Energie als fundamentale Einheit: Natürliche Einheiten mit $\alpha = 1$

Johann Pascher

26. März 2025

Zusammenfassung

Diese Arbeit untersucht die Konsequenzen der Annahme, dass die Feinstrukturkonstante $\alpha=1$ in einem System natürlicher Einheiten ($\hbar=c=1$) gesetzt wird. Dabei wird Energie als fundamentale Einheit identifiziert, auf die alle physikalischen Größen zurückgeführt werden können. Die Analyse umfasst dimensionale Umformulierungen, vereinfachte Grundgleichungen und kosmologische Implikationen.

Inhaltsverzeichnis

1	Einleitung	2
2	Natürliche Einheiten und $\alpha = 1$	2
3	Energie als fundamentale Einheit	2
4	Vereinfachte Grundgleichungen	2
5	Tabelle der umgeformten Größen	2
6	Kosmologische Implikationen	2
7	Philosophische Implikationen	3
8	Zusammenfassung	3

1 Einleitung

In der theoretischen Physik werden üblicherweise c und \hbar auf eins gesetzt, wie von Planck eingeführt [1]. Diese Arbeit untersucht die Konsequenzen, wenn zusätzlich $\alpha = 1$ gesetzt wird.

2 Natürliche Einheiten und $\alpha = 1$

Theorem 2.1 (Definition von $\alpha = 1$). Die Feinstrukturkonstante ist [4]:

$$\alpha = \frac{e^2}{4\pi\varepsilon_0\hbar c} \approx \frac{1}{137.036} \tag{1}$$

Mit $\alpha = 1$, $\hbar = c = 1$:

$$e = \sqrt{4\pi\varepsilon_0} \tag{2}$$

3 Energie als fundamentale Einheit

Theorem 3.1 (Energie als Basis). Alle Größen lassen sich auf Energie zurückführen [3]:

- $L\ddot{a}nge: [L] = [E^{-1}]$
- $Zeit: [T] = [E^{-1}]$
- Masse: [M] = [E]
- Ladung: $[Q] = [\sqrt{4\pi}]$ (dimensionslos)

4 Vereinfachte Grundgleichungen

• Maxwell-Gleichungen [4]:

$$\nabla \cdot \vec{E} = \rho \tag{3}$$

$$\nabla \times \vec{B} - \frac{\partial \vec{E}}{\partial t} = \vec{j} \tag{4}$$

• Schrödinger-Gleichung:

$$i\frac{\partial\psi}{\partial t} = -\frac{1}{2m}\nabla^2\psi + V\psi \tag{5}$$

5 Tabelle der umgeformten Größen

Physikalische Größe	SI-Einheiten	$\hbar = c = \alpha = 1$
Länge	m	eV^{-1}
Zeit	s	eV^{-1}
Masse	kg	eV
Energie	J	eV
Ladung	C	dimensionslos
El. Feld	V/m	eV^2
Mag. Feld	T	eV^2

6 Kosmologische Implikationen

Die Annahme $\alpha = 1$ könnte [5]:

- Elektromagnetische Wechselwirkungen stärker mit Gravitation verbinden.
- Eine einheitliche Energiebeschreibung von Raumzeit und Materie ermöglichen.

Abbildung 1: Beziehung zwischen Energie und Länge im $\alpha = 1$ -System.

7 Philosophische Implikationen

- Energie als fundamentalste Eigenschaft der Realität [10].
- Raum und Zeit als emergente Eigenschaften eines Energiefeldes [5].

8 Zusammenfassung

Durch $\alpha = 1$ wird Energie zur fundamentalen Einheit, die eine tiefere Einheit der Natur offenbart.

Literatur

- [1] Planck, M. (1899). Über irreversible Strahlungsvorgänge. Sitzungsberichte der Preußischen Akademie der Wissenschaften.
- [2] Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322(10), 891-921.
- [3] Duff, M. J., Okun, L. B., & Veneziano, G. (2002). Trialogue on the number of fundamental constants. Journal of High Energy Physics, 2002(03), 023.
- [4] Feynman, R. P. (1985). QED: The Strange Theory of Light and Matter. Princeton University Press.
- [5] Verlinde, E. (2011). On the origin of gravity and the laws of Newton. Journal of High Energy Physics, 2011(4), 29.
- [6] Mohr, P. J., Newell, D. B., & Taylor, B. N. (2016). CODATA Recommended Values of the Fundamental Physical Constants: 2014. Reviews of Modern Physics, 88(3), 035009.
- [7] Barrow, J. D. (2002). The Constants of Nature: The Numbers That Encode the Deepest Secrets of the Universe. Pantheon Books.
- [8] Schwinger, J. (1958). Selected Papers on Quantum Electrodynamics. Dover Publications.
- [9] Adler, R. J. (2010). Six Easy Pieces: Essentials of Physics Explained by Its Most Brilliant Teacher. Basic Books.
- [10] Wilczek, F. (2008). The Lightness of Being: Mass, Ether, and the Unification of Forces. Basic Books.