5. More tidyverse and intro to ggplot

Frank Edwards

Piping commands together

Tidyverse uses a special symbol, called a pipe %>% to string together commands. Cmd + shift + m will make one.

Piping commands

The pipe %>% tells R to use iris for all commands that follow

```
iris %>%
filter(Species == "versicolor")
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	7.0	3.2	4.7	1.4	versicolor
##	2	6.4	3.2	4.5	1.5	versicolor
##	3	6.9	3.1	4.9	1.5	versicolor
##	4	5.5	2.3	4.0	1.3	versicolor
##	5	6.5	2.8	4.6	1.5	versicolor
##	6	5.7	2.8	4.5	1.3	versicolor
##	7	6.3	3.3	4.7	1.6	versicolor
##	8	4.9	2.4	3.3	1.0	versicolor
##	9	6.6	2.9	4.6	1.3	versicolor
##	10	5.2	2.7	3.9	1.4	versicolor
##	11	5.0	2.0	3.5	1.0	versicolor
##	12	5.9	3.0	4.2	1.5	versicolor
##	13	6.0	2.2	4.0	1.0	versicolor
##	14	6.1	2.9	4.7	1.4	versicolor
##	15	5.6	2.9	3.6	1.3	versicolor
##	16	6.7	3.1	4.4	1.4	versicolor
##	17	5.6	3.0	4.5	1.5	versicolor
##	18	5.8	2.7	4.1	1.0	versicolor
##	19	6.2	2.2	4.5	1.5	versicolor
##	20	5.6	2.5	3.9	1.1	versicolor
##	21	5.9	3.2	4.8	1.8	versicolor
##	22	6.1	2.8	4.0	1.3	versicolor
##	23	6.3	2.5	4.9	1.5	versicolor

Piping commands

```
iris %>%
  mutate(sepal2 = Sepal.Length + 2)
```

##		${\tt Sepal.Length}$	${\tt Sepal.Width}$	Petal.Length	Petal.Width	Species	sepal2	
##	1	5.1	3.5	1.4	0.2	setosa	7.1	
##	2	4.9	3.0	1.4	0.2	setosa	6.9	
##	3	4.7	3.2	1.3	0.2	setosa	6.7	
##	4	4.6	3.1	1.5	0.2	setosa	6.6	
##	5	5.0	3.6	1.4	0.2	setosa	7.0	
##	6	5.4	3.9	1.7	0.4	setosa	7.4	
##	7	4.6	3.4	1.4	0.3	setosa	6.6	
##	8	5.0	3.4	1.5	0.2	setosa	7.0	
##	9	4.4	2.9	1.4	0.2	setosa	6.4	
##	10	4.9	3.1	1.5	0.1	setosa	6.9	
##	11	5.4	3.7	1.5	0.2	setosa	7.4	
##	12	4.8	3.4	1.6	0.2	setosa	6.8	
##	13	4.8	3.0	1.4	0.1	setosa	6.8	
##	14	4.3	3.0	1.1	0.1	setosa	6.3	
##	15	5.8	4.0	1.2	0.2	setosa	7.8	
##	16	5.7	4.4	1.5	0.4	setosa	7.7	
##	17	5.4	3.9	1.3	0.4	setosa	7.4	
##	18	5.1	3.5	1.4	0.3	setosa	7.1	
##	19	5.7	3.8	1.7	0.3	setosa	7.7	
##	20	5.1	3.8	1.5	0.3	setosa	7.1	
##	21	5.4	3.4	1.7	0.2	setosa	7.4	
##	22	5.1	3.7	1.5	0.4	setosa	7.1	
##	23	4.6	3.6	1.0	0.2	setosa	6.6	
##	24	5.1	3.3	1.7	0.5	setosa	7.1	
##	25	4.8	3.4	1.9	0.2	setosa	6.8	

Exercises

Using iris and the pipe operator %>%

- Use select to return only the petal variables and flower species
- Use filter to return only versicolor observations
- · Use arrange to sort the data.frame by Sepal.Length
- · Use mutate to compute the sum of petal lengths and widths
- Identify and return a data.frame containing only observations with the smallest observed petal width

Piping many commands

```
iris %>%
  filter(Species == "versicolor") %>%
  select(Sepal.Length, Petal.Length, Species) %>%
  mutate(Sepal.Petal.Ratio = Sepal.Length / Petal.Length)
```

##		Sepal.Length	Petal.Length	Species	Sepal.Petal.Ratio
##	1	7.0	4.7	versicolor	1.489362
##	2	6.4	4.5	versicolor	1.422222
##	3	6.9	4.9	versicolor	1.408163
##	4	5.5	4.0	versicolor	1.375000
##	5	6.5	4.6	versicolor	1.413043
##	6	5.7	4.5	versicolor	1.266667
##	7	6.3	4.7	versicolor	1.340426
##	8	4.9	3.3	versicolor	1.484848
##	9	6.6	4.6	versicolor	1.434783
##	10	5.2	3.9	versicolor	1.333333
##	11	5.0	3.5	versicolor	1.428571
##	12	5.9	4.2	versicolor	1.404762
##	13	6.0	4.0	versicolor	1.500000
##	14	6.1	4.7	versicolor	1.297872
##	15	5.6	3.6	versicolor	1.555556
##	16	6.7	4.4	versicolor	1.522727
##	17	5.6	4.5	versicolor	1.244444
##	18	5.8	4.1	versicolor	1.414634
##	19	6.2	4.5	versicolor	1.377778
##	20	5.6	3.9	versicolor	1.435897
##	21	5.9	4.8	versicolor	1.229167
##	22	6.1	4.0	versicolor	1.525000
##	23	6.3	4.9	versicolor	1.285714

Summarizing data

summarize() uses a variety of summary functions over the data
(e.g. mean, min, max, sd, etc.)

```
iris %>%
   summarize(mean.pl = mean(Petal.Length))

## mean.pl
## 1 3.758
```

But summarize() is more powerful with its buddy, group_by()

group_by() groups the data by individual groups within the data

We can use it to count too

```
iris %>%
 group_by(Species) %>%
 summarize(n_obs = n())
## # A tibble: 3 x 2
##
    Species
               n_obs
    <fct>
             <int>
##
## 1 setosa
                  50
## 2 versicolor
                  50
## 3 virginica
                50
```

We can use it to count too

Exercises

- · Which species has the largest average sepal length?
- · Which species has the smallest average petal length?
- · What is the average sepal width across all species?
- Which species has the highest number of observations with petal lengths less than the average petal length across all species?

Visualizing the distribution of single variables (univariate visuals)

Visuals for categorical variables

Barplots

Show the count of rows in each value of a category

```
ggplot(mpg,
    aes(y = class)) +
geom_bar()
```


The anatomy of a basic ggplot() call

```
ggplot(mpg, ## object, usually a data.frame
          aes(y = class)) + ## aesthetic variables, generally x, y, color, etc
    geom_bar() ## a geom to plot the aesthetics

## Note that + in ggplot() works the same way as %>% in tidyverse:
## It strings together commands, evaluated in sequence
```

Practice

Using the mpg data.frame, make a barplot of manufacturer. Try changing the aesthetic from a y to an x. What happens?

Recall the anatomy of a ggplot call

```
ggplot(DATA.FRAME.NAME,

aes(AESTHETIC PARAMETERS)) +

GEOM
```

Visuals for continuous variables

Histograms

Histograms show the density of cases that fall within a given range

```
ggplot(mpg,
    aes(x = hwy)) +
geom_histogram()
```


Histograms in base R

hist(mpg\$hwy)

Practice

Practice **Practice**

- 1. Make a histogram of city miles per gallon in the mpg dataset
- 2. What does this histogram tell us?

Density plots

Densities are smoothed continuous histograms

```
ggplot(mpg,
   aes(x = hwy)) +
geom_density()
```


Another set of histograms/densities

```
ggplot(mpg,
        aes(x = hwy)) +
  geom_histogram()
  40 -
one 30 -
  10 -
  0 -
                                   20
                                                                 30
    10
                                                           hwy
ggplot(mpg,
        aes(x = hwy)) +
  geom_density()
  0.06
density
  0.02
  0.00 -
                                   20
                                                                   30
                                                           hwy
```

Practice

Practice

- 1. Create a histogram of displ
- 2. Create a density plot of displ
- 3. Which do you think is a more effective data visual? Why?
- 4. Create a histogram of city mpg
- 5. Create a histogram of highway mpg
- 6. Describe differences in these distributions.
- Using a barplot, identify which vehicle class is most common in the data
- 8. Using a barplot, identify which manufacturer is least common in the data