# Information Retrieval and Organisation

Dell Zhang

Birkbeck, University of London

2015/16

IR Chapter 05

# **Index Compression**

### Why Compression?

- Using less disk space (saves money)
- Caching: keep more stuff in memory (increases speed)
- Transferring data from disk to memory faster (again, increases speed)
  - ▶ It would be faster to "read compressed data and decompress" than "read uncompressed data"
  - Premise: decompression algorithms are fast
  - ► This is true of the decompression algorithms that we will use

#### Why Compression in IR?

- For dictionary,
  - Main motivation: make it small enough to keep in main memory
- For postings file,
  - Main motivation: reduce disk space needed; decrease time needed to read from disk
  - Large search engines keep significant part of postings in memory
- We will devise various compression schemes

#### Lossy vs Lossless Compression

- Lossless compression: preserve all information
- Lossy compression: discard some information
  - Several of the preprocessing steps can be viewed as lossy compression
    - eliminating numbers
    - casefolding
    - stop words
    - stemming
  - What can we gain with lossy compression?

### Preprocessing for Reuters

|                | (distinct) terms |            |     | non-positional<br>postings |            |     | tokens ( = number of position entries in postings) |            |     |
|----------------|------------------|------------|-----|----------------------------|------------|-----|----------------------------------------------------|------------|-----|
|                | number           | $\Delta\%$ | Т%  | number                     | $\Delta\%$ | Т%  | number                                             | $\Delta\%$ | T%  |
| unfiltered     | 484,494          |            |     | 109,971,179                |            |     | 197,879,290                                        |            |     |
| no numbers     | 473,723          | -2         | -2  | 100,680,242                | -8         | -8  | 179,158,204                                        | -9         | -9  |
| case folding   | 391,523          | -17        | -19 | 96,969,056                 | -3         | -12 | 179,158,204                                        | -0         | -9  |
| 30 stop words  | 391,493          | -0         | -19 | 83,390,443                 | -14        | -24 | 121,857,825                                        | -31        | -38 |
| 150 stop words | 391,373          | -0         | -19 | 67,001,847                 | -30        | -39 | 94,516,599                                         | -47        | -52 |
| stemming       | 322,383          | -17        | -33 | 63,812,300                 | -4         | -42 | 94,516,599                                         | -0         | -52 |

- Lossy compression can be problematic, e.g. phrase queries
- We will focus on lossless compression for the remainder of this chapter

#### Analysing the Term Vocabulary

- Given a collection size (the number of tokens)
  T, can we estimate the vocabulary size M?
- Yes, we can using Heaps' law:

$$M = kT^b$$

- ▶ k and b are two parameters, typically in the range of:  $30 \le k \le 100$  and  $b \approx 0.5$
- For Reuters-RCV1, k = 44 and b = 0.49, which predicts 38,323 (actual number is 38,365)

#### Heaps' Law for Reuters-RCV1



#### Heaps' Law

- Implications of Heaps' Law:
  - dictionary size keeps growing with more documents (no maximum will be reached)
  - dictionary sizes will be quite large for large collections
- Has been shown empirically for large collections
- Dictionary compression is important for efficiency

#### Dictionary Compression

- The dictionary is small compared to the postings file, but
  - we want to keep (most of) it in memory
  - there is competition with other applications for memory
  - small memory sizes for cell phones or onboard computers
  - we want fast startup time
- So compressing the dictionary is useful

#### Dictionary as Fixed-Width Array

|               | term     | document  | pointer to        |
|---------------|----------|-----------|-------------------|
|               |          | frequency | postings list     |
|               | а        | 656,265   | $\longrightarrow$ |
|               | aachen   | 65        | $\longrightarrow$ |
|               |          |           |                   |
|               | zulu     | 221       | $\longrightarrow$ |
| space needed: | 20 bytes | 4 bytes   | 4 bytes           |

Space for Reuters:

$$(20+4+4)*400,000 = 11.2 \text{ MB}$$

#### Dictionary as Fixed-Width Array

- ▶ This is a bad idea
  - Most of the bytes in the term column are wasted
    - 20 bytes are allotted for a term of length 1
  - We can't handle very long words, e.g., "hydrochlorofluorocarbons"
- The average length of a term in English: 8 characters
  - How can we use on average 8 characters per term?

