Laboratorio di Elettronica Lezione 3:

Trasformata di Fourier; risposta in frequenza e diagrammi di Bode

Valentino Liberali, Alberto Stabile

UNIVERSITÀ DEGLI STUDI DI MILANO

Dipartimento di Fisica "Aldo Pontremoli"

E-mail: valentino.liberali@unimi.it, alberto.stabile@unimi.it

Milano, 6-7 aprile 2022

- Segnali periodici e serie di Fourier
- Trasformata di Fourier
- 3 Proprietà della trasformata di Fourier
- 4 Impedenza complessa
- Risposta in frequenza
- 6 Diagrammi di Bode
- Tesempi: circuiti RC passa-basso e passa-alto

Notazione

• Lettere minuscole: indicano i **segnali in funzione del tempo**; ad esempio

$$v = v(t); i = i(t)$$

 Lettere maiuscole: indicano i segnali in funzione della frequenza; ad esempio

$$V = V(f); I = I(f)$$

- x indica un generico segnale in funzione del tempo (tensione o corrente)
- X indica un generico segnale in funzione della frequenza (tensione o corrente)
- Pedici (minuscoli): i = input (ingesso); o = output (uscita); ad esempio, X_i indica il segnale di ingresso in funzione della frequenza
- L'unità immaginaria viene indicata con j (perché i indica la corrente nel tempo):

$$j = \sqrt{-1}$$

Periodo e frequenza di un segnale periodico

Un segnale è periodico quando si ripete identicamente dopo un intervallo di tempo \mathcal{T} , detto **periodo**:

$$x(t+T)=x(t), \forall t$$

L'inverso del periodo è la frequenza:

$$f=rac{1}{T}$$

Dimensionalmente, la frequenza è l'inverso di un tempo e si misura in hertz (Hz). Per un moto rotatorio, la frequenza f è legata alla **velocità angolare** ω dalla relazione: $\omega=2\pi f$. La velocità angolare si misura in radianti al secondo (rad/s). Poiché l'angolo giro è pari a 2π rad, risulta: $1 \text{ Hz}=1 \text{ giro/s}=2\pi$ rad/s.

Segnali periodici e serie di Fourier (1/2)

Ogni segnale x(t) periodico con periodo $T = \frac{1}{f_0}$ può essere espresso come serie di Fourier:

$$x(t) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} (a_k \cos 2k\pi f_0 t + b_k \sin 2k\pi f_0 t)$$

dove

$$a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cos 2k\pi f_0 t \ dt$$

$$b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} x(t) \sin 2k\pi f_0 t \ dt$$

La serie di Fourier permette di esprimere una funzione periodica attraverso un **numero discreto di parametri**, che sono le ampiezze delle componenti cosinusoidali (a_k) e sinusoidali (b_k) alla frequenza fondamentale (f_0) e alle frequenze multiple (kf_0) .

Formule di Eulero per seno, coseno ed esponenziale

Usando i numeri complessi, è possibile scrivere la funzione esponenziale come combinazione delle funzioni seno e coseno, e viceversa (formule di Eulero):

$$e^{j\vartheta} = \cos \vartheta + j \sin \vartheta$$
$$\cos \vartheta = \frac{e^{j\vartheta} + e^{-j\vartheta}}{2}$$
$$\sin \vartheta = \frac{e^{j\vartheta} - e^{-j\vartheta}}{2j}$$

Nel dominio complesso, la funzione e^z è periodica, con periodo $j2\pi$.

Segnali periodici e serie di Fourier (2/2)

Usando le formule di Eulero per seno e coseno, la serie di Fourier può essere scritta in forma complessa:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2k\pi f_0 t}$$

dove

$$c_k = c_{-k}^* = \frac{1}{2}(a_k - jb_k) = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{1}{2}} x(t) e^{-j2k\pi f_0 t} dt$$

I termini a_k, b_k e c_k sono detti **coefficienti di Fourier**. Ovviamente, $a_k, b_k \in \mathbb{R}$, mentre $c_k \in \mathbb{C}$.

