 0	190	7 -	3.0			ΞŻ		Ψ.	:		MI
	56	2 4.	0	75		192		•		E.W.	ΕX		MI MU	TW P	7	I E
J	0	0 4.	0	80		216				2	ΥX			י כ	Tω	Tω
ERA	8	5.	0	80		216				MI	2		I.M.	, r.		
MAROU	2	0 4.	0	80		197				MI	MJ		LM IM	ם מ		M
* NORDIC	58	6 4.	0	80		190								ט ט		IΣ
STO	6	3 5.	0	80		201								ם ה		ıμ
* VANCE	_	9.	0	80		187								ם		!
SD3055	0	3 2.	0	80		211								JMI		IW
SD3056	0	5 2.	2	80		202					MJ MJ					Ψ
SD3080	-	m	2	80		206					M					Ψ
SD8072	9	е е і	2	80		180							MI MJ	J		M
SD8073	0	5 	0 (80		189							M	_		MI
SD80 /4	O 1	20 c	0 0	75		184					MI MI			D	MI	MI
OCT/9NW	n u	ກໍເ	.	75		197					M					MI
O LOOM	0 0	7 .	ຄຸ	75		187				MJ			MJ MJ	J MI	MI MI	
ρα	ם ת	ى د ە د	n c	000		707								ט		
MN88334	0 4	, c	o c	0 0		7 -								יני		
ND655	ro	, ~		0 0		180							DW DW	ים	Ξ	LM IM
ıΩ	1	3 6		000		202					TX			∵ ⊦		T E
ND662	0	8 4	. 0	0 8		178		•)		-		MT	- ·		
~	-	2.		0 00		193										IW IW
ND672	m	7 4.		06		195							E	111 1		TW
9	\neg	9	2	85		214			,		×		M	TMT		
-054	6	3 4.	0	75		194					M		I.M.		M	
7-030	9	0 4.	0	80		214				MI	!		ĽΣ	, -	:	M
œ	8	m m	5	80	7	200				!	M		MI MJ	ם כ		×
8 - 303	9	3 3.	0	75		208				MI	!) 	X	ı E
7-46	щ	4 5.	0	85		232				:				> ⊢	1	111
-186	8	6 4.	0	85		200					E.X		MT M.T	٠.		
82-	0	9	0	80		188				IM IM CM	X			¥ MI		Σ
Ξ	-	3 3.	0	80		188				!	X		ĽΣ			*
BW148	0	5 2.	0	85		175					M.I. M.		<u> </u>	× ×		T M T
9	9	2 5.	0	80		197				MI	E E		M			II LW
														,		i i
DEFICIENCIES		TW	KW SM	WP	EX 7	165 FP	MC	XW	BA	MIX TIM	E (MT)	ממ	ย	2	L.V	
	ALUES 57	1.9 26.3	œ	13.9	57.6		6	.7.8	1.	00	2.00-2.7	9	75	80	3 1	
AJ	ALUES 5		18	12.9		1 12		9-11	60.4	UNDER 1.75	OVER 8.00		20	50	171	
*** 1=NO PROMISE	2=LITT		3.	PRO	4	GOOD	ROMI							•	1	

^{*} CULTIVARS WERE NOT INCLUDED IN REGIONAL STATISTICAL DATA.

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=DICKINSON NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	S12]	ING	WHT	WHT PRO	HARD-	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
TT	S	9.	29.8	22	2	. 7	1 .	93	4	63.5	1 4	1 .		4	61 4	! 4
ERA	ស	9			11	8		77	m	62.0			, LO	٠ 4	61.1	ר ער
MARQUIS		58.6		15	2	ω.		83	4	4	.5		4	5	60.0) (°
STOA	S	7.		9	7	φ.		71	4	61.8	.5		. 7	1 4		ט ער
AC-MINTO		57.8	26.9	19	٣	1.74	17.9	92	4	59.7	0.49	17.2	2	· ~	59.3	m
		60.4	0		2	8		81	4	2	.5	7	2	4	-	ক
2-30		54.7	5.	15	7	6.	18.0	94	т	5.	.5	7.	2	2	2.	7
FA 987-350		ნ	7 .		2	9 .		99	4	7.	.5	9	5	2	7	. ന
		55.1	•	ა	10	. 7	17.1	16	٣	56.8	5		5	2	6	D.
87-030		7	7.	22	4	9 .		70	4	&	.5	9	2	c	2.	7
86-		4	m •		11	6.		80	٣	H	.5	9	2	4	9	4
87-467		7		18	2	8		46	4	9	.5	5.	2	3	0	2
N 88-3034		9		æ	7	0.		79	~		.5	7.	5	4	,	٣
N 88 3136		<u>.</u>	•	20	m	8		68	4	9	. 5	9	2	3	0	4
MN 87150		9	26.4	7	9			91	~	8	5	5.	2	3	0	٣
MN 88170		т С	23.7		ω	8		74	m	8	9 .	5.	4	٣	0.	3
MN 88189		7 .	32,1	30	7	9.		10	4	4.	4.	9	2	4	-	S
MN 88320		ნ	28.4		4			73	4	1.	.5	5.	2	4	ij.	4
ND 655		58.2		6	11	φ.		88	4	9.	.5	9	2	3	2.	4
ND 657		8		13	2			81	4	ω	.5	7	5	٣	3	2
ND 662		6		17	2			91	4	4.	5	9	2	4	0	8
ND 671		ij.		35	7			7.0	4	0	4.	7	5	4	3	7
ND 672		NO	П	\vdash			•			•	•	•			•	
ND 88334		58.6	23.3	2	10	9.		8.7	4	2.	4.		2	4	58.6	. ~
SD 3055		9	;	36	m	. 7			4	0	. 5	7.	2	3	Ξ.	5
SD 3056		е 8	2.		ო	. 7			4	0	.5	9	2	8	ij.	4
SD 3080		0			4	.5			4	0	4	7.	2	٣	Ţ	80
SD 8072		÷	'n		2	9.			4	3	4.	9	2	4	2.	2
SD 8073		59.7	0	26	7	. 7			4	ij.	.5	9	2	4	0	2
SD 8074		60.8			2	1.62	17.3	8 9	4	60.3	0.50	16.1	2	c	60.3	4
398		58.2	28.9	15	2	ω.			ひ	8	. 5	9	2	c	-	7

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=DICKINSON NURSERY=UNIFORM

VARIETY STD				CKUMB	CRUMB	LOAF	DANE	GENERAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		DEFICIENCIES		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
9	D ABS	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE	TW KW SM	1 WP EX A6	5 FP }	MC MX B	BA MT	ອວ ລວ ລດ	LV
	61.4	3,75	თ	85	75	ω	m					Σ	Ŀ	×	
ERA	61.1	4.50	6	85	80	8	m		M.T.M.T.M.		_	. 2	1 -	T N	
DUIS		4.0	6	80	85	184	2	2.7	:	IM CM	, H	Σ.	M.J.	71.1	
STOA	2.	5.2	6		85	α	4		M			•	2		
AC-MINTO	9	. 2	6	80	85	8	2		Σ	MI		2	Ţ.		
BW-148	Ϊ.	3.5	6	85	8 0	7	٣					Σ.	H	M	
982-	2	6.5	6	80	85	δ	٣		MJ	IM CM	н	MI		!	
-35	7.	3 6.00	6	80	85	8	7						MJ MI		
נייו	6	0.9	6	80	85	9	1		MJ MI MI			Σ			
87-030	2.	5.5	6	80	75	9	4					M		MI	
86-0	9	5.2	6	80	7.5	9	7		MJ MI MI				ū	MI	
	0	6.7	6	80	80	9	2			MI		Σ	MI MI	M	
	i.	3.2	6	85	75	0	m		MJ			Σ		MI	
88 313	0	. 5	6	80	80	П	2			MI		Σ	MJ	M	
MN 87150	0	3.0	6	85	80	0	7		MJ	MI		Σ	ū	MI	
MN 88170	0	2.5	2	85	85	7	2		IM IM CM		I	Σ	H	MI	
MN 88189	÷	4.2	6	80	85	7	m					Σ			
MN 88320	÷	4.5	6	9.0	80	9	٣					Σ	MI	M	
ND 655	2.	4.7	7	80	85	L	47		MI	I MI					
ND 657	ж •	4.5	7	80	85	0	4			MI MI	—				
ND 662		7.0	6	80	80	8	2						MI MI	MI	
ND 671	÷	4.2	6	80		8	4					MI			
ND 672	•	•	•				4								
ND 88334	Ф	3.7	6	80	80	8	2		MI MI			Σ	J.	M	
SD 3055	61.8	8 4.25	6	80	ଃ ଓ	192	m			MI		Σ	MI	MI	
SD 3056	÷	4.0	6	85	85	δ	٣			MI		Σ	Н		
SD 3080	Ţ.	5.2	6	80	85	0	٣			MI		MIM	н		
SD 8072	2.	4.0	7	80	90	C	4								
SD 8073	0	5.0	7	80	80	ŗ	7					Σ	נ	MI	
SD 8074	0.9	5.2	7	80	80	∞	2			MI		Σ	נו	MI	
XW 398A4	÷.	8.2	6	8.5	80	δ		•		MI		MIM	MI MJ	MI	
DEFICIENCIES			ß	0	x A6	5 FP		×	MIX TIME	(MT)	DC	Ω 2 τ	00 00 00	ΓV	
MAJOR FAULTING VALUES	1150 56 9	0.12.0		12.7			2 .	9 6		2.00-2.7	0 0	ر د د		163	
NO PROMIS		PE		3=SOME PROMISE	4=G	3 6	PROMISE.	09 11-	ONDER	JVER 8.U		00		.53	

TABLE 35 (CONT)

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WYOMING STATION=POWELL NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI	1 D X %	WHT	WHT PRO	HARD- NESS	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX	MIX
8	ഗ	63.1		7.8	0	9	13.1	72	3	2.	4	1 .	5	2	7.	
CHRIS		2.	31.3	47	1	1.54	14.0	99	47	65.2	0.45	14.3	. ro	1 4	57.3	4
ERA	ഗ	62.6	۳,	67	2	.5	•	62	2	5.	4.		2	5	٠ س	٠.
MARQUIS		Ή.		62	Н	9.		61	3	2.	5	2	2	1	4	
STOA	တ	2.	35.5	62	2	9.	•	99	2	5.	4.	0	2	2	. 2	٠,
SD3055				82	1	9.	12.7	57	2	2.	4.		2	1	5.	ı —
SD3056		2 .	41.7	8 4	2	9.	•	65	2	2.	.5	ä	2	2	9	ı
SD3080		64.5		72	7	9.	13.3	62	3	2.	4	2.	2	8	7	i ~-1
SD8072		س		80	П	9 .	•	72	2	ش	5	÷	2	2	7.	-1
SD8073		ж Э		80	2	9 .		7.0	2	2.		0	2	7	7	2
SD8074		4		10	٦	9.		89	2	0	5	0	2	1	7.	2
MN87150		ش	40.2	16	Н	. 5	•	61	2	5.	4	-	2	2	5	ı —
MN88170		0	40.3	74	7	.5	•	20	2	4	4.	0	2	2	4	1
MN88189		3.		86	٦	1.63		58	3	7 .	4.	ω.	5	4	6	2
MN88320		4	39.4	11	7	. 5		6.2	2		0.47	Ę	2	2	7	٦
MN88334		2		89	Н	.5	•	53	2	3	4.	-4	2	2	d.	٦
ND655		3		74	-	9.		57	2	ش	4.	-	2	2	9	1
ND657		.		82	П	. 7		09	٣	33.	5	2.	S	٣	8	2
ND662		3	7	65	1	9.		6.5	~	2.	4.	2.	2	2	8	2
ND671		4		67	٦	1.73		09	3	0	4.	2.	2	1	9	2
ND672		2 .	7	80	7	9.		7.0	2	0.	4.		2	1	5.	2
977		ж С	2.	81	2	9 .	•	52	2	4.	.5	÷	2	2	7.	2
N86-0542		2	ω	78	Н	. 5	11.4	53	2	4	4.	0	2	2	9	2
		4.	ش	80	7	9 •	•	70	2	3	٠ 4	ä	2	2	8	2
~		2 .	7.	80	0	. 5		09	2	ij	5	ä	2	-	9	2
~		6	4	63	0	. 7	۰	29	٣	4	. 5	3	5	4	7	2
-467		2	÷	19	-1	9.		21	7	4	5	0	2	2	5.	1
FA987-350		2.	9	90	Н	9.		6.2	2	5.	₫.	ä	2	2	6	2
0		-	δ.	71	Н	9.		64	2	6	.5	0	2	7	7.	2
F .		5	9	71	-	9.		99	3	о 8	.5	÷	2	П	5.	Н
148		ص		64	-1	1.73	13.6	7.0	٣	8	5		2	1	7	-1
100367		÷	7 .	69	-	9.		68	7	4	٠ 4	0	2	2	5.	T

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WYOMING STATION=POWELL NURSERY=UNIFORM

S S S S S S S S S S S S S S S S S S S	TIME CH										27.00		
9 8		CHAR COLOR	GRAI	N VOL	SCORE ***	SCORE ***	TW	KW SM	WP EX A6	5 FP MC	MX BA	MT DC	ອລ ລລ <u>ຄ</u>
S 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			•		m				H	ΩM	EΜ	1 1 1	
JI S 555 80					٣	3.7		MI			MJ		
555 566 80			•		m			MI	MJ	MJ	MG		
			٠	٠	m	2.3		MI	MI MI	MJ	MJ		
800			٠		٣				MJ	MG	MC		
9000					٣				IM CM	MJ	Σ		
		٠	•	•	~					×	; <u>></u>		
					۰ (27.7	2 2	2 2		
	•	•	•		י ר				I W	T E	Z.		
			•		η.					M	MJ		
SD80/3					ঝ				MJ MI	M	Η		
SD8074		•			φ					7	1 7		
MN87150			•	•	• (•				2 2	T L		
•			•		ກ	٠			Z.	Z Z	M		
O/TSSNW			•	•	m				M.J	E.M.	Ψ		
MN88189					•	•				2			
			•	•	۲ (٠			111		M L		
			•		~				MC	M	M		
334					٣				M.J	Μ.1	Σ		
ND655				•		•				2 7	2 :		
•	•		•	•	ŋ ·	۰			BO	3	Z Z		
•			•	•	4				MI	MI	ĭΨ		
ND662			•		4				M MI	Σ	M		
ND671						•				: :	1 1		
	•		•		3"					Tω	Ľ		
	•		•	•	4	•			MJ MI	M	MI		
XW398A4			•		4				M.1	M.T.	Σ.		
N86-0542						•			2 2		1 :		
			•	•	۰ ۳				CE	E	TH		
			• • • • • • • • • • • • • • • • • • • •	•	4				M	Œ	H		
-3136			ව ්	•	4				MJ MI	E	M		
1-3034	,				Ψ						1 2		
			•	•	۲ (11.1		TW		
			•		ຠ				M.C	Z.	ĽΨ		
FA987-350					4				M.T	M.T	F X		
CI982-309					4		7			7	: >		
CENTAL OF	•		•	•	, P (Ē			E	ш		
OTAL	•			•	'n					M	υ		
		•	•	•	m	2.3			MI MJ M	MI MI	M		
ID0367		•			~						, <u>-</u>		
			•		,	•			21	2	2		
DE CIENCIPE	17.7				Č					i			
AT 1750 CT O		₹ (X C	Abo FF	ב א	MX	BA MIX	TIME	(MT)	DC .	ຍ	ຶ່	ΓΛ
FAULTING VALUES 37.3		0 T3.3	9.79	6.21 /6.	3	-	٦.	00	2.00-2.7	Ω		80	•

TABLE 36 (CONT)

1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=SIDNEY NURSERY=UNIFORM

TABLE 37			STATE	=MONTANA	Y.	STATI	STATION=SIDNEY	DNEY	NURSERY=UNIFORM	X=UNI	FORM					
VARI	STD	ST	~ ×	SIZI	N X &	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
BUTTE 86	S	60.5		47		5.68	15.6	76	4		- 4	1 5		4	1-6	1 ~
CHRIS		9			4			77	4	61.7	0.51	16.3	, ru	4	60.0	· ~
ERA	ഗ	7.	<u>ج</u>		6	6.		59	4	1	. 5	4	2	4		m
MARQUIS		ъ 8	5.		2	6.		58	4	6	.5	5.	7 د	'n	7	'n
STOA	ល	9	8		7	9	5.	62	4	4.	4	3	S	4	0	വ
SD3055		61.3		7.8	-	1.68	15.8	69	4		4	5	. 2	4		2
SD3056		0	7.		٦	٠.	5.	7.0	4	0.	. 5	5.	2	٣	-	2
SD3080		5	4		7	٠.	7.	74	4	2.	4.	7.	2	4	3	2
SD8072		0	4		-	١.	5.	11	4	4.	5	5.	5	4	-	4
SD8073		÷	ش		7	8	끃.	74	47	5.	. 5	4.	5	4	0	4
SD8074		0	5		1	٠.	5.	16	4	ä	5	5.	2	4	-	٣
MN87150		ъ Ф			7	9.	4.	57	4	ω,	٠ 4	4.	2	4	8	2
MN88170		7.	0		3	• 9		54	ጭ	5.	5	4	5	4	-	2
MN88189		ъ Ф	9		٣	. 7	•	59	4	4.	4.	9	5	4	7	4
MN88320		62.2		65	7	. 7		80	4		٠ 4	3.	5	4	0	m
MN88334		÷	е Ф		4	. 7		59	4	ع	ς,	8	5	4	5.	7
ND655			4.		2	٠.		11	4	9	4.	5.	5	4	3	4
ND657		0	2.		7	٠.		89	4	۳,	٠.4	5.	5	4	1.	4
ND662		6	÷		٦	φ.		61	4	3	٠ 4	5.	2	4	٦,	7
ND671		Ξ.	2.		7	٠.7		65	4	9	. 4	9	2	4	5.	4
2		0	÷		2	φ.		8 2	4,	Ξ.	• 5	5.	2	4	Ξ.	2
98A4		0	Ω.		-	6.		99	4	5.	٠ 4	5.	2	4	0	7
-054		&	7.		œ	6.		67	4	5.	٠ 4	4.	5	4	1.	m
7-030		ъ О	2		7	φ.	5.	63	4	ش	٠4	5.	S	4	1.	4
-313		0	-		2	. 7		67	4	2.	٠.	9	2	4	6	3
30		φ.	0		m	. 2	9	7.0	4	4.	٠4	7 .	2	4	9	2
-46		6	4.		-1	9		54	4	4	4.	4.	5	4	7.	2
987		6	7.		٦	8		49	4	ω,	4.	4	2	4	8	m
\sim		m	5		9	0.		61	m	7.	5	9	2	2	9	4
AC-MINTO		-	6		7	6.		81	4	2.	.5	9	2	4	0.	2
BW148		0	5		7	ω.		10	4	4	.5	9	2	4	1.	ന
ID0367		œ	7 .		9	6.		47	4	÷.	٠ 4	4	2	4	9	4

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=SIDNEY NURSERY=UNIFORM

TABLE 37 (CONT)

		BAKE	MIX	ропсн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	.7		#UD	FICIE	-DEFICIENCIES			
VARIETY	STD	ABS	TIME C	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE ***		TW KW SM	WP EX A65	FP MC	XX	BA MT	၁၁ ၁၀	C CG LV
BUTTE 86	ß	2	. 2	6	85		6	4						 	i f i	1	
CHRIS		0	. 2	6	80		6	5			Σ			2			
ERA	ស	7.	. 5	6	9.0		6	2			MI MI MI			Σ.	2 =		
MARQUIS		7.	. 2	7	85		6	2			×	MIMI		. 2	2 5		
STOA	ល	0.	0.	7	85		6	m			:			Σ.	X I		
SD3055		0	. 7	2	85		9	2						Σ Σ	MIMI	×	
SD3056		۲.	.5	2	80		6	2				MI				ΞĘ	
SD3080		63.4	3.75	6	80	80	215	4	4.0							:	MT
SD8072		÷	0.	6	80		9	٣				·		Σ	MI		!
SD8073		2	. 2	7	80		8	ず									
TH 1		÷.	0	7	80		8	c						Σ	ij		
0		ω.	. 7	2	85		9	٦						MIM	MJ MI	MI	
ш.		i.	. 2	6	80		9	m			MI			Σ			
MN88189		i.	. 2	6	8 2		П	m						Σ	MI		
32		0	0	σ.	82		0	3						Σ	MI		
333		ک	٠.	2	92		8	٦						MJ	MJ	ΜI	
ND655		5.	. 2	6	85		9	4									MI
0		ij.	. 2	6	85		_	٣						Σ	MI		l I
ND662		<u>.</u>	. 2	6	85		8	m						M	H		
ND671		5.	.5	6	85		ч	4									
ND672		1.	٠.	6	85		0	2						Σ	I MI		M
44		0	.5	6	06		0	2						X X			Σ
N86-0542		ij.	0.	7	80		Н	~			M				W I		:
30		ij	. 7	6	95		Ч	٣						Σ			
8-3		9.	. 2	6	85		٦	2						Σ.	. E		
303		9.	0.	7	80		T	2						Σ Σ	Σ.Τ.		×
87-4		7.	. 2	7	85		Н	2							2 13		ĮΨ
987		œ	. 7	2	95		9	2							Σ	Σ	:
CI982309		6	0.	2	85		0	,I			MJ MI	MJ		Σ	MJ MI	Ξ	
Ξ		0	. 7	2	85		0	7			MI			Ψ		Σ	
8		Η.	. 7	2	85		9	7								W.	
m		6	. 5	6	82		\vdash	7						Σ			MI
回	IES	ΤW	ΚW	SM	WP	~	5 FP	MC	MX	BA		(MT)	DC	ນ	CG	ΓΛ	
MINOR FAULTING VALUES	3 VALUE	57.	26.7	æ	13.9 6		\sim	3 2	,7,8	σ	00	2.00-	9	75	80	172	
#AJOR FAULTING VALUES	S VALUE	56.5	3 23.7	, 18	12.9 58.7		61 12.4	2	9-11	0.4	1.75	0	4	20	20	162	
ECEL CZIII KKK	7#7 XX		XY - WCGG	!!! *	MUDDO SX	A	באליםם עליל	ひしてい									

*** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

(_
CHIM	_
=	,
-	_
-2	E
τ	ر
6	
1	7
-	7
Ė	772
Ь	4
U X Z	ď
	ď
-	3
bee	1
- 1	
ı	
- 1	

VARIABLE	MEAN	STD DEV	MUMINIM	МАХІМОМ	VARIANCE	CC
ΤW	57.8666667	0.1154701	57.8000000	58.0000000	0.0133333	0.1995450
K_WT	28.1000000	1.3114877	26.9000000	29.5000000	1.7200000	4.6672160
LG	28.666667	10.5987421	19.0000000	40.0000000	112,3333333	36.9723560
SM	2.6666667	0.5773503	2.0000000	3.0000000	0.3333333	21,6506351
WHT ASH	1.7900000	0.1044031	1.7200000	1.9100000	0.0109000	5,8325735
WHT PRO	17.1666667	0.7023769	16.5000000	17.9000000	0.4933333	4.0915160
HARD	82,3333333	12.0554275	71.0000000	95.0000000	145.3333333	14.6422197
EXTR	58,8000000	4.2225585	54.2000000	62.5000000	17.8300000	7,1812219
FL ASH	0.5233333	0.0305505	0.4900000	0.5500000	0.000933333	5.8376760
FL_PRO	16.7666667	0.4041452	16.4000000	17.2000000	0.1633333	2.4104087
MIXO	2.6666667	0.5773503	2.0000000	3.0000000	0.3333333	21,6506351
BAKE ABS	58.8666667	1.4011900	57.3000000	60.000000.09	1,9633333	2,3802774
LOAF VOL	190.3333333	11.6761866	180.0000000	203,0000000	136.3333333	6.1345989
1 1 1 1 1 1 1 1 1			***********	11111111111		

