2.1. Динамічні оптимізаційна моделі управління запасами. Модель з урахуванням витрат на виконання замовлення

Аналіз моделей управління запасами досі стосувався ситуацій, коли попит відомий заздалегідь і постійний протягом усього періоду планування. Ослабимо тепер це припущення і розглянемо моделі, де попит детермінований, але змінюється з часом. Це можливо, наприклад, якщо замовлення зроблені заздалегідь, або підписані контракти, що визначають поставки на кілька наступних місяців, або попит розраховано відповідно до відомої виробничої програми.

У цьому випадку горизонт планування визначається як період, в якому попит відомий. Розглядається тільки кінцевий горизонт планування, проте це не є серйозним обмеженням, так як попит у віддаленому майбутньому зазвичай не робить істотного впливу на рішення, що приймаються в сьогоденні. Крім того, у багатьох випадках запаси схильні до зносу, і тому не має сенсу припускати, що продукція буде зберігатися в запасі нескінченно і вибирати відрізок планування надмірно великим.

Як і раніше, можна вважати, що ϵ деяка система постачання (склад, оптова база та інше), діяльність якої зводиться до забезпечення попиту кінцевих споживачів на деякий продукт, для чого вона здійсню ϵ замовлення виробнику даного продукту.

Розглянемо моделі, в яких потрібно спланувати послідовність замовлень на T суміжних інтервалів часу. Попит задається як послідовність величин сумарного споживання в цих періодах.

Передбачається, що не допускаються заборгованості та відмови (відсутній дефіцит). Замовлення виконується повністю і часом між замовленням і його надходженням можна знехтувати.

Попит протягом етапу t (t=1, ..., T) відомий і позначається d_t >0.

При розміщенні замовлення в y одиниць у період t нараховуються фіксовані витрати замовлення K_t і змінні (вартість замовлення або

виробництва) $c_t(y)$. Нехай $\delta(y)=0$, якщо y>1 та $\delta(0)=0$. Тоді витрати замовлення в періоді t дорівнюють $K_t\delta(y)+c_t(y)$.

Початковий запас і запас у кінці періоду T передбачається відомим.

Витрати зберігання одиниці товару на етапі $t - h_t > 0$.

Замовлення і попит визначаються на початку етапу. Запаси інспектуються наприкінці етапу. Тому витрати на зберігання на етапі t передбачаються пропорційними обсягу запасу, що переходить з етапу t в етап t+1.

Нехай y_t - кількість, що замовляється у період t, і I_t - рівень запасів у кінці періоду t. З використанням цих змінних завдання визначення обсягів замовлень, таких, щоб витрати замовлення і зберігання були мінімальні, може бути сформульована таким чином:

$$\sum_{t=1}^{T} (K_t \delta(y_t) + c_t(y_t) + h_t I_t) \to \min$$
(3.1)

$$I_t = I_{t-1} + y_t - d_t, t = 1, \dots, T,$$
(3.2)

$$I_t, y_t \ge 0, t = 1, \dots, T.$$
 (3.3)

Обмеження (3.2) називають обмеженнями балансу запасу. Оскільки $I_t = \sum_{i=1}^t (y_i - d_i)$, змінні I_t можуть бути виключені з формулювання і планом завдання можна вважати вектор $(y_1, ..., y_T)$.

Функції $c_t(y)$ слід враховувати, якщо витрати змінюються з часом або існують розриви цін.

У загальному випадку (3.1) - (3.3) являє собою задачу нелінійного програмування. Якщо враховуються фіксовані витрати замовлення K_t , цільова функція завдання розривна. Крім того, якщо змінні I_t , y_t можуть приймати тільки цілі значення, то отримаємо задачу цілочисельного програмування.

Якщо цільова функція отриманого завдання адитивна, то для її вирішення може бути успішно застосований апарат динамічного програмування [4], в основі якого лежить твердження, що отримало назву принципу оптимальності Беллмана:

Для адитивної цільової функції рішення на всі інтервали, що залишилися, повинні становити оптимальну поведінку відносно стану, отриманого в результаті попереднього рішення, незалежно від раніше прийнятих рішень і початкового стану.

Нехай кожен інтервал часу t відповідає одному кроку. Розглянемо процедуру прямої прогонки, послідовно мінімізуючи витрати за $1, 2, \dots T$ інтервали.

На кроці t стан системи визначається як обсяг запасу на кінець етапу, що задається співвідношенням (3.2), причому

$$0 \le I_t \le d_{t+1} + \dots + d_T.$$

Це нерівність означає, що в граничному випадку (при відсутності в подальшому замовлень) запас I_t може задовольнити попит на всіх наступних етапах.

В якості початкової умови використовуємо вимогу про збереження після завершення управління заданої кількості товару I_T .

Нехай $C_t(I_t, y_t)$ - загальні витрати на етапах 1, 2, ..., t при заданій величині I_t на кінець етапу t і величиною замовлення y_t , $C_t^*(I_t)$ — мінімальні загальні витрати на етапах 1,2, ..., t при заданій величині запасу I_t в кінці періоду t. На кожному етапі замовлення розміщуються в припущенні, що попередні замовлення розміщені оптимально. Тоді

$$C_t(I_t, y_t) = C_{t-1}^*(I_t - y_t + d_t) + K_t \delta(y_t) + c_t(y_t) + h_t I_t,$$

пряме рекурентне співвідношення записується у вигляді

$$C_t^*(I_t) = \min C_t(I_t, y_t), 0 \le y_t \le I_t + d_t, t = 1, \dots, T, C_0^* \equiv 0. \tag{3.4}$$

 Fo $I_1 = I_0 + y_1 - d_1$, to $y_1 = I_1 + I_0 + d_1$ ta

$$C_1^*(I_1) = K_1 \delta(I_1 - I_0 + d_1) + c_1(I_1 - I_0 + d_1) + h_1 I_1.$$

Система рекурентних співвідношень (3.4) дозволяє знайти послідовність функцій стану C_t^* і умовних оптимальних управлінь $\hat{y}_t(I)$. На кроці T за допомогою початкової умови можна визначити $y_T^* = \hat{y}_T(I_T)$.

