CPSC 327 Artificial Intelligence Spring 2015: Mid-Term Study Guide

March 3, 2015

1 Name 5 Attributes of Intelligence

Use the reading, class notes, your paper, and my comments to prepare 5 attributes of intelligence that you can write for this part of the test.

2 Grammars

Given the following grammar:

which of the following are valid?

- 1. a % b & c
- 2. b % c % d
- 3. x & y % z
- 4. x % y & z

Given the following grammar:

which of the following are valid?

- 1. I shot an elephant in my pajamas
- 2. all roads lead to rome
- 3. amen
- 4. what is the flying speed of an unburdened sparrow (european or african)

3 Proofs in The Wumpus World

Keep these logic rules in your back pocket:

- Or Commutativity: $A \vee B \equiv B \vee A$.
- And Commutativity: $A \wedge B \equiv B \wedge A$.
- Or Associativity: $A \vee (B \vee C) \equiv (A \vee B) \vee C$.
- And Associativity: $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$.
- Double Negation: $\neg \neg A \equiv A$.
- Contraposition: $A \to B \equiv \neg B \to \neg A$.
- Implication Elimination: $A \to B \equiv \neg A \lor B$.
- Biconditional Elimination: $A \leftrightarrow B \equiv (A \to B) \land (B \to A)$.
- DeMorgan's Law 1: $\neg(A \land B) \equiv \neg A \lor \neg B$.
- DeMorgan's Law 2: $\neg (A \lor B) \equiv \neg A \land \neg B$.
- Distribute Or: $A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$.
- Distribute And: $A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$.

and these inference rules:

• Modus Ponens:

$$\frac{A \to B, A}{B}$$

• And Elimination:

$$\frac{A \wedge B}{A}$$

• Resolution:

$$\frac{(A \vee B \vee C), \neg B}{(A \vee C)}$$

1. Given the rules:

R1: $\neg P_{1,1}$.

R2: $B_{1,1} \leftrightarrow (P_{1,2} \vee P_{2,1}).$

R3: $B_{2,1} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$

we then visit [1,1] and [2,1] and learn the following facts:

R4: $\neg B_{1,1}$.

R5: $B_{2,1}$.

A. Prove that there is no pit at location [1,2].

Step	Rule	Reason
S1	$B_{1,1} \to (P_{1,2} \vee P_{2,1}) \wedge (P_{1,2} \vee P_{2,1}) \to B_{1,1}$	Biconditional Elimination of R2.
S2	$(P_{1,2} \lor P_{2,1}) \to B_{1,1}$	And Elimination.
S3	$\neg B1, 1 \to \neg (P_{1,2} \lor P_{2,1})$	Contraposition.
S4	$\neg (P_{1,2} \lor P_{2,1})$	Modus Ponens S3 and R4.
S5	$\neg P_{1,2} \wedge \neg P_{2,1}$	DeMorgan.
S6	$\neg P_{1,2}$	And-Elimination

Now move to location [1,2] and learn the fact R6 and add the game rule R7:

R6: $\neg B_{1,2}$.

R7: $B_{1,2} \leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{1,3}).$

B. Prove that there is a pit in location [3,1]

Step	Rule	Reason
S6	$\neg P_{2,2} \wedge \neg P_{1,3}$	S1 - S5 above and R1 applied to R7.
S7	$\neg P_{2,2}$	And Elimination from S6.
S8	$\neg P_{1,3}$	And Elimination from S6.
S9	$(P_{1,1} \vee P_{2,2} \vee P_{1,3})$	Biconditional Elimination of R3 and Modus Ponens R5.
S10	$P_{1,1} \vee P_{3,1}$	Resolution of S9 and S7.
S11	$P_{3,1}$	Resolution of R1 and S10.

4 prolog Programs

4.1 What, if anything, is wrong with the following prolog clause?

```
\begin{split} & sibling(A,B)\text{:- parent}(X,A), \; parent(X,B). \\ & What \; will \; result \; if \; it \; is \; run \; against \; family.pl? \\ & ?\text{- sibling}(stephanie, \; X). \\ & X = stephanie \; ; \\ & X = danielle \; ; \\ & X = danielle. \end{split}
```

4.2 Write a set of prolog clauses to define a fibonacci sequence

For an inefficient example,