Utilizing Higher-order Automated Theorem Provers as Universal Logic Engines¹

Christoph Benzmüller, FU Berlin

Peter Andrews' Retirement Celebration, CMU, April 5, 2012

 $^{^{1}}$ This work has been funded by the DFG under grants BE 2501/6-1, BE 2501/8-1 and BE 2501/9-1

Peter's influence and achievements (my favorites)

Theory

- Semantics of Church's Type Theory (HOL)
- Resolution in HOL
- Expansion proofs and matings in HOL

System Development

- TPS has been the strongest HOL-ATP for many years; presumably it still is the strongest HOL-ATP if cooperations with external reasoners are disallowed
- Integration of interaction and automation

Education

- Black (now white) book: "To Truth Through Proof"
- Use of ETPS in course

Statement from Peter's website . . .

My research has focused on automated deduction and Church's type theory, which is a rich and expressive formulation of higher-order logic in which statements from many disciplines, particularly those involving mathematics, can readily be expressed.

In this talk:

We utilize Church's Type Theory (HOL) for non-classical logics

Can Peter retire happy?

 Chris thinks that Peter can retire happy, if he knows that HOL-ATP is fostered by someone

```
\square_{knowledgeChris}(
\square_{knowledgePeter}\exists X.fosters(X, holatp) \supset canRetireHappy(peter))
```

- Peter knows that Chris fosters HOL-ATP
 - $\square_{knowledgePeter} fosters(chris, holatp)$
- Peter knows that Chad fosters HOL-ATP
 - $\square_{knowledgePeter} fosters(chad, holatp)$
- Peter knows that other persons do foster HOL-ATP . . .
 - . . .
- Chris thinks that Peter can retire happy
 - $\square_{knowledgeChris} canRetireHappy(peter)$

 Chris thinks that Peter can retire happy, if he knows that HOL-ATP is fostered by someone

```
\square_{knowledgeChris} (\square_{knowledgePeter} \exists X. fosters(X, holatp) \supset canRetireHappy(peter))
```

Peter knows that Chris fosters HOL-ATP

```
\square_{knowledgePeter} fosters(chris, holatp)
```

Peter knows that Chad fosters HOL-ATP

```
\square_{knowledgePeter} fosters(chad, holatp)
```

Peter knows that other persons do foster HOL-ATP . . .

. . .

• Chris thinks that Peter can retire happy

```
\square_{knowledgeChris} canRetireHappy(peter)
```

Peter's TPS prover for classical higher-order logic (HOL) can prove this!

Talk Overview

- THFTPTP project: ensures that TPS is not retiring
- TPS and friends as universal logic engines
 - first-order modal logics (FML)
 - conditional logics (CL)
 - automated reasoning at object-level and at meta-level
 - Why am I interested in this?
- QMLTP project: HOL-ATPs perform well for FML

The THFTPTP Project: ensures that TPS is not retiring

EU Project THFTPTP: An Infrastructure for Higher-order ATP

Results of the EU Project THFTPTP

- Collaboration with Geoff Sutcliffe, Chad Brown and others
- Results
 - THF0 syntax for HOL
 - Online access to provers
 - Library with example problems (e.g. entire TPS library) and results
 - Ontology and syntax for proof results
 - International CASC competition for HOL-ATP
 - Various tools

Improved availability and robustness of HOL-ATPs: TPS, LEO-II, Isabelle, Satallax, Refute, Nitpick http://www.tptp.org/cgi-bin/SystemOnTPTP

[SutcliffeBenzmüller, J. Formalized Reasoning, 2010]

[BenzmüllerRabeSutcliffe, IJCAR, 2008]

	<u>TPS</u>	LEO-II	LEO-IIP	IsabelleP
	3.20080227G1d	<u>1.0</u>	<u>1.0</u>	<u>2009</u>
Attempted	200	200	200	200
Solved	170	146	146	124
Av. Time	23.18	2.27	3.44	55.92
Solutions	0	0	146	124

2009

			_	
	TPS	LEO-II	LEO-UP	IsabelleP
IHF	3.20080227G1d	<u>1.0</u>	1.0	<u>2009</u>
Attempted	200	200	200	200
Solved	170	146	146	124
Av. Time	23.18	2.27	3.44	55.92
Solutions	0	0	146	124

