

Tritium Extraction using **Compact Heat** Exchangers

Esteban Labrador Sascha Turovskiy Sean Shitamoto

Tritium Challenges in Fusion Energy

- Tritium is expensive to produce
- Breeding blankets
 - FLiBe molten salt absorbs neutrons and produces Tritium
- How can we extract this tritium for future fueling cycles?

$$Li_3^6 + n \longrightarrow He_2^4 + H_1^3$$

Fuel (tritium)

Existing Tritium Extraction Methods

- Electrolysis
- Gas-Liquid-Contactors
- Permeator-Against-Vacuum (PAV)

Heat Exchangers as a PAV Device

- Heat Exchangers
 - Heat and mass transfer similarity
- Printed Circuit Heat Exchangers (PCHEs)
 - Cheaper to manufacture
 - Large surface area density
 - Enhanced turbulent convective transport
 - Large amount of literature available!

Simulation Assumptions & Models

- Steady-State
 - Temperature set to 900K
- Passive Scalars
 - Partial pressure and flux continuity enforced
- Vacuum Not Meshed
 - Zero tritium concentration
- > 50mm Total Channel Length
 - Ensure fully developed flow

$$p_{Q_2} = Q_2 / K_H = (Q / K_S)^2$$

Materials & Boundary Conditions (BCs)

- 316 Stainless Steel (316SS)
 - Important constants and physics previously analyzed
- Boundary Conditions
 - Turbulent Inlet FLiBe Velocity: 15 m/s
 - Re > 4000
 - Pressure Gradients may be an issue
 - Laminar Inlet FLiBe Velocity: 1 m/s
 - Re << 2000
 - Inlet Source Concentration
 - 3.28E-9 mol/s for turbulent simulations
 - 2.19E-10 mol/s for laminar simulations

Mass Transfer Coefficient (MTC) Calculation

Mass Transfer Coefficient (MTC) Calculation

Velocity to MTC Comparison

Laminar vs Turbulent Cases

Main Takeaways and Future Steps

- Turbulence Enhances Tritium Transport
 - Increases convective transport
- ZigZag Geometry Enhances Tritium Transport
 - Pushes fluid to higher speeds, enhancing convective transport
 - Pressure Drop up to ~8MPa → Pumping Power Issues
- Other Parameters of Consideration
 - Different Bend Angles for ZigZag Channel
 - Orientation of Channels
 - Metal Properties
 - Different Geometries
 - Twine, Gyroid, etc.

Bonus Slides

- 1. Project One-pager
- 2. Existing methods of tritium extraction
- 3. PAV designs
- 4. Types of heat exchangers
- 5. More on PCHE
- 6. Diffusion bonding
- 7. Gyroid HX
- 8. Selection of velocities for turbulence and laminar
- 9. Residuals Plots
- 10. Mesh setup
- 11. Simulation Mesh Independence Study
- 12. Equations Sheet

Optimizing Tritium Recovery with Commercial Heat Exchangers to Advance Commercial Fusion Energy

FUNG INSTITUTE FOR ENGINEERING LEADERSHIP

Sean Shitamoto, Esteban Labrador, Sascha Turovskiy Advised by Professor Guanyu Su and Ben Li

Tritium is a fuel source for nuclear fusion devices. Manufacturing tritium is highly expensive as it is produced typically in nuclear reactors, so modern fusion energy devices utilize molten salt to produce tritium. The issue comes from extracting that tritium out of the salt such that it can be used for future fuel cycles. Our team is using computational fluid dynamics software to analyze various heat exchanger

designs to determine a cost-effective method of tritium extraction from such molten salt.

What We Are Simulating

Main Physics

Much of the tritium is in the salt, of which the resulting concentration gradient drives tritium diffusion from the salt into the vacuum, splitting and recombining along the way. The steel acts like a filter for the tritium.

Where Our Role Comes In

Tritium is produced in a molten salt as a result of neutron bombardment from the deuterium-tritium reaction in a fusion device

Molten salt enters the heat exchanger where tritium diffuses into a vacuum chamber

Extracted tritium is used for future fusion device fueling

Channel Orientations Investigated

Geometries Investigated Just within a "Zigzag"

Existing PAV Designs

Existing PAVs and the potential of heat exchangers

The potential of heat exchangers

Heat Exchangers

Introduction Methods Methods Conclusion

Printed Circuit HX's

materials used geometry (zig-zag) and scale

Printed Circuit Heat Exchanger

Grain Structure

Gyroid HX

T/[K]

