Computational Physics 113 Homework 1

邱苡熏 110022127

1 Written Assignments

1.

(a) $m\ddot{x} + kx = 0$

Solution:

The characteristic equation for this ODE is:

$$mr^2 + k = 0 \quad \Rightarrow \quad r = \pm i\sqrt{\frac{k}{m}}$$

the general solution is:

$$x(t) = A\cos\left(\sqrt{\frac{k}{m}}t\right) + B\sin\left(\sqrt{\frac{k}{m}}t\right)$$

where A and B are constants determined by initial conditions.

(b)
$$m\ddot{x} + \lambda\dot{x} + kx = 0$$

Solution:

The characteristic equation for this ODE is:

$$mr^2 + \lambda r + k = 0 \quad \Rightarrow \quad r = \frac{-\lambda \pm \sqrt{\lambda^2 - 4mk}}{2m}$$

1. Overdamped case $(\lambda^2 > 4mk)$: The general solution is:

$$x(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

where r_1 and r_2 are the two distinct real roots of characteristic equation.

2. Critically damped case $(\lambda^2 = 4mk)$: The general solution is:

$$x(t) = (C_1 + C_2 t)e^{rt}$$

where $r = \frac{-\lambda}{2m}$.

3. Underdamped case ($\lambda^2 < 4mk$): The general solution is:

$$x(t) = e^{-\frac{\lambda}{2m}t} \left(C_1 \cos(\omega t) + C_2 \sin(\omega t) \right)$$

where
$$\omega = \sqrt{\frac{4mk - \lambda^2}{2m}}$$
.
 $-(c) \ m\ddot{x} + \lambda \dot{x} + kx = F_0 \cos(\omega_f t)$

Solution

The general solution consists of two parts:

- 1. Homogeneous solution: This is the same as the solution from part (b)
- 2. Particular solution: To find the particular solution, assume a solution of the form:

$$x_n(t) = C\cos(\omega_f t - \delta)$$

Substituting this into the ODE and solving for C and δ (the phase shift) gives:

$$C = \frac{F_0}{\sqrt{(k - m\omega_f^2)^2 + (\lambda \omega_f)^2}}$$

$$\tan(\delta) = \frac{\lambda \omega_f}{k - m\omega_f^2}$$

Thus, the general solution is:

$$x(t) = e^{-\frac{\lambda}{2m}t} \left(C_1 \cos(\omega t) + C_2 \sin(\omega t) \right) + \frac{F_0}{\sqrt{(k - m\omega_f^2)^2 + (\lambda \omega_f)^2}} \cos(\omega_f t - \delta)$$

2 Programming Assignments

5(a)

Using Kirchhoff's Voltage Law, the total voltage around the circuit must equal the external emf. Thus, we have:

$$\mathcal{E}(t) = V_R + V_L + V_C = iR + L\frac{di}{dt} + \frac{q}{C}$$

Since $i = \frac{dq}{dt}$, we can rewrite the equation as a second-order differential equation for the charge q:

$$\mathcal{E}_0 \cos(\omega t) = R \frac{dq}{dt} + L \frac{d^2q}{dt^2} + \frac{q}{C}$$

This is the governing differential equation for the RLC circuit, analogous to the mass-spring system.

The answers to the other questions are written in the Jupyter Notebook.

project1 demo3

October 24, 2024

1 Demo 3: A general IVP solver

In this jupyter notebook, we will learn how to use the general IVP solver we wrote in ./project1/solver.py. Let's start from reproducing the results in demo1 and demo2.

Before we start using the IVP solver, let's import the related packages first.

```
[2]: import importlib
     import solver
     importlib.reload(solver)
     import numpy as np
     import matplotlib.pyplot as plt
                                           # your own solver
     import solver as mysolver
     import solution.solver_sol as solver # compare your results with solution
     from scipy.integrate import solve_ivp as solver_scipy
     # Note that if the path of your jupyter notebook is different from the path of \Box
      ⇔the solver.py file,
     # you need to add the relative path of the solver.py file during the import,
      ⇔for example:
     #import project1.solver as mysolver
     #import project1.solution.solver_sol as solver
     # Or, you can add the path of the solver.py file to the system path, for
      ⇔example:
     # import sys
     # sys.path.append('path_of_solver.py')
```

