

BASE DE DATOS AVANZADA

JUAN JOSÉ RAMÍREZ LAMA JUAN.RAMIREZ@ULAGOS.CL

Ingeniería Civil en Informática

CONTENIDO

- 1 Fragmentación Vertical
 - Matriz de Uso
 - Matriz de Afinidad
 - Ejemplo Matriz de Afinidad
- 2 Algoritmo de Fragmentación Vertical
 - Algoritmo de Agrupamiento
- 3 Fragmentación Híbrida
- 4 Conclusión
- 5 Ejercicio Fragmentación Vertical

CONTENIDO

- 1 Fragmentación Vertical
 - Matriz de Uso
 - Matriz de Afinidad
 - Ejemplo Matriz de Afinidad
- 2 Algoritmo de Fragmentación Vertical
 - Algoritmo de Agrupamiento
- 3 Fragmentación Híbrida
- 4 Conclusión
- 5 Ejercicio Fragmentación Vertica

- ► El objetivo es dividir una relación R en un conjunto de relaciones más pequeñas (fragmentos verticales) de manera de que aplicaciones de usuarios corran sobre un único fragmento (idealmente)
- Una fragmentación óptima produce un esquema que minimiza el tiempo de ejecución de las aplicaciones

- ▶ Dada una relación R una fragmentación vertical divide R en fragmentos R_1, \ldots, R_n (usualmente 2).
- Cada fragmento contienen un subconjunto de los atributos de R
- Además cada fragmento contiene la clave primaria de R

- Es más difícil que la fragmentación horizontal porque existen más pasos y condiciones.
- Existen dos enfoques:
 - Agrupamiento asigna atributos a fragmentos.
 - División parte desde una relación y decide cómo fragmentar sobre la base de mejorar el acceso de las aplicaciones, **genera fragmentos disjuntos**.

INFORMACIÓN DE APLICACIONES

Uso de atributos:

▶ Dado un conjunto de consultas $Q = (q_1, ..., q_m)$ que corren sobre una relación $R[A_1, ..., A_n]$, la matriz de uso se compone según:

$$uso(q_i, A_k) = \begin{cases} 1 & \text{si } A_k \text{ es utlizado por } q_i \\ 0 & \text{en caso contrario} \end{cases}$$

Dicha matriz tiene las consultas como filas y los atributos como columnas.

uso	A_1	A_2
q_1	1	0
q_2	0	1
q_3	1	1

USO DE ATRIBUTOS

Consideremos el siguiente esquema de la tabla "Jugador":

```
Jugador (ID (PK), Nombre, Sueldo, Equipo)
```

Consideremos las siguientes consultas:

```
q1
SELECT SUELDO
FROM JUGADOR
WHERE ID=valor
q3:
SELECT NOMBRE
FROM JUGADOR
WHERE EQUIPO='valor'
```

```
q2:
1 SELECT NOMBRE, SUELDO
2 FROM JUGADOR

q4:
1 SELECT SUM(SUELDO)
2 FROM JUGADOR
3 WHERE EQUIPO='Valor'
```

USO DE ATRIBUTOS

Consideremos el siguiente esquema de la tabla "Jugador":

```
Jugador (ID (PK), Nombre, Sueldo, Equipo)
```

Consideremos las siguientes consultas:

Donde: $A_1 = ID$, $A_2 = NOMBRE$, $A_3 = SUELDO$, $A_4 = EQUIPO$

USO DE ATRIBUTOS

Consideremos las siguientes consultas:

Donde:
$$A_1 = ID$$
, $A_2 = NOMBRE$, $A_3 = SUELDO$, $A_4 = EQUIPO$

Sea entonces la siguiente tabla de uso de atributos por consulta:

uso	A_1	A_2	A_3	A_4
q_1	1	0	1	0
q_2	0	1	1	0
q_{3}	0	1	0	1
q_4	0	0	1	1

INFORMACIÓN DE APLICACIONES

Afinidad de atributos

- Indica cuan relacionados están los atributos de una relación.
- Se calcula por par de atributos analizando las aplicaciones que usan los atributos y las frecuencias de acceso de las aplicaciones.

MEDIDA DE AFINIDAD

La medida de afinidad entre 2 atributos A_i , $A_j \in R[A_1, ..., A_n]$ con respecto a un conjunto de aplicaciones $Q = (q_1, ..., q_n)$ se define como:

$$aff(A_i, A_j) = \sum_{\text{todas las consultas que acceden a } (A_i \land A_j)} \left(\sum_{\text{por cada sitio}} \text{frecuencia de la consulta} \cdot \frac{\text{Acceso}}{\text{Ejecución}} \right)$$

 $\frac{Acceso}{Eiecución}$: número de veces que la consulta accede los atributos A_i , A_j por ejecución.

Por simplicidad y al menos que se diga lo contrario $\frac{Acceso}{Fiecución} = 1$.

Se requiere conocer que aplicaciones utilizan ambos atributos al mismo tiempo para conocer su afinidad.

MEDIDA DE AFINIDAD

- Consideremos que las consultas acceden una vez a los atributos por ejecución.
- La siguientes frecuencias de acceso de las aplicaciones, con Acceso Ejecución = 1

uso	A_1	A_2	A_3	P
q_1	1	0	1	(
q_2	0	1	1	(
q_3	0	1	0	•
q_4	0	0	1	•
	S_1	S_2	S_3	
$\overline{q_1}$	15	20	10	
q_2	5	0	0	
q_3	25	25	25	
q_4	3	0	0	

Afinidad entre los atributos A_1 y A_3 :

$$aff(A_1, A_3) = (S_1 \cdot \frac{Acceso}{Ejecución} + S_2 \cdot \frac{Acceso}{Ejecución} + S_3 \cdot \frac{Acceso}{Ejecución})_{q_1}$$

 $aff(A_1, A_3) = 15 \cdot 1 + 20 \cdot 1 + 10 \cdot 1 = 45$

 q_1 es la única consulta que accede a los 2 atributos al mismo tiempo.

