

# **Assignment 3**

Due: Thursday, 8th October at 5 pm

- Due to the non-instructional break (1<sup>st</sup> to 5<sup>th</sup> October), we will split Module-3 in two parts. This week's assignment will be a pen-and-paper assignment. Next week's Assignment-4 will be a MATLAB Only Assignment.
- Please submit this assignment on Moodle

### **Problem 1: Model Conversion**

(3+3 points)

Consider the first-order system from previous assignment:  $G(s) = \frac{5}{\tau s + 1}$  which can be rewritten in the convenient form:

$$G(s) = \frac{5\alpha}{s + \alpha}, \qquad \alpha = 1/\tau$$

This can be converted into observable canonical form:

$$\frac{dx}{dt} = (-\alpha)x + (5\alpha)u, \qquad y = (1)x$$

The terms in red-color font are the terms  $A^c$ ,  $B^c$ ,  $C^c$  in the state-space model.

Recall that the value of  $\tau$  was based on the last digit of your roll number. If the last digit of your roll number is a, then  $\tau = 0.5(1 + a)$  and  $\alpha = 1/\tau$ .

Thus, if your roll number is CH20D000, the a = 0,  $\tau = 0.5$  and  $\alpha = 2$ .

Thus, if your roll number is CH20D999, the a = 9,  $\tau = 5$  and  $\alpha = 0.2$ .

Question 1: Discretize the above model (highlighted in yellow) and obtain a discrete-time state space model. Use sampling time of  $\Delta t = 0.5$ . Please do hand-calculations and avoid using MATLAB.

Question 2: As in Assignment-2, repeat the above for an input delay of 1.5, i.e.,  $G(s) = \frac{5e^{-1.5 s}}{\tau s + 1}$ 

#### **Problem 2: Model Linearization**

(4 + 4 points)

Consider a reactor as shown in the adjoining figure. The CVs are liquid level and concentration whereas inlet flowrate,  $F_{in}$  is the MV. The model of the form  $\dot{x} = f(x, u)$  is given by:

$$\frac{dh}{dt} = \frac{1}{A} (F_{in} - \kappa \sqrt{h}), \qquad A = 0.2; \ \kappa = 0.5$$

$$\frac{dC}{dt} = \frac{F_{in}}{Ah}(C_{in} - C) - kC^2, \qquad k = 1.5.$$

As we have been doing in earlier assignments, we will choose the inlet concentration based on the last digit of your roll number "a" as:  $C_{in} = 5 + 0.2a$ . Thus, if your roll number is CH20D999, then Cin = 5+0.2\*9 = 6.8.



Question 3

The system is to be linearized around the steady state. The first step is to compute the steady state values of h and C. Consider the operating point at  $F_{in} = 0.5$  and compute the steady state.

## Question 4

Linearize the model around the steady state values,  $(x_{ss}, u_{ss})$  computed in the above problem. You can linearize using Taylor's series expansion:

$$f(x,u) = f(x_{SS}, u_{SS}) + \frac{\partial f}{\partial x}\Big|_{(x_{SS}, u_{SS})} (x - x_{SS}) + \frac{\partial f}{\partial u}\Big|_{(x_{SS}, u_{SS})} (u - u_{SS})$$

Defining deviation variables,  $x' = x - x_{ss}$ ,  $u' = u - u_{ss}$ ,  $y' = y - y_{ss}$ , obtain the linear state space model of the form:

$$\frac{dx'}{dt} = A^c x' + B^c u', \qquad y' = Ix'$$

## **Problem 3: MIMO System**

(6 points)

Consider the MIMO system from Assignment-2:

$$G(s) = \begin{bmatrix} \frac{2}{40s^2 + 16s + 1} & \frac{0.5}{20s^2 + 7s + 1} \\ \frac{1.2}{10s^2 + 5s + 1} & \frac{1}{36s^2 + 12s + 1} \end{bmatrix}$$

The following steps were performed in MATLAB (you will do something similar next week):

- We used the tf function to obtain the above four transfer functions: Gp11, Gp12, Gp21, Gp22.
- We then used the ss function to obtain the four state-space models: Gc11, Gc12, Gc21, Gc22.
- We used c2d with  $\Delta t = 2$  to obtain discrete-time state space models: G11, G12, G21, G22.

$$G_{11} = \frac{2}{40s^2 + 16s + 1} \Rightarrow A_{11} = \begin{bmatrix} 0.42 & -0.27 \\ 0.17 & 0.96 \end{bmatrix}, \quad B_{11} = \begin{bmatrix} 0.68 \\ 0.097 \end{bmatrix}, \quad C_{11} = \begin{bmatrix} 0 & 0.8 \end{bmatrix}$$

$$G_{12} = \frac{0.5}{20s^2 + 7s + 1} \Rightarrow A_{12} = \begin{bmatrix} 0.43 & -0.28 \\ 0.35 & 0.92 \end{bmatrix}, \quad B_{12} = \begin{bmatrix} 0.35 \\ 0.1 \end{bmatrix}, \quad C_{12} = \begin{bmatrix} 0 & 0.4 \end{bmatrix}$$

$$G_{21} = \frac{1.2}{10s^2 + 5s + 1} \Rightarrow A_{21} = \begin{bmatrix} 0.27 & -0.47 \\ 0.30 & 0.86 \end{bmatrix}, \quad B_{21} = \begin{bmatrix} 0.59 \\ 0.18 \end{bmatrix}, \quad C_{21} = \begin{bmatrix} 0 & 0.96 \end{bmatrix}$$

$$G_{22} = \frac{1}{36s^2 + 12s + 1} \Rightarrow A_{22} = \begin{bmatrix} 0.48 & -0.32 \\ 0.18 & 0.96 \end{bmatrix}, \quad B_{22} = \begin{bmatrix} 0.72 \\ 0.1 \end{bmatrix}, \quad C_{22} = \begin{bmatrix} 0 & 0.44 \end{bmatrix}$$

Question 5

Combine the above four SISO state-space models to obtain a single MIMO model of the form

$$x(k+1) = Ax(k) + Bu(k), \qquad y(k) = Cx(k)$$

**Hint**: Since you have 2 CVs and 2 MVs,  $y \in \mathbb{R}^2$ ,  $u \in \mathbb{R}^2$ . When you combine the four models, you will get eight states in the model, i.e.,  $x \in \mathbb{R}^8$ .