Lezione 22 MSC HML with recursive definitions

Roberto Gorrieri

Lezione 22

Motivation

- An HML formula can describe only a finite part of the overall behaviour (modal depth)
- [a]<a>tt ∨ tt can be checked by looking at the first two performable actions only.
- We desire to express properties that may occur in arbitrarily long computations:

Safety properties: "for all the reachable states action a cannot be performed"

Liveness properties: "eventually, a state will be reached where action b can be performed"

Lezione 22

Motivation (2)

There is no HML formula distinguishing the two for any n:

$$Inv(\langle a \rangle tt) = \langle a \rangle tt \wedge [a] \langle a \rangle tt \wedge [a] [a] \langle a \rangle tt \wedge \dots = \bigwedge_{i \geq 0} [a]^i \langle a \rangle tt.$$

$$Pos([a] ff) = [a] ff \vee \langle a \rangle [a] ff \vee \langle a \rangle \langle a \rangle [a] ff \vee \dots = \bigvee_{i \geq 0} \langle a \rangle^i [a] ff.$$

How to express finitely such formulae?

$$Inv(\langle a \rangle tt) = \langle a \rangle tt \wedge [a] \langle a \rangle tt \wedge [a] [a] \langle a \rangle tt \wedge \dots = \bigwedge_{i > 0} [a]^i \langle a \rangle tt.$$

By means of a recursive equation

$$X \equiv \langle a \rangle tt \wedge [a] X$$

where F ≡ G means that F and G are equivalent. So we are looking for a solution of this recursive equation:

$$S = \langle \cdot a \cdot \rangle \operatorname{\mathsf{Proc}} \cap [\cdot a \cdot] S$$

F(S) = <.a.>Proc \cap [.a.]S is monotone? 2^{Proc} is a complete lattice? Do we look for least or largest fixpoints? Over the lts of the previous slide, the least solution is the emptyset, while the largest solution is $\{p\}$. \rightarrow largest solution!

How to express finitely? (2)

$$Pos([a]ff) = [a]ff \lor \langle a \rangle [a]ff \lor \langle a \rangle \langle a \rangle [a]ff \lor \cdots = \bigvee_{i \ge 0} \langle a \rangle^i [a]ff.$$

By means of a recursive equation

$$Y \equiv [a]ff \vee \langle a \rangle Y$$

where $F \equiv G$ means that F and G are equivalent. So we are looking for a fixpoint solution of this function: $G(S) = [.a.] \varnothing \cup <.a.>S$

Is G monotone? 2^{Proc} is a complete lattice? Do we look for least or largest fixpoints? Over the Its of the previous slide, the least solution is $\{q, r\}$, while the largest solution is $\{p, q, r\}$. \Rightarrow least solution!

When min, when max?

Intuitively, we use largest solutions for those properties of a process that hold unless it has a finite computation that disproves the property. For instance, process q does not have property $Inv(\langle a \rangle t)$ because it can reach a state in which no a-labelled transition is possible. Conversely, we use least solutions for those properties of a process that hold if it has a finite computation sequence which 'witnesses' the property. For instance, a process has the property $Pos(\langle a \rangle t)$ if it has a computation leading to a state that can perform an a-labelled transition. This computation witnesses to the fact that the process can perform an a-labelled transition at some point in its behaviour.

Recursive formulae (1)

$$X \stackrel{\text{max}}{=} \langle a \rangle tt \wedge [a] X$$

• The LTS has one action only (namely "a"): in this state, "a" can be done, and, whatever transition is performed, "a" is still executable.

$$Y \stackrel{\min}{=} [a] ff \vee \langle a \rangle Y$$

The LTS has one action only (namely "a"): in this state, either "a" cannot be done, or, there is an "a"-labeled transition that leads to a state where this property holds.

$$X \stackrel{\text{max}}{=} F \wedge [\mathsf{Act}]X$$

F holds for all reachable states (LTS over Act)

$$Y \stackrel{\min}{=} F \vee \langle \mathsf{Act} \rangle Y$$

there is a reachable state where F holds (LTS over Act)

Lezione 22

Recursive formulae (1)

- What is the meaning of Inv(<Act>tt)? No reachable deadlock
- What is the meaning of Pos([Act]ff)? May reach a deadlock
- Note that Inv(F)^c = Pos(F^c) (c for complement/negation)

