ใบงาน Machine Learning

วัตถุประสงค์ หัดแทนค่าเพื่อสร้าง C4.5 decision tree

$$E_{C_k}(S)$$

$$= -\sum_{j=1}^{v} p_{j \text{ and } c=k} log_2(p_{j \text{ and } c=k})$$

$$E_C(S) = \sum_{k=1}^{u} p_k E_{C_k}(S)$$

$$E_C(S) = \sum_{k=1}^u p_k E_{c_k}(S)$$

...จากข้อมูลต่อไปนี้

<u>คำสั่ง</u>

- 1. คำนวณ E(S), $E_{C=a_{\mbox{\scriptsize B1NWe}1}\mbox{\scriptsize Theorem}}(S), E_{C=e_{\mbox{\scriptsize QMNJ}}}(S), E_{C=}$ _{สภาพลม}(S) ในตาราง
- 2. candidate ใด ให้ Ec(S) ต่ำที่สุด Ans Ec สภาพอากศ
- 3. สารสนเทศที่ได้จากข้อ 2 สร้างกฎอะไรได้บ้าง

Ans สามารถสร้าง tree จากสภาพอากาศ ก๊าอากาศเป็น 5 จะไม่ออกไปเล่นเสมอ กางกาศ เป็น 0 จะออกไปเล่นเสมอ กางกาศ r wind - F จะเล่น r wind : T ไม่เล่น

โมเดล C4.5 decision tree เพื่อสร้างโมเดลพยากรณ์ เขียนได้ว่า กล่าวคือ Entropy, E, ของของข้อมูล S เมื่อใช้ Candidate, C_k , มีค่าเป็น ผลรวมของ - $p_{i \text{ and } c=k} \log_2(p_{i \text{ and } c=k})$ โดย j คือ label ที่สนใจ (เช่น เล่น หรือ ไม่เล่น) และ k คือ ค่าของ candidate นั้นๆ และ $p_{j \text{ and } c=k}$ คือความ น่าจะเป็นที่เหตุการณ์ค่า c=k มีค่าเป็น j เมื่อนำ E_{CK} มาผลรวมก็เพียงถ่วงน้ำหนักด้วยสัดส่วนของแต่ละ c=k ก็จะได้ Entropy เมื่อใช้ C เป็น candidate

Weather	Temp	Wind	label
S	h	F	n
S	h	Т	n
0	h	F	У
r	m	F	У
r	С	F	У
r	С	Т	n
0	С	Т	У
S	m	F	n

x	log ₂ (x)
0	(
1/2	-1
1	(
1/3	-1.585
2/3	-0.585
1/4	-2
3/4	-0.415
1/5	-2.3219
2/5	-1.3219
3/5	-0.737
4/5	-0.3219
1/6	-2.585
5/6	-0.263
1/7	-2.8074
2/7	-1.8074
3/7	-1.2224
4/7	-0.8074
5/7	-0.4854
6/7	-0.2224
1/8	-8
3/8	-1.415
5/8	-0.6781
7/8	-0.1926

———	MINO :					
$E(S) = \sum_{j=1}^{v}$	$-p_{j}lo_{i}$	$g_2(p$	_j)=			
		P _j	P(j=y k)	P(j=n k)	p _j c _k log2(p _j c _k) /*ติด log2 ไว้ได้*/	Remark (P _j)
สภาพอากาศ	k=s	3/8	0/3	3/3	$-\frac{0}{3}\log_{1}\left(\frac{0}{3}\right)+-\left(\frac{3}{3}\right)\log_{2}\left(\frac{3}{3}\right)=0$	$P\{_{j=y \mathfrak{diam}} = s\} = \{\}$
						$P\{_{j=n \text{old}=s}\} = \{\#1,\#2,\#8\}$
	k=o	2/8	2/2	0/2	$-\frac{2}{2}\log_{2}(\frac{2}{2}) + -(\frac{6}{2})\log_{2}(\frac{9}{2}) = 0$	P{j:ylenmd:0}:{#3,#7} P{j:nlenmd:0}:{ P{j:ylenmd:0}:{ P{j:ylenmd:r{:{#4,#5}
	k=r	3/8	2/3	1/3	$-\frac{2}{3}\log_{1}(\frac{2}{3}) + -(\frac{1}{3})\log_{1}(\frac{1}{3}) = 0.91829$	P(j=y l ann) + r(+ (#4,#5) P(j=n lann) + r(+ (#6)
E _{C=สภาพอากาศ} (S)	= 1 1 (0,5)	+골I(1,0)+310	L1) = \$ (0)	+ 2/8 (0) + 3/8 (0.91829) = 0.34436	
อุณหภูมิ	k=h	3/8	113	2/3	- \frac{1}{3} \log_2 \left(\frac{1}{3} \right) + - \left(\frac{1}{3} \right) \log_2 \left(\frac{1}{3} \right) = 0.91829	P{j=n @munu = h { = { # 5} P{j=n @munu = h { = { # 1, # 2} P{j=y @munu = m } = { # 4}
	k=m	2/8	1/2	1/2	$-\frac{1}{2}\log_{2}(\frac{1}{2})+-(\frac{1}{2})\log_{2}(\frac{1}{2})=1$	P{j=y onunii = m } = {#4} P{j=n onunii = m} = {#8}
	k=c	3/8	2/3	1/3	$-\frac{9}{3}\log_{1}\left(\frac{1}{3}\right) + -\left(\frac{1}{3}\right)\log_{1}\left(\frac{1}{3}\right) = 0.91319$	P{j=n on nn n = m } = {#8} P{j=n on nn n = c} = {#5,47} P{j=n on nn n = c} = {#6}
E _{C=อุณหภูมิ} (S) =	(0.91 829)	+ 1/8 (1) + 츻 (0.918	19) = 0.9587	2	1 1
สภาพลม	k=T	3/3	1/3	2/3	$-\frac{1}{3}\log_{2}\left(\frac{1}{3}\right)+-\left(\frac{1}{3}\right)\log_{2}\left(\frac{1}{3}\right)=0.91329$	Pij: y 1 Ammon = 1 (: (#7) P(j: n / Ammon = T (= (#2, #6)
	k=F	5/8	3/5	2/5	$-\frac{3}{5}\log_{2}\left(\frac{1}{5}\right)+-\left(\frac{1}{5}\right)\log_{2}\left(\frac{1}{5}\right)=0.99095$	P(j=n Animas = T { = (#2, #6) P(j=n Animas = F) = (#3, #4) P(j=n Animas = F) = {#1,#8
E _{C=สภาพลม} (S) =	3 (0.9181	9) + 5	(0.97095)	: 0.95110		•