

UNIVERSITATEA BABEȘ-BOLYAI Facultatea de Matematică și Informatică

INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

Laura Dioşan & Dragoş Dobrean

Sumar

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Metoda celor mai mici patrate, Gradient Descent, Logistic regression
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Materiale de citit și legături utile

- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Conținut

Sisteme inteligente

- Sisteme care învaţă singure (SIS)
 - □ Instruire (învăţare) automata (Machine Learning ML)
 - Problematică
 - Proiectarea unui sistem de învăţare automată
 - Tipologie
 - Învăţare supervizată
 - Învăţare nesupervizată
 - Învăţare cu întărire
 - Teoria învăţării
 - Exemple de sisteme

Conținut

□ Sisteme care învaţă singure (SIS)

 "Field of study that gives computers the ability to learn without being explicitly programmed." -- Arthur Samuels (1959)

Invățare

- Supervizată
- Nesupervizată
- Reinforcement

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare x ∈ Rd
 - □ Date de ieşire y ∈ R

- □ Se cere un model **liniar** f care transformă x în y
- $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$
- Invățare supervizată

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - Date de intrare xⁱ ε R^d, i=1,n
 - Date de ieşire yⁱ ∈ R
 - □ Se cere un model **liniar** f care transformă orice xⁱ în yⁱ, i=1,n
 - $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$
 - Se poate defini o funcție de cost
 - □ Loss = $\sum_{i=1,n} (y^i f(x^i))^2$ -- minimizată → valorile optime ale lui β

$$\mathbf{x} = (1, \mathbf{x}) = (1, \mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{d})^{T} \in \mathbb{R}^{d+1}$$
 $\boldsymbol{\beta} = (\beta_{0}, \beta_{1}, \beta_{2}, ..., \beta_{d})^{T} \in \mathbb{R}^{d+1}$
 $f(\mathbf{x}) = \mathbf{x}^{T} \boldsymbol{\beta}$
Loss $(\boldsymbol{\beta}) = || \mathbf{y} - \mathbf{X} \boldsymbol{\beta} ||^{2}$
 $\mathbf{X} = 1 \mathbf{x}_{1,1} \mathbf{x}_{1,2} \mathbf{x}_{1,3} \mathbf{x}_{1,d}$
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Metoda celor mai mici pătrate

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare xⁱ ∈ R^d, i=1,n
 - □ Date de ieşire yⁱ ∈ R
 - □ Se cere un model **liniar** f care transformă orice xⁱ în yⁱ, i=1,n

$$f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$$

- Se poate defini o funcție de cost
- □ Loss = $\sum_{i=1,n} (y^i f(x^i))^2$ -- minimizată → valorile optime ale lui β
- Derivarea loss-ului după β : $\beta = (X^TX)^{-1}X^Ty$
- □ Daca d = 1, β_1 = cov(x,y)/var(x), β_0 = y β_1 x

Metoda celor mai mici pătrate

Anscombe Quartet

- Metoda celor mai mici pătrate
 - Residual plot

- Metoda celor mai mici pătrate
 - Residual plot

Metoda gradient descent

- Presupunem cazul unei probleme de regresie
 - □ Date de intrare x ∈ R^d
 - □ Date de ieşire y ∈ R

- □ Se cere un model liniar f care transformă x în y
- $f(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_d x_d$
- Invățare supervizată

Metoda gradient descent

- Modelarea coeficienţilor β:
 - □ la iterația 0: valori random (sau 0)
 - \Box la iterația t + 1 (t = 0, 1, 2, ...)

$$\beta_k(t+1) = \beta_k(t)$$
 - learning_rate * error(t) * x_k , $k=1,2,...,d$
 $\beta_0(t+1) = \beta_0(t)$ - learning_rate * error(t)

- Unde
 - error(t) = computed realOutput
 - error(t) = $\beta_0(t) + \beta_1(t)^*x_1 + \beta_2(t)^*x_2 + ... + \beta_d(t)^*x_d y$

