Math 547: Mathematical Foundations of Statistical Learning Theory Fall 2017

Instructor: Stas Minsker Scribe: Mose Wintner

6.1 Boosting and Adaboost (adaptive boosting)

Invented by R. Schapire and Yoav Freund.

Generalization error of g:

$$P(Y \neq g(x)) = \mathbb{E}I\{Yg(X) \le 0\}.$$

We estimated the binary loss of the marginal with an exponential:

$$\ell_{0-1}(y, g(x)) = I\{yg(x) \le 0\} \le e^{-yg(x)}.$$

Then

$$\overline{g} = \operatorname*{argmin}_{g: \mathbb{S} \to \mathbb{R}} \mathbb{E} e^{-yg(x)} = \frac{1}{2} \ln \frac{1+\eta}{1-\eta}$$

where we see $sign(\overline{g}(x)) = sign(\eta(x))$. We seek to estimate \overline{g} by

$$\widehat{g}_n = \underset{g \in G}{\operatorname{argmin}} \frac{1}{n} \sum_{j=1}^n e^{-Y_j g(X_j)} \approx \mathbb{E}e^{-Y_g(X)}$$

for any fixed g. The map

$$g \mapsto \frac{1}{n} \sum_{j=1}^{n} e^{-Y_j g(X_j)}$$

is convex. If G is convex, then \widehat{g}_n is the solution of the convex minimization problem.

Let \mathcal{F} be the "base class" (also called the "weak learners") consisting of the binary classifiers (i.e. $f \in \mathcal{F}$ takes values in $\{\pm 1\}$.) Let G be the closure of the real linear span of \mathcal{F} . Let's examine one step of the steepest descent algorithm for this convex minimization problem. Assume that $g \in G$ is our current guess. We want to look for for $\alpha \in \mathbb{R}$ and $f \in \mathcal{F}$ that minimizes

$$\frac{1}{n} \sum_{j=1}^{n} e^{-Y_j(g(X_j) + \alpha f(X_j))} = \frac{1}{n} \sum_{j=1}^{n} e^{-Y_j g(X_j)} e^{-\alpha f(X_j) Y_j} =: \frac{1}{n} \sum_{j=1}^{n} w_j e^{-\alpha f(X_j) Y_j}.$$

We'll normalize the weights: let $\tilde{w}_j = w_j/(\sum w_j)$. Then our problem is to minimize

$$\frac{1}{n} \sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha f(X_{j})Y_{j}}$$

over $f \in \mathcal{F}$ and $\alpha \in \mathbb{R}$.

Because we're dealing with binary classifiers, we have

$$\sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha f(X_{j})Y_{j}} =$$

$$= \sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha} I\{Y_{j} = f(X_{j})\} + \sum_{j=1}^{n} \tilde{w}_{j} e^{\alpha} I\{Y_{j} \neq f(X_{j})\} \pm \sum_{j=1}^{n} \tilde{w}_{j} e^{-\alpha} I\{Y_{j} \neq f(X_{j})\}$$

$$= e^{-\alpha} + (e^{\alpha} - e^{-\alpha}) \sum_{j=1}^{n} \tilde{w}_{j} I\{Y_{j} \neq f(X_{j})\}$$

where the last term is referred to as the "weighted training error" $e_{n,\tilde{\omega}}(f)$.

to minimze the resulting expression, we proceed in two steps:

- 1) minimize $\sum_{i=1}^{n} \tilde{w}_{i} I\{Y_{i} \neq f(X_{i})\}$ with respect to f
- 2) minimize $e^{-\alpha} + 2\sinh(\alpha)e_{n,\tilde{\omega}}(f)$ with respect to $\alpha \in \mathbb{R}$.

By weak learnability, we mean that for any $\tilde{w}_1, \dots \tilde{w}_n$ such that $\tilde{w}_j \geq 0$ for all $j = 1, \dots, n$ and $\sum \tilde{w}_j = 1$, there exists $f \in \mathcal{F}$ such that $e_{n,\tilde{w}}(f) \leq 1/2$. We always have this due to symmetry: if our classifier f has error $\geq 1/2$, we can replace it with -f, which has error $\leq 1/2$.

We make the "weak learnability assumption", to satisfy 1), i.e. that we have access to a black box weak learning algorithm that takes \tilde{w}_j , $j = 1, \ldots, n$ and data $(X_1, Y_1), \ldots, (X_n, Y_n)$ as input and outputs $f \in \mathcal{F}$ such that $e_{n,\tilde{\omega}}(f) \leq 1/2$.

Step 2) is a calculus problem:

$$0 = -e^{-\alpha} + 2\cosh(\alpha)e_{n,\tilde{\omega}}(f)$$

$$1 = (e^{2\hat{\alpha}} + 1)e_{n,\tilde{\omega}}$$

$$\hat{\alpha} = \frac{1}{2}\log\left(\frac{1 - e_{n,\tilde{\omega}}(f)}{e_{n,\tilde{\omega}}(f)}\right)$$

This is the Adaboost algorithm; it is the first example of weak learnability \Rightarrow strong learnability.

6.1.1 Adaboost

- $\omega_j^{(0)} = \frac{1}{n}$.
- For t = 0, ..., T, call "weak learner" (WL) that
 - outputs binary classifier f_t such that the weighted training error $e_{n,w^{(t)}}(f_t) \leq 1/2$

- sets
$$\alpha_t = \frac{1}{2} \log \left(\frac{1 - e_{n,\tilde{\omega}}(f_t)}{e_{n,\tilde{\omega}}(f_t)} \right)$$

• update the weights $w_j^{(t+1)} = w_j^{(t)} \exp\left(-Y_j \alpha_t f_t(X_j)\right)$ for each j.

Output:

$$\widehat{g}^T(\cdot) = \operatorname{sign}\left(\sum_{j=1}^T \alpha_t f_t(\cdot)\right).$$

Can be thought of as an average vote among the weak learners.