Algorithms for counting triangles and other graphlets

Motivation

- Counting triangles is a fundamental problem in graph theory
- Some problems require exact algorithms
- Exact algorithms are needed to evaluate approximate algorithms
 - Exact counting is slow. What are some possible euristic optimizations?
- Counting graphlets is a more general problem with many applications:
 - Discover interesting properties of biological graphs
 - Useful feature for machine learning at the node/graph level
 - many more!
- Can we extended triangle couting algorithms to other graphlets?
 - Again, what are some possible euristic optimizations?

Methods

- Start by implementing algorithms seen in class
- Look for euristic optimizations, still giving exact results
 - Known limitation: we'll need to load all edges in memory
- Compare running times across graphs of different sizes
 - What parameters influence running time? n, m, delta, ...
- Explore possible generalizations of triangles counting algorithms to other graphlets
 - Counting 2-pointeed-stars should be similar to counting triangles
 - Can we count graphlets of size k=4 using results from k=3?
- Possibly compare the results with approximate algorithms

Intended experiments

- Use graphs from https://networkrepository.com/
 - Choose graphs spanning different orders of magnitude in size
 - Nomralize the input format
- Implement algorithms from scratch (C++)
 - Use pseudocode from class as a guide for known algorithms
 - Look for possible heuristic optimizations
 - Search the literature for possible other optimizations
- Measure algorithm efficiency
 - Measure running time
 - Measure memory usage
 - Compare running times across graphs of different sizes
 - Compare results with theoretical expectations
- Extend the implementation to other graphlets
 - Try to generalize the algorithms already implemented for triangles
- Machine for experiments: our personal laptop

Idea for an heuristic optimization: sort the nodes by degree, start counting from the nodes of lowest degree, delete nodes and incident edges as they are processed. Initial results are promising:

Graph	V	E	Triangles	Time Naive	Time Heuristic	Naive/Opt
soc-wiki-Vote	882	2914	2119	0.026s	0.003s	8.66
fb-pages- politician	5908	41729	174632	0.827s	0.153s	5.40
soc-twitter- follows-mun	465017	835423	38389	76.415s	2.245s	34.04
soc-youtube- snap	1134890	2987624	3056386	657.263s	11.962s	54.94
soc-flixster	2523386	7918801	7897122	$752.680\mathrm{s}$	36.171s	20.80

Here, *Time Naive* refers to the time taken by the O(m*delta) algorithm seen in class, and *Time Heuristic* to the time taken by our heuristic optimization.

References

- Slides from class
- Graphlet decomposition: framework, algorithms, and applications (2016) offers a great review of algorithms and applications for graphlets