Derivation et convenité Courige des exemples du vous

🦪 Capacité 1 Déterminer graphiquement un nombre dérivé et une équation de tangent

On considère une fonction f définie sur]0; +∞[et dérivable en 1 et en 2. On a représenté ci-dessous la courbe de f et ses tangentes aux points A et B d'abscisses respectives 1 et 2.

Le nombre dérivé de f en 2 a pour valeur :

d.
$$\frac{1}{2}$$

2. Une équation de la tangente à \(\mathscr{C}_f\) au point A est :

a.
$$y = -\frac{1}{3}x + 2$$
 b. $y = 3x + \frac{5}{3}$ **c.** $y = 5 - 3x$ **d.** $y = -3x + \frac{5}{3}$

b.
$$y = 3x + \frac{5}{3}$$

c.
$$y = 5 - 3x$$

d.
$$y = -3x + \frac{5}{3}$$

1) La tompente à le ou point d'abouise? est parollèle à l'one des aboaisses, denc son coefficient dixecteur est mul. Ainsi b'(2)=D

2) La tangente au paint d'abousse A passe par les paints A(1;2) et C(2;-1) Son coefficient directeur est donc m-Mc-MA

$$m = \frac{-1-2}{2-1} = -3$$

Une equation de (AC) est donc de la forme ny =-3xtp A annovéent à (AC) donc 2=-3+P(=) p=5.

🚀 Capacité 2 Utiliser la définition du nombre dérivé

1. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^x$.

On rappelle que f est dérivable sur $\mathbb R$ et que pour tout réel x, on a f'(x) = f(x). On note $\mathcal C_f$ la courbe de f dans un repère du plan.

- **a.** À l'aide d'un nombre dérivé calculé en un point bien choisi, démontrer que $\lim_{x\to 0} \frac{e^x-1}{x} = 1$.
- **b.** La droite d'équation y = ex est-elle tangente à \mathcal{C}_f ?
- 2. Est-il vrai que si une fonction g est définie sur un intervalle I alors g est dérivable sur I?

or f:x+>en est dévirable en 0, danc par définition, on a:

 $\lim_{n\to 0} \frac{e^n - e}{n - e} = \int_{0}^{\infty} (0)$ $\lim_{n\to 0} \frac{e^n - e}{n - e} = \int_{0}^{\infty} (0)$ $\lim_{n\to 0} \frac{e^n - e}{n - e} = \int_{0}^{\infty} (0)$

b) Coit la droite D d'èquetion y = ex Dest une tangente à Cl au point d'abscisse a si et seulement l'(a) est éapl au coefficient. directeur de D c'al-à-dire e. Pour tout rêcl a, on a l'(a) = e

con drout l'Equation:

De plus la droite 2 passe vou le point d'obsie - se 1 de El, var ses voudonnées (1; c) vérifient

2) la fancion voleur absolue est défine sur l'Amais m'est pas dévirable en G la fonction nt > Dr est définir en G mais pas dévirable en G Ces contre-exemples prouvent-ou une fonction définir our un interrolle ± n'estpos nécessairement dévirable sur t

Capacité 3 Dériver une somme, un produit, un inverse ou un quotient de fonctions dérivables

Soit les fonctions f et g définies et dérivables sur \mathbb{R} telles que pour tout réel x, on a :

$$f(x) = \frac{x^6}{3} - 2x + 1$$
 et $g(x) = e^x + e$

Déterminer les expressions des dérivées des fonctions suivantes qui sont dérivables sur ℝ :

2.
$$g^2$$

3.
$$\frac{-2}{g}$$

4.
$$\frac{f}{g}$$

fet a sont dérivables sur l'el pour tout rèel x, on a:

$$g'(n) = \frac{1}{3} \times 6 n^{5} - 2 = 2 n^{5} - 2 et = g'(n) = e^{n}$$

1) (x q est derivable sur R comme produktele (andiens dérivables sur R -(bxq) = b'x q + bxq

4) E et dérivable conne qualient de fenctions dérivables sur ? Eur tout rèel n, or a :

🥜 Capacité 4 Appliquer la formule de dérivation d'une fonction composée

- 1. Déterminer une expression de la fonction dérivée de la fonction h dérivable sur \mathbb{R} telle que pour tout réel x, $h(x) = (e^{-x} + e^x)^4$.
- 2. Déterminer une expression de la fonction dérivée de la fonction g dérivable sur \mathbb{R} telle que pour tout réel x, $g(x) = \frac{1}{\left(x^4 + e^{-2x}\right)^3}$.
- 3. On considère la fonction f dérivable sur \mathbb{R} telle que pour tout réel x, $f(x) = \sqrt{x^2 + 1}e^{\sqrt{x^2 + 1}}$. Retrouver l'expression de f'(x), déterminée ci-dessous avec un logiciel de calcul formel.

In [42]:
$$fx = sqrt(x ** 2 + 1) * exp(sqrt(x ** 2 + 1))$$

In [43]: fx

Out[43]: $\sqrt{x^2 + 1}e^{\sqrt{x^2 + 1}}$

In [44]: $factoriser(d\acute{e}riv\acute{e}e(fx, x))$

Out[44]: $x(\sqrt{x^2 + 1} + 1)e^{\sqrt{x^2 + 1}}$

1), h définie sur lR par h(m) = (e-x + ex)

a h dérivable sur Romme composée de fondiens dérivables sur R

Pour bout rel n, $u(n) = -e^{-n} + e^{n}$ donc $R(n) = 4(e^{n} - e^{-n})(e^{-n} + e^{n})$ 2) g définie suil par g (x) = 1 g = 1 avec u (x) = x + e - 2x (x + e - 2x) 2 as dérivables suil comme qualent de finalians d'injoulles suil. $3 = \frac{3\lambda}{\lambda^{3+1}} = \frac{-3\lambda}{\lambda^{4}}$ Pour laul reel x, on a $u'(x) = 4x^3 - 2e^{-2x}$ June $a_y'(x) = \frac{-3(4x^2 - 2e^{-2x})}{(x^4 + e^{-2x})^4}$ 3) Soit- l'afonction définie pour tout f(n1= Jn2+1 e Jn2+1) f-vne over u(n)=Jn2+1 Chinable sur le comme product de composées de fondions dévirables sur le.

$$\begin{cases} \int_{-\infty}^{\infty} (x_{1})^{2} e^{-\frac{\pi}{2}x_{1}} + (x_{1})^{2} e^{-\frac{\pi}{2}x_{1}} \\ \int_{-\infty}^{\infty} (x_{1})^{2} e^{-\frac{\pi}{2}x_{1}} \\ \int_{-\infty}^{\infty} (x_{1})^{2} e^{-\frac{\pi}{2}x_{1}} + (x_{1})^{2} e^{-\frac{\pi}{2}x_{1}} \\ \int_{-\infty}^{\infty} (x_{1})^{2} e^{-\frac{\pi}{2}x_{1}} \\ \int_{-\infty$$

 $f'(x) = 60x^3 + 60x^2 = 60x^2 (x+1)$ Pour tout red x, on a 60x²>0 den(f')

	Demontrons par récurrence que la est mais pour tout entrer n>0:
	mais pour tout entre n>6.
_	Inibalisation: Pour tout on \$\neq 0, on a.
	$\int_{-\infty}^{(1)} (n) = \frac{-1}{n^2} = \frac{(-1)^4 1!}{n^{1+1}}$ dence P_1 est wave
	$\frac{1}{2}$ $\frac{1}{2}$
	denc Prest mare
	Hereblike Soit un entier n>1 tel que
	En est mais.
	_
	Par hypothèse de réceivence, paur lout récel et $\neq 0$, on a:
	recel of \$0, on a:
	•
	$p(m)(x) = (-1)^m m!$
	2241
	On derive:
	$O(m+1)$ C_1 C_2 C_3 C_4 C
	$\int_{(M+1)}^{(M+1)} (x) = (-1)^{M} \times \frac{(-1)^{(M+1)^{2}}}{(x^{M+1})^{2}}$
	$danc \ \begin{cases} (n+1)(x) = (-1)^{n+1}(m+1) \\ \times \frac{1}{x^{m+2}} \end{cases}$
	$\times {2^{m+2}}$
	0~

	On en déduit que Pontrest voie
	Conclusion: la propriété Pn est inition iset pour in = 1 et elle est béhébitoure pour la est vous par récurrence pour tout enlier n > 1.
- 6	inet mun in = 1 et alle est Prévidenteure
	Jani 000 et mars man récurrence
	nourtuil- onlier n > 1