FACULTY OF ENGINEERING CHULALONGKORN UNIVERSITY

2110327 Algorithm Design

YEAR III, First Semester, Final-term Examination, November 28, 2016, Time 8:30 – 11:30

ชื่อ-นาม	เสกุล_	เล	ขประจำตัว	CR58	
หมายเา	<u> </u>				
	1.	ข้อสอบมีทั้งหมด 10 ข้อในกระดาษคำถามคำตอบ รวม จำนวน 7 หน้า	คะแนนเต็ม 90 คะแน	น	
	2.	ไม่อนุญาตให้นำตำราและเครื่องคำนวณต่างๆ ใดๆ เข้าห้องสอบ			
	3.	ควรเขียนตอบด้วยลายมือที่อ่านง่ายและชัดเจน			
	4.	ห้ามการหยิบยืมสิ่งใดๆ ทั้งสิ้น จากผู้สอบอื่นๆ เว้นแต่ผู้คุมสอบจะหยิบยืม	ให้		
5. ห้ามนำส่วนใดส่วนหนึ่งของข้อสอบออกจากห้องสอบ ข้อสอบเป็นทรัพย์สินของราชการซึ่งผู้ลักพาอาจมีโทษทางคดีอา					
	6.	ผู้เข้าสอบสามารถออกจากห้องสองได้ หลังจากผ่านการสอบไปแล้ว 45 น	ภาที		
	7.	เมื่อหมดเวลาสอบ ผู้เข้าสอบต้องหยุดการเขียนใดๆ ทั้งสิ้น			
	8.	นิสิตกระทำผิดเกี่ยวกับการสอบ ตามข้อบังคับจุฬาลงกรณ์มหาวิทยาลั	ย มีโทษ คือ ได้รับ สัญล้	ักษณ์ F ในรายวิชาที่ทุจริต และพัก	
		การศึกษาอย่างน้อย 1 ภาคการศึกษา		d	
		มนิสิตพกโทรศัพท์หรืออุปกรณ์สื่อสารไว้กับตัวระหว่างสอบ หากตรวจพเ	<u> </u>	<u>เกี่ยวกับการสอบ ให้ได้รับ F และอาจะ</u>	
	<u>พิจ</u>	<u>ารณาสั่งพักการศึกษา **</u> 	ያ ና ሩ ህ አል	। वा वा १ थ । वा १ ०	
	9,	ข้าพเจ้ายอมรับในข้อกำหนดที่กล่าวมานี้ ข้าพเจ้าเป็นผู้ทำข้อสอบนี้	ด้วยตนเองโดยม์โด้รับการ	รชวยเหลือ หรือให้ความชวยเหลือในการทำ	
	ข้อส	สอบนี้			
		วันที			
ขา 1)		เป็นคำถามเกี่ยวกับกราฟ <u>ให้ v คือจำนวนปม และ e คือจำนวนเส้นเ</u> ถ้าการหา shortest path จากปม s ไปยังปม t ในกราฟ G ใช้เวลา shortest path จาก s ไปยังทุก ๆ ปมในกราฟ G		เราต้องใช้เวลา Ω (v f(v, e)) เพื่อ	
2)		การทำ depth first search ในกราฟ G ที่แทนด้วย adjacency m	atrix จะใช้เวลาแค่ O(ง	<i>y</i>)	
3)		เราหา strongly connected components ต่าง ๆ ใน directed			
4)		เราทดสอบว่า directed graph G เป็น directed acyclic graph า			
5)		เราหา shortest path จากปม s ไปยัง t ในกราฟ G ที่เส้นเชื่อมทุก	เส้นยาวเท่ากันหมดได้ใ	นเวลาแค่ O(v + e)	
6)		เราหา minimum spanning tree ในกราฟ G ที่เส้นเชื่อมทุกเส้นย	าวเท่ากันหมดได้ในเวลา	าแค่ O(v + e)	
7)		การใช้ Dijkstra's algorithm เพื่อหา shortest path ในกราฟ G ก ต้องก็ได้	ราฟหนึ่งที่ความยาวเส้า	มเชื่อมบางเส้นเป็นลบ ก็อาจได้คำตอบ	
8)		ให้ W คือ adjacency matrix ของกราฟ G และให้ D=(W) ^v จะได้ว	่า D[a][b] คือระยะทาง	พอง shortest path จากปม a ไป b	
9)		ถ้าเขียนอัลกอริทึมของ Floyd-Warshall แบบตรงไปตรงมา จะใช้เ	วลาทำงานเป็น Θ (√⁴)		
10)		ให้ k คือความยาวของเส้นเชื่อมที่สั้นสุดในกราฟ G ถ้าเราลบความเ ว่างปมต่าง ๆ ใน G เปลี่ยนแปลง	ยาวของเส้นเชื่อมทุกเส้า	มลง k จะไม่ทำให้ shortest path	

- 11) ให้เส้นเชื่อมของกราฟ G มี capacity เท่ากับ 1 เท่ากันหมดทุกเส้น หลังจากเราใช้ Ford-Fulkerson เพื่อหา max flow ใน G จะได้ว่า max flow ของ G มีค่าเท่ากับจำนวนเส้นเชื่อมที่พุ่งออกจากปม source ของ G
- 12) ให้เส้นเชื่อมของกราฟ G มี capacity เท่ากับ 1 เท่ากันหมดทุกเส้น หลังจากเราใช้ Ford-Fulkerson เพื่อหา max flow ใน G จะได้ว่า min cut ของ G มีค่าเท่ากับจำนวนเส้นเชื่อมที่พุ่งเข้าหาจากปม sink ของ G
- 13) การค้นคำตอบใน state space แบบ depth-first search, breadth-first search และ least-cost search อาศัยโครงสร้าง ข้อมูลแบบ stack, queue, และ priority queue ตามลำดับ ในการเก็บ states ต่าง ๆ ระหว่างการค้น
- 14) ถ้าให้ cost สุ่มๆ กับ state ต่าง ๆ ระหว่างการทำ least-cost search เราอาจไม่พบคำตอบก็ได้ (ถึงแม้ว่าจะมี answer state อยู่ก็ตาม)
- 15) เราต้องมี function ในการหา lower bound ของ cost ประจำ state ระหว่างการค้นคำตอบด้วยวิธี branch and bound เพื่อแก้ปัญหาประเภท minimization problem
- 16) หากเรามี lower bound function อยู่หลายฟังก์ชันที่สามารถใช้ระหว่างการค้นคำตอบด้วยวิธี branch and bound ได้ เรา ควรเลือก lower bound function ตัวที่ให้ค่าน้อยสุดๆ ยิ่งน้อยยิ่งดี
- 17) ปัญหา graph isomorphism เป็นหนึ่งในปัญหา NP และยังไม่มีใครหา polynomial-time algorithm เพื่อหาคำตอบให้กับ ปัญหานี้ได้ นี่แสดงว่า ปัญหานี้เป็นปัญหาในกลุ่ม NP-Complete
- 18) การจะพิสูจน์ว่า P = NP ก็เพียงแค่หา polynomial-time algorithm ให้กับเพียงหนึ่งปัญหาในกลุ่ม NP-Complete ก็พิสูจน์ ได้แล้ว
- 19) ปัญหา 1SAT, 2SAT, 3SAT เป็นปัญหาในกลุ่ม NP ที่มีความยากง่ายเท่ากันหมด
- 20) สมชายเสนออัลกอริทึมแบบ brute force เพื่อหา Longest common subsequence ของ X และ Y ด้วยการแจกแจงทุก subsequences ของ X และ Y เพื่อหาว่าคู่ใดเหมือนกันและยาวสุด ซึ่งใช้เวลา O(2ⁿ2^m) โดยที่ X และ Y มีความยาว n และ m ตามลำดับ นั่นย่อมแสดงว่า อัลกอริทึมที่สมชายเสนอมาจัดอยู่ในกลุ่ม NP-complete
- 2. (3 คะแนน) จงเขียน<u>ลำดับของชื่อเส้นเชื่อม</u>ที่ถูกเลือกให้เป็นส่วนหนึ่งของ minimum spanning tree ด้วยการใช้ Prim's algorithm กับ กราฟข้างล่างนี้ โดย<u>เริ่มที่ปมซ้ายสุด</u>ในรูป หาก ณ ขณะใดระหว่างการหา สามารถเลือกได้หลายเส้นที่ให้ผลเหมือนกัน ก็ให้เลือกเส้นที่มี ชื่อตัวอักษร "ตัวน้อยกว่า" (ไม่ต้องแสดงวิธีทำ)

3.	(3 คะแนน) หลังจากที่เราใช้อัลกอริทึมของ Floyd Warshall เพื่อหาความยาวของ shortest paths ในกราฟ G แล้ว จงบรรยายวิธีที่เร็วสุด ๆ เพื่อหาว่า "มี negative-weight cycle ใน G หรือไม่ ?"

ชค-นามสกล เลขประจาตว (หรื8	4	, , ,	CDEO
	ชอ-นามสกล	เลขประจำตัว	CR58

4. (4 คะแนน) ปัญหา graph coloring ถามว่า ถ้าเรามีสี k สี เราจะให้สีกับปมต่าง ๆ ในกราฟ G ได้หรือไม่ โดยที่ปมปลายของเส้นเชื่อม เดียวกันต้องมีสีต่างกัน ปัญหานี้แก้ได้ด้วยอัลกอริทึมข้างล่างนี้

หากใช้อัลกอริทีมข้างบนนี้ทำงานกับกราฟทางขวานี้ โดยที่ k=3

5. (10 คะแนน) จากกราฟข้างล่างนี้ที่แต่ละเส้นมีความจุระบุอยู่

a) (5 คะแนน) จงหา max flow ของกราฟนี้ โดยให้ระบุปริมาณที่ไหลในแต่ละเส้น กำหนดให้ s คือ source และ t คือ sink

- b) (3 คะแนน) จงระบุน้ำหนักของ edge ดังต่อไปนี้ใน residue กราฟตอนที่เป็น max flow
 - a. s->a ____
 - b. a->s
 - c. c->d
 - d. d->c
 - e. d->t
- c) (2 คะแนน) จงระบุ Min-Cut ของกราฟนี้ โดยให้ระบุเซตของเส้นเชื่อมที่เป็น Min-Cut

6. (10 คะแนน) ปัญหา Equal Subset ให้ X={x₁, x₂,....,x_n} เป็นเซตของเลขจำนวนจริง ในข้อนี้เราอยากหาว่ามี subset A ใดของ X ไหมที่ $\sum_{x\in A} x = \sum_{y\in X-A} y \text{ จงพิสูจน์ว่า Equal Subset อยู่ใน NP-Hard (นิสิตสามารถอ้างอิงถึงปัญหา NP-Complete อื่นๆที่แสดง ในห้องได้โดยไม่ต้องพิสูจน์)$

ง ที่อ-บาบสกล	เลขประจำตัว	CR58
ขอ-น เมสเเส	เถขบาะงาเทา	CR30

ข้อ 7 – 11 เป็นการออกแบบอัลกอริทึม ในทุก ๆ ข้อนิสิตต้องทำดังต่อไปนี้

- 1) บรรยายอัลกอริทึมเป็นคำอธิบาย (ไม่จำเป็นต้องเขียน source code) ซึ่งประกอบด้วยรายละเอียดมากเพียงพอที่จะเขียนโปรแกรม ได้ นิสิตจะได้คะแนนตามความถูกต้อง ความชัดเจน และประสิทธิภาพของอัลกอริทึม
- 2) นิสิตสามารถใช้อัลกอริทึมหรือโครงสร้างข้อมูลที่ได้เคยเรียนมาในการอธิบายอัลกอริทึมได้โดยตรง ไม่จำเป็นต้องเขียน code
- 3) วิเคราะห์ประสิทธิภาพในการทำงานของอัลกอริทึมที่ออกแบบไว้
- 7. (10 คะแนน) ปัญหา MAX-3SAT เป็นดังนี้ ข้อมูลนำเข้าคือ Boolean Expression ในรูป conjunctive normal form เช่น

$$(x_1 \lor \bar{x}_3 \lor x_4) \land (\bar{x}_2 \lor x_1 \lor x_3) \land (\bar{x}_1 \lor x_2 \lor x_4) \land (\bar{x}_4 \lor x_3 \lor \bar{x}_1)$$

โดยมีตัวแปร Boolean x_1 , ..., x_n อยู่ n ตัวและมี clause (หนึ่งชุดของวงเล็บ) ที่ \wedge (and) กันอยู่ m พจน์โดยในแต่ละพจน์ ประกอบด้วย ตัวแปรในรูป positive หรือ negative form สามตัวที่ \vee (or) กันอยู่ โดยปัญหาในข้อนี้คือหาว่า x_1 , ..., x_n แต่ละตัว จะต้องเป็น false หรือ true ที่จะทำให้มีจำนวนพจน์มากที่สุดที่ true เท่าที่ทำได้ จงอธิบายวิธีแก้ปัญหานี้ด้วย State-Space Search และ Branch and Bound