60.533333	0.10 4.10 4.0	1 KG	400				
60.5333330.950438559.600000061.50000000.903333332.3333332.214347229.800000033.90000004.903333339.66666715.373136722.000000020.000000236.3333331.33333330.57735031.00000002.00000000.33333331.6.7333330.57735031.70000005.6800000.33333331.6.7333330.5986576615.60000017.4000000.97333331.5.0000000.026675615.6000000.97333330.50000000.02667550.48000000.653000000.00070000015.9333330.723417815.10000000.052333333.00000001.625833159.00000062.10000002.64333331.62583315.8594653181.000000192.00000034.3333333	VAKIABLE	MEAN	S.I.D DEV	MINIM	MAXIMUM	VARIANCE	CV
32.333333 2.2143472 29.8000000 33.9000000 4.9033333 39.666667 15.3731367 22.0000000 50.0000000 236.333333 1.3333333 0.5773503 1.0000000 50.0000000 0.3333333	Mi	60.5333333	0.9504385	59,6000000	61.5000000	0.9033333	1.5701076
39.6666667 15.3731367 22.0000000 50.000000 236.333333 1.333333 0.5773503 1.0000000 2.0000000 0.3343333 1.6.733333 0.5773503 1.7000000 5.680000 0.3343333 1.6.733333 0.9865766 15.600000 17.400000 0.9733333 82.0000000 9.5393920 76.000000 93.000000 0.9733333 0.5000000 0.0264575 0.4800000 0.5300000 0.000700000 15.933333 0.7234178 15.1000000 4.000000 0.5233333 3.0000000 1.06258331 59.000000 62.1000000 2.6433333 1b. 187.6666667 5.8594653 181.000000 192.000000 34.3333333	L M L	32,3333333	2.2143472	29.8000000	33.9000000	4.9033333	6.8484964
1.333333 0.5773503 1.0000000 2.0000000 0.333333 1 5.000000 2.2863945 1.700000 5.680000 5.227600 1 6.733333 0.9865766 15.600000 17.400000 0.973333 82.0000000 9.5393920 76.000000 93.000000 0.973333 0.0033333 3.7740341 56.600000 0.5300000 14.243333 0.5000000 0.0264575 0.4800000 0.5300000 0.000700000 15.933333 0.7234178 15.1000000 4.0000000 0.5233333 3.0000000 1.0000000 2.0000000 4.0000000 2.6433333 5.8594653 181.0000000 192.0000000 34.3333333	5 7	39.6666667	15.3731367	22.0000000	50.0000000	236,3333333	38.7558069
1 3.0400000 2.2863945 1.7000000 5.6800000 5.2276000 16.733333 0.9865766 15.600000 17.400000 0.973333 82.000000 9.5393920 76.000000 93.000000 91.000000 60.933333 3.7740341 56.600000 63.500000 14.243333 0.5000000 0.0264575 0.4800000 16.4000000 0.523333 15.933333 0.723418 15.1000000 4.0000000 0.5233333 3.0000000 1.0000000 2.0000000 4.0000000 2.6433333 5.8594653 181.0000000 192.0000000 34.3333333	W.	1.3333333	0.5773503	1.0000000	2,0000000	0.3333333	43,3012702
16.733333 0.9865766 15.6000000 17.4000000 0.973333 82.0000000 9.5393920 76.000000 93.000000 91.000000 60.933333 3.7740341 56.600000 63.500000 14.243333 0.5000000 0.0264575 0.4800000 16.4000000 0.65330000 15.1000000 16.4000000 0.5233333 0.52333333 3.0000000 1.0000000 4.0000000 1.0000000 36.8534653 181.000000 192.000000 34.333333	WHT ASH	3.0400000	2.2863945	1.7000000	5.6800000	5.2276000	75.2103468
82.0000000 9.539320 76.0000000 93.0000000 91.0000000 0 0.5393333 3.7740341 56.600000 63.5000000 14.2433333 0.5000000 0.0264575 0.4800000 0.5300000 0.0500700000 0.5300000 0.5233333 0.7234178 15.1000000 4.0000000 0.5233333 0.5233333 1.6258331 59.0000000 62.1000000 34.333333 0.58594653 181.0000000 192.0000000 34.333333	VHT_PRO	16.7333333	0.9865766	15.6000000	17.4000000	0,9733333	5,8958759
60.933333 3.7740341 56.6000000 63.5000000 14.2433333 3.0000000 0.0264575 0.4800000 0.5300000 0.000700000 3.0000000 1.0000000 2.0000000 4.0000000 0.5233333 ABS 60.833333 1.6258331 59.0000000 62.1000000 2.6433333 VOL 187.6666667 5.8594653 181.0000000 192.0000000 34.333333	HARD	82.0000000	9.5393920	76.0000000	93.0000000	91,0000000	11.6334049
0.5000000 0.0264575 0.4800000 0.5300000 0.000700000	SXTR	60,9333333	3.7740341	56.6000000	63.5000000	14.2433333	6.1937102
15.933333 0.7234178 15.1000000 16.4000000 0.5233333 3.0000000 1.0000000 2.0000000 4.0000000 1.0000000 1.0000000 62.1000000 2.6433333 1.6258331 59.0000000 62.1000000 2.6433333 0. 187.6666667 5.8594653 181.0000000 192.0000000 34.3333333	FL ASH	0.5000000	0.0264575	0.4800000	0.5300000	0.00070000	5,2915026
3.0000000 1.0000000 2.0000000 4.0000000 1.0000000 60.833333 1.6258331 59.0000000 62.1000000 2.6433333 187.6666667 5.8594653 181.0000000 192.0000000 34.3333333	FL PRO	15,9333333	0.7234178	15.1000000	16.4000000	0.5233333	4.5402792
60.833333 1.6258331 59.0000000 62.1000000 2.6433333 187.6666667 5.8594653 181.0000000 192.0000000 34.3333333	4IXO	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33,333333
187.6666667 5.8594653 181.0000000 192.0000000 34.3333333	SAKE ABS	60.8333333	1.6258331	59.0000000	62,1000000	2.6433333	2.6726024
	OAF_VOL	187.6666667	5.8594653	181,0000000	192.0000000	34.3333333	3.1222728

- VARIETY=BW148

- VARIETY=BUTTE 86

60.166667 0.5859465 59.500000 60.600000 0.343333 34.100000 5.565066 29.3000000 40.2000000 74.33333 38.666667 8.6216781 31.000000 1.000000 74.33333 2.000000 1.000000 1.000000 1.000000 1.826667 0.0305505 1.800000 1.860000 0.00093333 17.1000000 0.8185353 16.200000 17.800000 0.6700000 75.0000000 5.5677644 70.000000 81.000000 31.000000 59.266667 7.2748425 50.900000 64.100000 52.923333 0.6500000 0.036555 16.4000000 0.001300 16.633333 0.5773503 3.000000 0.1033333 61.2333333 0.658328 60.500000 0.4433333 17.000000 191.000000 0.12.000000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
34.1000000 5.5650696 29.3000000 40.2000000 30.9700000 38.666667 8.6216781 31.0000000 48.0000000 74.333333 2.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.8266667 0.0305505 1.8000000 17.8000000 0.6700000 75.0000000 0.8185353 16.2000000 17.8000000 0.6700000 75.0000000 0.8185353 16.2000000 81.0000000 0.6700000 75.0000000 0.0305505 0.5300000 0.6000000 0.0013000 0.6600000 0.0360555 0.5300000 0.6000000 0.1033333 0.5773503 3.0000000 0.4433333 ABS 61.2333333 0.6658328 60.5000000 191.0000000 0.142.0000000	TW	60.1666667	0.5859465	59.5000000	60.000009	0.3433333	0.9738723
38.6666667 8.6216781 31.0000000 48.0000000 74.3333333 2.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.866667 0.0305505 1.8000000 17.8000000 0.6700000 0.6700000 0.55677644 70.0000000 17.8000000 31.0000000 0.550.000000 0.6500000 0.6500000 0.6500000 0.6500000 0.6500000 0.6500000 0.6500000 0.6500000 0.6500000 0.6583333 0.5773503 3.0000000 0.12.0000000 0.4433333 ABS 61.2333333 0.6658328 60.5000000 191.0000000 112.0000000 0.12.0000000	K_WT	34.1000000	5.5650696	29.3000000	40,200000	30.9700000	16.3198523
2.000000 1.0000000 1.0000000 1.0000000 1.826667 0.0305505 1.8000000 1.8600000 0.00093333 17.1000000 0.8185353 16.2000000 17.8000000 0.6700000 75.0000000 5.5677644 70.000000 81.000000 31.000000 59.266667 7.2748425 50.900000 64.100000 52.923333 0.5600000 0.036555 0.5300000 0.600000 0.001300 16.633333 0.3214550 16.4000000 17.000000 0.1033333 3.333333 0.5773503 3.0000000 4.0000000 0.4433333 61.2333333 0.6658328 60.5000000 191.000000 112.0000000	LG	38.6666667	8.6216781	31,0000000	48.0000000	74.3333333	22.2974434
1.826667 0.0305505 1.8000000 1.8600000 0.000933333 17.1000000 0.8185353 16.2000000 17.800000 0.6700000 75.0000000 5.5677644 70.000000 81.000000 31.000000 59.2666667 7.2748425 50.900000 64.100000 52.923333 0.5600000 0.0360555 0.5300000 17.000000 0.1031300 16.633333 0.5773503 3.0000000 4.0000000 0.333333 61.2333333 0.658328 60.5000000 61.800000 0.4433333 179.000000 10.5830052 171.0000000 191.0000000 112.0000000	SM	2.0000000	1.0000000	1,0000000	3.0000000	1.0000000	50,0000000
17.1000000 0.8185353 16.2000000 17.8000000 0.6700000 75.000000 5.5677644 70.000000 81.000000 31.000000 75.000000 6.4100000 52.923333 0.5500000 0.013000 16.633333 0.3214550 16.400000 17.000000 0.1033333 3.333333 0.5773503 3.0000000 4.000000 0.4433333 61.233333 0.6658328 60.500000 191.000000 112.0000000	WHT ASH	1.8266667	0.0305505	1.8000000	1.8600000	0,000933333	1.6724729
75.0000000 5.5677644 70.0000000 81.0000000 31.00000000 0.59.266667 7.2748425 50.9000000 64.1000000 52.923333 0.5600000 0.0360555 0.5300000 0.6000000 0.0013000 0.0314550 16.633333 0.5773503 3.33333 0.5773503 3.0000000 4.0000000 0.333333 0.5773503 3.0000000 61.8000000 0.4433333 0.5658328 60.5000000 61.8000000 0.4433333 0.5830052 171.0000000 191.0000000 112.0000000	WHT PRO	17.1000000	0.8185353	16.2000000	17.8000000	0.6700000	4.7867560
59.2666667 7.2748425 50.9000000 64.1000000 52.9233333 0.5600000 0.0360555 0.5300000 0.0013000 16.6333333 0.3214550 16.4000000 17.0000000 0.1033333 3.3333333 0.5773503 3.0000000 4.0000000 0.3333333 15.6000000 0.5773503 10.5000000 0.112.0000000	HARD	75.0000000	5.5677644	70.0000007	81,0000000	31,0000000	7.4236858
0.5600000 0.0360555 0.5300000 0.600000 0.0013000 16.6333333 0.3214550 16.4000000 17.0000000 0.1033333 3.3333333 0.5773503 3.0000000 4.0000000 0.3333333 15.612333333 0.6658328 60.5000000 61.8000000 0.4433333 16.19.000000 10.5830052 171.0000000 191.0000000 112.0000000	EXTR	59,2666667	7.2748425	50.900000	64.1000000	52,9233333	12.2747624
16.633333 0.3214550 16.4000000 17.0000000 0.1033333 3.3333333 0.5773503 3.0000000 4.0000000 0.3333333 8 61.2333333 0.6658328 60.5000000 61.8000000 0.443333 0.6658328 171.0000000 191.0000000 112.00000000	FL_ASH	0.5600000	0.0360555	0.5300000	0.6000000	0.0013000	6.4384844
3.333333 0.5773503 3.0000000 4.0000000 0.3333333 61.2333333 0.6658328 60.5000000 61.8000000 0.4433333 1.79.0000000 10.5830052 171.0000000 191.0000000 112.0000000	FL_PRO	16,6333333	0.3214550	16.4000000	17,0000000	0.1033333	1.9325953
61.233333 0.6658328 60.5000000 61.8000000 0.4433333 179.0000000 10.5830052 171.0000000 191.0000000 112.0000000	MIXO	3,3333333	0.5773503	3.0000000	4.0000000	0.3333333	17.3205081
. 179.0000000 10.5830052 171.0000000 191.0000000 112.0000000	BAKE ABS	61,2333333	0.6658328	60.5000000	61,8000000	0.4433333	1.0873699
	LOAF VOL	179.0000000	10.5830052	171.0000000	191.0000000	112.0000000	5.9122934

VARIETY=CHRIS	

29 9500000					OLITA	LANC	2
13,000,000 1,025456 2,800,000 2,50	ML	000000	424264	000007 6	200000	100001	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1,000000 1,0000000 1,000000	TM.	950000	626345		100000	.180000	901/0/
ABE T. 15500000 T. 17500000 T. 175000000			V 10 7 1 7	2.600000	3.10000	2.645000	6.790587
1.7550000	2 2			. 00000	1.000000	7.000000	3.514263
1.000000	110 % 1111		026121.	. 00000	1.000000	.500000	8.569460
TO 10000000 9, 1893494 6, 10, 1000000 17, 0000000 0 1, 5, 5000000 0 1, 5, 5000000 0 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	100 E	1.133000	TO///O.	1.10000	1.810000	.006050	.432008
10,000000 3,5894449 6,3,000000 17,5000000 18,5000000 19,500000 19,500000 19,5000000 19,500000 19,5000000 19,500000 19	מאל זווי	00000000	. 636396	6.100000	7.000000	0.405000	.845293
## 059.2000000 3.5355339 56.7000000 61.700000 12.5000000 5.97218 2.5000000 0.707140 0.5000000 16.3000000 0.5000000 0.72200000 0.707140 0.5000000 0.707100000 0.7071000 0.70710000 0.70710000 0.70710000 0.707100000 0.70710	IARD	0.00000.0	.899494	3.000000	7.000000	8.000000	4.142135
16.5000000 0.0141421 0.5000000 0.5000000 0.5000000 0.50200000 0.50200000 0.50200000 0.5000000 0.5000000 0.502000000 0.502000000 0.502000000 0.50200000 0.50200000 0.50200000 0.50200000 0.5020	SXTR	9.200000	.535533	6.700000	1,700000	2.500000	5,972185
Colonomic Colo	'L ASH	.500000	.014142	0.490000	0.510000	0002000	828427
Second Color	L PRO	.300000	0	6,300000	6.300000		75070.
VARIETY = C1982309	11XO	.500000	.707106	2.000000	3 000000	500000	170100
Second Color	BAKE ARS	100000	687005	0000000			1/2507.0
BLE HEAN STD DEV HINIMUM HAXIMUM VARIANCE	OAF VOL	3.000000	.414213	92.000000	4.000000	.000000	73775
STD DEV MINIMUM MAXIMUM WARIANCE							
SLE							
BLE HEAN STD DEV MINIMUM MAXIMUM WARIANCE 1.16886			! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	ARIETY=C198	30		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
STEP							
Second State							
54.333333	ARIABLE	K	TD D	INIMU	AXI	ARIANC	Δ.)
54.366667 0.573503 53.6000000 54.7000000 0.333333 1.16886 15.666667 1.547050 1.6000000 17.0000000 1.333333 2.31248 15.666667 2.0816660 6.0000000 17.0000000 4.333333 2.31248 1.5666667 2.0816660 1.8000000 1.0000000 0.3800000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.6033333 3.6038000 3.60380000 3.60380000 3.60380000 3.6038000 3.60380000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.60380000 3.60380000 3.60380000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.60380000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.60380000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038000 3.600000 3.60380000 3.60380000 3.60380000 3.60380000 3.60380000 3.6038000 3.6038000 3.6038000 3.6038000 3.6038		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1			1
15.6666667 1.1547050 1.0000000 1.333333 2.31248 15.6666667 2.0031660 6.0000000 10.0000000 1.333333 2.715242 15.666667 2.0031660 6.0000000 10.0000000 1.333333 2.715242 17.666667 1.7757621 61.000000 18.0000000 316.333333 27.15280 17.666667 17.757621 61.000000 18.000000 316.333333 24.14352 17.666667 17.757621 61.000000 17.7000000 316.333333 24.14358 17.1000000 0.52496152 16.8000000 17.7000000 19.893333 28.64109 17.1000000 0.5275252 16.8000000 17.7000000 2.9733333 28.64109 17.1000000 0.5275252 16.8000000 17.7000000 2.9733333 28.64109 17.1000000 0.5275252 16.8000000 2.0000000 65.333333 28.64109 17.1000000 0.2000000 27.000000 24.1000000 0.0400000 0.083882 17.666667 1.2897028 56.6000000 24.1000000 0.0400000 0.083882 17.666667 1.2897028 56.600000 13.000000 0.0400000 0.083882 17.666667 1.778936 55.0000000 17.000000 17.29909 17.1000000 1.132563 14.900000 17.1000000 0.0600000 17.29909 17.1000000 0.0818525 14.900000 0.0700000 0.0102333 19.96557 18.8000000 0.0818526 11.78936 55.0000000 0.0500000 0.0102333 19.96557 18.800000 0.0863657 11.549000 0.0500000 0.0500000 0.0500000 0.038882 17.666667 11.78936 55.0000000 0.05000000 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000 0.0500000	E. E.	4.333333	.635085	3.600000	4.700000	.403333	.16886
15.666667 1.1547065 15.0000000 17.0000000 1.3333333 7.37042 15.666667 1.1547005 1.50000000 1.50000000 0.00810000 3.60982 17.666667 17.7857621 61.0000000 18.0000000 0.00810000 3.60982 17.3000000 0.6214918 16.8000000 18.0000000 19.8933333 24.14356 17.40000000 0.62196152 16.8000000 0.27000000 19.8933333 24.14356 17.10000000 0.62196152 16.8000000 0.27000000 0.2700000 3.60982 17.31333333 1.527552 4.0000000 7.0000000 2.333333 2.84159 17.3133333 1.7243356 59.3000000 62.7000000 2.333333 2.84352 17.45278 188.000000 62.7000000 2.9333333 4.26543 17.45278 188.000000 2.0300000 1.66333333 2.22647 18.300000 0.2000000 23.7000000 1.66333333 1.265284 18.300000 0.2000000 2.0000000 1.66333333 1.401689 17.4000000 1.1532563 1.7400000 1.9000000 1.6033333 1.401689 17.4000000 1.1532563 1.7400000 1.6033333 1.606667 1.1183306 1.41000000 1.6033333 1.606667 1.1183306 1.41000000 1.6033333 1.41165 18.300000 1.1532563 1.7400000 1.6000000 1.6033333 1.41165 18.300000 1.153263 1.7400000 1.600000 1.6033333 1.41165 18.300000 1.153263 1.7400000 1.6000000 1.6033333 1.41165 18.300000 1.153263 1.7400000 1.6000000 1.6033333 1.41165 18.300000 1.153263 1.74000000 1.333333 1.41165 18.300000 1.153263 1.7400000 1.333333 1.41165 18.300000 1.600000 1.600000 1.600000 1.600000 1.600000 1.1532647 1.41167005 1.6000000 1.333333 1.41165 18.300000 1.600000 1.600000 1.333333 1.41165 18.300000 1.600000 1.600000 1.600000 1.600000 1.600000 1.1532647 1.41167005 1.6000000 1.333333 1.41165 18.300000 1.600000 1.600000 1.600000 1.600000 1.1000000 1.1000000 1.600000 1.600000 1.600000 1.1000000 1.600000 1.600000 1.600000 1.6000000 1.6000000 1.6000000 1.6000000 1.6000000 1.6000000 1.6000000	I.M.I.	4.966666	.577350	4.300000	5.300000	.333333	.31248
T. 5666667 2.0816660 6.0000000 10.0000000 4.333333 27.15216 T. 5666667 17.7857621 6.8000000 18.0000000 0.3900000 3.609820 T. 5666667 17.7857621 6.8000000 18.0000000 0.3900000 3.609820 T. 5666667 17.7857621 6.8000000 0.5800000 0.3903333 24.14556 T. 1000000 0.553333 0.052752 4.000000 0.77000000 0.2333333 24.14556 T. 1000000 0.5162752 4.0000000 0.2333333 28.84109 ABS 60.833333 1.527252 4.0000000 0.2300000 0.2333333 28.84109 ABS 60.833333 1.527252 4.0000000 0.2300000 0.2333333 4.20543 ABS 60.833333 1.527252 4.0000000 0.2300000 0.333333 3.25847 T. 10000000 0.5162753 188.000000 0.000000 0.000000 0.000000 0.000000	ยา	5.666666	.154700	5.000000	7.000000	.333333	.37042
The color of the	Σ.	999999.	.081666	6.000000	0.00000.0	.333333	7.15216
Name	JHT ASH	1.960000	.090000	.870000	2.050000	.008100	4.59183
73.666667 17.7857621 61.000000 34.000000 316.333333 24.14356 0.5533333	VHT PRO	7.300000	.624499	6.800000	8.000000	390000	60982
F3.8666667 4.4601943 48.800000 57.200000 19.893333 8.71158 10.563333 1.527555 10.550000 0.5800000 0.000233333 2.71158 ABS 60.833333 1.724335 4.0000000 2.333333 2.8641099 ABS 60.833333 1.724335 59.300000 62.7000000 2.333333 2.8641099 ABS 60.833333 1.724335 4.000000 2.3.000000 2.973333 2.8641099 ABS 60.833333 1.724335 4.000000 2.3.000000 2.973333 2.8641099 ABS 60.833333 1.724335 4.000000 2.3.000000 2.973333 2.8641099 ABS 60.833333 1.724335 4.000000 1.663333 2.23647 AMS 60.833333 1.72897028 56.600000 1.000000 1.663333 2.23647 A.0000000 2.000000 2.000000 1.000000 1.3000000 1.333333 3.88861 A.0000000 1.1532563 1.7400000 1.000000 1.333333 1.8406667 A.0000000 1.1532563 1.7400000 1.77.0000000 1.333333 1.8406667 A.0000000 1.1547005 3.000000 1.77.000000 1.333333 1.8406667 A.0000000 1.000000 1.000000 1.000000 1.3333333 1.8406667 A.0000000 1.000000 1.000000 1.333333 3.8406667 A.0000000 1.000000 1.000000 1.000000 1.333333 3.8406667 ABS 6000000 1.000000 1.000000 1.000000 1.333333 3.8406667 ABS 6000000 1.0682504 57.0000000 1.000000 1.333333 3.84165	IARD	3.666666	.785762	1.000000	4 000000	16 33333	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
H 0.5633333 0.0152753 0.550000 0.5800000 0.000233333 2.711588 5 17.100000 0.5196152 16.800000 0.7.000000 0.2700000 3.03668 5 1333333 1.724525 4.000000 7.000000 0.2700000 3.03668 5 1333333 1.724525 4.000000 0.203.000000 0.2700000 3.03668 6 0.8333333 1.724525 4.000000 0.203.000000 0.2700000 3.03868 8 1.724525 1.88.000000 0.203.000000 66.333333 4.20543 8 1.728728 188.000000 0.23.000000 0.0400000 0.83682 1.2897028 56.600000 59.1000000 1.6633333 3.7.88861 9 0000000 0.2000000 3.7000000 1.000000 0.202222 10.666667 4.0414519 6.000000 1.000000 16.33333 3.7.88861 9 0000000 1.153563 14.900000 17.000000 137.33333 3.2.03464 11.7189306 55.000000 0.37.000000 1.333333 3.0.03464 11.7189306 55.000000 0.37.000000 1.333333 3.18.49185 12.666667 1.17189306 55.000000 0.37.33333 3.18.49185 14.9000000 0.964351 14.2000000 0.330000 0.33333 3.3.49185 14.9000000 1.682564 57.900000 0.1.333333 3.3.49185 15.8000000 1.682564 57.900000 0.37.333333 3.3.49185 16.8000000 1.682564 57.900000 0.37.333333 3.3.49185 16.8000000 1.682564 57.900000 0.2.000000 0.37.333333 3.3.49185	SXTR	3.866666	460194	8 800000	000000000000000000000000000000000000000	10 80 222	000000
ABS 600000 0.5196152 16.800000 17.700000 0.2700000 3.038682 ABS 60.833333 1.527525 4.000000 7.000000 2.333333 28.64109 ABS 60.8333333 1.7243356 59.300000 62.7000000 2.333333 2.864109 AOL 193.666667 8.1445278 188.000000 203.000000 66.333333 4.20543 ADLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE 57.6666667 1.2897028 56.600000 24.1000000 1.653333 2.23647 23.9000000 2.000000 23.7000000 13.000000 16.333333 37.88861 BOOODOOO 1.000000 1.000000 1.3000000 1.3000000 1.3000000 1.20909 ADS 1.2662280 61.1000000 0.0101233 18.40669 ADS 2.33333 1.2662280 61.1000000 0.377.333333 18.40669 ADS 3.666667 1.547005 3.0000000 1.3333333 31.8490687 ADS 3.666667 1.547005 3.0000000 1.3333333 31.8490687 ADS 59.2000000 1.3333333 31.2662280 61.1000000 0.3900000 0.317.333333 31.8490687 ADS 3.666667 1.547005 3.0000000 1.3333333 31.49185 ADS 59.2000000 1.633333 31.2662280 61.1000000 0.5500000 1.3333333 31.8490687 ADS 3.666667 1.547005 3.0000000 5.830000 2.830000 2.84165	FL ASH	0.563333	015275	0 550000	50000	0000000	71110
ABS 60.833333 1.5275252 4.000000 2.3700000 2.373333 28.641090 VOL 193.6666667 8.1445278 188.000000 2.03.000000 2.973333 28.641090 EBLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE 23.9000000 0.0400000 0.83682 23.9000000 0.2000000 23.7000000 11.000000 0.0400000 0.83682 23.9000000 0.0018635 1.7000000 11.000000 0.0400000 0.83682 10.666667 4.0414519 6.0000000 11.000000 16.333333 37.88861 9.0000000 1.1532563 14.9000000 17.000000 137.333333 18.40669 62.23333333 1.2662280 61.1000000 0.05700000 1.7000000	FL PRO	100000	519615	00000000	7 700000	000075	02060
ABS 60.833333 1.7243356 59.300000 62.700000 2.933333 20.83452 VOL 193.6666667 8.1445278 188.000000 203.000000 66.333333 4.20543 WEAN STD DEV MINIMUM MAXIMUM VARIANCE 10.6666667 1.2897028 56.600000 59.1000000 1.663333 2.23647 23.900000 0.2000000 23.700000 24.1000000 1.633333 37.88861 10.6666667 1.2897028 56.600000 13.000000 1.633333 37.88861 10.6666667 1.2897028 56.000000 1.000000 1.633333 37.88861 10.6666667 1.2897028 56.000000 13.000000 1.633333 37.88861 23.900000 0.0818535 1.7400000 17.1000000 1.5333333 18.40669 63.666667 1.17189306 55.000000 17.1000000 1.633333 18.40669 63.666667 1.17189306 55.000000 0.95700000 0.9300000 6.47224 10.5666667 1.1682260 61.100000 0.95700000 0.9300000 6.47224 3.6666667 1.1547005 3.000000 0.5000000 1.333333 31.49183 ABS 59.2000000 1.682264 57.900000 61.1000000 2.8300000 2.84165	11 X O	5.333333	527525	4 0000000	200000	000013:	
VOL 193.6666667 8.1445278 188.000000 203.000000 66.333333 4.20543 ABLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE 57.666667 1.2897028 56.600000 24.100000 1.6633333 37.88861 23.9000000 2.0000000 23.700000 24.1000000 16.333333 37.88861 10.6666667 4.0414519 6.000000 11.0000000 16.333333 37.88861 9.0000000 2.0000000 23.7000000 11.0000000 15.300000 22.2222 10.666667 4.0414519 6.000000 17.1000000 16.333333 18.40669 ASH 1.8300000 1.1532563 14.9000000 17.1000000 1.633333 18.40669 62.2333333 1.2662280 61.1000000 0.95700000 0.9300000 6.47224 SH 0.5000000 0.9643651 14.2000000 16.000000 0.9300000 6.47224 ABS 59.2000000 1.6822604 57.9000000 61.1000000 2.8300000 2.84165	SAKE ABS	0.83333	724335	000000000000000000000000000000000000000	7,000000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.04LU9
ABLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE 57.666667 1.2897028 56.600000 1.663333 2.23647 23.9000000 0.2000000 23.7000000 13.000000 16.333333 37.88861 10.666667 4.0414519 6.0000000 13.000000 16.333333 37.88861 9.0000000 2.0000000 7.0000000 11.0000000 16.333333 37.88861 PRO 15.8000000 1.1532563 1.7400000 17.1000000 1.3300000 7.29909 53.666667 11.7189306 55.0000000 17.1000000 1.333333 18.40669 54.1000000 0.9643651 14.2000000 1.333333 19.96577 ABS 59.2000000 1.600000 0.980000 0.9843651 14.2000000 61.1000000 2.8300000 2.84165	LOAF VOL	3.666666	.144527	88.000000	03.000000	6.333333	20543
ABLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE 57.6666667 1.2897028 56.600000 24.1000000 1.6633333 2.23647 23.9000000 0.2000000 23.7000000 24.1000000 16.33333 37.88861 10.6666667 4.0414519 6.0000000 11.0000000 16.333333 37.88861 29.0000000 2.0000000 7.0000000 11.0000000 16.333333 37.88861 ASH 1.8300000 0.0818535 14.9000000 17.1000000 1.3300000 7.29909 26.2.666667 11.7189306 55.0000000 17.1000000 17.333333 18.40669 26.2.233333 1.2662280 61.1000000 0.57000000 1.633333 19.96577 ASH 0.5066667 0.1011599 0.3900000 0.57000000 0.9300000 6.47224 ABS 59.2000000 1.6822604 57.9000000 61.1000000 2.8300000 2.84165		1 1 1					
ABLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE C 23.900000 1.663333 2.236478 2.3900000 0.200000 24.1000000 1.663333 2.236478 2.3900000 0.2000000 23.7000000 13.000000 16.333333 37.88611 2.8300000 0.0081853 1.7400000 11.000000 1.3300000 1.3000000 1.30000000 1.3000000 1.3000000 1.3000000 1.3000000 1.3000000 1.3000000 1.3000000 1.3000000 1.3000000 1.30000000 1.30000000 1.30000000 1.30000000 1.30000000 1.30000000 1.300000000 1.30000000000							
ABLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE C 23.6478 C 23.6478 C 23.6478 C 23.6478 C 23.600000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ARIETY=			
ABLE MEAN STD DEV MINIMUM MAXIMUM VARIANCE 23.000000							
## AND PEAR MINIMUM MAXIMUM VARIANCE CONTROL			1		,		i
57.6666667 1.2897028 56.600000 24.1000000 1.663333 2.236478 23.9000000 0.2000000 23.7000000 24.1000000 0.0400000 0.836820 10.6666667 4.0414519 6.0000000 11.0000000 16.333333 37.888611 9.0000000 2.0000000 7.0000000 11.0000000 4.0000000 22.22222 PRO 15.8000000 1.1532563 14.9000000 17.1000000 137.333333 18.405697 11.7189306 55.0000000 17.1000000 137.333333 18.405697 SH 0.506667 11.7189306 55.0000000 0.5700000 0.0102333 19.965777 SO 14.9000000 0.9643651 14.2000000 15.000000 0.9300000 6.472248 3.666667 1.1547005 3.000000 61.1000000 2.8300000 2.841656	AKIABLE	MEM	au ore	MINIMO	MAXI	AK	ر
WT 23.900000 0.200000 23.700000 24.100000 0.040000 0.838383 37.88611 10.666667 4.0414519 6.000000 13.000000 1.6.333333 37.88611 1.8380000 2.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.000000 1.000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.000000 1.000000 1.0000000 1.000000 1.0000000 1.000000 1.000000 1.00000000	3.1	7.666666	289702	6.600000	0000001 6	.663333	236478
10.666667 4.0414519 6.000000 13.000000 16.333333 37.888611 9.0000000 2.0000000 7.0000000 11.0000000 4.0000000 22.222222 PRO 15.800000 1.1532563 14.9000000 17.1000000 1.330000 7.299990 1.15.8000000 1.1532563 14.9000000 17.1000000 17.390000 77.299990 1.15.8000000 1.1532563 14.9000000 17.1000000 1.333333 18.406697 62.3666667 1.17189306 55.0000000 0.57000000 1.633333 19.965777 SQ 14.9000000 0.9643651 14.2000000 16.000000 0.9300000 6.472248 3.666667 1.1547005 3.0000000 61.1000000 2.8300000 2.841656	LM >	3.900000	.200000	3.700000	4.100000	.040000	836820
ASH 1.8300000 2.0000000 7.0000000 11.0000000 4.0000000 22.22222 PRO 15.800000 0.0818535 1.7400000 1.9000000 0.0067000 4.472870 PRO 15.8000000 1.1532563 14.9000000 17.1000000 1.3300000 7.299090 1.2662280 61.1000000 77.0000000 1.6033333 18.406697 SH 0.506667 0.1011599 0.3900000 0.57000000 0.0102333 19.964545 RO 14.9000000 0.9643651 14.2000000 16.0000000 0.9300000 6.472248 ABS 59.2000000 1.6822604 57.9000000 61.1000000 2.8300000 2.841656	פו	0.666666	.041451	6.000000	3,000000	6.333333	7.888611
ASH 1.8300000 0.0818535 1.7400000 1.9000000 0.0067000 4.472870 PRO 15.8000000 1.1532563 14.9000000 17.1000000 1.3300000 7.299090 17.299090 17.2990900 17.2990900 17.2990900 17.2990900 17.2990900 17.29909000 17.29909000 17.2990900 17.2990900 17.2990900 17.2990900 17.2990900 17.2990900 17.2990900 17.2662280 61.1000000 63.6000000 1.6033333 18.406697 O.5066667 0.1011599 0.3900000 0.5700000 0.0102333 19.965777 O.5000000 0.9643651 14.2000000 16.0000000 0.9300000 6.472248 17.248 17.2000000 17.833333 31.491832 A.891832 A.891856 17.2000000 17.6822604 57.9000000 61.1000000 2.8300000 2.841656	MS	9,000000	.000000	.000000	1.000000	4.000000	2.22222
PRO 15.8000000 1.1532563 14.900000 17.1000000 1.3300000 7.2909000	VHT ASH	.830000	.081853	740000	1 900000	.006700	4 472870
63.6666667 11.7189306 55.000000 77.0000000 137.333333 18.406697 62.2333333 1.2662280 61.1000000 63.6000000 1.6033333 2.034645 54 0.5066667 0.1011599 0.3900000 0.5700000 0.0102333 19.965777 80 14.9000000 0.9643651 14.2000000 16.0000000 0.9300000 6.472248 3.666667 1.1547005 3.000000 61.1000000 2.8300000 2.841656	WH'T PRO	5.800000	.153256	4.900000	7.100000	.330000	060666
62.233333 1.2662280 61.100000 63.600000 1.603333 2.034645 54 0.5066667 0.1011599 0.3900000 0.5700000 0.0102333 19.965777 50 14.9000000 0.9643651 14.2000000 16.0000000 0.9300000 6.472248 3.6666667 1.1547005 3.0000000 5.0000000 1.333333 31.491832 ABS 59.2000000 1.6822604 57.9000000 61.1000000 2.8300000 2.841656	IARD	3.666666	718930	5 000000	7 000000	37 33333	8 A06697
SH 0.506667 0.1011599 0.390000 0.5700000 0.010233 19.9657777 RO 14.9000000 0.9643651 14.2000000 16.0000000 0.9300000 6.472248 3.666667 1.1547005 3.0000000 5.0000000 1.333333 31.491832 ABS 59.2000000 1.6822604 57.9000000 61.1000000 2.8300000 2.841656	EXTR	2.23333	. 266228	1 100000	200000	1 603333	000000000000000000000000000000000000000
XO 14.900000 0.9643651 14.200000 16.000000 0.9300000 6.472248 ABS 5.000000 5.000000 2.830000 2.841656	FL ASH	0.506666	101159	000005.0	52000	555000	777770 0
ABS 59.2666667 1.1547005 3.0000000 61.1000000 2.8300000 2.841656	FL PRO	000006	964365	4 20000	000000	0000000	946664
ABS 59.2000000 1.6822604 57.9000000 61.1000000 2.8300000 2.841656	11 XO	9999999	.154700	3.000000	5.000000	33333	1 491832
OCCUPACE OCC	AAKE ABS	000000	682260	7 900000	1.00000	000000	2017600
	LOAF VOI	000000000000000000000000000000000000000		1.300000	100001		

