Angewandte Mathematik Interpolation

Univ.-Prof. Dr. Matthias Harders
Dr. Marcel Ritter
Sommersemester 2022

Inhalt

- Einführung
- Interpolation
- Spline-Interpolation
- Mehrdimensionale Interpolation
- Baryzentrische Interpolation
- Approximation

Angewandte Mathematik für die Informatik – SS2022

universite

Angewandte Mathematik für die Informatik – SS2022

@igs

Problemstellung

- Gegeben seien n+1 voneinander verschiedene reelle Stützstellen $x_0, x_1, ..., x_n$, sowie zugehörige Stützwerte $y_0, y_1, ..., y_n$
- Die Wertepaare (x_i, y_i) können z.B. Messdaten sein
- Gesucht ist eine (interpolierende) Funktion f, welche die Interpolationsbedingungen erfüllt

$$f(x_i) = y_i i = 0, \dots, n$$

- Als Funktionen werden z.B. Polynome, rationale Funktionen, trigonometrische Funktionen verwendet
- Vorerst Fokus auf skalare Funktionen $f: \mathbb{R} \to \mathbb{R}$

Angewandte Mathematik für die Informatik – SS2022

Polynominterpolation

• P_n ist die Menge aller Polynome über \mathbb{R} , mit einem Grad kleiner oder gleich $n \in \mathbb{N}$

$$P_n = \left\{ p(x) = \sum_{i=0}^n a_i x^i, \ a_i \in \mathbb{R} \right\}$$

- P_n bildet einen n-dimensionalen Vektorraum, mit den Monomen $1, x, x^2, ..., x^n$ als Basis
- In der Polynominterpolation ist das Ziel ein Polynom $p \in P_n$ zu finden, welches $p(x_i) = y_i$ für alle i erfüllt
- Die Stützstellen seien geordnet: $x_0 < x_1 < ... < x_n$
- Gesucht sind die Koeffizienten a_i

Angewandte Mathematik für die Informatik – \$\$2022

Polynominterpolation

Wir erhalten ein lineares Gleichungssystem

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

(Vandermonde-Matrix)

- Für paarweise verschiedene x_i ist dieses Problem eindeutig lösbar
- Die Matrix ist allgemein aber schlecht konditioniert, so dass alternative Ansätze vorgezogen werden

@igs

Angewandte Mathematik für die Informatik – SS2022

Lagrange-Interpolation

• Für die paarweise verschiedenen x_i erhalten wir n+1Lagrange-Polynome vom Grad n, für i = 0,...,n

$$l_i^{[n]}(x) = \prod_{\substack{j=0, \\ j \neq i}}^n \frac{x - x_j}{x_i - x_j} = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

• Für diese gilt insbesondere:

$$l_i^{[n]}\left(x_i\right) = 1$$
 $l_i^{[n]}\left(x_j\right) = 0, \quad j \neq i$

 Das Interpolations-Polynom vom Grad n ist eindeutig und gegeben als:

$$p(x) = \sum_{i=0}^{n} y_i \cdot l_i^{[n]}(x)$$

Angewandte Mathematik für die Informatik – SS2022

Lagrange-Interpolation

• Beispiel: lineare Lagrange-Interpolation (n = 1)

$$y = y_0 + t(y_1 - y_0)$$

$$= y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0)$$

$$= \left(\frac{x_1 - x_0}{x_1 - x_0} - \frac{x - x_0}{x_1 - x_0}\right) y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

$$= \frac{x - x_1}{x_0 - x_1} y_0 + \frac{x - x_0}{x_1 - x_0} y_1$$

$$= l_0^{[1]} \cdot y_0 + l_1^{[1]} \cdot y_1$$

 $t = \frac{x - x_0}{x_1 - x_0}$

Lagrange-Interpolation

■ Beispiel: Interpolations-Polynom für die (bekannte) Funktion $g(x) = x^2$, mit Wertepaaren (1,1), (2,4), (3,9)

$$p(x) = l_0^{[2]} \cdot y_0 + l_1^{[2]} \cdot y_1 + l_2^{[2]} \cdot y_2$$

$$= \frac{(x-2)(x-3)}{(1-2)(1-3)} \cdot 1 + \frac{(x-1)(x-3)}{(2-1)(2-3)} \cdot 4 + \frac{(x-1)(x-2)}{(3-1)(3-2)} \cdot 9$$

