MGMT 59000-148 Advanced Database Management Group Project - Team 4

Navigating the Skies

Crafting a Data-Driven Entry Strategy for India's Aviation Sector

Submitted by

Akshita Sharma Aravind Teja Chikoti Pooja Udayanjali Kannuri Rahul Chowdary Kunku Sai Mona Duvvapu Sathwik Kanukuntla

Graduate students of

Purdue University

MS in Business Analytics & Information Management

February 2023

Table of Contents

1.Background	02
2.Introduction.	03
2.1 Objective	03
3.Project Question	03
4.Entity Relationship Diagram	04
5.Relational Data Model	05
6.Normalization	05
7.Case Scenarios and Deliverables	06
8.Conclusion	09
9.Appendix	10

1. Background

The Indian aviation industry stands as one of the most rapidly expanding markets globally, driven by factors such as economic growth, urbanization, and an increase in disposable income among the middle class. The proliferation of low-cost carriers, coupled with government initiatives like the UDAN scheme aimed at enhancing regional connectivity, has democratized air travel, making it accessible to a wider demographic. Nonetheless, the sector is marked by fierce competition, with established players and ambitious new entrants vying for their share of the skies.

In such a vibrant yet saturated market, a data-driven entry strategy is not just prudent but essential for any new airline. The success of an entrant in the Indian aviation sector is predicated not only on competitive pricing but also on a deep understanding of the market dynamics, traveller profiles, and journey patterns. The essence of this strategy lies in leveraging granular data to derive actionable insights that inform every aspect of the business model, from pricing and route planning to customer service and marketing.

Entering the Indian aviation market requires a new airline to navigate through intense competition and varied traveller profiles with a data-driven strategy that prioritizes demographic insights and dynamic pricing. Initially, the focus should be on underserved segments and routes, where the airline can establish itself against market challengers by offering competitive fares and superior service quality. Understanding the demographics and city characteristics is crucial; for example, city with more literacy rates demand higher frequency and flexibility, while city with low literacy might prioritize cost-efficiency deals. By leveraging advanced SQL analytics to dissect historical booking data and market trends, the airline can develop a pricing model that dynamically adapts to fluctuating demand and traveller behaviour, ensuring optimal occupancy and profitability. This holistic strategy, which blends competitive pricing with a deep understanding of customer segmentation and route viability, will pave the way for the airline to scale its operations and eventually compete with market leaders.

2. Introduction

Our consultancy objective is to devise a strategic entry price point for an emergent airline in the highly competitive Indian aviation sector. We aim to harness the power of data to inform market-aligned pricing strategies. This objective will be realized through the meticulous processing and analysis of comprehensive flight, itinerary, and airport data sourced from a premier Indian travel application (sourced from Kaggle), augmented by the demographic variables of the origin and destination locations. Our focus will be to navigate the competitive landscape by initially targeting market challengers such as Air Asia, Akasa Air, Alliance Air, and Go First, thereby securing a stable market position before scaling to take on the established market leaders.

2.1. Project Objectives:

The overarching goal of our project is to deliver a data-driven, multifaceted pricing framework and acute market insights that cater to a diverse array of traveller profiles and journey patterns. Our deliverables encompass:

- A competitive pricing strategy that is attuned to temporal fluctuations, geographic
 considerations, and demographic diversity. This strategy will inform not only the
 pricing of tickets but also ancillary revenue streams, ensuring a competitive edge.
- An analysis of potential routes and itineraries grounded in historical data, aiding
 operational and logistics planning. This insight will support the airline in crafting a
 flight schedule that aligns with market demand and optimizes resource allocation.
- A comprehensive ranking analysis of Indian airports, providing a regional perspective
 on market entry points. This will enable the airline to prioritize its market entries,
 focusing on regions with the highest potential for growth and profitability.

Through these deliverables, we aspire to equip our client with a data-backed foundation for decision-making, positioning them effectively for a successful launch and sustained growth within the Indian aviation industry.

3. Project Question

How can a new airline in the Indian aviation sector establish a competitive entry price point and market strategy using advanced SQL analytics to process flight, itinerary, and airport data, combined with demographic insights of travel origins and destinations, to effectively compete with market challengers and eventually position itself against market leaders?

