Pays : Cameroun	Année : 2017	Épreuve : Mathématiques
Examen : BAC, Séries C - E	Durée : 4 h	Coefficient : 5 - 4

L'utilisation de la calculatrice est autorisée.

EXERCICE 1 : SÉRIE C UNIQUEMENT (05 points)

- **1.** a) Vérifier que le couple (5 ; -7) est une solution de l'équation (E) : 13x + 7y = 16.
 - b) Déterminer les couples d'entiers relatifs (x; y) vérifiant l'équation (E).
- **2.** *a*) Démontrer que, pour tout entier naturel n, $4^{2n} \equiv 1[5]$.
 - b) Déterminer le reste de la division euclidienne de 2014²⁰¹⁵ par 5.
- **3.** p désigne un entier naturel supérieur à 1. Une urne contient 2p boules numérotées de 1 à 2p, toutes indiscernables au toucher. Un joueur tire successivement, sans remise 2 boules de cette urne.
 - a) Quel est le nombre de résultats possibles ?
- Si les boules tirées portent des numéros pairs, il gagne 800 F CFA. Si les boules tirées sont de parités différentes, il gagne 400 F CFA et il perd 800 F CFA si elles portent des numéros impairs. On désigne par X le gain algébrique du joueur à l'issue de chaque épreuve.
 - b) Déterminer la loi de probabilité de X en fonction de p.
 - c) Calculer l'espérance mathématique de X en fonction de p.
 - d) Calculer p pour que l'espérance de gain du joueur soit de 240 F CFA.

EXERCICE 2 : SÉRIE E UNIQUEMENT (05 points)

E est un espace vectoriel sur \mathbb{R} dont une base est $B = (\vec{i}; \vec{j}; \vec{k})$. Soit f l'endomorphisme de E qui à tout vecteur $\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$ associe le vecteur $f(\vec{u}) = (-x - y + 2z)\vec{i} + (2x - y + z)\vec{j} + (x - 2y + 3z)\vec{k}$.

- **1.** Déterminer la matrice de f dans la base B.
- **2.** a) Déterminer le noyau Kerf de f (On donnera une base de Kerf).
 - b) En déduire la dimension de Im f, image de f.
 - c) f est-elle bijective ? Justifier la réponse.
- **3.** On considère les vecteurs $\overrightarrow{e_1} = 2\overrightarrow{j} \overrightarrow{k}$; $\overrightarrow{e_2} = 3\overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$; $\overrightarrow{e_3} = \overrightarrow{i} \overrightarrow{k}$.
 - a) Démontrer que la famille $B' = (\overrightarrow{e_1}; \overrightarrow{e_2}; \overrightarrow{e_3})$ est une base de l'espace vectoriel E.
 - b) Déterminer la matrice de f dans la base B'.

EXERCICE 3 (05 points)

Soit ABCD un carré de sens direct et de centre I.

Partie A

Soient r la rotation de centre A et d'angle $\frac{\pi}{2}$, t la translation de vecteur \overrightarrow{AC} et S la symétrie centrale de centre C, c'est-à-dire $r = R(A, \frac{\pi}{2})$, $t = t_{\overrightarrow{AC}}$ et $S = S_C$.

- **1.** *a*) Déterminer la droite (Δ) telle que $r = S_{\Delta} \circ S_{(AD)}$.
 - b) Donner la nature et les éléments caractéristiques de $t \circ r$.
- **2.** *a*) Déterminer $(S \circ t \circ r)(A)$ et $(S \circ t \circ r)(D)$.
 - b) Donner la nature et les éléments caractéristiques de $S \circ t \circ r$.

Partie B

Soient M un point de la droite (DC), N le point d'intersection de la droite (BC) avec la perpendiculaire à la droite (AM) passant par A, J le milieu du segment [MN]. r' est la rotation de centre A telle que B = r'(D); S' est la similitude directe de centre A telle que I = S'(D).