THF	LEO-II	Satallax 14	IsabelleP	TPS 3.20080227G14
Solved	125/200	120/200	101/200	80/200
Av. CPU Time	16.65	55.24	100.75	36.15
Solutions	125/200	120/200	0/200	0/200

LEO-II 1.2 solved 56% more than previous winner

\sim	n	n	\cap
۷	υ	U	9

	TPS	LEO-II	LEO-UP	IsabelleP
IHF	3.20080227G1d	<u>1.0</u>	1.0	<u>2009</u>
Attempted	200	200	200	200
Solved	170	146	146	124
Av. Time	23.18	2.27	3.44	55.92
Solutions	0	0	146	124

2010

THF	<u>LEO-II</u>	Satallax 14	IsabelleP 2009-2	TPS 3 20080227G14
Solved	125/200	120/200	101/200	80/200
Av. CPU Time	16.65	55.24	100.75	36.15
Solutions	125/200	120/200	0/200	0/200

LEO-II 1.2 solved 56% more than previous winner

THF/300	Satallax 2.1	<u>LEO-Ш</u>	LEO-II	Isabelle 2011	TPS 3.110228S1a
Solved	246/300	208/300	204/300	201/300	190/300
Av. CPU Time	12.04	8.97	4.95	36.55	18.69

Satallax 2.1 solved 21% more than previous winner

THF/300	Satallax 2.1	LEO-II 128	LEO-II	Isabelle 2011	TPS 3.11022881a
Solved	246/300	208/300	204/300	201/300	190/300
Av. CPU Time	12.04	8.97	4.95	36.55	18.69

THF/300	Satallax 2.1	LEO-II 128	LEO-II	Isabelle 2011	TPS 3.11022881a
Solved	246/300	208/300	204/300	201/300	190/300
Av. CPU Time	12.04	8.97	4.95	36.55	18.69

LEO-II cooperates with FOL prover ${\sf E}$

2011

THF/300	Satallax 2.1	LEO-II 128	LEO-II	Isabelle 2011	TPS 3.11022881a
Solved	246/300	208/300	204/300	201/300	190/300
Av. CPU Time	12.04	8.97	4.95	36.55	18.69

Isabelle cooperates with FOL provers (sledgehammer) and SMT solvers (smt)

2011

THF/300	Satallax 2.1	LEO-II 128	LEO-II	Isabelle 2011	TPS 3.110228S1n
Solved	246/300	208/300	204/300	201/300	190/300
Av. CPU Time	12.04	8.97	4.95	36.55	18.69

Satallax cooperates with SAT solver Minisat

TPS and friends as universal logic engines

Modal Logics in HOL

Syntax:

 $s, t ::= P | \neg s | s \lor t | \square_r s |$

Modal Logics in HOL

Syntax:

$$s, t ::= P | \neg s | s \lor t | \square_r s |$$

Syntax of embedded logic as abbreviations of HOL-terms

$$P = P_{\iota \to o}$$

$$\neg = \lambda S_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} \neg (S W)$$

$$\lor = \lambda S_{\iota \to o^{\bullet}} \lambda T_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} (S W) \lor (T W)$$

$$\square = \lambda R_{\iota \to \iota \to o^{\bullet}} \lambda S_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} \forall V_{\iota^{\bullet}} \neg (R W V) \lor (S V)$$

[BenzmüllerPaulson, Log.J.IGPL, 2010], [BenzmüllerPaulson, Logica Universalis, to appear]

Modal Logics in HOL Quantifiers

Syntax:

$$s, t ::= P \mid \neg s \mid s \lor t \mid \square_r s \mid$$

Syntax
- formulas s
Kripke Semantics
- worlds w
- accessibility relations r

 \longrightarrow terms $s_{\iota \to o}$

HOL

 \longrightarrow terms w_{ι} \longrightarrow terms $r_{\iota \to \iota \to o}$

Syntax of embedded logic as abbreviations of HOL-terms

$$\begin{array}{cccc}
P &=& P_{\iota \to o} \\
- &=& \lambda S_{\iota \to o^*} \lambda W_{\iota^*} \neg (S W) \\
V &=& \lambda S_{\iota \to o^*} \lambda T_{\iota \to o^*} \lambda W_{\iota^*} (S W) \vee (T W) \\
\downarrow &=& \lambda R_{\iota \to \iota \to o^*} \lambda S_{\iota \to o^*} \lambda W_{\iota^*} \forall V_{\iota^*} \neg (R W V) \vee (S V) \\
(\forall^p), \forall^\mu &=& \lambda Q_{\mu \to (\iota \to o)^*} \lambda W_{\iota^*} \forall X_{\mu^*} (Q X W)
\end{array}$$

