Лекция 2. Матричная лаборатория

- 1. Матрицы и их представление в МАТLАВ.
- 2. Элементы матриц.
- 3. Операции с матрицами.
- 4. Поэлементные операции с матрицами.
- 5. Операции с матрицами в задачах линейной алгебры.
- 6. Матричное сложение, вычитание, умножение и возведение в степень.
- 7. Транспонирование и эрмитово сопряжение матриц.
- 8. Вычисление основных характеристик матрицы.
- 9. Обращение матрицы.
- 10. Матричное деление.
- 11. Разложение матриц.
- 12. Операции с матрицами в задачах математической статистики.

2.1. Матрицы и их представление в MATLAB

Алгоритмический язык MATLAB называют языком "сверхвысокого" уровня за счет *матричной обработки данных*.

Это значит, что любая переменная по умолчанию считается матрицей.

В линейной алгебре матрица обычно обозначается заглавной буквой (часто полужирным шрифтом), а ее элементы — строчными буквами с индексами. Запишем матрицу \mathbf{A} с учетом того, что в MATLAB *нижняя граница* индексов равна *единице*:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \dots & & \dots & & \dots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \dots & & \dots & & \dots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}.$$

где a_{ij} — элемент матрицы i-й строки и j-го столбца.

Размер матрицы, определяемый количеством строк m и столбцов n, принято записывать в виде произведения $m \times n$.

Имя (идентификатор) матрицы в MATLAB составляется из последовательности латинских букв, цифр и символа подчеркивания и начинается с **буквы**. Прописные и строчные буквы различаются.

Матрица вводится построчно в *квадратных скобках*, элементы строки отделяются пробелом (или запятой), а сами строки — точкой с запятой:

Размер матрицы $m \times n$ определяется с помощью функции size:

Хранение матриц в оперативной памяти организовано по столбцам.

Матрицу **A** размером $1 \times n$ называют *вектором-строкой*, и его элементы указываются *одним* индексом:

$$\mathbf{A} = \begin{bmatrix} a_1 & \dots & a_i & \dots & a_n \end{bmatrix},$$

Элементы вектора-строки вводится в квадратных скобках через пробел (или запятую):

1 '

Матрицу **A** размером $m \times 1$ называют *вектором-строкой*, и его элементы также указываются *одним* индексом:

$$\mathbf{A} = \begin{bmatrix} a_1 \\ \dots \\ a_j \\ \dots \\ a_m \end{bmatrix}$$

Элементы вектора-столбца вводятся в квадратных скобках через точку с запятой:

Длиной вектора называют количество его элементов.

Длина вектора определяется с помощью функции length:

```
>> A = [1;4;5;8;9;10;11;12];
>> length(A)
ans =
```

1

Матрицу ${\bf A}$ размером $1{\times}1$ называют *скаляром*, и его можно вводить без квадратных скобок:

Матрицу **A** размером $n \times n$ называют **квадратной** матрицей **порядка** n:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1i} & \dots & a_{1n} \\ \dots & & \dots & & \dots \\ a_{i1} & \dots & a_{ii} & \dots & a_{in} \\ \dots & & \dots & & \dots \\ a_{n1} & \dots & a_{ni} & \dots & a_{nn} \end{bmatrix}.$$

Главной диагональю квадратной матрицы называют вектор, образованный из ее диагональных элементов a_{ii} , i = 1, 2, ..., n.

