Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

Содержание

1	Раз	Разностные уравнения			
	1.1	Однородные линейные разностные уравнения	2		
	1.2	Минимальная ЛОРУ: метод аннигиляторов	3		
	1.3	Неоднородные линейные разностные уравнения	4		
	1.4	Системы разностных уравнений	6		
2	П первого порядка. Инварианты характеристик	8			
	2.1	Вводная информация и единый алгоритм	8		
		2.1.1 Единый алгоритм (5 шагов)			
	2.2	Как быстро находить I_1 : детерминированные «детекторы»			
	2.3	Как добирать I_2 : стандартные ветки	9		
3	Нел	инейные 2D-системы: равновесия, линеаризация, негиперболика	9		
	3.1	Где применяется метод линеаризации (признаки «наш случай»)	10		
	3.2	Единый 5-шаговый алгоритм (используем во всех примерах)	10		

Разностные уравнения 1

Определение

Разностное уравнение — соотношение между элементами последовательности (или векторной последовательности), задающее правило перехода от шага $t \times t+1$ или к нескольким последующим шагам. В этом разделе: ЛОРУ (линейные однородные разностные уравнения) и их расширения.

Однородные линейные разностные уравнения

Пример. Решите однородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 0 (1)$$

Определение. Линейное однородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = 0, \quad c_k \neq 0$$
 (2)

Пара «уравнение + k начальных условий» задаёт единственное решение.

Идея решения: метод характеристических корней. Полагаем $a_t = r^t \Rightarrow$

$$r^{t}(1 + c_{1}r^{-1} + c_{2}r^{-2} + \dots + c_{k}r^{-k}) = 0 \iff r^{k} + c_{1}r^{k-1} + \dots + c_{k} = 0$$
(3)

т.е. характеристический многочлен $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k$. Его корни целиком описывают форму общего решения.

Обозначения

• $p_i(t), q_i(t)$ — полиномы по t степени $\leq j$

Таблица 1: Выбор формы решения по типу корней характеристического многочлена

Условия на корни	Вклад в решение
Действительный корень r кратности $m \geq 1$	$p_{m-1}(t) r^t$
Комплексно-сопряжённая пара $\rho e^{\pm i\theta}$ кратности $s \geq 1$	$\rho^{t}(p_{s-1}(t)\cos(\theta t) + q_{s-1}(t)\sin(\theta t))$

Итоговое общее решение — сумма форм всех корней:

$$a_t = \sum_j p_{m_j-1}(t) r_j^t + \sum_k \rho_k^t (p_{s_k-1}(t) \cos(\theta_k t) + q_{s_k-1}(t) \sin(\theta_k t)),$$

где r_j — действительные корни кратности $m_j,\, \rho_k e^{\pm i \theta_k}$ — комплексно-сопряжённые корни кратности s_k . Сумма кратностей всех корней равна порядку k.

Начальные условия: подставляем $t = 0, 1, \dots, k-1$ в общий вид, решаем линейную систему на α -коэффициенты.

Алгоритм решения однородных разностных уравнений.

- Шаг 1: Нормализация: привести уравнение к виду $a_t + \sum_{j=1}^k c_j a_{t-j} = 0, c_k \neq 0$. Шаг 2: Характеристический многочлен: записать $\chi(r) = r^k + c_1 r^{k-1} + \cdots + c_k$.
- **Шаг 3:** Корни и кратности: найти корни r и их кратности m ($\sum m = k$).
- Шаг 4: Общий вид решения (см. таблицу 1): для каждого корня/пары взять соответствующий вклад из таблицы и сложить их.
- **Шаг 5:** Подгонка под начальные условия: подставить k заданных значений подряд и решить линейную систему для постоянных.

Минимальная ЛОРУ: метод аннигиляторов

TL:DR

Минимальная ЛОРУ (линейное однородное разностное уравнение с постоянными коэффициентами), для которой данные последовательности являются решениями, строится так:

- 1. к каждой заданной последовательности приписать аннигилятор (многочлен от E);
- 2. взять НОК этих аннигиляторов как многочлен $L(\lambda)$;
- 3. развернуть L(E) y = 0 в явную рекурренту. Степень L минимальный порядок.