[BenzmüllerPaulson, Log.J.IGPL, 2010], [BenzmüllerPaulson, Logica Universalis, to appear]

Modal Logics in HOL Quantifiers Conditional Logics ...

Syntax:

Syntax
- formulas s
Kripke Semantics
- worlds w

- accessibility relations r

$$s,t ::= P \mid \neg s \mid s \lor t \mid \Box_r s \mid$$

$$HOL$$

$$\rightarrow terms w_{\iota}$$

$$terms r_{\iota \rightarrow \iota \rightarrow 0}$$

• Syntax of embedded logic as abbreviations of HOL-terms

$$\begin{array}{cccc}
P &= P_{\iota \to o} \\
\neg &= \lambda S_{\iota \to o^*} \lambda W_{\iota^*} \neg (S W) \\
\lor &= \lambda S_{\iota \to o^*} \lambda T_{\iota \to o^*} \lambda W_{\iota^*} (S W) \lor (T W) \\
\downarrow &= \lambda R_{\iota \to \iota \to o^*} \lambda S_{\iota \to o^*} \lambda W_{\iota^*} \forall V_{\iota^*} \neg (R W V) \lor (S V) \\
(\forall^p), &\downarrow^{\mu} &= \lambda Q_{\mu \to (\iota \to o)^*} \lambda W_{\iota^*} \forall X_{\mu^*} (Q X W) \\
\Rightarrow_f &= \lambda S_{\iota \to o^*} \lambda T_{\iota \to o^*} \lambda W_{\iota^*} \forall V_{\iota^*} \neg (f W S V) \lor (T V)
\end{array}$$

[BenzmüllerGenovese, NCMPL, 2011], [BenzmüllerGabbayGenoveseRispoli, Logica Universalis, to appear]

Embedding Meta-Level Notions

Validity

valid =
$$\lambda \varphi_{\iota \to o} \forall W_{\iota} \varphi W$$

Similar: Satisfiability, Countersatisfiability, Unsatisfiability

Embedding Meta-Level Notions

Validity

valid =
$$\lambda \varphi_{\iota \to o} \forall W_{\iota} \varphi W$$

Similar: Satisfiability, Countersatisfiability, Unsatisfiability

Soundness and Completeness Theorem

$$\models \varphi$$
 iff \models^{HOL} valid $\varphi_{\iota \to o}$

Automation for free in classical HOL ATPs! Consequence:

```
Ax1 valid\square_{knowledgeChris} (\square_{knowledgePeter}\exists X.fosters(X, holatp) \supset canRetireHappy(peter))Ax2valid\square_{knowledgePeter} fosters(chris, holatp)Ax3valid\square_{knowledgePeter} fosters(chad, holatp)further axioms\square_{knowledgeChris}, \square_{knowledgePeter} are S4 operatorsConjvalid\square_{knowledgeChris} canRetireHappy(peter)
```



```
Ax1 valid \Box_{knowledgeChris} (
                   \square_{knowledgePeter} \exists X. fosters(X, holatp) \supset canRetireHappy(peter))
 A<sub>x</sub>2
                                                      valid \Box_{knowledgePeter} fosters(chris, holatp)
 A<sub>x</sub>3
                                                      valid \Box_{knowledgePeter} fosters(chad, holatp)
         further axioms
                                              \square_{knowledgeChris}, \square_{knowledgePeter} are S4 operators
                                             \forall W_{\iota \bullet} \square_{knowledgeChris} canRetireHappy(peter) \forall W_{\iota \bullet} \square_{knowledgeChris} canRetireHappy(peter) W
Coni
                   \forall W_{\iota} . \forall V_{\iota} \neg (knowledgeChris W V) \lor canRetireHappy(peter) W
         expanded abbreviation
```

```
Ax1 valid \Box_{knowledgeChris} (
                     \square_{knowledgePeter} \exists X. fosters(X, holatp) \supset canRetireHappy(peter))
 A<sub>x</sub>2
                                                            valid \Box_{knowledgePeter} fosters(chris, holatp)
 A<sub>x</sub>3
                                                            valid \Box_{knowledgePeter} fosters(chad, holatp)
          further axioms
                                                   \square_{knowledgeChris}, \square_{knowledgePeter} are S4 operators
                                                  valid \square_{knowledgeChris} canRetireHappy(peter)
\forall W_{l}. \square_{knowledgeChris} canRetireHappy(peter) W
Coni
                    \forall W_{\iota}. \forall V_{\iota}. \neg (knowledgeChris\ W\ V) \lor canRetireHappy(peter)\ W
\forall W_{\iota}. \forall V_{\iota}. \neg (knowledgeChris\ W\ V) \lor (canRetireHappy\ peter\ W)
          expanded abbreviation
```

