There is an injection of A into $\mathcal{P}_A(n)$ given by the map $a \mapsto a1$ (where 1 denotes $e_{(0,\dots,0)}$). There is also an injection of $\mathbb{N}^{(n)}$ into $\mathcal{P}_A(n)$ given by the map $(h_1,\dots,h_n) \mapsto e_{(h_1,\dots,h_n)}$. Note that $e_{(h_1,\dots,h_n)}e_{(k_1,\dots,k_n)}=e_{(h_1+k_1,\dots,h_n+k_n)}$. In order to alleviate the notation, let X_1,\dots,X_n be n distinct variables and denote $e_{(0,\dots,0,1,0\dots,0)}$, where 1 occurs in the position i, by X_i (where $1 \leq i \leq n$). With this convention, in view of $e_{(h_1,\dots,h_n)}e_{(k_1,\dots,k_n)}=e_{(h_1+k_1,\dots,h_n+k_n)}$, the polynomial $e_{(k_1,\dots,k_n)}$ is denoted by $X_1^{k_1}\cdots X_n^{k_n}$ (with $e_{(0,\dots,0)}=X_1^0\cdots X_n^0=1$) and it is called a primitive monomial. Then, P is also written as

$$P = \sum_{(k_1, \dots, k_n) \in \mathbb{N}^{(n)}} a_{(k_1, \dots, k_n)} X_1^{k_1} \cdots X_n^{k_n}.$$

We also denote $\mathcal{P}_A(n)$ by $A[X_1,\ldots,X_n]$. A polynomial $P\in A[X_1,\ldots,X_n]$ is also denoted by $P(X_1,\ldots,X_n)$.

As in the case n = 1, there is nothing special about the choice of X_1, \ldots, X_n as variables (or indeterminates). It is just a convenience. After all, the construction of $\mathcal{P}_A(n)$ has nothing to do with X_1, \ldots, X_n .

Given a nonnull polynomial P of degree d, the nonnull coefficients $a_{(k_1,\ldots,k_n)} \neq 0$ such that $d = k_1 + \cdots + k_n$ are called the *leading coefficients of* P. A polynomial of the form $a_{(k_1,\ldots,k_n)}X_1^{k_1}\cdots X_n^{k_n}$ is called a *monomial*. Note that $\deg(a_{(k_1,\ldots,k_n)}X_1^{k_1}\cdots X_n^{k_n}) = k_1+\cdots+k_n$. Given a polynomial

$$P = \sum_{(k_1, \dots, k_n) \in \mathbb{N}^{(n)}} a_{(k_1, \dots, k_n)} X_1^{k_1} \cdots X_n^{k_n},$$

a monomial $a_{(k_1,\ldots,k_n)}X_1^{k_1}\cdots X_n^{k_n}$ occurs in the polynomial P if $a_{(k_1,\ldots,k_n)}\neq 0$.

A polynomial

$$P = \sum_{(k_1, \dots, k_n) \in \mathbb{N}^{(n)}} a_{(k_1, \dots, k_n)} X_1^{k_1} \cdots X_n^{k_n}$$

is homogeneous of degree d if

$$\deg(X_1^{k_1}\cdots X_n^{k_n})=d,$$

for every monomial $a_{(k_1,\ldots,k_n)}X_1^{k_1}\cdots X_n^{k_n}$ occurring in P. If P is a polynomial of total degree d, it is clear that P can be written uniquely as

$$P = P^{(0)} + P^{(1)} + \dots + P^{(d)}$$

where $P^{(i)}$ is the sum of all monomials of degree i occurring in P, where $0 \le i \le d$.

It is easily verified that $A[X_1, \ldots, X_n]$ is a commutative ring, with multiplicative identity $1X_1^0 \cdots X_n^0 = 1$. It is also easily verified that A[X] is a module. When A is a field, A[X] is a vector space.

Even when A is just a ring, the family of polynomials

$$(X_1^{k_1}\cdots X_n^{k_n})_{(k_1,\ldots,k_n)\in\mathbb{N}^{(n)}}$$