MEDIDA DE AFINIDAD

- Consideremos que las consultas acceden una vez a los atributos por ejecución.
- La siguientes frecuencias de acceso de las aplicaciones, con $\frac{Acceso}{Fiecución} = 1$

Matriz de afinidad AA:

uso		A_1	A_2	A_3	A_4
$\overline{q_1}$		1	0	1	0
q_2		0	1	1	0
q_3		0	1	0	1
q_4		0	0	1	1
		S_1	S_2	S_3	
q_1		15	20	10	
q_2	,	5	0	0	
q_3		25	25	25	
q_4		3	0	0	
		A_1	A_2	A_3	A_4
$\overline{A_1}$	-	45	0	45	0
A_2		0	80	5	75
A_3	4	45	5	53	3
A_4		0	75	3	78

4	4 3	U	U	
	A_1	A_2	A_3	A_4
A_1	45	0	45	0
A_2	0	80	5	75
A_3	45	5	53	3
A_4	0	75	3	78

EJEMPLO 1

Considere el siguiente esquema relacional:

```
PROF (ID, NOMBRE, TITULO)
```

ASIG (IDA, TIPO, NASIG, DUR)

Asuma la siguiente definición de vista:

```
CREATE VIEW PROFVIEW(ID, NOMBRE, TIPO, NASIG) AS

SELECT P.ID, P.NOMBRE, A.TIPO, A.NASIG

FROM PROF P, ASIG A

WHERE P.ID=A.IDA AND A.DUR = 90
```

La cual es utilizada por la consulta q_1 en los sitios 1 y 2 con frecuencias 20 y 30 respectivamente.

Además, asuma la siguiente consulta q_2 :

```
SELECT IDA, DUR
FROM ASIG
```

La cual se ejecuta en los sitios 2 y 3 con frecuencias 10 y 30 respectivamente.

- ► Construir la matriz $uso(q_i, A_i)$ y Acceso.
- Generar la matriz de afinidad que contenga todos los atributos de PROF y ASIG.

$$A_1 = ID$$
, $A_2 = NOMBRE$, $A_3 = TITULO$, $A_4 = IDA$, $A_5 = TIPO$, $A_6 = NASIG$, $A_7 = DUR$.

 $S_1 = 20 \text{ y } S_2 = 30 \text{ acceden a } q_1$

 $S_2 = 10 \text{ y } S_3 = 30 \text{ acceden a } q_2$

```
q_1
```

1 CREATE VIEW PROFVIEW (ID, NOMBRE, TIPO, NASIG)

2 **AS**

SELECT P.ID, P.NOMBRE, A.TIPO, A.NASIG

FROM PROF P, ASIG A

WHERE P.ID=A.IDA AND A.DUR = 90

	q_2		
1	SELECT	IDA, DUR	
2	FROM	ASIG	

Matriz de $uso(a_i, A_i)$

		wiati	ız uc	430(1	11) / 4)			
	A_1	A_2	A_3	A_4	A_5	A_6	A_7	
q_1								
a								

Matriz de Acceso S_1 S_2 S_3 q_1 q_2

$$A_1 = ID$$
, $A_2 = NOMBRE$, $A_3 = TITULO$, $A_4 = IDA$, $A_5 = TIPO$, $A_6 = NASIG$, $A_7 = DUR$.

 $S_1 = 20 \text{ y } S_2 = 30 \text{ acceden a } q_1$

 $S_2 = 10 \text{ y } S_3 = 30 \text{ acceden a } q_2$

q.

CREATE VIEW PROFVIEW (ID, NOMBRE, TIPO, NASIG)

2 **AS**

SELECT P.ID, P.NOMBRE, A.TIPO, A.NASIG

FROM PROF P, ASIG A

WHERE P.ID=A.IDA AND A.DUR = 90

 q_2

1 **SELECT** IDA, DUR

2 FROM ASIG

Matriz de $uso(q_i, A_i)$

		iviati	12 ac	450(1 1), (4)			
	<i>A</i> ₁	A_2	A_3	A_4	A_5	A 6	A_7	
q_1	1	1	0	1	1	1	1	Ì
q_2	0	0	0	1	0	0	1	

Matriz de Acceso

Mainz de Accesc				
	S_1	S_2	S_3	
q_1	20	30	0	
q_2	0	10	30	

 $ightharpoonup S_1 = 20 \text{ y } S_2 = 30 \text{ acceden a } q_1$

Matriz de $uso(q_i, A_i)$									
	A_1	A_2	A_3	A_4	A_5	A_6	A_7	I	
q_1	1	1	0	1	1	1	1	ĺ	
q_2	0	0	0	1	0	0	1	١	

 $S_2 = 10 \text{ y } S_3 = 30 \text{ acceden a } q_2$

Matriz de Acceso								
$ S_1 S_2 S_3$								
q_1	20	30	0					
q_2	0	10	30					

Matriz de Afinidad $AA = aff(A_i, A_i)$

	<i>A</i> ₁	A_2	<i>A</i> ₃	A_4	<i>A</i> ₅	A ₆	
A_1							
$ \begin{array}{c c} A_2 \\ A_3 \\ A_4 \\ A_5 \\ A_6 \\ A_7 \end{array} $							
A ₃							
A_4							
A_5							
A_6							
A_7							

 $S_1 = 20 \text{ y } S_2 = 30 \text{ acceden a } q_1$

Matriz de <i>uso</i> (q _i , A _i)										
	A_1	A_2	A_3	A_4	A_5	A_6	A_7			
q_1	1	1	0	1	1	1	1			
q_2	0	0	0	1	0	0	1			

