Package 'fnets'

December 21, 2021

2 common.predict

	nonpar.lrpc	 	 	10)
	param.lrpc	 	 	12	2
	plot.fnets	 	 	13	3
	plot.fnets.lrpc	 	 	14	1
	predict.fnets	 	 	15	5
	sim.factor.M1	 	 	16	5
	sim.factor.M2	 	 	17	7
	sim.idio	 	 	18	3
	var.dantzig	 	 	19)
	var.lasso	 	 	20)
Index				22	2

common.predict

Prediction for the factor-driven common component

Description

Predicts common component from a fnets object for new data

Usage

```
common.predict(object, x, h = 1, common.method = c("static", "var"), r = NULL)
```

Arguments

object	fnets object
x	input time series matrix, with each row representing a time series
h	forecast horizon
$\verb common.method $	which of "static" or "var" to forecast the common component with
r	factor number, if $r = NULL$ this is selected using the maximal eigenratio

Value

- isin-sample estimator of the common component
- fcforecasts of the common component for a given forecasting horizon h
- · rfactor number
- hforecast horizon

dyn.pca 3

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2005). The generalized dynamic factor model: one-sided estimation and forecasting. Journal of the American Statistical Association, 100(471), 830–840.

Forni, M., Hallin, M., Lippi, M., & Zaffaroni, P. (2017). Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis. Journal of Econometrics, 199(1), 74–92.

Examples

```
require(fnets)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
model <- fnets(sample.data, q=2, idio.method = "lasso")
pr <- predict(model,sample.data, common.method = "static")
cpre <- common.predict(model,sample.data, common.method = "static")
ip <- idio.predict(model,sample.data, cpre)</pre>
```

dyn.pca

Dynamic PCA

Description

Performs principal components analysis of the autocovariance matrices.

Usage

```
dyn.pca(xx, q = NULL, ic.op = 4, kern.const = 4)
```

XX	centred input time series matrix, with each row representing a time series
q	the number of factors, if q=NULL this is selected by the information criterion-based estimator of Hallin and Liska (2007)
ic.op	an index number for the information criterion (1 to 6)
kern.const	constant to determine bandwidth size

4 fit.var

Value

A list containing

- 'q' number of factors
- 'spec' Spectral density matrices
- 'acv' Autocovariance matrices
- 'kern.const' Constant to determine bandwidth size

fit.var

Regularised Yule-Walker estimation for VAR processes

Description

Returns parameter estimates for the idiosyncratic VAR and the corresponding Gamma matrix, either by the Dantzig selector or Lasso methods

Usage

```
fit.var(
    x,
    lambda,
    symmetric = "min",
    idio.var.order = 1,
    idio.method = c("ds", "lasso"),
    n.cores = min(parallel::detectCores() - 1, 3),
    niter = 100,
    tol = 0,
    do.plot = FALSE,
    center = TRUE
)
```

X	input time series matrix, with each row representing a time series
lambda	regularisation parameter
symmetric	type of symmetry to enforce on Gamma, one of 'min', 'max', 'avg', 'none'
idio.var.order	order of idiosyncratic VAR model
idio.method	A string specifying the type of 11-regularised estimator for the idiosyncratic
	VAR matrix, possible values are:
	• 'lasso' Lasso estimator
	• 'ds' Dantzig Selector
n.cores	number of cores to use for parallel computing ('ds' only)
niter	maximum number of descent steps ('lasso' only)
tol	numerical tolerance for increases in the loss function('lasso' only)
do.plot	return a plot of the loss function against descent steps ('lasso' only)
center	demean the input x

fnets 5

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

A list which contains the following fields:

• beta: VAR parameters

• lambda: regularisation parameter

• Gamma: Estimated noise covariance

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
require(fnets)
require(doParallel)
require(lpSolve)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
fit.var(sample.data, .1, idio.method = "lasso")</pre>
```

fnets

Factor-adjusted network analysis

Description

This function estimates the spectral density and autocovariance matrices of the common and the idiosyncratic components, impulse response function and common shocks, and (sparse) VAR transition matrix and innovation covariance matrix.

Usage

