

N = ({ 90, 91, 92, 93, 943, \$0, 63, 8, 90, 890, 943)

ક :	3	a	Ъ	3
	9.	E903	Ø	£9,3
	۹,	l Ø	{q₂}} Ø	Ø
	qz	{q, } {q≥}	Ø	Eau3
	95	Eq 23	Ø	Ø
	9 4	{qu3	Ø	ø

b) a* (b (aa)*)* a*

Question 2:

a(aub) * abb (aub) * U abb (aub) *

Question 3:

80	1 a	Ь	
Ø §a. \$ §a. \$	Ø 892,933 89,,938	છ ક્ _૧ ,3 દ્૧,3	(Stake
8928 8938 89,93	Ø Ø {q, q ₂ , q ₃ }	Eq2, 933 Ø Eq.3	D = (P(Q
$ \begin{array}{c} $	\ \{\q_2, \q_3\} \	{a,,q2,q3} {a,3	• 0
	89,, 933	₹91,92,933 ₹9 ,8	• 4,
£92,93,3 £90,91,92 £90,91,93	3 [[4,,92,93]	ξη _{ε,} η ₃ ξ ξη _{ι,} η _{2,} η ₃ ξ ξηξ	·Fo
\$90, 92, 93 {9, , 92, 93	₹ { 92.93 } \$ { 91.93 }	{9,92,939 {9,92,939	
<i>[</i> ٩٠,٩٠,٩٠,٩٠,٩٠	,3 §q,,q _z ,q ₃ 3	1 89, 92, 933	

(State diagram not included here)

$$D = (P(Q), \{a, b\}, \delta_0, q_0, F_0) \text{ where}$$

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$Q_D = \{q_0, q_4\}$$

$$F_D = \{\{q_0, q_4\}, \{q_0, q_3\}, \{q_1, q_4\}, \{q_2, q_3\}, \{q_0, q_1, q_3\}, \{q_1, q_2, q_3\}, \{q_1, q_3\}, \{q_1, q_3\}, \{q_1, q_2, q_3\}, \{q_1, q_3\}, \{q_1$$

Question 4

Question S

GNFA:

0-transitions omitted

90ip = 90

 $q_{r,p} = q_2 \qquad \text{(5)} \frac{\left[(a_0 b)(a(a_0 b))^* b \right] \left[b(a_0 b)(a(a_0 b))^* b \ V \ a \right]^* \left[b(a_0 b)(a(a_0 b))^* \right] \ V \ (a_0 b)(a(a_0 b))^*}{\left(b(a_0 b)(a(a_0 b))^* b \right] \left[b(a_0 b)(a(a_0 b))^* b \ V \ a \right]^* \left[b(a_0 b)(a(a_0 b))^* \right] \ V \ (a_0 b)(a(a_0 b))^* }$

 $R = \left[(a_0 b \chi a (a_0 b))^* b \right] \left[b (a_0 b \chi a (a_0 b))^* b \vee a \right]^* \left[b (a_0 b \chi a (a_0 b))^* \right] \vee \left(a_0 b \chi a (a_0 b) \right)^*$

Question 6:

[90,913 [91,923 [92,91] fg. 243

Eqo. (2) Eq. (3) Eq. (4)

{90,93} [91,943

£90, 94 3

P .: 90 ~ 95

D'

Question 7:

Assume for a contradiction that L is regular. Let p be the pumping length of L. Choose $S=0^p i^{2p}$. Since $S\in L$ and $|S|\geq p$, we can rewrite $S=2y\geq S$ such that

1) y + &
2) | xy | \le p
3) xy | z \in L Gr \text{ each } \in z \in 0

By property 2), 24 consists of only 0's

By property 1), y is a non-empty substrang of 0's. Let y be 0^k for some $k \ge 1$ Consider the string $x(y^2)^2$, $x(y^2)^2 = 0^{p+k} 1^{2p}$ since we are concatenating y somewhere in the beginning 0's.

Since $K \ge 1$, xy^2z does not have at least twice as many 1's as 0's, which violates property 3) of the pumping lemma.

We cannot remote s = xyz such that all properties of the pumping lemma hold Therefore, L is not regular.