Текстовая аналитика в деле

Кейс в образовании

Алексей Пятов // Руководитель группы текстовой аналитики SAS Russia Константин Дудников // Эксперт по текстовой аналитике SAS Russia

Концепт-дизайн системы автоматической проверки

Цель системы — снизить финансовые и временные затраты на организацию качественной проверки диктантов и заданий с развёрнутым ответом по естественным и гуманитарным наукам.

- ① Отправка работ в хранилище. Вывод результатов проверки.
- ② Проверка полученных работ. Отправка результатов.
- ③ Подсчет статистики и демонстрация отчета
- Ф Обновление и мониторинг качества работы модулей

Подсистема обмена данными

Процесс проверки заданий с развернутым ответом – AS IS

Процесс проверки заданий с развернутым ответом – ТО ВЕ

«0 баллов» – преобладающая оценка заданий

Более 75 тыс. развёрнутых ответов было собрано на тестировании по предмету *** в январе 2019 г.

Эксперты <u>вручную</u> проверяли каждый ответ.

Результаты внутреннего тестирования

Более 75 тыс. развёрнутых ответов было собрано на тестировании по предмету *** в январе 2019 г.

Эксперты <u>вручную</u> проверяли каждый ответ.

39%всех ответов модуль 2 способен проверять <u>автоматически</u>

Распределение оценок на диагностическом тестировании

Описание подхода

Описание подхода: проблема

Эксперт

Задача

Аэростат поднимается до определённой высоты. Запишите условие, при котором подъём аэростата прекратится.

Критерии

Элементы содержания верного ответа

(допускаются иные формулировки, не искажающие смысл ответа)

Подъём аэростата прекратится, когда сила Архимеда станет примерно равна или меньше силы тяжести /если Архимедова сила станет примерно равна или меньше суммы сил тяжести и сопротивления воздуха.

Указания к оцениванию	
Дан правильный ответ	1
Другие варианты ответа	0
Максимальный балл	1

Работа 1

1. Видит работу

2. Видит критерии

3. Понимает смысл

и выставляет оценку

Подъём аэростата прекратится тогда, когда архимедова сила, действующая на шар станет меньше силы тяжести аэростата.

Работа 2

Работа

Для поднятия шара в воздух, необходимо, чтобы архимедова сила, действующая на шар, была больше силы тяжести. Когда это условие перестает действовать то и подъём аэростата прекратится.

0

Подъем аэростата прекратится, если открыть клапан, и выпустити находящийся в шаре газ

- 1. Видит байты
- 2. Видит байты
- 3. Не понимает, что происходит

Как донести до компьютера смысл?

Векторное представление чего угодно

Как сравнить 2 яблока?

VS.

С помощью векторов

цвет	размер	вкус	страна	цена
0	1	0	0	1

VS.

цвет	размер	вкус	страна	цена
1	0	1	1	0

Признаки

(измерения):

цвет	размер	вкус	страна	цена
'зеленый': 1	'большой': 1	'кислый': 1	'Польша': 1	'дорогой': 1
'красный': 0	'маленький':0	'сладкий': 0	'Россия': 0	'дешевый': 0

Векторное представление слов

one-hot encoding

Как сравнить 2 слова?

С помощью векторов

«Аэростат» VS. «Шар»

 поднятие
 воздух
 шар
 сила
 аэростат

 «Аэростат»
 0
 0
 0
 1

Признаки (измерения):

 слова из словаря. Количество признаков = размер словаря.

поднятие воздух шар сила аэростат *** «Шар»** 0 0 1 0 0

VS.

Настоящие вектора

поднятие	воздух	шар	сила	аэростат		→ сотни тысяч
'Аэростат': 0 'Шар': 0	'Аэростат': 0 'Шар': 0	'Аэростат': 0 'Шар': 1	'Аэростат': 0 'Шар': 0	'Аэростат': 1 'Шар': 0	'Аэростат': 0 'Шар': 0	признаков

Векторное представление слов

one-hot encoding

Как сравнить 2 слова?

«Аэростат» VS. «Шар»

Признаки (измерения):

 слова из словаря. Количество признаков = размер словаря.

Проблемы подхода

Вектора большой размерности тяжелы для вычислений

С помощью векторов

VS.

поднятие воздух шар сила аэростат

«Шар»

О

О

1

О

О

One-hot вектора не отражают семантические отношения слов

Сокращаем размерность вектора слова

Слова, встречающиеся в схожих контекстах, имеют схожее значение. [Harris, Z. 1956]

Признаки (измерения):

- неинтерпретируемые характеристики. Количество признаков произвольное, обычно 200-700

Их вектора будут близкими

Хорошо ли это работает?

Как получить вектора предложений?

"Для поднятия аэростата в воздух, необходимо, чтобы архимедова сила, действующая на шар, была больше силы тяжести."

Магия [0.12, 3.69, ..., 0.20, 3.17]

512 измерений

Виды магии

- Нормализация: усреднение, softmax
- Нейронные сети: CNN, RNN
- Механизм attention
- Позиционное кодирование
- 🔹 🛮 и пр.

Подъём аэростата прекратится тогда, когда архимедова сила, действующая на шар, станет меньше силы тяжести аэростата...

Для поднятия шара в воздух, необходимо, чтобы архимедова сила, действующая на

шар, была больше силы тяжести...

Подъем аэростата прекратится, если открыть клапан, и выпустить находящийся в шаре газ

Описание подхода: а что дальше?

Задача

Аэростат поднимается до определённой высоты. Запишите условие, при котором подъём аэростата прекратится.

Критерии

Работа 1

Работа 2

Работа

Элементы содержания верного ответа

(допускаются иные формулировки, не искажающие смысл ответа)

Подъём аэростата прекратится, когда сила Архимеда станет примерно равна или меньше силы тяжести /если Архимедова сила станет примерно равна или меньше суммы сил тяжести и сопротивления воздуха.

Указания к оцениванию		
Дан правильный ответ	1	
Другие варианты ответа	0	
Максимальный балл	1	

1

1. Видит работу

2. Видит критерии

3. Понимает смысл

и выставляет оценку

Подъём аэростата прекратится тогда, когда архимедова сила, действующая на шар станет меньше силы тяжести аэростата.

1

Для поднятия шара в воздух, необходимо, чтобы архимедова сила, действующая на шар, была больше силы тяжести. Когда это условие перестает действовать то и подъём аэростата прекратится.

0

Подъем аэростата прекратится, если открыть клапан, и выпустит находящийся в шаре газ

- 1. Видит вектор
- 2. Понимает смысл
- 3. Не может поставить оценку

Как научить компьютер выставлять оценку?

Машинное обучение!

Что такое машинное обучение?

Проверенные документы

Определение разницы между двумя классами

Выставление оценки новой работе

Концептуально

Под капотом

Вектор работы	Оценка
<0.15, 0.36, 1.12, 4.80>	0
<9.72, 0.01, 3.41, 1.25>	1
<0.50, 0.35, 0.97 5.12>	0
<5.64, 0.11, 2.92, 1.32>	1
•	
<6.45, 0.02, 4.09, 1.12>	1

Вектора проверенных

документов

нового объекта

Векторизация текстов работ... done.

Обучение классификатора... done.

Инициализация случайной разделяющей гиперплоскости.

Эпоха обучения: 1...

Точность на тестовых данных: 70%.

Эпоха обучения: 2...

Точность на тестовых данных: 82%.

. . .

Эпоха обучения: 27...

Точность на тестовых данных: 95%.

Сохранение модели классификации ... done.

Обработка работы 1...

Векторизация документа...

Применение модели к вектору документа...

Класс документа: 0, score: 0.950.

Обработка работы 2...

Векторизация документа...

Применение модели к вектору документа...

<u>Класс до</u>кумента: 0, score: 0.962.

Анализ текстов работ

векторное представление документов

Разделение на два класса

поиск разделяющей гиперплоскости в 512-мерном пространстве

Обработка новых документов

Векторизация текстов работ... done.

Обучение классификатора... done.

Инициализация случайной разделяющей гиперплоскости..

Эпоха обучения: 1...

Точность на тестовых данных: 70%.

Эпоха обучения: 2...

Точность на тестовых данных: 82%.

. . .

Эпоха обучения: 27...

Точность на тестовых данных: 95%.

Сохранение модели классификации ... done.

Обработка работы 1...

Векторизация документа...

Применение модели к вектору документа...

Класс документа: 0, score: 0.950.

Обработка работы 2...

Векторизация документа...

Применение модели к вектору документа...

<u>Класс до</u>кумента: 0, score: 0.962.

Анализ текстов работ

векторное представление документов

Разделение на два класса

поиск разделяющей гиперплоскости в 512-мерном пространстве

Обработка новых документов

Векторизация текстов работ... done.

Обучение классификатора... done.

Инициализация случайной разделяющей гиперплоскости..

Эпоха обучения: 1...

Точность на тестовых данных: 70%.

Эпоха обучения: 2...

Точность на тестовых данных: 82%.

. . .

Эпоха обучения: 27...

Точность на тестовых данных: 95%.

Сохранение модели классификации ... done.

Обработка работы 1...

Векторизация документа...

Применение модели к вектору документа...

Класс документа: 0, score: 0.950.

Обработка работы 2...

Векторизация документа...

Применение модели к вектору документа...

<u>Класс до</u>кумента: 0, score: 0.962.

Анализ текстов работ

векторное представление документов

поиск разделяющей гиперплоскости в 512-мерном пространстве

Обработка новых документов

Векторизация текстов работ... done.

Обучение классификатора... done.

Инициализация случайной разделяющей гиперплоскости..

Эпоха обучения: 1...

Точность на тестовых данных: 70%.

Эпоха обучения: 2...

Точность на тестовых данных: 82%.

. . .

Эпоха обучения: 27...

Точность на тестовых данных: 95%.

Сохранение модели классификации ... done.

Обработка работы 1...

Векторизация документа...

Применение модели к вектору документа...

Класс документа: 0, score: 0.950.

Обработка работы 2...

Векторизация документа...

Применение модели к вектору документа...

Класс документа: 0, score: 0.962.

Анализ текстов работ

векторное представление документов

поиск разделяющей гиперплоскости в 512-мерном пространстве

Обработка новых документов

Как оценить результаты?

Метрики качества

Предсказываем класс «1»

Как оценить результаты?

Accuracy paradox

Precision =
$$\frac{0}{0+125}$$
 = 0

Recall =
$$\frac{0}{0+1}$$
 = **0**

Данные экспертов

1 0
Предсказание системы
0 1 125
Предсказываем класс «1»

Accuracy =
$$\frac{0 + 1125}{0 + 125 + 1125 + 1} = 0,9$$
 Cистем

Система не может предсказать класс «1», но точность всё равно высокая

Как оценить результаты?

В приоритете точность

95%

Насколько уверенным можно быть в результатах работы системы?

Какова вероятность, что проверенным работам выставлена правильная оценка?

69%

Сколько *нулевых* работ система проверит за экспертов?

Recall полнота

Результаты внутреннего тестирования

Более 75 тыс. развёрнутых ответов было собрано на тестировании по предмету *** в январе 2019 г.

Эксперты <u>вручную</u> проверяли каждый ответ.

39% всех ответов модуль 2 способен проверять <u>автоматически</u>

Распределение оценок на диагностическом тестировании

Семантический анализатор заданий

Карта семантической близости вариантов заданий

Семантический анализатор заданий

Точность — 92% Полнота — 50%

Карта семантической близости вариантов заданий

Требования к запуску модуля 2

- 1. Обучить модели по всем заданиям с учетом имеющихся данных
- 2. Изменить существующие процессы проверки свободных ответов:
 - на первоначальном этапе проводить ручную проверку заданий
 - после накопления достаточного числа работ обучать аналитическую модель
 - исключить из экспертной проверки задания, проверенные автоматически

Зависимость полноты и точности от размера обучающей выборки

Демонстрация работы системы

Вопросы можете задавать в Telegram:

- @pyatov Алексей Пятов @krinistopen Константин Дудников

sas.com

