Parameters of log normal

 $\mu(y)$ 0.621150443 1.31106 1.663867 2.252811 2.853894 3.452484 3.701365 3.974082 4.425831 sigma(y) 0.533333259 0.381177 0.404955 0.348322 0.264485 0.213325 0.244879 0.23752 0.295372

AIC BIC for log normal

AIC 202.6916283 223.9203 276.2177 313.587 349.504 406.1433 444.4826 479.3375 557.6038 BIC 206.8803174 228.109 280.4064 317.7757 353.6927 410.332 448.6713 483.5261 561.7925

Parameters of Gumbel Distribution

a 0.959530848 1.230119 1.886206 2.830963 3.772058 5.434947 8.089405 10.27883 20.55355 b 1.591850701 3.279888 4.642492 8.476035 15.79652 29.16954 37.06775 48.79245 75.4496

AIC BIC for gumbel

AIC 189.3939541 193.56 193.7046 183.6422 182.3899 203.8144 186.6247 196.3505 189.8204 BIC 193.5826433 197.7486 197.8932 187.8309 186.5785 208.0031 190.8134 200.5392 194.0091

In all the cases AIC as well as BIC value for gumbel is lower than log normal => In all the cases gumbel fit is a better fit.

Intensity Duration Frequency Data (Intensity in mm/min)

Duration(min)	5	10	15	30	60	120	360	720	1440
T/Duration(hr)	0.083333333	0.166667	0.25	0.5	1	2	6	12	24
2	0.388706231	0.373074	0.355587	0.317121	0.286317	0.259679	0.111202	0.073	0.057627
5	0.606217878	0.512499	0.498113	0.424077	0.357573	0.311014	0.13667	0.089181	0.073805
10	0.750229514	0.604811	0.592477	0.494891	0.404751	0.345001	0.153533	0.099894	0.084516
25	0.932188599	0.721447	0.711706	0.584366	0.46436	0.387945	0.174839	0.11343	0.098049
50	1.067176242	0.807974	0.800157	0.650743	0.508581	0.419803	0.190645	0.123472	0.108089
75	1.145636207	0.858267	0.851568	0.689323	0.534284	0.43832	0.199832	0.129309	0.113925
100	1.201167158	0.893862	0.887955	0.71663	0.552476	0.451426	0.206334	0.13344	0.118055

I DIT = 1.84891. T

[to(D) + 13.1819] 0.49349

Tp.T is intensity in mm/min.

to(O) is in min.

T is in year.

h

b.										
	Directly Drained Catchment									
	or						Upstream	Time of	Design	Design
	Contributing		Runoff			Inlet	Sewer	Concentration	Rain	Rain
	Upstre	Area(Aj)	Coefficient			Time	Flow Time	tc	Duration	Intensity
Sewer	-am Sewer	(Km^2)	(Cj)	CjAj	∑CjAj	(min)	(min)	(min)	tD (min)	(mm/min)
11-21	ı	0.0085	0.609	0.005177	0.005177	7.20908		7.209079924	7.209079924	0.4807694
21-31	II	0.013	0.604	0.007852		8.591422		8.591422183		
	11-21			0.005177		7.20908	5.2288282	12.43790811		
					0.013029				12.43790811	0.4295006
31-41	III	0.015	0.6	0.009		9.412158		9.412157591		
	21-31			0.013029		12.43791	3.8300027	16.26791086		
					0.022029				16.26791086	0.4009351
41-51	IV	0.012	0.6175	0.00741		8.876569		8.876568922		
	31-41			0.022029		16.26791	3.5791726	19.8470835		
					0.029439				19.8470835	0.3788499
51-61	V	0.012	0.597	0.007164		8.730324		8.730323872		
	41-51			0.029439		19.84708	2.8258607	22.67294423		
					0.036603				22.67294423	0.3637936
61-71	VI	0.012	0.612	0.007344		8.465158		8.465158396		
	51-61			0.036603		22.67294	2.7806157	25.45355992		
					0.043947				25.45355992	0.3506153
17-71	VII	0.017	0.601	0.010217	0.010217	9.830124		9.830124016	9.830124016	0.4528914
18-71	VIII	0.012	0.62	0.00744	0.00744	8.868038		8.86803768	8.86803768	0.4625475
71-81	61-71			0.043947		25.45356	2.8050922	28.25865216		
	17-71			0.010217		9.830124	3.5101821	13.34030612		
	18-71			0.00744		8.868038	4.7124315	13.58046914		
					0.061604				28.25865216	0.3386836

