EC3101: MICROECONOMIC ANALYSIS II

Instructor: Timothy Wong

Contact Information

E-mail: timwong@nus.edu.sg

Phone: 6516 3959

Office location: AS2-04-28

Office hours: Tuesdays, 1pm to 3pm

Textbook

Intermediate
 Microeconomics
 (ninth edition) by
 Hal R. Varian

Syllabus

Week 1 (Aug 11)	aug 11) Course Overview; Intertemporal Choice, Ch.10	
Week 2 (Aug 18)	Uncertainty, Ch. 12	
Week 3 (Aug 25)	Exchange, Ch.32	
Week 4 (Sept 1)	Monopoly, Ch.25	
Week 5 (Sept 8)	Monopoly, Ch.25; Oligopoly, Ch.28	
Week 6 (Sept 15)	Oligopoly, Ch.28	
Recess Week		
Week 7 (Sept 29)	Midterm	
Week 8 (Oct 6)	(8 (Oct 6) Game Theory, Ch.29	
Week 9 (Oct 13) Game Theory, Ch.29, Game Applications, Ch. 30		
Week 10 (Oct 20) Game Applications, Ch. 30		
Week 11 (Oct 27)	Externalities, Ch. 35, Public Goods, Ch. 37	
	[Homework 2 due on Oct 30 at 6pm]	
Week 12 (Nov 2)	Asymmetric Information, Ch. 38	
Week 13 (Nov 9) Review [webcast lecture in lieu of Deepavali holiday]		

Assessment

•	Homework	10%

- Midterm Exam 30%
- Final Exam 50%

Homework

- Two individual problem sets
- Will be posted to IVLE one week before
 - Problem set I will be posted 6 pm, Sept 4th
 - Problem set II will be posted 6 pm, Oct 23rd
- Please submit hard copy to tutor's mailbox
 - Problem set I is due 6 pm, September 11th
 - Problem set II is due 6 pm, October 30th

Homework

• 25% of total possible points deducted for every day the submission is late

Participation

- Practice problems will be posted to IVLE every Monday, beginning in week 2.
- These problems will be discussed in tutorials the following week
 - Problems posted in week 2 will be discussed in week 3
- Students will be randomly selected to present the solutions each week.
- Every student has to present at least once during the semester.

Participation

- To obtain a good participation grade, students must present with clarity.
- While correct answers will be rewarded, wrong answers will not be severely penalized as long as the student demonstrates good effort and logic in explaining his/her solution.

Participation

- Midterm
 - Worth 30% of your final grade
 - September 29th, 8 a.m. to 10 a.m.
- Final
 - Worth 50% of your final grade
 - November 30th, 1 p.m. to 3 p.m.
- Both exams are closed-book

Other Information

- Attendance at tutorials will be recorded and students who miss two tutorials will be reported to the Dean's office. This is a faculty policy
- Academic dishonesty is unacceptable. Any suspected cases of dishonesty will be reported and handled according to university policy.

Other Information

- Content taught in this course builds on material from previous courses, in particular, EC2101. To help you succeed in this class I advice that you review your notes on
 - Consumer theory
 - Production theory
 - Competitive markets

Other Information

• Lectures will be webcasted. Videos will be posted on IVLE.

CHAPTER TEN: INTERTEMPORAL CHOICE

Intertemporal Choice

- Persons often receive income in "lumps"; *e.g.* monthly salary.
- How is a lump of income spread over the following month (saving now for consumption later)?
- Or how is consumption financed by borrowing now against income to be received at the end of the month?

Intertemporal Choice

Present and Future Value

How do we value current goods in the future (future value) and future goods in the present (present value)

Present and Future Values

Present Value (PV) Future Value (FV)

- Begin with some simple financial arithmetic.
- Take just two periods; 1 and 2.
- Let r denote the interest rate per period.

Future Value

- E.g., if r = 0.1 then \$100 saved at the start of period 1 becomes \$110 at the start of period 2.
- The value next period of \$1 saved now is the future value of that dollar.

