EE230 Analog Circuits Lab

Experiment 1

Param Rathour 190070049

Autumn Semester 2021-22

Contents

1	\mathbf{RC}	Integrator
	1.1	Circuit
	1.2	Plots
	1.3	Codes
2	\mathbf{RC}	Differentiator
	2.1	Circuit
	2.2	Plots
	2.3	Codes
3	RC	Lowpass Filter
	3.1	Circuit
	3.2	Plots
	3.3	Codes
4	RC	Highpass Filter
	4.1	Circuit
	4.2	Plots
	4.3	Codes
5	RC	Bandpass Filter
	5.1	Circuit
	5.2	Plots
	5.3	Codes
	5.4	Simulation Results
	5.5	Theoretical Values
	5.6	Comparison between Simulated and Theoretical Values
6	RLO	C Bandpass Filter
	6.1	Circuit
	6.2	Plots
	6.3	Codes
	6.4	Simulation Results
	6.5	Theoretical Values
	6.6	Comparison between Simulated and Theoretical Values
7	Con	nclusions 10
	7.1	Major Learnings from this Experiment
	7.2	Challenges Faced
	7.3	Ouestions or Clarifications (if any)

1 RC Integrator

1.1 Circuit

Given: $R = 10 \text{ k}\Omega$, $C = 0.1 \mu \text{ F} \implies \tau = RC = (10 \cdot 10^3 \Omega) \cdot (0.1 \cdot 10^{-6} \text{ F}) \text{ s} = 1 \text{ms}$

Figure 1.1: RC Integrator

1.2 Plots

- (a) Time response, RC Integrator for $T=5\tau$
- (b) Time response, RC Integrator for $T=0.1\tau$

1.3 Codes

Param Rathour (190070049), RC Integrator

* Elements

* For Pulse Width = 0.1ms and Simulation Time = 4ms
Vin in gnd pulse(0 5 0 0 0 0.1m 0.2m)
R1 in out 10k
C1 out gnd 0.1u

* I have chosen TSTEP = 0.01ms, TSTOP = 4ms
.tran 0.01m 4m

* Analysis
.control
run

* Display
plot V(in) V(out)
.endc
.end

2 RC Differentiator

2.1 Circuit

Given: $R = 10 \text{ k}\Omega$, $C = 0.1 \mu \text{ F} \implies \tau = RC = (10 \cdot 10^3 \Omega) \cdot (0.1 \cdot 10^{-6} \text{ F}) \text{ s} = 1 \text{ms}$

Figure 2.1: RC Differentiator

2.2 Plots

- (a) Time response, RC Differentiator for $T=5\tau$
- (b) Time response, RC Differentiator for $T=0.1\tau$

2.3 Codes

Param Rathour (190070049), RC Differentiator

* Elements

* For Pulse Width = 5ms and Simulation Time = 50ms
Vin in gnd pulse(0 5 0 0 0 5m 10m)
C1 in out 0.1u
R1 out gnd 10k

* I have chosen TSTEP = 0.01ms, TSTOP = 50ms
.tran 0.01m 50m

* Analysis
.control
run

* Display
plot V(in) V(out)
.endc
.end

3 RC Lowpass Filter

3.1 Circuit

Given: $R = 10 \text{ k}\Omega$, $C = 0.1 \mu \text{ F} \implies \tau = RC = (10 \cdot 10^3 \Omega) \cdot (0.1 \cdot 10^{-6} \text{ F}) \text{ s} = 1 \text{ms}$

Figure 3.1: RC Lowpass Filter

3.2 Plots

Figure 3.2: Time response, RC Lowpass Filter

3.3 Codes

```
Param Rathour (190070049), RC Lowpass Filter

* Elements

* For Input Voltage as sinwave with amplitude = 1V and Frequency Range 1Hz - 10kHz
Vin in gnd dc 0 ac 1
R1 in out 10k
C1 out gnd 0.1u

* I have chosen ND = 10, FSTART = 1Hz, FSTOP = 10kHz
.ac DEC 10 1 10k

* Analysis
.control
run

* Display
plot V(in) V(out)
.endc
.end
```

4 RC Highpass Filter

4.1 Circuit

Given: $R = 10 \text{ k}\Omega$, $C = 0.1 \mu \text{ F} \implies \tau = RC = (10 \cdot 10^3 \Omega) \cdot (0.1 \cdot 10^{-6} \text{ F}) \text{ s} = 1 \text{ms}$

Figure 4.1: RC Highpass Filter

4.2 Plots

Figure 4.2: Time response, RC Highpass Filter

4.3 Codes

```
Param Rathour (190070049), RC Highpass Filter

* Elements

* For Input Voltage as sinwave with amplitude = 1V and Frequency Range 1Hz - 10kHz
Vin in gnd dc 0 ac 1
C1 in out 0.1u
R1 out gnd 10k

* I have chosen ND = 10, FSTART = 1Hz, FSTOP = 10kHz
.ac DEC 10 1 10k

* Analysis
.control
run

* Display
plot V(in) V(out)
.endc
.end
```

5 RC Bandpass Filter

5.1 Circuit

Figure 5.1: RC Bandpass Filter

5.2 Plots

Figure 5.2: Time response, RC Bandpass Filter

5.3 Codes

```
Param Rathour (190070049), RC Bandpass Filter
* Elements
* For Input Voltage as sinwave with amplitude = 1V and Frequency Range 1Hz - 10kHz
Vin in gnd dc 0 ac 1
R1 in mid 10k
C1 mid out 0.1u
R2 out gnd 10k
C2 out gnd 0.1u
* I have chosen ND = 10, FSTART = 1Hz, FSTOP = 10kHz
.ac DEC 10 1 10k
* Analysis
.control
run
meas ac Vdbmax max vdb(out)
let Vdbreq = Vdbmax-3
meas ac fc when vdb(out) = Vdbmax
meas ac fL when vdb(out) = Vdbreq rise = 1
```

```
meas ac fH when vdb(out) = Vdbreq fall = 1

* Display
print fc
print fL
print fH
plot vdb(out) xlog
.endc
.end
```

5.4 Simulation Results

- Peak Amplitude = -9.542459dB
- Centre Frequency = $1.584893 \cdot 10^2$ Hz
- Lower Frequency = $4.857104 \cdot 10^{1}$ Hz
- Upper Frequency = $5.251130 \cdot 10^2$ Hz

5.5 Theoretical Values

In the circuit,

$$i = \frac{V_{\text{in}}(s)}{\underbrace{R + \frac{1}{sC}}_{\text{series}} + \underbrace{\frac{R \cdot \frac{1}{sC}}{R + \frac{1}{sC}}}_{\text{parallel}}$$

$$V_{\text{out}} = \frac{V_{\text{in}}(s)}{R + \frac{1}{sC} + \frac{R \cdot \frac{1}{sC}}{R + \frac{1}{sC}}} \cdot \underbrace{\frac{R \cdot \frac{1}{sC}}{R + \frac{1}{sC}}}_{\text{resistance}}$$

This gives the transfer function as,

$$H(s) = \frac{sRC}{1 + 3sRC + (sRC)^2}$$

Substitue $s = j\omega$ and simplify to get,

$$H(s) = \frac{j\omega RC}{1 + 3j\omega RC + (j\omega RC)^2}$$

$$|H(s)| = \frac{\omega RC}{\sqrt{(3\omega RC)^2 + (1 - (\omega RC)^2)^2}}$$
 (5.1)

Now, central frequency is $f = \frac{1}{2\pi} \cdot \frac{1}{RC} = \frac{1}{2\pi} \cdot \frac{1}{(10 \cdot 10^3) \cdot (0.1 \cdot 10^{-6})} = 159.155$ Hz

At this frequency $|H(s)| = \frac{1}{3}$,

So, lower frequency (f_L) and higher frequency (f_H) are when $|H(s)| = \frac{1}{\sqrt{2}} \cdot \frac{1}{3} = \frac{1}{3\sqrt{2}}$

$$\frac{\omega RC}{\sqrt{(1 - (\omega RC)^2)^2 + (3j\omega RC)^2}} = \frac{1}{3\sqrt{2}}$$

Squaring both sides,

$$18(\omega RC)^{2} = 9(\omega RC)^{2} + (1 - (\omega RC)^{2})^{2}$$
$$(\omega RC)^{4} - 11(\omega RC)^{2} + 1 = 0$$

$$(\omega RC)^2 = \frac{11 \pm 3\sqrt{13}}{2}$$
$$(\omega RC) = \frac{\sqrt{13} \pm 3}{2}$$
$$f = \frac{1}{2\pi} \cdot \frac{\sqrt{13} \pm 3}{2}$$

therefore, $f_L = 48.188 \text{Hz}, f_H = 525.653 \text{Hz}$

5.6 Comparison between Simulated and Theoretical Values

Simulated values then Theoretical values,

- Centre Frequency = $1.584893 \cdot 10^2$ Hz and 159.155Hz
- Lower Frequency = $4.857104 \cdot 10^{1}$ Hz and 48.188Hz
- Upper Frequency = $5.251130 \cdot 10^2$ Hz and 525.653Hz

As it is evident from the frequencies all Simulated values are close to Theoretical values.

6 RLC Bandpass Filter

6.1 Circuit

Figure 6.1: RLC Bandpass Filter

6.2 Plots

Figure 6.2: Time response, RLC Bandpass Filter

6.3 Codes

```
Param Rathour (190070049), RLC Bandpass Filter
* Elements
* For Input Voltage as sin Wave with amplitude = 1V and Frequency Range 1Hz - 10MHz
Vin in gnd dc 0 ac 1
L1 in mid 10m
C1 mid out 0.1u
R1 out gnd 1k
* I have chosen ND = 10, FSTART = 1Hz, FSTOP = 10000kHz
.ac DEC 10 1 10000k
* Analysis
.control
meas ac Vdbmax max vdb(out)
let Vdbreq = Vdbmax-3
meas ac fc when vdb(out) = Vdbmax
meas ac fL when vdb(out) = Vdbreq rise = 1
meas ac fH when vdb(out) = Vdbreq fall = 1
* Display
print fc
print fL
print fH
plot vdb(out) xlog
.endc
.end
```

6.4 Simulation Results

- Peak Amplitude = $-3.051282 \cdot 10^{-5} dB$
- Centre Frequency = $5.011872 \cdot 10^3 \text{Hz}$
- Lower Frequency = $1.476560 \cdot 10^3 \text{Hz}$
- Upper Frequency = $1.735767 \cdot 10^4 \text{Hz}$

6.5 Theoretical Values

In the circuit,

$$i = \frac{V_{\text{in}}(s)}{\underbrace{sL + \frac{1}{sC} + R}}$$

$$V_{\text{out}} = \underbrace{\frac{V_{\text{in}}(s)}{sL + \frac{1}{sC} + R}}_{i} \cdot \underbrace{\frac{R}{\text{resistanc}}}_{\text{resistanc}}$$

This gives the transfer function as,

$$H(s) = \frac{sRC}{1 + sRC + s^2LC}$$

Substitue $s = j\omega$ and simplify to get,

$$H(s) = \frac{j\omega RC}{1 + j\omega RC + (j\omega)^2 LC}$$

$$|H(s)| = \frac{(\omega RC)}{\sqrt{(\omega RC)^2 + (1 - \omega^2 LC)^2}}$$
 Now, central frequency is $f = \frac{1}{2\pi} \cdot \frac{1}{\sqrt{LC}} = \frac{1}{2\pi} \cdot \frac{1}{(10 \cdot 10^3) \cdot (0.1 \cdot 10^{-6})} = 5032.921 \text{Hz}$

At this frequency |H(s)| = 1,

So, lower frequency (f_L) and higher frequency (f_H) are when $|H(s)| = \frac{1}{\sqrt{2}} \cdot 1 = \frac{1}{\sqrt{2}}$

$$\frac{(\omega RC)}{\sqrt{(\omega RC)^2 + (1 - \omega^2 LC)^2}} = \frac{1}{\sqrt{2}}$$

Squaring both sides,

$$2(\omega RC)^2 = (\omega RC)^2 + (1 - \omega^2 LC)^2$$
$$(\omega RC)^2 = (1 - \omega^2 LC)^2$$

Take square root,

$$\begin{split} &\pm(\omega RC) = (1-\omega^2 LC) \\ &\omega^2 LC \pm (\omega RC) - 1 = 0 \\ &\omega = \frac{\pm RC + \sqrt{(RC)^2 + 4LC}}{2LC} \\ &f = \frac{1}{2\pi} \cdot \frac{\pm (10^{-4}) + \sqrt{(10^{-4})^2 + 4 \cdot 10^{-9}}}{2 \cdot 10^{-9}} \end{split}$$

therefore, $f_L = 1457.986$ Hz, $f_H = 17373.480$ Hz

6.6 Comparison between Simulated and Theoretical Values

Simulated values then Theoretical values,

- Centre Frequency = $5.011872 \cdot 10^3$ Hz and 5032.921Hz
- Lower Frequency = $1.476560 \cdot 10^3$ Hz and 1457.986Hz
- Upper Frequency = $1.735767 \cdot 10^4$ Hz and 17373.480Hz

As it is evident from the frequencies all Simulated values are close to Theoretical values.

7 Conclusions

7.1 Major Learnings from this Experiment

- Learning to simulated NGSPICE
- Documentation reading through SPICE manual and Debugging
- For RC integrators $T << \tau$ and for RC differentiators $T >> \tau$
- Finding Lower and Upper frequencies using Transfer Functions and NGSPICE

7.2 Challenges Faced

- Calculating Lower and Upper frequencies using NGSPICE commands
- Preparing this Large and Comprehensive Report in LATEX

7.3 Questions or Clarifications (if any)

None