11.76. На фотографии, полученной в камере Вильсона, траектория электрона в однородном магнитном поле представляет собой дугу окружности радиусом R = 10 см. Индукция магнитного поля B = 10 мТл. Найти энергию электрона W (в электронвольтах).

Решение:

Имеем
$$W = \frac{e^2 B^2 R^2}{2m}$$
 (см. задачу 11.73). Подставляя числовые данные, получим $W = 1.4 \cdot 10^{-14}$ Дж или $W = \frac{1.4 \cdot 10^{-14}}{1.6 \cdot 10^{-19}} = 88 \cdot 10^3$ эВ.

11.77. Заряженная частица движется в магнитном поле по **окружн**ости со скоростью $v = 10^6$ м/с. Индукция магнитного **поля** B = 0.3 Тл. Радиус окружности R = 4 см. Найти заряд q **частицы,** если известно, что ее энергия W = 12 кэВ.

Решение:

В магнитном поле на частицу действует сила Лоренца $\vec{F} = q[\vec{v}, \vec{B}]$ — (1). Поскольку частица движется по окружности, следовательно, векторы \vec{F} , \vec{v} и \vec{B} взаимно перпендикулярны. Тогда уравнение (1) можно записать в скалярном виде: F = qvB. Сила Лоренца сообщает частице

постоянное ускорение
$$a_n = \frac{v^2}{R}$$
. Следовательно, $qvB = \frac{mv^2}{2}$ — (2). Энергия частицы $W = \frac{mv^2}{2}$, откуда

 $mv^2 = 2W$ — (3). Подставляя (3) в (2) и выражая из полученного уравнения заряд частицы q, получим

$$q = \frac{2W}{vBR} = 3.2 \cdot 10^{-19} \text{ Кл.}$$

11.78. Протон и α -частица влетают в однородное магнитное поле, направление которого перпендикулярно к направлению n_X движения. Во сколько раз период обращения T_1 протона в магнитном поле больше периода обращения T_2 α -частицы?

Решение:

Период обращения протона равен $T_1=\frac{2\pi R_1}{v_1}$, где v_1 — скорость его движения и $R_1=\frac{m_p v_1}{eB}$ (см. задачу 11.74). Отсюда $T_1=\frac{2\pi m_p}{eB}$, т. е. период не зависит от скорости. Поскольку заряд α -частицы равен 2e, то период ее обращения равен $T_2=\frac{\pi m_\alpha}{eB}$. Отсюда отношение $\frac{T_1}{T_2}=\frac{2m_p}{m_\alpha}=0,5$.

11.79. α -частица, кинетическая энергия которой W=500 эВ, влетает в однородное магнитное поле, перпендикулярное ее движению. Индукция магнитного поля B=0.1 Тл. Найти силу F, действующую на α -частицу, радиус R окружности, по которой движется α -частица, и период обращения T α -частицы.

Решение:

В магнитном поле на α -частицу действует сила Лоренца $\vec{F} = q \begin{bmatrix} \vec{v}, \vec{B} \end{bmatrix}$. Поскольку векторы \vec{F} , \vec{v} и \vec{B} взаимно перпендикулярны, то в скалярном виде $F = qvB\sin\alpha = qvB$ — (1). Кинетическая энергия частицы $W = \frac{mv^2}{2}$ — (2), откуда $v = \sqrt{\frac{2W}{m}}$ — (3). Подставляя (3) в (1), получим $F = qB\sqrt{\frac{2W}{m}} = 5\cdot 10^{-15}\,\mathrm{H}$. Сила Лоренца сообщает α -час-

тице нормальное ускорение $a_n = \frac{v^2}{R}$, следовательно, $F = m\frac{v^2}{R}$. Из (2) имеем $mv^2 = 2W$, тогда $F = \frac{2W}{R}$, откуда радиус окружности $R = \frac{2W}{F} = 0.032\,\mathrm{m}$. Период обращения α -частицы равен $T = \frac{\pi m_\alpha}{eB}$ (см. задачу 11.78). Подставляя числовые данные, получим $T = 1.3 \cdot 10^{-6}\,\mathrm{c}$.

11.80. α -частица, момент импульса которой $M=1,33 \times 10^{-22} \, \mathrm{kr} \cdot \mathrm{m}^2/\mathrm{c}$, влетает в однородное магнитное поле, перпендикулярное к направлению ее движения. Индукция магнитного поля $B=25 \, \mathrm{mTn}$. Найти кинетическую энергию $W \, \alpha$ -частицы.

Решение:

Момент импульса α -частицы $\vec{M} = m[\vec{v}, \vec{R}]$ или $M = mvR \sin \alpha = mvR$ — (1) (поскольку $\alpha = 90^{\circ}$). На частицу действует сила Лоренца $F = m\frac{v^2}{R}$ или $qvB = m\frac{v^2}{R}$ — (2). Из (1) имеем $R = \frac{M}{mv}$. Подставляя это выражение в (2), найдем $mv^2 = qB\frac{M}{m}$ — (3). Поскольку кинетическая энергия частицы равна $W = \frac{mv^2}{2}$, то, с учетом (3), получим $W = \frac{qBM}{2m} = 500$ эВ.

11.81. Однозарядные ионы изотопов калия с относительными атомными массами 39 и 41 ускоряются разностью потенциалов

 $U=300\,\mathrm{B}$; затем они попадают в однородное магнитное п перпендикулярное направлению их движения. Индукция з нитного поля $B=0.08\,\mathrm{Tn}$. Найти радиусы кривизны R_{L} п траекторий этих ионов.

