The First Project: Explore Weather Trends

The steps I followed to complete the project are listed below:

- 1. I wrote 3 queries to extract the required data. I used the workspace that is connected to the database in Udacity
- To know the closest city to where I live, I checked the listed cities in the city_list table by using this query:

```
SELECT *
FROM city list;
```

• To select the local data, I wrote the following query:

```
SELECT *
FROM city_data
WHERE city='Riyadh';
```

• To select the global data, I wrote the following query:

```
SELECT *
FROM global data;
```

- 2. I downloaded the CSV files and open them using MS Excel software.
- 3. For each set of data (local & global), I calculated the 10-year moving average. I decided to use this value because the dataset is large so, when I use the average of each 10 years, it will be visualized clearly and smoothly in the chart.
- The image below shows how I calculated the moving average for the local data. For example, in the cell E10, I calculated the average of the temperature values in the first 10 rows of the local data (Using the AVERAGE function). I used the same method to calculate the average of each 10 values.

E1	.0 🛕	$t_{\nu} = \Delta V F R \Delta G F (D 2 \cdot D 10)$			
	Α	В	С	D	E
1	year	city	country	avg_temp	10-year local moving average
2	1843	Riyadh	Saudi Arabia	24.74	
3	1844	Riyadh	Saudi Arabia	15.45	
4	1845	Riyadh	Saudi Arabia	20.82	
5	1846	Riyadh	Saudi Arabia		
6	1847	Riyadh	Saudi Arabia		
7	1848	Riyadh	Saudi Arabia	24.56	
8	1849	Riyadh	Saudi Arabia	24.8	
9	1850	Riyadh	Saudi Arabia	24.34	
.0	1851	Riyadh	Saudi Arabia	25	22.820

• The image below shows how I calculated the moving average for the global data. For example, in the cell Q10, I calculated the average of the temperature values in the first 10 rows of the global data (Using the AVERAGE function). I used the same method to calculate the average of each 10 values.

4. I used the "line chart" to visualize the data shown below:

When I tried to include the "year" values in the chart:

When I tried to switch the row and column, the following message appear:

5. Observations (Similarities & Dissimilarities):

- For the local level, the temperature increased and approximately stayed stable for a long time then, it increased again.
- For the global level, after a long while, the temperature declined then, it started to increase again and then stayed stable.
- On average, the local city "Riyadh" is hotter comparing to the global courtiers. The temperature difference between them(Riyadh & global countries) is consistent over time.
- In general, the local temperature is consistent at 24 to 25 degree while global temperature is consistent at 8 degree.