

Isocomp: Comparing Iso-Seq Isoform Profiles in Mendelian Disease Diagnosis for Trio Sequencing

Yutong Qiu, Bida Gu, Chia Sin Liew, Muhamad Sohail Raza, Chase Mateusiak, Rupesh Kesharwani, Evan Biederstedt

12 October 2022

Outline

- Background & Motivation
- Isocomp: comparing isoforms in trio sequencing
- Algorithm
- Results
- Future Directions
- Thank you

Background

Utilization of RNA transcriptomics in a clinical setting

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

GENETIC DIAGNOSIS

Improving genetic diagnosis in Mendelian disease with transcriptome sequencing

Beryl B. Cummings, ^{1,2,3} Jamie L. Marshall, ^{1,2} Taru Tukiainen, ^{1,2} Monkol Lek, ^{1,2,4,5} Sandra Donkervoort, ⁶ A. Reghan Foley, ⁶ Veronique Bolduc, ⁶ Leigh B. Waddell, ^{4,5} Sarah A. Sandaradura, ^{4,5} Gina L. O'Grady, ^{4,5} Elicia Estrella, ⁷ Hemakumar M. Reddy, ⁸ Fengmei Zhao, ^{1,2} Ben Weisburd, ^{1,2} Konrad J. Karczewski, ^{1,2} Anne H. O'Donnell-Luria, ^{1,2} Daniel Birnbaum, ^{1,2} Anna Sarkozy, ⁹ Ying Hu, ⁶ Hernan Gonorazky, ¹⁰ Kristl Claeys, ¹¹ Himanshu Joshi, ² Adam Bournazos, ^{4,5} Emily C. Oates, ^{4,5} Roula Ghaoui, ^{4,5} Mark R. Davis, ^{1,2} Nigel G. Laing, ^{1,2,13} Ana Topf, ^{1,4} Genotype-Tissue Expression Consortium, Peter B. Kang, ^{7,8} Alan H. Beggs, ⁷ Kathryn N. North, ¹⁵ Volker Straub, ¹⁸ James J. Dowling, ¹⁰ Francesco Muntoni, ⁸ Nigel F. Clarke, ^{5,5} Sandra T. Cooper, ^{5,5} Carsten G. Bönnemann ⁶ Daniel G. MacArthur, ^{1,22}

Prior WES and/or WGS analysis Patient muscle GTEx control muscle samples (n = 184)2. QC comparison 3 .Validation of RNA-1. RNA sequencing seg in previously of patient and GTEx RNA-sea diagnosed patients (n = 13)4. RNA-seq analysis in genetically undiagnosed patients (n = 50) Aberrant splicing Allele imbalance Variant calling

2017 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science

ARTICLE

Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease

Hernan D. Gonorazky, ^{140,12} Sergey Naumenko, ²⁴¹² Arun K. Ramani, ²⁴¹² Viswateja Nelakuditi, ² Pouria Mashouri, ² Peiqui Wang, ² Dennis Kao, ² Krish Ohri, ³ Senthuri Viththiyapaskaran, ³ Mark A. Tarmopolsky, ³ Katherine D. Mathews, ⁵ Steven A. Moore, ⁶ Andres N. Osorio, ^{7,80} David Villanova, ⁹ Dovi U. Kemaladewi, ¹⁰ Ronald D. Cohn, ^{3,10} Michael Brudno, ^{2,10,11,*} and James J. Dowling, ^{3,10,*}

Analysis outputs

- Splicing
- Allelic imbalance
- Variant calling
- Expression

Background

Utilization of RNA transcriptomics in a clinical setting

ARTICLE

Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease

Hernan D. Gonorazky, ^{1,10,12} Sergey Naumenko, ^{2,12} Arun K. Ramani, ^{2,12} Viswateja Nelakuditi, ² Pouria Mashouri, ² Peiqui Wang, ² Dennis Kao, ² Krish Ohri, ³ Senthuri Viththiyapaskaran, ³ Mark A. Tarnopolsky, ² Katherine D. Mathews, ⁵ Steven A. Moore, ⁶ Andres N. Osorio, ^{2,8} David Villanova, ⁹ Dwi U. Kemaladewi, ¹⁰ Ronald D. Cohn, ^{3,10} Michael Brudno, ^{2,10,11,8} and James J. Dowling, ^{3,10,8}

Problem

- Splicing
- Allelic imbalance
- Variant calling
- Expression

Short-reads not good enough for clinic: FPs, dodgy inferences

Even tissue-specific bulk RNA is not appropriate here! That's why we use scRNAseq

Motivation – Long Read RNA-seq

 High-Quality Long Read RNA-seq Data: IsoSeq3

• Trio sequencing

Given trio-samples of isoforms, identify the unique casual isoform implicated in disease phenotype

phenotype

Existing Tools

• gffcompare – overlap the exon coordinates. Inclusion/exclusion of the exons in isoforms

```
##gff-version 3.2.1

##sequence-region ctg123 1 1497228

2 ctg123 . gene 1000 9000 . + . ID=gene00001;Name=EDEN

3 ctg123 . TF_binding_site 1000 1012 . + . ID=tfbs00001;Parent=gene00001

4 ctg123 . mRNA 1050 9000 . + . ID=mRNA00001;Parent=gene00001;Name=EDEN.1

bttps://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

6 ctg123 . mRNA 1050 9000 . + . ID=mRNA00002;Parent=gene00001;Name=EDEN.2
```

Cons: Not designed for this problem! It misses biologically relevant sequence variation, questionable how well it works with gene fusions as well

All-against-All Alignments – exact sequence alignment

Cons: Algorithmically cannot scale, uninterpretable for large-scale variants

Inputs & Data QC

Inputs

- HG002
- HG004
- HG005

(GIAB samples sequenced at BCM)

Average length

2661 bp

Standard Deviation

951 bp

Workflow Overview

Examples of different isoform composition in HG002, HG004 & HG005

Examples of different isoform composition in HG002, HG004 & HG005

Number of isoforms that are unique to at least one sample

Two isoforms are different if the percent matched bases between them is < 99.5% (~15 mismatches).

Similarity := matched bases _____ all bases in REF isoform

Total number of isoforms HG002 + HG004 + HG005 389644

Applying the similarity threshold reduces false positives of uniqueness detection, which increases tolerance for differences in lengths of the isoforms

Number of isoforms shared by/unique to samples

- HG005 and HG004 are more similar than HG002 in terms of isoform composition
- Majority of the isoforms are shared among three samples

Total number of isoforms unique to ONE sample

Normalized number of isoforms unique to ONE sample

Next steps

Algorithmic strategy for gene fusions

After the alignment to T2T and windowing, we should really remove potential gene fusion isoforms, as they align to multiple regions on the genome

Categorize mismatches

At the moment, we are using the metric of "Percentage matched bases". But mismatches at the ends of isoforms may not reflect isoform sequence variation...

Biological use cases

Allow to quickly query gene of interest?

Wrap up package

Python library with C++ speed-up; could port to R package as well

Thank you!

DNAnexus

- Baylor College of Medicine
- HGSC
- Rice University
- DNANexus
- PacBio
- Oxford Nanopore
 - Ben Busby & Fritz Sedlazeck
 - Richard Gibbs
 - Todd Treangen
 - Everyone at the hackathon, local & remote!

