Содержание

1	Расстояния в графе			
	1.1 Алгоритм Флойда-Уоршелла	2		
2	Деревья	6		
	2.1 Определения	6		
	2.2 Минимальное остовное дерево. Алгоритм Краскала	6		
3	Циклы			
	3.1 Циклы Эйлера	9		
	3.2 Алгоритм Флёри			
4	Фундаментальные системы циклов и разрезов	11		
	4.1 Фундаментальная система циклов	12		
	4.2 Фундаментальная система разрезов	13		

1 Расстояния в графе

1.1 Алгоритм Флойда-Уоршелла

Путь $v_{i0} \to v_{i1} \to \cdots \to v_{im}$ длины m называют путём ранга k при m > 1, если k – наибольшее из чисел i_1, \ldots, i_{m-1} , и путём ранга 0 при m = 1. Путь нулевой длины также считают путём ранга 0.

Таким образом, **ранг пути** — максимальный номер вершины, в которую разрешено заходить по пути из v_i в v_i (исключая вершины v_i и v_i).

Обозначим через $C^{(k)}$ матрицу стоимостей прохождения между различными парами вершин по всем путям ранга, не превосходящего k. Элемент $c_{ij}^{(k)}$ содержит стоимость прохождения из вершины v_i в v_j по всем путям рангов $0, 1, \ldots, k-1, k$.

Алгоритм работает на как на неориентированных, так и на ориентированных графах (в этом случае учитывается направление) в том случае, если граф не содержит циклов отрицательного веса.

Идея алгоритма заключается в сравнении стоимостей путей:

- из вершины v_i в вершину v_j по пути ранга не превосходящего k-1, т.е. минуя вершину v_k ;
- из вершины v_i в вершину v_k , после чего по пути из вершины v_k в вершину v_i .

Рис. 1: Граф G = (V, E)

Тогда матрицу стоимостей можно найти последовательно вычисляя $C^{(k)}, k = \overline{0,k}$ с помощью рекуррентной формулы

$$c_{ij}^{(k)} = \min\left(c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}\right).$$

Алгоритм.

- 1. Инициализируют матрицу стоимостей $C^{(0)}$ с помощью весов рёбер графа.
- 2. Рекурсивно вычисляют матрицу стоимостей $C^{(k)}$, $k = \overline{0, k}$.
- 3. Алгоритм заканчивает работу, ранг рассмотренных путей равен числу вершин k = |V|.

В случае, если необходимо не только знать кратчайшие расстояния, но и иметь возможность восстановить кратчайший путь, вводится вспомогательная матрица $D^{(k)}$ (см. пример).

Пример.

Дан граф G = (V, E) (рисунок 2).

Рис. 2: Граф G = (V, E)

При k=0 инициализируем матрицу стоимостей $C^{(0)}$ с помощью весов рёбер. Для восстановления кратчайших путей введём вспомогательную матрицу $D^{(k)}$ той же размерности, что и $C^{(k)}$. В ячейку $d^{(k)}_{ij}$ на каждой итерации будем помещать значение k, если $c^{(k)}_{ij}$ изменилось.

При k=1 пересчитаем коэффициенты матрицы $c_{23}^{(1)}=\min(c_{23}^{(0)},c_{21}^{(0)}+c_{13}^{(0)})=\min(\infty,1+2)=3,$ $c_{32}^{(1)}=\min(c_{32}^{(0)},c_{31}^{(0)}+c_{12}^{(0)})=\min(\infty,2+1)=3,$ $c_{34}^{(1)}=\min(c_{34}^{(0)},c_{31}^{(0)}+c_{12}^{(0)})=\min(\infty,2+3)=5,$ $c_{43}^{(1)}=\min(c_{43}^{(0)},c_{41}^{(0)}+c_{13}^{(0)})=\min(\infty,3+2)=5,$ $c_{35}^{(1)}=\min(c_{35}^{(0)},c_{31}^{(0)}+c_{15}^{(0)})=\min(\infty,2+2)=4,$ $c_{53}^{(1)}=\min(c_{53}^{(0)},c_{51}^{(0)}+c_{13}^{(0)})=\min(\infty,2+2)=4,$