Главную диагональ можно вывести в виде вектора-столбца с помощью функции diag:

Единичной матрицей называют порядка квадратную матрицу \mathbf{I} порядка n, все элементы которой равны нулю, кроме элементов главной диагонали, равных единице:

$$\mathbf{I} = \begin{bmatrix} 1 & \dots & 0 & \dots & 0 \\ \dots & & \dots & & \dots \\ 0 & \dots & 1 & \dots & 0 \\ \dots & & \dots & & \dots \\ 0 & \dots & 0 & \dots & 1 \end{bmatrix}.$$

Иногда удобно зарезервировать в Workspace имя матрицы, размер которой и значения элементов заранее неизвестны. Такую матрицу называют пустой и вводят в квадратных скобках без содержимого:

```
>> A = [];
>> size(A)
ans =
     0
```

A =

0.4493

0.0588

0

2.2. Элементы матриц

В этой лекции будут рассматриваться матрицы, элементами которых являются численные константы. При формировании матрицы эти элементы могут задаваться:

```
непосредственно в виде численных констант:
   >> A = [1 5.7 3.8; 17 8 13; 0.1 0 19]
       1.0000
               5.7000
                            3.8000
      17.0000 8.0000 13.0000
       0.1000
                       0
                           19.0000
□ в виде имен переменных (скаляров), значения которых известны:
   >> a = 1; b = 5.7; c = 3.8; d = 17;
   >> A = [a b;c d]
   A =
       1.0000
                  5.7000
                 17.0000
        3.8000
🗆 в виде арифметических выражений с известными значениями переменных
   (скаляров):
   \Rightarrow a = 1; b = 5.7; c = 3.8; d = 17;
   \Rightarrow A = [a+sin(b) c+d;a/d sqrt(d)]
```

4.1231 □ в виде имен матриц с известными элементами:

20.8000

```
\Rightarrow a = [1 2;3 4],b = [4 5;6 7],c = [1 1;0 0],d = [10 -10;- 7 7]
a =
      3
b =
             5
      6
             7
c =
             1
      1
      0
             0
d =
    10
          -10
    -7
             7
>> A = [a b; c d]
A =
             2
                           5
      1
                    4
                           7
      3
             4
                    6
      1
             1
                   10
                         -10
             0
                   -7
                           7
```

□ в виде *регулярной сетки* для *векторов*:

<начальное значение>: [<шаг>:] <конечное значение>

Шаг, равный единице, можно не указывать, условным признаком чего служат квадратные скобки.

Например, для вектора ж при шаге, равном единице:

и для того же вектора при шаге, равном 0.01;

```
>> x = 7:0.01:10;
>> length(x)
ans =
```

301

□ в виде численных констант при *автоматической генерации типовых матриц*. *Типовые* матрицы генерируются с помощью *стандартных функций* MATLAB, примеры которых даются в табл. 1.

Сгенерируем единичную матрицу **A** третьего порядка с помощью функции **eye**:

Таблица 1. Функции генерирования типовых матриц

Функция	Типовая матрица		
zeros (M, N)	Нулевая матрица м×N		
ones (M, N)	Матрица единиц №N		
eye (N)	Единичная матрица порядка N		
rand(M,N)	Матрица мм случайных чисел в диапазоне от 0 до 1, распределенных по равномерному закону		
randn (M, N)	Матрица мм случайных чисел, распределенных по <i>нормальному</i> закону с математическим ожиданием, равным 0, и дисперсией, равной 1		

diag(V)	1. Диагональная матрица — квадратная матрица с нулевыми элементами, кроме элементов главной диагонали, заданными вектором ∨.
	2. Вектор ∨ из элементов главной диагонали квадратной матрицы

Обращение к элементу матрицы происходит по ее имени с указанием индексов в круглых скобках:

```
>> B = [3 5 7; 3 7 9; 2 0 1]
B =
     3
            5
                   7
     3
            7
                   9
     2
            0
                   1
>> B(1,1)
ans =
      3
>> i = 2; j = 3; B(i,j)
ans =
```

Обращение к *строке* матрицы (выделение строки) происходит по ее имени с указанием *номера строки* M — **A (M, :)** :

```
>> C = [1 5.7 3.8;17 8 13;0.1 0 19]
C =

1.0000 5.7000 3.8000

17.0000 8.0000 13.0000

0.1000 0 19.0000

>> C(2,:)

ans =

17 8 13
```

Обращение к **столбцу** матрицы (выделение столбца) происходит аналогично с указанием номера столбца N — A(:, N):

```
>> C(:,3)
ans =
3.8000
13.0000
19.0000
```

Другие разновидности обращений будут рассмотрены на лабораторных занятиях/

2.3. Операции с матрицами

Операции с матрицами принято разделять на две группы:

- □ поэлементные операции;
- □ матричные операции, в которых выделяют две подгруппы:
 - операции с матрицами в задачах линейной алгебры;
 - операции с матрицами в задачах математической статистики.

