

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Методические указания к выполнению практических работ

Моделирование информационно-аналитических систем Практическая работа 3

	(наименование дисциплины (модуля) в соответствии с учебным планом)						
Уровень	специалитет						
	(бакалавриат, магистратура, специалитет)						
Форма обучения	очная						
	(очная, очно-заочная, заочная)						
Направление(-я)	10.05.04 Информационно-аналитические системы безопасности,						
подготовки	специализации:						
	специализация №1 "Автоматизация информационно-аналитической						
	деятельности";						
	специализация №3 "Технологии информационно-аналитического						
	мониторинга».						
	(код(-ы) и наименование(-я))						
Институт	Кибербезопасности и цифровых технологий						
	(полное и краткое наименование)						
Кафедра	Информационно-аналитические системы кибербезопасности (КБ-2)						
	(полное и краткое наименование кафедры, реализующей дисциплину (модуль))						
Лектор	к.т.н., доцент Лебедев Владимир Владимирович						
	(сокращенно – ученая степень, ученое звание; полностью – ФИО)						
Используются в да	анной редакции с учебного года 2022/23						
	(учебный год цифрами)						
Проверено и согла	совано «»20г.						
	(подпись директора Института/Филиала с расшифровкой)						

Москва 20 г.

Практическое занятие №3

Разработка моделей случайных процессов в стохастических

системах методами имитационного моделирования.

<u>Тема:</u> Стационарные случайные процессы с непрерывными и дискретными распределениями.

<u>Цель:</u> Решение задач и закрепление навыков имитационного моделирования.

Стационарным случайным процессом называют случайный процесс, устойчивый во времени.

В частности, если его характеристики, такие как математическое ожидание и дисперсия его значений постоянны на каждом срезе модельного времени, то мы имеем дело со стационарным случайным процессом.

Функция распределения значений одномерного стационарного случайного процесса не зависит от времени.

В работе предлагается решить 2 задачи.

1-я задача моделирования:

Требуется создать имитационную модель нормализованных нормальных чисел N(0,1) методом ЦПТ. Попутно мы генерируем выборки псевдослучайных чисел генератора.

Числа моделируем по алгоритму:
$$N(0,1) = \left[\sum_{j=1}^{12} \mathbf{r}_{pp}(0;1)_j\right] - 6$$

Алгоритм ЦПТ включает процедуру суммирования 12-ти чисел генератора псевдослучайных чисел, а затем нормирование чисел суммы путём вычитания числа 6, т.к. $m\left[\sum_{j=1}^{12} r_{pp}(0;1)_j\right] = \frac{12}{2} = 6$, а $\sigma\left[\sum_{j=1}^{12} r_{pp}(0;1)_j\right] = \sqrt{\frac{12}{12}} = 1$. Нормирование необходимо для получения нормализованных чисел, распределённых по нормальному закону с параметрами: m=0 — математическое ожидание; $\sigma=1$ — среднеквадратическое отклонение (СКО).

Задание:

- 1). Разработать программу расчёта.
- 2). Получить выборки ГПСЧ $r_{pp}(0;1)$ и N(0,1) объёмом 200 значений.
- 3). Оценить выборочные характеристики:
- 4). Выполнить частотный анализ выборок:
- 5). Построить гистограмму частотного распределения по выборкам.
- 6). Сделать сравнительный анализ по выборкам и сформулировать выводы.

Пример кода программы:

```
Sub Norm ()
    For t = 1 To 200
        v = 0
        Cells(245 + t, 1) = t
        For j = 1 To 12
            Randomize
            r = Rnd()
            If j = 1 Then
                Cells(245 + t, 2) = r
            End If
            v = v + r
        Next j
        Z = v - 6
        Cells(245 + t, 3) = Z
    Next t
End Sub
```

Например получены выборки ГПСЧ $r_{pp}(0;1)$ и N(0,1):

No	rpp(0,1)	N(0,1)
1	0,865	1,312
2	0,861	-0,343
3	0,207	-2,122
4	0,508	0,848
5	0,595	-0,448
6	0,027	-1,702
7	0,871	1,126
8	0,173	0,253
9	0,557	0,302

продолжение табл.

191	0,377	-1,853
192	0,944	-0,352
193	0,030	-1,914
194	0,466	-1,602
195	0,717	1,368
196	0,611	0,931
197	0,728	1,305
198	0,662	0,541
199	0,381	0,244
200	0,683	0,258

1). Оценка выборочных характеристик:

Ср. знач.	0,515	0,080
Дисп. выб.	0,082	1,076

2). Данные для частотного анализа выборок:

Мин	0,002	-2,400
Макс	0,999	2,770
К	15	15
h	0,071197	0,3693

3). Частотный анализ выборок:

ГПСЧ $r_{pp}(0; 1)$:

Интервалы	0,002	0,073	0,145	0,216	0,287	0,358	0,429	0,501	
Частоты	1	13	12	14	15	10	15	14	
Интервалы	0,572	0,643	0,714	0,785	0,857	0,928	0,999		
Частоты	17	15	13	13	18	17	13	0	

N(0,1):

Интервалы	-2,400	-2,031	-1,662	-1,292	-0,923	-0,554	-0,184	0,185	
Частоты	1	3	5	12	13	23	26	23	
Интервалы	0,554	0,924	1,293	1,662	2,031	2,401	2,770		
Частоты	33	16	20	12	7	3	3	0	

Графики гистограмм изображены на рис. 1.

Числа ГПСЧ распределены равномерно $r_{pp}(0;1)$, нормализованная сумма 12-ти значений ГПСЧ — это нормализованное число N(0,1), что

подтверждает гистограмма их частотного распределения.

Рисунок 1. Гистограмма чисел ГПСЧ (слева) и нормализованных чисел, распределённых по нормальному закону

Сделайте выводы по результатам моделирования. Дайте сравнительный анализ равномерно распределённых чисел и чисел, распределённых по нормальному закону.

2-я задача моделирования:

Разработать имитационную модель случайного процесса изменения состояния дискретной системы, заданного графом, см. рис. 2.

Рисунок 2. Граф состояний дискретной стохастической системы

Процесс запускается из состояния 0, переходы системы из состояния в состояние происходят в дискретные моменты модельного времени. На втором шаге система будет находиться в одном из состояний 3, 4, 5, 6.

Разметка условных вероятностей переходов $\{p_{01}; p_{02}; p_{13}; p_{14}; p_{25}; p_{26}\}$ в системе производится генератором вариантов задания.

Задание:

- 1). Разработать программу имитационной модели дискретного случайного процесса по методу «жребия» на разметке.
- 2). Данные для частотного анализа выборку объёмом 200 значений получить в численном эксперименте по программе.
- 3). Оценить частоту (вероятность) попадания системы в эти состояния по данным этого численного эксперимента.
 - 4). Сделать анализ результатов и выводы.

Например, для разметки графа на рис. 29 заданы параметры модели:

${\bf p_{01}} =$	${\bf p_{02}} =$	p ₁₃ =	p ₁₄ =	p ₂₅ =	p ₂₆ =
0,4	0.6	0.31	0.7	0.8	0,2

Для имитационного моделирования методом «жребия» используем разметку отрезка [0;1], см. рис. 31. В качестве жребия выступает генератор псевдослучайных чисел $r_{pp}(0;1)$. Он «играет» на разметке, осуществляя случайный выбор отрезков разметки и связанных с ними исходов.

Рисунок 31 Разметка отрезка [0,1] для розыгрыша «жребием»

Пример полученной выборки случайных данных для последующего частотного анализа:

$N_{\underline{0}}$	12	R	3456
1	2	0,315069	5
2	1	0,253776	3
3	2	0,0158	5
4	2	0,035183	5
197	1	0,857076	4
198	1	0,689975	4
199	1	0,225925	3
200	1	0,96558	4

Вычисленная по данным выборки частота исходов:

3	4	5	6
34	59	93	14

Сумма всех частот дискретных исходов 3,4,5 и 6 по нижней строке равняется: 200: 34+59+93+14=200.

Частотное распределение, получаемое по выборке на основании таблицы данных частотного анализа представлена в форме гистограммы нп графике ниже, см. на рис. 3.

Рисунок 3. Гистограмма частотного распределения наблюдаемых исходов

Вероятность появления состояний системы оцениваемая по данным статистического анализа.

Частость исходов:

3	4	5	6
17,00%	29,50%	46,50%	7,00%

Полный непараметрический анализ данных включает:

1. Упорядочивание выборки по возрастанию от минимального значения до максимального – от 3 до 5.

Упорядоченная выборка представляет порядковую статистику. Каждый член этого ряда есть порядковая статистика.

2. Строят полиномы распределения частоты и накопительный полином, см. рис. 4 и рис. 5:

Рисунок 4. Полином частоты

Рисунок 5. Накопительный полином

Первый полином представляет функцию распределения частоты, а второй — функцию накопительной вероятности слева, смысл которой — определить вероятность появления случайных значений слева от указанного значения.

2. Группирование – выборка разбивается на 4 группы:

1-я группа включает 34 значения 3; 2-я группа включает 59 значений 4; 3-я группа включает 93 значения 5; 4-я группа включает 14 значений 6.

3. Веса групп в выборке определяются частостью исходов:

$$1-\pi - 0.170$$
; $2-\pi - 0.295$; $3-\pi - 0.465$; $4-\pi - 0.07$.

