MATH 272, Homework 6 Due April 29th

Problem 1. (11 pts) Are you sure you understand what constitutes a vector space? What about an inner product? Let's see a few examples. Please work through each part of the question.

Given an a vector space V with an inner product $\langle -, - \rangle$, we can always define a *norm* (or *energy*) by taking $v \in V$ and putting

$$||v||^2 = \langle v, v \rangle.$$

P.S. both l's seen here are short for Henri Lebesgue.

- (a) (3 pts) (Finite dimensional inner product space) Consider the vector space \mathbb{C}^3 with the Hermitian inner product $\langle -, \rangle$.
 - Compute the norm of

$$\vec{u} = \begin{pmatrix} i \\ 1 \\ 0 \end{pmatrix}$$
.

• Compute the norm of

$$\vec{\boldsymbol{v}} = \begin{pmatrix} 1 \\ -i \\ 0 \end{pmatrix}.$$

- Compute the inner product $\langle \vec{u}, \vec{v} \rangle$.
- Provide an example of a basis for \mathbb{C}^3 .
- (b) (4 pts) (Countably infinite dimensional inner product space) Consider the space of square summable (finite energy) sequences $\ell^2(\mathbb{C})$. That is, an element of the $\ell^2(\mathbb{C})$ is a sequence of complex numbers $\{a_n\}_{n=0}^{\infty}$ with an inner product defined by

$$\langle \{a_n\}, \{b_n\} \rangle = \sum_{n=0}^{\infty} a_n^* b_n.$$

and we require the vectors to have finite energy which gives us the definition:

$$\ell^2(\mathbb{C}) := \{ \{a_n\} \mid a_n \in \mathbb{C} \text{ such that } \|\{a_n\}\| < \infty \}.$$

- Show that the sequence $a_n = \frac{1}{n+1}$ is in $\ell^2(\mathbb{C})$. What is its norm? Please use WolframAlpha!
- Show that the sequence $b_n = \frac{1}{2^n}$ is in $\ell^2(\mathbb{C})$. What is its norm?
- Compute the inner product $\langle \{a_n\}, \{b_n\} \rangle$. Please use WolframAlpha!
- Provide an example of a basis for $\ell^2(\mathbb{C})$.

(c) (4 pts) (Functional inner product space) Consider the space of square integrable (finite energy) functions $L^2(\Omega)$ on the region $\Omega = [0,1]$. That is, an element of the $L^2(\Omega)$ is a complex-valued function $f:[0,1] \to \mathbb{C}$ of complex numbers with an inner product defined by

$$\langle f, g \rangle = \int_{\Omega} f^* g d\Omega = \int_{0}^{1} f^*(x) g(x) dx.$$

and we require the vectors to have finite energy which gives us the definition:

$$L^2(\Omega) := \{ f : \Omega \to \mathbb{C} \mid \text{such that } ||f|| < \infty \}.$$

- Show that the function $f(x) = e^{i2\pi x}$ is in $L^2(\Omega)$. What is its norm?
- Show that the sequence $g(x) = \sin(2\pi x)$ is in $L^2(\Omega)$. What is its norm?
- Compute the inner product $\langle \{a_n\}, \{b_n\} \rangle$. Please use WolframAlpha!

Problem 2. (4 pts) Consider the real function $f(x) = 1 \in L^2(\Omega)$ on the domain $\Omega = [0, L]$.

- (a) (1 pts) What is the norm of f, ||f||?
- (b) (1 pts) Normalize f(x).
- (c) (2 pts) Find a nonzero normalized polynomial of degree ≤ 1 that is orthogonal to f(x).

Problem 3. (6 pts) A wavefunction Ψ for a particle in the 1-dimensional box $\Omega = [0, 1]$ is a member of the space of finite energy functions $L^2(\Omega)$. Recall that Ψ could be written as a superposition of normalized states

$$\psi_n(x) = \sqrt{2}\sin\left(n\pi x\right).$$

That is,

$$\Psi(x) = \sum_{n=1}^{\infty} a_n \psi_n(x),$$

for some choice of the coefficients a_n .

