Kombinatorika, výpočty

Radek Pelánek

IV122

Styl

- jednoduché výpočty s čísly
- ullet zatím spíše opakování + pár dílčích zajímavostí
- užitečný trénink programování (rekurze)
- experimentování

Kombinace, permutace, variace

Daná množina M s n prvky

- permutace = ...
- 2 k prvkové kombinace = ...
- 3 k prvkové kombinace s opakováním = ...
- k prvkové variace = ...
- **5** k prvkové variace s opakováním = ...

Kombinace, permutace, variace

Daná množina M s n prvky

- permutace = uspořádání zadaných prvků do fixního pořadí
- k prvkové kombinace = všechny možné výběry k prvků ze zadané množiny
- k prvkové kombinace s opakováním = všechny možné výběry k prvků ze zadané množiny, přičemž prvky se mohou opakovat
- 4 prvkové variace = všechny možné uspořádané výběry k prvků ze zadané množiny
- $oldsymbol{\delta}$ k prvkové variace s opakováním = všechny možné uspořádané výběry k prvků ze zadané množiny, přičemž prvky se mohou opakovat

Kombinace, permutace, variace - příklady

Úloha	Vstup	Výstup
permutace	A, B, C	ABC, ACB, BAC, BCA, CAB,
		CBA
kombinace	A, B, C, D	AB, AC, AD, BC, BD, CD
	k=2	
kombinace	A, B, C, D	AA, AB, AC, AD, BB, BC, BD,
s opakováním	k=2	CC, CD, DD
variace	A, B, C, D	AB, AC, AD, BA, BC, BD, CA,
	k=2	CB, CD, DA, DB, DC
variace	A, B, C	AA, AB, AC, BA, BB, BC, CA,
s opakováním	k=2	CB, CC

Kombinace, permutace, variace – počty prvků

Počet všech

- permutací n prvků = . . .
- k prvkových kombinací z $n = \dots$
- k prvkových kombinací s opakováním z n prvků = . . .
- k prvkových variací z n prvků = . . .
- k prvkových variací s opakováním z n prvků = . . .

Kombinace, permutace, variace – počty prvků

Počet všech

- permutací n prvků = n!
- k prvkových kombinací z $n = \binom{n}{k} = \frac{n!}{(n-k)!k!}$
- k prvkových kombinací s opakováním z n prvků = $\binom{n+k-1}{k}$
- k prvkových variací z n prvků = $\frac{n!}{(n-k)!}$
- k prvkových variací s opakováním z n prvků = n^k

Kombinace s opakováním – ilustrace

3 prvkové kombinace s opakováním z 5 prvků $\sim {5+3-1 \choose 3} \sim {7 \choose 3}$

https://en.wikipedia.org/wiki/Combination

Úkol: generování kombinací, permutací, variací

- Vstup: množina (seznam) a případně k
- Výstup: (uspořádaný) výpis všech permutací/kombinací/variací (s opakováním)

- vede na přirozené využití rekurze
- ullet myšlenkově podobné \Rightarrow programy by měly být podobné

Výpočet kombinačního čísla

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

```
def comb_number(n, k):
    if k == 0 or k == n:
        return 1
    else:
        return comb_number(n-1, k-1) + \
             comb_number(n-1, k)
```

Výpočet kombinačního čísla

- neefektivní opakované výpočty
- podobné jako klasická ukázka neefektivního použití rekurze u Fibonacciho čísel
- efektivněji:
 - explicitní vztah
 - počítání "od spodu"

Pascalův trojúhelník

Pascalův trojúhelník a Sierpińského fraktál

Obarvování čísel: Pascal a Ulam

- video Vi Hart: Sick Number Games http://www.youtube.com/watch?v=Yhlv5Aeuo_k
- obarvování Pascalova trojúhelníku modulo k
- vztah k jednorozměrným buněčným automatům

Rada: pozor na "přetečení"

Počítání cest

Umocňování

 x^y

- x, y kladná čísla (ne nutně celá)
- např. 3, 45^{2,3}
- co to vlastně znamená?
- jak vypočítat?
 přibližná hodnota, jen pomocí základních aritmetických operací

Umocňování: úkol

 x^y

- vypočítat přibližnou hodnotu, jen pomocí základních aritmetických operací
- stačí jednoduché metody
- experimentálně prozkoumat chování: rychlost, přesnost

Efektivní umocňování

$a^n \mod k$

- a, n, k přirozená čísla
- n může být "velké" (stovky cifer)
- jak vypočítat efektivně? (lépe než lineárně vzhledem k n)
- aplikace např. v kryptologii

Výpočet π

- \bullet $\pi = 3,141592653589793...$
- iracionální číslo
- známé s přesností na miliardy cifer
- jak se určuje hodnota π ?
- zmíníme jen velmi naivní metody přímočaré cvičení na "experimentální porovnání"

Výpočet π

Gregoryho-Leibnizova řada (součet je π):

$$4 \cdot \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \cdots$$

(Důkaz: arctan(1), integrál)

Výpočet π

Archimedova metoda (dvě posloupnosti a_n, b_n společně konvergující k π)

$$a_0 = 2\sqrt{3}$$
; $b_0 = 3$
 $a_{n+1} = \frac{2a_nb_n}{a_n + b_n}$
 $b_{n+1} = \sqrt{a_{n+1}b_n}$

http://personal.bgsu.edu/~carother/pi/Pi3a.html

Výpočet π – Monte Carlo

 \bullet obsah čtvrtdisku: $\pi/4$

• obsah čtverce: 1

Úkol: Výpočet π

- implementujte uvedené metody
- (najděte další metody a implementujte je)
- experimentálně vyhodnoťte a porovnejte jednotlivé metody
- co je férové porovnání?

Úkol: Výpočet π

- implementujte uvedené metody
- (najděte další metody a implementujte je)
- experimentálně vyhodnoťte a porovnejte jednotlivé metody
- co je férové porovnání?
- jaké přesnosti jsou schopny dosáhnout během 1 vteřiny?

Umocňování: rady

$$x^{a/b} = \sqrt[b]{x^a}$$

výpočet odmocniny:

- vstup: číslo x
- výstup: přibližná hodnota \sqrt{x}
- základní metoda: binární půlení (rozhodně ne nejvíce efektivní)

Výpočet odmocniny: binární půlení

Umocňování a Taylorova řada

Taylorova řada:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Pro $f(x) = x^k$ a $x_0 = 1$ lze snadno vypočítat.