- Arr aff $(A_1, A_1) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- $aff(A_1, A_2) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{q_1}$
- ightharpoonup aff(A_1, A_3)= 0
- $aff(A_1, A_4) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{q_1}$
- Arr aff $(A_1, A_5) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- Arr aff $(A_1, A_6) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_a$
- Arr aff $(A_1, A_7) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- Arr aff $(A_2, A_2) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- ightharpoonup aff(A_2, A_3)= 0
- Arr aff $(A_2, A_4) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- Arr aff $(A_2, A_5) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- Arr aff $(A_2, A_6) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$
- Arr aff $(A_2, A_7) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{a_1}$

 $S_2 = 10 \text{ y } S_3 = 30 \text{ acceden a } q_2$

Matriz de Acceso						
$S_1 \mid S_2 \mid S_3$						
q_1	20	30	0			
q_2	0	10	30			

Matriz de Afinidad $AA = aff(A_i, A_i)$

	A_1	A_2	A_3	A_4	A ₅	A_6	A_7
A_1	50	50	0	50	50	50	50
A_2	50	50	0	50	50	50	50
A_3	0	0	0	0	0	0	0
A_4	50	50	0	90	50	50	90
A_5	50	50	0	50	50	50	50
$\overline{A_6}$	50	50	0	50	50	50	50
A_7	50	50	0	90	50	50	90

 $S_1 = 20 \text{ y } S_2 = 30 \text{ acceden a } q_1$

Matriz de $uso(q_i, A_i)$

	A_1	A_2	A_3	A_4	A_5	A_6	A_7
$\overline{q_1}$	1	1	0	1	1	1	1
q_2	0	0	0	1	0	0	1

- $aff(A_3, A_3) = 0$
- ightharpoonup aff $(A_3, A_4) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{q_1}$
- $aff(A_3, A_5) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{q_1}$
- $aff(A_3, A_6) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50q_1$
- ► aff(A_3 , A_7)= 20 · 1 + 30 · 1 + 0 · 1 = 50 q_1

$$20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 + 10 \cdot 1 + 30 \cdot 1 = 90_{q_1, q_2}$$

- $aff(A_4, A_5) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50q_1$
- $aff(A_4, A_6) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50q_1$
- $aff(A_4, A_7) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 + 0 \cdot 1 + 10 \cdot 1 + 30 \cdot 1 = 90_{a_1, a_2}$
- ► aff (A_5, A_5) = 20 · 1 + 30 · 1 + 0 · 1 = 50 q_1
- ► aff (A_5, A_6) = 20 · 1 + 30 · 1 + 0 · 1 = 50 q_1
- $aff(A_5, A_7) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50q_1$

 $S_2 = 10 \text{ y } S_3 = 30 \text{ acceden a } q_2$

Matriz de Acceso						
$\mid S_1 \mid S_2 \mid S_$						
q_1	20	30	0			
q_2	0	10	30			

Matriz de Afinidad AA = $aff(A_i, A_j)$

		A_1	A_2	A_3	A_4	A_5	A_6	A_7
_	<i>A</i> ₁	50	50	0	50	50	50	50
_	A_2	50	50	0	50	50	50	50
_	<i>A</i> ₃	0	0	0	0	0	0	0
_	A_4	50	50	0	90	50	50	90
_	A ₅	50	50	0	50	50	50	50
_	A_6	50	50	0	50	50	50	50
_	A_7	50	50	0	90	50	50	90

- $aff(A_6, A_6) = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50_{q_1}$
- ightharpoonup aff (A_6, A_7) = 20 · 1 + 30 · 1 + 0 · 1 = 50 q_1
- $aff(A_7, A_7) =$

 $ightharpoonup S_1 = 20 \text{ y } S_2 = 30 \text{ acceden a } q_1$

Matriz de $uso(q_i, A_i)$										
A ₁ A ₂ A ₃ A ₄ A ₅ A ₆ A ₇										
q_1	1	1	0	1	1	1	1			
q_2	0	0	0	1	0	0	1			

$$\sum \sum q_1 = 20 \cdot 1 + 30 \cdot 1 + 0 \cdot 1 = 50$$

$$\sum \sum q_2 = 0 \cdot 1 + 10 \cdot 1 + 30 \cdot 1 = 40$$

 $S_2 = 10 \text{ y } S_3 = 30 \text{ acceden a } q_2$

	Matriz de Acceso						
	$ S_1 S_2 S$						
Ī	q_1	20	30	0			
Ī	q_2	30					

Matriz de Afinidad $AA = aff(A_i, A_i)$

							, ,
	A_1	A_2	A_3	A_4	A ₅	A_6	A_7
$\overline{A_1}$	50	50	0	50	50	50	50
$\overline{A_2}$	50	50	0	50	50	50	50
$\overline{A_3}$	0	0	0	0	0	0	0
A_4	50	50	0	90	50	50	90
A_5	50	50	0	50	50	50	50
$\overline{A_6}$	50	50	0	50	50	50	50
A_7	50	50	0	90	50	50	90

EJEMPLO 2

Considere el conjunto de consultas $Q = q_1, q_2, q_3, q_4$, atributos $A = A_1, A_2, A_3, A_4$, sitios $S = S_1, S_2, S_3$, y las siguientes matrices de uso de atributos por consultas, y frecuencias de acceso de aplicaciones:

	A_1	A_2	<i>A</i> ₃	A_4
q_1	0	1	1	0
q ₂	1	1	1	0
q ₃	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S ₃
$\overline{q_1}$	20	5	0
$\overline{q_2}$	10	0	15
q ₃	0	40	5
q_4	0	20	10

Asuma que la razón $\frac{acceso}{ejecucion}$ = 1 para todas las consultas q_k y sitios S_i , y que A_1 es el atributo clave. Obtenga la Matriz de Afinidad correspondiente.

	A_1	A_2	A_3	A_4
A_1	70	25	25	45
A_2	25	50	50	0
<i>A</i> ₃	25	50	80	0
A_4	45	0	0	45

$$\Sigma q_1 = 25$$

$$\Sigma q_2 = 25$$

$$\Sigma q_3 = 45$$

$$\Sigma q_3 = 45$$

 $\Sigma q_4 = 30$

CONTENIDO

- 1 Fragmentación Vertica
 - Matriz de Uso
 - Matriz de Afinidad
 - Ejemplo Matriz de Afinidad
- 2 Algoritmo de Fragmentación Vertical
 - Algoritmo de Agrupamiento
- 3 Fragmentación Híbrida
- 4 Conclusión
- 5 Ejercicio Fragmentación Vertica

- ► El algoritmo de agrupamiento toma la matriz de afinidad y reorganiza los atributos para formar grupos de atributos que tienen una alta afinidad entre ellos
- **Bond Energy Algorithm (BEA)** encuentra un orden de atributos, tal que la medida global de **A**finidad se **M**áximiza (AM) es la afinidad de A_i , A_i con sus vecinos.

$$AM = \sum_{i=1}^{n} \sum_{i=1}^{n} aff(A_i, A_j) [aff(A_i, A_{j-1}) + aff(A_i, A_{j+1})]$$

BEA

- Entrada: matriz de afinidad AA.
- ► Salida: Matriz de afinidad agrupada CA.
 - 1 Inicialización: Elige una columna de AA que se fija en CA.
 - **2 Iteración**: Posiciona el resto de las n-i columnas (i: número de columnas posicionadas en CA) en la matriz CA.
 - 3 Mayor contribución: Por cada columna elige el lugar que contribuye más a la medida de afinidad global.
 - 4 Orden de columnas: Finalmente ordena las filas de acuerdo al orden de las columnas

BEA

 \triangleright ¿Cómo determinamos el mejor lugar para posicionar una columna A_k ?

$$cont(A_i, A_k, A_j) = 2 \cdot bond(A_i, A_k) + 2 \cdot bond(A_k, A_j) - 2 \cdot bond(A_i, A_j)$$

donde:

$$bond(A_x, A_y) = \sum_{z=1}^n aff(A_z, A_x) \cdot aff(A_z, A_y)$$

Considere la siguiente matriz de afinidad AA y la matriz CA donde A_1 y A_2 han sido ya situadas. Debemos situar A_3 :

$$AA = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \\ A_1 & 45 & 0 & 45 & 0 \\ A_2 & 0 & 80 & 5 & 75 \\ A_3 & 45 & 5 & 53 & 3 \\ A_4 & 0 & 75 & 3 & 78 \end{bmatrix}$$

$$CA = \begin{pmatrix} A_1 & A_2 \\ 45 & 0 \\ 0 & 80 \\ 45 & 5 \\ 0 & 75 \end{pmatrix}$$

Considerando el orden:
$$A_f - A_3 - A_1$$
:
 $cont(A_f, A_3, A_1) = 2bond(A_f, A_3) + 2bond(A_3, A_1) - 2bond(A_f, A_1)$
 $= 2 * 0 + 2 * 4410 - 2 * 0 = 8820$

$$bond(A_f, A_3) = aff(A_1, A_f) * aff(A_1, A_3) + aff(A_2, A_f) * aff(A_2, A_3) + aff(A_3, A_f) * aff(A_3, A_3) + aff(A_4, A_f) * aff(A_4, A_3) = 0 * 45 + 0 * 5 + 0 * 53 + 0 * 3 = 0$$

$$bond(A_3, A_1) = aff(A_1, A_3) * aff(A_1, A_1) + aff(A_2, A_3) * aff(A_2, A_1) + aff(A_3, A_3) * aff(A_3, A_1) + aff(A_4, A_3) * aff(A_4, A_1) = 45 * 45 + 5 * 0 + 53 * 45 + 3 * 0 = 4410$$

25/60

Considere la siguiente matriz de afinidad AA y la matriz CA donde A_1 y A_2 han sido ya situadas. Debemos situar A_3 :

$$AA = \begin{vmatrix} A_1 & A_2 & A_3 & A_4 \\ A_1 & 45 & 0 & 45 & 0 \\ A_2 & 0 & 80 & 5 & 75 \\ A_3 & 45 & 5 & 53 & 3 \\ A_4 & 0 & 75 & 3 & 78 \end{vmatrix}$$

$$\begin{array}{c|cccc} & A_1 & A_2 \\ \hline & 45 & 0 \\ CA = & 0 & 80 \\ & 45 & 5 \\ & 0 & 75 \end{array}$$

Considerando el orden:
$$A_f - A_3 - A_1$$
:
 $cont(A_f, A_3, A_1) = 2bond(A_f, A_3) + 2bond(A_3, A_1) - 2bond(A_f, A_1)$
 $= 2 * 0 + 2 * 4410 - 2 * 0 = 8820$

Considerando el orden:
$$A_1 - A_3 - A_2$$
:
 $cont(A_1, A_3, A_2) = 2bond(A_1, A_3) + 2bond(A_3, A_2) - 2bond(A_1, A_2)$
 $= 2 * 4410 + 2 * 890 - 2 * 225 = 10150$

Considerando el orden: $A_2 - A_3 - A_4$: $cont(A_2, A_3, A_f)$ =2 $bond(A_2, A_3)$ +2 $bond(A_3, A_f)$ -2 $bond(A_2, A_f)$ = 1780

▶ Dado que el orden $A_1 - A_3 - A_2$ entrega la mayor contribución, la matriz CA nos queda de la siguiente manera:

$$CA = \begin{vmatrix} A_1 & A_3 & A_2 \\ 45 & 45 & 0 \\ 0 & 5 & 80 \\ 45 & 53 & 5 \\ 0 & 3 & 75 \end{vmatrix}$$