Now, let's start to reproduce demo1 and demo2. Set * t0 = 0 sec and tmax = 20 sec * time step dt = 0.01 * The spring constant K = 1 * The mass M = 1 * Initial condition: x=1, v=0.

```
[3]: # define the y' function
def derive_func(t,y,K,M):
    f = np.zeros(len(y))
    f[0] = y[1]  # y'[0] = v
    f[1] = -K * y[0]/M  # y'[1] = a = F/M
    return f
```

```
# Prepare the input arguments
K = 1
M = 1
t0 = 0
tmax = 20
dt = 0.01
y = [1, 0] # [x0, v0]
t_eval = np.arange(t0, tmax, dt)
t_span = t_eval

# use the IVP solver
sol = mysolver.solve_ivp(derive_func,t_span,y, "RK2", t_eval, args = (K, M))
```

```
[4]: # visualize the results

plt.plot(t_eval, sol[0], label='Position')
plt.plot(t_eval, sol[1], label='Velocity')
plt.xlabel('Time (s)')
plt.legend()
plt.grid(True)
plt.show()
```


2 Damped Oscillation

When there is a damping force $(F_{\text{damp}} = -\lambda \dot{x})$, the equation of motion becomes,

$$m\ddot{x} + \lambda \dot{x} + kx = 0$$

2.0.1 Exercise

- Use the IVP solver we developed. The only differences are the func and initial conditions.
- Modify the y' function (func) to simulate a damped oscillator (from t=0 to 20). IC: at t=0, K=M=1, A=1, $\phi = 0, \lambda = 0.2$.
- Make plots of position(t), velocity(t), and total energy (t). Comapred your results with analytical solutions.

```
[5]: # TODO
     # Define the damped oscillator function
     def damped_oscillator(t, y, K, M, damping):
         f = np.zeros(len(y))
         f[0] = y[1]
                                                \# dx/dt = velocity
         f[1] = -K/M * y[0] - damping/M * y[1] # dv/dt = -K/M * x - damping/M * v
         return f
     # Prepare the input arguments
     K = 1
     M = 1
     damping = 0.2 # Damping coefficient
     t0 = 0
     tmax = 20
     dt = 0.01
     y = [1, 0] \# [x0, v0] -0.5*L/M
     t_eval = np.arange(t0, tmax, dt)
     t_span = t_eval
     # use the IVP solver
     sol = mysolver.solve_ivp(damped_oscillator, t_span, y, "RK4", t_eval, args =__
     \hookrightarrow (K, M, damping))
     # visualize the results
     plt.plot(t_eval, sol[0], label='Position')
     plt.plot(t_eval, sol[1], label='Velocity')
     plt.xlabel('Time (s)')
     plt.legend()
     plt.grid(True)
     plt.show()
```


2.0.2 Analytical Solutions

The analytical solution is

$$x(t) = Ae^{-\gamma t} \left[\cos(\omega t + \phi)\right],$$

where $\omega = \sqrt{\gamma^2 - \omega_0^2}$ or $\omega = \sqrt{\omega_0^2 - \gamma^2}$.

```
[6]: # Compute the analytical solution

gamma = damping/(2*M)  # Damping coefficient (lambda/2M)
phi = 0  # Phase
omega_0 = np.sqrt(K/M)  # Natural frequency
omega = np.sqrt(omega_0**2 - gamma**2)  # Damped frequency

analytical_sol = np.exp(-gamma*t_eval) * (np.cos(omega*t_eval + phi))

plt.plot(t_eval, sol[0], label="numerical")
plt.plot(t_eval, analytical_sol, label="analytical")
plt.legend()
```

plt.show()

2.1 Part 2

Now, let's explore the evolution of the three general cases:

- $\begin{array}{l} \bullet \quad \text{Underdamping: } \omega_0^2 > \gamma^2 \\ \bullet \quad \text{Critical damping: } \omega_0^2 = \gamma^2 \\ \bullet \quad \text{Overdamping: } \omega_0^2 < \gamma^2 \\ \end{array}$

