# August 22: Exploring causal assumptions with string diagrams

#### **Anonymous Author(s)**

Affiliation Address email

# Recoverability

- A natural assumption suggested by the notion of a CSDP is that of recoverability that a causal theory
- $\mathfrak{T}: E \times D \rightarrow E$  permits some decision function that reproduces the distribution of the observed data.
- That is, we assume that for every  $(\kappa_{\theta}, \mu_{\theta}) := \theta \in \mathcal{T}$  there exists  $\gamma_{\theta} \in \Delta(\mathcal{D})$  such that

$$\gamma_{\theta} \kappa_{\theta} = \mu_{\theta} \tag{1}$$

Suppose also that we have some  $\kappa^*$  that, for all  $\theta \in \mathcal{T}$ , is a Bayesian inversion of  $\gamma_{\theta}$  and  $\kappa_{\theta}$ ; that is:

- A sufficient condition for the existence of such a  $\kappa^*$  is the assumption that decisions correspond to
- variable setting that is, there is some variable  $X: E \to X$  such that for all  $a \in D, \theta \in T$  we have  $\delta_a \kappa_\theta F_X = \delta_a$  (such an assumption arises in graphical models as hard interventions, and in potential 8
- outcomes as "potential-outcome identifiers"). Indeed  $F_X$  is in this case a candidate for  $\kappa^*$ . It is not
- necessary that  $\kappa^*$  be deterministic, however suppose every  $\kappa$  ignores D. Then choose  $\gamma_{\theta} = \gamma$  for
- arbitrary  $\gamma \in \Delta(\mathcal{D})$  and it can be verified that  $\kappa^* : b \mapsto \gamma$  satisfies 2.
- I believe a weaker sufficient condition for the existence of a universal  $\kappa^*$  is that every  $\kappa_{\theta}$  factorises as
- $\kappa_{\theta} = h \vee (\mathrm{Id}_F \otimes i_{\theta})$  for some fixed  $h: D \to \Delta(\mathcal{F})$ , but I have not yet shown this. 13
- We will proceed somewhat rashly: suppose that by defining  $\gamma: \mathfrak{T} \to \Delta(\mathcal{D})$ ,  $\mu: \mathfrak{T} \to \Delta(\mathcal{E})$  and 14
- $\kappa: \mathfrak{T} \times D \to \Delta(\mathcal{E} \text{ by } \gamma: \theta \to \gamma_{\theta}, \mu: \theta \to \mu_{\theta} \text{ and } \kappa: (\theta, d) \to \kappa_{\theta}(d; \cdot) \text{ that all resulting objects are}$ 15
- Markov kernels, and that T is a standard measurable space.
- By previous assumptions, we have the following properties:

#### 18 From 4 we also have

19 Where 7 follows from 1.

The following assumption is a formalisation of the notion that "we can determine  $\mu$  precisely from observation" (alternatively, that we can find an optimal decision for a classical statistical decision problem). Suppose that  $\mu$  is characterised by some kernel \* $\mu$ . That is,

$$\frac{\mu^*\mu}{\mu} = \frac{\mu^*\mu}{\mu}$$
(8)

An equivalent condition to 8 is that for all  $\theta, \theta' \in \mathcal{T}, A \in \mathcal{E}$ , we have  $\mu(\theta; A) = \mu(\theta'; A), \mu^*\mu(\theta; \cdot)$ almost surely. More informally,the support of  $\mu^*\mu$  for each input  $\theta$  divides  $\mathcal{T}$  into equivalence classes
such that for all  $\theta$  in a given equivalence class,  $\mu$  maps to the same probability measure on  $\mathcal{E}$ .

Note that as a result of 8 we also have  $\mu^*\mu\mu=\mu$ . This weaker condition is not sufficient for the following result.

# There is a connection between equation 8 and the notion of a sufficient statistic

#### We then have



Equation 13 implies that, given any  $\xi \in \Delta(\mathfrak{T})$ , all distributions of the form

$$\begin{array}{c|cccc}
 & T & & & \\
\hline
 & \mu & \kappa^* & \kappa & E & \\
 & D & & & \\
\end{array}$$
(14)

admit both  $\frac{}{}$  and  $\frac{}{}$  and  $\frac{}{}$  as disintegrations from (D, T) --- E. Therefore these two kernels agree almost surely with respect to the distribution 14 for any prior  $\xi$ .

