Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

http://pib.sagepub.com/

Simple heuristic for the constrained two-dimensional cutting problem

Y Cui and Q Chen

Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 2012 226: 565 originally published online 24 October 2011 DOI: 10.1177/0954405411421996

The online version of this article can be found at: http://pib.sagepub.com/content/226/3/565

Published by:

\$SAGE

http://www.sagepublications.com

On behalf of:

Institution of Mechanical Engineers

Additional services and information for *Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture* can be found at:

Email Alerts: http://pib.sagepub.com/cgi/alerts

Subscriptions: http://pib.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://pib.sagepub.com/content/226/3/565.refs.html

>> Version of Record - Mar 7, 2012

OnlineFirst Version of Record - Oct 24, 2011

What is This?

Simple heuristic for the constrained two-dimensional cutting problem

Y Cui* and O Chen

School of Computer, Electronics and Information, Guangxi University, Nanning, China

The manuscript was received on 30 July 2011 and was accepted after revision for publication on 10 August 2011.

DOI: 10.1177/0954405411421996

Abstract: This paper presents a heuristic for the constrained two-dimensional cutting problem in which a guillotine divides a plate into rectangular pieces. The objective of the proposed heuristic is to maximize the pattern value (that is, the total value of the pieces produced from the plate) while observing the constraint that the number produced of a piece can not exceed the demand for that piece. The algorithm uses a simple recursion approach to consider a set of cutting patterns with specified geometric features, and uses a bound technique to discard unpromising branches. It can give solutions competitive with those of other heuristic algorithms. Its solutions to some benchmark instances are better than those currently reported in the literature.

Keywords: cutting stock, constrained two-dimensional cutting, guillotine cuts

INTRODUCTION

Optimization algorithms are widely used in manufacturing industry to solve practical problems [1-3] such as the two-dimensional (2D) cutting problem [3]. This paper presents a simple heuristic for the following constrained 2D cutting (CTDC) problem. A guillotine is used to divide stock plate $L \otimes W$ (length \otimes width) into m different types of rectangular pieces so as to maximize the pattern value (the total value of the pieces produced from the plate), where the *i*th $(i=1, \dots, m)$ type has length l_i , width w_i , value c_i , and demand d_i ; the frequency of each type should not exceed the demand for that type. It is assumed that both the plate and item sizes are integers. In this paper P is used to denote a cutting pattern, V^* the value of the optimal pattern, N the set of natural numbers, and z_i the frequency of piece type i ($i=1, \dots, m$). The CTDC problem can then be formulated as

$$V^* = \max\left(\sum_{i=1}^m c_i z_i\right) \quad z_i \leq d_i \quad \text{and} \quad z_i \in N, \quad i = 1, \dots, m$$

Exact CTDC algorithms [4-8] are not a practical method to solve this problem because the computation cost tends to become exorbitant for medium or large-scale instances. Heuristics [9-13] are often used to extend the size of the problems that can be treated using this approach: these include an algorithm based on a strip generation procedure [9], a tabu search-based algorithm [10], an algorithm that uses dynamic programming and hill-climbing techniques [11], a recursive algorithm [12], and an algorithm based on dynamic programming and and/or graph search [13]. The schema of these algorithms will not be explained further in this short communication. Algorithms for strip packing may also be of use as a source of ideas for the design of CTDC algorithms. The interested reader is referred to [14] and

The algorithm presented in this paper has the following advantages.

- 1. It is simple to code. This will allow its use in practical applications.
- 2. It is much faster than existing algorithms that yield comparable solutions.
- It is competitive with other algorithms in solution quality. For some benchmark instances the algorithm can yield solutions better than the best ones obtained to date using a heuristic.

^{*}Corresponding author: School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China email:ydcui@263.net

Fig. 1 Patterns related with a row of k pieces of type i (a) pattern P_{RH}^{ik} , and (b) pattern P_{RV}^{ik}

4. It has the all-capacity property that is useful in the solution of the 2D cutting stock (TDCS) problem. This will be further discussed in section 2.

