Typy atribútov

- numerické
 - o spojité (napr. vzdialenosti)
 - o vieme merať vzdialenosti medzi dátami
 - diskrétne (napr. vek)
- ordinálne
 - o vieme ich zoradiť
 - o napr. vriaci, horúci, vlažný, studený
- nominálne (kategorické)
 - o nevieme ich zoradiť
 - o napr. slnečno, zamračené

Pravidlo palca pri tvorbe histogramu

- počet intervalov je odmocnina počtu pozorovaní

Kontingenčná tabuľka

tabuľka vyjadrujúca vzťah dvoch alebo viacerých štatistických znakov

Charakteristiky atribútu

- početnosť výskytu
 - o pre nominálne hodnoty je to jediný spôsob ako zistiť charakter dát
 - histogram
- modus (najčastejšie sa vyskytujúca hodnota)
- aritmetický priemer (stredná hodnota)
- medián
 - o vhodný pre data s outliermi
- rozptyl (štandardná odchýlka)
- percentily
 - napr. 25% percentil (označovaný aj dolný kvartil) znamená, že 25% hodnôt je pod určitou hodnotou

Boxplot

- cieľom je sumarizovať dáta a rýchlo zobraziť, či sú dáta symetrické a či majú outlierov
- zakreslíme rámčekom dolný kvartil, medián a horný kvartil
- úsečkou zobrazíme maximum a minimum, ktoré sú maximálne vzdialené 1,5x šírky (rozdiel medzi spodným a horným kvartilom) rámčeka
- outliery sú nad/pod minimum/maximom a sú zobrazené krúžkami

Scatter plot

- zisťujú sa vzťahy medzi dvojicou premenných
- scatter matrix sú grafy všetkých kombinácií dvojíc premenných

Príprava dát sa používa na

- nekonzistentné dáta
- nekompletné dáta
- zašumené dáta
- mnohorozmerné dáta

Príprava vstupu (dát) – predspracovanie

- integrácia dát z rôznych zdrojov
 - o rôzne štýly ukladania záznamov
 - o rôzne konvencie
 - o rôzne časové obdobia
 - rôzne typy chýb
 - rôzne formáty
 - rôzne veličiny
 - ** je potrebné identifikovať rovnaké entity s inými ID a redundancia prebytočných atribútov, ktoré sa dajú vypočítať z iných atribútov

Vysporiadanie sa s chýbajúcimi hodnotami

- ignorovať záznam
- vyplniť manuálne
- použiť konštantnú hodnotu
- použiť heuristiku
- použiť aritmetický priemer hodnôt
- použiť hodnotu najbližšieho suseda
- použiť náhodnú hodnotu
- použiť interpoláciu

Knowledge Discovery in Databases

- je celý proces hľadania znalostí vrátane predspracovania dát aj data miningu.

Data Mining

- je jadrom KDD, jedným z krokov KDD.
- delí sa na (podľa úloh a typov modelov):
 - o prediktívne úlohy
 - Typy modelov:

- Klasifikácia
- Regresia
- Analýza časových radov
- Predikcia
- Detekcia anomálií
- deskriptívne úlohy
 - Typy modelov:
 - Zhlukovanie
 - Asociačné pravidlá
 - Objavovanie sekvencií
 - Detekcia anomálií

Disciplíny, z ktorých čerpá Data Mining

- databázy
- algoritmy
- štatistika
- vyhľadávanie informácií
- strojové učenie

Data science

 zastrešuje viacero oblastí ako je strojové učenie, data mining, big data, štatistika, vizualizácia dát, dátová analytika

Occamova britva

- vraví, že je potrebné používať čo najmenej predpokladov, eliminovať tie, ktoré nemenia predikcie
- ak sú všetky veci rovnaké, jednoduchšie riešenie je lepšie

Kliatba dimenzionality

- pridávanie dimenzií rapídne zvyšuje potrebné množstvo trénovacích dát na vytvorenie zmysluplného modelu
- pravidlo palca
 - o aspoň 5 trénovacích inštancií na každú dimenziu

Spôsoby redukcie dimenzií

- výber atribútov (feature selection)
 - o manuálne, ak dátam rozumieme
 - automatické metódy
 - regularizovaný strom
 - penalizujú použitie atribútov podobných už vybraným atribútom
 - t-test

