2021 年度

修士論文題目

Riemann 対称空間上における測地線の簡約部分 Lie 代数への射影に対する有界性

―低階数・低次元の場合―

学生証番号 45-196010

フリガナ オクダ タカコ

氏名 奥田 堯子

目次

導入			2
謝辞			3
1 設	定と基	本的な補題	4
	1.1	記号の設定	4
	1.2	予想 1.3 の観察: $G = SU(1,1)$, $H = SO(1,1)$ の場合	6
2 具	・体例と	主定理の証明	8
	2.1	具体例: 実階数 1 の古典型単純 Lie 群	8
	2.2	G の実階数が 1 の場合 \dots	11
	2.3	G が実階数 1 の群の直積の場合	12
参考文	ケ献		12

導入

G を非コンパクトな実半単純 Lie 群,K を G の極大コンパクト部分群で G の Cartan 対合 Θ に対して $K = \Theta K$ なるものとするとき,G/K は $\mathfrak g$ の Killing 形式 B から定まる Riemann 計量によって Riemann 多様体の構造を持つ。 $\mathfrak g = \mathfrak k \oplus \mathfrak p$ を Θ の微分 $d\Theta$ による $\mathfrak g$ の Cartan 分解とするとき,G/K は $\mathfrak p$ と微分同相であり,G の 単位元の G/K での像 eK を通る G/K の極大測地線は B(X,X) = 1 なる $X \in \mathfrak p$ に よって $e^{tX}K$, $t \in \mathbf R$ と書ける。H を G の非コンパクトな部分 Lie 群で, $H = \Theta H$ を満たすものとし, $\mathfrak p$ での B に対する $\mathfrak h \cap \mathfrak p$ の直交補空間を $\mathfrak h^\perp \cap \mathfrak p$ とする。測地線 $e^{tX}K$ の $\mathfrak h \cap \mathfrak p$ 成分と $\mathfrak h^\perp \cap \mathfrak p$ 成分への分解を与える定理として次の定理が知られて いる。

定理 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z K \in G/K$ は上への微分同相である.

この定理を用いて $X \in \mathfrak{p}$ に対し, $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義すると,任意の $t \in \mathbf{R}$ に対して $e^{tX}K = e^{Y(tX)}e^{Z(tX)}K$ である.

 $G=SU(1,1),\ H=SO(1,1)$ とするとき, $t\in\mathbf{R}$ に対し,Y(tX) は図 1 に図示するような幾何学的な意味を持つ.図 1 は Poincaré 円板における測地線 $e^{tX}K$ (赤色の斜め線) とその上の一点 $e^{tX}K$ から eK の H 軌道 (中央の直線) に下ろした垂線の足 (緑の丸) が $e^{Y(tX)}K$ である.

図 1: Poincaré 円板における Y(tX) の幾何学的意味

本論文では小林俊行氏による次の予想について考察し,G が実階数 1 の場合の肯定的な結果を得た.

予想 $Y(\mathbf{R}\,X)$ は $\mathfrak{h}\cap\mathfrak{p}$ の有界な部分集合である \iff $[X_1,X_2]\neq 0$ であるか $X_1=0$ である.

ただし $X=X_1+X_2$ はベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^\perp)$ に対応する $X\in\mathfrak{p}$ の分解とする.

謝辞

1 設定と基本的な補題

1.1 記号の設定

本論文の基本的な設定は次のとおりであり、この他に必要な条件は都度明示する こととする.

記号と定義 1.1

- G を非コンパクト実半単純 Lie 群, H を G の非コンパクトな部分 Lie 群で, G の Cartan 対合 Θ に対して $\Theta H = H$ なるものとする.
- $\mathfrak{g} \coloneqq \operatorname{Lie} G$, $\mathfrak{h} \coloneqq \operatorname{Lie} H$ とし, $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ を $\theta \coloneqq d\Theta$ による Cartan 分解とする.
- e を G の単位元とし, $o_K := eK \in G/K$ とする.
- B(-,-) を $\mathfrak g$ の Killing 形式とし、 $\mathfrak h^\perp \cap \mathfrak p \coloneqq \{W \in \mathfrak p \mid \text{ 任意の } Y \in \mathfrak h \cap \mathfrak p$ に対して $B(Y,W)=0\}$ とする.

以下の定理 1.2 を用いて、 $X \in \mathfrak{p}$ に対し、 $(Y(X), Z(X)) := \pi^{-1}(e^X \cdot o_K) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p})$ と定義する.

