The Scientific Python Ecosystem

Jim Pivarski

Princeton University - DIANA-HEP

July 25, 2018

PYPL PopularitY of Programming Language

http://pypl.github.io/PYPL.html

PYPL PopularitY of Programming Language

http://pypl.github.io/PYPL.html

All of the deep learning libraries I could find either have a Python interface or are primarily/exclusively Python.

Python's Scientific Stack

Python's Scientific Stack

Python's Scientific Stack

Also stolen from that talk...

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Why Python is slow

▶ Virtual machine between Python bytecode and the physical machine.

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

- ▶ Virtual machine between Python bytecode and the physical machine.
- ▶ Type-checking during execution, *every time* in a tight for loop.

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

- ▶ Virtual machine between Python bytecode and the physical machine.
- ► Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

- ▶ Virtual machine between Python bytecode and the physical machine.
- ▶ Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).
- ▶ Global Interpreter Lock (GIL): parallel processing is not parallel.

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Why Python is slow

- ▶ Virtual machine between Python bytecode and the physical machine.
- ▶ Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).
- ▶ Global Interpreter Lock (GIL): parallel processing is not parallel.

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Why Python is slow

- ▶ Virtual machine between Python bytecode and the physical machine.
- ▶ Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).
- ► Global Interpreter Lock (GIL): parallel processing is not parallel.

Why Python is nevertheless good for science

▶ Python usually just <u>drives</u> compiled code (good C, C++, Fortran bindings).

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Why Python is slow

- ▶ Virtual machine between Python bytecode and the physical machine.
- ▶ Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).
- ▶ Global Interpreter Lock (GIL): parallel processing is not parallel.

- ▶ Python usually just <u>drives</u> compiled code (good C, C++, Fortran bindings).
- ▶ Many <u>standard</u> precompiled libraries, which also release the GIL.

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Why Python is slow

- Virtual machine between Python bytecode and the physical machine.
- ▶ Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).
- ▶ Global Interpreter Lock (GIL): parallel processing is not parallel.

- ▶ Python usually just <u>drives</u> compiled code (good C, C++, Fortran bindings).
- ▶ Many <u>standard</u> precompiled libraries, which also release the GIL.
- ► You start thinking in terms of "slow control" and "fast math."

Quibble: A language is neither fast nor slow. (But CPython is pretty slow.)

Why Python is slow

- ▶ Virtual machine between Python bytecode and the physical machine.
- ► Type-checking during execution, *every time* in a tight for loop.
- ▶ Data are bloated and distributed in memory (cache line efficiency, pointer chasing).
- ▶ Global Interpreter Lock (GIL): parallel processing is not parallel.

- ▶ Python usually just <u>drives</u> compiled code (good C, C++, Fortran bindings).
- ▶ Many <u>standard</u> precompiled libraries, which also release the GIL.
- ► You start thinking in terms of "slow control" and "fast math."
- ► Computational performance is not the same as user productivity!

Numpy was key to Python developing a scientific ecosystem

- 1994 Python 1.0 released.
- 1995 First array package: Numeric (a.k.a. Numerical, Numerical Python, NumPy).
- 2001 Diverse scientific codebases merged into SciPy.
- 2003 Matplotlib
 - Numeric was limited; numarray appeared as a competitor with more features (memory-mapped files, alignment, record arrays).
 - Two packages were incompatible; could not integrate numarray-based code into SciPy. Travis Oliphant merged the codebases as Numpy.
- 2008 Pandas
- 2010 Scikit-Learn
- 2011 AstroPy
 - 2012 Anaconda
 - 2014 Jupyter
 - 2015 Keras

Numpy was key to Python developing a scientific ecosystem

- 1994 Python 1.0 released.
- 1995 First array package: Numeric (a.k.a. Numerical, Numerical Python, NumPy).
- 2001 Diverse scientific codebases merged into SciPy.
- 2003 Matplotlib
- Numeric was limited; numarray appeared as a competitor with more features (memory-mapped files, alignment, record arrays).
- 2005 Two packages were incompatible; could not integrate numarray-based code into SciPy. Travis Oliphant merged the codebases as Numpy.
- 2008 Pandas
- 2010 Scikit-Learn
- 2011 AstroPy
- 2012 Anaconda
- 2014 Jupyter

2015 Keras

The scientific Python ecosystem could have failed before it started if the Numeric-numerray split hadn't been resolved!

The Numpythonic mindset

Although you can write Python for loops over Numpy arrays, you don't reap the benefit unless you express your calculation in Numpy ufuncs (universal functions).

 $\mathcal{O}(N)$ Python bytecode instructions, type-checks, interpreter locks.

 $\mathcal{O}(1)$ Python bytecode instructions, type-checks,

interpreter locks.

 $\mathcal{O}(N)$ statically typed, probably vectorized native bytecode operations on contiguous memory.

The Numpythonic mindset

Although you can write Python for loops over Numpy arrays, you don't reap the benefit unless you express your calculation in Numpy ufuncs (universal functions).

 $\mathcal{O}(N)$ Python bytecode instructions, type-checks, interpreter locks.

 $\mathcal{O}(1)$ Python bytecode instructions, type-checks, interpreter locks.

 $\mathcal{O}(N)$ statically typed, probably vectorized native bytecode operations on contiguous memory.

In other words, a Single (Python) Instruction on Multiple Data.

The Numpythonic mindset

Although you can write Python for loops over Numpy arrays, you don't reap the benefit unless you express your calculation in Numpy ufuncs (universal functions).

 $\mathcal{O}(N)$ Python bytecode instructions, type-checks, interpreter locks.

 $\mathcal{O}(1)$ Python bytecode instructions, type-checks, interpreter locks.

 $\mathcal{O}(N)$ statically typed, probably vectorized native bytecode operations on contiguous memory.

In other words, a Single (Python) Instruction on Multiple Data.

The same code reorganization that speeds up Python with Numpy would speed up C++ with CUDA or SIMD.

The Numpythonic mindset: Numpy API in CUDA

HIGH PERFORMANCE WITH CUDA

CuPy is an open-source matrix library accelerated with NVIDIA CUDA. It also uses CUDA-related libraries including cuBLAS, cuDNI cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

The Numpythonic mindset: Numpy API in C++

High-Performance-Computing

Switch to the notebook now or install packages.

```
# install Miniconda...
conda install pip
conda install numpy
conda install pandas
# optional...
conda install numba
conda install cython
conda install scipy
# if you have a GPU and CUDA...
conda install -c lukepfister pycuda
```