

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A

Exercícios - Parte.A

Matrizes: Tipos Especiais, Operações

Professora: Isamara

Data: 03/03/2021

Questão.1

Seja o conjunto $I=\{1,2,3,\cdots,n\}\subset\mathbb{N}$. Vamos definir uma matriz real $A:I\times I\to\mathbb{R}$ da seguinte forma: $a_{ij}=\frac{1}{i+j-1}$ que é denominada MATRIZ DE HILBERT de ordem $n\times n$. Escreva a MATRIZ DE HILBERT para n=4.

Questão.2

Seja o conjunto $I=\{1,2,3,\cdots,n\}\subset\mathbb{N}$. Vamos definir uma matriz real $A:I\times I\to\mathbb{R}$ da seguinte forma: $a_{ij}=\frac{(i+j-2)!}{(i-1)!.(j-1)!}$ que é denominada MATRIZ DE PASCAL de ordem $n\times n$. Escreva a MATRIZ DE PASCAL para n=5.

Questão.3

Questão.3

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

Questão.3

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

$$V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{``conjunto dos V\'ertices''}, e;$$

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;}$ $A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"}$

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), \}
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), \}
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_3, V_6), (V_3, V_6), (V_4, V_6), (V_6, V_
```

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_4, V_5), (V_5, V_6), (V_5, V_
```

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;}$ $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"}$ $A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_6, V_6), (V_6, V_$

Questão.3

Problema: Rotas Direcionadas entre Cidades

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", e; $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_5, V_6), (V_5, V_6)\}$

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_6, V_1)\}
```

Questão.3

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

