Static Testing Technique:-

- 1. Review.
- 2. Walkthrough.
- 3. Inspection.

Dynamic Testing Technique:-

- 1. Unit Testing
- 2. Integartion Testing
- 3. System Testing
- 4. UAT (User Acceptance Testing)

Review:-

- #. Conducts on documents to ensure correctness and Completeness.
- #. It is a formal review.
- 1. Requirement Review.
- 2. Design Review
- 3. Code Review
- 4. Test Plan Review
- 5. Test Cases Reveiw

Walkthrough:-

- #. It is an informal Reveiw.
- #. Author Reads the documents and discuss with peers.
- #. It is not pre-planned and can be done whenever required.
- #. Also walkthorugh does not have MOM. (Minutes of the Meeting).

Inspection:-

- #. Its a formal review type.
- #. Inspection will have proper schedule which will be intimated via email to the concerned people. (Manager/Lead).

QA and QC (Quality Assurance & Quality Control)

QA.

- #. QA focuses on building the quality.
- #. QA is the process related things.
- #. QA is preventing defects.
- #. QA is process oriented.
- #. QA for Entire SDLC life cycle.

SDLC Phase:-

- 1. Requirement Analysis
- 2. Design
- 3. Coding
- 4. Testing
- 5. Deployment
- 6. Maintains

QC.

- #. QC focuses on testing of the Quality.#. QC is the actual testing of the software.
- #. QC is detecting defects.
- #. QC is product Oriented.
- #. QC is Testing part in SDLC.
- P- People (QC- Testers)
- P- Process (QA)
- P- Product

QA,QC

QE :- Qaulity Engineer SE :- Software Engineer.

Test Case Design Technique/ Test Design Technique / Test Data Design Technique:-

- 1. Data
- 2. Coverage
- #. Reduce Data.
- #. More Coverage.

Types:-

- Equivalance Class Partitioning (ECP)
- 2. Boundary Value Analysis (BVA)
- 3. Decision Table Based Testing.
- 4. State Transition
- 5. Error Guessing

1. Equivalance Class Partitioning (ECP):-1-500 Enter Number Test Data Using Normal Test Data Divide values into Equivalance Classes:-ECP -90 to 0 ---> 0 (Invaild)
1 to 100 ---> 30 (Valid)
101 to 200 ---> 170 (Valid)
201 to 300 ---> 250 (Vaild)
301 to 400 ---> 350 (Valid)
401 to 500 ---> 470 (Valid)
501 to 600 ---> 580 (Invalid) -40 3 30 4 170 250 470 500 580

Name Name DEEPAK

Deepak

Deepak

FaceBook

Amazon

SBI

Allow only Alphabets

Name	Divide Values into ECP			
	1. Set of Numbers> Invalid 2. Alphanumeric> Invalid 3. Special Characters> Invalid 4. Spaces> Invalid 5. Alphabets (A-Z)> Valid 6. Alphabets (a-z)> Valid			

XYZ --- > Valid abc ---> Valid @#\$% -- > InValid ab c ---> Invalid 678 --> InValid

Ι

Equivalance Class Partitioning (ECP)

#. Classify/ divide / Partition the data into
Multilple classes.

2. Boundary Value Analysis:- (BVA) #. Boundary of the value.		Allow Digits	from 18 to 35	5
Min =18 (Valid) Min-1 =17 (Invalid) Min+1 =19 (Valid)	Age			
Max=35 (Valid) Max-1 =34 (Valid) Max+1 =36 (Invalid)				
I				

Input Domain Testing:-

- #. The value will be verified in the text box/Input Box fields.
- #. We use ECP & BVA technique.

3. Decision Table:-

- #. This technique will be used if we have more conditions and Corresponding actions.
- #. The Decision table technique , we deal with combination of inputs.

Decision Table:-

#. If we have more number of conditions/Actions then we use decision table.

Scenario: - Transfer Money Online: -

Condition:-

- 1. Account should be Active State.
- 2. OTP (One Time Password) match.
- 3. Sufficient Money in the bank.

Actions:-

- Transfer Money Success.
- Show a Message as InSufficient amount
- Block the transaction in case of suspicious transaction.

4	А	В	С	D	E	F	G
1			TC1	TC2	TC3	TC4	TC5
2	Condition 1	Account should be Active State.	TRUE	TRUE	TRUE	TRUE	FALSE
3	Condiiton 2	OTP (One Time Password) match.	TRUE	TRUE	FALSE	FALSE	x
4	Condiiton 3	Sufficient Money in the bank.	TRUE	FALSE	TRUE	FALSE	X
5	Action 1	Transfer Money Success.	Execute				
6	Action 2	Show a Message as InSufficient amount		Exceute			6
7	Action 3	Block the transaction in case of suspicious transaction.			Execute	Execute	х
8				~			
0							

State Transition Technique:-

- #. This Testing Technique allow the tester to test the behaviour of an Application Under Test (AUT)
- #. The Tester can perform this action by entering various inputs condtions in sequence.
- #. In State Transition Technique , the testing team provides positive as well as negative inputs for evaluating the system behaviour.

	G18	▼ (0	fsc			
1	А	В	С	D	E	F
1	STATE	LOGIN	CORRECT PASSWROD	INCORRECT PASSWORD		
2	S1	First Attempt	S4	S2		
3	S2	Second Attempt	S4	S3		
4	S3	Third Attempt	S4	S5		
5	S4	Home Page	15			
6	S5	Account Locked	10			
7						
8						
_						

Error Guessing:-

- #. Error Guessing is one of the testing technquie used to find bugs/defects in the software application based on the tester's prior experience.
- #. In Error Guessing we don't follow any specific rules.
- #. It depends on Tester Analytical Skills and Experience.

Example:-

- #. Submitting form without entering values.
- #. Entering Invalid Values such as entering alphabets in the numeric feild.