Evaluating Performance I

Lecture 06

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

. . . .

- Missing data
 Noisy data
- Noisy data
- Erroneous data

Data Cleaning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Feature Extraction

Dimensionality reduction eliminates redundant information

Model training

Select models (hypotheses)

Select model options that may fit the data well. We'll call them "hypotheses".

Fit the model to training data

Pick the "best" hypothesis function of the options by choosing model parameters Iteratively fine tune

the model

Performance evaluation

Make a prediction on validation data

Metrics

Classification

Precision, Recall, F₁, ROC Curves (Binary), Confusion Matrices (Multiclass)

Regression

MSE, explained variance, R²

Supervised learning in practice

Preprocessing Explore & prepare data

Data Visualization and Exploration

Identify patterns that can be leveraged for learning

Scaling (Standardization)

Prepare data for use in scale-dependent algorithms.

Data Cleaning

- Missing data
- Noisy data
- Erroneous data

Feature Extraction

Dimensionality reduction eliminates redundant nformation

Model training

Select models (hypotheses)

Select model options that may fit the data well. We'll call them "hypotheses".

Fit the model to training data

Pick the "best" hypothesis function of the options by choosing model parameters

Performance evaluation

Make a prediction on validation data

Metrics

Classification

Precision, Recall, F₁,
ROC Curves
(Binary),
Confusion Matrices
(Multiclass)

Regression

MSE, explained variance, R²

Choose 2

Modeling Considerations

Accuracy

Computational Efficiency

Interpretability

Accuracy

Supervised Learning Performance Evaluation

Regression

Classification

Binary

Multiclass

Receiver Operating Characteristic (ROC) curves Confusion matrices

- Mean squared error (MSE)
- Mean absolute error (MAE)
- R², coefficient of determination
- Adjusted R²

Common Metrics

- Classification accuracy
- True positive rate
- False positive rate
- Precision
- F₁ Score
- Area under the ROC curve (AUC)

- Classification accuracy
- Micro-averaged F₁ Score
- Macro-averaged F₁ Score

Regression: Mean Squared Error

The mean squared error (MSE)

MSE =
$$\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Absolute measure of performance

One of the most widely used loss / cost functions

Regression: Mean Absolute Error

The mean absolute error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

Absolute measure of performance

Regression: R² Coefficient of determination

Proportion of the response variable variation explained by the model

Residual sum of squares (variation in the residuals)

$$SS_{res} = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

Total sum of squares (variation in the data)

$$SS_{tot} = \sum_{i=1}^{N} (y_i - \bar{y})^2$$

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

R-squared

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}}$$

Relative measure of performance

Regression: Adjusted R²

Problem: R² increases with more predictor variables

Adjusted R squared:

$$R_{adj}^2 = 1 - (1 - R^2) \frac{N - 1}{N - p - 1}$$

Adjusts R squared to account for the number of predictor variables

This value is always less than or equal to the unadjusted R squared

Types of classification error

False Positive (Type I error)

False Negative (Type II error)

Image from: Ellis. *The Essential Guide to Effect Sizes*

Binary Classification

Binary Classification Predicted Class, \hat{y}

True positive rate Probability of detection, p_D Sensitivity Recall

How many targets (Class 1) were correctly classified as targets?

Binary Classification

Predicted Class, \hat{y}

False positive rate Probability of false alarm, p_{FA}

How many non-targets (Class 0) were incorrectly classified as targets?

Binary Classification

Predicted Class, \hat{y}

true positive + false positive

How many of the predicted targets are targets?

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
?	1	1.40
?	1	0.95
?	0	0.80
?	1	0.60
?	0	-0.10

ROC Curves

$$\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-----------	---------------------	--------------------------	----------------------	---------------------------

True Class Label (y)	Classifier Confidence
1	1.40
1	0.95
0	0.80
1	0.60
0	-0.10

ROC Curves

Total Positives = 3

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-----------	---------------------	--------------------------	----------------------	---------------------------

Estimate (\hat{y})	True Class Label (y)	Classifier Confidence
0	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

ROC Curves

	Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
-	∞	0	0	0	0

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
(37		• • • • • • • • • • • • • • • • • • • •
1	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

