STA_445_Assignment 7

Sophia Kubisiak

04/02/2024

Load your packages here:

```
library(tidyverse)
library(patchwork)
library(viridis)
library(latex2exp)
library(plotly)
library(ggplot2)
```

Problem 1:

The infmort data set from the package faraway gives the infant mortality rate for a variety of countries. The information is relatively out of date, but will be fun to graph. Visualize the data using by creating scatter plots of mortality vs income while faceting using region and setting color by oil export status. Utilize a \log_{10} transformation for both mortality and income axes. This can be done either by doing the transformation inside the aes() command or by utilizing the scale_x_log10() or scale_y_log10() layers. The critical difference is if the scales are on the original vs log transformed scale. Experiment with both and see which you prefer.

```
library(faraway)
```

```
## Warning in check_dep_version(): ABI version mismatch:
## lme4 was built with Matrix ABI version 1
## Current Matrix ABI version is 0
## Please re-install lme4 from source or restore original 'Matrix' package
data(infmort)
```

a. The rownames() of the table gives the country names and you should create a new column that contains the country names. *rownames

```
infmort2 <- infmort %>%
  mutate(country = rownames(infmort))
```

b. Create scatter plots with the log10() transformation inside the aes()command.

```
ggplot(data=infmort2, aes(x = log10(mortality) ,y = log10(income))) +
geom_point(aes(color=oil))+
facet_grid(facets = . ~ region)+
labs(x = 'mortality' , y = 'income')
```


c. Create the scatter plots using the <code>scale_x_log10()</code> and <code>scale_y_log10()</code>.Set the major and minor breaks to be useful and aesthetically pleasing.Comment on which version you find easier to read.

```
ggplot(data=infmort2, aes(x = mortality , y = income)) +
geom_point(aes(color = oil)) +
facet_grid(facets = . ~ region)+
scale_x_log10()+
scale_y_log10()
```


I think that the scale_x_log10 and scale_y_log10 is easier to read, because they are layers added to the graph. It's easier to see the scale change.

d. The package ggrepel contains functions geom_text_repel() and geom_label_repel() that mimic the basic geom_text() and geom_label() functions in ggplot2, but work to make sure the labels don't overlap. Select 10-15 countries to label and do so using the geom_text_repel() function.

```
library(ggrepel)

countries <- slice_sample(infmort2 , n=10)

ggplot(data = infmort2) +
    geom_point(aes(x = mortality , y = income , color = oil)) +
    facet_grid(facets = . ~ region)+
    scale_x_log10()+
    scale_y_log10()+
    geom_text_repel(data = countries , aes( x = mortality , y = income , label = country))</pre>
```


Problem 2

Using the datasets::trees data, complete the following:

```
library(datasets)
```

a. Create a regression model for y = Volume as a function of x = Height.

```
model <- lm(Volume ~ Height, data = trees)</pre>
```

b. Using the str(your model's name) command, to get a list of all the information stored in the linear model object. Use \$ to extract the slope and intercept of the regression line (the coefficients).

```
summary(model)$coefficients
```

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -87.12361 29.2731221 -2.976232 0.0058346689
## Height 1.54335 0.3838693 4.020509 0.0003783823
```

c. Using ggplot2, create a scatter plot of Volume vs Height.

```
ggplot(data = trees, aes(x = Height, y = Volume)) +
geom_point()
```


d. Create a nice white filled rectangle to add text information to using by adding the following annotation layer.

```
ggplot(data = trees, aes(x = Height, y = Volume)) +
  geom_point() +
  annotate('rect', xmin=60, xmax=70, ymin=65, ymax=75, fill='white')
```


e. Add some annotation text to write the equation of the line $\hat{y}_i = -87.12 + 1.54 * x_i$ in the text area.

```
ggplot(data = trees, aes(x = Height, y = Volume)) +
geom_point() +
annotate('rect', xmin=60, xmax=70, ymin=65, ymax=75, fill='white') +
annotate('text', x = 65, y = 70, label = expression(hat(y)[i] == -87.12 + 1.54*x[i]))
```


f. Add annotation to add $R^2 = 0.358$

```
ggplot(data = trees, aes(x = Height, y = Volume)) +
geom_point() +
annotate('rect', xmin=60, xmax=70, ymin=65, ymax=75, fill='white') +
annotate('text', x = 65, y = 70, label = expression(hat(y)[i] == -87.12 + 1.54*x[i])) +
annotate('text', x = 65, y = 50, label = expression(R^2 == 0.358))
```


g. Add the regression line in red. The most convenient layer function to use is geom_abline().

```
ggplot(data = trees, aes(x = Height, y = Volume)) +
  geom_point() +
  annotate('rect', xmin=60, xmax=75, ymin=65, ymax=75, fill='white') +
  annotate('text', x = 65, y = 70, label = expression(hat(y)[i] == -87.12 + 1.54*x[i])) +
  annotate('text', x = 65, y = 50, label = expression(R^2 == 0.358)) +
  geom_abline(intercept = -87.12, slope = 1.54, color = "red")
```


Problem 3

In datasets::Titanic table summarizes the survival of passengers aboard the ocean liner *Titanic*. It includes information about passenger class, sex, and age (adult or child). Create a bar graph showing the number of individuals that survived based on the passenger Class, Sex, and Age variable information. You'll need to use faceting and/or color to get all four variables on the same graph. Make sure that differences in survival among different classes of children are perceivable. *Unfortunately, the data is stored as a tableand to expand it to a data frame, the following code can be used.*

```
'''r
Titanic <- Titanic %>% as.data.frame()
'''
```

a. Make this graph using the default theme. If you use color to denote survivorship, modify the color scheme so that a cold color denotes death.

```
ggplot(data = Titanic) +
geom_bar(aes(x = Class, y = Freq , fill = Survived) , stat = "identity")+
facet_grid(. ~ Sex + Age)+
scale_fill_manual(values = c("lightblue", "salmon"), name = "Survived", labels=c("No", "Yes"))
```


b. Make this graph using the theme_bw() theme.

```
ggplot(data = Titanic) +
  geom_bar(aes(x = Class, y = Freq , fill = Survived) , stat = "identity")+
  facet_grid(. ~ Sex + Age)+
  scale_fill_manual(values = c("lightblue", "salmon"), name = "Survived", labels=c("No", "Yes"))+
  theme_bw()
```


c. Make this graph using the cowplot::theme_minimal_hgrid() theme.

```
ggplot(data = Titanic) +
  geom_bar(aes(x = Class, y = Freq , fill = Survived) , stat = "identity")+
  facet_grid(. ~ Sex + Age)+
  scale_fill_manual(values = c("lightblue", "salmon"), name = "Survived", labels=c("No", "Yes"))+
  cowplot::theme_minimal_hgrid()
```


d. Why would it be beneficial to drop the vertical grid lines? No, because the vertical grid lines separate class. The lines make it easier to see each class.