	Upstrea														
	m			Design	Require					Upstrea	Upstrea	Downstrea	Downstrea		
	manhole			Discharg	d	Diamete		Sewer		m	m	m	m		
	ground			е	Diamete	r	Flow	Flow		Crown	Invert	Crown	Invert		
	elevation	Length L		Qр,	r	used dn,	Velocity V	Time		Elevation	Elevation	Elevation	Elevation		
Sewer	(m)	(m)	Slope S	m3/sec	dr, (m)	(m)	(m/sec)	(min)	SL (m)	(m)	(m)	(m)	(m)		
	135.2	500	0.003				0.430944	5.22882818							
11	133.2	300	0.003	0.04148	0.3117	0.35	2	7	1.5	134.2	133.85	132.7	132.35		
	134.7	500	0.0025				0.586161	3.83000274							
21	134.7	500	0.0023	0.09326	0.4224	0.45	5	6	1.25	132.7	132.25	131.45	131		
	133	300	0.0021				0.619323	3.57917264							
31	133	300	0.0021	0.1472	0.5012	0.55	8	6	0.63	131.45	130.9	130.82	130.27		
	132.6	1000	0.0042				0.782062	2.82586072							
41	132.0	1000	0.0042	0.18588	0.547	0.55	6	7	4.2	130.82	130.27	126.62	126.07		
	130.9	400	400 0.0032				0.784598	2.78061569							
51	130.7	400	0.0032	0.22193	0.5846	0.6	4	4	1.28	126.62	126.02	125.34	124.74		
	130.2	.2 400	400	400 0.005	0.0051				0.773593	2.80509223					
61	130.2	400	0.0031	0.25681	0.6175	0.65	1	5	2.04	125.34	124.69	123.3	122.65		
	129.2	129.2 500	500 0.0036				0.613453	3.51018210							
17	127.2	300	0.0030	0.07712	0.3933	0.4	5	5	1.8	128.2	127.8	126.4	126		
	129	600	600 0.004				0.456240	4.71243145							
18	129	000	0.004	0.05736	0.352	0.4	1	8	2.4	128	127.6	125.6	125.2		
	128.6						0.903207	2.37302429							
71	120.0			0.34773	0.6919	0.7	5	6		123.3	122.6				

```
a FIKm1 = enp ]-1x[1+013/Km-0-44)]]
        F(K_{\rm m}) = 1 - \frac{1}{1000} = 0.999
     0.999 = exp \int_{-1}^{-1} \left( 1 + 0.13 \left( 1 + 0.44 \right) \right) \int_{0.60}^{-7.69}
       0.001 = 1 + 0.13 | \text{km} - 0.4411
        7 455 = 2.455-1 = 0.13 ( Hm - 0.44)
                                0.60.
                  Km = 7.156
 Now we have pm = p + Rm op.
   where
  pm = annual man ruinfull for a given to
 Both $ and op are colculated in the table.
            p_m = 67.309 + 7.156 \times 26.36148
= 275.95 mm.
  we also hove,
         \frac{p_{0,T}}{t_0} \times g(t_0) = \frac{p_{0,T}}{t_0} g(t_0)
      g(t_0) = (0 + 13.1819)^{0.49399}
          D= 24hr D,= 24hr
           D = D, \qquad g(t_0) = g(t_0)
                      and and thus. PDIT = PDIT = 275.95mm
```


	T	Т	T	Т	
		Cum.	Incre.		
Duration(min)	Intensity(mm/min)	Dep.	Dep.	Time	Precipitation(mm)
4	0.7283363	2.913345	2.9133452	0-4	0.862684041
8	0.656797308	5.254378	2.3410333	4-8	0.932802487
12	0.603005212	7.236063	1.9816841	8-12	1.021864893
16	0.56065193	8.970431	1.7343683	12-16	1.139613047
20	0.526180516	10.52361	1.5531794	16-20	1.304113193
24	0.497412477	11.9379	1.4142891	20-24	1.553179449
28	0.472929023	13.24201	1.3041132	24-28	1.98168408
32	0.451761132	14.45636	1.2143436	28-32	2.913345201
36	0.433221369	15.59597	1.139613	32-36	2.34103326
40	0.416806696	16.67227	1.0762986	36-40	1.734368338
44	0.402139381	17.69413	1.0218649	40-44	1.414289123
48	0.388929509	18.66862	0.9744837	44-48	1.21434358
52	0.376950364	19.60142	0.9328025	48-52	1.076298581
56	0.366021742	20.49722	0.8957986	52-56	0.974483692
60	0.35599836	21.3599	0.862684	56-60	0.895798628

e.

Time(min)	Precipitation(mm)
0-4	0.862684041
4-8	0.932802487
8-12	1.021864893
12-16	1.139613047
16-20	1.304113193
20-24	1.553179449
24-28	1.98168408
28-32	2.913345201
32-36	2.34103326
36-40	1.734368338
40-44	1.414289123
44-48	1.21434358
48-52	1.076298581
52-56	0.974483692
56-60	0.895798628

The maximum flodding will be in the time interval of (28-32)min when the precipitation is 2.913345201mm and if drainage can sustain this precipitation then it will be safe Other way, to check for every interval and for each gutter, sewer pipes and inlet capacity.