Detección de cáncer mediante deep learning

Sofía Vargas Ibarra

Facultad de Ciencias Matemáticas Universidad Complutense de Madrid

22 de julio de 2020

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusione

Introducción y objetivos

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Estado del arte

■ Detección de objetos [1].

Figura: Segmentación semántica y de instancias

Estado del arte

Detección de objetos [1].

Figura: Segmentación semántica y de instancias

■ Generative adversial networks (GANs)[2].

Estado del arte

Detección de objetos [1].

Figura: Segmentación semántica y de instancias

- Generative adversial networks (GANs)[2].
- Transfer learning [3].

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Definición

Una imagen digital es una disposición de distintos valores en distintos lugares (píxeles).

Definición

Una imagen digital es una disposición de distintos valores en distintos lugares (píxeles).

Figura: Estructura de imagen (RGB)

Índice

- Introducción y objetivos
- Estado del arte
- 3 Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Neuronal: su estructura está inspirada en el funcionamiento de las redes neuronales biológicas.

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

Neuronal: su estructura está inspirada en el funcionamiento de las redes neuronales biológicas.

Feed-forward: la información fluye únicamente hacia delante.

Neuronal: su estructura está inspirada en el funcionamiento de las redes neuronales biológicas.

Feed-forward: la información fluye únicamente hacia delante.

Figura: Red neuronal feed-forward

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

Aprendizaje automático y supervisado.

- Aprendizaje automático y supervisado.
- Se trata de encontrar unos pesos W para aproximar una función y = f(x; W).

- Aprendizaje automático y supervisado.
- Se trata de encontrar unos pesos W para aproximar una función y = f(x; W).
- Las capas son vectores formados por neuronas (denotamos por a_i^L a la neurona j en la capa L).

- Aprendizaje automático y supervisado.
- Se trata de encontrar unos pesos W para aproximar una función y = f(x; W).
- Las capas son vectores formados por neuronas (denotamos por a_i^L a la neurona j en la capa L).

Definición

Dados unos pesos W_j , una constante b^{L-1} y una función de activación g. Se define la neurona a_i^L como:

$$a_j^L = g(W_j^T a^{L-1} + b^{L-1})$$
 (1)

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

MUESTRA

TEST

VALIDACIÓN

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

MUESTRA

TEST

VALIDACIÓN

Hiperparámetro

Parámetro que se fija antes de comenzar el proceso de aprendizaje.

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

Aprendizaj ϵ

MUESTRA

TEST

Parámetro que se fija antes de comenzar el proceso de aprendizaje.

Tamaño del batch

Número de observaciones que se toman en cada paso.

Estandariación

Consiste en ajustar las distintas variables observadas para que estén en la misma escala.

Estandariación

Consiste en ajustar las distintas variables observadas para que estén en la misma escala.

Por el rango de variable.

Estandariación

Consiste en ajustar las distintas variables observadas para que estén en la misma escala.

Regularización

Se utiliza para prevenir el sobreajuste para que se tengan buenos resultados para nuevas observaciones, no solo para el conjunto de entrenamiento.

Por el rango de variable.

Estandariación

Consiste en ajustar las distintas variables observadas para que estén en la misma escala.

Por el rango de variable.

Regularización

Se utiliza para prevenir el sobreajuste para que se tengan buenos resultados para nuevas observaciones, no solo para el conjunto de entrenamiento.

- Aumentar la muestra.
- Penalización de parámetros.
 - Dropout.

- Hiperparámetros.
- Función de activación.
- Inicialización.
- Error.
- Método de optimización.

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

Arquitectura

Hiperparámetros: número de capas, número de neuronas.

Arquitectura

Hiperparámetros: número de capas, número de neuronas. **Función de activación**:

$$Sigmoid(x) = \frac{1}{1 + e^{-x}}$$

$$Relu(x) = \begin{cases} 0 & \text{si } x \le 0 \\ x & \text{si } x > 0 \end{cases}$$

$$LeakyRelu(x) = \begin{cases} 0.01x & \text{si } x \le 0 \\ x & \text{si } x > 0 \end{cases}$$
(2)

Arquitectura

Inicialización: Xavier Uniform.

$$W \sim U(rac{-\sqrt{6}}{\sqrt{n_j+n_{j+1}}},rac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}})$$
 donde n $_j$ es el tamaño de la capa j. (3)

Inicialización: Xavier Uniform.

$$W \sim U(\frac{-\sqrt{6}}{\sqrt{n_j+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_j+n_{j+1}}})$$
 donde n_j es el tamaño de la capa j. (3)

Observación

"Utilizar técnicas concretas para inicializar los pesos se puede considerar como una técnica de regularización al llegar a mínimos locales que generalizan mejor" [4].

