231

 $Q = mc\Delta T \ \, L$

(熱容量の式)

熱平衡に達したときの温度をx°Cとする。

銅球が出した熱量 Q_o は、

$$Q = mc\Delta T \ \, L$$

(熱容量の式)

$$m=100\times 10^{-3} kg$$
 , $c=9.2\times 10^{-2} cal/(g\cdot K)$

$$\Delta T = (100 - x) K$$

を代入して、

$$Q_o = 100 \times 10^{-3} \cdot 9.2 \times 10^{-2} \cdot (100 - x)$$

= $9.2 \times 10^{-3} \cdot (100 - x) \ cal$...(1)

水が吸収した熱量 Q_i は、

 $Q = mc\Delta T \ \, \text{LD}$

(熱容量の式)

$$m = 50 \times 10^{-3} kg$$
 , $c = 1.0 \ cal/(g \cdot K)$

$$\Delta T = (x - 10) K$$

を代入して、

$$Q_i = 50 \times 10^{-3} \cdot 1.0 \times (x - 10)$$

= 5.0 \times 10^{-2} \cdot (x - 10) cal

...(2)

...(3)

$$Q_o = Q_i$$
 なので、

①,②,③式より、

$$9.2 \times 10^{-3} \cdot (100 - x) = 5.0 \times 10^{-2} \cdot (x - 10)$$

$$\therefore x = 24^{\circ}C$$