2D Spectroscopy

Mike Reppert

October 18, 2024

Nonlinear Ultrafast Spectroscopy

Key Idea: If our total electric field is a sum of "delta functions":

$$E_{\alpha}(t) = \sum_{j} E_{\alpha}^{(j)}(t - t_j) \cos(\omega_j(t - t_j)) \,\delta(t - t_j),$$

then the polarization

$$\begin{split} \tilde{P}_{\alpha}^{(n)} \left[\tilde{\boldsymbol{E}}^{(\mathsf{exc})} \right] &= \sum_{\alpha_{1}, \dots, \alpha_{n}} \int d\tau_{n} \dots \int d\tau_{1} R_{\alpha_{1} \dots \alpha_{n} \alpha}^{(n)}(\tau_{1}, \dots, \tau_{n}) \\ &\times \int_{V} d\boldsymbol{x} \int dt \, \mathrm{e}^{\mathrm{i}(\omega t - \boldsymbol{k} \cdot \boldsymbol{x})} E_{\alpha_{1}}^{(\mathsf{exc})}(\boldsymbol{x}, t - \tau_{1} - \dots - \tau_{n}) \dots E_{\alpha_{n}}^{(\mathsf{exc})}(\boldsymbol{x}, t - \tau_{n}) \\ &\approx R_{\alpha_{1} \dots \alpha_{n} \alpha}^{(n)}(T_{1}, \dots, T_{n}) \end{split}$$

looks simply* like the response function evaluated at the time delays between pulses $T_n=t-t_n$, $T_{n-1}=t_n-t_{n-1}$,

Mike Reppert 2D Spectroscopy 2 / 10 October 18, 2024 2 / 10

^{*} Note that here be multiple dragons that we're blindly ignoring.

Note carefully!

In general, response functions depend on the time delay *between interactions*. Any number of interactions may occur within each pulse from the excitation source.

In most implementations of ultrafast spectroscopy, the experiment is *specifically constructed* to evaluate the response function as a function of time delays *between pulses*.

Several "tricks" needed to accomplish this:

- Very short pulses (to keep the range of possible interaction times small)
- Directional detection (to select signal only from specific pathways)
- Beam chopping (to eliminate signals coming from multiple interactions with the same pulse)
- Phase cycling (similar to beam chopping, but by applying specific phases to each pulse)

- "Tricks":
 - Directional detection
 - Beam chopping: $\Delta OD = \text{"pump on"} \text{"pump off"}$

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

 Mike Reppert
 2D Spectroscopy
 4 / 10
 October 18, 2024
 4 / 10

- "Tricks":
 - Directional detection
 - Beam chopping: $\Delta OD = \text{``pump on''} \text{``pump off''}$
- What order is this process?

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

Mike Reppert 2D Spectroscopy 4 / 10 October 18, 2024 4 / 10

- "Tricks":
 - Directional detection
 - Beam chopping: $\Delta OD = \text{"pump on"} \text{"pump off"}$
- What order is this process? Third order
 - Two interactions with "pump", one with "probe"

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

 Mike Reppert
 2D Spectroscopy
 4 / 10
 October 18, 2024
 4 / 10

- "Tricks":
 - Directional detection
 - Beam chopping: $\Delta OD = \text{"pump on"} \text{"pump off"}$
- What order is this process? Third order
 - Two interactions with "pump", one with "probe"
- Two pathways contribute:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $k_1 k_2 + k_3$

$$S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$$

Mike Reppert 2D Spectroscopy 4/10 October 18, 2024 4/10

- "Tricks":
 - Directional detection
 - Beam chopping: $\Delta OD = \text{"pump on"} \text{"pump off"}$

- What order is this process? Third order
 - Two interactions with "pump", one with "probe"
- Two pathways contribute:
 - Rephasing: $-k_1 + k_2 + k_3$
 - Nonrephasing: $\boldsymbol{k}_1 \boldsymbol{k}_2 + \boldsymbol{k}_3$
- As a function of time-delay:
 - Does not oscillate at high frequencies
 - Monitors dissipation
 - Not sensitive to dephasing

 $S^{(\mathrm{pp})}(\omega) \propto \varepsilon_{\mathrm{pump}}^2 \varepsilon_{\mathrm{probe}} \int d\omega_1 \left[\tilde{R}_{yyyy}^{(3)}(-\omega_1,0,\omega) + \tilde{R}_{yyyy}^{(3)}(\omega_1,0,\omega) \right].$

Mike Reppert 2D Spectroscopy 4 / 10 October 18, 2024 4 / 10

$\overline{\rm 2D~Spectroscopy:~The~full~}R^{(3)}$ response tensor

- Key Idea: By scanning the time a delay between the first two interactions, we get excitation frequency information
- Two common geometries
 - Pump-probe
 - Box-CARS
- Why care? By directly resolving both excitation and response, we can distinguish between homogeneous and inhomogeneous broadening.

Fuller and Ogilvie, *Ann. Rev. Phys. Chem.*, 2015 66, 667-690

Three different flavors

Double Quantum Coherence:

Beats at $2\omega_o$ and decays with dissipation in τ_2 : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

Three different flavors

Double Quantum Coherence:

Beats at $2\omega_o$ and decays with dissipation in τ_2 : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

Nonrephasing:

Decays with *dissipation* in τ_2 : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3$$

Three different flavors

Double Quantum Coherence:

Beats at $2\omega_o$ and decays with dissipation in τ_2 : sensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 + \mathbf{k}_2 - \mathbf{k}_3$$

Nonrephasing:

Decays with *dissipation* in τ_2 : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = \mathbf{k}_1 - \mathbf{k}_2 + \mathbf{k}_3$$

Rephasing (photon echo):

Decays with $\emph{dissipation}$ in au_2 : insensitive to dephasing

$$\mathbf{k}_{\mathsf{sig}} = -\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3$$

2D Correlation Spectrum: One oscillator

2D Correlation Spectrum = Rephasing + Nonrephasing surfaces. Directly measured in pump-probe geometry.

2D Correlation Spectrum: One oscillator

2D Correlation Spectrum = Rephasing + Nonrephasing surfaces. Directly measured in pump-probe geometry.

- $(\omega_1, \omega_3) =$ (Excitation, Detection)
- Diagonal width feels both homogeneous and inhomogeneous broadening
- Anti-diagonal width feels only homogeneous broadening
- τ_2 feels dissipation **not** dephasing

Homogeneous

Inhomogeneous

 Frequency probed by pulse 3 depends on time delay between 1 & 2 → Signal

- Frequency probed by pulse 3 depends on time delay between $1 \& 2 \rightarrow Signal$
- Excitation of one mode alters frequencies of coupled modes \rightarrow Cross peaks

- Frequency probed by pulse 3 depends on time delay between $1 \& 2 \rightarrow \mathsf{Signal}$
- ullet Excitation of one mode alters frequencies of coupled modes ightarrow Cross peaks
- Interference between different modes → "Quantum" beats

2D Correlation Spectra: Two Oscillators

Cross-peaks in 2D spectra indicate site-to-site **coupling** and **energy transfer**.

Take-Home Points

A well-designed ultrafast experiment can probe **specific responsetensor elements**.

2D Spectroscopy is a generalization of pump-probe spectroscopy, where both **excitation** and **detection** frequencies are resolved.

Four basic "flavors" of 2D spectrum:

- Double-Quantum Coherence
- Nonrephasing
- Rephasing
- Correlation = R + NR

In correlation spectra, **Diagonal** vs. **Antidiagonal** linewidths distinguish homogeneous and inhomogeneous broadening.

Cross-peaks indicate coupling and energy transfer.