Midterm 2 Review - CH4&CH5

Chapter 4 Solution of Electrostatic Problems

Poisson's and Laplace's Equations

$$\boldsymbol{E} = -\nabla V$$

$$abla \cdot oldsymbol{E} = rac{
ho}{\epsilon}$$

Poisson's Equation (in a homogeneous medium, ϵ is a constant over space)

$$\nabla^2 V = -\frac{\rho}{\epsilon}$$

Laplace's Equation (in a simple medium, $\rho = 0$)

$$\nabla^2 V = 0$$

Uniqueness of Electrostatic Solutions

A solution of Poisson's equation that satisfies the given boundary conditions is a unique solution.

Methods of Images

Replacing boundaries by appropriate image charges in lieu of a formal solution of Poisson's or Laplace's equation.

- 1. Point Charge and Grounded Conduction Places
 - I. Remove the conductor;
 - II. Replace with an image point charge -Q at y = -d;

Note: For y < 0 region, $\mathbf{E} = 0, V = 0$

- 2. Line Charge and Parallel Conducting Cylinder
 - I. Image is a parallel line charge inside the cylinder;
 - II. The line charge should be on OP;
 - III. Cylinder surface is an equi-potential surface;

IV.

$$\rho_i = \rho_l, d_i = \frac{a^2}{d}$$

3. Two Parallel Conducting Cylinders

I.

$$b^2 = c_1^2 - a_1^2 = c_2^2 - a_2^2$$

II.

$$c_1 + c_2 = D$$

- 4. Point Charge and Grounded Conducting Sphere
 - I. Image charge is a negative point charge inside the sphere and on the line OQ; II.

$$Q_i = -\frac{a}{d}Q, d_i = \frac{a^2}{d}$$

- 5. Charged Sphere and Grounded Plane
 - I. Both sphere and plane are equi-potential surfaces;
 - II. Point charge and plane;
 - III. Point charge and sphere;
 - IV. Repeat II. and III.

$$Q_0 \Rightarrow -Q_0, -Q_0 \Rightarrow Q_1 = \frac{a}{2c}Q_0, d_1 = \frac{a^2}{2c}\cdots$$

See the examples on the textbook.

Boundary-Value Problems in Cartesian Coordinates

$$\begin{split} V(x,y,z) &= X(x)Y(y)Z(z) \\ \frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} + \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} + \frac{1}{Z(z)} \frac{d^2 Z(z)}{dz^2} = 0 \\ \frac{d^2 X(x)}{dx^2} + k_x^2 X(x) &= 0 \\ k_x^2 + k_y^2 + k_z^2 &= 0 \end{split}$$

TABLE 4-1 Possible Solutions of $X''(x) + k_x^2 X(x) = 0$

k_x^2	k _x	X(x)	Exponential forms [†] of $X(x)$					
0	0	$A_0x + B_0$						
+	k	$A_1 \sin kx + B_1 \cos kx$	$C_1 e^{jkx} + D_1 e^{-jkx}$					
-	jk	$A_2 \sinh kx + B_2 \cosh kx$	$C_2e^{kx}+D_2e^{-kx}$					

Boundary-Value Problems in Cylindrical Coordinates

$$V(r,\phi) = R(r)\Phi(\phi)$$

$$\frac{r}{R(r)}\frac{d}{dr}\left[r\frac{dR(r)}{dr}\right] + \frac{1}{\Phi(\phi)}\frac{d^2\Phi(\phi)}{d\phi^2} = 0$$

case 1:

$$\Phi(\phi) = A_{\phi} \sin n\phi + B_{\phi} \cos n\phi$$

$$r^{2} \frac{d^{2}R(r)}{dr^{2}} + r \frac{dR(r)}{dr} - n^{2}R(r) = 0$$

$$R(r) = A_{r}r^{n} + B_{r}r^{-n}$$

If r can be zero, $B_r = 0$; if r can be infinity, $A_r = 0$. case 2:

$$\Phi(\phi) = A_0 \phi + B_0$$

$$R(r) = C_0 \ln r + D_0$$
 and $V(r) = C_1 \ln r + C_2$.

Boundary-Value Problems in Spherical Coordinates

Assume ϕ is independent.

$$V(R,\theta) = \Gamma(R)\Theta(\theta)$$

$$\frac{1}{\Gamma(R)} \frac{d}{dR} \left[R^2 \frac{d\Gamma(R)}{dR} \right] + \frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right] = 0$$

$$\frac{1}{\Gamma(R)} \frac{d}{dR} \left[R^2 \frac{d\Gamma(R)}{dR} \right] = k^2$$

$$\frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d\theta} \left[\sin \theta \frac{d\Theta(\theta)}{d\theta} \right] = -k^2$$

$$\Gamma_n(R) = A_n R^n + B_n R^{-(n+1)}$$

where $n(n+1) = k^2$, n = 0, 1, 2, ...

$$\Theta_n(\theta) = P_n(\cos \theta)$$

TABLE 4-2 Several Legendre Polynomials

n	$P_n(\cos\theta)$						
0	1						
1	$\cos \theta$						
2	$\frac{1}{2}(3\cos^2\theta-1)$						
3	$\frac{1}{2}(5\cos^3\theta-3\cos\theta)$						