Trasformata di Fourier (1/5)

La serie di Fourier è definita solo per segnali periodici. Tuttavia, la somma di due funzioni periodiche può essere non periodica: ad esempio

 $x(t) = \sin 2\pi f_1 t + \sin 2\pi \sqrt{2} f_1 t$ non è periodica pur essendo una combinazione lineare di funzioni periodiche, una con frequenza fondamentale f_1 e l'altra con frequenza fondamentale $\sqrt{2} f_1$.

Una funzione come x(t), non periodica ma ottenuta come combinazione di due funzioni periodiche, è detta *2-periodica*.

Quindi non sempre si può scrivere sotto forma di serie di Fourier la funzione ottenuta dalla somma di funzioni esprimibili come serie di Fourier.

Trasformata di Fourier (2/5)

Un segnale non periodico può essere considerato come un segnale periodico avente $T \to \infty$ e $f_0 \to 0$. Con questo espediente, l'analisi di Fourier può essere generalizzata al caso non periodico, sostituendo la sommatoria con l'integrale:

$$X(f) = \mathscr{F}(x(t)) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt$$

Questa è la definizione della **trasformata di Fourier**, ed è valida per tutti quei segnali x(t) per cui l'integrale esiste.

Trasformata di Fourier (3/5)

$$X(f) = \mathscr{F}(x(t)) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt$$

x(t) è una funzione del tempo t, X(f) è una funzione della frequenza f. Indichiamo con \mathscr{F} l'operatore che trasforma x(t) in X(f):

$$x(t) \xrightarrow{\mathscr{F}} X(f)$$

Osservazione: La trasformata di Fourier X(f) ha la dimensione di x(t) moltiplicata per un tempo. Ad esempio, se x(t) è una tensione espressa in volt (V), X(f) è in volt secondi $(V \cdot s)$.

Trasformata di Fourier (4/5)

Dalla funzione X(f) si ottiene ancora x(t) per mezzo dell'antitrasformata di Fourier:

$$X(t) = \mathscr{F}^{-1}(X(f)) = \int_{-\infty}^{+\infty} X(f) e^{j2\pi ft} df$$

Trasformata e antitrasformata di Fourier coincidono (tranne che per il segno meno nell'esponenziale) e possiamo parlare di **coppie** di trasformate di Fourier, denotandole nel modo seguente:

$$x(t) \stackrel{\mathscr{F}}{\underset{\mathscr{F}^{-1}}{\longleftrightarrow}} X(f)$$

o, più semplicemente:

$$x(t) \longleftrightarrow X(f)$$

Trasformata di Fourier (5/5)

Nota: alcuni testi definiscono la trasformata di Fourier come l'operatore che trasforma una funzione del tempo t in una funzione della frequenza angolare (o velocità angolare) $\omega=2\pi f$. Con questa definizione, la trasformata è:

$$X(\omega) = \mathscr{F}(x(t)) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt$$

mentre l'antitrasformata è:

$$x(t) = \mathscr{F}^{-1}(X(\omega)) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega) e^{j\omega t} d\omega$$

Nel seguito, useremo sempre X(f).

Trasformata di Fourier: proprietà (1/4)

Linearità:

$$x_1(t) + x_2(t) \longleftrightarrow X_1(f) + X_2(f)$$

 $kx(t) \longleftrightarrow kX(f)$

Cambio di scala:

$$x(kt)\longleftrightarrow \frac{1}{k}X\left(\frac{f}{k}\right)$$

Traslazione nel tempo:

$$x(t+t_0)\longleftrightarrow e^{j2\pi ft_0}X(f)$$

Traslazione in frequenza (o modulazione):

$$e^{-j2\pi f_0 t} x(t) \longleftrightarrow X(f+f_0)$$

Trasformata di Fourier: proprietà (2/4)

Moltiplicazione e convoluzione:

$$x_1(t) \cdot x_2(t) \longleftrightarrow X_1(f) * X_2(f)$$

$$x_1(t) * x_2(t) \longleftrightarrow X_1(f) \cdot X_2(f)$$

L'operazione di convoluzione tra due segnali è definita come:

$$x_1(t) * x_2(t) = \int_{-\infty}^{+\infty} x_1(\tau) \cdot x_2(t-\tau) d\tau = \int_{-\infty}^{+\infty} x_1(t-\tau) \cdot x_2(\tau) d\tau$$

Trasformata di Fourier: proprietà (3/4)

Derivazione:

$$\frac{dx(t)}{dt}\longleftrightarrow j2\pi tX(f)$$

Integrazione:

$$\int x(t) dt \longleftrightarrow \frac{1}{j2\pi f}X(f)$$

Le due ultime relazioni permettono di trasformare un'**equazione differenziale o integrale** nel dominio del tempo in un'**equazione algebrica** nel dominio della frequenza.