► Luego se procede de igual forma para el atributo A₄

$$cont(A_{f}, A_{4}, A_{1}) = 2bond(A_{f}, A_{4}) + 2bond(A_{4}, A_{1}) - 2bond(A_{f}, A_{1}) = 2 * 0 +2 * 135 -2 * 0 = 270$$

$$cont(A_{1}, A_{4}, A_{3}) = 2bond(A_{1}, A_{4}) + 2bond(A_{4}, A_{3}) - 2bond(A_{1}, A_{3}) = 2 * 135 +2 * 768 -2 * 4410 = -7014$$

$$cont(A_{3}, A_{4}, A_{2}) = 2bond(A_{3}, A_{4}) + 2bond(A_{4}, A_{2}) - 2bond(A_{3}, A_{2}) = 2 * 768 +2 * 11865 -2 * 890 = 23486$$

$$cont(A_{2}, A_{4}, A_{f}) = 2bond(A_{2}, A_{4}) + 2bond(A_{4}, A_{f}) - 2bond(A_{2}, A_{f}) = 2 * 11865 +2 * 0 -2 * 0 = 23730$$

▶ Dado que el orden $A_2 - A_4 - A_f$ entrega la mayor contribución, la matriz CA nos queda de la siguiente manera:

$$CA = \begin{array}{|c|c|c|c|c|c|}\hline & A_1 & A_3 & A_2 & A_4 \\ \hline & 45 & 45 & 0 & 0 \\ & 0 & 5 & 80 & 75 \\ & 45 & 53 & 5 & 3 \\ & 0 & 3 & 75 & 78 \\ \hline \end{array}$$

Finalmente queda reorganizar las filas tal como quedaron las columnas.

▶ Al reorganizar las filas obtenemos la matriz *CA* final:

	A_1	A_3	A_2	A_4
A ₁	45	45	0	0
A_2	0	5	80	75
A_3	45	53	5	3
A_4	0	3	75	78

		A_1	A_3	A_2	A_4
_	A_1	45	45	0	0
CA =	A_3	45	53	5	3
CA =	A_2	0	5	80	75
	A_4	0	3	75	78

¿Cómo se divide un conjunto de atributos agrupados (A_1, \ldots, A_m) en dos (o más) conjuntos (A_1, \ldots, A_i) , (A_i, \ldots, A_m) de tal forma que no existan aplicaciones que accedan a ambos (o a más de un) conjuntos?

TA: Atributos de Arriba

BA: Atributos de Abajo

- Uso de grupos de atributos por aplicaciones:
 - TQ = conjunto de aplicaciones que acceden solo a TA
 - ► BQ = conjunto de aplicaciones que acceden solo a BA
 - ► OQ = conjunto de aplicaciones que acceden a TA y BA
- Número de accesos
 - CTQ = número total de accesos a atributos por aplicaciones que acceden solo a TA
 - CBQ = número total de accesos a atributos por aplicaciones que acceden solo a BA
 - COQ = número total de accesos a atributos por aplicaciones que acceden a TA y BA
- Encontrar el punto en la diagonal que maximice:

$$MAX(CTQ \cdot CBQ - COQ^2)$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
$\overline{A_1}$	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ightharpoonup CTQ: Consultas que Acceden solamente a arriba: $A_1 = 0$
- ► CBQ: Consultas que Acceden **solamente abajo**: $A3 \circ A_2 \circ A_4 = q_1, q_4 = 25 + 30 = 55$
- **COQ**: Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_2, q_3 = 25 + 45 = 70$

$$CTQ \cdot CBQ - (COQ^2) = 0 \cdot 55 - 70^2 = -4900$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- CTQ: Consultas que Acceden solamente a arriba: A₁ = 0
- ▶ CBQ: Consultas que Acceden **solamente abajo**: $A3 \circ A_2 \circ A_4 = q_1, q_4 = 25 + 30 = 55$
- **COQ**: Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_2, q_3 = 25 + 45 = 70$

$$CTQ \cdot CBQ - (COQ^2) = 0 \cdot 55 - 70^2 = -4900$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- CTQ: Consultas que Acceden solamente a arriba: A₁ = 0
- ▶ CBQ: Consultas que Acceden **solamente abajo**: $A3 \circ A_2 \circ A_4 = q_1, q_4 = 25 + 30 = 55$
- **COQ**: Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_2, q_3 = 25 + 45 = 70$

$$CTQ \cdot CBQ - (COQ^2) = 0.55 - 70^2 = -4900$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- **CTQ**: Consultas que Acceden **solamente a arriba**: $A_1 = 0$
- ▶ CBQ: Consultas que Acceden **solamente abajo**: $A3 \circ A_2 \circ A_4 = q_1, q_4 = 25 + 30 = 55$
- **COQ**: Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_2, q_3 = 25 + 45 = 70$

$$CTQ \cdot CBQ - (COQ^2) = 0 \cdot 55 - 70^2 = -4900$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- **CTQ**: Consultas que Acceden **solamente a arriba**: $A_1 = 0$
- **CBQ**: Consultas que Acceden **solamente abajo**: $A3 \circ A_2 \circ A_4 = q_1, q_4 = 25 + 30 = 55$
- **COQ:** Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_2, q_3 = 25 + 45 = 70$

$$CTQ \cdot CBQ - (COQ^2) = 0 \cdot 55 - 70^2 = -4900$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o $A_3 = q_4 = 30$
- ► CBQ: Consultas que Acceden **solamente abajo**: A_2 o A_4 = 0
- ► COQ: Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_1, q_2, q_3 = 25 + 25 + 45 = 95$