#### Dictionary as a String



- Concatenate all terms into one big string (and use pointers in dictionary)
- Use binary search to find term

#### Dictionary as a String

- While this saves space, it is not very scalable
  - Once we run out of memory, we have to store (parts of) the dictionary on disk
  - Switching between main-memory and disk representation is awkward in this scheme
- We are going to look at prefix B-trees and some optimizations for them
  - ▶ NOTE: we deviate a bit from the textbook here

#### Prefix B-trees



- Only the leaves of the trees contain actual terms (+ frequency and postings pointer)
- Terms use variable space on page (every term preceded by length)
- Inner nodes use reference keys to separate pages, not actual terms

#### Prefix B-trees

- Compared to dictionary as a string, we replace the term pointers with inner nodes
- ► This will use slightly more memory, but allows for a much faster search
- B-trees are very good for disk-based indexing (if we run out of main memory)
- We can cache the most frequently used parts of the tree in main memory

#### Front Coding

- Many entries on a page share the same prefix
- We can exploit this by using front coding:
  - Ist number indicates how many letters to re-use from the beginning of previous word
  - 2nd number states how many letter to add to this
  - This is followed by the actual letters

| word       | front coding |
|------------|--------------|
| automata   | 0,8,automata |
| automate   | 7,1,e        |
| automatic  | 7,2,ic       |
| automation | 8,2,on       |
| automotive | 5,5,otive    |
| bat        | 0,3,bat      |

#### Postings Compression

- The postings file is much larger than the dictionary
  - factor of at least 10
- Key desideratum: store each posting compactly.
  - A posting for our purposes is a docID.
  - ► For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
  - ▶ Alternatively, we can use  $\log_2 800,000 \approx 20$  bits per docID.
  - Our goal: use a lot less than 20 bits per doclD.

#### Key Idea: Store Gaps

- Each postings list is ordered in the increasing order of docID
  - ▶ information, 8: ⟨ 3, 8, 12, 19, 22, 23, 26, 33 ⟩;
- It suffices to store gaps
  - ▶ information, 8: ⟨ 3, 5, 4, 7, 3, 1, 3, 7 ⟩;
- The gaps for frequent terms are small.
  - ► That means, we can encode small gaps with fewer than 20 bits.

# Gap Encoding

|                | encoding | postings lis | st     |        |     |        |   |        |  |
|----------------|----------|--------------|--------|--------|-----|--------|---|--------|--|
| the            | docIDs   |              |        | 283042 |     | 283043 |   | 283044 |  |
|                | gaps     |              |        |        | 1   |        | 1 |        |  |
| computer       | docIDs   |              |        | 283047 |     | 283154 |   | 283159 |  |
|                | gaps     |              |        |        | 107 |        | 5 |        |  |
| arachnocentric | docIDs   | 252000       |        | 500100 |     |        |   |        |  |
|                | gaps     | 252000       | 248100 |        |     |        |   |        |  |

- ► For rare terms, such as arachnocentric, gaps can be quite large
  - We still need 20 bits to encode them
- Solution: use variable length encoding
  - Few bits for small gaps
  - Many bits for large gaps

# Variable Byte (VB) Code

- Used by many commercial/research systems
- Good low-tech blend of variable-length coding and sensitivity to alignment matches (bit-level codes, see later).
  - Dedicate 1 bit (high bit) to be a continuation bit c.
  - ▶ If the gap G fits within 7 bits, binary-encode it in the 7 available bits and set c = 1.
  - ▶ Else: set c = 0, encode high-order 7 bits and then use one or more additional bytes to encode the lower order bits using the same algorithm.

