## **GAN**

2018/7/11

#### **Preface**

- Topics
  - Experiences & tricks
  - Paper Survey
  - MuseGAN, MidiNet Review
- Outline
  - GAN Review
  - Road Map
    - Condition
    - Video

## Road Map





#### **GAN Review**

**Data & Generator** 

**Discriminator** 

**Training** 

**Testing** 

**Discussion** 

## Review: How to start a GAN project?

- Data
- Generator
- Discriminator
- Training
- Testing
- State-of-the-art?
- ♠ [-] ajmooch 6 points 3 months ago
- Projection discriminator + SN-GAN + progressive growing is probably our best bet at the moment for highest-fidelity high-res images, but the resources to do an ImageNet-level variety of classes at high res will probably be pretty substantial (just to get everything tuned, let alone to train it).
- Models: DCGAN WGAN-gp SNGAN

<sup>\*</sup> https://www.reddit.com/r/MachineLearning/comments/890prh/r\_memgen\_memory\_is\_all\_you\_need\_generative/

#### Data & Generator

- No matter what your task is, Normalization on data is necessary.
- The activation of the output layer of the generator depends on the range of the data
  - Bounded

Unbounded

zero means unit variance logarithm (ex: on spectrogram)

 $\mathcal{N}(\mu,\,\sigma^2)$ 

leaky ReLU, ReLU?



- SharedArray & Shuffle data by index at runtime
- z: sampled from a Gaussian distribution

#### Generator

- Batch Normalization is essential to the quality
- Upsampling Layers:
  - Deconvolution (transposed convolution)
    - The most common method
    - Checkerboard artifacts?
  - Resize-Convolution
    - ex: PG-GAN uses nearest neighbor upscaling
  - Pixel Shuffling
    - Super resolution





Salimans et al., 2016 [2]

 Residual Blocks can enhance the quality as well, especially when the size of the images is large and the corresponding network is deep.

<sup>\*</sup> **PG-GAN:** https://arxiv.org/pdf/1710.10196.pdf

<sup>\*</sup> https://distill.pub/2016/deconv-checkerboard

#### Discriminator



Loss function:

Original GAN loss: DCGAN

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$$

D Loss: 
$$-\log (D(X)) - \log (1 - D(G(z))$$
  
G Loss:  $-\log (D(G(z)))$ 



In practice...

#### Discriminator

```
WGAN loss: SNGAN

D Loss: (D(X)) + (D(G(z)))

Minimize!!
```

remove log

Gradient penalty: WGAN-gp

G Loss: - (D(G(z)))

```
D Loss: - (D(X)) + (D(G(z))) + (||\nabla_x D(x)|| - 1)^2
G Loss: - (D(G(z))) penalty Minimize!!
```

- Parameter Updating:
  - WGAN-gp update G once every 5 updates of D

## **Training**

- When to stop?
- How to monitor the training procedure?
- GAN Losses cannot truly reflect the quality (even for WGAN)
- Generate samples along training!

#### Samples/\*.png:

| sample_2.png     | 2018/7/7 下午 06:42 |
|------------------|-------------------|
| sample_142.png   | 2018/7/7 下午 06:43 |
| sample_282.png   | 2018/7/7 下午 06:43 |
| sample_422.png   | 2018/7/7 下午 06:43 |
| sample_562.png   | 2018/7/7 下午 06:43 |
| sample_702.png   | 2018/7/7 下午 06:43 |
| sample_842.png   | 2018/7/7 下午 06:44 |
| sample_982.png   | 2018/7/7 下午 06:44 |
| sample_2002.png  | 2018/7/7 下午 06:45 |
| sample_4002.png  | 2018/7/7 下午 06:48 |
| sample_6002.png  | 2018/7/7 下午 06:50 |
| sample_8002.png  | 2018/7/7 下午 06:53 |
| sample_10002.png | 2018/7/7 下午 06:55 |



(SNGAN on CIFAR10)

## Early Stopping

Evaluate along training!



<sup>\*</sup> from MuseGAN

## **Training**

• For the first time, train the model for a longer period of time and monitor the procedure.



Mode collapse

Degeneration



#### (70K updates)



#### (130K updates)



<sup>\*</sup> MuseGAN (with WGAN-gp), lead sheet generation

## **Testing**

Interpolation: Spherical (instead of linear)





- Dropout on?
  - Image-to-Image (<a href="https://arxiv.org/pdf/1611.07004v1.pdf">https://arxiv.org/pdf/1611.07004v1.pdf</a>) turns on when testing
  - Later works seldom use it

<sup>\*</sup> GAN hacks: https://github.com/soumith/ganhacks

<sup>\*</sup> Figure: from https://github.com/ptrblck/prog\_gans\_pytorch\_inference

#### Discussion

- So, which model should I use?
- Loss
  - For image, SNGAN outperforms others in both of the efficiency and the quality.
  - For discrete (binary) representation, only WGAN-gp can generate results successfully.
- Network design
  - Deconvolution is simple but powerful
  - If you aim to generate images with higher qualities, try to use residual blocks and resize-upsampling layers.



