Unidade II: Somatórios (∑)

Exercício Resolvido (1):

Mostre o somatório dos n primeiros números inteiros.

Resposta:

```
int soma(int n){
    int soma = 0;
    for(int i = 0; i < n; i++){
        soma += 1;
    }
    return soma;
}
```

Exercício Resolvido (2):

O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Quantas comparações entre registros ele realiza?

```
for (int i = 0; i < (n - 1); i++) {
    int menor = i;
    for (int j = (i + 1); j < n; j++){
        if (array[menor] > array[j]){
            menor = j;
        }
    }
    swap(menor, i);
}
```

```
\sum_{0 <= i <= n-2} (n - i - 1)
```

Exercício Resolvido (3):

$$\sum_{n=1}^{4} n^2 = ?$$

Escolha 1 resposta:

$$1+2+3+4$$

$$1^2 + 2^2 + 3^2 + 4^2$$

$$(1+2+3+4)^2$$

$$1^2 + 4^2$$

Resposta:

$$1^2 + 2^2 + 3^2 + 4^2$$

Exercício Resolvido (4):

Resolva:

$$\sum 3i = ?$$

1 <= i <= 4

Resposta:

$$3*1 + 3*2 + 3*3 + 3*4 =$$

 $3(1 + 2 + 3 + 4) = 30$

Exercício Resolvido (5):

Resolva:

$$\sum (3 - 2i) = ?$$

1 <= i <= 4

$$(3+3+3+3)$$
 - $(2(1+2+3+4)=12-20=-8)$

Exercício Resolvido (6):

Resolva:

$$\sum (2i + x) = ?$$

1 <= i <= 3

Resposta:

```
2 * sum i + sum x =
 2(1 + 2 + 3) + 3x = 12 + 3x
```

Exercício Resolvido (7):

Resolva:

$$\sum_{0 <= i <= 5} i * (i - 1) * (5 - i) = ?$$

Resposta:

```
0 *(-1)* 5 +

1 * 0 * 4 +

2 * 1 * 3 +

3 * 2 * 2 +

4 * 3 * 1 +

5 * 4 * 0 = 0 + 0 + 6 + 12 + 12 + 0 = 30
```

Exercício Resolvido (8):

podemos afirmar que
$$\sum_{0 <= i <= 5} i * (i - 1) * (5 - i) = \sum_{0 <= i <= 4} i * (i - 1) * (5 - i)$$

Resposta:

Sim, pois as equações onde i = 0, 1, 5 são iguais a 0

Exercício Resolvido (9):

Considere a soma 4 + 25 + 64 + 121.

Qual expressão é igual à soma acima?

Escolha todas as respostas aplicáveis:

$$\bigcirc \sum_{i=0}^{3} \left(i^2+2i+4\right)$$

$$\sum_{i=0}^{3} (3i+2)^2$$

Nenhuma das anteriores

Resposta:

B)
$$\sum_{0 \le i \le 3} (3i + 2)^2$$

Exercício Resolvido (10):

$$\sum_{m=1}^{4} 8k - 6m = ?$$

Escolha 1 resposta:

$$8k-6+8k-12+8k-18+8k-24$$

$$2+4+6+8$$

$$8-6m+16-6m+24-6m+32-6m$$

$$0+2+4+6$$

Exercício Resolvido (11):

Aplique associatividade para unificar os dois somatórios abaixo:

$$\sum_{3}^{n} a_{i} + \sum_{1}^{n} b_{i}$$

Resposta:

$$b_1 + b_2 + \sum_{3 \le i \le n} (a_i + b_i)$$

Exercício Resolvido (12):

Mostre (e justifique) se cada expressão abaixo é verdadeira ou falsa:

a) ()
$$\sum_{k=0}^{200} k^3 = \sum_{k=1}^{200} k^3$$
;

b) ()
$$\sum_{p=0}^{1000} (3+p) = 3 + \sum_{p=0}^{1000} p;$$

c) ()
$$\sum_{\ell=1}^{n} (3\ell) = 3 \sum_{\ell=1}^{n} \ell;$$

d) ()
$$\sum_{k=0}^{12} k^p = \left(\sum_{k=0}^{12} k\right)^p$$
;

e) ()
$$\sum_{t=8}^{32} (3+t) = 75 + \sum_{t=8}^{32} t$$
.

Resposta:

a) true

Ambos são iguais, pelo fato de que o primeiro somatório começa em 0.

b) false

Seria verdadeiro se 3 estivesse dentro de um somatório \sum 0<= p <=1000

c) true

Pela propriedade da distributividade.

d) false

K está sendo elevado a ² nao o somatório

e) true

3*25 = 75, sendo possível fazer a distributividade.

