FBSP: Morphological operations

Nick Yao Larsen nylarsen@cfin.au.dk

What can it be used for?

Remove noise

- Small objects
- Fill holes

Isolate objects

Definition 1D

Structuring Element (SE)

Input image

Output image

Hit: If just one of the 1's in the SE overlap with a 1 in the input \rightarrow output = 1, otherwise output = 0

Fit: If all 1's in the SE overlap with '1's in the input \rightarrow output = 1, otherwise output = 0

Dilation

Dilation is based on "Hit":

If just one of the '1's in the SE overlap with a 1 in the input => output = 1, otherwise output = 0
 Definitions (1D)

Erosion

Erosion is based on "Fit":

If all'1's in the SE overlap with '1's in the input => output = 1, otherwise output = 0
 Definitions (1D)

Morphology 2D

Structuring element (kernel)

- Structuring elements can have varying sizes and shapes!
- Structuring elements have an origin
- Zeros or empty spots/zeros in the structuring element are "don't care's"!

Dilation – images

- Objects are merged (holes are filled)
- Box shape: Sharp corners are preserved

$$g(x,y) = f(x,y) \oplus SE$$

⊕ denote dilation

Structuring element

1	1	1
1	1	1
1	1	1

Dilation – images

- Objects are merged (holes are filled)
- Box shape: Sharp corners are preserved

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

Erosion – images

$$g(x,y) = f(x,y) \ominus SE$$

→ denote erosion

1	1	1
1	(1)	1
1	1	1

Erosion – images

Erosion – images

Application example: Counting objects

- Counting these coins is difficult because they touch each other!
- –Solution: Thresholding and Erosion separates them

Compound operations

Combining Erosion and Dilation into higher level (more advanced) operations

Main properties:

- Opening: Isolate objects and remove small objects (better than Erosion)
- Closing: Fill holes (better than Dilation)

Opening

Remove small objects but, keep original size (and partially shape)

- Opening = Erosion + Dilation
 - Use the same structuring element!
 - Similar to erosion, but less destructive
- Math:

$$g(x,y) \circ SE = (f(x,y) \ominus SE) \oplus SE$$

 Opening is idempotent: Repeated operations have no further effects! In other words you always get the same results

Opening example

Structuring element:

1	1	1
1	(1
1	1	1

Opening

Example

• 9x3 and 3x9 structuring element

Opening

Example

- Use large structuring element that fits into the big objects
- Structuring element: 11 pixels disc

Motivation: Fill holes, but keep original size (and shape)

Fill holes but keep original size (and partially shape)
Closing = Dilation + Erosion

- Use the same structuring element
- Similar to dilation, but less destructive
- Math:

$$g(x,y) \circ SE = (f(x,y) \oplus SE) \ominus SE$$

Closing is idempotent: Repeated operations has no further effects!

structur

 Given the binary image as input, find the Closing (dilation + erosion) for the following structuring element:

Original

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	0	0
0	0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	0	0	0	0
0	0	1	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Dilation

0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1	0
0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0	0
0	1	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	0
0	0	0	0	0	0	0	0	0	0

Dilation + erosion

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0	0
0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

1	1	1
1	9	1
1	1	1

Example

Structuring element: 3x3 square

Example

- 1.Threshold
- 2.Closing with a disc of size 20

Example

- Closing operation with a 22 pixel disc
- Closes small holes

Question

Which morphological operation has been done to each of the 4 image below?

A: Erosion B: Dilation

C: Opening D: Closing