Translating Kripke style semantics to HOL

Kripke style semantics

$$M, w \models P$$
 arbitrary $M, w \models \neg s$ iff not $M, w \models s$ $M, w \models s \lor t$ iff $M, w \models s$ or $M, w \models t$

Semantic embedding in HOL

$$\begin{array}{rcl}
P & = & P_{\iota \to o} \\
\neg & = & \lambda S_{\iota \to o} \cdot \lambda W_{\iota} \cdot \neg (S W) \\
\lor & = & \lambda S_{\iota \to o} \cdot \lambda T_{\iota \to o} \cdot \lambda W_{\iota} \cdot (S W) \lor (T W)
\end{array}$$

Translating Kripke style semantics to HOL

Kripke style semantics

```
M, w \models P arbitrary
M, w \models \neg s iff not M, w \models s
M, w \models s \lor t iff M, w \models s or M, w \models t
M, w \models \Box_r s iff M, v \models s for all v such that r(w, v)
```

Semantic embedding in HOL

$$\begin{array}{rcl}
P &=& P_{\iota \to o} \\
\neg &=& \lambda S_{\iota \to o} \cdot \lambda W_{\iota} \cdot \neg (S W) \\
V &=& \lambda S_{\iota \to o} \cdot \lambda T_{\iota \to o} \cdot \lambda W_{\iota} \cdot (S W) \vee (T W) \\
\square &=& \lambda R_{\iota \to \iota \to o} \cdot \lambda S_{\iota \to o} \cdot \lambda W_{\iota} \cdot \forall V_{\iota} \cdot \neg (R W V) \vee (S V)
\end{array}$$

Translating Kripke style semantics to HOL

Kripke style semantics

```
M, w \models P arbitrary
M, w \models \neg s iff not M, w \models s
M, w \models s \lor t iff M, w \models s or M, w \models t
M, w \models \square_r s iff M, v \models s for all v such that r(w, v)
```

Semantic embedding in HOL

$$\begin{array}{lll}
P &=& P_{\iota \to o} \\
\neg &=& \lambda S_{\iota \to o} \cdot \lambda W_{\iota} \cdot \neg (S W) \\
V &=& \lambda S_{\iota \to o} \cdot \lambda T_{\iota \to o} \cdot \lambda W_{\iota} \cdot (S W) \vee (T W) \\
\square &=& \lambda R_{\iota \to \iota \to o} \cdot \lambda S_{\iota \to o} \cdot \lambda W_{\iota} \cdot \forall V_{\iota} \cdot \neg (R W V) \vee (S V)
\end{array}$$

Translating Kripke style semantics to HOL

Kripke style semantics

```
M, w \models P arbitrary
M, w \models \neg s iff not M, w \models s
M, w \models s \lor t iff M, w \models s or M, w \models t
M, w \models \Box_r s iff M, v \models s for all v such that r(w, v)
```

Semantic embedding in HOL

$$P = P_{\iota \to o}$$

$$\neg = \lambda S_{\iota \to o^*} \lambda W_{\iota^*} \neg (S W)$$

$$\lor = \lambda S_{\iota \to o^*} \lambda T_{\iota \to o^*} \lambda W_{\iota^*} (S W) \lor (T W)$$

$$\Box_r = \lambda S_{\iota \to o^*} \lambda W_{\iota^*} \forall V_{\iota^*} \neg (r W V) \lor (S V)$$

To model \square_r as T, S4 operator etc. add axioms like (reflexive r), etc.