However, also by assumption 8, we have that for  $\theta, \theta' \in \mathcal{T}$  either  $\mu(\theta; A) = \mu(\theta'; A)$  for all  $A \in \mathcal{E}$ , or 33 for any  $A \in \mathcal{E} \ \mu(\theta; A) = 0$  or  $\mu(\theta'; A) = 0$ . That is, any two states either have the same probability 34 measure or probability measures with disjoint support. This is problematic, as the distribution 14 35 then has no support over much of the space  $D \times E \times \mathfrak{I}$ . If  $\mu$  were deterministic, for example, and 36 hence associated with some function f, while 8 would be guaranteed via a left inverse, 14 would be 37 supported on a subset of  $D \times \{(\theta, f(\theta)) | \theta \in \mathcal{T}\}$ . In particular, we have no guarantee that the desired 38 equality of kernels holds if we take any decision that doesn't reproduce the observed distribution. 39 This isn't totally trivial: we may live in a world where most actions make things worse, in which case 40 knowing how to keep things the same is valuable. 41

- A stronger result can be found if we assume we have an infinite sequence of RVs  $X_i: E \to W$  and D<sub>i</sub>: D  $\to$  V such that
  - $W^{\mathbb{N}} = E, V^{\mathbb{N}} = D$  (i.e. the sequence of all  $X_i$ 's is identified with E and the sequence of all  $D_i$ 's is identified with D)
  - For  $A := A_0 \times A_1 \times ... \in E$ ,  $\mu = \mu \lor \otimes_{i \in \mathbb{N}} F_{\mathsf{X}_i} = \lor \otimes_{i \in \mathbb{N}} \mu F_{\mathsf{X}_i}$  (the  $\mathsf{X}_i$ 's are IID)
  - For  $y := (y_0, y_1, ...) \in D$ ,  $A \in E$ ,  $\kappa = \forall \otimes_{i \in \mathbb{N}} F_{\mathsf{D}_i} \kappa F_{\mathsf{X}_i}$  ( $\kappa$  is "IID")
- the sequence is IID with respect to  $\mu(\theta;\cdot)$  for all  $\theta$ .

We appear to require additional assumptions in order to support a nontrivial result, however. Given that  $\mu$  is deterministic, we might suppose  $\kappa^*$  is also likely to be deterministic (or, if it is not, the nondeterminism is not carried through by  $\kappa$ ). Then we will have only a single pair in  $D \times \mathfrak{T}$  having nonzero measure for each  $\theta \in \mathfrak{T}$ , so the "almost surely" condition rules out almost all feasible decision functions. There appear to be two competing demands - we want  $\kappa^*$  stochastic in order to determine the results of a wide variety of decision functions, but we want  $\mu$  deterministic in order to support statistical inference. One option might be to relax the assumption of determinism on  $\mu$  slightly and hope that we "gain more than we lose". I suspect, at this point, that this does not work.

An alternative nontrivial case of "optimisability" requires the additional assumption of *double* exchangeability. This is exchangeability in the standard statistical sense, not in the sense of the Rubin causal model; a doubly exchangeable kernel is a kernel that remains the same if inputs and outputs are permuted in the same way.

Definition 1.1 (Double exchangeability). A kernel  $\kappa: X \to \Delta(\mathcal{Y})$  is doubly exchangeable with respect to random variable sets  $\{\mathsf{X}_i\}_{i \in A}$ ,  $\{\mathsf{Y}_i\}_{i \in A}$  where A = [n] or  $A = \mathbb{N}$  and  $\mathsf{X}_i: X \to X_i$ ,  $\mathsf{Y}_i: Y \to Y_i$  if, given any finite permutation  $\sigma$  and its inverse  $\sigma^{-1}$  we have both

- $\bullet \ \ \text{There exists } \sigma_X: X \to X \text{ and } \sigma_Y^{-1}: Y \to Y \text{ such that } F_{\sigma_X} \lor (\otimes_{i \in A} \mathsf{X}_{a_i}) = \lor (\otimes_{i \in A} \mathsf{X}_{\sigma(a_i)}) \\ \text{ and similarly for } F_{\sigma_Y^{-1}} \text{ and }$
- $\bullet \ F_{\sigma_X} \kappa F_{\sigma_Y^{-1}} = \kappa$

44 45

46

47

64 65

Double exchangeability is similar to exchangeability for probability distributions, but there is no possible analogoue of the set  $\{X_i\}$  in that case.

An example follows. We identify  $\mathfrak{T}\cong [0,1]\times T, E\cong [0,1]^2$  and  $D\cong \{0,1\}^\mathbb{N}$ . For  $(\theta,\phi)\in \mathfrak{T}$  let  $\mu:(\theta;A\times B)\mapsto \delta_{0.5}(A)\delta_{\frac{\theta}{2}}(B)$ .

