Formelsammlung Lineare Systeme und Regelung

Mario Felder Michi Fallegger

19. Mai 2014

Inhaltsverzeichnis

1	Reg	elungstechnik	1
	1.1	Regelkreis	1
	1.2	Systeme	2
	1.3	Linearisierung	3
		1.3.1 Arbeitspunkt festlegen	3
		1.3.2 Linearisierung um Arbeitspunkt	4
	1.4	Stabilität	4
		1.4.1 Hurwitz-Kriterium	4
		1.4.2 Nyquist-Kriterium	5
	1.5	Amplituden- und Phasenreserve	6
		1.5.1 Totzeitreserve	7
	1.6	Kompositionen von Grundelementen	8
2	Sys	teme und Signale	1
	2.1	Signale	1
		2.1.1 Definition	1
		2.1.2 Einheitssprung	1
		2.1.3 Eigenschaften	1
		2.1.4 Operationen	2
	2.2	Systeme	4
		2.2.1 Eigenschaften	4
	2.3	Dirac-Delta-Funktion	б
		2.3.1 Ausblendefunktion	б
		2.3.2 Verallgemeinerte Ableitung 10	ĸ

INHALTSVERZEICHNIS

3	Lap	place Transformation	17
	3.1	Definition	17
		3.1.1 Konvergenzbereich	17
	3.2	Eigenschaften der Laplace-Transformation	18
	3.3	Partialbruchzerlegung	19
		3.3.1 Rationale Funktionen mit einfache Polen	20
		3.3.2 Rationale Funktionen mit mehrfachen Polen	20
	3.4	Lösen von Differentialgleichungen	20
	3.5	Übertragungsgleichung LZI-Systemen	21
	3.6	Faltung	22
		3.6.1 Gewichtsfunktion	22
		3.6.2 Impulsantwort	22
		3.6.3 Sprungantwort	23
		3.6.4 Anfangswertsatz	23
		3.6.5 Endwertsatz	23
		3.6.6 Stabilität	24
4	Fou	rier-Transformation	25
5	Teil	systeme	27
	5.1	Flühlersche Regel	28

Kapitel 1

Regelungstechnik

1.1 Regelkreis

Merkmale:

- $\bullet\,$ Erfassen der Regelgrösse y
- Vergleich von Führungs- und Regelgrösse
- Angleichen der Regelgrösse an die Führungsgrösse in Wirkungskreis

1.2 Systeme

Signale sind rückwirkungsfrei, also eingeprägte Grössen.

Nr.	Bsp	Klassifikation
1	$y(t) = \cos t \cdot x(t)$	statisch
2	$\frac{dy(t)}{dt} = -\cos(y(t)) + x(t)$ $\frac{dy(t)}{dt} = -y(t) + x(t)$	dynamisch
3	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	zeitkontinierlich
4	$y((k+1)\tau) = -y(k \cdot \tau) + x(k \cdot \tau)$	zeitdiskret
5	$y(t) = \cos(x(t-\tau))$	kausal
6	$y(t) = \cos(x(t+\tau))$	nicht kausal
7	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -3y(t) + x(t)$	zeitinvariant
8	$\frac{\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -\cos t \cdot y(t) + x(t)}{\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)}$	zeitvariant
9	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)$	linear
_10	$\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y^2(t) + x(t)$	nicht linear
11	$\frac{\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y^2(t) + x(t)}{\frac{\mathrm{d}y(t)}{\mathrm{d}t} = -y(t) + x(t)}$	endlich-dimensional
12	$\frac{\partial y(t)}{\partial t} = -\frac{\partial}{\partial x}y(x,t) + x(t)$	unendlich-dimensional
13	$y(t) = t \cdot \cos^2 t \cdot x(t)$	single input / single output
14	$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} -3 & \sin(t) \\ t & -1 \end{bmatrix} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$	multiple input / multiple output

1.3 Linearisierung

Approximation durch Gerade:

$$f(\bar{x} + \Delta x) \approx (\bar{x}) + \frac{\mathrm{d}f}{\mathrm{d}x}\Big|_{\bar{x}} \cdot \Delta x$$

1.3.1 Arbeitspunkt festlegen

Im stationären Zustand gilt:

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n} = 0$$

Für das Eingangssignal u(t) und das Ausgangssignal y(t):

$$h(t) = \bar{y} + \Delta y(t)$$
 , $u(t) = \bar{u} + \Delta u(t)$

1.3.2 Linearisierung um Arbeitspunkt

Es gilt:

$$D(y^{(n)}, y^{(n-1)}, \dots, \dot{y}, y, u^{(m)}, u^{(m-1)}, \dots, \dot{u}, u) = 0$$

D kann am Punkt \bar{y}, \bar{u} approximiert werden durch:

$$\frac{\partial D}{\partial y^{(n)}} \Big|_{\frac{\bar{y}}{\bar{u}}} \cdot \Delta y^n + \dots + \frac{\partial D}{\partial \dot{y}} \Big|_{\frac{\bar{y}}{\bar{u}}} \cdot \Delta \dot{y} + \frac{\partial D}{\partial y} \Big|_{\frac{\bar{y}}{\bar{u}}} \cdot \Delta y + \frac{\partial D}{\partial u^{(n)}} \Big|_{\frac{\bar{y}}{\bar{u}}} \cdot \Delta u^n + \dots + \frac{\partial D}{\partial u} \Big|_{\frac{\bar{y}}{\bar{u}}} \cdot \Delta u = 0$$

1.4 Stabilität

Grundlegendes Stabilitätskriterium für LZI-Glieder:

Ein LZI-Glied ist genau dann stabil, wenn die n Nullstellen des Nennerpolynoms sämtliche negative Realteile haben. In der komplexen s-Ebene müssen die Nullstellen sämtlich links von der imaginären Achse liegen.

1.4.1 Hurwitz-Kriterium

Das Polynom $N(s) = a_0 + a_1 s + a_2 s^2 + a_n s^n = 0$ ist nur dann stabil, wenn alle Koeffizienten $a_0, a_1, a_2, \ldots a_2$ <u>ungleich null</u> sind und ein positives Vorzeichen haben. Zusätzlich müssen alle n Linieardeterminanten

positiv sein (mit n Zeilen und n Spalten).

$$D_n = \begin{vmatrix} a_1 & a_3 & a_5 & a_7 & \dots \\ a_0 & a_2 & a_4 & a_6 & \dots \\ 0 & a_1 & a_3 & a_5 & \dots \\ 0 & a_0 & a_2 & a_4 & \dots \\ 0 & 0 & a_1 & a_3 & \dots \\ 0 & 0 & a_0 & a_2 & \dots \\ \dots & \dots & \dots \end{vmatrix}$$

Mit den jeweiligen Unterdeterminanten (für den fall n = 3):

$$D_{1} = \begin{vmatrix} a_{1} \end{vmatrix} = a_{1} > 0$$

$$D_{2} = \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} \end{vmatrix} = a_{1}a_{2} - a_{3}a_{0} > 0$$

$$D_{3} = \begin{vmatrix} a_{1} & a_{3} & 0 \\ a_{0} & a_{2} & 0 \\ 0 & a_{1} & a_{3} \end{vmatrix} = a_{3}D_{2} > 0$$

Die letzte Determinante erfüllt jeweils zwangsmässig die Bedingung.

1.4.2 Nyquist-Kriterium

Das Nyquist-Kriterium betrachtet die Ortskurve gegenüber dem Punkt -1auf der reelen Achse. Dabei wird die Winkeländerung von $\omega=0 \to \omega=\infty$ betrachtet. Dabei muss folgende Beziehung erfüllt sein, damit das Regelsystem stabil ist:

$$\Delta \varphi = i_k \cdot \frac{\pi}{2} + r_k \cdot \pi$$

 r_k : Anzahl Polstellen mit positivem Realteil i_k : Anzahl Polstellen auf der imaginären Achse

1.5 Amplituden- und Phasenreserve

Die Amplitudenreserve A_R ist ein Mass für den Abstand der Ortskurve $G_O(j\omega)$ vom Punkt -1 in Richtung der reelen Achse. Die Kreisfrequenz an der Stelle, an der $G_O(j\omega)$ die reelle Achse schneidet, heisst Phasenschnittkreisfrequenz ω_{π} .

Definition Amplitudenreserve:

$$A_R = \frac{1}{|G_O(\mathrm{j}\omega)|} \qquad \text{Stabilitätsbedingung: } A_R > 0.$$

Die Phasenfrequenz φ_R ist der Winkel zwischen der negativ-reellen Achse und dem Punkt, an dem die Ortskurve $G_O(j\omega)$ den Einheitskresischneidet. Die Kreisfrequenz im Schnittpunkt heisst Durchtrittskresifrequenz ω_D .

