נושאים במתמטיקה לתלמידי מח"ר - 10444 סמסטר 22009

פתרון ממ"ן 15

<u>תשובה 1</u>

- $\forall x(J(x) \to L(x))$ (1 .8)
- .יש עורך-דין שאינו שופט (2
- $\exists x (W(x) \land L(x) \land P(x))$ (3)
- $\neg(\exists x(W(x) \land P(x) \land H(x)) \qquad (4$
- 5) כל השופטים אוהבים רק שופטים. (כלומר כל שופט שאוהב ״מישהו״, ה״מישהו״ הזה הוא שופט). הוא שופט).

$$\neg(\exists x (L(x) \land (\neg J(x))))$$

$$\equiv \forall x (\neg(L(x) \land (\neg J(x))))$$

$$\equiv \forall x ((\neg L(x)) \lor (\neg(\neg J(x))))$$

$$\equiv \forall x ((\neg L(x)) \lor J(x)) \equiv \forall x (J(x) \lor (\neg L(x)))$$

כל אדם הוא שופט או שאינו עורך-דין.

$$\neg(\forall x(J(x) \to \forall y(L(x,y) \to J(y))))$$

$$\equiv \exists x(\neg((\neg J(x)) \lor (\forall y(L(x,y) \to J(y)))))$$

$$\equiv \exists x(J(x) \land (\neg \forall y(L(x,y) \to J(y))))$$

$$\equiv \exists x(J(x) \land (\exists y(\neg((\neg L(x,y)) \lor J(y)))))$$

$$\equiv \exists x(J(x) \land (\exists y(L(x,y) \land (\neg J(y)))))$$
(5)

יש שופט שאוהב אדם שאינו שופט.

תשובה 2

$$\forall x \big(M(x) \to (\neg K(x)) \big)$$
 : החוק הראשון הוא

: החוק השני הוא

$$\forall x \Big(\neg (M(x) \land S(x)) \Big) \equiv \forall x \Big((\neg M(x)) \lor (\neg S(x)) \Big) \equiv \forall x \Big(M(x) \to (\neg S(x)) \Big)$$
לכך,

$$\varphi := \left(\forall x \big(M(x) \to (\neg K(x)) \big) \right) \land \left(\forall x \big(M(x) \to (\neg S(x)) \big) \right) \equiv$$

$$\equiv \forall x \big(\big(M(x) \to (\neg K(x)) \big) \land \big(M(x) \to (\neg S(x)) \big) \big)$$

$$\varphi \equiv \forall x \big(\big((\neg M(x)) \lor (\neg K(x)) \big) \land \big((\neg M(x)) \lor (\neg S(x)) \big) \big)$$

$$\neg \varphi \equiv \exists x \Big(\neg \big(\big((\neg M(x)) \lor (\neg K(x)) \big) \land \big((\neg M(x)) \lor (\neg S(x)) \big) \big) \big)$$

$$\equiv \exists x \Big(\big(\neg \big((\neg M(x)) \lor (\neg K(x)) \big) \big) \lor \big(\neg \big((\neg M(x)) \lor (\neg S(x)) \big) \big) \big)$$

$$\equiv \exists x \Big(\big(M(x) \land K(x) \big) \lor \big(M(x) \land S(x) \big) \big)$$

$$\uparrow \exists x \Big(M(x) \land \big(K(x) \lor S(x) \big) \big)$$

$$\triangleq \exists x \Big(M(x) \land \big(K(x) \lor S(x) \big) \big)$$

$$\exists x \big((M(x) \land (K(x)) \lor (M(x) \land S(x)) \big) \big)$$

$$\Rightarrow \exists x \big((M(x) \land (K(x) \lor S(x)) \big) \big)$$

$$\Rightarrow \exists x \big((M(x) \land (K(x) \lor S(x)) \big) \big)$$

$$\Rightarrow \exists x \big((M(x) \land (K(x) \lor S(x)) \big) \big)$$

$$\Rightarrow \exists x \big((M(x) \land (K(x) \lor S(x)) \big) \big)$$

תשובה 3

ולכן

יהי D=Z קבוצת המספרים השלמים.