- VARIETY=FA987350

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.7666667	0.7505553	59,00000000	60.5000000	0 5633333	1 255000
K WT	39.0333333	1.9629909	37,9000000	41.300000	2 x x x x x x x x x x x x x x x x x x x	F 0000111
LG	70.666667	6.6583281	65,0000000	78.0000000	255555 PA	0.02301L/ 0.4221624
SM	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50 0000000 05
WHT ASH	1.7366667	0.0750555	1.6600000	1 8100000	0.000000	00000000
WHT PRO	16.4333333	1,1930353	15.1000000	17.400000	1 422223	7 3506500
HARD	58.33333	8 6216781		000000000000000000000000000000000000000	74 57555	0008607.1
		10/01700	00000000	0000000.00	14.3333333	14.7800196
EXTR	57.0333333	6.5683585	50.2000000	63,3000000	43.1433333	11.5167010
FL_ASH	0.5033333	0.0305505	0.470000	0.5300000	0 000633333	070/070 7
FL PRO	15,5666667	0.8504901	14.600000	16 200000		6 4636367
MIXO	2.6666667	0.5773503	000000000000000000000000000000000000000	0000000	0.12337.00	03.4030333
DAVE ADG	FD 033333		000000000000000000000000000000000000000	00000000	0.333333	71.6506351
DANE ADS	20.033333	0.5638328	57.3000000	28.6000000	0.4433333	1.1473282
LOAF VOL	194.0000000	7.9372539	185.0000000	200.0000000	63.0000000	4.0913680

- VARIETY=ID367

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.0000000	1.6643317	55,1000000	58.2000000	2.7700000	2.9198802
K WT	25.3666667	2.9160476	22.0000000	27.1000000	8,5033333	11.4955883
LG	11.3333333	6.5064071	5.0000000	18,0000000	42,3333333	57.4094744
SM	7.6666667	2.0816660	6.0000000	10,0000000	4.3333333	27.1521652
WHT ASH	1.7800000	0.1212436	1.6700000	1.9100000	0.0147000	6.8114358
WHT_PRO	15.7333333	1.2096832	14.8000000	17.1000000	1,4633333	7.6886641
HARD	58.333333	15.5026879	47.0000000	76.0000000	240,3333333	26.5760365
EXTR	57.4666667	3.7447741	54.1000000	61,5000000	14.0233333	6.5164283
FL ASH	0.5166667	0.0305505	0.4900000	0.5500000	0.000933333	5.9130009
FL_PRO	15.0666667	1.0785793	14.3000000	16.3000000	1.1633333	7,1587123
MIXO	4.0000000	1.0000000	3.0000000	5,0000000	1,0000000	25.0000000
BAKE ABS	58.2666667	1.8147543	56.2000000	59.6000000	3,2933333	3.1145670
LOAF VOL	203,3333333	12.7410099	195.0000000	218,0000000	162,3333333	6.2660704

- VARIETY=MAROUIS

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.2666667	1.1547005	58.6000000	60.6000000	1.3333333	1.9483136
K_WT	25.1000000	0.5291503	24.5000000	25.5000000	0.2800000	2,1081684
LG	21,3333333	5.5075705	15.0000000	25,0000000	30,3333333	25.8167369
SM	4.6666667	0.5773503	4.0000000	5.0000000	0,3333333	12.3717915
WHT ASH	1.8533333	0.0838650	1.8000000	1.9500000	0.0070333	4.5250884
WHT_PRO	16.0000000	0.8717798	15.4000000	17.0000000	0.7600000	5.4486237
HARD	0000000.99	14.7309199	57.0000000	83.0000000	217.0000000	22,3195755
EXTR	55.0333333	3.6896251	51.9000000	59,1000000	13.6133333	6.7043460
FLASH	0.5633333	0.0305505	0.5300000	0.5900000	0.000933333	5.4231665
FL PRO	15.1000000	0.7549834	14.3000000	15.8000000	0.5700000	4.9998904
MIXO	2.6666667	0.5773503	2.0000000	3.0000000	0.3333333	21.6506351
BAKE ABS	57.5333333	2.5006666	55.0000000	60.0000000	6.2533333	4.3464657
LOAF VOL	192.0000000	7.0000000	184,0000000	197.0000000	49.0000000	3.6458333

--- VARIETY=MN87150 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.0666667	1.1930353	56.7000000	58.9000000	1.4233333	2.0545959
K WT	29.2000000	2.9614186	26.4000000	32,3000000	8.7700000	10.1418444
LG	29.6666667	19.7315314	7.0000000	43.0000000	389,3333333	66.5107802
SM	5.0000000	2.6457513	2.0000000	7.0000000	7.0000000	52,9150262
WHT ASH	1.7033333	0.0585947	1.6600000	1.7700000	0.0034333	3,4399992
WHT PRO	15.8000000	0.7937254	14.9000000	16.4000000	0.6300000	5.0235784
HARD	61.0000000	13.4536240	50.0000000	76.0000000	181,0000000	22.0551214
EXTR	58.9666667	4.2193996	55.0000000	63.4000000	17,8033333	7.1555675
FL ASH	0.5000000	0.0346410	0.4600000	0.5200000	0.0012000	6.928203
FL PRO	15,3333333	0.5033223	14.8000000	15.8000000	0.2533333	3.2825367
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1,0000000	50.000000
BAKE ABS	58,0000000	2.1071308	55.8000000	60.000000	4.4400000	3.6329841
LOAF VOL	196.0000000	5.5677644	190.0000000	201.0000000	31.0000000	2.8406961

-- VARIETY=MN88170 ----

55.8000000 1.7691806 53.9000000 57.4000000 1.7691806 53.9000000 30.5000000 1.7691806 53.9000000 57.4000000 1.7691806 53.9000000 30.5000000 1.769183333 14.9777613 5.0000000 34.0000000 2.6457513 3.0000000 1.90000000 1.90000000 1.90000000 1.90000000 1.9000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000 1.90000000000							
55.8000000 1.7691806 53.900000 57.400000 27.033333 3.4019602 23.700000 30.500000 17.333333 14.9777613 5.000000 34.000000 1.820000 0.0854400 1.730000 1.900000 15.633333 11.015141 54.000000 74.000000 60.866667 4.1884763 58.300000 65.700000 14.700000 0.9165151 13.900000 15.700000 3.200000 5.55000000 5.000000 3.2470453 170.0000 61.400000	VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
27.033333 3.4019602 23.7000000 30.5000000 17.333333 14.9777613 5.000000 34.000000 6.000000 2.6457513 3.000000 1.9000000 15.633333 0.9291573 15.000000 16.700000 61.333333 11.0151411 54.000000 74.000000 60.866667 4.1884763 58.300000 65.700000 14.700000 0.0493288 0.510000 15.700000 3.000000 12.7671453 170.0000 14.000000 184.000000 12.7771453 170.0000 195.00000	TW	55.8000000	1.7691806	53.9000000	57.4000000	3.1300000	3.1705746
17.333333 14.9777613 5.0000000 34.0000000 6.000000 2.6457513 3.0000000 8.0000000 1.820000 0.9291573 15.0000000 16.7000000 61.333333 11.0151411 54.000000 74.000000 60.866667 4.1884763 58.300000 74.000000 14.700000 0.0493288 0.5100000 65.700000 14.700000 0.9165151 13.900000 15.700000 3.000000 12.7071453 170.0000 61.4000000 4.184.000000 12.7771453 170.0000 195.000000	TW_X	27.0333333	3.4019602	23.7000000	30.5000000	11.5733333	12.5843165
6.0000000 2.6457513 3.0000000 8.0000000 1.820000 0.0854400 1.7300000 1.9000000 15.633333 0.9291573 15.000000 16.7000000 61.333333 11.0151411 54.000000 74.000000 60.866667 4.1884763 58.3000000 65.700000 14.700000 0.0493288 0.5100000 65.700000 14.700000 0.9165151 13.9000000 15.700000 3.0000000 12.700499 55.5000000 61.4000000 12.7671453 170.00000 195.000000	r.G	17.3333333	14.9777613	5.0000000	34.0000000	224.3333333	86.4101613
1.8200000 0.0854400 1.7300000 1.90000000 15.633333 0.9291573 15.0000000 16.7000000 16.7000000 16.7000000 16.7000000 16.7000000 16.7000000 16.7000000 0.543333 11.0151411 54.000000 55.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.7000000000000000000000000000000000000	SM	6.0000000	2.6457513	3.0000000	8.0000000	7.0000000	44.0958552
15.633333 0.9291573 15.0000000 16.7000000 61.333333 11.0151411 54.0000000 74.0000000 0.866667 4.1884763 58.3000000 74.000000 0.543333 0.049328 0.5100000 0.6000000 14.7000000 0.9165151 13.9000000 15.7000000 3.0000000 2.0000000 17.76700000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.7000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.70000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.7000000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.700000000 15.7000000000000000000000000000000000000	VHT ASH	1.8200000	0.0854400	1.7300000	1,9000000	0.0073000	4.6945076
61.333333 11.0151411 54.0000000 74.0000000	WHT PRO	15,6333333	0.9291573	15.0000000	16,7000000	0,8633333	5.9434370
60.8666667 4.1884763 58.3000000 65.70000000 0.543333 0.0493288 0.5100000 0.60000000 14.7000000 0.9165151 13.9000000 15.7000000 3.0000000 2.000000 1.0000000 5.0000000 3.2470499 55.55000000 61.40000000 0.2.7671453 170.000000 145.0000000	HARD	61,3333333	11.0151411	54.0000000	74.0000000	121,3333333	17.9594692
0.543333 0.0493288 0.5100000 0.60000000 14.7000000 0.9165151 13.9000000 15.7000000	SXTR	60.8666667	4.1884763	58.3000000	65,7000000	17,5433333	6.8813958
14.7000000 0.9165151 13.9000000 15.7000000 3.0000000 2.0000000 1.0000000 5.00000000	FL_ASH	0.5433333	0.0493288	0.5100000	0.6000000	0.0024333	9.0789255
3.0000000 2.0000000 1.0000000 5.0000000 35 59.233333 3.2470499 55.5000000 61.4000000 12.7671453 170.0000000 195.0000000 14	FL PRO	14.7000000	0.9165151	13.9000000	15,7000000	0.8400000	6.2347969
59.233333 3.2470499 55.5000000 61.4000000 184.000000 12.7671453 170.000000 195.0000000 1	1IXO	3.0000000	2.0000000	1.0000000	5.0000000	4.0000000	66.666667
. 184,0000000 12,7671453 170,0000000 195,0000000 1	SAKE ABS	59,2333333	3.2470499	55.5000000	61,4000000	10,5433333	5.4817951
7 0000000000000000000000000000000000000	LOAF_VOL	184.0000000	12.7671453	170.0000000	195.0000000	163,0000000	6.9386659

- VARIETY=MN88189 -----

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.4666667	0.8386497	57.5000000	59.0000000	0.7033333	1 4344066
K_WT	33.7666667	2,3072350	32,1000000	36.4000000	5.3233333	6.8328776
LG	49,3333333	19,5021366	30.0000000	0000000.69	380.333333	39.5313580
SM	4.6666667	2.0816660	3.0000000	7.0000000	4,3333333	44.6071286
WHT ASH	1,6833333	0.0503322	1.6300000	1.7300000	0.0025333	2.9900334
WHT PRO	16.4666667	0.4509250	16.0000000	16,9000000	0.2033333	2.7384108
HARD	64.0000000	5.5677644	59.0000000	70,0000000	31,0000000	8.6996318
EXTR	63.2666667	2.4846194	60.4000000	64.8000000	6.1733333	3.9272171
FL ASH	0.4433333	0.0115470	0.4300000	0.4500000	0.000133333	2,6045877
FL_PRO	15.9666667	0.3511885	15.6000000	16.3000000	0.1233333	2,1995102
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1,0000000	25.0000000
BAKE ABS	0000009.09	1.3856406	59.0000000	61.4000000	1.9200000	2.2865357
LOAF VOL	195.3333333	23.0289673	170.0000000	215.0000000	530,3333333	11.7895737

0
4
ц.
ABI
Z
H

_
=
\sim
Η
2
Z
æ
_
2
щ
긔
Η
S
3
0
ч
Σ

ı
0
2
\sim
œ
œ
z
Σ
ī
Э
E
\vdash
K
AR
>
į

VARIABLE	MEAN	STD DEV	MINIM	MAXIMUM	VARIANCE	CV
ΓW	61.2666667	1.2858201	59,8000000	62.200000	1.6533333	0767860 6
LM >	32,3000000	3.6755952	28.4000000	35.700000	13.5100000	11 3795517
יפ	48.3333333	20.8166600	25.0000000	65,0000000	433,3333333	43.0689517
MS	3.0000000	1,7320508	1.0000000	4.0000000	3.0000000	57.7350269
WHT ASH	1.7000000	0.0173205	1.6900000	1.7200000	0.000300000	1.0188534
WHT_PRO	15.2333333	0.7637626	14.4000000	15.9000000	0.5833333	5.0137590
HARD	73,3333333	6.5064071	67.0000000	80.000000	42,3333333	8.8723733
EXTR	61.4333333	0.4041452	61.2000000	61.9000000	0.1633333	0.6578598
FLASH	0.4866667	0.0208167	0.4700000	0.5100000	0.000433333	4.2773959
FL_PRO	14.7000000	0.7810250	13.8000000	15.2000000	0.6100000	5,3130950
41XO	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33,333333
3AKE_ABS	59,9333333	1.5307950	58.2000000	61.1000000	2,3433333	2.5541630
COAF_VOL	196.666667	4.1633320	192.0000000	200.0000000	17.3333333	2,1169485

- VARIETY=MN88334 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
LW.	60.233333	1.4843629	58.6000000	61.5000000	2.2033333	2.4643546
L WT	26.3000000	2.7495454	23,3000000	28.7000000	7.5600000	10.4545453
5.6	14.6666667	10.0166528	5.0000000	25,0000000	100,3333333	68.2953600
SM	6.3333333	3.2145503	4.0000000	10,0000000	10,3333333	50.7560566
VHT ASH	1.6500000	0.0984886	1.5400000	1.7300000	0.007600.0	5.9690047
WHT PRO	15.5000000	0.9539392	14.5000000	16,400000	0.9100000	6.1544465
HARD	64.6666667	20.1080415	48.0000000	87.0000000	404.3333333	31.0949096
SXTR	61,8333333	2.3713569	59.200000	63.8000000	5.6233333	3.8350785
FL_ASH	0.4300000	0.0529150	0.3700000	0.4700000	0.0028000	12,3058201
FL_PRO	14.7000000	1.1532563	13.6000000	15.9000000	1,3300000	7.8452807
4IXO	1.6666667	1.1547005	1.0000000	3.0000000	1,3333333	69.2820323
BAKE_ABS	56.0666667	2.2030282	54.6000000	58,600000	4.8533333	3.9293012
LOAF_VOL	180.0000000	10.5830052	168.0000000	188,0000000	112.0000000	5.8794474

- VARIETY=ND655 -

/ARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
M.	60.233333	1.8175075	58.2000000	61.700000	3.3033333	3.0174446
L MT	29.1666667	4.8003472	24.4000000	34,0000000	23,0433333	16,4583333
9,	33.6666667	23.5867194	9.0000000	56.0000000	556,3333333	70,0595627
Ψ.	0000000.9	4.5825757	2.0000000	11,0000000	21,0000000	76,3762616
WHT ASH	1.7733333	0.0568624	1.7100000	1.8200000	0.0032333	3.2065267
HT PRO	17.0666667	1.0408330	15.9000000	17,9000000	1,0833333	6.0986309
IARD	78.333333	9.0737717	70.000000	88,0000000	82,3333333	11,5835384
CXTR	61.6000000	4.1617304	59.0000000	66.4000000	17,3200000	6.7560559
'L ASH	0.5133333	0.0503322	0.4600000	0.5600000	0,0025333	9.8049798
FL PRO	16.7000000	0.7211103	15.9000000	17.3000000	0.5200000	4.3180255
OXII	3,3333333	1.1547005	2.0000000	4.0000000	1,3333333	34.6410162
BAKE ABS	62.5000000	3.2000000	59,3000000	65.7000000	10.2400000	5.1200000
OAF VOL	184.3333333	7.7674535	178,0000000	193,0000000	60,3333333	4.2138084

	1
-	
٠	_
ш	
J	C
9	1
-	>
-	۰
- 1	2
٥	+
È	
Ě	,
13	Ц
TEM	4
D W Z	j
ш	5
~	ζ
-	>
-	•
- 1	
i	
- :	
ı	

29.3 28.3 3.0 1.7 72.0 59.3 0.55	56666				CCCCVC	075001
19260	00000	2.8536526 14.1891978 2.0000000	000		1.2433333 8.1433333 201.3333333 4.0000000	1.8750817 9.7173188 50.0795215 66.666667
760	m m 0	.193035	1.660000	1.810000	0.005633	4.330127
)	33333 53333	.810249 .178915 055075	.7000000	.000000.	.463333	.043115
4	00000	.167618	5.300000	.0000000	.363333	.048000
1 6	99999	.000000	.000000	.000000	.000000	2.146399
1			VARIETY=ND66	2		
1 1	Ψ.	D DE	MINIMUM	MAXIMUM	RIANC	
31	.500000	.5196	9.200000	1000000.8000000000000000000000000000000	. 27	.8733
യസ	.333333	03534	000	3.00	333333	05884
	.723333	.102143	1.650000	1.840000	.010433	5.92710
	. 6666666 . 666666	.9/1253 .011107	.000000.	.5000000	.943333 .333333	5.82752 9.83846
9	.566666	.236813	0.000000	4.100000	5.003333	57508
	.233333	.896288	.200000	. 340000	.803333	2.1655 <i>2</i> 5.52128
	.333333	.577350	7.000000	8.000000	.333333	87295
	000000.	.605551	8.000000	.000000	.000000	.98107
			VARIETY=ND67			
		STD DEV	MINIMUM	MAXIMUM	VARIANCE	υ
9	.266666	.230940	1.000000	1.400000	.053333	.3769
33	00000000	1.8193405	35 0000000	33.0000000	3,3100000	5.703261
7	.333333	.577350	1.000000	2.000000	0.333333	.301270
-	1.753333	.064291	1.680000	1.800000	.004133	.666787
7 1 9	.000000.	.645751	6. / UUUUU 5. 000000	000006.	. 350000	.466208
61	.400000	.256759	.600000	6.000000	.120000	.932832
	40000	.043589	0.410000	.490000	.001900	.906588
1 4	999999	.838649.081666	8.100000 3.000000	7.60000007	.333333	.607128
9	.200000	.852025	400000	100000	42000	930420

1
2
.90
=ND
뚪
IET
VAR
>
į.

