Enhancing Fault Tolerance of Neural Networks for Security-Critical Applications

Manaar Alam¹, Arnab Bag¹, Debapriya Basu Roy¹, Dirmanto Jap², Jakub Breier³, Shivam Bhasin², and Debdeep Mukhopadhyay¹

¹Department of Computer Science and Engineering, IIT Kharagpur, ²Temasek Laboratories, NTU, Singapore, ³Underwriters Laboratories, Singapore

1. Introduction

- Cryptographic applications suffer from targeted faults from powerful adversaries.
- NNs exhibit "some degree" of robustness functioning almost correctly even after the faults in any of its parameters.
- $f = SBox(x \oplus k)$ is learned using NN and faults are injected in the parameters.

- We develop a highly fault tolerant cryptographic primitive like AES SBox using NN having higher degree of fault tolerance than the standard implementation.
- We implement the fault tolerant NN architecture in an FPGA with tailored implementation strategies.

2. Fault Model and Assumption

- Learning phase is fault-free. Faults can be injected during the classification phase.
- We consider *single location* fault model.
- An adversary can employ single-bit flip, multiple-bit flips or zero/random values.

6. Initial Results

Table 1: Post Place & Route Resource Utilisation for Artrix-7 FPGA for Different NNs

Design	#Slice	#LUT	$\# ext{Register}$	#DSP	#BRAM	Freq.	#Clock	Delay	
	(%)	(%)	(%)	(%)	(%)	(MHz)	Cycle	(us)	% Faults
8-8-256	127	324	199	33	5	151.95	1350	8.88	0.16
	(1.55)	(1.56)	(0.47)	(36.67)	(10)				
8-32-256	341	934	951	33	4	149.43	25576	171.15	0.04
	(4.18)	(4.49)	(2.29)	(36.67)	(8)				
8-64-256	427	978	1007	33	6	141.40	49352	349.01	2.7×10^{-3}
	(5.24)	(4.70)	(2.43)	(36.67)	(12)				
8-128-256	601	1442	1657	33	9	128.66	96910	753.18	1.2×10^{-5}
	(7.37)	(6.93)	(3.98)	(36.67)	(18)				1.2 × 10
LUT-based	24	80	17	0	0	259.80	1	3.85×10^{-3}	100
	(0.29)	(0.40)	(0.40)	(00)	(00)				
							•	•	

Figure 7: %Faults Tolerance vs. Overhead

7. Conclusion

- Proposed method is able to generate highly fault tolerant design of AES SBox (with key addition).
- Implementation overhead increases with the increase in fault tolerance.

3. Design Idea vs. Fault Tolerance

Figure 1: Effect of Selecting Precision on Fault Tolerance

Figure 2: Effect of Number of Neurons in Hidden Layer on Fault Tolerance

4. Conditions for Implementing Fully Fault-Tolerant Architecture

Figure 3: Effect of Fault at Different Locations

The constraints obtained for different weight parameters.

$$\delta < \begin{cases} y_c - y_{f_2}, & \text{if } c \neq f_2 \\ y_{f_2} - y_r, & \text{otherwise, for all } r \end{cases}$$

$$\delta < \pm \frac{y_c - y_r}{w_{f_1r}^{(2)} - w_{f_1c}^{(2)}}$$

$$\delta < \pm \frac{y_c - y_r}{w_{f_0 f_1}^{(1)} w_{f_1 r}^{(2)} - w_{f_0 f_1}^{(1)} w_{f_1 c}^{(2)}}$$

These constraints are used while training the NN.

Figure 5: Effect of weight parameters on fault for Modified NN

5. Implementation on FPGA

Figure 6: Top Level Architecture of the Hidden Layer and Output Layer