Velocity Calculations

	onable pressure	drop?			
what's a reaso	onable pressure e	•			
	do we need to	account for FULL I	ength of pche channel	1?	
	determine pre	essure drop for curre	nt segment		
		velocity (m/s)	pressure drop (Pa)	pressure drop (atm)	length of current channel [mm]
		15	7.93E+06	78.28	36.68
	hows this pre-	ssure compare to ac	tual PAV designs in lit	erature?	
		Ngo et al. [20] e	2-12 MPa	Heat transfer and frict	745.20
		Kim et al. [21] nu	2.5-8.3 MPa	٨	846.00
		Pidaparti et al. [2	7.5-10.2 MPa	Α	500.00
		Thus, it is neces	20 MPa		https://www.osti.
		if we are to dete	rmine total pressure di	rop over entire heat ex	changer length, h
		we are currently	simulating 36.68mm o	or 0.036m which isn't a	lot. but how muc
		is it easier to jus	t analyze behavior of r	mass transport in turbu	lent and then lam
				sures one or the other.	
flibe conduct v	velocity	u = velocity, solv	ing for u		
flibe conduct v		u = velocity, solv w [kg/s] and [m3/s]	ing for u	2131.868	1.08
flibe conduct v	flibe mass floo		-	2131.868 1969.823	1.08
flibe conduct v	flibe mass flor	w [kg/s] and [m3/s] sity @T=908.15K [k	-	1969.823	
flibe conduct v	flibe mass flor flibe inlet dens area of flibe to	w [kg/s] and [m3/s] sity @T=908.15K [k	g/m3] ssibly divided by 18 fo	1969.823 0.00000141764	
flibe conduct v	flibe mass floo flibe inlet dens area of flibe to number of con	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po	g/m3] ssibly divided by 18 fo	1969.823 0.00000141764	1
flibe conduct v	flibe mass floo flibe inlet dens area of flibe to number of con	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide	g/m3] ssibly divided by 18 fo	1969.823 0.00000141764 200,000 3.817	1
flibe conduct v	flibe mass flor flibe inlet dens area of flibe to number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m	g/m3] ssibly divided by 18 fo d) n/s] u = [m/s]	1969.823 0.00000141764 200,000 3.817	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe to number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m	g/m3] ssibly divided by 18 fo d) n/s] u = [m/s]	1969.823 0.00000141764 200,000 3.817 6.931	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe tr number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m o as guanyu sugges	g/m3] ssibly divided by 18 for the following of the follo	1969.823 0.00000141764 200,000 3.817 6.931	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe to number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m o as guanyu sugges mb u = velocity	g/m3] ssibly divided by 18 for d) n/s] u = [m/s] ted and just test a velo	1969.823 0.00000141764 200,000 3.817 6.931	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe tr number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m b as guanyu sugges mb u = velocity D = hydraulic dia	g/m3] ssibly divided by 18 for the divided b	1969.823 0.00000141764 200,000 3.817 6.931 ocity that ensures lamin	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe tr number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m b as guanyu sugges mb u = velocity D = hydraulic dia v = dynamic viso	g/m3] ssibly divided by 18 for	1969.823 0.00000141764 200,000 3.817 6.931 ocity that ensures lamin 0.001099828 0.000003811	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe tr number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m b as guanyu sugges mb u = velocity D = hydraulic dia v = dynamic viso Re = (maximum	g/m3] ssibly divided by 18 for guarenteed lamins	1969.823 0.00000141764 200,000 3.817 6.931 ocity that ensures lamin 0.001099828 0.000003811	< <independe< td=""></independe<>
flibe conduct v	flibe mass flor flibe inlet dens area of flibe tr number of cor velocity inlet f	w [kg/s] and [m3/s] sity @T=908.15K [k ube from reactor (po nducts (to be decide for single conduct [m b as guanyu sugges mb u = velocity D = hydraulic dia v = dynamic viso	g/m3] ssibly divided by 18 for guarenteed lamins	1969.823 0.00000141764 200,000 3.817 6.931 ocity that ensures lamin 0.001099828 0.000003811	< <independe< td=""></independe<>

100 turbulent, passive scalar only

Meshing Setup - Polyhedral Mesher

FLiBe

- base size = 0.3 mm
- surface growth rate = 1.2
- prism layers = 10
- prism layer stretching = 1.2

316SS

- base size = 0.5 mm
- surface growth rate = 1.2
- prism layers = disabled

Simulation Mesh Independence Study

Simulation Strategy/Procedure

2 Main Steps:

- 1) Simulate only the flow
 - extract "steady-state" velocity field
- 2) Simulate passive scalar
 - set static velocity field for the passive scalar to follow