Рассмотрим данные операции подробнее.

2.4. Поэлементные операции с матрицами

К поэлементным операциям с матрицами относятся:

- арифметические операции: сложение, вычитание, умножение, деление возведение в степень;
 - В поэлементных арифметических операциях матрицы-операнды должны иметь одинаковый размер, т. к. в этих операциях синхронно участвуют соответственные элементы матриц.
- вычисление элементарных функций, аргументы которых матрицы.

При выполнении поэлементных арифметических операций необходимо помнить о:

- наличии *точки* перед символами арифметических операций *умножения*, *деления* и *возведения в степень* (табл. 2, второй столбец);
- наличии двух операций деления: левого и правого.

Таблица 2. Символы арифметических операций в MATLAB

Операция	Поэлементная Матричная		
Сложение	+	+	
Вычитание	-	-	
Умножение	.*	*	
Деление	Левое	Левое	
	.\	١	
	Правое	Правое	
	./	/	
Возведение в степень	.^		

Рассмотрим выполнение *поэлементных арифметических операций* На простых примерах. Сформируем простейшие квадратные матрицы **A** и **B** второго порядка:

Выполним поэлементное сложение матриц **A** и **B** (пояснить результат):

Выполним поэлементное yмножение матриц a и b (пояснить результат):

Уберем точку перед операцией умножения:

```
>> D = A*B
D =
-10 71
-5 37
```

Получен совсем другой результат — результат *матричного* умножения, о котором пойдет речь далее.

Выполним поэлементное *правое деление* матриц **A** и **B** (пояснить, что здесь *правильный* результат, Пояснить, откуда Inf):

Уберем точку перед операцией деления:

```
>> E = A/B
E = 17 -1
19 -2
```

Получен другой результат — результат *матричного* деления, о котором пойдет речь далее.

Выполним поэлементное левое деление матриц **А** и **В**:

```
>> P = A.\B
P = 0 0.1000
-0.5000 1.4000
```

Результат соответствует поэлементному делению матрицы **в** на матрицу **а** (пояснить).

Вывод: для поэлементного деления матриц A на B следует использовать операцию правого деления **A./B.**

Выполним поэлементное возведение в степень для матриц А и В:

```
>> Q = A.^B
Q =
1.0e+004 *
0.0001 0.0010
0.0001 7.8125
```

Основание задается элементами матрицы **A**, а показатель степени — соответствующими элементами матрицы **B**. Например, проверим для элемента матрицы **A**, равного 5, который возводится в степень 7, заданную соответствующим элементом матрицы **B**:

```
>> 5.^7
ans = 78125
```

Допустимо выполнение поэлементных матричных операций со *скаляром*. Например, одновременное возведение всех элементов матрицы **A** в квадрат:

```
>> V = A.^2
V =
1 100
4 25
```

Теперь рассмотрим вторую группу поэлементных операций с матрицами—вычисление элементарных функций, аргументы которых — матрицы. Для этого используем сформированные выше матрицы **A** и **B**:

Способность одновременного вычисления функции для всех элементов матрицы является уникальным свойством MATLAB, благодаря которому достигается исключительно высокая производительность данной системы.

2.5. Операции с матрицами в задачах линейной алгебры

В разд.2.3 была приведена классификация операций с матрицами. В этом разделе рассматриваются матричные операции из подгруппы "операции с матрицами в задачах в задачах линейной алгебры", к которым относятся:

арифметические возведение в степ		операции:	сложение,	вычитание,	умножение,
транспонирование и эрмитово сопряжение матриц;					
вычисление основных характеристик матрицы;					

□ обращение матрицы;

□ матричное деление;

□ разложение матриц.

