项目自测报告

题	目:	智能多功能使携式监护仪
学	校:	电子科技大学
队	名:	脉 搏 队
俉	小	孙宇 马宗扬

目录

项目自测报告说明
一、概述
二、项目预期应用及标准基本要求概述
2.1 预期应用:
2.2 基本要求概述:
三、项目功能测试方案
3.1 测试设备:
3.2 功能步骤:
四、项目性能测试方案
4.1 功耗测试
4.1.1 测试设备
4.1.2 测试步骤
4.2 疲劳判断效果测试
4.2.1 测试设备
4.2.2 测试步骤
4.3 心率检测效果测试
4.3.1 测试设备
4.3.2 实验步骤5
4.4 抗运动效果测试5
4.4.1 测试设备5
4.4.2 实验步骤5
五、项目功能与性能测试记录
5.1 功能测试记录5
5.2 性能测试记录6
5.2.1 功耗测试记录和结论6
5.2.2 心率检测效果记录和结论 ϵ
5.2.3 疲劳判断效果测试记录和结论
5.2.4 抗运动效果测试记录和结论
六、小结

项目自测报告说明

一、概述

将智能多功能便携式监护仪硬件部分搭建组装完毕,同时调试好软件部分,对整个系统进行功耗测试和性能测试。首先功耗测试是测试设备工作以及待机情况下的电压和电流,并以此计算各个部分的功率,估算各个系统的有效工作时长,进而估算整个系统的有效工作时长。性能测试是测试设备的实际应用效果,将设备提取的心率与市面上的血压计得到的心率进行对比,观察其误差;再测试设备的疲劳判断性能和抗运动性能。

二、项目预期应用及标准基本要求概述

2.1 预期应用:

- (一) 提取脉搏波, 检测用户实时心率;
- (二)提取脑电波,检测用户的睡眠状态或者疲劳状态;
- (三) 当用户处于轻度睡眠状态时,发出白噪声改变用户的睡眠状态;
- (四) 当用户处于重度疲劳状态时,发出警报,提醒用户及时休息。

2.2 基本要求概述:

- (一) 低功耗,工作时间超过30小时;
- (二)通过脉搏波检测到用户实时心率误差在±2bpm
- (三) 能够相对准确的判断疲劳状态和睡眠状态
- (四) 具有抗运动性能。

三、项目功能测试方案

3.1 测试设备:

装有 MATLAB 并具有蓝牙功能的电脑和智能多功能便携式监护仪

3.2 功能步骤:

- (一) 打开硬件设备的两个电源开关。
- (二)打开电脑,运行 MATLAB 程序,选择正确的端口值,打开接受串口,脑电和脉搏

数据在电脑上显示出来,并显示当前被试状态,

- (三) 切换至睡眠状态, 在轻度睡眠或清醒状态, 自动播放白噪声,
- (四)切换至疲劳状态,在重度睡眠状态,发出警报,提醒用户按时休息。

四、项目性能测试方案

4.1 功耗测试

4.1.1 测试设备

DT-9205A 万用表(仪铭仪表)和智能多功能便携式监护仪

4.1.2 测试步骤

- (一)打开硬件设备的两个电源开关,选择万用表的 20V 量程档,分别测量三块电池两端的电压,并且记录
- (二)断开开关,选择万用表的 200mA 量程档,将红黑表笔分别连接开关的两个引脚,此时电路导通,测试电路在蓝牙连接工作电流和蓝牙未连接待机电流。
 - (三) 计算相应电压和电流的乘积,得到工作功率和待机功率。

4.2 疲劳判断效果测试

4.2.1 测试设备

e-prime2.0、智能多功能便携式监护仪和装有 MATLAB 并具有蓝牙功能的电脑

4.2.2 测试步骤

- (一)编辑 e-prime2.0 程序。程序功能为屏幕上会随机出现"x、y、z"三个字母。如果出现"x",则在保证正确率的情况下,以最快的速度按下数字"1"。同理,如果出现"y",则按下数字"2"。如果出现"z",则按下数字"3"。每次实验"x、y、z"三个字母分别随机出现十次,共进行30个 trail,记录下每次实验的平均反应时间。
- (二)被试带上智能多功能便携式监护仪,记录脑电波数据,计算得到疲劳程度的衡量指标($\alpha + \theta$)/ β 的能量比值。同时,在 e-prime 软件进行实验。
 - (三)寻找两个被试,共进行10次实验
 - (四)列出 $(\alpha + \theta)/\beta$ 的能量比值和反应时间表,分析实验结果

