

$$\vec{v} = (v_x, \vec{v}_y)$$
 — magnitude $|\vec{v}|$, direction O — components

 $v_x = |\vec{v}| \cos O$
 $v_y = |\vec{v}| \sin O$

$$A_{x} = |\overrightarrow{A}| \cdot \cos(180^{\circ} + (90^{\circ} - 0))$$

$$= |\overrightarrow{A}| \cdot (-\sin(0))$$

$$= |\overrightarrow{A}| \cdot (-\sin(0))$$

$$= -|\overrightarrow{A}| \cdot \sin(0)$$

$$= -|\overrightarrow{A}| \cdot \sin(0)$$

$$= -|\overrightarrow{A}| \cdot \sin(0)$$

$$cos(270^{\circ}-0)$$
= $-cos(90^{\circ}-0)$
= $-sin 0$

$$\vec{B} = 4\vec{A} = \vec{A} + \vec{A} + \vec{A} + \vec{A}$$

$$\vec{B} = 7\vec{A}, \text{ same direction, last magnifude}$$

$$\vec{A} = 7\vec{A}$$

$$\vec{B} = 0.3\vec{A}$$

Example
$$A = 10 \text{ km E}$$
 $A = 10 \text{ km E}$
 $A =$

what is my total displacement?

magnitude?

direction?

$$|\vec{C}| = \sqrt{C_X^2 + C_Y^2}$$

$$tan 0 = \frac{Cv}{Cx} \to 0$$