第5章--排列组合

目录(Catalog)

- 5.1 计数 与整数的对应关系
 - 。 5.1.1 何谓计数
 - 。 5.1.2 注意 " 遗漏" 和 " 重复"
- 5.2 植树问题 不要忘记 0
- 5.3 加法法则
- 5.4 乘法法则
- 5.5 置换
 - 5.5.1 置换
 - 。 5.5.2 归纳一下 (阶乘)
 - 。 5.5.3 思考题 (扑克牌的摆法)
- 5.6 排列
 - 。 5.6.1 排列
 - 。 5.6.2 归纳一下
 - 。 5.6.3 属性图 -- 能够认清本质吗
- 5.7 组合
 - 。 5.7.1 组合
 - 。 5.7.2 归纳一下
 - 。 5.7.3 置换, 排列, 组合的关系
- 5.8 思考题练习
 - 5.8.1 重复组合
 - 。 5.8.2 也要善于运用逻辑
- 5.9 本章小结

生词(New Words)

- substitution [sʌbstɪ'tjuːʃn] --n.代替, 替换
 - 。 direct substitution 直接取代
 - We don't know exactly when the substitution took place. 我们不知道以假换真是什么时候发生的事.
- permutation [pɜːmjʊˈteɪʃ(ə)n] / [ˈpɜʰmjʊˈteʃən] --n.排列; 置换.
 - o permutation and combination. n.[数] 排列组合.
- arrangement [ə'rendʒmənt] --n.安排; 排列; 布局.
 - 。 I agree to this arrangement. 我同意这个安排.
 - 。 course arrangement. 课程安排.
 - The arrangement is all right with me. 这样安排对我很适宜.
 - o This arrangement has a lot of advantages. 这种安排有很多好处.
- inclusion [ɪn'kluʒn] --n.包含; 包括.
- exclusion [ɪk'skluʒn] --n.拒绝; 排出
- conclusion [kən'klu:ʒ(ə)n] --n.结论, 结局
 - 。 It is too early to draw a conclusion. 现在下结论还为时过早.
 - Let's not jump to any conclusion, all right? 先别急着下结论 行吗?
- combination [kpmbɪ'neɪʃ(ə)n]{UK} --n.组合; 合并; 结合.
 - 。 in combination with. ...与...结合
 - And then I do a combination of them. 然后我会得出它们的一个组合.

内容(Content)

5.1 计数 — 与整数的对应关系

- 5.1.1 何谓计数
- 5.1.2 注意 " 遗漏" 和 " 重复"

5.2 植树问题 — 不要忘记 0

● 在 10 米长的路上, 从路的一端起每隔 1 米种一棵树, 那么需要种多少棵树?

答: 从路的一端起每隔 1 米种一棵树的意思就是在距离路的一端 0、1、2、3、4、5、6、7、8、9、10 米的位置种树. 因此, 需要 11 棵树

5.3 加法法则

- 我们先来看下面这个问题
 - 。 在一副扑克牌中, 有 10 张红桃数字牌(A、2、3、4、5、6、7、8、9、10), 3 张 红桃花牌(J、Q、K). 那么红桃共有多少张?

答案: 数字牌 10 张, 加上花牌 3 张, 共有 13 张.

- 上面的问题非常简单, 它所使用的就是加法法则. 加法法则就是将 " 无重复" 元素的 2 个集合 A, B 相加, 得到 $A \cup B$ (并)的元素数.
 - $A \cup B$ 的元素个数 = A 的元素个数 + B 的元素个数.

如果将集合 A 的元素数写作 |A|, 集合 B 的元素数写作 |B|, 那么加法法则就可以用以下等式表示.

$$|A \cup B| = |A| + |B|$$

在上题中, 集合 A 就相当于红桃数字牌, 集合 B 就相当于红桃花牌.

红桃牌的张数 = 红桃数字牌的张数 + 红桃花牌的张数

- 但是, **加法法则只在集合中没有重复元素的条件下成立.** 在重复的情况下, 必须减去重复才能得到正确的数量. 我们接着来看一题.
- 思考题: 控制亮灯的扑克牌

在一副扑克牌中, 有 13 个等级 (A、2、3、4、5、6、7、8、9、10、J、Q、K). 这里, 我们分别将 A, J, Q, K 设为整数 1, 11, 12, 13.