Trasformata di Fourier: proprietà (4/4)

$$X(f) = \int_{-\infty}^{+\infty} x(t) e^{-j2\pi ft} dt =$$

$$= \int_{-\infty}^{+\infty} x(t) (\cos 2\pi ft - j \sin 2\pi ft) dt =$$

$$= \int_{-\infty}^{+\infty} x(t) \cos 2\pi ft dt - j \int_{-\infty}^{+\infty} x(t) \sin 2\pi ft dt$$

x(t) reale e pari \longleftrightarrow X(f) reale e pari x(t) reale e dispari \longleftrightarrow X(f) immaginaria e dispari

Esempio: calcolo della FT (1/4)

$$x(t) = A \operatorname{rect} \frac{t}{T} = \begin{cases} A & \operatorname{se} - \frac{T}{2} \le t \le \frac{T}{2} \\ 0 & \operatorname{altrove} \end{cases}$$

Il grafico di questa funzione è un rettangolo, la cui area è:

$$\int_{-\infty}^{+\infty} x(t) dt = AT$$

Esempio: calcolo della FT (2/4)

La trasformata di Fourier della funzione rettangolo è:

$$X(f) = \int_{-\frac{T}{2}}^{\frac{T}{2}} A e^{-j2\pi ft} dt$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} A (\cos 2\pi ft - j \sin 2\pi ft) dt$$

$$= A \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos 2\pi ft dt$$

$$= AT \frac{\sin \pi fT}{\pi fT}$$

$$= AT \operatorname{sinc} fT$$

dove la funzione sinc è definita come: $\mathrm{sinc} \varphi = \frac{\sin \pi \varphi}{\pi \varphi}$

Esempio: calcolo della FT (3/4)

La trasformata della funzione sinc:

$$x(t) = A \operatorname{sinc} \frac{t}{T}$$

è la funzione rettangolo:

$$X(f) = AT \operatorname{rect} fT$$

La funzione delta di Dirac (1/3)

Consideriamo la funzione rettangolo con base T e altezza $\frac{1}{T}$:

$$x(t) = rac{1}{T} \operatorname{rect} rac{t}{T} = egin{cases} rac{1}{T} & \operatorname{se} - rac{T}{2} \leq t \leq rac{T}{2} \\ 0 & \operatorname{altrove} \end{cases}$$

L'area sottesa dal grafico di x(t) è: $\int_{-\infty}^{+\infty} x(t) \ dt = \frac{1}{T} \ T = 1$

La funzione delta di Dirac (2/3)

Per $T \rightarrow 0$, la funzione

$$x(t) = rac{1}{T} \operatorname{rect} rac{t}{T} = egin{cases} rac{1}{T} & \operatorname{se} - rac{T}{2} \leq t \leq rac{T}{2} \\ 0 & \operatorname{altrove} \end{cases}$$

tende a coincidere con l'asse verticale: il grafico è un rettangolo, con la base tendente a zero e l'altezza tendente a infinito; l'area sotto il grafico ha sempre valore unitario.

Definiamo la **funzione delta di Dirac** $\delta(t)$ come il limite della funzione rettangolo per $T \to 0$:

$$\delta(t) = \lim_{T \to 0} \frac{1}{T} \operatorname{rect} \frac{t}{T}$$

La funzione delta di Dirac (3/3)

La delta di Dirac $\delta(t)$ non è una funzione in senso classico, perché, pur essendo nulla per ogni $t \neq 0$, il suo integrale è:

$$\int_{-\infty}^{+\infty} \delta(t) \, dt = 1$$

Dimensionalmente, la funzione delta di Dirac $\delta(t)$ è l'inverso di un tempo.

