

We develop innovative sustainable electrolyser solutions to drive the transition of the chemical industry to reduce its environmental impact in a profitable way.

eChemicles – Industrya

We develop innovative sustainable electrolyser solutions to drive the transition of the chemical industry to reduce its environmental impact in a profitable way.

We want to become a leading electrolyser technology provider, transforming waste CO₂ to valuable chemicals using green energy sources.

Milestones

Immediate

Currently demonstrating our core technology of CO_2 electrolysis to CO with a fully operational containerised prototype. Key partnerships are in place, first commercial project undertaken.

Short-term

Industrialising and commercialising our small-scale units (up to 1kt CO/y) by 2027.

In parallel, further upscaling our technology with medium-scale pilots.

Mid-term

Commercialising medium-scale plants (50-100 kt CO /y) by 2030. In parallel, further upscaling our technology to (up to 1000 kt CO /y).

The challenge: facilitate a competitive green transition

Geopolitical megatrends

Decreasing competitiveness of the American and European Industry

Conventional approaches of decarbonization are not enough, breakthrough innovations are needed to achieve a circular carbon economy.

Our low temperature CO₂ conversion technology can tackle the challenge

We convert captured CO₂ with renewable energy into a green CO for industrial usage. In a next electrochemical step, we can convert CO to ethylene.

(4) eChemicle

Only proven and patented stack-based CO₂ electrolyser

Performance

- First team in breaking the 1 A/cm² limit for CO₂-to-CO` conversion.
- Lower OPEX and CAPEX costs.

Scalability

- Stacked design for easier transition to larger scales without redesign
- © Current single cell area is 2500 cm² (assembled into stacks)

Top Innovator according to the UpLink - World Economic Forum

Opportunities Exploration

WO/2020/240218: Modular electrolyser cell and process to convert carbon dioxide to gaseous products at elevated pressure and with high conversion rate. (National phases in USA, Europe, China, Japan, Korea, India, Australia, Russia, Israel, Switzerland, Singapore) IPRP: 24/24 claims are patentable

WO/2022/013583: Process and system to enhance and sustain electrolyser performance of carbon-dioxide electrolysers. (National phases in USA, Europe, China, Korea, India, Australia) IPRP: 30/30 claims are patentable

P2400372: This PCT application was filed in 2024, and relates to metal bipolar plates to be used, especially, in carbon dioxide conversion electrochemical cell stacks as one of the building blocks of the cells forming said stacks.

P2400373: This PCT application was filed in 2024, and relates to a carbon dioxide electrolyzing cell stack with novel flow design.

EIC Tech to Market Entrepreneurship & Venture Building Programmes

FREEDOM TO OPERATE REPORT

CO₂ Electrolizer

October 2023

Summary Char

JURISDICTION	Germany	US China		South Korea	
Patents Restrictions	NONE	NONE	NONE	NONE	

CO production – Our prospective market segments

Detailed analysis of the green CO market was carried out with Air Liquide:

- Different use cases are identified for a diverse set of non-exclusive markets.
- The technology can be tailored to different market needs, with opportunity for quick entry to CO production as an industrial gas.
- As the technology matures, market volumes that can be served will increase.
- TAM (pure CO demand, of small-mid markets):

2030: \$8 bn

2040: \$16 bn

2050: \$30 bn

Competitive technologies and direct competition

	Temperature	Integrability	Efficiency	Adaptability	Maturity	Dynamic operability	CAPEX and OPEX
Our Low Temperature Electrolyser	* * *	M M M	/ //	<i>M M M</i>	×	<i>M</i>	// //
Solid Oxide Electrolyser (SOEC)	M	××	<i>N N N</i>	<i>M M</i>	MM	M M	/
Reverse WaterGas Shift (rWGS)	M	N N N	MM	/	MM	×	/
Attractiveness: № low							

Compared to other low temperature electrolyser companies (such as Twelve and Dioxycle) we have:

- An easily stackable design
- Engineering focused IP protection
- Olass leading performance (TCO of CO)
- **b** Emphasis on global partnerships for scale-up

We are open for customer visits, to show our technology in operation!

Business model + financials

- 3 different revenue streams
- Ocllaboration with industry giants allow rapid market entry
- Positive EBIT and EBITDA from 2030

Management with technology and business expertise

Founders

Dr Csaba JanákyCo-founder and Chairman of the Board

- Pioneer researcher of electrochemical CO₂ and CO conversion technologies
- Published over 110 articles in peer-reviewed journals filed 20+ patents.