在你面前有一个装置,只要往里面放入 1 张牌,它就会根据牌的级别控制灯泡的亮灭. 我们设放入的扑克牌的级别为 n (1 ~ 13 的整数),

- \circ 若 n 是 2 的倍数, 则亮灯.
- \circ 若 n 是 3 的倍数; 也亮灯.
- \circ 若 n 既不是 2 的倍数, 也不是 3 的倍数, 则灭灯.

往这个装置中依次放入 13 张红桃, 其中亮灯的有多少张牌呢?

答:

在数字 1~13 里面, 2 的倍数有 2, 4, 6, 8, 10, 12, 共 6 个.

- 在数字 1 ~ 13 里面, 3 的倍数有 3, 6, 9, 12, 共 4 个
- 既是 2 的倍数, 又是 3 的倍数的有 6, 12, 共 2 个.

因此, 亮灯的牌数为 6 + 4 - 2 = 8.

• 容斥原理(The Principle of Inclusion and Exclusion)

大家有没有注意到上面 2 的倍数和 3 的倍数中有 " 重复" 的数字呢? 2 的倍数和 3 的倍数的共同部分 (重复部分), 就是 6 的倍数(图 5-6)

2 的倍数的个数, 加上 3 的倍数的个数, 再减去重复的个数, 就是 容斥原理 . 这是 " 考虑了重复元素的加法法则" .

集合 A, B 的元素总数 = A 的元素数 + B 的元素数 - A 和 B 共同的元素数 如果将集合 A 的元素数写作, 容斥原理可以用下述等式表示.

$$A \cup B = A + B - A \cap B$$

即 A 的元素数 |A| 和 B 的元素数 |B| 相加, 再减去重复的元素数 $A \cap B$ 在使用容斥原理时, 必须弄清 " 重复的元素数有多少" . 这也是 " 认清计数对象性质" 的一个例子.

5.4 乘法法则 (组合 / 元素配对)

- 本节, 我们介绍根据 2 个集合进行 "元素配对"的法则.
- 思考题: 红桃的数量
 - 在一副扑克牌中,有红桃,黑桃,方片,梅花 4 种花色.每个花色都有 A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K 这 13 个等级.那么,一副扑克牌共有多少张?(这里除去王牌)

- 。 答案: 在一副扑克牌中, 4 种花色都各有 13 张. 因此, 要求的牌数可通过下述算式 得出 $4 \times 13 = 52$
- 乘法法则: 将扑克牌排成图 5-7 所示的长方形, 就能明白为什么要用乘法来计算元素数了.

- 扑克牌有 4 种花色,每种花色又分别有 13 张. 遇到这种 "分别有"的情况时,往 往只需要乘法计算便可求出结果. 这又是 "认清计数对象性质"的一例.
 这里所用的是乘法法则.
- 。 有 A 和 B 两个集合, 现假设要将集合 A 的所有元素与集合 B 的所有元素的组合 起来. 这时组合的总数就是两个集合的元素数相乘所得出的结果. 我们将集合 A 的元素数写作 |A|, 集合 B 的元素数写作 |B|, 那么元素的组合数就是

$$|A| \times |B|$$

从集合 A 和集合 B 中各取出一个元素作为一组,所有这种组合的集合即为 $|A| \times |B|$,可以表示为

$$|A \times B| = |A| \times |B|$$

假设 A 为扑克牌花色的集合, B 为扑克牌级别的集合, 那么这些元素列举如下.

- 集合 *A* = {红桃, 黑桃, 方片, 梅花}
- 集合 *B* = {A,2,3,4,5,6,7,8,9,10, J, Q, K}

而集合 $A \times B$ 列举如下

集合 $A \times B = \{$

(红桃, A), (红桃, 2), (红桃, 3), · · · , (红桃, K),

(黑桃, A), (黑桃, 2), (黑桃, 3), ···, (黑桃, K),

(方片, A), (方片, 2), (方片, 3), ···, (方片, K),

(梅花, A), (梅花, 2), (梅花, 3), · · ·, (梅花, K),

- 思考题: 3 个筛子
 - 。 将 3 个写有数字 1 到 6 的骰子并列放置, 形成一个 3 位数, 共能形成多少个数字? (例如, 图 5-8 所示排列, 形成数字 255)

。 答案: 第 1 个筛子有 1, 2, 3, 4, 5, 6 共 6 种情况.

