22. Induzione in aritmetica

Per capire l'induzione nel concreto riflettiamo su questo esempio in cui serve usarla per rispondere al quesito sotto:

Durante la guerra venne detto ad un prigioniero:

"Tu sarai ucciso la settimana prossima in un giorno a sorpresa che non potrai predire neppure la mattina del giorno stesso"

Quando verrà ucciso il prigioniero?

0.0.1 Regole per semplificare derivazioni

Per semplificare le deduzioni in aritmetica si consiglia di usare le seguenti regole valide:

$$\frac{\Gamma \vdash t = u, \Delta}{\Gamma \vdash u = t, \Delta} \text{ sy-r} \qquad \frac{\Gamma, t = u \vdash \Delta}{\Gamma, u = t \vdash \Delta} \text{ sy-l}$$

$$\frac{\Gamma \vdash t = v, \Delta \quad \Gamma' \vdash v = u, \Delta}{\Gamma, \Gamma' \vdash t = u, \Delta} \text{ tr-r}$$

e per fare le prove per induzione conviene adottare la seguente regola

$$\frac{\Gamma \vdash P(0) \qquad \Gamma' \vdash \forall x \ (P(x) \to P(s(x)))}{\Gamma, \Gamma' \vdash \forall x \ P(x)} \quad \text{ind}$$

in cui le premesse rappresentano i seguenti casi:

caso zero: $\Gamma \vdash P(0)$

caso induttivo: $\Gamma' \vdash \forall x \ (P(x) \rightarrow P(s(x)))$

Per esercizio: dimostrare ind è regola derivata in PA

Esercizi

- 1. come mostrare che NON è valido in PA $\vdash 0 + 1 = 0$??
- 2. come mostrare che NON è valido in PA $\vdash 1 + 0 = 0$??
- 3. Mostrare che $\vdash \forall x \ 0 + x = x$ è valido in PA
- 4. il sequente $\vdash \exists y \; \exists x \; x \neq y \; \text{è valido in LC}_=? \; \text{è soddisfacibile se non è valido}?$
- 5. il sequente $\vdash \exists y \; \exists x \; x \neq y \;$ è valido in PA??
- 6. Mostrare che $\vdash \forall x \ s(x) \neq x \ equal valido in PA$

Logica classica con uguaglianza- LC₌

Regole derivate o valide in LC₌

$$\Gamma, A, \Gamma', \neg A, \Gamma'' \vdash C \qquad \Gamma, \neg A, \Gamma', A, \Gamma'' \vdash C$$

$$\neg -ax_{dx1} \qquad \neg -ax_{dx2}$$

$$\Gamma \vdash \Sigma, A, \Sigma', \neg A, \Sigma'' \qquad \Gamma \vdash \Sigma, \neg A, \Sigma', A, \Sigma''$$

$$\frac{\Gamma, A \vdash \Delta}{\Gamma, \neg \neg A \vdash \Delta} \neg \neg -S \qquad \frac{\Gamma \vdash A, \Delta}{\Gamma \vdash \neg \neg A, \Delta} \neg \neg -D$$

$$\frac{\Gamma, \Gamma'' \vdash \Sigma}{\Gamma, \Gamma', \Gamma'' \vdash \Sigma} \text{ in}_{sx} \qquad \frac{\Gamma \vdash \Sigma, \Sigma''}{\Gamma \vdash \Sigma, \Sigma', \Sigma''} \text{ in}_{dx}$$

$$\Gamma, t = u \vdash u = t, \Delta$$

$$\Gamma, t = u \vdash t = u, \Delta \qquad \Gamma, t = u \vdash f(t) = f(u), \Delta$$

$$\Gamma, t = u \vdash f(t) = f(u), \Delta$$

$$\Gamma, t = u \vdash f(t) = f(u), \Delta$$

 $\Gamma, P(t), t = u \vdash P(u), \Delta$

 $\frac{\Gamma \vdash t = u, \Delta}{\Gamma \vdash u = t, \Delta} \quad \text{sy-r} \qquad \qquad \frac{\Gamma, t = u \vdash \Delta}{\Gamma, u = t \vdash \Delta} \quad \text{sy-l}$

 $\frac{\Gamma \vdash t = v, \Delta \quad \Gamma' \vdash v = u, \Delta}{\Gamma, \Gamma' \vdash t = u, \Delta} \quad \text{tr-r}$

Aritmetica di Peano

L'aritmetica di Peano è ottenuta aggiungendo a $LC_{=} + comp_{sx} + comp_{dx}$, ovvero

$$\frac{\Gamma' \vdash A \quad \Gamma, A, \Gamma" \vdash \nabla}{\Gamma, \Gamma', \Gamma'' \vdash \nabla} \quad \text{comp}_{sx} \qquad \frac{\Gamma \vdash \Sigma, A, \Sigma" \quad A \vdash \Sigma'}{\Gamma \vdash \Sigma, \Sigma', \Sigma"} \quad \text{comp}_{dx}$$

i seguenti assiomi:

$$Ax1. \vdash \forall x \ s(x) \neq 0$$

$$Ax2. \vdash \forall x \ \forall y \ (s(x) = s(y) \rightarrow x = y)$$

$$Ax3. \vdash \forall x \ x + 0 = x$$

$$Ax4. \vdash \forall x \ \forall y \ x + s(y) = s(x + y)$$

$$Ax5. \vdash \forall x \ x \cdot 0 = 0$$

$$Ax6. \vdash \forall x \ \forall y \ x \cdot s(y) = x \cdot y + x$$

$$Ax7. \vdash A(0) \& \forall x \ (A(x) \rightarrow A(s(x))) \rightarrow \forall x \ A(x)$$

ove il numerale n si rappresenta in tal modo

$$n \equiv \underbrace{s(s...(0))}_{\text{n-volte}}$$

e quindi per esempio

$$1 \equiv s(0)$$

$$2 \equiv s(s(0))$$