Vertex of the Quadratic

Given a quadratic $y(n) = a n^2 + b n + c$ compute its value at $n_1 = -\frac{b}{2a}$ namely $y(n_1) = c - \frac{b^2}{4a}$

Now compute the same quadratic at $\mathsf{n}_{1^+}\mathsf{h}$, namely $y(n_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = y(n_1+h) - y(n_1) = a h^2$

Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the global minimum!

$y(n) = 4 n^2 + 24 n + 49$

Example 1.

 $y(n) = -2 n^2 - 16 n - 68$

1000

Example 2.

200 | Vertex Secant -200 Line 2

-400

-600