Translating Kripke style semantics to HOL

Kripke style semantics

higher-order selection function!

Semantic embedding in HOL

$$\begin{array}{lll}
P &=& P_{t \to o} \\
\neg &=& \lambda S_{t \to o^*} \lambda W_{t^*} \neg (S W) \\
V &=& \lambda S_{t \to o^*} \lambda T_{t \to o^*} \lambda W_{t^*} (S W) \\
\square &=& \lambda R_{t \to t \to o^*} \lambda S_{t \to o^*} \lambda W_{t^*} \forall V_{t^*} \neg (F W V) \lor (S V) \\
\Rightarrow_{\mathbf{f}} &=& \lambda S_{t \to o^*} \lambda T_{t \to o^*} \lambda W_{t^*} \forall V_{t^*} \neg (f W S V) \lor (T V)
\end{array}$$

Add respective axioms for *f*

Quantified Modal Logics: Varying and Cumulative Domain

Constant Domain

$$\Pi = \lambda Q \cdot \lambda W_{\iota \bullet} \forall X_{\mu \bullet} (Q \times W)$$

$$\forall Y \cdot s = \Pi \lambda Y \cdot s$$

Quantified Modal Logics: Varying and Cumulative Domain

Constant Domain

$$\Pi = \lambda Q_{\bullet} \lambda W_{\iota \bullet} \forall X_{\mu \bullet} (Q X W)$$

$$\forall Y_{\bullet} s = \Pi \lambda Y_{\bullet} s$$

Varying and Cumulative Domain

$$\Pi_{\textit{var}} = \lambda Q_{\bullet} \lambda W_{\iota^{\bullet}} \forall X_{\mu^{\bullet}} \neg (\text{exInW } X \ W) \lor (Q \ X \ W)$$
A: $\forall W_{\iota^{\bullet}} \exists X_{\mu^{\bullet}} (\text{exInW } X \ W)$

B(c):
$$\forall W_{\iota^{\bullet}}(\operatorname{exlnW} c W')$$
B(f):
$$\forall W_{\iota^{\bullet}}(\operatorname{exlnW} t^{1} W) \wedge \ldots \wedge (\operatorname{exlnW} t^{n} W)$$

$$\supset (\operatorname{exlnW} (f t^{1}, \ldots t^{n}) W)$$

[ongoing work with Otten and Raths, submitted]

Quantified Modal Logics: Varying and Cumulative Domain

Constant Domain

$$\Pi = \lambda Q \cdot \lambda W_{\iota \cdot} \forall X_{\mu \cdot} (Q \times W)$$
$$\forall Y \cdot s = \Pi \lambda Y \cdot s$$

Varying and Cumulative Domain

$$\begin{array}{l} \Pi_{\textit{Var}} = \lambda Q_{\bullet} \lambda W_{\iota^{\bullet}} \forall X_{\mu^{\bullet}} \neg \left(\text{exInW } X \ W \right) \lor \left(Q \ X \ W \right) \\ \text{A:} \qquad \qquad \forall W_{\iota^{\bullet}} \exists X_{\mu^{\bullet}} (\text{exInW } X \ W) \\ \forall W_{\iota^{\bullet}} (\text{exInW } c \ W) \\ \exists (\mathsf{c}) : \qquad \forall W_{\iota^{\bullet}} (\text{exInW } t^{1} \ W) \land \dots \land \left(\text{exInW } t^{n} \ W \right) \\ \qquad \qquad \supset \left(\text{exInW } (f \ t^{1}, \dots, t^{n}) \ W \right) \\ \mathsf{C:} \ \forall X_{\mu}, V_{\iota}, W_{\iota^{\bullet}} (\text{exInW } X \ V) \land (r \ V \ W) \supset \left(\text{exInW } X \ W \right) \end{array}$$

