Q5[4]. Consider the following graph. Show the initial numbers and one iteration of applying the PageRank algorithm on the graph. Use the alternative derivation formula with d=0.9.

Twitial Numbers:
#5 = 0.1 ×
$$\frac{1}{8}$$
 + 0.4 × 0 = 0.0125
#11 = 0.1 × $\frac{1}{8}$ + 0.4 × $\left(\frac{1}{8} + \frac{1/8}{2}\right)$ = 0.18125
#2 = 0.1 × $\frac{1}{8}$ + 0.4 × $\left(\frac{1/8}{3}\right)$ = 0.05
#8 = 0.1 × $\frac{1}{8}$ + 0.4 × $\left(\frac{1/8}{2} + \frac{1/8}{2}\right)$ = 0.125
#9 = 0.1 × $\frac{1}{8}$ + 0.4 × $\left(\frac{1/8}{2} + \frac{1/8}{2}\right)$ = 0.1625
#3 = 0.1 × $\frac{1}{8}$ + 0.4 × 0 = 0.0125
#10 = 0.1 × $\frac{1}{8}$ + 0.4 × $\left(\frac{1/8}{2} + \frac{1/8}{3}\right)$ = 0.10625

#5 = 0.1 ×
$$\frac{1}{8}$$
 + 0.9 × A = 0.029483
#11 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{6}{8} + \frac{6/8}{2}\right)$ = 0.058653125
#2 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{4/6}{3}\right)$ = 0.01553125
#7 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{4/6}{3}\right)$ = 0.029483
#8 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{4/6}{2}\right)$ = 0.03372875
#4 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{1}{8}\right)$ = $\frac{1}{8}$ = 0.049295
#3 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{1}{8}\right)$ = 0.029483
#10 = 0.1 × $\frac{1}{8}$ + 0.9 × $\left(\frac{1}{8}\right)$ = 0.029483

#5
$$\rightarrow$$
 A = 0.0125 10.6625 = 0.01887
#11 \rightarrow B = 0.18125 10.6625 = 0.0235
#2 \rightarrow C = 0.05 10.6625 = 0.01887
#7 \rightarrow D = 0.0125 10.6625 = 0.01887
#8 \rightarrow E = 0.125 10.6625 = 0.1887
#4 \rightarrow F = 0.1615 10.6625 = 0.01887
#3 \rightarrow b = 0.0125 10.6625 = 0.01887
#10 \rightarrow H = 0.10625 10.6625 = 0.16038

Q3[2]. Consider again the graph from Q2, but now suppose that each node represents a paper. What is the paper co-citation index of nodes 6 and 7?

Lacombination # of how many things refrence both 6 and 7 (inclusive) when they are cited by the same papers

The paper co-citation is 2

Q4[2]. Consider again the graph from Q2, but now suppose that each node represents a paper. What is the bibliographic coupling of nodes 2 and 3?

La # of papers they both cite (coupled from there)

The bibliographic coupling is 2

Q2[4]. Consider the following graph.

a[2]) What is the degree prestige of node 3?

$$P_0(N_3) = \frac{1}{11-1} = \frac{1}{10} = 0.10$$

- » Note: degree is typically mesured on a 1-0 scale
 - SO degree is LOW here

b[2]) What is the proximity prestige of node 9?

Distance To get to Node Q:

$$N1 \rightarrow 2, 3, 2$$

 $N3 \rightarrow 1, 2$
 $N4 \rightarrow 1$
 $\approx (2+3+2+1+2+1)/6 = 1.83$

Q1[6]. Consider the following graph.

a[2]) What is the degree centrality of node 3?

$$C_0(N_3): \frac{3}{5-1} : \frac{3}{4} : 0.75$$

- Note: degree is typically mesured on a 1-0 scale
 - SO degree is HIBH here

b[2]) What is the closeness centrality for node 3?

$$C_c(N_3) = \frac{5-1}{(1+1+1+2)} = \frac{4}{5} = 0.80$$

Shortest Path:

 $N_3 \Rightarrow N_3 = 1$
 $N_3 \Rightarrow N_4 = 1$
 $N_3 \Rightarrow N_1 = 1$
 $N_3 \Rightarrow N_1 = 1$
 $N_3 \Rightarrow N_1 = 1$

- » Note clusine es is typically mesured on a 1.0 scale
 - SD closness is HibH here

c[2]) What is the betweenness centrality for node 3?

- Path Connections: $N_1 \rightarrow N_5 \rightarrow N_4 = {}^{1}N_1$ $N_2 \rightarrow N_3 \rightarrow N_5 = {}^{1}N_1$ $N_4 \rightarrow N_3 \rightarrow N_5 = {}^{1}N_1$ $N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow N_3 = 212$
 - Total Connection (5-1) * (5-2) /2 = 6
- # of shortest paths that

 pass through node 3 /# of shortest

 path's

 available

through

node 3