MA-111 Calculus II (D3 & D4)

Lecture 3

B.K. Das

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

January 27, 2022

Properties of integrals over rectangles

Evaluating Integrals: Iterated integrals

Integrable functions

Riemann Integral contd.

- ▶ For any rectangle $R \subseteq \mathbb{R}^2$, let $f : R \to \mathbb{R}^2$ be bounded. The Darboux integrability and Riemann integrability are equivalent.
- ▶ A function $f: R \to \mathbb{R}^2$ is called integrable on R if (Darboux or) Riemann integrability condition holds on R.
- ▶ In summary, if f is integrable on R, then

$$\int \int_R f(x,y) \ dxdy := S = L(f) = U(f).$$

Examples: Let $R = [a, b] \times [c, d]$.

- The constant function is integrable.
- The projection functions $p_1(x,y) = x$ and $p_2(x,y) = y$ are both integrable on any rectangle $R \subset \mathbb{R}^2$. Why?
- Let $f: R \to \mathbb{R}$ be defined as $f(x,y) = \phi(x)$ where $\phi: \mathbb{R} \to \mathbb{R}$ is a continuous function. Is f integrable? what is $\int \int_R f \, dx dy$?

Regular partitions

Because the current way of taking partitions isn't truly helpful in making computations, we define *Regular* partitions.

The regular partition of R of order any $n \in \mathbb{N}$ is defined by $x_0 = a$ and $y_0 = c$, and for $i = 0, 1, \dots, n-1$, $j = 0, 1, \dots, n-1$,

$$x_{i+1} = x_i + \frac{b-a}{n}, \quad y_{j+1} = y_j + \frac{d-c}{n}.$$

We take $t = \{t_{ij} \in R_{ij} \mid i, j \in \{0, 1, \dots, n-1\}\}$ any arbitrary tag. To check the integrability of a function f, it is enough to consider a sequence of regular partitions P_n of R.

Theorem

A bounded function $f:R\to\mathbb{R}$ is Riemann integrable if and only if the Riemann sum

$$S(f, P_n, t) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} f(t_{ij}) \Delta_{ij},$$

tends to the same limit $S \in \mathbb{R}$ as $n \to \infty$, for any choice of tag t.

An Example

Example: Let $f(x,y) = x^2 + y^2$. Is it a continuous function on \mathbb{R}^2 ? Ans. Yes! Suppose the function is integrable on $[0,1] \times [0,1]$. Compute the integral using the theorem.

Let $R=[0,1]\times[0,1]$ and P_n be a regular partition. Then for tag $t=\{(\frac{i}{n},\frac{j}{n})\mid i=0,\dots n-1,j=0,\dots,n-1\}$,

$$S(f, P_n, t) = (\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} (\frac{i}{n})^2 + (\frac{j}{n})^2) \frac{1}{n^2}.$$

Compute $\lim_{n\to\infty} S(f, P_n, t)$. How would you go about it? Answer is

Conventions

Based on our definition, we make the following convention: Let $a,b,c,d\in\mathbb{R}$

- ▶ If a = b or c = d, then $\int \int_{[a,b] \times [c,d]} f(x,y) dx dy := 0$.

Properties of integrals over rectangles

(Domain Additivity Property:) Let R be a rectangle and $f: R \to \mathbb{R}$ be a bounded function. Partition R into finitely many non-overlapping sub-rectangles. Then f is integrable on R if and only if it is integrable on each sub-rectangle. When it exists, the integral of f on R is the sum of the integrals of f on the sub-rectangles.

Algebraic properties :

Let $R := [a, b] \times [c, d]$. Let f and g be integrable on R.

- ▶ If f is defined as $f(x,y) = \alpha \in \mathbb{R}$ for all $(x,y) \in \mathbb{R}^2$ then $\iint_R f = \alpha A(R)$ where A is the area of R.
- ▶ The function f + g is integrable, and $\int \int_R f + g = \int \int_R f + \int \int_R g$.
- ▶ For all $\alpha \in \mathbb{R}$, αf is integrable and $\iint_R \alpha f = \alpha \iint_R f$.
- ▶ If $f(x,y) \le g(x,y)$ for all $(x,y) \in R$, then $\iint_R f \le \iint_R g$.
- ▶ |f| is integrable and $|\int \int_R f| \le \int \int_R |f|$.
- ▶ The function f.g is integrable.
- ▶ If $\frac{1}{f}$ is well defined and bounded on R, then $\frac{1}{f}$ is integrable on R.

All these follow by applying the definition and properties of limits. An immediate consequence is that all polynomial functions are integrable.

Evaluating Integrals

Suppose $f: R \to \mathbb{R}$ is integrable. How do we compute its double integral?

Geometrically, if f is non-negative then the double integral is the volume of the region D between the rectangle and under the solid z = f(x, y). Cavalier's method was to compute this volume slice by slice.

That is, first compute area of each slice $A(x) = \int_c^d f(x,y) \, dy$ of the cross section of D perpendicular to the x-axis (or alternately the area $B(y) = \int_a^b f(x,y) \, dx$ of the cross section perpendicular to the y-axis)

Then the volume of $D = \int_a^b A(x) dx = \int_c^d B(y) dy$.

