

www.ablic.com

3节/4节电池串联用电池保护IC

© ABLIC Inc., 2002-2019 Rev.5.3_00

S-8254A系列内置高精度电压检测电路和延迟电路,是用于3节或4节串联锂离子/锂聚合物可充电电池保护的IC。通过SEL端子的切换,可用来保护3节或4节串联电池。

■ 特点

(1) 针对各节电池的高精度电压检测功能

・过充电检测电压n (n = 1 ~ 4)3.90 V ~ 4.45 V (进阶单位为50 mV)精度±25 mV・过充电解除电压n (n = 1 ~ 4)3.80 V ~ 4.45 V*1精度±50 mV・过放电检测电压n (n = 1 ~ 4)2.0 V ~ 3.0 V (进阶单位为100 mV)精度±80 mV・过放电解除电压n (n = 1 ~ 4)2.0 V ~ 3.4 V*2精度±100 mV

(2) 3段过电流检测功能

・过电流检测电压10.05 V ~ 0.30 V (进阶单位为50 mV)精度±25 mV・过电流检测电压20.5 V精度±100 mV・过电流检测电压3Vvc1 - 1.2 V精度±300 mV

- (3) 通过外接电容可设置过充电检测延迟时间、过放电检测延迟时间和过电流检测延迟时间1 (过电流检测延迟时间2、过电流检测延迟时间3在内部被固定)
- (4) 通过SEL端子可以实现3节串联用/4节串联用的切换
- (5) 通过控制端子可以控制充放电

(6) 向0 V电池充电 允许、禁止

(7) 休眠功能 有

(8) 高耐压 绝对最大额定值 26 V

(9) 宽工作电压范围 2 V ~ 24 V (10) 宽工作温度范围 -40°C ~ +85°C

(11) 低消耗电流

工作时 30 μA 最大值 (+25°C)休眠时 0.1 μA 最大值 (+25°C)

- (12) 无铅产品, Sn 100%, 无卤素*3
- *1. 过充电滞后电压n (n = 1 ~ 4)为0 V或者在0.1 V ~ 0.4 V的范围内以50 mV为进阶单位来选择 (过充电滞后电压=过充电检测电压-过充电解除电压)
- *2. 过放电滞后电压n (n = 1 ~ 4)为0 V或者在0.2 V ~ 0.7 V的范围内以100 mV为进阶单位来选择 (过放电滞后电压=过放电解除电压–过放电检测电压)
- *3. 详情请参阅"■ 产品型号的构成"。

■ 用途

- · 锂离子可充电电池组
- · 锂聚合物可充电电池组

■ 封装

16-Pin TSSOP

■ 框图

备注 1. 图中所指示的二极管为寄生二极管。

2. 所记载的数值为标准值。

图1

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅"3. 产品名目录"。

2. 封装

封	·装名	封装图面	卷带图面	带卷图面
16-Pin TSSOP	环保标记 = G, S	FT016-A-P-SD	FT016-A-C-SD	FT016-A-R-SD
10-1111 13301	环保标记 = U	FT016-A-P-SD	FT016-A-C-SD	FT016-A-R-S1

