原始惑星系円盤の 力学的・物質科学的進化について

中本泰史, 竹石陽 (東京工業大学)

[1] 同位体比の均質化

[2] 54Cr 同位体の時間変化

₂₄ Cr	50	4.3%	O_8	16	99.757%
	52	83.8%	-	17	0.038%
	53	9.5%		18	0.205%
	54	2.4%			

惑星系の形成過程

[1] 同位体比の均質化

- 惑星物質の同位体比:原子レベルでほぼ均質
- その原因は?
 - (1) 星間ガス中 --- 不十分
 - (2) 円盤中での蒸発 / 凝縮

(2-1) Early Phase

(2-2) Later Phase

Global Heating?

Local Heating?

(3) 天体への集積 --- 不十分

Messenger et al. 2003

Presolar particles in IDPs

Fig. 2. Oxygen isotopic images of a slice of IDP L2005 C13. A presolar grain with a large 17 O excess can be clearly seen in the 17 O image.

 $\sim 10^3 \text{ ppm}$

Fig. 1. (A) Oxygen isotopic ratios of 1031 subgrains determined from 25 ion images of nine cluster IDPs with 1 σ errors. The identified presolar silicates are solid circles. The adjacent plot (**B**) shows the O isotopic ratios of the 750 grains with the lowest errors (1 σ δ¹⁷O < 50‰) on a reduced scale.

分子雲コア中のダスト粒子:機械的によく混合し得る!?

分子雲コア

円盤中での蒸発/凝縮(均質化)

モデル

分子雲コア

1太陽質量

初期に剛体回転:回転角速度 ((モデルパラメータ)

降着時間: 0.4 Myr

円盤(原始太陽系星雲)

粘性降着: 動粘性係数 $v = \alpha c_s h \left(\alpha \right)$ はモデルパラメータ)

ダスト粒子

ガス:ダスト質量比 = 100:1

サイズ: 微小 (例えば 0.1 μm), ガスと一緒に動く

蒸発·凝縮温度: 2000 K

ダストは2種類: 2000 Kを経験済み(均質), 未経験(不均質)

Advection / Diffusion of Dust Particles

$$\frac{\partial \Sigma_{\rm i}}{\partial t} + \frac{1}{r} \frac{\partial r \Sigma_{\rm i} v_r}{\partial r} = \frac{1}{r} \frac{\partial}{\partial r} \left[r D \Sigma \frac{\partial}{\partial r} \left(\frac{\Sigma_i}{\Sigma} \right) \right] + S_{\rm i} \quad (i = 1, 2),$$
Advection Diffusion Source

Energy Source in Disk: Viscous Heating

$$\sigma_{
m s}T_{
m s}^4=rac{9}{8}\Sigma
u\Omega^2$$
 Viscosity $v=lpha\;c_{
m s}\,h$ Radiative Viscous $lpha$ -model Cooling Heating

$$\alpha = 10^{-2}$$

 $\omega = 2 \times 10^{-15} \text{ s}^{-1}$

$$\alpha = 10^{-2}$$
$$t = 3 \text{ Myr}$$

Disk Mass

Tsukamoto *et al.* 2015 3D-RHD simulations

ホール効果

初期角運動量は同じ $\omega_0 = 2.2 \times 10^{-13} \, \mathrm{s}^{-1}$

face-on view

小さい円盤

[結論]

回転角速度 ω が遅ければ,

- ・小半径, 高温 の円盤が形成される
- ■蒸発/凝縮により同位体が均質化する

[議論]

- ・遅い回転角速度はあり得るか?
- •同位体比異常の原因は?