The proposed algorithm is described in section 2. The results of computational experiments are presented in section 3 and conclusions are drawn in section 4.

2 THE ALGORITHM

Several pieces of the same type are placed at the (left-bottom) corner of a sub-plate $x \otimes y$, $x = 0, \dots, L$ and $y = 0, \dots, W$. These pieces are referred to as the main pieces and the related type is denoted as the main type. The main pieces form either a row (Fig. 1), Figs 1(a) and (b), or a column (Fig. 2), Figs 2(a) and (b). The number of main pieces of type i in the row is between one and $\min\{\lfloor x/l_i\rfloor, d_i\}$, and that in the column is between one and $\min\{\lfloor y/w_i\rfloor, d_i\}$. It should be noted that the patterns of this type form a superset of the patterns used in [12], because the former type allows several main pieces be placed at the corner whereas the later type allows only one main piece.

When k, the number of main pieces, is specified, the following four pattern types should be considered (see Figs 1 and 2): $P_{\rm RH}^{ik}$, $P_{\rm RV}^{ik}$, $P_{\rm CH}^{ik}$, and $P_{\rm CV}^{ik}$, where the superscript ik denotes that k pieces of type i are placed at the corner of the sub-plate; subscript R denotes the row of the main pieces, and C denotes the column; subscripts H and V denote that the unoccupied region is divided horizontally (Figs 1(a) and 2(a)) and vertically (Figs 1(b) and 2(b)), respectively. For example, $P_{\rm RH}^{ik}$ indicates that a row of k pieces of type i is placed at the corner and the

unoccupied region is divided horizontally into two small sub-plates A and B for further consideration (Fig. 1(a)). The patterns are referred to as extended block patterns because they form a superset of the simple block patterns [12, 16], in which the number of main pieces for a sub-plate is restricted to one.

Let $I(x, y) = \{i | x \ge l_i, y \ge w_i, 1 \le i \le m\}$. Let F(x, y) be the value of sub-plate $x \otimes y$, that is, the total value of the items included. The following recursion determines F(x, y)

$$F(x, y) = \max \begin{cases} F(x - 1, y), F(x, y - 1) \\ V_{RH}^{ik}, V_{RV}^{ik} | i \in I(x, y), k = 1, \dots, \min\{\lfloor x/l_i \rfloor, d_i\} \\ V_{CH}^{ik}, V_{CV}^{ik} | i \in I(x, y), k = 1, \dots, \min\{\lfloor y/w_i \rfloor, d_i\} \end{cases}$$
(1)

where $V_{\rm RH}^{ik}$, $V_{\rm RV}^{ik}$, $V_{\rm CH}^{ik}$, and $V_{\rm CV}^{ik}$ are the values of patterns $P_{\rm RH}^{ik}$, $P_{\rm RV}^{ik}$, $P_{\rm CH}^{ik}$, and $P_{\rm CV}^{ik}$, respectively. The initial value of F(x,y) is set to be the largest one out of F(x-1,y) and F(x,y-1). Then four pattern types are considered for improvement.

The frequency of piece type j in sub-plate $x \otimes y$, $j = 1, \dots, m$ is denoted as n(x, y, j). Let $x_A \otimes y_A$ and $x_B \otimes y_B$ be the sizes of sub-plates A and B (see Figs 1 and 2), respectively. Before considering a pattern type, the following two formulas should be checked

value promising (VP):
$$kc_i + F(x_A, y_A) + F(x_B, y_B) > F(x, y)$$

frequency feasible (FF): $k + n(x_A, y_A, i) + n(x_B, y_B, i) \le d_i$

where $kc_i + F(x_A, y_A) + F(x_B, y_B)$ is the upper bound of the related pattern value, and $k + n(x_A, y_A, i) + n(x_B, y_B, i)$ is the frequency of type i. A VPFF (combined VP and FF) pattern will be considered by the following function that improves F(x, y).

