Sprawozdanie – Projektowanie Efektywnych Algorytmów – Projekt

Projekt nr 3 – Implementacja i analiza efektywności algorytmu genetycznego (ewolucyjnego) dla problemu komiwojażera

Autor:	Adam Czekalski
Nr indeksu:	264488
Termin:	Piątek, godz. 13:15 – 15:00
Prowadzący:	dr inż. Jarosław Mierzwa
Data oddania:	26.01.2024 r.

1. Wstęp teoretyczny

1.1. Opis ogólny algorytmu

Nazwa i działanie algorytmu genetycznego nawiązuje do zjawiska ewolucji biologicznej. Dana jest populacja o określonej wielkości. Każdy z osobników ma przypisany do siebie chromosom, który składa się z genów, oraz wartość funkcji przystosowania. Osobniki podlegają procesie selekcji (oceny). Następnie wybrane osobniki podlegają procesie reprodukcji – mogą się skrzyżować pod pewnym prawdopodobieństwem a następnie zmutować pod pewnym prawdopodobieństwem. Powstaje SUBpopulacja, która podlega ocenie. Na koniec uruchamiany jest proces sukcesji – najgorzej przystosowane do środowiska wymierają, najsilniejsze natomiast przetrwają. Rodzi się nowa populacja. Proces powtarza się.

Dla problemu komiwojażera wygląda to następująco: na początku zostaje wygenerowana losowa populacja o określonej wielkości. Dla każdego z osobników, chromosom jest reprezentowany przez ciąg wierzchołków (genów) reprezentujących cykl Hamiltona. Natomiast wartość funkcji przystosowania jest reprezentowana przez długość ścieżki.

1.2. Opis użytych rozwiązań w algorytmie

• Selekcja

Użyto selekcji rankingowej, polegającej na tym, że populacja sortowana jest od najlepszej (najmniejszej) wartości funkcji przystosowania do najgorszej (największej) wartości funkcji przystosowanych osobników przechodzi do procesu reprodukcji (reszta zostaje usunięta z populacji, elityzm), gdzie:

$$n = 0.25 * initialPopulationSize$$

Krzyżowanie

Losowane są 2 różne losowe osobniki z pozostałej populacji. Następnie krzyżowanie zachodzi pod prawdopodobieństwem $p_k=0.8$. Użyto metody OX, która przebiega następująco:

Np. dane są 2 chromosomy (ścieżki): track1={0,1,2,3,4,5,6,7,8}, track2={8,2,6,7,1,5,4,0,3}

firstCrossoverPoint = 3 (wylosowany z przedziału [0; track1.size())

secondCrossoverPoint = 6 (wylosowany z przedziału [firstCrossoverPoint+1; track1.size())

Dziecko wypełniane jest wartościami "-1".

Na początku do potomka kopiowany jest segment z rodzica nr 1:

Następnie rozpoczynając z miejsca secondCrossoverPoint + 1 w potomku i rodzicu nr 2:

Sprawdzamy czy kolejne miasta z rodzica nr 2 występują w potomku. Robimy to do momentu dojścia do końca ścieżki w rodzicu nr 2. 0 nie występuje w potomku, więc zostaje wstawione; 3 już występuje, więc nie zostanie wstawione:

W rodzicu nr 2 doszliśmy już do końca ścieżki, więc wracamy do jej początku:

Iterujemy przez nią aż do secondCrossoverPoint włącznie.

8 nie występuje w potomku, więc je wstawiamy. W potomku doszliśmy do końca ścieżki, więc wracamy na jego początek:

2 także wstawiamy; 6 nie wstawiamy, ponieważ już występuje w ścieżce; 7 wstawiamy, ponieważ nie występuje w ścieżce; 1 także. Finalna ścieżka w dziecku wygląda następująco:

Mutacje

Zachodzą z prawdopodobieństwem $p_m=0.01$.

