CS/ECE 374 Spring 2023
Homework 5 Problem 1

William Cheng (shihuac2@illinois.edu)

Solution: First, sort the arrays A, B using A as the key, in ascending order. In other words, sort the intervals according to their starting point. This can be done in $O(n \log n)$ time using mergesort or quicksort.

After sorting, divide the intervals into two halves A_l , B_l and A_r , B_r . Suppose we already know the maximum overlap length of these two halves. Then the maximum overlap length of A, B is the maximum of:

- i. The maximum overlap length of (A_l, B_l) .
- ii. The maximum overlap length of (A_r, B_r) .
- iii. The maximum overlap length of two intervals such that one is taken from (A_l, B_l) and the other is taken from (A_r, B_r) .

For case (iii), let $(a_l,b_l) \in (A_l,B_l)$ and $(a_r,b_r) \in (A_r,B_r)$ be the two intervals with maximum overlap length. Then $a_l < a_r$ because the array is sorted. Therefore, the overlap interval must start with a_r . It ends with $min(b_l,b_r)$. If b_l is maximized, then we only need to search once through (A_r,B_r) to find a maximum $min(b_l,b_r)-a_r$, which is the maximum overlap length indicated in (iii). Finding a maximum b_l requires $O(|B_l|)$ time, and searching through (A_r,B_r) requires $O(|B_r|)$ time. The sum is $O(|B_l|)+O(|B_r|) \leq O(|B|)=O(n)$ time. Finding the maximum of the three cases above takes O(1) time, so the total cost for the algorithm without recursion is O(n). The base case is when n=1, there is only one interval and no overlap so the algorithm returns 0. The algorithm is on the next page.

```
MaxOverlapIntervals(A, B):
   sort A,B in ascending order using A as key
   n \leftarrow A.length
   \_, (a_i, b_i), (a_j, b_j) \leftarrow \texttt{RECURSE}(A, B, n)
   return (a_i, b_i), (a_i, b_i)
RECURSE(A, B, n):
  if n \leq 1
         return 0, nil, nil
   m \leftarrow \lceil n/2 \rceil
   lmax_i(a_{i,l}, b_{i,l}), (a_{j,l}, b_{j,l}) \leftarrow Recurse(A[0:m-1], B[0:m-1], m)
   rmax, (a_{i,r}, b_{i,r}), (a_{j,r}, b_{j,r}) \leftarrow Recurse(A[m:n-1], B[m:n-1], n-m)
   (a_i, b_i) \leftarrow (0, -\infty)
   for k \leftarrow 0 to m-1
        if B[k] > b_i
               (a_i, b_i) \leftarrow (A[k], B[k])
   crossmax \leftarrow 0
   for k \leftarrow m to n-1
         overlap \leftarrow max\{0, min(b_i, B[k]) - A[k]\}
         if overlap > crossmax
               crossmax \leftarrow overlap
               (a_i, b_i) \leftarrow (A[k], B[k])
   if rmax \ge crossmax and rmax \ge lmax
         return rmax, (a_{i,r}, b_{i,r}), (a_{i,r}, b_{i,r})
   else if lmax \ge crossmax and lmax \ge rmax
         return lmax, (a_{i,l}, b_{i,l}), (a_{i,l}, b_{i,l})
   else
         return crossmax, (a_i, b_i), (a_j, b_j)
```

The algorithm returns two intervals (a_i, b_i) and (a_j, b_j) . If no intervals overlap, the algorithm returns nil, nil. The recurrence relation for Recurse is T(n) = 2T(n/2) + O(n), which gives $T(n) = O(n \log n)$. The time complexity of sorting is $O(n \log n)$. Therefore, the total time complexity of MaxOverlapIntervals is $O(1) + O(n \log n) + O(n \log n) = O(n \log n)$.

CS/ECE 374 Spring 2023 Homework 5 Problem 2

Solution: (a) Let K represent the ranks $k_1, k_2, ..., k_h$. We begin by splitting K into two halves, K_l and K_r . We then find the rank $K_r[0]$ element in A and call it m. Then we can divide A into A_l and A_g where $\max(A_l) < m$ and $\min(A_g) \ge m$. Then we subtract everything in K_r by $K_r[0]$ such that K_r starts with K_r 0. Then we can recursively apply the algorithm on K_r 1 and K_r 2 and denote the return values as K_r 3 and K_r 4. The concatenation K_r 5 is the elements of rank K_r 6 in K_r 7 since every element is K_r 8 is greater than any element in K_r 8. The base case is when K_r 9 and K_r 9, therefore the algorithm returns the set of the K_r 9 smallest element in K_r 9. The algorithm is shown below.

