Assignment PracticeT2-3 due 04/26/2014 at 08:27pm MST

Problem 1. 1. (1 pt) Suppose that $f(x) = 20e^x - ex^e$. Find f'(3).

Answer(s) submitted:

• (-1/3)((e^2)((3^e) - 60e))

(correct)

Correct Answers:

• 352.910971762277

Problem 2. 2. (1 pt) Find an equation for the line tangent to the graph of

$$f(x) = \frac{\sqrt{x}}{7x - 8}$$

at the point (3, f(3)).

Answer(s) submitted:

• 0.281843 - 0.049536x

(correct)

Correct Answers:

• sqrt(3)/(-8+7*3) + -0.0495359698417134*(x-3)

Problem 3. 3. (1 pt) Use implicit differentiation to find the slope of the tangent line to the curve

$$4xy^3 + 3xy = 7$$

at the point (1,1).

 $m = \underline{\hspace{1cm}}$

Answer(s) submitted:

-(7/15)

(correct)

Correct Answers:

-0.466666666666667

Problem 4. 4. (1 pt) Let $f(x) = 3x^2 \cos(6x)$.

Then
$$f'(x)$$
 is ______
and $f'(4)$ is _____
 $f''(x)$ is _____
and $f''(4)$ is _____

Answer(s) submitted:

- $6x(\cos(6x) 3x\sin(6x))$
- 24(cos(24) 12sin(24))
- $6((1 (18x^2))\cos(6x) (12x)\sin(6x))$
- \bullet -6(48sin(24) + 287cos(24))

(correct)

Correct Answers:

- $2*3*x*\cos(6*x) 3*(x**2)*\sin(6*x)*6$
- 270.986864433996
- $2*3*\cos(6*x) 4*3*x*\sin(6*x)*6 3*(x**2)*\cos(6*x)*(6**2)$
- -469.629682376401

Problem 5. 5. (1 pt) Suppose xy = -4 and $\frac{dy}{dt} = 3$. Find $\frac{dx}{dt}$

when x = -4.

$$\frac{dx}{dt} = \underline{\hspace{1cm}}$$

Answer(s) submitted:

• 12

(correct)

Correct Answers:

• 12

Problem 6. 6. (1 pt) Find the absolute maximum and absolute minimum values of the function

$$f(x) = x^3 + 12x^2 - 27x + 9$$

over each of the indicated intervals.

- (a) Interval = [-10, 0].
- 1. Absolute maximum = _____
- 2. Absolute minimum = _____
- (b) Interval = [-7, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _____
- (c) Interval = [-10, 2].
 - 1. Absolute maximum = _____
 - 2. Absolute minimum = _____

Answer(s) submitted:

- 495
- 9
- 443-5
- 495
- −5

(correct)

Correct Answers:

- 495
- 9
- 443
- -5495
- −5

Problem 7. 7. (1 pt) Find the most general antiderivative for	Problem 11. 11. (1 pt) Let $y = 4x^2 + 8x + 2$.
the function $\left(6x^4 - \frac{6}{x^5} - 3\right)$.	Find the differential dy when $x = 4$ and $dx = 0.2$ Find the differential dy when $x = 4$ and $dx = 0.4$
Note: Don't enter the $+\mathbf{C}$. It's included for you.	Answer(s) submitted:
Antiderivative = $ + C. $	• 8
	• 16
Anguarda) aubusittada	(correct)
Answer(s) submitted:	Correct Answers:
• $(((6x^5)/5) + (3/(2x^4)) - 3x)$	• 8 • 16
(correct) Correct Answers:	
	Problem 12. 12. (1 pt) Use linear approximation, i.e. the tangent line to approximate $\frac{1}{2}$ as follows: Let $f(x) = \frac{1}{2}$ and
• 6*(x**5)/5 - 6*(x**(-5+1))/(-5+1) - 3*x	tangent line, to approximate $\frac{1}{0.254}$ as follows: Let $f(x) = \frac{1}{x}$ and find the equation of the tangent line to $f(x)$ at a "nice" point
Problem 8. 8. (1 pt) Find $\frac{dy}{dx}$ for the function $y = x^{\cos(x)}$.	near 0.254. Then use this to approximate $\frac{1}{0.254}$.
$\frac{dy}{dx} = \underline{\hspace{1cm}}$	Answer(s) submitted:
Answer(s) submitted:	• 3.936
• $(x^{(\cos(x) - 1)(\cos(x) - (x(\ln(x))\sin(x))})$	(correct)
(incorrect)	Correct Answers:
Correct Answers:	• 3.936
• x^(cos(x))*(cos(x)/x - sin(x)*ln(x))	Problem 13. 13. (1 pt) Consider the function
Problem 9. 9. (1 pt)	$f(x) = -3x^3 + 2x^2 + 2x + 2$
Evaluate the limit using L'Hospital's rule if necessary	Find the average slope of this function on the interval $(2,10)$.
$r^2 - 1$	
$\lim_{x \to 1} \frac{x^2 - 1}{x^4 - 1}$	By the Mean Value Theorem, we know there exists a c in the
	open interval $(2,10)$ such that $f'(c)$ is equal to this mean slope.
Answer:	Find the value of c in the interval which works
	Answer(s) submitted:
Answer(s) submitted:	−346(58/9)
• (2/4)	(correct)
(correct)	Correct Answers:
Correct Answers:	● -346
• 2/4	• 6.444444444444
Duckland 10 10 (1 at) Find two marking much as when	Problem 14. 14. (1 pt) Suppose that
Problem 10. 10. (1 pt) Find two positive numbers whose product is 81 and whose sum is a minimum.	$f(x) = 6x^2 - x^3 + 2.$
Answer:,	
Answer(s) submitted:	(A) Find all critical numbers of f . If there are no critical
• 9	numbers, enter 'NONE'.
• 9	Critical numbers = (B) Use interval notation to indicate where $f(x)$ is increas-
(correct)	ing. (B) Use interval notation to indicate where $f(x)$ is increasing.
Correct Answers:	Note: Use 'INF' for ∞ , '-INF' for $-\infty$, and use 'U' for the

union symbol.

• 9

• 9

(C) Use interval notation to indicate where $f(x)$ is decreas-	
ing.	
Decreasing:	
(D) List the x-coordinates of all local maxima of f . If there	
are no local maxima, enter 'NONE'.	
x values of local maxima =	
(E) List the x -coordinates of all local minima of f . If there	
are no local minima, enter 'NONE'.	
x values of local minima =	
(F) Use interval notation to indicate where $f(x)$ is concave	
up.	
Concave up:	
(G) Use interval notation to indicate where $f(x)$ is concave	
down.	
Concave down:	
(H)List the x values of all inflection points of f . If there are	
no inflection points, enter 'NONE'.	
x values of inflection points =	
(I) Use all of the preceding information to sketch a graph of	
f. When you're finished, enter a "1" in the box below.	
Graph Complete:	
Answer(s) submitted:	
Answer(s) submuteu.	
• 0, 4	
• (0,4)	
• (-INF, 0) U (4, INF)	
• 4	
• 0	

• (-INF, 2)

- (2, INF)
- 2
- 1

(correct)

Correct Answers:

- 0, 4
- (0,4)
- (-infinity,0) U (4,infinity)
- 4
- 0
- (-infinity,2)
- (2,infinity)
- 2
- 1

Problem 15. 15. (1 pt) Find the *x*-coordinate of the absolute minimum for the function

$$f(x) = 3x\ln(x) - 6x, \qquad x > 0.$$

x-coordinate of absolute minimum = _____

Answer(s) submitted:

• -3e

(incorrect)

Correct Answers:

• 2.71828182845905