Homework 02 - Exploratory Data Analysis in Python

Author: Sanjay Bhargav Siddi

3. Assess relationships within a novel data set

- a) Describe and visualize correlations between numerical variables
- b) Visualize correlations of all numerical variables within groups
- c) Describe and visualize relationships based on target variables

3.1. Required Setup

```
In [1]: # Import all required libraries
        # Data analysis and manipulation
        import pandas as pd
        # Working with arrays
        import numpy as np
        # Statistical visualization
        import seaborn as sns
        # Matlab plotting for Python
        import matplotlib.pyplot as plt
        import matplotlib.patches as mpatches
        # Data analysis
        import statistics as stat
        import scipy.stats as stats
        # Two-sample Chi-Square test
        from scipy.stats import chi2 contingency
        # Predictive data analysis: process data
        from sklearn import preprocessing as pproc
        # Predictive data analysis: linear models
        from sklearn.model_selection import cross_val_predict
        # Predictive data analysis: linear models
        from sklearn.linear_model import LinearRegression
        # Visualizing missing values
        import missingno as msno
        # Statistical modeling
        import statsmodels.api as sm
        # Statistical modeling: ANOVA
        from statsmodels.formula.api import ols
        # Mosaic plot
        from statsmodels.graphics.mosaicplot import mosaic
        from itertools import product
        # Increase font and figure size of all seaborn plot elements
        sns.set(font_scale = 1.5, rc = {'figure.figsize':(8, 8)})
        # Change theme to "white"
        sns.set_style("white")
```

3.2 Loading a data set

3.3 Examining the data set and trimming the data

In [5]: def loss_group_data(data):

else: return "Huge loss"

Apply the function to data

if data.Loss >= 0 and data.Loss <= 10000: return "Low loss"</pre>

elif data.Loss > 10000 and data.Loss <= 100000: return "Medium loss"</pre>

```
In [3]: tornadosData.info()
                  <class 'pandas.core.frame.DataFrame'>
                  RangeIndex: 68693 entries, 0 to 68692
                  Data columns (total 27 columns):
                           Column
                                                         Non-Null Count Dtype
                   0
                                                         68693 non-null int64
                            om
                   1
                           yr
                                                         68693 non-null int64
                   2
                           mo
                                                         68693 non-null int64
                                                         68693 non-null int64
                   3
                            dy
                            date
                                                         68693 non-null object
                   5
                           time
                                                         68693 non-null object
                                                         68693 non-null object
                   6
                           tz
                   7
                            datetime_utc 68693 non-null object
                                                         68693 non-null object
                   8
                            st
                   9
                            stf
                                                         68693 non-null int64
                   10 mag
                                                         67937 non-null float64
                   11 inj
                                                         68693 non-null int64
                    12 fat
                                                         68693 non-null int64
                   13 loss
                                                         41523 non-null float64
                   14 slat
                                                         68693 non-null float64
                   15 slon
                                                         68693 non-null float64
                                                         68693 non-null float64
                   16 elat
                                                         68693 non-null float64
                   17 elon
                   18 len
                                                         68693 non-null float64
                    19 wid
                                                         68693 non-null int64
                    20 ns
                                                         68693 non-null int64
                   21 sn
                                                         68693 non-null int64
                    22 f1
                                                         68693 non-null int64
                    23 f2
                                                         68693 non-null int64
                    24 f3
                                                         68693 non-null int64
                    25 f4
                                                         68693 non-null int64
                    26 fc
                                                         68693 non-null bool
                  dtypes: bool(1), float64(7), int64(14), object(5)
                  memory usage: 13.7+ MB
In [4]: # creating a copy of the tornados data set
                  data = tornadosData.copy()
                  # renaming columns for readability
                  data = data.rename(columns={'om':'Tornado ID','yr':'Year','mo':'Month','dy':'Day','date':'Date','time','tz':'Timezone','st':'State','mag':'Magnitude','inj':'Injuries','fat':'Fatality','loay','date':'Date','time','tz':'Timezone','st':'State','mag':'Magnitude','inj':'Injuries','fat':'Fatality','loay','date':'Date','tz':'Timezone','st':'State','mag':'Magnitude','inj':'Injuries','fat':'Fatality','loay','date':'Date','tz':'Timezone','st':'State','mag':'Magnitude','inj':'Injuries','fat':'Fatality','loay','date':'Date','tz':'Timezone','st':'State','mag':'Magnitude','inj':'Injuries','fat':'Fatality','loay','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date':'Date','date','date':'Date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date','date
                  # removing non-important columns
                  data = data.drop(columns=['Tornado ID','Time','Timezone','Month','Day','datetime_utc','stf','slat','slon','elat','elon','f1','f2','f3','f4','sn','fc'])
                  # filling NaN with 0
                  data = data.fillna(0)
                  Creating a sub group
```

```
data['Loss_group'] = data.apply(loss_group_data, axis = 1)

# What does the data Look like
data.head(1000)
```