Методика

Пусть даны частные решения $y^{(1)}, \ldots, y^{(m)}$.

 $\mathbf{A}\mathbf{T}\mathbf{o}\mathbf{m} o \mathbf{a}\mathbf{h}\mathbf{h}\mathbf{u}\mathbf{r}\mathbf{u}\mathbf{n}\mathbf{s}\mathbf{T}\mathbf{o}\mathbf{p}$. Для каждой последовательности выпишите минимальный аннигилируюший многочлен:

Таблица 2: Атом \rightarrow аннигилятор

Атом (последовательность)	Минимальный аннигилятор $L(\lambda)$
r^t	$(\lambda - r)$
$t^k r^t$	$(\lambda - r)^{k+1}$
$\rho^t \cos(\omega t), \rho^t \sin(\omega t)$	$Q_{\rho,\omega}(\lambda) = \lambda^2 - 2\rho\cos\omega\lambda + \rho^2$
$t^k \rho^t \cos / \sin(\omega t)$	$Q_{\rho,\omega}(\lambda)^{k+1}$
t^k	$(\lambda-1)^{k+1}$
$(-1)^t$	$(\lambda + 1)$

2. Собрать общий аннигилятор. Возьмём НОК (наименьший общий кратный) всех многочленов из шага 1:

$$L(\lambda) = \operatorname{lcm}(L_1(\lambda), \dots, L_m(\lambda)).$$

При одинаковых базах/частотах выбирается максимальная кратность (а не сумма).

3. Развернуть в рекуррент. Если $L(\lambda) = \lambda^k + c_1 \lambda^{k-1} + \dots + c_k$, то искомое уравнение:

$$y_{t+k} + c_1 y_{t+k-1} + \dots + c_k y_t = 0$$

Минимальность. Любой многочлен P(E), который зануляет все данные последовательности, обязан делиться на L(E). Поэтому $\deg L$ — минимально возможный порядок.

Простой пример. Дано: $y_t^{(1)} = 3^t$, $y_t^{(2)} = (-2)^t$.

Шаг 1: Аннигиляторы: $(\lambda - 3)$ и $(\lambda + 2)$.

Шаг 2: НОК: $(\lambda - 3)(\lambda + 2) = \lambda^2 - \lambda - 6$. Шаг 3: Развёртка: $y_{t+2} - y_{t+1} - 6y_t = 0$.

Проверка: обе последовательности являются решениями; порядок 2 минимален.

Пример посложнее. Дано: $y_t^{(1)} = 2^t$, $y_t^{(2)} = t2^t$, $y_t^{(3)} = (-1)^t$, $y_t^{(4)} = 3^t \cos \frac{\pi t}{2}$.

- **1. Аннигиляторы:** Для 2^t : $(\lambda 2)$. Для $t2^t$: $(\lambda 2)^2$. Для $(-1)^t$: $(\lambda + 1)$. Для $3^t \cos \frac{\pi t}{3}$: $Q_{3,\pi/3}(\lambda) =$ $\lambda^2 - 3\lambda + 9$.
- **2. НОК:** Учитываем максимальную кратность по базе 2: $L(\lambda) = (\lambda 2)^2(\lambda + 1)(\lambda^2 3\lambda + 9)$.
- **3. Развёртка:** Сначала $(\lambda-2)^2(\lambda+1)=(\lambda^2-4\lambda+4)(\lambda+1)=\lambda^3-3\lambda^2+4$. Затем умножаем на $\lambda^2-3\lambda+9$ и получаем $L(\lambda)=\lambda^5-6\lambda^4+18\lambda^3-23\lambda^2-12\lambda+36$. Отсюда рекуррентное соотношение: $y_{t+5} - 6y_{t+4} + 18y_{t+3} - 23y_{t+2} - 12y_{t+1} + 36y_t = 0$

3

Комментарий: это и есть минимальная ЛОРУ, аннигилятор которой равен $L(\lambda)$.