4. Entity Relationship Diagram

Image 1: ERD

Conceptual modelling rationale:

The above Entity-Relationship Diagram (ERD) is a visual representation of the relationships between the **entities** as follows:

- 1. Airline
- 2. Travel Info
- 3. Airport
- 4. Place

Description:

- Airlines-Travel Info:
 - o An Airline can have many Flights taking off.
 - A Flight taking off on given date and time can be associated with single airline.
- Travel Info-Airport:
 - o A Flight can only take off from one airport on given date and time.
 - An Airport can be associated with multiple flights.
- Airport-Place:
 - An Airport can be associated with single Place.
 - o A Place can have multiple airports

5. Relational Data Model

The image presents a clear and concise representation of the relational schema, complete with referential integrity constraints and functional dependencies.

- This schema serves as a foundational blueprint for organizing and structuring the database, ensuring that data relationships are maintained with precision and accuracy.
- The Referential integrity constraints guarantee the consistency and reliability of data by enforcing rules that govern the relationships between tables, while functional dependencies provide valuable insights into how attributes within the schema relate to one another.

```
Airline (Airline, Flight_code)

Travel_Info (Date_of_Journey, Flight_code, Source_ID, Destination_ID, Total_stops, Departure_Time, Arrival_Time, Duration_in_mins, Business, Economy, First, Premium_Economy)

Airports (Airport_ID, Airport_name, Place_State, lata_code, GPS_code, Score, Type, Rank, Passengers_2022_23, Passengers_2021_22)

Place (City, State, Population_male, Population_female, Literates_male, Literates_female, Sex_ratio, Child_sex_ratio, Male_graduates, Female_graduates)
```

Image 2: Relational Schema

6. Normalization

Below is a snippet of the data on flights that was extracted from Kaggle.

Raw data

Date_of_journey	Journey_day	Airline	Flight_code	Class	Source	Departure	Total_stops	Arrival	Destination	Duration_in_hours	Days_left	Fare	Departure Time	Arrival Time	Duration
1/16/2023	Monday	SpiceJet	SG-8169	Economy	Delhi	After 6 PM	non-stop	After 6 PM	Mumbai	2.0833	1	5335	20:00	22:05	02h 05m
1/16/2023	Monday	Indigo	6E-2519	Economy	Delhi	After 6 PM	non-stop	Before 6 AM	Mumbai	2.3333	1	5899	23:00	01:20	02h 20m
1/16/2023	Monday	GO FIRST	G8-354	Economy	Delhi	After 6 PM	non-stop	Before 6 AM	Mumbai	2.1667	1	5801	22:30	00:40	02h 10m
1/16/2023	Monday	SpiceJet	SG-8709	Economy	Delhi	After 6 PM	non-stop	After 6 PM	Mumbai	2.0833	1	5794	18:50	20:55	02h 05m
1/16/2023	Monday	Air India	AI-805	Economy	Delhi	After 6 PM	non-stop	After 6 PM	Mumbai	2.1667	1	5955	20:00	22:10	02h 10m
1/16/2023	Monday	Air India	AI-605	Economy	Delhi	After 6 PM	non-stop	After 6 PM	Mumbai	2.25	1	5955	21:20	23:35	02h 15m
1/16/2023	Monday	Air India	AI-814	Economy	Delhi	After 6 PM	non-stop	Before 6 AM	Mumbai	2.25	1	5955	22:30	00:45	02h 15m
1/16/2023	Monday	GO FIRST	G8-330	Economy	Delhi	After 6 PM	non-stop	After 6 PM	Mumbai	2.25	1	5899	21:00	23:15	02h 15m
1/16/2023	Monday	SpiceJet	SG-2976	Economy	Delhi	After 6 PM	1-stop	6 AM - 12 PM	Mumbai	14.3333	1	5829	20:10	10:30	14h 20m
1/16/2023	Monday	GO FIRST	G8-346	Economy	Delhi	After 6 PM	non-stop	After 6 PM	Mumbai	2.0833	1	5899	20:00	22:05	02h 05m
1/16/2023	Monday	AirAsia	15-743	Economy	Delhi	Before 6 AM	1-stop	After 6 PM	Mumbai	14.6667	1	6640	04:55	19:35	14h 40m
1/16/2023	Monday	Indigo	6E-2208	Economy	Delhi	After 6 PM	1-stop	6 AM - 12 PM	Mumbai	8.6667	1	6390	22:45	07:25	08h 40m
1/16/2023	Monday	AirAsia	15-857	Economy	Delhi	After 6 PM	1-stop	Before 6 AM	Mumbai	5.5833	1	6872	19:05	00:40	05h 35m
1/16/2023	Monday	AirAsia	15-773	Economy	Delhi	After 6 PM	1-stop	Before 6 AM	Mumbai	6.3333	1	6872	20:00	02:20	06h 20m

Image 3: Raw Data with flights information

There are some transitive functional dependencies that need to be eliminated to achieve 3NF. Furthermore, there are certain columns which convey the same information (Duration and duration in hours) that can be reduced.