Define  $\overline{\mathsf{D}}^n:\{0,1\}^n\to[0,1]$  by  $\overline{\mathsf{D}}^n:(y_0,...,y_n)\mapsto \frac{1}{n}\sum_{i\in[n]}y_i$  and let  $\overline{\mathsf{D}}:D\to[0,1]$  be the limit  $\overline{\mathsf{D}}=\lim_{n\to\infty}\overline{\mathsf{D}}^n.$  Let  $\gamma$  be for all  $(\theta,\phi)$  the unique distribution such that  $\gamma F_{\overline{\mathsf{D}}^n}(\theta,\phi;A)=\delta_{0.5}(A)$  (i.e. the distribtion of an infinite sequence of IID RVs with success probability 0.5) and assert that  $\delta_{(\theta,\phi)} \vee (\mathrm{Id}_{\mathcal{T}}\otimes \gamma)\kappa = \delta_{\theta}\mu$  almost surely for all  $(\theta,\phi)$ . We note that  $\kappa^*:(A)\mapsto \gamma(A)$  satisfies 4 for arbitrary  $\kappa$ .

# 2 Notes on category theoretic probability and string diagrams

76

Category theoretic treatments of probability theory often start with probability monads (for a good overview, see [Jacobs, 2018]). A monad on some category C is a functor  $T:C\to C$  along with natural transformations called the unit  $\eta:1_C\to T$  and multiplication  $\mu:T^2\to T$ . Roughly, functors are maps between categories that preserve identity and composition structure and natural transformations are "maps" between functors that also preserve composition structure. The monad unit is similar to the identity element of a monoid in that application of the identity followed by multiplication yields the identity transformation. The multiplication transformation is also (roughly speaking) associative.

An example of a probability monad is the discrete probability monad given by the functor  $\mathcal{D}:\mathbf{Set}\to\mathbf{Set}$  which maps a countable set X to the set of functions from  $X\to[0,1]$  that are probability measures on X, denoted  $\mathcal{D}(X)$ .  $\mathcal{D}$  maps a measurable function f to  $\mathcal{D}f:X\to\mathcal{D}(X)$  given by  $\mathcal{D}f:x\mapsto \delta_{f(x)}$ . The unit of this monad is the map  $\eta_X:X\to\mathcal{D}(X)$  given by  $\eta_X:x\mapsto \delta_x$  (which is equivalent to  $\mathcal{D}1_X$ ) and multiplication is  $\mu_X:\mathcal{D}^2(X)\to\mathcal{D}(X)$  where  $\mu_X:\Omega\mapsto\sum_{\phi}\Omega(\phi)\phi$ .

For continuous distributions we have the Giry monad on the category **Meas** of mesurable spaces given by the functor  $\mathcal G$  which maps a measurable space X to the set of probability measures on X, denoted  $\mathcal G(X)$ . Other elements of the monad (unit, multiplication and map between morphisms) are the "continuous" version of the above.

Of particular interest is the Kleisli category of the monads above. The Kleisli  $C_T$  category of a monad T on category C is the category with the same objects and the morphisms  $X \to Y$  in  $C_T$  is the set of morphisms  $X \to TY$  in C. Thus the morphisms  $X \to Y$  in the Kleisli category  $\mathbf{Set}_{\mathcal{D}}$  are morphisms  $X \to \mathcal{D}(Y)$  in  $\mathbf{Set}$ , i.e. stochastic matrices, and in the Kleisli category  $\mathbf{Meas}_{\mathcal{G}}$  we have Markov kernels. Composition of arrows in the Kleisli categories correspond to Matrix products and "kernel products" respectively.

Both  $\mathcal{D}$  and  $\mathcal{G}$  are known to be *commutative* monads, and the Kleisli category of a commutative monad is a symmetric monoidal category.

Diagrams for symmetric monoidal categories consist of wires with arrows, boxes and a couple of special symbols. The identity object (which we identify with the set  $\{*\}$ ) is drawn as nothing at all  $\{*\} :=$  and identity maps are drawn as bare wires:

$$\operatorname{Id}_{X} := {}^{\uparrow}_{X} \tag{15}$$

We draw Kleisli arrows from the unit (i.e. probability distributions)  $\mu: \{*\} \to X$  as triangles and Kleisli arrows  $\kappa: X \to Y$  (i.e. Markov kernels  $X \to \Delta(\mathcal{Y})$ ) as boxes. We draw the Kleisli arrow  $\mathbb{1}_X: X \to \{*\}$  (which is unique for each X) as below

$$\mu := \begin{array}{c} \uparrow^X \\ \downarrow \\ \kappa := \end{array} \begin{array}{c} \uparrow^Y \\ \hline \kappa \end{array} \tag{16}$$

