称球问题

欧岱松

2025年7月26日

1 核心基础

我们构建单次称重物理结果的数学关系式,来描述每一次的称重结果。我们定义:

- s_i : 第 j 号球的真实状态。 $s_i = 1$ 表示该球偏重, $s_i = -1$ 表示该球偏轻。
- W_j : 在某一次称重中,对第 j 号球的放置方式。 $W_j = -1$ 表示放**左盘**, $W_j = 1$ 表示放**右盘**, $W_j = 0$ 表示**不放**。
- r: 本次称重的结果。r = -1 表示**左盘重**,r = 1 表示**右盘重**,r = 0 表示**平衡**。通过简单的分析,我们可以得到以下恒成立的公式:

$$r = W_j \times s_j \tag{1}$$

具体来说,

- 若球 j 偏重 $(s_j = 1)$,放在**左盘** $(W_j = -1)$,则左盘会下沉,结果 r = -1。公式: $-1 \times 1 = -1$ 。**吻合**。
- 若球 j 偏轻 $(s_j = -1)$,放在左盘 $(W_j = -1)$,则左盘会上升(右盘下沉),结果 r = 1。公式: $-1 \times -1 = 1$ 。吻合。
- 若球 j 放在**右盘** $(W_j = 1)$ 且**偏重** $(s_j = 1)$,则右盘下沉,结果 r = 1。公式: $1 \times 1 = 1$ 。**吻合**。
- 若球 j 不放在天平上 $(W_j = 0)$,则天平平衡,结果 r = 0。公式: $0 \times s_j = 0$ 。**吻** 合。

2 问题描述 2

2 问题描述

根据信息论,我们可以通过三次称重来确定次品球。如果第j号球是次品,那么上述的核心公式必须对每一次称重都成立。设第i次称重的结果为 r_i ,对球j的放置为 W_{ij} ,则有:

第 1 次称重: $r_1 = W_{1j} \times s_j$

第 2 次称重: $r_2 = W_{2j} \times s_j$

第 3 次称重: $r_3 = W_{3j} \times s_j$

更进一步,

- 我们将三次称重的实际结果组合成一个**结果向量** $R = (r_1, r_2, r_3)^T$ 。
- 我们将对第 j 号球的三次称重方案组合成一个**方案向量** $W_j = (W_{1j}, W_{2j}, W_{3j})^T$ 。 这个向量就是我们预先设计的称重矩阵 W 的第 j 列。

于是,上面三个的方程可以被合并成一个方程:

$$\mathbf{R} = s_j \cdot \mathbf{W_j} \tag{2}$$

故而原问题被我们转化成如何设计一个方案矩阵,并根据结果来反推出球的状态向量,又因为状态向量为一个全一向量或者 0 向量,故而最终的次品的方案向量一定是满足 $R=k\times W_j$ (并且 $k\in\{-1,1\}$)。

3 问题求解

问题求解的本质就是在 ** 求解方程 (2)**。在这个方程中:

- 向量 R 是我们通过实际称重得到的。
- 球的编号 j 和它的状态 s_i 是我们想要找出的。

由于球的状态 s_j 只有三种可能(1 , -1 或 0),故而当方案向量和结果向量不满足 $R = k \times W_j$ (并且 $k \in \{-1,1\}$)时,其必然不是次品球。接下来我们需要说明,选定 特定的方案矩阵,找出与结果向量共线性的向量,这个解存在且唯一。

4 一个可行的最优策略矩阵

一个经典 3×12 称重矩阵 W 如下。

5 矩阵设计的原则 3

称重方案描述

• 第 1 次称重: {1, 2, 3, 4} vs {5, 6, 7, 8}

• 第 2 次称重: {1, 2, 5, 9} vs {3, 6, 7, 10}

• 第 3 次称重: {1, 3, 5, 11} vs {4, 6, 9, 12}

对应的称重矩阵 W

下面的矩阵精确地描述了上述方案,其中行代表称重次数,列代表球的编号。由于

称重次数	球编号											
	1	2	3	4	5	6	7	8	9	10	11	12
第一次称重	-1	-1	-1	-1	1	1	1	1	0	0	0	0
第二次称重	-1	-1	1	0	-1	1	1	0	-1	1	0	0
第三次称重	-1	0	-1	1	-1	1	0	0	1	0	-1	1

表 1: 称重方案设计(12 球问题)

我们设计的称重矩阵 W 时满秩,因此这个求解过程得到的结果必然是唯一的,并且从直观上来讲,因为只有一个次品球,所以结果向量只与次品球的方案向量相关,所以结果向量至多有 18 种可能小于列向量的 24 种可能,故而这个解的存在是可能的。比如当我的结果向量是 (1,-1,-1)' 那么我可以知道球 5 是次品,且偏重。

5 矩阵设计的原则

为了能唯一地找出次品球和它的状态, 我们的称重矩阵 W 必须满足以下设计原则:

- 矩阵的每一列向量必须是唯一的。如果两列相同($\mathbf{W_j} = \mathbf{W_k}$),我们就无法区分 j 号球和 k 号球。
- 任何一列向量都不能是另一列向量的负向量 $(\mathbf{W_j} \neq -\mathbf{W_k})$ 。否则,如果我们的结果是 $\mathbf{R} = \mathbf{W_j}$,我们将无法判断是"j 号球偏重"还是"k 号球偏轻"(因为 $\mathbf{R} = -\mathbf{W_k}$ 也成立)。
- 每一列都不能是零向量 $(0,0,0)^T$ 。否则那个球就从未上过天平,我们无法判断它是否有问题。