IV. Système isolé à l'équilibre [situation micro canonique]

- système de base
- on se ramène toujours au cas du système isolé
- système <u>macroscopique</u> uniquement

IV Système isolé à l'équilibre

(la bouteille thermos : adiabatique, rigide, hermétique)

Ensemble micro canonique - système macroscopique isolé (à l'équilibre) : U, V, N sont des variables fixées (contraintes).

Postulat fondamental de la physique statistique (non démontrable)

(sa validité provient que de la confrontation avec l'expérience-il ne s'applique qu'aux états d'équilibre):

pour un système isolé <u>à l'équilibre</u>, tous les micro-états compatibles avec les contraintes fixées (U, V, N) (<u>micro-états accessibles</u> Ω) sont <u>équiprobables</u>

(on ne peut distinguer ni favoriser les états microscopiques) : $P_{un \ micro \ état \ accessible} = 1/\Omega$.

Pour un système isolé, toute l'information thermodynamique est contenue dans l'entropie 5 du système

=> il nous faut exprimer 5 (entropie statistique)

IV.1. Exemple de la détente de Joule Gay-Lussac

IV.1.1 Système étudié

Etat d'équilibre

État initial : Vg = Vd = V

Ng = N

Nd = 0

État final: 2V

Ng = N-X

Nd = X

interprétation statistique de cette transformation? Entropie?

<u>micro-état</u> = quelle particule se situe à quel endroit (droite ou gauche)

 $\underline{\text{macro-\'etat}}$ = quelle valeur pour X ($c.\grave{a}.d$ quelle est la densité du gaz dans chaque compartiment ?)

macro-état d'équilibre??? Grandeurs thermodynamiques???

Description des micro-états :

- Par la mécanique quantique (fonctions d'onde)

$$-\ell = \{ (\Phi_i(\vec{r}), \varepsilon_i) \mid i = 1, 2, ..., N \}$$

-Par la mécanique classique (*positions et vitesses*) :

$$- \ell = \{ (\vec{r}_i, \vec{v}_i) \mid i = 1, 2, ..., N \}$$

- De façon simpliste -> particule à droite ou à gauche :
- $\ell = \{ d, g, g, d, ..., g \}$

Description des macro-états :

On caractérise un macro-état uniquement par :

X = nombre de particules dans le compartiment de droite N-X = nombre de particules dans le compartiment de gauche

Remarque : modèle très simplifié où on ne tient compte ni de la position réelle, ni de la vitesse réelle des particules dans chaque compartiment ...

Hypothèse: N particules microscopiques identiques et discernables

Besoin d'un dénombrement --- Analyse combinatoire

Combinaisons: Soit un ensemble de N particules

Une combinaison est <u>une liste</u> de **p** éléments pris parmi N <u>une fois et une</u> <u>seule</u>. L'ordre n'a pas d'importance

If y a
$$C_N^p = \frac{N!}{p!(N-p)!}$$
 combinaisons

Deux combinaisons se distinguent par les p éléments qui les constituent.

<u>Exemple</u>: le loto consiste à choisir (on ne considère pas l'ordre) 6 boules (chaque boule intervient une seule fois) parmi les 49 existantes.

$$C_{49}^6 = \frac{49!}{6!(49-6)!} = 13.983.816$$
 combinaisons possibles

Description statistique:

Quelle est la probabilité de réalisation pour :

– un micro-état : probabilité $oldsymbol{p}_\ell$

- un macro-état : probabilité P(X)

Rappel

Postulat fondamental de la physique statistique:

pour un système isolé (à l'équilibre), tous les micro-états compatibles avec les contraintes extérieures (U, V, N) sont accessibles et équiprobables.

<u>Exemple</u>: Un cristal cubique. Chaque atome porte un moment magnétique qui peut prendre que 2 valeurs + μ (E = - μ B) ou - μ (E = μ B).

On considère 1 atomes. Il y a :

On considère 2 atomes. Il y a :

- Possibilités pour N particules d'être soit à D soit à G = Nombre total de micro-états :

$$\Omega_{\text{tot}} = \Omega_{\text{tot}}(N) = 2^N$$

- Probabilité p_ℓ d'un micro-état : p_ℓ = $1/\Omega_{tot}$ = $1/2^{N}$

Macro-états:

Soit un ensemble de N particules

Il y a N! permutations

<u>une liste</u> où tous les éléments de l'ensemble figurent une fois et une seule