Решение:

Потенциальная энергия ускоренных ионов $W_n = qU$ и з по условию ионы однозарядные, то $q = |e| = 1.6 \cdot 10^{-19}$ Эта энергия переходит в кинетическую $W_{\kappa} = \frac{mv^2}{2}$ и закону сохранения энергии $eU = \frac{mv^2}{2}$, откуда скоро движения ионов $v = \sqrt{\frac{2eU}{m}}$ — (1). В магнитном поле ионы действует сила Лоренца $F = evB sin \alpha$, но т. к. условию поле перпендикулярно направлению движения $sin \alpha = 1$, поэтому F = evB — (2). С другой стороны, второму закону Ньютона $F = ma_n$, где $a_n = \frac{v^2}{R}$ — н мальное ускорение, тогда $F = \frac{mv^2}{D}$ — (3). Приравнива правые части уравнений (2) и (3): $evB = \frac{mv^2}{R}$, отк скорость движения ионов $v = \frac{eBR}{m}$ — (4). Приравни правые части уравнений (1) и (4), получаем $\sqrt{\frac{2eU}{m}} = \frac{eE}{m}$ откуда радиусы кривизны траекторий понов $R = \frac{1}{R} \sqrt{\frac{2mv}{a}}$ Подставляя числовые данные, получим $R_1 = 0.195 \text{ м}$

222

 $R_2 = 0.2 \text{ M}.$

11.82. Найти отношение $\frac{q}{m}$ для заряженной частицы, если она, влетая со скоростью $v=10^6$ м/с в однородное магнитное поле напряженностью $H=200\,\mathrm{kA/m}$, движется по дуге окружности радиусом $R=8,3\,\mathrm{cm}$. Направление скорости движения частицы перпендикулярно к направлению магнитного поля. Сравнить найденное значение со значением $\frac{q}{m}$ для электрона, протона и α -частицы.

Решенне:

Скорость движения заряженной частицы в магнитном поле **нод** действием силы Лоренца (см. задачу 11.81) $v = \frac{qBR}{r}$

- (1). Магнитная индукция и напряженность магнитного поля связаны соотношением $B = \mu \mu_0 H$, но т. к. для воздуха магнитная проницаемость $\mu = 1$, поэтому $B = \mu_0 H$ —
- (2). Подставляя (2) в (1), находим $\frac{q}{m} = \frac{v}{\mu_0 HR} = 4.8 \times$

 $\times 10^7 \, {
m K}$ л/кг. Для электрона $\frac{q}{m}$ = 1,76 · 10¹¹ ${
m K}$ л/кг; для протона

 $\frac{q}{m} = 9.6 \cdot 10^7 \,\text{Kл/кг};$ для α -частицы $\frac{q}{m} = 4.8 \cdot 10^7 \,\text{Kл/кг}.$

11.83. Пучок электронов, ускоренных разностью потенциалов $U = 300 \, \mathrm{B}$, влетает в однородное магнитное поле, направленное от чертежа к нам. Ширина поля $b = 2.5 \, \mathrm{cm}$. В отсутствие магнитного поля пучок электронов дает пятно в точке A флуоресцирующего экрана, расположенного на расстоянии $l = 5 \, \mathrm{cm}$ от края полюсов магнита. При включении магнитного поля пятно смещется в точку B. Найти смещение x = AB пучка электронов, если известно, что индукция магнитного поля $B = 14.6 \, \mathrm{mkTn}$.

Общее смещение электрсна $x=x_1+x_2$, где x_1 — смещение электрона в магнитном поле. Электрон в магнитном поле движется по окружности радиусом

 $R = \frac{mv}{eB}$. Смещение x_1 можно найти из соотношения $x_1 = DC = OC - OD$. Но OC = R и

 $OD = \sqrt{OM^2 - DM^2} = \sqrt{R^2 - b^2}$. Таким образом, $x_1 = R - \sqrt{R^2 - b^2}$. Смещение x_2 может быть найдено из пропорции $\frac{x_2}{l} = \frac{DM}{DO}$, откуда $x_2 = \frac{bl}{\sqrt{R^2 - b^2}}$. Тогда смещение $x = R - \sqrt{R^2 - b^2} + \frac{bl}{\sqrt{R^2 - b^2}}$. Имеем $R = \frac{mv}{eB}$

 $=\frac{1}{B}\sqrt{\frac{2Um}{e}}$. Подставляя числовые данные, получим R=4 см и x=4.9 см.

11.84. Магнитное поле напряженностью $H=8\,\mathrm{KA/M}$ и электрическое поле напряженностью $E=1\,\mathrm{KB/M}$ направлены одинаково. Электрон влетает в электромагнитное поле со скоростью $v=10^5\,\mathrm{M/c}$. Найти нормальное a_n , тангенциальное a_τ и полное a ускорения электрона. Задачу решить, если скорость электрона направлена: а) параллельно направлению электрического поля; б) перпендикулярно к направлению электрического поля.

Решение:

а) Со стороны магнитного поля на электрон действует сила Лоренца $F = |e|vB \sin \alpha$. Поскольку \vec{v} параллельна \vec{H} , то

 \vec{b} Если \vec{v} перпендикулярна \vec{H} , \mathbf{r} о $a_r = 0$ и электрон движется по окружности. На него со стороны магнитного поля действует сила Лоренца $F = |e|vB \sin 90^\circ = |e|vB$, которая сообщает ему ускорение a_n . Следовательно, $evB = m - a_{n1}$, **ютку**да $a_{nl} = \frac{evB}{m}$. Электрическое

поле действует перпендикулярно

движению электрона, т. е. тангенциально не ускоряет его, поэтому $a_r = 0$, а нормальное ускорение $a_{n2} = \frac{Ee}{m}$. Векто-

ры \vec{a}_{n1} и \vec{a}_{n2} , направлены перпендикулярно друг другу, результирующее нормальное ускорение поэтому

$$\langle a_n = \sqrt{\left(\frac{eE}{m}\right)^2 + \left(\frac{evB}{m}\right)^2} = \frac{e}{m}\sqrt{E^2 + v^2B^2}$$
 или $a_n = \frac{e}{m} \times \sqrt{E^2 - 2v^2B^2}$

 $\times \sqrt{E^2 + v^2 \mu_0^2 H^2} = 2.5 \cdot 10^{14} \text{ m/c}^2.$

.8-3269

11.85. Магнитное поле. индукция которого $B = 0.5 \,\mathrm{MT}$ л, направлено перпендикулярно к электрическому полю, напрякоторого $E = 1 \, \text{кB/м}$. Пучок электронов влетает в 225 электромагнитное поле, причем скорость \vec{v} электронов псрпендикуляриа к плоскости, в которой лежат векторы \vec{E} и \vec{B} . Найти скорость электронов v, если при одновременном действии обенх полей пучок электронов не испытывает отклонения. Каким будет радиус R траектории движения электронов при условии включения одного магнитного поля?

Решение:

Поскольку векторы \vec{v} , \vec{B} и \vec{E} взаимно перпендикулярны, то пучок электронов не будет испытывать отклонения, если силы, действующие на него со стороны магнитного и электрического полей, будут равны по модулю, т. е. сила Лоренца будет уравновешиваться силой Кулона. Имеем $F_{\Pi} = F_{K}$, где $F_{\Pi} = evB$,

 $F_{\rm K}=eE$. Тогда Ee=evB , откуда ${m v}=\frac{E}{B}=2\cdot 10^6$ м/с. При включении одного магнитного поля сила Лоренца сообщает электронам центростремительное ускорение $a_n=\frac{v^2}{R}$, т. е. $evB=\frac{mv^2}{R}$, откуда $R=\frac{mv}{eB}=2,25$ см.