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal feed-forward

Arquitectura

Error: entropía cruzada binaria [3] :

 p_i : output.

 y_i : etiqueta conocida.

g : función de activación.

Arquitectura

Error: entropía cruzada binaria [3] :

 p_i : output.

 y_i : etiqueta conocida.

g : función de activación.

$$J = \frac{-1}{n} \sum_{i=1}^{n} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$
 (4)

Arquitectura

Error: entropía cruzada binaria [3] :

 p_i : output.

 y_i : etiqueta conocida.

g: función de activación.

$$J = \frac{-1}{n} \sum_{i=1}^{n} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)]$$
 (4)

Propagación del error:

$$J^{L} = J^{L+1} \cdot W^{L} \cdot \frac{\partial g(x)}{\partial x} \tag{5}$$

Arquitectura

Optimización: Mini-Batch Descenso del Gradiente.

 α : tasa de aprendizaje.

J(x): error en un punto.

m: tamaño del batch.

Red neuronal feed-forward

Arquitectura

Optimización: Mini-Batch Descenso del Gradiente.

 α : tasa de aprendizaje.

J(x): error en un punto.

m: tamaño del batch.

$$w_{k+1} = w_k - \frac{\alpha}{m} \sum_{i=1}^m \nabla J_i(x)$$
 (6)

Conceptos de imágenes Red neuronal feed-forward Red neuronal de convolución

Red neuronal feed-forward

Arquitectura

 $lpha
ightarrow {
m salta}$ mínimos locales.

 $\alpha \rightarrow \text{gran coste computacional}$.

Red neuronal feed-forward

 $lpha
ightarrow \mathsf{salta}$ mínimos locales.

 $_{\alpha}$ \rightarrow gran coste computacional.

Figura: Tasa de aprendizaje

Red neuronal *feed-forward*Arquitectura

 $lpha
ightarrow \mathsf{salta}$ mínimos locales.

 $_{lpha}$ ightarrow gran coste computacional.

Figura: Tasa de aprendizaje

Observación

Existen métodos adaptativos donde α varía a lo largo de las iteraciones, como puede ser el método Adam.

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Introducción y objetivos
Estado del arte
Conceptos previos
Métricas de validación
Caso de estudio
Conclusiones

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal de convolución Motivación

Interacciones sparse. | Compartir parámetros. | Equivarianza. |

Red neuronal de convolución Motivación

Interacciones sparse. | Compartir parámetros. | Equivarianza.

Figura: CNN (superior) y NN (inferior)

Interacciones sparse. | Compartir parámetros. | Equivarianza. |

Traslación + Convolución

=

Figura: CNN (superior) y NN (inferior)

Convolución + Traslación

Conceptos básicos

```
Input (X) de tamaño (m \times m \times c).
Kernel o filtro (K) de tamaño (n \times n \times c \times f).
c: número de canales.
f: número de filtros.
```

Conceptos básicos

Input (X) de tamaño $(m \times m \times c)$.

Kernel o filtro (K) de tamaño $(n \times n \times c \times f)$.

c: número de canales.

f: número de filtros.

$$Z_{i,j,k} = \sum_{i}^{m} \sum_{j}^{n} \sum_{o}^{l} X_{i+m-1,j+n-1,o} K_{i,j,o,k}$$
 (7)

Conceptos básicos

Input (X) de tamaño $(m \times m \times c)$.

Kernel o filtro (K) de tamaño $(n \times n \times c \times f)$.

c: número de canales.

f: número de filtros.

$$Z_{i,j,k} = \sum_{i}^{m} \sum_{j}^{n} \sum_{o}^{l} X_{i+m-1,j+n-1,o} K_{i,j,o,k}$$
 (7)

Por ejemplo :

$$\begin{array}{c|ccc} * & \begin{array}{c|ccc} 1 & 0 \\ 1 & 0 \end{array} & = & \boxed{4} \end{array}$$

Conceptos básicos

- Capa convolucional.
- Capa pooling.
- Capa totalmente conectada

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal de convolución

Capa convolucional

Definición

El stride (s) indica cómo el filtro convoluciona a lo largo del input.

