# 秋季学期微积分期中考试

### 机考模拟

# 第一版

|          |     | •          |      |     |   | _          |     |            |   |   |   |   |   |     |     |     |                   |
|----------|-----|------------|------|-----|---|------------|-----|------------|---|---|---|---|---|-----|-----|-----|-------------------|
| 微分方程部    | 3分  |            | ir i |     | o | •          | F 1 | <b>D</b> B |   |   | • |   | • |     | 12  | 02  | The second second |
| 多元函数     | . 6 |            | . ,  | •   | v | <b>b</b> 1 |     |            |   | u | b |   | • | n s | 3 6 | 20  |                   |
| 黎曼积分     |     |            | c 1  | •   |   | <b>3</b> ( |     | D          |   | 0 | • | • | • |     | •   | .41 |                   |
| 机考 100 线 | }   | <b>.</b> 1 |      |     |   | •          |     |            | a | • | • | u | • | a i | . ( | 60  |                   |
| 总结       |     |            |      | # # |   | ¢4         | b i | B 4        |   | • |   |   |   | 0   | •   | 96  |                   |

#### 微分方程

◈ 常系数线性微分方程: 齐次、非齐次

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_n y = f(x),$$

◈ Euler万程

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \cdots + a_{n-1}xy' + a_{n}y = f(x).$$

# 微分方程: 常系数线性微分方程

(1) 常系数齐次线性微分方程。

$$y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_ny = 0.$$

先求特征方程。

$$\lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0.$$

的根 A 及重次 k. 然后由表 8.1 可得到基本解组。

表 8.1-

|                            |                                                                                                                                                                                                | ······································ |            |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|
| 特征根情况。                     | 基本解组中相关的解。                                                                                                                                                                                     |                                        |            |
| 单实根                        | $\mathbf{e}^{\lambda_1 x}$ , $\mathbf{e}^{\lambda_2 x}$ , $\cdots$ , $\mathbf{e}^{\lambda_n x}$ .                                                                                              |                                        | <b>*</b> > |
| <i>₹,₺,</i> ~, <i>₺,</i> " |                                                                                                                                                                                                |                                        |            |
| k 重实根え。                    | eix,xeix,,xk-leix (共k企)。                                                                                                                                                                       |                                        | 42         |
| k 重共轭复根。                   | $e^{\alpha x}\cos \beta x$ , $xe^{\alpha x}\cos \beta x$ ,, $x^{k-1}e^{\alpha x}\cos \beta x$<br>$e^{\alpha x}\sin \beta x$ , $xe^{\alpha x}\sin \beta x$ ,, $x^{k-1}e^{\alpha x}\sin \beta x$ | (共2k企)。                                | ħ          |
| λ=α±βi -                   |                                                                                                                                                                                                |                                        | _          |

基本解组的线性组合就是通解...

(2) 常系数非齐次线性微分方程。

$$y^{(n)} + a_n y^{(n-1)} + \cdots + a_n y = f(x),$$

它的通解等于对应的齐次线性微分方程的通解加上它自己的一个特解.

| f(x)的形式                                                                           | y"(x)的形式                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $f(x) = e^{\lambda x} P_m(x)$                                                     | $y^* = x^k e^{\lambda x} Q_m(x)$ ,<br>其中 $k = \begin{cases} 0 & \lambda $ 不是特征方程的根<br>$1 & \lambda$ 是特征方程的单根<br>$2 & \lambda$ 是特征方程的重根                                                    |
| $f(x) = e^{\lambda x} \left[ P_i(x) \cos \omega x + P_n(x) \sin \omega x \right]$ | $y' = x^k e^{\lambda x} [Q_m(x) \cos \omega x + R_n(x) \sin \omega x]$<br>其中 $m = \max\{l, n\}$<br>$k = \begin{cases} 0 & \lambda \pm i \omega $ 不是特征根<br>$1 & \lambda \pm i \omega$ 是特征根 |

其中 $P_m(x)$ ,  $Q_m(x)$ ,  $R_m(x)$ 表示x的m次多项式.

## 微分方程: Euler方程

5. Euler 方程。

$$x^{n}y^{(n)} + a_{1}x^{n-1}y^{(n-1)} + \dots + a_{n-1}xy' + a_{n}y = f(x).$$

 $(a_{n-1}$ 为常数)作自变量变换,令 $x=e^t$ ,若用"D"表示 $\frac{d}{dt}$ ,则 $x^iy^{(i)}=D(D-1)$ 

 $\cdots (D-i+1)y$ . 很容易将 Euler 方程化为常系数线性微分方程。

### 微分方程部分

1. 方程 $\frac{dy}{x^2} + 3(3-y)dx = 0$ 的通解为() (A)  $y=3+Ce^{x^3}$ , C为任意常数 (B)  $y=3+Ce^{x^2}$  , C 为任意常数 (C)  $\nu = 3 + Ce^{x^4}$  , C为任意常数 (D)  $y=3+Ce^{x}$ , C为任意常数 答案: (A) 2. 函数 y=0 是方程  $y'=y^2$  的 ( ) (A) 通解 (B) 特解 (D) 不是解 (C) 奇解 答案:C 3. 方程 $\frac{dy}{x^2}$  + 3(3 - y)dx = 0 的通解为 ( ) (A)  $Ce^{x^3}$  (B)  $3+Ce^{x^3}$  (C)  $3+e^{x^3}$  (D)  $3+Ce^{x^2}$ 答案:B 4. 下列函数中,哪个是微分方程dy-2xdx=0的解( (A) y = 2x (B)  $y = x^2$  (C) y = -2x (D) y = -x答案:B 5. 微分方程  $y'=3y^{5}$  的一个特解是( (A)  $y = x^3 + 1$  (B)  $y = (x+2)^3$  (C)  $y = (x+C)^2$  $y = C(1+x)^2$ 答案:B 6.  $y' = y 满足 y|_{x=0} = 2 的特解是($ (A)  $y = e^x + 1$  (B)  $y = 2e^x$  (C)  $y = 2e^{\frac{x}{2}}$  (D)  $y = 3e^x$ 

·答案:B

7. 微分方程y'-y=0满足初始条件y(0)=1的特解为( ) (A)  $e^x$  (B)  $e^x - 1$  (C)  $e^x + 1$  (D)  $2 - e^x$ 答案:A 8. 下列微分方程中,可分离变量的是( (A)  $\frac{dy}{dx} + \frac{y}{x} = e$  (B)  $\frac{dy}{dx} = k(x-a)(b-y)$  (k, a, b \( \ext{E} \) 常数) (C)  $\frac{dy}{dx} - \sin y = x$  (D)  $y' + xy = y^2 \cdot e^x$ 答案:B 9. 方程 y'-2y=0 的通解是 ( ) (A)  $y = \sin x$  (B)  $y = 4e^{2x}$  (C)  $y = Ce^{2x}$  (D)  $y = e^{x}$ 答案:C 10. 微分方程  $\frac{dx}{v} + \frac{dy}{x} = 0$  满足  $y|_{x=3} = 4$  的特解是 ( ) (A)  $x^2 + y^2 = 25$  (B) 3x + 4y = C (C)  $x^2 + y^2 = C$  $x^2 - v^2 = 7$ 答案:A 11. 微分方程  $\frac{dy}{dx} - \frac{1}{x}y = 0$  的通解是 y = ( ) (A)  $\frac{C}{x}$  (B) Cx (C)  $\frac{1}{x}+C$  (D) x+C答案:B 12. 微分方程 y'+ y = 0 的解为 ( ) (A)  $e^x$  (B)  $e^{-x}$  (C)  $e^x + e^{-x}$  (D)  $-e^x$ 答案:B 13. 下列函数中,为微分方程 xdx + ydy = 0 的通解是 ( ) (A) x+y=C (B)  $x^2+y^2=C$  (C) Cx+y=0 (D)  $Cx^2 + y = 0$ 答案:B 14. 微分方程2ydy-dx=0的通解为(

哈工大资源分享站: QQ2842305604

(A) 
$$y^2 - x = C$$
 (B)  $y - \sqrt{x} = C$  (C)  $y = x + C$  (D)  $y = -x + C$  答案: A

15. 微分方程cos  $y dy = \sin x dx$  的通解是 ( )

(A)  $\sin x + \cos y = C$  (B)  $\cos y - \sin x = C$  (C)  $\cos x - \sin y = C$  (D)  $\cos x + \sin y = C$  答案: D

16.  $y'' = e^{-x}$  的通解为  $y = ($  )

(A)  $-e^{-x}$  (B)  $e^{-x}$  (C)  $e^{-x} + C_1 x + C_2$  (D)  $-e^{-x} + C_1 x + C_2$  (B)  $-\sin x + C_1 x + C_2$  (C)  $\sin x + C_1 x + C_2$  (D)  $\sin x + C_1 + C_2$  (E)  $\sin x + C_1 x + C_2$  (D)  $\sin x + C_1 + C_2$  (E)  $\sin x + C_1 + C_2$  (D)  $\sin x + C_1 + C_2$  (E)  $\sin x + C_1 + C_2$  (E)  $\sin x + C_1 + C_2$  (D)  $\sin x + C_1 + C_2$  (E)  $\sin x + C_1 + C_2$  (E)  $\sin x + C_1 + C_2$  (D)  $\sin x + C_1 + C_2$  (E)  $-\frac{1}{2}x^3 + Cx$  (D)  $-\frac{1}{2}x + \ln^2 y = 1$  (E)  $-\frac{1}{2}x^3 + Cx$  (D)  $-\frac{1}{2}x + \ln^2 y = 1$  (E)  $-\frac{1}{2}x + \ln^2 y = 1$  (D)  $-\frac{1}{2}x + \ln^2 y + 1$  (E)  $-\frac{1}{2}x + \ln^2 y + 1$  (D)  $-\frac{1}{2}x + \ln^2 y + 1$  (E)  $-\frac{1}{2}x + \ln^2 y + 1$  (D)  $-\frac{1}{2}x + \ln^2 y + 1$  (E)  $-\frac{1}{2}x + \ln^2 y + 1$  (D)  $-\frac{1}{2}x + \ln^2 y + 1$  (E)  $-\frac{1}{2}x + \ln^2 y + 1$  (D)  $-\frac{1}{2}x + \ln^2 y + 1$  (E)  $-\frac{1}{2}x + \ln^2 y + 1$  (E

(A) 
$$\sin \frac{y}{x} = Cx$$
 (B)  $\sin \frac{y}{x} = \frac{1}{Cx}$  (C)  $\sin \frac{x}{y} = Cx$  (D)  $\sin \frac{x}{y} = \frac{1}{Cx}$ 

答案: A

21. 方程
$$\frac{dy}{dx} - \frac{1}{x}y = x^3 (x \neq 0)$$
的通解为( )

(A) 
$$y = \frac{1}{3}x^4 + C(x \neq 0)$$
, C为任意常数

(B) 
$$y = \frac{1}{3}x^3 + Cx(x \neq 0)$$
, C为任意常数

(C) 
$$y = \frac{1}{3}x^4 + Cx(x \neq 0)$$
, C为任意常数

(D) 
$$y = \frac{1}{3}x^2 + Cx(x \neq 0)$$
, C为任意常数

答案:(C)

22. 方程 
$$\frac{dy}{dx} - \frac{1}{x}y = x^3 (x \neq 0)$$
 的通解为()

(A) 
$$Cx^4$$
 (B)  $\frac{1}{x}(C + \frac{1}{5}x^5)$  (C)  $\frac{1}{3}x^4 + Cx$  (D)  $x(1 + Cx^3)$ 

23. 
$$\begin{cases} xy' + y = 3 \\ y|_{x=1} = 0 \end{cases}$$
 的解是 ( )

(A) 
$$y = 3(1 - \frac{1}{x})$$
 (B)  $y = 3(1 - x)$  (C)  $y = 1 - \frac{1}{x}$  (D)

y=1-x

答案:A

24. 微分方程 y'-y=1的通解是( )

(A) 
$$y = Ce^x$$
 (B)  $y = Ce^x + 1$  (C)  $y = Ce^x - 1$  (D)  $y = (C+1)e^x$ 

答案: C

25. 方程 xy'+y=3 的通解是( )

(A) 
$$y = \frac{C}{x} + 3$$
 (B)  $y = \frac{3}{x} + C$  (C)  $y = -\frac{C}{x} - 3$  (D)

$$y = \frac{C}{x} - 3$$

答案: A

26. 微分方程 
$$y' + \frac{y}{x} = \frac{1}{x(x^2 + 1)}$$
 的通解为 ( )

(A) 
$$\arctan x + C$$
 (B)  $\frac{1}{x} (\arctan x + C)$  (C)  $\frac{1}{x} \arctan x + C$  (D)

$$\arctan x + \frac{C}{x}$$

答案:B

27. 方程 
$$y^{(5)} - \frac{1}{x} y^{(4)} = 0$$
 的通解为()

(A) 
$$y = \frac{1}{60}C_1x^5 + \frac{1}{6}C^2x^3 + \frac{1}{2}C_3x^2 + C_4x + C_5$$
,  $C_i$  为任意常数

$$(i = 1, 2, \dots, 5)$$

(B) 
$$y = \frac{1}{120}C_1x^3 + \frac{1}{3}C^2x^3 + \frac{1}{2}C_3x^2 + C_4x + C_5$$
, C, 为任意常数

$$(i = 1, 2, \cdots, 5)$$

(C) 
$$y = \frac{1}{120}C_1x^5 + \frac{1}{6}C^2x^3 + \frac{1}{4}C_3x^2 + C_4x + C_5$$
, C, 为任意常数

$$(i = 1, 2, \dots, 5)$$

(D) 
$$y = \frac{1}{120}C_1x^5 + \frac{1}{6}C^2x^3 + \frac{1}{2}C_3x^2 + C_4x + C_5$$
, C, 为任意常数

$$(i=1,2,\cdots,5)$$

答案: (D)

28. 初值问题 
$$yy'' - y'^2 = y^2 \ln y$$
,  $y > 0$ ,  $y|_{x=0} = e$ ,  $y'|_{x=0} = e$  的解为 ( )

(A) 
$$y = e^x$$
 (B)  $y = e^{x^2}$  (C)  $y = e^{e^x}$ 

(B) 
$$v = e^{x^2}$$

(C) 
$$y = e^{e^x}$$

(D) 
$$y = e^{x^x}$$

答案: (C)

29. 方程
$$y^{(5)} - \frac{1}{x}y^{(4)} = 0$$
的通解为( )

$$(A)$$
  $C_4x^5 + C_2x^3 + C_3x^2 + C_4x + C_5$ 

$$C_1x^5 + C_2x^4 + C_3x^2 + C_4x + C_5$$

( C ) 
$$C_1 x^5 + C_2 x^4 + C_3 x^3 + C_4 x + C_5$$
 ( D ) 
$$C_1 x^5 + C_2 x^4 + C_3 x^3 + C_4 x^2 + C_5 x$$

答案,A

30. 初值问题  $yy'' - y'^2 = y^2 \ln y$ , y > 0,  $y|_{x=0} = e$ ,  $y'|_{x=0} = e$  的解为(

(A) 
$$e^{x+1}$$
 (B)  $e^{e^x}$  (C)  $e^x$  (D)  $\frac{e^{x+1}+e^{e^x}}{2}$ 

答案:B

31. 方程 
$$\frac{d^4x}{dt^4} - x = 0$$
 的通解为 ( )

(A) 
$$C_1e' + C_2e^{-t} + C_3\cos t + C_4\sin t$$
 (B)

$$C_1e' + C_2te' + C_3e^{-t} + C_4te^{-t}$$

$$(C) C_1 \cos t + C_2 \sin t + C_3 t \cos t + C_4 t \sin t \qquad (D)$$

$$C_1e' + C_2e^{-t} + C_3e'\cos t + C_4e'\sin t$$

答案: (A)

32. 在下列函数中, 能够是微分方程 v"+v=0 的解的函数是 (

(A) 
$$y=1$$

(B) 
$$y = x$$

(A) 
$$y=1$$
 (B)  $y=x$  (C)  $y=\sin x$  (D)  $y=e^x$ 

(D) 
$$y = e^x$$

答案:C

33. 下列函数中,哪个函数是微分方程s''(t) = -g的解(

(A) 
$$s = -gt$$
 (B)  $s = -gt^2$  (C)  $s = -\frac{1}{2}gt^2$  (D)  $s = \frac{1}{2}gt^2$ 

答案:C

34. 微分方程  $y'' = \sin(-x)$  的通解是〔

(A) 
$$y = \sin(-x)$$

$$(B) \cdot y = -\sin(-x)$$

(C) 
$$y = -\sin(-x) + C_1x + C_2$$
 (D)  $y = \sin(-x) + C_1x + C_2$ 

(D) 
$$y = \sin(-x) + C_1x + C_2$$

答案:C

35. 初值问题 
$$\frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = 2e', x(0) = 1, x'(0) = 1$$
 的解为( )

(A) 
$$(1+i)e^{i}$$

(B) 
$$(1+t^2)e^t$$

(A) 
$$(1+t)e^t$$
 (B)  $(1+t^2)e^t$  (C)  $(1+t^2)e^{-t}$  (D)  $(t+t^2)e^t$ 

(D) 
$$(t+t^2)e^t$$

答案:(B)

36. 方程  $y'' + 8y' + 25y = 2\cos x$  的通解为()

(A) 
$$e^{-2x}(C_1\cos 3x + C_2\sin 3x) + \frac{3}{40}\cos x + \frac{1}{40}\sin x$$
,  $C_1$ ,  $C_2$  为任意常数

(B) 
$$e^{-x}(C_1\cos 3x + C_2\sin 3x) + \frac{3}{40}\cos x + \frac{1}{40}\sin x$$
,  $C_1$ ,  $C_2$  为任意常数

(C)-
$$e^{-4x}$$
( $C_1 \cos 2x + C_2 \sin 2x$ )+ $\frac{3}{40} \cos x + \frac{1}{40} \sin x$ ,  $C_1$ ,  $C_2$ 为任意常数

(D) 
$$e^{-4x}(C_1\cos 3x + C_2\sin 3x) + \frac{3}{40}\cos x + \frac{1}{40}\sin x, C_1, C_2$$
 为任意常数

答案: (D)

37. 已知二阶常系数非齐次线性微分方程有两个特解  $y_1 = \cos 2x - \frac{1}{4}x \sin 2x$ ,  $y_2 = \sin 2x - \frac{1}{4}x \sin 2x$ , 此微分方程为()

(A) 
$$y'' + 4y = \sin 2x$$

(B) 
$$y'' + 4 = \cos 2x$$

(C) 
$$y'' + 4y = \cos 2x$$

(D) 
$$y'' + 2y = \cos 2x$$

答案: (C)

38. 设  $y=e^{2x}+(1+x)e^x$  是二阶常系数线性微分方程  $y''+\alpha y'+\beta y=\gamma e^x$ 的一个特解,则 $\alpha^2 + \beta^2 + \gamma^2 = ()$ 

(D) 14

答案:(D)

39. 微分方程 y<sup>(4)</sup> - y = e<sup>x</sup> + 3 sin x 的特解可设为 ( )

(A) 
$$Ae^x + B\cos x + C\sin x$$

(B) 
$$Axe^x + B\cos x + C\sin x$$

(C) 
$$x(Ae^x + B\cos x + C\sin x)$$

(D) 
$$Ae^x + B\sin x$$

答案:C

40. 如果二阶常系数非齐次线性微分方程  $y'' + ay' + by = e^{-x} \cos x$  有一个 特解 $y^* = e^{-x}(x\cos x + x\sin x)$ ,则(

(A) 
$$a=-1, b=1$$
 (B)  $a=1, b=-1$  (C)  $a=2, b=1$ 

(B) 
$$a=1, b=-1$$

(C) 
$$a = 2, b = 1$$

a = 2, b = 2

答案:(D)

41. 设 $y_1 = x$ ,  $y_2 = x + e^{2x}$ ,  $y_3 = x + xe^{2x}$  是二阶线性常系数非齐次方程 y'' + ay' + by = f(x) 的特解,则()

(A) 
$$a=4$$
,  $b=4$  (B)  $a=-4$ ,  $b=-4$  (C)  $a=4$ ,  $b=-4$  (D)  $a=-4$ ,  $b=4$ 

答案:(D)

42. 设  $y_1 = xe^x + e^{2x}$ ,  $y_2 = xe^x + e^{-x}$ ,  $y_3 = xe^x + e^{2x} - e^{-x}$  是二阶线性常系数非齐次方程 y'' + ay' + by = f(x) 的特解,则( )

(A) 
$$a = -1$$
,  $b = -2$ 

(B) 
$$a=1$$
,  $b=-2$ 

(C) 
$$a = -1$$
,  $b = 2$ 

(D) 
$$a=2$$
,  $b=-1$ 

答案: (A)

43. 设二阶线性常系数方程  $y'' + ay' + by = ce^x$  的一个特解为  $y'' = e^{2x} + (1+x)e^x$ ,则()

(A) 
$$a=3$$
,  $b=2$ ,  $c=-1$ 

(B) 
$$a = -3$$
,  $b = -2$ .  $c = -1$ 

(C) 
$$a = -3$$
,  $b = 2$ ,  $c = -1$ 

(D) 
$$a = -3$$
,  $b = 2$ ,  $c = 1$ 

答案: (C)

44. 己知某二阶非齐次线性微分方程的三个解分别为 $y_1 = e^x, y_2 = xe^x, y_3 = x^2e^x$ ,则不能构成它的通解为( )

(A) 
$$C_1(xe^x - e^x) + C_2(x^2e^x - e^x) + e^x$$
 (B)

 $C_1(x^2e^x - xe^x) + C_2(e^x - xe^x) + xe^x$ 

(C) 
$$C_1 x e^x + C_2 e^x + (1 - C_1 - C_2) x^2 e^x$$

(D) 
$$C_1 e^x + C_2 x e^x + x^2 e^x$$

答案:D

45. 设  $y=e^{2x}(C_1\sin x+C_2\cos x)+e^{3x}(C_1,C_2)$ 为任意常数)为某二阶常系数线性非齐次微分方程的通解,则该方程为(

(A) 
$$y'' - 4y' + 5y = 2e^{3x}$$

(B) 
$$y'' - y' + 2y = e^{2x}$$

(C) 
$$y'' - 2y' + y = e^{3x}$$

(D) 
$$y'' - 4y' + 5y = e^{3x}$$

答案: A

46. 己知某二阶非齐次线性微分方程的三个解分别为 $y_1 = e^x$ ,  $y_2 = xe^x$ ,  $y_3 = x^2e^x$ , 则它的通解为( )

(A) 
$$C_1 e^x + C_2 x e^x + x^2 e^x$$
 (B)

```
(C_1 + C_2 + 1)e^x - C_2 xe^x - C_1 x^2 e^x
 (C_1 + C_2)e^x + (C_2 - C_1)xe^x + (C_2 + 1)x^2e^x
C_1e^x + C_2xe^x + C_1x^2e^x
答案: B
47. 徽分方程y''+y=x^2+1+\sin x的特解形式可设为( )
 (A) y' = ax^2 + bx + C + x(A\sin x + B\cos x)
y^* = x(ax^2 + bx + C + A\sin x + B\cos x)
 (C) y^* = ax^2 + bx + C + A\sin x
                                                              (D)
 y' = ax^2 + bx + C + A\sin x + B\cos x
48. 方程 y'' - 2y' + 3y = e^x \sin \sqrt{2}x 的特解形式为 (
 (A) e^x(A\cos\sqrt{2}x + B\sin\sqrt{2}x)
                                                             . (B)
 xe^{x}(A\cos\sqrt{2}x+B\sin\sqrt{2}x)
                                              (D) Ae^x \cos \sqrt{2}x
 (C) Ae^x \sin \sqrt{2}x
答案:B
49. 方程 y'' - 2y + 4y = e^{2x} \sin \sqrt{3}x 的特解形式为 (
 (A) e^{2x}(A\cos\sqrt{3}x+B\sin\sqrt{3}x)
                                                               (B)
 xe^{2x}(A\cos\sqrt{3}x+B\sin\sqrt{3}x)
                                               (D) Ae^{2x}\cos\sqrt{3}x
 (C) Ae^{2x}\sin\sqrt{3}x
答案:A
50. 方程 y'' + a^2y = \sin x (a > 1)的特解可设为(
                                             (B) A\cos x + B\sin x
 (A) x(A\cos x + B\sin x)
                                           (D) e^{ax}(A\cos x + B\sin x)
 (C) A\cos ax + B\sin ax
51. 设二阶常系数线性方程 y'' + ay' + by = Ce^x 的一个特解为
 y' = e^{2x} + (1+x)e^{x}, 则此方程的特征根为( )
 (A) 1和-2 (B) -1和2 (C) 1和2 (D) -1和-2
 答案: (D)
 52. 若函数 f(x) 满足方程 f''(x) + f'(x) - 3f(x) = 0 及
 f''(x) + f(x) = 2e^x, \mathfrak{M} f(x) = 0
  (A) C_1e^{-3x} + C_2e^x (B) e^{-3x}
                                                           (D) 2e^{x}
                                            (C) e^x
```

答案:C

53. 设 $y_1 = xe^x + e^{2x}$ ,  $y_2 = xe^x + e^{-x}$ ,  $y_3 = xe^x + e^{2x} - e^{-x}$  是某二阶线性非 齐次常系数微分方程的三个解,则该微分方程为(

(A) 
$$y'' - y' - 2y = xe^x$$

(B) 
$$y'' - y' - 2y = e^x$$

(C) 
$$y'' - y' - 2y = (1 - 2x)e^x$$

(D) 
$$y'' - y' - 2y = xe^{2x}$$

答案: C

54. 已知二阶常系数非齐次线性微分方程有两个特解  $y_1 = \cos 2x - \frac{1}{4}x \sin 2x$ ,  $y_2 = \sin 2x - \frac{1}{4}x \sin 2x$ , 此微分方程是(

(A) 
$$y^n + 4y = \sin 2x$$

(B) 
$$y'' + 2y = \cos 2x$$

(C) 
$$y'' + 4y = \sin 2x + \cos 2x$$

(D) 
$$y'' + 4y = \cos 2x$$

答案:D

55. 微分方程  $y'' + y = \sin x$  的一个特解具有形式 (

(A) 
$$y^* = a \sin x$$

(B) 
$$y'' = a \cos x$$

(C) 
$$y' = x(a\sin x + b\cos x)$$

(D) 
$$y' = a\cos x + b\sin x$$

答案: C

56. 微分方程  $y''-y'=e^x+1$ 的一个特解应具有形式(a,b为常数)(

(A) 
$$ae^x + b$$

(B) 
$$axe^x + b$$

(C) 
$$ae^x + bx$$

(A) 
$$ae^x + b$$
 (B)  $axe^x + b$  (C)  $ae^x + bx$  (D)  $axe^x + bx$ 

答案:D

57. 方程 $\frac{d^4x}{d^4} - x = 0$ 的通解为()

(A)  $C_1e^{it} + C_2e^{-it} + C_3\cos t + C_4\sin t$ , C, 为任意常数

(B)  $C_1e' + C_2e'' + C_3i\cos t + C_4i\sin t$ ,  $C_1$  为任意常数

(C) C,e'+C,e'+C, cost+C, sint, C, 为任意常数

(D)  $C_1e^{2t} + C_2e^{-2t} + C_3\cos t + C_4\sin t$ ,  $C_1$ 为任意常数

答案: (C)

58. 方程 $\frac{d^{n}x}{dt^{4}} + 2\frac{d^{2}x}{dt^{2}} + x = 0$ 的通解为()

(A) 
$$(C_1 + C_2 t)\cos t + (C_3 + C_4)t\sin t$$
, C, 为任意常数

(B) 
$$(C_1 + C_2 t)\cos t + (C_3 + C_4)t^2 \sin t$$
,  $C_i$ 为任意常数

(C) 
$$(C_1 + C_2 t^2)\cos t + (C_3 + C_4)t\sin t$$
, C, 为任意常数

(D) 
$$(C_1t+C_2t^2)\cos t+(C_1+C_4)t\sin$$
,  $C_1$ 为任意常数

#### 答案: (A)

59. 方程 
$$y'' - 3y' + 2y = 0$$
 的通解为()

(A) 
$$C_1 + C_2 e^{2x}$$
,  $C_1$ ,  $C_2$  为任意常数

(B) 
$$C_1e^x + C_2e^{2x}$$
,  $C_1$ ,  $C_2$  为任意常数

(C) 
$$C_1e^{1x} + C_2e^{2x}$$
,  $C_1$ ,  $C_2$  为任意常数

(D) 
$$C_1e^{-x} + C_2e^{2x}$$
,  $C_1$ ,  $C_2$  为任意常数

#### 答案: (B)

(A) 
$$C_1e^x + (C_2 + C_3x)e^{-x}$$
,  $C_1$ 为任意常数

(B) 
$$C_1e^{ix} + (C_2 + C_3x)e^{-x}$$
,  $C_1$ 为任意常数

(C) 
$$C_1e^x + (C_2 + C_3x)e^{-2x}$$
,  $C_1$ 为任意常数

(D) 
$$C_1e^x + (C_2 + C_3x)e^{-x}$$
,  $C_1$ 为任意常数

#### 答案: (D)

61. 已知 $\sin^2 x$ ,  $\cos^2 x$  是方程y'' + P(x)y' + Q(x)y = 0的解, $C_1$ ,  $C_2$  为任

#### 意常数,则不能构成该方程通解的是(

(A) 
$$C_1 \sin^2 x + C_2 \cos^2 x$$

(B) 
$$C_1 + C_2 \cos 2x$$

(C) 
$$C_1 \sin^2 2x + C_2 \tan^2 x$$

(D) 
$$C_1 + C_2 \cos^2 x$$

#### 答案: C

62. 设 $y=1, y=e^{x}, y=2e^{x}, y=e^{x}+\frac{1}{\pi}$ 都是某二阶常系数线性微分方程

的解,则此二阶常系数线性微分方程对应的特征根为()

#### 答案: (B)

63. 设徽分方程有通解  $y = (C_1 + C_2 x + x^{-1})e^{-x}$ ,则此徽分方程对应的特征

#### 根为()

(A) 1和-1 (B) 0和-1 (C) -1和-1 (D) 1和1

答案:(C)

64. 具有特解 $y_i = e^{-x}$ ,  $y_2 = 2xe^{-x}$ ,  $y_3 = 3e^x$ 的三阶常系数齐次线性微分方 程是( ')

(A) y''' - y'' - y' + y = 0

(B)  $y''' + y'' - y' - \gamma = 0$ 

(C) y''' - 6y'' + 11y' - 6y = 0 (D) y''' - 2y'' - y' + 2y = 0

答案。B

65. 具有特解  $y_1 = e^{-x}$ ,  $y_2 = 3xe^{-x}$ ,  $y_3 = 4e^{2x}$  的三阶常系数和齐次线性方 程是( )

(A) y''' - 3y' - 2y = 0

(B) y''' + 3y' + 2y = 0

(C) y''' - y' + y = 0

(D) y''' - y'' + y' - y = 0

答案:A

66. 已知 xe<sup>x</sup>与e<sup>x</sup>cos x 是 n 阶常系数齐次线性微分方程的两个解,则最小 的正整数n=()

(A) 1 (B) 2 (C) 3 (D) 4

答案: (D)

67. 已知 $e^{2x}$ 与 $e^{x}$ sin x是n阶常系数齐次线性微分方程的两个解,则最小 的正整数n=()

(A) 1 (B) 2 (C) 3 (D) 4

答案:C

68. 已知e\*与xe\*cosx是n阶常系数齐次线性微分方程的两个解,则最小 的正整数n=()

(A) 2 (B) 3 (C) 4 (D) 5

答案: D

69. 设常系数方程 y'' + ay' + by = 0 的两个线性无关的解为  $y_1 = e^{-x} \cos x, \ y_2 = e^{-x} \sin x, \ \text{M} \ (\ )$ 

(A) a=2, b=2 (B) a=2, b=-2 (C) a=-2, b=2 (D) a = -2, b = -2

答案:A

70. 设常系数方程 y'' + ay' + by = 0 的两个线性无关的解为  $y_1 = e^{-x}$ ,  $y_2 = xe^{-x}$ , 则()

(A) 
$$a=2$$
,  $b=-1$  (B)  $a=-2$ ,  $b=1$ 

(C) 
$$a=2$$
,  $b=1$  (D)  $a=-2$ ,  $b=-1$ 

答案: (C)

71. 设常系数方程 y''+ay'+by=0 的两个线性无关的解为  $y_1=\cos x$ ,  $y_2=\sin x$ , 则()

(A) 
$$a=0$$
,  $b=1$  (B)  $a=1$ ,  $b=1$  (C)  $a=0$ ,  $b=0$  (D)  $a=1$ ,  $b=0$ 

答案: A

72. 方程 y(3) + y"-y'-y=0 的特征根为()

73. 具有特解  $y_1 = e^{-2x}$ ,  $y_2 = e^{3x}$  的二阶常系数齐次微分方程的特征方程是

(A) 
$$\lambda^2 + \lambda - 6 = 0$$

(B) 
$$\lambda^2 - \lambda - 6 = 0$$

(C) 
$$\lambda^2 - 2\lambda + 3 = 0$$

(D) 
$$\lambda^2 - 5\lambda - 6 = 0$$

答案: B

74. 具有特解  $y_1 = e^{-x}$ ,  $y_2 = xe^{-x}$ ,  $y_3 = e^{-2x}$ 的三阶常系数齐次微分方程的特征根是( )

(A) 1, 
$$-1$$
,  $-2$  (B)  $-1$ ,  $-1$ ,  $-2$  (C)  $-1$ ,  $-1$ ,  $2$  (D) 1, 1,  $-2$ 

答案: B

75. 具有特解  $y_1 = e^x \cos x$ ,  $y_2 = e^x \sin x$  的二阶常系数齐次微分方程的特征方程是(

(A) 
$$\lambda^2 - 2\lambda + 1 = 0$$

(B) 
$$\lambda^2 + 2\lambda + 1 = 0$$

(C) 
$$\lambda^2 + 1 = 0$$

(D) 
$$\lambda^2 - 2\lambda + 2 = 0$$

答案:D

76. 设 y(x) 是 y'' + y = 0 的解且  $x \to 0$  时是 x 的等价无穷小,则 y(x) =

(A)  $C_1 + C_2 e^{-x}$  (B)  $C_1 \cos x + C_2 \sin x$  (C)  $C_2 \sin x$  (D)  $\sin x$ 答案: D 77.  $y = C_1 e^x + C_2 e^{-x}$  是方程 y'' - y = 0 的 ( ), 其中  $C_1$ ;  $C_2$  为任意常数. (A) 通解 (B) 特解 (C) 方程所有的解 (D) 上述都不对 答案: A 78. 下列微分方程中,()是二阶常系数齐次线性微分方程. (A) y'' - 2y = 0 (B)  $y'' - xy' + 3y^2 = 0$  (C) 5y'' - 4x = 0(D) y'' - 2y' + 1 = 0答案: A 79. 微分方程 y"-4y'+4y=0的两个线性无关的解是( (A)  $e^{2x}$ ,  $2e^{2x}$  (B)  $e^{-2x}$ ,  $xe^{-2x}$  (C)  $e^{2x}$ ,  $xe^{2x}$  (D)  $e^{-2x}$ ,  $4e^{-2x}$ 答案: C 80. 下列函数中,是微分方程y''-7y'+12y=0的解的函数为( (A)  $y = x^3$  (B)  $y = x^2$  (C)  $y = e^{3x}$  (D)  $y = e^{2x}$ 答案: C 81. 函数 y = cos x 是下列哪个微分方程的解( (A) y'+y=0 (B) y'+2y=0 (C) y''+y=0(D)  $y'' + y = \cos x$ 答案: 82. 若用代换y=z'''可将微分方程 $y'=ax^\alpha+by^\beta$   $(\alpha\beta\neq 0)$  化为一阶齐次 方程 $\frac{dz}{dz} = f(\frac{z}{z})$ ,则 $\alpha$ , $\beta$ 应满足的条件是( (A)  $\frac{1}{\beta} - \frac{1}{\alpha} = 1$  (B)  $\frac{1}{\alpha} + \frac{1}{\beta} = 1$  (C)  $\frac{1}{\alpha} - \frac{1}{\beta} = 1$  (D)  $\frac{1}{\alpha} + \frac{1}{R} = -1$ 

83. 欧拉方程
$$x^2y''-xy'=x^3$$
的通解为(
(A)  $\frac{4}{3}x^3+(C_1+C_2x)$  (B)  $\frac{1}{3}x^3+C_1x^2+C_2$ 

(C) 
$$\frac{2}{3}x^3 + (C_1 + C_2 \ln x)x$$
 (D)  $x^3 + C_1 + C_2 x^2$ 

答案:C

84. 欧拉方程 $x^2y''-xy'+y=x\ln x$  的通解为 ( )

(A) 
$$y = (C_1 + C_2 x)e^x + \frac{x^3}{6}e^x$$
 (B)

 $y = (C_1 + C_2 x)e^x + x^2 e^x$ 

(C) 
$$(C_1 + C_2 \ln x)x + \frac{1}{6}x \ln^3 x$$
 (D)

 $y = (C_1 + C_2 \ln x)x + x^2 \ln x$ 

答案: C

85. 设  $y_1, y_2$  是 方程  $y'' + a_1(x)y' + a_2(x)y = 0$  的两个特解,则  $y = C_1 y_1 + C_2 y_2$  是该方程通解的充要条件为(

(A) 
$$y_1y_2' - y_2y_1' = 0$$

(B) 
$$y_1y_2' - y_2y_1' \neq 0$$

(C) 
$$y_1y_2' + y_2y_1' = 0$$

(D) 
$$y_1y_2' + y_2y_1' \neq 0$$

答案 (B)

86. 设  $y_1 = 3 + x^2$ ,  $y_2 = 3 + x^2 + e^{-x}$  是某二阶线性非齐次微分方程的两个 特解且相应的齐次方程有一个解为 $y_3 = x$ ,则不构成该方程的通解为

(A) 
$$C_1x + C_2e^{-x} + 3 + x^2$$

(B) 
$$C_1x + C_2e^{-x} + 3 + x^2 + e^{-x}$$

(C) 
$$C_1(3+x^2)+C_2(3+x^2+e^{-x})+x$$
 (D)  $C_1x+C_2(e^{-x}-x)+3+x^2$ 

(D) 
$$C_1x + C_2(e^{-x} - \dot{x}) + 3 + x^2$$

答案:C

87. 微分方程 
$$xyy'' + x(y')^3 - y^4y' = 0$$
 的阶数是 ( )

(A) 3

(B) 4 (C) 5

答案: D.

88. 徽分方程  $y''-x^2y''-x^5=1$  的通解中应含的独立常数个数为(

(A) 3

(B) 5

· (C) 4

(D) 2

答案: A

89. 过点(1,3)且切线斜率为2x的曲线方程 y=y(x)应满足的关系是

$$(A) y' = 2x$$

(A) 
$$y' = 2x$$
 (B)  $y'' = 2x$  (C)  $y' = 2x$ ,  $y(1) = 3$  (D)

y'' = 2x, y(1) = 3

答案: C

90. 已知微分方程  $y' + P(x)y = (x+1)^{\frac{5}{2}}$  的一个特解为  $y'' = \frac{2}{2}(x+1)^{\frac{1}{2}}$ , 则

此微分方程的通解是(

(A) 
$$\frac{C}{(x+1)^2} + \frac{2}{3}(x+1)^{\frac{7}{2}}$$

(B) 
$$\frac{C}{(x+1)^2} + \frac{2}{11}(x+1)^{\frac{7}{2}}$$

(C) 
$$C(x+1)^2 + \frac{2}{11}(x+1)^{\frac{7}{2}}$$
 (D)  $C(x+1)^2 + \frac{2}{3}(x+1)^{\frac{7}{2}}$ 

(D) 
$$C(x+1)^2 + \frac{2}{3}(x+1)^{\frac{7}{2}}$$

答案:D

#### 多元函数的概念

- 1. 多元函数  $z = f(x, y), (x, y) \in D$ . 它是<u>从点集</u>D到 z 轴的映射.
- 2. 极限  $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A$ . 要求点 (x,y) 在 f(x,y) 的定义域 D 内以任何方

式和途径趋于点 $(x_0, y_0)$ 时,f(x, y)都无限趋于常数 $A \rightarrow$ 

- 3. 连续  $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$ . 等价于全增量  $\Delta z = f(x,y) f(x_0,y_0)$  趋于零。
  - 4. 偏导数+

$$\frac{\partial z}{\partial x}\bigg|_{(x_0,y_0)} = f'(x,y_0)\bigg|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}.$$

几何意义是曲线  $z = f(x, y_0)$  在点 $(x_0, y_0)$  处的切线对 x 轴的斜率,物理意义是在 $(x_0, y_0)$  处 z 随 x 变化的变化率。

- 5. 全微分 是全增量  $\Delta z = A\Delta x + B\Delta y + o(\rho)$  的线性主部, $dz = A\Delta x + B\Delta y$ . 几何 上表示曲面 z = (x, y) 的切平面的竖坐标的增量。
  - 6. 方程导数  $\left. \frac{\partial z}{\partial l} \right|_{p_0} = \lim_{p \to p_0} \frac{f(p) f(p_0)}{|pp_0|}$ , 点  $p \in p_0$  发出的射线 l 上,它表示函数

沿1方向的变化率。

梯度  $\nabla z = \text{grad}z$  是个向量,它指向函数 z 在点 p 处变化最快的方向,大小恰好是这个最大的变化率。

#### 多元函数基本理论和方法:

- 1. 有界增长区域上连续函数必有界,且有最大值和最小值,必能取到介于最大值与最小值之间的任何值。
  - 2. 函数 z = f(x, y) 在点 $(x_0, y_0)$  处,有如下关系。



3. 函数 u = u(x, y, z) 可微条件下,

(1) 梯度 grad 
$$u = \frac{\partial u}{\partial x}i + \frac{\partial u}{\partial y}j + \frac{\partial u}{\partial z}k$$
, grad  $u$  垂直于等值面  $u(x, y, z)$ 

 $=u(x_0,y_0,z_0)$ . 是等值面的法向量。

(2) 方向导数 
$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma = \operatorname{grad} u \cdot l^0 = \operatorname{Prj}_l \nabla u$$
. 其中

 $\cos \alpha, \cos \beta, \cos \gamma 是 l$ 方向的方向余弦。

(3) 全徽分 
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz = \operatorname{grad} u \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}.$$

- 4. 混合偏导数连续条件下,与求导次序无关,如  $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ .
- 5. 复合函数 z=z(u,v), u=u(x,y), v=v(x,y) 的链导法则。

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x},$$

$$\left(\frac{\partial(z)}{\partial(x, y)}\right) = \left(\frac{\partial(z)}{\partial(u, v)}\right) \left(\frac{\partial(u, v)}{\partial(x, y)}\right).$$

这里 z(u,v) 可微,而 u(x,y), v(x,y) 偏导数存在。

6. 隐函数 F(x, y, z) = 0 求导法则。

$$\frac{\partial z}{\partial x} = -\frac{F_x'(x, y, z)}{F_z'(x, y, z)},$$

其中 $F_z'(x,y,z) \neq 0$ .

隐函数方程组  $\begin{cases} F(x,y,u,v)=0\\ G(x,y,u,v)=0 \end{cases}$  确定的隐函数求导法则。

$$\frac{\partial u}{\partial x} = -\frac{\begin{vmatrix} F_x' & F_y' \\ G_x' & G_y' \\ F_u' & F_y' \\ G_u' & G_y' \end{vmatrix}}{\begin{vmatrix} G_y' & G_y' \\ G_y' & G_y' \end{vmatrix}} = -\frac{\frac{\partial (F,G)}{\partial (x,v)}}{\frac{\partial (F,G)}{\partial (u,v)}},$$

其中 
$$\frac{\partial(F,G)}{\partial(u,v)} \neq 0.$$

#### 多元函数微分学的应用

- 1. 空间曲线的切线和法平面
- i)设空间曲线 $\Gamma$ 的参数方程为

$$\begin{cases} x = x(t) \\ y = y(t), & t \in \Gamma \\ z = z(t) \end{cases}$$

为

切线: 
$$\frac{x-x_0}{x'(t_0)} = \frac{y-y_0}{y'(t_0)} = \frac{z-z_0}{z'(t_0)}$$

法平面: 
$$x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0$$

ii) 设空间曲线 [ / 的交面式方程为

$$\begin{cases} F(x, y, z) = 0 & \text{ Body field } y = y(x), \quad z = z(x), \\ G(x, y, z) = 0 & \end{cases}$$

即化为参数为
$$\begin{cases} x = x \\ y = y(x), \\ z = z(x) \end{cases}$$

由
$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$
可求出 $\frac{\mathrm{d} y}{\mathrm{d} x}$ ,  $\frac{\mathrm{d} z}{\mathrm{d} x}$ .

- 2. 曲面的切平面与法线
- i)设曲面 S 的方程为 F(x,y,z)=0,则曲面 S 上点  $P(x_0,y_0,z_0)$  的切平面和法线方程.

切平面: 
$$\frac{\partial F}{\partial x}\Big|_{P}(x-x_0)+\frac{\partial F}{\partial y}\Big|_{P}(y-y_0)+\frac{\partial F}{\partial z}\Big|_{P}(z-z_0)=0$$
.

法线: 
$$\frac{x-x_0}{\frac{\partial F}{\partial x}|_P} = \frac{y-y_0}{\frac{\partial F}{\partial y}|_P} = \frac{z-z_0}{\frac{\partial F}{\partial z}|_P}$$

- ii) 设曲面 S 的方程 z = f(x,y), 即  $F(x,y,z) = f(x,y) z \equiv 0$ , 已为 i)
  - 3. 多元函数的极值问题
  - (1) 无条件极值
  - 1)极值存在的必要条件

设 z = f(x, y) 在点  $(x_0, y_0)$  可微分 (或存在偏导数  $f_x(x_0, y_0)$ ),  $f_y(x_0, y_0)$ ), 且在点  $(x_0, y_0)$  处有极值,则在该点的偏导数必为零,即  $f_x(x_0, y_0) = f_y(x_0, y_0) = 0$ ,此时的点  $(x_0, y_0)$  称为驻点.

#### 2) 极值存在的充分条件

设函数z = f(x, y)在点 $(x_0, y_0)$ 的某个邻域内连续且有一阶、二阶连续偏导数,

$$f'_x(x_0, y_0) = 0$$
,  $f'_y(x_0, y_0) = 0$ ,

il 
$$A = f_{xx}^{"}(x_0, y_0), B = f_{xy}^{"}(x_0, y_0), C = f_{yy}^{"}(x_0, y_0).$$

则 i )判别式  $\Delta = B^2 - AC < 0$  时,在点 $(x_0, y_0)$ 处取极值,且当 A < 0 前取极大值,A > 0 时取极小值。

- ii) 判别式  $\Delta = B^2 AC > 0$  时,无极值.
- iii) 判式  $\Delta = B^2 AC = 0$  时,特定.

二元极值,

#### (2)条件极值(拉格朗日乘数法)

问题: 求z = f(x, y) 在条件 $\varphi(x, y) = 0$  下的极值.

第一步,构造拉氏函数

$$F(x,y) = f(x,y) + \lambda \varphi(x,y)$$
  
拟氏函数 条件函数

第二步,解联立方程组

$$rightharpoonup F_x = 0$$
,  $F_y = 0$ ,  $F_\lambda = 0$ 

解出: (x, y)

# 多元函数微分学

1. 已知函数  $f(x+y,\frac{y}{x}) = x^2 - y^2$ ,则  $f(x-y,xy) = ______$ 

A. 
$$\frac{(x+y)^2(1-xy)}{xy}$$
 B.  $\frac{(x-y)^2(1-xy)}{1+xy}$ 

C. 
$$\frac{(x-y)^2(1+xy)}{1+xy}$$
 D.  $\frac{(x-y)^2(1+xy)}{1-xy}$ 

答案: B

2. 已知函数 
$$f(x+y,x-y) = x^3 + y^3$$
, 则  $f(x,y) =$ \_\_\_\_\_\_

A. 
$$\frac{1}{4}x(x^2+3y^2)$$
 B.  $y(x^2-2y^2)$  C.  $\frac{1}{2}(x^2+y)$  D.  $xy(2x^2+y^2)$ 

答案: A

3. 已知函数 
$$f(x+y,x-y)=xy+x^2$$
, 则  $f(x,y)=$ \_\_\_\_\_\_.

A. 
$$\frac{y^2 + x^2y}{4}$$
 B.  $\frac{x + xy^2}{2}$  C.  $xy(x^2 + xy^2)$  D.  $\frac{x^2 + xy}{2}$ 

答案: D

4. 设函数 
$$f(x-y,x+y) = xy$$
, 求  $f(x,y)$ 

A. 
$$\frac{y^2 - x^2}{4}$$
 B.  $\frac{y^2 + x^2}{2}$  C.  $\frac{y^2 - 2x^2}{y}$  D.  $\frac{xy^2 + y}{x - y}$ 

答案: A

5. 函数 
$$z = \ln(x \ln y)$$
 的定义域为\_\_\_\_\_

C. 
$$\{x > 0, y > 1\}$$
 D.  $\{x < 0, 0 < y < 1\}$ 

答案: A

6. 函数 
$$z = \sin x^2 - |y| \cos x$$
\_\_\_\_\_.

A. 只是x的偶函数

B. 只是y的偶函数

- C. 既是x的偶函数,又是y的偶函数答案: C
- D. 以上都不对

7. 
$$\lim_{(x,y)\to(0,0)} \frac{1-xy}{x^2+y^2} =$$

A. 2 B.-1 C. 1 D.0 答案: C

8. 
$$\lim_{(x,y)\to(0,2)} \frac{\sin xy}{x} =$$

A. I B. 2 C. 0 D.  $\frac{1}{2}$ 

答案:B

9. 
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{xy+1-1}}$$

A. 0 B. -1 C.1 D.2

答案: D

10. 求极限 
$$\lim_{\substack{x \to \infty \\ y \to a}} (1 + \frac{1}{xy})^{\frac{x^2}{x+y}}$$
 (其中  $a \neq 0$ ) =\_\_\_\_\_\_

A. e B.  $e^{2\sigma}$  C. ae D.  $e^{\sigma}$  答案: D

11. 极限 
$$\lim_{(x,y)\to(0,\pi)} [1+\sin(xy)]^{\frac{y}{x}} =$$
\_\_\_\_\_\_

A.  $e^{\pi}$  B. 0 C. e D.  $e^{\pi^2}$ 

答案: D

12. 
$$\lim_{(x,y)\to(0,0)} \frac{2-\sqrt{xy+4}}{xy} = \frac{1}{12}$$

A. 2 B.  $-\frac{1}{4}$  C.  $\frac{1}{2}$  D. -2

答案: B

13. 
$$\lim_{(x,y)\to(0,\infty)}\frac{1}{\sqrt{x^2+y^2}}=$$

A. 1 B. 0 C. 2 D. 3 答案: B

14. 
$$\lim_{(x,y)\to(0,0)} (x^2+y^2) \sin\frac{1}{x^2y^2} =$$

A. 不存在 B. 1 C. 0 D.2 答案: C

15. 极限 
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2y+y^4)}{x^2+y^2} = \underline{\hspace{1cm}}$$

A. I B.0 C.-I D. 不存在

16. 函数 
$$f(x,y) = \frac{y^2 + x^2}{xy}$$
 的所有不连续点\_\_\_\_\_

A. 点(0,0) B. x=0且 $y\neq0$  C. y=0且 $x\neq0$  D. x=0或y=0答案:D

A. 连续 B. 极限不存在 C. 极限存在但不连续 D. 极限存在且等于

答案:B

A. 极限存在但不连续 B. 极限不存在 C. 偏导数不存在 答案:B 答案: A

19. 函数 z = f(x, y) 在点  $P(x_0, y_0)$  处两个偏导数  $f'_x(x_0, y_0)$  及  $f'_y(x_0, y_0)$ 

连续、是函数z = f(x, y) 在点 $P(x_0, y_0)$  可像的\_\_\_

A, 充分 B. 必要 C. 充分且必要 D. 既不充分, 也不必要 答案:A

20. 已知 X={偏导数存在的二元函数类}, Y={偏导数存在且连续的二元函 数类},Z={可微二元函数类},则(

- (A)  $X \supset Y \supset Z$ 
  - (B)  $Y \supset X \supset Z$
- (C)  $X \supset Z \supset Y$  (D)  $Z \supset Y \supset X$

答案:C

21. 考虑二元函数的下面四条性质:

(1) f(x,y) 在点 $(x_0,y_0)$  连续; (2)  $f_x(x,y)$ 、 $f_y(x,y)$  在点 $(x_0,y_0)$  连续;

(3) f(x,y) 在点  $(x_0,y_0)$  可微分; (4)  $f_x(x_0,y_0)$ 、  $f_y(x_0,y_0)$  存在; 则下列四个选项中正确的是

A. 
$$(3) \Rightarrow (2) \Rightarrow (1)$$
 B.  $(3) \Rightarrow (4) \Rightarrow (1)$  C.  $(3) \Rightarrow (1) \Rightarrow (4)$  D

$$(2) \Rightarrow (3) \Rightarrow (1)$$

答案:D

22. 函数 
$$z = \arcsin(y\sqrt{x})$$
,则  $\frac{\partial z}{\partial x} = \frac{1}{2}$ 

A. 
$$\frac{y}{2\sqrt{x(1-xy^2)}}$$
 B.  $\frac{y}{2\sqrt{x(1+x^2y)}}$  C.  $\frac{x}{2\sqrt{y(1-x^2y^2)}}$  D.

$$\frac{2y}{\sqrt{x(1+xy^2)}}$$

答案: A

23. 函数 
$$z = \ln \tan \frac{x}{y}$$
 对  $x$  的一阶偏导数为\_\_\_\_\_

A. 
$$-\frac{2}{y}\csc\frac{x}{2y}$$
 B.  $\frac{2}{y}\csc\frac{2x}{y}$  C.  $\frac{2}{y}\sec\frac{x}{2y}$  D.  $-\frac{x}{2y}\csc\frac{2x}{y}$ 

答案: B

24. 设
$$u=x^{\frac{\nu}{z}}$$
,则 $\frac{\partial u}{\partial z}$ 为\_\_\_\_\_

A. 
$$\frac{y}{zx^2}x^{\frac{z}{y}} \ln x$$
 B.  $-\frac{y}{z^2}x^{\frac{y}{z}} \ln x$  C.  $\frac{y}{xz^2}x^{\frac{y}{z}} \ln x$  D.  $-\frac{y}{z}x^{\frac{z}{y}} \ln x$ 

答案:B

25. 设函数 
$$f(x, y) = x + (y - 1) \arcsin \sqrt{\frac{x}{y}}$$
, 则  $f'_x(x, 1) =$ \_\_\_\_\_\_.

A.-1 B.2 C.1 D.-2

答案: C

A. -2 B. 3 C. -1 D. 2

答案: D

27. 设 
$$f(x,y) = xy + (x-1)y^3 \arctan \sqrt{\frac{\cos(x-y)}{\ln(3+x^2y)}}$$
 , 则  $f_y'(1,0)$ 

A. 
$$\frac{1}{2}$$
 B. 2 C. 1 D. -1

答案: C

28. 设函数 
$$z = \cos^2(x - \frac{t}{2})$$
, 求  $2\frac{\partial^2 z}{\partial t^2} + \frac{\partial^2 z}{\partial x \partial t} = \underline{\hspace{1cm}}$ 

A. 1 B. O C. -1 D. 2 )

答案:B

29. 设函数 
$$z = e^{x-2y}$$
,而  $x = \sin t$ ,  $y = t^3$ ,求  $\frac{dz}{dt} =$ \_\_\_\_\_\_

A. 
$$e^{\cos t - 2t^3} (\cos t - 2t^3)$$
 B.  $e^{\sin t - 2t^3} (\cos t - 6t^2)$ 

C. 
$$e^{\sin t}(\cos t - 3t^2)$$
 D.  $e^{\cos t + t}(\sin t + 6t^2)$ 

答案:B

30. 设函数 
$$z = xe^y$$
, 而  $y = y(x)$  是  $x$  的可撤函数, 求  $\frac{dz}{dx} =$ \_\_\_\_\_\_.

A. 
$$xy'(x)e^{y}$$
 B.  $e^{y}$  C.  $[1+xy'(x)]e^{y}$  D.  $xy'(x)+e^{y}$ 

答案: C

A. 
$$\frac{\pi^2}{e^2}$$
 B.  $\pi^2$  C.  $e^2\pi$  D.  $\frac{e^2}{\pi}$ 

答案: A

A. 0 B. 
$$\frac{x}{(1+x^2)^2}$$
 C.  $\frac{-2x}{(1+x^2)^2}$  D.  $\frac{-2y}{(1+y^2)^2}$ 

答案: C

33. 设函数
$$z = (1+x)^{xy}$$
,则  $\frac{\partial z}{\partial x} =$ \_\_\_\_\_\_

A. 
$$(1+x)^{xy} y \ln(1+x)$$

A. 
$$(1+x)^{xy}y\ln(1+x)$$
 B.  $(1+x)^{xy}x\ln(1+x)$ 

C. 
$$(1+x)^{xy}[x\ln(1+x)+\frac{y}{1+x}]$$
 D.  $(1+x)^{xy}[y\ln(1+x)+\frac{xy}{1+x}]$ 

答案: D

34. 设 函 数 
$$f(x,y,z) = z \ln(x^2 + y^2) + x^3 y$$
 , 则  $f_{xy}^*(1,-1,0)$ 

答案。C

35. 设
$$z = \tan \frac{x}{y}$$
,而 $x = u + v$ , $y = u - v$ ,求 $\frac{\partial z}{\partial u} = \underline{\qquad}$ 

A. 
$$\frac{-u}{u^2 + v^2}$$
 B.  $-\frac{v}{u^2 + v^2}$  C.  $\frac{-2u}{u^2 + v^2}$  D.  $\frac{2v}{u^2 + v^2}$  答案: B

A. 
$$\frac{e^x}{\ln^2 x} (\ln x + \frac{1}{x})$$
 B.  $\frac{e^x}{\ln^2 x} (\ln x - \frac{1}{x})$  C.  $\frac{1 + \ln x}{xe^x}$  D.  $\frac{1 - \ln x}{xe^x}$ 

答案:B

37. 函数 
$$z = xf(xy^2, x-2y)$$
, 则  $\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 

A. 
$$2yf_1' - xf_2'$$
 B.  $2xyf_1' - xf_2'$  C.  $2xyf_1' - 2f_2'$ 

D. 
$$2x^2yf_1' - 2xf_2'$$

答案: D

38. 求函数 
$$z = f(xy^2, x^2y)$$
 的二阶偏导数  $\frac{\partial^2 z}{\partial x^2} =$ \_\_\_\_\_

A. 
$$2yf_2' + y^4 f_{11}'' + 4xy^3 f_{12}'' + 4x^2 y^2 f_{22}''$$

B. 
$$2yf_1' + 4xyf_{11}'' + y^3f_{12}'' + xy^2f_{22}''$$

C. 
$$yf_2' + xf_{11}'' + 4x^2 f_{12}'' + 2x^2 y^2 f_{22}''$$

D. 
$$f_2' + xy^2 f_{11}'' + y^3 f_{12}'' + x^3 y^2 f_{22}''$$

答案: A

39. 设 
$$z = x^3 f(xy, \frac{y}{x})$$
,  $f$  具有二阶连续偏导数,求  $\frac{\partial^2 z}{\partial x \partial y} = \underline{\hspace{1cm}}$ 

A. 
$$2x^2f_1' + xyf_2' + x^3yf_{11}'' + yf_{22}''$$
 B.  $3x^2f_1' + x^2f_2' + xy^3f_{11}'' + xyf_{22}''$ 

B. 
$$3x^2f_1' + x^2f_2' + xy^3f_{11}'' + xyf_{22}''$$

C. 
$$4x^3f_1' + 2xf_2' + x^4yf_{11}'' - yf_{22}''$$
 D.  $2x^2f_1' + xf_2' + y^3f_{11}'' - xyf_{22}''$ 

D. 
$$2x^2f_1' + xf_2' + y^3f_{11}'' - xyf_{22}''$$

答案: C

40. 设
$$z = e^{-x} - f(x - 2y)$$
, 且当 $y = 0$ 时,  $z = x^2$ , 求 $\frac{\partial z}{\partial y} = \frac{1}{2}$ 

A. 
$$e^{-x+2y} + 2(x-2y)$$

B. 
$$-4e^{-x}-2(x-4y)$$

C. 
$$-4e^{-x+2y}+4(x+2y)$$

C. 
$$-4e^{-x+2y} + 4(x+2y)$$
 D.  $-2e^{-x+2y} - 4(x-2y)$ 

答案: D

41. 设 
$$w = f(x+y+z, xyz)$$
,  $f$  具有二阶连续偏导数, 求  $\frac{\partial^2 w}{\partial x \partial z}$ 

A. 
$$\frac{\partial f_1'}{\partial z} + yz \frac{\partial f_2'}{\partial z}$$

A. 
$$\frac{\partial f_1'}{\partial z} + yz \frac{\partial f_2'}{\partial z}$$
 B.  $\frac{\partial f_1'}{\partial z} + yf_2' + yz \frac{\partial f_2'}{\partial z}$  C.  $\frac{\partial f_1'}{\partial z} + yf_2'$  D

$$f_1' + y f_2'$$

答案:B

42. 设函数 
$$z = \frac{y}{f(x^2 - y^2)}$$
, 其中  $f(u)$  可微, 则  $\frac{1}{x} \frac{\partial z}{\partial x} + \frac{1}{y} \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$ 

A. 
$$\frac{z}{x^2y}$$
 B.  $\frac{x^2z}{y}$  C.  $\frac{yz}{x^2}$  D.  $\frac{z}{y^2}$ 

答案: D

A. 0 B. 
$$-2f_2'$$
 C.  $2f_1'$  D.  $2f_1'-2f_2'$ 

答案: A

44. 设 F(u,v) 具有连续的偏导数,由方程 F(cx-az,cy-bz)=0 所确

定的函数 z 是 x, y 的隐函数,且  $aF_u + bF_v \neq 0$ ,求  $a\frac{\partial z}{\partial v} + b\frac{\partial z}{\partial v}$ 

答案: B

45. 设
$$x+2y+z-2\sqrt{xyz}=0$$
, 求 $\frac{\partial z}{\partial x}=$ \_\_\_\_\_\_.

A. 
$$\frac{xy}{\sqrt{xyz-xz}}$$
 B.  $\frac{xy+\sqrt{xyz}}{\sqrt{xyz-xz}}$  C.  $\frac{yz-\sqrt{xyz}}{\sqrt{xyz-xy}}$  D.  $\frac{xy-\sqrt{xyz}}{\sqrt{xyz+xz}}$ 

答案:C

46. 已知 
$$\frac{x}{z} = \ln \frac{z}{y}$$
, 其中  $z \in \mathcal{L}x$ ,  $y$  的函数,求  $\frac{\partial z}{\partial y} = \frac{1}{2}$ 

A. 
$$\frac{x+y}{yz}$$
 B.  $\frac{x^2}{z(x+y)}$  C.  $\frac{y^2}{xy+z}$  D.  $\frac{z^2}{y(x+z)}$ 

答案: D

47. 设函数 F(u,v) 可微, 而函数 z=z(x,y) 由方程  $F(x+\frac{z}{y},y+\frac{z}{x})=0$  确

定,则

$$\frac{\partial z}{\partial x} =$$

A. 
$$\frac{F_1' + F_2'(-\frac{z}{x^2})}{F_1'\frac{1}{y} + F_2'\frac{1}{x}}$$
B. 
$$\frac{F_1' + F_2'(-\frac{z}{y^2})}{F_1'\frac{1}{x} + F_2'\frac{1}{y}}$$

C. 
$$\frac{F_1' + F_2'(-\frac{z}{x^2})}{F_1'\frac{1}{x} + F_2'\frac{1}{y}}$$
 D. 
$$\frac{F_1' + F_2'(-\frac{z}{y^2})}{F_1'\frac{1}{y} + F_2'\frac{1}{x}}$$

答案:A

48. 设函数 z=z(x,y) 由方程  $x-mz=\varphi(y-nz)$  确定, 其中  $\varphi(u)$  可微,

A. m+n B. 0 C. 1 D. 2 答案: C

49.设z = xy + xF(u),而 $u = \frac{y}{x}$ ,其中F(u)可导,则 $\frac{\partial z}{\partial x} = \frac{1}{2}$ 

A. 
$$y+F(\frac{y}{x})-\frac{y}{x}$$
 B.  $y+F(\frac{y}{x})-\frac{y}{x}F'(\frac{y}{x})$ 

C. 
$$y+F(\frac{y}{x})-\frac{y}{x}F'_x(\frac{y}{x})$$
 D.  $y+F(\frac{y}{x})-\frac{y}{x}F'_y(\frac{y}{x})$ .

答案:B

50. 设函数 $z=e^{x-2y}$ ,而函数y=y(x)由方程 $x+y\ln y=2xy$ 确定,求

$$\frac{dz}{dx}\Big|_{x=0}$$

A.  $e^2$  B.  $-e^{-2}$  C.1 D.  $-2e^2$ 

答案:B

51. 已知
$$\frac{x}{z} = \rho(\frac{y}{z})$$
, 其中 $\varphi$ 为可微函数, 求 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$ .

A. 
$$\frac{z^2 \varphi'(\frac{y}{z}) - z}{x + y}$$

A.  $\frac{z^2 \varphi'(\frac{y}{z}) - z}{x + y}$  B.  $\frac{y}{z + x \varphi'(\frac{y}{z})}$  C.  $\frac{z}{x - y \varphi'(\frac{y}{z})}$  D.  $\frac{z \varphi'(\frac{z}{z})}{x + y}$ 

答案: C

52. 已知
$$e^{-xy}-2z+e^z=0$$
,求 $\frac{\partial z}{\partial x}=$ \_\_\_\_\_\_\_

A. 
$$\frac{ye^{-xy}}{e^z-2}$$
 B.  $-\frac{ye^{-xy}}{e^z+2}$  C.  $\frac{e^{-xy}}{2-e^z}$  D.  $\frac{e^{-xy}}{e^z+2}$ 

答案:A

53. 设 z 是由 
$$x^2 + y^2 - z^2 - xy = 0$$
 确定  $x, y$  的函数。求  $\frac{\partial z}{\partial x} = \frac{1}{2}$ 

A. 
$$\frac{x+2y}{z}$$

B. 
$$\frac{2x-y}{2z}$$

$$C. \quad \frac{2x-y}{z}$$

A. 
$$\frac{x+2y}{z}$$
 B.  $\frac{2x-y}{2z}$  C.  $\frac{2x-y}{z}$  D.  $\frac{x+2y}{2z}$ 

答案:B

54. 设 z 是 方程 
$$x+y-z=e^z$$
 所确定的  $x,y$  的函数,则  $\frac{\partial z}{\partial x}=$ 

A. 
$$1-e^{x}$$

B. 
$$\frac{1}{1+e^z}$$

A. 
$$1-e^{z}$$
 B.  $\frac{1}{1+e^{z}}$  C.  $1+e^{z}$  D.  $\frac{1}{1+e^{-z}}$ 

· 答案: B

55. 若 z 是 
$$x,y$$
 的函数, 并由  $x^2 + y^2 + z^2 = yf(\frac{z}{y})$  确定, 求  $\frac{\partial z}{\partial x}$ 

A. 
$$\frac{2x}{f'(\frac{z}{y})-2z}$$
 B.  $\frac{x}{f'(\frac{z}{y})+2z}$  C.  $\frac{f'(\frac{z}{y})-2z}{2}$  D.  $\frac{f'(\frac{z}{y})+2z}{x}$ 

答案: A

56. 若 z 是 x, y 的函数, 并由  $x^2 + z^2 = yf(\frac{z}{v})$ 确定, 其中 f 可微, 求  $\frac{\partial z}{\partial v}$ 

A. 
$$\frac{f(\frac{z}{y}) - \frac{z}{y}f'(\frac{z}{y})}{yf'(\frac{z}{y})}$$

A. 
$$\frac{f(\frac{z}{y}) - \frac{z}{y}f'(\frac{z}{y})}{yf'(\frac{z}{y})}$$
B. 
$$\frac{2yf(\frac{z}{y}) + \frac{y}{z}f'(\frac{z}{y})}{2yzf'(\frac{z}{y})}$$

C. 
$$\frac{yf(\frac{z}{y}) - zf'(\frac{z}{y})}{2yz - yf'(\frac{z}{y})}$$

C. 
$$\frac{yf(\frac{z}{y}) - zf'(\frac{z}{y})}{2yz - yf'(\frac{z}{y})}$$
D. 
$$\frac{zf(\frac{z}{y}) + yf'(\frac{z}{y})}{2z - \frac{y}{z}f'(\frac{z}{y})}$$

答案: C

57. 求由方程组  $\begin{cases} z = x^2 + y^2, \\ x^2 + 2v^2 + 3z^2 = 20. \end{cases}$  所确定的函数的导数  $\frac{dz}{dx}$ 

A. 
$$\frac{x}{3z+1}$$

A. 
$$\frac{x}{3z+1}$$
 B.  $\frac{3z}{2y(3z-1)}$  C.  $\frac{x}{2z-1}$  D.  $\frac{2x+1}{z}$ 

$$C. \frac{x}{2z-1}$$

D. 
$$\frac{2x+1}{z}$$

58. 设
$$\begin{cases} x = -u^2 + v + z, \\ y = u + vz, \end{cases}$$
 求  $\frac{\partial v}{\partial x} = \underline{\qquad}$ 

A. 
$$\frac{1}{1+2uz}$$
 B.  $\frac{1}{1-2uz}$  C.  $\frac{z}{1-2uz}$  D.  $\frac{z}{1+2uz}$ 

答案:A

59. 函数
$$u = z \ln \sqrt{x^2 + y^2}$$
 的全微分 $du =$ \_\_\_\_\_\_

A. 
$$\frac{x}{\sqrt{x^2 + y^2}} dx + \frac{y}{\sqrt{x^2 + y^2}} dy + \ln \sqrt{x^2 + y^2} dz$$

B. 
$$\frac{x}{x^2 + y^2} dx + \frac{y}{x^2 + y^2} dy + z dz$$

C. 
$$\frac{xz}{\sqrt{x^2+y^2}}dx + \frac{yz}{\sqrt{x^2+y^2}}dy + zdz$$

D. 
$$\frac{xz}{x^2 + y^2} dx + \frac{yz}{x^2 + y^2} dy + \ln \sqrt{x^2 + y^2} dz$$

答案:D

60. 函数 
$$z = \frac{y}{\sqrt{x^2 + y^2}}$$
 的全微分\_\_\_\_\_

A. 
$$-\frac{x}{(x^2+y^2)^{3/2}}(xdx-ydy)$$
 B.  $\frac{y}{(x^2+y^2)^{3/2}}(ydx-xdy)$ 

B. 
$$\frac{y}{(x^2+y^2)^{3/2}}(ydx-xdy)$$

C. 
$$-\frac{x}{(x^2+y^2)^{3/2}}(ydx-xdy)$$
 D.  $\frac{x}{(x^2+y^2)^{1/2}}(ydx-xdy)$ 

D. 
$$\frac{x}{(x^2+y^2)^{1/2}}(ydx-xdy)$$

答案。C

61. 二元函数  $z = \ln(1 + x^2 + y^2)$  在点 (1,-1) 处的全微分  $dz|_{(1,-1)}$ 

$$\Lambda$$
,  $dx - \frac{1}{2}dy$ 

$$B. \quad \frac{2}{3}dx + \frac{1}{3}dy$$

$$C. \quad \frac{1}{3}dx + \frac{1}{3}dy$$

A. 
$$dx - \frac{1}{2}dy$$
 B.  $\frac{2}{3}dx + \frac{1}{3}dy$  C.  $\frac{1}{3}dx + \frac{1}{3}dy$  D.  $\frac{2}{3}dx - \frac{2}{3}dy$ .

答案:D

$$A. \quad \frac{xz}{1+2z^2}dx + \frac{yz}{1-2z^2}dy$$

B. 
$$\frac{x}{1-2z^2}dx + \frac{y}{1+2z^2}dy$$

$$C. \quad \frac{yz}{1+2z^2}dx + \frac{xz}{1+2z^2}dy$$

D. 
$$\frac{2xz}{1-2z^2}dx + \frac{2yz}{1-2z^2}dy$$

答案: D

63. 设函数 $u = (\frac{x}{v})^{\frac{1}{x}}$ , 求函数在点(e,1,1)处的全微分\_\_\_\_\_

A. 
$$edx + dy + dz$$
 B.  $dx - edy - edz$ 

B. 
$$dx - edy - edz$$

C. 
$$dx + edy - dz$$
 D.  $dx + edy$ 

D. 
$$dx + edy$$

答案: B

64. 求曲线 x=t,  $y=-2t^2$ ,  $z=t^3$  在点 M(1.-2.1) 处的切线方程

A. 
$$\frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-1}{3}$$
 B.  $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-1}{3}$ ;

B. 
$$\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-1}{3}$$
;

c. 
$$\frac{x-1}{-4} = \frac{y+2}{3} = \frac{z-1}{-1}$$

c. 
$$\frac{x-1}{-4} = \frac{y+2}{3} = \frac{z-1}{-1}$$
 D.  $\frac{x-1}{-1} = \frac{y+2}{4} = \frac{z-1}{2}$ 

答案:A

65. 曲线 $x = \frac{t}{1+t}$ ,  $y = \frac{1+t}{t}$ ,  $z = t^2$  在对应于t = 1 的点处的切线方程

A. 
$$\frac{x-1/2}{1} = \frac{y-2}{-2} = \frac{z-1}{3}$$

A. 
$$\frac{x-1/2}{1} = \frac{y-2}{-2} = \frac{z-1}{3}$$
 B.  $\frac{x-1/2}{2} = \frac{y-2}{-3} = \frac{z-1}{1}$ 

C. 
$$\frac{x-1/2}{-1} = \frac{y-2}{-4} = \frac{z-1}{8}$$
 D.  $\frac{x-1/2}{1} = \frac{y-2}{-4} = \frac{z-1}{8}$ 

D. 
$$\frac{x-1/2}{1} = \frac{y-2}{-4} = \frac{z-1}{8}$$

答案:D

66. 曲线 
$$\begin{cases} x = t \\ y = -2t^2 \text{ 在 } t = 1 \text{ 的切线方程是}_{z = t^3} \end{cases}$$

A. 
$$\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-1}{4}$$

A. 
$$\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-1}{4}$$
 B.  $\frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-1}{3}$ 

c. 
$$\frac{x-1}{-4} = \frac{y+2}{-1} = \frac{z-1}{2}$$

c. 
$$\frac{x-1}{-4} = \frac{y+2}{-1} = \frac{z-1}{2}$$
 D.  $\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-1}{1}$ 

| 67  | <b>设施转抛物面</b> :             | $r = r^2 +$   | v <sup>2</sup> - 1 在当 | (2.14)       | 处的切平面方程              |  |
|-----|-----------------------------|---------------|-----------------------|--------------|----------------------|--|
| 01. | - A. B.C. 4 & 102 100 100 1 | . <del></del> | L TILL TO S           | <sub>ኒ</sub> | [XT13 &1   m1 \1 432 |  |

A. 
$$4x+2y-z-6=0$$
 B.  $x-2y+z-2=0$ 

B. 
$$x-2y+z-2=0$$

C. 
$$4x-2y+z-3=0$$

D. 
$$x + 2y - z - 3 = 0$$

答案。A

68. 求椭球面  $2x^2 + 3y^2 + z^2 = 6$  在点 P(1,-1,1) 处的切平面方程

法线方程

A. 
$$3x+2y+z-6=0$$

A. 
$$3x+2y+z-6=0$$
 B.  $2x-3y+z-6=0$ 

C. 
$$2x+3y+z-2=0$$
 D.  $2x-y-z-3=0$ 

D. 
$$2x-y-z-3=0$$

答案: B

69. 曲线 $x = t, y = -t^2, z = t^3$ 的所有切线中与平面x + 2y + z = 4平行

答案:B

70. 求曲线 $\Gamma: x = \int_0^t e^{tt} \cos u du$ ,  $y = 2\sin t + \cos t$ ,  $z = 1 + e^{3t}$  在 t = 0 处 的法平面方程。

A. 
$$x-2y+z-5=0$$

A. 
$$x-2y+z-5=0$$
 B.  $x-2y+3z-1=0$ 

C. 
$$x+2y+3z-8=0$$
 D.  $2x-y-3z-4=0$ 

D. 
$$2x - y - 3z - 4 = 0$$

答案: C

71. 设函数 f(x,y) 在点 (0,0) 的某邻域内有定义,且  $f_x(0,0)=3$ ,

$$f_{y}(0,0) = -1$$
,

则有

$$A. \quad dz\big|_{(0,0)} = 3dx - dy$$

B. 曲面
$$z = f(x, y)$$
 在点 $(0, 0, f(0))$ 的一个法向量为 $(3, -1, 1)$ 

C. 曲线 
$$\begin{cases} z = f(x, y), \\ y = 0 \end{cases}$$
 在点  $(0, 0, f(0))$  的一个切向量为  $(1, 0, 3)$ 

D. 曲线 
$$\begin{cases} z = f(x, y), \\ y = 0 \end{cases}$$
 在点  $(0, 0, f(0))$  的一个切向量为  $(3, 0, 1)$ 

答案:C

72. 梯度与方向导数的关系为: 梯度的方向是方向导数取得 的方向, 梯度的模是方向导数的最大值

- A. 极大值
- C. 最大值
- D. 极小值

答案:C

73. 函数  $z = \ln(e^x + e^y)$  在原点 O 处沿  $\overline{l} = \overline{OP}$  (其中 P 点的坐标是 (3, -4) )

方向上的方向导数 $\frac{\partial z}{\partial z}$ =\_\_\_\_\_.

- A.  $\frac{1}{2}$  B. -2 C.  $\frac{1}{5}$  D.  $-\frac{1}{10}$

答案: D

74. 求函数  $u=xy^2+z^3-xyz$  在点 (1,1,2) 处沿方向角为

$$\alpha = \frac{\pi}{3}, \beta = \frac{\pi}{4}, \gamma = \frac{\pi}{3}$$
 的方向的方向导数\_\_\_\_\_\_.

A. 1 B.3 C.2 D.5

答案:D

75. 求函数  $z = \ln(x+y)$  在抛物线  $y^2 = 4x$  上点 (1,2) 处,沿着这抛物线在 该点处偏向 x 轴正向的切线方向的方向导数

A. 
$$\frac{12}{\sqrt{3}}$$
 B.  $\frac{\sqrt{2}}{3}$  C.  $\frac{1}{\sqrt{3}}$  D.  $\sqrt{3}$ 

答案:B

76. 设函数  $f(x,y) = \sqrt{x^2 + y^2}$ , 则 gradf(4,3) =\_\_\_\_\_

A. 
$$\frac{4}{5}\vec{i} + \frac{3}{5}\vec{j}$$
 B.  $\frac{1}{5}\vec{i} + \vec{j}$  C.  $\vec{i} + \frac{2}{5}\vec{j}$  D.  $\vec{i} + 2\vec{j}$ 

答案: A

77. 求函数  $u=x^2+2y^2+3z^2+3x-2y$  在点 (1,1,2) 处的梯度

A: 
$$\vec{i} + 3\vec{j} + 5\vec{k}$$

B. 
$$5\vec{i} + \vec{i} + 2\vec{k}$$

B. 
$$5\vec{i} + \vec{j} + 2\vec{k}$$
 C.  $\vec{i} + 3\vec{j} + 6\vec{k}$ 

$$5\vec{i} + 2\vec{j} + 12\vec{k}$$

答案: D

78. 若  $f(x,y) = 2x^2 + xy^2 + ax + 2y$  在点 (1,-1) 处取得极值,则 a =

答案: C

79. 函数 
$$f(x,y) = 4(x-y) - x^2 - y^2$$
 的极大值\_\_\_\_\_

A. 4 B.8 C.5

答案: B

80. 已知函数 f(x,y) 在点 (0,0) 的某个邻域内连续,

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-xy}{(x^2+y^2)^2}=1.$$

则下列四个选择中正确的是

- A. 点(0,0)是f(x,y)的极大值点
- B. 点(0,0) 不是 f(x,y) 的极值点
- C. 点(0,0)是f(x,y)的极小值点
- D. 根据所给条件无法判定点(0,0)是否为f(x,y)的极值点

答案: B

81. 点(0,0) 是函数 z = xy 的\_

C. 极大值点 D. 不可微点 A. 驻点 B. 极小值点 答案: A

- 82. 函数  $z = \sqrt{(x-1)^2 + (y-1)^2}$  在点 P(1,1) 处
- B. 有偏导数但不取极值
- C. 无偏导数且取极小值 D. 无偏导数也不取极值

答案: C

B.  $\frac{1}{2}$  C. 1

D.  $\frac{1}{3}$ 

答案: A

83. 在斜边长为1的直角三角形中,求面积最大的三角形的面积

B.  $\frac{l^2}{4}$  C.  $\frac{l^2}{3}$  D.  $\frac{l^2}{6}$ 

#### 黎曼积分: 性质

- 2. 度量性  $\int_{\Omega} \mathrm{Id}\Omega = \Omega$  (度量) ...
- 3. 续性性  $\int_{\Omega} [af(p) + bg(p)] d\Omega = a \int_{\Omega} f(p) d\Omega + b \int_{\Omega} g(p) d\Omega.$
- 4. 积分域可加性+

$$\int_{\Omega} f(p) d\Omega = \int_{\Omega} f(p) d\Omega + \int_{\Omega} f(p) d\Omega \quad (\Omega = \Omega + \Omega_2).$$

- 5. 比较性。
  - (1) 当 $f(p) \le g(p)$ 时,  $\int_{\Omega} f(p) d\Omega \le \int_{\Omega} g(p) d\Omega...$
- $\langle 2 \rangle | \int_{\Omega} f(p) d\Omega | \leq \int_{\Omega} |f(p)| d\Omega.$
- 6. 估值性 当 $m \le f(p) \le M$ 时, $m\Omega \le \int_{\Omega} f(p) d\Omega \le M\Omega$ .
- 7. 积分中值定理 若  $f(p) \in C(\Omega)$ ,则  $\exists p^* \in \Omega$ ,使  $\int_{\Omega} f(p) d\Omega = f(p^*) \Omega$ .
- 8. 对称性 当  $\Omega$  关于 x = 0 对称时,  $\omega$
- (1) f(-x,y,z) = f(x,y,z),则  $\int_{\Omega} f(x,y,z) d\Omega = 2 \int_{\Omega} f(x,y,z) d\Omega$ . 其中  $\Omega^{+}$  是  $\Omega$  内  $x \geq 0$  的部分...
  - (2) f(-x, y, z) = -f(x, y, z),  $\mathbb{M} \int_{\Omega} f(x, y, z) d\Omega = 0$ .

# 黎曼积分:二重积分计算

(1) 在直角坐标系下. 用平行于坐标轴的直线网分割 $\sigma$ ,面积微元 $d\sigma = dxdy$ .