1.3 Неоднородные линейные разностные уравнения

Пример. Решите неоднородное линейное разностное уравнение:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t (4)$$

Определение. Линейное неоднородное разностное уравнение порядка k с постоянными коэффициентами:

$$a_t + c_1 a_{t-1} + c_2 a_{t-2} + \dots + c_k a_{t-k} = f(t), \quad c_k \neq 0$$
 (5)

где f(t) — заданная функция (неоднородность).

Структура общего решения: $a_t = a_t^{(h)} + a_t^{(p)}$, где:

- $a_t^{(h)}$ общее решение однородного уравнения (см. раздел 1.1)
- $a_t^{(p)}$ частное решение неоднородного уравнения

Метод неопределённых коэффициентов для $a_t^{(p)}$.

Пусть характеристический многочлен однородного уравнения:

$$\chi(r) = r^k + c_1 r^{k-1} + \dots + c_k$$
 u $\chi(r) = \prod_i (r - r_i)^{m_i} \prod_{\ell} Q_{\rho_{\ell}, \theta_{\ell}}(r)^{s_{\ell}},$

где

$$Q_{\rho,\theta}(r) = (r - \rho e^{i\theta})(r - \rho e^{-i\theta}) = r^2 - 2\rho\cos\theta \, r + \rho^2.$$

Правило «множитель \to вклад» (однородная часть):

- Линейный $(r-r_0)^m \Rightarrow \sum_{j=0}^{m-1} \alpha_j t^j r_0^t$.
- Квадратный $Q_{\rho,\theta}(r)^s \Rightarrow \rho^t \Big(\sum_{j=0}^{s-1} t^j \big(a_j \cos(\theta t) + b_j \sin(\theta t) \big) \Big).$

Итог: $a_t^{(h)}$ — сумма всех таких вкладов по всем множителям χ .

Выбор формы частного решения $a_t^{(p)}$:

Обозначения

- $P_n(t)$ полином степени n
- $Q_n(t), R_n(t)$ полиномы
- $\lambda \in \mathbb{C}$ комплексное число
- s кратность резонанса (кратность соответствующего множителя в χ)

Таблица 3: Выбор формы частного решения и проверка резонанса

\mathbf{H} еоднородность $f(t)$	Проверка резонанса	Базовая форма $a_t^{(p)}$
$P_n(t) \lambda^t$	$\chi(\lambda) = 0?$	$Q_n(t) \lambda^t$
$\rho^t \cos(\theta t), \rho^t \sin(\theta t)$	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^t (A\cos(\theta t) + B\sin(\theta t))$
$P_n(t) \rho^t \cos(\theta t)$ (или \sin)	$Q_{\rho,\theta}(r) \mid \chi(r)$?	$\rho^{t}(Q_{n}(t)\cos(\theta t) + R_{n}(t)\sin(\theta t))$
Чистый полином $P_n(t)$	$\chi(1) = 0?$	$Q_n(t)$

Правило резонанса: если проверка даёт резонанс кратности s, домножьте базовую форму на t^s .

Алгоритм решения неоднородного уравнения.

- **Шаг 1:** Однородная часть: найти $a_t^{(h)}$ методом характеристических корней (см. раздел 1.1).
- **Шаг 2:** Форма частного решения: по таблице 3 выбрать форму $a_t^{(p)}$ с учётом правила резонанса.
- **Шаг 3:** Подстановка: подставить $a_t^{(p)}$ в исходное неоднородное уравнение и найти неопределённые коэффициенты.

4

Шаг 4: Общее решение: $a_t = a_t^{(h)} + a_t^{(p)}$.

Шаг 5: Начальные условия: подставить k заданных значений и найти константы в $a_t^{(h)}$.

Пример. Решите разностное уравнение третьего порядка с постоянными коэффициентами:

$$y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t = 2^t + t$$

Найти общее решение y_t .

Решение.

1) Однородная часть. Характеристический многочлен:

$$\chi(r) = r^3 - 3r^2 + 6r - 4 = (r - 1)(r^2 - 2r + 4),$$

корни: $r_1 = 1$, $r_{2.3} = 1 \pm i\sqrt{3} = 2e^{\pm i\pi/3}$.

