Section 2.2 - Rules of Differentiation

Notations for the Derivative

The derivative of y = f(x) may be written in any of the following ways:

1st derivative	y'	f'(x)	$\frac{dy}{dx}$	$\frac{d}{dx}[f(x)]$	$D_{x}[y]$
----------------	----	-------	-----------------	----------------------	------------

Derivative of a constant Function

If f has the constant value f(x) = c

$$\frac{d}{dx}[c] = f'(c) = 0$$
 c is constant

Proof

Let f(x) = c

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{c - c}{h}$$
$$= 0$$

So,
$$\frac{d}{dx}[c] = 0$$

Example

Find the derivative

a)
$$f(x) = 9$$

$$f' = 0$$

$$b)$$
 $h(t) = \pi$

$$D_t \left[h(t) \right] = 0$$

Power Rule

$$f(x) = x^n \implies f'(x) = nx^{n-1}$$
 n is any real number

Proof

Let
$$f(x) = x^n$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + h^n - x^n}{h}$$

$$= \lim_{h \to 0} nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h + \dots + h^{n-1}$$

$$= nx^{n-1}$$

Example

Find the derivative of: a) x^3 b) $x^{2/3}$ c) $\frac{1}{x^4}$ d) $x^{\sqrt{2}}$ e) $\sqrt{x^{2+\pi}}$

<u>Solution</u>

a)
$$y = x^3$$

$$\frac{dy}{dx} = 3x^{3-1}$$

$$= 3x^2$$

b)
$$y = x^{2/3}$$

 $y' = \frac{2}{3}x^{2/3-1}$
 $= \frac{2}{3}x^{-1/3}$

c)
$$y = \frac{1}{x^4} = x^{-4}$$

 $y' = -4x^{-4-1}$
 $= -4x^{-5}$
 $= -\frac{4}{x^5}$

$$d) \quad D_x\left(x^{\sqrt{2}}\right) = \underline{\sqrt{2}x^{\sqrt{2}-1}}$$

e)
$$y = (x^{2+\pi})^{1/2} = x^{(2+\pi)/2}$$

 $y' = (\frac{2+\pi}{2})x^{1+\pi/2-1}$
 $= \frac{1}{2}(2+\pi)\sqrt{x^{\pi}}$

Derivative Constant Multiple Rule

If f is a differentiable function of x, and c is a real number (constant), then $\frac{d}{dx}(cf) = c\frac{df}{dx}$

In particular, if *n* is any real number, then $\frac{d}{dx}(cx^n) = cnx^{n-1}$

Proof

$$\frac{d}{dx}(cf) = \lim_{h \to 0} \frac{cf(x+h)-cf(x)}{h}$$

$$= c \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$

$$= c \frac{df}{dx}$$
Factor c

Example

If
$$y = 8x^4$$
, find $\frac{dy}{dx}$

Solution

$$\frac{dy}{dx} = 8\left(4x^3\right) = 32x^3$$

Example

If
$$y = -\frac{3}{4}x^{12}$$
, find $\frac{dy}{dx}$

Solution

$$\frac{dy}{dx} = -\frac{3}{4} \left(12x^{11} \right)$$
$$= -9x^{11}$$

Sum or Difference Rule

The derivative of the sum or difference of two differentiable functions is the sum or difference of their derivatives.

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx} \qquad \qquad \frac{d}{dx}(u-v) = \frac{du}{dx} - \frac{dv}{dx}$$
$$= u' + v' \qquad \qquad = u' - v'$$

Proof

$$f(x) = u(x) + v(x)$$

$$\frac{d}{dx} \left[u(x) + v(x) \right] = \lim_{h \to 0} \frac{\left[u(x+h) + v(x+h) \right] - \left[u(x) + v(x) \right]}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h) + v(x+h) - u(x) - v(x)}{h}$$

$$= \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} + \frac{v(x+h) - v(x)}{h} \right]$$

$$= \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} \right] + \lim_{h \to 0} \left[\frac{v(x+h) - v(x)}{h} \right]$$

$$= \frac{du}{dx} + \frac{dv}{dx}$$

Example

Find the derivative of the polynomial $y = x^3 + \frac{4}{3}x^2 - 5x + 1$

Solution

$$\frac{dy}{dx} = \frac{d}{dx}x^3 + \frac{d}{dx}\left(\frac{4}{3}x^2\right) - \frac{d}{dx}(5x) + \frac{d}{dx}(1)$$

$$= 3x^2 + \frac{8}{3}x - 5 + 0$$

$$= 3x^2 + \frac{8}{3}x - 5$$

Example

Find the derivative of $y = x^{5/2} + x^3 + \frac{1}{2}x^2 + 4$

Solution

$$y' = \frac{5}{2}x^{3/2} + 3x^2 + x$$

Example

Does the curve $y = x^4 - 2x^2 + 2$ have any horizontal tangents? If so, where?

Solution

$$y' = 4x^{3} - 4x$$

$$y' = 0 \implies 4x^{3} - 4x = 0$$

$$4x(x^{2} - 1) = 0$$

$$x = 0, \pm 1$$

The curve has horizontal tangents at x = 0, 1, and -1.

The corresponding points on the curve are; (0, 2), (1, 1) and (-1, 1)

Second- and Higher-Order Derivatives

	Notation for Higher-Order Derivatives										
1.	1st derivative	y'	y prime	f'(x)	$\frac{dy}{dx}$	$\frac{d}{dx}[f(x)]$	$D_{x}[y]$				
2.	2 nd derivative	y"	y double prime	f''(x)	$\frac{d^2y}{dx^2}$	$\frac{d^2}{dx^2} [f(x)]$	$D_x^2[y]$				
3.	3 rd derivative	y'''	y triple prime	f'''(x)	$\frac{d^3y}{dx^3}$	$\frac{d^3}{dx^3} [f(x)]$	$D_x^3[y]$				
4.	4 th derivative	y ⁽⁴⁾		$f^{(4)}(x)$	$\frac{d^4y}{dx^4}$	$\frac{d^4}{dx^4} [f(x)]$	$D_x^4[y]$				
5.	n th derivative	y ⁽ⁿ⁾		$f^{(n)}(x)$	$\frac{d^n y}{dx^n}$	$\frac{d^n}{dx^n} [f(x)]$	$D_x^n[y]$				

Example

Find the first four derivatives of $y = x^3 - 3x^2 + 2$

Solution

$$y' = 3x^{2} - 6x$$
$$y'' = 6x - 6$$
$$y''' = 6$$
$$y^{(4)} = 0$$

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 $\Rightarrow f^{(n)}(x) = n! a_n$

Exercises Section 2.2 – Rules of Differentiation

Find the derivative of each function

1.
$$y = \frac{1}{x^3}$$

2.
$$D_x(x^{4/3})$$

$$3. y = \sqrt{z}$$

4.
$$D_t(-8t)$$

5.
$$y = \frac{9}{4x^2}$$

6.
$$y = 6x^3 + 15x^2$$

7.
$$y = 3x^4 - 6x^3 + \frac{x^2}{8} + 5$$

8.
$$p(t) = 12t^4 - 6\sqrt{t} + \frac{5}{t}$$

$$9. \qquad f(x) = \frac{x^3 + 3\sqrt{x}}{x}$$

10.
$$y = \frac{x^3 - 4x}{\sqrt{x}}$$

11.
$$f(x) = (4x^2 - 3x)^2$$

12.
$$y = 3x(2x^2 + 5x)$$

13.
$$y = 3(2x^2 + 5x)$$

14.
$$y = (3x-2)(2x+3)$$

15.
$$y = \frac{x^2 + 4x}{5}$$

16.
$$y = \frac{3x^4}{5}$$

17.
$$g(s) = \frac{s^2 - 2s + 5}{\sqrt{s}}$$

$$18. \quad f(x) = \frac{x+1}{\sqrt{x}}$$

19.
$$f(x) = 4x^{5/3} + 6x^{-3/2} - 11x$$

20.
$$f(x) = \frac{2}{3}x^3 + \pi x^2 + 7x + 1$$

21.
$$f(x) = \frac{x^5 - x^3}{15}$$

22.
$$f(x) = x^{1/3} + 2x^{1/4} - 3x^{1/5}$$

23.
$$f(t) = 3\sqrt[3]{t^2} - \frac{2}{\sqrt{t^3}}$$

24.
$$f(t) = \sqrt{t} \left(5 - t - \frac{1}{3}t^2 \right)$$

25.
$$f(x) = \frac{3}{5}x^{5/3} + \frac{5}{3}x^{-3/5}$$

26.
$$f(x) = x^{23} - x^{-23}$$

Find the *first* and *second* derivatives

27.
$$y = -x^3 + 3$$

28.
$$y = 3x^7 - 7x^3 + 21x^2$$

29.
$$y = 6x^2 - 10x - \frac{1}{x}$$

Find the derivatives

33.
$$f(x) = 3x^4 - 6x^3 + \frac{x^2}{8} + 5$$
, $f^{(4)}(x)$

34.
$$f(x) = 3x^4 - 6x^3 + \frac{x^2}{8} + 5$$
, $f^{(5)}(x)$

35.
$$f(x) = 2x^6 + 4x^4 - x + 2$$
, $f^{(6)}(x)$

30.
$$f(x) = \frac{1}{2}x^4 + \pi x^3 - 7x + 1$$

31.
$$y = 3x^4 - 6x^3 + \frac{x^2}{8} + 5$$

32.
$$y = (2x-3)(1-5x)$$

36.
$$f(x) = 4x^5 + 4x^4 + x^2 - 2$$
, $f^{(5)}(x)$

37.
$$f(x) = 4x^5 + 4x^4 + x^2 - 2$$
, $f^{(6)}(x)$

38.
$$f(x) = 4x^4 - 2x^3 + x + 2$$
, $f^{(4)}(x)$

- **39.** Find an equation for the line perpendicular to the tangent to the curve $y = x^3 4x + 1$ at the point (2, 1).
- **40.** If gas in a cylinder is maintained at a constant temperature T, the pressure P is related to the volume V by a formula of the form

$$P = \frac{nRT}{V - nb} - \frac{an^2}{V^2}$$

In which a, b, n, and R are constants. Find $\frac{dP}{dV}$

- **41.** Show that if (a, f(a)) is any point on the graph of $f(x) = x^2$, then the slope of the tangent line at that point is m = 2a
- **42.** Show that if (a, f(a)) is any point on the graph of $f(x) = bx^2 + cx + d$, then the slope of the tangent line at that point is m = 2ab + c
- **43.** Let $f(x) = x^2$
 - a) Show that $\frac{f(x) f(y)}{x y} = f'\left(\frac{x + y}{2}\right)$, for all $x \neq y$
 - b) Is this property true for $f(x) = ax^2$, where a is a nonzero real number?
 - c) Give a geometrical interpretation of this property.
 - d) Is this property true for $f(x) = ax^3$?