```
fnets(
    x,
    q = NULL,
    ic.op = 4,
    kern.const = 4,
    common.var.args = list(var.order = 1, max.var.order = NULL, trunc.lags = 20, n.perm = 10),
    idio.var.order = 1,
```

6 fnets

```
idio.method = c("ds", "lasso"),
idio.cv.args = list(n.folds = 1, path.length = 10, symmetric = "min", cv.plot = TRUE),
center = TRUE
)
```

Arguments

x input time series matrix, with each row representing a time series

q the number of factors, if q=NULL this is selected by the information criterion-

based estimator of Hallin and Liska (2007)

ic.op an index number for the information criterion

kern.const common.var.args

constant to determine bandwidth size

A list specifying the estimator for the common component. This contains:

- 'var.order' the order of the VAR model, if NULL then selected blockwise by BIC
- 'max.var.order' the maximum order of the VAR model for the BIC to consider
- 'trunc.lags' the order of the MA representation
- 'n.perm' number of cross-sectional permutations

idio.var.order order of idiosyncratic VAR model

idio.method

A string specifying the type of 11-regularised estimator for the idiosyncratic VAR matrix, possible values are:

- 'lasso' Lasso estimator
- 'ds' Dantzig Selector

idio.cv.args

A list specifying arguments to the cross-validation (CV) procedure for the idiosyncratic VAR. This contains:

- 'n.folds' number of folds
- 'path.length' number of lambda values to consider
- 'symmetric' symmetrisation method for Gamma matrix
- 'cv.plot' Boolean selecting whether to plot the CV curve

center demean the input x

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

An S3 object of class fnets, which contains the following fields:

- 'q' Number of factors
- 'spec' Spectral density matrices
- 'acv' Autocovariance matrices
- 'common.var' Estimated common component

hl.factor.number 7

- 'idio.var' Estimated idiosyncratic component
- 'mean.x' Removed means of x
- 'kern.const' Constant to determine bandwidth size

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
fnets(sample.data, q=2, idio.method = "lasso")</pre>
```

hl.factor.number

Factor number estimator of Hallin and Liska (2011)

Description

Selects the factor number q based on 6 information criteria

Usage

```
hl.factor.number(x, q.max, mm, w = NULL, do.plot = TRUE, center = TRUE)
```

Arguments

X	input time series matrix, with each row representing a time series
q.max	the maximum number of factors to consider
mm	bandwidth scalar
W	weight vector, defaults to Bartlett weights determined by mm
do.plot	return a plot of the information criteria
center	demean the input x

Value

- 'q.hat' Estimated factor numbers corresponding to each criterion
- 'Gamma_x' Autocovariance of x
- 'Sigma_x' Spectral density of x
- 'sv' singular value decomposition of Sigma_x

8 idio.cv

References

Hallin, M., & Liška, R. (2007). Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478), 603–617.

Examples

```
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
hl.factor.number(sample.data,6, 10)</pre>
```

idio.cv

Cross-validation for 11-regularised VAR estimation

Description

Selects the prediction-optimal regularisation parameter for the estimation of the idiosyncratic VAR

Usage

```
idio.cv(
    xx,
    lambda.max = NULL,
    var.order = 1,
    idio.method = c("lasso", "ds"),
    path.length = 10,
    n.folds = 1,
    q = 0,
    kern.const = 4,
    cv.plot = TRUE
)
```

XX	centred input time series matrix, with each row representing a time series
lambda.max	maximum regularisation parameter, if NULL this is set to the smallest which sets all entries to $\boldsymbol{0}$
var.order	vector of VAR orders to consider
idio.method	estimation method, one of "lasso" or "ds"
path.length	number of regularisation parameters to consider
n.folds	number of CV folds
a	factor number

idio.predict 9

kern.const	constant to determine bandwidth size
cv.plot	return a plot of the CV error against regularisation parameters, stratified by VAR
	order

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

A list which contains the following fields:

- 'lambda' minimising argument
- 'var.order' minimising order
- 'cv.error' matrix of errors
- 'lambda.path' candidate lambda values

