

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Cryptography III

Public-key Cryptosystems,
Digital Signatures and Hash functions

Weaknesses of symmetric cryptosystems

- Managing and distributing shared secret keys is so difficult in a model environment with too many parties and relationships
 - N parties → n(n-1)/2 relationships → each manages (n-1) keys
- No way for digital signatures
 - No non-repudiation service

Diffie-Hellman new ideas for PKC

- In principle, a PK cryptosystem is designed for a single user, not for a pair of communicating users
 - More uses other than just encryption
- Proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature

Diffie-Hellman's proposal

- Each user creates 2 keys: a secret (private) key and a public key → published for everyone to know
 - The PK is for encryption and the SK for decryption
 X = D(z, E(Z, X))
 - The SK is for creating signatures and the PK for verifying these signatures

 $X = E(Z, D(z, X)) \rightarrow D()$ for creating signatures, $E \rightarrow$ verifying

- Also, called asymmetric key cryptosystems
 - Knowing the public-key and the cipher, it is computationally infeasible to compute the private key

Principles of designing a PK system (trapdoor)

- Using one-way function:
 - Given X, it is easy to compute Y = f(X)
 - Given Y it is hard to compute X = f⁻¹(Y)

Example:

- Given $p_1, p_2, \dots p_n$ it is easy to compute $N = p_1^* p_2^* \dots *p_n$ but given N it is hard to find $p_1, p_2, \dots p_n$
- Such an one-way function can be used as a trapdoor to create a PKC
 - Encryption is easy
 - Decryption is difficult (if not knowing the secret key)

Merkle – Hellman's encryption scheme using *Trapdoor Knapsack*

- 1978, Merkle & Hellman proposed an encryption scheme using this Knapsack problem:
 - Given a set of positive numbers a_i , $1 \le i \le n$ and $0 < T < \sum_{i=1,n} a_i$; Find a set of indexes $S \subset \{1,2,...,n\}$ such that: $\sum_{i \in S} a_i = T$
 - Example:

```
(a_1, a_2, a_3, a_4) = (2, 3, 5, 7) T = 7.
There are 2 solutions: S = (1, 3) as T = a_1 + a_3
and S = (4) as T = a_4
```

- This is a hard problem (NP-hard):
 - No P-time algorithm has been found
 - Exhaustive search: exponential time.

Merkle – Hellman's encryption scheme

- Consider attempts to create a PK scheme using Knapsack trapdoor; here is a first attempt
 - Select a cargo vector a = (a₁, a₂, ..., a_n)
 - Encryption: for a binary plaintext block $X = (X_1, X_2, X_3, ..., X_n)$ compute: $T = \sum a_i X_i$ (*)
 - Decryption: Given cipher block T, knowing vector a, find X_i that satisfy (*)
- Trapdoor: One way is definitely easy, the other is HARD
- BUT not yet a PK system, we need to make it easy for the owner who knows a secret key

Merkle – Hellman's encryption scheme

- Merkle added a trick
 - using a super-increasing vector wherein the (i+1)th element is > the sum of all preceding elements (1÷i)
- Using a super-increasing cargo vector, the decryption is so easy

Example

```
Super-increasing vector: a=(1,2,4,8)

For T=11, we easily compute X=(X_1,X_2,X_3,X_4) such that T=\sum a_iX_i:

Let T=T_0

X_4=1 T_0=T_0-X_4=3 \rightarrow (X_1 X_2 X_3 1)

X_3=0 T_2=T_1=3 \rightarrow (X_1 X_2 0 1)

X_2=1 T_3=T_2-2=1 \rightarrow (X_1 1 0 1)

X_1=1 \rightarrow (1 1 0 1)
```


Merkle – Hellman's encryption scheme

Exercise

Draw a diagram/pseudo-code to describe an algorithm for the decryption using a super-increasing cargo vector

 To complete the PK scheme however the owner need to disguise his secret key, the super-increasing vector

Merkle - Hellman: the disguise mechanism

Creating keys:

Alice creates a super-increasing vector:

$$a' = (a_1', a_2', ..., a_n')$$

a' will be kept as a part of the secret key

- Then choose $m > \sum a_i$ to be used as the modulus and choose ω that is relatively prime to m.
- Now Alice's public key is the vector a as the product of a' with ω

$$a = (a_1, a_2, ..., a_n)$$

 $a_i = \omega \times a_i$ (mod m); $i = 1, 2, 3...n$

Alice's secret key is the triple (a', m, ω)

Merkle-Hellman scheme

Encryption:

• When Bob wants to send a message X to Alice, he computes: $T=\sum a_i X_i$

• <u>Decryption</u>:

• When Alice receives T, she will transform the equation $T = a \times X$ into $T' = a' \times X$ as follows

She first computes ω^{-1} i.e. $\omega \times \omega^{-1} = 1 \mod m$, then compute $T' = T \times \omega^{-1} \pmod m$

• Alice then solve $T' = a' \times X$ using the super-increasing vector a'.

• Why?

$$T' = T \times \omega^{-1} = \sum a_i X_i \omega^{-1} = \sum a_i' \omega X_i \omega^{-1}$$
$$= \sum (a_i' \omega \omega^{-1}) X_i = \sum a_i' X_i = a' \times X$$

Failure of Merkle-Hellman PKC

Brute Force Attack

- For whom not knowing the trapdoor (a', m, ω), decrypting requires the exhaustive search of 2ⁿ possible values of X
- Failure of this Knapsack-based scheme (1982-1984).
 - Shamir-Adleman showed a weakness by finding a pair (ω',m') to convert a back to a' (finding the private key from the public key)
 - 1984, Brickell announced the collapse of this Knapsackbased system by one hour of computation using Cray -1 for 40 rounds and approx. 100 weights.

Algorithm for computing modulo inverse

- Computing the inverse of ω by modulo m
 - Finding $x = \omega^{-1} \mod m$ such that $x^*\omega = 1 \pmod m$
 - Many applications such as in the Knapsack trapdoor
- Based on the extended GCD algorithm or the extended Euclidean algorithm (GCD: Greatest common divisor)
 - On finding the GCD of 2 numbers n_1 và n_2 , one will also compute a & b such that $GCD(n_1, n_2) = a \times n_1 + b \times n_2$.
 - If $gcd(n_1,n_2)=1$ then this e-GCD algorithm will find a, b to meet $a \times n_1 + b \times n_2 = 1$, i.e. n_1 is the inverse of a by modulo n_2

Homework: prove the correctness of this algorithm

- Numeric example: find the inverse of 11 by modulo 39
- Let $n_1=39$, $n_2=11$ then run the algo as in the following table:

n_1	n_2	r	q	a_1	b_1	a_2	b_2
39	11	6	3	1	0	0	1
11	6	5	1	О	1	1	-3
6	5	1	1	1	-3	-1	4

General remarks on PKC

- Since 1976,many PKC schemes had been proposed many was broken
- A PKC have two main applications
 - Hiding information (including secrete communication)
 - Authentication with digital signatures
- The two algorithms that are most successful are RSA và El-Gamal.
- In general PKC is very slow, not appropriate for on-line encryption
 - Not used for encrypting large volume of date but for special purposes.
 - PKC and SKC are used in combined:
 - Alice and Bob use a PKC system to create a shared secret key between them and then use a SKC system to encrypt the communicated data by using this secret key

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
 - Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

Main idea

- Encryption and decryption functions are modulo exponential in the field $Z_n = \{0,1,2,...n-1\}$
 - Encryption: Y=Xe mod n (or ± n)
 - $a = b \pm n \Rightarrow a = b + k^*n, a \in Z_n, k = 1,2,3,... e.g. 7 = 37 \pm 10$
 - Decryption: X= Y^d±n
 - The clue is that e & d must be selected such that
 X^{ed}= X (mod n)

