

AEDC-TSR-78-V11 JUNE 1978

HEAT TRANSFER TESTS ON THE NOSE OF THE SHUTTLE ORBITER EXTERNAL TANK (FH-15)

D. B. Carver and D. E. Boylan ARO, Inc., AEDC Division A Sverdrup Corporation Company von Kármán Gas Dynamics Facility Arnold Air Force Station, Tennessee

Period Covered: May 1, 1978 - May 5, 1978

Approved for public release; distribution unlimited.

SEP 14 1978

Reviewed by:

Approved for Publication: FOR THE COMMANDER

Cin I Jackbaki

ERVIN P. JASKOLSKI, Captain, USAF Test Director, VKF Division Directorate of Test Operations CHAUNCEY D. SMITH, JR, Lt Colonel, JSAF

Director of Test Operations
Deputy for Operations

Prepared for: NASA-JSC/ES3

Houston, TX 77058

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

78 09 08 034

UNCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AEDC-TSR-78-V11	9 TRECIPIENT'S CATALOG NUMBER
Heat-Transfer Tests on the Nose of the Shuttle Orbiter External Tank (FH-15).	Final Report, May 1-5, 1978 6. PERFORMING ORG. REPORT NUMBER
D. B. Carver D. E. Boylan, ARO, Inc., a Sverdrup Corporation Company	8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Center/DOOV Air Force Systems Command Arnold Air Force Station, Tennessee 37389	Program Element, Project, Task Program Element, 921E01
National Aeronautics and Space Administration (JSC/ES3) Houston, Texas 77058	June 1978 June 1978 January Pages 42
14. MONITORING AGENCY HAME A ADDRESS(II different from Controlling Office	UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimit	ted.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	from Report)
18. SUPPLEMENTARY NOTES	
10 MEN WORDS (Cardina an annual alda Managara and Idantifu bu block much	
aerodynamic heating space shuttle wind tunnel tests supersonic flow	
interference heating ABSTRACT (Continue on reverse side it necessary and identity by block numbers and open the state of	.0275-scale model of the space -transfer distributions. Spe- e heating around the forward s. The thin-skin thermocouple numbers 3, 4, and 5.5 at free- ft. Model angle of attack was
DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE	08 034 4B
	AEDC-TSR-78-V11 4. TITLE (and Subtility) Heat-Transfer Tests on the Nose of the Shuttle Orbiter External Tank (FH-15). 7. AUTHOR(s) D. B. Carver D. E. Boylan ARO, Inc., a Sverdrup Corporation Company 9. PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Center/DOOV Air Force Systems Command Arnold Air Force Station. Tennessee 37389 11. CONTROLLING OFFICE NAME AND ADDRESS National Aeronautics and Space Administration (JSC/ES3) Houston, Texas 77058 14. MONITORING AEROC TRAME A ADDRESS(II dillerent from Controlling Office of the Approved for public release; distribution unlimitation of the Controlling Office of the Approved for public release; distribution unlimitation of the Approved for public release; distribution

CONTENTS

		Page
	NOMENCLATURE	. 2
1.0	INTRODUCTION	. 5
2.0	APPARATUS	
	2.1 Wind Tunnel	. 6
	2.2 Model	6
	2.3 Instrumentation and Measurement Accuracy	. 7
3.0	TEST DESCRIPTION	
	3.1 Test Conditions	8
	3.2 Test Procedure	8
	3.3 Data Reduction	9
	3.4 Adiabatic Wall Temperature	11
4.0	PRECISION OF MEASUREMENTS	
	4.1 Test Conditions	13
	4.2 Data	14
5.0		14
	REFERENCES	15
	APPENDIXES	
	ILLUSTRATIONS	
Figu	ILLUSTRATIONS	
	ILLUSTRATIONS Tunnel A	17
Figu 1. 2.	ILLUSTRATIONS are Tunnel A	17
1. 2. 3.	ILLUSTRATIONS Tunnel A	
Figu 1. 2. 3. 4.	ILLUSTRATIONS Tunnel A	18 20 23
Figu 1. 2. 3. 4. 5.	ILLUSTRATIONS Tre Tunnel A	18 20 23 24
Figu 1. 2. 3. 4. 5.	ILLUSTRATIONS Tunnel A	18 20 23 24 31
Figu 1. 2. 3. 4. 5. 6. 7.	ILLUSTRATIONS Tre Tunnel A	18 20 23 24 31 32
Figu 1. 2. 3. 4. 5.	ILLUSTRATIONS Tunnel A	18 20 23 24 31 32
Figu 1. 2. 3. 4. 5. 6. 7. 8.	Tunnel A	18 20 23 24 31 32
Figu 1. 2. 3. 4. 5. 6. 7. 8.	ILLUSTRATIONS Tre Tunnel A	18 20 23 24 31 32
Figu 1. 2. 3. 4. 5. 6. 7. 8.	Tunnel A	18 20 23 24 31 32
Figu 1. 2. 3. 4. 5. 6. 7. 8.	Tunnel A	18 20 23 24 31 32

1

NOMENCLATURE

_		
I	a ₁ ,a ₂ ,a ₃	Denote constant terms used to calculate R
1	ALPHA-MODEL, a	Model angle of attack, deg
	ALPHA-PREBEND	Sting prebend, deg
1	ALPHA-SECTOR, as	Tunnel sector angle, deg
	ь	Model wall thickness, in., or ft
I	CONFIG	Configuration number
11		 ET NOSE - Model with hardware on ET NOSE/CLEAN - Model with hardware off ET NOSE/T - Same as 1 but using boundary layer trips
	^c p	Model wall specific heat, Btu 1bm-°R
	CR	Model center of rotation, in.
П	DELY, ΔΥ	Lateral distance along an arc sector relative to cable tray, θ = 31.5 deg (see Fig. 5b)
П	DTWDT, dTW/dt	Derivative of the model wall temperature with respect to time, °R/sec
	FIT LENGTH	Time span in seconds over which a linear least-squares curve fit of $ \ln \frac{0.95 \text{ TO} - \text{TW}_{\underline{i}}}{0.95 \text{ TO} - \text{TW}} \text{ vs time was applied} $
	GROUP	L J Identification number for each tunnel injection
	H(TAW)	Heat-transfer coefficient, ODOT, Btu TAW - TW ft ² -sec-°R
	н(то)	Heat-transfer coefficient,
		QDOT, Btu TO - TW ft ² -sec-°R
	HI/HU	Ratio of interference to non-interference heat transfer coefficient, based on H(RTO)
	н(0.90то)	Heat-transfer coefficient, Opot Btu (0.90TO)-TW ft²-sec-°R
		t t

