## SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN (AUTONOMOUS)

## Approved by AICTE & Affiliated to JNTUK, Kakinada Accredited with 'A' Grade by NAAC & NBA

Vishnupur, Bhimavaram, West Godavari Dist. - 534 202, Andhra Pradesh, India.

| Student Notebook |                                   |
|------------------|-----------------------------------|
| Department       | Information Technology            |
| Year / Semester  | III B.Tech (IT) – I Semester      |
| Subject          | DESIGN AND ANALYSIS OF ALGORITHMS |
| Regulation       | R18                               |
| Subject Code     | UGIT5T0118                        |



### Vision

Transform the society through excellence in education, community empowerment and sustained environmental protection.

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN:: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

### **Vision**:

To establish unique identity by development of high quality IT engineers and technological resources for contributing to the economic and social development of the Nation at large and region in particular.

### **Mission**:

- To provide for the holistic development of undergraduate students in the Information Technology.
- To prepare students for careers in industry or to pursue advanced graduate studies to get involved in research activities.
- To provide a teaching environment that emphasizes continuous learning and inculcates professional ethics.
- To establish centers of excellence in various domains.

#### **Program Educational Objectives (PEOs):**

- PEO 1. Graduates will be leaders in academia, industry and research pursuit through strong Knowledge in core and application domain, that develops the ability to solve real world problems individually and in team.
- PEO 2. Graduates will continue to learn and adapt in a world of constantly evolving technology.
- PEO 3. Graduates will have deep awareness of ethical responsibilities in their profession and towards the society.

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN:: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

### **Program Outcomes (POs):**

- PO 1. An ability to use principles and methods of sciences, mathematics and engineering disciplines to solve technical problems.
- PO 2. An ability to analyze a problem, identify and define the computing requirements appropriate to its solution.
- PO 3. An ability to design, implements, and evaluate a computer-based system, process, component or program to meet desired needs.
- PO 4. An ability to design and conduct experiments, as well as to analyze and interpret data.
- PO 5. An ability to use current techniques, skills, and modern tools necessary for computing practice.
- PO 6. The education necessary to understand the impact of engineering solutions in the economic, environmental, and societal context.
- PO 7. An understanding of impact of engineering solutions on the society and awareness of contemporary issues.
- PO 8. An ability to practice professional and ethical responsibilities.
- PO 9. The ability to learn, unlearn and relearn technologies, both as a individual and within a collaborative team.
- PO 10. An ability to communicate and function effectively in teams to accomplish a common goal.
- PO 11. Recognize the need for and an ability to engage in continuing professional development.
- PO 12. An understanding of engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects.

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN: BHIMAVARAM (AUTONOMOUS)

#### DEPARTMENT OF INFORMATION TECHNOLOGY

| Syllabus        |                                   |
|-----------------|-----------------------------------|
| Department      | Information Technology            |
| Year / Semester | III B.Tech (IT) – I-Semester      |
| Subject         | DESIGN AND ANALYSIS OF ALGORITHMS |
| Regulation      | R18                               |
| Subject Code    | UGIT5T0118                        |

#### **UNIT-I**

#### **Introduction:**

Algorithm, Pseudo code for expressing algorithms, performance Analysis-Space complexity, Time complexity, Asymptotic Notation- Big oh notation, Omega notation, Theta notation and Little oh notation, probabilistic analysis, Amortized analysis.

#### **UNIT-II**

**Disjoint sets and Divide and Conquer:** Disjoint set operations, Union and find algorithms, Spanning trees. Divide and Conquer methodology, applications-Binary search, Quick sort, Merge sort, Multiplication of large integers, Strassen's matrix multiplication.

#### **UNIT-III**

**Greedy method:** General methodology, applications- knapsack problem, Minimum cost spanning trees, Single source shortest path problem,

#### **UNIT-IV**

**Dynamic Programming:** General methodology, applications-0/1 knapsack problem, Optimal binary search trees, All pairs shortest path problem, Traveling sales person problem.

#### **UNIT-V**

**Backtracking:** General method, applications-n-queen problem, sum of subsets problem, graph coloring, Hamiltonian cycles. Branch and Bound methodology, applications, LC branch and bound, 0/1 knapsack problem: LC Branch and bound solution, FIFO branch and bound solution, Travelling sales person problem.

#### **UNIT-VI**

**NP-hard and NP-Complete problems:** basic concepts, non deterministic algorithms, NP-hard and NP-complete classes, list of NP-hard and NP-complete problems, Cooks theorem

### **TEXT BOOKS:**

- T1. Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharam, Universities Press.
- T2. ParagHimans hu Dave, Himanshu BhalchandraDave, Design and Analysis of Algorithms, Pearson Publication.
- T3. M.T. Goodrich, Roberto Tamassia Algorithm Design, Foundation, Analysis and Internet Examples, Wiley.

#### **REFERENCES:**

- R1. Introduction to Algorithms, second edition, T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, PHI Pvt. Ltd.
- R2. R C T Lee, Hang and TT Sai, Introduction to Design and Analysis of Algorithms , A strategic approach, TMH
- R3. Allen Weiss, Data Structures and Algorithms Analysis in C++, 2<sup>nd</sup> Edn, Pearson Education.
- R4. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- R5. Richard Johnson Baugh, and Marcus Schaefer, Algorithms, Pearson Education.

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN: BHIMAVARAM (AUTONOMOUS) LESSON PLAN

COURSE: III B.Tech BRANCH : IT

CLASS: III/ISem. Section YEAR: 2020-21

FACULTY: DESIGNATION:

**SUBJECT:** Design and Analysis of Algorithms **SUBJECT CODE:** UGIT5T0118

.

Prerequisites: Familiarity with Problem Solving Skills, Discrete Mathematics and Data Structures.

### **Course Objectives: The students will learn the following:**

- 1. Relate the algorithm properties with mathematical approaches to design and analyze real time problems.
- 2. Make use of optimization techniques to solve complex problems in easy ways.
- 3. Ability to perform dynamic actions for the particular problem based on specific constraints.
- 4. Construction of state space tree in order to reduce the number of solutions and to find the optimal solution
- 5. Design elementary deterministic and randomized algorithms to solve computational problems

**Course Outcomes:** Upon the successful completion of the course, the student will be able:

- **CO 1** Understand the fundamentals of algorithmic design steps, performance analysis concepts and various algorithm design methods.
- **CO 2** Apply the algorithm design techniques to design efficient algorithms for different kinds of computing problems.
- **CO 3** Analyze the asymptotic performance of algorithms and write formal correctness proof for algorithms.
- **CO 4** Classify a problem as computationally tractable or intractable and discuss the strategies to address int

#### **Lesson Plan:**

| S.No. | No. of<br>hours | Date | Topic(s) planned                      | Reference<br>(Books with<br>page<br>numbers) | Remarks |
|-------|-----------------|------|---------------------------------------|----------------------------------------------|---------|
|       |                 |      | <b>UNIT I -Introduction:</b>          |                                              |         |
| 1     | 2               |      | Introduction Algorithm                | T1-1-4<br>T2-1-18                            |         |
| 2     | 1               |      | Pseudo code for expressing Algorithms | T1-5-9<br>T2-22-52                           |         |
| 3     | 1               |      | performance Analysis                  | T1-14<br>T2-58                               |         |
| 4     | 1               |      | Space complexity                      | T1-15-16<br>T2-88                            |         |

