二、数值计算中的一些基本原则

- ■避免绝对值小的数作除数
- ■避免两个相近的数据相减
- 要防止大数"吃掉"小数
- 尽量减少计算工作量
- 选用数值稳定性好的算法

■ 避免绝对值小的数作除数

这一原则主要指尽量避免除数绝对值远远小于被除数绝对值的除法。

设 $z = y/x(x\neq 0)$,如果x的绝对值远小于y的绝对值,由于

$$\varepsilon(\frac{y}{x}) \approx \frac{|x|\varepsilon(y) + |y|\varepsilon(x)}{|x|^2}$$

$$= \frac{\varepsilon(y)}{|x|} + \frac{|y|}{|x|^2} \varepsilon(x)$$

■避免两个相近的数据相减

如果 $y \approx x$,现分析两个数的近似数作减法所得结果的误差.设z=y-x,则利用误差估计

$$\varepsilon(z) \approx \varepsilon(y) + \varepsilon(x)$$

有相对误差估计

$$\varepsilon_r(z) \leq \frac{|y|}{|z|} \varepsilon_r(y) |+ \frac{|x|}{|z|} \varepsilon_r(x)$$

当 $y \approx x$ 时,有 $z\approx 0$,计算结果的相对误差限可能很大,导致数值计算结果的有效数字位数减少。

■ 要防止大数"吃掉"小数

一个绝对值很大的数和一个绝对值很小的数直接相加时,很可能发生所谓"大数吃小数"的现象。

例如, $a=10^{13}$,b=4,设想这两个数在具有12位浮点数计算机系统(12位有效位数系)中相加

实际加法操作如下

二、数值计算中的一些基本原则

■ 尽量减少计算工作量

在考虑算法时应注意简化计算步骤,减少运算次数。

计算工作量小的算法不仅节约运行时间,而且使误差积累小。

例2 设计算法用于计算多项式

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

■ 尽量减少计算工作量

$$P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

算法一:

$$S_0 = a_0$$
,
 $S_k = S_{k-1} + a_k x^k$, $(k=1, 2, ..., n)$
 $P_n(x) = S_n$

这种算法计算复杂性怎么样?

$$x^{k} = x \cdot x^{k-1}$$

计算一个n次多项值需要用2n-1次乘法。

这种算法是否是最优的呢?

■ 尽量减少计算工作量

另一种典型算法是秦九韶算法

$$P_4(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$
$$= a_0 + x(a_1 + x(a_2 + x(a_3 + xa_4)))$$

算法二:

$$S_n = a_n$$
,
 $S_{k-1} = a_{k-1} + xS_k$, $(k=n, n-1, ..., 1)$,
 $P_n(x) = S_0$

计算一个n次多项值需要用n次乘法。

■ 选用数值稳定性好的算法

不同的算法在执行过程中对数据误差的影响是不一样的。舍入误差对计算结果影响不大的算法被称为数值稳定的算法.

例3 利用递推式计算定积分

$$I_n = e^{-1} \int_0^1 x^n e^x dx$$

(n=0, 1, 2, ..., 20)的值。

算法一:

$$I_n = e^{-1} (x^n e^x \Big|_0^1 - n \int_0^1 x^{n-1} e^x dx) = 1 - n I_{n-1}$$

其中
$$I_0 = e^{-1} \int_0^1 e^x dx = e^{-1} (e - 1) = 1 - e^{-1}$$

得递推关系式

$$\begin{cases} I_0 = 1 - e^{-1} \\ I_n = 1 - nI_{n-1}, (n = 1, 2, \dots) \end{cases}$$

利用递推式可得20个数据如下表:

S_1	0. 36787944117144	S 11	0. 07735222935878
S_2	0. 26424111765712	S 12	0. 07177324769464
S_3	0. 20727664702865	S ₁₃	0. 06694777996972
S_4	0. 17089341188538	S 14	0. 06273108042387
S_5	0. 14553294057308	S 15	0. 05903379364190
S_6	0. 12680235656152	S 16	0. 05545930172957
S_7	0. 11238350406936	S 17	0. 05719187059731
S ₈	0. 10093196744509	S 18	-0. 02945367075154
$S_{9}^{\text{(max e)}}$	ⁿ -0. 09161229299417	S 19	1. 55961974427919
S_{10}	0. 08387707005829	S 20	-30. 19239488558378

对积分值有估计式:

$$\frac{e^{-1}}{n+1} \le e^{-1} \int_0^1 x^n e^x dx \le \frac{1}{n+1}$$

算法二:

由递推公式

$$I_n = 1 - nI_{n-1}$$

有

$$I_{n-1} = \frac{1}{n} (1 - I_n)$$

由 I_n 的估计式

$$\frac{e^{-1}}{n+1} \le I_n \le \frac{1}{n+1}$$

取

$$I_{30} \approx S_{30} = \frac{1}{31}$$

$$S_{n-1} = \frac{1}{n}(1 - S_n), \qquad n = 30,29,28,\dots,2$$

利用递推式可得20个数据如下表:

S_1	0. 36787944117144	S 11	0. 07735222886266
S_2	0. 26424111765712	S 12	0. 07177325364803
S_3	0. 20727664702865	S 13	0. 06694770257562
S_4	0. 17089341188538	S 14	0. 06273216394138
S_5	0. 14553294057308	S 15	0. 05901754087930
S_6	0. 12680235656153	S 16	0. 05571934593124
S_7	0. 11238350406930	S 17	0. 05277111916899
S_8	0. 10093196744559	S 18	0. 05011985495809
S 9	0. 09161229298966	S 19	0. 04772275579621
S 10	0. 08387707010339	S 20	0. 04554488407582

■结论

初始误差在算法执行过程中不断减小,这种算法称为数值稳定算法。

在算法执行过程中,舍入误差对计算结果影响不大的一类算法被称为数值稳定算法;否则称为不稳定算法.