При k=2 коэффициенты матрицы не меняются

При k=3 пересчитаем коэффициенты матрицы $c_{16}^{(3)}=\min(c_{16}^{(2)},c_{13}^{(2)}+c_{36}^{(2)})=\min(\infty,2+3)=5,$ $c_{61}^{(3)}=\min(c_{61}^{(2)},c_{63}^{(2)}+c_{31}^{(2)})=\min(\infty,3+2)=5,$ $c_{17}^{(3)}=\min(c_{17}^{(2)},c_{13}^{(2)}+c_{37}^{(2)})=\min(\infty,2+1)=3,$ $c_{17}^{(3)}=\min(c_{17}^{(2)},c_{13}^{(2)}+c_{37}^{(2)})=\min(\infty,1+2)=3,$ $c_{19}^{(3)}=\min(c_{17}^{(2)},c_{13}^{(2)}+c_{31}^{(2)})=\min(\infty,1+2)=3,$ $c_{19}^{(3)}=\min(c_{11}^{(2)},c_{13}^{(2)}+c_{31}^{(2)})=\min(\infty,5+3)=8,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{31}^{(2)})=\min(\infty,3+5)=8,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{31}^{(2)})=\min(\infty,3+5)=6,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,1+5)=6,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,4+3)=7,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,3+4)=7,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,4+1)=5,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,4+1)=5,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,4+1)=5,$ $c_{19}^{(3)}=\min(c_{19}^{(2)},c_{13}^{(2)}+c_{13}^{(2)})=\min(\infty,1+4)=5,$

$$C^{(3)} = \begin{pmatrix} 0 & 1 & 2 & 3 & 2 & 5 & 3 \\ 1 & 0 & 3 & 3 & 1 & 6 & 4 \\ 2 & 3 & 0 & 5 & 4 & 3 & 1 \\ 3 & 3 & 5 & 0 & 1 & 8 & 6 \\ 2 & 1 & 4 & 1 & 0 & 7 & 5 \\ 5 & 6 & 3 & 8 & 7 & 0 & 2 \\ 3 & 4 & 1 & 6 & 5 & 2 & 0 \end{pmatrix} \qquad D^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \end{pmatrix}.$$

При k = 4 коэффициенты матрицы не меняются

$$C^{(4)} = \begin{pmatrix} 0 & 1 & 2 & 3 & 2 & 5 & 3 \\ 1 & 0 & 3 & 3 & 1 & 6 & 4 \\ 2 & 3 & 0 & 5 & 4 & 3 & 1 \\ 3 & 3 & 5 & 0 & 1 & 8 & 6 \\ 2 & 1 & 4 & 1 & 0 & 7 & 5 \\ 5 & 6 & 3 & 8 & 7 & 0 & 2 \\ 3 & 4 & 1 & 6 & 5 & 2 & 0 \end{pmatrix} \qquad D^{(4)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \end{pmatrix}.$$

При k=5 пересчитаем коэффициенты матрицы $c_{24}^{(5)}=\min(c_{24}^{(4)},c_{25}^{(4)}+c_{54}^{(4)})=\min(3,1+1)=2,$ $c_{42}^{(5)}=\min(c_{42}^{(4)},c_{45}^{(4)}+c_{52}^{(4)})=\min(3,1+1)=2,$

$$C^{(5)} = \begin{pmatrix} 0 & 1 & 2 & 3 & 2 & 5 & 3 \\ 1 & 0 & 3 & 2 & 1 & 6 & 4 \\ 2 & 3 & 0 & 5 & 4 & 3 & 1 \\ 3 & 2 & 5 & 0 & 1 & 8 & 6 \\ 2 & 1 & 4 & 1 & 0 & 7 & 5 \\ 5 & 6 & 3 & 8 & 7 & 0 & 2 \\ 3 & 4 & 1 & 6 & 5 & 2 & 0 \end{pmatrix} \qquad D^{(5)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \end{pmatrix}.$$

