Worksheet #1 Solution

Problem 1.

(a)
$$y' + xe^{-x^2/2} = 0$$

$$\Rightarrow \frac{dy}{dx} + xe^{-x^2/2} = 0$$

$$\Rightarrow dy = -xe^{-x^2/2} dx$$

$$\Rightarrow \int dy = -\int xe^{-x^2/2} dx$$

$$\Rightarrow u = -\frac{x^2}{2} \Rightarrow du = -xdx$$

$$\int e^{u} du = e^{u} = e^{-x^2/2}$$

$$\Rightarrow dy = 4e^{-x}\cos x dx \Rightarrow dy = 4e^{-x}\cos x dx$$

$$\Rightarrow dy = 4e^{-x}\cos x dx \Rightarrow \int dy = \int 4e^{-x}\cos x dx$$

$$I = \int e^{-x}\cos x dx = -\cos x \cdot e^{-x} - \int \sin x \cdot e^{-x} dx$$

$$= -\cos x \cdot e^{-x} + \sin x \cdot e^{-x} - \int \cos x \cdot e^{-x} dx$$

$$= e^{-x} \left(\sin x - \cos x\right) - I$$

$$\Rightarrow I = \frac{1}{2}e^{-x} \left(\sin x - \cos x\right)$$

$$\Rightarrow y(x) = 2e^{-x}(\sin x - \cos x) + C$$

Problem 2. Differentiating $y^2 - 4x^2 = C$, we get 2yy' - 8x = 0 \Rightarrow yy' = 4xPutting y=4 & x=1 in $y^2-4x^2=C$, we get (6) C=16-4=12 So, particular solution is $y^2 = 12 + 4x^2$. $y^2 - 4x^2 = 12$ $\Rightarrow \frac{y^2}{12} - \frac{x^2}{3} = 1$ \rightarrow hyperbola (C) X • $y=cx-c^2 \Rightarrow y'=c \Rightarrow c^2=(y')^2$ Problem 3.

$$y = Cx - C^{2} \implies y = C \implies C^{2} = (y')$$
Also, $C^{2} = Cx - y$

$$= y'x - y$$

$$So, \quad y'x - y = (y')^{2} \implies (y')^{2} - xy' + y = 0$$

$$u = \frac{1}{2}x^{2} - \frac{1}{2}x' = x$$

•
$$y = \frac{1}{4}x^2 \Rightarrow y' = \frac{x}{2}$$

Thun, $(y')^2 - xy' + y = \frac{x^2}{4} - \frac{x^2}{2} + \frac{x^2}{4} = 0$

Problem 4. Let y(t) be the amount at time t. We know that Radioactive decay satisfies the ODE $\frac{dy}{dt} = -ky$ which has solution $y(t) = y(0)e^{-kt}$.

Hulf-life of 3.6 days implies $y(3.6) = \frac{y(0)}{2}$ So, $\frac{y(0)}{2} = y(0)e^{-k3.6}$ $\Rightarrow e^{-3.6k} = \frac{1}{2} \Rightarrow 3.6k = \ln(2)$ $\Rightarrow k = \frac{\ln(2)}{3.6} = 0.19$

3.6
(a) After 1 day, $y(1) = 1.e^{-0.19} = 0.83$ grams
(b) After 1 year, $y(365) = 1.e^{-0.19 \times 365} = 3 \times 10^{-31}$ grams.

Problem 5.

$$y' = 2y - y^2$$

point	slope	point	slope	point clope	point slope
(0,0) (0,1) (0,2) (1,0) (-1,2)	0 1 0 0 0	(1,1) (1,2) (2,0) (2,1) (-1,-1)	D	(2,2) O (-1,0) O (-2,0) O (1,-1) -3 (-1,-2) -8	$\begin{array}{c c} \hline (1,-2) & -8 \\ \hline (2,-1) & -3 \\ \hline (2,-2) & -8 \\ \hline (-1,1) & 1 \\ \hline (-2,-1) & -3 \\ \hline \end{array}$
(-1, 2) (-2, -2)	-8	(-1 _, -1) (-2 _, 1)		(-1,-2) -8 (-2,2) 0	(-2,-1) -3

Problem 6.
$$x_0 = 0$$
, $y_0 = 1$, $h = 0.1$, $f(x,y) = y$
 $x_1 = x_0 + h = 0.1$, $y_1 = y_0 + f(x_0, y_0) h = 1 + 1 \times 0.1 = 1.1$
 $x_2 = x_1 + h = 0.2$, $y_2 = y_1 + f(x_1, y_1) h = 1.1 + 1.1 \times 0.1 = 1.21$
 $x_3 = x_2 + h = 0.3$, $y_3 = y_2 + f(x_2, y_2) h = 1.21 + 1.21 \times 0.1 = 1.331$
Problem 7.
$$y^3 y' + x^3 = 0$$

$$\Rightarrow y' = -\frac{x^3}{y^3} = -\left(\frac{x}{y}\right)^3 = -\frac{1}{(y/x)^3}$$
Let $u = y/x \Rightarrow y = ux \Rightarrow y' = u + u'x$

$$\Rightarrow u + u'x = -\frac{1}{u^3} \Rightarrow u'x = -\frac{1}{u^3} - u = -\frac{u^4 + 1}{u^3}$$

$$\Rightarrow \frac{u^3}{u^4 + 1} du = -\frac{dx}{x} \Rightarrow \int \frac{u^3}{u^4 + 1} du = -\int \frac{dx}{x}$$

$$\Rightarrow \frac{1}{4} \ln(u^4 + 1) = -\ln(x) + C$$

$$\Rightarrow \left(u^{4}+1\right)^{1/4} = \frac{C}{x} \Rightarrow u^{4}+1 = \frac{C}{x^{4}}$$

$$\Rightarrow \left(\frac{y}{x}\right)^4 + 1 = \frac{C}{x^4} \Rightarrow \left[y^4 + x^4 = C\right]$$

Problem 8. y'z - Ay log(y)

$$\Rightarrow \frac{dy}{y \log(y)} = -Adt \Rightarrow \int \frac{dy}{y \log(y)} = \int -Adt$$