Design and Analysis of Algorithms Note Book

|    | Design and Analysis of Algorithms Note book  Time complexity  T1-17-25 |                                                                                                   |                          |  |  |
|----|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|--|--|
| 5  | 1                                                                      | Time complexity                                                                                   | T2-60-71                 |  |  |
| 6  | 2                                                                      | Asymptotic Notation-<br>Big oh notation, Omega notation,<br>Theta notation and Little oh notation | T1-39-49<br>T2-76-87     |  |  |
| 7  | 2                                                                      | probabilistic analysis, Amortized analysis                                                        | T1-28-38                 |  |  |
|    |                                                                        | UNIT II -Disjoint sets and Divide and conqu                                                       | ier:                     |  |  |
| 8  | 1                                                                      | Disjoint sets                                                                                     | T1-110                   |  |  |
| 9  | 1                                                                      | Disjoint sets operations                                                                          | T1-111                   |  |  |
| 10 | 1                                                                      | Union algorithms                                                                                  | T1-115                   |  |  |
| 11 | 1                                                                      | Find algorithm                                                                                    | T1-118                   |  |  |
| 12 | 1                                                                      | spanning trees                                                                                    | T1-236<br>T2-401         |  |  |
| 12 | 2                                                                      | General method                                                                                    | T1-136-140<br>T2-262-263 |  |  |
| 13 | 2                                                                      | applications-Binary search                                                                        | T1-145-153<br>T2-326-327 |  |  |
| 14 | 2                                                                      | Quick sort                                                                                        | T1-168-177<br>T2-269-275 |  |  |
| 15 | 2                                                                      | Merge sort                                                                                        | T1-159-167<br>T2-264     |  |  |
| 16 | 1                                                                      | Multiplication of large integers                                                                  | R1-68                    |  |  |
| 17 | 1                                                                      | Stassen's matrix multiplication                                                                   | T1-192-194               |  |  |
| 18 | 1                                                                      | UNIT III - Greedy method:  General method                                                         | T1-210-213               |  |  |
| 16 | 1                                                                      | General method                                                                                    | T2-372-374               |  |  |
| 19 | 1                                                                      | knapsack problem,                                                                                 | T1-218-222<br>T2-384-388 |  |  |
| 20 | 3                                                                      | Minimum cost spanning trees                                                                       | T1-237-246<br>T2-401     |  |  |
| 21 | 2                                                                      | Single source shortest path problem.                                                              | T1-260-266<br>T2-407     |  |  |
| 22 | 1                                                                      | Huffman tress                                                                                     | T1-257-259               |  |  |
|    | UNIT-IV-Dynamic Programming:                                           |                                                                                                   |                          |  |  |
| 23 | 1                                                                      | General method                                                                                    | T1-272-276<br>T2-455     |  |  |
| 24 | 1                                                                      | Applications-Matrix chain Multiplication                                                          | T2-488-496               |  |  |
| 25 | 3                                                                      | Optimal binary search trees                                                                       | T1-293-302<br>T2-500-502 |  |  |
| 26 | 1                                                                      | 0/1 knapsack problem                                                                              | T1-305-312<br>T2-496     |  |  |
| 27 | 2                                                                      | All pairs shortest path problem                                                                   | T1-284-288<br>T2-478-481 |  |  |

Design and Analysis of Algorithms Note Book

|     |                                           | Design and Analysi                        | is of Algorithms Note Book |
|-----|-------------------------------------------|-------------------------------------------|----------------------------|
| 28  | 2                                         | Traveling sales person problem            | T1-318-320<br>T2-486-487   |
|     |                                           | UNIT-V-Backtracking and Branch Bo         |                            |
| 29  | 2                                         | General method                            | T1-359-360                 |
|     | _                                         |                                           | T2-517                     |
| 30  | 3                                         | Applications-n-queen problem              | T1-373-375                 |
|     |                                           | rippireations in queen problem            | T2-522-523                 |
| 31  | 2                                         | Sum of subsets problem                    | T1-377-379                 |
| 31  |                                           | built of subsets problem                  | T2-525-526                 |
| 32  | 2                                         | Graph coloring                            | T1-380-384                 |
| 32  | 2                                         | Graph Coloring                            | T2-527                     |
| 33  | 2                                         | Hamiltonian cycles.                       | T1-384-387                 |
| 33  | 2                                         | Trannitonian cycles.                      | T2-531                     |
|     |                                           | Branch and Bound:                         |                            |
| 2.1 | 2                                         | Congred mathed                            | T1-399-400                 |
| 34  | 34 2 General method                       | General method                            | T2-543                     |
| 35  | 3                                         | Travelling sales person problem           | T1-422-430                 |
| 33  | 3                                         | Travening sales person problem            | T2-559                     |
| 36  | 2                                         | 0/1 knapsack problem-                     | T1-413-414                 |
| 30  | 2                                         | 0/1 knapsack problem-                     | T2-562                     |
| 37  | 2                                         | LC Branch and Bound solution              | T1-414-417                 |
| 38  | 2                                         | FIFO Branch and Bound solution            | T1-417-420                 |
|     | UNIT-IV NP-hard and NP-complete problems: |                                           |                            |
| 39  | 1                                         | Basic concepts                            | T1-514                     |
| 40  | 1                                         | Non deterministic algorithms,             | T1-515-520                 |
| 41  | 2                                         | NP-hard and NP-complete classes,          | T1-523-526                 |
| 42  | 2                                         | list of NP-hard and NP-complete problems. | T1-527                     |

#### **TEXT BOOKS:**

- T1.Fundamentals of Computer Algorithms, Ellis Horowitz, Satraj Sahni and Rajasekharam, Universities Press.
- T2. ParagHimans hu Dave, Himanshu BhalchandraDave, Design and Analysis of Algorithms, Pearson Publication.
- T3. M.T. Goodrich, Roberto Tamassia Algorithm Design, Foundation, Analysis and Internet Examples, Wiley.

### **REFERENCES:**

- R1. Introduction to Algorithms, second edition, T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, PHI Pvt. Ltd.
- R2. R C T Lee, Hang and TT Sai, Introduction to Design and Analysis of Algorithms , A strategic approach, TMH
- R3.Allen Weiss, Data Structures and Algorithms Analysis in C++, 2<sup>nd</sup> Edn, Pearson Education.
- R4. Design and Analysis of algorithms, Aho, Ullman and Hopcroft, Pearson education.
- R5. Richard Johnson Baugh, and Marcus Schaefer, Algorithms, Pearson Education.

#### Staff In-charge

**Head of the Department** 

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

| Descriptive Question Bank |                                   |
|---------------------------|-----------------------------------|
| Department                | Information Technology            |
| Year / Semester           | III B.Tech (IT) – I-Semester      |
| Subject                   | Design and Analysis of Algorithms |
| Regulation                | R18                               |
| Subject Code              | UGIT5T0118                        |

#### **UNIT-I**

- 1. (a).Define an algorithm. What are the different criteria that satisfy the algorithms?
  - (b). Explain how algorithms performance is analyzed? Describe asymptotic notations?
- 2. (a) What are the different techniques to represent an algorithm. Explain?
  - (b) Give an algorithm to solve the towers of Hanoi problem.
  - (a) Write an algorithm to find the sum of individual digits of a given number.
  - (c) Explain the different looping statements used in pseudo code conventions.
- 3. (a) What is meant by recursion? Explain with example, the direct and indirect recursive algorithms.
  - (b) List the advantages of pseudo code convention over flow charts.

### **UNIT-II**

- 1. (a) Explain the binary search to find the elements 12,50,-2,45 from for the following set (3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 47)
  - (b) Derive the time complexity for Quick.
- 2. (a) Draw the tree of calls of merge sort for the following set.

$$(35, 25, 15, 10, 45, 75, 85, 65, 55, 5, 20, 18)$$

- (b) Compare Quick sort algorithm performance with merge sort algorithm?
- 3. (a) Write the merge sort algorithm and Draw the tree of calls of merge for the following set of elements

$$(20, 30, 10, 40, 5, 60, 90, 45, 35, 25, 15, 55)$$

- (b) Write an algorithm for quick sort by using recursive method.
- 4. (a)Explain the Disjoint sets with examples
  - (b) Explain the union and find algorithms with examples.

- 5. (a) Explain the matrix multiplication for integer..
  - (b) Explain the strassens matrix multiplication.

#### **UNIT-III**

- 1. (a) What is greedy method? Explain with example.
  - (b) explain the Huffman tree with examples.
- 2. Explain the 0/1 knapsack problem. Consider the following instance of the knapsack problem n=3,m=20,

$$(p1,p2,p3)=(25,24,15)$$
, and  $(w1,w2,w3)=(18,15,10)$ .

- 3. Define minimum cost spanning trees. Explain them with suitable example.
- 4.(a)What are the observation that should made for finding the shortest paths by using Greedy.
  - (b) Explain, how to find the minimum cost spanning tree by using Prim's Algorithm.\

#### **UNIT-IV**

1. (a) Find the solution for the knapsack problem. When n=3,

$$(W_1, W_2, W_3)=(18, 15, 10,)$$
.  $(P1, P2, P3)=(25, 24, 15)$  and  $m=20$ . Explain the general concept of Dynamic programming.

2. (a) Find the shortest paths between all pairs of nodes in the following graph



- (b) What are the advantages of finding shortest paths and also explain the application areas.
- 3. Find the shortest path b/w all pairs of nodes in the following graph and explain with the suitable algorithm



4. (a) Discuss the dynamic programming solution for the problems of reliability design. Define merging and purging rules in O/1 knapsack problem.

#### **UNIT-V**

1. a) Explain, how the Hamiltonian circuit problem is solved by using the backtracking concept.

Device a backtracking algorithm for m-coloring graph problem.

2.(a) Compare and contrast between Brute force approach Vs Back tracking.

Suggest a solution for 8 queen's problem.

- 3. (a) Explain about graph coloring and chromatic number.
  - (b) For the graph given below, draw the portion of the state space tree generated by procedure MCOLORING



- 4. (a) Compare and contrast between Brute force approach and Backtracking.
  - (b) Find the Hamiltonian circuit in the following graph by using backtracking.



- 5.(a) Write FIFOBB algorithm for the 0/1 knapsack problem.
  - (b) Explain the general method of Branch and Bound.
- 6. Apply the Branch and Bound algorithm to solve the TSP, for the following cost matrix.



- 7. (a) Explain how the traveling salesperson problem is solved by using LC Branch and Bound.
  - (b) Write the general algorithm for Branch and Bound.

