

ΘΕΣΣΑΛΟΝΙΚΗΣ

CBGL: Fast Monte Carlo Passive Global Localisation of 2D LIDAR Sensor

Alexandros Filotheou

School of Electrical and Computer Engineering Aristotle University of Thessaloniki, Greece

Setup & Motivation

Unknown LIDAR pose $\mathbf{p}(x, y, \theta)$ and estimate $\hat{\mathbf{p}}(\hat{x}, \hat{y}, \hat{\theta})$. $\mathbf{p} - \hat{\mathbf{p}} = (\Delta \hat{\mathbf{l}}, \Delta \hat{\theta})$

Real $S_R(p)$ and virtual $S_V(\hat{p})$ scans, in the local coordinate frame of each sensor

Definition 1. The Cumulative Absolute Error per Ray (CAER) metric

scan rays-1

The gist

The method estimates the pose of a 2D LIDAR given only a single measurement and the map of the environment, while

- being robust against
- -environment repetitions
- -map distortions
- -sensor noise
- -sensor FOV (radial & angular)
- executing at ≈ 1 sec per 100 m² of environment area
- requiring no parameters to be tuned
- making no assumptions about the environment

because CAER (eq. (1))

- scales with position and orientation error
- is computationally cheap at \sim O(sensor rays)

 $\mathcal{S}_{R} \qquad \qquad \mathcal{P}$ Estimate bottom-k of pose errors $\begin{array}{c} \text{compute ranks} \\ \text{compute CAERs} \\ \text{scan_map} \\ \\ & \qquad \qquad \mathcal{F}[\mathbf{I}^*] = \Psi_{\uparrow} \\ \\ \mathcal{P}_{\nabla} = \{\mathcal{P}[\mathbf{I}^*[0]], \mathcal{P}[\mathbf{I}^*[1]], \dots, \mathcal{P}[\mathbf{I}^*[k-1]]\} \end{array}$

Experiments with real and synthetic data

ALS [1] CBGL	Error [m] 0.500 0.041	Error [rad] 1.956 0.011	Time [sec] 6.15 1.61
In > 6000 attempts	Mean	Mean	Mean
	Position	Orientation	Execution