Transposition mutation

Ta mutacja opiera się na zamianie 2 losowo wybranych miast w ścieżce: randomTownIndex = 2 [123456789]

Wywołujemy metodę swap() na danych miastach. W efekcie:

[127456389]

o Inversion mutation

Ta mutacja opiera się na wybraniu 2 losowych punktów w ciągu miast i odwróceniu ich kolejności

randomTownIndex1 = 2

randomTownIndex2 = 6

[123456789]

W tym celu odkładamy wszystkie miasta z wylosowanego przedziału na stos. Po czym w tym przedziale podmieniamy wartości biorąc je ze stosu. W efekcie:

[127654389]

2. Opis programu – opis najważniejszych klas w projekcie

Klasa GeneticAlgorithm:

Pola klasy:

- int stopCriteria zmienna przechowująca kryterium stopu (czas określony w sekundach)
- int initialPopulationSize zmienna przechowująca początkową wielkość populacji
- double mutationRate zmienna przechowująca wartość współczynnika mutacji
- int mutationMethod zmienna przechowująca wybrany numer metody mutacji (1 transposition mutation, 2 – inversion mutation)
- double crossOverRate zmienna przechowująca wartość współczynnika krzyżowania
- int crossOverMethod zmienna przechowująca wybrany numer metody krzyżowania (1 – OX)
- std::vector<std::pair<int, std::vector<int>>> population wektor przechowujący aktualną populację. Przechowywana jest w postaci: <wartość funkcji przystosowania, ścieżka>

- std::vector<std::pair<int, std::vector<int>>> children wektor przechowujący nowo
 powstającą populację. Przechowywana jest w tej samej postaci co w wektorze
 aktualnej populacji
- double whenFound zmienna przechowująca czas w sekundach, kiedy zostało znalezione najlepsze rozwiązanie
- std::vector<int> bestSolution wektor przechowujący ciąg wierzchołków ścieżki najlepszego znalezionego rozwiązania
- int bestObjectiveFunction zmienna przechowująca najlepszą znalezioną wartość funkcji przystosowania
- std::list<std::pair<double,int>> save lista wykorzystywana w trakcie testów służy do zapisu każdej poprawy ścieżki w postaci (czas znalezienia w sekundach, wartość funkcji przystosowania)
- metoda tworząca losowe rozwiązanie początkowe:

• metoda wykonująca krzyżowanie typu OX (Order Crossover)

```
//in range [begin, track1.size()-1]

for (int i = begin; i < track1.size(); i++) {

    //if it's not visited, we put it in path
    if (!visited[track2[i]]) {
        child[j] = track2[i];
        visited[track2[i]] = true;
        j++;

    }

//if we reached last index in child, we must change it to 0

if(j == track1.size()){
    j = 0;

    //in range [0, secondCrossoverPoint]

for (int i = 0; i <= secondCrossoverPoint; i++) {
    if (!visited[track2[i]]) {
        child[j] = track2[i];
        visited[track2[i]] = true;
        j++;
        //if we reached last index in child, we must change it to 0
        if(j == track1.size()){
        if (j ==
```

• metoda wykonująca mutację typu transposition:

• metoda wykonująca mutację typu inversion:

Klasa Timer:

Czas mierzony jest w mikrosekundach za pomocą klasy Timer, za pomocą biblioteki <windows.h>. Po wywołaniu metody startTimer() zostaje odczytana zostaje liczba "tiknięć" od ostatniego restartu systemu. Następnie po wywołaniu metody stopTimer(), znowu odczytana zostaje liczba "tiknięć" a następnie zostaje ona odjęta od wartości odczytanej z wywołaniem metody startTimer() i podzielona przez wartość frequency = 10MHz.

```
#include "Timer.h"

| Clong long int Timer: readQPC(){
| LARGE_INTEGER count; | QueryPenformanceCounter(|pPunformanceCount); //read number of ticks since the last restart of the system return((long long int)count.QuadPart); //64b integer
| Clong long inter:startImer(){
| QueryPenformanceGrequency(|bEnguency (LARGE_INTEGER*)&frequency); //10MHz |
| Start = readQPC(); //number of ticks since the last restart of the system |
| Clong long limer:stopTimer(){
| Clong long limer() | Clong limer() | |
| Clong long limer() | Clong limer() |
| Clong long limer() | Clong limer() |
| Clong long limer() | Clong limer() | Clong limer() |
| Clong long limer() | Clong limer() | C
```

Klasa FileWriter:

Po każdym teście zapisuje każdą poprawę ścieżki i czas znalezienia do pliku w formacie: "nazwaPlikuZGrafem_rozmiarPoczątkowejPopulacji_metodaMutacji_nrTestu.txt", np. "ftv170.atsp_2500_1_1.txt". Zapisuje także najlepszą znalezioną ścieżkę z danego testu do pliku w formacie:

"nazwaPlikuZGrafem_rozmiarPoczątkowejPopulacji_metodaMutacji_nrTestu_path.txt", np. "ftv170.atsp_2500_1_1_path.txt.

