

Peak Detection in Time Series: TranAD Architecture

Autonomous Multisensor Systems Group Institute for Intelligent Cooperating Systems Faculty of Computer Science Otto von Guericke University, Magdeburg

Shweta Bambal

20.05.2025

Data Preprocessing	Transformation	Adversarial Training	MAML
Normalize data - [0, 1] Sliding windows - W	Encoder - self-attention and multi-head attention Phase 1: Reconstruction using D1 and D2 Phase 2: D2 calculates focus score using D1 reconstruction error.	Loss Function evolves using weighted combination of reconstruction loss and adversarial loss	Weights are updated using meta-optimization at the end of each epoch

Server Machine Dataset

- ☐ Released by Facebook AI
- ☐ Shape of Training data: **(708405, 38)**
- Features are anonymized (Ex : CPU usage %, Memory usage, Disk I/O, Network bandwidth, System load, Cache usage, Swap usage)
- ☐ Interpretation Labels (15849-16368:1,9,10,12,13,14,15) (Time Steps : Column Indices)

0.032258	0.039195	0027871	0.024390	0.000000	
0.043011	0.048729	0.033445	0.025552	0.000000	
0.043011	0.034958	0.032330	0.025552	0.000000	

Step 1: Data Preprocessing

- W Input Window by sliding windows function.
- \Box Window size = 10
- Example :

```
[t=0 row],
[t=1 row],
......
[t=9 row]
```

Step 2: Encoder to Decoder 1 (Phase 1)

- **□** Encoder:
 - Positional Embedding and Transformer Encoder self-attention layers for [10, 28]
- \Box C = (W O1_repeated)² of shape [10, 38]
- \square Input2 = concat(W, C) = shape [10, 76]
- □ Decoder 1:
 - ☐ Takes W as input window and reconstructs t10 as O1 output = shape [10, 76]
- \Box Compute Reconstruction Error: also called as Anomaly Error = $(W[-1] O1)^2$

Step 3: Encoder to Decoder 2 (Self-Conditioning)

- ☐ Condition the model using Anomaly Scores from Phase 1
 - \Box C = (W O1_repeated)² of shape [10, 38]
 - \square Input2 = concat(W, C) = shape [10, 76]
- ☐ Encoder processes the Input2 again.
- ☐ Decoder 2 : Reconstructs final output O2= shape [10, 38]
- ☐ Final Anomaly Score : (W[-1] O1)²
 - □ uses Mean Squared Error (MSE)

Performance Highlights

Outperforms baselines like LSTM-NDT, DAGMM, OmniAnomaly, GDN

F1 score increased by up to 17%

Training time reduced by up to 99%

Thank You For Your Attention!

