

§ 1 概述

- 一、人体重量:96%是有机物和水分,4%为无机元素组成。
- 二、在这些元素中,已发现有20种左右的元素是构成人体组织、维持生理功能、生化代谢所必需, 营养学上称这类营养素为矿物质。
- 含量大于体重的0.01%者称之常量元素。
 钙、磷、钠、钾、氯、镁、硫,60-80%
- 机体中含量小于(). ()1%者为()微量元素。 铁、锰、铜、碘、锌、硒、氟、钼、铬、 (砷、硼、镍、硅、钴)等

一个体重为60kg的人体内各种常量元素的含量

Ca calcium 1150 g
P phosphorus 600 g
S sulfur 210 g
K potassium 150 g
Cl chloride 90 g
Na sodium 90 g
Mg magnesium 30 g

- 三、矿物质的主要生理功能
- (1) 构成人体组织的重要成分,如骨骼和牙齿中的钙、磷、镁。
- (2) 在细胞内外液中,无机元素与蛋白质一起调节细胞膜的通透性、控制水分,维持正常的渗透压、酸碱平衡(酸性元素氯、硫和磷; 碱性元素钠、钾和镁)。
- (3) 维持神经肌肉兴奋性。
- (4) 构成酶的辅基、激素、维生素、蛋白质和核酸的成分,或参与酶系的激活。
- (5)改善食品的感官性状与营养价值。

四、矿物质的营养学特点

- ① 矿物质不能在体内合成,也不能在代谢过程中消失,但每天有一定量随粪、尿、汗、发、指甲、皮肤和粘膜的脱落排出体外。因此必须通过膳食补充。
- ② 某些无机元素在体内的生理作用剂量带和毒害剂量带距离较小。因此过量摄入有害无益,不宜用量过大。

- 五、食品中的矿物质含量
- 取决于生产食品的原料品种、遗传特性、农业 生产的土壤、水分或动物饲料。

部分食品中矿物质含量见表:

名称	硅	锰	锌	钼	硼	硒	碘
	g/kg	mg/kg	mg/kg	mg/kg	ug/kg	ug/kg	ug/kg
稻米	-	23.4	17.2	0.35	-	-	14
小麦	-	36.7	29.8	0.66	-	74	7
玉米	-	5.9	18.7	0.49	-	48	33
马铃薯	-	5.0	14.1	0.50	6.6	-	-
白萝卜	0.24	12.6	32.1	1.25	20.7	_	_
大白菜	1.23	31.2	42.2	1.76	31.3	74	98

五、食品加工对矿物质 含量的影响

- 1、烫漂对食品中矿物质 含量的影响
- 食品在烫漂或蒸煮时,若与水接触,则食品中的矿物质损失很大,主要是烫漂后沥滤的结果。

烫漂对菠菜中矿物质的影响

名称	含量g/100g		损失 率%
	未烫漂	烫漂	
鉀	6. 9	3.0	56
纳	0.5	0.3	43
鈣	2. 3	2.3	0
镁	0.3	0.2	36
磷	0.6	0.4	33
硝酸	2. 5	0.8	70
盐			

٧

- 2、烹调对食品中矿物质 含量的影响
- 在烹调过程中,矿物质很容易从汤汁中流失,以马铃薯中铜的含量为例,烹调对马铃薯铜含量的影响。

烹调对马铃薯铜含量的影响

烹调类	含量
型	(mg/100g,
	鲜重)
生鲜	0.21 ± 0.10
煮熟	0.10
烤熟	0.18
油炸薯	0.29
片	
著泥	0.10
皮	0.34

- 3、研磨对食品中矿物质 含量的影响
- 研磨可使矿物质含量 減少,矿物质不同, 其损失率亦可有不同。 (以小麦为例)

研磨对	小麦微	量元素	的影响
名称	小麦	白面	损失

名称	小麦	白面	损失
	mg/	粉	率%
	kg	mg/kg	
盆	46	6.5	85.8
铁	43	10.5	75.6
铜	5.3	1.07	67.9
锌	35	7.8	77.7
石西	0.63	0.53	15.9

