Magnitud (matemática)

La **magnitud** es una <u>medida</u> asignada para cada uno de los objetos de un conjunto medible, formados por objetos matemáticos. La noción de magnitud concebida así puede abstraerse a objetos del mundo físico o propiedades físicas que son susceptibles de ser <u>medidos</u>.

Las medidas de propiedades físicas usualmente son representables mediante números reales o *n*-tuplas de números reales, y usualmente para ser interpretables requieren del uso de una <u>unidad de medida</u> pertinente. Una propiedad importante de muchas magnitudes es admitan grados de comparación "más que", "igual que" o "menos que".

Una magnitud matemática usada para representar un proceso físico es el resultado de una <u>medición</u>; en cambio las magnitudes matemáticas admiten definiciones abstractas, mientras que las magnitudes físicas se miden con instrumentos apropiados.

Los griegos distinguían entre varios tipos de magnitudes, incluyendo:

- Fracciones positivas.
- Segmentos según su longitud.
- Polígonos según su superficie.
- Sólidos según su volumen.
- Ángulos según su magnitud angular.

Probaron que los dos primeros tipos no podían ser iguales, o siquiera sistemas <u>isomorfos</u> de magnitud. No consideraron que las magnitudes negativas fueran significativas, y el concepto se utilizó principalmente en contextos en los que cero era el valor más bajo.

Índice

Asignación de una medida

Números

Números reales Números complejos

Propiedades métricas

Distancias

Ángulos

Áreas y Volúmenes

Variedades de Riemann

Medidas abstractas

Conjuntos finitos

Véase también

Referencias

Bibliografía

Asignación de una medida

La noción abstracta de magnitud implica la existencia de una función real que asignar a una colección de "objetos medibles" \mathcal{M} un valor numérico real, ya que los números reales son un <u>cuerpo</u> <u>totalmente</u> <u>ordenado</u> con operaciones compatibles con dicha ordenación. Es decir, para cada magnitud M existe una función:

$$f_M:\mathcal{M} o\mathbb{R}^+$$

En las medidas usadas asociadas a conceptos métricos, los objetos medibles son subconjuntos de un <u>espacio métrico</u> o alternativamente un <u>espacio de medida</u>, no siendo en general cualquier subconjunto de dicho espacio (se requieren ciertas condiciones de regularidad para que la magnitud de un objeto esté bien definida).

Números

La magnitud de cualquier $\underline{\text{número}}\ x$ se denomina usualmente su " $\underline{\text{valor absoluto}}$ " o "módulo", indicado por |x|.

Números reales

El valor absoluto de un número real r se define como:

$$|r| = r$$
, si $r \ge 0$
 $|r| = -r$, si $r < 0$.

Se puede considerar como la distancia numérica entre el cero y la <u>recta numérica</u> real. Por ejemplo, el valor absoluto tanto de 7 como de -7 es 7. En este caso el conjunto de objetos medibles en la función (* (https://e s.wikipedia.org/wiki/Magnitud_(matem%C3%A1tica)#Equation_*)) es $\mathcal{M} = \mathbb{R}$ y la magnitud asociada al valor absoluto es la función: $f_{abs} : \mathbb{R} \to \mathbb{R}^+$ dada por $r \mapsto |r| = abs(r)$

Números complejos

Un <u>número complejo</u> z puede visualizarse como la posición del punto P en un <u>espacio euclídeo</u> bidimensional, llamado plano complejo.

El valor absoluto de *z* puede considerarse como la distancia desde el origen de tal espacio hasta *P*. La fórmula para el valor absoluto de *z* es similar a la de la norma euclidea del espacio bidimensional:

$$|z|=\sqrt{\mathfrak{R}(z)^2+\mathfrak{I}(z)^2}=\sqrt{z^*z}$$

donde $\Re(z)$ y $\Im(z)$ son respectivamente la parte real y la parte imaginaria de z y z^* es su <u>complejo conjugado</u>. Por ejemplo, el módulo de -3+4i es 5. En este caso se tiene $\mathcal{M}=\mathbb{C}$ y $f_{\mathrm{mod}}:\mathbb{C}\to\mathbb{R}^+$ dada por $z\mapsto\sqrt{z^*z}=|z|$.

