PROBABILISTIC REASONING

Acting under uncertainty

Agents

 In artificial intelligence, an agent is a computer program or system that is designed to perceive its environment, make decisions and take actions

Uncertainty

AUTONOMOUS CARS
- NEW ROUTE

VACUUM CLEANER – NEW ENVIRONMENT

Belief states

States + Action [Eg : puncture → A1, break down → A2]

Draw back:

- More belief state
- Contingency plan grow exponentially [same plan not applicable every where]
- No plan yield result → but action must be taken

Uncertainty example: Einstein to Tirunelveli [catch Nellai express]

01

A30 → start 30 mins before departure of train

02

A45 → start 40 mins before departure of train

03

A120 → start 2 hours before departure of train

04

A1440 → start 24 hours before departure of train

Uncertainity

Traffic jam

Bad road condition

Break down

Train cancel

Rational decision

Selecting an option from the actions rationally

Agent choosing action depends on the situation

Like going to: excursion, interview

No guarantee for success

Agents: Maximize performance measure

On time

Safe

comfortable

Uncertainty example

- Toothache → cavity
- Toothache → cavity or gum problem or broken tooth etc..

Not Exhaustive

Change the order

- Cavity → toothache
- Cause → effect [Causal rule]

Fails

Laziness → impossible to list all antecedents or consequents

Theoretical ignorance \rightarrow no complete solution in books

Practical ignorance \rightarrow even if all rules are available but we may not have results for all test

Degree if belief (Possibility)

- Represented by probability
- Like A45 \rightarrow 0.97%
- A1440 \rightarrow 0.99%

Agent

1

Logical: True or false

2

Probabilistic: it knows the probabilistic value for the event [0-1]

3

Probabilistic values based on knowledge state

Utility theory

• Used to represent preferences [tour, interview etc]

Decision theory

Utility theory + probability theory

If we say the agent is Rational \rightarrow choose an action to yield maximum utility

A decision-theoretic agent that selects rational actions.

```
function DT-AGENT(percept) returns an action

persistent: belief_state, probabilistic beliefs about the current state of the world action, the agent's action
```

update belief_state based on action and percept
calculate outcome probabilities for actions,
given action descriptions and current belief_state
select action with highest expected utility
given probabilities of outcomes and utility information
return action

Probability

 All decisions taken by agents are based on probability

Throwing a dice

- Total possible outcomes {1,2,3,4,5,6}
- Event → {5} specific happening or favorable outcome
- Probability of getting 3 → 1 time three is present out of 6 sample space so ... (1/6)
- No of elements in favorable/ total number of elements
- $P(n>3) \rightarrow 3/6 = 1/2$

Throwing a dice

- Total possible outcomes {1,2,3,4,5,6}
- Event → {5} specific happening or favorable outcome
- Probability of getting 3 → 1 time three is present out of 6 sample space so ... (1/6)
- No of elements in favorable/ total number of elements
- $P(n>3) \rightarrow 3/6 = \frac{1}{2}$
- P(3) OR P(4) \rightarrow 1/6+1/6 = 2/6 = 1/3

Throwing Two dice

- Total possible outcomes
- D1 {1,2,3,4,5,6}
- D2 {1,2,3,4,5,6}
- $P(sum = 12) \rightarrow 1/36$
- $P(sum>10) \rightarrow 3/36 = 1/12$

	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

Theorems of probability

- Probability values: [0,1]
- Sum of all probabilities

head =
$$\frac{1}{2}$$
 tail = $\frac{1}{2}$

Types of probability

- Unconditional probability without caring about other events (no information about other events)
- Conditional probability Dice1 → 6 Dice → ? [getting sum 11]
- E1 i know I don't have E2 \rightarrow P(E2/E1) \rightarrow P(E2|E1) = N(E2∩E1)/N(E1)

$$P(A|B) = N(A \cap B)/N(B)$$

Or

$$P(B|A) = N(A \cap B)/N(A)$$

Types of probability P(a|b) = P(a / b)/P(b)

