Autoregressive Moving Average (ARMA) Models

February 4, 2019

The material in this set of notes is based on S&S Chapter 3. We're finally going to define our first time series model! © The first time series model we will define is the **autoregressive** (AR) model. We will then consider a different simple time series model, the **moving** average (MA) model. Putting both models together to create one more general model will give us the **autoregressive moving average** (ARMA) model.

The Autoregressive (AR) Model

The first kind of time series model we'll consider is an **autoregressive** (AR) model. This is one of the most intuitive models we'll consider. The basic idea is that we will model the response at time t x_t as a linear function of its p previous values and some independent random noise, e.g.

$$x_t = 0.5x_{t-1} + w_t, (1)$$

where x_t is stationary and $w_t \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_w^2)$. This kind of model is especially well suited to forecasting, as

$$\mathbb{E}\left[x_{t+1}|x_t\right] = 0.5x_{t-1}.\tag{2}$$

We explicitly define an autoregressive model of order p, abbreviated as AR(p) as:

$$(x_t - \mu_x) = \phi_1 (x_{t-1} - \mu_x) + \phi_2 (x_{t-2} - \mu_x) + \dots + \phi_p (x_{t-p} - \mu_x) + w_t,$$
(3)

where x_t is stationary with mean $\mathbb{E}\left[x_t\right] = \mu_x$ and $w_t \overset{i.i.d.}{\sim} \mathcal{N}\left(0, \sigma_w^2\right)$. For convenience:

• We'll often assume $\mu_x = 0$, so

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t. \tag{4}$$

• We'll introduce the **autoregressive operator** notation:

$$\phi(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p, \tag{5}$$

where $B^p x_t = x_{t-p}$ is the **backshift operator**. This allows us to rewrite (3) and (4) more concisely as $\phi(B)(x_t - \mu_x) = w_t$ and

$$\phi(B)(x_t) = w_t, \tag{6}$$

respectively.

An $\mathbf{AR}(p)$ model looks like a linear regression model, but the covariates are also random variables. We'll start building an understanding of the $\mathbf{AR}(p)$ model by starting with the simpler special case where p = 1.

The **AR** (1) model with $\mu_x = 0$ is a special case of (3)

$$x_t = \phi_1 x_{t-1} + w_t. (7)$$

A natural thing to do is to try to rewrite x_t as a function of ϕ_1 and the previous values of the random errors. Then (7) will look more like a classical regression problem, as it will no longer have random variables as as covariates. Furthermore, if we could rewrite x_t as a function of ϕ_1 and the random errors \boldsymbol{w} , then x_t would be a **linear process**.

A linear process x_t is defined to be a linear combination of white noise variates w_t and

is given by

$$x_t = \mu_x + \sum_{j=-\infty}^{\infty} \psi_j w_{t-j},$$

where the coefficients satisfy $\sum_{j=-\infty}^{\infty} |\psi_j| < \infty$, w_t are independent and identically distributed with mean 0 and variance σ_w^2 , and $\mu_x = \mathbb{E}[x_t]$. Importantly, it can be shown that the autocovariance function of a linear process is

$$\gamma_x(h) = \sigma_w^2 \sum_{j=-\infty}^{\infty} \psi_{j+h} \psi_j, \tag{8}$$

for $h \geq 0$, recalling that $\gamma_x(h) = \gamma_x(-h)$. This means that once we know the linear process representation of any time series process, we can easily compute its autocovariance (and autocorrelation) functions. We will often use the **infinite moving average operator** shorthand $1 + \psi_1 B + \psi_2 B^2 + \dots + \psi_j B^j + \dots = \psi(B)$.

We can start rewriting x_t as follows:

$$x_{t} = \phi_{1}^{2} x_{t-1} + \phi_{1} w_{t-1} + w_{t}$$

$$= \phi_{1}^{3} x_{t-2} + \phi_{1}^{2} w_{t-2} + \phi_{1} w_{t-1} + w_{t}$$

$$= \underbrace{\phi_{1}^{k} x_{t-k}}_{(*)} + \sum_{j=0}^{k-1} \phi_{1}^{j} w_{t-j}.$$

