knn

August 5, 2025

0.0.1 Importing Required Libraries

0.0.2 Loading dataset

```
[3]: df = pd.read_csv('spambase.csv')
```

0.0.3 Basic info

```
[4]: print("Dataset Info:\n", df.info())
    print("\nFirst 5 rows:\n", df.head())
    print("\nMissing Values:\n", df.isnull().sum())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4601 entries, 0 to 4600
Data columns (total 58 columns):
```

#	Column	Non-Null Count	Dtype
0	word_freq_make	4601 non-null	float64
1	word_freq_address	4601 non-null	float64
2	word_freq_all	4601 non-null	float64
3	word_freq_3d	4601 non-null	float64
4	word_freq_our	4601 non-null	float64
5	word_freq_over	4601 non-null	float64

6	word_freq_remove	4601	non-null	float64
7	word_freq_internet	4601	non-null	float64
8	word_freq_order	4601	non-null	float64
9	word_freq_mail	4601	non-null	float64
10	word_freq_receive	4601	non-null	float64
11	word_freq_will	4601	non-null	float64
12	word_freq_people	4601	non-null	float64
13	word_freq_report	4601	non-null	float64
14	word_freq_addresses	4601	non-null	float64
15	word_freq_free	4601	non-null	float64
16	word_freq_business	4601	non-null	float64
17	word_freq_email	4601	non-null	float64
18	word_freq_you	4601	non-null	float64
19	word_freq_credit	4601	non-null	float64
20	word_freq_your	4601	non-null	float64
21	word_freq_font		non-null	float64
22	word_freq_000	4601	non-null	float64
23	word_freq_money		non-null	float64
24	word_freq_hp		non-null	float64
25	word_freq_hpl		non-null	float64
26	word_freq_george		non-null	float64
27	word_freq_650		non-null	float64
28	word_freq_lab		non-null	float64
29	word_freq_labs		non-null	float64
30	word_freq_telnet		non-null	float64
31	word_freq_857		non-null	float64
32	word_freq_data		non-null	float64
33	word_freq_415		non-null	float64
34	word_freq_85		non-null	float64
35	word_freq_technology		non-null	float64
36	word_freq_1999		non-null	float64
37	word_freq_parts		non-null	float64
38	word_freq_pm		non-null	float64
39	word_freq_direct		non-null	float64
40	word_freq_cs		non-null	float64
41	word_freq_meeting		non-null	float64
42	word_freq_original		non-null	float64
43	word_freq_project		non-null	float64
44	word_freq_re		non-null	float64
45	- <u>-</u>		non-null	float64
	word_freq_edu			
46	word_freq_table		non-null	float64
47 40	word_freq_conference		non-null	float64
48	char_freq_%3B		non-null	float64
49 50	char_freq_%28		non-null	float64
50 E1	char_freq_%5B		non-null	float64
51	char_freq_%21		non-null	float64
52 52	char_freq_%24		non-null	float64
53	char_freq_%23	4001	non-null	float64

```
54 capital_run_length_average
                                  4601 non-null
                                                   float64
 55 capital_run_length_longest
                                  4601 non-null
                                                   int64
     capital_run_length_total
                                                   int64
 56
                                  4601 non-null
 57 class
                                  4601 non-null
                                                   int64
dtypes: float64(55), int64(3)
memory usage: 2.0 MB
Dataset Info:
 None
First 5 rows:
    word_freq_make word_freq_address word_freq_all word_freq_3d \
0
             0.00
                                 0.64
                                                 0.64
                                                                 0.0
             0.21
                                 0.28
                                                 0.50
                                                                0.0
1
2
                                 0.00
                                                                0.0
             0.06
                                                 0.71
3
             0.00
                                 0.00
                                                 0.00
                                                                0.0
4
             0.00
                                 0.00
                                                 0.00
                                                                0.0
   word_freq_our word_freq_over word_freq_remove word_freq_internet \
0
            0.32
                             0.00
                                                0.00
                                                                     0.00
            0.14
                             0.28
                                                0.21
                                                                     0.07
1
2
            1.23
                             0.19
                                                0.19
                                                                     0.12
3
            0.63
                             0.00
                                                0.31
                                                                     0.63
4
            0.63
                             0.00
                                                                     0.63
                                                0.31
   word_freq_order word_freq_mail ... char_freq_%3B char_freq_%28 \
0
              0.00
                               0.00
                                                  0.00
                                                                0.000
              0.00
                               0.94 ...
                                                  0.00
                                                                0.132
1
2
              0.64
                               0.25 ...
                                                  0.01
                                                                0.143
3
              0.31
                               0.63
                                                  0.00
                                                                0.137
4
              0.31
                               0.63
                                                  0.00
                                                                0.135
   char_freq_%5B char_freq_%21 char_freq_%24
                                                  char_freq_%23 \
0
             0.0
                           0.778
                                           0.000
                                                          0.000
1
             0.0
                           0.372
                                           0.180
                                                          0.048
2
             0.0
                           0.276
                                           0.184
                                                          0.010
3
             0.0
                                           0.000
                           0.137
                                                          0.000
4
             0.0
                           0.135
                                           0.000
                                                          0.000
   capital_run_length_average capital_run_length_longest \
0
                         3.756
                                                         61
                                                        101
1
                         5.114
2
                                                        485
                         9.821
3
                         3.537
                                                         40
4
                         3.537
                                                         40
   capital_run_length_total
0
                         278
                                  1
```

1

1028

1

2	2259	1
3	191	1
4	191	1

[5 rows x 58 columns]

Missing Values:	
word_freq_make	0
word_freq_address	0
word_freq_all	0
word_freq_3d	0
word_freq_our	0
word_freq_over	0
word_freq_remove	0
word_freq_internet	0
word_freq_order	0
word_freq_mail	0
word_freq_receive	0
word_freq_will	0
word_freq_people	0
word_freq_report	0
word_freq_addresses	0
word_freq_free	0
word_freq_business	0
word_freq_email	0
word_freq_you	0
word_freq_credit	0
word_freq_your	0
word_freq_font	0
word_freq_000	0
word_freq_money	0
word_freq_hp	0
word_freq_hpl	0
word_freq_george	0
word_freq_650	0
word_freq_lab	0
word_freq_labs	0
word_freq_telnet	0
word_freq_857	0
word_freq_data	0
word_freq_415	0
word_freq_85	0
word_freq_technology	0
word_freq_1999	0
word_freq_parts	0
word_freq_pm	0
word_freq_direct	0
word_freq_cs	0
_ 1_	-

```
word_freq_meeting
                               0
word_freq_original
                               0
word_freq_project
                               0
word_freq_re
                               0
word freq edu
                               0
word_freq_table
                               0
word freq conference
                               0
char_freq_%3B
                               0
char_freq_%28
                               0
char_freq_%5B
                               0
char_freq_%21
                               0
char_freq_%24
                               0
char_freq_%23
                               0
capital_run_length_average
                               0
capital_run_length_longest
                               0
capital_run_length_total
                               0
class
                               0
dtype: int64
```

0.0.4 Handling missing values

```
[5]: imputer = SimpleImputer(strategy='mean')
df_imputed = pd.DataFrame(imputer.fit_transform(df), columns=df.columns)
```

0.0.5 Splitting of feature and target

```
[6]: X = df_imputed.drop('class', axis=1)
y = df_imputed['class']
```

0.0.6 Checking Distribution

```
'''mu, std = data.mean(), data.std()
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = 1 / (std * np.sqrt(2 * np.pi)) * np.exp(-(x - mu)**2 / (2 * std**2))
plt.plot(x, p, 'r', linewidth=2)'''

plt.title(f'Histogram of {feature}')
plt.xlabel('Value')
plt.ylabel('Density')

plt.tight_layout()
plt.suptitle('Feature Distributions vs Gaussian Curve', fontsize=16, y=1.02)
plt.show()
```


0.0.7 Applying min max scaling

```
[8]: scaler = MinMaxScaler()
X_scaled = scaler.fit_transform(X)
```

 $\#\#\mathrm{Plots}$

0.0.8 Histogram

```
[9]: import matplotlib.pyplot as plt

plt.figure(figsize=(14, 10))
for i in range(6): # first 6 features as an example
    plt.subplot(2, 3, i + 1)
    plt.hist(X_scaled[:, i], bins=30, color='skyblue', edgecolor='black')
    plt.title(f'Scaled: {X.columns[i]}')
    plt.xlabel('Value (0 to 1)')
    plt.ylabel('Frequency')
plt.tight_layout()
plt.suptitle('Feature Distributions After MinMax Scaling', fontsize=16, y=1.02)
plt.show()
```


0.0.9 Boxplot

```
[10]: import pandas as pd

# Convert scaled array back to DataFrame for easier plotting
X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)
```

```
plt.figure(figsize=(14, 6))
X_scaled_df.iloc[:, :10].boxplot(rot=45)
plt.title('Boxplots of First 10 Scaled Features')
plt.ylabel('Scaled Value (0-1)')
plt.grid(True)
plt.show()
```


0.0.10 Correlation HeatMap

```
[11]: import seaborn as sns
     import matplotlib.pyplot as plt
     import pandas as pd
      # Assuming X_scaled_df is your scaled DataFrame
     corr_matrix = X_scaled_df.corr()
     plt.figure(figsize=(18, 15)) # Bigger figure
     sns.heatmap(
          corr_matrix,
          cmap='coolwarm',
          square=True,
                                 # Show values inside squares
         annot=True,
         fmt=".2f",
                                  # Format to 2 decimal places
         linewidths=0.5,
                                 # Thin grid lines
         annot_kws={"size": 6}
                                  # Smaller font size
     )
```

```
plt.xticks(rotation=90)
plt.yticks(rotation=0)
plt.title("Feature Correlation Heatmap (After MinMax Scaling)", fontsize=16)
plt.tight_layout()
plt.show()
```


0.0.11 Choosing best k value using k-fold cross validation

```
[12]: # Step 1: 5-Fold Stratified CV Setup
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

# Step 2: Try different k values
k_range = range(1, 21)
mean_accuracies = []
```

```
print("Cross-Validation Accuracies for Different k:")
print("-" * 45)
for k in k_range:
   model = KNeighborsClassifier(n_neighbors=k)
   scores = cross_val_score(model, X_scaled, y, cv=cv, scoring='accuracy')
   mean_accuracies.append(scores.mean())
   print(f"k = {k:2d} -> Fold Accuracies: {np.round(scores, 4)} -> Mean
 →Accuracy: {scores.mean():.4f}")
# Step 3: Plot Mean Accuracy vs. k
plt.figure(figsize=(10, 5))
plt.plot(k range, mean_accuracies, marker='o', linestyle='--', color='blue')
plt.title('Mean Cross-Validation Accuracy vs. k')
plt.xlabel('Number of Neighbors (k)')
plt.ylabel('Mean Accuracy')
plt.xticks(k_range)
plt.grid(True)
plt.show()
# Step 4: Best k
best_k = k_range[np.argmax(mean_accuracies)]
print(f"\n Best k based on mean CV accuracy: {best_k}")
```