The product of objects in **Meas** is given by  $(X, \mathcal{X}) \cdot (Y, \mathcal{Y}) = (X \times Y, \mathcal{X} \otimes \mathcal{Y})$ , which we will often write as just  $X \times Y$ . Horizontal juxtaposition of wires indicates this product, and horizontal juxtaposition also indicates the tensor product of Kleisli arrows. Let  $\kappa_1 : X \to W$  and  $\kappa_2 : Y \to Z$ :

$$(X \times Y, \mathcal{X} \otimes \mathcal{Y}) := {\uparrow_X \uparrow_Y} \qquad \kappa_1 \otimes \kappa_2 := {\downarrow_{\kappa_1} \downarrow_{\kappa_2} \atop |_X \mid_Y}$$

$$(17)$$

Composition of arrows is achieved by "wiring" boxes together. For  $\kappa_1:X\to Y$  and  $\kappa_2:Y\to Z$  we have

$$\kappa_1 \kappa_2(x; A) = \int_Y \kappa_2(y; A) \kappa_1(x; dy) := X$$
(18)

113 Symmetric monoidal categoris have the following coherence theorem[Selinger, 2010]:

Theorem 2.1 (Coherence (symmetric monoidal)). A well-formed equation between morphisms in the language of symmetric monoidal categories follows from the axioms of symmetric monoidal categories if and only if it holds, up to isomorphism of diagrams, in the graphical language.

Isomorphism of diagrams for symmetric monoidal categories (somewhat informally) is any planar deformation of a diagram including deformations that cause wires to cross. We consider a diagram for a symmetric monoidal category to be well formed only if all wires point upwards.

In fact the Kleisli categories of the probability monads above have (for each object) unique *copy*:  $X \to X \times X$  and *erase*:  $X \to \{*\}$  maps that satisfy the *commutative comonoid axioms* that (thanks to the coherence theorem above) can be stated graphically. These differ from the copy and erase maps of *finite product* or *cartesian* categories in that they do not necessarily respect composition of morphisms.

Erase = 
$$\mathbb{1}_X := {}^*\mathsf{Copy} = x \mapsto \delta_{x,x} := {}^{\mathsf{N}}$$
 (19)

$$= := (20)$$

$$\begin{array}{ccc}
* & & \\
& = & \\
\end{array}$$
(21)

$$=$$
 (22)

Finally,  $\{*\}$  is a terminal object in the Kleisli categories of either probability monad. This means that the map  $X \to \{*\}$  is unique for all objects X, and as a consequence for all objects X, Y and all  $\kappa: X \to Y$  we have

$$\begin{array}{ccc}
 & * \\
 & K \\
 & X \\
 & X
\end{array}$$
(23)

This is equivalent to requiring for all  $x \in X$   $\int_Y \kappa(x; dy) = 1$ . In the case of  $\mathbf{Set}_{\mathcal{D}}$ , this condition is what differentiates a stochastic matrix from a general positive matrix (which live in a larger category than  $\mathbf{Set}_{\mathcal{D}}$ ).

Thus when manipulating diagrams representing Markov kernels in particular (and, importantly, not 131

more general symmetric monoidal categories) diagram isomorphism also includes applications of 20, 132

21, 22 and 23. 133

136

A particular property of the copy map in  $\mathbf{Meas}_{\mathcal{G}}$  (and probably  $\mathbf{Set}_{\mathcal{D}}$  as well) is that it commutes with 134

Markov kernels iff the markov kernels are deterministic [Fong, 2013]. 135

## 2.1 Disintegration and Bayesian inversion

Disintegration is a key operation on probability distributions (equivalently arrows  $\{*\} \to X$ ) in 137 the categories under discussion. It corresponds to "finding the conditional probability" (though 138

conditional probability is usually formalised in a slightly different way). 139

Given a distribution  $\mu: \{*\} \to X \otimes Y$ , a disintegration  $c: X \to Y$  is a Markov kernel that satisfies

$$\begin{array}{ccc}
X & Y \\
\downarrow & \downarrow & \downarrow \\
XY & \downarrow & \downarrow & \downarrow \\
\downarrow \mu & \downarrow & \downarrow & \\
\downarrow \mu & \downarrow & \downarrow & \downarrow \\
\downarrow \downarrow & \downarrow$$

Disintegrations always exist in  $\mathbf{Set}_{\mathcal{D}}$  but not in  $\mathbf{Meas}_{\mathcal{G}}$ . The do exist in the latter if we restrict

ourselves to standard measurable spaces. If  $c_1$  and  $c_2$  are disintegrations  $X \to Y$  of  $\mu$ , they are equal 142

 $\mu$ -A.S. In fact, this equality can be strengthened somewhat - they are equal almost surely with respect 143

to any distribution that shares the "X-marginal" of  $\mu$ . 144

Given  $\sigma: \{*\} \to X$  and a channel  $c: X \to Y$ , a Bayesian inversion of  $(\sigma, c)$  is a channel  $d: Y \to X$ 145

146

$$\begin{array}{ccc}
X & Y \\
X & Y & \downarrow \\
\hline
C & & & \downarrow \\
\hline
C & & & & \\
\hline
C & & & \\
\hline
C & & & \\
\hline
C & & & \\
C & & & \\
\hline
C & & & \\
\hline
C & & & \\
C & & & \\
\hline
C & & & \\
C & &$$

We can obtain disintegrations from Bayesian inversions and vise-versa.

