

# Welcome to Python Libraries for Machine Learning Course

#### Automated Hands-on Assessments



Learn by doing

#### Course Objective



Learning Python
For
Machine Learning
&

**Deep Learning** 



# Numpy

# What is NumPy

Stands for "Numeric Python" or "Numerical Python".

- Open Source
- Module of Python
- Provides fast mathematical functions

# What is NumPy



The complete Machine Learning eco-system.

# Why use NumPy?

- Array-oriented computing
- Efficiently implemented multi-dimensional arrays
- Designed for scientific computation
- Library of high-level mathematical functions

#### Numpy - Introduction

- NumPy's main object is the homogeneous multidimensional array
- It is a table of elements
  - usually numbers
  - o all of the same type
  - indexed by a tuple of positive integers
- In NumPy dimensions are called axes
- The number of axes is rank

#### Numpy - Introduction



The above array has a rank of 2 since it is 2 dimensional.

np.array - Creating NumPy array from Python Lists/Tuple

Numpy arrays can be created from Python lists or tuple in the following way.

```
>>> import numpy as np
>>> a = np.array([1, 2, 3])
>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array((3, 4, 5))
>>> type(b)
<type 'numpy.ndarray'>
```

np.zeroes - An array with all Zeroes

To create an array with all zeroes the function np.zeroes is used

np.ones - An array with all Ones

To create an array with all ones the function np.ones is used.

np.full - An array with a given value

To create an array with a given shape and a given value np.full is used.

```
>>> np.full( (3,4), 0.11 )
array([[ 0.11,  0.11,  0.11,  0.11],
      [ 0.11,  0.11,  0.11,  0.11],
      [ 0.11,  0.11,  0.11,  0.11]])
```

np.arange - Creating sequence of Numbers

```
>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )
# it accepts float arguments
array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])
```

np.linspace - Creating an array with evenly distributed numbers

- Returns an array having a specific number of points
- Evenly distributed between two values
- The maximum value is included, contrary to arange



np.random.rand - Creating an array with random numbers

Make a 2x3 matrix having random floats between 0 and 1:

np.empty - Creating an empty array

To create an *uninitialised* array with a given shape. Its content is not predictable.

The NumPy's array class is called ndarray. The important attributes of a ndarray object are -

#### ndarray.ndim

the number of axes (dimensions) of the array.

For the above array the value of ndarray.ndim is 2.

#### ndarray.shape

the dimensions of the array. This is a tuple of integers indicating the size of the array in each dimension.

For the above array the value of ndarray.shape is (2,3)

#### ndarray.size

the total number of elements of the array. This is equal to the product of the elements of shape.

For the above array the value of ndarray.size is 6.

#### ndarray.dtype

Tells the datatype of the elements in the numpy array. All the elements in a numpy array have the same type.

```
>>> c = np.arange(1, 5)
>>> c.dtype
dtype('int64')
```

#### ndarray.itemsize

The itemsize attribute returns the size (in bytes) of each item:

```
>>> c = np.arange(1, 5)
>>> c.itemsize
8
```

# Reshaping Arrays

The function reshape is used to reshape the numpy array. The following example illustrates this.

```
>>> a = np.arange(6)
>>> print(a)
[0 1 2 3 4 5]
>>> b = a.reshape(2, 3)
>>> print(b)
[[0 1 2],
[3 4 5]]
```

Indexing and Accessing NumPy arrays

# Indexing one dimensional NumPy Arrays

```
\Rightarrow \Rightarrow a = np.array([1, 5, 3, 19, 13, 7, 3])
>>> a[3]
19
>>> a[2:5] #range
array([3, 19, 13])
>>> a[2::2] # How many to jump
array([3, 13, 3])
>>> a[::-1] #Go reverse
array([3, 7, 13, 19, 3, 5, 1])
```

# Difference with regular Python arrays

1. If you assign a single value to an ndarray slice, it is copied across the whole slice:

```
>>> a = np.array([1, 2, 5, 7, 8])
>>> a[1:3] = -1
>>> a
array([ 1, -1, -1,  7,  8])
----
>>> b = [1, 2, 5, 7, 8]
>>> b[1:3] = -1
```

TypeError: can only assign an iterable

# Difference with regular Python arrays

2. ndarray slices are actually views on the same data buffer. If you modify it, it is going to modify the original ndarray as well.

```
>>> a = np.array([1, 2, 5, 7, 8])
>>> a_slice = a[1:5]
>>> a_slice[1] = 1000
>>> a
array([ 1,  2, 1000, 7, 8])
# Original array was modified
```

3. If you want a copy of the data, you need to use the copy method as another\_slice = a[2:6].copy(), if we modify another\_slice, a remains same.

