RWClustering

C++ Implementation of Rajaraman-Wong Clustering

Akshay Nagendra akshaynag@gatech.edu> Paul Yates paul.maxyat@gatech.edu>

April 26th, 2018

What is Clustering and Why Do We Do It?

 Clustering: Method of grouping gates together in a circuit to simplify complex circuit netlists

 Clustered netlists can be used as the input for partitioning and placement

Rajaraman-Wong Clustering

- Focuses on minimizing the critical path delay when forming clusters on a directed acyclic graph (DAG)
- Allows a gate to appear in multiple clusters (overlap)
 - Area cost
- Two Phases
 - Labelling: Compute a "label" per node that corresponds to longest time to that node when considering clustering
 - Clustering: Form certain node clusters by starting with POs and adding any necessary input clusters

Program Execution Flow

Implementation: Data structures

- C++ and C++ STL libraries used to run all steps of the Rajaraman-Wong clustering algorithm
 - Object-oriented classes to store node and cluster information
 - Specialized traversal algorithms for topological sorting using visited flags, sparse matrices, C++ vectors and sets

 GUI implemented using Python 2.7 Tkinter/Turtle graphics library and cshell script for running the C++ and the Python code

Results (Inter cluster delay = 3, Max cluster size = 8)

Circuit Netlist	Node Count	Cluster Count	Max Path Delay	Topolog. Sorting Time (sec)	Matrix Initialization (sec)	Labelling Time (sec)	Clustering Time (sec)	Total Execution Time (sec)
b17_opt.blif	25719	16147	72	0.003	27	5	9	74.003
b22_opt.blif	18789	11950	110	0.002	16	2	4	58.002
b20_opt.blif	12991	8197	103	0.001	11	1	2	39.001
s13207.blif	9396	2985	88	0.001	0.999	0.337	0.076	2.414
s9234.blif	6055	2090	88	0.00079	2	0.188	0.035	2.223

Note: These runs were executed on ecelinsrvw.ece.gatech.edu

Max Path Delay vs. Cluster Size Analysis

Execution Time vs. Cluster Size Analysis

Performance Analysis

- Execution time and performance is not only a function of node count, but also the complexity of the circuit
 - Our implementation is more susceptible to higher degrees of complexity (bX_opt.blif circuits), compared to the simpler (sX.blif circuits)

 Additional features such as different matrix implementations help reduce the latency of the program

Matrix Implementation Analysis

 Larger the matrix dimensions for the delay matrix, the better runtime performance can be achieved at a very high memory usage cost

Benefits of the Design

- RWClustering supports many features and extensions geared towards enabling a user to explore the clustering problem space
- Matrix configurations can be selected to prioritize specific goals (e.g. runtime, memory usage, etc.)
- Extensions include
 - Lawler labelling and clustering for comparison with Rajaraman-Wong
 - Experimental, overlap-avoidance clustering code to minimize area cost with Rajaraman-Wong
 - Python interactive GUI for sufficiently small circuits

GUI (RWGUI)

Δ	NODE INFORMATION					
	NODE	SIGNAL NAME	NODE DELAY	LABEL	CLUSTER	
	1	A	0	0	{1}	
	2	В	0	0	{2}	
	3	D	1	1	{1,2,3}	
	4	F	1	1	{1,4}	
	5	С	0	0	{5}	
	6	E	1	1	{2,5,6}	
	7	G	1	2	{2,5,6,7}	
	8	I	1	6	{5,6,7,8}	
	9	Н	1	1	{5,9}	
	10	J	1	6	{10,5,6,7}	
	11	K	1	7	{10,11,7,8}	
	12	L	1	7	{10,12,6,7}	

	CLUS	TER IN	FORM	1ATION
--	------	--------	------	--------

ROOT	ROOT NAME	CLUSTER SIZE	MEMBERS
11	K	4	{11,10,8,7}
12	L	4	{12,10,7,6}
9	Н	2	{9,5}
3	D	3	{3,2,1}
4	F	2	{4,1}
6	E	3	{6,5,2}
2	В	1	{2}
5	С	1	{5}

CURRENT L SET

{11,12}

MAX IO PATH DELAY

7

DAG PREV NEXT REDRAW READY

Future Work

- Further optimization of algorithms
 - E.g. optimize the "On-The-Fly", No Matrix delay determination for better runtime performance
- Robust testing of the experimental code to see if it holds true for all acyclic digital circuit netlists
- Port RWGUI to a more sophisticated GUI platform such as OpenGL, Qt, or ElectronJS
 - Python Tkinter/Turtle was picked due to ecelinsrvw.ece.gatech.edu having support for this graphics library

Further Resources

- For more information about *RWClustering*, please consult the following:
 - RWClustering/docs/RWGUIManual.docx Manual on how to operate the interactive GUI
 - RWClustering/docs/FinalReport.docx: Report on the RWClustering application with in-depth details about the algorithms used, features, extensions, and analyses
 - RWClustering/README.txt: Textfile containing instructions on how to run the project infrastructure