

IN THE UNITED STATES PATENT & TRADEMARK OFFICE

Applicant:	DeChant, et al.)		
Serial No.:	10/074,782)	Group Art U	nit: 1651
Filed:	February 13, 2002)	Examiner:	K. C. Srivastava
For:	Mixture of Bacillus Thuringiensis Subspecies Israelensis and Bacillus Sphaericus for Management of Resistance to Mosquito))))	Zaminori	6. 6
	Larvicides)		

<u>INFORMATION DISCLOSURE STATEMENT</u>

Commissioner for Patents Washington, D.C. 20231

Sir:

Attached Form PTO/SB/08A lists references which may be considered to be material to the above-identified application by the Patent Examiner. Copies of the references are enclosed. Entry into the record is respectfully requested.

Respectfully submitted,

By Martin L. Katz, Reg. No. 25,021

Date: July 23, 2004

WOOD, PHILLIPS, KATZ, CLARK & MORTIMER Citicorp Center, Suite 3800 500 West Madison Street Chicago, Illinois 60661-2511 312/876-1800

CERTIFICATE OF MAILING

I hereby certify that this paper is being deposited with the United States Postal Service with sufficient postage at First Class Mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231 on July 23 2004.

Rebecca J. Willis

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT
(Use as many sheets as necessary)

(Ose us many sneets us necessary,

of

2

Application Number	10/074,782
Filing Date	February 13, 2002
First Named Inventor	DeChant
Group Art Unit	1651
Examiner Name	K. C. Srivastava
Attorney Docket No.	VAL6131P0511US

		OTHER PRIOR ART - NON PATENT LITERATURE DOCUMENTS	
Examiner Initials*	Cite No.	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T
		CHABANENKO, A.A., et al., Efficiency of Combined Preparation from Bacillussphaericus and Bac. Thuringiensis H-14 Against Bloodsucking Mosquito Larvae, Group of Arthors, 1992, UDK 615-285.036, Moscow	
		WIRTH, MARGARET C., et al., Cyt1A from Bacillus thuringiensis Synergizes Activity of Bacillus sphaericus against Aaedes aegypti (Diptera: Culicidae), Applied and Environmental Microbiology, Mar. 2000, pp. 1093-1097; Vol. 66, No. 3. California	
		TIANYONG, LI, et al., Coexpression of cyt1Aa of Bacillus thuringiensis subsp. Isreaelensis with Bacillus sphaericus Binary Toxin Gene in Acrystalliferous Strain of B. Thuringiensis; Current Microbiology, 1000, pp. 322-326; Col. 40; New York	
		WIRTH, MARGARET C., et al., Cyt1A from Bacillus thuringiensis Restores Toxicity of Bacillus sphaericus Against Resistant Culex quinquefasciatus (Diptera: Culicidae); J. Med. Entomol., 2000; pp. 401-407 Vol. 37(3); California	
		PORTER, A.G., Mosquitocidal Toxins, Genes and Bacteria: The Hit Squad; Parasitology Today, 1996; p. 175-180; Vol. 12. No. 5, Republic of Singapore	
		WIRTH, MARGARET C., et al., Cyt1Ab1 and Cyt2Ba1 from Bacillus thuringiensis subsp. Medellin and B. Thuringiensis subsp. Israelensis Synergize Bacillus sphaericus against Aedes aegypti and Resistant Culex quinquefasciatus (Diptera: Culcidae); Applied and Environmental Microbiology; July 2001; pp. 3280-3284; Vol. 67, No. 7, France	
		RAO, D.R.,et al., Development of a High Level of Resistance to Bacillus Sphaericus in a Field Population of Culex Quinquefasciatrus from Kochi India, Journal of the America Mosquito Association, 1995, 1191):1-15; India	
		NIELSEN-LEROUX, CHRISTINA, et al., Resistance to Bacillus sphaericus Involves Different Mechanisms in Culex pipiens (Diptera: Culcidae) Larvae; J. Med. Entomol.; 1997; pp. 321-327, Vol. 34(3); France	
		CHARLES, C-F., et al., Bacillus Sphaericus Toxins: Molecular Biology and Mode of Action; Annual Review of Entomology, 1996, pp 451-472; Vol. 41, California	
		BAR, E., et al., Cloning and Expression of Bacillus thuringiensis israelensis δ-Endotoxin DNA in B. Sphaericus; Journal of Invertibrate Pathology, pp. 149-158; Vol. 57, Israel	
		YUAN, ZHIMING, et al., High-Level Field Resistance to Bacillus sphaericus C3-41 in Culex quinquefasciatus from Southern China, Biocontrol Science and Technology, 2000, pp. 41-49; Vol. 10, China	,
		DAVIDSON, ELIZABETH W., et al., Comparative Field Trials of Bacillus sphaericus Strain 1593 and B. Thuringiensis var. israelensis Commercial Powder Formulations; J. Econ. Entomol., 1981, pp. 350-354; Vol. 74, America	
		TRISRISOOK, MAYUREE, et al., Molecular Closing of the 130-Kilodalton Mosquitocidal δ-Endotoxin Gene of Bacillus thuringiensis subsp. Israelensis in Bacillus sphaericus, Applied and Environmental Microbiology, June 1996; pp. 1710-1716; Vol. 56, No. 6;Thialand	