```
V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices", e;} A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"} A = \{(V_2, V_3), (V_2, V_6), (V_3, V_1), (V_4, V_3), (V_5, V_2), (V_5, V_6), (V_6, V_1)\}
```

Questão.3: (continuação)

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A Matriz de Adjacência é definida por;

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \end{array}
ight.$$

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Questão.3: (continuação)

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.3: (continuação)

Problema: Rotas Direcionadas entre Cidades

A MATRIZ DE ADJACÊNCIA é definida por;

$$(a_{ij}) = \left\{egin{array}{ll} 1; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

$$V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices"},$$

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow \text{"conjunto dos V\'ertices"},$ $A = \{(V_i, V_j) \mid \text{existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow \text{"conjunto das Arestas"}$

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $d \longrightarrow$ " peso na aresta de V_i para V_j que representa a distância entre estas cidades. "

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $d \longrightarrow$ " peso na aresta de V_i para V_j que representa a distância entre estas cidades. "

Questão.4

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES (com distância nas rotas)

Figura: Rotas Direcionadas entre as Cidades - Grafo Orientado G(V,A)

 $V = \{V_i \mid V_i \text{ \'e a cidade-}i\} = \{V_1, V_2, V_3, V_4, V_5, V_6\} \longrightarrow$ "conjunto dos VÉRTICES", $A = \{(V_i, V_j) \mid \text{ existe estrada direta da cidade } V_i \text{ para } V_j\} \longrightarrow$ "conjunto das ARESTAS" $d \longrightarrow$ " peso na aresta de V_i para V_j que representa a distância entre estas cidades. "

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

Questão.4 - Continuação

Problema.2: Rotas Direcionadas entre Cidades com Distâncias(pesos)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \left\{egin{array}{l} d; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \end{array}
ight.$$

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \begin{cases} d; & \text{se existir rota direta da cidade } V_i \text{ para } V_j \\ 0; & \text{caso contrário} \end{cases}$$

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \left\{ egin{array}{ll} d; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.4 - Continuação

PROBLEMA.2: ROTAS DIRECIONADAS ENTRE CIDADES COM DISTÂNCIAS(PESOS)

A MATRIZ DE ADJACÊNCIA associada ao grafo G(V,A) é definida por;

$$(a_{ij}) = \left\{ egin{array}{ll} d; & ext{se existir rota direta da cidade } V_i ext{ para } V_j \ 0; & ext{caso contrário} \end{array}
ight.$$

Escreva a MATRIZ DE ADJACÊNCIA relacionada ao Problema.

Questão.5

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE INCIDÊNCIA é definida por;

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A Matriz de Incidência é definida por;

$$\left(a_{ij}
ight) = \left\{egin{array}{ll} 1; & ext{se o arco j chega no vértice } V_i \end{array}
ight.$$

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE INCIDÊNCIA é definida por;

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE INCIDÊNCIA é definida por;

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE INCIDÊNCIA é definida por;

Escreva a MATRIZ DE INCIDÊNCIA relacionada ao Problema.

Questão.5

PROBLEMA: ROTAS DIRECIONADAS ENTRE CIDADES

A MATRIZ DE INCIDÊNCIA é definida por;

Escreva a MATRIZ DE INCIDÊNCIA relacionada ao Problema.

Questão.6

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

()
$$D = A.B.$$

Questão.6

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.

Questão.6

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.

Questão.6

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.
- () D = A.B.C.

Questão.6

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.
- () D = A.B.C.
- () D = B.C.A.

Questão.6

$$A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \\ -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 1 \end{bmatrix}; C = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{bmatrix}.$$

- () D = A.B.
- () D = A.B + C.
- () D = 3.C.
- () D = A.B.C.
- () D = B.C.A.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

()
$$D = A.B.$$

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- () D = A.B.
- () D = A + B.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- () D = A.B.
- () D = A + B.
- () D = B.A.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- () D = A.B.
- () D = A + B.
- () D = B.A.
- () D = -3.B.A.

Questão.7

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}; B = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}.$$

- () D = A.B.
- () D = A + B.
- () D = B.A.
- () D = -3.B.A.

Questão.8

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$

Questão.8

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$

(b)
$$B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$$

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
$$\begin{bmatrix} 4i & 3+2i & 7+i \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$ (c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$
(c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$ (c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$ (e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$ (c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$ (e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$ (f) $F = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$

Classifique, se possível, as matrizes abaixo em simétricas e anti-simétricas :
(a)
$$A = \begin{bmatrix} 4i & 3+2i & 7+i \\ 3+2i & 4+i & 8+2i \\ 7+i & 8+2i & 3-i \end{bmatrix}$$
 (b) $B = \begin{bmatrix} 0 & 2-i & -3 \\ -2+i & 0 & i \\ 3 & -i & 0 \end{bmatrix}$ (c) $C = \begin{bmatrix} 3i & -i & -3+6i \\ -i & 20i & 1+\sqrt{5}i \\ -3+6i & 1+\sqrt{5}i & \frac{1}{3}i \end{bmatrix}$ (d) $D = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 5 \\ 2 & -5 & 0 \end{bmatrix}$ (e) $E = \begin{bmatrix} 8 & 1 & 4 \\ 1 & 8 & 8 \\ 4 & 8 & 8 \end{bmatrix}$ (f) $F = \begin{bmatrix} 0 & -2 & 3 \\ -2 & 0 & 1 \\ 3 & 1 & 0 \end{bmatrix}$

