4.1

Instalaciones problemáticas III: Ruido en instalaciones de aire acondicionado

Joan Cardona jcg@avingenieros.com

1. Pequeñas instalaciones

2. Distribución por aire

3. Distribución por gas

- 1. Pequeñas instalaciones
 - Ámbito residencial
 - Distribución por gas
 - Fan-coils y splits

2. Distribución por aire

- Oficinas, locales comerciales, industrias
- Rooftop (distribución por aire)
- Condensadora exterior a unidad interior de conductos

- 3. Distribución por gas
 - Oficinas, pequeños locales comerciales
 - Condensadora exterior a unidad interior: k7, split

- 4. Mixtas : distribución por conductos y por agua/gas
 - Hospitales, hoteles, grandes locales comerciales
 - Aire primario de fan-coil + aire de renovación de enfriadora

Fuentes de ruido

1. Pequeñas instalaciones

$$L_{p} = L_{w} + 10\log\left(\frac{Q}{4\pi r^{2}} + \frac{4}{R}\right)$$

1) SOUND POWER LEVELS IN dB

Size	Hz Speed	125	250	500	1000	2000	4000	8000	(A)
04	Hi	51	50	49	43	37	25	-	49
	Me	41	41	38	30	26	-		38
	Lo	37	37	33	24	22	-	-	33
08	Hi	53	54	52	46	40	33	23	52
	Me	43	45	43	36	30	25		43
	Lo	34	35	33	23	-	-		32
10	Hi	57	57	56	51	46	38	28	57
	Me	48	49	48	42	36	29	22	48
	Lo	42	44	42	35	29	24	-	42

1.2. Ruido exterior

$$L_{p} = L_{w} - 20 \log r - 11$$

RY-DA7/DB7				
HEAT PUMP				RY35DA7V1
Dimensions		HxWxD	mm	
Weight			kg	50
Casing colour				
Sound pressure level	cooling/heating	Н	dB(A)	46/47
Sound power level	cooling/heating	Н	dB(A)	59/60

Fuentes de ruido

2. Instalaciones con distribución

2.1. Ruido exterior

$$L_{p} = L_{w} - 20 \log r - 11$$

Fuentes de ruido

2. Instalaciones con distribución

2.2. Ruido interior

Atenuación del ruido

- Por propagación en conducto
- Uso de materiales absorbentes
- Debido a accesorios:
 - Bifurcación / ramificación

división de la potencia acústica, L_w

- Codos
- Silenciadores
- Reflexiones al final del conducto
- Plenums
- Técnicas avanzadas: Control Activo de Ruido

El principio básico del control activo de ruido es captar la onda sonora generada por la fuente, aplicarle un desfase de 180º y emitir esta señal trata en las proximidades de la fuente, de forma que las ondas se cancelen.

Proceso de cálculo

Lw₁: Potencia acústica Fan-coil

A2: Atenuación codo

Lw₂: Ruido flujo en codo

A₃: Atenuación en silenciador

Lw₃: Ruido generado silenciador

A_c: Atenuación conducto

A₄: Atenuación bifurcación

Lw₄: Ruido generado bifurcación

A₅: Atenuación tramo recto

A₆: Atenuación regulador

A7: Atenuación codo

Lw₇: Ruido flujo en codo

A₈: Atenuación termino

Lw₈: Ruido en difusor

Proceso de cálculo

SOUND POWER LEVELS (dB)

42JW005 * Unit with supply ducts * $L_w = -37 + 20 \cdot \log(K \cdot S_t) + 20 \cdot \log \xi^{-1} + 10 \cdot \log A + 10 \cdot \log u$

Freq. (Hz)	Sup.High Speed	High Speed	Medium Speed
125	62,5	62,4	60,8
250	60,3	59.5	57.4
500	55,0	54.2	52.6
1.000	46,1	45,3	43.6
2.000	41,9	40.8	38,7
4.000	34.2	33.1	31
8.000	28,8	27.9	26.0
dB(A)	55.9	55.2	53.3

$$L_b(f_0) = K_j + 10 \cdot \log \frac{f_0}{63} + 50 \cdot \log \left[3,28 \cdot U_B \right] + 10 \cdot \log \left[10,76 \cdot S_B \right] + 10 \cdot \log \left[3,28 \cdot D_B \right]$$

30 m³/h 50

80 100

Proceso de cálculo: dBAir

Proceso de cálculo: dBAir

Proceso de cálculo: dBAir

1. Dimensionado

Salida conductos de la unidad interior

Velocidad [m/s]

Sección para que velocidad flujo sea correcta

	velocidad [III/5]
Interior conducto	4,8 – 25,4
Salida	2,2-3,8

1. Dimensionado

Evitar cambios bruscos de sección

- Evitar colocar accesorios cerca de las unidades terminales
- Embocadura lo más verticales posible a las unidades terminales

2. Transmisión estructural

Elementos aislantes

2. Transmisión estructural

3. Materiales

Materiales absorbentes en conductos

3. Materiales

Uniones flexibles

3. Materiales

■ Paso de paredes

