

Empirical Analysis of Sim-and-Real Cotraining

Adam Wei, Abhinav Agarwal, Boyuan Chen, Rohan Bosworth, Nicholas Pfaff, and Russ Tedrake

IROS 21 October, 2025

Robot Data Diet

How can we obtain data for robot imitation learning?

Sim-and-Real Cotraining

Performance Objective:
Success rate on planar
pushing from pixels

Focusing on a single canonical task enables controlled and thorough analysis

Performance Objective:

Success rate on planar pushing from pixels

Model:

Diffusion Policy

$$\mathcal{L}_{\mathcal{D}^{lpha}} = lpha \mathcal{L}_{\mathcal{D}_{R}} + (1-lpha) \mathcal{L}_{\mathcal{D}_{S}}$$

Real-World Dataset:

Simulated Dataset:

Does Cotraining Improve Performance?

Policy trained with

50 real demos, 0 sim demos

Policy cotrained with

50 real demos, 2000 sim demos

Success rate: **10/20**

Success rate: **18/20**

1.8x improvement!

Does Cotraining Improve Performance?

Policy trained with

10 real demos, 0 sim demos

Policy cotrained with

10 real demos, 2000 sim demos

Success rate: 2/20

Success rate: **14/20**

7x improvement!

Key Takeaways: Performance Gains

- Cotraining improved performance up to 7x!
- Cotraining is most effective in the low to medium data regime.
- Scaling simulated data alone is insufficient!

The Effect of Sim2Real Gaps (i.e. distribution shifts)

Which sim2real gaps affect the value of simulated data?

Example: Analyzing Color Shift

Ex. Analyze policies trained on increasing intensities of color shift

The Effect of Sim2Real Gaps (i.e. distribution shifts)

Visual Gaps

Color Shift Color Randomization Camera Pose Shift

Physical Gaps

Center of Mass Shift

Task Gaps

Target Shift
Object Mismatch

Key Takeaways: Sim2Real Gaps

Cotraining still improves performance...
 but all gaps reduce the value of sim data

Physics & task gaps were most impactful

 Better rendering improves performance, but perfect rendering hurts performance!

Sim vs Real "Expert"

Real-World Demos

 Fixes orientation first, then translation

Sim Demos

Fixes orientation and translation simultaneously

Sim vs Real "Expert"

Distinctly more similar to real-world expert!

Real-World Demos

50 demos

Cotrained Policy

Sim Demos

2000 demos

Binary probes show that policies are learning to **distinguish sim from real!**

Sim & Real Discernability

High-performing policies must learn to *identify sim vs real* since the *physics* of each environment *requires different actions*

Positive Transfer: Scaling Law

Scaling sim data improves real-world test loss according to a power law!

Positive Transfer: Scaling Law

Scaling sim data improves real-world test loss according to a power law!

$$\mathcal{L}_{\mathcal{D}_T^{\text{test}}} \propto |\mathcal{D}_S|^{-0.332} \cdot |\mathcal{D}_T|^{-0.397}, \quad R^2 = 0.945$$

$$\text{MSE}_{\mathcal{D}_T^{\text{test}}} \propto |\mathcal{D}_S|^{-0.285} \cdot |\mathcal{D}_T|^{-0.587}, \quad R^2 = 0.975$$

A sim demo is worth ~0.5-0.8 real demos

Empirical Analysis of Sim-and-Real Cotraining

- Simulation is a promising tool for scaling data generation in robotics
- We study the <u>principles</u> and <u>mechanisms</u> of cotraining from both sim and real data

Our PaperScan to learn more!

Personal Website (Adam Wei) Feel free to reach out!