

GPC510 - Well logging

भारतीय प्रौद्योगिकी

(भारतीय खनि विद्यापीठ)

संस्थान

Semester - Winter 2025; Lecture-2

Partha Pratim Mandal **Assistant Professor Department of Applied Geophysics**

E: partham@iitism.ac.in

TEACHING OUTLINE

Week 1/2

Tutorial 1 – Introduction, teaching overview, and assessment

<u>Tutorial 2</u> – Well log definition, history, log format, types, units

<u>Tutorial 3</u> – Borehole effects, environmental impacts

AGENDA

- Introduction
- Definition of "well-log"
- Purpose of "well-log"
- History
- Logging units and operation
- Log types
- Log format

INTRODUCTION

Study of rocks – Outcrop, surface geophysics, and drilling data

DEFINITION – WELL-LOG

- Continuous measurement of <u>physical</u> <u>properties</u> of subsurface rock formations in a drilled bore hole
- Can be referred as "wireline logs" or "well-logs"
- Traditionally, the recording of the measurements were stored on film, gridded paper, magnetic tape, etc
- Currently all are recorded in digital format, stored in cloud platform

PURPOSE

- Understand geology of rock formation (composition, structure, organic content) forming sedimentary basin accumulating hydrocarbons
- Minerals grade/quality
- Geochemical characterization
- Depth to lithological boundaries
- Inter-borehole correlation
- Geological modelling
- Rock strength and in situ stress distribution
- Pore pressure estimation

HISTORY

- First electric resistivity well-log acquired by Marcel and Conrad <u>Schlumberger</u> in 1927 (Location: Pechelbronn, France)
- A tool was used known as <u>SONDE</u>
- In 1929, commercial resistivity logging started in Venezuela, Russia and USA

LOGGING UNITS

- Service companies use a variety of logging units (onshore or offshore) depending upon logging run. Each of the unit contains the following:
 - Logging cable/wire
 - Winch to raise and lower the cable
 - Self-contained 120-volt AC generator
 - Surface control panels
 - Set of downhole tools (sondes and cartridges)
 - Digital recording system

HOW LOGGING OPERATION RUNS?

DRILLING & LOGGING ANIMATION

Drilling animation

https://www.youtube.com/watch?v=eBOtXD_UQSo

Drilling to completion:

https://www.youtube.com/watch?v=wjm5k6Kf-RU

THE LOGGING RUN

- Logs are recorded when the tools are raised from bottom of the hole (easy maintenance of uniform <u>cable tension</u>, good depth recording)
- Total depth (<u>TD</u>) is measured with reference to ground level (<u>GL</u>) or Kelly Bushing (<u>KL</u>) of the drilling platform
- For an initial recording pass, the tool is raised upto 100 to 200 ft to generate "repeat section"
- The tool is lowered again to start logging "main run"
- The speed of logging tools varies (example: 1800 – 3600 ft/hr)

DEPTH MEASUREMENT

LWD – LOGGING WHILE DRILLING

- With the requirement of complex drilling scenario, like horizontal and directional drilling become common, logging measurement also changed
- If the drilled well-bore is beyond 60 degree, it is not possible to push the tools to retrieve physical measurement
- LWD sensors provide wireline-quality petrophysical data (resistivity, acoustic, density) while drilling
- Real time data can be transmitted via mud pulses to the surfaces which help to design well placement and drilling associated hazards
- The tool is battery powered and uses programmable read-only memory chips to store logging data until they are downloaded.
- The tool take measurements at evenly spaced time intervals and are synchronized with a system on the drilling rig that monitors time and drilling depth.

TOOLS CLASSIFICATION

Measurements are grouped into two types: (i) natural phenomena (passive system) (ii) induced phenomena (source + detector (s))

Tool Types	Schlum.	W. Atlas	
Induction and/or Resistivity devices	DIL/DLL	DIFL/DLL	
Micro resistivity	MSFL	ML	
Litho-density and Neutron porosity	LDT/CNL	CDL/CNL	
Acoustic	LSS	ACL	
Caliper	CAL	CAL	
Natural gamma	GR	GR	D i
Spontaneous potential	SP	SP	Passiv
Dipmeter	SHDT	HRDIP	
Pressure testing devices	RFT	FMT	
Rock and fluid sampling devices	CST	SWC	Refer to Table 2 O. Serra, 1984

LOG FORMAT

- At the top of the log is the header which records all necessary information required for data interpretation
- Main part contains the curves recorded during "main run" [log columns are referred as Track 1, 2, 3 etc]
- Curves are displayed either in linear or logarithmic scale
- Tail end of the log contains "repeat run" as quality control
- Log is ended with calibration part associated with the tests on the tools of that borehole

LOG HEADER - EXAMPLE

LOG TAIL - EXAMPLE

REPEAT SECTION- EXAMPLE

END OF LECTURE