§2 钙

- 钙是人体内含量最多的一种无机元素。正常情况下,成人体内含钙总量约为850-1200g,相当于体重的1.5-2.0%。
- 其中99%集中在骨骼和牙齿中: 主要以羟磷灰石结晶形式存在, 少量为无定形钙, 婴儿期比例较大, 以后随年龄增长而逐渐减少。
- 其余1%分布在体液和细胞中: 有一半与柠檬酸螯合或与蛋白质结合, 另一半则以离子状态存在于软组织、细胞外液和血液中, 是为混溶钙池 (miscible calcium pool)。这部分钙与骨骼钙维持着动态平衡, 是维持体内细胞正常生理状态所必需。

一、钙的生理功能

1、构成骨骼和牙齿

骨骼中的钙,在正常情况下,在破骨细胞的作用下不断地被释放,进入混溶钙池。另一方面,混溶钙池中的钙不断沉积于成骨细胞中,如此使骨骼不断更新。幼儿骨骼约每1-2年更新一次,以后随年龄增长,更新速度减缓,成年时每年更新2-4%,约700mg/d,10-12年更新一次。

2、维持神经与肌肉活动

包括神经肌肉的兴奋,神经冲动的传导, 心脏的正常搏动。补钙可降低妊娠诱发的高血 压发瘤率

3、促进体内某些酶的活性

三磷酸腺苷酶、琥珀酸脱氢酶、脂肪酶及 一些蛋白质分解酶。

4、钙还参与血凝过程、激素分泌, 维持体液 酸碱平衡以及细胞内胶质稳定性。

三、影响钙吸收的因素

- (1) 膳食中草酸盐与植酸盐的影响 它们可与钙结合成难于吸收的盐类如植酸 钙、草酸钙,从而使钙的吸收率降低。
- (2) 膳食纤维

膳食纤维干扰钙的吸收,可能是其中的醛 糖酸残基与钙结合所致。

(3) 脂肪消化不良

特别是SFA过多,可使未被吸收的脂肪酸与钙形成钙皂,不溶性钙皂由类便排出,使钙丢失,还可能伴随脂溶性 V_{D} 的损失。

(4) 维生素D、K缺乏

不足时,钙吸收作用所必需的钙结合蛋白减少,因此在纬度偏北或在有雾的城市紫外线照射不足或受阻挡,更要注意从膳食中补充 $V_{
m D}$ 。

(5) 长期钙--磷比例不适宜

钙、磷之中任何一种元素过多都可干扰这两种 元素的吸收,并且可增进其中较少的一种元素的排 泄。

我国膳食中钙、磷比值为0.38:1,最理想的比值为2:1。

长期摄入过多的磷可损害平衡机制,改变钙代谢,引起低钙血症和继发性甲状旁腺功能亢进。

四、促进钙吸收的因素

(1) 维生素D

特别是在肝、肾被羟化形成的1,25(OH)2VD3羟胆钙化醇,可诱导体内合成一种钙结合蛋白,它有利于钙通过肠壁的转运以增进钙的吸收。

(2) 乳糖

乳糖可与钙螯合,形成低分子量可溶性络合物,而 且当其被肠道菌分解发酵产酸,使肠腔pH降低, 均有利于钙吸收。

(3) 蛋白质

膳食蛋白质充足,由于钙可与氨基酸(赖氨酸、 精氨酸)结合成可溶性络合物,有利于钙吸 收,但如摄入过多而超过需要,可使尿钙排出 增多出现负钙平衡。

(4) 适宜的钙磷比例

钙磷比例为2:1时,有利于钙的吸收。

四、钙缺乏与过量

1、钙缺乏

儿童: 生长发育迟缓、骨软化、骨骼变形,

佝偻病。 成人:骨质疏松症,软骨病。

五、推荐量和食物来源

1、推荐量

钙需要量与蛋白质摄入水平有 关,有人认为每100g蛋白质需要 1g钙,高磷膳食要增加钙的需要。高温作业者钙排出增加,寒带地区阳光不足,皮肤内转化的 V_D 少,钙吸收较差,同时钙来源也常受膳食类型影响,因此均需增加钙的供给量。

年齢	
Age	AI
岁 Year	/mg
0~	300
0.5~	400
1~	600
4~	800
7~	800
11~	1000
14~	1000
18~	800
50∼	1000
孕妇 Pregnant women	
早期 1st trimester	800
中期 2nd trimester	1000
晚期 3 rd trimester	1200
乳母 Lactating mothers	1200

钙Ca

2、食物来源

钙的食物来源应考虑二个方面: 钙含量及吸收利用率, 奶与奶制品中含钙丰富, 120mg/100g, 吸收率也高, 是婴幼儿理想的钙来源。

食物名称	钙含量	食物名称	钙含量
牛奶	104	豆腐	164
奶酪	799	花生仁(炒)	284
虾皮	991	油菜	108
蛋黄	112	小白菜	159
大豆	191	土豆	149

补钙的产品

- 天然钙
- ■合成钙

■ 你对本次课的建议或希望怎么改进?