Clerc et al. [2017] offer an alternative view of Bayesian inversion which they claim doesn't depend 148

on standard measurability conditions, but there is a step in their proof I didn't follow. 149

#### 2.2 Generalisations 150

Cho and Jacobs [2019] make use of a larger "CD" category by dropping 23. I'm not completely clear 151 whether you end up with arrows being "Markov kernels for general measures" or something else (can

we have negative arrows?). This allows for the introduction of "observables" or "effects" of the form 153



152

154

160

Jacobs et al. [2019] make use of an embedding of  $\mathbf{Set}_{\mathcal{D}}$  in  $\mathbf{Mat}(\mathbb{R}^+)$  with morphisms all positive 155

matrices (I'm not totally clear on the objects, or how they are self-dual - this doesn't seem to be 156

exactly the same as the category of finite dimensional vector spaces). This latter category is compact 157

closed, which - informally speaking - supports the same diagrams as symmetric monoidal categories 158

with the addition of "upside down" wires. 159

# 2.3 Key questions for Causal Theories

We will first define *labeled diagrams*. Rather than labelling the wires of our diagrams with *spaces* (as is

typical [Selinger, 2010]), we assign a unique label to each "wire segment" (with some qualifications).

I'm sure one of the papers I read mentioned labeled diagrams, I just couldn't find it when I That is, we assign a unique label to each bare wire in the diagram with the following additional qualifications:

163

164

165

166

167 168

169

170

171

172

173

174

175

176

177

178

179

180

181

183

184

185

186

187

188

190

191

192 193

194

195

196

197

198

200

201

204

205

206

- If we have a box in the diagram representing the identity map, the incoming and outgoing wires are given the same label
- If we have a wire crossing in the diagram, the diagonally opposite wires are given the same label
- The input wire and the two output wires of the copy map are given the same label

Given two diagrams  $G_1$  and  $G_2$  that are isomorphic under transformations licenced by the axioms of symmetric monoidal categories and commutative comonoid axioms, suppose we have a labelling of  $G_1$ . We can label  $G_2$  using the following translation rule:

• For each box in  $G_2$ , we can identify a corresponding box in  $G_1$  via labels on each box. For each such pair of boxes, we label the incoming wires of the  $G_2$  box with the labels of the  $G_1$  box preserving the left-right order. We do likewise for outgoing wires.

These rules will lead to a unique labelling of  $G_2$  with all wire segments are labelled. We would like for these rules to yield the following:

- For any sequence of diagram isomorphisms beginning with  $G_1$  and ending with  $G_2$ , we end up with the same set of labels
- If we label  $G_2$  according to the rules above then relabel  $G_1$  from  $G_2$  according to the same rules we retrieve the original labels of  $G_1$

We do not prove these properties here, but motivate them via the following considerations:

- These properties obviously hold for the wire segments into and out of boxes
- The only features a diagram may have apart from boxes and wires are wire crossings, copy maps and erase maps
- The labeling rule for wire crossings respects the symmetry of the swap map
- The labeling rule for copy maps respects the symmetry of the copy map and the property described in Equation 22

189 We will follow the convention whereby "internal" wire labels are omitted from diagrams.

Note also that each wire that terminates in a free end can be associated with a random variable. Suppose for  $N \in \mathbb{N}$  we have a kernel  $\kappa: A \to \Delta(\times_{i \in N} X_i)$ . Define by  $p_j$   $(j \in [N])$  the projection map  $p_j: \times_{i \in N} X_i \to X_j$  defined by  $p_j: (x_0,...,x_N) \mapsto x_j$ .  $p_j$  is a measurable function, hence a random variable. Define by  $\pi_j$  the projection kernel  $\mathcal{G}(\pi_j)$  (that is,  $\pi_j: \mathbf{x} \mapsto \delta_{p_j(\mathbf{x})}$ ). Note that  $\kappa(y; p_j^{-1}(A)) = \int_{X_j} \delta_{p_j(\mathbf{x})}(A) \kappa(y; d\mathbf{x}) = \kappa \pi_j$ . Diagrammatically,  $\pi_j$  is the identity map on the j-th wire tensored with the erase map on every other wire. Thus the j-th wire carries the distribution associated with the random variable  $p_j$ . We will therefore consider the labels of the "outgoing" wires of a diagram to denote random variables (though there are obviously many random variables not represented by such wires). We will additionally distinguish wire labels from spaces by font - wire labels are sans serif A, B, C, X, Y, Z while spaces are serif A, B, C, X, Y, Z.

