Chapter 9-10 Confidence Intervals and Hypothesis Testing HT and CI for Two Proportions

Statistics *Mehmet Güray Güler, PhD*

Last updated 06.08.2020

 In many applications, we want to test that the proportion of a certain characteristic in two different populations are equal to each other:

•
$$H_0$$
: $p_1 = p_2$, vs.

• A.
$$H_1: p_1 > p_2$$
,

• A.
$$H_1: p_1 > p_2$$
, B. $H_1: p_1 < p_2$, or C. $H_1: p_1 \neq p_2$.

C.
$$H_1$$
: $p_1 \neq p_2$.

• It would be desirable to have large samples (of sizes n_1 and n_2) from each population so that we can use the Z-statistic:

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - (p_1 - p_2)}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

- From H_0 we assume that both proportions are equal to each other.
- Therefore
 - $p_1 p_2 = 0$
 - Recall, we used s_p in the case of comparing two means when standard deviations are equal to each other.
 - We will do the same thing here.
- The new Z will be [corrected]:

$$Z = \frac{\hat{p}_1 - \hat{p}_2 - 0}{\sqrt{\hat{p}(1 - \hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

- where $\hat{p}=\frac{X_1+X_2}{n_1+n_2}$ is the pooled estimate of the proportion of successes in the combined sample.
- X_1 = number of "success" es in the first sample, and
- X_2 = number of "success" es in the second sample.

- Example 4. I want to test the coffee loyalty of the students in ÖzÜ and YTU and asked whether they favor Cafe Nero over Starbucks or not.
- The poll results are summarized as follows:
 - 120 of 200 ÖzÜ favor Cafe Nero, and
 - 240 of 500 YTÜ favor Cafe Nero.
- Do these data suggest that the proportion ÖzÜ favoring Cafe Nero is higher than the proportion of YTÜ?
- Use an $\alpha = 0.01$ level of significance.
- We will begin by writing the hypotheses of interest and the decision rule.

Example 4. H_0 : $p_1 = p_2$ vs. H_1 : $p_1 > p_2$.

At the level of significance $\alpha = 0.01$, we reject H_0 if Z > 2.33.

Computations:

$$\hat{p}_1 = \frac{x_1}{n_1} = \frac{120}{200} = 0.60 \qquad \hat{p}_2 = \frac{x_2}{n_2} = \frac{240}{500} = 0.48$$

$$\hat{p} = \frac{120 + 240}{200 + 500} = 0.51 \Rightarrow z = \frac{0.60 - 0.48}{\sqrt{(0.51)(0.49)(1/200 + 1/500)}} = 2.9.$$

- Example 4. H_0 : $p_1 = p_2$ vs. H_1 : $p_1 > p_2$.
- **Decision Rule**: Reject H_0 if $Z > Z_{0.05} = 2.33$.
- The standardized test statistic is computed as Z = 2.9 > 2.33.
- **Decision:** We reject H_0 .
- **Conclusion:** The proportion of ÖzÜ favoring Cafe Nero is higher than the proportion of YTÜ.
- P-value = $P(Z > 2.9) \approx 0.002$.

The Confidence Interval

For Single Proportion

For Two Proportions

The Test Statistic

Suppose two populations with (unknown) proportions p_1 and p_2

For example,

- p_1 may be the proportion of smokers with lung cancer
- p_2 may be the proportion of nonsmokers with lung cancer,
 - we want to estimate the difference in between.
- Or, we want to make inference about $p_1 p_2$.
- How?

The Test Statistic

- To make inference about $p_1 \, \, p_2$,
 - a point estimator is $\hat{P}_1 \hat{P}_2$,
 - the proportions calculated from the random sample of sizes n1&n2
- use the sampling distribution of $\hat{P}_1 \hat{P}_2$.
- From the CLT we can assert:
- The sampling distribution of $\hat{P}_1 \hat{P}_2$ is approximately normal with
 - mean p1 p2,
 - the standard deviation

$$S_{\hat{P}_1-\hat{P}_2} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}.$$

The Test Statistic

• Therefore, we can write (approximately)

$$P(-z_{a/2} < Z < z_{a/2}) = 1 - \partial,$$
 where $Z = \frac{(\hat{P}_1 - \hat{P}_2) - (p_1 - p_2)}{\sqrt{p_1(1 - p_1)/n_1 + p_2(1 - p_2)/n_2}}$.

• If \hat{p}_1 and \hat{p}_2 are the proportions of "success"es in independent random samples of sizes n1 and n2, respectively, then an approximate (1– α) 100% confidence interval for p_1 – p_2 is given by

$$p_1 - p_2 \in (\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}."$$

Example: Comparing Defective Proportions

- Example: A change in a manufacturing process of parts is planned.
- Samples are taken under both the existing and the planned process to determine if the new process reduces defectives.

• SAMPLE 1:

• 90 out of 1500 parts from existing process are defective.

SAMPLE 2:

- 80 out of 2000 parts from new (planned) process are defective.
- Calculate a 90% CI for the true difference between the proportion of defectives for the two processes.

Example: Comparing Defective Proportions

Solution: First we find a point estimate for the difference:

$$\hat{p}_1 = 90/1500 = 0.06, \hat{p}_2 = 80/2000 = 0.04,$$

$$=> \hat{p}_1 - \hat{p}_2 = 0.02.$$

$$p_1 - p_2 \in (\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

$$=> p_1 - p_2 \in 0.02 \pm 1.645 \sqrt{\frac{(0.06)(0.94)}{1500} + \frac{(0.04)(0.96)}{2000}}$$

$$0.008 < p_1 - p_2 < 0.032.$$

- We can conclude at the 90% confidence level that the planned process seems to be improving the proportion of defective parts.
- (WHY?)