При k = 6 коэффициенты матрицы не меняются

$$C^{(6)} = \begin{pmatrix} 0 & 1 & 2 & 3 & 2 & 5 & 3 \\ 1 & 0 & 3 & 2 & 1 & 6 & 4 \\ 2 & 3 & 0 & 5 & 4 & 3 & 1 \\ 3 & 2 & 5 & 0 & 1 & 8 & 6 \\ 2 & 1 & 4 & 1 & 0 & 7 & 5 \\ \hline \mathbf{5} & \mathbf{6} & \mathbf{3} & \mathbf{8} & \mathbf{7} & 0 & \mathbf{2} \\ 3 & 4 & 1 & 6 & 5 & \mathbf{2} & 0 \end{pmatrix} \qquad D^{(6)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \end{pmatrix}.$$

При k = 7 коэффициенты матрицы не меняются

$$C^{(7)} = \begin{pmatrix} 0 & 1 & 2 & 3 & 2 & 5 & 3 \\ 1 & 0 & 3 & 2 & 1 & 6 & 4 \\ 2 & 3 & 0 & 5 & 4 & 3 & 1 \\ 3 & 2 & 5 & 0 & 1 & 8 & 6 \\ 2 & 1 & 4 & 1 & 0 & 7 & 5 \\ 5 & 6 & 3 & 8 & 7 & 0 & 2 \\ \hline 3 & 4 & 1 & 6 & 5 & 2 & 0 \end{pmatrix} \qquad D^{(7)} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \end{pmatrix}.$$

Итоговая матрица кратчайших расстояний C и вспомогательная матрица D имеют вид

$$C = \begin{pmatrix} 0 & 1 & 2 & 3 & 2 & 5 & 3 \\ 1 & 0 & 3 & 2 & 1 & 6 & 4 \\ 2 & 3 & 0 & 5 & 4 & 3 & 1 \\ 3 & 2 & 5 & 0 & 1 & 8 & 6 \\ 2 & 1 & 4 & 1 & 0 & 7 & 5 \\ 5 & 6 & 3 & 8 & 7 & 0 & 2 \\ 3 & 4 & 1 & 6 & 5 & 2 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 5 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 0 & 3 & 3 \\ 0 & 0 & 1 & 0 & 0 & 3 & 3 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \\ 3 & 0 & 0 & 3 & 3 & 0 & 0 \end{pmatrix}.$$

Восстановим путь из v_4 в v_6

$$v_4 \rightarrow \cdots \rightarrow v_6$$

так как $d_{46}=3\neq 0$, добавляем в путь вершину v_3 ,

$$v_4 \to \cdots \to v_3 \to v_6$$
,

так как $d_{43}=1\neq 0$, добавляем в путь вершину v_1 , а так как $d_{41}=0$, восстановление закончено, полученный путь

$$v_4 \rightarrow v_1 \rightarrow v_3 \rightarrow v_6$$
.

2 Деревья

2.1 Определения

Деревом (неориентированным) называют связный ациклический граф.

Рис. 3: Пример неориентированного дерева

Ориентированным деревом называют бесконтурный ориентированный граф, у которого полустепень захода любой вершины не больше 1 и существует ровно одна вершина, называемая **корнем ориентированного дерева**, полустепень захода которой равна 0.

Вершину v ориентированного дерева называют **потомком** вершины u, если существует путь из v в u. В этом же случае вершину u называют **предком** вершины v.

Вершину ориентированного дерева, не имеющую потомков называют листом.

Высота ориентированного дерева — это наибольшая длина пути из корня в лист.

 Γ лубина вершины ориентированного дерева — это длина пути из корня в эту вершину.

Высота вершины -- это наибольшая длина пути из данной вершины в лист.

Уровень вершины ориентированного дерева — это разность между высотой ориентированного дерева и глубиной данной вершины.

Лес – ациклический граф, состоящий из нескольких компонент связности.

Для деревьев справедливы следующие утверждения:

- 1. |V| = |E| + 1;
- 2. Если добавить к дереву любое ребро, не добавляя вершин, в графе возникнет цикл.
- 3. Если удалить любое ребро, не удаляя вершин, граф перестанет быть связным.

2.2 Минимальное остовное дерево. Алгоритм Краскала

Остовным деревом графа G=(V,E) называют дерево, являющееся подграфом $F\subseteq G$, такое что F=(V,E').

Взешенным называется граф, каждому ребру которого поставлено в соответствие некоторое число – вес, иначе говоря задана функция $f: E \to \mathbb{R}$.

Пусть необходимо отыскать остовное дерево, имеющее наименьший суммарный вес рёбер. **Алгоритм Краскала.**

Дан неориентированный взвешенной связный граф G = (V, E), при этом n = |V|, m = |E|. Для поиска минимального остовного дерева на каждом шаге будем так выбирать ребро минимального веса, чтобы не возникало циклов.

Алгоритм заканчивает работу когда выбрано n-1 ребро.

- 1. Упорядочить рёбра по возрастанию весов: $e_1, e_2, \ldots, e_m, f(e_1) \leq \cdots \leq f(e_m)$.
- 2. Выбрать первое ребро и занести его в класс K_1 .
- 3. Выбрать следующее ребро $e = \{u, v\}$. Возможны 4 случая:
 - Ни u, ни v не инцидентны никаким ребрам из имеющихся классов K_1, K_2, \ldots, K_i . Создаётся новый класс K_{i+1} .
 - Одна вершина v не инцидентна никакому ребру из K_1, K_2, \ldots, K_i , а вершина u инцидентна некоторому ребру из K_j . Ребро $\{u, v\}$ добавляется в класс K_j .
 - Вершины инцидентны ребрам из разных классов K_j и K_l . Классы объединяются в один, содержащий также ребро $\{u,v\}$.
 - Обе вершины инцидентны ребрам из одного класса. Ребро не добавляется в дерево (иначе образуется цикл).

Шаг 3 повторяется n-2 раза.

Покажем работу алгоритма на примере графа с рисунка 4.

Рис. 4: Взвешенный связный граф

Отсортируем рёбра по увеличению веса.

Bec	Ребро
1	$\{v_1, v_2\}$
1	$\{v_1, v_3\}$
1	$\{v_2, v_5\}$
1	$\{v_3, v_7\}$
1	$\{v_4,v_5\}$
2	$\{v_1, v_5\}$
2	$\{v_6, v_7\}$
3	$\{v_1, v_4\}$
3	$\{v_2,v_4\}$
3	$\{v_3, v_6\}$

Покажем основные этапы на рисунке 5.

- a) $K_1 = \{\{v_1, v_2\}\}.$
- b) $K_1 = \{\{v_1, v_2\}, \{v_1, v_3\}\}.$
- c) $K_1 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_5\}\}.$
- d) $K_1 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_5\}, \{v_3, v_7\}\}.$
- e) $K_1 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_5\}, \{v_3, v_7\}, \{v_4, v_5\}\}.$
- f) Следующее по очереди ребро $\{v_1,v_5\}$, но при добавлении его получим цикл на вершинах $v_1-v_2-v_5-v_1$, поэтому вместо него берём ребро $\{v_6,v_7\}$.

$$K_1 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_5\}, \{v_3, v_7\}, \{v_4, v_5\}, \{v_6, v_7\}\}.$$

В нашем графе n = |V| = 7, сделано n - 1 = 6 шагов, работа алгоритма завершена.

Минимальное остовное дерево показано на рисунке 6.