与第 1 个筛子的 6 种情况相对应, 第 2 个筛子也有 6 种情况. **因此前 2 个筛子 共有 6** \times **6 种情况. (乘法法则)**

第 1 个筛子有 6 种情况, 与之相对应的第 2 个筛子也有 6 种情况, 而在此基础上第 3 个筛子又有 6 种情况. 因此 3 个筛子共有 $6 \times 6 \times 6$ 种情况 (乘法法则).

- 。 分析: 我们假设第一个筛子的 6 种情况为集合 A, 第二个筛子的 6 种情况为集合 B, 第三个筛子的 6 种情况为集合 C, 那么分别表示出来为:
 - \blacksquare $A = \{1, 2, 3, 4, 5, 6\};$
 - \blacksquare *B* = {1, 2, 3, 4, 5, 6};
 - $C = \{1, 2, 3, 4, 5, 6\};$

将 3 个集合的元素组合起来,组合的总数就是 3 个集合的元素数相乘所得到的结果,即 $|A| \times |B| \times |C|$.

- 思考题: 32 个灯泡
 - 1 个灯泡有 " 亮" 和 " 灭" 2 种状态, 若将 32 个这样的灯泡排成一排, 则共有多少种亮灭模式?

。 答: 我们把 1 个灯泡看作是一个包含 " 亮" (1) 和 " 灭" (0) 2 个元素的一个集合(F), 表示为 $F = \{0,1\}$. 那么 32 个灯泡就有 32 个这样的集合, 即:

32 个灯泡排成一排, 也就是把 32 个灯泡组合起来, 我们根据由 集合的元素组合 起来, 就是把集合的元素数相乘所得到的结果 这个前提, 来用乘法法则求出 32 个灯泡排成一排的组合数. 即:

$$\underbrace{2\times2\times\cdots\times2}_{32\uparrow} \quad = 2^{32} \quad = 4294967296$$

tip: 从结果可以看出 32 个明灭的灯泡组合起来有 42 亿种情况, 这大概就是所说的指数爆炸吧.

 \circ 通常 n 位 2 进制数可以表示的数的总数为 2^n . 这是程序员应掌握的基本知识.

5.5 置换 ($n! = P_n^n$)

5.5.1 置换

• 先给出置换的定义:

置换(substitution):将n个事物按顺序进行排列称为置换.

Tip: 一般 置换 都是在一个集合内做操作, 即把一个集合内的元素调换顺序来形成另外一种排法. (也可以说是: n 个事物的所有排法.)

Tip02: 我们说把 n 个事物按顺序进行排列, 这 n 个事物, 一般默认是没有重复的, 想一想如果有重复的元素存在, 该如何产生 "顺序" 呢, 是不是?

- 思考题(1): 3 张牌的置换
 - 。 如果将 A, B, C 这 3 张牌按照 ABC, ACB, BAC · · · · · · 等顺序排列,那么有多少种排法?
 - 。 答案: 经过思考, 我们知道 3 张牌共有 6 种排法. 如下图 5-10所示

。 A, B, C 3 张牌的置换总数, 可以通过下述步骤得出.

- 第 1 张牌 (最左边的牌), 从 *A*, *B*, *C* 3 张中选出 1 张. 即, 第 1 张牌有 3 中选法.
- 第2张牌,从已选出的第1张牌以外的2张中选出1张.即,第2张牌与第1 张牌的选法相对,分别有2种选法.
- 第3张牌,只有一张可选.
- 。 因此, 3 张牌的所有排列方法 (置换的总数), 可以通过如下计算得出.
- 。 第 1 张牌的选法 \times 第 2 张牌的选法 \times 第 3 张牌的选法 = 3 \times 2 \times 1.

5.5.2 归纳一下 (阶乘)

- 这次, 我们增加到 5 张牌. 5 张牌(A, B, C, D, E)的置换总数又是多少呢? 思路和 3 张时相同.
 - 第1张的选法有5种,
 - 第2张的选法有4种,
 - 第3张的选法有3种,
 - 第4张的选法有2种,
 - 第5张的选法有1种,

因此, 5 张牌的置换总数计算如下:

$$5 \times 4 \times 3 \times 2 \times 1 = 120$$

答案: 120 种.

阶乘 (factorial):通过观察可知上面的算式就是按 5, 4, 3, 2, 1 这样将递减的整数相乘. 这种乘法经常在计算有多少种情况时出现,它可以表示为 5! (读作: 5 的阶乘)
 5! = 5 × 4 × 3 × 2 × 1

5! 称为 5 的 阶乘(factorial), 是因乘数呈阶梯状递减而得名. 5 张牌的置换总数为 5!. 我们来实际计算一下阶乘的值.

$$5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$$
 $4! = 4 \times 3 \times 2 \times 1 = 24$
 $3! = 3 \times 2 \times 1 = 6$
 $2! = 2 \times 1 = 2$
 $1! = 1 = 1$
 $0! = 1$

要注意 0 的阶乘 (0!) 不是 0, 而被定义为 1. 这是数学里的规定.

5.5.3 思考题 (扑克牌的摆法)

● 思考题(2): 将一副扑克牌里的 52 张 (不包括王牌) 摆成一排, 共有多少种摆法?

答案: 这是 52 张牌的置换, 因此有:

 $52! = 52 \times 51 \times 50 \times \cdots \times 1$

- = 80658175170943878571660636856403766975289505440883277824000000 居然得出这么大一个数字 (62 位)!
- Tips: $1! \cdots 52!$ 的阶乘. 随着 n 的增大, 阶乘 n! 的结果呈爆炸式增长.

5.6 排列 (P_n^k)

• 在上一节 5.5 置换 的学习中, 我们罗列了 n 个事物的所有排法. 而本节, **我们将学习从** n **个事物中取出一部分进行** " **排列"**.

5.6.1 排列

- 思考题(1) 从 5 张牌中取出 3 张进行排列.
 - 。 你现在手上持有 A, B, C, D, E 共 5 张牌. 要从这 5 张牌中取出 3 张进行排列. 请问有多少种排法?

图5-11	从5张牌中取出3张进行排列						
	ABC	ACB	BAC	BCA	CAB	CBA	
	ABD	A DB	BAD	BDA	DAB	DBA	
	ABE	AEB	BAE	BEA	EAB	EBA	
	ACD	ADC	CAD	CDA	DAC	DCA	
	ACE	AEC	CAE	CEA	EAC	ECA	
	ADE	AED	DAE	DEA	EAD	EDA	
	BCD	BDC	CBD	CDB	DBC	DCB	
	BCE	BEC	CBE	CEB	EBC	ECB	
	BDE	BED	DBE	DEB	EBD	EDB	
	CDE	CED	DCE	DEC	ECD	EDC	

答: 60 种. 如下图:

排列(permutation):我们将上题那样的排法称作从5张里面取出3张的排列。

请注意, **排列与置换相同, 也是要考虑顺序的.** 例如, ABD 和 ADB 都是由 A, B, D这 3 张牌组成的, 但是它们的顺序不同, 因此是不同的排列, 需要分别计数.

在求 5 张里面取 3 张牌的排列总数时, 我们一张一张顺次排列, 直到达到规定的牌数 为止. 即按照如下方式计算:

- 第 1 张的取法有 5 种,
- 第 2 张的取法有 4 种,
- 第3张的取法有3种.

由此可得, $5 \times 4 \times 3 = 60$.

5.6.2 归纳一下 (排列的定义)

- 大家现在已经想到了排列的归纳方法了吧. 假设从 n 张牌出取出 k 张进行排列:
 - 。 第 1 张是 "从 n 张中取出 1 张", 因此有 n 种取法.
 - \circ 第 2 张的取法与以上相对. 有 n-1 种.
 - 。 第 3 张的取法与以上相对, 有 n-2 种.
 - 0
 - 第 k 张的取法与以上相对, 有 n-k+1 种.

因此, M 张牌中取出 k 张进行排列的总数就是:

$$n \times (n-1) \times (n-2) \times \cdots \times (n-k+1)$$

这个式子很重要,一定要看仔细. 特别是最后一项 (n-k+1),必须理解透彻.

为了更清楚地表示有多少项相乘, 我们将第一项 n 写作 (n-0), 最后一项 (n-k+1) 写作(n-(k-1)). 这样就得到如下式子

$$\underbrace{(n-0)\times(n-1)\times(n-2)\times\cdots\times(n-(k-1))}_{k\uparrow}$$

即将所有项 (n-0), (n-1), (n-2), \cdots , (n-(k-1)) 相乘. 其中各项中 n 减去的数字分别为 "0 到 (k-1)",所以我们可知一共有 k 项相乘. 这里就用到了本章最开始介绍的 "植树问题" 的思考方法.

Additional Info: 为什么这里作者要着重强调从 n 个元素中取出 k 个进行排列, 是一共有 k 项相乘呢? A: 因为下面我们会给出排列的总数的通用计算方法, 在通用计算方法中便会用到 k.

• 如上所述,

排列(permutation): 我们将从 n 个不同元素中取出 k 个并按照一定顺序排列的方法称作 排列,排列的总数记作: P_n^k .

并能够得到以下等式:

$$P_n^k = \underbrace{(n-0) imes (n-1) imes (n-2) imes \cdots imes (n-(k-1))}_{k o k}$$

只要已知 n 和 k 两个数即可求出排列总数, 所以 P_n^k 中的 n 和 k 小写, P 是 permutation 的缩写.

例如, 求 5 张牌中取出 3 张进行排列的总数是, n=5, k=3, 因此可以如下计算:

- 5 张牌中取 3 张进行排列的总数 = P_5^3 = $5 \times 4 \times 3$ = 60.
- "5 张牌中选 0 张进行排列的总数" 为 P_5^0 , 但它不是 0, 而被定义为 1. 即: $P_5^0=1$.
 - 。 tip: 实际上这个很好理解, "选 0 张" 即是说你没得选, "没得选" 本身就是一种情况嘛, 对吧? 所以排列总数也就是 1 嘛.

上一节介绍的 "置换" 也能用这种方法表示. n 个数置换的总数就可以记作 P_n^n .

● 用 阶乘 表示:

很多情况下, 也常用已下阶乘的形式来表示排列:

$$P_n^k = \frac{n!}{(n-k)!}$$

这个式子看起来多少有点晦涩难懂, 不过分母 (n-k)! 可与分子 n! 的最后 n-k 项 鱼粉. 看下述算式应该更容易理解.

$$P_5^3 = rac{5!}{(5-3)!} \ = rac{5 imes 4 imes 3 imes 2 imes 1}{2 imes 1} \ = 5 imes 4 imes 3$$

上面的 $(n-0) \times (n-1) \times (n-2) \times \cdots \times (n-(k-1))$ 如果使用阶乘表示(P_n^k), 就可以不写省略号, 使得算式的内容更明确. 这也就是为什么在以后学习线性代数, 微积分, 概率论的时候有很多新写法的原因.

5.6.3 树形图 -- 能够认清本质吗

● 从 3 张牌中取出 3 张进行排列时, 同一张牌不能选 2 次. 因为可选择的第 2, 第 3 张的牌数递减. 为了看得更明白一些, 我们用 树形图 来表示 (图 5-12)

请把图 5-12 想象成左面是 "根", 右面是 "枝" 的树. 从根生出 3 根树枝, 这表示第 1 张牌有 3 种选法. 这 3 根树枝又都分别再生出 2 根枝, 这表示第 2 张牌有 2 种选法. 最后都只有 1 根枝. 从图中可见, 树枝呈 $3 \rightarrow 2 \rightarrow 1$ 递减状.

树形图是有助于 "认清计数对象性质" 的有效工具.

