Foundations of Computing Lecture 10

Arkady Yerukhimovich

February 13, 2025

Outline

- Lecture 9 Review
- \bigcirc CFG == PDA
- The CFL Pumping Lemma
- 4 Using the CFL Pumping Lemma

Lecture 9 Review

- Context-Free Grammars
 - Strings generated by grammars
 - Building CFGs
 - Parse Trees

Lecture 9 Review

- Context-Free Grammars
 - Strings generated by grammars
 - Building CFGs
 - Parse Trees

Today

Connect CFGs and PDAs and look at their limitations

Outline

- 1 Lecture 9 Review
- 2 CFG == PDA
- The CFL Pumping Lemma
- 4 Using the CFL Pumping Lemma

Theorem

A language L is context free (i.e., is generated by a CFG) if an only if some pushdown automaton decides it.

Theorem

A language L is context free (i.e., is generated by a CFG) if an only if some pushdown automaton decides it.

Proof:

We need to prove both directions:

Theorem

A language L is context free (i.e., is generated by a CFG) if an only if some pushdown automaton decides it.

Proof:

We need to prove both directions:

1 If a language is context free, then some PDA decides it

Theorem

A language L is context free (i.e., is generated by a CFG) if an only if some pushdown automaton decides it.

Proof:

We need to prove both directions:

- 1 If a language is context free, then some PDA decides it
- ② If a language is decided by a PDA, then it is context free

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- M decides if \exists sequence of substitutions in G leads from start to w

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- M decides if \exists sequence of substitutions in G leads from start to w

Algorithm for *M*:

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- M decides if \exists sequence of substitutions in G leads from start to w

Algorithm for *M*:

M pushes the start variable on its stack

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- M decides if \exists sequence of substitutions in G leads from start to w

Algorithm for M:

- M pushes the start variable on its stack
- M repeatedly makes substitutions according to the rules of G, storing intermediate strings on stack

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- M decides if \exists sequence of substitutions in G leads from start to w

Algorithm for M:

- M pushes the start variable on its stack
- *M* repeatedly makes substitutions according to the rules of *G*, storing intermediate strings on stack
- M(w) = 1 if some intermediate string equals w

Idea: Construct PDA M s.t. M(w) = 1 if there is derivation for w in G

- Recall: Derivation of w in G sequence of substitutions resulting in w
- Each step gives intermediate string of variables and terminals
- M decides if \exists sequence of substitutions in G leads from start to w

Algorithm for M:

- M pushes the start variable on its stack
- *M* repeatedly makes substitutions according to the rules of *G*, storing intermediate strings on stack
- M(w) = 1 if some intermediate string equals w

Challenges

- May be many substitution rules at each step, how do we choose one?
- 4 How does M store the intermediate strings?

Challenges

- May be many substitution rules at each step, how do we choose one?
- ② How does M store the intermediate strings?

Challenges

- May be many substitution rules at each step, how do we choose one?
- How does M store the intermediate strings?

Solutions:

lacktriangle Rely on non-determinism of M to choose correct substitution rule

Challenges

- May be many substitution rules at each step, how do we choose one?
- 4 How does M store the intermediate strings?

- lacktriangle Rely on non-determinism of M to choose correct substitution rule
- 2 Idea: Just store the strings on the stack

Challenges

- May be many substitution rules at each step, how do we choose one?
- 4 How does M store the intermediate strings?

- lacktriangle Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack Problem:
 - Need to find variable A to replace, but can only access top symbol.

Challenges

- May be many substitution rules at each step, how do we choose one?
- 4 How does M store the intermediate strings?

- lacktriangle Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack Problem:
 - Need to find variable A to replace, but can only access top symbol.
 - Need to remove any leading terminal characters to get to A

Challenges

- May be many substitution rules at each step, how do we choose one?
- 4 How does M store the intermediate strings?

