Kodavimo teorija

Vilius Stakėnas

2010 metų ruduo

Reedo-Mullerio kodai	2
Kosminiai kodai	3
Dvejetainės abėcėlės kodai	4
Žodžių poerdviai	
Žodžių atitiktis	
Inventorizacijos dokumentas	
Reedo-Mullerio kodai	
Kodo dimensija	
Jrodymas	10
Įrodymas	
Jrodymas	
Jrodymas	
Jrodymas	
$\mathbf{RM}(3,2)$	15
Reedo-Mullerio kodų kolonija	16
Reedo-Mullerio kodo žodžių svoriai	17
Uždara šeima	
Jrodymas	19
Jrodymas	20
Kitas požiūris	21
Loginės funkcijos	22
Reedo-Mullerio kodų žodžiai – loginiai daugianariai	23
Minimalus atstumas	24
Reedo-Mullerio kodų dekodavimas	25
Dekodavimas	
Pasirengimas	27
Dekodavimas	28

Dekodavimas	29
Oekodavimas	30
Oekodavimas	31
ygybių sudarymas	32
odžių rinkinys	33
Zodžių rinkinys	34
ygybės	35
ygybės	36
Pavyzdys: $\mathbf{RM}(3,1)$ dekodavimas	37
Dekodavimas	38
)ekodavimas	39

Reedo-Mullerio kodai

2/39

Kosminiai kodai

Ši kodų šeima pasitarnavo kosmonautikai. Jais buvo naudojamasi 1969-1977 metais palaikant ryšį su kosminėmis stotimis.

Ir šiaip tai labai įdomūs kūriniai.

3/39

Dvejetainės abėcėlės kodai

Galima sukonstruoti Reedo-Mullerio kodus iš bet kokios abėcėlės \mathbb{F}_p žodžių.

Paprasčiausias ir svarbiausias – dvejetainės abėcėlės atvejis.

Tarkime, tiesinės erdvės \mathbb{F}_2^m žodžiai kokiu nors būdu sunumeruoti:

$$\mathbb{F}_2^m = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}, \quad n = 2^m.$$

4/39

Žodžių poerdviai

Žymėkime $x_i(\mathbf{a})$ *i*-ąją žodžio **a** komponentę. Tada aibės

$$H_i = {\mathbf{a} : \mathbf{a} \in \mathbb{F}_2^m, x_i(\mathbf{a}) = 0}, \quad i = 1, \dots, m,$$

yra tiesinės erdvės \mathbb{F}_2^m poerdviai.

Žodžių atitiktis

Apibrėšime abipusiškai vienareikšmę \mathbb{F}_2^m poaibių ir erdvės \mathbb{F}_2^n , $n=2^m$, žodžių atitiktį.

Jei $D \subset \mathbb{F}_2^m$, tai priskirsime: $D \to \mathbf{v}(D)$; čia žodžio $\mathbf{v}(D) \in \mathbb{F}_2^n$ komponentės apibrėžiamos taip:

$$x_i(\mathbf{v}(D)) = \begin{cases} 0, & \text{jei } \mathbf{a}_i \notin D, \\ 1, & \text{jei } \mathbf{a}_i \in D. \end{cases}$$

6/39

Inventorizacijos dokumentas

Žodyje $\mathbf{v}(D)$ vienetukai žymi, kurie žodžiai įeina į $D; \mathbf{v}(D)$ yra tarsi poaibio D "inventorizacijos" dokumentas.

Pavyzdžiui, jei $m = 3, D = \{a_1, a_3, a_5\}$, tai $\mathbf{v}(D) = 10101000$.

Visą erdvę \mathbb{F}_2^m atitinka žodis $\mathbf{v}_0 = 11 \dots 1$.

Teisinga tokia lygybė:

$$\mathbf{v}(D) \cdot \mathbf{v}(E) = \mathbf{v}(D \cap E).$$

Čia · žymi žodžių daugybą, pvz. $101 \cdot 011 = 001$.

