LightGBM Classifier in Python

```
import numpy as np
In [6]:
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
In [7]:
        import os
        for dirname, _, filenames in os.walk(r"C:\Users\Prachi\Documents\VS Code Files\Mach
            for filename in filenames:
                print(os.path.join(dirname, filename))
        C:\Users\Prachi\Documents\VS Code Files\Machine Learning\Classification\LightGBM C
        lassifier\Breast Cancer Detection.ipynb
        C:\Users\Prachi\Documents\VS Code Files\Machine Learning\Classification\LightGBM C
        lassifier\Breast_cancer_data.csv
In [8]:
        # ignore warnings
        import warnings
        warnings.filterwarnings("ignore")
        Read the dataset
```

```
In [9]: # Load and preview data
df = pd.read_csv('Breast_cancer_data.csv')
df.head()
```

Out[9]:		mean_radius	mean_texture	mean_perimeter	mean_area	mean_smoothness	diagnosis
	0	17.99	10.38	122.80	1001.0	0.11840	0
	1	20.57	17.77	132.90	1326.0	0.08474	0
	2	19.69	21.25	130.00	1203.0	0.10960	0
	3	11.42	20.38	77.58	386.1	0.14250	0
	4	20.29	14.34	135.10	1297.0	0.10030	0

```
In [10]: # view summary of dataset
    df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	mean_radius	569 non-null	float64
1	mean_texture	569 non-null	float64
2	mean_perimeter	569 non-null	float64
3	mean_area	569 non-null	float64
4	mean_smoothness	569 non-null	float64
5	diagnosis	569 non-null	int64

dtypes: float64(5), int64(1)

memory usage: 26.8 KB

Check the distribution of target variable

```
In [11]: # check the distribution of the target variable
df['diagnosis'].value_counts()

Out[11]: diagnosis
1     357
0     212
Name: count, dtype: int64
```

Declare feature vector and target variable¶

```
In [12]: X = df[['mean_radius','mean_texture','mean_perimeter','mean_area','mean_smoothness'
y = df['diagnosis']
```

Split dataset into training and test set¶

```
In [13]: #split the dataset into the training set and test set
    from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_s
```

LightGBM Model Development and Training¶

```
In [16]: # build the lightgbm model
import lightgbm as lgb
clf = lgb.LGBMClassifier()
clf.fit(X_train, y_train)
```

```
[LightGBM] [Info] Number of positive: 249, number of negative: 149
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing
was 0.000241 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 665
[LightGBM] [Info] Number of data points in the train set: 398, number of used feat
ures: 5
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.625628 -> initscore=0.513507
[LightGBM] [Info] Start training from score 0.513507
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
         [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
Out[16]:
         ▼ LGBMClassifier
          ► Parameters
```

Model Predcition

```
In [17]: # predict the results
    y_pred=clf.predict(X_test)
```

View Accuracy

```
In [18]: # view accuracy
from sklearn.metrics import accuracy_score
accuracy=accuracy_score(y_pred, y_test)
print('LightGBM Model accuracy score: {0:0.4f}'.format(accuracy_score(y_test, y_pred))
LightGBM Model accuracy score: 0.9298
```

Compare train and test accuracy

```
In [19]: y_pred_train = clf.predict(X_train)
In [20]: print('Training-set accuracy score: {0:0.4f}'. format(accuracy_score(y_train, y_predict))
Training-set accuracy score: 1.0000
```

check for overfitting

```
In [21]: # print the scores on training and test set
    print('Training set score: {:.4f}'.format(clf.score(X_train, y_train)))
    print('Test set score: {:.4f}'.format(clf.score(X_test, y_test)))

Training set score: 1.0000
Test set score: 0.9298
```

Confusion Matrix

```
In [22]: # view confusion-matrix
          # Print the Confusion Matrix and slice it into four pieces
          from sklearn.metrics import confusion_matrix
          cm = confusion_matrix(y_test, y_pred)
          print('Confusion matrix\n\n', cm)
          print('\nTrue Positives(TP) = ', cm[0,0])
          print('\nTrue Negatives(TN) = ', cm[1,1])
print('\nFalse Positives(FP) = ', cm[0,1])
          print('\nFalse Negatives(FN) = ', cm[1,0])
          Confusion matrix
           [[ 55
                  8]
           [ 4 104]]
          True Positives(TP) = 55
          True Negatives(TN) = 104
          False Positives(FP) = 8
          False Negatives(FN) = 4
```

Classification Metrics

In [23]: from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.93	0.87	0.90	63
1	0.93	0.96	0.95	108
			0.03	171
accuracy macro avg	0.93	0.92	0.93 0.92	171 171
weighted avg	0.93	0.93	0.93	171