We can see that we can almost lagged values of x out of the right hand side. Fortunately, when $|\phi_1| < 1$, then

$$\lim_{k \to \infty} \mathbb{E}\left[\left(x_t - \sum_{j=0}^{k-1} \phi_1^j w_{t-j}\right)^2\right] = \lim_{k \to \infty} \phi^{2k} \mathbb{E}\left[x_{t-k}^2\right] = 0,$$

because $\mathbb{E}\left[x_{t-k}^2\right]$ is constant as long as x_t is stationary is assumed. This means that when $|\phi_1| < 1$, then we can write elements of the response x_t as a linear function the previous

values of the random errors:

$$x_t = \sum_{j=0}^{\infty} \phi^j w_{t-j}. \tag{9}$$

(9) is the **linear process** representation of an **AR**(1) model. It follows that the autocovariance function

$$\gamma_x(h) = \sigma_w^2 \sum_{j=0}^{\infty} \phi^{j+h} \phi^j$$

$$= \sigma_w^2 \phi^h \sum_{j=0}^{\infty} \phi^{2j}$$

$$= \sigma_w^2 \phi^h \left(\frac{1}{1 - \phi^2}\right). \tag{10}$$

and the autocorrelation function is

$$\rho_x(h) = \phi^h. \tag{11}$$

Note that this is not the only way to compute the values of autocovariance function. We could compute them directly from (4),

$$\gamma_x(h) = \mathbb{E}\left[x_{t-h}x_t\right]$$

$$= \mathbb{E}\left[x_{t-h}\left(\phi_1 x_{t-1} + w_t\right)\right]$$

$$= \phi_1 \mathbb{E}\left[x_{t-1-(h-1)}x_{t-1}\right] + \mathbb{E}\left[x_{t-h}w_t\right]$$

$$= \phi_1 \gamma_x(h-1).$$

$$(12)$$

This gives us a recursive relation that we can use to compute the autocovariance function

 $\gamma_x(h)$, starting from $\gamma_x(0)$. We can compute $\gamma_x(0)$ using substitution:

$$\gamma_{x}(0) = \mathbb{E}\left[x_{t}^{2}\right]$$

$$= \mathbb{E}\left[\left(\phi_{1}x_{t-1} + w_{t}\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(\phi_{1}x_{t-1} + w_{t}\right)^{2}\right]$$

$$= \mathbb{E}\left[\phi_{1}^{2}x_{t-1}^{2} + 2\phi_{1}w_{t}x_{t-1} + w_{t}^{2}\right]$$

$$= \phi_{1}^{2}\mathbb{E}\left[x_{t-1}^{2}\right] + \sigma_{w}^{2}$$

$$= \sigma_{w}^{2}\sum_{j=0}^{\infty}\phi_{1}^{2j} \qquad \text{(follows from continued substitution)}$$

$$= \frac{\sigma_{w}^{2}}{1 - \phi_{1}^{2}}, \qquad \text{if } |\phi_{1}| < 1, \gamma_{x}(0) = \infty \text{ otherwise!}$$

Whether or not $|\phi_1| < 1$ is closely related to whether or not \boldsymbol{x} is a stationary time series. If $|\phi_1| < 1$, then it is easy to see that the $\mathbf{AR}(1)$ time series \boldsymbol{x} is stationary because the mean of each x_t is zero and the autocovariance function $\gamma_x(h) = \sigma_w^2 \phi_h\left(\frac{1}{1-\phi^2}\right)$ depends only on the lag, h. What happens when $\phi_1 > 1$?

When $\phi_1 < 1$, we can revisit (7) and note that $x_{t+1} = \phi_1 x_t + w_{t+1}$. Rearranging gives

$$x_t = \left(\frac{1}{\phi_1}\right) x_{t+1} - \left(\frac{1}{\phi_1}\right) w_{t+1}.$$

If $\phi > 1$, then $\left(\frac{1}{\phi_1}\right) < 1$ and we can use the same approach we used previously to write

$$x_t = -\sum_{j=1}^{\infty} \left(\frac{1}{\phi_1}\right)^j w_{t+j}.$$

The problem, however, is that this requires that x_t is a function of *future* values, which may not be known at time t. We call such a time series **non-causal**. Using a **non-causal** model will rarely make sense in practice, and furthermore makes forecasting impossible - in the future, whenever we talk about $\mathbf{AR}(p)$ models we restrict our attention to **causal** models.

Understanding when a $\mathbf{AR}(p)$ model is causal is more difficult than understanding when an $\mathbf{AR}(1)$ model is causal. We figured out when an $\mathbf{AR}(1)$ model is causal by finding

the coefficients $\psi_{-\infty}, \ldots, \psi_{\infty}$ of its linear process representation as a function of the AR coefficient ϕ_1 , and showing that all of the coefficients $\psi_{-\infty}, \ldots, \psi_{-1}$ for future errors are exactly equal to zero.

