

2018-2	이산수학	4차 과제물: 8장 4절, 11(10)장
담당교수: 예홍진		제출기한: 2018년 12월14일(금) 18:00 까지

※ 문제 자체는 생략하고 문항번호와 답안만 작성하여 제출하기 바랍니다.

※(1~5) 다음 문장의 내용이 맞으면 ○표, 틀리면 ×표를 답하시오.

- 1. All the regular grammars and regular languages can be recognized by a finite state machine.
- 2. The Backus-Naur From (BNF) notation is for type 1 grammars. \times
- 3. The syntax diagram corresponding to a grammar is unique.X
- 4. In a Finite State Machine (FSM), every state must process every input.
- 5. There must be only one acceptance state in a Moore machine. X

※(6~10) 다음 괄호에 알맞은 값이나 용어를 채워 넣으시오.

- 6. A(n) (contains at least one edge from K in a transport network.
- 7. A maximum flow F in a network has value equal to the capacity of a minimum (\bigcirc) of the network.
- 8. The process involves taking a sentence and verifying that it is syntactically correct in some grammar G is called (MASING).
- 9. A phrase structure grammar G is defined to be 4-tuple (V, S, v_0, \rightarrow) where V is a set of nonterminal and terminal symbols, S is a set of terminal symbols, S is a set of terminal symbols, S is starting point, and S which S is a S context of S context S of S context S context
- 10. Let I be a set and let $L \subseteq I^*$. Then L = L(M) for some Moore machine M if and only if L is a () set.

2. Bumbs

Let N be a transport network shown as below: $\begin{bmatrix} 0 & 1 & 2 & 4 & 6 & 6 \\ 0 & 1 & 2 & 6$

- (1) If we use the labeling algorithm, list every path from the source to the sink when the algorithm found a flow.
- (2) Find the maximum flow for this network.

12. An identifier must be composed of letters and digits in $S = \{a, b, 3, 5, 7\}$ and must begin with a letter, give the BNF representation for the productions of the grammar.

\(\sigma\):= \(\sigma\left\) \(\beta\right\) \(\sigma\right\) \(\sigma\rig\right\) \(\sigma\right\) \(\sigma\right\) \(\sigma\right\) \(\si

- 35,17 152 Sa,b, 3,5,7
- 13. Let M be the finite-state machine whose state transition table is shown in the table. Then $S=s_0,s_1,s_2,s_3,s_4,s_5$. Let R be the equivalence relation on S where $S/R=s_0,s_2,s_1,s_3,s_5,s_4$. Draw the digraph of the quotient machine M/R.

	0	1
s_0	s_0	s_4
s_1	s_1	s_0
s_2	s_2	s_4
s_3	s_5	s_2
s_4	s_4	s_3
s_5	s_3	s_2

14. Consider the Moore machine M shown in the figure. Give the BNF representation for the productions of the grammar.

- 15. Consider the regular expression $1*01*0(0\lor1)*01$ corresponds to the language L(G) of a regular grammar G.
- (1) Give the BNF notation for the productions of G.
- (2) Construct the digraph of a Moore machine that accepts L(G).

*** 문제를 제외하고 답안만 작성하며, 뒷면을 사용하여 가급적 한 장으로 제출하기 바랍니다. ***