Main idea

- The way to create such e&d is by using this Euler theorem: $X^{\phi(n)}=1 \pmod{n}$
 - $\varphi(n)$: the size of $Z^*_n = \{k:0 < k < n | (k,n)=1\}$
 - φ(n) can be computed easily if knowing n factoralization
 - n=p*q, where p, q are primes $\rightarrow \phi(n) = (p-1)(q-1)$
 - First choose e then compute d s.t. $e*d=1\pm \varphi(n)$ or $d \equiv e^{-1} \mod \varphi(n)$, which will assure that $X^{ed}=X^{k.\varphi(n)+1}\equiv (X^{\varphi(n)})^k *X \equiv 1^k *X = X \pmod n$
- Note this works because we know n's factorization
 - From e we compute $d \equiv e^{-1} \mod \phi(n)$ since we know $\phi(n)$, otherwise it is computational infeasible to compute d s.t. $X^{ed} \equiv 1 \mod n$

RSA PKC

Key generation:

- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\Phi(n) = (q-1)(p-1)$
- Select a random integer e, 1 < e < Φ(n), s.t. gcd(e, Φ(n)) = 1
- Compute d, $1 < d < \Phi(n)$ s.t. ed $\equiv 1 \mod \Phi(n)$
- Public key: (e, n) and Private key: d
 - Note: p and q must remain secret

RSA PKC (cont)

Encryption

- Given a message M, 0 < M < n: M∈Z_n− {0}
- use public key (e, n) compute $C = M^e \mod n$, i.e. $C \in Z_n \{0\}$

Decryption

- Given a ciphertext C, use private key (d) compute M = C^d mod n
- Why work?
 - $(M^e \mod n)^d \mod n = M^{ed} \mod n = M$

Example Parameters:

- Select p = 11 vàq = 13
- n=11*13=143; m= (p-1)(q-1) =10 *12=120
- Choose e=37 → gcd(37,120=1
- Using the algo gcd: e*d =1 ±120 → d= 13 (e*d=481)
- To encrypt a binary string
 - Split it into segments of u bit s.t. 2^u≤142 → u = 7. That is each segment present a number from 0 to 127
 - Compute $Y = X^e \pm 143$ E.g. For X = (0000010) = 2, we have $Y = E_Z(X) = X^{37} = 12 \pm 143 \implies Y = (00001100)$

RSA implementation

- Execution of RSA is about thousand times slower than DES
 - Even using the fast exponential algorithm and specifically designed hardwares
- n, p, q
 - The security of RSA depends on how large n is, which is often measured in the number of bits for n. Current recommendation is 1024 bits for n.
 - p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
 - p-q should not be small
 - Way to select p and q
 - In general, select large numbers (some special forms), then test for primality
 - Many implementations use the Rabin-Mille test, (probabilistic test)

Factorization Prolem

Estimated time using the sieve algorithm

$$L(n) \approx 10^{9.7 + \frac{1}{50} \log_2 n}$$

- log₂n: the number of bits in representing n
- By 1996, for n=200, L(n) ≈ 55,000 years.
- Using parallel computing, one can factorize a 129-digit number in 3 months by distributing the workload to the computers throught out the Internet at 1996-7
- Today, for applications requiring high security levels one should values of in 1024-bit or even 2048-bit.

Modulo Exponential Fast algorithm to compute exponential in Z_n (modulo n):

- Fast algorithm to compute exponential in Z_n (modulo n): Computing X^α (modul n)
- Determine coefficients α_i in the binary representation of α :

$$\alpha = \alpha_0 2^0 + \alpha_1 2^1 + \alpha_2 2^2 + \dots + \alpha_k 2^k$$

Loop in kxròungs to compute these k modulo exponential, với i=1,k :

$$X^4 = X^2 \times X^2$$

•••

$$X^{2^{k}} = X^{2^{k-1}} \times X^{2^{k-1}}$$

• Now compute $X^{\alpha X} m \alpha^{\alpha_i} n$ by multiplying theses X^{2^i} computed in the previous steps but only with corresponding coefficients α_i =1:

Suggested topics for Reports

- The implementation and correctness of the extended GCD algorithm
- The probabilistic primality test
- Exponential algorithms and implementation
- The correctness of RSA algorithms
- Common Attacks to RSA

Digital Signatures

- Motivation
 - Diffie-Hellman proposed the idea (1976)
 - Simulation of the real-world into digital worlds
 - Paper contracts need signed to be valid so do electronic versions

- The proofs conveyed in signatures
 - Data integrity: information is original, not modified
 - Authentication: The source of the info is correct, not impersonated

DS: how they workDigital Signature: a data string which associates a message with some originating entity.

- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) key verification key, a message, and a signature
- A DS is created based on a PK system
 - Alice signs message X by creating Y=D_{zA}(X), so the signed document now is $(X, Y=D_{z_A}(X))$.
 - Bob who receives (X,Y), computes X'=E_{ZA} (Y) then compare if X=X' to confirm the document's validity

Non-repudiation

- We mention more on applications of DS
- Non-repudiation
 - The signer can't deny that his/her created the document
 - Only Alice knows z_A to create (X, $Y=D_{z_A}(X)$) but everyone else can verify
 - So we say the DS scheme provides nonrepudiation

Public notary

Motivation

- Alice may lost her secret key or someone stole it → that bad guy can impersonate Alice to create documents with Alice signatures out of Alice's control
- Alice can also deny a document truly signed by her in the past:
 Alice claims the document was impersonated by someone stealing her SK
- Solution: Public notary service
 - A third party a public notary can be hired for important documents
 - The trusted notary also signs on the same document, that is to create his signature on the concatenation of the document and Alice's signature

Proof of delivery (receipts)

- Motivation
 - The sender need proof that the receiver has already got his message
 - The receiver can't deny that once the sender got a receipt
- Solution: An adjudicated protocol
 - $A \rightarrow B$: $Y = E_{Z_R}(D_{Z_A}(X))$
 - B computes: $X'=E_{Z_A}(D_{z_B}(Y))$
 - When receiving Y, B computes and checks if X'=X then signs on X' and pass to A as a receipt.
 - $B \rightarrow A$: $Y = E_{Z_A}(D_{z_B}(X'))$
 - By computing $D_{z_A}(Y)$, A now gets $D_{z_B}(X')$, a B's signature on X
 - Only when A has Y she can consider that B has receive her doc
 - Later, B can not deny receiving X since A can prove otherwise by showing $D_{z_B}(Y)$

Weakness of the signature scheme mentioned so far

When using a PKC to sign X, X can be long → splitting into blocks and signs

$$X = (X_1, X_2, X_3, ... X_t) \rightarrow (SA(X_1), SA(X_2), SA(X_3), ... SA(X_t))$$

- This creates vulnerability to attack on manipulating blocks
 - The attacker can change order of blocks, remove/ add in a few
- Slow: PKC is already slow, now is run multiple times

Hash Functions

- A hash function H maps a message of variable length n bits to a fingerprint of fixed length m bits, with m < n.
 - This hash value is also called a digest (of the original message).
 - Since n>m, there exist many X which are map to the same digest → collision.
- Applications
 - Digital signatures
 - Message authentication

DS schemes with hash functions

Signature Generator

Signature Verifier

Main properties

Given a hash function H: $X \rightarrow Y$

- Long message → short, fixed-length hash
- One-way property: given y ∈ Y
 it is computationally infeasible to find a value x∈X s.t.
 H(x) = y
- Collision resistance (collision-free)
 it is computationally infeasible to find any two distinct values x', x ∈ X s.t. H(x') = H(x)
 - This property prevent against signature forgery

Collisions

- Avoiding collisions is theoretically impossible
 - Dirichlet principle: n+1 rabbits into n cages → at least 2 rabbits go to the same cage
 - This suggest exhaustive search: try |Y|+1 messages then must find a collision (H:X→Y)
- In practice
 - Choose |Y| large enough so exhaustive search is computational infeasible.
 - |Y| not too large or long signature and slow process
 - However, collision-freeness is still hard

Birthday attack

- Can hash values be of 64 bits?
 - Look good, initially, since a space of size 2⁶⁴ is too large to do exhaustive search or compute that many hash values
 - However a birthday attack can easily break a DS with a 64-bit hash function
 - In fact, the attacker only need to create a bunch of 2³²
 messages and then launch the attack with reasonably
 high probability for success.

