OBJECTIVE :- Apply different MLP Architectures on MNIST dataset

In [1]:

```
# Importing libraries
from keras.utils import np_utils
from keras.datasets import mnist
import seaborn as sns
from keras.initializers import RandomNormal
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import time

# the data, shuffled and split between train and test sets
(X_train, Y_train), (X_test, Y_test) = mnist.load_data()

print("Number of training examples :", X_train.shape[0], "and each image is of shape (%d, %d)"%(
```

Using TensorFlow backend.

In [2]:

```
# if you observe the input shape its 3 dimensional vector
# for each image we have a (28*28) vector
# we will convert the (28*28) vector into single dimensional vector of 1 * 784

X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2])

X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2])

# after converting the input images from 3d to 2d vectors

print("Number of training examples :", X_train.shape[0], "and each image is of shape (%d)"%
print("Number of test examples :", X_test.shape[0], "and each image is of shape (%d)"%(X_test.shape[0])
```

Number of training examples : 60000 and each image is of shape (784) Number of test examples : 10000 and each image is of shape (784)

In [3]:

An example data point
print(X_train[0])

[0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	3	18	18	18	126	136	175	26	166	255
	47		0	0	0	0	0	0	0	0	0	0	0	0	30	36	94	154
1	70	253	253	253	253	253	225		253			64	0	0	0	0	0	0
	0	0	0	0	0	49	238	253			253	253	253	253	253	251	93	82
	82	56	39	0	0	0	0	0	0	0	0	0	0	0	0	18	219	253
2	53	253	253	253	198	182	247	241	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	80	156	107	253	253	205	11	0	43	154
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	14	1	154	253	90	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	139	253	190	2	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	11	190	253	70	0	0	0	0	0	0	0	0	0
_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35	241
2	25	160	108	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	81	240	253	253	119	25	0	0	0
	0	0	0 45	100	0	0	150	0	0	0	0	0	0	0	0	0	0	0
	0	0	45	186	253	253	150	27	0	0	0	0	0	0	0	0	9	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	16	93	252	253	187
	0	0	0	0	0	0	0	0 249	0 253	0 249	0	0	0	0	0	0	0 0	0
	0	0 0	0 0	0 0	0 0	0 0	0 0	249	253	249	64 0	0 0	0 0	0 0	0 46	0 130	183	0 253
2	ە 53	207	2	0	0	0	0	0	0	0	0	0	0	0	40	130	103	255
_	0	207	0	0	39	148	229	253	253	253	250	182	0	0	0	0	0	0
	0	0	0	0	9	0	0	255	233	255	230	102	24	114	221	253	253	253
2	53	201	78	0	0	0	0	0	0	0	0	0	0	0	0	0	0	233
_	در 0	201	23	66	213	253	253	253	253		81	2	0	0	0	0	0	0
	9	9	23	9	213	233	233	233	233	198						253		
	80	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
								244		11	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0		136				212	135	132	16
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0		Ð	Ð	Ð	Ð	Ð	Ð	U
	J	J	J	J	J	J	J	J	J	υ.	J							

In [5]:

```
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.0000000e+00 0.00000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
0.0000000e+00 0.00000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
0.00000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
0.0000000e+00 0.00000000e+00 0.0000000e+00 0.0000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.0000000e+00 0.00000000e+00
```

In [6]:

```
# here we are having a class number for each image
print("Class label of first image :", Y_train[0])

# Lets convert this into a 10 dimensional vector
# ex: consider an image is 5 convert it into 5 => [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
# this conversion needed for MLPs

y_train = np_utils.to_categorical(Y_train, 10)
y_test = np_utils.to_categorical(Y_test, 10)

print("After converting the output into a vector : ",y_train[0])
```

```
Class label of first image : 5
After converting the output into a vector : [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
```

In [0]:

```
# this function is used draw Categorical Crossentropy Loss VS No. of epochs plot
def plt_dynamic(x, vy, ty):
   plt.figure(figsize=(10,5))
   plt.plot(x, vy, 'b', label="Validation Loss")
   plt.plot(x, ty, 'r', label="Train Loss")
   plt.xlabel('Epochs')
   plt.ylabel('Categorical Crossentropy Loss')
   plt.title('\nCategorical Crossentropy Loss VS Epochs')
   plt.legend()
   plt.grid()
   plt.show()
```

(1). Softmax Classifier with 2 hidden layers

(1.a) Without dropout and Batch normalization

In [8]:

```
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.initializers import he_normal
# some model parameters
output_dim = 10
input_dim = X_train.shape[1]
batch size = 128
nb_epoch = 20
# Initialising model
model_2 = Sequential()
# Adding first hidden layer
model_2.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he_r
# Adding second hidden layer
model_2.add(Dense(256, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding output layer
model_2.add(Dense(output_dim, activation='softmax'))
# Printing model Summary
print("Model Summary :- \n", model_2.summary())
# Compiling the model
model_2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Fitting the data to the model
history_2 = model_2.fit(X_train, y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1
```

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/py thon/framework/op_def_library.py:263: colocate_with (from tensorflow.python. framework.ops) is deprecated and will be removed in a future version. Instructions for updating:

Colocations handled automatically by placer.