Vary λ , to the corresponding conditions: * $\lambda=0.2~(\omega_0^2>\gamma^2)$ * $\lambda=2~(\omega_0^2=\gamma^2)$ * $\lambda=2.4~(\omega_0^2<\gamma^2)$

```
[7]: # TODO
     # Helper function to run simulation for different damping values
     def run_simulation(gamma, label, linestyle='-'):
         # Solve the IVP problem for the damped oscillator
         sol = mysolver.solve_ivp(damped_oscillator, t_eval, y, "RK4", t_eval, u
      ⇒args=(K, M, gamma))
         # Plot the position vs time
         plt.plot(t_eval, sol[0], label=label, linestyle=linestyle)
     # Underdamping case (lambda = 0.2, omega_0^2 > gamma^2)
```

```
gamma_underdamped = 0.2
run_simulation(gamma_underdamped, 'Underdamped ( = 0.2)')
# Critical damping case (lambda = 2, omega_0^2 = gamma^2)
gamma_critical = 2
run_simulation(gamma_critical, 'Critical damping ( = 2)', linestyle='--')
# Overdamping case (lambda = 2.4, omega_0^2 < gamma^2)
gamma overdamped = 2.4
run_simulation(gamma_overdamped, 'Overdamped ( = 2.4)', linestyle=':')
# Plot settings
plt.plot(t_eval, np.exp(-0.1*t_eval), label="A exp(-0.1 t)")
plt.title('Damped Oscillator: Position vs Time for Different Damping⊔
⇔Conditions')
plt.xlabel('Time [s]')
plt.ylabel('Position [m]')
plt.legend()
plt.grid(True)
plt.show()
```

Damped Oscillator: Position vs Time for Different Damping Conditions

3 Forced Oscillation

- Use the IVP solver we developed. The only differences are the func and initial conditions.
- Modify the y' function (func) to simulate a forced oscillator (from t=0 to 100).
- Set the inital conditions: A=1, K=M=1, $\lambda=0.2,\,F_0=0.1$ and $\omega_f=0.8$.
- Make plots of position(t), velocity(t), and total energy(t).

```
[8]: # TODO
     F0 = 0.1
                   # Amplitude of the external force
     omega_f = 0.8 # Forcing frequency
     # Modified function with forcing term
     def func(t, y, K, M, damping, F0, omega_f):
         f = np.zeros(len(y))
         f[0] = y[1] + \frac{dx}{dt} = v
         f[1] = -K/M * y[0] - damping/M * y[1] + F0/M * np.cos(omega_f * t) # <math>dv/dt_{l}
      \Rightarrow = -K/M * x - damping term + forcing term
         return f
     t_eval = np.arange(0, 100, 0.005)
     damping = 0.2
     sol = mysolver.solve_ivp(func, t_eval, y, "RK4", t_eval, args=(K, M, damping,__
      →F0, omega_f))
     def total_energy(x, v, K, M):
         kinetic_energy = 0.5 * M * v**2
         potential_energy = 0.5 * K * x**2
         return kinetic_energy + potential_energy
     energy = total_energy(sol[0], sol[1], K, M)
     plt.plot(t_eval, sol[0], label="position")
     plt.plot(t_eval, sol[1], label="velocity")
     plt.plot(t_eval, energy, label="tot_energy")
     plt.legend()
     plt.show()
```


4 Resonance

- Resonance will happen when $\omega_0 = \omega_f$ without damping.
- Modify your demo3 but set $\lambda = 0$ and $\omega_f = 1$.
- Re-run your simulation with $\lambda = 0.1$ and 0.01.

5 Using scipy

Compare the results of our solver (mysolver) with the solve_ivp in scipy.

```
[10]: # TODO
```

```
sol_euler = mysolver.solve_ivp(func,t_span,y, "Euler", t_eval, args=(K,M,0.
 →0,F0,omega_f))
sol_rk2 = mysolver.solve_ivp(func,t_span,y, "RK2", t_eval, args=(K,M,0.
 →0,F0,omega_f))
sol_rk4 = mysolver.solve_ivp(func,t_span,y, "RK4", t_eval, args=(K,M,0.
 ⇔0,F0,omega_f))
sol_scipy = solver_scipy(func, [0,100], y, args=(K,M,0.0,F0,omega_f),__
 ⇔t_eval=t_eval, method='RK45')
# visualize the results
plt.plot(t_eval, sol_euler[0], label="Euler")
plt.plot(t_eval, sol_rk2[0], label="RK2")
plt.plot(t_eval, sol_rk4[0], label="RK4")
plt.plot(sol_scipy.t, sol_scipy.y[0], label="scipy RK45")
plt.xlabel('Time (s)')
plt.grid(True)
plt.legend()
plt.show()
```


6 Performance

We could mesure the performance of our solver and compare it with scipy.

```
265 ms \pm 12.3 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each) 123 ms \pm 3.05 ms per loop (mean \pm std. dev. of 7 runs, 10 loops each) 58.6 ms \pm 521 s per loop (mean \pm std. dev. of 7 runs, 10 loops each) 6.5 ms \pm 248 s per loop (mean \pm std. dev. of 7 runs, 100 loops each)
```

Which one is faster?