$$CTQ \cdot CBQ - (COQ^2) = 30 \cdot 0 - 95^2 = -9025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ▶ CTQ: Consultas que Acceden **solamente a arriba**: A_1 o $A_3 = q_4 = 30$
- ► CBQ: Consultas que Acceden **solamente abajo**: A_2 o $A_4 = 0$
- ► COQ: Consultas que Acceden a **ambas**: $A_1 ... A_4 = g_1, g_2, g_3 = 25 + 25 + 45 = 95$

$$CTQ \cdot CBQ - (COQ^2) = 30 \cdot 0 - 95^2 = -9025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o $A_3 = q_4 = 30$
- ► CBQ: Consultas que Acceden solamente abajo: A_2 o $A_4 = 0$
- COQ: Consultas que Acceden a **ambas**: $A_1 ldots A_4 = q_1, q_2, q_3 = 25 + 25 + 45 = 95$

$$CTQ \cdot CBQ - (COQ^2) = 30 \cdot 0 - 95^2 = -9025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o $A_3 = q_4 = 30$
- ► CBQ: Consultas que Acceden **solamente abajo**: A_2 o A_4 = 0
- ► COQ: Consultas que Acceden a **ambas**: $A_1 ... A_4 = q_1, q_2, q_3 = 25 + 25 + 45 = 95$

$$CTQ \cdot CBQ - (COQ^2) = 30 \cdot 0 - 95^2 = -9025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o $A_3 = q_4 = 30$
- ► CBQ: Consultas que Acceden solamente abajo: A_2 o $A_4 = 0$
- COQ: Consultas que Acceden a **ambas**: $A_1 \dots A_4 = q_1, q_2, q_3 = 25 + 25 + 45 = 95$

$$CTQ \cdot CBQ - (COQ^2) = 30 \cdot 0 - 95^2 = -9025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_{3}	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o A_3 o $A_2 = q_1, q_2, q_4 = 25 + 25 + 30 = 80$
- ► CBQ: Consultas que Acceden **solamente abajo**: $A_4 = 0$
- COQ: Consultas que Acceden a **ambas**: $A_1 \dots A_4 = q_3 = 45$

$$CTQ \cdot CBQ - (COQ^2) = 80 \cdot 0 - 45^2 = -2029$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o A_3 o $A_2 = q_1, q_2, q_4 = 25 + 25 + 30 = 80$
- CBQ: Consultas que Acceden solamente abajo: A₄ = 0
- COQ: Consultas que Acceden a **ambas**: $A_1 \dots A_4 = q_3 = 45$

$$CTQ \cdot CBQ - (COQ^2) = 80 \cdot 0 - 45^2 = -2029$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o A_3 o $A_2 = q_1, q_2, q_4 = 25 + 25 + 30 = 80$
- CBQ: Consultas que Acceden solamente abajo: A₄ = 0
- COQ: Consultas que Acceden a **ambas**: $A_1 \dots A_4 = q_3 = 45$

$$CTQ \cdot CBQ - (COQ^2) = 80 \cdot 0 - 45^2 = -2029$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
q_1	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o A_3 o $A_2 = q_1, q_2, q_4 = 25 + 25 + 30 = 80$
- ► CBQ: Consultas que Acceden solamente abajo: $A_4 = 0$
- ► COQ: Consultas que Acceden a **ambas**: $A_1 \dots A_4 = q_3 = 45$

$$CTQ \cdot CBQ - (COQ^2) = 80 \cdot 0 - 45^2 = -2025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

- ► CTQ: Consultas que Acceden **solamente a arriba**: A_1 o A_3 o $A_2 = q_1, q_2, q_4 = 25 + 25 + 30 = 80$
- CBQ: Consultas que Acceden solamente abajo: $A_4 = 0$
- ► COQ: Consultas que Acceden a **ambas**: $A_1 \dots A_4 = q_3 = 45$

$$CTQ \cdot CBQ - (COQ^2) = 80 \cdot 0 - 45^2 = -2025$$

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
q_2	10	0	15
q_3	0	40	5
q_4	0	20	10

¿Debo continuar?

uso	A_1	A_2	A_3	A_4
q_1	0	1	1	0
q_2	1	1	1	0
q_3	1	0	0	1
q_4	0	0	1	0

	S_1	S_2	S_3
$\overline{q_1}$	20	5	0
\dot{q}_2	10	0	15
q_3	0	40	5
q_4	0	20	10

CA	A_1	A_3	A_2	A_4
A_1	45	45	0	0
A_3	45	53	5	3
A_2	0	5	80	75
A_4	0	3	75	78

Asumiendo que A_1 es la clave primaria de $A = \{A_1, A_2, A_3, A_4\}$, usando BEA y el Algoritmo de Particionado podemos definir las siguientes tablas fragmentadas verticalmente.

►
$$A_1 = \{\underline{A_1}, A_3, A_2\}$$

► $A_2 = \{A_1, A_4\}$

$$A_2 = \{\underline{A_1}, A_4$$

CORRECCIÓN DE LA FRAGMENTACIÓN

- ▶ Una relación R definida sobre el conjunto de atributos A con clave K genera los fragmentos verticales $FV_R = (R_1, R_2, \dots, R_n)$
 - **Completitud**: lo siguiente debe ser verdad para *A*:

$$A=\bigcup A_{R_i}$$

▶ **Reconstrucción**: La reconstrucción debe ser posible a través de:

$$R = \bowtie_k R_i, \forall R_i \in F_R$$

- Fragmentos disjuntos:
 - Las claves primarias no se consideran como traslape

CONTENIDO

- 1 Fragmentación Vertica
 - Matriz de Uso
 - Matriz de Afinidad
 - Ejemplo Matriz de Afinidad
- 2 Algoritmo de Fragmentación Vertica
 - Algoritmo de Agrupamiento
- 3 Fragmentación Híbrida
- 4 Conclusión
- 5 Ejercicio Fragmentación Vertica

FRAGMENTACIÓN HÍBRIDA

- En la mayoría de los casos, una simple fragmentación horizontal o vertical de un esquema de base de datos no será suficiente para satisfacer los requisitos de las aplicaciones de usuario.
- En este caso, una fragmentación vertical puede ir seguida de una horizontal, o viceversa, produciendo una partición con estructura de árbol.
- Dado que los dos tipos de estrategias de partición se aplican uno después del otro, esta alternativa se denomina fragmentación híbrida.

