

Data Cleaning

Objectives

Develop data cleaning strategies:

- Handling missing values
- Tidying string data
- Cleaning datasets through case studies

What is Data Cleaning?

What does the data analysis workflow look like?

START WITH A QUESTION

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	Facebook	512,000,000
5	amazon.com	492 million
6	yelp.com	
7	reddit.com	184,000,000
36	netflix.com	37,000,000

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	Facebook	512,000,000
5	amazon.com	492 million
6	yelp.com	
7	reddit.com	184,000,000
36	netflix.com	37,000,000

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	Facebook	512,000,000
5	amazon.com	492 million
6	yelp.com	
7	reddit.com	184,000,000
36	netflix.com	37,000,000

- Look for duplicates and dig into why there are multiple values
- Filter data down as appropriate

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	Facebook	512,000,000
5	amazon.com	492 million
6	yelp.com	
7	reddit.com	184,000,000

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	Facebook	512,000,000
5	amazon.com	492 million
6	yelp.com	
7	reddit.com	184,000,000

Check **summary statistics** for each column of data.

- Minimum and maximum of numerical values
- Unique values of categoricals

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	facebook.com	512,000,000
5	amazon.com	492,000,000
6	yelp.com	
7	reddit.com	184,000,000

rank	website	monthly_traffic
1	youtube.com	1,626,000,000
2	en.wikipedia.org	1,032,000,000
3	twitter.com	536,000,000
4	facebook.com	512,000,000
5	amazon.com	492,000,000
6	yelp.com	
7	reddit.com	184,000,000

Outliers

- Are **distant** from other observations
- Do not accurately represent real world
- Can significantly impact analysis

How to **find** outliers:

- Plots
- Statistics

How to **find** outliers:

- Plots
- Statistics

How to **deal with** outliers:

- Remove them
- Assign mean or median value
- Predict value with model

Handling Missing Values

Missing Values

- Unfortunately very common
- Occur for many reasons
- Detect with pandas
- Several ways to handle missings

Load in data about coffee

```
import pandas as pd

df = pd.read_csv("coffee.csv")

df
```

	price_lb	shipping	kind
Bold Bean	8.33	3.00	arabica
Morning Jumpstart	NaN	NaN	arabica
Barista's Dream	15.29	1.99	robusta
Eastern Roast	27.88	5.49	liberica
Cup o' Joe	9.99	NaN	arabica
Wide Awake	13.99	4.00	robusta
Daily Grind	9.15	2.50	arabica

Dataset contains several missings

```
import pandas as pd

df = pd.read_csv("coffee.csv")

df
```

	price_lb	shipping	kind
Bold Bean	8.33	3.00	arabica
Morning Jumpstart	NaN	NaN	arabica
Barista's Dream	15.29	1.99	robusta
Eastern Roast	27.88	5.49	liberica
Cup o' Joe	9.99	NaN	arabica
Wide Awake	13.99	4.00	robusta
Daily Grind	9.15	2.50	arabica

Quickly check missings with .info()

```
df.info()
 <class 'pandas.core.frame.DataFrame'>
 Index: 7 entries, Bold Bean to Daily Grind
 Data columns (total 3 columns):
             Non-Null Count Dtype
      Column
      price lb 6 non-null float64
      shipping 5 non-null float64
      kind
               7 non-null
                              object
 dtypes: float64(2), object(1)
 memory usage: 544.0+ bytes
```


Use .isna() for elementwise True/False values

df.isna()

	price lb	shipping	kind
Bold Bean	False	False	False
boid bean	raise	raise	raise
Morning Jumpstart	True	True	False
Barista's Dream	False	False	False
Eastern Roast	False	False	False
Cup o' Joe	False	True	False
Wide Awake	False	False	False
Daily Grind	False	False	False

Use .isna() for elementwise True/False values

df.isna()

Bold BeanFalseFalseFalseMorning JumpstartTrueTrueTrueFalseBarista's DreamFalseFalseFalseFalseEastern RoastFalseFalseFalseFalseCup o' JoeFalseTrueFalseWide AwakeFalseFalseFalseDaily GrindFalseFalseFalse		price_lb	shipping	kind
Barista's Dream False False False Eastern Roast False False False Cup o' Joe False True False Wide Awake False False False	Bold Bean	False	False	False
Eastern Roast False False False Cup o' Joe False True False Wide Awake False False False	Morning Jumpstart	True	True	False
Cup o' JoeFalseTrueFalseWide AwakeFalseFalseFalse	Barista's Dream	False	False	False
Wide Awake False False	Eastern Roast	False	False	False
	Cup o' Joe	False	True	False
Daily Grind False False	Wide Awake	False	False	False
	Daily Grind	False	False	False

How to Detect Missing Values

Use .isna() result as data mask

```
~df.shipping.isna()
 Bold Bean
                      True
 Morning Jumpstart
                     False
 Barista's Dream
                      True
 Eastern Roast
                   True
 Cup o' Joe
                False
 Wide Awake
                      True
 Daily Grind
                      True
 Name: shipping, dtype: bool
```


How to Detect Missing Values

Use .isna() result as data mask

```
~df.shipping.isna()
```

```
Bold Bean True
Morning Jumpstart False
Barista's Dream True
Eastern Roast True
Cup o' Joe False
Wide Awake True
Daily Grind True
Name: shipping, dtype: bool
```

df[~df.shipping.isna()]

	price_lb	shipping	kind
Bold Bean	8.33	3.00	arabica
Barista's Dream	15.29	1.99	robusta
Eastern Roast	27.88	5.49	liberica
Wide Awake	13.99	4.00	robusta
Daily Grind	9.15	2.50	arabica

Methods to Handle Missings

- 1. Drop rows with missing values
- 2. Fill missing values with a standard value such as zero
- 3. Impute missings with mean or median

Dropping Missing Values

Use pandas to drop with .dropna()

Drops all rows with any missing by default

df.dropna()

	price_lb	shipping	kind
Bold Bean	8.33	3.00	arabica
Barista's Dream	15.29	1.99	robusta
Eastern Roast	27.88	5.49	liberica
Wide Awake	13.99	4.00	robusta
Daily Grind	9.15	2.50	arabica

Dropping Missing Values

Use pandas to drop with .dropna()

- Drops all rows with any missing by default
- Use subset to drop only some missings

df.dropna(subset=["price_lb"])

	price_lb	shipping	kind
Bold Bean	8.33	3.00	arabica
Barista's Dream	15.29	1.99	robusta
Eastern Roast	27.88	5.49	liberica
Cup o' Joe	9.99	NaN	arabica
Wide Awake	13.99	4.00	robusta
Daily Grind	9.15	2.50	arabica

Filling Missings with a Value

Use pandas .fillna() to fill missings

```
df.shipping.fillna(∅)
```

Filling Missings with a Value

Use pandas .fillna() to fill missings

Only fill with reasonable values!

```
df.shipping.fillna(♥)
 Bold Bean
                      3.00
                      0.00
 Morning Jumpstart
 Barista's Dream
                     1.99
                      5.49
 Eastern Roast
 Cup o' Joe
                      0.00
 Wide Awake
                      4.00
 Daily Grind
                      2.50
 Name: shipping, dtype: float64
```

Imputing Missings

Use pandas .fillna() to fill missings with mean or median values

```
price_avg = df.price_lb.mean()
price_avg
```

14.105

Imputing Missings

Use pandas .fillna() to fill missings with mean or median values

```
price_avg = df.price_lb.mean()
df.price_lb.fillna(price_avg)
 Bold Bean
                    8.330
                   14.105
 Morning Jumpstart
 Barista's Dream
                   15.290
 Eastern Roast 27.880
 Cup o' Joe
            9.990
 Wide Awake
            13.990
 Daily Grind 9.150
 Name: price lb, dtype: float64
```

Detecting Missing Values

```
.info()
```

Count of non-null values for each column

```
.isna()
```

- Boolean True/False for each element
- Can be used as data mask

Methods to Handle Missings

- .dropna()
 - 1. Drop rows with missing values
- .fillna()
 - 2. Fill missing values with a standard value such as zero
 - 3. Impute missings with mean or median
- 4. Use a model to predict missing (advanced)

Managing Columns of Data

Load in data about coffee

```
import pandas as pd

df = pd.read_csv("coffee_data.csv")

df
```

	Price per Pound	Shipping Price	Favorite?
Bold Bean	8.33	3.00	Yes
Morning Jumpstart	9.49	0.00	Yes
Barista's Dream	15.29	1.99	Yes
Eastern Roast	27.88	5.49	Yes
Cup o' Joe	9.99	0.00	Yes
Wide Awake	13.99	4.00	Yes
Daily Grind	9.15	2.50	Yes

None of these column names are valid Python variables

Rename to make analysis easier

```
df.columns

Index(['Price per Pound', 'Shipping
Price', 'Favorite?'], dtype='object')
```


Pass a dictionary to the columns argument of pandas . rename()

```
df.rename(columns={
   'Price per Pound': 'price_lb',
   'Shipping Price': 'shipping',
   'Favorite?': 'favorite'
   }, inplace=True)
```

Pass a dictionary to the columns argument of pandas . rename()

```
df.rename(columns={
    'Price per Pound': 'price_lb',
    'Shipping Price': 'shipping',
    'Favorite?': 'favorite'
    }, inplace=True)
```

df

	price_lb	shipping	favorite
Bold Bean	8.33	3.00	Yes
Morning Jumpstart	9.49	0.00	Yes
Barista's Dream	15.29	1.99	Yes
Eastern Roast	27.88	5.49	Yes
Cup o' Joe	9.99	0.00	Yes
Wide Awake	13.99	4.00	Yes
Daily Grind	9.15	2.50	Yes

What is the average shipping?

Why does using .mean() on shipping column causes error?

```
df.shipping.mean()

TypeError: Could not convert
```

3.000.001.995.490.004.002.50 to numeric

What is the average shipping?

Why does using .mean() on shipping column causes error?

```
df.shipping.mean()
```

```
TypeError: Could not convert 3.000.001.995.490.004.002.50 to numeric
```

df.head(3)

	price_lb	shipping	favorite
Bold Bean	8.33	3.00	Yes
Morning Jumpstart	9.49	0.00	Yes
Barista's Dream	15.29	1.99	Yes

What is the average shipping?

Checking .dtypes shows the shipping column contains strings

```
price_lb float64
shipping object
favorite object
dtype: object
```

Updating a Column Datatype

Convert a column's datatype with the .astype() method

```
df['shipping'] = df.shipping.astype('float')
```

Updating a Column Datatype

Convert a column's datatype with the .astype() method

Updating a Column Datatype

Convert a column's datatype with the .astype() method

```
df['shipping'] = df.shipping.astype('float')
df.dtypes
```

```
price_lb float64
shipping float64
favorite object
dtype: object
```

```
df.shipping.mean()
```

2.4257142857142857

Dropping Columns

The favorite column contains the same value for every row

```
df.favorite.value_counts()

Yes 7
Name: favorite, dtype: int64
```

Dropping Columns

Drop unnecessary columns with pandas .drop()

- axis=0 refers to the row dimension
- axis=1 refers to column dimension

```
df.drop('favorite', axis=1)
```


Dropping Columns

Drop unnecessary columns with pandas .drop()

- axis=0 refers to the row dimension
- axis=1 refers to column dimension

df.drop('favorite', axis=1)

	price_lb	shipping
Bold Bean	8.33	3.00
Morning Jumpstart	9.49	0.00
Barista's Dream	15.29	1.99
Eastern Roast	27.88	5.49
Cup o' Joe	9.99	0.00
Wide Awake	13.99	4.00
Daily Grind	9.15	2.50

Managing Columns of Data

- Rename columns by passing an update dictionary into .rename()
- Convert column's datatype with .astype()
- Use .drop() and axis=1 to drop a column from the dataframe

Cleaning String Data

Analyzing Text Data

Text data is notoriously messy.

- Inconsistent text
- Typos
- Extra whitespace
- Extra characters in numerical values (e.g. commas, dollar signs)

Analyzing Text Data

Load in data about US cities

```
import pandas as pd

df = pd.read_csv("cities.csv")

df
```

52	city	state	population
0	Chicago	IL	2,706,000
1	Los Angeles	ca	3,990,000
2	Omaha	NE	468,300
3	Dallas	TX	1,345,000
4	Philadelphia	Pa	1,584,000
5	Los Alamos	NM	12,373

Convert Column to Upper- or Lowercase

• Inconsistencies in state column

df

	city	state	population
0	Chicago	IL	2,706,000
1	Los Angeles	ca	3,990,000
2	Omaha	NE	468,300
3	Dallas	TX	1,345,000
4	Philadelphia	Pa	1,584,000
5	Los Alamos	NM	12,373

Convert Column to Upper- or Lowercase

- Inconsistencies in state column
- Convert column to uppercase
- Reference string methods, .str

```
df.state = df.state.str.upper()
df.state

0    IL
1    CA
2    NE
3    TX
4    PA
5    NM
Name: state, dtype: object
```

Remove Specific Characters

Commas in population column

df

Г	city	state	population
0	Chicago	IL	2,706,000
1	Los Angeles	CA	3,990,000
2	Omaha	NE	468,300
3	Dallas	TX	1,345,000
4	Philadelphia	PA	1,584,000
5	Los Alamos	NM	12,373

Remove Specific Characters

- Commas in population column
- Remove by replacing commas with the empty string

Remove Specific Characters

- Commas in population column
- Remove by replacing commas with the empty string

```
pop = df.population.str.replace(',', '')
pop
```

```
0 2706000

1 3990000

2 468300

3 1345000

4 1584000

5 12373

Name: population, dtype: object
```


Analyzing Text Data

df city state population Chicago IL 2706000 0 Los Angeles CA 3990000 NE Omaha 468300 2 Dallas TX 1345000 3

Analyzing Text Data

Dallas

3

TX

 city state population

 0 Chicago
 IL
 2706000

 1 Los Angeles
 CA
 3990000

 2 Omaha
 NE
 468300

1345000

```
df.city.unique()

array(['Chicago ', 'Los Angeles ',
   'Omaha ', 'Dallas ', 'Philadelphia ',
   'Los Alamos '], dtype=object)
```


Removing Whitespace

Strip whitespace from front or end of string data

 Whitespace includes spaces, tabs, new line characters, etc.

```
city = df.city.str.strip()
```

Removing Whitespace

Strip whitespace from front or end of string data

 Whitespace includes spaces, tabs, new line characters, etc.

```
city = df.city.str.strip()
city.unique()

array(['Chicago', 'Los Angeles',
   'Omaha', 'Dallas', 'Philadelphia',
   'Los Alamos'], dtype=object)
```

Checking for Substrings

Which cities contain "Los"?

Check elementwise with .contains()

```
df.city.str.contains('Los')

0   False
1   True
2   False
3   False
4   False
5   True
Name: city, dtype: bool
```

Checking for Substrings

Which cities contain "Los"?

- Check elementwise with .contains()
- Use result as data mask

```
df.city.str.contains('Los')

0   False
1   True
2   False
3   False
4   False
5   True
Name: city, dtype: bool
```

df[df.city.str.contains('Los')]

city state population

1 Los Angeles CA 3990000

5 Los Alamos NM 12373

Analyzing Text Data

Text data is notoriously messy.

Inconsistent text or typos

- .str.upper(), .str.lower()
- .str.replace()

Extra whitespace

• .str.strip()

Characters in numerical values

• .str.replace()

Searching for substrings

• .str.contains()

Case Study #1: Exploring New Data

What should we do when exploring new data?

Ask many questions and be skeptical.

- How do these data help answer the project question?
- What kind of data is given in each column?
- Do the data contain missing values?
- What steps are necessary to make these data ready for analysis?

Which Monday time saw the highest stock price in September?

September Prices for Stock WXYZ

What kind of data do we have?

```
import pandas as pd

df = pd.read_csv("wxyz.csv")

df.head()
```

```
day time price
0 9/1/2020 9:30 AM $0.00
1 9/1/2020 10:00 AM $0.00
2 9/1/2020 10:30 AM $1.00
3 9/1/2020 11:00 AM $2.00
4 9/1/2020 11:30 AM $2.00
```

What kind of data do we have?

```
df.shape
(308, 3)
df.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 308 entries, 0 to 307
 Data columns (total 3 columns):
     Column Non-Null Count Dtype
    day 308 non-null object
     time 308 non-null object
           308 non-null
     price
                          object
 dtypes: object(3)
 memory usage: 7.3+ KB
```


What kind of data do we have?

```
df.shape
(308, 3)
df.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 308 entries, 0 to 307
 Data columns (total 3 columns):
     Column Non-Null Count
                            Dtype
                                      All
                                      columns
           308 non-null
                           object
    day
            308 non-null
                           object
     time
                                      contain
            308 non-null
     price
                           object
                                      strings
 dtypes: object(3)
 memory usage: 7.3+ KB
```

Convert Strings to Numerics

Convert the price column to numerical values

df.head()

-=	day	time	price
0	9/1/2020	9:30 AM	\$0.00
1	9/1/2020	10:00 AM	\$0.00
2	9/1/2020	10:30 AM	\$1.00
3	9/1/2020	11:00 AM	\$2.00
4	9/1/2020	11:30 AM	\$2.00

Convert Strings to Numerics

Convert the price column to numerical values

Remove dollar signs

```
df.price = df.price.str.replace('$', '')
df.head()
```

	day	time	price
0	9/1/2020	9:30 AM	0.00
1	9/1/2020	10:00 AM	0.00
2	9/1/2020	10:30 AM	1.00
3	9/1/2020	11:00 AM	2.00
4	9/1/2020	11:30 AM	2.00

Convert Strings to Numerics

Convert the price column to numerical values

- Remove dollar signs
- Convert from strings to floats

Which Monday time saw the highest stock price in September?

```
df.sample(5)
```

	day	time	price
143	9/15/2020	11:00 AM	12.0
157	9/16/2020	11:00 AM	13.0
243	9/24/2020	12:00 PM	8.0
276	9/28/2020	2:30 PM	11.0
296	9/30/2020	10:30 AM	1.0

Create Datetime Column

Combine day and time columns

```
df['date_time'] = df.day + ' ' + df.time
df.head()
```

	day	time	price	date_time
0	9/1/2020	9:30 AM	0.0	9/1/2020 9:30 AM
1	9/1/2020	10:00 AM	0.0	9/1/2020 10:00 AM
2	9/1/2020	10:30 AM	1.0	9/1/2020 10:30 AM
3	9/1/2020	11:00 AM	2.0	9/1/2020 11:00 AM
4	9/1/2020	11:30 AM	2.0	9/1/2020 11:30 AM

Create Datetime Column

- Combine day and time columns
- Convert to datetime

```
df['date_time'] = df.day + ' ' + df.time
df.head()
```

```
        day
        time
        price
        date_time

        0 9/1/2020
        9:30 AM
        0.0 9/1/2020 9:30 AM

        1 9/1/2020
        10:00 AM
        0.0 9/1/2020 10:00 AM

        2 9/1/2020
        10:30 AM
        1.0 9/1/2020 10:30 AM

        3 9/1/2020
        11:00 AM
        2.0 9/1/2020 11:00 AM

        4 9/1/2020
        11:30 AM
        2.0 9/1/2020 11:30 AM
```

```
df['date_time'] = pd.to_datetime(df.date_time)
df.dtypes
```

```
day object
time object
price float64
date_time datetime64[ns]
dtype: object
```

Create Day of Week Column

Use weekday property of datetime

```
df['day_of_week'] = df.date_time.dt.weekday
df.sample(5)
```

day_of_week	date_time	price	time	day	
2	2020-09-16 11:00:00	13.0	11:00 AM	9/16/2020	157
2	2020-09-30 10:30:00	1.0	10:30 AM	9/30/2020	296
1	2020-09-15 11:00:00	12.0	11:00 AM	9/15/2020	143
3	2020-09-24 12:00:00	8.0	12:00 PM	9/24/2020	243
0	2020-09-28 14:30:00	11.0	2:30 PM	9/28/2020	276

Which Monday time saw the highest stock price in September?

Select Mondays

```
mondays = df[df.day_of_week == 0]
mondays.sample(5)
```

	day	time	price	date_time	day_of_week
58	9/7/2020	10:30 AM	7.0	2020-09-07 10:30:00	0
129	9/14/2020	11:00 AM	12.0	2020-09-14 11:00:00	0
130	9/14/2020	11:30 AM	11.0	2020-09-14 11:30:00	0
199	9/21/2020	11:00 AM	9.0	2020-09-21 11:00:00	0
279	9/28/2020	4:00 PM	13.0	2020-09-28 16:00:00	0

Which Monday time saw the highest stock price in September?

- Select Mondays
- Sort to find the maximum price

```
(mondays[['date_time', 'price']]
  .sort_values('price', ascending=False)
  .head(3))
```

```
      date_time
      price

      139
      2020-09-14 16:00:00
      14.0

      279
      2020-09-28 16:00:00
      13.0

      138
      2020-09-14 15:30:00
      13.0
```

What should we do when exploring new data?

.head(), .info(), .dtypes, .shape

- What kind of data is given in each column?
- Do the data contain missing values?

.replace(), .to_datetime()

- What steps are necessary to make data ready for analysis?
- How do these data help answer the project question?

Case Study #2: Diagnosing Errors

How can we diagnose errors?

Data inconsistencies may cause errors when operating on columns.

Build custom functions to:

- Include print statements
- Add conditional statements
- Use exceptions

Circus Performers Case Study

Which type of performer is the most experienced on average?

```
import pandas as pd

df = pd.read_csv("circus.csv")

df.head()
```

	email	performances
0	jamie50@liontamer.org	16
1	mya62@liontamer.org	3
2	bertie74@clown.inc	6
3	jonathan@clown.inc	24
4	kasper112@juggle.xyz	28

Circus Performers Case Study

Which type of performer is the most experienced on average?

```
df.shape
(50, 2)
```

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 email 50 non-null object
1 performances 50 non-null int64
dtypes: int64(1), object(1)
memory usage: 928.0+ bytes
```


Manipulating Email Data

Create new columns for domain

```
str.split("jamie50@liontamer.org", "@")
['jamie50', 'liontamer.org']

str.split("jamie50@liontamer.org", "@")[1]
'liontamer.org'
```


Manipulating Email Data

Create new columns for domain

```
df.loc[:2].email.map(
   lambda x: str.split(x, "@")[1]
)

0   liontamer.org
1   liontamer.org
2   clown.inc
Name: email, dtype: object
```


Manipulating Email Data

Create new columns for domain

```
df.email.map(
   lambda x: str.split(x, "@")[1]
)

IndexError: list index out of range
```


Creating Custom Function

Create a custom Python function to diagnose error

```
def check_for_at_symbol(email):
    if '@' not in email:
        print(email)
    return ('@' in email)

at_symbol_test = df.email.map(check_for_at_symbol)

jonathan104ringmaster.net
```


Creating Custom Function

Create a custom Python function to create domain column

```
def get_domain(email):
    if '@' not in email:
        return None
    return str.split(email, '@')[1]

df['domain'] = df.email.map(get_domain)
```

Creating Custom Function

Create a custom Python function to create domain column

```
def get_domain(email):
    if '@' not in email:
        return None
    return str.split(email, '@')[1]

df['domain'] = df.email.map(get_domain)
df.loc[13:16]
```

	email	performances	domain
13	nicoletta71@liontamer.org	23	liontamer.org
14	mya_6@ringmaster.net	5	ringmaster.net
15	jonathan104ringmaster.net	14	None
16	natasha.114@ringmaster.net	12	ringmaster.net

Using Python Exceptions

Create domain column by catching errors with exception

```
def get_domain_exception(email):
    try:
        return str.split(email, '@')[1]
    except IndexError:
        print(email)
        return None

df['domain'] = df.email.map(get_domain_exception)

jonathan104ringmaster.net
```


Circus Performers Case Study

Which type of performer is the most experienced on average?

df.head(3)

domain	performances	email	
liontamer.org	16	jamie50@liontamer.org	0
liontamer.org	3	mya62@liontamer.org	1
clown.inc	6	bertie74@clown.inc	2

df.shape

(50, 2)

df.email.nunique()

40

Remove Duplicate Rows

Use pandas to remove duplicate rows with .drop_duplicates()

Entire row must be exact match

```
df.drop_duplicates().shape()
```

 $\overline{(40, 3)}$

Remove Duplicate Rows

Use pandas to remove duplicate rows with .drop_duplicates()

Entire row must be exact match

(40, 3)

 Use subset argument with column name or list to match specific columns

```
df.drop_duplicates().shape()

(40, 3)

df.drop_duplicates(subset='email').shape()
```

Circus Performers Case Study

Which type of performer is the most experienced on average?

```
df.drop_duplicates(inplace=True)
(df.groupby('domain')
   .performances
   .mean()
   .sort_values(ascending=False))
```

Circus Performers Case Study

Which type of performer is the most experienced on average?

```
df.drop_duplicates(inplace=True)
(df.groupby('domain')
   .performances
   .mean()
   .sort_values(ascending=False))
```

```
trapeze 23.0
clown.inc 17.4
juggle.xyz 17.2
ringmaster.net 15.0
acrobatics.com 12.5
liontamer.org 10.4
Name: performances, dtype: float64
```


Case Study #3:

Comparing Against Group Statistics

Standardize the penguin masses by species and sort by standard mass ascending.

```
import seaborn as sns

df = sns.load_dataset("penguins")

df.head()
```

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

Standardize the penguin masses by species and sort by standard mass ascending.

$$\frac{x - \mu_{spec}}{\sigma_{spec}}$$

```
import seaborn as sns
df = sns.load_dataset("penguins")
df.head()
```

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

What kind of data do we have?

```
df.shape
(344, 7)
```

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 344 entries, 0 to 343
Data columns (total 7 columns):
    Column
                       Non-Null Count
                                       Dtype
    species
                                       object
                       344 non-null
    island
                                       object
                       344 non-null
    bill length mm
                       342 non-null
                                       float64
    bill_depth_mm
                                      float64
                       342 non-null
    flipper_length_mm 342 non-null
                                      float64
    body_mass_g
                                      float64
                       342 non-null
                                       object
                       333 non-null
    sex
dtypes: float64(4), object(3)
memory usage: 18.9+ KB
```


Handling Missing Values

What kind of missings do we have?

```
df[df.bill_length_mm.isna()]
```



```
df.dropna(subset=["bill_length_mm"], inplace=True)
```

```
df.shape
```

(342, 7)

Handling Missing Values

What kind of missings do we have?

df[df.sex.isna()]

г	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
8	Adelie	Torgersen	34.1	18.1	193.0	3475.0	NaN
9	Adelie	Torgersen	42.0	20.2	190.0	4250.0	NaN
10	Adelie	Torgersen	37.8	17.1	186.0	3300.0	NaN
11	Adelie	Torgersen	37.8	17.3	180.0	3700.0	NaN
47	Adelie	Dream	37.5	18.9	179.0	2975.0	NaN
246	Gentoo	Biscoe	44.5	14.3	216.0	4100.0	NaN
286	Gentoo	Biscoe	46.2	14.4	214.0	4650.0	NaN
324	Gentoo	Biscoe	47.3	13.8	216.0	4725.0	NaN
336	Gentoo	Biscoe	44.5	15.7	217.0	4875.0	NaN

Standardize the penguin masses by species and sort by standard mass ascending.

$$\frac{x - \mu_{spec}}{\sigma_{spec}}$$

Pandas Transform

Use transform to produce group aggregates for each row

```
df.groupby("species").body_mass_g.mean()
```

```
species
Adelie 3700.662252
Chinstrap 3733.088235
Gentoo 5076.016260
Name: body_mass_g, dtype: float64
```


Pandas Transform

Use transform to produce group aggregates for each row

Pandas Transform

Use transform to produce group aggregates for each row

	species	body_mass_g	mass_species_mean
45	Adelie	4600.0	3700.662252
199	Chinstrap	4300.0	3733.088235
320	Gentoo	4850.0	5076.016260
68	Adelie	3050.0	3700.662252
332	Gentoo	4650.0	5076.016260

Standard Penguin Mass

Standardize the penguin masses by species.

$$\frac{x - \mu_{spec}}{\sigma_{spec}}$$

```
df["mass_standard"] = (df.groupby("species").body_mass_g \\ .transform(lambda x: (x - x.mean())/x.std()))
```

Standard Penguin Mass

Standardize the penguin masses by species.

$$\frac{x - \mu_{spec}}{\sigma_{spec}}$$

	species	body_mass_g	mass_species_mean	mass_standard
45	Adelie	4600.0	3700.662252	1.961195
199	Chinstrap	4300.0	3733.088235	1.475046
320	Gentoo	4850.0	5076.016260	-0.448342
68	Adelie	3050.0	3700.662252	-1.418906
332	Gentoo	4650.0	5076.016260	-0.845075

Standardize the penguin masses by species and sort by standard mass ascending.

df.sort_values("mass_standard").head()

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex	mass_species_mean	mass_standard
190	Chinstrap	Dream	46.9	16.6	192.0	2700.0	Female	3733.088235	-2.687988
260	Gentoo	Biscoe	42.7	13.7	208.0	3950.0	Female	5076.016260	-2.233644
174	Chinstrap	Dream	43.2	16.6	187.0	2900.0	Female	3733.088235	-2.167609
246	Gentoo	Biscoe	44.5	14.3	216.0	4100.0	NaN	5076.016260	-1.936094
58	Adelie	Biscoe	36.5	16.6	181.0	2850.0	Female	3700.662252	-1.855048

