an Intensional Dependent Type Theory with Type-in-Type and Recursion

February 23, 2021

1 type soundness or blame

- 1.1 well formed
- 1.2 Weakening
- 1.3 Substitution
- 1.4 Preservation
- 1.5 Canonical forms
- 1.6 Progress

 $\Diamond \vdash c : A$ implies that c is a value, there exists c' such that $c \leadsto c'$, or a static location can be blamed. and $\Diamond \vdash e : \overline{\star}$ implies that e is a value, there exists e' such that $e \leadsto e'$, or a static location can be blamed

By mutual induction on the typing derivations with the help of the canonical forms lemma

Explicitly: cast typing

- eq ty 1 by **induction**
- eq ty 2 by induction

cast term typing

- c is typed by type-in-type. c is \star , a value
- c is typed by Πty . a is a value
- c is typed by the conversion rule, then by **induction**
- c is typed by the apparent rule, then c is $a_h :: e$ by each head typing
 - a_h cannot be typed by the variable rule in the empty context

- $-a_h$ is typed by type-in-type. a is \star , a value
- $-a_h$ is typed by Πty . a is a value
- a_h is typed by $\Pi \text{fun} ty$. a is a value
- $-a_h$ is typed by $\Pi app ty$. Then a_h is ba, and there are derivations of $\Diamond \vdash b : \Pi x : A.B$, and $\Diamond \vdash a : A$ for some A and B. By **induction** a is a value, there exists a' such that $a \leadsto a'$, or blame and b is a value or there exists b' such that $b \leadsto b'$ or blame. (TODO jumping from one syntactic form to another)
 - * if b is a value and a is a value, then b is $b_h :: v_{eq}$.
 - · If all $A \in v_{eq}$ are in the form $\Pi x : A.B$ then $v_{eq} E lim_{\Pi}$ and $v_{eq} \downarrow$ is $\Pi x : A.B$ so b_h is $(\operatorname{fun} f. x.b')$ and the step is $((\operatorname{fun} f. x.b) :: v_{eq} v) :: v'_{eq} \leadsto (b :: e_B) [f := (\operatorname{fun} f. x.b) :: v_{eq}, x := v] :: v'_{eq}$
 - · otherwise, $v_{eq} \uparrow$ is $\Pi x : A.B$ but there is some $[\star =_{l,o} \Pi x : A.B] \in v$ and l, o can be blamed
 - * if b or a can construct blame then ba can use that blame
 - * if b is a value and $a \rightsquigarrow a'$ then $b a \rightsquigarrow b a'$
 - * if $b \leadsto b'$ then $b a \leadsto b' a$

1.7 Type Soundness

For any well typed term in an empty context, no sequence of small step reductions will cause result in a computation to "get stuck" without blame. Either a final value will be reached, further reductions can be taken, or blame is omitted. This follows by iterating the progress and preservation lemmas.

2 elaboration embeds typing

```
1. \vdash e : M, elab(M, *) = M', \text{ and } elab(e, M') = e' \text{ then } \vdash_c e' : M'.
```

3 computation resulting in blame cannot be typed in the surface lang

1. $\vdash_c e': M'$ and $e' \downarrow blame$ then there is no $\vdash e: M$ such that elab(M, *) = M', elab(e, M') = e'

4 computation in the cast lang respects computation in the surface lang

⊢_c e': * and elab (e, *) = e' then
(a) if e' ↓ * then e ↓ *

- (b) if $e' \downarrow (x:M') \rightarrow N'$ then $e \downarrow (x:M) \rightarrow N$
- (c) if $e' \downarrow TCon \overline{M'}$ then $e \downarrow TCon \overline{M}$