- štatistický test na porovnanie dvoch populácií
- transformácia
 - o PCA
 - použitie súradnicovej sústavy, ktorá maximalizuje rozptyl
 - kubická zložitosť
 - o náhodná projekcia
 - rýchlejšia ako PCA, ale dáva horšie výsledky
- normalizácia (škálovanie hodnôt do <0, 1>)
 - o min-max
 - z-score (zero mean)
 - aritmetický priemer a štandardná odchýlka
 - výhoda oproti min-max, keď v budúcnosti príde číslo mimo hraníc min-max, tak s tým nie je problém
- vzorkovanie
- vyhladzovanie (odstránenie zašumených dát)
- agregácia (dni do mesiacov)
- zovšeobecnenie (nízkoúrovňové dáta nahradiť vyššie-úrovňovými konceptami)
- skonštruovanie atribútu z iných atribútov
- diskretizácia numerických atribútov

Predikcia

- na základe predošlých meraní hodnôt atribútov odhadujeme budúce hodnoty atribútov

Regresia

- učenie sa funkcie zobrazovania
- lineárna regresia
 - o vyjadrenie triedy ako lineárna kombinácia atribútov (funkcia)
 - dokáže modelovať len lineárne závislosti
 - citlivá na outlierov
 - dáta musia byť nezávislé
 - je to jednoduchá metóda
- polynomiálna regresia
 - o polynomiálne koeficienty vystupujú vo funkcii
 - môže sa preučiť, hlavne pri vysokých polynómoch rieši sa regularizáciou penalizáciou za vysoké rády
- metóda najmenších štvorcov
 - minimalizuje sumu štvorcových chýb

Klasifikácia

- učenie s učiteľom
- z trénovacej množiny sa naučí charakteristiky tried, do ktorých potom klasifikuje dáta
- Bayesovská klasifikácia
 - o používa Bayesovo pravidlo P(h|d) = P(d|h) * P(h) / P(d)

- o je to podmienená pravdepodobnosť
- naivný Bayesov klasifikátor
 - predpokladá, že všetky atribúty sú rovnako dôležité
 - predpokladá, že atribúty sú navzájom nezávislé
- rozhodovacie stromy
 - o prístup rozdeľuj a panuj
 - orezávanie stromu na odstránenie preučenia, vetiev reprezentujúcich šum
 - výhody
 - sú jednoduché na porozumenie a interpretáciu
 - sú podobné spôsobu uvažovania človeka
 - implicitne vykonávajú výber atribútov
 - nemajú žiadne predpoklady ohľadom charakteru dát
 - dokážu pracovať so všetkými typmi atribútov a aj s chýbajúcimi hodnotami
 - nemá takmer žiadne hyperparametre
 - nevýhody
 - sú nestabilné
 - oproti iným dávajú horšie výsledky, riešením sú náhodné lesy
 - nevedia zachytiť komplexné vzťahy medzi atribútmi
 - preučenie
 - Algoritmus ID3
 - aby sme vytvárali čo najjednoduchšie stromy
 - na rozhodnutie využíva meranie informácie v zlomkoch bitu podľa entrópie
 - nevie pracovať s chýbajúcimi hodnotami
 - nevie pracovať so spojitými atribútmi
 - nerobí orezávanie stromu
 - preferuje rozdelenie na veľa malých množín
 - o Algoritmus C4.5
 - rieši chýbajúce hodnoty ignoruje ich pri tvorbe stromu
 - rieši spojité hodnoty atribútov rozdeľuje ich na intervaly
 - rieši orezávanie pre-prunning, post-prunning
 - pri klasifikácii sa ide podľa iných atribútov
- k-najbližších susedov
 - o na urýchlenie hľadania susedov je možné použiť mriežku, Voronoi diagram alebo kD strom
 - výhody
 - žiadne predpoklady o dátach
 - jednoduchý algoritmus
 - vhodný aj pre klasifikáciu aj pre regresiu
 - nevýhody
 - zložitosť
 - veľká pamäťová náročnosť
 - fáza predikcie je pomalá
 - citlivý na nerelevantné dáta
- PRISM
 - o je to metóda klasifikačných pravidiel
 - pridáva testy do podmienky pravidla tak, aby sa maximalizovala pravdepodobnosť klasifikácie
- Neurónové siete

- o typy:
 - dopredné
 - veľké množstvo parametrov
 - nezachytávajú štruktúru
 - trpia preučením
 - sú pamäťovo náročné
 - konvolučné
 - využívajú konvolúciu a pooling, čím znižujú počet parametrov
 - modelujú priestorové vzťahy
 - rekurentné
 - modelujú časovú informáciu
 - vhodné pre spracovanie sekvencií
- výhody
 - so zväčšujúcim množstvom dát zvyšujú svoju úspešnosť
 - zvyšovanie výkonu počítačov umožňuje vytvárať zaujímavé hlboké NN
 - aj po naučení je možné sieť ďalej učiť
 - jednoducho sa paralelizuje
 - riešia veľa problémov
- nevýhody
 - je to čierna skrinka ťažké porozumieť a interpretovať
 - nezaručujú nájdenie globálneho optima
 - náchylné na preučenie
 - štruktúra grafu musí byť daná
 - veľké množstvo parametrov
 - vstupy musia byť numerické
 - hlboké NN ich trénovanie trvá veľmi dlho
 - potrebujú veľké objemy dát
 - náročné na HW
- Support Vector Machine
 - je to lineárny diskriminátor s nulovou trénovacou chybou
 - je optimálny
 - o vhodný pre klasifikáciu aj regresiu
 - vytvára deliacu nadrovinu, ktorá oddeľuje prvky od seba
 - hľadá deliacu nadrovinu s maximálnym okrajom od podporných vektorov (body)
 - o pre lineárne neseparovateľné problémy je potrebný priemet do vyššej dimenzie
 - o využíva kernelové funkcie na zníženie výpočtovej náročnosti
 - polynomiálny kernel
 - RBF kernel
 - sigmoidálny kernel
 - pri klasifikácii do viacerých tried sa problém pretransformuje na problém binárnej klasifikácie
 - jeden voči všetkým n klasifikátorov, pre každú triedu je jeden klasifikátor, ktorý rozhodne, či dané dáta patria do tejto triedy alebo nie
 - jeden voči jednému n(n 1)/2 klasifikátorov pre všetky dvojice tried, kde každá priradí inštanciu do jednej z dvoch tried
 - výhody
 - vhodný, keď dátam nerozumieme
 - vhodný pre text a obrázky

- s vhodným kernelom je možné riešiť akokoľvek komplexný problém
- nemá problém s uviaznutí v lokálnom extréme
- dobre škálovateľný pre veľa rozmerné dáta
- nie je citlivý na preučenie
- dobre funguje aj pre malé trénovacie množiny
- nevýhody
 - výber tej správnej kernelovej funkcie nie je jednoduchý
 - pre veľké množiny dát je potrebný dlhý čas na natrénovanie
 - je ťažké porozumieť a interpretovať model
 - nedáva dobré výsledky pre zašumené a prekrývajúce sa triedy

Zhlukovanie

- učenie bez učiteľa
- z dát rovno určí triedy, do ktorých dáta priradí
- single link najkratšia vzdialenosť medzi inštanciami z dvoch zhlukov
- complete link najdlhšia vzdialenosť medzi inštanciami z dvoch zhlukov
- hierarchické zhlukovanie
 - o nie je potrebné dopredu určiť počet zhlukov
 - o prístupy:
 - divízny zhora nadol
 - aglomeratívny zdola nahor
 - vytvárajú dendogram kompletný strom
 - koreň je 1 zhluk obsahujúci všetky inštancie
 - list je zhluk obsahujúci jednu inštanciu
- podľa rozdeľovania
 - o min. kostra
 - odstraňujú sa dlhé hrany z minimálnej kostry tak, že vzniknú zhluky pospájaných bodov
 - o k-means
 - potrebuje určiť počet zhlukov
 - iteruje kým sa zhluky menia
 - inicializácia je náhodná vyberie sa pár prvkov ako centroidy
 - následne sa centroidy počítajú z okna a sú to neexistujúce body, vypočítané
 - o PAM
 - potrebuje určiť počet zhlukov
 - podobný k-means ale zhluk je reprezentovaný medoidom
 - vďaka medoidu sa dobre vysporiadáva s outliermi
 - o CLARA
 - potrebuje určiť počet zhlukov
 - zlepšuje výpočtovú zložitosť PAM
 - aplikuje PAM na podmnožinu dát
 - nájdené medoidy používa ako medoidy v rámci celej množiny
- podľa hustoty
 - DBSCAN
 - jadrové body a ich okolie, jadrový bod ak obsahuje minPts bodov v okolí
 - parametre minPts, e hraničná vzdialenosť

- výhody:
 - nie je potrebné dopredu určiť počet zhlukov
 - je robustný voči outlierom
 - je navrhnutý tak aby pracoval s databázami ako Rtree
- nevýhody:
 - nie je deterministický
 - kvalita závisí od zvolenej vzdialenostnej miery obyčajne sa používa Euklidovská
 - je problematické zvoliť hraničnú vzdialenosť ak nerozumieme dátam
 - nie je vhodný pre množiny dát s rôznou hustotou zhlukov

OPTICS

- zovšeobecnenie DBSCAN
- na usporiadanie objektov sa používa prioritná halda
- výsledkom je hierarchické zhlukovanie vytvára dendogram
- výhody
 - rieši problém s rozdielnymi hustotami zhlukov a nastavením hraničnej vzdialenosti
 - nastavuje sa ako parameter iba minPts
- nevýhody
 - je výpočtovo náročnejší ako DBSCAN
- fuzzy zhlukovanie
 - C-MEANS
 - potrebuje určiť počet zhlukov
 - iteruje kým sa zhluky menia
 - ako k-means ale minimalizuje inú účelovú funkciu
 - iný výpočet centroidu ako k-means
 - iný výpočet príslušnosti k zhlukom oproti k-means

Sekvenčné dáta

- posuvné okno
 - o prekonvertuje sekvenčný predikčný problém na klasifikačný alebo regresný problém
- rekurentné posuvné okno
 - o predikovaná hodnota je použitá ako vstup pre ďalšiu predikciu
- Markovove modely
 - cieľom je predikovať nasledujúce pozorovanie v čase na základe n predošlých hodnôt – Markovove modely n-tého rádu
 - o nedávne pozorovania sú informatívnejšie ako staršie pozorovania
 - skryté Markovove modely
 - model pre sekvencie nelimitovaný rádom s malým množstvom parametrov
 - zavádza diskrétne skryté premenné, ktoré tvoria Markovovu reťaz a určujú stav, ktorý vygeneruje pomocou emisných pravdepodobností pozorovania
 - emisné pravdepodobnosti podmienené rozdelenie pozorovaných premenných
 - použitie:
 - dáta merané v čase
 - rozpoznávanie reči

- rozpoznávanie písma
- analýza DNA sekvencií

Dolovanie z Webu

- textové dokumenty sú reprezentované vektorom slov
- webové dokumenty sú reprezentované vektorom slov a HTML značkami, tzn. niektoré slová majú väčšiu váhu, napr. nadpisy
 - latentná sémantická analýza
 - vytvára množinu konceptov, ktoré sa vzťahujú ku slovám aj ku dokumentom
 - dáva lepšie výsledky ako tradičné metódy založené na kľúčových slovách
 - o singulárny rozklad matice dokáže aj zmazať nedôležité dimenzie
- dáta čistíme, identifikujeme používateľa (je to ťažké), identifikujeme session (server nepozná sekvenciu stránok, je potrebné cachovanie)
- dolovanie obsahu
 - vyhľadávanie
 - kategorizovanie
 - o zhlukovanie
 - o personalizácia
 - používajú sa crawlery
 - programy na automatické sťahovanie webových stránok
 - typy crawlerov
 - univerzálne
 - o zhromažďujú všetky stránky bez ohľadu na obsah
 - preferenčné
 - o zameriavajú sa na stránky len určitého typu
 - delí sa na focused (pre kategóriu) a topical (pre danú tému) prehľadávanie
 - základný crawlovací algoritmus
 - máme množinu stránok seed pages
 - udržiavame si zoznam liniek na ešte neprezreté stránky
 - vyberieme stránku zo zoznamu, spracujeme ju a extrahujeme z nej linky do zoznamu, ale vymažeme linky s malou prioritou
 - končí, keď prezrie dané množstvo stránok
 - prehľadávanie môže byť do šírky alebo najlepšie prvé
- dolovanie štruktúry
 - PageRank
 - používa ho Google
 - meria prestíž stránky nezávisle na dopyte
 - prestíž stránky je proporcionálna sume prestíží stránok, ktoré na ňu odkazujú
 - zavádza aj tlmiaci faktor v podobe konštanty
 - uzly neodkazujúce sa na žiadnu stránku sú buď odstránené alebo odkazujú na jednu náhodnú stránku
 - HITS
 - na rozdiel od PageRank používa graf pre konkrétne dopyty

- zavádza autority stránky s kvalitnými informáciami a Hub zoznam liniek na autority
- výhoda používa podgraf, ktorý je relevantný pre dopyt, tzn. menej chýb
- nevýhoda dĺžka trvania
- dolovanie používania
 - o asociačné pravidlá
 - sekvenčné vzory

Asociačné pravidlá

- definujú špecifické vzťahy
- príklad: if temperature == cool then humidity = normal
- vhodné pre nenumerické, kategorické dáta
- obyčajne ich je veľké množstvo
- Podpora
 - o support($X \Rightarrow Y$) = $|X \cup Y| / |N|$, kde |..| je kardinalita (počet)
 - o support(X) = |X| / |N|
- Spoľahlivosť
 - o confidence(X => Y) = support(X => Y) / support(X)
- kroky dolovania asociačných pravidiel
 - 1.) hľadanie frekventovaných množín položiek, ktoré majú väčšiu podporu ako prahová hodnota s
 - o 2.) generovanie pravidiel z frekventovaných množín položiek
- frekventované množiny položiek
 - o množiny položiek, ktoré majú väčšiu podporu ako prahová hodnota s
 - pre každé asociačné pravidlo X => Y, musí byť X U Y frekventovaná množina položiek
 - podmnožina každej frekventovanej množiny položiek je frekventovaná množina položiek
 - nachádzanie frekventovaných množín položiek je síce jednoduché, ale časovo náročné
 - Apriori algoritmus
 - frekventované množiny sú nadol uzavreté
 - ak vieme, že množina nie je frekventovaná, tak z nej netvoríme ďalšie podmnožiny
 - generuje kandidátov do šírky
 - nevýhody
 - množinu dát prechádza veľakrát
 - vysoká časová zložitosť
 - vysoká priestorová zložitosť dá sa vyriešiť rozdelením na menšie množiny položiek a tie prehľadať samostatne
 - kroky algoritmu:
 - 1.) i = 0, vygeneruj všetky jednopoložkové množiny C1
 - 2.) ak Ci = 0, tak skonči
 - 3.) prejdením databázy sa spočítajú výskyty kandidátov a vylúčia sa tie, ktoré majú menšiu podporu ako prah s
 - 4.) i = i+1

 5.) vytvor kandidátov o veľkosti i kombináciou množín položiek z Fi-1 a choď na krok 2.

o ECLAT

- prehľadávanie kandidátov do hĺbky
- vhodný aj na paralelné spracovanie
- FP-growth (frequent patern)
 - vytvára FP strom
 - vie tak uložiť veľké databázy v kompaktnej štruktúre FP strom
 - na dolovanie vzorov z FP-stromu používa prístup rozdeľuj a panuj
 - vlastnosti
 - nepočíta kandidátov
 - komprimovaná dátová štruktúra
 - prechádza databázu iba 2x
 - používa menej pamäte ako Apriori a ešte je aj rýchlejší
 - nepracuje dobre s veľkými databázami, keď sa FP strom nezmestí do pamäte
 - kroky vytvárania FP stromu:
 - 1.) prechádza databázu prvýkrát a vytvára zoznam frekventovaných prvkov usporiadaný podľa počtu výskytov
 - 2.) pre každú transakciu usporiada položky podľa usporiadaného zoznamu, prechádza databázu druhýkrát a vytvára FP-strom vkladaním transakcií usporiadaných podľa frekvencií
 - štruktúra FP stromu:
 - koreň stromu je označený null
 - každý vrchol má tri položky
 - meno položky
 - počet transakcií obsahujúcich vzor z cesty od koreňa do tohto uzla
 - bočnú linku na nasledujúci prvok v strome s rovnakým menom
 - princíp fp-growth
 - najprv 1-prvkové vzory
 - pridávanie k vytvoreným množinám prvky, ktoré sú vyššie v strome
- Sekvenčné vzory
 - usporiadaná množina položiek, ktorá spĺňa danú podporu a je maximálna
 - AprioriAll
 - algoritmus:
 - nájdenie všetkých frekventovaných množín položiek
 - nahradenie každej originálnej transakcie množinou všetkých frekventovaných množín položiek
 - nájdenie sekvenčných vzorov
 - nájdenie maximálnych sekvencií
 - o GSP
 - vychádza z Apriori
 - algoritmus:
 - nájdenie všetkých frekventovaných položiek (nie množín !!!)
 - repeat

- generovanie kandidátov spájaním a orezávaním sekvencií vždy o 1 dlhšie sekvencie
- počítanie kandidátov
- until už nie sú žiadne frekventované množiny alebo žiadny kandidáti neboli vygenerovaní
- o PrefixSpan
 - definuje prefix a projekciu pre sekvencie
 - negeneruje kandidátov
 - rekurzívne volá funkciu PrefixSpan() pre menšie podmnožiny
 - vstupom je databáza sekvencií a minSupport
 - výstupom je množina všetkých sekvenčných vzorov
 - je to rekurzívna metóda
 - prekonáva GSP
 - prehľadáva prefixové projekcie
 - doluje kompletnú množinu vzorov pričom negeneruje kandidátov
 - prefixová projekcie redukuje veľkosť databázy a vedie k účinnému spracovaniu

