# **Review of Probability Theory Part 2**



## **Fundamentals of Reinforcement Learning**

Institut für Nachrichtentechnik
Fachgebiet Kommunikationstechnik
Prof. Dr.-Ing. Anja Klein
Dr. Sabrina Klos & Dr. Andrea Ortiz

## **Lecture Overview**



Chapters 2-3

Chapter 2

Chapter 2

Chapter 2

Chapter 3

Chapter 4

Chapter 3

Chapter 4

Chapter 3

Chapter 4

Chapter

The MultiArmed Bandit
Problem

Decisions do not influence future data

With/without context

The full RL Problem

Decisions ma

Decisions may influence future data

With/without knowledge of dynamics

**Case Study** 

Chapter

**Extensions** 

Chapter



# **Learning Goals**



 You can determine characteristics of continuous random variables and relate important examples to their applications.

 You can apply the formulas for multiple random variables and operations on random variables to compute probabilities, distributions, expectation and variance.

 You can distinguish the fundamental concepts of statistics and apply results and formulas for point estimation and confidence intervals.

## **Outline**



- Continuous Random Variables
- Multiple Random Variables
- Operations on Random Variables
- Statistics

4



# Recap: Random Variables (RVs)

## RVs link sample spaces and events to data



#### Definition (Random Variable)

A **random variable (RV)** is a function  $X:\Omega\to\mathcal{X}$  that assigns an element of  $\mathcal{X}$  to each  $\omega \in \Omega$ .

The distribution of an RV X can be completely determined by its **cumulative distribution** function (CDF)

$$F_X(x) := \mathbb{P}(X \le x).$$

**Example**:  $X(\omega)$ : Number of "heads" in 2 coin tosses



$$\mathbb{P}(X=0) = \mathbb{P}(TT) = \frac{1}{4} 
\mathbb{P}(X=1) = \mathbb{P}(HT, TH) = \frac{1}{2} \implies F_X(x) = \begin{cases} 0 & x < 0 \\ \frac{1}{4} & 0 \le x < 1 \\ \frac{3}{4} & 1 \le x < 2 \\ 1 & x \ge 2 \end{cases}$$





# Recap: Discrete Random Variables (RVs)



RVs with countably many values

#### **Definition (Discrete Random Variable)**

A random variable X is **discrete** if it takes only countably many values  $\{x_1, x_2, ...\}$ .

#### Definition (Probability Mass Function)

For a discrete random variable X, we define the **probability mass function (PMF)** of X by  $f_{X}(x) := \mathbb{P}(X - x)$ 

$$f_X(x) := \mathbb{P}(X = x).$$

• **Example**:  $X(\omega)$ : Number of "heads" in 2 coin tosses





## **Outline**



- Continuous Random Variables
- Multiple Random Variables
- Operations on Random Variables
- Statistics

# Continuous RVs and Probability Density Functions



RVs with a density

We also consider RVs with an uncountable number of values in  $\mathcal{X} = \mathbb{R}$ .

#### Definition (Continuous Random Variable and Probability Density Function)

A random variable X is **continuous** if there exists a function  $f_X$  such that  $f_X(x) \ge 0$  for all x,  $\int_{-\infty}^{\infty} f_X(x) dx = 1$  and for every  $a \leq b$ ,

$$\mathbb{P}(a < X < b) = \int_a^b f_X(x') dx'.$$

The function  $f_X$  is called the **probability density function (PDF).** We have that

$$F_X(x) = \int_{-\infty}^x f_X(x') dx'$$

and  $f_X(x) = \frac{dF_X(x)}{dx}$  at all points x at which  $F_X(x)$  is differentiable.

