

Analog Integrated Systems Design

Lecture 07 Basics of Sample & Hold Circuits

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Sampling

- ☐ Converts a continuous time (CT) signal to a discrete time (DT) signal
 - The result is a sequence of samples
- The sampling instants are defined by a clock signal
- The clock signal controls an electronic switch (e.g., MOS transistor)
- ☐ The sampled signal is stored as a voltage on a capacitor

Track & Hold (T/H)

- ☐ What we implement practically is a T/H not a S/H
 - Switch closed (ON): Track mode
 - Switch open (OFF): Hold mode
- ☐ But we sometimes refer to it as S/H

T/H vs S/H

Tracking Bandwidth (TBW)

- MOS technology is naturally suitable for implementing T/H
- ☐ The lowpass network determines the tracking bandwidth
- Tracking bandwidth determines how promptly Vo can follow Vi
- □ Signal-dependent R_{on} → signal-dependent TBW → distortion
 - Not a concern if TBW is sufficiently large
 - TBW >> f_{in} , depending on the target accuracy

$$R_{on}^{-1} = \mu C_{ox} \frac{W}{L} (V_{DD} - V_{th} - V_{i})$$

$$TBW = 1/(R_S + R_{on})C_S$$

T/H Speed-Accuracy Trade-off

- \square Short L, large W, large V_{ov} , and small V_i help reduce $R_{on} \rightarrow$ More speed
- \square But large W and V_{ov} (large Q_{ch}) increase T/H errors \rightarrow Less accuracy

$$\tau = \frac{1}{\text{TBW}} = (R_{S} + R_{on})C_{S}$$

$$R_{on} = \frac{1}{\mu C_{ox} \frac{W}{L} (V_{DD} - V_{th} - V_{i})} = \frac{L^{2}}{\mu C_{ox} WL (V_{DD} - V_{th} - V_{i})} = \frac{L^{2}}{\mu Q_{ch}}$$

Acquisition Time (t_{acq})

☐ Assume linear settling of first order system

$$V(t) = V_i + (V_f - V_i)(1 - e^{-\frac{t}{\tau}})$$

$$T = \tau \ln\left(\frac{V_f - V_i}{V_f - V(T)}\right) = \tau \ln\left(\frac{\Delta V}{\epsilon}\right)$$

Accuracy	t_{acq}
1% (7b)	≥ 5τ
0.1% (10b)	≥ 7 <i>τ</i>
0.01% (13b)	≥ 9τ

Ideal T/H

- ☐ Sufficient tracking bandwidth → negligible tracking error
- Well-defined sampling instant (asserted by clock rising/falling edge)
- Zero track-mode and hold-mode offset errors

T/H Errors (1)

- ☐ Pedestal step:
 - Switch charge injection (CI)
 - Clock feedthrough (CF)
- Droop: Due to leakage. Dictates min sample rate. More leakage in deep submicron (DSM) nodes.
- \blacksquare Hold-mode feedthrough (C_{feed}): Usually negligible.

07: S/H Circuits [M. Pelgrom, 2017]

T/H Pedestal Step

$$V_{pedestal} = \frac{C_{ped} \Delta V_{gate} + Q_{gate}/2}{C_{hold}} = -\frac{WC_{olap} V_{DD} + WLC_{ox} (V_{DD} - V_{in} - V_{T,N})/2}{C_{hold}}$$

- Offset and gain error components
- Nonlinear error component:
 - V_T depends nonlinearly on $V_{in} \rightarrow$ Distortion
- ☐ CF and CI sensitive to source impedance, C_H, and clock rise/fall time
- CF can be simulated by SPICE
 - But CI cannot be accurately simulated with lumped transistor models

Pedestal Step Edge Rate Dependence

- ☐ Slow turn-off is good for CI and CF
 - But more sensitive to jitter and signal dependent aperture delay (more later)

	Clock feedthrough	Charge injection
Fast turn-off	$\Delta V = -\frac{C_{gs}}{C_{gs} + C_{S}} V_{DD}$	$\Delta V = -\frac{C_{ox}WL(V_{DD} - V_{th} - V_{in})}{2(C_{gs} + C_{s})}$
Slow turn-off	$\Delta V = -\frac{C_{gs}}{C_{gs} + C_{s}} (V_{in} + V_{th})$	ΔV = 0

Top-Plate T/H Pedestal Error

Slow turn-off:

$$V_o = (1 + \epsilon) \cdot V_i + V_{os}$$

$$V_{o} = \left(1 - \frac{C_{gs}}{C_{gs} + C_{s}}\right) \cdot V_{i} - \frac{C_{gs}}{C_{gs} + C_{s}} V_{th}$$

Fast turn-off:

$$V_o = (1+\epsilon) \cdot V_i + V_{os}$$

$$V_{o} = \left(1 + \frac{1}{2} \frac{C_{ox}WL}{C_{gs} + C_{s}}\right) \cdot V_{i} - \left[\frac{C_{gs}}{C_{gs} + C_{s}}V_{DD} + \frac{1}{2} \frac{C_{ox}WL}{C_{gs} + C_{s}}(V_{DD} - V_{th})\right]$$

Watch out for nonlinear errors!

T/H Speed-Accuracy Trade-off

Technology scaling improves T/H performance!

