

University Timetabling

Curriculum-based Course Timetabling using ALNS and Tabu Search

DTU Compute

Department of Applied Mathematics and Computer Science

The Meta Heuristics

• Tabu Search: good for large neighborhood

• ALNS: good for highly constrained problem

Operations

Initialization

all missing courses in random order

all available slots in random order

Mon	Tue	Mon	Wen	Fri	Mon	Tue
1	2	2	2	1	2	1
R1	R2	R2	R2	R2	R1	R1


```
\begin{aligned} & \textbf{for all } c \text{ in courses } \textbf{do} \\ & \textbf{for } i \text{ from 1 to Length}(slots) \textbf{ do} \\ & (t,r) \leftarrow \text{PopRight}(slots) \end{aligned} \\ & \triangleright \text{ add } (c,t,r) \text{ to solution if it improves the objective} \\ & \Delta \leftarrow \text{SimulateAdd}(c,t,r) \\ & \textbf{ if } \Delta < 0 \textbf{ then} \\ & \text{MutateAdd}(c,t,r) \\ & \textbf{ break} \end{aligned} \\ & \textbf{ else} \\ & \text{PushLeft}((t,r) \text{ on } slots) \\ & \triangleright \text{ The slot is still avaliable} \end{aligned}
```


Algorithm 4 Generalization of the Tabu search algorithm

```
1 function TabuSearch(solution<sub>init</sub>)
                                                                       ▷ Globally best solution
        s_{qlobal} \leftarrow solution_{init}
        s_{local} \leftarrow solution_{init}
                                                                              ▷ Current solution
        tabu \leftarrow \text{LimitedSet}()
                                                                     ▶ May have infinite space
 6
        repeat
             \Delta, move \leftarrow \text{LocalSearch}(s_{local}, tabu)
                                                                      \triangleright Find best move \notin tabu
             if \Delta < 0 then
                 s_{local} \leftarrow \text{Apply}(move \text{ on } s_{local})
                 Add(Opposite(move) \text{ on } tabu)
10
11
                 if s_{qlobal} hasn't been updated for awhile then
12
                      s_{local} \leftarrow \text{Intensify}(s_{qlobal})
                                                                   ▶ Intensification is optional
13
                 s_{local} \leftarrow \text{Divserify}(s_{local})
                                                                  ▷ Diversification is optional
14
             if Cost(s_{local}) < Cost(s_{global}) then
15
                 s_{global} \leftarrow s_{local}
16
        until no more time
17
        return s_{global}
18
```

name	type	description
diversification	integer	How many $(course, time, room)$ combi-
		nations should be removed. May be
		zero to disable diversification.
intensification	integer	Same as in the generalized tabu search.
tabu limit	integer	This parameter controls the tabu limit
		of all the tabu lists.
allow swap	$\{always,$	If always the swap neighborhood is al-
	dynamic,	ways checked. If $never$ the swap neigh-
	never	borhood is never checked. Additionally
		if dynamic, the swap neighborhood is
		only checked if none of the other oper-
		ations could reduce the objective.

Table 3: Parameters for specialized Tabu search

name	type	description	
diversification	integer	How many $(course, time, room)$ combi-	
		nations should be removed. May be	
		zero to disable diversification.	
intensification	integer	Same as in the generalized tabu search.	
tabu limit	integer	This parameter controls the tabu limit	
		of all the tabu lists.	
allow swap	{always,	If always the swap neighborhood is al-	
	dynamic,	ways checked. If never the swap neigh-	
	never}	borhood is never checked. Additionally	
		if dynamic, the swap neighborhood is	
		only checked if none of the other oper-	
		ations could reduce the objective.	

Table 3: Parameters for specialized Tabu search

	parameter	search space	value
-	allow swap	{never, always, dynamic}	dynamic
	tabu limit	$\{10, 20, 40, \infty\}$	40
	intensification	$\{2, 10, \infty\}$	10
	diversification	$\{0, 1, 5\}$	5

Table 9: Best Tabu search parameters with $\mu = 4.139$ and $\sigma = 0.122$

		intensification		
		2	10	∞
		(4.90, 0.52)	(5.36, 0.37)	(5.53, 0.71)
diversification	1	(5.07, 0.97)	(5.34, 0.17)	(5.29, 0.63)
	5	(5.19, 0.41)	(4.14, 0.12)	(5.06, 0.77)

Table 7: Shows (μ, σ) with allow_swap=dynamic and tabu_limit=40 fixed

		tabu_limit			
		10	20	40	∞
	never	(5.53, 0.70)	(5.91, 0.89)	(6.52, 0.60)	(5.93, 0.43)
allow_swap	always	(9.12, 0.18)	(8.77, 0.26)	(9.16, 0.87)	(8.82, 0.44)
	dynamic	(5.52, 0.69)	(5.10, 0.59)	(4.14, 0.12)	(5.45, 0.27)

Table 8: Shows (μ, σ) with diversification=5 and intensification=10 fixed

Destroy

- Fully Random Remove random combinations
- Curriculum Only sample from a random curriculum
- Day Only sample from a random day
- Course Only sample from a random course

Repair

- Very Greedy Insert missing courses at the first placement with Λ < 0.
- Best Placement For each course sort placement by Δ, then add the requested amount.

In this case there are no invalid destroy or repair methods.

```
\Psi = \max\{w_{global}, w_{current}\}
```

Algorithm 6 Generalization of the ALNS search algorithm

```
1 function ALNSSEARCH(solution<sub>init</sub>)
                                                                                   ▷ Globally best solution
          s_{qlobal} \leftarrow solution_{init}
          s_{local} \leftarrow solution_{init}
                                                                                            ▷ Current solution
         p^+, p^- \leftarrow \text{vector of 1s}
 6
          repeat
               d \leftarrow \text{SampleFunction}(p^{-})
               r \leftarrow \text{SAMPLEFUNCTION}(p^+)
               s_{local} \leftarrow \text{Repair}(\text{Destroy}(s_{local}, d), r)
10
               \Psi \leftarrow \max\{w_{global}, w_{current}, w_{accept}, w_{reject}\}
11
              p_d^- \leftarrow \lambda p_d^- + (1 - \lambda)\Psi
p_d^+ \leftarrow \lambda p_d^+ + (1 - \lambda)\Psi
12
13
14
               if Cost(s_{local}) < Cost(s_{qlobal}) then
15
                    s_{global} \leftarrow s_{local}
16
          until no more time
17
          return s_{global}
```

name	type	description
λ	$ratio \in [0, 1]$	remember parameter used in the mov-
$w_{global} \ w_{current} \ remove$	positive integer positive integer positive integer	ing average update of the probabilities. reward for a globally better solution reword for a locally better solution number of courses removed in each de- stroy function

Table 5: Parameters for generalized ALNS search

parameter	search space	value
λ	$\{0.9, 0.95, 0.99\}$	0.99
w_{global}	$\{5, 10, 20\}$	10
$w_{current}$	$\{1, 3, 4, 10\}$	10
remove	$\{1, 3, 5\}$	1

Table 12: Best ALNS parameters with $\mu = 0.3502$ and $\sigma = 0.0594$

			remove	
		1	3	5
	0.9	(0.62, 0.04)	(0.58, 0.02)	(0.99, 0.04)
update_lambda	0.95	(0.46, 0.13)	(1.09, 0.05)	(1.22, 0.05)
	0.99	(0.35, 0.06)	(1.86, 0.04)	(1.72, 0.15)

Table 10: Shows (μ, σ) with w_global=10 and w_current=10 fixed

		w_current			
		1	3	5	10
	5	(0.45, 0.15)	(0.55, 0.14)	(0.67, 0.04)	(0.39, 0.09)
w_global	10	(0.42, 0.12)	(0.58, 0.01)	(0.55, 0.06)	(0.35, 0.06)
	20	(0.52, 0.18)	(0.40, 0.11)	(0.43, 0.11)	(0.58, 0.10)

Table 11: Shows (μ, σ) with update_lambda=0.99 and remove=1 fixed

Compareing

		Tabu	ALNS
	1	(3.00, 0.84)	(0.22, 0.18)
	3	(3.07, 0.08)	(0.23, 0.15)
	5	(0.14, 0.04)	(0.07, 0.05)
train	7	(6.33, 0.22)	(0.20, 0.11)
	9	(3.19, 0.24)	(0.13, 0.09)
	11	(12.80, 2.45)	(0.80, 0.81)
	13	(3.90, 0.17)	(0.11, 0.11)
	2	(3.17, 0.27)	(0.09, 0.11)
	4	(4.88, 0.35)	(0.09, 0.08)
test	6	(5.06, 0.35)	(0.05, 0.05)
test	8	(5.19, 0.43)	(0.12, 0.07)
	10	(6.22, 0.39)	(0.14, 0.07)
	12	(0.92, 0.10)	(0.06, 0.06)
all train		(4.63, 0.46)	(0.25, 0.14)
all test		(4.24, 0.15)	(0.09, 0.04)

Table 13: Test and train results over 5 runs using best parameters

Conclusion

- Dynamic neighborhood is a good strategy.
- The ALNS sub functions should have approximately same speed.
- It is a long line of good choices, that makes a good solution.
- It was more important to search wide and suboptimal than narrow and optimal.