# Estimating liquidity betas of stocks using a multiple linear regression model

General Assembly - Data Science - Part Time Ravi Verma

### Introduction - shares

- Many companies around the world allow you to buy a share in them
- These 'shares' represent a tiny percentage of the company and are normally listed on a exchange
- They normally give you rights such as voting at company meetings on particular topics or receiving benefits such as dividends
- The shares of these companies have a price that move and up and down over time
- Just like other products, you can make a profit/return from buying and selling at the right time



### Introduction - factors

- Returns of shares can often be visualised as a set of building blocks
- These building blocks are known as alpha and beta
- Beta can be thought of the return from the market e.g. the entire universe of shares
- Alpha can be thought of the return idiosyncratic to that particular share
- However over many years of quantitative research there are other 'factors' believed to significantly contribute to share returns, also known as 'risk premia'



### Introduction - regression

- Regression models can estimate how influential these factors are on stock returns
- We can think of stock price as the dependent variable
- The independent variables would be the factors
- These factors have been studied by many academics over a long time. In particular, Fama and
  French produced a seminal model, the three-factor model which describes market, size and
  value as significant factors that help explain stock returns
- Liquidity was shown to be a significant factor by the academics Pastor and Stambaugh
- Putting this all together we get the following multiple linear regression equation:

$$r_{i,t} = \beta_i^0 + \beta_i^{\mathcal{L}} \mathcal{L}_t + \beta_i^{\mathrm{M}} \mathrm{MKT}_t + \beta_i^{\mathrm{S}} \mathrm{SMB}_t + \beta_i^{\mathrm{H}} \mathrm{HML}_t + \epsilon_{i,t},$$

### Introduction - my project

- I am going to use the Fama-French and Pastor-Stambaugh factor returns for market, value, size and liquidity, respectively. These are available from their respective academic websites (free to use)
- I have selected 89 stocks from the S&P 100 Index. I am using monthly returns from 2005 2019.
   This is 15 years worth of data or 180 months per stock. I have used FactSet to download these returns, but many if not all would be available from Yahoo Finance (free to use)
- The factor I am most interested in is liquidity and therefore my results will focus exclusively on that factor
- To estimate the relationship between factors and stock returns I will use OLS regression, partial regression and rolling regression techniques

### Introduction - data sources

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data\_library.html

http://finance.wharton.upenn.edu/~stambaug/

mba.tuck.dartmouth.edu/pages/faculty/ken.french/data\_library.html



### Current Research Returns

In August 2019, we added emerging markets portfolios to the bottom of the page. The global portfolios and factors have been renamed to developed.

ZAPHY CULUM VITAE VG PAPERS

LIBRARY RESEARCH RETURNS RECEARCH RESERVANTE

|                                | March<br>2020 | Last 3<br>Months | Last 12<br>Months |
|--------------------------------|---------------|------------------|-------------------|
| Fama/French 3 Research Factors |               |                  |                   |
| Rm-Rf                          | -13.39        | -20.57           | -10.60            |
| SMB                            | -5.13         | -6.16            | -11.68            |
| HML                            | -14.11        | -20.13           | -24.26            |

### Robert F. Stambaugh

- entry in Wharton Guide to Faculty
- curriculum vitae

### Portfolio Optimization:

- program and description
- some filled-in input forms for the optimization program, used as examp

### Data:

- Pastor-Stambaugh liquidity series
- Plot of the aggregate liquidity level.
- Stambaugh and Yuan "Mispricing Factors" data (1/1963 12/2016):
  - o monthly factors
  - o daily factors
  - o 11 anomaly returns

