Topologie des courbes algébriques réelles Combinatoire des configurations locales et globales

Christopher-Lloyd Simon

Départment de mathématiques ENS Lyon

Jeudi 4 Avril 2019

Présentation du problème

Contexte:

- ▶ Une courbe algébrique du plan réel : F(x,y) = 0, $F \in \mathbb{R}[x,y]$.
- Composantes connexes du lieu réel de dimension 1.
- Point singulier $\partial_x F(0,0) = \partial_y F(0,0) = 0$.

Présentation du problème

On souhaite comprendre :

- ▶ sa classe d'isotopie et
- les croisements de branches aux singularités.

Sommaire

Topologie et combinatoire des singularités

Topologie et combinatoire des courbes algébriques singulières

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants

Quels invariants proviennent de singularités?

Dénombrement des invariants combinatoires locaux

Topologie et combinatoire des courbes algébriques singulières

Topologie globale : quelles obstructions?

Énumération des configurations sur \mathbb{S}^2 et \mathbb{RP}^2

Singularités de courbes algébriques du plan réel

Soit $F \in \mathbb{R}\{x,y\}$ série convergente telle que F(0,0) = 0 et $x \nmid F$. Alors son lieu d'annulation est l'union d'un nombre fini de germes de courbes paramétrées injectives disjointes en dehors de l'origine :

$$t \mapsto (\pm t^m, g(t))$$
 $g \in \mathbb{R}\{t\}$

En rouge : $x^5 + x^4 + 2yx^2 + y^2 = 0$

De la singularité au diagramme de cordes

- ▶ Branches paramétrées par séries de Puiseux : $\sum_{n>0} a_n (\pm x)^{\frac{n}{m}}$
- À homéo près : des segments sortent de la singularité
- ► Segments viennent par paires : diagramme de cordes

Graphe d'entrelacement du diagramme de cordes

Ces objets combinatoires sont définis indépendament de leur construction à partir de singularités analytiques.

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants

Quels invariants proviennent de singularités?

Dénombrement des invariants combinatoires locaux

Topologie et combinatoire des courbes algébriques singulières

Topologie globale : quelles obstructions?

Énumération des configurations sur \mathbb{S}^2 et \mathbb{RP}^2

Description récursive des diagrammes de cordes analytiques

Définition

Si un diagramme de cordes possède comme motif une corde isolée, une fourche, des vrais ou faux jumeaux :

on appelle **simplification** le diagramme obtenu en enlevant la corde indéxée par la lettre « a » d'un tel motif.

Description récursive des diagrammes de cordes analytiques

En étudiant la combinatoire du processus de résolution d'une singularité par éclatements successifs, Étienne Ghys a trouvé une description récursive des diagrammes de cordes analytiques :

Théorème (EG 2017 : diagrammes de cordes analytiques)

- Le mot vide est un diagramme analytique.
- Si un diagramme non vide ne contient pas de corde isolée, de fourche, ou une paire de jumeaux; alors il n'est pas analytique.
- ▶ Si par contre il contient un tel motif, alors il est analytique si et seulement si une simplification du diagramme l'est aussi.

Éclatements: intuition, définition, terminologie

- ► Éclater un germe de surface lisse (S, o) consiste à remplacer o par l'ensemble des directions tangentes à S en ce point.
- ▶ Permet de distinguer les phénomènes au premier ordre en o.
- ▶ Il existe un morphisme $\pi: (\hat{S}, E) \to (S, o)$ avec $E \simeq \mathbb{P}^1$ qui induit un isomorphisme entre $\hat{S} \setminus E$ et $S \setminus o$.
- ▶ Il est unique à transformation birationelle près.
- ▶ La courbe *E* s'apelle le diviseur exceptionel.
- ▶ Le germe $\hat{C} = \overline{\pi^{-1}(C \setminus \{o\})}$ est la transformée stricte de C.
- ▶ Du point du vue du corps des fonctions au point o, l'éclatement correspond à un changement de variables $t = \frac{y}{x}$