§3 磷

- 一、磷的生理功能
- 1、与Ca同时构成骨骼和牙齿,保证骨骼和牙齿 的形成和正常
- 2、参与能量代谢
- 3、构成生命物质成分 是RNA、DNA的组成成分
- 4、酶的重要成分
- 5、调节酸碱平衡

二、影响磷吸收的因素

- 食物来源:谷物中含有较多的磷,但是吸收率较低,但长期食用谷类食品,机体会形成对植酸磷的适应能力,吸收率会不同程度的提高
- 2、 V_D 的含量: P的吸收需要有 V_D 的参与, 当体内 V_D 缺乏时,血清中无机磷的含 量降低。

3、食物中AI、Fe、Mn等金属离子的含量,它们常与磷的盐结合,形成不溶盐,妨碍P的吸收 4、适宜的Ca: P: 适宜的Ca:P为 2:1。 5、体内甲状腺素和降钙素都影响P的利用。

缺乏或过量症

- ■缺乏:易怒、精神紧张、失眠、腿脚抽筋、 心脏疾病等。
- ■中毒:腹泻、酸碱失衡、肾损伤、头晕、昏迷,在极端情况下会心力衰竭而死亡。

§5 钾、钠

一、生理功能

- 1、平衡体液的酸碱平衡
- 2、决定身体组织中水分的量
- 3、负责将肠道中的营养吸收进入血液,再通过渗透 压从血液中输入细胞内。
- 4、形成腺体分泌物的基本成分。如钾有助于神经系 统内信息的传输, 氯是胃形成胃酸所必需的。
- 5、帮助蛋白质多肽组装成具有一定功能的结构。

二、营养学特点 1、体内的钠和钾必须保持平衡。过量的钠将 导致身体需要补充更多的钾,而补充的钾

能导致钠的严重流失。

又将流失到尿液中去。 反之, 过量的钾可

三、缺乏症或过量

- 身体缺盐而导致的症状各异,从身体轻度 疲乏、疲倦、疲劳到中暑等。
- 2、钠的过量会导致高血压。
- 3、钾的缺乏会使血糖偏低,危害心脏功能。

做做看	_
1、以下哪两种矿物质是骨骼的主要成分?	2、减少钠的摄入量最好的办法是少吃加工食 品和方便食品。
A. 钙与锌 B. 钙与铁 C. 磷与钙 D. 磷与铁	A. 对 B. 错
*	V [*]

3、关于钙吸收,下列描 A.)草酸盐抑制吸收 C. 糖类抑制吸收	述正确的是。 B. 植酸盐促进吸收 D. 膳食纤维无影响	起重要作用的是 A. 钙 C. 钠	对细胞内外渗透压的维持 。 B. 镁 D. 钾
		E. 锌	Б. И

	7
7、蛋白质的合成需要钾离子的参与,大约每 1g氮需要mmol钾离子。 A. 1 B. 2 C. 3 D. 5 E. 10	8、体内
9、世界卫生组织对成年人食盐日摄入推荐量 为()。 A. 5g B. 6g C. 8g D. 12g	10、钙的生理功能有。(多选) A.构成机体的骨骼和牙齿 B.参与调解神经、肌肉兴奋性 C.影响毛细血管通透性 D.促进铁的吸收 E.参与凝血过程
11、乳制品中黄油、奶油、奶酪是较好的钙源;而蔬菜,例如花椰菜则不是好的钙源。 A. 对 B. 错	12、镁缺乏时可导致神经肌肉兴奋性。 A. 亢进 B. 抑制 C. 降低 D. 不变 E. 减轻

13、蛋黄是多种矿物质的良好来源,其中___ 含量最为丰富。

A. 钙

B.铁

C.)磷

D.硫

14、下列不属骨软化病常见症状的是____。

A. 腰酸

B. O形腿

C. 肌无力

D. 骨压痛

15、能促进钙吸收的因素有_____。(多选)

- A. 适量维生素D
- B. 乳糖
- C. 草酸
- D. 脂肪
- E. 适当的钙磷比例

§5 铁

** 人体必需微量元素中含量最多的一种。
体内含铁量随体重、血红蛋白浓度、性别而异。成年男子每公斤体重平均约含50mg,成年女子则为35mg。

体内的铁按其功能可分为功能铁与储备铁两部分。

- <u>功能铁</u>占体内铁总量的70%。功能铁大体有85%分布在血红蛋白中,5%在肌红蛋白中,10%在全身各处细胞内血红素酶类中,或在其它酶系统中起辅助因子的作用。有4mg作为运输铁而与血浆中的运铁蛋白相结合。
- 储备铁则作为体内的储备,主要以铁蛋白和含铁血黄素的形式存在于肝、脾和骨髓中。

一、生理功能

- 完成氧的转运、交换和组织的呼吸过程, 它是构成血红蛋白、肌红蛋白的原料。
- 2.维持正常的造血功能。
- 3.维持正常的免疫功能。
- 4.在肝脏中对药物有解毒作用。
- 5.促使胡萝卜素转化为维生素A等。

二、铁的吸收

吸收率1-25%, 受铁存在形式等多因素影响.

1、食物种类

食物中的铁可分为血红素铁和非血红素铁 两类,它们以不同的机理被吸收。

- <u>血红素铁</u>主要存在于动物性食物,是与血红蛋白 及肌红蛋白的原卟啉结合的铁。此种类型的铁不 受植酸、磷酸等的影响而以原卟啉铁的形式直接 被肠粘膜上皮细胞吸收,然后在粘膜细胞内分离 出铁,并和脱铁运铁蛋白结合。其吸收率较非血 红素铁高。其吸收过程不受其它膳食因素的干扰 . 吸收率一般是25%。
- 另一类则为非血红素铁,主要存在于植物性食物中,其吸收常可受到膳食因素 (如食物中所含的植酸盐,草酸盐、碳酸盐、磷酸盐的干扰。吸收率很低。约为3%。

2、食物成分

如维生素C、胱氨酸、半胱氨酸、赖氨酸、组 氨酸、葡萄糖、果糖、柠檬酸、琥珀酸、脂肪酸、 肌苷、山梨酸等能与铁螯合成小分子可溶性单体, 阻止铁的沉淀,因而有利于铁的吸收。

维生素C除了能与铁螯合以促进铁的吸收外, 它作为还原性物质,在肠道内将三价铁还原为二价 铁而促进铁的吸收。必须指出,维生素C应与含铁 的膳食同时摄入,才能促进膳食中的铁的吸收。铁 剂和燕麦粥共食时,同时摄入25mg维生素C,可使 铁的吸收率增加2倍。

3、MFP因子

肉、禽、鱼类食物中有一种叫"MFP因子"的物质,能显著地促进非血红素铁的 吸收。据试验摄入含硫酸亚铁的烤面包 卷的同时,摄入肉类可使面包中的硫酸 亚铁的吸收率提高2倍以上,但迄今并未确知内因子的化学构造。

4、妨碍铁吸收的成分

食物中另有一些成分可妨碍铁吸收,如荼、咖啡、牛奶里的钙和磷,以及粗谷类食物中结合在纤维上的肌醇-6-磷酸和鞣酸。

5、体内含铁量

铁的吸收也受体内铁的需要程度的影响, 如缺铁时, 患血色病时, 妊娠的后半期和红细 胞生成作用受刺激时, 铁的吸收增加; 而铁负 荷过量和红细胞生成抑制时则吸收减少。

三、铁缺乏症及缺铁性贫血

铁是人体内含量最多的必需微量元素, 在体内 发挥着重要的生理功能。长时间铁缺乏, 可引起 缺铁性贫血。

易患人群: 婴幼儿、青少年、育龄妇女 (尤其是 孕妇、乳母) 、老年人 (见后图)