Multiple RVs

**Note:** For a continuous random variable X,  $\mathbb{P}(X=x)=0$  for all x.

# **Important Continuous Random Variables**

**Example: Uniform Distribution** 



#### **Definition (Uniform Distribution)**

A random variable X has a **(continuous) uniform distribution** on the interval [a,b], written  $X \sim \mathcal{U}(a,b)$ , if it has the PDF

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \\ 0 & \text{otherwise.} \end{cases}$$



Uniform distribution on [0, 0.2]

Application: Can be used to model the belief of a receiver about the unknown phase of a transmitted radio frequency sinusoid in a communications system.



# **Important Continuous Random Variables**





#### Definition (Normal/Gaussian Distribution)

A random variable X has a **Normal/Gaussian distribution** with parameters  $\mu \in \mathbb{R}$  and  $\sigma > 0$ , written  $X \sim \mathcal{N}(\mu, \sigma^2)$ , if it has the PDF

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right).$$



Normal distribution with  $\mu = 3, \sigma = 2$ 

The Normal distribution is very important:

- Many quantities can be approximated by a normal distribution.
- It has convenient mathematical properties.
- **Application:** Can be used to model e.g., noise in wireless communication channels and thermal noise in electronic circuits.

# **Important Continuous Random Variables**

**Example: Exponential Distribution** 



#### Definition (Exponential Distribution)

A random variable X has an **Exponential** distribution with parameter  $\lambda > 0$ , written  $X \sim \text{Exp}(\lambda)$ , if it has the PDF

$$f_X(x) = \lambda e^{-\lambda x}$$
 for  $x > 0$ .



Exponential distribution with  $\lambda = 2$ 

**Application:** Can be used to describe the waiting time for a memoryless process, e.g., the interarrival times between independent accesses to a server.  $T = t_1 - t_2$ 



**Continuous RVs** 

Multiple RVs

**Operations on RVs** 

## **Outline**



- Continuous Random Variables
- Multiple Random Variables
- Operations on Random Variables
- Statistics

## **Joint Distributions**



#### Joint distribution functions characterize the joint distribution of multiple RVs

#### Definition (Joint Distribution and Joint Density Function)

• For n random variables  $X_1, X_2, \ldots, X_n$ , the function

$$F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n) = \mathbb{P}(X_1 \le x_1,X_2 \le x_2,...,X_n \le x_n)$$

is called the joint (cumulative) distribution function (joint CDF).

• In the discrete case, we define the joint (probability) mass function (joint PMF) by

$$f_{X_1,X_2,...X_n}(x_1,...,x_n) := \mathbb{P}(X_1 = x_1,...,X_n = x_n).$$

• In the continuous case, we call a function  $f_{X_1,X_2,...X_n}(x_1,x_2,...,x_n)$  a joint (probability) density function (joint PDF) if

i. 
$$f_{X_1,X_2,...X_n}(x_1,x_2,...,x_n) \ge 0$$
 for all  $(x_1,x_2,...,x_n)$ 

ii. 
$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_{X_1,...,X_n}(x_1,...,x_n) dx_1 \dots dx_n = 1$$

iii. For any 
$$A \subset \mathbb{R}^n$$
:  $\mathbb{P}((X_1, X_2, \dots, X_n) \in A) = \int_A f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$ 

Continuous RVs Operations on RVs Statistics 13

# **Marginal Distributions**



Marginal distribution functions characterize the distribution of one of multiple RVs

#### **Definition (Marginal Distribution Function)**

• Let  $F_{X_1,X_2,...,X_n}(x_1,x_2,...,x_n)$  denote the joint distribution of  $X_1,X_2,...,X_n$ . The marginal distribution function of  $X_i$  is given by

$$F_{X_i}(x_i) = \lim_{\substack{x_j \to \infty \\ j=1,\dots,i-1,i+1,\dots,n}} F_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n).$$

• In the discrete case, the **marginal mass function** for  $X_i$  is defined by

$$f_{X_i}(x_i) := \mathbb{P}(X_i = x_i) = \sum_{x_1} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_n} f_{X_1,...,X_n}(x_1,...,x_n).$$

In the continuous case, we obtain the marginal density function by

$$f_{X_i}(x_i) = \int_{\mathbb{R}^{n-1}} f_{X_1, X_2, \dots, X_n}(x_1, x_2, \dots, x_n) \, dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n.$$

• Marginals can be defined for any subset of the RVs  $X_1, X_2, \dots, X_n$ .