Éclatements: intuition, définition, terminologie

- ▶ Éclater un germe de surface lisse (S, o) consiste à remplacer o par l'ensemble des directions tangentes à S en ce point.
- ▶ Permet de distinguer les phénomènes au premier ordre en o.
- ▶ Il existe un morphisme $\pi: (\hat{S}, E) \to (S, o)$ avec $E \simeq \mathbb{P}^1$ qui induit un isomorphisme entre $\hat{S} \setminus E$ et $S \setminus o$.
- ▶ Il est unique à transformation birationelle près.
- ▶ La courbe *E* s'apelle le diviseur exceptionel.
- ▶ Le germe $\hat{C} = \overline{\pi^{-1}(C \setminus \{o\})}$ est la transformée stricte de C.
- ▶ Du point du vue du corps des fonctions au point o, l'éclatement correspond à un changement de variables $t = \frac{y}{x}$

Éclatements : intuition, définition, terminologie

- ▶ Éclater un germe de surface lisse (S, o) consiste à remplacer o par l'ensemble des directions tangentes à S en ce point.
- ▶ Permet de distinguer les phénomènes au premier ordre en o.
- ▶ Il existe un morphisme $\pi: (\hat{S}, E) \to (S, o)$ avec $E \simeq \mathbb{P}^1$ qui induit un isomorphisme entre $\hat{S} \setminus E$ et $S \setminus o$.
- ▶ Il est unique à transformation birationelle près.
- ► La courbe *E* s'apelle le diviseur exceptionel.
- ▶ Le germe $\hat{C} = \overline{\pi^{-1}(C \setminus \{o\})}$ est la transformée stricte de C.
- ▶ Du point du vue du corps des fonctions au point o, l'éclatement correspond à un changement de variables $t = \frac{y}{x}$

Éclatements: intuition, définition, terminologie

- ▶ Éclater un germe de surface lisse (S, o) consiste à remplacer o par l'ensemble des directions tangentes à S en ce point.
- ▶ Permet de distinguer les phénomènes au premier ordre en o.
- ▶ Il existe un morphisme $\pi: (\hat{S}, E) \to (S, o)$ avec $E \simeq \mathbb{P}^1$ qui induit un isomorphisme entre $\hat{S} \setminus E$ et $S \setminus o$.
- ▶ Il est unique à transformation birationelle près.
- ► La courbe *E* s'apelle le diviseur exceptionel.
- ▶ Le germe $\hat{C} = \overline{\pi^{-1}(C \setminus \{o\})}$ est la transformée stricte de C.
- ▶ Du point du vue du corps des fonctions au point o, l'éclatement correspond à un changement de variables $t = \frac{y}{x}$.

Éclatement d'une surface réelle et bande de Möbius

Construction : l'adhérence dans $\mathbb{R}^2 \times \mathbb{RP}^1$ du graphe de $(x,y) \in \mathbb{R}^2 \mapsto y/x \in \mathbb{RP}^1$ est la surface quadratique y=tx.

Éclatement d'un pinceau de droites et d'une courbe singulière.

Éclatements successifs et résolution des singularités

Résolution des singularités

- ▶ Pour résoudre un germe singulier *C* il faut distinguer des phénomènes à des ordres supérieurs : éclatements successifs.
- ▶ Il exsite un morphisme Ψ : $(\hat{S}, E) \rightarrow (S, o)$, isomorphisme en dehors du diviseur exceptionel tel que \hat{C} est lisse et $\hat{C} \pitchfork E$.
- ▶ Sur \mathbb{R} , le graphe dual des $\mathbb{P}^1 \subset E$ est un arbre enraciné,
- ▶ la surface \hat{S} est un plombage de bandes qui se rétracte par déformation sur le diviseur exceptionel E,
- ightharpoonup son bord est connexe et intersecte \hat{C} en des paires de points.

Éclatements successifs et résolution des singularités

Résolution des singularités

- ▶ Pour résoudre un germe singulier C il faut distinguer des phénomènes à des ordres supérieurs : éclatements successifs.
- ▶ Il exsite un morphisme Ψ : $(\hat{S}, E) \rightarrow (S, o)$, isomorphisme en dehors du diviseur exceptionel tel que \hat{C} est lisse et $\hat{C} \cap E$.
- ▶ Sur \mathbb{R} , le graphe dual des $\mathbb{P}^1 \subset E$ est un arbre enraciné,
- ▶ la surface \hat{S} est un plombage de bandes qui se rétracte par déformation sur le diviseur exceptionel E,
- ightharpoonup son bord est connexe et intersecte \hat{C} en des paires de points.

Éclatements successifs et résolution des singularités

Résolution des singularités

- ▶ Pour résoudre un germe singulier C il faut distinguer des phénomènes à des ordres supérieurs : éclatements successifs.
- ▶ Il exsite un morphisme $\Psi: (\hat{S}, E) \to (S, o)$, isomorphisme en dehors du diviseur exceptionel tel que \hat{C} est lisse et $\hat{C} \pitchfork E$.
- ▶ Sur \mathbb{R} , le graphe dual des $\mathbb{P}^1 \subset E$ est un arbre enraciné,
- ▶ la surface \hat{S} est un plombage de bandes qui se rétracte par déformation sur le diviseur exceptionel E,
- ▶ son bord est connexe et intersecte \hat{C} en des paires de points.

Éclatements successifs et colliers de bandes

Preuve de la description algorithmique

Lemme (EG 2017)

Si un diagramme de cordes est analytique, alors il contient une corde pendante, une fourche ou des jumeaux.

Démonstration.

Preuve de la description algorithmique

Démonstration.

- ▶ Résolvons la singularité *C*, cela donne un collier de bandes.
- ▶ Soit $L \subset E$ noeud du graphe dual, de hauteur maximale parmi ceux qui ont deux composantes connexes de \hat{C} au dessus.
- ► Cela définit un sous diagramme de cordes avec le motif voulu.

Preuve de la description algorithmique Démonstration.

Quels invariants proviennent de singularités?

Graphes d'entrelacements : descriptions métriques et par les motifs interdits

Théorème (EG-CS 2017 : graphes d'entrelacement singularités)

Un graphe provient d'une singularité ssi il est :

- ► Repliable : description récursive analogue aux diagrammes analytiques (équivalence non triviale!).
- Distance-héréditaire : condition métrique sur les sous-graphes.
- Buisson : condition métrique sur 4 points à la Gromov.
- Ne contient pas de maison, gemme, domino ou (n > 4)-cycle comme graphe induit.

Quels invariants proviennent de singularités?

Diagramme de cordes : analyticité par les motifs interdits

Corollaire (EG-CS 2017)

Un diagramme de cordes est analytique ssi il ne contient pas l'un des motifs suivants.

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants Quels invariants proviennent de singularités ?

Dénombrement des invariants combinatoires locaux

Topologie et combinatoire des courbes algébriques singulières

Topologie globale : quelles obstructions? Énumération des configurations sur \mathbb{S}^2 et \mathbb{RP}^2

Enumération : Buissons connexes étiquetés

Proposition (CS 2018 : Série des buissons connexes étiquetés) Le nombre B_n de buissons connexes enracinés étiquetés de taille n équivaut à

$$\frac{b}{2\sqrt{\pi n^3}}.\beta^{-n}.n!$$

$$\beta=2\sqrt{3}-1+2\log\frac{1+\sqrt{3}}{2}$$
 vérifie $6<\beta^{-1}<7$ et $b=\sqrt{\frac{\beta}{\sqrt{3}}}$. Premiers termes de la suite $(B_n)_{n\in\mathbb{N}}$:

0, 1, 4, 38, 596, 13072, 368488, 12693536, 516718112, 24268858144, 1291777104256, 76845808729472, 5052555752407424