11.86. Электрон, ускоренный разностью потенциалов U=6 кВ, влетает в однородное магнитное поле под углом $\alpha=30^\circ$ к направлению поля и движется по винтовой траектории. Индукция магнитного поля B=13 мТл. Найти радиус R и шаг h винтовой траектории.

Решение:

Разложим скорость электрона, влетающего в магнитное поле, по двум направлениям: вдоль линий поля — v_y н

граллельно им — v_z. Coтавим два уравнения. Сила Поренца создает центроетремительное ускорение, т. е.

$$Bev_z = \frac{mv_z^2}{R}$$
, откуда $Be = \frac{mv_z}{R}$

- (1). Поскольку
$$\frac{mv^2}{2} = eU$$
,

из рисунка
$$v = \frac{v_z}{\sin \alpha}$$
, то

(1). Поскольку $\frac{mv^2}{2} = eU$, xиз рисунка $v = \frac{v_z}{\sin \alpha}$, то $eU = \frac{1}{2} \frac{mv_z^2}{\sin^2 \alpha}$. Разделим обе части уравнения (2) на рвадраты обеих частей уравнения (1). Получим $\frac{eU}{B^2e^2} = \frac{nv_z^2R^2}{2\sin^2\alpha m^2v_z^2}; \quad \frac{U}{B^2e} = \frac{R^2}{2m\sin^2\alpha}, \text{ откуда } R = \frac{\sin\alpha}{B} \times \frac{\sin\alpha}{B}$

$$\sqrt{\frac{2mU}{e}}=1$$
 см. Шаг спирали найдем из соотношений

$$2\pi R = v_z t$$
 и $h = v_y t$, откуда $h = 2\pi R \frac{v_y}{v_z}$. Т. к.

$$\frac{v_y}{v_z} = ctg\alpha = 1,73$$
, to $h = 11$ cm.

11.87. Протон влетает в однородное магнитное поле под уг**дом** $\alpha = 30^{\circ}$ к направлению поля и движется по винтовой линии **Радиусом** R = 1,5 см. Индукция магнитного поля B = 0,1 Тл. Най- $\mathbf{T}\mathbf{u}$ кинетическую энергию W протона.

Решенне:

Разложим скорость протона \vec{v} на две составляющие: \vec{v}_r , **на**правленную вдоль поля, и \vec{v}_n , направленную перпендикулярно к полю. Проекция траектории электрона на **плоскость**, перпендикулярную к индукции B, представляет собой окружность, радиус которой определяется формулой $R = \frac{mv_n}{eB} = \frac{m(v \sin \alpha)}{eB}$ (см. задачу 11.69). Отсюда

$$v = \frac{eBR}{m \sin \alpha}$$
. Кинетическая энергия протона $W = \frac{mv^2}{2}$. Подставляя выражение для v , получим $W = \frac{e^2 B^2 R^2}{2m \sin^2 \alpha}$.

Подставляя выражение для v, получим $W = \frac{1}{2m\sin^2\alpha}$. Подставляя числовые данные, получим $W = 6.9 \cdot 10^{-17} \, \text{Дж}$ или $W = 431 \, \text{эB}$.

11.88. Электрон влетает в плоский горизонтальный конденсатор параллельно его пластинам со скоростью $\nu=10^7\,{\rm M/c}$. Длина конденсатора $l=5\,{\rm cm}$. Напряженность электрического поля конденсатора $E=10\,{\rm kB/m}$. При вылете из конденсатора электрон попадает в магнитное поле, перпендикулярное к электрическому полю. Индукция магнитного поля $B=10\,{\rm mTn}$. Найти радиус R и шаг h винтовой траектории электрона в магнитном поле.

Решение:

При вылете из конденсатора электрон имеет скорость $v' = \sqrt{v^2 + \left(\frac{eEl}{mv}\right)^2}$ — (1), направление которой опреде-

ляется углом α , причем $\cos\alpha = \frac{v}{v'}$ — (2) (см. задачу 9.72). Из (1) найдем $v' = 1.3 \cdot 10^7$ м/с. Из (2) найдем $\cos\alpha = 0.77$, $\sin\alpha = 0.64$, $\alpha \approx 40^\circ$. Разложим скорость \bar{v}' на две составляющие: \bar{v}'_r , направленную вдоль поля, и \bar{v}'_n , направленную перпендикулярно к полю. Проекция траектории

электрона на плоскость, перпендикулярную к индукции \tilde{B} , представляет собой окружность, радиус которой равен искомому радиусу винтовой траектории и определяется 228

формулой $R = \frac{mv_n'}{eB} = \frac{m(v'\sin\alpha)}{eB}$ (см. задачу 11.69). Т. к. период обращения электрона $T = \frac{2\pi R}{v'\sin\alpha} = \frac{2\pi m}{eB}$, то шаг винтовой траектории электрона $h = v_\tau' T = \frac{2\pi m(v'\cos\alpha)}{eB}$. Подставляя числовые данные, получим $R = 4,7 \cdot 10^{-3}$ м и $h = 36 \cdot 10^{-3}$ м.

11.89. Электрон, ускоренный разностью потенциалов U=3 кВ, влетает в магнитное поле соленоида под углом $\alpha=30^\circ$ его оси. Число ампер-витков соленоида $IN=5000\,\mathrm{A\cdot B}$. Длина соленоида $I=25\,\mathrm{cm}$. Найти шаг h винтовой траектории электрона в магнитном поле.

Решение:

Имеем
$$h = \frac{2\pi m v \cos \alpha}{eB}$$
 — (1), где $v = \sqrt{\frac{2eU}{m}}$ — (2) (см. за-
дачу 11.88). Магнитная индукция соленоида $B = \mu \mu_0 \frac{IN}{l}$ — (3). Подставляя (2) в (1), получим $h = \frac{2\pi \sqrt{2eUml\cos \alpha}}{e\mu \mu_0 IN}$. Подставляя числовые данные, получим $h = 0.04$ м.

