Math 74, Week 5

Tianshuang (Ethan) Qiu September 24, 2021

1 Mon Lec, 2a

Let the statement: "There is at most one parallel line to a given line l through a given point P." be statement A;

"If a line intersects one of two parallel lines, both of which are coplanar with the original line, then it also intersects the other." be statement B.

We first prove that $A \implies B$. Let $a \parallel b$, and c intersects a at point Q. Assume that statement B is false so c does not intersect b. Since it does not intersect and b and c are coplanar, we have $b \parallel c$. $a \parallel b$, and a, c interesect

at Q. However by A we know that there can be at most one line parallel to b at point Q. 4. Our assumption is incorrect, $A \Longrightarrow B$

Then we show that $B \implies A$. Let $a \parallel b$, and c intersects b at point P. Assume that A is incorrect, so we construct a' to also be parallel to b. We know that b must intersect a by B. We name this point P. Then since we have assumed that $a \parallel a'$, our line must also intersect a' at P. Consider $\angle SPT$, $\angle RQT$, and they must be equal because they $a \parallel b$, and corresponding angles are equal when the two lines are parallel. By the same logic we have $\angle SPT = \angle R'QT$.

Using the transitive property we can get $\angle RQT = \angle R'QT$. However this cannot be true because if the two angles are equal, a, a' overlap and they become the same line. 4

Our assumption is increoect and $B \implies A$. Therefore $A \iff B$. Q.E.D.

2 Mon Lec, 3a

2.1 Bisector \implies equal distance from legs

Let OC bisect $\angle AOB$, choose A, B such that $CA \perp OA, CB \perp OB$ Consider $\triangle AOC, BOC$, since $CA \perp OA, CB \perp OB$, we can write the following using the inner sum of triangles:

$$\angle ACO + \angle COA + 90^{\circ} = 190^{\circ}$$

$$\angle BCO + \angle COB + 90^{\circ} = 190^{\circ}$$

Since OC bisect $\angle AOB$, we have $\angle COA = \angle COB$, so $\angle ACO = \angle BCO$. Finally, since $\triangle AOC$, BOC share OC, we have $\triangle AOC \cong \triangle BOC$ (ASA congruency). Therefore CA = CB. Q.E.D.

2.2 Equal distance from legs \implies angle bisection

Let OC be a ray from O, choose point C and draw $CA \perp OA, CB \perp OB$. AC = BC

Consider $\triangle AOC$, BOC, since $CA \perp OA$, $CB \perp OB$, they are both right triangles. Using AC = BC, we have $\triangle AOC \cong \triangle BOC$ (HL right triangle congruency). Therefore $\angle COA = \angle COB$. Q.E.D.

- 3 Mon Dis, 1b
- 3.1
- 3.2

$$\prod_{i}^{n} = 2(1 - \frac{1}{n^2})$$

We examine $1 - 1/k^2$ and factor it into $\frac{k^2 - 1}{k^2} = \frac{(k+1)(k-1)}{k^2}$. Since k is incrementing by 1 in our series, we can cancle each term out. We can expand our series into

$$\frac{1 \times 3}{2^2} \frac{2 \times 4}{3^3} \dots \frac{(n-1)(n+1)}{n^2}$$
$$= \frac{1}{2} \frac{n+1}{n} = \frac{n+1}{2n}$$