5.1 Microwave Networks 'S' parameter and its properties

Module:5 Microwave Passive components

Course: BECE305L - Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:5 <u>Microwave Passive components</u> 6 hours

 Microwave Networks - ABCD, 'S' parameter and its properties. E-Plane Tee, H-Plane Tee, Magic Tee and Multi-hole directional coupler. Principle of Faraday rotation, isolator, circulator and phase shifter.

Source of the contents: Pozar

1. Need for Scattering matrix

- In a standing wave Direct measurement of voltages and currents for non-TEM lines are difficult.
- Measurements involve magnitude (obtained from Power) and phase of a wave in a given direction / of a standing wave.

1. Need for Scattering matrix

- In a standing wave Direct measurement of voltages and currents for non-TEM lines are difficult.
- Measurements involve magnitude (obtained from Power) and phase of a wave in a given direction / of a standing wave.
- Conventional impedance and admittance matrices that use the equivalent total voltages and currents become abstraction at high frequency networks.
- The ideas of incident, reflected and transmitted waves is used in Scattering matrix.

- A N port network: Scattering matrix provides complete description of the network as seen at its N ports.
- Scattering matrix: Relates voltage waves incident on the port to those reflected from the ports.

- A N port network: Scattering matrix provides complete description of the network as seen at its N ports.
- Scattering matrix: Relates voltage waves incident on the port to those reflected from the ports.
- S parameters may be computed for Some components and circuit through network analysis.

• .

- A N port network: Scattering matrix provides complete description of the network as seen at its N ports.
- Scattering matrix: Relates voltage waves incident on the port to those reflected from the ports.
- S parameters may be computed for Some components and circuit through network analysis.

• Otherwise, S parameters are measured using vector network

analyzer.

For a network with N ports

V_n⁺ amplitude of the voltage wave incident on port n

• V_n^- amplitude of the voltage wave

reflected from port n

- For a network with N ports
- V_n^+ amplitude of the voltage wave incident on port n
- V_n^- amplitude of the voltage wave reflected from port n

• S matrix

$$\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix} \begin{bmatrix} V_1^+ \\ V_2^+ \\ \vdots \\ V_n^+ \end{bmatrix}$$
$$[V^-] = [S][V^+]$$

$$= \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix} \begin{bmatrix} V_1^+ \\ V_2^+ \\ \vdots \\ V_n^+ \end{bmatrix}$$

$$[V^-] = [S][V^+]$$

$$= \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix} \begin{bmatrix} V_1^+ \\ V_2^+ \\ \vdots \\ V_n^+ \end{bmatrix}$$
$$\vdots$$
$$[V^-] = [S][V^+]$$

•
$$S_{ij} = \frac{V_i^-}{V_j^+} \Big|_{V_k^+ = 0 \text{ for } k \neq j}$$

• S_{ij} found by driving port j with incident wave of voltage V_j^+ and measuring the reflected wave amplitude V_i^- coming out of port i.

$$=\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix} \begin{bmatrix} V_1^+ \\ V_2^+ \\ \vdots \\ V_n^+ \end{bmatrix}$$

$$[V^-] = [S][V^+]$$

- S_{ij} found by driving port j with incident wave of voltage V_j^+ and measuring the reflected wave amplitude V_i^- coming out of port i
- Incident waves on all ports except j^{th} port are set to zero (All ports other than j^{th} port is terminated in matched loads to avoid reflections.

$$=\begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1N} \\ S_{21} & S_{22} & \dots & S_{2N} \\ S_{N1} & S_{N2} & \dots & S_{NN} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix}$$
$$[V^-] = [S][V^+]$$

$$V_{2,}^{+}I_{2}^{+}$$

$$V_{3,}^{+}I_{3}^{+}$$

$$V_{3,}^{-}I_{3}^{-}$$

$$V_{3,-}^{-}I_{3}^{-}$$

$$V_{4,}^{+}I_{4}^{+}$$

$$V_{4,}^{-}I_{4}^{-}$$

$$V_{4,}^{-}I_{4}^{-}$$

- $S_{ij} = \frac{V_i}{V_j^+} \Big|_{V_k^+=0 \quad for \ k \neq j}$
- S_{ij} found by driving port j with incident wave of voltage V_j^+ and measuring the reflected wave amplitude V_i^- coming out of port i
- Incident waves on all ports except j^{th} port are set to zero (All ports other than j^{th} port is terminated in matched loads to avoid reflections).
- S_{ii} is the <u>reflection coefficient</u> seen looking into port i when all ports are terminated at matched loads, and S_{ij}: <u>transmission coefficient</u> from port j to port i (all other ports are terminated in matched)

Find the scattering parameters of 3dBAttenuator (Matched load $Z_0 = 50\Omega$)

