

Dynamic Programming 2: Gene Prediction

Bioinformatics Programming - 2016

Computer Engineering, Chiang Mai University

- The first steps in understanding the genome of a species once it has been sequenced aka. Gene finding
- The process of identifying the regions of genomic DNA that encode genes [wikipedia]
 - mRNA genes
 - Protein coding genes
 - Regulatory regions
- A high degree of similarity to a known mRNA or protein product is strong evidence that a region of a target genome is a protein-coding gene

- Sydney Brenner and Francis Crick showed that every triplet of nucleotides (codon) in gene codes for one amino acid
 - Deleting three consecutive nucleotides results in minor change in the protein
- Biologists believed that a protein was encoded by a long string of contiguous triplets
 - Many organisms contain large amount of "junk DNA" that does not code for proteins at all – introns
 - These introns break organism genome into pieces of coding gene exons

- The jump between different parts of split genes are inconsistent from species to species
- Number of exons may be different
 - While the genes are related (between species)
 - An exon in human genome may be broken into two in the mouse genome, or vice versa

- Human genes, exons, consist of only 3% of human genome
- Prokaryotic organisms do not have broken genes
 - Gene prediction algorithms tend to be simpler than those for eukaryotes
- Two approaches
 - Statistical approach looks for features that appear frequently in gene: splicing signals (exon-intron junction)

■ Similarity-based approach – a newly sequenced gene has a good chance of being related to one that is already know

- We cannot simply look for similar sequence in one organism's genome based on the genes known in another:
 - Exon sequence and exon structure of the related gene in different species are different
- The commonality between related genes in both organisms is that they produce similar proteins
 - Suppose we know a human protein,
 - We want to discover the exon structure of the related gene in the genome that produce similar human protein

- The simplest way to detect potential coding region is to look at open reading frames (ORFs)
 - The subsegments start with start codon and end with stop codon
- Start codon
 - The first codon of a mRNA that signals the a start of translation
 - Almost always codes for methionine (Met) AUG (or ATG in DNA)
- Stop codon
 - Termination codon
 - A triplet within mRNA that signals a termination of translation
 - In RNA UAG, UAA, UGA (TAG, TAA, TGA in DNA)

- Example: three reading frames
- 1. ATG CAA TGG GGA AAT GTT ACC AGG TCC GAA CTT ATT GAG GTA AGA CAG ATT TAA
- 2. A TGC AAT GGG GAA ATG TTA CCA GGT CCG AAC TTA TTG AGG TAA GAC AGA TTT AA
- 3. AT GCA <mark>ATG</mark> GGG AAA TGT TAC CAG GTC CGA ACT TAT <mark>TGA</mark> GGT AAG ACA GAT TTA A
- DNA has two anti-parallel strands, an additional three reading frames arise, giving possible six frame translations

- Long ORFs are often used to initially identify candidates in DNA sequence
 - Longer than some threshold length

- May fail to detect short genes or genes with short exons
- The presence of an ORF does not mean that the region is ever translated
- Many statistical algorithm rely on statistical features in protein-coding regions
 - Frequency of occurrence 64 codon usage array