Lezione 22

Example

- A^{<w} +A^w ⊨ <a>Inv(<a>tt)
 while A^{<w} does not
- A^{<w} ⊨ [a]Pos([a]ff)
 while A^{<w} +A^w does not

Other recursive properties

- Safe(F) holds if there is a complete (finite or infinite) computation where each traversed state satisfies F $X \stackrel{\text{max}}{=} F \wedge ([Act]ff \vee \langle Act \rangle X)$
- Even(F) holds if each of its complete computation will contain at least one state satisfying F

$$Y \stackrel{\min}{=} F \vee (\langle \mathsf{Act} \rangle t t \wedge [\mathsf{Act}] Y)$$

 Note that Safe(F)^c = Even(F^c) (c for complement/ negation)

Other recursive properties (2)

 $F \mathcal{U}^s G$, the so-called *strong until*, which says that sooner or later p reaches a state where G is true and in all the states it traverses before this happens F must hold;

$$F \mathcal{U}^s G \stackrel{\min}{=} G \vee (F \wedge \langle \mathsf{Act} \rangle tt \wedge [\mathsf{Act}](F \mathcal{U}^s G))$$

 FU^wG , the so-called weak until, which says that F must hold in all the states p traverses until it reaches a state where G holds (but maybe this will never happen!).

$$F \mathcal{U}^w G \stackrel{\text{max}}{=} G \vee (F \wedge [\mathsf{Act}](F \mathcal{U}^w G))$$

In fact,
$$Even(G) \equiv tt \, \mathcal{U}^s \, G$$
 and $Inv(F) \equiv F \, \mathcal{U}^w \, ff$.

Syntax and Semantics of HML with recursion

Formulae over a single variable X

The syntax for Hennessy–Milner logic with one variable X, denoted by $\mathcal{M}_{\{X\}}$, is given by the following grammar:

$$F ::= X \mid tt \mid ff \mid F_1 \wedge F_2 \mid F_1 \vee F_2 \mid \langle a \rangle F \mid [a]F.$$

Semantics of an "open" formula

Semantically a formula F (which may contain a variable X) is interpreted as a function $\mathcal{O}_F: 2^{\mathsf{Proc}} \to 2^{\mathsf{Proc}}$ that, given a set of processes that are assumed to satisfy X, gives us the set of processes that satisfy F.

Example

Example 6.2 Consider the formula $F = \langle a \rangle X$ and let Proc be the set of states in the transition graph in Figure 6.2. If X is satisfied by p_1 then $\langle a \rangle X$ will be satisfied by p_3 , i.e. we expect that

$$\mathcal{O}_{\langle a\rangle X}(\{p_1\}) = \{p_3\}.$$

If the set of states satisfying X is $\{p_1, p_2\}$ then $\langle a \rangle X$ will be satisfied by $\{p_1, p_3\}$. Therefore we expect that

$$\mathcal{O}_{\langle a \rangle X}(\{p_1, p_2\}) = \{p_1, p_3\}.$$

What is the set $\mathcal{O}_{[b]X}(\{p_2\})$?

Lezione 22

Semantics for "open" formulae

Definition 6.1 Let (Proc, Act, $\{\stackrel{a}{\to} | a \in Act\}$) be a labelled transition system. For each $S \subseteq Proc$ and formula F, we define $\mathcal{O}_F(S)$ inductively as follows:

$$egin{aligned} \mathcal{O}_X(S) &= S, \ \mathcal{O}_{tt}(S) &= \mathsf{Proc}, \ \mathcal{O}_{ff}(S) &= \emptyset, \ \mathcal{O}_{F_1 \wedge F_2}(S) &= \mathcal{O}_{F_1}(S) \cap \mathcal{O}_{F_2}(S), \ \mathcal{O}_{F_1 ee F_2}(S) &= \mathcal{O}_{F_1}(S) \cup \mathcal{O}_{F_2}(S), \ \mathcal{O}_{\langle a
angle F}(S) &= \langle \cdot a \cdot
angle \mathcal{O}_F(S), \ \mathcal{O}_{[a]F}(S) &= [\cdot a \cdot] \mathcal{O}_F(S). \end{aligned}$$

Exercise: Show that O_F is monotone for any F.

Semantics for "closed" formulae

$$X \stackrel{\min}{=} F_X$$
 or $X \stackrel{\max}{=} F_X$.

