

WHAT IS CLAIMED IS:

- 1 1. A method of developing topography based management
- 2 systems, said method comprising:
- 3 analyzing a topography design corresponding to a
- 4 topography;
- identifying one or more topography requirements based
- on the analysis;
- 7 creating topography components corresponding to the
- 8 identified topography requirements, wherein each
- 9 of the components is adapted to interoperate with
- one or more operating environments; and
- 11 storing component data in a topography data store, the
- 12 component data describing one or more of the
- components.
 - 1 2. The method as described in claim 1 further comprising:
 - 2 creating a topography neutral application component,
 - 3 wherein the topography neutral application
 - 4 component is adapted to interoperate with more
 - 5 than one topography.
 - 1 3. The method as described in claim 1 wherein at least
 - one of the topography requirements is selected from
 - the group consisting of a communication framework, a
 - 4 deployment mechanism, a security infrastructure, and
 - 5 an operation conduit.
 - 1 4. The method as described in claim 1 wherein the
 - 2 component data includes one or more fields selected
 - from the group consisting of a component identifier, a
 - 4 target platform, a development environment, a control
 - 5 model, a topography scale, a management style, a
 - 6 component dependency, a component placement, a

7 8 9		component packaging data, a component bundling data, a component build option, and a component runtime option.
1	5.	The method as described in claim 1 further comprising:
2		saving each component in a component library;
3		wherein the storing further includes writing a record
4		in a database file, each record corresponding to
5		a distinct component.
1	6.	The method as described in claim 1 further comprising:
2		identifying one or more client attributes
3		corresponding to a client;
4		comparing the identified client attributes to the
5		topography components; and
6		selecting one or more topography components based on
7		the comparing.
1	7.	The method as described in claim 6 further comprising:
2		installing the selected topographical components on
3		one or more client computer systems.
1	8.	An information handling system comprising:
2		one or more processors;
3		a memory accessible by the processors;
4		one or more nonvolatile storage devices accessible by
5		the processors;
6		a topography development tool to develop a topography
7		on one or more client computer systems, the
8		topography development tool including:
9		means for analyzing a topography design
10		corresponding to a topography;

壚
孄
Ą.
(inter
\$\$
ļat:
4
#

11	means for identifying one or more topography
12	requirements based on the analysis;
13	means for creating topography components
14	corresponding to the identified topography
15	requirements, wherein each of the components
16	is adapted to interoperate with one or more
17	operating environments; and
18	means for storing component data in a topography
19	data store, the component data describing
20	one or more of the components.

- The information handling system as described in claim further comprising:
 means for creating a topography neutral application component, wherein the topography neutral
- 5 application component is adapted to interoperate
 6 with more than one topography.
- 1 10. The information handling system as described in claim
 2 8 wherein at least one of the topography requirements
 3 is selected from the group consisting of a
 4 communication framework, a deployment mechanism, a
 5 security infrastructure, and an operation conduit.
- The information handling system as described in claim 1 11. 8 wherein the component data includes one or more 2 fields selected from the group consisting of a 3 4 component identifier, a target platform, a development 5 environment, a control model, a topography scale, a 6 management style, a component dependency, a component placement, a component packaging data, a component 7 bundling data, a component build option, and a 8 component runtime option. 9

1	12.	The information handling system as described in claim
2		8 further comprising:
3		means for saving each component in a component
4		library;
5		wherein the means for storing further includes means
6		for writing a record in a database file, each
7		record corresponding to a distinct component.
1	13.	The information handling system as described in claim
2		8 further comprising:
3		means for identifying one or more client attributes
4		corresponding to a client;
5		means for comparing the identified client attributes
6		to the topography components;
7		means for selecting one or more topography components
8		based on the comparing; and
9		means for installing the selected topographical
10		components on one or more client computer
11		systems.
1	14.	A computer program product stored in a computer
2		operable media for analyzing a topography design, said
3		computer program product comprising:
4		means for analyzing a topography design corresponding
5		to a topography;
6		means for identifying one or more topography
7		requirements based on the analysis;
8		means for creating topography components corresponding
9		to the identified topography requirements,
10		wherein each of the components is adapted to
11		interoperate with one or more operating
12		environments; and

13	means for storing component data in a topography data
14	store, the component data describing one or more
15	of the components.

- 1 15. The computer program product as described in claim 14
 2 further comprising:
 3 means for creating a topography neutral application
- component, wherein the topography neutral
 application component is adapted to interoperate
 with more than one topography.
- 1 16. The computer program product as described in claim 14
 2 wherein at least one of the topography requirements is
 3 selected from the group consisting of a communication
 4 framework, a deployment mechanism, a security
 5 infrastructure, and an operation conduit.
- The computer program product as described in claim 14 17. 1 wherein the component data includes one or more fields 2 selected from the group consisting of a component 3 identifier, a target platform, a development 4 environment, a control model, a topography scale, a 5 management style, a component dependency, a component 6 placement, a component packaging data, a component 7 bundling data, a component build option, and a 8 component runtime option. 9
- 1 18. The computer program product as described in claim 14
 2 further comprising:
 3 means for saving each component in a component
- 4 library;

ij.
ij
ji de
43
- de:
jed:

5		wherein the means for storing further includes means
6		for writing a record in a database file, each
7		record corresponding to a distinct component.
1	19.	The computer program product as described in claim 14
2		further comprising:
3		means for identifying one or more client attributes
4		corresponding to a client;
5		means for comparing the identified client attributes
6		to the topography components; and
7		means for selecting one or more topography components
8		based on the comparing.
1	20.	The computer program product as described in claim 19
2		further comprising:
3		means for installing the selected topographical
4		components on one or more client computer
5		systems.
6		