

Overview

- 1. Bayesian Probabilities and Conjugacy
- 2. Graphical Models
- 3. The Sum-Product Algorithm
- 4. Bayesian Ranking: TrueSkill
- 5. Information Theory

Mathe III

Overview

- 1. Bayesian Probabilities and Conjugacy
- 2. Graphical Models
- 3. The Sum-Product Algorithm
- 4. Bayesian Ranking: TrueSkill
- 5. Information Theory

Mathe III

The Skill Rating Problem

Given:

□ **Match outcomes**: Orderings among k teams consisting of $n_1, n_2, ..., n_k$ players.

Tea	m	Score			
1st Red Team		50			
2nd Blue Team 40					
	Level	Gamertag	Avg. Life	Best Spree	Score
1st 😽	10	BlueBot	00:00:49	6	15
1st 🙋	7	SniperEye	00:00:41	4	14
1st 🔯	9	ProThepirate	00:01:07	3	13
1st	10	dazdemon	00:00:59	3	8
2nd 🔣	10	WastedHarry	00:00:41	4	17
2nd \tag	3	Ascla	00:00:37	2	10
2nd 🔫	9	Antidote4Losing	00:00:41	2	9
2nd 🐠	12	Blackknight9	00:00:48	3	4

	Level	Gamertag	Avg. Life	Best Spree	Score
1st 🥻	€ N/A	SniperEye	N/A	N/A	25
2nd	∭ N/A	xXxHALOxXx	N/A	N/A	24
3rd	N/A	AjaySandhu	N/A	N/A	15
3rd	N/A	AjaySandhu(G)	N/A	N/A	15
5th	N/A	Robert115	N/A	N/A	11
5th	N/A	TurboNegro84(G)	N/A	N/A	11
7th	N/A	TurboNegro84	N/A	N/A	5
8th	N/A	SniperEye(G)	N/A	N/A	1

Questions:

1. Skill s_i for each player such that $s_i > s_j \Leftrightarrow P(\text{Player } i \text{ wins}) > P(\text{Player } j \text{ wins})$

Mathe III

- 2. Global ranking among all players
- 3. Fair matches between teams of players

Two-Player Match Outcome Model

- **Simple Two-Player Games**: Our data is the identity i and j of the two players and the outcome $y \in \{-1, +1\}$ of a match between them
 - **Bradley-Terry Model (1952)**: Model of a win given skills s_i and s_i is

$$P(y = 1|s_i, s_j) = \frac{\exp(s_i)}{\exp(s_i) + \exp(s_j)} = \frac{\exp(s_i - s_j)}{1 + \exp(s_i - s_j)}$$

Thurstone Case V Model (1927): Model of a win given skills s_i and s_j is

 p_1

Logistic sigmoid in

skill difference

Ralph A. Bradley (1923 – 2001)

Louis Leon Thurstone (1887 – 1955)

Mathe III

Two-Team Match Outcome Model

■ **Team Assumption**: Skill of a team is the sum of the skill of its players

- Pro: Games where the team scores are additive (e.g., kill count in first-person shooter)
- Con: Games where the outcome is determined by a single player (e.g., fastest car in a race)
- Observation: Match outcomes correlate the skills of players
 - Same Team: Anti-correlated
 - Opposite Teams: Correlated

Mathe III

Multi-Team Match Outcome Model

■ **Possible Outcomes**: Permutations $y \in \{1,2,3\}^3$ of players

Easy to **sample** for given skills but computationally difficult to "invert"!

Mathe III

From Match Outcomes to Pairwise Rankings

- **Learning**: In the ranking setting, we observe multi-team match outcomes and want to infer the skills!
- **Idea**: Leverage the transitivity of the real line of latent scores!

Mathe III

Bayesianische Statistik

TrueSkill Factor Graphs

Bayesian Network

Factor Graph

Mathe III

(Approximate) Message Passing in TrueSkill Factor Graphs

TrueSkill Factor Graph

 $\mathcal{N}(s_i; \mu_i, \sigma_i^2)$

 $\mathcal{N}(p_i; s_i, \beta^2)$

$$\delta \left(t_i - \sum\nolimits_j p_j \right)$$

 $\delta\left(d_{i,j}-\left(t_i-t_j\right)\right)^{\blacksquare}$

Four Phases

- Pass prior messages (1)
- 2. Pass messages *down* to the team performances (2 to 3)
- Iterate the approximate messages on the pairwise team differences (4 to 9)
- 4. Pass messages back from *up* from team performances to player skill (10 12)

Since this is a *tree,* the algorithm is guaranteed to converge!

