

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호

10-2003-0079363

Application Number

출 원 년 월 일

2003년 11월 11일

Date of Application NOV 11, 2003

출 원 Applicant(s) 인 :

(주)히스토스템

HISTOSTEM CORPORATION

2004 년 10 월 21 일

특

허

청

COMMISSIONER BIRES

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【참조번호】 0002

2003.11.11 【제출일자】

【발명의 명칭】 냉동 보관된 제대혈로부터 중간엽 줄기세포의 분리 및 배양 방

【발명의 영문명칭】 METHOD OF ISOLATING AND CULTURING MESENCHYMAL STEM CELL

DERIVED FROM CRYOPRESERVED UMBILICAL CORD BLOOD

【출원인】

【명칭】 (주)히스토스템

【출원인코드】 1-2000-052576-1

【대리인】

[성명] 이병현

【대리인코드】 9-1999-000297-5

【포괄위임등록번호】 2003-058131-7

【발명자】

【성명】 한훈

【출원인코드】 4-2000-052572-0

【발명자】

【성명의 국문표기】 김성환

【성명의 영문표기】 KIM, Sung-Whan

【주민등록번호】 710909-1110538

【우편번호】 135-120

【주소】 서울특별시 강남구 신사동 637-4 1층 102호

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정에 의

한 출원심사 를 청구합니다. 대리인

이병현 (인)

【수수료】

【기본출원료】 12 면 29.000 【가산출원료】 워

0 면 0

【우선권주장료】 0 건

【심사청구료】 3 항 205,000 원

【합계】 234,000 원

【감면사유】 중소기업

【감면후 수수료】 117,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통 2.기타첨부서류[사업자등록증

사본]_1통 3.중소기업기본법시행령 제2조에의한 중소기업에 해당

함을 증명하는 서류[소득세원천징수신고서 사본]_1통

0 원

【요약서】

[요약]

본 발명은 세포 치료제로서 가장 이상적인 냉동 보관되었던 제대혈을 이용하여 중간엽줄기세포를 분리 및 배양하는 방법에 관한 것으로, 냉동 보관된 제대혈을 해동하여 aMEM(alpha-minimum essential medium) 배지로 희석하고 원심분리하여 단핵구를 수확하고; 얻어진 단핵구로부터 CD133 양성 세포를 분리하고; 그리고, 분리된 세포를 Stem Cell Factor, GM-CSF(granulocyte-macrophage colony-stimulating factor), G-CSF(granulocyte colony-stimulating factor), IL-3(interleukin-3) 및 IL-6(interleukin-6)이 포함된 aMEM 배지에 부유 배양하는 단계를 포함한다. 이 방법에 의하면, 세포수가 상대적으로 부족한 제대혈에서 중간엽줄기세포를 효과적으로 분리 및 배양할 수 있으며, 이에 따르면 버려지고 있는 제대혈이 세포 치료제로서 각종 난치병을 치유하기 위한 중요한 수단으로 활용될 수 있다.

【대표도】

도 1f

【색인어】

제대혈, 중간엽 줄기세포, 면역거부반응

【명세서】

【발명의 명칭】

냉동 보관된 제대혈로부터 중간엽 줄기세포의 분리 및 배양 방법{METHOD OF ISOLATING AND CULTURING MESENCHYMAL STEM CELL DERIVED FROM CRYOPRESERVED UMBILICAL CORD BLOOD}

【도면의 간단한 설명】

도 1은 본 발명의 방법에 따른 냉동 보관된 제대혈 유래 중간엽 줄기세포주 배양 과정을 보여주는 사진으로, 도 1a, 1b, 1c, 1d, 1e 및 1f는 각각 5 일, 7 일, 10 일, 14 일, 20일 및 25 일 배양한 결과이다.

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

- 본 발명은 세포 치료제로서 가장 이상적인 제대혈을 이용하여 중간엽 줄기세포를 분리 및 배양하는 방법에 관한 것으로, 특히 영하 196 ℃로 냉동 보관되었던 제대혈로부터의 재현성 있는 분리 및 배양 방법에 관한 것이다.
- 《3》 중간엽 줄기세포는 뼈, 연골, 지방, 신경, 근육 등으로 분화할 수 있는 원시 세포를 의미하는 것으로, 이들은 골수에 많이 포함되어 있는 것으로 알려져 있다. 실제로 골수로부터 중간엽 줄기세포를 분리하여 연구하거나 여러 질병에 대한 임상시험으로 많이 이용되고 있는 실정이다.

- ☞ 골수에서 중간엽 줄기세포를 얻는 것은 쉬운 일이지만, 골수의 획득이 용이하지 않고, 타인 간 줄기세포 이식시 면역 거부 반응 문제를 해결하는 것이 현실적으로 어려운 것으로 알 려져 있다.
- ** 한편, 제대(탯줄)혈은 골수에 비해 획득이 용이할 뿐 아니라, 많은 제대혈 유닛(units)을 확보할 경우 환자의 조직적합성 유전자와 일치 또는 가장 유사한 제대혈 줄기세포를 사용할수 있으므로 면역거부 반응도 해결할 수 있다는 장점이 있다. 그러나, 골수에 비해 제대혈에서 중간엽 줄기세포를 얻는 일이 매우 어렵기 때문에 연구 및 임상적으로 적용하기가 어렵다는 문제가 있다.
- 종래에는 산모로부터 출산한지 24 시간 내에 제대혈로부터 줄기세포를 분리 및 배양하는 방법이 주로 사용되었다. 그러나, 냉동 보관되었던 제대혈로부터 밀도구배 원심분리 방법에 의해 세포를 분리하는 방법으로는 세포를 분리하기가 어려울 뿐 아니라 세포를 잃어버리기도 쉽기 때문에 제대혈 내 얼마 안 되는 중간엽 줄기세포 배양은 더욱 어려운 일이 되고 있다.
- 중래의 중간엽 줄기세포 분리 및 배양 방법으로는 미국특허 제5,197,985호 및 제5,486,359호 등이 있는데, 여기에서는 사람의 골수로부터 중간엽 줄기세포를 분리 및 정제, 배양하는데 있어서 중간엽 줄기세포의 중식 방법을 개시하고 있다. 즉, 미국특허 제5,197,985호에서는 사람 골수-유래의 중간엽 줄기세포를 골 형성 세포로 분화시키는 방법으로서, 분화 없이 중간엽 세포 성장을 촉진하고 배양시 기질 표면으로 중간엽 줄기세포만의 선택적 흡착을 허용하는 인자를 포함하는 배지에 골수 시료를 첨가하는 것에 의해 골수 시료로부터 분리, 정제 및 배양 전개된 사람 골수-유래의 중간엽 줄기세포를 다공성 담체에 도입하고, 사람 간질 줄기세포를 골

세포로 분화시키는데 필요한 인자를 포함하는 환경으로 이식하는 단계를 포함하는 방법을 개시하고 있는데, 여기에서 다공성 담체는 수산화인회석(hydroxyapatite)와 인산3칼슘(tricalcium phosphate)를 포함하는 것이고, 배지는 우태혈청(FBS; fetal bovine serum)을 포함하는 BGJ_b 배지이거나 F-12 영양소 혼합물을 포함하는 것을 사용하고 있다. 또한 미국특허 제5,486,359호에서는하나 이상의 조직 타입(예를 들어 뼈, 연골, 근육 또는 골수 기질)으로 분화할 수 있는 분리된 사람 중간엽 줄기세포, 사람 중간엽 줄기세포를 분리, 정제 및 배양 전개하는 방법, 그리고 이러한 세포의 특성과 용도, 특히 시약, 진단 및 치료적 용도에 대하여 개시하고 있다. 여기에서 중간엽 줄기세포는 골수에서 유래되고 배지는 우태혈청을 포함하는 BGJ_b 배지에서 배양하는 것으로 되어 있다.

【발명이 이루고자 하는 기술적 과제】

본 발명은 위와 같은 종래의 문제점을 해결하기 위한 것으로, 영하 196 ℃로 냉동 보관된 제대혈 유래 중간엽 줄기세포를 밀도구배 원심분리 동안 잃어버리는 일 없이 얻을 수 있는, 재현성 있는 중간엽 줄기세포 분리 및 배양 방법을 제공하는 것을 목적으로 한다.

【발명의 구성 및 작용】

- 상기 목적을 달성하기 위하여 본 발명에서는,
- '10' 냉동 보관된 제대혈을 해동하여 aMEM(alpha-minimum essential medium) 배지로 희석하고 원심분리하여 단핵구를 수확하고;
- :11> 얻어진 단핵구로부터 CD133 양성 세포를 분리하고; 그리고,
- 변리된 세포를 Stem Cell Factor, GM-CSF(granulocyte-macrophage colony-stimulating factor), G-CSF(granulocyte colony-stimulating factor), IL-3(interleukin-3) 및

IL-6(interleukin-6)이 포함된 aMEM 배지에 부유 배양하는 단계를 포함하는, 냉동 보관된 제대 혈로부터 중간엽 줄기세포의 분리 및 배양 방법을 제공한다.

본 발명은 영하 196 ℃로 냉동 보관 중인 제대혈 유닛으로부터 중간엽 줄기세포를 분리 및 배양하는 재현성 있는 방법을 제공한다. 즉, 세포수가 상대적으로 부족한 제대혈로부터 중간엽 줄기세포를 분리 및 배양하는 최적 조건을 찾아냄으로써 제대혈을 이용한 난치병 치료에 기여하고자 하였다.

이를 위하여 본 발명에서는, 냉동 보관된 제대혈로부터 단핵구를 회수하고, 얻어진 단핵 구로부터 CD133 양성 세포를 분리한 후, 세포성장인자인 Stem Cell Factor, GM-CSF, G-CSF, IL-3 및 IL-6을 첨가한 aMEM 배지에서 배양하는 것에 의해, 원시 중간엽 줄기세포의 확보와 배양 성공율을 획기적으로 높일 수 있었다. 즉, 냉동 보관된 제대혈에서는 적혈구와 혼합되어 있어 순수 단핵구를 분리하기 어렵기 때문에, 줄기세포가 있다고 생각되는 CD133 양성 세포만을 선택하여 배양하여야 한다. 이와 같은 본 발명의 방법에 따르면 중간엽 줄기세포 배양 성공률은 90% 이상으로 나타나는데, 중래 냉동보관된 제대혈이나 골수로부터 줄기세포를 배양 및 중식시킨 예는 없었다.

이하, 실시예를 통하여 본 발명에 따른 냉동 보관된 제대혈로부터 중간엽 줄기세포를 분리 및 배양하는 방법을 구체적으로 설명한다. 단, 이들 실시예는 본 발명의 예시일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.

16> 실시예 1: 중간엽 줄기세포의 분리 및 배양

'17' 영하 196 ℃에서 냉동 보관 중이던 제대혈을 37 ℃의 water bath에 넣어서 바로 해동하였다. 제대혈로부터 단핵구를 분리하기 위해, aMEM(alpha-minimum essential medium, Jeil

Biotech Services, Korea)으로 제대혈을 2 배 용량으로 희석한 후 실온에서 10 분간 300xg로 원심분리하였다. 분리된 buffy coat 충을 수확하여 다시 2 배 용량의 aMEM으로 희석한 후 Ficoll-Hypaque에 중첩하고 실온에서 30 분간 300xg으로 원심분리를 시행하였다.

설액으로부터 단핵구를 분리하는 데는 Ficoll(슈크로스의 중합체)과 Hypaque (디트리조에이트 나트륨; sodium ditrizoate)의 중합체인 Ficoll-Hypaque가 주로 이용된다.

Ficoll-Hypaque의 비중은 1.007 g/ml로, 단핵구는 이보다 가벼우나 적혈구는 이보다 무겁기 때문에 비중차에 의한 분리가 가능하다. 즉, 혈액을 Ficoll-Hypaque 위에 올려서 원심분리하면 단핵구는 Ficoll-Hypaque 위에 모이게 된다.

이와 같은 밀도구배 원심분리 방법으로 얻어진 단핵구를 다시 첨가물이 섞이지 않은 세 척용 aMEM으로 2 회 세척하였다.

인어진 단핵구를 CD133 분리 키트(Isolation kit: Miltenyi Bioteck, Germany)로 양성 (positive) 선택적 분리하였다. 분리 방법은 먼저, 얻어진 단핵구에 100 씨의 블로킹 시약 (blocking reagent)을 첨가하여 비-특이적 결합을 제거하고, 이어서 100 씨의 CD133/Microbead 를 잘 섞어서 전체 용적을 500 씨로 하여 4 ℃에서 30 분간 배양하였다. 10 배 용량의 PBS(D-phosphate buffered saline, Jeil Biotech Services, Korea)를 첨가하여 원심분리 (300xg, 10 분)한 후, 튜브에 붙어있는 세포를 제외하고 PBS를 버린 다음 500 씨 PBS로 재현탁 (resuspension)하였다. 이어서, 미리 컬럼을 3 째 PBS 완충액으로 세척해 두고, 재현탁된 세포를 기계에 부착된 컬럼에 넣어 15 분 이상 머물게 한 다음 PBS로 4 회 헹구었다(rinsing). 다음에, 컬럼을 기계에서 떼내어 튜브에 두고 PBS를 적당히 넣어 플런저(plunger)로 플러쉬 (flush)하여, 양성(positive) 세포들을 선택하였다.

- 선택된 세포들을, 항생제(1000 U/ml 페니실린 G, 1000 μg/ml 황산 스트렙토마이신, Gibco-BRL)와 항진균제(0.25 μg/ml 암포테리신 B), 그리고 2 mM의 글루타민(Glutamine, Sigma)이 포함된 aMEM 배지에 20% 우태혈청(FBS; fetal bovine serum, Jeil Biotech Services)과 함께 세포성장인자로서 Stem Cell Factor(50 ng/ml), GM-CSF(granulocyte-macrophage colony-stimulating factor; 10 ng/ml), G-CSF(granulocyte colony-stimulating factor; 10 ng/ml), IL-3(interleukin-3; 10 ng/ml) 및 IL-6(interleukin-6; 10 ng/ml)을 첨가하고, 세포수 1×106/cm의 농도로 부유시켰다.
- 5 일간 배양한 세포 군집에서 부유세포를 제거하고, 부착세포가 확보된 후에는 20% 우태 혈청 및 항생제가 포함된 aMEM을 배양액으로 하여 2 일 간격으로 세척과정 없이 완전 교환하여 25 일간 배양하였다.
- 도 1은 본 발명의 방법에 따른 냉동 보관된 제대혈 유래 중간엽 줄기세포주 배양 과정을 보여주는 사진으로, 도 1a, 1b, 1c, 1d, 1e 및 1f는 각각 5 일, 7 일, 10 일, 14 일, 20일 및 25 일 배양한 결과이다(배율 100X). 여기에서 보듯이, 제대혈에서 분리한 단핵 세포를 배양하면, 5 일 후에는 플라스크 바닥에서 붙어 자라는 세포가 관찰되며, 7 일째가 되면 세포들이 군집을 형성하여, 여러 형태를 가진 세포로 자라난다. 배양 10 일 후에는 단핵세포에서 방추형 세포로의 분화가 이루어지고, 이 방추형 세포들이 세포 분열 및 증식을 통해 배양 25 일 후에는 완전한 중간엽 줄기세포로 배양이 완료된다.
- 24> 실시예 2: 배양된 중간엽 줄기세포의 세포 표면항원 특성
- 25> 이와 같은 과정을 통해 분리 및 배양된 방추형 중간엽 줄기세포의 세포 표면항원 특성을 알아보기 위해 세포 표면항원을 FACS로 분석하고 그 결과를 다음 표 1에 나타내었다.

FACS(fluorescence activated cell sorting; 유세포 분리기)는 관심있는 세포 표면에 발광 면역항원 표지자를 붙여 그 특성을 분석하거나, 목적에 따라 특정 항원 표지자를 가진 세포들만을 분리할 수도 있다.

<26> 【班 1】

:28>

표지자	반응
CD14	_
CD34	-
CD45	
SH2	+
SH3	+
CD29	+
CD44	+
CD90	+
CD166	(+)

표 1에서 보면, 본 발명에 따라 분리 및 배양된 줄기세포의 경우, 조혈 줄기세포의 특징적 표지자인 CD34, CD45, CD14는 음성반응을 보였고, 중간엽 줄기세포의 특징적인 표지자인 SH2, SH3, CD29, CD44는 양성반응을 나타내었으며, CD166은 약한 양성반응이 확인되었다. 이는 본 발명에 따라 분리 및 배양된 낸 세포가 중간엽 줄기세포임을 보여주는 것으로 해석된다.

실시예 3: 중간엽 줄기세포 배양 성공율 비교

'29> 냉동보관된 제대혈 50 유닛을 가지고 종래의 방법과 본 발명의 방법에 따라 배양하고 그 성공율을 비교하여 다음 표 2에 나타내었다.

<30> 【班 2】

종래의 방법	본 발명의 방법
0	49
0	98
	중래의 방법 0 0

의 위표 2에서 보듯이, 중간엽 줄기세포 배양 성공률을 비교한 결과, 종래의 방법에서는 0%의 성공률을 보인 반면, 본 발명의 방법에 따르면 98%라는 높은 성공률을 보여주는 것을 알수 있다.

【발명의 효과】

이상에서 살펴본 바와 같이, 본 발명에 따르면 세포수가 상대적으로 부족한 제대혈에서 중간엽 줄기세포를 효과적으로 분리 및 배양할 수 있으며, 이에 따르면 버려지고 있는 제대혈 이 세포 치료제로서 각종 난치병을 치유하기 위한 중요한 수단으로 활용될 수 있다.

【특허청구범위】

【청구항 1】

냉동 보관된 제대혈을 해동하여 aMEM(alpha-minimum essential medium) 배지로 희석하고 원심분리하여 단핵구를 수확하고;

얻어진 단핵구로부터 CD133 양성 세포를 분리하고; 그리고,

분리된 세포를 Stem Cell Factor, GM-CSF(granulocyte-macrophage colony-stimulating factor), G-CSF(granulocyte colony-stimulating factor), IL-3(interleukin-3) 및 IL-6(interleukin-6)이 포함된 aMEM 배지에 부유 배양하는 단계를 포함하는, 냉동 보관된 제대 혈로부터 중간엽 줄기세포의 분리 및 배양 방법.

【청구항 2】

제 1 항에 있어서, 제대혈을 2 배 용량의 aMEM 배지로 희석한 후 Ficoll-Hypaque에 중첩하고 원심분리하여 단핵구를 수확하는 것을 특징으로 하는 방법.

【청구항 3】

제 1 항에 있어서, 단핵구를 배양하는 aMEM 배지에 항생제, 항진균제, 글루타민 및 우태 혈청이 더욱 포함되는 것을 특징으로 하는 방법.

【도면】

[도 1b]

[도 1c]

[도 1d]

[도 le]

[도 1f]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.