Отсюда

$$y_t^{(h)} = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right).$$

2) Частное решение $y_t^{(p)}$. Правая часть $f(t) = 2^t + t - \text{сумма двух типов.}$

Экспонента 2^t : $\chi(2) = 8 - 12 + 12 - 4 = 4 \neq 0 \Rightarrow$ резонанса нет, берём $y_{(1)}^{(p)} = \alpha 2^t$.

Полином t: $\chi(1)=0$ (кратность 1) \Rightarrow резонанс порядка s=1. Базовая форма для $P_1(t)-At+B$, домножаем на t:

$$y_{(2)}^{(p)} = t(At + B) = At^2 + Bt.$$

Итого

$$y_t^{(p)} = \alpha 2^t + At^2 + Bt.$$

3) Подстановка и определение коэффициентов. Обозначим линейный оператор:

$$\mathcal{L}[y_t] = y_{t+3} - 3y_{t+2} + 6y_{t+1} - 4y_t.$$

Для экспоненты: $\mathcal{L}[2^t]=\chi(2)\,2^t=4\cdot 2^t\Rightarrow 4\alpha\,2^t=2^t,$ значит $\alpha=\frac{1}{4}.$

Для полинома At^2+Bt прямой подсчёт даёт:

$$\mathcal{L}[At^2 + Bt] = 6At + (3A + 3B).$$

Требуем $\mathcal{L}[At^2 + Bt] = t$, откуда

$$6A=1\Rightarrow A=\tfrac{1}{6}, \qquad 3A+3B=0\Rightarrow B=-\tfrac{1}{6}.$$

Следовательно,

$$y_t^{(p)} = \frac{1}{4} 2^t + \frac{t^2 - t}{6}.$$

4) Общее решение.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{3} + C_3 \sin \frac{\pi t}{3} \right) + \frac{1}{4} 2^t + \frac{t^2 - t}{6}$$

(константы C_1, C_2, C_3 находятся по начальным условиям).

Системы разностных уравнений

Пример (вход в тему). Решите систему:

$$\begin{cases} x_{t+1} = 4x_t + y_t, \\ y_{t+1} = 2y_t, \end{cases} \mathbf{x}_0 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

 $\begin{cases} x_{t+1}=4x_t+y_t,\\ y_{t+1}=2y_t, \end{cases} \quad \mathbf{x}_0=\begin{pmatrix} 1\\1 \end{pmatrix}.$ Запишем в матричном виде: $\mathbf{x}_{t+1}=A\mathbf{x}_t, \ A=\begin{pmatrix} 4&1\\0&2 \end{pmatrix}, \ \mathbf{x}_t=\begin{pmatrix} x_t\\y_t \end{pmatrix}.$

Определение

(Общий вид) Линейная система разностных уравнений первого порядка:

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + \mathbf{f}_t$$
, $A \in \mathbb{R}^{n \times n}$, $\mathbf{x}_t \in \mathbb{R}^n$, $\mathbf{f}_t \in \mathbb{R}^n$.

Цель: найти \mathbf{x}_t . Обозначим фундаментальную матрицу однородной части $\Phi_t := A^t$.

Базовые формулы (запомнить!)

$$\mathbf{x}_t = \underbrace{A^t \mathbf{x}_0}_{\text{однородная часть}} + \underbrace{\sum_{k=0}^{t-1} A^{t-1-k} \mathbf{f}_k}_{\text{неоднородная свёртка}} \quad (t \ge 1).$$

Частный случай $\mathbf{f}_t \equiv \mathbf{b}$ (постоянный вектор):

$$\mathbf{x}_t = A^t \mathbf{x}_0 + \Big(\sum_{k=0}^{t-1} A^k\Big) \mathbf{b}$$
 = $\begin{cases} A^t \mathbf{x}_0 + (I - A^t)(I - A)^{-1} \mathbf{b}, & I - A \text{ обратима,} \\ A^t \mathbf{x}_0 + (\text{резонанс при } \lambda = 1), & \text{иначе (см. ниже).} \end{cases}$

Дерево выбора метода для A^t (одинаково для однородных/неоднородных)

- Разные действительные корни ⇒ Диагонализация.
- Повторный корень, недостаточно собственных векторов \Rightarrow Жордан: $A = \lambda I + N, N^m = 0$.
- Комплексная пара ⇒ Реальный поворот–масштаб.
- Матрица 2×2 (любой случай) \Rightarrow часто быстрее **Кэли–Гамильтон**.

