ポテンシャル逆問題の新たな設定とバブリング法による数値計算

守田龍平 & 今川真城 & 磯祐介

京都大学大学院情報学研究科先端数理科学専攻

概要

ポテンシャルは重力に代わる観測量になるのでは?

観測面 ∂B_a 上で観測するとき、 Ω の形状回復への影響を調べる. ポテンシャルは重力よりも距離減衰が遅いので、よりより回復が期待できる.

数值計算概要

領域回復のアルゴリズムは次の2つのアルゴリズムから成る.

- 1. 質点系による領域Ωの近似→最適化法
- 2. 質点系の均一化→バブリング法

バブリング法

最適化法によって得られた質点系を密度ρの物体に均す.

二層構造物体

二層構造物体によるポテンシャルUは

$$U(x) = \frac{\int_{B_R} E(x - y) dy}{U^{B_R}} + \rho \underbrace{\int_{\Omega} E(x - y) dy}_{U^{\Omega}},$$

である. 但し、EはNewtonポテンシャルである. ポテンシャル ρ U $^{\Omega}$ は観測面 ∂B_a 上で計算可能な量である.

$$\rho U^{\Omega} = U(観測値) - U^{B_R}(既知)$$
 on ∂B_a .

埋蔵物の影響を取り出す

楕円形のコアの回復

厳密解

• 重力観測 (a = 10,30,200)

ポテンシャル観測 (a = 10,30,200)

ポテンシャル逆問題

ポテンシャルは原子時計により観測可能な物理量になる! 観測面 ∂B_a の情報から埋蔵物体 Ω の形を回復する.

● 重力観測(従来)

$$ho
abla U^{\Omega} = \overrightarrow{g}$$
 on $\{A_n\}_{n=1}^N \subset \partial B_a$

・ ポテンシャル観測(新規)

$$\rho U^{\Omega} = p \quad \text{on} \quad \{A_n\}_{n=1}^N \subset \partial B_a$$

結論

ポテンシャル逆問題において,境界でポテンシャルを既知とする問題 設定を行い,重力を既知とする場合と比較した.

• 楕円形のコアの回復 今回の場合,ポテンシャル観測によってより良いコアの回復が可能になった.

