TCHINDA FEZE Cedrick Vanel

Laboratoire Operation Binaire

Question 1

Valeur de X	Sortie Y
-8	-79
-7	-69
-6	-59
-5	-49
-4	-39
-3	-29
-2	-19
-1	-9
0	0
1	11
2	22
3	31
4	41
5	51
6	61
7	71

Question 2

8 bits sont nécessaires pour représenter Y car en utilisant le complément à deux sur 8 bits, la plage de valeurs est de -128 à 127 et toutes les valeurs de Y sont dans cette plage de valeurs.

Question 3

y = 10x+1 avec la première valeur de x (-8) par exemple, nous allons décomposer l'opération.

$$10x+1 = (8x + 2x) + 1$$

$$=> y = (8(-8) + 2(-8)) + 1$$

Etant donné que -8 est le complément a 2 de 8, ça valeur est 0b1000

$$8(-8) = 0b1000000$$

$$2(-8) = 0b10000$$

Question 4

Valeur de X (4 bits)	Sortie Y (8 bits)
0000	00001000
0001	00011010
0010	00101100
0011	00111110
0100	01001000
1010	10101100
0110	01101100
0111	01111110
1000	10001000
1001	10011010
1010	10101100
1011	10111110
1100	11001000
1101	11011010
1110	11101100
1111	11111110