Dummit and Foote Abridged

Contents

Ι	Group Theory						
0	Pre 0.1	liminaries Basics	2				
1	Group Theory						
	1.1	Basic Axioms and Examples	3				
	1.6	Homomorphism and Isomorphisms	4				
	1.7	Group Actions	4				
2	Subgroups						
	2.1	Definition and Examples	4				
	2.2	Centralizers and Normalizers, Stabilizers and Kernels	5				
	2.3	Cyclic Groups and Cyclic Subgroups	5				
	2.4	Subgroups Generated by Subsets of a Group	6				
3	Quotient Groups and Homomorphisms						
	3.1	Definitions and Examples	6				
	3.2	More on Cosets and Lagrange's Theorem	8				
	3.3	The Isomorphism Theorems	9				
	3.4	Composition Series and the Hölder Program	10				
	3.5	Transpositions and the Alternating Group	10				
4	Group Actions						
	4.1	Group Actions and Permutation Representations	11				
	4.2	Group Acting on Themselves by Left Multiplication - Cayley's Theorem .	12				
	4.3	Groups Acting on Themselves by Conjugation - The Class Equation	13				
	4.4	Automorphisms	14				
	4.5	Sylow's Theorem	15				
	4.6	The Simplicity of A_n	16				
5	Direct and Semidirect Products and						
		Abelian Groups 16					
	5.1	Direct Products	16				
	5.2	The Fundamental Theorem of Finitely Generated Abelian Groups	17				
	5.3	Table of Groups of Small Order	19				
	5.4	Recognizing Direct Products	19				

	5.5	Semidirect Products	20			
6	Further Topics in Group Theory					
	6.1	p-Groups, Nilpotent Groups, and Solvable Groups	21			
	6.2	Applications in Groups of Medium Order	24			
	6.3	A word on Free Groups	24			
	ъ		25			
II	К	Theory	25			
7	Intr	roduction to Rings	25			
	7.1	Basic Definitions and Examples	25			
	7.2	Examples: Polynomial Rings, Matrix Rings, and Group Rings	26			
	7.3	Ring Homomorphisms and Quotient Rings	27			
	7.4	Properties of Ideals	28			
	7.5	Rings of Fractions	29			
	7.6	The Chinese Remainder Theorem	30			
8	Euclidean Domains, Principal Ideal Domains, and Unique Factorization					
	Dor	nains	30			
	8.1	Euclidean Domains	31			
	8.2	Principal Ideal Domains (P.I.D.s)	32			
	8.3	Unique Factorization Domains (U.F.D.s)	32			
9	Polynomial Rings					
	9.1	Definitions and Basic Properties	33			
	9.2	Polynomial Rings over Fields I	34			
	9.3	Polynomial Rings that are Unique Factorization Domains	34			
	9.4	Irreducibility Criteria	34			
	9.5	Polynomial Rings over Fields II	35			

Part I

Group Theory

0 Preliminaries

0.1 Basics

Proposition 1. Let $f: A \to B$.

- 1. The map f is injective if and only if f has a left inverse.
- 2. The map f is surjective if and only if f has a right inverse.
- 3. The map f is a bijection if and only if there exist $g: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.
- 4. If A and B are finite sets with the same number of elements the $f: A \to B$ is bijective if and only if f is injective if and only if f is surjective.

Proposition 2. Let A be a nonempty set.

- 1. If \sim defines an equivalence relation on A then the set of equivalence classes of \sim form a partition of A.
- 2. If $\{A_i \mid i \in I\}$ is a partition of A then there is an equivalence relation on A whose equivalence classes are precisely the sets $A_i, i \in I$

1 Group Theory

1.1 Basic Axioms and Examples

Definition.

- 1. A binary operation \star on a set G is a function \star : $G \times G \to G$. For any $a, b \in G$ we shall write $a \star b$ for $\star(a, b)$.
- 2. A binary operation \star on a set G is associative if for all $a, b, c \in G$ we have $a \star (b \star c) = (a \star b) \star c$.
- 3. If \star is a binary operation on a set G we say elements a and b of G commute if $a \star b = b \star a$. We say \star (or G) is commutative if for all $a, b \in G$, $a \star b = b \star a$.

Proposition 1. If G is a group under the operation \cdot , then

- 1. The identity of G is unique
- 2. for each $a \in G$, a^{-1} is uniquely determined
- 3. $(a^{-1})^{-1} = a$ for all $a \in G$
- 4. $(a \cdot b)^{-1} = (b^{-1}) \cdot (a^{-1})$

5. for any $a_q, a_2, \ldots, a_n \in G$ the value of $a_1 a_2 \cdots a_n$ is independent of how the expression is bracketed

Proposition 2. Let G be a group and let $a, b \in G$. The equations ax = b and ya = b have unique solutions for $x, y \in G$. In particular, the left and right cancellation laws hold in G, i.e.,

- 1. if au = av, then u = v, and
- 2. if ub = vb, then u = v.

Definition. For G a group and $x \in G$ define the *order* of x to be the smallest positive integer n such that $x^n = 1$, denoted |x|. If there is no such integer than we define the order of x to be infinity.

1.6 Homomorphism and Isomorphisms

Definition. Let (G, \star) and (H, \diamond) be groups. A map $\varphi \colon G \to H$ such that $\varphi(x \star y) = \varphi(x) \diamond \varphi(y)$, for all $x, y \in G$ is called a *homomorphism*. Moreover, if φ is bijective it is called an *isomorphism* and we say that G and H are *isomorphic* or of the same *isomorphism type*, written $G \cong H$.

Note. If $\varphi \colon G \to H$ is an isomorphism then

- 1. |G| = |H|
- 2. G is abelian if and only if H is abelian
- 3. for all $x \in G$, $|x| = |\varphi(x)|$

1.7 Group Actions

Definition. A group action of a group G on a set A is a map from $G \times A$ to A (written as $g \cdot a$, for all $g \in G$ and $a \in A$) satisfying the following properties:

- 1. $g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a$, for all $g_1, g_2 \in G$, $a \in A$, and
- 2. $1 \cdot a = a$ for all $a \in A$.

Note. Let the group G act on the set A. From each fixed $g \in G$ we get a map σ_g defined by

$$\sigma_g \colon A \to A$$

$$\sigma_g(a) = g \cdot a.$$

The following are true

- 1. for each fixed $g \in G$, σ_q is a permutation of A, and
- 2. the map from G to S_A defined by $g \mapsto \sigma_g$ is a homomorphism. Moreover this map is called the *permutation representation* associated to the given action.

Note. As a consequence of the above remark, if $\varphi \colon G \to S_A$ is a homomorphism (here S_A is the symmetric group on the set A), then the map from $G \times A$ to A defined by

$$g \cdot a = \varphi(g)(a)$$
 for all $g \in G$, and all $a \in A$

is a group action of G on A.

2 Subgroups

2.1 Definition and Examples

Definition. Let G be a group. The subset H of G is a *subgroup* of G if H is nonempty and H is closed under products and inverse (i.e, $x, y \in H$ implies $x \in H$ and $xy \in H$). If H is a subgroup of G we shall write $H \leq G$.

Proposition 1. (The Subgroup Criterion) A subset H of a group G is a subgroup if and only if

- 1. $H \neq \emptyset$, and
- 2. for all $x, y \in H, xy^{-1} \in H$

2.2 Centralizers and Normalizers, Stabilizers and Kernels

Let G be a group and A a nonempty subset of G.

Definition. The centralizer of A in G is $C_G(A) = \{g \in G \mid gag^{-1} = a \text{ for all } a \in A\}$. Note that this is the set of elements of G which commute with every element of A. Note that $C_g(A) \leq G$.

Definition. The *center* of G is the set $Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$. Note that, $Z(G) = C_G(G)$, thus $Z(G) \leq G$.

Definition. Define $gAg^{-1} = \{gag^{-1} \mid a \in A\}$. The normalizer of A in G is the set $N_G(A) = \{g \in G \mid gAg^{-1} = A\}$. Note that, $C_G(A) \leq N_G(A) \leq G$.

2.3 Cyclic Groups and Cyclic Subgroups

Definition. A group H is *cyclic* if H can be generated by a single element, i.e, there exist some $x \in H$ such that $H = \{x^n \mid n \in \mathbb{Z}\}$ when using multiplicative notation and $H = \{nx \mid n \in \mathbb{Z}\}$ when using additive notation. In either case we write $H = \langle x \rangle$.

Proposition 2. If $H = \langle x \rangle$, then |H| = |x|. Moreover,

- 1. if $|H| = n < \infty$, then $x^n = 1$ and $1, x, x^2, \dots, x^{n-1}$ are all distinct elements of H, and
- 2. if $|H| = \infty$, then $x^n \neq 1$ for all $n \neq 0$ and $x^a \neq x^b$ for all $a \neq b \in \mathbb{Z}$.

Proposition 3. Let G be an arbitrary group, $x \in G$ and let $m, n \in \mathbb{Z}$. If $x^n = 1$ and $x^m = 1$ then $x^d = 1$ where d = (m, n). In particular, if $x^m = 1$ for some $m \in \mathbb{Z}$ then |x| divides m.

Theorem 4. Any two cyclic groups of the same order are isomorphic. Moreover,

1. if $n \in \mathbb{Z}^+$ and $\langle x \rangle$ and $\langle y \rangle$ are both cyclic groups of order n, then the map

$$\varphi \colon \langle x \rangle \to \langle y \rangle$$
$$x^k \mapsto y^k$$

is well defined and is an isomorphism

2. if $\langle x \rangle$ is an infinite cyclic group, the map

$$\varphi \colon \mathbb{Z} \to \langle x \rangle$$
$$k \mapsto x^k$$

is well defined and is an isomorphism

Proposition 5. Let G be a group, let $x \in G$ and let $a \in \mathbb{Z} - \{0\}$.

- 1. If $|x| = \infty$, then $|x^a| = \infty$.
- 2. If $|x| = n < \infty$, then $|x^a| = \frac{n}{(n,a)}$.
- 3. In particular, if $|x| = n < \infty$ and a is a positive integer dividing n, then $|x^a| = \frac{n}{a}$.

Proposition 6. Let $H = \langle x \rangle$.

- 1. Assume $|x| = \infty$. Then $H = \langle x^a \rangle$ if and only if $a = \pm 1$.
- 2. Assume $|x| = n < \infty$. Then $H = \langle x^a \rangle$ if and only if (a, n) = 1. In particular, the number of generators of H is $\varphi(n)$ (where φ is Euler's φ -function)

Theorem 7. Let $H = \langle x \rangle$ be a cyclic group.

- 1. Every subgroup of H is cyclic. More precisely, if $K \leq H$, then either $K = \{1\}$ or $K = \langle x^d \rangle$, where d is the smallest positive integer such that $x^d \in K$.
- 2. If $|H| = \infty$, then for any distinct nonnegative integers a and b, $\langle x^a \rangle \neq \langle x^b \rangle$. Furthermore, for every integer m, $\langle x^m \rangle = \langle x^{|m|} \rangle$, where |m| denotes the absolute value of m, so that the nontrival subgroups of H correspond bijectively with the integers $1, 2, 3, \ldots$
- 3. If $|H| = n < \infty$, then for each positive integer a dividing n there is a unique subgroup of H of order a. This subgroup is the cyclic group $\langle x^d \rangle$, where $d = \frac{n}{a}$. Furthermore, for every integer m, $\langle x^m \rangle = \langle x^{(n,m)} \rangle$, so that the subgroups of H correspond bijectively with the positive divisors of n.

2.4 Subgroups Generated by Subsets of a Group

Proposition 8. If \mathcal{A} is any nonempty collection of subgroups of G, then the intersection of all members of \mathcal{A} is also a subgroup of G.

Definition. If A is any subset of the group G define

$$\langle A \rangle = \bigcap_{\substack{A \subseteq H \\ H \leq G}} H.$$

This is called the subgroup of G generated by A.

Note. $\langle A \rangle = \{a_1^{\epsilon_1} a_2^{\epsilon_2} \dots a_n^{\epsilon_n} \mid n \in \mathbb{Z}, n \geq 0 \text{ and } a_i \in A, \epsilon_i = \pm 1 \text{ for each } i\}.$

3 Quotient Groups and Homomorphisms

3.1 Definitions and Examples

Definition. If φ is a homomorphism $\varphi \colon G \to H$, the *kernel* of φ is the set

$$\{g \in G \mid \varphi(g) = 1\}$$

and will be denoted by $\ker \varphi$ (here 1 is the identity of H).

Proposition 1. Let G and H be groups and let $\varphi \colon H \to H$ be a homomorphism.

- 1. $\varphi(1_G) = 1_H$, where 1_G and 1_H are the identities of G and H, respectively.
- 2. $\varphi(g^{-1}) = \varphi(g)^{-1}$ for all $g \in G$.
- 3. $\varphi(g^n) = \varphi(g)^n$ for all $n \in \mathbb{Z}$.
- 4. $\ker \varphi$ is a subgroup of G.
- 5. $\operatorname{im}\varphi$, the image of G under φ , is a subgroup of H.

Definition. Let $\varphi \colon G \to H$ be a homomorphism with kernel K. The quotient group or factor group, G/K (read G modulo K or simply G mod K), is the group whose elements are the fibers of φ with the following group operation: If X is the fiber above a and Y is the fiber above b then the product XY in G/K is defined to be the fiber above the product ab in G.

Proposition 2. Let $\varphi \colon G \to H$ be a homomorphism with kernel K. Let $X \in G/K$ be the fiber above a, i.e., $X = \varphi^{-1}(a)$. Then

- 1. For any $u \in X$, $X = \{uk \mid k \in K\}$
- 2. For any $u \in X$, $X = \{ku \mid k \in K\}$

Definition. For any $N \leq G$ and any $g \in G$ let

$$gN = \{gn \mid n \in N\} \text{ and } Ng = \{ng \mid n \in N\}$$

called respectively a *left coset* and a *right coset* of N in G. Any element of a coset is called a *representative* for the coset.

Theorem 3. Let G be a group and let K be the kernel of some homomorphism from G to another group. Then the set of whose elements are left cosets of K in G with operation defined by

$$uK \circ vK = (uv)K$$

forms a group, G/K. This operation is well defined and does not depend on the choice of representatives.

Proposition 4. Let N be any subgroup of the group G. The set of left cosets of N in G form a partition of G. Furthermore, for all $u, v \in G, uN = vN$ if and only if $v^{-1}u \in N$ and in particular, uN = vN if and only if u and v are representatives of the same coset.

Proposition 5. Let G be a group and let N be a subgroup of G.

1. The operation on the set of left cosets of N in G described by

$$uN \cdot vN = (uv)N$$

is well defined if and only if gng^{-1} for all $g \in G$ and all $n \in N$.

2. If the above operation is well defined, then it makes the set of left cosets of N in G into a group. In particular the identity of this group is the coset 1N and the inverse of gN is the coset g^{-1} , i.e, $(gN)^{-1} = g^{-1}N$.

Definition. The element gng^{-1} is called the *conjugate* of $n \in N$ by g. The set $gNg^{-1} = \{gng^{-1} \mid n \in N\}$ is called the *conjugate* of N by g. The element g is said to *normalize* N if $gNg^{-1} = N$. A subgroup N of a group G is called *normal* if every element of G normalizes N, i.e., if $gNg^{-1} = N$ for all $g \in G$. If N is a normal subgroup of G we shall write $N \subseteq G$.

Theorem 6. Let N be a subgroup of the group G. The following are equivalent:

- 1. $N \leq G$
- 2. $N_G(N) = G$ (recall $N_G(N)$ is the normalizer in G of N)
- 3. gN = Ng for all $g \in G$
- 4. the operation on left cosets of N in G described in Proposition 5 makes the set of left cosets into a group
- 5. $gNg^{-1} \subseteq N$ for all $g \in G$.

Proposition 7. A subgroup N of the group G is normal if and only if it is the kernel of some homomorphism.

Definition. Let $N \subseteq G$. The homomorphism $\pi: G \to G/N$ defined by $\pi(g) = gN$ is called the *natural projection (homomorphism)* of G onto G/N. If $\overline{H} \subseteq G/N$, then complete preimage of \overline{H} in G is the preimage of \overline{H} under the natural projection homomorphism.

3.2 More on Cosets and Lagrange's Theorem

Theorem 8. (Lagrange's Theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G and the number of left cosets of H in G equals $\frac{|G|}{|H|}$.

Definition. If G is a group and $H \leq G$, the number of left cosets of H in G is called the *index* of H in G and is denoted by |G:H|.

Corollary 9. If G is a finite group and $x \in G$, then the order of x divides the order of G. In particular, $x^{|G|} = 1$ for all x in G.

Corollary 10. If G is a group of prime order p, then G is cyclic, hence $G \cong \mathbb{Z}_p$ (note that this text uses \mathbb{Z}_n to denote the cyclic group of order n written in multiplicative notation and that given any $n \in \mathbb{Z}$, $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$).

Note. For finite abelian groups the full converse of Lagrange's theorem holds, that is the group has a subgroup of order n for each n that divides the order of the group.

Theorem 11. (Cauchy's Theorem) If G is a finite group and p is a prime dividing |G|, then G has an element of order p.

Theorem 12. (Sylow) If G is a finite group of order $p^{\alpha}m$, where p is a prime not dividing m, then G has a subgroup of order p^{α} .

Definition. Let H and K be subgroups of a group and define

$$HK = \{hk \mid h \in H, k \in K\}.$$

Proposition 13. If H and K are finite subgroups of a group then

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

Proposition 14. If H and K are subgroups of a group, HK is a subgroup if and only if HK = KH.

Note. HK = KH does not imply that the elements of H commute with the elements of K

Corollary 15. If H and K are subgroups of G and $H \leq N_G(K)$, then Hk is a subgroup of G. In particular, if $K \leq G$, Then $HK \leq G$ for any $H \leq G$ (Since if $K \leq G$, $N_G(k) = G$).

Definition. If A is any subset of $N_G(K)$ (or $C_G(K)$), we shall say A normalizes K (centralizes K, respectively).

3.3 The Isomorphism Theorems

Theorem 16. (The First Isomorphism Theorem) If $\varphi \colon G \to H$ is a homomorphism, then $\ker \varphi \subseteq G$ and $G/\ker \varphi \cong \varphi(G)$.

Corollary 17. Let $\varphi \colon G \to H$ be a homomorphism.

- 1. φ is injective if and only if $\ker \varphi = 1$.
- 2. $|G : \ker \varphi = |\varphi(G)|$.

Theorem 18. (The Second or Diamond Isomorphism Theorem) Let G be a group, let A and B be subgroups of G and assume $A \leq N_G(B)$. Then AB is a subgroup of G, $B \subseteq AB$, $A \cap B \subseteq A$, and $AB/B \cong A/A \cap B$.

Theorem 19. (The Third Isomorphism Theorem) Let G be a group and let H and K be normal subgroups of G with $H \leq K$. Then $K/H \subseteq G/H$ and

$$(G/H)/(K/H) \cong G/K$$
.

If we denote the quotient by H with a bar, this can be written

$$\overline{G}/\overline{K} \cong G/K$$
.

Theorem 20. (The Fourth or Lattice Isomorphism Theorem) Let G be a group and let N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of G which contains N onto the set of subgroups $\overline{A} = A/N$ of G/N. In particular, every subgroup of \overline{G} is of the form A/N for some subgroup A of G containing N (namely, its preimage in G under the natural projection homomorphism from G to G/N). This bijection has the following properties: for all $A, B \leq G$ with $N \leq A$ and $N \leq B$,

- 1. $A \leq B$ if and only if $\overline{A} \leq \overline{B}$,
- 2. if $A \leq B$, then $|B:A| = |\overline{B}:\overline{A}|$,
- 3. $\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$,
- 4. $\overline{A \cap B} = \overline{A} \cap \overline{B}$, and
- 5. $A \subseteq G$ if and only if $\overline{A} \subseteq \overline{G}$.

3.4 Composition Series and the Hölder Program

Proposition 21. If G is a finite abelian group and p is a prime dividing |G|, then G contains an element of order p.

Definition. A group G is called *simple* if |G| > 1 and the only normal subgroups of G are 1 and G.

Definition. In a group G a sequence of subgroups

$$1 = N_0 \le N_1 \le N_2 \le \ldots \le N_{k-1} \le N_k = G$$

is called a composition series if $N_i \leq N_{i+1}$ and N_{i+1}/N_i is a simple group, $0 \leq i \leq k-1$. If the above sequence is a composition series, the quotient groups N_{i+1}/N_i are called composition factors of G.

Theorem 22. (Jordan-Hölder) Let G be a finite group with $G \neq 1$. Then

- 1. G has a composition series and
- 2. The composition factors in a composition series are unique, namely, id $1 = N_0 \le N_1 \le \ldots \le N_r = G$ and $1 = M_0 \le M_1 \le \ldots \le M_s = G$ are two composition series for G, then r = s and there is some permutation, π , of $\{1, 2, \ldots, r\}$ such that

$$M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1}, \qquad 1 \le i \le r.$$

Theorem. There is a list consisting of 18 (infinite) families of simple groups and 26 simple groups not belonging to these families (the *sporadic* simple groups) such that every finite simple group is isomorphic to one of the groups in this list.

Theorem. (Feit-Thompson) If G is a simple group of odd order, then $G \cong \mathbb{Z}_p$ for some prime p.

Definition. A group G is *solvable* if there is a chain of subgroups

$$1 = G_0 \triangleleft G_1 \triangleleft \ldots \triangleleft G_s = G$$

such that G_{i+1}/G_i is abelian for $i=0,1,\ldots,s-1$.

Theorem. The finite group G is solvable if and only if for every divisor n of |G| such that $(n, \frac{|G|}{n}) = 1$, G has a subgroup of order n.

Note. If N and G/N are solvable, then so is G.

3.5 Transpositions and the Alternating Group

Definition. A 2-cycle is called a *transposition*.

Note. Every element of S_n may be written as a product of transpositions.

Definition. Let x_1, \ldots, x_n be independent variables and let Δ be the polynomial

$$\Delta = \prod_{1 \le i < j \le n} (x_i - x_j),$$

and for $\sigma \in S_n$ let σ act on Δ by

$$\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

One can show that for all $\sigma \in S_n$ that $\sigma(\Delta) = \pm \Delta$. Now define,

$$\epsilon(\sigma) = \begin{cases} +1 & \text{if } \sigma(\Delta) = \Delta \\ -1 & \text{if } \sigma(\Delta) = -\Delta. \end{cases}$$

Now,

- 1. $\epsilon(\sigma)$ is called the sign of σ and
- 2. σ is call an even permutation if $\epsilon(\sigma) = 1$ and an odd permutation if $\epsilon(\sigma) = -1$.

Proposition 23. The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism (where $\{\pm 1\}$ is a multiplicative version of the cyclic group of order 2).

Proposition 24. Transpositions are all odd permutations and ϵ is a surjective homomorphism.

Definition. The alternating group of degree n, denoted A_n , is the kernel of te homomorphism ϵ (i.e., the set of even permutations).

Note.

- 1. $|A_n| = \frac{1}{2}|S_n| = \frac{1}{2}(n!)$.
- 2. Due to ϵ being a homomorphism we get the rules

$$(even)(even) = (odd)(odd) = even$$

 $(even)(odd) = (odd)(even) = odd.$

3. An m-cycle is an odd permutation if and if only m is even

Proposition 25. The permutation σ is odd if and only if the number of cycles of even length in its cycle decomposition is odd.

Note. A_n is a non-abelian simple group for all $n \geq 5$.

4 Group Actions

4.1 Group Actions and Permutation Representations

Definition. Let G be a group acting on a set A

- 1. The *kernel* of the action is the set of elements of G that act trivially on every element of A: $\{g \in G \mid g \cdot a = a \text{ for all } a \in A\}$.
- 2. For each $a \in A$ the *stabilizer* of a in G is the set of elements of G that fix the element $a: \{g \in G \mid g \cdot a = a\}$ and is denoted by G_a .
- 3. An action is *faithful* if its kernel is the identity.

Note. The kernel pf an action is precisely the same as the kernel of the associated permutation representation as defined in the note in section 1.7 and is rephrased below.

Proposition 1. For any group G and any nonempty set A there is a bijection between the actions of G on A and the homomorphisms of G into S_A .

Definition. If G is a group a permutation representation of G into the symmetric group S_A for some nonempty set A. We shall say a given action of G on A affords or induces the associated representation of G.

Proposition 2. Let G be a group acting on the nonempty set A. the relation on A defined by

$$a \sim b$$
 if and only if $a = g \cdot b$ for some $g \in G$

is an equivalence relation. For each $a \in A$, the number of elements in the equivalence class containing a is $|G:G_a|$, the index of the stabilizer of a.

Definition. Let G be a group acting on the set A.

- 1. The equivalence class $\{g \mid g \in G\}$ is called the *orbit* of G containing a.
- 2. The action of G on A is called *transitive* if there is only one orbit, i.e., given any two elements $a, b \in A$ there is some $q \in G$ such that $a = q \cdot b$.

Note.

- 1. Every element of S_n has a unique cycle decomposition
- 2. Subgroups of symmetric groups are called *permutation groups*.
- 3. The orbits of a permutation group will refer to its orbits on $\{1, 2, \ldots, n\}$
- 4. The orbits of an element $\sigma \in S_n$ will refer to the orbits of the group $\langle \sigma \rangle$.

4.2 Group Acting on Themselves by Left Multiplication - Cayley's Theorem

Note. In this section G is any group and we first consider G acting on itself (i.e., A = G) by left multiplication:

$$g \cdot a = ga$$
 for all $g \in G, a \in G$

When G is a finite group of order n it is convenient to label the elements of G with the integers 1, 2, ..., n in order to describe the permutation representation afforded by this action. In this way the elements of G are listed as $g_1, g_2, ..., g_n$ and for each $g \in G$ the permutation σ_q may be described as a permutation of the indices 1, 2, ..., n as follows:

$$\sigma_q(i) = j$$
 if and only if $gg_i = g_j$.

Theorem 3. Let G be a group, let H be a subgroup and let G act by left multiplication on the set A of left cosets of H in G. Let π_H be the associated permutation representation afforded by this action. Then

- 1. G acts transitively on A
- 2. the stabilizer of G of the point $1H \in A$ us the subgroup H
- 3. the kernel of the action (i.e., the kernel of π_H) is $\cap_{x \in G} x H x^{-1}$, and $\ker \pi_H$ is the largest normal subgroup of g contained in H.

Corollary 4. (Cayley's Theorem) Every group is isomorphic to a subgroup of symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of S_n .

Corollary 5. If G is a finite group of order n and p is the smallest prime dividing |G|, then any subgroup of index p is normal (Note that a group of order n need not have a subgroup of order p).

4.3 Groups Acting on Themselves by Conjugation - The Class Equation

Note. In this section we consider a group G acting on itself by conjugation

$$g \cdot a = gag^{-1}$$
 for all $g \in G, a \in G$

Definition. Two elements a and a of G are said to be *conjugate* if G if there is some $g \in G$ such that $b = gag^{-1}$ (i.e., if and only if they are in some orbit of G acting on itself by conjugation). The orbits of G acting on itself by conjugation are called *conjugacy classes* of G.

Definition. Two subsets S and T of G are said to be *conjugate in* G if there is some $g \in G$ such that $T = gSg^{-1}$ (i.e., if and only if they are in the same orbit of G acting on its subsets by conjugation).

Proposition 6. The number of conjugates of a subset S in a group G is the index of the normalizer of S, $|G:N_G(S)|$. In particular, the number of conjugates of an element s of G is the index of the centralizer of s, $|G:C_q(s)|$.

Theorem 7. (The Class Equation) Let G be a finite group and let g_1, g_2, \ldots, g_r be representatives of the distinct conjugacy classes of G not contained in the center Z(G) of G. Then

$$|G| = |Z(G)| + \sum_{i=1}^{r} |G : C_G(g_i)|.$$

Theorem 8. If p is a prime and P is a group of prime order p^{α} for some $\alpha \geq 1$, then P has a nontrivial center: $Z(P) \neq 1$.

Proposition 9. Let σ, τ be elements of the symmetric group S_n and suppose σ has cycle decomposition

$$(a_1a_2\ldots a_{k_1})(b_1b_2\ldots b_{k_2})\ldots$$

Then $\tau \sigma \tau^{-1}$ has cycle decomposition

$$(\tau(a_1)\tau(a_2)\ldots\tau(a_{k_1}))(\tau(b_1)\tau(b_2)\ldots\tau(b_{k_2}))\ldots,$$

that is $\tau \sigma \tau^{-1}$ is obtained from σ by replacing each i in the cycle decomposition for σ by the entry $\tau(i)$.

Definition.

- 1. If $\sigma \in S_n$ is the product of disjoint cycles of length n_1, n_2, \ldots, n_r with $n_1 \leq n_2 \leq \ldots \leq n_r$ (including its 1-cycles) then the integers n_1, n_2, \ldots, n_r are called the *cycle* type of σ .
- 2. If $n \in \mathbb{Z}^+$, a partition of n is any nondecreasing sequence of positive integers whose sum is n.

Proposition 10. Two elements of S_n are conjugate in S_n if and only if they have the same cycle type. The number of conjugacy classes of S_n equals the number of partitions of n.

Theorem 11. A_5 is a simple group.

4.4 Automorphisms

Definition. Let G be a group. An isomorphism from G onto itself is called an *automorphism* of G. The set of all automorphisms of G is denoted Aut(G).

Note. Aut(G) is a group under composition.

Proposition 12. Let H be a normal subgroup of the group G. Then G acts by conjugation on H as automorphisms of H. More specifically, the action of G on H by conjugation is defined for each $g \in G$ by

$$h \mapsto ghg^{-1}$$
 for each $h \in H$.

For each $g \in G$, conjugation by g is an automorphism of H. The permutation representation afforded by this action is a homomorphism of G into Aut(H) with kernel $C_G(H)$. In particular, $G/C_G(H)$ is isomorphic to a subgroup of Aut(H).

Corollary 13. If K is any subgroup of the group G and $g \in G$, then $K \cong gKg^{-1}$. Conjugate elements and conjugate subgroups have the same order.

Corollary 14. For any subgroup H of a group G, the quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H). In particular, G/Z(G) is isomorphic to a subgroup of Aut(G).

Definition. Let G be a group and let $g \in G$. Conjugation by g is called an *inner automorphism* of G and the subgroup of Aut(G) consisting of all inner automorphisms is denoted Inn(G).

Definition. A subgroup H of a group G is called *characteristic* in G, denoted H char G, if every automorphism of G maps H to itself, i.e., $\sigma(H) = H$ for all $\sigma \in \text{Aut}(G)$.

Note.

- 1. Characteristic subgroups are normal,
- 2. if H is the unique subgroup of a given order, then H is characteristic in G, and
- 3. if K char H and $H \subseteq G$, then $K \subseteq G$.

Proposition 15. The automorphism group of the cyclic group of order n is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^{\times}$, an abelian group of order $\varphi(n)$ (where φ is Euler's function).

Proposition 16.

- 1. If p is an odd prime and $n \in \mathbb{Z}^+$, then the automorphism group of the cyclic group of order p is cyclic of order p-1. More generally, the automorphism group of the cyclic grup of order p^n is cyclic of order $p^{n-1}(p-1)$.
- 2. For all $n \geq 3$ the automorphism group of the cyclic group of order 2^n is isomorphic to $Z_2 \times Z_{2^{n-2}}$, and in particular is not cyclic but has a cyclic subgroup of index 2.
- 3. Let p be a prime and let V be an abelian group (written additively)with the property that pv = 0 for all $v \in V$. If $|V| = p^n$, then V is an n-dimensional vector space over the field $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. The automorphisms of V are precisely the nonsingular linear transformations from V to itself, that is

$$\operatorname{Aut}(V) \cong \operatorname{GL}(V) \cong \operatorname{GL}_n(\mathbb{F}_p).$$

In particular, the order of Aut(V) is given in section 1.4.

- 4. For all $n \neq 6$ we have $\operatorname{Aut}(S_n) = \operatorname{Inn}(S_n) \cong S_n$. For n = 6 we have $|\operatorname{Aut}(S_6) : \operatorname{Inn}(S_6)| = 2$.
- 5. $\operatorname{Aut}(D_8) \cong D_8$ and $\operatorname{Aut}(Q_8) \cong S_4$.

4.5 Sylow's Theorem

Definition. Let G be a group and let p be a prime.

- 1. A group of order p^{α} for some $\alpha \geq 0$ is called a *p-group*. Subgroups of G which are p-groups are called p-subgroups.
- 2. If G is a group of order $p^{\alpha}m$, where $p \nmid m$, then a subgroup of order p^{α} is called a Sylow p-subgroup of G.

3. The set of Sylow p-subgroups of G will be denoted $Syl_p(G)$ and the number of Sylow p-subgroups of G will be denoted by $n_p(G)$ (or just n_p when G is clear from context).

Theorem 17. (Sylow's Theorem) Let G be a group of order $p^{\alpha}m$, where p is a prime not dividing m.

- 1. Sylow p-subgroups of G exist, i.e., $Syl_p(G) \neq \emptyset$.
- 2. If P is a sylow p-subgroup of G and Q is any p-subgroup of G, then there exists $g \in G$ such that $Q \leq gPg^{-1}$, i.e., Q is contained in some conjugate of P. In particular, any two Sylow p-subgroups of G are conjugate in G.
- 3. The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,

$$n_p = 1 \pmod{p}$$
.

Further, n_p is the indec in G of the normalizer of $N_G(P)$ for any Sylow p-subgroup P, hence n_p divides m.

Lemma 18. Let $P \in Sly_p(G)$. If Q is any p-subgroup of G, then $Q \cap N_G(P) = Q \cap P$.

Corollary 19. Let P be a Sylow p-subgroup of G. Then the following are equivalent:

- 1. P is the unique Sylow p-subgroup of G, i.e., $n_p = 1$
- 2. P is normal in G
- 3. P is characteristic in G
- 4. All subgroups generated by elements of p-power order are p-groups, i.e., if X is any subset of G such that |x| is a power of p for all $x \in X$, then $\langle X \rangle$ is a p-group.

Proposition 20. If |G| = 60 and G has more than one Sylow 5-subgroups, then G is simple.

Corollary 21. A_5 is simple

Proposition 22. If G is a simple group of order 60, then $G \cong A_5$.

4.6 The Simplicity of A_n

Theorem 23. A_n is simple for all $n \geq 5$.

5 Direct and Semidirect Products and Abelian Groups

5.1 Direct Products

Definition.

1. The direct product $G_1 \times G_2 \times \cdots \times G_n$ of the groups G_1, G_2, \ldots, G_n with operations $\star_1, \star_2, \ldots, \star_n$, respectively, is the set of *n*-tuples (g_1, g_2, \ldots, g_n) where $g_i \in G_i$ with the operation defined componentwise:

$$(g_1, g_2, \dots, g_n) \star (h_1, h_2, \dots, h_n) = (g_1 \star_1 h_1, g_2 \star_2 h_2 \dots g_n \star_n h_n).$$

2. Similarly, the direct product $G_1 \times G_2 \times \cdots$ of the groups G_1, G_2, \ldots with operations \star_1, \star_2, \ldots , respectively, is the set of sequences (g_1, g_2, \ldots) where $g_i \in G_i$ with the operation defined componentwise:

$$(g_1, g_2, \ldots) \star (h_1, h_2, \ldots) = (g_1 \star_1 h_1, g_2 \star_2 h_2, \ldots).$$

Proposition 1. If G_1, \ldots, G_n are groups, their direct product is a group of order $|G_1||G_2|\cdots|G_n|$ (if any G_i is infinite, so is the direct product).

Proposition 2. Let G_1, G_2, \ldots, G_n be group and let $G = G_1 \times G_2 \times \cdots \times G_n$ be their direct product.

1. For each fixed i the set of elements of G which have the identity of G_j in the jth position for all $j \neq i$ and arbitrary elements of G_i in position i is a subgroup of G isomorphic G_i :

$$G_i \cong \{(1, 1, \dots, 1, g_i, 1, \dots, 1) \mid g_i \in G_i\},\$$

(here g_i appears in the i^{th} position). If we identity G_i with this subgroup, then $G_i \leq G$ and

$$G/G_i \cong G_1 \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_n$$
.

2. For each fixed i define $\pi_i : G \to G_i$ by

$$\pi_i((g_1, g_2, \dots, g_n)) = g_i.$$

Then π_i is a surjective homomorphism with

$$\ker \pi_i = \{ (g_1, g_2, \dots, g_{i-1}, 1, g_{i+1}) \mid g_j \in G_j \text{ for all } j \neq i \}$$

$$\cong G_1 \times \dots \times G_{i-1} \times G_{i+1} \times \dots \times G_n$$

(here 1 appears in position i).

3. Under the identifications in part 1, if $x \in G_i$ and $y \in G_j$ for some $i \neq j$, then xy = yx.

5.2 The Fundamental Theorem of Finitely Generated Abelian Groups

Definition.

- 1. A group G is finitely generated if there is some finite subset A of G such that $G = \langle A \rangle$.
- 2. For each $r \in \mathbb{Z}$ with $r \geq 0$ let $\mathbb{Z}^r = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of r copies of the group \mathbb{Z} , where $\mathbb{Z}^0 = 1$. The group \mathbb{Z}^r is called the *free abelian group* of order r.

Theorem 3. (The Fundamental Theorem of Finitely Generated Abelian Groups) Let G be a finitely generated abelian group. Then

1.

$$G \cong \mathbb{Z}^r \times Z_{n_1} \times Z_{n_2} \times \cdots \times Z_{n_s}$$

for some r, n_1, n_2, \ldots, n_s satisfying the following conditions:

- (a) $r \ge 0$ and $n_j \ge 2$ for all j, and
- (b) $n_{i+1} \mid n_i \text{ for all } 1 \le i \le s-1$
- 2. the expression in 1. is unique: if $G \cong \mathbb{Z}^t \times Z_{m_1} \times Z_{m_2} \times \cdots \times Z_{m_u}$, where t and m_1, m_2, \ldots, m_u satisfy (a) and (b), then t = r and $m_i = n_i$ for all i.

Definition. The integer r in Theorem 3 is called the *free rank* or *Betti number* of G and the integers n_1, n_2, \ldots, n_s are called the *invariant factors* of G. The description of G in Theorem 3(1) is called the *invariant factor decomposition* of G.

Note. There is a bijection between the set of isomorphism classes of finite abelian groups of order n and the set of integer sequences n_1, n_2, \ldots, n_s such that

- 1. $n_j \geq 2$ for all $j \in \{1, 2, \dots, s\}$,
- 2. $n_{i+1} \mid n_i, 1 \le i \le s-1$, and
- $3. \ n_1 n_2 \cdots n_s = n.$

Also notice that every prime divisor of n must be a divisor of n_1 due to (2).

Corollary 4. If n is the product of distinct primes, then up to isomorphism the only abelian group of order n is the cyclic group of order n, Z_n .

Theorem 5. Let G be an abelian group of order n > 1 and let the unique factorization of n into distinct prime powers be

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}.$$

Then

- 1. $G \cong A_1 \times A_2 \times \cdots \times A_k$, where $|A_i| = p_i^{\alpha_i}$
- 2. for each $A \in \{A_1, A_2, \dots, A_k\}$ with $|A| = p^{\alpha}$,

$$A \cong Z_{p^{\beta_1}} \times Z_{p^{\beta_2}} \times \dots \times Z_{p^{\beta_t}}$$

with $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_t \geq 1$ and $\beta_1 + \beta_2 + \ldots + \beta_t = \alpha$ (where t and $\beta_1, \beta_2, \ldots, \beta_t$ depend on i)

3. the decomposition in 1. and 2. is unique, i.e., if $G \cong B_1 \times B_2 \times \cdots \times B_m$, with $|B_i| = p_i^{\alpha_i}$ for all i, then $B_i \cong A_i$ and B_i and A_i have the same invariant factors.

Definition. The integers p^{β_j} described in the proceeding theorem are called the *elementary divisors* of G. The description of G in Theorem 5(1) and 5(2) is called the *elementary divisor decomposition* of G.

Note. For a group of order p^{β} the invariant factors will be $p^{\beta_1}, p^{\beta_2}, \dots, p^{\beta_t}$ such that

1. $\beta_j \ge 1$ for all $j \in \{1, 2, ..., t\}$,

2. $\beta_i \geq \beta_{i+1}$ for all i, and

3.
$$\beta_1 + \beta_2 + \ldots + \beta_t = \beta$$

Proposition 6. Let $m, n \in \mathbb{Z}^+$.

1. $Z_m \times Z_n \cong Z_{mn}$ if and only if (m, n) = 1.

2. If
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
 then $Z_n \cong Z_{p_1^{\alpha_1}} \times Z_{p_2^{\alpha_2}} \times \cdots \times Z_{p_k^{\alpha_k}}$.

5.3 Table of Groups of Small Order

Order	No. of Isomorphism Types	Abelian Groups	Non-abelian Groups
1	1	Z_1	none
2	1	Z_2	none
3	1	Z_3	none
4	2	$Z_4, Z_2 \times Z_2$	none
5	1	Z_5	none
6	2	Z_6	S_3
7	1	Z_7	none
8	5	$Z_8, Z_4 \times Z_2, Z_2 \times Z_2 \times Z_2$	D_8, Q_8
9	2	$Z_9, Z_3 \times Z_3$	none
10	2	Z_{10}	D_{10}
11	1	Z_{11}	none
12	5	$Z_{12}, Z_6 \times Z_2$	$A_4, D_{12}, Z_3 \rtimes Z_4$
13	1	Z_{13}	none
14	2	Z_{14}	D_{14}
15	1	Z_{15}	none
16	14	$Z_{16}, Z_8 \times Z_2, Z_4 \times Z_4,$ $Z_4 \times Z_2 \times Z_2,$ $Z_2 \times Z_2 \times Z_2 \times Z_2$	not listed
17	1	Z_{17}	none
18	5	$Z_{18}, Z_6 \times Z_3$	$D_{18}, S_3 \times Z_3, (Z_3 \times Z_3) \rtimes Z_2$
19	1	Z_{19}	none
20	5	$Z_{20}, Z_{10} \times Z_2$	$D_{20}, Z_5 \rtimes Z_4, F_{20}$

Note. The group F_{20} of order 20 has generators and relations

$$\langle x, y \mid x^4 = y^5 = 1, xyx^{-1} = y^2 \rangle.$$

This group is called the *Frobenius group* of order 20 and can be viewed as the subgroup $F_{20} = \langle (2354), (12345) \rangle$ of S_5 .

5.4 Recognizing Direct Products

Definition. Let G be a group, let $x, y \in G$ and let A, B be nonempty subsets of G.

- 1. Define $[x, y] = x^{-1}y^{-1}xy$, called the *commutator* of x and y.
- 2. Define $[A, B] = \langle [a, b] \mid a \in A, b \in B \rangle$, the group generated by commutators of elements of A and from B.
- 3. Define $G' = \langle [x,y] \mid x,y \in G \rangle$, the subgroup of G generated by commutators of elements from G, called the *commutator subgroup* of G.

Proposition 7. Let G be a group, let $x, y \in G$ and let $H \leq G$. Then

- 1. xy = yx[x, y] (in particular, xy = yx if and only if [x, y] = 1).
- 2. $H \triangleleft G$ if and only if $[H, G] \triangleleft H$.
- 3. $\sigma[x,y] = [\sigma(x),\sigma(y)]$ for any automorphism σ of G, G charG and G/G' is abelian
- 4. G/G' is the largest abelian quotient of G in the sense that if $H \subseteq G$ and G/H is abelian, then $G' \subseteq H$. Conversely, if $G' \subseteq H$, then $H \subseteq G$ and G/H is abelian.
- 5. If $\varphi \colon G \to A$ is any homomorphism of G into an abelian group A, then φ factors through G' i.e., $G' \leq \ker \varphi$ and the following diagram commutes:

Proposition 8. Let H and K be subgroups of the group G. The number of distinct ways of writing each element of the set HK in the form hk, for some $h \in H$ and $k \in K$ is $|H \cap K|$. In particular, if $H \cap K = 1$, then each element of HK can be written uniquely as the product hk, for some $h \in H$ and $k \in K$.

Theorem 9. Suppose G is a group with subgroups H and K such that

- 1. H and K are normal in G, and
- 2. $H \cap K = 1$.

Then $HK \cong H \times K$.

Note. The above conditions are simply the necessary conditions to ensure that the map

$$\varphi \colon HK \to H \times K$$
$$hk \mapsto (h, k)$$

is well defined and an isomorphism.

Definition. If G is a group and H and K are normal subgroups of G with $H \cap K = 1$, we call HK the *internal direct product* of H and K. We shall (when emphasis is called for) call $H \times K$ the *external direct product* pf H and K. (The distinction here is purely notational by Theorem 9).

5.5 Semidirect Products

Theorem 10. Let H and K be groups and let φ be a homomorphism from K into $\operatorname{Aut}(H)$. Let \cdot denote the (left) action of K on H determined by φ . Let G be the set of order pairs (h, k) with $h \in H$ and $k \in K$ and define the following multiplication on G:

$$(h_1, k_1)(h_2, k_2) = (h_1k_1 \cdot h_2, k_1k_2).$$

- 1. This multiplication makes G into a group of order |G| = |H||K|.
- 2. The sets $\{(h,1) \mid h \in H\}$ and $\{(1,k) \mid k \in K\}$ are subgroups of G and the maps $h \mapsto (h,1)$ for $h \in H$ and $k \mapsto (1,k)$ for $k \in K$ are isomorphisms of these subgroups with the groups H and K respectively;

$$H \cong \{(h,1) \mid h \in H\}$$
 and $K \cong \{(1,k) \mid k \in K\}$.

Identifying H and K with their isomorphic copies in G described in 2. we have

- 3. $H \triangleleft G$
- 4. $H \cap K = 1$
- 5. for all $h \in H$ and $k \in K$, $khk^{-1} = k \cdot h = \varphi(k)(h)$

Definition. Let H and K be groups and let φ be a homomorphism from K into $\operatorname{Aut}(H)$. The group described in Theorem 10 is called the *semidirect product* of H and K with respect to φ and will be denoted by $H \rtimes_{\varphi} K$ (when there is no danger of confusion we shall simply write $H \rtimes K$).

Proposition 11. Let H and K be groups and let $\varphi \colon K \to \operatorname{Aut}(H)$ be a homomorphism. Then the following are equivalent:

- 1. the identity (set) map between $H \rtimes K$ and $H \times K$ is a group homomorphism (hence and isomorphism)
- 2. φ is the trivial homomorphism from K into Aut(H)
- 3. $K \triangleleft H \rtimes k$.

Theorem 12. Suppose G is a group with subgroups H and K such that

- 1. $H \leq G$, and
- 2. $H \cap K = 1$.

Let $\varphi \colon K \to \operatorname{Aut}(H)$ be the homomorphism defined by mapping $k \in K$ to the automorphism of left conjugation by k on H. Then $HK \cong H \rtimes K$. In particular, if G = HK with H and K satisfying 1. and 2., then G is the semidirect product of H and K.

Definition. Let H be a subgroup of the group G. A subgroup K of G is called a *complement* for H in G if G = HK and $H \cap K = 1$.

Note. With the above terminology, the criterion for recognizing a semidirect product is simply that there must exist a complement for some proper normal subgroup of G.

6 Further Topics in Group Theory

6.1 p-Groups, Nilpotent Groups, and Solvable Groups

Definition. A maximal subgroup of a group G is a proper subgroup M of G such that there is no subgroups H of G with M < H < G.

Theorem 1. Let p be a prime and let P be a group of order p^a , $a \ge 1$. Then

- 1. The center of P is nontrivial: $Z(P) \neq 1$.
- 2. If H is a nontrivial normal subgroup of P then H contains a subgroup of order p^b that is normal in P for each divisor p^b of |H|. In particular, P has a normal subgroup of order p^b for every $b \in \{0, 1, \ldots, a\}$.
- 3. If H < P then $H < N_P(H)$ (i.e., every proper subgroup of P is a proper subgroup of its normalizer in P).
- 4. Every maximal subgroup of P is of index p and is normal in P.

Definition.

1. For any (finite or infinite) group G define the following subgroups inductively:

$$Z_0(G) = 1 \qquad Z_1(G) = Z(G)$$

and $Z_{i+1}(G)$ is the subgroup of G containing $Z_i(G)$ such that

$$Z_{i+1}(G)/Z_i(G) = Z(G/Z_i(G))$$

(i.e., $Z_{i+1}(G)$ is the complete preimage in G of the center of $G/Z_i(G)$ under the natural projection). The chain of subgroups

$$Z_0(G) < Z_1(G) < Z_2(G) < \dots$$

is called the upper central series of G. (The use of the term "upper" indicates that $Z_i(G) \leq Z_{i+1}(G)$.)

2. A group G is called *nilpotent* if $Z_c(G) = G$ for some $c \in \mathbb{Z}$. The smallest c is called the *nilpotence class* of G.

Note.

- 1. If G is abelian then it is nilpotent since $G = Z(G) = Z_1(G)$.
- 2. The following containments are proper

cyclic groups \subset abelian groups \subset nilpotent groups \subset solvable groups \subset all groups

3. For any finite group there must, by order considerations, be an integer n such that

$$Z_n(G) = Z_{n+1} = Z_{n+2} = \cdots$$
.

4. For infinite groups G it may happen that all $Z_i(G)$ are proper subgroups of G (so G is not nilpotent) but

$$G = \bigcup_{i=0}^{\infty} Z_i(G).$$

Proposition 2. Let p be a prime and let P be a group of order p^a . Then P is nilpotent of nilpotence class at most a-1 for all $a \ge 2$ (and class equal to a when a=0 or 1).

Theorem 3. Let G be a finite group, let p_1, p_2, \ldots, p_s be the distinct primes dividing its order and let $P_i \in Syl_{p_i}(G), 1 \le i \le s$. Then the following are equivalent:

- 1. G is nilpotent
- 2. if H < G then $H < N_G(H)$, i.e., every proper subgroup of G is a proper subgroup of its normalizer in G
- 3. $P_i \subseteq G$ for $1 \le i \le s$, i.e., every Sylow subgroup is normal in G
- 4. $G \cong P_1 \times P_2 \times \cdots \times P_s$.

Corollary 4. A finite abelian group is the direct product of its Sylow subgroups.

Proposition 5. If G is a finite group such that for all positive integers n dividing its order, G contains at most n elements x satisfying $x^n = 1$, then G is cyclic.

Proposition 6. (Frattini's Argument) Let G be a finite group, let H be a normal subgroup of G and let P be a Sylow p-subgroup of H. Then $G = HN_G(P)$ and |G: H| divides $|N_G(P)|$.

Proposition 7. A finite group is nilpotent if and only if every maximal subgroup is normal.

Definition. For any (finite or infinite) group G define the following subgroups inductively:

$$G^0=G, \qquad G^1=[G,G] \quad \text{and} \quad G^{i+1}=[G,G^i].$$

The chain of groups

$$G^0 \ge G^1 \ge G^2 \ge \dots$$

is called the lower central series of G. (The term "lower" indicates that $G^i \geq G^{i+1}$.)

Theorem 8. A group G is nilpotent if and only if $G^n = 1$ for some $n \geq 0$. More precisely, G is nilpotent of class c if and only if c is the smallest nonnegative integer such that $G^c = 1$. If G is nilpotent of class c then

$$G^{c-i} \le Z_i(G)$$
 for all $i \in \{0, 1, 2, \dots, c\}$.

Note.

- 1. If G is abelian, we have $G' = G^1 = 1$
- 2. If G is a finite group there must, by order considerations, be an integer n such that

$$G^n = G^{n+1} = G^{n+2} = \cdots.$$

Definition. For any group G define the following sequence of subgroups inductively:

$$G^{(0)} = G$$
, $G^{(1)} = [G, G]$, and $G^{(i+1)} = [G^{(i)}, G^{(i)}]$ for all $i \ge 1$.

This series of subgroups is called the *derived* or *commutator series* of G.

Theorem 9. A group G is solvable if and only if $G^{(n)} = 1$ for some $n \ge 0$.

Proposition 10. Let G and K be groups, let H be a subgroup of G and let $\varphi \colon G \to K$ be a surjective homomorphism.

- 1. $H^{(i)} \leq G^{(i)}$ for all $i \geq 0$. In particular, if G is solvable, then so is H, i.e., subgroups of solvable groups are solvable (and the solvable length of H is less than or equal to the solvable length of G).
- 2. $\varphi(G^{(i)}) = K^{(i)}$. In particular, homomorphic images and quotient groups of solvable groups are solvable (of solvable length less than or equal to that of the domain group).
- 3. If N is normal in G and both N and G/N are solvable then so is G.

Theorem 11. Let G be a finite group.

- 1. (Burnside) If $|G| = p^a q^b$ for some primes p and g, then G is solvable.
- 2. (Philip Hall) If for every prime p dividing |G| we factor the order of G as $|G| = p^a m$ where (p, m) = 1, and G has a subgroup of order m, then G is solvable (i.e., if for all primes p, G has a subgroup whose index equals the order of a Sylow p-subgroup, then G is solvable such subgroups are called Sylow p-complements).
- 3. (Feit-Thompson) If |G| is odd then G is solvable.
- 4. (Thompson) If for every pair of elements $x, y \in G$, $\langle x, y \rangle$ is a solvable group, then G is solvable.

6.2 Applications in Groups of Medium Order

Proposition 12.

- 1. If G has no subgroup of index 2 and $G \leq S_k$, then $G \leq A_k$.
- 2. If $P \in Syl_p(S_k)$ for some odd prime p, then $P \in Syl_p(A_k)$ and $|N_{A_k}(P)| = \frac{1}{2}|N_{S_k}(P)|$.

Lemma 13. In a finite group G is $n_p \not\equiv 1 \pmod{p^2}$, then there are distinct Sylow p-subgroups P and R of G such that $P \cap R$ is of index p in both P and R (hence is normal in each).

6.3 A word on Free Groups

Note. The way that a free group is defined is a bit involved and can be read on page 216

Theorem 16. F(S) is a group under the binary operation defined on page 216.

Theorem 17. Let G be a group, S a set and $\varphi \colon S \to G$ a set map. Then there is a unique group homomorphism $\Phi \colon F(S) \to G$ such that the following diagram commutes:

Corollary 18. F(S) is unique up to a unique isomorphism which is the identity map on the set S.

Definition. The group F(S) is called the *free group* on the set S. A group F is a *free group* if there is some set S such that F = F(S) — in this case we call S a set of *free generators* (or a *free basis*) of F. The cardinality of S is called the *rank* of the free group.

Theorem 19. (Schreier) Subgroups of a free group are free.

Definition. Let S be a subset of a group G such that $G = \langle S \rangle$.

- 1. A presentation for G is a pair (S,R), where R is a set of words in F(S) such that the normal closure of $\langle R \rangle$ in F(S) (the smallest normal subgroup containing $\langle R \rangle$) equals the kernel of the homomorphism $\pi \colon F(S) \to G$ (where π extends the identity map from S to S). The elements of S are called generators and those of R are called relations of G.
- 2. We say that G is *finitely generated* if there is a presentation (S, R) such that S is a finite set and we say G is *finitely presented* if there is a presentation (S, R) with both S and R finite sets.

Part II

Ring Theory

7 Introduction to Rings

7.1 Basic Definitions and Examples

Definition.

- 1. A ring R is a set together with two binary operations + and \times (called addition and multiplication) satisfying the following axioms:
 - (a) (R, +) is an abelian group,
 - (b) \times is associative: $(a \times b) \times c = a \times (b \times c)$ for all $a, b, c \in R$,

(c) the distributive laws hold in R: for all $a, b, c \in R$,

$$(a+b) \times c = (a \times c) + (b \times c)$$
 and $a \times (b+c) = (a \times b) + (a \times c)$.

- 2. The ring R is *commutative* if multiplication is commutative.
- 3. The ring R is said to have an *identity* (or *contain a* 1) if there is an element $1 \in R$ with

$$1 \times a = a \times 1 = a$$
 for all $a \in R$.

Note.

- 1. We shall write ab rather than $a \times b$ for $a, b \in R$.
- 2. The additive identity of R will be denoted by 0
- 3. The additive of an element a will be denoted -a.

Note. $R = \{0\}$ is called the *zero ring*, denoted R = 0. R = 0 is the only ring where 1 = 0. We will often exclude this ring by imposing the condition $1 \neq 0$.

Definition. A ring R with identity $1 \neq 0$, is called a *division ring* (or *skew field*) if every nonzero element $a \in R$ has a multiplicative inverse, i.e., there exists $b \in R$ such that ab = ba = 1. A commutative division ring is called a *field*.

Proposition 1. Let R be a ring. Then

- 1. 0a = a0 = 0 for all $a \in R$.
- 2. (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- 3. (-a)(-b) = ab for all $a, b \in R$.
- 4. If R has an identity 1, then the identity is unique and -a = -1(a).

Definition. Let R be a ring

- 1. A nonzero element a of R is called a zero divisor if there is a nonzero element b of R such that either ab = 0 or ba = 0.
- 2. Assume R has an identity $1 \neq 0$. An element u of R is called a *unit* in R if there is some v in R such that vu = uv = 1. The set of units in R is denoted R^{\times} .

Note.

- 1. R^{\times} forms a group under multiplication and will be referred to as the *group of units* of R.
- 2. Using the above terminology a field is a commutative ring F with identity $1 \neq 0$ in which every nonzero element is a unit, i.e., $F^{\times} = F \{0\}$.

Definition. A commutative ring with identity $1 \neq 0$ is called an *integral domain* if it has no zero divisors.

Proposition 2. Assume a, b and c are elements of any ring with a not a zero divisor. If ab = ac then either a = 0 or b = c (i.e., if $a \neq 0$ we can cancel the a's). In particular, if a, b, c are elements in an integral domain and ab = ac, then either a = 0 or b = c.

Corollary 3. Any finite integral domain is a field.

Definition. A subring of the ring R is a subgroup of R that is closed under multiplication.

Note. To show that a subset of a ring R is a subring it is enough to show that it is nonempty and closed under subtraction and under multiplication.

7.2 Examples: Polynomial Rings, Matrix Rings, and Group Rings

Proposition 4. Let R be an integral domain and let p(x), q(x) be nonzero elements of R[x]. Then

- 1. $\operatorname{degree} p(x)q(x) = \operatorname{degree} p(x) + \operatorname{degree} q(x),$
- 2. The units of R[x] are just the units of R,
- 3. R[x] is an integral domain.

7.3 Ring Homomorphisms and Quotient Rings

Definition. Let R and S be rings.

- 1. A ring homomorphism is a map $\varphi \colon R \to S$ satisfying
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$ (so φ is a group homomorphism on the additive groups) and
 - (b) $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$.
- 2. The kernel of the ring homomorphism φ , denoted $\ker \varphi$, is the set of elements of R that map to 0 in S. (i.e., the kernel of φ viewed as a homomorphism of additive groups).
- 3. A bijective ring homomorphism is called an *isomorphism*.

Proposition 5. Let R and S be rings and let $\varphi \colon R \to S$ be a homomorphism.

- 1. The image of φ is a subring of S.
- 2. The kernel of φ is a subring of R. Furthermore, if $\alpha \in \ker \varphi$ then $r\alpha$ and $\alpha r \in \ker \varphi$ for every $r \in R$, i.e., $\ker \varphi$ is closed under multiplication by elements from R.

Definition. Let R be a ring, let I be a subset of R and let $r \in R$.

- 1. $rI = \{ra \mid a \in I\}$ and $Ir = \{ar \mid a \in I\}$.
- 2. A subset I of R is a left Ideal of R if
 - (a) I is a subring of R, and

- (b) I is closed under left multiplication by elements of R, i.e., $rI \subseteq I$ for all $r \in R$. Similarly I is a *right ideal* if (a) holds and in place of (b) one has
- (b)' I is closed under right multiplication by elements from R, i.e., $Ir \subseteq I$ for all $r \in R$.
- 3. A subset I that is both a left ideal and a right ideal is called an *ideal* (or, for added emphasis, a *two-sided ideal*) of R.

Proposition 6. Let R be a ring and let I be an ideal of R. Then the (additive) quotient group R/I is a ring under the binary operations:

$$(r+I) + (s+I) = (r+s) + I$$
 and $(r+I) \times (s+I) = (rs) + I$

for all $r, s \in R$. Conversely, if I is any subgroup such that the above operations are well defined, then I is an ideal of R.

Definition. When I is an ideal of R the ring R/I with the operations in the previous proposition us called the *quotient ring* of R by I.

- **Theorem 7.** 1. (The First Isomorphism Theorem for Rings) If $\varphi \colon R \to S$ is a homomorphism of rings, then the kernel of φ is an ideal of R, the image of φ is a subring of S and $R/\ker \varphi$ is isomorphic as a ring to $\varphi(R)$.
 - 2. If I is any ideal of R, then the map

$$R \to R/I$$
 defined by $r \mapsto r + I$

is a surjective ring homomorphism with kernel I (this homomorphism is called the *natural projection* of R onto R/I). Thus every ideal is the kernel of a ring homomorphism and vice versa.