	Year	Date	State	Magnitude	Injuries	Fatality	Loss	Length	Width	States Affected	Loss_group
0	1950	1950-10-01	ОК	1.0	0	0	50000.0	15.8	10	1	Medium loss
1	1950	1950-10-09	NC	3.0	3	0	500000.0	2.0	880	1	Huge loss
2	1950	1950-11-20	KY	2.0	0	0	500000.0	0.1	10	1	Huge loss
3	1950	1950-11-20	KY	1.0	0	0	500000.0	0.1	10	1	Huge loss
4	1950	1950-11-20	MS	1.0	3	0	50000.0	2.0	37	1	Medium loss
•••											
995	1953	1953-06-04	FL	1.0	0	0	50.0	0.1	10	1	Low loss
996	1953	1953-06-05	FL	0.0	0	0	50.0	0.1	10	1	Low loss
997	1953	1953-06-05	UT	0.0	0	0	0.0	8.0	147	1	Low loss
998	1953	1953-06-05	TX	0.0	0	0	0.0	0.1	10	1	Low loss
999	1953	1953-06-05	MI	0.0	0	0	500.0	1.0	50	1	Low loss

1000 rows × 11 columns

Out[

3.4. Describe and Visualize Correlations

```
In [6]: # subset dataframe to include only numeric columns
numData = data.select_dtypes(include='number')

# Table of correlations between numerical variables (we are sticking to the default Pearson's r coefficient)
numData.corr()
```

```
Out[6]:
                 Year Magnitude
                            Injuries
                                   Fatality
                                              Length
                                                    Width States Affected
                                          Loss
           Year 1.000000
                      -0.291051 -0.042735 -0.033557 0.006165 -0.060327 0.116627
                                                             0.019638
        Magnitude -0.291051
                      1.000000 0.220586 0.195350 0.134760 0.441320 0.420711
                                                             0.126749
          Injuries -0.042735
                      0.220586
                           1.000000 0.761659 0.518769 0.256337 0.185440
                                                             0.113673
          Fatality -0.033557
                      0.112272
           Loss 0.006165
                                                             0.048318
                      Length -0.060327
                      0.254201
                                                             0.136645
          Width 0.116627
                      1.000000
      States Affected 0.019638
```

```
In [7]: # Heatmap correlation matrix of numerical variables
# Correlation matrix
corr = numData.corr()

# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype = bool))

# Generate a custom diverging colormap
```


3.5. Visualize Correlations within Groups

```
In [8]: # Increase font and figure size of all seaborn plot elements
sns.set(font_scale = 1.5, rc = {'figure.figsize':(10, 10)})

# Change theme to "white"
sns.set_style("white")

# Heatmap correlation matrix of numerical variables
# Correlation matrix
```

```
corr = data.groupby('Loss_group').corr()

# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(corr, dtype = bool))

# Generate a custom diverging colormap
cmap = sns.diverging_palette(230, 20, as_cmap = True)

# Heatmap of the correlation matrix
ax = sns.heatmap(corr, cmap = cmap, mask = mask, vmax = 0.3, center = 0,
square = True, linewidths = 0.5, cbar_kws = {"shrink": .5})

# Change y-axis label
ax.set(ylabel = 'Group')

# Tight margins for plot
plt.tight_layout()

# Show plot
plt.show()
```

C:\Users\sanja\AppData\Local\Temp\ipykernel_16920\116213258.py:9: FutureWarning: The default value of numeric_only in DataFrameGroupBy.corr is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

corr = data.groupby('Loss_group').corr()


```
sns.set(font_scale = 2.5, rc = {'figure.figsize':(10, 10)})

# Change seaborn plot theme to white
sns.set_style("white")

# Empty subplot grid for pairwise relationships
g = sns.PairGrid(dataplot, hue = "Loss_group", height = 5)

# Add scatterplots to the upper portion of the grid
g1 = g.map_upper(sns.scatterplot, alpha = 0.5, s = 100)

# Add a kernal density plot to the diagonal of the grid
g2 = g1.map_diag(sns.kdeplot, fill = True, linewidth = 3)

# Add a kernal density plot to the lower portion of the grid
g3 = g2.map_lower(sns.kdeplot, levels = 5, alpha = 0.75)

# Remove Legend title
g4 = g3.add_legend(title = "", adjust_subtitles = True)

# Show plot
plt.show()
```


