Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{3}(2\sqrt{3}+1)-\sqrt{3}=2\sqrt{3}\cdot\sqrt{3}+\sqrt{3}-\sqrt{3}=$	3р
	$=2\cdot3=6$	2p
2.	$a^2 - 4a + 2 = 2 \Leftrightarrow a^2 - 4a = 0$	3p
	a = 0 sau $a = 4$	2 p
3.	x-1=9	3p
	x = 10, care convine	2p
4.	$x - \frac{10}{100} \cdot x = 180$, unde x este prețul inițial al obiectului	3p
	x = 200 de lei	2 p
5.	$AB = BC \Rightarrow CD$ este înălțime în $\triangle ABC$, unde $D(0,1)$ este mijlocul segmentului AB	3p
	CD=3	2p
6.	$\sin 60^\circ = \frac{\sqrt{3}}{2}, \cos 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sqrt{3} \cdot \sin 60^{\circ} - \sqrt{2} \cdot \cos 45^{\circ} = \sqrt{3} \cdot \frac{\sqrt{3}}{2} - \sqrt{2} \cdot \frac{\sqrt{2}}{2} = \frac{3}{2} - \frac{2}{2} = \frac{1}{2}$	3p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 3 \cdot 0 =$	3p
	=2-0=2	2 p
b)	$A \cdot A = \begin{pmatrix} 1 & 9 \\ 0 & 4 \end{pmatrix}$	2 p
	$3A - A \cdot A = \begin{pmatrix} 3 & 9 \\ 0 & 6 \end{pmatrix} - \begin{pmatrix} 1 & 9 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 2I_2$	3p
c)	$xA - I_2 = \begin{pmatrix} x - 1 & 3x \\ 0 & 2x - 1 \end{pmatrix}, (xA - I_2)(xA - I_2) = \begin{pmatrix} (x - 1)^2 & 9x^2 - 6x \\ 0 & (2x - 1)^2 \end{pmatrix}, 5A - I_2 = \begin{pmatrix} 4 & 15 \\ 0 & 9 \end{pmatrix}$	3 p
	Cum $(x-1)^2 = 4$, $9x^2 - 6x = 15$ și $(2x-1)^2 = 9$, obținem $x = -1$	2 p
2.a)	$3 \circ (-1) = 3^2 + (3+1)(-1+1) + (-1)^2 =$	3p
	$=9+4\cdot 0+1=10$	2 p
b)	$x \circ y = x^2 + (x+1)(y+1) + y^2 =$	2 p
	= $y^2 + (y+1)(x+1) + x^2 = y \circ x$, pentru orice numere reale $x \neq y$, deci legea de compoziție " \circ " este comutativă	3 p

c)	$x \circ 1 = x^2 + 2(x+1) + 1^2 = x^2 + 2x + 1 + 2 =$	3p
	$=(x+1)^2+2\geq 2$, pentru orice număr real x	2 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = (x-1)'\ln x + (x-1)(\ln x)' =$	3p
	$= \ln x + (x-1) \cdot \frac{1}{x} = 1 - \frac{1}{x} + \ln x, \ x \in (0, +\infty)$	2p
b)		2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 0$	3 p
c)	$x \in (0,1] \Rightarrow \ln x \le 0 \text{ si } 1 - \frac{1}{x} \le 0$	3р
	$f'(x) \le 0$, pentru orice număr real $x \in (0,1]$, deci f este descrescătoare pe $(0,1]$	2 p
2.a)	$\int_{0}^{1} (x^{2} + 1) f(x) dx = \int_{0}^{1} (x^{2} + 1 + x - 2) dx = \left(\frac{x^{3}}{3} + \frac{x^{2}}{2} - x\right) \Big _{0}^{1} =$	3p
	$= \frac{1}{3} + \frac{1}{2} - 1 = -\frac{1}{6}$	2p
b)	$F(x) = \int_{0}^{x} f(t) dt = \int_{0}^{x} \left(1 + \frac{t}{t^{2} + 1} - \frac{2}{t^{2} + 1} \right) dt = \left(t + \frac{1}{2} \ln(t^{2} + 1) - 2 \operatorname{arctg} t \right) \Big _{0}^{x} =$	3р
	$= x + \frac{1}{2} \ln \left(x^2 + 1 \right) - 2 \operatorname{arctg} x, \ x \in \mathbb{R}$	2p
c)	$f(x) + f\left(\frac{1}{x}\right) = \frac{2x}{x^2 + 1}$, pentru orice număr real $x, x \neq 0$	2p
	$\int_{1}^{2} \left(f(x) + f\left(\frac{1}{x}\right) \right) dx = \int_{1}^{2} \frac{2x}{x^2 + 1} dx = \ln\left(x^2 + 1\right) \Big _{1}^{2} = \ln\frac{5}{2}$	3р