UNIVERSITY OF OSLO

Chapter summaries in MAT2400 - Real analysis

Ivar Stangeby

February 23, 2015

Contents

1	Pre	liminaries: Proofs, Sets, and Functions	3		
	1.1	Proofs	3		
	1.2	Sets and boolean operations	4		
	1.3	Families of sets	4		
	1.4	Functions	4		
	1.5	Relations and partitions	4		
	1.6	Countability	4		
2	Met	ric Spaces	5		
	2.1	Definitions and examples	5		
	2.2	Convergence and Continuity	5		
	2.3	Open and closed sets	5		
	2.4	Complete spaces	5		
	2.5	Compact Sets	5		
	2.6	An alternative description of compactness	5		
	2.7	The completion of a metric space	5		
3	Space of continuous functions 6				
	3.1	Modes of continuity	6		
	3.2	Modes of convergence	6		
	3.3	The spaces $C(X,Y)$	6		
	3.4	Application to differential equations	6		
	3.5	Compact subsets of $C(X, \mathbb{R}^m)$	6		
	3.6	Differential equations revisited	6		
	3.7	Polynomials are dense in $C([a,b],\mathbb{R})$	6		
	3.8	Baire's Category Theorem	6		
4	Seri	ies of functions	7		
	4.1	lim sup and liminf	7		
	4.2	Integrating and differentiating sequences	7		
	4.3	Power series	7		
	4.4	Abel's Theorem	7		
	4.5	Normed spaces	7		
	4.6	Inner product spaces	7		
	4.7	Linear operators	7		

5	Mea	asure and integration			
	5.1	Measure spaces			
	5.2	Complete measures			
	5.3	Measurable functions			
	5.4	Integration of simple functions			
	5.5	Integrals of nonnegative functions			
	5.6	Integrable functions			
	5.7	$L^1(X,A,\mu)$ and $L^2(X,A,\mu)$			
6	Constructing measures				
	6.1	Outer measure			
	6.2	Measurable sets			
	6.3	CarathÃl'odory's Theorem			
	6.4				
	6.5	Approximation results			
	6.6	The coin tossing measure			
	6.7	Product measures			
	6.8	Fubini's Theorem			

Preliminaries: Proofs, Sets, and Functions

1.1 Proofs

Implication

Many mathematical statements are on the form *If A, then B*. These are denoted $A \Rightarrow B$. If $A \Rightarrow B$ then it is not neccessarily so that $B \Rightarrow A$. That is, these two mean different things. Note that $A \Rightarrow B$ is logically equivalent to $\sim B \Rightarrow \sim A$.

Equivalence

If it is true that $A\Rightarrow B$ and $B\Rightarrow A$. Then we call these statements equivalent. This is denoted $A\Longleftrightarrow B$. When proving that two statements are equivalent, it is often easier to prove that they both imply eachother. That is, by proving $A\Rightarrow B$ and $B\Rightarrow A$, you have proven that $A\Longleftrightarrow B$.

Methods of proof

There are several ways of proving mathematical hypotheses.

- 1. Instead of proving $A \Rightarrow B$, prove $\sim B \Rightarrow \sim A$. This is called a *contrapositive proof*.
- Another common method of proof is *proof by contradiction*. Assume the opposite of what you want to prove, and by showing that this leads to a contradiction, our assumption must be false, and hence the original hypothesis is true.
- 3. When dealing with natural numbers, the go-to method of proof is *proof by induction*. Show that a statement holds for a given number, and then show that if it holds for an arbitrary number n, it must also hold for the successor n+1.

This list is of course non-exhaustive, but these are some of the more common methods one should consider when faced with a problem to solve.

1.2 Sets and boolean operations

A set is a collection of mathematical objects. It may be finite, it may be infinite. A is a subset of B if all the elements in A are also in B. This is denoted $A \subseteq B$. Two sets are equal if they contain exactly the same elements. This is denoted A = B, where A and B are sets. If A is a subset of B and B is a subset of A, the sets are equal. The set that contains no elements is called the empty set and is denoted \emptyset .

- 1.3 Families of sets
- 1.4 Functions
- 1.5 Relations and partitions
- 1.6 Countability

Metric Spaces

2.1 Definitions and examples

Definition 1. A metric space (X, d) consists of a non-empty set X and a function $d: X \times X \to [0, \infty)$ such that:

- 1. (Positivity) $\forall x, y \in X, d(x, y) \ge 0$ with equality if and only if x = y
- 2. (Symmetry) $\forall x, y \in X, d(x, y) = d(y, x)$
- 3. (Triangle inequality) $\forall x, y, z \in X$

$$d(x,y) \le d(x,z) + d(y,x)$$

A function d satisfying conditions 1-3, is called a metric on X.

Definition 2. Assume that (X, d_X) and (Y, d_Y) are metric spaces. An isometry from (X, d_X) to (Y, d_Y) is a bijection $i: X \to Y$ such that $d_X(x, y) = d_Y(i(x), i(y))$ for all $x, y \in X$. We say that (X, d_X) and (Y, d_Y) are isometric if there exists an isometry from (X, d_X) to (Y, d_Y) .

- 2.2 Convergence and Continuity
- 2.3 Open and closed sets
- 2.4 Complete spaces
- 2.5 Compact Sets
- 2.6 An alternative description of compactness
- 2.7 The completion of a metric space

Space of continuous functions

- 3.1 Modes of continuity
- 3.2 Modes of convergence
- **3.3** The spaces C(X, Y)
- 3.4 Application to differential equations
- **3.5** Compact subsets of $C(X, \mathbb{R}^m)$
- 3.6 Differential equations revisited
- **3.7** Polynomials are dense in $C([a,b],\mathbb{R})$
- 3.8 Baire's Category Theorem

Series of functions

- **4.1** lim sup **and** lim inf
- 4.2 Integrating and differentiating sequences
- 4.3 Power series
- 4.4 Abel's Theorem
- 4.5 Normed spaces
- 4.6 Inner product spaces
- 4.7 Linear operators

Measure and integration

- 5.1 Measure spaces
- **5.2** Complete measures
- 5.3 Measurable functions
- **5.4** Integration of simple functions
- 5.5 Integrals of nonnegative functions
- 5.6 Integrable functions
- **5.7** $L^{1}(X, A, \mu)$ and $L^{2}(X, A, \mu)$

Constructing measures

- 6.1 Outer measure
- 6.2 Measurable sets
- 6.3 CarathÃl'odory's Theorem
- **6.4** Lebesque measure on \mathbb{R}
- **6.5** Approximation results
- 6.6 The coin tossing measure
- 6.7 Product measures
- 6.8 Fubini's Theorem