4. Используя данные анализа можно вычислить характеристики распределения такие, как среднее выборочное значение и выборочную дисперсию:

$$\bar{X} = \sum_{1}^{4} x_{j} f_{j} = 3 \cdot 0.17 + 4 \cdot 0.295 + 5 \cdot 0.465 + 6 \cdot 0.07 = 4.435$$

$$S_{x} = \frac{n}{n-1} \cdot \sum_{1}^{4} (x_{j} - \bar{X})^{2} \cdot f_{j} = \frac{n}{n-1} \left[\sum_{1}^{4} x_{j}^{2} f_{j} - \bar{X}^{2} \right] =$$

$$= \frac{200}{199} [(3^{2} \cdot 0.17 + 4^{2} \cdot 0.295 + 5^{2} \cdot 0.465 + 6^{2} \cdot 0.07) - 4.435^{2}] = 0.7294$$

Пример кода:

```
Sub Greb_()
   For i = 1 To 200
        Randomize
        r = Rnd()
        If r \ll 0.4 Then
            R1 = 1
            R1 = 2
        End If
        Randomize
        r = Rnd()
        If R1 = 1 Then
            If r <= 0.3 Then
               R2 = 3
               R2 = 4
            End If
        End If
        If R1 = 2 Then
            If r <= 0.8 Then
               R2 = 5
               R2 = 6
            End If
        End If
        Cells(12 + i, 7) = R2
End Sub
```

Вопросы для самоконтроля:

- 1. Объясните принципы имитационного моделирования.
- 2. Опишите алгоритм имитационного моделирования дискретно распределённых случайных чисел. Приведите пример реализации метода «жребия».
- 3. Опишите алгоритм имитационного моделирования непрерывно распределённых случайных методом обратных функций.
- 4. Опишите алгоритм моделирования непрерывно распределённых случайных чисел методом усечения Неймана.
- 5. Опишите алгоритм имитационного моделирования непрерывно распределённых случайных чисел методом ступенчатой аппроксимации по гистограмме функции.
- 6. Алгоритм ЦПТ имитационного моделирования нормально распределенных чисел.
- 7. Алгоритм Бокса-Мюллера имитационного моделирования нормально-распределённых чисел.
 - 8. Дайте определение формулы случайного процесса.
 - 9. Что такое нормальное распределение?

СПИСОК ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

- 1. Дорошенко А.Н. Математическое и имитационное моделирование дискретных процессов и систем [Электронный ресурс]: учебное пособие /А. Н. Дорошенко. М.: МИРЭА, 2018. 151 с. Электрон, опт. диск (ISO)
- 2. В.В. Лозовецкий. Защита автоматизированных систем обработки информации и телекоммуникационных сетей: учебное пособие для вузов/ В.В. Лозовецкий, Е.Г. Комаров, В.В. Лебедев; под редакцией В.В. Лозовецкого. Санкт-Петербург: Лань, 2023, -448 с: ил. Текст: непосредственный.
- 3. Ермакова А.Ю. Моделирование автоматизированных систем в защищённом исполнении [Электронный ресурс]: Учебное пособие, ч.1./ Ермакова А.Ю., Лебедев В.В. М.: МИРЭА Российский технологический университет, 2024. 1 электрон. опт. диск (CD-ROM)..
- 4. Пестриков В.М., Дудкин В.С., Петров Г.А.. Дискретная математика./Уч. пос.. СПб.: СПб ГТУРП, 2013.- 136 с.
- 5. Гельгор А.Л., Горлов А.И., Попов Е.А.. Методы моделирования случайных величин и случайных процессов: уч. пос. СПб.: Изд-во ПГПУ, 2012. 217 с.
- 6. Васильев К.К., Служивый М.Н. Математическое моделирование систем связи: учеб, пособие. УлГТУ, 2008 168 с.
- 7. Карпов Ю.Г. Имитационное моделирование систем. Введение в моделирование с AnyLogic 5. СПб.: БХВ Петербург, 2006. 400 с.
- 8. Полянский Д.И. Оценка защищённости./Уч. пос. Владимир: изд-во Владим. гос. ун-та, 2005. 80 с.
- 9. Шмидт Б. Введение в имитационное моделирование в системе Simplex3 / пер. с нем. Ю.А. Ивашкина. М.: Наука, 2003. 30 с.

- 10.Шмидт Б. Искусство моделирования и имитации. Введение в имитационную систему Simplex3 : пер. с нем.: SCS-Европа BVBA, Гент. Бельгия. 2003. 550 с.
- 11. Харин Ю.С. и др. Основы имитационного и статистического моделирования. Учебное пособие Мн.: Дизайн ПРО, 1997. 288 с.
- 12.Шеннон Р. Имитационное моделирование систем искусство и наука: Пер. с англ. М.: Мир, 1978.