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
ΔL	60.8500000	0.2121320	60.700000	61.0000000	0 045000	
K WT	31.2500000	0.0707107	31,200000	31.300000	00005000	1.4100£0.0
LG	43.0000000	7.0710678	38,000000	48.000000	50.000000	16 4442427
SM	2.5000000	0.7071068	2.0000000	3.0000000	0.500000	28 2842712
WHT ASH	1.7600000	0.0848528	1.7000000	1.8200000	0.0072000	4.8211826
WHT PRO	16.6000000	0.9899495	15.9000000	17,3000000	0.9800000	5.9635512
HARD	83.0000000	2.8284271	81.0000000	85,0000000	8,0000000	3.4077435
EXTR	61.3500000	0.2121320	61.2000000	61.5000000	0.045000	0 3457735
FL_ASH	0.4950000	0.0212132	0.4800000	0.5100000	0.00045000	4 2854956
FL_ PRO	16.3500000	0.6363961	15.9000000	16,8000000	0.4050000	3.8923309
MIXO	5.5000000	0.7071068	5.0000000	6.0000000	0.500000	12.8564869
BAKE ABS	62.4000000	1.8384776	61,1000000	63,7000000	3.380000	2 9462783
LOAF_VOL	199.0000000	5.6568542	195.0000000	203.0000000	32,0000000	2.8426403

-- VARIETY=N86-0542 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.2666667	2.1939310	54.8000000	59.0000000	4.8133333	3 8310786
KWT	26.7666667	2.5794056	23.9000000	28.9000000	6.6533333	9.6366337
LG	20.0000000	12.2882057	6.0000000	29,0000000	151,0000000	61.4410286
SM	8.3333333	2.5166115	6.0000000	11,0000000	6.3333333	30.1993377
WHT ASH	1.8633333	0.1193035	1.7300000	1.9600000	0.0142333	6.4026942
WHT PRO	15.6666667	1,1239810	14.7000000	16,9000000	1,2633333	7.1743469
HARD	67.0000000	13.0000000	54.0000000	80,0000000	169.000000	19.4029851
EXTR	61.2666667	3,9068316	57,5000000	65,3000000	15.2633333	6.3767654
FL ASH	0.4933333	0.0057735	0.4900000	0.5000000	0.000033333	1.1703046
FL PRO	15,3333333	1.0115994	14.7000000	16,5000000	1.0233333	6.5973874
MIXO	3,3333333	0.5773503	3.0000000	4.0000000	0.3333333	17 3205081
BAKE_ABS	58.9666667	2.3180452	56.5000000	61,1000000	5,3733333	3.9311111
LOAF_VOL	200.6666667	12.4230968	193.0000000	215.0000000	154.3333333	6.1909120

- VARIETY=N87-0306 ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.2000000	1.4000000	57.2000000	59.8000000	1.9600000	2.4054983
K_WT	29.5666667	2.8041636	27.8000000	32,8000000	7,8633333	9.4842060
LG	33,333333	11.5036226	22.0000000	45.0000000	132,3333333	34.5108679
SM	4.0000000	2.0000000	2.0000000	0.000000.9	4,0000000	50,0000000
WHT ASH	1.7333333	0.0757188	1.6800000	1.8200000	0,0057333	4.3683910
WHT PRO	16.4666667	0.7767453	15.6000000	17.1000000	0.6033333	4.7170770
HARD	62.0000000	8.5440037	53.0000000	70,0000000	73.0000000	13.7806512
EXTR	62,7000000	3.8974351	58.4000000	66.0000000	15,1900000	6.2160049
FL ASH	0.4500000	0.0556776	0.4000000	0.5100000	0.0031000	12,3728097
FL_ PRO	16,2333333	0.5507571	15.6000000	16.6000000	0,3033333	3.3927539
MIXO	5.6666667	1.5275252	4.0000000	7.0000000	2,3333333	26.9563276
BAKE ABS	59.8333333	3,3381632	56.0000000	62.1000000	11,1433333	5.5791028
LOAF VOL	206.6666667	10.2143690	195.0000000	214.0000000	104.3333333	4.9424366

MIDWESTERN REGION

- VARIETY=N87-467

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58,4666667	1.1718931	57.6000000	7 0 0 0 0 0 0 0 S		
K WT	31, 233333	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	1.3/33333	2.0043781
1 4	000000000000000000000000000000000000000	2.6063200	29.300000	34.2000000	6.8033333	8.3510780
פ	28.333333	13.0511813	18.0000000	43.0000000	170.3333333	46 0629999
SM	3.333333	3.2145503	1.000000	7 0000000	10 222222	0767700
WHT ASH	1.770000	0111660		0000000	10.333333	96.4365076
ממט שוויי		01117/0:0	T.690000	T.830000	0.0052000	4.0740692
WHI FRO	15.5000000	0.8888194	14.5000000	16.2000000	0.790000	5 7343190
HARD	47.0000000	6.5574385	41.000000	54 0000000	0000000	OCTOBOL C
RXTR	61 566667	3 0746014		0000000	43.000000	13.9519969
1100	1999996:19	5.0/46UL4	0000008.80	64.8000000	8.2633333	4.6690873
FL ASH	0.4700000	0.0400000	0.4300000	0.510000	0.0016000	6 610000
FL PRO	14.9666667	0 8504901	14 1000000	00000000	000000000000000000000000000000000000000	0.0100383
MIVO	100000000000000000000000000000000000000	10000	000007.57	000000000	0.7233333	5.6825616
DVTI	3.0000001	7.52/5252	2.0000000	5.0000000	2,3333333	41,6597790
BAKE ABS	59.833333	1.9857828	57.6000000	61.400000	3 9433333	0000000
LOAF VOL	713 666667	2000000			00000000	0/080700
704	1000000:577	19.0044213	193.000000	232.0000000	384.3333333	9.1752362

--- VARIETY=N88-3034 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.1000000	1.0535654	56.1000000	58 2000000	1 1100000	1 0451
K_WT	27.1666667	2.7537853	24.5000000	30.0000000	7.5833333	10 1366379
LG	20.000000	13.1148770	8.0000000	34.0000000	172.000000	65 5743957
SM	5,3333333	2.0816660	3.0000000	7.0000000	4 333333	300010000
WHT ASH	1.7300000	0.4396590	1.2400000	2.0900000	0.0000000000000000000000000000000000000	25.0312373
WHT_PRO	17.5000000	0.5567764	16.900000	18 0000000	330000	20120116
HARD	72.6666667	5.5075705	0000000 69	20000000	000000000000000000000000000000000000000	OCTOTO:
пучп	61 622222		000000000000000000000000000000000000000	000000000	50.333333	1.5792255
100	01.033333	2.3501//3	59.5000000	64.2000000	5.5233333	3,8008258
FL ASH	0.5166667	0.0230940	0.4900000	0.5300000	0,000533333	4.4698085
FL_PRO	17.3000000	0.2645751	17.0000000	17,5000000	0.070000	1 5293360
MIXO	2.3333333	0.5773503	2.0000000	3 0000000	3333333	000000000000000000000000000000000000000
BAKE ABS	59.9000000	1.3076697	59.000000	61 4000000	00000000	00000001.20
LOAF VOL	207 333333	202020		0000001:10	0000111	Z.163U\$8U
TOW THOSE	666666666	2.020020	204.0000000	210.0000000	9,333333	1.4734970

-- VARIETY=N88-3136 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
LW .	61,0333333	0.4509250	60.6000000	61.5000000	0 203333	0 7300175
TW_X	29.8666667	2.1197484	27,6000000	31 800000	4 493333	7 0973719
LG	36.0000000	13.8924440	20,0000000	45.000000	193 0000000	38 5901222
SM	2.6666667	0.5773503	2.0000000	3.0000000	0.333333	21.6506351
WHT ASH	1.7366667	0.0665833	1.6800000	1.8100000	0.0044333	3.8339701
WHT_PRO	16.6666667	0.2516611	16.4000000	16.9000000	0.0633333	1.5099669
HARD	0000000.99	2.6457513	63,0000000	68.0000000	7.0000000	4.0087141
EXTR	59.4333333	3.4019602	56.1000000	62.9000000	11.5733333	350056.5
FLASH	0.5033333	0.0351188	0.4700000	0.5400000	0.0012333	6 9772541
FL PRO	16.3666667	0.2081666	16.200000	16,6000000	0.0433333	1 2718937
41 XO	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33 333333
BAKE ABS	59.4000000	0.8544004	58,6000000	60,3000000	0.7300000	1.4383845
LOAF VOL	208.3333333	7.2341781	200.0000000	213.0000000	52,333333	3,4724055

ï
2
5
41
0
Μ
S
Ш
\rightarrow
H
$\mathbf{E}\mathbf{I}$
H
AR
K
Š
I

į		
i		
1		
1		
1		
ŀ		
i		
i		
ı		
1		
n		
000		
2		
ũ		
-		
4		
5		
>		

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
	60.333333	1.0598742	59.2000000	61.3000000	1.123333	1 7555075
K_WT	31.2333333	2.3501773	28.9000000	33.6000000	5.523333	7 5245805
	57.6666667	21.0317221	36.0000000	78.0000000	442,3333333	36.4711943
	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50.0000000
T_ASH	1.7433333	0.0550757	1.6800000	1.7800000	0.0030333	3.1592183
WHT_PRO	16.9333333	1.0016653	15.8000000	17.7000000	1,0033333	5.9153461
RD	67.3333333	1.5275252	0000000.99	0000000.69	2.3333333	2 2686018
TR	61.1333333	3.5641736	58,2000000	65.1000000	12.7033333	5 8301640
ASH	0.4966667	0.0351188	0.4600000	0.5300000	0.0012333	7 0709086
FL PRO	16.7666667	1.0408330	15.6000000	17.6000000	1.0833333	6.2077515
×o	3.0000000	1.7320508	2.0000000	5.0000000	3,0000000	57.7350269
SAKE ABS	60.9666667	0.7637626	60.3000000	61.8000000	0.5833333	1.2527544
OAF VOL	199.6666667	10.0166528	192.0000000	211,0000000	100,3333333	5.0166875

- VARIETY=SD3056 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.4666667	0.7637626	58.8000000	60.3000000	0.5833333	1.2843542
K_WT	34.9000000	2,5632011	32.5000000	37.6000000	6.5700000	7.3444158
LG	59,3333333	15.5670592	43.0000000	74.0000000	242,3333333	26.2366167
SM	1,3333333	1.5275252	0	3.0000000	2,3333333	114.5643924
WHT ASH	1.7266667	0.0208167	1.7100000	1.7500000	0.000433333	1.2055981
WHT PRO	16.8000000	1.0148892	15.7000000	17.7000000	1,0300000	6.0410069
HARD	78.333333	9.0737717	70.0000000	88.0000000	82,333333	11,5835384
EXTR	58.0000000	4.0730824	53.3000000	60.5000000	16.5900000	7.022558
FL ASH	0.5833333	0.0577350	0.5500000	0.6500000	0.0033333	9.8974332
FL_PRO	16.1000000	0.9848858	15.0000000	16.9000000	0.9700000	6.1173030
MIXO	2.6666667	1.1547005	2.0000000	4.0000000	1,3333333	43.3012702
BAKE ABS	61,3666667	0.7505553	60.5000000	61.8000000	0.5633333	1.2230668
LOAF VOL	197.6666667	4.5092498	193.0000000	202.0000000	20.3333333	2.2812393

-- VARIETY=SD3080 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61.3666667	0.9451631	60.3000000	62.1000000	0.8933333	1.5401898
K WT	31.8333333	2.3501773	29.5000000	34.2000000	5.5233333	7.3827559
LG	40.6666667	14.9777613	24.0000000	53.0000000	224.333333	36.8305606
SM	1.6666667	2.0816660	0	4.0000000	4.3333333	124.8999600
WHT ASH	1.6566667	0.0832666	1.5900000	1.7500000	0.0069333	5.0261553
WHT_PRO	17.2000000	0.2000000	17.0000000	17.4000000	0.0400000	1.1627907
HARD	71.0000000	4.3588989	0000000.99	74.0000000	19.0000000	6.1392943
EXTR	59.9333333	2.9670412	56.8000000	62,7000000	8.8033333	4.9505693
FL ASH	0.4866667	0.0115470	0.4800000	0.5000000	0.000133333	2.3726723
FL_PRO	17.0666667	0.0577350	17.0000000	17.1000000	0.0033333	0.3382912
MIXO	5.3333333	2.5166115	3.0000000	8.0000000	6.3333333	47.1864652
BAKE ABS	62.1000000	1.1789826	61,1000000	63.4000000	1.3900000	1.8985227
LOAF VOL	207.0000000	7.5498344	200.000000	215.0000000	57.0000000	3.6472630

i
7
-
0
∞
S
11
\succ
H
田
-
œ
Z
5
bank
ı
;

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61.2000000	0.5000000	60.700000	61.7000000	0.2500000	7.8169935
K WT	33.5666667	0.6506407	32.900000	34.2000000	0.4233333	1.9383537
LG	55,0000000	6.0827625	48.0000000	59,0000000	37,0000000	11,0595682
SM	1.0000000	1.0000000	0	2,0000000	1.0000000	100.0000000
WHT ASH	1.7000000	0.0624500	1.6500000	1.7700000	0.0039000	3.6735282
WHT PRO	16.6333333	0.8082904	15.7000000	17,1000000	0.6533333	4.8594612
HARD	82.0000000	12,2882057	73.0000000	96,0000000	151,0000000	14.9856167
EXTR	62.2000000	2.5942244	59.3000000	64.3000000	6.7300000	4.1707787
FL_ASH	0.5166667	0.0230940	0.4900000	0.5300000	0.000533333	4.4698085
FL_PRO	16.2333333	0.5686241	15,6000000	16,700000	0.3233333	3.5028177
MIXO	3,6666667	1.5275252	2.0000000	5.0000000	2,3333333	41.6597790
BAKE ABS	60.833333	1.4189198	59.3000000	62,1000000	2,0133333	2,3324709
LOAF_VOL	180.0000000	10.0000000	170.0000000	190.0000000	100.000000	5.555556

-- VARIETY=SD8073 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	λ
TW	60.5666667	0.7505553	59.7000000	61.0000000	0.5633333	1.2392218
K_WT	32,0333333	1.8147543	30.1000000	33,7000000	3,2933333	5.6652061
LG	44.0000000	15.6204994	26.0000000	54.0000000	244,0000000	35.5011349
SM	1.0000000	1.0000000	0	2,0000000	1.0000000	100.0000000
WHT ASH	1.7200000	0.0854400	1.6400000	1.8100000	0.0073000	4.9674440
WHT PRO	16,0000000	0.9539392	14.9000000	16,6000000	0.9100000	5.9621200
HARD	81,0000000	6.0827625	74.0000000	85.0000000	37,0000000	7.5095834
EXTR	62,5333333	3.0664855	59,9000000	65.9000000	9.4033333	4.9037615
FL_ASH	0.5300000	0.0100000	0.5200000	0.5400000	0.000100000	1.8867925
FL_PRO	15,5333333	0.8326664	14.6000000	16.2000000	0.6933333	5,3605133
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1,0000000	25.0000000
BAKE ABS	61,0000000	1.3228757	60.000000	62,5000000	1.7500000	2,1686486
LOAF VOL	183.6666667	5.5075705	178,0000000	189.0000000	30.333333	2.9986772

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
MI	60.5666667	0.4932883	60.0000000	60.9000000	0.2433333	0.8144551
Y.M.Y	30.733333	1.2342339	29.7000000	32.1000000	1.5233333	4.0159455
LG	40.6666667	12.5830574	29.0000000	54.0000000	158,3333333	30.9419444
214	2.0000000	1,0000000	1.00000000	3,0000000	1,0000000	50.0000000
WHT ASH	1.6900000	0.000000	1.6200000	1.7600000	0.0049000	4.1420118
WHT PRO	16,5333333	0.9291573	15,5000000	17.3000000	0.8633333	5.6199032
HARD	77.6666667	10.5987421	68,0000000	89,0000000	112,3333333	13,6464490
EXTR	59,4333333	2.9955523	56.1000000	61,9000000	8,9733333	5,0401889
FL ASH	0.5433333	0.0404145	0.5000000	0.5800000	0,0016333	7,4382550
FL_PRO	15,7666667	0.4163332	15.3000000	16,1000000	0.1733333	2,6405911
MIXO	3,3333333	0.5773503	3.0000000	4.0000000	0.3333333	17,3205081
BAKE ABS	60,8000000	0.8660254	60,3000000	61,8000000	0.7500000	1.4243839
LOAF VOL	186.0000000	2.6457513	184,00000000	189,0000000	7.0000000	1,4224469

-- VARIETY=SD8074

TABLE 48

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
EW TEN	59.3666667	2.0033306	57.3000000	61.3000000	4.0133333	3 3745040
K_WT	27.1333333	2.0599353	24.8000000	28,7000000	4.2433333	7.5918990
เด	16.6666667	9.2376043	6.0000000	22,0000000	85.333333	55.4256258
MS	3,3333333	3.2145503	1.0000000	0000000°1.	10,3333333	96.4365076
WHT ASH	1.8333333	0.1171893	1.7000000	1.9200000	0.0137333	6.3921439
WHT PRO	16.4000000	1.0000000	15.4000000	17.4000000	1,0000000	6.0975610
HARD	65,3333333	4.9328829	62,0000000	71,0000000	24,3333333	7.5503309
EXTR	61,7333333	2.8005952	58,9000000	64.5000000	7.8433333	4.5366013
FL ASH	0.4733333	0.0351188	0.4400000	0.5100000	0.0012333	7.4194745
FL PRO	15.7333333	0.6806859	15.2000000	16.5000000	0.4633333	4.3263936
4IXO	4.0000000	1.7320508	2.0000000	5.0000000	3,0000000	43.3012702
BAKE_ABS	60.8666667	1.6010413	59,3000000	62.5000000	2,5633333	2,6304074
COAF_VOL	193.0000000	7.2111026	187.0000000	201.0000000	52,0000000	3.7363226

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.7000000	1.3747727	58.2000000	00000006.09	1.8900000	2.3028019
K WT	31,3333333	3.2316147	28.9000000	35.0000000	10,4433333	10,3136638
ГG	30.3333333	16.0416126	15.0000000	47.0000000	257,3333333	52,8844370
SM	3,3333333	2.0816660	1.0000000	5.0000000	4,3333333	62,4499800
WHT ASH	1.8266667	0.1026320	1.7400000	1.9400000	0.0105333	5.6185417
WHT PRO	16.1333333	0.5686241	15.5000000	16.6000000	0,3233333	3,5245294
HARD	55.0000000	6.5574385	48.0000000	61,0000000	43.0000000	11.9226155
EXTR	59,9333333	4.9095146	55.9000000	65.4000000	24,1033333	8,1916261
FL ASH	0.5000000	0.0519615	0.4400000	0.5300000	0.0027000	10,3923048
FL PRO	16.2000000	0.3605551	15,9000000	16,6000000	0,1300000	2,2256489
MIXO	0000000.9	1,7320508	4.0000000	7.0000000	3,0000000	28,8675135
BAKE_ABS	60,7333333	0.6350853	60.000000	61.1000000	0.4033333	1.0456948
LOAF_VOL	205.6666667	8.0208063	198.0000000	214.0000000	64.3333333	3.8999058
1 1 1 1 1 1 1 1						

-- VARIETY=XW398A4 --

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=HAVRE NURSERY=UNIFORM

ļ														
TEST WT #/BU	1000 K.WT G.	SIZII	NG SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
8 1		12	5	9	9	7.0	4		0.47			4	1 0	
9		က	15	. 7	9	73	m	62.4	4		. v	47		ı m
e,		m	21	φ.	5.	09	2	,-	5	4	2	' বা	7) (T
9	3	9	œ	. 7	è.	72	٣	6	.5	4	2	47"	ω.	, m
5.	2.	m	14	. 7	9	63	٣	-	4	5.	2	4	, ,	n C
9.	0		2	9 .	δ.	09	4	8	4.	5.	5	4	0	m
9			2	. 7	5.	99	٣	63.7	.5	5.	5	4	-	4
0	29.8		٣	.5	9	99	4	62.1	4.	5.	5	4	2.	4
7.		13	٣	9 .	5.	74	4	62.7	. 4	5.	5	4	0	· ന
9	4		7	. 7	5.	69	٣	3,	. 5	5	5	4	0	4
8		10	2	9.	9	74	4	3.	.5	5.	5	4	0	2
9		7	9	9.	5.	57	က	2.	4	4	2	4	7.	2
0			17	8	5.	58	2	س	. 5	5.	5	4	0	2
7.	0	29	7	• 6	5.	67	4	9	4.	5.	5	4	9	c
8	5.	6	7	9.	4.	73	4	3	4.	ω,	2	4	0	m
5		7	24	. 7	5	09	2	ж Э	. 4	4.	2	4	9	٣
9		11	9	9 •	9	67	4,	æ	5	9	2	4	0	٣
9		9	80	. 7	9	29	٣	س	.5	9	2	4	2.	4
9		7	6	. 7	5.	64	٣	4.	.5	5.	2	4	8	2
0	9	11		•	9	8 9	4	2.	٠ 4	9		4	0	4
5	÷	9		8	9	75	m	2.	5	5.	S	4	2.	7
ω.	6	13	9	. 7	5.	62	か	4.	.5	5.	2	4	0	e
س	5	ა	13	8	4	53	m	7.	. 4	4	2	4	0	2
4	4	ω	6	9.	5.	28	ო	5.	4.	5.	2	4	0	2
7.		9	æ	. 7	5.	22	4	2	.5	5.	2	4	9.	4
4		4	11	∞.	9	63	m	4.	.5	9	2	4	6	٣
9		7	œ	8	4.	45	m	٠ 4	٠.	4.	2	4	7.	٣
7		30	2	9 •	5.	46	4	4	4.	4.	2	4	7.	٣
2.		8	11	æ	7.	7.8	m	9	.5	7.	2	2	0	2
7.		12	2	. 7	9	73	4	4.	. 4	9	2	4	0.	3
9		18	m	. 7	9	71	4	2.	.5	9	2	4	9.	က
÷	21.7	က	19	8	5	51	2	62.7	4.		5	4	9.	7
	53. 50. 50. 50. 50. 50. 50. 50. 50	33.4 20 56.5 5 23 66.9 2 28 67.0 2	3.4 20.0 6.5 5 23.3 6.9 28.7 6.0 2 24.2 6.0 2 25.3 6.0 2 25.3 6.0 2 25.3 7.1 25.0 6.1 25.7 6.0 1 26.7 7.8 22.3 7.8 22.3 7.9 22.3 7.0 26.5 7.1 25.0 7.1 25.0 7.1 25.0 7.1 25.0 7.2 22.3 7.3 20.3 7.4 25.0 7.5 20.3 7.6 24.7 7.7 25.3 7.8 22.3 7.8 22.3 7.9 22.5 7.0 26.3 7.1 26.0 7.1	3.4 20.0 3 6.5 23.3 6 5.5 22.4 3 9.1 30.2 22 6.9 28.7 18 6.2 24.2 6 8.0 25.8 15 7.1 20.2 24.2 6 8.0 25.8 15 7.1 30.3 29 8.1 25.6 11 7.1 25.0 6 6.6 25.7 11 6.1 25.0 6 6.6 25.4 7 8.5 29.8 13 3.6 22.3 5 4.6 24.7 8 7.8 22.5 6 7.9 22.3 5 7.0 26.3 12 7.0 26.3 12 7.0 26.3 12 7.0 26.3 12 7.0 26.3 12	3.4 20.0 3 21 1. 6.5 23.3 6 8 1. 9.1 30.2 22 2 2. 6.9 28.7 18 5 1. 7.9 26.4 13 3 14 1. 7.9 26.4 13 3 1. 7.9 26.4 13 3 1. 6.2 24.2 6 7 1. 6.3 25.3 10 5 1. 6.9 25.3 10 5 1. 6.9 25.3 10 5 1. 6.1 30.3 29 2 1. 7.1 30.3 29 2 1. 7.2 22.5 6 1 6 1. 7.4 31.4 30 2 1. 7.6 26.3 12 5 1. 7.7 22.5 6 8 1. 7.8 22.5 6 8 1. 7.9 26.3 12 5 1. 7.0 26.3 12 5 1. 7.0 26.3 12 5 1. 7.1 1.	3.4 20.0 3 21 1.82 15 6.5 23.3 6 8 1.78 16 6.9 28.7 18 5 1.72 15 6.0 7 29.8 15 3 1.55 16 15 6.0 25.3 10 5 1.72 15 6.0 25.3 10 5 1.61 15 10 10 10 10 10 10 10 10 10 10 10 10 10	3.4 20.0 3 21 1.82 15. 6.5 23.3 6 8 1.78 16. 9.1 30.2 22 2 1.61 15. 6.9 28.7 18 5 1.72 15. 6.0 25.3 10 5 1.62 15. 6.0 25.3 10 5 1.63 16. 6.0 25.3 10 5 1.63 16. 6.1 25.3 10 5 1.63 16. 6.2 21.1 1 17 1.88 15. 7.1 25.5 9 7 1.64 14. 7.1 25.5 9 7 1.64 14. 7.1 25.7 1 3 1.62 16. 7.2 21.8 6 14. 172 15. 7.3 25.6 1 8 17.72 15. 7.4 25.7 1 3 1.62 16. 8.5 29.8 13 6 1.72 15. 7.8 22.5 4 11 1.88 16. 7.9 26.3 12 5 1.70 16. 7.0 26.3 12 5 1.70 16. 7.0 26.3 12 5 1.70 16. 7.1 31.4 30 2 1.69 15. 7.2 22.9 8 11 1.88 16. 7.3 22.5 7 8 1.87 17. 7.0 26.3 12 5 1.70 16. 7.1 31.4 30 2 1.69 15. 7.2 22.9 8 11 1.87 17. 7.0 26.3 12 5 1.70 16. 7.1 31.4 30 2 1.69 15. 7.2 22.9 8 11 1.83 15.	3.4 20.0 3 21 1.82 15.3 6 6.5 23.3 6 8 1.78 16.3 7 6 6.9 28.7 18 5 1.72 15.5 6 6.9 28.7 18 5 1.72 15.5 6 6.0 25.3 10 2 22 1.61 15.7 6 6.0 25.3 10 25.3 10 5 1.62 15.8 7 1 25.5 16.1 6 1 25.3 10 25.3 10 5 1.63 16.0 7 1 25.5 16.1 6 1 25.5 16.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.4 20.0 3 21 1.82 15.3 60 2 61 6.5 23.3 6 8 1.78 16.3 72 3 59 5.5 22.4 3 14 1.79 16.0 63 3 61 6.9 28.7 18 1.72 15.5 66 3 63 6.9 28.7 18 1.72 15.5 66 3 63 6.0 25.4 13 3 1.72 15.5 66 3 63 6.0 25.4 13 3 1.68 15.0 64 62 6.0 25.8 1 6 1.74 15.8 64 63 6.0 25.8 1 6 1.68 15.0 57 4 62 6.0 25.8 1 6 1.64 14.3 73 4 62 6.0 25.8 1 1.64 14.3 73 4 63 6.3 25.9 2 1.6	3.4 20.0 3 21 1.82 15.3 60 2 61.2 65.5 22.4 3 14 1.79 16.0 63 3 61.8 0.49 21.3 22 2 2 1.61 15.7 60 4 63.1 0.49 16.0 63 3 61.8 0.49 21.3 22 2 2 1.72 15.5 66 3 63.1 0.49 16.0 63 3 63.1 0.49 16.0 63 3 63.1 0.49 16.0 63 3 63.1 0.49 16.0 63 3 63.1 0.49 16.0 62 24.2 6 7 1.74 15.8 69 3 63.8 0.55 16.1 174 15.8 69 3 63.8 0.55 16.1 174 15.8 69 3 63.8 0.55 17.1 30.3 29 7 1.64 16.5 67 4 63.8 0.55 17.1 30.3 29 7 1.64 16.2 67 4 63.8 0.55 17.1 25.5 9 7 1.64 16.2 67 4 63.8 0.55 17.1 25.5 9 7 1.64 16.2 67 4 63.9 0.55 17.1 25.0 6 8 1.72 15.8 64 3 64.9 0.55 17.1 25.0 6 8 1.72 15.8 64 3 64.9 0.55 17.1 25.2 62 11 6 1.61 16.0 67 3 63.8 0.55 17.1 25.2 62 11 6 1.61 16.0 67 3 62.1 0.49 17.1 15.5 60 2 63.8 0.55 17.1 17.1 15.5 60 2 63.8 0.55 17.1 17.1 17.1 15.5 60 2 63.1 0.49 17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.	3.4 20.0 3 21 1.82 15.3 60 2 61.2 0.54 14 6.5 23.3 6 8 1.78 16.3 72 3 59.3 0.55 14 9.1 23.3 6 8 1.79 16.0 63 3 63.1 0.48 15 9.1 28.7 18 1.61 15.7 60 3 63.3 0.55 14 1.9 26.4 13 1.55 16.1 66 4 62.1 0.45 15 1.9 26.4 13 1.74 15.8 66 4 62.1 0.45 15 1.0 25.3 10 5 1.63 15.9 8 6 63.8 0.54 15 1.0 25.3 10 5 1.63 15.9 8 6 63.8 0.54 15 1.0 25.3 10 1.44 15.9 58 6 63.8 0.54 15 1.1 1.1 1.88	3.4 20.0 3 21 1.82 15.3 60 2 61.2 0.54 14. 6.5 23.3 6 8 1.78 16.0 63 3 59.3 0.55 14. 9.1 30.2 2 1.61 16.0 6 3 59.3 0.55 14. 9.1 30.2 2 1.72 15.5 66 3 63.1 0.46 15. 1.0 2 1.5 16.1 66 4 62.1 0.46 15. 1.0 2 1.5 16.1 6 4 62.1 0.46 15. 1.0 2 1.5 16.1 66 4 62.1 0.47 15. 1.0 2 1.7 1.7 1.5 8 9 3 63.8 0.54 15. 1.0 2 1.6 1.5 1.4 4 62.1 0.47 15. 1.0 2 1.1 1.2 1.5 8 9 8 1.5 15.	3.4 20.0 3 21 1.82 15.3 60 2 61.2 0.54 14.7 6.5 23.3 6 8 1.78 16.0 63 3 59.3 0.55 14.7 6.9 28.7 18 2 1.61 16.0 6 3 63.1 0.54 15.7 6.9 28.7 18 1.72 15.5 66 3 63.1 0.55 14.7 6.0 26.4 13 3 1.68 15.8 74 4 62.1 0.42 15.0 6.0 25.3 10 5 1.66 15.0 6 4 62.1 0.42 15.0 6.0 25.3 10 5 1.66 15.0 6 4 62.1 15.0 6.0 25.3 10 6 16.4 4 62.1 15.0 6.0 25.1 1 1.74 14.7 4 62.1 0.42 15.0 6.0 25.1 1 1 1.61 14 <td>3.4 20.0 3 21 1.82 15.3 60 2 61.2 0.54 14.7 5 4 57 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td>	3.4 20.0 3 21 1.82 15.3 60 2 61.2 0.54 14.7 5 4 57 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=HAVRE NURSERY=UNIFORM

		BAKE	MIX	роисн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEFI	-DEFICIENCIES	
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	VOL	SCORE **	SCORE	TW KW SM	WP EX A65 FP	MC MX BA MT DC CC CG	LV
UT	Ŋ	6	0.	7	0		00	2					
		58.6	3.50	7	80	85	183	7	3.0	X			
ERA	S	7 .	.5	7	80		9	2		DM IM DM		Σ. Σ.	
MARQUIS		8	. 2	7	85		8	2				בל :	
STOA	മ	ij.	. 2	7	80		8	m				Σ	
SD3055		0	0.	6	80		8	٣				MI	
SD3056		1.	. 2	0	80		0	Э		MJ		MI	
SD3080		2	. 2	თ	80		0	4					
SD8072		0	.5	7	80		8	2		MI		μ	
SD8073		0	. 2	7	80		8	m		MJ		IW	
SD8074		0	٠.7	7	75		9	٦				MI MI WI	MI
715		7.	.5	2	85		8	2		MJ		MJ MI	3
817		0	. 5	2	80		8	1		LM IM CM	MI	IM LM IM IM IM	
318		9	٠.	7	80		9	2		MI			
3		0	. 2	7	85		9	2				MJ	
833		O	. 2	7	80		8	2		MJ MI MJ		μΩ	
2		0	0.	7	80		9	2				MG	
Ω.		2.	. 2	6	80		H	4		IM CM			
LO I		8	0.	7	80		9	7		MJ MI		IM CM	
ND671		0	٠.	7	8 2		9	m				IΨ	
12		5	0	on .	80		0	m		MJ PMI		MI MI	
98A4		. 0	0.	თ :	82		8	, 				MJ MI	
-054		0	0 .	on 1	75		0	2				IM CM	
- /		. 0	. 7	σ,	82		6	7		IM CM			
8-313		6	. 7	ത	80		9	٦				MJ MI	
8-303		6	.5	6	80		0	2				MJ	
87-467		7	. 2	6	85		9	Н				MJ MI	
FA987350		7	. 2	7	85		0	2		ΜI		ΩÜ	
8230		2	0.	7	80		6	۳		MJ MI	IM CM	MI MI	
LNI		0	0.	2	80		æ	1		MI			
∞ ί		თ	0	ഗ	82		8	2			MI	IM CM	
~		9	0.	6	80		0	7		DM DM		MI MJ MI MI	

TABLE 49 (CONT)

LV 170 160 CG 80 50 75 75 50 DC 6 MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00 BA 61.9 60.4 2,7,8 DEFICIENCIES TW KW SM WP EX A65 FP MC MINOR FAULTING VALUES 57.9 21.3 8 13.9 59.3 .57 12.9 3 MAJOR FAULTING VALUES 56.9 18.3 18 12.9 57.3 .61 12.4 2 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=MONTANA STATION=BOZEMAN NURSERY=UNIFORM

TABLE 30	1															
	STD		1000 K.WT G.	SIZ	S W S	WHT	WHT PRO	HARD- NESS	WHEAT SCORE	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX	MIX
16	တ	2.	0.	25	0	. 2		67	4		- 4	5.		4	10	
		8		9	14	. 5		72	4		.5	7.	. Γ	4	, ,	1 m
1398	ഗ	ω.	2.	6		٠.		29	4	7	.5	4.	2	4	7	m
365		.	9	19	П	٠ 4	9	64	4		4.	5.	2	4	6	'n
32	ഗ	1.	4.		9	4.		65	4	6	4.	5	2	4	0	4
\sim		2	0		7	٠.	15.7	99	4	ω,	. 5	5.	2	4	6	'n
305		m.			7	٠,		8 9	4	7	. 5	4	2	4	6	2
308		4	ä	30	0	. 2		57	4	1.	. 4	9	5	4	0	m
307		٠ س	6		1	٠,		6.5	4	9	. 5	5.	2	3	6	7
307		÷.	7		m	٠ 4	15.9	99	4	٦	. 5	5.	2	4	÷	4
3074		س	ω		7	۳,		69	4	0	4.	5.	2	4	0	4
08715		÷.	6		0	e,		09	4	4	4.	3	2	4	9	٦
08817		ω	ω.		4	۳,		09	4	ش	4.	₹.	2	4	9	2
988			6	27	2	. 4	5	89	4	0.	٠.4	5.	2	4	6	2
38832		m	œ			۳,	•	69	ぜ	6	. 5	ω,	5	4	8	2
18833		0	5	7	15	۳,		29	4	2.	4.	4.	2	4	6	7
S I		0	2			.5	7.	73	4	-	. 5	7.	2	4	Ξ.	2
5		ش	0	56	7	٠4	9	7.2	4	Ϊ.	4.	5	2	4	ω,	ĸ
90		6	<u>.</u> س		15	٠,	9	7.0	4		.5	9	2	4	1.	7
0		4	2	13	3	۳,		6.2	4	0	. 4	9	5	4	3,	5
2/5		6	ä		17	. 5	9	98	m	2.	9.	9	5	Н	2.	5
39		0	7		9	. 4	5	65	4	9	.5	5.	2	٣	0	٣
-054		0	9	15	7	7.	4	62	4	6	. 4	ش	2	4	8	2
-030		0	S.		9	4.	9	69	4	Ξ.	4.	5.	2	4	ä	4
-313		5.	5		2	. 4	9	8 9	4	2.	٠ 4	9	2	4	0	2
-303		i.	٥		m	4		63	4	5.	٠.4	9	2	4	7.	2
-467		φ,	2		14	. 5	5.	20	4	9.	. 5	5.	2	4	0	c
873		0	5		Н	٠,	5.	20	4	8	4.	5.	2	4	7.	2
3230		ω.	9		က	٠ 4	9	71	4		. 5	9	5	en	9.	4
<u>-</u>		59.5	25.7	15	ო	1.53	18.1	83	4	61.0	0.50	18.2	2	4	0.09	e
ST L		2	6		0	4.	9	85	4		. 4	9	2	4	0	e
Ω.			7		4	. 2	14.6	61	4		٠ 4	3.	2	4	7.	m

CHAR	MIN 2.50
9 85 85 9 80 85 9 80 85	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
080	2.75 9 80 8
80 08	3,75 7 80 8
900	2,75 9 90 8 3,00 7 80 8
80 88	3.00 7 80 8
75 8	4.00 7 75 8
80 8	2.50 7 80 8 2.00 5 80 8
000	3.00 7 90 8
75 8	3.00 7 75 8 3.50 9 75 8
85 7	3,75 9 85 7
85 88	4.00 9 85 8
80 88	4.75 9 80 8 6.00 9 85 8
80	4.75 9 80 8
80 7	4.50 9 80 7
8008	8 08 6 60.8
8 08	8 80 8 80 8
85	4.50 5 85 8
2000	2.50 9 85 8
8 06	3.00
90 7	5.00 9 90 7
SM WP EX A65 1 8 13.9 56.7 .57 1.1 18 12.9 54.7 .61 1.3 3 3 3 5 3 5 0 MI SE 4 5 0 0 0 0	WP EX A 13.9 56.7 . 12.9 54.7 . SOME PROMISE 4=

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	\$121 PG	ING SM &	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***		ASH @ 65%EX	FLR PRO	MILL	MILL	MIX ABS	MIX
BUTTE	Ø	9.	3.		П	1.66	4	81	4	5.		3.	5	3	3.1	-
CHRIS		7.			1	1.62	3	72	٣	4	0.53	3	2	٣	9	ı –
	ഗ	9.	7		0	1.54	i	7.1	2	4	4	0	2	2	<u>ر</u>	-
MARQUIS		8	2.		0	1.66	5.	16	4	5.	.5	5.	2	М	-	ı m
STOA	S	ω	8		0	1.64	33	83	m	4	4	3	2	е	ω	2
SD3055		9.			0	1.68	5	74	4	0	4	5.	2	4	-	7
SD3056		9			0	1.58	4	16	4	-	. 5	3	2	2	6	2 2
SD3080		0.			7	1.69	9	75	4	5.	4	5.	2	е	-	2
SD8072		59.4	44.1	93	0	1.62	14.4	88	4	59.5		14.3	2	4	59.0	-
SD8073		8	5		п	1.53	4	8 2	4	0	5	2.	2	7	3	2
SD8074		6	о Ф		0	1.63	4	16	4	Ή.	2	4	2	2	0	m
MN87150		ထ	2.		г	1.54	'n	74	٣	5.	.5	i.	2	H	2	1
MN88170		9			0	1.66	2	52	-	9.	.5	-	2	2	9	-
MN88189		8	8		1	1.53	3	63	٣	9	.5	2.	2	2	7	2
MN88320		6			0	1.57	3	98	٣	6	4.	2.	2	2	6	
MN88334		9	7 .		Н	1.56		65	٣	ä	4.	3	2	4	9	-
ND655		0	<u>.</u>		-1	1.73	5	83	4	7.	. 5	4.	2	2	80	-1
ND657		œ	6		٦	1.73	4	16	4	4.	ς.	3	2	m	9	2
ND662		α			0	1.66	5	16	ማ	5.		5.	2	m	0	-1
ND671		6	6		Н	1.69	ف	82	4	2.	4.	9	2	2	4.	٣
~		ij.	5			1.53	3	80	m	3	٠.4	2.	2	-	9	2
398A		0	о Ф		0	1.69	4	7.0	ጥ	5.	0.64	3	2	2	8	-
-542		თ	0		-1		ij	62	2	4	. 4	0.	2	2	4	٦
-03		ص	4		7			65	2	4.	0.44	÷	5	2	7	Н
-313			٠ 0		0		4	09	4	4.	. 2	~	5	٣	7	1
\sim		9	9		1		4	17	٣	7.	.5	4.	5	4	7.	-1
2.1		٠ ص	7		0		3	63	٣	5.	. 4	2.	2	2	6	2
FA987-350		6	4		0		5.	7.1	な	3,	4.	4	2	2	0	m
982-30		б	2.		7		4	8 9	4	0.		3.	2	2	ω	-1
AC-MINTO		7 .	2.		-			11	4	ω	.5	4	2	4	7.	7
BW148		58.7	38.0	82	0	1.76	16.2	11	4,	4.	0.57	6.	5	٣	0	2
		о О	2		٦			72	2	4.	٠.4	ä	2	2	8	m
		6	۳.		1			62	2	9	4	ä	2	2	7.	က
PONDE		0	φ,		0			99	m	å	4	2.	2	٣	0	က
* ID0341		œ	9		1			68	4		. 2	3.	2	2	9.	2

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=IDAHO STATION=ABERDEEN NURSERY=UNIFORM

TABLE 51 (CONT)

	BAKE		MIX DO	ропсн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	\L -	1	1	DEFICIENCIES	ENCIE	1 2	1	1
VARIETY S'	STD ABS	S T]	TIME CH	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE		TW KW S	SM WP EX A	65 FP	MC MX	BA MT	DC CC	C CG LV
BUTTE CHRIS ERA MARQUIS STOA SD3055 SD3056	30101683	40121228	250 250 250 250 250 250 250	22255	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8088080 808000 8080000	98788086	11100014			I W I W	MI MJ MI MI MI MJ	MI		MJ MI MJ MI MI MI MJ MI MJ MI	CHECK X	
SD8072 SD8073 SD8074 MN87150 MN88170 MN88320 MN98334 ND655 ND662		. 0 . 0 . 4 . 4 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	25 25 25 25 25 25 25 25 25 25 25 25 25 2	700000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 7 9 7 8 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	1888 1176 1179 1188 1188 1188	*	70087.0087.008.008.008.008.008.008.008.0		MJ M	T C W I W I W I W I W I W I W I W I W I W	MI MI MJ MJ	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	M CAMANA MANA MANA MANA MANA MANA MANA M	M C W W W W W W W W W W W W W W W W W W	MI MI MI MI
2 8A4 542 0306 3136 3034 467	0 8 4 7 7 7 6 0	. w o o o w o o w . w 4 4 w u u u u u u	225 225 225 775 75	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85 75 80 80 75 75	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000000	, 0 1 1 1 1 1 0 0			MI MJ MI	IM I	MJ MJ MJ MJ MJ MJ MJ MJ	E E E E E E E E E E E E E E E E E E E	MU MU MU MU MU MU MU MU MU	MI M	X X I I
RA 7	9 7 7 9 9 9 9 9	22 38 66 11 30 66 64 84 87 88 69 89 89 89 89 89 89 89 89 89 89 89 89 89	50 25 25 25 75 00 25	722222	885 80 90 90 85	885 75 75 85 85	8 6 7 0 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			Μ	M M M M M M	MI MJ MJ MI	ZZZ Z	MU M	TTTTT	E EE
DEFICIENCIES MINOR FAULTING VALUES MAJOR FAULTING VALUES *** 1=NO PROMISE 2=LI	5 5 TT	01 01	KW 37.9 34.9 PROMISE	SM WE 8 13 18 12 3=SOME	0.001	EX A65 56.0 .57 54.0 .61 ROMISE 4=GG	7 17 1 17 100D	MC 3 2 OMISE.	MX 2,7,8 1,9-11	BA 61.9	MIX TI 5.75-8.00 UNDER 1.7	TIME (MT) ,00 2.00-2. L.75 OVER 8.	75 6 00 4	CC 75 50	80 80 50	LV 150 140	

^{*} CULTIVARS WERE NOT INCLUDED IN REGIONAL STATISTICAL DATA.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WASHINGTON STATION=PULLMAN NURSERY=UNIFORM

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI LG	S W &	WHT ASH %	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE ***	MIX ABS	MIX
	S	im	2.	47	0	٦.	2.	58	2	5	- 4		5	2	19	
CHRIS		62.8	26.7	18	1	1.43	13.4	09	3	60.3	0.48	13.4	2	ım	54.6	2 2
ERA	Ω.		9		٣	4	ij	6.2	2	2.	4	0	2	2	-	۱
MARQUIS		ж Э	6	30	0	٠ 4	ě	99	3	2.	4.	2	2	m		2
STOA	S	3	8.		0	4.	3	58	3	۳.	4	2	2	m	. 2	2
SD 3055		5.	5		0	4.	2.	46	2	3	ς,	2	2	2	. 2	2 2
SD 3056		3	4		0	.5		09	3	1.	. 5	2.	5	-	9	7
SD 3080		9.99	m		0	٣.		6.2	က	0	4	3	2	m	7	7
SD 8072		4	-		0	٠.4		99	က	5.	4	2.	2	m	7.	2
SD 8073		e.	0		0	4.		99	c	6	4	2.	2	2	8	7
SD 8074		٠ س	٠. 6		0	٠4		69	4	i	4.	33	2	٣	7.	က
MN 87150		m	0		٦	4.		45	2	٦,	4.	2	2	1	4	٦
			σ		0	4.		99	2	2.	4.	Ξ.	2	2	3	7
		4	5.		0	4.		27	7	5.	٤,	7	5	2	3	2
MN 88320		•	<u>.</u>		0	4.		67	2	ä	4.	0	2	-1	4	7
			9		7	4.		58	2	2.		0	2	2	2.	Н
		4	2		0	٠ 4	<u>.</u>	28	2	9.	4.	0	2	7	2.	1
		4	i.		0	. 5	2	99	7	9	.5	Ξ,	2	н	5.	2
ND 662		ش	0		0	4.	-	64	2	4	٣,	0	2	2	3,	2
		9	0		0	4.	2 .	52	7	9	0.38	2.	2	П	7 .	2
ND 672		m	ж Ж		7	.5	ij	8 9	2	9	4.	0	2	1	1.	Н
XW 398A4		4	4		0	.5	ä	52	2	Ξ.		0	2	1	2.	7
N86-0542		ش	0		7	4.	ä	51	2	3,	٣.	0	2	2	7	0
N87-0306		4.	5		0	4.		54	7	9.	4.	0	2	H	1.	0
N88-3136		S.	6		0	4.	2.	99	2	2.	4.	2.	2	2	4	
8-303		2	7.		0	.5		59	٣	8	4	3	2	2	5.	7
		2 .	Ϊ.		7	.5	÷	48	2	7.	4.	-i	2	1	2.	7
FA 987350		ä	9		0	. 5	2.	53	2	7.	4.	ä	2	П	2.	٦
		Ξ.	2.		0	.5	۳.	63	٣	7.	4	ω.	2	2	8	m
		÷.	ij		0	. 5	ς,	19	e	8	4.	3	2	2	5.	m
BW 148		64.5	30.9	46	0	4.	14.3	72	4		0.45	4.	2	4	7.	m
ID 367			6		7	٠4	ä	20	7	6	4.	ij	2	н	5.	2
*WPB 0906			8		0	4.	2.	48	2	. 9	4.	Ξ.	2	1	4	2

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=WASHINGTON STATION=PULLMAN NURSERY=UNIFORM

ΓΛ

TABLE 52 (CONT)