Conditional probability – Dice1 \rightarrow 6 Dice \rightarrow ? [getting sum 11]

$$P(E2|E1) = P(E2 \cap E1)/P(E1)$$

- $P(E1) \rightarrow dice 1 \text{ must be } 6 \rightarrow (1/6)$
- P(E2 n E1) → 1/36
- $\bullet = (1/36) / (1/6)$
- = 1/6

	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5.5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

Product rule

• $P(a \land b) = P(a \mid b) P(b)$

Random Variables

$$P(Weather = sunny) = 0.6$$

 $P(Weather = rain) = 0.1$
 $P(Weather = cloudy) = 0.29$
 $P(Weather = snow) = 0.01$,

but as an abbreviation we will allow

$$P(Weather) = (0.6, 0.1, 0.29, 0.01)$$
,

probabilities of *all* the possible values of a random variable.

Random variables domain

- Domain → range of values
- Eg: p(Temp) 28 to 40 degree Celsius

Continuous variables domain

- Values keeps on changing. Eg: temperature at a place
- temperature at noon is distributed uniformly between 18 & 26
- This is called probability density function

$$P(NoonTemp = x) = Uniform_{[18C,26C]}(x)$$

$$P(NoonTemp = x) = Uniform_{[18C,26C]}(x) = \begin{cases} \frac{1}{8C} \text{ if } 18C \le x \le 26C \\ 0 \text{ otherwise} \end{cases}$$

Random variables domain

- The random variable domain refers to the set of all possible outcomes of a random experiment or process, regardless of whether the variable is continuous or discrete.
- Domain → range of values
- Eg: p(Temp) 28 to 40 degree Celsius

A joint probability distribution describes the probabilities of all possible combinations of outcomes for two or more random variables.

It provides a complete picture of the relationship between multiple variables in a probabilistic setting.

Denoted as P(X=x,Y=y)P(X=x,Y=y) or P(x,y)P(x,y), where X and Y are the random variables, and x and y are specific values of those variables.

- Cavity: true, false
- Weather: sunny, rain, cloudy, snow

- $P(a | b) = P(a \land b) / P(b)$
- $P(a \land b) = P(a \mid b) P(b)$
- P(weather and cavity) = P(weather given cavity) and p(cavity)

```
P(W = sunny \land C = true) = P(W = sunny | C = true) P(C = true)
P(W = rain \land C = true) = P(W = rain | C = true) P(C = true)
P(W = cloudy \land C = true) = P(W = cloudy | C = true) P(C = true)
P(W = snow \land C = true) = P(W = snow | C = true) P(C = true)
P(W = sunny \land C = false) = P(W = sunny | C = false) P(C = false)
P(W = rain \land C = false) = P(W = rain | C = false) P(C = false)
P(W = cloudy \land C = false) = P(W = cloudy | C = false) P(C = false)
P(W = snow \land C = false) = P(W = snow | C = false) P(C = false).
```

- $P(a | b) = P(a \land b) / P(b)$
- $P(a \land b) = P(a \mid b) P(b)$
- P(weather and cavity) = P(weather given cavity) and p(cavity)
- Cavity, weather then 2x4 = 8 possible worlds
- Cavity, Toothache, and Weather, then there are 2 x 2 x 4 = 16 possible worlds

- $P(a | b) = P(a \land b) / P(b)$
- $P(a \land b) = P(a \mid b) P(b)$
- P(weather and cavity) = P(weather given cavity) and p(cavity)
- Cavity, weather then 2x4 = 8 possible worlds
- Cavity, Toothache, and Weather, then there are 2 x 2 x 4 = 16 possible worlds

Axioms

- Probability values [0,1]
- $\bullet \quad \sum_{i=0}^{n} p(A_i) = 1$
- komogorov's axioms
- Inclusion exclusion principle: P (a ∨ b) = P (a) + P (b) − P (a ∧ b).
- $P(\neg A)=1-P(A)$

Eg : if the probability of raining tomorrow (event A) is 0.3, then the probability of not raining tomorrow (\neg A) would be 1–0.3=0.71–0.3=0.7.