11.90. Через сечение S=ab медной пластинки толщиной a=0,5 мм и высотой b=10 мм пропускается ток I=20 А. При помещении пластинки в магнитное поле, перпендикулярное к ребру b и направлению тока, возникает поперечная разность потенциалов U=3,1 мкВ. Индукция магнитного поля B=1 Тл. Найти концентрацию n электронов проводимости в меди и их скорость v при этих условиях.

При протекании тока I вдоль проводящей пластины, помещенной перпендикулярно магнитному полю, возникае глоперечная разность потенциалов $U=\frac{IB}{nea}$, где a — толещина пластины, B — индукция магнитного поля. Отсюда концентрация электронов проводимости $n=\frac{IB}{Uea}=8.1\cdot 10^{28}\,\mathrm{m}^{-3}$. По определению плотности тока j=vne — (1), с другой стороны, $j=\frac{I}{S}$, где I — сила тока, S=ab — площадь сечения медной пластинки, тогда $j=\frac{I}{ab}$ — (2). Приравнивая правые части уравнений (1) и (2), получаем $vne=\frac{I}{ab}$, откуда скорость $v=\frac{I}{abne}=0.31\,\mathrm{mm/c}$.

11.91. Через сечение S=ab алюминиевой пластинки (a — толщина и b — высота) пропускается ток I=5 А. Пластинка помещена в магнитное поле, перпендикулярное к ребру b и направлению тока. Найти возникающую при этом поперечную разность потенциалов U. Индукция магнитного поля B=0,5 Тл. Толщина пластинки a=0,1 мм. Концентрацию электронов проводимости считать равной концентрации атомов.

Решение:

Поперечная разность потенциалов $U = \frac{IB}{nea}$ — (1). По условию задачи концентрация электронов проводимости равна концентрации атомов, поэтому $n = \frac{\rho N_A}{\mu}$ — (2), где ρ — плотность алюминия, μ — молярная масса, N_A —

число Авогадро. Подставляя (2) в (1), окончательно получаем $U = \frac{IB\mu}{\rho N_A ea} = 2,72$ мкВ.

11.92. Пластинка полупроводника толщиной a=0,2 мм помещена в магнитное поле, перпендикулярное к пластинке. Удельное сопротивление полупроводника $\rho=10$ мкОм м. Индукция магнитного поля B=1 Тл. Перпендикулярно к направлению поля вдоль пластинки пропускается ток J=0,1 А. При этом возникает поперечная разность потенциалов U=3,25 мВ. Найти подвижность u носителей тока в полупроводнике.

Решение:

Поперечная разность потенциалов $U = \frac{IB}{nea}$ — (1). Удельная проводимость материала $\sigma = \frac{1}{\rho} = neu$, где ρ — удельное сопротивление материала, u — подвижность носителей тока. Тогда концентрация носителей тока $n = \frac{1}{\rho eu}$ — (2). Подставляя (2) в (1), получаем $U = \frac{IB\rho u}{a}$, откуда подвижность носителей тока в проводнике $u = \frac{Ua}{IB\rho} = 0.65 \text{ м}^2/(\text{B·c})$.

11.93. В однородном магнитном поле с индукцией $B=0,1\,\mathrm{Tn}$ движется проводник длиной $l=10\,\mathrm{cm}$. Скорость движения проводника $\nu=15\,\mathrm{m/c}$ и направлена перпендикулярно к магнитному полю. Найти индуцированную в проводнике э.д.с. ε .

Э.д.с. индукции определяется по закону Фарадея: $\varepsilon = -\frac{d\Phi}{dt}. \ \, \text{В этом уравнении знак «минус» соответствует}$ правилу Ленца. Поскольку $d\Phi = BdS = Bldx \;, \quad \text{то}$ $\varepsilon = Bl\frac{dx}{dt} = Blv = 0.15 \; \text{B}.$

11.94. Катушка диаметром D=10 см, состоящая из N=500 витков проволоки, находится в магнитном поле. Найти среднюю э.д.с. индукции $\varepsilon_{\rm cp}$, возникающую в этой катушке, если индукция магнитного поля увеличивается в течение времени $t=0,1\,{\rm c}$ от 0 до 2 Тл.

Решение:

Согласно закоиу Фарадея $\varepsilon_{\rm cp} = -\frac{\Delta\Phi}{\Delta t}$, где изменение потока магнитной индукции через катушку $\Delta\Phi = NS\Delta B$. Следовательно, $\varepsilon_{\rm cp} = NS\frac{\Delta B}{\Delta t}$, где $\Delta B = B_2 - B_1$. По условию $B_1 = 0$, $B_2 = 2$ Тл. Подставляя числовые данные, получим $\varepsilon_{\rm cp} = 78.5$ В.

11.95. Скорость самолета с реактивным двигателем $\nu=950$ км/ч. Найти э.д.с. индукции ε , возникающую на концах крыльев такого самолета, если вертикальная составляющая напряженности земного магнитного поля $H_{\bullet}=39.8$ А/м и размах крыльев самолета I=12.5 м.

Решение:

Согласно закону Фарадея $\varepsilon = -\frac{\Delta\Phi}{\Delta t}$ — (1), где изменение магнитного потока $\Delta\Phi = B\Delta S \sin\alpha$ или, поскольку 232

 $\alpha = 90^{\circ}$, $\Delta \Phi = B\Delta S$ — (2). Т. к. магнитная индукция $B = \mu \mu_0 H$, а площадь, перекрываемая крыльями самолета за время Δt , равна $\Delta S = vl\Delta t$, то из (2) получим $\Delta \Phi = \mu \mu_0 H vl\Delta t$. Тогда из (1) $\varepsilon = \frac{\mu \mu_0 H vl\Delta t}{\Delta t} = \mu \mu_0 H vl$. Подставляя числовые данные, получим $\varepsilon = 0.165$ В.

11.96. В магнитном поле, индукция которого B=0.05 Тл, врашается стержень длиной l=1м с угловой скоростью $\omega=20$ рад/с. Ось вращения проходит через конец стержня и параллельна магнитному полю. Найти э.д.с. индукции ε , возникающую на концах стержня.

Решение:

Согласно закону Фарадея $\varepsilon = -\frac{\Delta\Phi}{\Delta t}$ — (1), где изменение магнитного потока $\Delta\Phi = B\Delta S \sin\alpha$ или, поскольку $\alpha = 90^\circ$, $\Delta\Phi = B\Delta S$. За один оборот стержень пересекает площадь $\Delta S = \pi l^2$ за время $\Delta t = t$. Тогда магнитный поток, пересекаемый стержнем за один оборот, $\Phi = B\pi l^2$, а возникающая на концах стержня э.д.с. $\varepsilon = \frac{B\pi \cdot l^2}{t} = B\pi l^2 n = \frac{Bl^2\omega}{2}$. Подставляя числовые данные, получим $\varepsilon = 0.5$ В.

11.97. Схема, поясняющая принцип действия электромагнитного расходомера жидкости, изображена на рисунке. Трубопровод с протекающей в нем проводящей жидкостью помещен в магнитное поле. На электродах A и B возникает э.д.с. индукщии. Найти скорость ν течения жидкости в трубопроводе, если индукция магнитного поля B = 0.01 Тл, расстояние между электродами (внутренний диаметр трубопровода) $d = 50 \text{ мм}_{-11}$ возникающая при этом э.д.с. $\varepsilon = 0.25 \text{ мB}$.

Решение:

По закону Фарадея э.д.с. электромагнитной индукции $\varepsilon_i = -\frac{\Delta\Phi}{\Delta t}$. Считая начальный магнитный поток $\Phi_i = 0$, получаем $\Delta\Phi = \Phi_2 = BS$, где

S = ld — площадь, пронизываемая магнитным потоком, $l = v\Delta t$ — расстояние, которое проходит струя за время Δt . Тогда э.д.с. индукции $\varepsilon_i = Blv$, откуда скорость течения жидкости в трубопроводе $v = \frac{\varepsilon_i}{Bl} = 0.5$ м/с.

11.98. Круговой проволочный виток площадью $S = 0.01 \,\mathrm{m}^2$ находится в однородном магнитном поле, индукция которого $B = 1 \,\mathrm{Tr}$. Плоскость витка перпендикулярна к направлению магнитного поля. Найти среднюю э.д.с. индукции $\varepsilon_{\rm cp}$, возникающую в витке при включении поля в течение времени $t = 10 \,\mathrm{mc}$.

Решение:

Имеем $\varepsilon_{\rm cp}=-\frac{\Delta\Phi}{\Delta t}=-\frac{S\Delta B}{\Delta t}$. Поскольку индукция B уменьшается от 1Тл до 0, $\Delta B=(0-1)=-1$ Тл. Подставляя числовые данные, получим $\varepsilon_{\rm cp}=1$ В.

11.99. В однородном магнитном поле, индукция которого $B=0.1\,\mathrm{Tr}$, равномерно вращается катушка, состоящая из N=100 витков проволоки. Частота вращения катушки $n=5\,\mathrm{c}^{-1}$; площадь поперечного сечения катушки $S=0.01\,\mathrm{m}^2$. Ось вращения перпендикулярна к оси катушки и направлению магнитного 234

 $\widetilde{\mathbf{nons}}$. Найти максимальную э.д.с. индукции \mathcal{E}_{max} во враща- $\widetilde{\mathbf{oute}}$ йся катушке.

Решение:

Рассмотрим один виток рамки. При равномерном вращении вокруг оси OO' с угловой скоростью ω магнитный поток через его площадь будет меняться по закону $\mathbf{D} = BS \cos \alpha$ — (1), где S — плонадь рамки; α — угол между нормалью к плоскости и вектором \vec{B} .

Считая, что при t=0 $\alpha=0$, имеем $\alpha=\omega\cdot t$. Индуцируемая в витке э.д.с. индукции $\varepsilon_i=\lim_{\Delta t\to 0}\left(-\frac{\Delta\Phi}{\Delta t}\right)=-\frac{d\Phi}{dt}$ — (2). Поскольку $\Phi(t)=BS\cos\alpha=BS\cos\omega\cdot t$ (согласно (1)), то, дифференцируя эту функцию и помня, что $\frac{d(\cos\omega\cdot t)}{dt}=-\omega\sin t$, получим $\varepsilon_i=BS\omega\sin\omega\cdot t$ — (3). Интуцируемая в N витках э.д.с. будет в N раз больше:

40. Следовательно, при равномерном вращении рамки в однородном магнитном поле в ней возникает переменная синусоидальная э.д.с. самоиндукции. Подставляя в (4) значение угловой скорости $\omega = 2\pi n$, где n — частота вращения рамки, получим $\varepsilon_m = 2\pi nNBS \approx 3,14$ В.

 $\mathcal{E} = N \varepsilon_i = NBS \omega \sin \omega \cdot t = \varepsilon_m \sin \omega \cdot t$, где ε_m — максималь-

11.100. В однородном магнитном поле, индукция которого $B=0.8\,\mathrm{Tr}$, равномерно вращается рамка с угловой скоростью $\omega=15\,\mathrm{pag/c}$. Площадь рамки $S=150\,\mathrm{cm}^2$. Ось вращения нахолится в плоскости рамки и составляет угол $\alpha=30^\circ$ с направлением магнитного поля. Найти максимальную э.д.с. индукции $\varepsilon_{\mathrm{max}}$ во вращающейся рамке.

Мгновенное значение э.д.с. индукции ε определяется уравнением $\varepsilon = -\frac{d\Phi}{dt}$ — (1). При вращении рамки магнитный поток Φ , пронизывающий рамку, изменяется по закону $\Phi = BS \sin\alpha\cos\omega \cdot t$ — (2). Подставив (2) в (1) и продифференцировав по времени, найдем мгновенное значение э.д.с. индукции $\varepsilon = BS\omega\sin\alpha\sin\omega \cdot t$. Максимального значения э.д.с. достигнет при $\sin\omega \cdot t = 1$. Отсюда $\varepsilon_{max} = BS\omega\sin\alpha$; $\varepsilon_{max} = 0.09$ В.

11.101. Однородный медный диск A радиусом R = 5 см помещен в магнитное поле с индукцией B = 0.2 Тл так, что плоскость диска перпендикулярна к направлению магнитного поля. По цепи aba может идти ток (a и b — скользящие контакты). Диск вращается с частотой n = 3 с⁻¹. Найти э.д.с. ε такого генератора. Указать направление электрического тока, если магнитное поле направлено от нас к чертежу, а диск вращается против часовой стрелки.