Matrizes Revisão Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$.

Matrizes Revisão Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^{0} = I_n$;

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$;

Seja
$$A \in \mathcal{M}_n(\mathbb{K})$$
 . Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A

Seja
$$A \in \mathcal{M}_n(\mathbb{K})$$
. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k .

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Questão.9

Seja $A\in\mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$

Questão.9

Seja $A\in\mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se, $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Questão.9

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_n$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_0$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (e) $E = \begin{bmatrix} -i & 0 & 0 \\ 0 & i & i \\ 0 & 0 & -i \end{bmatrix}$

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Define-se POTENCIAÇÃO para expoentes naturais da seguinte forma:

$$A^0 = I_n$$
; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Dizemos que A é uma matriz AUTOREFLEXIVA se, e somente se. $A^2 = I_0$.

(a)
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 (b) $B = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -1 \end{bmatrix}$ (c) $C = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $D = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (e) $E = \begin{bmatrix} -i & 0 & 0 \\ 0 & i & i \\ 0 & 0 & -i \end{bmatrix}$

Matrizes Revisão Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$.

13 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Questão.10

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

Questão.10

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Questão.10

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Questão.10

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
(c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$

Questão.10

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

Questão.10

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

Em caso afirmativo, calcule para cada item acima a matriz $B = I_n - A$.

Questão.10

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são IDEMPOTENTES:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

Em caso afirmativo, calcule para cada item acima a matriz $B = I_n - A$.

(1) B é também uma matriz IDEMPOTENTE?

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz <u>IDEMPOTENTE</u> se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são <u>IDEMPOTENTES</u>:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

Em caso afirmativo, calcule para cada item acima a matriz $B = I_n - A$.

- (1) B é também uma matriz IDEMPOTENTE?
- (2) B comuta com a matriz A?

Seja $A \in \mathcal{M}_n(\mathbb{K})$. Dizemos que A é uma matriz <u>IDEMPOTENTE</u> se, e somente se, $A^2 = A$. Verifique se as matrizes abaixo são <u>IDEMPOTENTES</u>:

(a)
$$A = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$
 (b) $A = \frac{1}{2} \cdot \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (c) $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $A = \begin{bmatrix} 2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3 \end{bmatrix}$ (e) $A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$

Em caso afirmativo, calcule para cada item acima a matriz $B = I_n - A$.

- (1) B é também uma matriz IDEMPOTENTE?
- (2) B comuta com a matriz A?

Questão.11

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix}$$

Questão.11

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix}$$

Questão.11

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} 0 & 2i & -3 \\ -2i & 5 & 1+i \\ 3 & -1-i & -7 \end{bmatrix}$$

Questão.11

(a)
$$A = \begin{bmatrix} 4 & -2i & 1+5i \\ -2i & -i & -8 \\ 1+5i & -8 & 9+3i \end{bmatrix}$$

(b)
$$B = \begin{bmatrix} 0 & -i & -3+3i \\ +i & 0 & i \\ 3-3i & -i & 0 \end{bmatrix}$$

(c)
$$C = \begin{bmatrix} 0 & 2i & -3 \\ -2i & 5 & 1+i \\ 3 & -1-i & -7 \end{bmatrix}$$

Matrizes Revisão Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

Matrizes Revisão Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

(a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A - A^t$.

Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

(a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A - A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$.

Questão.12

Dê um exemplo de uma matriz A_3 real e de uma matriz A_3 complexa.

- (a) Para cada uma das matrizes, calcule as matrizes $C_3 = A + A^t$ e $D_3 = A A^t$. O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?
- (b) Calcule: tr(A) e o $tr(\overline{A}^t)$. O que você observa sobre os valores dos escalares?

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

(a) Calcule as matrizes
$$C_3 = A + \overline{A}^t$$
 e $D_3 = A.\overline{A}^t$.

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

- (a) Calcule as matrizes $C_3 = A + \overline{A}^t$ e $D_3 = A.\overline{A}^t$.
- (b) O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Questão.13

Dê um exemplo de uma matriz A_3 complexa.

- (a) Calcule as matrizes $C_3 = A + \overline{A}^t$ e $D_3 = A.\overline{A}^t$.
- (b) O que você conclui sobre as matrizes C_3 e D_3 : C_3 e D_3 são matrizes simétricas, anti-simétricas, hermitianas e/ou anti-hermitianas?

Questão.14

Dê um exemplo de uma matriz real A₄ simétrica,

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica,

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana,

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana.

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana.

Podemos dizer que as matrizes A_4 , B_4 , C_4 e D_4 são matrizes normais?

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana.

Podemos dizer que as matrizes A_4 , B_4 , C_4 e D_4 são matrizes normais? (Dica: Verifique utilizando as definições das matrizes especiais)

Questão.14

Dê um exemplo de uma matriz real A_4 simétrica, uma matriz real B_4 anti-simétrica, uma matriz complexa C_4 hermitiana, e; uma matriz complexa D_4 anti-hermitiana.

Podemos dizer que as matrizes A_4 , B_4 , C_4 e D_4 são matrizes normais? (Dica: Verifique utilizando as definições das matrizes especiais)

