CWR 2 SoSe 2014, FAKULTÄT FÜR PHYSIK, UNIVERSITÄT GÖTTINGEN

Projekt 65 Doppelpendel

Bearbeiter	r: Felix	Kurtz
E-Mail:	felix.kurtz@stud.uni-goetting	gen.de
Betreuer:	Burkhard 1	Blobel
Abgabe:	18.0	8.2014
	Note:	

In halts verzeichn is

Inhaltsverzeichnis

1	Einleitung	3
2	System umschreiben	3
3	Kartesische Koordinaten und Energie	4
4	Programmaufbau	4
5	Vergleich der Integrationsverfahren	5
6	Entwicklung der Gesamtenergie	5
7	Anhang	6

1 Aufgabenstellung

In dieser Hausarbeit stehen die Bewegungen eines Doppelpendels im Vordergrund.

Abbildung 1: Doppelpendel mit wichtigen Größen ¹

Man kann es mit folgendem System gekoppelter Differentialgleichungen beschreiben.

$$Ml_1\ddot{\varphi}_1 + m_2l_2\ddot{\varphi}_2\cos(\varphi_1 - \varphi_2) + m_2l_2\dot{\varphi}_2^2\sin(\varphi_1 - \varphi_2) + Mg\sin\varphi_1 = 0$$
 (1)

$$m_2 l_2 \ddot{\varphi}_2 + m_2 l_1 \ddot{\varphi}_1 \cos(\varphi_1 - \varphi_2) - m_2 l_1 \dot{\varphi}_1^2 \sin(\varphi_1 - \varphi_2) + m_2 g \sin(\varphi_2) = 0$$
 (2)

Dabei ist $M = m_1 + m_2$. Zuerst soll dieses System 2.Ordnung auf eines erster Ordnung zurückgeführt werden, um diese anschließend mittels Runge-Kutta-Verfahren 2. und 4.Ordnung numerisch zu integrieren.

Man fixiert $l_1 = 1$ m und $m_1 = 1$ kg und variiert die Verhältnisse l_2/l_1 und m_2/m_1 . Für die Anfangsbedingungen $\varphi_1(0) = \frac{\pi}{4}$, $\dot{\varphi}_1 = 1\frac{\mathrm{rad}}{\mathrm{s}}$ und $\varphi_2(0) = \frac{\pi}{3}$, $\dot{\varphi}_2 = 1.5\frac{\mathrm{rad}}{\mathrm{s}}$ wird dann das Verhalten des Pendels untersucht. Es soll die Bahn der beiden Massen geplottet werden sowie ihre Geschwindigkeiten in Abhängigkeit des Ortes. Neben dem qualitativen Verhalten des Pendels sollen auch die beiden genutzten Integrationsverfahren hinsichtlich Geschwindigkeit und Genauigkeit getestet werden.

2 System umschreiben

Stellt man (2) nach $\ddot{\varphi}_2$ um und setzt man dies in (1) ein, kann diese Gleichung nach $\ddot{\varphi}_1$ aufgelöst werden. Analog stellt man (2) nach $\ddot{\varphi}_1$ um und setzt dies in (1) ein, um $\ddot{\varphi}_2$ zu

¹Quelle: http://me-lrt.de/img/vari-u05-2-doppelpendel.png

erhalten.

$$\ddot{\varphi}_1 = -\left(m_2 l_1 \dot{\varphi}_1^2 s c - m_2 g \sin \varphi_2 c + m_2 l_2 \dot{\varphi}_2^2 s + M g \sin \varphi_1\right) / \left(l_1 M - l_1 m_2 c^2\right)$$
(3)

$$\ddot{\varphi}_2 = \left(Ml_1\dot{\varphi}_1^2 s - Mg\sin\varphi_2 + m_2l_2\dot{\varphi}_2^2 sc + Mg\sin\varphi_1 c\right) / \left(l_2M - l_2m_2c^2\right) \tag{4}$$

Hier ist $s = \sin(\varphi_1 - \varphi_2)$ und $c = \cos(\varphi_1 - \varphi_2)$.

Nun hängen die zweiten Ableitungen nicht mehr von der jeweils anderen zweiten Ableitung ab. Substituiert man nun noch $\dot{\varphi}_1$ bsp. durch θ_1 und analog $\dot{\varphi}_2$ durch θ_2 , sind diese 4 Gleichungen ein System erster Ordnung. Dies kann nun numerisch gelöst werden.

3 Kartesische Koordinaten und Energie

$$x_1 = l_1 \sin \varphi_1$$

$$y_1 = -l_1 \cos \varphi_1$$

$$x_2 = x_1 + l_2 \sin \varphi_2$$

$$y_2 = y_1 - l_2 \cos \varphi_2$$

Geschwindigkeiten

$$\begin{aligned} \dot{x}_1 &= l_1 \cos \varphi_1 \cdot \dot{\varphi}_1 \\ \dot{y}_1 &= l_1 \sin \varphi_1 \cdot \dot{\varphi}_1 \\ \dot{x}_2 &= \dot{x}_1 + l_2 \cos \varphi_2 \cdot \dot{\varphi}_2 \\ \dot{y}_2 &= \dot{y}_1 + l_2 \sin \varphi_2 \cdot \dot{\varphi}_2 \end{aligned}$$

Energie

$$E = E_{pot} + E_{kin} = m_1 g y_1 + m_2 g y_2 + \frac{1}{2} m_1 \left(\dot{x}_1^2 + \dot{y}_1^2 \right) + \frac{1}{2} m_2 \left(\dot{x}_2^2 + \dot{y}_2^2 \right)$$

4 Programmaufbau

Ich habe mich für den objektorientierten Ansatz entschieden. So beschreibt die Klasse Doppelpendel eben dieses. Sie hat folgende Attribute:

- Massen und Längen
- φ_1 und φ_2 sowie ihre ersten Ableitungen
- zugehörige kartesische Koordinaten auch Geschwindigkeiten

- Energie anfangs und aktuell
- Saltozähler
- Zeit???

Die Berechnung der Energie dient der Beurteilung, wie gut die Trajektorie berechnet wurde, da sie konstant sein sollte. Die Zählung der Saltos - also ... - habe ich hinzugefügt, um das Verhalten des Pendels einfacher beurteilen zu können, vor allem in Hinblick auf verschiedene Massen- und Längenverhältnisse. So muss nicht jede Trajektorie angeschaut werden.

Der Konstruktor setzt $m_1 = 1$ kg und $l_1 = 1$ m, da wir uns hier nur auf diesen Fall beschränken. Da alle Attribute jedoch public sind, könnte man diese beiden auch ändern. Mit der Memberfunktion initialize werden die restlichen Variablen gesetzt. So kann diese öfters aufgerufen werden und das Doppelpendel mit neuen Anfangsbedingungen gestartet werden.

Berechnung der Trajektorie

Außerdem hat sie noch weitere Methoden:

- $\ddot{\varphi}_1(\varphi_1, \dot{\varphi}_1, \varphi_2, \dot{\varphi}_2)$ und $\ddot{\varphi}_2(\varphi_1, \dot{\varphi}_1, \varphi_2, \dot{\varphi}_2)$
- Runge-Kutta 2. und 4.Ordnung
- Berechnung der kartesischen Koordinaten und deren Ableitungen
- Berechnung der Gesamtenergie

Des Weiteren habe ich noch zwei Methoden implementiert, die den Abstand der Massen zwei verschiedener Doppelpendel zurückgibt.

5 Vergleich der Integrationsverfahren

Zwar ist Runge-Kutta 2.Ordnung mit gleicher Integrationsschrittweite schneller als der 4.Ordnung, aber auch ungenauer. Dies ist bei einem chaotischen System wie diesem unerwünscht.

6 Entwicklung der Gesamtenergie

Um die Genauigkeit des Integrationsverfahrens zu überprüfen, kann man sich die Gesamtenergie anschauen. Diese sollte bekanntlich konstant sein. In Abbildung ... ist die Energie gegen die Zeit aufgetragen. Man erkennt, dass es Energiespitzen gibt. Die Gesamtenergie fällt jedoch in Fall A ungefähr auf das anfängliche Niveau zurück. In Fall B klettert die Energie unaufhörlich, die Simulation ist also nur zu einem gewissen Grad brauchbar.

7 Anhang