Radix64

- Base64

Visual Chara		_	2		_
i	1	2	3	4	5
	M	u	h	a	m
ASCII	77	117	104	97	109
Bit Pattern	01001101	01110101	01101000	01100001	01101101
	010011	01		011000	01
		0111	101000		0110
		0101	01		1101
Index	10	22	21	40	24
index	19	23	21	40	24
radix64	Т	X	V	0	Υ
Tudiko-f		^	•	0	

Extended Euclidean Algorithm (EEA)

Extended Euclidean Algorithm

Irreducible Polynomials

Let an irreducible polynomial $m = 283_{10} = 256+16+8+2+1=100011011_2 = 11B_{16}$ In polynomial term, this irreducible polynomial $m(x) = x^8 + x^4 + x^3 + x + 1$.

Euclidean Algorithm				Extended		
<i>b</i> =	$a \cdot$	q +	r	и	v	$w=u-v\cdot q$
283	42	6	31	0	1	-6
42	31	1	11	1	-6	7
31	11	2	9	-6	7	-20
11	9	1	2	7	-20	27
9	2	4	1	-20	27	-128
2	1	2	0	27	-128	283

$$a^{-1} \mod b = -128 + 283 = 155.$$

We always check $a \cdot a^{-1} \equiv 1 \pmod b$
 $42 \cdot 155 = 6510 = 23 \cdot 283 + 1 \equiv 1 \pmod{283}$

AES S-Box

$$a^{-1} = D9_{16} = 11011001_2$$
 (Inversekan urutan)

$$b(x) = x^8 + x^4 + x^3 + x + 1 = 100011011_2 = 11B_{16}$$

$$\begin{bmatrix} b_0' \\ b_1' \\ b_2' \\ b_3' \\ b_6' \\ b_6' \\ b_7' \end{bmatrix} = \begin{bmatrix} \mathbf{1} & 0 & 0 & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 1 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 1 & 0 & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & 1 & 1 & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & 1 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{1} & 1 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 1 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & 0 & 1 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & 0 & 0 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & 0 & 0 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{0} & 0 & 0 & \mathbf{0} & \mathbf{0} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{1} \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

xor-kan nombor yang highlighted

$$= 00111101 = 3D_{16}$$