1 Definizione topologica di limite

$$\lim_{x\to x_0} f(x) = l$$

$$\forall U_l \exists V_{x_0} : \forall x \neq x_0, (x \in V_{x_0} \implies f(x) \in U_l)$$

2 Limite finito al finito

$$\lim_{x \to x_0} f(x) = l \Leftrightarrow$$

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \neq x_0, |x - x_0| < \delta$$

Se un limite esiste, e in un certo punto il suo limite è uguale al valore del punto, allora f è **continua** in quel punto.

3 Funzioni continue

Sia $f :\subseteq \mathbb{R} \to \mathbb{R}$, e sia x_0 un punto di accumulazione per il dominio D della funzione, appartenente al dominio della funzione.

f(x) è **continua** in x_0 se:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Diciamo che è continua in generale se la formula superiore è vera $\forall x \in D$. La continuità è infatti un concetto locale: i valori esterni al dominio sono ignorati.

3.1 Esempio

$$f(x) = \begin{cases} 1 & se \quad x \ge 0 \\ 0 & se \quad x < 0 \end{cases}$$
$$\lim_{x \to 1} f(x) = f(1) = 1$$

In 1, f è continua, perchè il suo limite esiste ed è uguale a 1.

$$\nexists \lim_{x \to 0} f(x)$$

In 0, f non è continua, perchè il suo limite non esiste.

3.2 Esempio

$$f(x) = \begin{cases} \lim_{x \to x_0} f(x) \\ 1 & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$
$$\lim_{x \to 0} f(x) = 1$$

In 0, f non è continua, perchè il suo limite esiste, ma è diverso da 0,

3.3 Esempio

$$f(x) = \frac{1}{x}$$

E' una funzione continua? Sì, perchè è continua per tutti i punti del suo dominio. 0, infatti, non è nel suo dominio.

4 Definizione successionale di limite

La definizione topologica di limite è equivalente alla seguente definizione:

$$\lim_{x \to x_0} f(x) = l$$

$$\updownarrow$$

$$\forall \{x_n\}_{n \neq 0 \in \mathbb{N}}; (x_n \to x_0) \implies f(x_n) \to l$$

5 Funzioni asintotiche

Si dice che due funzioni sono **asintotiche** per $x \to x_0$ se:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Dunque, si dice che f è asintotico a g in x_0 :

$$\sin x \sim x \qquad x \to 0$$

6 Limiti notevoli

6.1 Seno di x su x

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
$$\sin x \sim x \qquad x \to 0$$

6.1.1 Esempio

$$sin(n) \not\sim n$$
 $x \to +\infty$
$$lim_{x \to +\infty} \frac{sinn}{n} = 0$$

6.2 Tangente di x su x

$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\tan x \sim x \qquad x \to 0$$

6.3 Arcotangente di x su x

$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$\arctan x \sim x \qquad x \to 0$$

6.3.1 Esempio

$$\lim_{n \to +\infty} \arctan \frac{1}{n^2} = 0$$

$$\arctan \frac{1}{n^2} \sim \frac{1}{n^2} \qquad n \to +\infty$$

6.3.2 Esempio

$$\lim_{x\to +\infty} \frac{\arctan n^2}{n^2} = 0$$

 $n^2 \to +\infty$, non tende a 0, quindi non possiamo applicare il limite notevole.

6.4 Quello che fa un mezzo

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to 0} \frac{1 - \cos x}{\frac{1}{2}x^2} = 1$$

$$(1 - \cos x) \sim (\frac{1}{2}x^2) \qquad x \to 0$$

6.5 Naturale

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
$$(e^x - 1) \sim x \qquad x \to 0$$

6.5.1 Esempio

$$\lim_{n \to +\infty} \frac{e^{\frac{1}{n}} - 1}{\frac{1}{n}} = 1$$

L'argomento $\frac{1}{n},$ per n
 che tende a più infinito, tende a 0; pertanto, possiamo applicare il limite no
tevole.

6.5.2 Esempio

$$\lim_{n \to +\infty} \frac{e^{\frac{1}{\sqrt{n}}} - 1}{\frac{1}{\sqrt{n}}} = 1$$

6.5.3 Esempio

$$\lim_{n \to +\infty} \frac{e^{\frac{1}{\sqrt{n}}}}{\frac{1}{\sqrt{n}}} = +\infty$$

6.5.4 Esempio

$$\lim_{n \to \infty} \frac{e^{\frac{1}{x}}}{\frac{1}{x}} \not \equiv$$

Questo limite non esiste, perchè per $n \to +\infty$ vale $+\infty$, mentre per $n \to -\infty$ vale 0.

6.5.5 Esempio

$$\lim_{n \to +\infty} \frac{e^{\frac{1}{n^2}} - 1}{\frac{1}{n}} =$$

$$\lim_{n \to +\infty} (\frac{e^{\frac{1}{n^2}} - 1}{\frac{1}{n^2}} * \frac{1}{n}) = 0$$

6.5.6 Altri esempi

Non avevo voglia di scriverli, quindi li ho omessi.

6.6 Risulta e

$$\lim_{x \to +\infty} (1 + \frac{1}{x})^x$$

6.7 Logaritmico

$$\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$$

$$\log(1+x) \sim x \qquad x \to 0$$

6.7.1 Esempio

$$\lim_{x \to +\infty} \frac{\log(1+x)}{x} = 0$$

6.8 L'ultima

$$\lim_{x \to 0^+} x \log x = 0$$

6.8.1 Esempio

$$\lim_{x \to 0^+} x^x = e^{(x)} \log x = 1$$

$$\lim_{x \to +\infty} x^x = e^{(x)} \log x = +\infty$$

7 Esempi

7.0.1 Esempio

$$\lim_{x \to +\infty} \frac{\sin x + 2x^2 + e^{-x}}{2x - 2x^2 + e^{-x}} = -1$$

Prevale $2x^2$, perchè e^{-x} tende a 0.

7.0.2 Esempio

$$\lim_{x \to 0} \frac{\sin x + 2x^2 + e^{-x}}{2x - 2x^2 + e^{-x}} = 0$$

Prevale e^{-x} , perchè è l'unico che non tende a 0, tendendo invece a 1.

7.0.3 Esempio

$$\lim_{x \to 0} \frac{|x - \pi|}{x - \pi} = -1$$

Perchè il valore assoluto diventa $\pi - x$, e dopo prevale -x.

7.0.4 Esempio

$$\lim_{x \to \pi} \frac{|x - \pi|}{x - \pi} = + -1$$

Dipende da che direzione ci approcciamo a π : per $x \to \pi^+$, il limite vale 1, ma per $x \to \pi^-$, il limite vale -1.

7.0.5 Esempio

$$\lim_{x \to \pi} \frac{\cos x + 1}{(x - \pi)^2} = [0/0]$$

$$z = x - \pi$$

$$\lim_{z \to 0} \frac{\cos(z + \pi) + 1}{(z + \pi - \pi)^2}$$

$$\lim_{z \to 0} \frac{\cos z \cos \pi - \sin z \sin \pi + 1}{z^2}$$

$$\lim_{z \to 0} \frac{-\cos z + 1}{z^2} = \frac{1}{2}$$

Applichiamo il cambio di variabile in modo di avere un limite per 0: dopo, applichiamo la formula del coseno della somma.

7.0.6 Esempio

$$\begin{split} & \lim_{x \to 0} \frac{\log(1+x) - \sin x}{x + \sin x} = [0/0] \\ & \lim_{x \to 0} \frac{\log(1+x)}{x + \sin x} - \frac{\sin x}{x + \sin x} \\ & \lim_{x \to 0} \frac{\log(1+x)}{x(1 + \frac{\sin x}{x})} - \frac{\sin x}{x(1 + \frac{\sin x}{x})} \\ & \frac{1}{1+1} - \frac{1}{1+1} = 0 \end{split}$$

Separiamo il limite in due: è un'operazione che funziona solo se nessuno dei due nuovi limiti risulta infinito o indeterminato.

7.0.7 Esempio

$$\lim_{x \to 0} \frac{\cos x - 2^x}{\arctan(\log(\sin\sqrt{x} + 1))} = [0/0]$$
$$\lim_{x \to 0} \frac{\cos x - x^2 + 1 - 1}{\arctan(\log(\sin\sqrt{x} + 1))}$$

Per $x \to 0$, $\sin \sqrt{x} \sim \sqrt{x}$; $\log(1+z) \sim z$; $\arctan z \sim z$, dunque.

$$\lim_{x \to 0} \frac{\cos x - x^2 + 1 - 1}{\sqrt{x}}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{\sqrt{x} - \lim_{x \to 0} \frac{x^2 + 1 - 1}{x^2 + 1}} \sqrt{x}$$

$$\lim_{x \to 0} \frac{-\frac{1}{2}x^2}{\sqrt{x}} - \lim_{x \to 0} \frac{x^2 - 1}{\sqrt{x}}$$

$$0 - 0 = 0$$