Рассмотрим подробнее.

2.6. Матричное сложение, вычитание, умножение и возведение в степень

Сложение и вычитание матриц возможно только для матриц *одинакового* размера, и тождественно операциям *поэлементного* сложения и вычитания матриц, рассмотренным ранее.

Для операций сложения и вычитания матриц справедливы обычные законы арифметики:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} ;$$
$$\mathbf{A} - \mathbf{B} = -\mathbf{B} + \mathbf{A} .$$

Умножение матрицы на скаляр тождественно операции поэлементного умножения матрицы на скаляр, поэтому символ операции умножения можно использовать и с точкой и без нее:

Умножение матрицы на матрицу возможно только в том случае, если размеры матриц-сомножителей \mathbf{A} и \mathbf{B} согласованы, а именно: число *столбцов* n матрицы \mathbf{A} размером $m \times n$ равно числу *строк* n матрицы \mathbf{B} , т. е. матрица \mathbf{B} имеет размер $n \times p$.

Произведение матриц $\mathbf{A} \times \mathbf{B}$ представляет собой матрицу \mathbf{C} размером $m \times p$, элементы которой c_{ik} , $i=1,2,\ldots,m$, $k=1,2,\ldots,p$, равны *сумме локальных произведений* соответственных элементов i-й строки матрицы \mathbf{A} и k-го столбца матрицы \mathbf{B} :

$$c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} .$$

Пример умножения матрицы **A** размером $m \times n = 2 \times 3$ на матрицу **B** размером $n \times p = 3 \times 2$, Произведение — матрица **C** размером $m \times p = 2 \times 2$:

22284964

В общем случае умножение матриц не коммутативно:

$$AB \neq BA$$
.

Возведение матрицы А в целую положительную степень q возможно только для **квадратных** матриц и тождественно умножению матрицы **A** саму на себя раз q. Например, возведем в квадрат полученную выше матрицу **c**:

Напомним, что при наличии точки в символе операции в квадрат возводятся все элементы матрицы:

>> D =
$$C.^2$$

D = 484 784
2401 4096

2.7. Транспонирование и эрмитово сопряжение матриц

Транспонирование матрицы **А** — это операция замены ее строк столбцами:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \dots & & \dots & & \dots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \dots & & \dots & & \dots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix} \Rightarrow \mathbf{A}' = \begin{bmatrix} a_{11} & \dots & a_{i1} & \dots & a_{m1} \\ \dots & & \dots & & \dots \\ a_{1j} & \dots & a_{ij} & \dots & a_{mj} \\ \dots & & \dots & & \dots \\ a_{1n} & \dots & a_{in} & \dots & a_{mn} \end{bmatrix},$$

где А' — транспонированная матрица.

В МАТLАВ для транспонирования матрицы используется символ " ' " (апостроф):

Эрмитово сопряжение матрицы — это операция транспонирования матрицы с одновременной заменой ее элементов на комплексно сопряженные (пояснить в примере):

```
>> A = [3+2i 4-5i;7-5i 1+i]
A =

3.0000 + 2.0000i 4.0000 - 5.0000i
7.0000 - 5.0000i 1.0000 + 1.0000i
>> A'

ans =

3.0000 - 2.0000i 7.0000 + 5.0000i
4.0000 + 5.0000i 1.0000 - 1.0000i
```

2.8. Вычисление основных характеристик матрицы

С основными характеристиками матрицы и их вычислением в MATLAB можно познакомиться в [ЦОС. Моделирование в MATLAB], Солонина, Арбузов, 2008. Мы познакомимся с двумя основными характеристиками матрицы:

□ определить (детерминант);

□ норма.

