क्लासेज (Classes)

इसमें पाँच विभिन्न Field length के पैटर्न होते हैं जो प्रत्येक address की class को परिभाषित करते हैं। ये पाँच प्रकार ने हैं— के होते हैं-

- 1. Class A
- 2. Class B
- 3. Class C
- 4. Class D
- 5. Class E

	byte	1	byte 2	→	byte 3	—	byte 4	-
Class A	0 Netic	t			Hostid			
Class B	10	Netid				Hostid		
Class C	110	16.7	Netid				Hostid	
Class D	1110		Mult	ticast addr	ess			
Class E	1111		Reserv	ed for futu	ire use			

इन्टरनेट क्लासेज (Internet Classes)

उदाहरण 1-- निम्नलिखित address की क्लॉस क्या है?

(a) 10011101 10001111 1111110011 001111 (b) 11011101 10001111 11111100 11001111 (c) 0 1 1 1 1 0 1 1 10001111 11111100 11001111 (d) 11101011 10001111 11111100 11001111 10001111 1111100 (e) 11110101 11001111

हल-पहली बिट क्लास को परिभाषित करती है

- (a) Class B
- (b) Class C
- (c) Class A
- (d) Class D
- (e) Class E

	1100111	00001111	1110101	0011111	0000000	या गया है।
नाटशन में लिखिए	11111100	111111101	00000000	00001111	01111110	नम्बर में परिवर्तित किया गया है।
उदाहरण 2—निम्नलिखित को डॉटेड डेसीमल नोटेशन में लिखिए—	(a) 10011101 10001111	(b) 11011101 100011111	(c) 01011101 00011111	(d) 111111101 10001010	(e) 11111110 10000001	हल—हर बाइट को 0-255 के बीच डेसीमल नग

(a) 157.143.252.207
(b) 221.143.253.15
(c) 93.31.1.245
(d) 253.138.15.63
(e) 254.129.126.1

ट्रांसपोर्ट लेयर (Transport Layer)

🕦 (ट्रांसपोर्ट लेयर डाटा को उपर्युक्त host computer तक पहुँचाने का उत्तरदायित्व रखती है। इसमें डाटा के चार विभिन्न कार्य सम्मिलत होते हैं—

1. डाटा पैकेट्स बनाना

, 2. सोर्स तथा डेस्टीनेशन पोर्ट नम्बर को header में जोड़ना

भीटे नम्बर source तथा destination IP address के साथ नेटबंक socket की भाँति कार्य करता है। अत: process to process-communication फ लिए identification address है। OSI मॉडल में यह कार्य session लेयर द्वारा Support किया जाता है।

कुछ ट्रांसपीट लेयर प्रोटोकॉल जैसे TCP आभासी सर्किट या कनेक्शन ऑरिएण्टड कम्यूनिकेशन द्वारा डाटा पैकेट भेजती हैं। इस कनेक्शन Establishment में डाटा स्ट्रीम को पैकेट्स में विभाजित किया जाता है जिसे सैगमेन्ट, segment numbering तथा order of unordered data कहते हैं।

UDP भी बहुत सरल प्रोटोकॉल है परन्तु इसमें आभासी (mutual) परिपथ नहीं होते तथा न ही विश्वसनीय कम्यूनिकेशन होती हैं। UDP पैकेट्स को सैगमेन्ट के स्थान पर डाटाग्राम (Datagram) कहा जाता है।)

है। UDP कम समय में ज्यादा through put प्रदान करता है। इसलिए इसका प्रयोग Real time multimedia कर्म्यानिकेशन के मल्टीकास्टिंग तथा ब्रोडकास्टिंग के लिए प्रयोग किया जाता है। अत: host का अधिक मात्रा में Retransmission सम्भव नहीं / TCP कई प्रोटोकोल के लिए प्रयोग में लायी जाती है जिसमें HTTP तथा email transfer भी आता है। UDP को लिए किया जाता है।

जहाँ पर किसी कारण पैकेट का नुकसान स्वीकृत है—

Ex: IPTU, IP Telephony, Online computer games.

