Greedy Algorithms - 2

CSIE 2136 Algorithm Design and Analysis, Fall 2018

https://cool.ntu.edu.tw/courses/61

Hsu-Chun Hsiao

Announcement

Homework assignments

- Mini-hw6 due next week
- HW2 due in 2 weeks

Please remember to put references in HW

Feedback about COOL?

Review lecture next week

Interval Scheduling

Textbook Chapter 16.1

Chapter 4.1 in Algorithm Design by Kleinberg & Tardos

Interval scheduling (區間調度)

Given a set of job requests with start times and finish times, find the maximum number of compatible jobs

• E.g., 給定每門課的時間, 這一天最多可以上幾門課?

A special case of weighted interval scheduling, but solve it using DP is an overkill

What should be the greedy choice here?

• Earliest start time, shortest interval, fewest number of non-compatible requests, earliest finish time...?

Counterexample to earliest-start-time first:

Counterexample to shortest-interval first:

Counterexample to choosing fewest number of non-compatible requests:

Interval scheduling

Greedy choice: earliest-finish-time-first

 Intuition: leave the resource available for as many jobs that follow it as possible

Practice: explain why the resulting set is compatible

Greedy choice and subproblems

Take advantage of greedy choice, prove optimal substructure for this case only

Given n jobs and their finish times f[i], $f[1] \le f[2] \le ... \le f[n]$ Prove that \exists an optimal solution containing job 1 Proof by the exchange argument:

Key idea: suppose OPT is an optimal solution. Modify OPT into another optimal solution containing job 1.

If OPT contains job 1, done

Proof by the exchange argument (cont'd):

If not, let $x_1, x_2,...,x_n$ be the job indices in OPT from low to high

• => job x_1 is compatible with $x_2,...,x_q$, that is, $f[x_1] \le s[x_j]$ for all j in 2...q

Let OPT' = OPT\ $\{x_1\} \cup \{1\}$, |OPT'| = |OPT| = q

 $f[1] \le f[x_1] \le s[x_i]$ for all j in 2...p, so OPT' is also a compatible set

OPT' is an optimal solution containing job 1

Proof of optimal substructure

Prove that if OPT is an optimal solution to jobs 1, 2,..., n, then OPT\{1} is also an optimal solution to jobs i, i+1,...,n, where i is the smallest index s.t. $f[1] \le s[i]$

Proof by contradiction:

Suppose OPT\{1} is not optimal to jobs i...n

- => \exists OPT' s.t. OPT' is optimal to jobs i...n and | OPT'| > | OPT| 1
- => OPT' \cup {1} is an optimal solution to jobs 1...n and \mid OPT' \cup {1} \mid = \mid OPT' \mid + 1 > \mid OPT \mid
- => contradiction

Scheduling to minimize lateness

Scheduling to minimize lateness

Given a set of jobs with processing times and deadlines, schedule **all** jobs to **minimize the maximum lateness** (only one job can be processed at a time)

Example:

Job	1	2	3	4
Processing time	3	5	3	2
Deadline	4	6	7	8

Maximum lateness of all jobs in this schedule is 7

Scheduling to minimize lateness

Given a set of jobs with processing times and deadlines, schedule all jobs to minimize the maximum lateness (only one job can be processed at a time)

- t_i = processing time of job j
- d_i = deadline of job j
- Denote by s(H, j) and f(H, j) the start and finish time of job j in a schedule H, thus f(H, j) - s(H, j) = t_i

Lateness of job j in schedule $H = L(H,j) = max\{0, f(H,j) - d_j\}$

Maximum lateness of schedule $H = L(H) = max_i L(H,j)$

Goal: find a schedule H that minimizes L(H)

Possible greedy choices

Shortest-processing-time-first without idle time?

Earliest-deadline-first without idle time?