3. Dane w postaci tabel i wykresów

Wykonano testy dla następujących rozmiarów populacji: . Dla każdego rozmiaru populacji, pliku z grafem oraz sposobu mutacji uruchomiono 5 testów. Zawsze przyjmowano współczynnik mutacji $p_m=0.01$ oraz współczynnik krzyżowania $p_k=0.8$.

3.1. Graf ftv47.atsp

Jako kryterium stopu przyjęto 2 minuty.

Wielkość instancji	Rodzaj mutacji	Nr pomiaru	Czas znalezienia		Wynik
50000	transposition	1		2.52127	1782
50000	transposition	2		2.52127	1784
50000	transposition	3		3.07182	1862

50000	transposition	4	3.24279	1777
50000	transposition	5	2.67337	1875
50000	inversion	1	3.01038	1782
50000	inversion	2	2.98912	1784
50000	inversion	3	2.7581	1789
50000	inversion	4	3.00696	1796
50000	inversion	5	4.51584	1777
75000	transposition	1	4.04603	1782
75000	transposition	2	4.71015	1789
75000	transposition	3	4.9678	1790
75000	transposition	4	6.49792	1842
75000	transposition	5	6.02432	1784
75000	inversion	1	4.59643	1784
75000	inversion	2	4.84858	1791
75000	inversion	3	4.64307	1855
75000	inversion	4	5.41941	1790
75000	inversion	5	4.48546	1789
100000	transposition	1	4.95766	1782
100000	transposition	2	5.57118	1826
100000	transposition	3	5.24899	1816
100000	transposition	4	8.48607	1803
100000	transposition	5	5.60842	1799
100000	inversion	1	5.36096	1789
100000	inversion	2	5.29906	1800
100000	inversion	3	4.99819	1789
100000	inversion	4	5.21359	1789
100000	inversion	5	5.95924	1776

Najlepsze wyniki:

Wielkość instancji	Sposób krzyżowania	Sposób mutacji	Wartość funkcji przystosowania	Błąd
50000	OX	transposition	1777	0.06%
75000	OX	transposition	1777	0.06%
100000	OX	transposition	1782	0.34%
50000	OX	inversion	1782	0.34%
75000	OX	inversion	1784	0.45%
100000	OX	inversion	1776	0.00%

3.2. Graf ftv170.atsp

Jako kryterium stopu przyjęto 4 minuty.

Wielkość instancji	Rodzaj mutacji	Nr pomiaru	Czas znalezienia	Wynik
50000	transposition	1	47.8481	3795
50000	transposition	2	38.5218	3584
50000	transposition	3	52.4212	3327
50000	transposition	4	38.9035	3438
50000	transposition	5	26.9782	3354
50000	inversion	1	22.4215	3769
50000	inversion	2	41.2585	3847
50000	inversion	3	35.2858	3408
50000	inversion	4	26.6795	4043
50000	inversion	5	36.1508	3634

75000	transposition	1	48.2823	3684
75000	transposition	2	59.9892	3678
75000	transposition	3	60.0426	3335
75000	transposition	4	55.7297	3650
75000	transposition	5	82.2517	3540
75000	inversion	1	68.2729	3610
75000	inversion	2	68.3282	3388
75000	inversion	3	46.2025	3617
75000	inversion	4	56.5003	3497
75000	inversion	5	51.0411	3489
100000	transposition	1	62.0472	3669
100000	transposition	2	113.805	3656
100000	transposition	3	71.8887	3646
100000	transposition	4	107.71	3873
100000	transposition	5	83.7614	3248
100000	inversion	1	51.2049	3316
100000	inversion	2	68.6252	3660
100000	inversion	3	54.8819	3665
100000	inversion	4	63.204	3414
100000	inversion	5	102.11	3473