Cross-Validation Accuracies for Different k:

```
k = 1 -> Fold Accuracies: [0.9034 0.9076 0.9152 0.9 0.8935] -> Mean
Accuracy: 0.9039
k = 2 -> Fold Accuracies: [0.8914 0.8924 0.9076 0.8989 0.8989] -> Mean
Accuracy: 0.8978
k = 3 -> Fold Accuracies: [0.8947 0.8989 0.9087 0.9087 0.8946] -> Mean
Accuracy: 0.9011
k = 4 \rightarrow Fold Accuracies: [0.8947 0.8902 0.9022 0.9043 0.887] \rightarrow Mean
Accuracy: 0.8957
k = 5 -> Fold Accuracies: [0.8969 0.8946 0.9011 0.9054 0.8957] -> Mean
Accuracy: 0.8987
k = 6 -> Fold Accuracies: [0.9001 0.8902 0.8967 0.9011 0.888 ] -> Mean
Accuracy: 0.8952
k = 7 \rightarrow Fold Accuracies: [0.899 0.8978 0.8989 0.8946 0.8924] \rightarrow Mean
Accuracy: 0.8965
k = 8 -> Fold Accuracies: [0.8914 0.8891 0.9033 0.8946 0.8902] -> Mean
Accuracy: 0.8937
k = 9 -> Fold Accuracies: [0.8936 0.8913 0.9065 0.8978 0.8859] -> Mean
Accuracy: 0.8950
k = 10 -> Fold Accuracies: [0.8947 0.888 0.9033 0.888 0.888 ] -> Mean
Accuracy: 0.8924
```

k = 11 -> Fold Accuracies: [0.8958 0.8924 0.9054 0.8957 0.8804] -> Mean Accuracy: 0.8939 k = 12 -> Fold Accuracies: [0.8925 0.8826 0.8967 0.8924 0.8804] -> Mean Accuracy: 0.8889 k = 13 -> Fold Accuracies: [0.8893 0.8826 0.8957 0.8935 0.8728] -> Mean Accuracy: 0.8868 k = 14 -> Fold Accuracies: [0.8914 0.8783 0.8859 0.8891 0.8728] -> Mean Accuracy: 0.8835 k = 15 -> Fold Accuracies: [0.8882 0.8826 0.8946 0.8913 0.8652] -> Mean Accuracy: 0.8844 k = 16 -> Fold Accuracies: [0.8849 0.8793 0.8891 0.887 0.8739] -> Mean Accuracy: 0.8829 k = 17 -> Fold Accuracies: [0.8893 0.887 0.8902 0.8946 0.8641] -> Mean Accuracy: 0.8850 k = 18 -> Fold Accuracies: [0.886 0.8826 0.8902 0.8826 0.863] -> Mean Accuracy: 0.8809 k = 19 -> Fold Accuracies: [0.8795 0.8837 0.8935 0.8902 0.8598] -> Mean Accuracy: 0.8813 k = 20 -> Fold Accuracies: [0.8773 0.8761 0.8902 0.8837 0.8511] -> Mean Accuracy: 0.8757

Best k based on mean CV accuracy: 1

0.0.12 Model Training and Evaluation

```
[21]: from sklearn.metrics import (
          accuracy_score, precision_score, recall_score,
          f1 score, confusion matrix, roc curve, auc,
          classification_report
      )
      # Split the data again (or reuse your earlier split)
      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(
          X_scaled, y, test_size=0.3, stratify=y, random_state=42
      # Store results
      knn_results = []
      # Plot setup for ROC
      plt.figure(figsize=(8, 6))
      # Loop through different k values
      for k in [1, 3, 5, 7]:
          model = KNeighborsClassifier(n_neighbors=k)
          model.fit(X_train, y_train)
          y_pred = model.predict(X_test)
          y_prob = model.predict_proba(X_test)[:, 1]
          acc = accuracy_score(y_test, y_pred)
          prec = precision_score(y_test, y_pred, zero_division=0)
          rec = recall_score(y_test, y_pred, zero_division=0)
          f1 = f1_score(y_test, y_pred, zero_division=0)
          mcc = matthews_corrcoef(y_test, y_pred)
          fpr, tpr, _ = roc_curve(y_test, y_prob)
          roc_auc = auc(fpr, tpr)
          # Plot ROC
          plt.plot(fpr, tpr, label=f'k={k} (AUC={roc_auc:.2f})')
          print(f"\n KNN Evaluation for k = {k}")
          print(f"Accuracy : {acc:.4f}")
          print(f"Precision: {prec:.4f}")
          print(f"Recall : {rec:.4f}")
          print(f"F1 Score : {f1:.4f}")
          print(f"MCC : {mcc:.4f}")
          print("\nClassification Report:")
```

```
print(classification_report(y_test, y_pred, zero_division=0))
    knn_results.append({
        'k': k,
        'Accuracy': acc,
        'Precision': prec,
        'Recall': rec,
        'F1 Score': f1,
        'MCC': mcc,
        'AUC': roc_auc
    })
# Final ROC Curve Plot
plt.title("ROC Curves for Different K Values")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.grid(True)
plt.legend()
plt.show()
# Comparison Table
knn_df = pd.DataFrame(knn_results)
print("\n Comparison Table:")
print(knn_df)
```

KNN Evaluation for k = 1

Accuracy: 0.8899
Precision: 0.8551
Recall: 0.8676
F1 Score: 0.8613
MCC: 0.7701

Classification Report:

	precision	recall	f1-score	support
0.0	0.91	0.90	0.91	837
1.0	0.86	0.87	0.86	544
accuracu			0.89	1381
accuracy macro avg	0.88	0.89	0.89	1381
weighted avg	0.89	0.89	0.89	1381

KNN Evaluation for k = 3

Accuracy: 0.8892 Precision: 0.8710 Recall: 0.8438 F1 Score : 0.8571 MCC : 0.7670

Classification Report:

	precision	recall	f1-score	support
0.0	0.90	0.92	0.91	837
1.0	0.87	0.84	0.86	544
accuracy			0.89	1381
macro avg	0.89	0.88	0.88	1381
weighted avg	0.89	0.89	0.89	1381

KNN Evaluation for k = 5

Accuracy : 0.8993
Precision: 0.8828
Recall : 0.8585
F1 Score : 0.8705
MCC : 0.7884

Classification Report:

support	f1-score	recall	precision	
837	0.92	0.93	0.91	0.0
544	0.87	0.86	0.88	1.0
1381	0.90			accuracy
1381	0.89	0.89	0.90	macro avg
1381	0.90	0.90	0.90	weighted avg

KNN Evaluation for k = 7

Accuracy : 0.8950
Precision: 0.8815
Recall : 0.8474
F1 Score : 0.8641
MCC : 0.7790

Classification Report:

	precision	recall	f1-score	support
0.0	0.90	0.93	0.91	837
1.0	0.88	0.85	0.86	544
accuracy			0.90	1381
macro avg	0.89	0.89	0.89	1381
weighted avg	0.89	0.90	0.89	1381


```
Comparison Table:
```

```
k Accuracy Precision
                          Recall F1 Score
                                                MCC
                                                         AUC
  1 0.889935
               0.855072 0.867647 0.861314 0.770142
                                                    0.886034
0
  3 0.889211
               0.870968
                        0.843750 0.857143
                                           0.766959
                                                    0.931442
2
  5 0.899348
               0.882798
                        0.858456 0.870457
                                                    0.945145
                                           0.788392
3 7 0.895004
               0.881453
                        0.847426 0.864105 0.779014
                                                    0.950240
```

```
[15]: conf_matrix = confusion_matrix(y_test, y_pred)
    plt.figure(figsize=(5, 4))
    plt.imshow(conf_matrix, cmap='Blues')
    plt.title('Confusion Matrix')
    plt.colorbar()
    plt.xticks([0, 1], ['Not Spam', 'Spam'])
    plt.yticks([0, 1], ['Not Spam', 'Spam'])
    plt.yticks([0, 1], ['Not Spam', 'Spam'])
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    for i in range(2):
```


0.0.13 KD Tree and Ball Tree

```
[17]: # Use KDTree
model_kd = KNeighborsClassifier(n_neighbors=best_k, algorithm='kd_tree')
model_kd.fit(X_train, y_train)

# Use BallTree
model_ball = KNeighborsClassifier(n_neighbors=best_k, algorithm='ball_tree')
model_ball.fit(X_train, y_train)
```