[ongoing work with Otten and Raths, submitted]

Soundness and Completeness Results

$$\models \varphi$$
 iff \models^{HOL} valid $\varphi_{\iota \to o}$

- Propositional Multimodal Logics
- Quantified Multimodal Logics
- Propositional Conditional Logics
- Quantified Conditional Logics
- Intuitionistic Logics:
- Access Control Logics:

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[BenzmüllerPaulson, Logica Universalis, to appear]

[BenzmüllerEtAl., AMAI, to appear]

[BenzmüllerGenovese, NCMPL, 2011]

[BenzmüllerPaulson, Log.J.IGPL, 2010]

[Benzmüller, IFIP SEC, 2009]

Why not throwing things together?

Terms: $m := c \mid X \mid (f m^1 \dots m^n)$

$$s,t ::= P \mid (k \ m^1 \dots m^n) \mid \neg s \mid s \lor t \mid \square_r s \mid s \Rightarrow_f t \mid \forall X.s \mid \forall_{var} X.s \mid \forall P.s$$

Embedding in HOL:

$$\begin{array}{lll} c &=& c_{\mu} & X = X_{\mu} & f = f_{\mu^{n} \to \mu} \\ P &=& P_{\iota \to o} & k = k_{\mu^{n} \to \iota \to o} \\ r &=& k_{\iota \to \iota \to o} & (+axioms \ for \ r) & f = f_{\iota \to \iota \to o} & (+axioms \ for \ f) \\ \hline \neg &=& \lambda S_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} \neg (S \ W) \\ \vee &=& \lambda S_{\iota \to o^{\bullet}} \lambda T_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} (S \ W) \vee (T \ W) \\ \hline \square &=& \lambda R_{\iota \to \iota \to o^{\bullet}} \lambda S_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} \forall V_{\iota^{\bullet}} \neg (R \ W \ V) \vee (S \ V) \\ \Rightarrow &=& \lambda F_{\iota \to (\iota \to o)\iota \to o^{\bullet}} \lambda S_{\iota \to o^{\bullet}} \lambda T_{\iota \to o^{\bullet}} \lambda W_{\iota^{\bullet}} \forall V_{\iota^{\bullet}} \neg (F \ W \ S \ V) \vee (T \ V) \\ \hline \Pi &=& \lambda Q_{\mu \to (\iota \to o)^{\bullet}} \lambda W_{\iota^{\bullet}} \forall X_{\mu^{\bullet}} (Q \ X \ W) \\ \hline \Pi_{var} &=& \lambda Q_{\bullet} \lambda W_{\iota^{\bullet}} \forall X_{\mu^{\bullet}} \neg (\text{exlnW} \ X \ W) \vee (Q \ X \ W) \\ \hline \Pi_{p} &=& \lambda Q_{(\iota \to o) \to (\iota \to o)^{\bullet}} \lambda W_{\iota^{\bullet}} \forall P_{\iota \to o^{\bullet}} (Q \ P \ W) \\ \dots \end{array}$$

further non-classical connectives, quantification over higher types, predicate abstraction, definite description . . .

Automating Meta-Properties of Logics in HOL

Automation of meta-level properties

[Benzmüller, Festschrift Walther, 2010]

Correspondences between axioms and semantic properties

```
valid \forall \phi . \Box_r \phi \supset \Box_r \Box_r \phi

\Leftrightarrow (transitive r)
```

- Dependence/independence of axioms base modal logic K ⊭ axiom 4?
- Inclusion/non-inclusion relations between logics
 Is logic K45 (K+M+5) included in logic S4 (K+M+4)?
- (Relative) Consistency of logics and logic combinations Is logic S4 (K+M+4) consistent?

