应用高等工程数学

——矩阵论 & 数值分析

任课老师:徐海涛

hxumath@hust.edu.cn

Fall 2019

Syllabus

《应用高等工程数学》课程

- 开设时间: 第 2 周—第 13 周, 共 12 周
- 内容包括:
 - 矩阵论 (约 4 周)
 - 数值分析 (约 8 周)
- 成绩构成: 期末考试
- 参考教材:
 - 自由参考矩阵论教材,如(戴华),(张贤达)等等
 - 建议《数值分析》(李红),会推荐上面习题
- 联系邮箱: hxumath@hust.edu.cn

Preliminaries

建议预备知识

- 集合论
 - 集合的交, 并, 子集和补集, 常见空间、数域等;
- 线性代数
 - 矩阵的运算,矩阵的性质,特征值和特征空间 等等;
- 微积分
 - 微分和积分的含义与运算,幂级数,Taylor展开公式等
- 编程知识初步
- 其他数学初步知识

矩阵论大致内容

- 线性空间和线性变换
 - 线性空间的定义和基本性质;
 - 基底, 坐标和变换矩阵;
 - 线性变换及其矩阵表示;
 - 子空间及不变子空间;
 - 特征值和特征向量,可对角化;
- 方阵的相似化简
 - 特征多项式和最小多项式;
 - Jordan 标准形
 - 可对角化和相似的条件

第一章:线性空间和线性变换

§1.1 线性空间

定义:设

- V 是一个非空集合
- F 是一个数域 (常用实数域 \mathbb{R} , 或复数域 \mathbb{C}) 对 V 中任意两个元素 α , β , 定义如下运算:
 - 加法运算: $\alpha + \beta \in V$, $(\alpha + \beta)$ 记作 $\alpha = \beta$ 的和)
- 数乘运算:
 kα ∈ V, k ∈ F, (kα 记作 k 与 α 的数积)
 这两种运算 (称为 V 的线性运算) 如果满足以下条件, 那么称 V 是 F 上的线性空间.

线性运算满足的条件

- (1) 对于任意 $\alpha, \beta \in V$, 有 $\alpha + \beta = \beta + \alpha$, (加法交换律)
- (2) 对于任意 $\alpha, \beta, \gamma \in V$, 有 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$, (加法结合律)
- (3) 存在零元 $0 \in V$, 使得对任意 $\alpha \in V$, 都有 $\alpha + 0 = \alpha$, (加法零元)
- (4) 对于任意 $\alpha \in V$, 存在负元 $-\alpha \in V$, 使得 $\alpha + (-\alpha) = 0$, (加法负元)

线性运算满足的条件(续)

- (5) 对于任意 $k \in F$ 和 $\alpha, \beta \in V$,有 $k(\alpha + \beta) = k\alpha + k\beta$, (乘法分配律 V)
- (6) 对于任意 $k, l \in F$ 和 $\alpha \in V$, 有 $(k+l)\alpha = k\alpha + l\alpha$, (乘法分配律 F)
- (7) 对于任意 $k, l \in F$ 和 $\alpha \in V$,有 $k(l\alpha) = (kl)\alpha$,(乘法结合律)
- (8) F 中的数 1, 使得对任意 $\alpha \in V$, 有 $1\alpha = \alpha$, (乘法数 1)

线性运算满足的条件(简)

- (1) (加法交换律)
- (2) (加法结合律)
- (3) (加法零元)
- (4) (加法负元)
- (5) (乘法分配律 V)
- (6) (乘法分配律 F)
- (7) (乘法结合律)
- (8) (乘法数 1)

线性空间的定义 (继续)

当以上条件满足时, V 称为 F 上的<mark>线性空间</mark> (或向量空间), 记为 V(F). 称 V 中的元素为向量.

- 当 F 为实数域 \mathbb{R} 时,对应的空间 $V(\mathbb{R})$ 称为 实线性空间;
- 当 F 为复数域 ℂ 时,对应的空间 V(ℂ) 称为 复线性空间;

简单的例子 (条件很容易验证, HW)

- V = F = ℝ, 运算取实数间的加法和乘法;
- V = F = C, 运算取为复数间的加法和乘法;
- $F = \mathbb{R}$, $V = \mathbb{R}^2$, 加法和数乘取一般向量的加法和数乘,则 V(F) 是常见的 2 维向量空间.