Exercício Resolvido (13):

Explique a propriedade comutativa e, em seguida, ilustre sua resposta com o somatório

Resposta:

A propriedade comutativa permite seja possível fazer as somas dos termos em qualquer ordem.

$$S = \sum_{0 <= i} (3 + 4i) = \sum_{0 <= i} (3 + 4[4-i])$$

Exercício Resolvido (14):

Mostre os valores de a e b na sequência 1, 4, 7, 10, 13, ... Resposta:

Os valores de a e b são 1 e 3

$$s = \sum_{0 \le i \le n} (a + bi) = \sum_{0 \le i \le n} (1 + 3i)$$

Exercício Resolvido (15):

Aplique as regras de transformação para obter a fórmula fechada da soma Sn dos elementos de uma PA.

$$S_n = \sum_{0 \le i \le n} a + b.i$$

Resposta: obs:
$$\sum = \sum_{0 < i < n}$$

$$2S_n = \sum a + bi + \sum a + bn - bi$$
 $2S_n = \sum a + bi + a + bn - bi$
 $2S_n = \sum 2a + bn$
 $2S_n = (2a + bn)\sum 1$
 $2S_n = (2a + bn)(n+1)$
 $2S_n = ((2a + bn)(n+1))/2$

Exercício Resolvido (16):

Sabendo a fórmula da soma de uma progressão aritmética qualquer, mostre a fórmula para o somatório de 0 + 1 + 2 + 3 +

... + n =
$$\sum_{0 <= i <= n}^{i}$$

Resposta:

```
\sum_{0 \le i \le n} i = \sum_{0 \le i \le n} (0 + 1^*i) = (2^*0 + 1^*n)(n+1)/2 = n(n+1)/2
```

Exercício Resolvido (17):

Dada a fórmula fechada do somatório dos n primeiros números inteiros, mostre um algoritmo mais eficiente que o apresentado abaixo:

```
int somatorio(int n){
    int soma = 0;
    for(int i = 1; i <= n; i++){
        soma += i;
    }
    return soma;
}</pre>
```

```
int somatorio(int n){
  return( (n * (n + 1))/2 );
} // end somatorio()
```

Exercício Resolvido (18):

O Algoritmo de Seleção é uma solução conhecida para a ordenação interna. Anteriormente, vimos ele realiza ∑(n - i - 1)

comparações entre registros. Agora, mostre a fórmula fechada para esse somatório

obs:
$$\sum = \sum_{0 < i < i < n-2}$$

$$\sum (n - i - 1) = \sum n - \sum 1 - \sum i$$

$$n(n-1) - 1(n-1) - (n-2)(n-1)$$

$$2$$

$$2$$

$$2n(n-1) - 2(n-1) - (n^2 - 3n + 2)$$

$$2$$

$$2$$

$$2n^2 - 2n - 2n + 2 - n^2 + 3n - 2$$

$$2$$

$$n^2 - n / 2$$

Exercício Resolvido (19):

Justifique a igualdade:

$$\sum_{1}^{n} i = \sum_{0}^{n} i$$

Resposta:

Ambos são iguais pelo fato de que o primeiro somatório começar somando em 0.

Exercício Resolvido (20):

Justifique a igualdade:

$$\sum_{1}^{n} a_{i} \neq \sum_{0}^{n} a_{i}$$

Resposta:

Eles são diferentes, porque, a_0 não será necessariamente igual a zero.

Exercício Resolvido (21):

Justifique a igualdade:

$$\sum_{1}^{n} a_{i} = \sum_{0}^{n-1} a_{i+1}$$

Resposta:

Eles são iguais, porque, mesmo que os somatórios possuam limites inferiores diferentes, n do segundo somatório é decrementado em 1, e i é incrementado em 1, igualando seus valores finais.

Exercício Resolvido (22):

Por que a primeira fórmula é mais adequada? (Dica: mostre os termos quando i = 0, 1, 2, 3, 4, 5, ..., n-1 e n)

$$\sum_{i=2}^{n-1} i \cdot (i-1) \cdot (n-i) = \sum_{i=0}^{n} i \cdot (i-1) \cdot (n-i)$$

Resposta:

Os termos a_0 , a_1 , a_3 serão iguais a 0.

obs: n = 3

$$\sum_{2 \le i \le 3-1} i^*(i-1)^*(3-1) = 2^* 1^*1 = 2_2 = 2$$

Exercício Resolvido (23):

