Санкт-Петербургский государственный университет Математико-механический факультет Прикладная математика и информатика

Отчёт по заданию 1

Численные методы решения нелинейных уравнений

Выполнила:

Бабенко Полина Александровна Группа 21.Б06-мм

Проверил:

Алцыбеев Глеб Олегович, Кафедра вычислительной математики

Санкт-Петербург 2023

Постановка задания и способ решения

Пусть дано алгебраическое или трансцендентное уравнение вида

$$f(x)=0, (1)$$

причем, известно, что все интересующие вычислителя корни находятся на отрезке [A, B], на котором функция f(x) определена и непрерывна.

Требуется найти все корни уравнения (1) на [A, B] нечетной кратности (здесь A, B, f(x) – параметры задачи).

Решение задачи разбить на два этапа:

- 1. Процедура отделения корней уравнения (1) на отрезке [A, B];
- 2. Уточнение корней уравнения (1) на отрезках перемены знака вида [a_i, b_i]
 - а. Методом половинного деления (методом бисекции);
 - b. Методом Ньютона (методом касательных);
 - с. Модифицированным методом Ньютона;
 - d. Методом секущих

с заданной точностью $\varepsilon > 0$ (ε – параметр задачи).

Начальные данные: функция $f(x) = 2^{(-x)} - \sin(x)$; A = -5, B = 10, $\varepsilon = 10^{(-6)}$

Результаты

Вывод программы после процедуры проведения отделения корней:

+	-++
	Отрезки
+	-++
	[0.550000000000005, 0.7000000000000005]
] ;	[2.949999999999993, 3.099999999999999]
;	[6.250000000000036, 6.4000000000000004]
-	[9.40000000000011, 9.550000000000011]
+	-++

Число отрезков: 4

Найдено 4 корня на указанном отрезке.

Вывод у программы выглядит так:

Метод бисекции: | | f(x)-0| | | кол-во шагов |delta X | 1 | 0.6761819839477546 | 5.722045898215455e-07 | 3.8061483487172865e-07 | | 2 | 3.0178102493286127 | 5.722045897105232e-07 | 2.000729179968408e-07 | | 3 | 6.295913124084477 | 5.722045899325678e-07 | 2.6193588993986272e-08 | | 4 | 9.423321342468272 | 5.722045894884786e-07 | 1.6095381698668157e-07 | Метод Ньютона: +---+-----+-----+ | 1 | 0.6761816703625775 | 5.306866057708248e-14 | | 2 | 3.0178104699725132 | 5.551115123125783e-17 | | 3 | 6.295913098117862 | 2.654126918244515e-16 | | 4 | 9.423321503584914 | 3.9876955904016853e-16 | 2 Модифицированный метод Ньютона: +---+-----+ | 1 | 0.6761816686101395 | 2.1270798455930162e-09 | 4 | 2 | 3.0178104699826838 | 9.222247965290364e-12 | | 3 | 6.29591309810305 | 1.494135891400017e-11 |

| 4 | 9.423321503519825 | 6.502308934341894e-11 |

17

17

17

17

Отсюда видно, что желаемая точность была достигнута.

График

Ссылка на репозиторий приложена к письму.