INTRO
PRINCIPLES
APPLICATIONS

3D GAUSSIAN SPLATTING SURVEY

OUTLINE

- I. Preview
- 2. 3D Gaussian Splatting Model
 - I. Pipeline
 - 2. Initialization
 - 3. Properties
 - 4. Rendering
 - 5. Training
- 3. Comparison with NeRF
- 4. Applications and Possibilities

I. PIPELINE

3D GAUSSIAN SPLATTING MODEL 2. INITIALIZATION

- Apply Structure from Motion on input images to initialize model parameters
- A widely used SfM pipeline is COLMAP
- COLMAP yields necessary camera configurations
- Additionally, detected key-points by make great initial positions for 3D Gaussians

3D GAUSSIAN SPLATTING MODEL 2. INITIALIZATION

- Apply Structure from Motion on input images to initialize model parameters
- A widely used SfM pipeline is COLMAP
- COLMAP yields necessary camera configurations
- Additionally, detected key-points by make great initial positions for 3D Gaussians

3D GAUSSIAN SPLATTING MODEL
2. INITIALIZATION
KEYPOINTS
CAMERA CONFIGURATIONS

3. PROPERTIES

3D Gaussians has following learnable parameters:

- Position μ
- Covariance ∑
- Opacity α
- Color c
 - Color represented via Spherical Harmonics

3. PROPERTIES (SPHERICAL HARMONICS)

$$n = 0$$
 $n = 1$
 $n = 2$
 $n = 3$
 $n = 3$
 $n = 4$
 $n = 0$
 $n = 1$
 $n = 2$
 $n = 3$
 $n = 4$

$$c(v) = \sum_{n=0}^{N} \sum_{m=0}^{n} c_{n,m} \cdot SH(v)$$

- Color is dependent on view angle
- Calculated from coefficient and Spherical Harmonic

4. RENDERING

Key components of 3D Gaussian Splatting Rendering:

• Frustum Culling: Given a camera pose, this determine Gaussians that are inside the camera's frustum

Splatting: Project 3D Gaussians into 2D space

• Calculating color: Pixel color calculation through α -blending

• Tiles: Dividing the image into non-overlapping 16x16 pixel tiles

Parallelism: Process tiles with sorted list of Gaussians

4. RENDERING

How to project a 3D Gaussian to 2D rendering?

$$\Sigma' = JW \Sigma W^T J^T$$

- \sum is the covariance of the Gaussian
- W is the view transformation
- J is the Jacobian of the affine approximation of the projective transformaion

Covariance loses pyhsical meaning if optimized blindly, therefore:

$$\Sigma = RSS^T R^T$$

• Expressed in form of scale s and quaternion q

4. RENDERING

So, which color do my pixels have?

$$C = \sum_{n=1}^{|\mathcal{N}|} c_n \alpha'_n \prod_{j=1}^{n-1} (1 - \alpha'_j)$$

- c_n is the learned color
- α'_n is the final opacity

4. RENDERING

So, which color do my pixels have?

$$C = \sum_{n=1}^{|\mathcal{N}|} c_n \alpha_n' \prod_{j=1}^{n-1} (1 - \alpha_j')$$

- c_n is the learned color
- α'_n is the final opacity

The final opacity is the multiplication result of learned opacity and gaussian.

$$\alpha'_n = \alpha_n \times \exp\left(-\frac{1}{2}(\boldsymbol{x}' - \boldsymbol{\mu}'_n)^{\top} \boldsymbol{\Sigma}'^{-1}_n(\boldsymbol{x}' - \boldsymbol{\mu}'_n)\right)$$

• α_n is the learned opacity

4. RENDERING

Equation 5:

$$C = \sum_{n=1}^{|\mathcal{N}|} c_n \alpha_n' \prod_{j=1}^{n-1} (1 - \alpha_j')$$