Reedo-Mullerio kodai

Apibrėžimas. Tegu $m\geq 1,\ r\leq m,\ n=2^m.$ Reedo-Mullerio $\mathbf{RM}(m,r)$ kodu vadinsime tiesinį \mathbb{F}_2^n poerdvį, kurį generuoja žodžiai

$$\mathbf{v}_0, \ \mathbf{v}_{i_1} \cdot \ldots \cdot \mathbf{v}_{i_s}; \ 1 \le i_1 < \ldots < i_s \le m, \ s \le r,$$
 (1)

čia

$$\mathbf{v}_0 = 11...1, \ \mathbf{v}_i = \mathbf{v}(H_i), \ i = 1,...,m.$$

Žodžių, kurie užrašyti (1), skaičius lygus

$$k(m,r) = 1 + \binom{m}{1} + \binom{m}{2} + \ldots + \binom{m}{r}.$$

8/39

Kodo dimensija

Teorema. $\mathbf{RM}(m,r)$ kodo dimensija lygi k(m,r), o žodžiai

$$\mathbf{v}_0, \ \mathbf{v}_{i_1} \cdot \ldots \cdot \mathbf{v}_{i_s}; \ 1 \le i_1 < \ldots < i_s \le m, \ s \le r,$$

sudaro jo bazę.

9/39

Įrodymas.

lš pradžių pastebėkime tokią žodžių \mathbf{v}_i savybę. Imkime poerdvių H_i pildinius

$$H_i^c = \{ \mathbf{a} : \mathbf{a} \in \mathbb{F}_2^m, x_i(\mathbf{a}) = 1 \}, \quad i = 1, \dots, m.$$

Nesunku pastebėti, jog

$$\mathbf{v}(H_i^c) = \mathbf{v}_0 + \mathbf{v}_i.$$

Įrodymas

Imkime

$$\mathbf{v}_0, \ \mathbf{v}_{i_1} \cdot \ldots \cdot \mathbf{v}_{i_s}; \ 1 \le i_1 < \ldots < i_s \le m, \ s \le r,$$
 (2)

žodžių sistemoje r=m. Tada gausime lygiai $n=2^m$ žodžių; tokia yra ir visos erdvės \mathbb{F}_2^n dimensija.

Jeigu parodysime, jog kiekvieną \mathbb{F}_2^n žodį galima išreikšti šiais n žodžiais, tai galėsime teigti, kad jie sudaro tiesiškai nepriklausomą sistemą.

Tada bet kokiam r (2) žodžiai irgi bus tiesiškai nepriklausomi, nes sudarys tiesiškai nepriklausomos sistemos posistemę.

11/39

Įrodymas

Pakanka parodyti, kad kiekvieną \mathbb{F}_2^n standartinės bazės žodį galima išreikšti (2) žodžių tiesine kombinacija.

12/39

Įrodymas

Imkime standartinės bazės žodį e_i , kuris sudarytas iš nulių visose pozicijose, išskyrus i-ąją, lygią vienetui.

Prisiminę erdvės \mathbb{F}_2^m poaibių ir \mathbb{F}_2^n žodžių atitiktį, galime rašyti: $\mathbf{e}_i = \mathbf{v}(D)$; čia $D = \{\mathbf{a}_i\}$.

Tegu
$$\mathbf{a}_i = a_1 \dots a_m$$
. Žymėdami $H_i(0) = H_i$ ir $H_i(1) = H_i^c$, gausime $D = \{\mathbf{a}_i\} = H_1(a_1) \cap \dots \cap H_m(a_m)$.

Įrodymas

Pasirėmę savybe

$$\mathbf{v}(U \cap V) = \mathbf{v}(U) \cdot \mathbf{v}(V),$$

gausime

$$\mathbf{e}_i = \mathbf{v}(D) = \mathbf{v}(H_1(a_1)) \cdot \ldots \cdot \mathbf{v}(H_m(a_m)).$$

Tačiau $\mathbf{v}(H_i(a_i))$ lygus arba \mathbf{v}_i , arba $\mathbf{v}_0+\mathbf{v}_i$. Todėl \mathbf{e}_i yra (2) sistemos žodžių tiesinė kombinacija.

14/39

RM(3, 2)

	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	\mathbf{a}_7	\mathbf{a}_8
	000	001	010	011	100	101	110	111
\mathbf{v}_0	1	1	1	1	1	1	1	1
\mathbf{v}_1	1	1	1	1	0	0	0	0
\mathbf{v}_2	1	1	0	0	1	1	0	0
\mathbf{v}_3	1	0	1	0	1	0	1	0
$\mathbf{v}_1 \cdot \mathbf{v}_2$	1	1	0	0	0	0	0	0
$\mathbf{v}_1 \cdot \mathbf{v}_3$	1	0	1	0	0	0	0	0
$\mathbf{v}_2 \cdot \mathbf{v}_3$	1	0	0	0	1	0	0	0

15/39

Reedo-Mullerio kodų kolonija

Fiksuotam m gavome ištisą Reedo–Mullerio kodų koloniją, kurios nariai yra $\mathbf{RM}(m,r),\ r=0,\ldots,m.$

Akivaizdu, kad

$$\mathbf{RM}(m,0) = \{00...0, 11...1\}, \ \mathbf{RM}(m,m) = \mathbb{F}_2^n.$$

Reedo-Mullerio kodo žodžių svoriai

Pastebėkime, kad visų Reedo-Mullerio kodo $\mathbf{RM}(m,r)$, kai r < m, žodžių svoriai yra lyginiai. Iš tikrųjų:

$$w(\mathbf{v}_0) = n = 2^m, \quad w(\mathbf{v}_{i_1} \cdot \ldots \cdot \mathbf{v}_{i_s}) = 2^{m-s}.$$

17/39

Uždara šeima

$$1 + {m \choose 2} + \ldots + {m \choose r} + {m \choose r+1} + \ldots + {m \choose m-1} + 1 = 2^m = n.$$

Pasinaudoję binominių koeficientų sąryšiu $\binom{m}{k} = \binom{m}{m-k}$ galime šią lygybę užrašyti panaudodami Reedo-Mullerio kodų dimensijas:

$$k(m,r) + k(m,m-r-1) = \dim(\mathbf{RM}(m,r)) + \dim(\mathbf{RM}(m,m-r-1)) = n.$$

Teorema. Su visomis $m, r \ (m < r)$ reikšmėmis teisingas sąryšis $\mathbf{RM}(m,r)^\perp = \mathbf{RM}(m,m-r-1).$

18 / 39

Irodymas

Kad teiginys būtų teisingas, reikia, kad būtų patenkintos dvi sąlygos:

- kodų $\mathbf{RM}(m,r)$, $\mathbf{RM}(m,m-r-1)$ bazių žodžių skaliarinės sandaugos turi būti lygios nuliui moduliu 2;
- dimensijų suma lygi n.

Tačiau pastarają lygybę jau nustatėme!

Irodymas

Tegu $\mathbf{u} = \mathbf{v}_{i_1} \cdot \dots \mathbf{v}_{i_s}$ ir $\mathbf{b} = \mathbf{v}_{j_1} \cdot \dots \mathbf{v}_{j_t}$ yra šių kodų bazių žodžiai, $s+t \leq r+m-r-1 < m$. Sudauginę juos gausime žodį

$$\mathbf{c} = \mathbf{v}_{l_1} \cdot \dots \mathbf{v}_{l_z}, \quad z < m.$$

Tačiau

$$(\mathbf{a}, \mathbf{b}) = w(\mathbf{c}) \equiv 0 \pmod{2}.$$

Taigi ir pirmoji dualumo sąlyga yra teisinga.