$$= \frac{1}{2} (x^2 - 5x + 6) - 4(x^2 - 4x + 3) + \frac{9}{2} (x^2 - 3x + 2)$$

$$= x^2$$

Angewandte Mathematik für die Informatik – SS2022

12

Lagrange-Interpolation

■ Beispiel: Interpolations-Polynom für die (bekannte) Funktion $h(x) = \frac{1}{x}$, mit Wertepaaren $(2,\frac{1}{2})$, $(\frac{11}{4},\frac{4}{11})$, $(4,\frac{1}{4})$

$$p(x) = l_0^{[2]} \cdot y_0 + l_1^{[2]} \cdot y_1 + l_2^{[2]} \cdot y_2$$

$$= \frac{(x-2.75)(x-4)}{(2-2.75)(2-4)} \cdot \frac{1}{2} + \frac{(x-2)(x-4)}{(2.75-2)(2.75-4)} \cdot \frac{4}{11} + \frac{(x-2)(x-2.75)}{(4-2)(4-2.75)} \cdot \frac{1}{4}$$

$$=\frac{1}{22}x^2 - \frac{35}{88}x + \frac{49}{44}$$

h(x) p(x)

 $p(3) \approx 0.32955 \approx 0.3333... = h(3)$

Angewandte Mathematik für die Informatik – SS2022

Interpolationsfehler

■ Es sei g(x) auf [a,b] n+1-mal stetig differenzierbar mit $a \le x_0 < x_1 < \ldots < x_n \le b$, dann gibt es zu jedem $x \in [a,b]$ ein $\xi \in (a,b)$ mit entsprechendem Fehler

$$e(x) = g(x) - p(x) = \frac{g^{(n+1)}(\xi)}{(n+1)!}(x - x_0)(x - x_1) \cdots (x - x_n)$$

- Hieraus wird ersichtlich, dass der Fehler Null beträgt bei der Interpolation eines Polynoms vom Grad n
- Für die Berechnung des Fehlers wird die Ableitung der (eigentlich unbekannten) Funktion g benötigt

Angewandte Mathematik für die Informatik – \$\$2022

14

Hermite-Interpolation

- Bei der Hermite-Interpolation werden neben den Funktions- auch die Ableitungswerte herangezogen
- Es sei g(x) auf [a,b] n-mal stetig differenzierbar mit $a \le x_0 \le x_1 \le ... \le x_n \le b$; wobei Stützstellen x_i m_i -mal in den Interpolationsbedingungen (in Ableitungen) auftreten können
- Für ein Interpolations-Polynom muss gelten:

$$g^{(k)}(x_i) = p^{(k)}(x_i), \quad 0 \le i \le n, \quad 0 \le k \le m_i - 1$$

 Bestimmung des Polynoms z.B. über das Schema der dividierten Differenzen

Angewandte Mathematik für die Informatik – SS2022

Hermite-Interpolation – Beispiel

- In der Computer Grafik wird häufig die *smoothstep*-Funktion s(x) im Intervall [0,1] verwendet; für sie gilt s(0) = 0, s(1) = 1, s'(0) = 0, s'(1) = 0,
- Annahme: es sei $s(x) = a_3x^3 + a_2x^2 + a_1x + a_0$, somit $s'(x) = 3a_3x^2 + 2a_2x + a_1$
- Bestimmung der Koeffizienten (Einsetzen in *s* und *s'*):

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 0 \\ 0 \end{bmatrix} \implies s(x) = 3x^2 - 2x^3$$

Angewandte Mathematik für die Informatik – SS2022

16

Runges Phänomen

- Bei äquidistanten Stützstellen können bei der Polynominterpolation an den Rändern große Fehler auftreten
- Mögliche Alternative: Spline-Interpolation

Hintergrund

- Bisher: globale Interpolation mit einem einzelnen Polynom, mit Grad n gleich Anzahl Stützstellen – 1
- Idee: stückweise Interpolation auf Intervallen, mit mehreren Polynomen niedrigen Grades (Splines)
- Namensgebend sind biegsame Straklatten (engl.: splines), die z.B. im Schiffbau verwendet werden

