locale = FR, detect-all, per-mode = symbol

Leçons de choses

Écrire des mathématiques : LATEX en cinq minutes

Une formule s'écrit entre deux dollars π^2

Une formule s'écrit entre deux dollars π^2 Ou entre double dollars $\parallel u_n = + \inf u_n = +\infty$ $\lim u_n = +\infty$

Une formule s'écrit entre deux dollars
$$\pi^2$$
 Ou entre double dollars $\|u_n\| = +\inf y$

• Les exposants s'obtiennent avec l'accent circonflexe ^

- Les exposants s'obtiennent avec l'accent circonflexe ^
- Les indices avec _

Une formule s'écrit entre deux dollars π^2 Ou entre double dollars $\$ \lim u_n = +\infty\$\$ $\lim u_n = +\infty$

- Les exposants s'obtiennent avec l'accent circonflexe ^
- Les indices avec

- Les exposants s'obtiennent avec l'accent circonflexe ^
- Les indices avec _
- a² s'écrit a^2
 - ▶ *u_n* s'écrit u_n

- Les exposants s'obtiennent avec l'accent circonflexe ^
- Les indices avec
- a² s'écrit a^2
 - ▶ u_n s'écrit u_n
 - $\sim \alpha_i^2$ s'écrit \alpha_i^2

- Les exposants s'obtiennent avec l'accent circonflexe ^
- Les indices avec _
- a^2 s'écrit a^2
 - ▶ u_n s'écrit u n
 - $\sim \alpha_i^2$ s'écrit \alpha_i^2
- Les accolades { } permettent de grouper du texte

Une formule s'écrit entre deux dollars π^2 Ou entre double dollars π^2 Une formule s'écrit entre deux doll

- Les exposants s'obtiennent avec l'accent circonflexe
- Les indices avec
- a^2 s'écrit a^2
 - ▶ u_n s'écrit u n
 - $\sim \alpha_i^2$ s'écrit \alpha_i^2
- Les accolades { } permettent de grouper du texte
 - ▶ 2^{10} pour 2¹⁰
 - ► a_{i,j} pour *a_{i,j}*

\sqrt racine
$$\sqrt{a}$$
 \sqrt{a}
$$\sqrt{1+\sqrt{2}}$$
 \sqrt{1+\sqrt{2}}
$$\sqrt[3]{x}$$
 \sqrt[3]{x}

Leçons de choses Premières commandes 2 / 1

$$\sqrt{a} \qquad \qquad \qquad \\ \sqrt{1+\sqrt{2}} \qquad \qquad \\$$

Leçons de choses Premières commandes 2 / 1

\lim limite
$$\lim_{n\to+\infty} u_n = 0$$
 \lim_{n \to +\infty} u_n = 0

 $\lim_{x\to 0^+} f(x) < \varepsilon$ \lim_{x \to 0^+} f(x) <\epsilon

Leçons de choses Premières commandes 3 / 1

\lim limite
$$\lim_{n \to +\infty} u_n = 0$$
 \lim_{n \to +\infty} u_n = 0 \lim_{x \to 0^+} f(x) < \varepsilon \lim_{x \to 0^+} f(x) < \varepsilon \lim_{i=1}^n \frac{1}{i} \lim_{i=1}^n \frac{1}{i} \lim_{i=1}^n \frac{1}{i} \lim_{i=0}^n \lim_{i=1}^n \limin_{i=1}^n \lim_{i=1}^n \limin_{i=1}^n \limin_{i=1}^n

Leçons de choses Premières commandes 3 / 1

$$\lim_{n\to +\infty} \lim_{n\to +\infty} u_n = 0 \qquad \lim_{n\to +\infty} u_n = 0$$

$$\lim_{x\to 0^+} f(x) < \varepsilon \qquad \lim_{x\to 0^+} f(x) < \exp silon$$

$$\lim_{x\to 0^+} \frac{1}{i} \qquad \qquad \lim_{t\to 1} n \operatorname{frac}\{1\}\{i\}$$

$$\lim_{t\to 0} a_t \qquad \qquad \lim_{t\to 0} \log t \qquad \qquad \lim_{t\to 0$$

Leçons de choses Premières commandes 3 / 1

$$f: E \rightarrow F$$
 f : E \to F
 $+\infty$ +\infty
 $a \le 0$ a \le 0
 $a > 0$ a > 0
 $a \ge 1$ a \ge 1
 δ \delta
 Δ \Delta

$$\begin{array}{lll} f:E\to F & \mathrm{f}: \mathrm{E} \to \mathrm{F} \\ +\infty & +\backslash \mathrm{infty} \\ a\leqslant 0 & \mathrm{a} \ \backslash \mathrm{le} \ 0 \\ a>0 & \mathrm{a}>0 \\ a\geqslant 1 & \mathrm{a} \ \backslash \mathrm{ge} \ 1 \\ \delta & \mathrm{delta} \\ \Delta & \backslash \mathrm{Delta} \end{array}$$

$$a \in E$$
 a \in E

 $A \subset E$ A \subset E

 $P \implies Q$ P \implies Q

 $V \iff Q$ P \iff Q

 $V \iff Q$ \text{forall}

 $V \iff Q \iff Q$ \text{cup}

 $V \iff Q \iff Q \iff Q$

• définir \Rr qui exécutera \mathbb{R} et affichera donc \mathbb{R}\\
\newcommand{\Rr\{\mathbb{R}\}}

```
a \in E
                                             a \in E
f: E \to F f : E \to F
                                 A \subset E
                                           A \subset E
  +\infty
             +\infty
                               P \implies Q
                                          P \implies Q
  a \leqslant 0
             a \le 0
                               P \iff Q
                                         P \iff Q
  a > 0 a > 0
                                             \forall
  a \geqslant 1
             a \ge 1
                                             \exists
             \delta
                                               \cup
             \Delta
                                               \cap
```

- définir \Rr qui exécutera \mathbb{R} et affichera donc R \newcommand{\Rr}{\mathbb{R}}
- pour une commande \monintegrale qui affiche $\int_0^{+\infty} \frac{\sin t}{t} dt$ \newcommand{\monintegrale}{\int_0^{+\infty} \frac{\sin t}{t} dt}

Mini-exercices

Écrire en LATEX toutes ces formules (qui par ailleurs sont vraies!).

$$\lim_{R\to+\infty}\int_{-R}^{+R}e^{-t^2}\,dt=\sqrt{\pi}$$