NAMIETY STD ABS TITHE CHAR COLOR GRAIN VOL. SCORE SCORE TW KW SH WP EX A65 FP MC MX BANGELLS ST. ALL STD ABS TITHE CHAR COLOR GRAIN VOL. SCORE SCORE TW KW SH WP EX A65 FP MC MX BANGELLS CHRIS S.	THE SECTION OF THE SE	Color Colo		BAKE	MIX	роисн	CRUMB	CRUMB	LOAF	BAKE	GENERAL			DEF	-DEFICIENCIES	CIES-	1	1 1 1 1 1 1
DITTE 66 S S S S S S S S S S S S	DEFINE 66 S S S S S S S S S S S S S S S S S S	DEFICIENCIES STATE 86 STATE 86 STATE 87 ST			Œ	CHAR	COLOR	GRAIN	CC	SCORE ***	SCORE ***		SM WP	A65	P MC		H	CC
CREATE SO S S S S S S S S S S S S S S S S S S	CRIST S S S S S S S S S S S S S S S S S S	PARTIES S S S S S S S S S S S S S S S S S S								•		: 		1 1	 		! ! !	! ! !
ERA S S	ERAMENS S	PARTOLIS S	αp	•	•	•		•	•	4 1 ₹	7.7	2	Σ		13	Ξ.		
EGA. S	## No. 2	MARCOLES S	S		•	•	•		٠	d ' (ر د د	Σ	M			IW		
MAROULS S	MARCOLIS S S S S S S S S S S S S S S S S S S	MARKAOUS S		•	•	•	•		•	m	2.3	Σ		2.	IJ	υ		
SETONA S S	SECONDA S S	SECONDA S S	I	•	•	•			•	4	3°3		MI	2.	IJ	MI		
25 3055	\$10 3055	20 3055 20 3056 20 305			•				٠	4	3,3		MI	2	11	MI		
\$10 3056 \$10 3056 \$10 3056 \$10 3056 \$10 3056 \$10 3050 \$10	\$10 3056 \$10 3056 \$10 3056 \$10 3056 \$10 3050 \$10	20 3056 20 2050 20 205	0.5	•	•	•	•		•	4	2.7		M	2	(J	ΙW		
\$6 3060 \$8 0732 \$8 0732 \$8 0732 \$8 0732 \$8 0732 \$8 0732 \$9 073	\$6 30 00 00 00 00 00 00 00 00 00 00 00 00	SEG 3080 MINING PRINCES THE WAY BY MAY BY MA					٠		•	4	2.7				17	×		
ED 8072 ED 8072 ED 8073 ED 8073 ED 8073 ED 8074 ED 8073 ED 8074 ED 8073 ED 8074 ED 8075 ED 807	\$10 8072 \$10 8073 \$10	\$25 8072 \$25 8073 \$25								٠ 7	. ~				2	I E		
DEFICIENCIES TO 8074 TO 8075	SD 8074 SD 8074 SD 8074 SD 8074 SD 8074 SD 8074 SD 8075 SD 807	SD 8072 SD 8074 SD 807) 0	•	•	•	•	•	•	- <	, ,				,	1 1		
NOTES THE STATE OF	NOTE STATE OF THE NEED OF THE	NOTE OF THE NOTE O		•	•		•	.•	•	3 * •	n . c				11	Ξ		
SER 8074 WIN 88170 WIN	SER 8074 NOTE STATES SER 8074 NOTE STATES	SD 8074 NN 8120 NN 8130 NN		•					٠	4	3.0				11	Ξ		
MN 87150 MN	MN 81150 MN 91150 MN	MN 81150 MN 91150 MN		•				:	٠	4	3.7							
MN 88170 MN 88189 MN 98189 MN 981898 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 981898 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 981898 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 981898 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 981898 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 981898 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 98189 MN 981898 MN 98189 MN 98188 MN 98	MN 88170 MN 98170 MN	MN 88170 MN 88189 MN 98199 MN	00				٠		•	m	2.0				IJ	MJ		
MN 88189 MN 88189 MN 88189 MN 88320 MN 89320 MN	MN 88189 MN	MN 88189 MN 88189 MN 88189 MN 88189 MN 88320 MN 99	80		•				٠	m	2.3		MJ	_	13	MJ		
MN 88320 MN 88334 MN 89334 MN 89336 MN	MN 88320 MN 88334 MN 68534 MN 68534 MN 68534 MN 655 MN 657	MN 88320 NN 68220 NN 68334 NN 68334 NN 68334 NN 68334 NN 655 NN 657 NN 6	80			•	٠	•	٠	4	2.7		MJ	_	13	MI		
MN 88334 ND 655 ND 655 ND 655 ND 657 ND 657 ND 657 ND 672 ND 672 ND 672 ND 672 ND 673 ND 673 ND 673 ND 673 ND 673 ND 673 ND 674 ND 674 ND 674 ND 674 ND 675 ND 7 NJ	MN 88334 NN 655 NN 657 NN 662 NN 662 NN 662 NN 662 NN 663 NN 662 NN 662 NN 662 NN 662 NN 663 NN 6	MN 88334 ND 655 ND 655 ND 657	œ	•		•	•		•	٣	2.0				L)	MJ		
ND 655 ND 657 ND	ND 655 ND 657 ND	ND 655 ND 657 ND 671 ND 671 ND 671 ND 672 ND 671 ND 672 ND 671 ND 672 ND 673 ND 673 ND 673 ND 673 ND 673 ND 674 ND 675 ND 674 ND	88						٠	٣	2.3	Σ		_	1.7	E.M.		
ND 657 ND 662 ND 672 ND 673	ND 657 ND 662 ND 662 ND 662 ND 662 ND 662 ND 662 ND 672 ND 673 ND	ND 657 ND 652 ND 662 ND 662 ND 662 ND 662 ND 662 ND 662 ND 672 ND 673 ND	655	٠			٠	٠	٠	3	2.0		M		17	E W		
ND 662 ND 662 ND 662 ND 671 ND 671 ND 671 ND 671 ND 672 ND 672 ND 672 ND 673 ND 673 ND 673 ND 674 ND 674 ND 674 ND 675 ND	ND 662 ND 671 ND 671 ND 672 ND 673 ND	ND 662 ND 662 ND 662 ND 662 ND 671 ND 672 ND 673 ND	65					•	•	4	2.3				1	×		
ND 671 ND 671 ND 672 NW 3984 NW 3884 N	ND 671 ND 671 ND 671 ND 672 ND 672 ND 673 ND 672 ND 673 ND 673 ND 672 ND 673 ND 673 ND 674 ND 675	ND 671 ND 672 ND 671 ND 672 ND 672 ND 673 ND MJ	_	, ,	, ,		, ,	• (۰ 4	2.7				-	. T		
ND 672 ND 672 ND 672 ND 672 ND 673 ND 673 ND 673 ND 672 ND 673 ND 673 ND 673 ND 673 ND 673 ND 673 ND 7 MJ	NW 672 NW 70	ND 672 ND 672 ND 672 ND 672 ND 672 ND 673 ND MJ	_	•	•				•	. 4					2 -	1 1		
NB 6-0542 NB 6-0542 NB 7-0306 NB 7-0307 NB 7-0308	NB6-0542 NB6-0542 NB6-0542 NB6-0542 NB6-0542 NB7-0306 NB7-0306 NB7-0306 NB7-0306 NB7-0306 NB8-0304 NB8-0304 NB8-0308 NB9-0308 NB9	NB - 50.5 C	•		•	•	•			r (7				2 !	I !		
NW 328A4 NW 328A4 NW 328A4 NW 328A4 NW 198A MJ NW 19 MJ NW 1	N86-3284 N86-3284 N86-3284 N86-3284 N86-3284 N86-3284 N86-3286 N88-3386 N89-388389 N87-0467 N89-388389 N87-0467 N89-388389 N87-0467 N89-388389 N89-388389 N89-388389 N89-388389 N99-388389 N99-388889 N99-388889 N99-388889 N99-388889 N99-3888889 N99-3888889	N86-2354 N86-2364 N86-236 N87-0366 N87-0366 N87-0366 N88-3336 N89-3336 N89-336 N89-	7/0	•	•	•	•	٠	•	n (7.0				C.	E :		
N86-0542 N86-0542 N86-0542 N86-0542 N86-0542 N86-0545 N97-0506 N97	N86-0342 N88-3136 N89-1467 N88-3136 N89-1467 N89-3136 N97-0467 N97	N86-0342 N87-0306 N88-3136 N98-3136 N98	338A			•		•	•	νŋ ·	2.0				17	M		
N87-0306 N88-3136 N98-3136 N99-3034 N99-3034 N99-3034 N99-3036 N99-309 N99-3	N87-0306 N88-3136 N98-3136 N98	N87-0306 N88-3136 N88-3136 N88-3136 N88-3136 N88-3136 N88-3136 N88-3136 N88-3136 N98-3136 N99-3136 N99	N86-0542	•		•		•	*	ጥ	2.7				1,7			
N88-3136 N88-3034 N88-3034 N88-3034 N88-3034 N88-3034 N87-0467 N87-0467 N97-0467 N97	N88-3136 N88-3136 N88-3136 N88-3034 N88-3034 N88-3034 N88-3034 N88-3034 N88-3034 N87-467 N87-467 N87-467 N87-467 N87-467 N87-467 N97-467 N97-4	N88-3136 N88-3034 N88-3034 N88-3034 N88-3034 N88-3034 N88-3034 N88-3034 N9 MJ	9			•		•	•	4	2.3				13			
N88-3034 N87-0467 N87	N88-3034 N87-0467 N87-04	N88-3034 N88-3034 N87-0467 N87	N88-3136			۰	•	٠	•	က	2.3		MJ	_	13	MJ		
FA 987350 CI 982309 MI MJ MJ MJ MJ MI MI MJ MI	FA 987350 FA 987350 FA 987350 CI 982309 CI 982309 CI 982309 CI 982309 FA 97.0 FA 987350 FA 987360 FA 98736	FA 987350 FA 987360 FA 9	~	٠		٠			٠	m	2.7			_		MJ		
FA 987350 CI 982309 CI 9300	FA 987350 CI 982309 CI MI MJ MJ MI MJ MJ MI MJ M	FA 987350 CI 982309 CI 98230 CI CA	N87-0467		۰		٠	٠	•	ď	2.3				13	MI		
CI 982309 AC-MINTO BW 148 BW 148 ID 367 ID 3	CI 982309 AC-MINTO BW 148 BW 148 ID 367 ID 367 WPB 0906 BW 148 ID 367 WPB 0906 BW 148 BW 149 BW 157 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 BW 148 BW 149 BW 159 51.12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 BW 148 BW 148 BW 148 BW 148 BW 148 BW 148 BW 149 BW	CI 982309 AC-MINTO BW 148 BW 148 ID 367 ID 3		•	•		•	٠	•	٣	2.0				13	MJ		
AC-MINTO BW 148	AC-MINTO BW 148 BW 148 ID 367	AC-MINTO BW 148 BW 148 ID 367		٠		•			٠	4	3.0							
BW 148 ID 367 ID 367 WHO BY BY BA BA WINTER WE BY	BW 148 ID 367 ID 367 ID 367 WHO WINDER TWIND THE TWIND TO SET	BW 148 ID 367 ID 367 WHOR PAULTING VALUES 57.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 EBW 148 WHOR FAULTING VALUES 58.00 2.00-2.75 6 75 80 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	- 1							4	3.0			_				
ID 367 WPB 0906	D 367	ID 367 WPB 0906 BETCIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG MINOR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 MAJOR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	BW 148	٠			•			4	4.0							
WPB 0906 DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) MINOR FAULTING VALUES 57.9 27.1 8 13.9 61.9 57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 MAJOR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50	WPB 0906 DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG MAJOR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 MAJOR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 *** 1=NO PROMISE 2=1.1TTE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	WPB 0906 DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG MINOR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 MAJOR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE.	36) (, ,	4	2.3				1.1	M		
MED USON MJ MJ MJ MI MI WE USON	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG MINOR FAULTING VALUES 57.9 27.1 8 13.9 61.9 57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 MAJOR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 *** 1=NO PROMISE 2=1.1TTE PROMISE 3=50MF PROMISE 4=5000 PROMISE	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG MINOR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 MAJOR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	מסט מתה	•		•	•	•	•	۲,	2				2 !	111		
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG CG NR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 NR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG REFAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 F FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 18.0 PROMISE 2=1.1TTE PROMISE 3=50MF PROMISE 4=5000 PROMISE	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG REALTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 18 FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	WFB 030				•	•	•	ব	2.3				17	MI		
DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG NR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 NR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG REFAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 REPULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1=NO PROMISE 2=1.1TTE PROMISE 3=50MF DEOMISE 4=5000 DEOMISE	DEFICIENCIES TW KW SM WP EX A65 FP MC MX BA MIX TIME (MT) DC CC CG RF FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 80 RF FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 50 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.																
OR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75.00 8.00 8.00 8.00 9 75 OR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1.9-11 60.4 UNDER 1.75 OVER 8.00 4 50	OR FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75	R FAULTING VALUES 57.9 27.1 8 13.9 61.9 .57 12.9 3 2,7,8 61.9 5.75-8.00 2.00-2.75 6 75 R FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 1-NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.			KW	SM			55 FP		ΜX		TIME (MT		DC	သ	CG	ΓV
OR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1.9-11 60.4 UNDER 1.75 OVER 8.00 4 50	OR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 1=NO PROMISE 2=1.1TTLE PROMISE 3=SOME PROMISE 4=COOD PROMISE	OR FAULTING VALUES 56.9 24.1 18 12.9 59.9 .61 12.4 2 1,9-11 60.4 UNDER 1.75 OVER 8.00 4 50 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.			27.	00		თ	57 12.9		,7,8 61	9 5.7	00 2.00	2.7	9	75	80	
	1=NO DROMISE 2=1.TTTE DROMISE 3=SOME DROMISE 4=COOD DROMISE	1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	R FAULTING V.					6.	51 12.4		,9-11 60	4 UNDER	.75 0	0.	4	50	50	

^{*} CULTIVARS WERE NOT INCLUDED IN REGIONAL STATISTICAL DATA.

-- VARIETY=AC-MINTO -----

υ	2.3166460 29.4972588 112.7993441 66.666667 5.97861 10.4518795 4.5178860 6.2621109 12.3762876 49.4871659 7.9459747		3.2142045 25.2449474 98.7145353 132.2875656 13.4611901 7.9465438 10.1437360 4.7405986 7.3085499 34.6410162 5.6725118	CV 3.7048559 17.2438557 82.7707639 173.2057417 1.6034856 9.0434796 7.6724100 11.90784933 11.90784933 11.269933
	1.803333 85.4233333 1902.33 4.000000 0.0096333 3.2433333 7.7033333 7.7033333 1.3333333 1.3333333 1.3333333	RIANC	3.7233333 73.2400000 1746.33 7.000000 0.042233 1.5433333 54.333333 7.770000 0.001233 1.170000 0.3333333 10.6633333 372.3333333	VARIANCE 4.963333 29.9433333 29.9433333 3.000000 0.0372000 0.07700000 49.3333333 0.01400000 0.3733333
9	59.5000000 89.0000000 1.7000000 18.1000000 64.4000000 18.2000000 64.4000000 64.4000000 64.4000000	86 MAXIMU		MAXIMUM 62.7000000 38.0000000 3.0000000 1.7600000 1.7600000 85.0000000 62.7000000 16.5000000 3.0000000
	57.000000 15.000000 1.000000 1.530000 14.500000 73.000000 58.900000 14.200000 14.200000 17.000000	11 🛏 1	8.5000000 2.00000000 2.00000000 11.2900000 7.0000000 7.0000000 6.4400000 6.4400000 1.0000000 3.8000000 1.0000000	MINIMUM 58.7000000 27.9000000 18.0000000 16.2000000 71.0000000 54.2000000 54.2000000 16.1000000 2.0000000
1 1	1.3428825 9.242444 43.6157464 2.0000000 0.0981495 1.8009257 8.3266640 2.7754879 0.0321455 2.0008332 1.1547005 15.0443788	TD DE	1.9295941 8.5580372 41.7891533 2.6457513 0.2055075 1.2423097 7.3711148 2.787420 0.0351188 1.0816654 0.5773503 3.2654760	STD DEV 2.2278540 5.4720502 36.1432336 1.7320508 0.1928730 0.2645751 7.0237692 4.5574115 0.0635085 0.2000000
	57.966667 31.333333 38.666667 3.0000000 1.643333 16.333333 79.666667 61.433333 16.166667 2.3333333 59.2000000 189.3333333	Σ	60.033333 33.900000 42.333333 2.000000 1.526667 15.66667 58.8000000 0.473333 14.8000000 1.666667 57.566667	MEAN 60.133333 31.733333 31.733333 43.666667 1.6200000 1.6200000 1.6500000 77.666667 59.400000 0.5333333 16.3000000 2.666667 60.13333333
	TW LG SM WHT ASH WHT PRO HARD EXTR FL_ASH FL_PRO MIXO BAKE_ABS LOAF_VOL	VARIABLE	TW K_WT LG SM SM WHT ASH WHT PRO HARD EXTR FL_ASH FL_PRO MIXO MIXO BAKE_ABS LOAF VOL	VARIABLE TW TW TW LG SM WHT_ASH WHT_PRO HARD EXTR FL_PRO MIXO BAKE ABS

- VARIETY=CHRIS

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.3666667	0.8504901	56.5000000	58.2000000	0.7233333	1.4825509
K WT	26.0333333	8.2923660	20.9000000	35.6000000	68,7633333	31.8528782
LG	26.3333333	37.8461799	3.0000000	70.0000000	1432,33	143.7196705
SM	10.000000	7.8102497	1.0000000	15.0000000	61.0000000	78.1024968
WHT ASH	1.6333333	0.1205543	1.5200000	1.7600000	0.0145333	7.3808740
WHT PRO	15.6666667	2.0033306	13.4000000	17.2000000	4.0133333	12,7872163
HARD	72.333333	0.5773503	72.0000000	73.0000000	0.3333333	0.7981801
EXTR	58.1333333	4.1549168	54.1000000	62.4000000	17.2633333	7.1472192
FL ASH	0.5066667	0.0251661	0.4800000	0.5300000	0,000633333	4.9669963
FL PRO	15.6666667	2.4440404	13.0000000	17.8000000	5.9733333	15.6002577
MIXO	2.3333333	1.1547005	1.0000000	3.0000000	1,3333333	49.4871659
BAKE ABS	59.4000000	1.4730920	58.5000000	61.1000000	2.1700000	2,4799528
LOAF VOL	193.000000	17.3205081	183.000000	213.0000000	300.000000	8.9743565

	i		
	3	_	١
ζ)
(•	
	3	C)
(2	r	١
(-	i	,
-			1
ŀ		-	4
1		Ľ	4
1		1	4
,	3	5	,

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CA
TW	56.6000000	3.8574603	52.2000000	59.4000000	14.8800000	6.8153009
K WT	30,7666667	10,4318423	22.9000000	42,6000000	108.8233333	33.9063129
LG	38,666667	44.7362642	8.0000000	90.000000	2001.33	115.6972350
SM	5,0000000	5,2915026	1.0000000	11.0000000	28.0000000	105.8300524
WHT ASH	1,6233333	0.2318045	1,4100000	1.8700000	0.0537333	14.2795389
WHT PRO	15,9666667	1,6258331	14.2000000	17.4000000	2.6433333	10.1826709
HARD	72,3333333	5,1316014	68,0000000	78.0000000	26.333333	7.0943799
EXTR	54,2000000	3,2078030	50,5000000	56.2000000	10.2900000	5.9184557
FL ASH	0.5266667	0.0550757	0.4900000	0.5900000	0.0030333	10.4574124
FL PRO	15,6666667	1,6258331	13.9000000	17.1000000	2.6433333	10.3776582
MIXO	3,333333	2.0816660	1.0000000	5.0000000	4,3333333	62.4499800
BAKE ABS	59,9333333	2,1221059	58.2000000	62,3000000	4.5033333	3.5407773
LOAF VOL	201,3333333	17.3877351	188.0000000	221.0000000	302,3333333	8.6362923

- VARIETY=ERA -

VARIABLE	MEAN	STD DEV	MINIMIM	MAXIMUM	VARIANCE	CV
T. S. L. S.	57.0000000	3.1240999	53.4000000	59.0000000	9.7600000	5.4808770
K WT	26.7333333	9,5001754	20.0000000	37,6000000	90.2533333	35.5368158
L C	29.6666667	41,1015004	3.0000000	77.0000000	1689.33	138.5443833
SM	11,3333333	10.5987421	0	21,0000000	112,3333333	93.5183123
WHT ASH	1.6066667	0.1890326	1.4600000	1.8200000	0.0357333	11,7655161
WHT PRO	14.1000000	1.9924859	11.8000000	15.3000000	3.9700000	14.1311056
HARD	0000000.99	5.5677644	60.000000	71.0000000	31.0000000	8.4360066
EXTR	0000000.09	3.6592349	57.1000000	64.4000000	13.3900000	6.0085959
FL ASH	0.5166667	0.0404145	0.4700000	0.5400000	0.0016333	7.8221649
FL PRO	13.2000000	2,1794495	10.700000	14.7000000	4.7500000	16.5109808
MIXO	2,3333333	1,1547005	1.0000000	3.0000000	1.3333333	49.4871659
BAKE ABS	56.8000000	1,3856406	55.2000000	57.6000000	1.9200000	2.4395082
LOAF VOL	196,3333333	25.5408170	170.0000000	221.0000000	652,3333333	13.0089051

- 1
1
,
_
0
5
3
-
œ
9
FA
Œ
11
>
F
ट्य
\vdash
α
K
5

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.0000000	1.6000000	57.4000000	60.6000000	2.5600000	7 7118644
K WT	39,7333333	13.1561139	31,4000000	54.900000	173.083333	33 1110250
LG	55.0000000	35.7910603	30.000000	96.0000000	1281.00	65 0746552
SM	1.0000000	1.0000000	0	2,0000000	1.0000000	100 000000
WHT ASH	1.5833333	0.1934770	1.3600000	1.700000	0.0374333	12 2195974
WHT_PRO	15.5000000	0.2000000	15.3000000	15.700000	0.040000	1 2903224
HARD	55.6666667	13.4288247	46.0000000	71,0000000	180.333333	24 1236372
EXTR	57.7666667	3.8850139	53.5000000	61.100000	15.093333	6 725355 6 7253559
FL ASH	0.4733333	0.0152753	0.4600000	0.4900000	0.000000	2 2271550
FL_PRO	14.9333333	0.2309401	14.8000000	15.200000	0.0533333	1 5464739
MIXO	2.6666667	0.5773503	2,0000000	3.0000000	0.333333	21 6506351
BAKE ABS	58.6000000	1.4798649	57,6000000	60.300000	2.1900000	2 5253667
LOAF_VOL	205.6666667	14.8436294	193.0000000	222.0000000	220.333333	7.2173239

1	
ŗ	۰
S	
~	
	1
-	
H	
>	
Fig.	Į
-	
α	
ø	
>	,

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	57.2666667	4.8190594	51.8000000	60.900000	23.2233333	8.4151212
K_WT	30.5333333	10.5396078	21.7000000	42.2000000	111,0833333	34.5183663
LG	34.3333333	43.5009578	3.0000000	84.0000000	1892.33	126.7018190
E S	8.0000000	9.6436508	1.0000000	19.0000000	93.0000000	120.5456345
WHT ASH	1.5600000	0.2700000	1.2900000	1.8300000	0.0729000	17.3076923
WHT PRO	14.2666667	1.5275252	12.6000000	15.6000000	2,3333333	10.7069526
HARD	61.3333333	10.5039675	51.0000000	72.0000000	110.3333333	17.1260340
EXTR	62.7000000	1.7000000	61.0000000	64.4000000	2.8900000	2.7113238
FL_ASH	0.4433333	0.0416333	0.4100000	0.4900000	0.0017333	9.3909744
FL_PRO	13.6666667	1.7502381	11.9000000	15.4000000	3.0633333	12,8066201
MIXO	4.3333333	2.3094011	3.0000000	7.0000000	5,333333	53,2938710
BAKE ABS	58.4666667	1.0263203	57.6000000	59,6000000	1,0533333	1,7553939
LOAF VOL	201,6666667	9.0737717	192.0000000	210,0000000	82,333333	4.4993909

- 4
- 1
C.
_
=
C
2
= MAR
Σ
B
>
E
ĹŦ
-
AR
Ø

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.933333	2.6764404	56.5000000	61.8000000	7,1633333	4.5414713
K_WT	30.5000000	10.0642933	23,3000000	42,0000000	101,2900000	32,9976830
LG	38.666667	45.7857329	6.0000000	91,0000000	2096.33	118.4113781
SM	3.0000000	4.3588989	0	8.0000000	19,0000000	145,2966315
WHT ASH	1.6166667	0.1887679	1.4100000	1.7800000	0.0356333	11.6763671
WHT_PRO	15.9666667	0.4932883	15.4000000	16,3000000	0.2433333	3.0894882
HARD	70.6666667	6.1101009	64.0000000	76.0000000	37,3333333	8.6463692
EXTR	57.7000000	1.7691806	55.8000000	59,300000	3,1300000	3.0661709
FL_ASH	0.5200000	0.0360555	0.4800000	0.5500000	0.0013000	6.9337525
FL_PRO	15.3666667	0.5859465	14.7000000	15.8000000	0,3433333	3.8131010
MIXO	3.0000000	0	3.0000000	3.000000	0	0
BAKE ABS	59,5333333	1.4640128	58.2000000	61.1000000	2,1433333	2,4591480
LOAF VOL	190.6666667	14.2243922	181.0000000	207.0000000	202.333333	7.4603456

-
0
50
7
-
8
Z
T
$\ddot{\sim}$
E
\vdash
AR
Ø
>
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
M	58.966667	2.5383722	56.9000000	61.8000000	6 443333	A 2047E70
WT	32.4666667	8.4719144	25.800000	42 0000000	000000000000000000000000000000000000000	3.0041070
ניי	39.6666667	43.4664622	200000000000000000000000000000000000000	000000000000000000000000000000000000000	10000	1261460.02
		7705000	0000000	0000000.60	1889.33	109.5793164
E	4.3333333	3.2145503	0	0.000000.9	10.3333333	137,7664394
HY	1.5000000	0.1833030	1.3000000	1.6600000	0.0336000	12,2202019
WHT_PRO	14.1666667	0.9712535	13.1000000	15.0000000	0.9433333	6.8559070
IARD	63.6666667	9.0737717	57.0000000	74.000000	R2 33333	14 2519975
XTR	57.5000000	10.2781321	45 700000	200000000000000000000000000000000000000	105 640000	0/0000000000000000000000000000000000000
11 2 011		1 0 0 0	000001:01	00000000	100.040000	11.8/50124
L ASH	0.4/0000	0.0529150	0.4300000	0.5300000	0.0028000	11,2585162
FL_PRO	13.2666667	1.4977761	11.6000000	14.5000000	2.2433333	11, 2897698
OXI	1.3333333	0.5773503	1.0000000	2.0000000	0.3333333	43 3012702
AKE ABS	55.4333333	2.8536526	52,2000000	57,6000000	8.1433333	5 1479001
OAF_VOL	178.6666667	36.1155553	141.0000000	213,0000000	1304.33	20.2139302

ARIABLE	MEAN	STD DEV	MINIMOM	MAXIMUM	VARIANCE	CV
MU	55.1333333	4.3878620	50.200000	58.6000000	19.2533333	7.9586373
L WT	30.3000000	12.2462239	21.1000000	44.2000000	149.9700000	40,4165806
טַ	35.0000000	48,0728614	1.0000000	0000000.06	2311.00	137.3510325
MS.	7.0000000	8.8881944	0	17,0000000	79.0000000	126.9742060
WHT ASH	1.6400000	0.2505993	1.3800000	1.8800000	0.0628000	15.2804440
VH'T_PRO	14.7000000	1.5874508	12.9000000	15.9000000	2.5200000	10.7989849
IARD	57.6666667	2,5166115	55,0000000	000000000	6.3333333	4.3640661
TXTR	62.233333	2.2143472	59.7000000	63.8000000	4.9033333	3.5581368
FL_ASH	0.5266667	0.0450925	0.4800000	0.5700000	0.0020333	8.5618666
'L_PRO	13.8333333	1.9857828	11,6000000	15.4000000	3.9433333	14.3550564
1IXO	1.6666667	0.5773503	1.0000000	2.0000000	0.3333333	34.6410162
BAKE_ABS	58.666667	2.2188586	56.2000000	60.5000000	4.9233333	3,7821453
JOAF VOL	180,3333333	14.5716620	165 000000	194 000000	212 333333	100000

- VARIETY=MN88170 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.0000000	2.4020824	57.1000000	61.7000000	5.7700000	4.0713262
K_WT	36.3000000	10.8282039	29.8000000	48.8000000	117,2500000	29.8297628
LG	50.0000000	38.1182371	27.0000000	94.0000000	1453.00	76.2364742
WS.	1,6666667	0.5773503	1.0000000	2.0000000	0.3333333	34.6410162
WHT ASH	1.5366667	0.0901850	1.4500000	1.6300000	0.0081333	5,8688717
WHT PRO	14.9000000	1.3076697	13.4000000	15.8000000	1.7100000	8.7763066
HARD	0000000.99	2.6457513	63.0000000	68.0000000	7.0000000	4.0087141
EXTR	61.0666667	4.7606022	56.5000000	66,0000000	22.6633333	7.7957460
FLASH	0.4600000	0.0400000	0.4200000	0.5000000	0.0016000	8.6956522
FL PRO	14.1666667	1.6165808	12.3000000	15,1000000	2.6133333	11.4111583
MIXO	2.3333333	0.5773503	2.0000000	3.0000000	0.3333333	24.7435830
BAKE ABS	58.933333	1.1547005	57.6000000	59,6000000	1,3333333	1,9593335
LOAF VOL	203,6666667	10.6926766	197.0000000	216.0000000	114.3333333	5.2500867

VARIETY=MN88189 --

-	
c	
C	
C	
o	
0	
N	
2	
١	
2	
Ē	
-	
5	
3	
7.7	
-	
1	
1	

WESTERN REGION

1			
60.466667 2.3245071 58.7000000 32.7666667 10.3365049 25.5000000 43.333333 44.7921124 9.0000000 3.333333 3.5118846 1.3700000 PRO 13.966667 0.1401190 1.3700000 76.0000000 2.3811762 59.000000000000000000000000000000000000	INIMUM MAXIMUM	VARIANCE	CV
32.7666667 10.3365049 25.5000000 43.333333 44.7921124 9.0000000 3.333333 3.5118846 0.0000000 PRO 13.966667 0.6658328 13.20000000 76.0000000 8.8881944 69.0000000 60.8000000 2.3811762 59.000000000000000000000000000000000000	1	5.4033333	3 8442786
43.33333 44.7921124 9.0000000 3.333333 3.5118846 1.5266667 0.1401190 1.3700000 T_ASH 1.5266667 0.6658328 13.2000000 TO 8000000 8.8881944 69.0000000 TR 60.8000000 2.3811762 59.0000000 PRO 13.0000000 0.5567764 12.4000000 XO 2.000000 1.0000000 1.000000000000000000	44.6000000		31 5457932
3.333333 3.5118846 0.1401190 1.3700000 1.5266667 0.6658328 13.2000000 RD 76.000000 8.8881944 69.0000000 C.3811762 59.0000000 C.3811762 59.0000000 C.3811762 59.0000000 C.3811762 C.3811762 C.3811762 C.3811762 C.3811763 C.381177777777777777777777777777777777777	94.0000000	_	03.3664132
1.5266667 0.1401190 1.3700000 13.9666667 0.6658328 13.2000000 76.0000000 8.8881944 69.0000000 0.483333 0.0208167 0.4600000 13.0000000 0.5567764 12.4000000 59.4000000 0.7211103 58.600000 0.7211103 58.6000000	0 7.000000	- 1	05 3565375
13.9666667 0.6658328 13.2000000 76.000000 8.8881944 69.0000000 0 2.3811762 59.0000000 0 483333 0.0208167 0.4600000 13.0000000 0.5567764 12.4000000 59.4000000 0.7211103 58.600000 0 59.33333 1.7180300		, e	9.1781002
76.0000000 8.8881944 69.0000000 60.8000000 2.3811762 59.0000000 13.0000000 0.5567764 12.4000000 59.4000000 0.7211103 58.600000 0.7211103 58.6000000 0.7211103 58.6000000000000000000000000000000000000	1		4 7672994
60.8000000 2.3811762 59.0000000 0.483333 0.0208167 0.4600000 13.0000000 0.5567764 12.4000000 2.0000000 1.0000000 1.0000000 59.4000000 1.711103 58.600000		79.0000000	11 6949977
0.4833333 0.0208167 0.4600000 13.0000000 0.5567764 12.4000000 2.0000000 1.0000000 1.0000000 59.4000000 0.7211103 58.600000		5.6700000	3 9164082
13.0000000 0.5567764 12.4000000 2.0000000 1.0000000 1.0000000 59.4000000 0.7211103 58.6000000 193.33333 11.7188366 188.6000000	0 2000000	.00043333	4 3068952
2.0000000 1.0000000 1.0000000 59.4000000 0.7211103 58.6000000 193 333333 11.7188306 188.6000000	13,5000000	0.3100000	4.2828957
59.4000000 0.7211103 58.6000000		Ľ.	50.000000
	9	,	1 2139903
7 .000,000 100,000 100,000,000	2		6.0615158

	1
4	1
C	1
C	7
a	C
a	
MM	
2	
1	ì
>	-
Ē	4
G	2
-	4
Ω	4
Q	ď
	,

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.3666667	2.7465129	55.3000000	60.00009.09	7.5433333	4.7056190
K_WT	26.7666667	9.3724774	20.2000000	37.5000000	87,8433333	35,0154823
LG	29.6666667	43.6615773	2.0000000	80,0000000	1906.33	147.1738561
SM	13,3333333	11.5902258	1.0000000	24.0000000	134,3333333	86.9266933
WHT ASH	1.5433333	0.1755942	1.3600000	1.7100000	0.0308333	11.3775958
WHT PRO	14.9000000	0.8717798	13,9000000	15.5000000	0.7600000	5.8508711
HARD	64.0000000	3.6055513	60,000000	67,0000000	13,0000000	5.6336739
EXTR	63.0666667	0.9291573	62,0000000	63,7000000	0.8633333	1.4732939
FL_ASH	0.4466667	0.0321455	0.4100000	0.4700000	0.0010333	7.1967543
FL_PRO	14.1666667	1.0214369	13,0000000	14.9000000	1.0433333	7.2101428
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50.0000000
BAKE ABS	58.3666667	1.8823744	56,2000000	59.6000000	3.5433333	3.2250846
LOAF_VOL	189,3333333	13.0511813	177.0000000	203.0000000	170,3333333	6.8932296

.!
1
t
ш
4
λ
-
~
11
5
-
F
I
-
~
1
VAR
~
-

LG 35.366667 0.6506407 LG 35.333333 45.6544996 SM 6.666667 6.0277138 WHT_ASH 1.663333 1.0503968 HARD 74.333333 8.0829038 EXTR 57.733333 8.6858122 FL_ASH 0.513333 0.0152753 FL_ASH 0.513333 8.6858122 FL_ASH 0.513333 0.0152753 MIXO 2.0000000 1.0000000	0.6506407	59.300000			
29.633333 35.333333 6.666667 1.6633333 74.333333 57.7333333 0.5133333 15.866667	10.2627157		60.600000	0.4233333	1.0850040
35.333333 6.66667 1.6633333 16.233333 74.333333 57.733333 0.513333 15.866667		22.0000000	41.3000000	105,3233333	34,6323364
6.666667 1.6633333 16.2333333 74.3333333 57.7333333 0.5133333 15.866667 2.0000000	45.6544996	7.0000000	88.0000000	2084.33	129.2108479
1.6633333 16.2333333 74.333333 57.7333333 0.5133333 15.866667 2.0000000	6.0277138	1.0000000	13.0000000	36,3333333	90,4157066
16.233333 74.333333 57.733333 0.5133333 15.866667 2.0000000	0.0763763	1.5800000	1.7300000	0.0058333	4.5917592
74.333333 57.733333 0.5133333 15.866667 2.0000000	1.0503968	15.2000000	17,3000000	1.1033333	6.4706165
57.7333333 0.5133333 15.866667 2.0000000	8.0829038	67.0000000	83.000000	65,3333333	10.8738616
0.5133333 15.866667 2.0000000	8.6858122	47.8000000	63,9000000	75,4433333	15.0447093
15.8666667	0.0152753	0.5000000	0.5300000	0.000233333	2,9756985
2.000000	1.3650397	14.4000000	17,1000000	1,8633333	8,6031913
	1.0000000	1.0000000	3.0000000	1,0000000	50,0000000
60.6333333 (0.6658328	60.2000000	61.4000000	0,4433333	1.0981300
LOAF_VOL 196.0000000 11.	11.5325626	185.0000000	208.0000000	133.0000000	5.8839605

i
1 1
1
•
_
'n
0
ND6
=
_
H
\sim
[⊷
ELX
=
2
VAE
~
>
1
1

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.3666667	3.7098967	56.1000000	63.4000000	13 7633333	101010
F3	21 533333	7 1065607	000000000000000000000000000000000000000		000000	T67T667.0
4 1 1	010000000000000000000000000000000000000	169090T . /	25.0000000	39.1000000	50.5033333	22,5366905
LG	38.0000000	39.3954312	6.0000000	82.0000000	1552.00	103 6721874
SM	3,333333	4.0414519	1.0000000	8.0000000	16.333333	101 042556
WHT ASH	1,6266667	0.1703917	1.430000	1 730000	000000	10 414000
Cad THE	16 000000	100000	0000000	0000001	0.023033	10.4/48999
משלין וויא	15.800000	1616916.0	14.8000000	16.6000000	0.8400000	5.8007287
HARD	71.6666667	4.5092498	67.0000000	76,0000000	20,3333333	6.2919764
EXTR	59.9000000	5.0467812	54.200000	63 8000000	25 470000	
FT. ACH	O E033333	000000			23.470000	7446074.0
	0.505555	0.4110.0	0.490000	0.5100000	0.000133333	2.2941070
FL PRO	15.3666667	1.3316656	13.9000000	16.5000000	1,7733333	8.6659368
MIXO	3.0000000	1.0000000	2.0000000	4.0000000	1.0000000	33 333333
BAKE ABS	62.0000000	2,1377558	59 600000	0000000	000000 V	000000000000000000000000000000000000000
TONE MON		0 10 10 10 10 10 10 10 10 10 10 10 10 10	000000000000000000000000000000000000000	0000001.50	4.5/00000	3.44/9933
TOAL YOU	213.000000	17.5214155	196.0000000	231,00000000	307.0000000	8.2260167

-- VARIETY=ND662

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.4000000	1.6703293	56.6000000	59.9000000	2.7900000	2.8601529
K WT	30.4000000	10.2586549	23.6000000	42.2000000	105.2400000	33.7455753
LG	34.0000000	45.9020697	7.0000000	87.0000000	2107.00	135,0060873
SM	8.0000000	7.5498344	0	15,0000000	57.0000000	94.3729304
WHT ASH	1.6133333	0.1361372	1.4600000	1.7200000	0.0185333	8.4382553
WHT_PRO	15.8666667	0.6027714	15.3000000	16.5000000	0.3633333	3,7989793
HARD	70.000000	0000000.9	64.0000000	76.0000000	36.0000000	8.5714286
EXTR	61.1000000	4.8041649	55.7000000	64.9000000	23.0800000	7.8627903
FLASH	0.5100000	0.0100000	0.5000000	0.5200000	0.000100000	1.9607843
FL PRO	15,5333333	0.6110101	15.0000000	16.2000000	0.3733333	3,9335414
MIXO	4.3333333	3.0550505	1.0000000	7,0000000	9,3333333	70.5011645
BAKE ABS	60.3000000	1.6093477	58.6000000	61.8000000	2,5900000	2.6689016
LOAF VOL	196.0000000	1.7320508	195.0000000	198,0000000	3.0000000	0.8836994

VARIETY=ND671

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61.2000000	2.5357445	59.4000000	64.1000000	6.4300000	4.1433733
K_WT	30,4333333	7.8014956	25.2000000	39,4000000	60,8633333	25.6347062
LG	36.6666667	42.7356214	11.0000000	86.0000000	1826,33	116,5516946
SM	2,3333333	1.1547005	1.0000000	3.0000000	1,3333333	49.4871659
WHTASH	1,5633333	0.1625833	1.3800000	1,6900000	0.0264333	10.3997854
WHT PRO	16.5333333	0.4041452	16.1000000	16,9000000	0.1633333	2.4444265
HARD	70.6666667	10.2632029	62,0000000	82,0000000	105,3333333	14.5234003
EXTR	58.233333	5.1403632	52,4000000	62,1000000	26.4233333	8.8271834
FLASH	0.4366667	0.0208167	0.4200000	0.4600000	0.000433333	4.7671740
FL PRO	16,6333333	0.3785939	16.2000000	16,9000000	0.1433333	2.2761156
MIXO	4.0000000	1.0000000	3.0000000	5.0000000	1,0000000	25.0000000
BAKE ABS	62,5333333	1.8175075	60,5000000	64.0000000	3,3033333	2.9064618
LOAF VOL	200.3333333	13.5769412	192.0000000	216,0000000	184.3333333	6.777153

-1
\sim
7
9
Ω
Z
- 11
\rightarrow
वि
-
α
K
~
~
1
1
1

- !
i
~
7
9
QN:
П
>
H
لث
=
2
d
\sim
ī
!

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.4666667	2.9687259	55.200000	61,0000000	8.813333	5 0776383
K_WT	28.7000000	11.8646534	21,8000000	42.4000000	140.770000	41 3402557
LG	35.6666667	47.9617903	6.0000000	91,0000000	2300.33	134 4723094
SM	10.6666667	8,5049005	1,0000000	17.0000000	72.333333	79 7334426
WHT ASH	1.6433333	0.1550269	1.5300000	1.820000	0.0240333	0784667.67
WHT PRO	15,5000000	1.5132746	13,8000000	16.700000	2.290000	9 7630619
HARD	80,3333333	5.5075705	75.0000000	86.000000	30 333333	6 8558969
EXTR	55.9666667	5.2367293	52,6000000	62 000000	07 4033333	0.0000000
FL ASH	0.5566667	0.0702377	0 4900000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	07/00/C*C
FL PRO	14.833333	1 6862186	12 9000000	0000000	0.0049333	11.01/0494
MIYO	4 666667	2 5166116	0000000	1000000	2.045555	11.36//662
OVIL	1999999	CITOOTC:7	7.000000	7.000000	6.3333333	53.9273888
BAKE ABS	61.5000000	1.9078784	59.3000000	62.7000000	3.6400000	3,1022413
LOAF VOL	204.0000000	27.0554985	176,0000000	230.0000000	732.0000000	13.2624993

- VARIETY=N86-0542 ---

VARIABLE	MEAN	STD DEV	MINIM	MAXIMUM	VARIANCE	CV
TW	57.9666667	3.8552994	53.6000000	60.900000	14.8633333	6.6508903
K WT	29.7000000	9.3439820	22.3000000	40.2000000	87.3100000	31.4612189
LG	34,3333333	42.4421174	5.0000000	83.000000	1801,33	123.6178178
SM	7.0000000	0000000.9	1.0000000	13.0000000	36,0000000	85.7142857
WHT ASH	1.6433333	0.1955335	1.4800000	1.8600000	0.0382333	11.8985877
WHT PRO	13.4666667	2.1385353	11.0000000	14.8000000	4.5733333	15.8802128
HARD	59.0000000	5.1961524	53.0000000	62.0000000	27,0000000	8.8070380
EXTR	63,9333333	4.1198705	59.6000000	67.8000000	16,9733333	6.4440102
FL ASH	0.4533333	0.0208167	0.4300000	0.4700000	0.000433333	4.5919103
FL_PRO	12.8333333	2.2300972	10.300000	14.5000000	4.9733333	17.3773805
MIXO	2.6666667	2.0816660	1.0000000	5.0000000	4.3333333	78.0624750
BAKE_ABS	57,8333333	2.9263174	54.6000000	60.3000000	8.5633333	5.0599148
LOAF VOL	190.0000000	19.0787840	168,0000000	202.0000000	364.0000000	10.0414653

- VARIETY=N87-0306 --

VARIABLE	MEAN	STD DEV	MINIMOM	MAXIMUM	VARIANCE	CV
ΤW	57.9333333	2.9143324	54.6000000	60.0000000	8.4933333	5.0304932
K WT	31,7666667	11,3005900	24.7000000	44.8000000	127,7033333	35.5737354
LG	38.666667	43.9355589	8.0000000	89.0000000	1930,33	113.6264454
SM	5,3333333	4.0414519	1.0000000	9.0000000	16.3333333	75.7772228
WHT ASH	1.5766667	0.1059874	1.4800000	1.6900000	0.0112333	6.7222466
WHT PRO	14.7000000	1.9974984	12.4000000	16.0000000	3.9900000	13.5884247
HARD	64.0000000	5.5677644	58,0000000	0000000.69	31,0000000	8.6996318
EXTR	63,6333333	2.0305993	61,3000000	65.0000000	4,1233333	3.1910936
FL_ASH	0.4500000	0.0100000	0.4400000	0.4600000	0.000100000	2.222222
FL_ PRO	13.8666667	2.3180452	11.2000000	15.4000000	5,3733333	16,7166718
MIXO	3,3333333	2.0816660	1.0000000	5.0000000	4.3333333	62,4499800
BAKE ABS	60.00000.09	1,9672316	57.9000000	61.8000000	3.8700000	3.2787193
LOAF_VOL	201.0000000	14.9331845	190.0000000	218.0000000	223.0000000	7.4294450

WESTERN REGION
---- VARIETY=N87-467 ---

TABLE 60

M.T.					VARIANC	
K_WT	833333	.490396	1000000	9.0000007.4000000	83333	2
LG	333333	7.353282	7.000000	0.000000	2242.3	
WHT ASH	663333	.135769	580000	4.000000	. 333333	0
WHT PRO	633333	.320353	3.200000	5.800000	1.743333	0
ARD	999999	.291573	.000000	3.000000	.333333	
EAIR FL ACH	066666 486666	.557152	9.000000	5.600000	2.653333	5.
FL PRO	999996	479457	7.450000	0.530000	.001433	
MIXO	999999	.577350	2.000000	3.000000	333333	
BAKE ABS LOAF VOL	59.1333333	1.6041613	57.6000000	60.8000000	2.5733333	2.7
			RIETY	4		
č	í	í				
VARIABLE	MEA	TD DE	MINI	MAXIMU	ARIANC	
TW K WT		3.5161532	54.5000000	61.2000000	12.3633333	9 4
LG	9999999	.878983	4.000000	000000.6	7590 3	, a
SM	.000000	5.291502	.000000	1.000000	8.000000	
WHT ASH	.683333	.211266	1.460000	1,880000	0.044633	12.
WHILFRO	.700000	.984885	4.6000000	6.500000	0.970000	
EXTR	.200000	.430575	7.100000	5.100000	.630000	· ;
FLASH	.486666	.041633	0.440000	0.520000	0.001733	
FL_PRO MIXO	000007.	.044030	. 500000	6.400000	000060.	9
BAKE ABS	.366666	.078579	7.600000	9.600000	.163333	
Λ0	.000000	.928203	6.000000	.000000	000000.	. w
			VARIETY=N88-3	136	1	
VARIABLE	Σ	TD DE	MINIM	MAXIMUM	S	
 Tw	1 4	1 80	7.800000		33333	1
K W.T	.86666	.950046	22.5000000	9.100000	.103333	r ~
LG	.33333	.362810	000000°9	0.00000.9	1880.3	9
WHT ASH	5 5 5 5	63332 87705	42000	0 0	3333	24.
ب۵	.43333	171893	4.100000	6.300000	1 373333	٠, ٢
HARD	.00000	.557438	5,000000	8.000000	3.000000	. 0
EXTR FI ACH	.73333	.021074	4.000000	5.600000	6.253333	9
FL ASH	. 50666 . 16666	.040414	13 500000	. 550000	.001633	
MIXO	.33333	.527525	1,000000	4.000000	.333333	
BAKE ABS	.03333	.616580	7.300000	0.500000	2.613333	2

- VARIETY=SD3055

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TE	60.2000000	1.7349352	59,1000000	62,2000000	3.0100000	2 8819521
K_WT	36.2000000	10.4790267	30.1000000	48.300000	109.8100000	28.9475875
LG	47.0000000	41.5812458	22.0000000	95.0000000	1729.00	88.4707357
SM	1.3333333	1.1547005	0	2.0000000	1.3333333	86 6025404
WHT_ASH	1.5800000	0.1178983	1.4500000	1.6800000	0.0139000	7 4619153
WHT_PRO	15,5666667	0.2309401	15,3000000	15.700000	0.0533333	1 482552
HARD	63.333333	9.4516313	56,0000000	74.000000	89 33333	14 9226202
EXTR	60.8333333	2,1594752	58.8000000	63 100000	4 6633333	2 5400733
FL_ASH	0.4800000	0.0264575	0.4600000	0.510000	000000000	5 5110010
FL PRO	15.6000000	0.2645751	15,300000	15.800000	000000000000000000000000000000000000000	1 6050044
MIXO	2.6666667	0.5773503	2,0000000	3.0000000	0.333333	21 6506251
BAKE ABS	60.4000000	0.9643651	59,3000000	61,1000000	0.930000	1 5966302
LOAF_VOL	202.333333	14.6401275	189,0000000	218.0000000	214.333333	7 2256479

- VARIETY=SD3056 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.7666667	3.0664855	56.9000000	63 0000000	0 4033333	120767
K WT	36.833333	9.5845362	28.700000	47.400000	91 8633333	76 0213651
LG	53.6666667	38.2143080	18,0000000	94.0000000	1460.33	71.2067850
SM	2.0000000	2.6457513	0	5.0000000	7.0000000	132.2875656
WHT ASH	1.5500000	0.1868154	1,3500000	1,7200000	0.0349000	12.0526075
WHT PRO	15,0333333	0.5686241	14.4000000	15.5000000	0.3233333	3.7824218
HARD	70.0000000	5.2915026	0000000.99	76.0000000	28.0000000	7.5592895
EXTR	57.6333333	6.0011110	51,7000000	63,7000000	36.0133333	10.4125697
FL_ASH	0.5300000	0.0346410	0.5100000	0.5700000	0.0012000	6.5360408
FL_PRO	14.3666667	0.6506407	13,7000000	15,0000000	0.4233333	4.5288216
MIXO	2.6666667	1.1547005	2.0000000	4.0000000	1,3333333	43.3012702
BAKE ABS	60.1333333	1.4742230	59,0000000	61,8000000	2,1733333	2.4515903
LOAF VOL	197.6666667	11,9303534	184.000000	206 0000000	142 333333	6 0255920

- VARIETY=SD3080 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	61,6666667	2.0305993	60.3000000	64.0000000	4.123333	3 2928637
TW X	34 33333	6 8391033	20 000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	7007070
	7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	0.017.00.0	23.000000	42.200000	40.1133333	78.919/182
LG	43.6666667	37.4210280	15.0000000	86.0000000	1400.33	85,6970106
SM	1.3333333	1.5275252	0	3.0000000	2,3333333	114.5643924
WHT ASH	1.5100000	0.2029778	1.2900000	1.6900000	0.0412000	13.4422405
WHT_PRO	16.2666667	0.3785939	16,0000000	16,700000	0.1433333	2.3274215
HARD	0000000.99	9.0000000	57.0000000	75.0000000	81,0000000	13.6363636
EXTR	59.7666667	3.7004504	55,5000000	62,1000000	13.6933333	6.1914954
FL ASH	0.4500000	0.0360555	0.4200000	0.4900000	0.0013000	8.0123362
FL_PRO	16.0000000	0.5567764	15.5000000	16,6000000	0.3100000	3.4798527
MIXO	3.0000000	1.0000000	2.0000000	4.0000000	1,0000000	33.333333
BAKE ABS	62.1333333	1,4843629	60.5000000	63,4000000	2,2033333	2.3889961
LOAF VOL	205.0000000	11.5325626	193.0000000	216.0000000	133.0000000	5.6256403

7
7
0
8
Ω
S
н
\sim
H
r-1
\equiv
2
7
K
-
1

1
i.
İ
1
i
•
2
72
_
0
æ
=SD80
S
н
54
IETY=
-
-
œ
VAR
>
1
1
i
:

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	60.2666667	2.8988503	57,9000000	63.5000000	8 4033333	A 8100202
K_WT	33.2333333	9.5143751	26,4000000	44.1000000	90 523333	78 62901333
LG	44.3333333	42.7239199	13.0000000	93.000000	1825 33	06 3697447
SM	1.3333333	1.5275252	0	3.0000000	2 333333	114 56420442
WHT ASH	1.5466667	0.1814754	1.3400000	1.6800000	0.0000000	11 72227
WHT PRO	15.3333333	0.8082904	14.4000000	15 8000000	0.6533333	E 3714E00
HARD	75.6666667	11.5902258	65 000000	000000000000000000000000000000000000000		0.2/14090
ロルトロ	CCCCCD ON			000000000	104.33333	15.31/4/9U
ביוני	55555555	3.1501323	56.4000000	62.7000000	9.9233333	5.2913756
FL ASH	0.5100000	0.0360555	0.4700000	0.5400000	0.0013000	7.0697084
FL_PRO	15.0333333	0.6658328	14.3000000	15,6000000	0.4433333	4.4290431
MIXO	2.0000000	1.0000000	1.0000000	3.0000000	1.0000000	50 0000000
BAKE ABS	60.00000.09	1.0000000	59,0000000	61,0000000	1.0000000	1 666667
LOAF_VOL	189.0000000	5.5677644	184.0000000	195.0000000	31.0000000	2.9459071

--- VARIETY=SD8073 --

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.933333	2.8571548	56.200000	61.9000000	8.1633333	4 8481133
K_WT	32.4000000	11,4642924	24.2000000	45.5000000	131.430000	35.3836185
LG	38,3333333	46.8009971	6.0000000	92.0000000	2190.33	122.0895528
SM	3.6666667	3.0550505	1.0000000	7,0000000	9,3333333	83.3195581
WHT ASH	1.5566667	0.1715615	1.4000000	1.740000	0.0294333	11 0210786
WHT PRO	15.2333333	1.0692677	14.0000000	15.9000000	1.1433333	7 0192626
HARD	73.333333	10.2143690	66,000000	85.0000000	104.333333	13 9286850
EXTR	58.533333	7.4574348	50,0000000	63.800000	55.6133333	12 7404920
FL ASH	0.5433333	0.0351188	0.5100000	0.580000	0.0012333	6 1635913
FL PRO	14.6000000	1,6462078	12.700000	15.6000000	2.7100000	11 2753456
MIXO	3,333333	1.1547005	2,0000000	4.0000000	1.333333	34 6410162
BAKE ABS	59.3666667	3.3857545	55,5000000	61.8000000	11.4633333	5.7031238
LOAF VOL	187.0000000	15.7162336	176.0000000	205.0000000	247.0000000	8.4044030

- VARIETY=SD8074 --

ARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
M.	60.1000000	2.8160256	58,0000000	63.3000000	7.9300000	4 685567
I'W.I	30.8000000	7.1630999	25,3000000	38,900000	51.3100000	73 2568178
9,	39,3333333	44.0605644	10.0000000	90,000000	1941.33	112.0183840
Ψ.	2.0000000	2.6457513	0	5,0000000	7.0000000	132.2875656
WHT ASH	1.5333333	0.1674316	1.3400000	1.6300000	0.0280333	10 9194507
HT_PRO	15.6333333	0.8144528	14.700000	16.2000000	0.6633333	5 2097193
IARD	73.0000000	3.6055513	0000000.69	76.0000000	13.0000000	4 9391112
SXTR	58.7666667	6.1581924	51,9000000	63.8000000	37.923333	10 4790569
'L ASH	0.4966667	0.0152753	0.4800000	0.5100000	0.00023333	3 0755542
'L PRO	15,1333333	0.9814955	14,0000000	15.700000	0.9633333	6 4856528
11 X O	4.0000000	1.0000000	3.0000000	5.0000000	1.0000000	25 0000000
SAKE ABS	60.3666667	0.4041452	60,000000	60.800000	0.1633333	000000000000000000000000000000000000000
JOAF VOL	185.0000000	20.6639783	168,0000000	208.000000	427.000000	0.0000000000000000000000000000000000000