Inference using full joint distribution

- Computation of posterior probability
- Cavity = t or f, catch = t or f, tooth ache = t or f. so 2x2x2 = 8

	toot	hache	$\neg toothache$		
	catch	$\neg catch$	catch	$\neg catch$	
cavity	0.108	0.012	0.072	0.008	
$\neg cavity$	0.016	0.064	0.144	0.576	

A full joint distribution for the *Toothache*, *Cavity*, *Catch* world.

	toothache		$\neg toothache$			
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		
	A full joint distribution for the Toothache, Cavity, Catch world.					

- $P(\neg catch) = 0.012 + 0.064 + 0.008 + 0.576$
- P(cavity) = 0.108 + 0.012 + 0.072 + 0.008
- P(catch)= ?

	toothache		$\neg toothache$		
	$catch$ $\neg catch$		catch	$\neg catch$	
cavity	0.108	0.012	0.072	0.008	
$\neg cavity$	0.016	0.064	0.144	0.576	
A full joint distribution for the Toothache, Cavity, Catch world.					

• P(cavity) = 0.108 + 0.012 + 0.072 + 0.008

	toothache		$\neg toothache$		
	$catch$ $\neg catch$		catch	$\neg catch$	
cavity	0.108	0.012	0.072	0.008	
$\neg cavity$	0.016	0.064	0.144	0.576	
A full joint distribution for the Toothache, Cavity, Catch world.					

- $P(\neg catch) = 0.012 + 0.064 + 0.008 + 0.576$
- P(catch)= ?

	toothache		$\neg toothache$		
	$catch$ $\neg catch$		catch	$\neg catch$	
cavity	0.108	0.012	0.072	0.008	
$\neg cavity$	0.016	0.064	0.144	0.576	
A full joint distribution for the Toothache, Cavity, Catch world.					

- P(catch \lor tooth ache) = 0.108 + 0.016 + 0.072+ 0.144 + $\frac{0.108}{0.016}$ + 0.012 + 0.064
- so we have learned un conditional probability

	toothache		$\neg toothache$			
	$catch$ $\neg catch$		catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		
	A full joint distribution for the Toothache, Cavity, Catch world.					

P(cavity | tooth ache) = ? formula

	toot	hache	¬tooti	hache		
	catch	$\neg catch$	catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		
	A full joint distribution for the Toothache, Cavity, Catch world.					

- P(cavity | tooth ache) = p(cavity ∧ tooth ache) / p(tooth ache)
- = (0.108+0.012) / (0.108 + 0.016 + 0.012 + 0.064)
- $P(\neg Cavity \mid tooth ache) = p(\neg Cavity tooth \land ache) / p(tooth ache)$

	toothache		$\neg toothache$			
	$catch$ $\neg catch$		catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		
	A full joint distribution for the Toothache, Cavity, Catch world.					

P(¬ Cavity | tooth ache) = p(¬ Cavity tooth ∧ ache) / p(tooth ache)

• (0.016 + 0.064) / (0.108 + 0.016 + 0.012 + 0.064)

	toothache		$\neg toothache$			
	$catch$ $\neg catch$		catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		
	A full joint distribution for the Toothache, Cavity, Catch world.					

- P(cavity | tooth ache ∨ catch) = P(cavity ∧ (tooth ache ∨ catch)) /
 P(tooth ache ∨ catch)
- = 0.108 + 0.012 + 0.072 / (0.108 + 0.012 + 0.016 + 0.064 + 0.072 + 0.144)

Marginal probability

	toothache		$\neg toothache$			
	$catch$ $\neg catch$		catch	$\neg catch$		
cavity	0.108	0.012	0.072	0.008		
$\neg cavity$	0.016	0.064	0.144	0.576		
	A full joint distribution for the Toothache, Cavity, Catch world.					