Решение:

По закону Фарадея э.д.с. электромагнитной индукции $\varepsilon_i = -\frac{\Delta\Phi}{\Delta t}$. Считая начальный магнитный поток $\Phi_1 = 0$, получаем $\Delta\Phi = -\Phi_2 = -BS$, где $S = \pi R^2$ — площадь диска. В состоянии покоя $\varepsilon_i = 0$, а при

вращении лиска э.д.с. генератора $\varepsilon_i = \frac{B\pi R^2}{\Delta t}$, где $\Delta t = T$ — период обращения диска, т. е. время одного оборота. Поскольку частота вращения диска $n = \frac{1}{T}$, то окончательно э.д.с. генератора $\varepsilon_i = B\pi R^2 n = 4,71\,\mathrm{MB}$. На сво-

бодные электроны, находящиеся в верхней части диска, со стороны магнитного поля действует сила Лоренца, направленная вверх. В результате этого воздействия в центре диска накапливается положительный заряд, а на верхнем крае — отрицательный. Поскольку за положительное принято направление тока от «плюса» к «минусу», то ток будет направлен так, как показано на рисунке.

11.102. Горизонтальный стержень длиной l=1 м вращается вокруг вертикальной оси, проходящей через один из его концов. Ось вращения параллельна магнитному полю, индукция которого B=50 мкТл. При какой частоте вращения n стержня разность потенциалов на концах этого стержня U=1 мВ?

Решение:

Согласно закону Фарадея $\varepsilon = -\frac{\Delta\Phi}{\Delta t}$ — (1), где изменение магнитного потока $\Delta\Phi = B\Delta S$ — (2), где площадь, покрываемая сечением стержня за один оборот, равна $\Delta S = \pi l^2$ — (3). Подставив (3) в (2), а затем (2) в (1), получим $\varepsilon = \frac{B\pi l^2}{\Delta t}$. Здесь Δt — время одного оборота. Отсюда $n = \frac{1}{\Delta t} = \frac{\varepsilon}{B\pi l^2}$. Подставляя числовые данные, получим $n = 6.4 \, \mathrm{c}^{-1}$.

11.103. На соленоид длиной $l=20\,\mathrm{cm}$ и площадью поперечного сечения $S=30\,\mathrm{cm}^2$ надет проволочный виток. Обмотка соленоида имеет $N=320\,\mathrm{s}$ витков, и по нему идет ток $I=3\,\mathrm{A}$. Какая средняя э.д.с. $\varepsilon_{\mathrm{cp}}$ индуцируется в надетом на соленоид витке, когда ток в соленоиде выключается в течение времени $t=1\,\mathrm{mc}$?

Имеем
$$\varepsilon_{\rm cp}=-\frac{\Delta\Phi}{\Delta t}=-\frac{\Delta BS}{\Delta t}$$
. Поскольку $\Delta B=B_2-B_1$, где $B_2=0$, а $B_1=\frac{\mu\mu_0NI}{l}$, а $\Delta t=t=1\,{\rm mc}$, то $\varepsilon_{\rm cp}=\frac{\mu\mu_0NS^2}{lt}=18\,{\rm mB}$.

11.104. Какая средняя э.д.с. $\varepsilon_{\rm cp}$ индуцируется в витке, если соленоид, рассмотренный в предыдущей задаче, имеет железный сердечник?

Решение:

Напряженность магнитного поля внутри соленоида не зависит от наличия сердечника и равна $H = \frac{NI}{I} = 4800 \, \text{A/M}.$

По графику определим $B=1,7\,\mathrm{T}$ л. Тогда $\mu=\frac{B}{\mu_0 H}=265$.

Подставляя в выражение для ε из предыдущей задачи значение μ , найдем ε = 4,8 B.

11.105. На соленоид длиной $l=144\,\mathrm{cm}$ и диаметром $D=5\,\mathrm{cm}$ надет проволочный виток. Обмотка соленоида имеет $N=2000\,\mathrm{B}$ витков, и по ней течет ток $I=2\,\mathrm{A}$. Соленоид имеет железный сердечник. Какая средняя э.д.с. $\varepsilon_{\mathrm{cp}}$ индуцируется в надетом на соленоид витке, когда ток в соленоиде выключается в течение времени $t=2\,\mathrm{mc}$?

Решение:

Изменение магнитного потока в витке достигается изменением тока в соленоиде. При этом индуцируемая э.д.с.

$$\varepsilon=-L_{12}\frac{\Delta I}{\Delta t}$$
 — (1), где $L_{12}=\mu_0\mu n_1n_2Sl$ — взаимная индук-

тивность витка и соленоида. Для соленоида $n_1 = \frac{N}{l}$ —

иисло витков на единицу длины, $S = \frac{\pi D^2}{4}$ — площадь поперечного сечения, тогда $L_{12} = \mu_0 \mu N \frac{\pi D^2}{4}$ — (2), т. к. для
витка $n_2 = 1$. Считая начальное время и конечный ток
равными нулю, получаем $\Delta t = -t$ и $\Delta I = I$, тогда, с учетом
(2), уравнение (1) можно переписать в виде $\varepsilon_{\rm cp} = \mu_0 \mu N \frac{\pi D^2 I}{4t}$ — (3). Напряженность магнитного поля
соленоида $H = In_1 = \frac{IN}{I} = 2,77 \cdot 10^3 \, \text{А/м}$, по графику находим значение магнитной индукции $B = 1,6 \, \text{Тл}$. Поскольку $B = \mu_0 \mu H$, то $\mu_0 \mu = \frac{B}{H} = 0,575 \, \text{мГн/м}$. Подставляя найденное значение в уравнение (3), получим $\varepsilon_{\rm cp} = 1,61 \, \text{В}$.

11.106. В однородном магнитном поле, индукция которого $B = 0.1 \, \mathrm{Tr}$, вращается катушка, состоящая из N = 200 витков. Ось вращения катушки перпендикулярна к ее оси и к направлению магнитного поля. Период обращения катушки $T = 0.2 \, \mathrm{c}$; площадь поперечного сечения $S = 4 \, \mathrm{cm}^2$. Найти максимальную **3.д.**с. индукции ε_{max} во вращающейся катушке.

Решение:

Мгновенное значение э.д.с. индукции ε определяется уравнением $\varepsilon = -\frac{d\Psi}{dt}$ — (1). Потокосцепление $\Psi = N\Phi$, где N — число витков катушки, пронизываемых магнитным потоком Φ . Подставив выражение Ψ в (1), получим $\varepsilon = -N\frac{d\Phi}{dt}$ — (2). При вращении катушки магнитный поток Φ , пронизывающий катушку в момент времени t, 239

изменяется по закону $\Phi = BS\cos\omega t$ — (3), где $\omega = \frac{2\pi}{T}$ — (4) — угловая скорость вращения катушки. Подставив (3) в (2) и продифференцировав по времени, найдем мгновенное значение э.д.с. индукции $\varepsilon = NB\omega\sin\omega t$. Максимального значения э.д.с. достигнет при $\sin\omega t = 1$. Отсюда, подставляя (4), получим $\varepsilon_{max} = NBS\frac{2\pi}{T} = 250\,\mathrm{MB}$.

