点集拓扑作业 (7)

Problem 1 设 $\mathcal{T}_1, \mathcal{T}_2$ 是集合 X 的拓扑, 证明: $id_X: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$ 连续当且仅当 $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

必要性:由于 id_X 是连续映射,于是 $\forall V \in \mathcal{T}_2, id_X(V) = V \in \mathcal{T}_1$,即 $\mathcal{T}_2 \subseteq \mathcal{T}_1$.

充分性: 因为 $\mathcal{T}_2 \subseteq \mathcal{T}_1$, 所以 $\forall V \in \mathcal{T}_2$, $id_X(V) = V \in \mathcal{T}_2 \subseteq \mathcal{T}_1$, 因此 id_X 是连续映射.

Problem 2 称全序集 X,Y 之间的映射 f 是保序的, 如果当 $x_1 < x_2$ 时, 都有 $f(x_1) < f(x_2)$. 证明:全序集之间的保序双射是同胚. 由此可知 \mathbb{R} 到 \mathbb{R} 上的单调连续映射为同胚.

先证明 X 到 Y 的保序双射 f 连续, 由对称性可知 f^{-1} 也连续, 进而 f 是 X 到 Y 上的同胚.

我们首先证明: $f^{-1}(a,b) = (f^{-1}(a), f^{-1}(b))$. 只需注意到

$$x \in f^{-1}(a,b) \Leftrightarrow f(x) \in (a,b) = (f(f^{-1}(a)),f(f^{-1}(b))) \Leftrightarrow x \in (f^{-1}(a),f^{-1}(b)).$$

 $\forall V$ 是 Y 中的开集, $\exists J, V = \bigcup_{\alpha \in J} (a_{\alpha}, b_{\alpha})$. 于是

$$f^{-1}(V)=f^{-1}igg(igcup_{lpha\in J}(a_lpha,b_lpha)igg)=igcup_{lpha\in J}f^{-1}(a_lpha,b_lpha)=igcup_{lpha\in J}(f^{-1}(a_lpha),f^{-1}(b_lpha))$$

进而 $f^{-1}(V)$ 是 X 上的开集. 于是命题成立.

Problem 3 考虑积空间 $X_1 \times X_2$, 任意固定的 $x_2 \in X_2$, 证明: $X_1, X_1 \times \{x_2\}$ 同胚.

我们证明:映射 $f: X_1 \to X_1 \times \{x_2\}, f(x) = (x, x_2)$ 是同胚. 首先, 这是一个双射是显然的. 接着, 参见作业 (5) Problem 1, 我们证明了 $\forall U$ 是 X_1 的开集, $U \times \{x_2\}$ 是 $X_1 \times \{x_2\}$ 的开集, 这意味着 f^{-1} 连续. 同时也证明了 $\forall V$ 是 $X_1 \times \{x_2\}$ 的开集, 都存在 U 是 X_1 的开集, 使得 $V = U \times \{x_2\}$ 且 $f^{-1}(V) = U$, 这意味着 f 连续. 于是 f 是同胚, 命题得证.

Problem 4 设 (X,d) 是度量空间, $A\subseteq X, A\neq \phi$. 定义 $d(x,A)=\inf_{a\in A}d(x,a)$. 证明: $\forall x\in X,$ 都有 $|d(x,A)-d(y,A)|\leq d(x,y)$. 进而 $d(\cdot,A)$ 连续.

由度量的三角不等式, $\forall a \in A, d(x,a) \leq d(x,y) + d(y,a), d(y,a) \leq d(x,y) + d(x,a)$. 对上两式取下确界则有, $d(x,A) \leq d(x,y) + d(y,A), d(y,A) \leq d(x,y) + d(x,A)$. 进而 $|d(x,A) - d(y,A)| \leq d(x,y)$.

