MATH 709 HW # 2

MARIO L. GUTIERREZ ABED PROF. A. BASMAJAN

Problem 1 (Problem 2-1). Define $f: \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 1 & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Show that for every $x \in \mathbb{R}$, there are smooth coordinate charts (U, φ) containing x and (V, ψ) containing f(x) such that $\psi \circ f \circ \varphi^{-1}$ is smooth as a map from $\varphi(U \cap f^{-1}(V))$ to $\psi(V)$, but f is not smooth (in the sense we have defined in chapter 2.)

Proof. Clearly, f is smooth on $\mathbb{R} \setminus \{0\}$. Now, if x = 0, then $\varphi = \mathrm{Id}_{(-\varepsilon,\varepsilon)}$ is a coordinate map containing x and $\psi = \mathrm{Id}_{(1-\varepsilon,1+\varepsilon)}$ is a coordinate map containing f(x) = 1 such that $\psi \circ f \circ \varphi^{-1}$ is smooth on

$$\varphi\left((-\varepsilon,\varepsilon)\bigcap f^{-1}\left((1-\varepsilon,1+\varepsilon)\right)\right) = \varphi\left([0,\varepsilon)\right) = [0,\varepsilon).$$

However, f is clearly not smooth since it is not continuous at 0.

Problem 2 (Problem 2-3). For each of the following maps between spheres, compute sufficiently many coordinate representations to prove that it is smooth.

- a) $p_n : \mathbb{S}^1 \to \mathbb{S}^1$ is the n^{th} power map for $n \in \mathbb{Z}$, given in complex notation by $p_n(z) = z^n$.
- b) $\alpha \colon \mathbb{S}^n \to \mathbb{S}^n$ is the **antipodal map** $\alpha(x) = -x$.
- c) $F: \mathbb{S}^3 \to \mathbb{S}^2$ is given by $F(w,z) = (z\overline{w} + w\overline{z}, iw\overline{z} iz\overline{w}, z\overline{z} w\overline{w})$, where we think of \mathbb{S}^3 as the subset $\{(w,z) \in \mathbb{C}^2 : |w|^2 + |z|^2 = 1\} \subset \mathbb{C}^2$.

Proof of a). Identifying \mathbb{S}^1 as a subset of \mathbb{C} (i.e. $\mathbb{S}^1 = \{z \in \mathbb{C} : |z|^2 = 1\}$), every point in \mathbb{S}^1 can be written as $\cos \theta + i \sin \theta$ for $\theta \in [0, 2\pi)$. Thus we can rewrite the n^{th} power map as

$$p_n(\cos\theta + i\sin\theta) = p_n(e^{i\theta}) = e^{in\theta} = \cos(n\theta) + i\sin(n\theta).$$

We use the stereographic projection (and its inverse) on $\mathbb{S}^1 \setminus \{(0,1)\}$ given by

$$\sigma_1(e^{i\theta}) = \frac{\cos \theta}{1 - \sin \theta}$$
 and $\sigma_1^{-1}(x) = \frac{2x + i(x^2 - 1)}{x^2 + 1}$,

respectively. We also use the stereographic projection on the south pole $\widetilde{\sigma}_1 \colon \mathbb{S}^1 \setminus \{(0,-1)\} \to \mathbb{R}$ given by $\widetilde{\sigma}_1(\mathbf{x}) = -\sigma_1(-\mathbf{x})$ and its inverse $\widetilde{\sigma}_1^{-1}(\mathbf{u}) = -\sigma_1^{-1}(-\mathbf{u})$, that is,

$$\widetilde{\sigma}_1(e^{i\theta}) = \frac{\cos \theta}{1 + \sin \theta}$$
 and $\widetilde{\sigma}_1^{-1}(x) = \frac{2x + i(1 - x^2)}{1 + x^2}$.

Now let P_n be the coordinate representation of p_n , which is of the form $\ddot{\sigma}_1 \circ p_n \circ \dot{\sigma}_1$, where $\ddot{\sigma}_1$ is either σ_1 or $\tilde{\sigma}_1$ and $\dot{\sigma}_1$ is either σ_1^{-1} or $\tilde{\sigma}_1^{-1}$. We proceed to show that $P_n \colon \mathbb{R} \to \mathbb{R}$ is a smooth function (which will in turn show smoothness of p_n).

