提交实验报告的格式要求

实验作业是本课程的重要组成部分,实验报告要简捷、明了,要有统一而简单的格式。下面是实验报告的参考格式要求:

封面. 要求排版美观,内容包括:

- 实验名称(标题)
- 实验编号
- 签名
- 姓名
- 学号
- 截止提交日期
- 摘要 (不要超过 1/2 页)

技术论述. 约 1~4 页. 包括所使用的技术,如果在实验中涉及到公式的话,则要包括在实验中用到的主要公式。

实验结果讨论. 1~2 页. 包括实验中主要生成的客观数据的分析,以及对任何生成的图表、图形等的清楚、明确的介绍和说明。

实验结果(页数不限). 包括实验中产生的所有图表、图形。每幅图表、图形要单独编号, 以利于在讨论过程中方便引用。

参考文献(页数不限). 列出报告中所引用的文献,若为书,则要列出书中的页码。

附录. 程序清单. 学生自己编写的所有程序的清单。对于公认的有名称的标准例程, 其源码程序不需要打印出清单, 但需要注明出处。

实验报告版面要求. 整个报告打印在标准 A4(21 x 29.7 cm)纸张上,报告用订书机左侧装订。

编程中注意的事项: 目前有很多可以完成本课程实验中的某些函数的现成程序包。但是在本课程的实验中,若整个实验过程仅仅用已经存在的、现成的例程去实现是不允许的,也不会有高分的。

下一页是本课程试验报告的封面样例

Proj01-01: 模式类实验数据的生成

在 Matlab 中提供了很多产生随机数和随机向量的函数,以及计算随机函数的概率密度值的函数。下面是几个较常用的函数:

rand() 生成均匀分布随机数; randn() 生成高斯分布随机数

mvnrnd() 生成多元高斯分布的随机向量矩阵

mvnpdf() 计算多元高斯分布的概率密度函数值

认真阅读上述函数 Matlab 的在线帮助,以及 Matlab 中的绘图函数。 完成下面的实验:

(1) 在一维区间[10,70]中,生成 1000 个均匀分布的随机数,然后统计并绘制这些数的直方图;在二维区间[1,5]X[20,30]中,生成 5000 个均匀分布的二维随机点,并绘制出它们的二维散点图;在三维区间[10,50]X[30,60]X[10,15]中,

生成 10000 个均匀分布的三维随机点量,并绘制出它们的三维散点图。

- (2) 生成两组各 1000 个具有不同均值和方差的一维高斯分布的随机数,然后统计并绘制这些点的直方图;生成三组各 1000 个具有不同均值矢量和协方差矩阵的二维随机矢量,并绘制出它们的二维散点图;生成五组各 1000 个具有不同均值矢量和协方差矩阵的三维随机矢量,并绘制出它们的三维散点图。进一步,绘制上述三维随机矢量数据集合的二维投影散点图。可以指定模式向量的其中两个分量,将集合中每个向量的这两个分量提取出来构成一个2维模式子分量的向量集合,然后在二维平面上画出该子分量集合的二维散点图。
- (3) 确定一个二维的均值矢量和协方差矩阵,然后利用 matlab 中的 meshgrid 函数生成一个二维网格,利用 mvnpdf 函数计算在每个网格点上的概率密度函数值,并绘制出这些函数值的三维曲面图。

Proj02-01: 最小错误率贝叶斯分类器

(1) 基本概念介绍

贝叶斯公式:

$$P(\omega_j | \mathbf{x}) = \frac{P(\mathbf{x} | \omega_j) P(\omega_j)}{P(\mathbf{x})}$$

最小错误率贝叶斯分类器:

考虑 c 类样本, 令分类器函数为:

$$g_{j}(\mathbf{x}) = P(\mathbf{x} | \omega_{j}) P(\omega_{j})$$
 $j = 1, 2, \dots, c$

则

$$\mathbf{x} \in \omega_i$$
, if $i = \underset{j}{\operatorname{arg max}} \left\{ g_j(\mathbf{x}) \middle| j = 1, 2, ..., c \right\}$

称上述为最小错误率贝叶斯分类器。

若样本x为d维向量,第j类 ω _j样本的条件概率密度服从均值为m_j,协方差为S_i的多元高斯分布:

$$P(\mathbf{x} | \omega_j) = \frac{1}{(2\pi)^{d/2} \sqrt{|\mathbf{S}_j|}} e^{-\frac{1}{2} (\mathbf{x} - \mathbf{m}_j)^T \mathbf{S}_j^{-1} (\mathbf{x} - \mathbf{m}_j)}$$