1	H(0.95TO)	Heat-transfer coefficient,
		QDOT , Btu_
1		QDOT, Btu (0.95TO)-TW ft ² -sec-*R
	H(RTO)	Heat-transfer coefficient,
1		QDOT , Btu
-		QDOT, Btu (RTO)-TW ft ² -sec-°R
1		
T	HREF, HREF-FR	Reference heat-transfer coefficient based
an N		on Fay-Riddell theory, Btu/ft2-sec-°R
1	HREF -	$ \frac{\left[\frac{8.1717 \text{ (PO1)}^{0.5} \text{(MU-0)}^{0.4} \left[1-\text{(P-INF/PO1)}\right]^{0.25}}{\text{(RN)}^{0.5} \text{ (TO)}^{0.15}}\right] $
45		[0.2235 + 0.0000135 [TO + 560]]
II.		
LI.		here PO1 ~ stagnation pressure downstream of normal shock, psia
	M	U-0 ~ air viscosity based on TO, lbf-sec/ft2
11	R	N ~ reference nose radius, (0.0275 ft)
	L	Axial reference length, (50.752 in.)
Π	MACH NO., M _∞	Free-stream Mach number
Ц	MODEL	Model configuration
П	MU-INF	Free-stream viscosity, lbf-sec/ft ²
U	P-INF	Free-stream pressure, psia
	PO, Po	Tunnel stilling chamber pressure, psia
	QDOT	Heat-transfer rate, wbc (DTWDT),
I		Btu/ft ² -sec
П	Q-INF	Free-stream dynamic pressure, psia
11	r	Recovery factor
Π	R	Analytical temperature ratio, TAW/TO (see Section 3.4)
TI .	RE/FT, Re _∞	Free-stream Reynolds number per foot, ft-1
П	RHO-INF	Free-stream density, slug/ft3
I	ROLL-MODEL	Model roll angle, positive for clockwise rotation looking upstream (=0 for θ = 0 facing top of tunnel), deg

L	STFR	Theoretical stagnation point Stanton number for a 0.0275-ft (1 scale foot) radius sphere calculated from Fay-Riddell theory
I	STFR = (RHO-INF) (HREF 7-INF) [0.2235 + 0.0000135(TO + 560)] (32.174)
1	SWITCH POSITION	Designates the position of the thermocouple selector switch
7	t	Time from start of model injection cycle, sec
1870 1870	T	Temperature, °R
	TAW	Adiabatic wall temperature, °R
§17	TC-NO(T/C)	Thermocouple Number
41	T-INF, T _∞	Free-stream temperature, °R
Francis	TO,To	Tunnel stilling chamber temperature, °R
**	TW	Model wall temperature, °R
	V-INF	Free-stream velocity, ft/sec
0-	w	Model wall density, 1bm/ft3
II .	x _m	Model axial distance measured from 10-deg cone apex (see Fig. 3b), in.
П	X/L	Thermocouple axial location ratioed to the reference length, L $(X/L = x_m/L - 0.0027)$
	YAW	Model yaw angle, deg
1	β	Angle of sideslip, equal to negative yaw angle, deg
C)	Y	Ratio of specific heat, 1.4 for air
П	δ	Local surface angle of attack, deg
17	ε	Combination of model roll angle and θ , deg
П	θ, THETA	External tank angular measurement, deg
П	λ	Local model deflection angle, deg
	SUBSCRIPTS	
	e	Flow properties at boundary layer edge
_	1	Initial conditions
I	60	Free-stream flow properties

The state of the s

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under program Element 921E01, Control Number 9E01-00-8, at the request of the National Aeronautics and Space Administration, Johnson Space Center (NASA/ JSC) for the Martin-Marietta Aerospace Co. (MMA), New Orleans, Louisiana. The NASA/JSC project monitor was Mrs. Dorothy B. Lee, with Mr. John Warmbrod of Marshall Space Flight Center as the test monitor. The MMA project monitor was Mr. Harry Carroll. The test results were obtained by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee. The test was conducted in the von Karman Gas Dynamics Facility (VKF), Supersonic Wind Tunnel (A) under Project No. V41A-20. The test period was from May 1-5, 1978. Copies of the final data were sent to NASA and MMA on June 2, 1978 in the form of a Final Data Package. Requests for copies of the data should be sent to NASA/JSC. A microfilm record will be retained permanently within the VKF and one printed copy will be retained temporarily.

The primary test objective was to obtain heat-transfer distributions on the forward 23 percent of the Space Shuttle External Tank (ET). Specific objectives were: (1) to determine the change in heating, if any, due to the small change in the nose spike and (2) to measure the interference heating on the surface around the forward fairing, trays, gaseous oxygen (GOX) line and brackets, for comparison with, "clean body" heating data.

The test was conducted using the thin-skin thermocouple technique to obtain the heat-transfer data, and selected flow field information were obtained using shadowgraph and oil flow photographs. Data were obtained at Mach numbers 3, 4 and 5.5; and at free stream Reynolds numbers of 3.7 and 5.0 million per ft. Model angle of attack was 0, and ±5 deg, with sideslip angles from -11 to +11 deg.

2.1 WIND TUNNEL

Tunnel A is a continuous, closed-circuit, variable density wind tunnel with an automatically driven flexible-plate-type nozzle and a 40- by 40-in. test section. The tunnel can be operated at Mach numbers from 1.5 to 6 at maximum stagnation pressures from 29 to 200 psia, respectively, and stagnation temperatures up to $750\,^{\circ}$ R ($M_{\infty} = 6$). Minimum operating pressures range from about one-tenth to one-twentieth of the maximum at each Mach number. The tunnel is equipped with a model injection system which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnel and airflow calibration information may be found in Ref. 1. A schematic view of Tunnel A and the model injection system is shown in Fig. 1, Appendix A.

2.2 MODEL

The ET Forebody model used for the present test was a 0.0275-scale model of the forward 23 percent of the Space Shuttle External Tank which was designed by Rockwell International. Model design and fabrication was performed by Martin Marietta Aerospace with details given in Martin drawing WT7508001. The model was constructed of 304 stainless steel with a skin thickness of 0.030 in., ±0.0005 (per fabrication specifications) at the instrumented areas. Skin thickness spot check measurements were made at the VKF using an ultrasonic thickness measuring instrument. Excellent agreement was noted, typically within 0.001 in. All thermocouples were spot welded to the thin-skin inner surface. Model photographs are presented in Fig. 2 and the basic model geometry is defined in Fig. 3. A sketch of the model installation is shown in Fig. 4.

Two configurations were tested, one with all hardware (ET NOSE) on, the other with the hardware removed (ET NOSE/CLEAN). Boundary layer trips were added during the test to verify that the boundary layer was naturally turbulent. The trips were formed from either twisted wires or commercial carborundum grit. Two 0.004-in. diam wires were twisted together and spot welded to the model surface for the first type of trip. The second type of trip was formed with #60 carborundum grit, about 1/4-in wide. In each case the trip was located just behind the fairing.

2.3 INSTRUMENTATION AND MEASUREMENT ACCURACY

Tunnel A stilling chamber pressure is measured with a 15, 60, 150, or a 300-psid transducer referenced to a near vacuum. Based on periodic comparisons with secondary standards, the accuracy (a bandwidth which includes 95 percent of the residuals i.e. 20 deviation) of these transducers is estimated to be within ±0.2 percent of reading or ±0.015 psia, whichever is greater. Stilling chamber temperature is measured with a copper-constantan thermocouple with an accuracy of ±3°F based on repeat calibrations (20 deviation).

The model was instrumented with 250 Chromel -constantan thermocouples with locations illustrated in Fig. 5, and their dimensional locations given in Table 1. All thermocouples were spot welded to the thin-skin inner surface.

The data were recorded using the Digital Equipment Corp. PDP-11 and DEC-10 Computers in conjunction with a Beckman 210 analog-to-digital converter. Data from a maximum of 97 thermocouples can be recorded during each tunnel injection. However, three switch positions provided the capability to record data from all 250 thermocouples during three tunnel injections.

3.1 TEST CONDITIONS

The test was conducted in Tunnel A at nominal Mach numbers of 3, 4, and 5.5 and free-stream unit Reynolds numbers of 3.7 and 5.0 million per ft. Data were taken at model angle-of-attack values of -5, 0, and 5 deg, with sideslip angles from -11 to 11 deg. The nominal tunnel test conditions are listed below, while a complete test summary showing all configurations tested, and the variables for each, is presented in Table 2.

M _∞	p _o , psia	To*, °R	HREF, ft ² -sec-°R	$Re_{\infty} \times 10^{-6}, ft^{-1}$
3.01	36	720	0.056	3.7
4.02	65,63	740,720	0.049	
5.5	127	720	0.039	
5.5	174,172	730,720	0.046	5.0

^{*} Compressor plant inlet temperature limitations required reducing stagnation temperature below the level requested by the user and project engineer. Tunnel stagnation pressure was adjusted to maintain the same Re_∞ .

3.2 TEST PROCEDURE

The initial step prior to recording the test data was to cool the model to approximately 40°F with cooled high pressure air. The cooling manifold was retracted from the model and the model attitude was established prior to injection. The thermocouple outputs were scanned approximately 17 times per second starting prior to model injection into the air-stream and continuing about 5 seconds after the model reached tunnel centerline. When the model reached tunnel centerline the model was immediately translated forward. After each injection, the cooling cycle was repeated to cool the model to an isothermal state.

3.3 DATA REDUCTION

The reduction of thin-skin thermocouple data normally involves only the calorimeteric heat balance which in coefficient form is:

$$H(TAW) = wbc_{p} \frac{dTW/dt}{TAW-TW}$$
 (1)

For this test a value of 0.95 TO (based on experience) was selected for TAW and equation (1) can be written

$$H(0.95T0) = wbc_{p} \frac{dTW/dt}{0.95T0-TW}$$
 (2)

Radiation and conduction losses are neglected in this heat balance and data reduction simply requires evaluation of dTW/dt from the temperature-time data and determination of model material properties. For the present tests, radiation effects were negligible; however, conduction effects can be significant in several regions of the model. To permit identification of these regions and to improve evaluation of the data, the following procedure was used.

Separation of variables and integration of equation (2) assuming constant w, b, $c_{\rm p}$, and TO yields

$$\frac{H(0.95T0)}{wbc_{p}} (t - t_{1}) = \ln \left[\frac{0.95T0 - TW_{1}}{0.95T0 - TW} \right]$$
 (3)

Differentiation of Eq. (3) with respect to time gives

$$\frac{H(0.95T0)}{wbc_{p}} = \frac{d}{dt} \ln \left[\frac{0.95T0 - TW_{i}}{0.95T0 - TW} \right]$$
 (4)

Since the left side of Eq. (4) is a constant, plotting $\ln \frac{0.95\text{TO} - \text{TW}_1}{0.95\text{TO} - \text{TW}}$ versus time will give a straight line if <u>conduction</u> is <u>negligible</u>. Thus, deviation from a straight line can be interpreted as conduction effects.

The data were evaluated in this manner, and generally a linear portion of the curve was used for all thermocouples. A linear least-square curve fit of ln [(0.95TO-TW₁)/(0.95TO-TW)] versus time was applied to the data. Data reduction was started as soon as the model reached the tunnel centerline and the curve fit extended for a time span which was a function of the heating rate, as shown in the following list.

Range	No. of Points (Fit Length)
$\frac{dTW}{dt} > 32$	5
$16 < \frac{dTW}{dt} \le 32$	7
$8 < \frac{dTW}{dt} \le 16$	9
$4 < \frac{dTW}{dt} \le 8$	13
$2 < \frac{dTW}{dt} \le 4$	17
$1 < \frac{dTW}{dt} \le 2$	25
$\frac{dTW}{dt} \le 1$	41

The above time spans were generally adequate to keep the evaluation of the right side of Eq. (4) within the linear region. The linearity of the fit was substantiated by visual inspection of the cases in question. This visual check of the data was done on the VKF graphics terminal. Strictly speaking, the value of c_p for the material was not constant, and the following relation $c_p = 0.0825 + (6.5 \times 10^{-5})$ TW, (304 stainless steel) Btu/lbm-°R (5) was used with the value of TW at the midpoint of the curve fit. The maximum variation of c_p over any curve fit was less than 0.5 percent.

The value of density used for 304 stainless steel was $w = 488.0 \text{ lbm/ft}^3$, and the skin thickness, b, was 0.030 in.

3.4 ADIABATIC WALL TEMPERATURE

The maximum available tunnel stagnation temperature for each Mach number tested is listed in Section 3.1. With these relatively low stagnation temperatures, the difference between the model wall temperature and recovery temperature was generally small in regions of peak heating. This small temperature difference causes the calculation of the heat-transfer coefficient to be very sensitive to deviations from the actual adiabatic wall temperature. Two values of the heat-transfer coefficient have been calculated based on an assumed constant recovery temperature, namely H(TO) and H(0.90TO). To account for changes in the recovery temperature a third value of the heat-transfer coefficient has been tabulated based on an analytical temperature ratio, R = TAW/TO.

The analytical method for determining R was developed by Rockwell International and has been used to calculate H(RTO). In this method, the following relationships were assumed:

$$R = \frac{TAW}{TO} \tag{6}$$

and

TAW =
$$T_e \left(1 + \frac{\gamma - 1}{2} r M_e^2\right)$$
 (7)
 $r = 0.898$ for turbulent flow

with r being the recovery factor and the subscript e identifying local properties at the boundary-layer edge. From these relationships, the temperature ratio can be defined as:

$$R = \frac{1 + 0.2 \text{ r M}_e^2}{1 + 0.2 \text{ M}_e^2}$$
 (8)

which is a function of the recovery factor and the local Mach number.

The local Mach number can be written

$$\mathbf{M}_{\mathbf{e}} = \mathbf{M}_{\mathbf{e}}(\mathbf{M}_{\infty}, \delta) \tag{9}$$

where ∞ identifies the free-stream property and δ is the local surface angle of attack.

The local Mach number can be approximated by using tangent cone flow theory, and was used in Equation (8) to give R as a function of M_{∞} and δ . Calculations of R were made for several values of M_{∞} and δ , and the results were curve fit by Rockwell International. The following equation resulted

$$R(M_{\infty},\delta) = a_1 + a_2 \cdot (\sin \delta)^{a_3}$$
 (10)

where a_1 , a_2 , a_3 are constants for a particular Mach number. The values of a_1 , a_2 , a_3 used for this test are:

M _∞	<u>a</u> 1	_a2	_a3
3.0	0.9345	0.1004	2.165
4.0	0.922	0.1004	1.965
5.5	0.910	0.1004	1.686

Standard matrix techniques, Ref. 2, were used to derive the following relations for δ , as applicable to the model geometry.

$$\delta = \arcsin \left(\sin \lambda \cos \alpha_{g} + \cos \lambda \cos \epsilon \sin \alpha_{g} \right) \tag{11}$$

where

α ≡ alpha-sector, deg

 $\varepsilon \equiv \text{roll model} + (\theta + 180), \text{ deg}$

 $\lambda \equiv local model deflection angle, deg$

$$\lambda = \sin^{-1}(\frac{12.062 - x_m}{16.876})$$
, deg for thermocouple on the ogive section $x_m > 1.355$ in.

(X/L > 0.0238)

 λ = 39.38 deg for thermocouples on the cone section, $x_m \le 1.355$ in. $(X/L \le 0.0238)$

 λ = 55 deg for all thermocouples on the fairing

The method used to calculate the analytical temperature ratio, R, has been applied to all of the tabulated data. The method represents a simplified approach to present a more realistic evaluation of TAW. However, in regions of separated flow or complex interaction, the values calculated for R may no longer apply and should be used with extreme care.

4.0 PRECISION OF MEASUREMENTS

The accuracy of the basic measurements (p_o and T_o) was discussed in Section 2.3. Based on repeat calibrations, these errors were found to be

$$\frac{\Delta p_o}{p_o} = 0.002 = 0.2\%, \frac{\Delta T_o}{T_o} = 0.005 = 0.5\%$$

Uncertainties in the tunnel free-stream parameters and the model aerodynamic coefficients were estimated using the Taylor series method of error propagation, Eq. (12)

$$(\Delta F)^2 = \left(\frac{\partial F}{\partial x_1} \Delta x_1\right)^2 + \left(\frac{\partial F}{\partial x_2} \Delta x_2\right)^2 + \left(\frac{\partial F}{\partial x_3} \Delta x_3\right)^2 \dots + \left(\frac{\partial F}{\partial x_n} \Delta x_n\right)^2$$
(12)

where ΔF is the absolute uncertainty in the dependent parameter $F = F(X_1, X_2, X_3, \dots, X_n)$ and X_n is the independent parameter (or basic measurement). ΔX_n is the uncertainty (error) in the independent measurement (or variable).

4.1 Test Conditions

The accuracy (based on 20 deviation) of the basic tunnel parameters, p_0 and T_0 , (see Section 2.3) and the 20 deviation in Mach number determined from test section flow calibrations were used to estimate uncertainties

in the other free-stream properties using Eq.(12). The computed uncertainties in the tunnel free-stream conditions are summarized in the following table.

Uncertainty,	(±)	percent of	actual	value

M _∞	M _{cc}	P _{co}	q _∞	Re _∞
3.01	0.6	2.6	1.4	1.2
4.01	0.4	2.4	1.5	1.2
5.50	0.3	1.9	1.3	1.1

The uncertainty in model angle of attack and sideslip angle as determined from calibrations is estimated to be ± 0.2 deg.