Matrizes Revisão Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e

Questão.15

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica.

 $Quest\~{a}o.15$

Seja A uma matriz de ordem n. Mostre que, a matriz $B = A + A^t$ é simétrica e a matriz $C = A - A^t$ é anti-simétrica. (Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

Questão.16

Dizemos que uma matriz A de ordem n é uma matriz HERMITIANA se, e somente se, $A = \overline{A}^t$: e dizemos que A é uma matriz ANTI-HERMITIANA se. e somente se. $A=-\overline{A}^t$ Mostre que: se A é uma matriz complexa Hermitiana (ou Anti-Hermitiana) então A é uma

Matriz Normal.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t.A = A.\overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

Questão.17

Dizemos que uma matriz A de ordem n é uma matriz NORMAL se, e somente se, $\overline{A}^t A = A \overline{A}^t$, isto é, as matrizes $A \in \overline{A}^t$ são comutativas.

Mostre que: se A é uma matriz real e simétrica (ou anti-simétrica) então A é uma matriz normal.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

Questão.18

Seja A uma matriz complexa de ordem n. Mostre que: as matrizes $C = A + \overline{A}^t$ e $D = A.\overline{A}^t$. são matrizes hermitianas.

(Dica: utilize matrizes na forma genérica, i.é., matrizes de ordem n)

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A \cdot A \in A^{k+1} = A \cdot A^k$. Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$; $A^1 = A$; $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE;

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

Questão.19

Seja A uma matriz de ordem n. Define-se potenciação para expoentes naturais da seguinte forma: $A^0 = I_n$: $A^1 = A$: $A^2 = A$. A e $A^{k+1} = A$. A^k . Dizemos que A é uma matriz IDEMPOTENTE se, e somente se, $A^2 = A$. Mostre que: se A é uma matriz IDEMPOTENTE então $B = I_n - A$ é uma matriz IDEMPOTENTE; e, além disso, temos que $AB = BA = 0_n$.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Questão.20

Considerando as matrizes A e B definidas a seguir, podemos afirmar que

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

() A e B são idempotentes.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- A e B são autoreflexivas.

Questão.20

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- () A e B são autoreflexivas.
- () B é diagonal e hermitiana.

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- () A e B são autoreflexivas.
- () B é diagonal e hermitiana.
- () O produto $(\mathcal{I}_3 A).(\mathcal{I}_3 + A)$ é igual a uma matriz nula de mesma ordem.

$$A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

- () A e B são idempotentes.
- () A e B são simétricas.
- () A e B são autoreflexivas.
- () B é diagonal e hermitiana.
- () O produto $(\mathcal{I}_3 A).(\mathcal{I}_3 + A)$ é igual a uma matriz nula de mesma ordem.

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
A					

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α					
В					

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α					
В					
A + B					

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α					
В					
A + B					
A - B					

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α					
В					
A + B					
A - B					
A.B					

Questão.21

Considerando as matrizes $A \in B$:

$$A = \begin{bmatrix} 1 & 0 & -\frac{2}{3} \\ 0 & 1 & -\frac{7}{3} \\ -\frac{2}{3} & -\frac{7}{3} & 1 \end{bmatrix}; B = \begin{bmatrix} 1 & 0 & \frac{2}{3} \\ 0 & 1 & \frac{7}{3} \\ \frac{2}{3} & \frac{7}{3} & 1 \end{bmatrix}.$$

	Simétrica	Anti-Simétrica	Hermitiana	Anti-Hermtiana	Normal
Α					
В					
A + B					
A - B					
A.B					

Questão.22

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

Questão.22

Considerando as matrizes A e B definidas a seguir, podemos afirmar que

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

A é uma matriz hermitiana e normal.

Questão.22

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- A é uma matriz hermitiana e normal.
- B é uma matriz anti-hermitiana e normal.

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- A é uma matriz hermitiana e normal.
- B é uma matriz anti-hermitiana e normal.
- () C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- A é uma matriz hermitiana e normal.
- B é uma matriz anti-hermitiana e normal.
- () C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.
- () A^2 e B^2 são matrizes hermitianas.

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- A é uma matriz hermitiana e normal.
- B é uma matriz anti-hermitiana e normal.
- () C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.
- () A^2 e B^2 são matrizes hermitianas.
- () tr(AB) = tr(BA).

$$A = \begin{bmatrix} 1 & 0 & -2+i \\ 0 & -1 & 7i \\ -2-i & -7i & 1 \end{bmatrix}; B = \begin{bmatrix} 0 & 1 & 2-i \\ -1 & -2i & 7i \\ -2-i & 7i & 3i \end{bmatrix}.$$

- A é uma matriz hermitiana e normal.
- B é uma matriz anti-hermitiana e normal.
- () C = i.A é uma matriz anti-hermitiana e D = i.B a matriz hermitiana.
- () A^2 e B^2 são matrizes hermitianas.
- () tr(AB) = tr(BA).

Questão.23

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

Questão.23

Considerando as matrizes A e B definidas a seguir, assinale as alternativas corretas.

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

A é uma matriz simétrica, hermitiana e idempotente.

Questão.23

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.

Questão.23

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- As matrizes A e B são comutativas.

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- As matrizes A e B são comutativas.
- A matriz C = A + B é uma matriz idempotente e autoreflexiva.

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- As matrizes A e B são comutativas.
- A matriz C = A + B é uma matriz idempotente e autoreflexiva.
- () tr(3A + B) = 3tr(A) + tr(B).

$$A = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}; B = \frac{1}{3} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$$

- A é uma matriz simétrica, hermitiana e idempotente.
- B é uma matriz simétrica, hermitiana mas não é idempotente.
- As matrizes A e B são comutativas.
- A matriz C = A + B é uma matriz idempotente e autoreflexiva.
- () tr(3A + B) = 3tr(A) + tr(B).