Future Value

• Given an interest rate r the future value one period from now of \$1 is:

$$FV = 1 + r$$

• Given an interest rate r the future value one period from now of \$m is:

$$FV = m(1+r)$$

- Suppose you can pay someone an amount of money now to obtain \$1 at the start of next period. What is the most you should pay? \$1?
- No. If you kept your \$1 now and saved it then at the start of next period you would have \$(1+r) > \$1, so paying \$1 now for \$1 next period is a bad deal.
- The most you should pay is less than \$1

- How much money would have to be saved now, in the present, to obtain \$1 at the start of the next period?
- \$m saved now becomes \$m(1+r) at the start of next period, so we want the value of m for which

$$m(1+r) = 1$$

That is, $m = 1/(1+r)$,
the present-value of \$1 obtained at the
start of next period.

• The present value (PV) of \$1 available at the start of the next period is

$$PV = \frac{1}{1+r}$$

• And the present value of \$m available at the start of the next period is

$$PV = \frac{m}{1+r}$$

• E.g., if r = 0.1 then the most you should pay now for \$1 available next period is

$$PV = \frac{1}{1+0.1} = \$0.91$$

 And if r = 0.2 then the most you should pay now for \$1 available next period is

$$PV = \frac{1}{1 + 0.2} = \$0.83$$

- When r = 0.1, PV = \$0.91
- When r = 0.2, PV = \$0.83
- Notice that the present value is higher when the interest rate is lower, and vice versa
- The interest rate is **the cost of borrowing/lending**. The higher the cost of borrowing, the less \$1 is worth in the present.

The Intertemporal Choice Problem

Modeling how individuals decide whether to consume now or later?

The Intertemporal Choice Problem

- Let m₁ and m₂ be incomes received in periods 1 and 2.
- Let c₁ and c₂ be consumptions in periods 1 and 2.
- Let p₁ and p₂ be the prices of consumption in periods 1 and 2.

The Intertemporal Choice Problem

- The intertemporal choice problem: Given incomes m_1 and m_2 , and consumption prices p_1 and p_2 , what is the most preferred intertemporal consumption bundle (c_1, c_2) ?
- For an answer we need to know:
 - the intertemporal budget constraint
 - intertemporal consumption preferences.

 To start, let's ignore price effects by supposing that

$$p_1 = p_2 = \$1.$$

• Suppose that the consumer chooses not to save or to borrow.

Q: What will be consumed in period 1?

A: $c_1 = m_1$.

Q: What will be consumed in period 2?

A: $c_2 = m_2$.

So $(c_1, c_2) = (m_1, m_2)$ is the consumption bundle if the consumer chooses neither to save nor to borrow.

- Now suppose that the consumer spends nothing on consumption in period 1; that is, $c_1 = 0$ and the consumer saves $s_1 = m_1$.
- The interest rate is r.
- What now will be period 2's consumption level?

- Period 2 income is m₂.
- Savings plus interest from period 1 sum to $(1 + r)m_1$.
- So total income available in period 2 is $m_2 + (1 + r)m_1$.
- So period 2 consumption expenditure is $c_2 = m_2 + (1+r)m_1$

The Intertemporal Budget

- Now suppose that the consumer spends everything possible on consumption in period 1, so $c_2 = 0$.
- What is the most that the consumer can borrow in period 1 against her period 2 income of \$m₂?
- Let b₁ denote the amount borrowed in period 1.

