TEST 1

PEX-A1

Figure S1. Shower PEX-A1. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

PEX-B1

Figure S2. Shower PEX-B1. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

PEX-C1

Figure S3. Shower PEX-C1. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

Cu-A1

Figure S4. Shower Cu-A1. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

Cu-B1

Figure S5. Shower Cu-B1. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

Cu-C1

Figure S6. Shower Cu-C1. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

TEST 2

PEX-A2

Figure S7. Shower PEX-A2. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

PEX-B2

Figure S8. Shower PEX-B2. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

PEX-C2

Figure S9. Shower PEX-C2. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

Cu-A2

Figure S10. Shower Cu-A2. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

Cu-B2

Figure S11. Shower Cu-B2. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

Cu-C2

Figure S12. Shower Cu-C2. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold)

TEST 3

PEX-A3

Figure S13. Shower PEX-A3. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold). Hot shower pipe is insulated.

PEX-B3

Figure S14. Shower PEX-B3. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold). Cold shower pipe is insulated.

PEX-C3

Figure S15. Shower PEX-C3. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold). Hot shower pipe is insulated.

Cu-A3

Figure S16. Shower Cu-A3. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold). Hot shower pipe is insulated.

Cu-B3

Figure S17. Shower Cu-B3. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold). Cold shower pipe is insulated.

Cu-C3

Figure S18. Shower Cu-C3. Temperature vs Time measured, modelled with radial and axial conduction and convection (calibrated for pipe PEX-A1-Cold). Hot shower pipe is insulated.

COMPARISON

Figure S19. Shower Cu-A3 versus shower Cu-B3. The hot shower pipe is insulated for Cu-A3, while the cold shower pipe is insulated for Cu-B3.

Figure S20. Shower PEX-B3 versus shower Cu-B3. The cold shower pipe is insulated for both showers.