ĐẠI HỌC QUỐC GIA TP. HÒ CHÍ MINH TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

BÀI TẬP MÔN PHÂN TÍCH VÀ THIẾT KẾ THUẬT TOÁN

KHOA: KHOA HOC MÁY TÍNH

BÀI TẬP QUÁ TRÌNH BẮT BUỘC: QUY HOẠCH ĐỘNG VỚI KNAPSACK

GV hướng dẫn: Huỳnh Thị Thanh Thương

Nhóm thực hiện:

1. Trương Thành Thắng – 20521907

Knapsack

Bài toán:

Cho 4 đồ vật và một cái ba lô có thể đựng trọng lượng tối đa 10, mỗi đồ vật i có trọng lượng w_i và giá trị là p_i .

Chọn một cách lựa chọn các đồ vật cho vào túi sao cho trọng lượng không quá M và tổng giá trị là lớn nhất. Mỗi đồ vật hoặc là lấy đi hoặc là bỏ lại.

Item	1	2	3	4
Weight	4	5	3	2
Price	4	2	8	6

01.01 Phân tích đặc trưng optimal substructure và overlapping subproblem:

Gọi d[i][m] là giá trị tối đa ta có được sau khi đưa ra quyết định chọn hay không chọn đồ vật thứ i. Trong đó, m là tổng trọng lượng tối đa của túi có thể chứa được.

Mối quan hệ giữa các trạng thái:

$$d[i][m] = \max(d[i-1][m], v[i] + d[i-1][m-w[i]])$$

Khi đó, ta muốn d[i][m] đạt giá trị tối ưu, thì dĩ nhiên d[i-1][m], d[i-1][m-w[i]] phải tối ưu, một lời giải tối ưu chứa lời giải tối ưu của bài toán nhỏ hơn \Rightarrow đây là đặc trưng Optimal substructure. (1)

Bên cạnh đó, có thể sẽ xảy ra trường hợp như:

$$d[4][10] = \max(d[3][10], 4 + d[3][6])$$

$$d[4][6] = \max(d[3][6], 4 + d[3][2])$$
vói $w[4] = 4, v[4] = 4$

Ta thấy d[3][6] phải được giải lại nhiều lần \Rightarrow Đặc trưng Overlapping subproblems. (2)

Từ (1), (2) suy ra bài toán có thể giải bằng kỹ thuật Quy hoạch động.

01.02 Xác định phương trình Quy hoạch động:

Khi i = 0 (không có vật 0 nào để chọn cả) \Rightarrow giá trị túi là 0.

Khi m = 0 (túi không thể chứa vật nào cả) \Rightarrow giá trị túi là 0.

Phương trình Quy hoạch động:

$$d_{i,\,m} = \begin{cases} 0 & \text{n\~eu} \, i = 0 \, ho enticles m = 0 \\ \max \left(dp_{i-1,\,m}, \, v_i + dp_{i-1,\,m-w_i} \right) & \text{c\'on lại} \end{cases}$$

01.03 Tạo bảng và lưu trữ kết quả của các bài toán con khi giải lần đầu:

i∖m	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	4	4	4	4	4	4	4
2	0	0	0	0	4	4	4	4	4	6	6
3	0	0	0	8	8	8	8	12	12	12	12
4	0	0	6	8	8	14	14	14	14	18	18

01.04 Xây dựng lời giải của bài toán ban đầu:

Tổng giá trị lớn nhất mà ta có thể lấy là: d[n][M] = d[4][10] = 18Phương án chọn đồ vật: 1 0 1 1 (chọn đồ vật thứ 1, 3, 4).

i∖m	0	1	2	3	4	5	6	7	8	9	10	
0	0	0 🔻	0	0	0	0	0 not equ	0	0	0	0	
1	0	0	0	0	4	yes 4	4	4	4	4	4	
2	0	0	0	0	4	^{no} 4	4	4	4	6 not equ	6	
3	0	0	0	8	8	8	8	12	yes 12	12	12	ן
4	0	0	6	8	8	14	14	14	14	18	ves 18	not eq