- lacktriangle Rely on non-determinism of M to choose correct substitution rule
- Idea: Just store the strings on the stack Problem:
 - Need to find variable A to replace, but can only access top symbol.
 - Need to remove any leading terminal characters to get to A
 - ullet But, if we throw these away, can't tell if they match w

Problem:

- Need to find variable A to replace, but can only access top symbols.
- Need to remove any leading terminal characters to get to A
- But, if we throw these away, can't tell if they match w

Problem:

- Need to find variable A to replace, but can only access top symbols.
- Need to remove any leading terminal characters to get to A
- ullet But, if we throw these away, can't tell if they match w

Description of PDA $\it M$

• Push \$ to mark start of stack

Description of PDA M

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable A, non-deterministically choose a substitution rule and replace A with the right side of rule (push it on stack)

Description of PDA M

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable A, non-deterministically choose a substitution rule and replace A with the right side of rule (push it on stack)
 - If top of stack is terminal, compare it to next input symbol. If they match, repeat. If not, reject this non-deterministic branch

Description of PDA M

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable A, non-deterministically choose a substitution rule and replace A with the right side of rule (push it on stack)
 - If top of stack is terminal, compare it to next input symbol. If they
 match, repeat. If not, reject this non-deterministic branch
 - If top of stack is \$ symbol, accept if full input has been read

Description of PDA M

- Push \$ to mark start of stack
- Repeat the following until done
 - If top of stack is variable A, non-deterministically choose a substitution rule and replace A with the right side of rule (push it on stack)
 - If top of stack is terminal, compare it to next input symbol. If they
 match, repeat. If not, reject this non-deterministic branch
 - If top of stack is \$ symbol, accept if full input has been read

Picture version of the resulting PDA is in the book

We are done

We are done with this direction of the proof

Idea: Construct CFG G that generates all strings M accepts

Idea: Construct CFG G that generates all strings M accepts

• *G* generates strings that cause *M* to go from start state to an accept state

Idea: Construct CFG G that generates all strings M accepts

- ullet G generates strings that cause M to go from start state to an accept state
- We build something stronger: For each pair of states $p, q \in M$, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Idea: Construct CFG G that generates all strings M accepts

- ullet G generates strings that cause M to go from start state to an accept state
- We build something stronger: For each pair of states $p, q \in M$, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Observations:

Idea: Construct CFG G that generates all strings M accepts

- *G* generates strings that cause *M* to go from start state to an accept state
- We build something stronger: For each pair of states $p, q \in M$, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Observations:

• Strings generated by A_{pq} take M from p to q without modifying the stack

Idea: Construct CFG G that generates all strings M accepts

- *G* generates strings that cause *M* to go from start state to an accept state
- We build something stronger: For each pair of states $p, q \in M$, G has a variable A_{pq} such that
 - A_{pq} generates all strings that take M from state p (with an empty stack) to state q (with an empty stack)

Observations:

- Strings generated by A_{pq} take M from p to q without modifying the stack
- ullet Thus, $A_{q_0q_{accept}}$ generates all strings $w\in L(M)$

Proof of PDA M o CFG G: Building A_{pq}

Assume that M has the following properties:

- **1** Only one accept state: q_{accept}
- M empties its stack before accepting
- **3** All transitions either have form $x, \epsilon \to a$ (push an item on the stack) or $x, a \to \epsilon$ (pop an item off the stack), but not both.

Easy to turn any PDA M into one satisfying these properties

Proof of PDA $M o \overline{\mathsf{CFG}}\ G$: Building A_{pq}

Consider x taking M from p to q with empty stack

• M's first move on x must be a push – nothing to pop

- M's first move on x must be a push nothing to pop
- M's last move on x must be a pop need empty stack

- M's first move on x must be a push nothing to pop
- M's last move on x must be a pop need empty stack Two possibilities:

- M's first move on x must be a push nothing to pop
- M's last move on x must be a pop need empty stack Two possibilities:
 - Case 1: Symbol popped in last step same symbol pushed in first step
 - In this case, stack is only empty at beginning and end
 - Add rule $A_{pq} \rightarrow aA_{rs}b$:

- M's first move on x must be a push nothing to pop
- M's last move on x must be a pop need empty stack Two possibilities:
 - Case 1: Symbol popped in last step same symbol pushed in first step
 - In this case, stack is only empty at beginning and end
 - Add rule $A_{pq} \rightarrow aA_{rs}b$:
 - Case 2: Symbol popped in last step not same symbol pushed in first step
 - ullet Symbol pushed in first step, must be popped before the end, so stack becomes empty at some middle state r
 - Add rule $A_{pq} o A_{pr} A_{rq}$

The Same Thing in Pictures

Case 1: $A_{pq} \rightarrow aA_{rs}b$

The Same Thing in Pictures

Case 1: $A_{pq} \rightarrow aA_{rs}b$

Ag. quart

Case 2: $A_{pq} \rightarrow A_{pr}A_{rq}$

Conclusion

We have shown conversions for:

- CFG $G \rightarrow PDA M$, and
- PDA $M \rightarrow CFG G$

Conclusion

We have shown conversions for:

- CFG $G \rightarrow PDA M$, and
- PDA $M \rightarrow CFG G$

Takeaway

PDAs recognize exactly the set of context-free languages.