<u>Functional dependencies</u>

- 1. Date of journey \rightarrow Journey day
- 2. Flight_code → Airline
- 3. **Departure time** \rightarrow Departure
- 4. **Arrival_time** \rightarrow Arrival
- 5. **Departure time, Arrival time** → Duration

Date_of_journey, Flight_code, Arrival_time → Source, Destination, Total_stops, Fare

By removing the columns with redundant information and by separating the airlines information to a new table, our final data set looks like the below where all the non-key attributes are dependent on all the three primary keys decided for the table. Furthermore, the fare information is now split to under four different columns based on class.

Date_of_journey	Flight_code	Source_ID	Destination_ID	Total_stops	Departure_Time	Arrival_Time	Duration_in_mins	Business	Economy	First	Premium_Economy
2/1/2023	91-301	35141	26434	non-stop	9:35	11:30	115	0	3533	0	0
2/1/2023	91-302	26434	35141	non-stop	17:00	19:00	120	0	3423	0	0
2/1/2023	91-517	35145	35141	non-stop	19:40	21:15	95	0	3269	0	0
2/1/2023	91-518	35141	35145	non-stop	22:00	23:35	95	0	3423	0	0
2/1/2023	91-695	26555	26431	1-stop	13:15	16:20	185	0	4695	0	0
2/1/2023	91-696	26431	26555	1-stop	16:50	19:55	185	0	4642	0	0
2/1/2023	91-893	35141	26618	non-stop	7:25	9:00	95	0	4688	0	0
2/1/2023	91-895	35141	35145	non-stop	7:25	8:50	85	0	3953	0	0
2/1/2023	91-896	35145	35141	non-stop	9:20	10:45	85	0	3799	0	0

Image 4: Travel Info table in 3NF form.

Airline table has the flight_codes along with the airlines they belong to. This is in 3NF form. Airports table has Airport_ID as the sole primary key and all the attributes are dependent on this key, hence available in 3NF form. Place table has city as the primary key and all the other attributes are various metrics related specifically to each individual city. This is available in 3NF form, as well.

6. Case Scenarios and Deliverables

Topic	User Case Scenario	Client Deliverable	Key SQL techniques
Economy class	To determine the	This analysis will help	• Procedures
Pricing analysis	average price of	our client set	Aggregations
	economy class tickets	competitive fares for	Advanced Joins
	for a specific	their economy class	
	competitor airline,	seats in different	
	broken down by	regions.	
	source location		
Competitor fare	To analyze and	This analysis will	• Procedures
analysis for	compare the average	offer a panoramic	Advanced Joins
different airport	ticket prices of	view of the pricing	
locations	competitive airlines	landscape in the	
	based on various	Indian aviation market	
	factors: source place,		
	source airport,		

	destination place, and			
	destination airport			
Ranking of	To identify and rank	This analysis aims to	•	Procedures
destinations	the top five most	highlight the busiest	•	Advanced Joins
based on	popular destination	airports in terms of		
Departure Flight	airports based on the	flight operations,		
Volume from an	number of flights	providing insights into		
airport	departing for each	traffic concentration		
		and operational scale		
Hierarchical	To establish a	This analysis seeks to	•	Recursive CTE
Analysis of	hierarchy of airports	categorize airports	•	Advanced Joins
Airport	based on their	into tiers, providing a	•	Subqueries
Popularity	popularity	structured perspective		
		on their relative		
		importance and		
		influence in the		
		aviation network		
Airport Ranking	To identify and rank	This ranking will	•	Subqueries
Based on	the top 10 airports	provide insights into		
Literacy Rates	based on the literacy	the educational profile		
	rates of males and	of the catchment areas		
	females in their	for these airports,		
	respective locations	which can be crucial		
		for targeted marketing		
		and service design		
Airport Traffic	To ascertain and rank	This analysis will	•	Subqueries
analysis	the top 10 airports	shed light on the most		
	based on their	frequented airports,		
	passenger traffic	which is indicative of		
		high demand and		
		potential profitability		
		for airline routes		

