

Mapping Lunar Lander
Plume Ejecta Trajectories
to Lunar Surface
Elevations

D. Batcheldor (SURA, LASSO, KSC) & J. Mantovani (NASA-KSC)

April 26th, 2022

ASCE Earth and Space 2022

Symposium 1 – Granular Materials in Space Exploration.

Plume Surface Interaction Ejecta Risks

- Lessons learned from Apollo 12 & Surveyor 3.
- Ejecta particles are a risk to surface systems and areas of interest.
- Where and when will ejecta impact the surface?
- What are the initial angles and velocities?
- There is a broad range of estimates, currently.

Credit: NASA/UCF

1000x SEM images [left] Undamaged paint. [right] Damaged paint.

- Conserve E and p for eccentricity.
 - Similar approach to Shipley et al. (2014) & Bernardoni et al. (2019).
- Apoapsis gives max height.
- Solve for origin and impact points at R_m to get range and latitude.

- Mean anomaly and time since periapsis determines time of flight.
- Rotate argument of periapsis to define a specific origin lat/long.

NASA

- Coriolis largely negligible for:
 - Short times of flight.
 - South pole origin.
 - Azimuthally isotropic ejecta flows.

Range, location, TOF, Max altitude.

Conditions to impact Apollo sites.

Ejecta Mitigation

- Landing module design:
 - Nozzle locations/actions.
 - Descent profile.
- Artificial:
 - Landing pads.
 - Berms.
- Natural:
 - Topography.
 - Sun angle.
- Combination.
- Interesting trade space.

- Use the LRO DEMs.
- Choose Lat/long.
- Azimuthal steps chosen for profile extraction.

- Use the LRO DEMs.
- Choose Lat/long.
- Azimuthal steps chosen for profile extraction.
- Extract profiles.

- Use the LRO DEMs.
- Choose Lat/long.
- Azimuthal steps chosen for profile extraction.
- Extract terrain profiles.
- Match trajectories to terrain profiles.
- Update range and time of flight.

- Use the LRO DEMs.
- Choose Lat/long.
- Azimuthal steps chosen for profile extraction.
- Extract terrain profiles.
- Match trajectories to terrain profiles.
- Update range and time of flight.
- Map azimuths back to DEM.

Ejecta Rings Around any Given Landing Site

Summary

- Plume-surface interaction ejecta pose a risk to sustained lunar exploration.
 - Lunar operations, ISRU, scientific studies, historical sites.
- Risk assessments require knowledge of ejecta velocities, but no direct measures yet.
- Parameter space can be populated to determine which ejecta velocities are high risk for impact locations.
- Terrain plays a major role in trajectory mitigation and should be considered at candidate landing sites.
- Coriolis is negligible for lunar pole origins and short times of flight.