Wire labels appear to have a key advantage over random variables: they allow us to "forget" the sample space as the correct typing is handled automatically by composition and erasure of wires

**generalised disintegrations**: Of key importance to our work is generalising the notion of disintegration (and possibly Bayesian inversion) to general kernels  $X \to Y$  rather than restricting ourselves to probability distributions  $\{*\} \to Y$ . We will define generalised disintegrations as a straightforward analogy regular disintegrations, but the conditions under which such disintegrations exist are more restrictive than for regular disintegraions.

**Definition 2.2** (Label signatures). If a kernel  $\kappa: X \to \Delta(Y)$  can be represented by a diagram G with incoming wires  $X_1,...X_n$  and outgoing wires  $Y_1,...,Y_m$ , we can assign the kernel a "label

Since writing this, I found Kissinger [2014] as an example of a diagrammatic system with labeled wires, I will follow it up signature"  $\kappa: X_1 \otimes ... \otimes X_n \dashrightarrow Y_1 \otimes ... \otimes Y_m$  or, for short,  $\kappa: X_{[n]} \dashrightarrow Y_{[m]}$ . Note that this signature associates each label with a unique space - the space of  $X_1$  is the space associated with the left-most wire of G and so forth. We will implicitly leverage this correspondence and write with  $X_1$  the space associated with  $X_1$  and so forth. Note that while  $X_1$  is by construction always different from  $X_2$  (or any other label), the space  $X_1$  may coincide with  $X_2$  - the fact that labels always maintain distinctions between wires is the fundamental reason for introducing them in the first place.

There might actually be some sensible way to consider  $\kappa$  to be transforming the measurable functions of a type similar to  $\bigotimes_{i \in [n]} \mathsf{X}_i$  to functions of a type similar to  $\bigotimes_{i \in [m]} \mathsf{Y}_i$  (or vise versa - perhaps related to Clerc et al. [2017]), but wire labels are all we need at this point

**Definition 2.3** (Generalised disintegration). Given a kernel  $\kappa: X \to \Delta(Y)$  with label signature  $\kappa: X_{[n]} \dashrightarrow Y_{[m]}$  and disjoint subsets  $S, T \subset [m]$  such that  $S \cup T = [m]$ , a kernel c is a *g-disintigration from* S *to* T if it's type is compatible with the label signature  $c: Y_S \dashrightarrow Y_T$  and we have the identity (omitting incoming wire labels):

214

219

$$\begin{array}{cccc}
Y_S & Y_T \\
Y_S & Y_T \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

I have introduced without definition additional labeling operations here: first, each label has a particular space associated with it (in order to license the notion of "type compatible with label signature"), and we have supposed labels can be "bundled".

In contrast to regular disintegrations, generalised disintegrations "usually" do not exist. Consider  $X = \{0, 1\}, Y = \{0, 1\}^2$  and  $\kappa$  has label signature  $X_1 \dashrightarrow Y_{\{1, 2\}}$  with

$$\kappa: \begin{cases}
1 \mapsto \delta_1 \otimes \delta_1 \\
0 \mapsto \delta_1 \otimes \delta_0
\end{cases}$$
(27)

 $\kappa$  imposes contradictory requirements for any disintegration  $c:\{0,1\}\to\{0,1\}$  from  $\{1\}$  to  $\{2\}$ : equality for  $X_1=1$  requires  $c(1;\cdot)=\delta_1$  while equality for  $X_1=0$  requires  $c(1;\cdot)=\delta_0$ . Subject to some regularity conditions (similar to standard Borel conditions for regular disintegrations), we can define g-disintegrations of a canonically related kernel that do generally exist; intuitively, g-disintegrations exist if they take the "input wires" of  $\kappa$  as input wires themselves.

Lemma 2.4. Given  $\kappa: X \to \Delta(Y)$ , a kernel  $\kappa^{\dagger}$  is a right inverse iff we have for all  $x \in X$ ,  $A \in \mathcal{X}$ ,  $y \in Y$   $\kappa^{\dagger}(y; A) = \delta_x(A)$ ,  $\kappa(x; \cdot)$ -almost surely.