0. Неоднородные сразу: вариация постоянных (универсально)

Алгоритм вариации постоянных.

- 1. Найти $\Phi_t = A^t$ (любой из разделов 1–4 ниже).
- 2. Положить $\mathbf{x}_t = \Phi_t \mathbf{c}_t$. Тогда $\Phi_{t+1} \mathbf{c}_{t+1} = A \Phi_t \mathbf{c}_t + \mathbf{f}_t = \Phi_{t+1} \mathbf{c}_t + \mathbf{f}_t$.
- 3. Получаем рекурренту на параметры: $\mathbf{c}_{t+1} \mathbf{c}_t = \Phi_{t+1}^{-1} \mathbf{f}_t$
- 4. Отсюда $\mathbf{c}_t = \mathbf{c}_0 + \sum_{k=0}^{t-1} \Phi_{k+1}^{-1} \mathbf{f}_k, \quad \mathbf{c}_0 = \mathbf{x}_0.$

5. Mtor:
$$\mathbf{x}_t = \Phi_t \mathbf{x}_0 + \sum_{k=0}^{t-1} \Phi_t \Phi_{k+1}^{-1} \mathbf{f}_k = A^t \mathbf{x}_0 + \sum_{k=0}^{t-1} A^{t-1-k} \mathbf{f}_k$$

 $O\partial nopo\partial nuĭ$ случай $\mathbf{f}_t \equiv 0$ получается автоматом: просто исчезает шаг 3 и суммирование.

Шорткаты по правой части (быстрое $y^{(p)}$ как в скаляре)

- $\mathbf{f}_t \equiv \mathbf{b}$. Если I-A обратима: $\mathbf{x}^{(p)} = \mathbf{x}_*$ постоянно, где $(I-A)\mathbf{x}_* = \mathbf{b}$.
- $\mathbf{f}_t = \lambda^t \mathbf{b}$. Пробуем $\mathbf{x}_t^{(p)} = \lambda^t \mathbf{y}$. Если $\det(\lambda I A) \neq 0$, то $(\lambda I A) \mathbf{y} = \mathbf{b}$. Если $\det(\lambda I A) = 0$ (**резонанс**), умножаем на t: $\mathbf{x}_{t}^{(p)} = t \, \lambda^{t} \mathbf{y}$ (для кратности 1); при большей кратности — $t^{s} \lambda^{t}$.

1. Диагонализация (разные действительные корни)

Алгоритм. $A = S\Lambda S^{-1}$, $\Lambda = \operatorname{diag}(\lambda_i) \Rightarrow A^t = S\Lambda^t S^{-1}$, $\Lambda^t = \operatorname{diag}(\lambda_i^t)$.

Мини-пример. $A=\begin{pmatrix}4&1\\0&2\end{pmatrix}\Rightarrow A^t=\begin{pmatrix}4^t&\frac{4^t-2^t}{2}\\0&2^t\end{pmatrix}$. Тогда для $\mathbf{f}_t=\lambda^t\mathbf{b}$ можно либо свёрткой, либо шорткатом: найти \mathbf{y} из $(\lambda I-A)\mathbf{y}=\mathbf{b}$.

2. Жордан (повторный корень, недостаёт базиса)

Если $A = \lambda I + N, \ N^m = 0,$ то

$$A^{t} = \lambda^{t} \sum_{k=0}^{m-1} {t \choose k} (\lambda^{-1} N)^{k}.$$

Часто m = 2: $A^t = \lambda^t (I + \frac{t}{\lambda} N)$.

Мини-пример. $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \Rightarrow A^t = 2^t \begin{pmatrix} 1 & \frac{t}{2} \\ 0 & 1 \end{pmatrix}$. Для $\mathbf{f}_t \equiv \mathbf{b}$: $\sum_{k=0}^{t-1} A^k$ удобно считать той же формулой (бином по N).

3. Комплексная пара (реальный поворот-масштаб)

Если собственные $\lambda = \rho e^{\pm i\theta}$ (для 2×2 : $(\operatorname{tr} A)^2 - 4 \det A < 0$), то

$$A^t =
ho^t egin{pmatrix} \cos t heta & -\sin t heta \ \sin t heta & \cos t heta \end{pmatrix}$$
 (после приведения к блоку).

Далее применяем общую свёртку или шорткаты по \mathbf{f}_t .

4. Кэли–Гамильтон (особенно быстро для 2×2)

Если $\chi_A(\lambda) = \lambda^2 - (\operatorname{tr} A)\lambda + \det A$, то

$$A^{t+2} = (\operatorname{tr} A)A^{t+1} - (\det A)A^{t}$$

Ищем $A^t = \alpha_t A + \beta_t I$ и решаем скалярную рекурренту (начальные $\alpha_0 = 0, \beta_0 = 1; \alpha_1 = 1, \beta_1 = 0$). Готовые формулы: при $\lambda_1 \neq \lambda_2, \ \alpha_t = \frac{\lambda_1^t - \lambda_2^t}{\lambda_1 - \lambda_2}, \ \beta_t = \frac{\lambda_1 \lambda_2^t - \lambda_2 \lambda_1^t}{\lambda_1 - \lambda_2};$ при $\lambda_1 = \lambda_2 = \lambda$: $\alpha_t = t \lambda^{t-1}, \ \beta_t = (1-t)\lambda^t$.

5. Готовый полноценный пример (неоднородный, все шаги)

Геометрическая правая часть без резонанса.

$$\mathbf{x}_{t+1} = A\mathbf{x}_t + 3^t\mathbf{b}, \qquad A = \begin{pmatrix} 4 & 1 \\ 0 & 2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}.$$

Метод 1 (быстрый шорткат «экспонента»). Пробуем частное решение вида $\mathbf{x}_t^{(p)} = 3^t \mathbf{y}$. Подставляем:

$$3^{t+1}\mathbf{y} = A(3^t\mathbf{y}) + 3^t\mathbf{b} \iff (3I - A)\mathbf{y} = \mathbf{b}.$$

Проверка нерезонансности: $\det(3I - A) = \det\begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \neq 0$. Решаем $(3I - A)\mathbf{y} = \mathbf{b}$:

$$\begin{pmatrix} -1 & -1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \implies y_2 = 1, \ -y_1 - y_2 = 0 \Rightarrow y_1 = -1.$$

Значит $\mathbf{y} = \begin{pmatrix} -1\\1 \end{pmatrix}$ и

$$\boxed{\mathbf{x}_t^{(p)} = 3^t \binom{-1}{1}}.$$

Общий вид решения: $\mathbf{x}_t = A^t \mathbf{C} + 3^t \binom{-1}{1}$. Подбор \mathbf{C} по начальному условию: $\mathbf{x}_0 = \mathbf{C} + 1 \cdot \binom{-1}{1} \Rightarrow \mathbf{C} = \mathbf{x}_0 - \binom{-1}{1}$. Итог:

$$\mathbf{x}_t = A^t \left(\mathbf{x}_0 - \begin{pmatrix} -1\\1 \end{pmatrix} \right) + 3^t \begin{pmatrix} -1\\1 \end{pmatrix}$$

Явный вид через A^t . Здесь

$$A^t = \begin{pmatrix} 4^t & \frac{4^t - 2^t}{2} \\ 0 & 2^t \end{pmatrix}.$$

Отсюда (покомпонентно)

$$x_{t} = 4^{t}(x_{0} + 1) + \frac{4^{t} - 2^{t}}{2}(y_{0} - 1) - 3^{t},$$
$$y_{t} = 2^{t}(y_{0} - 1) + 3^{t}.$$

Проверка: подстановка в $\mathbf{x}_{t+1} = A\mathbf{x}_t + 3^t\mathbf{b}$ даёт тождества.

