Karl Ivan Meneses Project: Predicting Default Risk

Project: Creditworthiness

Step 1: Business and Data Understanding

Key Decisions:

Answer these questions

• What decisions needs to be made?

The key business decision is to determine the creditworthiness of new loan applicants using a Binary Classification Model.

• What data is needed to inform those decisions?

We will use the data on all past applicants (*credit-data-training.xlsx*) to create and train the model. Afterwards, the data on new customers will be scored using the created classification model to determine which applicants are creditworthy (*customers-to-score.xlsx*).

• What kind of model (Continuous, Binary, Non-Binary, Time-Series) do we need to use to help make these decisions?

We will use a Binary Classification Model since we will predict if a new customer is *Creditworthy* or *Non-Creditworthy*.

Step 2: Building the Training Set

• In your cleanup process, which fields did you remove or impute? Please justify why you removed or imputed these fields. Visualizations are encouraged.

Karl Ivan Meneses Project: Predicting Default Risk

Removed Fields:

• Duration-in-Current-address: 69% of values are missing data.

• Guarantors, Foreign-Worker, No-of-dependents: The following fields are heavily skewed towards one type of data (low variability).

- *Concurrent-Credits, Occupation*: The following fieds have data that is entirely uniform and there is no other variations of the data.
- *Telephone*: There is no logical reason for including this field as advised.

Imputed Field: Age-years has 2% missing data and has been imputed using the median.

Step 3: Train your Classification Models

- Which predictor variables are significant or the most important? Please show the p-values or variable importance charts for all of your predictor variables.
- Validate your model against the Validation set. What was the overall percent accuracy? Show the confusion matrix. Are there any bias seen in the model's predictions?

Karl Ivan Meneses

Project: Predicting Default Risk

Logistic Regression Model

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.9621914	6.837e-01	-4.3326	1e-05 ***
Account.BalanceSome Balance	-1.6053228	3.067e-01	-5.2344	1.65e-07 ***
Credit.Amount	0.0001704	5.733e-05	2.9716	0.00296 **
Instalment.per.cent	0.3016731	1.350e-01	2.2340	0.02549 *
Length.of.current.employment4-7 yrs	0.3127022	4.587e-01	0.6817	0.49545
Length.of.current.employment< 1yr	0.8125785	3.874e-01	2.0973	0.03596 *
Most.valuable.available.asset	0.2650267	1.425e-01	1.8599	0.06289 .
Payment.Status.of.Previous.CreditPaid Up	0.2360857	2.977e-01	0.7930	0.42775
Payment.Status.of.Previous.CreditSome Problems	1.2154514	5.151e-01	2.3595	0.0183 *
PurposeNew car	-1.6993164	6.142e-01	-2.7668	0.00566 **
PurposeOther	-0.3257637	8.179e-01	-0.3983	0.69042
PurposeUsed car	-0.7645820	4.004e-01	-1.9096	0.05618.

The significant predictor variables for the Logistic Regression Model are [Account.Balance], [Credit.Amount], [Instalment.per.cent], [Length.of.current.employment], [Most.valuable.available.asset], [Payment.Status.of.Previous.Credit], and [Purpose].

Fit and error me	asures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
LR_Stepwise	0.7600	0.8364	0.7306	0.8762	0.4889
Confusion matrix of LR_Stepwise					
				Actual_Creditworthy	Actual_Non-Creditworthy
	Predicted_	Creditworth	У	92	23
	Predicted_Non-	Creditworth	У	13	22

The Logistic Regression Model's overall percent accuracy is 76%. It leans towards predicting new applicants as creditworthy than not. The model's Positive Predictive Value (PPV) is 0.80 while the Negative Predictive Value (NPV) is 0.63.

Decision Tree

The significant predictor variables for the Decision Tree Model are [Account.Balance], [Duration.of.Credit.Month], and [Credit.Amount].

Project: Predicting Default Risk

The Decision Tree Model's overall accuracy is 67%. There are more actual non-creditworthy that are predicted creditworthy compared to actual creditworthy predicted non-creditworthy. The model's Positive Predictive Value (PPV) is 0.75 while the Negative Predictive Value (NPV) is 0.45.

Forest Model

Based on the Forest Model's Variable Importance Plot, the significant predictor variables are [Credit.Amount], [Age.years], and [Duration.of.Credit.Month].

Project: Predicting Default Risk

Fit and error r	neasures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
forest_tree	0.8133	0.8793	0.7422	0.9714	0.4444
Confusion ma	trix of forest_tre	е			
				Actual Creditworthy	Actual Non-Creditworthy
Predicted_Creditworthy		102	25		
Predicted_Non-Creditworthy		3	20		

The Forest Model's overall accuracy is 81% and is higher to all the tested models' accuracy. Its Positive Predictive Value (PPV) is 0.80 while the Negative Predictive Value (NPV) is 0.87. This model has little to no bias in its predictions as it has one of the least differences in NPV and PPV values.

Boosted Model

Based on the Boosted Model's Variable Importance Plot, the significant predictor variables are [Credit.Amount] and [Account.Balance].

Fit and erro	r measures				
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
boosted	0.7867	0.8632	0.7490	0.9619	0.3778
Confusion n	natrix of boosted	d			
Comación	nutrix of boosto			Ashard Cooding of the	Adval No. Coding the
				Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy			worthy	101	28
Predicted_Non-Creditworthy			worthy	4	17

The Boosted Model's overall accuracy is 79%. There are more actual non-creditworthy that are predicted creditworthy compared to actual creditworthy predicted non-creditworthy. The model's Positive Predictive Value (PPV) is 0.78 while the Negative Predictive Value (NPV) is 0.81.

Karl Ivan Meneses Project: Predicting Default Risk

Step 4: Writeup

- Which model did you choose to use? Please justify your decision using **all** of the following techniques. Please only use these techniques to justify your decision:
 - Overall Accuracy against your Validation set

Fit and error measures					
Model	Accuracy	F1	AUC	Accuracy_Creditworthy	Accuracy_Non-Creditworthy
logistic_regression	0.7800	0.8520	0.7314	0.9048	0.4889
decision_tree	0.6733	0.7721	0.6296	0.7905	0.4000
forest tree	0.8133	0.8793	0.7422	0.9714	0.4444
boosted_model	0.7867	0.8632	0.7490	0.9619	0.3778

Among all the models evaluated with the estimation and validation data, the Forest Tree Model has the highest overall accuracy (81%). This is followed by the Boosted Model (79%), Logistic Regression Model (78%), and Decision Tree Model (67%). Further, the Forest Tree Model's accuracy for predicting creditworthy applicants is 97%.

O Accuracies within "Creditworthy" and "Non-Creditworthy" segments

- /100011010100 1111111111 011011111	,	0
Confusion matrix of boosted_model		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	101	28
Predicted_Non-Creditworthy	4	17
Confusion matrix of decision_tree		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	93	26
Predicted_Non-Creditworthy	12	19
Confusion matrix of forest_tree		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	102	25
Predicted_Non-Creditworthy	3	20
Confusion matrix of logistic_regression		
	Actual_Creditworthy	Actual_Non-Creditworthy
Predicted_Creditworthy	95	23

The Forest Tree Model correctly predicted the most creditworthy applicants (102) compared to the other models. It also predicted the least non-creditworthy applicants (3) that are actual creditworthy.

o ROC graph

The Forrest Tree Model has the highest true positive rates among all models.

Bias in the Confusion Matrices

The Forest Tree Model reduces the possibility or risk of over fitting data since it uses multiple decision trees at random compared to a single decision tree.

• How many individuals are creditworthy?

Based on the score of new customers, there are **412** creditworthy loan applicants.

Alteryx Workflow

Sum_Score_Creditworthy	Sum_Score_Non-Creditworthy
412	88