3.6. Describe and Visualize Relationships Based on Target Variables

```
In [10]: # The numerical predictor variable
           X = data[["Year"]]
           # The numerical target variable
           Y = data[["Magnitude"]]
           # Define the linear model, drop NAs
           model = sm.OLS(Y, X, missing = 'drop')
           # Fit the model
           model_result = model.fit()
           # Summary of the linear model
           model_result.summary()
                                   OLS Regression Results
Out[10]:
              Dep. Variable:
                                 Magnitude
                                               R-squared (uncentered):
                                                                          0.423
                                      OLS Adj. R-squared (uncentered):
                                                                           0.423
                    Model:
                   Method:
                               Least Squares
                                                           F-statistic: 5.032e+04
                     Date: Thu, 28 Sep 2023
                                                      Prob (F-statistic):
                                                                           0.00
                     Time:
                                   21:07:55
                                                       Log-Likelihood:
                                                                         -89986.
                                     68693
                                                                 AIC: 1.800e+05
           No. Observations:
               Df Residuals:
                                     68692
                                                                 BIC: 1.800e+05
                 Df Model:
           Covariance Type:
                                 nonrobust
                        std err
                                     t P>|t| [0.025 0.975]
           Year 0.0004 1.72e-06 224.329 0.000 0.000 0.000
                Omnibus: 11222.689
                                     Durbin-Watson:
           Prob(Omnibus):
                              0.000 Jarque-Bera (JB): 17969.269
                   Skew:
                              1.134
                                           Prob(JB):
                 Kurtosis:
                              4.066
                                          Cond. No.
                                                          1.00
```

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [21]: # Plotting the linear relationship

# Increase font and figure size of all seaborn plot elements
sns.set(font_scale = 1.25, rc = {'figure.figsize':(10,10)})

# Change seaborn plot theme to white
sns.set_style("white")

# Subplots
fig, (ax1, ax2) = plt.subplots(ncols = 2, nrows = 1)
```



```
In [19]: model = ols('Magnitude ~ C(Loss_group)', data = data).fit()
          sm.stats.anova_lm(model, typ = 2)
Out[19]:
                                       df
                                                   F PR(>F)
                           sum_sq
          C(Loss_group) 16892.277498
                                      2.0 15237.176868
                                                         0.0
              Residual 38075.640631 68690.0
                                                 NaN
                                                        NaN
In [18]: # Increase font and figure size of all seaborn plot elements
          sns.set(font_scale = 1.25, rc = {'figure.figsize':(4, 4)})
          # Change seaborn plot theme to white
          sns.set_style("white")
          Group_Box = sns.boxplot(data = data, x = "Magnitude", y = "Loss_group", width = 0.3)
          # Tweak the visual presentation
          Group_Box.set(ylabel = "Loss_group")
          # Tight margins
          plt.tight_layout()
          # Show plot
          plt.show()
```


Categorical Target Variables: Numerical Variable of Interest

```
In [22]: # Grouped describe by one column, stacked
Groups = data.groupby('Loss_group').describe().unstack(1)

