3-раскраска графа

Вход: неориентированный граф без кратных ребер и петель G = (V, E) с п вершинами.

Выход: $\begin{cases} 1, \text{если существует правильная 3-раскраска графа,} \\ 0, \text{ иначе.} \end{cases}$

Предлагаемый алгоритм

Если граф является надграфом K_4 , то возвращаем 0. Иначе "?".

Утверждение. Алгоритм является генерическим.

Доказательство. Граф K_4 нельзя раскрасить в 3 цвета, значит, если он является подграфом некоторого графа, то сам граф также нельзя раскрасить тремя цветами.

Докажем, что множество графов, не содержащих подграфа K_4 (обозначим его G_n), является пренебрежимым.

Граф определяется своей матрицей смежности. Количество матриц
 смежности графов размера n - $|I_n|=2^{\frac{n(n-1)}{2}}$

$$|G_n| = |\{$$
графы размера
 n, матрицы смежности которых
не содержат подматрицы вида $J_{4\times 4} - E_4\}|$

В частности, на диагонали расположены n/4 подматрицы 4×4 , разрешенных вариантов по 2^6-1 .

Если мы рассмотрим множество матриц, где запрет наложен только на n/4 диагональных подматриц (обозначим множество G'_n), а не на все C_n^4 , то получим большее по мощности множество.

$$|G'_n| = (2^6 - 1)^{n/4} \cdot 2^{\frac{n(n-1)}{2} - \frac{6n}{4}} = (2^6 - 1)^{n/4} \cdot 2^{\frac{n^2 - 4n}{2}}$$

$$\mu(G') = \lim_{n \to \infty} \frac{|G'_n|}{|I_n|} = \lim_{n \to \infty} \frac{(2^6 - 1)^{n/4} \cdot 2^{\frac{n^2 - 4n}{2}}}{2^{\frac{n(n-1)}{2}}} = \lim_{n \to \infty} (2^6 - 1)^{n/4} \cdot 2^{-\frac{3}{2}n} = \lim_{n \to \infty} (\frac{2^6 - 1}{2^6})^{n/4} = 0$$

Получаем, что множество G' пренебрежимо. Очевидно, что G_n также пренебрежимо, ибо $G_n\subseteq G'_n$.