14

# **Joint and Marginal Distributions**



**Example: A bivariate distribution for two discrete RVs** 

Here is a bivariate distribution for two discrete RVs X,Y each taking values 0 or 1:

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1/9 | 2/9 | 1/3 |
| X=1 | 2/9 | 4/9 | 2/3 |
|     | 1/3 | 2/3 | 1   |

- - The inner part of the table shows the joint mass function  $f_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$ .
- The row totals show the marginal mass function of X
- $f_X(x) = \overline{\mathbb{P}(X = x)} = \sum f_{X,Y}(x,y).$
- The column totals show the marginal mass function of Y  $f_Y(y) = \mathbb{P}(Y = y) = \sum f_{X,Y}(x,y)$ .





# What are the probabilities $\mathbb{P}(X=1,Y=1), \mathbb{P}(X=1), \mathbb{P}(Y=1)$ ?

Here is a bivariate distribution for two discrete RVs X,Y each taking values 0 or 1:

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1/9 | 2/9 | 1/3 |
| X=1 | 2/9 | 4/9 | 2/3 |
|     | 1/3 | 2/3 | 1   |

- The inner part of the table shows the joint mass function  $f_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y)$ .
- The row totals show the marginal mass function of X
- The column totals show the marginal mass function of Y  $f_Y(y) = \mathbb{P}(Y = y) = \sum_{x \in Y} f_{X,Y}(x,y)$ .

$$f_{X,Y}(x,y) = \mathbb{P}(X=x,Y=y).$$

 $f_X(x) = \overline{\mathbb{P}(X = x)} = \sum f_{X,Y}(x,y).$ 

$$f_Y(y) = \mathbb{P}(Y = y) = \sum_x f_{X,Y}(x,y).$$

16





## Read probabilities $\mathbb{P}(X=1,Y=1), \mathbb{P}(X=1), \mathbb{P}(Y=1)$ from table

We read the probabilities from the joint and marginal mass functions in the table:

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1/9 | 2/9 | 1/3 |
| X=1 | 2/9 | 4/9 | 2/3 |
|     | 1/3 | 2/3 | 1   |

$$\mathbb{P}(X=1,Y=1) = f_{X,Y}(1,1) = 4/9$$

$$\mathbb{P}(X = 1) = f_X(1) = 2/3$$

$$\mathbb{P}(Y = 1) = f_Y(1) = 2/3$$

# **Independent Random Variables**



RVs are independent iff joint density is product of marginal densities

#### Definition (Independent Random Variables)

The random variables  $X_1, X_2, \dots, X_n$  are said to be **independent** if for every  $A_1, A_2, \dots, A_n$ 

$$\mathbb{P}(X_1 \in A_1, X_2 \in A_2, \dots, X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i) \quad \Leftrightarrow \quad f(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

where f is the PMF in the discrete case and the PDF in the continuous case.

#### Definition (i.i.d. Random Variables)

If  $X_1, X_2, \dots, X_n$  are independent and all  $X_i$  have the same marginal distribution F, we say that  $X_1, X_2, \dots, X_n$  are independent and identically distributed (i.i.d.).

- We can also see the i.i.d. RVs  $X_1, X_2, \dots, X_n$  as a random sample of size n from distribution F.
  - → This idea is important for statistical inference.