- 8. (a) Compare and contrast between Brute force approach and Backtracking.
  - (c) Find the Hamiltonian circuit in the following graph by using backtracking.



9. What is traveling sales person problem? Solve the following sales person problem instance using branch and bound.

### **UNIT-VI**

- 1. Explain the NP-hard and NP complete classes with examples.
- 2. Explain the NP-hard and NP-complete problems.

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN :: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

| Assignment-1    |                                   |
|-----------------|-----------------------------------|
| Department      | Information Technology            |
| Year / Semester | III B.Tech (IT) – ISemester       |
| Subject         | Design and Analysis of Algorithms |
| Regulation      | R18                               |
| Subject Code    | UGIT5T0118                        |

#### **UNIT-I**

- 1. (a).Define an algorithm. What are the different criteria that satisfy the algorithms?
  - (b). Explain how algorithms performance is analyzed? Describe asymptotic notations?
- 2. (a) What are the different techniques to represent an algorithm. Explain?
  - (b) Give an algorithm to solve the towers of Hanoi problem.

#### **UNIT-II**

- 1. (a) Explain the binary search to find the elements 12,50,-2,45 from for the following set (3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 47)
  - (b) Derive the time complexity for Quick.
- 2. (a) Draw the tree of calls of merge sort for the following set.

$$(35, 25, 15, 10, 45, 75, 85, 65, 55, 5, 20, 18)$$

(b) Compare Quick sort algorithm performance with merge sort algorithm?

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN :: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

| Assignment-2    |                                   |
|-----------------|-----------------------------------|
| Department      | Information Technology            |
| Year / Semester | III B.Tech (IT) – I-Semester      |
| Subject         | Design and Analysis of Algorithms |
| Regulation      | R18                               |
| Subject Code    | UGIT5T0118                        |

| UNIT 3                        | UNIT 4                                                    |
|-------------------------------|-----------------------------------------------------------|
| Greedy method,prims Algorithm | Dynamic programming concepts, Travelling salesman problem |

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN :: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

| Assignment-3    |                                   |
|-----------------|-----------------------------------|
| Department      | Information Technology            |
| Year / Semester | III B.Tech (IT) – I Semester      |
| Subject         | Design and Analysis of Algorithms |
| Regulation      | R18                               |
| Subject Code    | UGIT5T0118                        |

|      | Regulation                                                                               | R18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Ī    | Subject Code                                                                             | UGIT5T0118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| L    |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| UN   | UNIT 5                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | 1.In analysis of algorithm, approximate relationship between the size of the job and the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      |                                                                                          | do is expressed by using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|      | Central tendency                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | Differential equation                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ` '  | Order of execution                                                                       | (d) Order of magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      |                                                                                          | variables. The statements below are intended to swap the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|      | -                                                                                        | ed to by P and Q. rewrite it so that it will work as intended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|      | Q; R = Q; Q = R;                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | R=Q; P=R; Q=R;                                                                           | (b) R=P; P=P; Q=Q;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| ` /  | P=P; P=Q; R=Q;                                                                           | (d) R=P; P=Q; Q=R;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|      | _                                                                                        | rithm for determining whether a sequence of parentheses is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                                                                          | mum number of parentheses that will appear on the stack AT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|      |                                                                                          | e algorithm analyzes: $(()(())(()))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| (a)  | ` '                                                                                      | (c) 3 (d) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| 4.Th | ne Knapsack problem wh                                                                   | nere the objective function is to minimize the profit is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| (-)  | Cara de                                                                                  | (h) D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|      | Greedy  Pack tracking                                                                    | (b) Dynamic 0 / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|      | Back tracking                                                                            | (d) Branch & Bound 0/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      | IT 6                                                                                     | South of the state |  |  |  |
|      |                                                                                          | for the following statements:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| I.   | -                                                                                        | apleteness provides a method of obtaining a polynomial time for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | algorithms.                                                                              | olom ara ND Hard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| II.  | All NP-complete prob<br>I is FALSE and II is T                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ` ′  | I is TRUE and II is FA                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ` /  | Both are TRUE                                                                            | ALUL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| ( )  | Both are FALSE                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ` ′  |                                                                                          | blem, the algorithm takes amount of time for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|      |                                                                                          | time to determine the optimal load, for N objects and W as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|      | pacity of KNAPSACK.                                                                      | and to determine the opinion road, for it objects and was the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | •                                                                                        | b) O(NW), O(N+W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|      |                                                                                          | d) O(NW), O(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| ` ′  |                                                                                          | gorithm used in solving the 8 Queens problem?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|      | (a)Greedy (b)Dynamic (c)Branch and Bound (d)Backtracking.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | 4. Sorting is not possible by using which of the following methods?                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|      | Insertion (b)Selection                                                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|      |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

# SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN: BHIMAVARAM (AUTONOMOUS) DEPARTMENT OF INFORMATION TECHNOLOGY

| Objective Questions |                                   |
|---------------------|-----------------------------------|
| Department          | Information Technology            |
| Year / Semester     | III B.Tech (IT) – I-Semester      |
| Subject             | Design and Analysis of Algorithms |
| Regulation          | R18                               |
| Subject Code        | UGIT5T0118                        |