Definition Phasenreserve:

$$\varphi_R = \angle G_O(j\omega) + \pi$$
 Stabilitätsbedingung: $\varphi > 0$.

Ablesen von der Ortskurve:

Ablesen vom Bodediagramm:

1.5.1 Totzeitreserve

Die Totzeitreserve T_{tR} ist eine zusätzliche Totzeit, die in einem Regelkreis auftreten darf, ohne dass der Regelkreis instabil wird. Definition Todzeitreserve:

$$T_{tR} = \frac{\varphi_R}{\omega_D}$$

1.6 Kompositionen von Grundelementen

Betrachten der Verkettung:

Allgemeine Übertragungsfunktion:

$$G(s) = k \frac{s^n \cdot (1 + sT_1)^n \dots}{s^m \cdot (1 + sT_2)^m (1 + 2dTs + s^2T^2) \dots} \cdot e^{-sT}$$

	1	1	
Anteil	Bode	Ortskurve	Sprungantwort
k	dB ₄ 29 log(t)	k Re	h(t)
s^n	D (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	n=1 n=2 Re n=3	h(t)
$\frac{1}{s^m}$	m - 2008/dek	m=2 Re m=1	h(t) m=2/m=1
(1 - T)n	T 1 2008/dek	n - 90° Re	↑ ↑
$\frac{(1+sT)^n}{\frac{1}{(1+sT)^m}}$	T m - 20011/dek	/m90*	h(t) _{m=2} _{m=1}
e^{-sT}	dB,	1 Re	h(t)

Kapitel 2

Systeme und Signale

2.1 Signale

2.1.1 Definition

Ein Signal ist eine (reelle) Funktion:

$$u: \mathbb{R} \to \mathbb{R}$$

2.1.2 Einheitssprung

Der Einheitssprung wird in der Technik oft gebraucht und ist folgendermassen definiert:

$$\sigma := \begin{cases} 1 & \text{ für alle } t \ge 0 \\ 0 & \text{ für alle } t < 0. \end{cases}$$

Eine weitere Bezeichnung lautet H(t), Heaviside-Funktion.

2.1.3 Eigenschaften

Sprungstelle: Ist eine Funktion u(t) in einem Punkt t_0 definiert aber unstetig, so heisst t_0 eine Sprungstelle von u(t).

Wenn die einseitigen Grenzwerte $\lim_{t \nearrow t_0} u(t)$ und $\lim_{t \searrow t_0} u(t)$ existieren und endlich sind, so heisst die Sprungstelle endlich.

Knickstelle: Ist u(t) in t_0 stetig, aber nicht differenzierbar, so wird t_0 Knickstelle genannt.

Sprungstetig: Eine Funktion, die bis auf endliche Sprung- und Knickstellen überall differenzierbar ist, wird sprungstetig genannt.

Gerade: Eine Funktion u(t) ist gerade, falls ihr Graph achsensymmetrisch zur u-Achse ist:

$$u(-t) = u(t)$$
 für alle t

Ungerade: Eine Funktion u(t) ist ungerade, falls ihr Graph punktxymmetrisch zum Ursprung ist:

$$u(-t) = -u(t)$$
 für alle t

Kausale Signale: Dies sind Funktionen, die vor einem Zeitpunkt t_0 Null sind. (Bsp. der Einheitssprung)

Beschränkt: Ein Signal u(t) heisst beschränkt, falls u dem Betrage nicht beliebig grosse Werte annimmt:

$$|u(t)| \le M_u$$
 für alle t .

2.1.4 Operationen

Vertärkung / Amplifizierung

Multiplikation mit einer Konstanten:

$$u(t) \to A \cdot u(t)$$

Überlagerung

Addition zweier Signale:

$$(u_1(t), u_2(t)) \to a_1(t) + u_2(t)$$

Zeitliche Verschiebung

Ein Signal wird um die Zeit t_0 verzögert, indem t durch $t-t_0$ ersetzt wird:

$$u(t) \rightarrow u(t-t_0)$$

Zeitliche Reskalierung

Ein Signal wird um den Faktor α zeitlich reskaliert (verlangsamt, gestreckt), indem t durch t/α ersetzt wird:

$$u(t) \to u\left(\frac{t}{\alpha}\right)$$

Allgemein gilt

Jedes sprungstetige Signal u(t) lässt sich mit Hilfe von verschobenen Einheitssprüngen in folgender Form schreiben:

$$u(t) = u_s(t) + A_0 \cdot \sigma(t - t_0) + A_1 \cdot \sigma(t - t_1) + \dots$$

Dabei sind:

- $u_s(t)$ ein stetiges Signal (ohne Sprünge, aber evtl. Knickstellen),
- die Zeiten t_0, t_1, \dots die Sprungstellen von u(t),
- die Zahlen A_0, A_1, \ldots die Sprunghöhen zu den Zeiten t_0, t_1, \ldots

2.2 Systeme

Ein System ist eine Zuordnungsvorschrift, die eine Funktion u(t) (Eingangssignal) in eine andere Funktion v(t) (Ausganssignal) überführt.

$$\mathcal{H}\left\{u(t)\right\} = v(t)$$

2.2.1 Eigenschaften

Linear

Ein System ist linear, wenn die folgenden beiden Eigenschaften gelten:

• Das System antwortet auf ein amplifiziertes Eingangssignal mit der Verstärkung des Ausgangssignals um den gleichen Faktor:

$$\mathcal{H}\left\{A \cdot u(t)\right\} = A \cdot \mathcal{H}\left\{u(t)\right\} = A \cdot v(t)$$

für jedes Eingangssignal u(t) und jede Konstante $A \in \mathbb{R}$

• Das Syastem antwortet auf eine Überlagerung zweier Signale mit der Überlagerung der beiden Ausgangssignale

$$\mathcal{H}\left\{u_{1}(t)+u_{2}(t)\right\} = \mathcal{H}\left\{u_{1}(t)\right\} + \mathcal{H}\left\{u_{2}(t)\right\} = v_{1}(t) + v_{2}(t)$$

für zwei beliebige Eingangssignale $u_1(t), u_2(t)$.

Zusammengefasst:

$$\mathcal{H}\left\{A_1 \cdot u_1(t) + A_2 \cdot u_2(t)\right\} = A_1 \cdot v_1(t) + A_2 \cdot v_2(t)$$

Zeitinvariant

Ein System ist zeitinvariant, wenn es auf ein Signal immer gleich regiert, egal zu welcher Zeit man das System mit einem Signal stimuliert:

$$\mathcal{H}\left\{u(t-t_0)\right\} = v(t-t_0)$$

2.3 Dirac-Delta-Funktion

Die Dirca-Delta-Funktion ist definiert als Ableitung des Einheitssprungs:

$$\delta(t) = \frac{\mathrm{d}\sigma}{\mathrm{d}t}$$

Sie hat Punktweise folgende Werte:

$$\delta(t) = \begin{cases} 0 & \text{für } t \neq 0 \\ \infty & \text{für } t = 0. \end{cases}$$

Es sollte jedoch nur unter dem Integral gerechnet werden:

$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

2.3.1 Ausblendefunktion

Ist die Funktion u(t) an der Stelle t_0 stetig, so gilt:

$$\int_{-\infty}^{\infty} u(t) \cdot \delta(t - t_0) dt = u(t_0)$$

oder:

$$u(t) \cdot \delta(t - t_0) = u(t_0) \cdot \delta(t - t_0)$$

2.3.2 Verallgemeinerte Ableitung

Es ist definiert:

$$\frac{\mathrm{d}}{\mathrm{d}t}(A \cdot \sigma(t - t_0)) := A \cdot \delta(t - t_0)$$

Kapitel 3

Laplace Transformation

3.1 Definition

Definition der Laplace-Transformierten U(s) eines Signals u(t):

$$\mathcal{L}\{u(t)\} = \int_{0^{-}}^{\infty} u(t) \cdot e^{-st} dt = \lim_{a \to 0} \int_{a}^{\infty} u(t) \cdot e^{-st} dt$$

Notation:

$$u(t) \circ - U(s)$$
 , $s \in \mathbb{C}$

3.1.1 Konvergenzbereich

Die Laplace-Transformierte eines Signals existiert nicht für jedes s. Falls das Integral

$$U(s) = \int_0^\infty u(t) \cdot e^{-st} dt$$

konvergiert, so existiert die Laplace-Transformierte von u(t). Der Bereich aller Zahlen s, für welche die Laplace-Transformierte eines Signals konvergiert, den Konvergenzbereich (KB).

$$s = \sigma + \omega \cdot j$$
 , $\sigma = Re(s)$ und $\omega = Im(s)$

Somit ist der Konvergenzbereich:

$$KB = \{ s \in \mathbb{C} | Re(s) > \sigma_0 \}$$

3.2 Eigenschaften der Laplace-Transformation

Linearitätssatz

$$A \cdot u(t) + B \cdot v(t) \circ A \cdot U(s) + B \cdot V(s)$$

Ähnlichkeitssatz

$$u(a \cdot t) \circ - \frac{1}{a} \cdot U\left(\frac{s}{a}\right) \qquad , a > 0$$

Dämpfungssatz

$$e^{-a \cdot t} u(t) \circ U(s+a)$$
 , $a > 0$

Zeitverschiebungssatz

$$t(t-t_0) \cdot \sigma(t-t_0) \circ - \bullet e^{-t_0 \cdot s} \cdot U(s)$$
 , $t_0 \ge 0$

Faltungssatz

Differentiationssatz

$$\dot{u}(t) \circ - s \cdot U(s) - u(0^{-})$$

$$\ddot{u}(t) \circ - s^3 \cdot U(s) - s^2 \cdot u(0^-) - s \cdot \dot{u}(0^-) - \ddot{u}(0^-)$$

Mit Anfangsbedingung $0^- = 0$:

$$\frac{\mathrm{d}^n}{\mathrm{d}t^n}u(t) \circ \longrightarrow s^n \cdot U(s)$$

Integrationssatz

$$\int_{0^{-}}^{t} \mathrm{d}t \circ - \frac{1}{s} \cdot U(s)$$

Inverse Laplace-Transformation

$$\mathcal{L}^{-1}\{U(s)\} = u(t)$$

$$U(s) \bullet - \circ u(t)$$

Eindeutigkeitssatz:

$$U(s) = V(s) \bullet \multimap u(t) = v(t)$$
, für $t > 0$

3.3 Partialbruchzerlegung

Rationale Funktion:

$$R(s) = \frac{Z(s)}{N(s)}$$

Wobei Z(s), und N(s) Polynome in s sind. Z(s) > N(s) unecht gebrochen, Z(s) < N(s) gebrochen

In Linearfaktoren zerlegen:

$$R(s) = \frac{Z(s)}{(s - s_1)(s - s_2)\dots(s - s_m)}$$

Wobei s_1, \ldots, s_m komplexe Polstellen von R(s) sind.

3.3.1 Rationale Funktionen mit einfache Polen

$$R(s) = \frac{Z(s)}{(s - s_1)(s - s_2)\dots(s - s_m)}, s_1, \dots, s_m \text{ paarweise verschieden}$$

Es gibt komplexe Zahlen a_1, \ldots, a_m , so dass

$$R(s) = \frac{a_1}{s - s_1} + \frac{a_2}{s - s_2} + \dots + \frac{a_m}{s - s_m}$$

Bestimmung der komplexen Zahlen a_i :

$$a_i = R(s) \cdot (s - s_1)|_{s = s_i}$$

3.3.2 Rationale Funktionen mit mehrfachen Polen

$$R(s) = \frac{Z(s)}{(s-a)}, \quad a \in \mathbb{C}$$

Es gibt komplexe Zahlen a_1, \ldots, a_m , so dass

$$R(s) = \frac{a_1}{s-a} + \frac{a_2}{(s-a)^1} + \dots + \frac{a_m}{(s-a)^m}$$

Bestimmung der komplexen Zahlen a_i :

$$a_{m-i} = \frac{1}{i!} \left[\frac{\mathrm{d}^i}{\mathrm{d}s^i} R(s)(s-a)^a \right]_{s=a}$$
 $i = 0, \dots, m-1$

3.4 Lösen von Differentialgleichungen

1. Differentialgleichung in Bildbereich überführen \rightarrow algebraische Gleichung

- algebraische Gleichung im Bildraum nach der unbekannten Funktion auflösen
- 3. Bildfunktion des Eingangssignals bestimmen und in die algebraische Gleichung einsetzen
- 4. Lösung aus dem Bildraum in den Zeitraum zurück transformieren

3.5 Übertragungsgleichung LZI-Systemen

Der Zusammenhang zwischen Eingangssignal u(t) und Ausgangssignal v(t) ist durch eine lineare Differentialgleichung mit konstanten Koeffizienten beschrieben

$$a_n \cdot v^{(n)} + a_{n-1} \cdot v^{(n-1)} + \ldots + a_1 \cdot \dot{v} + a_0 \cdot v = b_m \cdot u^{(n)} + b_{n-1} \cdot u^{(n-1)} + \ldots + b_0 \cdot u$$

Da nur kausale Signale betrachtet werden, entfallen die Anfangsbedingungen:

$$a_n s^n V + a_{n-1} s^{n-1} V + \ldots + a_1 s V + a_0 V = b_m s^m U + b_{m-1} s^{m-1} U + \ldots + b_0 U$$

Nach V(s) aufgelöst ergibt dies:

$$V(s) = \underbrace{\frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}}_{G(s)} \cdot U(s)$$

Die rationale Funktion G(s) wird Übertragungsfunktion des Systems genannt. Daraus ergibt sich die Übertragungsgleichung:

$$V(s) = G(s) \cdot U(s)$$

3.6 Faltung

Die Faltung ist definiert durch:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau) \cdot g(t - \tau) d\tau$$

Die Faltung in den Bildbereich transformiert:

$$(f * g)(t) \circ - F(s) \cdot G(s)$$

Rechenregeln

- 1. Dirac-Delta ist das neutrale Element bzgl. der Faltung: $\delta(t-t_0)*g(t)=g(t-t_0)$
- 2. Kommutativität: f * g = g * f
- 3. Assoziativität: f * (g * h) = (f * g) * h
- 4. Distributivität: f * (g + h) = f * g + f * h

3.6.1 Gewichtsfunktion

Aus dem Faltungssatz ergibt sich:

$$v(t) = g(t) * u(t)$$
 , $g(t) \circ - G(s)$

g(t) wird Gewichtsfunktion genannt.

3.6.2 Impulsantwort

Die Impulsantwort ist definiert als die Antwort auf einen Einheitsimpuls $u(t) = \delta(t)$ zur Zeit t = 0.

$$v(t) = g(t) * u(t) = g(t) * \delta(t) = g(t)$$

Die Impulsantwort ist die Gewichtsfunktion.

3.6.3 Sprungantwort

Als Sprungantwort h(t) bezeichnet man die Antwort des Systems auf einen Einheitssprung $\sigma(t)$:

$$h(t) = g(t) * \sigma(t) = \mathcal{L}^{-1} \left\{ G(s) \cdot \frac{1}{s} \right\} = \int_{0^{-}}^{t} g(\tau) d\tau$$

3.6.4 Anfangswertsatz

In gewissen Situationen ist das Verhalten des Systems kurz nach dem Einschalten interessant:

$$v(0^+) = \lim_{t \searrow 0} v(t)$$

Dies kann direkt im Bildraum berechnet werden. Ist v(t) ein in t=0 sprungstetiges Signal, so existiert der Anfangswert und es gilt:

$$v(0^+) = \lim_{Re(s) \to +\infty} s \cdot V(s)$$

3.6.5 Endwertsatz

Ist der Endwert $v(\infty)$ eines Signals v(t) gefragt:

$$v(\infty) = \lim_{t \to \infty} v(t)$$

, gilt der folgende Satz:

Ist v(t) ein Signal, für welches der Endwert $v(\infty)$ existiert, so gilt:

$$v(\infty) = \lim_{s \to 0} s \cdot V(s)$$

Der Endwert existiert, wenn alle Pole der Bildfunktion V(s) links der imaginären Achse (Re(s) < 0) sind. Ausnahme ist eine einfache Polstelle bei s = 0.

3.6.6 Stabilität

Ein System ist symptotisch stabil, falls seine Impulsantwort g(t) mit $t\to\infty$ gegen Null abklingt:

$$g(\infty) = 0$$

Diese Eigenschaft ist äquivalent dazu, dass alle Polstellen der Übertragungsfunktion G(s) links der imaginären Achse liegen.

Kapitel 4

Fourier-Transformation

Kapitel 5

Teilsysteme

5.1 Flühlersche Regel

Minuszeichen bei Summenpunkten können verschoben werden. Dadurch werden die Vorzeichen von nachfolgenden Summenpunkten invertiert. Berechnungsprinzip:

$$G(s) = \frac{P_{V1} + P_{V2} + \dots}{1 + P_{R1} + P_{R2} \dots}$$

 P_V : Vorwärts laufende Pfade P_R : Rückwärts laufende Pfade