STATISTICAL EVALUATION OF UNIFORM REGIONAL NURSERY DATA

TABLE 63

	ш	
1	- 1	
K	K	
-	`-	
c	С	
Ē	=	
-	r	
7	F.	
Ų	Ų	
- 6	1	
•	٠.	
_	_	
C	c.	
-	4	
13	Ēπ	
-	_	
-	-	
_	_	
\mathbf{a}	а	
-	7	
1	ĸ	
~	_	
-	-	
-	1	
- 1	1	
-1	1	

WESTERN REGION

	ŧ
	ı
	i
	i
	1
	:
	!
	ŀ
	١
p	ζ
E C E C	2
ē	_
5	_
	4
-	0
>	4
5	_
Tim V	á
-	٦
ρ	Ľ
4	¢
~	>
-	
1	
-	
- 1	
1	
-	

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	58.5000000	2.9512709	55.5000000	61.4000000	8.7100000	5 0449075
K_WT	28.6333333	8.7214295	22,4000000	38,6000000	76.0633333	30.4590089
LG	30.3333333	43.0851869	3.0000000	80.000000	1856,33	142,0390778
NS.	6.6666667	7.0237692	0	14.0000000	49.3333333	105,3565375
WHT ASH	1.6200000	0.1808314	1.4300000	1.7900000	0.0327000	11.1624329
WHT PRO	15.2333333	1,2423097	13.8000000	16.0000000	1.5433333	8.1552058
HARD	70.3333333	11.0151411	63.0000000	83.000000	121,3333333	15.6613380
EXTR	58,5333333	3.9803685	54.1000000	61,8000000	15.8433333	6 8001740
FL ASH	0.4733333	0.0208167	0.4500000	0.4900000	0.000433333	4 3978859
FL PRO	15.0000000	1,3000000	13.5000000	15,8000000	1,6900000	8.6666667
MIXO	3.6666667	1.5275252	2.0000000	5.0000000	2,3333333	41.6597790
BAKE ABS	60.7000000	0.6244998	60.200000	61,4000000	0.3900000	1.0288300
LOAF VOL	190.3333333	8.7368949	183.000000	200.0000000	76.333333	4.5903126

-- VARIETY=XW398A4 ---

VARIABLE	MEAN	STD DEV	MINIMUM	MAXIMUM	VARIANCE	CV
TW	59.8000000	1.1789826	58.5000000	60.8000000	1.3900000	1 9715428
K_WT	34.9666667	11,4596393	27.0000000	48.1000000	131,3233333	32.7730390
LG	41.0000000	45.0777107	13.0000000	93.0000000	2032.00	109.9456358
SM	4.0000000	3.4641016	0	0.000000.9	12.0000000	86.6025404
WHT ASH	1.6266667	0.1365040	1.4700000	1.7200000	0.0186333	8.3916374
WHT_PRO	15.0666667	0.9073772	14.1000000	15,9000000	0.8233333	6.0224149
HARD	65.6666667	4.0414519	62.0000000	70,0000000	16.3333333	6.1544953
EXTR	58.8666667	4.8180217	55,6000000	64.4000000	23,2133333	8.1846349
FL ASH	0.5766667	0.0650641	0.5100000	0.6400000	0.0042333	11.2827869
FL. PRO	14.7333333	0.9073772	13,700000	15.4000000	0.8233333	6.1586686
MIXO	2.3333333	1.1547005	1,0000000	3,0000000	1,3333333	49.4871659
BAKE ABS	59.8000000	1.1135529	58,6000000	60.800000	1.2400000	1.8621285
LOAF VOL	195.0000000	17.0587221	181.0000000	214,0000000	291,0000000	8.7480626

		a	UALITY	DATA	OF	SPRI	IG WH	EAT SA	MPLES		991 CRO	Ь				
TABLE 64			STATE	NORTH	DAK	OTA	STAT	ION=CA	STATE=NORTH DAKOTA STATION=CASSELTON		NURSERY=FIELD PLOTS	ELD PI	ors			
VARIETY STD #	STD	TEST WT #/BU	1000 K.WT G.	SIZING LG SM	NG SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL SCORE	MIX ABS	MIX
MARSHALL			25.4	16	80	2.09	14.8	81		67.8	0.51	13.4	5	3	61.4	4
STOA		58.4	31.9	46	-	1.82 15.5	15.5	91	4	69.2	69.2 0.43	14.1	Z.	4	62.7	. 2
BUTTE 86		58.4	33.7	25	2	1.88	15.7	94	4	67.8	0.40	14.1	2	4	63.7	4
LEN	S	57.4	30.1	41	٣	1.90	15.9	98	4	8.89	0.40	14.4	2	4	62.5	7

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE-NORTH DAKOTA STATION=CASSELTON NURSERY=FIELD PLOTS

	G LV	L HH	Η	
	מ	ΣΣ	Σ	
	DC			LV 875 825
 	A MT	ън	н	CG 80 50
ENCIES	MC MX B	EM IM	MI MI	75 75 50
CICIE	P MC			DC 6
DEFICIENCIES	TW KW SM WP EX A65 FP MC MX BA MT DC CC CG LV			MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00
	SM W	Σ		IME 0 2 75 0
1	ΚW	MJ MI MI		1X T-8.0
	TW	MJ	MI	M. 5.75- UNDE
!	N N	397	99	BA 61.9 60.4
RAL				
GENERAL	SCORE		4. W	A65 FP MC MX .47 12.9 3 2,7,8 .51 12.4 2 1,9-11 4=GOOD PROMISE.
BAKE	SCORE ***	26.	4 W	MC 3 2 OMISE.
LOAF	VOL	925	925	FP 12.9 12.4 OD PR(
	1	80	80	A65 .47 .51
CRUMB	GR		∞ ∞	EX 6.7 4.7 ISE
скимв	COLOR	80	80	M WP EX 8 13.9 66.7 8 12.9 64.7 =SOME PROMISE
				WE 13
ропсн	CHAR	6	7	SM 8 18
MIX	TIME CHAR	60.2 3.50	5.50	TW KW 7.9 28.0 6.9 25.0 LE PROMISE
BAKE	ABS	60.2	62.8 61.6	TW 57.9
	STD		Ø	CIES 4G VALUES 1G VALUES 1ISE 2=LI
	VARIETY	MARSHALL STOA	BUTTE 86 LEN	DEFICIENCIES TW KW SM WP MINOR FAULTING VALUES 57.9 28.0 8 13.9 6 MAJOR FAULTING VALUES 56.9 25.0 18 12.9 6 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROM

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=LANGDON NURSERY=FIELD PLOTS

TABLE 65

		TEST	1000	SIZI		WHT	WHT	HARD-	WHEAT	FLR	ASH @	FT.R	MIT.T.	MIT,T,	MIX	MIX
VARIETY	STD	WT #/BU	K.WT	LG SM		ASH %	PR0 %	NESS		EXT.	65%EX	78.0 08.0	CHAR	SCORE ***	ABS	PAT
LEN		56.8	26.0	32	7	1.96	1	1	3	67.2	0.38	13.4	5	4	59.6	4
1ARSHALL STOA		60.8	28.2	49	00	1.67	12.4	75	2 4	72.1	0.32	11.7		2 4	56.5	2 2 5

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=LANGDON NURSERY=FIELD PLOTS

MIX DOUGH TIME CHAR MIN	GENERAL SCORE TW KW SM WP EX A65 FP MC MX BA MT DC CC CG LV ***
58.5 5.50 9 80 55.9 3.00 2 85 61.9 3.50 9 85	MJ MJ MJ MJ MJ
DEFICIENCIES TW KW SM WP EX A65 FP MC MX MINOR FAULTING VALUES 57.9 23.9 8 13.9 65.1 .57 12.9 .3 2,7,8 MAJOR FAULTING VALUES 56.9 20.9 18 12.9 63.1 .61 12.4 2 1,9-11 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.	IW

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=FIELD PLOTS

TABLE 66

		TEST	1000	SIZI	ING	WHT	WHT	HARD-			ASH @	FLR	MILL	MILL	MIX	MIX
VARIETY	STD		K.WT G.	LG SM	χ Σ *	ASH %	PRO %	NESS	SCORE ***	EXT %	65%EX	PRO *	CHAR	SCORE ***	ABS	PAT
ALEX 59.	 	59.7	32.5	48	2	1.46	15.4	1	4	70.0	0.34	14.4	5	4	63.1	4
COTEAU		58.1	29.2	24	7	1.49	17.1		4	70.6	0.38	16.1	5	4	66.1	4
LEN	တ	59.5	34.6	74	0	1.49	15.7		4	71.4	0.34	14.6	2	4	64.4	9
MARSHALL		59.1	28.6	41	0	1.51	14.2	69	ო	72.8	0.31	13.2	5	4	8.09	е
STOA		0.09	33.2	51	0	1.48	15.4		4	70.4	0.31	14.3	2	4	64.0	IC.

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NORTH DAKOTA STATION=MINOT NURSERY=FIELD PLOTS

									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1	1
	BAKE	MIX	ропсн	CRUMB	CRUMB	LOAF	BAKE	GENERAL	T	DE	DEFICIENCIES-	ES	1	1
VARIETY STD	ABS	TIME	TIME CHAR	COLOR	GRAIN	CC	SCORE ***	SCORE ***	FN	TW KW SM WP EX A65 FP	FP MC MX	BA MT	MC MX BA MT DC CC CG LV	CG LV
w	63.1 66.1 64.4 60.8	3.50 2.50 4.00 4.00	0 L 0 0 0	90 85 85 85	88 85 90 85 90	1035 875 1030 970 1010	41424	3.0 4.0 4.0	394 400 400 400 400	I W J		MI	t 1 1 1 1 1	IM IM
DEFICIENCIES TW KW SM WP MINOR FAULTING VALUES 57.9 32.5 8 13.9 MAJOR FAULTING VALUES 56.9 29.5 18 12.9 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PR	TW S 57.9 S 56.9 ITTLE E	KW 32.5 29.5 PROMIS	SM 8 18 E 3=SC	WP 13.9 (12.9 (EX	A65 FP MC .47 12.9 3 .51 12.4 2 4=GOOD PROMISE	MC MX 3 2,7,8 1 2 1,9-11 COMISE.		BA 61.9 60.4	MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00	DC CC 6 75 4 50	CG 80 50	LV 975 925	

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NEW YORK STATION=ITHACA NURSERY=FIELD PLOTS

TABLE 67

VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZI LG	ING SM SM SM	WHT ASH	WHT PRO	HARD- NESS	WHEAT SCORE ***	FLR EXT	ASH G 65%EX	FLR PRO	MILL	MILL SCORE	MIX ABS	MIX
SINTON			30.9	55	2	1.72	15.7	64	4	67.5	0.40	14.4	5	3	61.4	3
HT BRAND 715		60.2	30.6	41	2	1.78	14.0	7.8	4	69.1	0.46	13.1	5	4	0.09	n
STOA	ഗ	6.09	30.2	32	-1	1.69	14.8	71	4	70.0	0.38		5	4	62.5	9
MARSHALL		8.09	30.3	36	7	1.87	14.4	11	4	71.6	0.32	13.5	5	4	0.09	c
ND 594		62.1	33.8	47	0	1.71	15.1	8 4	4	69.1	0.38		5	4		4
82080-0-4		62.2	30.3	40	2	1.85	15.0	67	4	70.0	0.43		2	4	0.09	n
82073-0-6		61.4	30.6	43	7	1.78	15.4	7.0	4	6.69	0.40	13.9	2	4	63.7	4
PF83699		61.4	29.4	30	2	1.77	14.0	39	4	66.2	0.32			1	58.2	2
AMIDON		6.09	32.2	43	2	1.60	15.1	8.7	4	6.69	0.38		2	4		4
GRANDIN		61.8	36.2		٦	1.77	15.6	74	4	70.4	0.40	14.6	2	4	66.5	9
ND 652		60.2	33.1	23	-1	1.73	15.7	11	4	69.5	~	14.8	2	4	63.4	2
NY 82011-2		61.3	35.7	09	Н	1.77	15.6	7.0	4	70.4	0.43	14.7	5	4	63.4	က
NY 83030-2-3		60.7	30.8	34	- -1	1.76	14.8	9	4	68.5	٣.		2	4	65.1	S
IAS64/ALDAN"S"		59.5	38.6	63	7	1.77	14.5	7.9	4	70.0			2	4		2
NY82080-0-4		61.6	30.7	36	m	1.74	15.2	52	4	70.0	0.42	13.7	2	4		2
MGI		58.7	38.8	8 9	7	1.81		37	4	67.0	٣,	12.5	な	2	54.6	Н
PF839204		59.8	36.4	48	2	1.75	15.0	19	4	62.0			m	7		-
CNT 10		61.4	35.6	09	7	1.87		23	4	65.8		13.4	e	1		2
PF83781		61.2	35.0	34	7	1.70		20	4	56.4		15.2	2	1		2
MARINGA		59.0	32.9	45	0	1.77	15.1	39	4	57.9			33	٦		3

OUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=NEW YORK STATION=ITHACA NURSERY=FIELD PLOTS

TABLE 67 (CONT)

		BAKE	MIX	DOUGH	СКИМВ	CRUMB	LOAF	BAKE	GENERAL	1	I	-DEFICIENCIES-	IES		!
VARIETY	STD	ABS	TIME	CHAR	COLOR	GRAIN	VOL	SCORE ***	SCORE	 	TW KW SM WP EX A65	5 FP MC MX	ВА	MT DC	CC CG FA
SINTON		61.4	2.75	თ	85	80	905		2.7		I			LΨ	Σ Σ
HT BRAND 715		0.09	3.50	7	80	85	855	۱ 🛶	3.0		•		T X	-	
STOA	ഗ		4.25	6	80	85	950	4					2		
MARSHALL		0.09	3.00	6	85	85	955	2					Μ.1		
ND 594		64.7	3.50	6	80	80	930	4	4.0						×
82080-0-4		0.09	3.25	6	80	85	895	٦					MJ		I.M
2073-0-6		63.7	3.00	6	80	85	1005	4					2		2
PF83699		58.2	2.00	7	80	85	835	Н			IM	MJ MI	ĽΜ	M	ĽΨ
AMIDON		61.4	3.00	6	80	85	970	e					Σ	!	
GRANDIN		66.5	3.75	6	80	85	1035	4					:		
		63.4	3,75	6	80	85	1035	4	4.0			M	_		
		63.4	3.00	6	80	80	1035	4	4.0				ı		Σ
NY 83030-2-3		65.1	4.00	6	80	85	1025	4							1
IAS64/ALDAN"S"		61.1	3.00	7	80	80	908	Н				Σ	T M T		LM TM
NY82080-0-4		62.1	3.25	6	80	85	920	3				Σ			
MG1		54.6	2.75	7	80	85	880	Н			X		M.J	M	Σ
PF839204		54.6	2.00	2	8 0	9.0	780	1			PΣ	CM IM IM	. Ψ	I M	Σ
CNT 10		60.3	1.50	S	85	85	890	Н			D	Σ	Σ		Σ
PF83781			2.75	6	85	80	1000	1	2.0		DW		X	X	Σ
MARINGA		60.8	2.00	2	80	85	855	7			DΨ	M	Ψ	MI MI	ĹM.
DEFICIENCIES			X	SM	ďМ						MIX TIME (MT)				
MINOR FAULTING VALUES MAJOR FAULTING VALUES	ALUES	57.9	28.1	188	13.9 6	67.9	.57 12.9	m 6	2,7,8 61	61.9	5.75-8.00 2.00-2.75	5 6 75	5 80	929	
*** 1=NO PROMISE 2=LITTLE	2=LI	TTLE	PROMISE		80	SE 4	-		4		0.0 4740 67.1	r			

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=FIELD PLOTS

TABLE 68			-31816	CALLFURINTA	PORIN	מ	TATION	11	>	ALLEY	NORSERY	X=F'1 ELU	LD PLOT	TS		
VARIETY	STD	TEST WT #/BU	1000 K.WT G.	SIZ	ING SM SM SM	WHT ASH	WHT PRO		WHEAT SCORE ***	FLR EXT	ASH @ 65%EX	FLR PRO	MILL	MILL	MIX ABS	MIX
ANZA		64.7	36.1		0	4.	1:			2 .	1 6	1 4	5	2	1 9	-
YECORA ROJO	ន	64.7	46.9		0	. 5	ω,		က	7	e.		. 20	ım	2 .	ı m
XOTO		64.1	36.0	99	0	.5	1.		Н	8	۳.		2	2 0		, -
KLASIC		65.8	49.3		0	4	'n		m	4.	m.		·ις	2	0	ım
TADINIA		61.7	31.4	26	4	1.56	12.0	16	- i	9.69	0.44	10.8	2	7	55.5	
SERRA		63.6			0	9	2.		2	2.	4.		2	2	9	٦.
BAKER			2		0	. 5	3		٣	0.	٠,		5	e	9	2
ESS					0	9	3	0	m	0	.3		2	က	i.	2
BR 5144				68	0	4.			-	33.	٣.		2	2	9	٦
BR 570			7		0	. 5			٣	1.	. 3		2	2	6	2
BR 571			4		0	٠4			4	۲.	۳,		2	4	0	2
AT BR					0	.5			2	0	. 3		5	4	0	2
			8		0	.5			2	0	с.	•	5	2	9	2
		6.09	32.9	30	9	9 .			2	7.	4.		2	2	7.	2
			9	72	0	.5			m	2.	٣.	•	2	4	Ξ.	٣
RB101			46.9	80	0	9.			7	6	4.		5	2	8.	7
PIONEER RBI0161				75	0	. 5				7 .	. 4	•	J.	н	9	2
ACCORD			. 2	28	0	9			m	5	4		2	2	0.	ო
61				8 4	0	. 5	4.		4		٣,		2	4	0	4
TANORI 87W			2	99	0	٠.	2.		7	÷	٠,	•	2	2	7.	2
UC895		64.9		40	0	. 5	2.		-	e	4.		5	2	0.	2
UC896			٠ ص		0	4.	2		7	&	.3		2	н	0.	7
UC897			-		0	.5	2.		1	0	4.		2	2	ä	m
•					0	.5	3		2	÷	٠,		2	2	2	m
PH986-12W			თ	8 9	0	٠.4	4		4	2.	.3	•	2	4	Ϊ.	က
-11					0	5	2		-1	ä	.3		2	2	9	7
3-131			43.3		0	. 5			e	Ή.	۳,	۰	2	2	0.	က
r BR			2	42	0	.5	ij.		-1	0	4.		2	2	7 .	2
		2	ک		0	. 2	χ,		2	ω	ω,	•	2	Н	0	m
568		•	س		0	.5	e,		က	0	۳,		2	2	8	7
			9	43	0	9	ب		7	6	4.		2	2	1.	4
28		'n	0		0	.5	2.		Н	0.	4.		2	2	9	က
			m I	69	0	. 5	ς,		3	0	4.		2	2	0.	4
щ			9		0	9	3		2	ъ ж	4.		2	- -1	9.	m
RB101					0	٠.4	ļ.		7	-	3		5	2	7.	Н
PIONEER HBY334		61.3	37.7	43	0	9.			1	٠ 0	4.	10.5	5	2	7.	2
		0.09			9	φ.			2	7.	.5	12.3	4	7	2.	-1

QUALITY DATA OF SPRING WHEAT SAMPLES 1991 CROP STATE=CALIFORNIA STATION=IMPERIAL VALLEY NURSERY=FIELD PLOTS

TABLE 68 (CONT)

	CG LV	1	MJ MJ	M.	N.	I I	IM	2	E W	IΨ	MI M.I	WI	Ψ.	Ξ		M.J. M.I		LM IM			M	M		MJ				MI MJ	MI	MI MJ			Ψ	E.M.	MI	MIM			
	ည	!																H																			E.M.		
-	DC		EM	Σ	X	2	×	Σ Σ	Σ.	Σ.	M.J.	H	X	Ξ	Σ	E W		MJ	MJ	MJ		M	Ä	M	МІ	IΨ		MI	MI	MI				M			M.J	M	2
1	E		M.J.		M	:				Σ	E W						MI	H				M	MI	M	MI	МІ											М	!	
S	BA		MJ	M	Ξ	Σ.	Z) T	Σ X	Σ	MJ	MJ	M	E	L.M.	M	M	MJ	M	MJ	M	MJ	MJ	MJ	MI	IΨ	MI	MJ	MJ	MJ	MJ	MJ	E.M.	E	MJ	E	Ľ.W	E.W.	2
CIE	MX		MJ		E.M.	2	N.	. E	E W	Ξ	MJ	M	H	W	M	MI		MJ	M			MI	MI	MI				MI		MI		MI					E	Ξ	711
IEN	MC																																						
DEFICIENCIES	FP		MJ	MI	EM	E	. E	E W	×	Ξ	MJ	MJ			MJ	IW		MJ	M	MJ		MJ	MJ	MJ	MJ	MJ		M	MJ	MJ	MJ	MJ	MI	MJ	MJ	MJ	MJ	L M	>
-DE	65																																MI	MI					
1	EX A					-										ΙW			MJ					MI							MI		I			MI			
-	WP		ט	П	רי	Н		י ר	. 14	-	J	I		_	Н			ה		MI		J	MJ		ט	Ψ		MJ	MI	רי		Н	I		П			MJ	
-	SM W		Σ	Σ	MJ	M	Σ	Σ	Σ	Σ	Σ	M		Σ	MI	Σ		MJ	Σ	Σ		Σ	Σ	Σ	Σ	Σ		Σ	Σ	Σ	Σ	Σ	MI	Σ	MI	Σ	Σ	Σ	:
1	1		ח		ט		ר	· 1-4	,	н	ם		Ι	ר	ם	J	ח		J	н		Ι	ר	ח	ט	ם		5	н	ם	ר	ı	ר	ר	н	ר	ר	ר	,
	TW KW		M		MJ		M	Σ		Σ	MJ		MI	E	MJ	MJ	MJ		Σ	M		M	M	M	Σ	M		Œ	H	Σ	MJ	MI	Σ	Σ	M	Σ	Σ	Σ	:
-	E !																																						
1	N I		400	400	400	400	400	383	400	400	400	400	400	400	400	400	400	266	400	400	400	400	400	400	392	400	400	400	400	400	400	400	400	400	400	400	400	400)
AL	E																																						
GENERAL	SCORE ***		٠								•											•			1.7	•													•
GE																																							
BAKE	SCORE ***		-	m	-	7	7	Н	1	7	-1	7	7	2	٦		7	-	٦		7		-	-	7	7	m ,	-	7	-1	7	7	7	7	7	⊣	7	٦	1
B	S																																						
LOAF	VOL		α	2	3	0	Ţ	5	2	\vdash	9	\vdash	4	4	٦	7	8	2	7	7	0	7	2	4	815	3	ο I	2	9	\vdash	9	2	9	2	4	0	3	7	
	- 1																																						
скимв	GRAIN		30	15	90	7.0	85	85	75	80	80	80	75	75	85	30	85	80	80	80	80	85	85	85	90	85	80	2	80	0 /	15	75	80	85	80	80	20	75	
CR	GR																																						
MB	OR		Ω	2	0	2	0	2	0	2	0	0	2	2	0	2	2	0	0	2	2	2	0	2	ı S	Ω Ι	Ω.	2	0	0	2	2	0	0	0	2	0	0	,
CRUM	COLO	•	0	σ	8	8	6	6	6	8	89	8	6	6	6	8	8	7	10	6	6	80	8	Φ	ω (00 (00 (20	σ,	D	80	6	8	ω	6	80	7	80	
H																																							
ропсн	CHAR	(7	2	7	6	7	7	7	7	0	2	2	2	7	0	7	7	7	7	6	2	2	7	n n	Ω I	- 1	<u>۾</u>	2	Ç	7	7	7	2	7	1	0	7	
				0	0	2	0	0	2	2	0	2	0	2	0	2	2	0	0	0	2	0	2	0	0 0	0 (0 0	5 1	ر د	2	2	2	2	0	2	0	2	0	
MIX	TIME		1.1										•												2.0														
E			T						7	0															7														
BAKE	ABS						4		8	1		8												6	61.	- 0) C	0	0					8		8			
	STD		1	S																																			
																		04	61																M06	9.0	30	4	
	į			0							4	02	10	38				RB1010	RB1016										t	3/					0	NCO	101	3	-
	ETY			ROJO							51	570	S	57				RB.	RB		_	8 7 W				::0	X .	9 7	3.L	70	7	0	6	8	ROJO	BLANC090	RB.	HBY3	*
	VARIETY			3A		IC	NIA	4	œ	ESS	BR		B		42	44	49	PIONEER	PIONEER	0	9-	Z.	2	9 1	- 0	,	M7T-9	1 - 7	1-8	20	518	268	226	\sim		8A	EER	EER	1
	>		ANTA	YECORA	YOLO	KLASIC	TADINIA	SERRA	BAKER	EXPRESS	FMC I	CONT	CONT	Ę	œ	Φ	UC 84	ON	ON	ACCOR	PH986	TANOR	UC89	UC89	000	0000	FHYBB	DASS	PHAB	-				FMC 6	YECORA	YECORA	PIONEER	PIONEER	TOUR

DEFICIENCIES TW KW SM WP EX A65 FP MC MINOR FAULTING VALUES 57.9 44.8 8 13.9 69.4 .47 12.9 3 MAJOR FAULTING VALUES 56.9 41.8 18 12.9 67.4 .51 12.4 2 *** 1=NO PROMISE 2=LITTLE PROMISE 3=SOME PROMISE 4=GOOD PROMISE.

MX 2,7,8 1,9-11

LV 800 750

CG 80 50

CC 75

DC 6

MIX TIME (MT) 5.75-8.00 2.00-2.75 UNDER 1.75 OVER 8.00

BA 61.9 60.4