对x-型积分域 $\sigma: a \le x \le b, y_1(x) \le y \le y_2(x)$ ,见图 10.1,有二重积分计算公式。

$$\iint_{\sigma} f(x, y) dxdy = \int_{a}^{b} dx \int_{\gamma_{1}(x)}^{\gamma_{2}(x)} f(x, y) dy.$$

对y-型积分域 $\sigma: c \le y \le d, x_1(y) \le x \le x_2(y)$ ,见图 10.2,有二重积分计算公式。

$$\iint_{\sigma} f(x, y) dxdy = \int_{c}^{d} dy \int_{x_{1}(y)}^{x_{2}(y)} f(x, y) dx.$$

(2) 在极坐标系下. 用r = 常数,  $\theta = <u>常数</u>网分割 <math>\sigma$ , 面积微元  $d\sigma = rdrd\theta$  。 当积分域  $\sigma$ :  $\alpha \le \theta \le \beta$ ,  $r_i(\theta) \le r \le r_2(\theta)$ , 见图 10.3,则有二重积分计算公式。  $\iint_{\sigma} f(r,\theta) rdrd\theta = \int_{\alpha}^{\beta} d\theta \int_{r(\theta)}^{r_2(\theta)} f(r,\theta) rdr.$ 



(3) 累次积分<u>换序问题</u>。直角坐标系下累次积分与极坐标系下累次积分转换问题, 关键是借助重积分转换。

## 黎曼积分:三重积分计算

(1) 在直角坐标系下. 用平行坐标面的三组平面分割V,体积微元 dV = dxdydz. 。 投影法. 当积分域 $V:(x,y) \in \sigma_{xy}, z_1(x,y) \le z \le z_2(x,y)$ ,见图 10.4,则有三重积分 计算公式。

$$\iiint_V f(x, y, z) dxdydz = \iint_{\sigma_{xx}} dxdy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz.$$

截面法. 当积分域 $V: a \le x \le b$ ,  $(y,z) \in \sigma_x$  (截面),见图 10.5,则有三重积分计算 公式。

 $\iiint_{x} f(x, y, z) dxdydz = \int_{-a}^{b} dx \iint_{-a}^{a} f(x, y, z) dydz.$ 



(2) 在柱(面)坐标系下. 用三组坐标面分割V,体积微元  $dV = rdrd\theta dz$ ... 当积分域 $V: \alpha \le \theta \le \beta$ ,  $r_1(\theta) \le r \le r_2(\theta)$ ,  $z_1(r,\theta) \le z \le z_2(r,\theta)$ ,见图 10.6,则有三重积分计算公式。

$$\iiint_{V} f(r,\theta,z) r dr d\theta dz = \int_{\alpha}^{\beta} d\theta \int_{r_{1}(\theta)}^{r_{2}(\theta)} \int_{z_{1}(r,\theta)}^{z_{2}(r,\theta)} f(r,\theta,z) dz.$$

- 【注】 柱坐标相当于在一个直角坐标面上取极坐标,再加另一个直角坐标. 柱坐标系下的三重积分也可化为其它次序的累次积分。
- (3) 在球 (面) 坐标系下. 用三组坐标面分割V,体积微元  $dV = \rho^2 \sin \varphi d\rho d\varphi d\theta$ . 当积分域  $V: \alpha \le \theta \le \beta$ ,  $\varphi_1(\theta) \le \varphi \le \varphi_2(\theta)$ ,  $\rho_1(\theta,\varphi) \le \rho \le \rho_2(\theta,\varphi)$ ,见图 10.7,则有三重积分公式。

$$\iiint_{V} f(\rho, \varphi, \theta) \rho^{2} \sin \varphi d\rho d\varphi d\theta = \int_{\alpha}^{\beta} d\theta \int_{\varphi_{1}(\theta)}^{\varphi_{2}(\theta)} \sin \varphi d\varphi \int_{\rho_{1}(\theta, \varphi)}^{\rho_{2}(\theta, \varphi)} f(\rho, \varphi, \theta) \rho^{2} d\rho.$$

【注】 柱坐标相当于在直角坐标面上取个<u>极</u>角 $\theta$ ,加上 $\theta$ 半平面上的极坐标  $(\rho, \varphi)$ ,所以球坐标相当于两个极坐标。

## 黎曼积分:曲线、曲面积计算

3. 对弧长的曲线积分(第一型曲线积分)的计算。

设曲线 l 的方程:  $x=x(t), y=y(t), z=z(t), \alpha \le t \le \beta$ . 则弧长微元  $ds=\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}dt$ ,并有第一型曲线积分计算公式。

$$\int_{\mathcal{X}} f(x, y, z) ds = \int_{\alpha}^{\beta} f(x(t), y(t), z(t)) \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} dt.$$

4. 对面积的曲面积分(第一型曲面积分)的计算。

设曲面 
$$S$$
 的方程:  $z=z(x,y), (x,y) \in \sigma_{xy}$ . 则曲面面积微元  $dS = \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} d\sigma$ ,

并有第一型曲面积分计算公式。

$$\iint_{S} f(x, y, z) dS = \iint_{\sigma_{x}} f(x, y, z(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} d\sigma.$$

聚曼积分: 应用

1. 曲面  $S: z = z(x, y), (x, y) \in \sigma_{xy}$  的面积

$$S = \iint_{S} dS = \iint_{\sigma_{xy}} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} d\sigma.$$

2. <u>曲顶为</u>  $z = z(x, y), (x, y) \in \sigma_{xy}$  的柱体体积。

$$V = \iiint_V \mathrm{d}V = \iint_{\sigma_n} z(x, y) \mathrm{d}\sigma.$$

3. 质量密度为  $\mu(p)$  的几何形体  $\Omega$  的总质量。

$$m = \int_{\Omega} \mu(p) d\Omega$$
.

4. 质量密度为 $\mu(p)$ 的几何形体 $\Omega$ 的质心的横坐标。

$$\overline{x} = \frac{\int_{\Omega} \mu(p) x d\Omega}{\int_{\Omega} \mu(p) d\Omega}.$$

5. 质量密度为 $\mu(p)$ 的几何形体 $\Omega$ 对x轴的转动惯量。

$$I_x = \int_{\Omega} \mu(p)(y^2 + z^2) d\Omega.$$

## 重积分

2. 设函数 f(x,y,z) 连续, $f(0,0,0) \neq 0$ ,v,是以原点为球心,t为半径

4. 设函数 f(x,y,z) 连续,  $f(0,0,0) \neq 0$  , v ,是以原点为球心, t 为半径 的球形区域,则当  $t \to 0$  时,三重积分  $\iiint f(x,y,z) dv$  是关于 t 的,

\_\_阶无穷小.

答案: C

$$\mathbb{A}: \iiint_{v_{i}} f(x, y, z) dv = f(\xi_{i}, \eta_{i}, \varphi_{i}) v_{i} = f(\xi_{i}, \eta_{i}, \varphi_{i}) \frac{4}{3} \pi t^{3}, (\xi_{i}, \eta_{i}, \varphi_{i}) \in v_{i}$$

$$\iiint_{t \to 0} f(x, y, z) dx$$

$$\lim_{t \to 0} \frac{v_{i}}{t^{3}} = \lim_{t \to 0} f(\xi_{i}, \eta_{i}, \varphi_{i}) \frac{4}{3} \pi = \frac{4}{3} \pi f(0, 0, 0) \neq 0.$$

故此积分是t的三阶无穷小。

5. 设二元函数 z = f(x,y) 在 xoy 面的有界闭域 D 上非负、连续,则黎曼 积分  $\iint_D f(x,y) d\sigma$  表示以此面 z = f(x,y) 为顶, D 为底, D 的边界线为

准线, 母线平行于 z 轴的柱面为侧面的曲项柱体的\_\_\_\_

| (A) 侧面积 (B) 体积 (C) 表面积 (D) 质量                                                                                 |
|---------------------------------------------------------------------------------------------------------------|
| 答案: B 6. 已知平板 $D$ 的质量密度 $\rho = \rho(p)$ ,则黎曼积分 $\iint_D \rho(p) da$ 表示平板 $D$                                 |
| <b>的</b>                                                                                                      |
| (A) 面积 (B) 体积 (C) 质量 (D) 厚度                                                                                   |
| 答案: 质量                                                                                                        |
| 7. $\int_{I} (x^2 + y^2) ds =$ ,曲线 $I$ 是下半圆周 $y = -\sqrt{1-x^2}$ .                                            |
| (A) $\pi^2$ (B) $\pi$ (C) $2\pi$ (D) $3\pi$                                                                   |
| 答案: B                                                                                                         |
| 解: $x^2 + y^2 = 1$ , $\int_{1}^{\infty} (x^2 + y^2) ds = \int_{1}^{\infty} ds = \pi$                          |
| 8. 由二重积分的几何意义 $\iint_{x^2+y^2 \le 1} (\sqrt{1-x^2-y^2}+1)dxdy =$                                              |
| (A) $\frac{\pi}{3} + \pi$ (B) $\frac{2}{3}\pi + \pi$ (C) $\frac{2}{3}\pi + \pi^2$ (D) $\frac{\pi}{3} + \pi^2$ |
| 答案: B /                                                                                                       |
| 9. 设 $D: x^2 + y^2 \le a^2(a > 0)$ , 当 $a = $ 时 ,                                                             |
| $\iint \sqrt{a^2 - x^2 - y^2} dx dy = \pi.$                                                                   |
| (A) 1 (B) $\sqrt[3]{\frac{3}{2}}$ (C) $\sqrt[3]{\frac{3}{4}}$ (D) $\sqrt[3]{\frac{1}{2}}$                     |
| (A) 1 (B) $\sqrt[3]{\frac{3}{2}}$ (C) $\sqrt[3]{\frac{3}{4}}$ (D) $\sqrt[3]{\frac{1}{2}}$                     |
| 答案: B                                                                                                         |
| 10. 设有界闭域 $D_1$ 与 $D_2$ 关于 oy 轴对称且 $D_1 \cap D_2 = \emptyset$ , $f(x,y)$ 是定义在                                 |
| $D_1 \cup D_2$ 上的连续函数,则二重积分 $\iint f(x^2, y) dx dy = $                                                        |
| (A) $2\iint_{D} f(x^{2}, y) dxdy$ (B) $4\iint_{D_{2}} f(x^{2}, y) dxdy$                                       |
| (C) $4\iint f(x^2, y) dxdy$ (D) $\frac{1}{2}\iint_D f(x^2, y) dxdy$                                           |
| P <sub>1</sub>                                                                                                |

答案:A

11. 若区域 
$$D$$
 为  $|x| \le 1$ ,  $|y| \le 1$ , 则  $\iint_D xe^{\cos(xy)} \sin(xy) dxdy =$ 

(A) 
$$e^{-1}$$
 (C) 0 (D)  $\pi$ 

答案:C

12. 设 D 是 xoy 平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形区域,

$$D_1$$
 是  $D$  在第一象限的部分,则  $\iint (xy + \cos x \sin y) d\sigma =$ \_\_\_\_\_\_

$$x\iint_{D}\cos x\sin yd\sigma$$
.

答案: 2

解: A(-1,1), B(-1,-1,-1,-1,-1), O(0,0), C(1,1),  $\triangle ABO + \triangle ACO = D$ .

$$\iint_{D} (xy + \cos x \sin y) d\sigma = \iint_{\Delta BO} (xy + \cos x \sin y) d\sigma + \iint_{\Delta ACO} (xy + \cos x \sin y) d\sigma$$

$$= O + \iint_{\Delta ACO} xyd\sigma + \iint_{\Delta ACO} \cos x \sin yd\sigma$$
$$= 2 \iint_{D_1} \cos x \sin yd\sigma$$

13 . 
$$\iint (xe^2 + x^2 \sin y) ds =$$

$$S: x^2 + y^2 + z^2 = 1, z \ge 0.$$

(A) 0

- (B) 1
- (C) 2
- (D)

答案:A

 $D: x^2 + y^2 \le 1 \dots$ 

答案: A

15. 
$$\iint_{x^2+y^2\leq a^2} (3y-2x)d\sigma = \underline{\hspace{1cm}}$$

答案: A

设函数 f(x,y) 在区域  $D: y^2 \le -x$ ,  $y \ge x^2$  上连续, 则二重积分  $\iint f(x,y)dxdy$  可化累次积分为(

- (A)  $\int_{-\infty}^{0} dx \int_{-\infty}^{x^2} f(x,y) dy$
- (B)  $\int_{-1}^{0} dx \int_{-F_{0}}^{x^{2}} f(x, y) dy$
- (C)  $\int_0^1 dy \int_{-\overline{y}}^{-y^2} f(x,y) dx$
- (D)  $\int_0^1 dy \int_{\sqrt{y}}^{y^2} f(x,y) dx$

17. 将  $I = \iint xd\sigma$  化成累次积分\_\_\_\_\_\_,D由xy = 1及直线 $x + y = \frac{5}{2}$ 

围成.

(A) 
$$\int_{\frac{1}{2}}^{2} dy \int_{\frac{1}{x}}^{\frac{5}{2}-x} x dx$$
 (B)  $\int_{\frac{1}{2}}^{2} dx \int_{\frac{1}{x}}^{\frac{5}{2}-x} x dy$ 

(B) 
$$\int_{\frac{1}{2}}^{2} dx \int_{\frac{1}{x}}^{\frac{5}{2}-x} x dy$$

(C) 
$$\int_{\frac{1}{2}}^{2} dx \int_{\frac{5}{2}-x}^{\frac{1}{x}} x dy$$

(C) 
$$\int_{\frac{1}{2}}^{2} dx \int_{\frac{5}{2}-x}^{\frac{1}{2}} x dy$$
 (D)  $\int_{\frac{1}{2}}^{2} dy \int_{\frac{5}{2}-x}^{\frac{1}{2}} x dx$ 

答案:B

18. 设D是由直线y=2, y=x, y=2x所围成的闭区域,同二重积分  $\iint f(x,y)d\sigma$  化为二次积分,正确的是

(A) 
$$\int_0^1 dx \int_x^{2\pi} f(x,y) dy$$

(B) 
$$\int_{-\infty}^{2} dx \int_{-\infty}^{2x} f(x, y) dy$$

(C) 
$$\int_0^2 dy \int_{\frac{y}{2}}^y f(x,y) dx$$

(D) 
$$\int_0^2 dy \int_{2x}^x f(x,y) dx$$

答案:C

19. 将二重积分  $\iint$   $\arctan \frac{y}{y} dxdy$  化成极坐标系下的累次积分为

其中 $D: a^2 \le x^2 + y^2 \le 1, x \ge 0, y \ge 0, a > 0.$ 

(A) 
$$\int_0^{\pi} \theta d\theta \int_a^1 r dr$$
 (B)  $\int_0^{\frac{\pi}{2}} \theta d\theta \int_a^1 r dr$  (C)  $\int_0^{\frac{\pi}{2}} \theta d\theta \int_a^1 dr$  (D)  $\int_0^{\frac{\pi}{2}} d\theta \int_a^1 r dr$ 

答案:B

20. 若区域 D 为  $(x-1)^2 + y^2 \le 1$ ,则二重积分  $\iint f(x,y) dx dy$  化成累次积

分为(

(A) 
$$\int_0^{\pi} d\theta \int_0^{2\cos\theta} F(r,\theta) dr$$

(A) 
$$\int_{0}^{\pi} d\theta \int_{0}^{2\cos\theta} F(r,\theta) dr$$
 (B)  $\int_{-\pi}^{\pi} d\theta \int_{0}^{2\cos\theta} F(r,\theta) dr$ 

(D) 
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} F(r,\theta) dr$$
 (D) 
$$\int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} F(r,\theta) dr$$

(D) 
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\cos\theta} F(r,\theta) dr$$

答案。(C)

21. 若区域 D 为  $x^2 + y^2 \le 2x$ ,则二重积分  $\iint (x+y)\sqrt{x^2+y^2}\,dxdy$  化成

累次积分为(

(A) 
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} (\cos\theta - \sin\theta) \sqrt{2r\cos\theta} r dr$$
 (B)

$$\int_0^{\pi} (\cos\theta + \sin)d\theta \int_0^{2\cos\theta} r^3 dr$$

$$(C) 2\int_0^{\frac{\pi}{2}} (\cos\theta + \sin\theta) d\theta \int_0^{2\cos\theta} r^3 dr$$
 (D)

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos\theta + \sin)d\theta \int_{0}^{2\cos\theta} r^{3} dr$$

答案:D

22. 将  $I = \iint \sqrt{x^2 + y^2} dx dy$  化成累次积分(极坐标系下)的形式为

其中 $D: 0 \le x \le a$ ,  $0 \le y \le a$ .

(A) 
$$\int_0^{\frac{\pi}{4}} d\theta \int_0^{\frac{\alpha}{\cos\theta}} r^2 dr$$

(B) 
$$\int_0^{\frac{\pi}{2}} d\theta \int_{\frac{\pi}{\cos\theta}}^0 r^2 dr$$

(C) 
$$\int_0^{\frac{\pi}{4}} d\theta \int_0^{\frac{\pi}{\cos\theta}} r dr$$

(D) 
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{\alpha}{\cos\theta}} r^2 dr$$

答案: D

23. 将二重积分  $\iint$  arctan  $\frac{y}{v}$  dady 化为极坐标系下的累次积分(

$$D: 1 \le x^2 + y^2 \le 4, y \ge 0, y \le x$$

(A) 
$$\int_0^{\frac{\pi}{2}} \theta d\theta \int_1^2 r dr$$
 (B)  $\int_0^{\frac{\pi}{4}} \theta d\theta \int_1^2 dr$  (C)  $\int_0^{\frac{\pi}{4}} d\theta \int_1^2 r dr$  (D)

$$\int_0^{\frac{\pi}{4}} \theta d\theta \int_1^2 r dr$$
答案: D

24. 设 f(x,y) 为连续函数,交换二次积分  $\int_0^x dy \int_{\frac{1}{2}y}^y f(x,y)$  的积分顺序

(A) 
$$\int_0^1 dx \int_x^{2x} f(x,y)dy + \int_1^2 dx \int_x^2 f(x,y)dy$$
 (B)

$$\int_0^2 dx \int_x^{2\pi} f(x,y) dy$$

$$(C) \int_{0}^{1} dx \int_{2x}^{x} f(x, y) dy + \int_{1}^{2} dx \int_{2}^{x} f(x, y) dy$$
 (D)

$$\int_0^1 dx \int_{2x}^x f(x,y) dy$$

答案: (A)

25. 设 f(x,y) 为连续函数, 交换二次积分  $\int_0^2 dx \int_x^{2x} f(x,y) dy$  的积分次序

(A) 
$$\int_0^4 dy \int_{\frac{1}{2}^y}^2 f(x, y) dx$$
 (B)

$$\int_0^2 dy \int_y^{\frac{1}{2}\nu} f(x,y) dx + \int_2^4 dy \int_{\frac{1}{2}\nu}^{\nu} f(x,y) dx$$

(C) 
$$\int_0^2 dy \int_{\frac{1}{2}y}^y f(x,y) dx + \int_2^4 dy \int_{\frac{1}{2}y}^2 f(x,y) dx$$
 (D)

$$\int_2^4 dy \int_{\frac{1}{2}y}^2 f(x,y) dx$$

答案: (C)

26. 改变积分次序 
$$I = \int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy = \underline{\hspace{1cm}}$$

(A) 
$$\int_0^{\sqrt{y}} \frac{y}{\sqrt{1+y^3}} dy \int_0^1 x dx$$

(C) 
$$\int_0^2 x dy \int_0^{\sqrt{y}} \frac{y}{\sqrt{1+y^3}} dx$$
 (D)  $\int_0^0 \frac{y}{\sqrt{1+y^3}} dy \int_0^1 x dx$ 

(B)  $\int_0^1 \frac{y}{\sqrt{1+v^2}} dy \int_0^{\sqrt{y}} x dx$ 

(C) 
$$\int_0^2 x dy \int_0^{\sqrt{y}} \frac{y}{\sqrt{1+y^3}} dx$$

27. 将  $\int_{0}^{\infty} dx \left( \sqrt{x^2 + y^2} dy \right)$  化为化为极坐标形式的二次积分为

(A) 
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{a\cos\theta} r^2 dr$$
 (B)  $\int_0^{\frac{\pi}{4}} d\theta \int_0^{a\sec\theta} r dr$ 

(B) 
$$\int_0^{\frac{\pi}{4}} d\theta \int_0^{a \sec \theta} r dr$$

(C) 
$$\int_0^{\frac{\pi}{4}} d\theta \int_0^{a \sec \theta} r^2 dr$$

(C) 
$$\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{a\sec\theta} r^{2} dr$$
 (D)  $\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{a\cos\theta} r^{2} dr$ 

答案: C

28. 估计积分值  $\iiint (x^2+y^2+z^2)dv$ , v 为球域  $x^2+y^2+z^2 \le R^2$ ,

$$\leq \iiint (x^2 + y^2 + z^2) dv \leq \underline{ } .$$

(A) 1, 
$$\frac{4}{3}\pi R^5$$
 (B) 0,  $\frac{4}{3}\pi R^3$  (C) 0,  $\frac{4}{3}\pi R^5$  (D) 0,  $\frac{2}{3}\pi R^5$ 

答案: C

$$\text{$M$}: \ \ 0 \leq \iiint (x^2 + y^2 + z^2) dv \leq R^2 \cdot \frac{4}{3} \pi R^3 = \frac{4}{3} \pi R^5$$

29. 比较下列积分值的大小:

$$I_1 = \iint_D \ln^3(x+y) dxdy$$
,  $I_2 = \iint_D (x+y)^3 dxdy$ ,  $I_3 = \iint_D [\sin(x+y)]^3 dxdy$ 

其中
$$D$$
由 $x=0, y=0, x+y=\frac{1}{2}, x+y=1$ 围成,则( )

(A)  $I_1 < I_2 < I_3$  (B)  $I_3 < I_2 < I_1$  (C)  $I_1 < I_3 < I_2$  (D)

 $I_3 < I_1 < I_2$ 

答案: C

30. 比较下列积分值的大小

$$J_{i} = \iint_{v_{i}} e^{-(x^{2}+y^{2})} dx dy, \quad i = 1, 2, 3, \quad 其中 D_{i} = \{(x,y) | x^{2}+y^{2} \le R^{2} \},$$

$$D_{2} = \{(x,y) | x^{2}+y^{2} \le 2R^{2} \}, \quad D_{3} = \{(x,y) | |x| \le R, |y| \le R \}, \text{则(}$$
(A)  $J_{1} < J_{2} < J_{3}$  (B)  $J_{2} < J_{3} < J_{1}$  (C)  $J_{1} < J_{3} < J_{2}$  (D)

$$(A) J_1 < J_2 < J_3$$

(B) 
$$J_2 < J_3 < J_1$$

$$(C) J_1 < J_3 < J_2$$

$$J_3 < J_2 < J_1$$

答案: C.

31 . 计 第 
$$\iint_{\mathcal{D}} x dx dy =$$
 \_\_\_\_\_ , 其 中

$$D: x^2 + (y-1)^2 \ge 1, x^2 + (y-2)^2 \le 4, y \le 2, x \ge 0.$$

答案:B

32 : 详 第 
$$I = \iint_D \sqrt{a^2 - x^2} d\sigma =$$
 \_\_\_\_\_\_

$$D: x^2 + y^2 \le a^2, x \ge 0, y \ge 0.$$

(A) 
$$\frac{1}{3}a^3$$
 (B)  $\frac{2}{3}a^3$  (C)  $a^3$  (D)  $\frac{4}{3}a^3$ 

答案:B

成的平面区域.

(A) 
$$\pi$$
 (B)  $2\pi$  (C)  $3\pi$  (D)  $4\pi$ 

答案:B

34. 
$$I = \frac{1}{\pi} \iint_D (x^2 + y^2) d\sigma = _____,$$
 其中  $D \neq x^2 + y^2 = 1$  围成的

区域.

(A) 1 (B) 
$$\frac{2}{3}$$
 (C)  $\frac{1}{3}$  (D) 0

答案: B

答案: B  
35. 计算 
$$I = \iint_D (x^2 + y^2) d\sigma =$$
\_\_\_\_\_\_\_,其中  $D \neq (x+1)^2 + y^2 = 1$  围

成的平面区域.

(A) 
$$\frac{32}{9}$$
 (B)  $\frac{32}{9}$  (C)  $\frac{32}{3}$  (D)  $-\frac{32}{3}$ 

$$I = \iint_{\mathcal{D}} \arctan \frac{y}{x} dx dy =$$

 $D: 1 \le x^2 + y^2 \le 4, \ x \ge 0, \ y \ge 0.$ 

$$(A) \frac{1}{16}\pi^2$$

(B) 
$$\frac{3}{16}\pi^{3}$$

(A) 
$$\frac{1}{16}\pi^2$$
 (B)  $\frac{3}{16}\pi^2$  (C)  $\frac{5}{16}\pi^2$  (D)  $\frac{7}{16}\pi^2$ 

(D) 
$$\frac{7}{16}\pi^2$$

答案:B

16. 
$$I = \iint_{D} \sin \sqrt{x^2 + y^2} d\sigma =$$
  $D : \pi^2 \le x^2 + y^2 \le 4\pi^2$ .

(A) 
$$-\pi^2$$

(B) 
$$-2\pi^2$$

(C) 
$$-3\pi^2$$

(A) 
$$-\pi^2$$
 (B)  $-2\pi^2$  (C)  $-3\pi^2$  (D)  $-6\pi^2$ 

答案: D

37.计算二重积分 
$$\iint_{\mathcal{D}} r^2 dr d\theta = ______$$
,其中

 $D: a\cos\theta \le r \le a, \ 0 \le \theta \le \frac{\pi}{2} \ (a > 0).$ 

(A) 
$$\frac{2}{9}a^3 - \frac{1}{6}\pi a^3$$
 (B)  $\frac{1}{6}\pi a^3 - \frac{2}{9}a$  (C)  $\frac{1}{6}\pi a^3 - \frac{2}{9}a^3$ 

(B) 
$$\frac{1}{6}\pi a^3 - \frac{2}{9}a$$

(C) 
$$\frac{1}{6}\pi a^3 - \frac{2}{9}a^3$$

(D) 
$$\frac{2}{9}a - \frac{1}{6}\pi a$$
.

答案: C

(A) 
$$\frac{4}{3}\pi$$
 (B)  $\frac{8}{3}\pi$  (C)  $\frac{2}{3}\pi$ 

(B) 
$$\frac{8}{3}\pi$$

(C) 
$$\frac{2}{3}\pi$$

(D) 
$$\frac{1}{3}\pi$$

答案:B

39. 利用极坐标计算二重积分 
$$\iint_{D} \arctan \frac{y}{x} dxdy = \underline{\qquad}$$
, 其中

$$D: 1 \le x^2 + y^2 \le 4, y \ge 0, y \le x.$$

(A) 
$$\frac{3}{37}\pi^2$$

(A) 
$$\frac{3}{32}\pi^2$$
 (B)  $\frac{3}{64}\pi^2$  (C)  $\frac{3}{16}\pi^2$ 

$$(C) \frac{3}{16} \pi^2$$

$$(D) \frac{3}{8}\pi^2$$

| 40. 计算二重积分 $\iint_{D} (x^2 + y^2) dx dy =,$ 其                                   | t中D 是由直线                                |
|---------------------------------------------------------------------------------|-----------------------------------------|
| y = x, $y = x + a$ , $y = a$ 及 $y = 3a$ $(a > 0)$ 所                             | •                                       |
| (A) $14a^4$ (B) $12a^4$ (C) $4a^4$ (D) $7a^4$                                   |                                         |
| 答案: A                                                                           |                                         |
| 41. 计算二次积分 $\int_0^3 dx \int_0^{3-x} (2x+y)dy = $                               | -                                       |
| (A) 27 (B) $\frac{27}{2}$ (C) $\frac{27}{4}$ (D) 54                             |                                         |
| 答案: B                                                                           |                                         |
| 42. 计算二重积分 ∬ xydxdy =,                                                          | 其中D是由                                   |
| y=x, $xy=1$ , $x=3$ 所围成的区域.                                                     | <u>-</u>                                |
| (A) $20 - \frac{1}{2} \ln 3$ (B) $10 - \ln 3$ (C) $10 - \frac{1}{2} \ln 3$      | (D) $10-2\ln 3$                         |
| 答案: C\                                                                          |                                         |
| 43. 计算二重积分 $\iint_{D} (x^2 + y^2 - x) dx dy = $                                 | , 其中 D 是由                               |
| y=2, y=x, y=2x 所围成的区域.                                                          |                                         |
| (A) $\frac{13}{3}$ (B) $\frac{13}{2}$ (C) $\frac{13}{4}$ (D) $\frac{13}{6}$     | •                                       |
| 答案: D                                                                           |                                         |
| 44. 计算二重积分 $\iint (x-1)dxdy = $                                                 | 其中 D 是由曲线                               |
| $x=1+\sqrt{y}$ , $y=1-x$ 及 $y=1$ 所围成的区域.                                        |                                         |
| (A) $\frac{1}{12}$ (B) $\frac{1}{6}$ (C) $\frac{1}{48}$ (D) $\frac{1}{24}$      |                                         |
| 答案: D                                                                           |                                         |
| 45. 计算二重积分 $\iint_{D} \frac{1}{1+x^4} dx dy = \underline{\hspace{1cm}}$         | , 其中 D 是由                               |
| y=x, y=0及 $x=1$ 所围成的区域.                                                         | ,                                       |
| (A) $\frac{\pi}{8}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{2}$ | • • • • • • • • • • • • • • • • • • • • |

答案, A.

46. 计算二重积分 
$$\iint x dx dy =$$
\_\_\_\_\_\_\_\_\_,其中  $D: x^2 + y^2 \le 2$  及

- (A)  $\frac{11}{15}$  (B)  $\frac{44}{15}$  (C)  $\frac{22}{15}$  (D)  $\frac{33}{15}$

答案: C

47. 计算 
$$\iint_D e^{x^2} dx dy =$$
\_\_\_\_\_\_,其中  $D$  是第一象限中由  $y = x$  和

 $v = x^3$ 所围成的区域。

- (A)  $\frac{1}{2}e^{-1}$  (B)  $e^{-1}$  (C) 1-e (D)  $1-\frac{1}{2}e$

答案: A

- (A)  $\frac{1}{15}$  (B)  $\frac{2}{15}$  (C)  $\frac{4}{15}$  (D)  $\frac{6}{15}$

答案:B

直线 y=0, x=2 所围成的区域.

