Lecture 14. Turing Machines

Outline

- (Deterministic) Turing machines
- How TMs work
- How TMs are specified
- Computations for TMs

Turing Machines

- Pushdown automata are too restrictive (uses stack) to serve as models of general purpose computers.
- TMs have unlimited and unrestricted memory (allowing writing to tape and reading back the stored information).
- TM can do everything that a real computer can do.
- We shall see that even TM cannot solve certain problems; these problems are beyond the theoretical limits of computation.

TM is a formal model of computers, consisting of

- A tape with a left end, but extends indefinitely to the right,
- A finite control with a finite number of states, and
- A read/write head.

First example of Turing Machines

How does a TM recognize the following non-context-free language

$$\{w\#w|w\in\{0,1\}^*\}$$
?

M: On input string w:

- 1. zig-zag across the tape to corresponding positions on both sides of the # symbol to check whether these positions contain the same symbol. If they do not, or if no # is found, reject w. Else cross off matched symbols.
- 2. When all symbols to the left of # have been crossed off, check for any remaining symbols to the right of #. If any symbols remain, reject w, otherwise accept w.

Basic Operations of Turing Machines

- At the beginning of computation, assume that the left end of tape has a special symbol \triangleright ; the input string is placed just to the right of \triangleright , the rest of the tape is blank (\sqcup).
- At each step, the machine reads the symbol that the R/W head is currently pointing to, and depending on its current state and the symbol read.
 - 1. Enter the next state,
 - 2. Do one of the following (but not both):
 - Write a symbol in the current tape square, or
 - Move R/W head one tape square to the left or right.
- Computation stops when it enters a *halting state*. The machine might have read only part of the string.
- The symbols left on the tape when it halts is the *output*.
- TMs are deterministic.

Note: The initial position of the head is often assumed to be immediately to the right of \triangleright , but we can specify it to be anywhere.

Formal definition

A Turing machine is a quintuple $(K, \Sigma, \delta, s, H)$ where

- K a finite set of **states**,
- Σ alphabet, $(\sqcup, \rhd \in \Sigma, \text{ but } \to, \leftarrow \notin \Sigma)$,
- $s \in K$ the **initial state**,
- $H \subseteq K$ a set of halting states,
- ullet δ transition function

$$(K-H) \times \Sigma \rightarrow K \times (\Sigma \cup \{\leftarrow, \rightarrow\})$$

 $\delta(q,a)=(p,b)$ means if M is in state q and read a, then M will enter state p and

- writes b (overwrite a), if $b \in \Sigma$,
- moves the tape head if b is \leftarrow or \rightarrow

Note:

- M is deterministic since δ is a function (not a relation).
- δ is not defined for the states in H, i.e. the computation does not continue when the machine enters a halting state.

Assumptions

• Whenever the tape head reads \triangleright , it immediately moves to the right, i.e. the head does not fall off the left end, and \triangleright is never erased.

For all
$$q \in K - H$$
, if $\delta(q, \triangleright) = (p, b)$, then $b = \rightarrow$.

• Never write ▷ on the tape, i.e. ▷ always indicate left end of tape.

For all
$$q \in K - H$$
 and $a \in \Sigma$, if $\delta(q, a) = (p, b)$, then $b \neq \triangleright$.

Example 1: Change all a's to \sqcup 's until it encounters \sqcup .

$$M = (K, \Sigma, \delta, s, \{h\})$$

•
$$K = \{q_0, q_1, h\}, \Sigma = \{a, \sqcup, \rhd\}, s = q_0.$$

	δ	a		\triangleright
•	q_0	(q_1,\sqcup)	(h,\sqcup)	(q_0, \rightarrow)
	q_1	(q_0, a)	(q_0, \rightarrow)	(q_1, \rightarrow)

M alternate between states q_0 and q_1 , replacing an a with a blank \sqcup . Note that $\delta(q_1, a)$ is useless since M can never be in state q_1 while scanning an a if it is started in state q_0 . Nevertheless, since TMs are deterministic, we need to define $\delta(q, \sigma)$ for all values of $K - H \times \Sigma$.