- Only \$m₂ will be available in period 2 to pay back \$b₁ borrowed in period 1.
- So $b_1(1 + r) = m_2$.
- That is, $b_1 = m_2 / (1 + r)$.
- So the largest possible period 1 consumption level is

$$c_1 = m_1 + \frac{m_2}{1+r}$$

Saving everything for period 2 Borrowing everything from period 2

- These are the most extremes choices an individual can make.
- These points and everything in between (some saving or some borrowing) constitute the budget constraint

• Suppose that c_1 units are consumed in period 1. This costs c_1 and leaves c_1 are consumption will then be

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$

Period 2
endowment

Interest rate
gains from
Period 1

Savings/leftovers
from Period 1

savings

$$c_2 = m_2 + (1+r)(m_1 - c_1)$$

can be rearranged as

$$c_2 = -(1+r)c_1 + m_2 + (1+r)m_1$$
slope intercept

of a line with c_2 on the vertical axis and c_1 on the horizontal axis

$$(1+r)c_1 + c_2 = (1+r)m_1 + m_2$$

is the "future-valued" form of the budget constraint since all terms are in period 2 values. This is equivalent to

$$c_1 + \frac{c_2}{1+r} = m_1 + \frac{m_2}{1+r}$$

which is the "present-valued" form of the constraint since all terms are in period 1 values.

- How do individuals decide how much to consume in each period?
- They want to choose the bundle that maximizes utility.
- If we trace out indifference curves (bundles which yield individuals equal utility), then we want to find the indifference curve furthest from the origin

• To find the indifference curve furthest from the origin that still satisfies the budget constraint, we look for the indifference curve tangent to the budget constraint.

- What if there was an increase in the interest rate?
- Borrowing is now costlier and saving is more rewarding

 $\begin{array}{c} \mathbf{Figure} \\ \mathbf{10.4} \end{array}$

A saver is now better off and will remain a saver

 A borrower is now worse off and could decide to become a saver

- Now let's add prices p₁ and p₂ for consumption in periods 1 and 2.
- How does this affect the budget constraint?

- Given her endowment (m_1,m_2) and prices p_1 , p_2 what intertemporal consumption bundle (c_1^*,c_2^*) will be chosen by the consumer?
- Maximum possible expenditure in period 2 is $m_2 + (1+r)m_1$ so maximum possible consumption in period 2 is $c_2 = \frac{m_2 + (1+r)m_1}{n_2}$

• Similarly, maximum possible expenditure in period 1 is

$$m_1 + \frac{m_2}{1+r}$$

so maximum possible consumption in period 1 is

$$c_1 = \frac{m_1 + \frac{m_2}{1+r}}{p_1}$$

• Finally, if c_1 units are consumed in period 1 then the consumer spends p_1c_1 in period 1, leaving m_1 - p_1c_1 saved for period 1. Available income in period 2 will then be

$$m_2 + (1+r)(m_1 - p_1c_1)$$

SO

$$p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1).$$

$$p_2c_2 = m_2 + (1+r)(m_1 - p_1c_1)$$

can be rearranged to

$$(1+r)p_1c_1 + p_2c_2 = (1+r)m_1 + m_2$$

This is the "future-valued" form of the budget constraint since all terms are expressed in period 2 values.

Equivalent to it is the "present-valued" form:

$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

Solving for c_2 , we have:

$$c_2 = -(1+r)\frac{p_1}{p_2}c_1 + \frac{(1+r)m_1 + m_2}{p_2}$$
slope intercept

- Define the inflation rate by π where $p_1(1+\pi)=p_2$
- For example, $\pi = 0.2$ means 20% inflation, and $\pi = 1.0$ means 100% inflation.

- We lose nothing by setting p_1 =1 so that p_2 = 1+ π .
- Then we can rewrite the budget constraint

$$p_1c_1 + \frac{p_2}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$
as
$$c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

$$c_1 + \frac{1+\pi}{1+r}c_2 = m_1 + \frac{m_2}{1+r}$$

can be rearranged to

$$c_{2} = -\frac{1+r}{1+\pi}c_{1} + \frac{1+r}{1+\pi}(m_{1} + \frac{m_{2}}{1+r})$$
slope
slope
intercept

- When there was no price inflation $(p_1=p_2=1)$ the slope of the budget constraint was -(1+r).
- Now, with price inflation, the slope of the budget constraint is $-\frac{1+r}{1+\pi}$. This can be written as

$$-(1+\rho) = -\frac{1+r}{1+\pi}$$

 ρ is known as the real interest rate.

