Higher order ODEs: Boundary Value problems

- For a second-order ODE, there need to be two conditions specified on y
- If at different points (e.g., y₀ and y_T):
 Boundary Value Problem (BVP)
- Generally, the independent variable is x
- Therefore, we now use *x* instead of *t*
- For example, $p\left(x, y, \frac{dy}{dx}\right) \frac{d^2y}{dx^2} + q\left(x, y, \frac{dy}{dx}\right) \frac{dy}{dx} + r\left(x, y, \frac{dy}{dx}\right) = 0$ \Rightarrow y(0)=y_a; y(1)=y_b
- Linear BVP: p(x), q(x), and r linear in y

Boundary Value problems: Methods of solution

- Convert into a system of equations –
 Shooting Method
- Approximate the derivatives by finite differences: Direct Method
- Only Linear BVPs are considered

$$p(x)\frac{d^2y}{dx^2} + q(x)\frac{dy}{dx} + r_1(x)y = r_0(x)$$

• Solution domain (a,b) and specified conditions y_a and y_b (or could be y'_b , or any combination of y and y')

Boundary Value problems: Shooting Method

Convert into two first-order ODEs

$$p(x)\frac{d^{2}y}{dx^{2}} + q(x)\frac{dy}{dx} + r_{1}(x)y = r_{0}(x)$$

• $y_1 = >y$; $y_2 = >dy/dx$

$$\frac{dy_1}{dx} = f_1(x, y_1, y_2) = y_2$$

$$\frac{dy_2}{dx} = f_2(x, y_1, y_2) = \frac{r_0(x) - r_1(x)y_1 - q(x)y_2}{p(x)}$$

- Boundary conditions: $y_1(a) = y_a; y_1(b) = y_b$
- For IVP, we need $y_2(a)$, which is not given
- Assume $y_2(a)$, solve IVP, compare $y_1(b)$

Shooting Method

- Generally, the computed $y_1(b)$ will not be equal to the given y_b
- Assume a different $y_2(a)$, solve IVP till b, to obtain another value of $y_1(b)$
- Use a linear interpolation/extrapolation to estimate the $y_2(a)$ which will result in $y_1(b)$ equal to y_b .
- Solve the IVP again with this value of $y_2(a)$. For linear problems, the solution could be obtained by linear interpolation.

Second-order equation:

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 6e^x$$

- $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 6e^x$ Boundary conditions: y(0)=y(1)=0
- Write as:

$$\frac{dy_1}{dx} = y_2$$

$$\frac{dy_2}{dx} = 6e^x - 2y_1 - 3y_2$$

Solve by Ralston's method

Ralston's method

$$y_{n+1} = y_n + \frac{h}{3} \left(f(x_n, y_n) + 2f\left(x_n + \frac{3}{4}h, y_n + \frac{3}{4}hf(x_n, y_n)\right) \right)$$

$$y_{1,n+1} = y_{1,n} + \frac{h}{3} \left(y_{2,n} + 2 \left[y_{2,n} + \frac{3h}{4} \left(6e^{x_n} - 2y_{1,n} - 3y_{2,n} \right) \right] \right)$$

$$y_{2,n+1} = y_{2,n} + \frac{h}{3} \left[\left(6e^{x_n} - 2y_{1,n} - 3y_{2,n} \right) + 2 \left(6e^{x_n+3h/4} - 2\left\{ y_{1,n} + \frac{3h}{4} y_{2,n} \right\} - 3\left\{ y_{2,n} + \frac{3h}{4} \left(6e^{x_n} - 2y_{1,n} - 3y_{2,n} \right) \right\} \right]$$

• First assume $y_2(0)=0$, then 1. Use h=0.2

Х	y1	y2	f1	f2
0	0	0	0	6.00000
0.15	0	0.9	0.9	4.27101
0.2	0.12	0.969467		
Х	y1	y2	f1	f2
0.2	0.12	0.969467	0.969467	4.18001
0.35	0.26542	1.59647	1.59647	3.19416
0.4	0.397494	1.674023		
Х	y1	y2	f1	f2
0.4	0.397494	1.674023	1.674023	3.13389
0.55	0.648597	2.144106	2.144106	2.67000
0.6	0.794976	2.238949		
Х	y1	y2	f1	f2
0.6	0.794976	2.238949	2.238949	2.62591
0.75	1.130819	2.632836	2.632836	2.54185
0.8	1.295284	2.752924		
Х	y1	y2	f1	f2
0.8	1.295284	2.752924	2.752924	2.50390
0.95	1.708223	3.12851	3.12851	2.71228
1	1.895947	3.281489		

Х	y1	y2	f1	f2
0	0	1	1	3
0.15	0.15	1.45	1.45	2.321005
0.2	0.26	1.509467		
Х	y1	y2	f1	f2
0.2	0.26	1.509467	1.509467	2.280014
0.35	0.48642	1.85147	1.85147	1.987156
0.4	0.607494	1.926423		
Х	y1	y2	f1	f2
0.4	0.607494	1.926423	1.926423	1.956693
0.55	0.896457	2.219926	2.219926	1.946824
0.6	1.031912	2.316445		
Х	y1	y2	f1	f2
0.6	1.031912	2.316445	2.316445	1.919553
0.75	1.379379	2.604378	2.604378	2.130108
8.0	1.533592	2.72843		
Х	y1	y2	f1	f2
0.8	1.533592	2.72843	2.72843	2.100772
0.95	1.942857	3.043546	3.043546	2.497908
1	2.121294	3.201536		

- For $y_2(0)=0$, $y_1(1)=1.896$
- For $y_2(0)=1$, $y_1(1)=2.121$
- Specified value is $y_1(1)=0$
- Linear extrapolation => $y_2(0)$ = -8.41348
- Solve the IVP again
- In this case, we do not need to solve again. Just use linear extrapolation of values obtained for the two assumed derivative values.

• Solution of IVP with $y_2(0) = -8.41348$

х	y1	y2	f1	f2
0	0	-8.41348	-8.41348	31.24043
0.15	-1.26202	-3.72741	-3.72741	20.67728
0.2	-1.05789	-3.57381		
Х	y1	y2	f1	f2
0.2	-1.05789	-3.57381	-3.57381	20.16562
0.35	-1.59396	-0.54897	-0.54897	13.34922
0.4	-1.36934	-0.44954		
х	y1	y2	f1	f2
0.4	-1.36934	-0.44954	-0.44954	13.03824
0.55	-1.43677	1.506197	1.506197	8.75446
0.6	-1.19848	1.586939		
х	y1	y2	f1	f2
0.6	-1.19848	1.586939	1.586939	8.56886
0.75	-0.96044	2.872267	2.872267	6.00608
0.8	-0.70971	2.959006		
х	y1	y2	f1	f2
0.8	-0.70971	2.959006	2.959006	5.89566
0.95	-0.26586	3.843354	3.843354	4.51592
1	0	3.954172		

Shooting Method: Different Boundary Conditions

- What if dy/dx is specified at "b"?
- Same methodology, compare y₂(b)
- If both y and dy/dx are specified at b?
- IVP with a negative h
- If dy/dx specified at a and y at b?
- Assume two different $y_1(a)$, solve the IVP and compare $y_1(b)$
- For nonlinear problems, more iterations are needed. To avoid that: Direct Method

Boundary Value problems: Direct Method

- Approximate the derivatives by finite differences using a grid of points (generally equally spaced)
- Take linear equation:

$$p(x)\frac{d^{2}y}{dx^{2}} + q(x)\frac{dy}{dx} + r_{1}(x)y = r_{0}(x)$$

with the boundary conditions

$$y(a) = y_a; y(b) = y_b$$

• Let (a,b) be divided into n equal intervals [h=(b-a)/n]

- The grid points are called Nodes
- Let the node numbers be denoted by 0
 (at a),1,2,...,i-1,i,i+1,...,n-1,n (at b)
- The derivatives at the nodes are approximated by appropriate finite difference formula (generally central)
- For example,

$$p(x)\frac{d^{2}y}{dx^{2}} + q(x)\frac{dy}{dx} + r_{1}(x)y = r_{0}(x)$$

$$p(x)\frac{d^{2}y}{dx^{2}} + q(x)\frac{dy}{dx} + r_{1}(x)y = r_{0}(x)$$

 Using the lowest order central difference, at the ith node:

$$p(x_i)\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}+q(x_i)\frac{y_{i+1}-y_{i-1}}{2h}+r_1(x_i)y_i=r_0(x_i)$$

 Clearly, it will not work at the 0th and nth nodes. We will see later how to handle it

 At each node, we get an equation relating the y values at nodes i-1, i, and i+1 (or more, if higher order finite difference formula is used)

$$a_{i,i-1}y_{i-1} + a_{i,i}y_i + a_{i,i+1}y_{i+1} = b_i$$

where:

$$a_{i,i-1} = \frac{p(x_i)}{h^2} - \frac{q(x_i)}{2h}; a_{i,i} = -2\frac{p(x_i)}{h^2} - r_1(x_i);$$

$$a_{i,i+1} = \frac{p(x_i)}{h^2} + \frac{q(x_i)}{2h}; b_i = r_0(x_i)$$

This results into a tridiagonal system

$$[A]{y} = {b}$$

(Higher order approximations will result in a banded coefficient matrix)

- May be solved by Thomas algorithm to obtain the nodal values of y
- As mentioned before, the equations are not applicable at 0th and nth nodes
- May use Forward at 0 and Backward at n

- However, it will destroy the tri-diagonal nature of the matrix
- We, therefore, have n-1 equations and n+1 unknowns (nodal values of y)
- The other two equations come from the boundary conditions
- Simplest boundary conditions to incorporate are in terms of specified y at x=a and x=b (known as the Dirichlet BC or the First-type BC)

- For Dirichlet B.C., we do not need to write the equations at node 0 and n
- The equations for nodes 1 and n-1 are modified by using y_a and y_b as follows:

$$a_{1,1}y_1 + a_{1,2}y_2 = b_1 - a_{1,0}y_a$$

$$a_{n-1,n-2}y_{n-2} + a_{n-1,n-1}y_{n-1} = b_1 - a_{n-1,n}y_b$$

- We get n-1 equations in tridiagonal form
- If the derivative is specified at, say, x=b (known as Neumann or second-type BC)

- For this Neumann B.C., y_n is unknown and we do need an equation at node n
- Let the specified derivative be y'_b
- We could use a backward difference at b

$$\frac{y_n - y_{n-1}}{h} = y_b' \Longrightarrow -y_{n-1} + y_n = hy_b'$$

- $\frac{y_n-y_{n-1}}{h}=y_b'\Rightarrow -y_{n-1}+y_n=hy_b'$ This will preserve the tridiagonal nature
- However, the order of accuracy is lower
- May use higher order backward difference

Higher order backward difference

$$y_{n-2} - 4y_{n-1} + 3y_n = 2hy_b'$$

- More accurate but not tridiagonal
- Virtual, Imaginary, or Ghost Node:
 - ➤ Add a fictitious node (n+1)
 - >The equation at node n can now be written
 - ➤ Write central difference approximation as

$$\frac{y_{n+1} - y_{n-1}}{2h} = y_b' \Longrightarrow y_{n+1} = y_{n-1} + 2hy_b'$$

Boundary Conditions: Ghost Node

The equation at node n becomes

$$(a_{n,n-1} + a_{n,n+1})y_{n-1} + a_{n,n}y_n = b_1 - a_{n,n+1}2hy_b'$$

- Preserves tridiagonal nature
- n equations for n unknowns (y_a is given)
- If the Neumann condition is specified at x=a, we could use a backward difference approximation at node 0, or a ghost node (-1) to the left