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 $\begin{array}{c|c}
8.56 \Omega & 8.56 \Omega \\
\hline
Port \\
1
\end{array}$ $\begin{array}{c}
141.8 \Omega & \rightleftharpoons \begin{array}{c}
Port \\
2
\end{array}$

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load)

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load)

$$S_{11} = \frac{V_1^-}{V_1^+} \bigg|_{V_2^+ = 0 \ (for \ k \neq j)} = \Gamma^{(1)} \bigg|_{V_2^+ = 0} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \bigg|_{Z_0 \ at \ port \ 2}$$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load)

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{V_2^+ = 0 \text{ (for } k \neq j)} = \Gamma^{(1)} \Big|_{V_2^+ = 0} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \Big|_{Z_0 \text{ at port } 2}$$

$$Z_{in}^{(1)} = 8.56 + [141.8 \parallel (8.56 + 50)] = 50\Omega \text{ so}$$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load)

$$S_{11} = \frac{V_1^-}{V_1^+} \Big|_{V_2^+ = 0 \text{ (for } k \neq j)} = \Gamma^{(1)} \Big|_{V_2^+ = 0} = \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \Big|_{Z_0 \text{ at port 2}}$$

$$Z_{in}^{(1)} = 8.56 + [141.8 \parallel (8.56 + 50)] = 50\Omega \text{ so } S_{11} = 0$$

Symmetric circuits : $S_{22} = 0$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

$$S_{21} = \frac{V_2^-}{V_1^+}\Big|_{V_2^+=0}$$
 (found by applying incident wave at port 1 : V_1^+ and outcoming wave at port 2 is V_2^-) which is the transmission coefficient from port 1 to 2.

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

$$S_{21} = \frac{V_2^-}{V_1^+}\Big|_{V_2^+=0}$$
 (found by applying incident wave at port 1 : V_1^+ and outcoming wave at port 2 is V_2^-) which is the **transmission coefficient from port 1 to 2**.

When 2 was terminated with $Z_0 = 50$, $V_1^- = 0$. $V_1^+ = V_1$ and hence $V_2^+ = 0$.

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

$$S_{21} = \frac{V_2^-}{V_1^+}\Big|_{V_2^+=0 \pmod{for k \neq j}}$$
 (found by applying incident wave at port 1 : V_1^+ and outcoming wave at port 2 is V_2^-) which is the **transmission coefficient from port 1 to 2**.

When 2 was terminated with $Z_0 = 50$, $V_1^- = 0$. $V_1^+ = V_1$ and hence $V_2^+ = 0$.

When voltage V_1 at port 1, using division twice -> $V_2^- = V_2$ as voltage across 50Ω at port 2:

$$V_2^- = V_2 =$$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

$$S_{21} = \frac{V_2^-}{V_1^+}\Big|_{V_2^+=0 \pmod{for k \neq j}}$$
 (found by applying incident wave at port 1 : V_1^+ and outcoming wave at port 2 is V_2^-) which is the transmission coefficient from port 1 to 2.

When 2 was terminated with $Z_0 = 50$, $V_1^- = 0$. $V_1^+ = V_1$ and hence $V_2^+ = 0$.

When voltage V_1 at port 1, using division twice -> $V_2^- = V_2$ as voltage across 50Ω at port 2:

$$V_2^- = V_2 = V_1 \left(\frac{(141.18 \parallel 58.56)}{(141.18 \parallel 58.56) + 8.56} \right) \left(\frac{50}{50 + 8.56} \right) = 0.707 V_1^+$$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

$$S_{21} = \frac{V_2^-}{V_1^+}\Big|_{V_2^+=0}$$
 (found by applying incident wave at port 1 : V_1^+ and outcoming wave at port 2 is V_2^-) which is the transmission coefficient from port 1 to 2.

When 2 was terminated with $Z_0 = 50$, $V_1^- = 0$. $V_1^+ = V_1$ and hence $V_2^+ = 0$.

When voltage V_1 at port 1, using division twice -> $V_2^- = V_2$ as voltage across 50Ω at port 2:

2:
$$V_{2}^{-} = V_{2} = V_{1} \left(\frac{(141.18 \parallel 58.56)}{(141.18 \parallel 58.56) + 8.56} \right) \left(\frac{50}{50 + 8.56} \right) = 0.707 V_{1}^{+}$$

$$S_{21} = \frac{V_{2}^{-}}{V_{1}^{+}} = 0.707$$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

With
$$S_{21} = 0.707$$
 $|S_{21}|^2 = 0.5 = \frac{1}{2}$

$$S_{21} = \frac{V_2^-}{V_1^+}$$
 $V_2^- = S_{21}V_1^+$

 8.56Ω

2. Scattering matrix

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

 8.56Ω

With
$$S_{21} = 0.707$$
 $|S_{21}|^2 = 0.5 = \frac{1}{2}$

If input power $\frac{|v_1^+|^2}{2Z_0}$, then

the output power is:

$$\frac{|V_2^-|^2}{2Z_0} =$$

 8.56Ω

2. Scattering matrix

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

Port
$$_{1}$$
 $\stackrel{>}{\Longrightarrow}$ $_{141.8 \,\Omega}$ $\stackrel{Port}{\rightleftharpoons}$ $_{2}$ $_{2}$ $_{2}$ $_{321} = \frac{V_{2}^{-}}{V_{1}^{+}}$ $V_{2}^{-} = S_{21}V_{1}^{+}$

 8.56Ω

With
$$S_{21} = 0.707$$
 $|S_{21}|^2 = 0.5 = \frac{1}{2}$

If input power $\frac{|V_1^+|^2}{2Z_0}$, then

the output power is:

$$\frac{|V_2^-|^2}{2Z_0} = \frac{|S_{21}V_1^+|^2}{2Z_0} = \frac{|S_{21}|^2|V_1^+|^2}{2Z_0} =$$

Find the scattering parameters of 3dB

Attenuator (Matched load $Z_0 = 50\Omega$)

 S_{11} is reflection coefficient seen at port 1 (port 2 is terminated at matched load) Symmetric circuits : $S_{22} = 0$

$$S_{21} = \frac{V_2^-}{V_1^+}$$
 $V_2^- = S_{21}V_1^+$

With
$$S_{21} = 0.707$$
 $|S_{21}|^2 = 0.5 = \frac{1}{2}$

If input power $\frac{|V_1^+|^2}{2Z_0}$, then

the output power is:

$$\frac{|V_2^-|^2}{2Z_0} = \frac{|S_{21}V_1^+|^2}{2Z_0} = \frac{|S_{21}|^2|V_1^+|^2}{2Z_0} = \frac{|V_1^+|^2}{4Z_0} = \frac{|V_1^+|^2}{4Z_0} = \frac{|V_1^+|^2}{4Z_0}$$

• Reciprocal: Not containing active devices or non reciprocal media (ferrites, plasmas, etc)

$$Z_{ij} = Z_{ji}$$
 and $Y_{ij} = Y_{ji}$ (symmetric matrices)

• Lossless: Z_{ij} or Y_{ij} are purely imaginary

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

•
$$V_n + I_n = 2V_n^+$$

$$V_n^+ = \frac{1}{2}(V_n + I_n)$$

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

- $V_n + I_n = 2V_n^+$
- $V_n^+ = \frac{1}{2}(V_n + I_n)$
- $[V^+] = \frac{1}{2}([V] + [I])$ = $\frac{1}{2}([Z] + [U])[I]$

