CS 584: Spatial Computing Assignment 7: Spatial Networks

Mitchell Scott

Emory University

November 27, 2024

Assignment 7-1 I

Is this network directed or undirected? Explain your answers!

Solution

This network is **directed** since it is possible to get from **A** to **B**, but impossible to get from **B** to **A**. The arrow with one direction indicates that the edge is uni-directional, so a directed graph.

Assignment 7-1 II

2. Which nodes are adjacent to Node B?

Solution

Since we are in a directed graph, the definition for **adjacent** is two vertices v_1, v_2 are adjacent if $(v_1, v_2) \in E^1$ $OR(v_2, v_1) \in E$. This means **A** is adjacent to **B** since $(\mathbf{A}, \mathbf{B}) \in E$. Similarly, the vertices that **B** points to are adjacent, which are **C**, **D** since $(\mathbf{B}, \mathbf{C}) \in E$, $(\mathbf{B}, \mathbf{E}) \in E$.

Thus the set of all nodes adjacent to B are $\{A, C, E\}$.

3. What is the degree of Node C?

Solution

Since the definition of **degree** is the "number of outgoing edges, then deg $\mathbf{C}=1$, as it has two incoming edges but only one outgoing edge.

Assignment 7-1 III

4. In class we talked about representing a network as a labelled adjacency matrix (or cost matrix). Provide the labelled adjacency matrix (cost matrix) for the network above.

Solution

	Α	В	C	D	Ε
Α	0	4	∞	∞	∞
В	∞	0	8	∞	2
C	∞	∞	0	∞ ∞ 1 0 9	∞
D	∞	∞	∞	0	∞
Ε	∞	∞	4	9	0

Table: Cost Matrix where staying at the same node is 0 cost, and non existing edges are denoted by ' ∞ '.

Assignment 7-2 I

▶ at Step 0, we haven't seen anything yet.

Node	Dist.
A :	∞
B :	∞
C :	∞
D:	∞
E:	∞

▶ at Step 1, we mark A as green with a distance of 0, and go to B with distance 4.

Node	Dist.
A:	0
B:	4
C :	∞
D :	∞
E:	∞

Assignment 7-2 II

▶ at Step 2, we mark B as green with a distance of 4, and go to E with distance 6.

Node	Dist.
A:	0
B:	4
C:	12
D:	∞
E:	6

▶ at Step 3, we mark E as green with a distance of 6, and go to C with (*updated) distance 10.

Node	Dist.
A :	0
B:	4
C:	10*
D:	15
E:	6

Assignment 7-2 III

▶ at Step 4, we mark C as green with a distance of 10, and go to D with (*updated) distance 11.

Node	Dist.
A:	0
B:	4
C:	10
D:	11*
E:	6

▶ at Step 5, we mark **D** as green with a distance of 11. With no more yellow nodes, we terminate.

Node	Dist.
A:	0
B:	4
C:	10
D:	11
E:	6