Practice: Show that any schedule with idle time is not optimal

Counterexample to shortest processing time first

Job	1	2
Processing time	1	2
Deadline	10	2

Shortest processing time first (Max lateness = 1)

An optimal solution (Max lateness = 0)

Minimizing lateness

Greedy choice: earliest-deadline-first without idle time

Example:

Job	1	2	3	4
Processing time	3	5	3	2
Deadline	4	6	7	8

Maximum lateness of all jobs in this schedule is 5

Minimizing lateness

Greedy choice: earliest-deadline-first without idle time

```
Input: n, t[1..n], d[1..n]

Minimize-lateness(n, t[], d[]):
    Sort jobs by deadlines such that d[1] \( \frac{1}{2} \) = ... \( \frac{1}{2} \) ct = 0 //current time
    for j = 1 to n
        Assign job j to interval ct, ct+t[j]
        s[j] = ct
        f[j] = s[j] + t[j]
        ct = ct + t[j]
    return s[], f[]
```

Running time = O(nlogn) given unsorted jobs

Given n jobs and their deadlines d_i , $d_1 \le d_2 \le ... \le d_n$

Prove ∃ an optimal scheduling that processes job 1 first

Proof by exchange argument

<u>Key idea</u>: suppose OPT is an optimal solution. Modify OPT into another optimal scheduling that processes job 1 first.

If OPT processes job 1 first, done

If not, suppose job 1 is the ith being processed

Let OPT' = OPT but with the i-1th and ith swapped

Prove that L(OPT') ≤ L(OPT)

Prove that $L(OPT') \leq L(OPT)$

```
<=> Prove max{L(OPT', 1), L(OPT', x)} \leq max{L(OPT, x), L(OPT, 1)}
```

<=> Since L(OPT', 1) \leq L(OPT, 1), prove that L(OPT', x) \leq L(OPT, 1)

Prove that $L(OPT', x) \leq L(OPT, 1)$

If job x is not late in OPT':
$$L(OPT', x) = 0$$

If job x is late in OPT': $L(OPT', x) = f(OPT', x) - d_x$ $= f(OPT, 1) - d_x$ $\leq f(OPT, 1) - d_1$ = L(OPT, 1)

Can we generalized this property?

Prove that there is no "inversion"

Proof of no inversions

Given n jobs and their deadlines d_i , $d_1 \le d_2 \le ... \le d_n$ Prove that \exists an optimal scheduling without *inversions*

• Jobs x and y are inverted if $d_x > d_y$ but x is scheduled before y

Proof by exchange argument:

If OPT has no inversions, done

If not, suppose in OPT i-1th and ith jobs are inverted

Let OPT' = OPT but with the i-1th and ith swapped

```
Prove that L(OPT') \leq L(OPT)
```

- <=> Prove that $max\{L(OPT', y), L(OPT', x)\} \le max\{L(OPT, x), L(OPT, y)\}$
- <=> Since L(OPT', y) \leq L(OPT, y), prove that L(OPT', x) \leq L(OPT, y)

Proof of no inversions

Prove that $L(OPT', x) \le L(OPT, y)$ when $d_y < d_x$

If job x is not late in OPT':

$$L(OPT', x) = 0$$

$$If job x is late in OPT':$$

$$L(OPT', x) = f(OPT', x) - d_x$$

$$= f(OPT, y) - d_x$$

$$\leq f(OPT, y) - d_y$$

$$= L(OPT, y)$$

This immediately proves that earliest-deadline-first is optimal! 條條大路通羅馬 ☺

Matroid and Greedy Methods

Ch. 16.4 (optional)

Matroid (擬陣)

A combinatorial structure that generalizes the concept of linear independence

A *matroid* is an ordered pair $M = (S, \mathcal{I})$ satisfying the following conditions.

- 1. S is a finite set.
- 2. \mathcal{I} is a nonempty family of subsets of S, called the *independent* subsets of S, such that if $B \in \mathcal{I}$ and $A \subseteq B$, then $A \in \mathcal{I}$. We say that \mathcal{I} is *hereditary* if it satisfies this property. Note that the empty set \emptyset is necessarily a member of \mathcal{I} .
- 3. If $A \in \mathcal{I}$, $B \in \mathcal{I}$, and |A| < |B|, then there exists some element $x \in B A$ such that $A \cup \{x\} \in \mathcal{I}$. We say that M satisfies the *exchange property*.

More Terminology

Extension: Given a matroid M = (S, I), we call an element $x \notin A$ an *extension* of $A \in I$ if we can add x to A while preserving independence.

Maximal: If A is an independent subset in a matroid M, we say that A is **maximal** if it has no extensions.

Practice

Theorem 16.6 All maximal independent subsets in a matroid have the same size.

Weighted Matroid

We say that a matroid $M = (S, \mathcal{I})$ is **weighted** if it is associated with a weight function w that assigns a strictly positive weight w(x) to each element $x \in S$. The weight function w extends to subsets of S by summation:

$$w(A) = \sum_{x \in A} w(x)$$

Many problems for which a greedy approach provides optimal solutions can be formulated in terms of finding a maximum-weight independent subset in a weighted matroid.

- maximum-weight independent subset = "optimal"
- Does not cover Huffman coding and interval scheduling

Greedily find an optimal subset on a weighted matroid

```
GREEDY (M, w)

1 A = \emptyset

2 sort M.S into monotonically decreasing order by weight w

3 for each x \in M.S, taken in monotonically decreasing order by weight w(x)

4 if A \cup \{x\} \in M.\mathcal{I}

5 A = A \cup \{x\}

6 return A
```

Works for any weighted matroid! Time complexity = O(n lgn + n f(n)), where f(n) is the time for checking independence

More Proofs

Lemma 16.7 Matroids exhibit the greedy-choice property

Lemma 16.10 Matroids exhibit the optimal-substructure property

Theorem 16.11 Correctness of the greedy algorithm on matroids

A task-scheduling problem as a matroid

Ch. 16.5

Scheduling unit-time tasks with deadlines and penalties

Given a set of unit-time tasks with deadlines and penalties, schedule **all** tasks for a single processor to **minimize total penalties**

Example:

Task (S)	1	2	3	4	5	6	7
Deadline	4	2	4	3	1	4	6
Penalty	70	60	50	40	30	20	10

Less-penalty-first strategy: Penalty = 90 ls this optimal?

Scheduling unit-time tasks with deadlines and penalties

Given a set of unit-time tasks with deadlines and penalties, schedule **all** tasks for a single processor to **minimize total penalties**

- $S = \{T_1, T_2, ..., T_n\}$, n unit-time tasks
- d_i = deadline of task j
- w_j = penalty of doing task j *after* the deadline

<u>Goal</u>: find a schedule (a permutation) of S that minimizes total penalty

Observations

Observation 1 Given any schedule for a set of unittime tasks *S*, we can always transform it into an **earlyfirst form** without changing the penalty.

Task (S)	1	2	3	4	5	6	7
Deadline	4	2	4	3	1	4	6
Penalty	70	60	50	40	30	20	10

Observations

Observation 2 Given any schedule for a set of unittime tasks *S*, we can always rearrange the *early* tasks into an order of **monotonically increasing deadlines** without changing the penalty.

Task (S)	1	2	3	4	5	6	7
Deadline	4	2	4	3	1	4	6
Penalty	70	60	50	40	30	20	10

Modeling as a matriod

Based on these observations, the problem of finding an optimal schedule is reduced to finding a set A of tasks to be *early* in the optimal schedule.

Matriod? We can view this as a weighted matriod $\overline{M} = (S, I)$ where

- S is the set of tasks
- weights are the penalties
- I are the set of all independent sets of tasks
- Minimize penalty of *late* tasks = maximize penalty of *early* tasks
- Still need to prove the hereditary & exchange properties!

How to check whether a set is independent?

Lemma 16.12

For any set of tasks A, the following statements are equivalent.

- 1. The set A is independent.
- 2. For t = 0, 1, 2, ..., n, we have $N_t(A) \le t$.
- 3. If the tasks in A are scheduled in order of monotonically increasing deadlines, then no task is late.

A set A is **independent** if there exists a schedule for A such that no tasks are late.

 $N_t(A)$ = number of tasks in A whose deadline is t or earlier.

Practice Prove that (1), (2), (3) are equivalent.

Theorem 16.13

If S is a set of unit-time tasks with deadlines, and I is the set of all independent sets of tasks, then the corresponding system M = (S, I) is a matroid.

Proof

Hereditary: every subset of an independent set of tasks is still independent

Exchange property:

perty:

Set A T2 d₂=2

Set B

 $d_5 = 1$

1. Find the largest k s.t. $N_t(B) \le N_t(A)$

N _t (.)	0	1	2	3	4	5	6	7
Set A	0	1	2	2	2	2	2	2
Set B	0	0	1	2	2	2	3	3

- 2. Let x be a task in B A whose deadline is k +1
- 3. A U {x} is still independent because...

What did we learn about greedy algorithms?

Greedy algorithms are easy to design one, hard to prove correctness.

Unlike DP, a greedy algorithm makes a greedy choice before solving the resulting subproblem.

Greedy-choice property: Making locally optimal (greedy) choices leads to a globally optimal solution

Optimal substructure: An optimal solution to the problem contains within it optimal solutions to subproblems