

Production of Categorical Data Verifying Differential Privacy: Conception and Applications to Machine Learning

Héber HWANG ARCOLEZI

Reviewer: MCF, HDR

Pr.

M. CUNCHE B. NGUYEN INSA Lyon
INSA Centre Val de Loire

Reviewer: Examiner:

Assist. Pr.

M. S. ALVIM

Federal University of Minas Gerais

Examiner:

Pr.

S. CHRÉTIEN

Université Lyon 2

Supervisor:

Pr.

J.-F. COUCHOT

Université Bourgogne Franche-Comté

Co-supervisor:

Pr.

B. AL BOUNA

Université Antonine

Co-supervisor:

Assoc. Pr.

X. XIAO

National University of Singapore

Introduction

Privacy and Why Do We Need It?

Privacy:

- Human right*;
- Not a new issue, aggravated by Big Data;
- Legitimate but harmful use of users' information**;
- Illegitimate access or massive data breaches***;

Cambridge Analytica

Societal Impact:

- Public health;
- National security;
- Development;
- Governance...

^{*} https://www.un.org/en/about-us/universal-declaration-of-human-rights

^{**} https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

^{***} https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Privacy and Why Do We Need It?

Privacy:

- Human right*;
- Not a new issue, aggravated by Big Data;
- Legitimate but harmful use of users' information**;
- Illegitimate access or massive data breaches***;
- There is a need for privacy-preserving systems;
- A balance needs to be found between privacy and utility.

- Public health;
- National security;
- Development;
- Governance...

^{*} https://www.un.org/en/about-us/universal-declaration-of-human-rights

^{**} https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

^{***} https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

Privacy Notions: Syntactic vs Algorithmic

^{*} Sweeney, L. k-anonymity: A model for protecting privacy. In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems (2002).

^{**} Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M. l-diversity: Privacy beyond k-anonymity. In: ACM Transactions on Knowledge Discovery from Data (2007).

^{***} Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in Theoretical Computer Science (2014).

The Trust Model: Centralized vs Local

Centralized setting

Local setting

Use of Big Data for Mobility Analytics

By hour;

By day;

Human mobility analysis through cell phone data (call detail record – CDR);

Some motivations \rightarrow

Anonymity-Based Mobility Reports

- Human mobility is quite unique^{*} → Mobile network operators (MNOs) must respect users' privacy;
- Users cannot sanitize their data → CDRs are automatically generated on MNOs' servers;

^{*} De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M., Blondel, V.D. Unique in the crowd: The privacy bounds of human mobility. In: Scientific reports (2013).

Anonymity-Based Mobility Reports

- Not robust to supplementary knowledge of attackers;
- One cannot account for the privacy leak of individuals;
- Releasing raw aggregates may still be subject to privacy attacks*, **;

Differential privacy***-based solution:

- Release histograms with differential privacy guarantees;
- Ex. of industry application: Google Mobility Reports****...

^{*} Pyrgelis, A., Troncoso, C., De Cristofaro, E. What Does The Crowd Say About You? Evaluating Aggregation-based Location Privacy. In: PoPETS (2017).

^{**} Tu, Z., Xu, F., Li, Y., Zhang, P. and Jin, D., 2018. A new privacy breach: User trajectory recovery from aggregated mobility data. In: IEEE/ACM Transactions on Networking (2018).

^{***} Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in Theoretical Computer Science (2014).

^{****} Google COVID-19 Community Mobility Reports: https://www.google.com/covid19/mobility/

Differential Privacy (DP)*: DP → Local DP

A randomized algorithm \mathcal{A} satisfies ϵ -DP, if for any two neighbouring databases D and D' and for any output O of \mathcal{A} :

Intuitively: Any output should be about as likely regardless of whether I am in the database or not.

atput
$$O$$
 of A :
$$\Pr[A(D) = O] \le e^{\epsilon} \cdot \Pr[A(D') = O]$$

$$\text{Run by a trusted server}$$

A randomized algorithm \mathcal{A} satisfies ϵ -local-differential-privacy (ϵ -LDP), if for any two inputs x and x' and for any output y of \mathcal{A} :

Intuitively: Any output should be about as likely regardless of my secret.