Fig. 2 Patterns related with a column of k pieces of type i (a) pattern P_{CH}^{ik} , and (b) pattern P_{CV}^{ik}

```
ImprovePat(x, y, x_A, y_A, x_B, y_B, k, i):

Let b_j = \min \{d_j, n(x_A, y_A, j) + n(x_B, y_B, j)\}, j = 1, \dots, m. Let b_i = k + b_i.

Let V = c_1b_1 + \dots + c_mb_m. Skip the current branch if V \leq F(x, y).

Let F(x, y) = V. Let n(x, y, j) = b_j, j = 1, \dots, m.
```

Line 1 counts the frequency of the different pieces and any surplus is taken to be waste. Lines 2 and 3 determine the value of the current branch and update the solution if an improvement is obtained.

The presented algorithm is designed according to recursion (1) and is referred to as the heuristic for constrained extend block patterns (HCEB). It is a greedy algorithm that can be written in pseudocode as follows for the case where $l_{\min} = \min\{l_i\}$ and $w_{\min} = \min\{w_i\}$.

Line 1 determines the solutions related with $x < l_{\min}$ and $y < w_{\min}$. Lines 2 and 3 indicate that the sub-plates are considered according to the ascending order of their sizes. Lines 4 to 6 set the initial solution of sub-plate $x \otimes y$ to be the better one between the two solutions of smaller sub-plates $(x-1) \otimes y$ and $x \otimes (y-1)$. Lines 9 to 14 consider the four sub-pattern types to improve the solution.

Considering only normal sizes is sufficient in designing CTDC algorithms [11, 13]. The HCEB

```
Let F(x, y) = 0, n(x, y, j) = 0, j = 1, \dots, m, x = 0, \dots, l_{\min} - 1, y = 0, \dots, w_{\min} - 1.
     For x = l_{\min} to L
2
          For y = w_{\min} to W
3
          If F(x-1, y) \ge F(x, y-1) then let
4
                F(x, y) = F(x-1, y), \quad n(x, y, j) = n(x-1, y, j), \quad j = 1, \dots, m;
5
          Else let F(x, y) = F(x, y-1), n(x, y, j) = n(x, y-1, j), j = 1, \dots, m.
6
          For i = 1 to m
7
8
                Skip type i if x < l_i or y < w_i.
                For k=1 to \min\{|x/l_i|, d_i\}
9
                     If P_{RH}^{ik} is VPFF then ImprovePat(x, y, x, y - w_i, x - kl_i, w_i, k, i).
10
                     If P_{RV}^{ik} is VPFF then ImprovePat(x, y, kl_i, y - w_i, x - kl_i, y, k, i)
11
                For k=1 to \min\{|y/w_i|, d_i\}
12
                     If P_{CH}^{ik} is VPFF then ImprovePat(x, y, x, y - kw_i, x - l_i, kw_i, k, i)
13
                     If P_{CV}^{ik} is VPFF then ImprovePat(x, y, l_i, y - kw_i, x - l_i, y, k, i)
14
```

Instance	Optimum	FHZ	HCEB	Instance	Optimum	FHZ	HCEB
OF1	2737	2713	Δ	CHW1	2892	2731	Δ
OF2	2690	2586	Δ	CHW2	1860	1740	Δ
W	2721	Δ	Δ	TH1	4620	Δ	Δ
CU1	12 330	12312	Δ	TH2	9700	9529	Δ
CU2	26 100	25 806	Δ	CW1	6402	Δ	Δ
CU3	16723	16608	Δ	CW2	5354	Δ	Δ
CU4	99 495	98 190	Δ	CW3	5689	5148	5623
CU5	173 364	171 651	Δ	CW4	6175	6168	Δ
CU6	158 572	Δ	Δ	CW5	11659	11550	11 644
CU7	247 150	246 860	Δ	CW6	12923	12 403	12907
CU8	433 331	432 198	Δ	CW7	9898	9484	Δ
CU9	657 055	Δ	Δ	CW8	4605	4504	Δ
CU10	773 772	764 696	Δ	CW9	10748	10748	Δ
CU11	924 696	913 387	Δ	CW10	6515	6116	Δ
				CW11	6321	6084	6084

Table 1 Comparing HCEB with FHZ

used in the computational tests is enhanced with this property, that is, it considers only normal sizes.

HCEB has the following all-capacity property. Once the solution is obtained for plate $L \otimes W$, the solutions to all sub-plates $x \otimes y$ are also known, $x=0,\cdots,L$ and $y=0,\cdots,W$. This property is useful to solve the TDCS problem from the following description. The sequential heuristic procedure (SHP) can be used to solve the TDCS [17], especially when the average demand of the piece types is small. During the solution process, the pieces are classified as either fulfilled or unfulfilled, and initially all pieces are unfulfilled. The SHP follows the following steps to solve the TDCS:

Step 1: call the CTDC algorithm to generate a new pattern, using the unfulfilled pieces.

Step 2: update the unfulfilled pieces by moving those fulfilled by the new pattern.

Step 3: repeat until all pieces are fulfilled.

Assume that M plate sizes can be used. Then it is necessary to generate M patterns (each of which is on a plate of specified size) in step 1 to select the new pattern. In doing so the CTDC algorithm must be called M times if it does not have the all-capacity property. When HCEB is used, it is sufficient to generate only one pattern on a pseudo plate whose length and width are the maximum among the plate lengths and widths, all the M patterns are thus obtained because of the all-capacity property. This reduces the required computation time.

3 COMPUTATIONAL RESULTS

Benchmark instances taken from the literature are used to compare HCEB with other heuristic algorithms [9–13]. The instances used in sections 3.1

and 3.2 are available from the Library of Instances [18], and those in section 3.3 from the ESICUP [19]. The features of the instances will not be detailed due to space considerations. The computational tests were performed on a PC with a 2.66 GHz CPU and 3.37 GB of RAM.

3.1 Comparing HCEB with FHZ

FHZ is an algorithm presented in [9]. Table 1 shows the computational results of 29 instances, where Δ denotes that the value is the same as the optimum. An instance is unweighted if the piece value is equal to the area; weighted otherwise. The 14 instances in column 1 are unweighted, and the others are weighted. The values of FHZ solutions were obtained from Table 4 of [10]. The number of instances solved to optimality is 25 for HCEB, and six for FHZ. The former is much larger than the latter. This indicates that HCEB is more efficient than FHZ in solution quality.

The average computation time of an instance was 0.175 s for HCEB. The computation time for FHZ is not presented since the computer used in that work was not as powerful as the one used in this paper and thus the solution times are not directly comparable in any meaningful sense.

$3.2\;$ Comparing HCEB with TS500, TDH2, and REC

Three groups of instances are used to compare HCEB with the algorithms TS500 [10], TDH2 [11], and REC [12]. The solution values of the three algorithms were obtained from [12].

The first group included 26 weighted instances. Table 2 shows the computational results. The number of instances solved to optimality is 20 for TS500, 23 for TDH2, 24 for REC, and 14 for HCEB. HCEB is not as efficient as other algorithms in this group of instances.

Table 2 Results for the first group

			the mot	group	
Instance	Optimum	TS500	TDH2	REC	HCEB
CHW1	2892	Δ	Δ	Δ	Δ
CHW2	1860	Δ	Δ	Δ	Δ
CW1	6402	Δ	Δ	Δ	Δ
CW2	5354	Δ	Δ	Δ	Δ
CW3	5689	Δ	Δ	Δ	5623
CW4	6175	6170	Δ	Δ	Δ
CW5	11659	11644	Δ	Δ	11644
CW6	12923	Δ	Δ	Δ	12907
CW7	9898	Δ	Δ	Δ	Δ
CW8	4605	Δ	Δ	Δ	Δ
CW9	10748	Δ	Δ	Δ	Δ
CW10	6515	Δ	Δ	Δ	Δ
CW11	6321	Δ	Δ	Δ	6084
2	2892	Δ	Δ	Δ	Δ
3	1860	Δ	Δ	Δ	1840
A1	2020	Δ	Δ	Δ	1940
A2	2505	2455	Δ	Δ	2455
STS2	4620	Δ	Δ	Δ	Δ
STS4	9700	Δ	Δ	Δ	Δ
CHL1	8671	8660	8660	8660	8660
CHL2	2326	Δ	Δ	Δ	2292
CHL3	5283	Δ	Δ	Δ	Δ
CHL4	8998	Δ	Δ	Δ	Δ
Hch11	11303	11 089	11 255	11 235	11 228
Hch12	9954	9918	9953	Δ	9891
Hch19	5240	Δ	Δ	Δ	5220

The second group includes 36 unweighted instances. The computational results are listed in Table 3. The number of instances solved to optimality is 20 for TS500, 28 for TDH2, 28 for REC, and 31 for HCEB. HCEB is the most efficient for this group of experiments.

It should be noted that the value of the optimal solution to Hch15s was reported as 45 361 in the literature [10–12]. The value of 45 410 in Table 3 was obtained from HCEB. This indicates that the value of the optimal solution cannot be 45 361, it should be at least 45 410. Figure 3 gives the pattern obtained from HCEB, so that the reader can check for its feasibility.

The third group includes 20 instances, where the first ten are unweighted and the others are weighted. Table 4 shows the computational results. The symbol * in the column Opt./upper means that the reported value denotes the upper bound of the treated instance, without proof of optimality. The bold numbers denote the best solution values obtained from the algorithms. It is seen that the

Table 3 Results for the second group

Instance	Optimum	TS500	TDH2	REC	НСЕВ
OF1	2737	2713	Δ	Δ	Δ
OF2	2690	2586	Δ	Δ	Δ
W	2721	Δ	Δ	Δ	Δ
CU1	12330	Δ	Δ	Δ	Δ
CU2	26 100	Δ	Δ	Δ	Δ
CU3	16723	16 679	Δ	Δ	Δ
CU4	99 495	99 366	Δ	Δ	Δ
CU5	173 364	Δ	Δ	Δ	Δ
CU6	158 572	Δ	Δ	Δ	Δ
CU7	247 150	Δ	Δ	Δ	Δ
CU8	433 331	432714	Δ	Δ	Δ
CU9	657 055	Δ	Δ	Δ	Δ
CU10	773 772	773 485	Δ	773 485	Δ
CU11	924696	922 161	Δ	924311	Δ
2s	2778	Δ	Δ	Δ	Δ
3s	2721	Δ	Δ	Δ	Δ
Als	2950	Δ	Δ	Δ	Δ
A2s	3535	Δ	Δ	Δ	Δ
STS2s	4653	Δ	Δ	Δ	Δ
STS4s	9770	Δ	Δ	Δ	Δ
CHL1s	13 099	Δ	Δ	Δ	Δ
CHL2s	3279	Δ	Δ	Δ	3266
CHL3s	7402	Δ	Δ	Δ	Δ
CHL4s	13 932	Δ	Δ	Δ	Δ
CHL5	390	Δ	Δ	Δ	Δ
CHL6	16869	Δ	Δ	Δ	Δ
CHL7	16881	16 838	Δ	16840	Δ
Hch13s	12215	12 208	12214	12 214	12214
Hch14s	12 202	11 967	11993	Δ	11964
Hch15s	45 410	45 223	45 361	45313	Δ
Hch16s	61 040	61 002	61 002	Δ	Δ
Hch17s	63 112	62 802	63 029	63 102	63 102
Hch18s	911	904	904	904	876
A3	5451	5436	5436	Δ	Δ
A4	6179	Δ	Δ	Δ	Δ
A5	12 985	12 929	12 976	12 976	Δ

Fig. 3 Solution to Hch15s (value 45 410)

number of best heuristic solutions is two for TS500, 15 for TDH2, 12 for REC, and 13 for HCEB. This indicates that HCEB is competitive with TDH2 and REC, and more efficient than TS500. The HCEB solution to instance ATP34 is shown in Fig. 4. It is the best heuristic solution obtained to date.

