Nama: Hendrikus Yohanes Wunga

Nim: 225314039

age	income	student	<mark>redit ratino</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Diketahui:

- Jumlah total data: 14
- Fitur yang di ketahui:

$$\triangleright$$
 Age = 31 ... 40

- > Income = low
- Student = no
- Credit_rating = fair
- Rumus Naive Bayes (dengan Koreksi Laplace):

$$P(X \mid C) = \frac{count(X,C) + 1}{N_c + \mid V \mid}$$

$$P(C|X_1,...,X_n) \propto P(C).\prod_{i=1}^n = P(X_1|C)$$

Ditanya:

- Apakah orang dengan age=31...40, income=low, student=no, dan credit_rating=fair akan membeli komputer (buys_computer=yes) atau tidak (buys_computer=no)?
- Secara matematis, kita ingin membandingkan:
 - P(buys_computer=yes|age=31...40,income=low,student=no,credit_rating=fair) dengan,

P(buys_computer=no|age=31...40,income=low,student=no,credit_rating=fair)P(buys_computer=no|age=31...40,income=low,student=no,credit_rating=fair)

Pengerjaan :

- A. Hitung Probabilitas Pior
 - $P(buys_computer=yes) = P(yes) = \frac{9}{14} = 0.643$
 - $P(buys_computer=no) = P(no) = \frac{5}{14} = 0.357$
- B. Hitung Probabilitas Bersyarat (dengan Koreksi Laplace):

Rumus: $P(X|C) = \frac{count(X,C)+1}{N_C+|V|}$

dimana:

- x adalah fitur (misalnya, "age=31...40")
- **c** adalah kelas (yes atau no)
- count(X,C) Adalah kemunculan fitur X di kelas C
- ullet N_c adalah jumlah todal data di kelas ${\sf C}$
- lacktriangledown |V| adalah jumlah nilai unik yang mungkin untuk fitur X
- a. Untuk buys_computer = yes:
 - $P(age = 31...40 \mid yes)$:
 - ♦ count(age=31...40, yes)=3
 - \bullet $N_{ues} = 9$
 - $|V|_{age} = 3$ (<=30, 31...40, >40)
 - P(age=31...40|yes) = $\frac{3+1}{9+3} = \frac{4}{12} = 0.333$
 - P(income = low | yes):
 - ♦ count(income=low, yes)=2
 - \bullet $N_{ues} = 9$
 - ♦ |V|_{income} = 3 (low,medium,high)
 - P(income=low|yes) = $\frac{2+1}{9+3} = \frac{3}{12} = 0.250$
 - P(student = no | yes):
 - count (student = no, yes) = 2
 - $N_{\text{yes}} = 9$
 - $|V|_{student} = 2$ (yes,no)
 - $P(student) = no |yes| = \frac{2+1}{9+2} = \frac{3}{12} = 0.273$

- P(creditRating=fair|yes):
 - count(creditRating = fair, yes) = 5
 - $N_{yes} = 9$
 - $|V|_{creditRating}$ = 2 (fair,excellent)
 - $P(creditRating) = fair | yes) = \frac{5+1}{9+2} = \frac{6}{11} = 0.545$
- b. Untuk buys_computer = no:
 - P(age = 31...40 | no):
 - ♦ count(age=31...40, no)=0
 - \bullet $N_{no} = 5$
 - \bullet $|V|_{age} = 3$
 - \bullet P(age=31...40|no) = $\frac{0+1}{5+3}$ = $\frac{1}{8}$ = 0.125
 - P(income = low | no):
 - ♦ count(income=low, no)=1
 - \bullet $N_{no} = 5$
 - \bullet $|V|_{income} = 3$
 - P(income=low|no) = $\frac{1+1}{5+3} = \frac{2}{8} = 0.250$
 - P(student = no | no):
 - count (student = no, no) = 4
 - \bullet N_{no} = 5
 - $V|_{student} = 2$
 - $P(student) = no \mid no) = \frac{4+1}{5+2} = \frac{5}{7} = 0.714$
 - P(creditRating=fair|no):
 - count(creditRating = fair,no) = 2
 - $\bullet \quad N_{n \, o} = 5$
 - \bullet |V|_{creditRating}= 2
 - $P(creditRating) = fair | no) = \frac{2+1}{5+2} = \frac{3}{7} = 0.429$
- C. Probabilitas Posterior (Sebelum Normalisasi):
 - $\bullet \quad P(yes|X) \propto P(yes) \, \times \, P(age|yes) \times P(income|yes) \times P(student|yes) \times P(creditRating|yes)$
 - $P(yes|X) \propto 0.643 \times 0.333 \times 0.350 \times 0.273 \times 0.545 = 0.0079$
 - $P(no|X) \propto P(no) \times P(age|no) \times P(income|no) \times P(student|no) \times P(creditRating|no)$
 - $P(no|X) \propto 0.357 \times 0.125 \times 0.250 \times 0.714 \times 0.429 = 0.0034$

D. Normalisasi Probabilitas Posterior:

•
$$P(yes|X) = \frac{0.0079}{0.0079 + 0.0034} = \frac{0.0079}{0.0113} = 0.699 \approx 0.70$$

• $P(no|X) = \frac{0.0034}{0.0079 + 0.0034} = \frac{0.0034}{0.0113} = 0.301 \approx 0.30$

•
$$P(no|X) = \frac{0.0034}{0.0079 + 0.0034} = \frac{0.0034}{0.0113} = 0.301 \approx 0.30$$

Karena P(yes | X) = 0.70 > P(no|X) = 30, prediksi adalah **YES (akan membeli komputer)**