Messtechnik in der Mechatronik

Prof. Dr.-Ing. Michael Heizmann Wintersemester 2016/2017

Vorlesungsunterlagen stehen zum Download bereit (passwortgeschützt): ILIAS:

- Magazin
 - » Organisationseinheiten
 - » Fakultät für Elektrotechnik und Informationstechnik
 - » WS 16/17
 - » Messtechnik in der Mechatronik
- Direkt:
 https://ilias.studium.kit.edu/
 goto.php?target=crs_595679
 &client_id=produktiv
- Beitritt mit Passwort: mt_iiit_1617
- Kurz vor der Vorlesung: Vorschau (z.B. ohne Lösungen zu Aufgaben)
- Kurz nach der Vorlesung:
 Aktualisiert, mit Lösungen

Organisatorisches

Termine:

- Vorlesung: Montags 11:30-13:00 Uhr
- Übung: Donnerstags 14:00-15:30 Uhr, im Wesentlichen jede zweite Woche, beginnend am 27.10.16
- Ausnahmen: werden kurzfristig in der Vorlesung und online mitgeteilt

Organisatorisches

Prüfung

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung im Umfang von 120 Minuten nach § 4 Abs. 2 Nr. 1 SPO Master Mechatronik und Informationstechnik. Die Modulnote ist die Note der schriftlichen Prüfung.

Literatur

- F. Puente León: Messtechnik, 10. Auflage, Springer, 2015
- ...und zahlreiche weitere Bücher zum Thema Messtechnik

Organisatorisches

Fragen zur Vorlesung?

- Gleich stellen!
- Tiefergehende Fragen:
 Nach der Vorlesungsstunde oder in der Sprechstunde

- Grundaufgabe: Erfassung physikalischer Größen mit einer vorgegebenen, möglichst guten "Genauigkeit"
- Messverfahren: prinzipiell unsicherheitsbehaftet, daher
 - Abschätzung und Analyse der damit verbundenen Fehler zur Bestimmung der Unsicherheit
 - Wenn möglich: Kompensation vorhandener Störeinflüsse
- Voraussetzung: Systembeschreibung des Messvorgangs mit allen relevanten Eigenschaften und Einflüssen
- Darauf aufbauend:
 - Systemtheoretische Untersuchung und Modellierung der Störeinflüsse
 - Systemoptimierung zur Minimierung der Störeinflüsse

Bedeutung der Messtechnik in der Automatisierungstechnik

- Messtechnik: Erfassung von physikalischen Größen aus einem System
- Steuerungs- und Regelungstechnik: Einwirkung auf das System, ggf. auf der Grundlage gemessener Größen
- Thema dieser Vorlesung: Grundlagen der Messtechnik
- Anwendung der Grundlagen auf die industrielle Produktion:
 Fertigungsmesstechnik, siehe Vorlesung im Sommersemester

Inhaltsübersicht

Messsysteme und Messfehler

- Skalen
- Metrische Größen
- Messsysteme
- Messfehler

Kurvenanpassung

- Approximation
- Interpolation
- Kennfeldinterpolation

Stationäres Verhalten von Messsystemen

- Stationäre Messkennlinie und deren Fehler
- Kennlinienfehler unter Normalbedingungen
- Kennlinienfehler bei Abweichungen von den Normalbedingungen
- Rückwirkung des Messsystems

Zufällige Messfehler

- Grundlagen der Wahrscheinlichkeitstheorie
- Stichproben
- Normalverteilte Zufallsvariable
- Statistische Testverfahren
- Qualitätssicherung
- (Dynamisches Verhalten von Messsystemen)

Inhaltsübersicht

Stochastische Signale

- Stochastische Prozesse
- Korrelationsfunktionen
- Korrelationsmesstechnik
- Spektrale Darstellung stochastischer Signale
- Systemidentifikation
- Signaldetektion
- Wiener-Filter

Erfassung analogere Signale

- Abtastung
- Quantisierung
- Analog-Digital-Umsetzer
- Digital-Analog-Umsetzer

Inhaltsübersicht

Frequenz- und Drehzahlmessung

- Allgemeiner Frequenzbegriff
- Digitale Drehzahlmessung
- Kontinuierliche Frequenzmessung
- Positions- und Richtungserkennung

Hinweis zur Nomenklatur

Skalare: kursiv, klein, nicht fett: α , x, y

Vektoren: kursiv, klein, (meist) fett: x, w

Matrizen: kursiv, groß, nicht fett: S, G

Bezeichner: nicht kursiv: x^{T} , y_{a} , y_{e} , e_{i} , $\int_{-\infty}^{\infty} y(t) dt$

Operatoren: groß, nicht kursiv: $E\{\cdot\}$

Zufallsvariablen: nicht kursiv, klein: x, y