MATH 213 LAB 5 - THE TRANSPOSE; TECHNIQUES FOR PROVING THINGS ABOUT MATRICES

Definition: Let $A = (a_{ij})$ be an $m \times n$ matrix. Define the transpose A^T of A to be the matrix whose (i,j)-entry is a_{ji} :

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}.$$

In other words, the rows (columns) of A are the columns (rows) of A^T . In particular, A^T as size $n \times m$.

Examples:

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 2 \\ 3 & 5 & 8 \\ 13 & 21 & 34 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 13 \\ 1 & 5 & 21 \\ 2 & 8 & 34 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 3 \\ 5 & 7 \\ 11 & 13 \end{pmatrix}^T = \begin{pmatrix} 2 & 5 & 11 \\ 3 & 7 & 13 \end{pmatrix}$$

Exercise 1: Show that if A is an $m \times n$ matrix and c is a scalar then

$$(cA)^T = cA^T.$$

Flesh out the proof skeleton below by filling in the blanks and justifying your equations by quoting the appropriate definitions.

Proof skeleton:

- Think and articulate: We need to prove the equality of two matrices, namely, $(cA)^T$ (the transpose of cA) and cA^T (the multiple of A^T by the scalar c). To prove that two matrices are equal, we need to show that their (i, j)-entries are equal for an arbitrary pair (i, j). So we're going to need notation for these entries.
- Introduce notation: Write a_{ij} for the (i, j)-entry of A.
- Calculate the left hand side: Express the (i, j)-entry of $(cA)^T$ in terms of c and the entries of A:
 - The (i,j) entry of cA is ______. (Here, you use the definition of scalar multiplication.) The (i,j) entry of $(cA)^T$ is ______. (Here, you use the definition of transpose.)
- Calculate the right hand side: Express the (i, j)-entry of cA^T in terms of c and the entries of A:
 - The (i, j) entry of A^T is ______. (Here, you use the definition of transpose.)
 - The (i,j) entry of cA^T is _____. (Here, you use the definition of scalar multiplication.)
- Put it all together.

Exercise 2: Show that if A and B are $m \times n$ matrices then

$$(A+B)^T = A^T + B^T.$$

Flesh out the proof skeleton below by filling in the blanks and justifying your equations by quoting the appropriate definitions.

Proof skeleton:

- Think and articulate: We need to prove the equality of two matrices, namely, _____ and ____. To prove that two matrices are equal, we need to show that
- Introduce notation: Write ____ and ___ for the (i, j)-entries of A and B, respectively. Calculate the left hand side: Express the (i, j)-entry of $(A + B)^T$ in terms of the entries of A and B:
 - The (i, j) entry of A + B is _
- The (i, j) entry of $(A + B)^T$ is
- Calculate the right hand side: Express the (i,j)-entry of $A^T + B^T$ in terms of the entries of A and

- The
$$(i,j)$$
 entry of A^T is _____. The (i,j) -entry of B^T is _____.

- The (i,j) entry of $A^T + \overline{B^T}$ is _____.

• Put it all together.

Exercise 3: [Recall] Let $A = (a_{ij})$ be an $m \times n$ matrix and let $B = (b_{ij})$ be an $n \times p$ matrix. Then the (i, j) entry of AB is

$$a__b__+a__b__+\cdots+a__b__.$$

Exercise 4: Show that if A is an $m \times n$ matrix and B is an $n \times p$ matrix then

$$(AB)^T = B^T A^T.$$

Flesh out the proof skeleton below by replacing the ... with full sentences, justifying your equations by quoting the appropriate definitions.

Proof skeleton:

- Think and articulate: We need to...
- Introduce notation: Write...
- Calculate the left hand side: ... (Exercise 3 might be useful here.)
- Calculate the right hand side: ... (Here, too.)
- Put it all together.

Definition:

• An inverse of an $n \times n$ matrix A is an $n \times n$ matrix B with the property that

$$AB = BA = I_n$$
.

• An $n \times n$ matrix A is invertible if A has an inverse, i.e., there exists a matrix B such that $AB = I_n$ and $BA = I_n$.

Exercise 5: Suppose B and B' are inverses of A. Prove that B = B'.

Flesh out the following proof skeleton below by justifying each of the following inequalities by quoting either a definition, or a property of matrix.

$$B' = B'I_n$$

$$= B'(AB)$$

$$= (B'A)B$$

$$= I_nB$$

$$= B.$$

Exercise 5 shows that an inverse of A, if it exists, is *unique*. Therefore, we can refer to it as *the* inverse of A. We write A^{-1} for the inverse of A, a reasonable thing to do since its meaning is unambiguous.

Exercise 6: Show that if A and B are invertible. Show that AB is invertible with inverse $B^{-1}A^{-1}$.

Proof skeleton:

- Think and articulate: By definition of inverse, to show that $B^{-1}A^{-1}$ is an inverse of AB, we need to check that the identies _____ and ____ hold.
- Calculate: Show that these two identities hold, justifying each step by quoting the relevant definition or property of matrix arithmetic.
- (*) Exercise 7: Write down definitions for a *left inverse* and a *right inverse* of an $n \times n$ matrix A. Adapt the proof in Exercise 5 to prove that if A has a left inverse B and a right inverse B' then B = B'. (Note that we have *not* shown that the existence of a left (right) inverse implies the existence of a right (left) inverse. This implication is true, though.)