- P (cavity) = 0.108 + 0.012 + 0.072 + 0.008
- adding the entries in the first row gives the unconditional or marginal probability

conditioning

	toothache		$\neg toothache$	
	catch	$\neg catch$	catch ¬catch	
cavity	0.108	0.012	0.072	0.008
$\neg cavity$	0.016	0.064	0.144	0.576

A full joint distribution for the Toothache, Cavity, Catch world.

•
$$P(Y) = \sum P(Y \mid z) P(z)$$

Independence

Probability of occurrence of one event doesn't affect other

- $P(a \land b) = P(a \mid b) P(b) \text{ and } P(a \land b) = P(b \mid a) P(a)$
- P(b | a) = P(a | b) P(b) / P(a)
- P(Y | X) = P(X | Y) P(Y) / P(X)
- P (effect | cause) quantifies the relationship in the causal direction
- P (cause | effect) describes the diagnostic direction

- P (cause | effect) = P (effect | cause) P (cause) / P (effect)
- P(dengue | fever ∧ cold) = ?
- = P (fever | dengue) P(dengue) / P (fever) + P (cold | dengue)
 P(dengue) / P (cold)

- For example, a doctor knows that the disease meningitis causes the patient to have a stiff neck, say, 70% of the time.
- The doctor also knows some unconditional facts: the prior probability that a patient has meningitis is 1/50,000, and the prior probability that any patient has a stiff neck is 1%.
- Letting s be the proposition that the patient has a stiff neck and m be the proposition that the patient has meningitis,

- $P(s \mid m) = 0.7$
- P(m) = 1/50000
- P(m | s) = P(s | m) P(m) / P(s)
- = $(0.7 \times 1/50000) / 0.01$
- $\bullet = 0.0014$.
- That is, we expect less than 1 in 700 patients with a stiff neck to have meningitis

- instead computing a posterior probability for each value of the query variable (here, m and ¬m) and then normalizing the results.
 The same process can be applied when using Bayes' rule
- Normalised form : $P(M \mid s) = \alpha (P(s \mid m)P(m), P(s \mid \neg m)P(\neg m))$
- The general form of Bayes' rule with normalization is

$$P(Y \mid X) = \alpha P(X \mid Y)P(Y)$$

- How?
- $P(m|s) = P(s|m) P(m) / P(s) \rightarrow \alpha P(s|m) P(m)$ [meningtis = true]
- $P(\neg m|s) = P(s|\neg m) P(\neg m) / P(s) \rightarrow \alpha P(s|\neg m) P(\neg m)$ [meningtis = false]

- If there is a sudden epidemic of meningitis, the unconditional probability of meningitis, P (m), will go up
- The doctor who derived the diagnostic probability P (m | s) directly from statistical observation of patients before the epidemic will have no idea how to update the value
- but the doctor who computes P (m | s) from the other three values will see that P (m | s) should go up proportionately with P (m).
- The causal information P (s | m) is unaffected by the epidemic, because it simply reflects the way meningitis works

Combining evidence

- how we combine multiple evidence?
- P(cavity | tooth ache, catch) = P(toothache|cavity) P(cavity)/
 P(tooth ache) + P(catch|cavity) P(cavity) / P(catch)

Conditional Independence

- conditional independence of two variables X and Y, given a third variable Z, is
- P(X, Y | Z) = P(X | Z) P(Y | Z).
- P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity).

Conditional Independence

- P(Toothache, Catch, Cavity) = P(Toothache, Catch | Cavity)
 P(Cavity)
- = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

Naïve bayes model

- The full joint distribution can be written as
- P(Cause, Effect1, . . . , Effect n) = P(Cause) \prod_i P(Effect_i | Cause)
- Naïve: occurrence of a certain feature is independent of other feature
- Fruit: color, shape, taste, red, spherical, and sweet fruit is recognized as apple [every feature are independent to identify apple]
- Bayes: depends on Bayes theorem

Naïve bayes model

Naive Bayes....

...Clearly Explained!!!