Example 2: Here is a trivial TM to demonstrate that some TMs may loop forever.

$$M = (K, \Sigma, \delta, s, \{h\})$$

where

$$K = \{q_0, h\}, \Sigma = \{a, \sqcup, \rhd\}, s = q_0, H = \{h\},\$$

δ	a	Ш	\triangleright
$\overline{q_0}$	(q_0, \leftarrow)	(h,\sqcup)	(q_0, \rightarrow)

Starting from the left end marker, the machine scans to the right, if it sees a blank, it halts.

If it sees an a, then M will move left, and from then on it will indefinitely go back and forth between the two squares.

Configuration

Configuration: for specifying the status of a TM computation. (current state, current tape content with the tape head position indicated), e.g. $(q_0, \triangleright \sqcup a\underline{b}a)$.

* blanks to the right of string are not represented.

* blanks to the left of string are represented.

^{*} blanks to the right of string are represented if the tape head move beyond the string.

Configuration

Let C_i be configurations.

• if M can go from C_1 to C_2 in a single step, we write

$$C_1 \vdash_M C_2$$

 \bullet Computation by M

$$C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M \cdots \vdash_M C_n$$

- $\bullet \vdash_M^*$: yields in 0, 1 or more steps.
- $\bullet \vdash_M^n$: yields in n steps.

Configuration

Example: refer to the TM in Example 1.

$$M = (K, \Sigma, \delta, s, \{h\})$$

where $K = \{q_0, q_1, h\}, \Sigma = \{a, \sqcup, \rhd\}, s = q_0.$

δ	a	Ш	\triangleright
$\overline{q_0}$	(q_1,\sqcup)	(h,\sqcup)	(q_0, \rightarrow)
$\overline{q_1}$	(q_0, a)	(q_0, \rightarrow)	(q_1, \rightarrow)

Computation:

$$(q_0, \underline{\rhd} aaa) \vdash (q_0, \rhd \underline{a}aa) \vdash (q_1, \rhd \underline{\sqcup} aa) \vdash (q_0, \rhd \sqcup \underline{a}a) \vdash$$

$$(q_1, \rhd \sqcup \underline{\sqcup} a) \vdash (q_0, \rhd \sqcup \sqcup \underline{a}) \vdash (q_1, \rhd \sqcup \sqcup \underline{\sqcup}) \vdash$$

$$(q_0,\rhd\sqcup\sqcup\sqcup\underline{\sqcup})\vdash(h,\rhd\sqcup\sqcup\sqcup\underline{\sqcup})$$

Graphical Notation for Turing Machines

- TMs in the tabular form is complex and hard to interpret.
- Need a hierarchical graphical notation
 - Build complex machines from simpler ones
 - Arrows denote transitions, but connecting TMs, rather than states.

Basic machines

1. Symbol-writing machines:

 M_a : writes a in the current square (no matter what is read from there) and halts.

$$M_a = (\{s, h\}, \Sigma, \delta, s, \{h\}).$$

 $\delta(s, \sigma) = (h, a), \text{ for any } \sigma \in \Sigma - \{\triangleright\},$
 $\delta(s, \triangleright) = (s, \rightarrow).$

For each $\sigma \in \Sigma - \{ \triangleright \}$, define M_{σ} .

2. Head-moving machines:

 M_{\rightarrow} : moves head one square to the right and halts.

$$M_{\rightarrow} = (\{s, h\}, \Sigma, \delta, s, \{h\}).$$

 $\delta(s, \sigma) = (h, \rightarrow), \text{ for any } \sigma \in \Sigma - \{\triangleright\},$
 $\delta(s, \triangleright) = (s, \rightarrow).$
 M_{\leftarrow} is defined similarly.

 M_a is abbreviated as a.

 M_{\rightarrow} and M_{\leftarrow} are abbreviated as R and L, respectively.

If M_1 , M_2 , and M_3 are TMs, then the above machine operates as follows:

- Start at the initial state of M_1 , simulate the operation of M_1 till M_1 halts.
- If the currently scanned symbol is a, run M_2 with the output of M_1 as the input to M_2 and the final head position of M_1 as the initial head position of M_2 . If M_2 halts, then the composite machine halts. The output of the composite machine is that of M_2 .
- Otherwise if the currently scanned symbol is b, run M_3 with the output of M_1 as the input to M_3 and the final head position of M_1 as the initial head position of M_3 . If M_3 halts, then the composite machine halts. The output of the composite machine is that of M_3 .