Metoda gradient descent – versiuni:

Stochastic GD

- Eroarea se calculează pentru fiecare exemplu de antrenament
- Modelul se updatează pentru fiecare exemplu de antrenament (online learning)

Batch GD

- Eroarea se calculează pentru fiecare exemplu de antrenament
- Modelul se updatează dupa ce toate exemplele de antrenament au fost evaluate (la finalul unei epoci)

Mini-batch GD

- Combinare a precedentelor două
- Setul de date se împarte în mai multe părți (mini-batch-uri)
- Eroarea se calculează pentru fiecare exemplu de antrenament dintr-un mini-batch
- Modelul se updatează pentru fiecare exemplu de antrenament dintr-un mini-batch

■ Regresie Logistică (clasificare)

- Presupunem cazul unei probleme de clasificare
 - □ Date de intrare xⁱ ∈ R^d, i=1,n
 - □ Date de ieşire yⁱ ∈ {0,1} sau {label1, label2}

- □ Se cere un model **liniar** f care separa orice xⁱ în 2 clase (etichetate cu 0 și 1)
- Invățare supervizată

Martie, 2019

- Regresie Logistică (clasificare)
 - Mapează datele intr-un set discret de clase (label-uri)
 - Tipuri:
 - Binar (Pass/Fail, True/False)
 - Multi (Cat, Dog, Panda)
 - Ordinal (Low, Medium, High)
 - Folosește funcția sigmoid pentru a decide clasa de apartentență
 - Putem folosi gradient descent pentru minimzarea erorii

- □ Regresie Logistică sigmoid:
 - Mapează orice numar real in intervalul (0,1)

$$S(z) = \frac{1}{1 + e^{-z}}$$

Regresie Logistica

- Modelarea coeficienților β:
 - □ la iterația 0: valori random (sau 0)
 - \Box la iterația t + 1 (t = 0, 1, 2, ...)

$$\begin{split} \beta_k(t+1) &= \beta_k(t) \text{ - learning_rate * error(t) * } x_k, \text{ } k=1,2,...,d \\ \beta_0(t+1) &= \beta_0(t) \text{ - learning_rate * error(t)} \end{split}$$

- Unde
 - error(t) = Sigmoid(computed) realOutput
 - error(t) = Sigmoid($\beta_0(t) + \beta_1(t) x_1 + \beta_2(t) x_2 + ... + \beta_d(t) x_d y$
- Clasificarea rezultatelor
 - \square (0,1) -> [label₀, label₁, .. label_n]

- Metoda bazată pe algoritmi evolutivi
 - Modelarea coeficienților β cu ajutorul cromozomilor
 - Fitness-ul calitatea coeficienților β

Recapitulare

□ Sisteme care învață singure (SIS)

- Instruire (învăţare) automata (Machine Learning -ML)
 - Învăţare supervizată → datele de antrenament sunt deja etichetate cu elemente din E, iar datele de test trebuie etichetate cu una dintre etichetele din E pe baza unui model (învăţat pe datele de antrenament) care face corespondenţa date-etichete
 - Învăţare nesupervizată → datele de antrenament NU sunt etichetate, trebuie învăţat un model de etichetare, iar apoi datele de test trebuie etichetate cu una dintre etichetele identificate de model

Recapitulare

□ Sisteme care învață singure (SIS)

- Metoda celor mai mici patrate
 - Supervizată
 - Output continu (vânzări, preţ, etc.)
 - Panta constantă
- Gradient descent
 - Supervizată
 - Output continu (vânzări, preţ, etc.)
 - Optimizare
- Regresie Logistică
 - CLASIFICARE
 - Supervizată
 - Output label-uri (clase) set discret
 - Folosește Gradient descent

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Retele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Cursul următor – Materiale de citit și legături utile

- Capitolul VI (19) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 8 din Adrian A. Hopgood, Intelligent Systems for Engineers and Scientists, CRC Press, 2001
- capitolul 12 și 13 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- Capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- Capitolul 4 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop