

Claudio Arbib Università di L'Aquila

Ricerca Operativa

Programmazione Lineare: proprietà geometriche

Sommario

- <u>Iperpiani in IRⁿ</u>
- Programmazione lineare: intuizione geometrica
 - analisi di un sistema dinamico come problema di PL
 - geometria del problema duale
 - un problema più prosaico
 - direzione di miglioramento
- Direzioni di un poliedro
 - cono di recessione e sue proprietà
- Teorema di Weyl
- Teorema fondamentale della PL

Iperpiani in IRⁿ

Iperpiani in IRⁿ

$$a_1 x_1 + a_2 x_2 = d\sqrt{a_1^2 + a_2^2}$$

$$(a_1, a_2) \cdot (x_1, x_2) = d |(a_1, a_2)|$$

In generale

Iperpiani in IRⁿ

$$a_1 x_1 + a_2 x_2 = d\sqrt{a_1^2 + a_2^2}$$

$$(u_1, u_2) \cdot (x_1, x_2) = d$$

L'iperpiano è quindi il luogo dei vettori $\mathbf{x} = (x_1, ..., x_n)$ di IRⁿ la cui proiezione sulla direzione del versore $\mathbf{u} = (u_1, ..., u_n)$ è pari a d (distanza dell'iperpiano dall'origine)

• Dove va a finire una massa puntiforme soggetta a gravità in uno spazio delimitato da vincoli?

• Quale valore devono assumere le forze di reazione esercitate dai vincoli per opporsi alla forza di gravità?

• Quale valore devono assumere le forze di reazione esercitate dai vincoli per opporsi alla forza di gravità?

• y_i = intensità della forza di reazione del vincolo i

• $y_i = 0$ per i = 3, ..., m (vincoli inattivi)

• y_i = intensità della forza di reazione del vincolo i

• $y_i = 0$ per i = 3, ..., m (vincoli inattivi)

• y_i = intensità della forza di reazione del vincolo i

• $y_i = 0$ per i = 3, ..., m (vincoli inattivi)

Un pasticciere prepara due tipi di torte utilizzando un certo set di ingredienti. In dispensa trova 1,5 kg di farina, 3 di zucchero, 1 di cacao, 20 uova e 100 g di vaniglia.

Torta	Ingredienti per kg					
	Farina (g)	Zucchero (g)	Uova (n.)	Vaniglia (g)	Cacao (g)	
Millefoglie	300	100	2	20	0	
Profiterol	250	250	5	0	200	
Dispensa	1500	3000	20	100	1000	

Poiché il prezzo al chilo di una millefoglie è 24€ e di un profiterol è 28€, si chiede quale quantità di ciascuna torta sia conveniente produrre per massimizzare il ricavo

Il consumo di farina conseguente alla produzione di x_1 kg di millefoglie e x_2 kg di profiterol, espresso in grammi, è dato da:

$$300x_1 + 250x_2$$

Torta	Ingredienti per kg					
	Farina (g)	Zucchero (g)	Uova (n.)	Vaniglia (g)	Cacao (g)	
Millefoglie	300	100	2	20	0	
Profiterol	250	250	5	0	200	
Dispensa	1500	3000	20	100	1000	

Tale consumo non dovrà superare la disponibilità di farina:

$$300x_1 + 250x_2 \le 1500$$

Perché la produzione risulti fattibile occorre quindi avere:

$$300x_1 + 250x_2 \leq 1500$$

$$100x_1 + 250x_2 \leq 3000$$

$$2x_1 + 5x_2 \leq 20$$

$$20x_1 \leq 100$$

$$200x_2 \leq 1000$$

 $con x_1, x_2 \ge 0.$

L'obiettivo di massimizzare i ricavi si esprime infine:

max
$$24x_1 + 28x_2$$

I vincoli del problema si possono riscrivere come segue:

 $con x_1, x_2 \ge 0.$

Osserviamo che il secondo vincolo è dominato dal terzo e può quindi essere eliminato.

Rappresentiamo il poliedro di questo problema di PL in IR².

Direzione di miglioramento

L'intersezione della retta con P è luogo di punti soluzione aventi ugual valore k

Direzione di miglioramento

Essa corrisponde al punto \mathbf{x}^* di coordinate 5/2, 3 e il suo valore è $f(\mathbf{x}^*) = 144$.

Direzione di miglioramento

Per precisare questo concetto introduciamo la nozione di direzione di un poliedro P

Sia $P = P(\mathbf{A}, \mathbf{b}) \subseteq IR^n$ un poliedro.

<u>Definizione</u>: Un vettore $\mathbf{d} \in \mathrm{IR}^n$ si dice direzione di P se per ogni \mathbf{x} ∈ P per ogni $\lambda \in \mathrm{IR}$ si ha

$$\mathbf{x} + \lambda \mathbf{d} \in P$$

Esempio 1: Sia *P* definito dalle disequazioni $3x_1 + 2x_2 \le 6$ $x_1 + 3x_2 \le 6$

<u>Definizione</u>: L'insieme di tutti i vettori di che sono direzioni di *P* si dice cono di recessione di *P*, e si indica con rec(*P*).

Esempio 2: Sia P definito dalle disequazioni $3x_1 + 2x_2 \le 6$ $x_2 \ge 0$ rec(P)

Esempio 3: Sia *P* definito dalle disequazioni $3x_1 + 2x_2 \le 6$ $x_2 \ge 1$

Nota: rec(P) è inalterato e non è contenuto in P

Esempio 4: Sia *P* definito dalle disequazioni $3x_1 + 2x_2 \le 6$ $x_2 \ge 1$ $x_1 \ge 0$

Nota: rec(P) si riduce all'insieme $\{0\}$

Proprietà del cono di recessione

Teorema 1

 \forall poliedro P, rec $(P) \neq \emptyset$

Dimostrazione:

Per ogni $\lambda > 0$ e $\mathbf{x} \in P$ si ha $\mathbf{x} + \lambda \mathbf{0} = \mathbf{x} \in P$. Dunque $\mathbf{0} \in \operatorname{rec}(P)$.

Teorema 2

Sia
$$P = \{ \mathbf{x} \in IR^n : \mathbf{A}\mathbf{x} \le \mathbf{b} \}$$
. Allora $rec(P) = \{ \mathbf{z} \in IR^n : \mathbf{A}\mathbf{z} \le \mathbf{0} \}$

Dimostrazione:

Se per z si ha $Az \le 0$, allora z è una direzione per P:

$$\mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{A}\mathbf{z} \leq \mathbf{0} \implies \mathbf{A}\mathbf{x} + \lambda \mathbf{A}\mathbf{z} = \mathbf{A}(\mathbf{x} + \lambda \mathbf{z}) \leq \mathbf{b} \quad \forall \lambda > 0$$

Viceversa, se \mathbf{z} è una direzione per P, allora $\mathbf{Az} \leq \mathbf{0}$:

(abs.)
$$\sin \mathbf{A}(\mathbf{x} + \lambda \mathbf{z}) \le \mathbf{b} \ \forall \lambda > 0$$
, ma $\exists i$ per il quale $(\mathbf{A}\mathbf{z})_i > 0$ allora scegliendo $\lambda > [b_i - (\mathbf{A}\mathbf{x})_i]/(\mathbf{A}\mathbf{z})_i$ si esce da P

Teorema di Weyl

Notazione: Indichiamo con Ext(P) l'insieme dei punti estremi (vertici) del poliedro P.

<u>Teorema 2</u> (Weyl, 1936)

Ogni punto \mathbf{x} di un poliedro $P = P(\mathbf{A}, \mathbf{b})$ con $Ext(P) \neq \emptyset$ può esprimersi come somma di un punto $\mathbf{u} \in conv(Ext(P))$ e di una direzione $\mathbf{d} \in rec(P)$:

$$P = \operatorname{conv}(\operatorname{Ext}(P)) + \operatorname{rec}(P)$$

Esercizio:

$$P = \{ \mathbf{x} \in \mathbb{IR}^3 : -x_1 + 2x_2 \ge 2, x_1 - x_2 \ge -2, 5x_1 + 3x_2 \ge 15 \}$$

$$\operatorname{Ext}(P) = \{ (24/13, 25/13), (9/8, 25/8) \}$$

$$\operatorname{rec}(P) = \{ \mathbf{x} \in \mathbb{IR}^3 : -x_1 + 2x_2 \ge 0, x_1 - x_2 \ge 0, 5x_1 + 3x_2 \ge 0 \}$$

- verificare che $(3, 3) \in P$
- trovare $\mathbf{u} \in \text{conv}(\text{Ext}(P)), \mathbf{d} \in \text{rec}(P) \text{ tali che } (3, 3) = \mathbf{u} + \mathbf{d}$

Teorema di Weyl

Esempio 5: Sia *P* definito dalle disequazioni

$$2x_1 + x_2 \ge 4 \qquad x_1 + x_2 \ge 3$$
$$x_1, x_2 \ge 0$$

Ext(
$$P$$
) = {(0, 4), (1, 2), (3, 0)}
conv(Ext(P))
rec(P) = { $\mathbf{x} \in IR^2$: $x_1, x_2 \ge 0$ }

Consideriamo il problema in forma generale

P:
$$\max \mathbf{cx}$$
 $\mathbf{Ax} \leq \mathbf{b}$

Teorema 3

Sia $P = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$, e sia $\mathbf{x}^{\circ} \in P$. Allora

- 1) $\exists \mathbf{d} \in \operatorname{rec}(P) : \mathbf{cd} > 0 \Rightarrow P \text{ illimitato}$
- 2) $\forall \mathbf{d} \in \operatorname{rec}(P), \mathbf{cd} \leq 0 \implies \operatorname{se} \operatorname{Ext}(P) \neq \emptyset$, P ammette una soluzione ottima $\mathbf{x}^* \in \operatorname{Ext}(P)$.

Esempio 6: Consideriamo il problema P

cioè max
$$3x_1 + 2x_2$$

 $-2x_1 - x_2 \le -4$
 $-x_1 - x_2 \le -3$
 $-x_1 \le 0, -x_2 \le 0$

Per
$$\mathbf{d} = (1, 1)$$
 si ha $\mathbf{cd} = 3 \cdot 1 + 2 \cdot 1 = 5 > 0$

Quindi P è illimitato superiormente

Esempio 7: Consideriamo il problema

cioè max
$$-4x_1 - x_2$$

 $-2x_1 - x_2 \le -4$
 $-x_1 - x_2 \le -3$
 $-x_1 \le 0, -x_2 \le 0$

Per ogni $\mathbf{d} \in \operatorname{rec}(P)$ si ha ora $\mathbf{cd} \leq 0$

Quindi uno dei punti rossi rappresenta una soluzione ottima

Dimostrazione:

1) $\exists \mathbf{d} \in \operatorname{rec}(P) : \mathbf{cd} > 0 \Rightarrow P \text{ illimitato}$

Per definizione di direzione, $\mathbf{x}^{\circ} \in P$, $\mathbf{d} \in \operatorname{rec}(P) \Rightarrow \mathbf{x}^{\circ} + \lambda \mathbf{d} \in P$ per ogni $\lambda > 0$.

Sia per assurdo x^* ottima per P.

Quindi $\mathbf{c}\mathbf{x}^* \ge \mathbf{c}(\mathbf{x}^\circ + \lambda \mathbf{d})$.

Ma poiché cd > 0, ciò non è evidentemente vero per qualsiasi $\lambda > 0$: ad esempio, per $\lambda > (cx^* - cx^\circ)/cd$

Dunque P è illimitato.

2) $\forall \mathbf{d} \in \operatorname{rec}(P), \mathbf{cd} < 0 \implies P$ ammette una soluzione ottima $\mathbf{x}^* \in \operatorname{Ext}(P)$

Sia
$$E = \text{Ext}(P) = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$$
 e sia k tale che $\mathbf{cv}_k \ge \mathbf{cv}_i$ $i = 1, ..., p$.

Per il <u>Teorema di Weyl</u>, ogni $\mathbf{x} \in P$ si può scrivere $\mathbf{x} = \mathbf{u} + \mathbf{d}$, con $\mathbf{u} \in \text{conv}(E)$ e $\mathbf{d} \in \text{rec}(P)$. Si ha evidentemente

$$\mathbf{cx} = \mathbf{cu} + \mathbf{cd} \le \mathbf{cu}$$
 (infatti per ipotesi $\mathbf{cd} \le 0$)

Inoltre

$$\mathbf{cu} = \mathbf{c}(\lambda_1 \mathbf{v}_1 + \dots + \lambda_p \mathbf{v}_p)$$

$$\operatorname{con} \lambda_1 + \dots + \lambda_p = 1, \lambda_1, \dots, \lambda_p \ge 0 \text{ (infatti } \mathbf{u} \in \operatorname{conv}(E))$$
Quindi

$$\mathbf{cx} \leq \mathbf{c}(\lambda_1 \mathbf{v}_1 + \dots + \lambda_p \mathbf{v}_p) = \lambda_1 \mathbf{c} \mathbf{v}_1 + \dots + \lambda_p \mathbf{c} \mathbf{v}_p \leq (\lambda_1 + \dots + \lambda_p) \mathbf{c} \mathbf{v}_k = \mathbf{c} \mathbf{v}_k$$

Se ne deduce che $\mathbf{v}_k \in \operatorname{Ext}(P)$ è una soluzione ottima per P.