Review for Exam I

- 1. Let *A* and *B* be subsets of **R**. Show that if *A* and *B* are bounded above, then $A \cup B$ is bounded above. You may use the fact that for real numbers *a* and *b*, we have $a \le \max(a, b)$ and $b \le \max(a, b)$.
- 2. Give an example of a subset of **R** that does not have a least upper bound.
- 3. Give an example of a subset A of **R** such that $lub(A) \in A$.
- 4. Give an example of a subset A of **R** such that $lub(A) \notin A$.
- 5. Show that $lub((-\infty, 2)) = 2$.
- 6. Show that lub([0,2)) = 2.
- 7. Let A be a subset of **R**. Show that A has at most one least upper bound.
- 8. Write a proof for

Proposition 1 For all $x, y \in \mathbb{R}$, there is $a \in \mathbb{R}$ such that x < y implies x < a < y.

9. Write a proof for

Proposition 2 For all $x \in \mathbb{R}_{>0}$ there is $y \in \mathbb{R}_{>0}$ such that y < x.

10. Without explicitly using negation, write the negation of

Proposition 3 There are $x, y \in \mathbf{R}$ such that $\sin(x) = \sin(y) \implies x = y$.

11. Either write a proof of

Proposition 4 There are $x, y \in \mathbb{R}$ such that $\sin(x) = \sin(y) \implies x = y$.

or write a proof of its negation.

- 12. Let $(\mathcal{F}, +, \times)$ be a field and let O be the additive identity and I be the multiplicative identity. Given that O = I, show that $\mathcal{F} = \{O\}$.
- 13. Let $(\mathcal{F}, +, \times)$ be a field. Show that for all $a, b \in \mathcal{F}$, we have $a \times b = a \times (-b)$.
- 14. Let $(\mathcal{F}, +, \times)$ be an ordered field. For all $a, b, c \in \mathcal{F}$, show that a < b and c < 0 implies $a \times c > b \times c$.
- 15. Show that

$$(\forall k \in \mathbf{Z}_{>1}) \left(\frac{1}{k^2} \le \frac{1}{k-1} - \frac{1}{k} \right).$$

16. Show that

$$(\forall x \in (-\infty, 1)) (\exists r \in \mathbf{R}_{>0}) ((x - r, x + r) \subset (-\infty, 1)).$$

- 17. Let A, B be subsets of **R** and let A be bounded above. Show that $A \setminus B$ is bounded above.
- 18. Give an example of subsets A, B of \mathbf{R} such that $A \setminus B$ is bounded above, but A is not bounded above.
- 19. Define $F = x \in \mathbf{R} \mapsto x^2$. Enumerate the members of the set

$$F(\{-4,-1,0,1,4\}).$$

20. Show that

$$(\forall a \in \mathbf{R}) (\exists m \in \mathbf{R}) (\forall x \in \mathbf{R}) (x^2 - a^2 \ge m(x - a)).$$