Three-way crossed classification

STAT 502 1 / 20

Introduction

- Say we have 3 factors A, B, and C with levels a, b, and c, respectively.
- The observations at treatment combination (i, j, k) are labeled y_{ijkl} .
- Consider balanced case: We have fixed number of observations *n* for each treatment combination.
- N = abcn

model: A, B, C fixed

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

where ϵ_{ijkl} are i.i.d. $N(0, \sigma_e^2)$

STAT 502 2 / 20

$$\underbrace{abcn-1}_{dftotal} = \underbrace{a-1}_{dfA} + \underbrace{b-1}_{dfB} + \underbrace{c-1}_{dfC} + \underbrace{(a-1)(b-1)}_{dfAB} + \underbrace{(a-1)(c-1)}_{dfAC} + \underbrace{(b-1)(c-1)}_{dfBC} + \underbrace{(a-1)(b-1)(c-1)}_{dfABC} + \underbrace{abc(n-1)}_{dferror}$$

$$\sum_{i=1}^{a} \alpha_i = 0$$

$$\sum_{i=1}^{a} (\alpha \beta)_{ij} = 0 \text{ for all } j$$

$$\sum_{i=1}^{a} (\alpha \beta \gamma)_{ijk} = 0 \text{ for all } j, k$$

STAT 502 3 / 20

Example

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

 $i = 1, 2, 3; j = 1, 2, 3; k = 1, 2; l = 1, 2, 3, 4$

STAT 502 4 / 20

STAT 502 5 / 20

ANOVA decomposition:

$$SStot = SSA + SSB + SSC +$$

 $SSAB + SSAC + SSBC +$
 $SSABC + SSE$

• The effect estimates are

$$\hat{\alpha}_i = \bar{y}_{i...} - \bar{y}_{...}$$

$$SSA = \sum_{i,j,k,l} \hat{\alpha}_i^2 = \sum_{i,j,k,l} (\bar{y}_{i...} - \bar{y}_{...})^2$$

STAT 502 6 / 20

expected mean squares

$$y_{i...} = \mu + \alpha_i + \bar{\beta}_{.} + \bar{\gamma}_{.} + (\bar{\alpha}\bar{\beta})_{i.} + (\bar{\alpha}\bar{\gamma})_{i.} + (\bar{\beta}\bar{\gamma})_{...} + (\bar{\alpha}\bar{\beta}\gamma)_{i...} + \bar{\epsilon}_{i...}$$

$$y_{....} = \mu + \bar{\alpha}_{.} + \bar{\beta}_{.} + \bar{\gamma}_{.} + (\bar{\alpha}\bar{\beta})_{...} + (\bar{\alpha}\bar{\gamma})_{...} + (\bar{\beta}\bar{\gamma})_{...} + (\bar{\alpha}\bar{\beta}\gamma)_{...} + \bar{\epsilon}_{...}$$

Therefore,

$$SSA = bcn \sum_{i=1}^{a} (\alpha_i + \overline{\epsilon}_{i...} - \overline{\epsilon}_{...})^2$$

It can be shown that

$$E(SSA) = bcn \sum_{i=1}^{a} \alpha_i^2 + (a-1)\sigma_{\epsilon}^2$$

Therefore,

$$E(MSA) = \frac{1}{a-1}E(SSA) = \frac{bcn}{a-1}\sum_{i=1}^{a}\alpha_i^2 + \sigma_{\epsilon}^2$$

STAT 502 7 / 20

model: A, B, C random

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

where all parameters (except the overall mean μ) are mutually independent and distributed as

$$lpha_i \sim N(0, \sigma_{lpha}^2), eta_j \sim N(0, \sigma_{eta}^2), \gamma_k \sim N(0, \sigma_{\gamma}^2),$$
 $(lphaeta)_{ij} \sim N(0, \sigma_{lphaeta}^2), (lpha\gamma)_{ik} \sim N(0, \sigma_{lpha\gamma}^2), (eta\gamma)_{jk} \sim N(0, \sigma_{eta\gamma}^2),$
 $(lphaeta\gamma)_{ijk} \sim N(0, \sigma_{lphaeta\gamma}^2)$
and $\epsilon_{ijkl} \sim N(0, \sigma_{e}^2)$

8 / 20

Expected Mean Square

Mean iquare	A, B, and C Fixed	A, B, and C Random	A Fixed, B and C Random	A Random, B and C Fixed
1S _A	$\sigma_e^2 + \frac{bcn}{a-1} \sum_{i=1}^a \alpha_i^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + bcn\sigma_\alpha^2$
IS _B	$\sigma_e^2 + \frac{acn}{b-1} \sum_{j=1}^b \beta_j^2$	$+bn\sigma_{\alpha\gamma}^2 + bcn\sigma_{\alpha}^2$ $\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$+bn\sigma_{\alpha\gamma}^{2} + \frac{bcn}{a-1} \sum_{i=1}^{a} \alpha_{i}^{2}$ $\sigma_{e}^{2} + an\sigma_{\beta\gamma}^{2} + acn\sigma_{\beta}^{2}$	$\sigma_e^2 + cn\sigma_{\alpha\beta}^2 + \frac{acn}{b-1} \sum_{j=1}^b \beta_j^2$
IS _C	$\sigma_e^2 + \frac{abn}{c-1} \sum_{k=1}^c \gamma_k^2$	$+ an\sigma_{\beta\gamma}^2 + acn\sigma_{\beta}^2$ $\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + bn\sigma_{\alpha\gamma}^2$ $+ an\sigma_{\beta\gamma}^2 + abn\sigma_{\gamma}^2$	$\sigma_e^2 + an\alpha_{\beta\gamma}^2 + abn\sigma_{\gamma}^2$	$\sigma_e^2 + bn\sigma_{\alpha\gamma}^2 + \frac{abn}{c-1} \sum_{k=1}^c \gamma_k^2$
IS_{AB}	$\sigma_e^2 + \frac{cn}{(a-1)(b-1)}$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + cn\sigma_{\alpha\beta}^2$
IS _{AC}	$\times \sum_{i=1}^{a} \sum_{j=1}^{b} (\alpha \beta)_{ij}^{2}$ $\sigma_{e}^{2} + \frac{bn}{(a-1)(c-1)}$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + bn\sigma_{\alpha\gamma}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + bn\sigma_{\alpha\gamma}^2$	$\sigma_e^2 + bn\sigma_{\alpha\gamma}^2$
S_{BC}	$ \times \sum_{i=1}^{a} \sum_{k=1}^{c} (\alpha \gamma)_{ik}^{2} $ $ \sigma_{e}^{2} + \frac{an}{(b-1)(c-1)} $	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + an\sigma_{\beta\gamma}^2$	$\sigma_e^2 + an\sigma_{eta\gamma}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + \frac{an}{(b-1)(c-1)}$
S _{ABC}	$ \times \sum_{j=1}^{b} \sum_{k=1}^{c} (\beta \gamma)_{jk}^{2} $ $ \sigma_{e}^{2} + \frac{n}{(a-1)(b-1)(c-1)} $	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2$	$ \times \sum_{j=1}^{b} \sum_{k=1}^{c} (\beta \gamma)_{jk}^{2} $ $ \sigma_{e}^{2} + n \sigma_{\alpha \beta \gamma}^{2} $
S_E	$ \times \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} (\alpha \beta \gamma)_{ijk}^{2} $ $ \sigma_{*}^{2} $	σ_e^2	σ_e^2	σ_e^2