Enumération : Diagrammes de cordes analytiques

Théorème (CS 2018 : diagrammes analytiques linéaires)
La série génératrice des diagrammes analytiques est algébrique :

$$(z^3 + z^2)A^6 - z^2A^5 - 4zA^4 + (8z + 2)A^3 - (4z + 6)A^2 + 6A - 2 = 0$$

Asymptotique : $A_n \sim a_0 \, n^{-\frac{3}{2}} \, \alpha^{-n}$ où $15 < \alpha^{-1} < 16$. Premiers termes de la suite $(A_n)_{n \in \mathbb{N}}$ (vérifiés algorithmiquement) :

1, 1, 3, 15, 105, 923, 9417, 105815, 1267681, 15875631, 205301361

Corollaire (CS 2018 : diagrammes analytiques non enracinés)

$$\tilde{A}_n \sim \frac{A_n}{n} \sim a_0 n^{-\frac{5}{2}} \alpha^{-n}$$

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants

Quels invariants proviennent de singularités?

Dénombrement des invariants combinatoires locaux

Topologie et combinatoire des courbes algébriques singulières Topologie globale : quelles obstructions?

Énumération des configurations sur \mathbb{S}^2 et \mathbb{RP}^2

Question des configurations globales

Formalisée avec la notion de courbes combinatoires

Globalement, une courbe algébrique connexe est formée de parties lisses reliant des singularités. Quelles configurations sont possibles?

Courbe combinatoire : carte connexe, sommets \leftarrow diagrammes. Formulation avec trois permutations sur ensemble des rayons.

Théorème (CS 2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Théorème (CS 2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

 On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.

Théorème (CS 2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

- On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.
- On éclate la surface aux singularités pour avoir une courbe lisse dans une surface éclattée.

Théorème (CS 2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

- On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.
- On éclate la surface aux singularités pour avoir une courbe lisse dans une surface éclattée.
- Approximation \mathscr{C}^1 par une courbe algébrique lisse (séries de Fourier, polynômes de Tchebychev, projection orthogonale).

Théorème (CS 2018 : Courbes combinatoires algébriques)

Toute courbe combinatoire vérifiant les hypothèses topologiques locale et globale, est associée à une courbe algébrique réelle.

Schéma de la preuve.

- On réalise la courbe combinatoire par des arcs lisses reliant des singularités analytiques. Possible d'après les hypothèses.
- On éclate la surface aux singularités pour avoir une courbe lisse dans une surface éclattée.
- Approximation \mathscr{C}^1 par une courbe algébrique lisse (séries de Fourier, polynômes de Tchebychev, projection orthogonale).
- On implose la courbe approximante.

Remarque (sur la preuve)

La preuve fonctionne sur une surface réelle analytique quelconque, et on peut imposer :

- un nombre arbitraire de dérivées des branches aux singularités
- ▶ les classes d'isotopie des arcs lisses entre les diagrammes

Attention, à cause de la projection : il faut éventuellement oublier des composantes (points ou courbes) qui se seraient rajoutées, et la courbe n'est pas nécessairement rationelle.

Sommaire

Topologie et combinatoire des singularités

Singularités de courbes algébriques réelles : deux invariants

Quels invariants proviennent de singularités?

Dénombrement des invariants combinatoires locaux

Topologie et combinatoire des courbes algébriques singulières

Topologie globale: quelles obstructions?

Énumération des configurations sur \mathbb{S}^2 et \mathbb{RP}^2

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2

Soit une surface $P_k = \mathbb{S}^2 \setminus \bigsqcup_{l=1}^s \mathbb{D}^2$ où $2k = (2k_1, \dots, 2k_s) \in (\mathbb{N}^*)^s$ compte les points décorés sur chaque composante de bord J_l .

Un découpage de $P_{(6,4,4,4,6,4,4,4)}$.

