MATRIISIT

ovat 2-ulotteisia lukutaulukoita, jotka koostuvat vaakasuorista riveistä (row) ja pystysuorista sarakkeista (column).

Jos matriisissa A on m riviä ja n saraketta, niin se on $m \times n$ -matriisi, ja sen alkiota rivillä i ja sarakkeessa j merkitään yleensä A_{ij} , a_{ij} tai vastaavasti, eli **ensin rivi ja sitten sarakeindeksi**.

sarake j

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \dots & a_{1,j} & \dots & a_{1,n-1} & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \dots & a_{2,j} & \dots & a_{2,n-1} & a_{2,n} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & \vdots \\ a_{i,1} & a_{i,2} & a_{i,3} & \dots & a_{i,j} & \dots & a_{i,n-1} & a_{i,n} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \dots & a_{m,j} & \dots & a_{m,n-1} & a_{m,n} \end{bmatrix} \text{rivi i}$$

Esimerkiksi, jos

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix}, C = \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix}$$

niin A on 2×2 , B on 2×3 ja C on 3×2 ja $A_{1,2}=2$, $B_{2,1}=0$ ja $C_{3,2}=7$

MATLAB/Octave: luetellaan alkiot riveittäin hakasulkuihin pilkulla tai välilyönnillä erotettuina, rivinvaihto puolipisteellä tai enterillä. Alkioihin viittaaminen A(i,j) eli vaikkapa A(1,2) on alkio rivillä 1, sarakkeessa 2.

$$A = [4,2]$$
 $B = [7,3,-6]$ $C = [2,5;0,-4;1,7]$
1,5] 0,9,8]

Jos matriisissa on vain yksi rivi tai sarake, niin sitä sanotaan yleensä vaaka- tai pystyvektoriksi. Esimerkiksi, jos

$$D = \begin{bmatrix} 7 & 3 & -6 \end{bmatrix} \quad \text{ja} \quad E = \begin{bmatrix} 7 \\ 0 \\ 1 \end{bmatrix}$$

niin D on vaakavektori tai 1×3 -matriisi ja E on pystyvektori tai 3×1 -matriisi.

Esim: Lineaarinen yhtälöryhmä matriisimuodossa

$$\begin{cases} 2x - y + 3z = 10 \\ 6x + 4y - 2z = 16 \\ -2x + 2y + z = -3 \end{cases}$$

$$\leftrightarrow \underbrace{\begin{bmatrix} 2 & -1 & 3 \\ 6 & 4 & -2 \\ -2 & 2 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 10 \\ 16 \\ -3 \end{bmatrix}}_{B}$$

A on kerroinmatriisi

X on tuntematon

B on oikea puoli

Ratkaistaan "jakamalla" A:lla eli

$$AX = B \leftrightarrow "X = \frac{B}{A}$$
"

vrt. ensimmäisen asteen yhtälö: $ax = b \leftrightarrow x = \frac{b}{a}$

Esim. Datamatriisi, datapisteet vaakariveinä, koordinaatit (mittaukset) sarakkeina

307	130	3504	12	18
350	165	3693	11.5	15
318	150	3436	11	18
304	150	3433	12	16
302	140	3449	10.5	17
429	198	4341	10	15
454	220	4354	9	14
440	215	4312	8.5	14
455	225	4425	10	14
390	190	3850	8.5	15
383	170	3563	10	15
340	160	3609	8	14
400	150	3761	9.5	15
4 55	225	3086	10	1 ⊿

Esim: Mustavalkea kuva, 384×512 -matriisi alkiot $0, 1, 2, ..., \ldots 255, 0 = \text{musta}, 255 = \text{valkea}$

Esim: Graafin linkkimatriisi

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Piuhat y_1-y_5 riveinä, solmut u_1-u_4 sarakkeina $a_{ij}=1 \text{ ja } a_{ik}=-1, \text{ jos piuha } y_i \text{ menee } u_j\to u_k$

Esim: Graafin linkkimatriisi 2

Figure 10.1 Directed graph.

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

Lähtösolmut riveinä, maalisolmut sarakkeina

$$a_{ij} = \begin{cases} 1, \text{ jos on linkki } i \to j \\ 0, \text{ jos ei ole} \end{cases}$$

Transpoosi

 $m\times n-$ matriisi
nAtranspoosi A^T on $n\times m-$ matriisi, jonka sarakkeina ova
tA:n rivit ja riveinä A:n sarakkeet

Esimerkiksi

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^T = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 2 \\ 3 & 0 \\ -2 & 7 \end{bmatrix}^T = \begin{bmatrix} 4 & 3 & -2 \\ 2 & 0 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 4 & 8 & 3 \end{bmatrix}^T = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}^T = \begin{bmatrix} 4 & 8 & 3 \end{bmatrix}$$

MATLAB/Octave: A'

(/ kertomerkin * alta)

Laskutoimitukset

Yhteen- ja vähennyslasku (samankokoisille matriiseille) alkioittain:

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 5 \\ 0 & -4 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 6 & 7 \\ 1 & 1 \end{bmatrix}, A - B = \begin{bmatrix} 2 & -3 \\ 1 & 9 \end{bmatrix}$$

Luvulla kertominen ja jakaminen, luvun lisääminen ja vähentäminen alkioittain, eli esimerkiksi

$$3*A = \begin{bmatrix} 12 & 6 \\ 3 & 15 \end{bmatrix}, A/3 = \begin{bmatrix} 4/3 & 2/3 \\ 1/3 & 5/3 \end{bmatrix}$$

$$A+3 = \begin{bmatrix} 7 & 5 \\ 4 & 8 \end{bmatrix}, A-3 = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$$

ALKIOITTAINEN kerto- ja jakolasku, ja potenssiin korotus

eli **PISTE** . kertomerkin *, jakomerkin / ja potenssiinkorotusmerkin ∧ eteen !!!!!

$$A \cdot *B = \begin{bmatrix} 8 & 10 \\ 3 & -20 \end{bmatrix}, \quad A \cdot /B = \begin{bmatrix} 4/2 & 2/5 \\ 1/3 & -5/4 \end{bmatrix}$$

$$A. \wedge 2 = \begin{bmatrix} 16 & 4 \\ 1 & 25 \end{bmatrix}, \quad 3./A = \begin{bmatrix} 3/4 & 3/2 \\ 3/1 & 3/5 \end{bmatrix}$$

Esim: Mustavalkea kuva, $m \times n$ -matriisi,

$$m = 384, n = 512$$

alkiot 0...1, 0 = musta, 1 = valkea.

Etsitään kuvasta reunoja eli kohtia, missä vierekkäisten tai päällekkäisten pikseleiden arvojen erotus on suuri (plus- tai miinusmerkkinen)

Vaakasuorat reunat eli päällekkäisten pikseleiden erotukset (ylempi-alempi):

$$(m-1) \times n$$
-matriisi Mv

$$Mv(r,s) = M(r,s) - M(r+1,s)$$

Pystysuorat reunat eli vierekkäisten pikseleiden erotukset (vasen-oikea):

$$m \times (n-1)$$
-matriisi Mp

$$Mp(r,s) = M(r,s) - M(r,s+1)$$

Matriisit |Mv| ja |Mp| (itseisarvot) kuvina min = musta, max = valkea

Vaaka- ja pystysuorat reunat:

$$(m-1) \times (n-1)$$
-matriisi Mvp
$$Mvp(r,s) = |Mv(r,s)| + |Mp(r,s)|$$

Broadcasting: Alkioittaiset laskutoimitukset + - .* ./, vaikka matriisit eivät samankokoisia

Matriisi ja samanlevyinen vaakavektori: laskutoimitukset riveittäin

Matriisi ja samankorkuinen pystyvektori: laskutoimitukset sarakkeittain

Vaakavektori ja pystyvektori: laskutoimitukset alkioittain, tulos matriisi

A =		u =	ν =				
1 3 5	2 4 6	7 8	9 10 11				
>> A+u		>> A-u		>> A.*u		>> A./u	
ans =		ans =		ans =		ans =	
8 10 12	10 12 14	-6 -6 -4 -4 -2 -2		7 21 35	16 32 48	0.14286 0.42857 0.71429	0.25 0.5 0.75
>> A+v		>> A-v		>> A.*v		>> A./v	
ans =		ans =		ans =		ans =	
10 13 16	11 14 17	-7 -	-7 -6 -5	9 30 55	18 40 66	0.11111 0.3 0.45455	0.22222 0.4 0.54545
>> u+v		>> u-v		>> u.*v		>> u./v	
ans =		ans =		ans =		ans =	
16 17 18	17 18 19	-3	-1 -2 -3	63 70 77	72 80 88	0.77778 0.7 0.63636	0.88889 0.8 0.72727

Esim: Datan skaalaus

Datapisteet $[x_1, x_2, x_3, x_4, x_5]$ matriisin X vaakariveinä

307	130	3504	12	18
350	165	3693	11.5	15
318	150	3436	11	18
304	150	3433	12	16
302	140	3449	10.5	17
429	198	4341	10	15
454	220	4354	9	14
440	215	4312	8.5	14
455	225	4425	10	14
390	190	3850	8.5	15
383	170	3563	10	15
340	160	3609	8	14
400	150	3761	9.5	15
455	225	3086	1 በ	1

Jos sarakkeiden minimit ja maksimit ovat vaakavektoreissa

$$m = [m_1, m_2, m_3, m_4, m_5], M = [M_1, M_2, M_3, M_4, M_5]$$

 $m = 68$ 46 1613 8 9
 $M = 455$ 230 5140 24.8 46.6

niin matriisin

$$\widehat{X} = (X - m) \cdot / (M - m)$$

vaakariveinä ovat välille 0...1 skaalatut datapisteet, koordinaattien maksimit = 1 ja minimit = 0

$$\left[\frac{x_1-m_1}{M_1-m_1}, \frac{x_2-m_2}{M_2-m_2}, \frac{x_3-m_3}{M_3-m_3}, \frac{x_4-m_4}{M_4-m_4}, \frac{x_5-m_5}{M_5-m_5}\right]$$

0.61757 0.45652 0.53615 0.2381	0 00006
0.01737 0.43032 0.33013 0.2381	0.23936
0.72868 0.64674 0.58974 0.20833	0.15957
0.64599 0.56522 0.51687 0.17857	0.23936
0.60982 0.56522 0.51602 0.2381	0.18617
0.60465 0.51087 0.52056 0.14881	0.21277
0.93282 0.82609 0.77346 0.11905	0.15957
0.99742 0.94565 0.77715 0.059524	0.13298
0.96124 0.91848 0.76524 0.029762	0.13298
1 0.97283 0.79728 0.11905	0.13298
0.83204 0.78261 0.63425 0.029762	0.15957
0.81395 0.67391 0.55288 0.11905	0.15957
0.70284 0.61957 0.56592 0	0.13298
0.85788 0.56522 0.60902 0.089286	0.15957
1 0 97283 0 41764 0 11905	0 13298

Alkuperäiset datapisteet:

Skaalatut datapisteet:

skaalaus 2: datapisteet $|x_1, x_2, x_3, x_4, x_5|$ matriisin X vaakariveinä

307	130	3504	12	18
350	165	3693	11.5	15
318	150	3436	11	18
304	150	3433	12	16
302	140	3449	10.5	17
429	198	4341	10	15
454	220	4354	9	14
440	215	4312	8.5	14
455	225	4425	10	14
390	190	3850	8.5	15
383	170	3563	10	15
340	160	3609	8	14
400	150	3761	9.5	15
455	225	3086	10	1 ⊿

Jos sarakkeiden keskiarvot ja -hajonnat ovat vaakavektoreissa

$$\mu = [\mu_1, \mu_2, \mu_3, \mu_4, \mu_5], \ \sigma = [\sigma_1, \sigma_2, \sigma_3, \sigma_4, \sigma_5]$$

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} x_{ij}, \quad \sigma_j = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_{ij} - \mu_j)^2, N = 392, j = 1, 2, \dots, 5}$$

mu = 194.41

104.47

2977.6 15.541 23.446

sigma = 104.51 38.442 848.32 2.7553

7.795

niin matriisin

$$\widehat{X} = (X - \mu) \cdot / \sigma$$

vaakariveinä ovat skaalatut datapisteet, koordinaattien keskiarvot = 0 ja -hajonnat = 1

$$\left[\frac{x_1 - \mu_1}{\sigma_1}, \frac{x_2 - \mu_2}{\sigma_2}, \frac{x_3 - \mu_3}{\sigma_3}, \frac{x_4 - \mu_4}{\sigma_4}, \frac{x_5 - \mu_5}{\sigma_5}\right]$$

1.0773	0.66413	0.62054	-1.2853	-0.69864
1.4887	1.5746	0.84333	-1.4667	-1.0835
1.1825	1.1844	0.54038	-1.6482	-0.69864
1.0486	1.1844	0.53685	-1.2853	-0.95521
1.0294	0.92426	0.55571	-1.8297	-0.82693
2.2446	2.433	1.6072	-2.0111	-1.0835
2.4838	3.0053	1.6225	-2.3741	-1.2118
2.3499	2.8753	1.573	-2.5555	-1.2118
2.4934	3.1354	1.7062	-2.0111	-1.2118
1.8715	2.2249	1.0284	-2.5555	-1.0835
1.8045	1.7047	0.69009	-2.0111	-1.0835
1.393	1.4445	0.74431	-2.737	-1.2118
1.9672	1.1844	0.92349	-2.1926	-1.0835

Alkuperäiset datapisteet:

Skaalatut datapisteet:

Matriisien kertolasku!!

Matriisien A ja B tulomatriisi AB = A * B on olemassa, jos

A:n rivit ovat yhtä pitkiä kuin B:n sarakkeet, eli jos A on $m \times \mathbf{n}$ ja B on $\mathbf{n} \times p$

Tällöin AB on $m \times p$, jonka ij:s alkio on A:n rivin i ja B:n sarakkeen j "pistetulo", eli

$$AB_{ij} = [a_{i1}, a_{i2}, \dots, a_{i\mathbf{n}}] \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{\mathbf{n}j} \end{bmatrix}$$
$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{i\mathbf{n}}b_{\mathbf{n}j}$$
$$i = 1, 2, \dots, m, \quad j = 1, 2, \dots, p$$

MATLAB/Octave: kertomerkillä A * BEsim.

$$A = \begin{bmatrix} 4 & 2 \\ \mathbf{1} & \mathbf{5} \end{bmatrix}, B = \begin{bmatrix} 7 & 3 & \mathbf{-6} \\ 0 & 9 & \mathbf{8} \end{bmatrix}$$

$$AB = \begin{bmatrix} 4 \cdot 7 + 2 \cdot 0 & 4 \cdot 3 + 2 \cdot 9 & 4 \cdot (-6) + 2 \cdot 8 \\ 1 \cdot 7 + 5 \cdot 0 & 1 \cdot 3 + 5 \cdot 9 & \mathbf{1} \cdot (\mathbf{-6}) + \mathbf{5} \cdot \mathbf{8} \end{bmatrix}$$
$$= \begin{bmatrix} 28 \ 30 \ -8 \\ 7 \ 48 \ \mathbf{34} \end{bmatrix}$$

Esim.

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix}, C = \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix}$$

Tuloa

$$BA = \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$$

ei voi laskea.

Tuloa AC ei voi laskea

$$CA = \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 13 & 29 \\ -4 & -20 \\ 11 & 37 \end{bmatrix}$$

$$BC = \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} 8 & -19 \\ 8 & 20 \end{bmatrix}$$

$$CB = \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix} \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix} = \begin{bmatrix} 14 & 51 & 28 \\ 0 & -36 & -32 \\ 7 & 66 & 50 \end{bmatrix}$$

HUOM: Yleensä

$$AB \neq BA$$

eli kertolaskun järjestys on tärkeä!!

Laskusääntöjä: laskujärjestys vasemmalta oikealle, kertolasku ennen yhteen- ja vähennyslaskua

$$A(B \pm C) = AB \pm AC$$
$$(A \pm B)C = AC \pm BC$$
$$(AB)C = A(BC) = ABC$$
$$(AB)^{T} = B^{T}A^{T}$$

HUOM. Jos A on **neliömatriisi** eli $n \times n$, niin

$$A^2 = A * A, A^3 = A * A * A, \dots$$

MATLAB/Octave: $A \wedge 2$ jne

Esim: Jos

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}, B = \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix}, C = \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix}$$

niin

$$(AB)C = \begin{bmatrix} 28 & 30 & -8 \\ 7 & 48 & 34 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & -4 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} 48 & -36 \\ 48 & 81 \end{bmatrix}$$

$$A(BC) = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 8 & -19 \\ 8 & 20 \end{bmatrix} = \begin{bmatrix} 48 & -36 \\ 48 & 81 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 18 & 18 \\ 9 & 27 \end{bmatrix}$$

Huom: Matriisien kertolaskussa perustemppuja ovat

1) matriisi * pystyvektori = pystyvektori

kertolaskussa AB kerrotaan A:lla B:n sarakkeita, jolloin saadaan AB:n sarakkeita

2) vaakavektori * matriisi = vaakavektori

kertolaskussa AB kerrotaan A:n riveillä B:tä, jolloin saadaan AB:n rivejä

Esim. jos

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix} \quad \text{ja} \quad B = \begin{bmatrix} 7 & 3 & -6 \\ 0 & 9 & 8 \end{bmatrix}$$

niin

$$AB = \begin{bmatrix} 28 & 30 & -8 \\ 7 & 48 & 34 \end{bmatrix}$$

ja

$$A\begin{bmatrix} 7 \\ 0 \end{bmatrix} = \begin{bmatrix} 28 \\ 7 \end{bmatrix}, A\begin{bmatrix} 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 30 \\ 48 \end{bmatrix}, A\begin{bmatrix} -6 \\ 8 \end{bmatrix} = \begin{bmatrix} -8 \\ 34 \end{bmatrix}$$

$$[4,2]B = [28,30,-8], [1,5]B = [7,48,34]$$

Esim: Graafin linkkimatriisi

Piuhat $y_1 - y_5$ riveinä, solmut $u_1 - u_4$ sarakkeina: $a_{ij} = 1$ ja $a_{ik} = -1$, jos piuha y_i menee $u_j \to u_k$

$$A = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}, \mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} \rightarrow A\mathbf{u} = \begin{bmatrix} u_1 - u_2 \\ u_1 - u_3 \\ u_1 - u_4 \\ u_2 - u_4 \\ u_3 - u_4 \end{bmatrix}$$

Transpoosi

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$

Solmut $u_1 - u_4$ riveinä, piuhat $y_1 - y_5$ sarakkeina:

$$(A^T)_{ij} = \begin{cases} 1, & \text{jos piuha } y_j \text{ lähtee } u_i\text{:stä} \\ -1, & \text{jos piuha } y_j \text{ päätyy } u_i\text{:hin} \\ 0, & \text{muuten} \end{cases}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} \to A^T \mathbf{y} = \begin{bmatrix} y_1 + y_2 + y_3 \\ -y_1 + y_4 \\ -y_2 + y_5 \\ -y_3 - y_4 - y_5 \end{bmatrix}$$

Esim: "Sekoitus"

eli jos alkumäärät ovat A_0, B_0 ja C_0 , niin sekoituksen jälkeen ne ovat

$$\begin{cases} A_1 = 0.85A_0 + 0.30B_0 + 0.15C_0 \\ B_1 = 0.10A_0 + 0.45B_0 + 0.20C_0 \\ C_1 = 0.05A_0 + 0.25B_0 + 0.65C_0 \end{cases}$$

