

TRANSFORMASI GEOMETRI DAN DIMENSI TIGA

Transformasi adalah suatu proses pemetaan sebuah objek ke objek lain pada bidang yang sama.

Beberapa jenis transformasi adalah:

Translasi (Pergeseran)

Misalkan, translasi $T = \begin{pmatrix} a \\ b \end{pmatrix}$ memetakan titik P(x, x)

y) ke titik P'(x', y'). Dapat dituliskan dalam bentuk:

$$P\begin{pmatrix} x \\ y \end{pmatrix} \xrightarrow{\begin{pmatrix} a \\ b \end{pmatrix}} P'\begin{pmatrix} x+a \\ y+b \end{pmatrix}$$

Refleksi (Pencerminan)

Refleksi (pencerminan) adalah suatu transformasi yang memindahkan setiap titik pada bidang dengan menggunakan sifat bayangan cermin. Jenis-jenis pencerminan, yaitu:

Pencerminan Terhadap	Pemetaan	Matriks Transformasi
Sumbu X	$(x, y) \rightarrow (x, -y)$	$\lim_{x\to a} k = k$
Sumbu Y	$(x, y) \rightarrow (-x, y)$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Garis Y = X	$(x, y) \rightarrow (y, x)$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
Garis X = –Y	$(x, y) \rightarrow (-y, -x)$	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
Titik asal O (0, 0)	$ \begin{array}{c} (x,y) \to \\ (-x,\!-\!y) \end{array}$	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
Garis x = k	$(x,y) \to (2k\!\!-\!\!x,y)$	
Garis y = k	$(x,y) \to (x,2k\!-\!y)$	-
Garis y = mx (m = tan a)	$x' = x\cos 2a + y\sin 2a$ $y' = x\sin 2a - y\cos 2a$	$ \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{pmatrix} $

Rotasi (Perputaran)

Rotasi terhadap titik pusat (0,0) dan sudut putar a.

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$atau$$

$$x' = x \cos a - y \sin a$$

$$y' = x \sin a + y \cos a$$

Jika titik A (x,y) dirotasikan sebesar a terhadap pusat P(a, b) maka:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x - a \\ y - b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

$$atau$$

$$x' - a = (x - a)\cos a - (y - b)\sin a$$

$$y' - b = (x - a)\cos a - (y - b)\sin a$$

Dilatasi (Perbesaran)

Dilatasi dengan pusat O(0, 0) dan faktor dilatasi k maka:

 $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

Dilatasi dengan pusat P(a, b) dan faktor dilatasi k maka:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x - a \\ y - b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

Komposisi Transformasi

 Misalkan, titik A(x, y) ditransformasikan oleh T₁, kemudian dilanjutkan oleh T₂ maka dapat dituliskan dalam bentuk:

$$T_2 \circ T_1: A(x, y) \Rightarrow A''(x'', y'')$$

2. Misalkan, titik A(x, y) ditransformasikan oleh T₂, kemudian dilanjutkan oleh T₁ maka dapat dituliskan dalam bentuk:

$$T_2 \circ T_1$$
: $A(x, y) \Rightarrow A''(x'', y'')$

Luas Bangun Hasil Transformasi

Suatu bangun A ditransformasikan dengan matriks $M = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$, hasilnya bangun A' maka luas $A' = |ad - bc| \times Luas A$ (luas bayangan = determinan (M) $\times Luas$ semula).

Luas bangun bayangan tetap untuk transformasi translasi, refleksi, dan rotasi. Kemudian, jika luas bangun mula-mula adalah L maka setelah didilatasi oleh [P(a, b), k] maka luas bayangan adalah $L' = k^2 + L$.

Kedudukan Titik, Garis, dan Bidang

1. Titik

Sebuah titik hanya dapat ditentukan oleh letaknya, tetapi tidak memiliki ukuran (be-

saran) sehingga dikatakan titik tidak berdimensi. Sebuah titik dilukiskan dengan noktah dan diberi huruf kapital.

Contoh: ● A

2. Garis

Garis merupakan himpunan titik-titik yang hanya memiliki ukuran panjang.

Contoh: ———

3. Bidang

Bidang merupakan himpunan titik-titik yang memiliki ukuran panjang dan luas sehingga dikatakan berdimensi dua.

Contoh: bidang ABCD

Irisan Bangun Ruang

Irisan bidang a dengan bangun ruang adalah bidang datar yang dibatasi oleh garis potonggaris potong bidang a dengan sisi-sisi bangun ruang tersebut.

Irisan bidang dapat digambarkan dengan 2 cara, yaitu:

- 1. Menggambarkan sumbu afinitas, langkahlangkahnya sebagai berikut:
 - Perhatikan adanya 2 titik yang terletak pada satu bidang sisi benda.
 - Hubungkan kedua titik tersebut menjadi garis yang mengiris bidang sisi tersebut.
 - Lukis irisan ini sampai ke tepi bidang sisi.
 - Jika tidak terdapat 2 titik yang sebidang maka irisan-irisan yang ada dapat diperpanjang sampai memotong tepitepi dasar bidang sisi. Titik-titik ini berlaku sebagai titik baru dari suatu penampang.
- Menggunakan diagonal bidang irisan. Titiktitik yang membentuk diagonal bidang dihubungkan walaupun tidak sebidang sehingga terlihat irisan bidang pada bangun ruang.

Proyeksi

1. Proyeksi titik pada garis

Titik A' adalah proyeksi titik A pada garis g.

