Grundbegriffe der Informatik Aufgabenblatt 2

Matr.nr.:								
Nachname:								
Vorname:								
Tutorium:	Nr.				N	Name des Tutors:		
Ausgabe:	30. Ol	ktobei	r 2 01	13				
Abgabe:	8. November 2013, 12:30 Uhr im GBI-Briefkasten im Untergeschoss von Gebäude 50.34							
Lösungen werden nur korrigiert, wenn sie • rechtzeitig, • in Ihrer eigenen Handschrift, • mit dieser Seite als Deckblatt und • in der oberen linken Ecke zusammengeheftet abgegeben werden.								
Vom Tutor auszufüllen:								
erreichte Punkte								
Blatt 2:			/ 20)				
Blätter 1 – 2:			/ 36	6				

Aufgabe 2.1 (1+1+2=4 Punkte)

Es sei A ein beliebiges Alphabet. Beweisen Sie unter Verwendung der Definition von Potenzen von Wörtern, der Ergebnisse aus der Vorlesung und der Assoziativität der Konkatenation von Wörtern, dass für alle Zahlen $n \in \mathbb{N}_0$ und alle Wörter $w \in A^*$ gilt:

- a) $w^n \cdot w^0 = w^{n+0}$
- b) $w^n \cdot w^1 = w^{n+1}$
- c) $w^n \cdot w^2 = w^{n+2}$

Rechnen Sie bitte in allen drei Fällen ausführlich!

Lösung 2.1

In allen drei Fällen seien *n* und *w* beliebig aber fest.

- a) $w^{n} \cdot w^{0} = w^{n} \cdot \varepsilon = w^{n} = w^{n+0}$
- b) $w^n \cdot w^1 = w^n \cdot w = w^{n+1}$
- c) $w^n \cdot w^2 = w^n \cdot (w \cdot w) = (w^n \cdot w) \cdot w = w^{n+1} \cdot w = w^{(n+1)+1} = w^{n+2}$

Aufgabe 2.2 (1+2=3 Punkte)

Bei den beiden folgenden Teilaufgaben müssen M und \diamond nur die geforderten Eigenschaften haben. Alles andere ist egal.

- a) Geben Sie eine Menge M und eine binäre Operation \diamond : $M \times M \to M$ an, die nicht kommutativ ist. Geben Sie konkrete Werte $x, y \in M$ an, mit deren Hilfe man belegen kann, dass \diamond nicht kommutativ ist.
- b) Geben Sie eine Menge M und eine binäre Operation $\diamond : M \times M \to M$ an, die zwar kommutativ aber nicht assoziativ ist. Geben Sie konkrete Werte $x,y,z \in M$ an, mit deren Hilfe man belegen kann, dass \diamond nicht assoziativ ist.

Lösung 2.2

- a) $M = \mathbb{Z}$ und $x \diamond y = x y$. Dann ist $1 \diamond 2 = 1 2 = -1 \neq 1 = 2 1 = 2 \diamond 1$.
- b) $M = \mathbb{N}_0$ und $x \diamond y = |x y|$. Dann ist zum Beispiel

$$(1 \diamond 2) \diamond 3 = ||1 - 2| - 3| = |1 - 3| = 2$$

aber $1 \diamond (2 \diamond 3) = |1 - |2 - 3|| = |1 - 1| = 0$

Aufgabe 2.3 (1+1+1+1+2=6 Punkte)

Gegeben sei das Alphabet $A = \{0,1\}$ und die Abbildung $f \colon A^+ \to A^+$, die wie folgt "arbeitet": Aus einem nichtleeren Wort w entsteht f(w), indem man

- jede 0 in w durch das Wort 01 ersetzt und
- jede 1 in w durch eine 0.

Zum Beispiel ist f(0010) = 0101001.

- a) Es sei $w_0 = 0$. Geben Sie die folgenden Wörter explizit an:
 - $w_1 = f(w_0)$ $w_2 = f(w_1)$ $w_3 = f(w_2)$ $w_4 = f(w_3)$ $w_5 = f(w_4)$
- b) Geben Sie f(10), f(11) und f(1011) an.
- c) Es seien $v \in A^+$ und $v' \in A^+$ zwei Wörter. Was können Sie aufgrund der "Arbeitsweise" von f über den Funktionswert f(vv') aussagen?
- d) Was fällt Ihnen an den Wörtern w_0, \ldots, w_5 auf?
- e) Beweisen Sie: Wenn v Anfangsstück des Wortes f(v) ist, dann ist auch f(v) Anfangsstück des Wortes f(f(v)).

Lösung 2.3

- a) $w_1 = 01$
 - $w_2 = 010$
 - $w_3 = 01001$
 - $w_4 = 01001010$
 - $w_5 = 0100101001001$
- b) f(10) = 001
 - f(11) = 00
 - f(1011) = 00100
- c) f(vv') = f(v)f(v')
- d) Für $0 \le i \le 4$ ist w_i Präfix von w_{i+1} .