四、铁过量

铁是人体所需的一种微量元素,如果缺乏可引起缺 铁性贫血,但如果摄人过多可对身体产生副作用, 造成不良后果。

第一, 盲目过量的补铁会造成儿童体内含铁量过多, 会影响对其他微量元素(如铜、锌、镁)的 吸收, 特别容易造成铁锌症。

第二,过量吸收铁以后,会通过血液循环到 心、肝、肺等重果器官,沉积后会引起血色素沉着 症. 损害这些脏器的功能。

第三,过量的铁吸收后还会沉积于胰腺,导致胰腺功能异常,可引起"青铜色椿尿病"。

第四,有些铁剂食品中含有二价铁离子,当 一次大量摄人后,可使血清中铁浓度明显增高,超过 血浆蛋白质的结合能力时,血液中的游离铁离子便余 增加,导致小儿心肌受损、心力衰竭甚至休克死亡。

第五,服用过量的铁后,还会引起维生素的缺乏,造成体内氧化剂和抗氧化剂的机制失调,最后导致毛细血管膜广泛损害,从而引起淬死。

对于确诊为缺铁性贫血的孩子, 家长也不要随 意给孩子滥补铁剂, 必须根据医生指导服用含铁药物。

五、主要食物来源及推荐摄入量 Age /mg 0.3 0.5~ 1~ 10 男M 女F 食物名称 | 含粧量 (mg/100g) 食物名称 含铁量 (mg/100g) 20 25 猪肝 25.0 黑术耳(水发) 5.5 18~ 15 20 猪血 芝麻酱 9.8 **羊肉(箱)** 3 9 大豆 8.2 鸡蛋黄 6.5 大米 2.3 1.2 早期 1st trimester 15 中期 2nd trimester 晚期 3 rd trimester 35 乳母 Lactating mothers

§6 锌

■ 锌在体内的含量很少,但在每个组织器官中与蛋白质协同工作。锌还能影响人得行动和认知,增强人体免疫,对伤口愈合、精子的形成、味觉、胎儿发育,以及儿童的生长和发育都有重要的作用。视紫红质中的维生素A也需要锌来激活。

一、生理功能

1、酶的组成成分或酶的激活剂

已知含锌的酶不下200种,如乳酸脱氢酶、 羧肽酶、胸腺嘧啶苷激酶,还有RNA聚合酶和 DNA聚合酶的激活等。

2、促进生长发育与组织再生

锌是调节DNA复制、转译和转录的DNA聚合酶活性所必需,与蛋白质和核酸的合成,细胞生长、分裂和分化等各过程都有关。

3、促进食欲

可通过参加构成一种含锌唾液蛋白而对 味觉与食欲发生作用。

4、促进维生素A代谢

锌在体内有促进视黄醛的合成和构型转 化;参与肝中VitA动员,维持血浆VitA浓度的 恒定,对于维持正常暗适应能力有重要作用。

5、促进免疫功能

锌能直接影响胸腺细胞的增殖, 使胸腺素分泌 正常, 以维持细胞免疫的功能 , 锌还可维持皮肤 健康。

6、维持细胞膜结构

符可与细胞膜上各种基团作用,增强膜稳定性和 抗氧自由基的能力.

二、吸收与代谢

锌主要在小肠内被吸收, 然后和血 浆中<mark>白蛋白或运铁蛋白</mark>结合, 随血液流 入门脉循环, 分布于各器官组织。

三、缺乏

1、 厌食症和异食癖

许多疾病都可产生厌食,但因缺锌引起的厌食 常形成一种恶性循环。由于体内缺锌,口腔粘膜上 皮细胞易于脱落而阻塞舌头上味蕾小乳,所以食物 难以接触到味蕾,加上缺锌可使味蕾细胞再生障 碍,味觉素分泌减少,引起味觉减退,食欲不振, 继而使进食减少,将使体内进一步缺锌。

严重缺锌的另一个表现是异食癖,常发生在10岁以 内的儿童,表现为不喜欢吃正常食物, 嗜好吃些非 食物性物质,如泥土、沙石、指甲、火柴头、蛋皮 等。

2、 缺锌影响智力发育

人的智力取决于大脑发育,人脑发育的关键时期是在妊娠的第20周到婴儿出生后的一年半,孕妇与婴儿缺锌将使大脑细胞的正常分裂发育受到阻碍,既可使大脑总细胞数低于正常值,又可抑制脑细胞发育肥大,导致孩子智力低下。许多研究表明:智力低下、记忆力差、学习成绩差的儿童体内含锌量亦低于正常值。当然影响智力的因素有很多,包括遗传、教育、环境等因素。

