Anne Sophie Ganguillet, Julien Bard & Maxime Scharwath

Date 01.03.2020

ASD1

Rapport Laboratoire : Complexité

chercherPosition

Théorique

La fonction implémente une recherche linéaire dans un tableau de taille n, sa complexité est donc de O(n).

Dans le pire des cas, si la valeur est le dernier élément du tableau ou qu'elle ne s'y trouve pas, la complexité est de O(n). Dans le cas moyen il s'agit également d'une complexité moyenne de O(n). Finalement dans le meilleur cas où la valeur est le premier élément du tableau, la complexité est de O(1).

Pratique

Taille tableau	Nb itérations
81	58
243	120
729	519
2187	1082
6561	4079
19683	13325

Pour effectuer les tests, nous avons pour chaque taille de tableau remplis le tableau de valeurs variant entre 0 et la taille maximale du tableau, puis cherché une valeur comprise dans cette même plage, ce qui permet en principe de faire que les probabilités de trouver une valeur soit la même pour chaque taille de tableau. À cause de l'aléatoire, nous obtenons tout de même des écarts par rapport à un comportement linéaire, mais la tendance globale calculée avec une courbe de tendance de type puissance nous donne une complexité de l'ordre de O(n).

trier

Théorique

La fonction parcourt tous les éléments successifs du tableau de taille n pour les comparer, et elle effectue ce parcours pour tous les éléments du tableau. Ainsi avec n^2 comparaisons effectuées au total, sa complexité est de $O(n^2)$.

La complexité de cette fonction est indépendante du tableau passé en entrée, car peu importe le résultat de la comparaison, il y a toujours n^2 comparaisons.

Pratique

Taille du	Nombre de	
tableau	comparaisons	
64	4032	
128	16256	
256	65280	
512	261632	
1024	1047552	
2048	4192256	

Nous pouvons observer sur ce graphique à l'échelle logarithmique la rapide augmentation du temps moyen nécessaire à l'exécution de la fonction trier. On peut approximer les mesures par une courbe de tendance dont l'équation est approximativement de l'ordre de $O(n^2)$. Cette évolution correspond à notre estimation théorique de complexité de l'ordre de $O(n^2)$.

chercherSiContient

Théorique

La fonction implémente une recherche binaire dans un tableau de taille n, sa complexité est donc de $O(log_2(n))$

Dans le pire des cas, si la valeur est le premier ou dernier élément du tableau ou alors qu'elle ne s'y trouve pas, la complexité est de $O(log_2(n))$. Dans le cas moyen il s'agit également d'une complexité moyenne de $O(log_2(n))$. Finalement dans le meilleur cas où la valeur est l'élément au milieu du tableau, la complexité est de O(1).

Pratique

Taille du tableau	Nombre d'itérations
64	6
128	7
256	8
512	9
1024	10
2048	11

En pratique, on trouve un temps qui varie en $O(log_2(n))$. (Correspondance exacte, cf. tableau de valeurs.)

f

Théorique

La fonction s'appelle récursivement 3 fois et ces appels récursifs se font de la valeur initiale n jusqu'à atteindre la valeur 1, donc n fois. La complexité de cette fonction correspond donc au nombre de branches d'un arbre ternaire de profondeur n, c'est-à-dire une complexité de $O(3^n)$. Le fait que 2 additions soit effectués à chaque appel n'est qu'un facteur multiplicatif de la complexité.

Cette fonction reçoit comme argument uniquement la valeur entière *n*. Elle est indépendante.

Pratique

N	Nombre d'additions
11	177147
12	531441
13	1594323
14	4782969
15	14348907
16	43046721
17	129140163
18	387420489

En pratique, on trouve un temps qui varie approximativement en $O(3^n)$ (courbe de tendance de type exponentielle, en faisant le calcul on trouve $e^{1.0986} \approx 3$ (2.999963...)).

g

Théorique

La fonction parcourt tous les éléments du tableau de taille n, et pour chacun de ces éléments ... Ainsi effectuant $n \times log_2(n)$ additions au total, sa complexité est de $O(n \times log_2(n))$.

La complexité de cette fonction est indépendante du tableau passé en entrée, car peu importe la valeur des éléments, il y a toujours $n \times log_2(n)$ additions.

Pratique

Taille du	Nombre	
tableau	d'additions	
6561	85293	
19683	295245	
59049	944784	
177147	3188646	
531441	10628820	
1594323	33480783	

Les résultats obtenus que l'on peut voir sur ce graphique évoluent exactement avec la complexité $O(n \times log_2(n))$ comme nous l'avons estimé de manière théorique.

random

Théorique

La fonction génère aléatoirement n éléments à insérer à la fin du tableau. La génération de ces éléments ainsi que l'insertion des éléments à la fin du tableau sont des opérations amorties constantes et elles sont effectuées pour chacun des éléments. Le temps d'exécution est donc de l'ordre de O(n).

Le temps d'exécution de cette fonction est indépendant de la valeur aléatoire de chaque élément, il est donc toujours de l'ordre O(n).

Pratique

Nombre d'éléments	Temps
	moyen
177147	9609000
531441	31241400
1594323	96852200
4782969	284821800
14348907	809747800
43046721	2433408400

En pratique, on trouve un temps qui varie approximativement en O(n) (courbe de tendance de type puissance avec l'exposant d'une valeur proche de 1).

random2

Théorique

La fonction génère aléatoirement n éléments à insérer au début du tableau. La génération de ces éléments est une opération amortie constante mais l'insertion des éléments au début du tableau est une opération linéaire au nombre d'éléments déjà présents dans le tableau, de plus ces opérations sont effectuées pour chacun des éléments. Le temps d'exécution est donc de l'ordre de $O(n^2)$.

Le temps d'exécution de cette fonction est indépendant de la valeur aléatoire de chaque élément, il est donc toujours de l'ordre de $O(n^2)$.

Pratique

Nombre d'éléments	Temps
	moyen
5000	6256000
15000	46871800
30000	181206600
50000	480430600
75000	1077662400
105000	2179729600

Nous pouvons observer sur ce graphique à l'échelle logarithmique la rapide augmentation du temps moyen nécessaire à l'exécution de la fonction random2. On peut approximer les mesures par une courbe de tendance dont l'équation est approximativement de l'ordre de $O(n^2)$. Cette évolution correspond à notre estimation théorique de complexité de l'ordre de $O(n^2)$.