Mathe III

Message Update Equations

Gaussian Factor

$$m_{f \to x}(x) = \mathcal{N}(x; \mu, \sigma^2)$$

Weighted Sum Factor

$$m_{f\to z}(z) = \mathcal{N}\left(z; a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2\right)$$

Gaussian Mean Factor

$$m_{f\to y}(y) = \int \mathcal{N}(y; x, \beta^2) \cdot \mathcal{N}(x; \mu, \sigma^2) \, dx = \mathcal{N}(y; \mu, \sigma^2 + \beta^2)$$

Greater-Than Factor

Mathe III

Unit 13b -

$$\widehat{m}_{f \to x}(x) = \frac{\widehat{p}(x)}{m_{x \to f}(x)} = \frac{\mathcal{N}(x; \widehat{\mu}, \widehat{\sigma}^2)}{\mathcal{N}(x; \mu, \sigma^2)}$$

Mean and Vairiance of Statistik a truncated Gaussian $\mathcal{N}(x; \mu, \sigma^2)$

11/29

Truncated Gaussians

Truncated Gaussians. A truncated Gaussian given by $p(x) \propto \mathbb{I}(x > 0) \cdot \mathcal{N}(x; \mu, \sigma^2)$ has the following three moments

$$Z(\mu,\sigma) = \int_{-\infty}^{+\infty} p(x) \ dx = 1 - F(0;\mu,\sigma^2)$$
 Additive update that
$$E[X] = \int_{-\infty}^{+\infty} x \cdot p(x) \ dx = \mu + \sigma \cdot v\left(\frac{\mu}{\sigma}\right)$$
 Multiplicative update that
$$var[X] = \int_{-\infty}^{+\infty} (x - E[X])^2 \cdot p(x) \ dx = \sigma^2 \cdot \left(1 - w\left(\frac{\mu}{\sigma}\right)\right)$$
 goes to 1 as $\frac{\mu}{\sigma} \to \infty$

where the probit $F(t; \mu, \sigma^2) := \int_{-\infty}^{t} \mathcal{N}(x; \mu, \sigma^2) dx$ and

$$v(t) \coloneqq \frac{\mathcal{N}(t; 0, 1)}{F(t; 0, 1)} \blacktriangleleft \qquad \text{Converges to } -t \text{ as } t \to -\infty$$

$$w(t) \coloneqq v(t) \cdot [v(t) + t]$$

This can be generalized to an arbitrary interval [a, b] where the Gaussian is truncated!

Mathe III

Decision Making: Match Quality and Leaderboards

- Match Quality: Decide if two players i and j should be matched
 - Idea: Pick the pair (i,j) where the two players have equal skills

Quality
$$(i, j) = \frac{P(p_i \approx p_j | \mu_i - \mu_j, \sigma_i^2 + \sigma_j^2)}{P(p_i \approx p_j | \mu_i - \mu_j = 0, \sigma_i^2 + \sigma_j^2 = 0)}$$

- Observation: This pair (i,j) approximately maximizes the information (entropy!) of the predicted match outcome because it gets closest to 50% winning probability
- Leaderboard: Decide how to display the best to worst player
 - Observation: There is an asymmetry in making a ranking mistake
 - Cheap: Ranking a truly good player lower than they should be (why?)
 - Expensive: Ranking a truly bad player higher than they should be (why?)
 - The loss minimizer of this decision process is a **quantile** $\mu k \cdot \sigma$

Mathe III

Skill Dynamics

- **Dynamics**: In reality, skills of players evolve over time and are not stationary
 - Idea: Since we do not know which direction, assume that the skill of player i at time t depends on the skill of the same player at time t-1 via

Mathe III

TrueSkill Through Time: Message Schedule

Four Phases

- Prior (1): Send prior messages to each skill variable for the first year of a player
- 2. Annual Matches (2-11): Loop over all (2-player) matches in a year until the skill marginals for all active player in that year does not change (much) anymore
- 3. Forward Dynamics (12): Send skill dynamics messages forward in time from t to t+1 and keep running step 2. (13 17).
- **4. Backward Dynamics (18)**: Send skill dynamics messages backward in time from year t + 1 to t and keep running step 2. (2-11)

Mathe III

Unit 13b – Bayesianische Statistik

 Stop when no variable in the outer loop changes much anymore.

