CSI4101 Compiler Design 2nd Semester, 2019

Solutions to Homework 1

Note: no solution is given for Exercise 7. Exercise 7 is therefore the only exercise that you should hand in by the due-date.

1. Given the alphabet $\Sigma = \{-, +, x, y, z, 0, 1\}$ and the below regular expression, which strings are valid? (Mark one or more.)

$$R: (-|+|\epsilon) (x|y|(0|1)^*)z(0|1)^*$$

- (a) -xz1
- (b) -xz
- (c) yxz
- (d) ϵ
- (e) 01z 1
- (f) +011z1
- (g) +x
- (h) zx

Answer: strings (a), (b) and (f) are valid.

2. Given the regular expression below, which strings are valid? (Mark one or more.) Note: "[a-z]" denotes lower-case characters, "[A-Z]" denotes upper-case characters, and "[0-9]" denotes the digits from 0–9.

$$R: [a-z]([a-z]|[A-Z]|[0-9]|_{-})^{*}$$

- (a) x_
- (b) _x
- (c) yx0z
- (d) ϵ
- (e) ada1
- (f) a_d_a_1

Answer: strings (a), (c), (e) and (f) are valid.

- 3. Write regular expressions for the following languages whose alphabet is $\Sigma = \{0, 1\}$.
 - (a) All possible strings, including the empty string.

Answer: $(0|1)^*$

(b) The empty string.

Answer: ϵ

(c) The string 1011.

Answer: 1011

(d) The strings 1 and 101.

Answer: 1 | 101

(e) All strings beginning with 01.

Answer: $01 (0|1)^*$

(f) All strings that contain exactly two 1's.

Answer: 0* 1 0* 1 0*

(g) All strings beginning with a 0 and ending with a 1.

Answer: $0 (0|1)^* 1$

4. Design deterministic finite automata (DFAs) to recognize the following languages over the alphabet $\Sigma = \{x, y\}$.

Note that with the following DFAs we use an arrow to mark the starting state, e.g.,

(a) Every occurrence of the substring yy is followed by an x.

Answer:

- State s_0 : every string where the last recognized symbol was not y.
- State s_1 : every string where the last recognized symbol was y, but the one before was not y.
- State s_2 : every string where the previous two recognized symbols were y, but the one before was not y.
- (b) Every third symbol is an x.

Answer:

Let p be the position of the symbol in the string being recognized next. The first symbol in the string has position p = 0.

- State s_0 : $p \mod 3 = 0$.
- State s_1 : $p \mod 3 = 1$.
- State s_2 : $p \mod 3 = 2$.

(c) All strings with an even number of x and an even number of y. Answer:

For the following state descriptions, note that 0 counts as an even number.

- State ex ey: an even number of x and an even number of y have been read.
- State ox ey: an odd number of x and and even number of y have been read.
- State ex oy: an even number of x and an odd number of y have been read.
- State ox oy: an odd number of x and an odd number of y have been read.

- 5. Use Thompson's construction algorithm to construct non-deterministic finite automata (NFAs) from the following regular expressions:

 - (b) $a^*(b|c)$ **Answer:**

6. Use the subset construction algorithm to convert the above NFA for $a^*(b|c)$ to a DFA.

Answer:

		ϵ _closure(Move(s, *))		
DFA state	NFA states	a	b	c
x_1	${s_0, s_1, s_3, s_4, s_5, s_6}$	${s_2, s_1, s_3, s_4, s_5, s_6}$	$\{s_7, s_9\}$	$\{s_8, s_9\}$
x_2	${s_2, s_1, s_3, s_4, s_5, s_6}$	$\{s_2, s_1, s_3, s_4, s_5, s_6\}$	$\{s_7, s_9\}$	$\{s_8, s_9\}$
x_3	$\{s_7,s_9\}$			
x_4	$\{s_8, s_9\}$			

Note that the above DFA is not minimal. After state minimization we get

