第四次作业

洪艺中 12335025

2024年3月30日

0.1 133 页习题 11

题目 1. 设 (M_1, g_1) , (M_2, g_2) 均为 Riemann 流形. $\nabla^{(1)}$, $\nabla^{(2)}$ 分别为它们的 Riemann 联络. $F: M_1 \to M_2$ 为等距微分同胚, 即 $g_1 = F^*g_2$. 证明 $F_*(\nabla_X^{(1)}Y) = \nabla_{F,X}^{(2)}F_*Y$, $\forall X, Y \in \mathcal{X}(M_1)$.

解答. 因为 F 是微分同胚, 所以 M_1 和 M_2 是同维数流形. 因此 F_p^* 是切空间 T_pM 到 $T_{F(p)}M$ 的同构. 故要证明 $F_*(\nabla_X^{(1)}Y) = \nabla_{F_*X}^{(2)}F_*Y$, $\forall X,Y \in \mathscr{X}(M_1)$, 只需要证明任取 $Z \in \mathscr{X}(M_1)$,

$$g_1((\nabla_X^{(1)}Y), Z) = g_2(F_*(\nabla_X^{(1)}Y), F_*Z) = g_2(\nabla_{F_*X}^{(2)}F_*Y, \forall X, Y \in \mathcal{X}(M_1), F_*Z). \tag{*}$$

而利用 Riemann 联络的唯一性构造, 联络 ∇ 和度量 ⟨·,·⟩ 满足

$$2\langle \nabla_X Y, Z \rangle = X\langle Y, Z \rangle + Y\langle Z, X \rangle - Z\langle X, Y \rangle + \langle [X, Y], Z \rangle - \langle [Y, Z], X \rangle + \langle [Z, X], Y \rangle,$$

要证明 (*) 式, 只需要证明: 任取 $X,Y,Z \in \mathcal{X}(M_1)$,

$$X(q_1(Y,Z)) = (F_*X)(q_2(F_*Y,F_*Z))$$

和

$$g_1([X,Y],Z) = g_2([F_*X,F_*Y],F_*Z).$$

利用 $g_1 = F^*g_2$ 和 Lie 括号与切映射交换, 计算可得:

$$(F_*X)(g_2(F_*Y, F_*Z)) = X(g_2(F_*Y, F_*Z) \circ F) = X((F^*g_2)(Y, Z)) = X(g_1(Y, Z)),$$

以及

$$g_2([F_*X, F_*Y], F_*Z) = g_2(F_*[X, Y], F_*Z) = (F^*g_2)([X, Y], Z) = g_1([X, Y], Z).$$

所以题目得证.

0.2 113 页习题 12

题目 2. 设 (M^m, g) 为连通 Riemann 流形, ∇ 为 Riemann 联络, A 为二阶对称张量且 $\nabla A = 0$. 定义线性映射 $A^*: T_pM \to T_pM$, $\forall p \in M$ 如下: 对任意的 $X, Y \in T_p(M)$

$$\langle A^*(X), Y \rangle_p := A(X, Y)(p),$$

设 ρ_i 为 A^* 的特征值, $\tilde{e_i}$ 为其相应的单位特征向量, 证明:

- 1. 所有特征值在 M 上均为常数;
- 2. 若 $\rho_h \neq \rho_k$, 则 $\langle e_h, e_k \rangle = 0$. 设 $\{\tilde{e}_i\}$ 为 A^* 的特征向量标架, 使得 $\langle \tilde{e}_i, \tilde{e}_j \rangle = \delta_{ij}$, 则 $\rho_h \neq \rho_k$ 时, 有

$$\langle \nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k \rangle = 0, \quad h, i, k = 1, \cdots, m;$$

3. 设 ρ_i 为 r 重根, 对应特征向量为 $\tilde{e}_1, \dots, \tilde{e}_r$, 则 $\tilde{e}_{r+1}, \dots, \tilde{e}_m$ 生成的分布 \mathcal{D} 是完全可积的.

解答.