3、 缺锌影响生长发育

缺锌将使各种营养吸收不足,细胞的分裂和增长受阻,生长激素的合成与分泌减少,最终导致生长发育迟缓。锌还可以抗缺维生素A而引起的夜盲症。

4、 缺锌导致免疫力低下

微量元素中, 锌对免疫力的影响最为明显。 儿童缺锌会使免疫器官发育不完善, 免疫细胞分 裂、生长和再生受阻, 巨噬细胞吞噬病菌的能力 减弱, 导致免疫力低下, 更容易感染流行性呼吸 道和胃肠道疾病。

5、 缺锌导致肠原性肢端皮炎

表现以顽固性腹泻、口腔或肛门周围皮肤 损害及脱发三大症状为特征。

一般每日腹泻3-5次,水样便,有泡沫;皮肤粘膜损害表现为丘疹、丘疱疹,继发感染后为脓疱伴有口腔溃疡及舌炎、脱发、头顶脂溢性皮炎、毛发枯焦、灰黄稀疏和脱落。常有烦躁、哭闹。

6、伤口愈合缓慢

缺锌可致多种含锌酶及蛋白质合成受损, 因而创伤处的胶原蛋白减少, 上皮及内芽组织易于破坏, 使外伤、溃疡等伤口愈合困难。补锌后可加速伤口愈合。

四、过量

过量的锌有毒,大量服用补锌药品可能会导 致严重的后果甚至死亡。

- 1、锌过量会阻断人体对铜的吸收,降低体内 铜的含量,导致火肌变性。
- 2、过多的锌会抑制肠道对铁的吸收。
- 3、高剂量的锌可能降低血液中对人体有益的 HDL的浓度。

五、影响锌吸收的因素

- (1) 膳食中含磷化合物如植酸的影响
- (2) 过量纤维素及某些微量元素也影响吸收。 如锌与铁比值过小,即铁过多可抑制锌吸收。
- (3) 体内锌营养状况也会影响锌的吸收锌的吸收率一般为20-30%

锌在体内代谢后, 主要通过胰腺分泌排 出, 仅小部分从尿中排出、汗液中也含锌。

六、3	推荐量与	食物	来源	Age	年齢 b Year	锌2 RN /m 1.	a g
					0.5~ 1~ 4~ 7~	8. 9. 12.	0
食物名称	锌含量 (κg/100g)	食物名称	行合量 (ng/100g)		p~	男M	女F
千贝	47.05	推肝	5.78		11~	18.0	15.0
蛤蜊	1.64~5.13	蛋黄	3.10		14~	19.0	15.5
姚鱼(水浸)	1. 36	松子	9.02		18~	15.0	11.5
羊冏(瘦)	6.06	花生仁	2.02		50∼	11.	5
牛肉(瘦)	3.71	标准粉	1.64	孕妇 Preg	nant women		
					早期 1st trimester	11.	5
				-	P期 2nd trimester	16.	5
				15	袽 3 rd trimester	16.	5
				≅l∰ Iset	ating mothers	21.	5

§7碘

成人体内仅含碘20-50mg,约有15mg集中在甲状腺中,其中甲状腺素(T4)占16.2%、三碘甲腺原氨酸(T3)占7.6%、一碘酪氨酸(MIT)占32.7%、二碘酪氨酸(DIT)占33.4%,其他碘化物为16.1%。血液中碘主要为蛋白结合碘(PBI)为3-6 μ g / dl。