Propiedades métricas

Distancias

Dado un espacio métrico (E,d) la distancia es una magnitud definida sobre pares de puntos. Por tanto, el conjunto de objetos medibles son todos los pares de puntos $(p,q) \in E \times E$, es decir, $(p,q) \mapsto d(p,q) \geq 0$

Ángulos

Dado un <u>espacio vectorial</u> con <u>producto escalar</u> (E, ·), se puede dotar a dicho espacio de una <u>norma vectorial</u> dada por: $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$ lo que a su vez permite definir el ángulo entre dos vectores mediante la fórmula:

$$egin{aligned} heta_{\mathbf{v},\mathbf{w}} = rccosigg(rac{\mathbf{v}\cdot\mathbf{w}}{\|\mathbf{v}\|\|\mathbf{w}\|}igg) \end{aligned}$$

En este caso el conjunto de objetos medibles viene dado por $\mathcal{M}=E^2$ y además se cumplirá que $0\leq heta_{\mathbf{v},\mathbf{w}}<\pi$

Áreas y Volúmenes

Variedades de Riemann

En una <u>variedad de Riemann</u> <u>orientable</u> de <u>dimensión</u> n > 2 en general podrán definirse longitudes (1-medidas), superficies (2-medidas), volúmenes (3-medidas), etc. En este caso los conjuntos de objetos medibles \mathcal{M} serán subvariedades diferenciables.

Medidas abstractas

En un <u>espacio de medida</u> (E, \mathcal{A}, μ) también es posible construir medidas de conjuntos, aunque en general no todo subconjunto del espacio de medida será medible, sino sólo una cierta σ -álgebra. En este caso el conjunto de objetos medibles es precisamente $\mathcal{M} = \mathcal{A}$ y la magnitud asociada a la medida de estos conjuntos viene dada por la función $f_{\mu}: \mathcal{M} \to \mathbb{R}^+$ definida por $f_{\mu}(A) = \mu(A)$. Existen dos casos interesantes de este tipo de medidas:

- Cuando $E = \mathbb{R}^n$ es un <u>espacio euclídeo</u>, \mathcal{A} es la <u> σ -álgebra de Borel</u> asociada a la topología euclídea ordinaria y μ está relacionada con la <u>medida de Lebesgue</u>, la medida abstracta es interpretable como el n-volumen de dicho espacio euclídeo.
- Otro ejemplo interesante de medida de este tipo son los <u>espacios de probabilidad</u> $(\Omega, \mathcal{A}, \mathbb{P})$ donde la medida de todo objeto medible (o evento aleatorio) satisface que $0 \leq \mathbb{P}(A) \leq 1$.

Conjuntos finitos

En un conjunto finito F puede definirse una magnitud sencilla asociada a la "cantidad de objetos" de un subconjunto. En ese caso, el conjunto de objetos medibles es $\mathcal{M} = \mathcal{P}(F)$ el <u>conjunto de partes</u> de F, y la magnitud asociada se llama número de elementos o <u>cardinal</u>: $f_{\text{card}}: \mathcal{P}(F) \to \mathbb{N} \subset \mathbb{R}^+$ dada por $f_{\text{card}}(G) := \text{card}(G) \leq \text{card}(F)$.

Nótese que la "cantidad de objetos" de hecho es un caso particular de <u>espacio de medida</u>, donde la σ álgebra coincide con el conjunto de partes del conjunto base usado para construir las medidas.

Véase también

- Magnitud adimensional
- Cantidad

Referencias

Bibliografía

- Thierry Gallouët, Raphaèle Herbin : *Mesure, intégration, probabilités*, Ellipses, 2013.
- Th. Hawkins, *The Lebesgue's Theory of Integration*, Madison, 1970.
- A. Michel, Constitution de la théorie moderne de l'intégration, Paris, 1992.
- Jean-Pascal Ansel, Yves Ducel, Exercices corrigés en théorie de la mesure et de l'intégration, Ellipses 1995, ISBN 2-7298-9550-7.

Obtenido de «https://es.wikipedia.org/w/index.php?title=Magnitud_(matemática)&oldid=142595920»

Esta página se editó por última vez el 30 mar 2022 a las 07:28.

El texto está disponible bajo la Licencia Creative Commons Atribución Compartir Igual 3.0; pueden aplicarse cláusulas adicionales. Al usar este sitio, usted acepta nuestros términos de uso y nuestra política de privacidad. Wikipedia® es una marca registrada de la Fundación Wikimedia, Inc., una organización sin ánimo de lucro.