[ЦПМ, кружок по математике]

[2024-2025] группа 10-2 30 сентября 2024 г.

Многочлены над \mathbb{Z}_p

Обозначение. \mathbb{Z}_p — множество остатков при делении на простое p.

Определение. Многочлен $f(x)=a_0+a_1x+...+a_kx^k$ лежит над \mathbb{Z}_p , если $a_0,a_1,...,a_k\in\mathbb{Z}_p$

Множество всех многочленов над \mathbb{Z}_p обозначается через $\mathbb{Z}_p[x]$

Пусть даны два многочлена $f=a_0+a_1x+...+a_kx^k\in\mathbb{Z}_p[x]$ и $g=b_0+b_1x+...+b_mx^m\in\mathbb{Z}_p[x]$

- Суммой этих многочленов назовем многочлен $h=c_0+c_1x+...+c_qx^q\in\mathbb{Z}_p[x]$ такой, что $c_i\equiv a_i+b_i\mod p$
- Произведением этих многочленов назовем многочлен $h=c_0+c_1x+...c_qx^q\in\mathbb{Z}_p[x]$ такой, что $c_i\equiv\sum_{s+t-i}a_sb_t\mod p$

Определение. Значением многочлена $f = a_0 + a_1 x + ... + a_k x^k \in \mathbb{Z}_p[x]$ в элементе $x_0 \in \mathbb{Z}_p$ называется элемент $f(x_0) \in \mathbb{Z}_p$ такой, что $f(x_0) \equiv a_0 + a_1 x_0 + ... + a_k x_0^k \mod p$

Определение. Неприводимый многочлен — это многочлен, который нельзя представить в виде произведения двух многочленов ненулевой степени.

- **1.** (а) Разложить на неприводимые множители многочлен $f(x) = x^2 + x + 1$ с коэффициентами в \mathbb{Z}_3 .
 - **(б)** Разложить на неприводимые множители многочлен $f(x) = x^3 + x + 1$ с коэффициентами в \mathbb{Z}_3 .
 - **(в)** Разложить на неприводимые множители многочлен $f(x) = x^4 + x^2 + 1$ с коэффициентами в \mathbb{Z}_2 .
- **2.** Для каждого простого p найдите количество неприводимых над \mathbb{Z}_p многочленов степени 3.
- **3.** (а) Пусть $f,g \in \mathbb{Z}_p[x]$. При этом для любого $c \in \mathbb{Z}_p$ выполнено f(c) = g(c). Докажите, что f(x) g(x) делится на $x^p x$.
 - **(6)** Пусть $h: \mathbb{Z}_p \to \mathbb{Z}_p$ произвольная функция. Докажите, что найдется многочлен
 - $f \in \mathbb{Z}_p[x]$, для которого при любом $c \in \mathbb{Z}_p$ выполнено f(c) = h(c).
 - **(в)** Докажите, что в прошлом пункте найдется такой многочлен степени не выше p-1.
- **4.** Назовём многочлен с коэффициентами в \mathbb{Z}_p перестановочным по модулю p, если его значения дают все возможные остатки при делении на p. Существует ли перестановочный по модулю 101 многочлен степени **(a)** 17 **(б)** 100 **(в)** 10?
- **5.** Пусть для натурального числа n и простого числа p нашлись натуральные числа $a_1,...,a_{n+1}$ такие, что их n-е степени дают одинаковые остатки при деление на p. Докажите, что какие-то a_i и a_j дают одинаковые остатки при деление на p.

- **6.** Докажите, что над полем \mathbb{Z}_p существует бесконечно много неприводимых многочленов.
- 7. Пусть p нечётное простое. Про целые числа $a_1, a_2, ..., a_p$ известно, что $a_1^k + a_2^k + ... + a_p^k$ делится на p при любом натуральном k. Докажите, что все a_i числа попарно сравнимы по модулю p.