	WORKED EXAMPLE 04. FALL 2024 .09/16/2024 NETRUCTOR: RAHUL BHADANI. UAH
① I	input: xcts Dutput: xctsfits
	fits=ulti-ult-10), determine whether the system input alts and yets is 13180 stable.
Solution	For bounded xLES, 1.e (xLES) < MZOO
∧ 1	the output is bound, as
	ulti-ule-10) f(t) = u(t) - u(t-10) 1's a constant signal
	ylt= altifles is bounded
	Hence, the System is 13180 Stable.
Q2. Cen	1 side of a system composed of two subsystem; Si and S2
	$z^{(N)} \rightarrow S_1 \rightarrow S_2 \rightarrow y tts$
	Impulse susponse of S_1 is $h_1 lf = S(lf) - 2e^{-t}u(lf)$ 11 1. S_2 is $h_2 lf = e^{-t}u(lf)$
	Is the System of BIBO stable.
Solution	Composite system's impulse occaponse is given by hlb = h. (t) & h. (t) = etuly & [Slt) - 2etuly]
	= com a com ze mas

Note: Convolution with Slts returns the ordisinal signal, i.e. flts & Slt) = flts etults & [SUD-2etult] - etulo 0510 - etulo (2ētulo) = etulb - etult) * (2etulb) $(f *q) t = \int_{\infty}^{t} f(\tau) g(t-\tau) d\tau$ $=2\int_{-\infty}^{2}e^{\tau}u(t)e^{-\left(t-\tau\right)}d\tau$ = 2 st et u(t) et et u(t-t) de = 2et \int e^2 t dt = 2et \.e^2 t \. = et_et = etules-etules, t>0 hlts = et ults - (etules - etule) = etult étulti is absolutely integrable (Setulate and the system is BIBO stable.