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2

Tutte dénombre en 1962 les découpages de P_k ayant un sommet distingué par composante de bord :

$$\frac{(c-1)!}{(c-s-2)!} \prod_{\nu=1}^{s} k_{\nu} {2k_{\nu} \choose k_{\nu}}.$$

Énumération des courbes combinatoires algébriques sur \mathbb{S}^2

Proposition (2018 : Courbes combinatoires algébriques sur \mathbb{S}^2)

Le nombre de courbes combinatoires algébriques de la sphère ayant s sommets indexés et enracinés de tailles k_1, \ldots, k_v vaut :

$$\frac{(c-1)!}{(c-s-2)!} \prod_{v=1}^{s} k_{v} {2k_{v} \choose k_{v}} A_{k_{v}}.$$

Proposition (2018 : Courbes combinatoires algébriques sur \mathbb{S}^2)

Le nombre de courbes combinatoires algébriques de la sphère ayant s sommets indexés et enracinés de tailles k_1, \ldots, k_v vaut :

$$\frac{(c-1)!}{(c-s-2)!} \prod_{v=1}^{s} k_v \binom{2k_v}{k_v} A_{k_v}.$$

Proposition (2018 : majoration par le nombre d'arêtes)

Le nombre $Calc_{\mathbb{S}^2}(c)$ de courbes combinatoires algébriques enracinées de la sphère ayant c arêtes vérifie, pour une certaine constante ρ l'inégalité : $Calc_{\mathbb{S}^2}(c) \leq c^3 \rho^c$.

Majoration du nombre de courbes algébriques de \mathbb{RP}^2

Théorème (2018 : majoration par le degré)

Le nombre $Cal_{\mathbb{RP}^2}(d)$ de courbe combinatoires enracinées algébriques de degré d du plan projectif vérifie :

$$\operatorname{Cal}_{\mathbb{RP}^2}(d) = o\left(12^{d^2}\right).$$

Remarque (2014 : courbes lisses non connexes)

Kharlamov et Orevkov ont encadré asymptotiquement le nombre de classes d'isotopie algébrique de courbes algébriques lisses de \mathbb{RP}^2 de degré d, par des expressions de la forme $\exp{(Cd^2 + o(d^2))}$.

Un aller-retour entre les singularities et la combinatoire analytique

Singularités analytiques réelles :

- ► Topologie des singularités : diagrammes de cordes et graphes.
- ▶ Outils : éclatement puis combinatoire « algorithmique ».
- ► Structure des configurations locales et dénombrement.
- ▶ Outils : Grammaire inambigüe, combinatoire analytique.

Un aller-retour entre les singularities et la combinatoire analytique

Singularités analytiques réelles :

- ► Topologie des singularités : diagrammes de cordes et graphes.
- Outils : éclatement puis combinatoire « algorithmique ».
- Structure des configurations locales et dénombrement.
- ▶ Outils : Grammaire inambigüe, combinatoire analytique.

Un aller-retour entre les singularities et la combinatoire analytique

Courbes algébriques réelles singulières :

- ► Topologie globale : courbes combinatoires.
- Outils : éclatement, approximation algébrique.
- Enumération des types topologiques
- Outils : Dénombrement de Tutte + configurations locales.

Un aller-retour entre les singularities et la combinatoire analytique

Courbes algébriques réelles singulières :

- ► Topologie globale : courbes combinatoires.
- Outils : éclatement, approximation algébrique.
- Énumération des types topologiques
- Outils : Dénombrement de Tutte + configurations locales.

Merci d'avoir écouté...

Diagramme de cordes analytique connexe (M. Maazoun, 14/12/18).

... et bon appétit!

- É. Ghys, *A singular mathematical promenade*, ENS Editions, 2017.
- É. Ghys and C.-L. Simon, On the topology of a real analytic curve in the neighborhood of a singular point, A paraître.
- C.-L. Simon, *Topologie et dénombrement des courbes algébriques réelles*, Soumis pour publication.