Рис. 5: Шаги алгоритма Краскала

3 Циклы

3.1 Циклы Эйлера

Связный граф называется **эйлеровым**, если можно обойти все рёбра ровно по одному разу и вернуться в исходную вершину.

Пемма 3.1. Пусть в графе степень каждой вершины не меньше 2, тогда граф содержит цикл.

Доказательство. Пусть $v_1 \in V$, тогда построим последовательность рёбер $\{v_1, v_2\}, \{v_2, v_3\}, \dots$ выбирая v_2 смежной с v_1 и отличной от v_1 . По условию теоремы на каждом шаге очередная вершина существует. В силу конечности множества вершин V в последовательности встретится вершина v_k , которая встречалась раньше. Выбирая k минимальным с этим свойством, получим цикл.

Рис. 6: Минимальное остовное дерево

Теорема 3.2. Связный граф является эйлеровым тогда и только тогда, когда степени всех его вершин четны.

Достаточность доказывается индукцией по числу рёбер n.

База индукции: n = 0 цикл существует.

Пусть граф, имеющий менее n рёбер содержит эйлеров цикл.

Рассмотрим связный граф G=(V,E) с n>0 рёбрами, все степени вершин которого чётны.

Пусть v_1 и v_2 – вершины графа. В силу связности G, существует путь из v_1 в v_2 .

 $\deg(v_2)$ – чётная, значит существует неиспользованное ребро, по которому можно продолжить путь из v_2 .

Так как граф конечный, то путь должен вернуться в v_1 , что образует цикл C. Если есть рёбра, инцидентные v_1 , но не включённые в C, продолжаем строить C через v_1 таким же образом.

Если C является эйлеровым циклом для G, тогда доказательство закончено.

Если нет, то пусть H – подграф графа G, полученный удалением всех рёбер, принадлежащих C. Поскольку C содержит чётное число рёбер, инцидентных каждой вершине, то каждая вершина подграфа H имеет чётную степень. А так как C покрывает все ребра, инцидентные v_1 , то граф H будет состоять из нескольких компонент связности.

Поскольку каждая компонента связности H имеет менее, чем n рёбер, а у каждой вершины графа H чётная степень, то у каждой компоненты связности H существует эйлеров цикл.

Рассмотрим какую-либо компоненту связности с эйлеровым циклом C_1 . У C и C_1 имеется общая вершина v, в силу связности G. Теперь можно обойти эйлеров цикл, начиная его в вершине v, обойти C, вернуться в v, затем пройти C_1 и вернуться в v. Если новый эйлеров цикл не является эйлеровым циклом для G, продолжаем данное построение эйлерового цикла, пока не получим эйлеров цикл для G.

Если в графе ровно две вершины имеют нечётную степень, он называется **полуэйлеровым**. Ребро, при удалении которого граф теряет связность, называется **мостом**.

3.2 Алгоритм Флёри

Алгоритм используется для поиска эйлерова цикла в графе.

- 1. Если граф эйлеров, начинаем движение из любой вершины, если полуэйлеров, то из одной из нечётных.
- 2. Из каждой вершины проходят по любому инцидентному ребру, только если оно не является мостом, после чего пройденные рёбра удаляют из графа.
- 3. Алгоритм заканчивает работу, когда рёбер в графе больше нет.

4 Фундаментальные системы циклов и разрезов

Объединением графов $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ будем называть объединение множеств вершин и рёбер $G_1 \cup G_2 = (V_1 \cup V_2, E_1 \cup E_2)$.

Цикл в графе – подграф, изоморфный C_n .

Обозначим цикл через последовательность входящих в него вершин

$$c = (v_1, v_2, \dots, v_k),$$

где $\{v_i, v_{i+1}\} \in E, i = \overline{1, k-1}, \{v_k, v_1\} \in E.$

Полицикл в графе – объединение нескольких циклов графа, не имеющих общих рёбер.

