Ejercicios de Geometría Diferencial de Curvas y Superficies

Universidad Complutense de Madrid

FACULTAD DE CIENCIAS MATEMÁTICAS

Doble Grado en Matemáticas e Ingeniería Informática

Javier Pellejero Curso 2017-2018

El propio Dios geometriza.

Platón

Prefacio

Aquí va el prefacio, evidentemente

Índice general

1. Curvas parametrizadas y longitud de un arco de curva

1

Capítulo 1

Curvas parametrizadas y longitud de un arco de curva

Ejercicio 1. Hallar una curva parametrizada α cuya traza es el círculo $x^2 + y^2 = 1$, con $\alpha(t)$ recorriéndolo en el sentido de las agujas del reloj y con $\alpha(0) = (0, 1)$.

Una solución a este ejercicio $\alpha(t) = (\sin t, \cos t)$. Es claro que $\alpha(0) = (\sin 0, \cos 0) = (0, 1)$ y que al avanzar, por ejemplo a $\alpha(\frac{\pi}{2}) = (\sin \frac{\pi}{2}, \cos \frac{\pi}{2}) = (1, 0)$ es en el sentido de las agujas del reloj.

Ejercicio 2. Sea $\alpha(t)$ una curva que no pasa por el origen. Si $\alpha(t_0)$ es el punto de la traza de α más cercano al origen y $\alpha'(t_0) \neq 0$, demostrar que el vector posición $\alpha(t_0)$ es ortogonal a $\alpha'(t_0)$.

Ejercicio 3. Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva y $v \in \mathbb{R}^3$ un vector dado. Si $\alpha'(t)$ es ortogonal a v para todo $t \in I$, y si $\alpha(0)$ también lo es, demuestre que $\alpha(t)$ es ortogonal a v para todo $t \in I$.

Ejercicio 4. Si $\alpha: I \longrightarrow \mathbb{R}^3$ es una curva regular, demuestre que $|\alpha(t)|$ es constante (diferente de cero) si y sólo si $\alpha(t) \perp \alpha'(t)$ para todo $t \in I$.

Ejercicio 5. Si $\alpha: I \longrightarrow \mathbb{R}^3$ es una curva, y $M: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ es un movimiento rígido, demostrar que las longitudes de α y $M \circ \alpha$ entre a y b coinciden.

Ejercicio 6. Demuestre que las líneas tangentes a la curva $\alpha(t)=(3t,3t^2,2t^3)$ forman un ángulo constante con la recta $y=0,\ z=x.$