1. 取 $X, Y \in \mathcal{X}(M)$, 则根据 $\nabla A = 0$,

$$X(A(\tilde{e}_i, Y)) = A(\nabla_X \tilde{e}_i, Y) + A(\tilde{e}_i, \nabla_X Y)$$

利用 q 也关于联络平行,

$$X(A(\tilde{e}_i, Y)) = X(\rho_i \langle \tilde{e}_i, Y \rangle) = X(\rho_i) \langle \tilde{e}_i, Y \rangle + \rho_i \langle \nabla_X \tilde{e}_i, Y \rangle + \rho_i \langle \tilde{e}_i, \nabla_X Y \rangle.$$

所以

$$A(\nabla_X \tilde{e}_i, Y) = X(\rho_i) \langle \tilde{e}_i, Y \rangle + \rho_i \langle \nabla_X \tilde{e}_i, Y \rangle,$$

因为 \tilde{e}_i 是单位向量, 所以 $\langle \nabla_X \tilde{e}_i, \tilde{e}_i \rangle = 0$, 因此在上式代入 $Y = \tilde{e}_i$, 得到

$$A(\nabla_X \tilde{e}_i, \tilde{e}_i) = X(\rho_i) \langle \tilde{e}_i, \tilde{e}_i \rangle + \rho_i \langle \nabla_X \tilde{e}_i, \tilde{e}_i \rangle$$

= $X(\rho_i)$,

而左边又有 $X(\rho_i) = X(A(\tilde{e}_i, \tilde{e}_i)) = 2A(\nabla_X \tilde{e}_i, \tilde{e}_i)$, 于是

$$\frac{1}{2}X(\rho_i) = A\left(\nabla_X \tilde{e}_i, \tilde{e}_i\right) = X(\rho_i).$$

所以 $X(\rho_i) \equiv 0$. 由 X 任意性, ρ_i 在 M 上均为常数.

2. 正交性: $\rho_h \langle \tilde{e}_h, \tilde{e}_k \rangle = A(\tilde{e}_h, \tilde{e}_k) = \rho_k \langle \tilde{e}_h, \tilde{e}_k \rangle$, 因为 $\rho_h \neq \rho_k$, 所以 $\langle \tilde{e}_h, \tilde{e}_k \rangle = 0$. $\langle \nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k \rangle = 0$ 利用内积为 0 和 $\nabla A = 0$, 不妨设 $\rho_h \neq 0$:

$$\begin{split} \langle \nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k \rangle &= -\langle \tilde{e}_h, \nabla_{\tilde{e}_i} \tilde{e}_k \rangle \\ &= -\frac{1}{\rho_h} A(\tilde{e}_h, \nabla_{\tilde{e}_i} \tilde{e}_k) \\ &= -\frac{1}{\rho_h} \tilde{e}_i (A(\tilde{e}_h, \tilde{e}_k)) + \frac{1}{\rho_h} A(\nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k) \\ &= \frac{1}{\rho_h} A(\nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k) \\ &= \frac{\rho_k}{\rho_h} \langle \nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k \rangle, \end{split}$$

由于系数不为 1, 所以 $\langle \nabla_{\tilde{e}_i} \tilde{e}_h, \tilde{e}_k \rangle = 0$.

3. 我们依然取 $\{\tilde{e}_i\}$ 为单位正交的,因为这不影响分布的生成. 利用分布 Frobenius 定理,分布完全可积当且仅当其对合,即 s,t>r 时 $[\tilde{e}_s,\tilde{e}_t]$ 可由 $\tilde{e}_{r+1},\cdots,\tilde{e}_m$ 表示.

设 $[\tilde{e}_s, \tilde{e}_t] = a^p \tilde{e}_p$. 则与 $\tilde{e}_1, \cdots, \tilde{e}_r$ 内积得

$$\langle [\tilde{e}_s, \tilde{e}_t], \tilde{e}_i \rangle = \sum_{p=1}^r a^p \delta_{ip} = a^i.$$

而根据第二问的结论

$$\langle [\tilde{e}_s,\tilde{e}_t],\tilde{e}_i\rangle = \langle \nabla_{\tilde{e}_s}\tilde{e}_t,\tilde{e}_i\rangle - \langle \nabla_{\tilde{e}_t}\tilde{e}_s,\tilde{e}_i\rangle = 0.$$

所以 $a^i = 0$, 即分布是对合的. 因此 $\mathcal D$ 是完全可积的.