Vectors

ullet Complex Vector dot product: $ec{v} \cdot ec{w} = \sum_{i=1}^n ar{v_i} w_i$

• length of a vector: $||ec{v}|| = \sqrt{ec{v} \cdot ec{v}} \; \text{or} \; ||ec{v}|| = \sqrt{\sum_{i=1}^n v_i^2}$

orthogonal vectors: $ec{v} \cdot ec{w} = 0$

ullet parallel vectors: $ec{v}=cec{w}$

• angles between vectors: $\cos(heta) = rac{ec{v} \cdot ec{w}}{||ec{v}||||ec{w}||}$

ullet cauchy-bunyakovsky-schwarz (CBS) inequality: $|ec{v}\cdotec{w}|\leq ||ec{v}||||ec{w}||$

• triangle inequality: $||\vec{v} + \vec{w}|| < ||\vec{v}|| + ||\vec{w}||$

• backwards triangle inequality: $||\vec{v} - \vec{w}|| \geq |||\vec{v}|| - ||\vec{w}|||$

• unit vector: $\hat{v} = rac{ec{v}}{||ec{v}||}$

• find middle of line: $\frac{\vec{v}+\vec{w}}{2}$

Matrices

ullet symmetric: $A^T=A$

ullet skew-symmetric: $A^T=-A$

• hermitian: $A^H = A o (a_{ij} = ar{a_{ji}})$

• skew-hermitian: $A^H = -A o (a_{ij} = -ar{a_{ji}})$

Matrix Multiplication

ullet $A_{m imes n}$, rows: m , columns: n

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix}$$

• reverse order law of transposition: $(AB)^T = B^T A^T$

liniar systems:

 $A\vec{x} = \vec{b} A$ is invertible $\iff A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$, or A is non singular

linear transformations

$$cT(\vec{v}) = T(c\vec{v})$$
 and $T(\vec{v}) + T(\vec{w}) = T(\vec{v} + \vec{w})$

range and kernel of T

• range: $R(T) = \{T(\vec{v}) | \vec{v} \in V\}$

• kernel: $N(T)=\{ ec{v} \in V | T(ec{v})=ec{0} \}$

rotations

• 2D:
$$R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\begin{array}{l} \bullet \quad \text{2D:} \quad R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \\ \bullet \quad \text{3D:} \quad R_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \end{array}$$

• opposite rotation: $R_{ heta}^T = R_{- heta}$

projections

orthogonal projection: get rid of the z component

lines to lines

equally spaced lines stay equally spaced

matrix of a linear transformation

 $T:V o W,\, dim(V)=n,\, dim(W)=m$ then A is a m imes n matrix