

KEI OKI DOCOM	ENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCES	SION NO. 3. RECIPIENT'S CATALOG NUMBER
WH01-79-60		
. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVE
WOODS HOLE OCEANOGRAPHI ISOTOPE LABORATORY DATA	C INSTITUTION HELIUM	Technical reget,
	Number	6. PERFORMING ORG. REPORT NUMBI
AUTHOR(s)	7 .	N00014-74-C-0262
W. J. Denkins, W. V./Co R. D./Boudreau	Tientro/and	OCE 76-20485
PERFORMING ORGANIZATION NAME	AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA
Woods Hole Oceanographi Woods Hole, MA 02543	c Institution	NR 083-004
11. CONTROLLING OFFICE NAME AND	ADDRESS	12. REPORT DATE
NORDA National Space Technolo	av Laboratory	13. NUMBER OF PAGES
Bay St. Louis, MS 3952	9	34
14. MONITORING AGENCY NAME & ADD	RESS(II different from Controlling	Office) 15. SECURITY CLASS. (of this report)
	(12)387	Unclassified
		15a. DECLASSIFICATION/DOWNGRADII
Approved for public rel		ınlimited.
Approved for public rel	ease; distribution u	DDC
Approved for public rel	ease; distribution u	terent from Report)
Approved for public rel	ease; distribution u	terent from Report)
Approved for public rel	ease; distribution unbetract entered in Block 20, it difference to the state of the	ferent from Report) Aug 6 1979 Aug aug 6 1979 Aug a
Approved for public rel 7. DISTRIBUTION STATEMENT (of the a 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde 1. 3H, 3He in Sargasso 2. Fall-out isotopes 3. Helium isotope effe	ease; distribution unbetract entered in Block 20, it difference on the second section in second section section in second section section in second section sect	ferent from Report) Aug 6 1979 Aug 1979 Aug 2 1979 Aug 2 1979 Aug 2 1979 Aug 3 1979 Aug 4 1979 Aug 5 1979 Aug 6 1979
Approved for public rel 7. DISTRIBUTION STATEMENT (of the a 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde 1. 3H, 3He in Sargasso 2. Fall-out isotopes 3. Helium isotope effe 1. This report summariz 3H and (3He analyses made a statistical treatment isotope to be (\alpha - 1) x 1000	if necessary and identify by block Sea ct on solution in se it necessary and identify by block tes technique, estima on three cruises in s made on 36 surface solubility isotope 0 0/00 = -(17.3 € 0.	ferent from Report) Aug 6 1979 Aug 1979 Aug 2 1979 Aug 2 1979 Aug 2 1979 Aug 3 1979 Aug 4 1979 Aug 5 1979 Aug 6 1979

WOODS HOLE OCEANOGRAPHIC INSTITUTION HELIUM ISOTOPE LABORATORY DATA RELEASE NO. 1

by

W. J. Jenkins, W. V. Collentro, and R. D. Boudreau

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

July 1979

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083-004 and for the National Science Foundation under Grant OCE 76-20485.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanographic Institution Technical Report WHOI-79-60.

Approved for public release; distribution unlimited.

Approved for Distribution:

Geoffrey Thempson, Chairman Department of Chemistry Woods Hole Oceanographic Institution
Helium Isotope Laboratory

Data Release No. 1

July, 1979

W. J. Jenkins, W. V. Collentro and R. D. Boudreau

Table of Contents

١.	Introduction	Page
	(a) Sampling Technique	1
	(b) Sample Extraction	2
	(c) Helium Isotope Analysis	3
	(d) Tritium Measurements	5
	(e) Computations, Assumptions and Definitions	6
2.	The Isotope Effect in Solution	7
3.	Cruise Descriptions	
	(a) Sarg 74	9
	(b) Sarg 75	9
	(c) Pan 77	9
	(d) Data Quality	9
4.	Data	
5.	References and Acknowledgements	11

Abstract

This report summarizes technique, estimated precisions and results for 3 H and 3 He analyses made on three cruises in the Sargasso Sea. In addition, a statistical treatment is made on 36 surface (≤ 10 m) 3 He/ 4 He analyses to obtain an estimate of the solubility isotope effect and its temperature dependence to be

(α -1) x 1000 $^{\rm o}$ /oo = -(17.3 \pm 0.8) +(0.28 \pm 0.06) T ($^{\rm o}$ C) with a regression scatter of 2.6 $^{\rm o}$ /oo and a linear correlation coefficient of 0.640.

1. Introduction

This report serves three purposes: it summarizes the analytical techniques (sections 1(a) through 1(d)); it presents a preliminary analysis of surface and near surface water helium isotope ratio anomalies to allow an evaluation of the isotope effect on solution (section 2); and, it presents data obtained by this laboratory from some recent cruises (sections 3 and 4). It is presently intended that this report be the first in a series of data releases which will occur periodically, and represent the primary form of data report and update on analytical techniques.

(a) Sampling Technique

Samples are drawn from standard oceanographic sample bottles (Niskin and Nansen bottles) by a simple gravity feed technique through tygon tubing. The sampler itself consists of a ca. 1 m length of 0.95 cm or 1.27 cm 0.D. annealed, dehydrated copper refrigeration tubing, which is pinched at either end with standard refrigeration tube pinch-clamps (Imperial-Eastman type 105-FF) and mounted in an aluminum channel. The sample is transferred to the sampler by initially raising the sampler above the height of the bottle, opening the lower stopcock, opening the vent and then lowering the sampler slowly so that the air resident in the sampler is displaced slowly by the seawater. After gravity flow is established, the sampler is tapped to remove any air bubbles remaining. When several volumes of water have flushed through the sampler, the sampler is sealed by tightening the pinch-clamps. The samplers are then rinsed in fresh water and the ends rinsed out with a wash bottle of fresh water. The useful shelf-life of samples in these containers, with proper sampler preparation and post-sampling treatment is about two

years. Severe reductions in this shelf-life result from exposure to water or humid conditions, or from storage with water in the ends. Also, the clamp gap is critical for the strength of the seal.

(b) Sample Extraction

The sampler is connected via a viton o-ring coupling to an all metal extraction system which is subsequently baked (at 150°C) and evacuated to a pressure of better than 2 x 10⁻⁵ torr. After isolation from the diffusion pump, the sample is introduced into the system by rerounding the bottom pinch-seal slightly and allowing the sample to dribble into a ca. 200 ml Corning type 1720 aluminosilicate glass reservoir where it is shake-stirred for ten minutes. The helium is then transferred to an aluminosilicate glass breakseal sample tube by chilling the sample tube with liquid nitrogen. In this process, the major gases (N2, O2 and Ar) exsolved from the sample are adsorbed on activated charcoal inside the sample tube, and the exsolved He and Ne are swept over into the sample tube by water vapor transfer through the seal-off constriction (1 mm I.D. by 20 mm length) of the sample tube. The H20 vapor pressure difference maintained by the water (about 25 torr) serves to quantitatively sweep over the He and Ne into the sample tube and keep it This procedure has been determined mass spectrometrically (both on-line and by re-extraction) to be quantitative (better than 99.9% recovery). The small amount of water transferred to the sample tube (ca. 500 mg) is not sufficient to significantly effect the 3He/4He ratio of the sample during storage for typical oceanic tritium levels (≤20 T.U.), and could in principle be accounted for. The helium sample is then "saved" by flame-sealing the constriction and stored for future analysis.

