

BSc (Hons) in Software Engineering

IT3126: Graph theory
Week Number 08
Trees and distance

Learning Outcomes

- After completing this course and the essential reading and activities, student should be able to,
 - LO1:Apply basic notations of graph theory and fundamental theorems in graph theory
 - LO2:formulate and prove central theorems about trees, matching, connectivity, coloring and planar graphs;
 - LO3:describe and apply some basic algorithms for graphs;
 - LO4:use graph theory as a modelling tool.

Aims of the Lesson

- To introduce the fundamental graph theory topics and results.
- To be familiarize with the techniques for proofs and analysis.

Tree

- In graph theory, trees are a specific type of graph that doesn't contain any cycles.
- A tree is a connected graph where there is exactly one path between any two nodes (also called vertices), and there are no repeating paths or loops.

Distance

- Distance in the context of trees in graph theory typically refers to the length of the shortest path between two nodes within the tree.
- The distance between two nodes in a tree is defined as the number of edges along the shortest path that connects those nodes.

Binary trees

 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root.

Traversal of binary trees

- One of the most important operations on a binary tree is traversal, moving through all the nodes of the binary tree, visiting each one in turn.
- There are three standard traversal orders:
 - With preorder traversal we first visit a node, then traverse its left subtree, and then traverse its right subtree. (VLR)
 - With inorder traversal we first traverse the left subtree, then visit the node, and then traverse its right subtree. (LVR)
 - With postorder traversal we first traverse the left subtree, then traverse the right subtree, and finally visit the node. (LRV)

Spanning tree

- A spanning tree of a graph is a subgraph that includes all the vertices of the original graph while being a tree itself.
- In other words, it's a connected acyclic subgraph that spans all the vertices of the original graph.
- A graph may have multiple spanning trees.

Spanning tree

- Key Properties of Spanning Trees:
- Connectedness: A spanning tree must connect all the vertices of the original graph.
- Acyclic: A spanning tree must not contain any cycles.
 Adding any edge to the spanning tree would create a cycle.
- V-1 Edges: If the original graph has 'V' vertices, a spanning tree will have exactly 'V-1' edges.
- No Redundant Edges: A spanning tree includes the minimum number of edges required to connect all the vertices. There are no redundant edges.
- Subgraph: A spanning tree is a subgraph of the original graph.

Minimum spanning tree

- A minimum spanning tree (MST) is a subset of edges of an undirected graph that connects all the vertices together without forming any cycles and has the minimum possible total edge weight.
- In other words, an MST is a tree that spans all the vertices of the graph while minimizing the sum of edge weights.

- Prim's algorithm is a greedy algorithm used to find the Minimum Spanning Tree (MST) of a connected, undirected graph.
- The goal of the algorithm is to find the subset of edges that connects all the vertices in the graph while minimizing the total edge weight.

Initialization:

- Start with an empty set MSTSet which initially contains no vertices.
- Create an array key[] to store the minimum key values for each vertex. Initialize all key values to a large number (infinity).
- Create an array parent[] to store the parent of each vertex in the MST. Initialize all parent values to -1 (no parent).

Initialization:

- Start with an empty set MSTSet which initially contains no vertices.
- Create an array key[] to store the minimum key values for each vertex. Initialize all key values to a large number (infinity).
- Create an array parent[] to store the parent of each vertex in the MST. Initialize all parent values to -1 (no parent).

Select a Starting Vertex:

 Choose any vertex as the starting point of the MST. Assign its key value to 0 to ensure it's selected first.

Grow the MST:

- Repeat the following steps until all vertices are included in the MST:
- a. Find the vertex u with the minimum key value among the vertices not yet in the MSTSet.
- o b. Add vertex u to the MSTSet.
- c. For each adjacent vertex v of u that is not in the MSTSet, update its key value if the weight of the edge between u and v is less than its current key value. Set parent[v] to u.

