成像世界的奇遇结课论文

全息投影的前世今生

院系: 人工智能学院

姓名: 赵思衡

学号: 201300024

班级: 人工智能 20 级 2 班

邮箱: 201300024@smail.nju.edu.cn

时间: 2021年7月4日

日水	1
目录	
一、 全息投影简介	2
二、 商用的伪全息投影技术	2
1. 佩珀尔幻象	3

3

3

4

5

2.

3.

四、总结

三、 全息投影技术的前沿发展

一、 全息投影简介

目前大众所认知的全息投影有真全息投影和伪全息投影之分。

真全息投影即全息术(英语: Holography),又称全息投影、全息 3D,是一种记录被摄物体反射(或透射)光波中全部信息(振幅、相位)的照相技术,而物体反射或者透射的光线可以通过记录胶片完全重建,仿佛物体就在那里一样。通过不同的方位和角度观察照片,可以看到被拍摄的物体的不同的角度,因此记录得到的像可以使人产生立体视觉。

其中"Holos"是希腊语"全部"的意思。Holography/Hologram(全息术/全息图)是匈牙利裔英国物理学家 Dennis Gabor 在 1948 年发明的,这篇开山之作发表在 Nature 上。

这个是真全息投影的准确定义,总结起来其实就是两点:

- 1. 一是需要裸眼, 无介质, 影像在空气中立体呈现;
- 2. 二是可以从 360 度去观看立体影像的不同角度。

二、商用的伪全息投影技术

既然已经知道了真全息投影的标准,那么我们就可以很容易的辨别什么 是伪全息投影,什么是真全息投影了。目前谈到全息投影,我们想到最多的 商用场景就是虚拟偶像演唱会,比如初音未來、洛天依。

但是很遗憾的是,它们都属于伪全息投影,并不是真正的全息投影。虽 然虚拟偶像演唱会给我们呈现出了栩栩如生的立体影像,但是其必须在固 定的舞台上,且要在黑暗当中才能实现,而且观众必须要从特定的角度进行 观看。

以下是目前商用较多的几种伪全息投影:

1. 佩珀尔幻象

虚拟偶像演唱会是怎么实现的呢?它实际上属于一种光学错觉技术,我们称之为佩珀尔幻象,在魔术表演中经常会用到。它的原理并不复杂,是利用一张半透半反的膜,也就是所谓的透明全息膜,作为介质,使得物体在膜中成了个虚像,因为是半透的,所以你可以看到膜后的景物,视觉上给人一种立体的错觉,再加上 CG 技术以及高亮度的灯光,这种立体影像就会给观众一种惟妙惟肖的真实感觉。

目前商用领域所谓的全息投影大多都是利用的佩珀尔幻象的原理,并不 是真正的全息投影。真正的全息投影技术其实还有很多技术门槛需要被攻 破,目前只能停留在实验室阶段。

全息投影技术的实现本质上和现在的电影放映技术是一样的,都是对"光"的控制。先采集所需要的内容信息,再复原这些信息,只不过电影放映技术是采集并复原平面信息,而全息投影是要采集并复原立体信息。电影放映技术是用幕布作为介质来承载内容,而目前全息投影的立体信息还没有一个成本低且稳定的介质,可以承载这些立体信息。

2. 旋转 LED 显示技术

旋转 LED 显示技术看着像裹了一圈 LED 的风扇,转起来后会有 3D 视觉效果。这种技术利用了视觉暂留原理,通过 LED 的高速旋转来实现平面成像,但由于 LED 灯条在旋转时并非密不透风,观察者依然可以看到灯条后的物体,从而让观察者感觉画面悬浮在空中,实现类似 3D 的效果。有人叫他"3D 全息风扇屏",但这个也和"全息"没有任何关系。

3. 3D 渲染

3D 渲染即增强现实技术(Augmented Reality,简称 AR),也有对应 VR 虚拟实境一词的翻译称为实拟虚境或扩张现实,是指透过摄影机影像的 位置及角度精算并加上图像分析技术,让屏幕上的虚拟世界能够与现实世界场景进行结合与交互的技术。3D 渲染是后期人为加的 3D 效果,是一种

视频处理手段,现实中看不到。通过后期特效与拍摄画面的合成达到效果。 现场观众可以通过大屏幕观看。优点是对场地没有要求,和舞台上其他人互 动性强,视角灵活,可搭配其他特效 (比如变换场景之类的)。缺点自然就是 无法直接看到,只能通过屏幕。

三、 全息投影技术的前沿发展

目前全球已知的全息投影技术有三种,分别是 360 度全息显示屏技术、空气投影技术、激光束投射技术。其中 360 度全息显示屏技术最容易理解,它是将图像投射镜子上,再让镜子进行高速的旋转,从而产生 3D 的立体影像;空气投影技术则是利用水蒸气,将影像投射在水蒸气上,由于分子之间的震动不均衡,所以可以形成立体图像;激光束投射技术是最为复杂的,它是利用氮气和氧气在空气中散开时,混合成的气体变成灼热的浆状物质,并在空气中投射出 3D 影像,但这种技术显示的时间很短暂。

而现在,杨百翰大学(Brigham Young University)的研究者们,则通过激光束捕捉物理粒子,创造出了真正的能够漂浮在空气中的,动态的立体图像:想象在一个充满灰尘的房间中,用强光一照,你就能看到飞舞的灰尘反射光线,在空气中形成许多小亮点。利用激光来照射实体粒子并使其向四处反光也同理。而现在,如果我们能控制这个粒子的轨迹,并且让这个粒子在这个轨迹上进行极快的周期性运动(scan),那么此时粒子反光的轨迹就会形成一个立体图像。

这就是 OTD (Optical Trap Display),光学捕捉显示技术。也是 BYU 电机工程学教授 Dan Smalley 和他的团队在这个项目里所使用的核心技术。

他们先使用激光束捕捉空气中的微小物理粒子,然后快速移动。当粒子被拖曳穿过空间时,可见光会通过激光束将其照亮,形成一条运动路径。而如果这时以高于眼睛的闪烁速率每秒重新绘制 10 次以上,就能通过视觉的持久性来形成图像。并且,在粒子的移速足够快时,其位置和颜色都可以被改变,从而形成颜色各异的动态体积图像(volume image)。

除此之外,研究团队还利用透视投影(Perspective Projection)技术,随着观看者视角的移动来修改图像的边缘及视差,在背景生成模拟的非体积图

四、 总结 5

像点,以增加对图像体积或深度的感知。这时,你就完全可以环绕图像一圈,360 度无死角地去观察它了。这些自由浮动的全息图像,本身是在固定体积大小的空间中,由激光束捕捉粒子构建的,所以只能生成微小的 3D 全息图。团队里的 Wesley Rogers 表示,如果要构建一座真实大小的山峰模型,那也必须有一个体积相同甚至更大的空间,来捕捉这整个空间中的粒子。这显然是不现实的,于是他们使用了一些视觉技巧,如运动视差(Motion Parallax)技术,来使场景中移动的图像在显示时,看起来比实际要大得多。而对比大多数还是要求观众盯着屏幕展现效果的 3D 投影,这项技术所展现的物理的,而非幻象的投影,真正做到了幻觉与真人的互动。

四、总结

综上所述,目前真正的全息投影大多只能限制于实验室的环境下,无法做到大规模的商用。而商用的所谓全息投影其实都不是真正的全息投影,它们无法脱离成像的介质,只能依附于某种成像镜子或膜来进行投影。而我们离真正的全息投影技术还有很远的路要走。

参考文献

[1] Rogers W, Smalley D. Simulating virtual images in optical trap displays[J]. Scientific reports, 2021, 11(1): 1-6.