Dr Richard JonesCo-founder and Board Member

- Entrepreneur, co-founder of innovative start-ups for developing chemical technologies
- Product manager of the R&D 100 Award winning H-Cube®

Alex Drijver
Co-founder and Board Member

- A finance and life sciences professional, experienced CFO and CEO for start-up companies
- Led the successful exits (ComGenex, ChemAxon, ComInnex)

Advisors

Plamen Atanassov Advisory Board Member

- Leading expert of Electrochemistry, Electrocatalysis, Fuel Cells
- inventor of catalyst families used by top companies
- Ochancellor of University of California- Irvine

Helge Holm-Larsen Advisory Board Member

- Oclevel executive in start-ups, primarily within clean tech, industrial automation and welfare tech.
- Experience includes small scale, mid-size as well as large industry.

Dominic GallelloAdvisory Board Member

- An established technology leader in vertical engineering software solutions.
- American top manager, with a track record in building products and global brands.

About us

Partnership development II.

Joint Development and Strategic Partnership with Bosch Thin Metal Technologies (Tilburg, NL) for establishing the mass production of our CO₂ electrolyzer stack.

Roadmap and Milestones

Use Series A Total ~15M EUR

Technology scale-up

- Equipment needed for scale-up
- Pilot plant components
- 3 years development cost

Commercial scale-up

- Small scale commercial unit
- Dilot plant
- Building partnerships in the different market segments

Operation scale-up

- New location for scaled-up MEA manufacturing and container assembly
- New location(s) for BD

HR scale-up

HR expansion (from ~30 to ~65 FTE)

Why eChemicles would fit to Industrya?

Technology and sector scope

- Directly related to the H₂ and eFuels industry
- Decarbonization focus
- Industry 4.0
- Leverage the industrial capabilities of the John Cockerill Group

High growth potential globally

- CCU/S is a must to achieve net zero
- CCU/S applications are on the rise globally

Customer willingness to pay

	Applications	CO as Industrial Gas	CO feedstock for Biotech	CO for Carbonylatio	n Syngas for e- chemicals	DRI / Other metallurgy	Synthetic Fuels	
	Incumbent tech	Steam Methane Reforming (SMR) and delivery is needed	None	SMR, Partial Oxidation of Methane (POM)	of SMR, POM,	Coke gasification	None	
	Unit size (kt/y)	<1	<5	<50	<100	50-500	<1000	
	eChemicles' solution	Container unit 100 – 400 kW 2027	Several Containers 400 – 2000 kW 2027	Plant 5 - 40 MW Pilot 2027 FOAK 2030	Plant 10 – 100 MW Pilot 2027/28 FOAK 2031	Plant 40 – 200 MW Pilot 2028/29 FOAK 2032	Plant 100 – 500 MW Pilot 2029 FOAK 2033	
	Cost factors	Incumbent: Large-scale and centralized facility CO ₂ Emission fee Natural gas price volatility (+ pre-treatment) Storage and Transportation of hazardous materials (for non on-site cases) eChemicles: Inlet gas pre-treatment Electricity CO ₂ delivery* (*if no compatible source is available on site)						
· ·	Non-cost advantages	CO transportation cost avoi Dynamic operation, on demand		Scale can be easily adjusted regarding specific use cases due to modularity exi			Higher CO₂ emission savings competitors	
	Unit cost (\$/tCO, <99% purity)	Incumbent: 4,000 -20,000 USD/ on scale (Linde, Messer, Air eChem: 2500-6000 USD/t, dep utilization rate	Liquide) Austra	Incumbent: 200 – 650 USD/t depending on geographical location (e.g., in Finland 450 USD/t, while its over 600 USD/Australia), correlating to Natural Gas prices eChem: 300 - 800 USD/t mostly depending on electricity price & available subsidies, and somewhat on the scale.				
	Drivers for adoption	Net Zero Strategy ESG – Sustainability Safety Brand image, PR	ef	se the production and ficiency of biotech methods Modularity ynamic operation	Compatibility with existing in Increasing electrifica Legislation (Mandates, Ris emission, Subsidio Net Zero Strateg ESG – Sustainabili	tegisi ing cost of es) Y	ation (Mandates, Rising cost of emission, Subsidies) Electrification Net Zero Strategy Circular Carbon economy	