上式中, $|S_j|$ 是 S_j 的行列式函数,T是矩阵转置符号, S_j^{-1} 是 S_j 的逆矩阵。上面的高斯概率密度函数值的计算可以使用matlab中的函数mvnpdf()实现。

(2) 基本实验

编程实现一个可以对两类模式样本进行分类的贝叶斯分类器,假设两个模式类的条件概率分布均为高斯分布。模式类 1 的均值矢量 $\mathbf{m}_1 = (1, 3)^{\mathsf{T}}$, 协方差矩阵为 $\mathbf{S}_1 = (1.5, 0; 0, 1)$,模式类 2 的均值矢量 $\mathbf{m}_2 = (3, 1)^{\mathsf{T}}$,协方差矩阵为 $\mathbf{S}_2 = (1, 0.5; 0.5, 2)$, 先验概率 $P(\omega_1) = P(\omega_2) = 0.5$ 。

- (a) 利用 proj01-01 中的函数为两个模式类各生成 100 个随机样本,并在一幅图 中用不同的符号画出这两类样本的二维散点图;
- (b) 利用贝叶斯分类器,对(a)中的200个样本进行分类,统计正确分类的百分比,并在2维图上用不同的颜色画出正确分类和错分的样本:
- (c) 若先验概率 $P(\omega_1)=0.4$, $P(\omega_2)=0.6$, 重新进行(b)中的实验。
- (d) 对上述实验结果进行分析说明。

(3) 拓展实验

- (e) 若在基本实验(2)中,协方差矩阵不变,但类均值向量分别变为 $\mathbf{m}_1 = (1, 3)^{\mathsf{T}}$, $\mathbf{m}_2 = (2, 2)^{\mathsf{T}}$, 重新进行上面的实验(a)、(b)、(c);
- (f) 若在基本实验(2)中,协方差矩阵不变,但类均值向量分别变为 \mathbf{m}_{i} =(1,3)^T, \mathbf{m}_{2} =(4,0)^T,重新进行上面的实验(a)、(b)、(c);
- (g) 若在基本实验(2)中,两个类的均值向量不变,但协方差矩阵分别变为 \mathbf{S}_1 =(1.5, 1; 1, 1), \mathbf{S}_2 =(1, 0.5; 0.5, 2),重新进行上面的实验(a)、(b)、(c)
- (h) 对上述实验结果分别进行分析说明。

Proj02-02: 最小马氏距离分类器

(1) 基本概念介绍

考虑一个由d维向量 \mathbf{x} 组成的样本集合 \mathbf{X} ,若该集合中的样本 \mathbf{x} 服从均值为 \mathbf{m} ,协方差为 \mathbf{S} 的多元高斯分布:

$$P(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \sqrt{|\mathbf{S}|}} e^{-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m})}$$

则

$$D(\mathbf{x}, \mathbf{m}) = \sqrt{(\mathbf{x} - \mathbf{m})^T \mathbf{S}^{-1} (\mathbf{x} - \mathbf{m})}$$

称 $D(\mathbf{x}, \mathbf{m})$ 为向量 \mathbf{x} 到样本集合 \mathbf{X} 的马氏距离 (Mahalanobis Distance)。

假设服从多元高斯分布的样本集合X中有N个样本,第k个样本为 $x(k) \in X$,则样本集合X的均值m、协方差S的估计值由下面的公式给出:

$$\mathbf{m} = \frac{1}{N} \sum_{k=1}^{N} \mathbf{x}(k), \qquad \mathbf{S} = \frac{1}{N} \sum_{k=1}^{N} (\mathbf{x}(k) - \mathbf{m}) (\mathbf{x}(k) - \mathbf{m})^{T}$$

其中, $\mathbf{x}(k) = (x_1(k), x_2(k), ..., x_d(k))^T$, $\mathbf{m} = (m_1, m_2, ..., m_d)^T$ 均为 d 维向量, S 为 $d \times d$ 的矩阵。

考虑 c 类样本类 ω_j , j=1,2,...,c, 均服从均值为 $\mathbf{m}(j)$ 与协方差矩阵为 $\mathbf{S}(j)$ 的多元高斯分布。令分类器函数为:

$$g_{j}(\mathbf{x}) = -D(\mathbf{x}, \mathbf{m}(j)) = -\sqrt{(\mathbf{x} - \mathbf{m}(j))^{T} \mathbf{S}^{-1}(j)(\mathbf{x} - \mathbf{m}(j))}$$
, $j = 1, 2, ..., c$