Il y a
$$A_N^p = \frac{N!}{(N-p)!}$$
 arrangements

une liste ordonnée de p éléments pris parmi N une fois et une seule

Il y a
$$C_N^p = \frac{N!}{p!(N-p)!}$$
 combinaisons

<u>une liste</u> de **p** éléments pris parmi N <u>une fois et</u> <u>une seule</u>. L'ordre n'a pas d'importance

Nombre de micro-états Ω (N,X) conduisant au macro-état X:

$$\Omega(N,X) = C_N^X = \frac{N!}{X!(N-X)!}$$
 (loi binomiale) est appelé multiplicité du macro-état

X ou nombre de micro-états accessibles au macro-état X (ou combinaison de X particules pris parmi les N)

Macro-états:

- Possibilités pour N particules d'être soit à D soit à $G = 2^N$

- probabilité P(X) d'observer le macro-état X vaut donc :

$$P(X) = \frac{\Omega(N, X)}{\Omega_{tot}} = \frac{C_N^X}{2^N} = \frac{N!}{2^N X!(N - X)!}$$

P(X) est d'autant plus grande que $\Omega(X)$ est grande (donc que N est grand)

propriétés de P(X):

$$\sum_{i} \mathbf{P}_{i}(\mathbf{X}) = 1 \qquad \text{normalisation}$$

- P(X) maximum pour X = N/2, état final **réellement observé** (à l'équilibre)
- L'écart par rapport à la moyenne varie comme $\frac{1}{\sqrt{N}}$ (distribution binomial tend vers une Gausienne si N très grand)

IV.1.3. Lois de probabilités

Postulat de l'état le plus probable :

l'état d'équilibre du système correspond au macro-état le plus probable

Conclusion:

état d'équilibre thermodynamique macroscopique

=

macro-état le plus probable

=

celui qui a le plus grand nombre de micro-états associés c.à.d de plus grande multiplicité.

La probabilité de s'écarter de ce macro-état est infime

⇒ très bonne description des propriétés du système à l'équilibre à l'aide du macro-état le plus probable

Vérifions la prépondérance du macro-état le plus probable. Montrons par exemple que la multiplicité du système est égale à la multiplicité de l'état le plus probable :

Nb de micro états pour le macro état le plus probable = $\Omega(N, N/2)$

À l'équilibre, multiplicité du système : $\Omega_{\mathrm{tot}} = \Omega_{\mathrm{tot}}$ (N) = 2^N

Multiplicité du macro-état le plus probable : $\Omega(N, N/2) = \frac{N!}{(N/2)!}$

Lorsque $N \sim N_A$:

$$\ln \Omega_{\rm tot} = N \ln 2$$

$$\ln \Omega(N, N/2) \sim (N \ln N - N) - (2(N/2 \ln N/2 - N/2)) \sim N \ln 2$$

Soit un système isolé défini par les valeurs de U, V et N, toute l'information thermodynamique est contenue dans l'entropie S (U,V,N)

> Qui est un bon candidat pour fournir une expression microscopique de l'entropie?

D'après le deuxième principe, ce candidat, comme l'entropie doit :

- être maximum à l'équilibre du système (Ω ??)
- être additif pour deux sous-systèmes sans interaction

Pourquoi pas un paramètre proportionnel à Ω ? $S = k\Omega$

$$S = k \Omega$$

Boltzmann (1877):

à l'équilibre l'entropie d'un système isolé est donnée par

5- k log W

LYDWIG

1034-1966

DI PHILPAULA

ARTHUR

où $\Omega_{\rm tot}$ est

et k_B est

Vérifions que

1) $ln \Omega$

2) Pour

essibles,

'entropie :

<u>uilibre</u>

$$\Omega_1 + \ln \Omega_2$$

additive

IV.2.1. Entropie micro canonique

Constante de Boltzmann k_B

Détente de Joule Gay-Lussac :

Thermodynamique:
$$\Delta S = nR \ln \left(\frac{V_{fin}}{V_{in}} \right) = nR \ln \left(\frac{2V}{V} \right) = nR \ln 2$$

<u>Physique statistique</u>: chaque particule a accès à deux fois plus d'états microscopiques (car elle peut être soit à droite soit à gauche)

$$\Rightarrow \ \Omega_{_{fin}} = 2^{^{N}}\Omega_{_{in}} \ \text{donc} \ S_{_{fin}} = k_{_{B}}\ln\Omega_{_{fin}} = k_{_{B}}\ln2^{^{N}}\Omega_{_{in}} = k_{_{B}}\left(\ln2^{^{N}} + \ln\Omega_{_{in}}\right) = Nk_{_{B}}\ln2 + S_{_{in}}$$
 soit
$$\Delta S = S_{_{fin}} - S_{_{in}} = Nk_{_{B}}\ln2$$