229 *Proof.* Suppose  $\kappa^{\dagger}$  satisfies the almost sure equality for all  $x \in X$ . Then for all  $x \in X$ ,  $A \in \mathcal{X}$  we 230 have  $\kappa \kappa^{\dagger}(x;A) = \int_{Y} \kappa^{\dagger}(y;A) \kappa(x;dy) = \int_{Y} \delta_{x}(A) \kappa(x;dy) = \delta_{x}(A)$ ; that is,  $\kappa \kappa^{\dagger} = \operatorname{Id}_{X}$ , so  $\kappa^{\dagger}$  is a right inverse of  $\kappa$ .

Suppose we have a right inverse  $\kappa^{\dagger}$ . By definition, for all  $x \in X$  and  $A \in \mathcal{X}$  we have  $\int_{Y} \kappa^{\dagger}(y;A)\kappa(x;dy) = \delta_{x}(A)$ .

Suppose  $x \notin A$  and let  $B_{\epsilon} = \kappa_A^{\dagger - 1}((\epsilon, 1])$  for some  $\epsilon > 0$ . We have  $\int_Y \kappa^{\dagger}(y; A) \kappa(x; dy) = 0 \ge \epsilon \kappa(x; B_{\epsilon})$ . Thus for any  $\epsilon > 0$  we have  $\kappa(x; B_{\epsilon}) = 0$ . Consider the set  $B_0 = \kappa_A^{\dagger - 1}((0, 1])$ . For some sequence  $\{\epsilon_i\}_{i \in \mathbb{N}}$  such that  $\lim_{i \to \infty} \epsilon_i = 0$  we have  $B_0 = \bigcup_{i \in \mathbb{N}} B_{\epsilon_i}$ . By countable additivity,  $\kappa(x; B_0) = 0$ .

Suppose  $x\in A$  and let  $B^{1-\epsilon}=\kappa_A^{\dagger-1}([0,1-\epsilon)).$  We have  $\int_Y \kappa^\dagger(y;A)\kappa(x;dy)=1\leq (1-\epsilon)\kappa(x;B^{1-\epsilon})+1-\kappa(x;B^{1-\epsilon})=1-\epsilon\kappa(x;B^{1-\epsilon}).$  Thus  $\kappa(x;B^{1-epsilon})=0$  for  $\epsilon>0.$  By an argument analogous to the above, we also have  $\kappa(x;B^1)=0.$  Thus the  $\kappa(x;\cdot)$  measure of the set on which  $\kappa^\dagger(y;A)$  disagrees with  $\delta_x(A)$  is  $\kappa(x;B_0)+\kappa(x;B^1)=0$  and hence  $\kappa^\dagger(y;A)=\delta_x(A)$   $\kappa(x;\cdot)$ -almost surely.

I haven't shown that any map inverting  $\kappa$  implies the existence of a Markov kernel that does

I am using countable sets below to get my general argument in order without getting too hung up on measurability; I will try to lift it to standard measurable once it's all there

**Lemma 2.5.** Given  $\kappa: X \to \Delta(Y)$  and a right inverse  $\kappa^{\dagger}$ , we have 245



*Proof.* Let the diagram on the left hand side be L and the diagram on the right hand side be R.

$$L(x; A \times B) = \int_{Y} \int_{Y \times Y} \operatorname{Id}_{Y} \otimes \kappa_{S}^{\dagger}(y, y'; A \times B) \delta_{(z, z)}(dy \times dy') \kappa \pi_{S}(x; dz)$$
 (29)

$$= \int \mathrm{Id}_Y \otimes \kappa^{\dagger}(z, z; A \times B) \kappa \pi_S(x; dz)$$
 (30)

$$= \int \delta_z(A)\kappa_S^{\dagger}(z;B)\kappa\pi_S(x;dz) \tag{31}$$

$$= \int_{A} \kappa_{S}^{\dagger}(z; B) \kappa \pi_{S}(x; dz) \tag{32}$$

$$= \delta_x(B)\kappa\pi_S(x;A) \tag{33}$$

Where 33 follows from Lemma 2.4.