STAT 502

 H_1^{ABC} : not all $(\alpha\beta\gamma)_{ijk}=0$

STAT 502 10 / 20

Test Statistic*

Percentile

A. B. C random

$$H_0^A: \sigma_\alpha^2 = 0$$

versus
 $H_1^A: \sigma_\alpha^2 > 0$

$$F_A = \frac{MS_A}{MS_{AB} + MS_{AC} - MS_{ABC}} \qquad F[a - 1, \nu_a; 1 - \alpha]$$

$$F[a-1, v_a; 1-\alpha]$$

$$H_0^B: \sigma_\beta^2 = 0$$
 versus

$$F_B = \frac{\text{MS}_B}{\text{MS}_{AB} + \text{MS}_{BC} - \text{MS}_{ABC}} \qquad F[b-1, v_b; 1-\alpha]$$

$$F[b-1,v_b;1-\alpha]$$

$$H_1^B: \sigma_\beta^2 > 0$$

 $H_0^C: \sigma_\gamma^2 = 0$

$$F_C = \frac{N}{MS_{+C} + M}$$

$$F_C = \frac{MS_C}{MS_{AC} + MS_{BC} - MS_{AC}} \qquad F[c - 1, v_c; 1 - \alpha]$$

$$H_1^C: \sigma_{\gamma}^2 > 0$$

 $H_0^{AB}: \sigma_{\alpha\beta}^2 = 0$

versus

versus

versus

$$F_{AB} = \frac{MS_{AB}}{MS_{ABC}}$$

$$F\{(a-1)(b-1),(a-1)(b-1)(c-1);1-\alpha\}$$

$$H_1^{AB}: \sigma_{\alpha\beta}^2 > 0$$

 $H_0^{AC}: \sigma_{\alpha\gamma}^2 = 0$

$$F_{AC} = \frac{MS_{AC}}{MS_{ABC}}$$

$$F[(a-1)(c-1), (a-1)(b-1)(c-1); 1-\alpha]$$

 $H_1^{AC}: \sigma_{\alpha\nu}^2 > 0$ $H_0^{BC}: \sigma_{Bv}^2 = 0$

$$F_{BC} = \frac{MS_{BC}}{MS_{ABC}}$$

$$F[(b-1)(c-1), (a-1)(b-1)(c-1); 1-\alpha]$$

 $H_1^{BC}: \sigma_{\beta \nu}^2 > 0$ $H_0^{ABC}: \sigma_{\alpha\beta\gamma}^2 = 0$

$$F[(a-1)(b-1)(c-1), abc(n-1); 1-\alpha]$$

versus
$$H_1^{ABC}: \sigma_{\alpha\beta\gamma}^2 > 0$$

$$F_{ABC} = \frac{MS_{ABC}}{MS_E}$$

```
Factor Type Levels Values

A Fixed 3 1, 2, 3
B Fixed 3 1, 2, 3
C Fixed 2 1, 2
```

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
A	2	410.692	205.346	699.60	0.000
В	2	80.541	40.270	137.20	0.000
С	1	0.467	0.467	1.59	0.212
A*B	4	14.814	3.704	12.62	0.000
A*C	2	0.314	0.157	0.53	0.589
B*C	2	0.702	0.351	1.20	0.310
A*B*C	4	0.875	0.219	0.75	0.566
Error	54	15.850	0.294		
Total	71	524.255			

Model Summary

```
S R-sq R-sq(adj) R-sq(pred)
0.541773 96.98% 96.02% 94.63%
```

STAT 502 12 / 20

Factor	Type	Levels	Va.	lue	s
A	Random	3	1,	2,	3
В	Random	3	1,	2,	3
C	Random	2	1,	2	

Analysis of Variance

г

```
Source
         DF
              Adj SS
                       Adj MS F-Value
                                         P-Value
             410.692
                      205.346
                                  56.39
                                           0.001 x
              80.541
                       40.270
                                  10.50
                                           0.023 x
               0.467
                        0.467
                                  1.62
                                           0.429 ×
              14.814
                        3.704
                                           0.009
  A*B
                                  16.94
  A*C
               0.314
                        0.157
                                   0.72
                                           0.542
                                  1.60
  B*C
               0.702
                        0.351
                                           0.308
  A*B*C
               0.875
                        0.219
                                   0.75
                                           0.566
Error
              15.850
                        0.294
Total
         71
             524.255
```

x Not an exact F-test.

Model Summary

```
S R-sq R-sq(adj) R-sq(pred)
0.541773 96.98% 96.02% 94.63%
```

STAT 502 13 / 20

Expected Mean Squares, using Adjusted SS

Error Terms for Tests, using Adjusted SS

```
Synthesis of
Source Error DF Error MS Error MS
           3.84
                   3.6417 (4) + (5) - (7)
           4.20
                   3.8358 (4) + (6) - (7)
           0.97
                   0.2891 (5) + (6) - (7)
           4.00
                   0.2187 (7)
A*B
           4.00
                   0.2187 (7)
           4.00
                   0.2187
          54.00
                   0.2935
```

model: A fixed, B and C random

$$y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \epsilon_{ijkl}$$

where the parameters have the following (mutually independent) distributions

$$eta_{j} \sim N(0, \sigma_{eta}^{2}), \gamma_{k} \sim N(0, \sigma_{\gamma}^{2}),$$
 $(\alpha eta)_{ij} \sim N(0, \sigma_{\alpha eta}^{2}), (\alpha \gamma)_{ik} \sim N(0, \sigma_{\alpha \gamma}^{2}), (\beta \gamma)_{jk} \sim N(0, \sigma_{eta \gamma}^{2}),$
 $(\alpha eta \gamma)_{ijk} \sim N(0, \sigma_{\alpha eta \gamma}^{2})$
and $\epsilon_{ijkl} \sim N(0, \sigma_{e}^{2})$

 α_i are fixed unknown quantities subject to the constraint that $\sum_{i=1}^{a} \alpha_i = 0$.

Any parameters involving random factors are also random, eg, $(\alpha\beta)_{ij}$ and $(\alpha\beta\gamma)_{ijk}$.

STAT 502 15 / 20

Restricted or unrestricted

Unrestricted

No further assumptions beyond previous slide.

Restricted

We impose sum-to-zero constraints on the interactions which have one fixed factor. For example,

$$\sum_{i=1}^{a} (\alpha \beta)_{ij} = 0 \text{ for all } j$$

$$\sum_{i=1}^{a} (\alpha \beta \gamma)_{ijk} = 0 \text{ for all } j, k$$

STAT 502 16 / 20

Mean iquare	A, B, and C Fixed	A, B, and C Random	A Fixed, B and C Random	A Random, B and C Fixed
1S _A	$\sigma_e^2 + \frac{bcn}{a-1} \sum_{i=1}^a \alpha_i^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + bcn\sigma_\alpha^2$
IS _B	$\sigma_e^2 + \frac{acn}{b-1} \sum_{j=1}^b \beta_j^2$	$+bn\sigma_{\alpha\gamma}^2 + bcn\sigma_{\alpha}^2$ $\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$+bn\sigma_{\alpha\gamma}^{2} + \frac{bcn}{a-1} \sum_{i=1}^{a} \alpha_{i}^{2}$ $\sigma_{e}^{2} + an\sigma_{\beta\gamma}^{2} + acn\sigma_{\beta}^{2}$	$\sigma_e^2 + cn\sigma_{\alpha\beta}^2 + \frac{acn}{b-1} \sum_{j=1}^b \beta_j^2$
IS _C	$\sigma_e^2 + \frac{abn}{c-1} \sum_{k=1}^c \gamma_k^2$	$+ an\sigma_{\beta\gamma}^2 + acn\sigma_{\beta}^2$ $\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + bn\sigma_{\alpha\gamma}^2$ $+ an\sigma_{\beta\gamma}^2 + abn\sigma_{\gamma}^2$	$\sigma_e^2 + an\alpha_{\beta\gamma}^2 + abn\sigma_{\gamma}^2$	$\sigma_e^2 + bn\sigma_{\alpha\gamma}^2 + \frac{abn}{c-1} \sum_{k=1}^c \gamma_k^2$
IS_{AB}	$\sigma_e^2 + \frac{cn}{(a-1)(b-1)}$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + cn\sigma_{\alpha\beta}^2$	$\sigma_e^2 + cn\sigma_{\alpha\beta}^2$
IS _{AC}	$\times \sum_{i=1}^{a} \sum_{j=1}^{b} (\alpha \beta)_{ij}^{2}$ $\sigma_{e}^{2} + \frac{bn}{(a-1)(c-1)}$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + bn\sigma_{\alpha\gamma}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + bn\sigma_{\alpha\gamma}^2$	$\sigma_e^2 + bn\sigma_{\alpha\gamma}^2$
S_{BC}	$ \times \sum_{i=1}^{a} \sum_{k=1}^{c} (\alpha \gamma)_{ik}^{2} $ $ \sigma_{e}^{2} + \frac{an}{(b-1)(c-1)} $	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + an\sigma_{\beta\gamma}^2$	$\sigma_e^2 + an\sigma_{eta\gamma}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2 + \frac{an}{(b-1)(c-1)}$
S _{ABC}	$ \times \sum_{j=1}^{b} \sum_{k=1}^{c} (\beta \gamma)_{jk}^{2} $ $ \sigma_{e}^{2} + \frac{n}{(a-1)(b-1)(c-1)} $	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2$	$\sigma_e^2 + n\sigma_{\alpha\beta\gamma}^2$	$ \times \sum_{j=1}^{b} \sum_{k=1}^{c} (\beta \gamma)_{jk}^{2} $ $ \sigma_{e}^{2} + n \sigma_{\alpha \beta \gamma}^{2} $
S_E	$ \times \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} (\alpha \beta \gamma)_{ijk}^{2} $ $ \sigma_{*}^{2} $	σ_e^2	σ_e^2	σ_e^2

