A Direct Multisearch Filter Method for Biobjective Optimization

Everton Jose da Silva Advisor: Ana Luísa Custódio

Ph.D in Mathematics Nova School of Science and Technology

Optimization: Basic ideas

- x Decision variable
- $f: \mathbb{R}^n \to \mathbb{R}$ Objective Function
- S Feasible set (requirements or constraints)

minimize
$$f(x)$$

subject to $x \in S$ (P)

where $S := \{x \in X \subseteq \mathbb{R}^n \mid C(x) \le 0\}$ with $C : \mathbb{R}^n \to (\mathbb{R} \cup \{+\infty\})^m$.

Optimization: Basic ideas

- x Decision variable
- $f: \mathbb{R}^n \to \mathbb{R}$ Objective Function
- S Feasible set (requirements or constraints)

minimize
$$f(x)$$

subject to $x \in S$ (P)

where $S := \{x \in X \subseteq \mathbb{R}^n \mid C(x) \le 0\}$ with $C : \mathbb{R}^n \to (\mathbb{R} \cup \{+\infty\})^m$.

Numerical Optimization

Iterative Methods

$$x_{k+1} = x_k + \alpha_k d_k$$

- Derivative-based methods: d_k is a descent direction such that $d_k^\top \nabla f(x_k) < 0$
- Derivative-free methods: when derivatives are not available and cannot be numerically approximated
 - Directional Direct Search Sample function at positive spanning sets $\ln \mathbb{R}^2$:

Problem Features

Multiobjective Optimization

$$\min_{x \in S \subseteq \mathbb{R}^n} F(x) = \left(f_1(x), f_2(x), \dots, f_p(x) \right)^{\mathsf{T}}$$
$$f_j : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \ j = 1, 2, \dots, p \ge 2$$

- · objectives often conflicting
- expensive function evaluation
- impossible to use or approximate derivatives

Problem Features

Multiobjective Optimization

$$\min_{x \in S \subseteq \mathbb{R}^n} F(x) = \left(f_1(x), f_2(x), \dots, f_p(x) \right)^{\mathsf{T}}$$

$$f_j : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}, \ j = 1, 2, \dots, p \ge 2$$

- · objectives often conflicting
- expensive function evaluation
- impossible to use or approximate derivatives
- make use of Pareto Dominance

Pareto Dominance (x dominates y)

$$F(x) \le F(y)$$
, with $F(x) \ne F(y)$

Motivation

L1ZDT4 constrained Problem

- □ DMS Custódio, Madeira, Vaz and Vicente (2011)
- ☆ DFMO Liuzzi, Lucidi, and Rinaldi (2016)

Recall

 $S=X\cap\{x\in\mathbb{R}^n\mid C(x)\leq 0\}$ where $C:\mathbb{R}^n\to(\mathbb{R}\cup\{+\infty\})^m$, and X a full dimensional polyhedron

Recall

 $S=X\cap\{x\in\mathbb{R}^n\mid C(x)\leq 0\}$ where $C:\mathbb{R}^n\to(\mathbb{R}\cup\{+\infty\})^m$, and X a full dimensional polyhedron

Extreme Barrier Function:

$$F_X(x) = \begin{cases} F(x), & \text{if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, & \text{otherwise} \end{cases}$$

Recall

 $S=X\cap\{x\in\mathbb{R}^n\mid C(x)\leq 0\}$ where $C:\mathbb{R}^n\to(\mathbb{R}\cup\{+\infty\})^m$, and X a full dimensional polyhedron

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^m \max\{0, c_i(x)\}^2$$

Recall

 $S=X\cap\{x\in\mathbb{R}^n\mid C(x)\leq 0\}$ where $C:\mathbb{R}^n\to(\mathbb{R}\cup\{+\infty\})^m$, and X a full dimensional polyhedron

Extreme Barrier Function:

$$F_X(x) = \left\{ \begin{array}{l} F(x), \text{ if } x \in X \\ (+\infty, +\infty, \dots, +\infty)^\top, \text{ otherwise} \end{array} \right.$$

Constraint Violation function:

$$h(x) = \|C(x)_+\|_2^2 = \sum_{i=1}^m \max\{0, c_i(x)\}^2$$

$$\min_{x \in X} \ \left(f_1(x), f_2(x), h(x) \right)^\top$$

Filter

The filter ${\mathcal F}$ is a set of nondominated points

Filter

The filter \mathcal{F} is a set of nondominated points

A point x' is said to be filtered by a filter \mathcal{F} if any of the following properties hold:

- There exists a point $x \in \mathcal{F}$ such that $x' \geq x$;
- $h(x') > h_{\max}$ for some positive finite upper bound h_{\max}

DMS-Filter

DMS-Filter

Solutions: $L := \{(x, \alpha) \in \mathcal{F} \mid (F_X(x), h(x)) = (F(x), 0)\}.$

Poll Center Change

Feasible to Infeasible

• Infeasible to Feasible

Selection of the most isolated point

L1ZDT4 constrained Problem - DMS-Filter versus DFMO

L1ZDT4 constrained Problem - DMS-Filter versus DFMO

Theorem (Refining Subsequences)

There is at least a convergent refining subsequence of iterates $\{x_k\}_{k\in K}$, corresponding to unsuccessful poll steps, such that $\lim_{k\in K}\alpha_k=0$.

Theorem (Refining Subsequences)

There is at least a convergent refining subsequence of iterates $\{x_k\}_{k\in K}$, corresponding to unsuccessful poll steps, such that $\lim_{k\in K}\alpha_k=0$.

Let \overline{x} be the limit point of a convergent refining subsequence $\{x_k\}_{k\in K}$.

Definition (Refining Directions)

Refining directions for \overline{x} are limit points of $\{d_k/\|d_k\|\}_{k\in K}$, where $d_k\in D_k$ and $x_k+\alpha_k d_k\in \mathcal{S}:=\mathcal{S}\cup \{x\in X\mid h(x)\leq h_{\max}\}$

Consider a refining subsequence converging to \overline{x} (and assume that F and h are Lipschitz continuous near \overline{x})

Theorem

If $d \in \operatorname{int}(T_X^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$\exists j = j(d) \in \{1, \dots, p\} : f_i^{\circ}(\overline{x}; d) \ge 0 \quad \text{or} \quad h^{\circ}(\overline{x}; d) \ge 0$$

Consider a refining subsequence converging to \overline{x} (and assume that F and h are Lipschitz continuous near \overline{x})

Theorem.

If $d \in \operatorname{int}(T_X^{Cl}(\overline{x}))$ is a refining direction for \overline{x} then:

$$\exists j = j(d) \in \{1, \dots, p\} : f_j^{\circ}(\overline{x}; d) \ge 0 \quad \text{or} \quad h^{\circ}(\overline{x}; d) \ge 0$$

Theorem

If the set of refining directions for \overline{x} is dense in $\operatorname{int}(T_X^{Cl}(\overline{x})) \neq \emptyset$ then

$$\forall d \in T_X^{Cl}(\overline{x}), \exists j = j(d) \in \{1, \dots, p\} : f_j^{\circ}(\overline{x}; d) \ge 0 \text{ or } h^{\circ}(\overline{x}; d) \ge 0$$

Conclusions and Future Work

 DMS-Filter presents competitive numerical results for constrained Bi-objective Derivative-free Optimization Problems

Conclusions and Future Work

- DMS-Filter presents competitive numerical results for constrained Bi-objective Derivative-free Optimization Problems
- Extend the approach to problems with more than two objectives

THANKS FOR YOUR ATTENTION!

Any comments or questions?

Everton Jose da Silva - ejo.silva@campus.fct.unl.pt