Table 5 lists the average computation times for HCEB, TDH2, and REC. The three algorithms were executed on different computers that had different processing powers and thus it is not possible to compare the results in any meaningful manner. While it cannot be confirmed it also cannot be disproved that HCEB is much faster than TDH2 and REC.

3.3 Comparing HCEB with DP_AOG

DP_AOG is an algorithm that was presented in [13] and was run on a PC with a 2.99 GHz CPU to solve

450 unweighted instances; the results are described in section 6.2 of [13]. The average solution value of HCEB is 9678, and that of DP_AOG is 9679. The former is about 99.99 per cent of the latter. The average computation time is 0.01 s for HCEB and 264.7 s for DP_AOG. Thus, HCEB is competitive with DP_AOG in solution quality, and its computation time is negligible.

4 CONCLUSIONS

When a CTDC algorithm is used jointly with the SHP to solve the TDCS, it must be called numerous times before the solution is obtained; a new pattern being generated in each call. Exact CTDC algorithms are not practical when the problem of interest is medium or large in size since they generally require inordinate amounts of computer time. Heuristic algorithms can be used to simplify these problems and thus allow the scale of the instances that can be treated to be extended. The HCEB presented in this paper is worthy of consideration for the following reasons.

- 1. It strikes a good balance between solution quality and computation time. Its solutions are often competitive with those of other heuristic algorithms.
- 2. It is simple to translate the pseudo codes of HCEB into a computer program.
- 3. When HCEB is used jointly with SHP to solve the TDCS for multiple stock sizes, the computation time can be significantly reduced because of its all-capacity property.

Table 4	Results	for	the	third	group
---------	---------	-----	-----	-------	-------

Instance	Opt./upper*	TS500	TDH2	REC	HCEB
ATP30	140 904	140 144	140 904	140 904	140 904
ATP31	824 931*	814 081	823 976	823 674	823 976
ATP32	38 068	38 030	38 068	38 068	38 068
ATP33	236818*	234 920	236611	236 611	236611
ATP34	362 520*	360 084	361 167	361 197	361 357
ATP35	622 644*	620 700	621 021	621 021	621 021
ATP36	130 744	130 338	130744	130744	130744
ATP37	387 276	381 966	387 118	387 118	387 276
ATP38	261 698*	259 380	261 395	261 395	261 395
ATP39	268 750	267 168	268 750	268 355	268 750
ATP40	67 654*	66 362	67 154	66 656	67 154
ATP41	215 699*	206 542	206 542	206 542	206 542
ATP42	34 098*	33 435	33 503	34015	33 566
ATP43	222 570*	214 651	214 651	214 840	214 651
ATP44	74887*	73 410	73 868	73 868	73 438
ATP45	75 888*	74 691	74 691	75 808	74 691
ATP46	151813*	149911	149911	149911	149911
ATP47	153 747*	148 764	150 234	150 043	148 540
ATP48	170914*	166 927	167 660	167 535	167 427
ATP49	226 346*	215 728	218 388	217 683	216 749

Fig. 4 Solution to ATP34 (value 361 357)

Table 5 Average computation time for an instance (in seconds)

	t-HCEB	$t-\mathrm{TDH2}$	t - REC
First group	0.100	16.96	8.135
Second group	0.086	11.68	5.117
Third group	0.797	75.56	35.219

4. It may be used to provide good initial solution for exact algorithms. This would reduce the computation time required for a solution and extend the scale of the instances that can be treated.

FUNDING

This research was supported in part by the National Natural Science Foundation under grant 61063031.

