Code description:

The computeDiffusionCurrent program defines a 2D periodic cylindrical system of size L connected to two reservoirs with densities equal to $\lambda_l = \lambda$ and $\lambda_r = \lambda + \varepsilon$. The particle density of the system is set at $\rho(\lambda)$ (which is determined by the getParticleDensity function) and the diffusion current N is initialized at 0.

While the macroscopic time t is lower than the final time t_{max} , the system undergoes particle jumps. If a particle jumps from a site at section x = L/2 - 1 to its right neighbor, then N increases. If a particle jumps from a site at section x = L/2 to its left neighbor, then N decreases.

The results are saved in the diffusion_current_lambda0xx.txt file ('xx' corresponding to the reservoir density λ). The user-defined parameter n_points determines the number of data points recorded.

Input parameters:

Parameter	Variable name	Data type
Save folder	save_folder	string
System size L	L	integer
Reservoir density λ	lambda	double
Reservoir density increment ε	epsilon	double
Final time t_{max}	t_max	double
Number of data points	n_points	integer

Post process:

The post_process.py script retrieves all the values from the files diffusion_current_lambda0xx.txt. It then plots the diffusion current N as a function of the macroscopic time t.