Women Fashion Review

Khoon Ching Wong 10-August-2022

Wednesday, August 10, 2022

IBM Advanced Data Science Capstone Project

https://github.com/wongkhoon/Coursera/tree/main/A dvanced%20Data%20Science%20with%20IBM/Adv anced%20Data%20Science%20Capstone

Use Case

Fashion recommendation prediction according to textual review from consumers

Thursday, August 11, 2022

Data Source

Name Source Reason Publicly accessible Women's E-Commerce Kaggle¹ and available Clothing Reviews Data contains both qualitative and quantitative

dvanced Data Science Capstone

EDA

String

- Title
- Review
- Division Name
- Department Name
- Class Name

Numeric

- Clothing ID
- Age
- Rating (1 Worst, to 5 Best)
- Positive Feedback Count
- Recommended IND
 (1= recommended, 0=not recommended)

Data Set

```
---- ORIGINAL DATA ----
Data shape: Total of 23486 entries, 10 data columns
+-----
|Recommended IND|count| proportion|
        1 | 19314 | 82.23622583666865 |
       0 4172 17.763774163331348
--- Post random sampling without replacement ----
Data shape: Total of 6000 entries, 10 data columns
  ______
|Recommended IND|count| proportion|
            1 4929
            0 | 1071 | 17.849999999999998 |
```

Data Set

```
---- POST-SAMPLING DATA ----
First five entries:
|Clothing ID|Age| Title| Review Text|Rating|Recommended IND|Positive Feedback Count| Division Name|Department Name|Class Name|
        858| 39|Shimmer, surprisi...|I ordered this in...| 4|
                                                                                                4|General Petite|
                                                                                                                                   Knits
       1065 34 You need to be at... Material and colo... 3
                                                                                                        General
                                                                                                                       Bottoms
                                                                                                                                   Pants
            32 | Super cute and cozy | A flattering, sup... |
                                                                                                        General
                                                                                                                       Jackets Outerwear
        949 | 33 | Huge disappointment | I have been waiti... | 2 |
                                                                                                        General
                                                                                                                               Sweaters
                                                                                                                          Tops
       1003 | 31 | Loved, but returned | The colors weren'...
                                                                                                        General
                                                                                                                                  Skirts
                                                                                                                       Bottoms
only showing top 5 rows
```

Data Quality Assessment

Duplicates

Two identified

Removed

Missing data

String columns, except for Review and Title

Imputed by "unknown"

Numeric columns

• No missing

Class Weights

```
# https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
# Estimate class weights for unbalanced datasets
weight0=train.count()/((train.select('Recommended IND').distinct().count())*(train.filter(train["Recommended IND"] == 0).count()))
weight1=train.count()/((train.select('Recommended IND').distinct().count())*(train.filter(train["Recommended IND"] == 1).count()))
```



```
Pearson correlation:
Overall between numerical features
Age versus
   Rating
                                    0.0285
   Positive Feedback Count : 0.0556
Rating versus Positive Feedback Count: -0.0669
Not recommended group
Age versus
   Rating
                                    -0.0232
   Positive Feedback Count
                                 : 0.0702
Rating versus Positive Feedback Count: -0.0155
Recommended group
Age versus
   Rating
                                      0.0324
   Positive Feedback Count : 0.0545
Rating versus Positive Feedback Count: -0.0102
```


Feature Engineering

Incorporating both text and non-text features²

This item comes from {"Department Name} department and division is {"Division Name"}, and is classifi ed under {"Class Name"}. There are {"Positive Feed back Count"} customers who found this review positive. I am {"Age"} years old. I rate this item {"Rating"} out of 5 stars.

Classification algorithms

Classifiers

Simple logistic regression³

$\begin{array}{c} Logistic \\ regression ^{\underline{3}} \end{array}$

$\begin{array}{c} Random \\ forest^{\underline{3}} \end{array}$

Deep learning

- Pyspark 3.3.0
- Baseline model
- Numerical features
 (Age, rating and Positive Feedback Count)
- Grid search for hyperparameter tuning
- 3-fold cross validation

- Pyspark 3.3.0
- TF-IDF
- Grid search for hyperparameter tuning
- 3-fold cross validation

- Pyspark 3.3.0
- TF-IDF
- Grid search for hyperparameter tuning
- 3-fold cross validation

- Spark NLP 4.0.1 ⁴
- Transformer-based
 Universal Sentence
 Encoder^{5, 6, 7}
- Default hyperparameters⁸

Confusion Matrix

Performance metrics

Metrics	Simple Logistic Regression	Logistic Regression (TF-IDF)	Random Forest (TF-IDF)	Deep Learning (Transformer-based Universal Sentence Encoder)
Accuracy	0.94	0.91	0.91	0.82
Precision	0.99	0.98	0.92	0.82
Recall	0.94	0.91	0.98	1.00
F1-score	0.96	0.94	0.95	0.90
Area under the receiver operating characteristic (ROC) curve	0.9794	0.9556	0.9856	0.5000
Area under the precision-recall curve	0.9957	0.9895	0.9906	0.8194
Training time taken (seconds)	82.318608045578	397.9566535949707	9241.370339393616	420.804

Conclusion

Studying online reviews with machine learning models allows businesses to develop their services with ideas and to meet consumer satisfaction through their buying trends and behavior.

Resources/References

1. | https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-review

2. https://mccormickml.com/2021/06/29/combining-categorical-numerical-features-will-bert/

3. https://spark.apache.org/docs/latest/ml-tuning.html

4. https://towardsdatascience.com/text-classification-in-spark-nlp-with-bert-and-universal-sen

5. https://nlp.johnsnowlabs.com/2020/04/17/tfhub_use.html

6. https://nlp.johnsnowlabs.com/docs/en/transformers

7. https://tfhub.dev/google/universal-sentence-encoder-large/5

8. https://nlp.johnsnowlabs.com/api/com/johnsnowlabs/nlp/annotators/classifier/dl/ClassifierDL

9. https://www.coursera.org/learn/advanced-data-science-capstone/home/assignments

Thank you

