Федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

Факультет Радиотехнологий связи

Кафедра Радиосистем и обработки сигналов

Дисциплина «Техническая электродинамика»

Лабораторная работа № 3 Исследование электромагнитного поля в круглом волноводе

Зыполнили:	Миколаени М. С.
	Громов А. А.
	ИКТЗ-83
Проверил:	Гуреев А. Е.

Санкт-Петербург

Цель работы:

- 1. Экспериментальное исследование структуры структуры электромагнитного поля волны основного типа H_{11} и волны первого высшего типа E_{01} в круглом волноводе.
- 2. Измерение длины волны в волноводе для волн типов H_{11} и E_{01} .

Схема установки:

В состав системы входят:

- 1. Генератор высокочастотных колебаний;
- 2. Коаксиальный волновод;
- 3. Переход;
- 4. Прямоугольный волновод;
- 5. Переход;
- 6. Круглый волновод;
- 7. Вращающееся соединение с лимбом для отсчета угла поворота;
- 8. Измерительная линия;
- 9. Короткозамыкающая пластина;
- 10. Индикатор (низкочастотный измерительный прибор).

Рис.1. Схема лабораторной установки для исследования волны Н₁₁.

Рис 2. Схема лабораторной установки для исследования Е₀₁.

Теоретическая часть:

В круговом волноводе, как и в прямоугольном, могут распространяться волны типов E_{mn} и H_{mn} . В круглом волноводе поле типа H_{11} имеет критическую длину волны $\lambda=3,41$ а, поле типа E_{01} - $\lambda_{\kappa p}=2,61$ а, где а - радиус волновода.

Условия одноволнового режима имеют вид:

 $2,61a \le \lambda < 3,41a$,

причем в случае заполнения волновода воздухом $\lambda = \frac{C_0}{f}$ -(C_0 - скорость света в вакууме, f - частота генератора)

Диапазон длин волн, в которых по круглому волноводу могут распространяться волны двух типов H_{11} и E_{01} , определяется неравенством:

$$2,06a < \lambda < 2,61a$$

где 2,06а есть $\lambda_{\kappa p}$ поля второго высшего типа H_{21}

Векторные линии Е должны быть перпендикулярны к металлическим стенкам волноваода, а линии Н всегда образуют замкнутые петли и у стенок ориентированы по касательным к их поверхности.

Необходимо помнить, что у бегущих в волноводе волн любого типа поперечные составляющие векторов Е и Н колеблются в одинаковой фазе, вследствие чего эти составляющие принимают экстремальные значения в одних и тех же поперечных сечениях. Расстояние между такими сечениями равно Л/2

Вся катрина векторных линий бегущей волны перемещается в направлении оси z c фазовой скоростью V_{ϕ}

$$V_{\phi} = \frac{C}{\sqrt{I - (\frac{\lambda}{\lambda_{\kappa p}})^2}}$$

Характерной особенностью структуры поля E_{01} является отсутствие зависимости от азимутального угла ϕ , т.е. симметрия относительно оси z.

Благодаря, осевой симметрии поля эти волны находят широкое применение во вращающихся соединениях и других устройствах, где отсутствует зависимость от угла ф

В работе возбуждения волны H_{11} производится при помощи плавного перехода с прямоугольного волновода с волной H_{10} на круглый волновод с волной H_{11} . В этом переходе осуществляется постепенная деформация прямоугольного поперечного смещения в круглое, при которой распределения поля H_{10} плавно трансформация в распределении поля H_{11} круглого волновода.

Предварительные расчеты:

- 1. $\alpha = 15$ mm
 - **a.** $H_{11}: 2.61\alpha < \lambda < 3.41\alpha \Rightarrow 2.61*15*10^{-3} < \lambda < 3.41.15.*10^{-3} \Rightarrow 39.15 \text{mm} < \lambda < 51.15 \text{m}$
 - **b.** $H_{11} \text{ M } E_{01}$: 2,06 $\alpha < \lambda < 2,61\alpha \Rightarrow 30.9 \text{ MM} < \lambda < 39.15 \text{ MM}$
- 2. $E_{rm}(\varphi)/E_{rmaxm} = |\cos \varphi|,$
- 3. Для Н₁₁:

$$\wedge = \frac{\lambda}{\sqrt{1 - (\frac{\lambda}{\lambda_{\kappa p}})^2}} = \frac{34 \times 10^{-3}}{\sqrt{1 - (\frac{34 \times 10^{-3}}{51.15 \times 10^{-3}})^2}} = 0,046 = 46 \text{MM}$$

$$V_{\phi} = \frac{C}{\sqrt{1 - (\frac{\lambda}{\lambda_{\kappa p}})^2}} \frac{3 \times 10^8}{\sqrt{1 - (\frac{34 \times 10^{-3}}{51.15 \times 10^{-3}})^2}} = 4 \times 10^8$$

$$V_9 = c\sqrt{1 - (\frac{\lambda}{\lambda_{\kappa p}})^2} = 3 \times 10^8 \times \sqrt{1 - (\frac{34 \times 10^{-3}}{51.15 \times 10^{-3}})^2} = 2,24 \times 10^8$$

Для E_{01} :

$$\wedge = \frac{\lambda}{\sqrt{I - (\frac{\lambda}{\lambda_{\kappa p}})^2}} = \frac{34 \times 10^{-3}}{\sqrt{I - (\frac{34 \times 10^{-3}}{39.15 \times 10^{-3}})^2}} = 0,067 = 67 \text{MM}$$

$$V_{\phi} = \frac{C}{\sqrt{I - (\frac{\lambda}{\lambda_{\kappa p}})^2}} = \frac{3 \times 10^8}{\sqrt{I - (\frac{34 \times 10^{-3}}{39.15 \times 10^{-3}})^2}} = 6,05 \times 10^8$$

$$V_{\phi} = c\sqrt{I - (\frac{\lambda}{\lambda_{\kappa p}})^2} = 3 \times 10^8 \times \sqrt{I - (\frac{34 \times 10^{-3}}{39.15 \times 10^{-3}})^2} = 1,49 \times 10^8$$

Измерения:

φ	мВ	$\sqrt{a(\varphi)/a_{_{MAX}}}$
0	8	0,94
30	7,6	0,92
60	3,5	0,62
90	0,08	0,09
120	2	0,47
150	7	0,88
180	8,8	1

1	r	T		
J	ľ	1	1	1

Zмм	мВ
33	3,5
38	0
43	7,3
56	3
61	0
66	5,8

 E_{01}

Zмм	мВ
28	1
33	0
38	3,2
64	3,2
69	0
74	1,4

Обработка результатов измерений:

2.

График 1. Зависимости от угла для волн H_{11} и E_{01} .

3. Для H₁₁:

a. $\Lambda = 56-33=23$ MM

б. $\Lambda = 61-38=23$ мм

B. $\Lambda = 66-43=23$ MM

 $\Lambda_{cp}=23_{MM}$

Для Е₀₁:

a. $\Lambda = 74-28=46$ MM

б. $\Lambda = 69-33=36$ мм

B. $\Lambda = 64-38=26$ MM

 $\Lambda_{cp} = (46+36+26)/3 = 36_{MM}$

Выводы:

- 1. Теоретические значения длин волн не совпадают с экспериментально измеренными.
- 2. Экспериментальные и теоретические зависимости для волн H_{11} и E_{01} подчиняются закону косинуса, взятого по модулю. При этом их графики практически совпадают.