# Exploratory Data Analysis - factors (part 1)



# Exploratory Data Analysis - factors (part 2)





### **Exploratory Data Analysis - stocks**





### Results - ols

Use Statsmodels package to run 89 regressions using OLS and append into an dictionary

```
ols dict = {}
ols dict
for iden in np.unique(final df.identifier):
    model = smf.ols(formula = 'excess rets ~ mkt+ hml + smb + lig', data = final df[final df.identifier == iden]).fit()
    ols dict.update([(iden, {'name':final df[final df.identifier == iden]['name'].max(),
                             'rsquared':model.rsquared,
                             'rsquared adjusted':model.rsquared adj,
                             'market':model.params['mkt'],
                             'liquidity':model.params['liq'],
                             'size':model.params['smb'],
                             'value':model.params['hml'],
                             'liquidity pvalues':model.pvalues['liq'],
                             'sector':final df[final df.identifier == iden]['sector'].max(),
                             'cyc or def':final df[final df.identifier == iden]['cyclical defensive'].max()})])
```

### Results - pvalues

• Convert to dataframe and analyze how many of the regressions had a p-value of less than 0.05 for the liquidity factor

```
ols_df = pd.DataFrame.from_dict(ols_dict, orient = 'index')
ols_df.head()
```

|         | name                  | rsquared | rsquared_adjusted | market   | liquidity | size      | value     | liquidity_pvalues | sector                 | cyc_or_def |
|---------|-----------------------|----------|-------------------|----------|-----------|-----------|-----------|-------------------|------------------------|------------|
| AAPL-US | Apple Inc.            | 0.368554 | 0.354121          | 1.327989 | 0.526554  | -0.555241 | -0.626235 | 0.002884          | Information Technology | Cyclical   |
| ABT-US  | Abbott Laboratories   | 0.243374 | 0.226079          | 0.654364 | -0.189335 | -0.305934 | -0.402946 | 0.070267          | Health Care            | Defensive  |
| ACN-US  | Accenture Plc Class A | 0.464867 | 0.452636          | 0.960305 | -0.010841 | 0.069490  | -0.414001 | 0.913175          | Information Technology | Cyclical   |
| ADBE-US | Adobe Inc.            | 0.488339 | 0.476644          | 1.457942 | 0.031238  | -0.015479 | -0.210736 | 0.828055          | Information Technology | Cyclical   |
| AGN-US  | Allergan plc          | 0.267941 | 0.251208          | 0.904011 | -0.529420 | 0.224308  | -0.856511 | 0.000771          | Health Care            | Defensive  |

```
liquidity_df = ols_df[ols_df['liquidity_pvalues'] < 0.05]
liquidity_df.shape
(33, 10)</pre>
```

### **Results - distribution**

Digging deeper we can see the distribution of the liquidity betas and R Squared



### Results - inference

Which sectors are influenced by liquidity the most



 The stock with the highest R Squared is Citigroup which is a US bank

| name               | Citigroup Inc. |  |
|--------------------|----------------|--|
| rsquared           | 0.665793       |  |
| rsquared_adjusted  | 0.658154       |  |
| market             | 2.06724        |  |
| liquidity          | -0.420138      |  |
| size               | -0.859033      |  |
| value              | 1.97508        |  |
| liquidity_pvalues  | 0.0197262      |  |
| sector             | Financials     |  |
| cyc or def         | Cyclical       |  |
| Name: C-US, dtype: | object         |  |

# Results - partial regressions



-0.100 -0.075 -0.050

 For Citigroup, partial regression plots show us that liquidity is an important factor for stock return but not as important as the market

 This can be seen by the strength of the slope

## Results - rolling regressions



- For Citigroup, a rolling regression shows the liquidity beta to vary over time
- For time series data this is important as financial markets are very dynamic!
- Stocks change over time and a factor which is important in one time period may not be in another

### Conclusion

- 33 stocks had liquidity as a significant factor with a p-value less than 0.05 out of 89 stocks
- A high proportion of these stocks were financials
- Only 8 stocks had a R Squared over 50% for the OLS model
- Things to improve
  - Using log returns
  - Use portfolio returns (less noisy than stock returns)
  - Perhaps narrow the number of stocks but use a longer time horizon
  - Testing the assumptions for regression (e.g. normality, homoscedasticity, autocorrelation)
  - Fine tuning the number of independent variables in the model
  - More detailed literature review
  - Using machine learning techniques such as time series split

# Thanks for listening

Any questions?