The linear process representation is especially useful for an $\mathbf{AR}(p)$ time series when p > 1, because computing the autocovariance function $\gamma_x(h)$ directly as we did in (12) and (13) gets much more cumbersome when p > 1. We can see this in the $\mathbf{AR}(2)$ case, where we have

$$x_t = \phi_2 x_{t-2} + \phi_1 x_{t-1} + w_t. \tag{14}$$

We can get a recursive relation for the autocovariance function $\gamma_x(h)$ starting from $\gamma_x(0)$ and $\gamma_x(1)$ as follows:

$$\gamma_{x}(h) = \mathbb{E} [x_{t-h}x_{t}]
= \mathbb{E} [x_{t-h} (\phi_{1}x_{t-1} + \phi_{2}x_{t-2} + w_{t})]
= \phi_{1}\mathbb{E} [x_{t-1-(h-1)}x_{t-1}] + \phi_{2}\mathbb{E} [x_{t-2-(h-2)}x_{t-2}] + \mathbb{E} [x_{t-h}w_{t}]
= \phi_{1}\gamma_{x}(h-1) + \phi_{2}\gamma_{x}(h-2).$$

We can try to compute $\gamma_x(0)$ and $\gamma_x(1)$ using substitution:

$$\gamma_x(0) = \mathbb{E}\left[x_t^2\right]
= \mathbb{E}\left[\left(\phi_1 x_{t-1} + \phi_2 x_{t-2} + w_t\right)^2\right]
= \mathbb{E}\left[\phi_1^2 x_{t-1}^2 + \phi_2^2 x_{t-2}^2 + 2\phi_1 \phi_2 x_{t-1} x_{t-2} + 2\phi_1 x_{t-1} w_t + 2\phi_2 x_{t-2} w_t + w_t^2\right]
= \mathbb{E}\left[\phi_1^2 x_{t-1}^2 + \phi_2^2 x_{t-2}^2 + 2\phi_1 \phi_2 x_{t-1} x_{t-2}\right] + \sigma_w^2.$$

However, this gets *very* complicated, even though we only have two lags!

Unfortunately, it's much harder to find the linear process representation of an $\mathbf{AR}(p)$ time series by simple substitution as we did with an $\mathbf{AR}(1)$ time series. Substituting according

to (14)

$$x_{t} = \phi_{1}\phi_{2}x_{t-3} + (\phi_{2} + \phi_{1}^{2}) x_{t-2} + \phi_{1}w_{t-1} + w_{t}$$

$$= (\phi_{2} + \phi_{1}^{2}) \phi_{2}x_{t-4} + \phi_{1} (2\phi_{2} + \phi_{1}^{2}) x_{t-3} + (\phi_{2} + \phi_{1}^{2}) w_{t-2} + \phi_{1}w_{t-1} + w_{t}$$

$$= (\phi_{2} + \phi_{1}^{2}) \phi_{2}x_{t-4} + \phi_{1} (2\phi_{2} + \phi_{1}^{2}) (\phi_{2}x_{t-5} + \phi_{1}x_{t-4} + w_{t-3}) + (\phi_{2} + \phi_{1}^{2}) w_{t-2} + \phi_{1}w_{t-1} + w_{t}$$

$$= \phi_{1}\phi_{2} (2\phi_{2} + \phi_{1}^{2}) x_{t-5} + (\phi_{2}^{2} + \phi_{1}^{2}\phi_{2} + 2\phi_{1}\phi_{2}^{2} + \phi_{1}^{3}\phi_{2}) x_{t-4} +$$

$$\phi_{1} (2\phi_{2} + \phi_{1}^{2}) w_{t-3} + (\phi_{2} + \phi_{1}^{2}) w_{t-2} + \phi_{1}w_{t-1} + w_{t} \dots$$

Again, this is *not* working out nicely!

Instead, we can find the values of $\psi_1, \ldots, \psi_{\infty}$ that satisfy $\phi(B) \psi(B) w_t = w_t$, which follows from substituting $x_t = \sum_{j=-\infty}^{\infty} \psi_j w_{t-j}$ into (19). This is equivalent to finding the inverse function $\phi^{-1}(B)$ that satisfies $\phi(B) \phi^{-1}(B) w_t = w_t$.

We can see how this method for finding the values of $\psi_1, \ldots, \psi_{\infty}$ works by returning to the $\mathbf{AR}(1)$ case. The values $\psi_1, \ldots, \psi_{\infty}$ that satisfy $\phi(B) \psi(B) w_t = w_t$ solve:

$$1 + (\psi_1 - \phi_1) B + (\psi_2 - \psi_1 \phi_1) B^2 + \dots + \psi_j B^j + \dots = 1,$$
 (15)

where (15) follows from expanding $\phi(B)$ and $\psi(B)$. This allows us to recover the linear process representation of the $\mathbf{AR}(1)$ process in a different way, as (15) holds if all of the coefficients for B^j with j > 0 are equal to zero, i.e. $\psi_k - \psi_{k-1}\phi_1 = 0$ for k > 1.