Aplique P2 para obter a fórmula fechada da soma Sn dos elementos de uma PG

$$S_n = \sum_{0 \le i \le n} a.x^i$$

Resposta:obs:
$$\sum = \sum_{0 < i < n}$$

$$S_n + a_{n+1} = a_0 + \sum a_{i+1}$$

 $S_n + ax^{n+1} = ax^0 + \sum ax^{i+1}$

$$S_n + ax^{n+1} = a + x \sum ax^i$$

$$S_n + ax^{n+1} = a + xS_n$$

$$S_n - xS_n = a - ax^{n+1}$$

$$S_n - xS_n = a - ax^{n+1}$$

(1 - x) $S_n = a - ax^{n+1}$

$$S_n = (a - ax^{n+1})/(1 - x)$$

Exercício Resolvido (24):

Encontre a fórmula fechada do somatório abaixo:

$$S_n = \sum_{0 \le i \le n} i \cdot 2^i$$

$$S_{n+1} = S_n + (n+1).2^{n+1} = 0.2^0 + \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$s_n + (n+1).2^{n+1} = \sum_{0 \le i \le n} (i+1).2^{i+1}$$

$$s_n + (n+1).2^{n+1} = \sum_{0 \le i} i.2^{i+1} + \sum_{0 \le i} 2^{i+1}$$

$$s_n + (n+1).2^{n+1} = 2\sum_{0 \le i} i.2^i + 2\sum_{0 \le i} 2^i$$

$$s_n + (n+1).2^{n+1} = 2.s_n + 2(2^{n+1}-1)$$

$$(n+1).2^{n+1} - 2(2^{n+1}-1) = 2.s_n - s_n$$

$$2n^{n+1} + 2^{n+1} - 4^{n+1} + 2 = s_n$$

$$2n^{n+1} - 2^{n+1} + 2 = s_n$$

$$(n-1)2^{n+1}+2=s_n$$

Exercício Resolvido (25):

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{0}^{n} (3 + i) =$$

Resposta:

Obs:
$$\sum = \sum_{0 <= i <= n}$$

∑ 3 + i	
Σ3 + Σ i	
3(n+1) + (n[n+1])/2	
$(7n + 6 + n^2)/2$ (Verdadeiro)	

$(7n + 6 + n^2)/2$	$S_n = S_{n-1} + a_n$
$(7*0 + 6 0^2)/2$	(7[n-1] + 6 + [n-1] ²)/2 + 3 + n
6/2	(7n - 7 + 6 + n ² - 2n + 1 + 6 + 2n)/2
3 (Verdadeiro)	$(7n + 6 + n^2)/2$ (Verdadeiro)

Exercício Resolvido (26):

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(2i+1)^{2} - (2i)^{2}] =$$

Resposta:

Obs:
$$\sum = \sum_{1 < i < j < j}$$

$\sum [(2i+1)^2 - (2i)^2]$
$\sum 4i^2 + 4i + 1 - 4i^2$
∑ 4i + 1
4∑ i + ∑ 1
4 * n(n+1)/2 + n
2n(n+1) + n
2n ² + 3n

2n ² + 3n	$S_n = S_{n-1} + a_n$
2 * 1 ² + 3*1	$2(n-1)^2 + 3(n-1) + [(2i+1)^2 - (2i)^2]$
5 (Verdadeiro)	$2(n^2 - 2n + 1) + 3n - 3 + 4n^2 + 4n + 1 - 4n^2$
	2n ² - 4n + 2 + 3n - 3 + 4n + 1
	2n ² + 3n (Verdadeiro)

Exercício Resolvido (27):

Encontre a fórmula fechada do somatório abaixo e, em seguida, prove a usando indução matemática.

$$\sum_{1}^{n} [(5i+1)^{2} - (5i-1)^{2}] =$$

Resposta:

Obs:
$$\sum = \sum_{1 <= i <= n}$$

$$\sum [(5i + 1)^2 - (5i - 1)^2]$$

$$\sum (25i^2 + 10i + 1) - (25i^2 - 10i + 1)$$

$$\sum 25i^2 + 10i + 1 - 25i^2 + 10i - 1$$

$$20\sum i$$

$$20 * n(n+1)/2$$

$$10n(n+1)$$

$$10n^2 + 10n \text{ (Verdadeiro)}$$

10n ² + 10n	$S_n = S_{n-1} + a_n$
10 * 1 ² + 10 * 1	10(n-1) ² + 10(n-1) + 20n
10 + 10	10(n ² - 2n + 1) + 10n - 10 + 20n
20 (Verdadeiro)	10n ² - 20n + 10 + 10n - 10 + 20n
	10n ² + 10n (Verdadeiro)

