Filtrations and Martingales

March 3, 2023

Review: σ -field

Martingales depend on filtrations, which depend on σ -fields.

Definition

Let \mathcal{F} be a collection of subsets of a set Ω . Then \mathcal{F} is called a **sigma-field** if it satisfies

- 1. $\Omega \in \mathcal{F}$
- 2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.
- 3. If $A_1, A_2, ... \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

that is, if $\Omega \in \mathcal{F}$ and \mathcal{F} is closed under complementation and countable unions.

Example

Let Ω be the unit square, and

$$\mathcal{F} = \left\{ \boxed{}, \boxed{}, \boxed{}, \boxed{} \right\}$$

1

Filtrations

Definition

Let (Ω, \mathcal{F}, P) be a probability space.

Then a **filtration** $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$ is an increasing sequence of sub σ -fields of \mathcal{F} .

A simple strategy for constructing a filtration

A simple method for constructing a filtration is as follows.

- 1. Construct a sequence $\{\Omega_n\}$ of increasingly refined partitions of Ω .
- 2. Define a filtration by setting $\mathcal{F}_n = \sigma(\Omega_n)$, i.e. each σ -field \mathcal{F}_n consists of the sets that can be formed by taking unions of some subset of the cells in the partition Ω_n .

Some examples of filtrations formed by this strategy include:

- 1. Take Ω to be the unit square. Form increasingly refined partitions by splitting cells of Ω_{n-1} in half, vertically if n odd and horizontally if n even.
- 2. Let Ω be the space of binary-valued sequences. Form increasingly refined partitions by having Ω_n group together all sequences whose values match along the first n coordinates.

Example of a filtration

Let Ω be the unit square. Define $\{\mathcal{F}_n\}$ by

Then $\{\mathcal{F}_n\}$ is a filtration.

Martingales

Definition

Let $\{X_n\}$ be a sequence of random variables and $\{\mathcal{F}_n\}$ be a filtration. If

- 1. The sequence $\{X_n\}$ is adapted to the filtration $\{\mathcal{F}_n\}$.
- 2. Each X_n is integrable.
- 3. $\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = X_n$ for all n.

Then we say that $\{X_n\}$ is a **martingale** relative to $\{\mathcal{F}_n\}$.

If, in the last definition, = is replaced by \leq or \geq , then $\{X_n\}$ is said to be a **supermartingale** or **submartingale**, respectively.

Examples of Martingales

- 1. Random walks.
- 2. Polya Urn process.
- 3. Increasing information process. (See next slides.)

Concrete example of increasing information process

We define a probability space as follows:

$$\Omega = [0,1]^2$$
 (the unit square) $\mathcal{F} = \mathcal{B}([0,1]^2)$ $P = \mathsf{Uniform\ distribution}$

To construct a filtration, we begin by constructing a sequence $\{\Omega_n\}$ of increasingly refined partitions of Ω . We set

$$\Omega_0 = \bigg\{\emptyset,\Omega\bigg\}$$

 Ω_n as the partition of Ω formed by splitting cells of Ω_{n-1} in half vertically if n odd and horizontally if n even

We then define a filtration by setting $\mathcal{F}_n = \sigma(\Omega_n)$, i.e. each σ -field \mathcal{F}_n consists of the sets that can be formed by taking unions of some subset of the cells in the partition Ω_n .

Concrete example of increasing information process

Now let Y be an integrable random variable on (Ω, \mathcal{F}, P) , and define $X_n = \mathbb{E}[Y \mid \mathcal{F}_n]$. For example:

For the first few elements in the sequence $(n=1,\ldots,4)$, we show the values of the random variable $X_n \triangleq \mathbb{E}[Y \mid \mathcal{F}_n]$ over each element of a partition Ω_n from which the σ -field \mathcal{F}_n is generated.

The Figure illustrates the martingale property: $X_n = \mathbb{E}[X_{n+1} \mid \mathcal{F}_n]$. In particular, we can see that both conditions for conditional expectation are satisfied:

- average matching: for any set in \mathcal{F}_n (which is a rectangle or union of rectangles in the partition Ω_n), the value of X_n is the arithmetic average of the values of the corresponding subrectangles in \mathcal{F}_{n+1} .
- **measurability**: inverse images of any realization $X_n = x_n$ or set of realizations $X_n \in \{x_n^{(1)}, \dots x_n^{(k)}\}$ exist in \mathcal{F}_n .

The Figure also illustrates what we mean by an "increasing information" process:

• As n increases, X_n gives more information about the values of Y on the square Ω .

(In particular, X_n gives us the average value of Y over a grid of sub-rectangles that is a refinement of the corresponding grid over which X_{n-1} gave averages. Every time we split a rectangle in half, the original value a splits into two values b and c such that $a=\frac{b+c}{2}$.

There are of course infinitely many possible choices for b and c given a, and we don't know what those values are until we observe the next random variable in the sequence.)

The increasing information process is a martingale

Proposition

Let Y be an integrable random variable and \mathcal{F}_n be a filtration on (Ω, \mathcal{F}, P) . Define

$$X_n \triangleq \mathbb{E}[Y \mid \mathcal{F}_n]$$

Then X_n is a martingale with respect to \mathcal{F}_n .

Proof.

The first two conditions of the definition follow immediately. For the third condition, note that

$$\mathbb{E}[X_{n+1} \mid \mathcal{F}_n] = \mathbb{E}[\mathbb{E}[Y \mid \mathcal{F}_{n+1}] \mid \mathcal{F}_n]$$
 def. $\{x_n\}$

$$= \mathbb{E}[Y \mid \mathcal{F}_n]$$
 "Smaller σ -field always wins", a.k.a. the tower property
$$= X_n$$
 def. $\{x_n\}$