STAT 502

Tests of Hypotheses for (A Fixed, B and C Random)

		• -
Hν	poth	iesis

Test Statistic*

Percentile

$$\begin{array}{l} H_0^A:\operatorname{all}\ \alpha_i=0\\ \operatorname{versus}\\ H_1^A:\operatorname{not}\ \operatorname{all}\ \alpha_i=0\\ H_0^B:\sigma_\beta^2=0\\ \operatorname{versus}\\ H_1^B:\sigma_\beta^2>0\\ H_0^C:\sigma_\gamma^2=0\\ \operatorname{versus}\\ H_1^C:\sigma_\gamma^2>0\\ H_0^AB:\sigma_{\alpha\beta}^2=0\\ \operatorname{versus}\\ H_1^AB:\sigma_{\alpha\beta}^2=0\\ \operatorname{versus}\\ H_1^AB:\sigma_{\alpha\beta}^2=0\\ \operatorname{versus}\\ H_1^AB:\sigma_{\alpha\gamma}^2=0\\ \operatorname{versus}\\ H_1^AB:\sigma_{\alpha\gamma}^2=0\\ \operatorname{versus}\\ H_1^AC:\sigma_{\alpha\gamma}^2>0\\ H_0^AC:\sigma_{\alpha\gamma}^2=0\\ \operatorname{versus}\\ H_1^AC:\sigma_{\alpha\gamma}^2>0\\ H_0^BC:\sigma_{\beta\gamma}^2=0\\ \operatorname{versus}\\ H_1^AB:\sigma_{\alpha\beta\gamma}^2>0\\ H_0^ABC:\sigma_{\alpha\beta\gamma}^2=0\\ \operatorname{versus}\\ H_1^ABC:\sigma_{\alpha\beta\gamma}^2>0\\ H_0^ABC:\sigma_{\alpha\beta\gamma}^2=0\\ \operatorname{versus}\\ H_1^ABC:\sigma_{\alpha\beta\gamma}^2=0\\ \operatorname{versus}\\ \operatorname{versus}\\ H_1^ABC:\sigma_{\alpha\beta\gamma}^2=0\\ \operatorname{versus}\\ \operatorname$$

$$F_A = \frac{\text{MS}_A}{\text{MS}_{AB} + \text{MS}_{AC} - \text{MS}_{ABC}} \qquad F[a - 1, \nu_a; 1 - \alpha]$$

$$F_B = \frac{\text{MS}_B}{\text{MS}_{AC}} \qquad \qquad F[b - 1, (b - 1)(c - 1)]$$