^{*} Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in Theoretical Computer Science (2014).

Properties of DP*: Post-Processing

Robust to post-processing \rightarrow if \mathcal{A} is ϵ -DP, then $f(\mathcal{A})$ is also ϵ -DP for any f.

^{*} Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in Theoretical Computer Science (2014).

Properties of DP*: Post-Processing

Robust to post-processing \rightarrow if \mathcal{A} is ϵ -DP, then $f(\mathcal{A})$ is also ϵ -DP for any f.

^{*} Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in Theoretical Computer Science (2014).

Properties of DP*: Composition

• Composition \rightarrow DP allows to accounting for the overall privacy loss when several DP algorithms are applied to the same database (DB).

^{*} Dwork, C., Roth, A. The algorithmic foundations of differential privacy. In: Foundations and Trends in Theoretical Computer Science (2014).

LDP: Ex. of Randomized Response (RR)*

- Motivated by surveying people on sensitive/embarrassing topics.
- Main idea \rightarrow Providing **deniability** to users' answer (yes/no \rightarrow binary).
- Ask: "Did you test positive for HIV (human immunodeficiency virus)?"
- Each person:
 - Throw a secret unbiased coin:
 - If tail, throw the coin again (ignoring the outcome) and answer the question honestly.
 - If head, then throw the coin again and answer "Yes" if head, "No" if tail.

RR: Seeing answer, still not certain about the secret.

Frequency Estimation and ϵ Study of RR

$$p = \Pr[RR(Yes) = Yes] = \Pr[RR(No) = No] = 0.75$$

$$q = \Pr[RR(No) = Yes] = \Pr[RR(Yes) = No] = 0.25$$

- $f(v_Y) \rightarrow$ frequency of true Yes $(or No v_N)$
- $\approx \hat{f}(v_i) = \frac{N_i nq}{(p-q)}, \forall_{i \in \{Y,N\}}$ Estimated frequency
 - Satisfies ϵ -LDP w/:

LDP Implem. of Big Tech Companies

Figure 6: Relative frequencies of the top 31 unexpected Chrome homepage domains found by analyzing ~14 million RAPPOR reports, excluding expected domains (the homepage "google.com", etc.).

Collecting Telemetry Data Privately

Bolin Ding, Janardhan Kulkarni, Sergey Yekhanin

Microsoft Research

{bolind, jakul, yekhanin}@microsoft.com

Windows Insiders in Windows 10 Fall Creators Update to protect users' privacy while collecting application usage statistics.

LDP Protocols for Frequency Estimation

• Generalized RR (GRR)*: Extends RR to the case of $k_i \ge 2$.

$$\forall_{y} \in A_{j} \Pr \left[\mathcal{A}_{GRR(\epsilon)}(v) = y \right] = \begin{cases} p = \frac{e^{\epsilon}}{e^{\epsilon} + k_{j} - 1}, & \text{if } y = v \\ q = \frac{1}{e^{\epsilon} + k_{j} - 1}, & \text{if } y \neq v \end{cases} \quad \epsilon = \ln \left(\frac{p}{q} \right)$$

• Unary Encoding $(UE)^{**}$: Encode as a bit-vector B and perturb each bit independently into a new bit-vector B'. More specifically:

$$\Pr[B'_i = 1] = \begin{cases} p, & \text{if } B_i = 1\\ q, & \text{if } B_i = 0 \end{cases}$$

$$\epsilon = \ln\left(\frac{p(1-q)}{q(1-p)}\right)$$

Symmetric UE (SUE):
$$p = \frac{e^{\epsilon/2}}{e^{\epsilon/2}+1}$$
, $q = \frac{1}{e^{\epsilon/2}+1}$, Optimized UE (OUE)***: $p = \frac{1}{2}$, $q = \frac{1}{e^{\epsilon}+1}$

^{***} Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation. In: USENIX Security Symposium (2017).

^{*} Kairouz, P., Oh, S., Viswanath, P. Extremal mechanisms for local differential privacy. In: NeurIPS (2014).