20 / 39

Kitas požiūris

Kitaip pažvelkime į žodžių erdvės

$$\mathbb{F}_2^m = \{\mathbf{a}_1, \dots, \mathbf{a}_n\}, \quad n = 2^m,$$

ir \mathbb{F}_2^n sąryšį.

Į kiekvieną žodį $\mathbf{f} \in \mathbb{F}_2^n$ galime žvelgti kaip į tam tikros funkcijos $f: \mathbb{F}_2^m \to \mathbb{F}_2$ reikšmių lentelę:

jei
$$\mathbb{F} = y_1 y_2 \dots y_n$$
, tai $f(\mathbf{a}_1) = y_1, \dots, f(\mathbf{a}_n) = y_n$.

Kadangi šios funkcijos įgyja tik dvi reikšmes, galime jas interpretuoti kaip logines funkcijas.

21 / 39

Loginės funkcijos

Pažymėję $\mathbf{a}=x_1x_2\dots x_m,\ \mathbf{a}\in\mathbb{F}_2^m$ galime suvokti \mathbb{F}_2^n žodžius kaip logines funkcijas

$$f(x_1,x_2,\ldots,x_m).$$

Šios funkcijos sudaro tiesinę erdvę. Kokios funkcijos atitinka Reedo-Mullerio kodo bazės žodžius?

Reedo-Mullerio kodų žodžiai – loginiai daugianariai

Nesunku suprasti, kad

$$\mathbf{v}_{0} \mapsto 1, \ \mathbf{v}_{i} \mapsto = 1 + x_{i}, \ i = 1, 2, \dots, m$$

 $\mathbf{v}_{i_{1}} \cdot \mathbf{v}_{i_{2}} \cdot \dots \cdot \mathbf{v}_{i_{s}} \mapsto (1 + x_{i_{1}})(1 + x_{i_{2}}) \cdot \dots \cdot (1 + x_{i_{s}})$
 $= 1 + x_{i_{1}} + \dots + x_{i_{1}}x_{i_{2}} \cdot \dots \cdot x_{i_{s}}.$

Taigi kodą $\mathbf{RM}(m,r)$ galime interpretuoti, kaip nedidesnio kaip r laipsnio "loginių daugianarių" erdvę!

23 / 39

Minimalus atstumas

Teorema. Minimalus kodo $\mathbf{RM}(m,r)$ atstumas lygus 2^{m-r} .

Kad minimalus kodo atstumas negali būti didesnis už 2^{m-r} , rodo kodo bazės žodžio svoris:

$$w(\mathbf{v}_1 \cdot \mathbf{v}_2 \cdot \ldots \cdot \mathbf{v}_r) = 2^{m-r}.$$

Norėdami įrodyti, kad ne mažesnis, turėtume kiek pasidarbuoti...

24 / 39

Reedo-Mullerio kodų dekodavimas

Naudosime loginės daugumos metodą – savotišką sprendimų priėmimą "balsavimo" būdu. Tarkime, informacija koduojama Reedo–Mullerio $\mathbf{RM}(m,r)$ kodu: kanalu siunčiami žodžiai $\mathbf{c}=c_1\dots c_n,\ n=2^m,$

$$\mathbf{c} = a(0)\mathbf{v}_0 + \sum_{\substack{1 \le i_1 < \dots i_s \le m \\ s \le r}} a(i_1, \dots, i_s)\mathbf{v}_{i_1} \cdot \dots \cdot \mathbf{v}_{i_s};$$
(3)

čia $a(0), a(i_1, \dots, i_s) = 0$ arba 1.

Dekodavimas

Kanalas galbūt iškraipė siunčiamus simbolius; pažymėkime gautąjį žodį $\mathbf{d} = d_1 \dots d_n, n = 2^m$.

Naudodamiesi šiuo žodžiu, rasime teisingas koeficientų $a(0), a(i_1, \ldots, i_s)$ reikšmes, taigi atstatysime siųstąjį žodį \mathbf{c} , jeigu įvykusių iškraipymų nėra daugiau kaip $(2^{m-r}-1)/2$.

