21 октября 2024 г.

Задача 1.

- а) Пусть X случайный вектор размерности k с матрицей ковариаций $\mathbb{V}X = \Omega$, A и b неслучайные матрица $n \times k$ и вектор $n \times 1$, а случайный вектор Y задан как Y = AX + b. Докажите, что $\mathbb{V}Y = A\Omega A^T$.
- b) Пусть $Z \sim \mathcal{N}(0_n, I_n)$ стандартный нормальный вектор, а O (детерминистическая) ортонормированная матрица размерности $n \times n$. Докажите, что $\tilde{Z} := OZ$ тоже стандартный нормальный вектор.

Задача 2.

Пусть W_t – винеровский процесс. Покажите, используя определения винеровского процесса, что следующие случайные процессы также являются винеровскими процессами на отрезке [0, T]:

- 1. $X_t = -W_t$.
- 2. $X_t = W_{T-t} W_T$, где $T < +\infty$.
- 3. $X_t = cW_{t/c^2}$, где $T \leq +\infty, \, c \in \mathbb{R}$.
- 4. $X_t = tW_{1/t}, t > 0$, и $X_0 = 0$.

Задача 3.

Пусть B_t и W_t – два независимых винеровских процесса. Покажите, что $X_t = \frac{B_t + W_t}{\sqrt{2}}$ также является винеровским процессом. Найдите корреляцию между B_t и X_t .

Задача 4.

Рассмотрим процесс $X_t = B_t - tB_1$, где B_t – стандартный винеровский процесс на [0,1].

- а) Покажите, что X_t гауссовский процесс и найдите распределение его n-мерных сечений.
- b) Пусть $Y_t := B_t | B_1 = 0$ (этот процесс называется броуновским мостом). Используя свойства условных распределений нормальных случайных величин, найдите матожидание $\mathbb{E}Y_t$ и ковариационную функцию $\text{cov}(Y_{t_1}, Y_{t_2}), t_1, t_2 \in [0, 1]$. Различаются ли распределения X_t и Y_t ?