- **1.** Montrer que N = r'(M). En déduire la nature du triangle AMN.
- **2.** *a*) Déterminer l'image de C par S'.
 - b) Démontrer que J = S'(M).
 - c) Déduire le lieu géométrique des points J, lorsque M décrit la droite (DC).

PROBLÈME (10 points)

Partie A

On se place dans l'espace (\mathcal{E}) muni d'un repère orthonormé (O; \vec{u} , \vec{v} , \vec{w}). On considère les points A(1; 6; 4), B(2; 5; 3), C(8; 1; 7). On pose $\vec{N} = \overrightarrow{AB} \wedge \overrightarrow{AC}$.

- **1.** *a*) Déterminer les coordonnées de \vec{N} . En déduire que les points A, B et C ne sont pas alignés.
 - b) Déterminer l'aire du triangle ABC.
- **2.** Soit (Δ) la droite passant par le point D et de vecteur directeur $\vec{u}(2; -1; 3)$.
 - a) Démontrer que la droite (Δ) est orthogonale au plan (ABC).
 - b) En déduire une équation cartésienne du plan (ABC).
 - c) Déterminer une représentation paramétrique de la droite (Δ).
 - d) Déterminer les coordonnées de K, point d'intersection de la droite (Δ) et du plan (ABC).
- 3. On note H le projeté orthogonal de D sur le plan (ABC).
 - a) On pose $\overrightarrow{DH} = \alpha \overrightarrow{N}$. Calculer α .
 - b) En déduire la distance DH et le volume du tétraèdre ABCD.

- **4.** Soit (P_1) le plan d'équation x + y + z 6 = 0 et (P_2) le plan d'équation x + 4y 7 = 0.
 - a) Démontrer que les plans (P_1) et (P_2) sont sécants.
 - b) Vérifier que la droite (d), intersection des plans (P_1) et (P_2) , a pour représentation paramétrique:

$$\begin{cases} x = -4t - 1 \\ y = t + 2, \ t \in \mathbb{R} \\ z = 3t + 5 \end{cases}$$

- $\begin{cases} x = -4t 1 \\ y = t + 2, \ t \in \mathbb{R}. \\ z = 3t + 5 \end{cases}$ c) La droite (d) et le plan (ABC) sont-ils sécants ou parallèles ?
- 5. Démontrer que la courbe (S) d'équation $x^2 2x + y^2 4y + z^2 4 = 0$ est une sphère (E) dont on précisera les éléments caractéristiques.

Partie B

Soit (P) le plan de l'espace (\mathcal{E}) d'équation z=0, rapporté au repère orthonormé ($O; \vec{u}, \vec{v}$). Soit f la fonction numérique de la variable réelle x définie sur l'intervalle]0; $+\infty[$ par $f(x) = 2lnx - \frac{3}{r} + 3$. (C_f) est la courbe représentative de f dans le repère $(O; \vec{u}, \vec{v})$.

- **1.** a) Déterminer les limites de f aux bornes de son domaine de définition.
 - b) Étudier les variations de f et en déduire son signe.
 - c) Tracer la courbe (C_f) de f dans le repère orthonormé $(O; \vec{u}, \vec{v})$ du plan.
- **2.** On considère la suite (u_n) définie par : $u_0 = 2$ et $u_{n+1} = f(u_n)$.
 - a) Calculer u_1 , u_2 et u_3 (On donnera l'arrondi d'ordre 2).
 - b) Démontrer que la suite (u_n) est strictement croissante.
 - c) Démontrer que pour tout entier naturel $n: 2 \le u_n \le 6,5$.
 - d) En déduire que la suite (u_n) est convergente.
- 3. Soient les équations différentielles (E): y'' + y' = 0 et (E'): $y'' + y' = \frac{(2x-3)(x+2)}{x^3}$.
 - a) Montrer que f est solution sur]0; $+\infty[$ de (E').
 - b) Résoudre (E) sur $]0; +\infty[$.
 - c) Montrer qu'une fonction g est solution de (E') si et seulement si g-f est solution de (E).
 - d) Résoudre alors (E') sur $]0; +\infty[$.