26 / 39

Pasirengimas

Kiekvienam koeficientui $a(i_1,\ldots,i_r)$ sudarysime lygiai 2^{m-r} išraiškų

$$a(i_1, \dots, i_r) = \sum_{i \in I_j} c_i, \quad j = 1, \dots, 2^{m-r},$$
 (4)

tokių, kad $|I_j| = 2^r$, $I_i \cap I_j = \emptyset$, jei $i \neq j$. Šios sąlygos reiškia, kad kievienoje iš (4) yra lygiai po 2^r dėmenų ir kiekvienas siunčiamo žodžio simbolis c_i pasirodo tik vienoje lygybėje.

27 / 39

Dekodavimas

Jeigu iškraipyta ne daugiau kaip $(2^{m-r}-1)/2$ žodžio ${\bf c}$ simbolių, tai ne daugiau kaip $(2^{m-r}-1)/2$ lygybių

$$a(i_1, \dots, i_r) = \sum_{i \in I_j} c_i, \quad j = 1, \dots, 2^{m-r}$$

nebebus teisingos.

Tačiau ne mažiau kaip $(2^{m-r}+1)/2$, t. y. daugiau kaip pusė liks galioti.

Dekodavimas

Tikrąją koeficiento reikšmę rasime suskaičiavę, kokių simbolių – vienetų ar nulių – yra daugiau sekoje

$$\sum_{i \in I_j} d_i, \quad j = 1, \dots, 2^{m-r}.$$

Daugiau kartų pasikartojęs simbolis ir bus koeficiento $a(i_1, \ldots, i_r)$ reikšmė.

29 / 39

Dekodavimas

Suradę visus koeficientus $a(i_1, \ldots, i_r)$, galime iš gautojo žodžio d atimti atitinkamus r-os eilės narius, ir manyti, kad gautasis skirtumas yra žodis, gautas siunčiant kodo $\mathbf{RM}(m, r-1)$ žodį.

30 / 39

Dekodavimas

Analogiškai galime ieškoti koeficientų $a(i_1, \ldots, i_{r-1})$.

Suradę visus koeficientus $a(i_1,\ldots,i_s)$ ir iš gautojo žodžio atėmę atitinkamus dėmenis gausime žodį \mathbf{d}_0 , kurį galėsime interpretuoti, kaip gautą siunčiant kanalu $a(0)\mathbf{v}_0$.

Ar a(0) = 0, ar a(0) = 1 galėsime nuspręsti, suskaičiavę, ko daugiau – vienetų ar nulių yra žodyje \mathbf{d}_0 .

Lygybių sudarymas

Dekodavimui reikalingoms lygybėms sudaryti pasinaudosime skaliarine žodžių $\mathbf{a} = a_1 \dots a_n, \mathbf{b} = b_1 \dots b_n$ daugyba:

$$(\mathbf{a}, \mathbf{b}) = a_1 b_1 + \ldots + a_n b_n;$$

čia sudėtis imama kūne \mathbb{F}_2 . Pastebėsime, jog

$$(\mathbf{v}(D), \mathbf{v}(E)) \equiv |D \cap E| \pmod{2}. \tag{5}$$

32 / 39

Žodžių rinkinys

$$H_i(0) = H_i = \{ \mathbf{a} : \mathbf{a} \in \mathbb{F}_2^m, x_i(\mathbf{a}) = 0 \},$$

 $H_i(1) = H_i^c = \{ \mathbf{a} : \mathbf{a} \in \mathbb{F}_2^m, x_i(\mathbf{a}) = 1 \}, i = 1, \dots, m.$

Fiksuokime rinkinį $1 \leq i_1 < \ldots < i_r \leq m$. Tegu

$$\{l_1, \ldots, l_{m-r}\} = \{1, \ldots, m\} \setminus \{i_1, \ldots, i_r\};$$
 čia $l_1 < \ldots < l_{m-r}$.