P(x): אוגיי מספר זוגיי x': נסמן

Q(x): אי-זוגיי מספר x'

אמת Q(3) אמת וון ש-P(2) אמת מכיוון אמת $\left(\exists x \big(P(x)\big)\right) \wedge \left(\exists x \big(Q(x)\big)\right)$

(1) אמת
$$(\exists x (P(x))) \land (\exists x (Q(x)))$$
 אמת, שפירושו, הפסוק $P(2) \land Q(3)$ אמת

לעומת זה, הפסוק $\exists x ig((P(x)) \land ig(Q(x) ig) ig)$ שקר מכיוון שכל מספר שלם הוא או

רק זוגי או רק אי-זוגי, לכן לא קיים מספר שלם שהוא זוגי וגם אי-זוגי

(2)
$$\exists x \big(\big(P(x) \big) \land Q(x) \big)$$
 שקריו

. מ-(1) ו-(2) נובע ש- φ שקר, כנדרש

תשובה 4

K(x): ימ הוא ברווז כתוםיx'א. נסמן:

M(x): מאושרי ברווז מאושרי

: נצרין את הטיעון הנתון לשפת הפרדיקטים

 $\forall x (K(x) \to M(x)), \exists x K(x) \Rightarrow \exists x M(x)$

נוכיח שהטיעון הפורמאלי תקף לוגית:

(הנחה) $\exists x K(x)$.1

(1 משורה $\exists E$ משורה (הנחה, $\exists E$ משורה (הנחה, $\exists E$

(הנחה) $\forall x (K(x) \to M(x))$.3

(3 משורה $\forall E$, משורה $K(a) \rightarrow M(a)$.4

(4-ו משורות 2 MP) M(a) .5

(לפי $\forall I$ משורה (לפי $\exists x M(x)$.6

מ.ש.ל.

תשובה 5

א. הפסוק הוא אמת.

. $x < y^2$ ממשי מתקיים y כך שלכל ממשי מחפר מספר מספר הפסוק אומר: הפסוק אומר

. $y^2 \geq 0 > -1 = x$ ממשי מתקיים אזי לכל , x = -1 המספר לדוגמה את ניקח לדוגמה אזי לכל , אזי המספר

נשלול את הפסוק הנתון:

$$\neg(\exists x(\forall y(x < y^2))) \equiv \forall x(\neg(\forall y(x < y^2)))) \equiv \forall x(\exists y(\neg(x < y^2))) \equiv \forall x(\exists y(x \ge y^2)))$$

ב. הפסוק הוא אמת.

: הטענה הרשומה בפסוק אומרת

x מתקיים לכל מספר ממשי חיובי

 $nx \geq y$ -שלם כך שי y יש מספר ממשי לכל

 $n \geq rac{y}{x}$ טענה זו נכונה. לכל מספר ממשי y נבחר מספר שלם, שנסמנו ב- n , המקיים

.($\frac{y}{x}$ את המספר השלם הראשון שנמצא על ציר המספרים מימין למספר (למשל ניתן לבחור כ- n

ברור שאז x>0 (שהרי $nx \geq y$ ומתקיים הרשום.

נשלול את הפסוק הנתון:

$$\neg(\forall x((x>0) \to (\forall y(\exists n(nx \ge y)))))$$

$$\equiv \exists x(\neg((\neg(x>0)) \lor (\forall y(\exists n(nx \ge y)))))$$

$$\to \forall x((x>0) \land (\neg(\forall y(\exists n(nx \ge y)))))$$

$$\equiv \exists x((x>0) \land (\neg(\forall y(\exists n(nx \ge y)))))$$

$$\equiv \exists x((x>0) \land (\exists y(\forall n(nx < y))))$$

. הפסוק הוא אמת.

 $1-y=\pm\sqrt{x}$ נסביר: ניתן למצוא x שמקיים את התנאי הראשון שאומר ש- x (כי אז x שמקיים את התנאי נסביר: $x \le 0$ וקיים מספר ממשי x ניקח אותר x מקיים גם את התנאי השני שאומר x ניקח פשוט . x=0

 $(0=(1-1)^2$) מתקיים את הדרישה את מקיים את מתקיים: x=0 מתקיים אנה וההוכחה היא: עבור עבור x=0 מקיים את הדרישה השנייה ($0=-0^2$).

:נשלול

$$\neg\exists x \Big(\Big(\exists y (x = (1-y)^2) \Big) \land \Big(\exists y (x = -y^2) \Big) \Big) \equiv$$

$$\equiv \forall x (\neg ((\exists y (x = (1-y)^2)) \land (\exists y (x = -y^2)))) \equiv$$

$$\equiv \forall x ((\neg (\exists y (x = (1-y)^2)) \lor (\neg \exists y (x = -y^2)))) \equiv$$

$$\uparrow \qquad \qquad \forall x (((\forall y (\neg (x = (1-y)^2))) \lor (\forall y (\neg (x = -y^2))))) \equiv$$

$$\equiv \forall x (((\forall y (x \neq (1-y)^2))) \lor (\forall y (x \neq -y^2)))$$