Back-Propagation-Neural-Network

GitHub BPNN language C++ last commit today pages-build-deployment passing

本项目是对项目GavinTechStudio/bpnn with cpp的代码重构,基于C++实现基础BP神经网络,有助于深入理解BP神经网络原理。

项目结构

```
1
2 — CMakeLists.txt
   - README.html
4 - README.md
5 — README.pdf
6 — data
7 | — testdata.txt
   | └─ traindata.txt
8
9
   ├─ docs
10 | ___ formula.md
12 | — net-info.png
   ├─ index.html
13
15 | ├─ Config.h
16 | — Net.cpp
17 | — Net.h
18 | — Utils.cpp
19 | └── Utils.h
20 └── main.cpp
21
22 4 directories, 15 files
```

主要文件

• Net: 网络具体实现

• Config: 网络参数设置

• Utils: 工具类

数据加载激活函数

• main: 网络具体应用

训练原理

具体公式推导请看视频讲解彻底搞懂BP神经网络 理论推导+代码实现 (C++)

注意:本部分文档包含大量数学公式,由于当前页面不支持数学公式渲染,推荐以下阅读方式:

- 1. 如果您使用的是Chrome、Edge、Firefox等浏览器,可以安装插件<u>MathJax Plugin for Github</u>(需要网络能够访问chrome web store)。
- 2. 使用PDF的方式进行阅读(推荐)。
- 3. 使用预渲染的静态网页进行阅读(推荐)。
- 4. 按. 键或点击链接进入GitHub在线IDE预览 README.md 文件。

0. 神经网络结构图

1. Forward (前向传播)

1.1 输入层向隐藏层传播

$$h_j = \sigma(\sum_i x_i w_{ij} - \beta_j)$$

其中 h_j 为第j个隐藏层节点的值, x_i 为第i个输入层节点的值, w_{ij} 为第i个输入层节点到第j个隐藏层节点的权重, β_j 为第j个隐藏层节点偏置值, $\sigma(x)$ 为**Sigmoid**激活函数,后续也将继续用这个表达,其表达式如下

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

1.2 隐藏层向输出层传播

$$\hat{y_k} = \sigma(\sum_j h_j v_{jk} - \lambda_k)$$

其中 $\hat{y_k}$ 为第k个输出层节点的值(预测值), h_j 为第j个隐藏层节点的值, v_{jk} 为第j个隐藏层节点到第k个输出层节点的权重, λ_k 为第k个输出层节点的偏置值, $\sigma(x)$ 为激活函数。

本项目中的代码实现如下:

2. 计算损失函数 (Loss Function)

损失函数定义如下:

$$Loss = rac{1}{2} \sum_k (y_k - \hat{y_k})^2$$

其中 y_k 为第k个输出层节点的目标值(真实值), $\hat{y_k}$ 为第k个输出层节点的值(预测值)。

本项目中的代码实现如下:

```
double loss = 0.f;

for (size_t k = 0; k < Config::OUTNODE; ++k) {
    double tmp = std::fabs(outputLayer[k]->value - out[k]);
    los += tmp * tmp / 2;
}
```

3. Backward (反向传播)

利用梯度下降法进行优化。

3.1 计算 $\Delta \lambda_k$ (输出层节点偏置值的修正值)

其计算公式如下 (激活函数为Sigmoid时):

$$\Delta \lambda_k = -\eta (y_k - \hat{y_k}) \hat{y_k} (1 - \hat{y_k})$$

其中 η 为学习率(其余变量上方已出现过不再进行标注)。

```
for (size_t k = 0; k < Config::OUTNODE; ++k) {
    double bias_delta =
        -(out[k] - outputLayer[k]->value) *
        outputLayer[k]->value *
        (1.0 - outputLayer[k]->value);

outputLayer[k]->bias_delta += bias_delta;
}
```

3.2 计算 Δv_{ik} (隐藏层节点到输出层节点权重的修正值)

其计算公式如下 (激活函数为Sigmoid时):

$$\Delta v_{jk} = \eta (y_k - \hat{y_k}) \hat{y_k} (1 - \hat{y_k}) h_j$$

其中 h_i 为第j个隐藏层节点的值(其余变量上方已出现过不再进行标注)。

本项目中的代码实现如下:

```
for (size_t j = 0; j < Config::HIDENODE; ++j) {</pre>
2
        for (size_t k = 0; k < Config::OUTNODE; ++k) {</pre>
 3
             double weight_delta =
 4
                 (out[k] - outputLayer[k]->value) *
                 outputLayer[k]->value *
 6
                 (1.0 - outputLayer[k]->value) *
7
                 hideLayer[j]->value;
8
9
             hideLayer[j]->weight_delta[k] += weight_delta;
10
        }
11
    }
```

3.3 计算 Δeta_j (隐藏层节点偏置值的修正值)

其计算公式如下 (激活函数为Sigmoid时):

$$\Deltaeta_j = -\eta \sum_k (y_k - \hat{y_k}) \hat{y_k} (1-\hat{y_k}) v_{jk} h_j (1-h_j)$$

其中 v_{jk} 为第j个隐藏层节点到第k个输出层节点的权重(其余变量上方已出现过不再进行标注)。

```
1
    for (size_t j = 0; j < Config::HIDENODE; ++j) {</pre>
 2
        double bias_delta = 0.f;
 3
         for (size_t k = 0; k < Config::OUTNODE; ++k) {</pre>
4
             bias_delta +=
 5
                 -(out[k] - outputLayer[k]->value) *
                 outputLayer[k]->value *
 6
 7
                 (1.0 - outputLayer[k]->value) *
 8
                 hideLayer[j]->weight[k];
9
        bias_delta *=
10
11
             hideLayer[j]->value *
12
             (1.0 - hideLayer[j]->value);
13
14
         hideLayer[j]->bias_delta += bias_delta;
15
    }
```

3.4 计算 Δw_{ij} (输入层节点到隐藏层节点权重的修正值)

其计算公式如下 (激活函数为Sigmoid时):

$$\Delta w_{ij} = \eta \sum_k (y_k - \hat{y_k}) \hat{y_k} (1 - \hat{y_k}) v_{jk} h_j (1 - h_j) x_i$$

其中 x_i 为第i个输入层节点的值(其余变量上方已出现过不再进行标注)。

```
for (size_t i = 0; i < Config::INNODE; ++i) {</pre>
 1
 2
        for (size_t j = 0; j < Config::HIDENODE; ++j) {
 3
             double weight_delta = 0.f;
             for (size_t k = 0; k < Config::OUTNODE; ++k) {</pre>
 4
 5
                 weight_delta +=
 6
                     (out[k] - outputLayer[k]->value) *
 7
                     outputLayer[k]->value *
 8
                     (1.0 - outputLayer[k]->value) *
 9
                     hideLayer[j]->weight[k];
10
             }
11
            weight_delta *=
12
                 hideLayer[j]->value *
13
                 (1.0 - hideLayer[j]->value) *
                 inputLayer[i]->value;
14
15
             inputLayer[i]->weight_delta[j] += weight_delta;
16
17
        }
18 }
```