

Bases and Dimension

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Introduction Basis **Dimension** Finite Dimensional Subspace Coordinates

Introduction

Introduction

[#Room Size_part1 Size_part2 Size_part3 Size_part4 Size Age Floor Is_near_park]
Home #1

Home #2

Home #3

Home #N

Basis

Basis

□ A set of n linearly independent n-vectors is called a basis.

- ullet A basis is the combination of span and independence: A set of vectors $\{v_1,\dots,v_n\}$ forms a basis for some subspace of \mathbb{R}^n if it
 - □ (1) spans that subspace
 - (2) is an independent set of vectors.

Basis

Definition

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{b_1, ..., b_n\}$ in V is a **basis** for H if

- 1. B is linearly independent set, and
- 2. The subspace spanned by \mathcal{B} coincides with H; that is,

$$H = Span \{b_1, ..., b_n\}$$

Example

Which are unique?

- ☐ Express a vector in terms of any particular basis
- lue Bases for \mathbb{R}^2
- \square Bases with unit length for \mathbb{R}^2

Vector Space of Polynomials

Be careful: A vector space can have many bases that look very different from each other!

Example (Basis)

- \square Standard bases for $P_n(\mathbb{R})$?
- \square Are (1-x), (1+x), x^2 basis for $P_2(\mathbb{R})$?

Dimension

Dimensions

- ☐ The dimensionality of a vector is the number of coordinate axes in which that vector exists.
- □ If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional.
- □ The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted dim(V).

Bases and finite dimension

Theorem **

Let V be a vector space which is spanned by a finite set of vectors $x_1, x_2, ..., x_m$. Then any independent set of vectors in V is finite and contains no more than m elements.

Proof

Conclusion

Every basis of V is finite and contains no more than m elements.

Bases and finite dimension

Theorem

If V is a finite-dimensional vector space, then any two bases of V has the same (finite) number of elements.

Proof

Basis and finite dimension

The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted as dim(V).

Theorem **

Let V be a vector space which is spanned by a finite set of vectors x_1, x_2, \dots, x_m .

Then any independent set of vectors in V is finite and contains no more than m elements.

Theorem

Let V be a vector space with a basis B of size n. Then

- a) Any set of more than n vectors in V must be linearly dependent, and
- b) Any set of fewer than n vectors cannot span V.

Dimensions

Definition

A vector space V is called...

- a) finite-dimensional if it has a finite basis, and its dimension, denoted by $\dim(V)$, is the number of vectors in one of its bases.
- b) infinite-dimensional if it has no finite basis, and we say that $\dim(V) = \infty$.

Note

Dimension of subspace {0}?

Dimensions

Example

Let's compute the dimension of some vector spaces that we've been working with.

Vector space	Basis	Dimension	
F^n			
P^p			
$M_{m,n}$		•	— Note!
P (all polynomials)			
F (functions)			
${\cal C}$ (continues functions)			

Finite Dimensional Subspace

Basis of subspace

Theorem

If W is a subspace of a finite-dimensional vector space V, every linearly independent subset of W is finite and is part of a (finite) basis for W.

Proof

Theorem (Lemma)

Let S be a linearly independent subset of a vector space V. Suppose u is a vector in V which is not in the subspace spanned by S. Then the set obtained by adjoining u to S is linearly independent.

Proof

Basis of subspace

Corollary

If W is a proper subspace of a finite-dimensional vector space V, then W is finite-dimensional and $\dim(W) < \dim(V)$

Proof

Corollary

In a finite-dimensional vector space V, every non-empty linearly independent set of vectors is part of basis.

Basis of sum of subspaces

Theorem

If W_1 and W_2 are finite-dimensional subspaces of a vector space V, the W_1+W_2 is a finite-dimensional and

$$\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$$

Proof

Dimensionality and Properties of Bases

Note

Let V be a finite dimensional vector space over field F. Below are some properties of bases:

- 1. Any linearly independent list can be extended to a basis (a maximal linearly independent list is spanning).
- 2. Any spanning list contains a basis (a minimal spanning list is linearly independent).
- 3. Any linearly independent list of length dim V is a basis.
- 4. Any spanning list of length dim V is a basis.
- ☐ We will learn about change of basis after linear transformation lecture!

Independent ≤ spanning

Note

In a finite-dimensional space,

```
the length of every linearly independent list of vectors
```

the length of every
≤ spanning list of
vectors

Proof

Coordinates

Ordered basis

Definition

If V is a finite-dimensional vector space, as ordered basis for V is a finite sequence of vectors which is linearly independent and spaces V.

Be careful: The order in which the basis vectors appear in *B* affects the order of the entries in the coordinate vector. This is kind of janky (technically, sets don't care about order), but everyone just sort of accepts it.

Coordinate Systems

The main reason for selecting a basis for a subspace H; instead of merely a spanning set, is that each vector in H can be written in only one way as a linear combination of the basis vectors.

Note

Suppose the set $\mathcal{B} = \{b_1, ..., b_P\}$ is a basis for a subspace H. For each x in H, the coordinates of x relative to the basis \mathcal{B} are the weights $c_1, ..., c_P$ such that $\mathbf{x} = c_1b_1 + \cdots + c_Pb_p$, and the vector in \mathbb{R}^p

$$[x]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_P \end{bmatrix}$$

is called the **coordinate vector of** x (**relative to** B) or the B-coordinate vector of x.

Coordinate Systems

Example

Coordinate vector of $p(x) = 4 - x + 3x^2$ respect to basis $\{1, x, x^2\}$

Coordinate axes

The familiar Cartesian plane (left) has orthogonal coordinate axes. However, axes in linear algebra are not constrained to be orthogonal (right), and non-orthogonal axes can be advantageous.

Barycentric Coordinates

Theorem

Let set $S = \{v_1, ..., v_k\}$ be an affinely independent set in \mathbb{R}^n . Then each \mathbf{p} in aff S has a unique representation as an affine combination of $v_1, ..., v_k$. That is, for each \mathbf{p} there exists a unique set of scalers $c_1, ..., c_k$ such that

$$\mathbf{p} = c_1 v_1 + \dots + c_k v_k$$
 and $c_1 + \dots + c_k = 1$

Note

$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} v_1 \\ 1 \end{bmatrix} + \dots + c_k \begin{bmatrix} v_k \\ 1 \end{bmatrix}$$

Involving the homogeneous forms of the points. Row reduction of the augmented matrix $[\widetilde{v_1} \ ... \ \widetilde{v_k} \ \widetilde{\mathbf{p}}]$ produces the Barycentric coordinates of \mathbf{p} .

Barycentric Coordinates

Definition

Let set $S = \{v_1, ..., v_k\}$ be an affinely independent set. Then for each point \mathbf{p} in aff S, the coefficients $c_1, ..., c_k$ in the unique representation

$$\mathbf{p} = c_1 v_1 + \dots + c_k v_k$$
 and $c_1 + \dots + c_k = 1$

of p are called the Barycentric (or, sometimes affine) coordinates of p

Barycentric Coordinates

Example

Let
$$a = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
, $b = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $c = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$, and $p = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. Find the Barycentric

Coordinates of p determined by the affinely independent set $\{a,b,c\}$.

Note

$$S=\{v_1,\dots,v_k\}$$
 are affinely independent, if $\begin{bmatrix}v_1\\1\end{bmatrix}\dots\begin{bmatrix}v_k\\1\end{bmatrix}$ are linear independent.

Reference

- □ Page 97 LINEAR ALGEBRA: Theory, Intuition, Code
- □ Page 213: David Cherney,
- Page 54: Linear Algebra and Optimization for Machine Learning