Esame di Ricerca Operativa del 15/01/16

(Cognome)				(No:	me)		(Corso di laurea)		
_									

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases} \max -3 x_1 - 7 x_2 \\ -3 x_1 - 4 x_2 \le 4 \\ -5 x_1 - x_2 \le 1 \\ 3 x_1 + 4 x_2 \le 26 \\ -x_1 + 3 x_2 \le 13 \\ 3 x_1 - x_2 \le 16 \\ -3 x_1 + x_2 \le 7 \end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
$\{1, 2\}$	x =		
$\{1, 6\}$	y =		

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
1° iterazione	$\{4,6\}$					
2° iterazione						

Esercizio 3. Un'impresa produce un bene in due stabilimenti situati a Milano e a Brescia. La produzione viene immagazzinata in tre depositi a Cremona, a Pavia e a Monza e poi distribuita alla vendita al dettaglio. La tabella mostra il costo unitario di trasporto, la capacità produttiva massima degli stabilimenti e le quantità di vendita al dettaglio di ogni deposito.

	Cremona	Pavia	Monza	Capacità
Milano	15	14	13	300
Brescia	18	19	20	200
Vendita	210	130	150	

variabili decisionali:	
modello:	
COMANDI DI MATLAR	

c= COMANDI DI M	
A=	b=
Aeq=	beq=
lb=	ub=

Esercizio 4. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) (2,4) (3,5)				
(4,6) (5,7) (6,5)	(3,2)	x =		
(1,3) $(2,5)$ $(3,2)$				
(5,4) (6,5) (7,6)	(5,7)	$\pi = (0,$		

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) (2,4) (3,5) (4,6) (5,7) (7,6)	
Archi di U	(2,5)	
x		
π		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\stackrel{\text{insieme}}{Q}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Taglio di capacità minima: $N_s =$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \min 11 \ x_1 + 10 \ x_2 \\ 15 \ x_1 + 11 \ x_2 \ge 65 \\ 8 \ x_1 + 14 \ x_2 \ge 41 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

 $N_t =$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento = $v_I(P)$ =

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile = $v_S(P) =$

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.		5-albero:	f(P) =
	t	b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo	4.

ciclo: $v_S(P) =$

c) Applicare il metodo del $Branch\ and\ Bound$, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili $x_{45},\,x_{35},\,x_{15}.$

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -3x_1 + x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 2 \le 0, \quad 2x_1 - x_2 - 1 \le 0}.$$

Soluzioni del sister	Massimo		Minimo		Sella		
x	λ	μ	globale	locale	globale	locale	
(1, 1)							
$\left(-\frac{1}{5}, -\frac{7}{5}\right)$							
$\left(-\frac{3\sqrt{5}}{5},\ \frac{\sqrt{5}}{5}\right)$							

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min \ 2 \ x_1^2 + 8 \ x_1 \ x_2 + 4 \ x_2^2 - 3 \ x_1 + 8 \ x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-5,0) , (-5,-4) , (4,3) e (-3,3). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{11}{3},2\right)$				•		

Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

$$\begin{cases}
\max -3 x_1 - 7 x_2 \\
-3 x_1 - 4 x_2 \le 4 \\
-5 x_1 - x_2 \le 1 \\
3 x_1 + 4 x_2 \le 26 \\
-x_1 + 3 x_2 \le 13 \\
3 x_1 - x_2 \le 16 \\
-3 x_1 + x_2 \le 7
\end{cases}$$

Base	Soluzione di base	Ammissibile	Degenere
		(si/no)	(si/no)
{1, 2}	x = (0, -1)	SI	NO
{1, 6}	$y = \left(\frac{8}{5}, \ 0, \ 0, \ 0, \ -\frac{3}{5}\right)$	NO	NO

Esercizio 2. Effettuare due iterazioni dell'algoritmo del simplesso primale per il problema dell'esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				uscente		entrante
					100	
1° iterazione	$\{4, 6\}$	(-1, 4)	(0, 0, 0, -3, 0, 2)	4	$\frac{136}{15}$, 0	2
2° iterazione	{2, 6}	(-1, 4)	(0, 3, 0, 0, 0, -4)	6	8, 23	1

Esercizio 3.

COMANDI DI MATLAB

A=[111000; 000111] b=[300 ; 200]

Aeq=[100100; 010010 ; 001001] beq=[210 ; 130 ; 150]

lb=[0;0;0;0;0;0] ub=[]

c=[15 ; 14 ; 13 ; 18 ; 19 ; 20]

Esercizio 4. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell'ordine, il costo e la capacità).

Archi di T	Archi di U	Soluzione di base	Ammissibile	Degenere
			(si/no)	(si/no)
(1,2) $(2,4)$ $(3,5)$				
(4,6) (5,7) (6,5)	(3,2)	x = (6, 0, 21, 0, 11, -8, 16, 0, 2, 13, 0)	NO	NO
(1,3) $(2,5)$ $(3,2)$				
(5,4) (6,5) (7,6)	(5,7)	$\pi = (0, 14, 8, 21, 17, 10, 6)$	NO	NO

Esercizio 5. Effettuare due iterazioni dell'algoritmo del simplesso su reti per il problema dell'esercizio 4.