^{**} Erlingsson, Ú., Pihur, V. and Korolova, A. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response. In: SIGSAC (2014).

LDP Protocols for Frequency Estimation

• Unbiased* normalized frequency estimation $f(v_i)$ for $v_i \in A_j$:

$$\hat{f}(v_i) = \frac{N_i - nq}{n(p - q)}$$

 N_i = number of times the value v_i or bit i has been reported.

Variance of the estimator*:

estimator*:
$$f(v_i) = 0 \rightarrow \text{Approximate } Var^*$$

$$\text{Var}[\hat{f}(v_i)] = \frac{q(1-q)}{n(p-q)^2} + \frac{f(v_i)(1-p-q)}{n(p-q)} \qquad p+q=1 \text{ "symmetric"}$$

^{*} Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation. In: USENIX Security Symposium (2017).

Outline

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
- 5. Conclusion & Perspectives

Outline

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
 - i. Longitudinal and Multidimensional Data Collection
 - ii. Multidimensional Data Collection
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
- 5. Conclusion & Perspectives

Problem Statement: Statistical Learning

- **Tackled Issue:** Collecting *multidimensional* data under ϵ -*LDP* throughout time (i.e., *longitudinal study*) for *frequency estimation*.

Multiple attributes

- More formally (notation):
 - d attributes $A = \{A_1, A_2, \dots, A_d\}$;
 - Each attribute A_j has a discrete domain of size $|A_j| = k_j$;
 - Each user u_i for $1 \le i \le n$ has a tuple $\mathbf{v}^i = (v_1^i, v_2^i, ..., v_d^i)$;
 - Analyzer: estimate a k_j -bins histogram for each attribute $j \in [1, d]$.

State-of-the-Art for Multiple Attributes*, **

^{*} Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J. Collecting and analyzing data from smart device users with local differential privacy. In: arXiv:1606.05053 (2016).

^{**} Wang, N., Xiao, X., Yang, Y., Zhao, J., Hui, S.C., Shin, H., Shin, J., Yu, G. Collecting and analyzing multidimensional data with local differential privacy. In: ICDE (2019).

Multidimensional Frequency Estimates

- ϵ : privacy budget;
- *d*: total number of attributes;
- n: total number of users.

number of attributes each user will sample

Sampling-based solution*: Find r that minimizes the variance of each protocol**.

$$Var[\hat{f}_{GRR}] = \frac{d(e^{\epsilon/r} + k_j - 2)}{nr(e^{\epsilon/r} - 1)^2} \qquad Var[\hat{f}_{SUE}] = \frac{d(e^{\epsilon/2r})}{nr(e^{\epsilon/2r} - 1)^2} \qquad Var[\hat{f}_{OUE}] = \frac{d(4e^{\epsilon/r})}{nr(e^{\epsilon/r} - 1)^2}$$

• Variance is minimized for sampling (Smp, i.e., r = 1), as in^{*, **}.

^{*} Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J. Collecting and analyzing data from smart device users with local differential privacy. In: arXiv:1606.05053 (2016).

^{**} Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation. In: USENIX Security Symposium (2017).

Longitudinal Frequency Estimates

UNIVERSITE B UBFC UNIVERSITE UNIVERSITE UNIVERSITE UNIVERSITE

^{*} Erlingsson, Ú., Pihur, V., Korolova, A. RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response. In: ACM SIGSAC (2014).

Ding, B., Kulkarni, J., Yekhanin, S. Collecting telemetry data privately. In: NeurIPS (2017).

Memoization-based: Estimator and Variance

$$\hat{f}_L(v_i) = \frac{\frac{N_i - nq_2}{(p_2 - q_2)} - nq_1}{n(p_1 - q_1)} \to \frac{N_i - nq_1(p_2 - q_2) - nq_2}{n(p_1 - q_1)(p_2 - q_2)}$$

 N_i = number of times the value v_i or bit i has been reported.

