Licznik synchroniczny zliczający w górę i dół (dodatkowe wejście Up) modulo n pracujący w kodzie binarnym z wpisem synchronicznym L i zezwoleniem zegara. Liczbę n ustalamy za pomocą zewnętrznego parametru.

1. Kod źródłowy (zał. counter.vhd).

```
library IEEE;
use IEEE.STD LOGIC 1164.ALL;
use IEEE.STD LOGIC unsigned.ALL;
use ieee.numeric std.all;
entity counter is
       generic (n : STD LOGIC VECTOR :="0111"
  Port (Clk, Reset, L, Up, Enable: in STD LOGIC;
                       wpis: in STD LOGIC VECTOR (n'length-1 downto 0);
      Q : out STD LOGIC VECTOR (n'length-1 downto 0)
                       );
end counter;
architecture Behavioral of counter is
signal count : STD LOGIC VECTOR (n'length-1 downto 0) :=(others=>'0');
begin
       process(Clk, Reset, L, Up, Enable)
              begin
                     if rising edge(Clk) and Enable='1' then
                             if Reset = '1' then
                                    count \le (others = > '0');
                             elsif L='1' and wpis \leq (n-'1') then
                                    count <= wpis;
                             elsif L='1' and wpis > (n-'1') then
                                    count \le (n-'1');
                             elsif Up='1' and count \neq (n-'1') then
                                    count \le count + '1';
                             elsif Up='1' and count = (n-'1') then
                                    count \le (others = > '0');
                             elsif Up='0' and not(count=0) then
                                    count <= count -'1';
                             elsif Up='0' and count = 0 then
                                    count<= n-'1';
                             else null;
                             end if;
                     end if:
       end process;
       Q<=count;
end Behavioral;
```

2. Test bench (zał. test8_tb.vhd).

```
LIBRARY ieee;
USE ieee.std logic 1164.ALL;
-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
--USE ieee.numeric_std.ALL;
ENTITY test8 tb IS
END test8 tb;
ARCHITECTURE behavior OF test8 tb IS
  -- Component Declaration for the Unit Under Test (UUT)
  COMPONENT counter
  PORT(
     Clk: IN std logic;
     Reset: IN std logic;
     L: IN std logic;
     Up: IN std logic;
     Enable: IN std logic;
     wpis: IN std logic vector(3 downto 0);
     Q: OUT std logic vector(3 downto 0)
  END COMPONENT;
  --Inputs
  signal Clk: std logic:='0';
  signal Reset : std logic := '0';
  signal L : std logic := '0';
  signal Up : std logic := '1';
  signal Enable : std logic := '0';
  signal wpis : std_logic_vector(3 downto 0) := "0011";
       --Outputs
  signal Q: std logic vector(3 downto 0);
  -- Clock period definitions
  constant Clk period: time := 10 ns;
BEGIN
       -- Instantiate the Unit Under Test (UUT)
  uut: counter PORT MAP (
      Clk => Clk,
      Reset => Reset.
      L \Longrightarrow L
```

```
Up \Rightarrow Up,
      Enable => Enable,
      wpis => wpis,
      Q => Q
     );
  -- Clock process definitions
  Clk process :process
  begin
               Clk \le '0';
               wait for Clk period/2;
               Clk <= '1';
               wait for Clk_period/2;
  end process;
  -- Stimulus process
  stim proc: process
  begin
    -- hold reset state for 100 ns.
   wait for 100 ns;
Enable<='1';
 wait for 100 ns;
L <= '1';
  wait for Clk period;
L < = '0';
Up<='0';
wait for 100 ns;
Up<='1';
  wait for 100 ns;
Reset <='1';
   wait for Clk_period*10;
   -- insert stimulus here
   wait;
  end process;
END;
```

3. Opis projektu.

Projekt posiada wejścia:

- Clk zegarowe licznika,
- Reset resetujące licznik,
- L powodujące wpisanie na wyjście licznika wcześniej ustalonej wartości,

- Up decydujące o kierunku zliczania licznika,
- Enable zezwalające na zliczanie,
- wpis wartość mogąca zostać wpisana na wyjście licznika.

Posiada także wyjście Q, na które podawana zostaje wartość zliczeń. Układ zlicza (mod n) od 0 do n-1, lub od n-1 do 0 Wszystko odbywa się w kodzie binarnym. Licznik pracuje synchronicznie, więc wszystkie jego zmiany mogą się wydarzyć tylko gdy wykryte zostaje zbocze narastające zegara i wejście zezwalające Enable przyjmuje wartość 1. Jeśli spełnione są te dwa warunki to:

- licznik zeruje się kiedy przy zliczaniu do góry osiągnie wartość n-1, lub na wejście reset podany zostanie stan wysoki.
- licznik przyjmuje wartość podaną na wejście wpis, jeśli na wejście L podany zostanie stan wysoki i wartość wpis jest mniejsza lub równa n-1,
- licznik przyjmuje wartość n-1, jeśli na wejście L podany zostanie stan wysoki i wartość wpis jest większa od n, a także jeśli przy zliczaniu w dół osiągnie wartość 0,
- licznik zlicza do góry, kiedy na wejście Up podany jest stan wysoki,
- licznik zlicza w dół, kiedy na wejście Up podany jest stan niski,
- wykonywana jest instrukcja pusta gdy, wystąpi jakiś nieprzewidziany stan

4. Symulacja.

Na początku wartość parametru Enable ustalona jest na 0, więc na wyjściu utrzymuje się stan niski.

Po 100 ns Enable przyjmuje wartość 1, więc licznik zaczyna zliczać od 0 do n-1, a więc w tym przypadku do 6

Po kolejnych 100 ns L przyjmuje na czas okresu zegara wartość 1, więc na wyjście licznika podana jest wartość wektora wpis, czyli 3. Dzieje się to w momencie gdy wartość 3 miała zmienić się na 4. W efekcie wartość 3 utrzymuje się przez 2 okresy. Następnie Up przyjmuje wartość 0, w tym samym czasie gdy L również przyjmuje wartość 0, co skutkuje zliczaniem licznika w dół, od n-1 do 0 czyli od 6 do 0.

Po kolejnych 100ns Up wraca do wartości 1 i licznik znów zlicza do góry, aby po kolejnych 100ns przyjąć na wyjściu wartość 0 do końca symulacji, przez to że reset przyjmuje 1.

		_								<u> </u>					_		_		
Name	Value		300 ns		320 ns		340 ns		360 ns		380 ns		400 ns			420 ns		440 ns	 460 ns
U₀ clk	1												ш						
1 reset	1																		
16 1	0																		
Te up	1																		
🖟 enable	1																		
▶ 🧓 wpis[3:0]	0011												(0011					
▶ 🌄 q[3:0]	0000	X 00	01 / 00	00 00	01 × 001	0 (00	11 / 0	100 (01	D1 X	0110 / 0	000	0001 000	10	0011					0000
☐ clk_period	10000 ps												10	000 ps					