11.107. Катушка длиной $l=20\,\mathrm{cm}$ имеет $N=400\,\mathrm{B}$ витков. Площадь поперечного сечения катушки $S=9\,\mathrm{cm}^2$. Найти индуктивность L_1 катушки. Какова будет индуктивность L_2 катушки, если внутрь катушки введен железный сердечник? Магнитная проницаемость материала сердечника $\mu=400$.

Решение:

Индуктивность катушки определяется выражением $L=\mu\mu_0\,\frac{N^2S}{l}$. Учитывая, что магнитная проницаемость воздуха $\mu=1$, получим $L_{\rm t}=0.9\cdot 10^{-3}\,\Gamma$ н; $L_2=0.36\,\Gamma$ н.

11.108. Обмотка соленоида состоит из N витков медной проволоки, поперечное сечение которой $S=1\,\mathrm{mm}^2$. Длина соленои из $l=25\,\mathrm{cm}$; его сопротивление $R=0,2\,\mathrm{Om}$. Найти индуктивность L соленоида.

Решение:

Имеем $L=\mu\mu_0\frac{N^2S'}{l}$ — (1), где $S'=\pi^{-2}$ — (2) — площаль поперечного сечения соленоида. Число витков N найдем из соотношения $N=\frac{l}{d}$. Диаметр проволоки d можно найти, зная, что площадь поперечного сечения проволоки 240

 $S = \pi \frac{d^2}{4}$, откуда $d = \sqrt{\frac{4S}{\pi}}$. Тогда $N = \frac{l}{2}\sqrt{\frac{\pi}{S}} = 222$. Сопротивление R проволоки определяется по формуле: $R = \rho \frac{l'}{S}$, откуда длина проволоки $l' = \frac{SR}{\rho} = 11.8$ м. Разделив длину всей проволоки на количество витков, мы получим длину окружности одного витка, т. е. $\frac{l'}{N} = 2\pi r$, откуда $r = \frac{l'}{2\pi N}$. Подставляя это выражение в (2), получим $S' = \frac{(l')^2}{4\pi N^2} = 2.2 \cdot 10^{-4} \, \text{м}^2$. Подставляя числовые данные в (1), получим $L = 54.5 \cdot 10^{-6} \, \Gamma$ н.

11.109. Катушка длиной I = 20 см и диаметром D = 3 см име**ет** N = 400 витков. По катушке идет ток I = 2 А. Найти индуктивность L катушки и магнитный поток Φ , пронизывающий площадь ее поперечного сечения.

Решение:

Имеем $L=\mu\mu_0\frac{N^2S}{l}$, где площадь поперечного сечения катушки $S=\pi\frac{D^2}{4}$. Откуда $L=\mu\mu_0\frac{\pi N^2D^2}{4l}=0.71\cdot 10^{-3}$ Гн. Магнитный поток, пронизывающий всю катушку, равен $N\Phi=LI$, тогда магнитный поток, пронизывающий плоскость поперечного сечения, равен $\Phi=\frac{LI}{N}=3.55\cdot 10^{-6}$ Вб.

11.110. Сколько витков проволоки днаметром d=0.6 см имеет однослойная обмотка катушки, индуктивность которой L=1 мГн и диаметр D=4 см? Витки плотно прилегают друг к другу.

Имеем
$$L=\mu\mu_0\frac{\pi N^2D^2}{4l}$$
 (см. задачу 11.109). Здесь длина катушки $l=dN$. Следовательно, $L=\mu\mu_0\frac{\pi ND^2}{4d}$, откуда $N=\frac{4dL}{\mu\mu_0\pi D^2}=380$.

11.111. Катушка с железным сердечником имеет площадь поперечного сечения $S=20\,\mathrm{cm}^2$ и число витков N=500. Индуктивность катушки с сердечником $L=0.28\,\Gamma$ н при токе через обмотку $I=5\,\mathrm{A}$. Найти магнитную проницаемость μ железного сердечника.

Решение:

Мгновенное значение потокосцепления для катушки определяется выражением $\Psi = LI$ — (1). Кроме того, $\Psi = N\Phi = NBS$ — (2) (см. задачу 11.106). Приравняв правые части уравнений (1) и (2), получим NBS = LI, откуда $B = \frac{LI}{NS}$; B = 1,4 Тл. Магнитная индукция и напряженность магнитного поля связаны соотношением $\vec{B} = \mu\mu_0\vec{H}$. Отсюда $\mu = \frac{B}{UH}$. По графику зависимости индукции \vec{B} от

напряженности \vec{H} магнитного поля определим значение H, соответствующее $B=1,4\,\mathrm{Tn}$: $H=0,8\cdot 10^3\,\mathrm{A/m}$. Тогда $\mu=1400$.

11.112. Соленоид длиной $I = 50\,\mathrm{cm}$ и площадью поперечного сечения $S = 2\,\mathrm{cm}^2$ имеет индуктивность $L = 0.2\,\mathrm{mk}\Gamma$ н. При каком токе I объемная плотность энергии магнитного поля внутри соленоида $W_0 = 1\,\mathrm{m}\,\mathrm{Дж/m}^3$?

Объемная плотность энергии магнитного поля внутри соленоида определяется по формуле $W_0 = \frac{B^2}{2\mu\mu_0}$ — (1). Индукция магнитного поля внутри соленоида равна $B = \frac{\mu\mu_0 NI}{l}$ — (2). Число витков N можно найти из вы-

ражения для индуктивности соленоида: $L = \mu \mu_0 \, \frac{N^2 S}{l}$,

откуда $N = \sqrt{\frac{lL}{\mu\mu_0 S}}$ — (3). Подставляя (3) в (2), получим

$$m{B} = I\sqrt{\frac{\mu\mu_0L}{lS}}$$
 . Тогда из (1) $W_0 = \frac{I^2L}{2lS}$, откуда $m{I} = \sqrt{\frac{2lSW_0}{I}} = 1\,\mathrm{A}$.

11.113. Сколько витков имеет катушка, индуктивность которой L=1 мГн, если при токе I=1 А магнитный поток сквозь катушку $\Phi=2$ мкВб?

