

Logique Polycopié d'exercices

Sommaire

1	Log	ique propositionnelle	2
	1.1	Tables de vérité et sémantique	2
	1.2	Règles de réécriture, FNC et FND	3
	1.3	FNC et FND canoniques	4
	1.4	Méthode des tableaux	6
	1.5	Formalisation du langage naturel, résolution de problèmes	7
	1.6	Divers	9
2	Cal	cul des prédicats	10
3	Son	nmes et produits	12
4	Rais	sonnement par récurrence	14
	4.1	Formules sur les sommes	14
	4.2	Suites définies par récurrence	15
	4.3	Divers	15
5	Rais	sonnement par induction	17
	5.1	Induction sur les mots	17
	5.2	Inductions sur les formules propositionnelles	18
6	Fon	ctions booléennes	19
7	Anr	nales 2017-2018	22
	7.1	Interro 1 groupe 1 - 2018	22
	7.2	Interro 2 groupe 1 - 2018	23
	7.3	Interro 3 groupe 1 - 2018	24
	7.4	Examen session 1 2018	24
	7.5	Examen session 2 2018	27
8	Anr	nales 2018-2019	29
	8.1	Interrol groupe1	29
	8.2	Interro2 groupe1	31
	8.3	Interro3 groupe1	32
	8.4	Examen session1 mai 2019	33
	8.5	Examen session2 juin 2019	36

1 Logique propositionnelle

1.1 Tables de vérité et sémantique

Exercice 1

On considère la formule du calcul propositionnel $F = (p \to q) \land (q \to r)$.

- 1. Donnez la table de vérité de F.
- 2. Montrez que $F \to (p \to r)$ est une tautologie.

Exercice 2

Construisez la table de vérité des formules du calcul propositionnel suivantes.

Quelles formules sont des tautologies?

- 1. $(p \lor r) \to (r \lor \neg p)$
- 2. $(p \rightarrow \neg r) \lor (q \land \neg r)$
- 3. $p \to (p \to q)$
- 4. $(p \to q) \to ((q \to r) \to (p \to r))$
- 5. $((p \to q) \lor (r \land \neg p)) \land \neg (q \land r)$
- 6. $(\neg(p \to q) \lor \neg r) \land p$

Exercice 3

On introduit le connecteur propositionnel NOR (non ou), noté aussi \downarrow pour exprimer la fonction correspondant à l'expression française « ni .. ni ... ».

- 1. Donnez la table de vérité de $p \downarrow q$.
- 2. Montrez que l'on peut exprimer le conditionnel (l'implication) à l'aide de la disjonction et de la négation.
- 3. Montrez que l'on peut exprimer la conjonction à l'aide de la disjonction et de la négation.
- 4. Montrez que l'on peut exprimer la négation à l'aide de ↓.
- 5. Montrez que l'on peut exprimer la disjonction à l'aide de \downarrow
- 6. Montrez que l'on peut exprimer le conditionnel et la conjonction à l'aide du connecteur \downarrow .
- 7. En déduire que {↓} est un ensemble complet de connecteurs. Quel inconvénient présentet-il?

2

Exercice 4

Montrez que les formules suivantes sont logiquement équivalentes deux par deux :

- 1. $p \lor (q \land r)$ et $(p \lor q) \land (p \lor r)$
- 2. $p \to q \text{ et } \neg p \lor q$ $\neg \neg p \text{ et } p$
- 3. lois de De Morgan :

$$\neg (p \lor q) \text{ et } \neg p \land \neg q$$

$$\neg (p \land q) \text{ et } \neg p \lor \neg q$$

1.2 Règles de réécriture, FNC et FND

Exercice 5

Soient A, B et C trois formules quelconques.

On considère les règles de réécriture suivantes :

- 1) $A \rightarrow B \rightsquigarrow \neg A \lor B$
- $2) \neg \neg A \rightsquigarrow A$
- 3) Lois de De Morgan

a)
$$\neg (A \land B) \leadsto \neg A \lor \neg B$$

b)
$$\neg (A \lor B) \leadsto \neg A \land \neg B$$

- 4) Distributivité
 - a) distributivité de \vee par rapport à \wedge : $A \vee (B \wedge C) \rightsquigarrow (A \vee B) \wedge (A \vee C)$
 - b) distributivité de \wedge par rapport à \vee : $A \wedge (B \vee C) \rightsquigarrow (A \wedge B) \vee (A \wedge C)$

Soit F une formule. L'algorithme $\mathcal A$ suivant permet de trouver une formule G équivalente à F qui soit en FNC :

- 1. On élimine de F tous les connecteurs autres que \vee, \wedge, \neg . Par exemple, il suffit d'utiliser la règle 1 pour éliminer le symbole \rightarrow .
- 2. On applique autant que possible les régles 2), 3) a) et 3) b).
- 3. On applique autant que possible la règle 4) a).

Mettre les formules suivantes sous FNC avec l'algorithme \mathcal{A} .

$$G = \left(\neg(p \to q) \lor \neg r\right) \land p$$

$$H = \neg(q \lor \neg r) \land ((p \land \neg q) \lor r)$$

Exercice 6

On considère la formule

$$F = ((p \to q) \lor (r \land \neg p)) \land \neg (q \land r).$$

- 1. En utilisant l'algorithme vu en dans l'exercice précédent, mettez F sous forme normale conjonctive; à chaque étape, vous indiquerez la règle utilisée (en donnant son numéro).
- 2. En utilisant l'algorithme vu dans l'exercice précédent, mettez F sous forme normale disjonctive; à chaque étape, vous indiquerez la règle utilisée (en donnant son numéro).

Exercice 7

En utilisant les règles de réécriture, montrez quelles formules parmi les formules suivantes sont des tautologies.

3

1.
$$(p \to q) \to ((\neg p \to q) \to q)$$

$$2.\ (\neg p \to (q \land r)) \lor (p \to (\neg q \lor r))$$

3.
$$((p \land q) \to r) \leftrightarrow ((\neg r \land p) \to \neg q)$$

4.
$$(p \to (q \land r)) \leftrightarrow ((p \to q) \land (p \to r))$$

5.
$$(a \to (b \to c)) \to ((a \to b) \to (b \to c))$$

6.
$$((a \to b) \land (b \to \neg a)) \land ((\neg a \to b) \land (b \to a))$$

On considère la formule

$$F = \Big((p \to q) \to (q \to r) \Big) \to (p \to r).$$

- 1. En utilisant l'algorithme \mathcal{A} vu dans un exercice précédent, mettez F sous forme normale conjonctive; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).
- 2. En utilisant l'algorithme \mathcal{A} vu dans un exercice précédent, mettez F sous forme normale disjonctive; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).

Exercice 9

On considère la formule $F = p \to ((\neg q \lor r) \to s)$

En utilisant les règles de réécriture (que l'on rappelera au début de l'exercice), mettre F sous forme normale disjonctive (FND) puis sous forme normale conjonctive (FNC).

1.3 FNC et FND canoniques

Exercice 10

On considère la formule $F = (p \to r) \to (p \land (\neg q \lor r))$

- 1. Donnez la contraposée de F.
- 2. Construisez la table de vérité de F.
- 3. Donnez la forme normale disjonctive canonique et sa forme normale conjonctive canonique de F.
- 4. F est-elle satisfiable? Est-ce une tautologie? Justifiez vos réponses.
- 5. Quand peut-on dire que deux formules sont logiquement équivalentes? Trouvez une formule simple logiquement équivalente à F.

Exercice 11

Soit F la formule ayant comme table de vérité

p	q	r	G
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	0

Donnez les formes normales disjonctive et conjonctive canoniques de F.

Soit $F = (p \vee q) \rightarrow (\neg(r \vee p))$ et G ayant comme table de vérité

p	q	r	G
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0

- 1. Donnez les formes normales disjonctives et conjonctives canoniques de F et G.
- 2. Donnez pour F et G une formule logiquement équivalente la plus simple possible.

Exercice 13

On considère la formule F donnée par sa table de vérité :

p	q	r	F
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	1

- 1. F est-elle satisfiable? Est-ce une tautologie? Une antilogie? (on rappelera ce que cela veut dire).
- 2. Donnez les FNC et FND canoniques de F.
- 3. A l'aide de la FND par exemple, donner une formule plus simple de F.
- 4. On considère la formule $H = p \to (q \lor r)) \land (q \to (p \lor r)) \land (p \to (\neg q \lor r)) \land (r \to (q \lor \neg p))$. Construire sa table de vérité (sur le même schéma ou en recopiant aussi la colonne de F)

Est-ce que $H \leftrightarrow F$ est valide?

Exercice 14

On considère la formule F donnée par sa table de vérité :

-		
0	0	0
0	0	1
1	0	0
1	0	0
0	1	1
0	1	1
1	1	1
1	1	1
	0 1 1 0 0	0 0 1 0 1 0 0 1 0 1 1 1

- 1. Rappelez comment on détermine sur la table de vérité si F est valide, si elle est contradictoire, satisfaisable.
- 2. Donnez les FNC et FND canoniques de F.
- 3. Construire la table de vérité (en recopiant aussi la colonne de F) de la formule G donnée par :

$$G = \Big(\neg((p \to q) \to r)\Big) \to ((q \lor r) \to p))$$

4. Est-ce que $G \to F$ est valide? Justifiez votre réponse.

Exercice 15

On considère la formule F donnée par sa table de vérité :

a	b	c	F
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	0

- 1. Rappelez comment on détermine sur la table de vérité de F si F est valide, contradictoire ou satisfiable.
- 2. Donnez les FNC et FND canoniques de F.
- 3. Construire la table de vérité de la formule G donnée par

$$G = \Big((a \lor (b \lor c)) \to ((a \land b) \land \neg c) \Big) \lor \neg (c \to (a \lor b)).$$

4. Est-ce que $G \to F$ est valide? Justifiez votre réponse.

1.4 Méthode des tableaux

Exercice 16

On considère la formule
$$G = ((r \lor s) \land ((r \to p) \land (s \to q))) \to (p \lor q)$$

Mettez la formule G sous FNN, forme normale négative (les seuls connecteurs logiques sont \vee , \wedge et \neg et les symboles \neg se trouvent au niveau des littéraux).

En utilisant la méthode des tableaux, montrer que G est une tautologie.

Exercice 17

Soient A et B deux formules du calcul propositionnel. On dit que B est une conséquence logique de A lorsque $(A \to B)$ est une formule valide.

En utilisant la méthodes des tableaux vue en cours, déterminer si $p \lor q$ est une conséquence logique de $(r \lor s) \land ((r \to p) \land (s \to q))$.

Exercice 18

A l'aide de la méthode des tableaux, montrer que les formules suivantes sont des tautologies.

