

Advice for applying machine learning

Deciding what to try next

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of houses, you find that it makes unacceptably large errors in its predictions. What should you try next?

X1, X2, X3, ..., X100

- -> Get more training examples
 - Try smaller sets of features
- -> Try getting additional features
 - Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc.})$
 - Try decreasing λ
 - Try increasing λ

Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

Advice for applying machine learning

Evaluating a hypothesis

Evaluating your hypothesis

Fails to generalize to new examples not in training set.

```
x_1= size of house x_2= no. of bedrooms x_3= no. of floors x_4= age of house x_5= average income in neighborhood x_6= kitchen size .
```

Evaluating your hypothesis

Dataset:

Andrew Ng

Training/testing procedure for linear regression

 \rightarrow - Learn parameter θ from training data (minimizing training error $J(\theta)$)

- Compute test set error:

$$\frac{1}{1+est}(6) = \frac{1}{2m_{test}} \left(\frac{h_0(x_{test}) - y_{test}}{1+est}\right)^2$$

Training/testing procedure for logistic regression

- Learn parameter heta from training data
- Compute test set error:

$$J_{test}(\theta) = -\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} y_{test}^{(i)} \log h_{\theta}(x_{test}^{(i)}) + (1 - y_{test}^{(i)}) \log h_{\theta}(x_{test}^{(i)})$$

- Misclassification error (0/1 misclassification error):

Machine Learning

Advice for applying machine learning

Model selection and training/validation/test sets

Overfitting example

Once parameters $\theta_0, \theta_1, \ldots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Model selection

Who def selection
$$\theta_0 = \theta_0 + \theta_1 x$$
 $\theta_0 = \theta_0 + \theta_1 x$ $\theta_0 = \theta_0 + \theta_1 x + \theta_2 x^2$ $\theta_0 = \theta_0 + \theta_1 x + \theta_2 x^2$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$ $\theta_0 = \theta_0 + \theta_1 x + \dots + \theta_{10} x^{10}$

didigle of polynomial

Choose
$$\theta_0 + \dots \theta_5 x^5$$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)})$.

Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error. I.e. our extra parameter $(\underline{d} = \text{degree of polynomial})$ is fit to test set.

Evaluating your hypothesis

Dataset:

	Size	Price	7
	2104	400	
60%	1600	330	
	2400	369 Town	
	1416	232	
	3000	540	7
	1985	300	
20%	1534	315 7 Cross ve	kidutiun
204	1427	199	۲۷)
70.1	1380	212 } test set	
200.	1494	243	

Train/validation/test error

Training error:

$$\rightarrow J_{train}(\theta) = \frac{1}{2m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross Validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{\infty} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{n} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model selection

Pick
$$\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4 \leftarrow$$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$

Advice for applying machine learning

Diagnosing bias vs. variance

Bias/variance

High bias (underfit) 2=1

"Just right"

High variance (overfit)

Bias/variance

Training error:
$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error:
$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Andrew Ng

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. ($J_{cv}(\theta)$ or $J_{test}(\theta)$ is high.) Is it a bias problem or a variance problem?

Advice for applying machine learning

Regularization and bias/variance

Linear regression with regularization

$$\text{Model: } h_{\theta}(x) = \theta_0 + \underbrace{\theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4}_{m} \leftarrow J(\theta) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \underbrace{\frac{\lambda}{2m} \sum_{j=1}^m \theta_j^2}_{j=1} \leftarrow J(\theta)$$

Large λ ← → High bias (underfit)

 $\lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$

"Just right"

 \rightarrow Small λ High variance (overfit)

$$\rightarrow \lambda = 0$$

Choosing the regularization parameter λ

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

Choosing the regularization parameter λ

Model:
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

$$Try \lambda = 0 \leftarrow 1 \longrightarrow min T(0) \rightarrow 0'' \rightarrow T_{o}(0''')$$

1. Try
$$\lambda = 0 \leftarrow 1$$
 \longrightarrow min $J(\Theta) \rightarrow \Theta'' \rightarrow J_{ev}(\Theta''')$

2. Try $\lambda = 0.01$ \longrightarrow $J_{ev}(\Theta'')$

3. Try $\lambda = 0.02$ \longrightarrow $J_{ev}(\Theta''')$

4. Try $\lambda = 0.04$ \longrightarrow $J_{ev}(\Theta''')$

5. Try $\lambda = 0.08$

3. Try
$$\lambda = 0.02$$

4. Iry
$$\lambda = 0.04$$

$$ry \lambda = 0.08$$

$$ry \ \underline{\lambda = 10} \ \rightarrow \boxed{\omega(0^{(12)})}$$

Pick (say) $\theta^{(5)}$. Test error: $\mathcal{T}_{\mathsf{test}}(\mathbf{S}^{(5)})$

Bias/variance as a function of the regularization parameter $\,\lambda\,$

Andrew Ng

Advice for applying machine learning

Learning curves

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \leftarrow$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

If a learning algorithm is suffering from high variance, getting more training data is likely to help. \leftarrow

Advice for applying machine learning

Deciding what to try next (revisited)

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples -> fixe high vorione
- Try smaller sets of features -> Fixe high voice
- Try getting additional features -> free high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2, \text{etc})$ fine high bias.
- Try decreasing λ fixes high high
- Try increasing λ -> fixes high variance

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting) Computationally more expensive.

Use regularization (λ) to address overfitting.