How is the attack

- Goal: given H, find x, x' such that H(x)=H(x')
- Algorithm:
 - pick a random set S of q values in X
 - for each $x \in S$, computes $h_x = H(x)$
 - if $h_x = h_{x'}$ for some x' \neq x then collision found: (x,x'), else fail
- The average success probability is

$$\varepsilon = 1 - \exp(q(q-1)/2|Y|)$$

• Suppose Y has size 2^m, choose **q** ≈**2**^{m/2} then ε is almost 0.5!

Birthday paradox

- Given a group of people, the minimum number of people
 - such that two will share the same birthday with probability at least 50%

is only 23 → why "paradox"

- Computing the chance
 - 1 (1-1/365)(1-2/365)...(1-22/365) = 1-0.493 = 0.507

Common techniques to build hash functions

- Using SKC
 - E.g. using SKC in CBC mode
- Using modulo arithmetic operations
- Specific designs
 - MD4, MD5, SHA

$$X = X_1 X_2 X_3 ... X_n$$

$$Y_i = E_z(X_i \oplus Y_{i-1})$$

$$H(X) = Y_n$$

MAC: message authentication code

- Hash function is public and the key shared between the sender and the receiver is secret
 - Sender computes mac1 = MAC(M, H, K) and sends it along with the message M
 - Receiver computes mac2 = MAC(M, H, K) and checks if mac1 = mac2 ? Yes → the message is authentic; no => reject it
- The output of MAC can not be produced without knowing the secret key
 - So, this mechanism provides data integrity and source authentication

More on the Birthday Paradox

What is the probability that two persons in a room of 23 have the same birthday?

Birthday Paradox

 Ways to assign k different birthdays without duplicates:

$$N = 365 * 364 * ... * (365 - k + 1)$$
$$= 365! / (365 - k)!$$

 Ways to assign k different birthdays with possible duplicates:

$$D = 365 * 365 * ... * 365 = 365^{k}$$

Birthday "Paradox"

Assuming real birthdays assigned randomly:

N/D = probability there are no duplicates

1 - N/D = probability there is a duplicate

$$= 1 - 365! / ((365 - k)!(365)^k)$$

Generalizing Birthdays

$$P(n, k) = 1 - n!/(n-k)!n^k$$

Given k random selections from n possible values, P(n, k) gives the probability that there is at least 1 duplicate.

Birthday Probabilities

```
P(\exists \text{ two match}) = 1 - P(\text{all are different})
P(2 chosen from N are different)
  = 1 - 1/N
P(3 are all different)
  = (1 - 1/N)(1 - 2/N)
P(k trials are all different)
  = (1 - 1/N)(1 - 2/N) \dots (1 - (k-1)/N)
In (P)
  = \ln (1 - 1/N) + \ln (1 - 2/N) + ... \ln (1 - (k-1)/N)
```


Happy Birthday Bob!

$$\ln (P) = \ln (1 - 1/N) + ... + \ln (1 - (k - 1)/N)$$
For $0 < x < 1$: $\ln (1 - x) \le x$

$$\ln (P) \le -(1/N + 2/N + ... + (k - 1)/N)$$

Gauss says:

$$1 + 2 + 3 + 4 + ... + (k-1) + k = \frac{1}{2} k (k+1)$$

So,

$$\ln (P) \le -\frac{1}{2} (k-1) k/N$$

$$P \le e^{\frac{1}{2} (k-1)k/N}$$

Probability of match $\geq 1 - e^{-1/2(k-1)k/N}$

Applying Birthdays

$$P(n, k) > 1 - e^{-k*(k-1)/2n}$$

For
$$n = 365$$
, $k = 20$:

$$P(365, 20) > 1 - e^{-20*(19)/2*365}$$

For
$$n = 2^{64}$$
, $k = 2^{32}$: $P(2^{64}, 2^{32}) > .39$

For
$$n = 2^{64}$$
, $k = 2^{33}$: $P(2^{64}, 2^{33}) > .86$

For
$$n = 2^{64}$$
, $k = 2^{34}$: $P(2^{64}, 2^{34}) > .9996$

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Thank you for your attentions!