 $\forall U$ 是 \mathbb{R} 上的开集,令 $V=d^{-1}(U,A)$. 由于 $\forall x\in V, d(x,V)\in U$,根据 U 是开集和 \mathbb{R} 的度量性质, $\exists \varepsilon_x>0, \forall y\in B_{d(x,A)}(\varepsilon_x,\mathcal{T}_R), y\in U$,即

 $B_{d(x,A)}(arepsilon_x, \mathcal{T}_R) \subseteq U, d^{-1}(B_{d(x,A)}(arepsilon_x, \mathcal{T}_R), A) \subseteq d^{-1}(U,A) = V. \ \forall y \in B_x(arepsilon_x, \mathcal{T}_d),$ 都有 $|d(x,A) - d(y,A)| < |d(x,y)| < arepsilon_x.$ 于是 $y \in d^{-1}(B_{d(x,A)}(arepsilon_x, \mathcal{T}_R), A),$ 进而 $B_x(arepsilon_x, \mathcal{T}_d) \subseteq d^{-1}(B_{d(x,A)}(arepsilon_x, \mathcal{T}_R), A).$ 所以我们有 $V = \bigcup_{x \in V} \{x\} \subseteq \bigcup_{x \in V} B_x(arepsilon_x, \mathcal{T}_d) \subseteq V.$ 即

 $V = \bigcup_{x \in V} B_x(\varepsilon_x, \mathcal{T}_d)$ 是 X 上的开集. 所以 $d(\cdot, A)$ 是连续映射.

Problem 5 证明 \mathbb{R}_l 和有序矩形 I_0^2 均满足第一可数性公理.

 $\forall x \in \mathbb{R}$, 设 U 是 x 的开邻域,我们证明, $\exists B_{x,n} = [x, x + \frac{1}{n}) \subseteq U$. 由于 U 是开集,所以 $\exists x \in [a,b) \subseteq U$.

于是取 $n = \left[\frac{1}{b-x}\right] + 1$ 即可. \mathbb{R}_l 满足第一可数性公理.

所谓 I_0^2 , 其实是 $\mathbb{R} \times \mathbb{R}$ 上字典序在 $[0,1] \times [0,1]$ 上的限制所诱导的拓扑. $\forall (x,y) \in I_0^2$, 设 U 是其开集,所以 $\exists ((a,b),(c,d)) \subseteq U$. 若 y=0, 则只需取 $t=\min\{\frac{1}{1-b},\frac{1}{d}\}+1$,此时 $B_{x,t}=((x-1,1-\frac{1}{t}),(x,\frac{1}{t}))\subseteq ((a,b),(c,d))\subseteq U$. y=1 时同理. 若 a=x,取 $t=[\frac{1}{y-b}]+1$,否则,取 $t=[\frac{1}{y}]+1$,同样可求出 s. $n=\min\{t,s\}$,则 $(x,y)\in ((x,y-\frac{1}{n}),(x,y+\frac{1}{n}))\subseteq ((a,b),(c,d))\subseteq U$. 命题得证.

Problem 6 设拓扑空间 X 满足第一可数性公理, $A \subseteq X, x \in A'$. 证明 $\exists \{x_n\}_{n=1}^{+\infty} \subseteq A \setminus \{x\}$ 收敛 到 x.

由于 X 满足第一可数性公理,所以 $\exists \{B_{x,n}\}$ 是 x 的一个可数基. $\forall U_n = \bigcap_{i=1}^n B_{x,n}, \exists x_n \neq x, x_n \in U_n$. 因此, $\forall U$ 是开集, $x \in U$, $\exists B_{x,N_0} \subseteq U$. $\forall n > N_0, x_n \in U_{N_0} \subseteq B_{x,N_0} \subseteq U$. 于是 $\{x_n\}_{n=1}^{+\infty}$ 收敛到 x.

Problem 7 举例说明 X 上存在两个拓扑 $\mathcal{T}_1, \mathcal{T}_2$ 满足 $\mathcal{T}_1 \subseteq \mathcal{T}_2$, 且 (X, \mathcal{T}_1) 与 (X, \mathcal{T}_2) 同胚.

考虑 \mathbb{R} 上的两种拓扑 $\mathcal{T}_2 = \{(-n,n)|n\in\mathbb{N}_+\} \cup \mathbb{R} \cup \phi, \mathcal{T}_1 = \{(-2n,2n)|n\in\mathbb{N}\} \cup \mathbb{R} \cup \phi.$ 显然 $\mathcal{T}_1 \subsetneq \mathcal{T}_2$,定义 f(x) = 2x. 显然 $f = f^{-1}$ 均为连续映射. 所以 f 是同胚.