Zadanie numeryczne 01

Autor: Eryk Stępień

18.10.2023

Spis treści:

- 1. Problem
- 2. Program
 - 1. Użyte narzędzia
 - 2. Kompilacja i uruchomienie
 - 3. Przewidywane rezultaty uruchomienia programu
- 3. Analiza problemu dla funkcji $f(x) = \sin(x^2)$ i x = 0.2
 - 1. Zachowanie błędu dla typu float
 - 2. Zachowanie błędu dla typu double
 - 3. Podsumowanie i wnioski
- 4. Analiza problemu dla funkcji $f(x) = \cos(x^2)$ i x = 100.0
 - 1. Podsumowanie

1. Problem

Napisz program wyliczający przybliżenie pochodnej ze wzorów:

(a)
$$D_h f(x) = \frac{f(x+h)-f(x)}{h}$$

(b)
$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Przeanalizuj, jak zachowuje się błąd $|D_h f(x) - f'(x)|$ dla funkcji $f(x) = \sin(x^2)$ oraz punktu x = 0.2, przy zmianie parametry h dla różnych typów zmiennoprzecinkowych (float, double). Wykreśl $|D_h f(x) - f'(x)|$ w funkcji h w skali logarytmicznej. Poeksperymentuj również używając innych funkcji i punktów.

2. Program

2.1 Użyte narzędzia

Program został napisany w języku Python 3.10. Przy zastosowaniu środowiska PyCharm 2023.2.2. Korzysta on z następujących bibliotek:

- Numpy
- Matplotlib

2.2 Kompilacja i uruchomienie

W celu kompilacji należy wywołać poniższą komendę w terminalu:

python NUM1.py

2.3 Przewidywane rezultaty uruchomienia programu

Wynikiem działania programu powinny być 14 wykresów obrazujących zmianę błędu w zależności od wartości *h*.

3. Analiza problemu dla funkcji $f(x) = \sin(x^2)$ i x = 0.2

3.1 Zachowanie błędu dla typu float

Dla $h <= 10^{-9}$ błąd dla obu przybliżeń jest funkcją stałą, której wartości mieszczą się między 0.1 a 1. Po osiągnięciu wartości $h > 10^{-9}$ błąd zaczyna się zmniejszać dla obu funkcji. W przypadku $D_h f(x) = \frac{f(x+h)-f(x)}{h}$ osiąga on najmniejszą wartość wynosząc w oszacowaniu 10^{-6} dla h wynoszącego ok. 10^{-6} następnie wykres zaczyna rosnąć, aż do osiągnięcia błędu ok. 10^{-3} by następnie, wraz ze wzrostem wartości h maleć. Dla $h > 10^{-5}$ błąd zaczyna rosnąć w sposób zbliżony do liniowego. W przypadku $D_h f(x) = \frac{f(x+h)-f(x-h)}{2h}$ zmiana naszego błędu w zależności od h przebiega niemal identycznie jak dla pierwszego przybliżenia, z tym wyjątkiem, że po przekroczeniu $h > 10^{-6}$ błąd nadal maleje, aż do osiągnięci swojego minimum (10^{-7}) dla h wynoszącego około 10^{-3} . Po przekroczeniu tej granicy i dalszym zwiększaniu h błąd będzie wzrastał w sposób zbliżony do liniowego.

3.2 Zachowanie błędu dla typu double

W przypadku typu double błąd maleje wraz ze wzrostem h dla obydwu funkcji przybliżających.

Dla $D_h f(x) = \frac{f(x+h)-f(x)}{h}$ maleje on, aż do osiągnięcia swojej najmniejszej wartości wynoszącej około 10^{-9} dla h równego ok. 10^{-9} . Po przekroczeniu tej granicy, wraz z dalszym wzrostem h, błąd zaczyna rosnąć w sposób zbliżony do liniowego.

Dla $D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$ błąd maleje, aż do osiągnięcia najmniejszej wartości wynoszącej ok. 10^{-1} dla h wynoszącego ok. 10^{-6} . Po przekroczeniu tej granicy, wraz z dalszym wzrostem h, błąd zaczyna rosnąć w sposób zbliżony do liniowego.

3.3 Podsumowanie i wnioski

Przy użyciu $D_h f(x) = \frac{f(x+h) - f(x)}{h}$ otrzymujemy:

- ullet Dla float: Błąd minimalny wynoszący około 10^{-6} dla h optymalnego wynoszącego około 10^{-6}
- Dla double: Błąd minimalny wynoszący około 10^{-9} dla h optymalnego wynoszącego około. 10^{-9}

Przy użyciu $D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$ otrzymujemy:

- Dla float: Błąd minimalny wynoszący około 10^{-7} dla h optymalnego wynoszącego około 10^{-3}
- Dla double: Błąd minimalny wynoszący około 10^{-12} dla h optymalnego wynoszącego około 10^{-6} .

4 Analiza problemu dla funkcji $f(x) = \cos(x^2)$ i x = 100

Przy użyciu $D_h f(x) = \frac{f(x+h)-f(x)}{h}$ otrzymujemy:

- Dla float: Stały wykres błędu dla $h \le 10^{-7}$. Wraz z dalszym wzrostem h wykres maleje, aż do osiągnięcia błędu minimalnego wynoszącego około 1 dla h optymalnego wynoszącego około 10^{-5} . Przy dalszym wzroście h błąd zaczyna się zwiększać.
- Dla double: Stały wykres błędu dla $h \le 10^{-14}$. Wraz z dalszym wzrostem h wykres maleje, aż do osiągnięcia błędu minimalnego wynoszącego około 10^{-4} . dla h optymalnego wynoszącego około 10^{-9} . Przy dalszym wzroście h błąd zaczyna się zwiększać.

Przy użyciu $D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$ otrzymujemy:

- Dla float: Stały wykres błędu dla $h \le 10^{-7}$. Wraz z dalszym wzrostem h wykres maleje, aż do osiągnięcia błędu minimalnego wynoszącego około 10^{-1} dla h optymalnego wynoszącego około 10^{-4} . Przy dalszym wzroście h błąd zaczyna się zwiększać.
- Dla double: Stały wykres błędu dla $h \le 10^{-14}$. Wraz z dalszym wzrostem h wykres maleje, aż do osiągnięcia błędu minimalnego wynoszącego około 10^{-7} . dla h optymalnego wynoszącego około 10^{-7} . Przy dalszym wzroście h błąd zaczyna się zwiększać.