Wielkość instancji	Sposób krzyżowania	Sposób mutacji	Wartość funkcji przystosowania	Błąd
50000	OX	transposition	3355	21.78%
75000	OX	transposition	3335	21.05%
100000	OX	transposition	3248	17.89%
50000	OX	inversion	3408	23.70%
75000	OX	inversion	3388	22.98%
100000	OX	inversion	3316	20.36%

3.3. Graf rbg403.atsp

Jako kryterium stopu przyjęto 6 minut.

Wielkość				
instancji	Rodzaj mutacji	Nr pomiaru	Czas znalezienia	Wynik
5000	0 transposition	1	282.5	5 2470
5000	0 transposition	2	295.36	2 2501
5000	0 transposition	3	298.07	5 2467
5000	0 transposition	4	192.06	5 2485
5000	0 transposition	5	257.26	4 2474
5000	0 inversion	1	106.49	6 2527
5000	0 inversion	2	120.7	4 2504
5000	0 inversion	3	107.4	1 2514
5000	0 inversion	4	132.68	4 2505
5000	0 inversion	5	107.71	7 2517
7500	0 transposition	1	241.92	6 2466

75000	transposition	2	341.419	2474
75000	transposition	3	307.801	2485
75000	transposition	4	359.767	2493
75000	transposition	5	246.158	2478
75000	inversion	1	171.977	2485
75000	inversion	2	173.121	2515
75000	inversion	3	158.57	2478
75000	inversion	4	196.159	2483
75000	inversion	5	165.555	2512
100000	transposition	1	304.539	2469
100000	transposition	2	299.236	2481
100000	transposition	3	295.866	2479
100000	transposition	4	321.828	2470
100000	transposition	5	269.971	2488
100000	inversion	1	211.063	2533
100000	inversion	2	170.099	2504
100000	inversion	3	222.633	2492
100000	inversion	4	215.382	2494
100000	inversion	5	191.908	2502

Wielkość instancji	Sposób krzyżowania	Sposób mutacji	Wartość funkcji przystosowania	Błąd
50000	OX	transposition	2474	0.37%
75000	OX	transposition	2466	0.04%
100000	OX	transposition	2469	0.16%
50000	OX	inversion	2504	1.58%
75000	OX	inversion	2478	0.53%
100000	OX	inversion	2492	1.10%

3.4. Porównanie algorytmu genetycznego z symulowanym wyżarzaniem

			Długość ścieżki		
Długość ścieżki GA	Błąd	Czas	SA	Błąd	Czas
3316	20.36%	51.2049	3141	14.01%	151.563

4. Wnioski

Rozwiązanie problemu komiwojażera przez algorytm symulowanego wyżarzania okazał się bardziej wydajny niż przez algorytm genetyczny. Może to wynikać z faktu że zaimplementowany algorytm genetyczny tworzy na początku losową populację, a w symulowanym wyżarzaniu początkowe rozwiązanie generowane jest zachłannie (przeszukiwaniem lokalnym typu greedy). Algorytm genetyczny mimo startu z błędu prawie 800%, potrafi szybko polepszać rozwiązanie przy odpowiedniej wielkości populacji.

5. Literatura

- https://www.youtube.com/watch?v=Pg4HP6Ayijs&pp=ygUdbWFjaWVqIGtvbW9zacWEc 2tpIGdlbmV0eWN6bmU%3D <- wykład teoretyczny
- https://www.aragorn.wi.pb.edu.pl/~wkwedlo/EA5.pdf <- działanie metody krzyżowania
 OX oraz mutacji transposition i inversion

- https://sound.eti.pg.gda.pl/student/isd/isd03-algorytmy_genetyczne.pdf wykład teoretyczny; selekcja rankingowa, elityzm; sukcesja
- http://www.alife.pl/gp/p/AGelem.html współczynniki krzyżowania i mutacji
- https://pl.wikipedia.org/wiki/Algorytm_genetyczny <- teoria