

MAI-1103 Seat No.____

B. C. A. (Sem. III) Examination October / November - 2018

BCA - 303 : Statistics & Optimization Techniques

Time: 3 Hours]

[Total Marks: 70

- 1 (a) Attempt the following questions:
 - (1) Define: Mean
 - (2) Define: Median
 - (3) Define: Mode
 - (4) _____ is an ideal average.
 - (5) The value of S. D is always _____
 - (6) Quartile divides a series into _____equal parts.
 - (b) Attempt any two:

12

6

(1) Calculate the mean, median and mode for the following data.

Observations:	1	2	5	6-10	10-20	20-30	30 – 50	50 - 70	70-100
Frequency:	3	4	10	23	20	20	15	3	2

(2) Find standard deviation from the following.

Class	0-10	10 – 20	20 - 30	30 – 40	40 - 50	50-60	60 - 70
Frequency	2	6	12	16	22	18	14

(3) The mean of the following distribution is 122.7, find the missing frequency.

Class	60 – 79	80 – 99	100 – 119	120 – 139	140-159	160 – 179
Freq.	7	4	?	18	5	5

2	(a)	Do as directed:
		(1) The value of correlation coefficient is between and
	3.7	(2) If $r = 0$, the two variables are
		(3) The value of r^2 lies between and
		(4) Two regression line intersect each other at and
		(5) If two variables are perfectly positively correlated, $r = $
	(b)	Attempt any two:
		(1) Find the equation of regression line from the following data.
		x 3 2 -1 6 4 -2 5 7 y 5 13 12 -1 2 20 0 -3
	•	(2) Find karl pearsn's co-efficient between X and Y.
		X 27 38 13 24 6 19 15 Y 35 46 19 32 15 31 20
		(3) Find r using rank co-relation method.
	x	70 75 80 30 60 25 50 35 58 80
	y	20 33 15 60 44 65 36 56 42 15
3	(a)	Do as directed:
		(1) Full form: PERT, CPM(2) Define term: Activity, Event
	· 6.3	(2) Define term: Activity, Event(3) Define term: Slack variable, Surplus variable

[Contd...

- (1) Describe the advantages of Linear Programming Techniques.
- (2) Solve the following L.P.P using graphical method.

Max.
$$Z = 6x_1 + 8x_2$$

Sub. To
$$5x_1 + 10x_2 \le 60$$

$$4x_1 + 4x_2 \le 40$$
 And $x_1, x_2 \ge 0$

(3) Draw a network diagram for the following activity.

Activity	\overline{A}	В	C	D	E	\overline{F}	G	H
Predecessor Activity	_	A	A	B	B,C	E	D,E	G

- 4 (a) Do as directed:
 - (1) How assignment problem is a particular 2 case of transportation problem?
 - (2) What is unbalanced transportation problem? How can it be balanced?

(b) Attempt any **two**:

12

3

(1) Obtain initial basic feasible solution for the given problem by LCM and NWCM.

	1	2	3	4	Supply
A	3	1	7	4	300
B	2	6	5	9	400
C	8	3	3	2	500
Demand	250	350	400	200	1200

(2) Find initial basic feasible solution for given problem by using Vogel's method.

	D	E	F	G	Supply
\overline{A}	11	13	17	14	250
B	16	18	14	10	300
C	21	24	13	10	400
Demand	200	225	275	250	950

(3) Determine optimum solution by MODI method for following transportation problem.

	S_1	S_2	S_3	S_4	Supply
4 1 4 :	4	8	8	0	76
2	16	24	16	0	82
3	8	16	24	0	77
Demand	72	102	41	20	235