Print the MST:

 The edges of the MST are given by the pairs (parent[v], v) for all vertices except the starting vertex. The edge weight is given by the corresponding key value.

```
import java.util.LinkedList;
class Node {
    int vertex;
    int weight;
    Node next;
    public Node(int vertex, int weight) {
        this.vertex = vertex;
        this.weight = weight;
        this.next = null;
class Graph {
    int numVertices;
    LinkedList<Node>[] adjList;
    public Graph(int numVertices) {
        this.numVertices = numVertices;
        adjList = new LinkedList[numVertices];
        for (int i = 0; i < numVertices; i++) {
            adjList[i] = new LinkedList<>();
```

```
void addEdge(int src, int dest, int weight) {
    Node newNode = new Node(dest, weight);
    adjList[src].add(newNode);
    newNode = new Node(src, weight); // Add reverse edge for undirected
        graph
    adjList[dest].add(newNode);
int minKey(int[] key, boolean[] mstSet) {
    int min = Integer.MAX_VALUE, minIndex = -1;
    for (int v = 0; v < numVertices; v++) {
        if (!mstSet[v] && key[v] < min) {</pre>
            min = key[v];
            minIndex = v;
        }
    return minIndex;
```

```
void printMST(int[] parent) {
    System.out.println("Edge \tWeight");
   for (int i = 1; i < numVertices; i++) {
        int u = parent[i];
        for (Node node : adjList[u]) {
            if (node.vertex == i) {
                System.out.println(u + " - " + i + " \setminus t" + node.weight);
                break;
            }
void primMST() {
    int[] parent = new int[numVertices]; // Array to store the constructed
        MST
    int[] key = new int[numVertices]; // Key values used to pick
       minimum weight edge
    boolean[] mstSet = new boolean[numVertices]; // To represent the set
        of vertices included in MST
    for (int i = 0; i < numVertices; i++) {
        key[i] = Integer.MAX_VALUE;
        mstSet[i] = false;
```

```
key[0] = 0; // Start from the first vertex
parent[0] = -1; // First vertex is the root of MST
for (int count = 0; count < numVertices - 1; count++) {</pre>
    int u = minKey(key, mstSet);
    mstSet[u] = true;
   for (Node current : adjList[u]) {
       int v = current.vertex;
int weight = current.weight;
   if (!mstSet[v] && weight < key[v]) {</pre>
            parent[v] = u;
            key[v] = weight;
printMST(parent);
```

```
public class Main {
    public static void main(String[] args) {
        int V = 5; // Number of vertices
        Graph graph = new Graph(V);
        graph.addEdge(0, 1, 2);
        graph.addEdge(0, 3, 6);
        graph.addEdge(1, 2, 3);
        graph.addEdge(1, 3, 8);
        graph.addEdge(1, 4, 5);
        graph.addEdge(2, 4, 7);
        graph.addEdge(3, 4, 9);
        graph.primMST();
```

- The BFS forest consists of multiple BFS trees, each rooted at a different vertex.
- All vertices in the graph are part of exactly one BFS tree in the forest.
- The BFS trees are disjoint, meaning they do not share any vertices.
- Each BFS tree spans all the vertices that are reachable from its root vertex.
- The depth of each vertex in its corresponding BFS tree indicates the shortest path distance from the root vertex.

- BFS forests are commonly used to explore and analyze the connectivity and distance relationships within a graph.
- They are especially useful in finding shortest paths and understanding the structure of a graph's components.


```
import java.util.LinkedList;
import java.util.Queue;
class Node {
    int vertex:
   Node next;
   public Node(int vertex) {
        this vertex = vertex:
        this.next = null:
class Graph {
    int numVertices;
    LinkedList<Node>[] adjacencyList;
    public Graph(int numVertices) {
        this.numVertices = numVertices;
        adjacencyList = new LinkedList[numVertices];
        for (int i = 0; i < numVertices; i++) {
            adjacencyList[i] = new LinkedList<>();
```

```
void addEdge(int source, int destination) {
    Node newNode = new Node(destination);
    adjacencyList[source].add(newNode);
   // Since it's an undirected graph, add an edge in the other direction
        as well
   newNode = new Node(source);
    adjacencyList[destination].add(newNode);
void bfs(int startVertex, boolean[] visited) {
   // Create a queue for BFS traversal
   Queue<Integer> queue = new LinkedList<>();
   // Enqueue the starting vertex
   queue.add(startVertex);
   visited[startVertex] = true;
    System.out.println("BFS Tree rooted at vertex " + startVertex + ":");
   while (!queue.isEmpty()) {
        int currentVertex = queue.poll();
        System.out.print(currentVertex + " ");
```

```
for (Node neighbor : adjacencyList[currentVertex]) {
            int neighborVertex = neighbor.vertex;
            if (!visited[neighborVertex]) {
                queue.add(neighborVertex);
                visited[neighborVertex] = true;
    System.out.println();
void bfsForest() {
    boolean[] visited = new boolean[numVertices];
    for (int i = 0; i < numVertices; i++) {
        if (!visited[i]) {
            bfs(i, visited);
```

```
public class Main {
    public static void main(String[] args) {
        int numVertices = 5;
        Graph graph = new Graph(numVertices);
        graph.addEdge(0, 1);
        graph.addEdge(0, 2);
        graph.addEdge(1, 2);
        graph.addEdge(3, 4);
        graph.bfsForest();
    }
}
```

- In graph theory, the eccentricity of a vertex is a measure of how far that vertex is from the vertex farthest away from it.
- It's often used to analyze the structure of a graph and its vertices.
- The eccentricity of a vertex v, denoted as ε(v), is the maximum shortest path distance between vertex v and any other vertex in the graph.

```
class Node {
   int vertex;
   Node next;

   Node(int vertex) {
      this.vertex = vertex;
      this.next = null;
   }
}
```

```
class LinkedList {
    Node head;
    LinkedList() {
        this.head = null;
    void add(Node newNode) {
        if (head == null) {
            head = newNode;
        } else {
            Node temp = head;
            while (temp.next != null) {
                temp = temp.next;
            temp.next = newNode;
```

```
class Graph {
    int numVertices:
    LinkedList[] adjacencyList;
    Graph(int numVertices) {
        this.numVertices = numVertices;
        adjacencyList = new LinkedList[numVertices];
        for (int i = 0; i < numVertices; i++) {
            adjacencyList[i] = new LinkedList();
    void addEdge(int source, int destination) {
        Node newNode = new Node(destination);
        adjacencyList[source].add(newNode);
        // Assuming it's an undirected graph
        newNode = new Node(source);
        adjacencyList[destination].add(newNode);
```

```
public class Main {
    static final int MAX_VERTICES = 100;
    static void initializeGraph(Graph graph, int numVertices) {
        graph.numVertices = numVertices;
        for (int i = 0; i < numVertices; i++) {
            graph.adjacencyList[i] = new LinkedList();
    }
    static int bfsEccentricity(Graph graph, int startVertex) {
        int[] dist = new int[MAX_VERTICES];
        boolean[] visited = new boolean[MAX VERTICES];
        Arrays.fill(dist, Integer.MAX VALUE);
        Arrays.fill(visited, false);
        dist[startVertex] = 0;
        visited[startVertex] = true;
        int[] queue = new int[MAX_VERTICES];
        int front = 0, rear = 0;
        queue[rear++] = startVertex;
```

```
static int bfsEccentricity(Graph graph, int startVertex) {
    int[] dist = new int[MAX VERTICES];
    boolean[] visited = new boolean[MAX VERTICES];
   Arrays.fill(dist, Integer.MAX_VALUE);
   Arrays.fill(visited, false);
   dist[startVertex] = 0;
   visited[startVertex] = true;
    int[] queue = new int[MAX_VERTICES];
    int front = 0, rear = 0;
    queue[rear++] = startVertex;
   while (front < rear) {</pre>
        int currentVertex = queue[front++];
        LinkedList current = graph.adjacencyList[currentVertex];
        Node temp = current.head;
        while (temp != null) {
            int neighbor = temp.vertex;
           if (!visited[neighbor]) {
                visited[neighbor] = true;
                dist[neighbor] = dist[currentVertex] + 1;
                queue[rear++] = neighbor;
            temp = temp.next;
```

```
public static void main(String[] args) {
    int numVertices = 7;
    Graph graph = new Graph(numVertices);
    initializeGraph(graph, numVertices);
   graph.addEdge(0, 1);
    graph.addEdge(0, 2);
    graph.addEdge(1, 2);
    graph.addEdge(2, 3);
    graph.addEdge(2, 4);
   graph.addEdge(3, 5);
    graph.addEdge(4, 6);
    int vertex = 0; // Choose the vertex whose eccentricity you want to
        find
    int eccentricity = bfsEccentricity(graph, vertex);
    System.out.printf("Eccentricity of vertex %d: %d\n", vertex,
        eccentricity);
```

Diameter, radius & center of a graph

 In graph theory, the terms "diameter," "radius," and "center" refer to measures that provide insights into the structure of a graph.

Diameter

- The diameter of a graph is the longest shortest path distance between any two vertices in the graph.
- In other words, it represents the maximum distance between any pair of vertices.
- Calculating the diameter is often used to understand the "spread" or "extent" of the graph.

Radius

- The radius of a graph is the minimum eccentricity among all vertices in the graph.
- It represents the "centermost" part of the graph, as it indicates the smallest maximum distance from any vertex to all other vertices.

Center

- The center of a graph is the set of vertices with eccentricity equal to the radius.
- In other words, it's the set of vertices that are at the "center" of the graph in terms of their distance from other vertices.

Diameter, radius & center of a graph

```
public class Main {
    static final int MAX_VERTICES = 100;
    static void initializeGraph(Graph graph, int numVertices) {
        graph.numVertices = numVertices;
        for (int i = 0; i < numVertices; i++) {
            graph.adjacencyList[i] = new LinkedList();
    public static void main(String[] args) {
        int numVertices = 7;
        Graph graph = new Graph(numVertices);
        initializeGraph(graph, numVertices);
```

Diameter, radius & center of a graph

```
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(1, 2);
graph.addEdge(2, 3);
graph.addEdge(2, 4);
graph.addEdge(3, 5);
graph.addEdge(4, 6);
int diameter = 0;
int radius = Integer.MAX_VALUE;
List<Integer> centers = new ArrayList<>();
for (int vertex = 0; vertex < numVertices; vertex++) {</pre>
    int eccentricity = graph.bfsEccentricity(vertex);
    if (eccentricity > diameter) {
        diameter = eccentricity;
```

Diameter, radius & center of a graph

```
if (eccentricity < radius) {</pre>
        radius = eccentricity;
        centers.clear();
        centers.add(vertex);
    } else if (eccentricity == radius) {
        centers.add(vertex);
System.out.println("Diameter: " + diameter);
System.out.println("Radius: " + radius);
System.out.print("Center(s): ");
for (int center : centers) {
    System.out.print(center + " ");
System.out.println();
```

Shortest path problem

- The shortest path problem involves finding the shortest path between two vertices in a graph, where the length of a path is determined by the sum of the weights (or costs) of the edges along the path.
- There are several algorithms to solve this problem, with Dijkstra's algorithm and Bellman-Ford algorithm being two common approaches.

HND-Name of the Unit

 Dijkstra's algorithm finds the shortest path from a source vertex to all other vertices in a weighted graph with non-negative edge weights.

Algorithm Steps:

- Create a set of unvisited vertices and initialize the distances to all vertices as infinity (except the source vertex which is 0).
- While there are unvisited vertices, choose the vertex with the minimum distance.
- For the chosen vertex, update the distances of its neighbors by considering the weight of the edge and the distance to the chosen vertex.
- Mark the chosen vertex as visited.

HND-Name of the Unit

```
import java.util.*;
class Node {
    int vertex;
    int weight;
    Node next;
    Node(int vertex, int weight) {
        this vertex = vertex;
        this.weight = weight;
        this next = null;
class Graph {
    final int V;
    Node[] adjacencyList;
    Graph(int V) {
        this.V = V;
        adjacencyList = new Node[V];
        for (int i = 0; i < V; i^{++}) {
            adjacencyList[i] = null;
        }
```

```
void addEdge(int src, int dest, int weight) {
         Node newNode = new Node(dest, weight);
         newNode.next = adjacencyList[src];
         adjacencyList[src] = newNode;
r public class DijkstraAlgorithm {
     static final int V = 5; // Number of vertices
     static int minDistance(int dist[], boolean visited[]) {
         int min = Integer.MAX VALUE, minIndex = -1;
         for (int v = 0; v < V; v^{++}) {
             if (!visited[v] && dist[v] < min) {</pre>
                 min = dist[v];
                 minIndex = v;
         return minIndex;
     }
     static void dijkstra(Graph graph, int source) {
         int dist[] = new int[V];
         boolean visited[] = new boolean[V];
```

```
for (int i = 0; i < V; i^{++}) {
    dist[i] = Integer.MAX VALUE;
    visited[i] = false;
}
dist[source] = 0;
for (int count = 0; count < V - 1; count++) {</pre>
    int u = minDistance(dist, visited);
    visited[u] = true;
    Node current = graph.adjacencyList[u];
    while (current != null) {
        int v = current.vertex;
        int weight = current.weight;
       if (!visited[v] && dist[u] != Integer.MAX_VALUE && dist[u] +
            weight < dist[v]) {</pre>
           dist[v] = dist[u] + weight;
        }
        current = current.next;
   }
System.out.println("Vertex Distance from Source");
```

```
System.out.println("Vertex Distance from Source");
   for (int i = 0; i < V; i++) {
        System.out.println(i + "\t\t" + dist[i]);
public static void main(String args[]) {
   Graph graph = new Graph(V);
   graph.addEdge(0, 1, 4);
   graph.addEdge(0, 4, 2);
   graph.addEdge(1, 2, 8);
   graph.addEdge(1, 3, 7);
   graph.addEdge(2, 3, 5);
   graph.addEdge(2, 4, 6);
   graph.addEdge(3, 4, 9);
    int source = 0;
   dijkstra(graph, source);
```

 Bellman-Ford algorithm handles graphs with negative weight edges and can detect negative weight cycles.

Algorithm Steps:

- Initialize distances to all vertices as infinity (except the source vertex which is 0).
- Repeat V-1 times (V is the number of vertices): a. For each edge (u, v) with weight w, relax the edge: If distance[u] + w < distance[v], update distance[v] to distance[u] + w.
- Check for negative weight cycles.

HND-Name of the Unit

```
public class BellmanFordAlgorithm {
    static final int V = 5; // Number of vertices
    static void bellmanFord(Graph graph, int source) {
       int dist[] = new int[V];
       Arrays.fill(dist, Integer.MAX VALUE);
       dist[source] = 0;
       // Relax all edges V - 1 times
       for (int i = 1; i < V; i++) {
           for (int j = 0; j < V; j++) {
               Node current = graph.adjacencyList[j];
               while (current != null) {
                   int u = j;
               int v = current.vertex;
                   int weight = current.weight;
              if (dist[u] != Integer.MAX VALUE && dist[u] + weight <</pre>
                       dist[v]) {
                       dist[v] = dist[u] + weight;
                   current = current.next;
```

```
// Check for negative-weight cycles
    for (int i = 0; i < V; i++) {
        Node current = graph.adjacencyList[i];
        while (current != null) {
           int u = i:
           int v = current.vertex;
           int weight = current.weight;
if (dist[u] != Integer.MAX_VALUE && dist[u] + weight < dist[v])</pre>
               System.out.println("Graph contains negative-weight cycle");
               return;
            current = current.next;
    System.out.println("Vertex Distance from Source");
    for (int i = 0; i < V; i++) {
        System.out.println(i + "\t\t" + dist[i]);
```

```
public static void main(String args[]) {
    Graph graph = new Graph(V);
    graph.addEdge(0, 1, -1);
    graph.addEdge(0, 2, 4);
    graph.addEdge(1, 2, 3);
    graph.addEdge(1, 3, 2);
    graph.addEdge(1, 4, 2);
    graph.addEdge(3, 2, 5);
    graph.addEdge(3, 1, 1);
    graph.addEdge(4, 3, -3);
    int source = 0;
    bellmanFord(graph, source);
```

Summary

- Define and traversal in a binary tree.
- Span a tree with different algorithms.
- Calculate the radius, diameter and the center oth a tree.
- Find the shortest path from one node to any other node In the tree.

Brief of the Next Lecture

 Graph coloring, planer graphs and Euclidian algorithms will be covered in next lecture.

Q & A

Thank You.