定理 1.2 [Kob89, Lemma 6.1]

 $\pi: (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}) \ni (Y, Z) \mapsto e^Y e^Z \cdot o_K \in G/K$ は上への微分同相である.

ここで、 $Y(\mathbf{R}X)$ の有界性について、次の予想が小林俊行氏によって立てられた.

予想 1.3 (by T. Kobayashi)

ベクトル空間としての分解 $\mathfrak{p}=(\mathfrak{p}\cap\mathfrak{h})\oplus(\mathfrak{p}\cap\mathfrak{h}^{\perp})$ に対応して $X=X_1+X_2$ と分解すると, $\mathfrak{p}_{H,\mathrm{bdd}}=\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0$ あるいは $X_1=0\}$ である.

予想 1.3 についての基本的な事項を挙げる.

補題 1.4

- 1. $\mathfrak{p}_{H,\mathrm{bdd.}}\subset\{X\in\mathfrak{p}\mid [X_1,X_2]\neq 0$ あるいは $X_1=0\}$ である. もっと書くことはあるはず. 2022/01/11
- 2. $X \in \mathfrak{p}$ が $X_1 = 0$ を満たすならば $X \in \mathfrak{p}_{H, \text{bdd}}$ である.
- 3. 1, 2 より予想 1.3 と「 $X \in \mathfrak{p}$ が $[X_1, X_2] \neq 0$ ならば $X \in \mathfrak{p}_{H, \mathrm{bdd.}}$ である」は 同値である.

4.~G が実階数 1 のとき、予想 1.3 と「 $\mathfrak{p}_{H,\mathrm{bdd}}=\{0\}\cup\mathfrak{p}\setminus\mathfrak{h}$ 」は同値である.

補題 1.4 の証明

- 1. 背理法による. $[X_1, X_2] = 0$ かつ $X_1 \neq 0$ なる $X \in \mathfrak{p}$ に対しては $[X_1, X_2] = 0$ より $e^{tX_1}e^{tX_2} \cdot o_K = e^{t(X_1 + X_2)} \cdot o_K = e^{tX} \cdot o_K$ であり, $Y(tX) = tX_1$, $Z(tX) = tX_2$ であることから $Y(\mathbf{R} X) = \mathbf{R} X_1$ となり, $X_1 \neq 0$ より $Y(\mathbf{R} X)$ は有界集合とならない.
- $2. \ X_1 = 0 \iff X \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ より Z(tX) = tX, Y(tX) = 0 であることによる.
- 4. 対偶を示す. $X \in \mathfrak{p}$ に対し, $[X_1, X_2] = 0$ かつ $X_1 \neq 0 \iff X \in \mathfrak{h} \setminus \{0\}$ を示せば良い. G の実階数は 1 で,H は非コンパクトであるから, $\mathfrak{h} \subset \mathfrak{p}$ であり, \mathfrak{h} は \mathfrak{g} の極大可換部分空間である. よって $X_1 \neq 0$ かつ $[X_1, X_2] = 0 \implies X_2 = 0$ であり, $X = X_1 + X_2 \in \mathfrak{h} \setminus \{0\}$ を得る.

 $Y(\mathbf{R}X)$ の有界性は $\mathrm{Ad}(k)$ -不変である;

補題 **1.5** $k \in K$, $X \in \mathfrak{p}$ に対し, $X' \coloneqq \operatorname{Ad}(k)X$, $\mathfrak{h}' \coloneqq \operatorname{Ad}(k)\mathfrak{h}$ とするとき, $Y(\mathbf{R} X)$ が有界 $\iff Y'(\mathbf{R} X')$ が有界である.

ここで Y'(X'), Z'(X') を、微分同相 π' : $(\mathfrak{h}' \cap \mathfrak{p}) \oplus (\mathfrak{h}'^{\perp} \cap \mathfrak{p}) \ni (Y', Z') \mapsto e^{Y'} e^{Z'} \cdot o_K$ を用いて、 $X' \in \mathfrak{p}$ に対し、 $(Y'(X'), Z'(X')) = \pi'^{-1}(e^{X'} \cdot o_K)$ と定める.

補題 1.5 の証明

主張は (X, \mathfrak{h}) と (X', \mathfrak{h}') に対して対称的であるから, $Y(\mathbf{R} X)$ が有界 \Rightarrow $Y'(\mathbf{R} X')$ が有界, のみを示せば十分である.