18

# **Independent Random Variables**



Example: Check independence in a bivariate distribution for two discrete RVs

Consider again the bivariate distribution for two discrete RVs X,Y each taking values 0 or 1:

|     | Y=0 | Y=1 |     |
|-----|-----|-----|-----|
| X=0 | 1/9 | 2/9 | 1/3 |
| X=1 | 2/9 | 4/9 | 2/3 |
|     | 1/3 | 2/3 | 1   |

#### Joint mass function:

$$f_{X,Y}(0,0) = 1/9$$
  
 $f_{X,Y}(0,1) = 2/9$   
 $f_{X,Y}(1,0) = 2/9$   
 $f_{X,Y}(1,1) = 4/9$ 

## Marginal mass function of X:

$$f_X(0) = 1/3$$
  
 $f_X(1) = 2/3$ 

## Marginal mass function of Y:

$$f_Y(0) = 1/3$$
  
 $f_Y(1) = 2/3$ 

$$f_{X,Y}(0,0) = f_X(0)f_Y(0)$$

$$f_{X,Y}(0,1) = f_X(0)f_Y(1)$$

$$f_{X,Y}(1,0) = f_X(1)f_Y(0)$$

$$f_{X,Y}(1,1) = f_X(1)f_Y(1)$$

 $\Rightarrow$  X and Y are independent.

## **Conditional Distributions**

## We can condition an RV on the value of another RV



For simplicity, consider two RVs  $X_1$  and  $X_2$  with a joint distribution  $F_{X_1,X_2}$ .

We are interested in the distribution of  $X_1$  for a given value of  $X_2$ .

## Definition (Conditional Probability Mass and Density Functions)

• For  $X_1, X_2$  discrete and  $f_{X_2}(x_2) > 0$ , the conditional probability mass function is

$$f_{X_1|X_2}(x_1|x_2) := \mathbb{P}(X_1 = x_1|X_2 = x_2) = \frac{\mathbb{P}(X_1 = x_1, X_2 = x_2)}{\mathbb{P}(X_2 = x_2)} = \frac{f_{X_1, X_2}(x_1, x_2)}{f_{X_2}(x_2)}.$$

• For  $X_1, X_2$  continuous and  $f_{X_2}(x_2) > 0$ , the conditional probability density function is

$$f_{X_1|X_2}(x_1|x_2) := \frac{f_{X_1,X_2}(x_1,x_2)}{f_{X_2}(x_2)} \quad \text{and} \quad \mathbb{P}(a_1 \leq X_1 \leq b_1|X_2 = x_2) = \int_{a_1}^{b_1} f_{X_1|X_2}(x_1|x_2) \, dx_1 \, .$$

## **Outline**



- Continuous Random Variables
- Multiple Random Variables
- Operations on Random Variables
- Statistics

# **Expectation of an RV**

## The expectation of an RV is its "average" value



In applications, the full distribution of an RV is usually inaccessible.

→ We therefore consider certain summary functions.

## **Definition (Expectation)**

The expected value, or mean, or first moment, of a discrete RV X is defined as

$$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x f_X(x),$$

where  $f_X(x)$  is the PMF of X.

• The expected value, or mean, or first moment, of a continuous RV X is defined as

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx,$$

where  $f_X(x)$  is the PDF of X.

Generalization to multiple random variables is straightforward.



# **Question**



#### What is the expected value of the number of heads in two coin tosses?

• Random Variable: Let  $X(\omega)$  be the number of "heads" in the sequence  $\omega \in \Omega$  of two coin tosses, where  $\Omega = \{H,T\} \times \{H,T\}$ .



What is the expected value of this RV?





## Sum up PMF weighted by values of RV

• Random Variable: Let  $X(\omega)$  be the number of "heads" in the sequence  $\omega\in\Omega$  of two coin tosses, where  $\Omega=\{H,T\}\times\{H,T\}.$ 



We already found the PMF:

$$f_X(x) = \begin{cases} \frac{1}{4} & x = 0\\ \frac{1}{2} & x = 1\\ \frac{1}{4} & x = 2\\ 0 & x \notin \{0, 1, 2\} \end{cases} \xrightarrow{f_X(x)} \uparrow$$



$$\Rightarrow \mathbb{E}(X) = \sum_{x} x f_{X}(x)$$

$$= 0 \cdot f_{X}(0) + 1 \cdot f_{X}(1) + 2f_{X}(2)$$

$$= 0 \cdot \frac{1}{4} + 1 \cdot \frac{1}{2} + 2\frac{1}{4}$$

# **Properties of the Expectation**



The expectation is a linear, monotone operator

#### Theorem (The rule of the lazy statistician)

For an RV X with density  $f_X(x)$  and a function g, define the new RV Y=g(X). Then

$$\mathbb{E}[Y] := \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

#### Theorem (Properties of Expectation)

Let X, Y be general RVs with  $\mathbb{E}[X], \mathbb{E}[Y] < \infty$ .

