Лекция 10. Гомотопическая версия теоремы Коши

Теория функций комплексного переменного

Аналитическое продолжение в односвязное открытое множество

Определение 6.16. Открытое множество $U \subset \mathbb{C}$ называется *одно-связным*, если выполняются следующие два условия:

- (1) *U* связно;
- (2) если $p,q \in U$ и если $\gamma_0,\gamma_1\colon [A;B] \to U$ два пути, соединяющие p и q, пути γ_0 и γ_1 гомотопны с закрепленными концами.

Предложение 6.17. Пусть $U \subset \mathbb{C}$ — односвязное открытое множество, $p \in U$ и $f \in \mathcal{O}_p$ — росток голоморфной функции в точке p. Если росток f допускает аналитическое продолжение вдоль любого пути в U, то существует единственная голоморфная функция $f: U \to \mathbb{C}$, росток которой в точке p совпадает с f.

Радиус сходимости степенного ряда

Теорема. Рассмотрим росток голоморфной функции в точке а, представленный как степенной ряд. Пусть R — максимальный радиус диска (с центром в точке а), в любую точку которого росток продолжается аналитически вдоль путей, лежащих в этом диске. Тогда радиус сходимости ряда равен R.

Неформально: радиус сходимости ряда равен расстоянию до ближайшей особенности. НО: для многозначных функций это не будет верно буквально, поскольку такие функции могут иметь особенности во всюду плотном множестве точек.

Снова теорема Коши

Теорема 6.18 (теорема Коши, версия 4). Пусть $f: U \to \mathbb{C}$ — голоморфная функция, где $U \subset \mathbb{C}$ — открытое множество. Предположим, что $\gamma_0, \gamma_1 \colon [A; B] \to U$ — кусочно гладкие пути, причем либо пути γ_0 и γ_1 соединяют одну и ту же пару точек $p, q \in U$, либо оба эти пути замкнутые. Если γ_0 и γ_1 гомотопны (в первом случае — с закрепленными концами, во втором случае — как замкнутые пути), то $\int_{\gamma_0}^{\gamma_0} f(z) \, dz = \int_{\gamma_0}^{\gamma_0} f(z) \, dz$.

- Это более строгая формулировка версии 3.
- То же утверждение верно для любой замкнутой 1-формы.

Идея доказательства с использованием общей теоремы Стокса

- Хотим доказать, что $\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$, где ω гладкая замкнутая (то есть $d\omega = 0$) 1-форма на U.
- Существует кусочно-гладкая гомотопия $F\colon [A,B] imes [0,1] o U$ между γ_0 и γ_1 . Положим $\Pi=[A,B] imes [0,1]$. Достаточно доказать, что

$$\int_{\partial\Pi} F^*\omega = 0.$$

• Заметим, что $d(F^*\omega) = F^*(d\omega) = 0$, и применим формулу Стокса.

Лебегово число покрытия

Предложение 6.5 (лемма о лебеговом числе). Пусть $K \subset \mathbb{C} = \mathbb{R}^2$ — компактное множество, и пусть $\{V_{\alpha}\}$ — такое семейство открытых подмножеств в \mathbb{C} , что $K \subset \bigcup_{\alpha} V_{\alpha}$. Тогда существует такое $\varepsilon > 0$, что ε -окрестность каждой точки $z \in K$ целиком содержится в каком-то из множеств V_{α} .

- Можно предполагать, что покрытие конечное.
- Выберем последовательность точек $x_n \in K$ и чисел $\varepsilon_n \to 0$ т.ч. $\mathbb{D}(x_n, \varepsilon_n)$ не лежит ни в одном элементе покрытия.
- Можно считать, что $x_n \to x_\infty$, тогда x_∞ не может лежать в V_α .

Гомотопическая инвариантность индекса

- Если два замкнутых пути в открытом множестве U (свободно) гомотопны, то их индексы относительно любой точки, не лежащей в U, совпадают.
- Это вытекает из 4й версии теоремы Коши и интегральной формулы для индекса.
- Обратное утверждение, вообще говоря, неверно.

Снова индексы кривых

Определение 6.19. Пусть $a \in \mathbb{C}$, и пусть $0 \le r < R \le +\infty$. Кольцом с центром a на комплексной плоскости называется множество $\{z: r < |z-a| < R\}$.

В частности, кольцом считается и плоскость без точки, и круг с выколотым центром, и дополнение к замкнутому кругу.

Предложение 6.20. Пусть $U \subset \mathbb{C}$ — кольцо с центром в а, и пусть γ_0 и γ_1 — кусочно гладкие замкнутые пути в U. Тогда следующие два утверждения равносильны:

- (1) γ_0 и γ_1 гомотопны как замкнутые пути;
- (2) $\operatorname{Ind}_a \gamma_0 = \operatorname{Ind}_a \gamma_1$.

Идея доказательства $(2) \Rightarrow (1)$ – универсальное накрытие кольца полосой.

Универсальное накрытие кольца

- ... гомеоморфно полосе $\mathbb{R} \times [0,1]$.
- Любые два пути с одинаковыми концами гомотопны (например, есть линейная гомотопия).

Замкнутые кривые в проколотом диске

Предложение 6.21. Пусть $D \subset \mathbb{C}$ — открытый круг, и пусть $a \in D$. Если γ_0 и γ_1 — два замкнутых кусочно гладких пути в $D \setminus \{a\}$, то они гомотопны как замкнутые пути тогда и только тогда, когда $\operatorname{Ind}_a \gamma_0 = \operatorname{Ind}_a \gamma_1$.

- То же самое верно и для кольца $A = \{ z \in \mathbb{C} \mid r < |z| < R \}.$
- Или, более общим образом, для $A = U \setminus K$, где U односвязное открытое множество, а K связное компактное подмножество в U, такое что $U \setminus K$ связно.
- Функция индекса определяет изоморфизм $\pi_1(A) \cong \mathbb{Z}$.

Индексы не задают гомотопический класс

Рис. 6.2. Замкнутый путь, выходящий из нуля, имеет индекс 0 относительно точки a и индекс 0 относительно точки b — так же, как «постоянный путь», сводящийся к одной точке. Тем не менее в $\mathbb{C} \setminus \{a,b\}$ стянуть этот путь в точку нельзя.

Теорема Коши и индекс

6.8. Пусть $D \subset \mathbb{C}$ — открытый круг, $f: D \to \mathbb{C}$ — голоморфная функция и γ — замкнутый кусочно линейный путь в D. Покажите, что для всякой точки $a \in D$, не лежащей на γ , выполнено равенство

$$\int_{\gamma} \frac{f(\zeta) d\zeta}{\zeta - a} = 2\pi i \cdot \operatorname{Ind}_{a} \gamma \cdot f(a).$$

Упражнение (входит в домашнее задание как бонусная задача).

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- Wolfram Mathematica
- https://wikipedia.org

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