244

$$R(x; A \times B) = \int \delta_{(x,x)}(dy \times dy') \kappa \pi_S \otimes \operatorname{Id}_X(y, y'; A \times B)$$
(34)

$$= \kappa \pi_S(x; A) \delta_x(B) \qquad \qquad = L \qquad (35)$$

**Theorem 2.6.** Given countable X and standard measurable Y,  $n, m \in \mathbb{N}$ ,  $S, T \subset [m]$ ,  $\kappa$  with label 249

signature  $X_{[n]} \longrightarrow Y_{[m]}$  a g-disintegration exists from S to T if  $\kappa \pi_S$  is right-invertible 250

via a Markov kernel

248

251

- *Proof.* In addition, as R is a composition of Markov kernels, and hence a Markov kernel itself, L 252 must also be a Markov kernel even if  $\kappa^{\dagger}$  is not. 253
- For all  $x \in X$  we have a (regular) disintegration  $c_x : Y_S \to \Delta(Y_T)$  of  $\kappa(x;\cdot)$  by standard mea-254
- 255
- surability of Y. Define  $c: X \otimes Y_S \to \Delta(Y_T)$  by  $c: (x, y_S) \mapsto c_x(y_S)$ . Clearly,  $c(x, y_S)$  is a probability distribution on  $Y_T$  for all  $(x, y_S) \in X \otimes Y_S$ . It remains to show  $c(\cdot)^{-1}(B)$  is measurable for all  $B \in \mathcal{B}([0,1])$ . But  $c(\cdot)^{-1}(B) = \bigcap_{x \in X} c_y(\cdot)^{-1}(B)$ . The right hand side is measurable by 256
- 257
- measurability of  $c_{\nu}(\cdot)^{-1}(B)$  countability of X, so c is a Markov kernel. 258
- By the definition of  $c_x$ , we have for all  $x \in X$

260 Which implies

261 Finally, we have

Where the first line follows from 21 and the second line from 28. If  $\kappa_S^{\dagger}$  is a Markov kernel, then  $\forall (\mathrm{Id}_{Y_S} \otimes \kappa_S^{\dagger})c$  is a g-disintegration.

In the reverse direction, suppose  $\kappa$  is such that  $\kappa \pi_T = \mathrm{Id}_X$ ; that is,  $\pi_T$  is a right inverse of  $\kappa$ . If  $\kappa \pi_S$  is not right invertible then, by definition, there is no d such that  $\kappa \pi_S d \pi_T = \mathrm{Id}_X$ . However, if a g-disintegration of  $\kappa$  exists then there is a d such that  $\kappa \pi_S d = \kappa$ , a contradiction. Thus if  $\kappa \pi_S$  is not right invertible then there is in general no g-disintegration from S to T.

### 68 References

- Kenta Cho and Bart Jacobs. Disintegration and Bayesian inversion via string diagrams. 269 270 Mathematical Structures in Computer Science, 29(7):938–971, August 2019. 0960-1295, 1469-8072. 271 doi: 10.1017/S0960129518000488. URL https://www. cambridge.org/core/journals/mathematical-structures-in-computer-science/ 272 article/disintegration-and-bayesian-inversion-via-string-diagrams/ 273 0581C747DB5793756FE135C70B3B6D51. 274
- Florence Clerc, Fredrik Dahlqvist, Vincent Danos, and Ilias Garnier. Pointless learning. 20th International Conference on Foundations of Software Science and Computation Structures (FoSSaCS 2017), March 2017. doi: 10.1007/978-3-662-54458-7\_21. URL https://www.research.ed.ac.uk/portal/en/publications/pointless-learning(694fb610-69c5-469c-9793-825df4f8ddec).html.
- Brendan Fong. Causal Theories: A Categorical Perspective on Bayesian Networks. *arXiv:1301.6201* [math], January 2013. URL http://arxiv.org/abs/1301.6201. arXiv: 1301.6201.
- Bart Jacobs. From probability monads to commutative effectuses. *Journal of Logical and Algebraic Methods in Programming*, 94:200-237, January 2018. ISSN 2352-2208. doi: 10.1016/j.jlamp.2016.11.006. URL http://www.sciencedirect.com/science/article/pii/S2352220816301122.
- Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal Inference by String Diagram Surgery. In
   Mikołaj Bojańczyk and Alex Simpson, editors, Foundations of Software Science and Computation
   Structures, Lecture Notes in Computer Science, pages 313–329. Springer International Publishing,
   188 2019. ISBN 978-3-030-17127-8.
- Aleks Kissinger. Abstract Tensor Systems as Monoidal Categories. In Claudia Casadio, Bob Coecke,
  Michael Moortgat, and Philip Scott, editors, Categories and Types in Logic, Language, and
  Physics: Essays Dedicated to Jim Lambek on the Occasion of His 90th Birthday, Lecture Notes in
  Computer Science, pages 235–252. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN
  978-3-642-54789-8. doi: 10.1007/978-3-642-54789-8\_13. URL https://doi.org/10.1007/
  978-3-642-54789-8\_13.
- Peter Selinger. A survey of graphical languages for monoidal categories. arXiv:0908.3347 [math],
   813:289-355, 2010. doi: 10.1007/978-3-642-12821-9\_4. URL http://arxiv.org/abs/0908.
   3347. arXiv: 0908.3347.