

EL TEOREMA DE GAUSS-BONNET

Alan Reyes-Figueroa Geometría Diferencial

(AULA 32) 17.MAYO.2022

Motivación

¿Cuánto suman los ángulos internos en un triángulo? Respuesta: Depende de la geometría donde yace dicho triángulo.

Una primera versión del teorema fue dada por Gauss en 1848, y trata sobre triángulos geodésicos.

Afirma que el exceso sobre π de la suma de los ángulos internos en un triángulo geodésico T es la integral de la curvatura:

$$\sum_{j=1}^{3} \varphi_j = \pi + \iint_{\mathsf{T}} \mathsf{K} \, \mathsf{dS}.$$

P. O. Bonnet: extensión a regiones acotadas y a superficies compactas.

Recordemos que si $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$ es una parametrización ortogonal de S (esto es F = 0), entonces la curvatura de Gauss es

$$K = -\frac{1}{2\sqrt{EG}} \left(\frac{\partial}{\partial u} \left(\frac{G_u}{\sqrt{EG}} \right) + \frac{\partial}{\partial v} \left(\frac{E_v}{\sqrt{EG}} \right) \right). \tag{1}$$

Proposición

Sea S superficie regular en \mathbb{R}^3 , $\mathbf{p} \in S$. Entonces, es posible encontrar una parametrización $\mathbf{x}: U \subseteq \mathbb{R}^2 \to S$, definida en una vecindad U de $\mathbf{q} = \mathbf{x}^{-1}(\mathbf{p})$ tal que F = 0 en U. \square

De (1), $K\sqrt{EG} = -\frac{1}{2}(\frac{\partial}{\partial u}(\frac{G_u}{\sqrt{EG}}) + \frac{\partial}{\partial v}(\frac{E_v}{\sqrt{EG}}))$, observe que el término en el lado izquierdo \sqrt{EG} tiene una interpretación geométrica, pues

$$\int_{R} f \, dS = \int_{\mathbf{x}^{-1}(R)} (f \circ \mathbf{x}) \sqrt{EG} \, du \, dv.$$

Por otro lado, el término del lado derecho tiene una estructura similar a una divergencia $\nabla \cdot H$, para algún campo vectorial H en \mathbb{R}^2 (pues $\nabla \cdot H = \text{div } H = \frac{\partial}{\partial u}(H_1) + \frac{\partial}{\partial v}(H_2)$.

Definición

Una región **regular** $\Omega \subset S$ es un abierto conexo de S, con cerradura compacta en S, cuya frontera $\partial \Omega$ es unión finita disjunta de curvas cerradas simples, cada una diferenciable por partes. Una región regular es **simple** si es homeomorfa a \mathbb{D} .

Teorema (Teorema de la Divergencia)

Sea $\Omega \subseteq \mathbb{R}^2$ una región regular y sea $X = (P,Q) = P \frac{\partial}{\partial u} + Q \frac{\partial}{\partial v}$ un campo vectorial sobre $\overline{\Omega}$. Sea $\mathbf{n} = (v', -u')$ el vector normal unitario a la curva $\partial \Omega = \alpha(\mathbf{s}) = (\mathbf{u}, \mathbf{v})$. Entonces

$$\int_{\Omega}\operatorname{div}X\,du\,dv=\int_{\partial\Omega}X\cdot\mathbf{n}\,ds.\;_{\square}$$

Esto es, si $\alpha: [a,b] \to \partial \Omega$, con $\alpha(s) = (u(s),v(s))$ es diferenciable en cada subintervalo de la partición $a=t_0 < t_1 < \ldots < t_n = b$ de [a,b], entonces

$$\int_{\Omega} \left(\frac{\partial P}{\partial u} + \frac{\partial Q}{\partial v} \right) du \, dv = \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \left(P(\alpha(s)) v'(s) - Q(\alpha(s)) u'(s) \right) ds.$$

Definición

Sean $S \subset \mathbb{R}^3$ una superficie orientada, $\partial \Omega = c_1 \cup \ldots \cup c_n$. Diremos que una parametrización $\alpha_i(s)$ de c_i , $i=1,2,\ldots,n$, $|\alpha_i'(s)|=1$, es **positiva** si $\mathbf{n}_i(s)=\mathbf{N}\times\alpha_i(s)$ apunta siempre para adentro de Ω , $i=1,2,\ldots,n$. En ese caso, diremos que $\partial \Omega$ está **positivamente orientada**.

Si S es superficie orientada, $\mathbf{x}: U \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ parametrización ortogonal de S, y $R \subseteq \mathbf{x}(U)$ es una región regular simple, con $\partial \Omega = \alpha(s)$ positivamente orientada. Aplicando el Teorema de la Divergencia a $X = \left(\frac{G_u}{\sqrt{EG}}, \frac{E_V}{\sqrt{EG}}\right)$ y (1)

$$\int_{R} K \, dS = \int_{\mathbf{x}^{-1}(R)} K \sqrt{EG} \, du \, dv = -\frac{1}{2} \int_{\mathbf{x}^{-1}(R)} \operatorname{div} X \, du \, dv$$
$$= -\frac{1}{2} \sum_{i=1}^{n} \int_{t_{i-1}}^{t_{i}} \left(\frac{G_{u}}{\sqrt{EG}} \, v'(s) - \frac{E_{v}}{\sqrt{EG}} \, u'(s) \right) ds.$$

- el lado derecho anterior no depende del sistema de coorenadas.
- $\int_{\mathcal{D}} K$ sólo depende del comportamiento de S en una vecindad de ∂R .

Recordemos de la clase anterior que la curvatura geodésica de una curva α , $|\alpha'|=$ 1, está dada por

$$\kappa_{\mathbf{g}}\alpha(\mathbf{s}) = [\nabla_{\alpha}\alpha'(\mathbf{s})] = \langle \nabla_{\alpha}\alpha'(\mathbf{s}), \mathbf{N} \times \alpha'(\mathbf{s}) \rangle.$$

Recordemos también que si X, Y son campos tangentes unitarios, y φ es el ángulo entre ellos, entonces $\varphi'(s) = [\nabla_{\alpha} Y(s)] - [\nabla_{\alpha} X(s)]$.

En particular, si $X(s) = \frac{\mathbf{x}_u(\alpha(s))}{\sqrt{E}}$ y $Y(s) = \alpha'(s)$, tenemos |X(s)| = |Y(s)| = 1, y

Lema

Sea S superficie orientada, $\mathbf{x}: \mathbf{U} \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ parametrización ortogonal de S, y $\alpha(\mathbf{s}): \mathbf{I} \to \mathbf{x}(\mathbf{U})$ una curva con $|\alpha'(\mathbf{s})| = \mathbf{1}$, $\forall \mathbf{s} \in \mathbf{I}$, positivamente orientada. Entonces

$$\kappa_g \alpha(s) = \frac{1}{2} \left(\frac{G_u}{\sqrt{FG}} v'(s) - \frac{E_v}{\sqrt{FG}} u'(s) \right) + \frac{d}{ds} \varphi(s).$$

Prueba:

Observe que

$$X'(s) = \frac{d}{ds} \left(\frac{\mathbf{x}_u}{\sqrt{E}} \right) = \left(\frac{\mathbf{x}_{uu}}{\sqrt{E}} - \frac{1}{2} \frac{E_u \mathbf{x}_u}{E^{3/2}} \right) u'(s) + \left(\frac{\mathbf{x}_{uv}}{\sqrt{E}} - \frac{1}{2} \frac{E_v \mathbf{x}_u}{E^{3/2}} \right) v'(s).$$

Como N × X = $\frac{\mathbf{x}_v}{\sqrt{G}}$ y $[\nabla_{\alpha} X] = \langle \nabla_{\alpha} X, N \times X \rangle = \langle \nabla_{\alpha} X, \frac{\mathbf{x}_v}{\sqrt{G}} \rangle$, entonces

$$[\nabla_{\alpha}X] = \frac{\langle \mathbf{x}_{uu}, \mathbf{x}_{v} \rangle}{\sqrt{EG}} \, \mathbf{u}'(s) + \frac{\langle \mathbf{x}_{uv}, \mathbf{x}_{u} \rangle}{\sqrt{EG}} \, \mathbf{v}'(s).$$

De $\langle \mathbf{x}_{uv}, \mathbf{x}_{v} \rangle = \frac{1}{2} \langle \mathbf{x}_{v}, \mathbf{x}_{v} \rangle_{u} = \frac{1}{2} G_{u} \text{ y } \langle \mathbf{x}_{uu}, \mathbf{x}_{v} \rangle = -\langle \mathbf{x}_{u}, \mathbf{x}_{uv} \rangle = -\frac{1}{2} \langle \mathbf{x}_{u}, \mathbf{x}_{u} \rangle_{v} = -\frac{1}{2} E_{v}$, obtenemos la expresión requerida

$$\kappa_g \, \alpha(s) = \frac{1}{2} \Big(\frac{G_u}{\sqrt{EG}} \, v'(s) - \frac{E_v}{\sqrt{EG}} \, u'(s) \Big) + \frac{d}{ds} \varphi(s),$$

donde $\varphi(s)$ es el ángulo de X(s) a $\alpha'(s)$.

Tomemos ahora una región $R \subseteq \mathbf{x}(U)$ regular y simple, cuyo borde ∂R es positivamente orientado. Consideramos una parametrización $\alpha: [a,b] \to \mathbb{R}^2$ de $\mathbf{x}^{-1}(\partial R)$, regular por partes en los subintervalos de $a=t_0 < t_1 < \ldots < t_n = b$.

Denotamos por θ_j al ángulo $\theta_j = \alpha'(t_j^+) - \alpha'(t_j^-)$ (ángulos externos a ∂R)

Teorema (Índice de Rotación)

Para una curva cerrada y simple $\alpha : [a,b] \to \mathbb{R}^2$, regular por partes, en $a = t_0 < t_1 < \ldots < t_n = b$, vale

$$\sum_{j=1}^n \left(\varphi_j(t_j) - \varphi_j(t_{j-1})\right) + \sum_{j=1}^n \theta_j = \pm 2\pi.$$

Aquí, $\varphi_j(s)$ mide el ángulo desde \mathbf{e}_1 a $\alpha'_j(s)$ (esto es, el ángulo externo a α en el vértice j); y el signo depende de la orientación de α .

Prueba: Basta considerar

$$\sum_{i=1}^n \left(\varphi_j(t_j) - \varphi_j(t_{j-1}) \right) + \sum_{i=1}^n \theta_j = \int_a^b \theta(s) \, ds = 2\pi \operatorname{Index}(\alpha) = \pm 2\pi. \ \Box$$

Teorema de Gauss-Bonnet

Sea S superficie orientada, $\mathbf{x}: U \subseteq \mathbb{R}^2 \to \mathbb{R}^3$ parametrización regular, uy sea $R \subseteq \mathbf{x}(U)$ una región regular simple, cuya frontera ∂R está parametrizada por una curva $\alpha: [a,b] \to \mathbf{x}(U)$, regular por partes, en $a=t_0 < t_1 < \ldots < t_n = b$, y parametrizada por longitud de arco, con vector normal unitario a ∂R , dado por $\mathbf{n}(s) = (v'(s), -u'(s))$. Entonces

Teorema (Teorema de Gauss-Bonnet local)

$$\int_{R} K dS + \sum_{j=1}^{n} \int_{t_{j-1}}^{t_j} \kappa_g \alpha(s) ds + \sum_{j=1}^{n} \theta_j = 2\pi.$$

Esto es,
$$\int_R K dS + \int_{\partial R} \kappa_g ds + \sum_{i=12}^n \theta_i = 2\pi$$
.

Teorema de Gauss-Bonnet

<u>Prueba</u>: Definamos $X = (\frac{G_u}{\sqrt{FG}}, \frac{E_V}{\sqrt{FG}})$, $\mathbf{n} = (\mathbf{v}', -\mathbf{u}')$. Por el lema, tenemos

$$\begin{split} \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \kappa_{g} \, \alpha(s) \, ds &= \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{1}{2} \Big(\frac{G_{u}}{\sqrt{EG}} \, \frac{dv}{ds} - \frac{E_{v}}{\sqrt{EG}} \, \frac{du}{ds} \Big) \, ds + \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{d}{ds} \varphi_{j}(s) \, ds \\ &= \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{1}{2} \Big(\frac{G_{u}}{\sqrt{EG}} \, dv - \frac{E_{v}}{\sqrt{EG}} \, du \Big) + \sum_{j=1}^{n} \varphi_{j}(s) \Big|_{t_{j-1}}^{t_{j}} \\ &= \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} \frac{1}{2} \, X \cdot \mathbf{n} \, ds + \sum_{j=1}^{n} \varphi_{j}(s) \Big|_{t_{j-1}}^{t_{j}} = \sum_{j=1}^{n} \int \int \frac{1}{2} \, \operatorname{div} X \, du \, dv + \sum_{j=1}^{n} \varphi_{j}(s) \Big|_{t_{j-1}}^{t_{j}} \\ &= \sum_{j=1}^{n} \int \int -K \sqrt{EG} \, du \, dv + \sum_{j=1}^{n} \left(\varphi_{j}(t_{j}) - \varphi(t_{j-1}) \right) \\ &= - \int \int_{\mathbb{R}} K \, dS - \sum_{j=1}^{n} \theta_{j} + 2\pi. \end{split}$$

Teorema de Gauss-Bonnet

De ahí que

$$\int_{R} K \, d\mathsf{S} + \sum_{j=1}^{n} \int_{\mathsf{t}_{j-1}}^{\mathsf{t}_{j}} \kappa_{g} \, \alpha(\mathsf{s}) \, d\mathsf{s} + \sum_{j=1}^{n} \theta_{j} = \mathsf{2}\pi. \, \square$$

Obs!

- El Teorema de Gauss-Bonnet local, sobre una región regular R, combina información geométrica de diferentes naturalezas: la curvatura gaussiana en R, la curvatura geodésica en ∂R , más información de los ángulos externos.
- Existe una versión global de Teorema de Gauss-Bonnet sobre una superficies compacta S. Esta combina además, información topológica de S.

Mencionamos ahora varios conceptos topológicos que serán de utilidad.

Definición

El **simplex estándar** o n**-simplex** Δ^n , es el subconjunto de \mathbb{R}^{n+1} definido por

$$\Delta^n = \{(t_0, \ldots, t_n) \in \mathbb{R}^{n+1} : \sum_{i=0}^n t_i = 1 \ y \ t_i \geq 0, \ \forall i\}.$$

2-simplex $\Delta^2 \subset \mathbb{R}^3$.

0

Simplejos estándar Δ^n , para n = 0, 1, 2, 3.

• Los vértices del *n*-simplex estándar son lo puntos $\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_n \in \mathbb{R}^{n+1}$.

$$\mathbf{e}_{0} = (1, 0, 0, \dots, 0), \ \mathbf{e}_{1} = (0, 1, 0, \dots, 0), \dots, \ \mathbf{e}_{n} = (0, 0, 0, \dots, 1).$$

- Denotamos al *n*-simplex Δ^n por $[\mathbf{e}_0, \mathbf{e}_1, \dots, \mathbf{e}_n]$.
- Un conjunto de puntos $\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^{n+1}$ (con $\mathbf{v}_1 \mathbf{v}_0, \mathbf{v}_2 \mathbf{v}_0, \dots, \mathbf{v}_n \mathbf{v}_0$ l.i.), define un n-simplex arbitrario $\sigma = [\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n] \subset \mathbb{R}^{n+1}$ por mediante el mapa

$$\sigma = [\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n] = \{\mathbf{x} = \sum_{i=0}^n t_i \mathbf{v}_i \in \mathbb{R}^{n+1} : \sum_{i=0}^n t_i = 1 \text{ y } t_i \geq 0, \ \forall i\}.$$

• Hay un homeomorfismo natural de Δ^n a $[\mathbf{v}_0,\mathbf{v}_1,\ldots,\mathbf{v}_n]$, dado por

$$\sum_{i=1}^{m} t_i \mathbf{e}_i \longrightarrow \sum_{i=1}^{m} t_i \mathbf{v}_i$$
.

Definición

Sea $\sigma = [\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n]$ un n-simplex en \mathbb{R}^p .

Cualquier m-simplex, $0 \le m < n$, formado de los vértices de σ , es llamado una m-cara de σ . En particular, los 0-caras son los **vértices** de σ ; las 1-caras son las **aristas** de σ ; y las (n-1)-caras son las **caras** (faces) de σ .

En particular, la i-ésima cara de σ es $\sigma_i = [\mathbf{v}_0, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n]$.

Definición

Decimos que un n-simplex $\sigma = [\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n]$ tiene una **orientación positiva** si det $[\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n] > 0$. El **borde** (con signo) de σ se define como

$$\partial \sigma = \sum_{i=0}^{n} (-1)^i \sigma_i = \sum_{i=0}^{n} (-1)^i [\mathbf{v}_0, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n].$$

$$v_0 \xrightarrow{+} v_1$$

$$\partial[v_0, v_1] = [v_1] - [v_0]$$

$$\partial [v_0,v_1,v_2] = [v_1,v_2] - [v_0,v_2] + [v_0,v_1]$$

$$\begin{split} \partial [v_0, v_1, v_2, v_3] &= [v_1, v_2, v_3] - [v_0, v_2, v_3] \\ &+ [v_0, v_1, v_3] - [v_0, v_1, v_2] \end{split}$$

Complejos Simpliciales

Definición

Un **complejo simplicial** es un conjunto finito de simplejos K de \mathbb{R}^n , que cumple las dos condiciones siguientes:

- Si un n-simplex σ pertenece a $\mathcal K$ entonces todas sus m-caras pertenecen a $\mathcal K$, para $0 \le m \le n$.
- Si dos simplejos σ, τ de K se cortan, entonces su intersección $\sigma \cap \tau$ es una cara común.

Complejos Simpliciales

Definición

La **dimensión** de un n-simplex σ es dim $\sigma = n$. La dimensión de un complejo simplicial K se define por

$$\dim \mathcal{K} = \max\{\dim \sigma : \sigma \in \mathcal{K}, \ \sigma \ \textit{es simplex}\}.$$

Los complejos simpliciales pueden ser estructuras muy complicadas. Nos interesa aquí sólo los complejos de dimension \leq 2.

Obs! Si $S \subseteq \mathbb{R}^3$ es una superficie, nos interesan las imágenes de complejos simpliciales en $U \subseteq \mathbb{R}^2$, bajo la parametrización $\mathbf{x} : U \subseteq \mathbb{R}^2 \to \mathbb{R}^3$.

Triangulaciones

Definición

Una **triangulación** de un espacio topológico X es un complejo simplicial \mathcal{K} homeomorfo a X, junto con un homeomorfismo $h: \mathcal{K} \to X$.

Obs! Típicamente, los elementos de esta triangulación son simplejos de la misma dimension dim X.

En el caso de superficies

Definición

Una región regular simple R sobre una superficie $S \subset \mathbb{R}^3$ es un **triángulo** si ∂R posee tres vértices (esto es, si R es la imagen parametrizada de un 2-simplex). En ese caso, una triangulación de R es un complejo simplicial $\mathcal K$ formado por una colección (finita) de triángulos y sus caras, de forma que $\mathcal K$ es homeomorfo a R.

Triangulaciones

Ejemplos de triangulaciones para algunas superficies.

Triangulaciones para una región regular R.