一、生理功能

1、促进生物氧化

碘在体内的唯一功能是用来合成上述甲状腺 $\mathbf{x} - \mathbf{T}_4$ 、 \mathbf{T}_3 。

该激素能够促进细胞内的氧化作用, 使糖、脂肪的氧化加强, 从而加速糖的磷酸化的过程而使ATP生成量增加, 为蛋白质合成及机体的生长发育提供充足的能量。

2、促进蛋白质的合成和神经系统发育

甲状腺素还能促进神经系统发育、组织发育分化,这些作用在胚胎发育期和出生后的早期尤为重要。

3、促进糖和脂肪代谢

包括三羧酸循环和生物氧化

4、激活体内重要的酶

包括细胞色素酶系等100多种酶需甲状腺素的活化,从而促进物质代谢

5、调节组织中的水盐代谢

缺乏甲状腺素可引起组织水盐潴留并发黏液性 水肿

6、促进多种维生素的吸收和利用

如:促进尼克酸的吸收利用, eta -胡萝卜素转化为 $V_{\mathtt{A}}$

二. 吸收与代谢

1、吸收和转运

无机碘极易被吸收,进入肠道后lh内 大部分吸收,3h内完全吸收。

有机碘在消化到降解, 脱碘后, 以无机碘的形式被吸收。与氨基酸结合的碘可被直接吸收。

吸收的碘经血浆转运。

2、分布和储存

吸收的碘转运至血浆,分布于全身各组织,包括甲状腺、唾液腺、乳腺、生殖腺、胃粘膜。

体内的碘主要储存在甲状腺,占体内碘量的一半以上,约8¹¹15mg,但只能维持机体2¹¹3个月的需要。

3、代谢和排出

甲状腺素分解脱下的碘:

- (1) 部分被重新利用。
- (2) 经界排出80% (90%是无机碘, 10% 为有机碘)。
- (3) 经类排出10% (主要是未被吸收的有机碘)。
- (4) 少部分经肺、皮肤、乳腺(易致授乳期甲状腺肿)。

三. 碘缺乏与过量

磷摄入不足将导致碘缺乏病 (iodine deficiency disorders, IDD):

成人: 甲状腺肿 (goiter)

婴幼儿: 呆小症 (克汀病) (cretinism)

碘摄入过量引起碘性甲状腺肿,碘性甲状 腺功能亢进症。

甲状腺肿

四、食物来源及推荐摄入量

- ■食物来源:海带、紫菜、淡菜、海盐等海产品,碘盐。
- RNI: 150µg/d

§ 8 晒

硒在人体内总量为14--20mg,广泛分布于所有组织和器官中,浓度高者有肝、胰、肾、心、脾、牙釉质及指甲,防防组织最低。

二、生理功能

1、谷胱苷肽过氧化物酶(GSH-Px)的重要组成成分

在体内特异地催化还原型谷胱甘肽,与过氧化物进行氧化还原反应,从而保护生物膜免受损害,维持细胞正常功能(每mol GSH-Px含4g硒)。

2、解毒作用

硒与金属有很强亲和力,在体内与金属如汞、甲基汞、镉及铅等结合形成金属硒蛋白质复合物 而解毒,并使金属排出体外。动物试验还发现,硒可降低黄曲霉毒素B₁的急性损伤,减轻肝中心小叶坏死的程度与死亡率。

3、保护心血管。维护心肌的健康

硒对心肌纤维、小动脉及微血管的结 构及功能有重要作用。在我国,缺硒可导致克山病(以心肌损害为特征)

美国、芬兰等地调查发现, 血硒高的 地区人群心血管病发病率低。

4、硒还有促进生长,保护视觉器官以及抗肿 瘤的作用。

已有实验表明,硒是生长与繁殖所必需。 缺硒可致生长迟缓,含硒的GSH-PX和 V_E ,可 使视网膜上的氧化损伤减轻,亚硒酸钠可使一 种神经性的视觉丧失得到改善,对白内障者及 糖尿病性失明者有利。

人群调查发现,硒敏乏地区肿瘤发病率明 显较高,胃癌发病与缺硒有关。

二、吸收与代谢

硒在小肠吸收、无机硒与有机硒都易于被吸收, 其吸收率大都在50%以上。硒的吸收率高低, 与硒的化学结构、溶解度有关。如蛋氨酸硒的吸收率, 大于无机形式的硒, 溶解度大者其吸收率也高。

