HW/SW CO-DESIGN OF AN AUTOMOTIVE EMBEDDED FIREWALL

Mert D. Pesé, Karsten Schmidt Audi Electronics Venture GmbH Harald Zweck Infineon Technologies AG

Agenda

Introduction
Concept
Implementation
Results
Outlook

Automotive cybersecurity is an emerging field

Definition of countermeasures

based on a holistic security concept for vehicles

Holistic network security concept consisting of four barriers

- Access control to network
- Secure on-board communication
- Data usage policies
- Anomaly detection and defense

Holistic network security concept consisting of four barriers

- Access control to network → Firewall
- Secure on-board communication
- Data usage policies
- Anomaly detection and defense

Agenda

Introduction
Concept
Implementation
Results
Outlook

E/E Architecture: Next-Generation Domain Architecture

Abstract system model

Evaluation of firewall performance based on automotive requirements

- E2E latency
- Jitter
- Throughput
- Memory/RAM consumption
- CPU utilization

INFORMATIONAL

Network Working Group Request for Comments: 3511 Category: Informational B. Hickman
Spirent Communications
D. Newman
Network Test
S. Tadjudin
Spirent Communications
T. Martin
GVNW Consulting Inc

Benchmarking Methodology for Firewall Performance

Status of this Memo

This memo provides information for the Internet community. It does

Latency and throughput requirements in in-vehicle networks

Traffic Type	Throughput	Max. End-to-End Delay [ms]
Control Data	1.6 - 16 kbit/s	≤ 10
Driver Assistance Camera Data	25.1 Mbit/s	≤ 45
Multimedia Audio Data	1.4 Mbit/s	≤ 150
Multimedia Video Data	11.8 Mbit/s	≤ 150
Bulk Traffic	$1.12~\mathrm{Mbit/s}$ - $11.2~\mathrm{Mbit/s}$	None

Source: Y. Lee and K. Park. Meeting the real-time constraints with standard Ethernet in an in-vehicle network

Experimental setup

Firewall features

Successive analysis stages on MCU

SAE INTERNATIONAL

Definition of assessment matrix based on requirements

(N)PF: (No) Packet Filter

SIF: Stateful Inspection Firewall

	CPU load (% MCU)	RAM consumption (% MCU)	E2E latency Worst Case (µs)
MCU NPF			
MCU PF			
MCU PF+SIF			
FPGA PF			
MCU+FPGA combined			

Adversary model

Network Control

Install or corrupt a device on the network to control the operation of other devices

Denial of Service

Deny access to network resources to other devices on the network

Snooping or Information Theft

Snoop the content of traffic on the network to extract information

Source: Broadcom

Agenda

Introduction
Concept
Implementation
Results
Outlook

Implementation

Infineon AURIX TriCore TC297-TF

Altera Cyclone V SoC Development Kit

Agenda

Introduction

Concept

Implementation

Results

Outlook

E2E latency MCU

500 rules: 2.3 ms \rightarrow 2.2 ms overhead

E2E latency FPGA

RAM consumption MCU

500 rules: 107 kB → 33 kB overhead

CPU utilization

Assessment matrix

TCP traffic

	CPU load (% MCU)	RAM consumption (% MCU)	E2E latency Worst Case (µs)
MCU NPF	8.8	9.7	132
MCU PF	8.835	9.9	210
MCU PF+SIF	8.83	10	147
FPGA PF	n/a	n/a	3
MCU+FPGA combined	8.83	9.8	150

Agenda

Introduction

Concept

Implementation

Results

Conclusion and Outlook

Conclusion and Outlook

Distributed approach: HW firewall in GW, SW firewall on DCs

Trade-off SW ← HW regarding latency and RAM

Future Work

- Content-addressable memory (CAM)
- Application Layer filtering (DoIP, SOME/IP)
- Deep Packet Inspection in HW
- Consideration of external traffic model

Contact

Mert D. Pesé 2260 Hayward Street Ann Arbor, MI 48109-2121

mpese@umich.edu (734) - 489 - 2825