Olimpiada Națională de Matematică 2008 Etapa județeană și a Municipiului București 1 martie 2008

CLASA A X-A SOLUŢII ŞI BAREMURI ORIENTATIVE

Subiectul 1. Fie a și b două numere complexe. Să se demonstreze inegalitatea $|1+ab|+|a+b| \geq \sqrt{|a^2-1|\cdot|b^2-1|}.$

Soluție. Din inegalitatea modulului avem

$$|1 + ab| + |a + b| > |1 + ab + a + b|$$

şi

$$|1 + ab| + |a + b| \ge |1 + ab - a - b|.$$

de unde, prin înmulțirea acestora, deducem

$$(|1+ab|+|a+b|)^2 \ge |(1+ab)^2-(a+b)^2|$$

Variantă. Avem

$$|1 + 2ab + a^2b^2| + |a^2 + 2ab + b^2| \ge |a^2b^2 + 1 - a^2 - b^2| = |a^2 - 1| \cdot |b^2 - 1|$$

conform inegalității modulului......3 puncte de unde

$$(|1+ab|+|a+b|)^2 \ge |(1+ab)^2-(a+b)^2|$$

Subiectul 2. Să se determine numerele întregi x pentru care

$$\log_3(1+2^x) = \log_2(1+x).$$

Soluție. Evident x e număr natural. Se observă soluțiile x=1 și x=3 1 punct

Subiectul 3. Fie $f: \mathbb{R} \to \mathbb{R}$ o funcție cu proprietatea

$$f\left(\frac{x+y}{3}\right) = \frac{f(x) + f(y)}{2},$$

pentru orice $x, y \in \mathbb{R}$.

- a) Demonstrați că funcția $g: \mathbb{R} \to \mathbb{R}$, g(x) = f(x) f(0) este aditivă, adică g(x+y) = g(x) + g(y), pentru orice $x, y \in \mathbb{R}$.
 - b) Arătați că f este constantă.

Soluţie. a) Fie $x, y \in \mathbb{R}$; cu egalitatea din enunţ, avem:

$$\frac{g(x) + g(y)}{2} = \frac{f(x) + f(y)}{2} - f(0) = f\left(\frac{x+y}{3}\right) - f(0) =$$
$$= \frac{f(x+y) - f(0)}{2} - f(0) = \frac{g(x+y)}{2},$$

Subiectul 4. Fie $n \ge 3$ un număr întreg și $z = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$. Considerăm mulțimile $A = \{1, z, z^2, \dots, z^{n-1}\}$ și $B = \{1, 1 + z, 1 + z + z^2, \dots, 1 + z + \dots + z^{n-1}\}$.

Să se determine mulțimea $A \cap B$.