• Approximate variance of the estimator:

$$\operatorname{Var}^* \left[\hat{f}_L(v_i) \right] = \frac{\left(p_2 q_1 - q_2 (q_1 - 1) \right) (-p_2 q_1 + q_2 (q_1 - 1) + 1)}{n(p_1 - q_1)^2 (p_2 - q_2)^2}$$

Unbiased estimation and variance development in the manuscript

Longitudinal GRR: ϵ study

Infinity reports:

$$\epsilon_{\infty} = \ln\left(\frac{p_1}{q_1}\right)$$

First report:
$$\epsilon_1 = \ln \left(\frac{p_1 p_2 + q_1 q_2}{p_1 q_2 + q_1 p_2} \right)$$

Given ϵ_{∞} and ϵ_{1} :

$$p_1=rac{e^{\,\epsilon_{\infty}}}{e^{\,\epsilon_{\infty}}+k_j-1}$$
 , $q_1=rac{1-p_1}{k_j-1}$

$$p_{2} = \frac{e^{\epsilon_{1} + \epsilon_{\infty}} - 1}{-k_{j}e^{\epsilon_{1}} + (k_{j} - 1)e^{\epsilon_{\infty}} + e^{\epsilon_{1}} + e^{\epsilon_{\infty} + \epsilon_{1}} - 1}, q_{2} = \frac{1 - p_{2}}{k_{j} - 1}$$

Longitudinal UE: ϵ study

Infinity reports:

$$\epsilon_{\infty} = \ln \left(\frac{p_1(1-q_1)}{(1-p_1)q_1} \right)$$

$$\Pr[B_i''|B_i] = \begin{cases} \Pr[B_i'' = 1|B_i = 1] = p_1p_2 + (1-p_1)q_2 \\ \Pr[B_i'' = 0|B_i = 1] = p_1(1-p_2) + (1-p_1)(1-q_2) \\ \Pr[B_i'' = 1|B_i = 0] = q_1p_2 + (1-q_1)q_2 \\ \Pr[B_i'' = 0|B_i = 0] = q_1(1-p_2) + (1-q_1)(1-q_2) \end{cases}$$

$$\epsilon_1 = \ln \left(\frac{(p_1 p_2 - q_2 (p_1 - 1)) (p_2 q_1 - q_2 (q_1 - 1) - 1)}{(p_2 q_1 - q_2 (q_1 - 1)) (p_1 p_2 - q_2 (p_1 - 1) - 1)} \right)$$

- Apply SUE twice (L-SUE);
- OUE then SUE (L-OSUE);
- SUE then OUE (L-SOUE).

Num. Eval. of L-GRR and L-UE Variances

More private

Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates (ALLOMFREE): $\min\left(Var^*\left[\hat{f}_{L(L-GRR)}\right],Var^*\left[\hat{f}_{L(L-OSUE)}\right]\right)$

Experiments

- Dataset:
 - Census-Income*: n = 299285, d = 33, k = [9,52,47,17, ..., 3,3,2]
- Evaluation: $\epsilon_{\infty} = [0.5, 1, ..., 3.5, 4]$ with $\epsilon_1 = \{0.3\epsilon_{\infty}, 0.6\epsilon_{\infty}\}$.
- Methods:
 - Smp: L-SUE, L-OUE, L-OSUE, L-SOUE;
 - ALLOMFREE (i.e., L-GRR or L-OSUE).
- Metric: Averaged MSE with $\tau = 1$ (a single collection),

$$MSE_{avg} = \frac{1}{\tau} \sum_{t \in [1,\tau]} \frac{1}{d} \sum_{j \in [1,d]} \frac{1}{|A_j|} \sum_{v_i \in A_j} (f(v_i) - \hat{f}(v_i))^2.$$

Experimental Results on Census Dataset

Outline

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
 - i. Longitudinal and Multidimensional Data Collection
 - ii. Multidimensional Data Collection
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
- 5. Conclusion & Perspectives

Problem Statement: Statistical Learning

- **Tackled Issue:** Collecting *multidimensional* data under ϵ -*LDP* for *frequency estimation*.
- More formally (notation):
 - d attributes $A = \{A_1, A_2, ..., A_d\};$ Multiple attributes
 - Each attribute A_j has a discrete domain of size $|A_j| = k_j$;
 - Each user u_i for $1 \le i \le n$ has a tuple $\mathbf{v}^i = (v_1^i, v_2^i, ..., v_d^i)$;
 - Analyzer: estimate a k_j -bins histogram for each attribute $j \in [1, d]$.