Note: Zero-based indices are used.

```
ELEMENTSOFRANK(A, K, h):
  if h = 0
        return nil
   if h = 1
        b \leftarrow K[0]th smallest element in A
        return [b]
   p \leftarrow \lceil h/2 \rceil
   K_l \leftarrow K[0:p-1]; K_r \leftarrow K[p:h-1]
   m \leftarrow qth smallest element in A
   A_l \leftarrow [\ ]; A_q \leftarrow [\ ]
   for each a \in A
        if a < m
               add a to A_l
        else
               add a to A_q
   for i \leftarrow 0 to h - p - 1
        K_r[i] \leftarrow K_r[i] - q
   B_l \leftarrow \texttt{ElementsOfRank}(A_l, K_l, p)
   B_r \leftarrow \text{ElementsOfRank}(A_a, K_r, h - p)
   return B_lB_r //concatenation
```

From the algorithm we can write the recurrence T(h) = 2T(h/2) + O(n) + O(h) and T(1) = O(n) since selection costs O(n). However, there is a lower bound. Consider the recursion tree. The depth of the tree is $\log h$. Although the array A is split randomly during each recursion, it must be true that the sum of the work on each level is O(n) + O(h) = O(n) because only linear operations are involved with A so no matter how A is split the sum is still O(|A|). Therefore the time complexity = work on each level $\times number$ of levels $= O(n \log h)$.

- (b) We begin by calculating the mid indices of all four arrays, m_1, m_2, m_3, m_4 .
 - If $m_1 + m_2 + m_3 + m_4 < k$, then since all the arrays are sorted, at least one subarray $A_1[1:m_1], A_2[1:m_2], A_3[1:m_3], A_4[1:m_4]$ can be dismissed. The one with the smallest number at index m_i should be dismissed since it would be filled first. Then we adjust $k \leftarrow k m_i$ and recurse on the adjusted arrays.
 - If $m_1 + m_2 + m_3 + m_4 \ge k$, let n_i be the length of A_i , then similarly the subarray $A_i[m_i:n_i]$ with the largest number at index m_i should be dismissed since reaching it

would require $k > m_1 + m_2 + m_3 + m_4$ which is a contradiction. Then we recurse on k and the adjusted arrays.

The base case is when exactly one array is non-empty, the algorithm returns the *kth* element of that array.

```
FINDKTHRANK(A_1, A_2, A_3, A_4, k):
   if exactly one A_i is non-empty
          return A_i[k]
   n_1 \leftarrow A_1.length; n_2 \leftarrow A_2.length; n_3 \leftarrow A_3.length; n_4 \leftarrow A_4.length
   m_1 \leftarrow \left\lceil \frac{n_1}{2} \right\rceil; m_2 \leftarrow \left\lceil \frac{n_2}{2} \right\rceil; m_3 \leftarrow \left\lceil \frac{n_3}{2} \right\rceil; m_4 \leftarrow \left\lceil \frac{n_4}{2} \right\rceil
   if m_1 + m_2 + m_3 + m_4 < k
          p \leftarrow \min(A_1[m_1], A_2[m_2], A_3[m_3], A_4[m_4])
          for each A_i \in \{A_1, A_2, A_3, A_4\}
                if A_i is empty
                       continue
                if A_i[m_i] = p
                       if n_i > 1
                              A_i \leftarrow A_i[m_i + 1:n_i]
                       else
                              A_i \leftarrow []
                       k \leftarrow k - m_i
                       break
          return FindKthRank(A_1, A_2, A_3, A_4, k)
   else
          p \leftarrow \max(A_1[m_1], A_2[m_2], A_3[m_3], A_4[m_4])
          for each A_i \in \{A_1, A_2, A_3, A_4\}
                if A_i is empty
                       continue
                if A_i[m_i] = p
                       if m_i > 1
                              A_i \leftarrow A_i[1:m_i-1]
                       else
                              A_i \leftarrow []
                       break
          return FindKthRank(A_1, A_2, A_3, A_4, k)
```

Time complexity analysis: T(1) = O(1) since we only need to retrieve one element from an array. Only one branch of the if-statement is executed, so there is exactly one recursive call in each function call. Let's just assume that each array A_i has exactly n elements which will be strictly larger than the actual situation. Then it takes $\lceil \log n \rceil + 1$ iterations for each A_i to be empty, hence $3(\lceil \log n \rceil + 1) + \lceil \log n \rceil = 4\lceil \log n \rceil + 3$ iterations in total. Only O(1) operations are involved during each iteration. Therefore, an upper bound for the time complexity is $O(\log n)$.