Here's the natural language translation of the given formal proof:

We will show that the negation of ${\cal F}$ is a logical consequence of the following three premises:

```
p1: (A \lor B \Rightarrow C \land D) \ p2: (C \lor E \Rightarrow \neg F \land G) \ p3: (F \lor H \Rightarrow A \land I)
```

We will derive $\neg F$ by contradiction. Let's assume F and show that this leads to a contradiction.

Starting with F, we can reason as follows:

 $F\Rightarrow (F\vee H)$ (by the alternate rule) $\Rightarrow (A\wedge I)$ (by premise $p3)\Rightarrow A$ (by left-and) $\Rightarrow (A\vee B)$ (by the alternate rule) $\Rightarrow (C\wedge D)$ (by premise $p1)\Rightarrow C$ (by left-and) $\Rightarrow (C\vee E)$ (by the alternate rule) $\Rightarrow (\neg F\wedge G)$ (by premise p2) $\Rightarrow \neg F$ (by left-and)

This final result, $\neg F$, contradicts our initial assumption F. Therefore, we have derived a contradiction from the assumption F.

Thus, by the principle of proof by contradiction, we can conclude $\neg F$.

This proves that $\neg F$ is indeed a logical consequence of the given premises.