则

$$\mathbf{x} \in \omega_i$$
, if $i = \underset{j}{\operatorname{arg max}} \left\{ g_j(\mathbf{x}) \middle| j = 1, 2, ..., c \right\}$

称上述为最小马氏距离分类器。

(2) 基本实验

表格1

样本	w_1				w_2		w_3		
 	x_1	x_2	x_3	\mathcal{X}_1	\mathcal{X}_2	x_3	\mathcal{X}_1	x_2	x_3
1	-5.01	-8.12	-3.68	-0.91	-0.18	-0.05	5.35	2.26	8.13
2	-5.43	-3.48	-3.54	1.30	206	-3.53	5.12	3.22	-2.66
3	1.08	-5.52	1.66	-7.75	-4.54	-0.95	-1.34	-5.31	-9.87
4	0.86	-3.78	-4.11	-5.47	0.50	3.92	4.48	3.42	5.19
5	-2.67	0.63	7.39	6.14	5.72	-4.85	7.11	2.39	9.21
6	4.94	3.29	2.08	3.60	1.26	4.36	7.17	4.33	-0.98
7	-2.51	2.09	-2.59	5.37	-4.63	-3.65	5.75	3.97	6.65
8	-2.25	-2.13	-6.94	7.18	1.46	-6.66	0.77	0.27	2.41
9	5.56	2.86	-2.26	-7.39	1.17	6.30	0.90	-0.43	-8.71
10	1.03	-3.33	4.33	-7.50	-6.32	-0.31	3.52	-0.36	6.43

- (a) 表格 1 为三类样本中的各 10 个样本点,假设每一类均为正态分布。计算每一类样本的均值矢量和协方差矩阵;用不同的颜色在一个图上分别画出这三个类在马氏距离分别为 D=1、2、3 时的图形;为这三个类别的分类设计一个最小马氏距离分类器。
- (b) 对测试点: (1,2,1)^t, (5,3,2)^t, (0,0,0)^t, (1,0,0)^t, 分别计算这些点到各个类的马氏距离, 并用(a)中设计的分类器对它们进行分类。

(3) 拓展实验

- (c) 对 (b) 中的测试点,分别计算它们到各个类中心的**欧氏距离**。若使用最小 欧氏距离对它们进行分类。将分类结果与(b) 中的最小马氏距离分类器的结 果进行比较。讨论在什么情况下马氏距离分类器等价于欧氏距离分类器?
- (d) 假设三个类别的先验概率相等均为 $P(w_1) = P(w_2) = P(w_3) = 1/3$,利用实验 Proj02-01 的方法设计贝叶斯分类器,对(b)中的测试点进行分类,并将其 与最小马氏距离分类器的结果进行比较。
- (e)分析实验结果。

Proj03-01: 主分量分析 PCA

(1) 基本概念介绍

本实验的目的:了解PCA主分量分析方法的基本概念,学习和掌握PCA主分量分析方法。利用PCA分析对数据集合进行特征空间的规整化;利用PCA分析对数据集合进行特征空间降维分析。

(2) 利用 PCA 进行特征空间的规整化

(a) 参考实验 Proj01-01, 给定均值矢量和协方差矩阵如下:

$$\mu = \begin{pmatrix} 5 \\ 7 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 9 & 2.4 \\ 2.4 & 1 \end{pmatrix}$$

生成 N=100 个高斯分布的二维样本矢量。绘出该样本集合 X 的二维散点图。 (可以使用 Matlab 中的函数 plot 画二维散点图)

- (b)利用课本 3.8 节公式, 计算上述样本集合 X 的均值向量 m 和散布矩阵 S; 使用 matlab 中的函数 eig(), 计算 X 的散布矩阵 S 的特征值和特征向量。
- (c)假设数据集合 X 的均值向量为 m,散布矩阵 S 的特征向量矩阵为 $V = [e_1 e_2]^T$,将集合 X 中的每个向量 X 变换为向量 Y,生成集合 Y, $Y \in Y$

$$y = V(x-m)$$

绘出集合Y的二维散点图。

(d) 改变样本数量,分别令 N=10、100、1000、10000、100000,重复实验(a)(b)(c)。 比较分析集合 X 和 Y 的散点图,说明集合 X 和集合 Y 的关系。并说明该试验 中 PCA 方法的意义。