5.7 组合 (C_n^k)

5.7.1 组合

- <mark>置换</mark> 和 <mark>排列</mark> 都需要考虑顺序, 而本节我们要介绍的是 "不考虑顺序的方法" -- <mark>组</mark>合.
- 假设现在有 A, B, C, D, E 五张牌. 要从这 5 张牌中取出 3 张牌, 并且不考虑它们的顺序, 即以 3 张牌为 1 组进行选择. 例如, ABE 和 BAE 应视为同一组. 这时, 3 张牌的取法如下, 共有 10 种:

这种取法称为 组合(combination).

我们将从 n 个不同元素中取出 k 个, 但是不考虑它们的顺序, 这种取法称为 4c .

置换(substitution) 和 排列(permutation) 是考虑顺序的, 而 组合 则不考虑顺序.

- 要计算 5 张里面取 3 张的组合总数, 只要这样考虑就行了,
 - 。 (1) 首先, 和排列一样 "考虑顺序" 进行计数.
 - 。 (2) 其次, 除以重复计数的部分 (重复度: 即 3 张牌的置换总数 $3 \times 2 \times 1$).

首先,和 排列 一样 "考虑顺序" 进行计数. 但是作为 组合 来讲这样并不正确. 因为 若按 排列 计数,有 ABC, ACB, BAC, BCA, CAB, CBA 这 6 中排法,而在 组合 中这 6 种排法是作为 1 组来计算的.(tip: 因为这 6 种排法是 A, B, C 3 元素按不同的顺序来排列的,但是 组合 是不考虑顺序的,所以在 组合 中这 6 种排法实际上就是一种排法.)即若像 排列 那样考虑顺序则会产生 6 倍的重复计数.

这里出现的数字 6 (重复度), 是 3 张牌按顺序 排列 的总数, 即 3 张牌的 置换 总数($3 \times 2 \times 1$). 因为考虑顺序而产生了重复, 所以只要用排列的总数除以重复度 6, 就能得到组合的总数.

5 张里面取 3 张的组合的总数写作 C_5^3 (C 是 combination 的首字母). 计算如下:

5 张里面取 3 张的组合的总数 = C_5^3

$$C_5^3=rac{5$$
张里面取 3 张的排列总数 $rac{\cdots$ 考虑顺序的排列总数 3 张的置换总数 $rac{P_5^3}{P_3^3}$ $=rac{5 imes4 imes3}{3 imes2 imes1}$ $=10$

这里使用的 **先考虑顺序进行计数, 然后除去重复度** 的方法, 是计算组合时常用的计算方法.

5.7.2 归纳一下

• 接下来我们将牌数抽象化, 求出 n 张牌中取出 k 张的组合总数.

首先, 从 n 张牌中按顺序取出 k 张牌. 而这时 k 张的置换总数是重复的, 所以要除以这个重复度.

$$F_5^3=rac{\mathbb{A}n$$
张里面取 k 张的排列总 $rac{N}{k}$ 张的置换总数 $=rac{P_n^k}{P_k^k}$ $=rac{rac{n!}{(n-k)!}}{k!} = rac{n!}{(n-k)!} rac{1}{k!} = rac{n!}{(n-k)!k!}$

这样, 从 n 张里取 k 张的组合总数为

$$C_n^k = rac{n!}{(n-k)!k!}$$

5.7.3 置换,排列,组合的关系

- 置换 和 组合 相结合就是 排列,大家知道为什么吗? 下面我们使用逆向推法来证明: 排列 是 置换 和 组合 相结合的结果.
 - 。 (1) 我们先来看从 5 张牌(A, B, C, D, E) 中取 3 张的排列. 根据上面 **5.6** 排列 的知识我们知道是:

$$P_5^3$$
 = $5 \times 4 \times 3$ = 60 种, 即如下图:

。 (2) 那么再根据 5.5 置换 的知识我们来看一下: "3 张牌按顺序排列, 有多少种排法?" 即上面 5.5 置换 的思考题(1), 现在我们已经知道是:

$$P_3^3 = 3 \times 2 \times 1 = 6$$

- 。 (3) 最后根据本章节的知识, "从这 5 张牌中取出 3 张牌, 且不考虑它们的顺序" 就 是 组合 , 即: $C_5^3=\frac{P_5^3}{P_3^3}$
- 。 (4) 现在我们把 (3) 的公式变形, 即: $P_3^3 \times C_5^3 = P_5^3$ {1}
- 最后我们总结一下: 置换, 排列 和 组合:

置换 表示 "3 张牌的交替排列方法".