Conclusion

We have shown conversions for:

- CFG $G \rightarrow PDA M$, and
- PDA $M \rightarrow CFG G$

Takeaway

PDAs recognize exactly the set of context-free languages.

Question

Are all languages context-free?

Outline

- 1 Lecture 9 Review
- 2 CFG == PDA
- The CFL Pumping Lemma
- 4 Using the CFL Pumping Lemma

The CFL Pumping Lemma

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any $s \in L$, with $|s| \ge p$, s can be divided into 5 pieces s = uvxyz satisfying:

- For each $i \ge 0$, $uv^i xy^i z \in L$
- |vy| > 0
- $|vxy| \leq p$

The CFL Pumping Lemma

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any $s \in L$, with $|s| \ge p$, s can be divided into 5 pieces s = uvxyz satisfying:

- For each $i \ge 0$, $uv^i xy^i z \in L$
- |vy| > 0
- $|vxy| \le p$

Pumping lemma in math notation:

 $\exists p \text{ s.t } \forall s \in L, |s| \geq p, \exists \text{ partition } s = uvxyz \text{ s.t. } \forall i, uv^i xy^i z \in L$

The CFL Pumping Lemma

Theorem

If L is a CFL, then there exists a pumping length p s.t. for any $s \in L$, with $|s| \ge p$, s can be divided into 5 pieces s = uvxyz satisfying:

- For each $i \ge 0$, $uv^i xy^i z \in L$
- |vy| > 0
- $|vxy| \leq p$

Pumping lemma in math notation:

$$\exists p \text{ s.t } \forall s \in L, |s| \geq p, \exists \text{ partition } s = uvxyz \text{ s.t. } \forall i, uv^i xy^i z \in L$$

Negation of pumping lemma:

$$\forall p, \exists s \in L, |s| \geq p \text{ s.t. } \forall \text{ partitions } s = uvxyz \exists i \text{ s.t. } uv^i xy^i z \notin L$$

Proving the CFL Pumping Lemma (Intuition)

Consider the parse tree for some very long $s \in L$

Proving the CFL Pumping Lemma (Intuition)

Consider the parse tree for some very long $s \in L$

Outline

- 1 Lecture 9 Review
- \bigcirc CFG == PDA
- The CFL Pumping Lemma
- 4 Using the CFL Pumping Lemma

Using the CFL Pumping Lemma

We use the CFL pumping lemma to prove that L is not a CFL similarly to how we used the regular language pumping lemma.

Using the CFL Pumping Lemma

We use the CFL pumping lemma to prove that L is not a CFL similarly to how we used the regular language pumping lemma.

Specifically:

• Consider the negation:

$$\forall p, \exists s \in L, |s| \geq p \text{ s.t. } \forall \text{ partitions } s = uvxyz \ \exists i \text{ s.t. } \underline{uv^i xy^i z} \notin L$$

Using the CFL Pumping Lemma

We use the CFL pumping lemma to prove that L is not a CFL similarly to how we used the regular language pumping lemma.

Specifically:

• Consider the negation:

$$\forall p, \exists s \in L, |s| \geq p \text{ s.t. } \forall \text{ partitions } s = uvxyz \ \exists i \text{ s.t. } uv^i xy^i z \notin L$$

• So, we need to find such an s and prove that for any way to partition it, it cannot be pumped

To use the pumping lemma to prove that L is not CFL, we do the following:

Assume that L is CFL

- Assume that L is CFL
- ② Use pumping lemma to guarantee pumping length p, s.t. all s with |s|>p can be pumped

- Assume that L is CFL
- ② Use pumping lemma to guarantee pumping length p, s.t. all s with |s|>p can be pumped
- **3** Pick some $s \in L$ with $|s| \ge p$

