CS 5806 Machine Learning II

Lecture 12 - Ensemble Learning 1 October 2nd, 2023 Hoda Eldardiry

Recommended Reading [1] Ch. 11, [5] Ch. 15-16, [6] Ch. 14, [7] Sec. 18.10, [8] Sec. 16.2.5

Ensemble Learning

Definition

- A special paradigm for learning
- Instead of generating a single hypothesis based on a single algorithm
- Combine multiple algorithms & multiple hypotheses to obtain better results

Examples

- Bagging
- Boosting

Supervised Learning

- Multiple approaches
- Multiple options

Which Technique to Pick?

Which method will produce better results?

- We don't know
- It's a process of trial & error
- Theory: some techniques do better in some situations
- However: theory does not hold in practice

Do we need to pick a technique?

Can we just combine techniques?

— Would combining techniques do better?

No Perfect Technique

- In practice
 - Different learning techniques yield different hypotheses
 - None of those hypotheses is perfect
- Typically
 - One technique gives you a hypothesis that is good for one type of data
 - Another technique gives you a different hypothesis that is better for a different type of data
- In practice
 - Your data may include both types of data
 - => You don't have a perfect hypothesis
 - => No hypothesis works best for all types of data
- Can we combine several imperfect hypotheses into a better hypothesis?

Ensemble Learning

- Similar to things we often do as a society ...
 - Elections combine voters' choices to pick a good candidate
 - Committees combine experts' opinion to make better decisions

Ensemble Learning

- Algorithms are voters of predictions that we combine
- Different algorithms better suited for different types of data
- When combined obtain a better overall solution

Intuition

	Individual	Majority
Mistakes	Likely	Less likely
Knowledge	Partial	Complementary
Preference	Individual-specific	More widely suitable for society
Decision		More robust

Ensemble Learning

Definition

 Method to <u>select</u> & <u>combine</u> an ensemble of hypotheses into a (hopefully) better hypothesis

Properties

- Not always better
- With right type of algorithm
- Generally obtain better results

Example

- Combine multiple linear separators
- Improve classification on data that is not linearly separable

Intuition

Enlarge hypothesis space

Supervised Classification

X: attributes

Y: class label

Ensemble Learning

Bagging Mechanism

Mechanism

Majority Voting (inspired by voting)

Given

- Ensemble of hypotheses h1, h2, h3, h4, h5
- Hypotheses might be produced by different algorithms or different data

Goal

Make a classification based on different hypotheses

To make a prediction for instance x

- Allow each hypothesis to return a predicted class for x (vote) hi(x): predicted class by hypothesis hi
- Return majority(h1(x),h2(x),h3(x),h4(x),h5(x))
 <most popular predicted class>

Misclassification

- For ensemble (majority classification) to be wrong, at least 3 out of 5 hypotheses must be wrong
- The larger the ensemble,
 - More hypotheses must be wrong for the majority to be wrong
 - Under the right assumptions, we can show that this is unlikely

Bagging Assumptions

- Each hi makes error with probability p
- Hypotheses are independent
 - Probability of some error is independent
 - Type of error is independent
 - One makes a mistake does not imply others will too
 - Majority is robust

Bagging Assumptions

- Majority voting of n hypotheses
- for each possible subset k
- pr(k hypotheses make an error) $\binom{n}{k}$ pk(1-p)^{n-k}

k out of n will make error with probability

- pr(majority makes an error) $\sum_{k>n/2} {n \choose k} p^k (1-p)^{n-k}$

$$\Sigma_{k>n/2} \binom{n}{k} p^{k} (1-p)^{n-k}$$

consider all k's that are at least n/2 sum the same expression for k > n/2

- **Example** n=5, p=0.1
 - According to above formula above, probability of err(majority) < 0.01
 - Exercise: plug in formula: n = 5, k = 3,4,5, p=0.1
 - Combine hypotheses that make mistakes 10% of the time
 - Resulting ensemble makes mistakes less than 1% of the time
 - When at least 3 out 5 make a mistake
- Big performance boost by just an ensemble of size 5!

Weighted Majority

Assumptions do not hold in practice

- Hypotheses rarely independent
- Some hypotheses have less errors than others
- Probability of making a mistake is not the same

Solution

Take a weighted majority

Intuition

- Decrease weight of correlated hypotheses
 (Decrease weights of algorithms that generate similar hypotheses)
- Increase weight of good hypotheses
- => improve overall accuracy
- Ensemble technique that uses weighted majority??

Boosting

- Popular ensemble technique
- Computes a weighted majority vote
- To obtain hypotheses
 - Use a base learning technique that produces classifiers
 - Base learner can be a weak learner (not very good learning technique)
 - Pooling a lot of its resulting hypotheses
 - Obtain higher accuracy
- "Boost" a "weak learner"
 - As long as the weak learner performs slightly better than random
- Operates on a weighted training set
 - Need reweight training set

Boosting

- Dataset => base learner => hypothesis
- Perturb dataset by changing weights of data instances
- Perturbed dataset => base learner => different hypothesis

Intuition

- Select instances that are misclassified by one hypothesis
- Increase their weight => make them more important
- So next time, algorithm has a better chance of generating a hypothesis that classifies those instances correctly

Weighted Training Set

- Boosting uses learning algorithms that can work with weighted training set
 - All supervised learning techniques can be adjusted to work with weighted training set
- Examples of how to take weights into account
- Weights: integers
 - Simply duplicate data instances corresponding to integer weights
- Weights: positive real numbers
 - Change objective by introducing a weight for each data point
 - Change loss function so penalty is proportional to weight
 - Normally, optimization: loss function (objective) computes loss for every data point
 - In this case: multiply loss by weight of data point
 - Example: weighted squared error
 - The goal is to have squared loss be smaller for some data points
 - So we take a weighted combination of squared loss of every data point
- Usually after that
 - There is a normalization step that normalizes the weights so they all sum to one

Weighted Training Set

- It is the relative weight magnitude that matters
- Increasing weight of misclassified points
 Automatically decreases weight of correctly classified ones
- Algorithm wants to minimize loss
 - Those with higher weights contribute larger loss
 - So they are more important to optimize for (minimize their loss)
- Bias algorithm to correctly classify instances that cost more when misclassified

Learning with a Weighted Training Set

Learning with a weighted training set

- Supervised learning => minimize training error
- Bias algorithm to correctly learn instances with big weights

Boosting Idea

- When instance is misclassified by hypothesis
- Increase its weight
- So next hypothesis is more likely to classify it correctly

Boosting Framework

Set all instance weights wx to 1

- Repeat
 Repeat
 Data weights
 hi <= learn(dataset, weights)
 - Increase w_x of misclassified instances x
- Until sufficient number of hypotheses

• Ensemble hypothesis: weighted majority of hi's with weights wiproportional to accuracy of hi

Hypothesis weights

Boosting Framework

- Base learner can be any algorithm
 - Perceptron, SVM, Neural Network, Decision Tree
 - Simple & quick base learner
 - Since we generate multiple hypotheses: don't use complex ones
 - Also, complex hypotheses usually don't need boosting
- Weight data
 - To increase penalty of misclassification
- If we get perfect hypothesis w.r.t. training
 - It may not be perfect on test set
 - To avoid overfitting
 - Combine with less perfect hypotheses
 - And give it a higher weight

Boosting Framework

Small dataset: 4 data points

Rectangle size ==> weight of datapoint

Point 1

Point 2

Point 3

Point 4

Start with uniform weights: Equal size rectangles

Base learner: decision tree (can be anything)
Base learner generates h1

h

Take weighted combination of hypotheses **PREDICTIONS**

Check: correct classification

Cross: incorrect

h1 training accuracy: 50%

Increase weights of misclassified points
Normalize weights =>

Correctly classified get smaller weights

AdaBoost: Adaptive Boosting

- A boosting algorithm that made boosting popular
- Theory behind chosen expressions => proven bounds on accuracy & on accuracy improvement

```
• w_j <= 1/N Forall_j
```

• For m=1 to M do

```
hm <= learn(dataset, w)
err <= 0
For each (x<sub>i</sub>, y<sub>i</sub>) in dataset do
    If h<sub>m</sub>(x<sub>i</sub>) != y<sub>i</sub> then err <= err + w<sub>i</sub>
For each (x<sub>i</sub>, y<sub>i</sub>) in dataset do
    If h<sub>m</sub>(x<sub>i</sub>) = y<sub>i</sub> then w<sub>i</sub> <= w<sub>i</sub> err / (1-err)
w <= normalize(w)
z<sub>m</sub> <= log [(1-err) / err]</pre>
```

Return weighted-majority(h, z)

Initialize to uniform weights

w: vector of N instance weights

z: vector of M hypotheses weights Loop, every iteration: base learner

given data & weights, generate h

evaluate h: measure its error rate totalErr += weight of misclassified point

reduce weight of correctly classified

normalize data weights compute h's weight

What can we boost?

Boosting

Most effective when you work with weak learners that are far from perfect

Weak learner

- Algorithm produces hypotheses at least as good as random classifier
- (Slightly better than random)
- If accuracy is less than random, flip labels, then it would do slightly better than random

Not worth using a sophisticated base learner

- Because we generate multiple hypotheses
- So it needs to be simple & fast

• Examples

- Rules of thumb (manually specified)
- Decision stumps (decision trees of one node)
- Perceptrons
- Naïve Bayes models

Boosting Paradigm

Advantages

- No need to learn a perfect hypothesis
- Can boost any weak learning algorithm
- Boosting is very simple to program
- Good generalization
 - => Robust to overfitting because it uses multiple hypotheses
 - => Does not pick best, which might lead to overfitting

Can think of boosting as a tractable approximation to Bayesian Learning

- Generate multiple hypotheses with some weights and take weighted combination
- Similar to bayesian learning: we have posterior distribution over hypotheses
 & we take weighted combination to make a prediction
- Difference: boosting uses a specific base learner to generate hypotheses
- While Bayesian Learning: considers entire space of hypotheses

Paradigm shift

- Don't try to learn a perfect hypothesis
- Just learn simple rules of thumbs and boost them

Boosting Paradigm

- When we already have a bunch of hypotheses
 - Boosting provides a principled approach to combine them

Useful for

- Sensor fusion
- Combining experts
- Where multiple heuristics have been proposed
- Some may be weak with no strong backing theory
- Boosting provides a way to combine different classifiers or different predictors, perhaps based on different sensors

Applications

- Any supervised learning task
 - Collaborative filtering (Netflix challenge movie recommendation)
 - => ensemble learning is key
 - Body part recognition (Kinect by Microsoft)
 - => ensemble of decision trees
 - Spam filtering
 - Speech recognition/natural language processing
 - Data mining
 - Etc.

Summary

- Ways to improve predictions
 - Ensemble Learning combine models

Discussion

- What model are you considering for your project?
- Can you consider an ensemble of models?
- How would you do it?
- Start a discussion topic on canvas if you like to brainstorm further with others