Matriisimuodossa: jos M_{ij} on siirtymä $j \to i$ eli

$$M = \begin{bmatrix} 0.85 & 0.30 & 0.15 \\ 0.10 & 0.45 & 0.20 \\ 0.05 & 0.25 & 0.65 \end{bmatrix}, X_0 = \begin{bmatrix} A_0 \\ B_0 \\ C_0 \end{bmatrix}, X_1 = \begin{bmatrix} A_1 \\ B_1 \\ C_1 \end{bmatrix}$$

 $niin X_1 = MX_0.$

Kahden kierroksen jälkeen määrät ovat $X_2 = MX_1$, kolmen $X_3 = MX_2$,... jne

Kun sekoitusta jatketaan, niin määrät X_k lähestyvät tasapainotilaa

$$X_k \to X = \begin{bmatrix} 0.59 \\ 0.19 \\ 0.22 \end{bmatrix} * (A_0 + B_0 + C_0), \quad MX = X$$

riippumatta alkutilanteesta X_0 eli 59 % päätyy A:han, 19 % B:hen ja 22 % C:hen

Huom: Transpoosi

$$M^T = \begin{bmatrix} 0.85 & 0.10 & 0.05 \\ 0.30 & 0.45 & 0.25 \\ 0.15 & 0.20 & 0.65 \end{bmatrix}$$

$$(M^T)_{ij} = M_{ji}$$
 on siirtymä $i \to j$

Kirjanpito toisinpäin:

$$X_1 = MX_0 \to X_1^T = (MX_0)^T = X_0^T M^T$$
 eli

$$[A_1, B_1, C_1] = [A_0, B_0, C_0]M^T$$

Huom: $X_1 = MX_0, X_2 = MX_1 = M^2X_0$ eli

$$M^2 = \begin{bmatrix} 0.85 & 0.30 & 0.15 \\ \mathbf{0.10} & \mathbf{0.45} & \mathbf{0.20} \\ 0.05 & 0.25 & 0.65 \end{bmatrix} \begin{bmatrix} 0.85 & 0.30 & \mathbf{0.15} \\ 0.10 & 0.45 & \mathbf{0.20} \\ 0.05 & 0.25 & \mathbf{0.65} \end{bmatrix}$$

$$= \begin{bmatrix} 0.76 & 0.43 & 0.29 \\ 0.14 & 0.28 & \mathbf{0.23} \\ 0.10 & 0.29 & 0.48 \end{bmatrix}$$

kertoo siirtymäosuudet kahden kierroksen jälkeen. Esimerkiksi

$$(M^2)_{2,3} = 0.10 * 0.15 + 0.45 * 0.20 + 0.20 * 0.65 = 0.235$$

kertoo, että kahden kierroksen jälkeen 23.5 % C:n otuksista on päätynyt B:hen

Vastaavasti $X_3 = MX_2 = M^3X_0, X_4 = M^4X_0, ...$ eli M^k kertoo siirtymäosuudet k:n askeleen jälkeen

Kun kierrosmäärä k kasvaa, niin

$$M^k \rightarrow \begin{bmatrix} 0.59 & 0.59 & 0.59 \\ 0.19 & 0.19 & 0.19 \\ 0.22 & 0.22 & 0.22 \end{bmatrix}$$

Esim: (Googlen PageRank) Allaolevassa on pieni web (n=4 sivua), nuolet ovat linkkeja sivusta toiseen. Tavoitteena on etsiä sivuille 1-4 tärkeys sen mukaan, millä todennäisyydellä satunnainen surffailija sivulla käy.

Vaihe 1: ajatellaan satunnaisen surffailijan liikkuvan niin, että hän valitsee kultakin sivulta lähtevistä linkeistä umpimähkän yhden, eli tn:llä 1/m, missä m on sivulta lähtevien linkkien määrä. Jos sivulta ei lähde yhtään linkkiä, niin kulkija valitsee uuden sivun umpimähkään eli tn:llä 1/n, missä n on sivujen määrä.

Vaihe 2: ajatellaan surffailijan liikkuvan niin, että tn:llä d hän kulkee toimii edellä, mutta tn:llä 1-d valitsee uuden sivun umpimähkään eli tn:llä 1/n, missä d on ns. damping factor

Jos d = 0.85, niin (PageRank matriisi)

$$P = d \begin{bmatrix} 0 & 0 & 1 & \frac{1}{2} \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix} + (1 - d) \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} = \begin{bmatrix} 0.04 & 0.04 & 0.88 & 0.46 \\ 0.32 & 0.04 & 0.04 & 0.04 \\ 0.32 & 0.46 & 0.04 & 0.46 \\ 0.32 & 0.46 & 0.04 & 0.04 \end{bmatrix}$$

 $P_{ij} = \text{siirtymätodennäköisyys } j \rightarrow i$

Jos aloitussivu valitaan umpimähkään

eli
$$X_0 = \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} = \begin{bmatrix} 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$
, niin $X_1 = PX_0 = \begin{bmatrix} 0.36 \\ 0.11 \\ 0.32 \\ 0.21 \end{bmatrix}$

kertoo kulkijan todennäköisyydet olla sivuilla 1-4 ensimmäisen askeleen jälkeen, koska

$$X_{1i} = P_{i1} * p_1 + P_{i2} * p_2 + P_{i3} * p_3 + P_{i4} * p_4$$

 $i \leftarrow 1$ $i \leftarrow 2$ $i \leftarrow 3$ $i \leftarrow 4$

Kahden askeleen jälkeen todennäköisyydet ovat

$$X_2 = PX_1 = \begin{bmatrix} 0.40 \\ 0.14 \\ 0.28 \\ 0.18 \end{bmatrix}$$

kolmen askeleen jälkeen $X_3 = PX_2$ jne

Kun askelmäärä kasvaa, niin todennäköisyydet lähestyvät tasapainotilaa X (PageRank vektori)

$$X_k \to X = \begin{bmatrix} 0.37 \\ 0.14 \\ 0.29 \\ 0.20 \end{bmatrix}, \quad PX = X$$

eli sivujen ranking on 1, 3, 4, 2

Esim: Graafin linkkimatriisi 2

Figure 10.1 Directed graph.

$$A = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$a_{ij} = \begin{cases} 1, & \text{jos on linkki } i \to j \\ 0, & \text{jos ei ole} \end{cases}$$

Matriisin

$$A^{2} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{1} \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & \mathbf{0} & 1 & 0 \\ 1 & 0 & \mathbf{0} & 0 & 0 \\ 0 & 1 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 & 0 \end{bmatrix}$$

alkio $(A^2)_{ij}$ kertoo, montako kahden askeleen pituista linkkiä on $i \to j$, koska esimerkiksi

$$(A^2)_{43} = a_{41}a_{13} + a_{42}a_{23} + a_{43}a_{33} + a_{44}a_{43} + a_{45}a_{53}$$

ja $a_{4k}a_{k3} = 1$, jos $a_{4k} = a_{k3} = 1$ eli on linkit $4 \to k$ ja $k \to 3$

Vastaavasti, matriisin

$$A^{3} = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 2 & 1 & 1 & 0 \\ 1 & 3 & 2 & 1 & 0 \\ 2 & 1 & 2 & 0 & 1 \end{bmatrix}$$

alki
o $(A^3)_{ij}$ kertoo, montako kolmen askeleen pituista linkkiä on
 $i \to j$ jne

Yksikkömatriisi (unit matrix)

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \dots$$

on matriisikertolaskun ykkönen, eli jos A on $m \times n$ -matriisi, niin

$$AI_n = I_m A = A$$

Esimerkiksi,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

MATLAB/Octave: eye(n)

Käänteismatriisi (inverse matrix)

Neliömatriisi (eli $n \times n$ -matriisi) A on **kääntyvä** (säännöllinen, non-singular, invertible), jos sillä on **käänteismatriisi** eli $n \times n$ -matriisi A^{-1} siten, että

$$AA^{-1} = A^{-1}A = I_n$$

Esimerkiksi, matriisi

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

on kääntyvä ja

$$A^{-1} = \begin{bmatrix} -2 & 1\\ 1.5 & -0.5 \end{bmatrix}$$

kun taas matriisi

$$B = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$

ei ole kääntyvä (eli B on singulaarinen, singular, non-invertible).

MATLAB/Octave: $A \wedge -1$, inv(A)

Huom: 2×2 -matriisi

$$\left[\begin{array}{cc} a & b \\ c & d \end{array}\right]$$

on kääntyvä, jos $ad-bc\neq 0$ ja tällöin sen käänteismatriisi

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Isompien $n \times n$ -matriisien käänteismatriisien kaavat eivät ole käyttökelpoisia, esimerkiksi 3×3 -matriisille

Input

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1}$$
 (matrix inverse)

Result

$$\frac{1}{ae\,i-a\,fh-b\,d\,i+b\,f\,g+c\,d\,h-c\,e\,g}\begin{pmatrix} e\,i-f\,h & c\,h-b\,i & b\,f-c\,e\\ f\,g-d\,i & a\,i-c\,g & c\,d-a\,f\\ d\,h-e\,g & b\,g-a\,h & a\,e-b\,d \end{pmatrix}$$

Neliömatriisin determinantti

 2×2 -matriisin

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

determinantti

$$\det A = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

 3×3 -matriisin

$$A = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

determinantti

$$\det A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$= aei - afh - bdi + bfg + cdh - ceg$$

MATLAB/Octave: det(A)

Fakta: Neliömatriisi A on kääntyvä \leftrightarrow det $A \neq 0$

Esim. Millä x:n arvoilla matriisit

$$A = \begin{bmatrix} 2 & -3 \\ 4 & x \end{bmatrix} \quad \text{ja} \quad B = \begin{bmatrix} 1 & x & -3 \\ 2 & 1 & 5 \\ 3 & -5 & 1 \end{bmatrix}$$

ovat kääntyviä?

$$\det A = 2x + 12 \neq 0 \leftrightarrow x \neq -6$$

$$\det B = 13x + 65 \neq 0 \leftrightarrow x \neq -5$$

Geometrisesti 2×2-matriisin determinantin itseisarvo on sen rivi- tai sarakevektoreiden määrämän suunnikkaan pinta-ala, eli esimerkiksi allaolevien suunnikkaiden pinta-ala on

$$\begin{vmatrix} 4 & 2 \\ 1 & 3 \end{vmatrix} = 4 \cdot 3 - 1 \cdot 2 = 10$$

Eli 2×2 -matriisi A on kääntyvä \leftrightarrow sen rivi- ja sarakevektorit ovat erisuuntaisia

Determinantin merkki kertoo rivi- tai sarakevektoreiden keskinäisen järjestyksen:

det > 0, jos rivi- tai sarakevektoreiden keskinäinen suunta kuten kuvassa eli toinen rivi/sarake on vastapäivääi ensimmäisestä

Syy: Jos $\mathbf{u} = [ux, uy, 0]$ ja $\mathbf{v} = [vx, vy, 0]$, niin

$$\mathbf{u} \times \mathbf{v} = \begin{bmatrix} 0, 0, \underbrace{ux \cdot vy - vx \cdot vy} \\ = \begin{vmatrix} ux & uy \\ vx & vy \end{vmatrix}$$

Vastaavasti, 3×3 -matriisin determinantin itseisarvo kertoo sen rivi- tai sarakevektoreiden määrämän särmiön tilavuuden

Eli 3×3 -matriisi on kääntyvä \leftrightarrow sen rivi- ja sarakevektorit ovat erisuuntaisia (eli eivät saman tason suuntaisia)

Determinantin merkki kertoo rivi/sarakevektoreiden keskinäisen järjestyksen:

det > 0, jos ne muodostavat oikeakätisen järjestelmän eli kolmas rivi/sarake sojottaa kahden ensimmäisen ristitulon suuntaan

$$\det \begin{bmatrix} \mathbf{u}\mathbf{x} & \mathbf{u}\mathbf{y} & \mathbf{u}\mathbf{z} \\ \mathbf{v}\mathbf{x} & \mathbf{v}\mathbf{y} & \mathbf{v}\mathbf{z} \\ \mathbf{w}\mathbf{x} & \mathbf{w}\mathbf{y} & \mathbf{w}\mathbf{z} \end{bmatrix} > 0 \qquad \det \begin{bmatrix} \mathbf{u}\mathbf{x} & \mathbf{u}\mathbf{y} & \mathbf{u}\mathbf{z} \\ \mathbf{v}\mathbf{x} & \mathbf{v}\mathbf{y} & \mathbf{v}\mathbf{z} \\ \mathbf{w}\mathbf{x} & \mathbf{w}\mathbf{y} & \mathbf{w}\mathbf{z} \end{bmatrix} < 0$$

Syy: Jos $\mathbf{u} = [ux, uy, uz], \mathbf{v} = [vx, vy, vz]$ ja $\mathbf{w} = [wx, wy, wz]$, niin

$$\begin{vmatrix} ux & uy & uz \\ vx & vy & vz \\ wx & wy & wz \end{vmatrix} = \mathbf{u} \times \mathbf{v} \bullet \mathbf{w}$$

Lineaarinen yhtälöryhmä

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ & \vdots & & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m \end{cases}$$

Matriisimuodossa

$$AX = B$$

missä

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

A on yhtälöryhmän **kerroinmatriisi**, X tuntematon ja B oikea puoli.

Jos yhtälöitä on yhtä monta kuin tuntemattomia (elim=n) ja kerroinmatriisi A on kääntyvä, niin lineaarisella yhtälöryhmällä

$$AX = B$$

on yksi ratkaisu

$$X = A^{-1}B$$

Syy: ratkaistaan "jakamalla" A:lla eli kertomalla molemmat puolet vasemmalta käänteismatriisilla A^{-1} :

$$AX = B \leftrightarrow \underbrace{A^{-1}A}_{=I_n}X = A^{-1}B \leftrightarrow X = A^{-1}B$$

Esim:

$$\begin{cases} x+y = 3 \\ -x+2y = 2 \end{cases} \leftrightarrow \underbrace{\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 3 \\ 2 \end{bmatrix}}_{B}$$

$$\leftrightarrow X = A^{-1}B = \begin{bmatrix} 4/3 \\ 5/3 \end{bmatrix}$$

Geometria 1: X on suorien leikkauspiste

A:n rivivektorit $\mathbf{u} = [1, 1]$ ja $\mathbf{v} = [-1, 2]$ ovat suorien normaalit.

Akääntyvä $\leftrightarrow \mathbf{u}$ ja \mathbf{v} erisuuntaisia \leftrightarrow suorat erisuuntaisia eli ne leikkaavat yhdessä pisteessä X

Geometria 2: Koska

$$AX = \begin{bmatrix} x+y \\ -x+2y \end{bmatrix} = x * \begin{bmatrix} 1 \\ -1 \end{bmatrix} + y * \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

niin yhtälöryhmän AX = B ratkaisu X kertoo oikean puolen B koordinaatit A:n sarakevektoreiden muodostamassa \mathbf{u} , \mathbf{v} -koordinaatistossa, eli

$$B = \frac{4}{3} * \mathbf{u} + \frac{5}{3} * \mathbf{v}$$

A on kääntyvä \leftrightarrow **u** ja **v** ovat erisuuntaisia \leftrightarrow kaikille B löytyy ratkaisu.

Esim:

$$\begin{cases} 2x - y + 3z &= 1 \\ 6x + 4y - 2z &= 2 \\ -2x + 2y + z &= -3 \end{cases} \leftrightarrow \underbrace{\begin{bmatrix} 2 & -1 & 3 \\ 6 & 4 & -2 \\ -2 & 2 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}}_{B}$$

$$\leftrightarrow X = A^{-1}B = \begin{bmatrix} 2/3 \\ -2/3 \\ -1/3 \end{bmatrix}$$

Geometria 1: X on tasojen leikkauspiste

A:n rivivektorit $\mathbf{u} = [2, -1, 3], \mathbf{v} = [6, 4, -2]$ ja $\mathbf{w} = [-2, 2, 1]$ ovat tasojen normaalit.

A kääntyvä \leftrightarrow **u**, **v** ja **w** erisuuntaisia \leftrightarrow tasot erisuuntaisia eli ne leikkaavat yhdessä pisteessä X

Geometria 2: Koska

$$AX = x * \underbrace{\begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix}}_{\mathbf{u}} + y * \underbrace{\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}}_{\mathbf{v}} + z * \underbrace{\begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}}_{\mathbf{w}}$$

niin yhtälöryhmän AX = B ratkaisu X kertoo oikean puolen B koordinaatit A:n sarakevektoreiden muodostamassa $\mathbf{u}, \mathbf{v}, \mathbf{w}$ -koordinaatistossa, eli

$$B = \frac{2}{3} * \mathbf{u} - \frac{2}{3} * \mathbf{v} - \frac{1}{3} * \mathbf{w}$$

A on kääntyvä \leftrightarrow **u**, **v** ja **w** ovat erisuuntaisia \leftrightarrow kaikille B löytyy ratkaisu.

Esim: virtapiiri

Lineaarinen yhtälöryhmä virroille I_1, I_2, I_3

$$\begin{cases} V - R_1 I_1 - R_2 (I_1 - I_2) - R_3 I_1 = 0 \\ -R_4 (I_2 - I_3) - R_2 (I_2 - I_1) = 0 \\ -R_5 I_3 - R_6 I_3 - R_4 (I_3 - I_2) = 0 \end{cases}$$

Perusmuodossa

$$\begin{cases}
(R_1 + R_2 + R_3)I_1 - R_2I_2 + 0I_3 = V \\
R_2I_1 - (R_2 + R_4)I_2 + R_4I_3 = 0 \\
0I_1 + R_4I_2 - (R_4 + R_5 + R_6)I_3 = 0
\end{cases}$$

eli matriismuodossa

$$\underbrace{\begin{bmatrix} R_1 + R_2 + R_3 & -R_2 & 0 \\ R_2 & -(R_2 + R_4) & R_4 \\ 0 & R_4 & -(R_4 + R_5 + R_6) \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} V \\ 0 \\ 0 \end{bmatrix}}_{B}$$

$$\leftrightarrow X = A^{-1}B$$

Esim. Pisteiden $[x_1, y_1]$ ja $[x_2, y_2]$ kautta kulkevan suoran

$$y = ax + b$$

kertoimet a ja b löydetään ratkaisemalla yhtälöpari

$$\begin{cases} ax_1 + b = y_1 \\ ax_2 + b = y_2 \end{cases} \leftrightarrow \underbrace{\begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{B}$$
$$\leftrightarrow X = A^{-1}B$$

Esim: Pisteiden $[x_1, y_1], [x_2, y_2]$ ja $[x_3, y_3]$ kautta kulkevan paraabelin

$$y = ax^2 + bx + c$$

kertoimet a, b ja c löydetään ratkaisemalla yhtälöryhmä

$$\begin{cases} ax_1^2 + bx_1 + c = y_1 \\ ax_2^2 + bx_2 + c = y_2 \\ ax_3^2 + bx_3 + c = y_3 \end{cases} \leftrightarrow \underbrace{\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}}_{B}$$

$$\leftrightarrow X = A^{-1}B$$

Esim. 3 pisteen kautta kulkeva ympyrä.