Now let's try this approach for the AR(2) case. We have

$$1 = (1 - \phi_1 B - \phi_2 B^2) (1 + \psi_1 B + \psi_2 B^2 + \dots + \psi_j B^j + \dots)$$

$$= 1 + (\psi_1 - \phi_1) B + (\psi_2 - \phi_2 - \phi_1 \psi_1) B^2 + (\psi_3 - \phi_1 \psi_2 - \phi_2 \psi_1) B^3 + \dots + (\psi_j - \phi_1 \psi_{j-1} - \phi_2 \psi_{j-2}) B^j + \dots$$

We see that we can compute the values of $\psi_1, \ldots, \psi_{\infty}$ recursively,

$$\psi_1 = \phi_1$$

$$\psi_2 = \phi_2 + \phi_1^2$$

$$\psi_3 = 2\phi_1 \left(\phi_2 + \phi_1^2\right),$$

and so on.

It's also very tricky to figure out when AR(p) model is **causal** for p > 1 - we'll come back to this later.

The Moving Average (MA) Model

Instead of assuming that elements of a time series x_t are linear function of previous elements of the time series x_1, \ldots, x_{t-1} and independent, identically distributed noise w_t , we might assume that elements of a time series x_t are a linear function of all of the current and previous noise variates, w_1, \ldots, w_{t-1} . The latter gives us the **moving average model of order** q, abbreviated as $\mathbf{MA}(q)$. The $\mathbf{MA}(q)$ model is explicitly defined as

$$x_t - \mu_x = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}, \tag{16}$$

where $\mathbb{E}\left[x_{t}\right] = \mu_{x}$, $w_{t} \overset{i.i.d.}{\sim} \mathcal{N}\left(0, \sigma_{w}^{2}\right)$, and

(*) \boldsymbol{x} has an infinite AR representation, i.e. there exist values $\pi_1, \pi_2, \dots, \pi_j, \dots$ that satisfy $w_t = \pi(B) w_t$, where $\pi(B) = 1 + \pi_1 B + \pi_2 B^2 + \dots + \pi_j B^j + \dots$

We'll come back to (\star) later. For convenience:

• We'll often assume $\mu_x = 0$, so

$$x_t = w_t + \theta_1 w_{t-1} + \theta_2 w_{t-2} + \dots + \theta_q w_{t-q}.$$
(17)

• We'll introduce the **moving average operator** notation:

$$\theta(B) = 1 + \phi_1 B + \phi_2 B^2 + \dots + \phi_p B^p,$$
 (18)

which allows us to rewrite (16) and (17) more concisely as $x_t - \mu_x = \theta(B) w_t$ and

$$x_t = \theta(B) w_t, \tag{19}$$

respectively.

Again, the $\mathbf{MA}(q)$ model looks like a linear regression model. Importantly, the $\mathbf{MA}(q)$ model is stationary for any values of the parameters $\theta_1, \dots, \theta_q$.

Like we did with the $\mathbf{AR}(p)$ model, we'll start building an understanding of the $\mathbf{MA}(q)$ by starting with the simpler special case where q = 1,

$$x_t = \theta_1 w_{t-1} + w_t. (20)$$

It is easy to see that this MA(q) time series is mean zero. We can compute the autocovariance function as follows:

$$\gamma_{x}(h) = \mathbb{E}\left[x_{t}x_{t-h}\right]
= \mathbb{E}\left[(\theta_{1}w_{t-1} + w_{t})\left(\theta_{1}w_{t-h-1} + w_{t-h}\right)\right]
= \mathbb{E}\left[\theta_{1}^{2}w_{t-1}w_{t-h-1} + \theta_{1}w_{t}w_{t-h-1} + \theta_{1}w_{t-1}w_{t-h} + w_{t}w_{t-h}\right]
= \mathbb{E}\left[\theta_{1}^{2}w_{t-1}w_{t-h-1} + \theta_{1}w_{t-1}w_{t-h} + w_{t}w_{t-h}\right]
= \begin{cases}
\sigma_{w}^{2}(\theta_{1}^{2} + 1) & h = 0 \\
\theta_{1} & h = 1 \\
0 & h > 1
\end{cases}$$
(21)

