Supervised Learning:

Regression on

UK Used Car Data Set

NARIMAN PASHAYEV

#### Main Objectives

- ► The main objective of this analysis is to predict price(£) of used Ford cars using a Linear Regression and different regularization regressions.
- ► This analysis attempts to try both train-test-split and cross-validation to have an overview of how these two methods can lead to different decisions in terms of model selection.
- Data Source: Ford Data set from <u>UK used car data set</u>

#### About the Data

- The data set used in this analysis is a part of 100,000 UK Used Car Data Set published on Kaggle in July 2020 by a member (Aditya).
- The author scraped the data from 100,000 listings, which have been separated into files corresponding to each car manufacturer
- The cleaned data set contains information of price, transmission, mileage, fuel type, road tax, miles per gallon (mpg), and engine size.
- Duplicate listings removed and cleaned the columns
- The cleaned data were then separated into .csv files corresponding with each car manufacturer.
- The Ford data set was selected for this analysis. This data set has 17,965 records and 9 variables. During the analysis, some duplicates were detected and removed, and also there was a row which car year was 2060, so this row was removed as well: remaining 17,810 records.

| Variable Name | Туре    | Description        |
|---------------|---------|--------------------|
| Model         | String  | Model of car       |
| Year          | integer | Manufacture year   |
| Price         | Integer | Selling price      |
| Transmission  | String  | Transmission type  |
| Mileage       | Integer | Car mileage        |
| Fuel type     | Integer | Fuel type          |
| Tax           | Integer | Current tax        |
| MPG           | Float   | Miles per galloon  |
| Engine Size   | float   | Size of car engine |

|       | model  | year | price | transmission | mileage | fuelType | tax | mpg  | engine Size |
|-------|--------|------|-------|--------------|---------|----------|-----|------|-------------|
| 0     | Fiesta | 2017 | 12000 | Automatic    | 15944   | Petrol   | 150 | 57.7 | 1.0         |
| 1     | Focus  | 2018 | 14000 | Manual       | 9083    | Petrol   | 150 | 57.7 | 1.0         |
| 2     | Focus  | 2017 | 13000 | Manual       | 12456   | Petrol   | 150 | 57.7 | 1.0         |
| 3     | Fiesta | 2019 | 17500 | Manual       | 10460   | Petrol   | 145 | 40.3 | 1.5         |
| 4     | Fiesta | 2019 | 16500 | Automatic    | 1482    | Petrol   | 145 | 48.7 | 1.0         |
|       |        |      |       |              |         |          |     |      |             |
| 17960 | Fiesta | 2016 | 7999  | Manual       | 31348   | Petrol   | 125 | 54.3 | 1.2         |
| 17961 | B-MAX  | 2017 | 8999  | Manual       | 16700   | Petrol   | 150 | 47.1 | 1.4         |
| 17962 | B-MAX  | 2014 | 7499  | Manual       | 40700   | Petrol   | 30  | 57.7 | 1.0         |
| 17963 | Focus  | 2015 | 9999  | Manual       | 7010    | Diesel   | 20  | 67.3 | 1.6         |
| 17964 | KA     | 2018 | 8299  | Manual       | 5007    | Petrol   | 145 | 57.7 | 1.2         |

#### Data Exploration

- After removing the duplicates and 1 non-realistic row (year =2060),
   Exploratory Data Analysis was carried out on the data set
- Total 17810 rows left after removing
- All of the 9 columns: 4 columns are integers, 3 are string and only 2 columns are float.
- ► There are 23 unique models, 3 unique transmission types and 5 fuel types in the set

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17810 entries, 0 to 17809
Data columns (total 9 columns):
     Column
     model
                   17810 non-null object
     price
                   17810 non-null int64
     transmission 17810 non-null
                                  object
     mileage
                                  int64
     fuelType
                                  object
                                  float64
     engineSize
                  17810 non-null float64
                   17810 non-null int64
dtypes: float64(2), int64(4), object(3)
memory usage: 1.2+ MB
```

```
data.dtypes.value_counts()
int64   4
object   3
float64   2
dtype: int64
```

```
data_object=data.columns[data.dtypes==object].to_list()
data[data_object].nunique()

