Assuming no locses: $\frac{Vp}{Vs} = \frac{Np}{Ns}.$ $\frac{Vp}{Vs} = \frac{Np}{Ns}.$ $\frac{Vs}{Vs} = \frac{Vs}{Vs} = \frac{240}{1500} \times 600 = 96 \text{ fs}$

Neglicot loeses;

$$P_{in} = P_{out}$$

 $V_{p} = \frac{V_s^2}{R} = \frac{150^2}{20} = 1125 \text{ W}$
 $V_{p} = \frac{1125}{C} = 225 \text{ V}_{a}$ $P_{i} = 54$

(4)

For open circuit - Test:

a.) Iron loss convent &

6) The power factor on no-load;

phasor diagram: F_0 F_0

c.) The magnetising covert:

$$I_m = \sqrt{(I_0^2 - I_c^2)}$$

= $\sqrt{I_0^2 - 0.4^2} = 0.92$

a)
$$V_2 = M_2$$
 $V_1 = M_1$
 $V_2 = M_2$
 $V_3 = S_0$
 $V_4 = S_0$
 $V_5 = I_1$
 $V_1 = S_0$
 $V_1 = I_2$
 $V_2 = I_1$
 $V_3 = V_1 I_1$
 $V_4 = I_1$
 $V_1 = I_2$
 $V_1 = I_2$
 $V_2 = I_3$
 $V_3 = V_1 I_2$
 $V_4 = I_4$
 $V_1 = I_2$
 $V_1 = I_2$
 $V_2 = I_3$
 $V_3 = I_4$
 $V_4 =$

= 98.21