2/18/2018 Data609HW3

Data609HW3

Angus Huang

February 18, 2018

Page 113, Question 2

2. The following table gives the elongation e in inches per inch (in./in.) for a given stress S on a steel wire measured in pounds per square inch (lb/in.²). Test the model $e = c_1 S$ by plotting the data. Estimate c_1 graphically.

$S (\times 10^{-3})$	5	10	20	30	40	50	60	70	80	90	100
e (×10 ⁵)	0	19	57	94	134	173	216	256	297	343	390

Page 79 Question 11

```
library(ggplot2)
library(ggthemes)
library(ggThemeAssist)
library(latex2exp)
library(knitr)
```

```
#Setting up the data table
S <- c(5, seq(10, 100, 10))
e <- c(0, 19, 57, 94, 134, 173, 216, 256, 297, 343, 390)
mydf <- data.frame(S = S, e = e)
```

```
#caculate the slope
c1 <- (mydf[5, 2] - mydf[4, 2])/(mydf[5, 1] - mydf[4, 1])
c1
```

```
## [1] 4
```

2/18/2018 Data609HW3

10. Data for planets

Body	Period (sec)	Distance from sun (m)
Mercury	7.60×10^{6}	5.79 × 10 ¹⁰
Venus	1.94×10^{7}	1.08×10^{11}
Earth	3.16×10^{7}	1.5×10^{11}
Mars	5.94×10^{7}	2.28×10^{11}
Jupiter	3.74×10^{8}	7.79×10^{11}
Saturn	9.35×10^{8}	1.43×10^{12}
Uranus	2.64×10^{9}	2.87×10^{12}
Neptune	5.22×10^{9}	4.5×10^{12}

Fit the model $y = ax^{3/2}$.

Page 113 Question 2

body	period	distance
Mercury	7.60e+06	5.79e+10
Venus	1.94e+07	1.08e+11

2/18/2018 Data609HW3

body	period	distance
Earth	3.16e+07	1.50e+11
Mars	5.94e+07	2.28e+11
Jupiter	3.74e+08	7.79e+11
Saturn	9.35e+08	1.43e+12
Uranus	2.64e+09	2.87e+12
Jupiter	5.22e+09	4.50e+12

```
lsmodel <- nls(distance~a*period^(3/2), data = mydf2, start = list(a=0.5))
lsmodel</pre>
```

```
## Nonlinear regression model
## model: distance ~ a * period^(3/2)
## data: mydf2
## a
## 0.01321
## residual sum-of-squares: 3.055e+24
##
## Number of iterations to convergence: 1
## Achieved convergence tolerance: 2.825e-07
```

```
#plotting model using the results form nls model

nlsfun <- function(x) 0.01320756 * x^(3/2)
g2 <- ggplot(mydf2, aes(x = period, y = distance)) + geom_point() + theme_wsj()
g2 <- g2 + labs(title = "Distance from sun vs. Planet Period")
g2 <- g2 + labs(subtitle = TeX("Model: $y=0.01321x^{3/2}"))
g2 <- g2 + theme (plot.title = element_text(size = 18))
g2 <- g2 + theme (plot.subtitle = element_text(size = 14))
g2 <- g2 + stat_function(fun = nlsfun)
g2</pre>
```