CONTENIDO

- 1 Fragmentación Vertica
 - Matriz de Uso
 - Matriz de Afinidad
 - Ejemplo Matriz de Afinidad
- 2 Algoritmo de Fragmentación Vertica
 - Algoritmo de Agrupamiento
- 3 Fragmentación Híbrida
- 4 Conclusión
- 5 Ejercicio Fragmentación Vertica

CONCLUSIÓN

- ▶ Para fragmentar verticalmente, se debe elaborar las medidas de afinidad
- Luego, implementar el algoritmo BEA
- Y por último, aplicar el algoritmo de agrupamiento

CONTENIDO

- 1 Fragmentación Vertica
 - Matriz de Uso
 - Matriz de Afinidad
 - Ejemplo Matriz de Afinidad
- 2 Algoritmo de Fragmentación Vertica
 - Algoritmo de Agrupamiento
- 3 Fragmentación Híbrida
- 4 Conclusión
- 5 Ejercicio Fragmentación Vertical

Considere la relación JUG(ID, NOMBRE, SUELDO, EQUIPO) y las siguientes consultas:

```
ightharpoonup q_1:
  SELECT NOMBRE, SUELDO FROM JUG WHERE ID = valor AND EQUIPO \Longrightarrow
        "valor"

ightharpoonup q_2:
 1 | SELECT EQUIPO, SUELDO FROM JUG WHERE NOMBRE = "valor"

ightharpoonup q_3:
  SELECT COUNT (NOMBRE) FROM JUG WHERE EQUIPO = "valor"

ightharpoonup q_4:
 1 | SELECT SUM (SUELDO) FROM JUG WHERE EQUIPO = "valor"
```

Considere la siguiente matriz de frecuencia de acceso (FA) de cada consulta en cada sitio y la fórmula para calcular la afinidad entre atributos:

FA	$ S_1 $	S_2	S_3
Q_1	15	20	10
Q_2	15	10	25
Q_3	30	20	10
Q_4	3	6	5

$$aff(A_i, A_j) = \sum_{\text{Consultas que acceden a } (A_i \land A_j)} (AC)$$

$$S_1 : \frac{\text{acceso}}{\text{ejecución}} = 3$$

$$S_2 : \frac{\text{acceso}}{\text{ejecución}} = 1$$

$$S_3 : \frac{\text{acceso}}{\text{acceso}} = 2$$

a) Genere la matriz de uso de atributos, considere:

 A_1 =ID, A_2 =NOMBRE, A_3 =SUELDO, A_4 =EQUIPO.

uso	<i>A</i> ₁	A_2	<i>A</i> ₃	A_4
Q_1				
Q_2				
Q_3				
Q_4				

aff	A_1	A_2	A_3	A_4
A_1				
A_2				
A_3				
A_4				

- c) Asuma que el atributo A_1 se fija en la matriz CA, ubique el resto de las columnas y obtenga el correcto agrupamiento.
- d) Determine los fragmentos de la tabla.

a) Genere la matriz de uso de atributos, considere: A_1 =ID, A_2 =NOMBRE, A_3 =SUELDO, A_4 =EQUIF

uso	A_1	A_2	<i>A</i> ₃	A_4
Q_1	1	1	1	1
Q_2	0	1	1	1
Q_3	0	1	0	1
Q_4	0	0	1	1

$$\sum (Q_1) = 15*3 + 20*1 + 10*2 = 85$$

$$\sum (Q_2) = 15*3 + 10*1 + 25*2 = 105$$

$$\sum (Q_3) = 30*3 + 20*1 + 10*2 = 130$$

$$\sum (Q_4) = 3*3 + 6*1 + 5*2 = 25$$

$$\sum (Q_1) = 15*3 + 20*1 + 10*2 = 85$$

$$\sum (Q_2) = 15*3 + 10*1 + 25*2 = 105$$

$$\sum (Q_3) = 30*3 + 20*1 + 10*2 = 130$$

$$\sum (Q_4) = 3*3 + 6*1 + 5*2 = 25$$

Aff(
$$A_1$$
, A_1) = 85*1 + 105*0 + 130*0 + 25*0 = 85
Aff(A_1 , A_2) = 85*1 + 105*0 + 130*0 + 25*0 = 85
Aff(A_1 , A_3) = 85*1 + 105*0 + 130*0 + 25*0 = 85
Aff(A_1 , A_4) = 85*1 + 105*0 + 130*0 + 25*0 = 85
Aff(A_2 , A_2) = 85*1 + 105*1 + 130*1 + 25*0 = 320
Aff(A_2 , A_3) = 85*1 + 105*1 + 130*0 + 25*0 = 190
Aff(A_3 , A_4) = 85*1 + 105*1 + 130*1 + 25*0 = 320
Aff(A_3 , A_4) = 85*1 + 105*1 + 130*0 + 25*1 = 215
Aff(A_4 , A_4) = 85*1 + 105*1 + 130*0 + 25*1 = 215
Aff(A_4 , A_4) = 85*1 + 105*1 + 130*1 + 25*1 = 345

aff	<i>A</i> ₁	A_2	A_3	A_4
A_1	85	85	85	85
$\overline{A_2}$	85	320	190	320
A ₃	85	190	215	215
A_4	85	320	215	345

c) Asuma que el atributo A_1 se fija en la matriz CA, ubique el resto de las columnas.