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 512)	401920
dense_2 (Dense)	(None, 256)	131328
dense_3 (Dense)	(None, 10)	2570

Total params: 535,818 Trainable params: 535,818 Non-trainable params: 0

Model Summary :-

None

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.

Instructions for updating:

Use tf.cast instead.

Train on 60000 samples, validate on 10000 samples

```
Epoch 1/20
60000/60000 [============= - - 8s 132us/step - loss: 0.8276
- acc: 0.7720 - val loss: 0.3774 - val acc: 0.8896
Epoch 2/20
60000/60000 [============ ] - 7s 123us/step - loss: 0.3455
- acc: 0.8997 - val_loss: 0.3008 - val_acc: 0.9122
60000/60000 [============= ] - 7s 121us/step - loss: 0.2907
- acc: 0.9147 - val loss: 0.2613 - val acc: 0.9213
Epoch 4/20
60000/60000 [============= ] - 7s 120us/step - loss: 0.2510
- acc: 0.9266 - val_loss: 0.2327 - val_acc: 0.9303
Epoch 5/20
60000/60000 [============= ] - 7s 120us/step - loss: 0.2174
- acc: 0.9358 - val_loss: 0.2067 - val_acc: 0.9391
Epoch 6/20
60000/60000 [============= ] - 7s 120us/step - loss: 0.1882
- acc: 0.9445 - val_loss: 0.1868 - val_acc: 0.9446
Epoch 7/20
60000/60000 [============= ] - 7s 120us/step - loss: 0.1647
- acc: 0.9520 - val_loss: 0.1594 - val_acc: 0.9523
Epoch 8/20
60000/60000 [============ ] - 7s 120us/step - loss: 0.1457
- acc: 0.9576 - val_loss: 0.1517 - val_acc: 0.9530
Epoch 9/20
60000/60000 [============= ] - 7s 121us/step - loss: 0.1302
- acc: 0.9618 - val_loss: 0.1327 - val_acc: 0.9594
Epoch 10/20
60000/60000 [============= ] - 7s 120us/step - loss: 0.1158
- acc: 0.9662 - val_loss: 0.1224 - val_acc: 0.9617
60000/60000 [============= ] - 7s 119us/step - loss: 0.1030
- acc: 0.9694 - val_loss: 0.1135 - val_acc: 0.9646
Epoch 12/20
60000/60000 [============ ] - 7s 121us/step - loss: 0.0939
- acc: 0.9722 - val_loss: 0.1117 - val_acc: 0.9674
Epoch 13/20
60000/60000 [============= ] - 7s 122us/step - loss: 0.0855
- acc: 0.9742 - val_loss: 0.1008 - val_acc: 0.9694
60000/60000 [============ ] - 7s 120us/step - loss: 0.0766
- acc: 0.9769 - val_loss: 0.0925 - val_acc: 0.9710
Epoch 15/20
60000/60000 [============ ] - 7s 118us/step - loss: 0.0706
- acc: 0.9788 - val loss: 0.0936 - val acc: 0.9711
Epoch 16/20
60000/60000 [============= ] - 7s 119us/step - loss: 0.0643
- acc: 0.9801 - val_loss: 0.0921 - val_acc: 0.9723
Epoch 17/20
60000/60000 [============= ] - 7s 120us/step - loss: 0.0590
- acc: 0.9818 - val loss: 0.0844 - val acc: 0.9746
Epoch 18/20
60000/60000 [============= ] - 7s 118us/step - loss: 0.0535
- acc: 0.9841 - val loss: 0.0808 - val acc: 0.9746
Epoch 19/20
60000/60000 [============ ] - 7s 119us/step - loss: 0.0490
- acc: 0.9853 - val loss: 0.0783 - val acc: 0.9761
Epoch 20/20
60000/60000 [============ ] - 7s 120us/step - loss: 0.0439
- acc: 0.9872 - val loss: 0.0764 - val acc: 0.9759
```

In [9]:

```
# Evaluating the model
score = model_2.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# Test and train accuracy of the model
model_2_test = score[1]
model_2_train = history_2.history['acc']
# Plotting Train and Test Loss VS no. of epochs
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# Validation loss
vy = history_2.history['val_loss']
# Training Loss
ty = history_2.history['loss']
# Calling the function to draw the plot
plt_dynamic(x, vy, ty)
```