4.2 DATA

Estimated uncertainties for the individual terms in Eq. (2) were used in the Taylor series method of error propagation to obtain uncertainty in values of heat-transfer coefficient as given below:

H(TO), ft ² -sec-°R	Uncertainty, (±) percent
10 ⁻⁴	10
10 ⁻³	7
10 ⁻²	5

The data were deleted from the results for thermocouples which consistently exceeded the above quoted uncertainties.

5.0 DATA PACKAGE PRESENTATION

Detailed heat-transfer rate distributions were obtained on a 0.0275scale forebody model of the space shuttle external tank. Two configurations
were tested, one with all hardware on, the other with the hardware removed.

The standard configuration (hardware on) data can be compared directly to
the clean model data, thereby providing a ratio of interference heating to
undisturbed heating.

Shadowgraph pictures were taken during many model injections and two oil flow Groups were made at the end of the test program.

Data verification is best determined by comparing data from the clean model (no hardware) to appropriate analytical solutions. Because of the complex geometry of even the clean model, no truly accurate analytic modeling can be computed for the nose area. However, theory (Ref. 3) for a cone-ogive-cylinder at zero incidence is shown compared to the present data in Fig. 6. The agreement is considered adequate. A typical interference heating ratio plot is shown in Fig. 7. Typical tabulated data are shown in Fig. 8.

REFERENCES

- 1. Test Facilities Handbook (Tenth Edition). "von Karman Gas Dynamics Facility, Vol. 4." Arnold Engineering Development Center, May 1974.
- Trimmer, L. L. and Clark, E. L. "Transformation of Axes Systems by Matrix Methods and Applications to Wind Tunnel Data Reduction." AEDC-TDR-63-224, October 1963.
- 3. Mayne, A. W., Jr. "A Method for Computing Boundary Layer Flows, Including Normal Pressure Gradients and Longitudinal Curvature Effects," AEDC-TR-75-21 (ADA008739), April 1975.

APPENDIX A

ILLUSTRATIONS

The state of the s

a. Tunnel assembly

b. Tunnel test section Fig. 1 Tunnel A

a. Profile View in Tunnel A Figure 2. Model Photographs

3805 (5-2-78) V41A-20C NASA/MM NOSE HEATING

ACC. AEDC. A

Landin of any to the second

a. Overall Geometry Figure 3. Model Geometry

c. Fairing Figure 3. Concluded

Notes: 1. See Table 1 for Coordinate Informatic

Name of

Thermocouples in the Vicinity of the Fairing, Cable Tray and GOX Line are Shown in Figures 5b thru 5g

a. Constant θ Lines Figure 5. Thermocouple Locations

I

11

b. Thermocouples on Fairing and Near GOX Line and Tray/Bracket Bl Continued Figure 5.

EXPANDED VIEW ~4X SIZE

-

c. Thermocouples Near GOX Line and Tray/Brackets B2 and B3 Figure 5. Continued

Thermocouples Near GOX Line and Tray/Brackets B4 and B5 Figure 5. Continued . P

e. Thermocouples Near GOX Line and Tray/Bracket B6 Continued Figure 5.

• 201

f. Thermocouples Near GOX Line and Tray/Brackets B8 and B9 Figure 5. Continued

...

EXPANDED VIEW ~ 4X SIZE

922

g. Thermocouples Near GOX Line and Tray/Bracket Bl0 Figure 5. Concluded

Data from groups 73 and 257. See Fig. 5s and 5f for thermocouple location and model geometry. $M_{\infty} = 4.02$ $Re_{\infty} = 3.71 \times 10^6$, ft^{-1} Model at zero incidence