As shown in the previous section, such an equation can be interpreted as the set equation

$$\llbracket X \rrbracket = \mathcal{O}_{F_X}(\llbracket X \rrbracket). \tag{6.6}$$

As \mathcal{O}_{F_X} is a monotonic function over a complete lattice we know that (6.6) has solutions, i.e. that \mathcal{O}_{F_X} has fixed points. In particular Tarski's fixed point theorem (Theorem 4.1) gives us that there is a unique *largest* fixed point, which we now denote FIX \mathcal{O}_{F_X} , and also a unique *least* one, which we denote fix \mathcal{O}_{F_X} . These are given respectively by

FIX
$$\mathcal{O}_{F_X} = \bigcup \{S \subseteq \operatorname{\mathsf{Proc}} \mid S \subseteq \mathcal{O}_{F_X}(S)\},$$

fix $\mathcal{O}_{F_X} = \bigcap \{S \subseteq \operatorname{\mathsf{Proc}} \mid \mathcal{O}_{F_X}(S) \subseteq S\}.$

Semantics for "closed" formulae (2)

When Proc is finite we have the following characterization of the largest and least fixed points.

Theorem 6.1 If Proc is finite then FIX $\mathcal{O}_{F_X} = (\mathcal{O}_{F_X})^M(\text{Proc})$ for some M and fix $\mathcal{O}_{F_X} = (\mathcal{O}_{F_X})^m(\emptyset)$ for some m.

Proof. This follows directly from the fixed point theorem for finite complete lattices. See Theorem 4.2 for the details.

Example

X = max Fx with Fx = tt ∧ [b]X

We are looking for the largest solution to the equation:

$$[\![X]\!] = (\langle \cdot b \cdot \rangle \{s, s_1, s_2, t, t_1\}) \cap [\cdot b \cdot] [\![X]\!]$$

That is, the largest fixpoint for the function

$$\mathcal{O}_{F_x}(S) = (\langle \cdot b \cdot \rangle \{s, s_1, s_2, t, t_1\}) \cap [\cdot b \cdot] S.$$

Example (2)

We therefore have that our first approximation to the largest fixed point is the set

$$\mathcal{O}_{F_X}(\{s,s_1,s_2,t,t_1\}) = (\langle \cdot b \cdot \rangle \{s,s_1,s_2,t,t_1\}) \cap [\cdot b \cdot] \{s,s_1,s_2,t,t_1\}$$

$$= \{s_1,s_2,t_1\} \cap \{s,s_1,s_2,t,t_1\}$$

$$= \{s_1,s_2,t_1\}.$$

$$\mathcal{O}_{F_X}(\{s_1,s_2,t_1\}) = (\langle \cdot b \cdot \rangle \{s,s_1,s_2,t,t_1\}) \cap [\cdot b \cdot] \{s_1,s_2,t_1\}$$

$$= \{s_1,s_2,t_1\} \cap \{s,s_1,s_2,t,t_1\}$$

$$= \{s_1,s_2,t_1\}.$$

• Therefore, {s1, s2, t1} is the largest fixpoint.

Largest fixpoint and invariant properties

As we saw in the previous section, the property Inv(F) is obtained as the largest fixed point to the recursive equation

$$X = F \wedge [\mathsf{Act}]X$$
.

We will now show that Inv(F) defined in this way indeed expresses that F holds at all states in all transition sequences.

For this purpose we let $\mathcal{I}: 2^{\mathsf{Proc}} \longrightarrow 2^{\mathsf{Proc}}$ be the corresponding semantic function, i.e.

$$\mathcal{I}(S) = \llbracket F \rrbracket \cap [\cdot \mathsf{Act} \cdot] S.$$

By Tarski's fixed point theorem this equation has exactly one largest solution, given by

FIX
$$\mathcal{I} = \bigcup \{ S \mid S \subseteq \mathcal{I}(S) \}.$$

Largest fixpoint and invariant properties (2)

To show that FIX \mathcal{I} indeed characterizes precisely the set of processes for which all states in all computations satisfy the property F, we need a direct (and obviously correct) formulation of this set. This is given by the set Inv, defined as follows:

$$Inv = \{ p \mid p \xrightarrow{\sigma} p' \text{ implies } p' \in \llbracket F \rrbracket \text{ for each } \sigma \in \mathsf{Act}^* \text{ and } p' \in \mathsf{Proc} \}.$$

Theorem 6.2 For every LTS (Proc, Act, $\{\stackrel{a}{\rightarrow} \mid a \in Act\}$), $Inv = FIX \mathcal{I}$ holds.