# Indexing multi dimensional NumPy arrays

Multi-dimensional arrays can be accessed as

```
>>> b[1, 2]  # row 1, col 2
>>> b[1, :]  # row 1, all columns
>>> b[:, 1]  # all rows, column 1
```

The following format is used while indexing multi-dimensional arrays

```
Array[row_start_index:row_end_index, column_start_index:
column_end_index]
```



#### Boolean Indexing

We can also index arrays using an ndarray of boolean values on one axis to specify the indices that we want to access.

Linear Algebra with NumPy

#### Vectors

- A vector is a quantity defined by a magnitude and a direction.
- A vector can be represented by an array of numbers called scalars.



#### Vectors

For example, say the rocket is going up at a slight angle: it has a vertical speed of 5,000 m/s, and also a slight speed towards the East at 10 m/s, and a slight speed towards the North at 50 m/s. The rocket's velocity may be represented by the following

vector:



#### Use of Vectors in Machine Learning

- Vectors have many purposes in Machine Learning, most notably to represent observations and predictions.
- For example, say we built a Machine Learning system to classify videos into 3 categories (good, spam, clickbait) based on what we know about them.



#### Use of Vectors in Machine Learning

• For each video, we would have a vector representing what we know about it, such as:

Video = 
$$\begin{pmatrix} 10.5 \\ 5.2 \\ 3.25 \\ 7.0 \end{pmatrix}$$

This vector could represent a video that lasts 10.5 minutes, but only 5.2% viewers watch for more than a minute, it gets 3.25 views per day on average, and it was flagged 7 times as spam. As you can see, each axis may have a different meaning.

# Use of Vectors in Machine Learning

 Based on this vector our Machine Learning system may predict that there is an 80% probability that it is a spam video, 18% that it is clickbait, and 2% that it is a good video. This could be represented as the following vector:

class\_probabilities = 
$$\begin{pmatrix} 0.80 \\ 0.18 \\ 0.02 \end{pmatrix} \rightarrow \begin{array}{c} \text{Spam} \\ \text{Clickbait} \\ \text{Good} \\ \end{pmatrix}$$

#### Representing Vectors in Python

- In python, a vector can be represented in many ways, the simplest being a regular python list of numbers.
  - 0 [1,1,1,1]
- Since Machine Learning requires lots of scientific calculations, it is much better to use NumPy's ndarray, which provides a lot of convenient and optimized implementations of essential mathematical operations on vectors.
- numpy.array([1,1,1,1])

- Vectorized operations are far more efficient
- Than loops written in Python to do the same thing
- Let's test it

#### **Matrix** multiplication

#### I. Using for loop

```
>>> def multiply_loops(A, B):
    C = np.zeros((A.shape[0], B.shape[1]))
    for i in range(A.shape[1]):
        for j in range(B.shape[0]):
            C[i, j] = A[i, j] * B[j, i]
    return C
```

#### 2. Using NumPy's matrix-matrix multiplication operator

```
>>> def multiply_vector(A, B):
    return A @ B
```

#### Matrix multiplication - Sample data

```
# Two randomly-generated, 100x100 matrices
>>> X = np.random.random((100, 100))
>>> Y = np.random.random((100, 100))
```

Matrix multiplication - Loops - timeit

>>> %timeit
multiply\_loops(X, Y)

4.23 ms ± 107 μs per loop
(mean ± std. dev. of 7 runs,
100 loops each)

Result - It took about 4.23 milliseconds (4.23\*10-3 seconds) to perform one matrix-matrix multiplication