# Print all rows
print(Groups.to_string())
```

		Loss_group	
Year	count	Huge loss	1.369700e+04
		Low loss	3.942300e+04
		Medium loss	1.557300e+04
	mean	Huge loss	1.990799e+03
		Low loss	1.993182e+03
		Medium loss	1.989421e+03
	std	Huge loss	1.820398e+01
		Low loss Medium loss	1.941247e+01 2.077901e+01
	min	Huge loss	1.950000e+03
	IIITII	Low loss	1.950000e+03
		Medium loss	1.950000e+03
	25%	Huge loss	1.977000e+03
		Low loss	1.978000e+03
		Medium loss	1.972000e+03
	50%	Huge loss	1.991000e+03
		Low loss	1.997000e+03
		Medium loss	1.991000e+03
	75%	Huge loss	2.006000e+03
		Low loss	2.009000e+03
		Medium loss	2.008000e+03
	max	Huge loss	2.022000e+03
		Low loss	2.022000e+03
Magnitude	count	Medium loss Huge loss	2.022000e+03 1.369700e+04
Magnitcude	Counc	Low loss	3.942300e+04
		Medium loss	1.557300e+04
	mean	Huge loss	1.655545e+00
		Low loss	3.915227e-01
		Medium loss	9.499133e-01
	std	Huge loss	9.477771e-01
		Low loss	6.529991e-01
		Medium loss	7.586699e-01
	min	Huge loss	0.000000e+00
		Low loss	0.000000e+00
	2.5%	Medium loss	0.000000e+00
	25%	Huge loss	1.000000e+00
		Low loss Medium loss	0.000000e+00 0.000000e+00
	50%	Huge loss	2.000000e+00
	30%	Low loss	0.000000e+00
		Medium loss	1.000000e+00
	75%	Huge loss	2.000000e+00
		Low loss	1.000000e+00
		Medium loss	1.000000e+00
	max	Huge loss	5.000000e+00
		Low loss	5.000000e+00
- · ·	_	Medium loss	4.000000e+00
Injuries	count	Huge loss	1.369700e+04
		Low loss	3.942300e+04
	mean	Medium loss Huge loss	1.557300e+04 5.997737e+00
	illean	Low loss	2.091165e-01
		Medium loss	4.532845e-01
	std	Huge loss	3.824353e+01
		Low loss	4.902696e+00
		Medium loss	8.787993e+00
	min	Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	25%	Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00

	50%	Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	75%	Huge loss	2.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	max	Huge loss	1.740000e+03
		Low loss	3.790000e+02
		Medium loss	7.950000e+02
Fatality	count	Huge loss	1.369700e+04
		Low loss	3.942300e+04
		Medium loss	1.557300e+04
	mean	Huge loss	3.773819e-01
	ilican	Low loss	1.367222e-02
		Medium loss	
	-4-4		2.741925e-02
	std	Huge loss	3.109803e+00
		Low loss	4.030989e-01
	min	Medium loss	7.425152e-01
		Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	25%	Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	50%	Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	75%	Huge loss	0.000000e+00
		Low loss	0.000000e+00
		Medium loss	0.000000e+00
	max	Huge loss	1.580000e+02
		Low loss	3.600000e+01
		Medium loss	5.800000e+01
Loss	count	Huge loss	1.369700e+04
		Low loss	3.942300e+04
		Medium loss	1.557300e+04
	mean	Huge loss	6.065210e+06
		Low loss	1.326724e+03
		Medium loss	5.048957e+04
	std	Huge loss	5.269340e+07
		Low loss	2.674777e+03
		Medium loss	1.898780e+04
	min	Huge loss	1.020000e+05
		Low loss	0.000000e+00
		Medium loss	1.010000e+04
	25%	Huge loss	5.000000e+05
		Low loss	0.000000e+00
	50%	Medium loss	5.000000e+04
		Huge loss	5.000000e+05
		Low loss	0.000000e+00
		Medium loss	5.000000e+04
	75% max	Huge loss	1.277000e+06
		Low loss	5.000000e+02
		Medium loss	5.000000c+02
		Huge loss	2.800100e+09
		Low loss	1.000000e+04
		Medium loss	1.000000e+04
Length	count	Huge loss	1.369700e+04
Length	count	Low loss	
		Medium loss	3.942300e+04 1.557300e+04
	moar		8.775156e+00
	mean	Huge loss Low loss	1.732077e+00
			3.288476e+00
	c+d	Medium loss	
	std	Huge loss	1.381718e+01

			4 74 470 4 00
		Low loss	4.714724e+00
		Medium loss	6.588536e+00
	min	Huge loss	0.000000e+00
		Low loss	0.000000e+00
	25%	Medium loss	0.000000e+00
	25%	Huge loss	1.100000e+00
		Low loss	1.000000e-01
	ΕΩ9/	Medium loss	3.000000e-01
	50%	Huge loss Low loss	4.100000e+00 3.000000e-01
	750/	Medium loss	1.000000e+00
	75%	Huge loss	1.040000e+01
		Low loss Medium loss	1.400000e+00
			3.750000e+00
	max	Huge loss	2.347000e+02
		Low loss	1.620000e+02 2.021000e+02
Width	count	Medium loss	1.369700e+04
WIGCH		Huge loss	3.942300e+04
		Low loss Medium loss	1.557300e+04
	moan		2.303130e+02
	mean	Huge loss Low loss	6.596304e+01
	std	Medium loss	1.058129e+02 3.288138e+02
	Stu	Huge loss Low loss	1.360737e+02
		Medium loss	1.707058e+02
	min		0.000000e+00
	IIITII	Huge loss Low loss	0.000000e+00
		Medium loss	0.000000e+00
	25%	Huge loss	5.000000e+01
	23/0	Low loss	1.000000e+01
		Medium loss	2.300000e+01
	50%	Huge loss	1.000000e+02
	3070	Low loss	3.0000000c+01
		Medium loss	5.000000e+01
	75%	Huge loss	3.000000e+02
	7 370	Low loss	5.0000000c+02
		Medium loss	1.0000000e+02
	max	Huge loss	4.576000e+03
	IIIUX	Low loss	3.170000e+03
		Medium loss	2.600000e+03
States Affected	count	Huge loss	1.369700e+04
		Low loss	3.942300e+04
		Medium loss	1.557300e+04
	mean	Huge loss	1.028473e+00
	std	Low loss	1.002892e+00
		Medium loss	1.006293e+00
		Huge loss	1.702320e-01
		Low loss	5.509649e-02
		Medium loss	7.908061e-02
	min	Huge loss	1.000000e+00
		Low loss	1.000000e+00
		Medium loss	1.000000e+00
	25%	Huge loss	1.000000e+00
		Low loss	1.000000e+00
		Medium loss	1.000000e+00
	50%	Huge loss	1.000000e+00
		Low loss	1.000000e+00
		Medium loss	1.000000e+00
	75%	Huge loss	1.000000e+00
		Low loss	1.000000e+00
		Medium loss	1.000000e+00
	max	Huge loss	3.000000e+00
		-	

Low loss 3.000000e+00 Medium loss 2.000000e+00

Categorical Target Variables: Categorical Variable of Interest