注意: 在上述实验中, 特别注意 Matlab 的矩阵乘法和向量运算的正确使用方法。

(3) 利用 PCA 进行特征空间降维

(e)参考实验 Proj01-01,给定均值矢量和协方差矩阵如下:

$$\mu = \begin{pmatrix} 10 \\ 15 \\ 15 \end{pmatrix}, \qquad \Sigma = \begin{pmatrix} 90 & 2.5 & 1.2 \\ 2.5 & 35 & 0.2 \\ 1.2 & 0.2 & 0.02 \end{pmatrix}$$

生成 N=20 个高斯分布的三维样本矢量。绘出该样本集合 X 的三维散点图。(可以使用 Matlab 中的函数 plot3 画三维散点图)

$$y_1 = e_1^T(x-m), \quad y_2 = e_2^T(x-m)$$

并生成二维向量 $y=[y_1,y_2]^T$,所有的 y 向量生成了二维向量集合 Y, $y \in Y$ 。绘出集合 Y 的二维散点图。

(g) 计算特征向量矩阵 V 的逆矩阵 $V^1 = [v_1 \ v_2 \ v_3]$, 其中, $v_1 \ v_2 \ v_3$ 均是三维列向量。取出逆矩阵 V^1 的前两列组成一个新的 3 行 2 列的矩阵 $W = [v_1 \ v_2]$ 。对 (h) 中计算出的每一个二维 V 向量,用下式计算出一个新的三维 V 向量

$$z = W y + m$$

所有的 z 向量生成了三维向量集合 Z, $z \in Z$ 。在一幅图中用不同的颜色分别绘出集合 Z 和 (e) 中的集合 X 的三维数据散点图。

- (h) 对集合 Z 中的每一个向量 z,及与其对应的集合 X 中的向量 x,计算它们的误差平方值 $|x-z|^2$,并计算所有的这些误差平方之和;计算它们的均方误差(误差平方和的平均值)。
- (i) 改变样本数量,分别令 N=10、20、50、100、1000,重复实验(e)(f)(g)(h)。
- (j)结合课本中 PCA 降维的基本思想,以及上面实验中得到的图形和数据,进行深入的比较分析。

Proj03-02: Fisher 线性判别分析 FDA

(1) 基本概念介绍

本实验的目的是学习和掌握 Fisher 线性判别方法 FDA。比较分析使用 FDA 方法寻找的最优投影方向与非最优方向的差异。用 FDA 方法首先将高维分布的数 据降维为低维空间的数据,然后在低维空间中设计分类器进行分类。

两类情况的 FDA 算法可参见课本 3.8.2 节内容。多类情况的 MDA 算法,可参见课本 3.8.3 节内容。本实验的数据见表格 2

样	ω_1			ω_2			ω3		
本	\mathcal{X}_1	x_2	x_3	x_1	\mathcal{X}_2	x_3	x_1	x_2	x_3
1	0.42	-0.087	0.58	-0.4	0.58	0.089	0.83	1.6	-0.014
2	-0.2	-3.3	-3.4	-0.31	0.27	-0.04	1.1	16.	0.48
3	1.3	-0.32	1.7	0.38	0.055	-0.035	-0.44	-0.41	0.32
4	0.39	0.71	0.23	-0.15	0.53	0.011	0.047	-0.45	1.4
5	-1.6	-5.3	-0.15	-0.35	0.47	0.034	0.28	0.35	3.1
6	-0.029	0.89	-4.7	0.17	0.69	0.1	-0.39	-0.48	0.11
7	-0.23	1.9	2.2	-0.011	0.55	-0.18	0.34	-0.079	0.14
8	0.27	-0.3	-0.87	-0.27	0.61	0.12	-0.3	-0.22	2.2
9	-1.9	0.76	-2.1	-0.065	0.49	0.0012	1.1	1.2	-0.46
10	0.87	-1.0	-2.6	-0.12	0.054	-0.063	0.18	-0.11	-0.49

