PROPOSITIONAL LOGIC:

Week 5

Feng Shi

MODELS AND POSSIBLE WORLDS

- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated.
- m is a model of a sentence a if a is true in m
- M(a) is the set of all models of a
- Possible worlds ~ models
 - Possible worlds: potentially real environments
 - Models: mathematical abstractions that establish the truth or falsity of every sentence

ENTAILMENT

- One sentence follows logically from another
- $a \models \beta$
 - \circ a entails sentence β *if and only if* β is true in all worlds where a is true.
 - \circ e.g., $x+y=4 \not= 4=x+y$
- Entailment is a relationship between sentences that is based on semantics.

PROPOSITIONAL LOGIC: SYNTAX

- Propositional logic is the simplest logic
 - illustrates basic ideas
- Symbols of propositional logic
 - Logical constants
 - True and False
 - Propositional Variables (Symbols)
 - Atom
 - **■** E.g., P, Q, R
 - Each variable can have binary value
 - P = {true | false}
 - Logical Connectives
 - \blacksquare \neg , \wedge , \vee , \Rightarrow , \Leftrightarrow
 - Sentences
 - Made by putting these symbols together

LOGICAL CONNECTIVES

- Logical Connectives
 - ¬: not
 - \blacksquare ¬P: negation of P
 - \circ \wedge : and
 - \blacksquare P \land Q, P \land (Q \lor R) : conjunction. Its parts are the **conjuncts**
 - \blacksquare P \land (Q \lor R) is a conjunction of the conjuncts P and (Q \lor R)
 - $\circ \lor : or$
 - lacksquare P \lor Q, P \lor (Q \land R) : disjunction . Its parts are the **disjuncts**
 - ightharpoonup igh
 - $\circ \Rightarrow : implies$
 - \blacksquare (P \land Q) \Rightarrow R : implication.
 - \blacksquare (P \land Q): premise, antecedent, R: conclusion, consequent
 - \bigcirc \Leftrightarrow : equivalent
 - \blacksquare (P \land Q) \Leftrightarrow (P \land Q) : equivalence, biconditional

LOGICAL CONNECTIVES

$$\bullet \quad A \Rightarrow B = \neg A \lor B$$

$$\neg \neg A = A$$

SENTENCES

Sentences:

- If S is a sentence, ¬S is a sentence (negation)
- \circ If S₁ and S₂ are sentences, S₁ \wedge S₂ is a sentence (conjunction)
- \circ If S₁ and S₂ are sentences, S₁ \vee S₂ is a sentence (**disjunction**)
- \circ If S_1 and S_2 are sentences, $S_1 \rightarrow S_2$ is a sentence (implication)
- O If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (equivalence)

CNF and DNF

CNF (Conjunctive Normal Form)

literals

DNF (Disjunctive Normal Form)

Disjunction of literals

literals

A "disjunction of terms"

Conjunction of literals

- Horn Form (Special case of CNF)
 - Conjunction of Horn Clauses
 - Horn Clauses: a clause with at most one positive literal

PROPOSITIONAL LOGIC: SEMANTICS

- Each model/world specifies true or false for each proposition symbol
 - E.g. P1 , P2, P3
 - With these symbols, 8 possible models, can be enumerated automatically.

P1	P2	Р3
Т	Т	Т
Т	Т	F
Т	F	Т
Т	F	F
F	Т	Т
F	Т	F
F	F	Т
F	F	F

PROPOSITIONAL LOGIC: SEMANTICS

- \bullet Rules for evaluating truth with respect to a model m:
 - ¬S is true iff S is false
 - \circ $S_1 \wedge S_2$ is true iff S_1 is true and S_2 is true
 - \circ $S_1 \vee S_2$ is true iff S_1 is true or S_2 is true
 - \circ $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true
 - \circ $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true
- Simple evaluates an arbitrary sentence, e.g., $\neg P_1 \land (P_2 \lor P_3)$

P1	P2	Р3	¬P1	(P2∨ P3)	\neg P1 \wedge (P2 \vee P3)
Т	Т	Т	F	Т	F
Т	Т	F	F	Т	F
Т	F	Т	F	Т	F
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т
F	F	Т	Т	Т	Т
F	F	F	Т	F	F

TRUTH TABLES FOR CONNECTIVES

True tables for the five logical connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

VALIDITY

A sentence is valid if it is true in all models

O e.g ((P
$$\vee$$
 H) $\wedge \neg$ H) \Rightarrow P

Р	Н	P V H	(P ∨ H) ∧ ¬H	$((P \lor H) \land \neg H) \Rightarrow P$
F	F	F	F	Т
F	Т	Т	F	Т
Т	F	Т	Т	Т
Т	Т	Т	F	Т

• Sentence ((P \vee H) $\wedge \neg$ H) \Rightarrow P is Valid

Semantics properties

- Deduction Theorem:
 - \bigcirc KB $\models \alpha$ if and only if (KB $\Rightarrow \alpha$) is valid
 - $\bigcirc M(a) = \{ w : w \models a \}$
- Consistency, satisfiability
 - \circ M(a) \neq Ø, a is consistent, satisfiable if it is true in some model
 - \circ M(a) = \emptyset , a inconsistent, unsatisfiable if it is false in all models
- Validity
 - \circ M(a) = Whole world, a is valid
- Equivalence
 - \circ M(a) = M(β), a is equivalent β
- Mutually Exclusive
 - $\bigcirc \mathsf{M}(\mathsf{a} \land \beta) = \emptyset$
 - $\circ M(a) \wedge M(\beta) = \emptyset$

Propositional Logic Problems

Q. Is the Propositional Logic (PL) sentence (A \Leftrightarrow B) \land (\neg A \lor B) valid, unsatisfiable, or satisfiable?

Α	В	$A \Leftrightarrow B$	$\neg A \lor B$	$(A \Leftrightarrow B) \land (\neg A \lor B)$
T	T	T	T	T
T	F	F	F	F
F	T	F	T	F
F	F	T	T	T

A. Not Valid and Satisfiable Since the last column contains both T and F, the sentence is satisfiable.

Propositional Logic Problems

Q. Prove (A \wedge B) |= (A \Leftrightarrow B) using a truth table.

Α	В	$A \wedge B$	$A \Leftrightarrow B$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	T

A. Since for each row where the next to last column is T, the last column is also T (this only occurs here for the first row), entailment is proved.