| Subject Co                                                                                                              | de                                       | UGIT5T0               | 118     |                       |               |          |                             |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|---------|-----------------------|---------------|----------|-----------------------------|
|                                                                                                                         |                                          |                       |         |                       |               |          |                             |
| Unit-1:                                                                                                                 |                                          |                       |         |                       |               |          | 2                           |
| (01) Which of t                                                                                                         | _                                        |                       |         | -                     |               | _        |                             |
| (A) Definite ne                                                                                                         |                                          |                       |         |                       |               |          | (D) A and C                 |
|                                                                                                                         |                                          |                       |         |                       |               |          | apsack problem              |
| •                                                                                                                       | •                                        |                       | _       |                       |               |          | (D) all of the above        |
|                                                                                                                         |                                          | _                     | 31g O a | naiysis               | of the ru     | nnıng tı | ime (in terms of n)         |
| For (i=0; i <n; i<="" td=""><td></td><td></td><td>1</td><td>(1) (A)</td><td>2) (1</td><td>D) 0/1</td><td>~ ")</td></n;> |                                          |                       | 1       | (1) (A)               | 2) (1         | D) 0/1   | ~ ")                        |
|                                                                                                                         |                                          | (B) O(n)              | •       | , ,                   | ,             | , ,      | <u> </u>                    |
|                                                                                                                         |                                          | _                     | Rig O a | anaiysis              | or the ru     | ınnıng 1 | time (in terms of n)        |
| ,                                                                                                                       | =0; i< n; i++)                           |                       |         |                       |               |          |                             |
| ·                                                                                                                       | =i; j< n; j++)                           |                       |         |                       |               |          |                             |
| ,                                                                                                                       | =j; k< n; k+-                            | <b>+</b> )            |         |                       |               |          |                             |
| S++;                                                                                                                    | (n. 1)                                   | $(\mathbf{P}) O(n^2)$ |         | C) O(==               | 3)            | D) O(1-  | (a n)                       |
|                                                                                                                         | (n-1)                                    |                       |         |                       |               |          | _                           |
|                                                                                                                         |                                          |                       | Dig U   | anarys1               | s of the r    | ummg     | time (in terms of n)        |
| For $(i=0; i < n^2)$                                                                                                    | rn; 1++) A[<br>(n-1)                     |                       |         | C) O(=                | 3)            | D) O(1a  | (a n)                       |
| (A) O(<br>(06) Given f(n)                                                                                               |                                          |                       |         |                       |               |          |                             |
|                                                                                                                         | $i = log_2$ , $g(n)$<br>) is faster that |                       |         |                       |               |          | asici                       |
|                                                                                                                         | her f(n) or g(                           |                       |         |                       |               |          |                             |
| (07) Which of t                                                                                                         |                                          |                       | (D) IV  | Citile 1              | (11) 1101 g   | ,(11)    |                             |
|                                                                                                                         |                                          |                       | )       | (c) 10                | $m^2 + 9 - 6$ | $O(n^2)$ | (d) $6n^3 / (\log n + 1) =$ |
| $O(n^3)$                                                                                                                | - P (II ) (U)                            | n. – O(II             | ,       | (0) 10                | 11 1 7 - (    | J(11 )   | (a) on /(log li +1) =       |
|                                                                                                                         | (B)a                                     | and c                 | (C) a a | nd h                  | (D) all :     | are true |                             |
| (08)  n! =                                                                                                              | (Β)α                                     | uiiu C                | (C) a a | .110 0                | (D) all (     | are arue |                             |
| (A) $O(2^n)$                                                                                                            | (B) $\omega(2^n)$                        | (C) A                 | and B   | (D) (                 | $O(n^{100})$  |          |                             |
| None-                                                                                                                   | (-)(-)                                   | (0)11                 |         |                       | - ( )         |          |                             |
| (09) T (n) = 8T                                                                                                         | $(n/2) + n^2$ . T                        | (1) = 1  th           | en T (n | 1) =                  |               |          |                             |
| $(A) \Theta (n^2)$                                                                                                      |                                          |                       |         |                       | (n)           |          |                             |
| (10) T (n) = 3T                                                                                                         |                                          |                       | ` /     | (-)                   | \ /           |          |                             |
| (A) O $(n^2)$                                                                                                           |                                          |                       | (n)     | (D) (                 | $O(n^4)$      |          |                             |
| (11) T (n) = 4T                                                                                                         |                                          |                       | ` /     | \                     | ` /           |          |                             |
| $(A)\Theta(n^2)$                                                                                                        |                                          | $(C)\Theta$           | $(n^4)$ | (D) 6                 | (n)           |          |                             |
| (12) T (n) = 2T                                                                                                         |                                          |                       |         | ` /                   |               |          |                             |
| (A) O (log n)                                                                                                           |                                          |                       |         | (n <sup>2</sup> log 1 | n)            | (D) O    | $(n^2)$                     |
| (13) T (n) = 2T                                                                                                         |                                          |                       | :       | ٥                     |               |          |                             |
| $(A) \Theta (n^2)$                                                                                                      | $(B) \Theta (n^3)$                       | (C) Θ                 | $(n^4)$ | (D) 6                 | (n)           |          |                             |

```
(14) T (n) = 2T (n/2) + n^2 then T (n) =
                                                       (D) O (n^4)
                  (B) O (n^2)
(A) O (n^3)
                                     (C) O (n)
(15) T (n) = 9T (n/3) + n then T (n) =
(A) \Theta (n^4)
                  (B) \Theta (n<sup>3</sup>)
                                     (C) \Theta (n^2)
                                                        (D) \Theta (n)
(16) T (n) = T (n/2) + 1 then T (n) =
(A) O (\log n) \quad (B) O (2 \log n)
                                             (C) O (n log n)
                                                                        (D) O (n2)
(17) T (n) = T (n/2) + n2 then T (n) =
                   (B) \Theta (n3)
(A) \Theta (n4)
                                      (C) \Theta (n2)
                                                         (D) \Theta (n)
(18) T (n) = 4T (n/2) + n2 then T (n) =
(A) \Theta (n \log n) (B) \Theta (n3 \log n)
                                              (C) \Theta (n2 log n) (D) \Theta (n4 log n)
(19) T (n) = 7T (n/2) + n2 then T (n) =
(A) \Theta (n2.5)
                   (B) \Theta (n2.807) (C) \Theta (n2.85)
                                                             (D) \Theta (n2.75)
(20) T (n) = 2T (n/2) + n3 then T (n) =
(A) \Theta (n4)
                   (B) \Theta (n3)
                                      (C) \Theta (n2)
                                                         (D) \Theta (n)
(21) T (n) = T (9n/10) + n then T (n) =
                   (B) \Theta (n3)
                                                         (D) \Theta(n)
(A) \Theta (n4)
                                      (C) \Theta (n2)
(22) T (n) = 16T (n/4) + n2 then T (n) =
(A) \Theta (n \log n) (B) \Theta (n3 \log n)
                                              (C) \Theta (n2 log n) (D) \Theta (n4 log n)
(23) T (n) = 7T (n/3) + n2 then T (n) =
                   (B) \Theta (n3)
(A) \Theta (n4)
                                      (C) \Theta (n2)
                                                         (D) \Theta (n)
(24) T (n) = 7T (n/2) + n2 then T (n) =
                    (B) \Theta (nlog5)
(A) \Theta (nlog7)
                                         (C) \Theta (nlog 9)
                                                              (D) \Theta (nlog3)
(25) T (n) = 2T (n/2) + n3 then T (n) =
(A) \Theta (n4)
                   (B) \Theta (n3)
                                      (C) \Theta (n2)
                                                         (D) \Theta (n)
(26) T (n) = 2T (n/4) + \sqrt{n} then T (n) =
(A) \Theta (n log n) (B) \Theta (\sqrt{n \log n})
                                             (C) \Theta (n2 log n) (D) \Theta (n3 log n)
(27) T (n) = T (\sqrt{n}) +1 then T (n) =
(A) \Theta (n log n) (B) \Theta (\sqrt{n} log n)
                                              (C) \Theta (log n) (D) \Theta (n2 log n)
(28) T (n) = 100T (n/99) + log (n!) then T (n) =
(A) \Theta (n log n) (B) \Theta (\sqrt{n \log n})
                                             (C) \Theta (n2 log n) (D) \Theta (n3 log n)
(29) T (n) = T (n-1) + n4 then T (n) =
(A) \Theta (n4)
                   (B) \Theta (n3)
                                                         (D) \Theta (n)
                                      (C) \Theta (n2)
(30) T (n) = 2T (n/2) + 3n2 and T (1) = 11 then T (n) =
(A) O (n3)
                   (B) O (n2)
                                      (C) O(n)
                                                        (D) O (n4)
(31) T (n) = 1 \text{ for } n=1
            = 2 * T (n - 1)  for n > 1  then T (n) =
               (B) 2 \text{ n-1}
                                             (C) 2 n-2
(A) 2 n
                                                                 (D) 2 \text{ n-}3
(32) T (n) = 4T (n/2) + n2\sqrt{n} then T (n) =
(A) \Theta (n3 \sqrt{n}) (B) \Theta (n2)
                                      (C) \Theta (n2\sqrt{n})
                                                         (D) \Theta (n\sqrt{n})
(33) T (n) = 2T (n/2) + (n/\log n) then T (n) =
(A) \Theta (n log n) (B) \Theta (n log n log n) (C) \Theta (n2 log n log n)
                                                                           (D) \Theta (n2 log n)
(34) T (n) = T (n/2) + T (n/4) + T (n/8) + n then T (n) =
(A) \Theta (n4)
                   (B) \Theta (n3)
                                      (C) \Theta (n2)
                                                         (D) \Theta (n)
(35) Set defines as
(A) Distinct objects
                           (B) Similar elements (C) collection of elements
                                                                                          (D) objects
(36) A machine took 200 sec to sort 200 names, using bubble sort. In 800 sec, it can
approximately sort
(A) 400 names
                           (B) 800 names
                                                      (C) 750 names
                                                                                 (D) 1800 names
(37) Linked lists are not suitable for
(A) Insertion sort
                           (B) Binary search
                                                      (C) Radix sort
                                                                            (D) Polynomial manipulation
```