La funzione delta di Dirac (4/4)

La trasformata di Fourier della funzione delta di Dirac $\delta(t)$ si ottiene dalla trasformata del rettangolo ponendo $T \to 0$ e AT = 1:

$$\mathscr{F}(\delta(t)) = \operatorname{sinc} 0 = \lim_{T \to 0} \frac{\sin \pi f T}{\pi f T} = 1$$

Viceversa, la trasformata di Fourier della costante 1 è la delta di Dirac:

$$\mathcal{F}(1) = \delta(f)$$

Trasformata di Fourier del coseno

La trasformata di un segnale cosinusoidale a frequenza f_0 è:

$$\mathscr{F}(\cos 2\pi f_0 t) = \int_{-\infty}^{+\infty} \cos 2\pi f_0 t \ e^{-j2\pi f t} \ dt =$$

$$= \int_{-\infty}^{+\infty} \frac{e^{j2\pi f_0 t} + e^{-j2\pi f_0 t}}{2} \ e^{-j2\pi f t} \ dt =$$

$$= \frac{1}{2} \left(\int_{-\infty}^{+\infty} e^{-j2\pi (f - f_0) t} \ dt + \int_{-\infty}^{+\infty} e^{-j2\pi (f + f_0) t} \ dt \right)$$

$$= \frac{1}{2} \left(\delta(f - f_0) + \delta(f + f_0) \right)$$

Trasformata di Fourier del seno

La trasformata di un segnale sinusoidale è:

$$\mathscr{F}(\sin 2\pi f_0 t) = \frac{-j}{2} \left(\delta(f - f_0) - \delta(f + f_0) \right)$$

(si calcola in maniera analoga a quella del coseno)

Relazione tra serie e trasformata

La trasformata di Fourier di un segnale periodico è una sommatoria di funzioni delta di Dirac, le cui ampiezze corrispondono ai coefficienti complessi della serie di Fourier.

$$x(t)$$
 periodico in $t \longleftrightarrow X(f)$ discreto (campionato) in f

$$x(t)$$
 discreto (campionato) in $t \longleftrightarrow X(f)$ periodico in f

Impedenza complessa (1/6)

Applicando la trasformata di Fourier alle grandezze elettriche, si possono esprimere la tensione e la corrente nel dominio della frequenza:

$$V(f) = \mathscr{F}(v(t))$$

$$I(f) = \mathcal{F}(i(t))$$

Per una resistenza R, la legge di Ohm nel dominio della frequenza è:

$$V(f) = RI(f)$$

Impedenza complessa (2/6)

La relazione corrente-tensione per un'induttanza nel dominio del tempo è:

$$v(t) = L \frac{di(t)}{dt}$$

e la relazione nel dominio della frequenza si ricava trasformando (e usando la formula per la derivata):

$$V(f) = j2\pi f L I(f)$$

Impedenza complessa (3/6)

Per un condensatore la relazione corrente-tensione è:

$$v(t) = \frac{1}{C} \int i(t) \, dt$$

e la relazione nel dominio della frequenza si ricava trasformando (e usando la formula per l'integrale):

$$V(f) = \frac{1}{j2\pi fC}I(f)$$

Impedenza complessa (4/6)

Dal confronto delle tre equazioni:

$$V(f) = RI(f)$$

$$V(f) = j2\pi fLI(f)$$

$$V(f) = \frac{1}{j2\pi fC}I(f)$$

si vede che è opportuno definire l'**impedenza complessa** Z(f) (funzione della frequenza), in modo da poter scrivere, per tutti e tre i bipoli:

$$V(f) = Z(f)I(f)$$

Impedenza complessa (5/6)

$$V(f) = Z(f)I(f)$$

L'impedenza si misura in ohm (come la resistenza).

- Per un resistore, l'impedenza non dipende dalla frequenza: Z(f) = R.
- Per un'induttanza, l'impedenza è direttamente proporzionale alla frequenza: $Z(f)=j2\pi f L$.
- Per un condensatore, l'impedenza è inversamente proporzionale alla frequenza: $Z(f) = \frac{1}{j2\pi fC}$.

Impedenza complessa (6/6)

L'impedenza Z è una gradezza complessa; la sua parte reale è la **resistenza** R, mentre la parte immaginaria prende il nome di **reattanza** X:

$$Z = R + jX$$

Mentre la resistenza R può essere solo positiva (o nulla), la reattanza può essere positiva (come nel caso dell'induttanza) oppure negativa (come nel caso del condensatore).