Theorem 8. Let R be a ring.

- 1. (The Second Isomorphism Theorem for Rings) Let A be a subring and let B be an ideal of R. Then $A+B=\{a+b\mid a\in A,b\in B\}$ is a subring of R, $A\cap B$ is an ideal of A and $(A+B)/B\cong A/(A\cap B)$.
- 2. (The Third Isomorphism Theorem for Rings) Let I and J be ideals of R with $I \subseteq J$. Then J/I is an ideal of R/I and $(R/I)/(J/I) \cong R/J$.
- 3. (The Fourth or Lattice Isomorphism Theorem for Rings) Let I be an ideal of R. The correspondence $A \leftrightarrow A/I$ is an inclusion preserving bijective between the set of subrings A of R that contain I and the set of subrings of R/I. Furthermore, A (a subring containing I) is an ideal of R if and only if A/I is an ideal of R/I.

Definition. Let I and J be ideals of R.

- 1. Define the sum of I and J by $I + J = \{a + b \mid a \in I, b \in J\}$.
- 2. Define the *product* of I and J, denoted by IJ, to be the set of all finite sums of elements of the form ab with $a \in I$ and $b \in J$.
- 3. For any $n \geq 1$, define the n^{th} power of I, denoted I^n , to be the set consisting of all finite sums of elements of the form $a_1a_2\cdots a_n$ with $a_i\in I$ for all i. Equivalently, I^n is defined inductively by defining $I^1=I$ and $I^n=II^{n-1}$ for $n=2,3,\ldots$

7.4 Properties of Ideals

Throughout this section R is a ring with identity $1 \neq 0$.

Definition. Let A be any subset of the ring R.

- 1. Let (A) denote the smallest ideal of R containing A, called the ideal generated by A.
- 2. Let RA denote the set of all finite sums of elements of the form ra with $r \in R$ and $a \in A$ i.e., $RA = \{r_1a_2 + r_2a_2 + \ldots + r_na_n \mid r_i \in R, a_i \in A, n \in \mathbb{Z}^+\}$ (where the convention is RA = 0 if $A = \emptyset$).

Similarly, $AR = \{a_1r_2 + a_2r_2 + \ldots + a_nr_n \mid r_i \in R, a_i \in A, n \in \mathbb{Z}^+\}$ and $RAR = \{r_1a_2r'_1 + r_2a_2r'_2 + \ldots + r_na_nr'_n \mid r_i, r'_i \in R, a_i \in A, n \in \mathbb{Z}^+\}$

- 3. An ideal generated by a single element is called a principal ideal.
- 4. An ideal generated by a finite set is called a *finitely generated ideal*.

Note. When $A = \{a\}$ or $\{a_1, a_2, \ldots\}$, etc. we shall simply write (a) or (a_1, a_2, \ldots) for (A), respectively.

Note.

1. Analogous to subgroups generated by subsets of a group (section 2.4), we have

$$(A) = \bigcap_{\substack{I \text{ an ideal} \\ A \subset I}} I$$

- 2. RAR is the ideal generated by A.
- 3. If R is commutative then RA = AR = RAR = (A).

Proposition 9. Let I be an ideal of R.

- 1. I = R if and only if I contains a unit.
- 2. Assume R is commutative. Then R is a field if and only if its only ideals are 0 and R.

Corollary 10. If R is a field then any nonzero ring homomorphism from R into another ring is an injection.

Definition. An ideal M is an arbitrary ring S is called a maximal ideal if $M \neq S$ and the only ideals containing M are M and S, i.e., there is no ideal I such that $M \subsetneq I \subsetneq S$.

Proposition 11. In a ring with identity every proper ideal is contained in a maximal ideal.

Proposition 12. Assume R is commutative. The ideal M is maximal if and only if the quotient ring R/M is a field.

Definition. Assume R is commutative. An ideal P is called a *prime ideal* if $P \neq R$ and whenever the product ab of two elements $a, b \in R$ is an element of P, then at least one of a and b is an element of P.

Proposition 13. Assume R is commutative. Then the ideal P is a prime ideal in R if and only if the quotient ring R/P is an integral domain.

Corollary 14. Assume R is commutative. Every maximal ideal of R is a prime ideal.

7.5 Rings of Fractions

Theorem 15. Let R be a commutative ring. Let D be any nonempty subset of R that does not contain 0, does not contain any zero divisors, and is closed under multiplication (i.e., $ab \in D$ for all $a, b \in D$). Then there is a commutative ring Q with 1 such that Q contains R as a subring and every element of D is a unit in Q. The ring Q has the following additional properties.

- 1. Every element of Q is of the form rd^{-1} for some $r \in R$ and $d \in D$. In particular, if $D = R \{0\}$ then Q is a field.
- 2. (uniqueness of Q) The ring Q is the "smallest" ring containing R in which all elements of D becomes units, in the following sense. Let S be any commutative ring with identity and let $\varphi \colon R \to S$ be any injective ring homomorphism such that $\varphi(d)$ is a unit in S for every $d \in D$. Then there is an injective homomorphism $\Phi \colon Q \to S$ such that $\Phi|_R = \varphi$. In other words, any ring containing an isomorphic copy of R in which all elements of D become units must also contain an isomorphic copy of Q.

Definition. Let R, D and Q be as in Theorem 15.

- 1. The ring Q is called the *ring of Fractions* of D with respect to R and is denoted $D^{-1}R$.
- 2. If R is an integral domain and $D = R \{0\}$, Q is called the *field of fractions* or quotient field of R.

Note. If A is a subset of a field F, then the intersection of all the subfields of F containing A is a subfield of F and is called the *subfield generated by* A.

Corollary 16. Let R be an integral domain and let Q be the field of fractions of R. If a field F contains a subring R' isomorphic to R then the subfield of F generated by R' is isomorphic to Q.

7.6 The Chinese Remainder Theorem

Assume unless otherwise stated that all rings are commutative with identity $1 \neq 0$.

Definition. The ideals A and B of the ring R are said to be *comaximal* if A + B = R.

Theorem 17. (Chinese Remainder Theorem) Let A_1, A_2, \ldots, A_k be ideals in R. The map

$$R \to R/A_1 \times R/A_2 \times \cdots \times R/A_k$$
 defined by $r \mapsto (r + A_1, r + A_2, \dots, r + A_k)$

is a ring homomorphism with kernel $A_1 \cap A_2 \cap ... \cap A_k$. If for each map $i, j \in \{1, 2, ..., K\}$ with $i \neq j$ the ideals A_i and A_j are comaximal, then this map is surjective and $A_1 \cap A_2 \cap ... \cap A_k = A_1 A_2 \cdots A_k$, so

$$R/(A_1A_2\cdots A_k)=R/(A_1\cap A_2\cap\ldots\cap A_k)\cong R/A_1\times R/A_2\times\cdots\times R/A_k$$

Corollary 18. Let n be a positive integer and let $p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ be its factorization into powers of distinct primes. Then

$$\mathbb{Z}/n\mathbb{Z} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z}) \times (\mathbb{Z}/p_2^{\alpha_2}\mathbb{Z}) \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z}),$$

as rings, so in particular we have the following isomorphism of multiplicative groups:

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_2^{\alpha_2}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{\alpha_k}\mathbb{Z})^{\times}.$$

8 Euclidean Domains, Principal Ideal Domains, and Unique Factorization Domains

All rings in this chapter are commutative

8.1 Euclidean Domains

Definition. Any function $N: R \to \mathbb{Z}^+ \cup \{0\}$ with N(0) = 0 is called a *norm* on the integral domain R. If N(a) > 0 for $a \neq 0$ define N to be a *positive norm*.

Definition. The integral domain R is said to be a *Euclidean Domain* (or possess a *Division Algorithm*) if there is a norm N on R such that for any two elements a and b of R with $b \neq 0$ there exist elements q and r in R with

$$a = qb + r$$
 with $r = 0$ or $N(r) < N(b)$.

The element q is called the *quotient* and the element r the *remainder* of the division.

Proposition 1. Every ideal in a Euclidean Domain is principal. More precisely, if I is any nonzero ideal in the Euclidean Domain R then I = (d), where d is any nonzero element of I of minimal norm.

Definition. Let R be a commutative ring and let $a, b \in R$ with $b \neq 0$.

- 1. a is said to be a *multiple* of b if there exists an element $x \in R$ with a = bx. In this case b is said to *divide* a or be a divisor of a, written b|a.
- 2. A greatest common divisor of a and b is a nonzero element d such that
 - (a) d|a and d|b, and
 - (b) if d'|a and d'|b then d'|d.

A greatest common divisor of a and b will be denoted by g.c.d(a, b), or (abusing the notation) simply (a, b)

Note.

- 1. b|a in R if and only if $a \in (b)$ if and only if $(a) \subseteq (b)$.
- 2. The above definition of greatest common divisor can be restated in terms of ideals as such. If I is the ideal of R generated by a and b, then d is a greatest common divisor of a and b if
 - (a) I is contained in the principal ideal (d), and
 - (b) if (d') is any principal ideal containing I then $(d) \subseteq (d')$.

Proposition 2. If a and b are nonzero elements in the commutative ring R such that the ideal generated by a and b is a principal ideal (d), then d is a greatest common divisor of a and b.

Proposition 3. Let R be an integral domain. If two elements d and d' of R generate the same principal ideal, i.e., (d) = (d'), then d' = ud for some unit u in R. In particular, if d and d' are both greatest common divisors of a and b, then d' = ud for some unit u.

Theorem 4. Let R be a Euclidean Domain and let a and b be nonzero elements of R. Let $d = r_n$ be the last nonzero remainder in the Euclidean Algorithm for a and b. Then

- 1. d is a greatest common divisor of a and b, and
- 2. the principal ideal (d) is the ideal generated by a and b. In particular, d can be written as an R-linear combination of a and b, i.e., there are elements x and y in R such that

$$d = ax + by$$
.

8.2 Principal Ideal Domains (P.I.D.s)

Definition. A *Principal Ideal Domain* (P.I.D) is an integral domain in which every ideal is principal.

Note. By Proposition 1 every Euclidean Domain is a Principal Ideal Domain. So every result about P.I.D.s automatically holds for Euclidean Domains.

Proposition 6. Let R be a Principal Ideal Domain and let a and b be nonzero elements of R. Let d be a generator for the principal ideal generated by a and b. Then

- 1. d is a greatest common divisor of a and b
- 2. d can be written as an R-linear combination of a and b
- 3. d is unique up to multiplication by a unit of R.

Proposition 7. Every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal.

Corollary 8. If R is any commutative ring such that the ring R[x] is a Principal Ideal Domain (or Euclidean Domain), then R is necessarily a field.

Definition. Define N to be a *Dedekind-Hasse norm* if N is a positive norm and for every nonzero $a, b \in R$ either a is an element of the ideal (b) or there is a nonzero element of the ideal (a, b) of norm strictly smaller then the norm of b (i.e., either b divides a in R or there exist $s, t \in R$ with 0 < N(sa - tb) < N(b)).

Proposition 9. The integral domain R is a P.I.D if and only if R has a Dedekind-Hasse norm.

8.3 Unique Factorization Domains (U.F.D.s)

Definition. Let R be an integral domain.

- 1. Suppose $r \in R$ is nonzero and is not a unit. Then r is called *irreducible* in R if whenever r = ab with $a, b \in R$, at least one of a or b must be a unit in R. Otherwise r is said to be reducible.
- 2. The nonzero element $p \in R$ is called *prime* in R if the ideal (p) generated by p is a prime ideal. In other words, a nonzero p is prime if it is not a unit and whenever p|ab for any $a, b \in R$, then either p|a or p|b.

3. Two elements a and b of R differing by a unit are said to be associate in R (i.e., a = ub for some unit u in R).

Proposition 10. In an integral domain a prime element is always irreducible.

Proposition 11. In a Principal Ideal Domain a nonzero element is a prime if and only if it is irreducible.

Definition. A Unique Factorization Domain (U.F.D.) is an integral domain R in which every nonzero element $r \in R$ which is not a unit has the following two properties:

- 1. r can be written as a finite product of irreducibles p_i in R (not necessarily distinct): $r = p_1 p_2 \cdots p_n$ and
- 2. the decomposition in 1. is unique up to associates: namely if $r = q_1 q_2 \cdots q_m$ is another factorization of r into irreducibles, then m = n and there is some renumbering of factors so that p_i is associate to q_i for i = 1, 2, ..., n.

Proposition 12. In a Unique Factorization Domain a nonzero element is a prime if and only if it is irreducible.

Proposition 13. Let a and b be two nonzero elements of the Unique Factorization Domain R and suppose

$$a = up_1^{e_1}p_2^{e_2}\cdots p_n^{e_n}$$
 and $b = vp_1^{f_1}p_2^{f_2}\cdots p_n^{f_n}$

are prime factorizations for a and b, where u and v are units and the primes p_1, p_2, \ldots, p_n are distinct and the exponents e_i and f_i are ≥ 0 . Then the element

$$d = p_1^{\min(e_1, f_1)} p_2^{\min(e_2, f_2)} \cdots p_n^{\min(e_n, f_n)}$$

(where d = 1 if all exponents are 0) is the greatest common divisor of a and b.

Theorem 14. Every Principal Ideal Domain is a Unique Factorization Domain. In particular, every Euclidean Domain is a Unique Factorization Domain.

Corollary 15. (Fundamental Theorem of Arithmetic) The integers \mathbb{Z} are a Unique Factorization Domain.

Corollary 16. Let R be a P.I.D. Then there exists a multiplicative Dedekind-Hasse norm on R.

Note. We have the following inclusions among classes of commutative rings with identity:

 $fields \subset Euclidean\ Domains \subset P.I.D.s \subset U.F.D.s \subset integral\ domains$

with all containments being proper.

9 Polynomial Rings

In this chapter the ring R will always be a commutative ring with identity $1 \neq 0$.

9.1 Definitions and Basic Properties

Proposition 1. Let R be an integral domain. Then

- 1. degree p(x)q(x) = degree p(x) + degree q(x) if p(x), q(x) are nonzero
- 2. the units of R[x] are just the units of R
- 3. R[x] is an integral domain.

Proposition 2. Let I be an ideal of the ring R and let (I) = I[x] denote the ideal of R[x] generated by I (the set of polynomials with coefficients in I). Then

$$R[x]/(I) \cong (R/I)[x].$$

In particular, if I is a prime ideal of R then (I) is a prime ideal of R[x]

Definition. The polynomial ring in variables x_1, x_2, \ldots, x_n with coefficients in R, denoted $R[x_1, x_2, \ldots, x_n]$ is defined inductively by

$$R[x_1, x_2, \dots, x_n] = R[x_1, x_2, \dots, x_{n-1}][x_n].$$

9.2 Polynomial Rings over Fields I

Theorem 3. Let F be a field. The polynomial ring F[x] is a Euclidean Domain. Specifically, if a(x) and b(x) are two polynomials in F[x] with b(x) nonzero, then there are unique q(x) and r(x) in F[x] such that

$$a(x) = q(x)b(x) + r(x)$$
 with $r(x) = 0$ or degree $r(x) < degree b(x)$.

Corollary 4. If F is a field, then F[x] is a Principal Ideal Domain and a Unique Factorization Domain.

9.3 Polynomial Rings that are Unique Factorization Domains

Proposition 5. (Gauss' Lemma) Let R be a Unique Factorization Domain with field of fractions F and let $p(x) \in R[x]$. If p(x) is reducible in F[x] then p(x) is reducible in R[x]. More precisely, if p(a) = A(x)B(x) for some nonconstant polynomials $A(x), B(x) \in F[x]$, then there are nonzero elements $r, s \in F$ such that rA(x) = a(x) and sB(x) = b(x) both lie in R[x] and p(x) = a(x)b(x) is a factorization in R[x].

Corollary 6. Let R be a Unique Factorization Domain, let F be its field of fractions and let $p(x) \in R[x]$. Suppose the greatest common divisor of the coefficients of p(x) is 1. Then p(x) is irreducible in R[x] if and only if it is irreducible in F[x]. In particular, if p(x) is a monic polynomial that is irreducible in R[x], then p(x) is irreducible in F[x].

Theorem 7. R is a Unique Factorization Domain if and only if R[x] is a Unique Factorization Domain.

Corollary 8. If R is a Unique Factorization Domain, then a polynomial ring in an arbitrary number of variables with coefficients in R is also a Unique Factorization Domain.

9.4 Irreducibility Criteria

Proposition 9. Let F be a field and let $p(x) \in F[x]$. Then p(x) has a factor of degree one if and only if p(x) has a root in F, i.e., there is an $\alpha \in F$ with $p(\alpha) = 0$.

Proposition 10. A polynomial of degree two or three over a field F is reducible if and only if it has a root in F.

Proposition 11. Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ be a polynomial of degree n with integer coefficients. If $r/s \in \mathbb{Q}$ is in lowest terms (i.e., r and s are relatively prime integers) and r/s is a root of p(x), then r divides the constant term and s divides the leading coefficient of p(x): $r|a_0$ and $s|a_n$. In particular, If p(x) is a monic polynomial with integer coefficients and $p(d) \neq 0$ for all integers d dividing the constant term of p(x), then p(x) has no roots in \mathbb{Q} .

Proposition 12. Let I be a proper ideal in the integral domain R and let p(x) be a nonconstant monic polynomial in R[x]. If the image of p(x) in (R/I)[x] cannot be factored in (R/I)[x] into two polynomials of smaller degree, then p(x) is irreducible in R[x].

Proposition 13. (Eisenstein's Criterion) Let P be a prime ideal of the integral domain R and let $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0$ be a polynomial in R[x] (here $n \ge 1$). Suppose a_{n-1}, \ldots, a_0 are all elements of P and suppose a_0 is not an element of P^2 . Then f(x) is irreducible in R[x].

Corollary 14. (Eisenstein's Criterion for $\mathbb{Z}[x]$) Let p be a prime in \mathbb{Z} and let $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{Z}[x], n \geq 1$. Suppose p divides a_i for all $i \in \{0, 1, \ldots, n-1\}$ but that p^2 does not divide a_0 . Then f(x) is irreducible in both $\mathbb{Z}[z]$ and $\mathbb{Q}[x]$.

9.5 Polynomial Rings over Fields II

Let F be a field.

Proposition 15. The maximal ideal of F[x] are the ideals (f(x)) generated by irreducible polynomials f(x). In particular, F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Proposition 16. Let g(x) be a nonconstant monic element of F[x] and let

$$g(x) = f_1(x)^{n_1} f_2(x)^{n_2} \cdots f_k(x)^{n_k}$$

be its factorization into irreducibles, where the $f_i(x)$ are distinct. Then we have the following isomorphism of rings:

$$F[x]/(g(x)) \cong F[x]/(f_1(x)^{n_1}) \times F[x]/(f_2(x)^{n_2}) \times \cdots \times F[x]/(f_k(x)^{n_k}).$$

Proposition 17. If the polynomial f(x) has roots $\alpha_1, \alpha_2, \dots \alpha_k$ in F (not necessarily distinct), then f(x) has $(x - \alpha_1) \cdots (x - \alpha_k)$ as a factor. In particular, a polynomial of degree n in one variable over a field F has at most n roots in F, even counted with multiplicity.

Proposition 18. A finite subgroup of the multiplicative group of a field is cyclic. In particular, if F is a finite field, then the multiplicative group F^{\times} of nonzero elements of F is a cyclic group.

Corollary 19. Let p be a prime. The multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ of nonzero residue classes mod p is cyclic.

Corollary 20. Let $n \geq 2$ be an integer with factorization $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ in \mathbb{Z} , where p_1, \ldots, p_r are distinct primes. We have the following isomorphisms of (multiplicative) groups

- 1. $(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{\alpha_1}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_2^{\alpha_2}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_r^{\alpha_r}\mathbb{Z})^{\times}$
- 2. $(\mathbb{Z}/2^{\alpha}\mathbb{Z})^{\times}$ is the direct product of a cyclic group of order 2 and a cyclic group of order $2^{\alpha-2}$, for all $\alpha \geq 2$
- 3. $(\mathbb{Z}/p^{\alpha}\mathbb{Z})^{\times}$ is a cyclic group of order $p^{\alpha-1}(p-1)$, for all odd primes p.