- Assume that L is CFL
- ② Use pumping lemma to guarantee pumping length p, s.t. all s with |s|>p can be pumped
- **3** Pick some $s \in L$ with $|s| \ge p$
- Demonstrate that s cannot be pumped
 - For each possible division w = uvxyz (with |vy| > 0 and $|vxy| \le p$), find an integer i such that $uv^ixy^iz \notin L$

- Assume that L is CFL
- ② Use pumping lemma to guarantee pumping length p, s.t. all s with |s|>p can be pumped
- **3** Pick some $s \in L$ with $|s| \ge p$
- Demonstrate that s cannot be pumped
 - For each possible division w = uvxyz (with |vy| > 0 and $|vxy| \le p$), find an integer i such that $uv^ixy^iz \notin L$
- Contradiction!!!

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

Proof:

• Assume L is CFL, and let p be the pumping length

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

- lacktriangle Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

- lacktriangle Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$
- **3** By pumping lemma, s = uvxyz s.t. $uv^ixy^iz \in L$ for all i
- Complete proof by considering all possible values for v, y

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$
- **3** By pumping lemma, s = uvxyz s.t. $uv^ixy^iz \in L$ for all i
- Complete proof by considering all possible values for v, y
 - v and y both have only one type of symbol (e.g., $v=a^{\ell}$ and $y=b^{\ell'}$) then uv^ixy^iz has more a's and b's than c's, so is not in L

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

1 > 1 GXV/

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$
- **3** By pumping lemma, s = uvxyz s.t. $uv^ixy^iz \in L$ for all i
- Complete proof by considering all possible values for v, y
 - v and y both have only one type of symbol (e.g., $v=a^{\ell}$ and $y=b^{\ell'}$) then uv^ixy^iz has more a's and b's than c's, so is not in L
 - If either v or y have more than one type of symbol, uv^ixy^iz will have alternating symbols, so not in L

Consider $L = \{a^n b^n c^n \mid n \ge 0\}$, prove L is not CFL

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = a^p b^p c^p \in L$
- 3 By pumping lemma, s = uvxyz s.t. $uv^i xy^i z \in L$ for all i
- **①** Complete proof by considering all possible values for v, y
 - v and y both have only one type of symbol (e.g., $v=a^{\ell}$ and $y=b^{\ell'}$) then uv^ixy^iz has more a's and b's than c's, so is not in L
 - If either v or y have more than one type of symbol, uv'xy'z will have alternating symbols, so not in L
- Contradiction Hence L is not CFL

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

- Assume L is CFL, and let p be the pumping length
- 2 Choose $s = 0^p 1^p 0^p 1^p \in L$

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

- lacktriangle Assume L is CFL, and let p be the pumping length
- 2 Choose $s = 0^p 1^p 0^p 1^p \in L$
- **3** Consider all possible cases for vxy ($|vxy| \le p$)

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

- \bullet Assume L is CFL, and let p be the pumping length
- ② Choose $s = 0^p 1^p 0^p 1^p \in L$
- **3** Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

- lacktriangle Assume L is CFL, and let p be the pumping length
- ② Choose $s = 0^p 1^p 0^p 1^p \in L$
- **3** Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
 - vxy is left of center pumping moves a 0 into last character of left half

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

- lacktriangle Assume L is CFL, and let p be the pumping length
- 2 Choose $s = 0^p 1^p 0^p 1^p \in L$
- **3** Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
 - vxy is left of center pumping moves a 0 into last character of left half
 - ullet vxy does contain the midpoint of s pumping makes this not match unpumped parts

Consider $L = \{ww \mid w \in \{0,1\}^*\}$, prove L is not CFL

- ◆ Assume L is CFL, and let p be the pumping length
- ② Choose $s = 0^p 1^p 0^p 1^p \in L$
- **3** Consider all possible cases for vxy ($|vxy| \le p$)
 - vxy does not contain the midpoint of s
 - vxy is left of center pumping moves a 1 into first character of right half
 - vxy is left of center pumping moves a 0 into last character of left half
 - vxy does contain the midpoint of s pumping makes this not match unpumped parts
- Contradiction Hence L is not CFL

Exam 1

- This is the end of the material for exam 1
- Next week, review