Figure 7. Typical Interference Heating

THIS	PAGE IS BEST QUALITY PRACTICABLE	Ė
	DOPY FURNISHED TO DDC	

26-MAY-78 C5132124 2-MAY-78 71411 8			,	20.0		-6.30	0.05	9.0	-0.45	0.55		0.35	-0.45	6.05	9.40	. 3	0.20	-0.45	20.0	•	.0.35	-0.20	0.60		.0.50	50.0		0.25	50.0	9	0.30	0.50	0.45	
UTED 26- UTED 06- UTED 05- UNDED 2- UNDER V&	YAN CR 6.00 24.09	TION	TANK	35.2	53.2	• •	33.4		::	51.9	42.6		19.	32.6	40.1	38.0	27.5																	
DATE COMPUTED 2 TIME COMPUTED DATE RECORDED TIME RECORDED PROJECT MUMBER		T) POSITION		0.0239	.0267	.0247	0426	.040	.0442	9440	0596	.0607	0629	.000	0795	.0803	. 9803	.0822	1011	1000	1000	1011	.1027	.1027	1027	.1063	1210	.1210	1210	1210	.1220	1220	.1244	
	POLL-MODEL	FR 0.0275FT) .572E-03	K(RTO)/HREF	3921													3926 0																	. 4800
	A-PFEBEND 0.	250		•	; ;	•		•	•	•	•	•	60	6	00		-	•		•	•		•	•	, ,	٠,				, 0	٠.		•	•
	R ALPHA	EF-FR 0.0275FT)	H(RTO)	0.152E-01	0.166	0,215	0.350	0.222	0.245	0.167	0.295	0.259	0.283	0.250	0.276	0.259	0.296	0.197	0.993	0.200	0.196	0.247	0.164	0.210	0.147	0.901	0.164	0,163	0.203	0.233	0.142	0.196	0.136	0.12
	ALPHA-SECTOR	HRET-TR (RW 0.	•	0.9632	0.9589	0.9688	0.950	0.9543	0.9606	0.9521	0.949	0.9493	0.9532	0.9451	0.9439	0.9441	0.9463	0.9468	0.9437	0.9388	0.9413	0.9405	0.9376	0.9380	0.9411	0.9384	0.9342	0.9346	0.9351	0.9360	0.9343	0.9332	0.9334	
		RE/F7 (FT-1) 3.712E+06	.90T0) /HREF	5330	909	231	737	603	035	678	130	127	992	813	126	966	1.0456	969	204	909	543	354	285	910	790	625	233	267	184	746	886	323	310	
	ALPHA-MODEL -5.01		¥																															
	æ	KU-INF (LR-6FC/FT2) 1.406E-07	HC.90TU)	3207E-01	256E-01	319E-01	5326-01	306E-01	3506-01	.270E-01	407£-01	354E-01	387E-01	347E-01	372E-01	345E-01	0.405E-01	. 259F-01	. 124E-01	2565-01	.754E-01	325E-01	.205E-01	.268E-01	1865-01	.109E-01	203E-01	.20SE-01	255E-01	300E-01	.178E-01	168E-0	.1676-01	238E-01
	A TO, DEG		H(TO)/HREF	3359 0		•	-	•		•			•		•		3045	•	-		•		_	•	•				-					-
	PC, FSIA 65.1	RHO-INF (LEM/FT3) 6.447E-03	HCTO			•	, ,			•	-		•							Ĭ	•			•					•					
6 55 EE 5 4 EE 5 4	PACH NO 4.02	Y-1NF (FT-SEC) (2665. 6	H(10)	0.1325-01	0.156E-01	9.1P8E-C1	0.2775-01	0.180E-01	0.205E-01	0.1365-01	0.233E-01	0.203E-01	0.19E-01	0.198F-01	9.211E-01	0.197E-01	0.22FE-01	0.155E-01	0.161E-01	0.149E-01	0.146E-01			٠.		0.702E-02			7:	:=				1366-02
ARD, IKC AEDC CIVISION A STERCEUZ COPPUDATION COMPANY VON KAPMIK GAS DINAMICS FACILITY ARMOND AIR FORCE STATION, TEKNESS NASA/MAK (FNIS) ET NOSE NEATING T		0-THF (PSIA) (CPOT	2.690	2.967	3.378	4.280	3.250	3.646	2.644	3.916	3,515	3.722	3.091	3.608	3,399	3.074	2.037	1.606	2.651	2.641	3.065	2.767	2.754	2.139	1.466	2.146	2.013	2.433	2.751	1.792	1.805	1.797	1.613
PUPATION DYAMIC CE STATI	FONET ET KUSE		10-12	16.797	26.569	23.286	29.104	22.407	25.115	19.376	105.47	24.146	22.547	21,133	22,350	23.340	15,480	19.507	11.216	18.252	18.169	20.996	15,631	18.557	14.824	10.117	14.783	13,524	16.064	18.892	12.319	12.461	12.397	11.129
PAUS COR	COUFIG	P-INF (PSIA) 0.42	;e				. ~							. ~		_	550.4			~			-											528.0
ARO, 11 VON KAR AROLD NASA/13	GACUP C	T-1#F (DEGP) 174.78	1C-NG	===	163	164	166	167		170	172	173	55	176	55	179	2 :	162	21	166	2:		189	200	165	193	561	196	101	199	200	202	203	200 200 200 200 200 200 200 200 200 200

													1	TH:	S	PA CO	PY	F	s e Jri	ES VIS	T (D :	IVI IV	TY DD	P	-	T	CI	BI	Ī				
26-FAY-78 C6:32:34 2-MAY-78 7:41: 8				-0.35	-5.45	9.02	0.10	0.25	6.33	-2.30	6.3			9.79	-0.35		:	3		0.10				0.35		-9.88	9.25	0.03	.0.0	-0.20	2.5		9.53	
PUTED 26- PUTED CS OPDED 2- NUMBER VA	YAK CR 6.00 24.39	SWITCH POSITION 3	TANK	2.02	35.3	32.3	36.9	34.9	32.2	27.4	35.6	39.6	37.6	20.2	26.8	25.50	2		32.2	30.2	35.4	:		9.5	27.0	24.4	34.7	32.1	2.7.	29.0		25.0		•
DATE COMPUTED 2 IIKE COMPUTED DATE RECOPDED TIME RECOPDED PROJECT NUMBER	-HODEL	.0275FT) POS:	EXT.	1244		1342	1646	1648	1649	1648	.1658	1691	1991	1661	1691	1786		.1870	1970	1070	000	1604	•	1000	0.1904	0.1904		•		•	•	0.2131	•	•
	BEND ROLL'SO	STFR (RN= 0.02) 9.572E-03	H(RTO)/HREF	•	0.2892						•					•		•					:	0.1400	: -:	-	•	•	•	•	•	0.1020	•	•
	ALPHA-PREEEND 0.	,0275FT)	H(RTC) H		0.112F-01 0.735E-02																			0.542E-02								0.395E-02		
	ALPHA-SECTOR -7.81	HREF-TR (RNS 0	ĸ		0.9336																			0.9241	9248	9250						0.9226		
		RE/FT (FT-1) 3.712E+06	.90TG)/HREF		3586																		262	1587	1911	1331						1161		
	ALPHA-FONEL		90TO) H(.	•	.		•		5 (ě	•	3 3	0	50		0 0		ď	3 6	0	• •	•	•	30		ċ	•	•	•	•	• •	12E-02 0.	•	•
	TO, DEG P 739.7	HU-INF (LB-SEC/FT2) 1.406E-07	Ħ.		0.139E-01		0 0	:			3			0 0	0	0 0		•			0		•	0.6155-02			0.4	9.0	0	0.8	0	0	0	•
	20,PSIA T	RHC-1NF (LEM/FT3) 6.447E-03	H(TO)/hREF	•	0.2144	•	• •	3	•		•		•	• •	0	• •		÷.		•	• •		:	0.1022		0.0	0.0813	0.1073	0.1294	0.1420	0.0725	0.074	0.1309	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
7. 5. 7. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	NACH NO 4.02	V-INF (FT-SEC) (L 2695. 6.	K(TO)	0.1072-01	0.4315-02	6.4915-02	C. 7885-02	0.717E-02	0.5235-02	0.877E-02	0.6F6E-02	0.5635-02	6. ASOE-02	0.612E-02	0.7315-02	6 601E-02	0.404E-02	0.531E-02	C.462E-02	0.790E-02	0.572E-02	C 30cF-03	33.65	6.395E-02	542E	3406	0.315E-02	161	32E 02E	505	616	0.290E-02	CTE	
ARD, INC AEDC DIVISION A SYERGEUF CREPORATION COMPANY VOW NARMAW GAS DYWAMICS FACILITY ARNOLD AIR FORGS STATION, TENHESSEE MASA/WAR (FRIS) ET MOSE HEATING TES	38	0-1NF (PSIA) (1	1009	1.921	1.526	1.23	1.450	1.303	1.648	1.529	1.276		1.246		1.419	1 226	3.672	1.07	0.939	1.552	0.847			0.422	1.130	0.730	0.650	0.654	1.059	1,155	0.604	0.624	1.094	
AERC DIVI REPORATION AS DYNAMI DRCZ STAT	HODEL EI NOSE	P-15F (FSIA) (0.42	59"10	=	10.563		. 5		= =	2	•	•		- 2	•	• «	•			3	• •			w 5	•	•	•	•	-	•	••	4,365	- '	
ERGEUP C	P CONFIG		31 0																			DELFTE												
ARD.	GROUP	T-1%F (DEGe) 174.78	16-10	305	20°	20%	213	212	215	215	22.	216	215	221	272	223	225	226	226	229	235	232	234	235	237	238	240	241	252	244	245	267	246	250