model 23
transmission 3
fuelType 5
dtype: int64
```

## Data Exploration

- ► Then basic statistics obtained of the both categorical and numerical data
- ► Among the all of the model types, Fiesta is the most sold one and total 6508 Fiestas sold
- Manual transmission is the most preferred transmission type and total 15382 cars sold with manual transmission
- ▶ Out of the 17810 cars, 12079 are using petrol as a fuel type
- Also in this data set, year column is replaced with Age column

| : [ | data.describe() |              |              |               |              |              |              |
|-----|-----------------|--------------|--------------|---------------|--------------|--------------|--------------|
| :   |                 | year         | price        | mileage       | tax          | mpg          | engine Size  |
|     | count           | 17810.000000 | 17810.000000 | 17810.000000  | 17810.000000 | 17810.000000 | 17810.000000 |
|     | mean            | 2016.860079  | 12270.103481 | 23380.413532  | 113.314992   | 57.909556    | 1.350640     |
|     | std             | 2.026487     | 4736.260216  | 19418.185474  | 62.030508    | 10.132632    | 0.432597     |
|     | min             | 1996.000000  | 495.000000   | 1.000000      | 0.000000     | 20.800000    | 0.000000     |
|     | 25%             | 2016.000000  | 8999.000000  | 10000.000000  | 30.000000    | 52.300000    | 1.000000     |
|     | 50%             | 2017.000000  | 11289.500000 | 18277.000000  | 145.000000   | 58.900000    | 1.200000     |
|     | 75%             | 2018.000000  | 15295.000000 | 31095.250000  | 145.000000   | 65.700000    | 1.500000     |
|     | max             | 2020.000000  | 54995.000000 | 177644.000000 | 580.000000   | 201.800000   | 5.000000     |

| : | data.describe(include=[object]) |        |        |        |  |  |  |  |
|---|---------------------------------|--------|--------|--------|--|--|--|--|
| : | model transmission fuelType     |        |        |        |  |  |  |  |
|   | count                           | 17810  | 17810  | 17810  |  |  |  |  |
|   | unique                          | 23     | 3      | 5      |  |  |  |  |
|   | top                             | Fiesta | Manual | Petrol |  |  |  |  |
|   | freq                            | 6508   | 15382  | 12079  |  |  |  |  |

## Data Exploration-Determining Skewed features

- ► Data split into train (70%) and test (30%) sets
- Skew analysis done on numerical values and it seems there is some skewness in the dataset
- ▶ Skew limit>0.75
- ▶ SQRT transformation applied on the both train and test dataset in order to eliminate the skewness, but the target value (price) kept unchanged



|   |             | Train_Skew |
|---|-------------|------------|
|   | age         | 1.861308   |
|   | mileage     | 1.823722   |
| • | engine Size | 1.806635   |
|   | price       | 1.143463   |
|   |             |            |

|             | Test_Skew |
|-------------|-----------|
| engine Size | 2.102190  |
| age         | 1.884772  |
| mileage     | 1.843429  |
| price       | 0.984616  |
|             |           |

#### Histogram after transformation



|             | Train_Skew |
|-------------|------------|
| price       | 1.143463   |
| mpg         | 0.716861   |
| mileage     | 0.477056   |
| age         | 0.319815   |
| engine Size | 0.233153   |
| tax         | -0.594362  |
|             |            |

|             | Test_Skew |
|-------------|-----------|
| price       | 0.984616  |
| mileage     | 0.486235  |
| mpg         | 0.345026  |
| age         | 0.320344  |
| engine Size | 0.273678  |
| tax         | -0.482870 |
|             |           |

## Data Exploration- Pair plot of the features

- As a next step, a pair plot was created of the SQRT transformed values to have an overview of the features and the target
- This plot shows that:
  - ▶ age has a linear relationship with price. It looks quite like polynomial.
  - mileage also has linear relationship with price.
  - age also has a linear relationship with mileage (the older the more miles). This is multicollinearity.



## Data Exploration- Determining Normality of Target Variable

- Making our target variable normally distributed often will lead to better results
- ▶ If our target is not normally distributed, we can apply a transformation to it (log, square root, boxcox) and then fit our regression to predict the transformed values.
- How can we tell if our target is normally distributed? There are two ways:
  - Visually
  - Using a statistical test
- pvalue=0. so normal distribution. no need any transformation on target variable



```
normaltest(Y.values)

