Week 5 Video 4

Relationship Mining
Sequential Pattern Mining

Association Rule Mining

 Try to automatically find if-then rules within the data set

Sequential Pattern Mining

 Try to automatically find temporal patterns within the data set

ARM Example

- □ If person X buys diapers,
- □ Person X buys beer

Purchases occur at the same time

SPM Example

- If person X takes Intro Stats now,
- Person X takes Advanced Data Mining in a later semester

 Conclusion: recommend Advanced Data Mining to students who have previously taken Intro Stats

Doesn't matter if they take other courses in between

SPM Example

- Learners in virtual environments have different sequences of behavior depending on their degree of self-regulated learning
- High self-regulated learning: Tend to gather information and then immediately record it carefully
- Low self-regulated learning: Tend to gather more information without pausing to record it

(Sabourin, Mott, & Lester, 2011)

Different Constraints than ARM

- If-then elements do not need to occur in the same data point
- Instead
 - If-then elements should involve the same student (or other organizing variable, like teacher or school)
 - If elements can be within a certain time window of each other
 - Then element time should be within a certain window after if times

Sequential Pattern Mining

Find all subsequences in data with high support

 Support calculated as number of sequences that contain subsequence, divided by total number of sequences

GSP (Generalized Sequential Pattern)

- Classic Algorithm for SPM
- (Srikant & Agrawal, 1996)

Data pre-processing

 Data transformed from individual actions to sequences by user

Bob: {GAMING and BORED, OFF-TASK and BORED,
 ON-TASK and BORED, GAMING and BORED,
 GAMING and FRUSTRATED, ON-TASK and BORED}

Data pre-processing

In some cases, time also included

Bob: {GAMING and BORED 5:05:20, OFF-TASK and BORED 5:05:40, ON-TASK and BORED 5:06:00, GAMING and BORED 5:06:20, GAMING and FRUSTRATED 5:06:40, ON-TASK and BORED 5:07:00}

Algorithm

- □ Take the whole set of sequences of length 1
 - May include "ANDed" combinations at same time
- Find which sequences of length 1 have support over pre-chosen threshold
- Compose potential sequences out of pairs of sequences of length 1 with acceptable support
- Find which sequences of length 2 have support over pre-chosen threshold
- Compose potential sequences out of triplets of sequences of length 1 and 2 with acceptable support
- Continue until no new sequences found

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

a, b, c, d, e, f

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

a, b, c, d, e, f,
$$ac(14/40=35\%)$$

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: **a**f, ab, **a**cd, **d**abc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- Francine: a, bc, acf, d, abeg

□ With min support = 20%

- □ Chuck: a, abc, ac, de, cef
- □ Darlene: af, ab, acd, dabc, ef
- □ Egoberto: aef, ab, aceh, d, ae
- □ Francine: a, bc, acf, d, abeg

a, b, c, d, e, f, ac, ad, ae, aad, aae, ade

- □ From
- □ ac, ad, ae, aad, aae, ade

- □ To
- \square a \rightarrow c, a \rightarrow d, a \rightarrow e, a \rightarrow ad, a \rightarrow ae, ad \rightarrow e

Other algorithms

- □ Free-Span
- □ Prefix-Span

Select sub-sets of data to search within

Faster, but same basic idea as in GPS

Differential Sequence Mining (Kinnebrew et al., 2013)

 Compares the support for sequential patterns between two groups

 Such as high-performing and low-performing students

 To find the patterns that are much more common in one group than the other

MOTIF Extraction

- Another popular approach for finding sequential patterns
- Allows for minor variance between patterns e.g., closely related patterns can be counted as the same pattern

Next lecture

□ Network Analysis