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

•
$$V_n + I_n = 2V_n^+$$

•
$$V_n^+ = \frac{1}{2}(V_n + I_n)$$

•
$$[V^+] = \frac{1}{2}([V] + [I])$$

= $\frac{1}{2}([Z] + [U])[I]$

•
$$V_n - I_n = 2V_n^-$$

• $V_n^- = \frac{1}{2}(V_n - I_n)$

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

•
$$V_n + I_n = 2V_n^+$$

•
$$V_n^+ = \frac{1}{2}(V_n + I_n)$$

•
$$[V^+] = \frac{1}{2}([V] + [I])$$

= $\frac{1}{2}([Z] + [U])[I]$

•
$$V_n - I_n = 2V_n^-$$

$$\bullet V_n^- = \frac{1}{2}(V_n - I_n)$$

•
$$[V^{-}] = \frac{1}{2}([V] - [I])$$

= $\frac{1}{2}([Z] - [U])[I]$

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

•
$$V_n + I_n = 2V_n^+$$

•
$$V_n^+ = \frac{1}{2}(V_n + I_n)$$

•
$$[V^+] = \frac{1}{2}([V] + [I])$$

= $\frac{1}{2}([Z] + [U])[I]$

•
$$[V^-][V^+]^{-1} = ([Z] - [U])([Z] + [U])^{-1}$$

•
$$V_n - I_n = 2V_n^-$$

$$\bullet V_n^- = \frac{1}{2}(V_n - I_n)$$

•
$$[V^{-}] = \frac{1}{2}([V] - [I])$$

= $\frac{1}{2}([Z] - [U])[I]$

$$V_n = V_n^+ + V_n^-$$
 and $I_n = I_n^+ - I_n^- = V_n^+ - V_n^-$

•
$$V_n + I_n = 2V_n^+$$

•
$$V_n^+ = \frac{1}{2}(V_n + I_n)$$

•
$$[V^+] = \frac{1}{2}([V] + [I])$$

= $\frac{1}{2}([Z] + [U])[I]$

•
$$V_n - I_n = 2V_n^-$$

$$V_n^- = \frac{1}{2}(V_n - I_n)$$

•
$$[V^{-}] = \frac{1}{2}([V] - [I])$$

= $\frac{1}{2}([Z] - [U])[I]$

•
$$[V^-][V^+]^{-1} = ([Z] - [U])([Z] + [U])^{-1}$$

•
$$[S] = ([Z] - [U])([Z] + [U])^{-1}$$

•
$$[S] = ([Z] - [U])([Z] + [U])^{-1}$$

• Taking the transpose $[S]^t = \{([Z] - [U])([Z] + [U])^{-1}\}^t$ =

- $[S] = ([Z] [U])([Z] + [U])^{-1}$
- Taking the transpose

$$[S]^{t} = \{([Z] - [U])([Z] + [U])^{-1}\}^{t}$$

$$= \{([Z] + [U])^{-1}\}^{t} \{([Z] - [U])\}^{t}$$

$$=$$

- (AB)^T=B^TA^T
- $[U]^t = [U]$ and in reciprocal network $[Z]^t = [Z]$

- $[S] = ([Z] [U])([Z] + [U])^{-1}$
- Taking the transpose

$$[S]^{t} = \{([Z] - [U])([Z] + [U])^{-1}\}^{t}$$

$$= \{([Z] + [U])^{-1}\}^{t}\{([Z] - [U])\}^{t}$$

$$= ([Z] + [U])^{-1}([Z] - [U])$$

- (AB)^T=B^TA^T
- $[U]^t = [U]$ and in reciprocal network $[Z]^t = [Z]$

- $[S] = ([Z] [U])([Z] + [U])^{-1}$
- Taking the transpose

$$[S]^{t} = \{([Z] - [U])([Z] + [U])^{-1}\}^{t}$$

$$= \{([Z] + [U])^{-1}\}^{t} \{([Z] - [U])\}^{t}$$

$$= ([Z] + [U])^{-1}([Z] - [U])$$

- (AB)^T=B^TA^T
- $[U]^t = [U]$ and in reciprocal network $[Z]^t = [Z]$
- Which means: For reciprocal networks, $[S] = [S]^t$ the scattering matrix is symmetric

- For a Lossless network, no real power can be delivered to the network.
- If characteristic impedances of all ports are identical and 1

- For a Lossless network, no real power can be delivered to the network.
- If characteristic impedances of all ports are identical and 1
- Average power delivered to the network:

$$P_{avg} = \frac{1}{2} Re\{ [V]^t [I]^* \} = \frac{1}{2} Re\{ ([V^+]^t + [V^-]^t) ([V^+]^* - [V^-]^*) \}$$

- For a Lossless network, no real power can be delivered to the network.
- If characteristic impedances of all ports are identical and 1
- Average power delivered to the network:

$$P_{avg} = \frac{1}{2} Re\{[V]^t[I]^*\} = \frac{1}{2} Re\{([V^+]^t + [V^-]^t)([V^+]^* - [V^-]^*)\}$$

$$= \frac{1}{2} Re\{[V^+]^t[V^+]^* - [V^+]^t[V^-]^* + [V^-]^t[V^+]^* - [V^-]^t[V^-]^*\}$$

• =

- For a Lossless network, no real power can be delivered to the network.
- If characteristic impedances of all ports are identical and 1
- Average power delivered to the network:

$$P_{avg} = \frac{1}{2}Re\{[V]^{t}[I]^{*}\} = \frac{1}{2}Re\{([V^{+}]^{t} + [V^{-}]^{t})([V^{+}]^{*} - [V^{-}]^{*})\}$$

$$= \frac{1}{2}Re\{[V^{+}]^{t}[V^{+}]^{*} - [V^{+}]^{t}[V^{-}]^{*} + [V^{-}]^{t}[V^{+}]^{*} - [V^{-}]^{t}[V^{-}]^{*}\}$$

$$= \frac{1}{2}Re\{[V^{+}]^{t}[V^{+}]^{*} - [V^{-}]^{t}[V^{-}]^{*}\}$$

$$NOTE: -[V^{+}]^{t}[V^{-}]^{*} + [V^{-}]^{t}[V^{+}]^{*} = A - A^{*} = purely imnaginary$$

$$= Power delivered is zero$$

- For a Lossless network, no real power can be delivered to the network.
- If characteristic impedances of all ports are identical and 1
- Average power delivered to the network:

$$P_{avg} = \frac{1}{2} Re\{[V]^t[I]^*\} = \frac{1}{2} Re\{([V^+]^t + [V^-]^t)([V^+]^* - [V^-]^*)\}$$

$$= \frac{1}{2} Re\{[V^+]^t[V^+]^* - [V^+]^t[V^-]^* + [V^-]^t[V^+]^* - [V^-]^t[V^-]^*\}$$

$$= \frac{1}{2} Re\{[V^+]^t[V^+]^* - [V^-]^t[V^-]^*\}$$

$$-[V^+]^t[V^-]^* + [V^-]^t[V^+]^* = A - A^* = Purely imnaginary = Power delivered is zero$$

$$\bullet \frac{1}{2} Re\{[V^+]^t[V^+]^*\}: Power incident$$

$$\bullet \frac{1}{2} Re\{[V^-]^t[V^-]^*\}: Reflected power*$$

- For a Lossless network, no real power can be delivered to the network.
- $\frac{1}{2}Re\{[V^+]^t[V^+]^*\}$: Power incident
- $\frac{1}{2}Re\{[V^-]^t[V^-]^*\}$: Reflected power is equal to incident

- For a Lossless network, no real power can be delivered to the network.
- $\frac{1}{2}Re\{[V^+]^t[V^+]^*\}$: Power incident
- $\frac{1}{2}Re\{[V^-]^t[V^-]^*\}$: Reflected power is equal to incident
- $[V^+]^t[V^+]^* = [V^-]^t[V^-]^*$ but $[V^-] = [S][V^+]^t[V^+]^t[V^+]^* = \{[S][V^+]\}^t\{[S][V^+]\}^*$

 For a Lossless network, no real power can be delivered to the network.

```
• \frac{1}{2}Re\{[V^+]^t[V^+]^*\}: Power incident
```

• $\frac{1}{2}Re\{[V^-]^t[V^-]^*\}$: Reflected power is equal to incident

```
• [V^+]^t[V^+]^* = [V^-]^t[V^-]^* but [V^-] = [S][V^+]

[V^+]^t[V^+]^* = \{[S][V^+]\}^t\{[S][V^+]\}^* (AB)<sup>T</sup>=B<sup>T</sup>A<sup>T</sup>

= [V^+]^t[S]^t[S]^*[V^+]^*
```

- For a Lossless network, no real power can be delivered to the network.
- $\frac{1}{2}Re\{[V^+]^t[V^+]^*\}$: Power incident
- $\frac{1}{2}Re\{[V^-]^t[V^-]^*\}$: Reflected power is equal to incident

•
$$[V^+]^t[V^+]^* = [V^-]^t[V^-]^*$$
 but $[V^-] = [S][V^+]$
 $[V^+]^t[V^+]^* = \{[S][V^+]\}^t\{[S][V^+]\}^*$ (AB)^T=B^TA^T
 $= [V^+]^t[S]^t[S]^*[V^+]^*$

For non zero $[V^+]$,

$$[S]^{t}[S]^{*} = [U]$$
 unitary matrix or $[S]^{*} = \{[S]^{t}\}^{-1}$

$$[S]^{t}[S]^{*} = [U]$$
 unitary matrix or $[S]^{*} = \{[S]^{t}\}^{-1}$

• The matrix can be written in summation form

$$\sum_{k=1}^{N} S_{ki} S_{kj}^* = \delta_{ij} \text{ for all } i,j$$

$$[S]^{t}[S]^{*} = [U]$$
 unitary matrix or $[S]^{*} = \{[S]^{t}\}^{-1}$

The matrix can be written in summation form

$$\sum_{k=1}^{N} S_{ki} S_{kj}^* = \delta_{ij} \text{ for all } i,j$$

 $\sum_{k=1}^{S} S_{ki} S_{kj}^* = \delta_{ij} \ for \ all \ i,j$ $\bullet \ \delta_{ij} = \begin{cases} 1 \ \text{if} \ i=j \\ 0 \ if \ i\neq j \end{cases} \ \text{is the Kronecker delta symbol}$

$$[S]^t[S]^* = [U]$$
 unitary matrix or $[S]^* = \{[S]^t\}^{-1}$

• The matrix can be written in summation form

$$\sum_{k=1}^{N} S_{ki} S_{kj}^* = \delta_{ij} \text{ for all } i,j$$

- $\delta_{ij} = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$ is the Kronecker delta symbol
- At i = j, $\sum_{k=1}^{N} S_{ki} S_{ki}^* = 1$ Dot product of any column of [S] with the conjugate of the same column is unity.

$$[S]^t[S]^* = [U]$$
 unitary matrix or $[S]^* = \{[S]^t\}^{-1}$

The matrix can be written in summation form

$$\sum_{k=1}^{N} S_{ki} S_{kj}^* = \delta_{ij} \text{ for all } i,j$$

- $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ is the Kronecker delta symbol
- At i = j, $\sum_{k=1}^{N} S_{ki} S_{ki}^* = 1$ At $i \neq j$, $\sum_{k=1}^{N} S_{ki} S_{kj}^* = 0$

Dot product of any column of [S] with the conjugate of the same column is unity.

Dot product of any column of [S] with the conjugate of a different column is zero (columns are orthonormal).

$$[S]^t[S]^* = [U]$$
 unitary matrix or $[S]^* = \{[S]^t\}^{-1}$

• The matrix can be written in summation form

$$\sum_{k=1}^{N} S_{ki} S_{kj}^* = \delta_{ij} \text{ for all } i,j$$

- $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ is the Kronecker delta symbol
- At i = j, $\sum_{k=1}^{N} S_{ki} S_{ki}^* = 1$
- At $i \neq j$, $\sum_{k=1}^{N} S_{ki} S_{kj}^* = 0$
- Also: $[S][S]^{*t} = [U]$

Dot product of any column of [S] with the **conjugate of the** same column is unity.

Dot product of any column of [S] with the **conjugate of a** different column is zero (columns are orthonormal).

6.1 Application of Scattering matrix

A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

To find: a) If network is reciprocal and lossless

- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- a) Condition for reciprocal matrix: S matrix should be symmetric.
- [S] matrix is not symmetric. Hence, it is not reciprocal

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- a) Condition for reciprocal matrix: S matrix should be symmetric.
- [S] matrix is not symmetric. Hence, it is not reciprocal
- Condition for Lossless network: $|S_{11}|^2 + |S_{21}|^2 = 1$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- a) Condition for reciprocal matrix: S matrix should be symmetric.
- [S] matrix is not symmetric. Hence, it is not reciprocal

Condition for Lossless network: $|S_{11}|^2 + |S_{21}|^2 = 1$

$$|S_{11}|^2 + |S_{21}|^2 = (0.15)^2 + (0.85)^2 = 0.745 \neq 0$$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- a) Condition for reciprocal matrix: S matrix should be symmetric.
- [S] matrix is not symmetric. Hence, it is not reciprocal

Condition for Lossless network:
$$|S_{11}|^2 + |S_{21}|^2 = 1$$

$$|S_{11}|^2 + |S_{21}|^2 = (0.15)^2 + (0.85)^2 = 0.745 \neq 0$$

This means that the network is lossy (NOT Lossless)

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- a) Condition for reciprocal matrix: S matrix should be symmetric.
- [S] matrix is not symmetric. Hence, it is not reciprocal

Condition for Lossless network: $|S_{11}|^2 + |S_{21}|^2 = 1$

$$|S_{11}|^2 + |S_{21}|^2 = (0.15)^2 + (0.85)^2 = 0.745 \neq 0$$

This means that the network is lossy (NOT Lossless)

- b) When port 2 is terminated to matched load, Reflection coefficient seen at port 1 $\Gamma = S_{11} = (0.15)$
- Return loss=

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- a) Condition for reciprocal matrix: S matrix should be symmetric.
- [S] matrix is not symmetric. Hence, it is not reciprocal

Condition for Lossless network: $|S_{11}|^2 + |S_{21}|^2 = 1$

$$|S_{11}|^2 + |S_{21}|^2 = (0.15)^2 + (0.85)^2 = 0.745 \neq 0$$

This means that the network is lossy (NOT Lossless)

- b) When port 2 is terminated to matched load, Reflection coefficient seen at port 1 $\Gamma = S_{11} = (0.15)$
- Return loss= $-20 \log_{10} |\Gamma| = -20 \log_{10} 0.15 = 16.5 dB$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$V_1^- = S_{11}V_1^+ + S_{12}V_2^+ = S_{11}V_1^+ - S_{12}V_2^-$$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$V_1^- = S_{11}V_1^+ + S_{12}V_2^+ = S_{11}V_1^+ - S_{12}V_2^-$$

$$V_2^- = S_{21}V_1^+ + S_{22}V_2^+ = S_{21}V_1^+ - S_{22}V_2^-$$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$V_1^- = S_{11}V_1^+ + S_{12}V_2^+ = S_{11}V_1^+ - S_{12}V_2^-$$

$$V_2^- = S_{21}V_1^+ + S_{22}V_2^+ = S_{21}V_1^+ - S_{22}V_2^-$$

$$V_2^-(1+S_{22}) = S_{21}V_1^+ : V_2^- = \frac{S_{21}}{1+S_{22}}V_1^+$$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

based on the definition of S matrix

$$V_1^- = S_{11}V_1^+ + S_{12}V_2^+ = S_{11}V_1^+ - S_{12}V_2^-$$

$$V_2^- = S_{21}V_1^+ + S_{22}V_2^+ = S_{21}V_1^+ - S_{22}V_2^-$$

$$V_2^-(1+S_{22}) = S_{21}V_1^+ : V_2^- = \frac{S_{21}}{1+S_{22}}V_1^+$$

 $V_2^-(1+S_{22}) = S_{21}V_1^+$: $V_2^- = \frac{S_{21}}{1+S_{22}}V_1^+$ Dividing first equation by V_1^+ : $\frac{V_1^-}{V_1^+} = S_{11} - S_{12}\left(\frac{V_2^-}{V_1^+}\right) =$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$V_1^- = S_{11}V_1^+ + S_{12}V_2^+ = S_{11}V_1^+ - S_{12}V_2^-$$

$$V_2^- = S_{21}V_1^+ + S_{22}V_2^+ = S_{21}V_1^+ - S_{22}V_2^-$$

$$V_2^-(1+S_{22}) = S_{21}V_1^+ \qquad : V_2^- = \frac{S_{21}}{1+S_{22}}V_1^+$$
 Dividing first equation by V_1^+ : $\frac{V_1^-}{V_1^+} = S_{11} - S_{12}\left(\frac{V_2^-}{V_1^+}\right) = S_{11} - S_{12}\frac{S_{21}}{1+S_{22}} = \Gamma$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$\Gamma = S_{11} - S_{12} \frac{S_{21}}{1 + S_{22}} = 0.15 - \frac{0.85 \angle 45^{\circ} * 0.85 \angle -45^{\circ}}{0.2 \angle 0^{\circ}} = -0.452$$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$\Gamma = S_{11} - S_{12} \frac{S_{21}}{1 + S_{22}} = 0.15 - \frac{0.85 \angle 45^{\circ} * 0.85 \angle -45^{\circ}}{0.2 \angle 0^{\circ}} = -0.452$$

Return loss = $-20 \log_{10} |\Gamma| = 6.9 dB$

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$\Gamma = S_{11} - S_{12} \frac{S_{21}}{1 + S_{22}} = 0.15 - \frac{0.85 \angle 45^{\circ} * 0.85 \angle -45^{\circ}}{0.2 \angle 0^{\circ}} = -0.452$$

Return loss = $-20 \log_{10} |\Gamma| = 6.9 dB$

Reflection coefficient at port n is not equal to S_{nn} unless all ports are matched.

- 6.1 To find: a) If network is reciprocal and lossless
- b) If port 2 is terminated with matched load, find return loss at port 1.
- c) If port 2 is terminated with short ckt, find the return loss at port 1
- A two port network

$$[S] = \begin{bmatrix} 0.15 \angle 0^{\circ} & 0.85 \angle -45^{\circ} \\ 0.85 \angle 45^{\circ} & 0.2 \angle 0^{\circ} \end{bmatrix}$$

$$\Gamma = S_{11} - S_{12} \frac{S_{21}}{1 + S_{22}} = 0.15 - \frac{0.85 \angle 45^{\circ} * 0.85 \angle -45^{\circ}}{0.2 \angle 0^{\circ}} = -0.452$$

Return loss = $-20 \log_{10} |\Gamma| = 6.9 dB$

Reflection coefficient at port n is not equal to S_{nn} unless all ports are matched.

Similarly transmission coefficient from port m to port n is not equal to S_{nm} unless all other ports are matched.

7. Shift in reference plane

 S parameters – Relate incident and reflected amplitudes from network(magnitude and phase) of traveling waves: Phase reference planes must be specified for each network

- S parameters Relate incident and reflected amplitudes from network(magnitude and phase) of traveling waves: Phase reference planes must be specified for each network
- To show: Effect of moving reference planes from original locations on scattering parameters

- S parameters Relate incident and reflected amplitudes from network(magnitude and phase) of traveling waves: Phase reference planes must be specified for each network
- To show: Effect of moving reference planes from original locations on scattering parameters
- N port network Original termination planes at $z_n = 0$ for n th port.
- S matrix [*S*]

- S parameters Relate incident and reflected amplitudes from network(magnitude and phase) of traveling waves: Phase reference planes must be specified for each network
- To show: Effect of moving reference planes from original locations on scattering parameters
- N port network Original termination planes at $z_n = 0$ for n th port.
- S matrix [*S*]
- Consider reference planes at $z_n = l_n$ for nth port.
 - > New scattering matrix is formed [S']

• $[V^-] = [S][V^+]$ Original terminal planes at $z_n = 0$ $[V'^-] = [S'][V'^+]$ new terminal planes at $z_n = l_n$

- $[V^-] = [S][V^+]$ Original terminal planes at $z_n = 0$
 - $[V'^{-}] = [S'][V'^{+}]$ new terminal planes at $z_n = l_n$
- Lossless transmission line

$$V_n^{\prime +} = V_n^+ e^{j\theta_n}$$

- $[V^-] = [S][V^+]$ Original terminal planes at $z_n = 0$ $[V'^-] = [S'][V'^+]$ new terminal planes at $z_n = l_n$
- Lossless transmission line ${V_n'}^+ = V_n^+ e^{j\theta_n}$

Port 1

N-port

network

[S], [S']

 $z_1 = 0$

• $\theta_n = \beta_n l_n$ is electrical length of outward shift of reference plane at port n.

- Port 1

 - N-port network
 - [S], [S']

- $[V^-] = [S][V^+]$ Original terminal planes at $z_n = 0$ $[V'^-] = [S'][V'^+]$ new terminal planes at $z_n = l_n$
- Lossless transmission line

$$V_n^{\prime +} = V_n^+ e^{j\theta_n}$$

$$V_n^{\prime -} = V_n^- e^{-j\theta_n}$$
 $V_n^{\prime -} \leftarrow V_n^{\prime -}$

- $\theta_n = \beta_n l_n$ is electrical length of outward shift of reference plane at port
- $\bullet \begin{bmatrix} e^{j\theta_1} & & & 0 \\ & e^{j\theta_2} & & \\ & & \cdots & \\ 0 & & e^{j\theta_n} \end{bmatrix} [V'^-] = [S] \begin{bmatrix} e^{-j\theta_1} & & & 0 \\ & e^{-j\theta_2} & & \\ & & \cdots & \\ 0 & & & e^{-j\theta_n} \end{bmatrix} [V'^+]$
- Multiplying inverse of first matrix

- $[V^-] = [S][V^+]$ Original terminal planes at $z_n = 0$ $[V'^{-}] = [S'][V'^{+}]$ new terminal planes at $z_n = l_n$
- Lossless transmission line

$${V_n'}^+ = V_n^+ e^{j\theta_n}$$

$$V_n^{\prime -} = V_n^- e^{-j\theta_n}$$

Port 1

N-port

network

[S], [S']

- ${V_n'}^+ = V_n^+ e^{j\theta_n} \qquad \qquad V_n'^- = V_n^- e^{-j\theta_n} \qquad \qquad V_n''^- = V_n^- e^{-j\theta_n} \qquad V$
- $\bullet \begin{bmatrix} e^{j\theta_1} & & & 0 \\ & e^{j\theta_2} & & \\ & & \cdots & \\ & & & e^{j\theta_n} \end{bmatrix} [V'^-] = [S] \begin{bmatrix} e^{-j\theta_1} & & & 0 \\ & e^{-j\theta_2} & & \\ & & \cdots & \\ 0 & & & e^{-j\theta_n} \end{bmatrix} [V'^+]$
- Multiplying inverse of first matrix

•
$$[V'^{-}] = \begin{bmatrix} e^{-j\theta_1} & 0 \\ e^{-j\theta_2} & 0 \\ 0 & e^{-j\theta_n} \end{bmatrix} [S] \begin{bmatrix} e^{-j\theta_1} & 0 \\ e^{-j\theta_2} & 0 \\ 0 & e^{-j\theta_n} \end{bmatrix} [V'^{+}]$$

$$\begin{bmatrix} S \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} & & & 0 \\ & e^{-j\theta_2} & & \\ & & \cdots & \\ 0 & & e^{-j\theta_n} \end{bmatrix} \begin{bmatrix} V'^+ & & \\ & & e^{-j\theta_n} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{S}' \\ e^{-j\theta_1} \\ & e^{-j\theta_2} \\ & & \\ 0 \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} \\ & e^{-j\theta_2} \\ & & \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{S} \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} \\ & e^{-j\theta_2} \\ & & \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ & & \\ e^{-j\theta_1} \end{bmatrix} \begin{bmatrix} \mathbf{V} \\ & & \\ 0 \end{bmatrix}$$

•
$$S'_{nn} = e^{-2j\theta_n} S_{nn}$$

$$\begin{bmatrix} S' \\ e^{-j\theta_1} \\ & e^{-j\theta_2} \\ & & & \\ 0 \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} \\ & e^{-j\theta_2} \\ & & \\ 0 \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} \\ & & \\ 0 \end{bmatrix} \begin{bmatrix} V'^+ \\ & \\ V_1^+ \end{bmatrix}$$

- $S'_{nn} = e^{-2j\theta_n}S_{nn}$
- Phase of S_{nn} is shifted by twice the electrical length of the shift in terminal plane
- The wave travels twice over the length upon incident and reflected.

$$\begin{bmatrix} \mathbf{S}' \\ e^{-j\theta_1} \\ e^{-j\theta_2} \\ 0 \end{bmatrix} = \begin{bmatrix} e^{-j\theta_1} \\ e^{-j\theta_2} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{S} \end{bmatrix} \begin{bmatrix} e^{-j\theta_1} \\ e^{-j\theta_2} \\ 0 \end{bmatrix} \begin{bmatrix} \mathbf{V}'^+ \end{bmatrix} \begin{bmatrix} \mathbf{V}'^+ \end{bmatrix}$$

- $S'_{nn} = e^{-2j\theta_n} S_{nn}$
- Phase of S_{nn} is shifted by twice the electrical length of the shift in terminal plane
- The wave travels twice over the length upon incident and reflected.

This is similar to change in reflection coefficient due to shift in reference plane