Capa convolucional

Definición

El stride (s) indica cómo el filtro convoluciona a lo largo del input.

$$s = 1$$
.

Capa convolucional

Definición

El stride (s) indica cómo el filtro convoluciona a lo largo del input.

$$s = 1$$
.

$$s=2$$
.

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal de convolución

Capa convolucional

Definición

El padding (p) indica la cantidad de celdas con ceros que se añaden en el alto y largo del input.

Capa convolucional

Definición

El padding (p) indica la cantidad de celdas con ceros que se añaden en el alto y largo del input.

- Valid padding: no añade nada.
- Same padding: lo justo para que el input y el output tengan el mismo tamaño.

Capa convolucional

Output de tamaño:

$$m^{L} = \frac{m^{L-1} - n^{L} + 2 \cdot p^{L}}{s^{L}} + 1 \tag{8}$$

Output: $(m^L \times m^L \times f^L)$.

Capa convolucional

Output de tamaño:

$$m^{L} = \frac{m^{L-1} - n^{L} + 2 \cdot p^{L}}{s^{L}} + 1 \tag{8}$$

Output: $(m^L \times m^L \times f^L)$.

Operación (7) + Activación (2)

Capa convolucional

Output de tamaño:

$$m^{L} = \frac{m^{L-1} - n^{L} + 2 \cdot p^{L}}{s^{L}} + 1 \tag{8}$$

Output: $(m^L \times m^L \times f^L)$. Operación (7) + Activación (2)

Figura: Convolución con 3 canales

Capa de *pooling*

- Maxpool.
- Averagepool.

Capa de *pooling*

- Maxpool.
- Averagepool.

Observación

- Terera dimensión constante $c^{L-1} = c^L$.
- Primeras dos dimensiones como en (12).

Capa de pooling

- Maxpool.
- Averagepool.

Observación

- Terera dimensión constante $c^{L-1} = c^L$.
- Primeras dos dimensiones como en (12).

Por ejemplo, max(2,2)

$$máx(1,1,2,2) = 2$$
 2 5
 $máx(2,2,1,7) = 7$ 7 3
 $máx(1,7,1,2) = 7$ 7 4

Conceptos de imágenes Red neuronal *feed-forward* Red neuronal de convolució

Red neuronal de convolución

Capa totalmente conectada

Definición

Se disponen los valores en un vector unidimensional y se tiene una red neuronal *feed-forward*.

Capa totalmente conectada

Definición

Se disponen los valores en un vector unidimensional y se tiene una red neuronal *feed-forward*.

Figura: Arquitectura completa de red neuronal convolucional

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Problema de clasificación binaria \rightarrow Umbral

Problema de clasificación binaria \rightarrow Umbral

Figura: Matriz de confusión

Problema de clasificación binaria \rightarrow Umbral

Figura: Matriz de confusión

$$VPR = \frac{VP}{P}$$
 P: total de positivos

(9)

$$SPC = \frac{VN}{N}$$
 N: total de negativos

$$Precisión = \frac{VP + VN}{P + N}$$
 (10)

$$Precisión = \frac{VP + VN}{P + N}$$
 (10)

Problemas

$$Precisión = \frac{VP + VN}{P + N}$$
 (10)

Problemas

Díficil comparar modelos.

$$Precisión = \frac{VP + VN}{P + N}$$
 (10)

Problemas

- Díficil comparar modelos.
- Objetivo distinto a mejorar precisión.

$$Precisión = \frac{VP + VN}{P + N}$$
 (10)

Problemas

- Díficil comparar modelos.
- Objetivo distinto a mejorar precisión.
- Umbral óptimo cercano al valor nulo.

Índice

- Introducción y objetivos
- Estado del arte
- 3 Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Eje x: 1-SPC.

Eje y: VPR.

Eje x: 1-SPC.

Eje y: VPR.

Figura: Curva ROC

Eje x: 1-SPC.

Eje y: VPR.

Figura: Curva ROC

Área bajo la curva (AUC)

Eje x: 1-SPC.

Eje y: VPR.

Figura: Curva ROC

ightarrow 1 clasificación perfecta.

Área bajo la curva (AUC)

 \rightarrow 0.5 clasificación aleatoria.

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Caso de estudio

Dataset

Entrenamiento: 220024 imágenes. Test: 57457.

Caso de estudio

Dataset

Entrenamiento: 220024 imágenes. Test: 57457.

Tamaño: $(96 \times 96 \times 3)$ píxeles, central $(32 \times 32 \times 3)$.

Dataset

Entrenamiento: 220024 imágenes. Test: 57457.

Tamaño: $(96 \times 96 \times 3)$ píxeles, central $(32 \times 32 \times 3)$.

Figura: Exploraciones histopatológicas de secciones de ganglios linfáticos

Caso de estudio

Dataset

 $40\,\%$ de " 1 " y el $60\,\%$ de " 0 ".

Caso de estudio

Dataset

40 % de " 1 " y el 60 % de " 0 ".

Muestra total

Test

20 %

Validación

10 %

Entrenamiento

70 %

Figura: Conjunto de entrenamiento, validación y test

Preprocesamiento

Figura: Posibles outliers

${\sf Preprocesamiento}$

Figura: Posibles outliers

Se eliminan el 0.001 % del dataset.

Caso de estudio

 $\mathsf{Resultados}$

- NN1.
- NN2.
- CNN1.
- CNN2.

Caso de estudio

 $\mathsf{Resultados}$

Estandarización

ightarrow Rango de variables.

Caso de estudio

 $\mathsf{Resultados}$

Estandarización ightarrow Rango de variables.

Inicialización \rightarrow Xavier Uniform.

Caso de estudio

 $\mathsf{Resultados}$

Estandarización \rightarrow Rango de variables.

Inicialización \rightarrow Xavier Uniform.

Error \rightarrow Entropía cruzada binaria.

Caso de estudio

Resultados

Estandarización \rightarrow Rango de variables.

Inicialización \rightarrow Xavier Uniform.

Error \rightarrow Entropía cruzada binaria.

Función de activación salida \rightarrow Sigmoid.

Caso de estudio

Resultados

NN1

Neuronas en capa oculta $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$

350.

Caso de estudio

NN1

Neuronas en capa oculta

Función activación

350.

Leaky Relu.

Caso de estudio

Resultados

NN1

Neuronas en capa oculta \rightarrow

Función activación \rightarrow

Estandarización \rightarrow

350.

Leaky Relu.

Tras primera capa.

Resultados

NN1

Neuronas en capa oculta ightarrow 350.

Función activación ightarrow Leaky Relu.

Estandarización ightarrow Tras primera capa.

Método de optimización ightarrow Mini-Batch Descenso del gradiente. ho = 0.0001, momento =0.8.

Resultados

NN1

Neuronas en capa oculta ightarrow 350. Función activación ightarrow Leaky Relu. Estandarización ightarrow Tras primera capa. Método de optimización ightarrow Mini-Batch Descenso del gradiente. ho = 0.0001, momento = 0.8. Tamaño del hatch
ightarrow 174.

Resultados

NN1

AUC: 0.821

Figura: Aprendizaje NN1

Caso de estudio

Resultados

NN2

+ capa de 40 neuronas (con Leaky Relu).

Resultados

NN2

+ capa de 40 neuronas (con Leaky Relu).

AUC: 0.823.

Figura: Aprendizaje NN2.

Caso de estudio

Resultados

CNN1

Tamaño del batch

29.

Caso de estudio

Resultados

CNN1

Tamaño del *batch* \rightarrow 29.

Capas convolucionales + pool \rightarrow 3.

Caso de estudio

Resultados

CNN1

Tamaño del batch o 29. Capas convolucionales + pool o 3. Mini-Batch Descenso Método de optimización $o ext{del gradiente.}$ $\alpha = 0.0001, ext{ momento} = 0.8.$

Caso de estudio

Resultados

CNN1

Nº de filtros	Tamaño del filtro	Activación	Pool layer
15	(7,7,3)	Relu	Max $(4,4)$, s = 2

Primera capa.

Resultados

CNN1

Nº de filtros	Tamaño del filtro	Activación	Pool layer
15	(7,7,3)	Relu	Max(4,4), s = 2

Primera capa.

Nº de filtros	Tamaño del filtro	Activación	Pool layer
20	(5,5,15)	Relu	Max $(4,4)$, s = 2

Segunda capa.