4.3 心率检测效果测试

4.3.1 测试设备

智能多功能便携式监护仪、鱼跃 YE660A 血压计

4.3.2 实验步骤

- (一)打开智能多功能便携式监护仪的开关,打开脉搏波串口并设置好相应参数,接收脉搏波数据。
- (二)将血压计绑带绑定在左臂上,打开开关,等待一段时间,待到测量完毕,读取屏幕上的脉搏数据。
- (三) 计算血压计测量时段内,头带测算的脉搏数据的平均值,并将该数据与血压计的脉搏数据对比,计算误差。如此重复 20 次。

4.4 抗运动效果测试

4.4.1 测试设备

智能多功能便携式监护仪和装有 MATLAB 并具有蓝牙功能的电脑

4.4.2 实验步骤

- (一) 打开智能多功能便携式监护仪的开关,运行程序。
- (二)2佩戴仪器的同学在地面上静止不动和原地大踏步
- (三)将静止状态下的数据和运动状态下的数据进行对比,观察是否影响仪器功能。.

五、项目功能与性能测试记录

5.1 功能测试记录

在 MATLAB 的 GUI 界面上左上角显示脉搏波的实时波形,并且旁边显示实时心率。左下角显示脑电波的实时波形。右下角显示是脑电的 α 、 β 、 δ 、 θ 波形。右上角状态栏中可以选择两

种模式,一种是疲劳状态,一种睡眠状态。疲劳状态分为清醒、轻度疲劳、重度疲劳三个状态;睡眠状态分为了清醒、轻度睡眠、中度睡眠和深度睡眠四个状态。在切换了睡眠状态后,在清醒状态和轻度睡眠状态下,白噪声会自动响起。切换了疲劳状态后,在重度疲劳状态下,会发出报警声音,提醒用户及时休息。

5.2 性能测试记录

5.2.1 功耗测试记录和结论

表 1 设备工作及待机参数表

电池类型	工作电压 /v	待机电流/mA	工作电流/mA	待机功率/mW	工作功率/mW
脑电	3.7	15.9	6.5-6.6	58.83	24.05-24.42
NANO	3.77	3	3	11.31	11.31
HC-06	3.45	4.2	10.3-12	14.49	35.54-41.4

表 2 预估工作时间表

电池类型	电池容量/mA • h ⁻¹	理论工作时间/h	预计工作时间/h	系统工作时间/h
脑电	800	50	40	
NANO	1000	333	50	40
HC-06	800	66	40	

通过功耗测试可以看出,设备完全可以工作超过40小时以上。

5.2.2 心率检测效果记录和结论

表 3 心率测量记录表

血压计心率	头带心率	误差个数	血压计心率	头带心率	误差个数
60	59	-1	57	57	0
52	53	1	54	54	0
56	56	0	58	59	1
54	54	0	54	53	-1
57	57	0	57	57	0
55	56	1	52	52	0
55	57	2	56	55	-1
59	59	0	57	57	0
56	57	1	59	60	1
61	60	-1	55	55	0

通过实验验证,计算误差平均值,认为脉搏波检测到用户实时心率误差在±2bpm之内。

5.2.3 疲劳判断效果测试记录和结论

疲劳功能测试图

		被试一			被试二		
第一天晚上 测试数据	30 次测试平均反 应时/ms	586.6	560. 4	686. 1	670.8	670. 4	
(被试主诉 较为疲劳)	($\alpha + \theta$) / β	0. 7943	0. 5168	4. 4658	4. 1678	4. 1604	
第二天早上 测试数据	30 次测试平均反 应时/ms	510.5	513.5	554.2	581.5	565. 5	
(被试主诉 比较清醒)	(α+θ)/β	0. 4185	0.3040	2. 2804	2. 9424	2. 9782	

通过实验可知,同一个人的疲劳状态和($\alpha + \theta$)/ β 有着明显的线性关系,不同的人的疲劳 值有一定差异。

5.2.4 抗运动效果测试记录和结论

运动状态下

心率信号在原地踏步状态下虽然有一定的基线漂移,但是还能准确的计算心率结果,并不影 响功能使用。

六、小结

通过对智能多功能便携式监护仪的实际测量,可以发现此设备的功耗以及续航时间都在预计范围之内,工作时间长达 40 小时以上,心率测算结果误差在±2bpm 之内,并确定对人体的疲劳和睡眠状态有一定检测效果。该设备还具有一定的抗运动性能。基本达到了预期的功能和性能要求。