- '(A)  $\frac{16}{3}$  (B)  $\frac{8}{3}$  (C)  $\frac{32}{3}$  (D)  $\frac{4}{3}$

答案: A

50. 二重积分 
$$\iint_D xydxdy$$
, 其中  $D: 0 \le y \le x^2$ ,  $0 \le x \le 1$  的值为 (

- (A)  $\frac{1}{6}$  (B)  $\frac{1}{12}$  (C)  $\frac{1}{2}$  (D)  $\frac{1}{4}$

- (A)  $\pi(\ln 2 1)$  (B)  $\pi(2\ln 2 2)$  (C)  $\pi(2\ln 2 1)$  (D)  $2\pi(2\ln 2 1)$

答案:C

23. 
$$I = \iint_{D} dxdy = D: 0 \le x \le a, \quad 0 \le y \le a$$
.

- (A)  $a^2$  (B)  $2a^2$  (C)  $3a^2$  (D)  $4a^2$

答案:A

52. 
$$I = \iint_{D} \frac{1}{x} d\sigma = _____$$
,  $D \oplus xy = 1$  及直线  $x + y = \frac{5}{2}$  围成.

- (A)  $5\ln 2-2$  (B)  $5\ln 2-3$  (C)  $4\ln 2-3$  (D)  $5\ln 2-1$

答案:B

围成,

- (A)  $\frac{1}{4}$  (B)  $\frac{1}{3}$  (C)  $\frac{1}{2}$  (D) 1

答案: A

答案: 4

- (A) 1 (B) 2 (C) 3 (D) 4

答案: D .

- (A) 0 (B) 1. (C) 2 (D) 3

答案:A

音条: A
56. 
$$I = \iint_{D} (|x| + |y|) dxdy =$$
\_\_\_\_\_\_,  $D: x^2 + y^2 \le 1$ .

- (A)  $\frac{1}{3}$  (B)  $\frac{2}{3}$  (C)  $\frac{4}{3}$  (D)  $\frac{8}{3}$

答案:D

答案: D
57. 
$$\iint_{D} (x^3 + 3x^2y + y^3)d\sigma =$$
\_\_\_\_\_, 其中 $D: 0 \le x \le 1, 0 \le y \le 1.$ 

- (A) 1 (B) 2 (C) 3 (D) 4

答案: A

$$(A) \frac{e-1}{2}$$

(B) 
$$\frac{e-1}{a}$$

(C) 
$$\frac{e-1}{8}$$

(A) 
$$\frac{e-1}{2}$$
 (B)  $\frac{e-1}{4}$  (C)  $\frac{e-1}{8}$  (D)  $\frac{e-1}{16}$ 

答案: A

59. 计算积分
$$I = \int_0^1 dx \int_{x^2}^1 \frac{xy}{\sqrt{1+y^3}} dy =$$
\_\_\_\_\_

(A) 
$$\frac{1}{3}(\sqrt{2}-1)$$

(B) 
$$\sqrt{2} - 1$$

(C) 
$$\frac{1}{3}(1-\sqrt{2})$$

(A) 
$$\frac{1}{3}(\sqrt{2}-1)$$
 (B)  $\sqrt{2}-1$  (C)  $\frac{1}{3}(1-\sqrt{2})$  (D)  $\frac{2}{3}(\sqrt{2}-1)$ 

答案: (A)

60. 
$$\iint_{x^2+y^2 \le a^2} x^2 d\sigma = \underline{\hspace{1cm}}$$

(A) 
$$\frac{\pi a^4}{4}$$
 (B)  $\frac{\pi a^4}{3}$  (C)  $\frac{\pi a^4}{2}$  (D)  $\pi a^4$ 

(B) 
$$\frac{\pi a^4}{3}$$

(C) 
$$\frac{\pi a^4}{2}$$

答案: A

# 机考模拟 100 练

- (1) 二元函数z = f(x,y) 在点 $(x_0,y_0)$  处连续是函数z = f(x,y) 在该点处两个偏导数  $f_x(x_0,y_0)$ ,  $f_y(x_0,y_0)$  都存在的
  - (A) 必要但非充分条件,
- (B) 充分但非必要条件,

(C) 充要条件.

(D) 既非充分条件也非必要条件,

《分析》 由多元函数的连续、偏导数存在和可微之间的关系知,多元函数的连续既非两个偏导数存在的必要条件,也非充分条件.

例如 f(x,y) = |x| + |y| 在(0,0) 点连续,但(0,0) 点两个偏导数  $f_*(0,0)$  和  $f_*(0,0)$  都 不存在,而

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

$$f_*(0,0) \text{ 和 } f_*(0,0) \text{ 都存在(可用定义验证),但在(0,0)}$$

在(0,0)点的两个偏导数 $f_*(0,0)$ 和 $f_*(0,0)$ 都存在(可用定义验证),但在<math>(0,0)点不连续,事实上极限

$$\lim_{(x,y)=(0,0)} \frac{xy}{x^2+y^2}$$
不存在.

故应选(D).

- (2) 设  $f'_{*}(x_{0}, y_{0}) = a, f'_{*}(x_{0}, y_{0}) = b, 则下列结论正确的是$
- (A)  $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$  存在,但 f(x,y) 在 $(x_0,y_0)$  处不连续.
- (B)f(x,y)在(xo,yo)处连续.

$$(C)dz\Big|_{(x_0,y_0)} = adx + bdy.$$

(D)  $\lim_{x \to x_0} f(x, y_0)$  及  $\lim_{x \to x_0} f(x_0, y)$  都存在且相等.

【分析】 由于  $f_x(x_0,y_0)$  就是一元函数  $f(x,y_0)$  在  $x=x_0$  处的导数,则  $f(x,y_0)$  在  $x=x_0$  处连续,从而有

$$\lim_{x\to\infty}f(x,y_0)=f(x_0,y_0)$$

同理由  $f'_{s}(x_0,y_0)=b$  可知

$$\lim_{x\to x_0}f(x_0,y)=f(x_0,y_0)$$

则 $\lim_{x\to a} f(x,y_0)$ 及 $\lim_{x\to a} f(x_0,y)$ 存在且相等,故应选(D).

【评注】 由  $f_x(x_0, y_0) = a, f_y(x_0, y_0) = b$  可知 f(x, y) 在  $(x_0, y_0)$  处可导,但由此不能推得 f(x, y) 存在,也不能推得 f(x, y) 在点  $(x_0, y_0)$  处连续,也不能推得 f(x, y) 在点  $(x_0, y_0)$  处可微. 故(A)、(B)、(C)都不正确.

(3) 设 f(x,y) 在点 $(x_0,y_0)$  处两个偏导数  $f_x(x_0,y_0), f_y(x_0,y_0)$  都存在,则 (A) f(x,y) 在 $(x_0,y_0)$  处连续.

(B) lim f(x,y) 存在。

(C) 
$$\lim_{x\to y_0} f(x, y_0) = \lim_{y\to y_0} f(x_0, y) = f(x_0, y_0).$$

(D)f(x,y)在(x,y,)处可微。

【分析】 由于偏导数  $f_*(x_0,y_0)$  就是一元函数  $f(x,y_0)$  在  $x=x_0$  处的导数,则由  $f_*(x_0,y_0)$  $y_0$ ) 存在可知, 一元函数  $f(x,y_0)$  在  $x=x_0$  处连续, 从而  $\lim_{x\to \infty} f(x,y_0)=f(x_0,y_0)$ , 同理  $\lim f(x_0,y) = f(x_0,y_0)$ . 故应选(C).

(4) 二元函数 
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(A) 连续、偏导数存在、

(C) 不连续、偏导数存在。

(D) 不连续、偏导数不存在.

【分析】 由于 
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2} = \lim_{x\to 0} \frac{kx^2}{x^2+k^2x^2} = \frac{k}{1+k^2}$$

与 k 取值有关,则  $\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$  不存在,从而 f(x,y) 在(0,0) 点不连续,而

$$f_x(0,0) = \lim_{\Delta \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta \to 0} \frac{0 - 0}{\Delta x} = 0$$

同理 /、(0,0) = 0 故应选(C).

- (A) 两个偏导数都不存在。
- (B) 两个偏导数都存在但不可微.

(C) 偏导数连续.

(D) 可微但偏导数不连续,

【分析】 
$$f'_x(0,0) = \lim_{\Delta \to 0} \frac{f(\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta \to 0} \frac{0 - 0}{\Delta x} = 0$$

事实上 
$$\lim_{\substack{\Delta x \to 0 \\ \Delta y = k\Delta x}} \frac{\Delta x \Delta y}{(\Delta x)^2 + (\Delta y)^2} = \lim_{\Delta x \to 0} \frac{k(\Delta x)^2}{(\Delta x)^2 + k^2(\Delta x)^2} = \frac{k}{1 + k^2}$$

故 f(x,y) 在(0,0) 点不可微, 应选(B).

# 【评注】 本题中的函数给出了一个偏导数存在但不可微的例子.

已知  $f(x,y) = \sin \sqrt{x^2 + y^4}$ ,则

(A)f<sub>\*</sub>(0,0),f<sub>\*</sub>(0,0)都存在.

(B)f<sub>\*</sub>(0,0) 存在但 f<sub>\*</sub>(0,0) 不存在。

 $(C) f_*(0,0)$  不存在但  $f_*(0,0)$  存在.  $(D) f_*(0,0), f_*(0,0)$  都不存在.

由于  $f(x,0) = \sin\sqrt{x^2} = \sin|x|$  在 x = 0 处不可导,则  $f_x(0,0)$  不存在. 事实上

$$\lim_{x \to 0} \frac{\sin |x| - 0}{x} = \begin{cases} 1, & x \to 0^+ \\ -1, & x \to 0^- \end{cases}$$

而  $f(0,y) = \sin \sqrt{y^4} = \sin y^2$  在 y = 0 处可导,则  $f_*(0,0)$  存在,故应选(C).

(7) 函数 f(x,y) 在(0,0) 点可微的充分条件是

(A) 
$$\lim_{x\to 0} f_x(x,0) = f_x(0,0) \coprod \lim_{x\to 0} f_x(0,y) = f_x(0,0).$$

(B) 
$$\lim_{(x,y)\to(0,0)} [f(x,y)-f(0,0)] = 0.$$

(C) 
$$\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} \pi \lim_{y\to 0} \frac{f(0,y)-f(0,0)}{y}$$
 都存在.

(D) 
$$\lim_{(x,y)\to(0,0)} f_x(x,y) = f_x(0,0) \coprod \lim_{(x,y)\to(0,0)} f_y(x,y) = f_y(0,0).$$

由  $\lim_{(x,y)\to(0,0)} f_x(x,y) = f_x(0,0)$  和  $\lim_{(x,y)\to(0,0)} f_y(x,y) = f_y(0,0)$  可 知 f(x,y) 的两个一阶偏导数  $f_x(x,y)$  和  $f_y(x,y)$  在(0,0) 点连续,则 f(x,y)在(0,0) 点可微,故应选(D).

(8) 设 
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)+2x-y}{\sqrt{x^2+y^2}} = 0$$
,则  $f(x,y)$  在点(0,0) 处

(C) 两个偏导数存在但不可微.

(D) 可微.

【分析】

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)+2x-y}{\sqrt{x^2+y^2}}=0$$

知

$$f(x,y) - f(0,0) + 2x - y = o(p)$$
 (\(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tintert{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinte\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}}}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\text{\text{\texi{\texi{\texi{\texi{\texi}\texi{\text{\texi}\tint{\text{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi}

即

$$f(x,y) - f(0,0) = -2x + y + o(\rho)$$

由微分的定义可知 f(x,y) 在点(0,0) 处可微,故应选(D).

设z = f(x,y) 在点(0,0) 处连续,且  $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|} = -1$ ,则下列结论不

#### 正确的是

(A)f(0,0) 不存在.

(B)f,(0,0) 不存在.

(C) f(x,y) 在(0,0) 处取极小值. (D) f(x,y) 在(0,0) 点处不可微.

【分析】 由 
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|} = -1$$
,及  $\lim_{(x,y)\to(0,0)} |x|+|y| = 0$ 

知  $\lim_{(x,y)\to(0,0)} f(x,y) = 0$ ,又 f(x,y) 在点(0,0) 处连续,则 f(0,0) = 0.

由  $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|} = -1$  及极限的保号性知,在(0,0) 点的某去心邻域内

$$\frac{f(x,y)}{|x|+|y|}<0,$$

从而有 f(x,y) < 0,又 f(0,0) = 0,由极值定义知 f(x,y) 在点(0,0) 处取极大值.故(C) 是不正确的,应选(C).

事实上,由 
$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{|x|+|y|} = -1$$
知,

$$f(0,0) = 0$$
,  $\lim_{x \to 0} \frac{f(x,0)}{|x|} = -1$ 

$$f(0,0) = 0, \prod_{x \to 0} \frac{f(x,0)}{|x|} = -1,$$
而  $\lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \to 0} \frac{f(x,0)}{|x|} \cdot \frac{|x|}{x}$ 

$$= \begin{cases} -1, & (x \to 0^{+}) \\ 1, & (x \to 0^{-}) \end{cases}$$
则  $f(0,0)$  不存在, 同理  $f(0,0)$  不存在, 因此  $f(x,y)$  在 $(0,0)$  处不可微, 故(A)、

则  $f_*(0,0)$  不存在,同理  $f_*(0,0)$  不存在,因此 f(x,y) 在(0,0) 处不可微,故(A)、(B)、 (D) 是正确的.

(10) 设 
$$\lim_{(x,y)\to(0,a)} \frac{f(x,y)-f(0,0)+2x-y}{\sqrt{x^2+y^2}} = 1$$
,则  $f(x,y)$  在点(0,0) 处

(A) 不连续.

(B) 连续但两个偏导数不存在.

(C) 两个偏导数存在但不可微.

(D) 可微。

《分析1》 直接法.

$$\frac{\lim_{(x,y)\to(0,0)} \frac{f(x,y)-f(0,0)+2x-y}{\sqrt{x^2+y^2}} = 1, \underbrace{\lim_{(x,y)\to(0,0)} \sqrt{x^2+y^2}}_{(x,y)\to(0,0)} = 0$$

则。
$$\lim_{(x,y)\to(0,0)} f(x,y) = f(0,0), f(x,y)$$
 在(0,0) 点连续,又

$$\lim_{\substack{(x,y) \to (0,0) \\ y=0}} \frac{f(x,y) - f(0,0) + 2x - y}{\sqrt{x^2 + y^2}} = \lim_{x \to 0} \frac{f(x,0) - f(0,0) + 2x}{\sqrt{x^2}} = 1$$

$$\lim_{x\to 0} \frac{f(x,0)-f(0,0)+2x}{|x|}=1$$

从而有 
$$\lim_{x\to 0^{+}} \frac{f(x,0) - f(0,0)}{x} + 2 = 1$$

$$\lim_{x\to 0^{+}} \frac{f(x,0) - f(0,0)}{x} = -1$$

$$\lim_{x\to 0^{-}} \frac{f(x,0) - f(0,0)}{-x} - 2 = 1$$

$$\lim_{x\to 0^{-}} \frac{f(x,0) - f(0,0)}{-x} = -3$$

则 $\lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x}$ 不存在,即 $f_x(0,0)$ 不存在,同理可得 $f_y(0,0)$ 不存在,故应选 (B).

**【分析 2】** 排除法,

$$\diamondsuit f(x,y) = \sqrt{x^2 + y^2} - 2x + y$$

显然 f(x,y) 满足原题设的条件,且 f(x,y) 在(0,0) 点连续,而

$$f(x,0) = \sqrt{x^2 - 2x} = |x| - 2x$$

在x=0处不可导(|x|在x=0处不可导,2x在x=0处可导)

则 f<sub>\*</sub>(0,0) 不存在,同理 f<sub>\*</sub>(0,0) 不存在,从而(A)、(C)、(D) 均不正确,故应选(B),

(11) 
$$\psi_{x} = \begin{cases} \frac{x^2y}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
,  $\psi_{x} = (0,0)$ 

- (A) 不连续。(A)
- (B) 连续但偏导数不存在。
- (C) 连续且偏导数存在但不可微.

《分析》 由于
$$0 \leqslant \left| \frac{x^2 y}{x^2 + y^2} \right| \leqslant |y| \to 0$$
,则

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^2+y^2}=0$$

则 z(x,y) 在点(0,0) 处连续,(A) 不正确

$$z_x(0,0) = \lim_{\Delta x \to 0} \frac{z(\Delta x,0) - z(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0-0}{\Delta x} = 0$$

$$z_y(0,0) = \lim_{\Delta y \to 0} \frac{z(0,\Delta y) - z(0,0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{0-0}{\Delta y} = 0$$

所以,z(x,y) 在点(0,0) 处偏导数存在,(B) 不正确.

又 
$$\lim_{(\Delta x, \Delta y) \to (0.0)} \frac{\Delta z - z_x(0,0)\Delta x - z_y(0,0)\Delta y}{\rho} = \lim_{(\Delta x, \Delta y) \to (0.0)} \frac{(\Delta x)^2 \Delta y}{[(\Delta x)^2 + (\Delta y)^2]^{3/2}}$$
由于  $\lim_{(\Delta x, \Delta y) \to (0.0)} \frac{(\Delta x)^2 \Delta y}{[(\Delta x)^2 + (\Delta y)^2]^{3/2}} = \lim_{\Delta x \to 0} \frac{(\Delta x)^3}{2\sqrt{2} |\Delta x|^3}$  不存在,则

由于 
$$\lim_{\substack{(\Delta x, \Delta y) = (0, 0) \\ \Delta y = \Delta x}} \frac{(\Delta x)^2 \Delta y}{[(\Delta x)^2 + (\Delta y)^2]^{3/2}} = \lim_{\Delta x \to 0} \frac{(\Delta x)^3}{2\sqrt{2} |\Delta x|^3}$$
 不存在,则

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{(\Delta x)^2 \Delta y}{\left[(\Delta x)^2 + (\Delta y)^2\right]^{3/2}} 不存在,$$

则 z(x,y) 在(0,0) 点不可微,故应选(C).

# 【评注】 用定义判定 z(x,y) 在点(x,y) 是否可微分以下两步进行。

- (1) 用定义判断 2.(20,7%),2,(20,7%) 是否都存在,如果都存在则进行下一步,否则, z(x,y) 在(x,y,) 处不可微.
- (2) 考查极限  $\lim_{(\Delta z, y) \to (0,0)} \frac{\Delta z [z_s(x_0, y_0)\Delta x + z_y(x_0, y_0)\Delta y]}{a}$  是否为零、如果此极限为 零,则函数 z(x,y) 在点(x,y。) 处可微, 否则不可微, c) 是完全。

(12) 如果 f(x,y) 在(0.0) 处连续,那么下列命题正确的是

(A) 若极限
$$\lim_{x\to 0} \frac{f(x,y)}{|x|+|y|}$$
存在,则  $f(x,y)$  在(0,0) 处可微.

(B) 若极限
$$\lim_{x \to \infty} \frac{f(x,y)}{x^2 + y^2}$$
存在,则  $f(x,y)$  在(0,0) 处可微.

(C) 若 
$$f(x,y)$$
 在(0,0) 处可微,则 $\lim_{x \to 0} \frac{f(x,y)}{|x|+|y|}$  存在.

(D) 若 
$$f(x,y)$$
 在(0,0) 处可微,则 $\lim_{\substack{x\to 0 \ y\to 0}} \frac{f(x,y)}{x^2+y^2}$  存在.

【分析 1】 由 f(x,y) 在 (0,0) 处连续可知,如果  $\lim_{x\to 0} \frac{f(x,y)}{x^2+y^2}$  存在,则必有 f(0,0) =  $\lim_{x\to 0} f(x,y) = 0$ 

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y)}{x^2 + y^2} = \lim_{\substack{x \to 0 \\ y \to 0}} \frac{f(x,y)}{\sqrt{x^2 + y^2}} \cdot \frac{1}{\sqrt{x^2 + y^2}}$$

由于 $\lim_{x \to 0} \frac{f(x,y)}{x^2 + y^2}$ 存在, $\lim_{x \to 0} \frac{1}{\sqrt{x^2 + y^2}} = \infty$ ,则 $\lim_{x \to 0} \frac{f(x,y)}{\sqrt{x^2 + y^2}} = 0$ ,或 $\lim_{\Delta x \to 0} \frac{f(\Delta x, \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0$ ,即

$$f(\Delta x, \Delta y) - f(0,0) = 0 \cdot \Delta x + 0 \cdot \Delta y + o(\rho)$$

由微分的定义知 f(x,y) 在(0,0) 处可微.

【分析 2】 排除法、取 f(x,y) = |x| + |y|, 显然  $\lim_{x \to 0} \frac{f(x,y)}{|x| + |y|}$  存在,但 f(x,y) = |x| + |y| 在 (0,0) 处不可微。这是由于 f(x,0) = |x| 在 x = 0 处不可导,则 f(x,y) 在 f(x,y) 和 f(

取 f(x,y) = 1,显然 f(x,y) 在(0,0) 处可微,但  $\lim_{x \to 0} \frac{f(x,y)}{|x|+|y|} = \lim_{x \to 0} \frac{f(x,y)}{x^2+y^2} = \infty$  不存在,则排除(C) 和(D),故应选(B).

《13》 设函数 f(x,y) 可微,且对任意 x,y 都有  $\frac{\partial f(x,y)}{\partial x} > 0$ ,  $\frac{\partial f(x,y)}{\partial y} < 0$ ,则使不等 式  $f(x_1,y_1) < f(x_2,y_2)$  成立的一个充分条件是

$$(A)x_1 > x_2, y_1 < y_2.$$

(B) 
$$x_1 > x_2, y_1 > y_2$$
.

$$(C)x_1 < x_2, y_1 < y_2.$$

(D)
$$x_1 < x_2 \cdot y_1 > y_2$$
.

《分析》 由于偏导数本质上就是一元函数的导数,则由 $\frac{\partial f(x,y)}{\partial x} > 0$ , $\frac{\partial f(x,y)}{\partial y} < 0$  可知,f(x,y) 关于变量 x 是单调增加的,而关于变量 y 是单调减的. 因此,当  $x_1 < x_2, y_1 > y_2$  时  $f(x_1,y_1) < f(x_2,y_1), f(x_2,y_2)$ 

从而有

$$f(x_1, y_1) < f(x_2, y_2)$$

故应选(D).

(14) 已知  $f_x(x_0, y_0)$  存在,则  $\lim_{h\to 0} \frac{f(x_0+h, y_0)-f(x_0-h, y_0)}{h} =$ 

 $(A) f_x(x_0, y_0).$ 

(B)0

(C) $2f_x(x_0, y_0)$ .

(D) 
$$\frac{1}{2}f_x(x_0,y_0)$$
.

[分析] 
$$\lim_{h\to 0} \frac{f(x_0+h,y_0)-f(x_0-h,y_0)}{h}$$

$$=\lim_{h\to 0} \left[\frac{f(x_0+h,y_0)-f(x_0,y_0)}{h} - \frac{f(x_0-h,y_0)-f(x_0,y_0)}{h}\right]$$

$$= f_x(x_0,y_0) + f_x(x_0,y_0)$$

$$= 2f_x(x_0,y_0)$$

故应选(C).

(15) 设z=f(x,y)在点 $(x_0,y_0)$ 处可微, $\Delta z$ 是f(x,y)在点 $(x_0,y_0)$ 处的全增量,则在点 $(x_0,y_0)$ 处

$$(A)\Delta z = dz$$
.

(B) 
$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$$
.

$$(C)\Delta z = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy. (D)\Delta z = dz + o(\rho).$$

【分析】 由于 z = f(x,y) 在点 $(x_0,y_0)$  处可微,则  $\Delta z = f_*(x_0,y_0)\Delta x + f_*(x_0,y_0)\Delta y + o(\rho) = dz + o(\rho)$  故应选(D).

(16) 函数 
$$f(x,y) = \sqrt{x^2 + y^2}$$
 在点(0,0) 处

(A) 不连续,

(B) 偏导数存在,

(C) 可微. 👓 🔻

(D) 沿任一方向方向导数存在.

#### 【分析1】 直接法.

设1方向的方向余弦为(cosa,cosβ),则

$$\frac{\partial f}{\partial t}\Big|_{(0,0)} = \lim_{t \to 0^+} \frac{f(t\cos\alpha,t\cos\beta) - f(0,0)}{t}$$

$$= \lim_{t \to 0^+} \frac{\sqrt{t^2\cos^2\alpha + t^2\cos^2\beta}}{t}$$

$$= \lim_{t \to 0^+} \frac{t}{t} = 1$$

故应选(D).

【分析 2】 排除法.

显然 
$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \sqrt{x^2+y^2} = 0 = f(0,0)$$

则 f(x,y) 在点(0,0) 处连续,排除(A).

又  $f(x,0) = \sqrt{x^2 - |x|}$  在 x = 0 处不可导,则  $f_x(0,0)$  不存在,同理  $f_y(0,0)$  不存在,排除(B) 和(C),故应选(D).

【评注】 本例告诉我们,即使 f(x,y) 在点 $(x_0,y_0)$  处的两个一阶偏导数  $f_x(x_0,y_0)$  和  $f_x(x_0,y_0)$  都不存在,但 f(x,y) 在点 $(x_0,y_0)$  处沿任意方向的方向导数均可存在,

(17) 已知 
$$f_*(0,0) = 2, f_*(0,0) = 3, 则$$

(A)f(x,y)在点(0,0)处连续.

$$(B)df(x,y)\Big|_{(0,0)}=2dx+3dy.$$

$$(C) \frac{\partial f}{\partial l} \Big|_{l(t,0)} = 2\cos\alpha + 3\cos\beta,$$
其中  $\cos\alpha,\cos\beta$  为  $l$  的方向  $\alpha$  弦.

(D)f(x,y) 在点(0.0) 处沿 x 轴负方向的方向导数为 -2.

〖分析〗 设  $\cos\alpha \cdot \cos\beta$ 为 x 轴负方向的方向余弦  $\mathbf{,}$  则  $\cos\alpha = -1 \cdot \cos\beta = 0$ ,由方向导数定义 知,f(x,y) 在(0,0) 点处沿 x 轴负方向的方向导数为

$$\lim_{t \to 0^{+}} \frac{f(t\cos\alpha, t\cos\beta) - f(0,0)}{t} = \lim_{t \to 0^{+}} \frac{f(-t,0) - f(0,0)}{t}$$

$$= -\lim_{t \to 0^{+}} \frac{f(-t,0) - f(0,0)}{-t}$$

$$= -f_{x}(0,0) = -2$$

原题设条件可知 f(x,y) 在(0,0) 点两个一阶偏导数存在,此时函数 f(x,y)在(0,0)点不一定连续,不一定可微,沿任一方向 I 的方向导数不一定存在,故排除(A)、 。但我们还有的有数据的对象。"在受网络世界的基础。**"**这种是是"。

设可微函数 f(x,y) 满足 $\frac{\partial f}{\partial x} > 1$ ,  $\frac{\partial f}{\partial y} < -1$ , f(0,0) = 0, 则下列结论正确的是 (B) f(-1.1) > -2. (A) f(1,1) > 1.(C) f(-1,-1) < 0.(D) f(1,-1) > 2.

【分析 1】 
$$f(1,-1) = f(1,-1) - f(0,0)$$
  

$$= [f(1,-1) - f(0,-1)] + [f(0,-1) - f(0,0)]$$

$$= f_x(\xi,-1) + f_y(0,\eta)(-1)$$

$$> 1 + (-1) \cdot (-1) = 2$$

故应选(D).

【分析 2】排除法,

$$\oint f(x,y) = 1.1x - 1.1y$$

显然
$$\frac{\partial f}{\partial x} = 1.1 > 1, \frac{\partial f}{\partial y} = -1.1 < -1, f(0,0) = 0,$$
但

f(1,1) = 1.1-1.1=0,则(A) 不正确.

$$f(-1,1) = -1.1 - 1.1 = -2.2 < -2.$$

则(B) 不正确。

$$f(-1,-1) = -1.1+1.1 = 0$$

则(C)不正确,故应选(D).

己知 f(x,y) 在点 $(x_0,y_0)$  处沿任何方向的方向导数都存在,则

(B) 
$$f_{x}(x_{0}, y_{0}), f_{y}(x_{0}, y_{0})$$
 都存在、

$$(C) f(x,y)$$
 在点 $(x_0,y_0)$  处可微. (D) 以上三个选项都不对.

