Organizácia predmetu

Adaptívne riadenie (LS, ak. r. 2022/2023)

Ciel predmetu:

Študenti po absolvovaní predmetu získajú vedomosti o najvýznamnejších metódach a algoritmoch používaných v oblasti adaptívneho riadenia procesov. Absolventi predmetu získajú vedomosti týkajúce sa odvodenia a analýzy vlastností vybraných algoritmov priameho adaptívneho riadenia a nepriameho adaptívneho riadenia. Získajú poznatky o základných princípoch vybraných heuristických adaptívnych regulátorov, komerčných adaptívnych regulátorov, a princípoch využitia adaptácie pri fuzzy riadiacich systémoch.

Predmet patrí medzi povinné predmety a študent po absolvovaní získa 7 kreditov. Týždenný rozsah predmetu: prednášky: 2 h, cvičenia: 2 h

Predmet zabezpečuje:

Ing. Marián Tárník, PhD.

Podmienky absolvovania predmetu:

- 1. Aktívna účasť na vyučovacom procese.
- Počas semestra je možné získať 60 bodov, pričom nominálnym predpokladom pre vykonanie skúšky je mať 33,6 bodu.
- 3. Je potrebná účasť na záverečnej skúške, je možné získať 40 bodov.

Priebežné hodnotenie počas semestra:

- Priebežná práca na cvičeniach: 15 bodov
- Písomka v čase 7. prednášky: 20 bodov
- Vypracovanie zadania (referát): 15 bodov
- Krátke písomky na cvičeniach: 10 bodov

Učebný materiál:

Základný učebný materiál bude priebežne dostupný na dokumentovom serveri v AIS v priečinku predmetu I-ADRIA.

```
\left( \text{ DS / Fakulta elektrotechniky a informa... / Predmety / LS 2022/2023 / I-ADRIA Adaptívne riadenie} \right)
```

Zároveň je učebný materiál verejne dostupný prostredníctvom repozitára na GitHub: https://github.com/PracovnyBod/ADRIA

Aktualizáciu tohto dokumentu (najmä harmonogramu na nasledujúcej strane) je najvýhodnejšie sledovať na: https://github.com/PracovnyBod/ADRIA/blob/master/doc/AR00_txt_organizacia/AR00_txt_organizacia.pdf

Harmonogram

Týždeň	Prednáška	Cvičenie	
1.	Úvod, účel predmetu, história a súčasnosť, adaptívna stabilizácia. [AR01, AR02]	Cvičenie prvé. [AR02]	[1b]
2.	Samonastavujúci sa regulátor.	Cvičenie druhé: rekurzívna metóda najmenších štvorcov (reprodukcia vzorového príkladu). [1b]	
3.	Riadenie (adaptívne riadenie) s referenčným modelom, $MRAC^{ {\bf 1}} \ gradientný.$	Cvičenie tretie: samonastavujúci sa regulátor. [1b]	
4.	MRAC gradientný (pokračovanie a info k cv.), Klasické Adaptívne riadenie s referenčným modelom s využitím Lyapunovovej teórie stability, MRAC stavový.	 Krátka písomka: (07. a 08. marec 2023) [AR01, AR02, AR03 AR99] a k všeobecná teória systémov a riadenia na úrovni bakalárskeho štúdia. Plánuje sa: Analytický príklad MRAC gradientný (ako na písomke/skúške). Prípadné dokončenie úloh z predchádzajúcich cv. 	tomu [10b]
5.	MRAC stavový (pokračovanie a info k cv.)	Téma: MRAC gradientný	[3b]
6.	Zovšeobecnenie riadenia s referenčným modelom, MRC ² problém.	Téma: MRAC stavový [5b]	
7.	Písomka v čase prednášky: (27. marec 2023) [AR01, AR03, AR04] a vybrané otázky k stavovému riadeniu [AR05]. [20b]	Téma: MRC problém Plánuje sa: • Prípadné dokončenie úloh z predchádzajúcich cv.	[1b]

¹Model Reference Adaptive Control ²Model Reference Control

8.	MRC problém (zopakovanie), $MRAC$ vstupno-výstupný $pre\ n^{\star}=1.$	Téma: MRAC vstupno-výstupný pre $n^*=1$ (priamo nadväzuje na predchádzajúce cvičenie.) [1b] Plánuje sa: • Zadanie referátu – vedome v predstihu pred prednáškou k téme $MRAC$ vstupno-výstupný $pre \ n^*=2$.	
9.	Utorok 11.04.2023, vyučovanie ako v pondelok.	Utorok 11.04.2023, vyučovanie ako v pondelok.	Streda 12.04.2023, priestor pre prácu na zadaní (referáte).
10.	$MRAC$ $vstupno-výstupný$ pre $n^* = 1$ (pokračovanie), $MRAC$ $vstupno-výstupný$ pre $n^* = 2$.	Utorok 18.04.2023, priestor pre prácu na zadaní (referáte).	Streda 19.04.2023, priestor pre prácu na zadaní (referáte).
11.	$MRAC$ vstupno-výstupný pre $n^* = 2$ (pokračovanie v prípade potreby), záverečné zhrnutie tém predmetu pre potreby prípravy na skúšku.	Utorok 25.04.2023, priestor pre prácu na zadaní (referáte).	Streda 26.04.2023, ŠVOČ.
12.	Pripravuje sa	Pripravuje sa Plánuje sa:	[2b]
		• Odovdávanie referátu (AIS) do konca 12.	týždňa (nedeľa 07.05.2023) [15b]
13.	Časová rezerva (utorok 09.05.2023).	Časová rezerva (streda 10.05.2023).	

Literatúra

- [1] K. J. Åström and R. M. Murray. *Feedback Systems*. Princeton University Press, 2008.
- [2] K.J. Åström and B. Wittenmark. Adaptive Cotrol, 2nd edition. Addison-Wesley, 1995.
- [3] H. Butler. Model Reference Adaptive Control: From theory to practice. Prentice Hall International (UK) Ltd., 1992.
- [4] P. Ioannou and B. Fidan. *Adaptive Control Tutorial*. Society for Industrial and Applied Mathematics, USA., 2006.
- [5] P. Ioannou and J. Sun. Robust Adaptive Control. Prentice Hall, Inc, 1996.
- [6] Lennart Ljung. System Identification (2nd Ed.): Theory for the User. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.
- [7] R. Monopoli. Model reference adaptive control with an augmented error signal. *IEEE Transactions on Automatic Control*, 19(5):474 484, oct 1974.
- [8] J. Murgaš and I. Hejda. Adaptívne riadenie technologických procesov. Slovenská technická univerzita v Bratislave, 1993.
- [9] K. S. Narendra and A. M. Annaswamy. Stable adaptive systems. Prentice Hall, Englewood Cliffs, NJ, 1989.
- [10] K. S. Narendra, Y.-H. Lin, and L. S. Valavani. Stable adaptive controller design, part ii: Proof of stability. *IEEE Transactions on Automatic Control*, 25(3):440 – 448, jun 1980.
- [11] K. S. Narendra and L. S. Valavani. Stable adaptive controller design—direct control. *IEEE Transactions on Automatic Control*, 23(4):570 583, aug 1978.
- [12] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison Wesley Longman, Inc., 1998.
- [13] S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence, and Robustness. Prentice-Hall., 1994.
- [14] G. Tao. Adaptive control design and analysis. John Wiley & Sons, Inc., 2003.
- [15] M. Tárník. Direct model reference adaptive control of small laboratory dc motor. $posterus.sk,\ 4(1),\ 2011.$