1 46	CGCGTGCAGGTGGCAGTCCTCCCAAAGTACTTGTGTCCGGGTGGT GGACTGGATTCGCTGCGGAGCCCTGGAAGCTGCCTTTCCTCCC
91	CTGTGCTTAACCAGAGGTGCCCATGGGTTGGACAATGAGGCTGGT MetGlyTrpThrMetArgLeuVa
136	CACAGCAGCACTGTTACTGGGTCTCATGATGGTGGTCACTGGAGA 1ThrAlaAlaLeuLeuLeuGlyLeuMetMetValValThrGlyAs
181	CGAGGATGAGAACAGCCCGTGTGCCCATGAGGCCCTCTTGGACGA pGluAspGluAsnSerProCysAlaHisGluAlaLeuLeuAspGl
226	GGACACCCTCTTTTGCCAGGGCCTTGAAGTTTTCTACCCAGAGTTuAspThrLeuPheCysGlnGlyLeuGluValPheTyrProGluLe
271	GGGGAACATTGGCTGCAAGGTTGTTCCTGATTGTAACAACTACAG uGlyAsnIleGlyCysLysValValProAspCysAsnAsnTyrAi
316	ACAGAAGATCACCTCCTGGATGGAGCCGATAGTCAAGTTCCCGGG gGlnLysIleThrSerTrpMetGluProIleValLysPheProGl
361	GGCCGTGGACGGCGCAACCTATATCCTGGTGATGGTGGATCCAGAYAlaValAspGlyAlaThrTyrIleLeuValMetValAspProAs
406	TGCCCCTAGCAGAGCAGAACCCAGACAGAGATTCTGGAGACATTC pAlaProSerArgAlaGluProArgGlnArgPheTrpArgHisTr
451	GCTGGTAACAGATATCAAGGGCGCCGACCTGAAGGAAGGGAAGAT pLeuValThrAspIleLysGlyAlaAspLeuLysGluGlyLysIl
496	TCAGGGCCAGGAGTTATCAGCCTACCAGGCTCCCTCCCCACCGGC eGlnGlyGlnGluLeuSerAlaTyrGlnAlaProSerProProAl
541	ACACAGTGGCTTCCATCGCTACCAGTTCTTTGTCTATCTTCAGGI aHisSerGlyPheHisArgTyrGlnPhePheValTyrLeuGlnG
586	AGGAAAAGTCATCTCTCTCTCCCAAGGAAAACAAAACTCGAGGuGlyLysVallleSerLeuLeuProLysGluAsnLysThrArgGl
631	CTCTTGGAAAATGGACAGATTTCTGAACCGTTTCCACCTGGGCGAAAATGGACAGATTTCTGAACCGTTTCCACCTGGGCGAAAATGPAetaspArgPheLeuAsnArgPheHisLeuGlyG
676	ACCTGAAGCAAGCACCCAGTTCATGACCCAGAACTACCAGGACTCuProGluAlaSerThrGlnPheMetThrGlnAsnTyrGlnAspSe
721	ACCAACCCTCCAGGCTCCCAGAGAAAGGGCCCAGCGAGCCCAAGCA rProThrLeuGlnAlaProArgGluArgAlaSerGluProLysH
766	CAAAAACCAGGCGGAGATAGCTGCCTGCTAGATAGCCGGCTTTGC sLysAsnGlnAlaGluIleAlaAlaCys

811 CATCCGGGCATGTGGCCACACTGCCCACCACCGACGATGTGGGTA
856 TGGAACCCCTCTGGATACAGAACCCCTTCTTTTCCAAATTAAAA
901 AAAAAAATCATCCAGGAAAAAAAAAAAAA
Fig. 1

- 1 GGAGGTGGGGTGAGACAGGACCAGCCCCTAAGCCTGGTCAGGCCT
- 46 GATCAAGTGCTGTGGCAGTCATGGTGCGAACGCGGTGGCAGCCTC
 MetValArgThrArgTrpGlnProH
- 91 ACCCTCCGCCCCCCTGCTTCTCCTGGTGCTCGTGTGGCTCCCCC isProProProLeuLeuLeuLeuValLeuValTrpLeuProG
- 136 AAAGCCTGAGTCTAGACCTGATTGCCTACGTGCCGCAGATAACAG lnSerLeuSerLeuAspLeuIleAlaTyrValProGlnIleThrA
- 181 CCTGGGACCTGGAAGGGAAGATCACAGCCACTACATTCTCTCTGG laTrpAspLeuGluGlyLysIleThrAlaThrThrPheSerLeuG
- 226 AGCAGCCTCGGTGCGTCTTTGATGAGCATGTCTCAACTAAGGACA luGlnProArgCysValPheAspGluHisValSerThrLysAspT
- 271 CCATCTGGCTAGTGGTGGCTTTCAGCAATGCCTCCAGGGACTTTC hrlleTrpLeuValValAlaPheSerAsnAlaSerArgAspPheG
- 316 AGAACCCACAGACTGCTGCTAAGATCCCGACCTTCCCACAGCTGC lnAsnProGlnThrAlaAlaLysIleProThrPheProGlnLeuL
- 361 TGACTGACGGCCACTATATGACATTACCCCTGTCCCTGGATCAGC euThrAspGlyHisTyrMetThrLeuProLeuSerLeuAspGlnL
- 406 TGCCATGTGAGGACCTGACCGGTGGCAGTGGAGGTGTCCCCGTGC euProCysGluAspLeuThrGlyGlySerGlyGlyValProValL
- 451 TTCGGGTGGGCAATGATTTTGGCTGTTACCAGCGACCCTATTGCA euArgValGlyAsnAspPheGlyCysTyrGlnArgProTyrCysA
- 496 ACGCCCCCCCCCCAGCCAGGGCCCTTACAGTGTGAAGTTCCTTG snAlaProLeuProSerGlnGlyProTyrSerValLysPheLeuV
- 541 TAATGGATGCCGCCGGCCCACCCAAGGCTGAGACGAAGTGGTCCA alMetAspAlaAlaGlyProProLysAlaGluThrLysTrpSerA
- 586 ACCCCATTTATCTCCACCAAGGAAAGAATCCCAACTCCATTGACA snProlleTyrLeuHisGlnGlyLysAsnProAsnSerlleAspT
- 631 CATGGCCTGGCCGACGGAGCGGCTGTATGATCGTCATAACTTCCA hrTrpProGlyArgArgSerGlyCysMetIleVallleThrSerI
- 676 TCCTCTCTGCCCTGGCCGGCCTCTTGCTCCTGGCTTTCCTGGCAG leLeuSerAlaLeuAlaGlyLeuLeuLeuLeuAlaPheLeuAlaA
- 721 CTTCCACTACGCGT laSerThrThrArg

1	AAAGAGCTTGAGTTAGATTGAAGTAGAATCAGTGATAGAAAATAA
46	CAGCCGAAAACAAAAAGGGGACATAGTGACAATTTCTCCTG
91	GGTTATTTTGGCTGGAACCAACTTCCATTATCCAGAAGCTGATAA
136	AAAAGCTTTGGGAAACATGAACAAAACATTGATGAAATGTTGGAA
181	ACCAGTTGAAACACAGTAAAACCAACTGGGTAAAATAGGACCACT
	110011101101010110110110110110110110110
226	TCTCTTCATCTACACTGGGATTTGTCAAGAAGTGAACTATGACAA
6 4 V	MetThri
	Mec IIII 1
274	ms as mas s mmmmaaams amammams mmamaaaams maaamaaa
271	TACATCAATTTTTGCTACTGTTTCTATTCTGGGTATGCCTGCC
	leHisGlnPheLeuLeuLeuPheLeuPheTrpValCysLeuProF
316	ATTTCTGCTCTCCAGAAATAATGTTCAGAAGGACGCCTGTGCCAC
	isPheCysSerProGluIleMetPheArgArgThrProValProG
361	AGCAAAGAATTTTAAGTTCACGTGTACCAAGGAGTGATGGCAAAA
	lnGlnArgIleLeuSerSerArgValProArgSerAspGlyLysl
406	TTCTCCATCGTCAAAAACGTGGTTGGATGTGGAATCAATTTTTCT
	leLeuHisArgGlnLysArgGlyTrpMetTrpAsnGlnPhePheI
	Tonominit dorumi nut dori unhuno unhunna mas mas
451	TACTTGAAGAATATACAGGATCTGATTATCAGTACGTAGGCAAGC
2JI	euLeuGluGluTyrThrGlySerAspTyrGlnTyrValGlyLysI
	ennenerantal interasers brain armiar agrarana
100	
496	TACATTCAGACCAAGATAAAGGAGATGGATCACTCAAATATATCT
	euHisSerAspGlnAspLysGlyAspGlySerLeuLysTyrIleI
541	TATCTGGAGATGGAGCTGGTACTCTTTTTATTATTGATGAAAAA
	euSerGlyAspGlyAlaGlyThrLeuPheIleIleAspGluLysT
586	CAGGTGATATTCATGCCACAAGGCGAATTGATAGGGAGGAAAAGG
	hrGlyAspIleHisAlaThrArgArgIleAspArgGluGluLysA
631	CCTTTTATACTCTACGCGCACAAGCTATTAACAGAAGAACTCTG
	laPheTyrThrLeuArgAlaGlnAlaIleAsnArgArgThrLeuA
676	GGCCAGTAGAGCCAGAGTCAGAGTTTGTGATCAAAATTCATGATA
• • •	rgProValGluProGluSerGluPheValIleLysIleHisAspl
721	TCAATGACAATGAGCCAACGTTCCCAGAAGAAATCTATACAGCTA
, 41	leAsnAspAsnGluProThrPheProGluGluIleTyrThrAlas
	Tevenvehveneration threat contraration in the state of th
766	GTGTTCCCGAAATGTCTGTTGTAGGTACTTCTGTGGTGCAAGTC
/00	
	${\tt erValProGluMetSerValValGlyThrSerValValGlnValTalGlnVa$
811	CAGCTACAGATGCCGATGACCCTTCATATGGGAACAGCGCCAGAG
	hrAlaThrAspAlaAspAspProSerTyrGlyAsnSerAlaArgV
856	TCATTTACAGCATACTTCAAGGGCAGCCCTATTTCTCTGTGGAGC
	allleTyrSerIleLeuGlnGlyGlnProTyrPheSerValGluE
	- -
901	CTGAAACAGGTATCATCAGGACTGCTTTACCGAACATGAACAGAG
	roGluThrGlyIleIleArgThrAlaLeuProAsnMetAsnArgG

- 946 AAAACAGAGAGCAATACCAAGTGGTCATCCAGGCCAAAGACATGG luAsnArgGluGlnTyrGlnValVallleGlnAlaLysAspMetG
- 991 GCGGCCAGATGGGAGGCTTATCGGGGACAACCACTGTGAACATCA lyGlyGlnMetGlyGlyLeuSerGlyThrThrThrValAsnIleT
- 1036 CGCTGACAGATGTCAATGACAACCCACCACGTTTCCCCCAGAACA hrLeuThrAspValAsnAspAsnProProArgPheProGlnAsnT
- 1081 CTATTCATCTTCGAGTTCTTGAATCCTCCCCAGTTGGCACAGCCA hrIleHisLeuArgValLeuGluSerSerProValGlyThrAlaI
- 1126 TTGGAAGTGTCAAAGCAACTGATGCTGACACTGGGAAAAATGCTG leGlySerValLysAlaThrAspAlaAspThrGlyLysAsnAlaG
- 1171 AAGTAGAATACCGAATTATTGATGGTGACGGTACTGATATGTTTG luValGluTyrArgIleIleAspGlyAspGlyThrAspMetPheA
- 1216 ACATCGTGACTGAGAAGGACACACAGGAAGGCATCATCACTGTGA splleValThrGluLysAspThrGlnGluGlylleIleThrValL
 - 1261 AAAAGCCACTCGACTATGAAAGCCGAAGACTTTATACTCTGAAAG ysLysProLeuAspTyrGluSerArgArgLeuTyrThrLeuLysV
 - 1306 TCGAAGCAGAAAACACCCATGTAGATCCCCGTTTTTATTACCTAG alGluAlaGluAsnThrHisValAspProArgPheTyrTyrLeuG
 - 1351 GACCATTTAAAGATACTACCATAGTGAAAATCTCTATAGAAGATG lyProPheLysAspThrThrIleValLysIleSerIleGluAspV
 - 1396 TGGATGAACCTCCTGTTTTTAGTAGGTCCTCCTATCTGTTTGAAG alAspGluProProValPheSerArgSerSerTyrLeuPheGluV
 - 1441 TTCATGAAGATATTGAAGTGGGCACAATCATTGGTACTGTAATGG alHisGluAspIleGluValGlyThrIleIleGlyThrValMetA
 - 1486 CAAGGGACCCAGATTCTATTTCCAGCCCCATTAGATTTTCCTTGG laArgAspProAspSerIleSerSerProIleArgPheSerLeuA
 - 1531 ATCGCCATACTGACCTTGACAGAATCTTTAACATTCAGGAA spArgHisThrAspLeuAspArgIlePheAsnIleHisSerGlyA
 - 1576 ATGGATCTCTTTATACATCAAAACCTCTTGACCGTGAACTATCTC snGlySerLeuTyrThrSerLysProLeuAspArgGluLeuSerG
 - 1621 AGTGGCATAATTCGTTAGTTATTGCTGCTGAAATCAACAATCCCA lnTrpHisAsnSerLeuVallleAlaAlaGlulleAsnAsnProL
 - 1666 AAGAGACAACACGCGTGGCTGTTTTTGTGAGAATTTTGGATGTTA ysGluThrThrArgValAlaValPheValArgIleLeuAspValA
 - 1711 ATGACAATGCCCCACAGTTTGCTGTGTTCTATGACACTTTTGTAT snAspAsnAlaProGlnPheAlaValPheTyrAspThrPheValC
 - 1756 GTGAAAATGCCAGACCAGGGCAGCTAATACAGACTATAAGTGCAG ysGluAsnAlaArgProGlyGlnLeuIleGlnThrIleSerAlaV

Fig. 3 Continued

1801	TAGACAAAGATGACCCTTTAGGTGGACAGAAATTTTTTTT
	alAspLysAspAspProLeuGlyGlyGlnLysPhePhePheSerL

- 1846 TAGCTGCTGTCAATCCAAACTTCACAGTACAGGATAATGAAGATA euAlaAlaValAsnProAsnPheThrValGlnAspAsnGluAspA
- 1891 ATACTGCCAGAATCTTAACCAGAAAAAATGGATTCAATAGACATG snThrAlaArgIleLeuThrArgLysAsnGlyPheAsnArgHisG
- 1936 AAATCAGTACCTATCTCTTGCCTGTGGTGATATCAGACAATGATT lulleSerThrTyrLeuLeuProValVallleSerAspAsnAspT
- 1981 ACCCGATTCAGAGCAGCACAGGCACACTGACCATTCGAGTGTGTG yrProlleGlnSerSerThrGlyThrLeuThrlleArgValCysA
- 2026 CTTGTGACAGCCAAGGCAACATGCAATCCTGCAGTGCTGAAGCCC laCysAspSerGlnGlyAsnMetGlnSerCysSerAlaGluAlaL
- 2071 TGCTCCTCCCTGCCGGCCTCAGCACTGGGGCCTTGATCGCCATCC euLeuLeuProAlaGlyLeuSerThrGlyAlaLeuIleAlaIleL
- 2116 TCCTCTGCATCATCATCTACTGGTTATAGTAGTACTGTTTGCAG euLeuCysIleIleIleLeuLeuVallleValValLeuPheAlaA
- 2161 CTCTGAAAGGACAGCGAAAAAAAGAGCCTCTGATCTTGTCAAAAG laLeuLysGlyGlnArgLysLysGluProLeuIleLeuSerLysG
- 2206 AAGATATCAGAGACAACATTGTGAGCTATAACGATGAGGGTGGTG luAspileArgAspAsnileValSerTyrAsnAspGluGlyGlyG
- 2251 GAGAGGAGGACACCCAGGCCTTTGATATCGGCACCCTGAGGAATC lyGluGluAspThrGlnAlaPheAspIleGlyThrLeuArgAsnP
- 2296 CTGCAGCCATTGAGGAAAAAAAGCTCCGGCGAGATATTATTCCAG roAlaAlaIleGluGluLysLysLeuArgArgAspIleIleProG
- 2341 AAACGTTATTTATTCCTCGGAGGACTCCTACAGCTCCAGATAACA luThrLeuPheIleProArgArgThrProThrAlaProAspAsnT
- 2386 CGGACGTCCGGGATTTCATTAATGAAAGGCTAAAAGAGCATGATC hrAspValArgAspPheIleAsnGluArgLeuLysGluHisAspL
- 2431 TTGACCCCACCGCACCCCCTACGACTCACTTGCAACCTATGCCT euAspProThrAlaProProTyrAspSerLeuAlaThrTyrAlaT
- 2476 ATGAAGGAAATGATTCCATTGCTGAATCTCTGAGTTCATTAGAAT yrGluGlyAsnAspSerIleAlaGluSerLeuSerSerLeuGluS
- 2521 CAGGTACTACTGAAGGAGACCAAAACTACGATTACCTCCGAGAAT erGlyThrThrGluGlyAspGlnAsnTyrAspTyrLeuArgGluT
- 2566 GGGGCCCTCGGTTTAATAAGCTAGCAGAAATGTATGGTGGTGGGG rpGlyProArgPheAsnLysLeuAlaGluMetTyrGlyGlyGlyG
- 2611 AAAGTGACAAAGACTCTTAACGTAGGATATATGTTCTGTTCAAAC luSerAspLysAspS r
- 2656 AAGAGAAAGTAACTCTACCCATGCTGTCTCCACTTCACAATATTT 2701 GATATTCAGGAGCATTTCCTGCAGTCAGCACAATTTTTTTCTCA

Fig. 3 Continued

- 1 AAGATGGTAGCAAAGTAATGAGTTGAGAGTTGCTTTCAGTGGTGT
- 46 GTTACCGGAGATAGAAAAATGAAGGATACAGGCTAAGGGACCAA
- 91 CTGCAGTGTGATGGAAACTGAGTTTTAATGATGCCTCTTAGGAAA
- 136 TGACTTCCAACATGTAGTACACTATTCATCTTCGAGTTCTTGAAT
- 181 CCTCCCAGTTGGCACAGCCATTGGAAGTGTCAAAGCAACTGATG
- 226 CTGACACTGGGAAAAATGCTGAAGTAGAATACCGAATTATTGATG
- 271 GTGACGGTACTGATATGTTTGACATCGTGACTGAGAAGGACACAC
 MetPheAspIleValThrGluLysAspThrG
- 316 AGGAAGGCATCATCACTGTGAAAAAGCCACTCGACTATGAGAGCC lnGluGlyIleIleThrValLysLysProLeuAspTyrGluSerA
- 361 GAAGACTTTATACTCTGAAAGTCGAAGCAGAAAACACCCCATGTAG rgArgLeuTyrThrLeuLysValGluAlaGluAsnThrHisvalA
- 406 ATCCCCGTTTTTATTACCTAGGACCATTTAAAGATACTACCATAG spProArgPheTyrTyrLeuGlyProPheLysAspThrThrIleV
- 451 TGAAAATCTCTATAGAAGATGTGGATGAACCTCCTGTTTTTAGTA alLysIleSerIleGluAspValAspGluProProValPheSerA
- 496 GGTCCTCCTATCTGTTTGAAGTTCATGAAGATATTGAAGTGGGCA rgSerSerTyrLeuPheGluValHisGluAspIleGluValGlyT
- 541 CAATCATTGGTACTGTAATGGCAAGGGACCCAGATTCTATTTCCA hrIleIleGlyThrValMetAlaArgAspProAspSerIleSerS
- 586 GCCCCATTAGATTTTCCTTGGATCGCCATACTGACCTTGACAGAA erProlleArgPheSerLeuAspArgHisThrAspLeuAspArgI
- 631 TCTTTAACATTCATTCAGGAAATGGATCTCTTTATACATCAAAAC lePheAsnIleHisSerGlyAsnGlySerLeuTyrThrSerLysP
- 721 CTGCTGAAATCAACAATCCCAAAGAGACAACACGCGTGGCTGTTT laAlaGluIleAsnAsnProLysGluThrThrArgValAlaValP
- 766 TTGTGAGAATTTTGGATGTTAATGACAATGCCCCACAGTTTGCTG heValArgIleLeuAspValAsnAspAsnAlaProGlnPheAlaV
- 811 TGTTCTATGACACTTTTGTATGTGAAAATGCCAGACCAGGGCAGC alPheTyrAspThrPheValCysGluAsnAlaArgProGlyGlnL
- 856 TAATACAGACTATAAGTGCAGTAGACAAAGATGACCCTTTAGGTG euIleGlnThrIleSerAlaValAspLysAspAspProLeuGlyG
- 901 GACAGAAATTTTTTTCAGTTTAGCTGCTGTCAATCCAAACTTCA lyGlnLysPhePhePheSerLeuAlaAlaValAsnProAsnPheT
- 946 CAGTACAGGATAATGAAGATAATACTGCCAGAATCTTAACCAGAA hrValGlnAspAsnGluAspAsnThrAlaArgIleLeuThrArgL

- 991 AAAATGGATTCAATAGACATGAAATCAGTACCTATCTCTTGCCTG ysAsnGlyPheAsnArgHisGlulleS rThrTyrLeuLeuProV
- 1036 TGGTGATATCAGACAATGATTACCCGATTCAGAGCAGCACAGGCA alValileSerAspAsnAspTyrProlleGlnSerSerThrGlyT
- 1081 CACTGACCATTCGAGTGTGTGTGTGACAGCCAAGGCAACATGC hrLeuthrlleArgValCysAlaCysAspSerGlnGlyAsnMetG
- 1126 AATCCTGCAGTGCTGAAGCCCTGCTCCTCCCTGCCGGCCTCAGCA lnSerCysSerAlaGluAlaLeuLeuLeuProAlaGlyLeuSerT
- 1171 CTGGGGCCTTGATCGCCATCCTCTGCATCATCATCTACTGG hrGlyAlaLeuIleAlaIleLeuLeuCysIleIleIleLeuLeuV
- 1216 TTATAGTAGTACTGTTTGCAGCTCTGAAAGGACAGCGAAAAAAAG allleValValLeuPheAlaAlaLeuLysGlyGlnArgLysLysG
- 1261 AGCCTCTGATCTTGTCAAAAGAAGATATCAGAGACAACATTGTGA luProLeuIleLeuSerLysGluAspIleArgAspAsnIleValS
- 1306 GCTATAACGATGAGGGTGGTGGAGAGGAGGACACCCAGGCCTTTG erTyrAsnAspGluGlyGlyGlyGluGluAspThrGlnAlaPheA
- 1351 ATATCGGCACCCTGAGGAATCCTGCAGCCATTGAGGAAAAAAAGC spIleGlyThrLeuArgAsnProAlaAlaIleGluGluLysLysL
- 1396 TCCGGCGAGATATTATTCCAGAAACGTTATTTATTCCTCGGAGGA euArgArgAspIleIleProGluThrLeuPheIleProArgArgT
- 1441 CTCCTACAGCTCCAGATAACACGGACGTCCGGGATTTCATTAATG hrProThrAlaProAspAsnThrAspValArgAspPheIleAsnG
- 1486 AAAGGCTAAAAGAGCATGATCTTGACCCCACCGCACCCCCTACG luArgLeuLysGluHisAspLeuAspProThrAlaProProTyrA
- 1531 ACTCACTTGCAACCTATGCCTATGAAGGAAATGATTCCATTGCTG spSerLeuAlaThrTyrAlaTyrGluGlyAsnAspSerIleAlaG
- 1576 AATCTCTGAGTTCATTAGAATCAGGTACTACTGAAGGAGACCAAA luSerLeuSerSerLeuGluSerGlyThrThrGluGlyAspGlnA
- 1621 ACTACGATTACCTCCGAGAATGGGGCCCTCGGTTTAATAAGCTAG snTyrAspTyrLeuArgGluTrpGlyProArgPheAsnLysLeuA
- 1666 CAGAAATGTATGGTGGTGGGGAAAGTGACAAAGACTCTTAACGTA laGluMetTyrGlyGlyGlyGluSerAspLysAspSer
- 1711 GGATATATGTTCTGTTCAAACAAGAGAAAGTAACTCTACCCATGC
- 1756 TGTCTCCACTTCACAATATTTGATATTCAGGAGCATTTCCTGCAG
- 1801 TCAGCACAATTTTTTCTCA

Fig. 4 Continued

- 1 CAAAGGCTGGAGACAAGTGGGTTGGGGTTTGTTTAATTTGGCA
- 46 GTTGTAATTAATGGTCAATTTTAATAGTCCGTAATTGATGGCAGC
- 91 CTGCTGTGGTACATGTGTGAAAGATTATCACTTTGAATATACGGA
- 136 ATGTGATAGCAGTGGCTCCAGGTGGAGAGTTGCCATTCCAAATTC
- 181 TGCAGTGGACTGCTCTGGCCTGACCCAGTGAGAGGCAAAGA
- 226 ATGCACTCTTCTTGGATCCCTCGTGGAAACTACATAGAATCTAAT MetHisSerSerTrpIleProArgGlyAsnTyrIleGluSerAsn
- 271 CGTGATGACTGCACGGTGTCTTTGATCTATGCTGTGCACCTTAAG ArgAspAspCysThrValSerLeuIleTyrAlaValHisLeuLys
- 316 AAGTCAGGCTATGTCTTCTTTGAGTACCAGTATGTCGACAACAAC LysSerGlyTyrValPhePheGluTyrGlnTyrValAspAsnAsn
- 361 ATCTTCTTTGAGTTCTTTATTCAAAATGATCAGTGCCAGGAGATG IlePhePheGluPhePheIleGlnAsnAspGlnCysGlnGluMet
- 406 GACACCACCACTGACAAGTGGGTAAAACTTACAGACAATGGAGAA AspThrThrThrAspLysTrpValLysLeuThrAspAsnGlyGlu
- 451 TGGGGCTCTCATTCTGTAATGCTGAAATCAGGCACAAACATACTC TrpGlySerHisSerValMetLeuLysSerGlyThrAsnIleLeu
- 496 TACTGGAGAACTACAGGCATCCTTATGGGTTCTAAGGCGGTCAAG
 TyrTrpArgThrThrGlyIleLeuMetGlySerLysAlaValLys
- 541 CCTGTGCTGGTAAAAAATATCACAATTGAAGGGGTGGCGTACACA ProValLeuValLysAsnIleThrIleGluGlyValAlaTyrThr
- 586 TCAGAATGTTTTCCTTGCAAGCCAGGCACATTCAGCAACAAACCA SerGluCysPheProCysLysProGlyThrPheSerAsnLysPro
- 631 GGTTCATTCAACTGCCAGGTGTGTCCCAGAAACACCTATTCTGAG GlySerPheAsnCysGlnValCysProArgAsnThrTyrSerGlu
- 676 AAAGGAGCCAAAGAATGTATAAGGTGTAAAGACGACTCTCAATTT LysGlyAlaLysGluCysIleArgCysLysAspAspSerGlnPhe
- 766 ACAAAAGACTATTTCCAGATCCATACTCCATGTGATGAAGAAGGA ThrLysAspTyrPheGlnIleHisThrProCysAspGluGluGly
- 811 AAGACACAGATAATGTACAAGTGGATAGAGCCCAAAATCTGCCGG LysThrGlnIleMetTyrLysTrpIleGluProLysIleCysArg
- 856 GAGGATCTCACAGATGCTATTAGATTGCCCCCTTCTGGAGAGAAG GluAspLeuThrAspAlalleArgLeuProProSerGlyGluLys
- 901 AAGGATTGTCCGCCTTGCAACCCTGGATTTTATAACAATGGATCA LysAspCysProProCysAsnProGlyPheTyrAsnAsnGlySer
- 946 TCTTCTTGCCATCCCTGTCCTCCTGGAACATTTTCAGATGGAACC S rSerCysHisProCysProProGlyThrPheS rAspGlyThr

- 991 AAAGAATGTAGACCATGTCCAGCAGGAACGGAGCCTGCACTTGGC LysGluCysArgProCysProAlaGlyThrGluProAlaLeuGly
- 1036 TTTGAATATAAATGGTGGAATGTCCTTCCTGGCAACATGAAAACT PheGluTyrLysTrpTrpAsnValLeuProGlyAsnMetLysThr
- 1126 TGGGAGGTGGCTGGAGATCATATCCAGAGTGGGGCTGGAGGTTCT TrpGluValAlaGlyAspHisIleGlnSerGlyAlaGlyGlySer
- 1171 GACAATGATTACCTGATCTTAAACTTGCATATCCCAGGATTTAAA AspAsnAspTyrLeuIleLeuAsnLeuHisIleProGlyPheLys
- 1216 CCACCAACATCTATGACTGGAGCCACGGGTTCTGAACTAGGAAGA
 ProProThrSerMetThrGlyAlaThrGlySerGluLeuGlyArg
- 1261 ATAACATTTGTCTTTGAGACCCTCTGTTCAGCTGACTGTGTTTTG
 IleThrPheValPheGluThrLeuCysSerAlaAspCysvalLeu
- 1306 TACTTCATGGTGGATATTAATAGAAAAGTACAAATGTGGTAGAA
 TyrPheMetValAspIleAsnArgLysSerThrAsnValValGlu
- 1351 TCGTGGGGTGGAACCAAAGAAAAACAAGCTTACACCCATATCATC SerTrpGlyGlyThrLysGluLysGlnAlaTyrThrHisIleIle
- 1396 TTCAAGAATGCAACTTTTACATTTACATGGGGCATTCCCAGAGAA PheLysAsnAlaThrPheThrPheThrTrpGlyIleProArgGlu
- 1441 CTAATTCAGGGTCCAAGATAATAGACGGTTCCNCCATTGACATGT LeulleGlnGlyProArg
- 1486 TTGAAGGATTTATTCCTATTCAC

Fig. 5 Continued

	10, 0.
46	CGGCCCTTCTCACACTCCTGCCCTGCTGATGTGGAACGGGGTTTCGGGGTTTCTGCAGGGCTATTGTCTGCGCTGGGGAAGGGGACAGGCCGGACCGGGACCGGACCAGCAGGACAGCT
136	GGCCTGAAGCTCAGAGCCGGGGGGGGGCGTGCGCCATGGCCCCACACTGG MetAlaProHisTr
181	GCTGTCTGGCTGCCAGCAAGGCTGTGGGCCCTGGGCATTGGCALAVALTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly
226	GCTGAGGTGTGGGAACCTTGTGCCGCGTAAGACAGTGTCTTCTAlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer
271	GGGGAGCTGGCCACGGTAGTACGGCGGTTCTCCCAGACCGGCATGGlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle
316	CAGGACTTCCTGACACTGACGCTGACGGAGCCCACTGGGCTTCTCGINAspPheLeuThrLeuThrLeuThrGluProThrGlyLeuLeu
361	TACGTGGGCGCCCGAGAGGCCCCTGTTTGCCTTCAGCATGGAGGCC TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla
406	CTGGAGCTGCAAGGAGCGATCTCCTGGGAGGCCCCCGTGGAGAAG LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys
451	AAGACTGAGTGTATCCAGAAAGGGAAGAACAACCAGACCGAGTGG LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys
496	TTCAACTTCATCCGCTTCCTGCAGCCCTACAATGCCTCCCACCTC PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu
541	TACGTCTGTGGCACCTACGCCTTCCAGCCCAAGTGCACCTACGTCTyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal
	AACATGCTCACCTTCACTTTGGAGCATGGAGAGTTTGAAGATGGGASnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly
	AAGGGCAAGTGTCCCTATGACCCAGCTAAGGGCCATGCTGGCCT LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLet
	CTTGTGGATGGTGAGCTGTACTCGGCCACACTCAACAACTTCCTCLeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnPheLeu
	GGCACGGAACCCATTATCCTGCGTAACATGGGGCCCCACCACTCCGlyThrGluProllelleLeuArgAsnMetGlyProHisHisSen
766	ATGAAGACAGAGTACCTGGCCTTTTGGCTCAACGAACCTCACTT MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPho

811 GTAGGCTCTGCCTATGTACCTGAGAGTGTGGGCAGCTTCACGGGG ValGlySerAlaTyrValProGluSerValGlySerPheThrGly

856 GACGACGACAAGGTCTACTTCTTCTTCAGGGAGCGGGCAGTGGAG AspAspAspLysValTyrPhePhePheArgGluArgAlaValGlu

- 901 TCCGACTGCTATGCCGAGCAGGTGGTGGCTCGTGTGGCCCGTGTC SerAspCysTyrAlaGluGlnValValAlaArgValAlaArgVal
- 946 TGCAAGGGCGATATGGGGGGGCGCACGGACCCTGCAGAGGAAGTGG CysLysGlyAspMetGlyGlyAlaArgThrLeuGlnArgLysTrp
- 991 ACCACGTTCCTGAAGGCGCGGCTGGCATGCTCTGCCCCGAACTGG ThrThrPheLeuLysAlaArgLeuAlaCysSerAlaProAsnTrp
- 1036 CAGCTCTACTTCAACCAGCTGCAGGCGATGCACACCCTGCAGGAC GlnLeuTyrPheAsnGlnLeuGlnAlaMetHisThrLeuGlnAsp
- 1081 ACCTCCTGGCACACACCACCTTCTTTGGGGTTTTTCAAGCACAG ThrSerTrpHisAsnThrThrPhePheGlyValPheGlnAlaGln
- 1126 TGGGGTGACATGTACCTGTCGGCCATCTGTGAGTACCAGTTGGAA
 TrpGlyAspMetTyrLeuSerAlaIleCysGluTyrGlnLeuGlu
- 1171 GAGATCCAGCGGGTGTTTGAGGGCCCCTATAAGGAGTACCATGAG GlulleGlnArgValPheGluGlyProTyrLysGluTyrHisGlu
- 1216 GAAGCCCAGAAGTGGGACCGCTACACTGACCCTGTACCCAGCCCT GluAlaGlnLysTrpAspArgTyrThrAspProValProSerPro
- 1261 CGGCCTGGCTCGTGCATTAACAACTGGCATCGGCGCCACGGCTAC ArgProGlySerCysIleAsnAsnTrpHisArgArgHisGlyTyr
- 1306 ACCAGCTCCCTGGAGCTACCCGACAACATCCTCAACTTCGTCAAG
 ThrSerSerLeuGluLeuProAspAsnIleLeuAsnPheValLys
 - 1351 AAGCACCCGCTGATGGAGGAGCAGGTGGGGCCTCGGTGGAGCCGC LysHisProLeuMetGluGluGlnValGlyProArgTrpSerArg
 - 1396 CCCCTGCTCGTGAAGAAGGGCACCAACTTCACCCACCTGGTGGCC ProLeuLeuValLysLysGlyThrAsnPheThrHisLeuValAla
 - 1441 GACCGGGTTACAGGACTTGATGGAGCCACCTATACAGTGCTGTTC AspArgValThrGlyLeuAspGlyAlaThrTyrThrValLeuPhe
 - 1486 ATTGGCACAGGAGACGGCTGGCTGCTCAAGGCTGTGAGCCTGGGG
 IleGlyThrGlyAspGlyTrpLeuLeuLysAlaValSerLeuGly
 - 1531 CCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTTGACCAGGAG ProTrpValHisLeuIleGluGluLeuGlnLeuPheAspGlnGlu
 - 1576 CCCATGAGAAGCCTGGTGCTATCTCAGAGCAAGAAGCTGCTCTTT ProMetArgSerLeuValLeuSerGlnSerLysLysLeuLeuPhe
 - 1621 GCCGGCTCCCGCTCTCAGCTGGTGCAGCTGCCCGTGGCCGACTGC AlaGlySerArgSerGlnLeuValGlnLeuProValAlaAspCys
 - 1666 ATAAAGTATCGCTCCTGTGCAGACTGTGTCCTCGCCCGGGACCCC IleLysTyrArgSerCysAlaAspCysValLeuAlaArgAspPro

Fig. 6 Continued

1711	TATTGCGCCTGGAGCGTCAACACCAGCCGCTGTGTGGCCGTGGGT
	TyrCysAlaTrpSerValAsnThrSerArgCysValAlaValGly
1756	GGCCACTTTGGATCTTTACTGATCCAGCATGTGATGACCTCGGAC
	GlyHisPheGlySerLeuLeuIleGlnHisValMetThrSerAsp
1801	ACTTCAGGCATTTGCAACCTCCGTGGCAGTAAGAAAGTCAGGCCC
	ThrSerGlyIleCysAsnLeuArgGlySerLysLysValArgPro
1846	ACTCCCAAAAACATCACGGTGGTGGCGGGCACAGACCTGGTGCTG
	ThrProLysAsnIleThrValValAlaGlyThrAspLeuValLeu
1891	CCCTGCCACCTCCCACTTGGCCCCGGGGTTCAGTGGTATTT
	ProCysHisLeuSerSerThrTrpProArgGlySerValValPhe
1936	TAAACTTGCCTTCTTCCTGTACAGGGCTGGGAAAGGCTGTGTTAG
1981	GGGAAAAAAGGAAAGGGTGGGCCTGCTGTGGACAATGGCATACT
2026	CTCTTCCAGCCCTAGGAGGAGGGCTCCTAACAGTGTAACTTATTG
2071	TGTCCCCGCGTATTTATTTGTTGTAAATATTTGAGTATTTTATA

Fig. 6 Continued

1	CGGCCCTTCTCACACTCCTGCCCTGCTGATGTGGAACGGGGTTTG
46	GGGTTCTGCAGGGCTATTGTCTGCGCTGGGGAAGGGGACAGGCCG
91	GGACCGGGACCTCCGCTCGCAGCCGGCCGCACCAGCAGGACAGCT
136	GGCCTGAAGCTCAGAGCCGGGGCGTGCGCCATGGCCCCACACTGG
	MetAlaProHisTrp
181	GCTGTCTGGCTGCTGGCAGCAAGGCTGTGGGGCCTGGGCATTGGG
	AlaValTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly
226	GCTGAGGTGTGGAACCTTGTGCCGCGTAAGACAGTGTCTTCT
	AlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer
271	GGGGAGCTGGCCACGGTAGTACGGCGGTTCTCCCAGACCGGCATC
	GlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle
316	CAGGACTTCCTGACACTGACGCTGACGGAGCCCACTGGGCTTCTG
	GlnAspPheLeuThrLeuThrGluProThrGlyLeuLeu
361	TACGTGGGCGCCCGAGAGGCCCTGTTTGCCTTCAGCATGGAGGCC
	TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla
406	CTGGAGCTGCAAGGAGCGATCTCCTGGGAGGCCCCCGTGGAGAAG
	LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys
451	
	LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys
496	
	PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu
541	
-	TyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal
586	AACATGCTCACCTTCACTTTGGAGCATGGAGAGTTTGAAGATGGG
	AsnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly
631	AAGGGCAAGTGTCCCTATGACCCAGCTAAGGGCCATGCTGGCCTT
	LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLeu
676	CTTGTGGATGGTGAGCTGTACTCGGCCACACTCAACAACTTCCTG
704	LeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnPheLeu
721	GGCACGGAACCCATTATCCTGCGTAACATGGGGCCCCACCACTCC
	GlyThrGluProIleIleLeuArgAsnMetGlyProHisHisSer
766	ATGAAGACAGAGTACCTGGCCTTTTGGCTCAACGAACCTCACTTT
	MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPhe

811 GTAGGCTCTGCCTATGTACCTGAGAGTGTGGGCAGCTTCACGGGG ValGlySerAlaTyrValProGluSerValGlySerPheThrGly

856 GACGACGACAAGGTCTACTTCTTCTTCAGGGAGCGGGCAGTGGAG

- 901 TCCGACTGCTATGCCGAGCAGGTGGTGGCTCGTGTGGCCCGTGTC SerAspCysTyrAlaGluGlnValValAlaArgValAlaArgVal
- 946 TGCAAGGGCGATATGGGGGGGCGCACGGACCCTGCAGAGGAAGTGG CysLysGlyAspMetGlyGlyAlaArgThrLeuGlnArgLysTrp
- 991 ACCACGTTCCTGAAGGCGCGGCTGGCATGCTCTGCCCCGAACTGG ThrThrPheLeuLysAlaArgLeuAlaCysSerAlaProAsnTrp
- 1036 CAGCTCTACTTCAACCAGCTGCAGGCGATGCACACCCTGCAGGAC GlnLeuTyrPheAsnGlnLeuGlnAlaMetHisThrLeuGlnAsp
- 1081 ACCTCCTGGCACAACACCACCTTCTTTGGGGTTTTTCAAGCACAG ThrSerTrpHisAsnThrThrPhePheGlyValPheGlnAlaGln
- 1126 TGGGGTGACATGTACCTGTCGGCCATCTGTGAGTACCAGTTGGAA TrpGlyAspMetTyrLeuSerAlaIleCysGluTyrGlnLeuGlu
- 1171 GAGATCCAGCGGGTGTTTGAGGGCCCCTATAAGGAGTACCATGAG GlulleGlnArgValPheGluGlyProTyrLysGluTyrHisGlu
- 1216 GAAGCCCAGAAGTGGGACCGCTACACTGACCCTGTACCCAGCCCT GlualaGlnLysTrpAspArgTyrThrAspProValProSerPro
- 1261 CGGCCTGGCTCGTGCATTAACAACTGGCATCGGCGCCACGGCTAC ArgProGlySerCysIleAsnAsnTrpHisArgArgHisGlyTyr
- 1306 ACCAGCTCCCTGGAGCTACCCGACAACATCCTCAACTTCGTCAAG ThrSerSerLeuGluLeuProAspAsnIleLeuAsnPheValLys
- 1351 AAGCACCCGCTGATGGAGGAGCAGGTGGGGCCCTCGGTGGAGCCGC
 LyshisProLeuMetGluGluGlnValGlyProArgTrpSerArg
- 1396 CCCCTGCTCGTGAAGAAGGGCACCAACTTCACCCACCTGGTGGCC ProLeuLeuValLysLysGlyThrAsnPheThrHisLeuValAla
- 1441 GACCGGGTTACAGGACTTGATGGAGCCACCTATACAGTGCTGTTC AspArgValThrGlyLeuAspGlyAlaThrTyrThrValLeuPhe
- 1486 ATTGGCACAGGAGACGGCTGGCTGCTCAAGGCTGTGAGCCTGGGG IleGlyThrGlyAspGlyTrpLeuLeuLysAlaValSerLeuGly
- 1531 CCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTTGACCAGGAG ProTrpValHisLeuIleGluGluLeuGlnLeuPheAspGlnGlu
- 1576 CCCATGAGAAGCCTGGTGCTATCTCAGAGCAAGAAGCTGCTCTTT ProMetArgSerLeuValLeuSerGlnSerLysLysLeuLeuPhe
- 1621 GCCGGCTCCCGCTCTCAGCTGGTGCAGCTGCCCGTGGCCGACTGC AlaGlySerArgSerGlnLeuValGlnLeuProValAlaAspCys
- 1666 ATAAAGTATCGCTCCTGTGCAGACTGTGTCCTCGCCCGGGACCCC IleLysTyrArgSerCysAlaAspCysValLeuAlaArgAspPro

Fig. 7 Continued

مصاحمت ومصاد المتنارة

1711 TATTGCGCCTGGAGCGTCAACACCAGCCGCTGTGTGGCCGTGGGT TyrCysAlaTrpSerValAsnThrSerArgCysValAlaValGly 1756 GGCCACTTTGGATCTTTACTGATCCAGCATGTGATGACCTCGGAC GlyHisPheGlySerLeuLeuIleGlnHisValMetThrSerAsp 1801 ACTTCAGGCATTTGCAACCTCCGTGGCAGTAAGATACAGTCAGGC ThrSerGlyIleCysAsnLeuArgGlySerLysIleGlnSerGly 1846 CCACTNCCCAAAAACATCACGGTGGTGGCGGGCACAGACCTGGTG ProLeuProLysAsnIleThrValValAlaGlyThrAspLeuVal 1891 CTGCCCTGCCACCTCTCCTACTTGGCCCTGCCCGACTCCAAC LeuProCysHisLeuSerSerAsnLeuAlaLeuProAspSerAsn 1936 CCCGAGGAGTCATCAGTATGAGGGGAACCCCCACCGCGTCGGCGG ProGluGluSerSerVal 1981 ANAGCGTGGGAGGTGTAGCTCCTACTTTTGCACAGGCACCAGCTA 2026 TCTCAGGGACATGGCACGGGCACCTGCTCTGTCTGGGACAGATAC 2116 GGCACTGCACTTGGTGTGGTCACCAGGGCACCAGCTCGCAGAAGG 2161 CATCTTCCTCTCTGTGAATCACAGACACGCGGGACCCCCAGCC

Fig. 7 Continued

2206 GCCAAAATTTTCAAGGCAGAAGTTNAAGATGTGTGTTTGNTGTAT

2251 TTGACATGTGTTTGTGTGTGTGTGTGTGTGTGTG

- 1 ACCGACGTCGAATATCCATGCATCCGCGTGCAGGTGGCAGACGGA
- 46 CTCCGGCGGAATGGGGGGTGTGGCTCCCCCAGGGTCCCCAGG
- 91 GTGGGAGAGCGGCTCCGCGGCCACCGATGCCCGGACCCCCTCTGT
- 136 CTTCTGCTAGACATGCTCTTCCTCTCGTTTCATGCAGGCTCTTGG
 MetLeuPheLeuSerPheHisAlaGlySerTrp
- 181 GAAAGCTGGTGCTGCTGCTGCTGATTCCCGCCGACAGACCTTGG GluSerTrpCysCysCysCysLeuIleProAlaAspArgProTrp
- 226 GACCGGGGCCAACACTGGCAGCTGGAGATGGCGGACACGAGATCC AspArgGlyGlnHisTrpGlnLeuGluMetAlaAspThrArgSer
- 271 GTGCACGAGACTAGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGT ValHisGluThrArgPheGluAlaAlaValLysValIleGlnSer
- 361 AAATTTTATAGCTTCTATAAGCAGGCAACTGAAGGACCCTGTAAA LysPheTyrSerPheTyrLysGlnAlaThrGluGlyProCysLys
- 406 CTTTCAAGGCCTGGATTTTGGGATCCTATTGGAAGATATAAATGG LeuSerArgProGlyPheTrpAspProIleGlyArgTyrLysTrp
- 451 GATGCTTGGAGTTCACTGGGTGATATGACCAAAGAGGAAGCCATG AspAlaTrpSerSerLeuGlyAspMetThrLysGluGluAlaMet
- 496 ATTGCATATGTTGAAGAAATGAAAAGATTATTGAAACTATGCCA IleAlaTyrValGluGluMetLysLysIleIleGluThrMetPro
- 541 ATGACTGAGAAAGTTGAAGAATTGCTGCGTGTCATAGGTCCATTT MetThrGluLysValGluGluLeuLeuArgValIleGlyProPhe
- 586 TATGAAATTGTCGAGGACAAAAAGAGTGGCAGGAGTTCTGATATA
 TyrGluIleValGluAspLysLysSerGlyArgSerSerAspIle
- 631 ACCTCAGTCCGACTGGAGAAAATCTCTAAATGTTTAGAAGATCTT ThrSerValArgLeuGluLysIleSerLysCysLeuGluAspLeu
- 676 GGTAATGTTCTCACTTCTACTCCAAACGCCAAAACCGTTAATGGT GlyAsnValLeuThrSerThrProAsnAlaLysThrValAsnGly
- 721 AAAGCTGAAAGCAGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAG LysAlaGluSerSerAspSerGlyAlaGluSerGluGluGluGlu
- 766 GCCCAAGAAGAAGTGAAAGGAGCAGAACAAAGTGATAATGATAAG AlaGlnGluGluValLysGlyAlaGluGlnSerAspAsnAspLys
- 811 AAAATGATGAAGAAGTCAGCAGACCATAAGAATTTGGAAGTCATT LysMetMetLysLysSerAlaAspHisLysAsnLeuGluVallle

1

17/37

856	GTCACTAATGGCTATGATAAAGATGGCTTTGTTCAGGATATACAG
	ValThrAsnGlyTyrAspLysAspGlyPheValGlnAspIleGln

- 901 AATGACATTCATGCCAGTTCTTCCCTGAATGGCAGAAGCACTGAA AsnAsplleHisAlaSerSerSerLeuAsnGlyArgSerThrGlu
- 946 GAAGTAAAGCCCATTGATGAAAACTTGGGGCAAACTGGAAAATCT GluValLysProlleAspGluAsnLeuGlyGlnThrGlyLysSer
- 991 GCTGTTTGCATTCACCAAGATATAAATGATGATCATGTTGAAGAT AlaValCysIleHisGlnAspIleAsnAspAspHisValGluAsp
- 1036 GTTACAGGAATTCAGCATTTGACAAGCGATTCAGACAGTGAAGTT ValThrGlylleGlnHisLeuThrSerAspSerAspSerGluVal
- 1081 TACTGTGATTCTATGGAACAATTTGGACAAGAAGAGTCTTTAGAC TyrCysAspSerMetGluGlnPheGlyGlnGluGluSerLeuAsp
- 1126 AGCTTTACGTCCAACAATGGACCATTTCAGTATTACTTGGGTGGT SerPheThrSerAsnAsnGlyProPheGlnTyrTyrLeuGlyGly
- 1171 CATTCCAGTCAACCCATGGAAAATTCTGGATTTCGTGAAGATATT HisSerSerGlnProMetGluAsnSerGlyPheArgGluAspIle
- 1216 CAAGTACCTCCTGGAAATGGCAACATTGGGAATATGCAGGTGGTT GlnValProProGlyAsnGlyAsnIleGlyAsnMetGlnValVal
- 1261 GCAGTTGAAGGAAAAGGTGAAGTCAAGCATGGAGGAGAAGATGGC AlaValGluGlyLysGlyGluValLysHisGlyGlyGluAspGly
- 1306 AGGAATAACAGCGGAGCACCACACCGGGAGAAGCGAGGCGGAGAA ArgAsnAsnSerGlyAlaProHisArgGluLysArgGlyGlyGlu
- 1351 ACTGACGAATTCTCTAATGTTAGAAGAGGAAGAGGACATAGGATG ThrAspGluPheSerAsnValArgArgGlyArgGlyHisArgMet
- 1396 CAACACTTGAGCGAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGA GlnHisLeuSerGluGlyThrLysGlyArgGlnValGlySerGly
- 1441 GGTGATGGGGAGCGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGC GlyAspGlyGluArgTrpGlySerAspArgGlySerArgGlySer
- 1486 CTCAATGAGCAGATCGCCCTCGTGCTGATGAGACTGCAGGAGGAC LeuAsnGluGlnIleAlaLeuValLeuMetArgLeuGlnGluAsp
- 1531 ATGCAGAATGTCCTTCAGAGACTGCAGAAACTGGAAATGCTGACT MetGlnAsnValLeuGlnArgLeuGlnLysLeuGluMetLeuThr
- 1576 GCTTTGCAGGCAAAATCATCAACATCAACATTGCAGACTGCTCCT AlaLeuGlnAlaLysSerSerThrSerThrLeuGlnThrAlaPro
- 1621 CAGCCCACCTCACAGAGACCATCTTGGTGGCCCTTCGAGATGTCT GlnProThrs rGlnArgProSerTrpTrpProPheGluMetS r

Fig. 8 Continued

- 1666 CCTGGTGTGCTAACGTTTGCCATCATATGGCCTTTTATTGCACAG ProGlyValLeuThrPheAlaIleIleTrpProPheIleAlaGln
- 1711 TGGTTGGTGTATTTATACTATCAAAGAAGAAGAAAACTGAAC TrpLeuValTyrLeuTyrTyrGlnArgArgArgArgLysLeuAsn
- 1756 TGAGGGAAAATGGTGTTTTCCTCAAGAAGACTACTGGAACTGGAT
- 1891 TGTACATATATACACATATATATTTTGCACTACACAAACG

Fig. 8 Continued

- 1 CATTCTAGCTGCCTGCTGCCTCCGCAGCGTCCCCCAGCTCTCCC
- 46 TGTGCTAACTGCCTGCACCTTGGACAGAGCGGGTGCGCAAATCAG
- 91 AAGGATTAGTTGGGACCTGCCTTGGCGACCCCATGGCATCCCCCA MetAlaSerProA
- 136 GAACCGTAACTATTGTGGCCCTCTCAGTGGCCCTGGGACTCTTCT rgThrValThrIleValAlaLeuSerValAlaLeuGlyLeuPheP
- 181 TTGTTTTCATGGGGACTATCAAGCTGACCCCCAGGCTCAGCAAGG heValPheMetGlyThrIleLysLeuThrProArgLeuSerLysA
- 226 ATGCCTACAGTGAGATGAAACGTGCTTACAAGAGCTATGTTCGAG spAlaTyrSerGluMetLysArgAlaTyrLysSerTyrValArgA
- 271 CCCTCCCTCTGCTGAAGAAAATGGGGATCAATTCCATTCTCCTCC laLeuProLeuLeuLysLysMetGlylleAsnSerIleLeuLeuA
- 316 GAAAAAGCATTGGTGCCCTTGAAGTGGCCTGTGGCATCGTCATGA rgLysSerIleGlyAlaLeuGluValAlaCysGlyIleValMetT
- 361 CCCTTGTGCCTGGGCGTCCCAAAGATGTGGCCAACTTCTTCCTAC hrLeuValProGlyArgProLysAspValAlaAsnPhePheLeuL
- 406 TGTTGCTGGTGTTGGCTGTGCTCTTCTTCCACCAGCTGGTCGGTG euLeuLeuValLeuAlaValLeuPhePheHisGlnLeuValGlyA
- 451 ATCCTCTCAAACGCTACGCCCATGCTCTGGTGTTTTGGAATCCTGC spProLeuLysArgTyrAlaHisAlaLeuValPheGlyIleLeuL
- 496 TCACTTGCCGCCTGCTGATTGCTCGCAAGCCCGAAGACCGGTCTT euThrCysArgLeuLeuIleAlaArgLysProGluAspArgSerS
- 541 CTGAGAAGAAGCCTTTGCCAGGGAATGCTGAGGAGCAACCCTCCT erGluLysLysProLeuProGlyAsnAlaGluGluGlnProSerL
- 586 TATATGAGAAGGCCCCTCAGGGCAAAGTGAAGGTGTCATAGAAAA euTyrGluLysAlaProGlnGlyLysValLysValSer

Fig. 9

1 46 91 136 181 226	TGCGCCCTCTGTCTGGCACTCCCTAGTGAGATGAACCCGGTACCT CAGATGGAAATGCAGAAATCACCCGTCTTCTGCGTCGCTCACGCT GGGAGCTGTAGACCAGAGCTGTTCCTATTCGGCCATCTTGGCTCC TCCCTCGAAAGATTATCACTTTGAATATACGGAATGTGATAGCAG TGGCTCCAGGTGGAGAGTTGCCATTCCAAATTCTGCAGTGGACTG CTCTGGCCTGCCTGACCCAGTGAGAGGCAAAGAATGCACTTTCTC
271	CTGTGCTTCTGGAGAGTATCTAGAAATGAAGAACCAGGTATGCAG MetLysAsnGlnValCysSe
316	TAAGTGTGGTGAAGGCACCTATTCCTTGGGCAGTGGCATCAAATT rLysCysGlyGluGlyThrTyrSerLeuGlySerGlyIleLysPh
361	TGATGAATGGGATGAATTGCCGGCAGGATTTTCTAACATCGCAAC eAspGluTrpAspGluLeuProAlaGlyPheSerAsnIleAlaTh
406	ATTCATGGACACTGTGGTGGGCCCTTCTGACAGCAGGCCAGACGG rPheMetAspThrValValGlyProSerAspSerArgProAspGl
451	CTGTAACAACTCTTCTTGGATCCCTCGTGGAAACTACATAGAATC yCysAsnAsnSerSerTrpIleProArgGlyAsnTyrIleGluSe
496	TAATCGTGATGACTGCACGGTGTCTTTGATCTATGCTGTGCACCT rAsnArgAspAspCysThrValSerLeuIleTyrAlaValHisLe
541	TAAGAAGTCAGGCTATGTCTTCTTTGAGTACCAGTATGTCGACAA uLysLysSerGlyTyrValPhePheGluTyrGlnTyrValAspAs
586	CAACATCTTCTTTGAGTTCTTTATTCAAAATGATCAGTGCCAGGA nAsnIlePhePheGluPhePheIleGlnAsnAspGlnCysGlnGl
631	GATGGACACCACCACTGACAAGTGGGTAAAACTTACAGACAATGGuMetAspThrThrThrAspLysTrpValLysLeuThrAspAsnGl
676	AGAATGGGGCTCTCATTCTGTAATGCTGAAATCAGGCACAAACAT yGluTrpGlySerHisSerValMetLeuLysSerGlyThrAsnIl
721	ACTCTACTGGAGAACTACAGGCATCCTTATGGGTTCTAAGGCGGT eLeuTyrTrpArgThrThrGlyIleLeuMetGlySerLysAlaVa
	CAAGCCTGTGCTGGTAAAAAATATCACAATTGAAGGGGTGGCGTA llysProValLeuValLysAsnIleThrIleGluGlyValAlaTy
811	CACATCAGAATGTTTTCCTTGCAAGCCAGGCACATTCAGCAACAA rThrSerGluCysPheProCysLysProGlyThrPheSerAsnLy

856 ACCAGGTTCATTCAACTGCCAGGTGTGTCCCAGAAACACCTATTC sProGlySerPheAsnCysGlnValCysProArgAsnThrTyrSe

901 TGAGAAAGGAGCCAAAGAATGTATAAGGTGTAAAGACGACTCTCA rGluLysGlyAlaLysGluCysIleArgCysLysAspAspSerGl

- 991 TACCACAAAAGACTATTTCCAGATCCATACTCCATGTGATGAAGA sThrThrLysAspTyrPheGlnIleHisThrProCysAspGluGl
- 1036 AGGAAAGACACAGATAATGTACAAGTGGATAGAGCCCAAAATCTG uGlyLysThrGlnIleMetTyrLysTrpIleGluProLysIleCy
- 1081 CCGGGAGGATCTCACAGATGCTATTAGATTGCCCCCTTCTGGAGA sArgGluAspLeuThrAspAlaIleArgLeuProProSerGlyGl
- 1126 GAAGAAGGATTGTCCGCCTTGCAACCCTGGATTTTATAACAATGG uLysLysAspCysProProCysAsnProGlyPheTyrAsnAsnGl
- 1171 ATCATCTTCTTGCCATCCCTGTCCTCCTGGAACATTTTCAGATGG ySerSerSerCysHisProCysProProGlyThrPheSerAspGl
- 1216 AACCAAAGAATGTAGACCATGTCCAGCAGGAACGGAGCCTGCACT yThrLysGluCysArgProCysProAlaGlyThrGluProAlaLe
- 1261 TGGCTTTGAATATAAATGGTGGAATGTCCTTCCTGGCAACATGAA uGlyPheGluTyrLysTrpTrpAsnValLeuProGlyAsnMetLy
- 1306 AACTTCCTGCTTCAATGTTGGGAATTCAAAGTGCGATGGAATGAA sThrSerCysPheAsnValGlyAsnSerLysCysAspGlyMetAs
- 1351 TGGTTGGGAGGTGGCTGGAGATCATATCCAGAGTGGGGCTGGAGG nGlyTrpGluValAlaGlyAspHisIleGlnSerGlyAlaGlyGl
- 1396 TTCTGACAATGATTACCTGATCTTAAACTTGCATATCCCAGGATT ySerAspAsnAspTyrLeuIleLeuAsnLeuHisIleProGlyPh
- 1441 TAAACCACCAACATCTATGACTGGAGCCACGGGTTCTGAACTAGG eLysProProThrSerMetThrGlyAlaThrGlySerGluLeuGl
- 1486 AAGAATAACATTTGTCTTTGAGACCCTCTGTTCAGCTGACTGTGT YArgIleThrPheValPheGluThrLeuCysSerAlaAspCysVa
- 1531 TTTGTACTTCATGGTGGATATTAATAGAAAAAGTACAAATGTGGT lleuTyrPheMetValAspIleAsnArgLysSerThrAsnValVa
- 1576 AGAATCGTGGGGTGGAACCAAAGAAAAACAAGCTTACACCCATAT lGluSerTrpGlyGlyThrLysGluLysGlnAlaTyrThrHisIl
- 1621 CATCTTCAAGAATGCAACTTTTACATTTACATGGGGCATTCCCAG ellePheLysAsnAlaThrPheThrPheThrTrpGlylleProAr
- 1666 AGAACTAATTCAGGGTCCAAGATAATAGACGGTTCCNCCATTGAC gGluLeuIleGlnGlyProArg
- 1711 ATGTTTGAAGGATTTATTCCTATTCAC