NormaltestResult(statistic=3788.026421979386, pvalue=0.0)
```

## Data Exploration- Box Plot

- Box plot of 3 categorical variables was created
- On average, car prices vary among models, transmission and fuel types
- Hybrid cars are most expensive ones compared to other fuel type cars
- On average, manual transmission cars are cheaper than automatic and semi-auto cars





#### Feature Engineering-Encoding and Scaling

- ▶ Feature engineering is applied in order to create model variations.
- Each model is evaluated based on its root mean square error and R2\_score
- As mentioned in above slides, numerical features are transformed using SQRT transformation that have a skew value>0.75
- Firstly, plain Linear regression without any polynomial feature engineering was evaluated on 4 model variations:
  - Linear regsession without one-hot encoding and scaling
  - ▶ Linear regression without one-hot encoding, but with scaled version
  - ▶ Linear regression with one-hot encoding, but without scaling
  - ▶ Linear regression with one-hot encoding and with scaling version

| 1. | Model                  | num_features | RMSE        | R2_Score |
|----|------------------------|--------------|-------------|----------|
| 0  | LR_ohc no scaling      | 33           | 1663.270151 | 0.873157 |
| 0  | LR_ohc scaling         | 33           | 1663.270151 | 0.873157 |
| 0  | LR_no_ohc no scaling   | 5            | 2390.032955 | 0.738092 |
| 0  | LR_no_ohc with scaling | 5            | 2390.032955 | 0.738092 |
|    |                        |              |             |          |

- ▶ It's seen that one-hot encoding clearly increases R2 score and decreases error values. From now, I will be using the encoded features for future analysis and modelling
- But scaling on plain vanilla linear regression has no effect. But it clearly effects ridge and Lasso regression results, which we will see later

## Feature Engineering-Polynomial Features

- Polynomial feature engineering carried out on the encoded version of the variables
- Here I created polynomialfeatures on the floats only, excluding the one hot encoded columns, and then combined the new polynomial features with one hot encoded columns to create new dataframe
- After that, I applied Vanilla Linear Regression on this new dataframe

| Number of features | RMSE        | R2_Score  | PF Degree |  |
|--------------------|-------------|-----------|-----------|--|
| 33.0               | 1783.886599 | 0.830417  | 1.0       |  |
| 48.0               | 1546.725253 | 0.879034  | 2.0       |  |
| 83.0               | 1604.875571 | 0.872347  | 3.0       |  |
| 153.0              | 2340.364944 | 0.715962  | 4.0       |  |
| 279.0              | 7149.831697 | 0.024112  | 5.0       |  |
| 489.0              | 5672.504103 | -0.153786 | 6.0       |  |

- ▶ It seems polynomial 'degree=2' gives best RMSE=1546.72 and R2\_score=0.879034.
- ▶ It is better than previous LR\_ohc scaling model, which gave RMSE=1663.27 and R2=0.873

# Cross-validation and Regularization-Defining Kfold splits

- So far, following pipeline created on the features:
  - One-hot encoding SRTQ transformation polynomial features
- Data split carried out using KFold to define the best split number by using GridSearchCV



```
[0.8458331023702216,
0.8970081003193395,
0.8516323804828236,
0.902309156796415,
0.9033313951176059,
0.9051166548580392,
0.9047236676900003,
0.9034623266185913]
```

K=5 splits seems the optimum one. So, from now, I will be using k=5 in all regressions

#### Cross-validation and Regularization

- ► GridSearchCV cross-validation with k=5 folds used to fit the linear regression model on full data set, and then attempt to tune the hyperparameter to find a proper combination of alpha and polynomial degree for regularization
- Iterated over different polynomial degree (1, 2, 3) and alphas.
- ▶ Regularized models include Lasso, Ridge, and Elastic Net
- After finding the optimized hyperparameters with GridSearchCV, then same pipeline with tuned hyperparameters used in order to predict the results
- ► Each model is evaluated based on its average root mean squared error and R2\_score
- ▶ All 4 models prediction results (RMSE and R2\_score) seems pretty close to each other
- ▶ But, Vanilla Linear Regression is a little bit better than the others

| Model                      | RMSE        | R2_Score |
|----------------------------|-------------|----------|
| Vanilla LinearRegresson    | 1346.431386 | 0.919179 |
| Lasso LinearRegresson      | 1357.517804 | 0.917843 |
| Ridge LinearRegresson      | 1355.975876 | 0.918030 |
| ElasticNet LinearRegresson | 1358.787571 | 0.917689 |

#### Cross-validation and Regularization-Prediction on Unseen Data

- ► Four models fit on the train set and then predicted on the unseen test set and calculated the R2 score for each model.
  - ► Linear regression with 2nd degree polynomial features
  - ► Lasso regression with 2nd degree polynomial features and alpha = 0.85
  - ► Ridge regression with 2nd degree polynomial features and alpha = 12.32
  - ► Elastic Net regression with 2nd degree polynomial features and alpha = 0.01 and I1\_ratio=0.9
- ▶ Ridge Regression has the best prediction on the test set. All these models can explain the target around 90% 91%

| Model                   | RMSE        | R2_Score |
|-------------------------|-------------|----------|
| Elastic Net Regresson   | 1374.348015 | 0.913397 |
| Ridge LinearRegresson   | 1371.846729 | 0.913712 |
| Lasso LinearRegresson   | 1392.551583 | 0.911087 |
| Vanilla LinearRegresson | 1413.233066 | 0.908427 |

# Scatter plots (true vs predicted price) and R2 scores on the unseen data.





## Feature Importance

- ► Ridge regression eliminated totally 322 rows
- The main drivers of this model are:
  - Engine Size
  - Mpg
  - Age or model year
  - tax





#### Conclusion

- ▶ It's seen that one-hot encoding clearly increases R2 score and decreases error values
- But scaling on plain vanilla linear regression has no effect. But it clearly effects ridge and Lasso regression results
- ► Polynomial feature engineering with degree=2 works best for this data set
- ► All 4 models prediction results (RMSE and R2\_score) seems pretty close to each other
- ▶ But, Ridge Regression performs a little bit better than the others
- ▶ All these models can explain the target around 90% 91%
- ▶ Engine size, mpg, age and tax are the main drivers of the model
- ▶ In this work, only Linear Regression analysis was used. It would be better to try other methods as well like, classification methods
- My Jupyter Notebook can be found here:

https://github.com/NARIMANPASHA/Supervised\_Learning-Regression-on-UK-USed-Car-Data-Set.git