-24

Определитель (детерминант) *квадратной* матрицы ${\bf A}$ порядка n — скаляр — вычисляется с помощью функции ${f det}$:

```
>> A = [1 2 3;4 8 6;7 10 9]
A =

1 2 3
4 8 6
7 10 9

>> det(A)
ans =
```

Перечислим основные свойства определителей:

1. Определитель *равен нулю* тогда и только тогда, когда столбцы (строки) матрицы *линейно зависимы*, т. е. когда хотя бы один из них может быть представлен в виде линейной комбинации остальных.

Например, элементы второй строки А равны элементам первой строки, умноженным на два:

2. Если хотя бы один столбец (строка) матрицы \mathbf{A} — нулевой, то ее определитель равен нулю:

3. Определитель единичной матрицы **I** равен единице:

4. При транспонировании матрицы ${\bf A}$ ее определитель не меняется:

```
>> A = [1 2 3;2 7 10;5 11 0];
>> det(A)
ans =
```

-49

>> det(A')

ans =

-49

Матрицу **A** называют *вырожденной* (особенной, сингулярной), если ее определитель равен нулю, и невырожденной (не особенной, не сингулярной) в противном случае.

Норма матрицы \mathbf{A} — это скаляр, с помощью которого интегрально оцениваются значения элементов матрицы.

Среди норм матрицы А выделим следующие основные:

 \square норма $\|\mathbf{A}\|_1$ — это максимальная сумма модулей элементов в *столбце*:

$$\|\mathbf{A}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|;$$

 \square норма $\|\mathbf{A}\|_{\sim}$ — это максимальная сумма модулей элементов *в строке*:

$$\|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j=1}^{m} \left| a_{ij} \right|;$$

 \square норма $\|\mathbf{A}\|_2$ (евклидова норма) — это корень квадратный из суммы квадратов модулей всех элементов матрицы:

$$\|\mathbf{A}\|_2 = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
.

Аналогичные нормы существуют для векторов, которые будут вычисляться на лабораторных занятиях.

Норма матрицы и вектора вычисляется с помощью функции:

norm(A,p)

где р — параметр, указывающий норму и принимающий значения: 1 — для $\|\mathbf{A}\|_1$; 2 — для $\|\mathbf{A}\|_{2}$ (по умолчанию); inf — для $\|\mathbf{A}\|_{\infty}$:

Вычислим нормы матрицы А (пояснить):

NORMS =

7.0000

9.0000

6.4787

2.9. Обращение матрицы

Матрицу ${f B}$ называют *обратной* к матрице ${f A}$, если произведение этих матриц дает единичную матрицу I:

$$AB = BA = I$$
.

Матрицу ${f B}$, обратную к матрице ${f A}$, обозначают как ${f A}^{-1}$:

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

Операция вычисления матрицы ${\bf A}^{-1}$, называемая *обращением* матрицы ${\bf A}$, возможна только для квадратной матрицы с определителем, не равным нулю.

Обращение матрицы выполняется с помощью функции inv:

A =

2.10. Матричное деление

В табл. 2 представлены две операции матричного деления:

 \square левое матричное деление — A\B, эквивалентное операции $\mathbf{A}^{-1}\mathbf{B}$, т. е. inv(A) *B;

 \square правое матричное деление — A/B, эквивалентное операции \mathbf{AB}^{-1} , т. е. A*inv(B).

Символ *певого* матричного деления "\" используют при решении систем линейных алгебраических уравнений (СЛАУ):

$$\mathbf{A}\mathbf{x} = \mathbf{b},\tag{2.1}$$

где A — матрица коэффициентов при неизвестных; b, x — векторы-столбцы свободных членов и неизвестных соответственно.