33 / 39

Žodžių rinkinys

Kiekvienam nulių ir vienetų rinkiniui $t=t_1\dots t_{m-r}$ apibrėžkime

$$\mathbf{w}_t = \mathbf{v}(H_{l_1}(t_1) \cap \ldots \cap H_{l_{m-r}}(t_{m-r})).$$

Iš viso turime 2^{m-r} žodžių \mathbf{w}_t .

Svarbi įžvalga: kiekviename žodyje \mathbf{w}_t yra lygiai 2^r vienetų ir nėra vieneto, kuris būtų toje pat pozicijoje skirtingiems \mathbf{w}_t , $\mathbf{w}_{t'}$.

Lygybės

Tegu $\mathbf{v} = \mathbf{v}_{j_1} \cdot \ldots \cdot \mathbf{v}_{j_s}$. Tada bet kokiam t

$$(\mathbf{v}, \mathbf{w}_t) = \begin{cases} 0, & \mathsf{jei}\{j_1, \dots, j_s\} \neq \{i_1, \dots, i_r\}, \\ 1, & \mathsf{jei}\{j_1, \dots, j_s\} = \{i_1, \dots, i_r\}. \end{cases}$$

Šį sąryšį galima išsiaiškinti, remiantis Reedo–Mullerio kodo konstrukcijos ypatybėmis; būtina aiškiai suvokti, kokie elementai įeina į atitinkamą aibę $D \cap E$.

35 / 39

Lygybės

Padauginę

$$\mathbf{c} = a(0)\mathbf{v}_0 + \sum_{\substack{1 \le i_1 < \dots i_s \le m \\ s < r}} a(i_1, \dots, i_s)\mathbf{v}_{i_1} \cdot \dots \cdot \mathbf{v}_{i_s};$$

skaliariškai iš \mathbf{w}_t ir atsižvelgdami į nustatytas lygybes, gausime

$$(\mathbf{c}, \mathbf{w}_t) = a(i_1, \dots, i_r).$$

Tačiau tai ir yra loginės daugumos metodo lygybės!

Pavyzdys: RM(3,1) dekodavimas

Kodo lentelė

	\mathbf{a}_1	\mathbf{a}_2	\mathbf{a}_3	\mathbf{a}_4	\mathbf{a}_5	\mathbf{a}_6	${f a}_7$	\mathbf{a}_8	
	000	001	010	011	100	101	110	111	
\mathbf{v}_0	1	1	1	1	1	1	1	1	
\mathbf{v}_1	1	1	1	1	0	0	0	0	
\mathbf{v}_2	1	1	0	0	1	1	0	0	
\mathbf{v}_3	1	0	1	0	1	0	1	0	

Šio kodo žodžiai užrašomi taip:

$$\mathbf{c} = a(0)\mathbf{v}_0 + a(1)\mathbf{v}_1 + a(2)\mathbf{v}_2 + a(3)\mathbf{v}_3.$$

37 / 39

Dekodavimas

Lygybių sistemą sudarysime a(3) koeficientui. Rinkinius t=00,01,10,11 atitinka žodžiai

$$\mathbf{w}_t = 11000000, 00110000, 00001100, 00000011.$$

Todėl dekodavimo lygybės atrodys taip:

$$a(3) = c_1 + c_2,$$

$$a(3) = c_3 + c_4,$$

$$a(3) = c_5 + c_6,$$

$$a(3) = c_7 + c_8.$$

38 / 39

Dekodavimas

Tarkime, buvo siųstas žodis $\mathbf{c} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 10010110$, tačiau vienas simbolis buvo iškraipytas ir gautasis žodis yra $\mathbf{d} = 11010110$.

Pagal gautąjį žodį naudodamiesi dekodavimo lygybėmis gauname reikšmes 0, 1, 1, 1. Taigi a(3) = 1.