Proof. We show the validity of the statement by proving each of the inclusions $Inv \subseteq FIX \mathcal{I}$ and $FIX \mathcal{I} \subseteq Inv$ separately.

 $Inv \subseteq FIX \mathcal{I}$. To prove this inclusion it is sufficient to show that $Inv \subseteq \mathcal{I}(Inv)$. (Why?) To this end, let $p \in Inv$. Then, for all $\sigma \in Act^*$ and $p' \in Proc$,

$$p \xrightarrow{\sigma} p' \text{ implies } p' \in \llbracket F \rrbracket.$$
 (6.7)

$Inv \subseteq Fix(I)$

We must establish that $p \in \mathcal{I}(Inv)$ or, equivalently, that $p \in \llbracket F \rrbracket$ and $p \in [-Act\cdot]Inv$. We obtain the first of these two statements by taking $\sigma = \varepsilon$ in (6.7), because $p \xrightarrow{\varepsilon} p$ always holds.

To prove that $p \in [\cdot Act \cdot] Inv$, we have to show that, for each process p' and action a,

$$p \stackrel{a}{\rightarrow} p'$$
 implies $p' \in Inv$.

This is equivalent to proving that, for each sequence of actions σ' and process p'',

$$p \xrightarrow{a} p'$$
 and $p' \xrightarrow{\sigma'} p''$ imply $p'' \in [\![F]\!]$.

However, this follows immediately by letting $\sigma = a\sigma'$ in (6.7).

$Fix(I) \subseteq Inv$

FIX $\mathcal{I} \subseteq Inv$. First we note that, since FIX \mathcal{I} is a fixed point of \mathcal{I} , it holds that

$$FIX \mathcal{I} = \llbracket F \rrbracket \cap [\cdot \mathsf{Act} \cdot] FIX \mathcal{I}. \tag{6.8}$$

To prove that FIX $\mathcal{I} \subseteq Inv$, assume that $p \in FIX \mathcal{I}$ and that $p \xrightarrow{\sigma} p'$. We shall show that $p' \in [\![F]\!]$ by induction on $|\sigma|$, the length of σ .

Base case $\sigma = \varepsilon$. For this case p = p' and therefore, by (6.8) and our assumption that $p \in \text{FIX } \mathcal{I}$, it holds that $p' \in \llbracket F \rrbracket$, which was to be shown.

Inductive step $\sigma = a\sigma'$. Now $p \xrightarrow{a} p'' \xrightarrow{\sigma'} p'$ for some p''. By (6.8) and our assumption that $p \in FIX \mathcal{I}$, it follows that $p'' \in FIX \mathcal{I}$. As $|\sigma'| < |\sigma|$ and $p'' \in FIX \mathcal{I}$, by the induction hypothesis we may conclude that $p' \in \llbracket F \rrbracket$, as required.

This completes the proof of the second inclusion.

Mutually recursive equational systems

- So far we have only allowed one equation with one variable. However, it is sometimes useful, or even necessary, to define formulae recursively using two or more variables.
- Property: It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever.

$$Inv(\langle a \rangle \text{Forever}(b)) \stackrel{\text{max}}{=} \langle a \rangle \text{Forever}(b) \wedge [\text{Act}] Inv(\langle a \rangle \text{Forever}(b))$$
Forever $(b) \stackrel{\text{max}}{=} \langle b \rangle \text{Forever}(b)$

Syntax

In general, a mutually recursive equational system has the form

$$X_1 = F_{X_1},$$

$$\vdots$$

$$X_n = F_{X_n},$$

where $\mathcal{X} = \{X_1, \dots, X_n\}$ is a set of variables and, for $1 \leq i \leq n$, the formula F_{X_i} is in $\mathcal{M}_{\mathcal{X}}$ and can therefore contain any variable from \mathcal{X} . An example of such an equational system is

$$X = [a]Y,$$
$$Y = \langle a \rangle X.$$

 The key point is that all the equations are to be of the same type: either all max or all min!

Semantics

$$S_1 = \mathcal{O}_{F_{X_1}}(S_1, \dots, S_n),$$
 \vdots
 $S_n = \mathcal{O}_{F_{X_n}}(S_1, \dots, S_n).$

• such a system is interpreted over n-dimensional vectors of sets of processes, where n is the number of variables in X. Thus the new domain is $D = (2^{Proc})^n$ (n times the cross product of 2^{Proc} with itself), with a partial order defined componentwise:

$$(S_1,\ldots,S_n)\sqsubseteq (S'_1,\ldots,S'_n)$$
 if $S_1\subseteq S'_1$ and $S_2\subseteq S'_2$ and \cdots and $S_n\subseteq S'_n$

Semantics (2)

 $(\mathcal{D}, \sqsubseteq)$ defined in this way yields a complete lattice with the least upper bound and the greatest lower bound also defined component-wise:

where I is an index set.