The corresponding autocorrelation function is

$$\rho_x(h) = \begin{cases} \frac{\theta_1}{\theta_1^2 + 1} & h = 1\\ 0 & h > 1 \end{cases}$$
 (22)

The autocovariance and autocorrelation functions of the $\mathbf{MA}(q)$ model are noteworthy in two ways:

- (•) The autocorrelation function $\rho_x(h)$ is bounded, $\rho_x(h) \leq 1/2$ for h > 1.
- (*) The parameters of the $\mathbf{MA}(q)$ model do not uniquely determine the autocovariance and autocorrelation function values. θ_1 and σ_w^2 do not uniquely determine the value of the autocovariance function $\gamma_x(h)$, and θ_1 does not determine the value of the autocorrelation function.

It is easiest to understand (*) via some examples. First, we compute $\gamma_x(h)$ and $\rho_x(h)$ for a $\mathbf{MA}(1)$ process with $\theta_1 = 5$ and $\sigma_w^2 = 1$,

$$\gamma_x(h) = \begin{cases} 5^2 + 1 = 26 & h = 0 \\ 5 & h = 1 & \text{and } \rho_x(h) = \begin{cases} \frac{5}{5^2 + 1} = \frac{5}{26} & h = 1 \\ 0 & h > 1 \end{cases}.$$

Compare this to $\gamma_x(h)$ and $\rho_x(h)$ for a **MA** (1) process with $\theta_1 = 1/5$ and $\sigma_w^2 = 25$,

$$\gamma_x(h) = \begin{cases} 25\left(\frac{1}{5^2} + 1\right) = 25\left(\frac{1+25}{25}\right) = 26 & h = 0\\ 25\left(\frac{1}{5}\right) = 5 & h = 1 & \text{and } \rho_x(h) = \begin{cases} \frac{\frac{1}{5}}{\frac{1}{5^2} + 1} = \frac{5}{26} & h = 1\\ 0 & h > 1 \end{cases}.$$

Both sets of $\mathbf{MA}(1)$ parameters give the values of the autocovariance and autocorrelation functions! This is undesirable - it means that even if we know that our time series is mean zero with a specific autocovariance function $\gamma_x(h)$ autocorrelation function $\rho_x(h)$, we can't find a **unique** pair of corresponding $\mathbf{MA}(1)$ parameter values (θ_1, σ_w^2) . \odot

This is where (\star) comes in - we can find a **unique** pair of corresponding \mathbf{MA} (1) parameter values (θ_1, σ_w^2) if we restrict our attention to the parameter values that give a model with an infinite AR representation. What we mean by this is that we can rearrange (20) to resemble

a **AR**(1) model for w_t :

$$w_{t} = -\theta_{1}w_{t-1} + x_{t}$$

$$= \theta_{1}^{2}w_{t-2} - \theta_{1}x_{t-1} + x_{t}$$

$$= -\theta_{1}^{3}w_{t-3} + \theta_{1}^{2}x_{t-2} - \theta_{1}x_{t-1} + x_{t}$$

$$= (-\theta_{1})^{k}w_{t-k} + \sum_{j=1}^{k} (-\theta_{1})^{j}x_{t-j}.$$

Thus, we will be able to write $w_t = \pi(B) x_t$ with $\pi_j = (-\theta_1)^j$, i.e. the model will have an infinite AR representation, when $|\theta_1| < 1$. Going back to our example where we considered the $\mathbf{MA}(1)$ parameters $(\theta_1, \sigma_w^2) = (5, 1)$ and $(\theta_1, \sigma_w^2) = (\frac{1}{5}, 25)$, this means that only the latter pair $(\theta_1, \sigma_w^2) = (\frac{1}{5}, 25)$ satisfy our definition of a $\mathbf{MA}(1)$ model.

More generally, (\star) ensures that we can find a **unique** set of corresponding $\mathbf{MA}(q)$ parameter values $(\theta_1, \ldots, \theta_q, \sigma_w^2)$ if we know that our time series is $\mathbf{MA}(q)$ with mean zero, a specific autocovariance function $\gamma_x(h)$, and autocorrelation function $\rho_x(h)$ and we can write $w_t = \pi(B) x_t$. In general, this will require computing $\pi_1, \pi_2, \ldots, \pi_j, \ldots$, which can be done in the same way we computed the linear process representation of an $\mathbf{AR}(p)$ model, i.e. by finding the values $\pi_1, \pi_2, \ldots, \pi_j, \ldots$ that satisfy $\pi(B) \theta(B) w_t = w_t$.