Angewandte Mathematik für die Informatik – SS2022

18

Stückweise Interpolation

• Näherung der Funktion f(x) durch Linearkombination von stückweisen Basisfunktionen N(x)

$$f(x) \approx \sum_{i} f(x_{i}) \cdot N_{i}(x)$$

$$f(x)$$

$$f(x_{i-1})$$

$$f(x_{i-1})$$

$$f(x_{i+1})$$

$$x$$
Angewandte Mathematik für die Informatik - SS2022

università innsbruck

Stückweise Interpolation

• Näherung der Funktion f(x) durch Linearkombination von stückweisen Basisfunktionen N(x)

Stückweise Interpolation

• Näherung der Funktion f(x) durch Linearkombination von stückweisen Basisfunktionen N(x)

$$f(x) \approx \sum_{i} f(x_{i}) \cdot N_{i}(x)$$

$$f(x) \uparrow \qquad \qquad \text{(Beispiel: stückweise konstante Funktionen)}$$

$$N_{i}(x) = \begin{cases} 1 & \text{if } x \in [x_{i}, x_{i+1}) \\ 0 & \text{else} \end{cases}$$

$$Angewandte Mathematik für die Informatik - SS2022}$$

Stückweise Interpolation

• Näherung der Funktion f(x) durch Linearkombination von stückweisen Basisfunktionen N(x)

(Beispiel: stückweise konstante Funktionen)

$$N_i(x) = \begin{cases} 1 & \text{if } x \in [x_i, x_{i+1}) \\ 0 & \text{else} \end{cases}$$

universit

Stückweise Interpolation

• Näherung der Funktion f(x) durch Linearkombination von stückweisen Basisfunktionen N(x)

Stückweise lineare Basisfunktionen in 1D

Lineare Basisfunktionen

Stückweise lineare Basisfunktionen in 1D

$$f(x) \approx \sum_{i} f(x_i) \cdot N_i(x)$$

Kubische Splines

- Bei Polynomen höheren Grades (z.B. k = 3) werden an den Stützstellen zusätzliche Bedingungen eingeführt
- Es gibt 2n Interpolationsbedingungen

$$p_i(x_i) = f(x_i)$$
 $p_i(x_{i+1}) = f(x_{i+1})$ $i = 0,..., n-1$

■ Zusätzlich 2(n-1) Bedingungen für die Stetigkeit der 1. und 2. Ableitungen an den inneren Stützstellen $p'_{i-1}(x_i) = p'_i(x_i)$ $p''_{i-1}(x_i) = p''_i(x_i)$ i = 1,...,n-1

• Bei kubischen Splines gibt es je Polynom vier Freiheitsgrade (d.h. die Koeffizienten a_{ij})

Angewandte Mathematik für die Informatik – SS2022

26

Kubische Splines

- Für 4n Freiheitsgrade bisher nur 4n-2 Bedingungen
- Verschiedene Optionen für die fehlenden zwei Bedingungen, z.B.:
 - Freier Rand: $p_0''(x_0) = 0$ $p_{n-1}''(x_n) = 0$ (keine Krümmung)
 - Hermite-Bedingung: $p_0'(x_0) = f'(x_0)$ $p_{n-1}'(x_n) = f'(x_n)$
- Letztendlich ergibt sich ein lineares Gleichungssystem, mit einer Tridiagonalmatrix A, welches für die unbekannten Koeffizienten gelöst werden kann

Angewandte Mathematik für die Informatik – SS2022

Kubische Splines liefern möglichst "glatte" Interpolation Messdaten (x_i,y_i) Stückweise linear Polynom, Grad 6 Kubische Splines

Mehrdimensionale Interpolation

- Die vorgestellten Konzepte der Interpolation lassen sich auf multivariate, skalare Funktionen in höheren Dimensionen erweitern
- Im \mathbb{R}^2 findet z.B. die bilineare und die bikubische, sowie im \mathbb{R}^3 die trilineare Interpolation häufig Anwendung
- Bei diesen wird häufig von einem regulärem Gitter ausgegangen (Beispiel: Bildverarbeitung)

