

Department of Mathematics, IIT Delhi

MTL733: Assignment-4

Q.1) Consider the discounted portfolio value process $\tilde{V}_{\Psi}(t) := D(t)V_{\Psi}(t)$. A trading strategy $\Psi(t) = (\psi_0(t), \psi(t))$ is self-financing if and only if $\tilde{V}_{\Psi}(t)$ can be expressed for all $t \in [0, T]$ as

$$\tilde{V}_{\Psi}(t) = V_{\Psi}(0) + \int_0^t \psi(u) \, d\tilde{S}(u)$$

where $\tilde{S}(t)$ is the discounted stock price process.

Q.2) Consider a market $X(t) = (S_0(t), S(t))$ given by

$$dS_0(t) = 3S_0(t) dt$$
, $S_0(0) = 1$; $dS(t) = 2S(t) dt + 5S(t) dB(t)$, $S(0) = 1$.

Show that the portfolio $\Psi(t) = (\psi_0(t), \psi(t))$, given by

$$\psi_0(t) = \frac{1}{3} (e^{-3t} - 1), \quad \psi(t) = \int_0^t \exp\{-5B(u) + \frac{21}{2}u\} du$$

is self-financing.

Q.3) Consider a market $X(t) = (S_0(t), S(t))$ where

$$dS_0(t) = 0$$
, $S_0(0) = 1$; $dS(t) = tS(t) dt + 5S(t) dB(t)$, $S(0) = 4$.

Examine whether the market has arbitrage opportunity or not.

Q.4) Show that there exists an arbitrage if and only if there is a way to start with $V_{\Psi}(0) > 0$ and at a later time T have a portfolio value satisfying

$$\mathbb{P}\left(V_{\Psi}(T) \ge \frac{V_{\Psi}(0)}{D(T)}\right) = 1, \quad \mathbb{P}\left(V_{\Psi}(T) > \frac{V_{\Psi}(0)}{D(T)}\right) > 0. \tag{0.1}$$

- **Q.5)** Use the Black-Scholes formula to price a European call option for a stock whose price today is \$75 with expiry date 3 months from now, strike price \$70 and volatility 20%. The risk-free interest is 7% per year.
 - a) Find the value of the European call option, and compute delta and gamma for this option.
 - b) Find the value of the European put option and compute *delta* and *gamma* for this option.

Q.6) Let Q be a risk-neutral measure of a given market $X(t) = (S_0(t), S(t))$. The value at time zero of a European call on a stock whose initial price is S(0) = x is given by

$$C(0,x) = \mathbb{E}_Q \Big[e^{-rT} \max\{0, S(T) - K\} \Big].$$

Show that there exists a probability measure \bar{Q} such that

- a) Q and \bar{Q} are equivalent,
- b) $\bar{B}(t) = \bar{B}(t) \sigma t$ is a Brownian motion under \bar{Q} , where $\bar{B}(t)$ is a Brownian motion under the risk-neutral measure Q,
- c) The delta of the call option $C_x(0,x)$ can be written as follows:

$$C_x(0,x) = \bar{Q}(S(T) > K) = \bar{Q}\left\{-\frac{\bar{B}(T)}{\sqrt{T}} < d\right\} = N(d)$$

where $N(\cdot)$ is the cumulative standard normal distribution and

$$d := \frac{\log(\frac{x}{K}) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$$

 $\mathbf{Q.7}$) Let Q be a probability measure defined by

$$Q(A) = \int_A Z(T) d\mathbb{P}$$
, where $Z(t) = \exp\Big\{ - \int_0^t \theta(s) dB(s) - \frac{1}{2} \int_0^t \theta^2(s) ds \Big\}$.

Suppose that the filtration $\{\mathcal{F}_t\}$ is generated by the Brownian motion $B(t): 0 \leq t \leq T$. Let \widetilde{M} be a martingale under Q. We will show that Martingale representation theorem holds for \widetilde{M} .

- a) Show that $\widetilde{M}(t)Z(t)$ is a martingale under \mathbb{P} .
- b) Find the differential of $(Z(t))^{-1}$ and $\widetilde{M}(t)$.
- c) Show that Martingale representation theorem holds for \widetilde{M} .
- Q.8) Suppose that a stock sells today for \$100, the value of the call option is \$6, the value of the put option is \$5 and both options have the same strike price, \$100, with one year expiry time. What is the risk-free interest rate?
- **Q.9)** A call option on a non-divident-paying stock has a market price of \$2.5. The stock price is \$15, the exercise price is \$13, the time to maturity is 3 months, and the risk-free interest rate is 5% per annum. What is implied volatility?