| (38) Which of the following is useful in imple             | U 1                | sort?                                  |                                       |
|------------------------------------------------------------|--------------------|----------------------------------------|---------------------------------------|
| (A) Stack (B) List (B) Set                                 | (D) Queue          |                                        |                                       |
| (39) A machine needs a minimum of 100 sec t                | to sort 1000 na    | mes by quick                           | sort. The minimum                     |
| time needed to sort 1000 names by quick sort.              | The minimum        | time needed                            | to sort 100 names                     |
| will be approximately?                                     |                    |                                        |                                       |
| (A) 50.2 sec (B) 6.7 sec (C) 72.7 sec                      | (D) 11.2 sec       |                                        |                                       |
| (40) Given 2 sorted lists of size 'm' and 'n' re           | spectively. Nui    | mber of comp                           | parisons needed in                    |
| the worst case by the merge sort algorithm wil             | ll be              |                                        |                                       |
| (A) $mn$ (B) $max(m,n)$ (C) $min$                          | n(m,n)             | (D) m+n-1                              |                                       |
| (41) The depth of a complete binary tree with              | 'n' nodes is       |                                        |                                       |
| (A) $\log (n+1)-1$ (B) $\log n$ (C) $\log$                 | (n-1)+1            | (D) $\log n + 1$                       |                                       |
| (42) Average successful search time taken by               | binary search o    | n a sorted arr                         | ay of items is                        |
| (A) 2.6 (B) 2.7 (C) 2.8                                    | (D) 2.9            |                                        |                                       |
| (43) Average successful search time for seque              | ntial search on    | 'n' items is                           |                                       |
| (A) $n/2$ (B) $(n-1)/2$ (C) $(n+1)/2$                      | 1)/2               | (D) n2                                 |                                       |
| (44) The maximum number of comparisons no                  | eeded to sort 7    | items using ra                         | adix sort is (assume                  |
| each item is a 4 digit decimal number)                     |                    |                                        | ,                                     |
| (A) 280 (B) 40 (C) 47                                      | (D) 38             |                                        |                                       |
| (45) In Randomized Quick sort, the expected 1              | running time of    | f any input is                         |                                       |
| (A) $O(n)$ (B) $O(n2)$ (C) $O(n \log n)$                   | ) (D) O            | (n3)                                   |                                       |
| (46) If Total complexity after micro analysis i            |                    |                                        | ogn+ 10,                              |
| The Big Oh complexity is                                   |                    |                                        |                                       |
| (A) $O(n^2)$ (B) $O(n^3)$ (C) $O(n\log n)$ (1)             | D) $O(n^2 \log n)$ |                                        |                                       |
| (47) In Strassen's Multiplication Algorithm th             |                    |                                        |                                       |
| A) $7T(n) + bn^2$ B) $7T(n/2) + bn^2$                      |                    | $on^2$ D                               | (n/2) + bn                            |
| (48) T (n) = 4 T (n/2) + n then in Big Oh Nota             |                    |                                        |                                       |
| (A) O(n2) B) O(4)                                          | (C) O(n)           | D) (                                   | $O(\log(n))$                          |
| (49) In $T(n) = a * T(n/b) + f(n)$ , a refers to           |                    | ,                                      | · · · · · · · · · · · · · · · · · · · |
| (A) Size of sub problem (B) No. of sub                     | problems           |                                        |                                       |
| (C) Size of the problem (D) Time to con                    | -                  | S                                      |                                       |
| (50) 0-1 knapsack be solved using                          |                    |                                        |                                       |
| (A) dynamic programming (B) B                              | acktracking        | (C) Branch                             | & Bound                               |
| (D) All A,B,C,E (E) Ge                                     |                    |                                        |                                       |
| (51) In depth first search algorithm the no. of            |                    |                                        | ake are                               |
|                                                            | D) depends on t    |                                        |                                       |
| (52) O $(f(n))$ minus $O(f(n))$ is equal to                | , 1                | <i>C</i> 1                             |                                       |
| · · · · · · · · · · · · · · · · · · ·                      | (C) f(n)           | (D) O(f(n))                            |                                       |
| (53) Quick sort is solved using                            |                    | ( ) - ( ( ))                           |                                       |
| . , -                                                      | edy Programm       | ing                                    |                                       |
|                                                            | nch and bound      | 8                                      |                                       |
| (54)  For i = 1  to n-1 do                                 |                    |                                        |                                       |
| 1.1 For $j = 1$ to $n-1-i$ do                              |                    |                                        |                                       |
| 2.2.1 If $(a[j+1] \le a[j])$ then swap $a[j]$ and $a[j+1]$ | 11                 |                                        |                                       |
| Given code is for                                          | • ]                |                                        |                                       |
| (A) Bubble sort (B) Insertion sort                         | (C) Quick So       | ort                                    | (D) Selection Sort                    |
| (55) Worst case complexity of quick sort is                | (c) Quick be       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (D) Selection Soft                    |
| (A) O(n) (B) O(logn)                                       | (C) O(nlogn)       | )                                      | (D) $O(n^2)$                          |
| (56) The sub problems in Divide and Conquer                |                    |                                        | $(D) \cup (II)$                       |
| A) Distinct (B) overlapping                                | (C) large size     |                                        | (D) small size                        |
| ,                                                          | (C) Im 50 bize     | -                                      | (-) 5111411 5120                      |

| (57) Which of the following name does             |                        |                                 |        |
|---------------------------------------------------|------------------------|---------------------------------|--------|
| (A) FIFO lists (B) LIFO list                      | (C) Piles              | (D) Push-down                   | lists  |
| (58) Which of the following data structu          | * *                    |                                 |        |
|                                                   | C) Queues D) Al        | l of above                      |        |
| (59) In a graph if e=(u, v) means                 |                        |                                 |        |
| (A) u is adjacent to v but v is not adjace        | ent to u               | (B) e begins at u and ends at   | V      |
| (C) u is processor and v is successor             |                        | (D) both b and c                |        |
| (60) An algorithm that calls itself direct        | •                      |                                 |        |
|                                                   | C) Polish notation     | (D) Traversal algorithm         |        |
| (61) In a Heap tree                               |                        |                                 |        |
| (A) Values in a node is greater than ever         | •                      | _                               | ) tree |
| (B) Values in a node is greater than even         | •                      |                                 |        |
| (C) Both of above conditions applies (D           |                        | 1.1                             |        |
| (62) The postfix form of the expression           | (A+B)*(C*D-E)*         | F/G is                          |        |
| (A) AB+ CD*E - FG /**<br>(C) AB + CD* E - *F *G / | (B) AB + CD*E -        | F **G /                         |        |
| (C) AB + CD*E - *F*G/                             | (D) AB + CDE * -       | * F *G /                        |        |
| (63) What is the postfix form of the following    |                        | sion -A/B*C\$DE                 |        |
| ` /                                               | B) A-BCDE\$*/-         |                                 |        |
|                                                   | D) A-BCDE\$*/          |                                 |        |
| (64) You have to sort a list L consisting         |                        | •                               | ents   |
| Which of the following sorting methods            | would be especially    | y suitable for such a task?     |        |
| (A) Bubble sort (E                                | 3) Selection sort      |                                 |        |
| (C) Quick sort (I                                 | D) Insertion sort      |                                 |        |
| (65) A technique for direct search is             |                        |                                 |        |
| (A) Binary Search (I                              | B) Linear Search       |                                 |        |
| (C) Tree Search ( $\Gamma$                        | ) Hashing              |                                 |        |
| (66) The searching technique that takes           |                        |                                 |        |
| (A) Linear Search (B) Binary Searc                |                        |                                 |        |
| (67) A mathematical-model with a colle            | ction of operations    | defined on that model is called | d      |
|                                                   | ) Abstract Data Typ    | e                               |        |
| (C) Primitive Data Type (I                        | O) Algorithm           |                                 |        |
| (68) The complexity of multiplying two            |                        | n*n and n*p is                  |        |
| (A) mnp 		 (B) mp                                 | (C) mn                 | (D) np                          |        |
| (69) In worst case Quick Sort has order           |                        |                                 |        |
| (A) O $(n \log n)$ (B) O $(n2/2)$ (C)             | C) $O(\log n)$ (D) $O$ | (n2/4)                          |        |
| (70) A full binary tree with n leaves con         | tains                  |                                 |        |
| (A) n nodes. (B) log 2 n nodes.                   |                        | odes. (D) n 2 nodes.            |        |
| (71) The quick sort algorithm exploit             | design ted             | chnique                         |        |
| (A) Greedy (B) Dynamic programm                   | ing (C)Divide and      | Conquer (D)Backtracking         |        |
| (72) The maximum degree of any vertex             | in a simple graph      | with n vertices is              |        |
| (A) $n-1$ (B) $n+1$ (C)                           | C) $2n-1$ (D) n        |                                 |        |
| (73) The total number of companions re            | quired to merge 4 se   | orted files containing 15, 3, 9 | and    |
| 8 records into a single sorted file is            | _                      |                                 |        |
| (A) 66 (B) 39 (C) 15                              | (D) 33                 |                                 |        |
| (74) The number of leaf nodes in a com            | plete binary tree of   | depth d is                      |        |
| (A) $2d$ (B) $2d-1+1$                             |                        |                                 |        |

```
(75) If x is initialize as x=100. What will be the value of x and y after step-4?
Step 1 x=100;
Step 2 Y=x++;
Step 3
         x=x+y;
Step 4 Y=++x;
(a)302,201
               (b) 201,302
                             (c)101,100
                                             (d)None of these
(76) Struct x
       int i:
       char c;
        union y{
       struct x a;
       double d;
       };
        printf("%d",sizeof(union y));
 (A)8
                   (B)5
                                      (C)4
                                                     (D)1
(77) Worst case complexity of the insertion sort algorithm is
                               (C) O(n-1)
(A) O(n2)
                (B) O(n)
                                               (D) O(n+1)
(78) Average case complexity of the insertion sort algorithm is
                (B) O(n)
                               (C) O(n-1)
(A) O(n2)
                                               (D) O(n+1)
(79) Best case complexity of the insertion sort algorithm is
                (B) O(n)
                                (C) O(n-1)
                                               (D) O(n+1)
(A) O(n2)
(80) Worst case complexity of the bubble sort algorithm is
                                (C) O(n2)
                (B) O(n4)
                                                (D) O(n)
(A) O(n3)
(81) Best case complexity of the bubble sort algorithm is
(A) O(n3)
                (B) O(n4)
                                (C) O(n2)
                                                (D) O(n)
(82) Average case complexity of the bubble sort algorithm is
(A) O(n3)
                (B) O(n4)
                                (C) O(n2)
                                                (D) O(n)
(83) Worst case complexity of the selection sort algorithm is
                (B) O(n4)
(A) O(n3)
                                (C) O(n2)
                                                (D) O(n)
(84) Average case complexity of the selection sort algorithm is
(A) O(n3)
                (B) O(n4)
                                                (D) O(n)
                                (C) O(n2)
(85) Best case complexity of the selection sort algorithm is
(A) O(n3)
                (B) O(n4)
                                (C) O(n2)
                                                (D) O(n)
(86) If a complete binary tree Tn has n=1000 nodes then its height is
               (B) 10
(A) 21
                              (C) 11
                                             (D) 12
(87) If a complete binary tree Thas n=1000000 nodes then its height is
(A) 21
               (B) 20
                              (C) 23
                                             (D) 22
(88) The running time of Strassen's algorithm for matrix multiplication is
               (B) \Theta (n3)
                               (C) \Theta (n2)
                                                (D) \Theta (n2.81)
(A) \Theta (n)
(89) The running time of Floyd-Warshall algorithm is
(A) \Theta (n)
               (B) \Theta (n3)
                               (C) \Theta (n2)
                                                (D) \Theta (n log n)
(90) Dijkastra's algorithm bears some similarity to
(A) BFS
                (B) prim's algorithm
                                              (C) DFS
                                                               (D) Both (A) & (C)
(91) The running time of Dijkastra's algorithm is
(A) O(V^2)
                (B) O(V+E)
                                (C) O(n \log n)
                                                        (D) all of the above
(92) kruskal's algorithm uses----- and prim's algorithm uses----- in determining the MST
(A) edges, vertex
                      (B)vertex, edges
                                             (C)edges,edges
                                                                    (D)vertex,vertex
```

