In [2]:

```
import numpy as np
import pandas as pd
```

1. Create any Series and print the output

```
In [6]:
```

```
a=pd.Series([6,7,8,9,10])
a

Out[6]:

0    6
1    7
2    8
3    9
4    10
dtype: int64
```

2. Create any dataframe of 10x5 with few nan values and print the output

In [15]:

```
a=pd.DataFrame(
{
     "A":45,
     "B":21,
     "C":pd.Series(np.nan,index=list(range(10))),
     "D":90
})
a
```

Out[15]:

```
        A
        B
        C
        D

        0
        45
        21
        NaN
        90

        1
        45
        21
        NaN
        90

        2
        45
        21
        NaN
        90

        3
        45
        21
        NaN
        90

        4
        45
        21
        NaN
        90

        5
        45
        21
        NaN
        90

        6
        45
        21
        NaN
        90

        7
        45
        21
        NaN
        90

        8
        45
        21
        NaN
        90

        9
        45
        21
        NaN
        90
```

3. Display top 7 and last 6 rows and print the output

In [17]:

```
print(a.head(7))
print(a.tail(6))
             C
                 D
    Α
        В
   45
       21 NaN
0
                90
1
   45
       21 NaN
                90
2
   45
       21 NaN
                90
3
   45
       21 NaN
                90
4
   45
       21 NaN
                90
   45
       21 NaN
5
                90
6
   45
       21 NaN
               90
        В
            C
    Α
                 D
4
   45
       21 NaN
                90
5
   45
       21 NaN
                90
   45
       21 NaN
6
                90
7
   45
       21 NaN
                90
   45
       21 NaN
                90
8
9
   45
       21 NaN
                90
```

4. Fill with a constant value and print the output

In [21]:

```
a.fillna(value=30)
```

Out[21]:

	Α	В	С	D
0	45	21	30.0	90
1	45	21	30.0	90
2	45	21	30.0	90
3	45	21	30.0	90
4	45	21	30.0	90
5	45	21	30.0	90
6	45	21	30.0	90
7	45	21	30.0	90
8	45	21	30.0	90
9	45	21	30.0	90

5. Drop the column with missing values and print the output

In [23]:

```
a.dropna(axis=1)
```

Out[23]:

	Α	В	ט
0	45	21	90

- **1** 45 21 90
- **2** 45 21 90
- **3** 45 21 90
- **4** 45 21 90
- **5** 45 21 90
- **6** 45 21 90
- **7** 45 21 90
- **8** 45 21 90
- 9 45 21 90
- 6. Drop the row with missing values and print the output

In [25]:

a.dropna()

Out[25]:

A B C D

7. To check the presence of missing values in your dataframe

```
In [26]:
```

```
a.isna()
```

Out[26]:

	Α	В	С	D
0	False	False	True	False
1	False	False	True	False
2	False	False	True	False
3	False	False	True	False
4	False	False	True	False
5	False	False	True	False
6	False	False	True	False
7	False	False	True	False
8	False	False	True	False
9	False	False	True	False

8. Use operators and check the condition and print the output

In [39]:

```
c=np.arange(1,20)
e=c[(c>5)&(c<10)]
print(e)</pre>
```

[6 7 8 9]

9. Display your output using loc and iloc, row and column heading

In [34]:

```
print(a.loc[0:2])
print(a.iloc[0:2])

A B C D
```

```
45
       21 NaN
                90
0
   45
       21 NaN
                90
1
   45
       21 NaN
                90
        В
            C
                 D
    Α
   45
       21 NaN
                90
1
   45
       21 NaN
                90
```

10. Display the statistical summary of data

In [31]:

a.describe()

Out[31]:

	Α	В	С	D
count	10.0	10.0	0.0	10.0
mean	45.0	21.0	NaN	90.0
std	0.0	0.0	NaN	0.0
min	45.0	21.0	NaN	90.0
25%	45.0	21.0	NaN	90.0
50%	45.0	21.0	NaN	90.0
75%	45.0	21.0	NaN	90.0
max	45.0	21.0	NaN	90.0

In []: