

Jaime Pabon

jpabonr

Digital Product Management Powered by Machine Learning

Case Study: Predicting User Retention From Early User Behavior

Jaime Pabon

jpabonr

- 13+ years experience digital marketing and digital product mgmt.
- Head of Strategy, The Online Project Dubai (digital agency)
- Ex-founder tech startup
- Industrial Engineer
- Machine Learning Engineer

This is *not* a presentation about the technical aspects of machine learning!

It's about how machine learning can be applied to digital product strategy.

Show of Hands

Can you explain the very basic idea behind machine learning to a friend?

Machine Learning: The "Very Basic Idea"

A computational technique that uses algorithms to find patterns in data.

ML systems *learn* to complete tasks by 'seeing' examples (not by following instructions).

For the full definition go to Wikipedia...

Applied Machine Learning

Machine Learning in The Industry

Decision-making

Product

Operations

The AARRR Metrics Model

User Retention is a Big Deal

The Big Idea

There's a hidden pattern that cuts through the funnel

This pattern can be discovered with machine learning.

Highly efficient product and growth strategies exploit this pattern.

Data Greedy!

Common product management knowledge says it's not about tracking *all* the data, but the *right* data.

But...

To identify the right data we first need "all" the data.

Correlation vs Causation

Use ML to find correlations and formulate causation hypotheses

Validate causation with A/B Testing

Benefits of Predicting Long-Term User Retention From Early User Behavior

- 1. No need to wait: early decision-making leading to faster prod. Iteration
- 2. Improved efficiency by focusing on leading indicators
- 3. Customized UX for users with negative retention predictions
- 4. Improved accuracy of LTV estimation (retention, revenue)
- 5. Improved customer acquisition budgeting (retention, CPA)

Supervised Learning – Classification: Learning to Mapping Features (Inputs) to Labels

An algorithm learns the mapping function

Data vs. Features (Feature Engineering)

This is where domain knowledge and creative thinking matters.

Case Study

Predicting User Retention From Early User Behavior

CLOSETREMIX

Mobile social network where young women upload their closets to receive outfit ideas from friends.*

* CLOSETREMIX operated in 2014 – 2015. What follows is a post-mortem analysis.

Challenge: To Figure Out The Activation Metric

What early user action puts him/her on the path of long-term retention?

Supervised ML > Two-Class Classification Problem

Early User Behavior: User Onboarding

User onboarding plays a big role in early user actions. It's then useful to review how CLOSETREMIX user onboarding used to be.

iOS Dialog

Sign Up

Sign Up

Enter your email address

HAVE AN ACCOUNT? LOG IN

The (Simplified) Machine Learning Process

Model Implementation – Python and Scikit Learn

Data Exploration: Understanding The Features

Feature	Values
Sign Up Day-Of-Week	Monday, Tuesday,, Sunday
Push Notification	On, Off
Email Notification	On, Off
Sign Up Method	Email, Facebook
Onboarding Invite	Yes, No
Items In Closet	Integer
Outfits In Closet	Integer
Privacy	Public, Private
Feed	Normal, Enhanced
Outfits Oneself	Integer
Outfits Other	Integer
Following	Integer
Followers	Integer
Days 1st item	Same Day, Next Day, 2-7, 8-30, 31-60, 61+, Never
Day-Of-Week 1st Item	Monday, Tuesday,, Sunday
Days 30th item	Same Day, Next Day, 2-7, 8-30, 31-60, 61+, Never
Days 1st Outfit Others	Same Day, Next Day, 2-7, 8-30, 31-60, 61+, Never

6 categorical Variables

11 Continuous Variables

Data Exploration: Visualizations Are Key

Data Exploration: Labels – User Retention Week 13

A case of skewed labels (class imbalance)

Compensate with oversampling

Model Evaluation: F10-score to minimize false negatives

Data Pre-processing: Principal Latent Variable - PCA

Moderate-to-high positive correlation (feature weight >= 0.1) with:

- 'Days to 1st Item: Same Day'
- 'Items'
- 'Days Outfits Others: Same Day'
- 'Days to 30th Item: Same Day'
- 'Outfits'
- 'Outfits Others'
- 'Followers'
- 'Following'

Moderate-to-high negative correlation (feature weight <= -0.1) with:

- '1st Item Day-Of-Week: Never'
- 'Days to 1st Item: Never'
- 'Days 1st Outfit Others: Never'
- 'Days 30th Outfit Others: Never'
- 'Push notifications: Off'

Data Pre-processing: Secondary Latent Variable - PCA

Moderate-to-high positive correlation (feature weight >= 0.1) with:

- 'Push Notifications: On'
- 'Sign Up Method: Facebook'

Moderate-to-high negative correlation (feature weight <= -0.1) with:

- 'Push Notifications: Off'
- 'Sign Up Method: Email'

Splitting the Data – 10,427 Samples

After going through the entire ML process...

Model Evaluation & Selection

For All The Technical Details Check Out The White Paper

http://bit.ly/predict_retention

Next Steps: UX-related Experiments

- 1. A/B test Facebook vs email sign up
- 2. A/B test the tactics (copy, timing, frequency) in onboarding to prime and prompt users to enable push notifications
- 3. A/B test moments to prompt users to enable push notifications throughout the UX.
- 4. A/B test user onboarding process that includes creating an outfit for others
 - Monitor impact of previous test on proportion of users who upload their closet

Final Reflection: Prod. Mgmt. is Increasingly Challenging

We're still in the early phases of trying to figure out how on earth to organize the work of AI products.

Andrew Ng

Venture capitalist, ex-Baidu chief scientist, Google Brain Team founder, Coursera co-founder, Stanford adjunct professor.

Jaime Pabon

jpabonr

Thank You!