Le impedenze in serie e in parallelo si combinano come le resistenze.

L'impedenza è lineare: per qualsiasi impedenza, un segnale di tensione sinusoidale alla frequenza f_0 produce un segnale di corrente sinusoidale alla stessa frequenza.

Ammettenza complessa

L'inverso dell'impedenza è l'**ammettenza** Y:

$$Y(f)=\frac{1}{Z(f)}$$

da cui risulta:

$$I(f) = Y(f)V(f)$$

L'ammettenza (che si misura in siemens) ha come parte reale la **conduttanza** G, mentre la parte immaginaria è la **suscettanza** B:

$$Y = G + jB$$

Risposta in frequenza (1/2)

Per un circuito lineare, la risposta ad un segnale sinusoidale in ingresso è sempre un segnale sinusoidale alla medesima frequenza.

La **risposta in frequenza** H(f) di un circuito è definita come il rapporto tra i segnali di uscita e di ingresso nel dominio della frequenza.

Per un amplificatore di tensione:

$$H(f) = \frac{V_{\rm o}(f)}{V_{\rm i}(f)}$$

Solitamente, la risposta in frequenza (che è complessa) viene espressa sotto forma di **modulo** |H(f)| e **fase** $\angle H(f)$ (cioè in coordinate polari nel piano complesso).

Risposta in frequenza (2/2)

In generale, indicando con $X_i(f)$ e $X_o(f)$ le trasformate di Fourier dei segnali in ingresso e in uscita da un circuito, la risposta in frequenza è:

$$H(f) = \frac{X_{o}(f)}{X_{i}(f)}$$

Se l'ingresso è unitario (nel dominio della frequenza), cioè se $X_i(f) = 1$, allora l'uscita (nel dominio della frequenza) è H(f).

Ricordando che $X_i(f) = 1$ se $x_i(t) = \delta(t)$, concludiamo che la risposta in frequenza H(f) è la trasformata di Fourier della risposta all'impulso (o risposta impulsiva), che si indica con h(t).

Risposta in frequenza

La risposta in frequenza di un sistema lineare H(f) è una grandezza complessa, che varia con la frequenza f, e può essere scritta come:

$$H(f) = |H(f)| e^{j \angle H(f)}$$

dove |H(f)| è il **modulo** o **ampiezza**, e $\angle H(f)$ è la **fase** o **sfasamento** (sia il modulo sia la fase dipendono da f).

Diagramma di Nyquist (traiettoria di H(f) nel piano complesso)

Guadagno in decibel

Il guadagno (cioè il modulo della risposta in frequenza) si misura di solito in **decibel**, che è la decima parte del **bel** (dal cognome di Alexander G. Bell). Il guadagno in potenza si determina calcolando il rapporto tra la potenza assorbita da una resistenza di carico R nei due casi:

lacktriangle quando viene applicato il segnale di ingresso V_i , la potenza trasferita a R è:

$$P_1 = \frac{V_i^2}{R}$$

Q quando alla resistenza viene applicato il segnale di uscita V_o : la relazione tra ingresso e uscita è $V_o = HV_i$, e la potenza trasferita a R è:

$$P_2 = \frac{V_o^2}{R} = \frac{H^2 V_i^2}{R}$$

Il guadagno in potenza è il rapporto tra le potenze:

$$G = \frac{P_2}{P_1}$$

Guadagno in decibel

$$G=\frac{P_2}{P_1}$$

Il guadagno G viene espresso in decibel, che è un'unità di misura in scala logaritmica:

$$G_{\text{dB}} = 10 \log_{10} \left(\frac{P_2}{P_1} \right)$$

Il decibel è la decima parte del bel, ma il bel in pratica non si usa mai; siccome il guadagno di solito viene specificato con una precisione fino al decimo di bel, si usa il decibel per esprimerlo con numeri interi.

Anche la nostra percezione sensoriale è legata al **logaritmo** delle grandezze fisiche percepite; per questo motivo il decibel è un'unità di misura comoda, ad esempio, per esprimere il quadagno di un amplificatore audio.

