Алгебра. Семестр II. Векторные пространства

І. Геометрия подпространств

- 1. Найдите размерности и базисы суммы и пересечения подпространств U и V в пространстве \mathbb{R}^n :
 - a) $U = \langle (4,2,1)^T, (-3,2,0)^T, (-1,4,0)^T \rangle,$ $V = \langle (2,-3,1)^T, (5,3,13)^T, (7,0,12)^T \rangle;$
 - 6) $U = \langle (1,2,3)^T, (4,3,1)^T, (2,-1,-5)^T \rangle,$ $V = \langle (1,1,1)^T, (-3,2,0)^T, (-2,3,1)^T \rangle;$
 - $B) \,\, U = \big\langle (1,2,3,1,1)^T, (1,0,1,-2,-2)^T, (2,0,1,-1,0)^T, (0,1,1,0,0)^T \big\rangle, \\ V = \big\langle (1,2,0,0,2)^T, (0,1,-2,3,-3)^T, (-1,2,1,2,0)^T, (1,1,-2,0,0)^T \big\rangle;$
 - г) $U: \ x_1+x_2-x_3+x_4-x_5=0, \ V=\left<(1,1,1,1,1)^T,(1,0,-1,1,-1)^T,(0,1,-1,-1,1)^T,(-2,1,0,1,-1)^T\right>;$
 - д) $U: \left\{ egin{array}{ll} x_1+x_3+x_4-x_5&=&0;\ x_2-x_4&=&0;\ \end{array}
 ight. \ V: \left\{ egin{array}{ll} x_3+2x_4&=&0;\ x_1-x_2-x_5&=&0; \end{array}
 ight. \end{array}
 ight.$
 - $egin{aligned} ext{e)} \ U &= ig\langle (1,2,-2,2,1)^T, (2,4,-5,4,1)^T, (2,3,-3,3,2)^T ig
 angle, \ V : \ igg\{ egin{aligned} x_3 + 2x_4 &= 0; \ x_1 x_2 + x_5 &= 0. \end{aligned}$
- 2. Найдите базис и размерность U+V и $U\cap V$:
 - a) $U=\left\langle t^2+t-1,\,t+3 \right
 angle \leqslant \mathbb{R}[t]_2,\,V=\left\langle 2t^2+2,\,t^2+3t+3 \right
 angle \leqslant \mathbb{R}[t]_2;$
 - $6) \,\, U = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\rangle \leqslant M_2(\mathbb{R}),$ $V = \left\langle \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \right\rangle \leqslant M_2(\mathbb{R}).$
- 3. Пусть заданы два подпространства в \mathbb{R}^4 :

$$U = \left\langle (1,1,1,1)^T, (-1,-2,0,1)^T \right\rangle, \ V = \left\langle (-1,-1,1,-1)^T, (2,2,0,1)^T \right\rangle.$$

Докажите, что $\mathbb{R}^4 = U \oplus V$ и найдите проекцию вектора $(4,2,4,4)^T$ на подпространство U параллельно подпространству V.

4. $U=\left\langle 3t^3-2t,\ 5t^3+7t\right\rangle,\ V=\left\langle 4-t^2,\ 9t^2+1\right\rangle$. Докажите, что $\mathbb{R}[t]_3=U\oplus V$, и найдите проекцию многочлена $9t^3-t^2+5t+3$ на подпространство U параллельно V.

5.
$$U=\left\langle \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$$
, $V=\left\langle \begin{pmatrix} 0 & -4 \\ 4 & 0 \end{pmatrix} \right\rangle$. Докажите, что $M_2(\mathbb{Q})=U\oplus V$, и найдите проекцию матрицы $\begin{pmatrix} 3 & 9 \\ 8 & 5 \end{pmatrix}$ на подпространство V параллельно U .

6* Пусть в \mathbb{R}^n заданы два подпространства:

$$U = \{x \in \mathbb{R}^n \ | \ x_1 + x_2 + \ldots + x_n = 0 \}, \ V = \{x \in \mathbb{R}^n \ | \ x_1 = x_2 = \ldots = x_n \}.$$

Докажите, что $\mathbb{R}^n=U\oplus V$ и найдите проекции векторов стандартного базиса \mathbb{R}^n на U и на V.

 7^* В пространстве $\mathbb{R}[x]_7$ заданы два подпространства:

$$egin{align} V_1 &= \{f(x) \in \mathbb{R}[x]_7 \,|\, f(-1) = f'(-1) = f''(-1) = 0\}\,, \ V_2 &= \{f(x) \in \mathbb{R}[x]_7 \,|\, f(2) = f'(2) = f''(2) = 0\}\,. \ \end{cases}$$

Найдите базисы суммы и пересечения этих подпространств.

8.* В пространстве $\mathbb{R}[x]_8$ заданы два подпространства:

$$V_1 = \left\{ f(x) \in \mathbb{R}[x]_8 \, | \, f(1) = f'(1) = f''(1) = f'''(1) = 0
ight\}, \ V_2 = \left\{ f(x) \in \mathbb{R}[x]_8 \, | \, f(-1) = f'(-1) = f''(-1) = f'''(-1) = f^{IV}(-1) = 0
ight\}.$$

Найдите базисы суммы и пересечения этих подпространств.

- 9.* Пусть U, V, W подпространства в $M_n(\mathbb{R})$, состоящие соответственно из кососимметрических, симметрических и верхнетреугольных матриц соответственно. Докажите, что V и W различные прямые дополнения к U в $M_n(\mathbb{R})$, и найдите проекции стандартных матричных единиц на U параллельно V и на U параллельно W.
- 10.* Пусть U подпространство пространства $M_4(F)$ размерности 7. Докажите, что U содержит ненулевую симметрическую матрицу.
- 11.* Пусть $A\in M_n(F)$, $\mathrm{rk}(A)\leqslant \frac{n}{2}$. Докажите, что среди решений уравнения AX=0 есть ненулевая симметрическая матрица.
- 12.* Приведите пример такого пространства V, что $V=U_1\cup U_2\cup U_3$, где $U_1,\,U_2,\,U_3$ собственные подпространства в V.