☐ The codon usage array in **E.COLI** genes

	U				<u> </u>				A				G				
	GUG	Val(♥)	2.4	0.34	GCG	Ala (A)	3.2	0.34	GAG	Glu(E)	1.9	0.30	GGG	Gly (G)	0.9	0.13	G
	GUA	Val(♥)	1.2	0.17	GCA	Ala (A)	2.1	0.22	GAA	Glu (E)	4.4	0.70	GGA	Gly (G)	0.7	0.09	A
	GUC	Val(♥)	1.4	0.20	GCC	Ala (A)	2.3	0.25	GAC	Asp (D)	2.3	0.41	GGC	Gly (G)	3.0	0.40	Ċ
G	GUU	Val(♥)	2.0	0.29	GCU	Ala (A)	1.8	0.19	GAU	Asp (D)	3.3	0.59	GGU	Gly (G)	2.8	0.38	U
	AUG	Met (M)	2.6	1.00	ACG	Thr (T)	1.3	0.23	AAG	Lys (K)	1.2	0.24	AGG	Aig (R)	0.2	0.03	G
	AUA	Ile (I)	0.4	0.07	ACA	Thr (T)	0.1	0.30	AAA	Lys(K)	3.8	0.76	AGA	Arg (R)	0.2	0.04	A
	AUC	Ile (I)	2.7	0.46	ACC	Thr (T)	2.4	0.43	AAC	Asn (N)	2.6	0.61	AGC	Ser (8)	1.5	0.27	C
A	AUU	Ile (I)	2.7	0.47	ACU	Thr (T)	1.2	0.21	AAU	Asn (N)	1.6	0.39	AGU	Ser (8)	0.7	0.13	U
	CUG	Leu (L)	5.2	0.55	CCG	Pro(P)	2.4	0.55	CAG	Gln(Q)	2.9	0.69	CGG	Aig (R)	0.5	0.08	G
	CUA	Leu (L)	0.3	0.03	CCA	P10 (P)	8.0	0.20	CAA	Gln(Q)	1.3	0.31	CGA	Aig (R)	0.3	0.05	A
	CUC	Leu (L)	0.9	0.10	ccc	Pro(P)	0.4	0.10	CAC	His (H)	1.1	0.48	CGC	Aig (R)	2.2	0.37	C
C	CUU	Leu (L)	1.0	0.10	CCU	P10 (P)	0.7	0.16	CAU	His(H)	1.2	0.52	CGU	Aig (R)	2.4	0.42	U
	UUG	Leu (L)	1.1	0.11	UCG	Ser (8)	0.8	0.13	UAG	STOP	0.03	0.09	UGG	Trp (♥)	1.4	1.00	G
	UUA	Leu (L)	1.0	0.11	UCA	Ser (8)	0.7	0.12	UAA	STOP	0.2	0.62	UGA	STOP	0.1	0.30	A
	UUC	Phe (F)	1.8	0.49	UCC	Ser (8)	1.0	0.17	UAC	Tyı (Y)	1.4	0.47	UGC	Cys(C)	0.6	0.57	C
U	UUU	Phe (F)	1.9	0.51	UCU	Ser (8)	1.1	0.19	UAU	Tyı (Y)	1.6	0.53	UGU	Cys (C)	0.4	0.43	U
		ac id ²				ac id				ac id				acid			
	Codon	Amino	983	Ratio ⁴	Codon	Amino	98	Ratio	Codon	Amino	98	Ratio	Codon	Amino	98	Ratio	l

- The codon usage array
 - The arrays for coding regions and for non-coding regions are different enabling one to use them for gene prediction
- In human, CGC and AGG code for the same amino acid (Arg) but have very different frequencies
 - GCG is 12x more likely to be used in genes than AGG
 - ORF that prefers CGC over AGG while coding for Arg is likely candidate gene

☐ The codon usage in Homo sapiens

П	Ū		C		A		G	
Н				1.0		F0		4 =
U	UUU Phe	57	UCU Ser	16	UAU Tyr	58	UGU Cys	45
	UUC Phe	43	UCC Ser	15	UAC Tyr	42	UGC Cys	55
	UUA Leu	13	UCA Ser	13	UAA Stp	62	UGA Stp	30
	UUG Leu	13	UCG Ser	15	UAG Stp	8	UGG Trp	100
С	CUU Leu	11	CCU Pro	17	CAU His	57	CGU Arg	37
	CUC Leu	10	CCC Pro	17	CAC His	43	CGC Arg	38
	CUA Leu	4	CCA Pro	20	CAA Gln	45	CGA Arg	7
	CUG Leu	49	CCG Pro	51	CAG Gln	66	CGG Arg	10
П	AUU Ile	50	ACU Thr	18	AAU Asn	46	AGU Ser	15
	AUC Ile	41	ACC Thr	42	AAC Asn	54	AGC Ser	26
Α	AUA Ile	9	ACA Thr	15	AAA Lys	75	AGA Arg	5
	AUG Met	100	ACG Thr	26	AAG Lys	25	AGG Arg	3
П	GUU Val	27	GCU Ala	17	GAU Asp	63	GGU Gly	34
	GUC Val	21	GCC Ala	27	GAC Asp	37	GGC Gly	39
5	GUA Val	16	GCA Ala	22	GAA Glu	68	GGA Gly	12
	GUG Val	36	GCG Ala	34	GAG Glu	32	GGG Gly	15

