Quiz questions of cal-I from chapter 4.2-4.4

Ques. 1: Identify the interval on which $f(x) = 2x^3 - 3x^2 - 12x$ is increasing

- (a) (1,2)
- **(b)** (-1,2)
- (c) $(-\infty,1) \cup (2,\infty)$
- (d) $(-\infty, -1) \cup (2, \infty)$

Ques. 2: If f(1) = 10 and $f'(x) \ge 2$ for $1 \le x \le 4$ then find the smallest possible value of f(4).

- (a) 14
- (b) 15
- (c) 16
- (d) 18

Ques. 3: Absolute maximum value of the function $f(x) = x^3 - 3x + 1$ in the interval [0,3] is

- (a) -1
- (b) 3
- (c) 18
- (d) 19

Ques. 4: The interval of concave upward is of the function $f(x) = x^2 \ln x$ is

- (a) $(e^{\frac{1}{2}}, \infty)$
- **(b)** $(e^{-\frac{3}{2}}, \infty)$
- (c) $(e^{\frac{3}{2}}, \infty)$
- (d) $(e^{\frac{-1}{2}},\infty)$

Ques. 5: Find the local maximum and local minimum values for the function $h(x) = 5x^3 - 3x^5$.

- (a) 2,-2 respectively
- (b) 3, -3 respectively
- (c) -3, 3 respectively
- (d) -2, 2 respectively

Ques. 6: Find the local maximum and local minimum values for the function $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$

- (a) $-\sqrt{2}$, $\sqrt{2}$ respectively
- **(b)** $\sqrt{2}$, $-\sqrt{2}$ respectively
- (c) $\sqrt{3}$, $-\sqrt{3}$ respectively
- (d) $-\sqrt{3}$, $\sqrt{3}$ respectively

Ques. 7: If the function $f(x) = 2x^2 - 3x + 1$ satisfies the hypothesis of the mean value theorem on the interval [0,2] then find the number 'c' that satisfy the conclusion of the mean value theorem.

- (a) 0
- (b) 1
- (c) -1
- (d) 2

Ques. 8: If the function $f(x) = x^3 - x^2 - 6x + 2$ satisfies Rolle's theorem on the interval [0,3] then find the number 'c' that satisfy the conclusion of the Rolle's theorem

(a) $\frac{-1-\sqrt{19}}{3}$

- (b) $\frac{-1+\sqrt{19}}{3}$
- (c) $\frac{1 \pm \sqrt{19}}{3}$
- (d) $\frac{-1 \pm \sqrt{19}}{3}$

Ques. 9: If the function $f(x) = e^{-2x}$ satisfies Mean value theorem on the interval [0,3] then find the number 'c' that satisfy the conclusion of the Mean value theorem.

(a)
$$-\frac{1}{2}\ln[\frac{1}{6}(1-e^{-6})]$$

(b)
$$\frac{1}{2} \ln[\frac{1}{6}(1-e^{-6})]$$

(c)
$$\frac{1}{2} \ln \left[\frac{1}{6} (1 + e^{-6}) \right]$$

(d)
$$-\frac{1}{2}\ln[\frac{1}{6}(1+e^{-6})]$$

Ques. 10: The value of $\lim_{x\to\infty} x \tan \frac{1}{x}$ is

- (a) 1
- (b) 0
- **(c)** ∞
- (d) -1

Ques. 11: The value of $\lim_{x\to\infty}\frac{(\ln x)^2}{x}$ is

- (a) ∞
- (b) 1
- (c) 0
- (d) -∞

Ques. 12: The value of $\lim_{x \to \frac{\pi}{2}^+} \frac{\cos x}{1 - \sin x}$ is

- (a) 0
- (b) ∞
- (c) ∞
- (d) 1

Ques. 13: The value of $\lim_{x\to 1} (\frac{x}{x-1} - \frac{1}{\ln x})$ is

- (a) 1
- (b) 0
- (c) $-\frac{1}{2}$
- (d) $\frac{1}{2}$

Ques. 14: The value of $\lim_{x \to 0^+} (\cos x)^{\frac{1}{x^2}}$ is

- (a) ∞
- (b) 1
- (c) -1
- (d) 0

Ques. 15: Use L' Hospital rule to evaluate $\lim_{x \to \infty} x^3 e^{-x^2}$.

- (a) 0
- (b) 1
- (c) -1
- (d) ∞

Ques. 16: Use L' Hospital rule to evaluate $\lim_{x\to\infty} \frac{\ln \ln x}{x}$.

- (a) 1
- (b) -1
- (c) 0
- (d) ∞

Ques. 17: Use L' Hospital rule to evaluate $\lim_{t\to 0} \frac{e^{2t}-1}{\sin t}$.

- (a) 0
- (b) 1
- (c) 2

(d) ∞

Ques. 18: Use L' Hospital rule to evaluate $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$.

- (a) 0
- (b) 1
- (c) -1
- (d) ∞

Ques. 19: The interval of concave downward is of the function $f(x) = x^2 \ln x$ is

- (a) $(-\infty, e^{\frac{1}{2}})$
- **(b)** $(-\infty, e^{-\frac{3}{2}})$
- (c) $(-\infty, e^{\frac{3}{2}})$
- (d) $(-\infty, e^{-\frac{1}{2}})$

Ques. 20: The critical numbers of the curve $y = x^4 - 4x^3$

- (a) 0 and 4
- **(b)** 0 and 2
- (c) 0 and 1
- (d) 0 and 3