硒被吸收后,通过与血浆蛋白的结合,转运 至各器官与组织中。代谢后大部分经尿排出。所 以尿硒是判断人体内是否缺硒的良好指标。

硒的其它排出途径为粪便、汗液, 当硒摄入 量较高时, 还可从肺部排出具挥发性的二甲基硒 化合物。

四、食物来源及推荐摄入量

蒜头、柿子、南瓜、葱、 肉类含有多量的硒,其他如 动物肝脏、牛奶、芹菜、洋 葱、蕃茄、蛋黄、米糠等

	年齡	₩ Se
Age	平耐	RNI
	岁 Year	/μ <u>g</u>
	0~	15(AI)
	0.5~	20(AI)
	1~	20
	4~	25
	$7\sim$	35
	11~	45
	14~	50
	18~	50
	50~	50
≱妇 Preg	gnant women	
	早期 1st trimest	er 50
	中期 2nd trimest	er 50
	免期 3 rd trimest	er 50
l∰ Lac	tating mothers	65

§ 8 其他微量元素						
名称。	主要生理功能。	缺乏症状。	食物来源。	Ale	UL _o	
41 -	为多种含铜酶/胺氧化酶、细胞色素氧化酶、SOD 酶等)和铜结合蛋白金属硫蛋白、转酮蛋白等的组成分。参与核代谢,维持造血机能和促进结婚组织形成,对中枢神系统的健康有一定意义。		可可、动物的 肝、背、震胡 椒含钢丰富, 其次为龙虾、 坚果、大豆粉。	2.0+ mg / d-	8mg / d-	
氟٥	为 <u>人体骨牙的</u> 组成分, 对防治龋 齿和骨质疏松有重要意义。	人类氟缺乏很少见, 低氟量供水地区龋 齿及老年人青质疏 松发病率增高。	茶叶含氟丰 富,饮水是人 们氟的主要来 源。	1.5¢ mg / d¢	2.8m; / d-	
修。	为葡萄糖耐量因子(GTF)的组成 分,对 DNA 合成、增强免疫功能 及预防动脉硬化等有一定影响。	人类铬缺乏极少见。	原粮、豆类金 格丰,其次为 畜禽的肝肾。。	50 ∞ μg/d∞	500- μg/ d-	
鑑っ	为体内多种酶组成分或酶的激活 剂,参与骨骼形成、结缔组织生 长及宏量营养素的能量代谢。	人类锰缺乏极少见。	茶叶含锰丰 富,其次为堅 果、糙穣、豆 类等。	3.5mg/ d=	10mg / d=	
御。	为黄嘌呤氧化酶、醛氧化酶和亚 硫酸盐氧化酶 <u>的辅基</u> ,因而参与 体内相应的氧化反应。	人类钼缺乏极少见。 低钼在克山病发病 中可能起一定作用。	·· 动物的肝、 肾含钼丰富, 其次为干豆和 谷物。	60 μg/ d∘	350- μg/ d-	

做做看 1、在世界范围内,引起智力迟钝最常见但又是可以避免的主要原因是缺乏。 A. 锌 C. 碘 B. 铁 D. 硒	2、微量元素是维生素B12的组成成分。 A. 铬 C. 钼 E. 硒

7、下列属于人体必需的微量元素为。 A. 铁、碘、硼 B. 钙、铁、锌 C. 碘、硒、铜 D. 铁、镁、碘 E. 铁、碘、锂	8、吸收不受植酸、磷酸影响的是。 A. 血红素铁 B. 非血红素铁 C. 血红蛋白 D. 硫酸铁 E. 硫酸亚铁
9、下面说法正确的是。(多选) A.	10、下列食物中含铁较多、吸收率最高的是 ——。 A. 大米 B. 黑豆 C. 奶制品 D. 肉类
11、建立缺铁动物模型可以喂养的食物是。 A. 瘦肉 B. 动物肝脏 C. 动物血液制品 D. 牛奶 E. 鸡蛋	12、受膳食因素影响,必须与结合的有机物分离才能被吸收的是。 A. 血红蛋白铁 B. 血红素铁 C. 非血红素铁 D. 铁蛋白 E. 转铁蛋白

13、学龄前儿童缺铁性贫血发生的原因可能 A. 生长发育快,铁需要量大 B. 内源性可利用的铁少 c.进食富含铁的食物较少

D. 由于年龄小, 吸收利用铁的能力差

14、发生贫血可能缺乏的营养素包括____。 (多选) A. 钙 (B.)维生素B6 C. 铁 D. 叶酸 E. 维生素B12

15、下列哪种谷物类食物含微量元素铬较多?

A. 大米B. 小米C. 小麦D. 玉米

(E.)荞麦