Chapter 11 Cryptographic Hash Functions

Hash Function

אשר אספאין פיניא

– A hash function H(·) is an algorithm that maps data sets of variable length to data sets of a fixed length. The values returned by a hash function are called hash values, hash codes, checksums or simply hashes. In cryptography, the data to be encoded are the message and the hash value is sometimes called the message digest or simply digest.

• Example

 A person's name, having a variable length, could be hashed to a single integer of bounded size.

Main application

- Hash tables on the constant time

Cryptographic Hash Function

- Pre-image resistance हेट्सेट अट्टा रेजिया रेजिया रेजिया रेजिया रेजिया रेजिया
 - Given a hash value h it should be difficult to find any message m such that h = H(m). Y= h(x)
- - Given an input m_1 it should be difficult to find another input m_2 such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$. Creak such such that $m_1 \neq m_2$ and $H(m_1) = H(m_2)$.
 - This property is sometimes referred to as weak collision resistance.
- · Collision resistance うない そのえを スュースマ みのらし、 y をのないる
 - It should be difficult to find two different messages m_1 and m_2 such that $H(m_1) = H(m_2)$. Such a pair is called a cryptographic hash collision.
 - This property is sometimes referred to as strong collision resistance. It requires a hash value at least twice as long as that required for preimage-resistance; otherwise collisions may be found by a birthday attack.

Birthday Attack

Birthday problem

मिस्टियम् प्रभारत्याम

- In probability theory, the birthday problem or birthday paradox concerns the probability that, in a set of randomly chosen people, some pair of them will have the same birthday.
- By the pigeonhole principle, the probability reaches 100% when the number of people reaches 366; where we do not consider February 29.
- The probability reaches 50% with 23 people.

• Birthday attack

50% इन्द्रेर रेप संदर्भ रेन्ट्रियल रेरे सुर

- Given a hash function $H(\cdot)$, the goal of the attack is to find a collision. If the hash function yields N different outputs with equal probability, we need to apply H to $\alpha \approx \sqrt{N}$ inputs to have at least one collision with a probability greater than 0.5. For example, $n = 2^{160}$ gives $\alpha \approx 2^{80}$.

Not input, Vo his to ! (oursion

Security Level

• For a hash code of length n, the level of effort required by the opponent is as follows.

Preimage resistant	2 ⁿ
Second preimage resistant	2 ⁿ
Collision resistant	2 ^{n/2}
256 bit 788 MAGON 645	256 개와 2256 강도 필요

AES -128 0125 6452502723:25664

• Note that digital signature schemes require the collision resistance.

Example: Variations with the same meaning

General Structure of Hash Function

• The hash algorithm involves repeated use of a compression function, f, that takes two inputs (an n-bit input from the previous step, called the chaining variable, and a b-bit block) and produces an n-bit output.

$$CV_0 = IV = initial n-bit value$$

 $CV_i = f(CV_{i-1}, Y_{i-1})$ where $1 \le i \le L$
 $H(M) = CV_L$

where the input to the hash function is a message M consisting of the blocks $Y_0, Y_1, ..., Y_{L-1}$.

General Structure of Hash Function

IV = Initial value

 CV_i = Chaining variable

 $Y_i = i$ th input block

f = Compression algorithm

L = Number of input blocks

n =Length of hash code

b =Length of input block

Cryptographic Hash Functions in Practice

• MD5

- 128-bit output.
- MD5 was introduced in 1991... collision attacks found in 2004...
 several extensions and improvements since then.
- However, MD5 is still widely deployed(!)
- SHA (Secure Hash Algorithm)
 - The Secure Hash Algorithm is a family of cryptographic hash functions published by the National Institute of Standards and Technology (NIST) as a U.S. Federal Information Processing Standard (FIPS).

SHA (Secure Hash Algorithm)

• SHA-0

A retronym applied to the original version of the 160-bit hash function published in 1993 under the name "SHA." It was withdrawn shortly after publication due to an undisclosed significant flaw and replaced by the slightly revised version SHA-1.

• SHA-1

A 160-bit hash function which resembles the earlier MD5 algorithm. This
was designed by the NSA to be part of the Digital Signature Algorithm.
Cryptographic weaknesses were discovered in SHA-1, and the standard
was no longer approved for most cryptographic uses after 2010.

• SHA-2

 A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. There are also truncated versions of each standardized, known as SHA-224 and SHA-384.

• SHA-3

 A hash function formerly called Keccak, chosen in 2012 after a public competition. It supports variable output length (224, 256, 384, 512), and its internal structure differs significantly from the rest of the SHA family.

SHA-1/SHA-2 Parameters

Algorithm	Message Size	Block Size	Word Size	Message Digest Size
SHA-1	< 2 ⁶⁴	512	32	160
SHA-224	< 2 ⁶⁴	512	32	224
SHA-256	< 2 ⁶⁴	512	32	256
SHA-384	< 2 ¹²⁸	1024	64	384
SHA-512	< 2 ¹²⁸	1024	64	512
SHA-512/224	< 2 ¹²⁸	1024	64	224
SHA-512/256	< 2 ¹²⁸	1024	64	256

(All sizes are measured in bits.)

SHA-3 Parameters

Message Digest Size	224	256	384	512
Message Size	no maximum	no maximum	no maximum	no maximum
Block Size (bitrate r)	1152	1088	832	576
Word Size	64	64	64	64
Number of Rounds	24	24	24	24
Capacity c	448	512	768	1024
Collision Resistance	2^{112}	2^{128}	2^{192}	2^{256}
Second Preimage Resistance	2 ²²⁴	2^{256}	2 ³⁸⁴	2 ⁵¹²

DIAN HOIZ BEXIX BIRTHOUT OURSE ZION.

Cryptographic Hash Functions: Applications

Motivation

- Cryptographic hash values are sometimes called (digital) fingerprints.

Applications

- Verifying the integrity of files or messages
- Password files

File Hash Checking

Downloads

Here you find the current installation package of MAMP & MAMP PRO.

Components

Apache: 2.2.31 Nginx 1.11.0 MySQL: 5.6.34

PHP: 5.3.23 & 5.4.1 & 5.4.45 & 5.5.0 & 5.5.24 & 5.5.38 & 5.6.0 & 5.6.28 & 7.0.0 & 7.0.6 & 7.0.13 (for PHP 7: Windows 7 minimum with SP1 and Windows

Password Hashing

Salting passwords

 To make dictionary attacks less effective, each password may be augmented with a t-bit random string called a salt before applying H.