3. 产品名目录

表1

产品名 / 项目	过充电检测电压 [Vcu]	过充电解除电压 [Vcl]	过放电检测电压 [V _{DL}]	过放电解除电压 [V _{DU}]	过电流检测电压1 [V _{IOV1}]	向0 V电池 充电
S-8254AAAFT-TB-x	4.350 ± 0.025 V	4.150 ± 0.050 V	2.00 ± 0.080 V	2.70 ± 0.100 V	0.30 ± 0.025 V	允许
S-8254AABFT-TB-x	4.250 ± 0.025 V	4.250 ± 0.025 V	2.00 ± 0.080 V	2.70 ± 0.100 V	0.30 ± 0.025 V	允许
S-8254AAEFT-TB-x	4.350 ± 0.025 V	4.150 ± 0.050 V	2.00 ± 0.080 V	2.70 ± 0.100 V	0.20 ± 0.025 V	允许
S-8254AAFFT-TB-x	4.350 ± 0.025 V	4.150 ± 0.050 V	2.40 ± 0.080 V	3.00 ± 0.100 V	0.20 ± 0.025 V	允许
S-8254AAGFT-TB-x	4.275 ± 0.025 V	4.075 ± 0.050 V	2.30 ± 0.080 V	2.70 ± 0.100 V	0.13 ± 0.025 V	允许
S-8254AAHFT-TB-x	4.350 ± 0.025 V	4.150 ± 0.050 V	2.40 ± 0.080 V	2.70 ± 0.100 V	0.10 ± 0.025 V	允许
S-8254AAJFT-TB-x	4.350 ± 0.025 V	4.150 ± 0.050 V	2.40 ± 0.080 V	3.00 ± 0.100 V	0.15 ± 0.025 V	允许
S-8254AAKFT-TB-x	4.350 ± 0.025 V	4.150 ± 0.050 V	2.70 ± 0.080 V	3.00 ± 0.100 V	0.20 ± 0.025 V	允许
S-8254AALFT-TB-x	4.300 ± 0.025 V	4.150 ± 0.050 V	2.40 ± 0.080 V	3.00 ± 0.100 V	0.20 ± 0.025 V	允许
S-8254AAMFT-TB-x	4.200 ± 0.025 V	4.100 ± 0.050 V	2.50 ± 0.080 V	2.70 ± 0.100 V	0.30 ± 0.025 V	允许
S-8254AANFT-TB-x	4.250 ± 0.025 V	4.150 ± 0.050 V	2.50 ± 0.080 V	3.00 ± 0.100 V	0.10 ± 0.025 V	允许
S-8254AAOFT-TB-x	4.300 ± 0.025 V	4.080 ± 0.050 V	2.50 ± 0.080 V	3.00 ± 0.100 V	0.10 ± 0.025 V	允许
S-8254AAPFT-TB-x	4.280 ± 0.025 V	4.130 ± 0.050 V	$3.00 \pm 0.080 \text{ V}$	$3.00 \pm 0.080 \text{ V}$	0.15 ± 0.025 V	允许
S-8254AAQFT-TB-x	$3.900 \pm 0.025 \text{V}$	$3.800 \pm 0.050 \text{ V}$	$2.30 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	$0.30 \pm 0.025 \text{V}$	允许
S-8254AARFT-TB-x	$4.350 \pm 0.025 \text{ V}$	$4.150 \pm 0.050 \text{ V}$	$2.80 \pm 0.080 \text{ V}$	$3.00 \pm 0.100 \text{ V}$	$0.20 \pm 0.025 \text{V}$	允许
S-8254AASFT-TB-x	4.290 ± 0.025 V	$4.090 \pm 0.050 \text{ V}$	$2.30 \pm 0.080 \text{ V}$	$3.00 \pm 0.100 \text{ V}$	$0.075 \pm 0.025 \text{ V}$	允许
S-8254AATFT-TB-x	$4.200 \pm 0.025 \text{ V}$	$4.200 \pm 0.025 V$	$2.00 \pm 0.080 \ V$	$2.70 \pm 0.100 \text{ V}$	$0.30 \pm 0.025 \text{ V}$	允许
S-8254AAUFT-TB-x	4.350 ± 0.025 V	$4.150 \pm 0.050 \text{ V}$	$2.40 \pm 0.080 \; V$	$3.00 \pm 0.100 \text{ V}$	$0.20 \pm 0.025 \text{ V}$	禁止
S-8254AAVFT-TB-x	4.250 ± 0.025 V	$4.150 \pm 0.050 \text{ V}$	$2.70 \pm 0.080 \; V$	$3.00 \pm 0.100 \text{ V}$	$0.20 \pm 0.025 \text{ V}$	允许
S-8254AAWFT-TB-x	4.250 ± 0.025 V	$4.100 \pm 0.050 \text{ V}$	$3.00 \pm 0.080 \text{ V}$	$3.20 \pm 0.100 \text{ V}$	$0.10 \pm 0.025 \text{ V}$	禁止
S-8254AAYFT-TB-x	$4.275 \pm 0.025 \text{ V}$	$4.125 \pm 0.050 \ V$	$2.40 \pm 0.080 \; V$	$2.70 \pm 0.100 \text{ V}$	$0.10 \pm 0.025 \text{ V}$	允许
S-8254AAZFT-TB-x	4.250 ± 0.025 V	$4.150 \pm 0.050 \ V$	$2.00 \pm 0.080 \; V$	$2.70 \pm 0.100 \text{ V}$	$0.13 \pm 0.025 \text{ V}$	允许
S-8254ABAFT-TB-x	$3.900 \pm 0.025 \mathrm{V}$	$3.800 \pm 0.050 \text{ V}$	$2.00 \pm 0.080 \ V$	2.50 ± 0.100 V	$0.15 \pm 0.025 \text{V}$	允许
S-8254ABCFT-TB-x	4.175 ± 0.025 V	$3.975 \pm 0.050 \text{ V}$	$2.75 \pm 0.080 \; V$	$3.05 \pm 0.100 \text{ V}$	$0.10 \pm 0.025 \text{ V}$	允许
S-8254ABDFT-TB-y	$4.300 \pm 0.025 \text{ V}$	$4.100 \pm 0.050 \text{ V}$	$2.00 \pm 0.080 \; V$	$2.00 \pm 0.080 \text{ V}$	$0.13 \pm 0.025 \text{ V}$	允许
S-8254ABEFT-TB-y	4.200 ± 0.025 V	$4.150 \pm 0.050 \ V$	$2.50 \pm 0.080 \; V$	$3.00 \pm 0.100 \text{ V}$	$0.15 \pm 0.025 \text{V}$	允许
S-8254ABFFT-TB-x	4.150 ± 0.025 V	$4.050 \pm 0.050 \text{ V}$	$2.00 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.13 ± 0.025 V	允许
S-8254ABGFT-TB-x	4.180 ± 0.025 V	$4.080 \pm 0.050 \text{ V}$	$2.00 \pm 0.080 \text{ V}$	2.70 ± 0.100 V	0.13 ± 0.025 V	允许
S-8254ABHFT-TB-y	4.150 ± 0.025 V	4.050 ± 0.050 V	2.50 ± 0.080 V	2.80 ± 0.100 V	0.10 ± 0.025 V	允许
S-8254ABIFT-TB-x	4.215 ± 0.025 V	4.115 ± 0.050 V	2.40 ± 0.080 V	3.00 ± 0.100 V	0.20 ± 0.025 V	禁止
S-8254ABJFT-TB-U	4.225 ± 0.025 V	4.125 ± 0.050 V	2.50 ± 0.080 V	2.70 ± 0.100 V	0.10 ± 0.025 V	允许
S-8254ABKFT-TB-U	4.150 ± 0.025 V	4.150 ± 0.025 V	2.00 ± 0.080 V	2.70 ± 0.100 V	$0.30 \pm 0.025 \text{V}$	允许
S-8254ABLFT-TB-U	4.250 ± 0.025 V	4.100 ± 0.050 V	2.40 ± 0.080 V	3.00 ± 0.100 V	$0.20 \pm 0.025 \text{V}$	禁止
S-8254ABMFT-TB-U	4.425 ± 0.025 V	4.225 ± 0.050 V	2.50 ± 0.080 V	2.90 ± 0.100 V	0.15 ± 0.025 V	允许
S-8254ABNFT-TB-U	4.215 ± 0.025 V	4.115 ± 0.050 V	2.80 ± 0.080 V	3.00 ± 0.100 V	$0.20 \pm 0.025 \text{V}$	禁止

