Esame di Laboratorio di Fisica Computazionale 18 aprile 2012, ore 13.30

shell scripting

Si scriva uno script che permette di identificare la PID (il numero identificativo) del processo cron. Questo processo viene lanciato da root all'avvio del computer.

Mathematica

1. Si risolva il sistema di equazioni seguente:

$$\begin{cases} x + y + z &= 4 \\ x^2 - y^2 - z &= 2 \\ -x + 6y - z &= -2 \end{cases}$$

- 2. Si disegnino, nello stesso grafico, le tre superfici (con z espresso in funzione di x e y) definite dalle tre equazioni del punto precedente, scegliendo come intervallo $x \in [-5, 5]$ e $y \in [-5, 5]$.
- 3. Si consideri un sistema di spin 1 e si scelga una base cartesiana in cui L_z è diagonale:

$$L_z = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{array}\right)$$

Gli operatori $L_{\pm} = L_x \pm i L_y$ agiscono sugli autostati di L_z secondo l'equazione $L_{\pm}|m\rangle = \sqrt{2}|m\pm 1\rangle$. Si calcoli la rappresentazione matriciale degli operatori L_x e L_y .

A questo scopo si definisca una funzione $Lp[i_{-}, j_{-}] := Sqrt[2] Delta[i, j + 1]$, dove Delta indica la funzione δ di Kronecker; analogamente si proceda per L_{-} . Si ricordi che gli autovalori di L_z sono -1, 0, 1 (nel problema è stato posto $\hbar = 1$).

4. Si risolva l'equazione differenziale

$$(1 - x^2)y''(x) - xy'(x) + n^2y(x) == 0$$

e si pongano le due costanti di integrazione $c_1 = 1, c_2 = 0$. Si disegnino, con $x \in [-1, 1]$, in un solo grafico le prime cinque soluzioni ponendo $n = 1, \ldots, 5$.

Si generino i primi cinque polinomi di Chebyshev $T_n(x)$, utilizzando la relazione di ricorrenza

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), \quad T_0(x) = 1, \quad T_1(x) = x$$

Si disegnino, con $x \in [-1, 1]$, questi cinque polinomi e si faccia un confronto con le prime cinque soluzioni dell'equazione differenziale.