- 1. $(p \to q) \to ((q \to r) \to (p \to r))$
- 2. $(p \to q) \to ((\neg p \to q) \to q)$
- 3. $((r \lor s) \land (r \to p) \land (s \to q)) \to (p \lor q)$
- 4. $((p \land q) \land (r \rightarrow (\neg p \lor \neg q))) \rightarrow (\neg (\neg p \lor \neg q) \land \neg r)$
- 5. $(p \rightarrow q) \rightarrow ((q \rightarrow r) \rightarrow (p \rightarrow r))$
- 6. $((p \to q) \land (q \to p)) \to ((p \lor q) \to (p \land q))$

On considère la formule

$$G = ((p \land q) \land (r \to (\neg p \lor \neg q))) \to (\neg (\neg p \lor \neg q) \land \neg r).$$

Mettez la formule G sous FNN, forme normale négative (les seuls connecteurs logiques sont \vee , \wedge et \neg et les symboles \neg se trouvent au niveau des littéraux).

En utilisant la méthode des tableaux, montrer que G est une tautologie.

Exercice 20

On considère les formules F et G suivantes :

$$F = \left(((p \lor q) \lor r) \land (q \lor (\neg p \land s)) \right) \land (((\neg s \lor q) \lor r) \land \neg q) \text{ et } G = ((a \land b) \land (c \to \neg(a \land b))) \to (\neg(\neg a \lor \neg b) \lor c)$$

- 1. Utilisez la méthode des tableaux pour étudier si F est satisfaisable.
- 2. Est-ce que G est une tautologie? Vous utiliserez la méthode des tableaux et vous justifierez votre démarche.

1.5 Formalisation du langage naturel, résolution de problèmes

Exercice 21

Les propositions P, Q et R sont définies de la manière suivante :

 $P: \ll J$ 'ai soif »

 $Q: \ll \text{Mon verre est vide} \gg$

 $R: \ll \text{Il est trois heures} \gg$

Écrivez chacune des propositions suivantes sous forme d'expression logique faisant intervenir P, Q et R.

- 1. J'ai soif et mon verre n'est pas vide.
- 2. Il est trois heures et j'ai soif.
- 3. S'il est trois heures alors j'ai soif.
- 4. Si j'ai soif alors mon verre est vide.
- 5. Si je n'ai pas soif, alors mon verre n'est pas vide.

Exercice 22

Théorème de Pythagore :

Si le triangle (A, B, C) est rectangle en A alors $AB^2 + AC^2 = BC^2$.

Donnez la réciproque, la contraposée et la contraposée de la réciproque du théorème de Pythagore.

On considère les propositions $P: \ll \text{Il pleut} \gg \text{ et } Q: \ll \text{il y a des nuages} \gg$.

Que donnent l'implication $P \to Q$, sa contraposée, sa réciproque et la contraposée de sa réciproque ?

Exercice 24

Pierre, Marc et Jean sont 3 colocataires. On considère les quatre propositions suivantes :

- 1. Si Pierre est rentré alors Jean est allé au cinéma
- 2. Pierre est rentré ou Marc est à la bibliothèque
- 3. Si Jean est au cinéma alors Marc est à la bibliothèque ou Pierre est rentré
- 4. Marc n'est pas à la bibliothèque et Jean est au cinéma.

Montrez que ces quatre propositions ne sont pas contradictoires.

Si ces quatre propositions sont vérifiées, peut-on être sûr que Pierre est rentré?

Exercice 25

Un meurtre a été commis. L'inspecteur Ludo est chargé de l'enquête. Il rencontre plusieurs témoins ou suspects.

Il en ressort les trois propositions suivantes :

- 1. Si Jean n'a pas rencontré Pierre c'est que Pierre est le meurtrier ou que Jean ment
- 2. Si Pierre n'est pas le meurtrier alors le crime a eu lieu après minuit et Jean ne peut pas avoir rencontré Pierre
- 3. Si le crime a eu lieu après minuit alors Pierre est le meurtrier ou Jean ment

Montrez que ces trois propositions peuvent être vraies simultanément.

Sur la base de ces propositions, l'inspecteur Ludo pense que Pierre est le coupable. Et vous?

Exercice 26 Sur une île lointaine, cohabitent pacifiquement deux tribus : les purs et les pires. Les purs disent toujours la vérité alors que les pires mentent tout le temps. Un explorateur rencontre deux individus qu'il nomme A et B. C'est A qui prend la parole...

- 1. A dit « l'un d'entre-nous au moins est un pire ». Peut-on en déduire les tribus de A et B.
- 2. Cette fois ci A déclare : « Il n'y a pas plus d'un pire parmi nous deux ». Que peut-on en déduire?
- 3. Et si A déclare « nous sommes tous les deux de la même tribu »?

Exercice 27 A logic of Thrones : Dans un lointain royaume, le roi Robert est souffrant. Son ami, Ned a découvert le secret gardé par la reine : le fils de la reine, Geoffrey n'est pas le fils légitime de Robert. Le chaos est à son comble dans la capitale et le dénouement est proche.

Nous savons que si Robert ne meurt pas, alors le secret n'est pas révélé par Ned, mais que si Ned est emprisonné alors Ned ne révélera pas le secret. Evidemment, si Robert meurt et Ned révèle le secret alors Geoffrey ne deviendra pas roi. De plus, par une source sûre (Littlefinger), nous savons que si Ned est emprisonné ou que Robert meurt alors Geoffrey sera roi.

- 1. Modélisez le problème à partir des quatre affirmations du paragraphe précédent.
- 2. Montrez que ces quatre affirmations peuvent être vérifiées simultanémant.
- 3. Supposons maintenant qu'elles soient toutes vérifiées. Peut-on être sûr que le secret ne sera pas révélé par Ned? Est-il possible que Ned soit emprisonné?

Vous répondrez à ces questions à l'aide de la méthode des tableaux ou d'une table de vérité.

1.6 Divers

Exercice 28

Montrez que la formule Φ suivante est une tautologie.

$$\Phi = \neg (a \Leftrightarrow b) \lor ((b \land c) \to c).$$

Exercice 29

Étudier les formules suivantes :

- 1. $(p \lor q) \to (\neg p \land \neg q)$
- 2. $(\neg(p \to q) \lor \neg r) \land p$
- 3. $(p \to q) \lor ((r \land \neg p) \land \neg (q \land r))$
- 4. $((p \to q) \lor (r \land \neg p)) \land \neg (q \land r)$
- 5. $(p \lor r) \to (r \lor \neg p)$
- 6. $((p \to q) \land (r \to q)) \to ((p \lor r) \to q)$

Exercice 30

On considère la formule $F = ((p \to r) \lor (q \to r)) \to (\neg p \lor r)$.

- 1. Donnez la table de vérité de F.
- 2. F est-elle satisfiable?
- 3. Donnez les FNC et FND canoniques de F.
- 4. Donnez la réciproque de F.
- 5. Montrez que la réciproque de F est satisfiable à l'aide de la méthode des tableaux vu en cours.
- 6. Quand peut-on dire que deux formules sont logiquement équivalentes? F est-elle équivalente à sa réciproque.

Exercice 31

On considère la formule F donnée par sa table de vérité :

p	q	r	F
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	0

- 1. F est-elle satisfiable? est-ce une tautologie? une antilogie? Vous redonnerez les définitions.
- 2. Donnez les FNC et FND de F.
- 3. On considère la formule

$$H = ((p \vee (q \vee r)) \to ((p \wedge \neg q) \wedge r)) \vee \neg (q \to (p \vee r)).$$

Construisez sa table de vérité.

Est-ce que $\neg H \rightarrow F$ est valide?

- 4. Soit $G = ((p \land q) \land (r \rightarrow (\neg p \lor \neg q))) \rightarrow ((\neg (\neg p \lor \neg q) \land \neg r)$ Mettez la formule G sous FNN, forme normale négative (les seuls connecteurs logiques sont \lor, \land et \neg et les symboles \neg se trouvent au niveau des littéraux).
- 5. En utilisant la méthode des tableaux, montrer que G est une tautologie. N'oubliez pas de rédiger.

On considère la formule $(p \to q) \lor ((r \land \neg p) \land \neg (q \land r))$.

- 1. Donnez une FND de cette formule en utilisant des règles de réécriture.
- 2. Donnez les FND et FNC canoniques de cette formule.
- 3. À l'aide de la méthode des tableaux, montrer que cette formule n'est pas une tautologie.

Exercice 33

On considère la formule $G = (\neg(p \lor r) \lor q) \land \neg(p \to q)$

- 1. Mettez la formule G sous FNN, forme normale négative, les seuls connecteurs logiques sont \vee , \wedge et \neg et les symboles \neg se trouvent au niveau des littéraux, c'est-à-dire juste avant les feuilles dans l'arbre syntaxique.
- 2. En utilisant la méthode des tableaux, montrez que G est insatisfaisable (contradictoire). Justifiez votre réponse.

2 Calcul des prédicats

Exercice 34

Traduisez les énoncés suivants en formules de la logique des prédicats (on donnera à chaque fois l'interprétation des prédicats utilisés par exemple A(x,y) = x aime y).

- 1. Jean est plus grand que Marie.
- 2. Paul a vu Léa et elle ne l'a pas vu.
- 3. Si Jean est un homme, alors il est mortel.
- 4. Un chat est entré.
- 5. Au moins deux enfants ne sont pas malades.
- 6. Tous les éléphants ont une trompe.
- 7. Tous les hommes n'aiment pas Marie.
- 8. Il y a une chanson qu'aucun enfant ne chante.
- 9. Si tous les hommes aiment Marie, alors elle est contente.
- 10. Tous les fermiers apprécient un ministre.

Exercice 35

Donnez des formules de la logique des prédicats exprimant les propositions suivantes :

- 1. Il existe un nombre plus petit que tous les autres.
- 2. Il n'existe pas de nombre plus grand que tous les autres.
- 3. Personne ne connaît personne, mais personne ne connaît tout le monde.
- 4. Dans toutes les classes il y a un élève qui s'appelle Kevin. Il existe une classe où tous les élèves s'appelle Kevin.

Donnez des formules de la logique des prédicats pour les propositions suivantes qui s'appliquent à un club de tennis :

- 1. Chaque membre du club connaît deux membres qui ne se connaissent pas.
- 2. Un membre a déjà joué contre tous les autres membres.
- 3. Un membre a battu toutes les personnes avec qui il a joué.

Exercice 37 3-coloriabilité

On considère des zones (par exemple des pays) à colorier sur le plan. On dispose du prédicat Frontiere (x,y) qui vaut vrai lorsque x et y ont une frontière commune.

- 1. Ecrivez une formule F_1 qui exprime que chaque zone est coloriée en rouge, en bleu ou en jaune. On prendra trois prédicats Rouge(x), Bleu(x) et Jaune(x). Vous préciserez que chaque zone n'a qu'une seule couleur.
- 2. Ecrivez une formule F_2 qui exprime que deux pays qui ont une frontière commune sont coloriées d'une couleur différente.

Une carte vérifiant F_1 et F_2 pour au moins un coloriage est appelée 3-coloriable.

Exercice 38

Traduisez en logique des prédicats les propositions suivantes :

- 1. Bien que personne ne fasse de bruit, Jean n'arrive pas à se concentrer.
- 2. Si personne ne fait de bruit, Jean répondra au moins à une question.
- 3. Tout le monde a menti à quelqu'un dans sa vie.
- 4. Tous les étudiants, sauf Jean, sont présents.
- 5. Aucun enfant ne fait jamais aucune bêtise.
- 6. Tout le monde a lu un livre de logique.

Exercice 39

Traduisez les phrases suivantes dans le langage des prédicats. Utilisez les traductions suivantes pour les prédicats :

P(x): x est plombier

H(x): x est un homme

R(x): x est riche

- 1. Tous les plombiers sont des hommes.
- 2. Pierre est riche.
- 3. Si Pierre est un plombier, Pierre est riche.
- 4. Tous les hommes sont plombiers ou riches.
- 5. Au moins un plombier est riche.
- 6. Au moins deux plombiers ne sont pas riches.
- 7. Aucun plombier n'est riche.
- 8. Tous les hommes sont plombiers.
- 9. Tous les hommes ne sont pas plombiers

On considère l'énoncé suivante s'appliquant aux personnes d'un village:

Il existe une personne P du village qui coiffe toutes les personnes du village qui ne se coiffent pas elles-mêmes.

1. Formaliser l'énoncé ci-dessus par une formule F de la logique des prédicats, en utilisant le vocabulaire qui contient les symboles de prédicats suivants :

P(x): x est une personne du village

C(x,y): x coiffe y

2. Qui coiffe P? En déduire que F est fausse.

Exercice 41

Pim, Pam et Poum sont dans un bateau et chahutent.

- 1. Si Pim reste dans le bateau alors Pam tombe à l'eau et Poum se maintient dans le bateau
- 2. Si Pim tombe à l'eau, il réussira à faire tomber Pam aussi
- 3. Si Poum reste dans le bateau alors Pam sera à l'eau

Peut-on savoir qui reste dans le bateau?

Exercice 42

Un crime a été commis et il y a 4 suspects: Legrand, Dupont, Martin et Robert. Les premiers témoignages donnent les informations suivantes :

Legrand est innocent mais au moins un des autres est coupable.

Si Robert est innocent alors Dupont est forcément coupable.

Legrand et Martin ne peuvent être innocents tous les deux.

Si Martin est coupable alors Dupont et Robert sont innocents.

- 1. Formaliser le problème.
- 2. Montrez qu'au moins un des témoignages est faux car l'ensemble de ces informations est incompatible.
- 3. On réalise que c'est le premier témoin qui a donné une fausse information et donc on ne tient pas compte de ce témoignage. Que peut-on en déduire pour Legrand?

12

Exercice 43

Trois personnes se préparent à chanter : Patrick, Quentin et Rick.

Si Patrick ne chante pas alors Quentin chantera.

Si Rick chante alors Patrick ou Quentin (l'un des deux au moins) ne chantera pas.

Si Quentin chante alors Patrick et Rick chanteront.

- 1. Formaliser le problème.
- 2. Peut-on conclure que Patrick chantera? (on justifiera le raisonnement).

3 Sommes et produits

Exercice 44 Calculez les sommes ou produits suivants :

•
$$S_1 = \sum_{k=1}^4 k^2$$
 $S_2 = \sum_{k=0}^4 5$ $S_3 = \sum_{k=0}^n 2$

$$S_2 = \sum_{k=0}^4 5$$

$$S_3 = \sum_{k=0}^n 2^k$$

•
$$P_1 = \prod_{k=5}^{51} \frac{k}{k+1}$$
 $P_2 = \prod_{k=19}^{39} \frac{2k+1}{2k-1}$

$$P_2 = \prod_{k=19}^{39} \frac{2k+1}{2k-1}$$

Calculez les sommes suivantes :

•
$$S_1 = \sum_{k=1}^n (k+3)$$

•
$$S_2 = \sum_{k=0}^{n-1} (2k+5)$$

• $S_3 = \sum_{k=3}^{n+2} k$

•
$$S_3 = \sum_{k=3}^{n+2} k$$

•
$$S_4 = \sum_{k=2}^{n} (k+1)^k$$

•
$$S_4 = \sum_{k=2}^{n} (k+1)$$

• $S_5 = \sum_{k=n}^{2n} (k+1)$

•
$$S_6 = \sum_{k=1}^{n} (\frac{1}{k} - \frac{1}{n+1-k})$$

•
$$S_7 = \sum_{k=1}^n \frac{1}{k(k+1)}$$

Exercice 46

Calculez la somme $\sum_{k=1}^{n} \ln(1 + \frac{1}{k})$.

Exercice 47

Calculez le produit $\prod_{k=1}^{n} 2^{\frac{1}{k(k+1)}}$.

Exercice 48

Calculez la somme $\sum_{k=1}^{n} \ln(1 - \frac{1}{k^2})$.

Exercice 49

En utilisant une somme télescopique, calculer la somme $\sum_{k=1}^{n} kk!$.

Exercice 50

Déterminer 3 réels a, b, c tels que

$$\frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}.$$

13

En déduire la somme $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$

Exercice 51

1. Calculez
$$\sum_{k=1}^{n} ((k+1)^3 - k^3)$$
.

2. Calculez
$$(k+1)^3 - k^3$$
.

3. Déduire des deux questions précédentes la valeur de
$$\sum_{k=1}^{n} k^2$$
.

4. Utilisez la question précédente pour calculer
$$\sum_{k=1}^{n} (k+1)(k-1)$$
.

4 Raisonnement par récurrence

4.1 Formules sur les sommes

Exercice 52

Montrez que pour tout $n \ge 1$, $\sum_{k=1}^{2n} (-1)^k k = n$.

Exercice 53

Montrez que pour tout entier $n \geq 1$ on a

$$\sum_{k=1}^{n} (2k)^2 = 2^2 + 6^2 + 8^2 + \ldots + (2n)^2 = \frac{2n(n+1)(2n+1)}{3}.$$

Exercice 54

Montrez par récurrence que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{k=n} k^3 = 1^3 + 2^3 + 3^3 + \ldots + (n-1)^3 + n^3 = \frac{1}{4}n^2(n+1)^2.$$

Exercice 55

Montrez que la propriété suivante est vraie pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} k \ 2^k = (n-1) \ 2^{n+1} + 2.$$

Exercice 56

Montrez que pour tout entier $n \geq 1$, on a

$$\sum_{k=n+1}^{2n} \frac{1}{k} \ge \frac{1}{4} + \frac{1}{4} \left(\sum_{k=1}^{n} \frac{1}{k^2} \right).$$

Exercice 57

Montrez par récurrence que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{k=n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}.$$

Exercice 58

Démontrer par récurrence que pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} kk! = (n+1)! - 1.$$

Exercice 59

Montrez par récurrence que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{k=n} (2k+1) = 1+3+5+\ldots+(2k+1)+\ldots+2n+1 = (n+1)^2.$$

Exercice 60

Montrez que pour tout entier $n \geq 1$ on a

$$\sum_{1}^{n} k(k+1) = 1 * 2 + 2 * 3 + 3 * 4 + \dots + k * (k+1) + \dots + n * (n+1) = \frac{1}{3}n(n+1)(n+2).$$

4.2 Suites définies par récurrence

Exercice 61

On définit la suite (u_n) par $u_0 = -3$ et $u_{n+1} = 5 - 4u_n$ pour tout entier $n \ge 0$. Montrez par récurrence que l'on a $u_n = (-4)^{n+1} + 1$ pour tout entier $n \in \mathbb{N}$.

Exercice 62

On définit la suite (u_n) par $u_0 = 1$ et $u_{n+1} = u_n + n$ pour tout entier $n \ge 0$. Montrez par récurrence que pour tout entier naturel n, $u_n = \frac{n^2 - n + 2}{2}$

Exercice 63

On définit la suite (v_n) par $v_0 = 1$ et $v_n = v_{n-1} + 2n + 1$ pour tout $n \ge 1$. Montrez par récurrence que l'on a $v_n = (n+1)^2$ pour tout $n \in \mathbb{N}$.

Exercice 64 On définit la suite (u_n) par $u_0 = 2$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{u_n}{1+u_n}$ Montrez par récurrence que $\forall n \in \mathbb{N}, u_n = \frac{2}{2n+1}$

Exercice 65

On définit la suite $(u_n)_{n\in\mathbb{N}^*}$ par : $u_1=1, u_2=1$ et $u_{n+2}=n$ (u_n+u_{n+1}) , pour tout $n\in\mathbb{N}^*$. Montrez que l'on a $u_n\leq n!$, pour tout $n\in\mathbb{N}^*$.

4.3 Divers

Exercice 66

Démontrer que pour tout entier $n \ge 4$, $2^n \le n!$

Exercice 67

On définit la **fonction d'Ackermann** de la manière suivante :

```
\forall n \in \mathbb{N} \ f(0,n) = n+1 si m > 0, f(m,0) = f(m-1,1) si m > 0 et si n > 0, f(m,n) = f(m-1,f(m,n-1)) Montrez que : \forall k \in \mathbb{N}, f(1,k) = k+2 f(2,k) = 2k+3 f(3,k) = 2^{k+3} - 3
```

Exercice 68

Nous allons démontrer par récurrence la propriété P(n) suivante : "Dès qu'il y a une fille dans un groupe de n personnes, alors tout le groupe est composé de filles."

Pour n = 1 la propriété est vraie.

Supposons maintenant que P(n) soit vraie. Prenons un groupe G de n+1 personnes contenant une fille P_0 , formons alors, avec P_0 , un groupe de n personnes en retirant une personne P_1 . Par hypothèse de récurrence, toutes les personnes du groupe $G_1 = G \setminus \{P_1\}$ sont des filles. Retirons de G, P_2 , une personne différente de P_0 . On obtient alors un groupe de n personnes contenant au moins une fille et par hypothèse de récurrence toutes les personnes du groupe sont donc des filles. Nous avons montré auparavant que P_2 était une fille, donc le groupe G ne contient que des filles.

Bien entendu la conclusion n'est pas bonne mais où est l'erreur de raisonnement?

Soit $\mathcal{P}(n)$ la propriété suivante : pour tout réel x strictement positif,

$$(1+x)^n \ge 1 + nx.$$

Montrez par récurrence que $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

Exercice 70

La célèbre suite de Fibonacci est définie par

$$\begin{cases} f_0 = 0, \\ f_1 = 1, \\ f_n = f_{n-1} + f_{n-2}, \text{ pour } n \ge 2. \end{cases}$$

Elle possède de nombreuses propriétés mathématiques.

- 1. Montrer que $\forall n \in \mathbb{N}, f_{3n}$ est pair.
- 2. Montrer que $\forall n \in \mathbb{N}^*$, $f_{2n} = f_1 + f_3 + ... + f_{2n-1}$ et $f_{2n+1} = 1 + f_2 + ... + f_{2n}$.
- 3. Soit $\varphi = \frac{1+\sqrt{5}}{2}$ le nombre d'or (en particulier, φ est une racine de $x^2 x 1 = 0$). Montrer que $\forall n \in \mathbb{N}, \ \varphi^{n-2} \leq f_n \leq \varphi^{n-1}$.
- 4. Montrer que $\forall n \in \mathbb{N}$, $f_n = \frac{1}{\sqrt{5}}(\varphi^n \varphi_-^n)$, où $\varphi_- = \frac{1-\sqrt{5}}{2}$ est la deuxième racine de $x^2 x 1 = 0$.
- 5. Montrer que $\forall n \in \mathbb{N}$, f_n et f_{n+1} n'ont pas de diviseur commun autre que 1.
- 6. Montrer que pour tout p et q entiers positifs, $f_{p+q} = f_{p-1}f_q + f_pf_{q+1}$.
- 7. En utilisant cette propriété, montrer que si p divise q alors f_p divise f_q c'est à dire que f_n divise f_{np} . En déduire que $\forall n \in \mathbb{N}, f_{4n}$ est divisible par 3.
- 8. Montrer que $\forall n \in \mathbb{N}, f_{n+1}f_{n-1} f_n^2 = (-1)^n$.
- 9. Montrer que $\forall n \in \mathbb{N}, f_1^2 + f_2^2 + \dots + f_n^2 = f_n f_{n+1}$.
- 10. Montrer que $\forall n \in \mathbb{N}$, $f_n = \sum_{k=0}^n C_{n-k}^k$. Que peut-on en déduire sur les diagonales du triangle de Pascal?

Exercice 71

On veut obtenir une formule pour compter les diagonales d'un polygone convexe à n côtés pour $n \ge 4$. On a $d_4 = 2, d_5 = 5, d_6 = 9$:

On admettra que si d_n est ce nombre de diagonales, alors on a la formule $d_{n+1} = d_n + n - 1$. Montrer que, pour tout entier $n \ge 4$, on a $d_n = \frac{n^2 - 3n}{2}$.

Exercice 72 Soit P(n) la propriété suivante :

$$\exists m \in \mathbb{N} \ \exists \varepsilon_1 \in \{-1, 1\} \dots \ \exists \varepsilon_m \in \{-1, 1\} \quad n = \varepsilon_1 \cdot 1^1 + \varepsilon_2 \cdot 2^2 + \dots \varepsilon_m \cdot m^2.$$

16

- 1. Montrez que P(1), P(2), P(3) et P(4) sont vraies.
- 2. Montrez que l'on a pour tout $i \in \mathbb{N}$, $(i+1)^2 (i+2)^2 (i+3)^3 + (i+4)^4 = 4$.
- 3. Déduisez des questions précédentes que P(n) est vraie pour tout $n \in \mathbb{N}^*$.

5 Raisonnement par induction

5.1 Induction sur les mots

Exercice 73 (Mots de Dyck)

Soit \mathcal{D} l'ensemble des mots obtenus sur l'alphabet $\mathcal{A} = \{a, b\}$ avec le schéma d'induction suivant :

- i) $\varepsilon \in \mathcal{D}$ (où ε désigne le mot vide).
- ii) Si $u \in \mathcal{D}$ et $v \in \mathcal{D}$ alors aubv appartient aussi à \mathcal{D} .
- 1. Donnez tous les mots de \mathcal{D} de longueur inférieure ou égale à 6.
- 2. Montrez que tous les mots de \mathcal{D} ont un nombre pair de lettres.
- 3. Montrez que tous les mots de \mathcal{D} de longueur supérieure ou égale à 1 finissent par b.
- 4. Montrez que tous les mots de \mathcal{D} contiennent autant de a que de b.

Exercice 74

On construit l'ensemble \mathcal{F} des mots écrits sur l'alphabet $\mathcal{A} = \{a, b\}$ selon le shéma d'induction suivant :

- i) le mot vide ε appartient à \mathcal{F} .
- ii) Soient u un mot de \mathcal{F} . Alors les mots aua et bub appartiennent à \mathcal{F} .
- 1. Donnez tous les mots de \mathcal{F} de longueur inférieure ou égal à 6.
- 2. Montrez par induction que tout mot w de \mathcal{F} possède un nombre pair de lettres.
- 3. Montrez par induction que tout mot w de \mathcal{F} est un palindrome. (On rappelle qu'un palindrome est un mot qui se lit de la même façon de gauche à droite ou de droite à gauche; le mot vide est un palindrome).

Exercice 75

On veut compter le nombre de mots écrits avec a et b mais sans avoir 2 lettres a consécutives.

- 1. Donnez un schéma d'induction permettant de construire ces mots.
- 2. En déduire une formule donnant le nombre de tels mots de longueur n.

Exercice 76

On considère l'ensemble \mathcal{E} des mots sur l'alphabet $\{a,b\}$ défini par le shéma d'induction suivant :

- i) Le mode vide ε appartient à \mathcal{D} .
- ii) Soit W un mot de \mathcal{D} . Les mots aWb et bWa appartiennent à \mathcal{D} .
- 1. Donnez les mots de longueur inférieure ou égale à 4.
- 2. Montrez par induction que tout mot de \mathcal{D} contient autant de a que de b.

Exercice 77 (Palindromes musicaux)

Un musicien dispose d'un instrument de musique à 7 notes : $N = \{do, re, mi, fa, sol, la, si\}$. Dans tout le problème, la longueur d'un morceau désignera le nombre de notes le composant (toutes les notes ont exactement la même durée) ; n désignera un entier strictement positif (il pourra parfois être utile de séparer les cas n pair et n impair).

1. Combien de morceaux de longueur n peuvent-ils être composés?

- 2. On souhaite composer des morceaux pouvant se jouer dans les deux sens exactement de la même manière (palindromes), par exemple : do fa la fa do ou alors sol si si sol.
 - (a) Donnez le schéma d'induction des morceaux de musique palindrome créés avec les notes de N.
 - (b) Pour n fixé, déterminer le nombre de palindromes de longueur n (on utilisera un raisonnement par induction).
- 3. On ne veut plus désormais qu'un palindrome comporte deux notes successives identiques. Que devient alors le schéma d'induction? Combien y-a-t-il de tels palindromes de longueur n?

5.2 Inductions sur les formules propositionnelles

Exercice 78

On définit une fonction T qui à toute formule propositionnelle F associe la formule propositionnelle $\tilde{F} = T(F)$ obtenue de la manière suivante :

- chaque occurrence du symbole \wedge est remplacé par le symbole \vee .
- chaque occurrence du symbole \vee est remplacé par le symbole \wedge .
- chaque occurrence d'une variable propositionnelle est remplacée par sa négation.

Montrez sur l'arbre de représentation que, pour toute formule propositionnelle $F, T(F) \equiv \neg F$.

Exercice 79

Soit $n \in \mathbb{N}$ et $\mathcal{V} = \{x_1, \dots, x_n\}$ un ensemble de variables. On construit inductivement un ensemble de formules \mathcal{G}

- i) Pour tout $x_i \in \mathcal{V}, x_i \in \mathcal{G}$.
- ii) Soient A et $B \in \mathcal{G}$. On a alors $A \wedge B \in \mathcal{G}$ et $\neg A \vee \neg B \in \mathcal{G}$.

Soit $\mathcal{P}(A)$ la propriété : « A possède un nombre pair d'occurrences du symbole $\neg \gg$. Montrez par induction que $\mathcal{P}(A)$ est vraie pour toute formule A de \mathcal{G} .

Exercice 80

Soit C un ensemble de connecteurs et \mathcal{P} un ensemble de variables propositionnelles.

On notera $\mathcal{F}_C(\mathcal{P})$ l'ensemble de formules du calcul propositionnel que l'on peut construire avec les connecteurs de C. Lorsque $C = \{\rightarrow\}$, l'ensemble des formules obtenu est appelé logique implicative minimale, elle est étudiée dans le cadre de la logique intuitionniste.

Les formules de $\mathcal{F}_{\rightarrow}(\mathcal{P})$ se construisent avec le schéma d'induction suivant :

- i) Pour tout $p \in \mathcal{P}, p \in \mathcal{F}_{\rightarrow}(\mathcal{P})$.
- ii) Soient G et H appartenant à $\in \mathcal{F}_{\to}(\mathcal{P})$. $F = G \to H$ appartient à $\mathcal{F}_{\to}(\mathcal{P})$

On s'intéresse maintenant à $\mathcal{F}_{\to}(\mathcal{P})$ lorsque \mathcal{P} ne contient qu'une seule variable propositionnelle p. Nous noterons \top la formule prenant toujours la valeur vraie quelque soit la valuation de la variable p. On a ainsi $p \to p \equiv \top$.

Montrez que pour tout $F \in \mathcal{F}_{\to}(\mathcal{P})$ on a soit $F \equiv p$, soit $F \equiv \top$.

Exercice 81

Dans l'exercice suivant, on s'intéresse à l'ensemble des formule sans connecteur implication. On rappelle que cet ensemble \mathcal{F} est défini par le schéma d'induction :

- i) Toute variable propositionnelle appartient à \mathcal{F} .
- ii) Si F et G sont deux formules de \mathcal{F} , alors $F \vee G$, $F \wedge G$ et $\neg F$ le sont aussi.

On souhaite associer un nombre à chaque formule de \mathcal{F} . Pour cela, on définit inductivement la fonction f sur les formules par

$$\begin{cases} f(p) = 0 \\ f(\neg A) = 1 + 1/4f(A) \\ f(A \lor B) = 1/4f(A) + 1/4f(B) \\ f(A \land B) = 1/4f(A) + 1/4f(B) \end{cases}$$

- 1. Calculez $f(p \lor (\neg (q \land \neg r)))$;
- 2. Montrez que $f(\neg(A \lor B)) > f(\neg A \land \neg B)$.
- 3. Montrez par induction que, pour toute formule F, f(F) < 2;

6 Fonctions booléennes

Exercice 82

Soit f_3 la fonction booléenne à 3 variables ayant la forme algébrique normale

$$x_1x_2x_3 \oplus x_1x_2 \oplus x_2x_3 \oplus x_1 \oplus 1$$
.

- 1. Calculez sa table de vérité.
- 2. Donnez le poids de Hamming de f_3 . Est-elle équilibrée?

Exercice 83

Soit f_3 la fonction booléenne à 3 variables ayant la forme algébrique normale

$$x_1x_2x_3 \oplus x_1x_3 \oplus x_2 \oplus 1$$
.

- 1. Calculez sa table de vérité.
- 2. On définit deux fonctions à 2 variables

$$f_2^0(x_1, x_2) = f(x_1, x_2, 0)$$

 $f_2^1(x_1, x_2) = f(x_1, x_2, 1).$

Montrez que l'on a

$$f_3 = (1 \oplus x_3) f_2^0 \oplus x_3 f_2^1.$$

(cette décomposition est appelée décomposition de Shannon).

Donnez la table de vérité de f_2^0 et f_2^1 à partir de celle de f_3 .

3. Les quatre fonctions booléennes à 1 variable sont

x_1	$x_1 \oplus 1$	$\overline{0}$	$\overline{1}$
0	1	0	1
1	0	0	1

Définissez les quatres fonctions suivantes :

$$-f_1^{00}(x_1) = f(x_1, 0, 0)$$

$$- f_1^{01}(x_1) = f(x_1, 0, 1)$$

$$- f_1^{10}(x_1) = f(x_1, 1, 0)$$

$$- f_1^{11}(x_1) = f(x_1, 1, 1)$$

4. Trouvez une méthode pour construire la FAN à partir de ces quatres fonctions.

Exercice 84

- 1. Donnez la définition du degré algébrique d'une fonction booléenne.
- 2. Une fonction affine est une fonction booléenne de degré 1. Donnez toutes les fonctions affines à 2 variables.

Exercice 85

- 1. Rappelez comment on calcule la FAN à partir des mintermes d'une fonction booléenne à n variables f.
- 2. Soit $b = (b_1, \ldots, b_n) \in \mathbb{F}_2^n$ et M_b le minterme prenant la valeur 1 uniquement pour la valuation b.

 M_b peut s'écrire comme le produit de littéraux suivant $M_b = \prod_{i=1}^n (x_i \oplus b_i \oplus 1)$ On vérifiera que l'on a bien $M_b(a) = 1$ lorsque a = b.

3. En déduire que le degré algébrique de f est égal à n si et seulement si le poids de Hamming de f est impair.

Exercice 86

Soit g_3 la fonction booléenne à 3 variables de table de vérité :

x_1	x_2	x_3	g_3
=		<i>∞</i> 3	
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	1

- 1. Donnez la FND de g_3 .
- 2. En déduire la FAN et le degré algébrique de g_3 .
- 3. Montrez qu'il existe deux fonctions booléennes à deux variables g_2^0 et g_2^1 telles que

$$g_3 = g_2^0 \oplus x_3 \ g_2^1.$$

(cette décomposition s'appelle la décomposition de Reed-Müller).

- 4. Peut-on appliquer à g_1 et g_2 la même décomposition?
- 5. Donnez un schéma d'induction des fonctions booléennes à n variables basée sur cette décomposition.

20

Soit f_n une fonction booléenne à n variables. Son poids de Hamming est le nombre de valuations pour lesquelles elle prend la valeur 1. Nous avons donc

$$w_H(f_n) = \sum_{x \in \mathbb{F}_2^n} f_n(x).$$

1. Montrez qu'il existe deux fonctions booléennes à n-1 variables f_{n-1}^0 et f_{n-1}^1 vérifiant

$$f_n = (1 \oplus x_n) f_{n-1}^0 \oplus x_n f_{n-1}^1.$$

- 2. Montrez que l'on a $w(f_n) = w(f_{n-1}^0) + w(f_{n-1}^1)$.
- 3. On dit qu'une fonction booléenne f_n est équilibrée lorsqu'elle prend autant de fois la valeur 1 que la valeur 0.

Donnez le poids de Hamming d'une fonction équilibrée.

4. Quels sont les poids de Hamming que peuvent avoir f_{n-1}^0 et f_{n-1}^1 lorsque f_n est équilibrée.

Exercice 88 On considère la fonction booléenne à trois variables g_3 donnée par sa table de vérité :

x_1	x_2	x_3	g_3
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

- 1. Donnez la FND et la FAN de g_3 .
- 2. Soit f_3 la fonction booléenne à trois variables de FAN $x_1x_2 \oplus x_1x_3 \oplus x_2x_3$. Construisez la table de vérité de f_3 .
- 3. Donnez la table de vérité et la FAN de $h_3 = f_3 \oplus g_3$. Que remarquez-vous? Quels sont les monômes qui apparaissent dans la FAN?
- 4. Donnez le poids de Hamming de f, g et h. Quelle fonction parmi les trois est équilibrée?

Exercice 89

Soit f la fonction booléenne à 3 variables de table de vérité :

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x_1	x_2	x_3	f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	1
1 1 0 0 0 0 1 0	1	0	0	0
0 0 1 0	0	1	0	1
0 0 1	1	1	0	0
1 0 1 1	0	0	1	0
	1	0	1	1
0 1 1 0	0	1	1	0
1 1 1 0	1	1	1	0

- 1. Donnez la FND de f.
- 2. Donnez la FAN de f.
- 3. Soit g la fonction booléenne définie par : $g = x_2 \oplus x_1x_2 \oplus x_2x_3 \oplus x_1x_3 \oplus x_1x_2x_3$. Donnez la table de vérité de g.
- 4. Soit f une fonction booléenne à n variables. Sa fonction duale notée \tilde{f} est la fonction booléenne à n arguments définie par : $\tilde{f}(x_1, x_2, \dots, x_n) = \overline{f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$. Soit h la fonction duale de f, donnez sa FAN et sa table de vérité. Comparez g et h. Que peut-on en conclure?

7 Annales 2017-2018

7.1 Interro 1 groupe 1 - 2018

Exercice 90 On considère la formule F donnée par sa table de vérité :

p	q	r	F
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	1

- 1. F est-elle satisfiable? Est-ce une tautologie? Une antilogie? (on expliquera ce que cela veut dire).
- 2. Donner les FNC et FND canoniques de F.
- 3. On considère la formule $H: (p \to (q \lor r)) \land (q \to (p \lor r)) \land (p \to (\neg q \lor r)) \land (r \to (q \lor \neg p))$. Faire sa table de vérité (sur le même schéma ou en recopiant aussi la colonne de F) Est-ce que $H \leftrightarrow F$ est valide?

Exercice 91

- 1. Donner les formules de ré-écriture.
- 2. On appellera G la formule : $((r \to q) \lor (p \land \neg r)) \land \neg (q \lor r)$ A l'aide des formules de ré-écriture, mettre la formule G donnée ci-dessus sous forme normale conjonctive et sous forme normale disjonctive.

Exercice 92 Soit g la fonction booléenne définie par : $g = 1 \oplus x_1x_3 \oplus x_2x_3 \oplus x_1x_2x_3$

- 1. Rappeler ce qu'est la FAN. g est-elle en FAN?
- 2. g est-elle satisfiable? (on justifiera).
- 3. Donner la table de vérité de g
- 4. Soit f la fonction booléenne sur $\{0,1\}^3$ de table de vérité :

x_1	x_2	x_3	f(x)
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	0
1	1	1	0

- (a) Donnez la FAN de f
- (b) Soit f une fonction booléenne à n arguments. Sa fonction duale notée \tilde{f} est la fonction booléenne à n arguments définie par : $\tilde{f}(x_1, x_2, \dots, x_n) = \overline{f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$ Montrer que g est la fonction duale de f

7.2 Interro 2 groupe 1 - 2018

Exercice 93

Montrer que pour tout entier $n \geq 1$ on a

$$\sum_{k=1}^{n} \frac{k}{2^k} = 2 - \frac{n+2}{2^n}$$

Exercice 94

On considère la suite définie par récurrence par $u_0=2$ et pour $n\in\mathbb{N},\,u_{n+1}=2u_n-n$ Montrer que $\forall n\in\mathbb{N},\,u_n=2^n+n+1$

Exercice 95

On considère la suite définie par récurrence par $u_0 = 2$, $u_1 = 3$

et pour $n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} - 2u_n$

Montrer que $\forall n \in \mathbb{N}, u_n = 1 + 2^n$

Exercice 96

On travaillera avec un les entiers positifs : N.

On notera

Pair(x) : x est pair

Div(a, b) : a divise b.

Expliquer par des phrases le sens de chacune des formules suivantes et dire si elles sont vérifiées dans \mathbb{N} .

- 1. $\forall x \forall y \ (Pair(x) \land Pair(y) \rightarrow Pair(x+y))$
- 2. $\exists x \ \forall y \ x \geq y$
- 3. $\forall y \; \exists x \; x \geq y$
- 4. $\forall x \forall y \ \exists z (Div(x, z) \land Div(z, y))$

Exercice 97

On a un groupe d'étudiants E et un choix de desserts D. On notera :

A(x, y) : x aime y

P(x,d): x sait préparer d.

Formaliser les énoncés suivants :

- 1. Tout les étudiants aiment le chocolat.
- 2. Certains étudiants n'aiment pas le chocolat.
- 3. Tous les étudiants aiment au moins un dessert.
- 4. Il y a un dessert que tous aiment.
- 5. Un des étudiants aime absolument tous les desserts.
- 6. Des étudiants n'aiment aucun dessert.
- 7. Au moins un étudiant sait cuisiner tous les desserts qu'il aime.
- 8. Certains étudiants ne savent cuisiner aucun des desserts qu'ils aiment et d'autres n'aiment aucun dessert qu'ils savent faire!

7.3 Interro 3 groupe 1 - 2018

Exercice 98

Soit \mathcal{D} l'ensemble des mots obtenus de la manière suivante sur l'alphabet a,b:

 $\varepsilon \in \mathcal{D}$ (où ε désigne le mot vide)

Si $u \in \mathcal{D}$ alors aaub appartient aussi à \mathcal{D} .

- 1. Montrer comment le schéma d'induction permet d'engendrer le mot aaaabb.
- 2. Montrer que pour tous les mots de \mathcal{D} le nombre de lettres a est égal à deux fois le nombre de lettres b.

Exercice 99

Soit f la fonction booléenne sur $\{0,1\}^3$ donnée par $f(x_1,x_2,x_3)=x_1\oplus x_2\oplus x_3\oplus x_1x_2x_3\oplus \overline{x_1}x_2x_3$.

- 1. f est-elle sous FAN? Dites pourquoi et donnez la FAN de f.
- 2. Déterminer la table de vérité de f.
- 3. Soit f une fonction booléenne à n arguments. Sa fonction duale notée \tilde{f} est la fonction booléenne à n arguments définie par : $\tilde{f}(x_1, x_2, \dots, x_n) = \overline{f(\overline{x_1}, \overline{x_2}, \dots, \overline{x_n})}$. Déterminer la table de vérité de h fonction duale de f (on justifiera les calculs).
- 4. On rappelle que la décomposition de Shannon d'une fonction f à n variables consiste à trouver deux fonctions f_0 et f_1 à n-1 variables telles que : $f_n = (1 \oplus x_n)f_0 \oplus x_nf_1$ Donner les Formes Algébriques Normales de f_0 et f_1 par la méthode de votre choix qu'on explicitera (on pourra notamment lire ces fonctions sur la table).
- 5. Est ce que les fonctions g, f_1, f_0 sont équilibrées (on justifiera)?

7.4 Examen session 1 2018

Exercice 100

On considère la formule $F: F = ((r \lor q \lor \neg p) \to (r \land q \land p)) \lor \neg (\neg q \to (p \lor r))$

Question 1. Ecrire la table de vérité de F.

Question 2. On considère la formule H donnée par sa table de vérité :

p	q	r	Н
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	0
0	1	1	1
1	1	1	1

- 1. H est-elle satisfiable? est-ce une tautologie? une antilogie? (on expliquera ce que cela veut dire).
- 2. Donnez les FNC et FND canoniques de F.

Question 3. Est-ce que $H \to F$ est valide? (on justifiera).

Exercice 101 Soient A, B et C trois formules quelconques. On rappelle les règles de réécriture vues en TD :

- 1) $A \rightarrow B \rightsquigarrow \neg A \lor B$
- $2) \neg \neg A \rightsquigarrow A$
- 3) Lois de De Morgan
 - a) $\neg (A \land B) \leadsto \neg A \lor \neg B$
 - b) $\neg (A \lor B) \leadsto \neg A \land \neg B$
- 4) Distributivité
 - a) distributivité de \vee par rapport à \wedge : $A \vee (B \wedge C) \rightsquigarrow (A \vee B) \wedge (A \vee C)$
 - b) distributivité de \wedge par rapport à \vee : $A \wedge (B \vee C) \rightsquigarrow (A \wedge B) \vee (A \wedge C)$

On considère la formule

$$F = ((p \to q) \to (q \to r)) \to (p \to r).$$

- 1. En utilisant l'algorithme \mathcal{A} vu en TD, mettez F sous forme normale conjonctive; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).
- 2. En utilisant l'algorithme \mathcal{A} vu en TD, mettez F sous forme normale disjonctive ; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).

Exercice 102

On considère les formules suivantes : $F = (p \lor q \lor r) \land (q \lor (\neg (p \lor \neg s))) \land (\neg s \lor q \lor r) \land \neg q$ et $G = ((p \land q) \land (r \to (\neg p \lor \neg q))) \to (\neg (\neg p \lor \neg q) \land \neg r)$.

Question 1. Mettez les formules F et G sous FNN, forme normale négative, les seuls connecteurs logiques sont \vee , \wedge et \neg et les symboles \neg se trouvent au niveau des littéraux, c'est-à-dire juste avant les feuilles dans l'arbre syntaxique.

Question 2. En utilisant la méthode des tableaux, montrez que F est satisfiable . Justifiez votre réponse.

Question 3. En utilisant la méthode des tableaux, montrez que G est une tautologie . Justifiez votre réponse.

On travaille avec un groupe E d'étudiants et un ensemble C de cours. On est dans le cas où les étudiants peuvent choisir librement des cours.

On notera S(e,c) le prédicat : "e suit le cours c".

On demande de formaliser les phrases suivantes à l'aide du prédicat S et des quantificateurs \exists et \forall .

- 1. Julien suit tous les cours.
- 2. Tous les étudiants suivent "applications mobiles".
- 3. Il y a au moins un cours que personne ne suit.
- 4. Au moins deux étudiants feront des maths.
- 5. Il y a deux étudiants qui n'ont aucun cours en commun.

Exercice 104

Soit l'alphabet $\mathcal{A} = \{a, b\}$. On considère \mathcal{W} l'ensemble des mots sur \mathcal{A} construits avec le schéma d'induction suivant

- (i) Le mot vide ε appartient à \mathcal{W} .
- (ii) Soit u et v deux mots de W. Le mot m = aubbv appartient à W.

Question 1. Donnez tous les mots de W de longueur inférieure ou égale à 9. Vous détaillerez comment vous avez fait pour les construire.

Question 2. Montrez par induction que tous les mots de W contiennent deux fois plus de b que de a.

Exercice 105

On considère la fonction booléenne à trois variables f_3 donnée par sa table de vérité :

x_1	x_2	x_3	f_3
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	0

Question 1. Donnez sa FND.

Question 2. En utilisant la FND de la question précédente et en développant et en simplifiant, calculez la FAN de de f_3 .

Question 3. Donnez le poids de Hamming de f_3 . Cette fonction est-elle équilibrée?

Question 4. On définit la fonction booléenne à deux variables $f_2^1(x_1, x_2) = f_3(x_1, x_2, 1)$. Donnez sa table de vérité et sa FAN.

Exercice 106

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 0 \\ u_n = 2u_{n-1} + 2^n, \text{ pour } n \in \mathbb{N}^* \end{cases}$$

Montrez par récurrence que l'on a $u_n = n2^n$, pour tout $n \in \mathbb{N}$.

Remarque u_n est la complexité d'un algorithme de tri appelé tri fusion lorsqu'il effectue le tri d'un tableau contenant 2^n éléments.

7.5 Examen session 2 2018

Exercice 107 On considère la formule F donnée par sa table de vérité :

p	q	r	F
0	0	0	1
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	0

- 1. F est-elle satisfiable? est-ce une tautologie? une antilogie? (on justifiera en expliquant ce que cela veut dire).
- 2. Donnez les FNC et FND canoniques de F.
- 3. On considère la formule $G:((\neg r \to q) \land (r \to p))$. Faire sa table de vérité (sur le même shema ou en recopiant la colonne de F). Est-ce que $G \to \neg F$ est valide?

Exercice 108 Calcul des prédicats

On considère E un groupe d'étudiants venant faire leurs études en France en ERASMUS et P un ensemble de pays. Pour $e \in E$ et $p \in P$, on définit H(e,p) le prédicat signifiant « e habite dans le pays p ».

Formalisez les phrases suivantes à l'aide du prédicat H et des quantificateurs \exists et \forall .

- 1. Rafael habite en Espagne et Dominic n'habite pas en Allemagne.
- 2. Deux étudiants de E habitent dans un même pays de P.
- 3. Tout étudiant de E habite dans un pays de P.
- 4. Il existe un pays de P dans lequel aucun étudiant de E n'habite.

Exercice 109 Fonction booléenne

On considère la fonction booléenne à trois variables f_3 donnée par sa table de vérité :

x_1	x_2	x_3	f_3
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	0

Question 1. Donnez sa FND.

Question 2. En utilisant la FND de la question précédente et en développant et en simplifiant, calculez la FAN de de f_3 .

Question 3. Donnez le poids de Hamming de f_3 et le degré algébrique de f_3 .

Question 4. On considère la fonction booléenne à trois variables g_3 définie par $g_3(a_1, a_2, a_3) = f_3(a_1, a_3, a_2)$, pour tout $(a_1, a_2, a_3) \in \{0, 1\}^3$.

Donnez la FAN et et la table de vérité de q_3 .

Exercice 110 On considère l'alphabet $\mathcal{A}=\{a,b,c\}$. On définit $\mathcal{N}\subset\mathcal{A}^*$ avec le schéma d'induction suivant :

- (i) $c \in \mathcal{N}$.
- (ii) Soit u et v deux mots de \mathcal{N} . Alors $m_1 = ubv$ et $m_2 = uav$ sont deux mots de \mathcal{N} .

Question 1. Quels sont les mots de \mathcal{N} de moins de 6 lettres?

Question 2. Montrez par induction que tout mot de \mathcal{N} est de longueur impaire.

Question 3. Pour tout mot m de \mathcal{A}^* , notons $n_a(m)$ (resp. $n_b(m)$ et $n_c(m)$) le nombre d'occurrences de la lettre a (resp. b, c) dans m.

Montrez par induction que $n_c(m) = n_b(m) + n_a(m) + 1$, pour tout mot m de \mathcal{N} .

Exercice 111 Trois personnes discutent pour savoir si elles iront à une soirée. Il ressort de leurs discussions les trois propositions suivantes :

- si Alice y va alors Bob n'ira pas à la soirée.
- si Charlie va à la soirée alors Bob ira aussi et Alice n'ira pas.
- Si Bob ou Charlie ne vont pas à la soirée alors Alice n'ira pas non plus.
- 1. Définissez les variables propositionnelles nécessaires pour formaliser le problème.
- 2. Ecrivez une formule correspondant à chacune des propositions.
- 3. Peut-on avoir les trois propositions vraies en même temps?
- 4. Peut-on déduire de ces trois propositions qu'Alice ira à la soirée? Vous justifierez votre réponse.

Pour répondre aux deux dernières questions, vous pouvez utiliser une table de vérité ou la méthode des tableaux.

Exercice 112

Soient A, B et C trois formules quelconques. On rappelle les règles de réécriture vues en cours :

- 1) $A \rightarrow B \rightsquigarrow \neg A \lor B$
- $2) \neg \neg A \rightsquigarrow A$
- 3) Lois de De Morgan
 - a) $\neg (A \land B) \rightsquigarrow \neg A \lor \neg B$
 - b) $\neg (A \lor B) \leadsto \neg A \land \neg B$
- 4) Distributivité
 - a) distributivité de \vee par rapport à \wedge : $A \vee (B \wedge C) \rightsquigarrow (A \vee B) \wedge (A \vee C)$
 - b) distributivité de \wedge par rapport à \vee : $A \wedge (B \vee C) \rightsquigarrow (A \wedge B) \vee (A \wedge C)$

On considère la formule

$$F = ((p \to q) \lor (r \land \neg p)) \land \neg (q \land r).$$

- 1. En utilisant l'algorithme vu en TD, mettez F sous forme conjonctive; à chaque étape, vous indiquerez la règle utilisée (en donnant son numéro).
- 2. En utilisant l'algorithme vu en TD, mettez F sous forme disjonctive; à chaque étape, vous indiquerez la règle utilisée (en donnant son numéro).

Exercice 113 On considère la formule $G: ((p \land q) \land (r \to (\neg p \lor \neg q))) \to (\neg (\neg p \lor \neg q) \land \neg r)$ Mettez la formule G sous FNN, forme normale négative (les seuls connecteurs logiques sont \lor, \land et \neg et les symboles \neg se trouvent au niveau des littéraux).

En utilisant la méthode des tableaux, montrer que G est une tautologie (ne pas oublier de rédiger....).

Exercice 114

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 = 4 \\ u_{n+1} = 3u_n + 2, \text{ pour } n \in \mathbb{N} \end{cases}$$

Montrez par récurrence que l'on a $u_n = 5 \times 3^n - 1$, pour tout $n \in \mathbb{N}$.

8 Annales 2018-2019

8.1 Interrol groupe1

Exercice 115 On considère la formule F donnée par sa table de vérité :

a	b	c	F
0	0	0	0
1	0	0	1
0	1	0	1
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	0

- 1. Rappelez comment on détermine sur la table de vérité de F si F est valide, si elle est contradictoire ou si elle est satisfaisable. Que peut-on dire de F?
- 2. Donner les FNC et FND canoniques de F.
- 3. Construire la table de vérité (en recopiant aussi la colonne de F) de la formule G donnée par :

$$G = \Big((a \lor (b \lor c)) \to ((a \land b) \land \neg c) \Big) \lor \neg (c \to (a \lor b))$$

4. Est-ce que $\neg G \rightarrow F$ est valide? Justifiez votre réponse.

Exercice 116

Soient A, B et C trois formules quelconques. On rappelle les règles de réécriture vues en cours :

1)
$$A \rightarrow B \rightsquigarrow \neg A \lor B$$

- $2) \neg \neg A \rightsquigarrow A$
- 3) Lois de De Morgan

a)
$$\neg (A \land B) \leadsto \neg A \lor \neg B$$

b)
$$\neg (A \lor B) \leadsto \neg A \land \neg B$$

- 4) Distributivité
 - a) distributivité de \vee par rapport à \wedge : $A \vee (B \wedge C) \rightsquigarrow (A \vee B) \wedge (A \vee C)$
 - b) distributivité de \wedge par rapport à \vee : $A \wedge (B \vee C) \rightsquigarrow (A \wedge B) \vee (A \wedge C)$

On considère la formule

$$F = ((p \to q) \lor (r \land \neg p)) \land \neg (q \land r).$$

- 1. En utilisant l'algorithme vu en TD, mettez F sous forme conjonctive; à chaque étape, vous indiquerez la règle utilisée (en donnant son numéro).
- 2. En utilisant l'algorithme vu en TD, mettez F sous forme disjonctive; à chaque étape, vous indiquerez la règle utilisée (en donnant son numéro).

Exercice 117 On considère les formules
$$F = (((p \lor q) \lor r) \land (q \lor (\neg p \land s))) \land (((\neg s \lor q) \lor r) \land \neg q)$$
 et $G = (p \to (q \land r)) \to ((p \to q) \land (p \to r))$

- 1. Utilisez la méthode des tableaux pour étudier si F est satisfaisable.
- 2. Est-ce que G est une tautologie? Vous utiliserez la méthode des tableaux et vous justifierez votre démarche.

Exercice 118 Trois personnes discutent pour savoir si elles iront ou non à une soirée. Il ressort de leurs discussions les trois propositions suivantes :

- si Alice y va alors Bob n'ira pas à la soirée.
- si Charlie va à la soirée alors Bob ira aussi ou Alice n'ira pas.
- Bob ou Charlie n'ira pas à la soirée.

Pour répondre aux deux dernières questions, vous devez utiliser une table de vérité ou la méthode des tableaux.

- 1. Définissez les variables propositionnelles nécessaire pour formaliser le problème.
- 2. Écrivez une formule correspondant à chacune des propositions.
- 3. Montrer qu'on peut avoir les trois propositions vraies en même temps.
- 4. Peut-on déduire de ces trois propositions qu'Alice n'ira pas à la soirée? Vous justifierez votre réponse.

Pour répondre aux deux dernières questions, vous devez utiliser une table de vérité ou la méthode des tableaux.

8.2 Interro2 groupe1

Exercice 119

Calculer les sommes suivantes directement ou en fonction de n

Remarque : il n'y a aucune récurrence à faire.

$$S_1 = \sum_{k=3}^{7} 3k$$
 , $S_2(n) = \sum_{k=4}^{2n} k$, $S_3(n) = \sum_{k=0}^{n} (3k-1)$

Exercice 120

On considère la suite définie par récurrence par $u_0 = 2$ et pour $n \in \mathbb{N}$,

$$u_{n+1} = \frac{5u_n - 1}{u_n + 3}$$

Montrer que $\forall n \in \mathbb{N}$

$$u_n = \frac{n+8}{n+4}$$

Exercice 121

Attention : les deux questions sont indépendantes

On considère la suite définie par récurrence par $u_0 = -1$, $u_1 = \frac{1}{2}$ et pour $n \in \mathbb{N}$,

$$u_{n+2} = u_{n+1} - \frac{1}{4}u_n$$

1. Montrer que $\forall n \in \mathbb{N}$,

$$u_n = \frac{2n-1}{2^n}$$

2. Montrer que

$$\sum_{k=0}^{n} \frac{2n-1}{2^n} = 2 - \frac{2n+3}{2^n}$$

Avec les deux questions on aura montré que

$$\sum_{k=0}^{n} u_n = 2 - \frac{2n+3}{2^n}$$

Exercice 122

On travaillera avec les entiers positifs : N. On notera

Pair(x): x est pair Div(a, b): a divise b. Prem(x): x est premier

Traduire par des phrases en français (sans les prédicats ci-dessus) le sens de chacune des formules suivantes.

1. $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, (Prem(y) \land (Div(y, x)))$

- 2. $\forall x \in \mathbb{N}$, $Pair(x) \to \neg Prem(x)$
- 3. $\forall x, y \in \mathbb{N}$, $(Pair(x) \land Pair(y)) \rightarrow Pair(x y)$
- 4. $\forall x, y, m \in \mathbb{N}$, $(Prem(x) \land Prem(y) \land Div(x, m) \land Div(y, m)) \rightarrow Div(xy, m)$

On a un groupe de joueurs C . On notera :

J(x, y) : x a joué contre y

B(x,y) : x a battu y. A(x,y) : x apprécie y

Formaliser les propositions suivantes à l'aide des quantificateurs \forall , \exists uniquement et des prédicats donnés ci-dessus. Les phrases sont indépendantes (il ne faut pas tenir compte d'une phrase pour les autres).

- 1. Pierre a battu tout le monde
- 2. Paul a gagné au moins deux matchs
- 3. Un joueur a joué contre chacun des autres joueurs
- 4. Jules a perdu tous les matches qu'il a disputé
- 5. Paul a rencontré tous les gens qu'il apprécie
- 6. Tout le monde a gagné au moins un match
- 7. Un joueur a gagné tous les matchs qu'il a disputé
- 8. Personne n'est invaincu

8.3 Interro3 groupe1

Exercice 124

Soit \mathcal{P} l'ensemble des mots obtenus de la manière suivante sur l'alphabet $\{(,)\}$ constitué des parenthèses (et) :

```
\varepsilon \in \mathcal{P} (où \varepsilon désigne le mot vide)
Si u, v \in \mathcal{P} alors (u)v appartient aussi à \mathcal{P}.
```

1. Montrer que les mots suivants appartiennent-ils à \mathcal{P} (on justifiera en montrant comment ils sont obtenus) :

```
m1 = ((()))

m2 = (())()
```

2. Montrer que pour tous les mots de \mathcal{P} il y a autant de parenthèse(s) fermante(s) que de parenthèse(s) ouvrante(s).

Exercice 125

Soit \mathcal{D} l'ensemble des mots obtenus de la manière suivante sur l'alphabet $\{a,b\}$:

 $\varepsilon \in \mathcal{D}$ (où ε désigne le mot vide) et $b \in \mathcal{D}$ Si $u \in \mathcal{D}$ alors ua et uab appartiennent aussi à \mathcal{D} .

- 1. Ecrire tous les mots de longueur inférieure ou égale à 4 de $\mathcal D$.
- 2. Montrer que dans tous les mots de \mathcal{D} il n'y a jamais deux lettres b consécutives.

Exercice 126

On considère f, fonction booléenne sur $\{0,1\}^3$ dont la table de vérité est :

x_1	x_2	x_3	f
0	0	0	0
1	0	0	1
0	1	0	0
1	1	0	0
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	1

- 1. Comment peut-on coder f: que vaut T(f)? Quel est le poids de Hamming de f? f est-elle équilibrée?
- 2. Donnez la FND de f.
- 3. Donnez la FAN de f (on fera figurer les calculs sur la feuille). Quel est le degré algébrique de f?
- 4. Montrer qu'il existe deux fonction booléennes à deux variables g_1 et g_2 telles que $f = g_1 \oplus x_3 g_2$. Cette décomposition s'appelle la décomposition de Reed-Müller de f.
- 5. On définit la fonction h par : $h(x_1, x_2, x_3) = f(\overline{x_1}, \overline{x_2}, x_3)$. Donner la table de vérité et la FAN de h par la méthode de votre choix (dans l'ordre que vous voulez). On fera figurer les calculs sur la feuille.

Exercice 127

Soit f la fonction booléenne sur $\{0,1\}^3$ donnée par $f(x_1,x_2,x_3) = \overline{x_1} \oplus \overline{x_2} \oplus x_3 \oplus x_1 x_2 x_3 \oplus \overline{x_1} x_3$.

- 1. f est-elle sous FAN? Sinon dites pourquoi et donnez la FAN de f.
- 2. Déterminer la table de vérité de f.
- 3. On rappelle que la décomposition de Shannon d'une fonction f à n variables consiste à trouver deux fonctions f_0 et f_1 à n-1 variables telles que : $f_n = (1 \oplus x_n)f_0 \oplus x_nf_1$ Donner les Formes Algébriques Normales de f_0 et f_1 par la méthode de votre choix qu'on explicitera (on pourra notamment lire ces fonctions sur la table).
- 4. Est ce que les fonctions g, f_1, f_0 sont équilibrées (on justifiera)?

8.4 Examen session1 mai 2019

Exercice 128 Pour un groupe E d'étudiants de L1 Info et un ensemble C de cours, on définit les prédicats suivants :

- -S(x,y): x a suivi le cours y;
- -V(x,y): x a valid'e le cours y;
- A(x, y, z) : x conseille le cours $y \ge z$.

Traduire les phrases suivantes dans le langage des prédicats. Vous pouvez utiliser les expressions $x \in E$, $y \in C$ etc. au lieu d'introduire les prédicats correspondants.

- 1. Un étudiant a validé tous les cours qu'il a suivis.
- 2. Au moins deux étudiants ont validé le cours de logique.
- 3. Bob a suivi tous les cours, mais n'en a validé aucun.
- 4. Pierre conseille à tous les étudiants de suivre les cours qu'il a validés.

Expliquer par des phrases le sens des formules suivantes :

- 1. $S(Alice, Logique) \land \forall x \in E \neg A(Alice, Logique, x)$
- 2. $\forall x \in C \ \exists y \in E \ S(y, x)$
- 3. $\exists y \in E \ \forall x \in C \ S(y, x)$

Exercice 129 On définit un ensemble E de mots sur l'alphabet $\{0,1\}$ formé avec le schéma d'induction suivant :

- (i) Base : Le mot vide ε appartient à E.
- (ii) Induction : Soit $u \in E$, le mot w = 0uu1 appartient à E.
 - 1. Donner tous les mots de E de longueur inférieure ou égale à 12. Vous préciserez comment vous les avez construits.
- 2. Montrer par induction que tous les mots de E ont autant de 0 que de 1.

Exercice 130 On considère la fonction booléenne f_3 donnée par sa table de vérité :

x_1	x_2	x_3	f_3
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	0
1	1	1	1

- 1. Donner le poids de Hamming de f_3 en expliquant comment vous le déterminez. Cette fonction est-elle équilibrée? Justifiez votre réponse.
- 2. On considère les deux fonctions à deux variables f_2^0 et f_2^1 telles que, pour tout $(a_1, a_2, a_3) \in \{0, 1\}^3$, on a

$$f_3(a_1, a_2, a_3) = \begin{cases} f_2^0(a_1, a_2) \text{ lorsque } a_3 = 0, \\ f_2^1(a_1, a_2) \text{ lorsque } a_3 = 1. \end{cases}$$

Montrez que l'on a

$$f_2^0 = 1,$$

 $f_2^1 = x_1.$

3. Calculer la forme algébrique normale de f_3 . Expliquer la méthode utilisée pour effectuer ce calcul. Donner le degré algébrique de f_3 en expliquant comment vous l'avez déterminé.

Exercice 131

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} u_0 &= 0, \\ u_1 &= 1, \\ u_{n+2} &= 2u_{n+1} - u_n, \text{ pour } n \in \mathbb{N}. \end{cases}$$

Montrer par récurrence que l'on a $u_n = n$ pour tout $n \in \mathbb{N}$.

Exercice 132

On considère la formule $F:(p \to (q \lor r)) \land (q \to (p \lor r)) \land (p \to (\neg q \lor r)) \land (r \to (q \lor \neg p)).$

- 1. Écrire la table de vérité de F.
- 2. Donner les FNC et FND canoniques de F.
- 3. On considère la formule G donnée par sa table de vérité :

p	q	r	G
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	0
0	0	1	1
1	0	1	0
0	1	1	1
1	1	1	1

- (a) G est-elle satisfiable? est-ce une tautologie? une antilogie? (on expliquera ce que cela veut dire).
- (b) Est-ce que $F \leftrightarrow G$ est valide? (on justifiera).

Exercice 133 Soient A, B et C trois formules quelconques. On rappelle les règles de réécriture vues en TD :

- 1) $A \rightarrow B \rightsquigarrow \neg A \lor B$
- $2) \neg \neg A \rightsquigarrow A$
- 3) Lois de De Morgan
 - a) $\neg (A \land B) \leadsto \neg A \lor \neg B$
 - b) $\neg (A \lor B) \leadsto \neg A \land \neg B$
- 4) Distributivité
 - a) distributivité de \vee par rapport à \wedge : $A \vee (B \wedge C) \rightsquigarrow (A \vee B) \wedge (A \vee C)$
 - b) distributivité de \wedge par rapport à \vee : $A \wedge (B \vee C) \rightsquigarrow (A \wedge B) \vee (A \wedge C)$

On considère la formule

$$F = \Big((b \to a) \lor (c \land \neg b) \Big) \land \Big(\neg (a \land c) \to (b \to a) \Big).$$

- 1. En utilisant l'algorithme \mathcal{A} vu en TD, mettre F sous forme normale conjonctive; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).
- 2. En utilisant l'algorithme \mathcal{A} vu en TD, mettre F sous forme normale disjonctive ; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).

On considère la formule

$$G = ((a \land b) \land (c \to (\neg a \lor \neg b))) \to (\neg (\neg a \lor \neg b) \land \neg c).$$

En utilisant la méthode des tableaux, montrer que G est une tautologie. (On n'oubliera pas de rédiger).

Exercice 135

Une personne est appelée $v\acute{e}ridique$ lorsqu'elle dit toujours la vérité et menteur lorsqu'elle ment toujours. On sait qu'Albert et Bernard sont des véridiques ou des menteurs. Albert et Bernard savent si l'autre est un menteur ou un véridique. Albert dit « Au moins l'un de nous deux est un menteur. »

- 1. Montrez que si A est un véridique alors nécessairement B est un menteur.
- 2. Montrez que si on suppose que A est un menteur on aboutit à une contradiction.
- 3. Montrez que nécessairement Albert est un véridique et Bernard un menteur.

Les raisonnements suivis devront être correctement expliqués.

8.5 Examen session2 juin 2019

Exercice 136 On considère une équipe de cyclistes \mathcal{E} et un ensemble de courses cyclistes \mathcal{C} . On définit le prédicat binaire P(e,c): e a participé à la course c.

Traduire les phrases suivantes dans le langage des prédicats. Vous pouvez utiliser les expressions $x \in \mathcal{E}$, $y \in \mathcal{C}$ etc. au lieu d'introduire les prédicats correspondants.

Question 1. Tous les membres de \mathcal{E} ont participé à au moins deux courses.

Question 2. Il existe une course de \mathcal{C} où aucun membre de \mathcal{E} n'a participé.

Question 3. L'équipe \mathcal{E} n'a jamais envoyé un seul coureur à une course de \mathcal{C} .

Expliquer par des phrases le sens des formules suivantes.

Question 4.
$$\exists e_1 \in \mathcal{E} \ \exists e_2 \in \mathcal{E} \ \forall c \in \mathcal{C} \ \left(e_1 \neq e_2 \land \left(\neg P(e_1, c) \lor \neg P(e_2, c) \right) \right).$$

Question 5. $\forall c \in \mathcal{C} \exists e \in \mathcal{E} \neg P(e, c)$.

Exercice 137 On considère la fonction booléenne g donnée par sa table de vérité :

x_1	x_2	x_3	g
0	0	0	1
1	0	0	0
0	1	0	0
1	1	0	1
0	0	1	0
1	0	1	1
0	1	1	1
1	1	1	0

- **Question 1**. Écrire la forme algébrique normale de g.
- Question 2. Établir la table de vérité de la fonction $f = x_1x_2 \oplus x_1x_3 \oplus x_2x_3$.
- **Question 3**. Donner la table de vérité et la forme algébrique normale de $f \oplus g$.
- **Question 4**. Quelles sont les fonctions équilibrées parmi f, g et $f \oplus g$? Justifier votre réponse.
- Question 5. Déterminer le degré algébrique de f. Justifier votre réponse.

Exercice 138 On considère la formule F suivante : $\neg((p \lor q) \to r) \leftrightarrow ((\neg p \land \neg q) \to \neg r)$.

- 1. Écrire la table de vérité de F.
- 2. F est-elle satisfiable? Est-ce une tautologie? Une antilogie? (On expliquera ce que cela veut dire.)
- 3. Donner les FNC et FND canoniques de F.
- 4. On considère la formule G donnée par sa table de vérité :

p	q	r	G
0	0	0	1
1	0	0	1
0	1	0	1
1	1	0	1
0	0	1	1
1	0	1	0
0	1	1	0
1	1	1	1

Est-ce que $F \to G$ est valide? (On justifiera.)

5. Donner des valeurs des variables a et b pour lesquelles les formules $\neg(a \to b)$ et $\neg a \to \neg b$ prennent des valeurs différentes. (Vous pouvez vous inspirer de la Question 1.)

Exercice 139 Soient A, B et C trois formules quelconques. On rappelle les règles de réécriture vues en TD :

- 1) $A \rightarrow B \rightsquigarrow \neg A \lor B$
- $2) \neg \neg A \rightsquigarrow A$
- 3) Lois de De Morgan:
 - a) $\neg (A \land B) \leadsto \neg A \lor \neg B$
 - b) $\neg (A \lor B) \leadsto \neg A \land \neg B$
- 4) Distributivité:
 - a) distributivité de \vee par rapport à \wedge : $A \vee (B \wedge C) \rightsquigarrow (A \vee B) \wedge (A \vee C)$
 - b) distributivité de \wedge par rapport à \vee : $A \wedge (B \vee C) \rightsquigarrow (A \wedge B) \vee (A \wedge C)$

On considère la formule

$$F = \Big(\neg (b \land c) \to a \Big) \land \Big(\big((a \lor \neg b) \land c \big) \to \neg b \Big).$$

- 1. En utilisant l'algorithme \mathcal{A} vu en TD, mettre F sous forme normale conjonctive; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).
- 2. En utilisant l'algorithme \mathcal{A} vu en TD, mettre F sous forme normale disjonctive; à chaque étape on indiquera la ou les règles utilisée(s) (en donnant son numéro).

Exercice 140 On pose $S_n = \sum_{k=0}^{k=n} k(k-1)$. Montrer par récurrence, que pour tout entier n, on a $S_n = \frac{(n-1)n(n+1)}{3}$.

Exercice 141 On considère l'alphabet $\mathcal{A} = \{0, 1\}$ et l'ensemble \mathcal{W} de mots formés sur \mathcal{A} avec le schéma d'induction suivant :

- (i) Le mot vide ε appartient à \mathcal{W} .
- (ii) Soit u un mot de W. Alors les mots $w_1 = 0u0$ et $w_2 = u1$ appartiennent à W.

Question 1. Donnez tous les mots de W de longueur inférieure ou égale à 4. Expliquez comment vous les construisez en utilisant le schéma d'induction.

Question 2. Montrez par induction que tous les mots de W ont un nombre pair de 0.

Exercice 142 On considère la formule suivante :

$$F = (p \lor q \lor r) \to \Big(\neg q \to \big(\neg (p \to r) \lor r\big)\Big).$$

En utilisant la méthode des tableaux, montrer que F est une tautologie.

Exercice 143 Quatre amis — Pierre, Louis, David et Corentin —

désirent jouer au jeu de combat du moment, Super Smash Bros Ultimate. Chacun doit choisir s'il prend ou pas son personnage porte-bonheur (Link pour Pierre, Rondoudou pour Corentin, Daraen pour David, Shulk pour Louis).

On peut énoncer leur façon de décider de la façon suivante :

- Corentin prendra Rondoudou si Pierre ne prend pas Link.
- Si David ne prend pas Daraen et que Corentin ne prend pas Rondoudou, alors Louis prendra Shulk.
- Si Pierre ou David ne prennent pas leur personnage, alors Louis ne prendra pas le sien non plus.
- Corentin prendra Rondoudou si David prend Daraen.

Question 1. Formaliser le problème. On pourra utiliser les propositions

X: la personne X utilise son personnage porte-bonheur. (par exemple P représente Pierre prend Link).

Question 2. À l'aide d'une table de vérité ou de la méthode des tableaux, montrer que dans tous les cas, Corentin prendra son personnage porte-bonheur, Rondoudou.