第三章 线性模型

— '	填空题					
1.	生成模型通过估计(行分类。) 进行分类	, 判别模型通	过估计() 进	
2.	感知器算法通常采用() 法求	文解目标函数的	的优化问题。		
3.	线性回归模型的封闭解又称	为 () 解。			
4.	逻辑回归函数的取值区间是	(),			
二、	判断题					
5.	当两个类别均服从正态分布的 一个线性决策面。()	讨 , 根据贝叶	斯决策理论记	十算出的决策面	可必然是	
6.	当两个类别均服从正态分布的一个二次型决策面。()	时,根据贝叶	-斯决策理论记	十算出的决策面	可必然是	
7.	线性回归模型如存在唯一解 ()	,必然可以令	令模型在训练	集上的均方误	差为 0.	
Ω		t 工注用线	洲向山栉利约	旦不小件————————————————————————————————————	١	
	4 个不具有共线性的三维样本,无法用线性回归模型得到唯一解。() 逻辑回归模型无法用于多类分类问题。()					
三、	选择题					
10.	假设线性回归问题的训练集员 少个参数:()	为: $x_i \in \Re^3$,	i = 1,, 100	,则该线性模型	型包含多	
A.	3 个 B. 4 个	C.	100 个	D. 101 个		
11.	11. 上题中如果使用线性回归的最小二乘解的封闭解形式 ,则自相关矩阵 R_x 的大小为 : ()					
A.	3×3 B. 4×4	C.	100×100	D. 101×10)1	
12.	逻辑回归模型中的逻辑回归的	函数可以看做	姓	种概率的描述	:()	
A.	$p(x \omega_1)$ B. $p(\omega_1 x)$	C.	p(x)	D. $p(\omega_1)$		
四、	简答题					
13.	请写出感知器算法的目标函数	数的标准数学	光式 , 并解释	¥其中每一个?	行号 的意	

义与计算方法,说明其合理性。

- 14. 请写出线性回归模型的封闭解数学形式,及其推导过程,并标明符号意义。
- 15. 在线性回归模型中,假设输入样本记为 x_i , i=1,...,N,相应的类别标签记为 y_i , i=1,...,N。请给出自相关矩阵和互相关向量的定义(公式与符号表达)。如果样本集 $X\in\mathfrak{R}^{N\times(d+1)}$ 中,N< d+1,应如何处理才能得到合理的模型参数向量唯一解。
- 16. 请从求解线性方程组的角度说明线性回归模型时的无解情况,从矩阵运算角度说明线性回归模型时的唯一解情况,并比较两者之间的联系与区别。
- 17. 标签y是一个随机变量,由函数 $\hat{w}^T\hat{x}$ 加上一个随机噪声生成: $y = \hat{w}^Tx + \epsilon$;其中噪声 ϵ 服从正态分布 $\mathcal{N}(0,\sigma^2)$,设当前训练样本集为 $X = \{\hat{x}_i | i = 1,...,N\}, Y = \{y_i | i = 1,...,N\}$;
 - (1) 试推导ŵ的最大似然解的数学形式;
 - (2) 假设 $\hat{\mathbf{w}}$ 的先验分布服从d+1元正态分布 $\mathcal{N}(\mathbf{0},I_{(d+1)\times(d+1)})$,试采用最大后验概率估计法推导 $\hat{\mathbf{w}}$ 的最优解的数学形式.
- 18. 如何防止线性回归模型出现过拟合现象,请给出具体的方案
- 19. 请给出逻辑回归模型中 sigmoid 函数形式的推导过程 , 并说明其概率解释。
- 20. 请给出逻辑回归模型梯度下降法更新公式的推导过程。
- 五、计算(画图) 题
- 21. 已知两个类别 ω_1 和 ω_2 ,其先验概率相等,两类的类条件概率密度服从正态分布,有p $(x|w_1)=\mathcal{N}\left(\mu_1,\Sigma\right)$ 和p $(x|w_2)=\mathcal{N}\left(\mu_2,\Sigma\right)$,且 $\mu_1=\begin{bmatrix}0\\0\end{bmatrix}$, $\mu_2=\begin{bmatrix}3\\3\end{bmatrix}$, $\Sigma=\begin{bmatrix}1.1&0.3\\0.3&1.9\end{bmatrix}$,试写出上述问题每一类的判别函数 $g_i(x)$,i=1,2的线性形式以及整个分类问题的决策面方程的线性形式。并判断样本 $x=\begin{bmatrix}1.2\\1.9\end{bmatrix}$ 属于哪一类,给出计算过程。
- 22. 已知决策面方程: $5x_1 x_2 1 = 0$,当前错分样本为:(0.4,0.6), (0.1 0.25)。
 - (1) 写出参数向量w , 并设定合适的学习步长n;

- (2) 列出迭代公式和计算结果
- (3) 列出迭代后的决策面方程
- (4) 画出相应的决策面(虚线)
- (5) 给出结论与分析
- 23. 以 Iris 数据库每类的 70%的样本为训练集,基于线性回归模型,使用花萼长度、花萼宽度和花瓣宽度特征来估计其花瓣长度特征,请写出线性回归模型参数的封闭解的数学形式,标明每个变量的矩阵大小或矢量维度。
- 24. 已知 3 个样本坐标为 $x^{(1)} = [1,0], x^{(2)} = [0,1], x^{(3)} = [1,1]$,其中 $x^{(1)}, x^{(2)} \in \omega_1, x^{(3)} \in \omega_2$,初始化逻辑回归模型对应的线性决策面为: $x_1 = 0.5$ 。设学习步长为 0.2。请计算基于逻辑回归梯度下降法进行一次迭代后的决策面方程,并在下图中画出相应的决策面直线。