Exercício Resolvido (28):

No Exercício Resolvido (24), encontramos a fórmula abaixo. Prove por indução que a mesma está correta.

$$S_n = \sum_{0 \le i \le n} i.2^i = (n-1).2^{n+1} + 2$$

Resposta:

Obs:
$$\sum = \sum_{0 <= i <= n}$$

•
$S_n = S_{n-1} + a_n$
$([n-1]-1)2^{(n-1)+1} + 2 + n2^n$
$(n-2)2^n + 2 + n2^n$
n2 ⁿ + n2 ⁿ - 4 ⁿ + 2
(2n - 2)2 ⁿ + 2
(n - 1)2 ⁿ * 2 + 2
$(n-1)2^{n+1}+2$ (Verdadeiro)

Exercício Resolvido (29):

Aplique perturbação para encontrar a fórmula do somatório abaixo.

$$S_n = \sum_{0 \le i \le n} i^2$$

Resposta:

Obs: $\sum_{0 <= i <= n}$

$$S_n + a_{n+1} = a_0 + \sum a_{i+1}$$

$$S_n + a_{n+1} = 0^2 + \sum (i+1)^2$$

$$S_n + a_{n+1} = \sum_{i=1}^{n} i^2 + \sum_{i=1}^{n} 2i + \sum_{i=1}^{n} 1$$

$$S_n + a_{n+1} = S_n + n(n+1) + n+1$$

$$S_n + a_{n+1} = S_n + n(n+1) + n+1$$

(cancela a equação, então...)

$$S_{cubo} = \sum_{i=1}^{3} i^3$$
 (usaremos o somatório do cubo para achar a fórmula do somatório do quadrado)

$$S_{cubo} + a_{n+1} = a_0 + \sum a_{i+1}$$

$$S_{cubo} + (n+1)^3 = 0^3 + \sum (i+1)^3$$

$$S_{cubo} + (n+1)^3 = \sum_{i=1}^{3} i^3 + 3i^2 + 3i + 1$$

$$S_{cubo} + (n+1)^3 = \sum_i i^3 + \sum_i 3i^2 + \sum_i 3i + \sum_i 1$$

$$S_{cubo} + (n+1)^3 = S_{cubo} + 3S_n + 3n(n+1)/2 + n+1$$

$$S_{cubo} + (n+1)^3 = S_{cubo} + 3S_n + 3n(n+1)/2 + n+1$$

$$6S_n = 2(n+1)^3 - 3n(n+1) - 2(n+1)$$

$$6S_n = 2(n^3 + 3n^2 + 3n + 1)^3 - 3n(n+1) - 2(n+1)$$

$$6S_n = 2n^3 + 6n^2 + 6n + 2 - 3n^2 - 3n - 2n - 2$$

$$6S_n = 2n^3 + 3n^2 + n$$

$$S_n = (2n^3 + 3n^2 + n)/6$$

Exercício (1):

Faça um método int somatorioPA(double a, double b, int n) que retorna o somatório dos n primeiros termos de uma PA com termo inicial a e razão b.

Resposta:

Pode se encontrar na pasta exercicios praticos como Exerc01.java

Exercício (2)(Slide 104):

Aplique P1 para unificar os somatórios abaixo:

$$\sum_{1}^{m-3} a_{i} + \sum_{m}^{n} a_{i} = a_{m} + \sum_{1}^{n} a_{i}, 1 \le m \le n$$

Resposta:

Exercício (2)(Slide 224):

Faça um vídeo explicando como encontramos o somatório dos quadrados perfeitos (tempo máximo de 5 minutos).

Resposta:

Link Youtube: https://youtu.be/FZmlcIVQLEc

Exercício (3):

Um algoritmo de ordenação tradicional é o Inserção. Faça a análise de complexidade desse algoritmo para os números de comparações e movimentações entre registros no pior e melhor caso.

Obs:

Será feita a análise do seguinte código de Inserção:

```
for (int i = 1; i < n; i++) {
    int tmp = array[i];
    int j = i - 1;
    while ( (j >= 0) && (array[j] > tmp) ){
        array[j + 1] = array[j];
        j--;
    }
    array[j + 1] = tmp;
}
```

	Melhor caso
СОМР	C(n) = (n-1)
MOV	M(n) = 2(n-1)
Algoritmo	O(n)

	Pior caso
COMP	$\sum_{0 <= i <= (n-1)} i = C(n) = n(n-1)/2$
MOV	(C(n) - 1) +2 -> n(n-1)/2 - 1 -> (n(n-1)-2)/2
Algoritmo	O(n²)