Определение линейного оператора.

Определение 1.1. *Линейным оператором* в векторном пространстве V (эндоморфизмом пространства V) называется отображение $\mathcal{A}\colon V\to V$, удовлетворяющее условиям:

- 1. $\mathcal{A}(x+y) = \mathcal{A}x + \mathcal{A}y$ для любых $x, y \in V$;
- 2. $\mathcal{A}(\lambda x) = \lambda \mathcal{A}x$ для любых $x \in V$, $\lambda \in F$.

Множество всех линейных операторов в пространстве V будем обозначать $\operatorname{End}(V)$.

Перечислите операции в множестве End(X).

Операции в множестве $\operatorname{End}(X)$ включают:

- 1. Сложение операторов: Для любых двух операторов $A,B\in \mathrm{End}(X)$, их сумма A+B определяется как оператор, который каждому вектору $x\in X$ ставит в соответствие вектор (A+B)(x)=A(x)+B(x).
- 2. Умножение оператора на скаляр: Для любого скаляра λ из поля и оператора $A\in \mathrm{End}(X)$, произведение λA это оператор, который каждому вектору x ставит в соответствие $(\lambda A)(x)=\lambda(A(x))$.
- 3. Умножение операторов (композиция): Для любых двух операторов $A,B\in \mathrm{End}(X)$, их произведение AB определяется как композиция $A\circ B$, где (AB)(x)=A(B(x)) для всех $x\in X$. Эта операция также известна как композиция операторов.
- 4. **Транспонирование**: Если рассматривать дополнительные структуры, можно ввести операцию транспонирования, где транспонированный оператор A^T определяется через его действие на двойственном пространстве.
- 5. **Обращение оператора**: Если оператор A обратим, то можно определить обратный оператор A^{-1} , для которого $AA^{-1}=A^{-1}A=I$, где I— это тождественный оператор.

Определение образа оператора и ядра

Определение 1.2. Для линейного оператора \mathcal{A} определяется его *образ* Im $(\mathcal{A}) = \{\mathcal{A}x \mid x \in V\}$ и **ядро** Ker $(\mathcal{A}) = \{x \in V \mid \mathcal{A}x = 0\}$.

Сформулируйте теорему о ядре и образе.

Теорема 1.1. dim Im \mathcal{A} + dim Ker \mathcal{A} = dim V.

При каком(их) условии(ях) А является изоморфизмом?

Из определения изоморфизма векторных пространств вытекает, что отображение $\mathcal A$ из V в себя является изоморфизмом тогда и только тогда, когда $\mathcal A$ — биективный линейный оператор.

Критерий изоморфности на языке линейных операторов

Пусть A — линейный оператор в векторном пространстве V. Следующие условия эквивалентны:

- 1) A -изоморфизм V на себя;
- 2) Im A = V;
- 2') $r(A) = \dim V$;
- 3) Ker $A = \{0\}$;
- 3') d(A) = 0.

Определение матрицы линейного оператора.

Определение 2.1. Матрицей линейного оператора \mathcal{A} в базисе e_1, e_2, \dots, e_n называется матрица $A = (a_{ij})$, определяемая из равенств $\mathcal{A}e_j = \sum_{i=1}^n a_{ij}e_i$.

Чему равна размерность пространства End(X)?

Замечание 2.1. Если $\dim V = n$, то размерность $\operatorname{End}(V)$ как векторного пространства равна n^2 .

Сформулируйте закон преобразования матрицы оператора при смене базиса.

Если A — матрица линейного оператора в некотором базисе $\mathcal B$, и мы хотим найти матрицу A' того же оператора в другом базисе $\mathcal B'$, то для этого нам потребуется матрица перехода P от базиса $\mathcal B$ к базису $\mathcal B'$. Матрица перехода P составляется из координат векторов нового базиса $\mathcal B'$, выраженных через старый базис $\mathcal B$. Тогда матрица оператора в новом базисе A' вычисляется по формуле:

$$A' = P^{-1}AP$$

где:

- A исходная матрица оператора в базисе ${\mathcal B}$,
- ullet P матрица перехода от базиса ${\mathcal B}$ к базису ${\mathcal B}'$,
- P^{-1} обратная матрица к P.

Какой оператор называют невырожденным?

Оператор называют невырожденным, если его матрица имеет ненулевой определитель, то есть является обратимой.

Определение инвариантного подпространства.

Определение 3.1. Подпространство $U \leq V$ называется **инвариантным** относительно оператора \mathcal{A} (\mathcal{A} -инвариантным), если $\mathcal{A}U \leq U$, то есть для любого $x \in U$ его образ $\mathcal{A}x \in U$.

Определение линейной независимости подпространств.

Определение 6.1. Подпространства V_1, \ldots, V_k называются *линейной независимыми*, если равенства $v_1 + \ldots + v_k = 0, \ v_k \in V_k$ следует, что $v_1 = \ldots = v_k = 0$.

Перечислите свойства проекторов.

Проекторы в линейной алгебре — это специальные виды линейных операторов, обладающие следующими ключевыми свойствами:

- 1. **Идемпотентность**: Проектор P удовлетворяет условию $P^2=P$. Это означает, что повторное применение проектора не изменяет результат первого применения.
- 2. Самосопряженность (для ортогональных проекторов): Проектор P называется ортогональным, если он самосопряжён, то есть $P=P^*$, где P^* обозначает сопряженный оператор. Это свойство означает, что проекция сохраняет углы и длины в евклидовом пространстве.
- 3. **Разложение единицы**: Для каждого проектора P, существует дополнительный проектор Q=I-P, где I тождественный оператор. Проектор Q проецирует на дополнение подпространства, на которое проецирует P, таким образом, P+Q=I.
- 4. **Ранг плюс нулевое пространство**: Размерность (ранг) пространства, на которое проецирует P, плюс размерность ядра P (пространства, которое отображается в ноль) равняется размерности всего пространства.
- 5. **Инвариантные подпространства**: Подпространство, на которое проецирует P, и его дополнение (ядро I-P) являются инвариантными относительно P.
- 6. Связь с собственными значениями: Собственные значения проектора могут быть только 0 и 1. Векторы, отображаемые в ноль, соответствуют собственному значению 0, а векторы, которые проецируются без изменений, соответствуют собственному значению 1.

Определение собственного вектора и значения

Определение 4.1. Ненулевой вектор $x \in V$ называется собственным вектором оператора \mathcal{A} , если $\mathcal{A}x = \lambda x$. Число $\lambda \in F$ называется при этом собственным значением (собственным числом) оператора \mathcal{A} , отвечающим собственному вектору x.

Определение собственного подпространства.

Определение 4.2. Подпространство $Ker(A - \lambda \mathcal{E})$ называется *собственным подпространством* оператора A, соответствующим собственному значению λ и обозначается V_{λ} . Помимо собственных векторов, оно содержит нулевой.

Определение геометрической кратности.

Определение 4.3. Геометрической кратностью $g(\lambda)$ собственного значения λ называется размерность соответствующего ему собственного подпространства: $g(\lambda) = \dim V_{\lambda}$.

Определение корневого вектора высоты k.

Определение 7.1. Вектор $x \in V$ называется **корневым вектором** оператора \mathcal{A} , отвечающим собственному значению $\lambda \in F$, если существует такое целое неотрицательное число k, что $(\mathcal{A} - \lambda \mathcal{E})^k x = 0$. Наименьшее такое k называется **высотой** корневого вектора x.

Какую высоту имеет собственный вектор?

Собственный вектор имеет высоту 1, так как для собственного вектора x оператора A, соответствующего собственному значению λ , выполняется условие $(A-\lambda E)x=0$, что соответствует определению корневого вектора высоты 1 [n].

Определение корневого подпространства.

Корневые векторы, отвечающие собственному значению λ , высоты $\leqslant k$ — это $\mathrm{Ker}(\mathcal{A}-\lambda\mathcal{E})^k\leqslant V$. Возникает цепочка подпространств

$$V_{\lambda} = \operatorname{Ker}(A - \lambda \mathcal{E}) \leqslant \operatorname{Ker}(A - \lambda \mathcal{E})^{2} \leqslant \ldots \operatorname{Ker}(A - \lambda \mathcal{E})^{k} \leqslant \ldots \leqslant V^{\lambda},$$

где $V^{\lambda}=\{$ все корневые векторы с собственным значение $\lambda\}-$ **корневое под- пространство** с собственным значением λ :

$$V^{\lambda} = \bigcup_{i=1}^{\infty} \operatorname{Ker}(\mathcal{A} - \lambda \mathcal{E})^{i}.$$

Перечислите свойства корневых подпространств.

Теорема 7.1. (свойства корневых подпространств)

- 1) V^{λ} \mathcal{A} -инвариантно;
- 2) $(A \lambda \mathcal{E})|_{V^{\lambda}} = \mathcal{N}$ **нильпотентный** оператор, то есть существует такое неотрицательное целое m, то $\mathcal{N}^m = \mathcal{O}$;
- 3) $(\mathcal{A} \mu \mathcal{E})|_{V^{\lambda}}$ невырожден при $\mu \neq \lambda$;
- 4) $\dim V^{\lambda} = m(\lambda)$ (геометрический смысл алгебраической кратности).

1) Как находится характеристический полином?(GG T T)

Из замечания 4.1 следует, что для нахождения собственных подпространств удобнее сначала найти собственные значения из условия $\det(\mathcal{A} - \lambda \mathcal{E}) = 0$. Пусть A — матрица оператора \mathcal{A} в каком-либо базисе, тогда

$$\det(\mathcal{A} - t\mathcal{E}) = \begin{vmatrix} a_{11} - t & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - t & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - t \end{vmatrix}.$$

Определение 5.1. Многочлен $\chi_{\mathcal{A}}(t) = (-1)^t \det(\mathcal{A} - t\mathcal{E}) = \det(t\mathcal{E} - \mathcal{A})$ называется *характеристическим многочленом* оператора \mathcal{A} .

Корни характеристического многочлена называются $cne\kappa mpom\ onepamopa$ $\mathcal{A}.$

Если из контекста ясно, о каком операторе идёт речь, индекс ${\mathcal A}$ будем опускать.

2) Определение алгебраической кратности.

Определение 5.2. Алгебраической кратностью $m(\lambda)$ собственного значения λ называется его кратность как корня характеристического многочлена.

3) Определение оператора с простым спектром.

Оператор с простым спектром — это линейный оператор, у которого все собственные значения различны, и каждому собственному значению соответствует ровно один собственный вектор (с точностью до умножения на скаляр). Это означает, что алгебраическая и геометрическая кратности каждого собственного значения равны единице.

4) Как выглядит матрица оператора с простым спектром?

Матрица линейного оператора с простым спектром (или, как говорят, с простым собственным спектром) — это такая матрица, у которой все собственные значения различны и, следовательно, все собственные векторы линейно независимы. Если матрица диагонализируема и имеет простой спектр, её можно представить в диагональной форме в подходящем базисе.

Общий вид такой матрицы в базисе из её собственных векторов выглядит следующим образом:

$$A = egin{pmatrix} \lambda_1 & 0 & \cdots & 0 \ 0 & \lambda_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

5) Определение диагонализуемого оператора (оператора скалярного типа).

Определение 6.2. Линейный оператор в конечномерном векторном пространстве называется *диагонализируемым*, если существует базис, в котором матрицам этого оператора имеет диагональный вид.

6) Что такое спектральное разложение диагонализуемого оператора?

Пусть оператор $\mathcal A$ диагонализируем и $V=\bigoplus_{i=1}^n V_{\lambda_i}$. Рассмотрим проектор $\mathcal P_i$ на подпространство V_{λ_i} параллельно прямой сумме оставшихся подпространств. Тогда $\mathcal P_i^2=\mathcal P_i, \mathcal P_i\mathcal P_j=\mathcal O$ при $i\neq j$ и $\sum_{i=1}^k \mathcal P_i=\mathcal E$. Легко проверяется, что оператор $\mathcal A$ действует на любой вектор так же, как оператор $\sum_{i=1}^k \lambda_i \mathcal P_i$. Выражение $\mathcal A=\sum_{i=1}^k \lambda_i \mathcal P_i$ называется *спектральным разложением* оператора $\mathcal A$.

7) Сформулируйте критерий диагонализуемости.

Теорема 6.2. (критерий диагонализируемости) Оператор диагонализируем тогда и только тогда, когда выполняются следующие два условия:

- 1) Характеристический многочлен раскладывается на линейные сомножители (то есть все его корни лежат в поле F);
- 2) Геометрическая кратность каждого собственного значения равна его алгебраической кратности.

1) Определение нильпотентного оператора

Определение

Оператор \mathcal{A} называется нильпотентным, если $\mathcal{A}^k = \mathcal{O}$ для некоторого натурального k. Минимальное число k, для которого $\mathcal{A}^k = \mathcal{O}$, называется степенью нильпотентности оператора \mathcal{A} .

2) Определение циклического подпространства

Циклическое подпространство — это подпространство векторного пространства, которое порождается одним вектором. Если v — вектор из векторного пространства V над полем F, то циклическое подпространство, порождённое v, обозначается как $\langle v \rangle$ и состоит из всех скалярных кратных v. То есть $\langle v \rangle = \{\lambda v \mid \lambda \in F\}$. Это множество является подпространством V и включает вектор v, нулевой вектор, а также все другие векторы, которые можно получить, умножая v на любой скаляр из F.

3) Что находится в клетках диаграммы Юнга?

В клетках диаграммы Юнга обычно находятся числа или символы, которые представляют элементы конфигурации или структуры, описываемой диаграммой. В контексте различных областей математики и информатики, содержимое клеток может варьироваться:

1. В теории представлений и алгебре - диаграммы Юнга используются для представления разбиений чисел. Каждая клетка соответствует части разбиения. Например, разбиение числа 4 как 4=3+1 можно представить диаграммой с тремя клетками в первом ряду и одной клеткой во втором ряду.

4) Что находится в столбцах диаграммы Юнга?

разбиений или в теории представлений симметрической группы, то в столбцах диаграммы Юнга традиционно учитывается условие строгого возрастания элементов сверху вниз. Это условие используется, например, при построении стандартных табло Юнга, где каждое число от 1 до n размещается в клетке так, чтобы в каждом столбце числа строго возрастали сверху вниз.

5) Напишите общий вид матрицы жордановой клетки.

Если вернуться к произвольному линейному оператору \mathcal{A} , то можно заметить, что на циклическом подпространстве нильпотентного оператора $\mathcal{N} = \mathrm{Ker}(\mathcal{A} - \lambda \mathcal{E})|_{V^{\lambda}}$ оператор \mathcal{A} задаётся матрицей

$$J(\lambda) = J(0) + \lambda E = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda \end{pmatrix},$$

называемой *жордановой клеткой* с собственным значением λ

6) Как выглядит жорданова нормальная форма?

Определение 9.1. *Жордановой матрицей* называется блочно-диагональная матрица

$$J = \begin{pmatrix} J_1 & & & \mathbf{O} \\ & J_2 & & \\ & & \ddots & \\ \mathbf{O} & & & J_k \end{pmatrix},$$

где $J_1, J_2, \dots J_k$ — какие-то жордановы клетки.

Жорданова матрица также называется *жордановой нормальной формой* (ЖНФ) для оператора \mathcal{A} . Верна следующая