- Linearity:  $\mathbb{E}[\alpha X + \beta Y] = \alpha \mathbb{E}[X] + \beta \mathbb{E}[Y]$  for constants  $\alpha, \beta$ .
- Monotonicity: If  $X \leq Y$   $(F_X(x) \geq F_Y(x), \forall x)$ , then also  $\mathbb{E}[X] \leq \mathbb{E}[Y]$ .
- For X, Y independent:  $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$

# **Properties of the Expectation**

TECHNISCH UNIVERSITÄ DARMSTAD

**Example: Expected profit in game with two coin tosses** 

• Random Variable: Let  $X(\omega)$  be the number of "heads"

in the sequence  $\omega \in \Omega$  of two coin tosses,

where  $\Omega = \{H, T\} \times \{H, T\}$ .



Game:

After the two coin tosses, you are paid a profit of  $2^{X(\omega)}$ .

• Expected Profit: Set  $Y = g(X) := 2^X$  and apply rule of the lazy statistician.

$$\mathbb{E}(Y) = \sum_{x} g(x) f_X(x)$$

$$= 2^0 \cdot f_X(0) + 2^1 \cdot f_X(1) + 2^2 \cdot f_X(2)$$

$$= 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} + 4 \cdot \frac{1}{4}$$

$$= \frac{9}{4}$$

## **Variance**



## The variance measures the "spread" of a distribution

#### **Definition (Variance)**

For an RV X with  $\mathbb{E}[X], \mathbb{E}[X^2] < \infty$ , the variance is defined as

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

- The variance can also be written as  $V[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$ .
- It is a measure of the spread of a distribution around its mean.
- The standard deviation is related to the variance via  $std[X] = \sqrt{V[X]}$ .
- The variance is often denoted by  $\sigma^2$  and the standard deviation by  $\sigma$ .

## **Outline**



- Continuous Random Variables
- Multiple Random Variables
- Operations on Random Variables
- Statistics

## **Statistical Inference**



## The process of using data to infer the distribution that generated the data

Basic statistical inference problem:

We observe  $X_1, X_2, \dots, X_n \sim F$  i.i.d.

How can we **infer** (or **estimate** or **learn**) the distribution F or some features of F?

- This task is known as statistical inference or learning.
- Statistics is deeply connected with machine learning.

# **Fundamental Concepts in Statistical Inference**

DARMSTADT

Many inferential problems can be identified as being one of 3 types



30

## **Point Estimation**



## Point estimators provide a single best guess of some quantity of interest

#### **Definition (Point estimator)**

Assume we have  $X_1, X_2, \dots, X_n$  i.i.d. samples from a distribution  $F_{\theta}$  from a class of candidate distributions defined by some parameter vector  $\theta \in \Theta$ .

• A **point estimator**  $\hat{\theta}_n$  of  $\theta$  is a function

$$\hat{\theta}_n = g(X_1, \dots, X_n) \, .$$

• We define the **bias** of  $\hat{\theta}_n$  to be

$$\operatorname{bias}[\hat{\theta}_n] = \mathbb{E}[\hat{\theta}_n] - \theta.$$

• We call  $\hat{\theta}_n$  unbiased if

$$\mathbb{E}[\hat{\theta}_n] = \theta.$$

• We call  $\hat{\theta}_n$  consistent if

$$\hat{\theta}_n \longrightarrow \theta \quad \text{for } n \to \infty.$$

Point estimators often have a limiting Normal distribution.

