1 The actual length of a cell structure is 8 μm.

Which steps are used to calculate the magnification of an electron micrograph of this cell structure?

- step 1 measure the length of the cell structure image on the micrograph in centimetres
- step 2 measure the length of the cell structure image on the micrograph in millimetres
- step 3 divide the image length by 1000
- step 4 multiply the image length by 1000
- step 5 divide by 8
- step 6 multiply by 8
- A steps 1, 3 and 6
- **B** steps 1, 4 and 6
- **C** steps 2, 3 and 5
- **D** steps 2, 4 and 5
- What is the typical resolution of a microscope using daylight as a light source with a ×10 eyepiece lens and a ×40 objective lens?
 - **A** 0.20 nm
- **B** 200 nm
- **C** 100 μm
- **D** 400 μm
- 3 Two different types of cell, P and Q, were broken up using ultrasound and their contents analysed. Both types of cell contained small circular DNA. The circular DNA from P all carried the same base sequence, but those from Q were of two types, with different base sequences.

What may be concluded about the identity of cell types P and Q?

	Р	Q					
Α	heart muscle fibres	root cortical cells					
В	lymphocytes	cytes mature red blood cells contaminated by bacteria					
С	mature red blood cells	phloem sieve tube element					
D	root cortical cells	ells leaf mesophyll cells					

21 The diagram shows part of the DNA sequence of a gene and a mutated sequence of the same gene.

normal DNA sequence ... CCG GAT TAT TGC GAG AAA TGG CAT TCT AGG ...

mutated DNA sequence ... CCG GAT GTA TTG CGA GAA ATG CAT TCT AGG ...

What are possible effects of the mutated sequence?

- 1 the presence of mRNA stop codons, UAG, UAA or UGA
- 2 a change in the sequence of amino acids
- 3 a non-functional protein
- 4 ribosomes cannot translate the mRNA
- **A** 1, 2 and 3 **B** 1, 3 and 4 **C** 1 and 4 only **D** 2 and 3 only
- 22 What is correct for phloem sieve tube elements?
 - A Companion cells provide structural support to the phloem sieve tube elements.
 - **B** Lignified walls of phloem sieve tube elements prevent transport of mineral salts by mass flow.
 - C Phloem sieve tube elements become narrower as movement of sucrose occurs.
 - Plasmodesmata allow movement of water and solutes across cell walls of phloem sieve tube elements.
- 23 The diagrams show transverse sections of parts of a plant.

Transport tissues are labelled 1 to 6.

Which combination shows the tissues that have a main function of transporting water?

		1	2	3	4	5	6	
V:	Α	√	1	X	X	✓	✓	key
	В	✓	x	X	1	X	✓	✓ = transporting water is a main function
	С	X	✓	✓	X	✓	X	x = transporting water is not a main function
	D	X	1	X	1	1	X	

- 24 The statements are descriptions of how water moves across the root to the xylem vessel elements.
 - 1 Water enters cell walls.
 - 2 Water enters cytoplasm by osmosis.
 - 3 Water moves from cell to cell through plasmodesmata.
 - 4 Water moves through cell walls.

Which statements describe the apoplast pathway?

- **A** 1, 2, 3 and 4
- **B** 1, 2 and 3 only
- C 1 and 4 only
- **D** 4 only
- 25 Four plants, A, B, C and D, were grown in the same conditions and their transpiration rates measured.

Which plant is most likely to be a xerophyte?

26 Sucrose moves from a mesophyll cell in a leaf into a phloem sieve tube element.

Which changes to the water potential and the volume of liquid in the phloem sieve tube element are correct?

	water potential becomes	volume of liquid
Α	less negative	decreases
В	less negative	increases
С	more negative	decreases
D	more negative	increases

27 The diagram shows a cross-section through a mammalian heart.

Which chambers of the heart are represented by W and X?

	W	X
Α	left ventricle	right ventricle
В	right atrium	left atrium
С	right atrium	right ventricle
D	right ventricle	left ventricle

28 At a certain point in a cardiac cycle, the pressure in the right ventricle is lower than that in the right atrium and lower than that in the pulmonary artery.

Which row is correct?

- 5			
		atrioventricular valve	semilunar valve
	Α	closed	closed
	В	closed	open
	С	open	closed
	D	open	open

29 The diagram shows the pathway for the transport of carbon dioxide that occurs in red blood cells.

Which row is correct?

Г		1	2	3	1
3	-	3 I		J	4
	Α	carbaminohaemoglobin	haemoglobinic acid	hydrogen ions	hydrogencarbonate ions
	В	carbonic anhydrase	carbonic acid	hydrogen ions	hydrogencarbonate ions
	С	carboxyhaemoglobin	carbonic anhydrase	carbonic acid	carbon dioxide
	D	haemoglobinic acid	carbonic acid	hydrogencarbonate ions	hydrogen ions

30 The diagram shows a transverse section through an artery.

Which statement describes the tissues present in layer X?