Experiments:

- Modal Logics
- Conditional Logics

with Geoff Sutcliffe

with Valerio Genovese, Dov Gabbay

Automating Meta-Properties of Logics in HOL

Semantic Conditions for Conditional Logic Axioms

			TPS
ID	Axiom	$A \Rightarrow_f A$	
	Condition	$f(w,[A])\subseteq [A]$	✓
MP	Axiom	$(A \Rightarrow_f B) \supset (A \supset B)$	
	Condition	$[A]\subseteq f(w,[A])$	✓
CS	Axiom	$(A \land B) \supset (A \Rightarrow_f B)$	
	Condition	$w \in [A] \supset f(w, [A]) \subseteq \{w\}$	✓
CEM	Axiom	$(A \Rightarrow_f B) \lor (A \Rightarrow_f \neg B)$	
	Condition	$ f(w,[A]) \leq 1$	✓
AC	Axiom	$(A \Rightarrow_f B) \land (A \Rightarrow_f C) \supset (A \land C \Rightarrow_f B)$	
	Condition	$f(w, [A]) \subseteq [B] \supset f(w, [A \land B]) \subseteq f(w, [A])$	✓
RT	Axiom	$(A \land B \Rightarrow_f C) \supset ((A \Rightarrow_f B) \supset (A \Rightarrow_f C))$	
	Condition	$f(w, [A]) \subseteq [B] \supset f(w, [A]) \subseteq f(w, [A \land B])$	✓
CV	Axiom	$(A \Rightarrow_f B) \land \neg (A \Rightarrow_f \neg C) \supset (A \land C \Rightarrow_f B)$	
	Condition	$(f(w, [A]) \subseteq [B] \text{ and } f(w, [A]) \cap [C] \neq \emptyset) \supset f(w, [A \land C]) \subseteq [B]$	✓
CA	Axiom	$(A \Rightarrow_f B) \land (C \Rightarrow_f B) \supset (A \lor C \Rightarrow_f B)$	
	Condition	$f(w,[A \lor B]) \subseteq f(w,[A]) \cup f(w,[B])$	✓

[BenzmüllerEtAl., AMAI, to appear]

Proofs and Countermodels at Meta-Level

The correct interpretation of the proof task for MP is

$$[\forall A, B.(A \Rightarrow_f B) \supset (A \supset B)] \leftrightarrow [\forall A, W.A \subseteq (f W A)]$$

versus (incorrect statement for MP)

$$\forall A, B. [((A \Rightarrow_f B) \supset (A \supset B)) \leftrightarrow \forall W.A \subseteq (f W A)]$$

The former is provable.

The latter is countersatisfiable; the countermodel reported by Nitpick is:

choose
$$D_i = \{i1\}$$
, $A = \{i1\}$, $B = \{i1\}$, $W = i1$, and

$$f = \left\{ \begin{array}{cc} i1 & \longrightarrow \left\{ \begin{array}{cc} \emptyset & \longrightarrow \emptyset \\ \{i1\} & \longrightarrow \emptyset \end{array} \right. \right.$$

QMLTP project: HOL-ATPs perform well for FML (thanks to Jens Otten and Thomas Raths)

QMLTP project: HOL-ATPs perform well for FML

The QMLTP project: see http://www.iltp.de/qmltp/

- Jens Otten and Thomas Raths, University of Potsdam
- infrastructure and benchmark library for testing and evaluating ATP systems for first-order modal logic
- collaborators: myself, Geoff Sutcliffe's TPTP project
- standardized extended TPTP syntax (called 'fml')
- 600 problems in 11 problem domains
- 20 problems in first-order multimodal logic

QMLTP project: HOL-ATPs perform well for FML

			ATP system				
Logic	Domain	SeP	TAP	LEO-II	Satallax	MSPASS	CoP
K	varying	-	-	73	104	-	-
	cumulative	121	-	89	122	70	-
	constant	124	-	120	146	67	-
D	varying	-	100	81	113	-	179
	cumulative	130	120	100	133	79	200
	constant	134	135	135	160	76	217
Т	varying	-	138	120	170	-	224
	cumulative	163	160	139	192	105	249
	constant	166	175	173	213	95	269
S4	varying	-	169	140	207	-	274
	cumulative	197	205	166	238	121	338
	constant	197	220	200	261	111	352
S5	varying	_	219	169	248	_	359
	cumulative	-	272	215	297	140	438
	constant	-	272	237	305	131	438

...

The prover GQML (by Cerrito and Thion) has turned out unsound as part of our experiments.

