Overview

2/16 Foundations

Pre-training types

Curated by: Dr. Maryam Miradi

(c) Self-supervised Pre-training

Encoders & Decoders

(a) Training an encoder-decoder model with BERT-style masked language modeling

(b) Training an encoder-decoder model with denoising autoencoding

L Foundations Foundations Transformers Pre-training

5/16 Foundations

BERT

Transformer-decoder architecture

7/16 Foundations

Curated by: Dr. Maryam Miradi

AA

(a) Learning an Initial LLM

(b) Annotating Data with Human Preferences

(c) Training the Reward Model

Comparison Data

 $\{(\mathbf{x},\mathbf{y}_{k_1}\succ\mathbf{y}_{k_2})\}$

Reward Model

Training

(d) Training/Fine-tuning the Policy

Foundations Attention Types

(a) Standard Self-attention

(b) Sparse Attention

$$\mu_{i} = \mu_{i-1} + \mathbf{k'}_{i}^{\mathrm{T}} \mathbf{v}_{i} \Rightarrow \mu_{i}$$

$$\nu_{i} = \nu_{i-1} + \mathbf{k'}_{i}^{\mathrm{T}} \Rightarrow \nu_{i}$$

$$\mathbf{k}_{0} \quad \mathbf{k}_{1} \quad \cdots \quad \mathbf{k}_{i-2} \quad \mathbf{k}_{i-1} \quad \mathbf{k}_{i}$$

$$\mathbf{v}_{0} \quad \mathbf{v}_{1} \quad \cdots \quad \mathbf{v}_{i-2} \quad \mathbf{v}_{i-1} \quad \mathbf{v}_{i}$$

$$\mathbf{k}_{i} \quad \mathbf{v}_{i}$$

(c) Linear Attention

LIM Foundations Memory

Memory

AA

Curated by: Dr. Maryam Miradi

(d) Hybrid Cache (Compressed Memory + Local Memory)

(c) Retrieval-augmented Generation

Embedding

(a) Single-step Rotation

(b) Multi-step Rotation

Dr. Maryam Miradi

(c) Angles between embeddings of two tokens at different positions

LLM Foundations Ensembling

Curated by: Dr. Maryam Miradi

(a) Model Ensembling

(b) Prompt Ensembling

Loss = 0

 $Loss \neq 0$

Loss = 0

 $Loss \neq 0$

 $\Pr_{\theta}(\mathbf{x}^1)$

 $\Pr_{\theta}(\mathbf{y}^1|\mathbf{x}^1)$

 $\Pr_{\theta}(\mathbf{x}^2|\mathbf{x}^1,\mathbf{y}^1)$

 $\Pr_{\theta}(\mathbf{y}^2|\mathbf{x}^1,\mathbf{y}^1,\mathbf{x}^2)$

 \mathbf{y}^1

 \mathbf{x}^2

 \mathbf{x}^1

User: I've been feeling very tired lately.

Chatbot: I'm sorry to hear that. Besides feeling tired, have you noticed any other symptoms?

User: Yes, I'm also experiencing headaches frequently.

Chatbot: How long have these symptoms been going on?

LLM Foundations Self-Instruct

AA

Small-to-Large

Curated by: Dr. Maryam Miradi

(weak-to-strong generalization)

(b) Fine-tuning with KD Loss from a small model (weak-to-strong generalization)

(c) Data selection with a small model

(d) Ensemble of multiple small models

If Step 1 is not satisfactory, go to Step 2

(e) Cascading (at inference time)

LLM Foundations Soft Prompts

Dr. Maryam Miradi