Например, в графе на рисунке $7(v_1, v_2, v_5) \cup (v_2, v_3, v_4)$ – полицикл.

Введём операцию сложения по модулю два \oplus для циклов фиксированного графа.

Рис. 7: Полицикл выделен красным цветом

Подграф $c_1 \oplus c_2$ — объединение циклов c_1 и c_2 , при котором их общие рёбра удаляются из объединения. В теории множеств аналогом сложению по модулю 2 является симметрическая разность.

Например, $(v_1, v_2, v_4) \oplus (v_2, v_3, v_4) = (v_1, v_2, v_3, v_4)$, общее ребро $\{v_2, v_4\}$ удалено.

Обозначим множество всех полициклов графа P. Считаем, что в P входит и пустой цикл – пустое множество.

Множество полициклов P в любом графе с операцией сложения по модулю два \oplus и умножением на 0 и 1 является линейным пространством.

4.1 Фундаментальная система циклов

 Φ ундаментальная система циклов (Φ СЦ) – базис этого пространства P, то есть такая минимальная совокупность циклов, линейной комбинацией которых можно представить любой цикл графа.

Для нахождения фундаментальной системы циклов, ассоциированной с заданным остовным деревом T, необходимо все рёбра графа разделить на древесные d_1, d_2, \ldots, d_m и недревесные e_1, e_2, \ldots, e_k .

При добавлении любого недревесного ребра e_i к T образуется цикл c_i . Циклы c_1, \ldots, c_k и образуют фундаментальную систему.

Для того чтобы выразить любой цикл графа, нужно сложить те циклы фундаментальной системы, которые соответствуют недревесным рёбрам раскладываемого цикла.

На рисунке 8 показано остовное дерево (a) и три цикла (b,c,d), образующих ФСЦ. Для обоснования корректности алгоритма нужно показать, что:

1. При добавлении ребра к остову образуется ровно один цикл.

Рис. 8: Фундаментальная система циклов

2. При сложении циклов фундаментальной системы, соответствующих рёбрам цикла, получится искомый цикл.

Если два цикла c_1 , c_2 содержат общее ребро, то имеется полицикл $c_1 \oplus c_2$, не содержащий этого ребра. Так как в дереве полицикла не может быть по определению, пункт 1 доказан. Для доказательства пункта 2 покажем сначала, что при сложении циклов останутся все недревесные рёбра. Действительно, каждое недревесное ребро содержится в своём цикле. Значит, оно не может сократиться из-за операции сложения.

Предположим, что в графе существует два цикла с одинаковым набором недревесных рёбер, тогда $c_1 \oplus c_2$ есть полицикл, не содержащий недревесных рёбер. Противоречие, а значит существует лишь один цикл с заданным наором недревесных рёбер. Корректность алгоритма доказана.

4.2 Фундаментальная система разрезов

Разрезом в графе называется минимальное по включению множество рёбер, при удалении которого граф становится несвязным.

На множестве разрезов можно ввести ту же операцию \oplus , что и для циклов.

Фундаментальная система разрезов (**ФСР**) – минимальная по включению система разрезов, через которую можно выразить любой разрез графа.

Для нахождения фундаментальной системы разрезов (ФСР), ассоциированной с заданным остовом графа, необходимо найти все фундаментальные разрезы.

Для нахождения фундаментального разреза, убираем одно ребро остовного дерева, при этом в остове образуются две новые компоненты связности. Множество рёбер графа, соединяющих эти компоненты остова, вместе с удалённым ребром остова образуют разрез.

Проделав эту процедуру со всеми рёбрами, входящими в остов, получаем систему разрезов. Она является фундаментальной.

Для того чтобы выразить произвольный разрез через фундаментальную систему, нужно сложить разрезы, соответствующие древесным рёбрам данного разреза.

На рисунке 9 показано остовное дерево (a) и четыре разреза (b,c,d,e), образующих ФСЦ.

Рис. 9: Фундаментальная система разрезов