	1° iterazione	2° iterazione
Archi di T	(1,2) $(2,4)$ $(3,5)$ $(4,6)$ $(5,7)$ $(7,6)$	(1,2) (2,5) (3,5) (4,6) (5,7) (7,6)
Archi di U	(2,5)	(2,4)
x	(6, 0, 6, 4, 0, 3, 1, 0, 4, 0, 2)	(6, 0, 8, 2, 0, 3, 3, 0, 2, 0, 0)
π	(0, 9, 0, 14, 6, 19, 15)	(0, 9, 6, 20, 12, 25, 21)
Arco entrante	(2,5)	(5,4)
ϑ^+,ϑ^-	2, 2	5, 0
Arco uscente	(2,4)	(7,6)

Esercizio 6. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	2	iter	3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		2		3		5		7	7	4	1	(;
nodo 2	6	1	6	1	6	1	6	1	6	1	6	1	6	1
nodo 3	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 4	$+\infty$	-1	19	2	19	2	19	2	19	2	19	2	19	2
nodo 5	$+\infty$	-1	20	2	11	3	11	3	11	3	11	3	11	3
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	32	7	25	4	25	4
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	16	5	16	5	16	5	16	5
$\stackrel{\text{insieme}}{Q}$	2,	3	3, 4	, 5	4,	5	4,	7	4,	6	(3	()

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	12	(12, 0, 0, 12, 0, 0, 0, 0, 12, 0, 0)	12
1 - 3 - 5 - 7	4	(12, 4, 0, 12, 0, 4, 0, 0, 16, 0, 0)	16

Taglio di capacità minima: $N_s = \{1, 2, 3, 4, 5, 6\}$ $N_t = \{7\}$

Esercizio 7. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} & \min \ 11 \ x_1 + 10 \ x_2 \\ & 15 \ x_1 + 11 \ x_2 \ge 65 \\ & 8 \ x_1 + 14 \ x_2 \ge 41 \\ & x_1 \ge 0 \\ & x_2 \ge 0 \\ & x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione inferiore del valore ottimo risolvendo il rilassamento continuo.

sol. ottima del rilassamento =
$$\left(\frac{459}{122}, \frac{95}{122}\right)$$
 $v_I(P) = 50$

b) Calcolare una valutazione superiore del valore ottimo arrotondando la soluzione ottima del rilassamento.

sol. ammissibile =
$$(4,1)$$
 $v_S(P) = 54$

c) Calcolare un taglio di Gomory.

Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	10	41	62	92
2		27	54	56
3			11	13
4				94

a) Trovare una valutazione inferiore del valore ottimo calcolando il 3-albero di costo minimo.

3-albero:
$$(1,2)(2,4)(2,5)(3,4)(3,5)$$
 $v_I(P)=144$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 4.

ciclo:
$$4 - 3 - 5 - 2 - 1$$
 $v_S(P) = 152$

c) Applicare il metodo del *Branch and Bound*, utilizzando il 3-albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{45} , x_{35} , x_{15} .

Esercizio 9. Trovare massimi e minimi della funzione $f(x_1, x_2) = -3x_1 + x_2$ sull'insieme

$${x \in \mathbb{R}^2 : x_1^2 + x_2^2 - 2 \le 0, \quad 2x_1 - x_2 - 1 \le 0}.$$

Soluzioni del sis	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(1, 1)	$\left(\frac{1}{6}, \frac{4}{3}\right)$		NO	NO	SI	SI	NO
$\left(-\frac{1}{5}, -\frac{7}{5}\right)$	$\left(-\frac{1}{6}, \frac{22}{15}\right)$		NO	NO	NO	NO	SI
$\left(-\frac{3\sqrt{5}}{5},\frac{\sqrt{5}}{5}\right)$	$\left(-\frac{\sqrt{5}}{2},\ 0\right)$		SI	SI	NO	NO	NO

Esercizio 10. Si consideri il seguente problema:

$$\begin{cases} \min 2 x_1^2 + 8 x_1 x_2 + 4 x_2^2 - 3 x_1 + 8 x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (-5,0), (-5,-4), (4,3) e (-3,3). Fare una iterazione del metodo del gradiente proiettato.

Ī	Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
					possibile		
	$\left(-\frac{11}{3},2\right)$	(-3, 2)	$\begin{pmatrix} 4/13 & 6/13 \\ 6/13 & 9/13 \end{pmatrix}$	$\left(\frac{116}{39}, \frac{58}{13}\right)$	$\frac{13}{58}$	$\frac{13}{184}$	$\left(-\frac{159}{46}, \frac{213}{92}\right)$