Test score: 0.07642286013420671

Test accuracy: 0.9759

(1.b) With dropout and Batch Normalization

In [10]:

```
from keras.layers.normalization import BatchNormalization
from keras.layers import Dropout
# Initialising model
model_2d = Sequential()
# Adding first hidden layer
model_2d.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he
# Adding Batch Normalization
model 2d.add(BatchNormalization())
# Adding dropout to first hidden layer
model 2d.add(Dropout(0.4))
# Adding second hidden layer
model_2d.add(Dense(256, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model 2d.add(BatchNormalization())
# Adding dropout to second hidden Layer
model_2d.add(Dropout(0.4))
# Adding output layer
model_2d.add(Dense(output_dim, activation='softmax'))
# Printing model Summary
print("Model Summary :- \n", model_2d.summary())
# Compiling the model
model_2d.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Fitting the data to the model
history_2d = model_2d.fit(X_train, y_train, batch_size=batch_size, epochs=nb_epoch, verbose
```

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backen d/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn _ops) with keep_prob is deprecated and will be removed in a future version. Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 -

Layer (type)	Output	Shape	Param #
dense_4 (Dense)	(None,	512)	401920
batch_normalization_1 (Batch	(None,	512)	2048
dropout_1 (Dropout)	(None,	512)	0
dense_5 (Dense)	(None,	256)	131328
batch_normalization_2 (Batch	(None,	256)	1024
dropout_2 (Dropout)	(None,	256)	0
dense_6 (Dense)	(None,	10)	2570 ======

Total params: 538,890 Trainable params: 537,354 Non-trainable params: 1,536

keep_prob`.

```
Model Summary :-
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 14s 229us/step - loss: 0.3672
- acc: 0.8881 - val_loss: 0.1736 - val_acc: 0.9480
Epoch 2/20
60000/60000 [============ ] - 13s 218us/step - loss: 0.2139
- acc: 0.9354 - val loss: 0.1216 - val acc: 0.9627
Epoch 3/20
60000/60000 [============= ] - 12s 203us/step - loss: 0.1791
- acc: 0.9451 - val_loss: 0.1077 - val_acc: 0.9673
Epoch 4/20
60000/60000 [============= ] - 12s 203us/step - loss: 0.1575
- acc: 0.9523 - val_loss: 0.1018 - val_acc: 0.9676
Epoch 5/20
60000/60000 [============= ] - 12s 201us/step - loss: 0.1469
- acc: 0.9544 - val_loss: 0.0884 - val_acc: 0.9717
Epoch 6/20
60000/60000 [============= ] - 12s 202us/step - loss: 0.1414
- acc: 0.9567 - val_loss: 0.1041 - val_acc: 0.9669
Epoch 7/20
60000/60000 [============ ] - 12s 200us/step - loss: 0.1328
- acc: 0.9585 - val loss: 0.0933 - val acc: 0.9722
Epoch 8/20
60000/60000 [============= ] - 12s 194us/step - loss: 0.1296
- acc: 0.9600 - val loss: 0.0903 - val acc: 0.9726
Epoch 9/20
60000/60000 [============= ] - 11s 187us/step - loss: 0.1275
- acc: 0.9601 - val_loss: 0.0869 - val_acc: 0.9738
60000/60000 [============= ] - 12s 201us/step - loss: 0.1262
- acc: 0.9614 - val_loss: 0.0755 - val_acc: 0.9762
Epoch 11/20
60000/60000 [============= ] - 12s 198us/step - loss: 0.1248
- acc: 0.9611 - val_loss: 0.0790 - val_acc: 0.9753
Epoch 12/20
60000/60000 [============ ] - 11s 190us/step - loss: 0.1143
- acc: 0.9640 - val_loss: 0.0789 - val_acc: 0.9771
60000/60000 [============ ] - 11s 191us/step - loss: 0.1137
- acc: 0.9650 - val loss: 0.0746 - val acc: 0.9760
Epoch 14/20
60000/60000 [============= ] - 11s 182us/step - loss: 0.1100
- acc: 0.9658 - val loss: 0.0697 - val acc: 0.9797
Epoch 15/20
60000/60000 [============= ] - 11s 186us/step - loss: 0.1105
- acc: 0.9648 - val_loss: 0.0701 - val_acc: 0.9784
Epoch 16/20
60000/60000 [============= ] - 12s 192us/step - loss: 0.1079
- acc: 0.9658 - val loss: 0.0747 - val acc: 0.9775
Epoch 17/20
60000/60000 [============= ] - 11s 189us/step - loss: 0.1043
- acc: 0.9676 - val loss: 0.0722 - val acc: 0.9788
Epoch 18/20
60000/60000 [============= ] - 11s 184us/step - loss: 0.1027
- acc: 0.9674 - val loss: 0.0730 - val acc: 0.9788
Epoch 19/20
60000/60000 [============= ] - 12s 195us/step - loss: 0.1037
- acc: 0.9678 - val loss: 0.0625 - val acc: 0.9804
Epoch 20/20
```

