ESTUDO DE CASO — EFICIÊNCIA ENERGÉTICA EM CHILLER

PROJETO FINAL DO CURSO DE ANÁLISE DE DADOS

NATÁLIA MENDES CEOLDO TURMA 55-DAPT-SP-JUL-2021

INTRODUÇÃO

Fonte: Manual Trane

INTRODUÇÃO

Fonte: Ar condicionado: guia prático sobre sistemas de água gelada / Ministério do Meio Ambiente, Secretaria de Mudança do Clima e Florestas, Departamento de Monitoramento, Apoio e Fomento de Ações em Mudança do Clima. – Brasília, DF: MMA, 2017.

INTRODUÇÃO

Foto autoral

OBJETIVO

O QUE:

 OTIMIZAR A EFICIÊNCIA ENERGÉTICA DA OPERAÇÃO DA CENTRAL DE ÁGUA GELADA, SEM COMPROMETER O ATENDIMENTO À DEMANDA TÉRMICA DO SISTEMA.

COMO:

DETERMINANDO A MELHOR COMBINAÇÃO
DE CHILLERS E SEUS CARREGAMENTOS PARA
ATENDER A CARGA TÉRMICA DEMANDADA.

Distribuição do consumo de energia elétrica por uso final

Fonte: Pesquisa de posse de equipamentos e hábitos de uso – ano base 2005 – classe comercial – alta tensão – relatório Brasil. Procel/Eletrobrás. 2008.

ENTENDENDO O PROBLEMA

 COMO É O COMPORTAMENTO DE RENDIMENTO DO CHILLER?

 $rendimento = \frac{potência elétrica}{carga térmica}$

QUAIS VARIÁVEIS PODEM INFLUENCIAR O RENDIMENTO DE UM CHILLER?

- CARGA TÉRMICA
- TEMPERATURA/UMIDADE EXTERNA
- TEMPERATURA DE SAÍDA DE ÁGUA GELADA (SETPOINT)
- TEMPERATURA DE ENTRADA DE ÁGUA DE CONDENSAÇÃO

COMPARANDO COM UM CARRO

 $rendimento = \frac{litros de combustível}{km \ rodado}$

QUAIS VARIÁVEIS PODEM INFLUENCIAR O RENDIMENTO DE UM CARRO?

- VELOCIDADE
- TIPO DE PISTA
- NÚMERO DE PASSAGEIROS/CARGA

OPERAÇÃO NO PERÍODO ANALISADO

DE 01 DE SETEMBRO A 20 DE NOVEMBRO DE 2021

CHILLER 01 - OPERANTE

CHILLER 02 – EM MANUTENÇÃO

CHILLER 03 - OPERANTE

CHILLER 04 - RESERVA

VARIÁVEIS UTILIZADAS

- CARGA TÉRMICA
- TEMPERATURA AMBIENTE
- UMIDADE RELATIVA DO AR EXTERNO
- TEMPERATURA DE SAÍDA DE ÁGUA GELADA
- TEMPERATURA DE ENTRADA DE ÁGUA GELADA
- DIFERENCIAL DE TEMPERATURA DE ÁGUA GELADA
- VAZÃO DE SAÍDA
- TEMPERATURA DE ENTRADA DE ÁGUA DE CONDENSAÇÃO

MODELOS OBTIDOS

MÉTODO: REGRESSÃO LINEAR DE MÚLTIPLAS VARIÁVEIS

CURVA DE RENDIMENTO MÉDIO Curva de rendimento em função da carga térmica Chiller 1 Chiller 3 0.45 0.40 0.35 Rendimento (KW/KW) 0.20 0.25 0.20 0.15 0.10 100 200 300 400 500 600 Carga Térmica (TR)

CURVA DE POTÊNCIA MÉDIA Curva de potência em função da carga térmica Chiller 1 Chiller 3 Potência (kW) 051 Carga Térmica (TR)

CURVA DE RENDIMENTO

INFLUÊNCIA DA TEMPERATURA DE ENTRADA DE ÁGUA DE CONDENSAÇÃO

CURVA DE POTÊNCIA

INFLUÊNCIA DA TEMPERATURA DE ENTRADA DE ÁGUA DE CONDENSAÇÃO

CURVA DE RENDIMENTO

INFLUÊNCIA DA TEMPERATURA DE SAÍDA DE ÁGUA GELADA (SETPOINT)

CURVA DE POTÊNCIA

INFLUÊNCIA DA TEMPERATURA DE SAÍDA DE ÁGUA GELADA (SETPOINT)

MELHOR OPERAÇÃO

Carregamento (%) [Ch1 Ch3]	Consumo (kW)	Carga Térmica (TR)
[0 40]	199.00	260
[0 50]	213.86	325
[0 60]	225.73	390
[0 70]	240.07	455
[0 80]	262.36	520
[0 90]	298.08	585
[0 100]	352.70	650
[100 10]	437.30	715
[100 20]	494.02	780
[100 30]	531.32	845
[100 40]	554.66	910
[90 60]	567.09	975
[100 60]	581.40	1040
[100 80]	618.03	1170
[100 90]	653.75	1235
[100 100]	708.37	1300

CONCLUSÕES

- De acordo com resultado do Algoritmo Genético de melhor combinação, a partir dos modelos obtidos, o ideal é operar inicialmente com o Chiller 03 até ele atingir 100% de sua carga. Acima disso, deve entrar em operação o Chiller 01, e passar a carregá-lo até sua carga máxima e utilizar Chiller 03 apenas para completar carga.
- Porém, considerando que o modelo do Chiller 03 esteja enviesado por não ter dados de operação em condições mais diversificadas como foi observado no Chiller 01, a primeira ação indicada é alterar a operação: colocar o Chiller 01 como prioritário e o Chiller 03 para completar a carga e operar com setpoint de água gelada mais alto. A partir de novos dados coletados, gerar novos modelos para ambos os Chillers e refazer as análises.

A Energia não pode ser criada nem destruída, apenas pode ser transformada ou transferida de uma forma para outra.

77

1ª LEI DA TERMODINÂMICA