| (93) The running time of krus                   | skal's algorithm for MS    | ST                             |                |
|-------------------------------------------------|----------------------------|--------------------------------|----------------|
| (A) O(E) $(B) O(V)$                             | C                          |                                |                |
| (94) We can perform a topolo                    |                            |                                | time.          |
| $(A) \Theta (V+E), \Theta (E)$ $(B) \Theta$     | _                          |                                |                |
| $(C) \Theta (V+E), \Theta (V+E)$ $(D) \epsilon$ | all of the above           |                                |                |
| (95) The running time of BFS                    |                            |                                |                |
|                                                 | (C) O(V+E)                 | (D) $\Theta$ (n <sup>2</sup> ) |                |
| (96) For insertion sort be                      |                            |                                |                |
| (A) n≥43 (B) n≤23                               | 9                          | nnot say                       |                |
| (97) Best case running time o                   |                            | ,                              |                |
| (A) O(n)                                        | (B) O(logn)                | (C) O(nlogn)                   | (D)            |
| $O(n^2)$                                        | -                          | _                              |                |
| (98) A characteristic of the d                  | ata that binary search to  | ree but the linear search ign  | ores, is the   |
| (A) Order of the list                           | (B) length of the          | ne list                        |                |
| (C) maximum value in the lis                    | t (D) me                   | an of data values              |                |
| (99) A sort which compares a                    | djacent elements in a li   | st and switches where nece     | ssary is a     |
| (A) insertion sort                              | (B) heap sort              |                                | · ·            |
| (C) quick sort                                  | (D) bubble sort            |                                |                |
| (100) A sort which iteratively                  | passes through a list to   | exchange the first element     | t with any     |
| element less than it and then i                 | _                          | •                              | ·              |
| (A) Insertion sort (B) sel                      | _                          |                                |                |
| (C) Heap sort (D) qu                            | ick sort                   |                                |                |
| (101) A sort which uses the b                   | inary tree concept such    | that any number is larger t    | han all the    |
| numbers is the subtree below                    |                            | ·                              |                |
| (A) Selection sort (B) ins                      | sertion sort (C) qui       | ick sort (D) heap so           | ort            |
| (102) which of the sorting alg                  |                            |                                |                |
| (A) Selection sort (B) ins                      | sertion sort (C) me        | erge sort (D) quick so         | ort            |
| (103) which of the following                    | sorting method is stable   | e?                             |                |
| (A) Straight insertion sort                     | (B) binary sear            | ch tree                        |                |
| (0) 01 11                                       | (D) Heap sort              |                                |                |
| (104) A complete binary tree                    | with the property that     | the value at each node is at   | least as large |
| as the values at its children is                | known as                   |                                | _              |
| (A) Binary search tree                          | (B) AVL tree               |                                |                |
| (C) Completely balanced tree                    | (D) Heap                   |                                |                |
| (105) The recurrence relation                   | $T(n) = mT(n/2) + an^2 is$ | s satisfied by                 |                |
| (A) $T(n) = O(n^m)$ (B) $T$                     | $f(n) = O(n \log m)$       | (C) $T(n) = O(n \log n)$ (I    | O) T(n)        |
| $=O(m \log n)$                                  |                            |                                |                |
| (106) The time required to find                 | d shortest path in a grap  | ph with n vertices and e edg   | ges is         |
| $(A) O (e) \qquad (B) O (n)$                    | $(C) O (e^2)$              | $(D) O (n^2)$                  |                |
| (107) The goal of hashing is to                 | o produce a search tree    | that takes                     |                |
| (A) O(1) time $(B) O($                          | $(n^2)$ time (C) O         | $(\log n) \text{ time}$ (D)    | O (n log n)    |
| time                                            |                            |                                |                |
| (108) which of the following                    | best described sorting?    |                                |                |
| (A) Accessing and processing                    | g each record exactly or   | nce                            |                |
| (B) Finding the location of the                 | e record with a given k    | ey                             |                |
| (C) Arranging the data in som                   | ne given order             |                                |                |
| (D) Adding a new record to the                  |                            |                                |                |
| (109) The worst case complex                    | xity of straight insertion | n sort algorithm to sort n ele | ements is      |
| (A) O(n) $(B) O(n log n)$                       | $(C) O(n^{1.2})$           | (D) $O(n^2)$                   |                |

