Esercizio 1. Un'azienda produce due materiali diversi (A e B). Le materie prime disponibili consentono di produrre al massimo 2 tonnellate di A e 3 di B alla settimana. Ogni tonnellata prodotta di ogni materiale dá luogo a 2 quintali di materiale di scarto da trattare. In una settimana non si possono trattare più di 7 quintali di materiale di scarto. Il profitto dei materiali é 1000 euro per A e 3000 euro per B. Trovare la soluzione ottima eseguendo l'algoritmo del simplesso partendo dal vertice $(2, \frac{3}{2})$. Costruire un piano di taglio di Gomory per il problema in cui si possano produrre solo un numero intero di tonnellate.

Esercizio 2.

Si consideri il seguente problema dello zaino:

$$\begin{cases} \max 11 x_1 + 52 x_2 + 27 x_3 + 50 x_4 + 60 x_5 + 31 x_6 \\ 14 x_1 + 10 x_2 + 6 x_3 + 15 x_4 + 22 x_5 + 17 x_6 \le 39 \\ x_i \in \{0, 1\} \end{cases}$$
 (P)

Determinare la valutazione data dal rilassamento continuo $0 \le x \le 1$, quella data dal rilassamento $x \ge 0$ e quella ottenuta aggiungendo un piano di taglio di Gomory. Risolvere poi il problema con il "Branch and Bound" utilizzando il rilassamento $0 \le x \le 1$.

Esercizio 3. Data la seguente rete dove su ogni arco sono indicati, nell'ordine, il costo e la capacitá.

Considerando l'albero di copertura formato dagli archi (1,3), (2,3), (2,6), (3,4), (3,5), l'arco (3,6) come arco saturo e gli archi rimanenti in L, il flusso ottenuto é degenere? Il potenziale complementare é degenere? E' ottimo? Se no, fare un passo dell'algoritmo del simplesso su reti. Determinare poi l'albero dei cammini minimi di radice 1. Quale é la soluzione ottima in termini di flusso su reti? Trovare il taglio da 1 a 6 di capacitá minima.

Esercizio 4.

$$\begin{cases} \min x_1^2 + x_2^2 - 12x_1 - 16x_2 \\ 3x_1 - 2x_2 \le 12 \\ 3x_1 + 2x_2 \le 24 \\ x_2 \le 6 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Confrontare un passo dell'algoritmo di Frank-Wolfe con un passo dell'algoritmo del gradiente proiettato partendo dal punto (1,6). Trovare il massimo globale ed i relativi moltiplicatori LKKT. Quale é il minimo globale?

SOLUZIONI

Esercizio 1.

$$\begin{cases} \max x_1 + 3 x_2 \\ x_1 \le 2 \\ x_2 \le 3 \\ 2 x_1 + 2 x_2 \le 7 \\ x_1 \ge 0 \\ x_2 \ge 0 \end{cases}$$

Punto di partenza del simplesso $(2, \frac{3}{2})$ con base $B = \{1, 3\}$. La duale complementare é $(-2, 0, \frac{3}{2}, 0, 0)$. Indice uscente 1. $W = \begin{pmatrix} -1 & 0 \\ 1 & -\frac{1}{2} \end{pmatrix}$. I rapporti valgono $r_2 = \frac{3}{2}$ e $r_4 = 2$. Indice entrante 1. Soluzione ottima $(\frac{1}{2}, 3)$. Base ottima $B = \{2, 3\}$. La matrice per i tagli di Gomory é data da $\begin{pmatrix} 1 & 0 \\ -1 & \frac{1}{2} \end{pmatrix}$ che dá il taglio $x_4 \ge 1$, ovvero $x_1 + x_2 \le 3$.

Esercizio 2. Le soluzioni ottime dei rilassati continui sono $x=(0,\frac{39}{10},0,0,0,0)$ con v_S pari a 202, e $x=(0,1,1,1,\frac{8}{22},0)$ con v_S pari a 150. La base ottima della prima é $B=\{2\}$. Il taglio di Gomory é dato da

$$4 x_1 + 6 x_3 + 5 x_4 + 2 x_5 + 7 x_6 + x_s \ge 9$$

La v_S con il taglio di Gomory é 196 data da $(0,3,\frac{3}{2},0,0,0)$.

Esercizio 3.

Washington Company	iterazione 1 (1,3) (2,3) (2,6) (3,4) (3,5)				
Archi di T					
Archi di U	(3,6)				
x	(0, 5, 2, 0, 1, 2, 4, 7, 0, 0)				
π	(0, -7, 3, 12, 9, -4)				
Arco entrante	(2,4)				
ϑ^+, ϑ^-	6,2				
Arco uscente	(2,3)				

Il taglio é $N_s = \{1\}$ di capacitá 18. L'albero dei cammini minimi é $\{(1,2),(1,3),(2,6),(3,4),(3,5)\}$ ed il flusso ottimo é x = (2,3,0,0,1,1,1,0,0,0).

Esercizio 4.

	Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
-	(6, 1)	(0,1)	$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$	(10,0)	$\frac{3}{10}$	$\frac{3}{10}$	(4,6)

Punto	Funzione obiettivo problema linearizzato	Sol. ottima problema linearizzato	Direzione	Passo	
(6, 1)	$-10x_1 - 4x_2$	(6,3)	(5, -3)	$\frac{19}{34}$	$\left(\frac{129}{34}, \frac{147}{34}\right)$

Massimo globale é (0,0) con moltiplicatori (0,0,0,-12,-16) mentre (4,6) é minimo globale.