Appendix A Pseudocode w.r.t. TSSC and IDDG

Algorithm 1 The TSSC Algorithm

Input: dataset **X**, the number of neurons Q^2 .

Output: k clusters.

- 1. TR:
 - 1.1 Construct RSOM from dataset **X** according to Eqs. (1)-(2).
 - 1.2 Adjust neurons to align with the center of dataset X.
- 2. **TDP**:
 - 2.1 Calculate the local topological density ratio on micro-cluster centers according to Eqs. (4)-(5).
 - 2.2 Determine and remove BNs.
- 3. **TGM**:
 - 3.1 Merge micro-clusters by calculating the separation of adjacent micro-clusters according to Eqs. (6)-(8).
 - 3.2 Calculate global compactness and global separability two measures according to Eqs. (9)-(11).
 - 3.3 Obtain k clusters from the minimum value of the sum of global separability and global compactness according to Eq. (12).

Algorithm 2 The IDDG Algorithm

- 1: Input: dataset X, Imbalanced Ratio of dataset IR, the number of clusters within dataset k.
- 2: **Output**: data chunk at t-th time-stamp \mathbf{X}^t .
- 3: $k^t \sim \text{DiscreteUniform}(\mathbb{N} \cap [2, k])$.
- 4: $\mathfrak{n} \leftarrow$ sort the number of clusters in **X** in ascending order.
- 5: for $i \leftarrow 1$ to $k^t 1$ do
- $IR_i^t \sim \text{DiscreteUniform}(\mathbb{Z} \cap (1, IR]);$
- 7: end for
- 8: $IR^t \leftarrow \text{sort } IR^t \text{ in ascending order.}$
- 9: $\mathfrak{n}_1^t \leftarrow \mathfrak{n}_1$;
 - \triangleright quantity represented by \mathfrak{n}_1 is the smallest.
- 10: for $i \leftarrow 2$ to k^t do
- if $IR_{i-1}^t \cdot \mathfrak{n}_{i-1} \leq \mathfrak{n}_i$ then 11:
- $\mathfrak{n}_i^t \leftarrow IR_{i-1}^t \cdot \mathfrak{n}_{i-1};$ 12:
- 13:
- 14: $\mathfrak{n}_i^t \leftarrow \mathfrak{n}_i$.
- 15: end if
- 16: end for
- 17: \mathfrak{n}_i^t data points are randomly taken from the *i*-th cluster and form the \mathbf{X}^t .

Appendix B Supplementary Results

Fig. B1: Performance with different $Q\text{-}\kappa$ value combinations on datasets.