12.12 In the circuit of Figure P12.12 find the maximum average power that can be transferred to Z_L as well as Z_L itself.

12.13 Repeat Problem 12.12 for the circuit of Figure P12.13.

hallando voltaje de tyhevenin

Definimos las impedancias del circuito, sabiemos que en la fuente dependiente de corriente no vamos a tener correinte

```
clc, clear ,close all
format short g

vf = 12;

z1 = 1;
 z2 = -j;
 z3 = j;
 z4 = 2;

zeq = z1+z2+z3
```

$$Ix = 12/zeq$$

conociendo la correinte lx podemos saber la tension en la fuente depéndiente

```
v1 = Ix*z1
```

$$v2 = Ix*z2$$

v2 =

0 - 12i

v3 = Ix*z3

v3 =

0 + 12i

v4 = z4*Ix

v4 = 24

 LkT

$$Vth = v4 + v3$$

Vth =

24 + 12i

Corriente de norton

syms i1 i2

ec1= simplify(vf+(z1*i1)+(z2*i1)+z3*(i1-i2) == 0)

 $ec1 = i_1 + 12 = i_2 i$

$$ec2 = simplify(-z3*(i2-i1)-z4*i2 == 0)$$

 $ec2 = i_1 i = i_2 (2 + i)$

 $h = 2 \times 1$ complex

-18 - 6i

-6 + 6i

In = h(2)

Ahora quetenos la tension thevenin y corriente de norton, puedo encontrar la z thevenin

luego sabemos que la impedancia de carga es igual a la conjugada de zth

calculamos la potencia maxima promedio

$$pmax = (abs(Vth)^2)/(8*real(zth)) %[W]$$