APPENDIX B

TABLES

and the second second second

TABLE 1. THERMOCOUPLE DIMENSIONAL LOCATIONS

DEL Y	NA															-			10年1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
X/L	.020	.022	.024	.028	.032	.036	.040	.048	.056	.076	.095	0.1155	.164	184	.214	600.	.011	.013	.015	.017	.019	.020	.022	.024	.026	.028	0.0328	0.0367
THETA	80.00	25.000	80.000	80.000	80.000	80.000	80.000	90.00	80.000	80.000	80.000	.000	80.000	80.000	80.000	000.	000	000	.000	000	.000	.000	.000	.000	.000	.000	90.0000	.000
TC NO.																											\$	
DEL Y	7			•																								
																								•				
X/L	0	.011	.013	.015	.017	019	.020	.022	024	026	.028	0	.036	040	048	.056	076	.095	115	164	184	214	600	110	013	015	017	010
THEFA	0.00 0000.	.0000 0.011	.0000 0.013	.0000 0.015	.0000 0.017	.0000 0.019	.0000 0.020	.0000 0.022	.0000 0.024	.0000 0.026	.0000 0.028	0.032	.0000 0.036	.0000 0.040	.0000 0.048	.0000 0.056	.0000 0.076	.0000 0.095	.0000 0.115	.0000 0.164	.0000 0.184	.0000 0.214	80.000 0.009	80.0000 0.011	80.0000 0.013	80.0000 0.015	.0000 0.017	60.0000

Data were recorded on three different switch positions Switch Position 1 - TC No. 12-81 Switch Position 2 - TC No. 1-11, 82-160 Switch Position 3 - TC No. 161-250 See Fig. 5b-5g for TC locations NOTES:

36

TABLE 1. THERMOCOUPLE DIMENSIONAL LOCATIONS

10 10.	THETA	X/L	DEL Y	TC NO.	THETA	X/L	DEL Y
52	90.000		45	88	31,5000	0	411
	•	0		98	500	0	سرل
80	ö	٠,		87	500	019	
	0	0		60		022	
		٥.		6.9	000	024	
		٦.	•	06		026	
63	270,0000	0,0091	•	9.1	20.0000	02	
		٥.		92		030	-
	•	0		93		032	
	5	٥.		• 6		034	
		•		86		033	0.0500
	ż	0		96		036	
		0		97		038	
	5	°.		86		040	
		0		66		040	
		۰.		100		040	
	•	~		101		040	
:		0		102	27,6000	041	-0.1000
	•	٥.		103		041	
	•	0		104		100	
11	•	•		105		042	
78		0		106		10	
		.01		101		0.4	
	•	60.		108		**	
2	•	-:		109		044	
82	-	0		110		046	
2		•		111	~	046	8
1			-	112			4.
NOTES.	Date were r						7
	Switch	ton 1	2 2	it switch positions	TETOUR		
	Switch		1-11	82-160			
		Position 3 -	No.	u.			

TABLE 1. THERMOCOUPLE DIMENSIONAL LOCATIONS

TC NO.	THETA	X/L	DEL Y	TC NO.	THETA	X/L	DEL Y
113	33.2000	.0.	.05	141		.082	
114		°.	5	142	-	.082	*
115	3.0	.053	.0	143	6	.092	-
116	7.6	.05	.20	144	2	.092	0
117	8.1	.05	-	145	5	.092	
118	2.9	.05	.0	146	6	.100	-
119	7:1	.05	.20	147	~	.100	6
120	23.4000	0.	2	148	S	.100	N
		0.0604	-0.1000	149	27.2000	-	7
~	5	.06	0	150	-	.102	~
~	-	.06	.20	151	~	.012	
~	s.	.06	.23	80	~	.017	0
~	?	90.	.35	153		.019	00.
~	4	90.	.2	154	-	.012	.000
~		.06	.3	5	-	.017	9
~	ë.	90.	7	5		.019	9.0000
2		90.	-	5	•	.015	
130	~	0	0	158	•	.017	9.0000
~	•	90.	2	5	•	.019	
m		.067	0	9	•	.022	0.0500
~		.072	=	161	S	.023	0
~	6	.072	0	9	5	.024	*
	•	.072	.2	9	•	.024	
136	6	.079	÷.		•	.024	
137	2	.079	0	165	•	.024	-0.4000
138	35.8000	•	Ž.	166	•	0	
=	24.1000	.082	i,			.040	
140	36.3000	.082	7	•	•	.042	.30
NOTES:	Data were switch Switch Switch Switch See Fig. 5	Position 1 Position 2 Position 3 Position 3	three different - TC No. 12-81 - TC No. 1-11, 8 - TC No. 161-250 locations	switch positions 82-160	itions		

