

National Weather Service

Optimizing Synthetic Rating Curves for National Water Center Flood Inundation Mapping

Ryan Spies, CFM

Water Resources Scientist, NOAA Affiliate (Lynker)

Member of the NWC Geospatial Intelligence Division - FIM Dev Team

Outline

- Summarize the National Water Center (NWC) flood inundation mapping approach to generating synthetic rating curves (SRCs)
- Addressing the missing bathymetric component
- Improving synthetic rating curves (SRCs) using benchmark data
- Overall Goal: Improve inundation accuracy for operational real-time FIM services

Height Above Nearest Drainage (HAND) Method

Digital Elevation Model

Height Above Global Datum -

Relative Elevation Model

0.1	0.2	0.3	2.1	2.1
0.1	0	0	0.5	2.1
1.2	0.8	0	0.6	1.5
2.1	1.3	0.3	0	0.2
4.1	2.5	1.2	0.1	0

⁻ Height Above Local Channel -(i.e. nearest drainage)

HAND = 2

Synthetic Rating Curve

Synthetic Rating Curve

Synthetic Rating Curve generated for each stream segment in the NWM network (2.7+ million)

Estimating Bathymetry

 Problem: DEM's typically do not portray channel bathymetry (volume below water surface)

• **Solution**: Estimate the missing bathymetry area and add it to channel cross section area. Bathymetry Adjusted Rating Curve (BARC)

NATIONAL WEATHER SERVICE

Estimating Bathymetry

*

哭

Comparing the SRC to USGS observations

Summary: unaccounted for bathymetry results in a substantial "shift" in the SRC

Bathymetry Adjusted Rating Curve

Input: regression equation derived estimates of "bankfull" properties

Source: Bieger et. al 2015

Compute the "missing" bathymetry component of the SRC crosssection area

Output: New SRC computed with modified XS Area and Manning's equation

Currently implemented for medium-large streams

XS Area (Bathy) = A_{Reg} - A_{SRC}

Optimizing SRCs with "Observed" Data

NWS and USGS Benchmark FIM Library Locations & USGS Gages with Rating Curves

283 AHPS sites with NWS/USGS FIM benchmark library

2508 USGS gage rating curve locations

Optimizing SRCs with "Observed" Data

员

West Fork Trinity River at Fort Worth, TX (HEC-RAS inundation library location)

Calculating Manning's Roughness

A = Cross section Area

R = Hydraulic radius

S = Channel slope

Q = Discharge

Results – Spatial Analysis

IOWI4: Iowa River @ Iowa City, IA → Moderate Flood Stage

K\$

Statistical Results

Critical Success Index: USGS Evaluation Sites

Note: Calibrated results only reflect enhanced skill around AHPS forecast points and some USGS gages. Not representative of skill at watershed scale.

Future Opportunities

FIM user observes overprediction for given flow

FIM user provides true extent for given flow

Future FIM better aligns with true extent for given flow

20,000 CFS

Ryan Spies: ryan.spies@noaa.gov

NWS-NWC FIM Development Team Contributors

Brad Bates, Brian Avant, Carson Pruitt, Hamed Zamanisabzi, Trevor Grout, Fernando Aristizabal & Fernando Salas

All rights reserved. No part of this presentation, publication, research or materials may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the author(s).