表格2

(2) 基本实验: FDA 分析

- (a) 编写一个实现课本 3. 8. 2 节的公式 (106) 的用 FDA 对三维空间数据求最优 方向矢量 w 的通用函数。注意,方向矢量 w 是一个单位矢量。
- (b) 用(a) 中的函数对表格 2 中的类别 ω_2 和 ω_3 , 计算最优方向矢量 **w**。
- (c) 用课本 3.8.2 节的公式(91)计算表格 2 中的类别 ω_2 和 ω_3 的所有数据点在 矢量方向 **w** 上的投影。注意,投影后得到 ω_2 和 ω_3 的两个一维数据集合。
- (d) 在一幅图中用不同的颜色分别画出表 2 中类别 ω_2 和 ω_3 数据的三维散点图,同时画出表示方向矢量 w 的直线,并且标记出投影后的点在直线上的位置。
- (e) 对 (c) 中投影后得到的两个一维数据集合,假设它们都满足一维高斯分布,分别计算出它们的均值和方差。并假设它们的先验概率 $P(\omega_2)=P(\omega_3)=0.5$,设计一个方向 \mathbf{w} 上的一维贝叶斯分类器。

- (f) 用(e) 中得到的分类器对 ω2 和 ω3 的所有数据点进行分类,并计算分类器的 训练误差,即错分点的个数。
- (g) 比较实验,假设 $\mathbf{v} = (1.0, 2.0, -1.5)^{\mathsf{T}}$, 令非最优方向矢量 $\mathbf{w} = \mathbf{v} / \| \mathbf{v} \|$, 重复 (c) (d) (e) (f) 步骤, 计算在这个非最优子空间中, 分类器的训练误差。
- (h) 对实验结果进行分析。

(3) 拓展实验: MDA 分析

- (i)编写一个求解课本 3.8.3 节的公式(126),计算用 MDA 对三维空间的三个类的数据求最优二维投影子空间 $\mathbf{W}=[\mathbf{w_1},\mathbf{w_2}]$ 的通用函数。其中,子空间 \mathbf{W} 中的两个方向基矢量 $\mathbf{w_1}$ 、 $\mathbf{w_2}$ 分别是公式(126)中矩阵 $\mathbf{S_w}^{-1}\mathbf{S_B}$ 的最大特征值和次大特征值对应的特征矢量,方向基矢量 $\mathbf{w_1}$ 、 $\mathbf{w_2}$ 均为单位矢量。
- (j) 用 (a) 中的函数对表格 2 中的三个类别 $ω_1$ 、 $ω_2$ 和 $ω_3$ 的数据, 计算最优二维投影子空间 **W**=[**w**₁, **w**₂]。
- (k) 用课本 3.8.3 节的公式(117)或公式(118),计算表格 2 中的三个类别 ω_1 、 ω_2 和 ω_3 的所有数据点在二维子空间 **W** 上的投影。注意,投影后分别得到数 据集 ω_1 、 ω_2 和 ω_3 的一个二维数据集合。
- (1) 在一幅图中用不同的颜色画出表 2 中三个类别数据的三维散点图。
- (m) 在一幅图中用不同的颜色画出(k)中计算出的三个类别数据的二维散点图。
- (n) 对(k)中投影后得到的三类二维数据集合,假设它们都满足高斯分布,分别计算出它们的均值向量和协方差矩阵。若它们的先验概率 $P(\omega_1) = P(\omega_2) = P(\omega_3) = 1/3$,设计子空间 \mathbf{W} 上的贝叶斯分类器。
- (o) 用(n) 中得到的分类器对 ω1、ω2 和 ω3 的所有数据点进行分类,并计算分类器的训练误差,即错分点的个数。
- (p) 比较实验,假设 **v**₁ = (1.0,2.0,-1.5)^T, **v**₂ = (-1.0,0.5,-1.0)^T,令非最优子空间基矢量 **w**_i = **v**_i/ || **v**_i||, i=1,2。重复(k)(1)(m)(n)步骤,计算在这个非最优子空间 **W**=[**w**₁, **w**₂]中,设计的贝叶斯分类器的训练误差。
- (q) 对实验结果进行分析。

Proj04-01: Parzen 窗估计、k 近邻估计

本实验的目的是学习和掌握两种非参数估计方法——Parzen 窗估计、k 最近邻估计。实验使用表格 3 中的数据。假设先验概率 $P(\omega_1) = P(\omega_2) = P(\omega_3) = 1/3$ 。