Real Interest Rate

$$-(1+\rho) = -\frac{1+r}{1+\pi}$$

Gives

$$\rho = \frac{r - \pi}{1 + \pi}$$

For low inflation rates ($\pi \approx 0$), $\rho \approx r - \pi$. For higher inflation rates this approximation becomes poor.

Real Interest Rate

r	0.30	0.30	0.30	0.30	0.30
π	0.0	0.05	0.10	0.20	1.00
r - π	0.30	0.25	0.20	0.10	-0.70
ρ	0.30	0.24	0.18	0.08	-0.35

Comparative Statics

The slope of the budget constraint is

$$-(1+\rho) = -\frac{1+r}{1+\pi}$$

• The constraint becomes flatter if the interest rate, r, falls or the inflation rate, π , rises (both decrease the real rate of interest).

- A financial security is a financial instrument that promises to deliver an income stream.
- E.g.; a security that pays
 \$m₁ at the end of year 1,
 \$m₂ at the end of year 2, and
 \$m₃ at the end of year 3.
- What is the most that should be paid now for this security?

- The security is equivalent to the sum of three securities;
 - the first pays only m_1 at the end of year 1,
 - the second pays only \$m₂ at the end of year 2, and
 - the third pays only \$m₃ at the end of year 3.

The PV of \$m₁ paid 1 year from now is

$$\frac{m_1}{1+r}$$

The PV of \$m₂ paid 2 years from now is

$$\frac{m_2}{(1+r)^2}$$

The PV of \$m₃ paid 3 years from now is

$$\frac{m_3}{(1+r)^3}$$

• The PV of the security is therefore:

$$\frac{m_1}{1+r} + \frac{m_2}{(1+r)^2} + \frac{m_3}{(1+r)^3}$$

Valuing Bonds

- A bond is a special type of security that pays a fixed amount \$x for T years (its maturity date) and then pays its face value \$F.
- What is the most that should now be paid for such a bond?

Valuing Bonds

End of Year	1	2	3	•••	T-1	Т
Income paid	X	X	X	X	X	F
Present value	$\frac{x}{1+r}$	$\frac{x}{(1+r)^2}$	$\frac{x}{(1+r)^3}$	• • •	$\frac{x}{(1+r)^{T-1}}$	$\frac{F}{(1+r)^T}$

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + \dots + \frac{x}{(1+r)^{T-1}} + \frac{x}{(1+r)^T}$$

Valuing Bonds

• Suppose you win a State lottery. The prize is \$1,000,000 but it is paid over 10 years in equal installments of \$100,000 each. The interest rate, r, is 0.1. What is the prize actually worth?

Answer: \$614,457

- A consol is a bond which never terminates, paying \$x per period forever.
- What is a consol's present-value?

End of Year	1	2	3		t	
Income Paid	\$x	\$x	\$x	\$x	\$x	\$x
Present -Value	\$x 1+r	$\frac{\$x}{(1+r)^2}$	$\frac{\$x}{(1+r)^3}$	• • •	$\frac{\$x}{(1+r)^t}$	•••

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + + \frac{x}{(1+r)^t} +$$

$$PV = \frac{x}{1+r} + \frac{x}{(1+r)^2} + \frac{x}{(1+r)^3} + \dots$$

$$= \frac{1}{1+r} \left[x + \frac{x}{1+r} + \frac{x}{(1+r)^2} + \dots \right]$$

$$= \frac{1}{1+r}[x+PV].$$
 Solving for PV gives

$$PV = \frac{X}{r}$$
.

E.g. if r = 0.1 now and forever then the most that should be paid now for a console that provides \$1000 per year is

$$PV = \frac{x}{r} = \frac{\$1000}{0 \cdot 1} = \$10,000.$$