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
idio.cv(sample.data, idio.method = "lasso", q=2)</pre>
```

idio.predict

Prediction for the idiosyncratic VAR process

Description

Predicts idiosyncratic components from a fnets object for new data

Usage

```
idio.predict(object, x, cpre, h = 1)
```

object	fnets object
Х	input time series matrix, with each row representing a time series
cpre	estimated common component
h	forecast horizon

10 nonpar.lrpc

Value

A list containing

- 'is' in-sample estimation
- 'fc' forecast
- 'h' forecast horizon

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
require(fnets)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
model <- fnets(sample.data, q=2, idio.method = "lasso")
pr <- predict(model,sample.data, common.method = "static")
cpre <- common.predict(model,sample.data, common.method = "static")
ip <- idio.predict(model,sample.data, cpre)</pre>
```

nonpar.lrpc

Nonparametric partial coherence matrix estimation

Description

Returns a non-parametric estimate of the partial coherence matrix, possibly using cross-validation

Usage

```
nonpar.lrpc(
  object,
  x,
  eta = NULL,
  lrpc.cv.args = list(n.folds = 1, path.length = 10, symmetric = "min"),
  correct.zero.diag = FALSE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

nonpar.lrpc 11

Arguments

object	fnets object	
x	input time series matrix, with each row representing a time series	
eta	regularisation parameter, if eta = NULL this is selected by cross-validation	
lrpc.cv.args	A list specifying arguments to the cross-validation (CV) procedure containing:	
	• n.folds number of folds	
	 path.length number of lambda values to consider 	
	• symmetric symmetric type of symmetry to enforce on output, one of 'min', 'max', 'avg', 'none'	
correct.zero.diag		
	correct for 0 entries on the diagonal	
n.cores	number of cores to use for parallel computing	

Value

A list containing

- 'Omega' estimated partial coherence matrix
- 'eta' regularisation parameter

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

See Also

param.lrpc

Examples

```
#nonpar.lrpc
require(doParallel)
require(lpSolve)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
model <- fnets(sample.data, q=2, idio.method = "lasso")
nonpar.lrpc(model, sample.data, 1, n.cores = 1)</pre>
```

12 param.lrpc

param.lrpc

Parametric partial coherence matrix estimation

Description

Returns a parametric estimate of the partial coherence matrix, possibly using cross-validation

Usage

```
param.lrpc(
  object,
  x,
  eta = NULL,
  lrpc.cv.args = list(n.folds = 1, path.length = 10, symmetric = "min"),
  correct.zero.diag = FALSE,
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

```
fnets object
object
Х
                  input time series matrix, with each row representing a time series
                   regularisation parameter, if eta = NULL this is selected by cross-validation
eta
lrpc.cv.args
                   A list specifying arguments to the cross-validation (CV) procedure containing:
                     • n.folds number of folds
                     • path.length number of lambda values to consider
                     • symmetric symmetric type of symmetry to enforce on output, one of 'min',
                       'max', 'avg', 'none'
correct.zero.diag
                  correct for 0 entries on the diagonal
                  number of cores to use for parallel computing
n.cores
```

Value

A list containing

- 'Omega' estimated partial coherence matrix
- 'eta' regularisation parameter

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

plot.fnets 13

See Also

nonpar.lrpc

Examples

```
#param.lrpc
require(doParallel)
require(lpSolve)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
model <- fnets(sample.data, q=2, idio.method = "lasso")
param.lrpc(model, sample.data, 1, n.cores = 1)</pre>
```

plot.fnets

Plot fnets object

Description

plots the idiosyncratic component of the fnets object as a Granger causal network, either as a network graph or a heatmap

