page - I - NIVEAU: 1 SM

NOTIONS DE LOGIQUE

${f I}_{f \cdot}$ PROPOSITION - FONCTION PROPOSITIONNELLE – LES QUANTIFICATEURS :

A. PROPOSITION:

a. Définition :

On appelle une proposition un énoncé mathématique (texte mathématique) qui a un sens pouvant être vrai ou faux (mais pas les deux en même temps). Et, on note souvent une proposition par les lettres P, Q ou R ..etc..

- Valeur de vérité d'une proposition : vraie ou bien fausse présente la valeur de vérité de la proposition
 - Si la proposition est vraie on note V ou 1.
 - Si la proposition est fausse on note F ou 0.
 - Tableau de vérité d'une proposition est ci-contre

Exemples:

P « 2 est un nombre pair » proposition est vraie . Q « 2+3=6 » proposition est fausse .

R « ABCD est un parallélogramme alors les diagonales se coupe on leur milieux » . proposition est

B. FONCTION PROPOSITIONNELLE

On appelle une fonction propositionnelle, tout énoncé contenant une variable x ou plusieurs variables (x,y,z,...) et qui appartiennent à des ensembles déterminé . on note $\mathbf{P}(\mathbf{x})$ ou $\mathbf{P}(\mathbf{x},\mathbf{y};\mathbf{z},....)$

- Remarque: si on remplace les variables par un élément de ces ensembles, la fonction propositionnelle devient une proposition.
- Exemple:
 - $\mathbf{A}(\mathbf{x})$: « pour tout \mathbf{x} de \mathbb{R} on a $\sqrt{\mathbf{x}^2} = \mathbf{x}$ » est une fonction propositionnelle .
 - si x = 2 on obtient une proposition vraie.
 - si x = -3 on obtient une proposition fausse.
 - $\mathbf{A}(\mathbf{x},\mathbf{y}):$ « pour tout \mathbf{x} et \mathbf{y} de \mathbb{R} on $\mathbf{a}: |\mathbf{x}+\mathbf{y}| = |\mathbf{x}| + |\mathbf{y}|$ » est une fonction propositionnelle.
 - si x = 2 et y = 5 on obtient une proposition vraie.
 - si x = -2 et y = 5 on obtient une proposition fausse.

C. les quantificateurs :

- **a.** Quantificateur universel: l'expression suivante « pour tout x de E la proposition Q(x) est vraie » . On la note : « $\forall x \in E$, Q(x) ».
 - Le symbole ∀ s'appelle quantificateur universel et il se lit : pour tout .. ou quel que soit ..
 - Exemples: $\forall x \in \mathbb{R} : \sqrt{x^2} = |x| \gg . \ll \forall x \in \mathbb{R}, \forall y \in \mathbb{R} : |x+y| \le |x| + |y| \gg .$
- $\underline{\mathbf{b}}$ Quantificateur existentiel: l'expression suivante « il existe un x de E la proposition $\mathbf{Q}(\mathbf{x})$ est vraie » .

On la note : $\langle \exists x \in E, Q(x) \rangle$.

- Le symbole \exists s'appelle quantificateur existentiel et il se lit : il existe ...
- Exemples: $\forall x \in \mathbb{R} : x+4 \le 3$ \Rightarrow . $\forall a \in \mathbb{R} , \exists b \in \mathbb{R} , \exists c \in \mathbb{R} : a^3+b^3=c^2$ \Rightarrow (a=1;b=2,c=3)
- $\underline{\mathbf{c}}$ Le symbole $\exists ! : !$ expression suivante « il existe un unique x de E la proposition $\mathbf{Q}(\mathbf{x})$ est vraie » . On

la note : « $\exists ! x \in E , Q(x)$ ».

Exemple: $\ll \exists ! x \in \mathbb{R} : x+4=3 \gg$

page - 2 - NIVEAU : 1 SM

COURS N°1

NOTIONS DE LOGIQUE

d. Remarques:

- L'ordre des quantificateurs identiques (universel ou bien existentiel) ne change pas le sens de la fonction propositionnelle.
- L'ordre des quantificateurs non identiques (universel et existentiel) change le sens de la fonction propositionnelle.
- La négation du quantificateur : \forall est le quantificateur \exists .
- La négation du quantificateur : \exists est le quantificateur \forall .
- Les écritures suivantes sont équivalentes $\forall x \in E, \forall y \in E \text{ ou } \forall x, y \in E \text{ ou } \forall (x,y) \in E \times E$.
- Les écritures suivantes sont équivalentes $\exists x \in E, \exists y \in E \text{ ou } \exists x, y \in E \text{ ou } \exists (x,y) \in E \times E$.

II. OPERATIONS SUR LES PROPOSITIONS :

01. La négation d'une proposition :

a. Définition :

La négation d'une proposition P est la proposition qu'on note \overline{P} ou P tel que les valeurs de vérité de P et \overline{P} sont opposées .

- **b.** Exemple: P « 2 est un nombre pair » sa négation est \overline{P} « 2 est un nombre impair »
- c. Tableau de vérité la négation d'une proposition :
- **d.** Propriété: $\overline{p} = p$ ou encore $\rceil(\rceil p)$.

p	_ p =] p
1	0
0	1

U2. La conjonction de deux propositions - La disjonction de deux propositions .

- **<u>A.</u>** La conjonction de deux propositions :
- <u>a.</u> Définition :

La conjonction de deux propositions PetQ est la proposition notée $P \wedge Q$ ou bien PetQ; $P \wedge Q$ est vraie seulement dans le cas où P et Q sont toutes les deux vraie .

- **<u>b.</u>** Tableau de vérité de $P \wedge Q$ est :
- <u>c.</u> Exemple :
 - (2 est un nombre pair) \land (2+3=6) est une proposition fausse.
 - (2 est un nombre pair) \land (2+3=6) ou encore

(2 est	un	nom	bre	pair)) et	(2+3)	=6

p	q	P∧Q
1	1	1
1	0	0
0	1	0
0	0	0

B. La disjonction de deux propositions :

a. Définition:

La disjonction de deux propositions PetQ est la proposition notée $P\vee Q$ ou bien PouQ; $P\vee Q$ est fausse seulement dans le cas où P et Q sont toutes les deux fausses .

- $\underline{\mathbf{b}}_{\mathbf{c}}$ Tableau de vérité de $\mathbf{P} \vee \mathbf{Q}$ est :
- <u>c.</u> Exemple :
- (2 est un nombre pair) \(\sqrt{2+3=6} \)
 ou encore (2 est un nombre pair) ou (2+3=6)
- $(2 \text{ est un nombre pair}) \vee (2+3=6) \text{ est une proposition vraie}$.

<u>d.</u>	Propriétés	:

La conjonction et la disjonction sont commutatives :

$$P \wedge Q = Q \wedge P$$

p	q	P∨Q
1	1	1
1	0	1
0	1	1
0	0	0

page - 3 - NIVEAU: 1 SM

COURS N°1

NOTIONS DE LOGIQUE

- \bullet $P \lor Q = Q \lor P$.
- La conjonction et la disjonction sont associatives :

$$(P \wedge Q) \wedge R = P \wedge (Q \wedge R) ; (P \vee Q) \vee R = P \vee (Q \vee R).$$

- La négation de la conjonction et la disjonction :

 - $(P \vee Q) = P \wedge Q \text{ ou bien } \overline{P \vee Q} = \overline{P} \wedge \overline{Q}$
- La conjonction est distributive sur la disjonction La disjonction est distributive sur la conjonction
 - $P \wedge (Q \vee R) = (P \wedge Q) \vee (P \wedge R) \text{ de même } (Q \vee R) \wedge P = (Q \wedge P) \vee (R \wedge P) .$
 - $P \lor (Q \land R) = (P \lor Q) \land (P \lor R) \text{ de même } (Q \lor R) \land P = (Q \land P) \lor (R \land P) .$
- e. Remarque:
- $P \wedge P = P$ de même $P \vee P = P$.

03. L'implication de deux propositions :

a. Définition:

l'implication de deux propositions P puis Q est la proposition $P \lor Q$; qu'on note par $P \Rightarrow Q$ on lit P implique $Q \cdot P \Rightarrow Q$ est fausse seulement dans le cas P est vraie et Q est fausse .

b. Tableau de vérité de $P \Rightarrow Q$ est :

c. Remarque:

- La proposition P s'appelle les données (ou hypothèses) de l'implication.
- La proposition Q s'appelle la conclusion de l'implication.
- L'implication P ⇒ Q est fausse seulement dans le cas P est vraie et O est fausse.
- L'implication Q ⇒ P s'appelle l'implication réciproque de l'implication P ⇒ Q (vis versa)
- L'implication $\overline{\mathbb{Q}} \Rightarrow \overline{\mathbb{P}}$ s'appelle la contre posée de l'implication $\mathbb{P} \Rightarrow \mathbb{Q}$.
- Si $P \Rightarrow Q$ on a pas forcément $Q \Rightarrow P$.

d. Exemple:

- $(2 \text{ est un nombre pair}) \Rightarrow (2+3=6)$ est une proposition fausse.
- (2+3=6) \Rightarrow (2 est un nombre pair) est une proposition vraie.

e. Propriétés:

- L'implication est transitive : $[(P \Rightarrow Q) \land (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$.
- La négation de l'implication : $\exists (P \Rightarrow Q) = \overline{P \Rightarrow Q} = P \land \overline{Q}$.
- La contraposée : $P \Rightarrow Q = \overline{Q} \Rightarrow \overline{P}$

04. L'équivalence de deux propositions :

a. Définition :

l'équivalence de deux propositions PetQ est la proposition $(P\Rightarrow Q)\land (Q\Rightarrow P)$ qu'on note par $P\Leftrightarrow Q$ on lit P est équivalente à Q ou bien P si et seulement si Q. $P\Leftrightarrow Q$ est vraie seulement si PetQ ont même valeur de vérité .

page - 4 - NIVEAU : 1 SM

COURS N°1

NOTIONS DE LOGIQUE

- **<u>b.</u>** Tableau de vérité de $P \lor Q$ est :
- $\underline{\mathbf{c}}$ Exemple: $\forall \mathbf{x} \in \mathbb{R}, \forall \mathbf{y} \in \mathbb{R} : \mathbf{x}^2 = \mathbf{y}^2 \Leftrightarrow (\mathbf{x} = \mathbf{y} \text{ ou } \mathbf{x} = -\mathbf{y})$
- d. Propriètés:
 - $(P \Leftrightarrow Q) = (Q \Leftrightarrow P) ; (P \Leftrightarrow Q) = (\overline{P} \Leftrightarrow \overline{Q}).$
 - $(\overline{P \Leftrightarrow Q}) = (\overline{P \Rightarrow Q}) \land (\overline{Q \Rightarrow P}) = (P \land \overline{Q}) \lor (Q \land \overline{P})$
 - L'équivalence est transitive : $[(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)] \Rightarrow (P \Leftrightarrow R)$

p	q	P⇔Q
1	1	1
1	0	0
0	1	0
0	0	1

05. Lois logiques :

a. Définition :

Une loi logique est une proposition qui est vraie quel que soit la vérité des propositions qui la constitue.

- b. Exemple :
 - Lois de Morgan : $\overline{P \wedge Q} = \overline{P} \vee \overline{Q}$; $\overline{P \vee Q} = \overline{P} \wedge \overline{Q}$.

•
$$(P \land Q) \Rightarrow P$$
. Preuve $: ((P \land Q) \Rightarrow P) \Leftrightarrow \overline{(P \land Q)} \lor P$
 $\Leftrightarrow (\overline{P} \lor \overline{Q}) \lor P$
 $\Leftrightarrow (\overline{P} \lor P) \lor \overline{Q}$
vraie
est toujours vraie

Donc $(\overline{P} \vee P) \vee \overline{Q}$ est toujours vraie d'où $(P \wedge Q) \Rightarrow P$ est une loi logique .

III. TYPES DE RAISONNEMENTS :

- **01.** Raisonnement par contre exemple :
 - a. Définition :

Pour prouver que la propriétés suivante est fausse : $\forall x \in E$, P(x) il suffit de prouver que

 $\exists x \in E$, $\overline{P(x)}$ est vraie (c.à.d. de trouver un élément x de E qui ne vérifie pas P(x) ce qu'on appelle un contre exemple).

Ce mode de raisonnement s'appelle raisonnement par contre exemple .

- <u>b.</u> Exemple : est ce que la somme de deux nombres irrationnelle est un nombre irrationnelle ? $\sqrt{2}$ et $-\sqrt{2}$ sont deux nombres irrationnelle mais leur somme $-\sqrt{2}+\sqrt{2}=0$ n'est pas un nombre irrationnelle .
- **02.** Raisonnement par des équivalences successives :
 - a. Définition :

Pour démontrer que l'équivalence suivant $P \Leftrightarrow Q$ est vrai , on démontrer que : $P \Leftrightarrow Q_1$ et $Q_1 \Leftrightarrow Q_2$ et $Q_2 \Leftrightarrow Q_3$ et et $Q_n \Leftrightarrow Q$.

Ce mode de raisonnement s'appelle raisonnement par des équivalences successives.

<u>b.</u> Exemple: montrer que $\forall a, b \in \mathbb{R} : a^2 + b^2 = 2ab \Leftrightarrow a = b$.

On
$$a: a^2 + b^2 = 2ab \Leftrightarrow a^2 + b^2 - 2ab = 0$$

$$\Leftrightarrow (a - b)^2 = 0$$

$$\Leftrightarrow a - b = 0$$

$$\Leftrightarrow a = b$$

page - 5 - NIVEAU : 1 SM

COURS N°1

NOTIONS DE LOGIQUE

1.

Conclusion: $\forall a, b \in \mathbb{R} : a^2 + b^2 = 2ab \Leftrightarrow a = b$

03.

Raisonnement déductif:

<u>a.</u> Définition :

Si on a l'implication $P\Rightarrow Q$ est vraie et on a dans un exercice comme donnée la proposition P donc on déduit que la proposition Q est vraie .

Ce mode de raisonnement s'appelle raisonnement par par déduction.

b. Exemple:

- 1. On suppose qu'on a démontré : $\forall a, b > 0$, $\sqrt{ab} \le \frac{a+b}{2}$.
- 2. On déduit que : $\forall x > 0$, $2\sqrt{x} \le 1 + x$

D'après la $1^{\text{ère}}$ question on pose a=1 et b=x d'où $\sqrt{1\times x} \le \frac{1+x}{2}$ donc $2\sqrt{x} \le 1+x$

Conclusion: $\forall x > 0$, $2\sqrt{x} \le 1 + x$

04.

Raisonnement par la contraposée :

a. Définition :

Pour démontrer l'implication suivante $P \Rightarrow Q$ il suffit de démontrer l'implication suivante $\overline{Q} \Rightarrow \overline{P}$. Ce mode de raisonnement s'appelle raisonnement par la contraposée.

<u>b.</u> Exemple: montrer que $\forall x, y \in]2, +\infty[$, $x \neq y \Rightarrow x^2 - 4x \neq y^2 - 4y$.

On utilise un raisonnement par contraposée pour cela on démontre :

$$\forall x, y \in]2, +\infty[$$
, $x^2 - 4x = y^2 - 4y \Rightarrow x = y$.

Soient x et y de]2,+ ∞ [tel que $x^2 - 4x = y^2 - 4y$.

$$x^{2}-4x = y^{2}-4y \Rightarrow x^{2}-4x+4 = y^{2}-4y+4$$

$$\Rightarrow (x-2)^{2} = (y-2)^{2}$$

$$\Rightarrow x-2 = y-2 \text{ et } x-2 = -(y-2)$$

$$\Rightarrow x = y \text{ et } x+y-4 = 0$$

$$\Rightarrow x = y$$

x+y-4=0 est impossible car x>2 et y>2 d'où x+y>4 ou encore x+y-4>0.

Donc $x^2 - 4x = y^2 - 4y \Rightarrow x = y$ est une implication vraie c.à.d. l'implication contraposée est vraie

Conclusion: $\forall x, y \in]2, +\infty[\ , x \neq y \Rightarrow x^2 - 4x \neq y^2 - 4y$

05. Raisonnement par disjonction des cas :

a. Définition :

Lorsqu'on utilise plusieurs cas dans une démonstration le raisonnement utilisé s'appelle raisonnement par disjonction des cas .

<u>b.</u> Exemple: résoudre l'équation suivante $x \in \mathbb{R}: |x+1| + 2x = 0$.

L'équation s'écrit aussi $x \in]-\infty, -1] \cup [-1, +\infty[:|x+1| + 2x = 0]$

 $1^{er} \operatorname{cas} x \in]-\infty, -1]$

 $|x+1| + 2x = 0 \Leftrightarrow -(x+1) + 2x = 0$

$$\Leftrightarrow x - 1 = 0$$
$$\Leftrightarrow x = 1 \notin]-\infty, -1]$$

D'où:
$$S_1 = \emptyset$$
.

$$2^{i\text{ème}}$$
 cas $x \in [-1, +\infty]$.

$$|x+1| + 2x = 0 \Leftrightarrow (x+1) + 2x = 0$$
$$\Leftrightarrow 3x+1 = 0$$
$$\Leftrightarrow x = -\frac{1}{3} \in [-1, +\infty[$$

Donc:
$$S_2 = \left\{ -\frac{1}{3} \right\}$$
.

Conclusion:
$$S = S_1 \cup S_2 = \left\{-\frac{1}{3}\right\}$$
.

06. Raisonnement par absurde :

a. Définition :

Pour démontrer qu'une proposition ${f Q}$ (conclusion ou résultat) et on a parmi les données la proposition ${f P}$

- On suppose que \overline{Q} (la négation du conclusion) est vraie et au cour de la démonstration on obtient que \overline{P} est vraie d'où P et \overline{P} sont vraies ce qui est impossible .
- Donc notre supposition $\overline{\mathbf{Q}}$ est vraie est absurde ; d'où \mathbf{Q} est vraie .
- Ce mode de raisonnement s'appelle raisonnement par absurde.
- **<u>b.</u>** Exemple: soient r est un nombre rationnelle et i est nombre irrationnelle et s = r + i.

Montrer que : s est un nombre irrationnelle.

O suppose que s est un nombre rationnelle.

On a $s=r+i \Leftrightarrow i=s-r$

- d'où s-r est un nombre rationnelle (1) car la somme de rationnelles est un nombre rationnelle .
- i = s r et i est nombre irrationnelle (2).
- D'après (1) et (2) on a une contradiction d'où la supposition (s est un nombre rationnelle) est fausse Conclusion : la somme d'un nombre rationnelle r et un nombre irrationnelle i est un nombre irrationnelle .

07. Raisonnement par récurrence :

a. Définition:

Soient $n_0 \in \mathbb{N}$ et P(n) une relation portant sur les entiers naturels n tel que $n \ge n_0$.

Pour démontrer que la relation P(n) est vraie pour tout $n \ge n_0$. On utilise les étapes suivantes :

- On vérifie que : P(n) est vraie pour $n = n_0$ (c.à.d. $P(n_0)$ est vraie).
- On suppose que : P(n) est vraie pour n avec $n \ge n_0$.la supposition s'appelle hypothèse de récurrence
- On démontre que : la relation P(n) est vraie pour n+1 (c.à.d. P(n+1) est vraie)
- Ce mode de raisonnement s'appelle raisonnement par raisonnement par récurrence

page - 7 - NIVEAU: 1 SM

COURS N°1

NOTIONS DE LOGIQUE

<u>b.</u> Exemple: montrer que: pour tout n de \mathbb{N} on a 3 divise $n^3 - n$ (c.à.d. $3 \mid (n^3 - n)$ (1))

Remarque: $3 | (n^3 - n) \Leftrightarrow \exists k \in \mathbb{N} / n^3 - n = 3k$

• On vérifie que la relation (1) est vraie pour n=0.

Pour n = 0 on a $n^3 - n = 0^3 - 0 = 0 = 3 \times 0$ donc $3 \mid (0^3 - 0)$ d'où la relation (1) est vraie pour n = 0

• On suppose que : la relation (1) est vraie pour n (et n de \mathbb{N}) c.à.d. $3 | (n^3 - n)$, (ou

 $\exists k \in \mathbb{N} \, / \, n^3 - n = 3k$) . hypothèse de récurrence

• On démontre que : la relation (1) est vraie pour n+1 (c.à.d. $3 | ((n+1)^3 - (n+1))$ est vraie) On a :

$$(n+1)^{3} - (n+1) = n^{3} + 3n^{2} + 3n + 1 - n - 1$$

$$= n^{3} - n + 3n^{2} + 3n$$

$$= 3k + 3(n^{2} + n) \qquad \text{(hypothèse de récurrence)}$$

$$= 3(k+n^{2} + n)$$

$$= 3K \qquad (K = k+n^{2} + n \in \mathbb{N})$$

Donc: $(n+1)^3 - (n+1) = 3K$ par suite $3 | ((n+1)^3 - (n+1))$

D'où la relation (1) est vraie pour n+1.

Conclusion $\forall n \in \mathbb{N} : 3 | (n^3 - n)$

08. Symboles \sum et \prod et les lettres grecque :

 $\underline{\mathbf{a}}$. Symbole \sum :

La somme suivante : $a_1 + a_2 + a_3 + \cdots + a_n$ on la note par $\sum_{i=1}^{i=n} a_i$ (on utilise i ou j ou k sont des variables muettes)

- Exemple 1 : $2+4+6+\cdots+2n=\sum_{i=1}^{i=n}2i$ (cet une somme qui est constitué par n+1 termes) .
- Exemple 2: $1+3+5+\cdots+(2n+1)=\sum_{i=0}^{i=n}(2i+1)$ (cet une somme qui est constitué par n termes).
- Propriétés :

$$\diamondsuit \quad \sum_{j=0}^{j=n} \Bigl(a_j + b_j\Bigr) = \sum_{j=0}^{j=n} a_j + \sum_{j=0}^{j=n} b_j = \sum_{k=0}^{k=n} a_k + \sum_{k=0}^{k=n} b_k \ .$$

 $\Rightarrow \sum_{i=1}^{j=n} \left(a_j + c \right) = \sum_{i=1}^{j=n} a_j + nc \ (\ car \ la \ somme \ contient \ n \ termes \ et \ chaque \ terme \ est \ a_i + c \) \ .$

b. Symbole :

page - 8 - NIVEAU : 1 SM

COURS N°1 NOTIONS DE LOGIQUE

Le produit suivant : $a_1 \times a_2 \times a_3 \times \cdots \times a_n$ on la note par $\prod_{i=1}^{j=n} a_j$ (on utilise i ou j ou k sont des variables muettes)

- Exemple 1 : $\sum_{j=n}^{j=n} \left(a_j + b_j \right) = \prod_{j=n}^{j=n} a_j \times \prod_{j=n}^{j=n} b_j = \prod_{k=0}^{k=n} a_k \times \prod_{k=0}^{k=n} b_k \text{ (cet un produit qui est constitué par } n+1$ termes).
- Exemple 2 : $\prod_{j=1}^{j=n} (ca_j) = c^n \prod_{j=1}^{j=n} a_j$ (cet un produit qui est constitué par n termes et chaque terme est $\mathbf{c} \times \mathbf{a}_{i}$).

c. Exercices:

Montrer que:

1.
$$\forall n \in \mathbb{N}^* : 1 + 2 + 3 + \dots + n = \sum_{i=1}^{i=n} i = \frac{n(n+1)}{2}$$
.

2.
$$\forall n \in \mathbb{N}^* : 1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{i=1}^{i=n} i^2 = \frac{n(n+1)(2n+1)}{6}$$
.

3.
$$\forall n \in \mathbb{N}^* : 1^3 + 2^3 + 3^3 + \dots + n^3 = \sum_{i=1}^{i=n} i^3 = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$$
.

d. Les lettres grecque :

ν	nu	α	alpha	
ξ	xi	β	beta	
0	omicron	γ ου Γ	gamma	
π ου Π	pi	δ ou Δ	delta	
ρ	rho	3	epsilon	
σ ου Σ	sigma	ζ	zêta	
τ	tau	η	êta	
υ	upsilon	θ ου Θ	thêta	
φ ou Φ	phi	ı	iota	
χ	chi	κ	kappa	
ψ ou Ψ	psi	λ ου Λ	lambda	
ω ου Ω	oméga	μ	mu	