1. Problem definition

Given a number $n \in \mathbb{N}$, find the minimal number $k \in \mathbb{N}$ such that there are n sets $A_1,...,A_n$ containing numbers in [k], i.e $A_i \subseteq \{1,...,k\}$ satisfying:

$$|A_i \cap A_j| = |i - j|$$
 for all $1 \le i < j \le n$

For example, for n = 4, the answer would be k = 5, with which we could pick the 4 sets as:

You can try to find sets which only use the numbers 1 to 4 but will hopefully be convinced that k = 5 is optimal.

2. Best known bounds

In the following table, we record our best known values for k.

n	optimal value with	optimal value with LP
	combinatorial solver	solver
0	0	0
1	0	0
2	1	1
3	2	2
4	5	5
5	9	9
6	16	16
7	24	24
8		36
9		50
10		70
11		91
12		120
13		150
14		189
15		231
16		280
17		336
18		398
19		468
20		547
21		630
22		728
23		≤ 827
24		≤ 944
25		≤ 1064
26		≤ 1198
27		≤ 1341
28		≤ 1493
29		≤ 1661
30		≤ 1838
31		≤ 2027
32		≤ 2232
33		≤ 2442
34		≤ 2680
35		≤ 2918
36		≤ 3179

Our strategy in solving this problem combinatorically will be explained in Section 5. Our formulation of this problem as an (I-)LP will be explained in Section 6

- 3. Upper Bounds
- 4. Lower Bounds
- 5. Combinatorial approach
- 6. Linear Programming approach