备注 1. 如果需要上述以外的产品时,请向代理商咨询。

- 2. x: G 或 U y: S 或 U
- 3. 用户需要Sn 100%、无卤素产品时,请选择环保标记为"U"的产品。

■ 引脚排列图

表2

引脚号	符号	描述	
1	COP	充电控制用FET门极连接端子 (N沟道开路漏极输出)	
2	VMP	VC1 - VMP间的电压检测端子 (过电流3检测端子)	
3	DOP	放电控制用FET门极连接端子 (CMOS输出)	
4	VINI	VSS - VINI间的电压检测端子 (过电流1、2检测端子)	
5	CDT	过放电检测延迟、过电流检测1延迟用的电容连接端子	
6	CCT	过充电检测延迟用的电容连接端子	
7	VSS	负电源输入端子、电池4的负电压连接端子	
8	NC*1	无连接	
9	NC*1	无连接	
10	SEL	3节串联/4节串联的切换端子	
10	VSS电位: 3节串联, VDD电位: 4节串联		
11	CTL	充电用FET以及放电用FET的控制端子	
12	VC4	电池3的负电压、电池4的正电压连接端子	
13	VC3	电池2的负电压、电池3的正电压连接端子	
14	VC2	电池1的负电压、电池2的正电压连接端子	
15	VC1	电池1的正电压连接端子	
16	VDD	正电源输入端子、电池1的正电压连接端子	

^{*1.} NC表示从电气的角度而言处于开路状态。 所以,与VDD或VSS均可连接。

■ 绝对最大额定值

表3

(除特殊注明以外: Ta = 25°C)

项目	记号	适用端子	绝对最大额定值	单位
VDD - VSS间输入电压	V_{DS}	_	V _{SS} – 0.3 ~ V _{SS} + 26	V
输入端子电压	V _{IN}	VC1, VC2, VC3, VC4, CTL, SEL, CCT, CDT, VINI	Vss – 0.3 ~ V _{DD} + 0.3	V
VMP输入端子电压	V_{VMP}	VMP	V _{SS} – 0.3 ~ V _{SS} + 26	V
DOP输出端子电压	V_{DOP}	DOP	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
COP输出端子电压	VCOP	COP	V _{SS} – 0.3 ~ V _{SS} + 26	V
容许功耗	D	_	400 (基板未安装时)	mW
合计划柱 【	P _D	_	1100 ^{*1}	mW
工作环境温度	Topr	_	− 40 ~ + 85	°C
保存温度	T_{stg}	_	− 40 ~ + 125	°C

***1.** 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm×76.2 mm×t1.6 mm

(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品 劣化等物理性损伤。

图3 封装容许功耗 (基板安装时)

■ 电气特性

表4 (1 / 2)

(除特殊注明以外: Ta = 25°C)

接換电压 技術機能圧 対応性を測电圧の						(1.5.15	ハト/エ・ハラベン	•	.0 0)
対応电检测电压n (n = 1, 2, 3, 4)	项目	记号	条件		最小值	典型值	最大值	单位	测定 电路
(n = 1, 2, 3, 4)	[检测电压]								
対応电解除电压	 过充电检测电压n (n = 1, 2, 3, 4)	V _{CUn}	3.90 V~4.45 V,可说			V _{CUn}		V	2
引導整	过充电解除电压n	Vai	3.80 V ~ 4.45 V,	V _{CL} ≠V _{CU} 时		V _{CLn}		V	2
(n = 1, 2, 3, 4)	(n = 1, 2, 3, 4)	V CLn	可调整	V _{CL} = V _{CU} 时		V _{CLn}		V	2
対した 解除电压n (n = 1, 2, 3, 4)	过放电检测电压n (n = 1, 2, 3, 4)	V_{DLn}	2.0 V ~ 3.0 V,可调整			V_{DLn}		V	2
VDL = VDU VDL = VDU VDU VDU VDU VDU + 0.08	过放电解除电压n	Vou	201/~341/ 可调敕			V_{DUn}		V	2
プロ・	(n = 1, 2, 3, 4)	V DUn	2.0 0 ~ 3.4 V,时间至			V_{DUn}		V	2
Violation Vi	过电流检测电压1	V _{IOV1}	0.05 V ~ 0.3 V,可调整			V _{IOV1}		V	2
Comparison of the property	过电流检测电压2	V_{IOV2}	_		0.4	0.5	0.6	V	2
Tool Ta = 0°C ~ 50°C*3	过电流检测电压3	V _{IOV3}	_					V	2
温度系数2*2 TCOE2 Ta = 0°C ~ 50°C*3 - 0.5 0 0.5 mV /°C 2 [延迟时间] 过充电检测延迟时间 tcu CCT端子电容 = 0.1 μF 0.5 1.0 1.5 s 3 过放电检测延迟时间 tcu CDT端子电容 = 0.1 μF 50 100 150 ms 3 过电流检测延迟时间1 tlov1 CDT端子电容 = 0.1 μF 5 10 15 ms 3 过电流检测延迟时间2 tlov2 - 0.4 1 1.6 ms 3 过电流检测延迟时间3 tlov3 FET门极电容 = 2000 pF 100 300 600 μs 3 [向0 V电池充电] 向0 V电池充电开始	温度系数1*1	T _{COE1}	$Ta = 0^{\circ}C \sim 50^{\circ}C^{*3}$		- 1.0	0	1.0	mV /°C	2
过充电检测延迟时间 tcu CCT端子电容 = 0.1 μF 0.5 1.0 1.5 s 3 过放电检测延迟时间 tou CDT端子电容 = 0.1 μF 50 100 150 ms 3 过电流检测延迟时间1 tov1 CDT端子电容 = 0.1 μF 5 10 15 ms 3 过电流检测延迟时间2 tov2 — 0.4 1 1.6 ms 3 过电流检测延迟时间3 tov3 FET门极电容 = 2000 pF 100 300 600 μs 3 [向0 V电池充电]	温度系数2 ^{*2}	T _{COE2}	Ta = 0°C ~ 50°C*3		- 0.5	0	0.5	mV /°C	2
対象性を測延迟时间	[延迟时间]		1					l .	
过电流检测延迟时间1 tiov1 CDT端子电容 = 0.1 μF 5 10 15 ms 3 过电流检测延迟时间2 tiov2 — 0.4 1 1.6 ms 3 过电流检测延迟时间3 tiov3 FET门极电容 = 2000 pF 100 300 600 μs 3 [内0 V电池充电] 中 0.8 1.5 V 4 充电器电压 Volnh 禁止向0 V电池充电 0.4 0.7 1.1 V 4 中池电压 (内部电阻] RVMD — 0.5 1 1.5 MΩ 5	过充电检测延迟时间	tcu	CCT端子电容 = 0.1 μ	ıF	0.5	1.0	1.5	S	3
过电流检测延迟时间2 tiov2 — 0.4 1 1.6 ms 3 过电流检测延迟时间3 tiov3 FET门极电容 = 2000 pF 100 300 600 μs 3 [向0 V电池充电] 向0 V电池充电开始充电器电压 允许向0 V电池充电 — 0.8 1.5 V 4 向0 V电池充电禁止电池电压 Voinh 禁止向0 V电池充电 0.4 0.7 1.1 V 4 [内部电阻] VMP - VDD间电阻 RVMD — 0.5 1 1.5 MΩ 5	过放电检测延迟时间	t _{DL}	CDT端子电容 = 0.1 p	ıF	50	100	150	ms	3
过电流检测延迟时间3 tiov3 FET门极电容 = 2000 pF 100 300 600 μs 3 [向0 V电池充电] 向0 V电池充电开始 充电器电压 允许向0 V电池充电 — 0.8 1.5 V 4 向0 V电池充电禁止 电池电压 Voinh 禁止向0 V电池充电 0.4 0.7 1.1 V 4 [内部电阻] VMP - VDD间电阻 RVMD — 0.5 1 1.5 MΩ 5	过电流检测延迟时间1	t _{IOV1}	CDT端子电容 = 0.1 p	ıF	5	10	15	ms	3
[向0 V电池充电] 向0 V电池充电开始 充电器电压 允许向0 V电池充电 — 0.8 1.5 V 4 向0 V电池充电禁止 电池电压 Voinh 禁止向0 V电池充电 0.4 0.7 1.1 V 4 [内部电阻] VMP - VDD间电阻 RVMD — 0.5 1 1.5 MΩ 5	过电流检测延迟时间2	t _{IOV2}	_		0.4	1	1.6	ms	3
Docade	过电流检测延迟时间3	t _{IOV3}	FET门极电容 = 2000 pF		100	300	600	μs	3
充电器电压 V _{OCHA} 允许同0 V电池充电 — 0.8 1.5 V 4 向0 V电池充电禁止 电池电压 V _{OINH} 禁止向0 V电池充电 0.4 0.7 1.1 V 4 [内部电阻] VMP - VDD间电阻 R _{VMD} — 0.5 1 1.5 MΩ 5	[向0 V电池充电]	•							•
电池电压 Voinh 禁止问0 V电池充电 0.4 0.7 1.1 V 4 [内部电阻] VMP - VDD间电阻 R _{VMD} — 0.5 1 1.5 MΩ 5	向0 V电池充电开始 充电器电压	V ₀ CHA	允许向0 V电池充电		_	0.8	1.5	V	4
[内部电阻] VMP - VDD间电阻 R _{VMD} — 0.5 1 1.5 MΩ 5	向0 V电池充电禁止 电池电压	Voinh	禁止向0 V电池充电		0.4	0.7	1.1	V	4
- VMP - VDD间电阻 R _{VMD} — 0.5 1 1.5 MΩ 5	[内部电阻]		•						•
VMP - VSS间电阻 R _{VMS} — 450 900 1800 kΩ 5	VMP - VDD间电阻	R _{VMD}	_		0.5	1	1.5	MΩ	5
	VMP - VSS间电阻	R _{VMS}			450	900	1800	kΩ	5

表4 (2 / 2)

(除特殊注明以外: Ta = 25°C)

「輸入电压]	小值 2 / _{DD} 0.8	典型值 ————————————————————————————————————	最大值 24 — V _{DD}	単位 V V	测定 电路 2 2
VDD - VSS间工作电压 VDSOP DOP, COP输出电压确定 CTL输入电压"H" VCTLH — CTL输入电压"L" VCTLL — SEL输入电压"H" VSELH — SEL输入电压"H" VSELL — I输入电流] — - 工作时消耗电流 IOPE V1 = V2 = V3 = V4 = 3.5 V - 体眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 3.5 V - VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V -	0.8		_	-	
CTL輸入电压"H" VCTLH — V CTL輸入电压"L" VSELH — - SEL輸入电压"H" VSELH — - SEL輸入电压"L" VSELL — - [輸入电流] 工作时消耗电流 IOPE V1 = V2 = V3 = V4 = 3.5 V - 休眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 1.5 V - VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V -	0.8	_	_	-	
CTL输入电压"H" VCTLH — × CTL输入电压"L" VCTLL — - SEL输入电压"H" VSELH — - SEL输入电压"L" VSELL — - [输入电流] 工作时消耗电流 IOPE V1 = V2 = V3 = V4 = 3.5 V - 休眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 3.5 V - VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V -	0.8	_	— Vpp	V	2
SEL输入电压"H" VSELH — V SEL输入电压"L" VSELL — - [输入电流] 工作时消耗电流 IOPE V1 = V2 = V3 = V4 = 3.5 V - 休眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 1.5 V - VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V -			Vpp		-
SEL输入电压"H" VSELH — SEL输入电压"L" VSELL —	' _{DD}		× 0.2	V	2
[輸入电流] 工作时消耗电流 IOPE V1 = V2 = V3 = V4 = 3.5 V - 4 休眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 1.5 V - 4 VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - 4 VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V - 4	8.0	_	_	V	2
工作时消耗电流 IOPE V1 = V2 = V3 = V4 = 3.5 V - 休眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 1.5 V - VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V -	_	_	V _{DD} × 0.2	V	2
休眠时消耗电流 IPDN V1 = V2 = V3 = V4 = 1.5 V - VC1端子电流 IVC1 V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 IVC2 V1 = V2 = V3 = V4 = 3.5 V -					
VC1端子电流 I _{VC1} V1 = V2 = V3 = V4 = 3.5 V - VC2端子电流 I _{VC2} V1 = V2 = V3 = V4 = 3.5 V -	_	12	30	μA	1
VC2端子电流 I _{VC2} V1 = V2 = V3 = V4 = 3.5 V	_		0.1	μA	1
	_	1.5	3	μA	5
	0.3	0	0.3	μA	5
VC3端子电流	0.3	0	0.3	μA	5
VC4端子电流 I _{VC4} V1 = V2 = V3 = V4 = 3.5 V	0.3	0	0.3	μA	5
CTL端子电流"H"	_		0.1	μΑ	5
CTL端子电流"L"	0.4	- 0.2	_	μΑ	5
SEL端子电流"H"	_	_	0.1	μΑ	5
SEL端子电流"L"	0.1	_	_	μΑ	5
[输出电流]	1	l.			•
	_ [[0.1	μA	5
COP端子吸收电流 IcoL Vcop = Vss + 0.5 V	10	_		μA	5
DOP端子源极电流			_	μA	5
DOP端子吸收电流 IDOL VDOP = Vss + 0.5 V	10		J.		

^{*1.} 电压温度系数1表示为过充电检测电压。

^{*2.} 电压温度系数2表示为过电流检测电压1。

^{*3.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 测定电路

本章说明在SEL端子 = VDD电位时选择4节电池的情况下的S-8254A系列的测定方法。在SEL端子 = VSS电位时,要选择3节电池的情况下,请将电源V4短路。

1. 工作时消耗电流、休眠时消耗电流

(测定电路 1)

1.1 工作时消耗电流 (lope)

在V1 = V2 = V3 = V4 = 3.5 V、V_{VMP} = V_{DD}时, VSS端子的电流即为工作时消耗电流 (IOPE)。

1.2 休眠时消耗电流 (IPDN)

在V1 = V2 = V3 = V4 = 1.5 V、 V_{VMP} = Vss时, VSS端子的电流即为休眠时消耗电流 (IPDN)。

2. 过充电检测电压、过充电解除电压、过放电检测电压、过放电解除电压、过电流检测电压1、过电流检测电压2、过电流检测电压3、CTL输入电压"H"、CTL输入电压"L"、SEL输入电压"H"、SEL输入电压 "L"

(测定电路 2)

在V_{VMP} = V_{SEL} = V_{DD}、V_{INI} = V_{CTL} = V_{SS}、CCT端子 = "开路"、CDT端子 = "开路"、V1 = V2 = V3 = V4 = 3.5 V的前提下,请确认COP端子以及DOP端子为"L" (V_{DD} × 0.1 V以下的电压) (以下记载为初始状态)。

2.1 过充电检测电压 (Vcu1)、过充电解除电压 (VcL1)

从初始状态开始缓慢提升V1的电压,COP端子的电压变为"H" ($V_{DD} \times 0.9 \ V$ 以上的电压)时V1的电压 即为过充电检测电压 (V_{CL1})。之后,缓慢降低V1的电压,COP端子的电压变为"L"时V1的电压即为 过充电解除电压 (V_{CL1})。

2.2 过放电检测电压 (VDL1)、过放电解除电压 (VDU1)

从初始状态开始缓慢降低V1的电压,DOP端子的电压变为"H"时V1的电压即为过放电检测电压 (V_{DL1}) 。之后,缓慢提升V1的电压,DOP端子的电压变为"L"时V1的电压即为过放电解除电压 (V_{DU1}) 。只要使Vn $(n=2\sim4)$ 的电压产生变化,也与n=1的情况相同可以计算出过充电检测电压 (V_{CUn}) 、过充电解除电压 (V_{CLn}) 、过放电检测电压 (V_{DLn}) 以及过放电解除电压 (V_{DLn}) 。

2. 3 过电流检测电压1 (Viovi)

从初始状态开始缓慢提升VINI端子的电压,DOP端子的电压变为"H"时VINI端子的电压即为过电流检测电压1 (V_{IOV1})。

2.4 过电流检测电压2 (Viov2)

从初始状态开始设置CDT端子的电压为Vss之后,缓慢提升VINI端子的电压,DOP端子的电压变为"H"时VINI端子的电压即为过电流检测电压2 (V_{IOV2})。

2. 5 过电流检测电压3 (Viova)

从初始状态开始缓慢降低VMP端子的电压,DOP端子的电压变为"H"时Vvc1与VvMP的电压差(Vvc1 – VvMP) 即为过电流检测电压3 (Viov3)。

2. 6 CTL输入电压"H" (VcTLH)、CTL输入电压"L" (VcTLL)

从初始状态开始缓慢提升CTL端子的电压,COP端子以及DOP端子的电压变为"H"时CTL端子的电压即为CTL输入H电压(VcTLH)。之后,缓慢降低CTL端子的电压,COP端子以及DOP端子的电压变为"L"时CTL端子的电压即为CTL输入L电压(VcTLL)。

2.7 SEL输入电压"H" (VSELH)、SEL输入电压"L" (VSELL)

从初始状态开始设置V4 = 0 V,确认DOP端子为"H"。之后,缓慢降低SEL端子的电压,DOP端子的电压变为"L"时SEL端子的电压即为SEL输入L电压 (V_{SELL})。之后,缓慢提升SEL端子的电压,DOP端子的电压变为"H"时SEL端子的电压即为SEL输入H电压 (V_{SELH})。

3. 过充电检测延迟时间、过放电检测延迟时间、过电流检测延迟时间1、过电流检测延迟时间2、过电流检测延迟时间3

(测定电路 3)

在 $V_{VMP} = V_{DD}$ 、 $V_{INI} = V_{SS}$ 、V1 = V2 = V3 = V4 = 3.5 V的前提下,请确认COP端子以及DOP端子为"L"(以下记载为初始状态)。

3.1 过充电检测延迟时间 (tcu)

过充电检测延迟时间 (tcu) 是从初始状态开始,使V1的电压在瞬间变化为4.5 V之后,COP端子的电压从"L"变为"H"为止的时间。

3.2 过放电检测延迟时间 (tol)

过放电检测延迟时间 (toL) 是从初始状态开始,使V1的电压在瞬间变化为1.5 V之后,DOP端子的电压从"L"变为"H"为止的时间。

3.3 过电流检测延迟时间1 (t_{IOV1})

过电流检测延迟时间1 (tlov1) 是从初始状态开始,使VINI端子的电压在瞬间变化为0.4 V之后,DOP端子的电压从"L"变为"H"为止的时间。

3.4 过电流检测延迟时间2 (tlov2)

过电流检测延迟时间2 (tiov2) 是从初始状态开始, 使VINI端子的电压在瞬间变化为Viov2最大值+ 0.2 V之后, DOP端子的电压从"L"变为"H"为止的时间。

3.5 过电流检测延迟时间3 (tiov3)

过电流检测延迟时间3 (t_{IOV3}) 是从初始状态开始,使VMP端子的电压在瞬间变化为 V_{IOV3} 最小值-0.2 V之后,DOP端子的电压从"L"变为"H"为止的时间。

4. 向0 V电池充电开始充电器电压(允许向0 V电池充电)、向0 V电池充电禁止电池电压(禁止向0 V电池 充电)

(测定电路4)

针对0 V电池,可以通过充电功能的选择,向0 V电池充电开始充电器电压或者向0 V电池充电禁止电池电压的一方适用于各类产品。

4.1 向0 V电池充电开始充电器电压 (Vocha) (允许向0 V电池充电)

向0 V电池充电开始充电器电压的情况下,在V1 = V2 = V3 = V4 = 0 V、 V_{VMP} = V_{OCHA} 最大值时,COP端子的电压比 V_{OCHA} 最大值- 1 V小。

4.2 向0 V电池充电禁止电池电压 (Voinh) (禁止向0 V电池充电)

向0 V电池充电禁止电池电压的情况下,在V1 = V2 = V3 = V4 = V_{OINH} 最小值、 V_{VMP} = 24 V时,COP 端子的电压比 V_{VMP} – 1 V高。

5. VMP-VDD间电阻、VMP-VSS间电阻、VC1端子电流、VC2端子电流、VC3端子电流、VC4端子电流、CTL端子电流"H"、CTL端子电流"L"、SEL端子电流"H"、SEL端子电流"L"、COP端子泄漏电流、COP端子吸收电流、DOP端子源极电流、DOP端子吸收电流

(测定电路 5)

在 $V_{VMP} = V_{SEL} = V_{DD}$ 、 $V_{INI} = V_{CTL} = V_{SS}$ 、V1 = V2 = V3 = V4 = 3.5 V、其他为"开"的前提下(以下记载为初始状态)。

5.1 VMP-VDD间电阻 (R_{VMD})

VMP-VDD间电阻 (R_{VMD})是从初始状态开始,利用V_{VMP} = V_{SS}时的VMP端子的电流 (I_{VMD}),可以从 R_{VMD} = V_{DD} / I_{VMD}计算出。

5.2 VMP-VSS间电阻 (R_{VMS})

VMP-VSS间电阻 (R_{VMS})是从初始状态开始,利用在V1 = V2 = V3 = V4 = 1.8 V时的VMP端子的电流 (I_{VMS}),可以从R_{VMS} = V_{DD} / I_{VMS}计算出。

5. 3 VC1端子电流 (Ivc1)、VC2端子电流 (Ivc2)、VC3端子电流 (Ivc3)、VC4端子电流 (Ivc4)

在初始状态下,流经VC1端子的电流为VC1端子电流 (I_{VC1}),流经VC2端子的电流为VC2端子电流 (I_{VC2}),流经VC3端子的电流为VC3端子电流 (I_{VC4})。

5. 4 CTL端子电流"H" (IcTLH)、CTL端子电流"L" (IcTLL)

在初始状态下,流经CTL端子的电流为CTL端子电流"L" (Істіц),之后,在Vcті = Vdb时流经CTL端子的电流为CTL端子电流"H" (Істін)。

5.5 SEL端子电流"L"、SEL端子电流"L" (Isell)

在初始状态下,流经SEL端子的电流为SEL端子电流"H" (Iselh),之后,在Vsel = Vss时流经SEL端子的电流为SEL端子电流"L" (Isell)。

5.6 COP端子吸收电流 (IcoL)、COP端子泄漏电流 (IcoH)

从初始状态开始,在 $V_{COP} = V_{SS} + 0.5 \text{ V时}$,流经COP端子的电流为COP端子吸收电流 (I_{COL})。之后,在V1 = V2 = V3 = V4 = 6 V、 $V_{COP} = V_{DD}$ 时流经COP端子的电流为COP端子泄漏电流 (I_{COH})。

5.7 DOP端子吸收电流 (IDOL) 、DOP端子源极电流 (IDOH)

从初始状态开始, 在V_{DOP} = V_{SS} + 0.5 V时, 流经DOP端子的电流为DOP端子吸收电流 (I_{DOL})。之后, 在V_{VMP} = V_{DD} − 2 V 、V_{DOP} = V_{DD} − 0.5 V时流经DOP端子的电流为DOP端子源极电流 (I_{DOH})。

图4 测定电路1

图5 测定电路2

图6 测定电路3

图7 测定电路4

图8 测定电路5

■ 工作说明

备注 请参照 "■ 电池保护IC的连接例"。

1. 通常状态

所有电池电压都在V_{DLn}与V_{CUn}之间,比放电电流的电流值低 (VINI端子电压比V_{IOV1}、V_{IOV2}低,并且VMP端子电压比V_{IOV3}高) 的情况下,充电用FET以及放电用FET变为ON。

2. 过充电状态

任何一个电池电压比Vcun高,这种状态保持在tcu以上的情况下,COP端子变为高阻抗。COP端子通过外接电阻上拉为EB+的缘故,充电用FET变为OFF,而停止充电。这种状态称为过充电状态。过充电状态在满足下述的2个条件的一方的情况下被解除。

- (1) 所有电池电压都在VcLn以下时
- (2) 所有电池电压都在V_{CUn}以下,并且VMP端子电压在39/40 × V_{DD}以下时 (负载被连接,通过充电用FET的本体二极管开始放电)

3. 过放电状态

任何一个电池电压比V_{DLn}低,这种状态保持在t_{DL}以上的情况下,DOP端子的电压变为V_{DD}电位,放电用FET变为OFF,而停止放电。这种状态称为过放电状态。

3. 1 休眠功能

变为过放电状态后,VMP端子被IC内部的 R_{VMS} 电阻下拉至 V_{SS} 。VMP端子电压变为 V_{DD} / 2以下时,休眠功能开始操作,几乎所有的电路都停止工作。各个输出端子变为如下的状态。

- (1) COP端子: High-Z
- (2) DOP端子: VDD

休眠功能在满足下述的条件时被解除。

(1) VMP端子电压变为VDD / 2以上时。

过放电状态的解除有以下2种条件。

- (1) 如果VMP端子电压在V_{DD} / 2以上且低于V_{DD}, 当所有电池电压都在V_{DUn}以上时, 过放电状态将被解除。
- (2) 如果连接充电器,过放电滞后将被解除,当所有电池电压都在Voln以上时,过放电状态将被解除。

4. 过电流状态

S-8254A系列备有3种过电流检测电位(Viov1、Viov2以及Viov3)以及对应各电位的过电流检测延迟时间 (tiov1、tiov2以及tiov3)。放电电流比一定值大(Vss和Vini的电压差比Viov1大)的情况下,这种状态保持在 tiov1以上时,S-8254A系列进入过电流状态。在过电流状态,DOP端子的电压变为VDD电位,放电用FET 变为OFF,而停止放电。另外,COP端子变为高阻抗,由于EB+端子的电位被上拉,导致充电用FET 变为OFF。VMP端子通过内部电阻RvmD被上拉至VDD。针对过电流检测电位2(Viov2)以及过电流检测延迟时间(tiov2)的工作与针对Viov1以及tiov1的工作是相同的。

在过电流状态,通过IC内部的R_{VMD}电阻VMP端子被上拉至V_{DD}。过电流状态在满足下述的条件时被解除。 (1)通过连接充电器或者开路负载(30 MΩ以上),VMP端子电压在V_{IOV3}以上时

5. 向0 V电池充电

有关自我放电电池 (0 V电池) 的充电, S-8254A系列可以从2个功能中选择其中一个。

- (1) 允许向0 V电池的充电 (可以向0 V电池充电)。 充电器电压比Vocha高的情况下, 0 V电池被充电。
- (2) 禁止向0 V电池的充电 (不可以向0 V电池充电)。 电池电压在VoinH以下的情况下,不进行充电。

注意 VDD端子的电压低于VDSOP的最小值的情况下,不能保证S-8254A系列的工作。

6. 延迟时间的设置

过充电检测延迟时间 (tcu) 可以通过连接在CCT端子的外接电容来设置。过放电检测延迟时间 (toL) 以及过电流检测延迟时间1 (tloV1) 可以通过连接在CDT端子的外接电容来设置。各延迟时间由下述的公式来计算出来。过电流检测延迟时间2以及3 (tloV2, tloV3) 在内部被固定。

	最小值	典型值	最大值	1
t _{CU} [s]	= (5.00,	10.0,	15.0) × C _{CCT} [μF]
t _{DL} [s]	= (0.50,	1.00,	1.50) × C _{CDT} [μF]
tiovi[s]	= (0.05,	0.10,	0.15) × C _{CDT} [µF]

7. 有关CTL端子

S-8254A系列备有控制端子。CTL端子是用于控制COP端子以及DOP端子的输出电压而准备的。CTL端子优先用于电池保护电路。

12.5	旭辺いに利しり以上	ドロスパケンCシ
CTL端子	COP端子	DOP端子
High	High-Z	V_{DD}
Open	High-Z	V_{DD}
Low	通常状态*1	通常状态*1

表5 通过CTL端子可设置的状态

注意 由于外接滤波器Rvss、Cvss的存在,当电源突变时,如果CTL端子的低输入电位与IC的VSS电位 产生了电位差,有可能导致IC错误工作,务请注意。

^{*1.} 状态由电压检测电路来控制。

8. 有关SEL端子

S-8254A系列备有控制端子。SEL端子是用于控制3节或者4节保护的切换而准备的。SEL端子在Low的情况下、由于V4节的过放电检测被禁止,即使V4节为短路,过放电检测也可使用于3节保护。SEL端子优先用于电池保护电路。SEL端子请务必使用在High或者是Low电位。

表6 通过SEL端子可设置的状态

711 1-10-1	177 774-11771	
SEL端子	状态	
High	4节保护	
Open	未定	
Low	3节保护	

■ 时序图

*1. ①:通常状态 ②:过充电状态 ③:过放电状态 ④:休眠状态

备注 假设为在定电流时的充电。VEB+表示为充电器的开路电压。

图9

2. 过电流检测

*1. ①:通常状态 ②:过充电状态

备注 假设为在定电流时的充电。VEB+表示为充电器的开路电压。

图10

■ 电池保护IC的连接例

1. 3节串联

图11

2. 4节串联

图12

记号	最小值	典型值	最大值	单位
R _{VC1} *1	0	1	1	kΩ
R _{VC2} *1	0	1	1	kΩ
R _{VC3} *1	0	1	1	kΩ
R _{VC4} *1	0	1	1	kΩ
R _{DOP}	2	5.1	10	kΩ
R _{COP}	0.1	1	1	MΩ
R _{VMP}	1	5.1	10	kΩ
Rctl	1	1	100	kΩ
R _{VINI}	1	1	100	kΩ
Rsel	1	1	100	kΩ
Rsense	0	_	_	mΩ
R _{VSS} *1	10	51	51	Ω
C _{VC1} *1	0	0.1	0.33	μF
C _{VC2} *1	0	0.1	0.33	μF
C _{VC3} *1	0	0.1	0.33	μF
C _{VC4} *1	0	0.1	0.33	μF
Ссст	0.01	0.1		μF
C _{CDT}	0.07	0.1	_	μF
Cvss*1	2.2 设为Rves x Cves > 51	2.2	10	μF

表7 外接元器件参数

注意1. 参数有可能不经预告而作更改。

2. VDD-VSS间的滤波器参数推荐为112 μ F•Ω左右。

例 C_{vss} × R_{vss} = 2.2 μF × 51 Ω = 112 μF• Ω

在设定VDD-VSS间的滤波器参数时,请通过实际的应用电路对瞬态电源变动以及过电流保护功能予以充分实测。如需要将VDD-VSS间的滤波器参数设定在 $112~\mu F \cdot \Omega$ 范围外时,请向代理商咨询。

3. 未确认连接示例以外的电路工作。连接示例和参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- ·请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- ·电池的连接顺序并无特别要求,连接电池时有可能发生不能放电的情况。在这种情况下,应把VMP端子与VDD端子短路连接,或者连接充电器就可以恢复到通常状态。
- · 过充电电池和过放电电池混杂在一起的情况下变为过充电状态与过放电状态,都不可能进行充电和 放电。
- ·本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- ·使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因, 包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

^{*1.} 请将过滤器参数设为Rvss × Cvss ≥ 51 μF•Ω, Rvc1 × Cvc1 = Rvc2 × Cvc2 = Rvc3 × Cvc3 = Rvc4 × Cvc4 = Rvss × Cvss。

■ 各种特性数据(典型数据)

1. 消耗电流

1. 2 I_{OPE} - Ta

1.4 IPDN - Ta

2. 过充电检测/解除电压、过放电检测/解除电压、过电流检测电压以及各延迟时间

2. 1 V_{CU} - Ta

2. 2 V_{CL} - Ta

2. 3 V_{DU} - Ta

2. 4 V_{DL} - Ta

2. 5 VIOV1 - VDD

2. 6 V_{IOV1} - Ta

2. 7 VIOV2 - VDD

2. 8 V_{IOV2} - Ta

2. 9 VIOV3 - VDD

2. 10 V_{IOV3} - Ta

2. 11 tcu - CccT

2. 12 tcu - Ta

2. 14 t_{DL} - Ta

2. 15 tiov1 - Ccdt

2. 16 t_{IOV1} - Ta

2. 17 t_{IOV2} - Ta

2. 18 t_{IOV3} - Ta

3. COP/DOP端子

3. 1 ICOH - VCOP

3. 2 ICOL - VCOP

3. 3 IDOH - VDOP

3. 4 IDOL - VDOP

No. FT016-A-P-SD-1.2

TITLE	TSSOP16-A-PKG Dimensions	
No.	FT016-A-P-SD-1.2	
ANGLE	\bigoplus	
UNIT	mm	
ABLIC Inc.		

Feed direction

No. FT016-A-C-SD-1.1

TITLE	TSSOP16-A-Carrier Tape	
No.	FT016-A-C-SD-1.1	
ANGLE		
UNIT	mm	
ABLIC Inc.		

Enlarged drawing in the central part

No. FT016-A-R-SD-2.0

TITLE	TSSOP16-A- Reel				
No.	FT016-A-R-SD-2.0				
ANGLE		QTY.	2,000		
UNIT	mm				
ABLIC Inc.					

Enlarged drawing in the central part

No. FT016-A-R-S1-1.0

TITLE	TSSOP16-A- Reel			
No.	FT016-A-R-S1-1.0			
ANGLE		QTY.	4,000	
UNIT	mm			
ABLIC Inc.				

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可能未经预告而更改。
- 2. 本资料记载的电路示例和使用方法仅供参考,并非保证批量生产的设计。使用本资料的信息后,发生并非因本资料记载的产品(以下称本产品)而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承担任何责任。
- 3. 因本资料记载错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本产品并非是设计用于可能对生命、人体造成影响的设备或装置的部件,也非是设计用于可能对财产造成损害的设备或装置的部件(医疗设备、防灾设备、安全防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。请勿将本产品用于上述设备或装置的部件。本公司事先明确标示的车载用途例外。作为上述设备或装置的部件使用本产品时,或本公司事先明确标示的用途以外使用本产品时,所导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。为了防止因本产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。本资料记载的内容并非是对本公司或第三方的知识产权、 其它权利的实施及使用的承诺或保证。严禁在未经本公司许可的情况下转载、复制或向第三方公开本资料的一部分或全 部。
- 14. 有关本资料的详细内容等如有不明之处,请向代理商咨询。
- 15. 本免责事项以日语版为正本。即使有英语版或中文版的翻译件, 仍以日语版的正本为准。

2.4-2019.07