Combining TMs

It is clear that a composite TM can be explicitly defined using the definitions of its constituents:

$$M_1 = (K_1, \Sigma, \delta_1, s_1, H_1)$$

 $M_2 = (K_2, \Sigma, \delta_2, s_2, H_2)$
 $M_3 = (K_3, \Sigma, \delta_3, s_3, H_3)$
Assume K_1, K_2, K_3 are disjoint.

Composite machine:
$$M = (K, \Sigma, \delta, s, H)$$
, where $K = K_1 \cup K_2 \cup K_3$, $s = s_1$, $H = H_2 \cup H_3$.

For each $\sigma \in \Sigma$, $q \in K - H$, need to define $\delta(q, \sigma)$:

• If
$$q \in K_1 - H_1$$
, $\delta(q, \sigma) = \delta_1(q, \sigma)$

• If
$$q \in K_2 - H_2$$
, $\delta(q, \sigma) = \delta_2(q, \sigma)$

• If
$$q \in K_3 - H_3$$
, $\delta(q, \sigma) = \delta_3(q, \sigma)$

• If
$$q \in H_1$$
,

$$\delta(q, a) = (s_2, a)$$

$$\delta(q,b) = (s_3,b)$$

$$\delta(q,\sigma) = (h,\sigma)$$
 where $h \in H_2 \cup H_3$ if $\sigma \neq a,b$

Graphical notation

$$> R \longrightarrow a \equiv Ra$$

Move head right one square, then write a

3)
$$> R \xrightarrow{a, b \sqsubseteq \ } R \equiv > R \longrightarrow R \equiv RR \equiv R^2$$
if $\Sigma = \{a, b \sqsubseteq \ \}$

Move head right one square; then, if that square contains an a, b, $\ \ \ \ \$, or $\ \ \$ moves head one square further to the right.

Scans to the right until it finds a nonblank square, then copies the symbol on to the square immediately to the left of where it was found.

Graphical notation

4)
$$\nearrow$$
 $\stackrel{-}{\square}$ \equiv R_{\square}

Finds the first blank square to the right of currently scanned square.

 $R_{\,\bigsqcup}$

 \mathbf{L}_{\bigsqcup}

L

Copying machine

Assume the input string w contains only nonblank symbols. Transform $\triangleright \sqcup w \underline{\sqcup}$ into $\triangleright \sqcup w \underline{\sqcup} w \underline{\sqcup}$. (note here we specify the tape head as starting at a position other than immediately to the right of \triangleright).

- 1. Scan left until the first blank symbol is encountered, then move right. $(L_{\sqcup} \to R)$
- 2. Remember the current symbol σ (using the finite control), and replace it by a blank symbol.
- 3. Move right to the very end of the tape content and pass the first blank (R_{\sqcup}^2) and write the remembered symbol σ there.
- 4. Scan left until the second blank is encountered (i.e. where the last copied symbol was blanked out) and write back that symbol $(L^2_{\square}\sigma)$. Then move right and repeat the process.

- $ightharpoonup \sqcup abb \sqcup$
- $ightharpoonup \sqcup bb \sqcup a$
- $ightharpoonup \sqcup abb \sqcup a$
- $ightharpoonup \sqcup a \sqcup b \sqcup a$
- $ightharpoonup \sqcup a \sqcup b \sqcup ab$
- $ightharpoonup \sqcup abb \sqcup ab$
- $ightharpoonup \sqcup ab \sqcup \sqcup ab$
- $ightharpoonup \sqcup ab \sqcup \sqcup abb$
- $ightharpoonup \sqcup abb \sqcup abb$

Left-shifting machine S_{\leftarrow}

Transform $\triangleright \sqcup w \underline{\sqcup}$ into $\triangleright w \underline{\sqcup}$ (error in text book).

- 1. Scan left until the first blank symbol is encountered, then move right. $(L_{\sqcup} \to R)$
- 2. If the current symbol is not a blank, write that symbol to the left of current position $(L\sigma)$, go to 4.
- 3. Else if the current symbol is a blank, write a blank to the left of current position and stop $(L \sqcup)$.
- 4. Move right to the next symbol and repeat the process.