4. Funzioni monotòne

Definizione

Una funzione f definita in E si dice

- **crescente** (**decrescente**) se per ogni coppia di punti x_1 e x_2 \in E , con $x_1 < x_2$ risulta

$$f(x_1) < f(x_2)$$
 $(f(x_1) > f(x_2))$

- **non decrescente** (**non crescente**) se per ogni coppia di punti x_1 e $x_2 \in E$, con $x_1 < x_2$ risulta

$$f(x_1) \le f(x_2)$$
 $(f(x_1) \ge f(x_2))$

Le funzioni non decrescenti o non crescenti si dicono **monotòne**, in particolare quelle crescenti o decrescenti si dicono **monotòne in senso stretto**.

Esempi

a)
$$f(x) = \frac{2-x}{x+1}$$

La funzione è definita $\forall x \in E = \mathbb{R} - \{-1\}$. Consideriamo due punti qualunque

 x_1 e $x_2 \in E$ tali che $x_1 < x_2$ e risolviamo la disequazione

$$f(x_1) < f(x_2)$$
 cioè $\frac{2-x_1}{x_1+1} < \frac{2-x_2}{x_2+1}$

Svolgendo i calcoli si ha:

$$\frac{3(x_2 - x_1)}{(x_1 + 1)(x_2 + 1)} < 0$$

La disequazione non è verificata infatti sia nel caso in cui $x_1 < x_2 < -1$

sia nel caso in cui $-1 < x_1 < x_2$ il denominatore è positivo e il numeratore è positivo avendo supposto $x_1 < x_2$.

Pertanto è verificata la disequazione $f(x_1) > f(x_2)$ e quindi la funzione è decrescente sia per $x \in (-\infty; -1)$ sia per $x \in (-1; +\infty)$.

b)
$$f(x) = \log(2 - x)$$

La funzione è definita $\forall x \in E = (-\infty; 2)$. Siano due punti qualunque x_1 e $x_2 \in E$ tali che $x_1 < x_2 < 2$ e risolviamo la disequazione

$$f(x_1) < f(x_2)$$
 cioè $log(2 - x_1) < log(2 - x_2)$

Si ha:

 $0 < 2 - x_1 < 2 - x_2$ da cui $x_2 < x_1 < 2$ contro l'ipotesi.

Pertanto la funzione è decrescente nel dominio.

c) $f(x) = x^3 - 3$. La funzione è definita in $E = \mathbb{R}$ ed è crescente in \mathbb{R} , infatti presi due punti qualunque x_1 e $x_2 \in \mathbb{R}$:

$$\forall x_1 < x_2 \Longrightarrow x_1^3 < x_2^3 \Longrightarrow x_1^3 - 3 < x_2^3 - 3$$

d) $f(x)=\left(\frac{1}{2}\right)^{2x+2}$. La funzione è definita in $E=\mathbb{R}$ ed è decrescente in \mathbb{R} , infatti presi due punti qualunque x_1 e $x_2\in\mathbb{R}$

$$\forall x_1 < x_2 \Longrightarrow 2x_1 + 2 < 2x_2 + 2;$$

e poiché $\left(\frac{1}{2}\right)^x$ è decrescente

$$2x_1 + 2 < 2x_2 + 2 \Rightarrow \left(\frac{1}{2}\right)^{2x_1+2} > \left(\frac{1}{2}\right)^{2x_2+2}$$

e) $f(x) = e^{2x-3}$

La funzione è definita in $E=\mathbb{R}$. Consideriamo due punti qualunque x_1 e $x_2\in E$ tali che $x_1< x_2$, tenendo conto che e^x è una

funzione crescente:

$$x_1 < x_2 \implies 2x_1 < 2x_2 \implies 2x_1 - 3 < 2x_2 - 3 \implies e^{2x_1 - 3} < e^{2x_2 - 3}$$

La funzione data è quindi crescente in \mathbb{R} .

Esercizi

(gli esercizi con asterisco sono avviati)

Dopo aver determinato il dominio E delle seguenti funzioni, determinare se esse sono crescenti o decrescenti ed eventualmente stabilire gli intervalli in cui sono monotone

1)
$$f(x) = 5 - 2x$$

2)
$$f(x) = \frac{1}{x-1}$$

$$3)f(x) = \frac{x}{x-2}$$

$$* 4) f(x) = x^3 + x$$

$$5)f(x) = \sqrt{2x+3}$$

*6)
$$f(x) = \sqrt{x} + x$$

$$7)f(x) = \log(4x + 5)$$

$$8)f(x) = e^{x-3}$$

* 9)
$$f(x) = x^3 + e^x$$

$$10)f(x) = \frac{1}{x^3 + 8}$$

*11)
$$f(x) = \log_{\frac{1}{2}}(2x - 4)$$

$$12)f(x) = arctg(4x - 1)$$

Soluzioni

1. S. $E = \mathbb{R}$; decrescente; **2. S.** $E = \mathbb{R} - \{1\}$; decrescente per $x \in (-\infty; 1) \cup (1; +\infty)$;

3. S. $E = \mathbb{R} - \{2\}$; decrescente per $x \in (-\infty; 2) \cup (2; +\infty)$;

***4. S.** $E = \mathbb{R}$; crescente; (in \mathbb{R} , $\forall x_1 < x_2 \Rightarrow x_1^3 < x_2^3 \Rightarrow x_1^3 + x_1 < x_2^3 + x_2$; oppure somma di funzioni crescenti in \mathbb{R});

5. S. $E = [-\frac{3}{2}; +\infty)$; crescente;

*6. S. $E = [0; +\infty)$; crescente; (in \mathbb{R}^+ , $\forall \ 0 < x_1 < x_2 \Rightarrow \sqrt{x_1} < \sqrt{x_2} \Rightarrow \sqrt{x_1} + x_1 < \sqrt{x_2} + x_2$; oppure somma di funzioni crescenti in \mathbb{R}^+);

7.S. $E = \left(-\frac{5}{4}; +\infty\right)$; crescente; **8.S.** $E = \mathbb{R}$; crescente;

* 9. S: $E=\mathbb{R}$; crescente (somma di due funzioni crescenti in \mathbb{R})

10. S:*E* = \mathbb{R} − {−2}; decrescente per *x* ∈ (−∞; −2) ∪ (−2; +∞);

*11. S. $E = (2; +\infty)$; decrescente; ($\forall 2 < x_1 < x_2 \Rightarrow 2 x_1 - 4 < 2x_2 - 4$ e poiché la funzione $log_{\frac{1}{2}}x$ è decrescente si ha $log_{\frac{1}{2}}(2\ x_1-4)>log_{\frac{1}{2}}(2\ x_2-4)$);

12.S: $E = \mathbb{R}$; crescente