Quiz 04

Question 1. The N-queens problem requires you to place N queens on an $N \times N$ chessboard such that no queen attacks another queen. (A queen attacks any piece in the same row or column or diagonal). Here are some important facts:

- The states are any configurations where <u>all</u> *N* queens are on the board, one per column.
- The *moveset* includes all possible states generated by moving a single queen to another square in the same column. The function to obtain these states is called the *successor* function.
- The heuristic function *h(state)* is the number of **attacking** pairs of queens.

a)	a) Consider $N=4$. How many states are there in total? Explain your answer.					
b)	For each state, how many successor stat	tes ar	e th	ere i	n the	e moveset? Explain your answei
c)	What value will the heuristic function h(state) return for state <i>S</i> shown aside? Explain your answer.	\\\\\	*	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		

d) Use some hill-climbing variant that can lead to a solution. Draw the search tree from S (Only draw the branches that lead to a solution; for each node on the tree, write down its *h()* value).

Question 2.

Let *G* be the simple graph shown below. The problem is to find a coloring of each vertex V using colors **red**, **blue**, and **yellow**, so that no two adjacent vertices are assigned the same color.

We model the problem with the set of variables x_a, x_b, \ldots, x_g , where, e.g., x_a denotes the color assigned to vertex a

- Define the state space associated with this model.
- How big is this space?
- Give an example of a solution state.
- For an arbitrary state s, define a "reasonable" neighborhood function v(s) for s. Using these neighborhoods, provide a local path from the coloring shown below to your aforementioned solution state.

Question 3.

Consider the 4-queens problem, in which each state has 4 queens, one per column, on the board. The state can be represented in genetic algorithm as a sequence of 4 digits, each of which denotes the position of a queen in its own column (from 1 to 4).

- Fit(n) = the number of non-attacking pairs of queens
- Let the current generation includes 4 states:

$$S1 = 2341$$
; $S2 = 2132$; $S3 = 1232$; $S4 = 4321$.

• Calculate the value of *Fit(n)* for the given states and the probability that each of them will be chosen in the "selection" step.