8. (10 คะแนน) กำหนดให้ D เป็น adjacency matrix ของกราฟแบบมีทิศทาง G ขนาด n ปม โดยที่ D[a][b] คือน้ำหนักของเส้นเชื่อมจาก ปม a ไป b เราต้องการทราบค่า<mark>ระยะทางสั้นสุดจากปม s ไปยังปมใด ๆ</mark> ในกราฟ D นี้ โดยที่มีข้อกำหนดเพิ่มเติมคือระยะทางสั้นสุดนั้น จะต้องเกิดจาก path ที่มีเส้นเชื่อมจำนวน K เส้นเชื่อม (ซ้ำกันได้) พอดี ตัวอย่างเช่น path <1, 3, 1, 3, 5> จะถือว่าเป็น path ที่มี 4 เส้นเชื่อมถึงแม้ว่าจะวิ่งผ่านเส้นเชื่อม (1,3) จำนวน 2 ครั้งก็ตาม จงออกแบบอัลกอริทึมสำหรับการแก้ปัญหานี้ เมื่อกำหนดให้ข้อมูลนำเข้า คือ D, K, s และ n

9. (10 คะแนน) ในจังหวัดที่ห่างไกลจังหวัดหนึ่งมีถนนอยู่ m เส้น ซึ่งเชื่อมตำบล n ตำบลเข้าด้วยกัน ทุกตำบลสามารถเดินทางไปหากันได้ โดยใช้ถนนเหล่านี้ ในเวลากลางคืน เราจะต้องเปิดไฟบนถนนเพื่อความปลอดภัย กำหนดให้ D[a][b] คือกำลังไฟฟ้าที่ต้องใช้ในการเปิดไฟ บนถนนที่เชื่อมตำบล a กับตำบล b มีหน่วยเป็นวัตต์ อย่างไรก็ตาม การไฟฟ้าของจังหวัดจะต้องเดินสายไฟเพื่อจ่ายไฟให้กับถนน การ ไฟฟ้าเลือกที่จะใช้สายไฟที่รองรับการจ่ายไฟได้ไม่เกิน K วัตต์ ทำให้ถนนเส้นที่ใช้ไฟมากกว่านั้นไม่มีไฟส่องสว่าง เราจะกำหนดให้ทุก ๆ ตำบลที่สามารถเดินทางไปหากันได้ตอนกลางคืนผ่านถนนที่มีไฟส่องสว่างเปิดอยู่นั้นเป็นตำบลในอำเภอเดียวกัน ส่วนตำบลที่เดินทางไปหากันไม่ได้นั้นอยู่คนละอำเภอ จงออกแบบอัลกอริทึมเพื่อหาค่า K ที่น้อยที่สุดที่ทำให้จังหวัดนี้มีจำนวนอำเภอไม่เกิน A อำเภอ เมื่อกำหนดให้ ข้อมลนำเข้าคือ D, A, m และ n

ขอมูลนาเข้าคือ D, A, m และ n

G=(V, E) directed graph |V|= n (E|= 2m weight = D[a][b]

A = กำหาน SCC ที่ตัด edge (a,b) ที่ ปี weight > K

new pq <edge> = all non-zero edge in graph (sort max→min)

K=pq.top() +mp = 1

while (tmp ≤ A) (2m)

tmpK = pq. top().w ; pq. pop();

remove every e if e = edge n e.w > tmpk

use Kosaraju's algorithm to find number of SCC > tmp O(|V|+|E|)

if (tmp > A) return K
K=tmpK

 $= \left(2m(n+2m)\right)$ $= O(mn+m^2)$

ชื่อ-นามสกล	เลขประจำตัว	CR58

10. (10 คะแนน) บริษัทแห่งหนึ่งมีพนักงาน n คน สำหรับคู่พนักงาน (a,b) ใด ๆ เราทราบว่าพนักงาน a นั้น "นับถือ" พนักงาน b หรือไม่ ให้ R[a][b] มีค่าเป็นจริงก็ต่อเมื่อ พนักงาน a นับถือพนักงาน b ให้สังเกตว่าถ้า a นับถือ b นั้นไม่ได้จำเป็นที่ b จะต้องนับถือ a ด้วย และ กำหนดให้ว่า ถ้า a นับถือ b และ b นับถือ c เราจะถือว่า a นับถือ c โดยอ้อม นอกจากนี้ a จะนับถือโดยอ้อมต่อทุก ๆ คนที่ a นับถือ โดยอ้อมนั้นนับถือ เจ้าของบริษัทต้องการเลือกหัวหน้าพนักงาน โดยมีเงื่อนไขคือหัวหน้าพนักงานนั้นจะต้องได้รับการนับถือไม่ว่าจะ ทางตรงหรือทางอ้อม จากทุก ๆ คนในบริษัท จงออกแบบอัลกอริทีมสำหรับหาคนที่สามารถทำหน้าที่เป็นหัวหน้าพนักงานได้ เมื่อ กำหนดให้ข้อมูลนำเข้าคือ R, และ n