Guadagno in decibel

$$G = \frac{P_2}{P_1}$$

Siccome $P_2=rac{V_{
m o}^2}{R}$ e $P_1=rac{V_{
m i}^2}{R}$, risulta:

$$G = \frac{RV_o^2}{RV_i^2} = \left(\frac{V_o}{V_i}\right)^2$$

e quindi

$$G_{\text{dB}} = 10 \log_{10} \left(\frac{V_{\text{o}}}{V_{\text{i}}} \right)^{2} = 20 \log_{10} \left(\frac{V_{\text{o}}}{V_{\text{i}}} \right) = 20 \log_{10} H$$

Attenzione: bisogna ricordare che passando dal rapporto tra due potenze al rapporto tra due **tensioni** (o tra due **correnti**) il guadagno in decibel si ottiene moltiplicando per 20 (e non per 10) il logaritmo del rapporto!

Diagrammi di Bode (1/4)

Per rappresentare graficamente H(f), si usano i diagrammi di Bode:

- il diagramma di Bode dell'ampiezza (o modulo): in ascissa si riporta la frequenza f in scala logaritmica, in ordinata il modulo del guadagno in decibel (che è un'unità di misura logaritmica).
- il diagramma di Bode della fase (o sfasamento) in ascissa si riporta la frequenza f in scala logaritmica, in ordinata lo sfasamento (in radianti oppure in gradi).

Diagrammi di Bode (2/4)

Diagrammi di Bode (3/3)

- Nel diagramma di Bode dell'ampiezza, l'uso della scala logaritmica permette di rappresentare con una retta sia la proporzionalità diretta, sia quella inversa.
- Di solito, l'asse delle frequenze è diviso in decadi, cioè in intervalli ai cui estremi la frequenza varia di un fattore 10.
- Più raramente, l'asse delle frequenze è diviso in ottave, cioè in intervalli ai cui estremi la frequenza varia di un fattore 2 (il termine "ottava" deriva dal fatto che tra il primo e l'ottavo tasto bianco del pianoforte la frequenza del suono è raddoppiata).
- La frequenza zero (cioè la continua) in scala logaritmica va a $-\infty$ sull'asse delle ascisse; il guadagno nullo corrisponde a $-\infty$ dB sull'asse delle ordinate.
- La fase non è univoca: aggiungendo o sottraendo $2\pi~(=360^\circ)$ il punto nel piano non cambia posizione. Nelle simulazioni con SPICE, la fase viene calcolata tra -180° e 180° (il risultato è in gradi).

Circuito RC passa-basso

Calcoliamo la corrente nella maglia, in funzione della frequenza:

$$I = \frac{V_{\text{in}}}{Z_R + Z_C} = \frac{V_{\text{in}}}{R + \frac{1}{j2\pi fC}} = \frac{V_{\text{in}} \cdot j2\pi fC}{1 + j2\pi fRC}$$

La tensione in uscita è:

$$V_{\text{out}} = Z_C I = \frac{1}{j2\pi fC} I = \frac{V_{\text{in}}}{1 + j2\pi fRC}$$

La risposta in frequenza è:

$$H(f) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{1}{1 + j2\pi fRC}$$

$$H(f) = \frac{1}{1 + j2\pi fRC} = \frac{1}{1 + j2\pi f\tau} = \frac{1}{1 + (2\pi f\tau)^2} - j\frac{2\pi f\tau}{1 + (2\pi f\tau)^2}$$

- A bassa frequenza $(f \to 0)$ si ha $2\pi f \tau \ll 1$; quindi per f = 0 si ha: H(0) = 1, $H_{dB}(0) = 0$ dB, e $\angle H(0) = 0$.
- Ad alta frequenza $(f \to \infty)$ si ha $2\pi f \tau \gg 1$; quindi $H(f) \approx \frac{1}{j2\pi f \tau} = -j\frac{1}{2\pi f \tau}$ (il circuito si comporta come un *integratore approssimato*): $H(\infty) \to -j0$, $H_{\rm dB}(\infty) \to -\infty$ dB, e $\angle H(\infty) \to -\frac{\pi}{2}$.

$$H(f) = \frac{1}{1 + j2\pi f\tau} = \frac{1}{1 + (2\pi f\tau)^2} - j\frac{2\pi f\tau}{1 + (2\pi f\tau)^2}$$