Analysis of	To identify the busiest	This analysis aims to	• Window
Airport Peak	departure times at	understand peak	• CTEs
Departure Times	various airports	operational hours,	Aggregations
		which is vital for	Advanced Joins
		managing airport	
		resources and services	
		efficiently.	
Weekday Flight	To determine the	This analysis aims to	Time functions
Frequency	average number of	provide insights into	Advanced Joins
Analysis	flights operating from	the frequency of	Aggregations
	a specific source to a	flights on popular	• CTEs
	destination airport on	routes during	
	a given weekday	weekdays, which can	
		be crucial for	
		optimizing flight	
		schedules and	
		understanding market	
		demand	
Popularity	To rank airlines based	This analysis aims to	• Windows
Ranking of	on their popularity for	identify which airlines	• CTEs
Airlines by	specific destinations	dominate routes,	Advanced Joins
Destination		providing insights into	
		market shares and	
		consumer preferences	
Airline Ranking	To rank airlines based	This analysis aims to	• Partition
Based on	on the average	identify which airlines	• Window
Average Flight	number of flights they	are most active at a	Aggregations
Frequency from a	operate from a given	particular airport,	
Specific Source	source airport	providing insights into	
Airport		their operational focus	
		and market presence	
		at that location.	
Flight Duration	To examine the	This analysis aims to	• CTEs
and Pricing	relationship between	understand how flight	Aggregations

Correlation	flight duration and	length impacts fare	
Analysis	ticket pricing across	structures, a key	
	different airlines	component in	
		developing	
		competitive pricing	
		strategies	
Analysis of	To evaluate the	This analysis will help	• Regexp
Traffic by Airport	scalability of airports	in understanding the	• Case when
Category and	by analyzing	capacity and traffic	• Aggregations
Size	passenger counts for	distribution across	
	domestic and	different sizes of	
	international flights in	airports, typically with	
	relation to airport	international flights	
	size.	associated with larger	
		airports and domestic	
		flights with smaller	
		ones.	

7. Conclusion

Concluding our comprehensive analysis for the strategic entry of a new airline in the Indian aviation market, we have successfully delivered key insights aligned with our project objective. By meticulously examining data on average economy pricing, flight frequencies, airport traffic, departure times, flight duration-pricing relationships, and airline popularity by destination, we have provided a detailed, data-driven foundation for our client's market entry strategy. These deliverables, grounded in advanced SQL analytics, offer a holistic view of the competitive landscape and consumer behavior, enabling our client to make informed decisions on pricing, route selection, and operational planning. This strategic approach positions the new airline not only to effectively compete with existing market challengers but also to lay a robust groundwork for future scaling to challenge the market leaders, ensuring a strong and sustainable presence in the dynamic Indian aviation sector.

