Klasyfikator ruchów czujnika IMU na podstawie rekurencyjnej sieci neuronowej

Mateusz Woźniak

Maciej Pawłowski

wozniakmat@student.agh.edu.pl

maciejp@student.agh.edu.pl

1 Abstrakt

Przedmiotem tego artykułu jest omówienie realizacji zadania klasyfikacji ruchów z urządzenia IMU (Inertial Measurement Unit). Czujnik IMU określa przyśpieszenia postępowe i kątowe używając żyroskopu, akcelerometru i magnetometru. IMU jest powszechnie stosowane w lotnictwie, robotyce, wirtualnej rzeczywistości i medycynie. W lotnictwie umożliwia precyzyjne sterowanie statkami powietrznymi, a w robotyce wspomaga autonomiczne poruszanie się robotów. Jednym z zastosowań klasyfikatora ruchów może być detekcja przeciągnięcia samolotu. Z kolei w motoryzacji, IMU znajduje użycie w systemach kontroli stabilności pojazdów oraz w zaawansowanych systemach wspomagania kierowcy, które poprawiają bezpieczeństwo. My chcemy zaproponować realizację klasyfikatora 5 z góry ustalonych ruchów używając rekurencyjną sieć neuronowej.

Do pomiarów wykorzystaliśmy smartfon wyposażony w czujnik IMU. Implementację modelu wykonaliśmy we frameworku PyTorch. Trening sieci neuronowej była wykonywany na Apple Macbook M1 16GB.

1.1 Zbiór danych