Умножив обе части (2.1) на ${\bf A}^{-1}$, получим решение СЛАУ в виде:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \,. \tag{2.2}$$

В MATLAB это соответствует операции inv (A) *B, т. е. *левому* матричному делению $\mathbf{x} = \mathbf{A} \setminus \mathbf{b}$:

Поясним на примере решения СЛАУ:

$$\begin{cases}
2x_1 - x_2 + 4x_3 = 9; \\
x_1 - 2x_2 - 3x_3 = -2; \\
4x_1 - x_2 - x_3 = 10,
\end{cases}$$
(2.3)

где:

-2

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 4 \\ 1 & -2 & -3 \\ 4 & -1 & -1 \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} 9 \\ -2 \\ 10 \end{bmatrix}. \tag{2.4}$$

Сформируем матрицу ${\bf A}$ и вектор ${\bf b}$, и используем операцию *левого* деления для решения СЛАУ (2.3) в виде (2.2) — определения вектора ${\bf x}$:

```
10
>> x = A\b
x =
3
1
```

Проверим правильность решения. Выполнив умножение в левой части (2.1), получим вектор **b**:

```
>> A*x
ans =
9
-2
10
```

Преимуществом МАТLAB является *возможность одновременного решения нескольких СЛАУ*, отличающихся вектором свободных членов. В этом случае вектор **b** будет представлен *матрицей* свободных членов, каждый столбец которой соответствует вектору свободных членов одной СЛАУ:

```
>> A=[2 -1 4;1 -2 -3;4 -1 -1];
>> b = [9 \ 3 \ 7; -2 \ 1 \ 0; 10 \ 15 \ 3]
b =
      9
             3
    -2
            1
                    0
           15
                    3
    10
>> x = A \ b
x =
    3.0000
                4.2432
                            0.7027
                2.6757
    1.0000
                           -1.2703
    1.0000
              -0.7027
                            1.0811
```

Первый столбец матрицы соответствует решению СЛАУ (2.2).

2.11. Разложение матриц

Разложением матрицы называют ее представление в виде произведения матриц.

Разложение матриц используется во многих приложениях. Мы познакомимся с одним из видов разложения — LU-разложением, которое, в частности, используется при решении СЛАУ.

Основными преимуществами решения СЛАУ на основе *LU-разложения* являются:

- существенно меньший объем вычислений, чем при обращении матрицы в (2.2); Это крайне важно при реализации численного метода решения СЛАУ на цифровом устройстве, например, ЦПОС
- меньшая чувствительность решения к погрешностям исходных данных, т. е. небольшим изменением элементов матрицы ${\bf A}$ и вектора ${\bf b}$ в (2.1).

В MATLAB *LU-разложение* матрицы **A** представлено в виде:

$$\mathbf{PA} = \mathbf{LU} \,, \tag{2.5}$$

где:

L — нижняя (lower) треугольная матрица с единицами в главной диагонали и *ненулевыми* элементами *ниже* нее;

 ${f U}$ — верхняя (upper) треугольная матрица с *ненулевыми* элементами на главной диагонали и *выше* нее;

 ${f P}$ — вспомогательная матрица нулей и единиц, формирующая столбцы матрицы произведения ${f PA}$ так, чтобы *первым* элементом каждого столбца был *главный* элемент — наибольший по модулю, что повышает точность решения СЛАУ.

LU-разложение матрицы выполняется с помощью функции:

[L,U,P]=lu(A)

Например, выполним LU-разложение матрицы ${\bf A}$ в (2.4) (пояснить ${\bf L}$ и ${\bf U}$):

```
\Rightarrow A=[2 -1 4;1 -2 -3;4 -1 -1]
A =
     2
           -1
                   4
     1
           -2
                  -3
           -1
                  -1
>> [L,U,P]=lu(A)
L =
    1.0000
                     0
                                 0
    0.2500
               1.0000
                                 0
    0.5000
               0.2857
                           1.0000
U =
    4.0000
              -1.0000
                          -1.0000
              -1.7500
                          -2.7500
          0
          0
                     0
                           5.2857
P =
     0
            0
                   1
     0
            1
                   0
            0
      1
                   0
```

В МАТLАВ решение СЛАУ (2.1) на основе *LU-разложения* реализуется с помощью функции:

x = linsolve(A,b)

Решив СЛАУ (2.3), получим тот же результат:

Более подробно с разложением матриц можно познакомиться в [ЦОС. Моделирование в MATLAB], 2008.