Bilineare Interpolation

Interpolation anhand bekannter Werte $f(x_i, y_j) = f_{i,j}$ an vier Stützstellen (x_i, y_j) im \mathbb{R}^2

@igs

Angewandte Mathematik für die Informatik – SS2022

Bilineare Interpolation

■ Vereinfachung: Interpolation auf [0,1]²

$$f(x,y) = ((1-y) \cdot f_{00} + y \cdot f_{01}) \cdot (1-x) + ((1-y) \cdot f_{10} + y \cdot f_{11}) \cdot x$$
$$= \begin{bmatrix} 1-x \\ x \end{bmatrix}^{T} \begin{bmatrix} f_{00} & f_{01} \\ f_{10} & f_{11} \end{bmatrix} \begin{bmatrix} 1-y \\ y \end{bmatrix}$$

- Beachte: Interpolant nicht mehr linear (als Produkt von zwei linearen Funktionen)
- Interpolierte Werte liegen in $[\min(f_{i,i}), \max(f_{i,i})]$
- Verwendung z.B. für 2D Textur-Filterung
- Analog in 3D: trilineare Interpolation

Angewandte Mathematik für die Informatik – SS2022

Bikubische Interpolation

- Interpolation annhand bekannter Werte $f(x_i, y_j) = f_{i,j}$ an sechzehn (4×4) Stützstellen (x_i,y_i) im \mathbb{R}^2
- Bei bikubischer Interpolation kann ein neuer Wert evtl. außerhalb des Intervalls $[\min(f_{i,j}), \max(f_{i,j})]$ liegen

Angewandte Mathematik für die Informatik – SS2022

Baryzentrische Koordinaten

- Ursprünglich entwickelt von A. Möbius (1827)
- Für nicht kollineare Punkte \mathbf{p}_0 , \mathbf{p}_1 , ..., \mathbf{p}_{n-1} , $\mathbf{p}_i \neq \mathbf{p}_j$, sowie zu diesen zugehörige Gewichte λ_0 , λ_1 , ..., λ_{n-1} , ist ein Punkt \mathbf{q} deren Baryzentrum falls

$$\mathbf{q} = \frac{\lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + \dots + \lambda_{n-1} \mathbf{p}_{n-1}}{\lambda_0 + \lambda_1 + \dots + \lambda_{n-1}}$$

- Die Gewichte λ_i sind die baryzentrischen Koordinaten von \mathbf{q} , in Bezug auf die gegebenen \mathbf{p}_0 , \mathbf{p}_1 , ..., \mathbf{p}_{n-1}
- Diese sind vorerst nicht eindeutig: $k\lambda_0$, $k\lambda_1$, ..., $k\lambda_{n-1}$, $k \neq 0$ sind ebenso baryzentrische Koordinaten von \mathbf{q}

Angewandte Mathematik für die Informatik - SS2022

34

Baryzentrische Koordinaten

- Üblicherweise werden baryzentrische Koordinaten zusätzlich normalisiert: $\lambda_0 + \lambda_1 + \cdots + \lambda_{n-1} = 1$
- lacksquare Insbesondere gilt dann, dass $\mathbf{q}=\mathbf{p}_i$ für $\lambda_i=1$, $\lambda_{j\neq i}=0$
- Beispiel: normalisierte baryzentrische Koordinaten für ein Liniensegment (n = 2)

$$\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 = \lambda_0 \mathbf{p}_0 + (1 - \lambda_0) \mathbf{p}_1 \qquad \lambda_0 + \lambda_1 = 1$$

Angewandte Mathematik für die Informatik – SS202

Baryzentrische Koordinaten in Dreiecken

• Normalisierte baryzentrische Koordinaten eines Punktes \mathbf{q} in einem durch Punkte \mathbf{p}_0 , \mathbf{p}_1 , \mathbf{p}_2 gegebenen Dreieck (n=3)

 $\mathbf{q} = \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + \lambda_2 \mathbf{p}_2$ $= \lambda_0 \mathbf{p}_0 + \lambda_1 \mathbf{p}_1 + (1 - \lambda_0 - \lambda_1) \mathbf{p}_2$