ट्रांसपोर्ट लेयर की सर्विस (Transport Layer Services)

ट्रांसपोर्ट लेयर की सर्विस की काफी लम्बी सूची है जो वैकल्पिक तौर पर ट्रांसपोर्ट लेयर द्वारा प्रदान की जाती है। इनमें से कोई भी अति आवश्यक नहीं है क्योंकि हर अनुप्रयोगों में हर सर्विस की आवश्यकता नहीं होती है।

मॉडल के साथ deal करते हैं। क्योंकि नेटवर्क लेयर केवल कनेक्शन लैस सर्विस प्रदान करती है। ट्रांसपोर्ट लेयर अधिक कनेक्शन ऑरिएण्टेड (Connection Oriented) अयह ज्यादातर काफी सरल होता है जब हम कनेक्शन लैस सर्विस कनेक्शन ओरिएण्टेड सर्विस प्रदान करती है। 🕽

अर्ह (एकसमान क्रम में डिलीवेरी (same order delivery) नेटवर्क सामान्यत: इस बात की गारण्टी नहीं लेती कि जो पैकेट्स पहुँचेने वाले हैं, वे सभी उसी क्रम में पहुँचेंगे, जिस क्रम में भेजे गये हैं। परन्तु यह एक वांछनीय अभिलक्षण है जिसे ट्रांसपोर्ट लेयर प्रदान करती है। यह कार्य पूर्ण करने का सबसे सरल तरीका यह है कि सभी पैकेट्स को एक संख्या दे दी जाये तथा रिसीवर पर उन्हें क्रम में कर लिया जाये।

क्योंकि इन सभी में नेटबर्क कनजैस्शन (Network Congestion) होता है। पैकेट्स इन्टरफ्रैन्स तथा नॉइस के कारण ईथर नेट में भी खो तथा corrupted हो सकते हैं। क्योंकि ईथर नेट corrupted packet को पुन: ट्रांसिमट नहीं करता है) कुछ ट्रांसपोर्ट विश्वसनीय डाटा (Reliable data) स्पेकेट्स का राऊटर, स्विच, ज्ञिज तथा हॉस्ट के कारण नुकसान भी हो सकता है लेयर उदाहरणत: TCP इस बात को निश्चित कर सकती है जिसके लिए वह ऐरर करैक्शन कोड का प्रयोग करती है। Check sum तथा Automatic repeat request schemes का प्रयोग lost या corrupted डाटा के पुन: ट्रांसमिशन के लिए किया जाता है हिंसपोर्ट लेयर में Segment Numbering की सहायता से पैकेट्स के क्रम में व्यवस्थित किया जा सकता है। त्रुटिरहित डाटा र्रसीवर पर पहुँचाना असम्भव है। परन्तु यह सम्भव है कि undetected error को कम किया जा सके।)

मैमोरी सस्ती है जबकि बैण्डविड्य तुलना के आधार पर महंगी है।[फिलो कन्ट्रोल रिसीवर को overflow से बचाता है। फलो कन्टोल (Flow control) - किसी भी कम्प्यूटर में मैमोरी की मात्रा सीमित होती है। फ्लो कन्ट्रोल के बिना किसी भी कम्प्यूटर में इतना डाटा आ सकता है कि कम्प्यूटर उसे आसानी से नहीं रख सकता है। आजकल यह बड़ा केस नहीं है। कभी-कभी यह नेटवर्क द्वारा पहले ही प्रदान किया जाता है परन्तु जहाँ यह नहीं होता ट्रांसपोर्ट लेयर इसको प्रदान करती है।)