використанням формули (3.2).

Припущення про нульовий час доставки може бути ослаблене, якщо припустити, що час поставки L визначено і відомо заздалегідь. В цьому випадку, якщо замовлення потрібно в період t, то замовлення робиться в період t-L.

Приклад 3.1. Вирішимо задачу при наступних даних.

Таблиця 3.1

, ,	•	•	
t	d_t	K_t	h_t
1	3	3	1
2	2	7	3
3	4	6	2

Дані для прикладу 3.1

Вихідний запас I_0 =1, в кінці періоду планування I_3 =0. Нехай витрати на придбання продукції становлять 10 за кожну одиницю для перших трьох одиниць і 20 для кожної додатковою одиниці, тобто

$$c_t = \begin{cases} 10y, 0 \le y \le 3; \\ 30 + 20(y - 3), y > 3. \end{cases}$$

Припускаємо, що замовляється ціле число одиниць товару. Наведемо результати покрокових обчислень для прямого алгоритму.

Крок 1. Так як $y_1 = I_1 + d_1 > 0$,

$$C_1^*(I_1) = K_1 + h_1 I_1 + c_1 (I_1 + d_1) = \begin{cases} 23 + 11I_1, I_1 \le 1; \\ 13 + 21I_1, I_1 > 1. \end{cases}$$

Оскільки I_1 може приймати тільки цілі значення, $I_1 \le d_2 + d_3 = 6$.

Таблиця 3.2

Перший крок алгоритму

I_1	0	1	2	3	4	5	6
$C_1^*(I_1)$	23	34	55	76	97	118	139
у1	2	3	4	5	6	7	8

Крок 2.
$$C_2^*(I_2) = \min(C_1^*(I_2 - y_2 + 2) + 7\delta(y_t) + c_2(y_2) + 3I_2$$
, $I_2 \le d_3 = 4$, $0 \le y_2 \le I_2 + d_2 = I_2 + 2$.

Для різних значень I_2 і y_2 обчислюємо значення функції, яку мінімізуємо. Наприклад, $c_2(3,1)=c_1^*(3-1+2)+7+c_2(1)+3\cdot 3=97+7+10+9=123$.

Результати запишемо в таблицю і знайдемо мінімальний елемент в кожному рядку.

Таблиця 3.3

Другий крок алгоритму

$I_2 \setminus y_2$	0	1	2	3	4	5	6
0	55	51	<u>50</u>				
1	79	75	64	<u>63</u>			
2	103	99	88	<u>77</u>	86		
3	127	123	112	101	<u>100</u>	109	
4	151	147	136	125	124	<u>123</u>	132

Крок 3. $I_3 = 0$, $0 \le y_3 \le I_3 + d_3 = 4$,

$$C_3^*(0) = \min(C_2^*(4 - y_3) + 6\delta(y_3) + c_3(y_3)).$$

Обчислимо витрати для різних уз. Наприклад,

$$C_3(0,2) = C_2^*(4-2) + 6 + c_2(2) = 77 + 6 + 20 = 103.$$

Таблиця 3.4

Третій крок алгоритму

У3	0	1	2	3	4
$C_3(0, y_3)$	123	116	103	99	106

Звідси отримуємо, що загальні мінімальні витрати - 99, y_3 =3, I_2 = I_3 + I_3 - I_3 =1, I_3 =3, I_4 =1, I_3 =4, I_3 =4, I_4 =5, I_4 =6, I_4 =6, I_4 =6, I_4 =6, I_4 =6, I_4 =7, I_4 =7, I_4 =7, I_4 =7, I_4 =7, I_4 =8, I_4 =1, I_4 =7, I_4 =1, I_4 =1

Розглянемо процедуру зворотного прогону для вирішення поставленого завдання. В якості опції стану керованої системи візьмемо мінімальний обсяг витрат, що виникають за періоди t, ..., T за умови, що до початку періоду t (до розміщення замовлення) ϵ запас I_{t-1} .

Нехай C_t (I_{t-1} , y_t) - загальні витрати на етапах t, ..., T при заданій величині I_{t-1} на початок етапу t і величиною замовлення y_t , $C_t^*(I_{t-1})$ - мінімальні загальні витрати на етапах t, ..., T при заданій величині I_{t-1} . На кожному етапі замовлення розміщуються в припущенні, що замовлення на наступних етапах розміщені оптимально. Покладемо $C_{T+1}^* \equiv 0$. Тоді

 $C_t(I_{t-1},y_t) = C_{t+1}^*(I_{t-1}+y_t-d_t) + K_t\delta(y_t) + c_t(y_t) + h_t(I_{t-1}+y_t-d_t),$ основне рекурентне співвідношення записується у вигляді

$$C_t^*(I_{t-1}) = \min C_t(I_{t-1}, y_t), y_t \geq d_t - I_{t-1}, t = T, \dots, 1.$$