

Universidade Federal do Ceará Departamento de Engenharia Elétrica Disciplina: Lab. de Controle de Sistemas Dinâmicos Profa. Laurinda Reis

Laboratório 4: Modelagem de ordem reduzida - Modelagem baseada na Resposta Degrau

Objetivos

- 1. Estudar diferentes tipos de respostas ao degrau em malha aberta, analisando as suas propriedades.
- 2. Aplicar métodos de identificação para modelar processos de primeira e segunda ordem.
- 3. Identificar e validar a função de transferência Gp(s) de menor ordem que represente adequadamente o processo dinâmico a partir da resposta ao degrau unitário.
- 4. Enviar para josesergio@alu.ufc.br_até 17/12/2024 às 09:59.
- **01 -** Classifique as respostas ao degrau em malha aberta a seguir de acordo com a Tabela 1.

Figura 1 - Exemplos de resposta ao degrau

Tabela 1

resposta	comportamento				
	estável	instável	oscilatório	atraso	fase não-mínima
A					
В					
C					
D					
E					
F					

02 - Para fins de controle digital necessita-se da modelagem matemática de um processo desconhecido (Figura 2), isto é,

Figura 2 - Processo a ser identificado.

cujos dados e condições do experimento (entrada degrau unitário) são:

ARQUIVO DE DADOS EM CADA TURMA – Lab* (* == 1B, P.EX.)

Obter a função de transferência $G_p(s)$, de menor ordem, que representa o processo. Compare seu resultado a partir da resposta degrau e valide sua resposta.

03 - Seja a seguinte planta a ser controlada:

$$G_p(s) = \frac{e^{-0.5s}(s+3)}{(s+1)^4};$$
 $G_p(s) = \frac{(s+2)}{((s+2)^2+5)};$

Identificar um modelo da forma:

$$\hat{G}_{p}(s) = \frac{K_{p} e^{-Ls}}{T s + 1};$$
 $\hat{G}_{p}(s) = \frac{K_{p} \omega_{n}^{2}}{s^{2} + 2 \xi \omega_{n} s + \omega_{n}^{2}};$

Compare seu resultado a partir da resposta degrau e valide sua resposta.