Last name		
First name		

LARSON—MATH 550—CLASSROOM WORKSHEET 24 Binomial Coefficients.

Concepts & Notation

• Sec. 5.1. Binomial coefficients.

Review

- 1. $\binom{n}{m}$ is the number of *m*-subsets of an *n*-set (for $n, m \in \mathbb{Z}^{\geq 0}$).
- 2. Find a formula for $\binom{n}{m}$ $(0 \le m \le n, m, n \in \mathbb{Z})$.
- 3. Argue the symmetry identity $\binom{n}{k} = \binom{n}{n-k}$.
- 4. prove the addition formula:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

- 5. Find the sum of $\binom{n}{0}$, $\binom{n}{1}$, ... $\binom{n}{n}$.
- 6. Find $(x+y)^n$.

The binomial coefficients $\binom{n}{k}$ $(n, k \in \mathbb{Z}^{\geq 0})$ can be generalized to $\binom{r}{k}$ $(r \in \mathbb{R}, k \in \mathbb{Z})$:

$$\binom{r}{k} = \frac{r^{\underline{k}}}{k!} \text{ (if } k \ge 0)$$

$$\binom{r}{k} = 0 \text{ (if } k < 0).$$

- 1. Argue the absorbtion identity $\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}$.
- 2. The (Newton's Generalized) Binomial Theorem says $(x+y)^r = \sum_{k=0}^{\infty} {r \choose k} x^k y^{r-k}$. Does this agree with our formula when $r \in \mathbb{Z}$?

3. How can we prove the special case $(x+1)^r = \sum_{k=0}^{\infty} {r \choose k} x^k$?

4. Find an expression for $\sqrt{x+1}$.

5. Check it for x = 3, x = 1.