Pisteet $P_1 = [x_1, y_1], P_2 = [x_2, y_2], P_3 = [x_3, y_3]$ Ympyrän keskipiste $[x_0, y_0]$, säde r

$$\begin{cases} (x_1 - x_0)^2 + (y_1 - y_0)^2 = r^2 \\ (x_2 - x_0)^2 + (y_2 - y_0)^2 = r^2 \\ (x_3 - x_0)^2 + (y_3 - y_0)^2 = r^2 \end{cases}$$

Vähennetään kolmas yhtälö kahdesta ensimmäisestä

jolloin keskipisteelle saadaan lineaarinen yhtälöpari

$$\begin{cases} 2(x_3 - x_1)x_0 + 2(y_3 - y_1)y_0 = x_3^2 + y_3^2 - x_1^2 - y_1^2 & (s_{13}) \\ 2(x_3 - x_2)x_0 + 2(y_3 - y_2)y_0 = x_3^2 + y_3^2 - x_2^2 - y_2^2 & (s_{23}) \end{cases}$$

Matriisimuodossa AX = B eli $X = A^{-1}B$, missä

$$A = 2 \begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} = 2 \begin{bmatrix} P_3 - P_1 \\ P_3 - P_2 \end{bmatrix}, \quad X = \begin{bmatrix} x_0 \\ y_0 \end{bmatrix}$$

$$B = \begin{bmatrix} x_3^2 + y_3^2 - x_1^2 - y_1^2 \\ x_3^2 + y_3^2 - x_2^2 - y_2^2 \end{bmatrix} = \begin{bmatrix} \|P_3\|^2 - \|P_1\|^2 \\ \|P_3\|^2 - \|P_2\|^2 \end{bmatrix}$$

$$||P_k||^2 = x_k^2 + y_k^2, \quad k = 1, 2, 3$$

Huom: suoran s_{13} pisteet P toteuttavat ehdon $||PP_1||^2 - ||PP_3||^2 = 0$ eli $||PP_1|| = ||PP_3||$, eli ne ovat yhtä kaukana pisteistä P_1 ja P_3 eli s_{13} on janan P_1P_3 keskinormaali. Vastaavasti suoralle s_{23} (ja s_{12}).

Esim. 2D-paikannus, 3 tukiasemaa, tapa 1

Tukiasemat $P_1 = [x_1, y_1], P_2 = [x_2, y_2], P_3 = [x_3, y_3]$ mitatut etäisyydet r_1, r_2, r_3 pisteeseen P = [x, y].

Jos mittaukset olisivat tarkkoja, niin P olisi kolmen ympyrän leikkauspisteessä

$$\begin{cases} (x - x_1)^2 + (y - y_1)^2 = r_1^2 \\ (x - x_2)^2 + (y - y_2)^2 = r_2^2 \\ (x - x_3)^2 + (y - y_3)^2 = r_3^2 \end{cases}$$

Likiarvoratkaisu: vähennetään kolmas yhtälö kahdesta ensimmäisestä

jolloin P:n koordinaateille saadaan lineaarinen yhtälöpari

$$\begin{cases} 2(x_3 - x_1)x + 2(y_3 - y_1)y = r_1^2 - r_3^2 - ||P_1||^2 + ||P_3||^2 & (s_{13}) \\ 2(x_3 - x_2)x + 2(y_3 - y_2)y = r_2^2 - r_3^2 - ||P_2||^2 + ||P_3||^2 & (s_{23}) \end{cases}$$
missä $||P_k||^2 = x_k^2 + y_k^2$, $k = 1, 2, 3$

Matriisimuodossa AX = B eli $X = A^{-1}B$, missä

$$A = 2 \begin{bmatrix} x_3 - x_1 & y_3 - y_1 \\ x_3 - x_2 & y_3 - y_2 \end{bmatrix} = 2 \begin{bmatrix} P_3 - P_1 \\ P_3 - P_2 \end{bmatrix}$$

$$X = \begin{bmatrix} x \\ y \end{bmatrix}, B = \begin{bmatrix} r_1^2 - r_3^2 - ||P_1||^2 + ||P_3||^2 \\ r_2^2 - r_3^2 - ||P_2||^2 + ||P_3||^2 \end{bmatrix}$$

Huom: suoran s_{13} pisteet P toteuttavat ehdon $||PP_1||^2 - ||PP_3||^2 = r_1^2 - r_3^2$, s_{13} on kohtisuorassa P_1P_3 :n kanssa ja sen etäisyys P_1 :stä on $L_1 = \frac{1}{2} ||P_1P_3|| + \frac{1}{2} (r_1^2 - r_3^2) / ||P_1P_3||$. Jos ympyrät 1 ja 3 leikkaavat, niin s_{13} kulkee leikkauspisteiden kautta. Vastaavasti suoralle s_{23} (ja s_{12} , joka kulkee myös X:n kautta: $||XP_1||^2 - ||XP_2||^2 = (||XP_1||^2 - ||XP_3||^2) - (||XP_2||^2 - ||XP_3||^2)$ $= (r_1^2 - r_3^2) - (r_2^2 - r_3^2) = r_1^2 - r_2^2$.

Esim: lasketaan neliön muotoisen levyn lämpötilajakauma, kun tiedetään sen reunojen lämpötilat.

Strategia: lasketaan lämpötilan likiarvoja kuvan mukaisissa hilapisteissä fyysikoilta lainatulla keskiarvoperiaatteella: kunkin hilapisteen lämpötila on neljän naapuripisteen lämpötilojen keskiarvo:

$$T_0 = \frac{1}{4}(T_1 + T_2 + T_3 + T_4)$$

Esimerkiksi, jos pisteitä on 2×2 ,

niin lämpötiloille saadaan yhtälöryhmä

$$T_{1,1} = \frac{1}{4}(T_{v,1} + T_{y,1} + T_{1,2} + T_{2,1})$$

$$T_{1,2} = \frac{1}{4}(T_{1,1} + T_{y,2} + T_{o,1} + T_{2,2})$$

$$T_{2,1} = \frac{1}{4}(T_{v,2} + T_{1,1} + T_{2,2} + T_{a,1})$$

$$T_{2,2} = \frac{1}{4}(T_{2,1} + T_{1,2} + T_{o,2} + T_{a,2})$$

eli

$$4T_{1,1} - T_{1,2} - T_{2,1} = T_{v,1} + T_{y,1}$$

$$-T_{1,1} + 4T_{1,2} - T_{2,2} = T_{y,2} + T_{o,1}$$

$$-T_{1,1} + 4T_{2,1} - T_{2,2} = T_{v,2} + T_{a,1}$$

$$-T_{1,2} - T_{2,1} + 4T_{2,2} = T_{o,2} + T_{a,2}$$

Matriisimuodossa

$$\begin{bmatrix}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
\hline
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
T_{1,1} \\
T_{1,2} \\
T_{2,1} \\
\hline
T_{2,1}
\end{bmatrix} = \begin{bmatrix}
T_{v,1} + T_{v,1} \\
T_{v,2} + T_{o,1} \\
T_{v,2} + T_{a,1} \\
\hline
T_{0,2} + T_{a,2}
\end{bmatrix}$$

Esim: Jos $T_y = [100, 100]$ ja $T_o = T_a = T_v = [0, 0]$, niin

$$B = \begin{bmatrix} 100 \\ 100 \\ 0 \\ 0 \end{bmatrix} \quad \text{ja} \quad T = A^{-1}B = \begin{bmatrix} 37.5 \\ 37.5 \\ 12.5 \\ 12.5 \end{bmatrix}$$

Vastaavasti, 3×3 -tapauksessa

saadaan yhtälöryhmä

	-1	0	-1	0	0	0	0	0	$T_{1,1}$		$\left[\ T_{v,1} + T_{y,1} \ \right]$
-1	4	-1	0	-1	0	0	0	0	$T_{1,2}$		$T_{y,2}$
0	-1	4	0	0	-1	0	0	0	$\Gamma_{1,3}$		$T_{y,3} + T_{o,1}$
-1	0	0	4	-1	0	-1	0	0	$T_{2,1}$		$T_{v,2}$
0	-1	0	-1	4	-1	0	-1	0	$T_{2,2}$	=	0
0	0	-1	0	-1	4	0	0	-1	$T_{2,3}$		$T_{o,2}$
0	0	0	-1	0	0	4	-1	0	$\Gamma_{3,1}$		$T_{v,3} + T_{a,1}$
0	0	0	0	-1	0	-1	4	-1	$\Gamma_{3,2}$		$T_{a,2}$
0	0	0	0	0	-1	0	-1	4	$T_{3,3}$		$T_{a,3} + T_{o,3}$
				\widetilde{A}					\widetilde{T}		\widetilde{B}

Esim: Jos $T_y = [100, 100, 100], T_v = T_o = T_a = [0, 0, 0], niin$

$$B = \begin{bmatrix} 100 \\ 100 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \quad \text{ja} \quad T = A^{-1}B = \begin{bmatrix} 42.86 \\ 52.68 \\ 42.86 \\ 18.75 \\ 25 \\ 18.75 \\ 7.143 \\ 9.821 \\ 7.143 \end{bmatrix}$$

Esim: Springs and Masses

A mass-spring chain consists of masses m_1, m_2, m_3 arranged in a straight line. Each mass is connected to its immediate neighbors by a spring. Let us look at the case when both ends of the chain are attached.

If we subject some or all of the masses to an external force, e.g. gravity, then the system will move to a new equilibrium position. The motion of the i^{th} mass is given by its **displacement** u_i from its original position. We use the convention that $u_i > 0$ if the mass has moved downwards, and $u_i < 0$ if it has moved upwards.

The problem is to determine the new equilibrium configuration of the chain under the prescribed forcing, that is, to set up and solve a system of equations for the displacements u_1, u_2, u_3 .

Let v_j denote the **elongation** of the j^{th} spring, which connects mass m_{j-1} to mass m_j . By elongation, we mean how far the spring has been stretched,

so that $v_j > 0$ if the spring is longer than its reference length, while $v_j < 0$ if the spring has been compressed. The elongations can be determined directly from the displacements according to the geometric formula

$$v_1 = u_1, v_2 = u_2 - u_1, v_3 = u_3 - u_2, v_4 = -u_3$$

since the top and bottom supports are fixed. We write the elongation equations in matrix form $\mathbf{v} = A\mathbf{u}$,

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix} \underbrace{\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}}_{\mathbf{u}}$$

The matrix A is known as the **reduced incidence matrix** for the mass-spring chain. It effectively encodes the underlying geometry of the chain, including the boundary conditions at the top and the bottom.

The next step is to connect the elongation v_j experienced by the j^{th} spring to its **internal force** y_j . This is the basic constitutive assumption, that relates geometry to kinematics. We assume that the springs obey **Hooke's Law** $y_j = c_j v_j$. In matrix form $\mathbf{y} = C\mathbf{v}$,

$$\underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}}_{\mathbf{y}} = \underbrace{\begin{bmatrix} c_1 & 0 & 0 & 0 \\ 0 & c_2 & 0 & 0 \\ 0 & 0 & c_3 & 0 \\ 0 & 0 & 0 & c_4 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \end{bmatrix}}_{\mathbf{v}}$$

The constant $c_j > 0$ is the spring's **stiffness**.

Finally, the forces must balance if the system is to remain in equilibrium. Let f_i denote the **external force** on the i^{th} mass m_i . We also measure force in the downwards direction, so $f_i > 0$ means the force is pulling the i^{th} mass downwards.

The i^{th} mass is immediately below the i^{th} spring and above the $(i+1)^{\text{st}}$ spring. If the i^{th} spring is stretched, it will exert an upwards force on m_i , while if the $(i+1)^{\text{st}}$ spring is stretched, it will pull m_i downwards. Therefore, the balance of forces on m_i requires that $f_i = y_i - y_{i+1}$. In matrix form $\mathbf{f} = A^T \mathbf{u}$,

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$
f

The remarkable, and very general fact is that the force balance coefficient matrix A^T is the transpose of the reduced incidence matrix A for the chain.

Summarizing, we have

$$\mathbf{v} = A\mathbf{u}, \quad \mathbf{y} = C\mathbf{v}, \quad \mathbf{f} = A^T\mathbf{y}$$

These equations can be combined into a single linear system:

$$\mathbf{f} = A^T \mathbf{y} = A^T C \mathbf{v} = A^T C A \mathbf{u}$$

i.e

$$K\mathbf{u} = \mathbf{f} \quad \leftrightarrow \quad \mathbf{u} = K^{-1}\mathbf{f}$$

where

$$K = A^{T}CA = \begin{bmatrix} c_1 + c_2 & -c_2 & 0 \\ -c_2 & c_2 + c_3 & -c_3 \\ 0 & -c_3 & c_3 + c_4 \end{bmatrix}$$

is called the **stiffness matrix** of the mass-spring chain.

Esim: Jos $c_1 = 1$, $c_2 = 2$, $c_3 = 3$, $c_4 = 4$ $f_1 = 1$, $f_2 = 2$, $f_3 = 3$, niin

$$K = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 5 & -3 \\ 0 & -3 & 7 \end{bmatrix}, \mathbf{f} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$

$$\mathbf{u} = K^{-1}\mathbf{f} = \begin{bmatrix} 1.44 \\ 1.66 \\ 1.14 \end{bmatrix}$$

$$\mathbf{v} = A\mathbf{u} = \begin{bmatrix} 1.44 \\ 0.22 \\ -0.52 \\ -1.14 \end{bmatrix}$$

$$\mathbf{y} = C\mathbf{v} = \begin{bmatrix} 1.44 \\ 0.44 \\ -1.56 \\ -4.56 \end{bmatrix}$$

Esim: Electrical Networks

An electrical network consists of a collection of wires that are joined together at their ends. The junctions where one or more wires are connected are called nodes. Abstractly, we can view any such electrical network as a graph, the wires being the edges and the nodes the vertices. To begin with we assume that there are no electrical devices (batteries, inductors, capacitors, etc.) in the network and so the the only impediment to current flowing through the network is each wire's **resistance** R_k . As we shall see, resistance (or, rather, its reciprocal) plays a very similar role to spring stiffness.

We shall introduce current sources into the network at one or more of the nodes, and would like to determine how the induced current flows through the wires in the network. The basic equilibrium equations for the currents are the consequence of three fundamental laws of electricity. Voltage is defined as the electromotive force that moves electrons through a wire. The voltage in a wire is induced by the difference in the voltage potentials at the two ends.

To quantify voltage, we need to assign an orientation to the wire. Then a positive voltage means the electrons move in the assigned direction, while under a negative voltage they move in reverse. The original choice of orientation is arbitrary, but once assigned will pin down the sign conventions used by voltages, currents, etc. The arrows indicate the orientations of the wires, while the wavy lines are the standard electrical symbols for resistance. In an electrical network, each node will have a **voltage potential** u_i . If wire k starts at node i and ends at node j, under its assigned orientation, then its **voltage** v_k equals the potential difference at its ends: $v_k = u_i - u_j$. Note that $v_k > 0$, if $u_i > u_j$, and so the electrons go from the starting node i to the ending node j, in accordance with our choice of orientation. In our example,

$$v_1 = u_1 - u_2$$
, $v_2 = u_1 - u_3$, $v_3 = u_1 - u_4$, $v_4 = u_2 - u_4$, $v_5 = u_3 - u_4$
In matrix form $\mathbf{v} = A\mathbf{u}$,

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \underbrace{\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix}}_{\mathbf{u}}$$

A is the **incidence matrix** of the network. The rows of the incidence matrix are indexed by the wires; the columns are indexed by the nodes. Each row of the matrix A has a single +1 in the column indexed by the starting node, and a single -1 in the column of the ending node.

Voltage potential is a mathematical abstraction that cannot be measured directly; only relative potential differences have physical import. To eliminate the ambiguity, one needs to assign a base potential level. Specifying a particular node to have zero potential is physically equivalent to grounding that node. For example, if we ground node number 4 in our network, $u_4 = 0$, then we erase the fourth column of the incidence matrix, leading to the **reduced** incidence matrix A:

$$v_1 = u_1 - u_2, v_2 = u_1 - u_3, v_3 = u_1 - 0, v_4 = u_2 - 0, v_5 = u_3 - 0$$

$$\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4 \\
v_5
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 0 \\
1 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\underbrace{\begin{bmatrix}
u_1 \\
u_2 \\
u_3
\end{bmatrix}}_{\mathbf{u}}$$

Ohm's Law is a constitutive relation, indicating what the wires are made of. The resistance along a wire, including any added resistors, prescribes the relation between voltage and current or the rate of flow of electric charge. The law reads

$$v_k = R_k y_k \quad \leftrightarrow \quad y_k = \frac{v_k}{R_k} = c_k v_k$$

where y_k denotes the **current** along wire k and $c_k = \frac{1}{R_k}$ is the **conductance** of wire.

The direction of the current is also prescribed by our choice of orientation of the wire, so that $y_k > 0$ if the current is flowing from the starting to the ending node. In matrix form $\mathbf{y} = C\mathbf{v}$,

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = \underbrace{\begin{bmatrix} c_1 & 0 & 0 & 0 & 0 \\ 0 & c_2 & 0 & 0 & 0 \\ 0 & 0 & c_3 & 0 & 0 \\ 0 & 0 & 0 & c_4 & 0 \\ 0 & 0 & 0 & 0 & c_5 \end{bmatrix}}_{C} \underbrace{\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \end{bmatrix}}_{\mathbf{v}}, \quad c_k = \frac{1}{R_k}$$

C is the conductance matrix.

Finally, we stipulate that electric current is not allowed to accumulate at any node, i.e., every electron that arrives at a node must leave along one of the wires. Let f_i be an **external current** source, if any, applied at node i.

Kirchhoff's Current Law requires that the net current into the node must be zero

$$y_1 + y_2 + y_3 = f_1$$
, $-y_1 + y_4 = f_2$, $-y_2 + y_5 = f_3$

In matrix form $\mathbf{f} = A^T \mathbf{y}$,

$$\begin{bmatrix} f_1 \\ f_2 \\ f_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix}$$

The coeffcient matrix A^T for the current law is the transpose of the incidence matrix A for the voltage law.

Let us assemble the full system of equilibrium equations:

$$\mathbf{v} = A\mathbf{u}, \quad \mathbf{y} = C\mathbf{v}, \quad \mathbf{f} = A^T\mathbf{y}$$

Remarkably, we arrive at a system of linear relations that has an identical form to the mass-spring chain system. As before, they combine into a single linear system

$$\mathbf{f} = A^T \mathbf{y} = A^T C \mathbf{v} = A^T C A \mathbf{u}$$

i.e

$$K\mathbf{u} = \mathbf{f} \quad \leftrightarrow \quad \mathbf{u} = K^{-1}\mathbf{f}$$

where

$$K = A^{T}CA = \begin{bmatrix} c_1 + c_2 + c_3 & -c_1 & -c_2 \\ -c_1 & c_1 + c_4 & 0 \\ -c_2 & 0 & c_2 + c_5 \end{bmatrix}, \quad c_k = \frac{1}{R_k}$$

is the **resistivity matrix** associated with the given network.

There is a simple pattern to the resistivity matrix. The diagonal entries k_{ii} equal the sum of the conductances of all the wires having node i at one end. The non-zero off-diagonal entries k_{ij} , $i \neq j$, equal $-c_k$, the conductance of the wire joining node i to node j, while $k_{ij} = 0$ if there is no wire joining the two nodes.

Esim: $R_1 = R_2 = 0.5, R_3 = R_4 = R_5 = 0.25$ $f_1 = 1, f_2 = f_3 = 0$

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}, \mathbf{f} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$K = A^T C A = \begin{bmatrix} 8 & -2 & -2 \\ -2 & 6 & 0 \\ -2 & 0 & 6 \end{bmatrix}$$

$$\mathbf{u} = K^{-1}\mathbf{f} = \begin{bmatrix} 0.15 \\ 0.05 \\ 0.05 \end{bmatrix}$$

$$\mathbf{v} = A\mathbf{u} = \begin{bmatrix} 0.10 \\ 0.10 \\ 0.15 \\ 0.05 \\ 0.05 \end{bmatrix}$$

$$\mathbf{y} = C\mathbf{v} = \begin{bmatrix} 0.2 \\ 0.2 \\ 0.6 \\ 0.2 \\ 0.2 \end{bmatrix}$$

Esim:

$$A = \begin{bmatrix} -1 & 0 & 0 & \mathbf{1} \\ 1 & 0 & -1 & \mathbf{0} \\ 0 & 1 & -1 & \mathbf{0} \\ 0 & 0 & 1 & -\mathbf{1} \\ 1 & -1 & 0 & \mathbf{0} \\ 0 & -1 & 0 & \mathbf{1} \end{bmatrix}$$

$$A = \begin{bmatrix} -1 & 0 & 0 & \mathbf{1} \\ 1 & 0 & -1 & \mathbf{0} \\ 0 & 1 & -1 & \mathbf{0} \\ 0 & 0 & 1 & -\mathbf{1} \\ 1 & -1 & 0 & \mathbf{0} \\ 0 & -1 & 0 & \mathbf{1} \end{bmatrix} \quad \overset{u_4=0}{\rightarrow} \quad A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

$$C = \begin{bmatrix} c_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & c_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & c_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_6 \end{bmatrix}$$

$$C = \begin{bmatrix} c_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & c_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & c_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_6 \end{bmatrix}, c_k = \frac{1}{R_k}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix} = \begin{bmatrix} b_1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

So far, we have only considered the effect of current sources at the nodes. Suppose now that the circuit contains one or more batteries. Each battery serves as a voltage source along one of the wires, and we let b_k denote the **voltage of a battery** connected to wire k (if there is no battery on wire k, then $b_k = 0$). The quantity b_k comes with a sign, indicated by the battery's positive and negative terminals. Our convention is that $b_k > 0$ if the current from the battery runs in the same direction as our chosen orientation of the wire. The battery voltage modifies the voltage balance equation: $v_k = u_i - u_j + b_k$. In matrix form $\mathbf{v} = A\mathbf{u} + \mathbf{b}$,

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}}_{\mathbf{u}} + \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{bmatrix}}_{\mathbf{b}}$$

The remaining two equations are as before, so $\mathbf{y} = C\mathbf{v}$ are the currents in the wires, and, in the absence of external current sources, Kirchhoff's Current Law implies $A^T\mathbf{y} = \mathbf{0}$,

$$\begin{bmatrix}
-1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & -1 & -1 \\
0 & -1 & -1 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5 \\
y_6
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$$

The full system of equilibrium equations:

$$\mathbf{v} = A\mathbf{u} + \mathbf{b}, \quad \mathbf{y} = C\mathbf{v}, \quad \mathbf{0} = A^T\mathbf{y}$$

As before, they combine into a single linear system:

$$\mathbf{0} = A^T \mathbf{y} = A^T C \mathbf{v} = A^T C A \mathbf{u} + A^T C \mathbf{b}$$

i.e

$$K\mathbf{u} = -A^T C\mathbf{b} \quad \leftrightarrow \quad \mathbf{u} = K^{-1}(-A^T C\mathbf{b})$$

where

$$K = A^{T}CA = \begin{bmatrix} c_1 + c_2 + c_5 & -c_5 & -c_2 \\ -c_5 & c_3 + c_5 + c_6 & -c_3 \\ -c_2 & -c_3 & c_2 + c_3 + c_4 \end{bmatrix}$$

and

$$-A^{T}C\mathbf{b} = \begin{bmatrix} c_{1}b_{1} - c_{2}b_{2} - c_{5}b_{5} \\ -c_{3}b_{3} + c_{5}b_{5} + c_{6}b_{6} \\ c_{2}b_{2} + c_{3}b_{3} - c_{4}b_{4} \end{bmatrix} = \begin{bmatrix} c_{1}b_{1} \\ 0 \\ 0 \end{bmatrix}$$

The batteries have exactly the same effect on the voltage potentials as if we imposed the current source vector $\mathbf{f} = -A^T C \mathbf{b}$. Namely, the effect of the battery of voltage b_k on wire k is the exactly the same as introducing an additional current source of $-c_k b_k$ at the starting node and $c_k b_k$ at the ending node. Vice versa, a given system of current sources \mathbf{f} has the same effect as any collection of batteries \mathbf{b} that satisfies $\mathbf{f} = -A^T C \mathbf{b}$.

We have discovered the remarkable correspondence between the equilibrium equations for electrical networks, and those of mass-spring chains.

This Electrical-Mechanical Correspondence is summarized in the following table.

Structures	Variables	Networks
Displacements	u	Potentials
Elongations	$\mathbf{v} = A\mathbf{u}$	Voltages
Spring stiffnesses	C	Conductivities
Internal Forces	$\mathbf{y} = C\mathbf{v}$	Currents
External forcing	$\mathbf{f} = A^T \mathbf{y}$	Current sources
Stiffness matrix	$K = A^T C A$	Resistivity matrix
Prestressed springs	$\mathbf{v} = A\mathbf{u} + \mathbf{b}$	Batteries

Pienimmän neliösumman ratkaisu

Jos yhtälöitä on enemmän kuin tuntemattomia, niin lineaarisella yhtälöryhmällä

$$AX = B$$

ei yleensä ole ratkaisua. Sille voidaan kuitenkin aina löytää ns. Pienimmän NeliöSumman (PNS, **least squares**) ratkaisu, joka ei yleensä toteuta yhtään alkuperäisen yhtälöryhmän yhtälöistä, mutta on paras likiarvoratkaisu siinä mielessä, että virheiden (vasen puoli — oikea puoli) neliöiden summa on pienimmillään.

PNS-ratkaisu X on yhtälöryhmän

$$A^T A X = A^T B$$

ratkaisu.

Jos kerroinmatriisi A^TA on kääntyvä (niinkuin se yleensä on), niin PNS-ratkaisu on

$$X = (A^T A)^{-1} A^T B$$

MATLAB/Octave: $X = A \setminus B$

Esimerkki. Yhtälöryhmällä

$$\begin{cases} 2x + 3y = 5 \\ x - 4y = 1 \\ 3x + y = 2 \end{cases} \leftrightarrow \underbrace{\begin{bmatrix} 2 & 3 \\ 1 & -4 \\ 3 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}}_{B}$$

ei ole ratkaisua, koska 3 suoraa eivät leikkaa samassa pisteessä.

PNS-ratkaisu

$$X = (A^T A)^{-1} A^T B \approx \begin{bmatrix} 1.11\\ 0.29 \end{bmatrix}$$

ei toteuta yhtään yhtälöistä, vaan

$$AX = \begin{bmatrix} 2x + 3y \\ x - 4y \\ 3x + y \end{bmatrix} = \begin{bmatrix} 3.08 \\ -0.03 \\ 3.62 \end{bmatrix}$$

mutta virheiden

$$AX - B = \begin{bmatrix} 3.08 - 5 \\ -0.03 - 1 \\ 3.62 - 2 \end{bmatrix} = \begin{bmatrix} -1.92 \\ -1.03 \\ 1.62 \end{bmatrix}$$

neliösumma

$$1.92^2 + 1.03^2 + 1.62^2 = 7.37$$

on sille pienimmillään.

Geometria 1: Pisteen $P = [x_0, y_0]$ etäisyys suorasta ax + by = c on

$$d = \frac{|ax_0 + by_0 - c|}{\|\mathbf{n}\|} \quad \text{eli} \quad |ax_0 + by_0 - c| = \|\mathbf{n}\| * d$$

missä $\mathbf{n} = [a, b]$ on suoran normaali ja $\|\mathbf{n}\| = \sqrt{a^2 + b^2}$

Yhtälöryhmän

$$\begin{cases} 2x + 3y = 5 & (s_1) \\ x - 4y = 1 & (s_2) \\ 3x + y = 2 & (s_3) \end{cases}$$

PNS-ratkaisu $X = \begin{bmatrix} 1.11 \\ 0.29 \end{bmatrix}$ minimoi virheiden neliösumman

$$(2x + 3y - 5)^{2} + (x - 4y - 1)^{2} + (3x + y - 2)^{2}$$

$$= \|\mathbf{n_{1}}\|^{2} * d_{1}^{2} + \|\mathbf{n_{2}}\|^{2} * d_{2}^{2} + \|\mathbf{n_{3}}\|^{2} * d_{3}^{2}$$

$$= 13d_{1}^{2} + 17d_{2}^{2} + 10d_{3}^{2}$$

missä $\mathbf{n_1} = [2,3], \mathbf{n_2} = [1,-4], \mathbf{n_3} = [3,1]$ ovat suorien s_1, s_2, s_3 normaalit ja d_1, d_2, d_3 ovat X:n kohtisuorat etäisyydet suorista

Geometria 2: Yhtälöryhmän

$$\begin{cases} 2x + 3y = 5 \\ x - 4y = 1 \\ 3x + y = 2 \end{cases} \leftrightarrow \underbrace{\begin{bmatrix} 2 & 3 \\ 1 & -4 \\ 3 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 5 \\ 1 \\ 2 \end{bmatrix}}_{B}$$

PNS-ratkaisu $X = \begin{bmatrix} 1.11 \\ 0.29 \end{bmatrix}$ kertoo sen A:n sarakevektoreiden

$$\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \text{ja} \quad \mathbf{v} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$$

määräämän tason pisteen

$$AX = 1.11 * \mathbf{u} + 0.29 * \mathbf{v} = \begin{bmatrix} 3.08 \\ -0.03 \\ 3.62 \end{bmatrix}$$

 ${f uv}$ -koordinaatit, joka on lähimpänä B:tä eli AX on B:n kohtisuora projektio ${f uv}$ -tasolle

Virheiden neliösumma = pisteiden AX ja B välisen etäisyyden neliö

$$||AX - B||^2 = 1.92^2 + 1.03^2 + 1.62^2 = 7.37$$

Selitys PNS-ratkaisun kaavalle: 3D-vektoreiden

$$\mathbf{a} = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} \quad ja \quad \mathbf{b} = \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

pistetulo

$$\mathbf{a} \bullet \mathbf{b} = a_x b_x + a_y b_y + a_z b_z$$

voidaan kirjoittaa matriisikertolaskuna

$$\mathbf{a} \bullet \mathbf{b} = \mathbf{a}^T \mathbf{b} = [a_x, a_y, a_z] \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix}$$

$$= \mathbf{b}^T \mathbf{a} = [b_x, b_y, b_z] \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

Vektorit ovat \mathbf{a} ja \mathbf{b} ovat kohtisuoria $\leftrightarrow \mathbf{a} \bullet \mathbf{b} = 0$

Ehto PNS-ratkaisulle X:

Vektori AX - B ja A:n sarakevektorit ${\bf u}$ ja ${\bf v}$ ovat kohtisuoria eli

$$(AX - B) \bullet \mathbf{u} = \mathbf{u}^T (AX - B) = 0$$

ja

$$(AX - B) \bullet \mathbf{v} = \mathbf{v}^T (AX - B) = 0$$

eli (koska A^T :n vaakarivit ovat \mathbf{u}^T ja \mathbf{v}^T)

$$A^{T}(AX - B) = \begin{bmatrix} \mathbf{u}^{T} \\ \mathbf{v}^{T} \end{bmatrix} (AX - B)$$

$$= \begin{bmatrix} \mathbf{u}^{T}(AX - B) \\ \mathbf{v}^{T}(AX - B) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 \\ 0 \end{bmatrix}}_{=\mathbf{0}}$$

joten

$$A^T A X - A^T B = \mathbf{0}$$

eli

$$A^T A X = A^T B$$

Esim: Pisteiden $[x_1, y_1], [x_2, y_2], \dots, [x_n, y_n]$ määräämä **PNS-suora**

$$y = ax + b$$

minimoi suoran ja pisteiden välisten pystysuorien etäisyyksien

$$d_1 = ax_1 + b - y_1$$

$$d_2 = ax_2 + b - y_2$$

$$\vdots$$

$$d_n = ax_n + b - y_n$$

neliöiden summan

$$d_1^2 + d_2^2 + \dots + d_n^2$$

eli kertoimet a ja b saadaan yhtälöryhmän

$$\begin{cases} ax_1 + b = y_1 \\ ax_2 + b = y_2 \\ \vdots & \vdots \\ ax_n + b = y_n \end{cases} \text{ eli } \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$X = (A^T A)^{-1} A^T B$$

Vastaavasti, PNS-paraabeli

$$y = ax^2 + bx + c$$

minimoi paraabelin ja pisteiden välisten pystysuorien etäisyyksien

$$d_{1} = ax_{1}^{2} + bx_{1} + c - y_{1}$$

$$d_{2} = ax_{2}^{2} + bx_{2} + c - y_{2}$$

$$\vdots$$

$$d_{n} = ax_{n}^{2} + bx_{n} + c - y_{n}$$

neliöiden summan

$$d_1^2 + d_2^2 + \dots + d_n^2$$

eli kertoimet a, b ja c saadaan yhtälöryhmän

$$\begin{cases} ax_1^2 + bx_1 + c &= y_1 \\ ax_2^2 + bx_2 + c &= y_2 \\ \vdots & \vdots & \vdots \\ ax_n^2 + bx_n + c &= y_n \end{cases} \text{ eli } \underbrace{\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n^2 & x_n & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}}_{B}$$

$$X = (A^T A)^{-1} A^T B$$

Esim. Pisteet [0,1], [1,4], [3,2] ja [5,5]

PNS-suora y = ax + b

$$\begin{cases} a \cdot 0 + b = 1 \\ a \cdot 1 + b = 4 \\ a \cdot 3 + b = 2 \\ a \cdot 5 + b = 5 \end{cases} \leftrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 3 & 1 \\ 5 & 1 \end{bmatrix} \underbrace{\begin{bmatrix} a \\ b \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} 1 \\ 4 \\ 2 \\ 5 \end{bmatrix}}_{B}$$

$$\leftrightarrow X = (A^T A)^{-1} A^T B = \begin{bmatrix} 0.54 \\ 1.80 \end{bmatrix}$$

PNS-paraabeli $y = ax^2 + bx + c$

$$\begin{cases} a \cdot 0^{2} + b \cdot 0 + c = 1 \\ a \cdot 1^{2} + b \cdot 1 + c = 4 \\ a \cdot 3^{2} + b \cdot 3 + c = 2 \\ a \cdot 5^{2} + b \cdot 5 + c = 5 \end{cases} \Leftrightarrow \underbrace{\begin{bmatrix} 0^{2} & 0 & 1 \\ 1^{2} & 1 & 1 \\ 3^{2} & 3 & 1 \\ 5^{2} & 5 & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}_{C} = \underbrace{\begin{bmatrix} 1 \\ 4 \\ 2 \\ 5 \end{bmatrix}}_{B}$$

$$\leftrightarrow X = (A^T A)^{-1} A^T B = \begin{bmatrix} 0.065 \\ 0.22 \\ 1.9 \end{bmatrix}$$

Esim: Määrää E ja R mittaustulosten

perusteella, kun U = E - RI

PNS-suora

$$U = aI + b = -0.6735I + 8.1311$$

eli

$$E = 8.1311$$
 ja $R = 0.6375$

Esim: 3D-pisteiden

$$[x_1, y_1, z_1], [x_2, y_2, z_2], \dots [x_n, y_n, z_n]$$

määräämä PNS-taso

$$z = ax + by + c$$

minimoi tason ja pisteiden välisten pystysuorien etäisyyksien

$$d_1 = ax_1 + by_1 + c - z_1$$

 $d_2 = ax_2 + by_2 + c - z_2$
:
 $d_n = ax_n + by_n + c - z_n$

neliöiden summan

$$d_1^2 + d_2^2 + \dots + d_n^2$$

eli kertoimet a, b ja c saadaan yhtälöryhmän

$$\begin{cases} ax_1 + by_1 + c = z_1 \\ ax_2 + by_2 + c = z_2 \\ \vdots & \vdots \\ ax_n + by_n + c = z_n \end{cases} \text{ eli } \underbrace{\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a \\ b \\ c \end{bmatrix}}_{X} = \underbrace{\begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}}_{B}$$

$$X = (A^T A)^{-1} A^T B$$

Vastaavasti, PNS-toisen asteen pinta

$$z = ax^2 + bxy + cy^2 + dx + ey + f$$

minimoi pinnan ja pisteiden välisten pystysuorien etäisyyksien

$$d_{1} = ax_{1}^{2} + bx_{1}y_{1} + cy_{1}^{2} + dx_{1} + ey_{1} + f - z_{1}$$

$$d_{2} = ax_{2}^{2} + bx_{2}y_{2} + cy_{2}^{2} + dx_{2} + ey_{2} + f - z_{2}$$

$$\vdots$$

$$d_{n} = ax_{n}^{2} + bx_{n}y_{n} + cy_{n}^{2} + dx_{n} + ey_{n} + f - z_{n}$$

neliöiden summan

$$d_1^2 + d_2^2 + \dots + d_n^2$$

eli kertoimet a-f saadaan yhtälöryhmän

$$\begin{bmatrix} x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ \vdots & & & \vdots & & \vdots \\ x_n^2 & x_ny_n & y_n^2 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix}$$

$$X = (A^T A)^{-1} A^T B$$

Esim. Allaoleva kuva esittää suureen z = total head riippuvuutta suureista x = RPM ja y = flow rate

Etsitään sen perusteella PNS-laskukaava

$$z = ax^2 + bxy + cy^2 + dx + ey + f$$

Kuvasta poimittuja pisteitä (x:n ja y:n arvot jaettu 1000:lla)

X	У	Z
1.4800	0	36.1000
1.4800	0.0500	35.6000
1.4800	0.1000	35.2000
1.4800	0.1500	34.6000
1.4800	0.2000	34.4000
1.4800	0.2500	33.8000
1.4800	0.3000	33.0000
1.4800	0.3500	32.6000
1.4800	0.4000	32.0000
1.4800	0.4500	31.2000
1.4800	0.5000	30.6000
1.4800	0.5500	29.6000

Yhteensä 139 pistettä → PNS-laskukaava

$$z = 17.8x^2 + 0.006xy - 12.3y^2 - 3.4x - 3.9y + 1.8$$

Esim: 2D-paikannus, 3 tukiasemaa, tapa 2

Tukiasemat P_1, P_2, P_3 , mitatut etäisyydet r_1, r_2, r_3 pisteeseen P

Arvataan ensin P:n sijainniksi X_1 ja lasketaan X_1 :n etäisyydet

$$R_1 = ||X_1P_1||, R_2 = ||X_1P_2||, R_3 = ||X_1P_3||$$
 tukiasemiin

Muodostetaan yksikkövektorit

$$\mathbf{a}_1 = \frac{X_1 P_1}{R_1}, \ \mathbf{a}_2 = \frac{X_1 P_2}{R_2}, \ \mathbf{a}_3 = \frac{X_1 P_3}{R_3}$$

joiden suunnat ovat X_1 :stä tukiasemiin

Korjataan arvausta seuraavasti:

$$X_1 = [x_1, y_1] \rightarrow X_2 = [x_1 + \Delta x, y_1 + \Delta y]$$

missä korjaus

$$\Delta X = \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

on yhtälöryhmän $A\Delta X = B$ PNS-ratkaisu, kun matriisin A riveinä ovat yksikkövektorit $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ ja B:ssä on laskettujen ja mitattujen etäisyyksien erotukset, eli

$$A = \begin{bmatrix} a_{1x} & a_{1y} \\ a_{2x} & a_{2y} \\ a_{3x} & a_{3y} \end{bmatrix}, B = \begin{bmatrix} R_1 - r_1 \\ R_2 - r_2 \\ R_3 - r_3 \end{bmatrix}$$

Toistetaan: $X_2 \to X_3 \to X_4 \to \dots$, kunnes arvio ei enää muutu eli korjausaskeleen pituus $||\Delta X|| \approx 0$