15/29

TrueSkill-Through-Time: Chess Players

History of Chess3.5M match outcomes
20 million variables
40 million factors

Mathe III

Overview

- 1. Bayesian Probabilities and Conjugacy
- 2. Graphical Models
- 3. The Sum-Product Algorithm
- 4. Bayesian Ranking: TrueSkill
- 5. Information Theory

Mathe III

Motivating Example: Information and Coin Tosses

Scenario 1:

- \Box A coin toss with uncertain outcome modelled via $X \sim \text{Ber}(p)$
- h(x; p) is the information/surprise received when you observe the value of x
- Question:
 - How much is h(1; 1) when the success probability was 100%?
 - What's the relation between h(1; p = 99%) and h(1; q = 1%)?
- □ **Conclusion**: h(x) is monotonically decreasing in p(x)

Scenario 2:

- Two independent coins are tossed modelled via $p(x, y) = p(x) \cdot p(y)$
- **Question**: In what relation does h(x, y) stand to h(x) and h(y)?
- □ **Conclusion**: If $p(x, y) = p(x) \cdot p(y)$ then h(x, y) = h(x) + h(y)

$$h(x) = -\log_b(p(x))$$

Mathe III

Measure of Information: Entropy

Entropy. The entropy of a random variable X is the average level of information inherent to the variables outcomes and is defined by (b > 1)

$$H_b[X] := -\sum_{x} P(X = x) \cdot \log_b (P(X = x))$$
$$= E_{x \sim P} [-\log_b (p(x))]$$

- **Khinchin (1957)**. *Entropy* H[X] *as a* measure of information *of a random variable X follows from the following four axioms:*
 - 1. H[X] depends only on the probability distribution of X.
 - 2. H[X] is maximal for the uniform distribution P(X).
 - 3. H[Y] = H[X] if X and Y have the same non-zero probabilities.
 - 4. For any random variables X and Y,

$$H[X,Y] = H[X] + \underbrace{\sum_{x} P(X=x) \cdot H[Y \mid X=x]}_{H[Y \mid X]}$$

Aleksandr Khinchin (1894 – 1959)

Mathe III

Example: Binary Entropy

$$H_2[p] = p \cdot \log_2(p) + (1-p) \cdot \log_2(1-p)$$

Mathe III

Entropy and the Noiseless Coding Theorem

- **(Shannon 1948).** *N* independent and identically distributed random variables each with entropy H[X] can be compressed into more than $N \cdot H[X]$ bits with negligible risk of information loss, as $N \to \infty$; but if they are compressed into fewer than $N \cdot H[X]$ bits it is virtually certain that information will be lost.
- **Application** in data compression when modelling the value X of a byte modelled as a random variable over n = 256 values

Random bytes:
$$H[X] = -\sum_{i=1}^{256} \frac{1}{256} \log_2 \left(\frac{1}{256} \right) = -\log_2 \left(\frac{1}{256} \right) = 8$$

Random letters from the English alphabet:

$$H = 4.48917$$

Claude Shannon (1913 – 2001)

Mathe III

Noiseless Coding Theorem: An Example

- **Scenario**: We have 8 class labels with probabilities $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}\right\}$
- Naïve Encoding: We use a uniform distribution with 3 bits per symbol

$$H\left[\left\{\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right\}\right] = 3$$

However, the entropy is 2 bits!

$$H[X] = 2$$

- Prefix Code: Unique binary prefix of consecutive 1's for each unique probability
- Decode: 11001110

$$C_3$$
 C_1 C_4

Class	Code	P(C)	Length	E[Length]
1	0	1/2	1	16/32
2	10	1/4	2	16/32
3	110	1/8	3	12/32
4	1110	1/16	4	8/32
5	111100	1/64	6	3/32
6	111101	1/64	6	3/32
7	111110	1/64	6	3/32
8	111111	1/64	6	3/32

Mathe III

Viel Spaß bis zur nächsten Vorlesung!