Usage

```
## S3 method for class 'fnets'
plot(
    x,
    type = "network",
    names = NULL,
    groups = NULL,
    threshold = 0,
    size = NULL,
    ...
)
```

type whether to plot a "network" or "heatmap" names character vector of node names groups integer vector denoting groups for "network" plots threshold sets all elements less than this in absolute value to 0 size which type of degree to use for node size in "network" plots, one of "all", "out",	Χ	fnets object
groups integer vector denoting groups for "network" plots threshold sets all elements less than this in absolute value to 0 size which type of degree to use for node size in "network" plots, one of "all", "out",	type	whether to plot a "network" or "heatmap"
threshold sets all elements less than this in absolute value to 0 size which type of degree to use for node size in "network" plots, one of "all", "out", "in", "total"	names	character vector of node names
size which type of degree to use for node size in "network" plots, one of "all", "out", "in", "total"	groups	integer vector denoting groups for "network" plots
"in", "total"	threshold	sets all elements less than this in absolute value to 0
additional arguments	size	which type of degree to use for node size in "network" plots, one of "all", "out", "in", "total"
		additional arguments

14 plot.fnets.lrpc

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
require(igraph)
require(doParallel)
require(lpSolve)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
# model
model <- fnets(sample.data, q=2, idio.method = "lasso")
plot(model)
# long-run partial correlation network
net <- param.lrpc(model, sample.data, 1, n.cores = 1)
plot(net)</pre>
```

plot.fnets.lrpc

Plot fnets.lrpc object

Description

plots the fnets.lrpc object as a Long-Run Partial Correlation network, and if available as a Contemporaneous network, either as a network graph or a heatmap

Usage

```
## $3 method for class 'fnets.lrpc'
plot(
    x,
    type = "network",
    names = NULL,
    groups = NULL,
    threshold = 0,
    size = NULL,
    ...
)
```

```
x fnets.lrpc objecttype whether to plot a "network" or "heatmap"names character vector of node names
```

predict.fnets 15

groups	integer vector denoting groups for "network" plots
threshold	sets all elements less than this in absolute value to 0
size	which type of degree to use for node size in "network" plots, one of "all", "out", "in", "total" $$
	additional arguments

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

|--|

Description

Predicts common and idiosyncratic components from a fnets object for new data

Usage

```
## S3 method for class 'fnets'
predict(object, x, h = 1, common.method = c("static", "var"), r = NULL, ...)
```

Arguments

object	fnets object
X	input time series matrix, with each row representing a time series
h	forecast horizon
common.method	which of "static" or "var" to forecast the common component with
r	factor number, if r=NULL this is selected using the maximal eigenratio
	further arguments

Value

A list containing

- 'fitted' x in-sample estimation
- 'forecast' x forecast
- 'common.pred' Prediction for the factor-driven common component
- 'idio.pred' Prediction for the idiosyncratic component
- 'x.mean' removed mean of x

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

16 sim.factor.M1

Examples

```
require(fnets)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
model <- fnets(sample.data, q=2, idio.method = "lasso")
pr <- predict(model,sample.data, common.method = "static")
cpre <- common.predict(model,sample.data, common.method = "static")
ip <- idio.predict(model,sample.data, cpre)</pre>
```

sim.factor.M1

Simulate data from a dynamic factor model (Model 1) with factor number r = q * lags

Description

Simulate data from a dynamic factor model (Model 1) with factor number r = q * lags

Usage

```
sim.factor.M1(n, p, q = 2, lags = 2, do.scale = T, loadings = NULL, D = NULL)
```

Arguments

n	sample size
p	number of series
q	dynamic dimension (default 2)
lags	number of lags for which the observed series depends on the factor series (default 2)
do.scale	scale the output (default TRUE)
loadings	loading matrix, dimension p by r (default null)
D	transition matrix, dimension q by q (default null)

Value

- 'data' generated series
- 'shocks' q-dimensional shock series
- 'factors' q-dimensional factor series
- 'D' transition matrix
- 'loadings' factor loadings

sim.factor.M2

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

See Also

```
sim.factor.M2
```

Examples

```
sim.factor.M1(100,10)
```

sim.factor.M2

Simulate data from a static factor model (Model 2)

Description

Simulate data from a static factor model (Model 2)

Usage

```
sim.factor.M2(
    n,
    p,
    trunc.lags = 20,
    do.scale = T,
    a1 = NULL,
    a2 = NULL,
    alpha1 = NULL,
    alpha2 = NULL
)
```

Arguments