```
In [23]: data1 = data.dropna()
          Qual = stat.mean(data1.Magnitude + stat.stdev(data1.Magnitude))
          # Create HighLWP from the age column
          def HighLWP_data(data):
           if data.Magnitude >= Qual: return "Yes"
           else: return "No"
          # Apply the function to data and create a dataframe
          HighLWP = pd.DataFrame(data1.apply(HighLWP_data, axis = 1))
          # Name new column
          HighLWP.columns = ['HighLWP']
          # Concatenate the two dataframes
          data1 = pd.concat([data1, HighLWP], axis = 1)
          # First six rows of new dataset
          data1.head()
                      Date State Magnitude Injuries Fatality
                                                              Loss Length Width States Affected Loss_group HighLWP
Out[23]:
            Year
          0 1950 1950-10-01
                             OK
                                        1.0
                                                 0
                                                        0 50000.0
                                                                      15.8
                                                                             10
                                                                                            1 Medium loss
                                                                                                               No
         1 1950 1950-10-09
                                                 3
                                                        0 500000.0
                                                                             880
                                        3.0
                                                                      2.0
                                                                                            1 Huge loss
                                                                                                               Yes
          2 1950 1950-11-20
                                        2.0
                                                 0
                                                        0 500000.0
                                                                      0.1
                                                                              10
                                                                                                Huge loss
                                                                                                               Yes
                                                                                            1 Huge loss
         3 1950 1950-11-20
                                        1.0
                                                 0
                                                        0 500000.0
                                                                             10
                                                                      0.1
                                                                                                               No
          4 1950 1950-11-20 MS
                                        1.0
                                                 3
                                                        0 50000.0
                                                                      2.0
                                                                             37
                                                                                            1 Medium loss
                                                                                                               No
In [24]: obs = pd.crosstab(data1.Loss_group, data1.HighLWP)
          print(obs)
          HighLWP
                         No Yes
          Loss_group
          Huge loss
                       6666 7031
          Low loss
                      36784 2639
          Medium loss 12407 3166
In [25]: # Chi-square test
          chi2, p, dof, ex = chi2_contingency(obs, correction = False)
          # Interpret
          alpha = 0.05
          # Print the interpretation
          print('Statistic = %.3f, p = %.3f' % (chi2, p))
          Statistic = 13366.460, p = 0.000
In [26]: if p > alpha:
           print('Chi-square value is not greater than critical value (fail to reject H0)')
              print('Chi-square value is greater than critical value (reject H0)')
          Chi-square value is greater than critical value (reject H0)
```

```
In [28]: # Increase font and figure size of all seaborn plot elements
sns.set(font_scale = 1.25)

# Change seaborn plot theme to white
sns.set_style("white")

# Count plot of HighLWP grouped by Group
counts = sns.countplot(data = data1, x = "HighLWP", hue = "Loss_group")

# Tweak the visual presentation
counts.set(ylabel = "Count")

# Tight margins
plt.tight_layout()

# Show plot
plt.show()
```