[17]: KNeighborsClassifier(algorithm='ball_tree', n_neighbors=1)

```
import matplotlib.pyplot as plt
# Helper function to evaluate a model
def evaluate_knn_model(name, model, X_train, X_test, y_train, y_test):
   model.fit(X_train, y_train)
   y_pred = model.predict(X_test)
   y_prob = model.predict_proba(X_test)[:, 1]
   acc = accuracy_score(y_test, y_pred)
   prec = precision_score(y_test, y_pred)
   rec = recall_score(y_test, y_pred)
   f1 = f1_score(y_test, y_pred)
   mcc = matthews_corrcoef(y_test, y_pred)
   fpr, tpr, _ = roc_curve(y_test, y_prob)
   roc_auc = auc(fpr, tpr)
   print(f"\n {name} Performance Metrics:")
   print(f"Accuracy : {acc:.4f}")
   print(f"Precision: {prec:.4f}")
   print(f"Recall : {rec:.4f}")
   print(f"F1 Score : {f1:.4f}")
   print(f"MCC
                : {mcc:.4f}")
   print("\nClassification Report:\n", classification_report(y_test, y_pred))
    # Confusion Matrix
   conf = confusion_matrix(y_test, y_pred)
   plt.figure(figsize=(5, 4))
   plt.imshow(conf, cmap='Blues')
   plt.title(f'{name} Confusion Matrix')
   plt.colorbar()
   plt.xticks([0, 1], ['Not Spam', 'Spam'])
   plt.yticks([0, 1], ['Not Spam', 'Spam'])
   plt.xlabel('Predicted')
   plt.ylabel('Actual')
   for i in range(2):
       for j in range(2):
           plt.text(j, i, conf[i, j], ha='center', va='center')
   plt.tight layout()
   plt.show()
    # ROC Curve
   plt.figure(figsize=(6, 5))
   plt.plot(fpr, tpr, label=f'{name} (AUC = {roc_auc:.4f})')
   plt.plot([0, 1], [0, 1], 'k--', linewidth=1)
   plt.xlabel('False Positive Rate')
   plt.ylabel('True Positive Rate')
```

```
plt.title(f'{name} ROC Curve')
  plt.legend()
  plt.grid(True)
  plt.show()

# Train-test split assumed done:
# X_train, X_test, y_train, y_test already available
# best_k is selected

# Evaluate KDTree
knn_kd = KNeighborsClassifier(n_neighbors=best_k, algorithm='kd_tree')
evaluate_knn_model("KDTree", knn_kd, X_train, X_test, y_train, y_test)

# Evaluate BallTree
knn_ball = KNeighborsClassifier(n_neighbors=best_k, algorithm='ball_tree')
evaluate_knn_model("BallTree", knn_ball, X_train, X_test, y_train, y_test)
```

KDTree Performance Metrics:

Accuracy : 0.8899
Precision: 0.8551
Recall : 0.8676
F1 Score : 0.8613
MCC : 0.7701

Classification Report:

	precision	recall	f1-score	support
0.0	0.91	0.90	0.91	837
1.0	0.86	0.87	0.86	544
accuracy			0.89	1381
macro avg	0.88	0.89	0.89	1381
weighted avg	0.89	0.89	0.89	1381

BallTree Performance Metrics:

Accuracy : 0.8899
Precision: 0.8551
Recall : 0.8676
F1 Score : 0.8613
MCC : 0.7701

Classification Report:

	precision	recall	f1-score	support
0.0	0.91	0.90	0.91	837
1.0	0.86	0.87	0.86	544
accuracy			0.89	1381
macro avg	0.88	0.89	0.89	1381
weighted avg	0.89	0.89	0.89	1381


```
for algo in ['kd_tree', 'ball_tree', 'brute']:
    model = KNeighborsClassifier(n_neighbors=best_k, algorithm=algo)
    start = time.time()
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    duration = time.time() - start
    acc = accuracy_score(y_test, y_pred)
    print(f"{algo:10} → Accuracy: {acc:.4f}, Time: {duration:.4f} sec")

kd_tree    → Accuracy: 0.8899, Time: 0.4470 sec
ball_tree    → Accuracy: 0.8899, Time: 0.4058 sec
```

→ Accuracy: 0.8899, Time: 0.0192 sec

brute