

Marine Ecological Modelling Global Climate Change

Course Overview

Jorge Assis, PhD // jmassis@ualg.pt // jorgemfa.medium.com 2020, Centre of Marine Sciences, University of Algarve

Scope

Address the interactions and potential impacts of global climate changes on different levels of marine biodiversity.

Hands-on oriented, with a strong component on biodiversity and climate data acquisition, management and visualisation, as well as on ecological modelling using state of the art mechanistic and correlative approaches.

Goals

Get to know the foundations of ecological niche theory;

Develop skills on marine macroecology, climate data acquisition, management and visualisation;

Develop skills on mechanistic and correlative ecological modelling; Understand the strengths of niche modelling and the develop skills for proper model transferability across space and time;

Week 1-5

- S01. Course overview
- S02. Principles of Geographic Information Systems
- S03. Ecological niches and geographic distributions
- S04. Biological and environmental data for macroecology
- S05. Climate oscillations and distributional shifts of marine biodiversity
- S06. Principles of Ecological Niche Modelling
- S07. Potential applications of Ecological Niche Modelling
- S08. Model fitting and transferability in space and time

Week 6

Individual research study.

[Presentations discussing study possibilities 5 + 10 minutes]

Week 6-8

- S09. The diversity of algorithms of Ecological Niche Modelling
- S10. Evaluating predictive performance and setting decision thresholds
- S11. Bringing realism to Ecological Niche Modelling
- S12. Improving transferability of Ecological Niche Modelling
- S13. Dissemination of results under the Open Science framework

Week 9-10

Individual research study.

[Final Presentations 10 + 10 minutes]

Evaluation

Individual research study

[Apr 12] Presentation (discuss general idea): 5 + 10 min (10% grade)

[May 11] Final Presentation: 10 + 5 min (20% grade)

[Jun 15] Report (15pp without references, paper format; 60% grade)

[Jun 15] Documented R markdown script as supplementary information of the final report (10% grade)

Mid-term Exam

[May 03] Multiple choice + up to 4 essay questions, 90 min; > 9.5

** Final grade = (Exam x 0.25) + (Individual research x 0.75)

Evaluation

Individual research study

Each student needs to write an **individual** report (**research study**) addressing the interactions OR impact of global climate changes (past OR future) in one of the different levels of biodiversity. This can be:

- . identifying the main environmental drivers shaping distributions;
- . predicting present distributional ranges;
- . projecting future range shifts;
- . predicting marine invasion processes, etc.

Formulate a relevant research ecological question

>> what will be the consequences of future climate to *Zostera noltii*?

Formulate an hypothesis, based on the general theories presented in the lectures or from literature

>> increasing emissions of greenhouse gases will produce more severe range shifts to *Zostera noltii*.

Build a conceptual model to address the question in their system

>> model the ecological niche of *Zostera noltii* and predict its distribution for the present and for future climate conditions; compare ranges.

Read literature in a systematic way to collect, assess the evidence for the different components of their model and hypothesis, and formulate conclusions and recommendations.

Classes

Theory [up to 50m] >> Break >> Hands-on [50m] >> Break >> Hands-on

Resources

https://github.com/jorgeassis

Sessions (PPTs), Data, Scrips, challengeSolutions, codeRecipes and literature.md (Interesting and mandatory reads per session)

Relevant questions

[book a meeting] jmassis@ualg.pt