In [12]:

```
# Evaluating the model
score = model_2d.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# Test and train accuracy of the model
model_2d_test = score[1]
model_2d_train = history_2d.history['acc']
# Plotting Train and Test Loss VS no. of epochs
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# Validation loss
vy = history_2d.history['val_loss']
# Training loss
ty = history_2d.history['loss']
# Calling the function to draw the plot
plt_dynamic(x, vy, ty)
```

Test score: 0.07667584380609915

Test accuracy: 0.9764

(2). Softmax Classifier with 3 hidden layers

(2.a) Without Dropout and Batch Normalization

```
In [13]:
# Initialising model
model_3 = Sequential()
# Adding first hidden layer
model_3.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he_r
# Adding second hidden layer
model_3.add(Dense(256, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding third hidden Layer
model_3.add(Dense(128, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding output layer
model_3.add(Dense(output_dim, activation='softmax'))
# Printing model Summary
print(model_3.summary())
# Compiling the model
model_3.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Fitting the data to the model
history_3 = model_3.fit(X_train, y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1
                          Output Shape
Layer (type)
                                                  Param #
______
dense_7 (Dense)
                          (None, 512)
                                                  401920
dense 8 (Dense)
                          (None, 256)
                                                  131328
dense_9 (Dense)
                          (None, 128)
                                                  32896
dense_10 (Dense)
                          (None, 10)
                                                  1290
______
Total params: 567,434
Trainable params: 567,434
Non-trainable params: 0
```

None

```
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============= ] - 11s 187us/step - loss: 0.7319
- acc: 0.7790 - val_loss: 0.3602 - val_acc: 0.8931
Epoch 2/20
60000/60000 [=============== ] - 11s 179us/step - loss: 0.3282
- acc: 0.9025 - val_loss: 0.2890 - val_acc: 0.9137
Epoch 3/20
60000/60000 [============= ] - 11s 181us/step - loss: 0.2564
- acc: 0.9239 - val loss: 0.2298 - val acc: 0.9279
Epoch 4/20
60000/60000 [============= ] - 10s 172us/step - loss: 0.2048
- acc: 0.9384 - val_loss: 0.1779 - val_acc: 0.9459
Epoch 5/20
60000/60000 [============== ] - 11s 182us/step - loss: 0.1654
- acc: 0.9505 - val loss: 0.1503 - val acc: 0.9540
Epoch 6/20
- acc: 0.9585 - val_loss: 0.1259 - val_acc: 0.9617
```

```
Epoch 7/20
60000/60000 [============= ] - 10s 171us/step - loss: 0.1156
- acc: 0.9656 - val_loss: 0.1206 - val_acc: 0.9635
Epoch 8/20
- acc: 0.9700 - val_loss: 0.1032 - val_acc: 0.9676
Epoch 9/20
60000/60000 [============= ] - 10s 172us/step - loss: 0.0872
- acc: 0.9736 - val loss: 0.0944 - val acc: 0.9712
Epoch 10/20
60000/60000 [============= ] - 10s 172us/step - loss: 0.0761
- acc: 0.9765 - val_loss: 0.0901 - val_acc: 0.9730
Epoch 11/20
60000/60000 [============ ] - 10s 169us/step - loss: 0.0677
- acc: 0.9793 - val_loss: 0.0842 - val_acc: 0.9731
Epoch 12/20
60000/60000 [============ ] - 10s 170us/step - loss: 0.0592
- acc: 0.9817 - val_loss: 0.0806 - val_acc: 0.9756
Epoch 13/20
60000/60000 [============= ] - 10s 170us/step - loss: 0.0523
- acc: 0.9838 - val_loss: 0.0779 - val_acc: 0.9756
Epoch 14/20
60000/60000 [============= ] - 10s 171us/step - loss: 0.0460
- acc: 0.9857 - val loss: 0.0816 - val acc: 0.9754
Epoch 15/20
60000/60000 [============= ] - 11s 176us/step - loss: 0.0423
- acc: 0.9863 - val loss: 0.0786 - val acc: 0.9768
Epoch 16/20
60000/60000 [============= ] - 11s 178us/step - loss: 0.0370
- acc: 0.9881 - val_loss: 0.0816 - val_acc: 0.9750
Epoch 17/20
60000/60000 [============= ] - 11s 175us/step - loss: 0.0312
- acc: 0.9906 - val loss: 0.0796 - val acc: 0.9764
Epoch 18/20
60000/60000 [============= ] - 11s 178us/step - loss: 0.0288
- acc: 0.9907 - val_loss: 0.0746 - val_acc: 0.9774
Epoch 19/20
60000/60000 [============ ] - 11s 179us/step - loss: 0.0275
- acc: 0.9913 - val_loss: 0.0851 - val_acc: 0.9747
Epoch 20/20
60000/60000 [============ ] - 11s 180us/step - loss: 0.0237
- acc: 0.9925 - val loss: 0.0804 - val acc: 0.9771
```