Angewandte Mathematik für die Informatik – SS2022

universit

Baryzentrische Koordinaten in Dreiecken

- Positionen in der Dreiecksebene sind durch normalisierte baryzentrische Koordinaten eindeutig bestimmt
- In Dreiecken sind diese Koordinaten äquivalent zum Verhältnis der (vorzeichenbehafteten) Flächen der durch q gebildeten Unterdreiecke zur Gesamtfläche

Angewandte Mathematik für die Informatik - SS2022

Baryzentrische Koordinaten in Dreiecken

- Punkt ${\bf q}$ liegt innerhalb eines Dreiecks, falls alle seine normalisierten baryzentrische Koordinaten $\lambda_{0,1,2}>0$
- Punkt **q** liegt im Flächenschwerpunkt des Dreiecks falls $\lambda_0 = \lambda_1 = \lambda_2 = 1/3$

Angewandte Mathematik für die Informatik - SS2022

38

Baryzentrische Koordinaten in Dreiecken

- Punkt \mathbf{q} liegt außerhalb eines Dreiecks, falls eine seiner normalisierten baryzentrischen Koordinaten $\lambda_i < 0$
- Punkte \mathbf{q}_1 und \mathbf{q}_2 liegen auf Linie, falls eines ihrer λ_i identisch, z.B. auf einer Linie durch \mathbf{p}_0 und \mathbf{p}_2 falls $\lambda_1 = 0$

Baryzentrische Koordinaten in Dreiecken

- Punkt ${\bf q}$ liegt außerhalb eines Dreiecks, falls eine seiner normalisierten baryzentrischen Koordinaten $\lambda_i < 0$
- Punkte \mathbf{q}_1 und \mathbf{q}_2 liegen auf Linie, falls eines ihrer λ_i identisch, z.B. auf einer Linie durch \mathbf{p}_0 und \mathbf{p}_2 falls $\lambda_1 = 0$

Angewandte Mathematik für die Informatik - SS2022

10

Baryzentrische Interpolation

- Baryzentrische Koordinaten können für lineare Interpolation (vektorwertiger) Funktionen f über eine Dreiecksfläche verwendet werden
- Gegeben seien Funktionswerte an Dreieckspunkten $f(\mathbf{p}_i) = \mathbf{f}_i, \quad i = 0,1,2 \quad f: \mathbb{R}^3 \to \mathbb{R}^3$ (z.B. RGB)
- Interpolation der Werte an einem Punkt \mathbf{x} im Dreieck, über dessen baryzentrische Koordinaten $\lambda_{x,0}$, $\lambda_{x,1}$, $\lambda_{x,2}$ $g(\mathbf{x}) = \lambda_{x,0} \mathbf{f}_0 + \lambda_{x,1} \mathbf{f}_1 + \lambda_{x,2} \mathbf{f}_2$
- Hinweis: Interpolation auch auf außerhalb des Dreiecks erweiterbar (über negative Koordinaten)

@igs

Angewandte Mathematik für die Informatik – SS2022

Problemstellung

- Gegeben sei eine große Anzahl von Wertepaaren $(x_i, y_i), i = 0, ..., m, z.B.$ Messdaten; vorerst $\mathbb{R} \to \mathbb{R}$
- Gesucht ist eine (approximierende) Funktion f, welche von n Parametern c_j , $j=0,\ldots,n-1$, abhängt, und z.B. eine Fehlermetrik hinsichtlich der Daten minimiert
- Als Funktionen werden z.B. Polynome (u.a. Geraden) sowie weitere nichtlineare Abbildungen verwendet
- Im Bereich der Optimierung wird dies Problem im Rahmen der Ausgleichsrechnung (z.B. via Regression) behandelt

Angewandte Mathematik für die Informatik - SS2022

42

Methode der Kleinsten Fehlerquadrate

 Übliche Fehlermetrik: Summe der quadratischen Differenzen zwischen den gegebenen Daten und den Funktionswerten

$$\underset{c_{i}}{\operatorname{arg\,min}} \left\| f_{c_{i}}\left(x_{i}\right) - y_{i} \right\|_{2}^{2}$$
 (euklidische Norm)