8. Appendix

```
# Query 1 Flight Information by Code and Source
DELIMITER &&
CREATE PROCEDURE GetAvgEconomyPrice (IN Flight_Code VARCHAR(10), IN Source_ID INT)
BEGIN
  SELECT a. Airline AS Airline_Name, ap.Airport_name AS Source_Airport_Name, ap.Place AS Source_Place_Name,
    AVG(ti.Economy) AS Average_Economy_Price
  FROM travel_info ti
  INNER JOIN airlines a
  ON ti.Flight_code = a.Flight_code
  INNER JOIN airports ap
  ON ti.Source_ID = ap.Airport_ID
  WHERE ti.Flight_code = Flight_Code AND ti.Source_ID = Source_ID
  GROUP BY a.Airline, ap.Airport_name, ap.Place;
END &&
DELIMITER:
CALL GetAvgEconomyPrice('9I-894', 26618);
# Query 2 Flight Information by Source and Destination IDs
DELIMITER &&
CREATE PROCEDURE GetAirlinesWithPlacesAveragePrice(IN Source_ID INT, IN Destination_ID INT)
BEGIN SELECT a.Airline AS Airline_Name, src_ap.Airport_name AS Source_Airport_Name, src_ap.Place AS Source_Place_Name, dest_ap.Airport_name AS
Destination_Airport_Name, dest_ap.Place AS Destination_Place_Name, AVG(ti.Economy) AS Average_Economy_Price
FROM travel_info ti
INNER JOIN airlines a ON ti.Flight_code = a.Flight_code
INNER JOIN airports src_ap ON ti.Source_ID = src_ap.Airport_ID
INNER JOIN airports dest_ap ON ti.Destination_ID = dest_ap.Airport_ID
WHERE ti.Source_ID = Source_ID AND ti.Destination_ID = Destination_ID
GROUP\ BY\ a. Airline, src\_ap. Airport\_name, src\_ap. Place,\ dest\_ap. Airport\_name,\ dest\_ap. Place;
END && DELIMITER;
CALL GetAirlinesWithPlacesAveragePrice('35145', '35141');
# Query 3 Top 5 Destinations from Source Airport
DELIMITER &&
CREATE PROCEDURE TopDestinationFromSource(IN SourceAirportID INT)
  SELECT
    dest_ap.Airport_name AS Destination_Airport_Name, dest_ap.Place AS Destination_place,
    COUNT(ti.Flight_code) AS NumberOfFlights
  FROM travel_info ti
  INNER JOIN airports dest_ap ON ti.Destination_ID = dest_ap.Airport_ID
  WHERE ti.Source_ID = SourceAirportID
  GROUP BY ti.Destination_ID, dest_ap.Airport_name, dest_ap.Place
  ORDER BY NumberOfFlights DESC
  LIMIT 5;
END &&
DELIMITER;
CALL TopDestinationFromSource('26434');
# Query 4 Airport Rank Hierarchical Structure
WITH RECURSIVE AirportHierarchy AS (
  SELECT Airport_ID, Airport_name, Place, Ranking
  FROM airports
  WHERE Ranking = (SELECT MIN(Ranking) FROM airports)
  UNION ALL
  SELECT a.Airport_ID, a.Airport_name, a.Place, a.Ranking
  FROM airports a
  INNER JOIN AirportHierarchy ah ON a.Ranking = ah.Ranking + 1)
SELECT * FROM AirportHierarchy limit 8;
# Query 5 Top Airports Ranked by Male and Female Literates
SELECT a.Airport_ID, a.Airport_name, a.Place, a.ranking,
(SELECT\ b.literates\_male\ FROM\ place\ b\ WHERE\ a.Place = b.city)\ AS\ literates\_male,
(SELECT b.literates_female FROM place b WHERE a.Place = b.city) AS literates_female
FROM airports a
ORDER BY literates_male DESC, literates_female DESC
LIMIT 10:
```

```
# Query 6 Top 10 Airports by Traffic & Gender Population
SELECT
a. Airport\_ID, a. Airport\_name, a. Place, a. Passengers\_2022\_23 \ as \ passenger traffic\_2022\_23,
(SELECT b.population_male FROM place b WHERE a.Place = b.city) AS population_male,
(SELECT b.population_female FROM place b WHERE a.Place = b.city) AS population_female
FROM airports a
ORDER BY population_male DESC, population_female DESC
LIMIT 10;
# Query 7 Airports and their busiest departure times
WITH DepartureArrivalTimes AS (
  SELECT a.Airport_name, EXTRACT(HOUR FROM t.Departure_Time) AS DepartureHour,
    COUNT(*) OVER (PARTITION BY a.Airport_ID, EXTRACT(HOUR FROM t.Departure_Time)) AS DepartureCount,
     COUNT(*) OVER (PARTITION BY a.Airport_ID, EXTRACT(HOUR FROM t.Arrival_Time)) AS ArrivalCount
  FROM travel info t
  JOIN Airports a ON t.Source_ID = a.Airport_ID OR t.Destination_ID = a.Airport_ID
),
RankedDepartureTimes AS (
  SELECT\ Airport\_name,\ Departure Hour,\ Departure Count,