In [14]:

```
# Evaluating the model
score = model_3.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# Test and train accuracy of the model
model_3_test = score[1]
model_3_train = history_3.history['acc']
# Plotting Train and Test Loss VS no. of epochs
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# Validation loss
vy = history_3.history['val_loss']
# Training Loss
ty = history_3.history['loss']
# Calling the function to draw the plot
plt_dynamic(x, vy, ty)
```

Test score: 0.08041134356782713

Test accuracy: 0.9771

(2.b) With Droput and Batch Normalization

In [15]:

```
model 3d = Sequential()
# Adding first hidden layer
model_3d.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he_
# Adding Batch Normalization
model_3d.add(BatchNormalization())
# Adding dropout
model_3d.add(Dropout(0.4))
# Adding second hidden layer
model_3d.add(Dense(256, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model_3d.add(BatchNormalization())
# Adding dropout
model_3d.add(Dropout(0.4))
# Adding third hidden layer
model_3d.add(Dense(128, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model_3d.add(BatchNormalization())
# Adding dropout
model_3d.add(Dropout(0.4))
# Adding output layer
model_3d.add(Dense(output_dim, activation='softmax'))
# Printing model Summary
print(model_3d.summary())
# Compiling the model
model_3d.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Fitting the data to the model
history 3d = model 3d.fit(X train, y train, batch size=batch size, epochs=nb epoch, verbose
```

Layer (type)	Output	Shape	Param #
dense_11 (Dense)	(None,	512)	401920
batch_normalization_3 (Batch	(None,	512)	2048
dropout_3 (Dropout)	(None,	512)	0
dense_12 (Dense)	(None,	256)	131328
batch_normalization_4 (Batch	(None,	256)	1024
dropout_4 (Dropout)	(None,	256)	0
dense_13 (Dense)	(None,	128)	32896
batch_normalization_5 (Batch	(None,	128)	512
dropout_5 (Dropout)	(None,	128)	0
dense_14 (Dense)	(None,	10)	1290

Total params: 571,018
Trainable params: 569,226
Non-trainable params: 1,792

```
None
Train on 60000 samples, validate on 10000 samples
Epoch 1/20
60000/60000 [============ ] - 13s 225us/step - loss: 0.4926
- acc: 0.8490 - val loss: 0.1797 - val acc: 0.9451
Epoch 2/20
60000/60000 [============= ] - 12s 198us/step - loss: 0.2733
- acc: 0.9176 - val_loss: 0.1389 - val_acc: 0.9561
Epoch 3/20
60000/60000 [============= ] - 12s 200us/step - loss: 0.2253
- acc: 0.9319 - val_loss: 0.1387 - val_acc: 0.9557
Epoch 4/20
60000/60000 [============= ] - 12s 207us/step - loss: 0.1986
- acc: 0.9391 - val_loss: 0.1084 - val_acc: 0.9660
Epoch 5/20
60000/60000 [============= ] - 12s 200us/step - loss: 0.1800
- acc: 0.9454 - val_loss: 0.0997 - val_acc: 0.9699
Epoch 6/20
60000/60000 [============ ] - 13s 216us/step - loss: 0.1655
- acc: 0.9482 - val loss: 0.0973 - val acc: 0.9691
Epoch 7/20
60000/60000 [============= ] - 13s 210us/step - loss: 0.1628
- acc: 0.9503 - val loss: 0.0925 - val acc: 0.9698
Epoch 8/20
60000/60000 [============= ] - 12s 205us/step - loss: 0.1466
- acc: 0.9549 - val_loss: 0.0996 - val_acc: 0.9666
60000/60000 [============ ] - 12s 203us/step - loss: 0.1444
- acc: 0.9556 - val_loss: 0.0894 - val_acc: 0.9720
Epoch 10/20
60000/60000 [============= ] - 12s 200us/step - loss: 0.1391
- acc: 0.9566 - val_loss: 0.0793 - val_acc: 0.9767
Epoch 11/20
60000/60000 [============= ] - 12s 201us/step - loss: 0.1343
- acc: 0.9587 - val_loss: 0.0773 - val_acc: 0.9756
60000/60000 [============== ] - 12s 195us/step - loss: 0.1340
- acc: 0.9587 - val_loss: 0.0749 - val_acc: 0.9761
Epoch 13/20
60000/60000 [============= ] - 12s 201us/step - loss: 0.1280
- acc: 0.9600 - val loss: 0.0821 - val acc: 0.9749
Epoch 14/20
60000/60000 [============= ] - 12s 193us/step - loss: 0.1261
- acc: 0.9607 - val_loss: 0.0772 - val_acc: 0.9744
Epoch 15/20
60000/60000 [============== ] - 12s 204us/step - loss: 0.1250
- acc: 0.9608 - val loss: 0.0709 - val acc: 0.9768
Epoch 16/20
60000/60000 [============= ] - 12s 208us/step - loss: 0.1201
- acc: 0.9619 - val loss: 0.0715 - val acc: 0.9776
Epoch 17/20
60000/60000 [============= ] - 12s 207us/step - loss: 0.1176
- acc: 0.9638 - val loss: 0.0671 - val acc: 0.9794
Epoch 18/20
60000/60000 [============= ] - 12s 208us/step - loss: 0.1152
- acc: 0.9642 - val loss: 0.0665 - val acc: 0.9785
Epoch 19/20
```

In [16]:

```
# Evaluating the model
score = model_3d.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# Test and train accuracy of the model
model_3d_test = score[1]
model_3d_train = history_3d.history['acc']
# Plotting Train and Test Loss VS no. of epochs
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# Validation loss
vy = history_3d.history['val_loss']
# Training loss
ty = history_3d.history['loss']
# Calling the function to draw the plot
plt_dynamic(x, vy, ty)
```

Test score: 0.06945714832819067

Test accuracy: 0.978

(3). Softmax Classifier with 5 hidden layers

(3.a) Without Dropout and Batch Normalization

In [17]:

```
# Initialising model
model_5 = Sequential()
# Adding first hidden layer
model_5.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he_r
# Adding second hidden Layer
model_5.add(Dense(256, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding third hidden layer
model_5.add(Dense(128, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding fourth hidden layer
model_5.add(Dense(64, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding fifth hidden Layer
model_5.add(Dense(32, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding output layer
model_5.add(Dense(output_dim, activation='softmax'))
# Printing model Summary
print(model 5.summary())
# Compiling the model
model_5.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Fitting the data to the model
history_5 = model_5.fit(X_train, y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1
```

Layer (type)	Output Shape	Param #	
dense_15 (Dense)	(None, 512)	401920	
dense_16 (Dense)	(None, 256)	131328	
dense_17 (Dense)	(None, 128)	32896	
dense_18 (Dense)	(None, 64)	8256	
dense_19 (Dense)	(None, 32)	2080	
dense_20 (Dense)	(None, 10)	330	
Total params: 576,810 Trainable params: 576,83 Non-trainable params: 0	10		
None Train on 60000 samples, Epoch 1/20 60000/60000 [=================================	·] -	12s 192us/step - loss: 0.8	731
Epoch 2/20 60000/60000 [=================================		11s 180us/step - loss: 0.3 9229	234
60000/60000 [=======] -	11s 182us/step - loss: 0.2	123

```
- acc: 0.9378 - val_loss: 0.1829 - val_acc: 0.9456
Epoch 4/20
60000/60000 [============= ] - 11s 180us/step - loss: 0.1610
- acc: 0.9521 - val loss: 0.1379 - val acc: 0.9589
- acc: 0.9620 - val_loss: 0.1246 - val_acc: 0.9621
Epoch 6/20
60000/60000 [============ ] - 11s 178us/step - loss: 0.1055
- acc: 0.9674 - val loss: 0.1105 - val acc: 0.9659
Epoch 7/20
60000/60000 [============ ] - 11s 181us/step - loss: 0.0903
- acc: 0.9731 - val_loss: 0.1066 - val_acc: 0.9695
Epoch 8/20
60000/60000 [============= ] - 10s 171us/step - loss: 0.0793
- acc: 0.9753 - val loss: 0.1072 - val acc: 0.9662
Epoch 9/20
60000/60000 [============= ] - 11s 184us/step - loss: 0.0716
- acc: 0.9778 - val_loss: 0.1158 - val_acc: 0.9657
Epoch 10/20
60000/60000 [============= ] - 11s 186us/step - loss: 0.0606
- acc: 0.9812 - val_loss: 0.1062 - val_acc: 0.9683
Epoch 11/20
60000/60000 [============= ] - 11s 184us/step - loss: 0.0536
- acc: 0.9832 - val_loss: 0.0847 - val_acc: 0.9732
Epoch 12/20
60000/60000 [============ ] - 11s 185us/step - loss: 0.0490
- acc: 0.9845 - val_loss: 0.0822 - val_acc: 0.9765
Epoch 13/20
60000/60000 [============= ] - 11s 185us/step - loss: 0.0429
- acc: 0.9856 - val loss: 0.0879 - val acc: 0.9756
Epoch 14/20
60000/60000 [============= ] - 11s 175us/step - loss: 0.0411
- acc: 0.9865 - val_loss: 0.0967 - val_acc: 0.9753
Epoch 15/20
60000/60000 [============= ] - 11s 176us/step - loss: 0.0353
- acc: 0.9888 - val_loss: 0.0875 - val_acc: 0.9766
Epoch 16/20
- acc: 0.9892 - val loss: 0.0915 - val acc: 0.9761
Epoch 17/20
60000/60000 [============= ] - 11s 183us/step - loss: 0.0295
- acc: 0.9900 - val_loss: 0.0871 - val_acc: 0.9770
Epoch 18/20
- acc: 0.9908 - val loss: 0.0865 - val acc: 0.9769
60000/60000 [============= ] - 10s 167us/step - loss: 0.0288
- acc: 0.9907 - val loss: 0.1064 - val acc: 0.9729
Epoch 20/20
60000/60000 [============ ] - 10s 161us/step - loss: 0.0233
- acc: 0.9921 - val loss: 0.0884 - val acc: 0.9783
```