【分析】 函数 
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 在(0,0) 点沿任何

方向的方向导数都存在,但该函数在(0,0)点不连续。

事实上 
$$\lim_{t\to 0^+} \frac{f(t\cos\alpha, t\cos\beta) - f(0,0)}{t} = \lim_{t\to 0^+} \frac{\cos^2\alpha\cos\beta}{t^2\cos^4\alpha + \cos^2\beta}$$
$$= \begin{cases} \frac{\cos^2\alpha}{\cos\beta}, & \text{if } \cos\beta \neq 0 \text{ if } , \\ 0, & \text{if } \cos\beta = 0 \text{ if } \end{cases}$$

但  $\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^4+y^2}$  不存在(参考 112 题),从而 f(x,y) 在(0,0) 点不连续,从而也不可微. 排除(A) 和(C).

令  $g(x,y) = \sqrt{x^2 + y^2}$ ,在 130 题中已验证该函数在点(0,0) 处沿任何的方向导数都存在,但  $f_*(0,0)$  和  $f_*(0,0)$  都不存在.

- (20) 已知函数 f(x,y) 在点(0,0) 的某邻域内有定义,且  $f_x(0,0) = 2$ ,  $f_y(0,0) = 1$ ,则
  - (A) 曲面 z = f(x,y) 在点(0.0.f(0.0)) 处的法向量为(2.1.1).
  - (B) 曲线  $\begin{cases} z = f(x,y) \\ y = 0 \end{cases}$  在点(0.0,f(0.0)) 处的切向量为{1.0.2}.
  - (C) 曲线  $\begin{cases} z = f(x,y) \\ y = 0 \end{cases}$  在点(0,0,f(0,0)) 处的切向量为(2,0,1).
  - (D)  $dz\Big|_{(0,0)} = 2dx + dy.$

【分析】 曲线  $\begin{cases} z = f(x,y) \\ y = 0 \end{cases}$  的参数方程为  $\begin{cases} x = x \\ y = 0 \end{cases}$  ,则该曲线在点(0,0,f(0,0)) 处  $\begin{cases} z = f(x,0) \end{cases}$ 

的切向量为 $\{1,0,f_{x}(0,0)\}=\{1,0,2\}.$  故应选(B).

(21) 设函数 f(x,y) 可微,且 f(0,0) = 0, f(2,1) > 3,  $f_y(x,y) < 0$ ,则至少存在一点 $(x_0,y_0)$  使

$$(A) f_x(x_0, y_0) < 1.$$

(B) 
$$f_x(x_0, y_0) < -3$$
.

(C) 
$$f_x(x_0, y_0) = \frac{3}{2}$$
.

(D) 
$$f_x(x_0, y_0) > \frac{3}{2}$$
.

【分析】 
$$f(2,1) = f(2,1) - f(0,0)$$
  
=  $[f(2,1) - f(2,0)] + [f(2,0) - f(0,0)]$   
=  $f_{*}(2,\xi) + 2f_{*}(\eta,0)$ 

又 f(2,1) > 3

则  $f_y(2,\xi) + 2f_x(\eta,0) > 3$ ,

又  $f_x(2,\xi) < 0$ ,则  $2f_x(\eta,0) > 3$ ,

即  $f_x(\eta,0) > \frac{3}{2}$ ,

故应选(D).

(22) 已知方程  $f(\frac{y}{x},\frac{z}{x}) = 0$ 确定了函数 z = z(x,y),其 f(u,v) 可微,则  $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ 

$$(A)z$$
.

$$(B)-z$$

$$(C)_{y_*}$$

$$(D)-y$$

【分析】 
$$\frac{\partial z}{\partial x} = -\frac{\frac{y}{x^2}f_1 - \frac{z}{x^3}f_2}{\frac{1}{x}f_2} = \frac{\frac{y}{x}f_1 + \frac{z}{x}f_2}{f_2}$$

$$\frac{\partial z}{\partial y} = -\frac{\frac{1}{x}f_1}{\frac{1}{x}f_2} = -\frac{f_1}{f_2}$$

$$x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=\frac{yf_1+zf_2-yf_1}{f_2}=z.$$

(23) 设  $z = f(xy, x^2 + y^2)$ ,其中 f(u, v) 有二阶连续偏导数,则  $\frac{\partial^2 z}{\partial x \partial x} =$ 

$$(A) f_1 + xy f_{11} + 4xy f_{22}.$$

(B) 
$$f_1 + xyf_{11} + 2(x^2 + y^2)f_{12} + 4xyf_{22}$$
.

(C)
$$xyf_{11} + 2(x^2 + y^2)f_{12} + 4xyf_{22}$$
. (D) $xyf_{11} + 4xyf_{22}$ .

【分析】 
$$\frac{\partial z}{\partial x} = yf_1 + 2xf_2$$

$$\frac{\partial^2 z}{\partial x \partial y} = f_1 + xy f_{11} + 2y^2 f_{12} + 2x^2 f_{21} + 4xy f_{22}$$

 $= f_1 + xyf_{11} + 2(x^2 + y^2)f_{12} + 4xyf_{22}$ 

故应选(B).

(24) 已知函数 z = f(x,y) 満足  $\frac{\partial^2 z}{\partial x^2} = 2$ ,  $f_x(1,y) = y+1$ , f(1,y) = y+2, 则 f(x,y) = y+2

$$(A)x^2 + (y-1)x + 2.$$

(B) 
$$x^2 + (y+1)x + 2$$
.

(A)
$$x^2 + (y-1)x + 2$$
.  
(C) $x^2 + (y-1)x - 2$ .

(D)
$$x^2 + x(y+1) - 2$$
.

【分析 1】 由 $\frac{\partial^2 z}{\partial - 1} = 2$  知

$$\frac{\partial z}{\partial x} = \int 2 \mathrm{d}x = 2x + \varphi(y)$$

由  $f_x(1,y) = y + 1$  知  $y + 1 = 2 + \varphi(y)$ 

$$\varphi(y) = y - 1$$

$$\frac{\partial z}{\partial x} = 2x + (y - 1)$$

$$z = \int [2x + (y - 1)] dx = x^2 + (y - 1)x + \phi(y)$$

由 
$$f(1,y) = y + 2$$
 知  $y + 2 = 1 + (y-1) + \psi(y)$ 

$$\phi(y)=2$$

$$z = x^2 + (y-1)x + 2.$$

【分析 2】 显然四个选项中的函数都满足 $\frac{\partial^2 z}{\partial z^2} = 2$ ,而只有(A) 选项中的函数满足 f(1,y) = y + 2, 故应选(A).

# 

(25) 已知 
$$df(x,y) = (2y^2 + 2xy + 3x^2)dx + (4xy + x^2)dy, 则 f(x,y)$$

$$(A)2xy^2+x^2y.$$

(B) 
$$2xy^2 + x^2y + x^3$$
.

$$(C)2xy^2 + x^2y + x^3 + C.$$

(D)
$$3xy^2 + x^2y + x^3 + C$$
.

【分析 1】 由题设知

$$\frac{\partial f}{\partial x} = 2y^2 + 2xy + 3x^2, \frac{\partial f}{\partial y} = 4xy + x^2$$

由
$$\frac{\partial f}{\partial x} = 2y^2 + 2xy + 3x^2$$
 知

由
$$\frac{\partial f}{\partial x} = 2y^2 + 2xy + 3x^2$$
 知
$$f(x,y) = \int (2y^2 + 2xy + 3x^2) dx = 2xy^2 + x^2y + x^3 + \varphi(y)$$

由
$$\frac{\partial f}{\partial y} = 4xy + x^2$$
 知, $4xy + x^2 = 4xy + x^2 + \varphi'(y), \varphi'(y) = 0, \varphi(y) = C$ 

则 
$$f(x,y) = 2xy^2 + x^2y + x^3 + C$$
.

【分析 2】 
$$df(x,y) = (2y^2 + 2xy + 3x^2)dx + (4xy + x^2)dy$$
  
=  $(2y^2dx + 4xydy) + (2xydx + x^2dy) + 3x^2dx$   
=  $d(2xy^2) + d(x^2y) + dx^3$ 

则 
$$f(x,y) = 2xy^2 + x^2y + x^3 + C$$
.

【评注】 方法一是利用偏积分,方法二是利用凄微分.这两种方法是已知某个 全微分或两个一阶偏导数求原函数的两种常用方法.

(26) 已知
$$\frac{(x+ay)dx+ydy}{(x+y)^2}$$
为某二元函数  $u(x,y)$  的全徽分,则  $a$  等于 (A)0. (B)2. (C)1. (D)-1. (D)-1.

【分析】 由题设知

$$du(x,y) = \frac{x+ay}{(x+y)^2}dx + \frac{y}{(x+y)^2}dy$$

$$\iiint \frac{\partial f}{\partial x} = \frac{x + ay}{(x + y)^2}, \frac{\partial f}{\partial y} = \frac{y}{(x + y)^2}$$

以上两式分别对 v.z.求偏导得

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{a(x+y)^2 - 2(x+y)(x+ay)}{(x+y)^4} = \frac{(a-2)x - ay}{(x+y)^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{-2(x+y)y}{(x+y)^4} = \frac{-2y}{(x+y)^2}$$

由于
$$\frac{\partial^2 f}{\partial x \partial y}$$
,  $\frac{\partial^2 f}{\partial y \partial x}$  在 $x + y \neq 0$  处连续,则 $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ 

即
$$(a-2)x-ay = -2y$$
,从而 $a = 2$ ,故应选(B).

(27) 日知  $du(x,y) = (axy^2 + \cos(x + 2y))dx + (3x^2y^2 + b\cos(x + 2y))dy$ ,则

$$(A)a = 2, b = -2.$$

(B)
$$a = 3, b = 2$$
.

$$(C)a = 2, b = 2.$$

$$(D)_{\alpha} = -2, b = 2.$$

由  $du(x,y) = (axy^3 + \cos(x+2y))dx + (3x^2y^2 + b\cos(x+2y))dy$ 知  $\frac{\partial u}{\partial x} = axy^3 + \cos(x + 2y), \frac{\partial u}{\partial y} = 3x^2y^2 + b\cos(x + 2y)$ 

以上两式分别对yxx求偏导得

$$\frac{\partial^2 u}{\partial x \partial y} = 3axy^2 - 2\sin(x + 2y)$$

$$\frac{\partial^2 u}{\partial y \partial x} = 6xy^2 - b\sin(x + 2y)$$

由于 $\frac{\partial^2 u}{\partial x \partial y}$ ,  $\frac{\partial^2 u}{\partial y \partial x}$  连续,则 $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ 

 $3axy^2 - 2\sin(x + 2y) = 6xy^2 - b\sin(x + 2y),$ 

则 a = 2, b = 2,故应选(C).

【评注】 事实上关于此类问题有一个一般结论。即若 P(xiy) 和 Q(xiy) 在单连通域 D 上有连续一阶偏导数,则 P(x,y)dx+Q(x,y)dy 在 D 上是某个二元函数 u(x,y) 的全微分 的充要条件是 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ 在D上恒成立、本题直接利用该结论更方便,

(28)函数  $u = x^2y^3z^4$  在点 A(1,1,1) 处沿从点 A 到点 B(2,3,4) 的方向的方向导数 等干

(B) 
$$-20$$
.

(C) 
$$\frac{20}{\sqrt{14}}$$

(C) 
$$\frac{20}{\sqrt{14}}$$
. (D)  $-\frac{20}{\sqrt{14}}$ .

 $\frac{\partial u}{\partial x}\Big|_{\alpha,\beta,D} = 2, \frac{\partial u}{\partial y}\Big|_{\alpha,\beta,D} = 3, \frac{\partial u}{\partial z}\Big|_{\alpha,\beta,D} = 4$ 

 $\overrightarrow{AB} = (1,2,3)$ 

 $\overline{AB}$  向量的方向余弦为  $\cos \alpha = \frac{1}{\sqrt{14}}, \cos \beta = \frac{2}{\sqrt{14}}, \cos \gamma = \frac{3}{\sqrt{14}}$ 

$$\frac{\partial u}{\partial l}\Big|_{(1.1.1)} = \frac{2}{\sqrt{14}} + \frac{6}{\sqrt{14}} + \frac{12}{\sqrt{14}} = \frac{20}{\sqrt{14}}$$

故应选(C).

【评注】 选(A) 是一种典型的错误,应特别注意.

函数  $f(x,y,z) = x^2y^3 + 3y^2z^3$  在点(0,1,1) 处方向导数的最大值为

(A) 
$$\sqrt{107}$$
. (B)  $\sqrt{117}$ .

三、 的复数数 "如果"

【分析】 函数  $f(x,y,z) = x^2y^1 + 3y^2z^2$  在点(0,1,1) 处方向导数的最大值等于 f(x,y,z) 在 点(0,1,1) 处梯度向量的模.

grad f(0,1,1) = (0,6,9)

 $\|g\| = \sqrt{117}$ 

故应选(B)。

(30) 函数 
$$f(x,y) = \arctan \frac{y}{x}$$
 在点(1,0) 处的梯度向量为

$$(A)-i$$

$$(C)-j$$

【分析】 
$$\frac{\partial f}{\partial x} = \frac{-\frac{y}{x^2}}{1 + (\frac{y}{x})^2} = \frac{-y}{x^2 + y^2}, \quad \frac{\partial f}{\partial y} = \frac{\frac{1}{x}}{1 + (\frac{y}{x})^2} = \frac{x}{x^2 + y^2}$$

【评注】 本题可做的更简单,由于

$$f_{x}(1,0) = \frac{d}{dx} f(x,0) \Big|_{x=0} = 0$$

$$f_{y}(1,0) = \frac{d}{dy} f(1,y) \Big|_{y=0} = \frac{1}{1+y^{2}} \Big|_{y=0} = 1$$

$$\emptyset || \operatorname{grad} f|_{(1,0)} = j.$$

(31) 设可微函数 f(x,y,z) 在点 $(x_0,y_0,z_0)$  处的梯度向量为 g,l=(0,2,2) 为一常 向量,且 $g \cdot l = 1$ ,则函数 f(x,y,z) 在点 $(x_0,y_0,z_0)$  处沿 l 方向的方向导数等于

(A) 
$$2\sqrt{2}$$
.

(B) 
$$\frac{1}{2\sqrt{2}}$$
.

(C) 
$$-2\sqrt{2}$$
.

(D) 
$$-\frac{1}{2\sqrt{2}}$$
.

【分析】 设1的方向余弦为 cosa, cosp, cosy,则

$$\frac{\partial f}{\partial l}\Big|_{(x_0, y_0, z_0)} = f_x(x_0, y_0, z_0)\cos a + f_y(x_0, y_0, z_0)\cos \beta + f_x(x_0, y_0, z_0)\cos y$$

$$= \frac{g \cdot l}{\|l\|} = \frac{1}{\sqrt{0^2 + 2^2 + 2^2}} = \frac{1}{2\sqrt{2}}$$

故应选(B).

已知曲面  $z = 4 - x^2 - y^2$  上点 P 处的切平面平行于平面 2x + 2y + z - 1 = 0则点 P 的坐标是

$$(A)(1,-1,2).$$

(D) 
$$(-1, -1, 2)$$
.

曲面  $z = 4 - x^2 - y^2$  在点( $x_0, y_0, z_0$ ) 处的法线向量为( $2x_0, 2y_0, 1$ ),由题设知

$$\frac{2x_0}{2} = \frac{2y_0}{2} = \frac{1}{1}$$

 $\frac{2x_0}{2} = \frac{2y_0}{2} = \frac{1}{1}$ 则  $x_0 = y_0 = 1$ .代人  $x = 4 - x^2 - y^2$  得  $x_0 = 2$ . 故应选(C).

- 在曲线  $x = t, y = -t^2, z = t^2$  的所有切线中,与平面 x + 2y + z = 4 平行的切线 (33)

- (A) 只有一条。 (B) 只有两条。 (C) 至少有三条。 (D) 不存在。

曲线  $x = t \cdot y = -t^2$ ,  $z = t^3$  在点  $t = t_0$  处的切向量为  $r = (1, -2t_0, 3t_0^2)$ .

平面 x+2y+z=4的法线向量为

$$n = (1, 2, 1)$$

由题设知 n 上 τ,即

$$1 - 4t_0 + 3t_0^2 = 0$$

则  $t_0 = 1$  或  $t_0 = \frac{1}{3}$ .

故应选(B).

曲线  $\begin{cases} x^2 + y^2 + z^2 = 2 \\ x + y + z = 0 \end{cases}$  在点(1, -1,0) 处的切线方程为

(A) 
$$\frac{x-1}{2} = y+1 = z$$
.

(A) 
$$\frac{x-1}{2} = y+1 = z$$
. (B)  $\frac{x-1}{2} = \frac{y+1}{2} = \frac{z}{3}$ .

(C) 
$$\frac{x-1}{-1} = \frac{y+1}{-1} = \frac{z}{1}$$
. (D)  $x-1 = y+1 = -\frac{z}{2}$ .

(D)
$$x-1 = y+1 = -\frac{z}{2}$$
.

【分析】 曲面  $x^2 + y^2 + z^2 = 2$  在点(1, -1,0) 处的法线向量为  $n_1 = (2, -2, 0)$ 

平面x+y+z=0在点(1,-1,0)处的法线向量为 $n_2=(1,1,1)$ 

则曲线  $\begin{cases} x^2 + y^2 + z^2 = 2 \\ x + y + z = 0 \end{cases}$  在点(1, -1,0) 处的切向量为

$$\tau = n_1 \times n_2 = (-2, -2, 4)$$

则所求切线方程为

$$\frac{x-1}{1} = \frac{y+1}{1} = \frac{z}{-2}$$

故应选(D)。

函数  $f(x,y,z) = x^2 + y^2 + z^2$  在点(1,-1,1) 处沿曲线  $x = t, y = -t^2, z =$ (35)t<sup>2</sup> 在该点指向 x 轴负向一侧的切线方向的方向导数等于

$$(A) - 12.$$
 (B)12.

(C) 
$$-\frac{12}{\sqrt{14}}$$
 (D)  $\frac{12}{\sqrt{14}}$ 

(D) 
$$\frac{12}{\sqrt{14}}$$

〖分析〗 曲线  $x = t, y = -t^2, z = t^3$  在点(1, -1,1) 处切线向量为

$$T = (1, -2, 3)$$

而指向 x 轴负向一侧的切向量为 (-1,2,-3)

$$(-1.2.-3)$$

则所求的方向导数为

$$2 \times \frac{-1}{\sqrt{14}} + (-2) \times \frac{2}{\sqrt{14}} + 2 \times \frac{-3}{\sqrt{14}} = -\frac{12}{\sqrt{14}}$$

故应选(C).

- (35) 设有三元方程  $xy-z\ln y+e^{-z}-1$ ,根据隐函数存在定理,存在点(0.1,1)的一个邻域,在此邻域内该方程
- (A) 只能确定一个具有连续偏导数的隐函数 z=z(x,y).
  - (B) 可确定两个具有连续偏导数的隐函数 y = y(x,z) 和 z = z(x,y).
  - (C) 可确定两个具有连续偏导数的隐函数 x = x(y,z) 和 z = z(x,y).
  - (D) 可确定两个具有连续偏导数的隐函数 x = x(y,z) 和 y = y(x,z).

【分析】 设  $F(x,y,z) = xy - z \ln y + e^z - 1$ 

 $F_{r}(0,1,1) = 2 \neq 0, F_{r}(0,1,1) = -1 \neq 0, F_{r}(0,1,1) = 0$ 

由隐函数存在定理知,方程 xy - zlny+e\* - 1 在(0,1,1) 点的一个邻域内可确定两个具

有连续一阶偏导数的隐函数 x = x(y,z) 和 y = y(x,z),故应选(D).

(37) 曲面  $x^{\frac{5}{2}} + y^{\frac{7}{2}} + z^{\frac{7}{2}} = 4$  上任一点的切平面在三个坐标轴上的微距的平方和为 (A)48. (B)64. (C)36. (D)16.

【分析》 设 
$$F(x,y,z) = x^{\frac{3}{3}} + y^{\frac{3}{4}} + z^{\frac{3}{4}} - 4$$
,则
$$F_x = \frac{2}{3}x^{-\frac{1}{3}}, F_y = \frac{2}{3}y^{-\frac{1}{3}}, F_z = \frac{2}{3}z^{-\frac{1}{3}}$$

该曲面在点 P(x,y,z) 处的切平面方程为

$$x^{-\frac{1}{3}}(X-x)+y^{-\frac{1}{3}}(Y-y)+z^{-\frac{1}{3}}(Z-z)=0$$

令 Y = Z = 0 得  $X = 4x^{\frac{1}{3}}$ ,令 X = Z = 0 得  $Y = 4y^{\frac{1}{3}}$ ,令 X = Y = 0 得  $Z = 4z^{\frac{1}{3}}$   $X^2 + Y^2 + Z^2 = 16(x^{\frac{1}{3}} + y^{\frac{2}{3}} + z^{\frac{2}{3}}) = 64$  故应选(B).

### (38) 下列命题正确的是

- (A) 若 $(x_0, y_0)$  为 f(x, y) 的极值点,则 $(x_0, y_0)$  必为 f(x, y) 的驻点.
- (B) 若 $(x_0, y_0)$  为 f(x, y) 的驻点,则 $(x_0, y_0)$  必为 f(x, y) 的极值点.
- (C) 若 $(x_0, y_0)$  为有界闭区域 D上连续的函数 f(x, y) 在 D内部唯一的极值点,且 f(x, y) 在该点取极大值,则 f(x, y) 在点 $(x_0, y_0)$  取得它在 D上的最大值.
- (D) 若 f(x,y) 在点 $(x_0,y_0)$  取得极小值,则  $f(x,y_0)$  在  $x=x_0$  处取极小值, $f(x_0,y)$  在  $y=y_0$  处取极小值.

【分析】 由 f(x,y) 在点 $(x_0,y_0)$  取得极小值及极值的定义可知, $f(x,y_0)$  在  $x=x_0$  取极小值, $f(x_0,y)$  在  $y=y_0$  处取极小值,故应选(D).

【评注】 极值点不一定是驻点,因为在该点处偏导数不一定存在,例如f(x,y) = |x| +|y| 显然在(0,0) 点取极小值,但  $f_*(0,0)$  和  $f_*(0,0)$  都不存在,则排除(A),驻点不一定是极值点,排除(B),(C) 选项的结论对一元函数是成立的,但对三元函数不成立。

(39)设函数 f(x,y) 在点 $(x_0,y_0)$  处取极大值,则下列结论正确的是

$$(A)f'_x(x_0,y_0)=f'_y(x_0,y_0)=0.$$

(B) 
$$f''_{xx}(x_0, y_0) f''_{xy}(x_0, y_0) - (f''_{xy}(x_0, y_0))^2 > 0$$
,  $\coprod f''_{xx}(x_0, y_0) < 0$ .

- (C) f(x<sub>0</sub>,y) 在 y<sub>0</sub> 处取极小值。
- (D) | f(x,y) | 在(xo,yo) 处取极大值.

由于 f(x,y) 在点 $(x_0,y_0)$  处取极大值,则  $f(x_0,y)$  在  $y=y_0$  处取极大值,则在 y = y<sub>0</sub> 的集邻域内

$$f(x_0,y)\leqslant f(x_0,y_0),$$

从而有

$$-f(x_0,y) \geqslant -f(x_0,y_0)$$

即一 $f(x_0,y)$  在  $y_0$  处取极小值,故应选(C).

【评注》 本题没假设 f(x,y) 在(x,y) 处两个一阶偏导数存在,则(A) 不正确. 但应 注意,本题即使假设 f(x,y) 有二阶连续偏导数。(B) 选项也不正确,因为(B) 是 f(x,y) 在  $(x_0,y_0)$  处取得极大值的充分条件,但非必要条件。如 f(x,y) = -(x'+y') 在(0,0) 处取极大值,但  $f''_{-}(0,0)f''_{-}(0,0) - (f''_{-}(0,0))^2 = 0$ , $f''_{-}(0,0) = 0$ .

设  $F(x_0,y_0)$  具有二阶连续偏导数,且  $F(x_0,y_0)=0$ ,  $F'_x(x_0,y_0)=0$ ,  $F'_y(x_0,y_0)$ > 0. 若一元函数 y = y(x) 是由方程 F(x,y) = 0 所确定的在点 $(x_0,y_0)$  附近的隐函数,则  $x_0$ 是函数 y = y(x) 的极小值点的一个充分条件是

$$(A)F''_{xx}(x_0,y_0)>0.$$

(B) 
$$F'_{xx}(x_0, y_0) < 0$$
.

(C) 
$$F''_{yy}(x_0, y_0) > 0$$
.

(D) 
$$F''_{yy}(x_0, y_0) < 0$$
.

$$y''(x_0) = -\frac{F''_{xx}(x_0, y_0)}{F'_{y}(x_0, y_0)}$$

若  $F'_{x}(x_0, y_0) < 0$ ,则  $y''(x_0) > 0$ , $x_0$  是 y = y(x) 的极小值点,故应选(B).

| (41) 设函数 
$$z = f(x,y)$$
 在点(0,0) 处连续,且  $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{1-\cos\sqrt{x^2+y^2}} = -2$ ,则

(A)f<sub>2</sub>(0,0) 不存在. (B)f<sub>2</sub>(0,0) 存在但不为零.

自  $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{1-\cos\sqrt{x^2+y^2}} = -2$ ,及 f(x,y) 在点(0,0)处的连续性知 f(0,y)

0) = 0.

由  $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{1-\cos\sqrt{x^2+y^2}}=-2<0$ . 及极限的保号性知存在(0,0) 点的某个去心邻 E此去心邻域内

域,在此去心邻域内

$$\frac{f(x,y)}{1-\cos\sqrt{x^2+y^2}}<0$$

而  $1-\cos\sqrt{x^2+y^2}>0$ ,则 f(x,y)<0,又 f(0,0)=0,由极值定义知 f(x,y) 在点(0,0) 取极大值,故应选(C).

【分析 2】 由于当
$$(x,y)$$
 +  $(0,0)$  时, $1-\cos\sqrt{x^2+y^2}\sim\frac{1}{2}(x^2+y^2)$ 

取  $f(x,y) = -(x^2 + y^2)$ ,显然满足题设条件,但  $f_*(0,0) = 0$ ,且由极值定义知 f(x,y) 在 点(0,0) 取极大值,则排除(A)、(B)、(D)、故应选(C).

【评注】 分析工是利用极限的保写性和极值的定义,分析2是利用排除法,这是解决此类问题常用的两种方法

(42) 设u(x,y) 在平面有界闭区域 D上有连续二阶偏导数,在 D内 $\frac{\partial^2 u}{\partial x^2 y} \neq 0$ , $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2} = 0$ ,则函数 u(x,y)

- (A) 最大值点和最小值点必定都在 D 的内部.
- (B) 最大值点和最小值点必定都在 D 的边界上,
- (C) 最大值点在 D的内部,最小值点在 D的边界上,
- (D) 最大值点在 D 的边界上,最小值点在 D 的内部.

【分析】 由于在 
$$D$$
 内  $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ ,  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ , 则在  $D$  内 
$$AC - B^2 = \left(\frac{\partial^2 u}{\partial x^2}\right) \left(\frac{\partial^2 u}{\partial y^2}\right) - \left(\frac{\partial^2 u}{\partial x \partial y}\right)^2 < 0$$

则 D内每一点都不是u(x,y) 的极值点,则函数u(x,y) 的最大值点和最小值点必定都在D的边界上,故应选(B).

- (43) 函数  $f(x,y) = kx^2 + y^3 3y$  在点(0,1) 处
- (A) 取极大值.

(B) 取极小值.

(C) 不取得极值.

(D) 是否取得极值与 k 取值有关.

[分析] 
$$f_z = 2kx, f_y = 3y^2 - 3$$
, 显然  
 $f_z(0,1) = 0, f_y(0,1) = 0$   
 $f_{zz}(0,1) = 2k, f_{yy}(0,1) = 6, f_{zy}(0,1) = 0$   
 $AC - B^2 = 12k$ 

则 f(x,y) 在点(0,1) 处是否取得极值与 k 的取值有关.

(44) 函数 f(x,y) = 1 + x + y 在区域  $x^2 + y^2 \le 1$  上的最大值与最小值之积为 (A) -1. (B) 1. (C)  $1 + \sqrt{2}$ . (D)  $1 - \sqrt{2}$ .