State-of-the-Art for Multiple Attributes*, **

^{*} Nguyên, T.T., Xiao, X., Yang, Y., Hui, S.C., Shin, H., Shin, J. Collecting and analyzing data from smart device users with local differential privacy. In: arXiv:1606.05053 (2016).

^{**} Wang, T., Blocki, J., Li, N. and Jha, S. Locally differentially private protocols for frequency estimation. In: USENIX Security Symposium (2017).

Why not *Smp*?

- $Smp[ADP] \rightarrow (attribute, \epsilon\text{-LDP value})$
- Application scenario: health data
- $\epsilon = 2$, d = 3 attributes: age $(k_1 = [1, ..., 100])$, gender $(k_2 = [M, F])$, and HIV $(k_3 = [P, N])$.

Why not *Smp*?

All attributes have equal

GRR for attributes with small domain **Example: OUE** otherwise

- $Smp[ADP] \rightarrow (attribute, \epsilon-LDP value)$
- Application scenario: health data
- $\epsilon = 2, d = 3$ attributes: age $(k_1 = [1, ..., 100])$, gender $(k_2 = [M, F])$, and HIV $(k_3 = [P, N])$.

$$p_{grr} = \frac{e^{\epsilon}}{e^{\epsilon} + k_j - 1} \approx 0.88 \text{ (probability of 'being honest')}$$

$$q_{grr} = \frac{1 - p_{grr}}{k_j - 1} \approx 0.12 \text{ (probability of 'lying')}$$

RS+FD: Random Sampling + Fake Data

- RS+FD introduces **uncertainty** in the view of the aggregator.
- Sampling result is not disclosed, what is the impact in terms of privacy*?

^{*} Li, N., Qardaji, W., Su, D. On sampling, anonymization, and differential privacy or, k-anonymization meets differential privacy. In: ASIACCS'12 (2012).

RS+FD with GRR

Client-Side of RS+FD[GRR]:

Aggregator → For each attribute $j \in [1, d]$, estimate:

$$\hat{f}(v_i) = \frac{N_i dk_j - n(d-1+qk_j)}{nk_j(p-q)}$$

Unbiased estimation and variance development in the manuscript

RS+FD with OUE

Client-Side of RS+FD[OUE-z]:

Aggregator \rightarrow For each attribute $j \in [1, d]$, estimate:

$$\hat{f}(v_i) = \frac{d(N_i - nq)}{n(p - q)}$$

OUE applied to zero-vectors \rightarrow [0, 0, ..., 0, 0]

Unbiased estimation and variance development in the manuscript

RS+FD with OUE

Client-Side of RS+FD[OUE-r]:

Aggregator \rightarrow For each attribute $j \in [1, d]$, estimate:

$$\hat{f}(v_i) = \frac{N_i dk_j - n[qk_j + (p - q)(d - 1) + qk_j(d - 1)]}{nk_j(p - q)}$$

OUE applied to random unary-encoded vectors

Unbiased estimation and variance development in the manuscript

Experiments

- Dataset:
 - Census-Income*: n = 299285, d = 33, k = [9,52,47,17, ..., 3,3,2]
- Evaluation: $\epsilon = [\ln(2), \ln(3), ..., \ln(7)].$
- Methods:
 - Spl: ADP (i.e., either GRR or OUE);
 - Smp: ADP;
 - RS+FD: GRR, OUE-z, OUE-r, and ADP (i.e., either GRR or OUE-z).
- Metric: Averaged MSE,

$$MSE_{avg} = \frac{1}{d} \sum_{j \in [1,d]} \frac{1}{|A_i|} \sum_{v_i \in A_j} (f(v_i) - \hat{f}(v_i))^2.$$

* Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/index.php

Experimental Results on Census Dataset

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
- 5. Conclusion & Perspectives

Problem Statement: Machine Learning

- **Tackled Issue:** Evaluation of the privacy-utility trade-off of training machine learning algorithms over differentially private data.
- **Motivation:** ML models are also succeptible to privacy attacks*,**.