Meranie kvality asociačných pravidiel

Lift – pomer združenej pravdepodobnosti dvoch položiek a súčinu ich pravdepodobností Conviction – podiel očakávanej frekvencie, že sa A vyskytuje bez B

Vyhodnocovanie metód dolovania znalostí

- vyhodnocovacie schémy
 - o ako čo najlepšie využiť dáta pri ich rozdeľovaní do trénovacej a testovacej množiny
 - metódy
 - hold-out
 - rozdelí dáta na 2/3 trénovacia množina, 1/3 testovacia množina
 - testovacia množina nemusí byť reprezentatívna
 - stratifikácia náhodný výber tak, aby každá trieda bola približne rovnako zastúpená v trénovacej aj testovacej množine
 - krížová validácia
 - rozdelenie množiny na n častí
 - n-krát opakovať trénovanie a testovanie každá časť je použitá ako testovacia práve raz, ostatné tvoria trénovaciu množinu
 - obyčajne sa n=10
 - error rate priemer zo všetkých behov + štandardná odchýlka
 - leave one out metóda krížovej validácie
 - o trénovacia množina obsahuje n-1 inštancií
 - o proces sa opakuje n-krát
 - výhody
 - trénovacia množina je najväčšia možná
 - proces netreba opakovať
 - nevýhody

- rozdelenie nemôže byť stratifikované
- časovo náročné
- bootstrap
 - výber s opakovaním
 - dáta sa rozdelia do n častí
 - trénovacia množina sa vytvorí tak, že sa n-krát vyberie náhodne časť dát, tieto časti sa môžu opakovať
 - časti, ktoré neboli vybrané do trénovacej množiny, sa dajú do testovacej množiny
 - 0.632 bootstrap znamená, že 63.2 % dát je v trénovacej množine

Porovnanie metód na dolovanie znalostí

- krížová validácia
- t-test
- minimal description length
- informačné kritériá
 - o merajú, ako dobre štatistický model opisuje dáta
 - o založené na koncepte entrópie
 - o odmeňuje model za dobré výsledky
 - o penalizuje model za množstvo parametrov (pomáha proti preučeniu)
 - používajú sa pri výbere modelov
 - typy informačných kritérií
 - Akaike information criterion
 - použiteľné, ak log-likelihood alebo štvorec chyby sú použité na odhadovanie chyby
 - penalizuje modely s veľkým počtom parametrov
 - predstavuje balans medzi presnosťou a komplexitou modelu
 - čím menšia hodnota, tým lepší model
 - Bayesian information criterion
 - aplikovateľné pre modely maximalizujúce vierohodnosť
 - penalizuje modely s veľkým počtom parametrov
 - je to kritérium pre výber parametrického modelu s rôznym počtom parametrov
 - predpokladá, že rozdelenie dát je v exponenciálnej rovine

Vyhodnocovanie modelov predikujúcich pravdepodobnosti

- sensitivity: pomer chorých ľudí, ktorí majú pozitívny výsledok testu (tp)
- specificity: pomer zdravých ľudí, ktorí majú negatívny výsledok testu (1 fp)
- ROC krivka
 - charakterizuje výkon binárneho klasifikačného systému. Je to 2D graf, ktorého osi sú FPR a TPR (false/true positive rate). V prípade, ak by ROC graf mal tvar x = y binárny klasifikátor by vôbec nefungoval (lepšie povedane by sa nelíšil od náhodného klasifikátora). Čím je krivka viacej natiahnutá smerom k ľavému hornému rohu, tým je

- výkon binárneho klasifikátora lepší. Oplatí sa spomenúť aj AUC (area under curve) čím je táto plocha pod krivkou väčšia, tým je klasifikačný model kvalitnejší.
- o bod na krivke vyjadruje pomer medzi false pozitive rate a true positive rate

Lift chart

vyjadruje ako dobre predikčný systém pracuje na zvolenej množine dát - napríklad ak
je našim cieľom nájsť tých, ktorých bude zaujímať reklamná kampaň, tak aké
percento pokrytia pozitívnych hodnôt bude vzhľadom na veľkosť vstupných dát.