(1 confidence score > three

$$= \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

ROC Curves

Total Positives = 3

	Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
	8	0	0	0	0
_	1.0	1	0.333	0	0

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

 $\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

ROC Curves

Total Positives = 3

Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
∞	0	0	0	0
1.0	1	0.333	0	0
0.9	2	0.667	0	0

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
0	1	0.60
0	0	-0.10

 $\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$

ROC Curves

Total Positives = 3

	Threshold	# True Positives	True Positive Rate	# False Positives	False Positive Rate
	∞	0	0	0	0
	1.0	1	0.333	0	0
	0.9	2	0.667	0	0
-	0.7	2	0.667	1	0.5

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
0	0	-0.10

ROC Curves

confidence score > thresh confidence score \le thresh

Total Positives = 3

Threshold	# True Positives	I POSITIVA I		False Positive Rate	
∞	0	0	0	0	
1.0	1	0.333	0	0	
0.9	2	0.667	0	0	
0.7	2	0.667	1	0.5	
0.0	3	1	1	0.5	

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
1	0	-0.10

(1 confidence agore > three

$$f = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

Total Positives = 3

Threshold	shold # True Positive Rate		# False Positives	False Positive Rate
8	0	0	0	0
1.0	1	0.333	0	0
0.9	2	0.667	0	0
0.7	2	0.667	1	0.5
0.0	3	1	1	0.5
$-\infty$	3	1	2	1

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
1	0	-0.10

ROC Curves

$$\hat{y} = \begin{cases} 1, & \text{confidence score} > \text{thresh} \\ 0, & \text{confidence score} \le \text{thresh} \end{cases}$$

$$AUC = \left(\frac{2}{3}\right)\left(\frac{1}{2}\right) + (1)\left(\frac{1}{2}\right) = \frac{5}{6} \approx 0.833$$

Total Positives = 3

Threshold	eshold # True Positives		# False Positives	False Positive Rate	
∞	0	0	0	0	
1.0	1	0.333	0	0	
0.9	2	0.667	0	0	
0.7	2	0.667	1	0.5	
0.0	3	1	1	0.5	
$-\infty$	3	1	2	1	

ROC Curves: how do they compare?

The model represented by this ROC curve is the most discriminative (but usually predicts incorrectly)

ROC Curves: where do we operate?

What does it mean to operate at a point on this curve?

True Class Label (y)	Classifier Confidence
1	1.40
1	0.95
0	0.80
1	0.60
0	-0.10

 $\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$

Total Positives = 3

Threshold	# True	Recall	# Predicted	Precision
11116211010	Positives	necali	Positive	FIECISION

$\begin{cases} 1, \text{ confidence score} > \text{thresh} \\ 0, \text{ confidence score} \le \text{thresh} \end{cases}$

PR Curves

true

positive

Total Positives = 3

	Threshold # True Positives		Recall	# Predicted Positive	Precision
-	∞	0	0	0	undefined

Estimate (ŷ)	True Class Label (y)	Classifier Confidence
0	1	1.40
0	1	0.95
0	0	0.80
0	1	0.60
0	0	-0.10

0

0.80

0.60

-0.10

Classifier decision rule:

$\begin{cases} 1, \text{ confidence score} > \text{thresh} \\ 0, \text{ confidence score} \le \text{thresh} \end{cases}$

PR Curves

positive

Total Positives = 3

Total Negatives = 2

	Recall			Threshold	# True	Recall	# Predicted	Precision
Estimate	True Class	Classifier		THESHOLD	Positives	Necali	Positive	1 160131011
(ŷ)	Label (y)	Confidence		∞	0	0	0	undefined
1	1	1.40			Ü	Ŭ	Ŭ	GITTOTOTITITO GI
•	1	1.40		1.0	1	0.333	1	1
\cap	4	0.95		1.0	1	0.000	'	'
U	I	0.95						

$\begin{cases} 1, \text{ confidence score} > \text{thresh} \\ 0, \text{ confidence score} \le \text{thresh} \end{cases}$

PR Curves

positive

Total Positives = 3

Total Negatives = 2

Recall Estimate True Class Classifier			Threshold	# True Positives	Recall	# Predicted Positive	Precision	
(ŷ)	Label (y)	Confidence		∞	0	0	0	undefined
1	1	1.40			1	0.222	1	4
1	1	0.95	0.05	1.0	I	0.333	I	l
•	<u>'</u>		←	0.9	2	0.667	2	1
0	0	0.80	l					

0.60

-0.10

	Hodan		
Estimate (\hat{y})	True Class Label (y)	Classifier Confidence	
1	1	1.40	
1	1	0.95	
1	0	0.80	
0	1	0.60	
0	0	-0.10	

PR Curves

Total Positives = 3

Total Negatives = 2

Threshold	# True Positives	Recall	# Predicted Positive	Precision
∞	0	0	0	undefined
1.0	1	0.333	1	1
0.9	2	0.667	2	1
0.7	2	0.667	3	0.667

$$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$$

PR Curves

Total Positives = 3

Total Negatives = 2

Estimate (\hat{y})	True Class Label (y)	Classifier Confidence	
1	1	1.40	
1	1	0.95	
1	0	0.80	
1	1	0.60	
0	0	-0.10	

Threshold	# True Positives	Recall	# Predicted Positive	Precision
∞	0	0	0	undefined
1.0	1	0.333	1	1
0.9	2	0.667	2	1
0.7	2	0.667	3	0.667
0.0	3	1	4	0.75

Estimate	True Class	Classifier
(\hat{y})	Label (y)	Confidence
1	1	1.40
1	1	0.95
1	0	0.80
1	1	0.60
1	0	-0.10

$$\hat{y} = \begin{cases} 1, \text{ confidence score} > \text{ thresh} \\ 0, \text{ confidence score} \le \text{ thresh} \end{cases}$$

Total Positives = 3

Total Negatives = 2

Threshold	# True Positives	Recall	# Predicted Positive	Precision
∞	0	0	0	undefined
1.0	1	0.333	1	1
0.9	2	0.667	2	1
0.7	2	0.667	3	0.667
0.0	3	1	4	0.75
-∞	3	1	5	0.6

Be wary of overall accuracy as sole metric

i	y_i	\widehat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	0
8	0	1
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study 1

true negative

Overall classification accuracy = 13/15 = 0.87

A False positive rate =

- 1/8 = **0.13**
- B True positive rate (Recall) = 6/7 = 0.86

PR Curves measure the tradeoff between...

- B True positive rate (Recall) =
- 6/7 = 0.86

Precision=

$$6/7 = 0.86$$

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	0
4	1	0
5	0	0
6	0	0
7	0	0
8	0	0
9	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0

Case study 2

true negative

ROC Curves measure the tradeoff between...

Overall classification accuracy = 13/15 = 0.87

$$0/11 = 0$$

B True positive rate (Recall) =
$$2/4 = 0.5$$

PR Curves measure the tradeoff between...

B True positive rate (Recall) =
$$2/4 = 0.5$$

$$\mathbf{C}$$
 Precision= $2/2 = \mathbf{1}$

i	y_i	\hat{y}_i
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1
9	1	1
10	1	1
11	1	1
12	1	1
13	1	1
14	0	1
15	0	1

Case study 3

true negative

Overall classification accuracy = 13/15 = 0.87

ROC Curves measure the tradeoff between...

A False positive rate =

- 2/2 = 1
- B True positive rate (Recall) = 13/13 = 1

PR Curves measure the tradeoff between...

- B True positive rate (Recall) =
- 13/13 = **1 C**

true

positive

Multiclass Classification: Confusion Matrix

confusion matrix with number of samples

F₁-score

$$F_1 = 2 \frac{1}{\frac{1}{\text{recall}} + \frac{1}{\text{precision}}}$$

Harmonic mean of precision and recall

$$= 2 \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

Generally:

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} \cdot \text{recall}}{\beta^2 \cdot \text{precision} + \text{recall}}$$

 β controls the relative weight of precision/recall

Multiclass F₁

Micro-average: Calculate precision and recall metrics globally by counting the total true positives, false negatives, and false positives (average for the whole dataset)

Macro-average: Use the average precision and recall for each class label (average of class-averages)