任意に $r \in \mathbf{R}$ を取る。 $e^{rX'} \cdot o_K = e^{Y'(rX')}e^{Z'(rX')} \cdot o_K$ であり,両辺に左から k^{-1} を掛けると, $e^{rX} = e^{\operatorname{Ad}(k^{-1})(Y'(rX'))}e^{\operatorname{Ad}(k^{-1})(Z'(rX'))} \cdot o_K$ を得る。ここで $Y'(rX') \in \mathfrak{h}' \cap \mathfrak{p}$, $Z'(rX') \in \mathfrak{h}'^{\perp} \cap \mathfrak{p}$ であるから $\operatorname{Ad}(k^{-1})(Y'(rX')) \in \mathfrak{h} \cap \mathfrak{p}$, $\operatorname{Ad}(k^{-1})(Z'(rX')) \in \mathfrak{h}^{\perp} \cap \mathfrak{p}$ である.

定理 1.2 により π は微分同相であるから任意の $r\in\mathbf{R}$ に対して $\mathrm{Ad}(k^{-1})(Y'(rX'))=Y(rX)$ であるから、 $Y'(\mathbf{R}\,X)=\mathrm{Ad}(k)(Y(\mathbf{R}\,X))$ であり、 $\mathrm{Ad}(k)$ は有限次元空間の間の線型写像であるから有界性を保つ.

以上から補題 1.5 が示された.

 $Z(\mathbf{R} X)$ の有界性については次の定理が知られており、有界性の判定は Lie 環の言葉のみで行える.

定理 1.6 [Kob97, Lemmma 5.4]

 $X \in \mathfrak{p}$ に対し、 $||Z(X)|| > ||X|| \sin \varphi(X, \mathfrak{h} \cap \mathfrak{p})$ である.

ここに $\varphi(X,\mathfrak{h}\cap\mathfrak{p})$ は X と $\mathfrak{h}\cap\mathfrak{p}$ の元がなす角度の最小値 $0 \le \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \le \frac{\pi}{2}$ であり, $X \in \mathfrak{p} \setminus \mathfrak{h} \iff \varphi(X,\mathfrak{h}\cap\mathfrak{p}) \ne 0$ である.

つまり $X \in \mathfrak{p} \setminus \mathfrak{h}$ ならば $\|Z(tX)\| \to \infty$, $|t| \to \infty$ である.

1.2 予想 1.3 の観察: G = SU(1,1), H = SO(1,1) の場合

$$G=SU(1,1),\ H=SO(1,1)\coloneqq\left\{egin{pmatrix}\cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}\ \middle|\ t\in\mathbf{R}\right\}$$
 の場合に予想 1.3 が正しいことは直接計算により確かめられる.

命題 1.7 G = SU(1,1), H = SO(1,1) のとき予想 1.3 は正しい.

 $\mathfrak{su}(1,1)$ の Killing 形式と $r = \tanh t$ の関係を明記せよ.

補題 1.8 $\mathfrak{su}(1,1)$ の Killing 形式から定まる Poincaré 円板 G/K の計量は

命題 1.7 の証明

右の円の Euclid 距離での半径を R とし, $e^{tX_{\theta}}\cdot o_{K}$ から $H\cdot o_{K}$ への垂線の足の o_{K} からの Euclid 距離を h とするとき,外側の青色の直角三角形に対して三平方の 定理を用いて $(h+R)^{2}=R^{2}+1$ より $R=\frac{1-h^{2}}{2h},R+h=\frac{1+h^{2}}{2h}$ を得る.

さらに下の紫色の三角形に対して余弦定理を用いて $R^2=(R+h)^2+r^2-2(R+h)\cos\theta$ を得, $\frac{2r\cos\theta}{r^2+1}=\frac{2h}{h^2+1}$ · · · (1.1) を得る.

ここで $r = \tanh t$, $h = \tanh s$ であり (1.1) は $\cos \theta \tanh 2t = \tanh 2s$ と書き直せる. したがって X_{θ} に対して $Y(\mathbf{R} X)$ が有界 $\iff |\cos \theta| \neq 1 \iff X \notin \mathfrak{h}$ である.

系 1.9 G = SO(1,n), H = SO(1,k), $1 \le k \le n-1$ に対して予想 1.3 は正しい. 系 1.9 の証明

 $\lceil e^X \cdot o_K \$ と $o_K \$ を結ぶ直線」と $H \cdot o_K \$ で張られる超平面で Poincaré 球 SO(1,n)/SO(n) を切った際の断面を考える.

この断面に現れるのは図2と同じであるから、同様の計算により系1.9を得る.

2 具体例と主定理の証明

2.1 具体例: 実階数1の古典型単純 Lie 群

命題 **2.1** G = SO(1,n), SU(1,n), Sp(1,n), H = SO(1,1), $n \ge 2$ に対して予想 1.3 は正しい.

$$G=Sp(1,2)$$
, $\mathfrak{h}=\mathbf{R}egin{pmatrix} 0&1&0\\1&0&0\\0&0&0 \end{pmatrix}$ の場合にのみ示す.その他の場合も全く同様

の議論である.

命題 **2.2** $G=Sp(1,2),\ H=SO(1,1),\ X\in\mathfrak{p}$ に対し、 $Y(\mathbf{R}\,X)$ が有界 \iff $X\in\mathfrak{p}\setminus\mathfrak{h}$ or X=0 である.

ただし、H は G の左上に入っている. すなわち、 ${\rm Lie}\, H=\mathfrak{h}={\bf R}\, A$ 、A:=

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 とする.

記号と定義 2.3 H を四元数体とする. $Sp(1,2)/Sp(1)\times Sp(2)\simeq\{(z_1,z_2)\mid z_1,z_2\in \mathbf{H},\ |z_1|^2+|z_2|^2<1\}=:\mathbf{H}\mathbb{H}^2$ である. これは自然表現 $Sp(1,2)\curvearrowright \mathbf{H}^2$ の $^t(1,0,0)$ 軌道を考え,第 2,第 3 成分に第 1 成分の逆数を右からかけた空間が $\mathbf{H}\mathbb{H}^2$ と微分同

相であるためであり,
$$Sp(1,2)$$
 \curvearrowright \mathbf{H}^3 の $^t(1,0,0)$ 軌道の点 $\begin{pmatrix} z_0 \\ z_1 \\ z_2 \end{pmatrix}$ に対応する \mathbf{H} \mathbb{H}^2

の点を
$$\begin{bmatrix} z_0 \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 1 \\ z_1 z_0^{-1} \\ z_2 z_0^{-1} \end{bmatrix}$$
 と書く.

愚直な行列計算により,次が示される.

補題
$$\mathbf{2.4} \ \forall z, w \in \mathbf{H} \ \mathcal{C}$$
対し, $\exp \begin{pmatrix} 0 & z & w \\ \overline{z} & 0 & 0 \\ \overline{w} & 0 & 0 \end{pmatrix} = \begin{pmatrix} \cosh r & * & * \\ \overline{z} & \sinh r & * & * \\ \overline{w} & \sinh r & * & * \end{pmatrix}$,ただし

 $r \coloneqq \sqrt{|z|^2 + |w|^2}$, である.

命題 2.2 の証明

 $X=0 \Rightarrow Y(\mathbf{R}\,X)=\{0\}$ と $X\in\mathfrak{h}\setminus\{0\}$ のときに $Y(\mathbf{R}\,X)$ が非有界であることは明らかであるから, $X\notin\mathfrak{h}$ の場合にのみ議論すればよい.つまり X=(0,0)

$$egin{pmatrix} 0 & z & w \ \overline{z} & 0 & 0 \ \overline{w} & 0 & 0 \end{pmatrix} \in \mathfrak{p} \setminus \mathfrak{h}, \ z, w \in \mathbf{H} \ \mathrm{s.t.} \ |z|^2 + |w|^2 = 1 \ \mathrm{を任意} \ \mathrm{cl} \ 1 \ \mathrm{O}$$
固定して議論し

て一般性を失わない. このとき, $X \in \mathfrak{p} \setminus \mathfrak{h}$ より $\operatorname{Re} z \neq \pm 1$ であることに注意する (Re: $\mathbf{H} \ni a + bi + cj + dk \mapsto a \in \mathbf{R}$ とする).

G の Cartan 対合を $\Theta(g)=(g^*)^{-1}$ $(g^*$ は g の共役転置)とするとき, $\Theta(e^{Y(tX)}e^{Z(tX)})\cdot o_K=e^{-Y(tX)}e^{-Z(tX)}\cdot o_K=\Theta(e^X)\cdot o_K=e^{-X}\cdot o_K$ より,「 $Y(\mathbf{R}\,X)$ が非有界 $\iff Y(\mathbf{R}\,X)\subset\mathbf{R}\,A$ が上に非有界」である.

したがって、 $Y(\mathbf{R}\,X)$ が非有界であるとき、列 $\{t_n\in\mathbf{R}\}_{n\in\mathbf{N}}$ で、 $s_n\to\infty,\ n\to\infty$ ただし $Y(t_nX) = s_nA$, なるものが存在する.

このとき、 $\{|t_n|\}_{n\in\mathbb{N}}$ が有界 \iff $\{e^{t_nX}\cdot o_K\}_{n\in\mathbb{N}}$ が有界ならば、G/K \ni $e^X \cdot o_K \mapsto (Y(X), Z(X)) \in (\mathfrak{h} \cap \mathfrak{p}) \oplus (\mathfrak{h}^{\perp} \cap \mathfrak{p}), X \in \mathfrak{p}$ が微分同相であることから $\{s_n\}_{n\in \mathbf{N}}$ も有界である.従って対偶より $\lim_{n\to\infty}s_n\to\infty$ ならば $\lim_{n\to\infty}|t_n|\to\infty$ ∞ である.

補題 2.4 より,

$$e^{s_n A} e^{Z(t_n X)} \cdot o_K = \begin{pmatrix} \cosh s_n & \sinh s_n & 0 \\ \sinh s_n & \cosh s_n & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} 1 \\ \pm \overline{z} \tanh |t_n| \\ \pm \overline{w} \tanh |t_n| \end{bmatrix}$$
$$= \begin{bmatrix} \cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n \\ \sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n \\ \pm \overline{w} \tanh |t_n| \end{bmatrix},$$

複号は t_n の符号 ± と同順,である.このとき $\lim_{n o\infty} anh s_n = 1 =$ $\lim_{n\to\infty} \tanh|t_n|$ と $\operatorname{Re} z \neq \pm 1$ に注意すると次を得る. 具体的な計算は後述する.

 $\lim_{n\to\infty} (\sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n) (\cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n)^{-1} = 1$

である.

したがって,
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \mathbb{H}^2$ か

$$\left((\sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n) (\cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n)^{-1} \right) \in \mathbf{H} \mathbb{H}^2 \land \mathcal{O}$$
 トルがなす Euclidean な内積の値を I_n とすると、 $\lim_{n \to \infty} I_n = 1$ である.

しかし,
$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$$
 から $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ へのベクトルと, $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \mathbf{H} \, \mathbb{H}^2$ から

 $e^{W(t_nX)} \cdot o_K \in \mathbf{H} \, \mathbb{H}^2$ へのベクトルがなす Euclidean な内積の値 J_n は,

$$W(t_n X) \in \left\{ \begin{pmatrix} 0 & z_1 & z_2 \\ \overline{z_1} & 0 & 0 \\ \overline{z_2} & 0 & 0 \end{pmatrix} \middle| z_1, z_2 \in \mathbf{H}, & \operatorname{Re} z_1 = 0 \right\}$$
であることと、補題 2.4

から $\operatorname{Re} J_n = 0$ となり $\lim_{n\to\infty} J_n = 1$ に矛盾する. 以上より $[X \in \mathfrak{p} \setminus \mathfrak{h} \Rightarrow Y(\mathbf{R} X)]$ 有界」, したがって 命題 2.2 を得る.

命題 2.2 の計算:

 $\lim_{n\to\infty} |(\sinh s_n \pm \overline{z} \tanh |t_n| \cosh s_n)(\cosh s_n \pm \overline{z} \tanh |t_n| \sinh s_n)^{-1} - 1| = 0$ を示せば主張が得られる. 具体的に計算すると.

$$\begin{split} &\lim_{n\to\infty} |(\sinh s_n \pm \overline{z} \tanh|t_n|\cosh s_n)(\cosh s_n \pm \overline{z} \tanh|t_n|\sinh s_n)^{-1} - 1| \\ &= \lim_{n\to\infty} \left| \frac{(\tanh s_n \pm \overline{z} \tanh|t_n|)(1 \pm z \tanh|t_n|\tanh s_n)}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|^2} - 1 \right| \\ &= \lim_{n\to\infty} \frac{|(\tanh s_n \pm \overline{z} \tanh|t_n|)z' - (1 \pm \overline{z} \tanh|t_n|\tanh s_n)z'|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|^2}, \quad z' \coloneqq 1 \pm z \tanh|t_n|\tanh s_n \\ &= \lim_{n\to\infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh|t_n|)z'|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|^2} \\ &= \lim_{n\to\infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh|t_n|)z'|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|} \\ &= \lim_{n\to\infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh|t_n|)|}{|(1 \pm \overline{z} \tanh|t_n|\tanh s_n)|} \end{split}$$

であり, $0<\min|1\pm\operatorname{Re} z|\leq |(1\pm\overline{z}\tanh|t_n|\tanh s_n)|\leq \sqrt{2^2+1^2}=\sqrt{5}$ と $\min\{|-1\pm\operatorname{Re} z|\}\leq |-1\pm\overline{z}\tanh|t_n||\leq \sqrt{5}$ であることから,

$$0 = \lim_{n \to \infty} (1 - \tanh s_n) \frac{\min\{|-1 \pm \operatorname{Re} z|\}}{\sqrt{5}} \le \lim_{n \to \infty} \frac{|(1 - \tanh s_n)(-1 \pm \overline{z} \tanh |t_n|)|}{|(1 \pm \overline{z} \tanh |t_n| \tanh s_n)|}$$

$$\le \lim_{n \to \infty} (1 - \tanh s_n) \frac{\sqrt{5}}{\min\{|1 \pm \operatorname{Re} z|\}} = 0$$

より, (2.1) が成り立つ.

2.2 Gの実階数が1の場合

定理 2.5 G を実階数 1 の実半単純 Lie 群とするとき, 予想 1.3 が成り立つ.

2.2.1 補足: 定理 2.5 の微分幾何的側面

定義 2.6 [Ebe72a, Definition 1.3]

M が完備かつ非正曲率をもつ 1-連結 Riemann 多様体であるとき, M を Hadamard 多様体といい, Hadamard 多様体 M が visibility manifold であるとは,

 $\forall p \in M, \forall \varepsilon > 0$ に対し、ある $r(p,\varepsilon) > 0$ が存在して、測地線 $\gamma \colon [t_0,t_1] \to X$ が $d_M(p,\gamma(t)) \geq r(p,\varepsilon)$ 、 $\forall t \in [t_0,t_1]$ ならば、 $\angle_p(\gamma(t_0),\gamma(t_1)) \leq \varepsilon$ であることである.

図を入れる

- 定理 2.7 [BH99, p. 296, 9.33 Theorem], originally [Ebe72b, Theorem 4.1] $\exists C \subset M \text{ s.t. } M = \bigcup \{f(C) \mid f \in \text{Isom}(M)\}$ なる Hadamard 多様体 M に対し、次は同値である.
 - (i) M is visibility manifold $\sigma \delta$.
 - (ii) 全測地的な部分 Riemann 多様体 $M' \subset M$ で ${\bf R}^2$ と等長同型なものが存在しない.

ここで Riemann 対称空間は Hadamard 多様体であり、定理 2.7 の (ii) は G の実階数が 1 以下であることと同値である。 したがって G の実階数が 1 の場合 G/K は visibility manifold であり、G=SU(1,2)、H=SO(1,1) の場合の証明と全く同様にして背理法により予想 1.3 が示される。

2.3 G が実階数1の群の直積の場合

参考文献

- [Ber88] J. N. Bernstein, On the support of Plancherel measure, J. Geom. Phys., Vol. 5, n. 4, 1988, pp. 663–710
- [BBE85] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), Vol. 122, No. 1, 1985, pp. 171–203
- [BH99] M. R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren der mathematischen Wissensschaften, Vol. 319, Springer, 1999
- [Borel–Ji] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, Mathematics: Theory & Applications, Birkhäuser Boston, 2006
- [Ebe72a] P. Eberlien, Geodesic Flows on Negatively Curved Manifolds I,

- Ann. of Math. (2), Vol. 95, pp. 492-510, 1972
- [**Ebe72b**] P. Eberlien, Geodesic Flow in Certain Manifolds without Conjugate Points, Trans. Amer. Math. Soc., Vol. 167, pp. 151–70, 1972
- [EO73] P. Eberlein and B. O'Neill, Visibility Manifolds, Pacific J. Math., Vol. 46, No. 1, 1973, pp. 45–109
- [Hel84] S. Helgason, Groups and Geometric Analysis—Integral Geometry, Invariant Differential Operators, and Spherical Functions, Mathematical Surveys and Monographs, Vol. 83, AMS, 1984
- [Hel01] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, GSM, Vol. 34, AMS, 2001
- [Kob89] T. Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann., Vol. 285, Issue. 2, 1989, pp. 249–263.
- [Kob97] T. Kobayashi, Invariant mesures on homogeneous manifolds of reductive type, J. Reine Angew. Math., Vol. 1997, No. 490–1, 1997, pp. 37–54