| (110) The worst case complexity of binary in                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ (A) O(n) \qquad (B) O(n \log n) \qquad (C) O(n) $                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                     | nan every value in its left sub tree and value less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| than every value in its right sub tree, the tree                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) complete tree (B) full binary to                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           | aded tree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (112) Which of the following sorting procedu                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) Quick sort (B) Heap sort                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (113) which of the following shows the correct                                            | et relationship among some of the more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| common computing times on algorithms                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) $O(\log n) \le O(n) \le O(n^* \log n) \le O(2^n) \le$                                 | $O(n^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (B) $O(n) \le O(\log n) \le O(n^* \log n) \le O(2^n) \le O(2^n)$                          | $O(n^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (C) $O(n) \le O(\log n) \le O(n^* \log n) \le O(n^2) \le$                                 | $O(2^n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (D) $O(\log n) \le O(n) \le O(n^* \log n) \le O(n^2) \le$                                 | $O(2^n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                           | successful sequential search for an element in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| an array A(1n) is given by                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (A) $(n+1)/2$ (B) $n(n+1)/2$                                                              | (C) $\log n$ (D) $n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (115) the time complexity of linear search alg                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $(A) O(\log n)$ $(B) O(n)$                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (116) the time taken by binary search algorith                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| elements is                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           | (C) $O(n \log n)$ (D) $O(n^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (117) the time required to search an element i                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) $O(\log n)$ (B) $O(n)$                                                                | (C) O(1) (D) $O(n^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                           | given element in sorted linked list of length n is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                           | (C) O(n) (D) O(n log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                           | ich is pointed by an external pointer. What is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| time taken to delete the element which is succ                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pointer?                                                                                  | respon of the element pointed to by a given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1                                                                                         | (C) $O(n)$ (D) $O(n \log n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                           | at is the time taken to insert an element an after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| element pointed by some pointer?                                                          | W 10 0110 01110 01110 00 1110 010 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 011 |
| (A) O(1) (B) O( log n)                                                                    | $(C) O(n)$ $(D) O(n \log n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                           | erformed more efficiently by doubly linked list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| than by linear linked list?                                                               | fromed more efficiently by dodbly mixed list                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (A) Deleting a node whose location is given                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (B) searching an unsorted list for a given item                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (C) inserting a node after the node with a give                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (D) Traversing the list to process each node                                              | in location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                           | ed in a stack, one after the other starting from A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| · · · · · · · · · · · · · · · · · · ·                                                     | <del>_</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The stack is popped four items and each elemare deleted from the queue and pushed back of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                           | if the stack. Now on item is popped from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| stack. The popped item is                                                                 | (D) D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (A) A (B) B (C) C                                                                         | (D) D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (123) the time required to search an element i                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (A) O(1) (B) O( log n)                                                                    | (C) O(n) (D) O(n log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (124) for a linear search in an array of n elem                                           | ems the time complexity for best, worst and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| average case are, andrespectively.                                                        | (D) $O(1)$ $O(n)$ and $O(n/2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (A) O(n), O(1) and O(n/2)                                                                 | (B) $O(1)$ , $O(n)$ and $O(n/2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 elements is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (A) 15 (B) 20 (C) 25 (D) 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| timal parenthesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ization of a matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x chain product wh                                                                                                                                                                                                                                                                                                                                                                                                                         | nose sequence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 5,4,6,2,7>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| B) 154 (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C) 158 (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| timal parenthesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zation of a matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x chain product wh                                                                                                                                                                                                                                                                                                                                                                                                                         | nose sequence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 5,10,3,12, 5, 50,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| B) 2020 (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C) 2015 (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2030                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zation of a matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x chain product wh                                                                                                                                                                                                                                                                                                                                                                                                                         | nose sequence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| timal parenthesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ization of a matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x chain product wh                                                                                                                                                                                                                                                                                                                                                                                                                         | nose sequence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 5,4,3 (for three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e matrices)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| B) 130 (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C) 135 (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| timal parenthesi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zation of a matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x chain product wh                                                                                                                                                                                                                                                                                                                                                                                                                         | nose sequence of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 30,35,15,5,10,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,25> (for six ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | trices)                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| B) 7125 (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C) 7145 (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7135                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| items as follows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 20 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 30 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 40 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| n hold 60 pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ls find the optima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al solution                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Vi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 5 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 10 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 20 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 30 pounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 160\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Item5 40 pounds 160\$  The knapsack can hold 60 pounds find the solution by greedy technique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| n hold 60 pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ls find the solutic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ı<br>on by greedy techni                                                                                                                                                                                                                                                                                                                                                                                                                   | iane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| n hold 60 pound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ls find the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on by greedy techni                                                                                                                                                                                                                                                                                                                                                                                                                        | ique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (B) 260 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C) 220 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (D) 250\$                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (B) 260 \$ optimal Huffma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (C) 220 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (D) 250\$                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (B) 260 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (C) 220 \$ an code for alphal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (D) 250\$<br>peta of the following                                                                                                                                                                                                                                                                                                                                                                                                         | ng set of frequencies a:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| (B) 260 \$ optimal Huffma: :17, e:10, f:13 (B)0101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 220 \$ an code for alphal (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) 250\$ peta of the following 1001                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (B) 260 \$ optimal Huffma :17, e:10, f:13 (B)0101 unning time of H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C) 220 \$ an code for alphal (C) (Uffman on the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) 250\$ peta of the following 1001 t of n characters is                                                                                                                                                                                                                                                                                                                                                                                  | ng set of frequencies a: (D) 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| (B) 260 \$ optimal Huffma :17, e:10, f:13 (B)0101 unning time of H (B) O(n le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (C) 220 \$ an code for alphal (C) (C) (uffman on the se og n) (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) 250\$ peta of the following 1001 to f n characters is $O(n^2)$                                                                                                                                                                                                                                                                                                                                                                         | ng set of frequencies a:  (D) 1100  (D) O(log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (B) 260 \$ optimal Huffma :17, e:10, f:13 (B)0101 unning time of H (B) O(n le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (C) 220 \$ an code for alphal  (C) (uffman on the se og n) (C) (atrix chain multi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) 250\$  toeta of the following to finish characters is $O(n^2)$ plication of n matrix                                                                                                                                                                                                                                                                                                                                                   | ng set of frequencies a:  (D) 1100  (D) O(log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (B) 260 \$ optimal Huffma :17, e:10, f:13 (B)0101 unning time of H (B) O(n leanning time of m (B) $\Theta$ (n <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C) 220 \$ an code for alphala (C) (C) (uffman on the se og n) (C) (atrix chain multi $C$ ) $\Theta$ ( $n^2$ ) (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D) 250\$ peta of the following 1001 to f n characters is $O(n^2)$                                                                                                                                                                                                                                                                                                                                                                         | ng set of frequencies a:  (D) 1100  (D) O(log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (B) 260 \$ optimal Huffma :17, e:10, f:13 (B)0101 unning time of H (B) O(n leanning time of m (B) $\Theta$ (n³) the following is to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (C) 220 \$ an code for alphal  (C) (uffman on the se og n) (C) natrix chain multi (C) $\Theta$ (n <sup>2</sup> ) (E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) 250\$  toeta of the following 1001  t of n characters is $O(n^2)$ plication of n matro (D) $\Theta(n)$                                                                                                                                                                                                                                                                                                                                 | ng set of frequencies a:  (D) 1100  (D) O(log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (B) 260 \$ optimal Huffmate: 17, e:10, f:13 (B) 0101 unning time of H (B) O(n letter of materials) \text{ (B)} \text{ (n} \text{ (B)} \text{ (c)} \text | (C) 220 \$ an code for alphal  (C) (uffman on the se og n) (C) (atrix chain multi (C) $\Theta$ (n <sup>2</sup> ) (E rue (B) NP is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) 250\$  toeta of the following 1001  t of n characters is $O(n^2)$ plication of n matro (D) $\Theta(n)$                                                                                                                                                                                                                                                                                                                                 | ng set of frequencies a:  (D) 1100  (D) O(log n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| (B) 260 \$ optimal Huffmating in the continuity of the continuity of the continuity of the following is the continuity of | (C) 220 \$ In code for alphal  (C) Inffman on the se og n) (C) Inatrix chain multi (C) Θ (n²) (D) In true (B) NP is si (D) NP is si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (D) 250\$ peta of the following 1001 t of n characters is $O(n^2)$ plication of n matro D) $\Theta$ (n) subset of P                                                                                                                                                                                                                                                                                                                        | ng set of frequencies a:  (D) 1100  (D) O(log n) ices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B) 20 (Cotimal parenthesis 5,4,6,2,7> B) 154 (Cotimal parenthesis 5,10,3,12, 5, 50, B) 2020 (Cotimal parenthesis 4,10,3,12,20,7> B) 1324 (Cotimal parenthesis 5,4,3> (for three B) 130 (Cotimal parenthesis 30,35,15,5,10,20 B) 7125 (Cotimal parenthesis 30,35,15,15,10,20 B) 7125 (Cotimal parenthesis 30,35,15,15,10,20 B) 7125 (Cotimal parenthesis | B) 20 (C) 25 (D) timal parenthesization of a matrix 5,4,6,2,7> B) 154 (C) 158 (D) timal parenthesization of a matrix 5,10,3,12, 5, 50, 6> B) 2020 (C) 2015 (D) timal parenthesization of a matrix 4,10,3,12,20,7> B) 1324 (C) 1344 (D) timal parenthesization of a matrix 5,4,3> (for three matrices) B) 130 (C) 135 (D) timal parenthesization of a matrix 30,35,15,5,10,20,25> (for six max B) 7125 (C) 7145 (D) titems as follows    Wi | timal parenthesization of a matrix chain product who solution of the state of the s |  |

| (138) If every square of the board is             | visited, then the total number of knight moves of n-      |
|---------------------------------------------------|-----------------------------------------------------------|
| queen problem is                                  |                                                           |
| (A) $n^3-1$ (B) $n-1$                             |                                                           |
| (139) If every square of the board is             | visited, then the total number of knight moves of 4-      |
| queen problem is                                  |                                                           |
| (A) 14 (B) 15                                     | (C) 16 (D) 12                                             |
| (140) If every square of the board is             | visited, then the total number of knight moves of 8-      |
| queen problem is                                  |                                                           |
| (A) 64 (B) 62                                     | (C) 61 (D) 63                                             |
| (141) In which of the following cases             | s n-queen problem does not exist                          |
| (A) $n=2$ and $n=4$ (B) $n=4$ and $n$             | n=6 (C) $n=2$ and $n=3$ (D) $n=4$ and $n=8$               |
| (142) the total running time of knaps             | sack problem for a simple approach                        |
| (A) O(n) 	 (B) O(log n)                           | $(C) O(2^n \log n) 	 (D) O(2^n)$                          |
| (143) what is an optimal Huffman co               | ode for alphabeta of the following set of frequencies a:  |
| 01, b:01, c:02, d:03, e:05, f:8, g:13, h          |                                                           |
| (A) 001010 (B) 001111                             | (C) 111100 (D) 101010                                     |
| (144) what is an optimal Huffman co               | ode for alphabet b of the following set of frequencies a: |
| 45, b:13, c:12, d:16, e:9, f:5                    |                                                           |
| (A) 100 (B) 111                                   | (C) 001 (D) 101                                           |
| (145) what is an optimal Huffman co               | ode for alphabete of the following set of frequencies a:  |
| 29, b:25, c:20, d:12, e:05, f:09                  |                                                           |
| (A) 100 0 (B) 1110                                | (C) 0010 (D) 1011                                         |
|                                                   | d is taking overcharge for some operations in amortized   |
| analysis?                                         |                                                           |
| (A) Aggregate method                              | (B) accounting method                                     |
| (C) potential method                              | (D) both (A) and (C)                                      |
| (147) Which of the following method               | d is most flexible in amortized analysis?                 |
| (A) Aggregate method                              | (B) accounting method                                     |
|                                                   | (D) both (A) and (B)                                      |
|                                                   | d is taken different operations different charges in      |
| amortized analysis?                               |                                                           |
| (A) Aggregate method                              | (B) accounting method                                     |
| (C) potential method                              | (D) both (A) and (B)                                      |
| · · · · ·                                         | d is computing total cost of an algorithm in amortized    |
| analysis?                                         | 1 0                                                       |
| (A) Aggregate method                              | (B) accounting method                                     |
| (C) potential method                              | (D) both (C) and (B)                                      |
| (150) which of the following method               | l is credit as the potential energy to pay for future     |
| operations?                                       |                                                           |
| -                                                 | (B) accounting method                                     |
| (C) potential method                              | (D) both (A) and (B)                                      |
| (151) If all $c(i, j)$ 's and $r(i, j)$ 's are ca | alculated, then OBST algorithm in worst case takes one    |
| of the following time.                            |                                                           |
| (a) $O(n \log n)$                                 |                                                           |
| (b) O(n <sup>3</sup> )                            |                                                           |
| (c) $O(n^2)$                                      |                                                           |
| (d) O(log n)                                      |                                                           |
| (e) $O(n^4)$ .                                    |                                                           |