7 Qestion2, 3

```
[12]: # Define the damped oscillator differential equation
      def damped_oscillator(t, y, omega0, gamma):
          f = np.zeros(2)
          f[0] = y[1]
          f[1] = -2 * gamma * y[1] - omega0**2 * y[0]
          return f
      # Function to calculate total energy and energy loss rate
      def calculate_energy(x, v, M, K, gamma):
          E = 0.5 * M * v**2 + 0.5 * K * x**2
          dE_dt = -gamma * v**2
          return E, dE_dt
      # Function to simulate and plot results
      def simulate_and_plot(A, omega0, gamma, phi, label):
          # Initial conditions
          x0 = A * np.cos(phi)
          v0 = -A * omega0 * np.sin(phi)
          y0 = [x0, v0]
          # Time parameters
          t0, tmax, dt = 0, 20, 0.01
          t_eval = np.arange(t0, tmax, dt)
```

```
# Solve using the IVP solver
  sol = mysolver.solve_ivp(damped_oscillator, t_eval, y0, "RK4", t_eval, u
⇒args=(omega0, gamma))
  x = sol[0, :] # []
  v = sol[1, :]
  # Calculate energy and energy loss rate
  E, dE_dt = calculate_energy(x, v, M, K, gamma)
  # Calculate u and w
  omega1 = np.sqrt(np.abs(omega0**2 - gamma**2))
  u = omega1 * x
  w = gamma * v * x
  # Plot x(t) and v(t)
  plt.figure(figsize=(14, 5))
  plt.subplot(2, 2, 1)
  plt.plot(t_eval, x, label='x(t)')
  plt.plot(t_eval, v, label='v(t)')
  plt.title(f'{label} - Time Evolution')
  plt.legend()
  plt.grid()
  # Plot phase diagram in polar coordinates
  plt.subplot(2, 2, 2, polar=True)
  r = np.sqrt(u**2 + w**2)
  theta = np.arctan2(w, u)
  plt.plot(theta, r)
  plt.title(f'{label} - Phase Diagram')
  # Plot total energy versus time
  plt.figure(figsize=(14, 5))
  plt.subplot(2, 2, 3)
  plt.plot(t_eval, E, label='Total Energy')
  plt.title('Total Energy vs Time')
  plt.xlabel('Time (s)')
  plt.ylabel('Energy (J)')
  plt.legend()
  plt.grid()
  # Plot energy loss rate versus time
  plt.subplot(2, 2, 4)
  plt.plot(t_eval, dE_dt, label='Energy Loss Rate', color='red')
  plt.title('Energy Loss Rate vs Time')
  plt.xlabel('Time (s)')
  plt.ylabel('Energy Loss Rate (J/s)')
  plt.legend()
```

```
plt.grid()

plt.tight_layout()
plt.show()

# Simulate and plot for the three cases
simulate_and_plot(A=1, omega0=1, gamma=0.2, phi=0, label='Case (a):__
Underdamped')
simulate_and_plot(A=1, omega0=1, gamma=1.0, phi=0, label='Case (b): Critically__
Damped')
simulate_and_plot(A=1, omega0=1, gamma=1.2, phi=0, label='Case (c): Overdamped')
```


Case (b): Critically Damped - Phase Diagram

8 Qestion 4.

8.1 Resonance:

We can observe a peak in the average amplitude at a specific frequency (around the natural frequency of the system) in this case for an undamped system. ## Analytical Comparison: The peak resonance frequency should match the theoretical value $\sqrt(K/M)$ which is 1.0 in this case for an undamped system.

```
[13]: # Constants
M = 1.0
K = 1.0
F0 = 0.5
t_eval = np.arange(0, 50, 0.005)
gamma_values = [0.2, 1.0, 1.2]
omega_f_range = np.arange(0.5, 1.55, 0.05)
```

```
# Modified function with forcing term
def func(t, y, K, M, damping, F0, omega_f):
    f = np.zeros(len(y))
    f[0] = y[1] \# dx/dt = v
    f[1] = -K/M * y[0] - damping/M * y[1] + F0/M * np.cos(omega_f * t) # a = __
 \hookrightarrow -K/M * x - damping term + forcing term
    return f
# Total energy function
def total_energy(x, v, K, M):
    return 0.5 * M * v**2 + 0.5 * K * x**2
# Function to calculate average amplitude between t=40 and t=50
def average_amplitude(x, t):
    x_{in} = x[(t > 40) & (t < 50)]
    return np.mean(np.abs(x_in_range))
# Initialize an empty dictionary to store results for each gamma
results = {}
# Loop over each gamma value
for gamma in gamma values:
    avg_amplitudes = []
    for omega_f in omega_f_range:
        y0 = [0,0] # Initial conditions: x=0, v=0
        # Solve the system with the current damping and driving frequency
        sol = mysolver.solve_ivp(func, t_eval, y0, "RK4", t_eval, args=(K, M,_
 ⇒gamma, F0, omega_f))
        position = sol[0]
        # Calculate average amplitude between t=40 and t=50
        avg amp = average amplitude(position, t eval)
        avg_amplitudes.append(avg_amp)
    # Store the average amplitude result for this gamma value
    results[gamma] = avg_amplitudes
plt.figure(figsize=(10, 6))
# Plot the average amplitude vs omega_f for each damping value
for gamma, avg_amplitudes in results.items():
    plt.plot(omega_f_range, avg_amplitudes, label=f"gamma = {gamma}")
plt.xlabel("Driving Frequency (_f)")
plt.ylabel("Average Amplitude (D)")
```


9 Question 5

(b) Use the same IVP solver we developed in the class to numerically solve the system with initial conditions: $L, C, E_0 = 1$ and R = 0.8. Make plots of the current and the voltage across the inductor as functions of time.

```
[14]: # Constants
R = 0.8
L = 1.0
C = 1.0
E0 = 1.0
omega = 0.7
t_eval = np.arange(0, 50, 0.01)

# describing the RLC circuit
def rlc_system(t, y, R, L, C, E0, omega):
    f = np.zeros(2)
```

```
f[0] = y[1] \# dq/dt = i
    f[1] = (E0 * np.cos(omega * t) - R * y[1] - y[0] / C) / L # <math>di/dt
    return f
# initial conditions
y0 = [0, 0]
# using the IVP solver
sol = mysolver.solve_ivp(rlc_system, t_eval, y0, "RK4", t_eval, args=(R, L, C, L
→E0, omega))
charge = sol[0]
current = sol[1]
# plot the results: current and inductor voltage
voltage_L = L * np.gradient(current, t_eval) # V_L = L * di/dt
plt.figure(figsize=(10, 6))
plt.plot(t_eval, current, label="Current (i)")
plt.plot(t_eval, voltage_L, label="Voltage across Inductor (V_L)")
plt.xlabel("Time (t)")
plt.ylabel("Amplitude")
plt.title("Current and Voltage across Inductor vs Time")
plt.legend()
plt.grid(True)
plt.show()
```


(c) Redo the problem by varying from 0.3 to 1.5 with an interval 0.1. Do you see any special? What are the meaning of these frequencies?

9.0.1 Result Analysis

The maximum amplitude of the current varies with different driving frequencies \$ \$. If the amplitude reaches its peak at a particular frequency, that frequency is the resonance frequency of the system. In an RLC circuit, the theoretical resonance frequency \$ _r \$ is given by:

$$\omega_r = \frac{1}{\sqrt{LC}}$$

At this frequency, the amplitude of the current reaches its maximum value, which is known as the resonance phenomenon.

Through this simulation, we can observe a significant increase in current amplitude as the driving frequency approaches the system's resonance frequency.

```
[15]: # drive frequency range
      omega range = np.arange(0.3, 1.55, 0.1)
      amplitudes = []
      # loop over each drive frequency
      for omega in omega_range:
          sol = mysolver.solve_ivp(rlc_system, t_eval, y0, "RK4", t_eval, args=(R, L, _
       ⇔C, EO, omega))
          current = sol[1]
          # compute the max current amplitude in the steady-state part (t > 40)
          steady state mask = (t eval > 40)
          max amplitude = np.max(np.abs(current[steady state mask]))
          amplitudes.append(max_amplitude)
      # plot current amplitude vs driving frequency
      plt.figure(figsize=(10, 6))
      plt.plot(omega_range, amplitudes, marker='o')
      plt.xlabel("Driving Frequency ()")
      plt.ylabel("Max Current Amplitude")
      plt.title("Resonance in RLC Circuit")
      plt.grid(True)
      plt.show()
```