2000					
S S S S S S S S S S S S S S S S S S S	POOPATHI, S., et al., Evaluation of Synergistic Interaction Between Bacillus Spohaericus and Bacillus Thuriengiensis Var. Israelensis Against Culex Quiquef Asciatus Resistant and Susceptical to B. Sphaericus 1593M; J. Ecobio 1999; pp. 289-298; Vol. 11(4) India				
PATENT & THE	LEE, H. L., et al., Preliminary Field Evaluation of Indigenous (Malaysian) isolates and Commercial Preparation of Bacillus thuringiensis Serotype H-14 and Bacillus sphaericus serotype H5a5B against Anopheles Karwari; Tropical Biomedicine; 1990; pp. 49-57, Vol. 7; India				
	FEDERICI, BRIAN A., et al., Cyt1Aa Protein of Bacillus thuringiensis Is Toxic to the Cottonwood Leaf Beetle, chrysomela scripta, and Suppresses High Levels of Reisistance to Cry3Aa; Applied and Environmental Microbiology; Nov. 1998, pp. 4368-4371; Vol. 64, No. 11; America				
	WIRTH, M.C., et al., CytA enables CryIV Endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quiquefasciatus; Proc. Natl. Acad. Sci. USA, September 1997; pp. 10536-10540; Vol. 94; California				
	BAR, E., et al, Expression of Chromosomally Inserted Bacillus Thuringiensis Israelensis Toxin Genes in Bacillus Sphaericus, Journal of Invertebrate Pathology, 1998; pp. 206-213; Vol. 72; Kenya				
	BAR, E., et al., The Introduction into Bacillus sphaericus of the Bacillus thuriensis subsp. Medellin cyt1Ab1 Gene Results in Higher Susceptibility of Resistant Mosquito Larva Populations to B. Sphaericus, Applied and Environmental Microbiology; October 1998; pp. 3910-3916; Vol. 64, No. 10, Columbia				
	SILVA-FILHA, MARIA-HELENA, et al., Low-Level Resistance to Bacillus sphaericus in a Field-Treated Population of Culex quinquefasciatus (Diptera; Culcidae); J. Econ. Entomol. 1995; pp. 525-530; Vol. 88(3); America				
	MULLA, MIR S., et al., Emergenc of Resistance and Resistance Management in Field Populations of Tropical Culex Quinquefasciatus to The Microbia Crontrol Agent Bacillus Sphaericus; Journal of the American Mosquito Control Association; 2003; pp. 39-46, Vol. 19(1), India				
Examiner Signature	Date Considered				

*EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

^{&#}x27;Applicant's unique citation designation number (optional). ²Applicant is to place a check mark here if English language Translation is attached. This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) and application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you require to complete this form and/or suggestions for reducing this burden should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner For Patents, P.O. Box 1450, Alexandria, VA 22313-1450.