健診データを用いた 生活習慣病の発症予測

恒川充¹ 岡夏樹¹ 荒木雅弘¹ 新谷元司² 吉川昌孝³

- 1京都工芸繊維大学
- 2 SGホールディングスグループ 健康保険組合
- 3日本システム技術株式会社

背景

- ▶ 昨今のネット通販の普及により、宅配件数が増加 →ドライバーの健康状態の管理が重要
- ➤ 発症予測の機運の高まり ex)心筋梗塞や脳梗塞の発症確率を予測

[Yatsuya et .al 2016]

目的

医療データを機械学習に利用

事故リスクの軽減、医療費の抑制

データの概要と予測対象

➤ SGホールディングスグループ健康保険組合の 医療データを使用

利用したデータの概要

	年代	年齢層	人数	枚数
レセプトデータ	1996~2017	15~74	156,145	961,906
健診データ	2006~2018	15~74	108,581	1,617,078

予測対象として定義した重症化病名:糖尿病,狭心症,心筋梗塞,心筋症,心房細動,心室細動,くも膜下出血,脳内出血,脳梗塞

用意されているデータ

▶ レセプトデータ (★)

発症のタイミングを判断

一医療報酬の明細書

診療年月,診断病名,処方された薬 etc.

▶ 健診データ (◆)

発症するか否かを識別

一健康診断の結果。

身長,体重,血圧,赤血球数 & 問診表の回答結果 & 判定結果(6 段階)

データの特徴

- ▶ 重症化病名が初出であると断定できない
 - ・中途採用者が存在
 - ・健康保険組合に加入している時期の データしかない
- > 正例データと負例データの認定手順が煩雑
- > データの偏り

 - ・重症化病名の割合は全体の4.5% (2017年)

病気診断データの選定

レセプトデータ上で病名を見つける⇒正例に用いるデータとする

なぜなら…

検査をするために便宜的に病名をつける

- ・「疑い病名」は取り除く
- ・薬と病名の対応を確認する

病名を初出とみなす条件

◎推定した通院間隔より長期間過去にレセプトデータが存在する →重症病名を持って保険に加入してきたわけではない

病気の人(正例)データの作成

▶ 問題設定:「1年以内に重症化するか否か」

- データの形:健診データそのもの+一つ目との差分+二つ目との差分60次元 36次元 36次元
- ▶ 病気を発症する際には、何らかの項目に変化がある ⇒差分に注目

健康な人(負例)データの作成

- ▶ 負例データ
 - 重症化病名の対象である病名が一度でもついた人間を除外
 - ・ 同様に健診データ3つを使って差分を計算して特徴量に追加
- ▶ 問題設定(1年以内に重症化するか否か) を保証するための工夫

整形後のデータの概要

> データサイズ

正例データ	1255
負例データ	37664

不均衡データ:アンダーサンプリング+バギング

> 弱識別器の数:500

特徵量: 132

> 欠損値: 中央値で補完

▶ 標準化処理はしない

:決定木→スケールに影響されないアルゴリズム

▶ 層化10分割クロスバリデーション

アンダーサンプリング+バギング

整形後のデータの概要

> データサイズ

正例データ	1255
負例データ	37664

不均衡データ:アンダーサンプリング+バギング

▶ 弱識別器の数:500

特徵量: 132

> 欠損値: 中央値で補完

▶ 標準化処理はしない

:決定木→スケールに影響されないアルゴリズム

▶ 層化10分割クロスバリデーション

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の正	正例	1118	137
クラス	負例	2306	35358

本当の正例のうち、正例と予測 できたものはどれくらいか

precision:

予測した正例のうち、 本当の正例はどれくらいか

*正例のrecall: 0.89

正例のprecision: 0.33

- ▶ 比較手法として…
 - ・日本人間ドック学会の判定区分表(13項目,3段階に分類)
 - 閾値を設定→OR条件
 - ・13項目だけを使って提案手法で識別

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の正例		1118	137
クラス	負例	2306	35358

※ recall:

本当の正例のうち、正例と予測 できたものはどれくらいか

precision:

予測した正例のうち、 本当の正例はどれくらいか

*正例のrecall: 0.89

- ▶ 比較手法として…
 - ・日本人間ドック学会の判定区分表(13項目,3段階に分類)
 - 閾値を設定→OR条件
 - ・13項目だけを使って提案手法で識別

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の正	正例	1118	137
クラス	負例	2306	35358

本当の正例のうち、正例と予測 できたものはどれくらいか

precision:

予測した正例のうち、 本当の正例はどれくらいか

*正例のrecall: 0.89

正例のprecision: 0.33

- ▶ 比較手法として…
 - ・日本人間ドック学会の判定区分表(13項目,3段階に分類)
 - 閾値を設定→OR条件
 - ・13項目だけを使って提案手法で識別

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の正例		1118	137
クラス	負例	2306	35358

※ recall:

本当の正例のうち、正例と予測 できたものはどれくらいか

precision:

予測した正例のうち、 本当の正例はどれくらいか

*

正例のprecision: 0.33

- ▶ 比較手法として…
 - ・日本人間ドック学会の判定区分表(13項目,3段階に分類)
 - 閾値を設定→OR条件
 - ・13項目だけを使って提案手法で識別

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の正例	正例	1118	137
クラス	負例	2306	35358

本当の正例のうち、正例と予測 できたものはどれくらいか

precision:

予測した正例のうち、 本当の正例はどれくらいか

*正例のrecall: 0.89

正例のprecision: 0.33

要医療、要経過観察、軽度異常

- ▶ 比較手法として…
 - ・日本人間ドック学会の判定区分表(13項目,3段階に分類)
 - 閾値を設定→OR条件
 - ・13項目だけを使って提案手法で識別

ベースライン手法との比較

図 提案手法とベースライン手法のPrecision-Recall曲線

▶ アンダーサンプリングの割合を,1:16, 1:8, 1:4, 1:2, 1:1, 1:0.5, 1:0.25と変化させてプロット

特徴量の影響度の可視化

RandomForestClassifierの feature_importancesというメソッドを使用

Feature ranking:

- 1. HbA1c (0.220429)
- 2. 糖代謝判定 (0.169001)
- 3. インスリン注射または血糖を下げる薬を服用しているか (0.109904)
- 4. HbA1cの二つ前との差分 (0.091052)
- 5. 血圧を下げる薬を飲んでいるか (0.056043)
- 6. HbA1cの二つ前との差分 (0.055971)
- 7. 尿糖判定 (0.043033)
- 8. 代表判定 (0.027582)

特徴量の影響度の可視化

RandomForestClassifierの feature_importancesというメソッドを使用

Feature ranking:

- 1. HbA1c (0.220429)
- 2. 糖代謝判定 (0.169001)
- 3. インスリン注射または血糖を下げる薬を服用しているか(0.109904)
- 4. HbA1cの二つ前との差分 (0.091052)
- 5. 血圧を下げる薬を飲んでいるか (0.056043)
- 6. HbA1cの二つ前との差分 (0.055971)
- 7. 尿糖判定 (0.043033)
- 8. 代表判定 (0.027582)

影響度ランキングの解釈

- > HbA1cとは?
 - ーヘモグロビン中に含まれるグリコヘモグロビンの割合 を%で表した値
 - ⇒**糖尿病の判定**に用いられている
- ▶ 糖代謝とは?
 - 一摂取した糖質をエネルギーとして利用したり、脂肪や グリコーゲンとして貯蔵される仕組み
 - ⇒糖代謝異常が**糖尿病**につながる
- ▶ 糖尿病の特徴:血糖値が高い

仮説

▶ 糖尿病のデータ数=921 →正例データの73%

> 複数の対象病名のうち、 糖尿病だけ識別しやすい のではないか

考察 (糖尿病だけを識別)

▶ 正例:糖尿病のひとの健診データ

負例:糖尿病以外の重症化病名対象者+健康な人

> データサイズ

正例データ	921
負例データ	37998

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の正例		836	85
クラス 負債	負例	1812	36186

*正例のrecall: 0.91

正例のprecision: 0.32

考察 (狭心症だけを識別)

▶ 正例:狭心症のひとの健診データ

負例:狭心症以外の重症化病名対象者+健康な人

> データサイズ

正例データ	229
負例データ	38690

Confusion Matrix

		予測されたクラス	
		正例	負例
実際の クラス正例 負例	正例	204	25
	負例	5133	33557

*正例のrecall: 0.89

正例のprecision: 0.04

まとめ

- ▶ 問題設定:「1年以内に重症化するか否か」
- ▶ 対象病名全てを正例として識別すると、 recall=0.89, precision=0.32という結果が得られた
- > 対象病名の中で、糖尿病は高い精度で識別できる
- ▶ 糖尿病以外である狭心症を正例として識別すると, recall=0.90, precision=0.03にとどまった

今後の課題

- 医師の自由記述欄⇒自然言語処理を施し、特徴量に追加
- ▶ 問診票の変化量も特徴量に加える
- > 異常検知手法の利用 (不均衡データに適する)
- ➤ 糖尿病の指標であるHbA1cを予測のターゲットと する