【分析】 显然 
$$f(x,y) = 1 + x + y$$
 在区域  $x^2 + y^2 \le 1$  内无驻点,令  $F(x,y,\lambda) = 1 + x + y + \lambda(x^2 + y^2 - 1)$ 

$$\begin{cases}
F_{x} = 1 + 2\lambda x = 0 \\
F_{y} = 1 + 2\lambda y = 0 \\
F_{x} = x^{2} + y^{2} - 1 = 0
\end{cases}$$

$$\begin{cases}
F_{x} = y = \pm \frac{1}{\sqrt{2}} \\
F_{y} = x^{2} + y^{2} - 1 = 0
\end{cases}$$

 $f\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) = 1 + \sqrt{2}$  为最大值, $f\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) = 1 - \sqrt{2}$  为最小值, $(1 + \sqrt{2})(1 - \sqrt{2}) = -1$  故应选(A).

(45) 曲面  $x^2 + y^2 + z^2 = 1$  上到平面 x + 2y + z = 10 距离最大的点为

(A) 
$$\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$
.  
(B)  $\left(-\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$ .  
(C)  $\left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$ .

【分析】 由几何意义可知球面  $x^2 + y^2 + z^2 = 1$  上到平面 x + 2y + z = 10 距离最大的点处的切平面与平面 x + 2y + z = 10 平行,且在第七卦限。

球面 
$$x^2 + y^2 + z^2 = 1$$
 在点 $(x, y, z)$  处的法向量为  $n_1 = (x, y, z)$ 

平面 x+2y+z=10 的法向量为

$$n_2 = (1, 2, 1)$$

$$M\frac{x}{1} = \frac{y}{2} = \frac{z}{1} = y$$

即  $x = \lambda$ ,  $y = 2\lambda$ ,  $z = \lambda$ , 将其代人  $x^2 + y^2 + z^2 = 1$  得

$$6\lambda^2 = 1, \lambda = \pm \frac{1}{\sqrt{6}}$$

由于所求点在第七卦限,则所求点为 $\left(-\frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$ 

故应选(B).

【评注】 本题也可先求出曲面  $z^3+y^2+z^2=1$  上点(z,y,z) 到平面 z+2y+z=10 的距离,然后用拉格朗日乘法求解。

(46) 设 D是  $xO_y$  平面上以(1,1),(-1,1)和(-1,-1)为顶点的三角形区域, $D_i$ 是 D在第一象限的部分,则 $\int (xy + \cos x \sin y) d\sigma$ 等于

(A)2
$$\iint_{D_1} \cos x \sin y d\sigma$$
. (B)2 $\iint_{D_1} xy d\sigma$ . (C)4 $\iint_{D} (xy + \cos x \sin y) d\sigma$ . (D)0.

【分析】 连接 OB 将原积分域分为两部分,

 $\Delta CBO$ ,记为  $D_2$ , $\Delta BOA$ ,记为  $D_3$ .

由于  $D_z$  关于 x 轴对称, 而 xy + cosxsiny 是 y 的奇函数,则

$$\iint\limits_{D} (xy + \cos x \sin y) d\sigma = 0$$

而 D<sub>2</sub> 关于 y 轴对称, xy 是 x 的奇函数, cosxsiny 是 x 的偶函数,

则



(47) 累次积分
$$\int_0^{\frac{\pi}{2}} d\theta \int_0^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$
 可写成

(A) 
$$\int_{0}^{2} dx \int_{0}^{1+\sqrt{1-x^{2}}} f(x,y) dy$$
. (B)  $\int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^{2}}} f(x,y) dy$ .

(B) 
$$\int_0^t \mathrm{d}x \int_0^{\sqrt{2\pi-x^2}} f(x,y) \mathrm{d}y$$
.

$$(C) \int_0^2 dy \int_0^{\sqrt{2y-y^2}} f(x,y) dx.$$

$$(D)\int_{a}^{2}dx\int_{a}^{2}f(x,y)dy.$$

原积分域应为由  $x^2 + y^2 \le 2y$  与  $x \ge 0$  所确定的右半圆,故应选(C).

(48) 累次积分
$$\int_0^1 dx \int_x^1 f(x,y) dy + \int_1^2 dy \int_0^{2-y} f(x,y) dx$$
 可写成

$$(A) \int_0^2 dx \int_x^{2-x} f(x,y) dy.$$

$$(B)\int_{a}^{z}dy\int_{a}^{z-y}f(x,y)dx.$$

$$(C) \int_a^1 dx \int_x^{2-x} f(x,y) dy.$$

(D) 
$$\int_0^1 dy \int_x^{2-y} f(x,y) dx$$
.

原积分域为直线 y=x,x+y=2,与 y 轴围成的三角形区域,放应选(C).

(49) 交换积分次序 
$$\int_{1}^{1} dx \int_{0}^{\ln x} f(x,y) dy$$
 为

$$(A) \int_0^x dy \int_0^{\ln x} f(x,y) dx.$$

(B) 
$$\int_{-\infty}^{\infty} dy \int_{-\infty}^{1} f(x,y) dx$$
.

(C) 
$$\int_0^{\ln x} dy \int_1^x f(x,y) dx.$$

$$(D) \int_0^1 dy \int_{-x}^x f(x,y) dx.$$

【分析】 交换积分次序得

$$\int_{1}^{\infty} dx \int_{0}^{\ln x} f(x,y) dy = \int_{0}^{1} dy \int_{0}^{\infty} f(x,y) dx.$$
 【答案】 D

(50) 
$$\iint_{D} f(x,y) dxdy = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d\theta \int_{0}^{a\cos\theta} f(r\cos\theta, r\sin\theta) rdr, (a > 0) 则积分域为$$

$$(A)x^2+y^2\leqslant a^2.$$

$$(B)x^2 + y^2 \leqslant a^2 \quad (x \geqslant 0).$$

$$(C)x^2 + y^2 \leqslant ax.$$

$$(D)x^2 + y^2 \leqslant ax \quad (y \geqslant 0).$$

【分析】 由  $r = a\cos\theta$  知  $r^2 = ar\cos\theta$ 。即

$$x^2 + y^2 = ax \quad (a > 0$$

被应选(C)。

设 f(x,y) 在  $D: x^2 + y^2 \le a^2$  上连续,则 $\lim_{\alpha \to 0} \frac{1}{\alpha^2} \iint f(x,y) d\alpha$ 

(A) 不一定存在。

(B) 存在且等于 f(0,0).

(C) 存在且等于 πf(0,0).

(D) 存在且等于 $\frac{1}{2}$ f(0,0).

#### 由积分中值定理知 【分析】

$$\iint_{D} f(x,y) d\sigma = \pi a^{2} f(\xi,\eta), (\xi,\eta) \in D$$

$$\lim_{\delta \to 0} \frac{1}{a^2} \iint_{\Omega} f(x, y) ds = \lim_{\delta \to 0} \pi f(\xi, \eta) = \pi f(0, 0). \quad \text{[Assumption of the content of the$$

设 g(x) 是可微函数 y = f(x) 的反函数,且 f(1) = 0,  $\int_{a}^{1} x f(x) dx = 1008$ ,则 (52)[ dx [ 's' g(t) dt 的值为 (C)2016. (D)2100. (A)0.(B)2017,

【分析》 
$$\int_0^1 dx \int_0^{f(x)} g(t) dt = \int_0^1 \left[ \int_0^{f(x)} g(t) dt \right] dx \quad (利用分部积分法)$$

$$= x \int_0^{f(x)} g(t) dt \Big|_0^1 - \int_0^1 x g \left[ f(x) \right] f'(x) dx$$

$$= 0 - \int_0^1 x^2 f'(x) dx = - \int_0^1 x^2 df(x)$$

$$= -x^2 f(x) \Big|_0^1 + 2 \int_0^1 x f(x) dx$$

$$= 2 \int_0^1 x f(x) dx = 2016.$$
 【答案》 C

$$=2\int_0^1 x f(x) dx = 2016$$
. 【答案】 C

设 g(x) 有连续的导数,g(0) = 0, $g'(0) = a \neq 0$ ,f(x,y) 在点(0,0) 的某邻域

内连续,则 
$$\lim_{x^2+y^2 \le r^2} f(x,y) dxdy$$

(A) 
$$\frac{f(0,0)}{a}$$
.

(B) 
$$\frac{f(0,0)}{2a}$$
.

(C) 
$$\frac{\pi}{a}f(0,0)$$
. (D)  $\frac{\pi}{2a}f(0,0)$ .

(D) 
$$\frac{\pi}{2a}f(0,0)$$

#### 由积分中值定理知 【分析】

$$\iint_{x^2+y^2\leqslant r^2} f(x,y) \, \mathrm{d}x \mathrm{d}y = \pi r^2 f(\xi,\eta)$$

其中 $(\xi,\eta)$  为圆域  $x^2 + y^2 \le r^2$  上的一个点,则

$$\lim_{r \to 0^+} \frac{r^2}{g(r^2)} = \lim_{r \to 0^+} \frac{2r}{2rg'(r^2)} = \frac{1}{a}$$

$$\lim_{r \to 0^+} \frac{r^2}{g(r^2)} = \lim_{r \to 0^+} \frac{2r}{2rg'(r^2)} = \frac{1}{a}$$

$$\lim_{r \to 0^+} \frac{r^2}{g(r^2)} = \frac{\pi}{a} f(0,0).$$
 【答案】 C

(54) 
$$\exists \exists \lim_{t \to 0^{\frac{1}{2}}} \frac{\int_{0}^{t} dx \int_{t}^{x} e^{-t^{2}} dy}{t^{2}} = \beta \neq 0, \emptyset$$
  
(A)  $\alpha = 1, \beta = \frac{1}{2}$ . (B)  $\alpha = 2, \beta = \frac{1}{2}$ .  
(C)  $\alpha = 2, \beta = -\frac{1}{2}$ . (D)  $\alpha = 3, \beta = -\frac{1}{2}$ .

$$\lim_{t\to 0^{+}} \frac{\int_{0}^{t} dx \int_{t}^{x} e^{-y^{2}} dy}{t^{\alpha}} = \lim_{t\to 0^{+}} \frac{\int_{0}^{t} dy \int_{0}^{x} e^{-y^{2}} dx}{t^{\alpha}}$$

$$= -\lim_{t\to 0^{+}} \frac{\int_{0}^{t} y e^{-y^{2}} dy}{t^{\alpha}}$$

$$= -\lim_{t\to 0^{+}} \frac{t e^{-t^{2}}}{a t^{\alpha-1}} \quad (A \otimes E \otimes B)$$

$$= -\lim_{t\to 0^{+}} \frac{t}{a t^{\alpha-1}} = \beta \neq 0$$

由  $\alpha = 2, \beta = -\frac{1}{2}$ ,故应选(C).

(55) 设 
$$I_1 = \iint_D \frac{x+y}{4} dx dy$$
,  $I_2 = \iint_D \sqrt{\frac{x+y}{4}} dx dy$ ,  $I_3 = \iint_D \sqrt[3]{\frac{x+y}{4}} dx dy$ , 其中  $D$  由不等式 $(x-1)^2 + (y-1)^2 \leqslant 2$  所确定,则
(A)  $I_2 \leqslant I_3 \leqslant I_1$ .
(B)  $I_1 \leqslant I_2 \leqslant I_3$ .
(C)  $I_3 \leqslant I_1 \leqslant I_2$ .
(D)  $I_3 \leqslant I_2 \leqslant I_3$ .

《分析》 同一积分域上二重积分大小的比较,只要比较被积函数的大小,而被积函数为 同一函数 $\frac{x+y}{4}$ 的不同方幂,关键是要确定在  $D \perp \frac{x+y}{4}$ 是大于 1 还是小于 1.

由于直线 $\frac{x+y}{4} = 1($ 即x+y=4)与圆 $(x-1)^2 + (y-1)^2 = 2$ 在点(2,2)处相切,则在 区域  $D_1(x-1)^2 + (y-1)^2 \le 2 \perp \frac{x+y}{4} \le 1$ ,从而有

$$\frac{x+y}{4} \leqslant \sqrt{\frac{x+y}{4}} \leqslant \sqrt[3]{\frac{x+y}{4}}$$

 $I_1 < I_2 < I_3$ . 故应选(B).

设平面域 D由 $x+y=\frac{1}{2},x+y=1$ 及两条坐标轴围成, $I_1=\iint \ln(x+y)^3 dx dy$ ,

$$I_2 = \iint_{\mathbf{b}} (x + y)^3 dx dy, I_3 = \iint_{\mathbf{b}} \sin(x + y)^3 dx dy \mathbb{N}$$

(A)  $I_1 < I_2 < I_3$ .

(B) 
$$I_3 < I_1 < I_2$$
.

 $(C)I_1 < I_2 < I_2$ 

$$I_3 < I_2 < I_1$$
.

【分析】 显然在 
$$D \pm 0 < x + y \le 1$$
,则 
$$\ln(x + y)^3 \le 0.0 < \sin(x + y)^3 < (x + y)^3$$

从而有

$$\iint_{D} \ln(x+y)^{3} dxdy < \iint_{D} \sin(x+y)^{3} dxdy < \iint_{D} (x+y)^{2} dxdy$$

故应选(C).

【评注】,本题用到一个常用的不等式,即

$$\sin x < x < \tan x, \quad x \in (0, \frac{\pi}{2}).$$

设 D 为单位圆域  $x^2 + y^2 \le 1$ ,  $I_1 = \iint (x^3 + y^3) dx dy$ ,  $I_2 = \iint (x^4 + y^4) dx dy$ .

$$I_3 = \iint_D (2x^6 + y^5) \, \mathrm{d}x \, \mathrm{d}y \, , \mathbb{M}$$

(A) 
$$I_1 < I_2 < I_3$$
.

(B) 
$$I_3 < I_1 < I_2$$
.

(C) 
$$I_3 < I_2 < I_1$$
.

(D) 
$$I_1 < I_2 < I_2$$
.

〖分析〗 由于积分域 D关于两个坐标轴都对称,而 x³ 是 x 的奇函数, y³ 是 y 的奇函数,则

$$I_1 = \iint_D (x^3 + y^3) dx dy = 0$$

$$\iint_D dx dy = 0$$

$$\iint_{\mathbb{R}^3} dx dy = 0$$

$$I_s = 2\iint x^6 dxdy = \iint (x^6 + y^6) dxdy$$
 (这里利用了变量的对称性)

由于在D内 $|x| \leq 1, |y| \leq 1, 则$ 

$$x^6 + y^5 \leqslant x^4 + y^4$$

则 
$$0 < \iint_{D} (x^6 + y^6) dxdy < \iint_{D} (x^4 + y^4) dxdy$$

从而有  $I_1 < I_2 < I_2$ ,故应选(D).

设 f(x,y) 连续,且  $f(x,y) = xy + \iint f(u,v) du dv$ ,其中 D 是由  $y = 0, y = x^2$ ,

x=1所围区域,则f(x,y)等于

(C) 
$$xy + \frac{1}{8}$$
. (D)  $xy + 1$ .

$$(D)xy+1.$$

【分析】 等式  $f(x,y) = xy + \iint f(u,v) du dv$  两端积分得  $\iint f(x,y) dxdy = \iint xy dxdy + \iint f(u,v) dudv \cdot \iint dxdy$ 

$$\iint xy dx dy = \int_0^1 dx \int_0^{x^2} xy dy = \frac{1}{12}$$

$$\iint_{D} \mathrm{d}x \mathrm{d}y = \int_{0}^{1} \mathrm{d}x \int_{0}^{x^{2}} \mathrm{d}y = \frac{1}{3}$$

$$\iiint_{B} f(x,y) dx dy = \frac{1}{8}$$

$$f(x,y)=xy+\frac{1}{8}.$$

# 【答案】

设有空间区域  $\Omega_1: x^2+y^2+z^2 \leqslant R^2, z \geqslant 0;$ 及  $\Omega_2: x^2+y^2+z^2 \leqslant R^2, x \geqslant 0,$  $y \ge 0, z \ge 0, 则$ 

$$(A) \iint_{\Omega_1} x dv = 4 \iint_{\Omega_2} x dv.$$

(C) 
$$\iint_{\Omega} z dv = 4 \iint_{\Omega} z dv$$
.

$$(B) \iint_{\Omega} y dv = 4 \iint_{\Omega} y dv.$$

$$(D) \iint_{\Omega} xyz dv = 4 \iint_{\Omega} xyz dv.$$

由于 $\Omega_1$  关于xOz 面和yOz 面都对称,而f(x,y,z)=z 既是y 的偶函数,也是 x 的偶函数,则

故应选(C).

设  $\Omega$  是由曲面  $z = \sqrt{x^2 + y^2}$  及 z = 1 所围成的区域, f(x,y,z) 连续, 则则 f(x,z)(60)y,z)dv等于

$$(A) \int_0^1 dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^1 f(x,y,z) dz.$$

(B) 
$$\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} dy \int_{\sqrt{x^{2}+y^{2}}}^{1} f(x,y,z) dz$$
.

(C) 
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{\sqrt{x^2+y^2}}^{1} f(x,y,z) dz$$
.

(D) 
$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{1}^{\sqrt{x^2+y^2}} f(x,y,z) dz$$
.



【分析】  $\Omega$ 是由锥面  $z = \sqrt{x^2 + y^2}$  及平面 z = 1 围成的锥体(如图所示),则在直角坐标下化为累次积分为

$$\int_{-1}^{1} \mathrm{d}x \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \mathrm{d}y \int_{\sqrt{x^2+y^2}}^{1} f(x,y,z) \, \mathrm{d}z. \qquad \text{[Exp]} \quad C$$

(61) 设 $\Omega$ 是由曲面 $z=x^2+y^2$ , y=x, y=0, z=1在第一卦限所围成的区域,f(x,y,z)在 $\Omega$ 上连续,则 $\iint f(x,y,z) dv$ 等于

(A) 
$$\int_{0}^{1} dy \int_{y}^{\sqrt{1-y^{2}}} dx \int_{z^{2}+y^{2}}^{1} f(x,y,z) dz$$
. (B)  $\int_{0}^{\sqrt{2}} dx \int_{y}^{\sqrt{1-y^{2}}} dy \int_{z^{2}+y^{2}}^{1} f(x,y,z) dz$ . (C)  $\int_{0}^{\sqrt{2}} dy \int_{z^{2}+y^{2}}^{\sqrt{1-y^{2}}} dx \int_{z^{2}+z^{2}}^{1} f(x,y,z) dz$ . (D)  $\int_{0}^{\frac{2}{2}} dy \int_{z^{2}+z^{2}}^{\sqrt{1-y^{2}}} dx \int_{z^{2}+z^{2}}^{1} f(x,y,z) dz$ .

【分析】  $\Omega$ 在xOy面上的投影是由 $x^2+y^2=1,y=0,y=x$ 在第一象限围成的 $\frac{1}{8}$ 圆域,则

$$\iint_{\Omega} f(x,y,z) dv = \int_{0}^{\frac{\pi}{2}} dy \int_{y}^{\sqrt{1-y^{2}}} dx \int_{z^{2}+y^{2}}^{1} f(x,y,z) dz.$$

故应选(D).

(62) 设 f(x) 有连续的导数,f(0) = 0,区域  $\Omega$  由柱面  $x^2 + y^2 = t^2 (t > 0)$  和两面 z = 0,z = 1 所图成,则  $\lim_{t \to 0^+} \frac{1}{t^2} \iint f(x^2 + y^2) dv$  等于

(A)
$$\pi f'(0)$$
, (B) $\pi f(0)$ , (C)  $\frac{\pi}{2} f(0)$ , (D)  $\frac{\pi}{2} f'(0)$ ,

【分析】 
$$\lim_{t\to 0^{+}} \frac{\int_{0}^{t} f(x^{2}+y^{2}) dv}{t^{4}} = \lim_{t\to 0^{+}} \frac{\int_{0}^{2\pi} d\theta \int_{0}^{t} f(r^{2}) r dr \int_{0}^{t} dz}{t^{4}}$$

$$= 2\pi \lim_{t\to 0^{+}} \frac{\int_{0}^{t} f(r^{2}) r dr}{t^{4}}$$

$$= 2\pi \lim_{t\to 0^{+}} \frac{f(t^{2})t}{4t^{2}} = \frac{\pi}{2} \lim_{t\to 0^{+}} \frac{f(t^{2})}{t^{2}}$$

$$= \frac{\pi}{2} \lim_{t\to 0^{+}} \frac{f'(t^{2}) \cdot 2t}{2t} = \frac{\pi}{2} f'(0).$$

故应选(D).

(63) 设 $S: x^2 + y^2 + z^2 = a^2 (z \ge 0)$ ,  $S_1 为 S$ 在第一卦限中的部分,则

(A) 
$$\int_{S} x dS = 4 \int_{S_1} x dS$$
. (B)  $\int_{S} y dS = 4 \int_{S_1} y dS$ . (C)  $\int_{S} z dS = 4 \int_{S_1} z dS$ . (D)  $\int_{S} x y z dS = 4 \int_{S_1} x y z dS$ .

【分析】 由于S关于yOz 面和zOz 面都对称,而f(x,y,z) = z关于x 和y 都是偶函数,则

$$\iint_{S} z \, dS = 4 \iint_{S} z dS.$$

故应选(C).

### (64) 下列结论

(1) 
$$\oint (x^2 + y^2) ds = a^2 \oint ds = 2\pi a^3$$
(2) 
$$\iint_{x^2 + y^2 = a^2} (x^2 + y^2) d\sigma = a^2 \iint_{x^2 + y^2 \le a^2} d\sigma = \pi a^4$$
(3) 
$$\oint (x^2 + y^2 + z^2) dS = a^2 \oint_{x^2 + y^2 + z^2 = a^2} dS = 4\pi a^4$$
(4) 
$$\iint_{x^2 + y^2 + z^2 = a^2} (x^2 + y^2 + z^2) dv = a^2 \iint_{x^2 + y^2 + z^2 = a^2} dv = \frac{4}{3}\pi a^5$$

中正确的条数为

(A)1 条.

(B)2条.

(C)3条.

(D)4条.

【分析】 (1) 和(3) 是正确的,(2) 和(4) 是错误的.

(1)和(3)分别是第一类线(面)积分,积分是沿曲线(面)积,被积函数可用曲线(面)方程代人.

但(2) 和(4) 分别是二重积分和三重积分,积分分别是在圆域  $z^2 + y^2 \le a^2$  和球体  $z^2 + y^2 + z^2 \le a^2$  上积,被积分函数不能用积分域的边界曲线  $z^2 + y^2 = a^2$  和边界曲面  $z^2 + y^2 + z^2 = a^2$  代人. 【答案】 B

(65) 设  $C_k(k=1,2,3)$  分别为曲线  $x^2+y^2=1, \frac{x^2}{2}+y^2=1, x^2+y^2=2$ ,其方向

逆时针方向, $I_k = \oint_{C_k} (3yx^2 + y^2) dx + (3x + y) dy$ ,(k = 1, 2, 3).则

(A) 
$$I_1 < I_2 < I_3$$
.

(B) 
$$I_1 < I_3 < I_2$$
.

(C) 
$$I_3 < I_2 < I_1$$
.

(D) 
$$I_2 < I_1 < I_2$$
.

#### 【分析】 由格林公式得

$$I_{1} = \iint_{x^{2}+y^{2} \le 1} (3-3x^{2}-3y^{2}) d\sigma$$

$$= 3 \iint_{x^{2}+y^{2} \le 1} (1-x^{2}-y^{2}) d\sigma$$

$$I_{2} = 3 \iint_{\frac{x^{2}+y^{2} \le 1}{2}+y^{2} \le 1} (1-x^{2}-y^{2}) d\sigma$$

$$I_{3} = 3 \iint_{1} (1-x^{2}-y^{2}) d\sigma$$



注意到在圆 $x^2 + y^3 \leq 1$ 之外,以上三个二重积分的被积函数  $(1-x^2-y^3)$  为负,由上图可知

たな気料と

$$I_3 < I_2 < I_3$$

故应选(C).

4

(66) 设曲线 
$$L$$
 为椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ,其周长为  $l$ ,则 $p(bx + ay)^2$  ds 等于 (A) $(a+b)l$ . (B) $(a^2 + b^2)l$ . (C) $a^2b^2l$ . (D) $abl$ .

【分析】 
$$\oint_L (bx + ay)^2 ds$$
  

$$= \oint_L (b^2 x^2 + 2abxy + a^2 y^2) ds$$
  

$$= \oint_L (b^2 x^2 + a^2 y^2) ds = a^2 b^2 \oint_L \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) ds$$
  

$$= a^2 b^2 \oint_L ds = a^2 b^2 l.$$

故应选(C)。

(67) 设 L 是以 A(1,0), B(0,1), C(-1,0), D(0,-1) 为顶点的正方形边界,则  $\left\{\frac{x}{|x|+|y|}dx\right\}$ 等于 (A)4 $\sqrt{2}$ . (B)0. (C)2 $\sqrt{2}$ . (D)4.

【分析】 曲线 L 的方程为 |x|+|y|=1,该曲线关于 y 轴和 x 轴都对称,  $\frac{x}{|x|+|y|}$ ,  $\frac{y}{|x|+|y|}$  分别关于 x 和 y 是奇函数,则

$$\oint \frac{x}{|x|+|y|} ds = \oint \frac{y}{|x|+|y|} ds = 0$$

$$\oint \frac{x+y+1}{|x|+|y|} ds = \oint \frac{ds}{|x|+|y|} = \oint ds = 4\sqrt{2}.$$

放应选(A).

(68) 设 L 为折线 y = 1 - |1 - x| 从点(0,0) 到点(2,0) 的一段,则线积分  $\int_{1}^{2} (x^{2} + y^{2}) dx + (x^{2} - y^{2}) dy$  等于

(A) 
$$\frac{1}{3}$$
.

(B) 
$$\frac{5}{2}$$

(C) 
$$\frac{3}{2}$$
.

(D) 
$$\frac{4}{3}$$
.

【分析】 积分曲线如图所示

$$\int_{1}^{2} (x^{2} + y^{2}) dx + (x^{2} - y^{2}) dy$$

$$= \int_{0}^{1} 2x^{2} dx + \int_{1}^{2} \{ [x^{2} + (2 - x)^{2}] - [x^{2} - (2 - x)^{2}] \} dx$$

$$= \frac{2}{3} + \int_{1}^{2} 2(2 - x)^{2} dx = \frac{4}{3}.$$
 [答案] D



【评注】 本题也可补线用格林公式。

(69) 方程  $y'' - 2y' = xe^{2x}$  的特解形式为

$$(A)y=axe^{tx}.$$

(B) 
$$y = (ax + b)e^{2x}$$
.

$$(C).y = x(ax+b)e^{2x}.$$

(D) 
$$y = x^2 (ax + b)e^{2x}$$
.

#### 【答案】 C

【分析】 方程 y''-2y'=0 的特征方程为  $r^2-2r=0$ ,  $r_1=0$ ,  $r_2=2$ , 则非齐次方程  $y'-2y'=xe^{2r}$  的特解形式为  $y=x(ax+b)e^{2r}$ .

(70) 方程 
$$y'' - 3y' + 2y = e^x + 1 + e^x \cos 2x$$
 的特解形式为

- $(A)y = axe^x + b + Ae^x \cos 2x.$
- (B)  $y = ae^x + b + e^x (A\cos 2x + B\sin 2x)$ .
- $(C) y = axe^{x} + b + xe^{x} (A\cos 2x + B\sin 2x).$
- (D)  $y = axe^x + b + e^x(A\cos 2x + B\sin 2x)$ .

《分析》 方程 y'' - 3y' + 2y = 0 的特征方程为  $r^2 - 3r + 2 = 0$ 

特征根为  $r_1 = 1, r_2 = 2$ 

则方程  $y''-3y'+2y=e^x+1+e^x\cos 2x$  的待定特解为  $y=axe^x+b+e^x(A\cos 2x+B\sin 2x)$ 

故应选(D).

### (71) 方程 $y'' + 2y'' = x^2 + xe^{-2x}$ 的特解形式为

- $(A)y = ax^2 + bx + c + x(dx + e)e^{-2x}$ .
- (B)  $y = x^2(ax^2 + bx + c) + x^2e^{-2x}$ .
- (C)  $v = (ax^2 + bx + c) + (dx + e)e^{-2x}$ .
- (D)  $y = x^2(ax^2 + bx + c) + x(dx + e)e^{-2x}$ .