- (a) (3 pts) Let $a_n = \frac{\sqrt{6}}{n\pi}$. Show that $\Psi(x)$ is normalized. Hint: first, use orthogonality of the states $\psi_n(x)$ to your advantage. Then you will need to know what an infinite series evaluates to. Use a tool like WolframAlpha to evaluate this series.
- (b) (2 pts) Note that we can approximate $\Psi(x)$ by taking a finite sum approximation up to some chosen N by

$$\Psi(x) \approx \sum_{n=1}^{N} a_n \psi_n(x).$$

Plot the approximation of $\Psi(x)$ for N=1,5,25,50,100.

(c) (1 pts) Describe the wave function Ψ .

Problem 4. (9 pts) When making a measurement of the position of the particle, we will use the *position operator* x. This is the same as the variable x in the original problem statement, but it is also an operator! Similarly, we could measure the momentum of a particle using the *momentum operator* p. The potential V(x) is a function of the position operator and it, itself, is an operator. Lastly, I should mention the *Hamiltonian operator* $H = \frac{p^2}{2M} + V$. What I mean here by operator is that the operators defined above are linear transforma-

What I mean here by operator is that the operators defined above are linear transformations $\mathcal{L}\colon L^2(\Omega)\to L^2(\Omega)$. Actually, I am lying to you. It is true that $x\colon L^2(\Omega)\to L^2(\Omega)$ but you have to be careful which spaces you are talking about when it comes to the momentum operator p. Do not worry, this understanding that the underlying space is $L^2(\Omega)$ is good enough!

- (a) (1 pts) True or false. A self-adjoint operator has a real-valued spectrum.
- (b) (1 pts) Show that the position operator x is self-adjoint.
- (c) (2 pts) We can compute the expected position of a particle with wavefunction $\Psi(x)$ by computing

$$\mathbb{E}[x] = \langle \Psi, x\Psi \rangle.$$

Let $\Psi(x) = \psi_1(x)$, compute $\mathbb{E}[x]$. This value $\mathbb{E}[x]$ tells you where we expect to find the particle on average.

- (d) (1 pts) In fact, any real valued function V(x) of the position operator x is also self-adjoint. Make a quick argument on why this must be true.
- (e) (2 pts) We define the momentum operator $p = -i\hbar \frac{d}{dx}$. Using integration by parts, show that this operator is self-adjoint.
- (f) (2 pts) Argue that the Hamiltonian operator is self-adjoint. Hint: look at how H is defined. Don't show more work than you need to. This part should be short and sweet.

Remark 1. The fact that all measurements in quantum mechanics are self-adjoint operators motivates the Dirac bra-ket notation which looks like this:

$$\mathbb{E}[x] = \langle \Psi | \ x \ | \Psi \rangle.$$

This is because x can act on either side!

Problem 5. (6 pts) Let's explore two subspaces of $L^2(\Omega)$ for $\Omega = [0, 1]$. One built by exponentials and one built by sines and cosines.

(a) (3 pts) Show that the set of functions $\{1, \sqrt{2}\cos(2n\pi x), \sqrt{2}\sin(2n\pi x)\}$ for integers $n \geq 1$ are orthonormal in $L^2(\Omega)$ with $\Omega = [0, 1]$.

(b) (3 pts) Recall Euler's formula: $e^{ix} = \cos(x) + i\sin(x)$. Argue that

$$\operatorname{Span}\{e^{i2n\pi x}\mid n\in\mathbb{Z}\}\qquad\text{and}\qquad\operatorname{Span}\{1,\sqrt{2}\cos(2n\pi x),\sqrt{2}\sin(2n\pi x)\mid m,n\in\mathbb{Z},\;n\geq1\}$$

are the same subspace. Hint: can you just show that a given $e^{i2n\pi x}$ corresponds to a pair $\cos(2n\pi x)$ and $\sin(2n\pi x)$ using Euler's formula? Also, you should use the fact that sine is an odd function and cosine is an even function.

Problem 6. (10 pts) It turns out that the set of complex exponentials $\{e^{i2n\pi x} \mid n \in \mathbb{Z}\}$ is an orthonormal basis for $L^2(\Omega)$ for $\Omega = [0,1]$ (and thus by the previous problem, so are the sines and cosines). This is the foundational insight of the Fourier transform/series. Let us denote by $\phi_n(x) = e^{i2n\pi x}$.

