People divided into 10 types — those who understand binary code and those who do not

Архитектуры процессорных систем

Лекция 3. Цифровая арифметика. АЛУ

Цикл из 16 лекций о цифровой схемотехнике, способах построения и архитектуре компьютеров

План лекции

- Двоичное и шестнадцатеричное представление чисел
- Двоичная арифметика
- Отрицательные числа
- Сумматор
- Арифметико-логическое устройство

Двоичное представление чисел

$$v = \sum_{i=0}^{N-1} 2^i b_i$$

$$512$$
 256
 128
 64
 32
 16
 8
 4
 2
 1
 2^9
 2^8
 2^7
 2^6
 2^5
 2^4
 2^3
 2^2
 2^1
 2^0
 0
 1
 1
 1
 1
 1
 1
 0
 0

$$v = 0 \cdot 2^9 + 1 \cdot 2^8 + 1 \cdot 2^7 + 0 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + \cdots$$
$$= 256 + 128 + 32 + 16 + 8 + 4 = 444$$

Шестнадцатеричное представление чисел

```
0000 - 0
0001 - 1
0010 - 2
0011 - 3
                                                                                    0
                     0
0100 - 4
0101 - 5
0110 - 6
0111 - 7
1000 - 8
1001 - 9
1010 - A
1011 - B
                                   0b0111111010000 = 0x7D0
1100 - C
1101 - D
1110 - E
1111 - F
```

Двоичная арифметика

$$-2^3 + 0b110 = -8 + 6 = -2$$

$$-\frac{1110}{111}$$

$$-\frac{1110}{0111}$$

$$-\frac{011}{101}$$

$$-\frac{7?}{110}$$

Арифметика по модулю

Числа в дополнительном коде

 $v = -2^{N-1}b_{N-1} + \sum_{i=0}^{N-2} 2^i b_i$ $2^{N-1} 2^{N-2} 2^7$... $2^3 2^2 2^1 2^0$

- Отрицательные числа имеют «1» в старшем разряде
- Самое маленькое число? $10...0000 -2^{N-1}$
- Самое большое число? $01...1111 + 2^{N-1} 1$
- Если все биты «1»? 11...1111 —1

Отрицательные числа

Как положительное число сделать отрицательным?

Как из А сделать -А?

$$-A + A = 0 = -1 + 1$$

$$-A = (-1 - A) + 1$$

$$-A = \bar{A} + 1$$

$$-A = \bar{A} + 1$$

$$A - B = A + \bar{B} + 1$$

$$A_{N-1} \dots A_1 A_0$$

$$A_{N-1} \dots A_1 A_0$$

Переполнение

$$(-5)$$
 $+$ $\frac{1011}{0101}$ (0) $\frac{10000}{10000}$

$$(-6)$$
 + 1010
 (-5) + 1011
 $(+5)$ 10101

Сумматор

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $S = A \oplus B \oplus C_{in}$

1 1 1 1 1 1 1
$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

X	У	х⊕у
0	0	0
0	1	1
1	0	1
1	1	0

Сумматор

$$\frac{A_3 A_2 A_1 A_0}{B_3 B_2 B_1 B_0} \\ \frac{B_3 S_2 S_1 S_0}{S_3 S_2 S_1 S_0}$$

Α	В	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C_i = A_i B_i + (A_i + B_i) C_{i-1}$$

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

 $P_{3:0} = P_3 P_2 P_1 P_0$

$$C_i = G_{i:j} + P_{i:j} C_j$$

Сумматор с ускоренным переносом

$$C_i = G_{i:j} + P_{i:j} C_j$$

Префиксный сумматор

ALU

Арифметико-логическое устройство

- АЛУ блок процессора, выполняющий арифметические и поразрядно логические операции
 - Арифметические операции имеют перенос
 - Логические операции без переноса
- АЛУ комбинационная схема
- На вход АЛУ поступают информационные сигналы (данные, над которыми происходит операция) и управляющие сигналы (определяют, какая операция будет произведена над данными), на выходе результат операции и флаги