# Conditional GANs

How to apply condition Tag? Disentanglement Discussion

## How to apply condition?

- Input Concatenation
  - cGAN: https://arxiv.org/pdf/1411.1784.pdf
- Feature Map Concatenation
  - DCGAN: https://github.com/carpedm20/DCGAN-tensorflow
- Auxiliary Classifier
  - ACGAN: https://arxiv.org/pdf/1610.09585.pdf
- Encoder
  - S<sup>2</sup> GAN, Generative Adversarial Text to Image Synthesis
  - MuseGAN/MidiNet: <a href="https://arxiv.org/pdf/1703.10847.pdf">https://arxiv.org/pdf/1703.10847.pdf</a>
  - FTGAN: <a href="https://arxiv.org/pdf/1711.09618.pdf">https://arxiv.org/pdf/1711.09618.pdf</a>
- Projection Discriminator (ICLR, 2018)
  - https://arxiv.org/pdf/1802.05637.pdf
- Principle:
  - Both of G and D need to receive the conditional information.



Figure 1: Discriminator models for conditional GANs

#### Concatenation

The most common method, naive but practical.

vector concatenation (for linear layer, input z)





one-hot label

Feature map concatenation (for convolution layer)





(SNGAN on MNIST)

## **Auxiliary Classifier**

• Or with only auxiliary loss

Adversarial loss

Cross Entropy (Categorical)

Mean Square Error (Continuous)

Classifier (optional)

- Where should I concatenate labels? Every layer in G & D?
  - It depends. Layers which is responsible for higher level features have priorities.
- Conditional generation is still a challenging task.
- SNGAN + projection discriminator achieve promising results.

<sup>\*</sup> cods: https://github.com/pfnet-research/sngan\_projection

#### Encoder

- For more complex conditional vectors
- Motivation: guide the generation process



Generative Adversarial Text to Image Synthesis



S<sup>2</sup> GAN: Generative Image Modeling using Style and Structure Adversarial Networks

#### **U-Net Encoder**

Skip-connection: no information loss

MidiNet: previous bar

MuseGAN: accompanied track





#### **U-Net Encoder**

- FTGAN (video generation)
- Use conditional vector to guide the generation



<sup>\*</sup> Optical flow: a feature about motion

## Tag

- Supervised GAN training
- Conditional generation
  - Given a class, generate images according to that
- Disentanglement
  - Try to acquire the attribute-invariant latent space or the controllability with limited labels (Ex: Gender)
  - Related Works:
    - DR-GAN
    - TD-GAN
    - Fader Network
    - StarGAN (CycleGAN)



















(male -> female) from Fader Network

## Disentanglement

- Unsupervised?
  - infoGAN

add <u>mutual information loss</u> to encourage latent codes learn the most obvious properties





(a) Varying  $c_1$  on InfoGAN (Digit type) (categorical)



(c) Varying  $c_2$  from -2 to 2 on InfoGAN (Rotation)

(continuous)

## Disentanglement

- Unsupervised
  - mocoGAN & MuseGAN
     Design reasonable network architecture to encourage latent codes learn the variant and invariant properties
  - Both of works simply use 3DCNN in D



mocoGAN MuseGAN

#### Discussion

- Previous bar as condition (MidiNet)
  - For melody Good
  - For multi-track Failed!

- Reasons:
  - The source and target domain are the same
  - There are too many possible results

Finally, the network tries to copy and paste (AE, instead of U-Net)



<sup>\*</sup> MidiNet on multi-tracks

#### **Video GANs**

**Related Works Discussion** 

- Early papers try to predict the next frame
  - MidiNet
- Recent works
  - VGAN
  - TGAN
  - mocoGAN
  - FTGAN
- It's too difficult to generate a sequence of images directly.
  - Decomposition the video

VGAN: foreground and backgrounf

mocoGAN: content and motion

 Using additional information to guide the generation FTGAN: optical flow



Sliding 3DCNN **Discriminator GIF** generation No scene transitions  $D_{\mathsf{T}}$ 3DCNN discriminator only ensure every local block of frames is true  $S_T$  $S_1$  $\tilde{\mathbf{x}}^{(1)}$  $\tilde{\mathbf{x}}^{(2)}$  $\tilde{\mathbf{x}}^{(K)}$ Content invariant  $G_{\rm I}$  $G_{\mathsf{I}}$  $G_{\rm I}$  $\mathbf{z}_{\mathrm{C}}$  –  $\mathbf{z}_{\mathrm{M}}^{(2)}$  $\mathbf{z}_{\mathrm{M}}^{(K)}$  ${\bf h}^{(0)}$  $\epsilon^{(K)}$  $R_{\rm M}$ (MocoGAN)

## conclusion

- GAN templates:
  - Chainer:
    - https://github.com/pfnet-research/chainer-gan-lib
    - https://github.com/pfnet-research/sngan\_projection
  - Tensorflow:
    - https://github.com/carpedm20/DCGAN-tensorflow
    - https://github.com/wiseodd/generative-models
  - Pytorch:
    - https://github.com/eriklindernoren/PyTorch-GAN

# END

#### **Text GANs**

**Related Works Discussion**