Let $f \in L^2(\Omega)$, then the Fourier transform of f is the function $\hat{f}: \mathbb{Z} \to \mathbb{C}$ defined by

$$\hat{f}(n) = \langle f, \phi_n \rangle.$$

Then the Fourier series of f is the series

$$f(x) = \sum_{n=-\infty}^{\infty} \hat{f}(n)\phi_n(x)$$

(a) (2 pts) Let V be an n-dimensional vector space. Recall that you can write a vector $v \in V$ in terms of an orthonormal basis v_1, \ldots, v_n for V by

$$v = \sum_{j=1}^{n} \langle v, v_j \rangle v_j.$$

Explain why the Fourier series is the same concept just for an infinite dimensional vector space.

(b) (2 pts) Compute the Fourier transform of the function

$$f(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{4} \\ 1, & \frac{1}{4} \le x \le \frac{3}{4} \\ 0, & \frac{3}{4} \le x \le 1 \end{cases}$$

Please note that you will want to consider the term $\hat{f}(0)$ separately from the others.

- (c) (1 pts) Write out the Fourier series of f.
- (d) (2 pts) Convert the Fourier series of f into a series of sine and cosine functions using Euler's formula. Hint: you can also just use this from the beginning and put

$$\hat{f}(n) = \langle f, \phi_n \rangle = \int_0^1 f(x) \cos(2n\pi x) dx + i \int_0^1 f(x) \sin(2n\pi x) dx.$$

- (e) (2 pts) Plot an approximation of the Fourier series of sine and cosine functions up to N = 1, 3, 5, 10, 50, 100 only on the domain Ω . Please graph your approximations to the original f. Describe what is happening with your approximations.
- (f) (1 pts) What happens if you plot your Fourier series over all of \mathbb{R} ?

Problem 7. (10 pts) One advantage of the Fourier transform is that we can use it to solve differential equations in a new way that also allows us to consider far more general forcing terms. The basic idea is that the Fourier transform converts a differential equation into an algebraic equation. Let us see how this works.

First, let me say that we will be working over $L^2(\Omega)$ with $\Omega = [0, 1]$. Recall the Dirac delta $\delta(x)$ which satisfies the properties

$$\int_0^1 \delta(x - x_0) dx = 1 \quad \text{and} \quad \int_0^1 \delta(x - x_0) f(x) dx = f(x_0)$$

whenever $x_0 \in \Omega$. You can imagine the Dirac delta $\delta(x - x_0)$ as a probability distribution where all the mass is located at a single point x_0 .

(a) (2 pts) Show that for any f satisfying the Dirichlet boundary conditions f(0) = 0 and f(1) = 0 that for $n \neq 0$

$$\left\langle \frac{d}{dx}f,\phi_n\right\rangle = i2\pi n\hat{f}(n).$$

Hint: use integration by parts.

(b) (2 pts) Consider the Poisson (elastic deformation) problem

$$\begin{cases} \frac{d^2}{dx^2} f(x) = \delta(x - x_0) \\ f(0) = 0 = f(1) \end{cases}$$
 as boundary conditions.

Apply the Fourier transform to both sides to show that we have for $n \neq 0$

$$\hat{f}(n) = -\frac{e^{i2n\pi x_0}}{4\pi^2 n^2}.$$

(c) (2 pts) Hence, the solution to the problem is just the Fourier series

$$f(x) = c_0 + c_1 x + \sum_{n = -\infty}^{-1} -\frac{e^{in\pi x_0}}{4\pi^2 n^2} \phi_n + \sum_{n = 1}^{\infty} -\frac{e^{in\pi x_0}}{4\pi^2 n^2} \phi_n.$$

Let $x_0 = 1/2$ and convert this Fourier series to a real valued Fourier series in terms of sines and cosines.

5

(d) (1 pts) Determine the constants c_0 and c_1 using the boundary conditions on f.

- (e) (2 pts) Plot your approximation to the Fourier series for N = 1, 3, 5, 10, 50, 100.
- (f) (1 pts) Explain your result given the following interpretation: You can imagine that $\delta(x-1/2)$ is a point mass of mass 1 placed exactly at x=1/2 on your elastic rod Ω . Hint: does this look what what you'd imagine the deformation to look like?

Problem 8. (Bonus 10 pts.) Show that the Fourier transform is an isomorphism between $\ell^2(\mathbb{C})$ and $L^2(\Omega)$ where $\Omega = [0,1]$. For an extra 5 points, argue that this is true if Ω is any closed interval.