Matrix multiplication - Vector - timeit

# Second, the NumPy
multiplication:
>>> %timeit
multiply\_vector(X, Y)

46.6 μs ± 346 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

Result - 46.6 microseconds (46.4 \*10-6 seconds) per multiplication

**Conclusion -** Two orders of magnitude faster

Basic Operations on NumPy arrays

#### Addition in NumPy arrays

Addition can be performed on NumPy arrays as shown below. They apply element wise.

```
>>> a = np.array( [20, 30, 40, 50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a + b
>>> c
array([20, 31, 42, 53])
```

#### Subtraction in NumPy arrays

Subtraction can be performed on NumPy arrays as shown below. They apply element wise.

```
>>> a = np.array( [20, 30, 40, 50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([20, 29, 38, 47])
```

#### Element wise product in NumPy arrays

Element wise product can be performed on NumPy arrays as shown below.

#### Matrix Product in NumPy arrays

Matrix product can be performed on NumPy arrays as shown below.

#### Division in NumPy arrays

Division can be performed on NumPy arrays as shown below. They apply element wise.

#### Integer Division in NumPy arrays

Division can be performed on NumPy arrays as shown below. They apply element wise.

```
a = np.array( [20, 30, 40, 50] )
b = np.arange(1, 5)
c = a // b
c
array([20, 15, 13, 12])
```

#### Modulus in NumPy arrays

Modulus operator can be applied on NumPy arrays as shown below. They apply element wise.

```
a = np.array( [20, 30, 40, 50] )
b = np.arange(1, 5)
c = a % b
c
array([0, 0, 1, 2])
```

#### Exponents in NumPy arrays

We can find the exponent of each element in a NumPy array in the following way. It is applied element wise.

```
a = np.array( [20, 30, 40, 50] )
b = np.arange(1, 5)
c = a ** b
c
array([ 20, 900, 64000, 6250000])
```

#### Conditional Operators on NumPy arrays

#### Conditional operators are also applied element-wise

```
m = np.array([20, -5, 30, 40])
m < [15, 16, 35, 36]
array([False, True, True, False], dtype=bool)

m < 25
array([ True, True, False, False], dtype=bool)</pre>
```

#### To get the elements below 25

```
m[m < 25]
array([20, -5])
```

# Broadcasting in NumPy arrays

## What is Broadcasting?

| 1 | 2 | 0 | 2 | 1 | 4 |
|---|---|---|---|---|---|
| 4 | 5 | 3 | 4 | 7 | 9 |

| 1 | 2 |  | 5 |  | ??? |
|---|---|--|---|--|-----|
| 4 | 5 |  | 7 |  |     |

## What is Broadcasting?

In general, when NumPy expects arrays of the same shape but finds that this is not the case, it applies the so-called broadcasting rules.

Basically there are 2 rules of Broadcasting to remember.

## First rule of Broadcasting

$$[[[1, 3]]] + [5] \longrightarrow [[[6, 8]]]$$
Shape $\longrightarrow$ (1, 1, 2) (1, 1, 2)

If the arrays do not have the same rank, then a I will be prepended to the smaller ranking arrays until their ranks match.

## First rule of Broadcasting

```
>>> h = np.arange(5).reshape(1, 1, 5)
h
>>> array([[[0, 1, 2, 3, 4]]])
Let's try to add a ID array of shape (5,) to this 3D array of shape (I,I,5), applying the first rule of broadcasting.
h + [10, 20, 30, 40, 50] # same as: h + [[[10, 20, 30, 40, 50]]]
array([[[10, 21, 32, 43, 54]]])
```

## Second rule of Broadcasting



#### Second rule of Broadcasting

On adding a 2D array of shape (2,1) to a 2D ndarray of shape (2, 3). NumPy will apply the second rule of broadcasting

# Mathematical and statistical functions on NumPy arrays

## Finding Mean of NumPy array elements

The ndarray object has a method mean() which finds the mean of all the elements in the array regardless of the shape of the numpy array.

```
>>> a = np.array([[-2.5, 3.1, 7], [10, 11, 12]])
>>> print("mean =", a.mean())
mean = 6.766666666667
```

#### Other useful ndarray methods

Similar to mean there are other ndarray methods which can be used for various computations.

min - returns the minimum element in the ndarray max - returns the maximum element in the ndarray sum - returns the sum of the elements in the ndarray prod - returns the product of the elements in the ndarray std - returns the standard deviation of the elements in the ndarray.

var - returns the variance of the elements in the ndarray.

#### Other useful ndarray methods

```
\Rightarrow \Rightarrow a = np.array([[-2.5, 3.1, 7], [10, 11, 12]])
>>> for func in (a.min, a.max, a.sum, a.prod, a.std,
a.var):
    print(func.__name__, "=", func())
min = -2.5
max = 12.0
sum = 40.6
prod = -71610.0
std = 5.08483584352
var = 25.855555556
```

#### Summing across different axes

We can sum across different axes of a numpy array by specifying the axis parameter of the sum function.

#### Summing across different axes

#### Transposing Matrices

The T attribute is equivalent to calling transpose() when the rank is ≥2

#### Solving a system of linear scalar equations

The solve function solves a system of linear scalar equations, such as:

$$2x + 6y = 6$$
  
 $5x + 3y = -9$ 

#### Solving a system of linear scalar equations

```
>>> coeffs = np.array([[2, 6], [5, 3]])
>>> depvars = np.array([6, -9])
>>> solution = linalg.solve(coeffs, depvars)
>>> solution
array([-3., 2.])
```

#### Solving a system of linear scalar equations

Let's check the solution.

```
>>> coeffs.dot(solution), depvars
(array([ 6., -9.]), array([ 6, -9]))
```

## Pandas

#### What is Pandas?

- One of the most widely used Python libraries in Data Science after NumPy and Matplotlib
- The Pandas library Provides
  - High-performance
  - Easy-to-use data structures and
  - Data analysis tools

#### Pandas - DataFrame

- The main data structure is the **DataFrame**
- In memory 2D table
  - Like Spreadsheet with column names and row label

#### Pandas - Data Analysis

- Many features available in Excel are available programmatically like
  - Creating pivot tables
  - Computing columns based on other columns
  - Plotting graphs

# Pandas - Data Structures

#### Series objects

o ID array, similar to a column in a spreadsheet

#### DataFrame objects

o 2D table, similar to a spreadsheet

# Panel objects

Dictionary of DataFrames

# **Creating a Series**

```
>>> import pandas as pd
>>> s = pd.Series([2,-1,3,5])
```

#### Output -

```
0 2
```

```
| -|
```

- 2 3
- 3 5

# Pass as parameters to NumPy functions

```
>>> import numpy as np
>>> np.square(s)
```

#### Output -

```
0 4
```

2 9

3 25

# Arithmetic operation on the series

```
>>> s + [1000,2000,3000,4000]
```

#### Output -

```
0 1002
```

1 1999

2 3003

3 4005

# **Broadcasting**

```
>>> s + 1000
```

# Output -

0 1002

1 999

2 1003

3 1005

# **Binary and conditional operations**

```
>>> s < 0
```

# Output -

- 0 False
- I True
- 2 False
- 3 False

dtype: bool

# Index labels - Integer location

```
>>> s2 = pd.Series([68, 83, 112, 68])
>>> print(s2)
```

#### Output -

```
0 68
```

l 83

2 112

3 68

#### **Index labels - Set Manually**

#### Output -

alice 68

bob 83

charles 112

darwin 68

#### Access the items in series

By specifying integer location

By specifying label

```
>>> s2["bob"]
```

#### Access the items in series - Recommendations

• Use the *loc* attribute when accessing by label

• Use *iloc* attribute when accessing by integer location

```
>>> s2.iloc[1]
```

# Init from Python dict

```
>>> weights = {"alice": 68, "bob": 83, "colin": 86,
"darwin": 68}
>>> s3 = pd.Series(weights)
>>> print(s3)
```

#### Output -

alice 68

bob 83

colin 86

darwin 68

#### Control the elements to include and specify their order

```
>>> s4 = pd.Series(weights, index = ["colin", "alice"])
>>> print(s4)
```

#### Output -

colin 86

alice 68

# **Automatic alignment**

- When an operation involves multiple Series objects
- Pandas automatically aligns items by matching index labels

# Automatic alignment - example

```
>>> print(s2+s3)
```

#### Output -

alice 136.0

bob 166.0

charles NaN

colin NaN

darwin 136.0

dtype: float64

\* Note **NaN** 

#### **Automatic alignment**

Do not forget to set the right index labels, else you may get surprising results

```
>>> s5 = pd.Series([1000,1000,1000,1000])
>>> print(s2 + s5)
```

# **Output-**

```
alice NaN
```

bob NaN

charles NaN

darwin NaN

0 NaN

I NaN

#### Init with a scalar

```
>>> meaning = pd.Series(42, ["life", "universe",
"everything"])
>>> print(meaning)
```

```
life 42
universe 42
everything 42
dtype: int64
```

#### Series name - A Series can have a name

```
>>> s6 = pd.Series([83, 68], index=["bob", "alice"],
name="weights")
>>> print(s6)
```

\* Here series name is weights

#### **Output-**

bob 83

alice 68

Name: weights, dtype: int64

#### Plotting a series

```
>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> temperatures =
[4.4,5.1,6.1,6.2,6.1,6.1,5.7,5.2,4.7,4.1,3.9,3.5]
>>> s7 = pd.Series(temperatures, name="Temperature")
>>> s7.plot()
>>> plt.show()
                   6.0
                   5.5
                   5.0
                   4.5
                   4.0
                   3.5
```

- A DataFrame object represents
  - A spreadsheet,
  - With cell values,
  - Column names
  - And row index labels
- Visualize DataFrame as dictionaries of Series

# Creating a DataFrame - Pass a dictionary of Series objects

```
>>> people dict = {
      "weight": pd.Series([68, 83, 112],index=["alice",
    "bob", "charles"]),
      "birthyear": pd.Series([1984, 1985, 1992],
index=["bob", "alice", "charles"], name="year"),
      "children": pd.Series([0, 3], index=["charles",
"bob"]),
      "hobby": pd.Series(["Biking", "Dancing"],
index=["alice", "bob"]),
```

#### **Creating a DataFrame**

```
>>> people = pd.DataFrame(people_dict)
>>> people
```

|         | birthyear | children | hobby   | weight |
|---------|-----------|----------|---------|--------|
| alice   | 1985      | NaN      | Biking  | 68     |
| bob     | 1984      | 3        | Dancing | 83     |
| charles | 1992      | 0        | NaN     | 112    |

# **Creating a DataFrame - Important Notes**

- The Series were automatically aligned based on their index
- Missing values are represented as NaN
- Series names are ignored (the name "year" was dropped)

|         | birthyear | children | hobby   | weight |  |
|---------|-----------|----------|---------|--------|--|
| alice   | 1985      | NaN      | Biking  | 68     |  |
| bob     | 1984      | 3        | Dancing | 83     |  |
| charles | 1992      | 0        | NaN     | 112    |  |

#### DataFrame - Access a column

```
>>> people["birthyear"]
```

#### Output -

alice 1985

bob 1984

charles 1992

Name: birthyear, dtype: int64

#### DataFrame - Access the multiple columns

>>> people[["birthyear", "hobby"]]

|         | birthyear | hobby   |
|---------|-----------|---------|
| alice   | 1985      | Biking  |
| bob     | 1984      | Dancing |
| charles | 1992      | NaN     |

>>> print(d2)

# Creating DataFrame - Include columns and/or rows and guarantee order

|        | birthyear | weight | height |
|--------|-----------|--------|--------|
| bob    | 1984      | 83     | NaN    |
| alice  | 1985      | 68     | NaN    |
| eugene | NaN       | NaN    | NaN    |

#### **DataFrame - Accessing rows**

- Using loc
  - o people.loc["charles"]
- Using iloc
  - o People.iloc[2]

#### Output -

birthyear 1992

children 0

hobby NaN

weight 112

Name: charles, dtype: object

DataFrame - Get a slice of rows

>>> people.iloc[1:3]

|         | birthyear | children | hobby   | weight |  |
|---------|-----------|----------|---------|--------|--|
| bob     | 1984      | 3        | Dancing | 83     |  |
| charles | 1992      | 0        | NaN     | 112    |  |

#### DataFrame - Pass a boolean array

>>> people[np.array([True, False, True])]

|         | birthyear | children | hobby  | weight |
|---------|-----------|----------|--------|--------|
| alice   | 1985      | NaN      | Biking | 68     |
| charles | 1992      | 0        | NaN    | 112    |

# DataFrame - Pass boolean expression

>>> people[people["birthyear"] < 1990]</pre>

|       | birthyear | children | hobby   | weight<br>68 |  |
|-------|-----------|----------|---------|--------------|--|
| alice | 1985      | NaN      | Biking  |              |  |
| bob   | 1984      | 3        | Dancing | 83           |  |

#### DataFrame - Adding and removing columns

bob

```
>>> # Adds a new column "age"
>>> people["age"] = 2016 - people["birthyear"]
>>> # Adds another column "over 30"
>>> people["over 30"] = people["age"] > 30
>>> # Removes "birthyear" and "children" columns
>>> birthyears = people.pop("birthyear")
>>> del people["children"]
                      hobby
                            weight age over 30
>>> people
                 alice
                      Biking
                            68
                                 31
                                    True
```

Dancing 83

32

True

#### DataFrame - A new column must have the same number of rows

```
>>> # alice is missing, eugene is ignored
>>> people["pets"] = pd.Series({
        "bob": 0,
        "charles": 5,
        "eugene":1
    })
```

>>> people

|         | hobby   | weight | age | over 30 | pets |
|---------|---------|--------|-----|---------|------|
| alice   | Biking  | 68     | 31  | True    | NaN  |
| bob     | Dancing | 83     | 32  | True    | 0    |
| charles | NaN     | 112    | 24  | False   | 5    |

# DataFrame - Add a new column using insert method after an existing column

```
>>> people.insert(1, "height", [172, 181, 185])
>>> people
```

|         | hobby   | height | weight | age | over 30 | pets |
|---------|---------|--------|--------|-----|---------|------|
| alice   | Biking  | 172    | 68     | 31  | True    | NaN  |
| bob     | Dancing | 181    | 83     | 32  | True    | 0    |
| charles | NaN     | 185    | 112    | 24  | False   | 5    |

# DataFrame - Add new columns using assign method

|         | hobby   | height | weight | age | over 30 | pets | body_mass_index | overweight |
|---------|---------|--------|--------|-----|---------|------|-----------------|------------|
| alice   | Biking  | 172    | 68     | 31  | True    | NaN  | 22.985398       | False      |
| bob     | Dancing | 181    | 83     | 32  | True    | 0    | 25.335002       | True       |
| charles | NaN     | 185    | 112    | 24  | False   | 5    | 32.724617       | True       |

# **DataFrame - Sorting a DataFrame**

- Use sort\_index method
  - It sorts the rows by their index label
  - In ascending order
  - Reverse the order by passing ascending=False
  - Returns a sorted copy of DataFrame

#### **DataFrame - Sorting a DataFrame**

>>> people.sort\_index(ascending=False)

|         | hobby   | height | weight | age | over 30 | pets | body_mass_index | overweight |
|---------|---------|--------|--------|-----|---------|------|-----------------|------------|
| charles | NaN     | 185    | 112    | 24  | False   | 5    | 32.724617       | True       |
| bob     | Dancing | 181    | 83     | 32  | True    | 0    | 25.335002       | False      |
| alice   | Biking  | 172    | 68     | 31  | True    | NaN  | 22.985398       | False      |

# DataFrame - Sorting a DataFrame - inplace argument

```
>>> people.sort_index(inplace=True)
```

>>> people

|         | age | body_mass_index | height | hobby   | over 30 | overweight | pets | weight |
|---------|-----|-----------------|--------|---------|---------|------------|------|--------|
| alice   | 31  | 22.985398       | 172    | Biking  | True    | False      | NaN  | 68     |
| bob     | 32  | 25.335002       | 181    | Dancing | True    | True       | 0.0  | 83     |
| charles | 24  | 32.724617       | 185    | NaN     | False   | True       | 5.0  | 112    |

### DataFrame - Sorting a DataFrame - Sort By Value

```
>>> people.sort_values(by="age", inplace=True)
```

>>> people

|         | age | body_mass_index | height | hobby   | over 30 | overweight | pets | weight |
|---------|-----|-----------------|--------|---------|---------|------------|------|--------|
| charles | 24  | 32.724617       | 185    | NaN     | False   | True       | 5    | 112    |
| alice   | 31  | 22.985398       | 172    | Biking  | True    | False      | NaN  | 68     |
| bob     | 32  | 25.335002       | 181    | Dancing | True    | False      | 0    | 83     |

#### Plotting a DataFrame

```
>>> people.plot(
        kind = "line",
        x = "body_mass_index",
        y = ["height", "weight"]
>>> plt.show()
                            180
                            160
                            140
                            120
                            100
                             80
                                   height
                                   weiaht
                                                     28
                                                              26
                                                29
                                  32
                                       31
                                           30
                                                         27
```

#### **DataFrames - Saving and Loading**

- Pandas can save DataFrames to various backends such as
  - CSV
  - Excel (requires openpyxl library)
  - o JSON
  - o HTML
  - SQL database

alice Biking

#### **DataFrames - Saving**

Let's create a new DataFrame my\_df and save it in various formats

68.5

Dancing 83 1

1985

1001

NaN

2

#### **DataFrames - Saving**

Save to CSV

```
o >>> my_df.to_csv("my_df.csv")
```

Save to HTML

```
o >>> my_df.to_html("my_df.html")
```

Save to JSON

```
o >>> my_df.to_json("my_df.json")
```

#### DataFrames - What was saved?

```
>>> for filename in ("my_df.csv", "my_df.html",
"my_df.json"):
    print("#", filename)
    with open(filename, "rt") as f:
        print(f.read())
        print()
```

#### DataFrames - What was saved?

Note that the index is saved as the first column (with no name) in a CSV file

```
# my_df.csv
,hobby,weight,birthyear,children
alice,Biking,68.5,1985,
bob,Dancing,83.1,1984,3.0
```

#### DataFrames - What was saved?

Note that the index is saved as tags in HTML

```
# my df.html
<thead>
 hobby
  weight
 birthyear
  children
 </thead>
alice
 Biking
  68.5
  1985
  NaN
 bob
 Dancing
  83.1
  1984
  3
```

#### DataFrames - What was saved?

Note that the index is saved as keys in JSON

```
# my_df.json
{"hobby":{"alice":"Biking","bob":"Dancing"},"weight":{"alice":68.
5,"bob":83.1},"birthyear":{"alice":1985,"bob":1984},"children":{"alice":null,"bob":3.0}}
```

#### **DataFrames - Loading**

- read\_csv # For loading CSV files
- read\_html # For loading HTML files
- read\_excel # For loading Excel files

#### **DataFrames - Load CSV file**

```
>>> my_df_loaded = pd.read_csv("my_df.csv", index_col=0)
```

>>> my\_df\_loaded

|       | hobby   | weight | birthyear | children |
|-------|---------|--------|-----------|----------|
| alice | Biking  | 68.5   | 1985      | NaN      |
| bob   | Dancing | 83.1   | 1984      | 3        |

#### **DataFrames - Overview**

- When dealing with large DataFrames, it is useful to get a quick overview of its content
- Load housing.csv inside dataset directory to create a DataFrame and get a quick overview

#### **DataFrames - Overview**

- Let's understand below methods
  - o head()
  - o tail()
  - o info()
  - o describe()

### DataFrames - Overview - head()

• The *head* method returns the top 5 rows

```
>>> housing = pd.read_csv("dataset/housing.csv")
>>> housing.head()
```

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | r |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---|
| 0 | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | i |
| 1 | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     |   |
| 2 | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      |   |
| 3 | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      |   |
| 4 | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      |   |

### DataFrames - Overview - tail()

- The *tail* method returns the bottom 5 rows
- We can also pass the number of rows we want

|       | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | household |
|-------|-----------|----------|--------------------|-------------|----------------|------------|-----------|
| 20638 | -121.32   | 39.43    | 18.0               | 1860.0      | 409.0          | 741.0      | 349       |
| 20639 | -121.24   | 39.37    | 16.0               | 2785.0      | 616.0          | 1387.0     | 530       |

### **DataFrames - Overview - info()**

• The *info* method prints out the summary of each column's contents

### >>> housing.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
                     20640 non-null float64
longitude
latitude
                     20640 non-null float64
                     20640 non-null float64
housing median age
                     20640 non-null float64
total rooms
                     20433 non-null float64
total bedrooms
population
                     20640 non-null float64
households
                     20640 non-null float64
median income
                     20640 non-null float64
median house value 20640 non-null float64
ocean proximity
                     20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

### DataFrames - Overview - describe()

- The *describe* method gives a nice overview of the main aggregated values over each column
  - count: number of non-null (not NaN) values
  - o mean: mean of non-null values
  - o std: standard deviation of non-null values
  - o *min:* minimum of non-null values
  - 25%, 50%, 75%: 25th, 50th and 75th percentile of non-null values
  - o max: maximum of non-null values

### Matplotlib - Overview

- Matplotlib is a Python 2D plotting library
- Produces publication quality figures in a variety of
  - Hardcopy formats and
  - Interactive environments

### Matplotlib - Overview

- Matplotlib can be used in
  - Python scripts
  - Python and IPython shell
  - Jupyter notebook
  - Web application servers
  - GUI toolkits

## Matplotlib - pyplot Module

### matplotlib.pyplot

- Collection of functions that make matplotlib work like MATLAB
- Majority of plotting commands in *pyplot* have MATLAB analogs with similar arguments

## Matplotlib - pyplot Module

### matplotlib.pyplot

- Collection of functions that make matplotlib work like MATLAB
- Majority of plotting commands in *pyplot* have MATLAB analogs with similar arguments

# Matplotlib - pyplot Module - plot()

```
>>> import matplotlib.pyplot as plt
>>> plt.plot([1,2,3,4])
>>> plt.ylabel('some numbers')
>>> plt.show()
```



# Matplotlib - pyplot Module - plot()

#### plot x versus y

```
>>> import matplotlib.pyplot as plt
>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16])
>>> plt.ylabel('some numbers')
>>> plt.show()
                   16
                   14
                   12
                  some numbers
                   10
                    6
                    4
                    2
```

## Matplotlib - pyplot Module - Histogram

```
>>> import matplotlib.pyplot as plt
>>> X =
[21, 22, 23, 4, 5, 6, 77, 8, 9, 10, 31, 32, 33, 34, 35, 36, 37, 18, 49, 50,
100]
>> num bins = 5
>> plt.hist(x, num_bins, facecolor='blue')
>> plt.show()
                    8
                    6
                    2
```

### References

- NumPy
  - https://docs.scipy.org/doc/
- Pandas
  - http://pandas.pydata.org/pandas-docs/stable/
- Matplotlib
  - https://matplotlib.org/tutorials/index.html



# Eigenvalues and Eigenvectors

Let A be a nxn matrix.

A scalar  $\tilde{\lambda}$  is called an **eigenvalue** of A, if there is a non-zero vector x such that  $Ax = \tilde{\lambda}x$ .

Such a vector x is called **eigenvector** of A corresponding to  $\lambda$ .

## Eigenvalues and Eigenvectors

The eig function computes the eigenvalues and eigenvectors of a square matrix:

## Eigenvalues and Eigenvectors

Since we know that  $Ax = \lambda x$  where x is the eigenvector and  $\lambda$  is the eigenvalue.

### Vectorized Operations

#### Matrix multiplication - timeit

```
# First, using the explicit loops:
>>> %timeit multiply_loops(X, Y)
4.23 ms ± 107 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
```

**Result -** It took about 4.23 milliseconds (4.23\*10<sup>-3</sup> seconds) to perform one matrix-matrix multiplication

## Vectorized Operations

#### Matrix multiplication - timeit

```
# Now, the NumPy multiplication:
%timeit multiply_vector(X, Y)
46.6 μs ± 346 ns per loop (mean ± std. dev. of 7 runs,
10000 loops each)
```

**Result -** 46.6 microseconds (46.4\*10<sup>-6</sup> seconds) per multiplication