				/VC.	T U					
样	w_1				w_2			W_3		
本	\mathcal{X}_{1}	x_2	x_3	x_1	\mathcal{X}_2	x_3	x_1	x_2	x_3	
1	0.28	1.31	-6.2	0.011	1.03	-0.21	1.36	2.17	0.14	
2	0.07	0.58	-0.78	1.27	1.28	0.08	1.41	1.45	-0.38	
3	1.54	2.01	-1.63	0.13	3.12	0.16	1.22	0.99	0.69	
4	-0.44	1.18	-4.32	-0.21	1.23	-0.11	2.46	2.19	1.31	
5	-0.81	0.21	5.73	-2.18	1.39	-0.19	0.68	0.79	0.87	
6	1.52	3.16	2.77	0.34	1.96	-0.16	2.51	3.22	1.35	
7	2.20	2.42	-0.19	-1.38	0.94	0.45	0.60	2.44	0.92	
8	0.91	1.94	6.21	-0.12	0.82	0.17	0.64	0.13	0.97	
9	0.65	1.93	4.38	-1.44	2.31	0.14	0.85	0.58	0.99	
10	-0.26	0.82	-0.96	0.26	1.94	0.08	0.66	0.51	0.88	

表格3

(1) Parzen 窗估计

设计基本 Parzen 窗估计分类器,以及设计概率神经网络(PNN)分类器。本实验中采用的窗函数为窗口宽度值h相同的球状高斯函数,:

$$\varphi\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right) = e^{\frac{-(\mathbf{x}-\mathbf{x}_{i})^{T}(\mathbf{x}-\mathbf{x}_{i})}{2h^{2}}}$$

类条件概率密度估计公式采用下面的公式

$$p_n(\mathbf{x}|\omega) = \frac{1}{n} \sum_{i=1}^n \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h}\right)$$

- (a) 编写程序,设计一个采用上面的 Parzen 窗估计方法计算三维数据类条件概率 密度的程序,并设计一个对三个类分类的贝叶斯分类器。
- (b)编写程序,对于三维数据,设计一个实现课本 142 页的算法 1,以及课本 143 页的算法 2 的可以对三个类分类的概率神经网络 PNN 分类器。其中,在 143 页算法 2 中选择方差参数 $\sigma = h$ 。
- (c) 用表格 3 中的三个类的三维数据作为分类器的训练数据,同时,令h=1,分别对 (a) 和 (b) 中设计的两个分类器进行训练。然后用训练后的分类器对样本点 $(0.5, 1.0, 0.0)^{\text{T}}$, $(0.31, 1.51, -0.5)^{\text{T}}$, $(-0.3, 0.44, -0.1)^{\text{T}}$ 进行分类。

- (d) $\phi h = 0.1$, 重复(a)(b)(c)。
- (e)分析实验结果。并分析(a)、(b)中的两种算法异同。

(2) k 最近邻估计

学习和掌握非参数估计——k 近邻概率密度估计方法。对表格 3 中的数据进行 k 最近邻概率密度估计, 并进行分类器设计。

其中, d维空间的距离度量 L_p 范数(p>0)为

$$L_{p}(\mathbf{x},\mathbf{y}) = \left(\sum_{i=1}^{d} |x_{i} - y_{i}|^{p}\right)^{1/p}$$

- (a)编写程序,采用欧氏距离度量,对具有n个训练样本点的一维数据,实现对任给测试点x的k近邻概率估计。用编写的程序对表格3中的类别 w_3 的特征 x_1 ,分别画出当k=3、5时用程序计算出的概率密度估计的结果图。
- (b)编写程序,采用欧氏距离度量,对具有n个训练样本点的二维数据,实现对任给测试点 x 的 k 近邻概率估计。对表格 3 中的类别 w_2 的特征 $(x_1,x_2)'$,分别画出当 k=3、5 时用程序计算出的概率密度估计的结果图。提示:可以在数据的扩大的动态范围内生成数据网格,计算网格上的概率估计值,然后画出网格三维图。
- (c) 编写程序,采用欧氏距离度量,对已标记的具有三个类(三个类的数据个数分别为 n_1 、 n_2 、 n_3)的三维训练数据,设计一个如课本 4.5.4 节 k 近邻规则所述的 k 近邻后验概率密度估计分类器,实现对任给测试点 x 的分类。利用表格 3 中的 3 个类别的数据作为训练数据,在分别取 k=3、5 时,对下列测试点进行分类: $(-0.41, 0.82, 0.88)^{\text{T}}$, $(0.14, 0.72, 4.1)^{\text{T}}$, $(-0.81, 0.61, -0.38)^{\text{T}}$ 。
- (d) 分别使用 $L_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{d} |x_i y_i|$, $L_{\infty}(\mathbf{x}, \mathbf{y}) = \max(|x_i y_i|, i = 1, 2, ..., d)$ 两个距离度量 重新进行(c) 中的实验。
- (e)分析实验结果。
- (3) 试比较分析一下 Parzen 窗估计和 k 最近邻估计各有什么特点。