Nel piano complesso, la traiettoria di H(f) al variare di f descrive una semicirconferenza nel IV quadrante, partendo da 1 e arrivando a 0. Infatti, ponendo per semplicità $w=2\pi f \tau$, la traiettoria di H(f) è data dalle equazioni parametriche:

$$\begin{cases} x = \text{Re}\{H(f)\} = \frac{1}{1+w^2} \\ y = \text{Im}\{H(f)\} = -\frac{w}{1+w^2} \end{cases}$$

da cui $x^2+y^2=x$, che è la circonferenza di centro $\left(\frac{1}{2},0\right)$ e raggio $\frac{1}{2}$, della quale dobbiamo considerare solo la metà inferiore perché $y\leq 0$.

Diagramma di Nyquist del circuito RC passa-basso

Diagrammi di Bode (modulo e fase) del circuito RC passa-basso

Circuito RC passa-alto

Calcoliamo la corrente nella maglia, in funzione della frequenza:

$$I = \frac{V_{\text{in}}}{Z_C + Z_R} = \frac{V_{\text{in}}}{\frac{1}{j2\pi fC} + R} = \frac{V_{\text{in}} \cdot j2\pi fC}{1 + j2\pi fRC}$$

La tensione in uscita è:

$$V_{\text{out}} = RI = \frac{V_{\text{in}} \cdot j2\pi fRC}{1 + j2\pi fRC}$$

La risposta in frequenza è:

$$H(f) = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{j2\pi fRC}{1 + j2\pi fRC}$$

$$H(f) = \frac{j2\pi fRC}{1 + j2\pi fRC} = \frac{j2\pi f\tau}{1 + j2\pi f\tau} = \frac{(2\pi f\tau)^2}{1 + (2\pi f\tau)^2} + j\frac{2\pi f\tau}{1 + (2\pi f\tau)^2}$$

- A bassa frequenza $(f \to 0)$ si ha $2\pi f \tau \ll 1$; quindi $H(f) \to 0$ (il circuito si comporta come un *derivatore approssimato*). Per f = 0 si ha: H(0) = 0, $H_{\text{dB}}(0) = -\infty$ dB, $e \angle H(0) \to \frac{\pi}{2}$.
- Ad alta frequenza $(f \to \infty)$ si ha $2\pi f \tau \gg 1$; quindi $H(\infty) \to 1$, $H_{\mathrm{dB}}(\infty) \to 0$ dB, e $\angle H(\infty) \to 0$.

$$H(f) = \frac{j2\pi f\tau}{1 + j2\pi f\tau} = \frac{(2\pi f\tau)^2}{1 + (2\pi f\tau)^2} + j\frac{2\pi f\tau}{1 + (2\pi f\tau)^2}$$

Nel piano complesso, la traiettoria di H(f) al variare di f descrive una semicirconferenza nel I quadrante, partendo da 0 e arrivando a 1. (Si ricava scrivendo H in forma parametrica rispetto a $w=2\pi f \tau$.)

Diagramma di Nyquist del circuito RC passa-alto

Diagrammi di Bode (modulo e fase) del circuito RC passa-alto

Diagrammi di Bode ottenuti dalle misure all'oscilloscopio

Per ottenere sperimentalmente i digrammi di Bode della risposta in frequenza di un circuito, è necessario applicare un segnale di ingresso sinusoidale all'ingresso, e misurare le ampiezze delle tensioni di ingresso $V_{\rm i}$ e uscita $V_{\rm o}$ e il ritardo tra i due segnali Δt , misurato sulla scala dei tempi tra due attraversamenti dello zero. Il modulo del guadagno in decibel è:

$$H_{\text{dB}} = 20 \log_{10} \left(\frac{V_{\text{o}}}{V_{\text{i}}} \right)$$

mentre la fase φ si calcola dalla proporzione:

$$\varphi$$
: $2\pi = \Delta t$: T

da cui si ottiene

$$\varphi = 2\pi \Delta t \frac{1}{T} = 2\pi \Delta t \cdot f$$

Occorre notare che lo sfasamento è **positivo** quando il segnale di uscita attraversa lo zero **prima** del segnale di ingresso; mentre è **negativo** se il segnale di uscita attraversa lo zero **dopo** l'ingresso.