In [19]:

```
# Evaluating the model
score = model_5.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# Test and train accuracy of the model
model_5_test = score[1]
model_5_train = history_5.history['acc']
# Plotting Train and Test Loss VS no. of epochs
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# Validation loss
vy = history_5.history['val_loss']
# Training Loss
ty = history_5.history['loss']
# Calling the function to draw the plot
plt_dynamic(x, vy, ty)
```

Test score: 0.08839814674687223

Test accuracy: 0.9783

(3.b) With Dropout and Batch Normalisation

In [20]:

```
# Initialising model
model_5d = Sequential()
# Adding first hidden layer
model_5d.add(Dense(512, activation='relu', input_shape=(input_dim,), kernel_initializer=he_
# Adding Batch Normalization
model_5d.add(BatchNormalization())
# Adding dropout
model_5d.add(Dropout(0.4))
# Adding second hidden Layer
model_5d.add(Dense(256, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model_5d.add(BatchNormalization())
# Adding dropout
model_5d.add(Dropout(0.4))
# Adding third hidden layer
model_5d.add(Dense(128, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model_5d.add(BatchNormalization())
# Adding dropout
model 5d.add(Dropout(0.4))
# Adding fourth hidden layer
model_5d.add(Dense(64, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model 5d.add(BatchNormalization())
# Adding dropout
model_5d.add(Dropout(0.4))
# Adding fifth hidden layer
model_5d.add(Dense(32, activation='relu', kernel_initializer=he_normal(seed=None)))
# Adding Batch Normalization
model_5d.add(BatchNormalization())
# Adding dropout
model_5d.add(Dropout(0.4))
# Adding output layer
model 5d.add(Dense(output dim, activation='softmax'))
# Printing model Summary
print(model 5d.summary())
# Compiling the model
model 5d.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
# Fitting the data to the model
history_5d = model_5d.fit(X_train, y_train, batch_size=batch_size, epochs=nb_epoch, verbose
```

Layer (type)	Output Shape	Param #
dense_21 (Dense)	(None, 512)	401920
batch_normalization_6 (Batch	(None, 512)	2048
dropout_6 (Dropout)	(None, 512)	0

123/2019		Dillerent_MLP_architect	tures_on_iviNiSi_dat	aset	
dense_22 (Dense)	(None,	256)	131328		
batch_normalization_7 (Batch	(None,	256)	1024	_	
dropout_7 (Dropout)	(None,	256)	0	_	
dense_23 (Dense)	(None,	128)	32896	_	
batch_normalization_8 (Batch	(None,	128)	512	_	
dropout_8 (Dropout)	(None,	128)	0	_	
dense_24 (Dense)	(None,	64)	8256	_	
batch_normalization_9 (Batch	(None,	64)	256	_	
dropout_9 (Dropout)	(None,	64)	0	_	
dense_25 (Dense)	(None,	32)	2080	_	
batch_normalization_10 (Batc	(None,	32)	128	_	
dropout_10 (Dropout)	(None,	32)	0	_	
dense_26 (Dense)	(None,	•	330		
Total params: 580,778 Trainable params: 578,794 Non-trainable params: 1,984 None				_	
Train on 60000 samples, valid Epoch 1/20 60000/60000 [=================================		:======] - 15s		loss:	1.0536
Epoch 2/20 60000/60000 [=================================		=====] - 13s		loss:	0.4741
Epoch 3/20 60000/60000 [=================================		-	223us/step -	loss:	0.3790
60000/60000 [=================================	1723 -	val_acc: 0.9490	·		
60000/60000 [=================================	1530 -	val_acc: 0.9568	·		
60000/60000 [=================================		-	221us/step -	loss:	0.2780
60000/60000 [=================================			213us/step -	loss:	0.2545
60000/60000 [=================================		-	221us/step -	loss:	0.2501
60000/60000 [=================================		-	218us/step -	loss:	0.2390
60000/60000 [=======	=====	======] - 13s	218us/step -	loss:	0.2301

```
- acc: 0.9408 - val loss: 0.1213 - val acc: 0.9656
Epoch 11/20
60000/60000 [============ ] - 13s 217us/step - loss: 0.2175
- acc: 0.9436 - val loss: 0.1177 - val acc: 0.9677
60000/60000 [============ ] - 13s 219us/step - loss: 0.2136
- acc: 0.9445 - val_loss: 0.1163 - val_acc: 0.9678
Epoch 13/20
60000/60000 [============ ] - 13s 209us/step - loss: 0.2083
- acc: 0.9459 - val loss: 0.1036 - val acc: 0.9727
Epoch 14/20
60000/60000 [============ ] - 13s 214us/step - loss: 0.1997
- acc: 0.9482 - val_loss: 0.1060 - val_acc: 0.9703
Epoch 15/20
60000/60000 [============ ] - 13s 219us/step - loss: 0.1936
- acc: 0.9494 - val loss: 0.0975 - val acc: 0.9743
Epoch 16/20
60000/60000 [============== ] - 13s 218us/step - loss: 0.1910
- acc: 0.9509 - val_loss: 0.0997 - val_acc: 0.9729
Epoch 17/20
60000/60000 [============ ] - 13s 218us/step - loss: 0.1883
- acc: 0.9506 - val_loss: 0.0982 - val_acc: 0.9730
Epoch 18/20
60000/60000 [============= ] - 13s 221us/step - loss: 0.1842
- acc: 0.9521 - val_loss: 0.1073 - val_acc: 0.9694
Epoch 19/20
60000/60000 [============ ] - 13s 217us/step - loss: 0.1835
- acc: 0.9526 - val_loss: 0.0940 - val_acc: 0.9739
Epoch 20/20
60000/60000 [============= ] - 13s 218us/step - loss: 0.1801
- acc: 0.9535 - val loss: 0.0928 - val acc: 0.9751
```

In [21]:

```
# Evaluating the model
score = model_5d.evaluate(X_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
# Test and train accuracy of the model
model_5d_test = score[1]
model_5d_train = history_5d.history['acc']
# Plotting Train and Test Loss VS no. of epochs
# list of epoch numbers
x = list(range(1,nb_epoch+1))
# Validation loss
vy = history_5d.history['val_loss']
# Training Loss
ty = history_5d.history['loss']
# Calling the function to draw the plot
plt_dynamic(x, vy, ty)
```

Test score: 0.09278820200497284

Test accuracy: 0.9751

CONCLUSION

(a). Procedure Followed:

- 1. Load MNIST dataset
- 2. Split the dataset into train and test
- 3. Normalize the train and test data
- 4. Convert class variable into categorical data vector
- 5. Implement Softmax classifier with 2, 3 and 5 hidden layers (512, 256, 128, 64, 32 respectively).
- 6. Add Dropout(rate 40%) and Batch Normalization to the hidden layers .

7. Draw Categorical Crossentropy Loss VS No.of Epochs plot.

(b) Table (Different models with their train and test accuracies):

In [22]:

```
from prettytable import PrettyTable

x = PrettyTable()

x.field_names = ["MLP_Hidden_Layers", "MODEL", "Training Accuracy", "Test Accuracy"]

x.add_row([2, "Without Dropout and Batch Normalization",0.95,0.95])
x.add_row([2, "With Dropout and Batch Normalization",0.96,0.97])
x.add_row([3, "Without Dropout and Batch Normalization",0.95,0.95])
x.add_row([3, "With Dropout and Batch Normalization",0.95,0.96])
x.add_row([5, "Without Dropout and Batch Normalization",0.96,0.96])
x.add_row([5, "With Dropout and Batch Normalization",0.95,0.96])

print(x)
```

P_Hidden_Lay y	· ·	Training A
+	·	
2	Without Dropout and Batch Normalization	0.9
0.95		
2	With Dropout and Batch Normalization	0.9
0.97		
3	Without Dropout and Batch Normalization	0.9
0.95		
3	With Dropout and Batch Normalization	0.9
0.95		
5	Without Dropout and Batch Normalization	0.9
0.96		
5	With Dropout and Batch Normalization	0.9
0.96		

In [0]: