SmartFusion2 SoC FPGA High Speed Serial and DDR Interfaces

User's Guide

Table of Contents

1	SERDESIF Block Functional Description SmartFusion2 SoC FPGA Serial Protocols Overview Clocking and Reset Configuration of SERDESIF I/O Signal Interface of SERDESIF SERDESIF Debug Interface	5 7 21 25
	Glossary	
2	PCI Express	
	PCIe Endpoint	
	PCIe System	
	SERDESIF System Registers for PCIe Mode	
	Using the PCle System	
	SmartFusion2 SoC FPGA PCIe Power Management	
	PCIe System – I/O Signal Interface	
	Appendix A: PCle Configuration Space	
	Glossary	127
3	XAUI	120
J	SERDESIF System Registers Configurations for XAUI Mode	
	Using the XAUI Protocol Mode	
	SmartFusion2 SoC FPGA XAUI – Timing Diagram	
	MDIO Register Map	
	SmartFusion2 SoC FPGA XAUI - I/O Signal Interface	
	Glossary	152
4	EPCS Interface	153
	Using EPCS Protocol Mode	158
	SmartFusion2 SoC FPGA EPCS Interface – Timing Diagram	
	SERDESIF System Registers Configurations for EPCS Mode	
	SmartFusion2 SoC FPGA EPCS Mode – I/O Signal Interface	
	Glossary	100
5	Serializer/Deserializer	169
	SERDES Functional Blocks	
	TX PLL and CDR PLL Operation	
	SERDES Pleak Posister	
	SERDES Block Register SERDESIF – I/O Signal Interface	
	Glossary	
	•	

Table of Contents

6	DDR Controller	235
	Address Mapping	235
7	MSS DDR Subsystem	237
	Introduction	237
	MDDR Subsystem Overview	238
	Functional Description	240
	MDDR Configurations	243
	DDR PHY	250
	Memory Initialization	252
	Data Flow Paths	253
	MDDR Memory Map	259
	DDR Memory Device Examples	262
	Register Interface	265
	Glossary	371
_	Esha's Davids Data Data Outrocators	070
8	Fabric Double Data Rate Subsystem	
	FDDR Subsystem Overview	
	FDDR Configuration	
	Use Case Scenario	
	Register Interface	
	Glossary	393
9	DDR Bridge	395
	Features	395
	DDR Bridges in SmartFusion2 SoC FPGA Devices	396
	Functional Description	398
	MSS DDR Bridge Configurations	404
	MDDR/FDDR DDR Bridge Configuration Steps	404
	SYSREG Control Registers	405
	DDR Bridge Control Registers in MDDR and FDDR	406
	Glossary	406
10	Soft Memory Controller Fabric Interface Controller	407
10	Introduction	
	Functional Block Diagram	
	Functional Description	
	SYSREG Control Register for SMC_FIC	
	SMC FIC Port List	
	Glossary	
Α	List of Changes	415
В	Product Support	<i>-</i> ⊿17
ט	Customer Service	
	Customer Technical Support Center	
	Technical Support	
	Website	
	Contacting the Customer Technical Support Center	
	ITAR Technical Support	

1 - SERDESIF Block

SmartFusion[®]2 system-on-chip (SoC) field programmable gate array (FPGA) high speed serial interface, also known as SERDESIF, integrates functionality to support multiple high speed serial protocols. The protocols supported in SmartFusion2 SoC FPGA devices are peripheral component interconnect express (PCI Express[®]), eXtended attachment unit interface (XAUI), and serial gigabit media independent interface (SGMII). In addition, any user defined high serial protocol implemented in the SmartFusion2 SoC FPGA fabric can access SERDES lanes through the external physical coding sublayer (EPCS) interface. The SERDESIF block can be configured to support single or multiple serial protocol modes of operation. In multiple serial protocol mode, two protocols can be implemented on the four physical lanes of the SERDESIF block.The SERDESIF block is connected to the FPGA fabric through an AXI/AHBL interface or EPCS interface.

Functional Description

SmartFusion2 SoC FPGA devices have two hard high-speed serial interface blocks (SERDESIF0 and SERDESIF1). These SERDESIF blocks interface with fabric, program control, and four SERDES differential I/O pads. The program control interface can not be accessed, so it is not described in this chapter. Figure 1-1 on page 6 shows the simplified view of the SmartFusion2 SoC FPGA SERDESIF block. Depending on the protocol implemented, the SERDESIF blocks allow AXI/AHB/APB/EPCS interface to the fabric. Each of these SERDESIF blocks instantiate the following blocks:

- SERDES: This block implements the physical media attachment layer (PMA) and physical coding sub-layer (PCS) of PCIe protocols. This PCS layer interface is compliant to the Intel PIPE 2.0 specification. It also implements the PMA calibration and control logic. The PCIe PCS functionality can be bypassed completely in order to use the SERDES lanes for protocols other than PCIe. This allows to use the PMA in various PHY modes and implement various protocols in the SmartFusion2 SoC FPGA device. Refer to the "Serializer/Deserializer" section on page 169 for more information on the SERDES block.
- PCIe system: This block implements the x1, x2, x4 lane PCIe endpoint (Regular and Reverse mode) with an AXI/AHB interface to the fabric. The SmartFusion2 SoC FPGA PCIe is compliant with the PCIe Base Specification 1.1 for Gen1 and PCIe Base Specification 2.0 for Gen1 or Gen2. Refer to the "PCI Express" section on page 59 for more information on the PCIe system block.
- XAUI Extender: This block is an XGMII extender to support the XAUI protocol through a soft IP core in the SmartFusion2 SoC FPGA fabric. Refer to the "XAUI" section on page 129 for more information.
- SERDESIF system register: The SERDESIF system registers control the SERDESIF module for single protocol or multi-protocol support implementation. These registers can be accessed through the 32-bit APB interface and the default values of these registers can be configured using Libero[®] System-on-Chip (SoC) software.

Using the SERDESIF blocks, SmartFusion2 SoC FPGA devices allow to implement the following high speed protocols:

- PCle
- XAUI protocol (10 GbE)
- SGMII
- User defined high speed protocols

Table 1-1 on page 7 lists the single protocol and multi-protocol implementations in the SERDESIF block, also known as PHY modes of operation.

Figure 1-1 • SmartFusion2 SoC FPGA SERDESIF Block

Table 1-1 • SERDESIF Block usages in Single-Mode and Multi-Modes Protocols

Single/Multi-Protocol	Protocol	Description
Single protocol	PCle	SERDESIF is configured to use PCIe x4, x2, and x1 link mode. The PCIe link can be configured in Regular or Reversed modes. In PCIe only mode, unused lanes are forced to RESET state and the Extender XAUI block is put in RESET state.
	XAUI	SERDESIF is configured to use all four lanes. In XAUI mode, all the lanes are used and the PCIe System is put in RESET state.
	SGMII	SERDESIF is configured to use lane3 (only) for SGMII purposes. In SGMII-only mode, lane0, lane1, and lane2 are not used and are forced to the RESET state. The PCIe System and XAUI blocks are put in the RESET state.
	EPCS	SERDESIF is configured to use all four lanes. In EPCS-only mode, any serial protocol can be run though the EPCS interface to fabric using the EPCS interface. The PCIe System and XAUI blocks are put in the RESET state.
Multi-protocol	PCIe + EPCS	The PCIe protocol can be run on a maximum of 2-serial physical lanes in Regular and Reverse modes. Lane0 and lane1 of SERDESIF can be used for PCIe. Lane2 and lane3 can be used for running user defined protocol through EPCS interface from fabric.
	PCIe + SGMII	The PCIe protocol can be run on a maximum of 2-serial physical lanes in Regular and Reverse modes. Lane0 and lane1 of SERDESIF can be used for PCIe. Lane3 can be used for running SGMII. In this mode, lane2 is not used.

SmartFusion2 SoC FPGA Serial Protocols Overview

The SERDESIF block supports implementing multiple high speed serial protocols. Although each of the serial protocols are unique, all of them are layered protocol stacks and the implementation can vary greatly from one layer to the next layer. Typically, the physical layer consists of fixed functionality that is common to multiple packet-based protocols, while the upper layers tend to be more customizable.

Figure 1-2 shows the functional partitioning of the physical and the upper layers of the high speed serial protocols.

Figure 1-2 • Serial Protocol Partitioning Layers

The advantage of being able to connect the FPGA logic and the SERDESIF blocks is that it allows multiple serial protocols in the SmartFusion2 SoC FPGA devices. Figure 1-3 shows implementation of PCIe, XAUI, and SGMII protocols using the SERDESIF block and FPGA fabric.

Figure 1-3 • Serial Protocol Using SERDESIF and FPGA Logic

The following sections briefly describe each of these serial protocols and their implementation in SmartFusion2 SoC FPGA devices using the SERDESIF block.

PCIe Endpoint

The SmartFusion2 SoC FPGA family supports PCIe endpoints. The PCIe endpoint supports PCIe Base Specification 1.1 for Gen1 and PCIe Base Specification 2.0 for Gen1 (2.5 bps) or Gen2 (5.0 bps) protocol with width of x1, x2 or x4. The application interface to the PCIe link is available through the FPGA and can be programmed to AXI or AHB master and slave interfaces.

Figure 1-4 • SERDESIF Configuration for PCle Protocol

Table 1-2 shows the possible options for implementing the PCIe link on four physical SERDES lanes. Refer to the "PCI Express" section on page 59 for details on PCIe protocol implementation in SmartFusion2 SoC FPGA devices.

Table 1-2 • Physical Interface Options for PCIe Endpoint in the SERDESIF Block

		PHYSICAL SERDES LANES/LOGICAL LANES - Mapping										
	Lan	ie0	Lar	ne1	La	ne2	La	ne3				
PHY-MODE	Protocol	Speed (bits per second)	Protocol	Speed (bits per second)	Protocol	Speed (bits per second)	Protocol	Speed (bits per second)				
Single Protocol	PCle	2.5 G	_	-	-	-	_	-				
(PCIe Link mode)	PCle	2.5 G	PCle	2.5 G	-	-	_	-				
	PCle	2.5 G	PCle	2.5 G	PCle	2.5 G	PCle	2.5 G				
	PCle	5 G	_	_	_	_	_	-				
	PCle	5 G	PCle	5 G	_	_	_	_				
	PCle	5 G	PCle	5 G	PCle	5 G	PCle	5 G				
Single Protocol	_	_	_	-	_	_	PCle	2.5 G				
(PCIe Link Reversed mode)	_	_	_	-	PCle	2.5 G	PCle	2.5 G				
	_	_	_	-	_	_	PCle	5 G				
	_	_	_	_	PCle	5 G	PCle	5 G				
Multi-Protocol	PCle	2.5 G	_	-	EPCS	_	EPCS*	_				
(PCIe Link mode)	PCle	2.5 G	PCle	2.5 G	EPCS*	_	EPCS	_				
	PCle	5 G	_	-	EPCS	_	EPCS	_				
	PCle	5 G	PCle	5 G	EPCS	_	EPCS*	_				
Multi-Protocol	-	_	PCle	2.5 G	EPCS	_	EPCS	_				
(PCIe Link Reversed mode)	PCle	2.5 G	PCle	2.5 G	EPCS	_	EPCS	_				
	-	_	PCle	5 G	EPCS	-	EPCS	_				
	PCle	5 G	PCle	5 G	EPCS	_	EPCS	_				

Note: * Lane3 EPCS interfaces are available in multi-protocol PHY mode and can be used for running SGMII protocols.

XAUI Protocol

The SERDES block in SERDESIF can be configured to support multiple serial protocols. The SERDES block can be configured to bypass the PCS functionality and connect to the XAUI extender block and use the 10 GbE (XAUI) protocol with a soft IP block in the FPGA.

Note: When the SERDESIF block is configured to support XAUI, it occupies all the four physical serial lanes and it does not support any other protocol.

Figure 1-5 • SERDESIF Configuration for XAUI Protocol

Table 1-3 shows the configuration bandwidth for using XAUI in four physical SERDES lanes. Refer to the "XAUI" section on page 129 for details on XAUI protocol implementation in SmartFusion2 SoC FPGA devices.

Table 1-3 • Bandwidth for Implementing XAUI in SERDESIF Block

	Lane0		La	ne1	La	ne2	Lane3		
XAUI Protocol	Protocol	Speed (bits per second)	Speed (bits per second)		Speed (bits per second)		Protocol Speed (bits per second)		
Single Protocol PHY mode	XAUI	3.125 G	XAUI	3.125 G	XAUI	3.125 G	XAUI	3.125 G	

SGMII Protocol

The SGMII protocol can be implemented in Single/Multiple-Protocol mode using the MAC block in the microcontroller subsystem (MSS). In Single Protocol mode, the SGMII protocol can be implemented using lane3 of the EPCS interface. Lane3 of the EPCS interface needs to be connected to the MSS ethernet MAC through the CoreTBItoEPCS IP core block in the FPGA fabric.CoreTBItoEPCS appears between TBI (Ten Bit Interface) and EPCS (External PCS). It has a Ten Bit transmit/receive interface on TBI side and 20-bit transmit/receive interface on EPCS side. It will receive TBI data from MAC block and transmit it towards the EPCS. It will also receive EPCS data and transmit it towards TBI.

In Multi-protocol mode, lane0 and lane1 of the SERDESIF block can be used for the PCIe protocol. Table 1-4 shows the various options available for implementing SGMII in the SERDESIF block.

Figure 1-6 • SERDESIF Configuration for SGMII Protocol

Table 1-4 shows the various options for implementing SGMII protocol.

Table 1-4 • Various Options for Implementing SGMII in the SERDESIF Block

	Lan	e0	Laı	ne1	Lai	ne2	Lane3		
SGMII Protocol	Protocol	Speed (bits per second)							
Single Protocol PHY mode	-	_	_	_	_	_	SGMII	1.25 G	
Multi-Protocol PHY mode	PCle	2.5 G	_	_	_	_	SGMII	1.25 G	
(PCIe Link Non-Reversed mode)	PCle	2.5 G	PCle	2.5 G	_	_	SGMII	1.25 G	
	PCle	5 G	_	_	_	_	SGMII	1.25 G	
	PCle	5 G	PCle	5 G	_	_	SGMII	1.25 G	
Multi-Protocol PHY mode	_	_	PCle	2.5 G	_	_	SGMII	1.25 G	
(PCIe Link Reversed mode)	PCle	2.5 G	PCle	2.5 G	_	_	SGMII	1.25 G	
	_	_	PCle	5 G	_	_	SGMII	1.25 G	
	PCle	5 G	PCle	5 G	_	-	SGMII	1.25 G	

EPCS Protocol

By using the EPCS interface, any user defined serial protocol can be implemented in the SmartFusion2 SoC FPGA family. The SERDESIF block can be configured to bypass the embedded PCS logic in the SERDES block and expose the EPCS interface to the fabric. The user-defined IP block in the FPGA fabric can be connected to this EPCS interface.

Figure 1-7 • SERDESIF Configuration for EPCS Protocol

Refer to the "EPCS Interface" section on page 153 for more information on EPCS implementation in SmartFusion2 SoC FPGA families.

In summary, the four SERDES physical lanes can be configured to run different serial protocols, resulting in different modes of operation. Table 1-5 summarizes the various modes of operation of the SERDESIF block.

Table 1-5 • Various Serial Protocol Implementation SmartFusion2 SoC FPGA Devices

			PHY Physi	cal Lanes			
		Lane0	Lane1	Lane2	Lane3	PHY	
Serial Protocol	Modes	PHY Log	gical Lanes	Vs Logica	l Lanes	Mode	
PCIe protocol only mode	PCIe (x4)	PCIe Lane0	PCle Lane1	PCIe Lane2	PCle Lane3	M0	
	PCIe (x2)	PCIe Lane0	PCle Lane1	-	-	M1	
	PCle (x1)	PCIe Lane0	_1	-	_	M2	
	PCIe Reversed mode (x4)	PCle Lane3	PCle Lane2	PCle Lane1	PCIe Lane0	М3	
	PCIe Reversed mode (x2)	_	-	PCle Lane1	PCIe Lane0	M4	
	PCIe Reversed mode (x1)	_	_	-	PCIe-0	M5	
	PCIe Reversed mode (x2)	PCIe Lane01	PCIe Lane0	-	_	M6	
	PCIe Reversed mode (x1)	_	PCIe Lane0	-	-	M7	
XAUI only	XAUI (x4 lane)	XAUI-0	XAUI-1	XAUI-2	XAUI-3	M8	
SGMII only	_	_	_	_	SGMII	M9	
EPCS only	All lanes are used for user defined protocol	EPCS	EPCS	EPCS	EPCS	M10	
Multi-Protocol (PCIe and EPCS) (SGMII or EPCS can be	PCIe (x2)	PCle Lane0	PCIe Lane01	EPCS	EPCS	M11	
supported on lane2 and lane3)	PCle (x1)	PCIe Lane0	_1	EPCS	EPCS	M12	
	PCIe Reversed mode (x2)	PCIe Lane01	PCIe Lane0	EPCS	EPCS	M13	
	PCIe Reversed mode (x1)	_	PCIe Lane0	EPCS	EPCS	M14	

Notes:

- 1. Lane Tx-clk is used for lane0 for PCle protocol purposes.
- 2. In multi-protocol mode, EPCS is available only on lane2 and lane3.

Serial Protocols Setting Using the SERDESIF System Registers

The SERDESIF is configured to support various modes of operation. This configuration of the protocols is through the SERDESIF system registers. These registers are configured using the APB interface. To facilitate the configuration a GUI in Libero SoC is provided.

Table 1-6 • PCle Mode Settings Using the SERDESIF System Register

SERDESIF System APB	Description
Registers	Description
CONFIG_PHY_MODE[15:12]	For each lane, this signal selects the protocol default settings which will set the reset value of the register space.
	CONFIG_PHY_MODE [15:12] - Defines lanelane3 settings
	0000: PCle mode lane3
	0001: XAUI ¹ mode lane3
	0010: EPCS ² (SGMII ³) mode lane3
	0011: EPCS (2.5 GHz) mode lane3
	0100: EPCS (1.25 GHz) mode lane3
	0101: EPCS (undefined) mode lane3
	1111: SERDES PHY lane3 is off
CONFIG_PHY_MODE[11:8]	CONFIG_PHY_MODE [11:8] - Defines lane2 settings
	0000: PCIe mode lane2
	0001: XAUI mode lane2
	0011: EPCS (2.5 GHz) mode lane2
	0100: EPCS (1.25 GHz) mode lane2
	0101: EPCS (undefined) mode lane2
	1111: SERDES PHY lane2 is off
CONFIG_PHY_MODE[7:4]	CONFIG_PHY_MODE [7:4] - Defines lane1 settings
	0000: PCle mode lane1
	0001: XAUI mode lane1
	0011: EPCS (2.5 GHz) mode lane1
	0100: EPCS (1.25 GHz) mode lane1
	0101: EPCS (undefined) mode lane1
	1111: SERDES PHY lane1 is off
CONFIG_PHY_MODE[3:0]	CONFIG_PHY_MODE [3:0] - Defines lane0 settings
	0000: PCle mode lane0
	0001: XAUI mode lane0
	0011: EPCS (2.5 GHz) mode lane0
	0100: EPCS (1.25 GHz) mode lane0
	0101: EPCS (undefined) mode lane0
	1111: SERDES PHY lane0 is off

Notes:

- 1. XAUI = 10 Gbps attachment unit interface.
- 2. EPCS = External physical coding sub-layer
- 3. SGMII = Serial Gigabit Media Independent Interface

Table 1-6 • PCle Mode Settings Using the SERDESIF System Register (continued)

SERDESIF System APB Registers	Description
CONFIG_EPCS_SEL[3:0]	For each lane, one bit of this signal defines whether the external PCS interface is used or the PCIe PCS is enabled:
	0: PCle mode 1: External PCS mode
	CONFIG_EPCS_SEL [3]: External PCS selection associated with lane3
	CONFIG_EPCS_SEL [2]: External PCS selection associated with lane2
	CONFIG_EPCS_SEL [1]: External PCS selection associated with lane1
	CONFIG_EPCS_SEL [0]: External PCS selection associated with lane0
CONFIG_LINK2LANE[3:0]	This signal is used in PCIe mode to select the association of lane to link. The four bits refer to four lanes.

Notes:

- 1. XAUI = 10 Gbps attachment unit interface.
- 2. EPCS = External physical coding sub-layer
- 3. SGMII = Serial Gigabit Media Independent Interface

Table 1-7 on page 18 describes the settings for the three SERDESIF system registers to force the SERDESIF block into a specific mode of operation. Refer to the "Configuration of SERDESIF" section on page 25 for the SERDESIF system registers description.

Table 1-7 • Implementing Protocols Using the SERDESIF System Registers

	CONFIG_PHY_MODE (4 Bits Per Lane)					CONFIG_EPCS_SEL (1 Bit Per Lane)				CONFIG_LINK2LANE (1 Bit Per Lane)			
Mode	Lane0	Lane1	Lane2	Lane3	Lane0	Lane1	Lane2	Lane3	Lane0	Lane1	Lane2	Lane3	
M0: PCIe-only mode (x4) nr-pcie-x4	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x01	0x1	0x1	0x1	
M1: PCIe-only mode (x2) nr-pcie-x2	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x0	
M2: PCIe-only mode (x1) nr-pcie-x1	0x0	0xF	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x0	0x0	0x0	
M3: PCIe-only mode with lane reverse (x4) r-pcie-x4	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	
M4: PCIe-only mode with Lane reverse (x2) r-pcie-x2	0xF	0xF	0x0	0x0	0x1	0x1	0x0	0x0	0x0	0x0	0x1	0x1	
M5: PCIe-only mode with Lane reverse (x1) r-pcie-x1	0xF	0xF	0xF	0x0	0x1	0x1	0x1	0x0	0x0	0x0	0x0	0x1	
M6; PCIe-only mode with Lane reverse (x2) r-pcie-x2	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x0	
M7: PCIe-only mode with Lane reverse (x1) r-pcie-x1	0xF	0x0	0xF	0xF	0x1	0x0	0x1	0x1	0x0	0x1	0x0	0x0	
M8: XAUI-only mode (x4) xaui-x4	0x1	0x1	0x1	0x1	0x1	0x1	0x1	0x1	0x0	0x0	0x0	0x0	
M9; XAUI-only mode (x4) SRIO-x4	0x3	0x3	0x3	0x3	0x1	0x1	0x1	0x1	0x0	0x0	0x0	0x0	
M10: EPCS-only mode (x4) EPCS-mode x4	0xF	0xF	0xF	0xF	0x1	0x1	0x1	0x1	0x0	0x0	0x0	0x0	

Table 1-7 • Implementing Protocols Using the SERDESIF System Registers (continued)

	CONFIG_PHY_MODE (4 Bits Per Lane)				CONFIG_EPCS_SEL (1 Bit Per Lane)				CONFIG_LINK2LANE (1 Bit Per Lane)			
Mode	Lane0	Lane1	Lane2	Lane3	Lane0	Lane1	Lane2	Lane3	Lane0	Lane1	Lane2	Lane3
M11: PCle-mode (x2) and EPCS (x2) nr-pcie-x2- epcs	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x0
M12: PCle-mode (x1) and EPCS (x2) nr-pcie-x1-epcs	0x0	0xF	0xF	0xF	0x0	0x1	0x1	0x1	0x1	0x0	0x0	0
M13: PCIe-mode (x2) with lane reverse and EPCS (x2) r-pcie-x2-epcs	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	1	0x0	0x1
M14: PCIe-mode (x1) with lane reverse and EPCS (x2) r-pcie-x1-epcs	0xF	0x0	0xF	0xF	0x1	0x0	0x1	0x1	0x0	0x1	0x0	0x0

Using the SERDESIF Macro in Libero SoC

The high speed serial interface generator available in Libero SoC allows generation of the SERDESIF block with various protocol modes. It allows to create single and multi-protocol modes. Figure 1-8 displays the main screen for the high speed serial interface generator for single protocol mode and Figure 1-9 on page 21 displays the main screen for high speed serial interface generator for multi-protocol mode.

Figure 1-8 • SERDESIF Configuration for Single Protocol Mode

Figure 1-9 • SERDESIF Configuration for Multi-Protocol Mode

Clocking and Reset

This section describes the clocking and reset scheme for the SERDESIF block.

Clocking System for SERDESIF

The clocking system in the SERDESIF block includes:

- · SERDES reference clocks
- Serial PLL (SPLL) clocking
- PCIe system block clocking
- · XAUI block clocking

SERDES Reference Clocks

The PMA in the SERDES block needs a reference clock on each of its lanes for Tx and Rx clock generation through PLLs. Refer to the "Serializer/Deserializer" section on page 169 for more information on Tx and Rx clock generation through PLLs. In order to reduce the number of chip-level I/O pads, there are only two reference clocks (refclk_io0 and refclk_io1) in the SmartFusion2 SoC FPGA devices coming from I/O pads. The two reference clocks, refclk_io0 and refclk_io1, are connected to I/O pads, I/O Port0 and I/O Port1. There are two additional reference clocks, fab_ref_clk and ccc_ref_clk, coming from the fabric and clock conditioning circuitry block (CCC). For maximum flexibility, the reference clock to the four lanes can come from either refclk_io0 or refclk_io1 I/O pads or from the internal fab_ref_clk or ccc_ref_clk signal. Figure 1-10 shows the reference clock selection. The SERDES has four lanes, but the two adjacent SERDES lanes share the same reference clock. Lane0 and lane1 share the same reference clock input. Similarly, lane3 and lane 4 share the same reference clock.

Figure 1-10 • SERDES Reference Clock

Figure 1-11 shows the reference clock selection in high speed serial interface generator available in Libero SoC. It sets the MUX selection, depending on the selected reference clocks.

Figure 1-11 • SERDES Reference Clock Using High Speed Serial Interface Generator

The multiplexer select bits can be set for reference clocks come from the SERDESIF system registers. Table 1-35 on page 40 shows the two registers (LANE01_REFCLK_SEL and LANE23 REFCLK SELLANE23 REFCLK SEL) that define the clock selection for SERDES lanes.

SPLL Clocking

The SERDESIF includes an embedded PLL, which is to be used by the SERDESIF block exclusively. This SERDES PLL is called the SPLL. It is used to reduce the skew between the Fabric and SERDESIF module. This clocking scheme is used for PCle and XAUI protocol modes. Refer to the "PCI Express" section on page 59 and the "XAUI" section on page 129 for more information.

Figure 1-12 • SPLL Clocking

Figure 1-13 shows SPLL settings in the high speed serial interface generator. The SERDESIF system register can be used to configure and can also be used this PLL.

Figure 1-13 • SPLL Clocking Configuration using High Speed Serial Interface Generator

PCIe System Block Clocking

The PCIe system is a multi-clock system. The clock domains of the PCIe system are the SERDES reference clock, bridge interface clock, APB interface clock, and PHY clock. The SERDESIF block handles the entire clock domain crossing. Refer to the "PCI Express" section on page 59 for details.

XAUI Clocking

In XAUI only mode, the Tx clock is generated from the PMA. The lane0 Tx clock is used for this purpose. The Rx clock for all four lanes is passed to the XGXS receiver block with gating logic in between for low power operation. Refer to the "XAUI" section on page 129 for details.

Reset for SERDESIF Block

The SERDESIF block has the following RESETs at the top level. Table 1-8 lists the reset signals. These signals are exposed to fabric based on the protocol implemented in the SERDESIF block. Refer to the "PCI Express" section on page 59, the "XAUI" section on page 129, and the "EPCS Interface" section on page 153 for more information on using these reset signals.

Table 1-8 • SERDESIF Block Reset Signals

Protocol	Reset signals	Direction	Description
PCIe	SERDESIF_CORE_RESET_N	Input	PCIe core-active low
	SERDESIF_PHY_RESET_N	Input	Active low SERDES reset. If it is used for any serial, the protocol should be tied to 1'b0*.
	APB_S_PRESET_N	Input	APB-slave interface asynchronous preset
EPCS	EPCS_0_RESET_N	Input	EPCS interface Lane0 reset
	EPCS_1_RESET_N	Input	EPCS interface lane1 reset
	EPCS_2_RESET_N	Input	EPCS interface lane2 reset
	EPCS_3_RESET_N	Input	EPCS interface lane3 reset
	EPCS_0_RX_RESET_N	Output	EPCS interface Lane0 reset deasserted onEPCS_0_RX_CLK
	EPCS_1_RX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_1_RX_CLK
	EPCS_2_RX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_2_RX_CLK
	EPCS_3_RX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_3_RX_CLK
	EPCS_0_TX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_0_TX_CLK
	EPCS_1_TX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_1_TX_CLK
	EPCS_2_TX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_2_TX_CLK
	EPCS_3_TX_RESET_N	Output	EPCS interface Lane0 reset deasserted on EPCS_3_TX_CLK
	APB_S_PRESET_N	Input	APB-slave interface: PRESETN: Async-set

Table 1-8 • SERDESIF Block Reset Signals (continued)

Protocol	Reset signals	Direction	Description		
XAUI	SERDESIF_PHY_RESET_N	Input	PHY_RESET_N		
	CORE_RESET_N	Input	External asynchronous global hard		
	XAUI_MDC_RESET_ OUT	Output	Management data controller (MDC) synchronous reset		
	XAUI_MDC_RESET	Input	Asynchronously resets all the MDIO registers to their default values.		
	XAUI_TX_RESET_OUT	Output	Software-generated reset (register 0.15) synchronized with tx_clk		
	XAUI_TX_RESET	Input	Resets the tx_core block		
	XAUI_RX_RESET_ OUT[3:0]	Output	Software-generated resets (register 0.15) synchronized with the rx_clkiX[X=01,2,3] clocks.		
	XAUI_RX_RESET[3:0]	Input	Resets the XAUI extender block.		
	APB_S_PRESET_N	Input	APB slave interface asynchronous preset		
Note: * "1	ote: * "1'b0" means logic 0				

Configuration of SERDESIF

The SERDESIF block has three regions of configuration and status registers. Configuration of the SERDESIF is done through these registers. Configuration of top level functionality of the PCIe core, XAUI block, and SERDES macro is also done through these registers. Figure 1-14 on page 26 shows the memory map for the SERDESIF block. The three regions of configuration and status registers are described below.

SERDESIF System Register

The SERDESIF system register controls the SERDESIF module for single protocol or multi-protocol support implementation. It occupies 1 KB of the configuration memory map. The physical offset location of the SERDESIF system register is 0x2000-0x23FF from the SERDESIF subsystem memory map. These registers can be accessed through the 32-bit APB interface and the default values of these registers can be configured using Libero SoC. These registers are set while configuring the high speed serial interface generator in Libero SoC. However, the SERDESIF system registers can be updated through the 32-bit APB interface, if required.

PCIe Core Bridge Register

The PCIe core bridge registers occupy 4 KB of the configuration memory map. These registers set the PCIe configuration and status. These registers are set while configuring the high speed serial interface generator in Libero SoC. These registers can also be accessed through the 32-bit APB interface. The physical offset location of the PCIe core registers is 0x0000-0x0FFF from the SERDESIF system memory map. Refer to the "PCI Express" section on page 59 for more information about the PCIe core register.

SERDES Macro Register

The SERDES macro register map contains control and status information for the SERDES block and lanes. Each block uses 256 register bytes. However, these 256 bytes are mapped to 1 KB to make 32-bit APB output. The APB to SERDES programming interface bridge is implemented to convert the system 32-bit APB bus transactions into appropriate 8 bits. Since the SmartFusion2 SoC FPGA devices map the 4 SERDES lanes into 1KB blocks., the overall register map size is 4 KB. The physical offset location of the SERDES macro registers from the SERDESIF system memory map is as follows:

0x1000-0x13FF – 1 KB – SERDES programming interface (Lane0)

- 0x1400-0x17FF 1 KB SERDES programming interface (Lane1)
- 0x1800-0x1BFF 1 KB SERDES programming interface (Lane2)
- 0x1C00-0x1FFF 1 KB SERDES programming interface (Lane3)

Refer to the "Serializer/Deserializer" section on page 169 for the SERDES macro register.

Figure 1-14 • SERDESIF Memory Map

Figure 1-15 shows the APB implementation of three region configurations and status registers. The APB interface is used to interfaces with FPGA fabric which will allow access to these register region as an APB slave.

The address decoder block generates the appropriate PSEL and manages the access to these regions of configuration and status registers.

Figure 1-15 • Address Decoder Logic Block Diagram

SERDESIF System Register

The SERDESIF system register memory map occupies 1 KB of configuration memory map. Physical offset location of the SERDESIF system registers is 0x2000-0x23FF from the SERDESIF block memory map. Table 1-9 describes the SERDESIF system registers.

Table 1-9 • SERDESIF System Registers

Register Name	Address Offset	Register Type	Description
SER_PLL_CONFIG_LOW	0x00	R/W	Sets SERDES PLL configuration bits (LSBs).
SER_PLL_CONFIG_HIGH	0x04	R/W	Sets SERDES PLL configuration bits (MSBs).
SER_SOFT_RESET	0x08	R/W	PCIe controller, XAUI and SERDES lanes soft RESET
SER_INTERRUPT_ENABLE	0x0C	R/W	SERDES PLL lock interrupt enable
CONFIG_AXI_AHB_BRIDGE	0x10	R/W	Defines whether AXI/AHB master interface is implemented on the master interface to fabric.
CONFIG_ECC_INTR_ENABLE	0x14	R/W	Sets ECC enable and ECC interrupt enable for PCIe memories.
Reserved	0x18	R/W	Reserved
Reserved	0x1C	R/W	Reserved
CONFIG_PCIE_PM	0x 20	R/W	Used to inform the configuration space, the slot power, PHY reference clock, Power mode etc.

Note: Refer to the individual register description for the reset value.

Note: R/W: Read and write allowed

R/O: 0 Read only

Table 1-9 • SERDESIF System Registers (continued)

Register Name	Address Offset	Register Type	Description
CONFIG_PHY_MODE_0	0x24	R/W	Selects the protocol default settings of the PHY.
CONFIG_PHY_MODE_1	0x 28	R/W	Selects PCS mode, link to lane settings.
CONFIG_PHY_MODE_2	0x2C	R/W	Sets the equalization calibration performed by the PMA control logic of the lane or use the calibration result of adjacent lane.
CONFIG_PCIE_0	0x30	R/W	Defines PCIe vendor ID and device ID for PCIe identification registers.
CONFIG_PCIE_1	0x34	R/W	Defines PCIe subsystem vendor ID and subsystem device ID for PCIe identification registers.
CONFIG_PCIE_2	0x38	R/W	Defines PCIe subsystem revision ID and class code.
CONFIG_PCIE_3	0x3C	R/W	Sets PCIe link speed.
CONFIG_BAR_SIZE_0_1	0x40	R/W	Sets BAR0 and BAR1 of PCIe core register map.
CONFIG_BAR_SIZE_2_3	0x44	R/W	Sets BAR2 and BAR3 of PCIe core register map.
CONFIG_BAR_SIZE_4_5	0x48	R/W	Sets BAR4 and BAR5 of PCIe core register map.
SER_CLK_STATUS	0x4C	R/O	This register describes SERDES PLL lock information.
Reserved	0x50	R/O	-
Reserved	0x54	R/O	-
SER_INTERRUPT	0x58	SW1C	SPLL/FPLL lock interrupt
SERDESIF_INTR_STATUS	0x5C	SW1C	SECDED interrupt status for PCIe memories
Reserved	0x60	_	-
REFCLK_SEL	0x64	R/W	Reference clock selection for the four lanes of PMA.
PCLK_SEL	0x68	R/W	PCIe core clock selection
EPCS_RSTN_SEL	0x6C	R/W	EPCS reset signal selection from fabric
CHIP_ENABLES	0x70	R/O	GEN2 enable for PCIe
SERDES_TEST_OUT	0x74	R/O	Status Test out output of PCIe PHY
SERDES_FATC_RESET	0x78	R/W	Fabric alignment test circuit – reset input
RC_OSC_SPLL_REFCLK_SEL	0x7C	R/W	Reference clock selection for SPLL
SPREAD_SPECTRUM_CLK	0x80	R/W	Spread spectrum clocking configuration
CONF_AXI_MSTR_WNDW_0	0x84	R/W	PCIe AXI-master window0 configuration register - 0
CONF_AXI_MSTR_WNDW_1	0x88	R/W	PCIe AXI-master window0 configuration register - 2
CONF_AXI_MSTR_WNDW_2	0x8C	R/W	PCIe AXI-master window0 configuration register - 2
CONF_AXI_MSTR_WNDW_3	0x90	R/W	PCIe AXI-master window0 configuration register - 3
CONF_AXI_SLV_WNDW_0	0x94	R/W	PCIe AXI-slave window0 configuration register - 0
CONF_AXI_SLV_WNDW_1	0x98	R/W	PCIe AXI-slave window0 configuration register - 1
CONF_AXI_SLV_WNDW_2	0x9C	R/W	PCIe AXI-slave window0 configuration register - 2
CONF_AXI_SLV_WNDW_3	0xA0	R/W	PCIe AXI-slave window0 configuration register - 4
DESKEW_CONFIG	0xA4	R/W	PLL REF clock DESKEW register

Note: Refer to the individual register description for the reset value.

Note: R/W: Read and write allowed

R/O: 0 Read only

Reg00: SER_PLL_CONFIG_LOW Register (0x2000)

Table 1-10 • SER_PLL_CONFIG_LOW

Bit Number	Name	Reset Value	Description
18:16	PLL_OUTPUT_DIVISOR	0x1	These bits set SERDES PLL output divider value:
			000: ÷1
			001: ÷2
			010: ÷4
			011: ÷8
15:6	PLL_FEEDBACK_DIVISOR	0x2	These bits set SERDES PLL feedback divider value (SSE = 0) (binary value + 1)
			0000000000: ÷1
			000000001: ÷2
			000000010: ÷3
			1111111111: ÷1,025
5:0	PLL_REF_DIVISOR	0x2	These bits set SERDES PLL reference divider value (binary value+1):
			000000: ÷1
			000001: ÷2
			000010: ÷3
			1111111: ÷65
			Both REFCK and post-divide REFCK must be within the range specified in the PLL datasheet.

Reg04: SSER_PLL_CONFIG_HIGH Register (0x2004)

Table 1-11 • SER_PLL_CONFIG_HIGH

Name	Reset Value	Description
PLL_PD	0x0	A power-down (PD) signal is provided for lowest quiescent current. When PD is asserted, the PLL powers down and outputs are low. PD has precedence over all other functions.
PLL_FSE	0x0	This signal chooses between internal and external input paths: 0: Feedback (FB) pin input 1: Internal feedback FB should be tied off (High or Low) and not left floating when FSE is High. FB should connect directly or through the clock tree to PLLOUT when FSE is low. SSE is ineffective when FSE = 0. If the FACC source multiplexer is configured to select a clock other than the PLL output clock, then the fddr_pll_fse signal must be set to 1, when the PLL is powered-up.
PLL_MODE_3V3	0x1	Analog voltage selection 1: 3.3 V 0: 2.5 V Selects between 2.5 V and 3.3 V analog voltage Operation mode (wrong selection may cause PLL not to function, but will not damage the PLL).
PLL_MODE_1V2	0x1	Core voltage selection 1: 1.2 V 0: 1.0 V Selects between 1.0 V and 1.2 V core voltage Operation mode (wrong selection may cause PLL not to function, but will not damage the PLL).
PLL_BYPASS	0x1	A Bypass signal is provided which both powers down the PLL core and bypasses it as that PLLOUT tracks REFCK. Bypass has precedence over Reset. Microsemi recommends that either Bypass or Reset are asserted until all configuration controls are set in the desired working value; the power supply and reference clocks are stable within operating range, and the feedback path is functional. Either Bypass or Reset may be used for power-down IDDQ testing.
PLL_RESET	0x1	PLL reset signal (asserted high).
PLL_LOCKCNT	0xF	These bits contain lock counter value (2^ (binary value + 5)): 0000: 32 0001: 64 1111: 1048576 The above mentioned lock counter values represent the number of reference cycles present before the lock is asserted or detected.
	PLL_FSE PLL_MODE_3V3 PLL_MODE_1V2 PLL_BYPASS PLL_RESET PLL_LOCKCNT	Name Value PLL_PD 0x0 PLL_FSE 0x0 PLL_MODE_3V3 0x1 PLL_MODE_1V2 0x1 PLL_BYPASS 0x1 PLL_RESET 0x1

Table 1-11 • SER_PLL_CONFIG_HIGH (continued)

Bit Number	Name	Reset Value	Description
6:4	PLL_LOCKWIN	0x0	These bits contain phase error window for lock assertion as a fraction of divided reference period:
			000: 500ppm
			100: 8000ppm
			001: 1000ppm
			101: 16000ppm
			010: 2000ppm
			110: 32000ppm
			011: 4000ppm
			111: 64000ppm
			Values are at typical process, voltage, and temperature (PVT) only and are not PVT compensated.
3:0	PLL_FILTER_RANGE	0x9	These bits contain PLL filter range:
			0000: BYPASS
			0111: 18-29 MHz
			0001: 1-1.6 MHz
			1000: 29-46 MHz
			0010: 1.6-2.6 MHz
			1001: 46-75 MHz
			0011: 2.6-4.2 MHz
			1010: 75-120 MHz
			0100: 4.2-6.8 MHz
			1011: 120-200 MHz
			0101: 6.8-11 MHz
			0110: 11-18 MHz

Reg08: SER_SOFT_RESET Register (0x2008)

Table 1-12 • SER_SOFT_RESET

Bit Number	Name	Reset Value	Description
0	PCIE_CTLR_SOFTRESET	0x1	PCIe controller soft Reset
1	XAUI_CTLR_SOFTRESET	0x1	XAUI controller soft Reset
2	SERDES_LANE0_SOFTRESET	0x1	SERDES lane0 soft Reset
3	SERDES_LANE1_SOFTRESET	0x1	SERDES lane1 soft Reset
4	SERDES_LANE2_SOFTRESET	0x1	SERDES lane2 soft Reset
5	SERDES_LANE3_SOFTRESET	0x1	SERDES lane3 soft Reset

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg0C: SER_INTERRUPT_ENABLE Register (0x200C)

Table 1-13 • SER_INTERRUPT_ENABLE

Bit Number	Name	Reset Value	Description
3	FPLL_LOCKLOST_INT_ENABLE	0x0	This bit sets FPLL lock lost interrupt output enable.
2	FPLL_LOCK_INT_ENABLE	0x0	This bit sets FPLL lock interrupt output enable.
1	SPLL_LOCKLOST_INT_ENABLE	0x0	This bit sets SERDES PLL lock lost interrupt output enable.
0	SPLL_LOCK_INT_ENABLE	0x0	This bit sets SERDES PLL lock interrupt output enable.

Reg10: CONFIG_AXI_AHB_BRIDGE Register (0x2010)

Table 1-14 • CONFIG_AXI_AHB_BRIDGE

Bit Number	Name	Reset Value	Description
0	CFGR_AXI_AHB_SLAVE	0x1	Defines whether AXI/AHB slave interface is implemented on the slave interface to fabric. 0: AHB, 32-bit AHB master implemented in fabric
			1: AXI, 64-bit AXI master implemented in fabric
1	CFGR_AXI_AHB_MASTER	0x1	Defines whether AXI/AHB master interface is implemented on the master interface to fabric.
			0: AHB, 32-bit AHB slave implemented in fabric
			1: AXI, 64-bit AXI slave implemented in fabric

Reg14:CONFIG_ECC_INTR_ENABLE Register (0x2014)

Table 1-15 • CONFIG_ECC_INTR_ENABLE

Bit Number	Name	Reset Value	Description
7:4	CFGR_PCIE_ECC_INTR_EN	0x7	This bit sets ECC interrupt enable for PCle Tx, Rx, and Rp memories.
			Bit 0 1: Rp - ECC interrupt enabled 0: ECC interrupt disabled
			Bit 1 1: Rx - ECC interrupt enabled 0: ECC interrupt disabled
			Bit 2 1: Tx - ECC interrupt enabled 0: ECC interrupt disabled
3:0	CFGR_PCIE_ECC_EN	0x7	This bit sets ECC enable for PCIe Tx, Rx, and Rp memories. Bit 0 1 - Rp - ECC enabled- 1'b0: ECC - disabled
			Bit-1: 1'b1 - Rx - ECC enabled- 1'b0: ECC - disabled Bit-2: 1'b1 - Tx - ECC enabled- 1'b0: ECC - disabled

Reg18: Reserved (0x2018)

Table 1-16 • Reg18

Bit Number	Name	Reset Value	Description
_	_	0x0	_

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg1C: Reserved (0x201C)

Table 1-17 • Reg1C

Bit Number	Name	Reset Value	Description
_	-	0x0	-

Reg20: CONFIG_PCIE_PM Register (0x2020)

Table 1-18 • CONFIG_PCIE_PM

Bit Number	Name	Reset Value	Description
3	CFGR_TX_SWING	0x0	Transmit swing: This signal is a per-link signal, which is generated by each link PCIe. The PCS logic performs the internal mapping of link to lanes.
			Note: This signal is only for PCIe Gen2 controller, not for PCIe GEN1 controller.
2	CFGR_L2_P2_ENABLE	0x0	L2/P2 enable.
			1'b1: Enable L2/P2 (Default-L2P2-Enabled)
			1'b1: Disable L2/P2
			If L2/P2 is enabled, cfgr_pm_auxpwr should be enabled too.
1	CFGR_PM_AUX_PWR	0x0	Slot auxiliary power: This signal specifies whether the device uses the slot auxiliary power source. This signal is used only used if the core supports D3 cold.
			1'b1: Auxiliary power source available. (default-L2P2- Enabled)
			1'b0: Auxiliary power source unavailable.
0	CFGR_SLOT_CONFIG	0x0	Slot clock configuration: This signal is used to inform the configuration space, if the reference clock of the PHY is same as that of the slot.
			0: Independent clock
			1: Slot clock
			This signal is synchronous to CLK.

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg24: CONFIG_PHY_MODE_0 Register (0x2024)

Table 1-19 • CONFIG_PHY_MODE_0

Bit Number	Name	Reset Value	Description
15:0	CONFIG_PHY_MODE	0x0	For each lane, this signal selects the protocol default settings of the PHY, which sets the reset value of the registers space. For instance, the following mapping is associated to a four lane PHY:
			phy_mode[3:0]: Mode associated to lane0
			phy_mode[7:4]: Mode associated to lane1
			phy_mode[11:8]: Mode associated to lane2
			phy_mode[15:12]: Mode associated to lane3
			PHY_MODE settings:
			4'b0000 - PCIEe mode
			4'b0001 - XAUI mode
			4'b0010 - EPCS (SGMII) mode
			4'b0011 - EPCS (2.5 Ghz) mode
			4'b0100 - EPCS (1.25 Ghz) mode
			4'b0101 - EPCS (undefined) mode
			4'b1111 - SERDES PHY lane is off

Reg28: CONFIG_PHY_MODE_1 Register (0x2028)

Table 1-20 • CONFIG_PHY_MODE_1

Bit		Reset	
Number	Name	Value	Description
11:8	CONFIG_REG_LANE_SEL	0xF	Lane select: This signal defines which lanes are accessed and must be one-hot encoded for read transaction. For write transaction, one or several lanes can be written in the same time when several bits are asserted.
7:4	CONFIG_LINKK2LANE	0xF	This signal is used in PCIe mode in order to select the association of lane to link and must be one-hot encoded (each lane can be associated only to one link).
			For example, a four lane PHY, which can be configured in 1 or 2 link might have
			pipe_lk2ln[3:0]: lane associated to link 0
			pipe_lk2ln[7:4]: lane associated to link 1
			Note: It is mandatory that this signal is static at power-up or stable before reset de-assertion.
3:0	CONFIG_EPCS_SEL	0x0	For each lane, one bit of this signal defines whether the external PCS interface is used or the PCle PCS is enabled:
			0b: PCle mode
			1b: External PCS mode
			For instance, the mapping associated to a four lane PHY is:
			epcs_sel[0]: External PCS selection associated to lane0
			epcs_sel[1]: External PCS selection associated to lane1
			epcs_sel[2]: External PCS selection associated to lane2
			epcs_sel[3]: External PCS selection associated to lane3

Reg2C: CONFIG_PHY_MODE_2 Register (0x202C)

Table 1-21 • CONFIG_PHY_MODE_2

Bit Number	Name	Reset Value	Description
7:0	CONFIG_REXT_SEL	0x0	For each lane, 2 bits of this signal select whether the Tx, Rx, and Rx equalization calibration is performed by the PMA control logic of the lane or use the calibration result of adjacent lane (upper or lower lanes):
			00b: perform calibration using the lane calibration algorithm, which also requires that the Rext resistor is present on board
			01b: use calibration result of lower lane
			10b: use calibration result of upper lane
			11b: reserved

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg30: CONFIG_PCIE_0 Register (0x2030)

Table 1-22 • CONFIG_PCIE_0

Bit Number	Name	Reset Value	Description
31:16	PCIE_DEVICE_ID	0x0	Specifies hardwired settings for PCIe identification registers: Defines PCIe device ID.
15:0	PCIE_VENDOR_ID	0x0	Specifies hardwired settings for PCIe identification registers: Defines PCIe vendor ID.

Reg34: CONFIG_PCIE_1 Register (0x2034)

Table 1-23 • CONFIG_PCIE_1

Bit Number	Name	Reset Value	Description
31:16	PCIE_SUB_DEVICE_ID	0x0	Specifies hardwired settings for PCle identification registers: Defines PCle subsystem device ID.
15:0	PCIE_SUB_VENDOR_ID	0x0	Specifies hardwired settings for PCIe identification registers: Defines PCIe subsystem vendor ID.

Reg38: CONFIG_PCIE_2 Register (0x2038)

Table 1-24 • CONFIG_PCIE_2

Bit Number	Name	Reset Value	Description
31:16	PCIE_CLASS_CODE	0x0	Specifies hardwired settings for PCIe identification registers: Defines PCIe class code.
15:0	PCIE_REV_ID	0x0	Specifies hardwired settings for PCIe identification registers: Defines PCIe revision ID.

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg3C: CONFIG_PCIE_3 Register (0x203C)

Table 1-25 • CONFIG_PCIE_3

Bit Number	Name	Reset Value	Description
5:2	K_BRIDGE_SPEC_REV	0x0	These bits set the PCIe specification version capability: 0000: Core is compliant with PCIe Specification 1.0a 0001: Core is compliant with PCIe Specification 1.1 0010: Core is compliant with PCIe Specification 2.0
1	K_BRIDGE_EMPH	0x0	Selectable de-emphasis: This bit selects the level of de- emphasis for an upstream component when the link is operating at 5.0 gbps speed support: 0: Indicates de-emphasis of 6 dB 1: Indicates de-emphasis of 3.5 dB
0	K_BRIDGE_SPEED	0x0	PCIe link speed support: 0: Implements link speed support for 2.5 gbps 1: Implements link speed support for 2.5 and 5.0 gbps

Reg40: CONFIG_BAR_SIZE_0_1 Register (0x2040)

Table 1-26 • CONFIG_BAR_SIZE_0_1

Bit Number	Name	Reset Value	Description
17:13	CONFIG_BAR_SIZE_1	0x0	These bits set the size of the BAR1 memory.
			For example, 32-bit BAR:
			CONFIG_BAR_SIZE_1 - 5'd21 translates to BAR0 - (2MB) "1111_1111_1110_0000_0000_0000_0000_CONFIG_BAR_C ONTROL_1"
12:9	CONFIG_BAR_CONTROL_1	0x0	LSB bits of BAR1 register in PCIe core register map
			Bit0: Memory/IO type indicator
			Bit2:1: Size of memory, 00-32-bit memory, 10 - 64-bit memory
			Bit3: Prefetchable/non-prefetchable memory
8:4	CONFIG_BAR_SIZE_0	0x0	These bits set the size of the BAR0 memory.
			For example, 32-bit BAR:
			CONFIG_BAR_SIZE_0 - 5'd20 translates to BAR0-(1MB) "1111_1111_1111_0000_0000_0000_0000_CONFIG_BAR_C ONTROL_0"
3:0	CONFIG_BAR_CONTROL_0	0x0	LSB bits of BAR 0 register in PCIe core register map
			Bit0: Memory/IO type indicator
			Bit2:1: Size of memory, 00-32-bit memory, 10 - 64-bit memory
			Bit3: Prefetchable/non-prefetchable memory

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg44: CONFIG_BAR_SIZE_2_3 Register (0x2044)

Table 1-27 • CONFIG_BAR_SIZE_2_3

Bit Number	Name	Reset Value	Description
17:13	CONFIG_BAR_SIZE_3	0x0	These bits set the size of the BAR3 memory.
			For example, 32-bit BAR:
			CONFIG_BAR_SIZE_3 - 5'd23 translates to BAR3 - (8MB) "1111_111_1000_0000_0000_0000_ CONFIG_BAR_CONTROL_3"
12:9	CONFIG_BAR_CONTROL_3	0x0	[3:0] LSB bits of BAR 3 register in PCle core register map
			Bit0: Memory/IO type indicator
			Bit2:1: Size of memory, 00-32-bit memory, 10-64-bit memory
			Bit3: Prefetchable/non-prefetchable memory
8:4	CONFIG_BAR_SIZE_2	0x0	These bits set the size of the BAR2 memory.
			For example, 32-bit BAR:
			CONFIG_BAR_SIZE_2 - 5'd22 translates to BAR0 - (4MB) "1111_111_1100_0000_0000_0000_0000_CONFIG_BAR_ CONTROL_2"
3:0	CONFIG_BAR_CONTROL_2	0x0	[3:0] LSB bits of BAR 2 register in PCle core register map
			Bit0: Memory/IO type indicator
			Bit2:1: Size of memory, 00-32-bit memory, 10 - 64-bit memory
			Bit3: Prefetchable/Non-prefetchable memory

Reg48: CONFIG_BAR_SIZE_4_5 Register (0x2048)

Table 1-28 • CONFIG_BAR_SIZE_4_5

Bit Number	Name	Reset Value	Description
17:13	CONFIG_BAR_SIZE_5	0x0	These bits set the size of the BAR5 memory.
			For example, 32-bit BAR:
			CONFIG_BAR_SIZE_5 - 5'd25 translates to BAR5 - (32MB) "1111_1110_0000_0000_0000_0000_0000_CONFIG_BAR_C ONTROL_5"
12:9	CONFIG_BAR_CONTROL_5	0x0	[3:0] LSB bits of BAR 5 register in PCIe core register map
			Bit0: Memory/IO type indicator
			Bit2:1: Size of memory, 00 - 32-bit memory, 10 - 64-bit memory
			Bit3: Prefetchable/non-prefetchable memory
8:4	CONFIG_BAR_SIZE_4	0x0	These bits set the size of the BAR4 memory.
			For example, 32-bit BAR:
			CONFIG_BAR_SIZE_4 - 5'd24 translates to BAR4 -(16MB) "1111_111_0000_0000_0000_0000_0000_CONFIG_BAR_C ONTROL_4"
3:0	CONFIG_BAR_CONTROL_4	0x0	[3:0] LSB bits of BAR 4 register in PCIe core register map
			Bit0: Memory/IO type indicator
			Bit2:1: Size of memory, 00-32 bit memory, 10 - 64-bit memory
			Bit3: Prefetchable/non-prefetchable memory

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg4C: SER_CLK_STATUS Register (0x204C)

Table 1-29 • SER_CLK_STATUS

Bit Number	Name	Reset Value	Description
17:13	FAB_PLL_LOCK	0x0	Fabric PLL lock information
12:9	PLL_LOCK	0x0	SPLL lock information

Reg50: Reserved (0x2050)

Table 1-30 • Reg50

Bit Number	Name	Reset Value	Description
_	_	0x0	_

Reg54: Reserved (0x2050

Table 1-31 • Reg54

Bit Number	Name	Reset Value	Description
-	-	0x0	_

Reg58: SER_INTERRUPT Register (0x2058)

Table 1-32 • SER_INTERRUPT

Bit Number	Name	Reset Value	Description
1	PLL_LOCK_INT	0x0	SPLL/FPLL lock interrupt output
0	PLL_LOCKLOST_INT	0x0	SPLL/FPLL lock lost interrupt output

Reg5C: SERDESIF_INTR_STATUS Register (0x205C)

Table 1-33 • SERDESIF_INTR_STATUS

Bit Nur	mber	Name	Reset Value	Description
2:0		SERDESIF_INTR_STATUS	0x0	ECC interrupt status for PCIe memories

Reg60: Reserved (0x2060)

Table 1-34 • Reg60

Bit Number	Name	Reset Value	Description
_	-	0x0	_

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg64: REFCLK_SEL Register (0x2064)

Table 1-35 • REFCLK_SEL

Bit Number	Name	Reset Value	Description
3:2	LANE23_REFCLK_SEL	0x0	Reference clock selection for lane2 and lane3 of PMA:
			00: Selects refclk_io0 clock for lane0 and lane1 as reference clock
			01: Selects refclk_io1 clock for lane0 and lane1 as reference clock
			10: Selects ccc_ref_clk clock for lane0 and lane1 as reference clock
			11: Selects fab_ref_clk clock for lane0 and lane1 as reference clock
1:0	LANE01_REFCLK_SEL	0x0	Reference clock selection for lane0 and lane1 of PMA:
			00: Selects refclk_io0 clock for lane0 and lane1 as reference clock
			01: Selects refclk_io1 clock for lane0 and lane1 as reference clock
			10: Selects ccc_ref_clk clock for lane0 and lane1 as reference clock
			11: Selects fab_ref_clk clock for lane0 and lane1 as reference clock

Reg68: PCLK_SEL Register (0x2068)

Table 1-36 • PCLK_SEL

Bit Number	Name	Reset Value	Description
5:4	PIPE_PCLKIN_LANE23_SEL	0x0	PIPE clock input selection for lane2 and lane3, can be selected from one of pipeclk_out[3:0]:
			00: Selects pipeclk_out[0] clock as pipeclk_in for lane2 and lane3.
			01: Selects pipeclk_out[1] clock as pipeclk_in for lane2 and lane3.
			10: Selects pipeclk_out[2] clock as pipeclk_in for lane2 and lane3.
			11: Selects pipeclk_out[3] clock as pipeclk_in for lane2 and lane3.
3:2	PIPE_PCLKIN_LANE01_SEL	0x0	PIPE clock input selection for lane0 and lane1, can be selected from one of pipeclk_out[3:0]:
			00: Selects pipeclk_out[0] clock as pipeclk_in for lane0 and lane1.
			01: Selects pipeclk_out[1] clock as pipeclk_in for lane0 and lane1.
			10: Selects pipeclk_out[2] clock as pipeclk_in for lane0 and lane1.
			11: Selects pipeclk_out[3] clock as pipeclk_in for lane0 and lane1.
1:0	PCIE_CORECLK_SEL	0x0	PCIe core clock selection. PCIe core clock can be selected from one of pipeclk_out[3:0]:
			00: Selects pipeclk_out[0] clock as PCle core clock.
			01: Selects pipeclk_out[1] clock as PCle core clock.
			10: Selects pipeclk_out[2] clock as PCle core clock.
			11: Selects pipeclk_out[3] clock as PCle core clock.

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg6C: EPCS_RSTN_SEL Register (0x206C)

Table 1-37 • EPCS_RSTN_SEL

Bit Number	Name	Reset Value	Description
3:0	FABRIC_EPCS_RSTN_SEL	0x0	EPCS reset signal selection from FABRIC

Reg70: CHIP_ENABLES Register (0x2070)

Table 1-38 • CHIP_ENABLES

Bit Number	Name	Reset Value	Description
0	GEN2_SUPPORTED	0x1	GEN2 enable for PCIe:
			1: GEN2 enabled
			0: GEN2 disabled

All the register are 32-bit. Bits not shown in the table are reserved. **Reg74**:

SERDES TEST OUT Register (0x2074)

Table 1-39 • SERDES_TEST_OUT

Bit Number	Name	Reset Value	Description
31:0	SERDES_TEST_OUT	0x0	Status TESTOUT output of PCIe PHY.
			SERDES_TEST_OUT[31:24] - Debug signal for lane3
			SERDES_TEST_OUT[23:16] - Debug signal for lane2
			SERDES_TEST_OUT[15:80] - Debug signal for lane1
			SERDES_TEST_OUT[7:0] - Debug signal for lane0
			Bit[0]: Tx PLL reset
			Bit[1]: Rx PLL reset
			Bit[2]: Activity detected
			Bit[3]: CDR PLL locked on data
			Bit[4]: Tx PLL locked
			Bit[5]: Rx PLL locked
			Bit[7:6]: reserved

Reg78: Reserved (0x2078)

Table 1-40 • Reg78

Bit Number	Name	Reset Value	Description
_	_	_	-

Reg7C: RC_OSC_SPLL_REFCLK_SEL Register (0x207C)

Table 1-41 • RC_OSC_SPLL_REFCLK_SEL

Bit Number	Name	Reset Value	Description
0	RC_OSC_REFCLK_SEL	0x1	This bit sets RC OSC as reference clock selection for SPLL.

Reg80: SPREAD_SPECTRUM_CLK Register (0x2080)

Table 1-42 • SPREAD_SPECTRUM_CLK

Bit Number	Name	Reset Value	Description
7:3	PLL_SERDESIF_SSMF	0x0	Spread spectrum clocking configuration register for feedback divider.
2:1	PLL_SERDESIF_SSMD	0x0	Spread spectrum clocking configuration register for reference divider.
0	PLL_SERDESIF_SSE	0x0	Spread spectrum clocking configuration register.

Reg84: CONF AXI MSTR WNDW 0 Register (0x2084)

Table 1-43 • CONF_AXI_MSTR_WNDW_0

Bit Number	Name	Reset Value	Description
31:0	CONF_AXI_MSTR_WNDW_0	0x0	PCIe AXI-master Window0 configuration register – 0

Note: All the register are 32-bit. Bits not shown in the table are reserved.

Reg88: CONF AXI MSTR WNDW 1 Register (0x2088)

Table 1-44 • CONF_AXI_MSTR_WNDW_1

Bit Number	Name	Reset Value	Description
31:0	CONF_AXI_MSTR_WNDW_1	0x0	PCIe AXI-master Window0 configuration register – 1

Reg8C: CONF_AXI_MSTR_WNDW_2 Register (0x208C)

Table 1-45 • CONF_AXI_MSTR_WNDW_2

Bit Number	Name	Reset Value	Description
31:0	CONF_AXI_MSTR_WNDW_2	0x0	PCIe AXI-master Window0 configuration register - 2

Reg90: CONF_AXI_MSTR_WNDW_3 Register (0x2090)

Table 1-46 • CONF_AXI_MSTR_WNDW_3

Bit Number	Name	Reset Value	Description
3:0	CONF_AXI_MSTR_WNDW_3	0x0	PCIe AXI-master Window0 configuration register - 3

Reg94: CONF_AXI_SLV_WNDW_0 Register (0x2094)

Table 1-47 • CONF_AXI_SLV_WNDW_0

Bit Number	Name	Reset Value	Description
31:0	CONF_AXI_SLV_WNDW_0	0x0	PCIe AXI-slave Window0 configuration register - 0

Reg98: CONF AXI SLV WNDW 1 Register (0x2098)

Table 1-48 • CONF_AXI_SLV_WNDW_1

Bit Number	Name	Reset Value	Description
31:0	CONF_AXI_SLV_WNDW_1	0x0	PCIe AXI-slave Window0 configuration register - 1

Reg9C: CONF_AXI_SLV_WNDW_2 Register (0x209C)

Table 1-49 • CONF_AXI_SLV_WNDW_2

Bit Number	Name	Reset Value	Description
31:0	CONF_AXI_SLV_WNDW_2	0x0	PCIe AXI-slave Window0 configuration register - 2

RegA0: CONF_AXI_SLV_WNDW_3 Register (0x20A0)

Table 1-50 • CONF_AXI_SLV_WNDW_3

Bit Number	Name	Reset Value	Description
3:0	CONF_AXI_SLV_WNDW_3	0x0	PCIe AXI-slave Window0 configuration register - 3

Note: All the register are 32-bit. Bits not shown in the table are reserved.

RegA4: DESKEW_CONFIG Register (0x20A4)

Table 1-51 • DESKEW_CONFIG

Bit Number	Name	Reset Value	Description
3:2	DESKEW_PLL_FDB_CLK	0x0	These bits set the PLL FEEDBACK clock DESKEW register. Delay cells addition in the path of FEEDBACK clock to PLL.
			00: Bypass delay cells
			01: Add 1-cells
			10: Add 2-cells
			11: Add 3-cells
1:0	DESKEW_PLL_REF_CLK	0x0	These bits set the PLL REF clock DESKEW register. Delay cells addition in the path of REFERENCE clock to PLL.
			00: Bypass delay cells
			01: Add 1-cells
			10: Add 2-cells
			11: Add 3-cells

Note: All the register are 32-bit. Bits not shown in the table are reserved.

I/O Signal Interface of SERDESIF

The SERDESIF block interfaces with the FPGA fabric and SERDES differential I/O pad. The SERDESIF I/Os can be grouped into a number of interfaces from functional, protocol. The SERDESIF I/O signals interface are listed below:

- · Reset interface
- · Clock reset interface
- · AXI/AHB-Lite (AHBL) master interface
- AXI/AHBL slave interface
- APB interface (32-bit)
- External PCS interface (lane2 and lane3)
- · I/O pad interface
- · SPLL control and status Interface
- · PCIe interrupt and power management interface

These interface signals are multiplexed to support different serial protocols at any point of time.

Table 1-52 • SERDESIF Block-Reset Interface

Port	Туре	Connected To	Description
CORE_RESET_N	Input	Fabric	PCIe or XAUI mode: Active reset for PCIe and XAUI fundamental core
PHY_RESET_N	Input	Fabric	SERDES-PHY-Active low reset. If not, lanes are used for any serial protocol. Tie it to high.
APB_S_PRESET_N	Input	Fabric	Asynchronous set signal for APB slave interface.
EPCS_0_RESET_N	Input	Fabric	External EPCS interface mode: External PCS
EPCS_1_RESET_N			reset control lane0 and lane1.
EPCS_0_RX_RESET_N	Output	Fabric	External EPCS interface mode (lane0 and
EPCS_1_RX_RESET_N			lane1): Clean reset deasserted on rxclk.
EPCS_0_TX_RESET_N	Output	Fabric	External EPCS interface mode (lane0 and
EPCS_1_TX_RESET_N			lane1): Clean reset deasserted on txclk.
PLL_SERDESIF_RESET	Output	SPLL	SPLL reset output
PLL_SERDESIF_PD	Output	SPLL	SPLL power-down enable

Table 1-53 • SERDESIF Block-Clock Interface

Port	Туре	Connected To	Description
CLK_BASE	Input	Fabric	Fabric source clock. In PCIe mode this is the reference clock of the SPLL. PLL output clock (pll_aclk) is used as AXI/AHB bridge clock.
APB_S_PCLK	Input	Fabric	PCLK for APB-slave interface in the SERDESIF
REFCLK_IO0	Input		Clock input to be used as reference clock of PMA for Tx PLL.
REFCLK_IO1	Input		Clock input to be used as reference clock of PMA for Tx PLL.
CCC_REF_CLK	Input	CCC	PMA ref clock source direct from CCC

Table 1-53 • SERDESIF Block-Clock Interface (continued)

Port	Туре	Connected To	Description
FAB_REF_CLK	Input	Fabric	PMA ref clock source direct from fabric
XAUI_FDB_CLK	Input	Fabric	XAUI mode feedback clock for SPLL
XAUI_CLK_OUT	Output	Fabric	XAUI SPLL clock output
EPCS_RXCLK[1:0]	Output	Fabric	External EPCS interface Rx clock for lane3 and lane2
EPCS_TXCLK[1:0]	Output	Fabric	External EPCS interface Tx clock for lane3 and lane2
EPCS_0_TX_CLK	Output	Fabric	External EPCS interface Tx clock for lane0
EPCS_1_TX_CLK	Output	Fabric	External EPCS interface Tx clock for lane1
EPCS_0_RX_CLK	Output	Fabric	External EPCS interface Rx clock for lane0
EPCS_1_RX_CLK	Output	Fabric	External EPCS interface Rx clock for lane1
CLK_25_50MHZ	Input	RC Osc	25/50MHz RCOSC Oscillator clock

Table 1-54 • SERDESIF Block-AXI/AHB-Lite Master Interface

		Connected	
Port	Type	То	Description
AXI_M_AWID[3:0]	Output	Fabric	AXI-Master mode: AWID
AXI_M_AWADDR_AHB_M_HADDR[31:0]	Output	Fabric	AXI-Master mode: AWADDR
			AHBL-Master mode: HADDR
AXI_M_AWLEN_AHB_M_HBURST[3:0]	Output	Fabric	AXI-Master mode: AWLEN
			AHBL-Master mode: HBURST
AXI_M_AWSIZE_AHB_M_HSIZE[1:0]	Output	Fabric	AXI-Master mode: AWSIZE
			AHBL-Master mode: HSIZE
AXI_M_AWBURST_AHB_M_HTRANS[1:0]	Output	Fabric	AXI-Master mode: AWBURST
			AHBL-Master mode: HTRANS
AXI_M_AWVALID_AHB_M_HWRITE	Output	Fabric	AXI-Master mode: AWVALID
			AHBL-Master mode: HWRITE
AXI_M_AWREADY	Input	Fabric	AXI-Master mode: AWREADY
AXI_M_WID[3:0]	Output	Fabric	AXI-Master mode: WID
AXI_M_WSTRB[7:0]	Output	Fabric	AXI-Master mode: WSTRB
AXI_M_WLAST	Output	Fabric	AXI-Master mode: WLAST
AXI_M_WVALID	Output	Fabric	AXI-Master mode: WVALID
AXI_M_WDATA_AHB_M_HWDATA[63:0]	Output	Fabric	AXI-Master mode: WDATA[63:0]
			AHBL-Master mode: HWDATA[31:0]
AXI_M_WREADY_AHB_M_HREADY	Input	Fabric	AXI-Master mode: WREADY
			AHBL-Master mode: HREADY
AXI_M_BID[3:0]	Input	Fabric	AXI-Master mode: BID
AXI_M_BRESP_HRESP[1:0]	Input	Fabric	AXI-Master mode: BRESP
			AHBL-Master mode: HRESP

Table 1-54 • SERDESIF Block-AXI/AHB-Lite Master Interface (continued)

Port	Type	Connected To	Description
	Type		·
AXI_M_BVALID	Input	Fabric	AXI-Master mode: BVALID
AXI_M_BREADY	Output	Fabric	AXI-Master mode: BREADY
AXI_M_ARID[3:0]	Output	Fabric	AXI-Master mode: ARID
AXI_M_ARADDR[31:0]	Output	Fabric	AXI-Master mode: ARADDR
AXI_M_ARLEN[3:0]	Output	Fabric	AXI-Master mode: ARLEN
AXI_M_ARSIZE[1:0]	Output	Fabric	AXI-Master mode: ARSIZE
AXI_M_ARBURST[1:0]	Output	Fabric	AXI-Master mode: ARBURST
AXI_M_ARVALID	Output	Fabric	AXI-Master mode: ARVALID
AXI_M_ARREADY	Input	Fabric	AXI-Master mode: ARREADY
AXI_M_RID[3:0]	Input	Fabric	AXI-Master mode: RID
AXI_M_RDATA_AHB_M_HRDATA[63:0]	Input	Fabric	AXI-Master mode: RDATA[63:0]
			AHBL-Master mode: HRDATA[31:0]
AXI_M_RRESP[1:0]	Input	Fabric	AXI-Master mode: RRESP
AXI_M_RLAST	Input	Fabric	AXI-Master mode: RLAST
AXI_M_RVALID	Input	Fabric	AXI-Master mode: RVALID
AXI_M_RREADY	Output	Fabric	AXI-Master mode: RREADY

Table 1-55 • SERDESIF Block-AXI /AHB-Lite - Slave Interface

Port	Tuno	Connected To	
	Type		Description
AXI_S_AWID_HSEL	Input	Fabric	AXI-Slave mode: AWID
			AHBL-Slave mode: HSEL
AXI_S_AWADDR_AHB_S_HADDR[31:0]	Input	Fabric	AXI-Slave mode: AWADDR
			AHBL-Slave mode: HADDR
AXI_S_AWLEN_AHB_S_HBURST[1:0]	Input	Fabric	AXI-Slave mode: AWLEN
			AHBL-Slave mode: HBURST
AXI_S_AWSIZE_AHB_S_HSIZE[1:0]	Input	Fabric	AXI-Slave mode: AWSIZE
			AHBL-Slave mode: HSIZE
AXI_S_AWBURST_AHB_S_HTRANS[1:0]	Input	Fabric	AXI-Slave mode: AWBURST
			AHBL-Slave mode: HTRANS
AXI_S_AWVALID_AHB_S_HWRITE	Input	Fabric	AXI-Slave mode: AWVALID
			AHBL-Slave mode: HWRITE
AXI_S_AWREADY	Output	Fabric	AXI-Slave mode: AWREADY
AXI_S_AWLOCK	Input	Fabric	AXI-Slave mode: AWLOCK
AXI_S_WID	Input	Fabric	AXI-Slave mode: WID
AXI_S_WSTRB	Input	Fabric	AXI-Slave mode: WSTRB
AXI_S_WLAST	Input	Fabric	AXI-Slave mode: WLAST
AXI_S_WVALID	Input	Fabric	AXI-Slave mode: WVALID

Table 1-55 • SERDESIF Block-AXI /AHB-Lite - Slave Interface (continued)

Туре	Connected To	Description
Input	Fabric	AXI-Slave mode: WDATA[63:0]
		AHBL-Slave mode: HWDATA[31:0]
Output	Fabric	AXI-Slave mode: WREADY
		AHBL-Slave mode: HREADY
Output	Fabric	AXI-Slave mode: BID
Output	Fabric	AXI-Slave mode: BRESP
		AHBL-Slave mode: HRESP
Output	Fabric	AXI-Slave mode: BVALID
Input	Fabric	AXI-Slave mode: BREADY
		AHBL-Slave mode: HREADY
Input	Fabric	AXI-Slave mode: ARID
Input	Fabric	AXI-Slave mode: ARADDR
Input	Fabric	AXI-Slave mode: ARLEN
Input	Fabric	AXI-Slave mode: ARSIZE
Input	Fabric	AXI-Slave mode: ARBURST
Input	Fabric	AXI-Slave mode: ARVALID
Input	Fabric	AXI-Slave mode: ARLOCK
Output	Fabric	AXI-Slave mode: ARREADY
Output	Fabric	AXI-Slave mode: RID
Output	Fabric	AXI-Slave mode: RDATA[63:0]
		AHBL-Slave mode: HRDATA[31:0]
Output	Fabric	AXI-Slave mode: RRESP
Output	Fabric	AXI-Slave mode: RLAST
Output	Fabric	AXI-Slave mode: RVALID
Input	Fabric	AXI-Slave mode: RREADY
	Output Output Output Input Input Input Input Output Output Output Output Output Output Output Output	Type To Input Fabric Output Fabric Output Fabric Output Fabric Input Fabric Output Fabric

Table 1-56 • SERDESIF Block-APB Slave Interface

Port	Туре	Connected To	Description
APB_S_PCLK	Input	Fabric	APB-Slave interface: PCLK
APB_S_PRESET_N	In	Fabric	APB-Slave interface: PRESETN: Async-set
APB_S_PSEL	Input	Fabric	APB-Slave interface: PSEL
APB_S_PENABLE	Input	Fabric	APB-Slave interface: PENABLE
APB_S_PWRITE	Input	Fabric	APB-Slave interface: PWRITE
APB_S_PADDR [13:0]	Input	Fabric	APB-Slave interface: PADDR
APB_S_PWDATA [31:0]	Input	Fabric	APB-Slave interface: PWDATA
APB_S_PREADY	Output	Fabric	APB-Slave interface: PREADY

Table 1-56 • SERDESIF Block-APB Slave Interface (continued)

Port	Туре	Connected To	Description
APB_S_PRDATA [31:0]	Output	Fabric	APB-Slave interface: PRDATA
APB_S_PSLVERR	Output	Fabric	APB-Slave interface: PSLVERR

Table 1-57 • SERDESIF Block-EPCS Interface (Lane2 and Lane3)

Port	Туре	Connected To	Description
EPCS_2_PWRDN EPCS_3_PWRDN	Input	Fabric	EPCS interface (lane2and lane3): Power-down mode of the PMA
EPCS_3_TX_DATA [19:0] EPCS_3_TX_DATA [19:0]	Input	Fabric	EPCS interface (lane2 and lane3): Signal detected (1'b0) needed for SATA
EPCS_2_TX_VAL EPCS_3_TX_VAL	Input	Fabric	EPCS interface (lane2 and lane3): Transmit data valid
EPCS_2_TX_OOB EPCS_3_TX_OOB	Input	Fabric	EPCS interface (lane2 and lane3): Transmit idle needed for SATA (OOB)
EPCS_2_RX_ERR EPCS_3_RX_ERR	Input	Fabric	EPCS interface (lane2 and lane3): Receiver error detected
EPCS_2_READY EPCS_3_READY	Output	Fabric	EPCS interface (lane2 and lane3): PHY training completed
EPCS_2_RXDATA[19:0] EPCS_3_RXDATA[19:0]	Output	Fabric	EPCS interface (lane2 and lane3): Received data from the PMA
EPCS_2_RX_VAL EPCS_3_RX_VAL	Output	Fabric	EPCS interface (lane2 and lane3): Receive data valid (if needed)
EPCS_2_RX_IDLE EPCS_3_RX_IDLE	Output	Fabric	EPCS interface (lane2 and lane3): Receive idle needed for SATA (OOB)
EPCS_2_TX_CLK_STABLE EPCS_3_TX_CLK_STABLE	Output	Fabric	EPCS interface (lane2 and lane3): Clock stable info

Table 1-58 • SERDESIF Block-I/O - PAD Interface

		Connected	
Port Name	Type	to	Description
PCIE_x_RXDP0	Input	I/O Pads	Receive data. SERDES differential positive
PCIE_x_RXDP1			input: each SERDESIF consists of 4 RX+ signals. Here x=0 for SERDESIF 0 and x=1 for
PCIE_x_RXDP2			SERDESIF_1. If unused, can be left floating.
PCIE_x_RXDP3			
PCIE_x_RXDN0	Input	I/O Pads	Receive data. SERDES differential negative
PCIE_x_RXDN1			input
PCIE_x_RXDN2			Each SERDESIF consists of 4 RX- signals. Here x=0 for SERDESIF_0 and x=1 for
PCIE_x_RXDN3			SERDESIF_1. If unused, can be left floating.
PCIE_x_TXDP0	Output	I/O Pads	Transmit data. SERDES differential positive
PCIE_x_TXDP1			output
PCIE_x_TXDP2			Each SERDESIF consists of 4 TX+ signals. Here x=0 for SERDESIF_0 and x=1 for SERDESIF_1. If unused, can be left floating.
PCIE_x_TXDP3			
PCIE_x_TXDN0	Output	I/O Pads	Transmit data. SERDES differential negative
PCIE_x_TXDN1			output
PCIE_x_TXDN2			Each SERDESIF consists of 4 TX- Signals. Here x=0 for SERDESIF 0 and x=1 for
PCIE_x_TXDN3			SERDESIF_1. If unused, can be left floating.
PCIE_x_REXTL	Referenc e	I/O Pads	External reference resistor connection to calibrate TX/RX termination value. Each SERDESIF consists of 2 REXT signals—one for
PCIE_x_REXTR			lanes 0 and 1 and another for lanes 2 and 3. Here x=0 for SERDESIF_0 and x=1 for SERDESIF_1. If unused, can be left floating.
PCIE_x_REFCLK0P	Input	I/O Pads	Reference clock differential positive. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual
PCIE_x_REFCLK1P			purpose I/Os; t these lines can be used for MSIOD fabric, if SERDESIF is not activated. Here x = 0 for SERDESIF_0 and x=1 for SERDESIF_1. If unused, can be left floating.
PCIE_x_REFCLK0N	Input	I/O Pads	Reference clock differential negative. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be for MSIOD fabric, if SERDESIF is not activated. Here x=0 for SERDESIF_0 and x=1 for SERDESIF_1. If unused, can be left floating.

Table 1-59 • SERDESIF Block-PLL Control and Status Interface

Port	Туре	Connected To	Description
SPLL_LOCK	Output	Fabric	SPLL control/status information
PLL_LOCK_INT	Output	Fabric	SPLL control/status information
PLL_LOCKLOST_INT	Output	Fabric	SPLL control/status information
FAB_PLL_LOCK	Input	Fabric	Fabric PLL LOCK output

Table 1-60 • SERDESIF Block-PCI Express Interrupt and Power Management Interface

Port	Туре	Connected To	Description
PCIE_INTERRUPT [3:0]	Input	Fabric	PCIe system interrupt inputs
PCIE_SYSTEM_INT	Output	Fabric	PCIe system interrupt output
PCIE_WAKE_REQ	Input	Fabric	PCIe L2/P2 request from fabric
PCIE_WAKE_N	Output	Fabric	PCIe L2/P2 exit request

SERDESIF I/O Signals For Various Protocol Modes

The SERDESIF block supports implementing multiple high speed serial protocols and allows different modes of operation. Depending on the protocol implemented, some of the interface signals become active or inactive. The term Fabric mode is used to describe the fabric interface to SERDESIF during various modes. Fabric mode is divided into four modes:

- 1. Fabric mode0 PCIe mode of operation with AXI master and AXI slave interface
- 2. Fabric mode1 PCle mode of operation with AHBL master and AHBL slave
- 3. Fabric mode2 EPCS mode of operation
- 4. Fabric mode3 XAUI mode of operation

Table 1-61 shows the link between various Protocol mode and Fabric mode.

Table 1-61 • Link Between Various Protocol Mode and Fabric Mode

Mode of Operation	Description	Fabric Mode
PCIe-only mode	SERDESIF with AXI master and slave interface	Fabric mode0
	SERDESIF with AHB master and slave interface	Fabric mode1
EPCS-only mode (SGMII-only or EPCS-only mode)	SERDESIF with EPCS interface with maximum four lanes	Fabric mode2
XAUI mode	SERDESIF with XAUI mode	Fabric mode3
PCIe and EPCS mode	SERDESIF with PCIe AXI master and slave on lane0 and lane1	Fabric mode0
	SERDESIF with PCIe AHBL master and slave on lane0 and lane1	Fabric mode1
	SERDESIF with EPCS interface for lane2 and lane3 (only EPCS lane0 and lane1 signals are over-laid)	Not applicable

Fabric Signals for Fabric Mode0

In Fabric mode0, AXI master and AXI slave interfaces are exposed to the SmartFusion2 SoC FPGA fabric. The overlaid interface EPCS interface for lane0 and lane1 are not exposed to the SmartFusion2 SoC FPGA fabric. The SERDESIF can be configured to support the single or multi-protocol in Fabric mode0 (that is, PCIe-only, or PCIe and EPCS protocol mode).

Note: The application interface to SERDESIF for PCIe protocol is AXI master and AXI slave interface.

Table 1-62 lists the SERDESIF signals and behavior in Fabric mode0.

Table 1-62 • SERDESIF Signals in Fabric Mode0

SERDESIF Non-overlaid Interface	Interface Behavior			
Clock and reset interface	Active			
AXI/AHBL master interface	Active (PCIe in AXI mode)			
AXI/AHBL slave interface	Active (PCIe in AXI mode)			
APB interface (32-bit)	Active/Inactive			
EPCS interface (lane2 and lane3)	Inactive in PCIe-only protocol PHY-MODE; Active in multi-protocol PHY-mode			
I/O PAD interface	Active			
MISCELLENOUS interface	Active			
PLL control and status interface	Active			

All SERDESIF signals are mapped one-to-one and there is no overlaying of signals. Figure 1-16 shows the SERDESIF I/O signals in Fabric mode0.

Figure 1-16 • SERDESIF I/O Signals in Fabric Mode0

Fabric Signals for Fabric Mode1

In Fabric mode1, overlaid AHB-lite master and slave interfaces are exposed to the fabric. Overlaid interface EPCS interface for lane0 and lane1 is not exposed to fabric. The SERDESIF block can be configured to support single or multi-protocol in Fabric mode1 that is different PHY modes can be supported in Fabric mode1.

Note: The application interface to SERDESIF for PCIe protocol is AHB master and AHB slave interface. Table 1-63 lists the SERDESIF signals and behavior in Fabric mode1.

Table 1-63 • SERDESIF Signals in Fabric Mode1

SERDESIF Signal Interface	Interface Behavior		
Clock and reset interface	Active		
AXI/AHBL master interface	Active (PCIe in AHBL Mode)		
AXI/AHBL slave interface	Active (PCIe in AHBL Mode)		
APB interface (32-bit)	Active/Inactive		
EPCS interface (lane2 and lane3)	Inactive		
I/O pad Interface	Active		
Miscellaneous interface	Active		
PLL control and status interface	Active		

Figure 1-17 shows the SERDESIF I/O signals in Fabric mode1.

Figure 1-17 • SERDESIF I/O Signals in Fabric Mode1

Fabric Signals for Fabric Mode2

In Fabric mode2, overlaid EPCS interfaces for lane0 and lane1 are exposed to fabric. Non-overlaid EPCS interface for lane2 and lane3 are exposed directly to fabric and is active interface. The SERDESIF can be configured to support only single protocol in Fabric mode2. The application interface to the SERDESIF for EPCS protocol's is EPCS interface (maximum - x4-lane). The EPCS interface for lane0 and lane1 are overlaid on AXI-master and slave interface. The EPCS interface for lane2 and lane3 are non-overlaid interface and are directly connected to the fabric. EPCS protocols can be run with x1/x2/x4 lane support. Table 1-64 lists the SERDESIF signals and behavior in Fabric mode2.

Table 1-64 • SERDESIF Signals in Fabric Mode2

SERDESIF Signal Interface	Interface Behavior
Clock and reset interface	Active
AXI/AHBL master interface	Active (EPCS interface of lane0 and lane1 for SRIO/EPCS)
AXI/AHBL slave interface	Inactive
APB interface (32-bit)	Active/Inactive
EPCS interface (lane2 and lane3)	Active
I/O pad Interface	Active
Miscellaneous interface	Active

Figure 1-18 shows the SERDESIF I/O signals in Fabric mode2.

Figure 1-18 • SERDESIF I/O Signals in Fabric Mode2

Fabric Signal MUXing for Fabric Mode3

In Fabric mode3, overlaid XGMII interfaces for XAUI protocol is exposed to the SmartFusion2 SoC FPGA fabric. The XGMII interface is overlaid on AXI-master and slave interface. The SERDESIF can be configured to support only XAUI protocol in Fabric mode3. The application interface to the SERDESIF for XAUI protocol is XGMII interface (x4-lane). Table 1-65 on page 55 lists the SERDESIF signals and behavior in Fabric mode3.

Table 1-65 • SERDESIF Signals in Fabric Mode3

SERDESIF Signal Interface	Interface Behavior
Clock and reset interface	Active
AXI/AHBL master interface	Active (XGMII interface for XAUI protocol)
AXI/AHBL slave interface	Active (XGMII interface for XAUI protocol)
APB interface (32-bit)	Active/Inactive
EPCS interface (lane2 and lane3)	Inactive
IO pad interface	Active
Miscellaneous interface	Active

Figure 1-19 shows the SERDESIF I/O signals in Fabric mode3.

Figure 1-19 • SERDESIF I/O Signals in Fabric Mode3

SERDESIF Debug Interface

SERDESIF has a Debug mode mostly for debugging PCIe link. A number of internal status/error signals are available to the fabric to be used for end-to-end system debug function. In order to keep the number of signals interfacing between the fabric and SERDESIF block to a minimum, these debug signals are multiplexed on PRDATA signals of the APB bus. Debug mode is enabled only when DEBUG-KEY (8'b1010_0101) is written to DEBUG_MODE_KEY APB system register (offset - address: A8).

Table 1-66 on page 56 shows the condition when debug information is available and Table 1-67 on page 56 shows the debug signals that are mapped to APB PRDATA bus.

Table 1-66 • Debug Information Available Conditions

Debug Mode	APB-Bus Operation	APB_PRDATA Bus Behavior
Enabled	Write	Debug information
Enabled	Read	APB - read data
Enabled	Idle	Debug information
Disabled	Do not care	APB - read data

Table 1-67 • Debug Signals Mapping to APB-Bus

APB_PRDAT Signals	Debug Signal	Description
APB_S_PRDATA[0]	PHY_LOCK_STATUS	SERDES PHY related status signals. Combined status of PHY - Tx/CDR- PLL lock status. Only PHY-lanes which are used are considered for this phy_lock_status signal generation. When any used PLL's PHY lanes are locked, then phy_lock_status is 1'b1 else it is 1'b0. Note: Individual PHY lane's PLL information is available in
		"SERDES_TEST_OUT" register in the SERDESIF system block.
APB_S_PRDATA[5:1]	LTSSM_R [4:0]	LTSSM state: LTSSM state encoding. Refer to LTSSM_28_24
		register for more info.
APB_S_PRDATA[7:6]	ERR_PHY [1:0]	PHY error: Physical layer error
		bit0: Receiver port error
		bit1: Training error
APB_S_PRDATA[12:8]	ERR_DLL [4:0]	DLL error: Data link layer error
		bit0: TLP error
		bit1: DLLP error
		bit2: Replay timer error
		bit3: Replay counter rollover
		bit4: DLL protocol error
APB_S_PRDATA[21:13]	ERR_TRN [8:0]	TRN error: Transaction layer error
		bit0: Poisoned TLP received
		bit1: ECRC check failed
		bit2: Unsupported request
		bit3: Completion timeout
		bit4: Completer abort
		bit5: Unexpected completion
		bit6: Receiver overflow
		bit7: Flow control protocol error
		bit8: Malformed TLP

Table 1-67 • Debug Signals Mapping to APB-Bus (continued)

APB_PRDAT Signals	Debug Signal	Description
APB_S_PRDATA[22]	ERR_DL	Error ACK/NACK DLLP parameter: This signal reports that the received ACK/NACK DLLP has a sequence number higher than the sequence number of the last transmitted TLP.
APB_S_PRDATA[23]	TIMEOUT	LTSSM timeout: This signal serves as a flag, which indicates that the LTSSM timeout condition is reached for the current LTSSM state.
		1b1: Timeout condition reached
		1b0: No time condition reached
APB_S_PRDATA[24]	CRCERR	Received TLP with LCRC error: This signal reports that a TLP is received that contains an LCRC error.
APB_S_PRDATA[25]	CRCINV	Received nullified TLP: This signal indicates that a nullified TLP is received.
APB_S_PRDATA[26]	RX_ERR_DLLP	Received DLLP with LCRC error: This signal reports that a DLLP has been received that contains an LCRC error.
APB_S_PRDATA[27]	ERR_DLLPROT	DLL protocol error at data link layer: This signal reports a DLL protocol error.
APB_S_PRDATA[28]	RX_ERR_FRAME	DLL framing error detected: This signal indicates that received data cannot be considered as a DLLP or TLP, in which case, a receive port error is generated and link retraining is initiated.
APB_S_PRDATA[29]	L2-EXIT	I2_exit information signal
APB_S_PRDATA[30]	DLUP_EXIT	dlup_exit information signal
APB_S_PRDATA[31]	HOTRST_EXIT	hotrst_exit information signal

Glossary

Acronyms

PCI Express

Peripheral component interconnect express

PCIe

PCI Express

PCS

Physical coding sublayer

SERDESIF

Serializer/deserializer interface

SGMII

serial gigabit media independent interface

XAUI

Extended attachment unit interface

List of Changes

The following table lists critical changes that were made in each revision.

Date	Changes	Page
50200330-1/11.12	Updated Figure 1-14 (SAR 42912).	26

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month and year of publication.

2 - PCI Express

The SmartFusion2 SoC FPGA family supports two hard high-speed serial interface blocks (SERDESIF0 and SERDESIF1). Each SERDESIF block contains a PCI Express system block, also known as a PCIe system. The PCIe system interfaces to the FPGA fabric and the serialization/deserialization (SERDES) block. The PCIe system IP block and SERDES block in SERDESIF implements PCIe Base Specification Rev. 2.0 for Gen1 or Gen2. The main features of PCI Express implemented in SmartFusion2 SoC FPGA are as follows:

- x1, x2, x4 lane support
- · Implements native endpoint
- PCIe Base Specification Revision 2.0 and 1.1 compliant
- · 1 virtual channel (VC)
- 1 to 3, 64-bit base address registers
- Receive, transmit and retry buffer using Dual-port RAM implementation

Fully compliant physical layer device (PHY), physical coding sub-layer (PCS)

PCIe Endpoint

The SmartFusion2 SoC FPGA supports implementing PCIe endpoint. Figure 2-1 shows the PCIe implementation in SERDESIF.

Figure 2-1 • SERDESIF Configuration for PCle Single Protocol Mode

Table 2-1 shows the various options for implementing a PCIe link on four physical SERDES lanes.

Table 2-1 • Options for Implementing PCIe in SERDESIF Block

	Physical SERDES Lanes/Logical Lanes – Mapping							
	Lan	e0	Lan	e1	Lane2		Lane3	
PHY Mode	Protocol	Speed (bits per second)	Protocol	Speed (bits per second)	Protocol	Speed (bits per second)	Protocol	Speed (bits per second)
Single Protocol	PCle	2.5G	_	_	_	-	-	_
(PCIe Link Mode)	PCle	2.5G	PCle	2.5G	_	_	_	_
	PCle	2.5G	PCle	2.5G	PCle	2.5G	PCle	2.5G
	PCle	5G	_	_	_	_	_	_
	PCle	5G	PCle	5G	_	_	_	_
	PCle	5G	PCle	5G	PCle	5G	PCle	5G
Single Protocol	_	_	_	_	_	_	PCle	2.5G
(PCle Link Reversed Mode)	_	_	_	_	PCle	2.5G	PCle	2.5G
Wode)	PCle	2.5G	PCle	2.5G	PCle	2.5G	PCle	2.5G
	_	_	_	_	_	_	PCle	5G
	_	_	-	_	PCle	5G	PCle	5G
	PCle	5G	PCle	5G	PCle	5G	PCle	5G
Multi Protocol	PCle	2.5G	_	_	EPCS	_	EPCS*	_
(PCIe Link Mode)	PCle	2.5G	PCle	2.5G	EPCS	_	EPCS	_
	PCle	5G	-	_	EPCS	_	EPCS	_
	PCle	5G	PCle	5G	EPCS	_	EPCS*	_
Multi Protocol	1	_	PCle	2.5G	EPCS	_	EPCS	_
(PCle Link Reversed- Mode)	PCle	2.5G	PCle	2.5G	EPCS	_	EPCS	_
(Mode)		_	PCle	5G	EPCS	_	EPCS	
	PCle	5G	PCle	5G	EPCS	_	EPCS	_

Note: *Lane3 EPCS interfaces are available in multi-protocol PHY mode can be used for running SGMII protocol.

PCIe System

PCIe is a high speed, packet based, point-to-point, low pin count, serial interconnect bus. SmartFusion2 SoC FPGA has a fully hardened PCIe implementation. The PCIe system sub-block inside the SERDESIF block implements the PCIe transaction layer and data link layer. The SERDES sub-block inside the SERDESIF block implements the physical layer. This section describes the PCIe system and its various sub-blocks. Figure 2-2 shows the SmartFusion2 SoC FPGA PCIe system block diagram. The main sub-blocks for PCIe system include:

- 1. PCIe IP block with AXI interface
- 2. AXI to AXI/AHB-Lite (AHBL) bridge
- 3. AXI/AHBL to AXI bridge
- 4. PCIe bridge registers
- 5. Glue logic blocks

Figure 2-2 • PCIe System Block Diagram

PCIe IP Block with AXI Interface

The PCIe IP block in SmartFusion2 SoC FPGA implements an x1, x2, or x4 PCIe interface that can be configured in Endpoint mode. It is configured in Endpoint mode during the initialization phase or chip bring-up. On the application side, it has one master interface and one slave interface. The master interface can be a 64-bit AXI master or 32-bit advanced high performance bus (AHB) master. The slave interface can be a 64-bit AXI slave or 32-bit AHB slave interface. The PCIe link initiates transactions to SmartFusion2 SoC FPGA fabric through the AXI master or AHB master. SmartFusion2 SoC FPGA fabric initiates transactions towards the PCIe link through the AXI slave or AHB slave interface. There is an APB interface that has access to the PCIe bridge configuration registers. In addition, the APB interface has access to the configuration register for the AXI to AXI/AHBL bridge and AXI/AHBL to AXI bridge, which are defined in the SERDESIF system registers. Figure 2-3 shows the architecture of the PCIe IP block.

Figure 2-3 • PCle IP Block Diagram

The main sub-blocks for the PCIe IP block include:

- 1. PCle base IP core
- 2. AXI master block
- 3. AXI slave block
- 4. PCIe to AXI window
- 5. AXI to PCIe window
- 6. PCIe bridge registers
- 7. APB slave interface

PCIe Base IP Core

The PCIe base IP core implements a x4 PCIe endpoint link, compliant to PCIe Rev. 2.0. The following sections describe the features of the SmartFusion2 SoC FPGA PCIe IP:

General

- x1, x2, x4 PCle core
- 64-bit data path
- · Supports link rate of 2.5 and 5.0 Gbps per lane
- Suitable for endpoint
- PCIe Base Specification Revision 2.0 and Revision 1.1 compliant
- One virtual channel (VC0)
- 16-bit PIPE interface for x1, x2, and x4 configuration
- Receive/transmit user application interface
- Advanced error reporting (AER) support
- End-to-end cyclic redundancy check (ECRC) generation, check, and forward support

Data Transfer

- Supports all memory, configuration, and message transactions
- · Highly optimized application interface for maximum effective throughput
- · Implements type 0 configuration space for endpoint

Configuration

· Supports 3 64-bit base address registers (BARs) or 6 32-bit BARs

Power Management and Interrupts

- Native active state power management L0s and L1 state support
- · Power management event (PME message)
- Up to 32 message signaled interrupts (MSI), mapped to any traffic class (TC), and interrupt (INT)
 message support
- · MSI-X capability support

The PCIe base IP core implements the transaction layer and data link layer described by the PCIe Base Specifications.

- Transaction layer The transaction layer (TL) contains the configuration space, which manages communication with the user application layer: the receive and transmit channels, the receive buffer, and flow control (FC) credits.
- Data link layer The data link layer (DLL) is responsible for link management, including transaction layer packet (TLP) acknowledgement, a retry mechanism in case of a nonacknowledged packet, flow control across the link (transmission and reception), power management, CRC generation and CRC checking, error reporting, and logging.

The PCIe IP core also utilizes a clock domain crossing (CDC) synchronizer between the data link layer and the physical layer that enables the data link and transaction layers to operate at a frequency independent from that of the physical layer.

AXI Master Block

The AXI master manages read and write transactions from the PCIe link.

Write Transaction Handling

The write transaction is handled in Big-Endian order, as required by the *PCI Express Base Specification*. As PCIe transactions can be any size up to the configurable maximum payload size (2 KB) and AXI transactions are limited to 128 bytes, a received TLP can be cut into several AXI transactions. So when the AXI master receives a write transaction, it processes the transaction by 128-byte segments (aligned on a 128-byte address boundary) until all of the segments in the transaction have been processed.

Read Transaction Handling

Read transactions are handled the same way as write transactions, except that before transferring the transaction to the AXI master read channel, the PCIe IP checks for available space on the transmit buffer. If there is not sufficient space in the transmit buffer to store PCIe completions, the PCIe IP does not transfer the read transaction. The number of outstanding AXI master read transactions is therefore limited by the size of the TX buffer. This is configurable in the core between 2 (512 B TX buffer), 4 (1 KB TX buffer), and 8 (2 KB TX buffer) outstanding requests. The AXI master read channel can receive transactions in any order, and data can be completely interleaved. However, the PCIe IP generates completions in the order they are initiated on the link.

AXI Slave Block

The AXI slave interface forwards AXI read and write requests to the PCIe link.

Write Transaction Handling

Write transactions are only accepted if at least 128 bytes of buffer space is available in the transmit buffer. Because AXI does not support write data interleaving, the PCIe IP stores all write requests inside the transmit buffer (to avoid the insertion of wait states) before initiating PCIe transactions. Wait states are only asserted for write requests if no additional outstanding requests can be stored in the buffer. The PCIe IP then waits for the last data phase before arbitrating between read requests and completions and checking for FC credits availability on the decoded VC. Write responses are generated as soon as the last data phase occurs, even if the request has not been sent (because of a lack of credit or a higher priority transaction, for example).

Read Transaction Handling

Read transactions are only accepted if at least 128 bytes of buffer space is available in the receive buffer. If the read request is accepted, the PCle IP generates a PCle tag, arbitrates between write requests and completions, then checks for available FC credits on the decoded VC. An error response is generated if a timeout occurs or if a completion with error status is received.

PCIe to AXI Window

The PCIe base IP receives both 32-bit address and 64-bit address PCIe requests, but only 32-bit address bits are provided to the AXI master. The PCIe to AXI address windows manage read and write requests from the PCIe link and are used to translate a PCIe 32-bit or 64-bit base address to a 32-bit AXI base address transaction.

AXI to PCIe Window

The AXI to PCIe address windows are used to translate a transaction's 32-bit AXI base address to a PCIe 32-bit or 64-bit base address in order to generate a PCIe TLP.

PCIe Bridge Registers

The PCIe bridge registers configure all configuration registers and associated functions. Refer to the "PCIe Core Bridge Register Space" section on page 83 for more details. Most bridge registers are configured to a fixed value during power-up, whereas the control and status registers are used via the APB interface. Note that most of the PCIe bridge registers are actually used for the PCIe configuration space register and it takes two clock cycles for PCIe configuration space registers to get updated after the PCIe bridge registers are updated.

APB Slave

The APB slave interface provide APB interface to configuration PCle Bridge Registers. Refer to the "PCle Bridge Registers" section on page 90 for details.

AXI to AXI/AHBL Bridge (AXI-AHB Top)

The AXI to AXI/AHBL top bridge module implements an AXI master to AXI master / AHBL master protocol translator. This bridge appears as a 64-bit AXI slave to the PCle 64-bit AXI master on the input side and as a 64-bit AXI master or 32-bit / 64-bit AHB master to the AHBL slave on the output towards the fabric. So, the bridge accepts 64-bit AXI master transactions and converts the transactions into 64-bit AXI or 32-bit AHBL master output transactions for the fabric. Figure 2-4 shows the block diagram of the AXI-AHB top bridge.

Figure 2-4 • AXI-to-AXI/AHBL Bridge Block Diagram

The AXI to AXI/AHBL bridge are configured using the two SERDESIF system registers, as shown in Figure 2-2 on page 61, for appropriate slave implementations in the fabric. Refer to the SERDESIF system registers in the "SERDESIF Block" section on page 5 for details.

Table 2-2 • Configuration Inputs for Configuring the AXI to AXI/AHBL Bridge

F_AXI_AHB_SLAVE	Specifies whether there is an AXI/AHBL slave implemented in the fabric. 1: AXI slave implemented in fabric (default value). 0: AHB slave implemented in the fabric.
AHB_DATA_WIDTH	Specifies whether there is a 32-bit or 64-bit AHB slave in fabric. Applies only when F_AXI_AHB_SLAVE is programmed to 0. 1: 64-bit AHB slave implemented in the fabric (default value). 0: 32 bit AHB slave implemented in the fabric.

The AXI interface has the following limitations:

- 1. Supports only INCR types of bursts.
- 2. Supports only 64-bit read/write transactions on the AXI slave interface.

AHBL/AXI to AXI Bridge (AHB-AXI-TOP)

The AHBL/AXI to AXI bridge module implements an AHBL/AXI master to AXI master protocol translator. The bridge appears as a 64-bit AXI slave or 32-bit AHBL slave to the fabric 64-bit AXI master or 32-bit AHBL master on the input side. The appearance on the output side is as 64-bit AXI master to the 64-bit PCIe AXI slave on the PCIe side. So, the input side of the bridge accepts 32-bit AHBL master transactions or 64-bit AXI master transactions and converts the transactions into 64-bit AXI master output transactions. Figure 2-5 shows the block diagram of the AHBL/AXI to AXI bridge.

Figure 2-5 • AHBL/AXI to AXI Bridge Block Diagram

The AHBL/AXI to AXI bridge can be configured using two SERDESIF system registers, as shown in Table 2-3, for appropriate slave implementation in the fabric. These two one-bit registers are programmable, but Libero SoC should be used to configure these bridges according to their requirement. Refer to the SERDESIF system registers in the "SERDESIF Block" section on page 5 for details.

Table 2-3 • Configuration Inputs for Configuring AHBL/AXI to AXI Bridge

F_AXI_AHB_SLAVE	Specifies whether there is an AXI / AHBL slave implemented in the fabric. 1: AXI slave implemented in fabric (default value) 0: AHB slave implemented in fabric.
AHB_DATA_WIDTH	Specifies whether there is a 32-bit or 64-bit AHB slave in the fabric. Applies only when F_AXI_AHB_SLAVE is programmed to 0. 1: 64-bit AHB slave implemented in the fabric (default value) 0: 32-bit AHB slave implemented in the fabric.

The AXI interface has following limitations:

- 1. Supports only INCR types of bursts.
- 2. Supports only 64-bit read/write transactions on the AXI slave interface.

Glue Logic Blocks

The PCIe system block has several small logic blocks for PCIe subsystem functionality.

 PCIe/PHY reset Controller: This block controls the assertion and deassertion of reset to the PCIe core, SERDES macro and other glue-logic.

L2/P2 control Logic: This block controls logic to implement the L2/P2 state.

The PCIe System supports the following features and limitations:

- Supports 4 master read requests and 4 write requests
- Supports 4 outstanding slave read requests and 4 write requests
- Supports optional ERC generation and checking
- Supports all memory, configuration, and message transactions
- Supports no write data interleaving for AXI interface
- · No support for I/O or locked transactions.
- Supports only incremental address bursts for the AXI slave and burst

SERDESIF System Registers for PCIe Mode

Three SERDESIF system registers must be configured to implement PCIe mode. The three registers that define the mode of operation of the SmartFusion2 SoC FPGA SERDESIF module are as follows:

- 1. CONFIG PHY MODE
- 2. CONFIG_EPCS_SEL
- 3. CONFIG LINKK2LANE

Table 2-4 gives the settings for the SERDESIF registers in PCIe mode.

Table 2-4 • PCIe Mode Settings Using the SERDESIF System Register

SERDESIF System APB								
Registers	Description							
CONFIG_PHY_MODE[15:12]	For each lane, this signal selects the protocol default settings which will set the reset value of the register space.							
	CONFIG_PHY_MODE [15:12] - Defines lanelane3 settings							
	4'b0000: PCle mode lane3							
	4'b0001: XAUI ¹ mode lane3							
	4'b0010: EPCS ² (SGMII ³) mode lane3							
	4'b0011: EPCS (2.5 GHz) mode lane3							
	4'b0100: EPCS (1.25 GHz) mode lane3							
	4'b0101: EPCS (undefined) mode lane3							
	4'b1111: SERDES PHY lane3 is off							
CONFIG_PHY_MODE[11:8]	CONFIG_PHY_MODE [11:8] - Defines lane2 settings							
	4'b0000: PCle mode lane2							
	4'b0001: XAUI mode lane2							
	4'b0011: EPCS (2.5 GHz) mode lane2							
	4'b0100: EPCS (1.25 GHz) mode lane2							
	4'b0101: EPCS (undefined) mode lane2							
	4'b1111: SERDES PHY lane2 is off							
CONFIG_PHY_MODE[7:4]	CONFIG_PHY_MODE [7:4] – Defines lane1 settings							
	4'b0000: PCle mode lane1							
	4'b0001: XAUI mode lane1							
	4'b0011: EPCS (2.5 GHz) mode lane1							
	4'b0100: EPCS (1.25 GHz) mode lane1							
	4'b0101: EPCS (undefined) mode lane1							
	4'b1111: SERDES PHY lane1 is off							

Notes:

- 1. XAUI = 10 Gbps attachment unit interface.
- 2. EPCS = External physical coding sub-layer
- 3. SGMII = Serial Gigabit Media Independent Interface
- 4. Bits not shown here are unused.

Table 2-4 • PCIe Mode Settings Using the SERDESIF System Register (continued)

SERDESIF System APB Registers	Description							
CONFIG_PHY_MODE[3:0]	CONFIG_PHY_MODE [3:0] - Defines lane0 settings							
	4'b0000: PCle mode lane0							
	4'b0001: XAUI mode lane0							
	4'b0011: EPCS (2.5 GHz) mode lane0							
	4'b0100: EPCS (1.25 GHz) mode lane0							
	4'b0101: EPCS (undefined) mode lane0							
	4'b1111: SERDES PHY lane0 is off							
CONFIG_EPCS_SEL[3:0]	For each lane, one bit of this signal defines whether the external PCS interface is used or the PCIe PCS is enabled:							
	1'b0: PCle mode 1'b1: External PCS mode							
	CONFIG_EPCS_SEL [3]: External PCS selection associated with lane3							
	CONFIG_EPCS_SEL [2]: External PCS selection associated with lane2							
	CONFIG_EPCS_SEL [1]: External PCS selection associated with lane1							
	CONFIG_EPCS_SEL [0]: External PCS selection associated with lane0							
CONFIG_LINK2LANE[3:0]	This signal is used in PCIe mode to select the association of lane to link. The four bits refer to four lanes.							

Notes:

- 1. XAUI = 10 Gbps attachment unit interface.
- 2. EPCS = External physical coding sub-layer
- 3. SGMII = Serial Gigabit Media Independent Interface
- 4. Bits not shown here are unused.

Table 2-5 describes the settings to be done for the three SERDESIF system registers to force the SERDESIF into XAUI mode.

Table 2-5 • PCle Mode Settings Using SERDESIF System Register

	CONFIG_PHY_MODE (4 bits per lane)				CONFIG_EPCS_SEL (1 bit per lane)				CONFIG_LINK2LANE (1 bit per lane)			
MODE	Lane0	lane1	Lane2	Lane3	lane0	Lane1	Lane2	Lane3	Lane0	Lane1	Lane2	Lane3
PCIe only mode (x4)	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x1	0x1	0x1	0x1
PCIe only mode (x2)	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x0
PCIe only mode (x1)	0x0	0xF	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x0	0x0	0x0
PCIe only mode with Lane reverse (x4)	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0	0x0
PCIe only mode with Lane reverse (x2)	0xF	0xF	0x0	0x0	0x1	0x1	0x0	0x0	0x0	0x0	0x1	0x1
PCIe only mode with Lane reverse (x1)	0xF	0xF	0xF	0x0	0x1	0x1	0x1	0x0	0x0	0x0	0x0	0x1
PCIe only mode with Lane reverse (x2)	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x0
PCIe only mode with Lane reverse (x1)	0xF	0x0	0xF	0xF	0x1	0x0	0x1	0x1	0x0	0x1	0x0	0x0
PCIe mode (x2) and EPCS (x2)	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x0
PCIe mode (x1) and EPCS (x2)	0x0	0xF	0xF	0xF	0x0	0x1	0x1	0x1	0x1	0x0	0x0	0x0
PCIe mode (x2) with Lane reverse and EPCS (x2)	0x0	0x0	0xF	0xF	0x0	0x0	0x1	0x1	0x1	0x1	0x0	0x1
PCIe mode (x1) with Lane reverse and EPCS (x2)	0xF	0x0	0xF	0xF	0x1	0x0	0x1	0x1	0x0	0x1	0x0	0x0

Using the PCIe System

This section describes generating and configuring the SERDESIF block for PCIe mode using Libero SoC software. It also describes various topics about clocking and resetting scheme for implementing PCIe in SmartFusion2 SoC FPGA.

Configuring the High Speed Serial Generator for PCIe mode

The high speed serial interface generator in Libero SoC allows to configure the SERDESIF block in PCIe mode and thus control the setting of the three SERDESIF system registers. Refer to Figure 2-6 and Figure 2-7 for PCIe mode setting in the high speed serial interface generator.

Figure 2-6 • PCle Single Protocol Mode Setting in High Speed Serial Interface Generator

Figure 2-7 • PCIe Multi-Protocol Mode Setting in High Speed Serial Interface Generator

Lane Reversal

The SmartFusion2 SoC FPGA PCIe system supports lane reversal capabilities and therefore provides flexibility in the design of the board. It is possible for any user to choose to lay out the board with reversed lane numbers and the PCIe endpoint will continue to link train successfully and operate normally. The high speed serial interface generator in Libero SoC allows configuration of the SERDESIF block in reverse PCIe mode. Refer to Figure 2-8.

Figure 2-8 • PCle Protocol Mode Setting in Reverse Lane Mode

PCIe Clocking Architecture

The SmartFusion2 SoC FPGA SERDESIF, when configured in PCle mode, has multiple clock inputs and outputs. This section describes the PCle clocking architecture.

SERDES Reference Clocks for PCIe Mode

The PMA in the SERDES block needs a reference clock on each of its lanes for TX and RX clock generation through PLLs. For maximum flexibility, the reference clock to the four lanes can come from REFCLK_IO0 or REFCLK_IO1 I/O pads or from the internal FAB_REF_CLK or CCC_REF_CLK signals. These two reference clocks (REFCLK_IO0 and REFCLK_IO1) are connected to I/O pads. Figure 2-9 shows the reference clock selection.

Figure 2-9 • SERDES Reference Clock for PCIe Mode

Figure 2-10 shows the reference clock selection in the high speed serial interface generator available in Libero SoC. It sets the MUX selection depending on the reference clocks selected. A 100 MHz clock should be fed in as reference clock to SERDES 4 PMAs in XAUI mode.

Figure 2-10 • SERDES Reference Clock Using High Speed Serial Interface Generator

PCIe Clock Network

Figure 2-11 shows the PCIe clocking architecture in SmartFusion2 SoC FPGA. The 100 MHz reference clock to SERDES PMA (for TX PLL and CDR PLL) can be selected, as explained in "SERDES Reference Clocks for PCIe Mode" section on page 71. The PLLs generate 250 MHz or 125 MHz clocks, depending on protocol settings and passed to PCIe System IP block. Also, the PLL settings are calculated automatically by Libero SoC software when PCIe protocol mode is selected. The SPLL allows reducing the skew between the fabric and SmartFusion2 SoC FPGA SERDESIF module. The APB clock (APB S PCLK) is an asynchronous clock used for SERDESIF register access.

Figure 2-11 • SPLL Clocking in PCle Mode

Figure 2-12 shows SPLL settings in the high speed serial interface generator. The SPLL configuration fields are described below:

- CLK_BASE Frequency (MHz) The valid range for the PCle protocol is 20 to 200 MHz. Supply Voltage it is to specify the SPLL core supply voltage to be either 2.5 V or 3.3 V. This selection does not impact the SPLL frequency range. See the *Microsemi SmartFusion2 SoC FPGA Datasheet* for more details on the PLL power supply requirement.
- Lock Delay The number of REFCLK clock cycles can be set by which the lock is delayed after the SPLL has reached the lock condition.

Figure 2-12 • SPLL Clocking Configuration Using High Speed Serial Interface Generator

The SERDESIF system register can also be used to configure and to use this PLL.

Figure 2-6 summarizes the various clocks in PCIe mode.

Table 2-6 • Clock Signals in PCle Mode

Clock Signal	Description
REFCLK_IO0	Reference clock for SERDES PMA
REFCLK_IO1	Reference clock for SERDES PMA
CCC_REF_CLK	Reference clock for SERDES PMA
FAB_REF_CLK	Reference clock for SERDES PMA
CLK_BASE	Fabric source clock. This is the reference clock for the SPLL.
PLL_ACLK	PLL output clock, used as the AXI/AHB bridge clock
PLL_SERDESIF_REF	Reference clock for the SPLL
APB_S_PCLK	PCLK for APB interface

PCIe Reset Network

The SmartFusion2 SoC FPGA SERDESIF, when configured in PCIe mode, has three reset inputs. Figure 2-13 shows a simplified view of the reset signal in PCIe mode.

Figure 2-13 • Reset Signals in PCle Mode

Table 2-7 shows the reset signals to use.

Table 2-7 • Reset Signals in PCle Mode

Signal	Direction	Description
CORE_RESETN	In	Top-level fundamental asynchronous RESET to the PCIe system. It is tied to GND when PCIe protocol mode is not used. Fundamental reset to the PCIe IP block. It affects only those SERDES lanes which are in PCIe mode. Lanes associated with the PCIe link should have one reset for all lanes.
PHY_RESETN	In	Top-level fundamental asynchronous RESET to the SERDES block. Any 1/2/4 lanes used for any serial protocol should be tied to 1.
APB_RESETN	In	APB asynchronous reset to all APB registers

Base Address Registers

The high speed serial interface generator in Libero SoC allows the base address register (BAR) for the endpoint configuration. SmartFusion2 SoC FPGA PCIe implementation supports up to six 32-bit BARs or three 64-bit BARs. The BARs can be one of two sizes:

32-bit BARs: The address space can be as small as 16 bytes or as large as 2 gigabytes. Used for memory to I/O.

64-bit BARs: The address space can be as small as 128 bytes or as large as 8 exabytes. Used for memory only.

The PCIe bridge register defines the BAR setting. Each BAR register is 32 bits, but BARs can be combined to make a 64-bit BAR. For example, BAR0 (address offset 010h) and BAR1 (address offset 014h) define the type and size of BAR01 of the PCIe native endpoint. BAR01 can be memory-mapped prefetchable (64-bit BAR) or non-prefetchable (32-bit BAR).

Figure 2-14 • BAR Settings in High Speed Serial Interface Generator

Libero SoC can also be used to configure the individual fields of the 6 BARs. Refer to Figure 2-15. The BAR registers share the options below:

- Width The width on even registers can be 32 bits or 64 bits. If an even register is selected to be 64 bits wide, the subsequent (odd) register serves as the upper half. Otherwise, the width on odd registers is restricted to 32 bits.
- Size The size setting can range from 4 KB to 2 GB.
- Type The type can toggle between memory and I/O.
- Prefetchable This option is enabled only on even registers with a 64-bit width.

Figure 2-15 • BAR Settings in High Speed Serial Interface Generator

Address Translation on the AXI Master Interface

The address space for PCIe is different from the AXI address space. To access one address space from another address space requires an address translation process.

The PCIe IP can receive both 32-bit address and 64-bit address PCIe requests, but only 32-bit address bits are provided to the AXI master. In order to manage address translation, the PCIe IP can implement up to 4 AXI master address windows, which can be mapped to 3 BARs in the main PCIe IP core. Each AXI master address window implemented can be mapped to a BAR, and several address windows can be mapped to the same BAR. When transferring PCIe receive requests to the AXI Master, the PCIe IP automatically removes the decoded BAR base address, then performs a windows match using the PCIe offset address. If a match is found, the bridge then maps the corresponding AXI base address.

For example, in Figure 2-16, four BARS are enabled in the bridge; two 64-bit BARS (BAR01 and BAR23), and two 32-bit BARS (BAR4 and BAR5). All AXI master windows are utilized. BAR01 is connected to AXI master window 0. AXI Master window 1 is mapped to the lower 64 bytes of BAR23, and AXI master window 2 is mapped to the upper 64 bytes of BAR23. AXI master window 3 is connected to BAR4. BAR5 is not mapped to an AXI window; its offset is passed directly to the AXI master and translation is not performed:

To configure AXI MASTER WINDOW[0], for example, APB write operations are performed:

- First APB write: APB PADDr = 100h, APBPWDATA = FFF0 0000
- Second APB write: APB PADDR = 104h, APBPWDATA = FFF0 0001
- Third APB write: APB PADDR = 108h, APBPWDATA = 0000 0001
- Fourth APB write: APB PADDR = 10Ch, APBPWDATA = 0000 0000

Figure 2-16 • 16 PCle to AXI Master Address Translation

If window size is not enabled or if the PCle offset address is located in a BAR but not in any of the windows, address translation is not performed. In this case, the PCle base address is removed to create the AXI address and, for BARs larger than 4 KB, MSBs are ignored.

AXI Slave Interface Address Translation

The bridge can be configured up to 4 AXI slave address windows to handle address translation on read/write requests initiated by the AXI. The AXI slave address windows are used to translate a transaction's 32-bit AXI base address to a PCIe 32-bit or 64-bit base address in order to generate a PCIe TLP. The slave address windows can also be used to generate the following PCIe parameters:

- TC selection: Indicates the PCIe traffic class in the PCIe packet header.
- · RO bit selection: Generates the PCIe TLP using a selectable relaxed ordering bit.
- · No snoop bit selection: Generates the PCIe TLP using a selectable no snoop bit.

The following example shows address translation when AXI slave address windows 0 and 2 target two different region of the host memory and AXI slave address window 1 targets a PCIe memory-mapped device (enabling peer-to-peer transactions). Window 3 is not used in this example.

Figure 2-17 • AXI Slave to PCle Address Translation

If AXI slave windows are not enabled, address translation is not performed and AXI slave requests are transferred to the PCIe IP core with defaults of TC=0, RO=0, and NS=0.

PCIe System Credit Settings

The SmartFusion2 SoC FPGA PCle system has 2 KB of receive buffer (RAM) and 1 KB of transmit and replay buffer (RAM). The following sections describe credit setting and flow control.

Maximum Payload Size

TLP size is restricted by the capabilities of both link partners. After the link is trained, the root complex sets the MAX_PAYLOAD_SIZE value in the device control register. The PCIe system MAX_PAYLOAD_SIZE (Maximum Payload Size register) is 256 Bytes with a 64-bit AXI interface.

Replay Buffer

The replay buffer, located in the data link layer and common to all VCs, stores a copy of a transmitted TLP until the transmitted packet is acknowledged by the receiving side of the link. Each stored TLP includes the header, an optional data payload (of which the maximum size is determined by the maximum payload size parameter), an optional ECRC, the sequence number, and the link cyclic redundancy check (LCRC) field. In general, the replay size is required to be greater than two times MAX_PAYLOAD_SIZE (512 bytes). The SmartFusion2 SoC FPGA PCIe system has a replay buffer size of 1 KB each, which is four times MAX_PAYLOAD_SIZE.

Transmit Buffer

The transmit buffer (TX buffer) stores the read data payload from the AXI master as well as the write data payload from the AXI slave. The size of the TX buffer depends on the number of outstanding read/write transactions. In general, the transmit size is required to be greater than two times MAX_PAYLOAD_SIZE (512 bytes). The SmartFusion2 SoC FPGA PCIe system has a transmit buffer size of 1 KB each, which is four times MAX_PAYLOAD_SIZE.

Receive Buffer

The receive buffer is located in the transaction layer and accepts incoming TLPs from the link and then sends them to the application layer for processing. Receive buffer resources are either implemented per VC or per link. The receive buffer stores TLPs based on the type of transaction, not the TC of a transaction. Types of transactions include posted transactions, non-posted transactions, and completion transactions.

A transaction always has a header but does not necessarily have data. The receive buffer accounts for this distinction, maintaining separate resources for the header and data of each type of transaction. To summarize, distinct buffer resources are maintained per an initialized VC for each of the following elements:

- · Posted transactions, header (PH)
- Posted transactions, data (PD)
- Non-posted transactions, header (NPH)
- · Non-posted transactions, data (NPD)
- Completion transactions, header (CPLH)
- · Completion transactions, data (CPLD)

TLPs are stored in the RX buffer in 64-bit addressing format, with each AXI slave read outstanding request consuming 16 credits (128 bytes) plus headers and data credits consuming 1 credit each (16 bytes).

For example, a core with four outstanding AXI slave read requests, 1 VC and a maximum payload size of 256 bytes will have the RX buffer minimum memory requirements shown in Table 2-8.

Table 2-8 • Credit Calculation

Type of Credit	Memory Required
VC0/VC1 completion data payload	1 KB (4 x 128 bytes)
VC0 posted header	16 credits (16 x 16 bytes)
VC0 posted data payload	64 credits (64 x 16 bytes)
VC0 non-posted header	16 credits (16 x 16 bytes)

Receive Buffer Calculations

The receive buffer levels on one side of a link have no relation to the receive buffer levels on the other side of a link. The size of the receive buffer has a significant impact on system performance. The receive buffer size calculation depends on the AXI interface cumulative MAX_PAYLOAD_SIZE in one transfer (maximum length of AXI of 64-bit 16x8) and default credit settings. The size of the receive buffer should be equal to or more than the RHS credit buffer requirement.

Receive buffer = CPLD(completion data) + PDVC0(pd_cred0) + PHVC0(ph_cred0) + NPHVC0 (nph_cred0)

EQ 1

For example,

- A core with 4 outstanding read requests needs 128 × 4 = 512 bytes of space in the RX buffer to accommodate incoming completion packets (1 KByte)
- One header credit each for posted and non-posted header requests that are received (256 + 256 bytes)
- Posted data credit of 64 credits with 16 bytes for each credit (512 bytes)

The total is 128 × 4 (completion data) + 256 (posted header) + 256 (non-posted-header) + 512 (posted data) to get the receive buffer size. Note that this is less than 2 KBytes.

SmartFusion2 SoC FPGA PCle Power Management

This section describes the power management scheme in SmartFusion2 SoC FPGA PCIe implementation.

Power Domain Implementation

In SmartFusion2 SoC FPGA devices, the FPGA and PCIe link (including PMA, PCS, and PCIe controller) are combined in a single chip, so they have a separate power supplies. Figure 2-18 shows the SmartFusion2 SoC FPGA power rails.

Figure 2-18 • SmartFusion2 SoC FPGA Power Supply to the PCle Link implementation

Legacy Power Management

The PCIe bridge register space defines the capabilities of the PCIe bridge in term of legacy power management (PME support, auxiliary current requirement, etc.). In addition, the Power Management Control and Status register displays the current power management state. The PM data and PM scale value array can define the power consumed in each power state. Refer to the "PCIe Bridge Registers" section on page 65 for more information.

PCIe Power Management

PCIe active state power management (ASPM) defines link power management states that a PCIe physical link is permitted to enter in response to software driven D-state transitions or active state link power management activities. The PCIe protocol defines the following low power link states.

Table 2-9 • PCIe Low Power States

Low Power State	Description
L0s	Autonomous electrical idle: This state reduces power during short intervals of idle. Devices must transition to L0s independently on each direction of the link.
L1	Directed electrical idle: The L1 state reduces power when the downstream port directs the upstream ports. This state saves power in two ways:
	Shutting down the transceiver circuitry and associated PLL
	Significantly decreasing the number of internal core transitions
L2	In this state, a beacon or WAKE# signal is required to reinitialize the Link. Auxiliary power is still available, however.
L2/L3 ready	This state prepares the PCIe link for the removal of main power and the reference clock.

SmartFusion L2_P2 Entry/Exit

Traditionally, the PCIe specification states to implement two power domains if L2/P2 state support is implemented in the PCIe link: Vaux and Vmain. The root-complex power management logic supplies/controls the power through the connector to the whole PCIe fabric.

SmartFusion2 SoC FPGA Implementation of L2/P2 State

SmartFusion2 SoC FPGA devices have a single power domain (Vmain) and achieve pseudo-L2 state. Vmain is derived from the SmartFusion2 SoC FPGA chip supply itself. L2 entry follows the PCle specification. The L2 exit is implemented differently, but complies to the PCle specification requirements.

SmartFusion2 SoC FPGA L2 Entry Sequence

L2 entry on the downstream component can be initiated upstream through the switch/root port (RP).

L2 Entry Initiated by Upstream Component – RP/Switch

- 1. The root complex (RC)/switch broadcasts PM_TURN_OFF data link layer packets (DLLPs) to part/whole of the downstream components.
- The endpoint (EP) can accept/reject PM_TURN_OFF DLLP, transmitting PM REQUEST ACK/Nak DLLPs accordingly.
- 3. The EP can delay transmitting PM_Request_Ack DLLPs by disabling the PM_ENABLE bit on power-up. By default, the PM_ENABLE bit is 1.
- 4. Delaying L2 entry: On power-up, the local processor must disable the PM_ENABLE bit (0). Once the L2 entry request (L2_Req) is received, an interrupt is generated to the local processor, which can complete pending tasks and re-enable the PM_ENABLE bit to generate the PM_REQUEST_ACK_DLLP.

Figure 2-19 • L2 Entry Flow Diagram- Initiated by RC/SW

- 5. The EP transmitting PM_REQUEST_ACK DLLPs and SERDES transitions into the L2 state, and the status is reflected on the PIPE interface (PowerDown[1:0] and PhyStatus outputs from the SERDES, which indicate whether the SERDES transitioned into L2 state).
- 6. The PCIe system waits for PowerDown[1:0] on the PIPE interface to go to L2 state (11) and PhyStatus to be asserted asynchronously.
- 7. Once the two conditions are met, the EP is ready to go into L2 state and aIDDQ (which forces all analog circuitry to switch-off for power saving) is asserted.

Before transmitting PM_REQUEST_ACK DLLP, the EP should meet all protocol requirements. This is taken care of by the PCIe IP core:

- No new TLPs or DLLPs should be pending for transmission.
- The TX link should have enough credits to transfer TLPs/DLLPs after L2 exit.
- The EP supports L2.
- The EP should have transmitted PM_REQUEST_ACK to the RP.

SmartFusion2 SoC FPGA L2 Exit Sequence

L2 Exit Sequence Initiated by EP

- 8. When the EP needs to exit L2, the application layer/fabric asserts WAKE_REQ (active high signal) to the SmartFusion2 SoC FPGA SERDESIF block.
- 9. The SmartFusion2 SoC FPGA SERDESIF block (I2_p2_ctrl logic) in L2 state detects WAKE_REQ and the SmartFusion2 SoC FPGA SERDESIF configured as an EP can request exit from the L2 state by asserting the WAKE_N (WAKE#) output signal.
- 10. Once WAKE# (WAKE_N) is asserted, aIDDQ is deasserted and fundamental reset is applied to the PCIe IP Core and PHY(SERDES) and released. Link training starts again.

L2 Exit Sequence Initiated by RP

- 1. When the RP/switch needs to wake the EP, it asserts the PERST# (PERST_N) side band signal.
- 2. Once the PERST# signals is asserted, aIDDQ is deasserted and fundamental reset is asserted to the PCIe core and SERDES. The link starts training in a normal way.

This case of exit is valid only in the case of the PCIe connector using the PERST# side band signal. PERST# is the PERST N input signal on the SmartFusion2 SoC FPGA SERDESIF – active low signal.

Figure 2-20 • L2 Exit Flow Diagram – Initiated by RC/SW

PCIe Core Bridge Register Space

The PCIe core bridge register space is used to configure PCIe core settings at power-up. These registers are 32 bits wide and accessed via the APB bus from the SmartFusion2 SoC FPGA fabric. The PCIe system block registers consist of the following:

- Read-only registers that report configuration space control and status registers to the AXI side through the APB bus
- Read/write registers that report PCle configuration space capability that must be configured at power-up
- Bridge settings that must be configured at power-up, such as local interrupt mapping to MSI and test mode
- Control/status registers that can be used by the AXI bus to control bridge behavior during an operation

Most bridge registers are hardwired to a fixed value.

These registers are described in the next section according to their function:

- Information registers: These registers provide device, system, and bridge identification information.
- · Bridge configuration registers: These registers enable configuration of bridge functionality.
- **Power management registers**: These registers enable configuration of the power management capabilities of the bridge.
- Address mapping registers: These registers provide address mapping for AXI master and slave windows. These windows are used for address translation.
- Endpoint interrupt registers: These registers are used in Endpoint mode to manage interrupts.
- Root port interrupt registers: These registers are used in Root Port mode to manage interrupts.
 These registers are not used in SmartFusion2 SoC FPGA PCIe implementation.
- PCle control and status Registers: These read-only registers enable the local processor to check useful information related to the PCle interface status. This enables the local processor to detect when the bridge's PCle interface is initialized and to monitor PCl link events.
- Configuration registers: These registers are used in Root Port mode only to perform a configuration write or read on the PCIe bus.
- Input/Output control registers: These registers are used in Root Port mode only to perform an I/O write or read on the PCle bus. These registers are not used in SmartFusion2 SoC FPGA PCle implementation.

Information Registers

The registers listed in Table 2-10 provide device, system, and bridge identification information.

Table 2-10 • Information Registers

Register Name	Address Offset	Register Type	Description
VID_DEVID	000h	R/W or RO	Identifies the manufacturer of the device or application. See the PCIe specification for details.
CLASS_CODE	008h	R/W or RO	Identifies the manufacturer of the device or application. See the PCIe specification for details.
CAPTURED_BUS_DEVICE_NB	03Ch	RO	Reports the bus and device number of the endpoint device for each configuration write TLP received.
SUBSYSTEM_ID	02Ch	R/W or RO	Identifies the manufacturer of the device or application. See the PCIe specification for details.
INFO	16Ch	RO	This register reports the bridge version.

Bridge Configuration Registers

The registers listed in Table 2-11 enable to configure bridge functionality.

Table 2-11 • Bridge Configuration Registers

Register	Byte Offset	State	Description
PCIE_CONFIG	204h	R/W or RO	This register sets the PCIe Configuration.
BAR0	010h	R/W or RO	The BAR0 size registers define the type and size of BAR0 of the PCle native endpoint. This register combines with BAR1 for defining the type and size of BAR01 of the PCle native endpoint.
BAR1	010h	R/W or RO	The BAR1 size registers define the type and size of BAR1 of the PCIe native endpoint. This register combines with BAR0 for defining the type and size of BAR01 of the PCIe native endpoint.
BAR2	010h	R/W or RO	The BAR2 size registers define the type and size of BAR2 of the PCle native endpoint. This register combines with BAR3 for defining the type and size of BAR01 of the PCle native endpoint.
BAR3	010h	R/W or RO	The BAR3 size registers define the type and size of BAR3 of the PCIe native endpoint. This register combines with BAR2 for defining the type and size of BAR23 of the PCIe native endpoint.
BAR4	010h	R/W or RO	The BAR4 size registers define the type and size of BAR4 of the PCIe native endpoint. This register combines with BAR5 for defining the type and size of BAR45 of the PCIe native endpoint.
BAR5	010h	R/W or RO	The BAR5 size registers define the type and size of BAR5 of the PCle native endpoint. This register combines with BAR4 for defining the type and size of BAR45 of the PCle native endpoint.
TC_VC_MAPPING	038h	RO	This register reports the TC-to-VC mapping configured for each PCle traffic channel.
AER_ECRC_CAPABILITY	050h	R/W or RO	This register defines whether the bridge supports AER and ECRC generation/check and whether AER/ECRC is implemented. ECRC generation and check bits can only be set if AER is implemented.
VC1_CAPABILITY	054h	RO	Reserved
MAX_PAYLOAD_SIZE	058h	RO	This register sets the payload size.
CLKREQ	05Ch	RO	Reserved
CREDIT_ALLOCATION[0]	0B0h		These registers enable the posted credit distribution of the RX buffer at device power-up. Credit allocation is balanced between posted and non-posted requests. Non-posted data credits minimum value is 1.
CREDIT_ALLOCATION[1]	0B0h		These registers enable the non-posted credit distribution of the RX buffer at device power-up. Credit allocation is balanced between posted and non-posted requests. Non-posted data credits minimum value is 1 credit, but Microsemi recommends setting it to the same value as the non-posted header credit.

Table 2-11 • Bridge Configuration Registers (continued)

Register	Byte Offset	State	Description
CREDIT_ALLOCATION[2]	0B0h	RO or R/W	Reserved
K_CNT_CONFIG[0]	300h	RO or R/W	This register enables the configuration of default control settings.
K_CNT_CONFIG[1]	304h	RO or R/W	This register enables the configuration of default control settings.
K_CNT_CONFIG[2]	308h	RO or R/W	This register enables the configuration of default control settings.
K_CNT_CONFIG[3]	30Ch	RO or R/W	This register enables the configuration of default control settings.
K_CNT_CONFIG[4]	310h	RO or R/W	This register enables the configuration of default control settings.
K_CNT_CONFIG[5]	314h	RO or R/W	This register enables the configuration of default control settings.
ERROR_COUNTER[0]	0A0h	RO or R/W	This register has four 8-bit counters for the four error sources. To clear the register content, the bridge must perform a write transaction (any value) to the register.
ERROR_COUNTER[1]	0A4h	RO or R/W	This register has four 8-bit counters for the four error sources. To clear the register content, the bridge must perform a write transaction (any value) to the register.
ERROR_COUNTER[2]	0A8h	RO or R/W	This register has four 8-bit counters for the four error sources. To clear the register content, the bridge must perform a write transaction (any value) to the register.
ERROR_COUNTER[3]	0ACh	RO or R/W	This register has four 8-bit counters for the four error sources. To clear the register content, the bridge must perform a write transaction (any value) to the register.

Power Management Registers

The registers listed in Table 2-11 enable to configure the power management capabilities of the bridge.

Table 2-12 • Bridge Configuration Registers

Register	Byte Offset	State	Description
LTSSM	044h	R/W or RO	This register can be used to monitor the core state or to select a specific test mode on bits [31:16] and to control L2 entry on bits [15:0].
POWER_MGT_CAPABILITY	010h	R/W or RO	The power management capability register enables the local processor to configure power management capability.
PM_DATA_SCALE[0]	070h	R/W or RO	There are four PM data and scale registers that define the
PM_DATA_SCALE[1]	074h	R/W or RO	PM data value of the device for each possible power state defined by the PCI power management specification, used in
PM_DATA_SCALE[2]	078h	R/W or RO	conjunction with the PM scale field.
PM_DATA_SCALE[3]	07Ch	R/W or RO	

Table 2-12 • Bridge Configuration Registers (continued)

Register	Byte Offset	State	Description
ASPM_LOS_CAPABILITY	060h	R/W or RO	This register defines the endpoint L0s acceptable latency and the number of fast training sequences (FTS) required by the SERDES to resynchronize its receiver on incoming data, depending on clock mode configuration (separated clock or common clock). The number of FTS required in separated clock mode must be higher than that required in common clock mode. The bridge automatically computes the ASPM L0s exit latency based on these two register values, and on the maximum payload size of the control register. The selected NFTS field is that transmitted by the link training and status state machine (LTSSM) to the opposite component in order to define the number of FTS that the opposite component must send to be sure that the device receiver has re-locked onto incoming data.
ASPM_LOS_GEN2	260h		This register defines the endpoint L0s acceptable latency and the number of FTS required by the SERDES to resynchronize its receiver on incoming data, depending on clock mode configuration (separate clock or common clock) at 5.0 Gbps. The number of FTS required in separated clock mode must be higher than that required in common clock mode. The bridge automatically computes the ASPM L0s exit latency based on these two register values and the maximum payload size of the control register. The selected NFTS field is that transmitted by the LTSSM to the opposite component in order to define the number of FTS that the opposite component must send to be sure that the device receiver has re-locked onto incoming data.
ASPM_L1_CAPABILITY	064h	R/W or RO	This register defines the endpoint L1 acceptable latency and the number of FTS required. The endpoint L1 acceptable latency is used to enable or disable ASPM L1 entry by comparing its value to the maximum ASPM L1 exit latency of all components in the hierarchy (plus 1 microsecond per switch). If the ASPM L1 acceptable latency is lower than the maximum ASPM L1 exit latency, then ASPM L1 entry will not be enabled.
TIMEOUT_COMPLETION	068h	R/W or RO	This signal defines four timeout ranges for the completion timeout mechanism.

Address Mapping Registers

The registers listed in Table 2-13 provide the address mapping for AXI master and slave windows. These windows are used for address translation.

Table 2-13 • Address Mapping Registers

Register Name	Address Offset	Register Type	Description
AXI_SLAVE_WINDOW0[0]	0C0h	RO or	There are four register sets that define the address mapping for AXI slave window 0.
AXI_SLAVE_WINDOW0[1]]	0C4h	R/W	
AXI_SLAVE_WINDOW0[2]	0C8h		
AXI_SLAVE_WINDOW0[3]	0CCh		
AXI_SLAVE_WINDOW1[0]	0D0h	RO or	There are four register sets that define the address
AXI_SLAVE_WINDOW1[1]	0D4h	R/W	mapping for AXI slave window 1.
AXI_SLAVE_WINDOW1[2]	0D8h		
AXI_SLAVE_WINDOW1[3]	0DCh		
AXI_SLAVE_WINDOW2[0]	0E0h	RO or	There are four register sets that define the address
AXI_SLAVE_WINDOW2[1]]	0E4h	R/W	mapping for AXI slave window 2.
AXI_SLAVE_WINDOW2[2]	0E8h		
AXI_SLAVE_WINDOW2[3]	0ECh		
AXI_SLAVE_WINDOW3[0]	0F0h	RO or	There are four register sets that define the address mapping for AXI slave window 3.
AXI_SLAVE_WINDOW3[1]	0F4h	R/W	
AXI_SLAVE_WINDOW3[2]	0F8h		
AXI_SLAVE_WINDOW3[3]	0FCh		
AXI_MASTER_WINDOW0[0]	100h	RO or	There are four register sets that define the address mapping for AXI master window 0.
AXI_MASTER_WINDOW0[1]	104h	R/W	
AXI_MASTER_WINDOW0[2]	108h		
AXI_MASTER_WINDOW0[3]	10Ch		
AXI_MASTER_WINDOW1[0]	110h	RO or	There are four register sets that define the address
AXI_MASTER_WINDOW1[1]	114h	R/W	mapping for AXI master window 1.
AXI_MASTER_WINDOW1[2]	118h		
AXI_MASTER_WINDOW1[3]	11Ch		
AXI_MASTER_WINDOW2[0]	120h	RO or	There are four register sets that define the address
AXI_MASTER_WINDOW2[1]	124h	R/W	mapping for AXI master window 2.
AXI_MASTER_WINDOW2[2]	128h		
AXI_MASTER_WINDOW2[3]	12Ch		

Table 2-13 • Address Mapping Registers

Register Name	Address Offset	Register Type	Description
AXI_MASTER_WINDOW3[0]	130h	RO or	There are four register sets that define the address
AXI_MASTER_WINDOW3[1]	134h	R/W	mapping for AXI master window 3.
AXI_MASTER_WINDOW3[2]	138h		
AXI_MASTER_WINDOW3[3]	13Ch		
PREFETCH_IO_WINDOW	184h	RO or R/W	This register sets the I/O window type. When BARs are used rather than windows, this register is hardwired to 0.

Endpoint Interrupt Registers

The PCIe IP core can generate interrupts through the input signal. This signal may be required by a device in order to interrupt the host processor, call its device drivers, or report application layer-specific events or errors. The input signal can be configured for as many as 32 different input interrupt sources. The INT_BITS parameter of the bridge defines the number of interrupt bits for this signal.

Table 2-14 • Endpoint Interrupt Registers

Register Name	Address Offset	Register Type	Description
MSI[0]	080h	RO or R/W	This register defines 8 MSI_MAP0 registers, with up to 32 possible MSI messages.
MSI[1]	084h	RO or R/W	This register defines 8 MSI_MAP1 registers, with up to 32 possible MSI messages.
MSI[2]	088h	RO or R/W	This register defines 8 MSI_MAP2 registers, with up to 32 possible MSI messages.
MSI[3]	08Ch	RO or R/W	This register defines 8 MSI_MAP3 registers, with up to 32 possible MSI messages.
MSI[4]	090h	RO or R/W	This register defines 8 MSI_MAP4 registers, with up to 32 possible MSI messages.
MSI[5]	094h	RO or R/W	This register defines 8 MSI_MAP5 registers, with up to 32 possible MSI messages.
MSI[6]	098h	RO or R/W	This register defines 8 MSI_MAP6 registers, with up to 32 possible MSI messages.
MSI[7]	09Ch	RO or R/W	This register defines 8 MSI_MAP7 registers, with up to 32 possible MSI messages.
MSI_CTRL_STATUS	040h	R/W or RO	This register sets MSI control and status. All bits are RO except the number of MSI requested and the multiple message enable fields, which are R/W. Up to 32 MSI messages can be requested by the device, although the PCI software can allocate less than the number of MSI requested. This information can be read by the local processor through the multiple message enable field of the register.

Root Port Interrupt Registers

These registers are not implemented in SmartFusion2 SoC FPGA PCIe endpoints.

PCIe Control and Status Registers

The following registers are read-only registers that enable the local processor to check useful information related to the PCIe interface status, such as when the PCIe interface is initialized and monitoring of PCI link events. A complete description of these registers can be found in the PCIe specifications.

Table 2-15 • PCIe Control and Status Registers

Register Name	Address Offset	Register Type	Description	
CFG_PRMSCR	004h	RO	The command and status register of PCI configuration space.	
PCIE_DEVSCR	030h	RO	This register reports the current value of the PCIe device control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system.	
PCIE_DEV2SCR	230h	RO	This register reports the current value of the PCIe device control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system. This register is used when link speed is set to 5.0 Gbps.	
PCIE_LINKSCR	034h	RO	This register reports the current value of the PCIe link control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system.	
PCIE_LINK2SCR	234h	RO	This register reports the current value of the PCIe link control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system. The register is used when link speed is set to 5.0 Gbps.	
CFG_PMSCR	04Ch	RO	This register reports the current values of the XpressRich2 core's power management control status register.	
SLOTCAP	154h		Reserved	
SLOTCSR	158h		Reserved	
ROOTCSR	15Ch		Reserved	

Configuration Registers

These registers are not implemented in SmartFusion2 SoC FPGA PCIe endpoints.

Input/Output Control Registers

These registers are not implemented in SmartFusion2 SoC FPGA PCIe endpoints.

PCIe Bridge Registers

The following section describes all the PCIe bridge registers in detail.

VID_DEVID Register (000h)

Table 2-16 • VID_DEVID

Bit Number	Name	Reset Value	Description
31:16	Device ID	0x110A	Identifies the manufacturer of the device or application. The values are assigned by PCI-SIG. The default value, 110A, is the Vendor ID for Microsemi.
15:0	Vendor ID	0x1556	The field Identifies the manufacturer of the device or application. The values are assigned by PCI-SIG. The default value, 1556, is the Vendor ID for Microsemi.

CFG_PRMSCR Register (004h)

Table 2-17 • CFG_PRMSCR

Bit Number	Name	Reset Value	Description
31:0	Class Code	0x00100000	The command and status register of PCI configuration space.

CLASS_CODE Register (008h)

Table 2-18 • CLASS_CODE

Bit Number	Name	Reset Value	Description
31:16	CLASS_CODE	0x0000	Identifies the manufacturer of the device or application. The values are assigned by PCI-SIG.
15:0	RESERVED0	0x0000	Identifies the manufacturer of the device or application. The values are assigned by PCI-SIG.

BAR0 Register (010h)

Table 2-19 • BAR0

Bit Number	Name	Reset Value	Description
31:4	BAR0_31_4	0x000000	Defines the type and size of BAR0 of the PCIe native endpoint.
3	BAR0_3	0x1	Identifies the ability of the memory space to be prefetched.
2:1	BAR0_2_1	0x10	Set to '00' to indicate anywhere in 32-bit address space.
0	BAR0_0	0x0	Memory space indicator

BAR1 Register (014h)

Table 2-20 • BAR1

Bit Number	Name	Reset Value	Description
31:4	BAR1_31_4	0x000000	The register defines the type and size of BAR1 of the PCIe native endpoint.
3	BAR1_3	0x0	Identifies the ability of the memory space to be prefetched.
2:1	BAR1_2_1	0x00	Set to '00' to indicate anywhere in 32-bit address space.
0	BAR1_0	0x0	Memory space indicator.

BAR2 Register (018h)

Table 2-21 • BAR2

Bit Number	Name	Reset Value	Description
31:4	BAR2_31_4	0x000000	The register defines the type and size of BAR0 of the PCIe native endpoint.
3	BAR2_3	0x1	Identifies the ability of the memory space to be prefetched.
2:1	BAR2_2_1	0x10	Set to '00' to indicate anywhere in 32-bit address space.
0	BAR2_0	0x0	Memory space indicator.

BAR3 Register (01Ch)

Table 2-22 • BAR3

Bit Number	Name	Reset Value	Description
31:4	BAR3_31_4	0x000000	The register defines the type and size of BAR1 of the PCIe native endpoint.
3	BAR3_3	0x0	Identifies the ability of the memory space to be prefetched.
2:1	BAR3_2_1	0x00	Set to '00' to indicate anywhere in 32-bit address space.
0	BAR3_0	0x0	Memory space indicator.

BAR4 Register (020h)

Table 2-23 • BAR4

Bit Number	Name	Reset Value	Description
31:4	BAR4_31_4	0x000000	The register defines the type and size of BAR0 of the PCle native endpoint.
3	BAR4_3	0x1	Identifies the ability of the memory space to be prefetched.
2:1	BAR4_2_1	0x10	Set to '00' to indicate anywhere in 32-bit address space.
0	BAR4_0	0x0	Memory space indicator.

BAR5 Register (024h)

Table 2-24 • BAR5

Bit Number	Name	Reset Value	Description
31:4	BAR5_31_4	0x000000	The register defines the type and size of BAR1 of the PCle native endpoint.
3	BAR5_3	0x0	Identifies the ability of the memory space to be prefetched.
2:1	BAR5_2_1	0x00	Set to '00' to indicate anywhere in 32-bit address space.
0	BAR5_0	0x0	Memory space indicator.

Reserved (028h)

Table 2-25 • Reserved (028h)

Bit Number	Name	Reset Value	Description
	Reserved	0x00000000	Reserved

SUBSYSTEM_ID Register (02Ch)

Table 2-26 • SUBSYSTEM_ID

Bit Number	Name	Reset Value	Description
31:16	SUBSYSTEM_ID	0x110A	This field further qualifies the manufacturer of the device or application. This value is typically the same as the Device ID.
15:0	SUBSYSTEM_VENDOR_ID	0x1556	This field further qualifies the manufacturer of the device or application.

PCIE_DEVSCR Register (030h)

Table 2-27 • PCIE_DEVSCR

Bit Number	Name	Reset Value	Description
31:0	PCIE_DEVSCR		Device control and status: This register reports the current value of the PCle device control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system.

PCIE_LINKSCR Register (034h)

Table 2-28 • PCIE_LINKSCR

Bit Number	Name	Reset Value	Description
31:0	PCIE_LINKSCR		This register reports the current value of the PCIe link control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system.

TC_VC_MAPPING Register (038h)

Table 2-29 • TC_VC_MAPPING

Bit Number	Name	Reset Value	Description
31:24	TC_VC_MAPPING_31_24	0x0	Reserved
23:21	TC_VC_MAPPING_23_21	0x0	Mapping for TC7
20:18	TC_VC_MAPPING_20_18	0x0	Mapping for TC6
17:15	TC_VC_MAPPING_17_15	0x0	Mapping for TC5
14:12	TC_VC_MAPPING_14_12	0x0	Mapping for TC4
11:9	TC_VC_MAPPING_11_9	0x0	Mapping for TC3
8:6	TC_VC_MAPPING_8_6	0x0	Mapping for TC2
5:3	TC_VC_MAPPING_5_3	0x0	Mapping for TC1
2:0	TC_VC_MAPPING_2_0	0x0	Mapping for TC0 (always 0)

CAPTURED_BUS_DEVICE_NB Register (03Ch)

Table 2-30 • CAPTURED_BUS_DEVICE_NB

Bit Number	Name	Reset Value	Description
31:0	CAPTURED_BUS_DEVICE_NB		This register reports the bus and device number of the endpoint device for each configuration write TLP received.

MSI_CTRL_STATUS Register (03Ch)

Table 2-31 • MSI_CTRL_STATUS

Bit Number	Name	Reset Value	Description
31:24	MSI_CTRL_STATUS_31_24		These bits are hardwired to 00000000.
23	MSI_CTRL_STATUS_23		This bit is hardwired to 1.
22:20	MSI_CTRL_STATUS_22_20		Multiple message enable
19:17	MSI_CTRL_STATUS_19_17		Number of MSI requested
16	MSI_CTRL_STATUS_16		MSI is enabled.
15:0	MSI_CTRL_STATUS_15:0		This bits are hardwired to 0x7805.

LTSSM Register (044h)

Table 2-32 • LTSSM

Bit Number	Name	Reset Value	Description
31:29	LTSSM_31_29		Reserved
28:24	LTSSM_28_24		These bits set LTSSM state encoding (RO):
			00000: Detect.quiet
			00001: Detect.Active
			00010: Polling.Active
			00011: Polling.Compliance
			00100: Polling.Configuration
			00101: Reserved (ex polling.Speed)
			00110: Configuration.Linkwidth.Start
			00111: Configuration.Linkwidth.Accept
			01000: Configuration.Lanenum.Accept
			01001: Configuration.Lanenum.Wait
			01010: Configuration.Complete
			01011: Configuration.Idle
			01100: Recovery.RcvrLock
			01101: Recovery.RcvrCfg
			01110: Recovery.ldle
			01111: L0
			10000: Disabled
			10001: Loopback.Entry
			10010: Loopback.Active
			10011: Loopback.Exit
			10100: Hot Reset
			10101: L0s (transmit)
			10110: L1.entry
			10111: L1.ldle
			11000: L2.idle
			11001: L2.TransmitWake
			11010: Recovery.Speed
			11011 - 11111: Reserved
23:20	LTSSM_23_20		Reserved
19	LTSSM_19		This bit forces compliance pattern (R/W).
18	LTSSM_18		This bit fully disables power management (R/W).
17	LTSSM_17		This bit sets master loopback (R/W).
16	LTSSM_16		This bit disables scrambling (R/W).
15:2	LTSSM_15_2		Reserved
1	LTSSM_1		This bit indicates if PME_TURN_OFF was received (RO).
0	LTSSM_0		This bit acknowledges PME_TURN_OFF (R/W).

POWER_MGT_CAPABILITY Register (048h)

Table 2-33 • POWER_MGT_CAPABILITY

Bit Number	Name	Reset Value	Description
31:27	POWER_MGT_CAPABILITY_31_27		These bits set PME support.
26	POWER_MGT_CAPABILITY_26		This bit sets D2 support. If this field is cleared, PME_SUPPORT bit 29 must also be cleared.
25	POWER_MGT_CAPABILITY_25		This bit sets D1 support. If this field is cleared, PME_SUPPORT bit 28 must also be cleared.
24:22	POWER_MGT_CAPABILITY_24_22		These bits set maximum current required.
21	POWER_MGT_CAPABILITY_21		This bit sets device specification initialization.
20:19	POWER_MGT_CAPABILITY_20_19		Reserved
18	POWER_MGT_CAPABILITY_18		This bit sets PCI power management interface specification version; hardwired to 011b (PCIe Spec. v1.1)
17:0	POWER_MGT_CAPABILITY_17_0		Reserved

CFG_PMSCR Register (04Ch)

Table 2-34 • CFG_PMSCR

Bit Number	Name	Reset Value	Description
31:0	CFG_PMSCR		This register reports the current values of the PCIe IP core's power management control Status register.

AER_ECRC_CAPABILITY Register (050h)

Table 2-35 • AER_ECRC_CAPABILITY

Bit Number	Name	Reset Value	Description
31:3	AER_ECRC_CAPABILITY_31_3		Reserved
2	AER_ECRC_CAPABILITY_2		This register defines whether advanced error reporting (AER) is implemented or not.
1	AER_ECRC_CAPABILITY_1		This register defines ECRC generation.
0	AER_ECRC_CAPABILITY_0		This register defines ECRC check.

VC1_CAPABILITY Register (054h)

Table 2-36 • VC1_CAPABILITY

Bit Number	Name	Reset Value	Description
31:0			Reserved

MAX_PAYLOAD_SIZE Register (058h)

Table 2-37 • MAX_PAYLOAD_SIZE

Bit Number	Name	Reset Value	Description
31:3			Reserved
2:0	MAX_PAYLOAD_SIZE_2_0		This register bits sets the payload size. Permitted values are: 000: 128 bytes 001: 256 bytes 010: 512 bytes 011: 1 Kbytes 100: 2 Kbytes

CLKREQ Register (05Ch)

Table 2-38 • CLKREQ

Bit Number	Name	Reset Value	Description
31:1	CLKREQ_31_1		Reserved
0	CLKREQ_0		When set to 1, the ExpressCard CLKREQ# is implemented. This bit is tied to 0.

ASPM_LOS_CAPABILITY Register (05Ch)

Table 2-39 • ASPM_LOS_CAPABILITY

Bit Number	Name	Reset Value	Description
31	ASPM_LOS_CAPABILITY _31		NFTS_COMCLK in common clock mode
23:16	ASPM_LOS_CAPABILITY _23_16		NFTS_SPCLK in separated clock mode
15:10	ASPM_LOS_CAPABILITY _15_10		Reserved
9:7	ASPM_LOS_CAPABILITY _9_7		L0s exit latency for separate clock
6:4	ASPM_LOS_CAPABILITY _6_4		L0s exit latency for common clock
3:1	ASPM_LOS_CAPABILITY _3_1		Endpoint L0s acceptable latency
0	ASPM_L0S_CAPABILITY_0		Reserved

ASPM_L1_CAPABILITY Register (064h)

Table 2-40 • ASPM_L1_CAPABILITY

Bit Number	Name	Reset Value	Description
31:24	ASPM_L1_CAPABILITY_31_24		NFTS_COMCLK in common clock mode at 5.0 Gbps
23:16	ASPM_L1_CAPABILITY_23_16		NFTS_SPCLK in separated clock mode at 5.0 Gbps
15:4	ASPM_L1_CAPABILITY_15_4		Reserved
3:0	ASPM_L1_CAPABILITY_3_0		Number of electrical idle exit (EIE) symbols sent before transmitting the first FTS

TIMEOUT_COMPLETION Register (068Ch)

Table 2-41 • TIMEOUT_COMPLETION

Bit Number	Name	Reset Value	Description
31:4	TIMEOUT_COMPLETION_31_4		Reserved
3:0	TIMEOUT_COMPLETION_3_0		This register defines four timeout ranges for the completion timeout mechanism. Bits are set as given below to show timeout value ranges supported.
			0000: Completion timeout programming not supported – the function must implement a timeout value in the range 50 μ s to 50 ms.
			0001: Range A 0010: Range B 0011: Ranges A and B 0110: Ranges B and C 0111: Ranges A, B, and C 1110: Ranges B, C and D 1111: Ranges A, B, C, and D
			All other values are reserved.
			Completion timeout range supported:
			Range A: 50 us to 10 ms
			Range B: 10 ms to 250 ms
			Range C: 250 ms to 4 s
			Range D: 4 s to 64 s

PCIE_LINK_CAPABILITIES Register (06Ch)

Table 2-42 • PCIE_LINK_CAPABILITIES

Bit Number	Name	Reset Value	Description
31:0			Reserved

PCIE_LINK_STATUS_CTRL Register (070h)

Table 2-43 • PCIE_LINK_STATUS_CTRL

Bit Number	Name	Reset Value	Description
31:0			Reserved

PM_DATA_SCALE[0] Register (070h)

Table 2-44 • PM_DATA_SCALE[0]

Bit Number	Name	Reset Value	Description
31:24	PM_DATA_SCALE_0_31_24		These bits set the register that defines Data3 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
23:16	PM_DATA_SCALE_0_23_16		These bits set the register that defines Data2 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
15:8	PM_DATA_SCALE_0_15_8		These bits set the register that defines Data1 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
7:0	PM_DATA_SCALE_0_7_0		These bits set the register that defines Data0 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.

PM_DATA_SCALE[1] Register (074h)

Table 2-45 • PM_DATA_SCALE[1]

Bit Number	Name	Reset Value	Description
31:24	PM_DATA_SCALE_1_31_24		These bits set the register that defines Data7 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
23:16	PM_DATA_SCALE_1_23_16		These bits set the register that defines Data6 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
15:8	PM_DATA_SCALE_1_15_8		These bits set the register that defines Data5 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
7:0	PM_DATA_SCALE_1_7_0		These bits set the register that defines Data4 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.

PM_DATA_SCALE[2] Register (078h)

Table 2-46 • PM_DATA_SCALE[2]

Bit Number	Name	Reset Value	Description
31:26	PM_DATA_SCALE_2_31_26		Reserved
25:24	PM_DATA_SCALE_2_25_24		These bits set the register that defines data scale 3 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
23:18	PM_DATA_SCALE_2_23_18		Reserved
17:16	PM_DATA_SCALE_2_17_16		These bits set the register that defines data scale 2 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
15:10	PM_DATA_SCALE_2_15_10		Reserved
9:8	PM_DATA_SCALE_2_9_8		These bits set the register that defines data scale 1 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
7:2	PM_DATA_SCALE_2_7_2		Reserved
1:0	PM_DATA_SCALE_2_1_0		These bits set the register that defines data scale 0 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.

PM_DATA_SCALE[3] Register (07Ch)

Table 2-47 • PM_DATA_SCALE[3]

Bit Number	Name	Reset Value	Description
31:26	PM_DATA_SCALE_3_31_26		Reserved
25:24	PM_DATA_SCALE_3_25_24		These bits set the register that defines data scale 7 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
23:18	PM_DATA_SCALE_3_23_18		Reserved
17:16	PM_DATA_SCALE_3_17_16		These bits set the register that defines data scale 6 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
15:10	PM_DATA_SCALE_3_15_10		Reserved
9:8	PM_DATA_SCALE_3_9_8		These bits set the register that defines data scale 5 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.
7:2	PM_DATA_SCALE_3_7_2		Reserved
1:0	PM_DATA_SCALE_3_1_0		These bits set the register that defines data scale 4 of the PM data value of the device for each possible power state defined by the PCI power management specification, used in conjunction with the PM scale field.

MSI[0] Register (080h)

Table 2-48 • MSI[0]

Bit Number	Name	Reset Value	Description	
31:27	MSI0_31_27		These bits set MSI_Offset[3] of MSI_MAP0.	
26:24	MSI0_26_24		These bits set MSI_TC[1] of MSI_MAP0.	
23:19	MSI0_23_19		These bits set MSI_Offset[3] of MSI_MAP0.	
18:16	MSI0_18_16		These bits set MSI_TC[3] of MSI_MAP0.	
15:11	MSI0_15_11		These bits set MSI_Offset[2] of MSI_MAP0.	
10:8	MSI0_10_8		These bits set MSI_TC[2] of MSI_MAP0.	
7:3	MSI0_7_3		These bits set MSI_Offset[1] of MSI_MAP0.	
2:0	MSI0_2_0		These bits set MSI_TC[1] of MSI_MAP0.	

MSI[1] Register (084h)

Table 2-49 • MSI[1]

Bit Number	Name	Reset Value	Description
31:27	MSI1_31_27		These bits set MSI_Offset[3] of MSI_MAP1.
26:24	MSI1_26_24		These bits set MSI_TC[1] of MSI_MAP1.
23:19	MSI1_23_19		These bits set MSI_Offset[3] of MSI_MAP1.
18:16	MSI1_18_16		These bits set MSI_TC[3] of MSI_MAP1.
15:11	MSI1_15_11		These bits set MSI_Offset[2] of MSI_MAP1.
10:8	MSI1_10_8		These bits set MSI_TC[2] of MSI_MAP1.
7:3	MSI1_7_3		These bits set MSI_Offset[1] of MSI_MAP1.
2:0	MSI1_2_0		These bits set MSI_TC[1] of MSI_MAP1.

MSI[2] Register (088h)

Table 2-50 • MSI[2]

Bit Number	Name	Reset Value	Description
31:27	MSI2_31_27		These bits set MSI_Offset[3] of MSI_MAP2.
26:24	MSI2_26_24		These bits set MSI_TC[1] of MSI_MAP2.
23:19	MSI2_23_19		These bits set MSI_Offset[3] of MSI_MAP2.
18:16	MSI2_18_16		These bits set MSI_TC[3] of MSI_MAP2.
15:11	MSI2_15_11		These bits set MSI_Offset[2] of MSI_MAP2.
10:8	MSI2_10_8		These bits set MSI_TC[2] of MSI_MAP2.
7:3	MSI2_7_3		These bits set MSI_Offset[1] of MSI_MAP2.
2:0	MSI2_2_0		These bits set MSI_TC[1] of MSI_MAP2.

MSI[3] Register (08Ch)

Table 2-51 • MSI[3]

Bit Number	Name	Reset Value	Description
31:27	MSI3_31_27		These bits set MSI_Offset[3] of MSI_MAP3.
26:24	MSI3_26_24		These bits set MSI_TC[1] of MSI_MAP3.
23:19	MSI3_23_19		These bits set MSI_Offset[3] of MSI_MAP3.
18:16	MSI3_18_16		These bits set MSI_TC[3] of MSI_MAP3.
15:11	MSI3_15_11		These bits set MSI_Offset[2] of MSI_MAP3.
10:8	MSI3_10_8		These bits set MSI_TC[2] of MSI_MAP3.
7:3	MSI3_7_3		These bits set MSI_Offset[1] of MSI_MAP3.
2:0	MSI_2_0		These bits set MSI_TC[1] of MSI_MAP3.

MSI[4] Register (090h)

Table 2-52 • MSI[4]

Bit Number	Name	Reset Value	Description
31:27	MSI4_31_27		These bits set MSI_Offset[3] of MSI_MAP4.
26:24	MSI4_26_24		These bits set MSI_TC[1] of MSI_MAP4.
23:19	MSI4_23_19		These bits set MSI_Offset[3] of MSI_MAP4.
18:16	MSI4_18_16		These bits set MSI_TC[3] of MSI_MAP4.
15:11	MSI4_15_11		These bits set MSI_Offset[2] of MSI_MAP4.
10:8	MSI4_10_8		These bits set MSI_TC[2] of MSI_MAP4.
7:3	MSI4_7_3		These bits set MSI_Offset[1] of MSI_MAP4.
2:0	MSI4_2_0		These bits set MSI_TC[1] of MSI_MAP4.

MSI[5] Register (094h)

Table 2-53 • MSI[5]

Bit Number	Name	Reset Value	Description
31:27	MSI5_31_27		These bits set MSI_Offset[3] of MSI_MAP5.
26:24	MSI5_26_24		These bits set MSI_TC[1] of MSI_MAP5.
23:19	MSI5_23_19		These bits set MSI_Offset[3] of MSI_MAP5.
18:16	MSI5_18_16		These bits set MSI_TC[3] of MSI_MAP5.
15:11	MSI5_15_11		These bits set MSI_Offset[2] of MSI_MAP5.
10:8	MSI5_10_8		These bits set MSI_TC[2] of MSI_MAP5.
7:3	MSI5_7_3		These bits set MSI_Offset[1] of MSI_MAP5.
2:0	MSI5_2_0		These bits set MSI_TC[1] of MSI_MAP5.

MSI[6] Register (098h)

Table 2-54 • MSI[6]

Bit Number	Name	Reset Value	Description
31:27	MSI6_31_27		These bits set MSI_Offset[3] of MSI_MAP6.
26:24	MSI6_26_24		These bits set MSI_TC[1] of MSI_MAP6.
23:19	MSI6_23_19		These bits set MSI_Offset[3] of MSI_MAP6.
18:16	MSI6_18_16		These bits set MSI_TC[3] of MSI_MAP6.
15:11	MSI6_15_11		These bits set MSI_Offset[2] of MSI_MAP6.
10:8	MSI6_10_8		These bits set MSI_TC[2] of MSI_MAP6.
7:3	MSI6_7_3		These bits set MSI_Offset[1] of MSI_MAP6.
2:0	MSI6_2_0		These bits set MSI_TC[1] of MSI_MAP6.

MSI[7] Register (09Ch)

Table 2-55 • MSI[7]

Bit Number	Name	Reset Value	Description
31:27	MSI7_31_27		These bits set MSI_Offset[3] of MSI_MAP7.
26:24	MSI7_26_24		These bits set MSI_TC[1] of MSI_MAP7.
23:19	MSI7_23_19		These bits set MSI_Offset[3] of MSI_MAP7.
18:16	MSI7_18_16		These bits set MSI_TC[3] of MSI_MAP7.
15:11	MSI7_15_11		These bits set MSI_Offset[2] of MSI_MAP7.
10:8	MSI7_10_8		These bits set MSI_TC[2] of MSI_MAP7.
7:3	MSI7_7_3		These bits set MSI_Offset[1] of MSI_MAP7.
2:0	MSI7_2_0		These bits set MSI_TC[1] of MSI_MAP7.

ERROR_COUNTER[0] Register (0A0h)

Table 2-56 • ERROR_COUNTER[0]

Bit Number	Name	Reset Value	Description
31:14	ERROR_COUNTER0_31_24		Eight-bit counter that reports the following error source: A3: DLLP error
23:16	ERROR_COUNTER0_23_16		Eight-bit counter that reports the following error source: A2: TLP error
15:8	ERROR_COUNTER0_15_8		Eight-bit counter that reports the following error source: A1: Training error (not supported)
7:0	ERROR_COUNTER0_7_0		Eight-bit counter that reports the following error source: A0: Receiver port error

ERROR_COUNTER[1] Register (0A4h)

Table 2-57 • ERROR_COUNTER[1]

Bit Number	Name	Reset Value	Description
31:14	ERROR_COUNTER1_31_24		Eight-bit counter that reports the following error source: A7: Poisoned TLP received error
23:16	ERROR_COUNTER1_23_16		Eight-bit counter that reports the following error source: A6: Data link layer protocol error
15:8	ERROR_COUNTER1_15_8		Eight-bit counter that reports the following error source: A5: Replay number rollover error
7:0	ERROR_COUNTER1_7_0		Eight-bit counter that reports the following error source: A4: Replay time error

ERROR_COUNTER[2] Register (0A8h)

Table 2-58 • ERROR_COUNTER[2]

Bit Number	Name	Reset Value	Description
31:14	ERROR_COUNTER2_31_24		Eight-bit counter that reports the following error source: AB: Completer abort error
23:16	ERROR_COUNTER2_23_16		Eight-bit counter that reports the following error source: AA: Completion timeout error
115:8	ERROR_COUNTER2_15_8		Eight-bit counter that reports the following error source: A9: Unsupported request error
7:0	ERROR_COUNTER2_7_0		Eight-bit counter that reports the following error source: A8: ECRC error

ERROR_COUNTER[3] Register (0ACh)

Table 2-59 • ERROR_COUNTER[3]

Bit Number	Name	Reset Value	Description
31:14	ERROR_COUNTER3_31_24		Eight-bit counter that reports the following error source: AF: Malformed TLP error
23:16	ERROR_COUNTER3_23_16		Eight-bit counter that reports the following error source: AE: Flow control protocol error
15:8	ERROR_COUNTER3_15_8		Eight-bit counter that reports the following error source: AD: Receiver overflow error
7:0	ERROR_COUNTER3_7_0		Eight-bit counter that reports the following error source: AC: Unexpected completion error

REDIT_ALLOCATION[0] Register

Table 2-60 • CREDIT_ALLOCATION[0]

Bit Number	Name	Reset Value	Description
31:28	CREDIT_ALLOCATION0_31_28		Reserved
27:16	CREDIT_ALLOCATION0_27_16		VC0 posted header/data credit pd_cred0
15:8	CREDIT_ALLOCATION0_15_8		Reserved
7:0	CREDIT_ALLOCATION0_7_0		VC0 posted header/data credit ph_cred0

CREDIT_ALLOCATION[1] Register (0B4h)

Table 2-61 • CREDIT_ALLOCATION[1]

Bit Number	Name	Reset Value	Description
31:28	CREDIT_ALLOCATION1_31_28		Reserved
27:16	CREDIT_ALLOCATION1_27_16		VC0 non-posted header/data credit npd_cred0
15:8	CREDIT_ALLOCATION1_15_8		Reserved
7:0	CREDIT_ALLOCATION1_7_0		VC0 non-posted header/data credit nph_cred0

CREDIT_ALLOCATION[2] Register (0B8h)

Table 2-62 • CREDIT_ALLOCATION[2]

Bit Nur	nber	Name	Reset Value	Description
31:0)	Reserved		Reserved

CREDIT_ALLOCATION[3] Register (0BCh)

Table 2-63 • CREDIT_ALLOCATION[3]

Bit Number	Name	Reset Value	Description
31:0	Reserved		Reserved

AXI_SLAVE_WINDOW0[0] Register (0C0h)

Table 2-64 • AXI_SLAVE_WINDOW0[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW00_31_12		Base address AXI slave window 0
11:0	Reserved		

AXI_SLAVE_WINDOW0[1] Register (0C4h)

Table 2-65 • AXI_SLAVE_WINDOW0[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW01_31_12		Size of AXI Slave window 0
11:1	AXI_SLAVE_WINDOW01_31_12		Reserved
0	AXI_SLAVE_WINDOW01_0		Enable bit of AXI slave window 0

AXI_SLAVE_WINDOW0[2] Register (0C8h)

Table 2-66 • AXI_SLAVE_WINDOW0[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW02_31_12		LSB of base address PCIe window 0
11:5	AXI_SLAVE_WINDOW02_11_5		Reserved
4:2	AXI_SLAVE_WINDOW02_4_2		AXI slave window 0 traffic class (TC)
1	AXI_SLAVE_WINDOW02_1		AXI Slave window 0 relaxed ordering (RO)
0	AXI_SLAVE_WINDOW02_0		AXI Slave window 0 no snoop (NS)

AXI_SLAVE_WINDOW0[3] Register (0CCh)

Table 2-67 • AXI_SLAVE_WINDOW0[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_SLAVE_WINDOW03_31_12		MSB of base address PCIe window 0

AXI SLAVE WINDOW1[0] Register (0D0h)

Table 2-68 • AXI_SLAVE_WINDOW1[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW10_31_12		Base address AXI slave window 1
11:0	Reserved		Reserved

AXI SLAVE WINDOW1[1] Register (0D4h)

Table 2-69 • AXI_SLAVE_WINDOW1[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW11_31_12		Size of AXI slave window 1
11:1	AXI_SLAVE_WINDOW11_31_12		Reserved
0	AXI_SLAVE_WINDOW11_0		Enable bit of AXI slave window 1

AXI_SLAVE_WINDOW1[2] Register (0D8h)

Table 2-70 • AXI_SLAVE_WINDOW1[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW12_31_12		LSB of base address PCIe window 1
11:5	AXI_SLAVE_WINDOW12_11_5		Reserved
4:2	AXI_SLAVE_WINDOW12_4_2		AXI slave window 0 traffic class (TC)
1	AXI_SLAVE_WINDOW12_1		AXI slave window 0 relaxed ordering (RO)
0	AXI_SLAVE_WINDOW12_0		AXI slave window 0 no snoop (NS)

AXI_SLAVE_WINDOW1[3] Register (0DCh)

Table 2-71 • AXI_SLAVE_WINDOW1[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_SLAVE_WINDOW13_31_12		MSB of base address PCIe window 1

AXI_SLAVE_WINDOW2[0] Register (0E0h)

Table 2-72 • AXI_SLAVE_WINDOW2[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW20_31_12		Base address AXI slave window 2
11:0	Reserved		

AXI_SLAVE_WINDOW0[1] Register (0E4h)

Table 2-73 • AXI_SLAVE_WINDOW2[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW21_31_12		Size of AXI slave window 2
11:1	AXI_SLAVE_WINDOW22_31_12		Reserved
0	AXI_SLAVE_WINDOW21_0		Enable bit of AXI slave window 2

AXI_SLAVE_WINDOW0[2] Register (0E8h)

Table 2-74 • AXI_SLAVE_WINDOW2[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW22_31_12		LSB of base address PCIe window 2
11:5	AXI_SLAVE_WINDOW22_11_5		Reserved
4:2	AXI_SLAVE_WINDOW22_4_2		AXI slave window 0 traffic class (TC)
1	AXI_SLAVE_WINDOW22_1		AXI slave window 0 relaxed ordering (RO)
0	AXI_SLAVE_WINDOW22_0		AXI slave window 0 no snoop (NS)

AXI_SLAVE_WINDOW3[3] Register (0ECh)

Table 2-75 • AXI_SLAVE_WINDOW2[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_SLAVE_WINDOW23_31_12		MSB of base address PCIe window 3

AXI_SLAVE_WINDOW3[0] Register (0F0h)

Table 2-76 • AXI_SLAVE_WINDOW3[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW30_31_12		Base address AXI slave window 3
11:0	Reserved		

AXI_SLAVE_WINDOW3[1] Register (0F4h)

Table 2-77 • AXI_SLAVE_WINDOW3[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW31_31_12		Size of AXI slave window 3
11:1	AXI_SLAVE_WINDOW1_31_12		Reserved
0	AXI_SLAVE_WINDOW31_0		Enable bit of AXI slave window 3

AXI_SLAVE_WINDOW3[2] Register (0F8h)

Table 2-78 • AXI_SLAVE_WINDOW3[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_SLAVE_WINDOW32_31_12		LSB of base address PCIe window 3
11:5	AXI_SLAVE_WINDOW32_11_5		Reserved
4:2	AXI_SLAVE_WINDOW32_4_2		AXI slave window 0 traffic class (TC)
1	AXI_SLAVE_WINDOW32_1		AXI Slave window 0 relaxed ordering (RO)
0	AXI_SLAVE_WINDOW32_0		AXI Slave window 0 no snoop (NS)

AXI_SLAVE_WINDOW3[3] Register (0FCh)

Table 2-79 • AXI_SLAVE_WINDOW3[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_SLAVE_WINDOW33_31_12		MSB of base address PCIe window 0

AXI_MASTER_WINDOW0[0] Register (100h)

Table 2-80 • AXI_MASTER_WINDOW0[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW00_31_12		Base address AXI master window 0
11:0	Reserved		Reserved

AXI_MASTER_WINDOW0[1] Register (104h)

Table 2-81 • AXI_MASTER_WINDOW0[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW01_31_12		Size of AXI master window 0
11:1	AXI_MASTER_WINDOW01_31_12		Reserved
0	AXI_MASTER_WINDOW01_0		Enable bit of AXI master window 0

AXI MASTER WINDOW0[2] Register (108h)

Table 2-82 • AXI_MASTER_WINDOW0[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW02_31_12		LSB of base address PCIe window 0
11:5	AXI_MASTER_WINDOW02_11_5		Reserved
5:0	AXI_MASTER_WINDOW02_5_0		These bits set the BAR. To select a BAR, set the following values: 0x01: BAR0 (32-bit BAR) or BAR0/1 (64-bit BAR) 0x02: BAR1 (32-bit BAR) only 0x04: BAR2 (32-bit BAR) or BAR2/3 (64-bit BAR) 0x08: BAR3 (32-bit BAR) only 0x10: BAR4 (32-bit BAR) or BAR4/5 (64-bit BAR) 0x20: BAR5 (32-bit BAR) only

AXI_MASTER_WINDOW0[3] Register (10Ch)

Table 2-83 • AXI_MASTER_WINDOW0[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_MASTER_WINDOW03_31_12		MSB of base address PCIe window 0

AXI_MASTER_WINDOW1[0] Register (110h)

Table 2-84 • AXI_MASTER_WINDOW1[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW10_31_12		Base address AXI master window 1
11:0	Reserved		Reserved

AXI_MASTER_WINDOW1[1] Register (114h)

Table 2-85 • AXI_MASTER_WINDOW1[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW11_31_12		Size of AXI master window 1
11:1	AXI_MASTER_WINDOW11_31_12		Reserved
0	AXI_MASTER_WINDOW11_0		Enable bit of AXI master window 1

AXI_MASTER_WINDOW1[2] Register (118h)

Table 2-86 • AXI_MASTER_WINDOW1[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW12_31_12		LSB of base address PCIe window 1
11:5	AXI_MASTER_WINDOW12_11_5		Reserved
5:0	AXI_MASTER_WINDOW12_5_0		These bits set the BAR. To select a BAR, set the following values: 0x01: BAR0 (32-bit BAR) or BAR0/1 (64-bit BAR) 0x02: BAR1 (32-bit BAR) only 0x04: BAR2 (32-bit BAR) or BAR2/3 (64-bit BAR) 0x08: BAR3 (32-bit BAR) only 0x10: BAR4 (32-bit BAR) or BAR4/5 (64-bit BAR) 0x20: BAR5 (32-bit BAR) only

AXI_MASTER_WINDOW1[3] Register (11Ch)

Table 2-87 • AXI_MASTER_WINDOW1[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_MASTER_WINDOW13_31_12		MSB of base address PCle window 1

AXI_MASTER_WINDOW2[0] Register (120h)

Table 2-88 • AXI_MASTER_WINDOW2[0]

Bit Number	Name	Reset Value	Description	
31:12	AXI_MASTER_WINDOW20_31_12		Base address AXI master window 2	
11:0	Reserved		Reserved	

AXI_MASTER_WINDOW0[1] Register (124h)

Table 2-89 • AXI_MASTER_WINDOW2[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW21_31_12		Size of AXI master window 2
11:1	AXI_MASTER_WINDOW22_31_12		Reserved
0	AXI_MASTER_WINDOW21_0		Enable bit of AXI master window 2

AXI_MASTER_WINDOW0[2] Register (128h)

Table 2-90 • AXI_MASTER_WINDOW2[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW22_31_12		LSB of base address PCIe window 2
11:5	AXI_MASTER_WINDOW22_11_5		Reserved
5:0	AXI_MASTER_WINDOW22_5_0		These bits set the BAR. To select a BAR, set the following values: 0x01: BAR0 (32-bit BAR) or BAR0/1 (64-bit BAR) 0x02: BAR1 (32-bit BAR) only 0x04: BAR2 (32-bit BAR) or BAR2/3 (64-bit BAR) 0x08: BAR3 (32-bit BAR) only 0x10: BAR4 (32-bit BAR) or BAR4/5 (64-bit BAR) 0x20: BAR5 (32-bit BAR) only

AXI_MASTER_WINDOW3[3] Register (12Ch)

Table 2-91 • AXI_MASTER_WINDOW2[3]

Bit Number	Name	Reset Value	Description	
31:0	AXI_MASTER_WINDOW23_31_12		MSB of base address PCIe window 3	

AXI_MASTER_WINDOW3[0] Register (130h)

Table 2-92 • AXI_MASTER_WINDOW3[0]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW30_31_12		Base address AXI master window 3
11:0	Reserved		Reserved

AXI_MASTER_WINDOW3[1] Register (134h)

Table 2-93 • AXI_MASTER_WINDOW3[1]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW31_31_12		Size of AXI master window 3
11:1	AXI_MASTER_WINDOW1_31_12		Reserved
0	AXI_MASTER_WINDOW31_0		Enable bit of AXI master window 3

AXI_MASTER_WINDOW3[2] Register (138h)

Table 2-94 • AXI_MASTER_WINDOW3[2]

Bit Number	Name	Reset Value	Description
31:12	AXI_MASTER_WINDOW32_31_12		LSB of base address PCIe window 3
11:5	AXI_MASTER_WINDOW32_11_5		Reserved
5:0	AXI_MASTER_WINDOW32_5_0		These bits set the BAR. To select a BAR, set the following values:
			0x01: BAR0 (32-bit BAR) or BAR0/1 (64-bit BAR)
			0x02: BAR1 (32-bit BAR) only
			0x04: BAR2 (32-bit BAR) or BAR2/3 (64-bit BAR)
			0x08: BAR3 (32-bit BAR) only
			0x10: BAR4 (32-bit BAR) or BAR4/5 (64-bit BAR)
			0x20: BAR5 (32-bit BAR) only

AXI_MASTER_WINDOW3[3] Register (13Ch)

Table 2-95 • AXI_MASTER_WINDOW3[3]

Bit Number	Name	Reset Value	Description
31:0	AXI_MASTER_WINDOW33_31_12		MSB of base address PCIe window 0

IMASK Register (140h)

Table 2-96 • IMASK

Bit Nu	t ımber	Name	Reset Value	Description
31	0:	IMASK _31_0		Reserved

ISTATUS Register (144h)

Table 2-97 • ISTATUS

Bit Number	Name	Reset Value	Description
31:0	ISTATUS _31_0		Reserved

ICMD Register (148h)

Table 2-98 • ICMD

Bit Number	Name	Reset Value	Description
31:0	ICMD _31_0		Reserved

IRTATUS Register (14Ch)

Table 2-99 • IRTATUS

Bit Number	Name	Reset Value	Description
31:0	IRTATUS _31_0		Reserved

MSIADDR Register (150h)

Table 2-100 • IMSIADDR

Bit Number	Name	Reset Value	Description
31:0	IMSIADDR_31_0		Reserved

SLOTCAP Register (154h)

Table 2-101 • SLOTCAP

Bit Number	Name	Reset Value	Description
31:0	SLOTCAP_31_0		Reserved

SLOTCSR Register (158h)

Table 2-102 • SLOTCSR

Bit Number	Name	Reset Value	Description
31:0	SLOTCSR _31_0		Reserved

ROOTCSR Register (15Ch)

Table 2-103 • ROOTCSR

Bit Number	Name	Reset Value	Description
31:0	ROOTCSR_31_0		Reserved

CFG_CONTROL Register (160h)

Table 2-104 • CFG_CONTROL

Bit Number	Name	Reset Value	Description
31:0	CFG_CONTROL_31_0		Reserved

CFG_WRITE_DATA Register (164h)

Table 2-105 • CFG_WRITE_DATA

Bit Number	Name	Reset Value	Description
31:0	CFG_WRITE_DATA_31_0		Reserved

CFG_READ_DATA Register (168h)

Table 2-106 • CFG_READ_DATA

Bit Number	Name	Reset Value	Description
31:0	CFG_READ_DATA_31_0		Reserved

INFO Register (016Ch)

Table 2-107 • INFO

Bit Number	Name	Reset Value	Description
31:12	INFO_31_12		Bridge version
11:0	INFO_11_0		Reserved

IO_CONTROL Register (170h)

Table 2-108 • IO_CONTROL

Bit Number	Name	Reset Value	Description
31:0	IO_CONTROL_31_0		Reserved

IO_ADDR Register (174h)

Table 2-109 • IO_ADDR

Bit Number	Name	Reset Value	Description
31:0	IO_ADDR_31_0		Reserved

IO_WRITE_DATA Register (178h)

Table 2-110 • IO_WRITE_DATA

Bit Number	Name	Reset Value	Description
31:0	IO_WRITE_DATA_31_0		Reserved

IO_READ_DATA Register (17Ch)

Table 2-111 • IO_READ_DATA

	Bit Number	Name	Reset Value	Description
ſ	31:0	IO_READ_DATA_31_0		Reserved

CFG_FBE Register (180h)

Table 2-112 • CFG_FBE

Bit Number	Name	Reset Value	Description
31:0	CFG_FBE _31_0		Reserved

PREFETCH_IO_WINDOW Register (184h)

Table 2-113 • PREFETCH_IO_WINDOW

Bit Number	Name	Reset Value	Description
31:0	PREFETCH_IO_WINDOW_31_0		Reserved

PCIE_CONFIG Register (204h)

Table 2-114 • PCIE_CONFIG

Bit Number	Name	Reset Value	Description
31:5	PCIE_CONFIG_31_5		Reserved
4	PCIE_CONFIG_4		Selects the level of de-emphasis for an upstream component when the link speed is 5.0 Gbps.
3:0	PCIE_CONFIG_3_0		Sets PCIe Specification version capability: 0000: Core is compliant with PCIe Specification 1.0a or 1.1 0001: Core is compliant with PCIe Specification 1.0a or 1.1 0010: Core is compliant with PCIe Specification 2.0

PCIE_DEV2SCR Register (230h)

Table 2-115 • PCIE_DEV2SCR

Bit Number	Name	Reset Value	Description
31:0	PCIE_DEV2SCR_31_0		This register reports the current value of the PCIe device control and status register. It can be monitored by the local processor when relaxed ordering and no snoop bits are enabled in the system. This register is used when link speed is set to 5.0 Gbps.

PCIE_LINK2SCR Register (234h)

Table 2-116 • PCIE_LINK2SCR

Bit Number	Name	Reset Value	Description
31:0	PCIE_INK2SCR_31_0		This register reports the current value of the PCle Link Control and Status register. It can be monitored by the local processor when Relaxed Ordering and No Snoop bits are enabled in the system. This register is used when link speed is set to 5.0 Gbps.

ASPM_LOS_GEN2 Register (260h)

Table 2-117 • ASPM_L0S_GEN2

Bit Number	Name	Reset Value	Description
31:24	ASPM_LOS_GEN2_31_24		NFTS_COMCLK in common clock mode at 5.0 Gbps
23:16	ASPM_LOS_GEN2_23_16		NFTS_SPCLK in separated clock mode at 5.0 Gbps
15:4	ASPM_L0S_GEN2_15_4		Reserved
3:0	ASPM_L0S_GEN2_3_0		Number of electrical idle exit (EIE) symbols sent before transmitting the first FTS

K_CNT_CONFIG[0] Register (300h)

Table 2-118 • K_CNT_CONFIG[0]

Bit Number	Name	Reset Value	Description
31:6	K_CNT_CONFIG0_31_6		If $k_{fix}[30] = 1$, these bits are hardwired to their default values. If $k_{fix}[30] = 0$, the bits are reserved.
5:2	K_CNT_CONFIG0_5_2		If $k_{fix}[30] = 1$, these bits are hardwired to their default values. If $k_{fix}[30] = 0$, the bits are defined.
			The configurable power-down timeout sets the maximum time (in ms) allowed for the PHY to acknowledge a power-down transition. This timeout prevent an LTSSM freeze caused by a missing PHY acknowledge after a power-down request. The default value of 0 means that no timeout is used.
1:0	K_CNT_CONFIG0_1_0		MSBs of the latency setting, these bits set the latency for the assertion of the PIPE signal TXELECIDLE after the electrical idle order set (EIOS) is sent.

K_CNT_CONFIG[1] Register (304h)

Table 2-119 • K_CNT_CONFIG[1]

Bit Number	Name	Reset Value	Description
31:30	K_CNT_CONFIG1_31_30		LSBs of the latency setting. These bits set the latency for the assertion of the PIPE signal, TXELECIDLE, after the electrical idle order set (EIOS) is sent.
29:15	K_CNT_CONFIG1_29_15		These bits set the timeout value for the replay timer. When set to 0, the core defaults to the PCle Specification value.
14:0	K_CNT_CONFIG1_14_0		These bits set the timeout value for the ACK latency timer. When set to 0, the core defaults to the PCIe Specification value.

K_CNT_CONFIG[2] Register (308h)

Table 2-120 • K_CNT_CONFIG[2]

Bit Number	Name	Reset Value	Description
		7 411.01	'
31:24	K_CNT_CONFIG2_31_24		These bits set the flow control timeout check (in units of 1 μs).
23:21	K_CNT_CONFIG2_23_21		Not used
20:16	K_CNT_CONFIG2_20_16		These bits set update flow control credit timer (in units of 1 µs).
15:11	K_CNT_CONFIG2_15_11		These bits set L0s/L1 entry latency (in units of 256 ns).
10:6	K_CNT_CONFIG2_10_6		These bits set FC init timer (in units of 256 ns).
5:0	K_CNT_CONFIG2_5_0		Reserved

K_CNT_CONFIG[3] Register (30Ch)

Table 2-121 • K_CNT_CONFIG[3]

Bit Number	Name	Reset Value	Description
31:21	K_CNT_CONFIG3_31_21		These bits set the SKP OS scheduling counter.
20:1	K_CNT_CONFIG3_21_0		These bits set the recovery speed counter. It counts 1 ms using UCLK when the LTSSM state is Recovery. Speed (applies to 5.0 Gbps configuration speed only). See the PCle specification for more information.
0	K_CNT_CONFIG3_0		MSB of power-down transition delay counter. It delays the transition to power-down phase when a TXELECIDLE signal is asserted in states where the RXELECIDLE signal is not used (such as L0s, detect, disable, and hot reset). The recommended value of this counter is 10.

K_CNT_CONFIG[4] Register (310h)

Table 2-122 • K_CNT_CONFIG[4]

Bit Number	Name	Reset Value	Description
31:25	K_CNT_CONFIG4_31_25		LSBs of power-down transition delay counter: It delays the transition to power-down phase when a TXELECIDLE signal is asserted in states where the RXELECIDLE signal is not used (such as L0s, detect, disable and hot reset). The recommended value of this counter is 10.
24:21	K_CNT_CONFIG4_24_21		These bits are used for stopping dummy insertion at the CDC transmit FIFO when the Almost Full condition is reached. Used when a user clock is implemented and CDC compensates for plesiochronous relation. When set to 0000, the core defaults to 1011.
20	K_CNT_CONFIG4_20		Reserved
19:12	K_CNT_CONFIG4_19_12		These bits set number of clock cycles for inferring electrical idle exit when core RX lanes are in the L0s state.
11:8	K_CNT_CONFIG4_11_8		These bits set the RX CDC Almost Full condition, which indicates when the CDC receive FIFO is almost full. When set to 0000, the core defaults to 1011.
7:4	K_CNT_CONFIG4_7_4		These bits set the TX CDC Almost Full condition, which indicates when the CDC transmit FIFO is almost full. When set to 0000, the core defaults to 1011.
3:0	K_CNT_CONFIG4_3_0		Reserved

K_CNT_CONFIG[5] Register (314h)

Table 2-123 • K_CNT_CONFIG[5]

Bit Number	Name	Reset Value	Description
31:0	K_CNT_CONFIG5_31_0		Reserved

PCIe System - I/O Signal Interface

The SmartFusion2 SoC FPGA PCle system block interfaces with the FPGA fabric on one side and SERDES block on the other side. The PCle system block interface signals to fabric are shown below.

- 1. AXI/AHBL master interface
- 2. AXI/AHBL slave interface
- 3. APB interface (32-bit)
- 4. PCle system clock interface
- 5. PCIe system reset Interface
- 6. PCIe interrupt and power management interface

Table 2-124 • PCIe System AXI/AHBL Master Interface

Port	Type	Description	Connected to
M_AWID[3:0]	Output	AXI master mode: AWID	Fabric
M_AWADDR_HADDR[31:0]	Output	AXI master mode: AWADDR	Fabric
		AHBL master mode: HADDR	
M_AWLEN_HBURST[3:0]	Output	AXI master mode: AWLEN	Fabric
		AHBL master mode: HBURST	
M_AWSIZE_HSIZE[1:0]	Output	AXI master mode: AWSIZE	Fabric
		AHBL master mode: HSIZE	
M_AWBURST_HTRANS[1:0]	Output	AXI master mode: AWBURST	Fabric
		AHBL master mode: HTRANS	
M_AWVALID_HWRITE	Output	AXI master mode: AWVALID	Fabric
		AHBL master mode: HWRITE	
M_AWREADY	Input	AXI master mode: AWREADY	Fabric
M_WID[3:0]	Output	AXI master mode: WID	Fabric
M_WSTRB[7:0]	Output	AXI master mode: WSTRB	Fabric
M_WLAST	Output	AXI master mode: WLAST	Fabric
M_WVALID	Output	AXI master mode: WVALID	Fabric
M_WDATA_HWDATA	Output	AXI master mode: WDATA	Fabric
		AHBL master mode: HWDATA	
M_WREADY_HREADY	Input	AXI master mode: WREADY	Fabric
		AHBL master mode: HREADY	
M_BID[3:0]	Input	AXI master mode: BID	Fabric
M_BRESP_HRESP[1:0]	Input	AXI master mode: BRESP	Fabric
		AHBL master mode: HRESP	
M_BVALID	Input	AXI master mode: BVALID	Fabric
M_BREADY	Output	AXI master mode: BREADY	Fabric
M_ARID[3:0]	Output	AXI master mode: ARID	Fabric
M_ARADDR[31:0]	Output	AXI master mode: ARADDR	Fabric
M_ARLEN[3:0]	Output	AXI master mode: ARLEN	Fabric
M_ARSIZE[1:0]	Output	AXI master mode: ARSIZE	Fabric

Table 2-124 • PCle System AXI/AHBL Master Interface (continued)

Port	Туре	Description	Connected to
M_ARBURST[1:0]	Output	AXI master mode: ARBURST	Fabric
M_ARVALID	Output	AXI master mode: ARVALID	Fabric
M_ARREADY	Input	AXI master mode: ARREADY	Fabric
M_RID[3:0]	Input	AXI master mode: RID	Fabric
M_RDATA_HRDATA[63:0]	Input	AXI master mode: RDATA AHBL master mode: HRDATA	Fabric
M_RRESP[1:0]	Input	AXI master mode: RRESP	Fabric
M_RLAST	Input	AXI master mode: RLAST	Fabric
M_RVALID	Input	AXI master mode: RVALID	Fabric
M_RREADY	Output	AXI master mode: RREADY	Fabric

Table 2-125 • PCle System AXI/AHBL Slave Interface

Port	Туре	Description	Connected to
S_AWID_HSEL	Input	AXI slave mode: AWID	Fabric
S_AWADDR_HADDR	Input	AXI slave mode: AWADDR	Fabric
		AHBL slave mode: HADDR	
S_AWLEN_HBURST	Input	AXI slave mode: AWLEN	Fabric
		AHBL slave mode: HBURST	
S_AWSIZE_HSIZE	Input	AXI slave mode: AWSIZE	Fabric
		AHBL slave mode: HSIZE	
S_AWBURST_HTRANS	Input	AXI slave mode: AWBURST	Fabric
		AHBL slave mode: HTRANS	
S_AWVALID_HWRITE	Input	AXI slave mode: AWVALID	Fabric
		AHBL slave mode: HWRITE	
S_AWREADY	Output	AXI slave mode: AWREADY	Fabric
S_AWLOCK	Input	AXI slave mode: AWLOCK	Fabric
S_WID	Input	AXI slave mode: WID	Fabric
S_WSTRB	Input	AXI slave mode: WSTRB	Fabric
S_WLAST	Input	AXI slave mode: WLAST	Fabric
S_WVALID	Input	AXI slave mode: WVALID	Fabric
S_WDATA_HWDATA	Input	AXI slave mode: WDATA	Fabric
		AHBL slave mode: HWDATA	
S_WREADY_HREADYOUT	Output	AXI slave mode: WREADY	Fabric
		AHBL slave mode: HREADY	
S_BID	Output	AXI slave mode: BID	Fabric
S_BRESP_HRESP	Output	AXI slave mode: BRESP	Fabric
		AHBL slave mode: HRESP	
S_BVALID	Output	AXI slave mode: BVALID	Fabric
S_BREADY_HREADY	Input	AXI slave mode: BREADY	Fabric
		AHBL slave mode: HREADY	
S_ARID	Input	AXI slave mode: ARID	Fabric

Table 2-125 • PCle System AXI/AHBL Slave Interface

S_ARADDR	Input	AXI slave mode: ARADDR	Fabric
S_ARLEN	Input	AXI slave mode: ARLEN	Fabric
S_ARSIZE	Input	AXI slave mode: ARSIZE	Fabric
S_ARBURST	Input	AXI slave mode: ARBURST	Fabric
S_ARVALID	Input	AXI slave mode: ARVALID	Fabric
S_ARLOCK	Input	AXI slave mode: ARLOCK	Fabric
S_ARREADY	Output	AXI slave mode: ARREADY	Fabric
S_RID	Output	AXI slave mode: RID	Fabric
S_RDATA_HRDATA	Output	AXI slave mode: RDATA	Fabric
S_RRESP	Output	AXI slave mode: RRESP	Fabric
S_RLAST	Output	AXI slave mode: RLAST	Fabric
S_RVALID	Output	AXI slave mode: RVALID	Fabric
S_RREADY	Input	AXI slave mode: RREADY	Fabric

Table 2-126 • PCIe System APB Slave Interface

Port	Туре	Description	Connected to
APB_PSEL	Input	APB slave interface: PSEL	Fabric
APB_PENABLE	Input	APB slave interface: PENABLE	Fabric
APB_PWRITE	Input	APB slave interface: PWRITE	Fabric
APB_PADDR[13:0]	Input	APB slave interface: PADDR	Fabric
APB_PWDATA[31:0]	Input	APB slave interface: PWDATA	Fabric
APB_PREADY	Output	APB slave interface: PREADY	Fabric
APB_PRDATA[31:0]	Output	APB slave interface: PRDATA	Fabric
APB_PSLVERR	Output	APB slave interface: PSLVERR	Fabric

Table 2-127 • PCIe System Clock Signals

Port	Туре	Description	Connected to
CLK_BASE	Input	Fabric source clock. In PCIe mode, this is the reference clock of the SPLL. The PLL output clock (PLL_ACLK) is used as the AXI/AHB bridge clock.	
APB_CLK	Input	PCLK for APB slave interface in SERDESIF	Fabric
SPLL_LOCK	Output	SPLL control/status information	Fabric
PLL_LOCK_INT	Output	SPLL control/status information	Fabric
PLL_LOCKLOST_INT	Output	SPLL control/status information	Fabric

Table 2-128 • PCIe System Reset Signals

Ports	Туре	Description	Connected to
CORE_RESET_N	In	PLDA-PCle core active low	Fabric
PHY_RESET_N	In	Active low – SERDES – reset. If not used for any serial protocol should be tied 0.	Fabric
APB_S_PRESET_N	In	APB slave interface – PRESETN: Async set	Fabric

Table 2-129 • SmartFusion2 SoC FPGA PCIe I/O PAD Interface

		Connecte		
Port Name	Type	d to	Description	
PCIE_x_RXDP0	Input	I/O Pads	Receive data. SERDES differential positive input: each SERDESIF	
PCIE_x_RXDP1			consists of 4 RX+ signals. Here x = 0 for SERDESIF_0 and x = 1 for	
PCIE_x_RXDP2			SERDESIF_1. If unused, can be left floating.	
PCIE_x_RXDP3				
PCIE_x_RXDN0	Input	I/O Pads	Receive data. SERDES differential negative input	
PCIE_x_RXDN1			Each SERDESIF consists of 4 RX- signals. Here x = 0 for	
PCIE_x_RXDN2			SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.	
PCIE_x_RXDN3			illoating.	
PCIE_x_TXDP0	Output	I/O Pads	Transmit data. SERDES differential positive output	
PCIE_x_TXDP1			Each SERDESIF consists of 4 TX+ signals. Here x = 0 for	
PCIE_x_TXDP2			SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.	
PCIE_x_TXDP3			illoating.	
PCIE_x_TXDN0	Output	I/O Pads	Transmit data. SERDES differential negative output	
PCIE_x_TXDN1			Each SERDESIF consists of 4 TX- Signals. Here x = 0 for	
PCIE_x_TXDN2			SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.	
PCIE_x_TXDN3			illoating.	
PCIE_x_REXTL	Reference	I/O Pads	External reference resistor connection to calibrate TX/RX termination value. Each SERDESIF consists of 2 REXT signals—one for lanes 0 and 1 and another for lanes 2 and 3. Here x = 0 for SERDESIF_0 and x	
PCIE_x_REXTR			= 1 for SERDESIF_1. If unused, can be left floating.	
PCIE_x_REFCLK0P	Input	I/O Pads	Reference clock differential positive. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be used for MSIOD fabric, if SERDESIF is not	
PCIE_x_REFCLK1P			activated. Here $x = 0$ for SERDESIF_0 and $x = 1$ for SERDESIF_1. If unused, can be left floating.	
PCIE_x_REFCLK0N	Input		Reference clock differential negative. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be used for MSIOD fabric, if SERDESIF is not activated. Here x = 0 for SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.	

Table 2-130 • PCIe Interrupt and Power Management Interface

Port	Туре	Description	Connected to
PCIE_INTERRUPT[3:0]	Input	PCIe system interrupt inputs	Fabric
PCIE_SYSTEM_INT	Output	PCIe system interrupt output	Fabric
PCIE_P[35:0]	Input	PC bits from fabric	Fabric
WAKE_REQ	Input	L2/P2 implementation: I2 request from G4M/fabric	Fabric
WAKE_N	Output	L2/P2 implementation: I2 exit request to RP	Fabric

Appendix A: PCle Configuration Space

The PCIe base IP core transaction layer (TL) contains the 4 KB configuration space. The configuration space implements all configuration registers and associated functions. It manages BAR and window decoding, interrupt/MSI message generation, power management negotiation, and error handling. For upstream ports, the configuration space is accessed through the PCIe link using Type 0 requests. Type 1 requests are forwarded to the application layer. For downstream ports, the configuration space is accessed through the application interface using Type 0 requests. Type 1 requests are forwarded to the PCIe link. The first 256 bytes of the configuration space are the function's configuration space, and the remaining configuration space is PCIe extended configuration space (see Figure 2-21).

Figure 2-21 • PCIe Configuration Space

Common Configuration Space Header

Table 2-131 shows the common configuration space header. SmartFusion2 SoC FPGA PCIe common configuration space includes the following registers:

- Type 0 configuration settings
- · MSI capability structure
- · MSI-X capability structure
- · Power management capability structure
- · PCIe capability structure

For comprehensive information about these registers, refer to PCle Base Specification Revision 1.0a, 1.1 or 2.0 specifications.

Table 2-131 • Configuration Inputs for AHBL/AXI to AXI Bridge

31:24	23:16	15:8	7:0	Byte Offset		
TYPE 0 configurati	TYPE 0 configuration registers					
Reserved				040h		
PLDA CSR				044h		
Reserved				048h04Ch		
MSI capability structure (optional)				05005Ch		
Reserved	060h064h					
MSI-X capability st	68h70h					
Power managemen	Power management capability structure					
PCI Express capat	080h0BCh					
SSID / SSVID capa	0C0h0C4h					
Reserved				0C8h0FCh		

PCIe Extended Capability Structure

Table 2-132 shows the PCIe extended capability structure. SmartFusion2 SoC FPGA PCIe common configuration space includes the following registers:

- · Virtual channel capability structure
- PCle advanced error reporting (AER) extended capability structure

Table 2-132 • PCIe Extended Capability Structure (Function 0)

31:24	23:16	15:8	7:0	Byte Offset			
Virtual channel capability s	100h16Ch						
Reserved	Reserved						
VC arbitration table	180h1FCh						
Port VC0 arbitration table	Port VC0 arbitration table (reserved)						
Reserved	400h7FCh						
AER	800h834h						

Type 0 Configuration Settings

Table 2-133 shows the type 0 configuration settings.

Table 2-133 • Type 0 Configuration Register

31:24	23:16	15:8	7:0	Byte Offset
Devi	ice ID	Vend	Vendor ID	
Sta	atus	Com	mand	004h
	Class Code		Revision ID	008h
BIST	Header Type	Latency Timer	Cache Line Size	00Ch
Base address 0				010h
	Base a	ddress 1		014h
	018h			
	01Ch			
	Base a	ddress 4		020h
	Base a	ddress 5		024h
				028h
Subsy	stem ID	Subsystem	Vendor ID	02Ch
	030h			
	034h			
				038h
		Int. pin	Int. line	03Ch

IP Core Status Register

Table 2-134 illustrates the content of the IP Core Status Register.

Table 2-134 • IP Core Status Register

31:28	27:16	15:4	3:0
Reserved	Core version	PLDA signature	Reserved

MSI Capability Structure

Table 2-135 illustrates the content of the MSI capability structure.

Table 2-135 • MSI Capability Structure Register

31:24	23:16	15:8	7:0	Byte Offset
Mess	sage control	Next pointer	Cap ID	050h
Message address				
	Message upper address			
Message data				05Ch

MSI-X Capability Structure

Table 2-136 illustrates the content of the MSI-X capability structure.

Table 2-136 • MSI-X Capability Structure Register

31:24	23:16	15:8	7:3	2:0	Byte Offset
Message control		Next pointer	Capability ID		068h
	Table off	set		Table BIR	06Ch
	PBA offs	set		PBA BIR	070h

Power Management Capability Structure

Table 2-137 illustrates the content of the power management capability structure.

Table 2-137 • Power Management Capability Structure

31:24	23:16	15:8	7:0	Byte Offset
Capabilities register		Next cap PTR	Cap ID	078h
Data	PM control/status bridge extensions	Power management status and control		07Ch

PCIe Capability Structure

Table 2-138 illustrates the content of the PCle capability structure.

Table 2-138 • PCIe Capability Structure Register

31:24	23:16	15:8	7:0	Byte Offset
Capabilities register		Next cap PTR	cap ID	080h
Device capabilities			084h	
Device	status	Devic	e control	088h
	Link	capabilities		08Ch
Link s	tatus	Link	control	090h
Slot capabilities				094h
Slot status		Slot control		098h
		Root	09Ch	
Root status				0A0h
Device capabilities 2			0A4h	
Device status 2		Device control 2		0A8h
	Link	capabilities 2		0ACh
Link st	atus 2	Link	control 2	0B0h

SSID/SSVID Capability Structure

Table 2-139 illustrates the content of the SSID / SSVID capability structure.

Table 2-139 • SSID / SSVID Capability Structure Register

31:24	23:16	15:8	7:0	Byte Offset	
Reserved		Next cap PTR Capability ID		0C0h	
SSID		SS	0C4h		

Virtual Channel Capability Structure

Table 2-140 shows the virtual channel capability structure for Function 0.

Table 2-140 • Virtual Channel Capability Register

31:24	23:16		15:8	7:0	Byte Offset
Next cap PTR		Vers.	Extende	ed cap ID	100h
	<u> </u>		Port V	C cap 1	104h
VAT offset		U.	108h		
Port VC status			Port VC	10Ch	
PAT offset 0 (31:24)		er (0)	110h		
VC resource control register (0)					114h
VC resource status register (0)			Reserved		118h

PCIe AER Extended Capability Structure

Table 2-141 shows the advanced error reporting (AER) extended capability structure for Function 0. For Functions 1 - 7, the byte offset is from 100h to 134h.

Table 2-141 • PCIe AER Extended Capability Structure

31:24	23:16	15:8	7:0	Byte Offset	
	800h				
	Uncorrectable e	rror status register		804h	
	Uncorrectable e	rror mask register		808h	
	Uncorrectable er	or severity register		80Ch	
	810h				
	814h				
	818h				
	81Ch				
	82Ch				
	830h				
Error so	Error source identification register Correctable error source ID register				

Glossary

Acronyms

AXI

Advanced extensible interface

ΕP

Endpoint

PCI Express

Peripheral component interconnect express

PCIe

PCI Express

SERDES

Serializer/deserializer

SERDESIF

Serializer/deserializer interface

XAUI

Extended attachment unit interface

3 – XAUI

The SERDESIF block can be configured to support the 10 Gigabit attachment unit interface (XAUI) protocol. Figure 3-1 shows the XAUI implementation in SmartFusion2 SoC FPGA devices. The SERDESIF block provides the XGXS functionality. The XAUI extender block connects a 10Gb Ethernet MAC to SERDES physical medium attachment (PMA) logic. In addition, the XAUI extender block has a management data input/output (MDIO) interface allowing MDIO manageable device to program the MDIO registers.

Figure 3-1 • XAUI Implementation in SmartFusion2 SoC FPGA

Table 3-1 shows the options for implementing XAUI on 4-physical SERDES lanes.

Table 3-1 • XAUI Implementation in SmartFusion2 SoC FPGA

	Lane0		Lane1		Lane2		Lane3	
XAUI Protocol	Protocol	Speed	Protocol	Speed	Protocol	Speed	Protocol	Speed
Single Protocol PHY mode	XAUI	3.125G	XAUI	3.125G	XAUI	3.125G	XAUI	3.125G

XAUI Overview

XAUI is a standard for extending the 10 Gb media independent interface (XGMII) between the media access control (MAC) and PHY layer of 10Gb Ethernet (10 GbE). The XGMII extender, which is composed of an XGMII extender sublayer (XGXS) at the MAC end, an XGXS at the PHY end, and an XAUI between them, is to extend the operational distance of the XGMII and to reduce the number of interface signals. XAUI is a four lane serial interface and each lane is a differential pair and the data on each lane is 8B/10B encoded before the transmission. XAUI has the following features:

- Simple signal mapping to the XGMII
- · Independent transmit and receive data paths
- Four lanes conveying the XGMII 64-bit data and control
- Differential signaling with low voltage swing (1600 mV(p-p))
- Self-timed interface allowing jitter control to the physical coding sublayer (PCS)
- Shared technology with other 10 Gb/s interfaces
- Shared functionality with other 10 Gb/s Ethernet blocks
- Utilization of 8b/10b encoding

This chapter introduces the XAUI extender block inside SERDESIF block and provides detailed information on using this block.

XAUI Extender Block

This section describes the functionality and interfaces of the XAUI extender sub-block in SERDESIF for the XGMII. This block implements:

- IEEE 802.3ae clauses 47and 48, mandatory and optional features. This function is located between the reconciliation sublayer (RS) and the PCS.
- IEEE 802.3ae, clause 45, to provide control and status through the MDIO interface.

The main features of the module are:

- Full compliance with IEEE 802.3
- IEEE 802.3ae, clause 45, MDIO interface
- IEEE 802.3ae, clause 48, state machines
- IEEE 802.3ae, annex 48A, jitter test pattern support
- IEEE 802.3, clause 36, 8B/10B encoding compliance
- IEEE 802.3, PICs compliance matrix
- Pseudorandom idle insertion (PRBS Polynomial X⁷ + X³ + 1)
- · Clock frequency of 156.25 MHz
- Double-width single data rate (SDR) XGMII interface 156.25 MHz
- · Low power mode
- PHY-XS and DTE-XS loopback
- Tolerance of lane skew up to 16ns (50 UI)

XAUI Extender Block - Functional Overview

Figure 3-2 on page 131 shows the XAUI extender sub-block. This module is connected to the SERDES PMA block through two x2 EPCS interface (2*twox2 EPCS interface=x4 EPCS interface) blocks, and to the FPGA fabric via an XGMII interface. There are three major blocks:

- Transmit block: This block is responsible for encoding the XGMII data (using 8B/10B). The
 output to the transmit block is an 80-bit interface (20 bits per lane). The PMA in the SERDES
 receives this 80-bit data and transmit it onto the XAUI bus.
- Receive block: This block receives 8B/10B encoded data and four recovered clocks from an
 external XAUI SERDES PMA. The receive block performs the comma alignment on the data,
 phase aligns the four lanes of data, and performs the 8B/10B decode function.

• Management block: The management block is the MDIO interface to the design registers.

The transmit and receive frequencies are set at 156.25 MHz.

Figure 3-2 • XAUI Extender Block Diagram

SERDESIF System Registers for XAUI Mode

Three SERDESIF system registers need to be configured to implement XAUI mode. The three registers that define the mode of operation of SmartFusion2 SoC FPGA SERDESIF module are:

- CONFIG_PHY_MODE[15:0]
- · CONFIG EPCS SEL[3:0]
- CONFIG_LINKK2LANE[3:0]

Table 3-2 • XAUI Mode Settings using SERDESIF System Register

SERDESIF System APB Registers	Description
CONFIG_PHY_MODE[15:0]	For each lane, this signal selects the protocol default settings which will set the reset value of the registers space.
	CONFIG_PHY_MODE[15:12] - Defines Lane3 settings
	4'b0000: PCIE mode Lane3
	4'b0001: XAUI mode Lane3
	4'b0010: EPCS (SGMII) mode Lane3
	4'b0011: EPCS (2.5 GHz) mode Lane3
	4'b0100: EPCS (1.25 GHz) mode Lane3
	4'b0101: EPCS (undefined) mode Lane3
	4'b1111: SERDES PHY Lane3 is off
	CONFIG_PHY_MODE[15:12] - Defines Lane2 settings
	4'b0000: PCIE mode Lane2
	4'b0001: XAUI mode Lane2
	4'b0011: EPCS (2.5 GHz) mode Lane2
	4'b0100: EPCS (1.25 GHz) mode Lane2
	4'b0101: EPCS (undefined) mode Lane2
	4'b1111: SERDES PHY Lane2 is off
	CONFIG_PHY_MODE[7:4] - Defines Lane1 settings
	4'b0000: PCIE mode Lane1
	4'b0001: XAUI mode Lane1
	4'b0011: EPCS (2.5 GHz) mode Lane1
	4'b0100: EPCS (1.25 GHz) mode Lane1
	4'b0101: EPCS (undefined) mode Lane1
	4'b1111: SERDES PHY Lane0 is off
	CONFIG_PHY_MODE[3:0] - Defines Lane0 settings
	4'b0000: PCIE mode Lane0
	4'b0001: XAUI mode Lane0
	4'b0011: EPCS (2.5 GHz) mode Lane0
	4'b0100: EPCS (1.25 GHz) mode Lane0
	4'b0101: EPCS (undefined) mode Lane0
	4'b1111: SERDES PHY Lane0 is off
CONFIG_EPCS_SEL[3:0]	For each lane, one bit of this signal defines whether the external PCS interface is used or the PCI-express PCS is enabled:
	Ob: PCI-express mode
	1b: External PCS mode
	CONFIG_EPCS_SEL[3]: External PCS selection associated to Lane3
	CONFIG_EPCS_SEL[2]: External PCS selection associated to Lane2
	CONFIG_EPCS_SEL[1]: External PCS selection associated to Lane1
	CONFIG EPCS SEL[0]: External PCS selection associated to Lane0
CONFIG_LINKK2LANE[3:0]	This signal is used in PCle mode in order to select the association of lane to link. The 4 bits refers to four lanes.

Table 3-3 describes the settings for the three SERDESIF system registers to force the SERDESIF into XAUI mode.

Table 3-3 • XAUI Mode Settings Using SERDESIF System Register

	CONFIG_PHY_MODE[15:0] (4 bits per lane)			CONFIG_EPCS_SEL[3:0] (1-bit per lane)				CONFIG_LINKK2LANE[3:0] (1-bit per lane)				
Mode	Lane3	Lane2	Lane1	Lane0	Lane3	Lane2	Lane1	Lane0	Lane3	Lane2	Lane1	Lane0
XAUI x4	1	1	1	1	1	1	1	1	0	0	0	0

SERDESIF System Registers Configurations for XAUI Mode

The SmartFusion2 SoC FPGA SERDESIF sub-system has three regions of configuration and status registers which can be accessed by the 32-bit APB bus:

- SERDESIF System Registers: The SERDESIF system registers control the SERDESIF module for single-protocol or multi-protocol support implementation.
- PCIe Core Bridge Register Space: The PCIE core configuration and status registers occupy 4 kbytes of configuration memory map.
- SERDES Macro Registers: The SERDES macro register map contains control and status information of the SERDES block and lanes.

In the XAUI mode, the PCIe-core registers are not used. Only the SERDESIF system register and the SERDES macro register are used for the XAUI mode. Table 3-4 shows the SERDESIF system registers, which need to be configured for XAUI mode of operation. Refer to the "SERDESIF Block" section on page 5 for detailed description of the register.

Table 3-4 • SERDESIF System Registers in EPCS Mode

Register Name	Address Offset	Register Type	Description
SER_PLL_CONFIG_LOW	0x00	R/W	Sets SERDESIF PLL configuration bits (LSBs)
SER_PLL_CONFIG_HIGH	0x04	R/W	Sets SERDESIF PLL configuration bits (MSBs)
SER_SOFT_RESET	0x08	R/W	All 6 bits are used for soft reset. Since PCIe IP is not used, it is recommended to put IP into Reset state. In the XAUI mode, each SERDES-lane needs to be put into Non-Reset state as all four lanes are used in the XAUI mode.
SER_INTERRUPT_ENABLE	0x0C	R/W	SERDES PLL lock interrupt enable
CONFIG_PHY_MODE_0	0x24	R/W	For each lane, this signal selects the protocol default settings of the PHY which will set the reset value of the registers space. Refer to the CONFIG_PHY_MODE in Table 3-2 on page 132 for more information.
CONFIG_PHY_MODE_1	0x 28	R/W	Selects PCS mode, link to lane settings. Refer to the CONFIG_EPCS_SEL in Table 3-2 on page 132 for detail.
CONFIG_PHY_MODE_2	0x2C	R/W	Sets the equalization calibration. It is performed by the PMA control logic of the lane or use the calibration result of adjacent lane.
SER_CLK_STATUS	0x4C	R/O	This register describes the SERDES PLL and fabric PLL lock information.
SER_INTERRUPT	0x58	SW1C	SPLL/FPLL lock interrupt.
SERDESIF_INTR_STATUS	0x5C	SW1C	Error correction coding (ECC) interrupt status.
REFCLK_SEL	0x64	R/W	LANE01_REFCLK_SEL and LANE23_REFCLK_SEL bits are used for the reference clock selection for the four lanes of PMA.

Table 3-4 • SERDESIF System Registers in EPCS Mode (continued)

Register Name	Address Offset	Register Type	Description
PCLK_SEL	0x68		PIPE_PCLKIN_LANE01_SEL and PIPE_PCLKIN_LANE23_SEL bits are used for PIPE clock input selection for the lanes.
EPCS_RSTN_SEL	0x6C	R/W	EPCS reset signal selection from fabric.
DESKEW_CONFIG	0xA4	R/W	PLL REF clock DESKEW register.

Using the XAUI Protocol Mode

This section describes customizing the SERDESIF block and generating the XAUI mode from Libero[®] System-on-Chip (SoC) device. It describes the clock and reset network when using the XAUI mode. It also describes the MDIO interface and running loopback mode.

Configuring High Speed Serial Generator for XAUI Mode

The high speed serial interface generator in Libero SoC allows to configure the SERDESIF block in the XAUI mode and controls the setting of the three SERDESIF system registers. Refer to Figure 3-3 for the XAUI mode setting in high speed serial interface generator.

Figure 3-3 • XAUI Mode Setting in High Speed Serial Interface Generator

XAUI Mode Clocking

When the SmartFusion2 SoC FPGA SERDESIF is configured in the XAUI mode, it has multiple clock inputs and outputs. This section describes the XAUI clocking scheme.

SERDES Reference Clocks for the XAUI Mode

The PMA in the SERDES block needs a reference clock on each of its lanes for Tx and Rx clock generation through PLLs. For maximum flexibility, the reference clock to the four lanes can come from either REFCLK_IO0 or REFCLK_IO1 I/O pads or from internal fab_ref_clk or ccc_ref_clk signal. These two reference clocks (REFCLK_IO0 and REFCLK_IO1) are connected to I/O pad, I/O Port0, and I/O Port1. Figure 3-4 shows the reference clock selection.

Figure 3-4 • SERDES Reference Clock for XAUI Mode

Figure 3-5 shows the reference clock selection in high speed serial Interface generator available in Libero SoC. It sets the MUX selection depending on the selected reference clocks. 156.25 MHz clock should be fed in as the reference clock to SERDES 4-PMAs in the XAUI-mode.

Figure 3-5 • SERDES Reference Clock using High Speed Serial Interface Generator

XAUI Mode Clock Network

In the XAUI mode, data is exchanged from soft IP in the fabric and XAUI extender inside SERDESIF block. Figure 3-6 shows in the XAUI clocking scheme. The 156.25 MHz reference clock to SERDES PMA (for Tx PLL and CDR PLL) can be selected as explained in the previous section. The PLLs generate 156.25 MHz clocks and send 4-Rx and 4-Tx clocks through the EPCS interface.

Note: The PLL settings are calculated automatically by the Libero SoC device when the XAUI protocol mode is selected.

The Lane0 Tx clock is MUXed and fed into as reference clock of SPLL and XAUI extender block. This is done to reduce the skew between the fabric and SmartFusion2 SoC FPGA SERDESIF module. The 4-Rx clocks are fed into the XAUI extender block, where lane de-skewing is done and only one Rx-clock is given out to the FPGA fabric. The APB clock (APB_S_PCLK) is an asynchronous clock used for SERDESIF register access.

Note: SPLL is used to reduce the skew between the fabric and SmartFusion2 SoC FPGA SERDESIF module. However, it is required to connect the XAUI_CLK_OUT with XAUI_FDB_CLK signal in the fabric through global network, as shown in Figure 3-6. Also, it is needed to connect transmit and receive clock to XAUI soft IP.

Figure 3-6 • SPLL Clocking in XAUI Mode

Figure 3-7 shows SPLL settings in high speed serial interface generator. The SERDESIF system register can also be selected to configure and use this PLL.

Figure 3-7 • SPLL Clocking Configuration Using High Speed Serial Interface Generator

Table 3-5 summarizes the various clocks in the XAUI mode.

Table 3-5 • Clock Signals in the XAUI Mode

Clock Signal	Description
REFCLK_IO0	Reference clock for SERDES - PMA - PLLs
REFCLK_IO1	Reference clock for SERDES - PMA - PLLs
CCC_REF_CLK	Reference clock for SERDES - PMA - PLLs (Do not use this clock as reference clock).
FAB_REF_CLK	Reference clock for SERDES - PMA - PLLs (Do not use this clock as reference clock)
PLL_SERDESIF_REF	Reference clock for SPLL.
	EPCS_TXCLK[0] - Lane0 EPCS Tx clock is fed as reference clock in XAUI mode
PLL_SERDESIF_FB	Feed through of XAUI_IN_CLK as feedback clock to SPLL
PLL_ACLK	SPLL clock output (SPLL to G4M_SERDESIF)
XAUI_OUT_CLK	SPLL clock output (PLL_ACLK)
XAUI_IN_CLK	Feedback clock for SPLL (Fabric to G4M_SERDESIF)
MMD_MDC	MDIO clock
EPCS_RXCLK	XAUI - XGMII interface receive clock for XAUI-MAC (four lanes Rx-data is phase aligned to this clock)

XAUI Mode Reset

When the SmartFusion2 SoC FPGA SERDESIF is configured in the XAUI mode, it has multiple reset inputs. Figure 3-8 shows the reset signals and how they are connected internally. The CORE_RESET_N input is the external asynchronous reset input XAUI extender block, XAUI_MDC_RESET input asynchronously resets all the MDIO registers, XAUI_TX_RESET input resets the TX block register and XAUI_RX_RESET input resets the RX block register. Refer to Table 3-26 for detail.

Figure 3-8 • XAUI Reset Scheme

MDIO Interface

Figure 3-9 shows a system block diagram that describes how the XAUI extender and an MDIO-manageable device (MMD) are connected to a station management entity (STA). In this case, the STA is the A-XGMAC.

Figure 3-9 • MDIO System Block Diagram

XAUI Mode Loopback Test Operation

The XAUI extender block can be placed in the Loopback mode for testing purpose. It can be placed in multiple loopback operations.

XAUI - Near End Loopback Test

Bit 14 of Reg00 can be used to enable the Loopback. When the Loopback mode is enabled, the transmit output is shunted back into the receive input. For the Loopback mode to work appropriately, the transmit clock is also shunted back into the receive clock inputs. The Loopback test data needs to be fed from the XGMII interface available to fabric.

XAUI - Far End Loopback Test

In the XAUI far end loopback test, the transmit interface of the XAUI extender block is connected to the EPCS interface of the SERDES block. In this case, the SERDES block is put in the Loopback mode, where serial data from transmit side is fed into the serial receive interface. Apart from covering the transmit and receive block of XAUI extender, it also tests the PMA data path validity. The XAUI_LOOPBACK IN signal is used for this Loopback mode.

SmartFusion2 SoC FPGA XAUI – Timing Diagram

The following sections show the timing relations between clock and data for the three interfaces of the XAUI extender. Each section discusses an interface in detail. Refer to the SmartFusion2 SoC FPGA datasheet for the detail timing number.

Transmit Interface

Figure 3-10 shows the XGMII transmit timing diagram. The transmit data and control signals are source centered on the transmit clock per requirements of IEEE 802.3ae, clause 46. Furthermore, all four lanes of data are synchronous with a common clock.

Figure 3-10 • Transmit XGMII Interface Timing Diagram

Receive Interface

Figure 3-11 shows the XGMII receive timing diagram. The receive data and control signals are edge-aligned with the receive clock rx_clk. To be fully compliant with IEEE 802.3ae, the data and control signals should be source centered on rx_clk. In the SmartFusion2 SoC FPGA devices, the XAUI extender will be interfaced with a soft 10G MAC in the fabric within the same device eliminating the need to source center the data. All four lanes of data are synchronous with the common clock rx_clk.

Figure 3-11 • Receive XGMII Interface Timing Diagram

MMD Read Timing

Figure 3-12 shows the timing diagram for an XS MDIO Registers read. The MMD_MDO may be a tristate signal in which the tristate buffer is controlled by mmd mdoe.

Figure 3-12 • MMD Internal Interface: Read to TA Timing

MMD Write Timing

Figure 3-13 shows the timing diagram for an XS MDIO Registers write. By design, mmd_mdoe must not be asserted during a write operation. Refer to the IEEE 802.3ae specification, clause 45, for a complete definition.

Figure 3-13 • MMD Internal Interface: Start Interface

MDIO Register Map

Table 3-6 shows the description of MDIO registers.

Table 3-6 • MDIO Registers

Register Address	Register Name	Reset Value	Read / Writable	Device Address	Description
0x0000	Reg00	TBD	R/W	04h/05h	XS control 1 register
0x0001	Reg01	TBD	R	04h/05h	XS status 1 register
0x 0002	Reg02	TBD	R	04h/05h	XS device identifier register low
0x0003	Reg03	TBD	R	04h/05h	XS device identifier register high
0x0004	Reg04	TBD	R	04h/05h	XS speed ability register
0x0005	Reg05	TBD	R	04h/05h	XS devices in package register low
0x0006	Reg06	TBD	R	04h/05h	XS devices in package register high
0x0007	_	TBD	N/A	04h/05h	Reserved
0x0008	Reg07	TBD	R	04h/05h	XS status 2
0x0009 to 0x000d	-	TBD	N/A	04h/05h	Reserved.
0x000e	Reg08	TBD	R	04h/05h	XS package identifier register low
0x000f	Reg09	TBD	R	04h/05h	XS package identifier register high
0x0010 to 0x0017	-	TBD	N/A	04h/05h	Reserved
0x0018	Reg10	TBD	R	04h/05h	10G XGXS lane status register
0x0019	Reg11	TBD	R/W	04h/05h	10G XGXS test control register
0x001a to 0x7fff	-	TBD	N/A	04h/05h	Reserved
0x8000	Reg12	TBD	R/W	04h/05h	Vendor-specific reset Lo 1
0x8001	Reg13	TBD	R/W	04h/05h	Vendor-specific reset Lo 2
0x8002	Reg14	TBD	R/W	04h/05h	Vendor-specific reset Hi 1
0x8002	Reg15	TBD	R/W	04h/05h	Vendor-specific reset Hi 1
0x8004 to 0xffff	-	TBD	N/A	04h/05h	Reserved

Table 3-7 • Depicts Definition of XS Control 1 Register

			Reg00: XS Control 1
Bit Number	Name	Reset Value	Description
15	Reset	0x0	The XAUI extender block is reset when this bit is set to 1. It returns to 0 when the reset is complete (self-clearing).
			1'b1: Block reset
			1'b0: Normal operation
14	Loopback	0x0	The XAUI extender block loops the transmit signal back into the receiver.
			1'b0: Disable loopback
			1'b1: Enable loopback
13	Speed selection	0x1	This bit is speed selection bits and is set to 1'b1 in order to make compatible with clause 22.
			1'b0: Unspecified
			1'b1: 10 Gbs and above
			Any write to this bit will be ignored.
12	Reserved	0x0	_
11	Low power mode	0x0	When set to 1, the SERDES block is placed in a Low power mode. Set to 0 to return to normal operation.
			1'b0: Normal operation
			1'b1: Low power mode
10:7	Reserved	0x0	-
6	Speed selection	0x1	This bit is set to 1'b1 in order to make compatible with clause 22.
			1'b0: Unspecified
			1'b1: 10 Gbs and above
5:2	Speed selection	0x0	The speed of the PMA/PMD may be selected using bits 5 through 2.
			1 x x x: Reserved
			x 1 x x: Reserved
			x x 1 x: Reserved
			0 0 0 1: Reserved
			0 0 0 0: 10 Gb/s
			Any write to this bit will be ignored.
1:0	Reserved	0x0	-

Table 3-8 • Depicts Definition of XS Status 1 Register

Reg01: M-XGXS (PHY/DTE)XS Status 1			
Bit Number	Name	Reset Value	Description
15:8	Reserved	0x0	-
7	Fault	0x0	This bit is set if either the Tx or Rx fault bit is set in status register 2 (03:07).
			1'b0: No fault detected
			1'b1: Fault detected
6:3	Reserved	0x0	-

Table 3-8 • Depicts Definition of XS Status 1 Register (continued)

Reg01: M-XGXS (PHY/DTE)XS Status 1				
Bit Number	Name	Reset Value	Description	
2	PHY/DTE transmit/receive link status	0x0	When read as a one, the receive link is up. 1'b0: Link down 1'b1: Link up	
			The receive link status bit is implemented with latching low behavior.	
1	Low power ability	0x1	When read as a one, it indicates that the Low power feature in supported.	
			1'b10: Low power not supported	
			1'b1: Low power is supported	
0	Reserved	0x0	_	

Table 3-9 • Depicts Definition of XS Device Identifier Low Register

	Reg02: M-XGXS (PHY/DTE)XS ID Low			
Bit Number	Name	Reset Value	Description	
15:0	Organizationally unique identifier (OUI)	0x0	Reg02 and Reg03 provide a 32-bit value, which may constitute a unique identifier for a particular type of SERDES. The identifier shall be composed of the 3rd through 24th bits of the OUI assigned to the device manufacturer by the IEEE, a 6-bit model number, and a 4-bit revision number.	
			This Reg02 sets bits 3:18 of the OUI. Bit 3 of the OUI is located in bit 15 unique identifier of the register, and bit 18 of the OUI is located in bit 0 of the register.	

Table 3-10 • Definition of XS Device Identifier High Register

Reg03: M-XGXS (PHY/DTE)XS ID High				
Bit Number	Name	Reset Value	Description	
15:10	OUI	0x0	Bits 19:24 of the OUI. Bit 19 of the OUI is located in bit 15 of the register, and bit 24 of the OUI is located in bit 10 of the register.	
9:4	Manufacturer model number	0x0	Bits 5:0 of the manufacturer model number. Bit 5 of the model number is located in bit 9 of the register, and bit 0 of the model number is located in bit 4 of the register.	
3:0	Revision number	0x0	Bits 3:0 of the manufacturer model number. Bit 3 of the revision number is located in bit 3 of the register, and bit 0 of the revision number is located in bit 0 of the register.	

Table 3-11 • Depicts Definition of XS Speed Ability Register

Reg04: M-XGXS (PHY/DTE)XS Speed Ability				
Bit Reset Number Name Value Description				
15:10	Reserved	0x0	-	
9:4	10g capable	0x1	1'b0: Not 10g capable 1'b0: 10g capable	

Table 3-12 • Depicts Definition of XS Devices in Package Low Register

	Reg05: M-XGXS (PHY/DTE)XS Devices in Package Low				
Bit Number	Name	Reset Value	Description		
15:6	Reserved	0x0	-		
5	DTE XS present	0x1	1'b0: DTE XS not present in the package 1'b1: DTE XS present in the package		
4	PHY XS present	0x0	1'b0: PHY XS not present in the package 1'b1: PHY XS present in the package		
3	PCS present	0x0	1'b0: PCS not present in the package 1'b1: PCS present in the package		
2	WIS present	0x0	1'b0: WIS not present in the package 1'b1: WIS present in the package		
1	PMD/PMA present	0x0	1'b0: PMD/PMA not present in the package 1'b1: PMD/PMA present in the package		
0	Clause 22 register present	0x0	1'b0: Clause 22 registers not present in the package 1'b1: Clause 22 registers present in the package		

Table 3-13 • Depicts Definition of XS Devices in Package High Register

Reg06: M-XGXS (PHY/DTE)XS Devices in Package High				
Bit Number	Name	Reset Value	Description	
15	Vendor-specific device2 present	0x0	1'b0: Vendor-specific device 2 not present 1'b1: Vendor-specific device 2 present	
14	Vendor-specific device1 present	0x0	1'b0: Vendor-specific device 1 not present 1'b1: Vendor-specific device 1 present	
13:0	Reserved	0x0	-	

Table 3-14 • Depicts Definition of XS Status 2 Register

	Reg07: M-XGXS (PHY/DTE)XS Status 2				
Bit Number	Name	Reset Value	Description		
15:14	Device present	0x0	2'b10: Device responding at this address.		
			2'b11: No device responding at this address.		
			2'b01: No device responding at this address.		
			2'b00: No device responding at this address.		
13:12	Reserved	0x0	-		
11	Transmit fault	0x0	1'b0: No transmit fault		
			1'b1: Transmit fault		
			Latched high, clear on read		
10	Receive fault	0x0	1'b0: No receive fault		
			1'b1: Receive fault		
			Latched high, clear on read		
9:0	Reserved	0x0	_		

Table 3-15 • Depicts Definition of XS Package ID Low Register

	Reg08: M-XGXS (PHY/DTE)XS Package ID Low				
Bit Number	Name	Reset Value	Description		
15:0	OUI	0x0	Reg08 and Reg 09 provide a 32-bit value, which may constitute a unique identifier for a particular type of package that the SERDES is instantiated within. The identifier shall be composed of the 3rd through 24th bits of the OUI assigned to the package manufacturer by the IEEE, plus a 6-bit model number, and a 4-bit revision number.		
			Reg08 sets bits 3:18 of the OUI. Bit 3 of the OUI is located in bit 15 unique identifier of the register, and bit 18 of the OUI is located in bit 0 of the register.		

Table 3-16 • Depicts Definition of XS Package ID High Register

	Reg09: M-XGXS (PHY/DTE)XS Package ID High			
Bit Number	Name	Reset Value	Description	
15:10	OUI	0x0	Bits 19:24 of the OUI. Bit 19 of the OUI is located in bit 15 of the register, and bit 24 of the OUI is located in bit 10 of the register.	
9:4	Manufacturer model number	0x0	Bits 5:0 of the manufacturer model number. Bit 5 of the model number is located in bit 9 of the register, and bit 0 of the model number is located in bit 4 of the register.	
3:0	Revision number	0x0	Bits 3:0 of the manufacturer model number. Bit 3 of the revision number is located in bit 3 of the register, and bit 0 of the revision number is located in bit 0 of the register.	

Table 3-17 • Depicts Definition of XGXS Lane Status Register

	Reg10: 10G PHY/DTE XGXS Lane Status			
Bit Number	Name	Reset Value	Description	
15:13	Reserved	-	-	
12	PHY/DTE XGXS lane alignment status	0x0	1'b0: Lanes not aligned 1'b1: Lanes aligned	
11	Pattern testing ability	0x1	1'b0: (PHY/DTE)XS is unable to generate test patterns 1'b1: (PHY/DTE)XS is able to generate test patterns	
10	PHY XGXS loopback ability	0x1	1'b0: PHY XGXS does not has the ability to perform a loopback 1'b1: PHY XGXS has the ability to perform a loopback	
9:4	Reserved	_	-	
3	Lane3 synced	0x0	When read as a one, this register indicates that the receive Lane3 is synchronized. 1'b0: Lane3 is not synced 1'b1: Lane3 is synced	
2	Lane2 synced	0x0	When read as a one, this register indicates that the receive Lane2 is synchronized. 1'b0: Lane2 is not synced 1'b1: Lane2 is synced	

Table 3-17 • Depicts Definition of XGXS Lane Status Register

	Reg10: 10G PHY/DTE XGXS Lane Status			
Bit Number	Name	Reset Value	Description	
1	Lane1 synced	0x0	When read as a one, this register indicates that the receive Lane1 is synchronized.	
			1'b0: Lane1 is not synced	
			1'b1: Lane1 is synced	
0	Lane0 synced	0x0	When read as a one, this register indicates that the receive Lane1 is synchronized.	
			1'b0: Lane0 is not synced	
			1'b1: Lane0 is synced	

Table 3-18 • Depicts Definition of XGXS Test Control Register

	Reg11: 10G PHY/DTE XGXS Test Control			
Bit Number	Name	Reset Value	Description	
15:3	Reserved	_	-	
2	Transmit test pattern enabled	0x0	When this bit is set to a one, pattern testing is enabled on the transmit path.	
			1'b0: Transmit/receive test pattern disabled	
			1'b1: Transmit/receive test pattern enabled	
1:0	Test pattern select	0x0	The test pattern is used when enabled pattern testing is selected using these bits:	
			2'b00: High-frequency test pattern	
			2'b01: Low-frequency test pattern	
			2'b10: Mixed-frequency test pattern	
			2'b11: Reserved	

Table 3-19 • Depicts Definition of Vendor-Specific Reset Low 1 Register

	Reg12: Vendor-Specific Reset Low 1			
Bit Number	Name	Reset Value	Description	
15:0	Reserved		General purpose registers that are connected to the output port XAUI_VNDRRESLO[15:0]. Typically used for external device control.	

Table 3-20 • Depicts Definition of Vendor-Specific Reset Low 2 Register

	Reg13: Vendor-Specific Reset Low 2			
Bit Number	Name	Reset Value	Description	
15:0	Reserved		General purpose registers that are connected to the output port XAUI_VNDRRESLO[31:16]. Typically used for external device control.	

Table 3-21 • Depicts Definition of Vendor-Specific Reset High 1 Register

	Reg14: Vendor-Specific Reset High 2			
Bit Number	Name	Reset Value	Description	
15:0	Reserved		General purpose registers that are connected to the output port XAUI_VNDRRESLI[15:0]. Typically used for external device control.	

Table 3-22 • Depicts Definition of Vendor-Specific Reset High 2 Register

	Reg15: Vendor-Specific Reset High 2			
Bit Number	Name	Reset Value	Description	
15:0	Reserved		General purpose registers that are connected to the output port XAUI_VNDRRESLI[31:16]. Typically used for external device control.	

SmartFusion2 SoC FPGA XAUI - I/O Signal Interface

The SmartFusion2 SoC FPGA SERDESIF in XAUI mode interfaces with the fabric and differential I/O pads. The SmartFusion2 SoC FPGA SERDESIF I/Os can be grouped into a number of interfaces by functional, protocol implemented (PHY mode), and easy representation point of view. Following is the list of XAUI mode I/O interface signals:

- · MDIO interface signals
- · XGMII transmit interface signals
- · XGMII receive interface signals
- · Reset signals
- SPLL clocking signals
- I/O PAD interface
- · Miscellaneous control signal

Table 3-23 • SmartFusion2 SoC FPGA XAUI Extender Block MDIO Interface

Port	Type	Description
XAUI_MMD_MDC	Input	MDIO I/F clock. 40 MHz or less.
XAUI_MMD_MDI	Input	MDIO data input from bidirectional pad.
XAUI_MMD_MDI_ EXT	Input	Serial data output of another block that is responding to a host read transaction.
XAUI_MMD_MDO	Output	MDIO data output to bidirectional pad.
XAUI_MMD_ MDOE	Output	MDIO data output enable. Used to control bidirectional pad. It is active high.
XAUI_MMD_ MDOE_IN	Input	MDIO data output enable input. Used to force mmd_mdi high in an idle state. It is active high.
XAUI_MMD_PRTAD[4:0]	Input	Static signal that defines the port address of the XAUI extender block instantiated. Access to the MDIO registers is granted only if the port address specified in the mdi stream matches this input.
XAUI_MMD_ DEVID[4:0]	Input	Static signal that defines the device ID of the XAUI extender block instantiated. Access to the MDIO registers is granted only if the device id (DEVID) specified in the mmd_mdi stream matches this input. For the PHY-XS, this value should be 04h. For the DTE-XS, this value should be 05h.

Table 3-23 • SmartFusion2 SoC FPGA XAUI Extender Block MDIO Interface (continued)

Port	Type	Description
XAUI_VNDRRESLO[31:0]	•	General-purpose register for vendor use, reset low. The output of two 16-bit registers (address 0x8000 and 0x8001) that are set low on reset for general-purpose use.
XAUI_VNDRRESHI[31:0]	•	General-purpose register for vendor use, reset high. The output of two 16-bit registers (address 0x8002 and 0x8003) that are set high on reset for general-purpose use.

Table 3-24 • SmartFusion2 SoC FPGA XAUI Extender Block XGMII Transmit Interface Signal

Port	Туре	Description
XAUI_TX_CLK	Input	Transmit clock source centered with txd. The clock that drives the XAUI extender transmit block provided by the XGMII interface. The active edge is source centered on the XGMII transmit data and control. Refer to the IEEE 802.3ae, clause 46, for a complete definition.
XAUI_TXD[63:0]	Input	Transmit data input from the XGMII. The signal has the following lane definitions:
		Lane0, row0: txd[7:0]
		Lane1, row0: txd[15:8]
		Lane2, row0: txd[23:16]
		Lane3, row0: txd[31:24]
		Lane0, row1: txd[39:32]
		Lane1, row1: txd[47:40]
		Lane2, row1: txd[55:48]
		Lane3, row1: txd[63:56]
		The row0 lanes are leading the row1 lanes in time. Refer to the IEEE 802.3ae, clause 46, for a complete definition.
XAUI_TXC[7:0]	Input	Transmit data lane control signals. The signal has the following lane definitions:
		Lane0, row0: txc[0]
		Lane1, row0: txc[1]
		Lane2, row0: txc[2]
		Lane3, row0: txc[3]
		Lane0, row1: txc[4]
		Lane1, row1: txc[5]
		Lane2, row1: txc[6]
		Lane3, row1: txc[7]
		The row0 lanes are leading the row1 lanes in time. Refer to the IEEE 802.3ae, clause 46, for a complete definition.

Table 3-25 • SmartFusion2 SoC FPGA XAUI Extender Block XGMII Receive Interface Signal

Port	Туре	Description				
XAUI_RX_CLK	Output	Receive clock synchronous with Rxd, clock synchronous with the output XGMII data Rxd. Equal to the input recovered clock rx_clki0. Refer to the IEEE 802.3ae, clause 46, for a complete definition.				
XAUI_RXD[63:0]	Output	Receive data output to the XGMII. The signal has the following lane definitions:				
		Lane0, row0: rxd[7:0]				
		Lane1, row0: rxd[15:8]				
		Lane2, row0: rxd[23:16]				
		Lane3, row0: rxd[31:24]				
		Lane0, row1: rxd[39:32]				
		Lane1, row1: rxd[47:40]				
		Lane2, row1: rxd[55:48]				
		Lane3, row1: rxd[63:56]				
		The row0 lanes are leading the row1 lanes in time. Refer to the IEEE 802.3ae, clause 46, for a complete definition.				
XAUI_RXC[7:0]	Output	Receive lane data control signals. The signal has the following lane definitions:				
		Lane0, row0: rxc[0]				
		Lane1, row0: rxc[1]				
		Lane2, row0: rxc[2]				
		Lane3, row0: rxc[3]				
		Lane0, row1: rxc[4]				
		Lane1, row1: rxc[5]				
		Lane2, row1: rxc[6]				
		Lane3, row1: rxc[7]				
		The row0 lanes are leading the row1 lanes in time. Refer to the IEEE 802.3ae, clause 46, for a complete definition.				

Table 3-26 • SmartFusion2 SoC FPGA XAUI Extender Block Reset Signals

Port	Type	Description
CORE_RESET_N	Input	External asynchronous reset input. Must be asserted for at least two clock cycles of the host clock mmd_mdc for a full reset of the XAUI extender to occur. It is active high.
PHY_RESET_N	Input	Active low SERDES reset. If this port is not used for any serial protocol, it should be tied 1'b0.
XAUI_MDC_RESET_ OUT	Output	MDC synchronous reset. This reset is asynchronously asserted by mstr_reset and synchronously deasserted with the mmd_mdc clock. Typically, this output is connected to the mdc_reset input. It is active high.
XAUI_MDC_RESET	Input	Asynchronously resets all the MDIO registers to their default values. This pin is connected directly to set/reset ports of all flops in the mmd_mdc clock domain. Typically, this input is connected to the mdc_reset_out signal.
XAUI_TX_RESET_OUT	Output	Software-generated reset (register 0.15) synchronized with tx_clk. This signal will be held high whenever low power mode is enabled. This signal is asynchronously asserted by the software-generated reset and synchronously deasserted with tx_clk. It is active high. Typically, this output is connected to the tx_reset input.

Table 3-26 • SmartFusion2 SoC FPGA XAUI Extender Block Reset Signals (continued)

Port	Туре	Description
XAUI_TX_RESET	Input	Resets the tx_core block. This pin is connected directly to set/reset ports of all flops in the tx_clk clock domain. It is active high. Typically, this is connected to the tx_reset_out signal.
XAUI_RX_RESET_ OUT[3:0]	Output	Software-generated resets (register 0.15) synchronized with the rx_clkiX [X=01, 2, 3] clocks. These signals will be held high whenever low power mode is enabled. These signals are asynchronously asserted by the software-generated reset and synchronously deasserted with the rx_clkiX. It is active high. Typically, this output is connected to the rx_reset input.
XAUI_RX_RESET	Input	Resets the XAUI extender block. These pins are connected to set/reset ports of all flops in the corresponding rx_clkiX [X=01, 2, 3] clock domain. Refer to the "XAUI Mode Reset" section on page 137 section for detail.

Table 3-27 • SmartFusion2 SoC FPGA XAUI Extender Block Clocking Signal

Port	Type	Description
XAUI_OUT_CLK	Output	XAUI mode feedback clock from for SPLL.
XAUI_FB_CLK	•	XAUI mode fabric clock (this clock is driven by SPLL output clock in the XAUI mode).

Table 3-28 • SmartFusion2 SoC FPGA XAUI Mode I/O - PAD Interface

Port	Type	Description
RXD0_P, RXD1_P,	Input	SERDES differential positive input for each lane: Rx+
RXD2_P, RXD3_P		
RXD0_N, RXD1_N	Input	SERDES differential negative input for each lane: Rx-
RXD2_N, RXD3_N		
TXD0_P, TXD1_P	Output	SERDES differential positive output for each lane: Tx+
TXD2_P, TXD3_P		
TXD0_N, TXD1_N	Output	SERDES differential negative output for each lane: Tx-
TXD2_N, TXD3_N		
REXT[3:0]	Input	Common external resistance
VDDPLL[3:0]	Input	Power - Supply - PLL
PLL_REF_RETURN[3:0]	Input	PLL - Reference return - PLL
VDDIO[3:0]	Input	Power - Supply - Vmain
VSSIO[3:0]	Input	Power - Supply - Vss
VAUX[3:0]	Input	Power - Supply - Vaux

Table 3-29 • SmartFusion2 SoC FPGA XAUI Extender Block Miscellaneous Control Signal

Port	Туре	Description
XAUI_LOOPBACK_OUT	Output	Loopback mode enable out. This signal is asserted when the XAUI extender block is placed in loopback. Typically, this signal is shunted back into the input XAUI_LOOPBACK_IN port, in which case, loopback is implemented in the XAUI extender block. However, this signal can be used to control the loopback function on a PMA in the SERDES block in place of the mxgxs loopback function.
XAUI_ LOOPBACK_IN	Input	Loopback mode enable in. When asserted, the XAUI PMA output data signals are shunted back into the input signals. For loopback to function appropriately, the XGMII transmit clock tx_clk must be shunted back into the PMA recovered clock inputs.
XAUI_ LOWPOWER	Output	SERDES low power status. When set to 1, the SERDES block is placed in a low power state.

Glossary

Acronyms

MAC

Media access control

MDIO

Management data input/output

PCS

Physical coding sublayer

PHY

Physical layer

PMA

Physical medium attachment

PRBS

Pseudo-random bit sequence

RS

Reconciliation sublayer

SERDESIF

Serializer/deserializer interface

XAUI

Extended attachment unit interface

XGMII

10 Gb media independent interface

4 - EPCS Interface

The SmartFusion2 SoC FPGA SERDESIF block integrates the functionality of supporting multiple high speed serial protocols, such as peripheral component interconnect express (PCIe) 2.0, eXtended attachment unit interface (XAUI), and serial gigabit media independent interface (SGMII). In addition, the SmartFusion2 SoC FPGA SERDESIF block is available as a standalone serialize and de-serializer (SERDES) with the external physical coding sublayer interface (EPCS interface) available to the fabric; to implement PCS logic in the fabric. This allows any user-defined high-speed serial protocol to be implemented through the SmartFusion2 SoC FPGA field programmable gate array (FPGA) fabric. The EPCS interface is available to the FPGA fabric and this has 20-bit transmit and 20-bit receive signals. Any standard protocol or user-defined serial protocol can be chosen to implement. The SERDESIF block can be configured

Single-protocol mode, where the EPCS interface can be configured as x4-lane or x2. The SERDESIF block can also be configured in Single-protocol mode where only Lane2 and Lane3 are available for the EPCS interface and Lane1 and Lane2 are used for the PCIe protocol link implementation.

Following are the main features of the EPCS interface in SmartFusion2 SoC FPGA:

- 1. The SERDES lanes EPCS interface can be available to FPGA fabric to allow any serial protocol up to 4-lanes in the fabric.
- 2. Each lane has 20-bit Rx/Tx External PCS Interface.
- 3. SERDES Tx PLL and Rx PLLs can be programmed.
- 4. 32-bit Advanced Peripheral Bus (APB) interface for the SERDES Register programming.

SERDESIF Protocol Mode with EPCS Interface

SERDESIF with the EPCS interface can be configured as Single-protocol mode or Multi-protocol mode, Table 4-1, Table 4-2 on page 154, and Table 4-3 on page 154 show a detailed description of the EPCS interface usage in Single-protocol and Multi-protocol mode.

Table 4-1 • EPCS Interface Usage in Single-protocol and Multi-protocol Mode

Single/Multi	Protocol	Description
Single-protocol	EPCS Protocol mode only	Configured to use maximum 4 lanes. In EPCS mode, the user- defined serial protocol can be run though the EPCS interface to the fabric using the EPCS interface. The XGMII Extender Sublayer (XGXS)-core and PCIe-core are put in RESET state.
Multi-protocol	PCIe Protocol mode and EPCS Protocol mode	Configured to use x2 and x1 lane PCIe mode. (lane0 and lane1 are used for the PCIe link). Any user-defined/other serial protocol can be run though the EPCS interface. Lane2 and lane3 can be used for this purpose.

Table 4-2 • EPCS Interface and SERDES Lane Mapping in Multi-protocol Mode

DUN MODE	PHYSICAL SERDES LANES/LOGICAL LANES – Mapping										
PHY MODE PCIe Protocol	Lan	e0	Lane1		Lane2		Lane3				
Pole Piotocoi	Protocol	Speed	Protocol	Speed	Protocol Speed		Protocol	Speed			
Multi-protocol	PCle	2.5G	*	_	EPCS	_	EPCS	_			
PHY mode	PCle	2.5G	PCle	2.5G	EPCS	_	EPCS	_			
(PCIe link Non- reversed mode)	PCle	5G	*	_	EPCS	_	EPCS	_			
	PCle	5G	PCle	5G	EPCS	_	EPCS	_			
Multi-protocol	*	_	PCle	2.5G	EPCS	_	EPCS	_			
PHY mode	PCle	2.5G	PCle	2.5G	EPCS	_	EPCS	_			
(PCle link reversed	*	_	PCle	5G	EPCS	_	EPCS	_			
mode)	PCle	5G	PCle	5G	EPCS	_	EPCS	_			

Table 4-3 describes the EPCS interface usage in Single-protocol mode.

Table 4-3 • EPCS Interface and SERDES Lane Mapping in Single-protocol Mode

Single Protocol	Lane0	Lane1	Lane2	Lane3		
EPCS Mode	EPCS	_	-	-		
	EPCS	EPCS	-	_		
	_	_	EPCS	-		
	_	-	EPCS	EPCS		
	EPCS	EPCS	EPCS	EPCS		

Note: The link speed when configured as the EPCS interface is user-defined. Appropriate phase-locked loop (PLL) settings define the link-speed. Refer to the "Serializer/Deserializer" section on page 169 for setting the TX PLL and the RX PLL.

EPCS Implementation in SERDESIF Block

The SmartFusion2 SoC FPGA SERDESIF block includes SERDES, PCIe system, XAUI extender, APB decoder, and several glue logic blocks (x2 EPCS INTERFACE, PCIe L2/P2 control etc.). The SERDES sub-block includes the physical medium attachment (PMA) macro and physical coding sublayer (PCS) logic for PCIe. For further details, refer to the "Serializer/Deserializer" section on page 169. During the EPCS implementation, the SERDES PCS logic is bypassed and the PMA interface is passed to the fabric via the x2 EPCS interface blocks.

In Single-protocol mode, the x4 EPCS interface is available to the FPGA fabric and in Multi-protocol mode, the x2 EPCS interface is available to the fabric.

Figure 4-1 • EPCS Implementation of the SERDESIF Block in Single Protocol Mode

Figure 4-1 shows the SERDESIF block internal architecture during the EPCS Single-protocol mode. The SmartFusion2 SoC FPGA EPCS mode facilitates to use 4-lanes of the SERDES exposed to the FPGA fabric with a 20-bit EPCS interface. You have full control over the PLL configurations in the SERDES using APB interface to generate the required serial link frequencies. This EPCS interface is suitable to run any protocol MAC and PCS in the FPGA fabric and uses the PMA macro for implementing any standard (SRIO, INTERLAKEN etc.) or user-defined serial protocol.

SERDESIF System Registers for EPCS Mode

Three SERDESIF System registers need to be configured to implement the EPCS interface. The three registers that define the mode of operation of the SmartFusion2 SoC FPGA SERDESIF module are:

- 1. CONFIG_PHY_MODE
- 2. CONFIG_EPCS_SEL
- 3. CONFIG_LINKK2LANE

Table 4-4 • EPCS Mode Settings Using The SERDESIF System Register

SERDESIF System APB Registers	Description
CONFIG_PHY_MODE[15:0]	For each lane, this signal selects the protocol default settings which sets the reset value of the registers space.
	CONFIG_PHY_MODE[15:12]: Defines Lane3 settings
	4'b0000: PCIE mode Lane3
	4'b0001: XAUI mode Lane3
	4'b0010: EPCS (SGMII) mode Lane3
	• 4'b0011: EPCS (2.5 GHz) mode Lane3
	• 4'b0100: EPCS (1.25 GHz) mode Lane3
	4'b0101: EPCS (undefined) mode Lane3
	4'b1111: SERDES PHY Lane3 is off
	CONFIG_PHY_MODE[11:8]: Defines Lane2 settings
	4'b0000: PCIE mode Lane2
	4'b0001: XAUI mode Lane2
	4'b0011: EPCS (2.5 GHz) mode Lane2
	4'b0100: EPCS (1.25 GHz) mode Lane2
	4'b0101: EPCS (undefined) mode Lane2
	4'b1111: SERDES PHY Lane2 is off
	CONFIG_PHY_MODE[7:4]: Defines Lane1 settings
	4'b0000: PCIE mode Lane1
	4'b0001: XAUI mode Lane1
	4'b0011: EPCS (2.5 GHz) mode Lane1
	4'b0100: EPCS (1.25 GHz) mode Lane1
	4'b0101: EPCS (undefined) mode Lane1
	4'b1111: SERDES PHY Lane1 is off
	CONFIG_PHY_MODE[3:0]: Defines Lane0 settings
	4'b0000: PCIE mode Lane0
	4'b0001: XAUI mode Lane0
	4'b0011: EPCS (2.5 GHz) mode Lane0
	• 4'b0100: EPCS (1.25 GHz) mode Lane0
	4'b0101: EPCS (undefined) mode Lane0
	4'b1111: SERDES PHY Lane0 is off
CONFIG_EPCS_SEL[3:0]	For each lane, one bit of this signal defines whether the external PCS
	interface is used or the PCI-Express PCS is enabled:
	0b: PCI-Express mode
	1b: External PCS mode
	CONFIG_EPCS_SEL[3]: External PCS selection associated to Lane3
	CONFIG EPCS SEL[2]: External PCS selection associated to Lane2
	CONFIG_EPCS_SEL[1]: External PCS selection associated to Lane1
CONTROL INICIONA ANTECON	CONFIG_EPCS_SEL[0]: External PCS selection associated to Lane0
CONFIG_LINKK2LANE[3:0]	This signal is used in PCIe mode in order to select the association of lane to link. The 4 bits refer to 4 lanes.

Note:

- 1. EPCS (2.5 GHz) mode is a subset of the EPCS Interface mode where the SERDES registers are configured for 2.5-GHz link speed with a 20-bit interface at the EPCS.
- 2. EPCS (1.25 GHz) mode is a subset of the EPCS Interface mode where the SERDES registers are configured for 1.25-GHz link speed with a 10-bit interface at the EPCS.
- 3. EPCS (undefined) mode is also a subset of the EPCS interface where the SERDES registers default values are programmed to 32'd0. An APB interface is needed or programming the link speed and EPCS bit width.
- 4. EPCS (SGMII) mode Lane3 is also a subset of the EPCS interface where only SERDES Lane3 is used for the SGMII protocol purposes. No other lanes are active in this mode. This feature enables to quickly configure the SERDES into the Single-protocol SERDES-SGMII mode.

Table 4-5 describes the settings to be done for the three SERDESIF System registers to force the SERDESIF into EPCS mode.

Table 4-5 • EPCS Mode Settings Using SERDESIF System Register

SERDESIF	CONFIG_PHY_MODE (4 bits per lane)			CONFIG_EPCS_SEL (1-bit per lane)				CONFIG_LINKK2LANE (1-bit per lane)				
MODE	Lane 0	Lane 1	Lane 2	Lane 3	Lane 0	Lane 1	Lane 2	Lane 3	Lane 0	Lane 1	Lane 2	Lane 3
EPCS – Single n	EPCS – Single mode only (Non-reversed mode)											
EPCS-x4	3/4/5	3/4/5	3/4/5	3/4/5	1	1	1	1	0	0	0	0
EPCS-x2	3/4/5	3/4/5	F	F	1	1	1	1	0	0	0	0
EPCS-x1	3/4/5	F	F	F	1	1	1	1	0	0	0	0
EPCS - Single n	node on	ly (Reve	ersed m	ode)								
EPCS-x4	3/4/5	3/4/5	3/4/5	3/4/5	1	1	1	1	0	0	0	0
EPCS-x2	F	F	3/4/5	3/4/5	1	1	1	1	0	0	0	0
EPCS-x1	F	F	F	3/4/5	1	1	1	1	0	0	0	0
Multi mode – PC	le (Non-	-revers	ed mode	e)								
nr-pcie-x2- EPCS	0	0	3/4/5	3/4/5	0	0	1	1	1	1	0	0
nr-pcie-x1-epcs	0	F	3/4/5	3/4/5	0	1	1	1	1	0	0	0
Multi mode – PC	Multi mode – PCle (Reversed mode)											
r-pcie-x2-epcs	0	0	3/4/5	3/4/5	0	0	1	1	1	1	0	0
r-pcie-x1-epcs	0	0	3/4/5	3/4/5	1	0	1	1	0	1	0	0

Note: The register values are Hex.

Using EPCS Protocol Mode

This section describes the customizing and generating the EPCS from the Libero® System-on-Chip (SoC) software. It also describes the clock and reset network when using EPCS mode. It describes the SERDES external register calibration in EPCS mode.

Configuring High Speed Serial Generator for EPCS Mode

The high speed serial interface generator in the Libero SoC allows to configure the SERDESIF block in EPCS mode to control the setting of the three SERDESIF System registers. Refer to Figure 4-2 and Figure 4-3 for EPCS mode setting in the high speed serial interface generator.

Figure 4-2 • EPCS Single Protocol Mode Setting in High Speed Serial Interface Generator

Figure 4-3 • EPCS Multi Protocol Mode Setting in High Speed Serial Interface Generator

EPCS Reset Network

Figure 4-4 shows the reset network for the EPCS interface x4-lanes implementation. All 4-lanes reset inputs EPCS_0_RESET_N, EPCS_1_RESET_N, EPCS_2_RESET_N, and EPCS_3_RESET_N are gated with the power valid signal from the SmartFusion2 SoC FPGA program control and again with SERDES LANEX SOFTRESET (x=0,1,2,3).

Note: The SERDES_LANEx_SOFTRESET signals are controlled by the SERDESIF System register SERDESIF_SOFT_RESET (active low reset signal for each lane), which can be programmed using the APB3 interface.

EPCS_x_RESET_N and SERDES_LANEx_SOFTRESET before using the EPCS interface.

Figure 4-4 • EPCS Implementation of the SERDESIF Block

EPCS Clock Network

Figure 4-5 shows the SERDESIF clock network for EPCS mode. The SERDES lanes reference clock (aRefClk[3:0]) can be sourced from refclk_io0, refclk_io1, fab_ref_clk, or ccc_refclk. This reference clock can be selected for the SERDES lane using the Libero SoC SERDESIF configurator, as shown in Figure 4-6.

Figure 4-5 • EPCS Clock Network

Figure 4-6 • SERDES Reference Clock Selection Using SERDESIF Configurator

In EPCS mode, it is needed to configure and control the SERDES block to implement the user-defined protocol. This can be done using the SERDES registers, which are accessed by the APB bus. The APB bus interface clock (APB_S_PCLK) is used for this purpose.

Refer to the "Serializer/Deserializer" section on page 169 for the details regarding the SERDES register detail.

EPCS SERDES Calibration and External Resistor Configuration

An external resistor is required for the PMA hard macro in order to perform an impedance calibration (transmit, receive, and receiver equalization). The external resistor input signal needs to be connected to the Rext input signal of the physical layer (PHY). This calibration is automatically performed by the PMA control logic after the reset de-assertion and generally takes less than 100 μ s. At the end of the calibration, the PHY logic computes all the calibration logic parameters and applies the corresponding settings and automatically drives "Electrical Idle 1" (also called EI1) on the transmit driver. It requires another 100 μ s to physically establish the Electrical Idle condition. The driving data on the link can only be performed when the initial calibration is completed and whatever the protocol, the PMA hard macro is in EI1 Tx driver state when this calibration is completed. The end of the calibration is signaled by the PMA macro through the "EPCS_READY" signal.

The SERDESIF System Register

CONFIG_REXT_SEL register is used to select whether the calibration is performed by the PMA control logic at the lane or use the calibration result from the adjacent lane. The SmartFusion2 SoC FPGA SERDESIF has 2 external resistors connected to Lane0 and Lane2. Lane1 and Lane3 need to get calibrated using the register from adjacent lane. Using this register, each lane can be independently configured to use the calibration results from its own calibration circuitry (00b), from one of the upper lanes (10b) or from one of the lower lanes (01b). Thus, several consecutive lanes can be configured to take the calibration result from the lower or upper lane. These lanes can be enabled for instance for a 4-lane implementation to have a single external resistor for 4 lanes, or 1 external resistor (1 for each group of 2 lanes). Also, the external resistor is not expected to be located on functional Lane0; it can be located on any lane of the multi-lane link. Even if using the calibration results of another lane, each lane can still be finely tuned independently with the other lanes in term of Tx pre-emphasis and Rx equalization.

SmartFusion2 SoC FPGA EPCS Interface – Timing Diagram

The Tx clock (aTXclk) and Rx clock (aRXClk) of SERDES are directly provided to the external PCS interface through the EPCS_x_TX_CLK (x: 0, 1, 2, 3) and EPCS_x_RX_CLK (x: 0, 1, 2, 3) output signals. These signals must be used as transmit clock and receive clock by the external PCS logic and thus a clock tree is required to be implemented on each of these signals.

The transmit data EPCS_X_TXDATA (x: 0, 1, 2, 3) must be generated using rising edge of the EPCS_x_TX_CLK and captured back by the SERDES block as shown in Figure 4-7.

2: Clock-to-out delay and routing delay

Figure 4-7 • EPCS Transmit Interface Timing Diagram

The EPCS_X_RXDATA (x: 0, 1, 2, 3) is captured using the rising edge of EPCS_x_RX_CLK (x: 0, 1, 2, 3) as shown in Figure 4-8.

Figure 4-8 • EPCS Receive Interface Timing Diagram

All other external PCS signals are considered asynchronous with respect to the epcs_rxclk or epcs_txclk clocks.

SERDESIF System Registers Configurations for EPCS Mode

The SmartFusion2 SoC FPGA SERDESIF subsystem has 3 regions of configuration and status registers, which can be accessed by the 32-bit APB bus:

- SERDESIF System Registers: The SERDESIF System registers control the SERDESIF module for single-protocol or multi-protocol support implementation.
- PCIe Core Bridge Register Space: The PCIe core configuration and status registers occupy 4 KBytes of configuration memory map.
- SERDES Macro Registers: The SERDES macro register map contains control and status information of the SERDES block and lanes.

During EPCS mode, the PCIe core registers are not used. Only the SERDESIF System registers and the SERDES macro register are used for EPCS mode. Table 4-6 shows the SERDESIF system registers which need to be configured for EPCS mode of operation. Refer to the "SERDESIF Block" section on page 5 for a detailed description of the register.

Table 4-6 • SERDESIF System Registers in EPCS Mode

Register Name	Address Offset	Register Type	Description
SER_PLL_CONFIG_HIGH	0x04	R/W	Bit 11 and bit 16 of the SERDES PLL configuration are used. It is recommended to keep the SPLL in reset and power down state as the SPLL is not used in EPCS mode.
SER_SOFT_RESET	0x08	R/W	All 6 bits are used for soft reset. Since the PCle and XAUI-IPs are not used, it is recommended to put them into reset state. In EPCS mode, each SERDES-lane can be put into the reset state depending on the requirement.
CONFIG_PHY_MODE_0	0x24	R/W	For each lane, this signal selects the protocol default settings of the PHY which sets the reset value of the registers space. Refer to CONFIG_PHY_MODE in Table 4-4 on page 156 for further details.
CONFIG_PHY_MODE_1	0x 28	R/W	Selects PCS mode, link to lane settings. Refer to CONFIG_EPCS_SEL in Table 4-4 on page 156 for further details.
CONFIG_PHY_MODE_2	0x2C	R/W	Sets the equalization. Calibration is performed by the PMA control logic of the lane or the calibration result of the adjacent lane.
REFCLK_SEL	0x64	R/W	LANE01_REFCLK_SEL and LANE23_REFCLK_SEL bits are used for the reference clock selection for the four lanes of the PMA.
PCLK_SEL	0x68	R/W	PIPE_PCLKIN_LANE01_SEL and PIPE_PCLKIN_LANE23_SEL bits are used for the PIPE clock input selection for the lanes.
EPCS_RSTN_SEL	0x6C	R/W	The EPCS resets signal selection from the FPGA fabric.

SmartFusion2 SoC FPGA EPCS Mode – I/O Signal Interface

The SmartFsuion2 SERDESIF EPCS interface can be configured for Single-protocol/Multi-protocol mode. In Single-protocol mode, all the x4 SERDES lanes of the EPCS interface are exposed to the FPGA fabric. In Multi-protocol mode only two SERDES lanes (Lane2, and Lane3) of the EPCS interface are exposed to the FPGA fabric. Because of this configuration, the EPCS interface for Lane2 and Lane3 is directly connected to the FPGA fabric and the EPCS interface for Lane0 and Lane1 are overlaid on the AXI-Master and slave interface. Refer to the "Serializer/Deserializer" section on page 169 for further details. Table 4-7, Table 4-8 on page 165, and Table 4-9 on page 167 show the list of EPCS mode I/O signals interface.

Table 4-7 • EPCS Mode I/O - PAD Interface

Port Name	Туре	Connecte d to	Description
PCIE_x_RXDP0	Input	I/O Pads	Receive data. SERDES differential positive input: each SERDESIF consists of 4 RX+ signals. Here x = 0 for SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.
PCIE_x_RXDP1			
PCIE_x_RXDP2			
PCIE_x_RXDP3			
PCIE_x_RXDN0	Input	I/O Pads	Receive data. SERDES differential negative input
PCIE_x_RXDN1			Each SERDESIF consists of 4 RX- signals. Here x = 0 for SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.
PCIE_x_RXDN2			
PCIE_x_RXDN3			
PCIE_x_TXDP0	Output	I/O Pads	Transmit data. SERDES differential positive output
PCIE_x_TXDP1			Each SERDESIF consists of 4 TX+ signals. Here x = 0 for SERDESIF 0 and x = 1 for SERDESIF 1. If unused, can be left
PCIE_x_TXDP2			floating.
PCIE_x_TXDP3			
PCIE_x_TXDN0	Output	I/O Pads	Transmit data. SERDES differential negative output
PCIE_x_TXDN1			Each SERDESIF consists of 4 TX- Signals. Here x = 0 for SERDESIF 0 and x = 1 for SERDESIF 1. If unused, can be le
PCIE_x_TXDN2			floating.
PCIE_x_TXDN3			
PCIE_x_REXTL	Reference	I/O Pads	External reference resistor connection to calibrate TX/RX termination value. Each SERDESIF consists of 2 REXT signals—one for lanes 0 and 1 and another for lanes 2 and 3. Here x = 0 for
PCIE_x_REXTR			SERDESIF_0 and $x = 1$ for SERDESIF_1. If unused, can be leftoating.
PCIE_x_REFCLK0P	Input	I/O Pads	Reference clock differential positive. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be used for MSIOD fabric, if SERDESIF is no activated. Here $x = 0$ for SERDESIF_0 and $x = 1$ for SERDESIF_1 If unused, can be left floating.
PCIE_x_REFCLK1P			
PCIE_x_REFCLK0N	Input	I/O Pads	Reference clock differential negative. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be used for MSIOD fabric, if SERDESIF is not activated. Here x = 0 for SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.

Table 4-8 • SERDESIF Block – EPCS Interface

Port	Туре	Connected to	Description	
epcs_0_pwrdn	Input	Fabric	EPCS interface Power-down mode of the SERDES (PMA) Lane0	
epcs_1_pwrdn	Input	Fabric	EPCS interface Power-down mode of the SERDES (PMA) Lane1	
epcs_2_pwrdn	Input	Fabric	EPCS interface Power-down mode of the SERDES (PMA) Lane2	
epcs_3_pwrdn	Input	Fabric	EPCS interface Power-down mode of the SERDES (PMA) Lane3	
epcs_0_tx_data[19:0]	Input	Fabric	EPCS interface transmit data from SERDES(PMA) Lane0	
epcs_1_tx_data[19:0]	Input	Fabric	EPCS interface transmit data from SERDES (PMA) Lane1	
epcs_2_tx_data[19:0]	Input	Fabric	EPCS interface transmit data from SERDES (PMA) Lane2	
epcs_3_tx_data[19:0]	Input	Fabric	EPCS interface transmit data from SERDES (PMA) Lane3	
epcs_0_tx_val	Input	Fabric	EPCS interface transmit data valid from Lane0	
epcs_1_tx_val	Input	Fabric	EPCS interface transmit data valid from Lane1	
epcs_2_tx_val	Input	Fabric	EPCS interface transmit data valid from Lane2	
epcs_3_tx_val	Input	Fabric	EPCS interface transmit data valid from Lane3	
epcs_0_tx_oob	Input	Fabric	EPCS interface Lane0 transmit idle needed for SATA (OOB)	
epcs_1_tx_oob	Input	Fabric	EPCS interface Lane1 transmit idle needed for SATA (OOB)	
epcs_2_tx_oob	Input	Fabric	EPCS interface Lane2 transmit idle needed for SATA (OOB)	
epcs_3_tx_oob	Input	Fabric	EPCS interface Lane3 transmit idle needed for SATA (OOB)	
epcs_0_rx_err	Input	Fabric	EPCS interface Lane0 receiver error detected	
epcs_1_rx_err	Input	Fabric	EPCS interface Lane1 receiver error detected	
epcs_2_rx_err	Input	Fabric	EPCS interface Lane2 receiver error detected	
epcs_3_rx_err	Input	Fabric	EPCS interface Lane3 receiver error detected	
epcs_0_rESET_N	Input	Fabric	EPCS interface Lane0 reset	
epcs_1_rESET_N	Input	Fabric	EPCS interface Lane1 reset	
epcs_2_rESET_N	Input	Fabric	EPCS interface Lane2 reset	
epcs_3_rESET_N	Input	Fabric	EPCS interface Lane3 reset	
epcs_0_ready	Output	Fabric	EPCS interface Lane0 PHY training completed	
epcs_1_ready	Output	Fabric	EPCS Interface Lane1 PHY training completed	
epcs_2_ready	Output	Fabric	EPCS interface Lane2 PHY training completed	
epcs_3_ready	Output	Fabric	EPCS interface Lane3 PHY training completed	
epcs_0_rxdata[19:0]	Output	Fabric	EPCS interface Lane0 received data from the SERDES(PMA)	
epcs_1_rxdata[19:0]	Output	Fabric	EPCS interface Lane1 received data from the SERDES(PMA)	

Table 4-8 • SERDESIF Block – EPCS Interface (continued)

Port	Type	Connected to	Description
epcs_2_rxdata[19:0]	Output	Fabric	EPCS interface Lane2 received data from the SERDES (PMA)
epcs_3_rxdata[19:0]	Output	Fabric	EPCS interface Lane3 received data from the SERDES (PMA)
epcs_0_rx_val	Output	Fabric	EPCS interface Lane0 receive data valid
epcs_1_rx_val	Output	Fabric	EPCS interface Lane1 receive data valid
epcs_2_rx_val	Output	Fabric	EPCS interface Lane2 receive data valid
epcs_3_rx_val	Output	Fabric	EPCS interface Lane3 receive data valid
epcs_0_rx_idle	Output	Fabric	EPCS interface Lane0 receive idle needed for SATA (OOB)
epcs_1_rx_idle	Output	Fabric	EPCS interface Lane1 receive idle needed for SATA (OOB)
epcs_2_rx_idle	Output	Fabric	EPCS interface Lane2 receive idle needed for SATA (OOB)
epcs_3_rx_idle	Output	Fabric	EPCS interface Lane3 receive idle needed for SATA (OOB)
epcs_0_tx_clk_stable	Output	Fabric	EPCS interface Lane0 clock stable info
epcs_1_tx_clk_stable	Output	Fabric	EPCS interface Lane1 clock stable info
epcs_2_tx_clk_stable	Output	Fabric	EPCS interface Lane2 clock stable info
epcs_3_tx_clk_stable	Output	Fabric	EPCS interface Lane3 clock stable info
epcs_0_Rx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_0_RX_CLK
epcs_1_Rx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_1_RX_CLK
epcs_2_Rx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_2_RX_CLK
epcs_3_Rx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_3_RX_CLK
epcs_0_Tx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_0_TX_CLK
epcs_1_Tx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_1_TX_CLK
epcs_2_Tx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_2_TX_CLK
epcs_3_Tx_RESET_N	Output	Fabric	EPCS interface Lane0 clean reset de-asserted on EPCS_3_TX_CLK
epcs_0_TX_CLK	Output	Fabric	EPCS interface Lane0 Tx Clock
epcs_1_TX_CLK	Output	Fabric	EPCS interface Lane1 Tx Clock
epcs_2_TX_CLK	Output	Fabric	EPCS interface Lane2 Tx Clock
epcs_3_TX_CLK	Output	Fabric	EPCS interface Lane3 Tx Clock
epcs_0_Rx_CLK	Output	Fabric	EPCS interface Lane0 Rx Clock
epcs_1_Rx_CLK	Output	Fabric	EPCS interface Lane1 Rx Clock
epcs_2_Rx_CLK	Output	Fabric	EPCS interface Lane2 Rx Clock

Table 4-8 • SERDESIF Block – EPCS Interface (continued)

Port	Type	Connected to	Description
epcs_3_Rx_CLK	Output	Fabric	EPCS interface Lane3 Rx Clock

Table 4-9 • SERDESIF Block - APB Slave Interface

Port	Type	Description	Connected to
APB_S_PCLK	Input	APB-Slave interface: PCLK	Fabric
APB_S_PRESET_N	Input	APB-Slave interface: PRESETN: Async-Set	Fabric
APB_S_PSEL	Input	APB-Slave interface: PSEL	Fabric
APB_S_PENABLE	Input	APB-Slave interface: PENABLE	Fabric
APB_S_PWRITE	Input	APB-Slave interface: PWRITE	Fabric
APB_S_PADDR[13:0]	Input	APB-Slave interface: PADDR	Fabric
APB_S_PWDATA[31:0]	Input	APB-Slave interface: PWDATA	Fabric
APB_S_PREADY	Output	APB-Slave interface: PREADY	Fabric
APB_S_PRDATA[31:0]	Output	APB-Slave interface: PRDATA	Fabric
APB_S_PSLVERR	Output	APB-Slave interface: PSLVERR	Fabric

Glossary

EPCS

External Physical Coding Sublayer

FPGA

Field programmable gate array

PCIe

Peripheral component interconnect express

SERDES

Serialize and de-serializer

SGMII

Serial gigabit media independent interface

XAUI

eXtended attachment unit interface

5 - Serializer/Deserializer

SmartFusion2 SoC FPGA family has two hard high-speed serial interface blocks: SERDESIF0 and SERDESIF1. Each SERDESIF block has a serializer/deserializer (SERDES) macro block that fully implements physical media attachment (PMA) and the PCI Express (PCIe) physical coding sublayer (PCS). PMA includes the SERDES, TX and RX buffers, clock generator, and clock recovery circuitry. The PCS contains the 8b/10b encoder/decoder, RX detection, and elastic buffer for the PCI Express physical coding sublayer. Figure 5-1 shows the SERDES macro block diagram.

The PCS layer interface is compliant to the Intel PHY Interface for the PCI Express Architecture v2.00 specification (PIPE). The PCIe PCS functionality can be bypassed completely in order to use the SERDES macro for protocols other than PCIe through an external PCS interface. The PCIe PCS is fully configurable in terms of number of lanes and number of links, each link configurable from 1 to 4 lanes. In addition, the multi-lane instance can be dissociated at power-up to distinguish between lanes used for PCIe and lanes used for other protocols through the external PCS interface.

Figure 5-1 • SERDES Macro Block Diagram

The SERDES macro block has 2 major interfaces:

- 1. PIPE interface for PCIe protocol (maximum 16 bits)
- 2. EPCS interface for implementing any protocol other than PCIe (maximum 20 bits)

Each lane of SERDES macro can be configured independently at power-up in a specific mode, using the SERDES macro registers. These registers are used to control the multi-function SERDES macro parameters to configure the SERDES in a specific mode. Refer to the "Serial Protocols Setting Using the SERDESIF System Registers" section on page 17 in the "SERDESIF Block" chapter, for details about setting serial protocols. The SERDES macro register allows control of the parameters corresponding to PLL frequency, baud rate, output voltage, de-emphasis, RX equalization, and parallel data path width for the PCS logic. These registers can be modified after power-up through the register space interface signals on a per-lane basis or all lanes together. These registers can be accessed through the APB interface and load the SERDES parameters after power-up or simply change the output voltage amplitude or de-emphasis due to a high bit error rate seen on a specific lane.

SERDES Functional Blocks

The following section briefly describes the various sub-blocks of the SERDES block in one lane. Figure 5-2 shows the simplified SERDES block diagram for single lane implementation. The SERDES block in each lane includes the following:

- · PMA macro block
- PCIe PCS block

Figure 5-2 • SERDES Macro for Single Lane Implementation

PMA Macro Block

The PMA macro contains all high-speed analog logic as well as TX PLL and CDR PLL, calibration, and the voltage offset cancellation mechanism. Figure 5-3 shows a simplified functional block diagram of the PMA macro. Each of the PMA macro blocks includes three main sub-functions:

- · Transmitter (TX) macro
- · Receiver (RX) macro
- Clock (PLL) macro

Figure 5-3 • Block Diagram of PMA Macro Block

TX Macro

The TX macro receives 8-bit,16-bit, or 20-bit (maximum 20-bit) dataword synchronous with a TX clock, serialized into a single stream of differential transmitted data transmitted to the lane. The transmitter supports multi-level output drive and multi-level transition (pre and post cursor) emphasis while maintaining proper impedance. Refer to the "SERDES Block Register" section on page 183 for details.

RX Macro

The RX macro receives the serialized data from the lane, deserializes this into 10-bit or 20-bit (maximum 20-bit) digital dataword (RX data), and provides the deserialized data synchronous to the recovered link clock (RX clock).

Note: The TX clock and RX clock do not need to be identical in frequency.

The receiver also incorporates programmable continuous time linear equalization while maintaining proper input impedance. Refer to the "SERDES Block Register" section on page 183 for details.

Clock Macro

The clock macro in the PMA contains one transmit PLL (TX PLL) and one clock data recovery PLL (CDR PLL), which allow the TX and RX data paths to operate in asynchronous frequencies using different reference clock inputs. Figure 5-4 shows the overview of the clock macro with some associated signals. For applications where the TX and RX data paths operate in the same line rate range, the RX PLL can be shared between the TX and RX data paths and the TX PLL can be powered down to conserve power. Refer to "TX PLL and CDR PLL Operation" on page 177.

Figure 5-4 • TX PLL and CDR PLL in PMA

Each of the PLLs (TX PLL and CDR PLL) contains the necessary dividers and output high (BitClk, S_Clk, T_Clk) and low frequency (aTXClk, aRXClk) clocks. The TX clock (aTXclk) and RX clock (aRXClk) are divided down and pipelined versions of the high frequency clocks BitClk and S_Clk. The TX divider baud clock and RX divider baud clock are divided by 16 versions of the high frequency clocks BitClk and S_Clk. The TX clock and RX clock are complementary. The exact frequencies of the clocks are determined by the reference clock (aRefClk) and divide ratio settings (M, N and F). The divide ratio settings—M, N, and F—can be programmed from the APB interface on the SERDESIF block. Refer to the SmartFusion2 SoC FPGA Datasheet for the aRefClk, BitClk, S_Clk, and T_Clk operating ranges.

The relationships between FREF, FBaudClock, FBusClock and bus width are as shown in EQ 1 through EQ 4.

FVCO = (FREF) * M * N * F

EQ1

FBaudClock = FVCO / M = (FREF) * N * F

EQ 2

FBusClock = FBaud-clock / N = (FREF) * F

EQ3

Bus width = FBaud-clock / FBus-clock = N

EQ 4

Note: FBaudClock in TX PLL is the EPCS_TX_CLK for EPCS mode, FBaudClock in CDR PLL is the EPCS RX CLK for EPCS mode, and bus width is the EPCS bus width.

TX clock will only be present and at the correct frequency if all the following are true:

- Reference clock is present and at correct frequency
- M, N, and F are correctly set
- · TX PLL is on
- TX clock trees are on
- · Power-down mode is off and initialization is done

The RX clock will only be present and at the correct frequency (with high frequency internal S and T clocks aligned to the bitstream) if all of the following are true:

- · Reference clock is initially present and at the correct frequency
- . M, N, and F are correctly set
- TX PLL is on, at correct frequency and TX clock is present (PMA controlled mode)
- · Serial bitstream is present and valid
- · Deserializer circuitry is on
- · Receivers are on

Refer to the "TX PLL and CDR PLL Operation" section on page 177 for more information on using the TX and CDR PLL.

Physical Coding Sublayer Block

The PCS block implements 8b/10b encoder/decoder, RX detection, and elastic buffer for the PCIe protocol. It has transmitter and receiver blocks.

Transmitter Block

The Transmitter block consists of an 8b/10b encoder and a phase matching first-in-first-out (FIFO), as shown in Figure 5-5. The transmitter block passes the input data in the PCLK domain (PIPE clock domain) to the PMA hard macro in the TX clock domain.

Figure 5-5 • Transmit Clock and Transmit Datapath

The reference clock (aRefClk) is the per-lane PCle reference clock, which is generally the PCle 100 MHz reference clock. During multiple lane implementations, the clock is sent to each PMA single lane macro and skew between lanes is finely controlled. Effectively, each PMA macro generates a transmit clock TX clock, from which is generated the pipe clock (generated by one lane) used by the PCle controller and also used by PCS logic in all lanes. The reference clock signal (aRefClk) is also sent to the CLK MUX block in order to bypass the transmit clock when this clock is not available.

This CLK MUX block is a clock multiplexer used for enabling glitchless operation at power-up and during speed changes. When the link transitions from 2.5 Gbps to 5 Gbps (or vice versa), the PMA TX PLL and PMA settings are modified by the PCS logic. While the TX clock frequency is still 500 MHz, the datapath is changed from 5-bit (2.5 Gbps) to 10-bit (5 Gbps,) which might generate glitches on both the TX clock and RX clock provided by the PMA. In order to ensure glitchless operation, the PCLK provided to the PIPE interface is shut down prior to changing the PMA settings and restarted sometime later, when the PLL is stable again (this PCLK shut-down is done inside the clock divider clkdiv module).

The TX clock (atxclk) is a 500 MHz clock in PCIe mode and is the clock used by some blocks of the PMA control logic for calibration purposes and PMA hard macro control. This clock is used for generating the parallel transmit data TX data as well as other functions such as the TX driver and RX calibration settings, idle detection logic, and RX offset cancellation logic. This clock is generated and used inside each lane as a multiple SERDES.

The clkdiv module is used to generate PIPE clock for the PCIe controller, which must also be fed back to each lane on pipe_pclkin signal. In order to generate a 125 MHz, 250 MHz, or 500 MHz clock from the 500 MHz aTXClk, this block implements a divider by 1, 2, or 4, which depends on the PHY settings and current rate. On top of clock division, this block also shuts down the clock.

The PIPE PCLKOUT signal is the output signal of the PCS and is generated on a per-lane basis.

The phase matching FIFO is used to recapture the transmitted data generated on the PCLK clock domain back to the aTXClk domain, considering the two clocks are fully independent (asynchronous). The TX data MUX performs the multiplexing between data coming from the PCle PCS and the external PCS. Depending on the settings of the clock divider logic, this block also serializes the PCS valid data bus width into the PMA expected data width.

The 8b/10b encoder implements an 8-bit to 10-bit encoder that encodes 8-bit data or control characters into 10-bit symbols. The 8b/10b decoder uses two lookup tables (the D and K tables) to decode the 10-bit symbol stream into 8-bit data (D) or control (K) characters plus the D/K# signal.

Receiver Block

The Receiver block consists of receive capture logic, word alignment logic, elastic buffer, and an 8b/10b decoder, as shown in Figure 5-6.

Figure 5-6 • Receive Clock and Receive Datapath

The CLK Down block shuts down the receive clock when it is not stable and glitch-free. The CLK divider function on the RX path is very similar to the one on the transmit side. The capture register is clocked directly by RXCLK (output of clock divider) rising edge which is a "divide by" and delayed version of the RX clock from the PMA hard macro. The elastic buffers (also known as elasticity buffers, synchronization buffers, and elastic stores) are used to ensure data integrity when bridging two different clock domains. Each receiver lane incorporates a 10b/8b Decoder which is fed from the Elastic Buffer. The 8b/10b Decoder uses two lookup tables (the D and K tables) to decode the 10-bit symbol stream into 8-bit Data (D) or Control (K) characters plus the D/K# signal.

SERDES in External PCS Mode

The SERDES block can be used in other modes, other than PCIe. For this purpose, the SERDES block includes an external PCS (ECPS) interface that enables it to assign each implemented PHY lane to a different protocol. The selection between the EPCS and the PCIe PCS is performed by the CONFIG_EPCS_SEL register in the SERDESIF block, enabling it to assign each implemented lane independently to PCIe and other protocols. This signal must be used in conjunction with the CONFIG_PHY_MODE register, which defines the selected protocol characteristics. In EPCS mode, the PCIe PCS dedicated part of the SERDES block is not used; only the common PMA macro and PMA control logic are used.

TX PLL and CDR PLL Operation

This section covers how to configure and use the TX PLL and clock data CDR PLL.

Powering the TX PLL On and Off

Powering on the TX PLL from cold start is done using the aTXPLLRstB signal, which is connected to TXPLL_RST (bit 4 of the PHY_RESET_OVERRIDE register). In PCS driven mode, the PCS deasserts aTXPLLRstB after VDD and aRefClk are stable, as shown in Figure 5-7. In EPCS mode, aTXPLLRstB is deasserted using the APB interface. The PLL starts to acquire lock after the deassertion of aTXPLLRstB. During TXPLL reset, aRefClk is bypassed and produced at the outputs of PLL. During bypass mode, aTXClk is a divided down version of aRefClk per M, N, and F settings of the TX PLL.

Proper values for aRefClk frequency and M, N, F settings of TX PLL should be supplied to the PLL prior to deassertion of aTXPLLRstB. The PCS must initialize these to correct values before coming out of reset. The TX PLL OUTPUT IS STABLE WHEN THE ATXCLKSTABLE SIGNAL IS ASSERTED. This signal is routed to the fabric in EPCS mode.

Figure 5-7 • Transmit Clock and Transmit Datapath

Powering off the TX PLL is done using the aTXPLLRstB signal, which is connected to the TXPLL_RST (bit4 of PHY_RESET_OVERRIDE register). If the TX PLL was powered down by asserting aTXPLLRstB for deep power savings, exit from power-down should follow the same procedure as described for powering on the TX PLL. Note that TXPLL is bypassed in this mode, and if aRefClk was present while aTXPLLRstB was asserted, the outputs of the PLL will toggle with aRefClk but at a divided down frequency.

While the TX PLL is operational (and in lock) it is possible to shut down both the BitClk tree and aTXClk for intermediate power savings and faster bring-up time by the assertion of TXHF_CLKDN (bit6 of PHY_RESET_OVERRIDE register). The TXHF_CLKDN signal, when set, disables the TX PLL VCO by applying a static zero to the PMA aTXHfClkDnB signal. The aTXHfClkDnB signal functions to inhibit the output buffers of the PLL without interfering with the loop, hence not affecting lock. It is also important to note that the output driver has to be brought to an idle condition before shutting down BitClk; shutting down BitClk could result in a static High or Low at the TXDP/TXDN pins if the driver is not brought to idle, which would cause undesirable DC shifts on an AC-coupled transmission line.

Changing the TX PLL Mode of Operation

Once the TX PLL has acquired lock, any change of mode setting is accomplished by the suitable change of M, N, and F settings of the TX PLL. Note that a change of mode setting does not instantaneously change the frequencies of aTXClk and BitClock, but will change the frequencies within a few aTXClk cycles, depending on the state of the internal PLL registers when mode change is applied. The TXPLL design does not guarantee that no runt pulses or glitches occur on the clocks during mode changes. So, care should be taken when changing the PLL setting during operation mode.

Powering the CDR PLL On and Off

The sequence of operations for powering up the CDR PLL from cold start is similar to that of the TX PLL, using the aCDRPLLRstB signal connected to RXPLL_RST (bit5 of PHY_RESET_OVERRIDE register), except that proper values for CDR PLL M, N, and F have to be provided. The TX PLL should be up and stable and a bitstream should be present at RXDP and RXDN. If the CDR PLL was powered down for deep power savings, exit from power-down should follow the same sequence of operations as described for powering up from system cold start. A bypass operation similar to that of the TX PLL would also result.

While the CDR PLL is operational (and in lock to aRefClk) it is possible to shut down the S_CLK and T_CLK trees for intermediate power savings and faster lock to bitstream time by the assertion of RXHF_CLKDN (bit 7 of PHY_RESET_OVERRIDE register). The RXHF_CLKDN bit, when set, disables the RX PLL VCO settings by applying a static zero to the PMA aRXHfClkDnb signal. The aRXClk signal will still be functional in this case, but within specified bounds of accuracy linked to Refclk. Note that since S_Clk and T_Clk are not operational, bitstream lock cannot be achieved and the PCS will park the CDR PLL in frequency acquisition mode, which locks to aRefClk.

Acquiring Bit Lock for CDR PLL

There are two modes of lock where the CDR PLL can be trained to the incoming bitstream:

- · PCS driven mode
- · PMA driven mode

The steps for acquiring bit lock are similar in both modes. Bit 3 of the CR0 register (PMA driven mode) puts the CDR PLL in PMA driven mode or PCS driven mode. In PMA driven mode, CDR_PLL_MANUAL_CR (CDR PLL manual control register) controls the bit lock steps. Both modes of lock require two steps for training the CDR PLL to the incoming bitstream for the lock:

- Frequency lock: The frequency lock (FL) operation whereby the CDR PLL locks to the reference clock. The sampling clock at the receiver is not aligned to the center of the data eye during this step.
- 2. Phase lock: The phase lock (PL) operation whereby CDR PLL acquires phase and small frequency deviation lock to the bitstream. The sampling clock at the receiver will be aligned to the center of the data eye *after* this step. It is imperative that the bitstream be valid upon entering phase lock. There are two further steps for phase lock:
 - Coarse phase lock, which has a higher range of frequency acquisition (± 5000 ppm of static frequency difference). This step is always a transient step before embarking on fine phase lock
 - Fine phase lock, which has a lower range of frequency acquisition (± 300 ppm static frequency difference).

Figure 5-8 shows CDR locking.

Figure 5-8 • CDR Bit Locking

Bit 3 of the SERDES_TEST_OUT register in the SERDESIF block, also known as CDR PLL locked on data (aCDRDiagOut), indicates the current state of the internal frequency detector. Bit 5 of the SERDES_TEST_OUT register in the SERDESIF block, also known as CDR PLL locked (aRXClkStable), indicates when CDR is locked. However, note that the non-assertion of aCDRDiagOut or the assertion of aRXClkStable do not indicate lock to the bitstream. They indicate that the CDR PLL frequency is not grossly out of range of the bitstream frequency. The only indicator for correct lock to the bitstream is detection of no errors in the decoded stream.

Changing CDR PLL Mode of Operation (speed)

Once the CDR PLL has acquired lock, any change of mode settings is accomplished by the suitable change of CDR PLL M, N, and F settings. Note that a valid bitstream has to have been present for the CDR PLL to correctly bit-lock. If a change of mode setting is desired with no change in VCO frequency, a certain amount of time will be required for the CDR PLL to reacquire bit-lock. This kind of change of mode setting does not disturb the PLL frequency lock significantly, but due to phase re-acquisition, the jitter specifications of the PLL may be violated for a few transient bit periods, with associated loss of received bits. If a change of mode setting is desired, resulting in a change in VCO frequency, it must be noted that the CDR PLL will have to go through the entire acquisition process, including frequency lock. The CDR PLL design does not guarantee that no runt pulses or glitches occur on the clocks during mode changes. So care should be taken when changing the PLL setting during operation mode.

SERDES Testing Operation

This section covers how to configure the SERDES in loopback to test the signal integrity of the SERDES block.

Serial Loopback

Serial loopback modes are specialized configurations of the SERDES datapath where the datastream is folded back to the source. Typically, a specific traffic pattern is transmitted and then compared to check for errors. Loopback test modes fall into two broad categories:

- Near-end serial loopback mode: The SERDES block provides support for near-end serial loopback for test purposes. When the LPBK_EN bit (bit1 of the PRBS_CTRL register) is set, the serial data is fed back to the CDR block and the CDR block extracts clock and data generated by the PCS, as shown in Figure 9. Loopback may be operated in full frequency mode (PLLs active) or bypass mode (PLLs bypassed).
- Far-end serial loopback mode: The SERDES block can also be configured in far-end serial loopback mode. In this mode, the transmit data is looped back to received data at the far end of the link, as shown by green line in Figure 5-9 on page 180.

Loopback testing can be used either during development or in deployed equipment for fault isolation. The traffic patterns used can be application traffic patterns or specialized pseudo-random patterns.

Figure 5-9 • Serial Loopback

Pseudo-Random Bit Sequences Pattern Generator

Pseudo-random bit sequences (PRBS) are commonly used to test the signal integrity of SERDES. The SERDES block allows pattern generation using the PRBS_CTRL register. This pattern can be looped back in the PMA and verified as explained in the "Pseudo-Random Bit Sequences Pattern Checker" section. The following bits describe the PRBS pattern generation feature:

- · PRBS_GEN: This signal starts the PRBS pattern transmission.
- PRBS_TYP[1:0]: This signal defines the type of PRBS pattern which is applied. PRBS7 when set to 00b, PRBS11 when set to 01b, PRBS23 when set to 10b, and PRBS31 when set to 11b.

Table 5-1 • ERDES Macro PRBS Patterns

Name	Polynomial	Length of Sequence	Descriptions
PRBS-7	1 + X6 + X7	27– 1 bits	Used to test channels with 8b/10b.
PRBS-15	1 + X14 + X15	215 – 1 bits	ITU-T Recommendation O.150, Section 5.3. PRBS-15 is often used for jitter measurement because it is the longest pattern the Agilent DCA-J sampling scope can handle.
PRBS-23	1 + X18 + X23	223 – 1 bits	ITU-T Recommendation O.150, Section 5.6. PRBS-23 is often used for non-8B/10B encoding scheme. One of the recommended test patterns in the SONET specification.
PRBS-31	1 + X28 + X31	231 – 1 bits	ITU-T Recommendation O.150, Section 5.8. PRBS-31 is often used for non-8b/10b encoding schemes. A recommended PRBS test pattern for 10 Gigabit Ethernet. See IEEE 802.3ae-2002.

Pseudo-Random Bit Sequences Pattern Checker

The SERDES block includes a built-in PRBS checker to test the signal integrity of the channel. Using the internal PMA loopback, this pattern checker allows SERDES to check the four industry-standard PRBS patterns mentioned in the "Pseudo-Random Bit Sequences Pattern Generator" section. The PRBS_CTRL register and PRBS_ERRCNT register allow pattern checking.

- LPBK_EN: The LPBK_EN signal, bit 1 of the PRBS_CTRL register, puts the PMA macro block in near-end loopback (serial loopback from TX back to RX). PRBS tests can be done using the near-end loopback of the PMA macro or using any far-end loopback implemented in the opposite component.
- PRBS_CHK: The PRBS_CHK signal, bit 6 of the PRBS_CTRL register, starts the PRBS pattern checker. Refer to the PRBS_CTRL register for more information.
- PRBS_ERRCNT: The PRBS_ERRCNT register reports the number of PRBS errors detected when the PRBS test is applied. Refer to PRBS_ERRCNT register for more information.

Custom Pattern Generator and Checking

The SERDES block allows generation of a user-defined pattern and checking the pattern using far-end loopback mode. The SERDES block allows pattern generation using PRBS related registers. The following bits describe the custom pattern generation feature:

- CUSTOM_PATTERN[79:0]: The custom pattern registers (register offset 0X190 to 0X1CC) enables to program a custom pattern. Refer to the custom pattern registers (starting with CUSTOM PATTERN 7 0 on page 217) for more information.
- CUST_SEL (CUSTOM_PATTERN_CTRL[0]): This signal replaces the PRBS data transmitted on the link by the custom pattern. Note that the PRBS_SEL register must also be set for transmitting the custom pattern on the link.
- CUST_TYP (CUSTOM_PATTERN_CTRL[3:1]): This signal defines whether the custom pattern generated on the link is generated by the custom pattern register or by one of the hard-coded patterns:
 - 000b: Custom pattern register
 - 100b: All-zero pattern (0000...00)
 - 101b: All-one pattern (1111...11)
 - 110b: Alternated pattern (1010...10)
 - 111b: Dual alternated pattern (1100...1100)
- CUST_CHK (CUSTOM_PATTERN_CTRL[4]): This bit enables the error counter.
- CUST_SKIP (CUSTOM_PATTERN_CTRL[5]): This register is used in RX word alignment manual mode.
- CUST_AUTO (CUSTOM_PATTERN_CTRL[6]): This allows the word alignment to be performed
 automatically by a state machine that checks whether the received pattern is word-aligned with
 the transmitted pattern and to automatically use the PMA CDR PLL skip bit function to find the
 alignment.
- CUST_ERROR (CUSTOM_PATTERN_CTRL[3:0]): When the custom pattern checker is enabled, this status register reports the number of errors detected by the logic when the custom word aligner is in synchronization. It starts counting only after a first matching pattern has been detected.
- CUST_SYNC (CUSTOM_PATTERN_CTRL[4]): This bit reports that the custom pattern is wordaligned.
- CUST_STATE (CUSTOM_PATTERN_CTRL[7:5]): This register reports the current state of the custom pattern word alignment state machine.

SERDES Block Register

The SERDES block registers are part of the SERDESIF register space. There are three regions of configuration and status registers in the SERDESIF block. Configuration of the top level functionality of the PCIe core, XAUI block, and SERDES macro is also done through these registers. These three regions of registers are as follows:

- SERDESIF System Registers
- PCIe Core Bridge Register Space
- SERDES Macro Registers

The SERDES macro register contains the control and status information of SERDES for each lane. Each SmartFusion2 SoC FPGA SERDES block has four SERDES lanes. The location of SERDES macro registers in the SERDESIF system memory map are as follows:

- 0x1000-0x13FF 1 Kbyte, SERDES macro register lane0
- 0x1400-0x17FF 1 Kbyte, SERDES macro register lane1
- 0x1800-0x1BFF 1 Kbyte, SERDES macro register lane2
- 0x1C00-0x1FFF 1 Kbyte, SERDES macro register lane3

The 1 Kbyte register space can be divided between the protocol-specific read/write register and generic purpose register.

- Configuration PHY registers (offset 0x000 to 0x03C): These 16 registers are protocol-specific, with a reset value depending on the selected protocol, according to CONFIG_PHY_MODE register settings. For example, PLL_F_PCLK_RATIO register may have different reset values for PCIe and XAUI mode. Also, note that for PCIe Gen1 features are configured using these 16 8-bit registers.
- PCIe 5 Gbps PHY registers (offset 0x040 to 0X0BC): These 32 registers are specific to the PCIe protocol when running at 5 Gbps.
- SERDES Electrical Parameter registers (offset 0X0C0 to 0X18C): These 48 registers are internally reported values of parameters programmed inside the SERDES block.
- SERDES Testing registers (offset 0X190 to 0x1FC): These registers are used for testing the SERDES block.
- SERDES Recompute register (offset 0x200): This register is a command register that requires PMA control logic to recompute the SERDES parameter based on the new set of register values programmed.
- SERDES PRBS Error Counter registers (offset 0x204 to 0x400): There are 14 registers that are
 used for bit error rate testing. These registers are for Lane0,1,2, or 3 and the only difference
 between Lane0,1,2 or 3 is the base address specifying which lane it is for. The rest of the register
 spaces are unused.

Table 5-2 • SERDES Macro Registers

Offset (Hex)	Register Name	Reset Value	Туре	Description
0X000	CR0	0x80	RW	Control register 0
0X004	ERRCNT_DEC	0x20	RW	Clock count for error counter decrement
0X008	RXIDLE_MAX_ERRCNT_THR	0x48 or 0xF8		Error counter threshold – RX0 idle detect maximum latency Reset value for PCIe mode: 0x48 Reset value for other mode: 0xF8
0X00C	IMPED_RATIO	0x80	RW	TX impedance ratio

Table 5-2 • SERDES Macro Registers (continued)

Offset (Hex)	Register Name	Reset Value	Туре	Description
0X010	PLL_F_PCLK_RATIO	0x24, 0x34, or 0x00	RW	PLL F settings and PCLK ratio Reset value for PCle mode: 0x24: 16-bit pipe interface and 250 MHz PCLK 0x34: 16-bit pipe interface and other PCLK 0x24: 8-bit pipe interface Reset value for other modes: 0x00
0X014	PLL_M_N	0x04, 0x13, or 0x69	RW	PLL M and N settings Reset value for PCIe mode: 0x04 Reset value for XAUI mode: 0x13 Reset value for EPCS mode: 0x69
0X018	CNT250NS_MAX	0x7C, 0x27, or 0x1F	RW	250 ns timer base count Reset value for PCIe mode: 0x7C Reset value for XAUI mode: 0x27 Reset value for EPCS mode: 0x1F
0X01C	RE_AMP_RATIO	0x00	RW	RX equalization amplitude ratio
0X020	RE_CUT_RATIO	0x00	RW	RX equalization cut frequency
0X024	TTX_AMP_RATIO	0x80	RW	TX amplitude ratio
0X028	TX_PST_RATIO	0x15 or 0x00	RW	TX post-cursor ratio Reset value for PCle mode: 0x15 Reset value for XAUI mode: 0x15 Reset value for EPCS mode: 0x00
0X02C	TX_PRE_RATIO	0x00	RW	TX pre-cursor ratio
0X030	ENDCALIB_MAX	0x10	RW	End of calibration counter
0X034	CALIB_STABILITY_COUNT	0x38	RW	Calibration stability counter
0X038	POWER_DOWN	0x00	RW	Power-down feature
0X03C	RX_OFFSET_COUNT	0x70	RW	RX offset counter
0X040	PLL_F_PCLK_RATIO_5GBPS	0x24 or 0x04	RW	PLL F settings and PCLK ratio (in PCle 5 Gbps speed) 0x24: 16-bit pipe 0x04: 8-bit pipe
0X044	PLL_M_N_5GBPS	0x09	RW	PLL M and N settings (in PCIe 5 Gbps speed)
0X048	CNT250NS_MAX_5GBPS	0x7C	RW	250 ns timer base count (in PCle 5 Gbps speed)
0X04C	Reserved			
0X050	TX_PST_RATIO_DEEMP0_FULL	0x15	RW	TX Post-Cursor ratio with TXDeemp = 0, Full swing
0X054	TX_PRE_RATIO_DEEMP0_FULL	0x00	RW	TX pre-cursor ratio TXDeemp = 0, full swing
0X058	TX_PST_RATIO_DEEMP1_FULL	0x20	RW	TX post-cursor ratio with TXDeemp = 1, Full swing
0X05C	TX_PRE_RATIO_DEEMP1_FULL	0x00	RW	TX pre-cursor ratio TXDeemp = 1, full swing
0X060	TX_AMP_RATIO_MARGIN0_FULL	0x80	RW	TX amplitude ratio TXMargin = 0, full swing

Table 5-2 • SERDES Macro Registers (continued)

Offset (Nex) Register Name Reset Value Type Doscription 0X064 TX_AMP_RATIO_MARGIN1_FULL 0x78 RW TX amplitude ratio TXMargin = 1, full swing 0X068 TX_AMP_RATIO_MARGIN3_FULL 0x68 RW TX amplitude ratio TXMargin = 2, full swing 0X070 TX_AMP_RATIO_MARGIN3_FULL 0x60 RW TX amplitude ratio TXMargin = 3, full swing 0X070 TX_AMP_RATIO_MARGINS_FULL 0x50 RW TX amplitude ratio TXMargin = 5, full swing 0X078 TX_AMP_RATIO_MARGINS_FULL 0x48 RW TX amplitude ratio TXMargin = 5, full swing 0X070 TX_AMP_RATIO_MARGINS_FULL 0x40 RW TX amplitude ratio TXMargin = 5, full swing 0X070 TX_AMP_RATIO_MARGINS_FULL 0x40 RW TX amplitude ratio TXMargin = 6, full swing 0X080 RE_AMP_RATIO_DEEMPO 0x00 RW RX equalization amplitude ratio TXDeemp = 0 0X080 RE_CUT_RATIO_DEEMPO 0x00 RW RX equalization cut frequency TXDeemp = 0 0X080 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX post-cursor ratio with TXDeemp = 0, half swing		- OLINDLO Macro Registers (contin	,		
0X088 TX_AMP_RATIO_MARGIN2_FULL 0x68 RW TX amplitude ratio TXMargin = 2, full swing 0X06C TX_AMP_RATIO_MARGIN3_FULL 0x60 RW TX amplitude ratio TXMargin = 3, full swing 0X070 TX_AMP_RATIO_MARGIN5_FULL 0x58 RW TX amplitude ratio TXMargin = 4, full swing 0X074 TX_AMP_RATIO_MARGIN5_FULL 0x50 RW TX amplitude ratio TXMargin = 5, full swing 0X078 TX_AMP_RATIO_MARGIN7_FULL 0x40 RW TX amplitude ratio TXMargin = 5, full swing 0X070 TX_AMP_RATIO_DEEMP0 0x00 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMP0 0x00 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMP0 0x00 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMP0 0x00 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 0 0X080 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio TXDeemp = 0, half swing		Register Name		Туре	Description
0X06C TX_AMP_RATIO_MARGIN3_FULL 0x60 RW TX amplitude ratio TXMargin = 3, full swing 0X070 TX_AMP_RATIO_MARGIN4_FULL 0x58 RW TX amplitude ratio TXMargin = 4, full swing 0X074 TX_AMP_RATIO_MARGIN5_FULL 0x50 RW TX amplitude ratio TXMargin = 5, full swing 0X078 TX_AMP_RATIO_MARGIN5_FULL 0x40 RW TX amplitude ratio TXMargin = 6, full swing 0X070 TX_AMP_RATIO_MARGIN7_FULL 0x40 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMPO 0x00 RW TX amplitude ratio TXDeemp = 0 0X084 RE_CUT_RATIO_DEEMPO 0x00 RW RX equalization and frequency TXDeemp = 0 0X080 RE_AMP_RATIO_DEEMP1 0x00 RW RX equalization and frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0X094 TX_PST_RATIO_DEEMP1_HALF 0x20 RW TX post-cursor ratio in TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGIN0_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing	0X064	TX_AMP_RATIO_MARGIN1_FULL	0x78	RW	TX amplitude ratio TXMargin = 1, full swing
0X070 TX_AMP_RATIO_MARGIN4_FULL 0x58 RW TX amplitude ratio TXMargin = 4, full swing 0X074 TX_AMP_RATIO_MARGIN5_FULL 0x50 RW TX amplitude ratio TXMargin = 5, full swing 0X078 TX_AMP_RATIO_MARGIN5_FULL 0x48 RW TX amplitude ratio TXMargin = 6, full swing 0X070 TX_AMP_RATIO_DEMPO 0x00 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMPO 0x00 RW RX equalization amplitude ratio TXDeemp = 0 0X084 RE_CUT_RATIO_DEEMPO 0x00 RW RX equalization cut frequency TXDeemp = 0 0X088 RE_AMP_RATIO_DEEMPO 0x00 RW RX equalization cut frequency TXDeemp = 0 0X080 RE_AMP_RATIO_DEEMPO 0x00 RW RX equalization cut frequency TXDeemp = 1 0x090 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX post-cursor ratio with TXDeemp = 1 0x090 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 0, half swing 0x094 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0x090 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0x090 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0x090 TX_PST_RATIO_DEEMPO_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0x090 TX_AMP_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0x004 TX_AMP_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 1, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x48 RW TX amplitude ratio TXMargin = 3, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x48 RW TX amplitude ratio TXMargin = 3, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x48 RW TX amplitude ratio TXMargin = 3, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x48 RW TX amplitude ratio TXMargin = 3, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x48 RW TX amplitude ratio TXMargin = 3, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x48 RW TX amplitude ratio TXMargin = 3, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x20 RW TX amplitude ratio TXMargin = 6, half swing 0x004 TX_AMP_RATIO_MARGINA_HALF 0x20 RW TX amplitude ratio TXMar	0X068	TX_AMP_RATIO_MARGIN2_FULL	0x68	RW	TX amplitude ratio TXMargin = 2, full swing
0X074 TX_AMP_RATIO_MARGIN5_FULL 0x50 RW TX amplitude ratio TXMargin = 5, full swing 0X078 TX_AMP_RATIO_MARGIN6_FULL 0x48 RW TX amplitude ratio TXMargin = 6, full swing 0X07C TX_AMP_RATIO_MARGIN7_FULL 0x40 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMP0 0x00 RW RX equalization amplitude ratio TXDeemp = 0 0x084 RE_CUT_RATIO_DEEMP0 0x00 RW RX equalization cut frequency TXDeemp = 0 0x088 RE_AMP_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0x086 RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0x090 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0x094 TX_PRE_RATIO_DEEMP0_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 0, half swing 0x096 TX_PST_RATIO_DEEMP1_HALF 0x20 RW TX post-cursor ratio with TXDeemp = 1, half swing 0x096 TX_PST_RATIO_DEEMP1_HALF 0x50 RW TX pre-cursor ratio TXDeemp = 1, half swing 0x096 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0x044 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 2, half swing 0x045 TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0x040 TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0x040 TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 4, half swing 0x040 TX_AMP_RATIO_MARGIN5_HALF 0x40 RW TX amplitude ratio TXMargin = 5, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x087 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0x086 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude	0X06C	TX_AMP_RATIO_MARGIN3_FULL	0x60	RW	TX amplitude ratio TXMargin = 3, full swing
0X078 TX_AMP_RATIO_MARGIN6_FULL 0x48 RW TX amplitude ratio TXMargin = 6, full swing 0X07C TX_AMP_RATIO_MARGIN7_FULL 0x40 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMP0 0x00 RW RX equalization amplitude ratio TXDeemp = 0 0X084 RE_CUT_RATIO_DEEMP0 0x00 RW RX equalization cut frequency TXDeemp = 0 0X088 RE_AMP_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X080 RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0x01 RW TX post-cursor ratio with TXDeemp = 1, half swing 0X090 TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X0A0 TX_AMP_RATIO_MARGINA_HALF 0x40 RW TX amplitude ratio TXMargin = 1, half swing 0X0A0 TX_AMP_RATIO_MARGINA_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing	0X070	TX_AMP_RATIO_MARGIN4_FULL	0x58	RW	TX amplitude ratio TXMargin = 4, full swing
0X07C TX_AMP_RATIO_MARGIN7_FULL 0x40 RW TX amplitude ratio TXMargin = 7, full swing 0X080 RE_AMP_RATIO_DEEMP0 0x00 RW RX equalization amplitude ratio TXDeemp = 0 0X084 RE_CUT_RATIO_DEEMP0 0x00 RW RX equalization cut frequency TXDeemp = 0 0X088 RE_AMP_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X080 RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0X094 TX_PRE_RATIO_DEEMP0_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 0, half swing 0X096 TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0X090 TX_APR_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X0A0 TX_AMP_RATIO_MARGINS_HALF 0x40 RW TX amplitude ratio TXMargin = 1, half swing 0X0A0 TX_AMP_RATIO_MARGINS_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing	0X074	TX_AMP_RATIO_MARGIN5_FULL	0x50	RW	TX amplitude ratio TXMargin = 5, full swing
0X080 RE_AMP_RATIO_DEEMPO 0x00 RW RX equalization amplitude ratio TXDeemp = 0 0X084 RE_CUT_RATIO_DEEMPO 0x00 RW RX equalization cut frequency TXDeemp = 0 0X088 RE_AMP_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X080 RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0X094 TX_PRE_RATIO_DEEMP0_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 0, half swing 0X098 TX_PST_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0X090 TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0X090 TX_APR_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X0A4 TX_AMP_RATIO_MARGINS_HALF 0x48 RW TX amplitude ratio TXMargin = 1, half swing 0X0A0 TX_AMP_RATIO_MARGINS_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing	0X078	TX_AMP_RATIO_MARGIN6_FULL	0x48	RW	TX amplitude ratio TXMargin = 6, full swing
0X084 RE_CUT_RATIO_DEEMP0 0x00 RW RX equalization cut frequency TXDeemp = 0 0X088 RE_AMP_RATIO_DEEMP1 0x00 RW RX equalization amplitude ratio TXDeemp = 1 0X08C RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0X094 TX_PRE_RATIO_DEEMP0_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 0, half swing 0X095 TX_PRE_RATIO_DEEMP1_HALF 0x20 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X04 TX_AMP_RATIO_MARGIN1_HALF 0x50 RW TX amplitude ratio TXMargin = 1, half swing 0X0A0 TX_AMP_RATIO_MARGIN2_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0A0 TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0A0 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0B4 TX_AMP_RATIO_MARGIN6_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing	0X07C	TX_AMP_RATIO_MARGIN7_FULL	0x40	RW	TX amplitude ratio TXMargin = 7, full swing
0X088 RE_AMP_RATIO_DEEMP1 0X00 RW RX equalization amplitude ratio TXDeemp = 1 0X08C RE_CUT_RATIO_DEEMP1 0X00 RW RX equalization cut frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0X15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0X094 TX_PRE_RATIO_DEEMP0_HALF 0X00 RW TX pre-cursor ratio with TXDeemp = 0, half swing 0X095 TX_PST_RATIO_DEEMP1_HALF 0x20 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0X090 TX_PRE_RATIO_DEEMP1_HALF 0x20 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X04 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0X0AC TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 2, half swing 0X0A0 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 3, half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0B5 TX_AMP_RATIO_MARGIN6_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing	0X080	RE_AMP_RATIO_DEEMP0	0x00	RW	RX equalization amplitude ratio TXDeemp = 0
0X08C RE_CUT_RATIO_DEEMP1 0x00 RW RX equalization cut frequency TXDeemp = 1 0X090 TX_PST_RATIO_DEEMP0_HALF 0x15 RW TX post-cursor ratio with TXDeemp = 0, half swing 0X094 TX_PRE_RATIO_DEEMP0_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 0, half swing 0X098 TX_PST_RATIO_DEEMP1_HALF 0x20 RW TX post-cursor ratio with TXDeemp = 1, half swing 0X09C TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio with TXDeemp = 1, half swing 0X09C TX_PRE_RATIO_DEEMP1_HALF 0x50 RW TX pre-cursor ratio TXDeemp = 1, half swing 0X09C TX_AMP_RATIO_MARGIN0_HALF 0x50 RW TX amplitude ratio TXDeemp = 1, half swing 0X09C TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 0, half swing 0X0AA TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0X0AC TX_AMP_RATIO_MARGIN3_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0AC TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0ADA TX_AMP_RATIO_MARGIN4_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0BB TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 5, Half swing 0X0BB TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 6, half swing 0X0BC TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0CC PMA_STATUS 0x00 RO RW TX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX sequalization sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO REceiver shift loader parameter 0 0X0DA ATXDRR_7_0 0x00 RO REceiver shift loader parameter 0 0X0DA ATXDRR_14_8 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-0 0X0CC ATXDRP_DYN_20_16 0x00 RO Transmitter A shift loader parameter 0-0 0X0EA ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0	0X084	RE_CUT_RATIO_DEEMP0	0x00	RW	RX equalization cut frequency TXDeemp = 0
0X090 TX_PST_RATIO_DEEMP0_HALF	0X088	RE_AMP_RATIO_DEEMP1	0x00	RW	RX equalization amplitude ratio TXDeemp = 1
0X094 TX_PRE_RATIO_DEEMP0_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 0, half swing 0X098 TX_PST_RATIO_DEEMP1_HALF 0x20 RW TX post-cursor ratio with TXDeemp = 1, half swing 0X090 TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGINO_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X0A4 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0X0A3 TX_AMP_RATIO_MARGIN2_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0A0 TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0A0 TX_AMP_RATIO_MARGIN4_HALF 0x38 RW TX amplitude ratio TXMargin = 4, half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0B5 TX_AMP_RATIO_MARGIN7_HALF 0x28 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 TX_AMP_RATIO_MARGIN7_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 PM_STATUS 0x00 <td>0X08C</td> <td>RE_CUT_RATIO_DEEMP1</td> <td>0x00</td> <td>RW</td> <td>RX equalization cut frequency TXDeemp = 1</td>	0X08C	RE_CUT_RATIO_DEEMP1	0x00	RW	RX equalization cut frequency TXDeemp = 1
0X098 TX_PST_RATIO_DEEMP1_HALF 0x20 RW TX post-cursor ratio with TXDeemp = 1, half swing 0X09C TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGIN0_HALF 0x50 RW TX amplitude ratio TXDeemp = 1, half swing 0X0A4 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 0, half swing 0X0A6 TX_AMP_RATIO_MARGIN2_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0A0 TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0A0 TX_AMP_RATIO_MARGIN5_HALF 0x38 RW TX amplitude ratio TXMargin = 4, half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0B5 TX_AMP_RATIO_MARGIN5_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0C0 TX_AMP_RATIO_MARGIN5_HALF 0x28 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 6,	0X090	TX_PST_RATIO_DEEMP0_HALF	0x15	RW	TX post-cursor ratio with TXDeemp = 0, half swing
0X09C TX_PRE_RATIO_DEEMP1_HALF 0x00 RW TX pre-cursor ratio TXDeemp = 1, half swing 0X090 TX_AMP_RATIO_MARGIN0_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X0A4 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0X0A8 TX_AMP_RATIO_MARGIN2_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0AC TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0AO TX_AMP_RATIO_MARGIN4_HALF 0x38 RW TX amplitude ratio TXMargin = 4, half swing 0X0AO TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0B5 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0CO PMA_STATUS 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0X0D0 ATXDRR_7_0 0x00 RO RC eceiver shift loader parameter 0 0X0DA ATXDRR_14_8 0x00 RO RC eceiver shift loader parameter 0 0X0DA ATXDRR_14_8 0x00 RO RC eceiver shift loader parameter 1 0X0DB ATXDRR_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_20_16 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0	0X094	TX_PRE_RATIO_DEEMP0_HALF	0x00	RW	TX pre-cursor ratio TXDeemp = 0, half swing
0X090 TX_AMP_RATIO_MARGIN0_HALF 0x50 RW TX amplitude ratio TXMargin = 0, half swing 0X0A4 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0X0A8 TX_AMP_RATIO_MARGIN2_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0AC TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0A0 TX_AMP_RATIO_MARGIN4_HALF 0x38 RW TX amplitude ratio TXMargin = 4, half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX amplitude ratio TXMargin = 5, Half swing 0X0B8 TX_AMP_RATIO_MARGIN5_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0B6 TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0CC TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0CO PMA_STATUS 0x00 RO PMA_STATUS 0x00 RO PMA_STATUS 0x00 RO TX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO TX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RC RX sweep center 0X0D0 ATXDRR_7_0 0x00 RO RC Receiver shift loader parameter 0 0X0D4 ATXDRR_14_8 0x00 RO RC Receiver shift loader parameter 0 0X0D6 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRA_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0	0X098	TX_PST_RATIO_DEEMP1_HALF	0x20	RW	TX post-cursor ratio with TXDeemp = 1, half swing
0X0A4 TX_AMP_RATIO_MARGIN1_HALF 0x58 RW TX amplitude ratio TXMargin = 1, half swing 0X0A8 TX_AMP_RATIO_MARGIN2_HALF 0x48 RW TX amplitude ratio TXMargin = 2, half swing 0X0AC TX_AMP_RATIO_MARGIN3_HALF 0x40 RW TX amplitude ratio TXMargin = 3, half swing 0X0A0 TX_AMP_RATIO_MARGIN3_HALF 0x38 RW TX amplitude ratio TXMargin = 4, half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX Amplitude ratio TXMargin = 5, Half swing 0X0B8 TX_AMP_RATIO_MARGIN5_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0BC TX_AMP_RATIO_MARGIN5_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 PMA_STATUS 0x00 RO PMA status 0x0C PMA_STATUS 0x00 RO PMA status 0x0C4 TX_SWEEP_CENTER 0x00 RO TX sweep center 0x0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0x0CC RE_SWEEP_CENTER 0x00 RO RX equalization sweep center 0x0CC RE_SWEEP_CENTER 0x00 RO RC RECeiver shift loader parameter 0 0x0CD4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0x0CDA ATXDRR_14_B 0x00 RO Transmitter P shift loader parameter 0-0 0x0CD ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-1 0x0CD ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-2 0x0CE ATXDRA_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-2 0x0CE ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0 0x0CE ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0	0X09C	TX_PRE_RATIO_DEEMP1_HALF	0x00	RW	TX pre-cursor ratio TXDeemp = 1, half swing
OXOAC TX_AMP_RATIO_MARGIN2_HALF Ox40 RW TX amplitude ratio TXMargin = 2, half swing OXOAC TX_AMP_RATIO_MARGIN3_HALF Ox40 RW TX amplitude ratio TXMargin = 3, half swing OXOAO TX_AMP_RATIO_MARGIN4_HALF Ox38 RW TX amplitude ratio TXMargin = 4, half swing OXOB4 TX_AMP_RATIO_MARGIN5_HALF Ox30 RW TX Amplitude ratio TXMargin = 5, Half swing OXOB8 TX_AMP_RATIO_MARGIN6_HALF Ox28 RW TX amplitude ratio TXMargin = 6, half swing OXOBC TX_AMP_RATIO_MARGIN7_HALF Ox20 RW TX amplitude ratio TXMargin = 7, half swing OXOCO PMA_STATUS Ox00 RO PMA status OXOC4 TX_SWEEP_CENTER Ox00 RO TX sweep center OXOC6 RX_SWEEP_CENTER Ox00 RO RX sweep center OXOCC RE_SWEEP_CENTER Ox00 RO RX equalization sweep center OXOCO ATXDRR_7_0 Ox00 RO Receiver shift loader parameter 0 OXOCA ATXDRR_14_8 Ox00 RO RECeiver shift loader parameter 1 OXOCA ATXDRR_DYN_7_0 Ox00 RO Transmitter P shift loader parameter 0-0 OXOCA ATXDRP_DYN_15_8 Ox00 RO Transmitter P shift loader parameter 0-1 OXOEA ATXDRA_DYN_7_0 Ox00 RO Transmitter P shift loader parameter 0-2 OXOEA ATXDRA_DYN_7_0 Ox00 RO Transmitter P shift loader parameter 0-2 OXOEA ATXDRA_DYN_7_0 Ox00 RO Transmitter A shift loader parameter 0-0 OXOEA ATXDRA_DYN_7_0 Ox00 RO Transmitter A shift loader parameter 0-0 OXOEA ATXDRA_DYN_7_0 Ox00 RO Transmitter A shift loader parameter 0-0 OXOEA ATXDRA_DYN_7_0 Ox00 RO Transmitter A shift loader parameter 0-1	0X090	TX_AMP_RATIO_MARGIN0_HALF	0x50	RW	TX amplitude ratio TXMargin = 0, half swing
OXOAC TX_AMP_RATIO_MARGIN3_HALF Ox40 RW TX amplitude ratio TXMargin = 3, half swing OXOAO TX_AMP_RATIO_MARGIN4_HALF Ox38 RW TX amplitude ratio TXMargin = 4, half swing OXOB4 TX_AMP_RATIO_MARGIN5_HALF Ox30 RW TX Amplitude ratio TXMargin = 5, Half swing OXOB8 TX_AMP_RATIO_MARGIN6_HALF Ox28 RW TX amplitude ratio TXMargin = 6, half swing OXOBC TX_AMP_RATIO_MARGIN7_HALF Ox20 RW TX amplitude ratio TXMargin = 7, half swing OXOCO PMA_STATUS Ox00 RO PMA status OXOC4 TX_SWEEP_CENTER Ox00 RO TX sweep center OXOC8 RX_SWEEP_CENTER Ox00 RO RX sweep center OXOCC RE_SWEEP_CENTER Ox00 RO RX sweep center OXOCC RE_SWEEP_CENTER Ox00 RO RX equalization sweep center OXOD0 ATXDRR_7_0 Ox00 RO Receiver shift loader parameter 0 OXOD4 ATXDRR_14_8 Ox00 RO Receiver shift loader parameter 1 OXOD8 ATXDRP_DYN_7_0 Ox00 RO Transmitter P shift loader parameter 0-1 OXODC ATXDRP_DYN_15_8 Ox00 RO Transmitter P shift loader parameter 0-2 OXOE4 ATXDRA_DYN_7_0 Ox00 RO Transmitter P shift loader parameter 0-2 OXOE4 ATXDRA_DYN_7_0 Ox00 RO Transmitter P shift loader parameter 0-2 OXOE4 ATXDRA_DYN_7_0 Ox00 RO Transmitter A shift loader parameter 0-0 OXOE8 ATXDRA_DYN_15_8 Ox00 RO Transmitter A shift loader parameter 0-1	0X0A4	TX_AMP_RATIO_MARGIN1_HALF	0x58	RW	TX amplitude ratio TXMargin = 1, half swing
0X0A0 TX_AMP_RATIO_MARGIN4_HALF 0x38 RW TX amplitude ratio TXMargin = 4, half swing 0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX Amplitude ratio TXMargin = 5, Half swing 0X0B8 TX_AMP_RATIO_MARGIN6_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0BC TX_AMP_RATIO_MARGIN7_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 PMA_STATUS 0x00 RO PMA status 0x0C4 TX_SWEEP_CENTER 0x00 RO TX sweep center 0x0C8 RX_SWEEP_CENTER 0x00 RO RX sweep center 0x0CC RE_SWEEP_CENTER 0x00 RO RX sweep center 0x0CC RE_SWEEP_CENTER 0x00 RO RX equalization sweep center 0x0D0 ATXDRR_7_0 0x00 RO RC REceiver shift loader parameter 0 0x0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0x0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0x0CC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0x0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0x0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0A8	TX_AMP_RATIO_MARGIN2_HALF	0x48	RW	TX amplitude ratio TXMargin = 2, half swing
0X0B4 TX_AMP_RATIO_MARGIN5_HALF 0x30 RW TX Amplitude ratio TXMargin = 5, Half swing 0X0B8 TX_AMP_RATIO_MARGIN6_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0BC TX_AMP_RATIO_MARGIN7_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 PMA_STATUS 0x00 RO PMA status 0X0C4 TX_SWEEP_CENTER 0x00 RO TX sweep center 0X0C8 RX_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO Rx equalization sweep center 0X0D0 ATXDRR_7_0 0x00 RO Receiver shift loader parameter 0 0X0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-1 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader	0X0AC	TX_AMP_RATIO_MARGIN3_HALF	0x40	RW	TX amplitude ratio TXMargin = 3, half swing
0X0B8 TX_AMP_RATIO_MARGIN6_HALF 0x28 RW TX amplitude ratio TXMargin = 6, half swing 0X0BC TX_AMP_RATIO_MARGIN7_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 PMA_STATUS 0x00 RO PMA status 0X0C4 TX_SWEEP_CENTER 0x00 RO TX sweep center 0X0C8 RX_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX equalization sweep center 0X0D0 ATXDRR_7_0 0x00 RO Receiver shift loader parameter 0 0X0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0A0	TX_AMP_RATIO_MARGIN4_HALF	0x38	RW	TX amplitude ratio TXMargin = 4, half swing
0X0BC TX_AMP_RATIO_MARGIN7_HALF 0x20 RW TX amplitude ratio TXMargin = 7, half swing 0X0C0 PMA_STATUS 0x00 RO PMA status 0X0C4 TX_SWEEP_CENTER 0x00 RO TX sweep center 0X0C8 RX_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX equalization sweep center 0X0D0 ATXDRR_7_0 0x00 RO Receiver shift loader parameter 0 0X0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0	0X0B4	TX_AMP_RATIO_MARGIN5_HALF	0x30	RW	TX Amplitude ratio TXMargin = 5, Half swing
0X0C0 PMA_STATUS 0x00 RO PMA status 0X0C4 TX_SWEEP_CENTER 0x00 RO TX sweep center 0X0C8 RX_SWEEP_CENTER 0x00 RO RX sweep center 0X0CC RE_SWEEP_CENTER 0x00 RO RX equalization sweep center 0X0D0 ATXDRR_7_0 0x00 RO Receiver shift loader parameter 0 0X0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRA_DYN_20_16 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0B8	TX_AMP_RATIO_MARGIN6_HALF	0x28	RW	TX amplitude ratio TXMargin = 6, half swing
OXOC4TX_SWEEP_CENTER0x00ROTX sweep center0X0C8RX_SWEEP_CENTER0x00RORX sweep center0X0CCRE_SWEEP_CENTER0x00RORX equalization sweep center0X0D0ATXDRR_7_00x00ROReceiver shift loader parameter 00X0D4ATXDRR_14_80x00ROReceiver shift loader parameter 10X0D8ATXDRP_DYN_7_00x00ROTransmitter P shift loader parameter 0-00X0DCATXDRP_DYN_15_80x00ROTransmitter P shift loader parameter 0-10X0E0ATXDRP_DYN_20_160x00ROTransmitter P shift loader parameter 0-20X0E4ATXDRA_DYN_7_00x00ROTransmitter A shift loader parameter 0-00X0E8ATXDRA_DYN_15_80x00ROTransmitter A shift loader parameter 0-1	0X0BC	TX_AMP_RATIO_MARGIN7_HALF	0x20	RW	TX amplitude ratio TXMargin = 7, half swing
0X0C8RX_SWEEP_CENTER0x00RORX sweep center0X0CCRE_SWEEP_CENTER0x00RORX equalization sweep center0X0D0ATXDRR_7_00x00ROReceiver shift loader parameter 00X0D4ATXDRR_14_80x00ROReceiver shift loader parameter 10X0D8ATXDRP_DYN_7_00x00ROTransmitter P shift loader parameter 0-00X0DCATXDRP_DYN_15_80x00ROTransmitter P shift loader parameter 0-10X0E0ATXDRP_DYN_20_160x00ROTransmitter P shift loader parameter 0-20X0E4ATXDRA_DYN_7_00x00ROTransmitter A shift loader parameter 0-00X0E8ATXDRA_DYN_15_80x00ROTransmitter A shift loader parameter 0-1	0X0C0	PMA_STATUS	0x00	RO	PMA status
0X0CC RE_SWEEP_CENTER 0x00 RO RX equalization sweep center 0x0D0 ATXDRR_7_0 0x00 RO Receiver shift loader parameter 0 0x0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0x0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0x0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0x0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0x0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0x0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-0	0X0C4	TX_SWEEP_CENTER	0x00	RO	TX sweep center
0X0D0 ATXDRR_7_0 0x00 RO Receiver shift loader parameter 0 0X0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0C8	RX_SWEEP_CENTER	0x00	RO	RX sweep center
0X0D4 ATXDRR_14_8 0x00 RO Receiver shift loader parameter 1 0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0CC	RE_SWEEP_CENTER	0x00	RO	RX equalization sweep center
0X0D8 ATXDRP_DYN_7_0 0x00 RO Transmitter P shift loader parameter 0-0 0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0D0	ATXDRR_7_0	0x00	RO	Receiver shift loader parameter 0
0X0DC ATXDRP_DYN_15_8 0x00 RO Transmitter P shift loader parameter 0-1 0X0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0D4	ATXDRR_14_8	0x00	RO	Receiver shift loader parameter 1
0X0E0 ATXDRP_DYN_20_16 0x00 RO Transmitter P shift loader parameter 0-2 0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0D8	ATXDRP_DYN_7_0	0x00	RO	Transmitter P shift loader parameter 0-0
0X0E4 ATXDRA_DYN_7_0 0x00 RO Transmitter A shift loader parameter 0-0 0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0DC	ATXDRP_DYN_15_8	0x00	RO	Transmitter P shift loader parameter 0-1
0X0E8 ATXDRA_DYN_15_8 0x00 RO Transmitter A shift loader parameter 0-1	0X0E0	ATXDRP_DYN_20_16	0x00	RO	Transmitter P shift loader parameter 0-2
	0X0E4	ATXDRA_DYN_7_0	0x00	RO	Transmitter A shift loader parameter 0-0
0X0EC ATXDRA_DYN_20_16 0x00 RO Transmitter A shift loader parameter 0-2	0X0E8	ATXDRA_DYN_15_8	0x00	RO	Transmitter A shift loader parameter 0-1
	0X0EC	ATXDRA_DYN_20_16	0x00	RO	Transmitter A shift loader parameter 0-2

Table 5-2 • SERDES Macro Registers (continued)

Offset (Hex)	Register Name	Reset Value	Туре	Description
0X0F0	ATXDRT_DYN_7_0	0x00	RO	Transmitter T shift loader parameter 0-0
0X0F4	ATXDRT_DYN_15_8	0x00	RO	Transmitter T shift loader parameter 0-1
0X0F8	ATXDRT_DYN_20_16	0x00	RO	Transmitter T shift loader parameter 0-2
0X0FC	ATXDRP_EI1_7_0	0x00	RO	Transmitter P shift loader parameter 1-0
0X100	ATXDRP_EI1_15_8	0x00	RO	Transmitter P shift loader parameter 1-0
0X104	ATXDRP_EI1_20_16	0x00	RO	Transmitter P shift loader parameter 1-2
0X108	ATXDRA_EI1_7_0	0x00	RO	Transmitter A shift loader parameter 1-0
0X10C	ATXDRA_EI1_15_8	0x00	RO	Transmitter A shift loader parameter 1-1
0X110	ATXDRA_EI1_20_16	0x00	RO	Transmitter A shift loader parameter 1-2
0X114	ATXDRT_EI1_7_0	0x00	RO	Transmitter T shift loader parameter 1-0
0X118	ATXDRT_EI1_15_8	0x00	RO	Transmitter T shift loader parameter 1-1
0X11C	ATXDRT_EI1_20_16	0x00	RO	Transmitter T shift loader parameter 1-2
0X120	ATXDRP_EI2_7_0	0x00	RO	Transmitter P shift loader parameter 2-0
0X124	ATXDRP_EI2_15_8	0x00	RO	Transmitter P shift loader parameter 2-1
0X128	ATXDRP_EI2_20_16	0x00	RO	Transmitter P shift loader parameter 2-2
0X12C	ATXDRA_EI2_7_0	0x00	RO	Transmitter A shift loader parameter 2-0
0X130	ATXDRA_EI2_15_8	0x00	RO	Transmitter A shift loader parameter 2-1
0X134	ATXDRA_EI2_20_16	0x00	RO	Transmitter A shift loader parameter 2-2
0X138	ATXDRT_EI2_7_0	0x00	RO	Transmitter T shift loader parameter 2-0
0X13C	ATXDRT_EI2_15_8	0x00	RO	Transmitter T shift loader parameter 2-1
0X140	ATXDRT_EI2_20_16	0x00	RO	Transmitter T shift loader parameter 2-2
0X144	OVERRIDE_CALIB	0x00	RW	Override calibration register
0X148	FORCE_ATXDRR_7_0	0x00	RW	Force receiver shift loader parameter 0
0X14C	FORCE_ATXDRR_15_8	0x00	RW	Force receiver shift loader parameter 1
0X150	FORCE_ATXDRR_20_16	0x00	RW	Force receiver shift loader parameter 2
0X154	FORCE_ATXDRP_7_0	0x00	RW	Force transmitter P shift loader parameter 0
0X158	FORCE_ATXDRP_15_8	0x00	RW	Force transmitter P shift loader parameter 1
0X15C	FORCE_ATXDRP_20_16	0x00	RW	Force transmitter P shift loader parameter 2
0X160	FORCE_ATXDRA_7_0	0x00	RW	Force transmitter A shift loader parameter 0
0X164	FORCE_ATXDRA_15_8	0x00	RW	Force transmitter A shift loader parameter 1
0X168	FORCE_ATXDRA_20_16	0x00	RW	Force transmitter A shift loader parameter 2
0X16C	FORCE_ATXDRT_7_0	0x00	RO	Force transmitter T shift loader parameter 0
0X170	FORCE_ATXDRT_15_8	0x00	RO	Force transmitter T shift loader parameter 1
0X174	FORCE_ATXDRT_20_16	0x00	RO	Force transmitter T shift loader parameter 2
0X178	RXD_OFFSET_CALIB_RESULT	0x00	RO	RXD offset calibration result

Table 5-2 • SERDES Macro Registers (continued)

Offset (Hex)	Register Name	Reset Value	Туре	Description
0X17C	RXT_OFFSET_CALIB_RESULT	0x00	RO	RXT offset calibration result
0X180	SCHMITT_TRIG_CALIB_RESULT	0x00	RO	Schmitt trigger calibration result
0X184	FORCE_RXD_OFFSET_CALIB	0x00	RW	Force RXD offset calibration settings
0X188	FORCE_RXT_OFFSET_CALIB	0x00	RW	Force RXT offset calibration settings
0X18C	FORCE_SCHMITT_TRIG_CALIB	0x00	RW	Force Schmitt trigger calibration settings
0X190	PRBS_CTRL	0x00	RW	PRBS control register
0X194	PRBS_ERRCNT	0x00	RO	PRBS error counter register
0X198	PHY_RESET_OVERRIDE	0x00	RW	PHY reset override register
0X19C	PHY_POWER_OVERRIDE	0x00	RW	PHY power override register
0X190	CUSTOM_PATTERN_7_0	0x00	RW	Custom pattern byte 0
0X1A4	CUSTOM_PATTERN_15_8	0x00	RW	Custom pattern byte 1
0X1A8	CUSTOM_PATTERN_23_16	0x00	RW	Custom pattern byte 2
0X1AC	CUSTOM_PATTERN_31_24	0x00	RW	Custom pattern byte 3
0X1A0	CUSTOM_PATTERN_39_32	0x00	RW	Custom pattern byte 4
0X1B4	CUSTOM_PATTERN_47_40	0x00	RW	Custom pattern byte 6
0X1B8	CUSTOM_PATTERN_55_48	0x00	RW	Custom pattern byte 6
0X1BC	CUSTOM_PATTERN_63_56	0x00	RW	Custom pattern byte 7
0X1C0	CUSTOM_PATTERN_71_64	0x00	RW	Custom pattern byte 8
0X1C4	CUSTOM_PATTERN_79_72	0x00	RW	Custom pattern byte 9
0X1C8	CUSTOM_PATTERN_CTRL	0x00	RW	Custom pattern control
0X1CC	CUSTOM_PATTERN_STATUS	0x00	RO	Custom pattern status register
0X1D0	PCS_LOOPBBACK_CTRL	0x00	RW	PCS loopback control
0X1D4	GEN1_TX_PLL_CCP	0x00	RW	Gen1 transmit PLL current charge pump
0X1D8	GEN1_RX_PLL_CCP	0x00	RW	Gen1 receive PLL current charge pump
0X1DC	GEN2_TX_PLL_CCP	0x00	RW	Gen2 receive PLL current charge pump
0X1E0	GEN2_RX_PLL_CCP	0x00	RW	Gen2 receive PLL current charge pump
0X1E4	CDR_PLL_MANUAL_CR	0x00	RW	CDR PLL manual control
0x1E8- 0x1FC	Reserved			
0X200	UPDATE_SETTINGS	0x00	WO	Update settings command register
0X200- 0x27C	Reserved			
0X280	PRBS_ERR_CYC_FIRST_7_0	0x00	RO	PRBS first error cycle counter register bits [7:0]
0X284	PRBS_ERR_CYC_FIRST_15_8	0x00	RO	PRBS first error cycle counter register bits [15:8]
0X288	PRBS_ERR_CYC_FIRST_23_16	0x00	RO	PRBS first error cycle counter register bits [23:16]
0X28C	PRBS_ERR_CYC_FIRST_31_24	0x00	RO	PRBS first error cycle counter register bits [31:24]

Table 5-2 • SERDES Macro Registers (continued)

Offset (Hex)	Register Name	Reset Value	Туре	Description
0X290	PRBS_ERR_CYC_FIRST_39_32	0x00	RO	PRBS first error cycle counter register bits [39:32]
0X294	PRBS_ERR_CYC_FIRST_47_40	0x00	RO	PRBS first error cycle counter register bits [47:40]
0X298	PRBS_ERR_CYC_FIRST_49_48	0x00	RO	PRBS first error cycle counter register bits [49:48]
0X29C- 0x2A0	Reserved			
0X2A0	PRBS_ERR_CYC_FIRST_7_0	0x00	RO	PRBS last error cycle counter register bits [7:0]
0X2A4	PRBS_ERR_CYC_FIRST_15_8	0x00	RO	PRBS last error cycle counter register bits [15:8]
0X2A8	PRBS_ERR_CYC_FIRST_23_16	0x00	RO	PRBS last error cycle counter register bits [23:16]
0X2AC	PRBS_ERR_CYC_FIRST_31_24	0x00	RO	PRBS last error cycle counter register bits [31:24]
0X2B0	PRBS_ERR_CYC_FIRST_39_32	0x00	RO	PRBS last error cycle counter register bits [39:32]
0X2B4	PRBS_ERR_CYC_FIRST_47_40	0x00	RO	PRBS last error cycle counter register bits [47:40]
0X2B8	PRBS_ERR_CYC_FIRST_49_48	0x00	RO	PRBS last error cycle counter register bits [49:48]
0X2BC- 0X400	Reserved			

SERDES Block Register Bit Definitions

The following tables give bit definitions for the registers present in the SERDES block registers.

CR0: Control Register 0

Table 5-3 • CR0

Bit Number	Name	Reset Value	Description
7	AUTO_SHIFT		Defines whether the electrical idle 1 pattern is automatically shifted in the SERDES macro after loading the drive pattern. When set to 1, electrical idle I or Drive mode can be entered within a single aTXClkp clock cycle. When set to 0, 23 clock cycles are required to dynamically switch between electrical idle I and Drive mode. In general, this bit is always set to 1.
6	FORCE_RX_DETECT		Forces the result of PCIe receiver detect operation to be always detected. This register can be used on unreliable results of RX detect operations. When set to 1, the result of the PCIe receiver detect operation is always positive and thus makes the PHY non-compliant to PCIe.
[5:4]	CDR_REFERENCE		These two bits are used to define the CDR reference PLL mode. By default, these two bits must be set to 00 when aRefClk is used for the CDR reference clock.
3	PMA_DRIVEN_MODE		This bit puts the CDR PLL in PMA driven mode. When set to 0, the PCS driven mode is selected for locking the SERDES CDR circuitry and when set to 1, the PMA driven mode is used.
2	CDR_PLL_DELTA		This register defines the frequency comparator threshold value to switch from fine grain locking to frequency lock and thus control the input signal of the PMA macro when CDR is configured in PMA driven mode, and the equivalent function when the PMA is configured in PCS driven mode. When set to 0, the RX clock and TX clock must be in a 0.4% difference range; 0.8% when set to 1.
1	SIGNAL_DETECT_THRESHOLD		This register defines the Schmitt trigger signal detection threshold used to detect electrical idle on RX. When set to 0, threshold is 125 mV (±40%), and when set to 1, threshold is 180 mV (±33%).
0	TX_SELECT_RX_FEEDBACK		This register must be set to 0 when aRefclk is used for TX PLL. Set to 1 when the CDR PLL is used as TX PLL reference clock.

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready).

ERRCNT_DEC Register

Table 5-4 • ERRCNT_DEC

Bit Number	Name	Reset Value	Description
[7:0]	ERRCNT_DEC		In PCS driven mode, the PMA control logic counts the number of errors detected by the PCS logic in order to decide to switch back to frequency lock mode of the CDR PLL. This counter is used to decrement the error counter every 16*errcnt_dec[7:0] aTXClk clock cycles.

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready).

RXIDLE_MAX_ERRCNT_THR Register

Table 5-5 • RXIDLE_MAX_ERRCNT_THR

Bit Number	Name	Reset Value	Description
[7:4]	RXIDLE_MAX		This register defines the number of clock cycles required before the activity detected output of the PMA macro and reports either electrical idle or valid input data. This register must be set to at least 3 because the activity detected signal is considered as metastable by the PCS logic.
[3:0]	ERRCNT_THR		In PCS driven mode, the PMA control logic counts the number of errors detected by the PCS logic in order to decide to switch back to frequency lock mode of the CDR PLL. This register defines the error counter threshold value after which the CDR PLL switches back to frequency lock.

Note: This register can be reprogrammed any time during operation.

IMPED RATIO Register

Table 5-6 • IMPED_RATIO

Bit Number	Name	Reset Value	Description
[7:0]	IMPED_RATIO		This register is used to fine-tune the impedance ratio of the PMA macro with a nominal value of 100 ohms, corresponding to a multiplication factor of 1, which is encoded 8'd128. A 150 ohm impedance corresponds to 2/3 ratio, encoded 8'd85.

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready).

PLL_F_PCLK_RATIO

Table 5-7 • PLL_F_PCLK_RATIO

Bit Number	Name	Reset Value	Description
[7:6]	Reserved		
[5:4]	DIV_MODE0		This register defines the ratio between PCLK and aTXClk. PCLK is used by the PCIe PCS logic as well as by the majority of the PMA control logic and thus is also useful for other protocols in order to reduce the amount of logic requiring a high aTXClk frequency. In non-PCIe mode, this register is only useful if pipe_pclkout is used by any logic. A value of 00 is used for divide-by-1, 10 for divide by-2 and 11 for divide-by-4.
[3:0]	F		This register defines the aRXF[3:0] and aTXF[3:0] settings of the PMA macro. The same F value is applied to both RX and TX PLL.

Note: This register must only be reprogrammed when PHY is under reset or when both RX PLL and TX PLL are under reset.

PLL M N Register

Table 5-8 • PLL_M_N

Bit Number	Name	Reset Value	Description
7	CNT250NS_MAX[8]		This bit is concatenated to the Reg06 register as an MSB to define the 250 ns base time.
[5:4]	M[1:0]		This register defines the TX PLL M values and CDR PLL M value settings of the PMA macro. For PCIe, it corresponds to the Gen1 settings. The same M value is applied to both RX and TX PLL.
[3:0]	N[4:0]		This register defines the TX PLL N values and CDR PLL N value settings of the PMA macro. For PCIe, it corresponds to the Gen1 settings. The same N value is applied to both RX and TX PLL.

Note: This register must only be reprogrammed when PHY is under reset or when both RX PLL and TX PLL are under reset.

CNT250NS_MAX Register

Table 5-9 • CNT250NS_MAX

Bit Number	Name	Reset Value	Description
[7:0]	CNT250NS_MAX		This register defines the base count of a 250 ns event based on the aTXClk clock. This counter is used by the CDR PLL in PCS driven mode and also by the PMA control logic for operations such as receiver detect and electrical idle 2 and 3 states. In the case of a non-integer value, the base count should be rounded up. Note that this register must be set correctly for all protocols.

Note: This register must only be reprogrammed when the PHY is under reset for proper operation. It impacts the PCS-driven CDR PLL mode as well as calibration and thus has no effect after calibration is completed (PMA is ready) or if the PHY CDR PLL is used in PMA driven mode.

RE_AMP_RATIO Register

Table 5-10 • RE_AMP_RATIO

Bit Number	Name	Reset Value	Description
[7:0]	RE_AMP_RATIO		This register defines the RX equalization amplitude ratio where the maximum value of 8'd128 corresponds to 100%. If RX equalization is not used, this register can be set to zero.

Note: This register can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES receiver are updated (at the end of calibration or when Reg128 is programmed.

RE_CUT_RATIO Register

Table 5-11 • RE_CUT_RATIO

Bit Number	Name	Reset Value	Description
[7:0]	RE_CUT_RATIO		This register defines the RX equalization cut frequency ratio, used in the computation of Rn[3:0] and Rd[3:0] equalization settings of the PMA macro. The encoding of this register is such that (Rn + Rd) = (RE_CUT_RATIO)/256*W_SETTING where W_SETTING is the result of RX equalization calibration.

Note: This register can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES receiver are updated (at the end of calibration or when Reg128 is programmed).

TX AMP RATIO Register

TX amplitude ratio

Table 5-12 • TX_AMP_RATIO

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden. Note that for PCIe, this register is used for Gen1 speed only.

Note: This register can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES transmitter are updated (at the end of calibration, on entry or exit of TX electrical idle I or when Reg128 is programmed).

X_PST_RATIO Register

Table 5-13 • TX_PST_RATIO

Bit Number	Name	Reset Value	Description
[7:0]	TX_PST_RATIO		This register defines the TX post-cursor ratio for the Gen1 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. A value of –3.5 dB corresponds to 8'd21 encoding.

Note: This register can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES transmitter are updated (at the end of calibration, on entry or exit of TX Electrical Idle I or when reg128 is programmed).

TX_PRE_RATIO Register

Table 5-14 • TX_PRE_RATIO

Bit Number	Name	Reset Value	Description
[7:0]	TX_PRE_RATIO		This register defines the TX pre-cursor ratio for the Gen1 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%.

Note: This register can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES transmitter are updated (at the end of calibration, on entry or exit of TX electrical idle I or when Reg128 is programmed).

ENDCALIB_MAX Register

Table 5-15 • ENDCALIB_MAX

Bit Number	Name	Reset Value	Description
[7:0]	ENDCALIB_MAX		This register defines the amount of time in microseconds required by the PMA to settle its electrical level after loading electrical idle 1 in the TX driver at the end of calibration. Note that all operations are automatically performed by the PMA control logic but that the SERDES transmitter can start driving data on the link immediately after end of calibration. By default (except if forbidden by protocol) a 10 µs delay between end of calibration and mission mode is set (but any value might work as well).

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready).

CALIB_STABILITY_COUNT Register

Table 5-16 • CALIB_STABILITY_COUNT

Bit Number	Name	Reset Value	Description
[7:5]	CALIB_SETTLE_MAX		This register defines the amount of time in microseconds required by the PMA to settle its electrical level after loading electrical idle 1 in the TX driver at the end of calibration. Note that all operation is automatically performed by the PMA control logic but that the SERDES transmitter can start driving data on the link immediately after end of calibration. By default, except if forbidden by protocol, a 10 µs delay between end of calibration and mission mode is set (but any value might work as well).
[4:0]	CALIB_STABLE_MAX		This register defines the number of clock cycles before which the impedance calibrator results (aZCompOp = 1, impedance calibrator result is greater than nominal; and aZCompOp = 0, impedance calibrator result is less than nominal) signal can be checked for stability after impedance calibration control values (aZCalib) modification.
			aZCompOp = 1, when Impedance calibrator result > nominal
			0, when Impedance calibrator result < nominal
			This is used for TX, RX, and RX equalization calibration.

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready).

POWER_DOWN Register

Table 5-17 • POWER_DOWN

Bit Number	Name	Reset Value	Description
[7:6]	RXIDLE_MSB		These bits are used as the MSBs of the activity detector logic, to specify that no activity has been detected during up to 61 aTXClkp clock cycles. These bits are the two MSBs; the rxidle_max[3:0] field of Reg02 represents the LSB part.
5	FORCE_SIGNAL		When this bit is set, the PHY disables the Idle detection circuitry and forces signal detection on the receiver. This bit is generally always set to disable (0) unless the activity detector logic must be bypassed. In that case, the PMA control logic will always report activity detected on the link (when set to 1). This bit can be used, for instance, if the activity detector of the SERDES PMA hard macro does not work for the selected protocol (as outside range of functionality).
4	FORCE_IDLE		When this bit is set, the PHY disables the Idle detection circuitry and forces electrical Idle detection on the receive side. By default, this bit is generally cleared and might be set only for very specific conditions or testing such as generating a fake loss of signal to the PCS or MAC layer, forcing a retraining of word aligner or any training state machine. As long as this bit is set, the activity detector logic of the PMA control logic reports that no signal is detected on the receive side. If CDR PLL PCS driven mode is selected, the CDR PLL will be directed in lock to the reference clock state, leading to potential wrong data received by the SERDES (because the CDR PLL is not locked to incoming data).

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready), except for bit 2, which can only be modified under reset condition.

Table 5-17 • POWER_DOWN (continued)

Bit Number	Name	Reset Value	Description
3	NO_FCMP		When set, this bit disables the frequency comparator logic of the PCS driven CDR PLL control logic. When not set, the frequency comparator logic is no longer part of the condition for going from fine-grain lock state to frequency acquisition.
2	PMFF_ALL		When set, this bit disables the function that waits for every active lane to have valid data to transmit before generating a global read enable. This bit is intended to be used in case of any issue with this function. When set, each lane might start transmitting data with one 500 MHz clock uncertainty (corresponding to 5 or 10 bits time, depending on the speed of the link). Even if violating the protocol requirement, the PCIe standard is strong enough to support this non-compliance.
1	CDR_ERR		When set, this register disables the error counter internally of the CDR PLL state machine, which switches back the CDR PLL to frequency mode acquisition when the number of errors counted is higher than the predefined error threshold. This bit is intended for disabling this function in the case of any issue with the PHY.
0	CDR_P1		This register defines the state of the CDR PLL when the PHY is in P1 low power mode. When set to zero, the CDR PLL is put in reset and low power, enabling maximum power savings. When the opposite component sends the TS1 ordered set to drive the link in recovery, only the PIPE_RXELECIDLE signal is deasserted at the PIPE interface and the PHY waits for the controller to change the pipe_powerdown[1:0] signal back to P0 before retraining the CDR PLL (~6 µs) and sending received data to the controller. When set to 1, the CDR PLL is kept alive in frequency lock mode in the P1 state, which enables a faster recovery time from the P1 state but which also consumes more power (all RX logic is kept alive and consumes power in the P1 state). Note that this register must not be set for applications which remove the reference clock in P1 mode (generally associated with the CLKREQ# signal, express card application, and more generally power sensitive application).

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready), except for bit 2, which can only be modified under reset condition.

RX_OFFSET_COUNT Register

Table 5-18 • RX_OFFSET_COUNT

Bit Number	Name	Reset Value	Description
[7:5]	RXOFF_SETTLE_MAX		This register defines the number of clock cycles before which the aRXDNullDat signal can be checked for stability after aRXDNull[3:0] modification. This is used also for aRXD, aRXT, and Schmitt trigger calibration. The value of this register expresses a number of (2*N+1) PCLK clock cycles.
[4:0]	RXOFF_STABLE_MAX		This register defines the number of clock cycles where the aRXDNullDat signal is checked for stability.

Note: This register can be reprogrammed when the PHY is under reset or when calibration has completed (PMA is ready).

PLL F PCLK RATIO 5GBPS Register (PCle Gen2 protocol only)

Table 5-19 • PLL_F_PCLK_RATIO_5GBPS

Bit Number	Name	Reset Value	Description
[7:6]	Reserved		
[5:4]	DIV_MODE1		This register defines the ratio between PCLK and aTXClk for the PCle Gen2 protocol.
[3:0]	F		This register defines the F setting for the TX PLL and CDR PLL of the PMA macro for the PCIe Gen2 protocol.

Note: This register must only be reprogrammed when PHY is under reset or when both RX PLL and TX PLL are under reset

PLL_M_N_5GBPS Register (PCle Gen2 protocol only)

Table 5-20 • PLL_M_N_5GBPS

Bit Number	Name	Reset Value	Description
7	CNT250NS_MAX_5G BPS[8]		This defines bit 7 and bit 6 of the cnt250ns_max counter mentioned in Reg18.
[6:5]	М		This register defines the TX PLL M values and CDR PLL M value settings of the PMA macro for the PCIe Gen2 protocol.
[4:0]	N		This register defines the TX PLL N values and CDR PLL N value settings of the PMA macro for the PCIe Gen2 protocol.

Note: This register must only be reprogrammed when PHY is under reset or when both RX PLL and TX PLL are under reset.

CNT250NS_MAX_5GBPS Register (PCIe Gen2 protocol only)

Table 5-21 • CNT250NS_MAX_5GBPS

Bit Number	Name	Reset Value	Description
[7:0]	CNT250NS_MAX_5GBPS[7:0]		This register defines the base count of a 250 ns event based on the aTXClk clock. This counter is used by the CDR PLL in PCS driven mode.

Note: This register must only be reprogrammed when PHY is under reset for proper operation. It impacts the PCS-driven CDR PLL mode as well as calibration and thus has no effect after calibration is completed (PMA is ready) or if the PHY CDR PLL is used in PMA driven mode.

Reg19 Register

Table 5-22 • Reg19

Bit Number	Name	Reset Value	Description
[7:0]	Reserved[7:0]		This register is reserved for future use.

Note: For Reg20 to Reg31 – These registers can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES transmitter are updated (on entry or exit of TX electrical idle I or when Reg128 is programmed or when any of the PIPE TXSwing, TXDeemp, or TXMargin signals is modified).

X_PST_RATIO_DEEMP0_FULL Register

Table 5-23 • TX_PST_RATIO_DEEMP0_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_PST_RATIO_DEEMP0_FULL		This register defines the TX post-cursor ratio for Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. A value of –3.5dB corresponds to 8'd21 encoding.

TX_PRE_RATIO_DEEMP0_FULL Register

Table 5-24 • TX_PRE_RATIO_DEEMP0_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_PRE_RATIO_DEEMP0_FULL		This register defines the TX pre-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%.

TX_PST_RATIO_DEEMP1_FULL Register

Table 5-25 • TX_PST_RATIO_DEEMP1_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_PST_RATIO_DEEMP1_FULL		This register defines the TX post-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. A value of –3.5dB corresponds to 8'd21 encoding.

TX_PRE_RATIO_DEEMP1_FULL Register

Table 5-26 • TX_PRE_RATIO_DEEMP1_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_PRE_RATIO_DEEMP1_FULL		This register defines the TX pre-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%.

TX_AMP_RATIO_MARGIN0_FULL Register

Table 5-27 • TX_AMP_RATIO_MARGIN0_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN0_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN1_FULL Register

Table 5-28 • TX_AMP_RATIO_MARGIN1_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN1_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN2_FULL Register

Table 5-29 • TX_AMP_RATIO_MARGIN2_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN2_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN3_FULL Register

Table 5-30 • TX_AMP_RATIO_MARGIN3_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN3_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN4_FULL Register

Table 5-31 • TX_AMP_RATIO_MARGIN4_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN4_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN5_FULL Register

Table 5-32 • TX_AMP_RATIO_MARGIN5_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN5_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN6_FULL Register

Table 5-33 • TX_AMP_RATIO_MARGIN6_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN6_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN7_FULL Register

Table 5-34 • TX_AMP_RATIO_MARGIN7_FULL

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN7_FULL		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

Note: For Reg32 to Reg35, these registers can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES transmitter are updated (on entry or exit of TX electrical idle I, when Reg128 is programmed, or when any of the PIPE TXSwing, TXDeemp, or TXMargin signals is modified).

RE_AMP_RATIO_DEEMP0 Register

Table 5-35 • RE_AMP_RATIO_DEEMP0

Bit Number	Name	Reset Value	Description
[7:0]	RE_AMP_RATIO_DEEMP0		This register defines the RX Equalization amplitude ratio where the maximum value is 8'd128, corresponding to 100%. If RX equalization is not used, this register can be set to zero.

RE_CUT_RATIO_DEEMP0 Register

Table 5-36 • RE_CUT_RATIO_DEEMP0

Bit Number	Name	Reset Value	Description
[7:0]	RE_CUT_RATIO_DEEMP0		This register defines the RX equalization cut frequency ratio, used in the computation of Rn[3:0] and Rd[3:0] equalization settings of the PMA macro. The encoding of this register is such that
			$(Rn + Rd) = (RE_CUT_RATIO)/256*W_SETTING,$ W_SETTING being the result of the RX equalization calibration.

RE_AMP_RATIO_DEEMP1 Register

Table 5-37 • RE_AMP_RATIO_DEEMP1

Bit Number	Name	Reset Value	Description
[7:0]	RE_AMP_RATIO_DEEMP1		This register defines the RX equalization amplitude ratio where the maximum value is 8'd128, corresponding to 100%. If RX equalization is not used, this register can be set to zero.

RE_CUT_RATIO_DEEMP1 Register

Table 5-38 • RE_CUT_RATIO_DEEMP1

Bit Number	Name	Reset Value	Description
[7:0]	RE_CUT_RATIO_DEEMP1		This register defines the RX equalization cut frequency ratio, used in the computation of Rn[3:0] and Rd[3:0] equalization settings of the PMA macro. The encoding of this register is such that
			(Rn+Rd) = (RE_CUT_RATIO)/256*W_SETTING, W_SETTING being the result of RX equalization calibration.

Note: For Reg36 to Reg47, these registers can be reprogrammed during normal operation but the effect will only appear when the parameters for the SERDES transmitter are updated (on entry or exit of TX electrical idle I, when Reg128 is programmed, or when any of the PIPE TXSwing, TXDeemp, or TXMargin signals is modified).

TX_PST_RATIO_DEEMP0_HALF Register

Table 5-39 • TX_PST_RATIO_DEEMP0_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_PST_RATIO_DEEMP0_HALF		This register defines the TX post-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. A value of –3.5dB corresponds to 8'd21 encoding.

TX_PRE_RATIO_DEEMP0_HALF Register

Table 5-40 • TX_PRE_RATIO_DEEMP0_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_PRE_RATIO_DEEMP0_HALF		This register defines the TX pre-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%.

TX_PST_RATIO_DEEMP1_HALF Register

Table 5-41 • TX_PST_RATIO_DEEMP1_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_PST_RATIO_DEEMP1_HALF		This register defines the TX post-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. A value of –3.5 dB corresponds to 8'd21 encoding.

TX_PRE_RATIO_DEEMP1_HALF Register

Table 5-42 • TX_PRE_RATIO_DEEMP1_HALF

Bit Number	Name	Reset Value	Description
]7:0]	TX_PRE_RATIO_DEEMP1_HALF		This register defines the TX pre-cursor ratio for the Gen2 speed used for selecting the de-emphasis of the switching bit versus non-switching bit. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%.

TX_AMP_RATIO_MARGIN0_HALF Register

Table 5-43 • TX_AMP_RATIO_MARGIN0_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN0_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN1_HALF Register

Table 5-44 • TX_AMP_RATIO_MARGIN1_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN1_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN2_HALF Register

Table 5-45 • TX_AMP_RATIO_MARGIN2_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN2_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN3_HALF Register

Table 5-46 • TX_AMP_RATIO_MARGIN3_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN3_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN4_HALF Register

Table 5-47 • TX_AMP_RATIO_MARGIN4_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN4_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN5_HALF Register

Table 5-48 • TX_AMP_RATIO_MARGIN5_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN5_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN6_HALF Register

Table 5-49 • TX_AMP_RATIO_MARGIN6_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN6_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

TX_AMP_RATIO_MARGIN7_HALF Register

Table 5-50 • TX_AMP_RATIO_MARGIN7_HALF

Bit Number	Name	Reset Value	Description
[7:0]	TX_AMP_RATIO_MARGIN7_HALF		This register implements the TX amplitude ratio used by the TX driver. A value of 128 corresponds to 100% (full voltage); a value of 0 corresponds to 0%. Values higher than 128 are forbidden.

PMA_STATUS Register

Table 5-51 • PMA_STATUS

Bit Number	Name	Reset Value	Description
7	PMA_RDY		This register defines whether the PMA has completed its internal calibration sequence after power-up and PHY reset deassertion.
[5:4]	ASCH_ERR[1:0]		This register defines whether Schmitt offset calibration has reached a min (bit0) / max (bit1) value. If any min/max value is detected, the calibration logic will apply the min/max value but the offset can be higher and side effect can be observed on the link.
[3:2]	ARXD_ERR[1:0]		This register defines whether RX offset D calibration has reached a min (bit0) / max (bit1) value. If any min/max value is detected, the calibration logic will apply the min/max value but the offset can be higher and side effect can be observed on the link.
[1:0]	ARXT_ERR[1:0]		This register defines whether RX offset T calibration has reached a min (bit0) / max (bit1) value. If any min/max value is detected, the calibration logic will apply the min/max value but the offset can be higher and side effect can be observed on the link.

TX_SWEEP_CENTER Register

Table 5-52 • TX_SWEEP_CENTER

Bit Number	Name	Reset Value	Description
7	TX_VAL		This register defines whether PMA has completed the TX impedance calibration signaling and that the result of TX impedance calibration (tx_sweep_center[6:0]) is valid.
[6:0]	TX_SWEEP_CENTER[6:0]		This register reports the result of TX impedance calibration.

RX_SWEEP_CENTER Register

Table 5-53 • RX_SWEEP_CENTER

Bit Number	Name	Reset Value	Description
7	RX_VAL		This register defines whether the PMA has completed the RX impedance calibration signaling and that the result of RX impedance calibration (rx_sweep_center[6:0]) is valid.
[6:0]	RX_SWEEP_CENTER[6:0]		This register reports the result of RX impedance calibration.

RE_SWEEP_CENTER Register

Table 5-54 • RE_SWEEP_CENTER

Bit Number	Name	Reset Value	Description
7	RE_VAL		This register defines whether the PMA has completed the RX equalization calibration signaling and that the result of RX equalization calibration (re_sweep_center[6:0]) is valid.
[6:0]	RE_SWEEP_CENTER[6:0]		This register reports the result of RX equalization calibration.

ATXDRR_7_0 Register

Table 5-55 • ATXDRR_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRR[7:0]		This register defines the LSB of the RX impedance and RX equalization computed value to send to the PMA after computation.

ATXDRR_14_8 Register

Table 5-56 • ATXDRR_14_8

Bit Number	Name	Reset Value	Description
7	RSVD		Reserved
[6:0]	ATXDRR[14:8]		This register defines the MSB of the RX impedance and RX equalization computed value to send to the PMA after computation.

ATXDRP_DYN_7_0 Register

Table 5-57 • ATXDRP_DYN_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRP_DYN[7:0]		This register defines bit 7 to bit 0 of the transmitted P parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRP_DYN_15_8 Register

Table 5-58 • ATXDRP_DYN_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRP_DYN[15:8]		This register defines bit 15 to bit 8 of the transmitted P parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRP_DYN_20_16 Register

Table 5-59 • ATXDRP_DYN_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRP_DYN[20:16]		This register defines bit 20 to bit 16 of the transmitted P parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRA_DYN_7_0 Register

Table 5-60 • ATXDRA_DYN_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRA_DYN[7:0]		This register defines bit 7 to bit 0 of the transmitted A parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRA_DYN_15_8 Register

Table 5-61 • ATXDRA_DYN_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRA_DYN[15:8]		This register defines bit 15 to bit 8 of the transmitted A parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRA_DYN_20_16 Register

Table 5-62 • ATXDRA_DYN_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRA_DYN[20:16]		This register defines bit 20 to bit 16 of the transmitted A parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRT_DYN_7_0 Register

Table 5-63 • ATXDRT_DYN_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRT_DYN[7:0]		This register defines bit 7 to bit 0 of the transmitted T parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRT_DYN_15_8 Register

Table 5-64 • ATXDRT_DYN_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRT_DYN[15:8]		This register defines bit 15 to bit 8 of the transmitted T parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRT_DYN_20_16 Register

Table 5-65 • ATXDRT_DYN_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRT_DYN[20:16]		This register defines bit 20 to bit 16 of the transmitted T parameter sent to the PHY for driving differential data on the transmit driver.

ATXDRP_EI1_7_0 Register

Table 5-66 • ATXDRP_EI1_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRP_EI1[7:0]		This register defines bit 7 to bit 0 of the transmitted P parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRP_EI1_15_8 Register

Table 5-67 • ATXDRP_EI1_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRP_EI1[15:8]		This register defines bit 15 to bit 8 of the transmitted P parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRP_EI1_20_16 Register

Table 5-68 • ATXDRP_EI1_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRP_EI1[20:16]		This register defines bit 20 to bit 16 of the transmitted P parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRA_EI1_7_0 Register

Table 5-69 • ATXDRA_EI1_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRA_EI1[7:0]		This register defines bit 7 to bit 0 of the transmitted A parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRA_EI1_15_8 Register

Table 5-70 • ATXDRA_EI1_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRA_EI1[15:8]		This register defines bit 15 to bit 8 of the transmitted A parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRA_EI1_20_16 Register

Table 5-71 • ATXDRA_EI1_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRA_EI1[20:16]		This register defines bit 20 to bit 16 of the transmitted A parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRT_EI1_7_0 Register

Table 5-72 • ATXDRT_EI1_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRT_EI1[7:0]		This register defines bit 7 to bit 0 of the Transmitted T parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRT_EI1_15_8 Register

Table 5-73 • ATXDRT_EI1_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRT_EI1[15:8]		This register defines bit 15 to bit 8 of the transmitted T parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRT_EI1_20_16 Register

Table 5-74 • ATXDRT_EI1_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRT_EI1[20:16]		This register defines bit 20 to bit 16 of the transmitted T parameter sent to the PHY for being in electrical idle I on the transmit driver.

ATXDRP_EI2_7_0 Register

Table 5-75 • ATXDRP_EI2_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRP_EI2[7:0]		This register defines bit 7 to bit 0 of the transmitted P parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRP_EI2_15_8 Register

Table 5-76 • ATXDRP_EI2_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRP_EI2[15:8]		This register defines bit 15 to bit 8 of the transmitted P parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRP_EI2_20_16 Register

Table 5-77 • ATXDRP_EI2_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRP_EI2[20:16]		This register defines bit 20 to bit 16 of the transmitted P parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRA_EI2_7_0 Register

Table 5-78 • ATXDRA_EI2_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRA_EI2[7:0]		This register defines bit 7 to bit 0 of the transmitted A parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRA_EI2_15_8 Register

Table 5-79 • ATXDRA_EI2_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRA_EI2[15:8]		This register defines bit 15 to bit 8 of the transmitted A parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRA_EI2_20_16 Register

Table 5-80 • ATXDRA_EI2_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRA_EI2[20:16]		This register defines bit 20 to bit 16 of the transmitted A parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRT_EI2_7_0 Register

Table 5-81 • ATXDRT_EI2_7_0

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRT_EI2[7:0]		This register defines bit 7 to bit 0 of the transmitted T parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRT_EI2_15_8 Register

Table 5-82 • ATXDRT_EI2_15_8

Bit Number	Name	Reset Value	Description
[7:0]	ATXDRT_EI2[15:8]		This register defines bit 15 to bit 8 of the transmitted T parameter sent to the PHY for being in electrical idle II on the transmit driver.

ATXDRT_EI2_20_16 Register

Table 5-83 • ATXDRT_EI2_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	ATXDRT_EI2[20:16]		This register defines bit 20 to bit 16 of the transmitted T parameter sent to the PHY for being in electrical idle II on the transmit driver.

OVERRIDE_CALIB Register

Table 5-84 • OVERRIDE_CALIB

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	OVER_TX		This register overrides TX driver settings for driving data on the differential line. When set to 1, the PMA control logic will use the content of registers (Reg85 to Reg93) for the TX parameters loaded into the SERDES.
3	OVER_RX		This register overrides RX driver settings for specifying RX settings. When set, the PMA control logic will use the content of Reg84, Reg83, and Reg82 for the RX parameters loaded into the SERDES.
2	OVER_RXD		This register overrides the RXD calibration result with the content of Reg97.
1	OVER_RXT		This register overrides the RXT calibration result with the content of Reg98.
0	OVER_SCH		This register overrides the Schmitt trigger calibration result with the content of Reg99.

Note: This register can be programmed any time but has functional impact on the SERDES behavior because it forces the SERDES to different calibration settings than those computed by calibration function.

FORCE_ATXDRR_7_0 Register

Table 5-85 • FORCE_ATXDRR_7_0

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRR[7:0]		This register defines bit 7 to bit 0 of the RX impedance and RX equalization fields used when the override RX settings register is set.

Note: This register can be programmed any time and has no functional impact on the SERDES.

FORCE_ATXDRR_15_8 Register

Table 5-86 • FORCE_ATXDRR_15_8

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRR15:8]		This register defines bit 15 to bit 8 of the RX impedance and RX
			equalization fields used when the override RX settings register is set.

Note: This register can be programmed any time and has no functional impact on the SERDES.

FORCE ATXDRR 20 16 Register

Table 5-87 • FORCE_ATXDRR_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	FORCE_ATXDRR[20:16]		This register defines bit 20 to bit 16 of the RX impedance and RX equalization fields used when the override RX settings register is set.

Note: This register can be programmed any time and has no functional impact on the SERDES.

FORCE_ATXDRP_7_0 Register

Table 5-88 • FORCE_ATXDRP_7_0

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRP[7:0]		This register defines bit 7 to bit 0 of the transmitted P parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE_ATXDRP_15_8 Register

Table 5-89 • FORCE_ATXDRP_15_8

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRP[15:8]		This register defines bit 15 to bit 8 of the transmitted P parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as reg81 bit 0 is not set.

FORCE_ATXDRP_20_16 register

Table 5-90 • FORCE_ATXDRP_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	FORCE_ATXDRP[20:16]		This register defines bit 20 to bit 16 of the transmitted P parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE_ATXDRA_7_0 Register

Table 5-91 • FORCE_ATXDRA_7_0

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRA[7:0]		This register defines bit 7 to bit 0 of the transmitted A parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE_ATXDRA_15_8 Register

Table 5-92 • FORCE_ATXDRA_15_8

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRA[15:8]		This register defines bit 15 to bit 8 of the transmitted A parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE ATXDRA 20 16 Register

Table 5-93 • FORCE_ATXDRA_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	FORCE_ATXDRA[20:16]		This register defines bit 20 to bit 16 of the transmitted A parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE ATXDRT 7 0 Register

Table 5-94 • FORCE_ATXDRT_7_0

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRT[7:0]		This register defines bit 7 to bit 0 of the transmitted T parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE_ATXDRT_15_8 Register

Table 5-95 • FORCE_ATXDRT_15_8

Bit Number	Name	Reset Value	Description
[7:0]	FORCE_ATXDRT[15:8]		This register defines bit 15 to bit 8 of the transmitted T parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

FORCE_ATXDRT_20_16 Register

Table 5-96 • FORCE_ATXDRT_20_16

Bit Number	Name	Reset Value	Description
[7:5]			Unused
[4:0]	FORCE_ATXDRT[20:16]		This register defines bit 20 to bit 16 of the transmitted T parameter sent to the PHY for driving differential data on the transmit driver.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 0 is not set.

RXD_OFFSET_CALIB_RESULT Register

Table 5-97 • RXD_OFFSET_CALIB_RESULT

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	ARXDDIR		This register reports the sign of voltage applied to aRXD settings for RX offset calibration.
[3:0]	ARXDNUL[3:0]		This register reports the voltage applied to aRXD settings for RX offset calibration.

RXT_OFFSET_CALIB_RESULT Register

Table 5-98 • RXT_OFFSET_CALIB_RESULT

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	ARXTDIR		This register reports the sign of voltage applied to aRXD settings for RX offset calibration.
[3:0]	ARXTNUL[3:0]		This register reports the voltage applied to aRXD settings for RX offset calibration.

SCHMITT_TRIG_CALIB_RESULT Register

Table 5-99 • SCHMITT_TRIG_CALIB_RESULT

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	ASCHDIR		This register reports the sign of voltage applied for Schmitt trigger offset calibration.
[3:0]	ASCHNUL[3:0]		This register reports the voltage applied for Schmitt trigger offset calibration.

FORCE_RXD_OFFSET_CALIB Register

Table 5-100 • FORCE_RXD_OFFSET_CALIB

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	F_ARXDDIR		This register forces the voltage to apply to aRXD settings for RX offset calibration.
[3:0]	F_ARXDNUL[3:0]		This register forces the voltage to apply to aRXD settings for RX offset calibration.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 2 is not set. When Reg81 bit 2 is set, the RXD offset calibration obtained during calibration is replaced by the content of this register.

FORCE RXT OFFSET CALIB Register

Table 5-101 • FORCE_RXT_OFFSET_CALIB

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	F_ARXTDIR		This register forces the voltage to apply to aRXD settings for RX offset calibration.
[3:0]	F_ARXTNUL[3:0]		This register forces the voltage to apply to aRXD settings for RX offset calibration.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 2 is not set.

FORCE SCHMITT TRIG CALIB Register

Table 5-102 • FORCE_SCHMITT_TRIG_CALIB

Bit Number	Name	Reset Value	Description
[7:5]			Unused
4	F_ASCHDIR		This register forces the voltage to apply for Schmitt trigger offset calibration.
[3:0]	F_ASCHNUL[3:0]		This register forces the voltage to apply for Schmitt trigger offset calibration.

Note: This register can be programmed any time and has no functional impact on the SERDES behavior as long as Reg81 bit 4 is not set.

PRBS_CTRL Register

Table 5-103 • PRBS_CTRL

Bit Number	Name	Reset Value	Description
7			Unused
6	PRBS_CHK		When set, this signal starts the PRBS pattern checker. It can be set at the same time as the PRBS generator while the PRBS checker logic waits for 256 clock cycles and CDR being in lock state to enable the PRBS pattern comparison (allowing a total latency of 256 cycles to loop back the transmitted data).
[5:4]	ACJTAG_REG[1:0]		This 2-bit register contains the ACJTAG register of the PHY, which is loaded when update of the PMA settings is required (through a Reg128 transient write operation or any other load request such as initial loading).
[3:2]	PRBS_TYP[1:0]		This register defines the type of PRBS pattern which is applied. PRBS7 when set to 00, PRBS11 when set to 01, PRBS23 when set to 10, PRBS31 when set to 11.
1	LPBK_EN		When set, the PMA is put in near-end loopback (serial loopback from TX back to RX). PRBS tests can be done using the near-end loopback of the PMA, some load board, or any far-end loopback implemented in the opposite component. When near-end loopback bit is set, the idle detector always reports valid data, enabling the PCS driven CDR PLL locking logic to lock on input data.
0	PRBS_GEN		When set, this signal starts the PRBS pattern transmission.

Note: This register can be programmed any time but has functional impact because it can configure the SERDES in loopback or generate the PRBS pattern.

PRBS_ERRCNT Register

Table 5-104 • PRBS_ERRCNT

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERRCNT[7:0]		This test reports the number of PRBS errors detected when the PRBS test is applied.
			This register is automatically cleared when the PRBS_EN register is cleared (requiring testing the value of this register when the test is running).
			The PRBS error counter saturates at 254 errors, the 255 count value corresponding to an error code where the CDR PLL is not locked to incoming data. When such an error code is detected, the PRBS test must wait for a longer time for the CDR PLL to synchronize on input data before enabling the PRBS checker or simply timeout, reporting that no data has been received at all.
			Note that the PRBS error counter logic also counts errors when the PRBS invariant (all zero value) is obtained, considering input data as error data.

PHY_RESET_OVERRIDE Register

Table 5-105 • PHY_RESET_OVERRIDE

Bit Number	Name	Reset Value	Description
7	RXHF_CLKDN		When set, this signal disables the RX PLL VCO settings by applying a static zero to the PMA aRXHfClkDnb signal.
6	TXHF_CLKDN		When set, this signal disables the TX PLL VCO by applying a static zero to the PMA aTXHfClkDnb signal.
5	RXPLL_RST		When set, this signal resets the RX PLL settings by applying a static zero to the PMA aCdrPllRstb signal.
4	TXPLL_RST		When set, this signal initializes the TX PLL settings by applying a static zero to the PMA aTXPIIRstb signal.
3	RXPLL_INIT		When set, this signal resets the RX PLL settings by applying a static zero to the PMA aCdrPllRstb signal.
2	TXPLL_INIT		When set, this signal initializes the TX PLL settings by applying a static one to the PMA aTXPIIDivInit signal.
1	RX_HIZ		When set, this signal forces the RX driver to hiZ, applying a static one to the PMA aForceRXHiZ signal.
0	TX_HIZ		When set, this signal forces the TX driver to hiZ, applying a static one to the PMA aForceTXHiZ signal.

Note: This register can be programmed any time but has functional impact on the SERDES because it can put the PLL under reset or place part of the SERDES in low power mode, bypassing the functional mode.

PHY_POWER_OVERRIDE Register

Table 5-106 • PHY_POWER_OVERRIDE

Bit Number	Name	Reset Value	Description
[7:1]			Unused
0	RX_PWRDN		This register, when set, forces the RX PMA logic to be in power-down mode.

Note: This register can be programmed any time but has functional impact on the SERDES because it can power down the receiver part of the SERDES, bypassing the functional mode.

CUSTOM_PATTERN_7_0 Register

Table 5-107 • CUSTOM_PATTERN_7_0

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[7:0]		This register enables bit 7 to bit 0 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCIe compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_15_8 Register

Table 5-108 • CUSTOM_PATTERN_15_8

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[15:8]		This register enables bit 15 to bit 8 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line, but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCle compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_23_16 Register

Table 5-109 • CUSTOM_PATTERN_23_16

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[23:16]		This register enables bit 23 to bit 16 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCIe compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_31_24 Register

Table 5-110 • CUSTOM_PATTERN_31_24

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[31:24]		This register enables bit 31 to bit 24 to program a custom pattern instead of the implemented PRBS generator/checker. PRBS mode must still be selected to transmit this custom pattern on the transmit line, but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCIe compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected

CUSTOM_PATTERN_39_32 Register

Table 5-111 • CUSTOM_PATTERN_39_32

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[39:32]		This register enables bit 39 to bit 32 to program a custom pattern instead of the implemented PRBS generator/checker. PRBS mode must still be selected to transmit this custom pattern on the transmit line, but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCle compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM PATTERN 47 40 Register

Table 5-112 • CUSTOM_PATTERN_47_40

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[47:40]		This register enables bit 47 to bit 40 to program a custom pattern instead of the implemented PRBS generator/checker. PRBS mode must still be selected to transmit this custom pattern on the transmit line, but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCle compliance pattern generation (for purpose of eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_55_48 Register

Table 5-113 • CUSTOM_PATTERN_55_48

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[55:48]		This register enables bit 55 to bit 48 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCle compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_63_56 Register

Table 5-114 • CUSTOM_PATTERN_63_56

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[63:56]		This register enables bit 63 to bit 56 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCle compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_71_64 Register

Table 5-115 • CUSTOM_PATTERN_71_64

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[71:64]		This register enables bit 71 to bit 64 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCIe compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_79_72 Register

Table 5-116 • CUSTOM_PATTERN_79_72

Bit Number	Name	Reset Value	Description
[7:0]	RX_PWRDN[79:72]		This register enables bit 79 to bit 72 to program a custom pattern instead of the implemented PRBS generator/checker. The PRBS mode must still be selected to transmit this custom pattern on the transmit line but this mode enables the generation of any repeated sequence of data. It can be used, for instance, for single lane PCle compliance pattern generation (for the purpose of an eye diagram compliance check) or can even be looped back to the receiver to check if any error is detected on the line. In the latter case, the PMA hard macro function is used to perform a word alignment function.

Note: This register can be programmed any time but has no functional impact as long as the custom pattern generation is not enabled and selected.

CUSTOM_PATTERN_CTRL Register

Table 5-117 • CUSTOM_PATTERN_CTRL

Bit Number	Name	Reset Value	Description
7	RSVD		
6	CUST_AUTO		When this register is set, the word alignment is performed automatically by a state machine that checks whether the received pattern is word-aligned with the transmitted pattern and automatically use the PMA CDR PLL skip bit function to find the alignment. Once the word alignment is detected, the custom pattern checker is now word-aligned and the custom pattern checker can be enabled for detecting and counting any error over time.
5	CUST_SKIP		This register is used in RX word alignment manual mode. The custom pattern requires word alignment in order to be checked by the receiver (as opposed to a PRBS pattern, which does not require this word alignment function). In manual mode, read the CUST_SYNC register in order to check whether the word is aligned. If not in manual mode, a one bit skip is to the CDR PLL must be done by writing one then zero in this register (and repeat this sequence until the receiver is aligned).
4	CUST_CHK		This register enables the error counter. When clear, it also resets the error counter. Thus the error counter must be checked before clearing this register.
[3:1]	CUST_TYP		This register defines whether the custom pattern generated on the link is generated by the custom pattern register or by one of the hard-coded patterns: 000: Custom pattern register
			100: All-zero pattern (000000)
			101: All-one pattern (111111)
			110: Alternated pattern (101010)
			111: Dual alternated pattern (11001100)
0	CUST_SEL		When set, this signal replaces the PRBS data transmitted on the link by the custom pattern. Note that the PRBS_SEL register must also be set for transmitting the custom pattern on the link.

Note: This register can be programmed any time but has functional impact on the SERDES because it can directly activate some part of the SERDES (aRXSkipBit), changing the current bitstream reception (thus creating alignment errors).

CUSTOM_PATTERN_STATUS Register

Table 5-118 • CUSTOM_PATTERN_STATUS

Bit Number	Name	Reset Value	Description
[7:5]	CUST_STATE		This register reports the current state of the custom pattern word alignment state machine. It can be useful for debug purposes (Refer verilog code).
4	CUST_SYNC		This register reports that the custom pattern is word-aligned.
[3:0]	CUST_ERROR[3:0]		When the custom pattern checker is enabled, this status register reports the number of errors detected by the logic when the custom word aligner is in synchronization (it starts counting only after a first matching pattern has been detected. The word alignment status can be checked through (cust_state==3'b101) or CUST_SYNC register asserted.

PCS_LOOPBBACK_CTRL Register

Table 5-119 • PCS_LOOPBBACK_CTRL

Bit Number	Name	Reset Value	Description
[7:4]			Unused
3	MESO_SYNC		This register is read-only and reports whether the mesochronous clock alignment state machine has completed its process, having thus aligned the CDR receive clock to the transmit clock.
2	MESO_LPBK		When set, this register enables mesochronous loopback mode, which forces PMA received data to be re-transmitted on the PMA TX interface. This mode requires that no PPM exists between RX data and TX data (thus that both sides of the link use the same reference clock) and also performs alignment of the CDR clock to the transmit clock using the PMA CDR PLL skip bit functionality. This alignment is automatically performed by a state machine when this loopback register is set.
1	PAR_LPBK		When set, this register enables parallel loopback mode, which forces the transmitted PIPE 10-bit encoded data to be looped back to the receiver PIPE RX interface.
0	PLESIO_LPBK		When set, this register enables plesiochronous loopback mode, which forces the PCS to loop back data from RX back to TX after the PCIe elastic buffer function. It is equivalent to PCIe slave loopback except that it is forced by a register instead of controlled by the PCIe MAC layer.

GEN1_TX_PLL_CCP Register

Table 5-120 • GEN1_TX_PLL_CCP

Bit Number	Name	Reset Value	Description
[7:4]			Reserved
[2:0]	ATXICP_RATE0[2:0]		This register defines the TX PLL charge pump current when the PMA is running in PCIe Gen1 speed or in any other protocol. This register is R/W in order to enable changing the default value by register programming, which is expected to be performed before reset deassertion.

Note: This register can be programmed when the PHY is under reset.

GEN1_RX_PLL_CCP Register

Table 5-121 • GEN1_RX_PLL_CCP

Bit Number	Name	Reset Value	Description
7			Reserved
[6:4]	ARXCDRICP_RATE0[2:0]		This register defines the RX PLL charge pump current when the PMA is frequency locked and running in PCIe Gen1 speed or in any other protocol. This register is R/W in order to enable changing the default value by register programming, which is expected to be performed before reset deassertion.
3			Reserved
[2:0]	ARXICP_RATE0[2:0]		This register defines the RX PLL charge pump current when the PMA is CDR locked and running in PCIe Gen1 speed or in any other protocol. This register is R/W in order to enable changing the default value by register programming, which is expected to be performed before reset deassertion.

Note: This register can be programmed when the PHY is under reset.

GEN2_TX_PLL_CCP Register (PCle Gen2 protocol only)

Table 5-122 • GEN2_TX_PLL_CCP

Bit Number	Name	Reset Value	Description
7			Reserved
[6:4]	ATXICP_RATE1[2:0]		This register defines the TX PLL charge pump current when the PMA is running in PCIe Gen2 speed. This register is R/W in order to enable changing the default value by register programming, which is expected to be performed before reset deassertion.

Note: This register can be programmed when the PHY is under reset and is implemented only if PCIe Gen2 is supported by the PHY.

GEN2_RX_PLL_CCP Register (PCle Gen2 protocol only)

Table 5-123 • GEN2_RX_PLL_CCP

Bit Number	Name	Reset Value	Description
7			Reserved
[6:4]	ARXCDRICP_RATE1[2:0]:		This register defines the RX PLL charge pump current when the PMA is frequency locked and running in PCIe Gen2 speed. This register is R/W in order to enable changing the default value by register programming, which is expected to be performed before reset deassertion.
3			Reserved
[2:0]	ARXICP_RATE1[2:0]		This register defines the RX PLL charge pump current when the PMA is CDR locked and running in PCIe Gen2 speed. This register is R/W in order to enable changing the default value by register programming, which is expected to be performed before reset deassertion

Note: This register can be programmed when the PHY is under reset and is implemented only if PCIe Gen2 is supported by the PHY.

CDR PLL MANUAL CR Register

Table 5-124 • CDR_PLL_MANUAL_CR

Bit Number	Name	Reset Value	Description
[7:3]			Reserved
2	FINE_GRAIN		In PCS-driven mode when this register is set, it enables forcing the CDR PLL state machine in fine grain state. In this state, the CDR PLL locks on receive data, making RX data and RX CLOCKP valid on the PMA interface.
1	COARSE_GRAIN		When set, this register enables forcing the CDR PLL state machine when used in PCS driven mode (see Reg00 bit 3 set to 0) in coarse grain state. In this state, the CDR PLL performs a coarse grain lock on receive data, enabling adjustment of its clock up to 5000 PPM.
0	FREQ_LOCK		When set, this register enables forcing the CDR PLL state machine when used in PCS-driven mode (see Reg00 bit 3 set to 0) in frequency lock state. In this state, the CDR PLL does not lock on receive data but on the reference clock.

UPDATE_SETTINGS Register

Table 5-125 • UPDATE_SETTINGS

Bit Number	Name	Reset Value	Description
[7:0]	UPDATE_SETTINGS[7:0]		This register is a transient register (read always reports 0) where writing a 1 in bit 0 will trigger a new computation of PMA settings based on the value written in register space registers. Note that for PCle, Microsemi recommends not using this command register when the link is not transitioning to low power state or changing rate.

Note: This register can be programmed any time, except during calibration, and triggers the RX/TX shift load logic to load new programmed settings into the SERDES. Thus, it must be written only after a coherent set of register programming has been programmed.

PRBS ERR CYC_FIRST_7_0 Register

PRBS first error cycle counter register

Table 5-126 • PRBS_ERR_CYC_FIRST_7_0

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_FIRST[7:0]		PRBS last error cycle counter register bits [7:0]. This read-only register reports on which clock cycle the error counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS_ERR_CYC_FIRST_15_8 Register

Table 5-127 • PRBS_ERR_CYC_FIRST_15_8

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_FIRST[15:8]		PRBS last error cycle counter register bits [15:8]. This read-only register reports on which clock cycle the error
			counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR_CYC_FIRST_23_16 Register

Table 5-128 • PRBS_ERR_CYC_FIRST_23_16

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_FIRST[23:16]		PRBS last error cycle counter register bits [23:16].
			This read-only register reports on which clock cycle the error counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 31 24 Register

Table 5-129 • PRBS_ERR_CYC_FIRST_31_24

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_FIRST[31:24]		PRBS last error cycle counter register bits [31:24]. This read-only register reports on which clock cycle the error counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 39 32 Register

Table 5-130 • PRBS_ERR_CYC_FIRST_39_32

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_FIRST[39:32]		PRBS last error cycle counter register bits [39:32]. This read-only register reports on which clock cycle the error counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS_ERR_CYC_FIRST_47_40 Register

Table 5-131 • PRBS_ERR_CYC_FIRST_47_40

Bit Number	Name	Reset Value	Description
[7:2]			Reserved
[1:0]	PRBS_ERR_CYC_FIRST[47:40]		PRBS last error cycle counter register bits [47:40]. This read-only register reports on which clock cycle the error counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 49 48 Register

Table 5-132 • PRBS_ERR_CYC_FIRST_49_48

Bit Number	Name	Reset Value	Description
[7:2]			Reserved
[1:0]	PRBS_ERR_CYC_FIRST[49:48]		PRBS last error cycle counter register bits [49:48]. This read-only register reports on which clock cycle the error counter has first been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The first error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 7 0 Register

Table 5-133 • PRBS_ERR_CYC_FIRST_7_0

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_LAST[7:0]		PRBS last error cycle counter register bits [7:0]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS_ERR_CYC_FIRST_15_8 Register

Table 5-134 • PRBS_ERR_CYC_FIRST_15_8

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_LAST[15:8]		PRBS last error cycle counter register bits [15:8]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS_ERR_CYC_FIRST_23_16 Register

Table 5-135 • PRBS_ERR_CYC_FIRST_23_16

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_LAST[23:16]		PRBS last error cycle counter register bits [23:16]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 31 24 Register

Table 5-136 • PRBS_ERR_CYC_FIRST_31_24

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_LAST[31:24]		PRBS last error cycle counter register bits [31:24]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS_ERR_CYC_FIRST_39_32 Register

Table 5-137 • PRBS_ERR_CYC_FIRST_39_32

Bit Number	Name	Reset Value	Description
[7:0]	PRBS_ERR_CYC_LAST[39:32]		PRBS last error cycle counter register bits [39:32]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 47 40 Register

Table 5-138 • PRBS_ERR_CYC_FIRST_47_40

Bit Number	Name	Reset Value	Description
7:0	PRBS_ERR_CYC_LAST[47:40]		PRBS last error cycle counter register bits [47:40]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

PRBS ERR CYC FIRST 49 48 Register

Table 5-139 • PRBS_ERR_CYC_FIRST_49_48

Bit Number	Name	Reset Value	Description
7:2			Reserved
1:0	PRBS_ERR_CYC_LAST[49:48]		PRBS last error cycle counter register bits [49:48]. This read-only register reports on which clock cycle the error counter has last been incremented after the PRBS error counter is enabled. It is a 50-bit counter, enabling performance of bit error rate testing (BERT).

Note: The last error cycle counter information complementing the total number of errors detected might give information about bursts of errors or distributed errors, but statistics might also be required. The test can be rerun several times with different test periods.

SERDESIF - I/O Signal Interface

The SmartFusion2 SoC FPGA SERDES block interfaces with differential I/O pads, the PCIe system, and the FPGA. The following section describes these signals

Table 5-140 • SERDESIF Block I/O - PAD Interface

Port Name	Туре	Connecte d to	Description
PCIE_x_RXDP0	Input	I/O Pads	Receive data. SERDES differential positive input: each SERDESIF
PCIE_x_RXDP1			consists of 4 RX+ signals. Here $x = 0$ for SERDESIF_0 and $x = 1$ for SERDESIF 1. If unused, can be left floating.
PCIE_x_RXDP2			
PCIE_x_RXDP3			
PCIE_x_RXDN0	Input	I/O Pads	Receive data. SERDES differential negative input
PCIE_x_RXDN1			Each SERDESIF consists of 4 RX- signals. Here x = 0 for SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left
PCIE_x_RXDN2			floating.
PCIE_x_RXDN3			
PCIE_x_TXDP0	Output	I/O Pads	Transmit data. SERDES differential positive output
PCIE_x_TXDP1			Each SERDESIF consists of 4 TX+ signals. Here x = 0 for SERDESIF 0 and x = 1 for SERDESIF 1. If unused, can be left
PCIE_x_TXDP2			floating.
PCIE_x_TXDP3			
PCIE_x_TXDN0	Output	I/O Pads	Transmit data. SERDES differential negative output
PCIE_x_TXDN1			Each SERDESIF consists of 4 TX- Signals. Here x = 0 for SERDESIF 0 and x = 1 for SERDESIF 1. If unused, can be left
PCIE_x_TXDN2			floating.
PCIE_x_TXDN3			
PCIE_x_REXTL	Reference	I/O Pads	External reference resistor connection to calibrate TX/RX termination value. Each SERDESIF consists of 2 REXT signals—one for lanes 0 and 1 and another for lanes 2 and 3. Here x = 0 for
PCIE_x_REXTR			SERDESIF_0 and x = 1 for SERDESIF_1. If unused, can be left floating.
PCIE_x_REFCLK0P	Input	I/O Pads	Reference clock differential positive. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be used for MSIOD fabric, if SERDESIF is not
PCIE_x_REFCLK1P			activated. Here $x = 0$ for SERDESIF_0 and $x = 1$ for SERDESIF_1. If unused, can be left floating.
PCIE_x_REFCLK0N	Input	I/O Pads	Reference clock differential negative. Each SERDESIF consists of two signals (REFCLK0_P, REFCLK1_P). These are dual purpose I/Os; these lines can be used for MSIOD fabric, if SERDESIF is not
PCIE_x_REFCLK1N			activated. Here $x = 0$ for SERDESIF_0 and $x = 1$ for SERDESIF_1. If unused, can be left floating.

Table 5-141 • SmartFusion2 SoC FPGA SERDES Block – External PCS Signal Interface

Port	Туре	Description
EPCS_0_RESET_N EPCS_1_RESET_N EPCS_2_RESET_N EPCS_3_RESET_N	Input	PHY reset. When the power-up signal from program control is asserted, this signal is used to reset the complete SERDES macro as well as the associated PMA control logic.
EPCS_0_READY EPCS_1_READY EPCS_2_READY EPCS_3_READY	Output	PHY ready: This signal is asserted when the PHY has completed the calibration sequence for each specific lane. This signal can be used to release the reset for the external PCS and controller, start transmitting data to the PMA, or any other purpose.
EPCS_0_PWRDN EPCS_1_PWRDN EPCS_2_PWRDN EPCS_3_PWRDN	Input	PHY power-down: This signal is used to put the PMA in power-down state where RX CDR PLL is bypassed and other low power features are applied to the PMA. When exiting power-down, no calibration is required and the link can be operational much faster than when using the EPCS_X_TX_OOB or EPCS_X_RESET_N signals.
EPCS_0_TX_OOB EPCS_1_TX_OOB EPCS_2_TX_OOB EPCS_3_TX_OOB	Input	PHY transmit out-of-band (OOB): This signal is used to load electrical idle III in the TX driver of the PMA macro. It can be used for serial advanced technology attachment (SATA) as part of the sequencing for transmitting very short OOB signaling.
EPCS_0_TX_VAL EPCS_1_TX_VAL EPCS_2_TX_VAL EPCS_3_TX_VAL	Input	PHY transmit valid: This signal is used to transmit valid data. If deasserted, the PMA macro is put in electrical idle 1. It can be used for protocols requiring electrical idle (SATA) and must also be deasserted as long as EPCS_X_READY is not asserted. This signal is must be generated one clock cycle earlier than corresponding EPCS_TXDATA signals.
EPCS_0_TX_DATA[19:0] EPCS_1_TX_DATA[19:0] EPCS_2_TX_DATA[19:0] EPCS_3_TX_DATA[19:0]	Input	PHY transmit data: This signal is used to transmit data. This signal is always 20 bits per lane, but the PMA macro will use only the number of bits defined by the aTXN[4:0] feature of the PMA macro.
EPCS_0_TX_CLK EPCS_1_TX_CLK EPCS_2_TX_CLK EPCS_3_TX_CLK	Output	PHY transmit clock: This signal is the aTXClk signal generated by the PMA macro and must be used by the external PCS logic to provide data on EPCS_X_TX_DATA.
EPCS_0_TX_RESET_N EPCS_1_TX_RESET_N EPCS_2_TX_RESET_N EPCS_3_TX_RESET_N	Output	PHY clean active low reset on the TX clock. This signal is a clean version of the EPCS_X_RESET_N signal, which has a clean deassertion timing versus EPCS_TXCLK.
EPCS_0_RX_CLK EPCS_1_RX_CLK EPCS_2_RX_CLK EPCS_3_RX_CLK	Output	PHY receive clock: This signal is the aTXClk signal generated by the PMA macro and must be used by the external PCS logic to provide data on EPCS_X_TX_DATA.
EPCS_0_RX_RESET_N EPCS_1_RX_RESET_N EPCS_2_RX_RESET_N EPCS_3_RX_RESET_N	Output	PHY clean active low reset on EPCS_X_RX_CLK. This signal is a clean version of the EPCS_X_RESET_N signal, which has a clean deassertion timing versus EPCS_X_RX_CLK.

Note: X = 0, 1, 2, 3

Table 5-141 • SmartFusion2 SoC FPGA SERDES Block – External PCS Signal Interface (continued)

Port	Type	Description		
EPCS_0_RX_VAL	Output	5		
EPCS_1_RX_VAL		to the two conditions completed by the PMA control logic:		
EPCS_2_RX_VAL		Receiver detects incoming data (not in electrical idle)		
EPCS_3_RX_VAL		CDR PLL is locked to the input bitstream in fine grain state		
EPCS_0_RX_IDLE	Output	PHY Receive Idle: This signal is used to signal an electrical idle condition		
EPCS_1_RX_IDLE		detected by the PMA control logic. Note that this signal is generated on		
EPCS_2_RX_IDLE		EPCS_X_TX_CLK of the selected lane.		
EPCS_3_RX_IDLE				
EPCS_3_RXDATA[19:0]	Output	PHY receive data: This signal is always 20 bits per lane and the external PCS		
EPCS_1_RXDATA[19:0]		can use any number of these bits for its application based on the aRXN[4:0] feature of the PMA macro (see register space for more details).		
EPCS_2_RXDATA[19:0]				
EPCS_3_RXDATA[19:0]				

Note: X = 0, 1, 2, 3

Glossary

CDR

Clock data recovery

PCS

Physical coding sublayer

PHY

Physical interface

PIPE

PHY interface for the PCI Express architecture v2.00 specification

PMA

Physical media attachment

PRBS

Pseudo-random bit sequence

SERDES

Serializer/deserializer

SERDESIF

Serializer/deserializer interface

List of Changes

The following table lists critical changes that were made in each revision.

Date	Changes	Page
50200330-1/11.12	Updated Table 5-121 and Table 5-123 (SAR 42156).	223 and 224
	Updated Table 5-25 (SAR 42155)	198

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month and year of publication.

6 - DDR Controller

The DDR controller receives requests from the AXI transaction controller, performs the address mapping from system addresses to DRAM addresses (rank, bank, row, and column) and prioritizes requests to minimize the latency of reads (especially high priority reads) and maximize page hits. It also ensures that DRAM is properly initialized, all requests are made to DRAM legally (accounting for associated DRAM constraints), refreshes are inserted as required, and the DRAM enters and exits various power-saving modes appropriately.

Address Mapping

Read and write requests are provided to the controller with a system address. The controller is responsible for mapping this system address with rank, bank, row, and column address to DRAM.

The address mapper maps linear request addresses to DRAM addresses by selecting the source bit that maps to each and every applicable DRAM address bit. The address map interface registers can be configured to map source address bits to DRAM address. While configuring the registers, ensure that no two DDR SDRAM address bits are determined by the same source address bit. Each DRAM address bit has an associated register vector to determine its source. The source address bit number is determined by adding the internal base of a given register to the programmed value for that register, as described in EQ 1.

[Internal base] + [register value] = [source address bit number]

EQ 1

For example, reading the description for REG_DDRC_ADDRMAP_COL_B3, the internal base is 3; so when the full data bus is in use, the column bit 4 is determined by 3 + [register value].

If this register is programmed to 2, then the source address bit is: 3 + 2 = 5.

Notes:

- All of the column bits shift up 1 bit when only half of the data bus is in use. In this case, it is required to look at REG_DDRC_ADDRMAP_COL_B2 instead to determine the value of column address bit 4.
- 2. Some registers map multiple source address bits (REG_DDRC_ADDRMAP_ROW_B0_11).

The address mapping registers are listed below:

- DDRC_ADDR_MAP_BANK_CR
- 2. DDRC_ADDR_MAP_COL_1_CR
- DDRC_ADDR_MAP_COL_2_CR
- 4. DDRC_ADDR_MAP_COL_3_CR
- DDRC_ADDR_MAP_ROW_1_CR
- 6. DDRC ADDR MAP ROW 2 CR

7 - MSS DDR Subsystem

Introduction

The microcontroller subsystem (MSS) double data rate (DDR) subsystem (MDDR) is an ASIC block available as a part of the SmartFusion2 SoC FPGA MSS for interfacing of DDR2/DDR3/LPDDR1 memories to the SmartFusion2 SoC FPGA family of devices. The MDDR subsystem can be used to access DDR memories for high-speed data transfers and code execution. The MDDR subsystem includes the DDR memory controller and DDR PHY along with arbitration logic to support two different masters. The DDR memories interfaced to the MDDR subsystem can be accessed by the MSS masters and master logic implemented in the FPGA fabric.

The MSS masters communicate with the MDDR subsystem through an MSS DDR bridge present in the MSS. The MSS DDR Bridge provides an efficient access path between the MSS masters and MDDR subsystem. Refer to the "DDR Bridge" section on page 395 for more information on the features provided by the MSS DDR Bridge. The MDDR subsystem can also be connected to various bus masters resident in the FPGA fabric using AXI or AHB interfaces. The following sections explain the features, functionality, and use models of the MDDR subsystem.

Features

- · Integrated on-chip DDR memory controller and PHY
- · Configurable to support LPDDR1, DDR2, and DDR3 memory devices
- Up to 667 Mbps (333 MHz DDR) performance
- · Supports memory densities up to 4 GB
- Supports 8-/16-/32-bit DDR standard dynamic random access memory (SDRAM) data bus width modes
- Supports a maximum of 8 memory banks
- Supports a single rank of memories
- · SECDED enable/disable feature
- Supports DRAM burst lengths of 4, 8, or 16, depending on configured bus-width mode and DDR type
- Support for sequential and interleaved burst ordering
- · For DDR3 configurations, programmable internal control for ZQ short calibration cycles
- Supports dynamic scheduling to optimize bandwidth and latency
- Support for self refresh entry and exit on software command
- Support for dynamically changing clock frequency while in self- refresh
- Support for deep power-down entry and exit on software command
- · Support for per-command auto-precharge
- Flexible address mapper logic to allow application specific mapping of row, column, bank, and rank bits
- Configurable support for 1T or 2T timing on the DDR SDRAM control signals
- Supports autonomous DRAM power-down entry and exit caused by lack of transaction arrival for programmable time
- Advanced power-saving design includes no unnecessary toggling of command, address, and data pins

MDDR Subsystem Overview

The MDDR subsystem is a part of the SmartFusion2 SoC FPGA MSS that interfaces with high speed DDR memories. The system level block diagram of the MDDR subsystem is shown in Figure 7-1. The MDDR subsystem includes blocks such as the DDR fabric interface controller (DDR_FIC), AXI transaction handler, DDR memory controller and DDR PHY. The MDDR has a special mode called soft memory controller fabric interface controller (SMC_FIC, "Soft Memory Controller Fabric Interface Controller" section on page 407), in which the MSS masters can access any external memory through a soft memory controller in the FPGA fabric.

Figure 7-1 • System Level MDDR Block Diagram

The DDR_FIC facilitates communication between the FPGA fabric and MDDR subsystem. The DDR_FIC can be configured to provide either one 64-bit AXI slave interface or two 32-bit AHB-Lite (AHBL) slave interfaces to the FPGA fabric. An AXI master or two AHBL masters in the FPGA fabric can access the DDR memories connected to the MDDR using DDR_FIC.

The AXI transaction controller receives read and write requests from AXI masters (MSS DDR bridge and DDR_FIC) and schedules for the DDR controller by translating the requests into DDR controller commands.

The DDR controller receives the commands from the AXI transaction controller which are initiated by two AXI masters. These commands are queued internally and scheduled for access to the DDR SDRAM while satisfying DDR SDRAM constraints, transaction priorities, and dependencies between the transactions. The DDR controller in turn issues commands to the PHY module, which launches and captures data to and from the DDR SDRAM.

The DDR PHY converts the DDR controller instructions into the actual timing relationships and DDR signaling necessary to communicate with the memory device.

The read/write transactions to the DDR memories connected to the MDDR subsystem can be done through four different paths:

- 1. The Cortex-M3 processor can access the DDR memories connected to the MDDR subsystem through the MSS DDR Bridge for data and code execution.
- 2. High performance direct memory access (HPDMA) can perform the high speed data transactions between the MDDR memories and a memory region within the MSS via the MSS DDR bridge.
- 3. The connection between the MSS DDR bridge and AHB bus matrix facilitates the MSS masters in accessing DDR memory.
- 4. The MDDR subsystem can be connected to AXI or AHBL masters in the FPGA fabric through the DDR FIC.

If the MDDR subsystem is configured in SMC_FIC mode to connect a soft memory controller in the FPGA fabric to the MSS DDR bridge, then the connection between MDDR and the MSS DDR bridge will not exist. The MSS masters can access the external memory connected to the soft memory controller through the MSS DDR Bridge. For more details about SMC_FIC mode, refer to the "Soft Memory Controller Fabric Interface Controller" section on page 407.

Memory Configurations

The SmartFusion2 SoC FPGA MDDR subsystem supports a wide range of common memory types, configurations, and densities, as shown in Table 7-1 and Table 7-2 on page 240. If SECDED mode is enabled, it is required to connect a memory module to [36:34] data lines of MDDR according to the width x32, x16, or x8.

Table 7-1 • Supported Memory Configurations for M2S050, M2S080, M2S125

		Width Memory Type			
Memory Density Width		(in SECDED mode)	LPDDR1	DDR2	DDR3
128M	x32	x36	✓	✓	✓
	x16	x18	✓	✓	✓
	x8	x9	✓	✓	✓
256M	x32	x36	✓	✓	✓
	x16	x18	✓	✓	✓
	x8	x9	✓	✓	✓
512M	x32	x36	✓	✓	✓
	x16	x18	✓	✓	✓
	x8	x9	✓	✓	✓
1G	x32	x36	✓	✓	✓
	x16	x18	√	✓	√
	x8	x9	✓	✓	✓
2G	x32	x36	_	_	_
	x16	x18	✓	✓	✓
	x8	x9	✓	✓	✓

Note: The unsupported memories shown can be connected to MDDR and accessed by leaving the additional address lines of DDR SDRAM.

Table 7-2 • Supported Memory Configurations for M2S025, M2S010, M2S005

		Width		Memory Type		
Memory Density	Width	(in SECDED mode)	LPDDR1	DDR2	DDR3	
128M	x16	x18	✓	✓	√	
	x8	x9	✓	✓	✓	
256M	x16	x18	✓	✓	✓	
	x8	х9	✓	✓	✓	
512M	x16	x18	✓	✓	✓	
_	x8	х9	✓	✓	✓	
1G	x16	x18	✓	✓	✓	
	x8	x9	✓	✓	✓	
2G	x16	x18	✓	✓	✓	
	x8	х9	✓	✓	✓	
4G	x16	x18	_	_	_	
	x8	х9	✓	✓	✓	

Note: The unsupported memories shown can be connected to MDDR and accessed by leaving the additional address lines of DDR SDRAM.

Performance

Table 7-3 • DDR speeds

	Data R	Data Rate (Mbps)		
Memory Type	Minimum	Maximum		
LPDDR1	266 Mbps (133 MHz)	400 Mbps (200 MHz)		
DDR2	400 Mbps (200 MHz)	667 Mbps (333 MHz)		
DDR3	667 Mbps (333 MHz)	667 Mbps (333 MHz)		

Functional Description

The MDDR subsystem accepts requests from the AXI/AHB interfaces with system addresses and associated data for writes. For writes, the data is written to DDR SDRAM through the DDR PHY; for reads, the associated data is returned to the AXI/AHB interface.

The MDDR subsystem performs address mapping from system addresses to DDR SDRAM addresses (rank, bank, row, and column) and prioritizes requests to minimize the latency of writes and reads and maximize page hits.

The functional block diagram of the MDDR subsystem is shown in Figure 7-2.

Figure 7-2 • MDDR Subsystem Functional Block Diagram

DDR FIC

The MDDR subsystem has DDR_FIC at the input side, which provides an interface for the AXI or AHB master logic in the FPGA fabric. The MDDR subsystem can be configured for AXI-64 or single AHB-32 or dual AHB-32 bit interfaces to connect with the FPGA fabric. These options can be configured with the help of the MDDR configurator in Libero SoC. For more details, refer to the MDDR Configurator User's Guide. DDR_FIC converts the single/dual 32-bit AHBL master transactions from the FPGA fabric to 64-bit AXI transactions towards the AXI Transaction controller.

When single or dual AHB interfaces to the FPGA fabric is selected, the DDR bridge, embedded as part of the DDR_FIC, is enabled. Refer to the "DDR Bridge" section on page 395 for a detailed description.

If the AXI interfaces to the FPGA fabric is selected, the DDR_FIC acts as an AXI to AXI synchronous bridge to synchronize the transactions from master to FDDR. The DDR_FIC input interface is clocked by the FPGA fabric clock and MDDR is clocked by MDDR_CLK from the MSS clock conditioning circuit (CCC). Configuration inputs DIVISOR_A[1:0] and DDR_FIC_DIVISOR[2:0] from the SYSREG block are combined to select a clock ratio between the fabric clock and AXI DDR clock. Clock ratios supported are shown in Table 7-4.

Table 7-4 • MDDR_CLK to FPGA Fabric Clock Ratios

{DIVISOR_A[1:0]], DDR_FIC_DIVISOR[2:0]}	MDDR_CLK: FPGA FABRIC Clock Ratio
0x0	1:1
0x1	2:1
0x2	4:1
0x4	8:1
0x5	16:1
0x8	2:1
0x9	4:1
0xA	8:1
0xC	16:1
0x18	3:1
0x19	6:1
0x1A	12:1
Default	1:1

AXI Transaction Controller

The AXI transaction controller block is responsible for receiving AXI transactions from various masters (MSS DDR bridge, fabric) and translating them into DDR controller transactions. Figure 7-3 shows a block diagram of the AXI transaction controller along with the DDR controller.

The AXI transaction controller receives read and write requests from an AXI interconnect and schedules them to the DDR controller, which in turn drives the DDR SDRAM. The interface supports four outstanding transactions in accordance with the standard AXI protocol.

Figure 7-3 • AXI Interface with DDR Controller Block Diagram

The AXI transaction controller consists of four major blocks:

- 1. AXI slave interface
- 2. Priority block
- 3. Transaction handler
- 4. Reorder buffer

1. AXI Slave Interfaces

There are two AXI slave ports coming into the AXI transaction controller; one from the MSS DDR bridge and the other from the FPGA fabric. Each of the AXI slave ports is 64 bits wide and is in compliance with the standard AXI protocol. Each transaction has an ID related to the master interface. Transactions with the same ID are completed in order, while the transactions with different read IDs can be completed in any order, depending on when the instruction is executed by the DDR controller. If a master requires ordering between transactions, the same ID should be used.

The AXI slave interface is further subdivided into read port and write port. The read port queues read AXI transactions and it can hold up to four read transactions. The read port assembles the data from the reorder buffer and puts it out on the read channel. The write port stores the write transactions and generates the handshaking signals on the AXI channel. The write port handles only one write instruction at a time.

2. Priority Block

The priority block prioritizes among the various instructions on the AXI channel and provides control to the transaction handler. It also combines similar instructions (read/write) for maximum performance.

The master from the FPGA fabric can be programmed to have a higher priority by configuring the DDRC_AXI_FABRIC_PRI_ID_CR register. The priority level is also programmable— it is required to specify whether the priority is even higher than I-cache/DSG master requests.

The default priority scheme is in the following order:

- 1. Reads from the slave port of the MSS DDR bridge
- 2. Reads from the slave port of the FPGA fabric
- 3. Writes from the slave port of the MSS DDR bridge
- 4. Writes from the slave port of the FPGA Fabric

After each access, the priority block also checks whether the instruction from read slave port 0 contains pending instructions from the I-cache / DSG bus. If so, the priority block switches back to read slave port 0 to execute these instructions.

The priority transactions are ordered as follows:

- I-cache Highest priority
- 2. DSG master Second highest priority
- 3. Fabric master Third highest priority (if PRIORITY_ID = '0')

3. Transaction Handler

The transaction handler converts AXI transactions into appropriate transactions for the DDR controller. It will convert one AXI transaction into multiple DDR controller transactions, depending on the size of the AXI transaction. The transaction handler works on one transaction at a time from the read/write port queue that is selected by the priority block.

The transaction handler has a write command controller and read command controller for write and read transactions.

The write command controller fetches the command from the AXI slave write port and sends RMW or a pure write instruction to the DDR controller, depending on the write command. If SECDED is enabled, the write command controller converts each partial write transaction (less than 64 bits) to a read modified write transaction.

The read command controller generates appropriately sized read transactions for the DDR controller. The number of transactions associated with each command is computed and dispatched to the DDR controller. The priority block gives control to the read command controller if any read requests are available.

4. Reorder Buffer

The reorder buffer receives data from the DDR controller and reorders it because data could be returned out of order for a single AXI transaction. The tags returned from the DDR controller are used to reorder the data by the read slave interface port.

The reorder buffer is implemented as a standard register bank of 20x65 bits. 64 bits are for the data and 1 bit stores the read error response. This size allows enough storage for up to 5 read transactions, each with 5 cycles of read data on both the AXI channels. If the DDR transactions are of partial reads (2 cycles of data), it can store the data for up to 7 read transactions.

DDR Controller

Refer to the "DDR Controller" section on page 235.

MDDR Configurations

Memory Type

The MDDR subsystem can be configured to use DDR2, DDR3, or LPDDR1 SDRAM using the SmartFusion2 SoC FPGA MSS configurator in Libero SoC. Refer to the *MDDR Configurator User's Guide* for more details.

Bus Width Configurations

The controller can be programmed to work in full, half, or quarter bus width mode by configuring DDRC MODE CR when the controller is in soft reset.

- 1. In full bus width mode, the PHY size is 32. The PHY size is 36 if SECDED is enabled.
- 2. In half bus width mode, the PHY size is 16. The PHY size is 18 if SECDED is enabled.
- 3. In quarter bus width mode, the PHY size 8. The PHY size is 9 if SECDED is enabled.

Supported bus widths in SmartFusion2 SoC FPGA devices are listed in Table 7-5.

Table 7-5 • Supported Bus Widths

Bus Width M2S125, M2S080, and M2S050 M2S02		M2S025, M2S010, and M2S005
Full bus width	✓	-
Half bus width	✓	✓
Quarter bus width	✓	✓

Burst Mode

Burst mode can be selected as sequential or interleaving by configuring DDRC_BURST_MODE to '1' or '0'.

Burst length can be selected as 4, 8, or 16 by configuring REG_DDRC_BURST_RDWR.

Supported burst modes for various DDR SDRAM types and PHY widths are given in Table 7-6 and Table 7-7 on page 244. Microsemi recommends sequential burst mode and a burst length of 8.

Burst Modes for M2S050

Table 7-6 • Supported Burst Modes for M2S050

		Sequential/Interleaving		
Bus width	Memory Type	4	8	16
32	LPDDR1	✓	✓	_
	DDR2	✓	✓	_
	DDR3	-	✓	_
16	LPDDR1	-	✓	✓
	DDR2	-	✓	_
	DDR3	-	✓	-

Burst Modes for M2S010

Table 7-7 • Supported Burst Modes for M2S010

		Sequential/Interleaving		
Bus width	Memory Type	8	16	
16	LPDDR1	✓	✓	
	DDR2	✓	-	
	DDR3	✓	-	
8	LPDDR1	✓	-	
	DDR2	✓	-	
	DDR3	✓	_	

Clocking

The MDDR subsystem operates on MDDR_CLK, which comes from MSS_CCC. This clock value can be configured through the MSS_CCC configurator in Libero SoC.

- 1. Maximum frequency of MDDR CLK is 333 MHz.
- 2. The MSS DDR bridge design within the MSS requires M3_CLK to run at the same speed or slower than MDDR_CLK, with the ratio being any integer between 1 and 8. The possible MDDR_CLK: M3_CLK ratios that meet the MSS DDR bridge requirements are 1:1, 2:1, 3:1, 4:1, 6:1, or 8:1.

Configuring Dynamic DRAM Constraints

Dynamic DRAM constraints may be subdivided into three basic categories:

- Bank constraints affect the transactions that may be scheduled to a given bank.
- Rank constraints affect the transactions that may be scheduled to a given rank.
- · Global constraints affect all transactions.

Dynamic DRAM Bank Constraints

Bank state machines track the state of each bank and enforce the bank constraints. There is one bank state machine for each bank supported by the system.

Using the bank state machines, the scheduler dynamically obeys all of the following constraints on a per-bank basis when scheduling transactions (Table 7-8).

Table 7-8 • Dynamically Enforced Bank Constraints

Control bit	Constraint Abbreviation	Constraint Name	Constraint Meaning
REG_DDRC_T_RC	tRC	Row Cycle time	Minimum time between two successive activates to a given bank.
REG_DDRC_T_RP	tRP	Row Precharge Command Period	Minimum time from a precharge command to the next command affecting that bank.
REG_DDRC_T_RAS_MIN	tRAS(min)	Min Bank Active Time	Minimum time from an activate command to a precharge command to the same bank.
REG_DDRC_T_RAS_MAX	tRAS(max)	Max Bank Active Time	Maximum time from an activate command to a precharge command to the same bank.
REG_DDRC_T_RCD	tRCD	RAS-to-CAS Delay	Minimum time from an activate command to a READ or WRITE command to the same bank.
REG_DDRC_WR2PRE	tWR	Write Command Period	Minimum time from a WRITE command to a precharge command to the same bank.
REG_DDRC_RD2PRE	al + (bl/2)	Read-to-Precharge Delay	Minimum time from a READ command to a precharge command to the same bank. Set this to the current value of additive latency plus half of the burst length.

Dynamic DRAM Rank Constraints

One rank constraints block enforces all of the following constraints for each rank supported by the system. Using the rank constraints blocks, the scheduler dynamically obeys all of the following constraints on a per-rank basis when scheduling transactions (Table 7-9).

Table 7-9 • Dynamically-Enforced Bank Constraints

Control Signal	Constraint Abbreviation	Constraint Name	Constraint Meaning
REG_DDRC_T_RFC_NOM_X32	tRFC(nom) or tREFI	Nominal Refresh Cycle Time	Average time between refreshes for a given rank. The actual time between any 2 refresh commands may be larger or smaller than this; this represents the maximum time allowed between refresh commands to a given rank when averaged over a large period of time.
REG_DDRC_T_RFC_MIN	tRFC(min)	Minimum Refresh Cycle Time	Minimum time from refresh to refresh or activate.
REG_DDRC_T_RRD	tRRD	RAS-to-RAS Delay	Minimum time between activates from bank a to bank b.
REG_DDRC_T_CCD	tCCD	RAS-to-CAS Delay	Minimum time between two reads or two writes (from bank A to bank B).
REG_DDRC_T_FAW	tFAW	Four Active Wi tWorkndow	Sliding time window in which a maximum of 4 bank activates are allowed in a 8-bank design. In a 4-bank design, set this register to 0x1.

Dynamic DRAM Global Constraints

These are primarily related to gaining access to the data bus while avoiding bus contention. A global constraints block enforces each of these constraints. Using the global constraints block, the scheduler dynamically obeys all of the following constraints when scheduling transactions (Table 7-10).

Table 7-10 • Dynamic DRAM Global Constraints

Control Signal	Constraint Name	Constraint Meaning
REG_DDRC_RD2WR	Read-to-Write turnaround time	Minimum time to allow between issuing any READ command and issuing any WRITE command
REG_DDRC_WR2RD	Write-to-Read Turnaround Time	Minimum time to allow between issuing any WRITE command and issuing any READ command
REG_DDRC_WRITE_LATENCY	Write Latency	Time after a WRITE command that write data should be driven to DRAM.

Single Error Correction and Double Error Detection (SECDED)

The SECDED system can be enabled by setting REG_DDRC_MODE of DDRC_MODE_CR to 101. When SECDED is enabled, the DDRC adds 8 bits of SECDED data to every 64 bits of data supporting one-bit error correction and two-bit error detection.

When SECDED is enabled, a write operation computes and stores a SECDED code along with the data, and a read operation reads and checks the data against the stored SECDED code. It is therefore possible to receive error-correcting code (ECC) errors when reading uninitialized memory locations. To avoid this, all memory locations must be written before being read.

The SECDED bits are interlaced with the data bits and unused bits, as shown in Table 7-11.

Table 7-11 • SECDED DQ Lines at DDR

Mode	SECDED Data Pins (M2S050, M2S080, and M2S120)	SECDED Data Pins (M2S005, M2S010, and M2S025)
Full bus width mode	DQ[35:32]	NA
Half bus width mode	DQ[33:32]	DQ[18:17]
Quarter bus width mode	DQ[33]	DQ[17]

Controller Behavior During SECDED Errors

When the controller detects a correctable SECDED error, it does the following:

- Sends the corrected data to the read requested MSS/FPGA fabric master as part of the read data.
- Sends the SECDED error information to the DDRC_LCE_SYNDROME_1_SR register.

Performs a read-modify-write operation to correct the data present in the DRAM. The controller has automatic data scrubbing of correctable errors—the SECDED scrubbing is enabled automatically. Only one scrub read-modify-write (RMW) command can be outstanding in the controller at any time. No scrub is performed on single-bit SECDED errors that occur while the controller is processing another scrub RMW.

When the controller detects an uncorrectable error, it does the following:

- Generates an interrupt signal which can be monitored by reading the interrupt status register, DDRC_ECC_INT_SR. The ECCINT interrupt is mapped to the group0 interrupt signal MSS_INT_M2F[12] of the fabric interface interrupt controller (FIIC).
- Sends the data with error to the read requested MSS/FPGA fabric master as part of the read data.
- Send the SECDED error information to the DDRC_LUE_SYNDROME_1_SR register.

Monitoring SECDED Status

- 1. DDRC_LUE_ADDRESS_1_SR and DDRC_LUE_ADDRESS_2_SR give the row/bank/column information of the SECDED unrecoverable error.
- 2. DDRC_LCE_ADDRESS_1_SR and DDRC_LCE_ADDRESS_2_SR give the row/bank/column information of the SECDED error correction.
- 3. DDRC_LCB_NUMBER_SR indicates the location of the bit that caused the single-bit error in the SECDED case (encoded value).
- 4. DDRC_ECC_INT_SR indicates whether the SECDED interrupt is because of a single-bit error or double-bit error. The interrupt can be cleared by writing zeros to DDRC_ECC_INT_CLR_REG.

Restriction on Data Mask When SECDED Is Used

Each SECDED lane in the DDR controller is 64 bits / 8 bytes wide. If SECDED is enabled, the MSS master or FPGA fabric master can do a write operation if the write is 8-byte aligned. If the granularity of the write is smaller than 8 bytes, the controller issues a read-modify-write command. In this case, the controller will first fetch the read data from the DRAM and merge it with the write data from the master, then do a write with no bytes masked.

Precharge Power-Down

Entry

If REG_DDRC_POWERDOWN_EN = 1, the controller automatically enters precharge power-down when the period specified by REG_DDRC_POWERDOWN_TO_X32 has passed while the controller is idle (except for issuing refreshes).

Entering precharge power-down involves the following steps:

- 1. Precharging (closing) all open pages. Pages are closed one-at-a-time in no specified order.
- 2. Waiting for the tRP (row precharge) idle period.
- Issuing the command to enter precharge power-down (NOP/Deselect with CKE = 0). For multirank systems, all chip-selects will be asserted, so that all ranks will enter precharge power-down simultaneously.

If the controller receives a read or write request from the core logic during steps 1 and 2 above, the power-down entry will be immediately aborted. The same is true if REG_DDRC_POWERDOWN_EN is driven to '0' during steps 1 or 2. Once the power-down entry command has been issued, proper power-down exit is required, as described in the following section.

Exit

Once the controller has put the DDR SDRAM device(s) in precharge power-down mode, the controller automatically performs the precharge power-down exit sequence for any of the following reasons:

- A refresh cycle is required to any rank in the system.
- · The controller receives a new request from the core logic.
- · REG DDRC POWERDOWN EN is set to '0'.

To exit precharge power-down, the controller does the following:

- Inserts any NOP/Deselect commands required to satisfy the tCKE requirement after entering precharge power-down.
- 2. Issues the power-down exit command (NOP/Deselect with CKE =1). For multi-rank systems, all chip-selects are asserted, so that all ranks will exit precharge power-down simultaneously.
- 3. Issues NOP/Deselect for the period defined by tXP.

Self Refresh

The controller keeps the DDR SDRAM device(s) in self refresh mode whenever the REG_DDRC_SELFREF_EN bit is set and no reads or writes are pending in the controller. The controller can be programmed to issue single refreshes at a time (REG_DDRC_REFRESH_BURST = 0) to minimize the worst-case impact of a forced refresh cycle. It can be programmed to burst the maximum number of refreshes allowed for DDR2 (REFRESH_BURST = 7, for performing 8 refreshes at a time) to minimize the bandwidth lost, to closing the pages for refresh.

Entering self refresh mode involves the following steps:

- 1. Precharging (closing) all open pages. Pages are closed one-at-a-time in no specified order.
- 2. Waiting for the tRP (row precharge) idle period.
- Issuing the command to enter self refresh mode (asserting RAS and CAS with CKE = 0). For multi-rank systems, all chip-selects are asserted, so that all ranks will enter self refresh simultaneously.

The controller takes the DDR SDRAM out of self refresh mode whenever the REG_DDRC_SELFREF_EN input is deasserted or new commands are received by the controller.

To exit self refresh, the controller typically does the following:

- 1. Inserts any NOP/Deselect commands required to satisfy the tCKE requirement after entering precharge power-down.
- 2. Issues the self refresh exit command (refresh with CKE = 1).
- 3. Issues NOP/Deselect for the period defined by tXP.

When burst refresh is enabled (REFRESH BURST > 0), there is a feature called speculative refresh.

Burst refresh is done by counting the number of times tREFI expires, and issuing a group of refreshes when that number reaches the refresh burst number. If the tREFI has expired at least once but it has not expired REFRESH_BURST number of times yet, then the controller may perform speculative refreshes. This is done by automatically inserting refreshes when the controller is idle.

The REG_DDRC_REFRESH_TO_X32 bits determine how long the controller must be idle before considering inserting these speculative refreshes.

Deep Power-Down

This is supported only for LPDDR1.

Entry

The controller puts the DDR SDRAM device(s) in deep power-down mode whenever the REG_DDRC_DEEPPOWERDOWN_EN bit is set and no reads or writes are pending in the controller.

Entering Deep power-down involves the following steps:

- 1. Precharging (closing) all open pages. Pages are closed one-at-a-time in no specified order.
- 2. Waiting for the tRP (row precharge) idle period.
- 3. Issuing the command to enter deep power-down. For multi-rank systems, all chip-selects will be asserted, so that all ranks will enter deep power-down simultaneously.

If the controller receives a read or write request from the core logic during steps 1 and 2 above, deep power-down is immediately aborted. The same is true, if REG_DDRC_DEEPPOWERDOWN_EN is driven to '0' during steps 1 or 2. Once the deep power-down entry command has been issued, proper deep power-down exit is required.

Exit

Once the controller has put the DDR SDRAM device in deep power-down mode, the controller automatically exits deep power-down and reruns the initialization sequence when REG_DDRC_DEEPPOWERDOWN_EN is reset to 0. The contents of DDR SDRAM may be lost upon entry into deep power-down mode.

ZQ Calibration

This is a DDR3 only feature. The ZQ calibration command is used to calibrate DRAM output drivers (Ron) and on-die termination (ODT) values. DDR3 SDRAM needs a longer time to calibrate R_{ON} and ODT at initialization and a relatively smaller time to perform periodic calibrations.

The ZQ calibration long (ZQCL) command is used to perform initial calibration during the power-up initialization sequence. This command is allowed a timing period of tZQinit (REG DDRC T ZQ LONG NOP) to perform full calibration and the transfer of values.

The ZQ calibration short (ZQCS) command is used to perform periodic calibration to account for voltage and temperature variations. A shorter timing window is provided to perform calibration and transfer of values as defined by timing parameter tZQCS (REG_DDRC_T_ZQ_SHORT_NOP).

No other activities are performed by the controller for the duration of tZQinit and tZQCS. The quiet time on the DRAM channel helps in accurate calibration of DRAM R_{ON} and ODT. All banks are precharged and tRP met before ZQCL or ZQCS commands are issued by the controller.

Automatic ZQCS by the controller: In this case, the controller sends ZQCS commands to the DRAM periodically. The interval is determined by the REG DDRC T ZQ SHORT INTERVAL X1024 register.

Explicit Auto-Precharge (per command)

Configure REG_DDRC_DIS_COLLISION_PAGE_OPT to enable or disable auto-precharge on a percommand basis.

ODT Controls

The ODT for a specific rank of memory can be enabled or disabled by configuring the DDRC_ODT_PARAM_1_CR and DDRC_ODT_PARAM_2_CR registers. These must be configured before taking the controller out of soft reset; they are then applied to every read or write issued by the controller.

DDR PHY

The DDR PHY processes read and write requests from the DDR controller and translates them into specific signals within the timing constraints of the target DDR memory. The DDR PHY is composed of functional units, including PHY control, master DLL, and read/write leveling logic.

There are two kinds of DLLs: the master DLL, and the slave DLL. The DLLs are responsible for creating the precise timing windows required by the DDR memories to read and write data. The master DLL measures the cycle period in terms of a number of taps and passes this number through the ratio logic to the slave DLLs. The slave DLLs can be separated on the target die to minimize skew and delay and to account for process, temperature, and voltage variations.

Write leveling and read leveling functions determine delay timings required to align data to the optimal window for reliable data capture.

The DDR PHY top level signals to interface with DDR SDRAM are listed in Table 7-12.

PHY Training

The PHY is responsible for determining the correct delay programming for the read data DQS, read DQS gate, and write DQS signals. The PHY adjusts the delays and evaluates the results to locate the appropriate edges. The DDR controller (DDRC) assists by enabling and disabling the leveling logic in the DRAMs and the PHY by generating the necessary read commands or write strobes. The PHY informs the DDR controller when it has completed training, which triggers the DDRC to stop generating commands and to return to normal operation.

DDR controller performs the PHY training after powering up the device. The order of training sequence is given below:

- 1. Write leveling
- 2. Read leveling
 - DQS gate training
 - Data eye training

Read leveling and write leveling apply only for DDR3 memories.

Write Leveling

The write leveling process locates the delay at which the write DQS rising edge aligns with the rising edge of the memory clock. By identifying this delay, the system can accurately align the write DQS within the memory clock. The DDRC drives subsequent write strobes for every write-to-write delay specified by REG_DDRC_WRLVL_WW until the PHY drives the response signal High.

The DDR controller performs the below steps:

- 1. Sets up the SDRAM in write leveling mode by sending the appropriate MR1 command.
- 2. Sets the write leveling enable bit for the PHY and sends out periodically timed write level strobes to the PHY while sending out DEVSEL commands on the SDDRAM command interface.
- Once the PHY completes its measurements, it sets the write level response bits, which then signal the DDRC to stop the leveling process and lower the write leveling enable bit.

Read Leveling

There are two read leveling modes:

1. DQS gate training

The purpose of gate training is to locate the optimum delay that can be applied to the DQS gate such that it functions properly.

2. Data eye training

The goal of data eye training is to identify the delay at which the read DQS rising edge aligns with the beginning and end transitions of the associated DQ data eye.

By identifying these delays, the system can calculate the midpoint between the delays and accurately center the read DQS within the DQ data eye. The DDRC drives subsequent read transactions for every read-to-read delay specified by REG_DDRC_RDLVL_RR until the PHY drives the response signal High.

The DDR controller performs the below steps:

- 1. Sets up the DRAM for read leveling mode by sending the appropriate MR3 command, which forces the SDRAM to respond to read commands with a 1-0-1-0-1 pattern.
- Sets the relevant read leveling enable bit, and sends out periodically timed read commands on the SDRAM command interface.
- 3. Once the PHY completes its measurements, it sets the read level response bits, which then signal the DDRC to stop the leveling process and lower read leveling enable bit.

Table 7-12 • MDDR Subsystem Interface Signals

Signal Name	Type	Description
MDDR_CAS_N	Out	DRAM CASN
MDDR_CKE	Out	DRAM CKE
MDDR_CLK	Out	DRAM single-ended clock – for differential pads
MDDR_CLK_N	Out	DRAM single-ended clock – for differential pads
MDDR_CS_N	Out	DRAM CSN
MDDR_ODT	Out	DRAM ODT.
		0: Termination Off
		1: Termination On
MDDR_RAS_N	Out	DRAM RASN
MDDR_ RESET_N	Out	DRAM Reset for DDR3
MDDR_WE_N	Out	DRAM WEN
MDDR_ADDR[15:0]	Out	Dram address bits
MDDR_BA[2:0]	Out	Dram bank address
MDDR_DM_RDQS[4:0]	In/out	DRAM data mask – from bidirectional pads
MDDR_DQS[4:0]	In/out	DRAM single-ended data strobe output – for bidirectional pads
MDDR_DQS_N[4:0]	In/out	DRAM single-ended data strobe output – for bidirectional pads
MDDR_DQ[35:0]	In/out	DRAM data input/output – for bidirectional pads
MDDR_FIFO_WE_IN[2:0]	ln	FIFO in signal. DQS enable input for timing match between DQS and system clock. For simulations to be tied to DRAM_FIFO_WE_OUT.
MDDR_FIFO_WE_OUT[2:0]	Output	FIFO out signal. DQS enable output for timing match between DQS and system clock. For simulations to be tied to DRAM_FIFO_WE_IN.

Memory Initialization

After power-up, the DDR controller initializes memories through different sequences of steps.

DDR2

For DDR2, the initialization state machine executes the following initialization sequence:

- 1. Issues NOP/Deselect for the duration specified by REG_DDRC_PRE_CKE_X1024 (specification requires at least 200 μs with stable power and clock).
- Asserts CKE and issues NOP/Deselect for REG_DDRC_POST_CKE_X1024 (specification requires at least 400 ns).
- 3. Issues PRECHARGE ALL followed by NOP/Deselect for REG_DDRC_T_RP cycles.
- 4. Programs EMR2 to the REG_DDRC_EMR2 value and issues NOP/Deselect for REG_DDRC_T_MRD cycles.
- Programs EMR3 to the REG_DDRC_EMR3 value, and issues NOP/Deselect for REG_DDRC_T_MRD cycles.
- Enables DLL by programming EMR to the REG_DDRC_EMR value, and issues NOP/deselect for REG_DDRC_T_MRD cycles.
- 7. Issues DLL reset by programming MR to the REG_DDRC_MR value, and issues NOP/Deselect for REG_DDRC_T_MRD cycles.
- 8. Issues PRECHARGE ALL, and issues NOP/Deselect for (REG_DDRC_T_RP + 1) cycles.
- Issues Refresh, and issues NOP/Deselect for REG_DDRC_T_RFC_MIN cycles. Repeats 9 times.
- Programs MR without resetting the DLL by setting MR to REG_DDRC_MR value with bit 8 set to1.
- Issues NOP/Deselect for the duration specified by REG_DDRC_PRE_OCD_X32 (no specification requirement).
- 12. Issues OCD complete command, indicating that no on-chip driver calibration will be performed.
- 13. Issues NOP/Deselect for REG DDRC FINAL WAIT X32 cycles.
- 14. Begins normal operation.

DDR3

For DDR3, the initialization state machine executes the following initialization sequence:

- 1. Issues NOP/Deselect for the duration specified by REG_DDRC_PRE_CKE_X1024 (specification requires at least 200 µs with stable power and clock).
- 2. Asserts CKE and issues NOP/Deselect for POST_CKE_X1024 (specification requires at least 500 μ s).
- Issues MRS command to load MR2 with EMR2 value, followed by NOP/Deselect for a duration of REG_DDRC_T_MRD.
- Issues MRS command to load MR3 with EMR3, followed by NOP/Deselect for a duration of T MRD.
- Issues MRS command to load MR1 with EMR, followed by NOP/Deselect for a duration of T MRD.
- 6. Issues MRS command to load MR0 with MR, followed by NOP/Deselect for a duration of T_MOD. Starts counting of T_ZQ_LONG_NOP, and issues ZQCL command to start ZQ calibration.
- 7. Waits for T ZQ LONG NOP counting to finish. Ensures wait from step 7 is larger than tDLLK.
- 8. DDR3 SRAM is now ready for normal operation.

LPDDR1

When used with LPDDR1 SDRAM, the initialization state machine executes the following initialization sequence:

- 1. Asserts and holds CKE.
- 2. Issues NOP/Deselect for duration specified by REG_DDRC_PRE_CKE_X1024 (specification requires at least 200 µs with stable power and clock).
- 3. Issues PRECHARGE ALL command.
- 4. Issues REFRESH command 8 times (JEDEC specification requires only 2 refreshes during initialization).
- 5. Loads Mode register.
- 6. Loads Extended Mode register.
- 7. Issues ACTIVE command.
- 8. Issues NOP/Deselect for REG DDRC FINAL WAIT X32 cycles (no specification requirement.)
- 9. Begins normal operation.

Data Flow Paths

FPGA Fabric to MDDR (Through DDR_FIC)

1. AXI interface from FPGA Fabric

The MDDR subsystem can be used to access DDR SDRAM memory as shown in Figure 7-4. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the MDDR configuration. MDDR has an APB interface for configuring the registers. The configuration can be done through the MSS or user logic (APB master) in the FPGA fabric. The read, write, and read-modify-write transactions are initiated by the AXI master to read or write the data into the memory.

Figure 7-4 • MDDR with AXI Interface

2. Single AHB Interface from FPGA Fabric

The MDDR subsystem can be used to access DDR SDRAM memory as shown in Figure 7-5. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the MDDR configuration. MDDR has an APB interface for configuring the registers. The configuration can be done through the MSS or user logic (APB master) in the FPGA fabric. The read and write transactions initiated by the AHB master are converted to AXI transactions by DDR FIC.

Figure 7-5 • MDDR with Single AHB Interface

3. Dual AHB Interface from FPGA Fabric

The MDDR subsystem can be used to access DDR SDRAM memory as shown in Figure 7-6. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the MDDR configuration. MDDR has an APB interface for configuring the registers. The configuration can be done through the MSS or user logic (APB master) in the FPGA Fabric. The read and write transactions initiated by AHB masters are converted to AXI transactions by DDR_FIC. Both the AHB masters have round robin arbitration schemes.

For using dual AHB interface of MDDR the CFG_NUM_AHB_MASTERS bit in the "DDR_FIC_NUM_AHB_MASTERS_CR" register must be set to '1'.

Figure 7-6 • MDDR with Dual AHB Interface

MSS to MDDR (through MSS DDR bridge)

The MSS DDR bridge is a data bridge between four MSS AHB bus masters (IDC, DSG, HPDMA, and AHB bus matrix) and the MDDR subsystem. The MSS DDR bridge accumulates AHB writes into write combining buffers prior to bursting out to external DDR memory. The MSS DDR bridge also includes read combining buffers, allowing AHB masters to efficiently read data from the external DDR memory from a local buffer. The MSS DDR bridge optimizes reads and writes from multiple masters to a single external DDR memory. For more details, refer to the "DDR Bridge" chapter.

1. Cortex-M3 Processor to DDR SDRAM

The Cortex-M3 processor can access the DDR SDRAM connected to the MDDR subsystem through the MSS DDR bridge as shown in Figure 7-7. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the MDDR configuration. MDDR has an APB interface for configuring the registers. The configuration can be done through the MSS. The read, write, and read-modify-write transactions are initiated by the MSS DDR bridge to read or write the data into the memory.

Figure 7-7 • Accessing MDDR from Cortex-M3 Processor

2. HPDMA to DDR SDRAM

HPDMA can access the DDR SDRAM connected to the MDDR subsystem through the MSS DDR bridge as shown in Figure 7-8. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the MDDR configuration. MDDR has an APB interface for configuring the registers. The configuration can be done through the MSS. The read, write, and RMW transactions are initiated by the MSS DDR Bridge to read or write the data into the memory.

Figure 7-8 • Accessing MDDR from HPDMA

3. MSS Peripherals to DDR SDRAM

The MSS peripherals which are connected to the AHB bus matrix can access the DDR SDRAM connected to the MDDR subsystem through the MSS DDR bridge, as shown in Figure 7-9. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the MDDR configuration. MDDR has an APB interface for configuring the registers. The configuration can be done through the MSS. The read, write, and RMW transactions are initiated by the MSS DDR bridge to read or write the data into the memory.

Figure 7-9 • Accessing MDDR from AHB Bus Matrix

Register Configuration Path

The MDDR subsystem registers can be configured through the MSS master or the FPGA fabric master. The selection of APB master can be done by configuring APB_2 in Libero SoC. For more details about APB_2, refer to the "APB Configuration Interface" chapter in the *ARM Cortex-M3 Processor and Subsystem in SmartFusion2 SoC FPGA Devices User's Guide*. Refer to the *APB Configuration Interface Configurator User's Guide* (to be released) for information on configuring the registers for the MSS master or FPGA fabric master.

MDDR Memory Map

The address map for MDDR is 0xA0000000–0xDFFFFFFF. The MDDR can support up to 4 GB of memory but only 1 GB of this memory is accessible at a time from the Cortex-M3 or MSS masters via the AHB bus matrix. The HPDMA and DDR_FIC can access all 4 GB of memory at default settings.

The 4 GB address space (0x00000000-0xFFFFFFFF) of DDR memory is divided into sixteen DDR regions (0–15), as shown in Table 7-13. In order to make a particular region of DDR visible to Cortex-M3 firmware or another (non-HPDMA MSS master), it is necessary to configure the DDRB_CR register in SYSREG. The DDRB_CR register has four 4-bit fields (DDR_IDC_MAP, DDR_SW_MAP, DDR_HPD_MAP, DDR_DS_MAP) that can be configured to select the DDR address space mapping modes from 0 to 12.

The MSS masters can access any of four regions at a time, depending on the address space mapping mode configured for that particular master using the DDRB_CR register. The address mapping modes for a 4 GB memory are shown in Table 7-14 on page 260.

Table 7-13 • DDR Memory Regions

DDR Region	DDR Memory Space
0	0x00000000-0x0FFFFFF
1	0x10000000-0x1FFFFFF
2	0x20000000-0x2FFFFFF
3	0x30000000-0x3FFFFFF
4	0x40000000-0x4FFFFFF
5	0x50000000-0x5FFFFFF
6	0x60000000-0x6FFFFFF
7	0x70000000-0x7FFFFFF
8	0x80000000-0x8FFFFFF
9	0x90000000-0x9FFFFFF
10	0xA0000000-0xAFFFFFF
11	0xB0000000-0xBFFFFFF
12	0xC0000000-0xCFFFFFF
13	0xD0000000-0xDFFFFFF
14	0xE0000000-0xEFFFFFF
15	0xF0000000-0xFFFFFFF

Table 7-14 • Accessed DDR Regions Based on Different Mode Settings for a 4 GB Memory

Address	DDR Regions Visible at MSS DDR Address Space for Different Modes						
Space Mapping Modes	MSS DDR Space 0 (0xA0000000- 0xAFFFFFF)	MSS DDR Space 1 (0xB0000000- 0xBFFFFFFF)	MSS DDR Space 2 (0xC0000000- 0xCFFFFFF)	MSS DDR Space 3 (0xD0000000- 0xDFFFFFF)			
0000	Region 10	Region 11	Region 12	Region 13			
0001	Region 0	Region 1	Region 2	Region 3			
0010	Region 0	Region 1	Region 2	Region 3			
0011	Region 4	Region 5	Region 6	Region 7			
0100	Region 8	Region 9	Region 10	Region 11			
0101	Region 12	Region 13	Region 14	Region 15			
0110	Region 0	Region 1	Region 2	Region 3			
0111	Region 0	Region 1	Region 4	Region 5			
1000	Region 0	Region 1	Region 6	Region 7			
1001	Region 0	Region 1	Region 8	Region 9			
1010	Region 0	Region 1	Region 10	Region 11			
1011	Region 0	Region 1	Region 12	Region 13			
1100	Region 0	Region 1	Region 14	Region 15			

If it connects only 2 GB of DDR memory to MDDR, only 8 regions will be available (0–7). Table 7-15 shows the DDR regions available for different address mode settings.

Table 7-15 • Accessed DDR Regions Based on Different Mode Settings for a 2 GB Memory

Address	DDR Regions Visible at MSS DDR Address Space for Different Modes						
Space Mapping Modes	MSS DDR Space 0		MSS DDR Space 2 (0xC0000000- 0xCFFFFFF)	MSS DDR Space 3 (0xD0000000- 0xDFFFFFFF)			
0000	Region 2	Region 3	Region 4	Region 5			
0001	Region 0	Region 1	Region 2	Region 3			
0010	Region 0	Region 1	Region 2	Region 3			
0011	Region 4	Region 5	Region 6	Region 7			
0110	Region 0	Region 1	Region 2	Region 3			
0111	Region 0	Region 1	Region 4	Region 5			
1000	Region 0	Region 1	Region 6	Region 7			

If it connects only 2 GB of DDR memory to MDDR, only 4 regions will be available (0–4). Table 7-16 shows the DDR regions available for different address mode settings.

Table 7-16 • Accessed DDR Regions Based on Different Mode Settings for a 2 GB Memory

Address	DDR Reg	Address Space for Differ	ferent Modes		
Space Mapping Modes	MSS DDR Space 0 (0xA0000000- 0xAFFFFFF)	(0xA0000000- (0xB0000000- (0xC0000000-		MSS DDR Space 3 (0xD0000000- 0xDFFFFFFF)	
0000	Region 2	Region 3	Region 0	Region 1	
0001	Region 0	Region 1	Region 2	Region 3	
0010	Region 0	Region 1	Region 2	Region 3	

DDR Memory Device Examples

Figure 7-10 shows DDR2 SDRAM connected to the MDDR of a SmartFusion2 SoC FPGA device. Micron's MT47H64M16 is a 128 MB density device with x16 data width. The MDDR is configured in full bus width mode and without SECDED. The total amount of DDR2 memory connected to MDDR is 256 MB.

Figure 7-10 • x16 DDR2 SDRAM Connected to MDDR

Figure 7-11 shows DDR3 SDRAM connected to the MDDR of a SmartFusion2 SoC FPGA device. Micron's MT41J512M8RA is a 512 MB density device with x8 data width. The MDDR is configured in full bus width mode with SECDED enabled. The SDRAM connected to MDDR_DQ[36:32] is used to store SECDED bits. The total amount of DDR3 memory (excluding memory for SECDED) connected to MDDR is 2 GB.

Figure 7-11 • x8 DDR3 SDRAM Connection to MDDR

Figure 7-12 shows LPDDR1 SDRAM connected to the MDDR of a SmartFusion2 SoC FPGA device. The micron's MT46H32M16LF is a 64 MB density device with x16 data width. The MDDR is configured in full bus width mode with SECDED enabled. The SDRAM connected to MDDR_DQ[33:32] is used to store SECDED bits. The total amount of LPDDR1 memory (excluding memory for SECDED) connected to MDDR is 64 MB.

Figure 7-12 • x16 LPDR1SDRAM Connection to MDDR

Register Interface

Table 7-17 lists the registers visible on the DDR APB interface. The base address is 0x40020000.

Table 7-17 • Address Table for Register Interfaces

Registers	Address Offset Space
DDR Controller Configuration Register	0x000:0x1FC
PHY Configuration Register Summary	0x200:0x3FC
DDR_FIC Configuration Register Summary	0x400:0x4FC
Reserved	0x500:0x7FC

SYSREG Configuration Register Summary

Table 7-18 • SYSREG Configuration Register Summary

Register Name	Register Type	Flash	Reset Source	Description
MDDR_CR	RW-P	Register	PORESET_N	MDDR Configuration register
MDDR_IO_CALIB_CR	RW-P	Register	PORESET_N	MDDR I/O Calibration Control register
MSSDDR_PLL_STATUS_LOW_CR	RW-P	Register	CC_RESET_N	Used to control the corresponding configuration input of the MPLL.
MSSDDR_PLL_STATUS_HIGH_CR	RW-P	Register	CC_RESET_N	Used to control the corresponding configuration input of the MPLL register
MSSDDR_FACC1_CR	RW-P	Field	CC_RESET_N	MSS DDR Fabric Alignment Clock Controller 1 Configuration register
MSSDDR_FACC2_CR	RW-P	Field	CC_RESET_N	MSS DDR Fabric Alignment Clock Controller 2 Configuration register
MSSDDR_CLK_CALIB_STATUS	RW-P	Register	SYSRESET_N	Used to start an FPGA fabric calibration test circuit.
DDRB_CR	RW-P	Register	SYSRESET_N	MSS DDR bridge configuration register
MSSDDR_PLL_STATUS	RO	_	_	MSS DDR PLL Status register
MDDR_IO_CALIB_STATUS	RO	_	PORESET_N	DDR I/O Calibration Status register
MSSDDR_CLK_CALIB_STATUS	RO	_	SYSRESET_N	MSS DDR Clock Calibration Status register

DDR Controller Configuration Register Summary

Table 7-19 • DDR Controller Configuration Register

Register Name	Address Offset	Register Type	Reset Source	Description
DDRC_DYN_SOFT_RESET_CR	0x000	RW/RO	PRESET_N	DDRC Reset register
DDRC_DYN_REFRESH_1_CR	0x008	RW		DDRC Refresh Control register
DDRC_DYN_REFRESH_2_CR	0x00C	RW		DDRC Refresh Control register
DDRC_DYN_POWERDOWN_CR	0x010	RW	PRESET_N	DDRC Power-Down Control register
DDRC_DYN_DEBUG_CR	0x014	RW	PRESET_N	DDRC Debug register
DDRC_MODE_CR	0x018	RW	PRESET_N	DDRC Mode register
DDRC_ADDR_MAP_BANK_CR	0x01C	RW		DDRC Bank Address Map register
DDRC_ECC_DATA_MASK_CR	0x020	RW	PRESET_N	DDRC SECDED Test Data register
DDRC_ADDR_MAP_COL_1_CR	0x024	RW		DDRC Column Address Map register
DDRC_ADDR_MAP_COL_2_CR	0x028	RW		DDRC Column Address Map register
DDRC_ADDR_MAP_ROW_1_CR	0X02C	RW	PRESET_N	DDRC Row Address Map register
DDRC_ADDR_MAP_ROW_2_CR	0x030	RW	PRESET_N	DDRC Row Address Map register
DDRC_INIT_1_CR	0x034	RW		DDRC Initialization Control register
DDRC_CKE_RSTN_CYCLES_1_CR	0x038	RW	PRESET_N	DDRC Initialization Control register
DDRC_CKE_RSTN_CYCLES_2_CR	0x03C	RW		DDRC Initialization Control register
DDRC_INIT_MR_CR	0x040	RW		DDRC MR Initialization register
DDRC_INIT_EMR_CR	0x044	RW	PRESET_N	DDRC EMR Initialization register
DDRC_INIT_EMR2_CR	0x048	RW		DDRC EMR2 Initialization register
DDRC_INIT_EMR3_CR	0x04C	RW	PRESET_N	DDRC EMR3 Initialization register
DDRC_DRAM_BANK_TIMING_PARAM_CR	0x050	RW	PRESET_N	DDRC DRAM Bank Timing Parameter register
DDRC_DRAM_RD_WR_LATENCY_CR	0x054	RW		DDRC DRAM Write Latency register
DDRC_DRAM_RD_WR_PRE_CR	0x058	RW	_	DDRC DRAM Read-Write Precharge Timing register

Table 7-19 • DDR Controller Configuration Register (continued)

Register Name	Address Offset	Register Type	Reset Source	Description
DDRC_DRAM_MR_TIMING_PARAM_CR	0x05C	RW	PRESET_N	DDRC DRAM Mode Register Timing Parameter register
DDRC_DRAM_RAS_TIMING_CR	0x060	RW		DDRC DRAM RAS Timing Parameter register
DDRC_DRAM_RD_WR_TRNARND_TIME_CR	0x064	RW	PRESET_N	DDRC DRAM Read Write Turn-around Timing register
DDRC_DRAM_T_PD_CR	0x068	RW	_	DDRC DRAM Power-Down Parameter register
DDRC_DRAM_BANK_ACT_TIMING_CR	0x06C	RW	PRESET_N	DDRC DRAM Bank Activate Timing Parameter register
DDRC_ODT_PARAM_1_CR	0x070	RW	_	DDRC ODT Delay Control register
DDRC_ODT_PARAM_2_CR	0x074	RW	_	DDRC ODT Hold/Block cycles register
DDRC_ADDR_MAP_COL_3_CR	0x078	RW	PRESET_N	Upper byte is DDRC Column Address Map register and lower byte controls debug features.
DDRC_MODE_REG_RD_WR_CR	0x07C	RW	_	DDRC Mode Register Read/Write Command register
DDRC_MODE_REG_DATA_CR	0x080	RW	PRESET_N	DDRC Mode Register Write Data Register
DDRC_PWR_SAVE_1_CR	0x084	RW	PRESET_N	DDRC Power Save register
DDRC_PWR_SAVE_2_CR	0x088	RW	PRESET_N	DDRC Power Save register
DDRC_ZQ_LONG _TIME_CR	0x08C	RW		DDRC ZQ Long Time Calibration register
DDRC_ZQ_SHORT_TIME_CR	0x090	RW	PRESET_N	DDRC ZQ Short Time Calibration register
DDRC_ZQ_SHORT_INT_REFRESH_MARGIN_1_CR	0x094	RW	PRESET_N	DDRC ZQ Short Time Calibration register
DDRC_ZQ_SHORT_INT_REFRESH_MARGIN_2_CR	0x098	RW	PRESET_N	DDRC ZQ Short Time Calibration register
DDRC_PERF_PARAM_1_CR	0x09C	RW		DDRC Performance Parameter register
DDRC_HPR_QUEUE_PARAM_1_CR	0x0A0	RW		DDRC Performance Parameter register
DDRC_HPR_QUEUE_PARAM_2_CR	0x0A4	RW	_	DDRC Performance Parameter register
DDRC_LPR_QUEUE_PARAM_1_CR	0x0A8	RW		DDRC Performance Parameter register

Table 7-19 • DDR Controller Configuration Register (continued)

Register Name	Address Offset	Register Type	Reset Source	Description
DDRC_LPR_QUEUE_PARAM_2_CR	0x0AC	RW	PRESET_N	DDRC Performance Parameter register
DDRC_WR_QUEUE_PARAM_CR	0x0B0	RW	PRESET_N	DDRC Performance Parameter register
DDRC_PERF_PARAM_2_CR	0x0B4	RW		DDRC Performance Parameter register
DDRC_PERF_PARAM_3_CR	0x0B8	RW	PRESET_N	DDRC Performance Parameter register
DDRC_DFI_RDDATA_EN_CR	0x0BC	RW	PRESET_N	DDRC DFI Read Command Timing register
DDRC_DFI_MIN_CTRLUPD_TIMING_CR	0x0C0	RW	PRESET_N	DDRC DFI Controller Update Min Time register
DDRC_DFI_MAX_CTRLUPD_TIMING_CR	0x0C4	RW	PRESET_N	DDRC DFI Controller Update Max Time register
DDRC_DFI_WR_LVL_CONTROL_1_CR	0x0C8	RW	PRESET_N	DDRC DFI Write Levelling Control register
DDRC_DFI_WR_LVL_CONTROL_2_CR	0x0CC	RW	PRESET_N	DDRC DFI Write Levelling Control register
DDRC_DFI_RD_LVL_CONTROL_1_CR	0x0D0	RW	PRESET_N	DDRC DFI Read Levelling Control register
DDRC_DFI_RD_LVL_CONTROL_2_CR	0x0D4	RW	PRESET_N	DDRC DFI Read Levelling Control register
DDRC_DFI_CTRLUPD_TIME_INTERVAL_CR	0x0D8	RW	PRESET_N	DDRC DFI Controller Update Time Interval register
DDRC_DYN_SOFT_RESET_2_CR	0x0DC	RW	PRESET_N	DDRC reset register
DDRC_AXI_FABRIC_PRI_ID_CR	0x0E0	RW		DDRC AXI Interface Fabric Priority ID Register
DDRC_SR	0x0E4	RO	PRESET_N	DDRC Status register
SECDED Registers	•			
DDRC_SINGLE_ERR_CNT_STATUS_SR	0x0E8	RO	PRESET_N	DDRC single error count Status register
DDRC_DOUBLE_ERR_CNT_STATUS_SR	0x0EC	RO	PRESET_N	DDRC double error count status register
DDRC_LUE_SYNDROME_1_SR	0x0F0	RO	PRESET_N	DDRC last uncorrected error syndrome register
DDRC_LUE_SYNDROME_2_SR	0x0F4	RO	PRESET_N	DDRC last uncorrected error syndrome register
DDRC_LUE_SYNDROME_3_SR	0x0F8	RO	PRESET_N	DDRC last uncorrected error syndrome register
DDRC_LUE_SYNDROME_4_SR	0x0FC	RO	PRESET_N	DDRC last uncorrected error syndrome register

Table 7-19 • DDR Controller Configuration Register (continued)

Register Name	Address Offset	Register Type	Reset Source	Description
DDRC_LUE_SYNDROME_5_SR	0x100	RO	PRESET_N	DDRC last uncorrected error syndrome register
DDRC_LUE_ADDRESS_1_SR	0x104	RO	PRESET_N	DDRC last uncorrected error address register
DDRC_LUE_ADDRESS_2_SR	0x108	RO	PRESET_N	DDRC last uncorrected error address register
DDRC_LCE_SYNDROME_1_SR	0x10C	RO		DDRC last corrected error syndrome register
DDRC_LCE_SYNDROME_2_SR	0x110	RO	_	DDRC last corrected error syndrome register
DDRC_LCE_SYNDROME_3_SR	0x114	RO		DDRC last corrected error syndrome register
DDRC_LCE_SYNDROME_4_SR	0x118	RO	PRESET_N	DDRC last corrected error syndrome register
DDRC_LCE_SYNDROME_5_SR	0x11C	RO	PRESET_N	DDRC last corrected error syndrome register
DDRC_LCE_ADDRESS_1_SR	0x120	RO		DDRC last corrected error address register
DDRC_LCE_ADDRESS_2_SR	0x124	RO		DDRC last corrected error address register
DDRC_LCB_NUMBER_SR	0x128	RO	PRESET_N	DDRC last corrected bit number register
DDRC_LCB_MASK_1_SR	0x12C	RO	PRESET_N	DDRC last corrected bit mask status register
DDRC_LCB_MASK_2_SR	0x130	RO	PRESET_N	DDRC last corrected bit mask status register
DDRC_LCB_MASK_3_SR	0x134	RO	PRESET_N	DDRC last corrected bit mask status register
DDRC_LCB_MASK_4_SR	0x138	RO	PRESET_N	DDRC last corrected bit mask status register
DDRC_ECC_INT_SR	0x13C	RO	PRESET_N	DDRC SECDED interrupt status register
DDRC_ECC_INT_CLR_REG	0x140	RW	PRESET_N	DDRC SECDED interrupt clear register

DDR Controller Configuration Register Bit Definitions

DDRC_DYN_SOFT_RESET_CR

Table 7-20 • DDRC_DYN_SOFT_RESET_CR

Bit Number	Name	Reset Value	Description
[31:3]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	AXIRESET	0x1	Set when main AXI reset signal is asserted. Reads and writes to the dynamic registers should not be carried out. This is a read only bit.
1	RESET_APB_REG	0x0	Full soft reset If this bit is set when the soft reset bit is written as '1', all APB registers reset to the power-up state.
0	REG_DDRC_SOFT_RSTB	0x0	This is a soft reset. 0: Puts the controller into reset. 1: Takes the controller out of reset. The controller should be taken out of reset only when all other registers have been programmed. Asserting this bit does NOT reset all the APB configuration registers. Once the soft reset bit is asserted, the APB register should be modified as required.

DDRC_DYN_REFRESH_1_CR

Table 7-21 • DDRC_DYN_REFRESH_1_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:7]	REG_DDRC_T_RFC_MIN	0x23	tRFC (min) – Minimum time from refresh to refresh or activate (specification: 75 ns to 195 ns). Unit: clocks.
6	REG_DDRC_REFRESH_UPDATE_LEVEL	0x0	Toggle this signal to indicate that the refresh register(s) have been updated. The value is automatically updated when exiting soft reset, so it does not need to be toggled
5	REG_DDRC_SELFREF_EN	0x0	initially. If 1, then the controller puts the DRAM into self refresh when the transaction store is empty.
[4:0]	REG_DDRC_REFRESH_TO_X32	0x8	Speculative refresh

DDRC_DYN_REFRESH_2_CR

Table 7-22 • DDRC_DYN_REFRESH_2_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:3]	REG_DDRC_T_RFC_NOM_X32	0x52	tREFI – Average time between refreshes (specification: 7.8 μs). Unit: multiples of 32 clocks.
[2:0]	REG_DDRC_REFRESH_BURST	0x0	The programmed value plus one is the number of refresh timeouts that is allowed to accumulate before traffic is blocked and the refreshes are forced to execute. Closing pages to perform a refresh is a one-time penalty that must be paid for each group of refreshes; therefore, performing refreshes in a burst reduces the per-refresh penalty of these page closings. Higher numbers for burst_of_N_refresh slightly increases utilization; lower numbers decreases the worst-case latency associated with refreshes. 0x0: Single refresh 0x1: Burst-of-2 0x7: Burst-of-8 refresh

DDRC_DYN_POWERDOWN_CR

Table 7-23 • DDRC_DYN_POWERDOWN_CR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
1	REG_DDRC_POWERDOWN_EN	0x1	If true, the controller goes into power-down after a programmable number of cycles (REG_DDRC_POWERDOWN_TO_X32). This register bit may be reprogrammed during the course of normal operation.
0	REG_DDRC_DEEPPOWERDOWN_EN	0x0	1: Controller puts the DRAM into deep power-down mode when the transaction store is empty. 0: Brings controller out of deep power-down mode. Present only in designs that have mobile support.

DDRC_DYN_DEBUG_CR

Table 7-24 • DDRC_DYN_DEBUG_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
0	REG_DDRC_DIS_DQ	0x0	When 1, DDRC will not de-queue any transactions from the CAM.
			Bypass will also be disabled. All transactions are queued in the CAM. This is for debug only; no reads or writes are issued to DRAM as long as this is asserted. This bit is intended to be switched on-the-fly.

$DDRC_MODE_CR$

Table 7-25 • DDRC_MODE_CR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
8	REG_DDRC_DDR3	0x0	DDR3 operating mode DDR2 operating mode
7	REG_DDRC_MOBILE	0x0	Mobile/LPDDR1 DRAM device in use Non-mobile DRAM device in use
6	REG_DDRC_SDRAM	0x0	SDRAM mode Non-SDRAM mode. Only present in designs that support SDRAM and/or mSDR devices.
5	REG_DDRC_TEST_MODE	0x0	Controller is in test mode Controller is in normal mode
[4:2]	REG_DDRC_MODE	0x0	DRAM SECDED mode 000: No SECDED 101: SECDED enabled All other selections are reserved.
[1:0]	REG_DDRC_DATA_BUS_WIDTH	0x0	00: Full DQ bus width to DRAM 01: Half DQ bus width to DRAM 10: Quarter DQ bus width to DRAM 11: Reserved Note that the half bus width modes are only supported when the DRAM bus width is a multiple of 16.

DDRC_ADDR_MAP_BANK_CR

Table 7-26 • DDRC_ADDR_MAP_BANK_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
[11:8]	REG_DDRC_ADDRMAP_BANK_B0	0x0	Selects the address bits used as bank address bit 0. Valid Range: 0 to 14
			Internal Base: 2
			The selected address bit for each of the bank address bits is determined by adding the internal base to the value of this field.
[7:4]	REG_DDRC_ADDRMAP_BANK_B1	0x0	Selects the address bits used as bank address bit 1. Valid Range: 0 to 14
			Internal Base: 3
			The selected address bit for each of the bank address bits is determined by adding the internal base to the value of this field.
[3:0]	REG_DDRC_ADDRMAP_BANK_B2	0x0	Selects the address bits used as bank address bit 2. Valid Range: 0 to 14 and 15
			Internal Base: 4
			The selected address bit is determined by adding the internal base to the value of this field. If set to 15, bank address bit 2 is set to 0.

DDRC_ECC_DATA_MASK_CR

Table 7-27 • DDRC_ECC_DATA_MASK_CR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
[8:1]	CO_WU_RXDATA_INT_ECC	0x0	Internal SECDED. This contains the SECDED associated with the data bus. Data on this bus is presented to the Internal SECDED decode logic.
0	CO_WU_RXDATA_MASK_INT_ECC	0x0	Mask to be used during production test.

DDRC_ADDR_MAP_COL_1_CR

Table 7-28 • DDRC_ADDR_MAP_COL_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modifywrite operation.
[15:12]	REG_DDRC_ADDRMAP_COL_B2	0x0	Full bus width mode: Selects column address bit 3.
			Half bus width mode: Selects column address bit 4.
			Quarter bus width mode: Selects column address bit 5.
			Valid range: 0 to 7 Internal base: 2
			The selected address bit is determined by adding the internal base to the value of this field.
[11:8]	REG_DDRC_ADDRMAP_COL_B3	0x0	Full bus width mode: Selects column address bit 4.
			Half bus width mode: Selects column address bit 5.
			Quarter bus width mode: Selects column address bit 6.
			Valid range: 0 to 7 Internal base: 3
			The selected address bit is determined by adding the internal base to the value of this field.
[7:4]	REG_DDRC_ADDRMAP_COL_B4	0x0	Full bus width mode: Selects column address bit 5.
			Half bus width mode: Selects column address bit 6.
			Quarter bus width mode: Selects column address bit 7.
			Valid Range: 0 to 7 Internal base: 4
			The selected address bit for each of the column address bits is determined by adding the internal base to the value of this field.
[3:0]	REG_DDRC_ADDRMAP_COL_B7	0x0	Full bus width mode: Selects column address bit 8.
			Half bus width mode: Selects column address bit 9.
			Quarter bus width mode: Selects column address bit 11.
			Valid range: 0 to 7, and 15 Internal base: 7
			The selected address bit is determined by adding the internal base to the value of this field. If set to 15, column address bit 9 is set to 0.
			Note: Per JEDEC DDR2 specification, column address bit 10 is reserved for indicating auto-precharge, and hence no source address bit can be mapped to column address bit 10.

DDRC_ADDR_MAP_COL_2_CR

Table 7-29 • DDRC_ADDR_MAP_COL_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modifywrite operation.
[15:12]	REG_DDRC_ADDRMAP_COL_B8	0x0	Full bus width mode: Selects column address bit 9.
			Half bus width mode: Selects column address bit 11.
			Quarter bus width mode: Selects column address bit 12.
			Valid range: 0 to 7, and 15 Internal base: 8
			The selected address bit is determined by adding the internal base to the value of this field. If set to 15, column address bit 9 is set to 0.
			Note: Per JEDEC DDR2 specification, column address bit 10 is reserved for indicating auto-precharge, and hence no source address bit can be mapped to column address bit 10.
[11:8]	REG_DDRC_ADDRMAP_COL_B9	0x0	Full bus width mode: Selects column address bit 11.
			Half bus width mode: Selects column address bit 12.
			Quarter bus width mode: Selects column address bit 13. Valid range: 0 to 7, and 15 Internal base: 9
			The selected address bit is determined by adding the internal base to the value of this field. If set to 15, column address bit 9 is set to 0.
[7:4]	REG_DDRC_ADDRMAP_COL_B10	0x0	Full bus width mode: Selects column address bit 12.
			Half bus width mode: Selects column address bit 13.
			Quarter bus width mode: Unused. Should be set to 15.
			Valid range: 0 to 7, and 15 Internal base: 10
			The selected address bit is determined by adding the internal base to the value of this field. If set to 15, column address bit 10 is set to 0.
[3:0]	REG_DDRC_ADDRMAP_COL_B11	0x0	Full bus width mode: Selects column address bit 13.
			Half bus width mode : Unused. To make it unused, this should be tied to 0xF.
			Quarter bus width mode: Unused. To make it unused, this should be tied to 0xF.
			Valid range: 0 to 7, and 15 Internal base: 11
			The selected address bit is determined by adding the internal base to the value of this field. If set to 15, column address bit 11 is set to 0.

DDRC_ADDR_MAP_ROW_1_CR

Table 7-30 • DDRC_ADDR_MAP_ROW_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
[15:12]	REG_DDRC_ADDRMAP_ROW_B0	0x0	Selects the address bits used as row address bit 0.
			Valid range: 0 to 11
			Internal base: 6
			The selected address bit for each of the row address bits is determined by adding the internal base to the value of this field.
[11:8]	REG_DDRC_ADDRMAP_ROW_B1	0x0	Selects the address bits used as row address bit 1.
			Valid range: 0 to 11
			Internal base: 7
			The selected address bit for each of the row address bits is determined by adding the internal base to the value of this field.
[7:4]	REG_DDRC_ADDRMAP_ROW_B2_11	0x0	Selects the address bits used as row address bits 2 to 11.
			Valid Range: 0 to 11
			Internal Base: 8 for row address bit 2
			9 for row address bit 3
			10 for row address bit 4
			15 for row address bit 9
			16 for row address bit 10
			17 for row address bit 11
			The selected address bit for each of the row address bits is determined by adding the internal base to the value of this field.
[3:0]	REG_DDRC_ADDRMAP_ROW_B12	0x0	Selects the address bit used as row address bit 12.
			Valid Range: 0 to 11, and 15
			Internal Base: 18
			The selected address bit is determined by adding the internal base to the value of this field.
			If set to 15, row address bit 12 is set to 0.

DDRC_ADDR_MAP_ROW_2_CR

Table 7-31 • DDRC_ADDR_MAP_ROW_2_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
[11:8]	REG_DDRC_ADDRMAP_ROW_B13	0x0	Selects the address bits used as row address bit 13. Valid range: 0 to 11, and 15 Internal base: 19 The selected address bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 13 is set to 0.
[7:4]	REG_DDRC_ADDRMAP_ROW_B14	0x0	Selects the address bit used as row address bit 14. Valid range: 0 to 11, and 15 Internal base: 20 The selected address bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 14 is set to 0.
[3:0]	REG_DDRC_ADDRMAP_ROW_B15	0x0	Selects the address bit used as row address bit 15. Valid range: 0 to 11, and 15 Internal base: 21 The selected address bit is determined by adding the internal base to the value of this field. If set to 15, row address bit 15 is set to 0.

DDRC_INIT_1_CR

Table 7-32 • DDRC_INIT_1_CR

Name	Reset Value	Description
Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a a read-modify-write operation.
REG_DDRC_PRE_OCD_X32	0x0	Wait period before driving the OCD Complete command to DRAM.
		Units are in counts of a global timer that pulses every 32 clock cycles.
		There is no known specific requirement for this. It may be set to zero.
REG_DDRC_FINAL_WAIT_X32	0x0	Cycles to wait after completing the DRAM initialization sequence before starting the dynamic scheduler.
		Units are in counts of a global timer that pulses every 32 clock cycles.
		There is known specific requirement for this; it may be set to zero.
REG_DDRC_SKIP_OCD	0x1	This register must be kept at 1.
		Indicates the controller is to skip the OCD adjustment step during DDR2 initialization. OCD_Default and OCD_Exit is performed instead. Not supported
	REG_DDRC_PRE_OCD_X32 REG_DDRC_FINAL_WAIT_X32	Name Value Reserved 0x0 REG_DDRC_PRE_OCD_X32 0x0 REG_DDRC_FINAL_WAIT_X32 0x0

DDRC_CKE_RSTN_CYCLES_1_CR

Table 7-33 • DDRC_CKE_RSTN_CYCLES_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[15:8]	REG_DDRC_PRE_CKE_X1024	0x0	[7:0] bits of REG_DDRC_PRE_CKE_X1024.
			Cycles to wait after reset before driving CKE High to start the DRAM initialization sequence.
			Units: 1,024 clock cycles.
			DDR2 specifications typically require this to be programmed for a delay of >= 200 µs.
[7:0]	REG_DDRC_DRAM_RSTN_X1024	0x0	Number of cycles to assert DRAM reset signal during initialization sequence.
			This is only present for implementations supporting DDR3 devices.

DDRC_CKE_RSTN_CYCLES_2_CR

Table 7-34 • DDRC_ CKE_RSTN_CYCLES_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[11:3]	REG_DDRC_POST_CKE_X1024	0x0	Cycles to wait after driving CKE High to start the DRAM initialization sequence.
			Units: 1,024 clocks.
			DDR – Typically requires a 400 ns delay, requiring this value to be programmed to 2 at all clock speeds.
			SDR – Typically requires this to be programmed for a delay of 100 µs to 200 µs.
[1:0]	REG_DDRC_PRE_CKE_X1024	0x0	[9:0] bits of REG_DDRC_PRE_CKE_X1024.
			Cycles to wait after reset before driving CKE High to start the DRAM initialization sequence.
			Units: 1,024 clock cycles.
			DDR2 specifications typically require this to be programmed for a delay of >= 200 µs.

DDRC_INIT_MR_CR

Table 7-35 • DDRC_INIT_MR_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_DDRC_MR	0x095A	Value to be loaded into the DRAM Mode register. Bit 8 is for the DLL and the setting here is ignored. The controller sets appropriately.

DDRC_INIT_EMR_CR

Table 7-36 • DDRC_INIT_EMR_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_DDRC_EMR	0x0402	Value to be loaded into DRAM EMR registers. Bits [9:7] are for OCD and the setting in this register is ignored. The controller sets those bits appropriately.

DDRC_INIT_EMR2_CR

Table 7-37 • DDRC_INIT_EMR2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_DDRC_EMR2	0x0	Value to be loaded into DRAM EMR2 registers.

DDRC_INIT_EMR3_CR

Table 7-38 • DDRC_INIT_EMR3_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_DDRC_EMR3	0x0	Value to be loaded into DRAM EMR3 registers.

DDRC_DRAM_BANK_TIMING_PARAM_CR

Table 7-39 • DDRC_DRAM_BANK_TIMING_PARAM_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[11:6]	REG_DDRC_T_RC	0x0	tRC – Minimum time between activates to same bank (specification: 65 ns for DDR2-400 and smaller for faster parts). Unit: clocks.
[5:0]	REG_DDRC_T_FAW	0x0	tFAW – Valid only in burst-of-8 mode. At most 4 banks must be activated in a rolling window of tFAW cycles. Unit: clocks

DDRC_DRAM_RD_WR_LATENCY_CR

Table 7-40 • DDRC_DRAM_RD_WR_LATENCY_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:5]	REG_DDRC_WRITE_LATENCY	0x0	Number of clocks between the write command to write data enable PHY.
[4:0]	REG_DDRC_READ_LATENCY	0x0	Time from read command to read data on DRAM interface. Unit: clocks
			This signal is present for designs supporting LPDDR1 DRAM only. It is used to calculate when the DRAM clock may be stopped.

DDRC_DRAM_RD_WR_PRE_CR

Table 7-41 • DDRC_DRAM_RD_WR_PRE_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:5]	REG_DDRC_WR2PRE	0x0	Minimum time between write and precharge to same bank (specifications: WL + BL/2 + tWR = approximately 8 cycles + 15 ns = 14 clocks @ 400 MHz and less for lower frequencies).
			Unit: Clocks
			where:
			WL = Write latency
			BL = Burst length. This must match the value programmed in the BL bit of the mode register to the DRAM.
			tWR = Write recovery time. This comes directly from the DRAM specs.
[4:0]	REG_DDRC_RD2PRE	0x0	tRTP – Minimum time from read to precharge of same bank (specification: tRTP for BL = 4 and tRTP + 2 for BL = 8. tRTP = 7.5 ns). Unit: clocks.

DDRC_DRAM_MR_TIMING_PARAM_CR

Table 7-42 • DDRC_DRAM_MR_TIMING_PARAM_CR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:3]	REG_DDRC_T_MOD	0x0	Present for DDR3 only (replaces REG_DDRC_T_MRD functionality when used with DDR3 devices). The mode register set command updates delay in number of clock cycles. This is required to be programmed even when a design
			that supports DDR3 is running in DDR2 mode (minimum is the larger of 12 clock cycles or 15 ns).
[2:0]	REG_DDRC_T_MRD	0x0	tMRD – Cycles between load mode commands.
			Not used in DDR3 mode.

DDRC_DRAM_RAS_TIMING_CR

Table 7-43 • DDRC_DRAM_RAS_TIMING_CR

Bit Number	Name	Reset Value	Description
[31:11]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:5]	REG_DDRC_T_RAS_MAX	0x0	tRAS(max) – Maximum time between activate and precharge to same bank. Maximum time that a page can be kept open (specification: 70 µs). Minimum value of this register is 1. Zero is invalid. Unit: Multiples of 1,024 clocks.
[4:0]	REG_DDRC_T_RAS_MIN	0x0	tRAS(min) – Minimum time between activate and precharge to the same bank (specification: 45 ns). Unit: clocks.

DDRC_DRAM_RD_WR_TRNARND_TIME_CR

Table 7-44 • DDRC_DRAM_RD_WR_TRNARND_TIME_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:5]	REG_DDRC_RD2WR	0x0	RL + BL/2 + 2 – WL
			Minimum time from READ command to WRITE command. Include time for bus turnaround and all per-bank, per-rank, and global constraints.
			Unit: clocks.
			where:
			WL = Write latency
			BL = Burst length. This must match the value programmed in the BL bit of the mode register to the DRAM.
			RL = Read latency = CAS latency.
[4:0]	REG_DDRC_WR2RD	0x0	WL + tWTR + BL/2
			Minimum time from WRITE command to READ command. Includes time for bus turnaround and recovery times and all perbank, per- rank, and global constraints. Unit: clocks.
			where:
			WL = Write latency.
			BL = Burst length. This should match the value. programmed in the BL bit of the mode register to the DRAM.
			tWTR = Internal WRITE to READ command delay. This comes directly from the DRAM specifications.

DDRC_DRAM_T_PD_CR

Table 7-45 • DDRC_DRAM_T_PD_CR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[8:4]	REG_DDRC_T_XP	0x0	tXP: Minimum time after power-down exit to any operation. Units: clocks
[3:0]	REG_DDRC_T_CKE	0x0	Minimum number of cycles of CKE High/Low during power-down and self refresh. Unit: clocks

$DDRC_DRAM_BANK_ACT_TIMING_CR$

Table 7-46 • DDRC_DRAM_BANK_ACT_TIMING_CR

Bit Number	Name	Reset Value	Description
[31:14]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[13:10]	REG_DDRC_T_RCD	0x0	tRCD – Minimum time from activate to READ or WRITE command to same bank (specification: 15 ns for DDR2-400 and lower for faster devices). Unit: clocks.
[9:7]	REG_DDRC_T_CCD	0x0	tCCD – Minimum time between two reads or two writes (from bank A to bank B) (specification: 2 cycles) is this value + 1. Unit: clocks.
[6:4]	REG_DDRC_T_RRD	0x0	tRRD – Minimum time between activates from bank A to bank B (specification: 10 ns or less). Unit: clocks.
[3:0]	REG_DDRC_T_RP	0x0	tRP – Minimum time from precharge to activate of same bank. Unit: clocks.

DDRC_ODT_PARAM_1_CR

Table 7-47 • DDRC_ODT_PARAM_1_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[11:8]	REG_DDRC_RD_ODT_DELAY	0x0	The delay, in clock cycles, from issuing a READ command to setting ODT values associated with that command. Recommended value for DDR2 is CL – 4.
[7:4]	REG_DDRC_WR_ODT_DELAY	0x0	The delay, in clock cycles, from issuing a WRITE command to setting ODT values associated with that command. The recommended value for DDR2 is CL – 5.
			Where CL is CAS latency.
			DDR ODT has a 2-cycle on-time delay and a 2.5-cycle off-time delay. ODT setting should remain constant for the entire time that DQS is driven by the controller.
[3:2]	REG_DDRC_RANK0_WR_ODT	0x0	0: Indicates which remote ODTs should be turned on during a write to rank 0.
			Each rank has a remote ODT (in the DRAM) which can be turned on by setting the appropriate bit here.
			Set this bit to 1 to enable its ODT.
			1: Uppermost bit is unused.
[1:0]	REG_DDRC_RANK0_RD_ODT	0x0	0: Indicates which remote ODTs should be turned on during a read to rank 0.
			Each rank has a remote ODT (in the DRAM) which can be turned on by setting the appropriate bit here.
			Set this bit to 1 to enable its ODT.
			1: Uppermost bit is unused.

DDRC_ODT_PARAM_2_CR

Table 7-48 • DDRC_ODT_PARAM_2_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:6]	REG_DDRC_RD_ODT_HOLD	0x0	Cycles to hold ODT for a READ command. 0: ODT signal is ON for 1 cycle. 1: ODT signal is ON for 2 cycles, and so on.
[5:2]	REG_DDRC_WR_ODT_HOLD	0x0	Cycles to hold ODT for a WRITE command. 0: ODT signal is ON for 1 cycle. 1: ODT signal is ON for 2 cycles, and so on.
[1:0]	REG_DDRC_WR_ODT_BLOCK	0x0	 00: Block read/write scheduling for 1-cycle when write requires changing ODT settings. 01: Block read/write scheduling for 2 cycles when write requires changing ODT settings. 10: Block read/write scheduling for 3 cycles when write requires changing ODT settings.
			11: Reserved

DDRC_ADDR_MAP_COL_3_CR

Table 7-49 • DDRC_ADDR_MAP_COL_3_CR

Bit Number	Name	Reset Value	Description
[31:16] [7:6]	Reserved		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:12]	REG_DDRC_ADDRMAP_COL_B5	0x0	Full bus width mode: Selects column address bit 6.
			Half bus width mode: Selects column address bit 7.
			Quarter bus width mode: Selects column address bit 8.
			Valid range: 0 to 7
			Internal base: 5
			The selected address bit for each of the column address bits is determined by adding the internal base to the value of this field.
[11:8]	REG_DDRC_ADDRMAP_COL_B6	0x0	Full bus width mode: Selects column address bit 7.
			Half bus width mode: Selects column address bit 8.
			Quarter bus width mode: Selects column address bit 9.
			Valid range: 0 to 7
			Internal base: 6
			The selected address bit for each of the column address bits is determined by adding the internal base to the value of this field.
5	REG_DDRC_DIS_WC	0x0	When 1, disable write combine.
4	REG_DDRC_DIS_ACT_BYPASS	0x0	Only present in designs supporting activate bypass.
			When 1, disable bypass path for high priority read activates
3	REG_DDRC_DIS_RD_BYPASS	0x0	Only present in designs supporting read bypass.
			When 1, disable bypass path for high priority read page hits.
2	REG_DDRC_DIS_PRE_BYPASS		Only present in designs supporting precharge bypass.
			When 1, disable bypass path for high priority precharges

Table 7-49 • DDRC_ADDR_MAP_COL_3_CR (continued)

Bit Number	Name	Reset Value	Description
1	REG_DDRC_DIS_COLLISION_PAGE_OPT		When this is set to '0', auto-precharge is disabled for the flushed command in a collision case. Collision cases are write followed by read to same address, read followed by write to same address, or write followed by write to same address with REG_DDRC_DIS_WC bit = 1 (where same address comparisons exclude the two address bits representing the critical word).
0	REG_DDRC_DIS_SCRUB		This feature is not supported. Only the default value works. 1: Disable SECDED scrubs 0: Enable SECDED scrubs Valid only when REG_DDRC_ECC_MODE = 100 or 101.

DDRC_MODE_REG_RD_WR_CR

Table 7-50 • DDRC_MODE_REG_RD_WR_CR

Bit Number	Name	Reset Value	Description	
[31:4]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.	
3	REG_DDRC_MR_WR	0x0	When 1 is written and DDRC_REG_MR_WR_BUSY is Low, a mode register read or write operation is started. There is no need for the CPU to set this back to zero. This bit always reads as zero. Controller accepts this command, if this signal is detected High and DDRC_REG_MR_WR_BUSY is detected Low.	
[2:1]	REG_DDRC_MR_ADDR	0x0	Address of the Mode register that is to be written to. 00: MR0 01: MR1 10: MR2 11: MR3	
0	REG_DDRC_MR_TYPE	0x0	Indicates whether the Mode register operation is read or write. 1: Read 0: Write	

DDRC_MODE_REG_DATA_CR

Table 7-51 • DDRC_MODE_REG_DATA_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_DDRC_MR_DATA	0x0	Mode register write data

DDRC_PWR_SAVE_1_CR

Table 7-52 • DDRC_PWR_SAVE_1_CR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:6]	REG_DDRC_POST_SELFREF_GAP_X32	0x10	Minimum time to wait after coming out of self refresh before doing anything. This must be larger than all the constraints that exist (specifications: maximum of tXSNR and tXSRD and tXSDLL, which is 512 clocks). Unit: Multiples of 32 clocks.
[5:1]	REG_DDRC_POWERDOWN_TO_X32	0x06	After this many clocks of NOP or DESELECT, the controller puts the DRAM into power-down. This must be enabled in the Master Control register. Unit: Multiples of 32 clocks.
0	REG_DDRC_CLOCK_STOP_EN	0x0	1: Stops the clock to the PHY whenever a clock is not required by LPDDR1. 0: Clock will never be stopped. This is only present for implementations supporting mobile/LPDDR1 devices.

$DDRC_PWR_SAVE_2_CR$

Table 7-53 • DDRC_PWR_SAVE_2_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
11	REG_DDRC_DIS_PAD_PD	0x0	Disable the pad power-down feature. Enable the pad power-down feature. Used only in non-DFI designs.

Table 7-53 • DDRC_PWR_SAVE_2_CR (continued)

Bit Number	Name	Reset Value	Description
[10:3]	REG_DDRC_DEEPPOWERDOWN_TO_X1024	0x0	Minimum deep power-down time applicable only for LPDDR2. LPDDR exits from deep power-down mode immediately after REG_DDRC_DEEPPOWERDOWN_EN is deasserted. For LPDDR2, value from the specification is 500 µs. Units are in 1,024 clock cycles. Present only in designs that have mobile support.
[2:0]	REG_DDRC_PAD_PD	0x0	If pads have a power-saving mode, this is the greater of the time for the pads to enter power-down or the time for the pads to exit power-down. Used only in non-DFI designs. Unit: clocks.

$DDRC_ZQ_LONG_TIME_CR$

Table 7-54 • DDRC_ZQ_LONG _TIME_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[9:0]	REG_DDRC_T_ZQ_LONG_NOP	0x0	Number of cycles of NOP required after a ZQCL (ZQ calibration long) command is issued to DRAM. Units: Clock cycles.
			This is only present for implementations supporting DDR3 devices

DDRC_ZQ_SHORT_TIME_CR

Table 7-55 • DDRC_ZQ_SHORT_TIME_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[9:0]	REG_DDRC_T_ZQ_SHORT_NOP	0x0	Number of cycles of NOP required after a ZQCS (ZQ calibration short) command is issued to DRAM. Units: Clock cycles.
			This is only present for implementations supporting DDR3 devices.

DDRC_ZQ_SHORT_INT_REFRESH_MARGIN_1_CR

Table 7-56 • DDRC_ZQ_SHORT_INT_REFRESH_MARGIN_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[15:4]	REG_DDRC_T_ZQ_SHORT_INTERVAL_X1024	0x0	[11:0] bits of REG_DDRC_T_ZQ_SHORT_INTERVAL_X1024.
			Average interval to wait between automatically issuing ZQ calibration short (ZQCS) commands to DDR3 devices. Not considered if REG_DDRC_DIS_AUTO_ZQ = 1. Units: 1,024 clock cycles
			This is only present for implementations supporting DDR3 devices.
[3:0]	REG_DDRC_REFRESH_MARGIN	0x02	Threshold value in number of clock cycles before the critical refresh or page timer expires. A critical refresh is to be issued before this threshold is reached. Microsemi recommends using the default value.
			Unit: Multiples of 32 clocks.

DDRC_ZQ_SHORT_INT_REFRESH_MARGIN_2_CR

Table 7-57 • DDRC_ZQ_SHORT_INT_REFRESH_MARGIN_2_CR

Bit Number	Name	Reset Value	Description
[31:8]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[7:0]	REG_DDRC_T_ZQ_SHORT_INTERVAL_X1024	0x0	[19:12] bits of REG_DDRC_T_ZQ_SHORT_INTERVAL_X1024.
			Average interval to wait between automatically issuing ZQ calibration short (ZQCS) commands to DDR3 devices. Not considered if REG_DDRC_DIS_AUTO_ZQ = 1.
			Units: 1,024 clock cycles
			This is only present for implementations supporting DDR3 devices.

DDRC_PERF_PARAM_1_CR

Table 7-58 • DDRC_PERF_PARAM_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[15:13]	REG_DDRC_BURST_RDWR	0x0	001: Burst length of 4 010: Burst length of 8 100: Burst length of 16
			All other values are reserved.
			This controls the burst size used to access the DRAM. This must match the BL mode register setting in the DRAM.
			The DDRC and AXI controllers are optimized for a burst length of 8.
			The recommended setting is 8. A burst length of 16 is only supported for LPDDR1. Setting to 16 when using LPDDR1 in half/quarter bus mode may boost performance.
			For systems that tend to do many single cycle random transactions, a burst length of 4 may slightly improve system performance.
12	Reserved	0x0	This bit must always be set to zero.
[11:5]	REG_DDRC_RDWR_IDLE_GAP	0x04	When the preferred transaction store is empty for this many clock cycles, switch to the alternate transaction store if it is non-empty.
			The read transaction store (both high and low priority) is the default preferred transaction store and the write transaction store is the alternate store.
			When "Prefer write over read" is set, this is reversed.
4	REG_DDRC_PAGECLOSE	0x0	1: Bank is closed and kept closed if no transactions are available for it. This is different from auto-precharge:
			(a) Explicit precharge commands are used, and not read/write with auto-precharge and
			(b) Page is not closed after a read/write if there is another read/write pending to the same page.
			0: Bank remains open until there is a need to close it (to open a different page, or for page timeout or refresh timeout.) This does not apply when auto-refresh is used.
3	Reserved		This bit must always be set to zero.
[2:0]	REG_DDRC_LPR_NUM_ENTRIES	0x03	Number of entries in the low priority transaction store is this value plus 1.
			(READ_CAM_DEPTH – (REG_DDRC_LPR_NUM_ENTRIES + 1)) is the number of entries available for the high priority transaction store.
			READ_CAM_DEPTH = Depth of the read transaction store. Setting this to maximum value allocates all entries to low priority transaction store.
			Setting this to 0 allocates 1 entry to low priority transaction store and the rest to high priority transaction store.

DDRC_HPR_QUEUE_PARAM_1_CR

Table 7-59 • DDRC_HPR_QUEUE_PARAM_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15	REG_DDRC_HPR_MAX_STARVE_X32	0x0	Lower 1 bit of REG_DDRC_HPR_MAX_STARVE_X32. Number of clocks that the HPR queue can be starved before it goes critical. Unit: 32 clocks.
[14:4]	REG_DDRC_HPR_MIN_NON_CRITICAL	0x0	Number of clocks that the HPR queue is guaranteed to be non-critical. Unit: 32 clocks.
[3:0]	REG_DDRC_HPR_XACT_RUN_LENGTH	0x0	Number of transactions that are serviced once the HPR queue goes critical is the smaller of this value and number of transactions available. Units: Transactions.

DDRC_HPR_QUEUE_PARAM_2_CR

Table 7-60 • DDRC_HPR_QUEUE_PARAM_2_CR

Bit Number	Name	Reset Value	Description
[31:11]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:0]	REG_DDRC_HPR_MAX_STARVE_X32	0x0	[11:1] bits of REG_DDRC_LPR_MAX_STARVE_X32
			Number of clocks that the HPR queue can be starved before it goes critical. Unit: 32 clocks.

DDRC_LPR_QUEUE_PARAM_1_CR

Table 7-61 • DDRC_LPR_QUEUE_PARAM_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15	REG_DDRC_LPR_MAX_STARVE_X32	0x0	Lower 1 bit of REG_DDRC_LPR_MAX_STARVE_X32.
			Number of clocks that the LPR queue can be starved before it goes critical. Unit: 32 clocks.

Table 7-61 • DDRC_LPR_QUEUE_PARAM_1_CR (continued)

Bit Number	Name	Reset Value	Description
[14:4]	REG_DDRC_LPR_MIN_NON_CRITICAL	0x0	Number of clocks that the LPR queue is guaranteed to be non-critical. Unit: 32 clocks.
[3:0]	REG_DDRC_LPR_XACT_RUN_LENGTH	0x0	Number of transactions that are serviced once the LPR queue goes critical is the smaller of this value and number of transactions available. Units: Transactions.

DDRC_LPR_QUEUE_PARAM_2_CR

Table 7-62 • DDRC_LPR_QUEUE_PARAM_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:0]	REG_DDRC_LPR_MAX_STARVE_X32	0x0	[11:1] bits of REG_DDRC_HPR_MAX_STARVE_X32. Number of clocks that the LPR queue can be starved before it goes critical. Unit: 32 clocks.

$DDRC_WR_QUEUE_PARAM_CR$

Table 7-63 • DDRC_WR_QUEUE_PARAM_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:4]	REG_DDRC_W_MIN_NON_CRITICAL	0x0	Number of clocks that the write queue is guaranteed to be non-critical. Unit: 32 clocks.
[3:0]	REG_DDRC_W_XACT_RUN_LENGTH	0x0	Number of transactions that are serviced once the WR queue goes critical is the smaller of this value and number of transactions available. Units: Transactions.

DDRC_PERF_PARAM_2_CR

Table 7-64 • DDRC_PERF_PARAM_2_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
11	REG_DDRC_BURSTCHOP	0x0	Not supported in this version of the DDRC controller always reads as zero.
10	REG_DDRC_BURST_MODE	0x0	1: Interleaved burst mode
			0: Sequential burst mode
			The burst mode programmed in the DRAM mode register and the order of the input data to the controller should both match the value programmed in the REG_DDRC_BURST_MODE register.
[9:2]	REG_DDRC_GO2CRITICAL_HYSTER ESIS	0x0	Indicates the number of cycles that CO_GS_GO2CRITICAL_RD or CO_GS_GO2CRITICAL_WR must be asserted before the corresponding queue moves to the critical state in the DDRC.
1	REG_DDRC_PREFER_WRITE	0x0	If set, the bank selector prefers writes over reads.
0	REG_DDRC_FORCE_LOW_PRI_N	0x0	Active Low signal. When asserted ('0'), all incoming transactions are forced to low priority. Forcing the incoming transactions to low priority implicitly turns off bypass.

DDRC_PERF_PARAM_3_CR

Table 7-65 • DDRC_PERF_PARAM_3_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
0	REG_DDRC_EN_2T_TIMING_MODE	0x0	1: DDRC uses 2T timing. 0: DDRC uses 1T timing.

DDRC_DFI_RDDATA_EN_CR

Table 7-66 • DDRC_DFI_RDDATA_EN_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[4:0]	REG_DDRC_DFI_T_RDDATA_EN	0x0	Time from the assertion of a READ command on the DFI interface to the assertion of the DDRC_DFI_RDDATA_EN signal.
			Program this to (RL $-$ 1), where RL is the read latency of the DRAM.
			For LPDDR1 this should be set to RL. Units: Clocks

DDRC_DFI_MIN_CTRLUPD_TIMING_CR

Table 7-67 • DDRC_DFI_MIN_CTRLUPD_TIMING_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:0]	REG_DDRC_DFI_T_CTRLUP_MIN	0x03	Specifies the minimum number of clock cycles that the DDRC_DFI_CTRLUPD_REQ signal must be asserted. Lowest value to assign to this variable is 0x3. Units: Clocks

DDRC_DFI_MAX_CTRLUPD_TIMING_CR

Table 7-68 • DDRC_DFI_MAX_CTRLUPD_TIMING_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:0]	REG_DDRC_DFI_T_CTRLUP_MAX	0x40	Specifies the maximum number of clock cycles that the DDRC_DFI_CTRLUPD_REQ signal can assert. Lowest value to assign to this variable is 0x40. Units: Clocks

$DDRC_DFI_WR_LVL_CONTROL_1_CR$

Table 7-69 • DDRC_DFI_WR_LVL_CONTROL_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:8]	REG_DDRC_DFI_WRLVL_MAX_X1024	0x0	[7:0] bits of REG_DDRC_DFI_WRLVL_MAX_X1024. Write leveling maximum time. Specifies the maximum number of clock cycles that the controller will wait for a response (PHY_DFI_WRLVL_RESP) to a write leveling enable signal (DDRC_DFI_WRLVL_EN). Only applicable when connecting to PHY's operating in PHY WrLvl Evaluation mode. Units: 1,024 clocks Only present in designs that support DDR3 devices.
[7:0]	REG_DDRC_WRLVL_WW	0x0	Write leveling write-to-write delay. Specifies the minimum number of clock cycles from the assertion of a DDRC_DFI_WRLVL_STROBE signal to the next DDRC_DFI_WRLVL_STROBE signal. Only applicable when connecting to PHYs operating in PHY RdLvl Evaluation mode. Only present in designs that support DDR3 devices. Units: Clocks

DDRC_DFI_WR_LVL_CONTROL_2_CR

Table 7-70 • DDRC_DFI_WR_LVL_CONTROL_2_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:5]	REG_DDRC_DFI_T_WLMRD	0x0	First DQS/DQS# rising edge after write leveling mode is programmed. Only present in designs that support DDR3 devices. Units: Clocks
4	REG_DDRC_DFI_WR_LEVEL_EN	0x0	1: Write leveling mode has been enabled as part of the initialization sequence. Only present in designs that support DDR3 devices.
[3:0]	REG_DDRC_DFI_WRLVL_MAX_X1024	0x0	[11:8] bits of REG_DDRC_DFI_WRLVL_MAX_X1024. Write leveling maximum time. Specifies the maximum number of clock cycles that the controller will wait for a response (PHY_DFI_WRLVL_RESP) to a write leveling enable signal (DDRC_DFI_WRLVL_EN). Only applicable when connecting to PHYs operating in PHY write leveling evaluation mode. Units: 1,024 clocks. Only present in designs that support DDR3 devices.

DDRC_DFI_RD_LVL_CONTROL_1_CR

Table 7-71 • DDRC_DFI_RD_LVL_CONTROL_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:8]	REG_DDRC_DFI_RDLVL_MAX_X1024	0x0	[7:0] bits. Read leveling maximum time. Specifies the maximum number of clock cycles that the controller will wait for a response (PHY_DFI_RDLVL_RESP) to a read leveling enable signal (DDRC_DFI_RDLVL_EN or DDRC_DFI_RDLVL_GATE_EN). Only applicable when connecting to PHYs operating in PHY RdLvl Evaluation mode. Only present in designs that support DDR3 devices. Units: 1,024 clocks
[7:0]	REG_DDRC_RDLVL_RR	0x0	Only present in designs that support DDR3 devices. Read leveling read-to-read delay. Specifies the minimum number of clock cycles from the assertion of a read command to the next read command. Only applicable when connecting to PHYs operating in PHY RdLvl Evaluation mode. Only present in designs that support DDR3 devices. Units: Clocks

DDRC_DFI_RD_LVL_CONTROL_2_CR

Table 7-72 • DDRC_DFI_RD_LVL_CONTROL_2_CR

Bit Number	Name	Reset Value	Description
[31:6]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	REG_DDRC_DFI_RD_DATA_EYE_TRAIN	0x0	Read Data Eye training mode has been enabled as part of the initialization sequence.
4	REG_DDRC_DFI_RD_DQS_GATE_LEVEL	0x0	1: Read DQS Gate Leveling mode has been enabled as part of the initialization sequence.
			Only present in designs that support DDR3 devices.
[3:0]	REG_DDRC_DFI_RDLVL_MAX_X1024	0x0	[12:8] bits.
			Read leveling maximum time. Specifies the maximum number of clock cycles that the controller will wait for a response (PHY_DFI_RDLVL_RESP) to a read leveling enable signal (DDRC_DFI_RDLVL_EN or DDRC_DFI_RDLVL_GATE_EN).
			Only applicable when connecting to PHYs operating in PHY RdLvI Evaluation mode.
			Only present in designs that support DDR3 devices. Units: 1,024 clocks

DDRC_DFI_CTRLUPD_TIME_INTERVAL_CR

Table 7-73 • DDRC_DFI_CTRLUPD_TIME_INTERVAL_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:8]	REG_DDRC_DFI_T_CTRLUPD_INTERVAL_MIN_X1024	0x10	This is the minimum amount of time between controller initiated DFI update requests (which will be executed whenever the controller is idle). Set this number higher to reduce the frequency of update requests, which can have a small impact on the latency of the first read request when the controller is idle. Units: 1,024 clocks
[7:0]	REG_DDRC_DFI_T_CTRLUPD_INTERVAL_MAX_X1024	0x16	This is the maximum amount of time between controller initiated DFI update requests. This timer resets with each update request; when the timer expires, traffic is blocked for a few cycles. PHY can use this idle time to recalibrate the delay lines to the DLLs. The DLL calibration is also used to reset PHY FIFO pointers in case of data capture errors. Updates are required to maintain calibration over PVT, but frequent updates may impact performance. Units: 1,024 clocks

DDRC_DYN_SOFT_RESET_2_CR

Table 7-74 • DDRC_DYN_SOFT_RESET_2_CR

Bit Number	Name	Reset Value	Description
[31:3]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	AXIRESET	0x1	Set when main AXI reset signal is asserted. Reads and writes to the dynamic registers should not be carried out. This is a read only bit.

Table 7-74 • DDRC_DYN_SOFT_RESET_2_CR (continued)

Bit Number	Name	Reset Value	Description
1	RESET_APB_REG	0x0	Full soft reset
			If this bit is set when the soft reset bit is written as '1', all APB registers reset to the power-up state.
0	REG_DDRC_SOFT_RSTB	0x0	This is a soft reset.
			O: Puts the controller into reset. Takes the controller out of reset.
			The controller should be taken out of reset only when all other registers have been programmed.
			Asserting this bit does NOT reset all the APB configuration registers. Once the soft reset bit is asserted, the APB register should be modified as required.

DDRC_AXI_FABRIC_PRI_ID_CR

Table 7-75 • DDRC_AXI_FABRIC_PRI_ID_CR

Bit Number	Name	Reset Value	Description
[31:6]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[5:4]	PRIORITY_ENABLE_BIT	0x0	This is to set the priority of the fabric master ID.
			01: Indicates that the ID is higher priority but still lower than the ICache and DSG bus. 10/11: Indicates that the ID has the highest priority; even higher than ICache and DSG bus (to be used for isochronous traffic display applications only). This only affects the reads. Writes would still have the priority lower than Cache/DSG. 00: None of the master IDs from the fabric have a higher priority.
[3:0]	PRIORITY_ID	0x0	If the Priority Enable bit is 1, this ID will have a higher priority over other IDs.

DDRC_SR

Table 7-76 • DDRC _SR

Bit Number	Name	Reset Value	Description
[31:6]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[5:3]	DDRC_CORE_REG_OPERATING_MODE	0x0	Operating mode. This is 3 bits wide in designs with mobile support and 2-bits in all other designs.
			Non-mobile designs: 000: Init 001: Normal
			010: Power-down 011: Self Refresh
			Mobile designs:
			000: Init 001: Normal
			010: Power-down
			011: Self refresh 1XX: Deep power-down
2	DDRC_REG_TRDLVL_MAX_ERROR	0x0	Single pulse output: '1' indicates the RDRLVL_MAX timer has timed out.
1	DDRC_REG_TWRLVL_MAX_ERROR	0x0	Single pulse output: '1' indicates the WRLVL_MAX timer has timed out.
0	DDRC_REG_MR_WR_BUSY	0x0	1: Indicates that a mode register write operation is in progress.
			0: Indicates that the core can initiate a mode register write operation.
			Core must initiate an MR write operation only if this signal is Low. This signal goes High in the clock after the controller accepts the write request. It goes Low when the MR write command is issued to the DRAM. Any MR write command that is received when DDRC_REG_MR_WR_BUSY is High, is not accepted.

DDRC_SINGLE_ERR_CNT_STATUS_SR

Table 7-77 • DDRC_SINGLE_ERR_CNT_STATUS_SR

Bit Number	Name	Reset Value	Description
[31:0]	DDRC_SINGLE_ERR_CNT_STATUS_REG	0x0	Single error count status.
			If the count reaches 0xFFFF, it is held and only cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

${\it DDRC_DOUBLE_ERR_CNT_STATUS_SR}$

Table 7-78 • DDRC_DOUBLE_ERR_CNT_STATUS_SR

Bit Number	Name	Reset Value	Description
[31:0]	DDRC_DOUBLE_ERR_CNT_STATUS_REG	0x0	Double error count status. If the count reaches 0xFFFF then it is held and only cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LUE_SYNDROME_1_SR

Table 7-79 • DDRC_LUE_SYNDROME_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[15:0] bits of DDRC_REG_ECC_SYNDROMES.
			First data which has SECDED error in it. 72 bits consists of the following: SECDED: [71:64] – SECDED [63:00] – Data
			In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows:
			Uncorrectable error, lower lane
			Uncorrectable error, upper lane
			Correctable error, lower lane
			Correctable error, upper lane
			Only present in designs that support SECDED.
			This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LUE_SYNDROME_2_SR

Table 7-80 • DDRC_LUE_SYNDROME_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[31:16] bits of DDRC_REG_ECC_SYNDROMES. First data which has SECDED error in it. 72 bits consists of the following: SECDED: [71:64] – SECDED
			[71:64] – SECDED [63:00] – Data In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows: Uncorrectable error, lower lane Uncorrectable error, upper lane Correctable error, upper lane Correctable error, upper lane Only present in designs that support SECDED. This is cleared after DDRC ECC ERR READ DONE CR is written over by

DDRC_LUE_SYNDROME_3_SR

Table 7-81 • DDRC_LUE_SYNDROME_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[47:32] bits of DDRC_REG_ECC_SYNDROMES.
			First data which has SECDED error in it. 72 bits consists of the following:
			SECDED:
			[71:64] - SECDED
			[63:00] – Data
			In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows:
			Uncorrectable error, lower lane
			Uncorrectable error, upper lane
			Correctable error, lower lane
			Correctable error, upper lane
			Only present in designs that support SECDED.
			This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LUE_SYNDROME_4_SR

Table 7-82 • DDRC_LUE_SYNDROME_4_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[63:48] bits of DDRC_REG_ECC_SYNDROMES. First data which has SECDED error in it. 72 bits consists of the following: SECDED: [71:64] – SECDED [63:00] – Data In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows: Uncorrectable error, lower lane Uncorrectable error, upper lane Correctable error, upper lane Correctable error, upper lane Only present in designs that support SECDED. This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LUE_SYNDROME_5_SR

Table 7-83 • DDRC_LUE_SYNDROME_5_SR

Bit Number	Name	Reset Value	Description
[16:8]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[7:0]	DDRC_REG_ECC_SYNDROME S	0x0	[71:64] bits of DDRC_REG_ECC_SYNDROMES. First data which has SECDED error in it. 72 bits consists of the following: SECDED: [71:64] – SECDED [63:00] – Data In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows: Uncorrectable error, lower lane Uncorrectable error, upper lane Correctable error, upper lane Correctable error, upper lane Only present in designs that support SECDED. This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LUE_ADDRESS_1_SR

Table 7-84 • DDRC_LUE_ADDRESS_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15:0	DDRC_REG_ECC_ROW	0x0	Row where the SECDED error occurred. Only present in designs that support SECDED.

DDRC_LUE_ADDRESS_2_SR

Table 7-85 • DDRC_LUE_ADDRESS_2_SR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:12]	DDRC_REG_ECC_BANK	0x0	Bank where the SECDED error occurred. Only present in designs that support SECDED.
[11:0]	DDRC_REG_ECC_COL	0x0	Column where the SECDED error occurred. Col[0] is always set to 0, coming out of the controller. This bit is overwritten by the register module and indicates whether the error came from upper or lower lane. Only present in designs that support SECDED.

$DDRC_LCE_SYNDROME_1_SR$

Table 7-86 • DDRC_LCE_SYNDROME_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[15:0] bits of DDRC_REG_ECC_SYNDROMES.
			First data which has SECDED error in it. 72 bits consists of the following:
			SECDED:
			[71:64] – SECDED
			[63:00] – Data
			In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows:
			Uncorrectable error, lower lane
			Uncorrectable error, upper lane
			Correctable error, lower lane
			Correctable error, upper lane
			Only present in designs that support SECDED.
			This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

$DDRC_LCE_SYNDROME_2_SR$

Table 7-87 • DDRC_LCE_SYNDROME_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[31:16] bits of DDRC_REG_ECC_SYNDROMES. First data which has SECDED error in it. 72 bits consists of the following: SECDED: [71:64] – SECDED [63:00] – Data In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, then the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows: Uncorrectable error, lower lane Uncorrectable error, upper lane Correctable error, upper lane Correctable error, upper lane Only present in designs that support SECDED. This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LCE_SYNDROME_3_SR

Table 7-88 • DDRC_LCE_SYNDROME_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[47:32] bits of DDRC_REG_ECC_SYNDROMES.
			First data which has SECDED error in it. 72 bits consists of the following:
			SECDED:
			[71:64] – SECDED
			[63:00] – Data
			In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows:
			Uncorrectable error, lower lane
			Uncorrectable error, upper lane
			Correctable error, lower lane
			Correctable error, upper lane
			Only present in designs that support SECDED.
			This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LCE_SYNDROME_4_SR

Table 7-89 • DDRC_LCE_SYNDROME_4_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_SYNDROMES	0x0	[63:48] bits of DDRC_REG_ECC_SYNDROMES.
			First data which has SECDED error in it. 72 bits consists of the following:
			SECDED:
			[71:64] – SECDED
			[63:00] – Data
			In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows:
			Uncorrectable error, lower lane
			Uncorrectable error, upper lane
			Correctable error, lower lane
			Correctable error, upper lane
			Only present in designs that support SECDED.
			This is cleared after DDRC_ECC_ERR_READ_DONE_CR is written over by the system.

DDRC_LCE_SYNDROME_5_SR

Table 7-90 • DDRC_LCE_SYNDROME_5_SR

Bit Number Name	Reset Value	Description
[16:8] Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[7:0] DDRC_REG_ECC_SYNDROMES	0x0	[71:64] bits of DDRC_REG_ECC_SYNDROMES. First data which has SECDED error in it. 72 bits consists of the following SECDED: [71:64] – SECDED [63:00] – Data In the same clock cycle, if one lane has a correctable error and the other lane has an uncorrectable error, the syndrome for the uncorrectable error is sent on this bus. If more than one data lane has an error in it, the lower data lane is selected. The priority applied when there are multiple errors in the same cycle is as follows: Uncorrectable error, lower lane Uncorrectable error, upper lane Correctable error, upper lane Correctable error, upper lane Only present in designs that support SECDED. This is cleared after DDRC_ECC_ERR_READ_DONE_CR

DDRC_LCE_ADDRESS_1_SR

Table 7-91 • DDRC_LCE_ADDRESS_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_REG_ECC_ROW	0x0	Row where the SECDED error occurred.

$DDRC_LCE_ADDRESS_2_SR$

Table 7-92 • DDRC_LCE_ADDRESS_2_SR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:12]	DDRC_REG_ECC_BANK	0x0	Bank where the SECDED error occurred.
[11:0]	DDRC_REG_ECC_COL	0x0	Column where the SECDED error occurred. Col[0] is always set to 0 coming out of the controller. This bit is overwritten by the register module and indicates whether the error came from upper or lower lane.

DDRC_LCB_NUMBER_SR

Table 7-93 • DDRC_LCB_NUMBER_SR

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[6:0]	DDRC_LCB_BIT_NUM	0x0	Indicates the location of the bit that caused a single-bit error in SECDED case (encoded value). If more than one data lane has an error in it, the lower data lane is selected. This register is 7 bits wide in order to handle 72 bits of the data present in a single lane. This does not indicate CORRECTED_BIT_NUM in the case of device correction SECDED. The encoding is only present in designs that support SECDED.

DDRC_LCB_MASK_1_SR

Table 7-94 • DDRC_LCB_MASK_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_LCB_MASK	0x0	[15:0] bits of DDRC_LCB_MASK.
			Indicates the mask of the corrected data.
			1: On any bit indicates that the bit has been corrected by the DRAM SECDED logic.
			0: On any bit indicates that the bit has NOT been corrected by the DRAM SECDED logic.
			Valid when any bit of DDRC_REG_ECC_CORRECTED_ERR is High.
			This mask doesn't indicate any correction that has been made in the SECDED check bits.
			If there are errors in multiple lanes, this signal will have the mask for the lowest lane.

DDRC_LCB_MASK_2_SR

Table 7-95 • DDRC_LCB_MASK_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_LCB_MASK	0x0	[31:16] bits of DDRC_LCB_MASK.
			Indicates the mask of the corrected data.
			1: On any bit indicates that the bit has been corrected by the DRAM SECDED logic.
			0: On any bit indicates that the bit has NOT been corrected by the DRAM SECDED logic.
			Valid when any bit of DDRC_REG_ECC_CORRECTED_ERR is High.
			This mask does not indicate any correction that has been made in the SECDED check bits.
			If there are errors in multiple lanes, this signal will have the mask for the lowest lane.

DDRC_LCB_MASK_3_SR

Table 7-96 • DDRC_LCB_MASK_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_LCB_MASK	0x0	[47:32] bits of DDRC_LCB_MASK.
			Indicates the mask of the corrected data.
			1: On any bit indicates that the bit has been corrected by the DRAM SECDED logic.
			0: On any bit indicates that the bit has NOT been corrected by the DRAM SECDED logic.
			Valid when any bit of DDRC_REG_ECC_CORRECTED_ERR is High.
			This mask does not indicate any correction that has been made in the SECDED check bits.
			If there are errors in multiple lanes, this signal will have the mask for the lowest lane.

DDRC_LCB_MASK_4_SR

Table 7-97 • DDRC_LCB_MASK_4_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDRC_LCB_MASK	0x0	[61:48] bits of DDRC_LCB_MASK.
			Indicates the mask of the corrected data.
			1: On any bit indicates that the bit has been corrected by the DRAM SECDED logic.
			0: On any bit indicates that the bit has NOT been corrected by the DRAM SECDED logic.
			Valid when any bit of DDRC_REG_ECC_CORRECTED_ERR is High.
			This mask does not indicate any correction that has been made in the SECDED check bits.
			If there are errors in multiple lanes, this signal will have the mask for the lowest lane.

DDRC_ECC_INT_SR

Table 7-98 • DDRC_ECC_INT_SR

Bit Number	Name	Reset Value	Description
[31:3]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[2:0]	DDRC_ECC_STATUS_SR	0x0	Bit 0: '1' Indicates the SECDED interrupt is due to a single error. Bit 1: '1' Indicates the SECDED interrupt is due to a double error. Bit 3: Always '1'

DDRC_ECC_INT_CLR_REG

Table 7-99 • DDRC_ECC_INT_CLR_REG

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDRC_ECC_INT_CLR_REG	0x0	This register should be written by the processor when it has read the SECDED error status information. This helps to clear all the SECDED status information, such as error counters and other SECDED registers. The read value of this register is always 0.

PHY Configuration Register Summary

Table 7-100 • PHY Configuration Register Summary

Register Name	Offset	Туре	Reset Source	Description
PHY_DYN_BIST_TEST_CR	0x200	RW	PRESET_N	PHY BIST test configuration register
PHY_DYN_BIST_TEST_ERRCLR_1_CR	0x204	RW	PRESET_N	PHY BIST test error clear register
PHY_DYN_BIST_TEST_ERRCLR_2_CR	0x208	RW	PRESET_N	PHY BIST test error clear register
PHY_DYN_BIST_TEST_ERRCLR_3_CR	0x20C	RW	PRESET_N	PHY BIST test error clear register
PHY_BIST_TEST_SHIFT_PATTERN_1_CR	0x210	RW	PRESET_N	PHY BIST test shift pattern register
PHY_BIST_TEST_SHIFT_PATTERN_2_CR	0x214	RW	PRESET_N	PHY BIST test shift pattern register
PHY_BIST_TEST_SHIFT_PATTERN_3_CR	0x218	RW	PRESET_N	PHY BIST test shift pattern register
PHY_DYN_LOOPBACK_CR	0x21C	RW		PHY loopback test configuration register
PHY_BOARD_LOOPBACK_CR	0x220	RW		PHY Board loopback test configuration register
PHY_CTRL_SLAVE_RATIO_CR	0x224	RW		PHY control slice DLL slave ratio register
PHY_CTRL_SLAVE_FORCE_CR	0x228	RW		PHY control slice DLL slave force register
PHY_CTRL_SLAVE_DELAY_CR	0x22C	RW		PHY control slice DLL slave delay register
PHY_DATA_SLICE_IN_USE_CR	0x230	RW	PRESET_N	PHY control slice in use register
PHY_LVL_NUM_OF_DQ0_CR	0x234	RW	PRESET_N	PHY receiver on off control register
PHY_DQ_OFFSET_1_CR	0x238	RW		Selection register of offset value from DQS to DQ
PHY_DQ_OFFSET_2_CR	0x23C	RW	PRESET_N	Selection register of offset value from DQS to DQ
PHY_DQ_OFFSET_3_CR	0x240	RW		Selection register of offset value from DQS to DQ
PHY_DIS_CALIB_RST_CR	0x244	RW	PRESET_N	Calibration reset disabling register
PHY_DLL_LOCK_DIFF_CR	0x248	RW	_	Selects the maximum number of delay line taps
PHY_FIFO_WE_IN_DELAY_1_CR	0x24C	RW	PRESET_N	Delay value for FIFO WE
PHY_FIFO_WE_IN_DELAY_2_CR	0x250	RW	PRESET_N	Delay value for FIFO WE
PHY_FIFO_WE_IN_DELAY_3_CR	0x254	RW	PRESET_N	Delay value for FIFO WE
PHY_FIFO_WE_IN_FORCE_CR	0x258	RW		Overwriting delay value selection reg for FIFO WE.
PHY_FIFO_WE_SLAVE_RATIO_1_CR	0x25C	RW	PRESET_N	Ratio value for FIFO WE slave DLL
PHY_FIFO_WE_SLAVE_RATIO_2_CR	0x260	RW	PRESET_N	Ratio value for FIFO WE slave DLL
PHY_FIFO_WE_SLAVE_RATIO_3_CR	0x264	RW	PRESET_N	Ratio value for FIFO WE slave DLL
PHY_FIFO_WE_SLAVE_RATIO_4_CR	0x268	RW	PRESET_N	Ratio value for FIFO WE slave DLL
PHY_GATELVL_INIT_MODE_CR	0x26C	RW	PRESET_N	Init ratio selection register

Table 7-100 • PHY Configuration Register Summary (continued)

			Reset	
Register Name	Offset	Type	Source	Description
PHY_GATELVL_INIT_RATIO_1_CR	0x270	RW	PRESET_N	Init ratio value configuration register
PHY_GATELVL_INIT_RATIO_2_CR	0x274	RW	PRESET_N	Init ratio value configuration register
PHY_GATELVL_INIT_RATIO_3_CR	0x278	RW	PRESET_N	Init ratio value configuration register
PHY_GATELVL_INIT_RATIO_4_CR	0x27C	RW	PRESET_N	Init ratio value configuration register
PHY_LOCAL_ODT_CR	0x280	RW	PRESET_N	PHY ODT control register
PHY_INVERT_CLKOUT_CR	0x284	RW	PRESET_N	PHY DRAM clock polarity change register
PHY_RD_DQS_SLAVE_DELAY_1_CR	0x288	RW	PRESET_N	Delay value for read DQS
PHY_RD_DQS_SLAVE_DELAY_2_CR	0x28C	RW	PRESET_N	Delay value for read DQS
PHY_RD_DQS_SLAVE_DELAY_3_CR	0x290	RW	PRESET_N	Delay value for read DQS
PHY_RD_DQS_SLAVE_FORCE_CR	0x294	RW		Overwriting delay value selection reg for read DQS.
PHY_RD_DQS_SLAVE_RATIO_1_CR	0x298	RW	PRESET_N	Ratio value for read DQS slave DLL
PHY_RD_DQS_SLAVE_RATIO_2_CR	0x29C	RW	PRESET_N	Ratio value for read DQS slave DLL
PHY_RD_DQS_SLAVE_RATIO_3_CR	0x2A0	RW	PRESET_N	Ratio value for read DQS slave DLL
PHY_RD_DQS_SLAVE_RATIO_4_CR	0x2A4	RW	PRESET_N	Ratio value for read DQS slave DLL
PHY_WR_DQS_SLAVE_DELAY_1_CR	0x2A8	RW	PRESET_N	Delay value for write DQS
PHY_WR_DQS_SLAVE_DELAY_2_CR	0x2AC	RW	PRESET_N	Delay value for write DQS
PHY_WR_DQS_SLAVE_DELAY_3_CR	0x2B0	RW	PRESET_N	Delay value for write DQS
PHY_WR_DQS_SLAVE_FORCE_CR	0x2B4	RW		Overwriting delay value selection reg for write DQS.
PHY_WR_DQS_SLAVE_RATIO_1_CR	0x2B8	RW	PRESET_N	Ratio value for write DQS slave DLL
PHY_WR_DQS_SLAVE_RATIO_2_CR	0x2BC	RW	PRESET_N	Ratio value for write DQS slave DLL
PHY_WR_DQS_SLAVE_RATIO_3_CR	0x2C0	RW	PRESET_N	Ratio value for write DQS slave DLL
PHY_WR_DQS_SLAVE_RATIO_4_CR	0x2C4	RW	PRESET_N	Ratio value for write DQS slave DLL
PHY_WR_DATA_SLAVE_DELAY_1_CR	0x2C8	RW	PRESET_N	Delay value for write DATA
PHY_WR_DATA_SLAVE_DELAY_2_CR	0x2CC	RW	PRESET_N	Delay value for write DATA
PHY_WR_DATA_SLAVE_DELAY_3_CR	0x2D0	RW	PRESET_N	Delay value for write DATA
PHY_WR_DATA_SLAVE_FORCE_CR	0x2D4	RW		Overwriting delay value selection reg for write DATA.
PHY_WR_DATA_SLAVE_RATIO_1_CR	0x2D8	RW	PRESET_N	Ratio value for write DATA slave DLL
PHY_WR_DATA_SLAVE_RATIO_2_CR	0x2DC	RW	PRESET_N	Ratio value for write DATA slave DLL
PHY_WR_DATA_SLAVE_RATIO_3_CR	0x2E0	RW	PRESET_N	Ratio value for write DATA slave DLL
PHY_WR_DATA_SLAVE_RATIO_4_CR	0x2E4	RW	PRESET_N	Ratio value for write DATA slave DLL
PHY_WRLVL_INIT_MODE_CR	0x2E8	RW		Initialization ratio selection register used by write leveling

Table 7-100 • PHY Configuration Register Summary (continued)

Register Name	Offset	Type	Reset Source	Description
PHY_WRLVL_INIT_RATIO_1_CR	0x2EC			Configuring register for initialization ratio used by write leveling
PHY_WRLVL_INIT_RATIO_2_CR	0x2F0	RW	PRESET_N	Configuring register for initialization ratio used by write leveling
PHY_WRLVL_INIT_RATIO_3_CR	0x2F4	RW	PRESET_N	Configuring register for initialization ratio used by write leveling
PHY_WRLVL_INIT_RATIO_4_CR	0x2F8	RW	PRESET_N	Configuring register for initialization ratio used by write leveling
PHY_WR_RD_RL_CR	0x2FC	RW		Configurable register for delays to read and write
PHY_DYN_RDC_FIFO_RST_ERR_CNT_CLR_CR	0x300	RW	PRESET_N	Reset register for counter
PHY_RDC_WE_TO_RE_DELAY_CR	0x304	RW		Configurable register for delay between WE and RE
PHY_USE_FIXED_RE_CR	0x308	RW		Selection register for generating read enable to FIFO.
PHY_USE_RANK0_DELAYS_CR	0x30C	RW	PRESET_N	Delay selection. This applies to multirank designs only.
PHY_USE_LVL_TRNG_LEVEL_CTRL_CR	0x310	RW	PRESET_N	Training control register
PHY_DYN_CONFIG_CR	0x314	RW	PRESET_N	PHY dynamically controlled register
PHY_RD_WR_GATE_LVL_CR	0x318	RW	PRESET_N	Training mode selection register
PHY_DYN_RESET_CR	0x31C	RW	PRESET_N	This register will bring the PHY out of reset.
PHY_LEVELLING_FAILURE_SR	0x320	RO	PRESET_N	Leveling failure status register
PHY_BIST_ERROR_1_SR	0x324	RO	PRESET_N	BIST error status register
PHY_BIST_ERROR_2_SR	0x328	RO	PRESET_N	BIST error status register
PHY_BIST_ERROR_3_SR	0x32C	RO	PRESET_N	BIST error status register
PHY_WRLVL_DQS_RATIO_1_SR	0x330	RO	PRESET_N	Write level DQS ratio status register
PHY_WRLVL_DQS_RATIO_2_SR	0x334	RO	PRESET_N	Write level DQS ratio status register
PHY_WRLVL_DQS_RATIO_3_SR	0x338	RO	PRESET_N	Write level DQS ratio status register
PHY_WRLVL_DQS_RATIO_4_SR	0x33C	RO	PRESET_N	Write level DQS ratio status register
PHY_WRLVL_DQ_RATIO_1_SR	0x340	RO	PRESET_N	Write level DQ ratio status register
PHY_WRLVL_DQ_RATIO_2_SR	0x344	RO	PRESET_N	Write level DQ ratio status register
PHY_WRLVL_DQ_RATIO_3_SR	0x348	RO	PRESET_N	Write level DQ ratio status register
PHY_WRLVL_DQ_RATIO_4_SR	0x34C	RO	PRESET_N	Write level DQ ratio status register
PHY_RDLVL_DQS_RATIO_1_SR	0x350	RO	PRESET_N	Read level DQS ratio status register
PHY_RDLVL_DQS_RATIO_2_SR	0x354	RO	PRESET_N	Read level DQS ratio status register
PHY_RDLVL_DQS_RATIO_3_SR	0x358	RO	PRESET_N	Read level DQS ratio status register
PHY_RDLVL_DQS_RATIO_4_SR	0x35C	RO	PRESET_N	Read level DQS ratio status register

Table 7-100 • PHY Configuration Register Summary (continued)

Offent	Type	Reset	Description
			<u> </u>
0x364	RO	PRESET_N	FIFO status register
0x368	RO	PRESET_N	FIFO status register
0x36C	RO	PRESET_N	FIFO status register
0x370	RO	PRESET_N	Master DLL status register
0x374	RO	PRESET_N	Slave DLL status register
0x378	RO	PRESET_N	Slave DLL status register
0x37C	RO	PRESET_N	IN delay status register
0x380	RO	PRESET_N	IN delay status register
0x384	RO	PRESET_N	OUT delay status register
0x388	RO	PRESET_N	OUT delay status register
0x38C	RO	PRESET_N	DLL lock status register
0x390	RO	PRESET_N	Control output filter status register
0x398	RO	PRESET_N	Read DQS slave DLL status register
0x39C	RO	PRESET_N	Read DQS slave DLL status register
0x3A0	RO	PRESET_N	Read DQS slave DLL status register
0x3A4	RO	PRESET_N	Write DATA slave DLL status register
0x3A8	RO	PRESET_N	Write DATA slave DLL status register
0x3AC	RO	PRESET_N	Write DATA slave DLL status register
0x3B0	RO	PRESET_N	FIFO WE slave DLL status register
0x3B4	RO	PRESET_N	FIFO WE slave DLL status register
0x3B8	RO	PRESET_N	FIFO WE slave DLL status register
0x3BC	RO	PRESET_N	Write DQS slave DLL status register
0x3C0	RO	PRESET_N	Write DQS slave DLL status register
0x3C4	RO	PRESET_N	Write DQS slave DLL status register
0x3C8	RO	PRESET_N	DLL controller status register
	0x360 0x364 0x370 0x374 0x378 0x37C 0x380 0x384 0x388 0x38C 0x390 0x398 0x39C 0x3A0 0x3A4 0x3A4 0x3A8 0x3AC 0x3AC 0x3B0 0x3BC 0x3BC 0x3BC	0x364 RO 0x368 RO 0x370 RO 0x374 RO 0x375 RO 0x376 RO 0x377 RO 0x380 RO 0x384 RO 0x388 RO 0x390 RO 0x398 RO 0x398 RO 0x398 RO 0x340 RO 0x3A4 RO 0x3A8 RO 0x3A9 RO 0x3B0 RO 0x3B0 RO 0x3B0 RO 0x3B0 RO 0x3C0 RO <td>Offset Type Source 0x360 RO PRESET_N 0x364 RO PRESET_N 0x368 RO PRESET_N 0x360 RO PRESET_N 0x370 RO PRESET_N 0x374 RO PRESET_N 0x375 RO PRESET_N 0x380 RO PRESET_N 0x384 RO PRESET_N 0x388 RO PRESET_N 0x380 RO PRESET_N 0x381 RO PRESET_N 0x382 RO PRESET_N 0x398 RO PRESET_N 0x340 RO PRESET_N 0x3A4 RO PRESET_N 0x3A8 RO PRESET_N 0x3A8 RO PRESET_N 0x3B0 RO PRESET_N 0x3B0 RO PRESET_N 0x3B1 RO PRESET_N 0x3B2 RO PRESET_N <t< td=""></t<></td>	Offset Type Source 0x360 RO PRESET_N 0x364 RO PRESET_N 0x368 RO PRESET_N 0x360 RO PRESET_N 0x370 RO PRESET_N 0x374 RO PRESET_N 0x375 RO PRESET_N 0x380 RO PRESET_N 0x384 RO PRESET_N 0x388 RO PRESET_N 0x380 RO PRESET_N 0x381 RO PRESET_N 0x382 RO PRESET_N 0x398 RO PRESET_N 0x340 RO PRESET_N 0x3A4 RO PRESET_N 0x3A8 RO PRESET_N 0x3A8 RO PRESET_N 0x3B0 RO PRESET_N 0x3B0 RO PRESET_N 0x3B1 RO PRESET_N 0x3B2 RO PRESET_N <t< td=""></t<>

PHY Configuration Register Bit Definitions

PHY_DYN_BIST_TEST_CR

Table 7-101 • PHY_DYN_BIST_TEST_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	REG_PHY_AT_SPD_ATPG	0x0	1: Test with full clock speed but lower coverage.
			0: Test with lower clock speed but higher coverage.
3	REG_PHY_BIST_ENABLE	0x0	Enable the internal BIST generation and checker logic when this port is set High. Setting this port as '0' will stop the BIST generator / checker. In order to run BIST tests, this port must be set along with REG_PHY_LOOPBACK.
[2:1] REG_PHY_BIST_MODE 0x0	The mode bits select the pattern type generated by the BIST generator. All the patterns are transmitted continuously once enabled.		
			00: Constant pattern (0 repeated on each DQ bit)
			01: Low frequency pattern (00001111 repeated on each DQ bit)
			10: PRBS pattern (2^7 – 1 PRBS pattern repeated on each DQ bit)
			Each DQ bit always has same data value except when early shifting in PRBS mode is requested.
0	REG_PHY_BIST_FORCE_ERR	0x0	This register bit is used to check that the BIST checker is not giving a false pass.
			When this port is set to 1, the data bit gets inverted before sending out to the external memory and BIST checker must return a mismatch error.

PHY_DYN_BIST_TEST_ERRCLR_1_CR

Table 7-102 • PHY_DYN_BIST_TEST_ERRCLR_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_BIST_ERR_CLR	0x0	[15:0] bits of REG_PHY_BIST_ERR_CLR. Clear the mismatch error flag from the BIST checker. 1: Sticky error flag is cleared 0: No effect

PHY_DYN_BIST_TEST_ERRCLR_2_CR

Table 7-103 • PHY_DYN_BIST_TEST_ERRCLR_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_BIST_ERR_CLR	0x0	[31:16] bits of REG_PHY_BIST_ERR_CLR. Clear the mismatch error flag from the BIST checker. 1: Sticky error flag is cleared 0: No effect

PHY_DYN_BIST_TEST_ERRCLR_3_CR

Table 7-104 • PHY_DYN_BIST_TEST_ERRCLR_3_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[11:0]	REG_PHY_BIST_ERR_CLR	0x0	[43:32] bits of REG_PHY_BIST_ERR_CLR. Clear the mismatch error flag from the BIST checker. 1: Sticky error flag is cleared 0: No effect

PHY_BIST_TEST_SHIFT_PATTERN_1_CR

Table 7-105 • PHY_BIST_TEST_SHIFT_PATTERN_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_BIST_SHIFT_DQ	0x0	[15:0] bits of REG_PHY_BIST_SHIFT_DQ.
			Determines whether early shifting is required for a particular DQ bit when REG_PHY_BIST_MODE is 10.
			1: PRBS pattern shifted early by 1 bit
			0: PRBS pattern without any shift

PHY_BIST_TEST_SHIFT_PATTERN_2_CR

Table 7-106 • PHY_BIST_TEST_SHIFT_PATTERN_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_BIST_SHIFT_DQ	0x0	[31:16] bits of REG_PHY_BIST_SHIFT_DQ. Determines whether early shifting is required for a particular DQ bit when REG_PHY_BIST_MODE is 10. 1: PRBS pattern shifted early by 1 bit 0: PRBS pattern without any shift

PHY_BIST_TEST_SHIFT_PATTERN_3_CR

Table 7-107 • PHY_BIST_TEST_SHIFT_PATTERN_3_CR

Bit Number	Name	Reset Value	Description
[31:12]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[11:0]	REG_PHY_BIST_SHIFT_DQ	0x0	[43:32] bits of REG_PHY_BIST_SHIFT_DQ. Determines whether early shifting is required for a particular DQ bit when REG_PHY_BIST_MODE is 10. 1: PRBS pattern shifted early by 1 bit 0: PRBS pattern without any shift

PHY_LOOPBACK_TEST_CR

Table 7-108 • PHY_DYN_LOOPBACK_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_LOOPBACK	0x0	Loopback testing. 1: Enable 0: Disable

PHY_BOARD_LOOPBACK_CR

Table 7-109 • PHY_BOARD_LOOPBACK_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:5]	REG_PHY_BOARD_LPBK_TX	0x0	External board loopback testing.
			1: This slice behaves as a transmitter for board loopback.
			0: Default
			This port must always be set to '0' except when in external board-level loopback test mode.
[4:0]	REG_PHY_BOARD_LPBK_RX	0x0	External board loopback testing.
			1: This slice behaves as a receiver for board loopback.
			0: Disable
			This port must always be set to '0' except when in external board-level loopback test mode.

PHY_CTRL_SLAVE_RATIO_CR

Table 7-110 • PHY_CTRL_SLAVE_RATIO_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[9:0]	REG_PHY_CTRL_SLAVE_RATIO	0x0	Ratio value for address/command launches timing in PHY_CTRL macro. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line.

PHY_CTRL_SLAVE_FORCE_CR

Table 7-111 • PHY_CTRL_SLAVE_FORCE_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
0	REG_PHY_CTRL_SLAVE_FORCE	0x0	1: Overwrite the delay/tap value for address/command timing slave DLL with the value of the REG_PHY_RD_DQS_SLAVE_DELAY bus.

PHY_CTRL_SLAVE_DELAY_CR

Table 7-112 • PHY_CTRL_SLAVE_DELAY_CR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[8:0]	REG_PHY_CTRL_SLAVE_DELAY	0x0	If REG_PHY_RD_DQS_SLAVE_FORCE is 1, replace delay/tap value for address/command timing slave DLL with this value.

PHY_DATA_SLICE_IN_USE_CR

Table 7-113 • PHY_DATA_SLICE_IN_USE_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[4:0]	REG_PHY_DATA_SLICE_IN_USE	0x0	Data bus width selection for read FIFO RE generation. One bit for each data slice. 1: Data slice is valid. 0: Read data responses are ignored. Note: The PHY data slice 0 must always be enabled.

PHY_LVL_NUM_OF_DQ0_CR

Table 7-114 • PHY_LVL_NUM_OF_DQ0_CR

Bit Number	Name	Reset Value	Description
[31:8]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[7:4]	REG_PHY_GATELVL_NUM_OF_DQ0	0x0	This register value determines the number of samples for dq0_in for each ratio increment by the gate training FSM. NUM_OF_ITERATION = REG_PHY_GATELVL_NUM_OF_DQ0 + 1
[3:0]	REG_PHY_WRLVL_NUM_OF_DQ0	0x0	This register value determines the number of samples for dq0_in for each ratio increment by the write leveling FSM. NUM_OF_ITERATION = rEG_PHY_GATELVL_NUM_OF_DQ0 + 1

PHY_DQ_OFFSET_1_CR

Table 7-115 • PHY_DQ_OFFSET_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_DQ_OFFSET	0x0240	[15:0] bits of REG_PHY_DQ_OFFSET. Offset value from DQS to DQ. Default value: 0x40 (for 90 degree shift). This is only used when REG_PHY_USE_WR_LEVEL = 1.

PHY_DQ_OFFSET_2_CR

Table 7-116 • PHY_DQ_OFFSET_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_DQ_OFFSET	0x4081	[31:16] bits of REG_PHY_DQ_OFFSET. Offset value from DQS to DQ. Default value: 0x40 (for 90 degree shift). This is only used when REG_PHY_USE_WR_LEVEL = 1.

PHY_DQ_OFFSET_3_CR

Table 7-117 • PHY_DQ_OFFSET_3_CR

Bit Number	Name	Reset Value	Description
[31:3]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[2:0]	REG_PHY_DQ_OFFSET	0x0	[34:32] bits of REG_PHY_DQ_OFFSET. Offset value from DQS to DQ. Default value: 0x40 (for 90 degree shift). This is only used when REG_PHY_USE_WR_LEVEL = 1.

PHY_DIS_CALIB_RST_CR

Table 7-118 • PHY_DIS_CALIB_RST_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
0	REG_PHY_DIS_CALIB_RST	0x0	Disables the resetting of the read capture FIFO pointers with DLL_CALIB (internally generated signal). The pointers are reset to ensure that the PHY can recover if the appropriate number of DQS edges is not observed after a read command (which can happen when the DQS squelch timing is manually overridden via the debug registers). 0: Enable 1: Disable

PHY_DLL_LOCK_DIFF_CR

Table 7-119 • PHY_DLL_LOCK_DIFF_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_DLL_LOCK_DIFF	0x0	The maximum number of delay line taps variations allowed while maintaining the master DLL lock.
			This is calculated as total jitter/ delay line tap size. Where total jitter is half of (incoming clock jitter (pp) + delay line jitter (pp)).

PHY_FIFO_WE_IN_DELAY_1_CR

Table 7-120 • PHY_FIFO_WE_IN_DELAY_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_FIFO_WE_IN_DELAY	0x0	[15:0] bits of REG_PHY_FIFO_WE_IN_DELAY. Delay value to be used when REG_PHY_FIFO_WE_IN_FORCEX is set to 1.

PHY_FIFO_WE_IN_DELAY_2_CR

Table 7-121 • PHY_FIFO_WE_IN_DELAY_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[15:0]	REG_PHY_FIFO_WE_IN_DELAY	0x0	[31:16] bits of REG_PHY_FIFO_WE_IN_DELAY. Delay value to be used when REG_PHY_FIFO_WE_IN_FORCEX is set to 1.

PHY_FIFO_WE_IN_DELAY_3_CR

Table 7-122 • PHY_FIFO_WE_IN_DELAY_3_CR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[12:0]	REG_PHY_FIFO_WE_IN_DELAY	0x0	[44:32] bits of REG_PHY_FIFO_WE_IN_DELAY. Delay value to be used when REG_PHY_FIFO_WE_IN_FORCEX is set to 1.

PHY_FIFO_WE_IN_FORCE_CR

Table 7-123 • PHY_FIFO_WE_IN_FORCE_CR

Bit Number	Name	Reset Value	Description
[7:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[4:0]	REG_PHY_FIFO_WE_IN_FORCE	0x0	1: Overwrite the delay/tap value for the FIFO_WE slave DLL with the value of the REG_PHY_FIFO_WE_IN_DELAY bus.

PHY_FIFO_WE_SLAVE_RATIO_1_CR

Table 7-124 • PHY_FIFO_WE_SLAVE_RATIO_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_FIFO_WE_SLAVE_RATIO	0x0	[15:0] bits of REG_PHY_FIFO_WE_SLAVE_RATIO Lowest 11 bits are from data slice 0, next 11 bits are for data slice 1, etc.

PHY_FIFO_WE_SLAVE_RATIO_2_CR

Table 7-125 • PHY_FIFO_WE_SLAVE_RATIO_2_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_FIFO_WE_SLAVE_RATIO	0x0	[31:16] bits of REG_PHY_FIFO_WE_SLAVE_RATIO
			Lowest 11 bits are from data slice 0, next 11 bits are for data slice 1, etc.

PHY_FIFO_WE_SLAVE_RATIO_3_CR

Table 7-126 • PHY_FIFO_WE_SLAVE_RATIO_3_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_FIFO_WE_SLAVE_RATIO	0x0	[47:32] bits of REG_PHY_FIFO_WE_SLAVE_RATIO Lowest 11 bits are from data slice 0, next 11 bits are for data slice 1, etc.

PHY_FIFO_WE_SLAVE_RATIO_4_CR

Table 7-127 • PHY_FIFO_WE_SLAVE_RATIO_4_CR

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[6:0]	REG_PHY_FIFO_WE_SLAVE_RATIO	0x0	[54:48] bits of REG_PHY_FIFO_WE_SLAVE_RATIO Lowest 11 bits are from data slice 0, next 11 bits are for data slice 1, etc.

PHY_GATELVL_INIT_MODE_CR

Table 7-128 • PHY_GATELVL_INIT_MODE_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_GATELVL_INIT_MODE	0x0	The user programmable init ratio selection mode.
			1: Selects a starting ratio value based on REG_PHY_GATELVL_INIT_RATIO port.
			0: Selects a starting ratio value based on write leveling of the same data slice.

PHY_GATELVL_INIT_RATIO_1_CR

Table 7-129 • PHY_GATELVL_INIT_RATIO_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_GATELVL_INIT_RATIO	0x0	[15:0] of REG_PHY_GATELVL_INIT_RATIO Lowest 11 bits are from data slice 0, next 11 bits are for data slice 1, etc.

PHY_GATELVL_INIT_RATIO_2_CR

Table 7-130 • PHY_GATELVL_INIT_RATIO_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_GATELVL_INIT_RATIO	0x0	[31:16] of REG_PHY_GATELVL_INIT_RATIO Lowest 11 bits are from data slice 0, next 11 bits are for data slice 1, etc.

PHY_GATELVL_INIT_RATIO_3_CR

Table 7-131 • PHY_GATELVL_INIT_RATIO_3_CR

Name	Reset Value	Description
Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
REG_PHY_GATELVL_INIT_RATIO	0x0	[47:32] of REG_PHY_GATELVL_INIT_RATIO Lowest 11 bits are from data slice 0, next 11 bits are
	Reserved	NameValueReserved0x0

PHY_GATELVL_INIT_RATIO_4_CR

Table 7-132 • PHY_GATELVL_INIT_RATIO_4_CR

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[6:0]	REG_PHY_GATELVL_INIT_RATIO	0x0	[54:48] of REG_PHY_GATELVL_INIT_RATIO Lowest 11*R bits are from data slice 0, next 11*R bits are for data slice 1, etc.

PHY_LOCAL_ODT_CR

Table 7-133 • PHY_LOCAL_ODT_CR

Bit Number	Name	Reset Value	Description
[31:4]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[3:2]	REG_PHY_IDLE_LOCAL_ODT	0x0	The user programmable initialization ratio selection mode.
			01: Selects a starting ratio value based on the REG_PHY_GATELVL_INIT_RATIO port.
			00: Selects a starting ratio value based on write leveling of the same data slice.
1	REG_PHY_WR_LOCAL_ODT	0x0	Tied to 0.
0	REG_PHY_RD_LOCAL_ODT	0x0	Tied to 0.

PHY_INVERT_CLKOUT_CR

Table 7-134 • PHY_INVERT_CLKOUT_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
0	REG_PHY_INVERT_CLKOUT	0x0	Inverts the polarity of the DRAM clock.
			0: Core clock is passed on to DRAM. Most common usage mode.
			1: Inverted core clock is passed on to DRAM. Use this when CLK can arrive at a DRAM device ahead of DQS or coincidence with DQS based on board topology. This effectively delays the CLK to the DRAM device by half a cycle, providing a CLK edge that DQS can align to during leveling.

PHY_RD_DQS_SLAVE_DELAY_1_CR

Table 7-135 • PHY_RD_DQS_SLAVE_DELAY_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[15:0]	REG_PHY_RD_DQS_SLAVE_DELAY	0x0	[15:0] bits of REG_PHY_RD_DQS_SLAVE_DELAY If REG_PHY_RD_DQS_SLAVE_FORCE is 1, replace delay/tap value for read DQS slave DLL with this value.

PHY_RD_DQS_SLAVE_DELAY_2_CR

Table 7-136 • PHY_RD_DQS_SLAVE_DELAY_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_RD_DQS_SLAVE_DELAY	0x0	[31:16] bits of REG_PHY_RD_DQS_SLAVE_DELAY
			If REG_PHY_RD_DQS_SLAVE_FORCE is 1, replace delay/tap value for read DQS slave DLL with this value.

PHY_RD_DQS_SLAVE_DELAY_3_CR

Table 7-137 • PHY_RD_DQS_SLAVE_DELAY_3_CR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	REG_PHY_RD_DQS_SLAVE_DELAY	0x0	[44:32] bits of REG_PHY_RD_DQS_SLAVE_DELAY If REG_PHY_RD_DQS_SLAVE_FORCE is 1, replace delay/tap value for read DQS slave DLL with this value.

PHY_RD_DQS_SLAVE_FORCE_CR

Table 7-138 • PHY_RD_DQS_SLAVE_FORCE_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_RD_DQS_SLAVE_FORCE	0x0	1: Overwrite the delay/tap value for read DQS slave DLL with the value of PHY_RD_DQS_SLAVE_DELAY.

PHY_RD_DQS_SLAVE_RATIO_1_CR

Table 7-139 • PHY_RD_DQS_SLAVE_RATIO_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_RD_DQS_SLAVE_RATIO	0x0040	[15:0] bits of REG_PHY_RD_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_RD_DQS_SLAVE_RATIO_2_CR

Table 7-140 • PHY_RD_DQS_SLAVE_RATIO_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_RD_DQS_SLAVE_RATIO	0x0401	[31:16] bits of REG_PHY_RD_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_RD_DQS_SLAVE_RATIO_3_CR

Table 7-141 • PHY_RD_DQS_SLAVE_RATIO_3_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[15:0]	REG_PHY_RD_DQS_SLAVE_RATIO	0x4010	[47:32] bits of REG_PHY_RD_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_RD_DQS_SLAVE_RATIO_4_CR

Table 7-142 • PHY_RD_DQS_SLAVE_RATIO_4_CR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	REG_PHY_RD_DQS_SLAVE_RATIO	0x0	[49:48] bits of REG_PHY_RD_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_WR_DQS_SLAVE_DELAY_1_CR

Table 7-143 • PHY_WR_DQS_SLAVE_DELAY_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DQS_SLAVE_DELAY	0x0	[15:0] bits of REG_PHY_WR_DQS_SLAVE_DELAY If REG_PHY_WR_DQS_SLAVE_FORCE is 1, replace delay/tap value for read DQS slave DLL with this value.

PHY_WR_DQS_SLAVE_DELAY_2_CR

Table 7-144 • PHY_WR_DQS_SLAVE_DELAY_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DQS_SLAVE_DELAY	0x0	[31:16] bits of REG_PHY_WR_DQS_SLAVE_DELAY If REG_PHY_WR_DQS_SLAVE_FORCE is 1, replace delay/tap value for read DQS slave DLL with this value.

$PHY_WR_DQS_SLAVE_DELAY_3_CR$

Table 7-145 • PHY_WR_DQS_SLAVE_DELAY_3_CR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	REG_PHY_WR_DQS_SLAVE_DELAY	0x0	[44:32] bits of REG_PHY_WR_DQS_SLAVE_DELAY If REG_PHY_WR_DQS_SLAVE_FORCE is 1, replace delay/tap value for read DQS slave DLL with this value.

PHY_WR_DQS_SLAVE_FORCE_CR

Table 7-146 • PHY_WR_DQS_SLAVE_FORCE_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[4:0]	REG_PHY_WR_DQS_SLAVE_FORCE	0x0	1: Overwrite the delay/tap value for read DQS slave DLL with the value of the REG_PHY_WR_DQS_SLAVE_DELAY bus. bit-4 is for PHY Data slice 4, bit-3 for PHY Data slice 3 and so on.

PHY_WR_DQS_SLAVE_RATIO_1_CR

Table 7-147 • PHY_WR_DQS_SLAVE_RATIO_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DQS_SLAVE_RATIO	0x0	[15:0] bits of REG_PHY_WR_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_WR_DQS_SLAVE_RATIO_2_CR

Table 7-148 • PHY_WR_DQS_SLAVE_RATIO_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DQS_SLAVE_RATIO	0x0	[31:16] bits of REG_PHY_WR_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_WR_DQS_SLAVE_RATIO_3_CR

Table 7-149 • PHY_WR_DQS_SLAVE_RATIO_3_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DQS_SLAVE_RATIO	0x0	[47:32] bits of REG_PHY_WR_DQS_SLAVE_RATIO
			Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_WR_DQS_SLAVE_RATIO_4_CR

Table 7-150 • PHY_WR_DQS_SLAVE_RATIO_4_CR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	REG_PHY_WR_DQS_SLAVE_RATIO	0x0	[49:48] bits of REG_PHY_WR_DQS_SLAVE_RATIO Ratio value for read DQS slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the read DQS in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. Default value: 0x40

PHY_WR_DATA_SLAVE_DELAY_1_CR

Table 7-151 • PHY_WR_DATA_SLAVE_DELAY_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DATA_SLAVE_DELAY	0x0	[15:0] bits of REG_PHY_WR_DATA_SLAVE_DELAY If REG_PHY_WR_DATA_SLAVE_FORCE is 1, replace delay/tap value for write data slave DLL with this value.

PHY_WR_DATA_SLAVE_DELAY_2_CR

Table 7-152 • PHY_WR_DATA_SLAVE_DELAY_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DATA_SLAVE_DELAY	0x0	[31:16] bits of REG_PHY_WR_DATA_SLAVE_DELAY
			If REG_PHY_WR_DATA_SLAVE_FORCE is 1, replace delay/tap value for write data slave DLL with this value.

PHY_WR_DATA_SLAVE_DELAY_3_CR

Table 7-153 • PHY_WR_DATA_SLAVE_DELAY_3_CR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	REG_PHY_WR_DATA_SLAVE_DELAY	0x0	[44:32] bits of REG_PHY_WR_DATA_SLAVE_DELAY If REG_PHY_WR_DATA_SLAVE_FORCE is 1, replace delay/tap value for write data slave DLL with this value.

PHY_WR_DATA_SLAVE_FORCE_CR

Table 7-154 • PHY_WR_DATA_SLAVE_FORCE_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[4:0]	REG_PHY_WR_DATA_SLAVE_FORCE	0x0	1: Overwrite the delay/tap value for write data slave DLL with the value of the REG_PHY_WR_DATA_SLAVE_DELAY bus.
			bit-4 is for PHY Data slice 4, bit-3 for PHY Data slice 3 and so on.

PHY_WR_DATA_SLAVE_RATIO_1_CR

Table 7-155 • PHY_WR_DATA_SLAVE_RATIO_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DATA_SLAVE_RATIO	0x0040	[15:0] bits of REG_PHY_WR_DATA_SLAVE_RATIO Ratio value for write data slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the write DQ MUXes in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. This is only used when REG_PHY_USE_WR_LEVEL = 0.

PHY_WR_DATA_SLAVE_RATIO_2_CR

Table 7-156 • PHY_WR_DATA_SLAVE_RATIO_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DATA_SLAVE_RATIO	0x0401	[31:16] bits of REG_PHY_WR_DATA_SLAVE_RATIO
			Ratio value for write data slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the write DQ MUXes in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line. This is only used when REG_PHY_USE_WR_LEVEL = 0.

PHY_WR_DATA_SLAVE_RATIO_3_CR

Table 7-157 • PHY_WR_DATA_SLAVE_RATIO_3_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WR_DATA_SLAVE_RATIO	0x0401	[47:32] bits of REG_PHY_WR_DATA_SLAVE_RATIO
			Ratio value for write data slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the write DQ MUXes in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line.
			This is only used when REG_PHY_USE_WR_LEVEL = 0.

PHY_WR_DATA_SLAVE_RATIO_4_CR

Table 7-158 • PHY_WR_DATA_SLAVE_RATIO_4_CR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	REG_PHY_WR_DATA_SLAVE_RATIO	0x0	[49:48] bits of REG_PHY_WR_DATA_SLAVE_RATIO
			Ratio value for write data slave DLL. This is the fraction of a clock cycle represented by the shift to be applied to the write DQ MUXes in units of 256ths. In other words, the full-cycle tap value from the master DLL will be scaled by this number over 256 to get the delay value for the slave delay line.
			This is only used when REG_PHY_USE_WR_LEVEL = 0.

PHY_WRLVL_INIT_MODE_CR

Table 7-159 • PHY_WRLVL_INIT_MODE_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_WRLVL_INIT_MODE	0x0	The user programmable init ratio selection mode. 1: Selects a starting ratio value based on REG_PHY_WRLVL_INIT_RATIO PORT. 0: Selects a starting ratio value based on write leveling of previous data slice.

PHY_WRLVL_INIT_RATIO_CR

Table 7-160 • PHY_WRLVL_INIT_RATIO_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WRLVL_INIT_MODE	0x0	[15:0] bits of REG_PHY_WRLVL_INIT_MODE The user programmable initialization ratio used by the write leveling FSM when the REG_PHY_WRLVL_INIT_MODE port is set to 1. The recommended setting of REG_PHY_WRLVL_INIT_RATIO is a half cycle less than the total skew between CLK and DQS at the DRAM.

PHY_WRLVL_INIT_RATIO_2_CR

Table 7-161 • PHY_WRLVL_INIT_RATIO_2_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[15:0]	REG_PHY_WRLVL_INIT_MODE	0x0	[31:16] bits of REG_PHY_WRLVL_INIT_MODE The user programmable initialization ratio used by the write leveling FSM when the REG_PHY_WRLVL_INIT_MODE port is set to 1.
			The recommended setting of REG_PHY_WRLVL_INIT_RATIO is a half cycle less than the total skew between CLK and DQS at the DRAM.

PHY_WRLVL_INIT_RATIO_3_CR

Table 7-162 • PHY_WRLVL_INIT_RATIO_3_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	REG_PHY_WRLVL_INIT_MODE	0x0	[47:32] bits of REG_PHY_WRLVL_INIT_MODE The user programmable initialization ratio used by the write leveling FSM when the REG_PHY_WRLVL_INIT_MODE port is set to 1.
			The recommended setting of REG_PHY_WRLVL_INIT_RATIO is a half cycle less than the total skew between CLK and DQS at the DRAM.

PHY_WRLVL_INIT_RATIO_4_CR

Table 7-163 • PHY_WRLVL_INIT_RATIO_4_CR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	REG_PHY_WRLVL_INIT_MODE	0x0	[49:48] bits of REG_PHY_WRLVL_INIT_MODE
			The user programmable init ratio used by the write leveling FSM when the REG_PHY_WRLVL_INIT_MODE PORT is set to 1.
			The recommended setting of REG_PHY_WRLVL_INIT_RATIO is a half cycle less than the total skew between CLK and DQS at the DRAM.

PHY_WR_RD_RL_CR

Table 7-164 • PHY_WR_RD_RL_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:5]	REG_PHY_WR_RL_DELAY	0x0	This delay determines when to select the active rank's ratio logic delay for write data and write DQS slave delay lines after PHY receives a write command at the control interface.
			This is only used for multi-rank designs when REG_PHY_USE_RANK0_DELAYS = 0.
			This must be programmed as (Write Latency – 4) with a minimum value of 1.
[4:0]	REG_PHY_RD_RL_DELAY	0x0	This delay determines when to select the active rank's ratio logic delay for FIFO_WE and read DQS slave delay lines after PHY receives a read command at the control interface. This is only used for multi-rank designs when REG_PHY_USE_RANKO_DELAYS = 0.

PHY_DYN_RDC_FIFO_RST_ERR_CNT_CLR_CR

Table 7-165 • PHY_DYN_RDC_FIFO_RST_ERR_CNT_CLR_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_RDC_FIFO_RST_ERR_CNT_CLR	0x0	Clear/reset for counter RDC_FIFO_RST_ERR_CNT. 0: No clear 1: Clear

PHY_RDC_WE_TO_RE_DELAY_CR

Table 7-166 • PHY_RDC_WE_TO_RE_DELAY_CR

Bit Number	Name	Reset Value	Description
[31:4]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[3:0]	REG_PHY_RDC_WE_TO_RE_DELAY	0x0	Register input – specified in number of clock cycles.
			This is valid only if USE_FIXED_RE is High.
			As read capture FIFO depth is limited to 8 entries only, the recommended value for this port is less than 8, even though a higher number may work in some cases, depending upon memory system design.

PHY_USE_FIXED_RE_CR

Table 7-167 • PHY_USE_FIXED_RE_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_USE_FIXED_RE	0x0	1: PHY generates FIFO read enable after fixed number of clock cycles as defined by REG_PHY_RDC_WE_TO_RE_DELAY[3:0]. 0: PHY uses the NOT_EMPTY method to do the read enable generation.
			Note: This port must be set High during the training/leveling process—when DDRC_DFI_WRLVL_EN / DDRC_DFI_RDLVL_EN / DDRC_DFI_RDLVL_GATE_EN PORT is set High.

PHY_USE_RANK0_DELAYS_CR

Table 7-168 • PHY_USE_RANK0_DELAYS_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	REG_PHY_USE_RANK0_DELAYS	0x0	Delay selection. This applies to multi-rank designs only.
			1: Rank 0 delays are used for all ranks
			0: Each rank uses its own delay
			This port must be set High when write latency < 5.

PHY_USE_LVL_TRNG_LEVEL_CTRL_CR

Table 7-169 • PHY_USE_LVL_TRNG_LEVEL_CTRL_CR

Bit Number	Name	Reset Value	Description
[31:3]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	REG_PHY_USE_WR_LEVEL	0x0	Write leveling training control.
			0: Use register programmed ratio values.
			Use ratio for delay line calculated by write leveling.
			Note : This port must be set to 0 when PHY is not working in DDR3 mode.
1	REG_PHY_USE_RD_DQS_GATE_LEVEL	0x0	Read DQS gate training control.
			0: Use register programmed ratio values.
			1: Use ratio for delay line calculated by DQS gate leveling.
			This can be used in DDR2 mode also.
			Note : This port must be set to 0 when PHY is not working in DDR2/DDR3 mode
0	REG_PHY_USE_RD_DATA_EYE_LEVEL	0x0	Read data eye training control.
			0: Use register programmed ratio values.
			Use ratio for delay line calculated by data eye leveling.
			Note : This port must be set to 0 when PHY is not working in DDR3 mode

PHY_DYN_CONFIG_CR

Table 7-170 • PHY_DYN_CONFIG_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	REG_PHY_DIS_PHY_CTRL_RSTN	0x0	Disable the PHY control macro reset. 1: PHY control macro does not get reset. 0: PHY control macro gets reset (default).
3	REG_PHY_LPDDR1	0x0	If the PHY is operating in LPDDR1 mode
2	REG_PHY_BL2	0x0	Burst length control. 1: Burst length 2 0: Other burst length
1	REG_PHY_CLK_STALL_LEVEL	0x0	This port determines whether the delay line clock stalls at High or Low level. The expected input is a very slow clock to avoid asymmetric aging in delay lines. This port is implementation specific and may not be available in all PHYs.
1	REG_PHY_CMD_LATENCY	0x0	Extra command latency. 1: Command bus has 1 extra cycle of latency 0: Default This port is available only when MEMP_CMD_PIPELINE is defined.

PHY_RD_WR_GATE_LVL_CR

Table 7-171 • PHY_RD_WR_GATE_LVL_CR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[14:10]	REG_PHY_GATELVL_INC_MODE	0x0	Incremental read DQS gate training mode. One bit for each data slice.
			1: Incremental read gate training.
			0: Normal read gate training.
[9:5]	REG_PHY_WRLVL_INC_MODE	0x0	Incremental write leveling mode. One bit for each data slice. 1: Incremental write leveling. 0: Normal write leveling.
[4:0]	REG_PHY_RDLVL_INC_MODE	0x0	Incremental read data eye training mode. One bit for each data slice. 1: Incremental read data eye training.

PHY_DYN_RESET_CR

Table 7-172 • PHY_DYN_RESET_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	PHY_RESET	0x0	A 1 in this register will bring the PHY out of reset. This is dynamic and synchronized internally before giving to PHY.

PHY_LEVELLING_FAILURE_SR

Table 7-173 • PHY_LEVELLING_FAILURE_SR

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[14:10]	PHY_REG_RDLVL_INC_FAIL	0x0	Incremental read leveling fail status flag for each PHY data slice. 1: Incremental read leveling test has failed. 0: Incremental read leveling test has passed.
[9:5]	PHY_REG_WRLVL_INC_FAIL	0x0	Incremental write leveling fail status flag for each PHY data slice. 1: Incremental write leveling test has failed. 0: Incremental write leveling test has passed.
[4:0]	PHY_REG_GATELVL_INC_FAIL	0x0	Incremental gate leveling fail status flag for each PHY data slice. 1: Incremental gate leveling test has failed. 0: Incremental gate leveling test has passed.

PHY_BIST_ERROR_1_SR

Table 7-174 • PHY_BIST_ERROR_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_BIST_ERR	0x0	[15:0] bits of PHY_REG_BIST_ERR
			Mismatch error flag from the BIST checker.
			1: Pattern mismatch error
			0: All patterns matched. This is a sticky flag. In order to clear this bit, the REG_PHY_BIST_ERR_CLR must be set High. The bits [8:0] are used for Slice 0, bits [17:9] for slice 1, and so on. The MSB in each slice is used for Mask Bit and lower bits are for DQ bits.

PHY_BIST_ERROR_2_SR

Table 7-175 • PHY_BIST_ERROR_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_BIST_ERR	0x0	[31:16] bits of PHY_REG_BIST_ERR
			Mismatch error flag from the BIST checker.
			1: Pattern mismatch error
			0: All patterns matched. This is a sticky flag. In order to clear this bit, the REG_PHY_BIST_ERR_CLR port must be set High.
			The bits [8:0] are used for Slice 0, bits [17:9] for slice 1, and so on. The MSB in each slice is used for Mask Bit and lower bits are for DQ bits.

PHY_BIST_ERROR_3_SR

Table 7-176 • PHY_BIST_ERROR_3_SR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	PHY_REG_BIST_ERR	0x0	[44:32] bits of PHY_REG_BIST_ERR Mismatch error flag from the BIST checker. 1: Pattern mismatch error 0: All patterns matched. This is a sticky flag. In order to clear this bit, the REG_PHY_BIST_ERR_CLR port must be set High. The bits [8:0] are used for Slice 0, bits [17:9] for slice 1, and so on. The MSB in each slice is used for Mask Bit and lower bits are for DQ bits.

PHY_WRLVL_DQS_RATIO_1_SR

Table 7-177 • PHY_WRLVL_DQS_RATIO_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_WRLVL_DQS_RATIO	0x0	[15:0] bits of PHY_REG_WRLVL_DQS_RATIO Ratio value generated by the write leveling FSM for write DQS.

PHY_WRLVL_DQS_RATIO_2_SR

Table 7-178 • PHY_WRLVL_DQS_RATIO_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_WRLVL_DQS_RATIO	0x0	[31:16] bits of PHY_REG_WRLVL_DQS_RATIO Ratio value generated by the write leveling FSM for write DQS.

PHY_WRLVL_DQS_RATIO_3_SR

Table 7-179 • PHY_WRLVL_DQS_RATIO_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_WRLVL_DQS_RATIO	0x0	[47:32] bits of PHY_REG_WRLVL_DQS_RATIO Ratio value generated by the write leveling FSM for write DQS.

PHY_WRLVL_DQS_RATIO_4_SR

Table 7-180 • PHY_WRLVL_DQS_RATIO_4_SR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	PHY_REG_WRLVL_DQS_RATIO	0x0	[49:48] bits of PHY_REG_WRLVL_DQS_RATIO Ratio value generated by the write leveling FSM for write DQS.

PHY_WRLVL_DQ_RATIO_1_SR

Table 7-181 • PHY_WRLVL_DQ_RATIO_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_WRLVL_DQ_RATIO	0x0	[15:0] bits of PHY_REG_WRLVL_DQ_RATIO Ratio value generated by the write leveling FSM for write data.

PHY_WRLVL_DQ_RATIO_2_SR

Table 7-182 • PHY_WRLVL_DQ_RATIO_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_WRLVL_DQ_RATIO	0x0	[31:16] bits of PHY_REG_WRLVL_DQ_RATIO Ratio value generated by the write leveling FSM for write data.

PHY_WRLVL_DQ_RATIO_3_SR

Table 7-183 • PHY_WRLVL_DQ_RATIO_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_WRLVL_DQ_RATIO	0x0	[47:32] bits of PHY_REG_WRLVL_DQ_RATIO Ratio value generated by the write leveling FSM for write data.

PHY_WRLVL_DQ_RATIO_4_SR

Table 7-184 • PHY_WRLVL_DQ_RATIO_4_SR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	PHY_REG_WRLVL_DQ_RATIO	0x0	[49:48] bits of PHY_REG_WRLVL_DQ_RATIO Ratio value generated by the write leveling FSM for write data.

PHY_RDLVL_DQS_RATIO_1_SR

Table 7-185 • PHY_RDLVL_DQS_RATIO_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_RDLVL_DQS_RATIO	0x0	[15:0] bits of PHY_REG_RDLVL_DQS_RATIO Ratio value generated by read data eye training FSM.

PHY_RDLVL_DQS_RATIO_2_SR

Table 7-186 • PHY_RDLVL_DQS_RATIO_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_RDLVL_DQS_RATIO	0x0	[31:16] bits of PHY_REG_RDLVL_DQS_RATIO Ratio value generated by read data eye training FSM.

PHY_RDLVL_DQS_RATIO_3_SR

Table 7-187 • PHY_RDLVL_DQS_RATIO_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_RDLVL_DQS_RATIO	0x0	[47:32] bits of PHY_REG_RDLVL_DQS_RATIO Ratio value generated by read data eye training FSM.

PHY_RDLVL_DQS_RATIO_4_SR

Table 7-188 • PHY_RDLVL_DQS_RATIO_4_SR

Bit Number	Name	Reset Value	Description
[31:2]	Reserved		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[1:0]	PHY_REG_RDLVL_DQS_RATIO		[49:48] bits of PHY_REG_RDLVL_DQS_RATIO Ratio value generated by read data eye training FSM.

PHY_FIFO_1_SR

Table 7-189 • PHY_FIFO_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_RDLVL_FIFOWEIN_RATIO	0x0	[15:0] bits of PHY_REG_RDLVL_FIFOWEIN_RATIO Ratio value generated by read gate training FSM.

PHY_FIFO_2_SR

Table 7-190 • PHY_FIFO_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_RDLVL_FIFOWEIN_RATIO	0x0	[31:16] bits of PHY_REG_RDLVL_FIFOWEIN_RATIO Ratio value generated by read gate training FSM.

PHY_FIFO_3_SR

Table 7-191 • PHY_FIFO_3_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_RDLVL_FIFOWEIN_RATIO	0x0	[47:32] bits of PHY_REG_RDLVL_FIFOWEIN_RATIO Ratio value generated by read gate training FSM.

PHY_FIFO_4_SR

Table 7-192 • PHY_FIFO_4_SR

Bit Number	Name	Reset Value	Description
[31:11]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:7]	REG_PHY_RDC_FIFO_RST_ERR_CNT	0x0	Counter for counting how many times the pointers of read capture FIFO differ when they are reset by DLL_CALIB.
[6:0]	PHY_REG_RDLVL_FIFOWEIN_RATIO	0x0	[54:48] bits of PHY_REG_RDLVL_FIFOWEIN_RATIO Ratio value generated by read gate training FSM.

$PHY_MASTER_DLL_SR$

Table 7-193 • PHY_MASTER_DLL_SR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[8:3]	PHY_REG_STATUS_OF_IN_LOCK_STATE	0x0	Lock status from the output filter module inside the master DLL. (2 bits per MDLL).PHY has 3 MDLLs.
			Bit[0] – Fine delay line lock status.
			1: Locked 0: Unlocked
			Bit[1] – Coarse delay line lock status.
			1: Locked 0: Unlocked
[2:0]	PHY_REG_STATUS_DLL_LOCK	0x0	Status signal:
	_		1: Master DLL is locked
			0: Master DLL is not locked
			Three bits correspond to three MDLLs.

PHY_DLL_SLAVE_VALUE_1_SR

Table 7-194 • PHY_DLL_SLAVE_VALUE_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_DLL_SLAVE_VALUE	0x0	[15:0] bits of PHY_REG_STATUS_DLL_SLAVE_VALUE
			Shows the current coarse and fine delay values measured for a full-cycle shift by each master DLL. This is a 27 bit register, 9 bits for each DLL.
			[1:0] – Fine value [8:2] – Coarse value

$PHY_DLL_SLAVE_VALUE_2_SR$

Table 7-195 • PHY_DLL_SLAVE_VALUE_2_SR

Bit Number	Name	Reset Value	Description
[31:11]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:0]	PHY_REG_STATUS_DLL_SLAVE_VALUE	0x0	[26:16] bits of PHY_REG_STATUS_DLL_SLAVE_VALUE
			Shows the current coarse and fine delay values measured for a full-cycle shift by each master DLL. This is a 27 bit register, 9 bits for each DLL.
			[1:0] – Fine value [8:2] – Coarse value

PHY_STATUS_OF_IN_DELAY_VAL_1_SR

Table 7-196 • PHY_STATUS_OF_IN_DELAY_VAL_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_OF_IN_DELAY_VALUE	0x0	[15:0] bits of PHY_REG_STATUS_OF_IN_DELAY_VALUE The coarse and fine values going into the
			output filter in the master DLL. This is a 27 bit register, 9 bits for each DLL.
			{coarse[6:0],fine[1:0]}

PHY_STATUS_OF_IN_DELAY_VAL_2_SR

Table 7-197 • PHY_STATUS_OF_IN_DELAY_VAL_2_SR

Bit Number	Name	Reset Value	Description
[31:11]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:0]	PHY_REG_STATUS_OF_IN_DELAY_VALUE	0x0	[26:16] bits of PHY_REG_STATUS_OF_IN_DELAY_VALUE The coarse and fine values going into the
			output filter in the master DLL. This is a 27 bit register, 9 bits for each DLL. {coarse[6:0],fine[1:0]}

PHY_STATUS_OF_OUT_DELAY_VAL_1_SR

Table 7-198 • PHY_STATUS_OF_OUT_DELAY_VAL_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_OF_OUT_DELAY_VALUE	0x0	[15:0] bits of PHY_REG_STATUS_OF_OUT_DELA Y_VALUE
			The coarse and fine values coming out of the output filter in the master DLL. This is a 27 bit register, 9 bits for each DLL. {coarse[6:0],fine[1:0]}

PHY_STATUS_OF_OUT_DELAY_VAL_2_SR

Table 7-199 • PHY_STATUS_OF_OUT_DELAY_VAL_2_SR

Bit Number	Name	Reset Value	Description
[31:11]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[10:0]	PHY_REG_STATUS_OF_OUT_DELAY_VALUE	0x0	[26:16] bits of PHY_REG_STATUS_OF_OUT_DELAY _VALUE The coarse and fine values coming out
			of the output filter in the master DLL. This is a 27 bit register, 9 bits for each DLL. {coarse[6:0],fine[1:0]}

$PHY_DLL_LOCK_AND_SLAVE_VAL_SR$

Table 7-200 • PHY_DLL_LOCK_AND_SLAVE_VAL_SR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
9	PHY_REG_STATUS_PHY_CTRL_DLL_LOCK	0x0	PHY_CTRL Master DLL Status bits. 1 – Master DLL is locked 0 – Master DLL is not locked
[8:0]	PHY_REG_STATUS_PHY_CTRL_DLL_SLAVE_VALUE	0x0	Shows the current coarse and fine delay value going to the PHY_CTRL slave DLL. [1:0] – Fine value [8:2] – Coarse value

PHY_CTRL_OUTPUT_FILTER_SR

Table 7-201 • PHY_CTRL_OUTPUT_FILTER_SR

Description
should not rely on the reserved bit. To provide ity with future products, of a reserved bit should yed across a readte operation.
s from the output filter side the PHY_CTRL L.
e delay line lock status.
coarse delay line lock
ed
e and fine values going atput filter in the RL master DLL.
e value arse value
ed coar e ar e ar tpu LL n

PHY_RD_DQS_SLAVE_DLL_VAL_1_SR

Table 7-202 • PHY_RD_DQS_SLAVE_DLL_VAL_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a readmodify-write operation.
[15:0]	PHY_STATUS_RD_DQS_SLAVE_DLL_VALUE	0x0	[15:0] bits of PHY_STATUS_RD_DQS_SLAVE _DLL_VALUE Delay value applied to read DQS slave DLL.

PHY_RD_DQS_SLAVE_DLL_VAL_2_SR

Table 7-203 • PHY_RD_DQS_SLAVE_DLL_VAL_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_RD_DQS_SLAVE_DLL_VALUE	0x0	[31:16] bits of PHY_STATUS_RD_DQS_SLAVE_D LL_VALUE Delay value applied to read DQS slave DLL.

PHY_RD_DQS_SLAVE_DLL_VAL_3_SR

Table 7-204 • PHY_RD_DQS_SLAVE_DLL_VAL_3_SR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	PHY_REG_STATUS_RD_DQS_SLAVE_DLL_VALUE	0x0	[44:32] bits of PHY_STATUS_RD_DQS_SLAVE_DLL _VALUE Delay value applied to read DQS slave DLL.

PHY_WR_DATA_SLAVE_DLL_VAL_1_SR

Table 7-205 • PHY_WR_DATA_SLAVE_DLL_VAL_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_WR_DATA_SLAVE_DLL_VALUE	0x0	[15:0] bits of PHY_REG_STATUS_WR_DATA_SLA VE_DLL_VALUE Delay value applied to write data slave DLL.

PHY_WR_DATA_SLAVE_DLL_VAL_2_SR

Table 7-206 • PHY_WR_DATA_SLAVE_DLL_VAL_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_WR_DATA_SLAVE_DLL_VALUE	0x0	[31:16] bits of PHY_REG_STATUS_WR_DATA_SL AVE_DLL_VALUE Delay value applied to write data slave DLL.

PHY_WR_DATA_SLAVE_DLL_VAL_3_SR

Table 7-207 • PHY_WR_DATA_SLAVE_DLL_VAL_3_SR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	PHY_REG_STATUS_WR_DATA_SLAVE_DLL_VALUE	0x0	[44:32] bits of PHY_REG_STATUS_WR_DATA_SL AVE_DLL_VALUE Delay value applied to write data slave DLL.

PHY_FIFO_WE_SLAVE_DLL_VAL_1_SR

Table 7-208 • PHY_FIFO_WE_SLAVE_DLL_VAL_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_FIFO_WE_SLAVE_DLL_VALUE	0x0	[15:0] bits of PHY_REG_STATUS_FIFO_WE_SLA VE_DLL_VALUE Delay value applied to FIFO WE slave DLL.

PHY_FIFO_WE_SLAVE_DLL_VAL_2_SR

Table 7-209 • PHY_FIFO_WE_SLAVE_DLL_VAL_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_FIFO_WE_SLAVE_DLL_VALUE	0x0	[31:16] bits of PHY_REG_STATUS_FIFO_WE_SLAV E_DLL_VALUE Delay value applied to FIFO WE slave DLL.

PHY_FIFO_WE_SLAVE_DLL_VAL_3_SR

Table 7-210 • PHY_FIFO_WE_SLAVE_DLL_VAL_3_SR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[12:0]	PHY_REG_STATUS_FIFO_WE_SLAVE_DLL_VALUE	0x0	[44:32] bits of PHY_REG_STATUS_FIFO_WE_SLAV E_DLL_VALUE Delay value applied to FIFO WE slave DLL.

PHY_WR_DQS_SLAVE_DLL_VAL_1_SR

Table 7-211 • PHY_WR_DQS_SLAVE_DLL_VAL_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	PHY_REG_STATUS_WR_DQS_SLAVE_DLL_VALUE	0x0	[15:0] bits of PHY_REG_STATUS_WR_DQS_SLAV E_DLL_VALUE Delay value applied to write DQS slave DLL.

PHY_WR_DQS_SLAVE_DLL_VAL_2_SR

Table 7-212 • PHY_WR_DQS_SLAVE_DLL_VAL_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[15:0]	PHY_REG_STATUS_WR_DQS_SLAVE_DLL_VALUE	0x0	[31:16] bits of PHY_REG_STATUS_WR_DQS_SL AVE_DLL_VALUE Delay value applied to write DQS slave DLL.

PHY_WR_DQS_SLAVE_DLL_VAL_3_SR

Table 7-213 • PHY WR DQS SLAVE DLL VAL 3 SR

Bit Number	Name	Reset Value	Description
[31:13]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[12:0]	PHY_REG_STATUS_WR_DQS_SLAVE_DLL_VALUE	0x0	[44:32] bits of PHY_REG_STATUS_WR_DQS_SL AVE_DLL_VALUE Delay value applied to write DQS slave DLL.

PHY_CTRL_SLAVE_DLL_VAL_SR

Table 7-214 • PHY_CTRL_SLAVE_DLL_VAL_SR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modifywrite operation.
[8:0]	PHY_REG_STATUS_PHY_CTRL_SLAVE_DLL_VALUE	0x0	Delay value applied to write DQS slave DLL.

DDR_FIC Configuration Registers Summary

Table 7-215 • DDR_FIC Configuration Register Summary

Register Name	Address Offset	R/W	Reset Source	Description
DDR_FIC_NB_ADDR_CR	0x400	RW	PRESET_N	Indicates the base address of the non-bufferable address region.
DDR_FIC_NBRWB_SIZE_CR	0x404	RW	PRESET_N	Indicates the size of the non-bufferable address region.
DDR_FIC_BUF_TIMER_CR	0x408	RW		10-bit timer interface used to configure the timeout register.
DDR_FIC_HPD_SW_RW_EN_CR	0x40C	RW	PRESET_N	Enable write buffer and read buffer register for AHBL master1 and master2.
DDR_FIC_HPD_SW_RW_INVAL_CR	0x410	RW	PRESET_N	Invalidates write buffer and read buffer for AHBL master1 and master2.
DDR_FIC_SW_WR_ERCLR_CR	0x414	RW	PRESET_N	Clear bit for error status by AHBL master1 and master2 write buffer.
DDR_FIC_ERR_INT_ENABLE	0x418	RW	PRESET_N	Used for Interrupt generation.
DDR_FIC_NUM_AHB_MASTERS_CR	0x41C	RW	PRESET_N	Defines whether one or two AHBL 32-bit masters are implemented in fabric.
DDR_FIC_HPB_ERR_ADDR_1_SR	0x420	RO	PRESET_N	Tag of write buffer for which error response is received is placed in this register.
DDR_FIC_HPB_ERR_ADDR_2_SR	0x424	RO	PRESET_N	Tag of write buffer for which error response is received is placed in this register.
DDR_FIC_SW_ERR_ADDR_1_SR	0x428	RO	PRESET_N	Tag of write buffer for which error response is received is placed in this register.
DDR_FIC_SW_ERR_ADDR_2_SR	0x42C	RO	PRESET_N	Tag of write buffer for which error response is received is placed in this register.
DDR_FIC_HPD_SW_WRB_EMPTY_SR	0x430	RO	PRESET_N	Indicates valid data in read and write buffer for AHBL master1 and master2.
DDR_FIC_SW_HPB_LOCKOUT_SR	0x434	RO	PRESET_N	Write and read buffer status register for AHBL master1 and master2.

Table 7-215 • DDR_FIC Configuration Register Summary (continued)

Register Name	Address Offset	R/W	Reset Source	Description
DDR_FIC_SW_HPD_WERR_SR	0x438	RO		Error response register for bufferable write request
DDR_LOCK_TIMEOUTVAL_1_CR	0x440	RW		Indicates maximum number of cycles a master can hold the bus for locked transfer.
DDR_LOCK_TIMEOUTVAL_2_CR	0x444	RW	PRESET_N	Indicates maximum number of cycles a master can hold the bus for locked transfer.
DDR_FIC_LOCK_TIMEOUT_EN_CR	0x448	RW	PRESET_N	Lock timeout feature enable register
DDR_FIC_RDWR_ERR_SR	0x44C	RO	PRESET_N	Indicates read address of math error register.

DDR_FIC Configuration Register Bit Definitions

DDR_FIC_NB_ADDR_CR

Table 7-216 • DDR_FIC_NB_ADDR_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDR_FIC_NB_ADD	0x0	This indicates the base address of the non-bufferable address region.

DDR_FIC_NBRWB_SIZE_CR

Table 7-217 • DDR_FIC_NBRWB_SIZE_CR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	DDR_FIC_WCB_SZ	0x0	Configures write buffer and read buffer size as per DDR burst size.
			This port is common for all buffers. Buffers can be configured to 16 byte or 32 byte size.
			0: Buffer size is configured to 16 bytes 1: Buffer size is configured to 32 bytes

Table 7-217 • DDR_FIC_NBRWB_SIZE_CR (continued)

Bit Number	Name	Reset Value	Description	
[7:4]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.	
[3:0]	DDR_FIC_NUBF_SZ	0x0	This signal indicates the size of the non-bufferable address region.	
			The region sizes are as follows:	
			0000: Reserved (default)	
			0001: 64 KB bufferable region	
			0010: 128 KB bufferable region	
			0011: 256 KB bufferable region	
			0100: 512 KB bufferable region	
			0101: 1 MB bufferable region	
			0110: 2 MB bufferable region	
			0111: 4 MB bufferable region	
			1000: 8 MB bufferable region	
			1001: 16 MB bufferable region	
			1010: 32 MB bufferable region	
			1011: 64 MB bufferable region	
			1100: 128 MB bufferable region	
			1101: 256 MB bufferable region	
			1110: 512 MB bufferable region	
			1111: 1 GB bufferable region	

$DDR_FIC_BUF_TIMER_CR$

Table 7-218 • DDR_FIC_BUF_TIMER_CR

Bit Number	Name	Reset Value	Description
[31:10]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[9:0]	DDR_FIC_TIMER	0x0	10-bit timer interface used to configure timeout register. Once timer reaches the timeout value, a flush request is generated by the flush controller in the DDR_FIC. This port is common for all buffers.

$DDR_FIC_HPD_SW_RW_EN_CR$

Table 7-219 • DDR_FIC_HPD_SW_RW_EN_CR

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	DDR_FIC_M1_REN	0x0	1: Enable read buffer for AHBL master1.
			0: Disable read buffer for AHBL master1.
5	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	DDR_FIC_M1_WEN	0x0	1: Enable write buffer for AHBL master1.
			0: Disable write buffer for AHBL master1.
3	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	DDR_FIC_M2_REN	0x0	1: Enable read buffer for AHBL master2.
			0: Disable read buffer for AHBL master2.
1	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDR_FIC_M2_WEN	0x0	1: Enable write buffer for AHBL master2.
			0: Disable write buffer for AHBL master2.

DDR_FIC_HPD_SW_RW_INVAL_CR

Table 7-220 • DDR_FIC_HPD_SW_RW_INVAL_CR

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	DDR_FIC_flshM1	0x0	Flush read buffer for AHBL master1. Default
5	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	DDR_FIC_invalid_M1	0x0	Invalidate write buffer for AHBL master1. Default
3	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	DDR_FIC_flshM2	0x0	Flush write buffer for AHBL master2. Default

Table 7-220 • DDR_FIC_HPD_SW_RW_INVAL_CR (continued)

Bit Number	Name	Reset Value	Description
1	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDR_FIC_invalid_M2	0x0	Invalidate read buffer for AHBL master2. Default

DDR_FIC_SW_WR_ERCLR_CR

Table 7-221 • DDR_FIC_SW_WR_ERCLR_CR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	DDR_FIC_LTO_CLR	0x0	Clear signal to lock timeout interrupt.
[7:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	DDR_FIC_M2_WR_ERCLR	0x0	Clear bit for error status of AHBL master2 write buffer. Once it goes High, error status is cleared.
[3:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDR_FIC_M1_WR_ERCLR	0x0	Clear bit for error status posted by AHBL master1 write buffer. Once it goes High, error status is cleared.

DDR_FIC_ERR_INT_ENABLE

Table 7-222 • DDR_FIC_ERR_INT_ENABLE

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	SYR_SW_WR_ERR	0x0	Status bit.
			Goes High when error response is received for bufferable write request.
			Goes Low when processor serves interrupt and makes clear bit for AHBL master1.
0	SYR_HPD_WR_ERR	0x0	Status bit.
			Goes High when error response is received for bufferable write request.
			Goes Low when processor serves the interrupt.

DDR_FIC_NUM_AHB_MASTERS_CR

Table 7-223 • DDR_FIC_NUM_AHB_MASTERS_CR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	CFG_NUM_AHB_MASTERS	0x0	Defines whether one or two AHBL 32-bit masters are implemented in the fabric. 0: One 32-bit AHB master implemented in fabric
			1: Two 32-bit AHB masters implemented in fabric
[3:0]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

DDR_FIC_HPB_ERR_ADDR_1_SR

Table 7-224 • DDR_FIC_HPB_ERR_ADDR_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDR_FIC_M1_ERR_ADD	0x0	[15:0] bits of DDR_FIC_M1_ERR_ADD
			Tag of write buffer for which error response is received is placed in this register. The following values are updated in this register as per buffer size:
			Buffer size
			16 bytes: 28 bit TAG value is loaded to [31:4] and 0000 to [3:0]
			32 bytes: upper 27 bits of TAG is loaded to [31:5] and 00000 to [4:0]

DDR_FIC_HPB_ERR_ADDR_2_SR

Table 7-225 • DDR_FIC_HPB_ERR_ADDR_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDR_FIC_M1_ERR_ADD	0x0	[31:16] bits of DDR_FIC_M1_ERR_ADD Tag of write buffer for which error response is received is placed in this register. The following values are updated in this register as per buffer size: Buffer size 16 bytes: 28 bit TAG value is loaded to [31:4] and 0000 to [3:0] 32 bytes: upper 27 bits of TAG is loaded to [31:5] and 00000 to [4:0]

DDR_FIC_SW_ERR_ADDR_1_SR

Table 7-226 • DDR_FIC_SW_ERR_ADDR_1_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDR_FIC_M2_ERR_ADD	0x0	Lower 16 bits.
			Tag of write buffer for which error response is received is placed in this register. The following values are updated in this register as per buffer size:
			Buffer size: DDR_FIC_M2_ERR_ADD[31:0]
			16 bits: TAG, 0000
			32 bits: TAG[27:1], 00000

DDR_FIC_SW_ERR_ADDR_2_SR

Table 7-227 • DDR_FIC_SW_ERR_ADDR_2_SR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	DDR_FIC_M2_ERR_ADD	0x0	[31:16] bits of DDR_FIC_M2_ERR_ADD
			Tag of write buffer for which error response is received is placed in this register. The following values are updated in this register as per buffer size:
			Buffer size
			16 bytes: 28 bit TAG value is loaded to [31:4] and 0000 to [3:0]
			32 bytes: upper 27 bits of TAG is loaded to [31:5] and 00000 to [4:0]

DDR_FIC_HPD_SW_WRB_EMPTY_SR

Table 7-228 • DDR_FIC_HPD_SW_WRB_EMPTY_SR

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	DDR_FIC_M1_RBEMPTY	0x0	1: Read buffer of AHBL master1 does not have valid data.
5	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	DDR_FIC_M1_WBEMPTY	0x0	Write buffer of AHBL master1 does not have valid data. Default

Table 7-228 • DDR_FIC_HPD_SW_WRB_EMPTY_SR (continued)

Bit Number	Name	Reset Value	Description
3	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	DDR_FIC_M2_RBEMPTY	0x0	Read buffer of AHBL master2 does not have valid data. Default.
1	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDR_FIC_M2_WBEMPTY	0x0	Write buffer of AHBL master2 does not have valid data. Default

DDR_FIC_SW_HPB_LOCKOUT_SR

Table 7-229 • DDR_FIC_SW_HPB_LOCKOUT_SR

Bit		Reset	
Number	Name	Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit
7,5,3,1			should be preserved across a read-modify-write operation.
8	DDR_FIC_LCKTOUT	0x0	Indicates lock counter in arbiter reached its maximum value.
			Lock counter (20-bit) starts counting when a locked request gets access to a bus and will be cleared when the lock signal becomes logic 0.
6	DDR_FIC_M2_WDSBL_DN	0x0	High indicates AHBL master2 write buffer is disabled.
4	DDR_FIC_M2_RDSBL_DN	0x0	High indicates AHBL master2 read buffer is disabled.
2	DDR_FIC_M1_WDSBL_DN	0x0	High indicates AHBL master1 read buffer is disabled.
0	DDR_FIC_M1_RDSBL_DN	0x0	High indicates AHBL master1 write buffer is disabled.

DDR_FIC_SW_HPD_WERR_SR

Table 7-230 • DDR_FIC_SW_HPD_WERR_SR

Bit Number	Name	Reset Value	Description
[31:9]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	DDR_FIC_M1_WR_ERR	0x0	Status bit.
			Goes High when error response is received for bufferable write request.
			Goes Low when the processor serves an interrupt and makes a clear bit for AHBL master1.

Table 7-230 • DDR_FIC_SW_HPD_WERR_SR (continued)

Bit Number	Name	Reset Value	Description
[7:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDR_FIC_M2_WR_ERR	0x0	Status bit.
			Goes High when error response is received for bufferable write request.
			Goes Low when processor serves the interrupt.

DDR_LOCK_TIMEOUTVAL_1_CR

Table 7-231 • DDR_LOCK_TIMEOUTVAL_1_CR

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:0]	CFGR_LOCK_TIMEOUT_REG	0x0	[15:0] bits of CFGR_LOCK_TIMEOUT_REG Lock timeout 20-bit register. Indicates maximum number of cycles a master can hold the bus for locked transfer. If master holds the bus for locked transfer more than the required cycles, an interrupt is generated.

$DDR_LOCK_TIMEOUTVAL_2_CR$

Table 7-232 • DDR_LOCK_TIMEOUTVAL_2_CR

Bit Number	Name	Reset Value	Description
[31:4]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[3:0]	CFGR_LOCK_TIMEOUT_REG	0x0	[19:16] bits of CFGR_LOCK_TIMEOUT_REG Lock timeout 20-bit register. Indicates maximum number of cycles a master can hold the bus for locked transfer. If master holds the bus for locked transfer more than the required cycles, an interrupt is generated.

DDR_FIC_LOCK_TIMEOUT_EN_CR

Table 7-233 • DDR_FIC_LOCK_TIMEOUT_EN_CR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	CFGR_LOCK_TIMEOUT_EN	0x0	Lock timeout feature is enabled and interrupt is generated. Lock timeout feature is disabled and interrupt is not generated.

DDR_FIC_RDWR_ERR_SR

Table 7-234 • DDR_FIC_RDWR_ERR_SR

Bit Number	Name	Reset Value	Description
[31:6]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[5:0]	DDR_FIC_CFG_RDWR_ERR_SR	0x0	Read address of math error register.

Glossary

Acronyms

ECC

Error correction code

FDDR

Fabric double data rate

FIC

Fabric interface controller

LPDDR

Low power double data rate

MDDR

MSS double data rate

SMC

Soft memory controller

List of Changes

The following table lists critical changes that were made in each revision.

Date	Changes	Page
50200330-1/11.12	Updated "3. Dual AHB Interface from FPGA Fabric" section (SAR 41901).	
	Updated Table 7-7 (SAR 41979)	244
	Updated "Features" section under "Introduction" (SAR 42751)	
	Updated Table 7-3 (SAR 42751)	240

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month and year of publication.

8 - Fabric Double Data Rate Subsystem

The fabric double data rate (FDDR) subsystem is a hard ASIC block that simplifies the interfacing of different DDR memory standards to the SmartFusion2 SoC FPGA FPGA fabric. The FDDR subsystem is used to access DDR SDRAM for high speed data rates. The host (slave) interface for the FDDR subsystem can be configured to either advanced extensible interface (AXI) mode or advanced high-performance bus (AHB) mode. In AHB mode, two AHB masters can access the FDDR subsystem at a time. The FDDR subsystem has a 16-bit APB configuration bus, which is used to initialize the internal registers within the FDDR subsystem after reset.

The functionality of the FDDR sub-blocks—DDR controller, DDR PHY, and the fabric interface—is the same as that of the MDDR block. The main difference between the MSS DDR subsystem (MDDR) and FDDR is that the MDDR controller has an additional AXI slave interface directly connected to the MSS through the MSS DDR bridge and uses the MSS system configuration registers. Refer to the "MSS DDR Subsystem" section on page 237 for more information on the functionality of the FDDR sub-blocks.

This chapter gives an overview of the FDDR subsystem, use cases, FDDR configuration details, and FDDR control registers.

FDDR Subsystem Overview

Block Diagram

Figure 8-1 shows a system level block diagram of the FDDR subsystem. DDR SDRAM can be DDR2, DDR3, or LPDDR1 depending on the FDDR configuration.

Figure 8-1 • System Level FDDR Block Diagram

Major blocks in the FDDR subsystem:

- DDR FIC
- AXI transaction controller
- · DDR controller
- DDR PHY

The DDR_FIC is an AHB-Lite to AXI or AXI to AXI bridge between the FPGA fabric and AXI Transaction controller. On the input interface, DDR_FIC implements an AHB-Lite or AXI slave interface to connect to any AHB-Lite or AXI master in the FPGA fabric. On the output interface, the DDR_FIC bridge AXI master connects to the AXI slave interface of the AXI Transaction controller.

The AXI transaction controller receives read and write requests from DDR_FIC and schedules to the DDR controller by translating the requests into the DDR controller commands.

The DDR controller (DDRC) receives the commands from the AXI transaction controller. These commands are queued internally and scheduled for access to the DDR SDRAM while satisfying DDR SDRAM constraints, transaction priorities, and dependencies between the transactions. The DDRC in turn issues commands to the PHY module, which launches and captures data to and from the DDR SDRAM.

DDR PHY converts the DDR controller instructions into the actual timing relationships and DDR signaling necessary to communicate with the memory device.

For more details about each block refer to the "MSS DDR Subsystem" section on page 237.

The functional block diagram of the FDDR subsystem is shown in Figure 8-2.

Figure 8-2 • FDDR Subsystem Functional Block Diagram

FDDR Port Descriptions

The FDDR subsystem ports are shown in Figure 8-3.

Figure 8-3 • FDDR Subsystem Block Diagram

FDDR Subsystem Interface Signals

The FDDR subsystem top level interface signals are listed in Table 8-1.

Table 8-1 • FDDR Subsystem Interface Signals

Signal Name	Туре	Description	
APB_S_PCLK	In	APB clock. This clock drives all the registers of the APB interface.	
APB_S_PRESET_N	In	APB reset signal. This is an active low signal. This drives the APB interfact which uses this signal to generate the soft reset for the DDR controller as well.	
CORE_RESET_N	In	Global reset. This resets the DDR_FIC/DDRC/PHY/DDRAXI logic.	
CLK_BASE	In	Fabric interface clock. This drives the AXI_AHB clock inside FIC 64.	
AXI_S_RMW	In	AXI mode only	
		Indicates whether all bytes of a 64-bit lane are valid for all beats of an AXI transfer.	
		0: Indicates that all bytes in all beats are valid in the burst and the controller should default to write commands.	
		1: Indicates that some bytes are invalid and the controller should default to RMW commands.	
		This is classed as an AXI write address channel sideband signal and is valid with the AWVALID signal.	
		Only used when error-correcting code (ECC) is enabled.	
CLK_BASE_PLL_LOCK	In	Fabric PLL LOCK input	
FPLL_LOCK	Out	PLL lock status of DDR PLL	
FATC_RESET_N	Out	Reset output to fabric portion of fabric alignment test circuit	
Interrupts			
PLL_LOCK_INT	Out	PLL lock interrupt	
PLL_LOCKLOST_INT	Out	PLL lock lost interrupt	
ECC_INT	Out	Sticky interrupt on APB clock. Generated on ECC errors from the DDR controller.	
IO_CALIB_INT	Out	Sticky Interrupt on APB clock. Generated on code lock from the I/O calibration block.	
FIC_INT	Out	Sticky interrupt on APB clock. Generated on error conditions from the DDR_FIC.	
Bus Interfaces	<u>.</u>		
AXI_SLAVE*	Bus	AXI slave interface 1.0 bus.	
AHB0_SLAVE*	Bus	AHB0 slave interface 3.0 bus	
AHB1_SLAVE*	Bus	AHB1 slave interface 3.0 bus	
APB_SLAVE	Bus	APB slave interface 3.0 bus T	
DRAM Interface	•		
FDDR_CAS_N	Out	DRAM CASN	
FDDR_CKE	Out	DRAM CKE	
FDDR_CLK	Out	DRAM single-ended_Clock – for differential pads	
		1	

Note: *AXI or AHB interface, depending on configuration

Table 8-1 • FDDR Subsystem Interface Signals (continued)

Signal Name	Туре	Description	
FDDR_CLK_N	Out	DRAM Single Ended Clock – for differential pads	
FDDR_CS_N	Out	DRAM CSN	
FDDR_ODT	Out	DRAM ODT	
		0: Termination OFF	
		1: Termination ON	
FDDR_RAS_N	Out	DRAM RASN	
FDDR_RESET_N	Out	DRAM Reset for DDR3	
FDDR_WE_N	Out	DRAM WEN	
FDDR_ADDR[15:0]	Out	DRAM address bits	
FDDR_BA[2:0]	Out	Dram bank address	
FDDR_DM_RDQS[4:0]	In/out	DRAM data mask – from bidirectional pads	
FDDR_DQS[4:0]	In/out	DRAM single-ended data strobe output– for bidirectional pads	
FDDR_DQS_N[4:0]	In/out	DRAM single-ended data strobe output – for bidirectional pads	
FDDR_DQ[35:0]	In/out	DRAM data input/output – for bidirectional pads	
FDDR_FIFO_WE_IN[2:0]	In	FIFO in signal. DQS enable input for timing match between DQS and system clock. For simulations to be tied to DRAM_FIFO_WE_OUT.	
FDDR_FIFO_WE_OUT[2:0]	Output		

Note: *AXI or AHB interface, depending on configuration

FDDR Configuration

Figure 8-4 shows the FDDR as seen in Libero SoC. FDDR can be instantiated from the catalog of Libero SoC. For configuration details, refer to the *FDDR Configurator User's Guide*. The configurable options are as follows:

- DDR memory type (DDR2, DDR3, or LPDDR1)
- Interface (AXI, single AHB, or dual AHB)
- FDDR CLK frequency
- Clock ratio between CLK_FDDR and CLK_BASE
- · Fabric PLL (FPLL) configuration
- · Enable/disable interrupts

The FDDR block can be configured by using the configuration wizard. This action generates register settings that are used to configure the FDDR control registers after power-up of the device. This can be accomplished through the APB slave interface on the FDDR block and is controlled either at boot time by the MSS APB master connected via Fabric routing resources, or under user control via an APB master implemented in the FPGA fabric.

Figure 8-4 • FDDR Block

Use Case Scenario

1. AXI Interface

The FDDR subsystem can be used to access DDR SDRAM memory, as shown in Figure 8-5. FDDR has an APB interface to configure the registers. The configuration can be done through user logic (APB master) in the FPGA fabric. The APB master can be selected by configuring the APB configuration IF in Libero SoC. The read, write, and read-modify-write transactions are initiated by the AXI master to read or write data into the memory.

Figure 8-5 • FDDR with AXI Interface

The FDDR can be configured from the MSS through APB configuration interface (refer to the "APB Configuration Interface" chapter in the ARM Cortex-M3 Processor and Subsystem in SmartFusion2 SoC FPGA Devices User's Guide), as shown in Figure 8-6.

Figure 8-6 • FDDR with AXI interface—Configuring from MSS Master

2. Single AHB Interface

The FDDR subsystem can be used to access DDR SDRAM, as shown in Figure 8-7. DDR SDRAM can be DDR2, DDR3, or LPDDR1, depending on the FDDR configuration. The FDDR has an APB interface to configure the registers. The configuration can be done through the MSS or user logic (APB master) in the FPGA fabric. The read and write transactions are initiated by the AHB master, which can be user logic in the FPGA fabric or FIC.

Figure 8-7 • FDDR with Single AHB Interface

3. Dual AHB Interface

The FDDR subsystem can be used to access DDR SDRAM memory, as shown in Figure 8-8. DDR SDRAM memory can be DDR2, DDR3, or LPDDR1, depending on the FDDR configuration. FDDR has an APB interface to configure the registers. The configuration can be done through the MSS or user logic (APB master) in the FPGA fabric. The read and write transactions are initiated by the AHB masters, which can be user logic in the FPGA fabric or FIC. Both the AHB masters have a round robin arbitration scheme.

For using dual AHB interface of FDDR the CFG_NUM_AHB_MASTERS bit in the "DDR FIC NUM AHB MASTERS CR" register must be set to '1'.

Figure 8-8 • FDDR with Dual AHB Interface

Register Interface

Table 8-2 lists the registers visible on the DDR APB interface.

Table 8-2 • Address Table for Register Interfaces

Registers	Address Offset Space
DDR Controller Configuration Register	0x000:0x1FC
PHY Configuration Register Summary	0x200:0x3FC
DDR_FIC Configuration Register Summary	0x400:0x4FC
FDDR SYSREG	0x500:0x5FC
Reserved	0x600:0x7FC

FDDR SYSREG Configuration Register Summary

Table 8-3 • FDDR SYSREG

Register Name	Address Offset	Register Type	Flash	Reset Source	Description
PLL_CONFIG_LOW_1	0x500	RW	Р	PRESETN	Comes from SYSREG. Controls the corresponding configuration input of the MPLL.
PLL_CONFIG_LOW_2	0x504	RW	Р	PRESETN	Comes from SYSREG. Controls the corresponding configuration input of the MPLL.
PLL_CONFIG_HIGH	0x508	RW	Р	PRESETN	Comes from SYSREG. Controls the corresponding configuration input of the MPLL.
FDDR_FACC_CLK_EN	0x50C	RW	Р	PRESETN	Enables the clock to the DDR memory controller.
FDDR_FACC_MUX_CONFIG	0x510	RW	Р	PRESETN	Selects the standby glitchless multiplexers within the fabric alignment clock controller (FACC).
FDDR_FACC_DIVISOR_RATIO	0x514	RW	Р	PRESETN	Selects the ratio between CLK_A and CLK_DDR_FIC.
PLL_DELAY_LINE_SEL	0x518	RW	Р	PRESETN	Selects the delay values to be added to the FPLL.
FDDR_SOFT_RESET	0x51C	RW	Р	PRESETN	Soft reset register for FDDR
FDDR_IO_CALIB	0x520	RW	Р	PRESETN	Configurations register for DDRIO calibration block
FDDR_INTERRUPT_ENABLE	0x524	RW	Р	PRESETN	Interrupt enable register
F_AXI_AHB_MODE_SEL	0x528	RW	Р	PRESETN	Selects AXI/AHB interface in the fabric.
PHY_SELF_REF_EN	0x52C	RW	Р	PRESETN	Automatic calibration lock is enabled.
FDDR_FAB_PLL_CLK_SR	0x530	RO	-	PRESETN	Indicates the lock status of the fabric_ PLL.
FDDR_FPLL_CLK_SR	0x534	RO	-	PRESETN	Indicates the lock status of the fabric PLL.
FDDR_INTERRUPT_SR	0x53C	RO	-	PRESETN	Interrupt status register
FDDR_IO_CALIB_SR	0x544	RO	_	PRESETN	I/O calibration status register
FDDR_FATC_RESET	0x548	RW	Р	PRESETN	Reset to fabric portion of the fabric alignment test circuit

FDDR SYSREG Configuration Register Bit Definitions

PLL_CONFIG_LOW_1

Table 8-4 • PLL_CONFIG_LOW_1

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[15:6]	PLL_FEEDBACK_DIVISOR	0x2	Can be configured to control the corresponding configuration input of the MPLL. Feedback divider value (SSE = 0) (binary value + 1: $00000000 = \div 1, \dots 11111111111 = \div 1,024$) Feedback divider value (SSE = 1) (binary value + 1: $00000000 = \div 1, \dots 1111111 = \div 128$)
[5:0]	PLL_REF_DIVISOR	0x1	Can be configured to control the corresponding configuration input of the MPLL. Reference divider value (binary value + 1: 000000 = ÷ 1)

PLL_CONFIG_LOW_2

Table 8-5 • PLL_CONFIG_LOW_2

Bit Number	Name	Reset Value	Description
[31:3]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[2:0]	PLL_OUTPUT_DIVISOR	0x2	Configures the amount of division to be performed on the internal (multiplied) PLL clock, in order to generate the DDR clock. Output divider value 000: ÷1, 001: ÷2, 010: ÷4, 011: ÷8, 100: ÷16, 101: ÷32). It is possible to configure the PLL output divider as ÷1; this setting must not be used when the DDR is operational.

PLL_CONFIG_HIGH

Table 8-6 • PLL_CONFIG_HIGH

Bit Number	Name	Reset Value	Description
[31:16]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
15	PLL_PD	0x0	When PD is asserted, the PLL will power down and outputs will be Low. PD has precedence over all other functions.
14	PLL_FSE	0x0	Chooses between internal and external input paths.
			0: FB pin input 1: Internal feedback
			FB should be tied off (High or Low) and not left floating when FSE is High. FB should connect directly or through the clock tree to PLLOUT when FSE is Low. SSE is ineffective when FSE = 0.
13	PLL_MODE_3V3	0x1	Analog voltage selection
			1: 3.3 V 0: 2.5 V
12	PLL_MODE_1V2	0x1	Core voltage selection
			1: 1.2 V 0: 1.0 V
			The wrong selection (when operating at 1 V, the jitter is not within the required limit for operation of DDR) may cause the PLL not to function, but will not damage the PLL.
11	PLL_BYPASS	0x1	If 1, powers down the PLL core and bypasses it such that PLLOUT tracks REFCK. BYPASS has precedence over RESET.
			Microsemi recommends that either BYPASS or RESET are asserted until all configuration controls are set in the desired working value, and the power supply and reference clock are stable within operating range.
[10:7]	PLL_LOCKCNT	0xF	Configured to control the corresponding configuration input of the MPLL. LOCK counter Value 2^(binary value + 5)
			0000: 32
			1111: 1048576
			For the number of reference cycles before LOCK is asserted from LOCK being detected.

Table 8-6 • PLL_CONFIG_HIGH (continued)

Bit Number	Name	Reset Value	Description
[6:4]	PLL_LOCKWIN	0x0	000: 500 ppm
			100: 8000 ppm
			001: 1000 ppm
			101: 16000 ppm
			010: 2000 ppm
			110: 32000 ppm
			011: 4000 ppm
			111: 64000 ppm
			Phase error window for LOCK assertion as a fraction of divided reference period. Values are at typical PVT only and are not PVT compensated.
[3:0]	PLL_FILTER_RANGE	0x9	PLL filter range
			0000: BYPASS
			0111: 18-29 MHz
			0001: 1-1.6 MHz
			1000: 29-46 MHz
			0010: 1.6-2.6 MHz
			1001: 46-75 MHz
			0011: 2.6-4.2 MHz
			1010: 75-120 MHz
			0100: 4.2-6.8 MHz
			1011: 120-200 MHz
			0101: 6.8-11 MHz
			0110: 11-18 MHz

FDDR_FACC_CLK_EN

Table 8-7 • FDDR_FACC_CLK_EN

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	DDR_CLK_EN	0x1	Enables the clock to the DDR memory controller.

FDDR_FACC_MUX_CONFIG

Table 8-8 • FDDR_FACC_MUX_CONFIG

Bit Number	Name	Reset Value	Description
[31:8]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
8	FACC_FAB_REF_SEL	0x0	Selects the source of the reference clock to be supplied to the FPLL. 0: 25/50 MHz RC oscillator selected as the reference clock for the FPLL. 1: Fabric clock (CLK_BASE) selected as the reference clock for the FPLL.
7	FACC_GLMUX_SEL	0x1	Selects the four glitchless multiplexers within the FACC, which are related to the aligned clocks. All four of these multiplexers are switched by one signal. Allowed values: 0: M3_CLK, PCLK0, PCLK1, CLK_DDR_FIC, all driven from stage 2 dividers (from CLK_SRC) 1: M3_CLK, PCLK0, PCLK1, CLK_DDR_FIC, all driven from CLK_STANDBY
6	FACC_PRE_SRC_SEL	0x0	Selects whether clk_1mhz or ccc2asic is to be fed into the source glitchless multiplexer. 0: clk_1mhz is fed into the source glitchless multiplexer. 1: ccc2asic is fed into the source glitchless multiplexer.
[5:3]	FACC_SRC_SEL	0x0	Selects the source multiplexer within the FACC. This is used to allow one of four possible clocks to proceed through the FACC dividers, for generation of normal functional (run-time) FDDR subsystem clocks. There are three individual 2 to 1 glitchless multiplexers in the 4 to 1 source glitchless multiplexer. FACC_SRC_SEL[0] is used to select the lower source MUX. 0: clk_src driven from clk_25_50mhz 1: clk_src driven from clk_xtal FACC_SRC_SEL[1] is used to select the upper source MUX. 0: clk_src driven from output of pre_src_mux (either clk_1mhz or ccc2asic) 1: clk_src driven from mssddr_pll_out_clk FACC_SRC_SEL[2] is used to select output source MUX. 0: clk_src driven from output of lower source MUX.
[2:0]	FACC_STANDBY_SEL	0x0	Selects the standby glitchless multiplexers within the FACC. This is used to allow one of four possible clocks to proceed through to the FDDR subsystem during FACC PLL initialization time (before the MPLL comes into lock). facc_standby_sel[0] is used to select the lower standby MUX. 0: clk_standby driven from clk_25_50mhz 1: clk_standby driven from clk_xtal FACC_STANDBY_SEL[1] is used to select upper standby MUX. 0: clk_standby driven from clk_1mhz 1: clk_standby driven from ccc2asic FACC_STANDBY_SEL[2] is used to select the output standby MUX. 0: clk_standby driven from output of lower standby MUX 1: clk_standby driven from output of upper standby MUX

FDDR_FACC_DIVISOR_RATIO

Table 8-9 • FDDR_FACC_DIVISOR_RATIO

Bit Number	Name	Reset Value	Description
[31:8]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[7:5]	BASE_DIVISOR	0x0	Selects the ratio between CLK_A and the regenerated version of CLK_BASE, called CLK_BASE_REGEN. Allowed values:
			000: clk_a: clk_base_regen ratio is 1:1
			001: clk_a: clk_base_regen ratio is 2:1
			010: clk_a: clk_base_regen ratio is 4:1
			100: clk_a: clk_base_regen ratio is 8:1
			101: clk_a: clk_base_regen ratio is 16:1
			110: clk_a: clk_base_regen ratio is 32:1
			Other values: Reserved
[4:3]	DIVISOR_A	0x0	Selects the ratio between CLK_SRC and CLK_A, which is an intermediate clock within the FACC.
			00: clk_src:clk_a ratio is 1:1
			01: clk_src:clk_a ratio is 2:1
			10: clk_src:clk_a ratio is 3:1
			11: Reserved
[2:0]	DDR_FIC_DIVISOR	0x0	Selects the ratio between CLK_A and CLK_DDR_FIC.
			000: clk_a: clk_DDR_FIC ratio is 1:1
			001: clk_a: clk_DDR_FIC ratio is 2:1
			010: clk_a: clk_DDR_FIC ratio is 4:1
			100: clk_a: clk_DDR_FIC ratio is 8:1
			101: clk_a: clk_DDR_FIC ratio is 16:1
			110: clk_a: clk_DDR_FIC ratio is 32:1
			Other values: Reserved

PLL_DELAY_LINE_SEL

Table 8-10 • PLL_DELAY_LINE_SEL

Bit Number	Name	Reset Value	Description
[31:4]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
[3:2]	PLL_FB_DEL_SEL	0x0	Selects the delay values that are added to the FPLL feedback clock before being output to the FPLL. 00: No buffer delay
			01: One buffer delay 10: Two buffers delay 11: Three buffers delay
[1:0]	PLL_REF_DEL_SEL	0x0	Selects the delay values that are added to the FPLL reference clock before being output to the FPLL.
			00: No buffer delay 01: One buffer delay 10: Two buffers delay 11: Three buffers delay

FDDR_SOFT_RESET

Table 8-11 • FDDR_SOFT_RESET

Bit Number	Name	Reset Value	Description
[31:2]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	FDDR_DDR_FIC_SOFTRESET	0x1	When '1,' holds the DDR_FIC (AXI/AHB) interface controller in reset.
0	FDDR_CTLR_SOFTRESET	0x1	When '1', holds the FDDR subsystem in reset.

FDDR_IO_CALIB

Table 8-12 • FDDR_IO_CALIB

Bit Number	Name	Reset Value	Description
[31:15]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	CALIB_TRIM	0x0	Indicates override of the calibration value from the pc code / programmed code values in the DDRIO calibration block.
13	CALIB_LOCK	0x0	Used in the DDRIO calibration block as an override to lock the codes during intermediate runs. When the firmware receives CALIB_INTRPT, it may choose to assert this signal by prior knowledge of the traffic without going through the process of putting the DDR into self refresh.
12	CALIB_START	0x0	Indicates that rerun of the calibration state machine is required in the DDRIO calibration block.
[11:6]	NCODE	0x0	Indicates the DPC override NCODE from flash in DDRIO calibration. This can also be overwritten from the firmware.
[5:0]	PCODE	0x0	Indicates the PC override PCODE from flash in the DDRIO calibration block. This is also be overwritten from the firmware.

FDDR_INTERRUPT_ENABLE

Table 8-13 • FDDR_INTERRUPT_ENABLE

Bit Number	Name	Reset Value	Description
[31:7]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	DDR_FIC_INT_ENABLE	0x0	Masking bit to enable DDR_FIC interrupt
5	IO_CALIB_INT_ENABLE	0x0	Masking bit to enable DDR I/O calibration interrupt
4	FDDR_ECC_INT_ENABLE	0x0	Masking bit to enable ECC error interrupt
3	FABRIC_PLL_LOCKLOST_INT_ENABLE	0x0	Masking bit to enable FAB_PLL_LOCK_LOST interrupt
2	FABRIC_PLL_LOCK_INT_ENABLE	0x0	Masking bit to enable FAB_PLL_LOCK interrupt
1	FPLL_LOCKLOST_INT_ENABLE	0x0	Masking bit to enable FPLL_LOCK_LOST interrupt
0	FPLL_LOCK_INT_ENABLE	0x0	Masking bit to enable FPLL_LOCK interrupt

F_AXI_AHB_MODE_SEL

Table 8-14 • F_AXI_AHB_MODE_SEL

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	F_AXI_AHB_MODE	0x0	AXI interface in the fabric will be selected. AHB interface in the fabric will be selected.

PHY_SELF_REF_EN

Table 8-15 • PHY_SELF_REF_EN

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	PHY_SELF_REF_EN	0x0	If '1', automatic calibration lock is enabled.

FDDR_FAB_PLL_CLK_SR

Table 8-16 • FDDR_FAB_PLL_CLK_SR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	FAB_PLL_LOCK	0x0	Indicates the lock status of the FPLL.

FDDR_FPLL_CLK_SR

Table 8-17 • FDDR_FPLL_CLK_SR

Bit Number	Name	Reset Value	Description
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	FPLL_LOCK	0x0	Indicates the lock status of the fabric PLL.

FDDR_INTERRUPT_SR

Table 8-18 • FDDR_INTERRUPT_SR

Bit Number	Name	Reset Value	Description
[31:5]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	DDR_FIC_INT	0x0	Indicates interrupt from DDR_FIC.
3	IO_CALIB_INT	0x0	The interrupt is generated when the calibration is finished. For the calibration after reset, this typically would be followed by locking the codes directly. For in-between runs during functional operation of DDR, the assertion of an interrupt does not guarantee lock because the state machine would wait for the ideal time (DRAM self refresh) for locking. This can be used by firmware to insert the ideal time and provides an indication that locked codes are available.
2	FDDR_ECC_INT	0x0	Indicates when the ECC interrupt from the FDDR subsystem is asserted.
1	PLL_LOCKLOST_INT	0x0	This bit indicates that a falling edge event occurred on the MPLL_LOCK signal. This indicates that the MPLL lost lock.
0	PLL_LOCK_INT	0x0	This bit indicates that a rising edge event occurred on the MPLL_LOCK signal. This indicates that the MPLL came into lock.

$FDDR_IO_CALIB_SR$

Table 8-19 • FDDR_IO_CALIB_SR

Bit		Reset	
Number	Name	Value	Description
31	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	CALIB_PCOMP	0x01	The state of the P analog comparator
13	CALIB_NCOMP	0x01	The state of the N analog comparator
[12:7]	CALIB_PCODE	0x3F	The current PCODE value set on the FDDR DDR I/O bank
[6:1]	CALIB_NCODE	0x3F	The current NCODE value set on the FDDR DDR I/O bank
0	CALIB_STATUS	0x0	This is 1 when the codes are actually locked. For the first run after reset, this would be asserted 1 cycle after calib_intrpt. For in-between runs, this would be asserted only when the DRAM is put into self refresh or there is an override from the firmware (calib_lock).

FDDR_FATC_RESET

Table 8-20 • FDDR_FATC_RESET

Bit Number	Name	Reset Value	Description	
[31:1]	Reserved	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.	
0	FATC_RESET	0x1	Reset to the fabric portion of the fabric alignment test circuit. 1: Reset active	

Glossary

Acronyms

ECC

Error correction code

FDDR

Fabric double data rate

FIC

Fabric interface controller

LPDDR

Low power double data rate

MDDR

MSS double data rate

SMC

Soft memory controller

List of Changes

The following table lists critical changes that were made in each revision.

Date	Changes	Page
50200330-1/11.12	Updated "3. Dual AHB Interface" section (SAR 41901).	382

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month and year of publication.

9 - DDR Bridge

The DDR bridge is a data bridge between four AHB bus masters and a single AXI bus slave. It accumulates AHB writes into write combining buffers prior to bursting out to external DDR memory. It also includes read combining buffers, allowing AHB masters to efficiently read data from the external DDR memory from a local buffer. The DDR bridge optimizes reads and writes from multiple masters to a single external DDR memory. Data coherency rules between the four masters and the external DDR memory are implemented in the hardware. The DDR bridge contains three write combining / Read buffers and 1 read buffer, as shown in Figure 9-1. All buffers within the DDR bridge are implemented with latches and are not subject to the single event upsets (SEUs) that SRAM exhibits. SmartFusion2 SoC FPGA devices implement three DDR bridges in MSS, FDDR, and MDDR subsystems.

Figure 9-1 • DDR Bridge Functional Block Diagram

Features

The DDR bridge has the following features:

- · Single 64-bit AXI master interface
- · Four slave interfaces
 - 1 Read only, 32/128-bits AHB bus
 Fixed read buffer size of 32 Bytes to match cache line fill size
 - 3 Read/Write, 32-bit AHB bus
 Configurable read buffer size of 16 or 32 Bytes
 Configurable write buffer size of 16 or 32 Bytes
- Arbitration scheme: Two-level arbitration with Master Interface 0 having the highest priority, followed by Master Interface 1 and the remaining Master Interfaces in round robin fashion.

DDR Bridges in SmartFusion2 SoC FPGA Devices

SmartFusion2 SoC FPGA devices implement three DDR bridges in the MSS, MDDR, and FDDR subsystems. Table 9-1 explains the master interfaces in SmartFusion2 SoC FPGA subsystems:

Table 9-1 • DDR Bridges in SmartFusion2 SoC FPGA Devices

	DDR-Bridge							
Sub- System	Master Interface 0 Read Only	Master Interface 1 R/W	Master Interface 2 R/W	Master Interface 3 R/W	Slave Interface			
MSS	Cache controller IDC	Cache controller DS	AHB bus matrix	HP-DMA	MDDR subsystem			
MDDR	Not used	Not used	AHB master interface 0	AHB master interface 1	MDDR subsystem			
FDDR	Not used	Not used	AHB master interface 0	AHB master interface 1	FDDR subsystem			

Note: If the AXI bus is selected as the interface between the FPGA fabric and the DDR controller in the MDDR and FDDR subsystem, the DDR bridge in those subsystems is not used.

MSS DDR Bridge

The DDR bridge implemented in the MSS provides an interface between AHB masters within the MSS and the MDDR subsystem, as shown in Figure 9-2.

Figure 9-2 • MSS DDR Bridge Architecture

MDDR Subsystem DDR Bridge

The DDR bridge implemented in the MDDR subsystem provides an interface between user-implemented AHB masters in the FPGA fabric, as shown in Figure 9-3. The DDR bridge in the MDDR subsystem is enabled only if the DDR_FIC is configured for AHB mode.

Figure 9-3 • MDDR Subsystem DDR Bridge and MSS DDR Bridge Architecture

FDDR Subsystem DDR Bridge

The DDR bridge implemented in the FDDR subsystem provides an interface between user-implemented AHB masters in the FPGA fabric, as shown in Figure 9-4. The DDR bridge in the FDDR subsystem is enabled only if the DDR FIC is configured for AHB mode.

Figure 9-4 • FDDR Subsystem DDR Bridge Architecture

Functional Description

The DDR bridge consists of two main components: read and write combining buffers, and an arbiter as shown in Figure 9-4. Master Interface 0 is a read only interface. It allows the cache controller D and IC buses to read data from the read buffer through a 32-bit or 128-bit AHB bus. Master Interface 1 is a read/write port allowing the Cortex-M3 Debugger access to external DDR memory and allowing read and write access to DDR memory through the Cortex-M3 S bus through the cache controller. Master interfaces 0 and 1 are used only within the MSS. The DDR bridges resident in the MDDR subsystem and FDDR subsystem do not use these two interfaces. Master Interfaces 1, 2, and 3 are identical in that they allow read and write access from the connected master.

Arbitration among the four Master interfaces is handled as follows: fixed priority between Master Interfaces 0 and 1, with 0 having the highest priority, and round robin arbitration between interfaces 2 and 3.

The external DDR memory regions can be defined to be non-bufferable. If a master interface requests a write to a non-bufferable region, the DDR bridge is essentially bypassed—no write combining occurs. The size of the non-bufferable address space can also be defined.

Write Combining Buffer (WCB)

For efficient use of DDR memory bandwidth, the WCB combines single cycle access from each master into a single DDR memory burst. The WCB has a user configurable burst size of 16 or 32 bytes and is typically set at design time.

Each WCB maintains an address tag that stores the base address of the data to be combined in the buffer. For every write transfer, the address is compared with the WCB tag. If the address matches the tag, data is combined into the buffer. The WCB writes to the correct byte location based on the offset address of the data.

The WCB tag is updated when the "Flush Controller" section on page 400 completes a flush operation.

The WCB has four different modes of operation:

- DISABLE: Default state after reset, WCB is in DISABLE mode.
- IDLE: Once buffer is enabled, it enters IDLE mode.
- WRITE COMBINE: On the first write into the WCB, it enters WRITE COMBINE mode.
- FLUSH: If a flush request is generated from the flush controller, the WCB enters FLUSH mode.

Once a flush operation is completed and if the write buffer disable command is received from the processor, the WCB enters DISABLE mode. Before entering DISABLE mode, the WCB checks whether a bufferable write is pending or not. If a bufferable write is pending, the WCB enters IDLE mode after the flush operation and updates the tag. After updating the tag register it goes to WRITE COMBINING mode. The flush controller sees that the buffer is in write combining mode and a disable command has been received from the processor, so it enters FLUSH mode. After exiting from FLUSH mode, since the disable command is high, the WCB enters DISABLE mode.

Data is written to the WCB on any of the following conditions:

- Address received for the write is in a bufferable region, the WCB is not disabled, and the transfer is not a locked transfer.
- 2. The WCB is in IDLE mode and the write request is received from an AHB Master.
- The WCB is in write combining mode and the address received for the write transfer from an AHB Master matches the WCB Tag.

If the data is not combined, it is directly bypassed to the AXI bus arbiter.

Each buffer has a 10-bit timer (down counter), which starts when the first bufferable write data is loaded into the WCB. The timer starts decrementing its value at every positive edge of the AHB clock and when it reaches zero, a timeout event is generated and a flush request is generated to the flush controller. The

timer restarts once the next bufferable write is detected. Figure 9-5 shows the flowchart for WCB operation.

Figure 9-5 • Flow Chart for WCB Operation

Flush Controller

The flush controller flushes (writes) the WCB to external memory. It sends a flush request to the arbiter for flush operation. It communicates with other WCBs and the read buffer on master Interface 0 and broadcasts internal signals to maintain data coherency.

The flush controller checks whether any other master that has initiated a read to the same address for which data is already present in a write buffer or for which a flush operation is ongoing. If the address for a read request matches the flush address or the write buffer tag, the read request is held until the buffer is flushed out completely to the AXI slave.

A flush request is generated on the following conditions:

- 1. The WCB is full: All bytes of the write buffer are valid.
- 2. The WCB times out.
- 3. The WCB is in write combining mode and the address received does not match the address tag.
- 4. A LOCK request is detected for a write/read transfer from its own or other Master.
- 5. A read address match is found from its own or any other read buffers.
- 6. A non-bufferable address is received from its own AHB master or from any other master.

- 7. A Flush command is issued.
- 8. A DISABLE command is issued.

Once a Flush request is generated, the WCB enters flush mode and writes to the write buffer are blocked. Once a WCB exits flush mode, it will start write combining data, even though response is not received for the posted write request, but it will not place the next write request until it receives the response for the posted write request.

To maintain data coherency, the WCB compares every read access from all other masters to ensure whether they are held in the write buffer. If an address match is found, the read accesses are held until the write buffer is flushed out to the slave.

When any master initiates a non-bufferable or a lock transfer and if data is present in a write buffer, these transfers will occur after flushing the write buffer. Figure 9-6 shows the flowchart for flush controller operation.

Figure 9-6 • Flow Chart for Flush Controller Operation

Read Buffer

The DDR bridge has a read buffer for each master to hold the fetched DDR burst data. One read buffer is maintained for each master, with a configurable burst size of 16 or 32 bytes in alignment with the DDR burst capability. For Master Interface 0, the buffer length is fixed to 32 bytes.

- The read buffer is associated with one specific master for reading; it does not check the read addresses of other masters to determine, whether that data can be read from the read buffer—there is no cross buffer read access.
- If the subsequent access from the same master is to a region that is outside the TAG region, the current data in the read buffer is invalidated.
- The read buffer will initiate a DDR burst size request for reads in the bufferable region, regardless
 of the size of request from the master.
- If there is an error response from DDR for the critical first word read, the error is propagated to the
 master and the read entry is invalidated. If there is an error response from DDR for the other
 address reads, the read entry is invalidated.

Figure 9-7 shows the flowchart for read operation.

Figure 9-7 • Flow Chart for Read Operation

The read buffer is invalidated under the following conditions:

- If the address from the master is outside the TAG region, the current data in the read buffer is invalidated (TAG mismatch).
- To ensure proper data coherency, every master's write address is tracked. If an address matches
 that of the read buffer TAG, the read entry is invalidated.
- · A non-bufferable or lock transfer is initiated by any master.
- An Invalidate command is issued.
- A buffer disable command is issued.
- · An error response from DDR for the expected word read.

Arbiter

The DDR bridge arbitra arbitrates read and write requests coming from the read buffers and the WCBs. Separate arbitration controllers are used for read and write requests so that two masters can access read and write channels simultaneously. The DDR bridge arbiter has an AXI master interface to the DDR controller.

AXI Write Access Controller (WAC)

The WAC arbitrates write requests from the WCBs and grants access to one of the requesting masters based on its priority. Combinations of fixed and round robin priorities are assigned to the masters below:

- Master Interface 1: Fixed 1st priority (Master Interface 0 is read only).
- · Round robin between Master Interface 2 and Master Interface 3 for 2nd and 3rd priorities.

When a master is granted access to the bus, its address and data is placed on the bus and is 64-bit aligned. All transactions from a single master have a dedicated master ID.

Once a burst transaction is initiated to the external DDR memory then the transaction will be completed without an interruption. No other master, even a high priority master, can interrupt this process. Subsequent write requests from the same master are held until the previous write transactions are completed to the external DDR memory. Subsequent write requests from other masters can be accepted and allowed to write into WCB, but the DDR bridge will not flush out this data until the previous write transactions are completed to the external DDR memory.

AXI Read Access Controller (RAC)

The RAC arbitrates read requests from read buffers and gives access to one of the requesting masters for transferring the requested read address to the DDR slave, depending on its priority. Combinations of fixed and round robin priorities are assigned to the masters as below:

- Master Interface 0 and Master Interface 1 have fixed 1st and 2nd priority.
- Round robin between Master Interface 2 and Master Interface 3 for 2nd and 3rd priorities

Re-arbitration is performed at the end of every read address transaction. The RAC also routes the read data from the slave (MDDR or FDDR) to the corresponding master based on the Read data ID. A master requesting locked transactions is granted read and write access until the locked transfer is complete.

Locked Transactions

Locked transactions are initiated only after all the posted write and read transactions receive the correct responses from the DDR slave. Once a master requesting a locked transfer is granted the bus, read and write access is granted until the locked transaction is completed.

After the last lock transfer, a dummy write with all data strobes deasserted is initiated on the AXI bus to unlock the DDR slave from the master by completing the locked transaction. The AXI controller resume normal operation after receiving the correct response from the DDR slave for dummy write transfer.

The arbiter has a 20-bit up counter for detecting a lock timeout condition. The counter starts counting when a locked transaction is initiated on the bus. When the counter reaches its maximum value, an interrupt is generated to the Cortex-M3 processor. The interrupt can be cleared by setting the DDR_LOCKOUT bit in the MSS_EXTERNAL_SR from SYSREG block. If the interrupt is cleared and the lock signal is still asserted, the counter will start counting again.

The error routine should be stored in eSRAM so that the processor can fetch the ISR without going through the DDR Bridge. As part of the ISR, the CM3 will read the SYSREG registers to identify the master and take appropriate action to release the arbiter in DDR Bridge from dead lock.

MSS DDR Bridge Configurations

The DDR bridge configurator in Libero SoC allows configuration of the MSS DDR bridge. Configurable parameters are listed below:

- Buffer size, 1b: 32 bytes, 0b: 16 bytes
- · Non-bufferable address and Non-bufferable size
- Timeout value for each write buffer. Set timeout value to maximum or non-zero value
- · Enable or disable respective buffer allocated for each master

MDDR/FDDR DDR Bridge Configuration Steps

- Configure the clock ratios using DDR_FIC_DIVISOR bits in the MSSDDR_FACC1_CR register for MDDR and the <FDDR_FACC_DIVISOR_RATIO> register for FDDR. The ratios are set during power-up and cannot be changed after that.
- · Configure buffer size to 32 bytes or 16 bytes using the DDR FIC NBRWB SIZE CR register.
- · Configure the non-bufferable address using the DDR FIC NB ADD register.
- · Configure the non-bufferable size using the DDR FIC NBRWB SIZE CR register.
- Configure the timeout value for each write buffer using the DDR_FIC_LOCK_TIMEOUTVAL_CR1
 and DDR_FIC_LOCK_TIMEOUTVAL_CR2 registers. Set the timeout value to maximum or a nonzero value.
- Enable the write and read buffers of the DDR bridge using the DDR_FIC_HPD_SW_RW_EN_CR register.

The configuration registers for the MDDR DDR bridge and FDDR DDR bridge are listed under the DDR FIC registers section in the MDDR and FDDR chapters.

SYSREG Control Registers

Table 9-2 lists MSS DDR bridge Control registers in the SYSREG block. Refer to the "System Register Map" chapter of the *ARM Cortex-M3 Processor and Subsystem for SmartFusion2 SoC FPGA Devices User's Guide* for a detailed description of each register and bit.

Table 9-2 • SYSREG Control Registers

Register Name	Register Type	Flash Write Protect	Reset Source	Description
DDRB_BUF_TIMER_CR	RW-P	Register	SYSRESET_N	Uses a 10-bit timer interface to configure the timeout register in the write buffer module.
DDRB_NB_ADDR_CR	RW-P	Register	SYSRESET_N	Indicates the base address of the non-bufferable address region.
DDRB_NB_SIZE_CR	RW-P	Register	SYSRESET_N	Indicates the size of the non-bufferable address region.
DDRB_CR	RW-P	Register	SYSRESET_N	MSS DDR bridge configuration register
MSS_IRQ_ENABLE_CR	RW-P	Register	SYSRESET_N	Configures interrupts to the Cortex-M3 processor
DDRB_DS_ERR_ADR_SR	RO	_	SYSRESET_N	MSS DDR bridge DS master error address status register
DDRB_HPD_ERR_ADR_SR	RO	_	SYSRESET_N	MSS DDR bridge high performance DMA master error address status register
DDRB_SW_ERR_ADR_SR	RO	_	SYSRESET_N	MSS DDR bridge switch error address status register
DDRB_BUF_EMPTY_SR	RO	_	SYSRESET_N	MSS DDR bridge buffer empty status register
DDRB_DSBL_DN_SR	RO	_	SYSRESET_N	MSS DDR bridge disable buffer status register
DDRB_STATUS	RO	-	SYSRESET_N	Indicates MSS DDR bridge status
MSS_EXTERNAL_SR	SW1C	_	SYSRESET_N	MSS external status register
MSSDDR_FACC1_CR	RW-P	Field	CC_RESET_N	MSS DDR fabric alignment clock controller 1 configuration register.

DDR Bridge Control Registers in MDDR and FDDR

Table 9-3 lists MSS DDR bridge control registers in the MDDR and FDDR. Refer to the "MSS DDR Subsystem" section on page 237 and the "Fabric Double Data Rate Subsystem" section on page 373 for a detailed description of each register and bit.

Table 9-3 • DDR Bridge Control Registers in MDDR and FDDR

Register Name	Address Offset	R/W	Reset Source	Description
DDR_FIC_NB_ADDR_CR	0x400	RW	PRESET_N	Indicates the base address of the non-bufferable address region.
DDR_FIC_NBRWB_SIZE_CR	0x404	RW	PRESET_N	Indicates the size of the non-bufferable address region.
DDR_FIC_BUF_TIMER_CR	0x408	RW		10-bit timer interface used to configure the timeout register.
DDR_FIC_HPD_SW_RW_EN_CR	0x40C	RW	PRESET_N	Enable write buffer and read buffer register for AHB-Lite (AHBL) master1 and master2.
DDR_FIC_HPD_SW_RW_INVAL_CR	0x410	RW	PRESET_N	Invalidates write buffer and read buffer for AHBL master1 and master2.
DDR_LOCK_TIMEOUTVAL_1_CR	0x440	RW	PRESET_N	Indicates maximum number of cycles a master can hold the bus for a locked transfer.
DDR_LOCK_TIMEOUTVAL_2_CR	0x444	RW	PRESET_N	Indicates maximum number of cycles a master can hold the bus for a locked transfer.

Glossary

DDR

Double data rate

Flush Operation

Writing the data in the Write combining buffer into DDR memory.

Non-bufferable Address

The address is within the range of defined non-bufferable region.

RAC

Read access controller

SEU

Single event upsets

TAG Region

It is the range of bufferable data for write/read transactions from the address of initial transaction.

WAC

Write access controller

WCB

Write combining buffer

10 – Soft Memory Controller Fabric Interface Controller

Introduction

The SmartFusion2 SoC FPGA soft memory controller fabric interface controller (SMC_FIC) is used to access external bulk memories other than DDR via the FPGA fabric. The SMC_FIC can be used with a soft memory controller to interface the MSS to memories such as SDRAM, external flash, and external SRAM. The SMC_FIC can be accessed by different masters in the MSS and is configured by the Libero SoC MSS MDDR configuration GUI. The SMC_FIC implements an AXI master to AXI master/AHB-Lite master protocol translator.

The MSS DDR subsystem (MDDR) controller is not available to the user application if SMC_FIC mode is enabled. In SMC_FIC mode, the 2.5 V DDRIOs normally available to the MDDR controller are available for interfacing to external devices.

Functional Block Diagram

Figure 10-1 • SMC_FIC Mode

Functional Description

The input side of the SMC_FIC accepts 64-bit AXI master transactions from the MSS DDR bridge and converts the transactions into 64-bit AXI or 32-bit AHB-Lite master output transactions for consumption in the FPGA fabric. The AXI and AHB-Lite slave ports are mutually exclusive; only one type is available at any given time. The type of interface can be configured by setting the F_AXI_AHB_MODE bit in the MDDR_CR register in the SYSREG block. Setting the SDR_MODE bit in the MDDR_CR register in the SYSREG block enables SMC_FIC mode.

The SMC_FIC is overlaid on the DDR_FIC fabric interface; they share the same fabric interface signals. Therefore the MDDR is not available in SMC_FIC mode. However, the I/Os associated with the MDDR are available to user logic in the fabric.

Figure 10-1 on page 407 shows a soft memory controller implemented within the fabric for interfacing with external bulk memory. Microsemi provides CoreSDR_AHB and CoreSDR_AXI soft memory controller IPs for interfacing with external SDRAM. A custom soft memory controller can be implemented in the FPGA fabric to support the external bulk memories connected to the fabric.

MSS masters connected to the AHB bus matrix can communicate with the soft memory controller in SDR mode for interfacing with external bulk memory via the fabric. For example, the HPDMA can be used to perform data transfers from external bulk memory connected to the fabric.

The Cortex-M3 processor boots from the internal eNVM or eSRAM (in debug mode). Application code (except vector tables) can execute from external bulk memories such as external flash or a preloaded SDRAM, which are connected via FPGA fabric in SMC_FIC mode.

To configure the SMC_FIC with the Libero SoC MSS MDDR configuration GUI, select the application access to single data rate memory from MSS option and specify either the AXI-64 or AHB-Lite interface.

The SMC_FIC AXI-64 interface in the fabric supports INCR burst transactions of any length for read and write channels. It supports WRAP burst for read/write transactions, for burst lengths 2 and 4 only.

The SMC_FIC AHB-Lite interface in the fabric supports INCR burst transactions of any length for read and write. It supports WRAP for read/write transactions, for burst lengths 4 and 8 only.

SYSREG Control Register for SMC_FIC

Complete descriptions of each register and bit are located in the "System Register Map" chapter in the ARM Cortex-M3 Processor and Subsystem for SmartFusion2 SoC FPGA Devices User's Guide and are listed here for clarity.

Table 10-1 • MDDR CR Register

Register Name	Register Type	Flash Write Protect	Reset Source	Description
MDDR_CR	RW-P	Register	PORESET_N	MDDR configuration register

SMC_FIC Port List

Table 10-2 and Table 10-3 on page 413 give the AXI-64 and AHB-Lite port list details toward the fabric interface.

AHB-Lite signals are overlaid on AXI-64 signals toward the fabric interface. F_AXI_AHB_MODE configuration input from the SYSREG block is used to select the AXI-64 or AHB-Lite interface toward the fabric

Note: For smaller SmartFusion2 SoC FPGA devices, only the AHB-Lite interface for SMC_FIC is available.

Table 10-2 • SMC_FIC AXI-64 Port List

Width	Port Name	Direction	Description
1	MDDR_SMC_AXI_M_WLAST	Out	Indicates the last transfer in a write burst.
1	MDDR_SMC_AXI_M_WVALID	Out	Indicates whether valid write data and strobes are available.
			1: Write data and strobes available
			0: Write data and strobes not available
1	MDDR_SMC_AXI_M_BREADY	Out	Indicates whether the master can accept the response information.
			1: Master ready
			0: Master not ready
1	MDDR_SMC_AXI_M_AWVALID	Out	Indicates whether valid write address and control information are available.
			1: Address and control information available
			0: Address and control information not available
1	MDDR_SMC_AXI_M_ARVALID	Out	Indicates the validity of read address and control information.
			1: Address and control information valid
			0: Address and control information not valid
1	MDDR_SMC_AXI_M_RREADY	Out	Indicates whether the master can accept the read data and response information.
			1: Master ready
			0: Master not ready
1	MDDR_SMC_AXI_M_AWREADY	In	Indicates that the slave is ready to accept an address and associated control signals.
			1: Slave ready
			0: Slave not ready
1	MDDR_SMC_AXI_M_WREADY	In	Indicates whether the slave can accept the write data.
			1: Slave ready
			0: Slave not ready
1	MDDR_SMC_AXI_M_BVALID	In	Indicates whether a valid write response is available.
			1: Write response available
			0: Write response not available.
1	MDDR_SMC_AXI_M_ARREADY	In	Indicates whether the slave is ready to accept an address and associated control signals. 1: Slave ready
			0: Slave not ready
			o. clare her loady

Table 10-2 • SMC_FIC AXI-64 Port List (continued)

Width	Port Name	Direction	Description
1	MDDR_SMC_AXI_M_RLAST	In	Indicates the last transfer in a read burst.
1	MDDR_SMC_AXI_M_RVALID	In	Indicates whether the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
4	MDDR_SMC_AXI_M_AWLEN	Out	Indicates burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. 0000: 1 0001: 2 0010: 3 0011: 4 0100: 5 0101: 6 0110: 7 0111: 8 1000: 9 1001: 10 1010: 11 1011: 12 1100: 13 1101: 14 1110: 15 1111: 16
2	MDDR_SMC_AXI_M_AWBURST	Out	Indicates burst type. The burst type, coupled with the size information, details how the address for each transfer within the burst is calculated. 00: FIXED – Fixed-address burst FIFO-type 01: INCR – Incrementing-address burst normal sequential memory 10: WRAP – Incrementing-address burst that wraps to a lower address at the wrap boundary 11: Reserved
4	MDDR_SMC_AXI_M_AWID	Out	Indicates identification tag for the write address group of signals.
64	MDDR_SMC_AXI_M_WDATA	Out	Indicates write data.
4	MDDR_SMC_AXI_M_WID	Out	Indicates ID tag of the write data transfer. The SMC_AXI64_WID value must match the SMC_AXI64_AWID value of the write transaction.
8	MDDR_SMC_AXI_M_WSTRB	Out	Indicates which byte lanes to update in memory.
4	MDDR_SMC_AXI_M_ARID	Out	Indicates identification tag for the read address group of signals.
32	MDDR_SMC_AXI_M_ARADDR	Out	Indicates initial address of a read burst transaction.

Table 10-2 • SMC_FIC AXI-64 Port List (continued)

Width	Port Name	Direction	Description
4	MDDR_SMC_AXI_M_ARLEN	Out	Indicates burst length. The burst length gives the exact number of transfers in a burst. 0000: 1 0001: 2 0010: 3 0011: 4 0100: 5 0101: 6 0110: 7 0111: 8 1000: 9 1001: 10 1010: 11 1011: 12 1100: 13 1101: 14 1110: 15 1111: 16
2	MDDR_SMC_AXI_M_ARSIZE	Out	Indicates the maximum number of data bytes to transfer in each data transfer, within a burst. 00: 1 01: 2 10: 4 11: 8
2	MDDR_SMC_AXI_M_ARBURST	Out	Indicates burst type. The burst type, coupled with the size information, details how the address for each transfer within the burst is calculated. 00: FIXED – Fixed-address burst FIFO type 01: INCR – Incrementing-address burst normal sequential memory 10: WRAP – Incrementing-address burst that wraps to a lower address at the wrap boundary 11: Reserved
32	MDDR_SMC_AXI_M_AWADDR	Out	Indicates write address. The write address bus gives the address of the first transfer in a write burst transaction.
2	MDDR_SMC_AXI_M_AWSIZE	Out	Indicates the maximum number of data bytes to transfer in each data transfer, within a burst. 00: 1 01: 2 10: 4 11: 8
2	MDDR_SMC_AXI_M_AWLOCK	Out	Indicates lock type. This signal provides additional information about the atomic characteristics of the write transfer. 00: Normal access 01: Exclusive access 10: Locked access 11: Reserved

Table 10-2 • SMC_FIC AXI-64 Port List (continued)

Width	Port Name	Direction	Description
2	MDDR_SMC_AXI_M_ARLOCK	Out	Indicates lock type. This signal provides additional information about the atomic characteristics of the read transfer. 00: Normal access 01: Exclusive access 10: Locked access 11: Reserved
4	MDDR_SMC_AXI_M_BID	In	Indicates response ID. The identification tag of the write response. The MDDR_SMC_AXI_M_BID value must match the MDDR_SMC_AXI_M_AWID value of the write transaction to which the slave is responding.
4	MDDR_SMC_AXI_M_RID	In	Read ID tag. This signal is the ID tag of the read data group of signals. The MDDR_SMC_AXI_M_RID value is generated by the slave and must match the MDDR_SMC_AXI_M_ARID value of the read transaction to which it is responding.
2	MDDR_SMC_AXI_M_RRESP	In	Indicates read response. This signal indicates the status of the read transfer. 00: Normal access okay 01: Exclusive access okay 10: Slave error 11: Decode error
2	MDDR_SMC_AXI_M_BRESP	In	Indicates write response. This signal indicates the status of the write transaction. 00: Normal access okay 01: Exclusive access okay 10: Slave error 11: Decode error
64	MDDR_SMC_AXI_M_RDATA	In	Indicates read data.

Table 10-3 • SMC_FIC AHB-Lite Port List

Width	Port Name	Direction	Description
1	MDDR_SMC_AHB_M_HMASTLOCK	Out	Indicates that the current master is performing a locked sequence of transfers.
1	MDDR_SMC_AHB_M_HWRITE	Out	Indicates write control signal. When High, this signal indicates a write transfer and when Low, a read transfer.
1	MDDR_SMC_AHB_M_HRESP	In	The transfer response Indicates the status of transfer.
1	MDDR_SMC_AHB_M_HREADY	In	When High, the signal indicates that a transfer has finished on the bus. This signal may be driven Low to extend a transfer.
2	MDDR_SMC_AHB_M_HBURST	Out	Indicates burst type.
2	MDDR_SMC_AHB_M_HTRANS	Out	Indicates the type of the current transfer. 00: Idle 01: Busy 10: Non Sequential 11: Sequential
2	MDDR_SMC_AHB_M_HSIZE	Out	Indicates the size of the transfer. 00: Byte 01: Half word 10: Word
32	MDDR_SMC_AHB_M_HWDATA	Out	The write data bus is used to transfer data during write operations.
32	MDDR_SMC_AHB_M_HADDR	Out	Indicates address bus.
32	MDDR_SMC_AHB_M_HRDATA	In	The read data bus is used to transfer data from bus slaves to the bus master during read operations.

Glossary

Acronyms

AXI

Advanced extensible interface

AHB-Lite

AMBA high performance bus - Lite

AHBL

AMBA high performance bus - Lite

DDRIO

DDR input/output

ENVMO

Embedded nonvolatile memory 0

HPDMA

High performance peripheral direct memory access

INCR

Increment

MSIO

Multi-standard input/output

MSS

Microcontroller subsystem

MSSDDR

Microcontroller subsystem DDR

SMC FIC

Soft memory controller fabric interface controller

SYSREG

System register

A - List of Changes

List of Changes

The following table lists critical changes that were made in each revision.

Changes	Page		
Updated "Fabric Double Data Rate Subsystem" section (SAR 41901).	394		
Updated "MSS DDR Subsystem" section (SAR 41901).	372		
Updated "Fabric Double Data Rate Subsystem" section (SAR 41979).			
Updated "Serializer/Deserializer" section (SAR 42156).			
Updated "Serializer/Deserializer" section (SAR 42155).	234		
Updated the user's guide (SAR 42443).	N/A		
Updated "MSS DDR Subsystem" section (SAR 42751).	372		
Updated "SERDESIF Block" section (SAR 42912).	58		
	Updated "Fabric Double Data Rate Subsystem" section (SAR 41901). Updated "MSS DDR Subsystem" section (SAR 41901). Updated "Fabric Double Data Rate Subsystem" section (SAR 41979). Updated "Serializer/Deserializer" section (SAR 42156). Updated "Serializer/Deserializer" section (SAR 42155). Updated the user's guide (SAR 42443). Updated "MSS DDR Subsystem" section (SAR 42751).		

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month and year of publication.

B - Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service, Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains information about contacting Microsemi SoC Products Group and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060 From the rest of the world, call 650.318.4460 Fax, from anywhere in the world, 408.643.6913

Customer Technical Support Center

Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical Support Center spends a great deal of time creating application notes, answers to common design cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Technical Support

Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the website.

Website

You can browse a variety of technical and non-technical information on the SoC home page, at www.microsemi.com/soc.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email (soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at www.microsemi.com/soc/company/contact/default.aspx.

ITAR Technical Support

For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR), contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select **Yes** in the ITAR drop-down list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.