## **Point Estimation**



Two important point estimators are sample mean and sample variance

#### Definition (Sample Mean and Sample Variance)

If  $X_1, X_2, \dots, X_n$  are random variables, then we define the **sample mean** to be

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

and the sample variance to be

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
.

- The sample mean is an unbiased and consistent estimator of the true expected value.
- The sample variance is an unbiased and consistent estimator of the true variance.



Continuous RVs

Multiple RVs

**Operations on RVs** 

## **Limit Theorems**



## Theorems describe the limiting behaviour of sequences of random variables

The behavior of the sample mean for a large number of samples is described by two important theorems.

Let  $\mu = \mathbb{E}[X] < \infty$  and  $\sigma^2 = \operatorname{Var}[X] < \infty$  denote expected value and variance of X with  $X \sim F$ .

## Theorem (Weak Law of Large Numbers (WLLN))

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. random variables from F. Then

$$\bar{X}_n \longrightarrow \mu \quad \text{for } n \to \infty.$$

#### Theorem (Central limit theorem (CLT))

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. random variables from F. Then

$$Z_n = \frac{\bar{X}_n - \mu}{\sqrt{\operatorname{Var}[\bar{X}_n]}} \longrightarrow Z \sim \mathcal{N}(0, 1) \text{ for } n \to \infty.$$

Continuous RVs

Multiple RVs

**Operations on RVs** 

## **Point Estimation**



Example: How to estimate the probability of heads in coin tossing

• **Experiment:** Consider tossing a coin for which the probability of heads is p.



• Random Variable: Let  $X_i$  be the outcome of a single coin toss, where

$$X_i(\omega) = \begin{cases} 1, \omega = H \\ 0, \omega = T. \end{cases}$$



# **Question**



## What is the distribution of this RV and what is its expected value?

• **Experiment:** Consider tossing a coin for which the probability of heads is p.



• Random Variable: Let  $X_i$  be the outcome of a single coin toss, where

$$X_i(\omega) = \begin{cases} 1, \omega = H \\ 0, \omega = T. \end{cases}$$

- Distribution:
- Expected Value: ?





## The RV is Bernoulli distributed with expected value p

• **Experiment:** Consider tossing a coin for which the probability of heads is p.



• Random Variable: Let  $X_i$  be the outcome of a single coin toss, where

$$X_i(\omega) = \begin{cases} 1, \omega = H \\ 0, \omega = T. \end{cases}$$

• **Distribution:**  $X_i \sim \text{Bernoulli}(p)$ 

• Expected Value: 
$$\mathbb{E}(X_i) = \sum_x x \, f_{X_i}(x)$$
 
$$= 0 \cdot f_{X_i}(0) + 1 \cdot f_{X_i}(1)$$
 
$$= 0 \cdot \mathbb{P}[X_i = 0] + 1 \cdot \mathbb{P}[X_i = 1]$$
 
$$= p$$





• **Experiment:** Consider tossing a coin for which the probability of heads is p.



• Random Variable: Let  $X_i$  be the outcome of a single coin toss, where

$$X_i(\omega) = \begin{cases} 1, \omega = H \\ 0, \omega = T. \end{cases} \Rightarrow X_i \sim \text{Bernoulli}(p), \mathbb{E}(X_i) = p.$$

Point Estimation: ?

Continuous RVs

Multiple RVs

**Operations on RVs** 





## Use fraction of heads after n tosses as point estimator

• **Experiment:** Consider tossing a coin for which the probability of heads is p.



• Random Variable: Let  $X_i$  be the outcome of a single coin toss, where

$$X_i(\omega) = \begin{cases} 1, \omega = H \\ 0, \omega = T. \end{cases} \Rightarrow X_i \sim \text{Bernoulli}(p), \mathbb{E}(X_i) = p.$$

• **Point Estimation:** A possible point estimator  $\hat{p}_n$  for parameter p is the fraction of heads after n coin tosses, given by the (unbiased and consistent) sample average, i.e.,

$$\hat{p}_n := \bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

## Likelihood-based inference



## Maximum likelihood is most common method for parameter estimation

Idea: If  $X \sim F_{\theta}$ , we can understand this as a distribution conditional on parameter  $\theta$ .

#### **Definition** (Likelihood Function)

Let  $X_1, X_2, \ldots, X_n$  i.i.d. be continuous random variables with PDF  $f(X_i|\theta)$ .

The **likelihood function**  $L_n(\theta)$  is a defined as the joint conditional

$$L_n(\theta) \equiv f(x_1, \dots, x_n \mid \theta) = \prod_{i=1}^n f(x_i \mid \theta).$$

#### Definition (Maximum Likelihood Estimator (MLE))

The **maximum likelihood estimator (MLE)** is defined as the value of  $\theta$  that maximizes the likelihood, i.e.,

$$\hat{\theta}_n = \arg \max_{\theta} L_n(\theta) = \arg \max_{\theta} \log L_n(\theta).$$



**Continuous RVs** 

Multiple RVs

**Operations on RVs** 

## **Confidence Intervals**



## Confidence intervals contain a quantity of interest with high probability

#### **Definition (Confidence Interval)**

Assume we have  $X_1, X_2, \dots, X_n$  i.i.d. samples from a distribution  $F_{\theta}$  from a class of candidate distributions defined by some (one-dimensional) parameter  $\theta$ . Let  $\alpha \in [0,1]$ .

A  $1-\alpha$  confidence interval for  $\theta$  is an interval

$$C_n=(a,b)$$
 where  $a=a(X_1,...,X_n)$  and  $b=b(X_1,...,X_n)$  are functions of  $X_1,X_2,...,X_n$  such that 
$$\mathbb{P}[\theta\in C_n]>1-\alpha\quad\forall\,\theta\in\Theta.$$

- I.e.,  $C_n = (a, b)$  traps  $\theta$  with probability  $1 \alpha$ . Note that  $C_n = (a, b)$  is random and  $\theta$  is fixed!
- (Approximate) confidence intervals can often be constructed based on point estimators with limiting Normal distribution.
- If  $\theta$  is a vector, we use a **confidence set** (e.g., a sphere or an ellipse) instead of an interval.

# **Hoeffding's Inequality**



This inequality is useful for constructing confidence intervals

#### Theorem (Hoeffding's Inequality)

Let  $X_1, X_2, \ldots, X_n$  be i.i.d. RVs with values in [0, 1] and expected value  $\mathbb{E}[X]$  and let

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

be the sample mean. Then, for any u > 0,

$$\mathbb{P}[\mathbb{E}[X] \ge \bar{X}_n + u] \le e^{-2nu^2}$$

and

$$\mathbb{P}[|\bar{X}_n - \mathbb{E}[X]| \ge u] \le 2e^{-2nu^2}.$$

- There exist also variants of Hoeffding's inequality for independent random variables with bounded supports  $a_i \leq X_i \leq b_i, i = 1, ..., n$ .
- We can use Hoeffding's inequality to construct confidence intervals of samples of i.i.d. RVs.





→ Chapter 5



# **Learning Goals**



- You can determine the characteristics of continuous random variables and relate important examples to their applications.
  - → Probability Density Function; Uniform / Gaussian / Exponential Distribution.
- You can apply the formulas for multiple random variables and operations on random variables to compute probabilities, distributions, expectation and variance.
  - → Joints; Marginals; Independence; Conditionals; Expectation and its properties; Variance.
- You can distinguish the fundamental concepts of statistics and apply results and formulas for point estimation and confidence intervals.
  - → Point Estimators and their properties; Sample Mean and Variance; Limit Theorems; Maximum Likelihood; Confidence Intervals; Hoeffding's Inequality.

## **Lecture Overview**

Next week, we'll study a simplified version of RL