Demo: HOL-ATPs as universal reasoners

Analyzing example formula

$$(\diamondsuit(\exists X.pX) \land \Box \forall Y.\diamondsuit pY \supset qY) \supset \diamondsuit \exists Z.qZ$$

with HOL-ATPs:

	constant	varying	cumulative
K	CSA	CSA	???
D	CSA	CSA	???
Т	THM	THM	THM
S4	THM	THM	THM
S5	THM	THM	THM

CSA means Countersatisfiable, THM means Theorem

Remark: The flexible transformation from FML into THF syntax is provided by <u>Thomas Raths</u>.

```
Terminal - bash - 98×56
z8b8b:2012-CMU-Andrews christophbenzmueller$ more demo2.fml
gmf(con,conjecture,
    ( ( (#dia: 2 [X] : n(X))
        (*box: ! [Y]: ((*dig: p(Y)) => g(Y))) )
      => #dia: ? [X] : a(X) )).
z8b8b:2012-CMU-Andrews christophbenzmueller$
z8h8h:2012-CMI-Andrews christophhenzaueller$
z8b8b:2012-CMU-Andrews christophbenzmueller$ ./universal-reasoner demo2.fml s4 vary
--- Running version 0.1 of the HOL-ATP based universal logic engine ---
INPUT: fmt MODALLOGIC: s4 DOMAIN: varu
Converting from fml to thf (thanks to Thomas Raths)
Asking various HOL-ATPs in Migmi remotely (thanks to Geoff Sytcliffe)
 TPS---3.110228S1a (20 sec timeout)
   RESULT: SOT_UG2Nm_ - TPS---3.110228S1a saus Theorem - CPU = 5.62 HC = 7.50 Mode = MODE-X5202
 LEO-11---1.3.1 (20 sec timeout)
  RESULT: SOT_HyrsXa - LEO-II---1.3.1 says Theorem - CPU = 0.04 MC = 0.12
 Satallax---2.2 (20 sec timeout)
   RESULT: SOT_6YiBu4 - Satallax---2.2 saus Theorem - CPU = 0.04 HC = 0.09
 Isabelle---2011 (20 sec timeout)
  RESULT: SOT_AiuO6a - Isabelle---2011 saus Theorem - CPU = 3.87 MC = 3.93 SolvedBu = smt
 Refute---2011 (20 sec timeout)
   RESULT: SOT_kBCM07 - Refute---2011 says Timeout - CPU = 21.75 NC = 22.21
 Nitpick---2011 (20 sec timeout)
   RESULT: SOT_vfrCva - Nitpick---2011 saus Timeout - CPU = 20.58 HC = 22.20
z8b8b:2012-CMU-Andrews christophbenzmueller$ ./universal-reasoner demo2.fml k const
--- Running version 0.1 of the HOL-ATP based universal logic engine ---
INPUT: fml MODALLOGIC: k DOMAIN: const
Converting from fml to thf (thanks to Thomas Raths)
Asking various HOL-ATPs in Miami remotely (thanks to Geoff Sutcliffe)
 TPS---3.110228S1a (20 sec timeout)
   RESULT: SOT_18LNHH - TPS---3.110228S1a saus Unknown - CPU = 12.70 HC = 13.06
 LEO-11---1.3.1 (20 sec timeout)
   RESULT: SOT_67CJ5d - LE0-11---1.3.1 says Unknown - CPU = 4.95 MC = 5.03
 Satallax---2.2 (20 sec timeout)
   RESULT: SOT_3cM_9u - Satallax---2.2 saus CounterSatisfiable - CPU = 0.00 HC = 0.04
 Isabelle---2011 (20 sec timeout)
   RESULT: SOT_rR3DeX - Isabelle---2011 saus Unknown - CPU = 17.87 WC = 17.76
 Refute---2011 (20 sec timeout)
  RESULT: SOT_Blin1S - Refute---2011 says CounterSatisfiable - CPU = 3.57 WC = 3.37
 Nitpick---2011 (20 sec timeout)
   RESULT: SOT_C41Hci - Nitpick---2011 saus CounterSatisfiable - CPU = 4.76 HC = 4.19
```

z8b8b:2012-CMU-Andrews christophbenzmueller\$

Conclusion

Thank you Peter!