Als Spezialfall kann ein lineares Modell angenommen werden

$$f(x) = c_1 x + c_0$$

lacktriangle Ziel ist somit die Bestimmung der Parameter c_0 und c_1 , welche die Fehlerquadratsumme minimieren

Angewandte Mathematik für die Informatik – SS2022

Methode der Kleinsten Fehlerquadrate

• Erinnerung: mit n = 2 Unbekannten, bei üblicherweise m >> n Bedingungen, ergibt sich ein überbestimmtes Gleichungssystem; dies meistens ohne exakte Lösung

$$\begin{bmatrix} x_0 & 1 \\ x_1 & 1 \\ \vdots & \vdots \\ x_m & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_0 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_m \end{bmatrix}$$

$$\mathbf{Ac} = \mathbf{y}$$

Statt dessen wird ein Minimierungsproblem gelöst

$$(\mathbf{Ac} - \mathbf{y})^2 = (\mathbf{Ac})^T (\mathbf{Ac}) - 2(\mathbf{Ac})^T \mathbf{y} - \mathbf{y}^T \mathbf{y} = \mathbf{r}^2 \rightarrow \min$$

Angewandte Mathematik für die Informatik - SS2022

44

Methode der Kleinsten Fehlerquadrate

Minimieren der Fehlerquadratsumme

$$\nabla \left(\left(\mathbf{A} \mathbf{c} \right)^{T} \left(\mathbf{A} \mathbf{c} \right) - 2 \left(\mathbf{A} \mathbf{c} \right)^{T} \mathbf{y} - \mathbf{y}^{T} \mathbf{y} \right) = \mathbf{0}$$

$$2 \mathbf{A}^{T} \mathbf{A} \mathbf{c} - 2 \mathbf{A}^{T} \mathbf{y} = \mathbf{0}$$

$$\mathbf{A}^{T} \mathbf{A} \mathbf{c} = \mathbf{A}^{T} \mathbf{y} \qquad \text{(Normalengleichungen)}$$

$$\mathbf{c} = \left(\mathbf{A}^{T} \mathbf{A} \right)^{-1} \mathbf{A}^{T} \mathbf{y} \qquad \text{(Pseudo-Inverse)}$$

- Systemmatrix A^TA ist symmetrisch sowie positivdefinit (für m > n), und von Größe $(n+1) \times (n+1)$
- Lösung LGS ggbfs. mittels numerischer Verfahren

Angewandte Mathematik für die Informatik – SS2022

Methode der Kleinsten Fehlerquadrate

Im Falle einer einfachen, linearen Modellfunktion ist die Lösung gegeben durch:

$$c_{1} = \frac{\sum_{i=1}^{m} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{m} (x_{i} - \overline{x})^{2}} \qquad c_{0} = \overline{y} - c_{1}\overline{x}$$

mit

$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i \qquad \overline{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$$

Angewandte Mathematik für die Informatik – SS2022

Weitere Hilfreiche Literatur

- E. Weitz, Konkrete Mathematik (nicht nur) für Informatiker, 1. Auflage, eBook ISBN 978-3-658-21565-1, Springer, 2018.
- H.-R. Schwarz, N. Köckler, Numerische Mathematik,
 8. Auflage, eBook ISBN 978-3-8348-8166-3, Springer,
 2011.
- R. L. Burden, J. D. Faires, A. M. Burden, Numerical Analysis, 10th edition, ISBN 978-1305-25366-7, Cengage Learning, 2015.

Angewandte Mathematik für die Informatik - SS2022

48

Vorlesungsplan

Datum	Thema	Proseminar
11.03.22	Einführung, Grundlagen, Funktionen	(Beginn zuvor am 8.3.)
18.03.22	Differentialrechnung	
25.03.22	Integralrechnung	
01.04.22	Differentialgleichungen	
08.04.22	Weitere Funktionen	
Osterferien		
29.04.22	Reihen und Folgen	
06.05.22	Numerische Auswertung von Funktionen	
13.05.22	Lösung von Gleichungssystemen	
20.05.22	Interpolation	
27.05.22	Zufallszahlen	
03.06.22	Komplexe Zahlen	
10.06.22	Klausurvorbereitung	
01.07.22	Klausur	

Angewandte Mathematik für die Informatik – SS2022