□ The codon usage array in **E.COLI** genes

	Codon	Amino	₉₈ 3	Ratio ⁴	Codon	Amino	98	Ratio	Codon	Amino	%	Ratio	Codon	Amino	98	Ratio	\Box
		acid ²				ac id				ac id				acid			
U	UUU	Phe (F)	1.9	0.51	UCU	Ser (8)	1.1	0.19	UAU	Tyr (Y)	1.6	0.53	UGU	Cys (C)	0.4	0.43	U
	uuc	Phe (F)	1.8	0.49	UCC	Ser (8)	1.0	0.17	UAC	Tyr (Y)	1.4	0.47	UGC	Cys(C)	0.6	0.57	C
	UUA	Leu (L)	1.0	0.11	UCA	Ser (8)	0.7	0.12	UAA	втор	0.2	0.62	UGA	STOP	0.1	0.30	Α
	UUG	Leu (L)	1.1	0.11	UCG	Ser (8)	0.8	0.13	UAG	STOP	0.03	0.09	UGG	Trp (V)	1.4	1.00	G
С	CUU	Leu (L)	1.0	0.10	CCU	Pro(P)	0.7	0.16	CAU	His(H)	1.2	0.52	CGU	Aig (R)	2.4	0.42	U
	CUC	Leu (L)	0.9	0.10	ccc	Pro(P)	0.4	0.10	CAC	His (H)	1.1	0.48	CGC	Aig (R)	2.2	0.37	C
	CUA	Leu (L)	0.3	0.03	CCA	Pro(P)	8.0	0.20	CAA	Gln(Q)	1.3	0.31	CGA	Aig (R)	0.3	0.05	Α
	CUG	Leu (L)	5.2	0.55	CCG	Pro(P)	2.4	0.55	CAG	Gln(Q)	2.9	0.69	CGG	Aig (R)	0.5	0.08	G
Α	AUU	Ile (I)	2.7	0.47	ACU	Thr (T)	1.2	0.21	AAU	Asn (N)	1.6	0.39	AGU	Ser (8)	0.7	0.13	U
	AUC	He (I)	2.7	0.46	ACC	Thr (T)	2.4	0.43	AAC	Asn (N)	2.6	0.61	AGC	Ser (8)	1.5	0.27	C
	AUA	He (I)	0.4	0.07	ACA	Thr (T)	0.1	0.30	AAA	Lys (K)	3.8	0.76	AGA	Aig (R)	0.2	0.04	Α
	AUG	Met (M)	2.6	1.00	ACG	Thr (T)	1.3	0.23	AAG	Lys (K)	1.2	0.24	AGG	Atg (R)	0.2	0.03	G
G	GUU	Val(V)	2.0	0.29	GCU	Ala (A)	1.8	0.19	GAU	Asp (D)	3.3	0.59	GGU	Gly (G)	2.8	0.38	U
	GUC	Val(♥)	1.4	0.20	GCC	Ala (A)	2.3	0.25	GAC	Asp (D)	2.3	0.41	GGC	Gly (G)	3.0	0.40	C
	GUA	Val(♥)	1.2	0.17	GCA	Ala (A)	2.1	0.22	GAA	Glu(E)	4.4	0.70	GGA	Gly (G)	0.7	0.09	Α
	GUG	Val(♥)	2.4	0.34	GCG	Ala (A)	3.2	0.34	GAG	Glu(E)	1.9	0.30	GGG	Gly (G)	0.9	0.13	G
		Ü				C				A				G			

- The likelihood ratio approach
 - Compute conditional probabilities of the DNA sequence in a window, under the hypotheses:
 - The window contains a coding sequence
 - The window contains a noncoding sequence
 - Slide the window along the DNA sequence and calculate the likelihood
 - Genes are often showed as peaks in the likelihood ratio plot

- These approaches are successful in prokaryotes, but using them with eukaryotes is complicated by exon-intron structure
 - Average length of exon in vertebrates 130 nucleotides
 - 130 nucleotides is too short to produce reliable peaks because they are not different enough from random variations
- Many researchers have used a more biologically oriented approach to recognize the splicing signals at the exon-intron junctions
 - Profiles for splice sites are weak and thereby limited success
 - Replaced by hidden Markov model (HMM) approaches

- Uses previously sequenced genes, G, and their protein products as a template for the recognition of unknown target genes, T
- Combinatorial puzzle:
 - Given a known target protein and a genomic sequence
 - Find a set of substrings (candidate exons) whose concatenation (splicing) best fits the target

- Naive Brute Force The spliced alignment problem
 - Find all local similarities between the genomic sequence, G, and the target protein sequence, T
 - \blacksquare Each substring from G that exhibits sufficient similarity to T could be considered a putative exon (possible exon)
 - a putative may not be flanked by AG and GT dinucleotide
 - The resulting set may contain overlapping substrings
 - Choose the best subset of nonoverlapping substrings as a putative exon structure
 - Exon in real genes do not overlap

- Modeling a putative exon
 - Weighted interval (l, r, w)
 - *l*: left-hand position
 - ightharpoonup r: right-hand position
 - \square w: weight, reflects the likelihood that this interval is an exon
 - Chain a set of nonoverlapping weighted intervals
 - Total weight of a chain
 - The sum of the weights of the intervals in the chain
 - Maximum chain
 - A chain with maximum total weight among all possible chains

Exon Chaining Problem

Exon Chaining Problem:

Given a set of putative exons, find a maximum set of nonoverlapping putative exons.

Input: A set of weighted intervals (putative exons).

Output: A maximum chain of intervals from this set.

- Problem of n intervals can be solved by dynamic programming in a graph G on 2n vertices: for left and right positions
- Assuming that the set of vertices are sorted into increasing order

$$(v_1, v_2, ..., v_{2n})$$

■ Exon Chaining Problem

Sorted vertex: $(v_1, v_2, ... v_{2n})$

■ Exon Chaining Problem

- There are (3n-1) edges in the graph:
 - \square An edge for each interval, between l_i and r_i , with weight w_i
 - \square (2n-1) edges of weight 0 which connect adjacent vertices
- \square S_i the length of the longest path in the graph ending with v_i
- \square S_{2n} the solution to the problem

■ EXONCHAINING Algorithm

```
EXONCHAINING(G, n)

1 for i \leftarrow 1 to 2n

2 s_i \leftarrow 0

3 for i \leftarrow 1 to 2n

4 if vertex v_i in G corresponds to the right end of an interval I

5 j \leftarrow index of vertex for left end of the interval I

6 w \leftarrow weight of the interval I

7 s_i \leftarrow \max\{s_j + w, s_{i-1}\}

8 else

9 s_i \leftarrow s_{i-1}

10 return s_{2n}
```

■ Exon Chaining Problem

- Exon Chaining Problem
 - Disadvantages
 - The endpoints of putative exons are not well defined
 - Optimal chain of intervals may not correspond to any valid alignment