组合 表示 "3 张牌的取法".

两者结合就是 "取出 3 张牌, 进行交替排列", 即表示 排列.

"3 张的置换" \times " 从 5 张中取 3 张的组合" = " 从 5 张中取 3 张的排列 (即: $\{1\}$).

5.8 思考题练习

5.8.1 重复组合

- 思考题: 药品调剂
 - 。 假设我们想把几种颗粒状的药调剂成一种新药. 药品有 A, B, C 三种. 新药调剂的规则如下.
 - (1) 从 A, B, C 这 3 种药品中一共取 100 粒进行调剂.
 - (2) 调剂时, A, B, C 这 3 种药每种至少要有 1 粒.
 - (3) 不考虑药品调剂的顺序.
 - (4) 同种药的每粒都相同.

这种情况下, 新药调剂的组合共有多少种?

。 提示 1: 这是一个重复组合的问题.

同种药品可以放入多粒进行调剂(可以重复). 但是同种药品每粒都相同 并且不考虑调剂顺序(组合).

由于使用 100 粒药品进行调剂是既定的, 所以如果多放了某种药品, 那么其他药品就只能相对地少加了. 关键在于如何把握 3 种药品的数量关系

- 3 种药品不需要排序, 所以这里以固定的顺序来解答会比较轻松,
- 。 提示 2

我们将问题缩小,看看能获得什么启示.

现假设有 A, B, C 三种药, 而调剂用的药品从 100 粒改为 5 粒.

如图 5-18, 先准备好 5 个放药品的盘子, 再在盘子之间放入 2 块 "隔板". 并规定, 从左起, 第 1 块隔板左边的 2 个盘子放药品 A, 两块隔板之间的盘子放药品 B, 第 2 块隔板右面的盘子放药品 C (这就固定了 A, B, C 的顺序). 这个规定正好和问题中的规则一致, 隔板的放法和药品的调剂方法——对应.

从上图可以看出来,如果调剂 5 粒药,就需要 5 个盘子, 5 个盘子之间有 4 个间隙,根据题目要求: "使用 A, B, C 三种药来调剂,每种至少1 粒",我们只需要把 2 个隔板使用不同的组合放置在 4 个间隙中就行了,这样便达到了调剂 5 粒药的要求,我们把这几个组合排出来看一下:

A A A | B | C
A A | B | C
A A | B B | C (tip: 上图的黑线实隔板)
A A | B | C C
A | B B B | C (tip: 上图的虚线隔板,可以看出上图实际上有一点点问题)
A | B B | C C
A | B | C C C

此处重点就是把 2 个隔板使用不同的组合放置在 4 个间隙中, 那么使用组合表示就是: C_4^2 .

我们弄明白了上面缩小版的 5 粒药调剂, 那么 100 粒的情况又如何呢?

。 思考题答案:

我们将问题归纳为 "从 k 种药品中选出 n 粒", 并同样使用提示 2 中的 "隔板". 那么, 盘子的数量为 n 个, 能放置隔板的地方为 n-1 处, 隔板的数量为 k-1 块, 因此要求的调剂方法的总数为 C_{n-1}^{k-1} .

因此, 从 3 种药品中选出 100 粒的方法计算如下. 此时 n = 100, k = 3,

$$C_{n-1}^{k-1} = C_{100-1}^{3-1}$$

$$= \frac{99 \times 98}{2 \times 1}$$

$$= 4851$$

由以上算是得出调剂方法共有 4851 种.

5.8.2 也要善于运用逻辑

● 思考题: 至少有一端是王牌

。 现在有 5 张扑克牌, 其中王牌 2 张, J、Q、K 各 1 张. 将这 5 张牌排成一排, 左端或右端至少有一端是王牌的排法有多少种? (不区分大小王牌)

。 提示:

如何使用 "至少有一端是王牌" 和 "不区分大小王牌" 这两个条件是关键要注意 "至少有一端是王牌" 的条件包括两端都是王牌的情况. 而对于 "不区分大小王牌" 这个条件, 在求 C_n^k 时我们要先区分大小王牌计算, 再除以重复度".

。 思考题答案:

首先按区分大小王牌计数, 然后除以王牌的重复度.

我们将两张王牌设为 x_1 、 x_2 ,算出 x_1 、 x_2 、J、Q、K 五张牌排成一排时左端和右端至少有一端是王牌的情况.

(1) 左端是王牌的情况

- 假设将王牌置于左端, 那么左端的选法就有 x_1 或 x_2 ,这 2 种情况. 每种情况下剩余 4 张牌都可以自由排列. 因此, 左端是王牌的情况下, 使用乘法法则:
 - 左端的王牌选法 × 剩余 4 张牌的换位 = 2 × P₄⁴
 - $=2\times4!$
 - = 48

计算结果为 48 种. 不过其中已经包含了 "两端都是王牌的情况".

(2) 右端是王牌的情况

■ 只是左右颠倒一下, 因此和 (1) 一样有 48 种.

(3) 两端都是王牌的情况

■ 假设将王牌置于两端,两端的选法就是 2 张王牌的换位,因此有 P_2^2 种情况. 而此时剩余 3 张牌可以自由排列. 那么,两端是王牌的情况就是:

两端的王牌选法 imes 剩余 3 张牌的置换 = $P_2^2 imes P_3^3$

- $= 2! \times 3!$
- = 12

计算结果为 12 种.

接着只要计算 (1) + (2) - (3) 就能求出 "至少有一段是王牌的排列 (容斥原理), 然后再除以王牌的重复度就能得出 "至少有一端是王牌的组合".

因为王牌有 2 张, 因此重复度是 2 ($P_2^2 = 2$). 计算过程如下:

$$\frac{(1)+(2)-(3)}{\text{Elphosse}} = \frac{48+48-12}{2} = 42.$$

另外一种使用逻辑的解法: 这里再给大家介绍一种解法. 如果使用逻辑, 本题可以 更简单地计算拿出来.

"至少有一端是王牌" 也就是 "两端都不是王牌" 的否定. 那就意味着只要从 "所有的排法" 中减去 "两端都不是王牌的排法" 就能得出答案. 画个文氏图更有助于理解:

(1) 所有的排法:

■ 先求出所有 5 张牌区分大小王牌时的置换, 再除以王牌的重复度, 就能得出 所有的排法.

$$\frac{P_5^5}{2} = \frac{5!}{2} = 5 \times 4 \times 3 = 60$$

Added: 此处添加一下说明, 为什么是除以 2, 我们把大小王牌看做 "王 1" 和 "王 2", 此处给几个默认的排列看一下:

此时可以看出,上面是区分大小王牌的排法,由于题中要求是**不区分大小王 牌** 的,所以我们要除以 2. (2) 两端都不是王牌

■ 两端应从 J, Q, K 这 3 张牌中选出 2 张进行排列, 即 P_3^2 . 而剩余的 3 张牌有 P_3^3 种排法. 最后除以王牌的重复度.

$$\frac{P_3^2 \times P_3^3}{2} = \frac{(3 \times 2) \times (3 \times 2 \times 1)}{2} = 18$$

因此, 可以通过下述算式求出至少有一端为王牌的情况.

(1)所有的排法 - (2)两端都不是王牌的排法 = 60 - 18 = 42

答案: 42 种.

5.9 本章小结

- 本章学习了以下计数方法.
 - 。 植树问题
 - 。 加法法则
 - 。 乘法法则
 - 。 置换
 - 。 排列
 - 。 组合

这些都是基本方法, 但死记硬背是毫无意义的. 重要的是, 我们要充分理解这些方法的意义. 为了防止 "遗漏" 和 "重复", 我们不能只是 "仔细地计数", 更重要的是 "认清计数对象的性质".

不管计数时多么仔细, 一旦遇到大数, 人总还是会出错的. 因此为了避免出错就需要熟练掌握以上这些计数方法. 换言之, "计数方法" 就是 "为避免单纯地逐一计数" 而存在的.