АЛУ MIPS

Function
A AND B
A OR B
A + B
not used
A AND B
A OR $\overline{\mathbb{B}}$
A – B
SLT

F _{2:0}	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND B
101	A OR $\overline{\mathtt{B}}$
110	A – B
111	SLT
·	

	F _{2:0}	Function
	000	A AND B
	001	A OR B
	010	A + B
	011	not used
100		A AND B
	101	A OR $\overline{\mathbb{B}}$
	110	A – B
	111	SLT

Function	
A AND B	
A OR B	
A + B	
not used	
A AND \overline{B}	
A OR $\overline{\mathbb{B}}$	
A – B	
SLT	
	A AND B A OR B A + B not used A AND B A OR B A OR B A - B

	F _{2:0}	Function	
	000	A AND B	
	001	A OR B	
_	010	A + B	
	011	not used	
	100	A AND $\overline{\mathtt{B}}$	
	101	A OR $\overline{\mathtt{B}}$	
	110	A – B	
	111	SLT	

F _{2:0}	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND B
101	A OR B
110	A – B
111	SLT

Function
A AND B
A OR B
A + B
not used
A AND B
A OR B
A – B
SLT

	F _{2:0}	Function	
	000	A AND B	
001		A OR B	
	010	A + B	
	011	not used	
	100	A AND \overline{B}	
	101	A OR $\overline{\mathtt{B}}$	
	110	A – B	
	111	SLT	_

F _{2:0}	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND B
101	A OR $\overline{\mathbb{B}}$
110	A – B
111	SLT

Function
A AND B
A OR B
A + B
not used
A AND B
A OR $\overline{\mathbb{B}}$
A – B
SLT

CASE

```
module mux (
                   [3:0] d0, d1, d2, d3,
       input
       input
                   [1:0] s,
       output reg [3:0] y
);
always @ (*) begin
       case (s)
               2'b00: y = d0;
               2'b01: y = d1;
               2'b10: y = d2;
               2'b11: y = d3;
       endcase
end
endmodule
```


АЛУ RISC-V

funct3	funct7	Description	Operation
000	0000000	add	rd = rs1 + rs2
000	0100000	sub	rd = rs1 - rs2
001	0000000	shift left logical	$rd = rs1 \ll rs2_{4:0}$
010	0000000	set less than	rd = (rs1 < rs2)
011	0000000	set less than unsigned	rd = (rs1 < rs2)
100	0000000	xor	$rd = rs1 ^ rs2$
101	0000000	shift right logical	$rd = rs1 \gg rs2_{4:0}$
101	0100000	shift right arithmetic	$rd = rs1 \gg rs2_{4:0}$
110	0000000	or	$rd = rs1 \mid rs2$
111	0000000	and	rd = rs1 & rs2
000	_	branch if =	if (rs1 == rs2) PC = BTA
001	_	branch if ≠	if (rs1 ≠ rs2) PC = BTA
100	_	branch if <	if (rs1 < rs2) PC = BTA
101	_	branch if ≥	if (rs1 ≥ rs2) PC = BTA
110	_	branch if < unsigned	if (rs1 < rs2) PC = BTA
111	_	branch if ≥ unsigned	if (rs1 ≥ rs2) PC = BTA

Com and	funct7	Description	Carrier
		Description	Operation
000	0000000	add	rd = rs1 + rs2
000	0100000	sub	rd = rs1 - rs2
001	0000000	shift left logical	$rd = rs1 \ll rs2_{4:0}$
010	0000000/	set less than	rd = (rs1 < rs2)
011	0000000	set less than unsigned	rd ₹ (rs1 < rs2)
100	0000000	xor	$rd = rs1 ^ rs2$
101	0000000	shift right logical	$rd = rs1 \gg rs2_{4:0}$
101	0100000	shift right arithmetic	$rd = rsh >>> rs2_{4:0}$
110	0000000	or	rd = rs1 $rs2$
111	0000000	and	rd = rs1 & rs2
000	-	branch if =	if (rs1 == rs2) PC = BTA
001	_	branch if ≠	if (rs1 ≠ rs2) PC = BTA
100	_	branch if <	if (rs1 < rs2) PC = BTA
101	_	branch if ≥	if (rs1 ≥ rs2) PC = BTA
110	_	branch if < unsigned	if (rs1 < rs2) PC = BTA
111	_	branch if ≥ unsigned	if (rs1 ≥ rs2) PC = BTA