Fubini theorem and Iterated integrals

Theorem

Let $R := [a,b] \times [c,d]$ and $f : R \to \mathbb{R}$ be integrable. Let I denote the integral of f on R.

- 1. If for each $x \in [a, b]$, the Riemann integral $\int_c^d f(x, y) dy$ exists, then the iterated integral $\int_a^b (\int_c^d f(x, y) dy) dx$ exists and is equal to 1.
- 2. If for each $y \in [c, d]$, the Riemann integral $\int_a^b f(x, y) dx$ exists, then the iterated integral $\int_c^d (\int_a^b f(x, y) dx) dy$ exists and is equal to 1.

As a consequence, if f is integrable on R and if both iterated integrals exist in 1. and 2. in above theorem, then

$$\int_a^b \left(\int_c^d f(x,y) \, dy \right) dx = I = \int_c^d \left(\int_a^b f(x,y) \, dx \right) dy.$$

Sketch of the proof

The proof is using Riemann condition.

Since f is double integrable over R, for any given $\epsilon > 0$, there exists a partition $P_{\epsilon} = \{(x_i, y_j) \mid i = 0, 1, \dots k - 1, \quad j = 0, \dots n - 1\}$ of R such that

$$U(f, P_{\epsilon}) - L(f, P_{\epsilon}) < \epsilon.$$

Assume for each fixed $x \in [a, b]$, the Riemann integral $\int_{c}^{d} f(x, y) dy$ exists. Define

$$A(x) := \int_{c}^{d} f(x, y) dy, \quad \forall x \in [a, b].$$

- ▶ Claim: The function A is integrable over [a,b]. Note that $m(f)(d-c) \le A(x) \le M(f)(d-c)$ for all $x \in [a,b]$ and hence A is bounded. Also by domain additivity, $A(x) = \sum_{j=0}^{n-1} \int_{y_j}^{y_{j+1}} f(x,y) \, dy$, for all $x \in [a,b]$.
- ▶ Thus for each fixed $i \in \{0, \dots k-1\}$, for $x \in [x_i, x_{i+1}]$, we obtain

$$\sum_{j=0}^{n-1} m_{ij}(f)(y_{j+1}-y_j) \leq A(x) \leq \sum_{j=0}^{n-1} M_{ij}(f)(y_{j+1}-y_j).$$

Sketch of the proof contd.

▶ Denoting $m_i(A) := \inf\{A(x) \mid x \in [x_i, x_{i+1}]\}$ and $M_i(A) := \sup\{A(x) \mid x \in [x_i, x_{i+1}]\}$, we have

$$\sum_{j=0}^{n-1} m_{ij}(f)(y_{j+1}-y_j) \leq m_i(A) \leq M_i(A) \leq \sum_{j=0}^{n-1} M_{ij}(f)(y_{j+1}-y_j).$$

Multiplying by $(x_{i+1} - x_i)$ and summing over i = 0, ..., k-1, we obtain

$$L(f,P_{\epsilon})\leq \sum_{i=0}^{\kappa-1}m_i(A)(x_{i+1}-x_i)\leq \sum_{i=0}^{\kappa-1}M_i(A)(x_{i+1}-x_i)\leq U(f,P_{\epsilon}).$$

and it yields that there exists a partition $P_1 := \{x_0, \cdots, x_{k-1}\}$ of [a, b] such that

$$U(A, P_1) - L(A, P_1) < \epsilon.$$

▶ Thus the function of A is integrable and

$$\int \int_{R} f \, dx \, dy = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx.$$

Remarks on Fubini's theorem

▶ The both iterated integrals may exist but the function *f* may not be double integrable.

Example 1:
$$R := [0,1] \times [0,1],$$

$$f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{(x^2+y^2)^3}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Compute both the iterated integrals Are they same? Is *f* integrable?

The function f may be double integrable. But one of the iterated integrals may not exist. (Check Tutorial problems).

Let R be a rectangle in \mathbb{R}^2 and let $f:R\to\mathbb{R}$ be a continuous function. Then both iterated integrals of f exist and are equal to the double integral of f over R.

Examples:

Example : Find the integral of $f(x,y) = x^2 + y^2$ on the rectangle $[0,1] \times [0,1]$ if it exists.

Solution: Check the integrability of f using the definition. Let us now compute the integral using iterated integrals.

$$\int \int_{[0,1]\times[0,1]} x^2 + y^2 \, dx dy = \int_0^1 \int_0^1 x^2 + y^2 \, dx dy$$

$$= \int_0^1 \left[\frac{x^3}{3} + xy^2 \right]_0^1$$

$$= \int_0^1 \left(\frac{1}{3} + y^2 \right)$$

$$= \left[\frac{y}{3} + \frac{y^3}{3} \right]_0^1 = \frac{2}{3}$$

Example (Marsden, Tromba and Weinstein page 288): Compute $\int \int_{R} \sin(x+y) dx dy$, where $R = [0,\pi] \times [0,2\pi]$.

