Tópicos de Matemática Discreta

	prova escrita A — 25 de janeiro de 2014 —————	duração: 2 horas —
nome:		número

Em cada exercício deste grupo, assinale a **única** afirmação verdadeira. Cada resposta certa vale 1,25 valores e cada resposta errada desconta 0,25 valores.

١.

- 1. Sejam A um subconjunto de \mathbb{N} e f uma função de \mathbb{Z} em A.
 - (a) Se 3 e 5 são elementos de A e $f(\{1,2,3\}) = \{3,5\}$ então f não é sobrejetiva.
 - (b) Se 3 e 5 são elementos de A e $f^{\leftarrow}(\{3,5\}) = \{1,2\}$ então f é injetiva.
 - (c) Se $A = \{3, 5\}$ então f não é bijetiva.
- 2. Sejam $f,\,g$ e has funções de $\mathbb N$ para $\mathbb N$ definidas por:

$$f\left(n\right)=n+3; \qquad g\left(n\right)=2n; \qquad h\left(n\right)=\left\{ \begin{array}{l} 1, \text{ se } n \text{ \'e par} \\ 2, \text{ se } n \text{ \'e impar.} \end{array} \right.$$

- (a) $f \circ g$ é uma função constante.
- (b) $(h \circ g \circ f)(5) = 1$.
- (c) $(h \circ f \circ g)(\{1, 2, 4, 5\}) = \{1, 2\}.$
- **3.** Sejam $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$. Considere as relações binárias $R = \{(1, a), (1, d), (2, a), (2, c)\}$ e $S = \{(a, 1), (a, 3), (b, 2), (c, 2), (d, 3)\}$ de A para B e de B para A, respetivamente.
 - (a) $R^{-1} \cap S = \{(1, a), (2, c)\}.$
 - (b) $R \circ S = \{(a, d), (b, c), (b, a), (c, a)\}.$
 - (c) Não existe nenhum $x \in A$ tal que $(3, x) \in S \circ R$.
- **4.** Considere a matriz $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$.
 - (a) Se G=(V,E) tem A como matriz de incidência, então G tem 2 vértices de grau par e 2 vértices de grau ímpar.
 - (b) Existe uma árvore que tem A como matriz de incidência.
 - (c) Existe um grafo simples que tem A como matriz de adjacência.

Em cada exercício deste grupo, apresente a sua resposta sem justificar.

1. [1 valor] Indique naturais $a, b, c \in d$ tais que o diagrama

seja o diagrama de Hasse do conjunto parcialmente ordenado $(\{a,b,c,d,2,12\},|)$, em que | representa a relação "divide".

a —	h —	_	_	A	_	
u = 0	$\upsilon =$	 c	=	 u		

- **2.** [3 valores] Considere $A = \{a, b, c, d, 2, 12\}$ e (A, ρ) , um c.p.o. cujo diagrama de Hasse é o diagrama dado no exercício anterior. Seja $X = \{a, c, d\}$. Indique:
 - (a) os elementos maximais de A:
 - (b) o conjunto dos majorantes de X:
 - (c) os elementos minimais de X:
- (d) um subconjunto Y de A tal que $\sup(Y) = c$:
- 3. [2 valores] Seja R a relação de equivalência em $A=\{1,3,4,8,10,13\}$ definida por x R y se x-y é múltiplo de 3.
 - (a) $[1]_R =$ _____
 - (b) A/R =_____
- 4. [3 valores] Considere o grafo G = (V, E) representado por

(a)	Indique um caminho elementar de a para d de comprimento 7.
(b)	Indique um caminho simples de a a d que não seja elementar.
(*)	
(c)	Indique um ciclo com vértice inicial g .
	III.

Responda às questões deste grupo justificando convenientemente as suas respostas.

1. [2 valores] Mostre que $(2^n)^2 - 1$ é um múltiplo de 3 para todo $n \in \mathbb{N}$.

3. [2 valores] Considere o grafo do exercício 4 do grupo II. Mostre que G é bipartido.