

Shared memory parallelisation

Jean-Paul Pelteret (jean-paul.pelteret@fau.de) Luca Heltai (luca.heltai@sissa.it)

20 March 2018

Aims for this module

- Identify parts / blocks of code that are (easily) parallelisable
- Learn how to parallelise using
 - ThreadGroup (Posix threads)
 - Workstream (Threaded building blocks)

Reference material

- Tutorials
 - https://dealii.org/8.5.1/doxygen/deal.II/step-9.html
 - https://dealii.org/8.5.1/doxygen/deal.ll/step_13.html
 - http://www.math.colostate.edu/~bangerth/videos.676.39.html
 - http://www.math.colostate.edu/~bangerth/videos.676.40.html
- Documentation:
 - https://dealii.org/8.5.1/doxygen/deal.II/group_threads.html
 - https://www.dealii.org/8.5.1/doxygen/deal.ll/namespaceWorkStream.html
 - https://dealii.org/8.5.1/doxygen/deal.ll/namespaceparallel.html

Identifying parallelisable code

Consider this example:

- Operations (1,2,3) are independent of one another
 - Could be reordered without consequence

Identifying parallelisable code

"Embarrassingly parallelisable tasks"

```
template <int dim>
void MyProblem<dim>::assemble_system (){
...
for (cell=dof_handler.begin_active(); ...)
{
   fe_values.reinit (cell);
   ...assemble local contribution...
   ...copy local contribution into global matrix/rhs vector...
}}
```

- Many more cells than machine cores
- Computations are mutually independent
 - Accumulation into global system is not

Independent threaded tasks: Option 1

- Code divergence with / without barriers (global / in-thread locks)
- Best used for small number of completely independent tasks
- Inside each thread: Shared data
 - Reading is a safe operation!
 - Use locks to allow data writing
 - Convergence point for threads (bottleneck)
 - Potential for deadlocks

Creating independent threaded tasks: the Thread class

- The call to join() is a blocking call
 - Waits to the thread to finish before continuing

Creating independent threaded tasks: the ThreadGroup class

- Why is this inefficient?
- How do we prevent data races?

Creating independent threaded tasks: Ranged based assembly

• Less threads created = more efficient

```
void MyProblem<dim>::assemble on cell range (
  cell iterator &range begin,
  cell iterator &range end) {...};
void MyProblem<dim>::assemble system () {
  Threads::ThreadGroup<void> threads;
  std::vector<std::pair<cell iterator, cell iterator> >
    sub ranges = Threads::split range (
      dof handler.begin active(),
      dof handler.end(),
      n virtual cores);
  for (t=0; t<n virtual cores; ++t)</pre>
    threads += Threads::new thread (
      &MyProblem<dim>::assemble on cell range,
      this,
      sub ranges[t].first,
      sub ranges[t].second);
  threads.join all ();}
```


Independent threaded tasks

How do we prevent data races?

Creating independent threaded tasks: the WorkStream class

- Task-based threading
 - Continuous use of free CPU cores
 - Create a list of tasks
 - When core free, use it to perform next task
 - Expensive operations continually executed
 - Perform blocking tasks independently
 - Data copied to shared objects serially
 - Optimisations:
 - "Automatic" load balancing
 - Overhead reduction: Works on data chunks

Creating independent threaded tasks: parallelisation of (per-cell) assembly

```
template <int dim>
void MyClass<dim>::assemble on one cell (
   const typename DoFHandler<dim>::active cell iterator &cell)
 FEValues<dim> fe values (...);
                                                                    Expensive constructor call
 FullMatrix<double> cell_matrix (...);
                                                                    Repeated memory allocation
 Vector<double>
                     cell rhs (...);
 std::vector<double> rhs values (...);
 rhs function.value list (...)
  // assemble local contributions
  fe values.reinit (cell);
                                                                    Independent tasks
  for (unsigned int i=0; i<fe.dofs per cell; ++i)
    for (unsigned int j=0; j<fe.dofs per cell; ++j)
      for (unsigned int q=0; q<n_points; ++q)</pre>
        cell matrix(i,j) += ...;
  ...same for cell rhs...
  // now copy results into global system
  std::vector<unsigned int> dof indices (...);
 cell->get_dof_indices (dof_indices);
  for (unsigned int i=0; i<fe.dofs_per_cell; ++i)</pre>
                                                                     Serial operation
    for (unsigned int j=0; j<fe.dofs per cell; ++j)
      system matrix.add (...);
  ...same for rhs...
  // or constraints.distribute local to global (...);
```


Threading using WorkStream: the StratchData class

- Assistant struct / class
- Contains reused data structures
 - FEValues objects
 - Helper vectors and storage containers
 - Precomputed data
- Needs a constructor and a copy constructor
 - Some objects must be manually reconstructed
 - We create one initial instance of the class
 - TBB duplicates as required (queue_length)

```
struct ScratchData {
 std::vector<double>
                            rhs values;
                            fe_values;
 FEValues<dim>
 ScratchData (
    const FiniteElement<dim> &fe,
    const Ouadrature<dim>
                             &quadrature,
    const UpdateFlags
                              update flags)
    : rhs_values (quadrature.size()),
      fe values (fe, quadrature, update flags)
    {}
   ScratchData (const ScratchData &rhs)
   : rhs_values (rhs.rhs_values),
     fe_values (rhs.fe_values.get_fe(),
                rhs.fe values.get quadrature(),
                rhs.fe values.get_update_flags())
    {}
```


Threading using WorkStream: the PerTaskData class

- Contains data structures required for serial operations
 - Multiple copies made (queue_length*chunk_size)
 - Must be "self-contained"
- Used in two places
 - Threaded function
 - Bound to an instance of the threaded function
 - Used as a "data-in" object
 - Serial function
 - A used instance is passed to this function
 - Used as a "data-out" object

Threading using WorkStream: Revised assembly

```
template <int dim>
void MyClass<dim>::assemble_on_one_cell (
  const typename DoFHandler<dim>::active cell iterator &cell,
   ScratchData &scratch,
   PerTaskData &data)
 // reinitialise data
 scratch.fe values.reinit (cell);
 rhs function.value list (scratch.fe values.get quadrature points,
                           scratch.rhs values);
 data.cell matrix = 0;
 data.cell rhs
 // assemble local contributions
 for (unsigned int i=0; i<fe.dofs per cell; ++i)
    for (unsigned int j=0; j<fe.dofs per cell; ++j)</pre>
      for (unsigned int q=0; q<fe values.n quadrature points; ++q)
        data.cell_matrix(i,j) += ...;
```

 Now use objects contained within ScratchData and PerTaskData structs

Threading using WorkStream: Serial copy operation

- Uses writes "fixed" data in PerTaskData to single class object system_matrix (and whatever else)
- Has to be a serially performed operation

Threading (not) using WorkStream: Manual assembly using these data structures

- This performs the same serial assembly as we had before
 - More efficient though (use of ScratchData)

Threading using WorkStream

- Execute function in threaded manner
- Only operates on functions with a specific prototype
 - Theadable function: void function_name(cell, scratch, per_task_data)
 - Serial function:
 void function_name(per_task_data)

Threading using WorkStream

- copy_local_to_global_F function prototype: void function (per_task_data, vector)
- std::bind only binds memory addresses
 - Will make copies of objects not sent in via memory address
 - Need to send in pointers if wish to work on an existing object
 - "std::_1, _2, _3" are placeholders for expected data