TABLA 4

 \ll Álgebra Booleana \gg

f,g,h representan funciones booleanas, en tanto que x,y,z son variables booleanas. ${\bf 1},{\bf 0}$ (en negritas) son las funciones constantes, mientras que 1,0 (sin negritas) representan los dos valores booleanos posibles.

Para Funciones	Para Variables	Nombre de la Ley
$\overline{\overline{f}} = f$	$\overline{\overline{x}} = x$	Ley del doble complemento
$\overline{\frac{f+g}{f\cdot g}} = \overline{f}\cdot \overline{g}$ $\overline{f\cdot g} = \overline{f} + \overline{g}$	$\overline{x+y} = \overline{x} \cdot \overline{y}$ $\overline{x\cdot y} = \overline{x} + \overline{y}$	Leyes de DeMorgan
$f + g = g + f$ $f \cdot g = g \cdot f$	$ \begin{aligned} x + y &= y + x \\ x \cdot y &= y \cdot x \end{aligned} $	Propiedades conmutativas
$f + (g+h) = (f+g) + h$ $f \cdot (g \cdot h) = (f \cdot g) \cdot h$	$x + (y + z) = (x + y) + z$ $x \cdot (y \cdot z) = (x \cdot y) \cdot z$	Propiedades asociativas
$f + g \cdot h = (f+g) \cdot (f+h)$ $f \cdot (g+h) = f \cdot g + f \cdot h$	$x + y \cdot z = (x + y) \cdot (x + z)$ $x \cdot (y + z) = x \cdot y + x \cdot z$	Propiedades distributivas
$f + f = f$ $f \cdot f = f$	$ \begin{aligned} x + x &= x \\ x \cdot x &= x \end{aligned} $	Leyes de idempotencia
$f + 0 = f$ $f \cdot 1 = f$	$ \begin{aligned} x + 0 &= x \\ x \cdot 1 &= x \end{aligned} $	Leyes de identidad
$f + \overline{f} = 1$ $f \cdot \overline{f} = 0$	$ \begin{aligned} x + \overline{x} &= 1 \\ x \cdot \overline{x} &= 0 \end{aligned} $	Leyes de inversos
$f + 1 = 1$ $f \cdot 0 = 0$	$ \begin{aligned} x+1 &= 1 \\ x \cdot 0 &= 0 \end{aligned} $	Leyes de dominación
$f + f \cdot g = f$ $f \cdot (f + g) = f$	$x + x \cdot y = x$ $x \cdot (x + y) = x$	Leyes de absorción