$$F[b-1,(b-1)(c-1);1-\alpha]$$

$$F_C = \frac{\mathsf{MS}_C}{\mathsf{MS}_{BC}}$$

$$F[(c-1), (b-1)(c-1); 1-\alpha]$$

$$F_{AB} = \frac{MS_{AB}}{MS_{ABC}}$$

$$F[(a-1)(b-1), (a-1)(b-1)(c-1); 1-\alpha]$$

$$F_{AC} = \frac{MS_{AC}}{MS_{ABC}}$$

$$F[(a-1)(c-1),(a-1)(b-1)(c-1);1-\alpha]$$

$$F_{BC} = \frac{MS_{BC}}{MS_E}$$

$$F[(b-1)(c-1), abc(n-1); 1-\alpha]$$

$$F_{ABC} = \frac{MS_{ABC}}{MS_E}$$

$$F[(a-1)(b-1)(c-1), abc(n-1); 1-\alpha]$$

STAT 502 18 / 20

```
Factor Type Levels Values
A Fixed 3 1, 2, 3
B Random 3 1, 2, 3
C Random 2 1, 2
1, 2
```

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value	
A	2	410.692	205.346	56.39	0.001	х
В	2	80.541	40.270	10.50	0.023	х
С	1	0.467	0.467	1.62	0.429	×
A*B	4	14.814	3.704	16.94	0.009	
A*C	2	0.314	0.157	0.72	0.542	
B*C	2	0.702	0.351	1.60	0.308	
A*B*C	4	0.875	0.219	0.75	0.566	
Error	54	15.850	0.294			
Total	71	524.255				

x Not an exact F-test.

Expected Mean Squares, using Adjusted SS

Error Terms for Tests, using Adjusted SS

				Synt	the	esis	of	:
	Source	Error DF	Error MS	Erro	or	MS		
1	A	3.84	3.6417	(4)	+	(5)	-	(7)
2	В	4.20	3.8358	(4)	+	(6)	-	(7)
3	C	0.97	0.2891	(5)	+	(6)	-	(7)
4	A*B	4.00	0.2187	(7)				
5	A*C	4.00	0.2187	(7)				
6	B*C	4.00	0.2187	(7)				
7~	A*B*C	54.00	0.2935	(8)				

........

	Type 3 Analysis of Variance									
Source	ce DF Sum of Squares Mean Square Expected Mean Square Error Term		Error DF	F Value	Pr > F					
A	2	410.692500	205.346250	Var(Residual) + 4 Var(A*B*C) + 12 Var(A*C) + 8 Var(A*B) + Q(A)	MS(A*B) + MS(A*C) - MS(A*B*C)	3.8403	56.39	0.0014		
В	2	80.540833	40.270417	Var(Residual) + 4 Var(A*B*C) + 8 Var(A*B) + 12 Var(B*C) + 24 Var(B)	MS(B*C) + MS(A*B) - MS(A*B*C)	4.2008	10.50	0.0232		
С	1	0.467222	0.467222	Var(Residual) + 4 Var(A*B*C) + 12 Var(A*C) + 12 Var(B*C) + 36 Var(C)	MS(B*C) + MS(A*C) - MS(A*B*C)	0.9736	1.62	0.4286		
B*C	2	0.701944	0.350972	Var(Residual) + 4 Var(A*B*C) + 12 Var(B*C)	MS(A*B*C)	4	1.60	0.3078		
A*B	4	14.814167	3.703542	Var(Residual) + 4 Var(A*B*C) + 8 Var(A*B)	MS(A*B*C)	4	16.94	0.0090		
A*C	2	0.313611	0.156806	Var(Residual) + 4 Var(A*B*C) + 12 Var(A*C)	MS(A*B*C)	4	0.72	0.5418		
A*B*C	4	0.874722	0.218681	Var(Residual) + 4 Var(A*B*C)	MS(Residual)	54	0.75	0.5656		
Residual	54	15.850000	0.293519	Var(Residual)						

STAT 502 20 / 20