Linhas de Transmissão: Parte-1 Derivação das equações de L.T.: G= condutarcia I(2+02,t) RΔ₹ -₩~----LAZ parale la (5/m) C = capacit perol. (F/m) V(z+12,t) V (Z.t) = CAZ P/ Gerador Propriedade de ondas TEM: 4 porque o potencial em ∞ = 0 $V = - \left(\vec{E} \cdot d \right) \quad I = \oint \vec{H} \cdot d \cdot 2$ Assim, ao inves de usarmos as eq. de Maxwell, utilizaremos elementos de circuitos elétricos. Propagação ao longo de + Z Aplicando a lei das tensões de Kirchhoff no laço externo: $V(z,t) = R\Delta z I(z,t) + L\Delta z \frac{dI(z,t)}{dz} + V(z+\Delta z,t)$ rearranjando: $\frac{V(z+\Delta z,t)-V(z,t)}{\Delta z}=RI(z,t)+L\frac{dI(z,t)}{dt}$ 3

	PROVA
	F PROVA
$-\frac{3V(z,t)}{3z} = RI(z,t) + L\frac{3I(z,t)}{3t}$	*USE*
Aplicando agora a les das correntes no no pri	ncipal:
$I(z,t) = I(z + \Delta z,t) + \Delta I$	
$= I(z+\Delta z,t) + \frac{V(z+\Delta z,t)}{1/G\Delta z} + C\Delta z \int V(z+\Delta z) dz$	(1,5)
7945	
= I(Z+AZ,t) + GAZV(Z+AZ,t) + CAZ SV	(Z+DZ,+) dt
Restronjondo:	
$\frac{\Gamma(z+\Delta z,t)-\Gamma(z,t)}{\Delta z} = \frac{GV(z+\Delta z,t)}{\delta t} + \frac{C}{\delta V(z+\Delta z,t)}$	<u>,t</u>) (5
Quando Dz -> 0, eq. (5) torma-se:	
$\frac{\partial I(z,t)}{\partial z} = GV(z,t) + C \frac{\partial V(z,t)}{\partial t}$	6
Supondo dependência harmônica no tempo de v	modo que
$V(z,t) = Re \left[V_s(z) e^{j\omega t} \right]$	70
$I(z,t) = Re \left[I_s(z) e^{j\omega t} \right]$	73
onde Vs(z) e Is(z) são as formas fasoriais V(z,t) e I(z,t), respectivamente, então as esc (4) e (6) tornam-se:	de 1081

	O comprimento de ondo (2) e a velocidade da onda (u)	sao,
	respectivamente:	
	$\lambda = \frac{2\pi}{\beta} \tag{13}$	
	$u = \underline{\omega} = f\lambda \tag{A}$	
	$u = \frac{\omega}{\beta} = f\lambda \qquad (4)$	
	As solvants de 10 e 12 (por se trotorem de que dif	. de
	seg. ordem) são compostas por una componente.	q/ se
	propaga na direção tz e outra na -z. Assim,	
	$V_{5}(z) = V_{0}^{\dagger} e^{-yz} + V_{0}^{-} e^{yz}$ (5)	
	13.67 = 16 E	
	$I_{s}(z) = I_{o} e^{+\frac{1}{2}} + I_{o} e^{+\frac{1}{2}}$	
	onde Vot, Vo, Tot e To 100 amplitudes de ondas.	
	A expressão instantânea pl tensão torna-se:	
A	$V(z,t) = Re \left[V_3(z)e^{i\omega t} \right]$	
1		
	= Vote = cos (wt - Bz) + Voe exz cos (wt + Bz)	[7]
	0	1 5
	Podemos definir agora un parâmetro importantissimo, a impedância conacterística Zo.	31
	Lo é a razão da tensão pela corrente na direcão	+ 2
	en gualever ponto do linha.	
	Zo é analogo à impedância intrinsece do meio (?)	
		-
	Substituindo (15) e (16) em (8) e (9), e igualar conficientes de termos exe e e e :	ndo
	coeficientes de termos e e e:	
		4

+ x Vot = 82 - x Vo e 82 = (R+ swL) [Iot = 82 + Iot e 82] isolando termos em e : y Vot = 8 = (R+ jwL) Iot = 82 $\frac{V_0^{\dagger}}{I_0^{\dagger}} = \frac{R + i\omega L}{X}$ se rsolormos os termos em e : - yvoe = (R+jwL) Io e YE V= - (R+JWL) Logo: $\frac{Z_0 = \frac{V_0^{\dagger}}{I_0^{\dagger}} = \frac{V_0^{\dagger}}{I_0} = \frac{R + j\omega L}{V} = \frac{V_0^{\dagger}}{V} = \frac{R + j\omega L}{V}$ (18) $\frac{z_0}{G + j\omega C} = R_0 + jX_0$ Ro e em Ohms (e não em 12/m) componente resist. Xo e a componente reativa O recíproco de Zo e a admitância / Comp. reativa não dissipa pot. Elas absorvem e devolvem igual mente. Tensão e corrente são defasadas de 90.