13. Взаимно положение на две прави в равнината

Нека K = Oxy е афинна координатна система.

Нека правите l_1 и l_2 имат общи уравнения:

$$l_1: A_1x + B_1y + C_1 = 0,$$

$$l_2: A_2x + B_2y + C_2 = 0$$

Тогава е в сила следната теорема:

- **Теорема 1:** Правите l_1 и l_2 а) се пресичат точно когато $\frac{A_1}{A_2} \neq \frac{B_1}{B_2};$ 6) са успоредни точно когато $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2};$ в) съвпадат точно когато $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}.$

Доказателство:

а) От предната глава ни е извесно, че векторите $\mathbf{p}_1(-B_1,A_1)\|l_1$ и $\mathbf{p}_2(-B_2,A_2)\|l_2$. Правите l_1 и l_2 са успоредни или съвпадат точно когато тези вектори са колинеарни. Условието

$$\frac{A_1}{A_2} = \frac{B_1}{B_2},$$

т.е. правите се пресичат, когато равенството не е изпълнено.

в) Нека векторите p_1 и p_2 са колинеарни, тогава правите l_1 и l_2 са успоредни или съвпадат. От условието имаме

$$A_1 = \rho A_2, B_1 = \rho B_2,$$

където ρ е коефициента на пропорционалност. Като заместим в първото уравнение получаваме:

$$l_1: \rho(A_2x + B_2y) + C_1 = 0.$$

Ако правите се сливат, то изразът $A_2x + B_2y$ от уравненията на l_1 и l_2 може да с 2 елиминира. Това води до $C_1 = \rho C_2$.

Обратно, ако е изпълнено $A_1 = \rho A_2$, $B_1 = \rho B_2$, $C_1 = \rho C_2 (\rho \neq 0)$, то двете прави притежават еднакви уравнения, което показва, че съвпадат. С това доказахме в).

б) Следва чрез допускане на противното.

Нека сега координатната система е ортонормирана. Правите l_1 и l_2 сключват съответно ъглови коефициенти:

$$k_1 = -\frac{A_1}{B_1}, k_2 = -\frac{A_2}{B_2}.$$

Можем да формулиране следната теорема:

Теорема 2: Две прави l_1 и l_2 (не усппордни на оста Oy) с ъглови коефициенти k_1 и k_2 са:

- а) успоредни (или съвпадат), точно когато $k_1 = k_2$;
- б) прерпендикулярни, точно когато $1+k_1k_2=0$. Доказателство:
- а) Правите са успоредни точно когато $p_1 || p_2$, или

$$rac{A_1}{A_2} = rac{B_1}{B_2}$$
 или $rac{A_1}{B_1} = rac{A_2}{B_2},$

T.e. $k_1 = k_2$.

б) Правите са перпендикулярни точно когато $p_1 \perp p_2$, или

$$A_1 A_2 + B_1 B_2 = 0,$$

$$1 + \frac{A_1 A_2}{B_1 B_2} = 0,$$

или $1 + k_1 k_2 = 0$, което трябваше да се докаже.