Функциональные последовательности и ряды

 Π ример. $\sum x^n, x \in (0,1)$ — нет равномерной сходимости

$$\exists \varepsilon = 0.1 \ \forall N \ \exists n > N -$$
 подходит любое $> 100 \ \exists p = 1 \ \exists x = 1 - \frac{1}{n+1} : |u_{n+1}(x)| \ge \varepsilon$, т.е. $\left(1 - \frac{1}{n+1}\right)^{n+1} pprox \frac{1}{e} > \frac{1}{10}$

Теорема 0.1 (признак Вейерштрасса).

- $\sum u_n(x)$
- $x \in X$

Пусть $\exists c_n$ — вещественная:

- $|u_n(x)| \le c_n$ при $x \in E$
- $\sum c_n \text{сходится}$

Тогда $\sum u_n(x)$ равномерно сходится на E

Доказательство. $|u_{n+1}(x) + \ldots + u_{n+p}(x)| \le c_{n+1} + \ldots + c_{n+p}$ — тривиально

 $\sum c_n - \mathsf{cx.} \Rightarrow c_n$ удовлетворяет критерию Больцано-Коши :

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall p \in \mathbb{N} \ \forall x \in E \ c_{n+1} + \dots c_{n+p} < \varepsilon$$

Тогда $\sum u_n(x)$ удовлетворяет критерию Больцано-Коши равномерной сходимости. $\ \Box$

 $\mbox{$\Pi$pumep.} \sum_{n=1}^{+\infty} \frac{x}{1+n^2x^2}, x \in \mathbb{R}.$ Попытаемся применить признак.

 $c_n:=\sup_{x\in\mathbb{R}}\left|\frac{x}{1+n^2x^2}\right|$ — это минимальное возможное c_n , если для него не сработает признак, до ни для какого c_n не сработает.

sup достигается в точке $x_0 = \frac{1}{n}$, sup $= \frac{1}{2n}$. $\sum \frac{1}{2n}$ расходится \Rightarrow признак не сработал.

Построим отрицание критерия Больцано-Коши:

$$\exists \varepsilon = \frac{1}{6} \ \forall N \ \exists n > N \ p = n \in \mathbb{N} \ \exists x = \frac{1}{n} \ |u_{n+1}(x) + u_{2n}(x)| = \frac{\frac{1}{n}}{1 + (n+1)^2 \frac{1}{n^2}} + \dots + \frac{\frac{1}{n}}{1 + (2n)^2 \frac{1}{n^2}} \ge \frac{1}{1 + (2n)^2 \frac{1}{n^2}} = \frac{1}{5} > \frac{1}{6} = \varepsilon$$

Пример. $\sum \frac{x}{1+x^2n^2}, x \in \left(\frac{1}{2020}, 2020\right)$

$$c_n := \sup \frac{x}{1 + x^2 n^2} \le \frac{2020}{1 + \frac{1}{2020^2} n^2} \underset{n \to +\infty}{\sim} \frac{???}{n^2}$$

M3137y2019 26.10.2020

 $\sum c_n$ сходится \Rightarrow есть равномерная сходимость.

Приложения равномерной сходимости для рядов

Теорема 1' (Стокса-Зайдля для рядов).

- $u_n: X \to Y$
- X метрическое пространство
- Y нормированное пространство
- $x_0 \in X$
- u_n непрерывно в x_0
- $\sum u_n(x)$ равномерно сходится на X
- $S(x) := \sum u_n(x)$

Тогда S(x) — непрерывно в x_0 .

Доказательство. По теореме 1 $S_n(x) \rightrightarrows S(x), S_n(x)$ — непр. в $x_0 \stackrel{\mathrm{\scriptscriptstyle T.\,1}}{\Longrightarrow} S(x)$ непр. в x_0

Примечание. Достаточно равномерной сходимости $u_n(x)$ на некоторой окрестности x_0 Примечание. $u_n \in C(x), \sum u_n$ — равномерно сходится на $X \Rightarrow S(x) \in C(x)$

Теорема 2'. О почленном интегрировании ряда

- $u_n:[a,b]\to\mathbb{R}$
- u_n непр. на [a, b]
- $\sum_{n=0}^{+\infty} u_n(x)$ равномерно сходится на [a,b]
- $S(x) = \sum u_n(x)$

Тогда $\int_a^b S(x) dx = \sum_{n=0}^{+\infty} \int_a^b u_n(x) dx$

Можно интегрировать, т.к. S(x) — непр. на [a,b] по теореме 1'

Доказательство. По теореме 2

$$S_n \stackrel{[a,b]}{\Longrightarrow} S$$

По теореме 2 $\int_a^b S_n(x) dx \to \int_a^b S(x) dx$

$$\int_{a}^{b} \sum_{k=0}^{n} u_{k}(x) dx = \sum_{k=0}^{n} \int_{a}^{b} u_{k}(x) dx \to \sum_{k=0}^{n} ???$$

M3137y2019 26.10.2020

 $\mbox{\it Пример.} \sum_{n=0}^{+\infty} (-1)^n x^n$ — равномерно сходится при $|x| \leq q < 1$ по Вейерштрассу: $|(-1)^n x^n| \leq q^n, \sum q^n$ сходится.

Проинтегрируем от 0 до t ($|t| \le q$)

$$\sum_{n=0}^{+\infty} (-1)^n x^n = \frac{1}{1+x}$$

$$\ln(1+t) = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{n+1}}{n+1} = \sum_{k=1}^{+\infty} (-1)^{k+1} \frac{t^k}{k}$$

Это верно при $t \in [-q,q] \ \, \forall q: 0 < q < 1,$ т.е. верно при $t \in (-1,1)$

При $t=-1\sum -\frac{1}{k}$ расходится

При $t \to 1$ ряд $\sum (-1)^{k+1} \frac{t^k}{k}$ равномерно сходится на [0,1], слагаемые непрерывны в $t_0=1 \xrightarrow{{}^{\mathtt{T}.1}}$ сумма ряда непрерывна в точке $t_0=1 \Rightarrow \ln 2 = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k}$

M3137y2019 26.10.2020