- Let D be a declaration over the set of variables X = {X1, . . . ,
 Xn} that associates a formula F_{Xi} with each variable X_i, 1 ≤ i ≤
 n. (That is a system of equations.)
- We are looking for the largest or least solution of the equation:

$$[\![D]\!](S_1,\ldots,S_n)=(\mathcal{O}_{F_{X_1}}(S_1,\ldots,S_n),\ldots,\mathcal{O}_{F_{X_n}}(S_1,\ldots,S_n))_{:}$$

where

$$\mathcal{O}_{X_i}(S_1,\ldots,S_n)=S_i \quad (1\leq i\leq n).$$

Example

Consider the system:

 $X \stackrel{\text{max}}{=} \langle a \rangle Y \wedge [a] Y \wedge [b] ff$

Consider the lts

 $Y \stackrel{\text{max}}{=} \langle b \rangle X \wedge [b] X \wedge [a] ff$

• We have to compute the largest fixpoint of the function that maps (S_1, S_2) to

$$(\langle \cdot a \cdot \rangle S_2 \cap [\cdot a \cdot] S_2 \cap \{s, s_2\}, \ \langle \cdot b \cdot \rangle S_1 \cap [\cdot b \cdot] S_1 \cap \{s_1, s_3\})$$

Example (2)

$$(\langle \cdot a \cdot \rangle S_2 \cap [\cdot a \cdot] S_2 \cap \{s, s_2\}, \ \langle \cdot b \cdot \rangle S_1 \cap [\cdot b \cdot] S_1 \cap \{s_1, s_3\})$$

- S_1 stands for the set of states that are assumed to satisfy X,
- S₂ stands for the set of states that are assumed to satisfy Y,
- $\langle \cdot a \cdot \rangle S_2 \cap [\cdot a \cdot] S_2 \cap \{s, s_2\}$ is the set of states that satisfy the right-hand side of the defining equation for X under these assumptions, and
- $\langle \cdot b \cdot \rangle S_1 \cap [\cdot b \cdot] S_1 \cap \{s_1, s_3\}$ is the set of states that satisfy the right-hand side of the defining equation for Y under these assumptions.
 - The starting pair is the top elment (S1, S2) = $(\{s, s_1, s_2, s_3\}, \{s, s_1, s_2, s_3\})$
 - By applying the function, the resulting pair is

$$(\{s,s_2\},\{s_1,s_3\}).$$

Example (3)

- Iterating the procedure starting from $(\{s,s_2\},\{s_1,s_3\})$. we get $(\{s,s_2\},\{s_1\})$
- Iterating the procedure starting from $(\{s,s_2\},\{s_1\})$ we get $(\{s\},\{s_1\})$.
- Iterating the procedure starting from $(\{s\}, \{s_1\})$, we get again $(\{s\}, \{s_1\})$. So this is the largest solution we were looking for!

Mixing largest and least fixed points

- For some properties, it is necessary to use both max and min recursive equations!
- Property: It is possible for the system to reach a state which may diverge. $Pos(F) \stackrel{\min}{=} F \vee \langle Act \rangle Pos(F).$

 How to compute the semantics for such compound systems of equations? First compute the semantics for F (it is not based on anything else); then use such a soution to compute the semantics of Pos.

Nested mutually recursive equations

Definition 6.2 A n-nested mutually recursive equational system E is an n-tuple

$$\langle (D_1, \mathcal{X}_1, m_1), (D_2, \mathcal{X}_2, m_2), \dots, (D_n, \mathcal{X}_n, m_n) \rangle,$$

where the \mathcal{X}_i are pairwise-disjoint finite sets of variables and, for each $1 \leq i \leq n$,

- D_i is a declaration mapping the variables in the set \mathcal{X}_i to formulae in HML with recursion that may use variables in the set $\bigcup_{1 < i < i} \mathcal{X}_j$,
- $m_i = \max \text{ or } m_i = \min$, and
- $m_i \neq m_{i+1}$.
 - such systems of equations have a unique solution, obtained by solving the first block and then proceeding with the others using the solutions already obtained for the previous blocks.