$$\int \int_R \sin(x+y) dx dy, \text{ where } R = [0,\pi] \times [0,2\pi].$$
 Solution:
$$\int \int_R \sin(x+y) dx dy = \int_0^{2\pi} \left[\int_0^{\pi} \sin(x+y) dx \right] dy$$

 $= \int_0^{2\pi} [-\cos(x+y)|_{x=0}^{\pi}] dy$

 $=\int_{0}^{2\pi} [\cos y - \cos(y + \pi)] dy$ $= [\sin y - \sin(y + \pi)]|_{y=0}^{2\pi} = 0$ Example (Marsden, Tromba and Weinstein, page 289): If D is a plate defined by $1 \le x \le 2, 0 \le y \le 1$ (measured in centimeters), and the mass density $\rho(x,y) = ye^{xy}$ grams per square centimeter. Find the mass of the plate.

Solution: The total mass of the plate is got by integrating over the rectangular region covered by D:

$$\int \int_{D} \rho(x, y) dx dy = \int_{0}^{1} \int_{0}^{2} y e^{xy} dx dy = \int_{0}^{1} (e^{xy})_{x=1}^{2} dy$$
$$= \int_{0}^{1} (e^{2y} - e^{y}) dy = \frac{e^{2}}{2} - e + \frac{1}{2}$$

Special case Let $\phi: [a,b] \to \mathbb{R}$ and $\psi: [c,d] \to \mathbb{R}$ be Riemann integrable. Define $f(x,y) := \phi(x)\psi(y)$, for all $(x,y) \in R = [a,b] \times [c,d]$. Then f is integrable on R and

$$\int \int_{R} f(x, y) \, dx \, dy = \left(\int_{a}^{b} \phi(x) \, dx \right) \left(\int_{c}^{d} \psi(y) \, dy \right).$$

Example Let 0 < a < b and 0 < c < d and $r \ge 0$ and $s \ge 0$. Denote $R = [a, b] \times [c, d]$. Compute $\int \int_{R} x^{r} y^{s} dx dy$.

Existence of integrals on $R = [a, b] \times [c, d]$ -I

All our statements so far depend on f being integrable on R. Is there any characterization to determine if f is integrable?

Let $f: R \to \mathbb{R}$ be a bounded function. The function 'f is monotonic in each of two variables' means that for each fixed x, f(x,y) is a monotonic function in y variable and similarly, for each fixed y, f(x,y) is a monotonic function in x variable.

Theorem

If f is bounded and monotonic in each of two variables, then f is integrable on R.

Again the proof follows by using Riemann condition.

Example: Let f(x,y) := [x+y], for all $(x,y) \in R$, where [u] means the greatest integer less than equal to u, for any $u \in \mathbb{R}$. Since f is monotonic in each of two variables, f is integrable on R.

However, the previous condition is not that common and seems rather special.

Surely what worked in one variable should work here. In fact, a proof similar to the case of one variable will show the following theorem.

Existence of integrals on $R = [a, b] \times [c, d]$ -II

Theorem

If a function $f: R \to \mathbb{R}$ is bounded and continuous on R except possibly finitely many points in R, then f is integrable on R.

Example. Let $R := [-1, 1] \times [-1, 1]$,

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)}, & (x,y) \in R, \quad (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

What are points of discontinuity for f on R?

In the one variable case, we saw that a bounded function with at most a finite number of discontinuities on a closed bounded interval is Riemann integrable.

The reason that a finite number of discontinuities do not matter is that points have length zero. What might be the analogous result in two variables?

In other words what sets have "zero area"?

A bounded subset E of \mathbb{R}^2 has 'zero area' if for every $\epsilon>0$, there are finitely many rectangles whose union contains E and the sum of whose areas is less than ϵ .

It turns out graph of a continuous function, that is, set of the form $\{(x,\phi(x))\mid x\in [a,b]\}$ for a continuous function $\phi:[a,b]\to [c,d]$ has 'zero area' or has *content zero*.

Theorem

If a function f is bounded and continuous on a rectangle $R = [a,b] \times [c,d]$ except possibly along a finite number of graphs of continuous functions, then f is integrable on R.

Example: Let $R = [0,1] \times [0,1]$ and

$$f(x,y) = \begin{cases} 1, & 0 \le x < y, & y \in [0,1], \\ 0, & y \le x \le 1, & y \in [0,1]. \end{cases}$$

Is f integrable over R?

The slightly more general theorem says that given a rectangle R and a bounded function $f: R \to \mathbb{R}$, the function is integrable over R if the points of discontinuity of f is a set of 'content zero'.

However the converse of the above statement is not true. There are integrable functions whose points of discontinuity is not a set of 'content zero'. (Check Tutorial)

Counter example: Bivariate Thomae function: $f:[0,1]\times[0,1]\to\mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = 0, \quad y \in \mathbb{Q} \cap [0,1], \\ \frac{1}{q}, & x,y \in \mathbb{Q} \cap [0,1] \quad \text{and} \quad x = \frac{p}{q}, \\ p,q \in \mathbb{N} \quad \text{are relatively prime,} \\ 0, & \text{otherwise.} \end{cases}$$