EJERCICIO DE GRAFOS PRIMERA PARTE

Dada la siguiente gráfica

a) Definirlo formalmente:

Recordemos que definir el grafo formalmente significa dar la terna $G = (V; A; \varphi)$. Donde V: conjunto de vértices

A: Conjunto de aristas.

 ϕ : A \rightarrow V. Función de incidencia

Def.: Una arista **a** es incidente con un vértice **v**, si lo toca.

Se define formalmente el Grafo G = $(\{1,2,3,4,5,6,7\};\{a,b,c,d,e,f,g,h,i\};\varphi)$

X	a	b	C	d	e	f	g	h	i
$\varphi(x)$	{1,5}	{1,2}	{2,4}	<i>{5,6}</i>	{6,3}	{3,4}	<i>{7,3}</i>	<i>{7,2}</i>	<i>{5}</i>

b) Indicar los grados de sus vértices:

$$gr(1) = 2$$
; $gr(2) = 3$; $gr(3) = 3$; $gr(4) = 2$; $gr(5) = 4$; $gr(6) = 2$; $gr(7) = 2$

c) Verificar la propiedad fundamental:

La propiedad fundamental de los grados de los vértices de un grafo dice:

$$\sum_{i=1}^{n} gr(v_i) = 2. |A| \quad , \text{ o sea que}$$

En todo grafo, la suma de los grados de todos sus vértices es el doble de la cantidad de aristas.

En este caso queda:

$$2+3+3+2+4+2+2=18=2.9$$
, o sea 2. |A|

d) Hallar la matriz de incidencia:

$$M_{i} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ h & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ i & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

e) Hallar la matriz de adyacencia entre vértices:

Recordemos que dos vértices \mathbf{v}_i y \mathbf{v}_j son *adyacentes* si y solo si existe al menos una arista \mathbf{a} que los une, o sea

$$v_i$$
 es adyacente con $v_i \Leftrightarrow \exists a \in A / \varphi(a) = \{v_i; v_i\}$

f) ¿Es G un grafo conexo? Justificar

G es un *grafo conexo* porque *existe camino desde cualquier vértice hacia* cualquier vértice, o sea todos los vértices están conectados por algún camino.

g) ¿Hay aristas paralelas, vértice colgante, vértice aislado, puente o istmo?

El grafo G no tiene vértices colgantes ni aristas paralelas.

- Para que vean como se verían en la gráfica las *aristas paralelas*, agregamos la arista α en otro color. Esta no forma parte del grafo original.
- Del mismo modo agregamos la arista β y el vértice x, para que vean a qué se le llama vértice colgante.
- Quedaría entonces:

- El grafo G no tiene vértice aislado.
- Si el grafo tuviera al vértice x, entonces la arista β sería un puente, ya que al eliminarla, el grafo quedaría *desconectado* o *no conexo*.
- En el mismo caso del punto anterior, el vértice 3 sería un *istmo* ya que al eliminarlo, el grafo G_3 pasaría a ser *no conexo*.

h) Hallar la sub- gráfica G_5

Recordemos que dado un grafo $G = (V; A; \varphi)$, hay dos formas de obtener un sub grafo. Una es eliminando una o más aristas, y la otra es eliminando uno o más vértices. Tener en cuenta que cuando se elimina un vértice, también deben eliminarse todas sus aristas incidentes. El subgrafo pedido G_5 es:

i) i Es $G = (V; A; \varphi)$ un GRAFO COMPLETO?

Hemos definido como *grafo completo de n vértices Kn*, al grafo cuyos vértices son todos adyacentes, o sea un grafo es completo cuando es simple y existe arista entre todos sus vértices tomados de a dos.

El grafo del ejercicio no es completo ya que, por ejemplo 2 y 6 no son adyacentes. ζ Cómo se ve un grafo completo? Por ejemplo K_3 sería:

La cantidad de aristas en grafos completos siempre se calcula con la fórmula

$$|A|=\frac{n.(n-1)}{2}$$

¿ Es $G = (V;A; \varphi)$ un GRAFO BIPARTITO?

Hemos definido Grafo bipartito de orden m;n, o sea $K_{m;n}$, a un grafo simple tal que su conjunto de vértices puede expresarse como la unión de dos subconjuntos, o sea $V = V_1 \cup V_2$, tales que todas las aristas del grafo vayan $de V_1 a V_2 y$ que al mismo tiempo no haya aristas en $V_1 y V_2$

Por ejemplo un grafo bipartito $K_{2;3}$ sería

GRAFO BIPARTITO COMPLETO $K'_{m;n}$