Thus for $x \in \mathbb{R}$, we have

$$\dot{\sigma}_1 = \frac{2x \pm i(1 - x^2)}{1 + x^2},$$

where the \pm sign depends on whether $\dot{\sigma}_1$ is σ_1^{-1} or $\tilde{\sigma}_1^{-1}$. Now we write

$$\cos \vartheta = \frac{2x}{1+x^2}$$
 and $\sin \vartheta = \pm \frac{1-x^2}{1+x^2}$.

Choosing appropriate domains for the inverse trigonometric function, we have that $\vartheta = \arccos x$. Therefore

$$P_n(x) = \ddot{\sigma}_1 \circ p_n \circ \dot{\sigma}_1(x) = \ddot{\sigma}_1(p_n(\dot{\sigma}_1(x)))$$

$$= \ddot{\sigma}_1(p_n(\cos \vartheta + i \sin \vartheta))$$

$$= \ddot{\sigma}_1(\cos(n\vartheta) + i \sin(n\vartheta))$$

$$= \frac{\cos(n\vartheta)}{1 \pm \sin(n\vartheta)}$$

$$= \frac{\cos(n \arccos x)}{1 \pm \sin(n \arccos x)}.$$

Since sin, cos, and arccos are all smooth functions, it follows that P_n (and hence p_n) is also a smooth function.

Proof of b). We start by using the stereographic projection (and its inverse) on $\mathbb{S}^n \setminus \{(0,\ldots,1)\}$ given by

$$\sigma_n(x^1, \dots, x^{n+1}) = \frac{(x^1, \dots, x^n)}{1 - x^{n+1}}$$
and
$$\sigma_n^{-1}(x^1, \dots, x^n) = \frac{(2x^1, \dots, 2x^n, (x^1)^2 + \dots + (x^n)^2 - 1)}{(x^1)^2 + \dots + (x^n)^2 + 1},$$

respectively. We also use the stereographic projection on the south pole $\widetilde{\sigma}_n : \mathbb{S}^n \setminus \{(0, \dots, -1)\} \to \mathbb{R}^n$ given by $\widetilde{\sigma}_n(\mathbf{x}) = -\sigma_n(-\mathbf{x})$ and its inverse $\widetilde{\sigma}_n^{-1}(\mathbf{u}) = -\sigma_n^{-1}(-\mathbf{u})$, that is,

$$\widetilde{\sigma}_n(x^1,\dots,x^{n+1}) = -\frac{(x^1,\dots,x^n)}{1+x^{n+1}}$$
 and
$$\widetilde{\sigma}_n^{-1}(x^1,\dots,x^n) = \frac{\left(2x^1,\dots,2x^n,1-((x^1)^2+\dots+(x^n)^2)\right)}{(x^1)^2+\dots+(x^n)^2+1},$$

Now to simplify notation a bit let $x = (x^1, ..., x^n)$ and $|x|^2 = (x^1)^2 + \cdots + (x^n)^2$, and then let us look at the coordinate representations of α :

$$\sigma_n \circ \alpha \circ \sigma_n^{-1}(x) = \sigma_n \left(\alpha \left(\frac{2x^1}{|x|^2 + 1}, \dots, \frac{2x^n}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1} \right) \right)$$

$$= \sigma_n \left(-\frac{2x^1}{|x|^2 + 1}, \dots, -\frac{2x^n}{|x|^2 + 1}, \frac{1 - |x|^2}{|x|^2 + 1} \right)$$

$$= \frac{\left(-\frac{2x^1}{|x|^2 + 1}, \dots, -\frac{2x^n}{|x|^2 + 1} \right)}{1 - \frac{1 - |x|^2}{|x|^2 + 1}}$$

$$= -\frac{\left(2x^1, \dots, 2x^n \right)}{|x|^2 + 1 - 1 + |x|^2}$$

$$= -\frac{2\left(x^1, \dots, x^n \right)}{2|x|^2}$$

$$= -\frac{x}{|x|^2}.$$

$$\sigma_n \circ \alpha \circ \widetilde{\sigma}_n^{-1}(x) = \sigma_n \left(\alpha \left(\frac{2x^1}{|x|^2 + 1}, \dots, \frac{2x^n}{|x|^2 + 1}, \frac{1 - |x|^2}{|x|^2 + 1} \right) \right)$$

$$= \sigma_n \left(-\frac{2x^1}{|x|^2 + 1}, \dots, -\frac{2x^n}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1} \right)$$

$$= \frac{\left(-\frac{2x^1}{|x|^2 + 1}, \dots, -\frac{2x^n}{|x|^2 + 1} \right)}{1 - \frac{|x|^2 - 1}{|x|^2 + 1}}$$

$$= -\frac{(2x^1, \dots, 2x^n)}{|x|^2 + 1 - |x|^2 + 1}$$

$$= -\frac{2(x^1, \dots, x^n)}{2}$$

$$= -x.$$

$$\widetilde{\sigma}_n \circ \alpha \circ \widetilde{\sigma}_n^{-1}(x) = \widetilde{\sigma}_n \left(\alpha \left(\frac{2x^1}{|x|^2 + 1}, \dots, \frac{2x^n}{|x|^2 + 1}, \frac{1 - |x|^2}{|x|^2 + 1} \right) \right)$$

$$= \widetilde{\sigma}_n \left(-\frac{2x^1}{|x|^2 + 1}, \dots, -\frac{2x^n}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1} \right)$$

$$= -\frac{\left(\frac{2x^1}{|x|^2 + 1}, \dots, \frac{2x^n}{|x|^2 + 1} \right)}{1 - \frac{|x|^2 - 1}{|x|^2 + 1}}$$

$$= -\frac{(2x^1, \dots, 2x^n)}{|x|^2 + 1 - |x|^2 + 1}$$

$$= -\frac{2(x^1, \dots, x^n)}{2}$$

$$= -x.$$

$$\widetilde{\sigma}_n \circ \alpha \circ \sigma_n^{-1}(x) = \widetilde{\sigma}_n \left(\alpha \left(\frac{2x^1}{|x|^2 + 1}, \dots, \frac{2x^n}{|x|^2 + 1}, \frac{|x|^2 - 1}{|x|^2 + 1} \right) \right)$$

$$= \widetilde{\sigma}_n \left(-\frac{2x^1}{|x|^2 + 1}, \dots, -\frac{2x^n}{|x|^2 + 1}, \frac{1 - |x|^2}{|x|^2 + 1} \right)$$

$$= -\frac{\left(\frac{2x^1}{|x|^2 + 1}, \dots, \frac{2x^n}{|x|^2 + 1} \right)}{1 - \frac{1 - |x|^2}{|x|^2 + 1}}$$

$$= -\frac{\left(2x^1, \dots, 2x^n \right)}{|x|^2 + 1 - 1 + |x|^2}$$

$$= -\frac{2(x^1, \dots, x^n)}{2|x|^2}$$

$$= -\frac{x}{|x|^2}.$$

Since there are all smooth rational functions, we have that α must be smooth (by definition).

Proof of c). We can start by identifying \mathbb{C}^2 with \mathbb{R}^4 via $(x^1 + ix^2, x^3 + ix^4) \leftrightarrow (x^1, x^2, x^3, x^4)$, so that

$$f(x^{1}, x^{2}, x^{3}, x^{4}) = F(x^{1} + ix^{2}, x^{3} + ix^{4})$$

$$= (2x^{1}x^{3} + 2x^{2}x^{4}, 2x^{2}x^{3} - 2x^{1}x^{4}, (x^{1})^{2} + (x^{2})^{2} - (x^{3})^{2} - (x^{4})^{2}).$$

Then since \mathbb{C}^2 and \mathbb{R}^4 are diffeomorphic, it suffices to show that f is smooth. We use the stereographic projection (and its inverse) on $\mathbb{S}^3 \setminus \{(0,0,0,1)\}$ given by

$$\sigma_3(x^1, x^2, x^3, x^4) = \frac{(x^1, x^2, x^3)}{1 - x^4}$$
 and
$$\sigma_3^{-1}(x^1, x^2, x^3) = \frac{(2x^1, 2x^2, 2x^3, (x^1)^2 + (x^2)^2 + (x^3)^2 - 1)}{(x^1)^2 + (x^2)^2 + (x^3)^2 + 1},$$

respectively. We also use the stereographic projection on the south pole $\tilde{\sigma}_3$: $\mathbb{S}^3 \setminus \{(0,0,0,-1)\} \to \mathbb{R}^3$ given by $\tilde{\sigma}_3(\mathbf{x}) = -\sigma_3(-\mathbf{x})$ and its inverse $\tilde{\sigma}_3^{-1}(\mathbf{u}) = -\sigma_3^{-1}(-\mathbf{u})$. We have similar functions on \mathbb{S}^2 which will be denoted by σ_2 and $\tilde{\sigma}_2$. Now computing compositions of these functions, we have

$$\sigma_2 \circ f \circ \sigma_3^{-1}(x^1, x^2, x^3) = \left(\frac{2x^1}{(x^1)^2 + (x^2 - 1)^2 + (x^3)^2}, x^2\right)$$

$$\sigma_2 \circ f \circ \widetilde{\sigma}_3^{-1}(x^1, x^2, x^3) = \left(\frac{2x^1}{(x^1)^2 + (x^2 - 1)^2 + (x^3)^2}, \frac{x^2}{(x^1)^2 + (x^2)^2 + (x^3)^2}\right)$$

$$\widetilde{\sigma}_2 \circ f \circ \widetilde{\sigma}_3^{-1}(x^1, x^2, x^3) = \left(\frac{2x^1}{(x^1)^2 + (x^2 + 1)^2 + (x^3)^2}, x^2\right)$$

$$\widetilde{\sigma}_2 \circ f \circ \sigma_3^{-1}(x^1, x^2, x^3) = \left(\frac{2x^1}{(x^1)^2 + (x^2 + 1)^2 + (x^3)^2}, \frac{x^2}{(x^1)^2 + (x^2)^2 + (x^3)^2}\right).$$

Since there are all smooth rational functions, we have that f must be smooth (by definition). Thus F is also smooth, as desired.

Problem 3 (Problem 2-14). Suppose A and B are disjoint closed subsets of a smooth manifold M. Show that there exists $f \in C^{\infty}(M)$ such that $0 \le f(x) \le 1$ for all $x \in M$, $f^{-1}(0) = A$, and $f^{-1}(1) = B$.

Proof. This is almost *Urhyson's Lemma*, but not quite! Our manifold M is both paracompact and Hausdorff (the latter by definition), and we know from topology that a space that has these two properties is a <u>normal</u> topological space. *Urhyson's Lemma* then guarantees the existence of a <u>continuous</u> function $g: M \to [0,1]$ that satisfies the conditions on our problem. The issue is that "continuous" is not enough for us, we want our function to be C^{∞} .

But hold on a second! We know by a previous theorem on the text that there are functions $F_A, F_B : M \to \mathbb{R}$ such that $F_A^{-1}(0) = A$ and $F_B^{-1}(0) = B$. Thus if we define f as

$$f(x) = \frac{F_A(x)}{F_A(x) + F_B(x)},$$

then this rational smooth function satisfies the required properties. It is clear that $0 \le f(x) \le 1$. Moreover, if f(x) = 1, then $F_B(x) = 0$. But $F_B^{-1}(0) = B$, thus $f^{-1}(1) = B$. Similarly, if f(x) = 0, then $F_A(x) = 0$. But $F_A^{-1}(0) = A$, thus $f^{-1}(0) = A$.

¹Here's the theorem, for reference:

Theorem (Level Sets of Smooth Functions). Let M be a smooth manifold. If C is any closed subset of M, there is a smooth nonnegative function $f: M \to \mathbb{R}$ such that $f^{-1}(0) = C$.