Fig. 10 Continued

Ţ	CGGCCCTTCTCACACTCCTGCCCTGCTGATGTGGAACGGGGTTTG
46	GGGTTCTGCAGGGCTATTGTCTGCGCTGGGGAAGGGGACAGGCCG
91	GGACCGGGACCTCCGCTCGCAGCCGGCCGCACCAGCAGGACAGCT
136	GGCCTGAAGCTCAGAGCCGGGGCGTGCGCCATGGCCCCACACTGG
170	MetAlaProHisTrp
181	GCTGTCTGGCTGCCAGCAAGGCTGTGGGGCCTGGGCATTGGG
	AlaValTrpLeuLeuAlaAlaArgLeuTrpGlyLeuGlyIleGly
226	GCTGAGGTGTGGAACCTTGTGCCGCGTAAGACAGTGTCTTCT
	AlaGluValTrpTrpAsnLeuValProArgLysThrValSerSer
271	GGGGAGCTGGCCACGGTAGTACGGCGGTTCTCCCAGACCGGCATC
	${\tt GlyGluLeuAlaThrValValArgArgPheSerGlnThrGlyIle}$
316	CAGGACTTCCTGACACTGACGCTGACGGAGCCCACTGGGCTTCTG
	GlnAspPheLeuThrLeuThrGluProThrGlyLeuLeu
361	TACGTGGGCGCCCGAGAGGCCCTGTTTGCCTTCAGCATGGAGGCC
-	${\tt TyrValGlyAlaArgGluAlaLeuPheAlaPheSerMetGluAla}$
406	CTGGAGCTGCAAGGAGCGATCTCCTGGGAGGCCCCCGTGGAGAAG
	LeuGluLeuGlnGlyAlaIleSerTrpGluAlaProValGluLys
451	AAGACTGAGTGTATCCAGAAAGGGAAGAACAACCAGACCGAGTGC
171	LysThrGluCysIleGlnLysGlyLysAsnAsnGlnThrGluCys
496	TTCAACTTCATCCGCTTCCTGCAGCCCTACAATGCCTCCCACCTG
*20	PheAsnPheIleArgPheLeuGlnProTyrAsnAlaSerHisLeu
541	TACGTCTGTGGCACCTACGCCTTCCAGCCCAAGTGCACCTACGTC
J	TyrValCysGlyThrTyrAlaPheGlnProLysCysThrTyrVal
586	AACATGCTCACCTTCACTTTGGAGCATGGAGAGTTTGAAGATGGG
500	AsnMetLeuThrPheThrLeuGluHisGlyGluPheGluAspGly
631	AAGGGCAAGTGTCCCTATGACCCAGCTAAGGGCCATGCTGGCCTT
002	LysGlyLysCysProTyrAspProAlaLysGlyHisAlaGlyLeu
676	CTTGTGGATGGTGAGCTGTACTCGGCCACACTCAACAACTTCCTG
	LeuValAspGlyGluLeuTyrSerAlaThrLeuAsnAsnPheLeu
721	GGCACGGAACCCATTATCCTGCGTAACATGGGGCCCCACCACTCC
	GlyThrGluProIleIleLeuArgAsnMetGlyProHisHisSer
766	ATGAAGACAGAGTACCTGGCCTTTTGGCTCAACGAACCTCACTTT
, 00	MetLysThrGluTyrLeuAlaPheTrpLeuAsnGluProHisPhe
811	GTAGGCTCTGCCTATGTACCTGAGAGTGTGGGCAGCTTCACGGGG
711	ValGlySerAlaTyrValProGluSerValGlySerPheThrGly
256	GACGACGACAAGGTCTACTTCTTCTTCAGGGAGCGGGCAGTGGAG
0.50	AspAspAspLysValTyrPhePhePheArgGluArgAlaValGlu

Fig. 11

901	TCCGACTGCTATGCCGAGCAGGTGGTGGCTCGTGTGGCCCGTGTC SerAspCysTyrAlaGluGlnValValAlaArgValAlaArgVal
946	TGCAAGGGCGATATGGGGGGCGCACGGACCCTGCAGAGGAAGTGG CysLysGlyAspMetGlyGlyAlaArgThrLeuGlnArgLysTrp
991	ACCACGTTCCTGAAGGCGCGGCTGGCATGCTCTGCCCCGAACTGG ThrThrPheLeuLysAlaArgLeuAlaCysSerAlaProAsnTrp
1036	CAGCTCTACTTCAACCAGCTGCAGGCGATGCACACCCTGCAGGAC GlnLeuTyrPheAsnGlnLeuGlnAlaMetHisThrLeuGlnAsp
1081	ACCTCCTGGCACACACCACCTTCTTTGGGGTTTTTCAAGCACAG ThrSerTrpHisAsnThrThrPhePheGlyValPheGlnAlaGln
1126	TGGGGTGACATGTACCTGTCGGCCATCTGTGAGTACCAGTTGGAA TrpGlyAspMetTyrLeuSerAlaIleCysGluTyrGlnLeuGlu
1171	GAGATCCAGCGGGTGTTTGAGGGCCCCTATAAGGAGTACCATGAG GluileGlnArgValPheGluGlyProTyrLysGluTyrHisGlu
1216	
1261	
1306	ACCAGCTCCCTGGAGCTACCCGACAACATCCTCAACTTCGTCAAG ThrSerSerLeuGluLeuProAspAsnIleLeuAsnPheValLys
1351	AAGCACCCGCTGATGGAGGAGCAGGTGGGGCCTCGGTGGAGCCGC LyshisProLeuMetGluGluGlnValGlyProArgTrpSerArg
1396	CCCCTGCTCGTGAAGAAGGGCACCAACTTCACCCACCTGGTGGCC ProLeuLeuValLysLysGlyThrAsnPheThrHisLeuValAla
1441	GACCGGGTTACAGGACTTGATGGAGCCACCTATACAGTGCTGTTC AspArgValThrGlyLeuAspGlyAlaThrTyrThrValLeuPhe
1486	ATTGGCACAGGAGACGGCTGGCTGCTCAAGGCTGTGAGCCTGGGG IleGlyThrGlyAspGlyTrpLeuLeuLysAlaValSerLeuGly
1531	CCCTGGGTTCACCTGATTGAGGAGCTGCAGCTGTTTGACCAGGAG ProTrpValHisLeuIleGluGluLeuGlnLeuPheAspGlnGlu
1576	CCCATGAGAAGCCTGGTGCTATCTCAGAGCAAAAAGCTGCTCTTTProMetArgSerLeuValLeuSerGlnSerLysLysLeuLeuPhe
1621	GCCGGCTCCCGCTCTCAGCTGGTGCAGCTGCCCGTGGCCGACTGCAlaGlySerArgSerGlnLeuValGlnLeuProValAlaAspCys

Fig. 11 Continued

1666 ATTAAGTATCGCTCCTGTGCAGACTGTGTCCTCGCCCGGGACCCC IleLysTyrArgSerCysAlaAspCysValLeuAlaArgAspPro

- 1711 TATTGCGCCTGGAGCGTCAACACCAGCCGCTGTGTGGCCGTGGGT TyrCysAlaTrpSerValAsnThrSerArgCysValAlaValGly
- 1756 GGCCACTCTGGATCTCTACTGATCCAGCATGTGATGACCTCGGAC GlyHisSerGlySerLeuLeuIleGlnHisValMetThrSerAsp
- 1801 ACTTCAGGCATCTGCAACCTCCGTGGCAGTAAGAAAGTCAGGCCC ThrSerGlyIleCysAsnLeuArgGlySerLysLysValArgPro
- 1846 ACTCCCAAAAACATCACGGTGGTGGCGGGCACAGACCTGGTGCTG ThrProLysAsnIleThrValValAlaGlyThrAspLeuValLeu
- 1891 CCCTGCCACCTCTCCTCCACTTGGCCCCGGGGTTCAGTGGTATTT ProCysHisLeuSerSerThrTrpProArgGlySerValValPhe
- 1936 TATACTTGCCTTCTTCCTGTACAGGGCTGGGAAAGGCTGTGTGAG
 TyrThrCysLeuLeuProValGlnGlyTrpGluArgLeuCysGlu
- 1981 GGGAAAAAAGGAAAGGGTGGGCCTGCTGTGGACAATGGCATACT GlyLysLysArgLysGlyTrpAlaCysCysGlyGlnTrpHisThr
- 2026 CTCTTCCAGCCCTAGGAGGAGGGCTCCTAACAGTGTAACTTATTG
 LeuPheGlnPro
- 2071 TGTCCCCGCGTATTTATTTGTTGTAAATATTTGAGTATTTTATA

Fig. 11 Continued

- 1 CGCTCCATGTATNAGTTTCATGCAGGCTCTTGGGAAAGCTGGTGC MetTyr---PheHisAlaGlySerTrpGluSerTrpCys
- 46 TGCTGCTGCCTGATTCCCGCCGACAGACCTTGGGACCGGGGCCAA CysCysCysLeuIleProAlaAspArgProTrpAspArgGlyGln
- 91 CACTGGCAGCTGGAGATGGCGGACACGAGATCCGTGCACGAGACT HisTrpGlnLeuGluMetAlaAspThrArgSerValHisGluThr
- 136 AGGTTTGAGGCGGCCGTGAAGGTGATCCAGAGTTTGCCGAAGAAT ArgPheGluAlaAlaValLysValIleGlnSerLeuProLysAsn
- 181 GATTCATTCCAGCCAACAAATGAAATGATGCTTAAATTTTATAGC AspSerPheGlnProThrAsnGluMetMetLeuLysPheTyrSer
- 226 TTCTATAAGCAGGCAACTGAAGGACCCTGTAAACTTTCAAGGCCT PheTyrLysGlnAlaThrGluGlyProCysLysLeuSerArgPro
- 271 GGATTTTGGGATCCTATTGGAAGATATAAATGGGATGCTTGGAGT GlyPheTrpAspProIleGlyArgTyrLysTrpAspAlaTrpSer
- 316 TCACTGGGTGATATGACCAAAGAGGAAGCCATGATTGCATATGTT SerLeuGlyAspMetThrLysGluGluAlaMetIleAlaTyrVal
- 361 GAAGAAATGAAAAAGATTATTGAAACTATGCCAATGACTGAGAAA GluGluMetLysLysIleIleGluThrMetProMetThrGluLys
- 406 GTTGAAGAATTGCTGCGTGTCATAGGTCCATTTTATGAAATTGTC ValGluGluLeuLeuArgVallleGlyProPheTyrGluIleVal
- 451 GAGGACAAAAGAGTGGCAGGAGTTCTGATATAACCTCAGTCCGA GluAspLysLysSerGlyArgSerSerAspIleThrSerValArg
 - 496 CTGGAGAAAATCTCTAAATGTTTAGAAGATCTTGGTAATGTTCTC LeuGluLysIleSerLysCysLeuGluAspLeuGlyAsnValLeu
 - 541 ACTTCTACTCCAAACGCCAAAACCGTTAATGGTAAAGCTGAAAGC ThrSerThrProAsnAlaLysThrValAsnGlyLysAlaGluSer
 - 586 AGTGACAGTGGAGCCGAGTCTGAGGAAGAAGAGGCCCCAAGAAGAA SerAspSerGlyAlaGluSerGluGluGluGluAlaGlnGluGlu
 - 631 GTGAAAGGAGCAGAACAAAGTGATAATGATAAGAAAATGATGAAG ValLysGlyAlaGluGlnSerAspAsnAspLysLysMetMetLys
 - 676 AAGTCAGCAGACCATAAGAATTTGGAAGTCATTGTCACTAATGGC LysSerAlaAspHisLysAsnLeuGluValIleValThrAsnGly
 - 721 TATGATAAAGATGGCTTTGTTCAGGATATACAGAATGACATTCAT TyrAspLysAspGlyPheValGlnAspIleGlnAsnAspIleHis
 - 766 GCCAGTTCTTCCCTGAATGGCAGAAGCACTGAAGAAGTAAAGCCC Alas rserserLeuAsnGlyArgSerThrGluGluValLysPro

- 811 ATTGATGAAAACTTGGGGCAAACTGGAAAATCTGCTGTTTGCATT IleAspGluAsnLeuGlyGlnThrGlyLysSerAlaValCysIle
- 856 CACCAAGATATAAATGATGATCATGTTGAAGATGTTACAGGAATT HisGlnAsplleAsnAspAspHisValGluAspValThrGlyIle
- 901 CAGCATTTGACAAGCGATTCAGACAGTGAAGTTTACTGTGATTCT GlnHisLeuThrSerAspSerAspSerGluValTyrCysAspSer
- 946 ATGGAACAATTTGGACAAGAAGAGTCTTTAGACAGCTTTACGTCC MetGluGlnPheGlyGlnGluGluSerLeuAspSerPheThrSer
- 991 AACAATGGACCATTTCAGTATTACTTGGGTGGTCATTCCAGTCAA AsnAsnGlyProPheGlnTyrTyrLeuGlyGlyHisSerSerGln
- 1036 CCCATGGAAAATTCTGGATTTCGTGAAGATATTCAAGTACCTCCT ProMetGluAsnSerGlyPheArgGluAspIleGlnValProPro
- 1081 GGAAATGGCAACATTGGGAATATGCAGGTGGTTGCAGTTGAAGGA GlyAsnGlyAsnIleGlyAsnMetGlnValValAlaValGluGly
- 1126 AAAGGTGAAGTCAAGCATGGAGGAGAAGATGGCAGGAATAACAGC LysGlyGluValLysHisGlyGlyGluAspGlyArgAsnAsnSer
- 1171 GGAGCACCACACCGGGAGAAGCGAGGCGGAGAAACTGACGAATTC GlyAlaProHisArgGluLysArgGlyGlyGluThrAspGluPhe
- 1216 TCTAATGTTAGAAGAGGAAGAGGACATAGGATGCAACACTTGAGC SerAsnValArgArgGlyArgGlyHisArgMetGlnHisLeuSer
- 1261 GAAGGAACCAAGGGCCGGCAGGTGGGAAGTGGAGGTGATGGGGAG GluGlyThrLysGlyArgGlnValGlySerGlyGlyAspGlyGlu
- 1306 CGCTGGGGCTCCGACAGAGGGTCCCGAGGCAGCCTCAATGAGCAG ArgTrpGlySerAspArgGlySerArgGlySerLeuAsnGluGln
- 1351 ATCGCCCTCGTGCTGATGAGACTGCAGGAGGACATGCAGAATGTC IleAlaLeuValLeuMetArgLeuGlnGluAspMetGlnAsnVal
- 1396 CTTCAGAGACTGCAGAAACTGGAAACGCTGACTGCTTTGCAGGCA LeuGlnArgLeuGlnLysLeuGluThrLeuThrAlaLeuGlnAla
- 1441 AAATCATCAACATCAACATTGCAGACTGCTCCTCAGCCCACCTCA LysSerSerThrSerThrLeuGlnThrAlaProGlnProThrSer
- 1486 CAGAGACCATCTTGGTGGCCCTTCGAGATGTCTCCTGGTGTGCTA GlnArgProSerTrpTrpProPheGluMetSerProGlyValLeu

Fig. 12 Continued

- 1576 TTATACTATCAAAGAAGGAGAAGAAAACTGAACTGAGGAAAATGG LeuTyrTyrGlnArgArgArgArgLysLeuAsn
- 1621 TGTTTTCCTCAAGAAGACTACTGGAACTGGATGACCTCAGAATGA
- 1666 ACTGGATTGTGGTGTTCACAAGAAAATCTTAGTTTGTGATGATTA
- 1711 CATTGCTTTTTGTTGTCCAGTAGTTTAGTTTGTGTACATATATAC
- 1756 ACATATATTTTGCACTACACAAACGATAACATTTTAAGGACTA
- 1801 ATATTGCTGATACTTGAATAATCAATCTCTACTAGGTTATAAGTA
- 1846 GTATACACAGATTTACCCTGCCCTTGAACTTGAAGGACATTAAAT
- 1891 TATTAATGATCATTTGGTAACATGTTTACCTGATTATCTTCCATA
- 1936 GAGTAACATAAGCTGCTTTTCAAAGGTACCATTGTGATAATGAGA
- 2026 GAAAGAATGCAAAAAAAAAAAAAAAAAAAAAA

Fig. 12 Continued

20936375-0-104: 1MYXFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAA 48
20936375.0.1: 1 MLFLSFHAGSWESWCCCCLIPADRPWDRGQHWQLEMADTRSVHETRFEAA 50
49 VKVIQSLPKNDSFQPTNEMMLKFYSFYKQATEGPCKLSRPGFWDPIGRYK 98
99 WDAWSSLGDMTKEEAMIAYVEEMKKIIETMPMTEKVEELLRVIGPFYEIV 148
199 ESEEEEAQEEVKGAEQSDNDKKMMKKSADHKNLEVIVTNGYDKDGFVQDI 248
249 QNDIHASSSLNGRSTEEVKPIDENLGQTGKSAVCIHQDINDDHVEDVTGI 298
299 QHLTSDSDSEVYCDSMEQFGQEESLDSFTSNNGPFQYYLGGHSSQPMENS 348
349 GFREDIQVPPGNGNIGNMQVVAVEGKGEVKHGGEDGRNNSGAPHREKRGG 398
399 ETDEFSNVRRGRGHRMQHLSEGTKGRQVGSGGDGERWGSDRGSRGSLNEQ 448
449 IALVLMRLQEDMQNVLQRLQKLETLTALQAKSSTSTLQTAPQPTSQRPSW 498

Fig. 13

LOGOEGSO. LLOPOL

Sequences analyzed:

1. 1795045-0-77 2. 1795045-0-61

ŢĠĠŴŖŖſĦŴ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RENDARBARIKODOGHAVSIGASYANIIGKYKSCAAVARRAKORAVONDINDBRARRAGINOOGORIOGORIAHDKW RENDARBASIRODOGUAKSIGIGYAWIIGKYSCAAVARRAKORAVONDINDBRARRARRAGIODOGORIOFHDKW	ŴĸĸĠĦĿĿŎŊſĠŊſĬĠŊĦĸŊĸĬĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	₽ŒĦ₽SNKŖĠŚŖĸĠŶĸĠ₽ĸĸŀŖŶĸĠĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ĨĨĨĨĨĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬĬ	IJŒŧŧijĸŖĨŒŧŧĸijĠŖŖĬĊĠŶĸĠŧŧijijŶŶĬĸĠĬijĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ĬŧŎSĠŶĠĠŚſŊŊŊŶġĠĠŀŊŊĦŧĠ₽ĠŖĸŶ₽ĤſŚŴŖŖĊŶŖĠŚĠŔĠŖĸŖĦĸŴŖŖĸĸŖĸĸĠſĸŊŎĸĬĸŶŖŴŴĎŔŊ ĨŧŎŚĠĄĠĠŚſŊŊŊŶŔĸĠĸŊſĸĬŧĠ₽ŖĠŖĸŖŶ₽ŖĸŚŴŖĠĸĸĸĠĠĸĸĸĠĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	ſŖĸĸijijŊŊĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ
1795045077	1795045077	1795045077	1795045077	1795045077	1795045077_cura_56	1795045077_cura_56	1795045077_cura_56
1795045061	1795045061	1795045061	1795045061	1795045061	1795045061_cura_54	1795045061_cura_54	1795045061_cura_54

Fig. 14

1000rus0 . 1 1 U E C 1

Sequences analyzed:

1. 20422974-0-132-ext-2_Cura_56
2. Q64151_SEMAPHORIN_4C_PREC_Mus
3. Q92854_SEMAPHORIN
4. 20422974.2_Cura_54
5. 20422974.0.132_Cura_54

						Fig.
WIERERODIESWINNERFRENZONOWEDWASSNIEDWORMSTORM. GERMAN. MAINTYONW WIERERODIESWINNERFRENZONOWEDWASSNIEDWORM. GERMAN. GERMAN. NAINTYONW WIERERODIESWINNERFRENZONOWEDWASSNIEDWORM. GERMAN. GERMAN. GERMAN. NAINTYONW WIERERODIESWINNERFRENZONWOEEWDLSSWEDWORM. GERMAN. GERMAN. NESTANOW WEVERSPELKVPVIZYALTTFOLNNYGLSSWEDWISSHERMSSHERMOSTITVEQSHTMM	DRWHDPWPSPRDGSGNNWHRRHCWPSGGGGNWGNNWKKHPWKKHPKWGGGGGGG DRWHDPWPSPRDGSGNNWHRRHCWFSGGGGGNWGKHPWKKHPWKKHPWGGGGGG DRWHDPWPSPRDGSGGNNWHRRHCWFSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	KŒIJŊĸĸIJijĸŊŶŊŊŖŊĸŖĠŖŊĠŶŖŖĸŖŊĸĸĸŢĠŖĠŖĠŖſĬĸĸĸĊĸĸĠĸĠŖŊŊĸijĸĸġĸĸĸŶĸĸ ĸĠĸŊĸĸijĸĸĸŊŊĸĸſĠĸŊĠĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	HWESOSK KARHSAGSKSOLKKOLPPWADGSKYSTSGANDGWIRARDBAGSWSWNHISRCVY. WEG INVESOSK KASHSAGSKSOLKOLPPWADGSKYNSGANDGWIRARDBAGSWSWNHISRCWYWEG INVESOSK KASHSAGSKSOLKOLPPWADGSKYNSGANDGWIRARDBAGSWSWNHISRCWYWEG INVESOSK KARHSAGSKSOLKOLESTANGTKYREGWDGWIRARDBAGSWMNHISRWWYTTSG INTESSKKGNKIRYYAGGSWSGWYORETAFFGGKHGRGDDGWIRARDBAGSWMNHISRWWYTTSG		YTCLEPVQGWERLCEGKKRKGWACCGQWHTLFQP~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
204229740132ext2_cura_56 204229740132_cura_54 204229742_cura_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin	204229740132ext2_cura_56 204229740132_cura_54 204229742_cura_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin	204229740132ext2_cura_56 204229740132_cura_54 204229742_cura_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin	204229740132ext2_cura_56 204229740132_cura_54 204229742_cura_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin	204229740132ext2_cura_56 204229740132_cura_54 204229742_cura_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin	204229740132ext2_cura_56 204229740132_cura_54 204229742_cu ^r a_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin	204229740132ext2_cura_56 204229740132_cura_54 204229742_cura_54 q64151_semaphorin_4c_prec_mus q92854_semaphorin

#OOCEOSO ###DEO#

204229740132ext2_cura_56	
204229740132_cura_54	***************************************
204229742_cura_54 q64151_semaphorin_4c_prec_mus	
q92854_semaphorin	PKIVINTVPQLHSEKTMYLKSSDNRLLMSLFLFFFVLFLCLFFYNCYKGYLPRQCLKFRS
204229740132ext2_cura_56	***************************************
204229740132_cura_54 204229742_cura_54	***************************************
q64151_semaphorin_4c_prec_mus	PSPTRLHLGGGRNSNANGYVRLQLGGEDRGGSGHPLPELADELRRKLQQRQPLPDSNPEE ALLIGKKKPKSDFCDREOSLKETLVEPGSFSOONGEHPKPALDTGYETEODTITSKVPTD
204229/40132ext2_cura_56 204220740132_cura_54	
204229740132_cold_34 204229742_cura_54	
q64151 semaphorin 4c prec mus	d64151 semaphorin 4c prec mus SSV
202854 comonhorin	ひなわなんをエカロ. なみられないないになるしなわるわない