Figure 1

The procedure is checked (i.e. for completeness of extraction and presence of leaks) by watching for a pressure surge when the pump isolation valve is opened again (the water vapor pressure is "masked" by a liquid nitrogen chilled trap), and the sample is further agitated to ensure complete degassing. The reservoir (actually a storage container with breakseal and seal-off constriction) is subsequently sealed off. The sample is then stored in a chest freezer (-20°C) to reduce diffusive influx of He during the $^3\text{H-}^3\text{He}$ growth period (12 months). To further reduce the contribution from He exsolving from the glass container itself, the container had been treated prior to extraction by heating for ca. 10 hr to 350°C in a helium-free (pure N_2) atmosphere.

(c) Helium Isotope Analysis

The isotopic ratio of the helium extracted from the samples is analyzed in the "batch mode" mass spectrometrically. The mass spectrometer used is a specially designed, Shields type, dual collecting, statically operated, 90° magnetic sector, single focussing, 25 cm radius mass spectrometer with an electron impact Nier type source. He is collected on a faraday cup and the current measured by a 10¹0 ohm grid-leak solid state electrometer and frequency modulated (VFC) at 100 KHz. The ³He was detected and amplified by a 20 stage focussed mesh electron multiplier (gain ~ 10⁵) operated in the current integrating mode and measured and digitized as with ⁴He. Both digital and analog records are made, but the computations are performed from the digital data. An analysis consists of nine integrations of 90 sec each on the ³He and ⁴He peaks simultaneously, separated and bracketed by 10 second integrations on the respective baselines.

The isotopic ratio is computed as an isotopic ratio anomaly relative to air, which was used as the calibration standard. Sample analyses are bracketed by air aliquot analyses. The instrument is calibrated for non-linearity, i.e. apparent ratio variations in otherwise identical samples of differing sizes. The corrections applied to the samples due to this effect are typically less than 2 of analytical precision. This non-linearity is periodically examined by analysis of aliquots of varying isotopic ratios and determined to be solely a function of 4He (i.e. total gas pressure) in the instrument. No effects occur due to variation (in sample) of Ne concentrations, because the inlet procedure precludes significant amounts of Ne entering the spectrometer. The sample is "chromatographed" into the spectrometer through liquid nitrogen chilled activated charcoal for a precisely determined period of time, during which about 60% of the He enters the instrument, but only about 2% of the Ne comes through. Tripling the Ne concentration in the air standard shows no significant change in the apparent ³He/⁴He ratio response. Consequently, the small (ca. 20%) difference in He/Ne ratios between air standards and samples gives no effect.

The chromatographic procedure used fractionates ³He in favor of ⁴He.

This effect is corrected for by processing air standards in an identical fashion through the same system. Great care is exercised in analytical procedure because variations in the procedure (column cooling, etc.) leads to random errors and degrades analytical precision. Analytical precision is estimated by the reproducibility of air standards.

(d) Tritium Measurements

The tritium analyses are accomplished by mass spectrometric analysis of ³He resulting from ³H decay during storage of the initially degasced water samples (1) in the aluminosilicate storage vessels mentioned earlier. The ³He is extracted from the samples by what amounts to the "head-space" technique. The sample is defrosted (cf. sec. 1 (b)) and stirred vigorously. The volume of the container is about 200 ml, and the solubility of He is such that at 22°C, 99.8% of the trituigenic ³He resides in the headspace for a 45 g sample (99.4% for a 90 g sample). The sample is water vapor diffusion pumped from the vessel in an evacuated, all metal sample handling line directly coupled to the mass spectrometer. Mass spectrometric analysis consists of four 100 second integrations on the ³He and ⁴He peaks bracketed and separated by 100 second integrations on the respective baselines.

The standard used in analysis consists of aliquots of volumetrically reduced air standards. The technique used is to generate two daily calibration curves. One curve consists of the ⁴He response as a function of the number of aliquots (anywhere from 0 to 8 aliquots are admitted), and a second curve consists of ³He response vs. ⁴He response. A linear regression of the former yields a precise estimate of the line processing blank (the intercept) and the sensitivity (the slope). A linear regression of the latter gives the instrumental discrimination function, the scatter about which is the analytical precision. By this method, instrumental sensitivity and discrimination is determined to the order of a few per mil; i.e. better than analytical precision. The discrimination function is used in conjunction with the sample's ⁴He measurement to correct for "atmospheric

contribution". Analysis of evacuated storage vessels (stored for the same period of time under identical circumstances) shows this contribution (presumably He exsolved from the glass itself) to be within analytical precision (a few percent) of the atmospheric ratio. The ³He contribution from this component is equivalent to about 0.8 T.U. for a 45 g sample stored for one year. The standard aliquots are usually around 5 x 10⁻¹⁵ cc (STP)

³He, corresponding to about 0.7 T.U.

(e) Computation, Assumptions and Definitions

The helium concentrations are measured by mass spectrometric peak height comparison of the sample with air standards. Reproducibility of air standards varied from batch to batch and has been improving with time as the technique is improved. It is typically of the order of 1%; but recent analyses are now close to $5^{\circ}/\circ$ 00. The air standard size is computed using the measured temperature, relative humidity and barometric pressure, and assuming 5.24 x 10^{-6} ppmv helium concentration in air. Sample weights were obtained by difference (sampler full vs. sampler empty) to \pm .01 g ($0.3^{\circ}/\circ$ 0).

The helium isotopic ratio anomalies (DEL-3HE) are expressed in per mil and computed according to

$$\delta$$
 (³He) = (R_S/R_A -1) x 1000 °/oo,

where R_S and R_A are the isotopic ratios ($^3\text{He}/^4\text{He}$) of the sample and air respectively. This value has been corrected for instrumental effects (size dependence) and <u>in storage</u> decay of tritium.

The excess ³He concentrations (in cc (STP)/g) and T.U.) were computed assuming that all of the excess helium (above solubility equilibrium at one atmosphere, potential temperature, and salinity, using data from (2)) was

entrapped, unfractionated air due either to sea surface bubble injection, or bubble trapping in the sampler. The relation used was

$$C(^{3}He) = \delta RC/1000 + (1 - \alpha) RC*$$

where C (3 He) is the concentration of excess 3 He, δ is the isotopic ratio anomaly (in per mil, defined earlier), R is the atmospheric ratio (1.384 x $^{10^{-6}}$, after (1)) C is the helium concentration, α is the solubility isotope partitioning coefficient (see below), and C* is the solubility helium concentration. The (multiplicative) conversion factor from cc STP/g to T.U. $(10^{-18}$ atoms per 'H) is

$$\frac{4.022 \times 10^{14}}{(1 - S/1000)}$$
 T.U. -g/cc (STP)

The tritium concentrations are computed by mass spectrometric peak height comparison with air standards of comparable size. They are corrected for atmospheric helium contamination, fractionating water vapor loss (see (1)), and machine performance; and are decay corrected to the date of sampling. The assumed half-life of tritium is 12.262 y. As pointed out by Clarke et al. (1) this may be revised upward in future, but will result in only small (ca. 1%) changes in the values since the primary standard is air rather than the NBS standard used by others.

2. The Isotope Effect in Solution

A cornerstone to the ³H-³He dating technique and the calculation of the excess ³He concentrations is a knowledge of the helium solubility isotope effect: we must know what the baseline ³He/⁴He ratio is. Weiss (3) made a determination of the isotope effect for water and seawater. The

problems are that first, only two measurements were made for seawater in the relevant temperature range (0-25°C); second, the analytical accuracy was of the order of 3°/00 for (i.e. about 2 of our current analytical precision); and third, the measurements were made by microgasonometric techniques at a partial pressure of one atmosphere of ³He, necessitating a twelve orders of magnitude extrapolation. A fourth concern, one which is more difficult to address, involves the possibility that the natural environment due to partial bubble dissolution, dynamic diffusion effects, etc., may not resemble an equilibration chamber.

Consequently, we have compiled a number of near surface (shallower than or equal to 10 m depth) sample analyses and assumed these to be representative of the "initial" conditions. These results include only those obtained by this laboratory since it is not known whether systematic effects may occur between laboratories on the 1 °/00 level. The samples were taken from a variety of ocean environs (coastal vs. open ocean vs. Mediterranean, calm vs. stormy) and no significant salinity effect was observed (or expected) over the range covered (32 °/00 to 38 °/00).

The data, plotted in Figure 2, exhibit a significant temperature dependence. A linear regression (solid line) yields a relation of

 $(\alpha - 1) \times 1000$ °/oo = -(17.3 \pm .8) +(0.28 \pm 0.06) T (°C) with a regression scatter of 2.6 °/oo and a linear correlation coefficient of 0.640. For the 36 points used, the correlation probability is greater than .999. The regression scatter is slightly higher than analytical precision and may be due to variation of systematic errors between analysis batches, or natural variations due to the effects mentioned earlier.

Figure 2

3. Cruise Descriptions

The data contained in this report are on samples taken on two cruises and from a monitoring station.

(a) Sarg 74

These stations (labelled S74###) were taken during KNORR cruise 43 November to December, 1974, from Bermuda to Woods Hole, L.V. Worthington, Chief Scientist. The general area of operations was between 30°N and 36°N near 68°W, with one station at 33.5°N, 56.5°W. The hydrographic data was generously supplied by L. V. Worthington and his co-workers.

(b) Sarg 75

These stations (labelled S75###) were occupied on KNORR cruise 48, March, 1975, L. V. Worthington, Chief Scientist. Details as with Sarg 74.

(c) Pan 77

The Panulirus samples (PAN###) were taken at the Bermuda Monitoring Station (32.2°N, 64.5°W) by BBS personnel on the Panulirus II. Hydro data courtesy of BBS and E. Schroeder.

(d) Data Quality

The relative precisions of analysis varied with the cruise, since improvements in technique came gradually. Since the samples were drawn from Nansen bottles, no duplicates were available (limited water volume!), so that analytical precision was estimated from reproducibility of standards.

TABLE 1

Data Quality

Cruise	Heli	um	Tri	tium
	(³ He)	C (He)	Relative Error	Detection Limit
	°/00	Z	(%)	(T.U.)
Sarg 74	2.0	1.4	4	.20
Sarg 75	2.0	1.0	4	.15
Pan 77	1.8	0.75	2	.08

5. References and Acknowledgements

- (1) W. B. Clarke, W. J. Jenkins and Z. Top (1976). Determination of tritium by mass spectrometric measurement of ³He. Int. J. App. Rad. Isotopes 27: 515-522.
- (2) R. F. Weiss (1971). The solubility of helium and neon in water and seawater. J. Chem. Engg. Data 16: 235-241.
- (3) R. F. Weiss (1970). Helium isotope effect in solution in water and seawater. Science 168: 247-248.
- (4) We are grateful to L. V. Worthington who gave generously of shiptime, inspiration and hydrographic data for the Sarg cruises, and to E. Schroeder and the Bermuda Biological Station personnel for cooperation and hydrographic data for the Panulirus stations. The mass spectrometer was constructed by the artistry of C. J. Peters, Jr., and would not have been possible but for the support of D. W. Spencer and the more-than-occasional end-run of S. Kadar. Analytical and logistical support was provided for the Sarg cruises by O.N.R. Contract #N00014-74-C0262, and for the Panulirus stations by N.S.F. Grant No. 76-20485.

TABLE 2

	TRITIUM (T.U.)	**** 5.46	₩××××	****	****	5.96	****	6.75	6.23	6.26	6.13	6.44	2.66	5.48	4.61	****	2.24	****	****
	XS-3HE (T.U.)	****	***	****	***	****	****	****	****	****	****	****	****	****	****	****	****	****	***
тн = 4638, м.	XS-3HE (CC/GX10^15)	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	****	***	* * * * * * * * * * *	****	****	****	****	****	****	****	****	****	****	****	****	***
DEPTH	DEL-3HE (%.)	*** ***	***	****	***	* * * * * * * * * * * * * * * * * * *	****	****	****	****	****	****	****	****	****	****	****	****	****
30.50 X 56.50	HE CONCN (CC/GX1078)	* * * * * *	* * * * * *	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***
30.50	OXYGEN (ML/L)	4.95	4.95	4.59	4.54	4.75	4.55	4.45	4.39	4.41	4.44	4.44	4.43	4.52	4.16	4.09	3.60	3.42	4.70
18/11/74	SIG-THETA	24.936	24.955	25.390	25.911	26.174	26.173	26.236	26.324	26.387	26.347	26.347	26.564	26.614	26.702	26.862	27.837	27.252	27.610
18/	SALINITY (Z.)	36.210	36.220	36.478	36.519	36.486	36.498	36.480	36.460	36.444	36.250	36.250	36.343	36,211	36.138	35.832	36.522	35,211	0
STATION S74542	POTEMP (DEG-C)	22.77	22.73	21.89	20.10	19.00	19.04	18.74	18.33	18.03	17.59	17.59	16.99	16.35	15.73	13.93	11.75	9.31	6.32
STATION S74542	DEPTH (M)	20.	50.	100.	125.	175.	197.	.222.	245.	270.	318.	318.	392.	441.	491.	588.	685.	783.	979.

	•	
-	а	-

TRITIUM	(1.0.)	6.63	6.45	6.42	5.46	6.02	5.71	5.68	7.76	****	5.68	****	6.27	6.47	5.79	5.94	6.14	5.18	5.85	5.69	4.92	4.25	4.00	3.26	3.05	****	0.81	96.0
XS-3HE	(1.0.)	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****
XS-3HE	(CC/6×10-15)	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****
DEL-3HE	(%)	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****	****
HE CONCN	(CC/6X10 8)	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	***	****	****	***	***	***
OXYGEN	(ML/L)	5.01	5.03	4.98	5.40	5.10	4.89	4.82	4.79	4.70	4.73	4.56	4.56	4.55	4.54	4.50	4.49	4.44	4.42	4.40	4.31	4.13	4.06	4.21	3.82	3.44	3.54	4.11
SIG-THETA	(**)	24.825	24.839	24.969	24.975	25.872	26.037	26.125	26.179	26.223	26.293	26.344	26.407	26.438	26.473	26.515	26.531	26.549	26.580	26.597	26.652	26.727	26.807	26.915	26.984	27.227	27,355	27.858
SALINITY	(22)	36.535	36.545	36.506	*	36.514	9	6	36.470		9		36.447	36.442	36.440	36.447	36.426	36.405	36.376	36.336	36.251	9	35.973	*****	35.671	***	35.202	5,1
POTEMP	(DEP-C)	23.99	23.97	23.43	23.42	20.23	19.57	19.17	18.93					17.82						•	9	'n	•		12.73			****
DEPTH	Ê	1:	25.	50.	75.	100.	125.	150.	174.	199.	224.	249.	274.	299.	324.	349.	374.	399.	424.	448.	498.	548.	598.	647.	697.	797.	896.	.966

DEPTH = 4815. M.

30.50 X 67.50

18/11/74

(T.U.)	5.77			6.24				6.29	6.15	6.27	6.32	****	88.9	5.84	6.41	6.45	6.44	6.33	****	****	5.29	****	****	3.48	1.35	1.29	1.05	
XS-3HE (T.U.)	0.04	-0.07	****	-0.14	0.39	0.37	0.40	0.55	1.28	1.26	1.78	2.06	2.00	1.87	1.98	2.20	2.10	2.30	****	****	1.99	****	****	****	****	****	1.06	
XS-3HE (CC/GX10^15)	0.11	-0.17	****	-0.34	0.94	0.89	96.0	1.32	3.07	3.02	4.27	4.94	4.80	4.48	4.74	5.28	5.03	5.51	****	****	4.77	****	****	****	****	****	2,55	
DEL-3HE (X.)	-8.1	-12.4	****	-16.8	6.4	5.2	6.3	12.8	45.8	43.4	0.99	78.8	77.1	67.3	73.2	75.5	79.9	86.3	****	****	73.5	****	****	****	****	0	29.1	
HE CONCN	4.00	4.19	****	3.86	3.92	3.95	3.96	3.97	3.88	4.00	3.99	3,95	3.91	4.13	4.05	4.44	3.97	4.07	***	****	4.02	****	***	****	***	***	4.29	
OXYGEN (ML/L)	4.92	5.70	2.00	4.98	5.24	4.96	4.79	4.76	4.38	4.49	4.25	4.18	4.34	4.43	4.40	4.40	4.41	4.38	4.35	4.19	4.14	4.00	3,83	3,75	3.37	3.71	4.36	
SIG-THETA	25.009	25.039	25.083	25.093	25.763	26.011	26.121	26.165	26.245	26.287	26.319	26.388	26.431	26.471	26.502	26.532	26.562	26.591	26.607	26.680	26.761	26.840	26.898	27.002	27.190	27.392	27.564	
SALINITY	36.397	36.479	36.499	36.512	36.537	36.525	36.501	36.482	36.563	36.530	36.516	36.497	36.482	36.441	36.427	36.409	36.387	36.366	36.322	36.188	36.042	35.911	35.784	35.650	35,332	35.150	35.091	
POTEMP (DEG-C)	23.01	23.12	23.02	23.02	20.70	19.74		19.02	18.95	18.69	18.52	18.19	17.97	17.68	17.51	17.33	17.14	16.95	16.74	15.99	15.14	14.32			10.23	8.13	6.61	
DEPTH (M)	1:	25.	20.	75.	100.	125.	150.	175.	200.	225.	250.	275.	300.	325.	349.	374.	399.	424.	449.	499.	549.	599.	649.	.669	799.	.668	.666	

DEPTH = 4696. M.

32.50 X 67.50

19/11/74

TRITIUM (T.U.)	5.80	5.81	5.74	5.27	5.78	****	6.21	6.05	5.89	7.00	6.20	6.46	6.77	68.9	5.73	68.9	6.38	2.99	5.97	4.93	5.50	5.28	5.03	4.31	2.90	****	1.17
XS-3HE (T.U.)	-0.01	-0.03	0.03	0.04	0.13	****	0.43	0.49	0.62	1.24	1.48	****	1.23	1.40	1.39	1.48	1.70	****	2.18	2.04	****	1.99	2.01	1.57	1.51	****	0.87
XS-3HE (CC/GX10^15)	-0.02	80.0-	80.0	60.0	0.30	****	1.02	1.17	1.48	2.97	3.55	****	2.94	3.36	3.34	3.56	4.08	****	5.24	4.90	****	4.79	4.83	3.77	3.62	****	2.08
DEL-3HE (Z.)	-10.0	-10.8	-8.2	-8.6	-4.5	****	7.6	10.6	15.8	43.1	54.2	****	41.4	50.2	49.5	53.4	62.8	****	84.0	78.8	****	74.4	60.1	26.9	51.3	****	22.3
HE CONCN (CC/GX10~8)	4.19	4.26	4.21	3.98	4.12	***	4.00	3,83	3.96	3.95	3.90	***	4.04	3.93	3.95	3.96	3.96	***	3.95	3.90	***	4.00	4.99	3.91	4.07	***	4.12
z ~	4.91	4.89	4.91	•			4.97	4.80	4.69	4.42	4.29	4.62	4.56	4.54	4.51	4.49	4.46	4.43	4.40	4.36	4.39	4.29	4.18	4.15	3.58	3.39	3.88
SIG-THETA	25.017	25.055	25.090	25,111	25.132	25.598	25.901	26.079	26.223	26.253	26.290	26.338	26.382	26.406	26.439	26.462	26.482	26.520	26.548	26.598	26.644	26.701	26.785	26.856	27.022	27.232	27.421
SALINITY (X.)	36.366	36.378	36.383	36.395	36.408	36.417	36.422	36.447	36.460	36.513	36.514	36.435	36.457	36.452	36.444	36.435	36.423	36.402	36.385	36.322	36.204	36.134	35.999	35.882	35.569	35.280	35.096
POTEMP (DEG-C)	22.90	22.80	22.69	22.65	22.61	20.97	19.86	19.25	18.73	18.77	18.63	18.20	18.09	17.98	17.82	17.70	17.58	17.36	17.19	16.78	16.20	15.72	14.88	14.14	12.14	9.75	.6
DEPTH (M)	:	25.	50.	75.	100.	125.	150.	175.	200.	224.	249.	274.	299.	323.	348.	373.	398.	423.	449.	499.	549.	599.	649.	.669	798.	.848	.866

DEPTH = 5042. M.

34.50 X 67.50

19/11/74

TOTTTIM	(T.U.)	5.23	5.15	5.62	5.14	5.36	4.79	5.96	6.53	****	6.18	****	5.97	****	6.46	6.14	6.61	6.54	6.53	5.76	****	5.77	****	****	4.27	3.63	1.42	***
YS-7HF	(T.U.)	-0.02	-0.03	-0.03	-0.04	0.09	-0.07	0.43	****	0.52	09.0	0.64	0.48	0.56	06.0	1.22	1.64	1.65	1.66	1.83	1.99	****	2.19	2.18	2.56	1.87	1.07	***
XS-3HE	(CC/6X10~15)		-0.07	-0.08	-0.11	0.22	-0.18	1.04	****	1.24	1.44	1.52	1.16	1,35	2.17	2.93	3.95	3.95	3.98	4.38	4.77	****	5.26	5.23	6.14		2.56	*
DE! - 74E	(2.)	8-6-	-10.3	-11.1	-12.1	-6.1	-13.5	8.5	****	11.9	15.4	14.4	10.2	13.6	26.1	41.5	55.9	57.7	60.1	67.4	75.3	****	81.4	67.4	89.4	65.0	30.2	***
חבר היים	(CC/GX1078)	4.38	4.34	4.09	3.92	3.98	3.91	3.92	***	3.89	3.93	4.58	3.84	3.89	4.28	4.01	4.29	4.16	4.02	4.02	3.97	***	4.09	4.89	4.42	4.20	4.34	***
NACEN	CML/L	4.81	4.82	4.93	4.77	4.76	4.77	4.68	4.60	4.70	4.63	4.72	4.76	4.75	4.62	4.50	4.44	4.47	4.64	4.45	4.41	4.03	4.18	4.10	3.96	3.80	3.18	3.18
CTG-THETA	(%)	4.89	4.87	4.86	4.87	4.88	4.88	25.515	5.78	5.99	90.9	6.11	6.15	6.20	6.24	6.29	6.36	6.41	6.44	6.46	6.49	6.57	6.64	6.71	6.75	6.91	7.09	7.76
VIINI IAS	(2.)	36.305	36.295	36.279	36.290	36.292	36.304	36.547	36.540	36.521	36.521	36.483	36.478	36.482	36.480	36.479	36.477	36.473	36.460	36.452	36.441	36.368	36.266	36.190	36.074	35.779	35.404	35.172
POTEMP	(DEG-C)	23.18	23.20	23.19	23.19	23.18	23.18	21.63	20.62	19.80	19.52	19.23	19.05	18.88	18.69	18.49	18.24	18.01	17.83	17.75	17.57	17.02	16.41	****	15.26	13.46	11.08	****
.neptu	3	1:	25.	50.	74.	.66	124.	149.	174.	198.	225.	250.	275.	300.	325.	350.	375.	400.	425.	448.	498.	548.	598.	647.	697.	797.	.968	.966

DEPTH = 5075. M.

36.50 X 67.50

20/11/74

TRITIUM (T.U.) ****	8.26	3.30	1.90	1.11	0.94	***	0.84	1.01	1.01	1.38	****	1.72	****
XS-3HE (T.U.) 0.19	0.07	1.75	1.37	96.0	0.94 ****	09.0	1.04	0.92	0.97	1.20	****	1.14	1.15
XS-3HE (CC/GX10^15) 0.45	2.90	44 k	23.30	2+30	2.26 ****	1.44	2.51	2.21	2.33	2.89	****	2.75	2.77
DEL-3HE (%) -3.1	-8.0	61.1	455.8 30.8	27.1	23.6	10.3	28.4	20.9	25.1	34.8	****	33.0	32.2
HE CONCN (CC/GX10^8) 4.31		4 4 4 4 4 17 22		4 * * * * * * * * * * * * * * * * * * *	4 * * * * * * * * * * * * * * * * * * *	4.52	4.33	4.77	4.32	4.23	***	4.14	4.28
0XYGEN (ML/L) 5.27	3.24	3.55	3.23	3.16	3.25	3.37	3,74	4.34	4.43	5,15	5,36	5.43	5,55
SIG-THETA (%.) 25.672	25.687	26.605 26.827 24.910	27.088	27.147	27.238	27.335	27.427	27.548	27.571	27.680	27.704	27.713	27.729
SALINITY (%) 35.516	35.728	35.901	35.554	35.331	35.197	35.090	35.083	35.061	35.057	35.028	35.010	35.005	35.002
POTEMP (DEG-C) 18.05	17.96	15,35	12.15	10.47	9.33	8.19	7.54	6.56	6.36	5.32	2.00	4.89	4.73
DEРТН (М) 1.	30.	125.	175.	224.	274.	324.	374.	423.	439.	537.	586.	635.	684.

DEPTH = 3895. M.

38.50 X 67.50

20/11/74

TRITIUM	(T.U.)	11.23	11.34	7.94	7.61	7.40	7.24	6.30	6.24	****	5.61	7,40	4.17	****	****	1.97	****	1.08	****	****	0.81	****	0.73			1.60	•	
XS-3HE	(T.U.)	****	****	****	0.02	-0.04	0.07	0.08	****	****	0.19	0.14	0.20	****	1.25	0.85	0.85	0.91	0.72	0.95	06.0	****	0.82	0.91	1.27	1.01	****	٠
XS-3HE	(CC/GX10~15)	****	****	****	0.05	-0.10	0.17	0.19	****	****	0.45	0.33	0.48	****	3.01	2.05	2.04	2.18	1.73	2.28	2.16	****	1.96	2.19	3.05	2.44	****	
DEL-3HE	(%)	****	****	****	-11.8	-13.4	6.6-	9.8-	****	****	-4.8	-7.0	-4.3	****	39.9	21.9	21.6	24.3	13.9	21.5	23.1	****	19.3	23.1	37.2	25.8	****	
HE CONCN	(CC/GX10~8)	***	****	****	4.17	4.46	4.07	4.54	****	****	4.24	4.11	4.21	****	4.10	4.26	4.27	4.19	4.95	5.01	4.26	***	4.26	4.22	4.27	4.41	****	
OXYGEN	(ML/L)	•			5.84		5.58	5.64		4.63	5.42	5.52	5.37	4.81	3.52	3.37	3,35	3.39	3.34	3.51	3.70	3.93	4.41	5.13	5.48	5.85	5.85	
SIG-THETA	(%)	26.700	26.745	26.836	26.863	26.889	26.905	26.921	26.960	26.969	26.994	26.996	27.004	27.034	27.089	27.146	27.193	27.223	27.250	27.307	27,391	27.439	27.533	27.657	27.712	27.745	27.755	
SALINITY	(%)	•			35,350	•	•	35,365	35.477	35.514	N.		35,561	•	•	•	•	•	•		•	•	0	0	0	35,008	0	
POTEMP	(DEG-C)	10.94	10.97	11.84	ri	N	11.92	ä	12.09	i		•	12.20	•	•	•	•	•	•	•	7.91			5.54		4.63	4.45	
DEPTH	£	1.	25.	20.	75.	100.	125.	150.	175.	199.	224.	247.	270.	294.	319.	344.	369.	395.	420.	446.	496.	546.	296.	.969	796.	.968	.966	

40.53 X 58.10

27/ 3/75

STATION S75615 *********

-	^	
-2	u	•

	TRITIUM (T.U.)	6.10	6.07	5.97	5.80	****	7.16	6.05	5.20	6.50	5.09	4.38	4.85	****	****	3.02	2.16	1.32	1.35	0.77	****	0.82	1.86	1.43	2.56
	XS-3HE (T.U.)	-0.09	80.0-	0.63	****	****	-0.02	0.52	0.91	****	0.88	1.01	****	****	****	1.28	1.11	1.10	1.20	1.03	1.09	****	1.36	****	****
TH = 9995. M.	XS-3HE (CC/GX10~15)	-0.21	-0.19	1.51	****	****	-0.04	1.26	2.20	****	2.12	2.43	****	****	****	3.09	2.67	2.64	2.89	2.49	2.61	****	3.27	****	****
DEPTH	DEL-3HE (%.)	-15.1	-14.9	14.1	****	****	-12.7	10.1	26.3	****	24.5	29.0	****	38.4	****	34.9	33.8	34.1	34.1	29.6	31.3	****	39.9	****	****
× 58.50	HE CONCN (CC/GX10^8)	4.01	4.03	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	****	***	4.16	4.03	4.10	***	4.15	4.25	***	***	***	4.84	4.10	3.98	4.46	4.11	4.14	****	4.38	***	***
38.50	> 1	5.35		4.96				•		5.22		4.74	4.59	3.98	3,51	3.29	3,32	3.28	3,35	4.03	4.00	4.76			2.68
28/ 3/75	SIG-THETA	26.117	26.195	26.555	26.600	26.633	26.703	26.747	26.822	26.851	26.871	26.958	26.935	26.987	27.057	27.114	27.146	27.177	27.322	27.390	27.504	27.611	27.676	27.716	27.750
28,	SALINITY (X.)	36.071	36.054	35.932	35.926	35.853	35.759	35,755	35.691	35.680	35.660	35.608	35.574	35.569	35.493	35.406	35.346	35.282	35,158	35.107	35.075	35.048	35.025	****	35.017
STATION S75617 *********	POTEMP (DEG-C)	17.97	17.60	15.68	15.46	15.06	14.41	14.19	13.60	13.42	13.25	12.62	12.60	12.32	11.65	10.98	10.54	10.08	8.62	7.92	****	00.9	5.34	4.97	4.65
STATION ******	DEPTH (M)	10.	25.	75.	97.	122.	146.	170.	195.	219.	244.	268.	292.	316.	347.	372.	397.	422.	496.	546.	296.	.969	795.	895.	995.

TRITIUM ** ** ** ** ** ** ** ** ** ** ** ** **	6 6 3 3 4 4 5 5 6 5 3 6 5 6 5 3 6 5 6 5 3 6 5 6 5 6
X (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	* 0 * 1 0 0 0 * 1 1 1 0 0 * 1 0 0 0 * 1 0 0 0 * 1 1 1 1
XS-3HE **** ***** 0.24 0.27 0.27 0.27 0.19 0.19 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	* * * * * * * * * * * * * * * * * * *
DA X X X X X X X X X X X X X X X X X X X	* * * * * * * * * * * * * * * * * * *
HE CONCN (CC/GX10 ⁰ 8) ***** ***** **** **** **** **** ****	* 4 4 * 10 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0XYGEN CML/L) 5.09 5.113 5.113 5.113 5.113 5.113 5.113 5.113 5.113 5.113 5.113 5.113	0 4 4 4 4 4 4 4 4 W W W O 8 9 4 0 0 8 0 9 0 0 8 0 4 0 0 8 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SIG-THETA (%.) 25.856 25.856 25.856 26.049 26.067 26.067 26.124 26.134 26.124 26.281	26.317 26.356 26.358 26.3884 26.469 26.548 26.523 27.088 27.264 27.264
SALINITY (X.) 36.398 36.403 36.408 36.445 36.444 36.447 36.447 36.447 36.447	36.431 36.452 36.417 36.408 36.396 36.314 36.153 35.748 35.539
	18.27 18.18 17.96 17.96 17.83 17.09 16.65 15.75 13.48 11.79 9.33
JEPTH (M) 15. 25. 49. 74. 74. 122. 147. 172. 172. 172. 220. 220. 245. 270. 294. 318.	343. 368. 392. 416. 441. 440. 539. 588. 784. 982.

36.50 X 58.50

29/ 3/75

TRITIUM	(T.U.)	6.18	5.75	5.32	5.31	5.15	5.87	6.05	5.93	5.57	6.07	6.23	5.72	6.22	5.54	****	6.48	****	5.89	5.95	5.90	5.78	5.30	****	1.90	1.07	1.73
XS-3HE	(T.U.)	0.10	****	****	0.21	****	****	-0.03	0.30	0.36	0.19	0.19	****	****	****	****	1.55	****	2.21	2.55	****	****	1.96	****	1.38	****	1.19
XS-3HE	(CC/GX10~15)	0.23	****	****	0.50	****	****	-0.08	0.71	0.87	0.46	0.45	****	****	****	****	3.71	****	5.31	6.12	****	****	4.70	****	3.32	****	2.87
DEL-3HE	(%)	8.9-	****	****	-2.1	****	-12.4	-12.4	1.6	4.5	-2.7	-2.9	****	****	****	****	46.1	****	78.6	94.0	****	****	72.3	****	43.0	****	36.4
HE CONCN	(CC/GX10~8)	4.07	***	***	4.09	***	***	4.07	4.34	4.00	4.26	4.13	***	***	***	***	4.82	***	4.29	4.21	***	***	4.02	***	4.31	***	4.05
OXYGEN	(ML/L)	5.26	5.32	5.29	***	5.32	5.30	5.31	5.29	5.31	5.29	5.23	4.97	4.94	4.77	4.61	4.58	4.48	4.44	4.37	4.36	4.30	4.30	4.06	3.47	3.65	4.48
SIG-THETA	(%)	~	~	~	·	~	0	26.236	C	3	M	M	8	0	M	0	CI	0	0	S	1	8	4	-	1	1	9
SALINITY	(%)	36.465	36.468	36.467	36.465	36.467	36.467	36.477	36.471	36.469	36.477	36.461	36.446	36.438	36.435	36.437	36.433	36.426	36.418	36.410	36.405	36.171	36.022	35.759	35.356	35,138	177
POTEMP	(DEG-C)	18.95	18.95			18.94	•		18.74		18.72	18.69		18.34			17.83			17.24		16.01	15.14	13.39		8.21	
DEPTH	€	1:	25.	50.	75.	100.	125.	150.	175.	200.	225.	250.	275.	300.	325.	348.	372.	397.	422.	447.	496.	546.	296.	.969	795.	895.	994.

34.50 X 58.50

30/ 3/75

	(T.U.)	5.82	5.92	5.87	6.12	5.41	5.95	****	5.52	6.41	5.78	5.98	5.55	6.48	5.97	2.96	5.91	6.13	5.46	5.85	5.39	****	3.99	3.67	2.01	1.17	0.93
,	XS-3HE (T.U.)	0.04	0.13	****	0.19	0.14	****	****	0.33	****	0.87	1.32	1.30	1.41	1.69	****	****	****	****	****	2.26	****	****	1.77	1.60	1.25	1.00
DEPTH = 9799. M.	XS-3HE (CC/GX10~15)	0.10	0.31	****	0.44	0.33	****	****	0.80	****	2.08	3.17	3.12	3.37	4.05	****	****	****	****	****	5.42	****	****	4.24	3.84	3.01	2.40
DEP	DEL-3HE (%)	-9.2	-5.1	****	-3.0	-4.8	****	****	3.4	****	26.2	45.7	45.4	48.4	61.1	****	****	****	****	****	83.7	****	****	57.9	51.8	36.0	27.5
X 58.50	HE CONCN (CC/GX10^8)	4.02	4.23	***	4.02	4.31	***	***	4.06	***	4.02	4.02	3.97	4.09	4.04	***	***	****	***	***	4.11	***	***	4.40	4.30	4.46	•
32.50	OXYGEN (ML/L)	5.24									4.70	4.62	4.56	4.55	4.53	4.59	4.49	4.44	4.47	4.40	4.32	4.28	4.28	4.07	3.75	3.75	4.16
30/ 3/75	SIG-THETA	26.121	26.152	26.157	26.151	26.159	26.158	26.157	26.151	26.208	26.269	26.332	26.375	26.422	26.437	26.504	26.510	26.556	26.577	26.609	26.696	25.978	26.815	27.004	27.145	27.363	27.520
30/	SALINITY (X.)	36.536	36.518	36.518	36.521	36.521	36.516	36.511	36.503	36.461	36.457	36.447	36.441	36.428	36.418	36.410	36.386	36.380	36.354	36.311	36.235	35.059	35.930	35.694	35,388	35,181	35.128
S75623	POTEMP (DEG-C)	19.35	19.18	19.16	19.19	19.16	19.15	19.14	19.14	18.79	18.54	18.26	18.07	17.84	17.75	17.45	17.35	17.14	16.97	16.70	16.08	15.26	14.50	12.72	10.73	8.47	7.14
STATION S75623	DEPTH (M)	10.	25.	50.	75.	100.	125.	150.	175.	200.	224.	248.	272.	296.	320.	348.	373.	398.	422.	447.	497.	547.	596.	.969	795.	895.	994.

TRITIUM	(T.U.)	****	6.29	6.23	6.19	6.65	6.20	****	6.85	6.25	6.47	6.38	6,53	6.29	6.45	6.32	****	6.21	5.96	2.69	5.78	5.27	4.70	3.34	2.12	0.88	1.27	
XS-3HE	(T.U.)	****	0.05	90.0-	****	0.39	0.34	0.72	0.70	1.09	****	1.23	****	2.00	****	2.17	2.21	2.37	****	2.33	****	****	****	1.82	****	1.10	1.10	
XS-3HE	(CC/GX10~15)	****	0.11	-0.14	****	0.92	0.81	1.72	1.68	2.61	****	2.96	****	4.81	****	5.20	5.30	5.68	****	5.58	****	****	****	4.37	****	2.65	2.64	
DEL-3HE	(%)	****	-8.2	-12.2	****	5.7	3.3	17.0	18.9	34.5	****	38.3	****	73.9	****	77.7	77.7	81.8	****	88.3	****	****	****	62.2	45.8	31.1	30.4	
HE CONCN	(CC/GX10~8)	***	4.32	4.38	***	4.07	4.44	4.69	4.04	4.16	***	4.40	***	4.08	***	4.24	4.33	4.44	***	4.03	***	***	***	4.23	***	4.30	4.32	
OXYGEN	(ML/L)	5.22	5.28	5.31	5.24	5.28	2.00		4.70	4.64	4.59	4.58	4.56	4.53	4.49	4.48	4.47		4.36	4.37		4.26				3.83	4.36	
SIG-THETA	(%)	26.030	26.027	26.053	25.974	26.058	26.128	26.169	26,231	26.298	26.346	26.388	26,425	26.473	26.514	26.528	26.581	26.586	26.607	26.635	26.716	26.809	26.865	27.019	27.230	27,415	27.571	
														36,414														
POTEMP	(DEG-C)	19.98	19.99	19.71	19.73	19.69	19.26	18.99	18.73	18.40	18.22	18.02	17.84	17.59	17.40	17.32	17.08	16.86	16.73	16.34	15.59	14.76	14.02	12.37	66.6	80.8	6.91	
DEPTH	£	1.	27.	53.	80.	106.	131.	157.	182.	207.	232.	257.	282.	307.	332.	346.	370.	395.	419.	443.	492.	541.	591.	691.	791.	891.	991.	

30.50 X 58.50

31/ 3/75

TRITIUM	6.63	****	6.72	****	6.59	6.14	99.9	6.46	6.24	6.47
XS-3HE	****	0.11	****	****	****	****	****	****	****	****
	(CT OTYPY)									
DEL-3HE	****	-5.1	1.1	****	****	****	****	****	****	****

OXYGEN	5.19	5.19	5.21	5,19	5.18	4.83	4.70	4.60	4.58	4.51
SIG-THETA	26.018	26.025	26.022	26.022	26.026	26.160	26.279	26.392	26.472	26.509
SALINITY	36.659	*****	36.644	36.647	36.646	36.519	36.494	36.454	36.413	36.394
POTEMP	20.10	20.05	20.04	20.05	20.03	19.15	18.61	18.04	17.59	17.38
DEPTH	;	49.	74.	-86	122.	147.	172.	196.	221.	246.

30.50 X 56.50

31/ 3/75

STATION S75626 *********

	•	-	
-	7	_	_

TRI (TILUM (TILUm (TILUM (TILUM (TILUM (TILUM (TILUM (TILUM (TILUM (TILUM (TILUm (TILum (TILum (TILum (TILum (TILum (TILum (TILum (TILum (TILum (Tilu	0.21 0.24 0.35
内コ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	0.51 0.54 0.53
XS-3HE -0.05 -0.05 -0.05 -0.05 -0.36 -0.36 -0.36 -0.15	1.23 1.31 1.44 1.28
# # # # # # # # # # # # # # # # # # #	5 7 7 6 0 5 8 8 6 0
(CC/GX10) 3.991 3.991 3.991 3.999 3.999 3.999 3.999 3.999 4.038 4.038 4.14 4.14 4.14	4.25 4.02 5.04 7.74
OXYGEN ST. 53.00 ST. 53.00	6 6 5 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
SIG-THETA (X.) 26.176 26.250 26.253 26.254 26.274 26.336 26.336 26.337 26.337 26.338 26.338 27.238 27.232 27.232 27.238 27.238 27.238 27.238	27.849 27.860 27.889 27.889
SALINITY 36.546 36.546 36.546 36.546 36.540 36.495 36.495 36.495 36.495 36.495 36.495 36.495 36.495 36.495 36.495 36.177 35.946 35.908 35.002 35.002	34.999 34.987 34.978 34.972
(DTEMP 19.17 18.88 18.88 18.87 18.39 17.21 17.21 17.21 17.21 17.21 17.21 17.21 17.21 18.36 18.36 18.36 14.43 4.01	3.59 3.38 3.00 2.95
DEPTH (#) 10. 10. 25. 25. 250.	2000. 2200. 2400. 2600.

DEPTH = 3015. M.

32.17 X 64.50

30/ 3/77

STATION PANOOI

	-	-	ů.
-	2	•	

H3	-0-0
XS-3HE -0.01	
XS-3HE -0.03 -0.03 -0.03 -0.09 0.12 0.12 0.12 0.12 1.94 1.94 1.94 4.52 2.62 2.62 3.51 0.84	
DE	
CC/GX10^B 3.922 3.922 3.923 3.923 3.923 3.923 3.923 3.923 3.923 3.923 4.123 4.133 4.133 4.133 4.133	
0XYG ML/LL 5.63 5.63 5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10 5.10 6.11	NNHH
SIG-THETA (%) 25.879 25.879 26.127 26.127 26.375 26.375 26.376 26.376 26.376 26.376 26.376 26.376 26.376 26.376 26.377 26.378 26.378 26.378 27.725 27.725 27.725 27.725 27.725	27.833 27.855 27.881 27.885
######################################	34.996 34.981 34.978 34.967
CDEG-C) 20.35 20.35 20.35 20.25 20.25 19.42 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.26 17.57 16.34 17.57 16.34 17.57 18.26 10.49 20.09	3.72 3.38 3.08 2.95
DEPTH (M) 10. 10. 25. 25. 250. 250. 250. 250. 250. 700. 700. 700. 1200. 1200. 1600. 1600.	2005. 2205. 2405. 2605.

DEPTH = 3015. M.

32.17 X 64.50

11/ 5/77

STATION PANOO2

TRITIUM	(T.U.)	3.93	3.94	4.84	4.50	4.71	4.58	4.56	4.58	4.94	4.69	4.41	5.23	4.69	3.64	3.02	1.94	1.19	1.58	1.56	1.39	0.81	0.41	0.20	0.05	0.26	0.12
XS-3HE	(T.U.)	-0.01	-0.07	-0.04	-0.14	0.05	0.03	0.33	0.20	0.33	0.34	0.19	96.0	2.46	1.93	1.72	1.40	0.97	1.11	1.43	1.20	0.57	****	•	0.33		•
XS-3HE	(CC/GX10~15)	-0.02	-0.16	-0.09	-0.33	0.13	0.08	0.78	0.49	08.0	0.81	0.45	2,30	5.90	4.62	4.12	3.37	2.32	2.67	3.44	2.88	1.38	****	1.49	8	1.50	0.
DEL-3HE	(%)	-7.5	-12.6	-11.9	-16.3	-8.2	-8.8	3.0		3.0	3.1	-3.2	30.5	95.1	64.4	55.7	46.2	27.0	31.4	40.3	35.2	8.3	****	9.2	-1.4	10.0	1.1
HE CONCN	(CC/GX10~8)	5.15	3.91	4.00	4.12	4.24	4.39	3.88	4.06	4.20	4.28	4.09	3.94	3.98	4.42	4.41	4.08	4.08	4.24	4.63	4.11	4.41	****	4.78	4.39	4.40	4.51
OXYGEN	(HL/L)		5.20	5.48	5.51	5.38	5.21	5.04	5.19	2.09	5.29	5.13	4.85	4.37	4.26	4.12	4.02	3.73	4.48	5.52	5.92	80.9	60.9		6.13		•
SIG-THETA	(%)	24.125	24.465	25.441	25.951		6.2	9	26.368	9	26.424	9	v	26.644	v	v	27.203	~	1	~	~	1	27.829	1	1	27.884	
SALINITY	(%)	36.161	*****	36.657	36.610	36.554	36.525	36.488	36.488	36.490	36.496	36.495	36.455	36.216	35.968	35.656	35.336	35.134	35.113	35.047	35.010	34.993	35.002	35.006	34.987	34.977	34.967
POTEMP	(DEG-C)	25.37	24.87	22.19	20.21	19.45	19.01		18.24		18.04	17.98		16.24		12.65	10.17	8.06	6.67	4.99					3.38		2.94
DEPTH	£	:	10.	25.	50.	75.	100.	150.	200.	250.	300.	350.	400.	505.	595.	695.	795.	895.	995.	1195.	1395.	1595.	1800.	2000.	2200.	2405.	2605.

DEPTH = 3015. M.

32.17 X 64.50

30/ 6/77

STATION PANOO3

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978)

Deputy Under Secretary of Defense (Research and Advanced Technology) Military Assistant for Environmental Science Room 3D129 Washington, D.C. 20301

Office of Naval Research 800 North Quincy Street Arlington, VA 22217

- 3 ATTN: Code 483 1 ATTN: Code 460
- 2 ATTN: 102B
- 1 CDR J. C. Harlett, (USN)
 ONR Representative
 Woods Hole Oceanographic Inst.
 Woods Hole, MA 02543

Commanding Officer
Naval Research Laboratory
Washington, D.C. 20375
ATTN: Library, Code 2627

12 Defense Documentation Center Cameron Station Alexandria, VA 22314 ATTN: DCA

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522

- 1 ATTN: Code 8100 1 ATTN: Code 6000 1 ATTN: Code 3300
- 1 NODC/NOAA Code D781 Wisconsin Avenue, N.W. Washington, D.C. 20235

books Hole Oceanographic Institution NHOL-79-60	1. 34. 34e Data in Sargasso Sea	Woods Hole Oceanographic Institution WHOI-79-60	
MUDDOS HOLE OCEANOGRAPHIC INSTITUTION HELIUM ISOTOPE LABORATION DATA RELEASE MO. 1 by 4. 3. Jankins, W. W. Golfestro and R. D. Boudreau. July 1978. 27 pages. Prepared for the Office of Naval Research under Contract MODO14-784-C-0262; NR 063-004 and for the National Science Foundation under Grant OFF 76-20465. This report sugmarizat technique, estimated precisions and results for 44 and 1948 and on three cruises in the Sarpasso 384. In addition, a statistical treatment is made on 35 surface (all m.) 384. In addition, a statistical treatment is made on 35 surface (all m.) 384. In addition, a statistical treatment to solubility socope effect and vis temperature dependents to be (a - 1) x 1000 0/00 = - (7):3 + 0.0) (0.28 + 0.06) T (°C) with a regression scatter of 2.6 0/00 and a linear correlation coefficient of 0.640.		WOODS HOLE OCEANGEAPHIC INSTITUTION HELLUM ISOTOPE LABORATORY DATA RELEASE NO. 1 by N. J. Jenkins, N. Y. Collentre and R. D. Boudreau. July 1979. 27 pages. Prepared for the Office of Naval Research under Contract NOODIs-Je-C-0262, NM 003-004 and for the National Science Foundation under Grant OCE 76-20485. This report sugmarizes technique, estimated precisions and results for H and Jean naisyes and on brance crustas in the Sarpasso Sea. In addition, a statistical treatment is made on 56 surface (810 m) Jie-/He analyses to obstain an estimate of the solubility isotope effect and its temperature dependence to be (a - 1) x 1000 flop 600 = (17.3 + 0.8) (0.28 + 0.06) T (0c) with a regression scatter of 2.6 9/00 and a linear correlation coefficient of 0.640.	1. helve isotope effect on solution in seameter on solution in seameter in Jenkins, W. J. 11. Collentra, W. V. 111. Boudreau, R. P. 11. NOODIA-74-C-0262; 11. MGS-004 11. OCE 76-20485
	This card is UNCLASSIFIED		This card is UNCLASSIFIED
Woods Hole Oceanographic Institution WOODS HOLE OCEANOGAPHIC INSTITUTION HELIUM ISOTOPE WOODS HOLE OCEANOGAPHIC INSTITUTION HELIUM ISOTOPE WOODS HOLE OCEANOGAPHIC INSTITUTION HELIUM ISOTOPE WOODS HOLE OF A RELEGE TO 1 by M. J. Jankins, W. W. Collento Office of Manal Research under Contract MODOIs-744-CBEST IN 083-004 and for the National Science Foundation under Grant OCE 76-2048. This report superises technique, estimated precisions and results for 34 and 19ces and on three cruises in the Surgasco 35-a. In addition, a statistical treatment is and on 35 surface (310 m) 36-b. The addition, a statistical treatment is and on 35 surface (310 m) 36-b. The addition, 20 the surgassion scatter of 2.6 9/00 and a linear correlation coefficient of 0.640.	1. 34, 34e Data in Sargasso Sea 2. Fall-out isotopes 3. Helium isotope effect on solution in seasater 1. Jenkins, W. J. 11. Collentro, W. V. 111. Boudreau, R. D. 1V. MODOL-74-C-0262; W. OCE 76-20485 This card is UNCLASSIFIED	Woods Hole Oceanographic Institution Woods Hole Oceanographic Institution WOODS HOLE OCEANOGRAPHIC INSTITUTION HELIUM ISOTOPE LABORATORY DATA RELEASE NO. 1 by W. J. Jenkins, W. Y. Collentra and R. D. Boudreau. July 1979. 27 pages. Prepared for the Orfice of Naval Research under Contract NOODI4.74-C-0262; NR 083-004 and for the National Science Foundation under Grant OCE 76-20485. This report sugment as executioning, estated precisions and results for "Ha analyses and on three cruises in the Sarpasso Sea. In addition, a statistical treatment is made on 36 surface (410 m) JHF/He analyses to obtain an estimate of the solutifyty isotope effect and its emperature dependence to be (a. 1) x 1000 (10; source) (0.28 ± 0.06) T (0) with a regression scatter of 2.6 0/oo and a linear correlation coefficient of 0.640.	1. 34, 34e Data in Sargasso Sea 2. Fall-out isotopes 3. Helium isotope effect on solution in sea-water 11. Jentins, W. J. 111. Collentro, W. V. 1111. Boudreau, R. D. 114. MODIL-74-C-0882; 118. MODIL-74-C-0882; 119. OCE 74-20485 119. Card is UNCLASSIFIED

大変ので