Pour retrouver la thermo, il faut que $N k_B = n R$ soit $N_A k_B = R$

$$R = 8,314 \text{ J.mol}^{-1}.K^{-1}$$
 $N_A = 6,02.10^{23} \text{ mol}^{-1}$

$$\Rightarrow$$
 k_B =1,38 x10⁻²³ J.K⁻¹

IV.2.2. Entropie et désordre microscopique

Evolution spontanée d'un système isolé

- On s'intéresse à l'évolution d'un système isolé lors d'un changement des paramètres extérieurs autres que U
- Exemple : détente de Joule
 - → on enlève la paroi qui sépare A et B

 Ω_{init}

→ le système passe de {U, N, V} (état d'équilibre initial)

à $\{U, N, V+\Delta V\}$ (état d'équilibre final)

$$\Omega_{\mathsf{fin}}$$
> Ω_{fin}

 \blacksquare le nombre d'états accessibles augmente (si $\Delta V > 0$

Deuxième principe de la thermodynamique pour un système isolé:

l'évolution **spontanée** d'un système **isolé** se traduit par une augmentation du nombre d'états accessibles qui s'accompagne nécessairement d'une augmentation de l'entropie microcanonique ($S = k_B \ln \Omega_{\rm tot}$). Cette évolution est irréversible.

IV.2.2. Entropie et désordre microscopique

Interprétation statistique de l'entropie et du second principe en termes de désordre :

2nd principe pour un système isolé:
 évolution spontanée du système vers l'état correspondant au plus grand désordre (maximum de l'entropie)

entropie = mesure du désordre microscopique

(l'information sur la position des particules

est de plus en plus diluée ...

Cette perte est mesurée par l'augmentation de l'entropie)

IV.2.3. Entropie et théorie de l'information

En théorie de l'information, lorsque l'on a un ensemble d'événements i de probabilité p_i , on **définit** le manque d'information comme (Shanon 1948)

= entropie statistique :

$$S = -k\sum_{i} p_{i} \ln p_{i}$$

où k est une constante multiplicative

On admet que:

Comme

$$0 < p_l < 1$$

$$ln p_l \leq 0$$

$$S \ge 0$$

$$\begin{bmatrix} p_l = 1 \\ p_l = 0 \end{bmatrix} \Rightarrow S = 0$$

S est maximum quand on connaît le moins de chose, c'est-à-dire quand l'incertitude est maximale.

IV.2.3. Entropie et théorie de l'information

Quand le résultat est certain ou impossible, $S=\mathbf{0}$.

S est maximale quand tous les résultats sont équiprobables.

<u>Illustration météorologique</u> : quel temps fait-il? probabilité pour qu'il pleuve en un lieu donné?

à Nice: $p_{pluie} = 0$; $p_{soleil} = 1$: information complète: S = 0

à Rouen : $p_{pluie} = 1$; $p_{soleil} = 0$: information complète : S = 0

à Paris : $p_{pluie} = 1/2$; $p_{soleil} = 1/2$: information minimum : $S = k \ln 2$

S est plus grande à Paris qu'à Nice

IV.2.3. Entropie et théorie de l'information

Lien avec la physique statistique

Dans l'ensemble micro canonique, tous les micro-états sont équiprobables : l'information est minimum, le désordre est maximum

$$\forall \ell, p_{\ell} = \frac{1}{\Omega_{tot}}$$
 Probabilité du micro-état ℓ

$$S = -k\sum_{i=1}^{\Omega} p_i \ln p_i = -k\sum_{i=1}^{\Omega} \frac{1}{\Omega} \ln \frac{1}{\Omega} = -k\Omega \frac{1}{\Omega} (-\ln \Omega) = k \ln \Omega$$

On retrouve bien l'entropie de Boltzmann lorsque $k=k_R$

Description microscopique préliminaire

(physique quantique, mécanique, magnétisme, ...)

Système à N particules

* micro-état : ℓ ; $p_\ell = 1/\Omega_{\mathrm{tot}}$

* macro-état: E, T (V, P, N, μ , ...) ; Ω_{tot}

- * Potentiel thermodynamique : $S = -k_B \sum_{\ell=1}^{\Omega_{\mathrm{tot}}} p_\ell \ln p_\ell = k_B \ln(\Omega_{\mathrm{tot}})$
- * Thermodynamique: $dS = 1/T dU + P/T dV \mu/T dN + ...$

