Subgrupos del grupo diédrico D_4 (el ejercicio tedioso de la segunda tarea)

11 de abril de 2018

Consideremos el grupo diédrico

$$D_4 = \{ id, r, r^2, r^3, f, fr, fr^2, fr^3 \}.$$

Para encontrar sus subgrupos, podemos analizar todos los casos posibles.

En general, si H es un subgrupo de un grupo finito G, entonces |H| divide a |G| (esto se llama el **teorema de Lagrange**). Esto implica que los subgrupos de D_4 necesariamente tienen orden

$$|H| = 1, 2, 4, 8.$$

Todavía no lo hemos demostrado, pero en el caso de D_4 se puede proceder sin usar este resultado. De hecho, el punto de este ejercicio era de tener más práctica con cálculos explícitos.

Primero notemos que

$$\{1,g\}\subset G$$

es un subgrupo de orden 2 si y solamente si $g^2 = 1$. Esto nos da la lista completa de los subgrupos de orden 2 en D_4 :

(*)
$$\{id, r^2\}, \{id, f\}, \{id, fr\}, \{id, fr^2\}, \{id, fr^3\}.$$

Ahora analicemos qué sucede si un subgrupo $H \subseteq D_4$ es de orden > 2. Esto quiere decir que en H hay por lo menos dos elementos $g, h \neq id$.

1) Si $r \in H$ (resp. $r^3 \in H$), entonces todas las potencias de r (resp. r^3) están en H y tenemos

$${id, r, r^2, r^3} = {id, r^3, r^6, r^9} \subset H.$$

En particular, $\{id, r, r^2, r^3\}$ es un subgrupo.

2) Del caso anterior se ve que si $r^i, r^j \in H$ para diferentes $i, j \in \{1, 2, 3\}$, entonces

$${\mathrm id}, r, r^2, r^3 \subseteq H.$$

- 3) Notamos que si $r, f \in H$, entonces $H = D_4$ (todo elemento de D_n es un producto de r y f).
- 4) Supongamos que fr^i , $fr^j \in H$ para diferentes $i, j \in \{0, 1, 2, 3\}$. En este caso también

$$(fr^i)(fr^j) = r^{j-i} \in H.$$

■ Si el número $j - i \equiv 1$ o 3 (mód 4), entonces

$${\mathrm id}, r, r^2, r^3 \subseteq H$$
,

pero luego $f = (fr^i) r^{-i} \in H$ y podemos concluir que $H = D_4$.

• Si $j - i \equiv 2 \pmod{4}$, entonces tenemos dos posibilidades: o bien (i, j) = (0, 2), y en este caso

$${\mathrm id}, f, fr^2, r^2 \subseteq H$$
,

o bien (i, j) = (1, 3), y en este caso

$${id, fr, fr^3, r^2} \subseteq H.$$

5) Supongamos que r^i , $fr^j \in H$ para algunos $i \in \{1,2,3\}$ y $j \in \{0,1,2,3\}$. En este caso también

$$fr^{j+i} = (fr^j) \cdot r^i \in H$$
 y $fr^{j-i} = (fr^j) \cdot (r^i)^{-1} \in H$.

Si $j + i \not\equiv j - i \pmod{4}$, estamos en el caso precedente: tenemos dos elementos diferentes fr^i y fr^j . Si $j + i \equiv j - i \pmod{4}$, entonces i = 2 y $r^2 \in H$. Se ve que

$${id, r^2, f, fr^2} \subseteq H$$
 o ${id, r^2, fr, fr^3} \subseteq H$;

es decir, tenemos las mismas posibilidades que en 4).

Los casos 1)–5) cubren todas las posibilidades para $g,h \in H$ con $g,h \neq id$. Hemos visto entonces que si |H| > 2, entonces H necesariamente contiene uno de los siguientes conjuntos:

(**)
$$\{1, r, r^2, r^3\}, \{id, r^2, f, fr^2\}, \{id, r^2, fr, fr^3\}.$$

Se ve que estos son subgrupos de D_4 . Ahora si supiéramos el teorema de Lagrange, podríamos concluir que en D_4 no hay otros subgrupos no triviales excepto (*) y (**). Pero de todos modos podemos analizar directamente todas las posibilidades.

- a) Si H un subgrupo tal que $\{1, r, r^2, r^3\} \subsetneq H$, entonces $fr^i \in H$ para algún $i \in \{0, 1, 2, 3\}$. Pero en este caso, multiplicando fr^i por r, r^2, r^3 , podemos concluir que $H = D_4$.
- b) Sea H un subgrupo tal que $\{id, r^2, f, fr^2\} \subseteq H$.
 - Si $r \in H$, entonces $H = D_4$, siendo un subgrupo que contiene r y f.
 - Si $r^3 \in H$, entonces $r^2 \cdot r^3 = r \in H$ y de nuevo $H = D_4$.
 - Si $fr \in H$, entonces $r = f \cdot fr \in H$ y $H = D_4$.
 - Si $fr^3 \in H$, entonces $(fr^2) \cdot (fr^3) = r \in H$ y $H = D_4$.
- c) De la misma manera, si $\{id, r^2, fr, fr^3\} \subseteq H$, entonces se puede ver que $H = D_4$.

Con esto podemos concluir que todo subgrupo de orden > 4 coincide con D_4 . Así que el diagrama de abajo de hecho representa *todos* los subgrupos de D_4 .

(Este es uno de aquellos casos cuando leer una prueba es mucho menos divertido y útil que encontrarla por cuenta propia...)