2018 Scheme

NITTE MEENAKSHI INSTITUTE OF TECHNOLOGY

An Autonomous Institution Approved by UGC/AICTE/Govt. of Karnataka Accredited by NBA (Tier – I) and NAAC 'A+' Grade Affiliated to Visveswaraya Technological University, Belagavi Post Box No. 6429, Yelahanka, Bengaluru – 560 064, Karnataka, India

Ν

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MID SEMESTER EXAMINATION-III

Course Title with code	Data Mining, 18CS54	Maximum Marks	30 Marks	
Date and Time	24/01/2022, 9.30am to 10.30am	No. of Hours	1.0	
Course Instructor(s)	Dr. Vijaya Shetty S, Dr. Sujata Joshi, Dr. Vani V			
Instructions to Students				
1. Answer any two full questions.				

2. Any missing data may assume suitably.

Q. No	Question	MAX MAR KS	C 0	B L	PO/ PSO
1. a	Draw a contingency table for the rules 1. {b} → {c}, 2. {a} → {d}, 3. {b} → {d} using the transactions shown in Table 1a. Table 1a. Market basket transactions.			3	1,2,3 /2
	Transaction ID Items Bought 1 $\{a,b,d,e\}$ 2 $\{b,c,d\}$ 3 $\{a,b,d,e\}$ 4 $\{a,c,d,e\}$ 5 $\{b,c,d,e\}$ 6 $\{b,d,e\}$ 7 $\{c,d\}$ 8 $\{a,b,c\}$ 9 $\{a,d,e\}$				
1. b	Use the contingency tables in 1.a to compute and rank the rules in decreasing order according to the following measures. i)Support. ii). Confidence. iii) Interest (X → Y) iv) IS (X → Y)			3	1,2,3
2. a				2	1,2,3 /2
2. b	Consider the dataset given in the Table2.b with five objects characterized by a single continuous feature. Table2.b Dataset			3	1,2, 3/2
	a b c d e				
	Feature 1 2 4 5 6				
	Apply the agglomerative algorithm with single-link cluster distance measures to produce a dendrogram tree. Note: $dist(c1,c2) = abs(c1-c2)$				

3. a	Construct FP tree for the Table 3a. Table 3a. Market ba	asket transactions		5	4	3	1,2, 3/2
	Transaction ID	Items Bought					312
	1	$\{a,b,d,e\}$					
	2	$\{b,c,d\}$					
	3	$\{a,b,d,e\}$					
	4	$\{a,c,d,e\}$					
	5	$\{b,c,d,e\}$					
	6	$\{b,d,e\}$					
	7	$\{c,d\}$					
	8	$\{a,b,c\}$					
	9	$\{a,d,e\}$					
	10	$\{b,d\}$					
3. b	Suppose that the data mining task is to clus location) into three clusters, where the point		resenting	10	5	3	1,2, 3/2
	A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9).						
	The distance function is Manhattan distance	e. Suppose initially we as	sign A1, A4,				
	and A7 as the center of each cluster, respec	ctively. Use the k-means a	lgorithm to				
	show						
	(a) the three cluster centers after the fi						
	(b) the final three clusters once the alg	gorithm converged.					

Faculty Signature	Course Co-Ordinator/Mentor Signature	HoD Signature			