多项式的定义

设 $a_i \in F$, $0 \le i \le m$, t 是变量,则

$$P(t) = a_m t^m + a_{m-1} t^{m-1} + \dots + a_1 t + a_0$$

称为 F 上的一个多项式.

- 当 $a_m \neq 0$ 时, $a_m t^m$ 称为多项式的<mark>首项</mark>,此时 P(t) 称为 m 次多项式. 特别的,当 $a_m = 1$ 时,P(t) 称为 m 次的首一多项式.
- 系数全为 0 的多项式称为零多项式,记作 0. 注意:零多项式不讨论其次数,零多项式不同于零次多项式。

线性空间例 1

例 1.

- 实数域 ℝ 上的<mark>多项式全体</mark>,按通常意义的多项式加法及数与多项式乘法,构成一个实线性空间,记为 **P**(t).
- 如果只考虑次数不大于 n 的多项式全体, 再添加零多项式所成的集合,对于通常意义 的多项式加法及数与多项式乘法,也构成一 个实线性空间,记为 P_n(t).

线性空间例 2

例 2.

对实数域 $F = \mathbb{R}$ 和正实数集 $V = \mathbb{R}_+$ 定义加法和数乘运算如下

• 加法: $\alpha, \beta \in \mathbb{R}_+$,

$$\alpha \oplus \beta = \alpha \beta$$

• 数乘: $k \in \mathbb{R}$, $\alpha \in \mathbb{R}_+$,

$$\mathbf{k} \circ \alpha = \alpha^{\mathbf{k}}$$

则 \mathbb{R}_+ 成为 \mathbb{R} 上的线性空间.

注意:对于如上定义的线性运算,这里

- \mathbb{R}_+ 中的零元其实是实数1, 因为 $1 \oplus \alpha = \alpha$;
- $\alpha \in \mathbb{R}_+$ 中的负元是实数 $\frac{1}{\alpha}$, 因为 $\alpha \oplus \frac{1}{\alpha} = 1$.

线性空间基本性质

- (1) 零元是唯一的;
- (2) 对任意 α ∈ V, 它的负元是唯一的.
 从而可以定义 V 中任意两个元素 α, β
 的减法 (记为 "–")

$$\alpha - \beta := \alpha + (-\beta)$$

• (3) 对任意 $\alpha \in V$, (这里 $0 \in F$, $-1 \in F$)

$$0\alpha = 0, \quad (-1)\alpha = -\alpha$$

对任意 $k \in F$, (这里 $0 \in V$)

$$k0 = 0.$$

线性组合

定义: 若 $\alpha_1, \alpha_2, ..., \alpha_m \in V(F)$, $k_1, k_2, ..., k_m \in F$, 则

$$\beta := \mathbf{k}_1 \alpha_1 + \mathbf{k}_2 \alpha_2 + \dots + \mathbf{k}_m \alpha_m = \sum_{i=1}^m \mathbf{k}_i \alpha_i$$

是 V(F) 中的元素, 称为 $\alpha_1, \alpha_2, ..., \alpha_m$ 的一个线性组合, 或称 β 可由 $\alpha_1, \alpha_2, ..., \alpha_m$ 线性表出.

• 例子: $2t^2 + 3t + 4$ 是 t^2 , t, t 的线性组合, 也是 $t^2 + 1$, t + 2 的线性组合, 但是不能写成 t, t 的线性组合, 也不能写成 t^2 , t 的线性组合

线性相关与线性无关

定义: V 中的向量组 $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ $(m \ge 1)$ 称为线性相关的,如果存在一组不全为零的数 $k_1, k_2, ..., k_m$,使得

$$\sum_{i=1}^{m} k_i \alpha_i = 0 \tag{1}$$

反之,若等式 (1) 只在 $k_1 = k_2 = ... = k_m = 0$ (系数全为零) 时成立,则称向量组 $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ 是线性无关的.

线性相关与线性无关(续)

注:

- (1) 当 m > 1 时,向量组 $\{\alpha_1, \alpha_2, ..., \alpha_m\}$ 线性相关的充要条件是,其中至少有一个向量 $\alpha_j (1 \le j \le m)$ 可由组中其他向量线性表出.
- (2) 若某向量组线性无关,则它的任一子向量组 必线性无关;而若某向量组中有一个子向量组线性相关,那么该向量组必线性相关.
- (3) 单个零向量组 $\{0\}$ 是线性相关的, 但单个 非零向量组 $\{\alpha\}(\alpha \neq 0)$ 是线性无关的.

线性空间的维数

定义: 线性空间 V 中,称最大线性无关向量的个数为 rr V 的维数, 记为 dim(V).

- 如果在 V 中能找到无限多个线性无关的向量,则称 V 是无限维的;
- 如果在 V 中只能找到最多 n 个 (n 有限) 线性无关的向量,则称 V 是n 维的;
 此时 n 维线性空间 V 记作 Vⁿ.

例 1.

• 3 维向量组成的线性空间 \mathbb{R}^3 , 线性无关向量 $e_1 = (1,0,0)^T$, $e_2 = (0,1,0)^T$, $e_3 = (0,0,1)^T$, 且任一向量 $(a_1,a_{2,3})$ 可由这三个线性表出.

线性空间的维数 (续)

例 2.

• $m \times n$ 矩阵组成的线性空间 $F^{m \times n}$ 是 $m \times n$ 维的, $F^{m \times n}$ 中的任一矩阵 $A = [a_{ij}]$ 可表示为

$$A = [a_{ij}] = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij}$$

其中 E_{ij} 定义为第 i 行第 j 列元素为 1 ,其余元素为 0 的 $m \times n$ 矩阵.

其中, $\{E_{ij}\}_{1 \leq i \leq m, 1 \leq j \leq n}$ 这 mn 个矩阵是线性无关的.

例 3.

- 全体多项式组成的空间P(t)是无限维的,因为其中 $\{1, t, t^2, ..., t^n, ...\}$ 无限多个都是线性无关的.
- 多项式空间 $P_n(t)$ 是 (n+1) 维的,因为其中有 $\{1, t, t^2, ..., t^n\}$ (n+1) 个多项式是线性无关的,而且任一次数不大于 n 的多项式都可由这 (n+1) 个多项式线性表出.

注意: 若 V 中能找到 m 个线性无关的向量,则

$$\dim(V) \ge m$$

任一向量都可以由同样 m 个向量线性表出,则 $\dim(V) \leq m$.

线性空间的基

定义: V^n 中给定顺序的 n 个线性无关的向量 $\alpha_1, \alpha_2, ..., \alpha_n$ 所组成的向量组称为 V^n 的一组基(或基底), 记为 $\mathcal{B} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$. \mathcal{B} 中的向量 α_i $(1 \le i \le n)$ 称为第 i 个基向量.

几个例子 (通常的加法和乘法定义)

- \mathbb{R}^3 中的一组基为 $\mathcal{B} = \{e_1, e_2, e_3\} = \{(1, 0, 0)^T, (0, 1, 0)^T, (0, 0, 1)^T\}.$
- $F^{m \times n}$ 中的一组基为 $\mathcal{B} = \{E_{ij}, 1 \le i \le m, 1 \le j \le n\}.$
- 考虑 $V = \mathbb{C}$, $F = \mathbb{C}$, 则 {1} 是它的基, 1 维. 如果 $V = \mathbb{C}$, $F = \mathbb{R}$, 则 {1, i} 是它的基, 2 维.

定理: 设 \mathcal{B} 是 V^n 的一组基,则 V 中任一向量都可以由 \mathcal{B} 唯一表示.

证明: 设 $\mathcal{B} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$, 对于任意 $\xi \in V$, 则 (n+1) 个向量 $\alpha_1, \alpha_2, ..., \alpha_n, \xi$ 必线性相关. 所以存在不全为零的数 $k_1, k_2,, k_n, k_{n+1}$ 使得

$$\sum_{i=1}^n k_i \alpha_i + k_{n+1} \xi = 0.$$

这里 k_{n+1} 必不为零: 因为如果 $k_{n+1} = 0$, 则存在不全为零的 k_j $(1 \le j \le n)$ 使得 $\sum_{i=1}^n k_i \alpha_i = 0$, 但这与 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性无关矛盾, 故 $k_{n+1} \ne 0$. 于是有 $\xi = \sum_{i=1}^n (-\frac{k_i}{k_{n+1}})\alpha_i$ 可被线性表出.

定理: 设 \mathcal{B} 是 V^n 的一组基,则 V 中任一向量都可以由 \mathcal{B} 唯一表示.

证明 (**续**): 接下来证明<mark>线性表示的唯一性</mark>. 假设 ξ 由 β 有两种表示

$$\xi = \sum_{i=1}^{n} x_i \alpha_i = \sum_{i=1}^{n} y_i \alpha_i.$$

那么 $\sum_{i=1}^{n} (x_i - y_i) \alpha_i = 0$. 因为 $\alpha_1, \alpha_2, ..., \alpha_n$ 线性 无关,必有 $x_1 - y_1 = x_2 - y_2 = ... = x_n - y_n = 0$, 即 $x_i = y_i$ ($i \le i \le n$),表示唯一. 证毕.

由定理可知,设在 V^n 中取一组基 \mathcal{B} ,则 V 中任一向量 ξ ,都存在唯一的一组数 $x_1, x_2, ..., x_n$,使得

$$\xi = \sum_{i=1}^{n} x_i \alpha_i$$

写成矩阵形式

$$\xi = (\alpha_1, \alpha_2, ..., \alpha_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \mathcal{B}X.$$

- $(\alpha_1, \alpha_2, ..., \alpha_n)$ 代表的矩阵仍记为 \mathcal{B} .
- $X = (x_1, x_2, ..., x_n)^T$ 称为 ξ 在基 \mathcal{B} 下的<mark>坐标</mark> 向量 (坐标), x_i 称为 ξ 在 \mathcal{B} 下的第 i 个坐标.

例 1:

在 $\mathbf{P}_2(t)$ 中取基 $\mathcal{B}_1 = \{1, t, t^2\}$, 则多项式

$$P(t) = 2t^2 - t + 1$$
 在基 \mathcal{B}_1 下的坐标是 $(1, -1, 2)^T$.

$$2t^2 - t + 1 = 1 \cdot 1 + t \cdot (-1) + t^2 \cdot 2 = (1, t, t^2) \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$$

在
$$\mathbf{P}_{2}(t)$$
 中取另一组基 $\mathbf{\mathcal{B}}_{2} = \{t+1, t+2, t^{2}\},\ 2t^{2} - t + 1 = (t+1) \cdot (-3) + (t+2) \cdot 2 + t^{2} \cdot 2 = (t+1, t+2, t^{2}) \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}.$

多项式 P(t) 在基 \mathcal{B}_2 下的坐标是 $(-3,2,2)^{\mathsf{T}}$.

例 2:

 $\mathbb{R}^{n \times n}$ 中的任一可逆矩阵 P, 其 n 个列向量 $P_1, P_2, ..., P_n \in \mathbb{R}^n$ 构成 \mathbb{R}^n 的基.

- P₁, P₂, ..., P_n 线性无关;
- \mathbb{R}^n 中的任一向量 y, 都能写成

$$y = P(P^{-1}y) = Px = \sum_{i=1}^{n} P_i x_i.$$

即 y 能被 P 的列向量线性表出, 其中这里的 坐标 x 满足 $x = P^{-1}y$.

注: 由 \mathbb{R}^n (或 \mathbb{C}^n) 的一组基作为列向量排列成的 n 阶方阵是可逆的.

引入"坐标"的好处:

- 在 Vⁿ 中取定一组基 B,则存在——对应
 Vⁿ 中任一元素 α ⇔ α 在 B 下的坐标 x ∈ Fⁿ 关于 Vⁿ 的问题可以转化为关于 Fⁿ 的问题,
- 例子: 考虑 $P_2(t)$ 的基 $\mathcal{B} = \{t+1, t+2, t^2\}$. $P_1(t) = 2t^2 t + 1$ 的坐标为 $x_1 = (-3, 2, 2)^T$, $P_2(t) = t^2 t + 1$ 的坐标为 $x_2 = (-3, 2, 1)^T$. 那么关于 $P_1(t)$ 和 $P_2(t)$ 的运算就是关于 x_1 和 x_2 的运算,如

$$3P_1(t)+2P_2(t) = \mathcal{B}(3x_1+2x_2) = \mathcal{B}(-15, 10, 8)^T.$$

两组基的变换关系

设 $\mathcal{B}_{\alpha} = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ 和 $\mathcal{B}_{\beta} = \{\beta_1, \beta_2, ..., \beta_n\}$ 是 V^n 的两个基,则每个 β_i $(1 \le j \le n)$ 都可由 \mathcal{B}_{α} 线 性表出:

$$\beta_{j} = \sum_{i=1}^{n} \alpha_{i} p_{ij} = (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) \begin{pmatrix} p_{1j} \\ p_{2j} \\ \vdots \\ p_{nj} \end{pmatrix}.$$
 将 β_{j} 按 $j = 1, 2, ..., n$ 的顺序排列,则

$$(\beta_{1}, \beta_{2}, ..., \beta_{n}) = (\alpha_{1}, \alpha_{2}, ..., \alpha_{n}) \begin{pmatrix} p_{11} & p_{12} & ... & p_{1n} \\ p_{21} & p_{22} & ... & p_{2n} \\ ... & ... & ... & ... \\ p_{n1} & p_{n2} & ... & p_{nn} \end{pmatrix}.$$

这个变换关系, 简写为

$$\mathcal{B}_{\beta} = \mathcal{B}_{\alpha} P$$

其中方阵 $P = [p_{ij}]$ 称为由 \mathcal{B}_{α} 到 \mathcal{B}_{β} 的<mark>变换矩阵 (或过渡矩阵)</mark>. 其中 P 矩阵的第 j 个列向量 P_{j} 就是 \mathcal{B}_{β} 中第 j 个向量 β_{j} 在 \mathcal{B}_{α} 下的坐标.

设 ξ 在基 \mathcal{B}_{α} 和基 \mathcal{B}_{β} 下的坐标分别为 x 和 y, 即

$$\xi = \mathcal{B}_{\alpha} \mathbf{x} = \mathcal{B}_{\beta} \mathbf{y}$$

利用变换矩阵, 可写成x = Py 或 $y = P^{-1}x$, 这称为在不同基 \mathcal{B}_{α} 和 \mathcal{B}_{β} 下的坐标变换公式.

例 1: 已知
$$\mathcal{R}^3$$
 的两个基是

$$\mathcal{B}_1 = \left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\},$$
 $\mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\},$
求中 \mathcal{B}_1 到 \mathcal{B}_2 的实场年程中

求由 \mathcal{B}_1 到 \mathcal{B}_2 的变换矩阵 P.

$$\mathbf{m}$$
: 若 $\mathcal{B}_2 = \mathcal{B}_1 P$, 那么 $P = (\mathcal{B}_1)^{-1} \mathcal{B}_2$, 即 $P =$

$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} -2 & -1 & -1 \\ -1 & -1 & 0 \\ 2 & 1 & 2 \end{pmatrix}.$$

例 2: 已知 \mathcal{R}^3 的两个基是

$$\mathcal{B}_{1} = \{e_{1}, e_{2}, e_{3}\} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$
(标准基) 和 $\mathcal{B}_{2} = \left\{ \begin{pmatrix} -3\\-7\\1 \end{pmatrix}, \begin{pmatrix} 3\\6\\1 \end{pmatrix}, \begin{pmatrix} -2\\-3\\2 \end{pmatrix} \right\}$,

求在这两组基下坐标相同的所有向量.

解: 若
$$\xi = \mathcal{B}_1 x = \mathcal{B}_2 x$$
, 那么 $(\mathcal{B}_1 - \mathcal{B}_2) x = 0$, 因为 $\mathcal{B}_1 - \mathcal{B}_2 = \begin{pmatrix} 4 & -3 & 2 \\ 7 & -5 & 3 \\ -1 & -1 & -1 \end{pmatrix}$ 可逆, 所以 $x = 0$.

线性空间的子空间

定义: 设 W 是线性空间 V 的一个非空子集,如果 W 关于 V 中的线性运算也构成线性空间,则称 W 为 V 的子空间,记为 $W \subset V$.

- $W_1 = V$ 和 $W_2 = \{0\}$ 都是 V 的子空间,这两个被称为 V 的平凡子空间。
- 若 $\alpha_1, \alpha_2, ..., \alpha_r$ (r > 1) 是 V 的 r 个向量, 它 们所有可能的线性组合记为

$$\mathsf{span}\{\alpha_1,\alpha_2,...,\alpha_r\} := \{\alpha \in V | \alpha = \sum_{i=1}^r k_i \alpha_i\}$$

是 V 的一个子空间,称为 $\alpha_1, \alpha_2, ..., \alpha_r$ 张成的子空间.

例 1: 给定 $A \in \mathbb{R}^{m \times n}$, 则

$$N(A) := \{ x \in \mathbb{R}^n | Ax = 0 \},$$

 $R(A) := \{ y \in \mathbb{R}^m | y = Ax, x \in \mathbb{R}^n \}$

分别是 \mathbb{R}^n 和 \mathbb{R}^m 的子空间,称为 A 的零空间和列空间。

例 2: Rn×n 中所有对称矩阵组成的集合

$$F := \{A \in \mathbb{R}^{n \times n} | A^T = A\}$$

是 $\mathbb{R}^{n \times n}$ 的一个子空间,

例 3: 对于 $\mathbb{C}^{n\times n}$ 中矩阵 A, 定义 $A^H:=\overline{A^T}=(\bar{A})^T$ 为 A 的共轭转置.

例如,若
$$A = \begin{pmatrix} 2+i & 3i & -1-2i \\ -5 & 2-i & 1+i \end{pmatrix}$$
,则 $A^H = \begin{pmatrix} 2-i & -3i & -1+2i \\ -5 & 2+i & 1-i \end{pmatrix}^T = \begin{pmatrix} 2-i & -5 \\ -3i & 2+i \\ -1+2i & 1-i \end{pmatrix}$.
若在 $\mathbb{C}^{n\times n}$ 中 $A = A^H$,则称 A 为Hermite 矩阵,

 $\mathbb{C}^{n\times n}$ 中所有 Hermite 矩阵组成的集合

$$F := \{ A \in \mathbb{C}^{n \times n} | A^H = A \}$$

是 $\mathbb{C}^{n\times n}$ 的一个子空间. (类似 $\mathbb{R}^{n\times n}$ 中对称矩阵)

定理: 设 W 是 V'' 的一个 r 维子空间, $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ 是 W 的一组基, 则这 r 个向量必可扩充为 V'' 的基, 即在 V'' 中一定可以找到 (n-r) 个向量 $\alpha_{r+1}, \alpha_{r+2}, ..., \alpha_n$, 使 $\{\alpha_1, \alpha_2, ..., \alpha_r, \alpha_{r+1}, ..., \alpha_n\}$ 是 V'' 的一组基.

证明: 若 r = n, 则定理得证. 若 r < n, 则 V^n 中必存在某向量 α_{r+1} 不能由 $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ 线性表出, 于是 $\alpha_1, \alpha_2, ..., \alpha_r, \alpha_{r+1}$ 彼此线性无关.

- 若 r < n 1, 则可以经过 (n r) 步, 扩充得 线性无关向量组, $\{\alpha_1, \alpha_2, ..., \alpha_r, \alpha_{r+1}, ..., \alpha_n\}$, 构成 V^n 的一组基.

子空间的交与和

定义: 设 W_1 和 W_2 是 V 的两个子空间, 则

$$W_1 \cap W_2 := \{ \xi \in V | \xi \in W_1, \xi \in W_2 \},$$

$$W_1 + W_2 := \{ \xi \in V | \xi = \xi_1 + \xi_2, \xi_1 \in W_1, \xi_2 \in W_2 \}$$

分别称为 W_1 与 W_2 的交, W_1 与 W_2 的和.

定理: 若 W_1 , W_2 是 V 的两个子空间, 则

$$W_1 \cap W_2$$
, $W_1 + W_2$

都是 V 的子空间.

定理: 设 W_1, W_2 是 V 的两个子空间,则

$$\dim(W_1+W_2)+\dim(W_1\cap W_2)=\dim W_1+\dim W_2$$

证明: 设 $\dim(W_1 \cap W_2) = r$, $\dim W_1 = n_1$, $\dim W_2 = n_2$. 若 $\mathcal{B}_0 = \{\alpha_1, \alpha_2, ..., \alpha_r\}$ 是 $W_1 \cap W_2$ 的一组基, 因为 $(W_1 \cap W_2) \subset W_i$ (i = 1, 2), 所以 $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ 可以扩充为 W_1 的基

$$\mathcal{B}_1 = \{\alpha_1, \alpha_2, ..., \alpha_r, \beta_1, ..., \beta_{n_1-r}\},\$$

又可以扩充为 W_2 的基

$$\mathcal{B}_2 = \{\alpha_1, \alpha_2, ..., \alpha_r, \gamma_1, ..., \gamma_{n_2-r}\}.$$

我们要证明 $W_1 + W_2$ 的一组基由 $\mathcal{B}_3 = \{\alpha_1, \alpha_2, ..., \alpha_r, \beta_1, ..., \beta_{n_1-r}, \gamma_1, ..., \gamma_{n_2-r}\}$ 组成.

证明 (续): 先证明 \mathcal{B}_3 中的向量彼此线性无关. 若有等式成立

$$\sum_{i=1}^{r} x_{i} \alpha_{i} + \sum_{i=1}^{n_{1}-r} y_{i} \beta_{i} + \sum_{i=1}^{n_{2}-r} z_{i} \gamma_{i} = 0,$$

则令 $\tilde{\xi} := \sum_{i=1}^{r} x_i \alpha_i + \sum_{i=1}^{n_1-r} y_i \beta_i = -\sum_{i=1}^{n_2-r} z_i \gamma_i$. 由第一个等号 $\tilde{\xi} \in W_1$,由第二个等号 $\tilde{\xi} \in W_2$,于是 $\tilde{\xi} = W_1 \cap W_2$,可被 \mathcal{B}_0 表出 $\tilde{\xi} = \sum_{i=1}^{r} w_i \alpha_i$.

$$\sum_{i=1}^{r} w_i \alpha_i + \sum_{i=1}^{n_2 - r} z_i \gamma_i = \tilde{\xi} - \tilde{\xi} = 0$$

因为 \mathcal{B}_2 是一组基, 故 w_i 和 z_i 都为零, 即 $\xi = 0$. 也就是说, x_i, y_i, z_i 都为零, \mathcal{B}_3 中的向量线性无关.

证明 (续): 再证明 $W_1 + W_2$ 中任一向量可由 \mathcal{B}_3 线件表出.

根据和空间 $W_1 + W_2$ 的定义, 其中任一向量 ξ 可写成 $\xi = \xi_1 + \xi_2$. 其中 $x_1 \in W_1$, $x_2 \in W_2$.

- x₁ ∈ W₁, 且可由 β₁ 线性表出;
- x₂ ∈ W₂, 且可由 B₂ 线性表出.

于是, $\xi = \xi_1 + \xi_2$ 可由 $\mathcal{B}_1 \cup \mathcal{B}_2 = \mathcal{B}_3$ 线性表出. 又因为 \mathcal{B}_3 线性无关, 因此构成 $W_1 + W_2$ 的一组基. 证毕.

 $W_1 = \text{span}\{\alpha_1 = (1, 1, 0, 0)^T, \alpha_2 = (0, 1, 1, 0)^T\},$ $W_2 = \text{span}\{\alpha_3 = (0, 0, 1, 1)^T, \alpha_4 = (1, 0, 0, 1)^T\},$ 求 $W_1 + W_2$ 及 $W_1 \cap W_2$ 的基和维数.

解: $\alpha_1, \alpha_2, \alpha_3$ 线性无关, $\dim(W_1 + W_2) \geq 3$. 又因 $\alpha_1 + \alpha_3 = \alpha_2 + \alpha_4$, 故 $\dim(W_1 + W_2) \leq 3$. 所以 $\dim(W_1 + W_2) = 3$, 一组基为 $\{\alpha_1, \alpha_2, \alpha_3\}$.

由定理知 $\dim(W_1 \cap W_2) = 2 + 2 - 3 = 1$, 另外由 $\alpha_1 - \alpha_2 = \alpha_4 - \alpha_3 = (1, 0, -1, 0)^T$, 知 $(1, 0, -1, 0)^T$ 是 $W_1 \cap W_2$ 的基. 注: 和空间 $W_1 + W_2$ 的定义仅表示, 其中任一向量 ξ 可以表示为

$$\xi = \xi_1 + \xi_2, \quad \xi_1 \in W_1, \xi_2 \in W_2,$$

但这种表示不一定是唯一的. 即可能有

$$\xi = \xi_1 + \xi_2 = \xi_3 + \xi_4, \quad \xi_1, \xi_3 \in W_1, \xi_2, \xi_4 \in W_2,$$

例如,考虑 \mathbb{R}^3 的子空间

$$W_1 = \text{span}\{\alpha_1 = (1,0,0)^T, \alpha_2 = (0,1,1)^T\},\$$
 $W_2 = \text{span}\{\alpha_3 = (1,1,0)^T, \alpha_4 = (0,0,1)^T\},\$
则在 \mathbb{R}^3 中 $0 = 0 + 0 = (\alpha_1 + \alpha_2) + (-\alpha_3 - \alpha_4).$
(另: 这与向量在基下的坐标唯一并不矛盾.)

40 / 44

定义: 若 $W_1 + W_2$ 中任一向量只能<mark>唯一</mark>的分解为 W_1 中的一个向量与 W_2 中的一个向量之和,则 $W_1 + W_2$ 称为 W_1 与 W_2 的直和,记为 $W_1 \oplus W_2$.

- 根据定义, W₁ 与 W₂ 的直和首先是 W₁ 与 W₂ 的和空间, 反之则不然.
- 两个线性子空间的交、和与直和,可以推广到多个子空间的交、和与直和。例如:子空间的交, $W_1 \cap W_2 \cap ... \cap W_m = \bigcap_{i=1}^m W_i$,子空间的和, $W_1 + W_2 + ... + W_m = \sum_{i=1}^m W_i$,子空间的直和, $W_1 \oplus W_2 \oplus ... \oplus W_m = \bigoplus_{i=1}^m W_i$.

定理: $W_1 + W_2 = W_1 \oplus W_2$ 的充分必要条件是下列条件之一满足:

- (1). $W_1 \cap W_2 = \{0\};$
- (2). 若 $\xi_1 + \xi_2 = 0$, $\xi_1 \in W_1$, $\xi_2 \in W_2$, 则 $\xi_1 = \xi_2 = 0$;
- (3). $\dim(W_1 + W_2) = \dim W_1 + \dim W_1$.

证明: 易证 (1)(2)(3) 三个条件等价, 只证明 (1). 充分条件: 如果 $W_1 \cap W_2 = \{0\}$ 且 $\xi = \xi_1 + \xi_2 = \xi_3 + \xi_4$, $\xi_1, \xi_3 \in W_1, \xi_2, \xi_4 \in W_2$, $\xi_1 - \xi_3 = \xi_4 - \xi_2 \in W_1 \cap W_2$, 有 $\xi_1 = \xi_3$, $\xi_2 = \xi_4$. 即 ξ 对 W_1 , W_2 的分解唯一, $W_1 + W_2 = W_1 \oplus W_2$.

证明 (续): 必要条件:

如果 $W_1 + W_2 = W_1 \oplus W_2$ 且 $\xi \in W_1 \cap W_2$, 因为同时 $-\xi \in W_1 \cap W_2$ 和 $0 \in W_1 \cap W_2$. 所以有

$$0 = 0 + 0 = \xi + (-\xi).$$

又因为 $W_1 + W_2 = W_1 \oplus W_2$, 而 0 关于 W_1, W_2 的分解应当唯一, 所以 $\xi = 0$, 即 $W_1 \cap W_2 = \{0\}$.

定理: 设 V_1 是 V^n 的一个子空间, 则必存在 V^n 的子空间 V_2 , 使得 $V_1 \oplus V_2 = V^n$.

证明: 设 dim $V_1 = r$, 且 $\{\alpha_1, \alpha_2, ..., \alpha_r\}$ 是 V_1 的一组基,则它可扩充为 V^n 的基

$$\{\alpha_1, \alpha_2, ..., \alpha_r, \alpha_{r+1}, ..., \alpha_n\}.$$

另

$$V_2 = \operatorname{span}\{\alpha_{r+1}, ..., \alpha_n\},$$

则 V₂ 即满足条件.