Semantic Networks Analysis

Abhilasha Kumar January 16, 2018

Reading the Data

Related-Unrelated Decisions

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
```

Plotting Proportions

Relatedness Judgments

Subject-Wise

Relatedness Judgments

Line Plot Subject-Wise

Relatedness Judgments

ANOVA

```
##
## Error: subject
                            Mean Sq F value Pr(>F)
##
             Df
                   Sum Sq
## Residuals 19 4.158e-30 2.188e-31
##
## Error: subject:pathlengthfac
                       Sum Sq Mean Sq F value Pr(>F)
## pathlengthfac 5 3.330e-30 6.655e-31
                                          1.702 0.142
## Residuals
                95 3.716e-29 3.911e-31
##
## Error: subject:Type
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Type
              1 8.759
                         8.759
                                 68.57 1e-07 ***
## Residuals 19 2.427
                         0.128
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
## Error: subject:pathlengthfac:Type
## Df Sum Sq Mean Sq F value Pr(>F)
## pathlengthfac:Type 5 9.328 1.8656 109.1 <2e-16 ***
## Residuals 95 1.624 0.0171
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Raw Reaction Time

ANOVA

```
sem_rt$pathlengthfac = ordered(as.factor(as.character(sem_rt$pathlength)),
                           levels = c("1", "2", "3", "4", "6", "15"))
sem_rt$subject = as.factor(sem_rt$subject)
rt_aov = aov(data = sem_rt, rt ~ pathlengthfac +
                    Error(subject/(pathlengthfac)))
summary(rt_aov)
##
## Error: subject
                 Sum Sq Mean Sq F value Pr(>F)
## Residuals 19 10213162 537535
## Error: subject:pathlengthfac
                Df Sum Sq Mean Sq F value Pr(>F)
## pathlengthfac 5 91732
                           18346
                                  2.097 0.0724 .
## Residuals
               95 831163
                             8749
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Plotting RTs

RT for Relatedness Judgments

Subject-Wise

z-scored Reaction Time

Histogram of RT

Raw RT Histogram for All Trials

First Trim

Raw RT Histogram for Trials Above 250 ms and below 2000 ms

Raw RT aggregates After Trimming

Subject Raw RT again

Making the z-scores

z-RT Distribution

z-RT Histogram for above 250 ms & <2s Trials

Trimming z-RT

Trimmed (3 SD) z-RT Histogram for above 250 ms & <2s Trials

Repeating z-scoring

Aggregating zRT

ANOVA

```
z_sem_rt$pathlengthfac = ordered(as.factor(as.character(z_sem_rt$pathlength)),
                            levels = c("1", "2", "3", "4", "6", "15"))
z_sem_rt$subject = as.factor(z_sem_rt$subject)
z_rt_aov = aov(data = z_sem_rt, zRT_trim ~ pathlengthfac +
                     Error(subject/(pathlengthfac)))
summary(z_rt_aov)
##
## Error: subject
             Df
                           Mean Sq F value Pr(>F)
##
                  Sum Sq
## Residuals 19 0.003357 0.0001767
##
## Error: subject:pathlengthfac
                 Df Sum Sq Mean Sq F value
                                             Pr(>F)
## pathlengthfac 5 1.492 0.29848
                                     7.018 1.28e-05 ***
## Residuals
                95 4.040 0.04253
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Plotting RTs

```
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : Chernobyl! trL>n 6

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## parametric, : Chernobyl! trL>n 6

## Warning in sqrt(sum.squares/one.delta): NaNs produced
## Warning in stats::qt(level/2 + 0.5, pred$df): NaNs produced
```

z-RT for Relatedness Judgments

Subject-Wise

Regressions

```
## Loading required package: Matrix
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ 1 + (1 | subject) + (1 | trial_index)
      Data: sem
##
##
## REML criterion at convergence: 74309.7
##
## Scaled residuals:
       Min
##
                1Q Median
                                3Q
## -2.7611 -0.3348 -0.1137 0.1526 28.7456
##
## Random effects:
                            Variance Std.Dev.
## Groups
                Name
## trial_index (Intercept)
                              1942
                                      44.07
## subject
                (Intercept)
                             88326
                                     297.20
## Residual
                            303120
                                     550.56
## Number of obs: 4800, groups: trial_index, 240; subject, 20
##
## Fixed effects:
```

```
Estimate Std. Error t value
## (Intercept)
                797.07
                             66.99
                                      11.9
## [1] 0.2294635
## Warning: NAs introduced by coercion
## Linear mixed model fit by REML ['lmerMod']
## Formula: rt ~ I((pathlength)^2) + (1 | subject)
##
     Data: sem
##
## REML criterion at convergence: 74306.9
## Scaled residuals:
##
      Min
              1Q Median
                                       Max
## -2.7877 -0.3338 -0.1128 0.1480 28.8300
##
## Random effects:
## Groups
            Name
                         Variance Std.Dev.
## subject (Intercept) 88320
                                  297.2
## Residual
                         304663
                                  552.0
## Number of obs: 4800, groups: subject, 20
## Fixed effects:
                    Estimate Std. Error t value
## (Intercept)
                    810.1238
                                67.1039 12.073
## I((pathlength)^2) -0.2691
                                 0.0999 - 2.694
## Correlation of Fixed Effects:
               (Intr)
##
## I((pthl)^2) -0.072
```

Correlations

"