2 ПЧП первого порядка. Инварианты характеристик

Определение

Линейное ПЧП первого порядка в \mathbb{R}^3 — уравнение вида $a(x,y,z)\,u_x+b(x,y,z)\,u_y+c(x,y,z)\,u_z=0$, где a,b,c — непрерывные функции. Метод характеристик приводит к ОДУ-системе $\dot{x}=a(x,y,z),\ \dot{y}=b(x,y,z),\ \dot{z}=c(x,y,z).$

2.1 Вводная информация и единый алгоритм

Рассматриваем линейное ПЧП первого порядка в \mathbb{R}^3 :

$$a(x, y, z) u_x + b(x, y, z) u_y + c(x, y, z) u_z = 0,$$

где a, b, c — непрерывны. Метод характеристик приводит к ОДУ-системе

$$\dot{x} = a(x, y, z), \quad \dot{y} = b(x, y, z), \quad \dot{z} = c(x, y, z).$$

Определение

Инвариант (первый интеграл) I(x,y,z) — это C^1 -функция, постоянная вдоль характеристик, т.е.

$$\frac{d}{ds}I(x(s), y(s), z(s)) = \nabla I \cdot (a, b, c) = aI_x + bI_y + cI_z = 0.$$

Общее решение ПЧП имеет вид $u=F(I_1,I_2),$ где I_1,I_2 — два независимых инварианта.

Единый алгоритм (5 шагов)

1. **Цель.** Распознать форму и записать *характеристики*.

Действие. Выписать $\dot{x}=a,\ \dot{y}=b,\ \dot{z}=c$ и безпараметрические равенства $\frac{dx}{a}=\frac{dy}{b}=\frac{dz}{c}$.

2. **Цель.** Найти первый инвариант I_1 .

 $\frac{dy}{dx} = \frac{b}{a}$, получить семейство кривых уровня $\Phi_1(x,y) = \mathrm{const}$, **Действие.** Решить одну пару, напр. $\frac{dy}{dx}$ положить $I_1 = \Phi_1$ (или любой эквивалент).

3. Цель. Найти второй инвариант I_2 .

Действие. Зафиксировать $I_1=\mathrm{const}$ (т.е. связь $y=\Psi(x;I_1)$) и решить ОДУ по z из $\frac{dz}{dx}=$ $\frac{c(x,\Psi(x;I_1),z)}{a(x,\Psi(x;I_1))}.$

- Если $c \equiv 0$, взять $I_2 = z$.
- Если $c = \alpha(x,y) z + \beta(x,y)$, получаем линейное ОДУ $z' = \tilde{\alpha}(x;I_1)z + \tilde{\beta}(x;I_1)$. Интегрирующий множитель $M(x; I_1) = \exp(-\int \tilde{\alpha} dx)$, и

$$I_2 = z M(x; I_1) - \int \tilde{\beta}(x; I_1) M(x; I_1) dx$$

- константа вдоль характеристики.
- \bullet Если отделяется z разделить переменные и получить интегральный инвариант.
- 4. Цель. Сформировать общее решение.

Действие. Записать $u = F(I_1, I_2)$.

5. **Цель.** Проверить независимость I_1, I_2 .

Действие. Убедиться, что $dI_1 \wedge dI_2 \neq 0$ (или $\nabla I_1 \times \nabla I_2 \neq 0$) в рабочей области.

Как быстро находить I_1 : детерминированные «детекторы»

Сначала можно убрать общий ненулевой множитель: $(a,b) \sim (\tilde{a},\tilde{b})$ дают те же инварианты.

- Радиальный тип: $(a,b) = (x,y) \Rightarrow \frac{dy}{dx} = \frac{y}{x} \Rightarrow I_1 = \frac{y}{x}$. Вращение: $(a,b) = (y,-x) \Rightarrow y \, dy = -x \, dx \Rightarrow I_1 = x^2 + y^2$.
- ullet Диагональный линейный: $(a,b)=(lpha x,eta y)\Rightarrow I_1=rac{y}{x^{eta/lpha}}$
- Общий линейный однородный: $(a,b) = (\alpha x + \beta y, \ \gamma x + \delta y)$. Через левые собственные векторы M^{\top} : взять $\xi = \mathbf{w}_1 \cdot (x,y), \ \eta = \mathbf{w}_2 \cdot (x,y), \ \text{тогда} \ I_1 = \eta/\xi^{\lambda_2/\lambda_1}$. Альтернатива: подстановка v = y/xвсегда даёт $\frac{dv}{dx} = \frac{\Phi(v)}{x}$, интегрируется в логарифмах.
- Однородность одного порядка d: если $a(\lambda x, \lambda y) = \lambda^d a$ и $b(\lambda x, \lambda y) = \lambda^d b$, то v = y/x ведёт к $I_1 = x G(v)$.

Как добирать I_2 : стандартные ветки

- $c = \mu(x, y) z \Rightarrow z' = \tilde{\alpha}(x; I_1) z \Rightarrow I_2 = z \exp(-\int \tilde{\alpha} dx).$
- $c = \mu(x,y) \, z + \nu(x,y) \Rightarrow$ линейное ОДУ, формула выше с $\tilde{\beta} \not\equiv 0$.
- $c = \mu(x,y)$ (не зависит от $z) \Rightarrow I_2 = z \int \frac{\mu(x,\Psi(x;I_1))}{a(x,\Psi(x;I_1))} dx$.

3 Нелинейные 2D-системы: равновесия, линеаризация, негиперболика

Определение

Нелинейная 2D-система — автономная система вида $\dot{x} = f(x,y), \dot{y} = g(x,y),$ где $f,g \in C^1$. Метод линеаризации применяется для анализа положений равновесия и их типов.

Где применяется метод линеаризации (признаки «наш случай») 3.1

- Дано: автономная система $\dot{x} = f(x, y), \, \dot{y} = g(x, y), \, f, g \in C^1.$
- Спрашивают: положения равновесия, их тип и эскиз фазового портрета в окрестности.
- В точке(ах) равновесия Якоби $J=\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$ удовлетворяет $\det J\neq 0$ (гиперболическая точка).
- Если $\det J = 0$ или D = 0 это уже не M3 (негиперболика/граница случаев).

3.2 Единый 5-шаговый алгоритм (используем во всех примерах)

Шаг 1. Цель: найти все равновесия.

Действие: решить f(x, y) = 0, g(x, y) = 0.

Шаг 2. Цель: получить линеаризацию.

Действие: в каждой найденной точке вычислить Якоби J.

Шаг 3. Цель: классифицировать тип точки по числам.

Действие (единственное ветвление строго по знакам):

- Если $\det J < 0 \rightarrow$ седло (неустойч.).
- Если $\det J > 0$:
 - посчитать $D = \operatorname{tr}^2 4 \operatorname{det}$.
 - если D>0: tr $<0 \to$ устойч. узел, tr $>0 \to$ неустойч. узел;
 - если D < 0: tr $< 0 \rightarrow$ устойч. фокус, tr $> 0 \rightarrow$ неустойч. фокус.

Шаг 4. Цель: зафиксировать направления и устойчивость.

Действие: указать «куда текут» траектории (в/из точки) и, при седле, назвать две устойчивые/неустойчивые сепаратрисы (вдоль собственных направлений J).

Шаг 5. Цель: нарисовать локальный эскиз.

Действие: около каждой точки нанести тип (узел/фокус/седло), стрелки по устойчивости, грубо ориентируясь на нулевые изоклины f = 0, g = 0 для знаков \dot{x}, \dot{y} .

Замечание. Этот алгоритм является универсальным для анализа нелинейных 2D-систем и позволяет систематически подходить к решению задач на классификацию равновесных точек.