	PyLab e Scipy.signal	Objetivo/Descrição
Тетро	y=signal.lfilter(b,a,x)	Solução da EDLCC por recursão
Domínio do Ter	<pre>Aplicação: n = arange(0,amostra_final) x = ones(len(n)) # degrau unitário y = signal.lfilter(b,a,x) stem(n,y) # saída do SLITD</pre>	Simula o sistema com entrada degrau unitário, u[n]. Outras entradas são possíveis (defina x à sua escolha).

Domínio z	sss.zplane(b,a)	Gráfico de zeros e polos no plano-z
	<pre>r,p,k = signal.residuez(b,a)</pre>	Expansão em frações parciais de H(z)
		para obter h [n]
	<pre>r,p,k = signal.residuez(b,signal.convolve(a,[1,-</pre>	Resposta ao degrau unitário (inclui 1-
	1]))	1/z no denominador)

ncia	<pre>w,H = signal.freqz(b,a,2*pi*f)</pre>		Resp. em frequência nas frequências indicadas pelo array
Domínio da Frequência	<pre>Aplicação: f = linspace(f1,f2,Npt) f = logspace(log(f1),log(f2),Npt) w,H = signal.freqz(b,a,2*pi*f) plot(f,abs(H)); plot(f,angle(H))</pre>	ou	Traça os gráficos da magnitude e fase (graus ou radianos) do espectro de frequências lineares/log. Valores nominais: f1 >= 0 e f2 <= 0,5
Do	<pre>semilogx(f,20*log10(abs(H))) semilogx(f,angle(H)*180/pi)</pre>		