#### **VB** Code Example

| doclDs  | 824               | 829      | 215406                     |
|---------|-------------------|----------|----------------------------|
| gaps    |                   | 5        | 214577                     |
| VB code | 00000110 10111000 | 10000101 | 00001101 00001100 10110001 |

- Instead of bytes, we can also use a different "unit of alignment"
  - ▶ 32 bits (words), 16 bits, 4 bits (nibbles) etc.
- Variable byte alignment wastes space if you have many small gaps
  - nibbles do better on those

#### Bit-Level Encoding

- You can get even more compression with bit-level code
  - These use variable length bit codes
  - Have to be prefix-free, i.e. no valid codeword is allowed to be the prefix of another (like phone numbers)
- We are going to look at *Unary Code* and *Gamma Code* (or  $\gamma$ -Code)

#### **Unary Code**

- Represent n as n 1s with a final 0
  - Unary code for 3 is 1110
- Only good for highly skewed data, i.e., very many very short gaps
- It is very inefficient for large numbers

### Gamma Code ( $\gamma$ -Code)

- How many bits do we need to store a gap?
  - ► 1=1 (1 bit), 2=10 (2 bits), 3=11 (2 bits), 5=101 (3 bits), 13=1101 (4 bits), ...
  - ▶ The number of bits to store n:  $1 + \log_2 \lfloor n \rfloor$
  - ► We don't have any gaps of 0, therefore 1 is the smallest number we have to encode
  - This means that we always have a leading 1
  - We can chop off the leading 1, and measure the length of the remaining bit-string: log<sub>2</sub> [n]
  - We call the remaining bitstring the offset
  - Example: 13 is 1101, chop off leading  $1 \rightarrow 101$ : length = 3, offset = 101

#### Gamma Code

- Gamma Code encodes
  - the length in unary code
  - the offset in the usual binary code
- So, for our example:
  - ▶ 13 has a gamma code of 1110101: 1110 for the length, 101 for the offset

#### More Code Examples

| number | unary code | length      | offset    | $\gamma$ code          |
|--------|------------|-------------|-----------|------------------------|
| 0      | 0          |             |           |                        |
| 1      | 10         | 0           |           | 0                      |
| 2      | 110        | 10          | 0         | 10,0                   |
| 3      | 1110       | 10          | 1         | 10,1                   |
| 4      | 11110      | 110         | 00        | 110,00                 |
| 9      | 1111111110 | 1110        | 001       | 1110,001               |
| 13     |            | 1110        | 101       | 1110,101               |
| 24     |            | 11110       | 1000      | 11110,1000             |
| 511    |            | 111111110   | 11111111  | 111111110,11111111     |
| 1025   |            | 11111111110 | 000000001 | 11111111110,0000000001 |

#### Comparison

- So, which code is better?
  - Here is a comparison for some typical document collections:

| method | bits per gap             |      |      |      |  |  |  |
|--------|--------------------------|------|------|------|--|--|--|
|        | Bible GNUBib Comact TREC |      |      |      |  |  |  |
| Unary  | 262                      | 909  | 487  | 1918 |  |  |  |
| Gamma  | 6.51                     | 5.68 | 4.48 | 6.63 |  |  |  |

- ▶ More details (+ another code, Delta Code) in:
  - ► I.H. Witten, A. Moffat und T.C. Bell, "Managing Gigabytes", Morgan Kaufmann, 1999

#### Comparison

- Machines have word boundaries: 8, 16, 32 bits
- Compressing and manipulating at individual bit-granularity
  - yields better compression
  - can slow down query processing
- Variable byte alignment is potentially more efficient to process
  - Regardless of efficiency, variable byte is conceptually simpler at little additional space cost

#### Summary

- We can now create an index for highly efficient Boolean retrieval that is very space efficient
  - Only 10-15% of the total size of the text in the collection
- However, we have ignored positional and frequency information
  - For this reason, space savings are less in reality
  - But similar techniques can be used to compress positional information