|                                                                                               | ary tree, then what is the weighted array for the TVS    |  |  |  |  |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| problem?                                                                                      |                                                          |  |  |  |  |
| =                                                                                             | (a) $[9, 2, 7, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4]$            |  |  |  |  |
| (b) [9, 2, 0, 0, 0, 0, 0, 0, 0, 0, 7, 4, 6                                                    | =                                                        |  |  |  |  |
| (c) $[9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 7, 4]$                                              | .]                                                       |  |  |  |  |
| (d) [9, 2, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 6, 4                                                 | <b>!</b> ]                                               |  |  |  |  |
| (e) [9, 2, 0, 0, 0, 7, 0, 0, 0, 0, 6, 4, 0, 0]                                                | 0]                                                       |  |  |  |  |
| (153) The upper bound on the time con                                                         | mplexity of the nondeterministic sorting algorithm is    |  |  |  |  |
| (a) $O(n)$                                                                                    |                                                          |  |  |  |  |
| (b) $O(n \log n)$                                                                             |                                                          |  |  |  |  |
| (c) O(1)                                                                                      |                                                          |  |  |  |  |
| (d) $O(\log n)$                                                                               |                                                          |  |  |  |  |
| (154) The worst case time complexity                                                          | of the nondeterministic dynamic knapsack algorithm is    |  |  |  |  |
| (a) $O(n \log n)$                                                                             |                                                          |  |  |  |  |
| (b) $O(\log n)$                                                                               |                                                          |  |  |  |  |
| (c) $O(n^2)$                                                                                  |                                                          |  |  |  |  |
| (d) O(n)                                                                                      |                                                          |  |  |  |  |
| (155) The time complexity of the norm                                                         | nal quick sort, randomized quick sort algorithms in the  |  |  |  |  |
| worst case is                                                                                 |                                                          |  |  |  |  |
| (a) $O(n^2)$ , $O(n \log n)$ (b) $O(n \log n)$ (c) $O(n \log n)$ , $O(n^2)$ (d) $O(n \log n)$ | $(n^2)$ , $O(n^2)$                                       |  |  |  |  |
| (c) $O(n \log n)$ , $O(n^2)$ (d) $O(n \log n)$                                                | $(n \log n), O(n \log n)$                                |  |  |  |  |
|                                                                                               | N', and the selection sort algorithm is used to sort it, |  |  |  |  |
| how many times a swap function is ca                                                          | lled to complete the execution?                          |  |  |  |  |
|                                                                                               | (b) log N times                                          |  |  |  |  |
| (c) N2 times (                                                                                | d) N-1 times                                             |  |  |  |  |
| (157) The Sorting method which is use                                                         | ed for external sort is                                  |  |  |  |  |
| (a) Bubble sort (b) Quick so                                                                  | ort (c) Merge sort (d) Radix sort                        |  |  |  |  |
| (158) In analysis of algorithm, approx                                                        | imate relationship between the size of the job and the   |  |  |  |  |
| amount of work required to do is expre                                                        | essed by using                                           |  |  |  |  |
| (d) Central tendency                                                                          |                                                          |  |  |  |  |
| (e) Differential equation                                                                     |                                                          |  |  |  |  |
| (f) Order of execution                                                                        | (d) Order of magnitude                                   |  |  |  |  |
| (159) P, Q and R are pointer variables                                                        | . The statements below are intended to swap the          |  |  |  |  |
| contents of the nodes pointed to by P a                                                       | and Q. rewrite it so that it will work as intended.      |  |  |  |  |
| P = Q; R = Q; Q = R;                                                                          |                                                          |  |  |  |  |
| (a) $R=Q$ ; $P=R$ ; $Q=R$ ;                                                                   | (b) $R=P$ ; $P=P$ ; $Q=Q$ ;                              |  |  |  |  |
| (c) P=P; P=Q; R=Q;                                                                            | (d) $R=P$ ; $P=Q$ ; $Q=R$ ;                              |  |  |  |  |
| (160) Consider the usual algorithm for                                                        | determining whether a sequence of parentheses is         |  |  |  |  |
| balanced. What is the maximum numb                                                            | per of parentheses that will appear on the stack AT      |  |  |  |  |
| ANY ONE TIME when the algorithm                                                               | analyzes: $(()(())(()))$                                 |  |  |  |  |
| (a) 1 (b) 2                                                                                   | (c) 3 (d) 4                                              |  |  |  |  |
|                                                                                               | he objective function is to minimize the profit is       |  |  |  |  |
|                                                                                               | •                                                        |  |  |  |  |
| (a) Greedy                                                                                    | (b) Dynamic 0 / 1                                        |  |  |  |  |
| (c) Back tracking                                                                             | (d) Branch & Bound 0/1                                   |  |  |  |  |

- (162) Choose the correct answer for the following statements:
- III. The theory of NP–completeness provides a method of obtaining a polynomial time for NPalgorithms.
- IV. All NP-complete problem are NP-Hard.
- (e) I is FALSE and II is TRUE
- (f) I is TRUE and II is FALSE
- (g) Both are TRUE
- (h) Both are FALSE
- (163) For 0/1 KNAPSACK problem, the algorithm takes \_\_\_\_\_ amount of time for memory table, and \_\_\_\_\_ time to determine the optimal load, for N objects and W as the capacity of KNAPSACK.
- (a) O(N+W), O(NW)
- (b) O(NW), O(N+W)
- (c) O(N), O(NW)
- (d) O(NW), O(N)
- (164) What is the type of the algorithm used in solving the 8 Queens problem?
- (a)Greedy
- (b)Dynamic
- (c)Branch and Bound
- (d)Backtracking.
- (165) Sorting is not possible by using which of the following methods?
- (a)Insertion
- (b)Selection
- (c)Deletion
- (d)Exchange

Sub Code: UGIT5T0118

## SHRI VISHNU ENGINEERING COLLEGE FOR WOMEN:: BHIMAVARAM (AUTONOMOUS)

(AICTE Approved & Permanently Affiliated to JNTUK, Kakinada)
DESIGN AND ANALYSIS OF ALGORITHMS QUESTION PAPER

| DESIGN AND ANALYSIS OF ALGORITHM                                                                                          | S QUESTION PAPER                         |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Examination:                                                                                                              | Year: III Semester: I                    |
| Time: 3hrs                                                                                                                | Max.Marks:60                             |
| Answering one Question from All Questions carry equal n                                                                   |                                          |
| UNIT-I                                                                                                                    |                                          |
| 1. What are the different techniques to represent an algorith OR                                                          | m. Explain? (10M)                        |
| 2. Give an algorithm to solve the towers of Hanoi problem.                                                                | (10M)                                    |
| UNIT-2                                                                                                                    |                                          |
| 3. Write the merge sort algorithm and Draw the tree of cal of elements (20, 30, 10, 40, 5, 60, 90, 45, 35, 25, 15, 55) OR | ls of merge for the following set (10M)  |
| 4. Write an algorithm for quick sort by using recursive methods.                                                          | nod. (10M)                               |
| UNIT-3                                                                                                                    |                                          |
| 5. Find the solution for the knapsack problem. When n=3, $(W_1, W_2, W_3)=(18, 15, 10,)$ . $(P1, P2, P3)=(25, 24, 15)$ OR | (10M)<br>and m=20.                       |
| 6.Explain the general concept of Dynamic programming.                                                                     | (10M)                                    |
| UNIT-4                                                                                                                    |                                          |
| 7. Explain, how the Hamiltonian circuit problem is solved                                                                 | by using the backtracking concept. (10M) |
| OR<br>8.Device a backtracking algorithm for m-coloring graph pro                                                          | oblem. (10M)                             |
| UNIT-5                                                                                                                    |                                          |
| 9.Explain how the traveling salesperson problem is solved OR                                                              | by using LC Branch and Bound             |
| 10. Write the general algorithm for Branch and Bound.                                                                     | . (10M)                                  |
| UNIT-6                                                                                                                    |                                          |
| 11 . Explain the 0/1 knapsack problem. Consider the follow problem n=3,m=20,                                              | -                                        |
| (p1,p2,p3)=(25,24,15), and $(w1,w2,w3)=(18,15,10)$ .                                                                      | (10M)                                    |

12. Explain the NP-hard and NP-complete problems

(10M)