```
n sample size
p number of series
trunc.lags lag for moving average representation
do.scale scale the output (default TRUE )
a1, a2, alpha1, alpha2
generative parameters (default null, see reference)
```

Value

- 'data' generated series
- 'shocks' 2-dimensional shock series
- 'a1', 'a2', 'alpha1', 'alpha2' generative parameters

18 sim.idio

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

See Also

```
sim.factor.M1
```

Examples

```
sim.factor.M2(100,10)
```

sim.idio

Simulate data from a (sparse) VAR(1) model

Description

Simulate data from a (sparse) VAR(1) model

Usage

```
sim.idio(
    n,
    p,
    A = NULL,
    cov = diag(1, p),
    prob = 1/p,
    two.norm = NULL,
    do.scale = T
)
```

Arguments

```
n sample size
p number of series
A transition matrix, dimension p by p (default null)
cov generative covariance matrix (default identity)
prob probability of an edge existing in the transition matrix, if A is NULL
two.norm target 2-norm to scale A by (default NULL)
do.scale scale the output (default TRUE)
```

Value

- 'data' generated series
- 'A' transition matrix

var.dantzig 19

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
sim.idio(100,10, A=diag(0.3, 10))
```

var.dantzig

Dantzig selector-type Yule-Walker estimation for VAR processes

Description

Returns parameter estimates for the idiosyncratic VAR and the corresponding Gamma matrix

Usage

```
var.dantzig(
  GG,
  gg,
  lambda,
  symmetric = "min",
  n.cores = min(parallel::detectCores() - 1, 3)
)
```

Arguments

```
GG, gg output from make.gg

lambda regularisation parameter

symmetric type of symmetry to enforce on Gamma, one of 'min', 'max', 'avg', 'none'

n.cores number of cores to use for parallel computing
```

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

A list which contains the following fields:

- beta: VAR parameters
- lambda: regularisation parameter
- Gamma: Estimated noise covariance

20 var.lasso

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
require(fnets)
require(doParallel)
require(lpSolve)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
fit.var(sample.data, .1, idio.method = "lasso")</pre>
```

var.lasso

Lasso-type Yule-Walker estimation for VAR processes

Description

Returns parameter estimates for the idiosyncratic VAR and the corresponding Gamma matrix

Usage

```
var.lasso(
  GG,
  gg,
  lambda,
  symmetric = "min",
  niter = 100,
  tol = 0,
  do.plot = FALSE
)
```

```
GG, gg output from make.gg
lambda regularisation parameter
symmetric type of symmetry to enforce on Gamma, one of 'min', 'max', 'avg', 'none'
niter maximum number of descent steps
tol numerical tolerance for increases in the loss function
do.plot return a plot of the loss function against descent steps
```

var.lasso 21

Details

Further information can be found in Barigozzi, Cho and Owens (2021).

Value

A list which contains the following fields:

- betaVAR parameters
- lambda regularisation parameter
- Gamma Estimated noise covariance
- loss Objective function value

References

Barigozzi, M., Cho, H., & Owens, D. (2021) Factor-adjusted network analysis for high-dimensional time series.

Examples

```
require(fnets)
require(doParallel)
require(lpSolve)
set.seed(222)
n <- 200
p<- 100
chi <- sim.factor.M1(n,p)
xi <- sim.idio(n,p)
sample.data <- chi$data + xi$data
fit.var(sample.data, .1, idio.method = "lasso")</pre>
```

Index

```
\verb|common.predict|, 2
dyn.pca, 3
fit.var,4
fnets, 5
hl.factor.number, 7
idio.cv, 8
idio.predict, 9
nonpar.1rpc, 10, 13
param.lrpc, 11, 12
plot.fnets, 13
plot.fnets.lrpc, 14
predict.fnets, 15
sim.factor.M1, 16, 18
sim.factor.M2, 17, 17
sim.idio, 18
var.dantzig, 19
\quad \text{var.lasso}, \textcolor{red}{20}
```