Oder: Die Anzahl der Nullen (bzw. Einsen) in w_{i+2} ist die Summe der Nullen (bzw. Einsen) in w_i und w_{i+1} .

- e) Es sei v Anfangsstück des Wortes f(v). Dann ist also f(v) = vv' für ein Wort $v' \in A^*$.
 - Wegen Teilaufgabe c) ist $f(f(v)) = f(vv') = f(v)f(v') \quad (= f(v)v'')$, also ist offensichtlich f(v) Präfix von f(f(v)).

Aufgabe 2.4 (2+1+1+2+1=7 Punkte)

Es sei M eine beliebige nichtleere Menge und $f: M \to M$ eine Abbildung auf M. Eine Folge von Teilmengen $T_n \subseteq M$ für $n \in \mathbb{N}_0$ ist induktiv wie folgt definiert:

$$T_0 = M$$
$$\forall n \in \mathbb{N}_0 \colon T_{n+1} = \{ f(x) \mid x \in T_n \}$$

- a) Wählen Sie $M = \mathbb{G}_4 = \{0, 1, 2, 3\}.$
 - Geben Sie eine Abbildung $f: \mathbb{G}_4 \to \mathbb{G}_4$ an, bei der alle Mengen T_n gleich sind.
 - Geben Sie eine Abbildung $f: \mathbb{G}_4 \to \mathbb{G}_4$ an, bei der *nicht* alle Mengen T_n gleich sind. Geben Sie bitte alle Teilmengen von \mathbb{G}_4 an, die vorkommen.
- b) Wählen Sie $M=\mathbb{N}_0$ und geben eine Abbildung f an, so dass
 - die Mengen T_n für alle $n \in \mathbb{N}_0$ unendlich groß sind und

• außerdem gilt: $\forall n \in \mathbb{N}_0$: $T_{n+1} \subsetneq T_n$. Das Zeichen \subsetneq bedeutet, dass T_{n+1} Teilmenge von T_n ist, aber nicht gleich T_n ist, also echt kleiner.

(Anmerkung: Manchmal schreibt man statt \subsetneq auch \subsetneq .)

- c) Angenommen, man weiß schon, dass für eine bestimmte fest Zahl $k \in \mathbb{N}_0$ gilt, dass $T_{k+1} \subseteq T_k$ ist. Beweisen Sie, dass dann auch $T_{k+2} \subseteq T_{k+1}$ ist.
- d) Angenommen, man weiß schon, dass für eine bestimmte fest Zahl $k \in \mathbb{N}_0$ gilt, dass $T_{k+1} = T_k$ ist. Beweisen Sie, dass dann auch $T_{k+2} = T_{k+1}$ ist.
- e) Angenommen M ist eine *endliche* Menge mit genau k Elementen. Was können Sie über die Menge T_k aussagen?

Lösung 2.4

- a) Sei $M = \mathbb{G}_4 = \{0, 1, 2, 3\}.$
 - wähle als f die Identität $f: \mathbb{G}_4 \to \mathbb{G}_4 \colon x \mapsto x$
 - wähle als f die Abbildung $f: \mathbb{G}_4 \to \mathbb{G}_4 \colon x \mapsto 0$ Dann ist $T_0 = \mathbb{G}_4$ und für alle $n \in \mathbb{N}_0$ ist $T_{n+1} = \{0\}$.
- b) Sei $M = \mathbb{N}_0$ und $f : \mathbb{N}_0 \to \mathbb{N}_0 : x \mapsto x + 1$. Dann ist für alle $n \in \mathbb{N}_0$ nämlich $T_n = \{x \in \mathbb{N}_0 \mid x \ge n\} = \mathbb{N}_0 \setminus \mathbb{G}_n$.
- c) Es sei $k \in \mathbb{N}_0$ eine beliebige Zahl mit $T_{k+1} \subseteq T_k$. Dann ist

$$T_{k+2} = \{f(x) \mid x \in T_{k+1}\}$$
 Definition von T_{k+2}
 $\subseteq \{f(x) \mid x \in T_k\}$ mehr Werte da $T_{k+1} \subseteq T_k$
 $= T_{k+1}$ Definition von T_{k+1}

d) Es sei $k \in \mathbb{N}_0$ eine beliebige Zahl mit $T_{k+1} = T_k$ ist. Dann ist

$$T_{k+2} = \{f(x) \mid x \in T_{k+1}\}$$
 Definition von T_{k+2}
= $\{f(x) \mid x \in T_k\}$ da $T_{k+1} = T_k$
= T_{k+1} Definition von T_{k+1}

e) $T_k = T_{k+1}$; für $k \ge 1$ ist auch schon $T_{k-1} = T_k$.