TABLE 1. THERMOCOUPLE DIMENSIONAL LOCATIONS

TC NO.	. THEFA	X/L	DEL Y	TC NO.	THETA	X/L	DEL Y
169	14,5096	0.0442	-0.4500	191	1	-	0.0500
	3		.550	198	6	121	
	036.		.050	661		121	
172	.60	.059		200	36.3600	.12	0.3000
	41.1000	090	.350	201	9	122	
	-	.062		202	0	.124	
175	.5	.062		203	8	.124	0.4500
	. 600	080		204	-	124	
	3		0.4000	205	-	.124	
	.000	.079	•	206	•	.124	.35
-		080	•	207	4	.124	
	7	.080	•	208	~	.127	•
::	3	.082	0.5500	506	2	.134	
•	-			210		.166	
183	7		. 6	211		.164	•
184	2		0.0500	212		164	
165			4	213		.164	
186	5		-0.3500	214	30.2000	16	-0.1000
197				215		.164	
188	-			216		.165	
0	5			217		.165	
0	6		4	218		.168	•
191	5	1		219		. 168	
	2			220		.168	•
193		10	0.5	221		.168	•
194	2	123	050	222		.168	
198	-	121	400	223		.168	-0.5000
*	-	0.1210	0.2500	324		.178	0.0500
NOTES	: Data were Switch Switch	record Posit Posit	1ffere . 12-8 . 1-11	switch 12-160	positions		
	See Fig. 5	Position b-5g for T	No. 161- tions	250			
							No.

TABLE 1. THERMOCOUPLE DIMENSIONAL LOCATIONS

DEL Y

	uigiit	7/17	I Tau	IC NO. IREIA	X/L
372	92.4040		0.1690		4
220	30.703		0.4000		**,
227	32,70,00		0.2500		
225	2.20	0.1870	0.0500		
227	37.7600		-0.1000		
730	27.5000		-6.3000		
231	35.4000		0.3000		
132	24,4600		-0.2000		
733	17		0.5500		
234	37.3000		0.4500		
235	000		0.3500		
736	28,3000		-0.2500		
237	7.00		-0.3500		
582	2		-0.5500		
239	94600		0.1000		
246	34.7600		0.2500		
249	32.1650	0.2101	0.0500		
247	34.4000	0.2101	-0.1930		
243	27.7000	0.2101			
244	60	0.2111			
245	49.3000	0,2131			
244	507	4.2139			
247	30	6.2131			
24.0	3	0,2131	~		
511	27.1600	0.2131			
250	300				

Data were recorded on three different switch positions Switch Position 1 - TC No. 12-81 Switch Position 2 - TC No. 1-11, 82-160 Switch Position 3 - TC No. 161-250 Switch Position 1 - TC No. Switch Position 2 - TC No. Switch Position 3 - TC No. See Fig. 5b-5g for TC locations NOTES:

TABLE 2. TEST DATA SUMMARY

a. Protuberances on Model

	Re x10-6	α,	4				— β; deg				_	Sw.
M	Re x 10-6,	deg	-11	-9	-6	-3	0	3	6	9	11	Pos
3.0	3.7	-5			25	29	21,24*	32	35			1
					26	30	22	33	36			2
		*			27	31	23	34	37			3
		0			6	12		15	28			1
					8	13	3+, 10+, 55+ 4+, 11+, 57+	16	19 20			2 3
1		5			-	-	38,41	+	-			
		ĭ			42	45	38,41	48	51 52			1 2
1					44		40	50	53			3
4.0		-5	112	115	92	96	88,91*	99	102	105	111	1
1		i	113	116	93	97	189	100	103	106	109	2
		4.	114	117	94	98	90	101	104	107	110	3
		0	131	63	36	74	62*,71	77	80	83	134	1
			132 133	64 65	67 68	75 76	72	78	81	84	135	2
								79	82	87	136	-
		5	124	128 129	142		138,141 ⁺	148	151	118	121	1 2
ł		+	126	130	144		140	150	153	120	123	3
5.5		-5			194		198		201			1
1		i			195		199		202			2
		1			196		200		203			3
		0		160	185		159*		188	191		1
		1		182	186		157+		189	192		2
		1		184	187		158+		190	193		3
		5			204		207		210			1
	1 +				205 206		208 209		211			2 3
	5.0	0		167	171		165+, 166	1	175	178		1
1	1 .	1		170	172		1163		176	179		2
1	1 4	1		169	174		164		177	181		3

NOTES

No superscript - normal model attitude as defined by NASA/MMA matrix

- + Model rolled to show cable tray $\alpha_{\rm S}$ = 0 , roll model = -31.5 deg
- # Model inverted to show cable tray on bottom of tunnel or get inverted data
- Boundary layer trips on Model. Groups 9, 10, 11 used two twisted 4 mil wires. Groups 55, 56, 57 used #60 grit.

No data on groups 1, 58, 86, 95, 137, 154, 155, 161, 197, 213, 254, 309 - zero groups 18, 54, 59, 60, 61, 69, 70, 85, 86, 108, 127, 156, 162, 168, 173, 180, 183

All invalid data groups were repeated.

TABLE 2. TEST DATA SUMMARY

b. Protuberances Off Model

	Re x 10 ⁻⁶ ft-1	α,	4		β, de	g.					<u> </u>	Sw
M 20	ft-1	deg	-11	-9	-6	-3	0	3	6	9	11	Po
3.0	3.7	-5			325	328	331	334	337			1
1		1			326 327	329 330	332 333	335 336	338 339			
		0			313	316	310+	319	322			+-
		1			314 315	317 318	311+ 312+	320 321	323 324			
		5			313	346	3124	321	324			+
		i										
4		ł										
4.0		-5	300 301	303 304	282 283	285 286	306 307	288 289	291 292	294 295	297 298	
		ł	302	305	284	287	308	290	293	296	299	
		0	258	273	276	279	255+	264	267	270	261	
			259 260	274 275	277 278	280 281	256+ 257+	265 266	268 269	271 272	262 263	
		5										1
Y		-5			229		232		235			+
1		1			230		233		236			
		<u> </u>			231		234		237	-		1
		0		217 218	220 221		214+ 215+		223 224	226 227		
				219	222		216+		225	228		
		5										
	+											
	5.0	0		241 242	244 245		238+ 239+		247,253 248	250 251		
				242	245		240+		248	251		

NOTES:

No superscript - normal model attitude as defined by NASA/MMA matrix

- + Model rolled to show cable tray α_s = 0 , roll model = -31.5 deg
- # Model inverted to show cable tray on bottom of tunnel or get inverted data
- Boundary layer trips on model. Groups 9,10,11 used two twisted 4 mil wires. Groups 55,56,57 used #60 grit.