- A collagen and smooth muscle only
- B elastic fibres and collagen only
- C elastic fibres and smooth muscle only
- D elastic fibres, collagen and smooth muscle

31 The large arteries close to the heart have a thick elastic layer in their walls.

Which statements about this layer are correct?

- 1 helps to maintain the blood pressure in arteries
- 2 reduces friction within the arteries
- 3 prevents too much pressure bursting the artery wall
- **A** 1, 2 and 3
- B 1 and 3 only
- C 1 only
- **D** 2 and 3 only

32 Which tissues are present in the walls of a trachea and an alveolus?

		tiss	sue	
		epithelium with goblet cells	smooth muscle	
Α	trachea alveolus	✓ X	√ X	key
В	trachea alveolus	✓ X	✓	√ = present x = absent
С	trachea alveolus	✓ ✓	X ✓	
D	trachea alveolus	X X	√ X	

33 The surface tension of the layer of liquid lining the alveoli tends to pull the walls inwards so alveoli could collapse.

Which statements could explain how this is prevented?

- 1 Alveolar fluid is moved around by cilia.
- 2 Elastic fibres keep the alveoli open.
- 3 Epithelial cells secrete a chemical that reduces the cohesion in water.
- **A** 1 and 2
- **B** 1 and 3
- **C** 2 and 3
- **D** 3 only

BLANK PAGE

Important values, constants and standards

<u></u>	
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \mathrm{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3 mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3 mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2 dm^{-6} (at 298 K (25 {}^{\circ}C))$
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment, Cambridge Assessment is the brand name of the University of Cambridge

The Periodic Table of Elements

	18	2	He	helium 4.0	10	Ne	neon 20.2	18	Ā	argon 39.9	36	궃	krypton 83.8	54	Xe	131.3	98	R	radon	118	Og	oganesson -
	17				6	Щ	fluorine 19.0	17	Cl	chlorine 35.5	35	B	bromine 79.9	53	П	iodine 126.9	85	Αt	astatine _	117	<u>L</u>	tennessine -
	16				80	0	oxygen 16.0	16	ഗ	sulfur 32.1	34	Se	selenium 79.0	52	Те	tellurium 127.6	84	Ро	polonium	116	_	livermorium -
	15				7	z	nitrogen 14.0	15	<u>а</u>	phosphorus 31.0	33		arsenic 74.9					<u>B</u>		115	Mc	moscovium
	14				9	O	carbon 12.0	14	S	silicon 28.1	32	Ge	germanium 72.6	20	Sn	tin 118.7	82	Pb	lead 207.2	114	ŀΙ	flerovium
	13				2	В	boron 10.8	13	Νſ	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	l_l	thallium 204.4	113	R	nihonium —
										12	30	Zu	zinc 65.4	48	ပ္ပ	cadmium 112.4	80	£	mercury 200.6	112	ပ်	copernicium
										7	29	Cn	copper 63.5	47	Ag	silver 107.9	62	Au	gold 197.0	111	Rg	roentgenium
Group										10	28	Z	nickel 58.7	46	Pd	palladium 106.4	78	풉	platinum 195.1	110	Ds	darmstadtium -
Gro										တ	27	ပိ	cobalt 58.9	45	R	rhodium 102.9	77	Ţ	iridium 192.2	109	Μ	meitnerium -
		1 Hydrogen	hydrogen 1.0						∞	26	Ьe	iron 55.8	44	Ru	ruthenium 101.1	9/	Os	osmium 190.2	108	Hs	hassium -	
						Te					7	25	Mn	manganese 54.9	43	JC	technetium -	75	Re	rhenium 186.2	107	Bh
						pol	ass			9	24	ပ်	chromium 52.0	42	Mo	molybdenum 95.9	74	>	tungsten 183.8	106	Sg	seaborgium -
					Key	atomic number	atomic symbol	name relative atomic mass			2	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db
						atc	rek			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	士	hafnium 178.5	104	¥	rutherfordium -
										က	21	လွ	scandium 45.0	39	>	yttrium 88.9	57-71	lanthanoids		89-103	actinoids	
	2				4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	ഗ്	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium _
	-				က	<u>'</u>	lithium 6.9	1	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	<u>ٿ</u>	francium

S
0
0
9
ŧ
岩

actinoids

71	3	lutetium 175.0	103	۲	lawrencium	1
70	Υp	ytterbium 173.1	102	9	nobelium	1
69	T	thulium 168.9	101	Md	mendelevium	3
89	ш	erbium 167.3	100	Fm	fermium	1
29	웃	holmium 164.9		Es	einsteinium	ī
99	ò	dysprosium 162.5	86	ರ	californium	1
65	Tp	terbium 158.9	26	ă	berkelium	1
64	gq	gadolinium 157.3	96	Cm	curium	ī
63	En	europium 152.0	95	Am	americium	1
62	Sm	samarium 150.4	94	Pu	plutonium	1
61	Pm	promethium -	93	ď	neptunium	ī
09	ρN	neodymium 144.4	92	⊃	uranium	238.0
59	Ā	praseodymium 140.9	91	Ра	protactinium	231.0
58	Ce	cerium 140.1	06	Th	thorium	232.0
25	Га	lanthanum 138.9	88	Ac	actinium	1

40 Measles is an infectious disease caused by a virus.

The graph shows the number of cases of measles each year in a country before and after a vaccine was introduced.

What could have caused the decrease in the number of cases of measles after vaccination was introduced?

	vaccines provided artificial active immunity in people	vaccines provided artificial passive immunity in people	fewer people are able to act as hosts for the virus	
Α	✓	×	✓	key
В	×	✓	✓	✓ = yes
С	X	✓	×	x = no
D	✓	×	×	

5 After boiling a sample of milk with Benedict's solution, a yellow colour is observed.

Which conclusion about the sample of milk is correct?

- A Reducing sugars are not present.
- **B** Reducing sugars are present.
- **C** There is a high concentration of fructose.
- **D** There is a low concentration of sucrose.
- 6 Which of the statements about polysaccharides can be used to describe amylose and cellulose?
 - 1 contains 1,4 glycosidic bonds
 - 2 contains 1,6 glycosidic bonds
 - 3 polymer of glucose
 - **A** 1 and 2
 - **B** 1 and 3
 - C 1 only
 - **D** 2 and 3

7 Which diagram shows the formation of a peptide bond? В Η Η Н Η Η OH OH Ĥ Н H H H H_2O H_2O Η Н Η Η Н H H OH OH Ĥ H Η H₂O

8 In enzyme-catalysed reactions, the position of the amino acids found at the active site is important.

During the synthesis of enzymes, amino acids are brought together in the correct position to form the active site.

Which levels of protein structure **must** be involved in forming the active site?

		level of pro			
	primary	secondary	tertiary	quaternary	
Α	✓	✓	✓	✓	key
В	✓	✓	✓	X	√ = involved
С	X	✓	✓	✓	x = not involved
D	X	✓	X	✓	

- 9 Which features affect the tensile strength of collagen?
 - 1 the helical structure of collagen chains
 - 2 the small R group of the amino acids in collagen
 - 3 the insoluble nature of collagen
 - 4 the bonds between collagen molecules
 - **A** 1, 2, 3 and 4
 - **B** 1, 2 and 4 only
 - C 1 and 3 only
 - **D** 2, 3 and 4 only
- 10 A fixed volume of the enzyme catalase was added to a fixed volume of hydrogen peroxide solution. The diagram shows how the concentration of product changed over the course of the reaction.

What explains the shape of this graph?

- A The active sites become saturated.
- B The enzyme was denatured.
- C The hydrogen peroxide inhibited the reaction.
- **D** The substrate molecules were used up.

12 The fatty acids elaidic acid and oleic acid have exactly the same structural formulae, with one double bond in the chain. However, the shapes of the chains are different, as shown in the diagram.

Which row shows the effect of the presence of these fatty acids on the structure and behaviour of a cell surface membrane?

	elaidic acid	oleic acid
A	does not fit closely with other fatty acids so that the membrane is less fluid at high temperatures	fits closely with other fatty acids so that the membrane is less fluid at low temperatures
В	does not fit closely with other fatty acids so that the membrane is more fluid at low temperatures	fits closely with other fatty acids so that the membrane is less fluid at low temperatures
С	fits closely with other fatty acids so that the membrane is less fluid at high temperatures	does not fit closely with other fatty acids so that the membrane is more fluid at low temperatures
D	fits closely with other fatty acids so that the membrane is more fluid at low temperatures	does not fit closely with other fatty acids so that the membrane is more fluid at high temperatures

Which is a correct role for a labelled molecule?

- A W is involved in controlling membrane stability.
- **B** X is involved in active transport.
- **C** Y is involved in cell signalling.
- **D** Z is involved in diffusion of ions.

14 The diagram shows a simple cell signalling pathway in which a signal molecule leads to a response, such as a secretion.

Which row identifies P and Q?

3	P	Q
Α	activated enzyme in cytoplasm	target in cell surface membrane
В	lipid in cell surface membrane	extracellular enzyme
С	protein in cell surface membrane	activated enzyme in cytoplasm
D	target in cytoplasm	protein in cell surface membrane

Three parts of a chromosome and their functions are listed.

part	function	
P1 centromere	F1 holds the coils of DNA together	
P2 histone proteins	F2 holds two chromatids together	
P3 telomere	F3 prevents loss of genes	

Which part is matched with its correct function?

P1 and F1 **B** P2 and F1 **C** P2 and F3

D P3 and F2

The enzyme telomerase prevents loss of telomeres after many mitotic cell cycles.

Which cells need to transcribe telomerase enzyme?

- cancer cells
- stem cells
- activated memory B-lymphocytes
- 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only

Which two stages take place during interphase?

1 and 2

1 and 3 В

2 and 4

3 and 4

