(19) 世界知的所有権機関 国際事務局

LTDI ARADA BERDI BEN KENJERSE KANTONI EDRO BARA REGUERO BEN KENJERO BEN ERKO BERD BENGO BUTO

(43) 国際公開日 2005年4月28日 (28.04.2005)

(10) 国際公開番号 WO 2005/038440 A1

1) 同磨结阵分類7:	G01N 21

PCT

- PCT/IP2004/015266 (21) 国際出願番号:
- 2004年10月15日(15.10.2004) (22) 国際出題日:
- (25) 国際出願の言語:
- 日本語

(26) 国際公開の言語:

- 日本語
- (30) 優先権データ: 特願 2003-356225
- 2003年10月16日(16.10.2003) JP
- (71) 出願人 *(*米国を除く全ての指定国について): タマ ティーエルオー株式会社 (TAMA-TLO, LTD.) [JP/JP]; 〒1920083 東京都八王子市旭町 9番 1号 八王子スク エアビル11階 Tokyo (JP)
- (72) 発明者;および (75) 発明者/出願人 (米国についてのみ): 伊賀 光博 (IGA, Mitsuhiro) [JP/JP]; 〒1928577 東京都八王子市丹木町 1-236 創価大学内 Tokyo (JP). 渡辺 一弘 (WATAN-ABE, Kazuhiro) [JP/JP]; 〒1928577 東京都八王子市丹 木町 1-2 3 6 創価大学内 Tokyo (JP). 関 第志 (SEKI, Atsushi) [JP/JP]; 〒1928577 東京都八王子市丹木町 1-2 3 6 創価大学内 Tokyo (JP).
 - (74) 代理人: 佐藤隆久 (SATOH, Takahisa); 〒1110052 東 京都台東区柳橋2丁目4番2号 創進国際特許事務 所 Tokyo (JP).
 - (81) 指定国/表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, I.R, LS, LT,

/続葉有/

(54) Title: OPTICAL FIBER SENSOR AND MEASURING DEVICE USING THE SAME

(54) 発明の名称: 光ファイパセンサおよびそれを用いた測定装置

100 ティップ型光ファイバセンサ源定装置

- 8... MEASURING DEVICE
- 1... LIGHT SOURCE 6... SIGNAL DETECTOR
- 7_ MEASUREMENT CALCULATOR
- 2... OPTICAL BRANCHING DEVICE 3... OPTICAL FIBER CONNECTOR
- 20a... OPTICAL FIBER PORTION 9... OPTICAL FIBER SENSOR 5... REFERENCE LIGHT DETECTOR A. MD MEASUREMENT MEDIUM 100... TIP TYPE OPTICAL FIBER
- 4... SENSOR PORTION

7. MEASUREMENT CACCUACY
2. OPTICAL BROWNESS CREAMS
3. OPTICAL BROWNESS CREAMS
7. IN THE OPTICAL BRIEF
5. SENOR MEASUREMS CREAMS
7. IN THE OPTICAL BRIEF
5. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
5. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
5. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS CREATE
7. IN THE OPTICAL BRIEF
7. SENOR MEASUREMS
7. SENOR MEASURE diameter than the core of the optical fiber portion (20a) is melted/adhered, thereby constituting a tip type optical fiber sensor (9) chameter man the core of the optical fiber portion (2013) is mentovanered, increary constituting a the type dynata fixes sensor (9).

We having a sensor portion (4) formed by the hetere core portion at the tip and. A light source (1) is connected to the and of the optical fiber portion (200) from the light source of the light source of the portion (200) from the light source of the light by an optical fiber coupler (2) and made to receive the light by a photodiode or a spectrum analyzer (6), thereby constituting an optical fiber sensor measuring device (100).

THE BROWN REPUBLIES CONTINUES OF BROWN BROWN BROWN OF SERVING CORRECTIONS OF BROWN B WO 2005/038440 A1

LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC. VN, YU, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, のガイダンスノート」を参照。

IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語

(57) 要約: 外界の状況をより簡便に検出することを可能にする光ファイパセンサおよびそれを用いた測定装置を 提供する。光を伝送する光ファイバ部20aの先端に、光ファイバ部20aのコアとは径が異なるヘテロ・コア部を 融業接合して、ヘテロ・コア部によるセンサ部4を先端に有するティップ(tip)型光ファイバセンサ9を構成す る。このティップ型光ファイバセンサ8の光ファイバ部20a側の蜷部に光顯1を接続し、光潔1から光ファイバ 部2Oalに入射しセンサ部4において測定は質MDとの間で相互作用を受けた戻り光を、光ファイバカブラ2によ BD 4 UBIL A別 UモノゾBD 4 においく別元味真MDZ EUBI で相互作用を受けた戻り元を、ガファイバカフラ 2 により分岐させ、フォトダイオードまたはスペクトルアナライザらによって受光させて、光ファイバセンサ調定装置 1 OO を構成する。