     RANK() OVER (PARTITION BY Airport_name ORDER BY DepartureCount DESC) AS DepartureRank
SELECT DISTINCT d.Airport name, CONCAT(d.DepartureHour,":00") AS BestDepartureHour
FROM RankedDepartureTimes d
WHERE d.DepartureRank = 1
ORDER BY d.Airport name;
# Query 8 Average #Flights Source to Destination on Weekday
WITH DailyFlights AS (
  SELECT DAYNAME(STR_TO_DATE(t.Date_of_journey, "%d-%m-%Y')) AS Weekday, s.Airport_name AS SourceAirport,
    d.Airport_name AS DestinationAirport, COUNT(*) AS FlightsOnDay
  FROM travel info t
  JOIN airports s ON t.Source ID = s.Airport ID
             JOIN airports d ON t.Destination_ID = d.Airport_ID
  GROUP BY Weekday, SourceAirport, DestinationAirport
RankedFlights AS ( SELECT Weekday, SourceAirport, DestinationAirport, AVG(FlightsOnDay) AS AvgFlights,
    RANK() OVER (PARTITION BY Weekday ORDER BY AVG(FlightsOnDay) DESC) AS Day_Rank
  FROM DailyFlights
  GROUP BY Weekday, SourceAirport, DestinationAirport
SELECT\ Weekday, Source Airport, Destination Airport, AvgFlights
FROM RankedFlights
WHERE Day_Rank <= 3 -- Filter to show only top 3 ranks per weekday
ORDER BY Weekday, Day_Rank;
# Query 9 Ranking Airlines by Popularity per Destination
WITH FlightCounts AS (
SELECT a.Airline AS airline, ti.destination_id AS destination, ap.Place, COUNT(*) AS flights_count
FROM travel_Info ti
JOIN airlines a ON ti.flight_code = a.flight_code
JOIN airports ap ON ap.airport_ID = ti.destination_id
GROUP BY a.Airline, ti.destination_id, ap.Place),
RankedAirlines AS
(SELECT airline, destination, Place, flights_count,
RANK() OVER(PARTITION BY destination ORDER BY flights_count DESC) AS rank_destination
FROM FlightCounts)
SELECT destination, Place, airline, flights_count, rank_destination
FROM RankedAirlines
WHERE rank destination <= 3:
# Query 10 Airline Ranking by Scheduled Trips per Airport
WITH AirlineFlightCounts AS (
 SELECT ti.Source_ID, a.Airline, COUNT(ti.Flight_code) AS FlightCount,
             AVG(ti.Economy) AS AvgEconomyPrice
 FROM travel info ti
```

```
JOIN airlines a ON ti.Flight_code = a.Flight_code
     GROUP BY ti.Source_ID, a.Airline
 RankedAirlines AS (
    -- Rank airlines by flight count for each airport
     SELECT Source_ID, Airline, FlightCount, AvgEconomyPrice,
       RANK() OVER (PARTITION BY Source_ID ORDER BY FlightCount DESC) AS rank_airline
     FROM AirlineFlightCounts
 SELECT\ ra. Source\_ID,\ ap. Airport\_name\ AS\ Airport\_Name,\ ra. Airline,\ ra. Flight Count,\ ra. AvgEconomyPrice,\ ra. rank\_airline,\ ra. AvgEconomyPrice,\ ra. rank\_airline,\ ra. AvgEconomyPrice,\ ra. rank\_airline,\ ra. AvgEconomyPrice,\ ra. r
FROM RankedAirlines ra
JOIN airports ap ON ra.Source_ID = ap.Airport_ID
ORDER BY ra.Source_ID, ra.rank_airline;
 # Query 11 Analyzing Flight Duration and Pricing Relationship
CREATE VIEW DurationPricing AS
SELECT\ ti.destination\_ID, AVG (ti.economy)\ AS\ average\_price, AVG (duration\_in\_mins)\ AS\ average\_duration
FROM travel_Info ti
GROUP BY ti.destination_ID; -- Query the view
 SELECT\ dp. destination\_ID\ AS\ Destination\_ID, ap. place\ AS\ Destination, dp. average\_price, dp. average\_duration
JOIN airports ap ON ap.airport_ID = dp.destination_id
ORDER BY average_duration DESC;
 # Query 12 Analysis of Traffic by Airport Category and Size
 SELECT
        CASE
                 WHEN\ Airport\_name\ REGEXP\ '[Ii]nternational'\ THEN\ 'International'
                ELSE 'Domestic'
        END AS Airport_Category,
        type AS Size_Category,
        SUM(Passengers_2022_23) AS Total_Passengers_2022_23,
        SUM(Passengers_2021_22) AS Total_Passengers_2021_22,
                 ((SUM(Passengers\_2022\_23) - SUM(Passengers\_2021\_22)) \ / \ SUM(Passengers\_2021\_22)) \ * \ 100, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 200, \ 2000, \ 
        ) AS Percentage_Growth
 GROUP BY Airport_Category, Size_Category
 ORDER BY Airport_Category, Size_Category;
```