Pedestal error:
$$\Delta V \approx \frac{1}{2} \frac{Q_{ch}}{C_S}$$

TBW:
$$TBW \approx \frac{1}{R_{on}C_{s}} = \frac{\mu Q_{ch}}{L^{2}C_{s}}$$

$$\frac{\Delta V}{TBW} \approx \frac{1}{2} \frac{Q_{ch}}{C_{s}} \cdot \frac{L^{2}C_{s}}{\mu Q_{ch}} = \frac{L^{2}}{2\mu}$$

Dummy Switches

- ☐ Switch charge injection (CI) error can be mitigated by using dummy switches
- The nonlinear dependence of CI on R_{in} , C_{hold} , and clock rise/fall time makes it difficult to achieve a precise cancellation
- \Box clk rising edge must trail \overline{clk} falling edge

Bottom-Plate Sampling Principle

- Add another switch at the bottom plate
 - The new switch charge injection is independent of Vin
 - No non-linear error → No distortion
 - Necessary for more than 8-bit resolution

07: S/H Circuits [M. Pelgrom, 2017]

T/H Errors (2)

- \Box Aperture delay the delay Δ t between hold command and hold action
- \Box Aperture jitter the random variation in Δt (i.e., sampling clock jitter)

Signal-Dependent Aperture Delay

- Non-uniform sampling due to signal-dependent aperture delay causes distortion in topplate S/H
- ☐ Sharp clock edge and small Vin mitigate the delay variation

$$V_{i}(t) = Asin(\omega t)$$

$$V_{o}(t) = Asin\left[\omega\left(t - \frac{V_{i}(t)}{SR}\right)\right]$$

Transmission Gate (TG)

- ☐ Ron (and TBW) depends on Vin
 - Can be reduced by using CMOS switch (TG)
 - May be indispensable for low voltage operation
- $oldsymbol{\square}$ Delay mismatch between clk and \overline{clk} will cause distortion error

07: S/H Circuits [M. Pelgrom, 2017]

Bootstrapping Principle

- ☐ Pros: VGS = constant = VDD
 - Less Ron variation with Vin → Better linearity and TBW
 - No need for TG (avoids PMOS large cap and parasitics)
 - Use smaller NMOS switch (less clock loading)
- Cons
 - Complexity, area, and power (see next slides)
 - Device reliability (voltages above VDD and/or below GND)
 - Residual error due to body effect

07: S/H Circuits [M. Pelgrom, 2017]

Bootstrapping Example (1)

- \Box Hold Mode: $\Phi = 0$
 - C is precharged

Bootstrapping Example (2)

- \Box Track mode: $\Phi = 1$
 - VGS = constant = VDD

Bootstrapping Example (3)

lacktriangle Charge pump to drive the NMOS switch with $V_G > V_{DD}$

07: S/H Circuits [Y. Chiu, EECT 7327, UTD]

22

Sampling Jitter

- ☐ Jitter causes sample moments to shift from their position.
 - Can be viewed as noise in the time domain.

Part	Description	Jitter
"2011"	Quartz 50–170 MHz	3 ps _{rms}
"8002"	Programmable oscillator	25 ps _{rms}
"1028"	MEMS+PLL combi 100 MHz	95 ps _{rms}
"6909"	RC oscillator 20 MHz	0.2 %
"555"	RC oscillator/timer	>50 ns _{rms}

Jitter vs Phase Noise (1)

☐ Variations in time (jitter) is equivalent to variations in phase (phase noise)

$$V_{S} = V_{o} \sin(\omega_{S}t) = V_{o} \sin(\theta)$$

$$\theta = \omega_{S}t = 2\pi f_{S}t$$

$$\frac{\theta}{2\pi} = \frac{t}{T_{S}}$$

$$\frac{\Delta \theta}{2\pi} = \frac{\Delta t}{T_{S}}$$

$$\frac{\sigma_{\theta,rms}}{2\pi} = \frac{\sigma_{t,rms}}{T_{S}}$$

Jitter vs Phase Noise (2)

- ☐ Jitter in time domain is equivalent to Phase Noise in frequency domain.
- Jitter terminology usually used in sampled systems.
- Phase noise terminology usually used in RF systems.
 - Noise density is measured at an offset (f_m) w.r.t. the carrier frequency.
- ☐ BPF can reduce jitter levels to around 0.1 psrms.

07: S/H Circuits [M. Pelgrom, 2017]

Jitter Limited SNR (1)

- ☐ Timing variations means amplitude variations
- $oldsymbol{\square}$ Jitter limits the max attainable SNR

$$A(nT_s + \Delta t(t)) = \hat{A}\sin(\omega \times (nT_s + \Delta t(t)))$$

$$\Delta A(nT_s) = \frac{d\hat{A}\sin(\omega t)}{dt} \times \Delta t(nT_s) = \omega \hat{A}\cos(\omega nT_s)\Delta t(nT_s)$$

$$\sigma_A^2(nT_s) = \left(\frac{dA(nT_s)}{dt}\right)^2 \sigma_t^2 = \omega^2 \hat{A}^2 \cos^2(\omega nT_s) \sigma_t^2$$

$$\sigma_A^2 = \frac{\omega^2 \hat{A}^2 \sigma_t^2}{2}$$

$$SNR = \frac{P_{\text{signal}}}{P_{\text{jitter}}} = \frac{\widehat{A}^2/2}{\sigma_A^2} = \left(\frac{1}{\omega\sigma_t}\right)^2 = \left(\frac{1}{2\pi f\sigma_t}\right)^2$$

Jitter Limited SNR (2)

SNR =
$$20^{10} \log \left(\frac{1}{\omega \sigma_t} \right) = 20^{10} \log \left(\frac{1}{2\pi f \sigma_t} \right)$$

Jitter can be a limiting factor for high-speed ADCs.

T/H Performance Summary

References

- ☐ M. Pelgrom, Analog-to-Digital Conversion, Springer, 3rd ed., 2017.
- W. Kester, The Data Conversion Handbook, ADI, Newnes, 2005.
- ☐ B. Boser and H. Khorramabadi, EECS 247 (previously EECS 240), Berkeley.
- ☐ B. Murmann, EE 315, Stanford.
- Y. Chiu, EECT 7327, UTD.

Course Resources

Thank you!