2. Proyeksi titik pada bidang

3. Proyeksi garis pada bidang w Garis AB menembus bidang a

w Garis AB sejajar bidang a

Garis AB sejajar bidang α . Titik A' dan B' adalah proyeksi titik A dan B pada bidang α . Proyeksi garis AB ke bidang α adalah A'B'.

Jarak Antar-titik Sudut pada Kubus

Misalkan, diketahui sebuah kubus ABCD.EFGH dengan panjang rusuk a cm.

Maka panjang: Diagonal sisi (AC) = a $\sqrt{2}$ Diagonal ruang (EC) = $a\sqrt{3}$ Ruas garis EO = $\frac{a}{2}\sqrt{6}$

TRANSFORMASI GEOMETRI <u>& DIMENSI TIGA</u>

CONTOH SOAL

1. Soal Ujian SPMB

Titik P (a,b) dicerminkan terhadap sumbu X, bayangannya dicerminkan pula terhadap sumbu Y, bayangan terakhir titik P merupakan

- A. Pencerminan titik P terhadap garis y = x
- B. Pencerminan titik P terhadap garis y = -x
- C. Pencerminan titik P terhadap sumbu y
- D. Perputaran titik P dengan pusat titik O(0, 0) sebesar π radian berlawanan perputaran jarum jam
- E. Perputaran titik P dengan pusat titik O(0, 0) sebesar $\frac{\pi}{2}$ radian berlawanan perputaran jarum jam

Pembahasan:

Matriks transformasi pencerminan terhadap sumbu X (T_1) dilanjutkan pencerminan terhadap sumbu Y (T_2) adalah:

$$T = T_2 \cdot T_1$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

Jadi, T merupakan matriks transformasi berupa perputaran titik P dengan pusat titik O(0, 0) sebesar π radian berlawanan perputaran jarum jam.

Jawaban: D

2. Soal Ujian SPMB

Diketahui lingkaran L berpusat di (-2, 3) dan melalui titik (1, 5). Jika lingkaran L diputar 90° terhadap titik O (0,0) searah jarum jam, kemudian digeser ke bawah sejauh 5 satuan, persamaan lingkaran L yang dihasilkan adalah

A.
$$x^2 + y^2 - 6x + 6y + 5 = 0$$

B.
$$x^2 + y^2 - 6x + 6y - 5 = 0$$

C.
$$x^2 + y^2 + 6x - 6y + 5 = 0$$

D.
$$x^2 + y^2 + 6x - 6y - 5 = 0$$

E.
$$x^2 + y^2 - 6x + 6y = 0$$

Pembahasan:

Step 1: mencari jari-jari lingkaran

r (jari-jari lingkaran) adalah jarak antara titik (-2, 3) dan (1, 5).

$$r = \sqrt{(1-(-2))^2 + (5-3)^2} = \sqrt{9+4} = \sqrt{13}$$

Step 2: menentukan persamaan lingkaran

Pusat lingkaran L diputar 90° terhadap titik O (0,0) searah jarum jam

$$L' = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Maka, persamaan lingkarannya:

$$(x-3)^2 + (y-2)^2 = 13$$

Step 3: mencari persamaan bayangan

Persamaan bayangan setelah digeser ke bawah sejauh 5 satuan adalah

$$(x-3)^2 + (y-2)^2 = 13$$

$$(x-3)^2 + ((v+5)-2))^2 = 13$$

$$(x-3)^2 + (y+3)^2 = 13$$

$$x^2 - 6x + 9 + y^2 + 6y + 9 = 13$$

$$x^2 + y^2 - 6x + 6y + 5 = 0$$

Jawaban: A

3. Soal Ujian SNMPTN

Diketahui kubus ABCD.EFGH yang mempunyai panjang rusuk 1 cm. Jarak titik D ke bidang EBG = ...

A.
$$\frac{1}{2}\sqrt{3}$$
 cm

B.
$$\frac{2}{3}\sqrt{3}$$
 cm

C.
$$\frac{3}{4}\sqrt{3}$$
 cm

D.
$$\frac{5}{6}\sqrt{3}$$
 cm

E.
$$\frac{6}{7}\sqrt{3}$$
 cm

Pembahasan:

Diketahui kubus ABCD.EFGH yang mempunyai panjang rusuk 1 cm.

Step 1: mencari panjang BP

Perhatikan Δ EBG adalah segitiga sama sisi.

$$EB = BG = GE = diagonal sisi = \sqrt{2}$$

$$EP = PG = \frac{1}{2}\sqrt{2}$$

Maka

$$BP = \sqrt{\left(\sqrt{2}\right)^{2} - \left(\frac{1}{2}\sqrt{2}\right)^{2}}$$
$$= \sqrt{2 - \frac{1}{2}} = \frac{1}{2}\sqrt{6}$$

Step 2: mencari panjang DQ

Perhatikan Δ DBP

$$L. \Delta DBP = L. \Delta DBP$$

$$\frac{1}{2} \times DB \times OP = \frac{1}{2} \times BP \times DQ$$

$$\sqrt{2} \times 1 = \frac{1}{2} \sqrt{6} \times DQ$$

$$DQ = \frac{\sqrt{2}}{\frac{1}{2}\sqrt{6}} = \frac{2\sqrt{2}}{\sqrt{2}.\sqrt{3}} = \frac{2}{3}\sqrt{3}$$

Jadi, jarak titik D ke bidang EBG adalah DQ.

Jawaban: B