Resultados

CNN1

Nº de filtros	Tamaño del filtro	Activación	Pool layer
30	(3,3,20)	Relu	Max $(2,2)$, s = 2

Tercera capa.

Nº neuronas	Activación	
1920	Sigmoid	

Capa totalmente conectada.

Resultados

CNN1

AUC: 0.930

Figura: Aprendizaje CNN1

Caso de estudio

Resultados

CNN₂

Tamaño del batch

 \rightarrow

29.

Caso de estudio

Resultados

CNN₂

Tamaño del batch

 \rightarrow

29.

Capas convolucionales + pool \rightarrow

4.

Resultados

CNN₂

$$\rightarrow$$

$$\rightarrow$$
 α = 0.001, β_1 = 0.9,

$$eta_2=0.999 \ \mathrm{y} \ \epsilon=10^-8$$

Resultados

CNN₂

$$\rightarrow$$

29.

4.

Adam

$$ightarrow$$
 $lpha=$ 0.001, $eta_1=$ 0.9,

$$\beta_2 = 0.999 \text{ y } \epsilon = 10^-8$$

$$\rightarrow$$

$$p = 0.25$$

Resultados

CNN₂

Tamaño del batch 29. Capas convolucionales + pool 4. Adam Método de optimización \rightarrow α = 0.001, β_1 = 0.9, $\beta_2 = 0.999 \text{ y } \epsilon = 10^-8$ Dropout p = 0.25Pool max y avg

Caso de estudio

Resultados

CNN₂

Nº de filtros	Tamaño del filtro	Activación	Pool layer
15	(6,6,3), s = 2	Relu	Avg(4,4)

Primera capa.

Resultados

CNN₂

Nº de filtros	Tamaño del filtro	Activación	Pool layer
15	(6,6,3), s = 2	Relu	Avg(4,4)

Primera capa.

Nº de filtros	Tamaño del filtro	Activación	Pool layer
20	(5,5,15), $s=2$	Relu	Avg(4,4), $s = 2$

Segunda capa.

Resultados

CNN₂

Nº de filtros	Tamaño del filtro	Activación	Pool layer
15	(6,6,3), $s=2$	Relu	Avg(4,4)

Primera capa.

Nº de filtros	Tamaño del filtro	Activación	Pool layer
20	(5,5,15), $s=2$	Relu	Avg(4,4), $s = 2$

Segunda capa.

Nº de filtros	Tamaño del filtro	Activación	Pool layer
30	(3,3,20)	Relu	Max(2,2)

Tercera capa

Caso de estudio

Resultados

CNN₂

Nº de filtros	Tamaño del filtro	Activación	Pool layer
40	(3,3,30)	Relu	Max(2,2)

Cuarta capa

Caso de estudio

Resultados

CNN₂

Nº de filtros	Tamaño del filtro	Activación	Pool layer
40	(3,3,30)	Relu	Max(2,2)

Cuarta capa

Nº neuronas	Activación	
160	Sigmoid	

Capa totalmente conectada

Resultados

CNN₂

AUC: 0.948

Figura: Aprendizaje CNN2

Caso de estudio

Resultados

Discusión

Número de parámetros.

Caso de estudio

Resultados

Discusión

- Número de parámetros.
- Curva de aprendizaje.

Caso de estudio

Resultados

Discusión

- Número de parámetros.
- Curva de aprendizaje.
- Inputs tomados.

Caso de estudio

Resultados

Discusión

- Número de parámetros.
- Curva de aprendizaje.
- Inputs tomados.

CNN2

AUC sobre test: 0.9224

Índice

- Introducción y objetivos
- Estado del arte
- Conceptos previos
 - Conceptos de imágenes
 - Red neuronal feed-forward
 - Red neuronal de convolución
- Métricas de validación
 - Matriz de confusión
 - Curva ROC
- Caso de estudio
- 6 Conclusiones

Conclusiones

¡Muchas gracias!

Bibliografía I

Anna Khoreva, Rodrigo Benenson, Jan Hosang, Matthias Hein, and Bernt Schiele.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 876–885, 2017.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.

Bibliografía II

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

MIT Press, 2016.

http://www.deeplearningbook.org.

Xavier Glorot and Yoshua Bengio.

In Proceedings of the thirteenth international conference on artificial intelligence and statistics, pages 249–256, 2010.