2.13. Операции с матрицами в задачах математической статистики

В разд.2.3 была приведена классификация операций с матрицами. В этом разделе рассматриваются матричные операции из подгруппы "операции с матрицами в задачах математической статистики".

Для решения задач математической статистики в MATLAB предусмотрен большой набор встроенных функций, некоторые из которых приведены в табл. 3.

Таблица 3. Функции математической статистики

Функция	Назначение		
max (A)	Максимальные элементы столбца		
min(A)	Минимальные элементы столбца		
sum (A)	Сумма элементов столбца		
mean (A)	Математическое ожидание (среднее значение) элементов столбца		
var(A,1)	Дисперсия элементов столбца, вычисляемая по формуле:		
	$\sigma_{j}^{2} = \frac{\left(a_{1j} - \overline{a}_{j}\right)^{2} + \left(a_{2j} - \overline{a}_{j}\right)^{2} + \dots + \left(a_{mj} - \overline{a}_{j}\right)^{2}}{m}$		

Проиллюстрируем использование данных функций на примерах решения простейших задач математической статистики.

Запишем матрицу ${\bf X}$ размером $M \times N$ из M последовательностей случайных чисел длины N :

$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1j} & \dots & x_{1N} \\ \dots & & \dots & & \dots \\ x_{i1} & \dots & x_{ij} & \dots & x_{iN} \\ \dots & & \dots & & \dots \\ x_{M1} & \dots & x_{Mj} & \dots & x_{MN} \end{bmatrix}.$$

В качестве последовательностей случайных чисел выберем последовательности чисел, распределенных по *нормальному* закону с математическим ожиданием, равным 0, и дисперсией, равной 1.

Такие последовательности называют нормальным белым шумом (дискретным).

Одну (любую) строку матрицы \mathbf{X} называют *реализацией* нормального белого шума, а совокупность всех M строк (M реализаций) — *ансамблем реализаций* нормального белого шума.

Сгенерируем матрицу ${\bf X}$ размером 100×100 с помощью функции ${\bf randn}$ (табл. 1): >> ${\bf X}$ = randn(100,100);

и определим статистические характеристики нормального белого шума:

• математическое ожидание;

Математическим ожиданием случайной последовательности называют ее среднее значение по ансамблю реализаций.

Вычислим математическое ожидание $\mathbf{M}_{\mathbf{X}}$.с помощью функции $\mathbf{mean}(\mathbf{X})$ для $cmon\delta uos$ матрицы, а затем их среднее значение \mathbf{M} с помощью той же функции:

>>
$$M_X = mean(X)$$
; $M = mean(M_X)$
 $M =$

0.0135

• дисперсию.

Дисперсией случайной последовательности называют ее среднеквадратическое отклонение от среднего по ансамблю реализаций.

Вычислим дисперсию D_X .с помощью функции var(X, 1) для *столбцов* матрицы, а затем их среднее значение D с помощью функции $mean(D_X)$:

>>
$$D_X = var(X,1)$$
; $D = mean(D_X)$
 $D =$

0.9667

Полученные значения математического ожидания и дисперсии отличаются от истинных значений, поэтому их называют *оценками* математического ожидания и дисперсии.

Оценки статистических характеристик будут стремиться к истинным значениям при $M \to \infty$.

Теперь вместо 100 реализаций белого шума длины 100 рассмотрим одну его реализацию большой длины $100 \times 100 = 1 \times 10000$. Сгенерируем нормальный белый шум в виде вектора \mathbf{Y} и определим *оценки* математического ожидания и дисперсии:

```
>> Y = randn(1,10000); M = mean(Y), D = var(Y,1)
M =
          0.0027
D =
          1.0090
```

Оценки статистических характеристик будут стремиться к истинным значениям при $N \to \infty$.