^{*} Shokri, R., Stronati, M., Song, C., Shmatikov, V. Membership inference attacks against machine learning models. In: IEEE S&P (2017).

^{**} Song, C., Ristenpart, T., Shmatikov, V. Machine learning models that remember too much. In: ACM SIGSAC (2017).

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
 - i. Demand Forecasting
 - ii. Response Time Forecasting
- 4. Further Contributions
- 5. Conclusion & Perspectives

Aggregated Firemen Operation: Open Data*

YEAR	WEEK	CITY REASO	N NB_OPE	YEAR_MONTH	ZIP_CODE	CITY	AID_TO_PEOPLE
2018	10	AUVERS-SAINT-GEORGES AID_TO_PEOPL	E 4	2008-4	71232	(HAUTEFOND	(1.0)
2018	34	(BROUY) AID_TO_PEOPL	$E = \begin{pmatrix} 1 \end{pmatrix}$	2013-6	71450	ST MARTIN DE COMMUNE	0.0
2018	35	BOUTIGNY-SUR-ESSONNE AID_TO_PEOPL	E 3	2010-10	71469	ST PIERRE LE VIEUX	(1.0)
2018	32	ITTEVILLE AID_TO_PEOPL	E (1)	2009-5	71520	SEVREY	1.0/
2018	5	GUILLERVAL AID_TO_PEOPL	E \1,	2013-7	71016	AZE	3.0

Brouy

Commune in France

Brouy is a commune in the Essonne department in Île-de-France in northern France. Inhabitants of Brouy are known as Brogaçois.

Wikipedia

Area: 8.39 km²

Population: 144 (2015) INSEE

Generic Time?
Generic Location?
Generic Reason/Type

Hautefond

Commune in France

Hautefond is a commune in the Saône-et-Loire department in the region of Bourgogne-Franche-Comté in eastern France. Wikipedia

Area: 13.62 km²

Weather: 13°C, Wind S at 8 km/h, 72% Humidity weather.com

Population: 213 (2015) INSEE

Target: Multivariate Operational Demand Forecast

^{*} Open platform for French public data: https://www.data.gouv.fr/en/

 \mathbf{R}_{1}

 \mathbf{R}_2

 m_{12}

R3

 m_{16}

 m_4

 m_{11}

 m_{13}

 m_6

 m_{10}

Our Solution: Generalization + DP

Agglomeration of small cities to larger regions

 m_{14}

Impact on Predictions of Daily Demand

- Target: Number of operations per day and per region.
- Metrics: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE);
- **ML technique:** eXtreme Gradient Boosting (XGBoost).
- **Methods:** Baseline (average per day of the week), XGBoost trained over original and sanitized data.

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
 - i. Demand Forecasting
 - ii. Response Time Forecasting
- 4. Further Contributions
- 5. Conclusion & Perspectives

Firemen Operation: Open Data*

Date/Time	Incident #	el Units	Location	Туре	
12/23/2021 4:28:37 AM	F210141750 1	M17	3900 7th Ave Ne	Medic Response	Precise Time
12/23/2021 4:27:22 AM	F210141748 1	A5	607 3rd Ave	Aid Response	 Precise Location
12/23/2021 4:28:37 AM	F210141750 1	E17	3900 7th Ave Ne	Medic Response	Generic Reason/T
12/23/2021 4:10:09 AM	F210141747 1	E31	2140 N Northgate Way	Aid Response	
12/23/2021 3:50:06 AM	F210141743 1	M28	6900 37th Ave S	Medic Response	

With both locations: Fire brigade and intervention **Target: Predict ambulance response time (ART)**

Time measured from the call until an ambulance arrives at the emergency scene.

^{*} Seattle Fire Department: http://www2.seattle.gov/fire/realtime911/

Need a Precise Location to Predict ART?

Obfuscation of emergency location data (i.e., latitude & longitude) using Planar Laplace Mechanism*;

Additional perturbation:

- Estimated travel time;
- Estimated travel distance:
- Euclidean distance;
- Neighborhood, city, zone;

Dataset: Departure's history of SDIS 25 ambulances

^{*} Andrés, M.E., Bordenabe, N.E., Chatzikokolakis, K., Palamidessi, C. Geo-indistinguishability: Differential privacy for location-based systems. In: SIGSAC (2013).

Impact on Predictions of ART

Metrics:

- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE)
- Coefficient of determination (R^2)

ML Techniques:

- eXtreme Gradient Boosting (XGBoost)
- Light Gradient Boosted Machine (LGBM)
- Multilayer Perceptron (MLP)
- Least Absolute Shrinkage and Selection Operator (LASSO)

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
 - i. Generating Synthetic Data
 - ii. Privacy-Preserving Mobility Reports
- 5. Conclusion & Perspectives

Providing Synthetic Data for Mobility

Open Dataset: Mobility Scenario FIMU*

MS-FIMU Longitudinal and Multidimensional Dataset of Categorical Attributes:

- d = 7 attributes; n = 88,935 unique users; Nb = 7 days;
- Averaged Mean Relative Error $\approx 8\%$

Person ID	Name	Gender	Age	 Visitor category	Region
91	Adrien Clement	М	45-54	 French tourist	Alsace
32947	Grégoire Didier	М	25-34	 French tourist	Franche-Comté
53990	Marie Le Lemaitre	F	25-34	 Resident	Franche-Comté
58664	Michelle-Céline Marion	F	25-34	 Resident	Franche-Comté

Date ID	Date		
1	2017-05-31		
2	2017-06-01		
7	2017-06-06		

Index	Person ID	Date ID	Visit Duration
1	5385	2	6h
2	234	5	4h

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
 - i. Generating Synthetic Data
 - ii. Privacy-Preserving Mobility Reports
- 5. Conclusion & Perspectives

Current Anonymity-Based Mobility Reports

Proposed LDP-Based Mobility Reports

- Advantage: This scenario considers a *strong adversary* and *strong restrictions* for MNOs.
- Issue: The use of local randomizers can lead to great loss of utility.

LDP-Based Mobility Reports

A single day

Dataset:

MS-FIMU

Method:

• Smp[GRR];

Privacy bugdet:

• $\epsilon = 1$

- 1. Introduction
- 2. Multiple Frequency Estimates Under Local Differential Privacy
- 3. Privacy-Utility Trade-off of Differentially Private Machine Learning Models
- 4. Further Contributions
- 5. Conclusion & Perspectives

Conclusion & Perspectives

General Conclusion:

- We published an open dataset MS-FIMU of categorical attributes based on realworld mobility analytics (longitudinal and multidimensional);
- We proposed a CDRs processing system with DP guarantees at the user level for human mobility analytics;
- We optimized the utility of LDP protocols (i.e., L-GRR and L-OSUE) for longitudinal frequency estimates through memoization with theoretical proofs;
- We improved utility and privacy in multiple frequency estimates under LDP through generic frameworks (i.e., ALLOMFREE and RS+FD);
- We empirically evaluated the privacy-utility trade-off of differentially private machine learning models on real-world datasets/tasks.

Conclusion & Perspectives

Perspectives:

Improve RS+FD with realistic fake data;

- Design more enhanced post-processing methods (e.g., Expectation-Maximization algorithm) for ALLOMFREE and RS+FD;
- Cast other LDP protocols into RS+FD, including longitudinal ones;

- Evaluate performance VS privacy protection of ALLOMFREE and RS+FD on generating synthetic data for ML classification/regression tasks;
- Attack RS+FD, i.e., try to correctly guess the sampled attribute of each user;
- Evaluate the privacy-utility trade-off of differentially private ML models against attacks (e.g., membership inference attacks).
- Build a python library for multiple frequency estimates under LDP.

Thank you for your attention!

Héber HWANG ARCOLEZI

heber.hwang_arcolezi@univ-fcomte.fr