【分析】 方程 y'' + 2y'' = 0 的特征方程为

 $r^2 + 2r^2 = 0$ 

 $r_1 = r_2 = 0, r_3 = -2$ 

则方程  $y'' + 2y'' = x^2 + xe^{-2x}$  的特解形式为 $y = x^2(ax^2 + bx + c) + x(dx + e)e^{-2x}$  故应选(D)...

(72) 已知  $y_1(x)$  和  $y_2(x)$  是方程 y' + p(x)y = 0 的两个不同的特解,则该方程的通解为

$$(A)y = Cy_1(x).$$

(B) 
$$y = Cy_2(x)$$
.

$$(C)y = C_1y_1(x) + C_2y_2(x).$$

(D) 
$$y = C(y_1(x) - y_2(x)).$$

#### 【答案】 D

【分析】 由于  $y_1(x)$  和  $y_2(x)$  是方程 y' + p(x)y = 0 的两个不同的特解,则  $y_1(x) - y_2(x)$  为该方程的一个非零解,则  $y = C(y_1(x) - y_2(x))$  为该方程的通解.

【评注】。由于 y<sub>1</sub>(x) 和 y<sub>2</sub>(x) 都可能是原方程的零解,则(A) 和(B) 都不正确.

(73) 已知  $y_1 = x, y_2 = x^2, y_3 = e^x$  为方程 y'' + p(x)y' + q(x)y = f(x) 的三个特解,则该方程的通解是

(A) 
$$y = C_1 x + C_2 x^2 + e^x$$
.

(B) 
$$y = C_1 x^t + C_2 e^x + x$$
.

(C) 
$$y = C_1(x-x^2) + C_2(x-e^x) + x$$
.

(D) 
$$y = C_1(x-x^2) + C_2(x^2-e^x)$$
.

方程 y' + p(x)y' + q(x)y = f(x) 是一个二阶线性非齐次方程,则 $(x-x^2)$  和 (x-e\*)为其对应的齐次方程两个线性无关的特解,则原方程通解为

$$y = C_1(x-x^2) + C_2(x-e^x) + x$$

故应选(C).

若连续函数 f(x) 满足关系式  $f(x) = \int_{-x}^{2x} f(\frac{t}{2}) dt + \ln 2$ ,则 f(x) 等于 (74)

(A)e<sup>x</sup>ln2.

(B)  $e^{2x} \ln 2$ .

 $(C)e^x + \ln 2$ .

(D)  $e^{2x} + \ln 2$ .

【答案】 B

【分析】 等式  $f(x) = \int_0^{tx} f(\frac{t}{2}) dt + \ln 2$  两端对 x 求导得 f'(x) = 2f(x) 则  $\frac{df}{f} = 2dx$ ,  $\ln f = 2x + C_1$ ,  $f(x) = Ce^{2x}$  由题设知  $f(0) = \ln 2$ , 则  $C = \ln 2$ ,  $f(x) = e^{2x} \ln 2$ .

设曲线积分  $[f(x)-e^x]\sin y dx - f(x)\cos y dy$  与路径无关,其中 f(x) 具有一 阶连续导数,且 f(0) = 0,则 f(x) 等于
(A)  $\frac{1}{2}(e^{x} - e^{x})$ .
(B)  $\frac{1}{2}(e^{x} - e^{-x})$ .

(A) 
$$\frac{1}{2}$$
 (e<sup>-1</sup> - e<sup>1</sup>).

(B) 
$$\frac{1}{2}$$
 (e<sup>x</sup> - e<sup>-x</sup>).

(C) 
$$\frac{1}{2}$$
 (e<sup>x</sup> + e<sup>-x</sup>) + 1

(C) 
$$\frac{1}{2}(e^r + e^{-r}) + 1$$
. (D)  $1 - \frac{1}{2}(e^r + e^{-r})$ .

# 【答案】 B

【分析》 由于线积分  $\int_1^{\infty} [f(x) - e^x] \sin y dx - f(x) \cos y dy$  与路径无关,则  $[f(x) - e^x]\cos y = -f'(x)\cos y$ 

即  $f'(x)+f(x)=e^x$ 

$$f(x) = e^{-\int_{-1}^{1} \left( \int e^{x} e^{\int dx} dx + C \right)} = e^{-x} \left( \frac{1}{2} e^{2x} + C \right)$$

由 f(0) = 0 知,  $C = -\frac{1}{2}$ 

$$f(x) = e^{-x} \left( \frac{1}{2} e^{2x} - \frac{1}{2} \right) = \frac{e^x - e^{-x}}{2}.$$

(76) 设y = y(x) 是方程  $2xy dx + (x^2 - 1) dy = 0$  满足条件 y(0) = 1 的解,则  $\int_{0}^{\frac{1}{2}} y(x) dx =$ 

$$(A) - \ln 3. \qquad (B) \ln 3.$$

(C) 
$$-\frac{1}{2}\ln 3$$
. (D)  $\frac{1}{2}\ln 3$ .

(D) 
$$\frac{1}{2}$$
ln3.

由原方程  $2xydx + (x^2 - 1)dy = 0$  得 【分析】

$$\frac{dy}{y} = \frac{2x}{1 - x^2} dx$$
$$\int \frac{dy}{y} = \int \frac{2x}{1 - x^2} dx$$

$$\ln |y| = -\ln |1 - x^2| + \ln C_1$$

$$y(1 - x^2) = C$$

由 y(0) = 1 知, C = 1

$$y = \frac{1}{1 - x^{2}}$$

$$\int_{0}^{\frac{1}{2}} y(x) dx = \int_{0}^{\frac{1}{2}} \frac{1}{1 - x^{2}} dx$$

$$= \frac{1}{2} \ln \frac{1 + x}{1 - x} \Big|_{0}^{\frac{1}{2}} = \frac{1}{2} \ln 3$$

故应选(D).

(77) 设  $y = \frac{x}{\ln x}$  是微分方程  $y' = \frac{y}{x} + \varphi(\frac{x}{y})$  的解,则  $\varphi(\frac{x}{y})$  的表达式为  $(A) - \frac{y^2}{x^2}. \qquad (B) \frac{y^2}{x^2}. \qquad (C) - \frac{x^2}{y^2}. \qquad (D) \frac{x^2}{y^2}.$ 

$$(A) - \frac{y^2}{x^2}.$$

(B) 
$$\frac{y^2}{x^2}$$
.

$$(\mathbf{C}) - \frac{x^2}{\mathbf{v}^2}.$$

(D) 
$$\frac{x^2}{y^2}$$

【分析】 将  $y = \frac{x}{\ln x}$  代入方程  $y' = \frac{y}{x} + \phi(\frac{x}{y})$  得

$$\frac{1}{\ln x} - \frac{1}{\ln^2 x} = \frac{1}{\ln x} + \varphi(\ln x)$$

$$\varphi(\ln x) = -\frac{1}{\ln^2 x}$$

$$\varphi(\frac{x}{y}) = -\frac{y^2}{x^2}$$

興

故应选(A).

(78) 在下列方程中,以 $y = C_1e^x + C_2\cos 2x + C_3\sin 2x(C_1,C_2,C_3)$ 为任意常数)为通 解的是

$$(A)y'' + y'' - 4y' - 4y = 0,$$

(B) 
$$y'' + y'' + 4y' + 4y = 0$$
.

$$(C)y'' - y'' - 4y' + 4y = 0.$$

(D) 
$$y'' - y'' + 4y' - 4y = 0$$
.

 $\{C_n\}$  由通解  $y = C_n e^x + C_n \cos 2x + C_n \sin 2x$  的形式可知所求方程的特征方程为  $(r-1)(r^2+4)=0$ 

 $r^3 - r^2 + 4r - 4 = 0$ y''' - y'' + 4y' - 4y = 0则对应的方程为 故应选(D).

(79) 具有特解  $y_1 = e^{-x}$ ,  $y_2 = 2xe^{-x}$ ,  $y_3 = 3e^{x}$  的三阶常系数齐次线性微分方程是

(A) 
$$y'' - y' - y' + y = 0$$
.

(B) 
$$y'' + y'' - y' - y = 0$$
.

(A) 
$$y'' - y' - y' + y = 0$$
.  
(B)  $y'' + y'' - y' - y = 0$ .  
(C)  $y'' - 6y'' + 11y' - 6y = 0$ .  
(D)  $y''' - 2y'' - y' + 2y = 0$ .

(D) 
$$y''' - 2y'' - y' + 2y = 0$$

《分析》 由  $y_1 = e^{-x}$ ,  $y_2 = 2xe^{-x}$ ,  $y_3 = 3e^x$  是所求方程的三个特解知, r = -1, -1, 1为 所求三阶常系数线性齐次微分方程的特征方程的三个根,则其特征方程为  $(r-1)(r+1)^2=0$ 

$$(r-1)(r+1)^2=0$$

即 
$$r^3 + r^2 - r - 1 = 0$$

对应的微分方程为 故应选(B).

$$y'' + y'' - y' - y = 0$$

(80)若  $y = xe^x + x$  是微分方程 y'' - 2y' + ay = bx + c 的解则

$$(A)a = 1, b = 1, c = 1.$$

(B) 
$$a = 1, b = 1, c = -2$$
.

(C) 
$$a = -3, b = -3, c = 0.$$
 (D)  $a = -3, b = 1, c = 1.$ 

(D) 
$$a = -3$$
,  $b = 1$ ,  $c = 1$ .

【分析】 由于  $y = xe^x + x$ 是方程 y'' - 2y' + ay = bx + c 的解,则  $xe^x$  是对应的齐次方 程的解,其特征方程有二重根 n = n = 1,则 a = 1, x 为非齐次的解,将 y = x 代人方程  $\sqrt{y} - 2\sqrt{y} + y = bx + c$ 

故应选(B).

设 f(x) 连续,且 $\int_{0}^{1} f(xt)dt = \frac{1}{2}f(x) + 1$ ,则 f(x) 等于

(A) 
$$1 + Cxe^{x^2}$$
. (B)  $2 + Cx\sin x$ . (C)  $2 + Cx$ . (D)  $2 + x$ .

$$(B)2 + Cx \sin x$$

$$(C)2 + Cx$$

$$(D)2+x$$

【分析】 令 x = u,则  $\int_{0}^{1} f(xt) dt = \int_{0}^{x} f(u) du$ 

$$\int_0^x f(u) du = \frac{1}{2} f(x) + 1$$

$$\int_0^x f(u) du = \frac{1}{2} x f(x) + x$$

两端対ェ求导得

$$f(x) = \frac{1}{2}xf'(x) + \frac{1}{2}f(x) + 1$$

解方程得  $y = 2 + C_x$ ,故选(C).

(82)设 y = y(x) 是二阶常系数微分方程  $y'' + py' + qy = e^{3x}$  满足初始条件 y(0) =y'(0) = 0 的特解,则当  $x \to 0$  时,函数  $\frac{\ln(1+x^2)}{v(x)}$  的极限

(A) 不存在。

- (B) 等于 1. (C) 等于 2.
- (D) 等于 3、:::: 、 ·:

【分析》 
$$\lim_{x \to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x \to 0} \frac{x^2}{y(x)} \qquad (\ln(1+x^2) \sim x^2)$$
$$= \lim_{x \to 0} \frac{2x}{y'(x)} = \lim_{x \to 0} \frac{2}{y'(x)} = \frac{2}{y'(0)}$$

在方程  $y'' + py' + qy = e^{3x}$  中令 x = 0 得 y''(0) + py'(0) + qy(0) = 1

已知方程 y'' + qy = 0 存在当  $x \rightarrow + \infty$  时趋于零的非零解,则 (83) $(B) \sigma \geqslant 0$ (C)q < 0.

(A)q > 0.

 $(D)q \leq 0$ .

原方程的特征方程为 $r^2 + a = 0$ .

- 1) 当 q < 0 时, $r_{1,2} = \pm \sqrt{-q}$ ,通解为  $y = C_1 e^{\sqrt{-q}} + C_2 e^{-\sqrt{-q}}$ ,
- 2) 当  $q = 0, r_1 = r_2 = 0$ , 原方程通解为  $y = C_1 x + C_2$ .
- 3) 当 q > 0 时, $r_{1,2} = \pm \sqrt{-q}$ i,原方程通解为  $y = C_1 \cos \sqrt{qx} + C_2 \sin \sqrt{qx}$ . 显然,只有q < 0时,原方程存在当 $x \to +\infty$  时趋于零的非零解,故应选(C).
- 已知微分方程 y'' + by' + y = 0 的每个解都在区间 $(0, +\infty)$  上有界,则实数 b 的 取值范围是
  - $(A)[0,+\infty).$

 $(B)(-\infty,0]$ .

 $(C)(-\infty,4]$ 

(D)  $(-\infty, +\infty)$ .

【分析】 方程y'' + by' + y = 0 的特征方程为

$$r^2 + br + 1 = 0$$

特征根为  $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4}}{2}$ .

- 1) $b^2 < 4$ 时,原方程通解为  $y = e^{-\frac{b}{2}x} \left( C_1 \cos \frac{\sqrt{4-b^2}}{2} x + C_2 \sin \frac{\sqrt{4-b^2}}{2} x \right)$ .
- 2) 当  $b^t = 4$  时,原方程通解为  $y = e^{-\frac{t}{2}}(C_1 + C_2 x)$ .
- 3) 当  $b^2 > 4$  时,原方程通解为  $y = C_1 e^{\frac{-tt\sqrt{2^2-1}}{2}} + C_2 e^{\frac{-t\sqrt{2^2-1}}{2}}$ . 由以上解的形式可知当  $\delta \ge 0$  时,每个解都在 $(0, +\infty)$  上有界,故应选(A).
- (85) 若級数  $2 + \sum_{i=1}^{\infty} \frac{x^{2n}}{(2n)!} (-\infty < x < +\infty)$  的和函数 y(x) 是微分方程 y'' y =-1 的解,则 y(x) 等于 (A)2chx. (B)  $1 + \sin x$ . (C) chx + 1.  $(D)1 + \cos x$ .

【分析】 方程 y''-y=0 的特征方程为  $r^2-1=0, r_{1,2}=\pm 1$ 

齐次方程通解为  $y = C_1e^x + C_2e^{-x}$ 

非齐次特解 y = 1

非齐次通解为  $y = C_1 e^x + C_2 e^{-x} + 1$ 

由于 
$$y(x) = 2 + \sum_{n=1}^{\infty} \frac{x^{2n}}{(2n)!}$$
,则  $y(0) = 2, y'(0) = 0$ 

则 
$$\begin{cases} C_1 + C_2 + 1 = 2 \\ C_1 - C_2 = 0 \end{cases}$$

则 
$$C_1=C_2=\frac{1}{2}$$

$$y = \frac{e^{x} + e^{-x}}{2} + 1 = chx + 1$$

故应选(C).

可导函数 f(x),对任意的 x,y 恒有 f(x+y) = f(x)f(y),且 f'(0) = 1,则 f(x) 等于

 $(A)x + \cos x$ .

(B) shx.

 $(C)e^{x}$ .

(D)  $1 - e^{-x}$ .

等式 f(x+y) = f(x)f(y) 两端对 y 求导得 【分析】 f'(x+y)=f(x)f'(y)

由此可得  $f(x) = Ce^x$ 

由 f'(0) = 1 知。C = 1,即  $f(x) = e^x$ .

设 f(x) 具有一阶连续导数。f(0) = 0, $du(x,y) = f(x)ydx + [\sin x - f(x)]dy$ , 则 f(x) 等于

 $(A)\cos x + \sin x - 1$ .

(B)  $\frac{1}{2}(\cos x + \sin x - e^{-x})$ .

(C)  $\cos x - \sin x + xe^{x}$ .

(D) $\cos x - \sin x + xe^{-x}$ .

由  $du(x,y) = f(x)ydx + [\sin x - f(x)]dy$  知  $f(x) = \cos x - f'(x)$ 

 $\mathfrak{p} f'(x) + f(x) = \cos x + \cos$ 

 $f(x) = e^{-\int dx} \left( \left[ \cos x \, e^{\int dx} \, dx + C \right] \right)$  $= e^{-x} \left( \left[ e^x \cos x dx + C \right] = \frac{e^{-x}}{2} \left( e^x \cos x + e^x \sin x + C \right) \right)$ 

由 f(0) = 0 知, C = -1,  $f(x) = \frac{1}{2}(\cos x + \sin x - e^{-x})$ 松成港(R)

故应选(B).

已知线积分 $\int_{x} yf(x)dx + [f(x)-x^2]dy$  与路径无关,其中 f(x) 有连续一阶导

数,
$$f(0) = 1$$
,则 $\int_{(0,0)}^{(1,1)} y f(x) dx + [f(x) - x^2] dy$ 等于

(A)3e + 1.

(D) 3e - 5.

由于线积分  $\int yf(x)dx + [f(x) - x^2]dy$  与路径无关,则 【分析】

$$f(x) = f'(x) - 2x$$

即 f'(x) - f(x) = 2x

$$f(x) = e^{\int dx} \left[ \int 2x e^{-\int dx} dx + C \right] = e^x \left[ \int 2x e^{-x} dx + C \right]$$
$$= e^x \left[ -2e^{-x} - 2xe^{-x} + C \right]$$

由 f(0) = 1 知, C = 3

$$f(x) = 3e^x - 2x - 2$$

 $\int_{(0,6)}^{\infty} y f(x) dx + [f(x) - x^2] dy = \int_{0}^{\infty} [f(1) - 1] dy = f(1) - 1 = 3e^{-\frac{1}{2}}$ . [答案] C 哈工大资源分享站: QQ2842305604

(89) 方程  $x^2y'' + 2xy' - 2y = 0$  的通解为

$$(A)_{v} = C_{1}e^{x} + C_{2}e^{2x}$$
.

$$(B)_{\mathcal{Y}} = (C_1 + C_2 x) e^x.$$

(C) 
$$y = C_1 x + C_2 x^2$$
.

(D) 
$$y = \frac{C_1}{r^2} + C_2 x$$
.

【分析》 这是一个欧拉方程,令 $x = e', D = \frac{d}{dt}$ 原方程化为

$$D(D-1)y+2Dy-2y=0$$

$$\mathbb{B}\frac{\mathrm{d}^2y}{\mathrm{d}t^2} + \frac{\mathrm{d}y}{\mathrm{d}t} - 2y = 0$$

特征方程为 $r^2+r-2=0$ , $r_1=-2$ , $r_2=1$ 

通解  $y = C_i e^{-2t} + C_2 e^t$ 

$$\mathbb{P} y = \frac{C_1}{x^2} + C_2 x.$$

【答案】 D

(90) 设曲线 y = y(x) 满足 x dy + (x - 2y) dx = 0, 且 y = y(x) 与直线 x = 1 及 x = 1 和所围的平面图形绕 x 轴旋转的旋转体体积最小,则  $y(x) = \frac{1}{2}$ 

$$(A)x - \frac{1}{A}x^2.$$

$$(B)x+\frac{5}{4}x^2.$$

$$(C)x-\frac{5}{4}x^2.$$

$$(D)x+\frac{1}{4}x^2.$$

【分析】 原方程可化为 $\frac{dy}{dx} - \frac{2}{x}y = -1$ ,其通解为

$$y = e^{\int_{-x}^{2} dx} \left[ \int -e^{-\int_{-x}^{2} dx} dx + C \right] = x + Cx^{2}$$

曲线 y = x + Cx² 与直线 x = 1 及 x 轴所围区域绕 x 轴旋转一周的旋转体体积为

$$V(C) = \pi \int_0^1 (x + Cx^2)^2 dx = \pi \left( \frac{1}{3} + \frac{C}{2} + \frac{C^2}{5} \right)$$

$$\diamond V'(C) = \pi \left(\frac{1}{2} + \frac{2C}{5}\right) = 0, \ \# C = -\frac{5}{4}, \ V''(C) = \frac{2}{5}\pi > 0$$

 $C=-\frac{5}{4}$  是唯一的极值点,且为极小值点,则为最小值点, $y=z-\frac{5}{4}z^2$ , 【答案】 C

(91) 若二阶常系数线性齐次微分方程 y'' + ay' + by = 0 的通解为  $y = (C_1 + C_2 x)e^x$ , 则非齐次方程 y'' + ay' + by = x 满足条件 y(0) = 2, y'(0) = 0 的解为\_\_\_\_\_\_.

# 【答案】 $y = x(1 - e^x) + 2$

【分析】 由  $y = (C_1 + C_2 x)$ e 是方程 y'' + ay' + by = 0 通解知,r = 1 是齐次方程特征方程二重根,则特征方程为

$$(r-1)^2=0$$

$$p r^2 - 2r + 1 = 0$$

则 a = -2, b = 1

非齐次方程 y''-2y'+y=x 有特解

$$y = x + 2$$

非齐次通解为  $y = (C_1 + C_2 x)e^x + x + 2$ 

由 y(0) = 2, y'(0) = 0 知

$$\begin{cases}
C_1 + 2 = 2 \\
C_1 + C_2 + 1 = 0
\end{cases}$$

$$C_1 = 0, C_2 = -1$$

$$y = -xe^x + x + 2 = x(1 - e^x) + 2.$$

(92) 方程
$$y'' - y' = 0$$
 満足条件 $y \Big|_{x=0} = 3, y' \Big|_{x=0} = -1, y' \Big|_{x=0} = 1$  的特解为\_\_\_\_\_.

【答案】 y = 2 + e<sup>--</sup>

【分析】 方程 y'' - y' = 0 的特征方程为

$$r^3-r=0$$

则原方程通解为 $/_{1}$   $y = C_1 + C_1 e^{\epsilon} + C_3 e^{-\epsilon}$ 由初始条件得

$$\begin{cases} 3 = C_1 + C_2 + C_3 \\ -1 = C_2 - C_3 \\ 1 = C_2 + C_3 \end{cases}$$

Some the state of the state of

解得  $C_2 = 0, C_3 = 1, C_1 = 2$ 

(93) 方程 y"+2y'+5y=0的通解为\_\_\_\_.

【答案】  $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x)$ 

【分析】 方程 y'' + 2y' + 5y = 0 的特征方程为  $r^2 + 2r + 5 = 0$  $r_{1,2} = \frac{-2 \pm \sqrt{4 - 20}}{2} = -1 \pm 2i$ 

则原方程的通解  $y = e^{-x}(C_1 \cos 2x + C_2 \sin 2x)$ .

(94) 方程 
$$y'' + \frac{2}{1-y}y'^2 = 0$$
 的通解为\_\_\_\_\_.

[答案] 
$$-\frac{1}{y-1} = C_1 x + C_2$$

【分析】 在方程 
$$y'' + \frac{2}{1-y}y'^2 = 0$$
 中令  $y' = P$ ,则  $y'' = \frac{dP}{dy}P$ 

$$P\frac{\mathrm{d}P}{\mathrm{d}y} + \frac{2}{1-y}P^2 = 0$$

$$\frac{\mathrm{d}P}{P} = \frac{2}{\nu - 1} \mathrm{d}y$$

$$\ln |P| = \ln(y-1)^2 + \ln C_1$$

$$P = C_1(y-1)^2$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = C_1(y-1)^2$$

$$\frac{\mathrm{d}y}{(y-1)^2} = C_1 \,\mathrm{d}x$$

$$-\frac{1}{y-1}=C_1x+C_2.$$

(95) 方程
$$\frac{dy}{dx} = \frac{y}{x+y}$$
的通解为\_\_\_\_\_

【答案】 
$$x = y\left(\frac{1}{3}y^3 + C\right)$$

【分析】 将方程 $\frac{dy}{dx} = \frac{y}{x+y}$ 变形得

得 
$$\frac{dx}{dy} = \frac{x + y^t}{y}$$

$$\mathbb{D} \quad \frac{\mathrm{d}x}{\mathrm{d}y} - x \cdot \frac{1}{y} = y^3.$$

这是一个线性方程,由线性方程通解公式得

$$x = e^{\int \frac{1}{2} dy} \left( \int y^3 \cdot e^{-\int \frac{1}{y} dy} dy + C \right) = y \left( \int y^2 dy + C \right) = y \left( \frac{1}{3} y^3 + C \right).$$

(96) 方程 
$$xy' + 2y = \sin x$$
 满足条件  $y = \frac{1}{\pi}$  的特解为\_\_\_\_\_.

【分析】 由 xy'+2y = sinx 知

$$y' + \frac{2}{x}y = \frac{\sin x}{x}$$

由通解公式知,

$$y = e^{-\int_{x}^{2} dx} \left( \int \frac{\sin x}{x} e^{\int_{x}^{2} dx} dx + C \right) = \frac{1}{x^{2}} \left( \int x \sin x dx + C \right)$$
$$= \frac{1}{x^{2}} \left( \sin x - x \cos x + C \right)$$

由 
$$y \mid_{x=\pi} = \frac{1}{\pi}$$
知  $C = 0$ .

(97) 方程
$$(y+\sqrt{x^2+y^2})dx-xdy=0$$
 满足条件 $y(1)=0$  的特解为\_\_\_\_\_\_

【答案】 
$$y = \frac{1}{2}(x^2-1)$$

【分析》 由 
$$(y + \sqrt{x^2 + y^2}) dx - x dy = 0$$
 知 
$$\left(\frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2}\right) - \frac{dy}{dx} = 0$$

$$\mathbb{Q} \qquad (u + \sqrt{1 + u^2}) - u - x \frac{\mathrm{d}u}{\mathrm{d}x} = 0$$

$$\frac{\mathrm{d}u}{\sqrt{1 + u^2}} = \frac{\mathrm{d}x}{x}$$

$$\ln(u + \sqrt{1 + u^2}) = \ln x + \ln C$$

$$u + \sqrt{1 + u^2} = Cx$$

$$\frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2} = Cx, \quad \mathbb{P} y + \sqrt{x^2 + y^2} = Cx^2$$

由
$$y|_{x=1} = 0$$
知 $C = 1$ 

由 
$$y|_{x=1} = 0$$
 知  $C = 1$   
则  $y + \sqrt{x^2 + y^2} = x^2$ ,  $y = \frac{1}{2}(x^2 - 1)$ .

(98) 方程 
$$xy'-x\sin\frac{y}{x}-y=0$$
 的通解为\_\_\_\_\_\_.

[答案] 
$$\tan \frac{y}{2x} = Cx$$

【分析】 由
$$xy' - x\sin \frac{y}{x} - y = 0$$
知

$$y' - \sin\frac{y}{x} - \frac{y}{x} = 0$$

$$u + xu' - \sin u - u = 0$$

$$\frac{\mathrm{d}u}{\sin u} = \frac{\mathrm{d}x}{x}, \quad \frac{\mathrm{d}u}{2\sin\frac{u}{2}\cos\frac{u}{2}} = \frac{\mathrm{d}x}{x}$$

$$\int \frac{\operatorname{dtan} \frac{u}{2}}{\tan \frac{u}{2}} = \int \frac{\mathrm{d}x}{x}$$

$$\ln \left| \tan \frac{u}{2} \right| = \ln \left| x \right| + \ln C, \quad \tan \frac{u}{2} = Cx, \quad \tan \frac{y}{2x} = Cx.$$

(99) 方程
$$(1+x)dy+(1-2e^{-y})dx=0$$
的通解为\_\_\_\_\_.

【答案】 
$$(1+x)(e^y-2)=C$$

[分析] 由 
$$(1+x)dy + (1-2e^{-y})dx = 0$$
 知 
$$\frac{dy}{1-2e^{-y}} = \frac{-1}{1+x}dx$$
 
$$\frac{e^{y}dy}{e^{y}-2} = \frac{-1}{1+x}dx$$
 
$$\ln|e^{y}-2| = -\ln|1+x| + \ln C$$
 
$$(1+x)(e^{y}-2) = C.$$

(100) 方程 
$$y' = 1 + x + y^2 + xy^2$$
 的通解为\_\_\_\_\_.

【答案】 
$$y = \tan\left[\frac{1}{2}(1+x)^2 + C\right]$$

【分析》 由 
$$y' = 1 + x + y^2 + xy^2$$
 知 
$$\frac{dy}{dx} = (1+x)(1+y^2)$$

则 
$$\frac{dy}{1+y^2} = (1+x)dx$$
  
 $\arctan y = \frac{1}{2}(1+x)^2 + C$ 

$$y = \tan\left[\frac{1}{2}(1+x)^2 + C\right].$$



若此资料涉及侵权,请联系管理员删除。拜谢!

HIT 资源分享站 (公众号QQ2842305604),是为了工大学生更好的共享学习资料

如果有希望分享给同学们的资料,可以通过本页上方的管理员邮箱把资料发送给

公共邮箱的管理员。

 $\square$  .

愿同学们的学习生活更加美好!

