PW/TP 13-14 Second-order Linear PDE's

Using methods of ODE's

Exercise 1.

(a) Solve
$$x \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial z}{\partial y} = 0$$

(b) Find the particular solution for which $z(x, 0) = x^5 + x$, $z(2, y) = 3y^4$

Exercise 2.

Solve for u = u(x, y):

1.
$$u_{yy} = 0$$

2.
$$u_{xx} + 16\pi^2 u = 0$$

3.
$$25u_{yy} - 4u = 0$$

4.
$$u_y + y^2 u = 0$$

5.
$$2u_{xx} + 9u_x + 4u = -3\cos x - 29\sin x$$

6.
$$u_{yy} + 6u_y + 13u = 4e^{3y}$$

7.
$$u_{xy} = u_x$$

8.
$$x^2u_{xx} + 2xu_x - 2u = 0$$

Second-order Linear PDE's with constant coefficients

Method 1

Solve the homogeneous equation by assuming $u = e^{ax+by}$, where a and b are constants to be determined.

Solve the non-homogeneous equation by using the method of undetermined coefficients.

1

Exercise 3.

1.
$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial y^2}$$

2.
$$\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$

3.
$$\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = x$$

4.
$$\frac{\partial^4 u}{\partial x^4} + 2 \frac{\partial^4 u}{\partial x^3 \partial y} = 4$$

5.
$$\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 3u$$

6.
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

7.
$$\frac{\partial^2 z}{\partial x^2} - 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x \sin y$$

Method 2. Seperation of variables

Assume that a solution can be expressed as a product of unknown functions each of which depends on only one of the independent variables.

$$u(x, y) = X(x)Y(y)$$

Rewrite the differential equation as f(X, X', X'', ...) = g(Y, Y', Y'', ...) =constant, with a well chosen constant depending on the given initial conditions.

For general function (as initial condition) use a Half Range

Fourier Series:
$$f(x) = \frac{A_0}{2} \sum_{m=1}^{\infty} \left(A_m \cos(\frac{m\pi}{L} x) + B_m \sin(\frac{m\pi}{L} x) \right)$$
 with

$$\begin{cases} A_m = 0, & B_m = \frac{2}{L} \int_0^L f(x) \sin(\frac{m\pi}{L} x) dx & \text{for } f(x) \text{ odd function with period } 2L \\ B_m = 0, & A_m = \frac{2}{L} \int_0^L f(x) \cos(\frac{m\pi}{L} x) dx & \text{for } f(x) \text{ even function with period } 2L \end{cases}$$

Exercise 4.

1.
$$3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$$
, $u(x,0) = 4e^{-x}$

2.
$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$$
, $u(0,t) = 0$, $u(\pi,t) = 0$, $u(x,0) = 2 \sin 3x - 4 \sin 5x$

3.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $u_x(0,t) = 0$, $u(2,t) = 0$, $u(x,0) = 8\cos\frac{3\pi x}{4} - 6\cos\frac{9\pi x}{4}$

4.
$$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial y} + u$$
, $u(x, 0) = 3e^{-5x} + 2e^{-3x}$

5.
$$\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2}$$
, $y(0,t) = y(5,t) = 0$, $y(x,0) = 0$, $y_t(x,0) = 5 \sin \pi x$

6.
$$\frac{\partial^2 y}{\partial t^2} = 4 \frac{\partial^2 y}{\partial x^2}$$
, $y(0, t) = y(5, t) = 0$, $y(x, 0) = 0$, $y_t(x, 0) = 3 \sin 2\pi x - 2 \sin 5\pi x$

7.
$$\frac{\partial u}{\partial t} = 2 \frac{\partial^2 u}{\partial x^2}$$
, $u(0,t) = u(4,t) = 0$, $u(x,0) = 25x$ where $0 < x < 4, t > 0$

8.
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
, $u_x(0,t) = u_x(\pi,t) = 0$, $u(x,0) = f(x)$ where $0 < x < 4, t > 0$