3D GAUSSIAN SPLATTING MODEL 5.TRAINING

Loss function:

$$\mathcal{L} = (1 - \lambda)\mathcal{L}_1 + \lambda\mathcal{L}_{D-SSIM}$$

3D GAUSSIAN SPLATTING MODEL 5.TRAINING


```
M, S, C, A \leftarrow \operatorname{Adam}(\nabla L)
                                                   ▶ Backprop & Step
if IsRefinementIteration(i) then
    for all Gaussians (\mu, \Sigma, c, \alpha) in (M, S, C, A) do
         if \alpha < \epsilon or IsTooLarge(\mu, \Sigma) then
                                                              ▶ Pruning
             RemoveGaussian()
         end if
         if \nabla_p L > \tau_p then
                                                        ▶ Densification
             if ||S|| > \tau_S then
                                               ▶ Over-reconstruction
                  SplitGaussian(\mu, \Sigma, c, \alpha)
             else
                                             ▶ Under-reconstruction
                  CloneGaussian(\mu, \Sigma, c, \alpha)
             end if
         end if
    end for
end if
```

COMBINING EVERYTHING TOGETHER

Algorithm 1 Optimization and Densification *w*, *h*: width and height of the training images

```
M \leftarrow SfM Points
                                                                    ▶ Positions
S, C, A \leftarrow InitAttributes()
                                        ▶ Covariances, Colors, Opacities
i \leftarrow 0
                                                            ▶ Iteration Count
while not converged do
     V, \hat{I} \leftarrow \text{SampleTrainingView()}
                                                    ▶ Camera V and Image
    I \leftarrow \text{Rasterize}(M, S, C, A, V)
                                                                        ▶ Alg. 2
    L \leftarrow Loss(I, \hat{I})
                                                                          ▶ Loss
    M, S, C, A \leftarrow \operatorname{Adam}(\nabla L)
                                                          ▶ Backprop & Step
    if IsRefinementIteration(i) then
         for all Gaussians (\mu, \Sigma, c, \alpha) in (M, S, C, A) do
              if \alpha < \epsilon or IsTooLarge(\mu, \Sigma) then
                                                                     ▶ Pruning
                   RemoveGaussian()
              end if
                                                               ▶ Densification
              if \nabla_{\mathcal{D}} L > \tau_{\mathcal{D}} then
                  if ||S|| > \tau_S then
                                                     ▶ Over-reconstruction
                       SplitGaussian(\mu, \Sigma, c, \alpha)
                  else
                                                    ▶ Under-reconstruction
                       CloneGaussian(\mu, \Sigma, c, \alpha)
                  end if
              end if
         end for
    end if
    i \leftarrow i + 1
end while
```


Algorithm 2 GPU software rasterization of 3D Gaussians *w*, *h*: width and height of the image to rasterize *M*, *S*: Gaussian means and covariances in world space *C*, *A*: Gaussian colors and opacities *V*: view configuration of current camera

Star History graphdeco-inria/gaussian-splatting • Mobile bound of the second of the secon 15.0k GitHub Stars 10.0k 5.0k 2021 2022 2023 2024 2025

COMPARISON WITH NERF

COMPARISON WITH NERF

Dataset	Mip-NeRF360			Tanks&Temples					Deep Blending									
Method Metric	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem	SSIM [↑]	$PSNR^{\uparrow}$	$LPIPS^{\downarrow}$	Train	FPS	Mem
Plenoxels	0.626	23.08	0.463	25m49s	6.79	2.1GB	0.719	21.08	0.379	25m5s	13.0	2.3GB	0.795	23.06	0.510	27m49s	11.2	2.7GB
INGP-Base	0.671	25.30	0.371	5m37s	11.7	13MB	0.723	21.72	0.330	5m26s	17.1	13MB	0.797	23.62	0.423	6m31s	3.26	13MB
INGP-Big	0.699	25.59	0.331	7m30s	9.43	48MB	0.745	21.92	0.305	6m59s	14.4	48MB	0.817	24.96	0.390	8m	2.79	48MB
M-NeRF360	0.792^{\dagger}	27.69^{\dagger}	0.237^{\dagger}	48h	0.06	8.6MB	0.759	22.22	0.257	48h	0.14	8.6MB	0.901	29.40	0.245	48h	0.09	8.6MB
Ours-7K	0.770	25.60	0.279	6m25s	160	523MB	0.767	21.20	0.280	6m55s	197	270MB	0.875	27.78	0.317	4m35s	172	386MB
Ours-30K	0.815	27.21	0.214	41m33s	134	734MB	0.841	23.14	0.183	26m54s	154	411MB	0.903	29.41	0.243	36m2s	137	676MB

TABLE I: Comparison of compression on MipNeRF360 [20].

Method	PSNR	↑ SSIM1	↑ LPIPS↓	Size (MB)↓
3DGS	27.49	0.813	0.222	744.7
Scaffold-GS [16]	27.50	0.806	0.252	253.9
HAC [19]	27.53	0.807	0.238	15.26
Compact-3DGS [21]	27.08	0.798	0.247	48.80
EAGLES [10]	27.15	0.808	0.238	68.89
LightGaussian [15]	27.00	0.799	0.249	44.54
Gaussian-SLAM [18]	26.01	0.772	0.259	23.90
Compact3d [11]	27.16	0.808	0.228	50.30

- Storage cost is one of the biggest disadvantages of 3D
 Gaussian Splatting
- Researhers tried out various stategies to reduce this cost
 - Anchors
 - Codebooks
 - Hash Grids
 - Efficient pruning strategies
 - Efficient Gaussian representations or attributes

COMPARISON WITH NERF

- NeRF samples along the ray and then queries the MLP to obtain corresponding colors and densities, which can be seen as a <u>backward</u> mapping (ray tracing)
- 3D GS projects all 3D Gaussians into the image space (splatting) and then performs parallel rendering, which can be viewed as a <u>forward</u> mapping (rasterization)

COMPARISON WITH NERF

Is NeRF obsolete?

- Both methods have fundamental differences in their approaches. 3D GS is explicit, NeRF is implicit
- At first glance 3D GS may seem superior, but NeRF enthusiasts claim advantages over 3D GS:
 - NeRF generalizes scenes better and more compact
 - Areas with a very low sample data have better results with NeRF
 - Transparent areas have better results through NeRF

Hard to judge these claims, maybe we can test some of these for the final paper!

- The biggest strengths of 3D GS are:
 - Training and rendering speed (but InstantNPG (5 sec) and FastNeRF (200+ FPS) has competitive performance)
 - Gaussians are easy to understand and edit due to it's explicit nature
 - Various use cases by enhancing Gaussians with e.g. language features

APPLICATIONS AND POSSIBILITIES

Appilications:

- Robotics
- Dynamic Scene Reconstruction
- Generation and Editing
- Avatar
- Endoscopic Scene Reconstruction
- Large-scale Scene Reconstruction
- Physics

APPLICATIONS AND POSSIBILITIES

Gaussians can be enhanced by combining additional attributes:

- Semantic Attributes
- Attribute Distributions
- Temporal Attributes
- Displacement Attributes
- Physical Attributes
- Discrete Attributes
- Inferred Attributes
- Weight Attributes
- And more...

APPLICATIONS AND POSSIBILITIES

- Combines Gaussians with Language Features
- Encodes language features from CLIP to present a language field
- Supports language queries

LangSplat: 3D Gaussian Language Splatting

APPLICATIONS AND POSSIBILITIES LANGSPLAT - FEATURE LEVEL I

Input:

Segmentation Feature Level 1:

APPLICATIONS AND POSSIBILITIES LANGSPLAT - FEATURE LEVEL 2

Input:

Segmentation Feature Level 2:

APPLICATIONS AND POSSIBILITIES LANGSPLAT - FEATURE LEVEL 3

Input:

Segmentation Feature Level 3:

APPLICATIONS AND POSSIBILITIES LANGSPLAT – EXAMPLE VIDEO

Ours

LERF

APPLICATIONS AND POSSIBILITIES ANOTHER EXAMPLE: GAUSSIAN GROUPING

$$E_{\mathrm{id}} = \sum_{i \in \mathcal{N}} e_i \alpha_i' \prod_{j=1}^{i-1} (1 - \alpha_j') \qquad \qquad \mathcal{L}_{\mathrm{render}} = \mathcal{L}_{\mathrm{rec}} + \mathcal{L}_{\mathrm{id}} = \mathcal{L}_{\mathrm{rec}} + \lambda_{2\mathrm{d}} \mathcal{L}_{2\mathrm{d}} + \lambda_{3\mathrm{d}} \mathcal{L}_{3\mathrm{d}}$$

APPLICATIONS AND POSSIBILITIES GAUSSIAN GROUPING

Algorithm 1 Gaussian Grouping

```
▷ 3D Positions

p \leftarrow \text{SfM Points}
m = (m_1, m_2, \dots, m_K) \leftarrow SAM

▷ SAM's Masks at Various K Views

(\hat{M}_1, \hat{M}_2, \dots, \hat{M}_K) \leftarrow \text{Zero-shot Tracking(m)}
                                                                                                 Deliver Covariances, Opacities, Colors, Identity Encodings
s, \alpha, c, \mathbf{e} \leftarrow \text{InitAttributes}()
i \leftarrow 0
                                                                                                                          ▶ Iteration Count
while not converged do
     V, \hat{I}, \hat{M} \leftarrow \text{SampleTrainingView}()
                                                                                            \triangleright Camera View V, Image and Mask
     I, \mathbf{E}_{id} \leftarrow \text{Rasterize}(p, s, a, c, \mathbf{e}, V)
                                                                                 ▶ Rendered Image and Identity Encoding
     \mathcal{L}_{\text{image}} \leftarrow \mathcal{L}(I, \hat{I})
                                                                                                 ▷ Original Image Rendering Loss
     L_{\rm id} \leftarrow \lambda_{2d} \mathcal{L}_{2d}(\mathbf{E}_{\rm id}, \hat{M}) + \lambda_{3d} \mathcal{L}_{3d}(\mathbf{e})
                                                                                              ▶ Identity Grouping Loss, Eq. 3
      \mathcal{L} \leftarrow \mathcal{L}_{\mathrm{image}} + \mathcal{L}_{\mathrm{id}}
                                                                                                                                  ▶ Total Loss
      p, s, a, c, \mathbf{e} \leftarrow \operatorname{Adam}(\nabla \mathcal{L})

▷ Backprop & Step
```

Algorithm 1 Optimization and Densification *w*, *h*: width and height of the training images

 $M \leftarrow \text{SfM Points}$ \triangleright Positions

$$S, C, A \leftarrow \text{InitAttributes}()$$
 > Covariances, Colors, Opacities $i \leftarrow 0$ > Iteration Count while not converged do

 $V, \hat{I} \leftarrow \text{SampleTrainingView}()$ > Camera V and Image $I \leftarrow \text{Rasterize}(M, S, C, A, V)$ > Alg. 2 $L \leftarrow Loss(I, \hat{I})$ > Loss

$$M, S, C, A \leftarrow Adam(\nabla L)$$
 \triangleright Backprop & Step

$$E_{\mathrm{id}} = \sum_{i \in \mathcal{N}} e_i \alpha_i' \prod_{j=1}^{i-1} (1 - \alpha_j')$$
 $\mathcal{L}_{\mathrm{render}} = \mathcal{L}_{\mathrm{rec}} + \mathcal{L}_{\mathrm{id}} = \mathcal{L}_{\mathrm{rec}} + \lambda_{2\mathrm{d}} \mathcal{L}_{2\mathrm{d}} + \lambda_{3\mathrm{d}} \mathcal{L}_{3\mathrm{d}}$

END!

THANKS FOR YOUR ATTENTION!:)