Решение:

Магнитный поток сквозь катушку равен $N\Phi = LI$, откуда $N = \frac{LI}{\Phi} = 500$.

11.114. Площадь поперечного сечения соленоида с железным сердечником $S=10~{\rm cm}^2$; длина соленонда $l=1~{\rm m}$. Найти магнитную проницаемость μ материала сердечника, если магнитный поток, пронизывающий поперечное сечение соленоида, $\Phi=1.4~{\rm mB6}$. Какому току I, текущему через соленоид, соответствует этот магнитный поток, если известно, что индуктивность соленоида при этих условиях $L=0.44~{\rm Fh}$?

Магнитный поток, пронизывающий поперечное сечение соленоида, $\Phi = BS\cos\alpha$, но т. к. $\alpha = 0$, то $\cos\alpha = 1$ и $\Phi = BS$, откуда магнитная индукция $B = \frac{\Phi}{S} = 1,4$ Тл. По графику находим напряженность магнитного поля $H = 800\,\mathrm{A/m}$. Поскольку $B = \mu\mu_0H$, то $\mu = \frac{B}{\mu_0H} = 1392,6$ магнитная проницаемость материала сердечника. Магнитный поток через поперечное сечение катушки связан с ее индуктивностью соотношением $N\Phi = LI$, где числовитков N может быть получено из выражения дя индуктивность N^2S

тивности соленоида:
$$L=\mu\mu_0\frac{N^2S}{l}$$
, откуда $N=\sqrt{\frac{lL}{\mu\mu_0S}}=$

= 500 . Тогда данный магнитный поток соответствует току $I = \frac{N\Phi}{L} = 1,6 \ {\rm A}.$

11.115. В соленоид длиной $l=50\,\mathrm{cm}$ вставлен сердечник из такого сорта железа, для которого зависимость B=f(H) неизвестна. Число витков на единицу длины соленоида $N_I=400\,\mathrm{cm}^{-1}$; площадь поперечного сечения соленоида $S=10\,\mathrm{cm}^2$. Найти магнитную проницаемость μ материала сердечника при токе через обмотку соленоида $I=5\,\mathrm{A}$, если известно, что магнитный поток, пронизывающий поперечное сечение соленоида с сердечником, $\Phi=1,6\,\mathrm{mB6}$. Какова индуктивность L соленоида при этих условиях?

Решение:

По закону Фарадея э.д.с. электромагнитной индукции $\varepsilon_t = -\frac{\Delta\Phi}{\Delta t}$ — (1). Считая начальный магнитный поток $\Phi_0 = 0$, получаем $\Delta\Phi = \Phi_1$. Э.д.с. самоиндукции 244

рпределяется формулой $\varepsilon_{\rm c} = -L \frac{\Delta I}{\Delta t}$ — (2). Считая $_{
m HA}$ чальный ток $I_0=0$, получаем $\Delta I=I$, тогда уравнения (1) и (2) можно переписать в следующем виде: $\varepsilon_i = -\frac{\Phi_1}{\Lambda t}$ — (3) и $\varepsilon_c = -\frac{LI}{\Lambda t}$ — (4). Поскольку в нашем случае $\varepsilon_i = \varepsilon_c$, го, приравнивая правые части уравнений (3) и (4), получаем $\Phi_1 = LI$ — (5). С другой стороны, полный поток, **пронизывающий весь соленоид**, $\Phi_1 = \Phi nl$ — (6), где n число витков на единицу длины соленоида, l — длина соленоида. Приравнивая правые части уравнений (5) и (6), получаем $LI = \Phi nl$, откуда индуктивность соленоида $L = \frac{\Phi nl}{L} = 64 \text{ мГн.}$ С другой стороны, $L = \mu \mu_0 n^2 l S$, где μ — магнитная проницаемость сердечника, S — площадь поперечного сечения соленоида. Отсюда магнитная **про**ницаемость сердечника $\mu = \frac{L}{(L_B)^2 IS} = 636.6$.

11.116. Имеется соленоид с железным сердечником длиной I=50 см, площадью поперечного сечения S=10 см 2 и числом витков N=1000. Найти индуктивность L этого соленоида, если обмотке соленоида течет ток: a) I=0,1 A; 6) I=0,2 A; a) I=2 A.

Решение:

Имеем $L = \mu \mu_0 \frac{N^2 S}{l}$ — (1). Для того чтобы определить индуктивность L соленоида, нужно найти магнитную проницаемость μ сердечника. Вычислив по формуле $H = \frac{IN}{l}$ напряженность магнитного поля внутри соле-

ноида и воспользовавшись далее способом, описанным в задаче 11.39, найдем значения μ , соответствующие различным значениям тока I. Затем из (1) найдем значение L. Данные запишем в таблицу:

n.	Н, А/м	В, Тл	μ	<i>L</i> , Гн
a	200	0,8	3182	8
б	400	1,2	2387	6
В	4000	1,7	338	0,85

11.117. Две катушки намотаны на один общий сердечник. Индуктивность первой катушки $L_1=0.2~\Gamma$ н, второй — $L_2=0.8~\Gamma$ н; сопротивление второй катушки $R_2=600~\mathrm{OM}$. Какой ток I_2 потечет во второй катушке, если ток $I_1=0.3~\mathrm{A}$, текущий в первой катушке, выключить в течение времени $t=1~\mathrm{Mc}$?

Решение:

Взаимная индуктивность катушек $L_{12}=\mu\mu_0n_1n_2Sl$ — (1). Индуктивность первой катушки $L_1=\mu\mu_0n_1^2lS$ — (2), индуктивность второй катушки $L_2=\mu\mu_0n_2^2lS$ — (3). Умножая (2) на (3), получим $L_1L_2=(\mu\mu_0Sl)^2n_1^2n_2^2$, откуда $n_1n_2=\frac{\sqrt{L_1L_2}}{\mu\mu_0lS}$ — (4). Подставляя (4) в (1), найдем $L_{12}=\sqrt{L_1L_2}$. При выключении тока I_1 во второй катушке возникнет э.д.с. равная $\varepsilon_2=-L_{12}\frac{dI_1}{dt}$ — (5). Согласно закону Ома для замкнутой цепи $I_2=\frac{\varepsilon_2}{R_2}$ или, с учетом (5), средний ток во второй катушке $I_2=\frac{L_{12}}{R_2}\frac{\Delta I_1}{\Delta t}=\frac{\sqrt{L_1L_2}}{R_2}\frac{I_1}{\Delta t}=0.2$ А.