bond(
$$A_1,A_2$$
) = Aff(A_1,A_1)*Aff(A_1,A_2) + Aff(A_2,A_1)*Aff(A_2,A_2) + Aff(A_3,A_1)*Aff(A_3,A_2) + Aff(A_4,A_1)*Aff(A_4,A_2) = 77.775

bond(
$$A_1$$
, A_3) = Aff(A_1 , A_1)*Aff(A_1 , A_3) + Aff(A_2 , A_1)*Aff(A_2 , A_3) + Aff(A_3 , A_1)*Aff(A_3 , A_3) + Aff(A_4 , A_3)*Aff(A_4 , A_3) = 59.925

bond(
$$A_1, A_4$$
) =
 $Aff(A_1, A_1)*Aff(A_1, A_4) +$
 $Aff(A_2, A_1)*Aff(A_2, A_4) +$
 $Aff(A_3, A_1)*Aff(A_3, A_4) +$
 $Aff(A_4, A_1)*Aff(A_4, A_4) = 82.025$
bond(A_2, A_3) =
 $Aff(A_1, A_2)*Aff(A_1, A_3) +$
 $Aff(A_2, A_2)*Aff(A_2, A_3) +$
 $Aff(A_3, A_2)*Aff(A_3, A_3) +$
 $Aff(A_4, A_2)*Aff(A_4, A_3) = 177.675$

bond(
$$A_2, A_4$$
) =
 $Aff(A_1, A_2)*Aff(A_1, A_4) +$
 $Aff(A_2, A_2)*Aff(A_2, A_4) +$
 $Aff(A_3, A_2)*Aff(A_3, A_4) +$
 $Aff(A_4, A_2)*Aff(A_4, A_4) = 260.875$
bond(A_3, A_4) =
 $Aff(A_1, A_3)*Aff(A_1, A_4) +$
 $Aff(A_2, A_3)*Aff(A_2, A_4) +$
 $Aff(A_3, A_3)*Aff(A_3, A_4) +$
 $Aff(A_4, A_3)*Aff(A_4, A_4) = 188.425$

UBICANDO A2:

$$cont(A_0, A_2, A_1) = 2*bond(A_2, A_1) = 2*77.775 = 155.550$$

$$cont(A_1,A_2,A_3) = 2*bond(A_1,A_2) = 2*77.775 = 155.550$$

 \therefore El mejor orden puede ser A_1,A_2 o A_2,A_1

Escogeremos A_1, A_2 .

UBICANDO A3:

$$cont(A_0,A_3,A_1) = 2*bond(A_3,A_1) = 2*59.925 = 119.850$$

cont(
$$A_1$$
, A_3 , A_2) = 2*bond(A_1 , A_3) + 2*bond(A_3 , A_2) - 2*bond(A_1 , A_2) = 2*(59.925+177.675-77.775) = 319.650

$$cont(A_2,A_3,A_4) = 2*bond(A_2,A_3) = 2*177.675 = 355.350$$

 \therefore El mejor orden es A_1, A_2, A_3

UBICANDO A4:

$$cont(A_0,A_4,A_1) = 2*bond(A_4,A_1) = 2*82.025 = 164.050$$

$$cont(A_1,A_4,A_2) = 2*bond(A_1,A_4) + 2*bond(A_4,A_2) - 2*bond(A_1,A_2) = 2*(82.025+260.875-77.775) = 530.250$$

cont(
$$A_2$$
, A_4 , A_3) = 2*bond(A_2 , A_4) + 2*bond(A_4 , A_3) - 2*bond(A_2 , A_3) = 2*(260.875+188.425-177.675) = **543.250**

$$cont(A_3,A_4,A_5) = 2*bond(A_3,A_4) = 2*188.425 = 376.850$$

 \therefore El mejor orden es A_1, A_2, A_4, A_3

Matriz CA sin ordenar.

CA	A_1	A_2	A_4	A_3
A_1	85	85	85	85
A_2	85	320	320	190
A_3	85	190	215	215
A_4	85	320	345	215

Matriz CA ordenada.

CA	A_1	A_2	A_4	A_3
A_1	85	85	85	85
A_2	85	320	320	190
A_4	85	320	345	215
A_3	85	190	215	215

uso	A_1	A_2	A_3	A_4
Q_1	1	1	1	1
$\overline{Q_2}$	0	1	1	1
$\overline{Q_3}$	0	1	0	1
Q_4	0	0	1	1

ŀ	FA	S_1	S_2	S_3
(\mathfrak{I}_1	15	20	10
(\mathfrak{I}_2	15	10	25
($\overline{\mathcal{J}_3}$	30	20	10
	\mathfrak{Q}_4	3	6	5

$\sum Q_1$: 85
$\sum Q_2$: 105
$\sum Q_3$: 130
$\sum Q_4$: 25

CA	A_1	A_2	A_4	A_3
A_1	85	85	85	85
A_2	85	320	320	190
A_4	85	320	345	215
$\overline{A_3}$	85	190	215	215

RESULTADO

- ► Matriz[A_1 , A_1]: $CTQ \cdot CBQ COQ^2 = 0 \cdot (105_{Q_2} + 130_{Q_3} + 25_{Q_4}) 85_{Q_1}^2 = 0 \cdot 260 7225 = -7225$
- ► Matriz[A_2 , A_2]: $CTQ \cdot CBQ COQ^2 = 0 \cdot 25_{Q_4} (85_{Q_1} + 105_{Q_2} + 130_{Q_3})^2 = 0 \cdot 25 102400 = -102400$
- ► Matriz[A_4 , A_4]: $CTQ \cdot CBQ COQ^2 = 130_{Q_3} \cdot 0 (85_{Q_1} + 105_{Q_2} + 25_{Q_4})^2 = 130 \cdot 0 46225 = -46225$

La mejor fragmentación es:

$$F_1 = \{A_1\}$$

 $F_2 = \{A_1, A_2, A_3, A_4\}$

∴ no es recomendable fragmentar.