Laborator 8

EXPERIENȚA DEBYE-SCHERRER DE DIFRACȚIE A ELECTRONILOR PE O REȚEA POLICRISTALINĂ

Alexandru Licuriceanu alicuriceanu@stud.acs.upb.ro

Data: 5 Decembrie 2022 Grupa: 325CD

1. Scopul lucrării

Scopul lucrării este determinarea lungimii de undă asociată electronilor, verificarea ecuației de Broglie și determinarea constantelor de rețea ale grafitului.

2. Teoria lucrării

Louis de Broglie a sugerat că în afara proprietăților specifice de particule, acestea pot avea și caracter ondulator și a presupus că lungimea de undă a undei asociate unei particule libere este dată de relația:

 $\lambda = \frac{h}{p}$ unde h este constant lui Planck, iar p este impulsul particulei.

Experimentul din cadrul laboratorului demonstrează caracterul ondulator al electronilor printr-o experiență numiă difcrație Debye-Scherrer. Un fascicul de electroni monocromatici emişi de catodul unui tub electronic sunt focalizați de un sistem de lentile electromagnetice și cad pe o folie policristalină de grafit.

Atomii grafitului sunt aranjați într-o rețea cristalină care acționează ca o rețea de difracție pentru electroni, pe un ecran fluorescent apărând figura de difracție sub forma a două inele concentrice precum cele din figura 1. Acestea corespud celor două constante de rețea d_1 și d_2 .

Diametrul inelelor concentrice se modifică în funcție de lungimea de undă a electronilor și în funcție de tensiunea de accelerare. Energia unui electron accelerat de o diferență de potențial U este:

 $eU = \frac{p^2}{2m}$ unde e este sarcina electronului, U este tensiunea de accelerare, iar p este impulsul electronului.

Figura 1. Reprezentarea schematică a inelelor de difracție. Cele două inele cu diametrele D_1 și D_2 corespund constantelor de rețea d_1 și d_2 .

În experimentul din această lucrare se folosește un material policristalin care este format dintr-un număr foarte mare de monocristale aranjate neregulat in spațiu.

Totalitatea reflexiilor produse de aceste cristalite se află într-un con a cărui axă este dată de direcția fascicolului incident, astfel că pe ecranul aflat perpendicular pe această axa vor apărea cercuri concentrice.

3. Montajul experimental

În figura 2 este reprezentat sub formă schematică, tubul catodic în care apare fenomenul și este format din:

- Pin de ghidare cu cheiță (PG)
- Pini de conexiune electrică (PC)
- Catod (C)
- Filament de încălzire a catodului (FC)
- Anod (A)
- Electrod de focalizare (EF)
- Strat subțire de grafit policristalin (GR)
- Ecran fluorescent pe care apar inelele de difracție (E)

Figura 2. Tubul catodic folosit pentru realizarea experimentului.

În figura 3 este ilustrat montajul experimental:

Figura 3. Instalația experimentală.

4. Modul de lucru

- 4.1. Am verificat conexiunea corectă a cablurilor instalației experimentale.
- 4.2. Am variat tensiunea de accelerare între 3 kV și 5 kV în trepte de 0.5 kV, conform valorilor din tabelul 1.
- 4.3. Pentru fiecare tensiune am masurat de trei ori diametrele D_1 și D_2 ale inelelor de difracție observate pe ecran cu ajutorul unei rigle.
- 4.4. Rezultatele experimentale au fost trecute în tabelul 1.

5. Prelucrarea datelor experimentale

5.1. Determinarea lungimii de undă asociată electronilor. Cu valorile măsurate ale diametrelor inelelor de difracție D_1 și D_2 , am folosit următoarea ecuație pentru a obține lungimea de undă experimentală a electronilor:

$$\lambda = d \frac{D}{2L}$$

Unde d este valoarea constantei de rețea în grafit, D este diametrul unui inel, iar L este distanța de la probă la ecran, L=13.5 cm. Am presupus cunoscute valorile constantelor de rețea d_1 și d_2 :

$$d_1 = 2.13 \cdot 10^{-10} \text{ m}.$$

$$d_2 = 1.23 \cdot 10^{-10} \text{ m}.$$

U (kV)	D_1 (cm)	D_2 (cm)	$1/\sqrt{U} \; (\mathrm{kV}^{-1/2})$	$\lambda_{1 ext{exp}} ext{ (pm)}$	$\lambda_{2\mathrm{exp}} \; (\mathrm{pm})$	$\lambda_{\mathrm{t}}\;\mathrm{(pm)}$
3	3	5.4	0.57735	23.6666	24.6000	22.3894
	2.9	5.2		22.8777	23.6889	
	2.8	5		22.0888	22.7778	
3.5	2.7	4.8	0.53452	21.3000	21.8667	20.7286
	2.8	4.6		22.0888	20.9556	
	2.6	4.7		20.5111	21.4111	
4	2.6	4.4	0.5	20.5111	20.0444	19.3898
	2.5	4.4		19.7222	20.0444	
	2.5	4.5		19.7222	20.5000	
4.5	2.3	4.1	0.4714	18.1444	18.6778	18.2809
	2.4	4.2		18.9333	19.1333	
	2.4	4		18.9333	18.2222	
5	2.3	3.9	0.44721	18.1444	17.7667	17.3428
	2.2	3.8		17.3555	17.3111	
	2.2	3.8		17.3555	17.3111	

Tabelul 1. Rezultatele experimentului.

5.2. Verificarea relației de Broglie: $\lambda = \frac{h}{p}$

Am verificat relația calculând valoarea teoretică a lungimii de undă λ_t , folosind ecuația:

$$\lambda = \frac{h}{\sqrt{2meU}}$$

Unde h este constanta lui Planck, h = $6.625 \cdot 10^{-34}$ Js, m este masa electronului, m = $9.109 \cdot 10^{-31}$ kg, iar e este sarcina electronului, e = $1.602 \cdot 10^{-19}$ C. Am observat că valorile obținute experimental sunt apropiate de valoarea teoretică a lungimii de undă.

5.3. Determinarea constantei de rețea a grafitului.

În figurile 4 și 5 am reprezentat grafic dependența dintre media aritmetică a celor 3 valori ale diameterelor D_1 și respectiv D_2 în funcție de $1/\sqrt{U}$. Printre punctele experimentale am trasat două drepte de regresie liniară.

Figura 4. D_1 în funcție de $1/\sqrt{U}$ și dreapta de regresie cu panta $k(d_1)=1.6213$.

Figura 5. D₂ în funcție de $1/\sqrt{U}$ și dreapta de regresie cu panta $k(d_2)=3.257.$

Folosind formula $d=\frac{2hL}{k\sqrt{2me}}$ am calculat constantele de rețea ale grafitului, de unde au rezultat valori apropiate celor cunoscute:

$$\begin{array}{l} d_1 = 2.0422\,\cdot\,10^{\text{-}10}\ m\\ d_2 = 1.0166\,\cdot\,10^{\text{-}10}\ m \end{array}$$