

Your Title Your Title Your Title Your Title Your Title

Conference 2024

Your Institution

汇报人: 君の名は

2023.5.3

About the Author(分栏显示)

LinaBell

Research Fellow in Nanjing University, a member of LAMDA.

Latest works

- NeurPIS
- ICML
- ICLR
- TPAMI
- PRML

- Preliminary
- 2 Related Work
- Methodology
- 4 Analyses
- **5** Experiments
- **6** Conclusion

Preliminary(公式展示)

Learning Strategy

Optimization methods: Pointwise loss (binary cross-entropy, mean square error), pairwise loss (BPR, WARP), and softmax loss

$$\mathcal{L}_0 = -\sum_{(u,i)\in O^+} \log \frac{\exp\left(\cos(\hat{\theta}_{ui})/\tau\right)}{\exp\left(\cos(\hat{\theta}_{ui})/\tau\right) + \sum_{j\in N_u} \exp\left(\cos(\hat{\theta}_{uj})/\tau\right)},$$

- Preliminary
- 2 Related Work
- Methodology
- 4 Analyses
- **5** Experiments
- **6** Conclusion

Related Work(多级列表)

SOTA debiasing strategies

- Sample re-weighting methods (e.g. IPS-CN) exploit the item popularity's inverse to re-weight loss of each instance.
- Causal inference methods (e.g. MACR, CausE)
 - specify the role of popularity bias in assumed causal graphs
 - mitigate the bias effect on the prediction.
- Regularization-based frameworks (e.g. Sam-reg)
 - Provides a tunable mechanism for controlling the trade-off between recommendation accuracy and coverage.
 - Sam-reg regularizes the biased correlation between user-item relevance and item popularity

- Preliminary
- 2 Related Work
- 3 Methodology BC Loss
- 4 Analyses
- **5** Experiments
- 6 Conclusion

Methodology of BC Loss BC Loss(二级标题)

BC Loss

$$\mathcal{L}_{\mathsf{BC}} = -\sum_{(u,i) \in O^+} \log \frac{\exp\left(\cos(\hat{\theta}_{ui} + M_{ui})/\tau\right)}{\exp\left(\cos(\hat{\theta}_{ui} + M_{ui})/\tau\right) + \sum_{j \in N_u} \exp\left(\cos(\hat{\theta}_{uj})/\tau\right)},$$

 M_{ui} : the bias-aware angular margin for the interaction (u,i)

$$M_{ui} = \min\{\hat{\xi}_{ui}, \pi - \hat{\theta}_{ui}\}\$$

Intuition

If a user-item pair is the hard interaction that can hardly be reconstructed by its popularity statistics, it holds a high value of ξ_{ui} and leads to a high value of M_{ui} . Henceforward, BC loss imposes the large angular margin M_{ui} between the negative item i and positive item i.

- 1 Preliminary
- 2 Related Work
- Methodology
- 4 Analyses
 Geometric Interpretation
 Theoretical Properties
- 5 Experiments
- 6 Conclusion

Analyses(图像展示) Geometric Interpretation

Geometric Interpretation

User u with one observed item i and two unobserved items j and k.

Analyses(数学环境) Theoretical Properties

Theoretical Properties

Proof.

- 1. There exists an upper bound m, s.t. $-1 < \cos(\hat{\theta}_{ui} + M_{ui}) \le v_u^T v_i m < 1$
- 2.
- 3.
- 4.
- 5.
- 6.

- Preliminary
- 2 Related Work
- Methodology
- 4 Analyses
- **5** Experiments
- **6** Conclusion

Experiments(表格展示) Baselines & Datasets

Baselines

• Backbone: only use softmax loss

• IPS-CN: sample re-weighting methods

CausE: bias removal by causal inference

sam + reg: regularization-based framework

MACR: bias removal by causal inference

Datasets

	KuaiRec	Douban Movie	Tencent	Amazon-Book	Alibaba-iFashion	Yahoo!R3	Coat
#Users	7175	36,644	95,709	52,643	300,000	14382	290
#Items	10611	22,226	41,602	91,599	81,614	1000	295
#Interactions	1062969	5,397,926	2,937,228	2,984,108	1,607,813	129,748	2,776
Sparsity	0.01396	0.00663	0.00074	0.00062	0.00007	0.00902	0.03245

- Preliminary
- 2 Related Work
- Methodology
- 4 Analyses
- **5** Experiments
- **6** Conclusion

Conclusion(脚注使用)

Contribution

- (Originality) Popular bias extractor has an intuitive geometric interpretation.
- (Quality) Outperforms existing methods in various evaluation protocols.
- (Clarity) Well-written and easy to understand. Theoretical proof is quite solid.

Limitation

- The technical contribution of this paper is limited. It only proposes to employ
 an extra popularity-based predictor and combine the results with an existing
 CF model [1].
- Overclaims the strength of the proposed BC loss in theoretical analysis. The geometric interpretability and the hard-negative mining ability are actually the same thing[2, 3]

^[1] Kaiming He et al. "Momentum contrast for unsupervised visual representation learning". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020, pp. 9729–9738.

References I

- [1] Kaiming He et al. "Momentum contrast for unsupervised visual representation learning". In: *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2020, pp. 9729–9738.
- [2] Tongzhou Wang and Phillip Isola. "Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere". In: Proceedings of Machine Learning Research. PMLR, 2020, pp. 9929–9939.
- [3] Fajie Yuan et al. "One person, one model, one world: Learning continual user representation without forgetting". In: *Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.* 2021, pp. 696–705.

Acknowledgement

Thank you!