

Vadhiraj K P P

Department of Electrical Engineering

Unit 2 – Lectures 30 & 31 - Analysis of Parallel RL and Parallel RC Circuits; Numerical examples

Vadhiraj K P P

Department of Electrical & Electronics Engineering

Admittance

Admittance of an element is equal to the reciprocal of its impedance.

Admittance, $Y = \frac{1}{Z}$

It is measured in Siemens (S) or Mho (□)

Element	Impedance (Z)	Admittance (Y)	Remarks
Resistor (R)	R	$\frac{1}{R} = G$	G is the conductance
Inductor (L)	jΧ _L	$\frac{1}{jX_L} = -jB_L$	B _L is the Inductive Susceptance
Capacitor (C)	-jX _C	$\frac{1}{-jX_c} = jB_c$	B _c is the Capacitive Susceptance

PES UNIVERSITY

Parallel RL Circuit

By KCL,
$$i(t) = i_R(t) + i_L(t)$$

In Phasor form,
$$I = I_R + I_L$$

$$\overline{I_R} = \overline{V} * G \qquad \overline{I_L} = \overline{V} * (-jB_L)$$

$$\bar{I} = \overline{V} * (G - jB_L)$$

$$Y_{T} = \frac{\bar{I}}{V} = (G-jB_{L}) = \sqrt{G^{2} + B_{L}^{2}} \angle - Tan^{-1}(\frac{B_{L}}{G})$$

Parallel RL Circuit

In a parallel circuit, the total admittance is equal to the sum of individual branch admittances.

Phasor Diagram:

Note: In parallel AC circuits, it is preferable to consider the supply voltage as reference phasor while drawing phasor diagram.

$$\phi = \operatorname{Tan}^{-1}(\frac{\left|\overline{I_{L}}\right|}{\left|\overline{I_{R}}\right|}) = \operatorname{Tan}^{-1}(\frac{I_{L}}{I_{R}})$$
$$= \operatorname{Tan}^{-1}(\frac{B_{L}}{G})$$

Parallel RC Circuit

By KCL,
$$i(t) = i_R(t) + i_C(t)$$

In Phasor form, $i = \overline{I}_R + \overline{I}_C$

$$\overline{I_R} = \overline{V} * G \qquad \overline{I_C} = \overline{V} * (jB_C)$$

$$\bar{I} = \overline{V} * (G + jB_C)$$

Parallel RC Circuit

$$Y_{T} = \frac{\bar{I}}{V} = (G+jB_{C}) = \sqrt{G^{2}+B_{C}^{2}} \angle Tan^{-1}(\frac{B_{C}}{G})$$

Phasor Diagram:

Note: Phase Angle of a network is equal to impedance angle (or) negative of admittance angle.

Numerical Example 1

Question:

The terminal voltage and current for a parallel circuit are 141.4sin 2000t V and 7.07sin (2000t+36°)A. Obtain the simplest two element parallel circuit, which would have the above relationship.

Numerical Example 1

Solution: To find the elements in a network, use the impedance form if it is a series network and use the admittance form if it is a parallel network.

$$v(t) = 141.4\sin(2000t) V \implies \overline{V} = \frac{141.4}{\sqrt{2}} \angle 0^{\circ} V$$

i(t) = 7.07sin(2000t+36°) A
$$\Rightarrow \bar{l} = \frac{7.07}{\sqrt{2}} \angle 36^\circ A$$

Admittance,Y =
$$\frac{1}{V}$$
 = 0.05 \angle 36°S = (0.04 + j0.029) S

Comparing with the standard form $(G+jB_C)$,

$$G = 0.04S$$
; $B_C = 0.029S$

Hence, it is a parallel RC network

$$R = \frac{1}{G} = 25\Omega$$
 and $C = \frac{B_C}{\omega} = \frac{0.029}{2000} = 14.5 \mu F$

Numerical Example 2

Question:

A resistor of 30Ω and a capacitor of unknown value are connected in parallel across a 110V, 50Hz Supply. The combination draws a current of 5A from the supply. Find the value of unknown Capacitance.

Numerical Example 2

Solution:

$$|Y_{\tau}| = \frac{|I|}{|V|} = \frac{5}{110} = 0.045 \text{ S} ----- (1)$$

For a parallel RC network, $|Y_T| = \sqrt{G^2 + B_c^2}$ ---- (2)

$$G = \frac{1}{R} = 0.033S$$

Substituting G in (2) and equating (1) & (2),

$$B_c = 0.0306S$$

$$C = \frac{B_C}{\omega} = \frac{0.0306}{100\pi} = 97.38\mu F$$

Numerical Example 2

Q9. A parallel RL circuit has R=4 Ω , X_L=3 Ω . Obtain its series equivalent such that the series circuit draws the same current and power at a given voltage.

Text Book & References

Text Book:

"Electrical and Electronic Technology" E. Hughes (Revised by J. Hiley, K. Brown & I.M Smith), 11th Edition, Pearson Education, 2012.

Reference Books:

- 1. "Basic Electrical Engineering Revised Edition", D. C. Kulshreshta, Tata- McGraw-Hill, 2012.
- 2. "Basic Electrical Engineering", K Uma Rao, Pearson Education, 2011.
- 3. "Engineering Circuit Analysis", William Hayt Jr.,
- Jack E. Kemmerly & Steven M. Durbin, 8th Edition, McGraw-Hill, 2012.

THANK YOU

Vadhiraj K P P

Department of Electrical & Electronics Engineering

vadhirajkpp@pes.edu