Равенство

Сравнение

Сдвиг

Альтернативное АЛУ

$$R_i^+ = a_i \oplus b_i \oplus MP_{i-1}$$

$$R_i^+ = (\overline{a_i} \vee \overline{b_i})(a_i \vee b_i) \oplus MP_{i-1} = \overline{a_i b_i}(a_i \vee b_i) \oplus MP_{i-1}$$

$$R_i' = \overline{S_3 a_i b_i} (a_i \vee b_i) \oplus M P_{i-1}$$

$$R_{i}^{-} = a_{i} \oplus \overline{b_{i}} \oplus MP_{i-1}$$

$$R_{i}^{-} = (\overline{a_{i}} \vee b_{i})(a_{i} \vee \overline{b_{i}}) \oplus MP_{i-1} = \overline{a_{i}}\overline{b_{i}}(a_{i} \vee \overline{b_{i}}) \oplus MP_{i-1}$$

$$R_i'' = \overline{S_2 a_i \overline{b_i}} (a_i \vee \overline{b_i}) \oplus MP_{i-1}$$

$$R_i = \overline{S_3 a_i b_i} \vee S_2 a_i \overline{b_i} \cdot (a_i \vee S_1 \overline{b_i} \vee S_0 b_i) \oplus MP_{i-1}$$

Альтернативное АЛУ

Альтернативное АЛУ

№ п/п	Управляющее				R		
	слово				При	При $M=1$	
	S_3	S_2	S_1	S_0	M = 0	При $P_0 = 0$	При $P_0 = 1$
1	0	0	0	0	A	A	A+1
2	0	0	0	1	$A \vee B$	$A \vee B$	$A \vee B + 1$
3	0	0	1	0	$A \vee \overline{B}$	$A \vee \overline{B}$	$A \vee \overline{B} + 1$
4	0	0	1	1	-1	-1	0
5	0	1	0	0	AB	$A\overline{B} + A$	$A\overline{B} + A + 1$
6	0	1	0	1	B	$A\overline{B} + (A \lor B)$	$A\overline{B} + (A \lor B) + 1$
7	0	1	1	0	$A \oplus \overline{B}$	A-B-1	A - B
8	0	1	1	1	$\overline{A} \vee B$	$A\overline{B}-1$	$A\overline{B}$
9	1	0	0	0	$A\overline{B}$	AB + A	AB + A + 1
10	1	0	0	1	$A \oplus B$	A + B	A+B+1
11	1	0	1	0	\overline{B}	$AB + (A \vee \overline{B})$	$AB + (A \lor \overline{B}) + 1$
12	1	0	1	1	\overline{AB}	$\overline{AB} - 1$	\overline{AB}
13	1	1	0	0	0	A + A	A + A + 1
14	1	1	0	1	$\overline{A}B$	$A + (A \vee B)$	$A + (A \vee B) + 1$
15	1	1	1	0	$\overline{A \vee B}$	$A + (A \vee \overline{B})$	$A + (A \vee \overline{B}) + 1$
16	1	1	1	1	\overline{A}	A-1	A

Ускоренный перенос

$$P_{i} = D_{i} \vee F_{i} P_{i-1}.$$

$$\begin{cases} P_1 = D_1 + P_0 F_1 \\ P_2 = D_2 + P_1 F_2 \\ P_3 = D_3 + P_2 F_3 \\ P_4 = D_4 + P_3 F_4 \end{cases}$$