बफर कुल होता है तथा यह पैकेट को drop करना प्रारम्भ कर देता है। Automatic repeat request नेटवर्क को congestion स्थिति में रख सकती है। कि स्थित congestion avoidance द्वारा avoid की जाती है जो फ्लो कन्ट्रोल में सहायता करती है जिसमें पैकेट धीरे-धीरे जाने शुरू होती है। यह बैण्डविड्य की खपत ट्रांसमिशन की शुरूआत में निचले स्तर पर करता है तथा कनजैस्थान अवाँड्डेन्स (Congestion avoidance) यिन्टवर्क कनजैस्थान तब होता है जब नेटवर्क नोड का quew यह खपत रीट्रांसमिशन के बाद भी कम होती है।

बाइट की तरह लेती है। यह Random Packet आकार के लिए अच्छी बोब्ह है। यह कम्यूनिकेशन मॉडल में rarely मैच होती बाइट ओरिएण्टेशन (Byte Orientation) (ट्रांसपोर्ट लेक्स पैकेट-टू-पैकेट पर आधारित न होकर यह डाटा स्ट्रीम को हैं।) ज्यादातर एक यूजर defined साइज के आकार के मैसेज का क्रम होता है।

पोर्ट (Ports)—TCP/IP मॉडल का मुख्य पार्ट है। पोर्ट Multiple entities को एक ही location में address करने के लिए आवश्यक है। उदाहरण - पोस्टल एड्रेस्स की पहली लाइन पोर्ट की तरह है जो एक ही घर के विधिन सदस्यों के लिए अलग-अलग है। एक नेटबर्क पर आधारित अधिक अनुप्रयोग प्रयोग में लाये जा सकते हैं।

सभी TCP/IP ट्रांसपोर्ट प्रोटोकॉल में तुलना (Comparison of TCP/IP Transport Protocols)

	UDP	TCP	DCCP	SCTP
पैकेट हैडर आकार	8 बाइट	20-60 बाइट	12 या 16 बाइट	12 बाइट +
				Variable Chink header
ट्रांसपोर्ट लेयर पैकेट एन्टीटी	Datagram	Segment	Datagram	Datagram
पोर्ट नम्बरिंग	Yes	Yes	Yes	Yes
ऐरर डिटेक्शन	Optional	Yes	Yes	Yes
विश्वसनियता	No	Yes	No	Yes
आभासी परिपथ	No	Yes	Yes	Optional
फ्लो कन्ट्रोल	No	Yes	Yes	Yes
कनजैस्थान अवॉइडेन्स	oN.	Yes	Yes	Yes
मल्टीपल स्ट्रीम	No	No	No	Yes
ECN Support	No	Yes	Yes	Yes
NAT friendly	Yes	Yes	Yes	No

OSI मॉडल कनेक्शन मोड ट्रांसपोर्ट प्रोटोकॉल की पाँच क्लॉस को परिभाषित करता है। जैसे TP0, TP1, TP2, TP3, TP41 हर class में अलग अभिलक्षण होता है। इसकी तुलना दी गयी है।

OSI ट्रांसपोर्ट प्रोटोकॉल्स में तुलना (Comparision of OSI Transport Protocols)

अभिलक्षण	TP0	TP1	TP2	TP3	TP4
कनक्शन ऑरिएण्टेड नेटबर्क	Yes	Yes	Yes	Yes	Yes
कनक्शन लेस नेटवर्क	No	No	No	No	Yes
Concatenation तथा सैपरेशन	No	Yes	Yes	Yes	Yes
एरर राकवरा	No	Yes	No	Yes	Yes
सैगमेन्टेशन तथा रीएसेम्बली	Yes	Yes	Yes	Yes	Yes
मल्टीप्लैक्सिग तथा रीमल्टीप्लैक्सिग ओवर सिंगल बर्चुअल सर्किट	No	No	Yes	Yes	Yes
Explicit फ्लो कन्ट्रोल	No	No	Yes	Yes	Yes
गैट्रांसमिशन ऑन टाइम आऊट	No	No	No	No	Yes
रीलाइबल ट्रांसपोर्ट सर्विस	No	Yes	No	Yes	Yes