Proj05-01: 感知器算法

本实验的目的是学习和掌握两种感知器算法。实验使用表格 4 中的数据。

	火 伯 1									
样	w_1		и	w_2		3	W_4			
本	\mathcal{X}_{1}	x_2	x_1	x_2	x_1	x_2	x_1	x_2		
1	0.1	1.1	7.1	4.2	-3.0	-2.9	-2.0	-8.4		
2	6.8	7.1	-1.4	-4.3	0.54	8.7	-8.9	0.2		
3	-3.5	-4.1	4.5	0.0	2.9	2.1	-4.2	-7.7		
4	2.0	2.7	6.3	1.6	-0.1	5.2	-8.5	-3.2		
5	4.1	2.8	4.2	1.9	-4.0	2.2	-6.7	-4.0		
6	3.1	5.0	1.4	-3.2	-1.3	3.7	-0.5	-9.2		
7	-0.8	-1.3	2.4	-4.0	-3.4	6.2	-5.3	-6.7		
8	0.9	1.2	2.5	-6.1	-4.1	3.4	-8.7	-6.4		
9	5.0	6.4	8.4	3.7	-5.1	1.6	-7.1	-9.7		
10	3.9	4.0	4.1	-2.2	1.9	5.1	-8.0	-6.3		

表格 4

(1) 基本概念介绍

考虑一个由d维向量 \mathbf{x} 组成的样本集合 \mathbf{X} ,该数据集合由两类已经标记的样本组成。感知器算法通过学习这两类已标记的样本,建立一个线性分类器。

基本感知器的准则函数:

$$\boldsymbol{J}_{p}(\mathbf{a}) = \sum_{\mathbf{y} \in \mathbf{Y}} \left(-\mathbf{a}^{\mathrm{T}} \mathbf{y} \right)$$

则梯度下降迭代公式为:

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in Y_k} \mathbf{y}$$

其中, Y 为被 a 错分样本集合, Yk 为被 a(k)错分样本集合。

裕量松弛感知器的准则函数:

$$J_r(\mathbf{a}) = \frac{1}{2} \sum_{\mathbf{y} \in Y} \frac{\left(\mathbf{a}^T \mathbf{y} - b\right)^2}{\left\|\mathbf{y}\right\|^2}$$

则梯度下降迭代公式为:

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in Y_k} \frac{b - \mathbf{a}(k)^{\mathrm{T}} \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y}$$

其中,Y为被a错分样本集合,Yk为被a(k)错分样本集合。

(2) 批处理感知器算法(课本 186 页算法 3)

- (a) 编写程序实现本章 186 页算法 3 的批处理感知器算法。
- (b) 将你编写的程序应用在表格 $4 中 w_1 和 w_2$ 的训练数据上。从 $\mathbf{a} = \mathbf{0}$ 向量开始,记下每一次迭代时的 $J_p(\mathbf{a})$,记下收敛时的迭代步数。绘出 $J_p(\mathbf{a})$ 的值随迭代次数变化的曲线。
- (c) 将程序应用在 w, 和 w, 的训练数据上, 重复执行步骤 (b)。
- (d) 分析实验(b)、(c) 的结果。
- (e) 改变学习率 η。然后重复上述(b)、(c)、(d)的实验。

(3) 批处理裕量松弛算法 (课本 193 页算法 8)

- (a)编写程序实现本章 193 页的算法 8 的批处理裕量松弛感知器算法
- (b) 对在表格 $4 \mapsto w_1 \mapsto w_3$ 的训练数据进行批处理松弛算法。设间隔 b=0.1,初始权向量为零向量 a(1)=0,画出准则函数对于训练回合数的函数曲线。
- (c)设间隔 b=0.5, 初始权向量为零向量 a(1)=0, 重复(b)。画出准则函数对于训练回合数的函数曲线。
- (d)使用具体的实验数据解释(b)、(c)在收敛率上的不同。
- (e) 改变学习率 η。然后重复上述(b)、(c)、(d)的实验。
- (4) 分析比较在实验(2)和(3)中的算法各有什么特点。

Proj06-01: BP 神经网络

本实验的目的是学习和掌握 BP 神经网络原理、学习算法,及其应用。本实验使用表格 5 中的数据:

				W.	HF J				
样	ω_1			ω_{2}			ω_3		
本	x_1	x_2	x_3	x_1	x_2	<i>x</i> ₃	x_1	x_2	x_3
1	1.58	2.32	-5.8	0.21	0.03	-2.21	-1.54	1.17	0.64
2	0.67	1.58	-4.78	0.37	0.28	-1.8	5.41	3.45	-1.33
3	1.04	1.01	-3.63	0.18	1.22	0.16	1.55	0.99	2.69
4	-1.49	2.18	39	-0.24	0.93	-1.01	1.86	3.19	1.51
5	-0.41	1.21	-4.73	-1.18	0.39	-0.39	1.68	1.79	-0.87
6	1.39	3.16	2.87	0.74	0.96	-1.16	3.51	-0.22	-1.39
7	1.20	1.40	-1.89	-0.38	1.94	-0.48	1.40	-0.44	0.92
8	-0.92	1.44	-3.22	0.02	0.72	-0.17	0.44	0.83	1.97
9	0.45	1.33	-4.38	0.44	1.31	-0.14	0.25	0.68	-0.99
10	-0.76	0.84	-1.96	0.46	1.49	0.68	-0.66	-0.45	0.08

表格5

(1) 基本概念

考虑一个 d- n_H -c 的三层 BP 网络,网络有 d 个输入层神经元,有 n_H 个中间层神经元,有 c 个输出层神经元。并规定输入层为线性神经单元。

定义网络的误差函数: $J(\mathbf{w}) = \frac{1}{2} \sum_{k=1}^{c} (\mathbf{t}_k - \mathbf{z}_k)^2 = \frac{1}{2} ||\mathbf{t} - \mathbf{z}||^2$

神经元函数: $f(y) = \frac{1}{1 + e^{-y}}$, 神经元函数的导数: f'(y) = f(y)(1 - f(y))

中间层神经元输出:
$$y_j = f\left(\sum_{i=1}^d w_{ji}x_i + w_{j0}\right)$$
, $j = 1, 2, \dots, n_H$ 输出层神经元输出: $z_k = f\left(\sum_{j=1}^{n_H} w_{kj}y_j + w_{k0}\right) = f\left(\sum_{j=1}^{n_H} w_{kj}f\left(\sum_{i=1}^d w_{ji}x_i + w_{j0}\right) + w_{k0}\right)$ 权值更新: $w(m+1) = w(m) + \Delta w(m)$, $\Delta w = -\eta \frac{\partial J}{\partial w}$ 其中: $\Delta w_{kj} = -\eta \frac{\partial J}{\partial w_{kj}} = \eta(t_k - z_k) \cdot f(net_k)(1 - f(net_k)) \cdot y_j$
$$\Delta w_{ji} = -\eta \frac{\partial J}{\partial w_{ij}} = \eta \sum_{k=1}^c \left[(t_k - z_k) \cdot f'(net_k) \cdot w_{kj} \right] \cdot f'(net_j) \cdot x_i$$

(2) 简单三层 BP 神经网络

- (a) 构造一个 3-3-1 型的三层 BP 神经网络,参数包括:输入层、中间层、输出层神经元向量,以及输入层到中间层的权值矩阵,中间层到输出层的权值矩阵,中间层神经元的偏置向量,输出层神经元的偏置向量等。
- (b)编写函数,实现课本 233 页中式(7)所述的 BP 网络的前馈输出。为了便于后续的学习算法的实现,该函数的输出变量可以包含网络中间节点的输出。
- (c)编写函数,实现课本 237 页中式(12)、(17)、(21)所述的 BP 网络的权值修正。
- (d)编写函数,实现课本236页中式(9)所述的BP网络的训练误差。
- (e)编写函数,实现课本239页中算法1所述的BP网络的训练算法。
- (f) 用表格 5 中的 ω_1 和 ω_2 类的数据进行训练,学习率 $\eta = 0.1$ 。在 $-1 \le w \le +1$ 范围内随机初始化所有权值。绘出训练误差对训练回合数变化的学习曲线。其中,一个回合是指用所有数据训练一次。用 t=0、1 分别表示两个类教师信号。
- (g) 初始化所有权值为w = 0.5。重复(f)。
- (h)分析实验结果。

(3) 拓展实验: 可用于三个类分类的三层 BP 神经网络

- (i)构造一个 3-4-3 型的三层 BP 神经网络。用表格 5 中的 ω_1 、 ω_2 和 ω_3 类的数据进行训练。用 t_1 =(1,0,0), t_2 =(0,1,0), t_3 =(0,0,1),分别表示三个类的输出层教师信号。使用不同的权值初始化方法进行训练,绘出训练误差对训练回合数变化的学习曲线。
- (i)分析实验结果。