- In 1996, Mikhail Gelfand and colleagues proposed the spliced alignment approach to find genes in eukaryotes
 - Given a genomic sequence and a set of candidate exons
 - Explore all possible exon assemblies and find a chain of exons which best fits a related target protein
- A set of candidate exons block
 - All putative exons between potential AG and GT, or
 - All substrings similar to target protein (local similarities)

- Next step is to filter the set of candidate exons very gentle
 - This left a set of candidate exons that may contains many false exons, but definitely contains all the true ones
- Given the set of (filtered) candidate exons (aka blocks) and a target protein sequence
 - Explore all possible chains (assemblies)
 - Find the assembly with the highest similarity score to the target

- Spliced Alignment Problem
 - Genomic sequence: $G = g_1...g_n$
 - Target sequence: $T = t_1 ... t_m$
 - \blacksquare Chain Γ : a sequence of nonoverlapping blocks
 - \blacksquare String Γ^* : a string formed by the chain Γ
 - We are looking for a string with highest similarity to the target sequence (global alignment), $s(\Gamma^*, T)$

Spliced Alignment Problem

Spliced Alignment Problem:

Find a chain of candidate exons in a genomic sequence that best fits a target sequence.

Input: Genomic sequence G, target sequence T, and a set of candidate exons (blocks) \mathcal{B} .

Output: A chain of candidate exons Γ such that the global alignment score $s(\Gamma^*, T)$ is maximum among all chains of candidate exons from \mathcal{B} .

T WAS BRILLIG, SL THE DOVES GYRATED AND GAMBLED IN THE AND THE T WAS BRILLIG, AND THE SL THE DOVES GYRATED NIMBLY IN THE WAVE HRILLING GYRATED AND GAMBLED IN THE AND HEL LISH DOVES GYRATED HR I LLI NG AND HEL LISH DOVES NIMBLY IN THE WAVE

4 different block assemblies – best fit to the target is the first one

- Spliced Alignment Problem
 - Similar to the problem of finding path in DAG
 - Vertices: blocks (candidate exons)
 - Edges: edges connect nonoverlapping blocks
 - Every path gives out a string obtained by concatenation of labels of its vertices
 - Weight of a path the score of the optimal alignment between the concatenated blocks of a path and the target sequence
 - Not defined weights for individual edges

- lacksquare Similarity score between *i-prefix* of the blocks and *j-prefix* of the target sequence, T
 - $\blacksquare B = g_{left} \dots g_i \dots g_{right}$ (candidate exon containing position i)

 - \blacksquare End(B) = right (the rightmost index of B)
- □ If the chain $\Gamma = (B1, B2, ..., B)$

$$\Gamma^*(i) = B_1 \circ B_2 \circ \cdots \circ B(i)$$

The score of the optimal spliced alignment between i-prefix of G and the j-prefix of T

$$S(i, j, B) = \max_{\text{all chains } \Gamma \text{ ending in } B} s(\Gamma^*(i), T(j)).$$

Assuming that this alignment ends in block B

 \blacksquare If *i* is NOT the starting vertex of block *B*:

$$S(i, j, B) = \max \begin{cases} S(i - 1, j, B) - \sigma \\ S(i, j - 1, B) - \sigma \\ S(i - 1, j - 1, B) + \delta(g_i, t_j) \end{cases}$$

 \square If *i* is the starting vertex of block *B*:

$$S(i, j, B) = \max \begin{cases} S(i, j - 1, B) - \sigma \\ \max_{\text{all blocks } B' \text{ preceding } B} S(end(B'), j - 1, B') + \delta(g_i, t_j), \\ \max_{\text{all blocks } B' \text{ preceding } B} S(end(B'), j, B') - \sigma, \end{cases}$$

lacktriangle After calculate the table S(i, j, B), the score of the optimal spliced alignment is

$$\max_{B} S(end(B), m, B),$$

■ We can reduce the number of edges in the graph by making a transformation