Fig. 15C

Fig. 16

Fig. 17

Fig. 18

34/37

	Relative Expression (%)				
Tissue Source	3445452	17089878	1795045.0.61	20422974	20936375.0.1 04
Endothelial cells	0.00	0.00	1.88	1.11	8.72
Endothelial cells (treated)	0.00	0.01	4.58	1.99	9.74
Pancreas	2.05	0.32	2.68	5.63	16.49
Pancreatic ca. CAPAN 2	0.01	0.00	0.07	1.91	40.05
Adipose	0.24	1.48	6.70	10.01	51.05
Adrenal gland	0.92	0.43	1.36	9.54	75.26
Thyroid	21.17	0.00	1.96	6.25	30.78
Salivary glands	7.59	0.13	1.56	5.67	24.66
Pituitary gland	0.05	0.07	1.11	10.73	10.81
Brain (fetal)	0.17	15.18	3.59	12.41	25.00
Brain (whole)	1.96	34.15	52.85	28.32	38.16
Brain (amygdala)	1.03	19.89	7.13	7.97	46.33
Brain (cerebellum)	4.64	29.73	76.84	29.32	55.86
Brain (hippocampus)	2.98	28.32	27.17	33.45	57.04
Brain (hypothalamus)	10.51	1.18	12.67	4.12	38.69
Brain (substantia nigra)	6.25	7.18	23.49	16.61	67.36
Brain (thalamus)	4.80	6.00	22.53	13.68	69.26
Spinal cord	1.76	4.24	7.64	29.12	50.70
CNS ca. (glio/astro) U87- MG	0.03	0.00	1.99	2.16	29.73
CNS ca. (glio/astro) U- 118-MG	0.00	3.54	1.25	2.34	12.33
CNS ca. (astro) SW1783	0.00	0.17	0.00	0.74	13.03
CNS ca.* (neuro;met) SK-					93.95
N-AS	0.00	0.43	4.30	10.01	
CNS ca. (astro) SF-539	0.07	0.14	0.00	9.81	14.16
CNS ca. (astro) SNB-75	0.00	0.06	0.23	11.58	8.84
CNS ca. (glio) SNB-19	0.01	0.58	0.11	5.15	33.45
CNS ca. (glio) U251	0.01	0.00	0.01	1.58	8.42
CNS ca. (glio) SF-295	0.00	0.00	0.01	3.77	10.44
Heart	33.92	0.01	1.82	7.64	100.00
Skeletal muscle	100.00	0.00	1.00	3.06	79.00
Bone marrow	1.05	3.72	0.43	1.69	18.17
Thymus	0.30	0.21	4.42	6.12	28.52
Spleen	0.14	0.13	2.59	17.43	24.49
Lymph node	0.28	0.28	1.92	10.51	11.74

Fig. 19

F	-
Ē	-
Ē	-
Ē	
C	
J	į
Ę	
H	4
1	1
FFL	4

		35/37		
Cellular Localization	Outside - Cert=0.7380. Apears to possess a cleavable N-terminal Signal Sequence.	Plasma Membrane - Cert.=0.8056. Appears to possess a cleavable N-terminal Signal Sequence.	Plasma Membrane - Cert.=0.4600. Appears to possess a cleavable N-terminal Signal Sequence.	Plasma Membrane - Cert.=0.7000. Apparently lacks cleavable N-terminal Signal Sequences.
Signal Peptide Cleavage Site (nt)	yyyy. Most likely cleavage site between positions 22 and 23: VTG- DE.	yyyy. Most likely cleavage site between positions 27 and 28: SLS- LD.	yyyy. Most likely cleavage site between positions 22 and 23:CSECX-EI.	
Protein Similarity (Human Sequence)	Identities 44/120 (36%); Positives 66/120 (55%) with ACC:P31044 Phosphatidylethanolamin e-Binding Protein (PEBP) Homo sapiens. 186 Amino Acid residues.	~ \	Identities 5777790 (73%); yyyy. Most likely Positives 676/790 (85%) cleavage site with ACC.P55285 Cadherin-6 Precursor 22 and (Kidney-Cahedrin) Homo 23:CSECX-EI. sapiens. 790 amino acid residues.	Identities 346/476 (72%); Positives 415/476 (87%) with ACC:P55285, human Cadherin-6 precursor Precursor (790 aa)
Protein Similarity (BLASTP Non- Redundant Composite Database)	Identities 52/128 (40%); Positives 72/128 (56%) with ACC:P31044 Phosphatidylethanolamin e-Binding Protein (PEBP); 23Kd Morphine Binding Protein (P23K) Rattus norvegicus. 187 amino acid residues.	Identities 55/76 (72%) Positives 61/76 (80%) with ptnr:SPTREMBL- ACC:Q13670 PMS2- Related Protein HPMSR6 III Homo sapiens. 270 amino acid residues.	Identities 729/788 (95%); Positives 758/788 (96%) with ACC:P79995 Cadherin-10 Precursor Gallus gallus. 789 amino acid residues. Identities 636/650 (97%); Positives 645/650 (99%) with rat cadherin-10. 653 amino acid residues.	Identities 445/473 (94%); Positives 465/473 (98%) with ACC:P7995 789 aa Cadherin-10 Precursor
Calculate Molecular Weight of Encoded Protein	25734.1	24499	88337	529226
Amine Acid Length	227	223	788	473
ORF (nt)	113-796	99-(1)	264-2630	285-1704
Length ORF (nt)	932	734	2762	1820
Tissue Expression	Prostate Gland	Not Known	Fetal Brain	Fetal Brain
SECX Clone Number	3445452	4011999	17089878 .0.5	17089878 .0.6
SECX	_	2	m	ন

FIG. 20A

SEC Clone Tissue Nucleo Open Tissue Annive Chone Tissue Length Annive Chone Tissue Chair Length Annive Chone Tissue Chone	36/37					
Clone Tissue Nuclean Challate Protein Protein Signal Peptide Number Expression tide Reading Acade Hobeital Molecular Composite Clearage Site (m) 1795045 Brain 1508 226-1461 411 46054-5 Beatines 2019, 62%; Beatines 51/198 (35%); Beatines 51/19	Cellular Localization	Cytoplam- Cert.=0.4500. Appears to possess no cleavable N-terminal Signal Sequence.	Microbody (Peroxisome)- Cert.=7480. Appears to possess a cleavable N-terminal Signal Sequence.	Microbody (Peroxisome)- Cert.=7480. Appears to possess a cleavable N-terminal Signal Sequence.		
Clone Tissue Nucleo Open Arnine Calculate Protein Similarity Protein Similarity Protein Similarity Redundant Composite Longth Prant Acad Molecular (BLASTP Non-	Signal Peptide Cleavage Site (nt)		yyyy. Most likely cleavage site between positions 20and 21: GIG- AE.	yyyy. Most likely cleavage site between positions 20and 21: GIG- AE.	nnny. Most likely cleavage site between positions 15 and 16:SWC- CC.	nnny. Most Ikely cleavage site between positions 31 and 32:TPR- LS.
Clone Tissue Nucleo Reading (nt) Amine (nt) Calculate (nt) Number Expression tide (nt) Frame (nt) Length (nt) Molecular (mt) 1795045. Brain, Fetal (nt) 1508 226-1461 411 46054.5 20422974 Lymphoid (land) 2155 166-1938 590 66532.5 20422974 Lymphoid (land) 2284 166-1956 596 66969.8 20422974 Lymphoid (land) 2284 166-1956 596 66969.8 20936375 Kidney 1930 148-1758 536 60306.7 20936785 Brain, Fetal (land) 930 123-626 167 18440	Protein Similarity (Human Sequence)	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:000276 Lymphocyte-Associated Receptor of Death 2 Homo sapiens: 510 amino acid residues.			, -0	l .
Clone Tissue Nucleo Reading Length (int) Nucleo Reading Acid (int) Amine Length (int) 1795045. Brain, Golland 1508 226-1461 411 20422974 Lymphoid Lymphoid Golland 2155 166-1938 590 20422974 Lymphoid Lymphoid Lymphoid Golland 2284 166-1956 596 20936375 Kidney 1930 148-1758 536 20936785 Brain, Fetal Brain 930 123-626 167	Protein Similarity (BLASTP Non- Redundant Composite Database)	Identities 51/198 (25%); Positives 71/198 (35%); with ACC:000276 Lymphocyte-Associated Receptor of Death 2 Homo sapiens. 510 amino acid residues.	Identities 497/582 (85%); Positives 536/582 (92%) with ACC: (064151 Semaphorin I (M-SEMA FA Factor in Neural Network Develooment) Mus musculus. 834 amino acid residues.	Identities 498/585 (85%); Positives 540/585 (92%) with ACC: 064151 Semaphorin I (M-SEMA FA Factor in Neural Network Development) Mus musculus: 834 amino acid residues.	Identities 453/531 (85%); Positives 482/531 (90%) with ACC:P07106 Bovine DBI-Related Brain Membrane Protein.	Identities 167/167 (100%) with Human Transmembrane Protein HTMPN-46.
Clone Number Tissue Rading Length (int) Nucleo Reading (int) 1795045. Brain, Piluiary Gland 1508 226-1461 0.61 Phuliary Gland 2155 166-1938 20422974 Lymphoid 2155 166-1938 20422974 Lymphoid 2284 166-1956 20936375 Kidney 1930 148-1758 20936785 Brain, Fetal 930 123-626 0.1 Brain 6 123-626	Calculate Molecular Weight	46054.5	665325	8.6969.8	60306.7	18440
Clone Number Tissue Reading Length (Int) Nucleo Reading (Int) 1795045. Brain, Diluniary Gland 1508 226-1461 0.61 Piuniary Gland 2155 166-1938 20422974 Lymphoid 2155 166-1938 20422974 Lymphoid 2284 166-1956 209363575 Kidney 1930 148-1758 20936785 Brain, Fetal 930 123-626 0.1 Brain 6 123-626	Amine Acid Length	411	290	969	536	167
Clone Tissue Number Expression 1795045. Brain, 0.61 Pituitary Gland 0.132 20422974 Lymphoid -2 Tissue 20936375 Kidney 0.1 20936375 Brain, Fetal 0.1 Brain		226-1461		-		123-626
Clone Tissue Number Expression 1795045. Brain, 0.61 Pituitary Gland 0.132 20422974 Lymphoid -2 Tissue 20936375 Kidney 0.1 20936375 Brain, Fetal 0.1 Brain	Nucleo tide Length	1508	2155	2284	1930	930
Clone Number 1795045. 0.61 0.61 0.132 0.132 0.132 0.132 0.132 0.01 0.132 0.01 0.132 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0		Brain, Thalamus, Pituitary Gland			Kidney	Brain, Fetal Brain
	•	1795045. 0.61	20422974 .0.132	-2 -2	20936375 .0.1	20936785 .0.1
				7		

locoeosc lloeol

Fig. 20B

#OOCEOSO ##GEO#

Cellular Localization	Cytoplam- Cert.=0.4500. Appears to possess no cleavable N-terminal Signal Sequence.	Microbody (Peroxisome)- Cert.=7480. Appears to possess a cleavable N-terminal Signal Sequence.	Plasma Membrane - Cert.=0.7300. Appears not to possess a cleavable N-terminal Signal Sequence.
Signal Peptide Cleavage Site (nt)		yyyy. Most likely cleavage site between positions 20 and 21: GIG- AE.	
Protein Similarity (Human Sequence)	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:000276 Lymphocyte-Associated Receptor of Death 2 Homo sapiens. 510 amino acid residues.	Identities 501/599 (83%); Positives 542/599 (90%) with ACC: Q92854 Semaphorin Homo sapiens. 862 Amino Acid residues.	Identities 37/91 (40%); Positives 58/91 (63%) with ACC:075521 DBI- Related Protein <i>Homo</i> sapiens. 364 amino acid residues.
Protein Similarity (BLASTP Non- Redundant Composite Database)	Identities 51/198 (25%); Positives 71/198 (35%) with ACC:000276 Lymphocyte-Associated Receptor of Death 2 Homo sapiens, 510 amino acid residues.	Identities 501/599 (83%); Positives 542/599 (90%) with ACC: Q92854 Semaphorin Homo sapiens. 862 Amino Acid residues.	Identities 453/531 (85%); Positives 482/531 (90%) with ACC-P07106 Bovine DBI-Related Brain Membrane Protein.
Calculated Molecular Weight	51645.6	70478.1	60037.3
Amino Acid Length	464	624	534
ORF	296-1690	166-2040	7-1611
Nucleo tide Length	1737	2156	1930
Tissue Expression	Brain. Thalamus	Lymphoid Tissue. Aora. Breast. Colon. Foreskin. Germ Cell. Muscle. Prostate. Spleen. Slomach, and Uterus.	Kidney
Clone Number	1795045. 0.77	20422974 .0.132_ex 12	20936375 .0.104
SEC No.	01	=	12

Fig. 20C