Steady Electric Currents

Current Density and Ohm's Law

$$\Delta Q = Nq\mathbf{u} \cdot \mathbf{a}_n \Delta s \Delta t$$

$$\Delta I = \frac{\Delta Q}{\Delta t} = Nq\mathbf{u} \cdot \Delta s$$

$$\mathbf{J} = Nq\mathbf{u} = \rho \mathbf{u}$$

$$\Delta I = \mathbf{J} \cdot \Delta s$$

$$I = \int_{S} \mathbf{J} \cdot d\mathbf{s}$$

If there are more than one kind of charge carriers,

$$oldsymbol{J} = \sum_i N_i q_i oldsymbol{u}_i$$

For electrons,

$$\boldsymbol{u} = -\mu_e \boldsymbol{E}$$

 μ_e is the electron mobility $(m^2/V \cdot s)$

$$J = -Ne\mu_e E = -\rho_e \mu_e E$$

 σ is conductivity, it is equal to $-\rho_e\mu_e$.

$$\boldsymbol{J} = \sigma \boldsymbol{E}$$

For semiconductors, $\sigma = -\rho_e \mu_e + \rho_h \mu_h$

$$V_{12} = RI$$
$$R = \frac{l}{\sigma S}$$

Electromotive Force and Kirchhoff's Voltage Law

In a closed circuit, to maintain a steady current, there must be non-conservative field.

$$\mathcal{V} = \int_{2}^{1} \mathbf{E}_{i} \cdot d\mathbf{l} = -\int_{2}^{1} \mathbf{E} \cdot d\mathbf{l}$$
$$\mathcal{V} = V_{12} = V_{1} - V_{2}$$

KVL:

$$\sum_{j} \mathcal{V}_{j} = \sum_{k} R_{k} I_{k}$$

Equation of Continuity and Kirchhoff's Current Law

 $\nabla \cdot \boldsymbol{J} = -\frac{\partial \rho}{\partial t} = 0$

KCL:

$$\sum_{j} I_{j} = 0$$

$$\sigma \nabla \cdot \mathbf{E} = -\frac{\partial \rho}{\partial t} = \frac{\sigma}{\epsilon} \rho$$

$$\rho = \rho_{0} e^{-(\sigma/\epsilon)t}$$

Relaxation time: time for ρ_0 to decay to 1/e.

$$\tau = \frac{\epsilon}{\sigma}$$

Power Dissipation and Joule's Law

$$dP = \boldsymbol{E} \cdot \boldsymbol{J} dv$$

Power density is $\boldsymbol{E} \cdot \boldsymbol{J}$

$$P = \int_{V} \mathbf{E} \cdot \mathbf{J} dv$$

In a conductor with constant cross section,

$$P = VI$$

Boundary Conditions for Current Density

$$J_{1n} = J_{2n}$$
$$\frac{J_{1t}}{J_{2t}} = \frac{\sigma_1}{\sigma_2}$$

Resistance Calculations

$$RC = \frac{C}{G} = \frac{\epsilon}{\sigma}$$

Governing Equations for Steady Current Density							
Differential Form	Integral Form						
$\nabla \cdot \mathbf{J} = 0$	$\oint_{S} \mathbf{J} \cdot d\mathbf{s} = 0$						
$\nabla \times \left(\frac{\mathbf{J}}{\sigma}\right) = 0$	$\oint_C \frac{1}{\sigma} \mathbf{J} \cdot d\ell = 0$						

Exercise

- 1. A point charge Q located between two large, grounded, parallel conducting plane as shown in figure.
- 2. An infinite line charge ρ_l located midway between two large, intersecting conducting planes forming a 60-degree angle, as shown in figure.
- 3. A point charge Q is located inside and at distance d between the center of a grounded spherical conducting shell of radius b where b > d. Use the method of images to determine the potential distribution inside the shell and the charge density ρ_s induced on the inner surface of the shell.
- 4. Two conducting spheres of equal radius a are maintained at potentials V_0 and 0, respectively. Their centers are separated by a distance D.
 - a) Find the image charges and their locations that can electrically replace the two spheres.
 - b) Find the capacitance between the two spheres.
- 5. A d-c voltage of 6V applied to the ends of 1km of a conducting wire of 0.5mm radius results in a current of 1/6A. Find
 - a) the conductivity of the wire
 - b) the electric field intensity in the wire
 - c) the power dissipated in the wire
 - d) the electron drift velocity, assuming electron mobility in the wire to be $1.4 \times 10^{-3} m^2 / V \cdot s$
- 6. A d-v voltage V_0 is applied across a cylindrical capacitor of length L. The radii of the inner and outer conductors are a and b, respectively. The space between the conductors is filled with two different lossy dielectrics having, respectively, permittivity ϵ_1 and conductivity σ_1 in the region a < r < c, and permittivity ϵ_2 and conductivity σ_2 in the region c < r < b. Determine
 - a) the current density in each region

b b	the surfacted tween the t	e charge two dielec	densities trics.	on	the	inner	and	outer	conductors	and	at	the	interface