© Authors 2011

REFERENCES

- 1 Razfar, M. R., Asadnia, M., Haghshenas, M., and Farahnakian, M. Optimum surface roughness prediction in face milling X20Cr13 using particle swarm optimization algorithm. *Proc. IMechE, Part B: J. Engng Mf.*, 2010, **224**, 1645–1653.
- **2 Sedighi, M.** and **Hadi, M.** Preform optimization for reduction of forging force using a combination of neural network and genetic algorithm. *Proc. IMechE, Part B: J. Engng Mf.*, 2010, **224**, 1717–1724.

- **3 Cui, Y., Zhang, X.,** and **Wang, Q.** An algorithm for the two-dimensional cutting problem of punched strips with blade length constraint. *Proc. IMechE, Part B: J. Engng Mf.*, 2008, **222**, 1443–1451.
- **4 Wang, P. Y.** Two algorithms for constrained two-dimensional cutting stock problems. *Oper. Res.*, 1983, **32**, 573–586.
- **5 Viswanathan, K. V.** and **Bagehi, A.** Best-first search methods for constrained two-dimensional cutting stock problems. *Oper. Res.*, 1993, **41**, 768–776.
- **6 Cung, V.-D., Hifi, M.,** and **Cun, B. L.** Constrained two-dimensional cutting stock problems a best-first branch-and-bound algorithm. *Int. Trans. Oper. Res.*, 2000, **7**, 185–210.
- **7 Amaral, A. R. S.** and **Wright, M.** Efficient algorithm for the constrained two-dimensional cutting stock problem. *Int. Trans. Oper. Res.*, 2001, **8**, 3–13.
- **8 Vasko, F. J.** and **Bartkowski, C. L.** Using Wang's two-dimensional cutting stock algorithm to optimally solve difficult problems. *Int. Trans. Oper. Res.*, 2009, **16**, 829–838.
- **9 Fayard, D., Hifi, M.,** and **Zissimopoulos, V.** An efficient approach for large-scale two-dimensional guillotine cutting stock problem. *J. Oper. Res. Soc.*, 1998, **49**, 1270–1277.
- 10 Alvarez-Valdés, R., Parajón, A., and Tamarit, J. M. A tabu search algorithm for large-scale guillotine (un)constrained two-dimensional cutting problems. *Comput. Oper. Res.*, 2002, **29**, 925–947.
- **11 Hifi, M.** Dynamic programming and hill-climbing techniques for constrained two-dimensional cutting stock problems. *J. Comb. Optim.*, 2004, **8**, 65–84.
- **12 Chen, Y.** A recursive algorithm for constrained two-dimensional cutting problems. *Comput. Optim. Appl.*, 2008, **41**, 337–348.
- **13 Morabito, R.** and **Vitória Pureza, R.** A heuristic approach based on dynamic programming

- and and/or-graph search for the constrained two-dimensional guillotine cutting problem. *Ann. Oper. Res.*, 2010, **179**, 297–315.
- **14 Araya, I., Neveu, B.,** and **Riff, M. C.** An efficient hyperheuristic for strip-packing problems. In *Adaptive and Multilevel Metaheuristics* (Eds C. Cotta, M. Sevaux, and K. Sorrenson) 2008, pp. 61–76 (Springer Verlag, Germany).
- **15 Riff, M. C., Bonnaire, X.,** and **Neveu, B.** A revision of recent approaches for two dimensional strippacking problems. *Engng Appl. Artif. Intell.*, 2009, **22**, 823–827.
- **16 Cui, Y.** Simple block patterns for the two-dimensional cutting problem. *Math. Comput. Model.*, 2007, **45**, 943–953.
- 17 Suliman, S. M. A. A sequential heuristic procedure for the two-dimensional cutting-stock problem. *Int. J. Prod. Econ.*, 2006, **99**, 177–185.
- 18 Library of Instances, available from http://www.laria.u-picardie.fr/hifi/OR-Benchmark/ (access date May 10, 2011).
- **19 ESICUP**, available from http://paginas.fe.up.pt/~esicup/tiki-index.php (access date May 10, 2011).