Equilibrium trade in manufactured goods is

$$x_{ij}^{\star}(\tau_i) + x_{ii}^{\star}(\tau_j)$$

And total trade is

$$x_{ij}^{\star}(\tau_i) + x_{ii}^{\star}(\tau_j) + |x_{ij}^{\star}(\tau_i) - x_{ii}^{\star}(\tau_j)|$$

where $\mid x_{ij}^{\star}(\tau_i) - x_{ji}^{\star}(\tau_j) \mid$ is the (market clearing) value of agricultural trade. We have established that $x_{ij}^{\star}(\tau_i)$ and $x_{ji}^{\star}(\tau_j)$ are decreasing in each country's tariff rate. It therefore remains to show that $\tilde{\tau}_i^{\star}(a_i, a_j)$ and $\tilde{\tau}_j^{\star}(a_i, a_j)$ are decreasing in a_i, a_j . First, $\frac{\partial \tilde{\tau}_i^{\star}(a_i, a_j)}{\partial a_i} < 0$ because the cross partial

$$\begin{split} \frac{\partial \tilde{G}_i(\tilde{\tau}_i)}{\partial \tilde{\tau}_i} &= \left(1 - F\left(W_j(a_j, a_i) - G_j(\cdot, \tilde{\tau}_i | a_j)\right)\right) \frac{\partial^2 G_i(\tilde{\tau}_i)}{\partial \tilde{\tau}_i \partial a_i} - \frac{1}{\bar{c}_j - \underline{c}_j} \frac{\partial W_j(a_j, a_i)}{\partial a_i} \frac{\partial G_i(\tilde{\tau}_i)}{\partial \tilde{\tau}_i} + \\ & \frac{1}{\bar{c}_j - \underline{c}_j} \frac{\partial G_j(\cdot, \tilde{\tau}_i | a_j)}{\partial \tau_i} \left(\frac{\partial G_i(\tilde{\tau}_i, \cdot; a_i)}{\partial a_i} - \frac{\partial \hat{G}_i(a_i, a_j)}{\partial a_i}\right) \\ &= \left(1 - F\left(W_j(a_j, a_i) - G_j(\cdot, \tilde{\tau}_i | a_j)\right)\right) \frac{\partial^2 G_i(\tilde{\tau}_i)}{\partial \tilde{\tau}_i \partial a_i} - \frac{1}{\bar{c}_j - \underline{c}_j} \frac{\partial W_j(a_j, a_i)}{\partial a_i} \frac{\partial G_i(\tilde{\tau}_i)}{\partial \tilde{\tau}_i} + \\ & \frac{1}{\bar{c}_j - \underline{c}_j} \frac{\partial G_j(\cdot, \tilde{\tau}_i | a_j)}{\partial \tau_i} \left(V_i(\tilde{\tau}_i) - (\rho V_i(\tau_i^*(a_i)) + (1 - \rho) V_i(\tau_i^*(\bar{a}))\right) \end{split}$$

Lemma: If Assumption Aepsilon then

$$\rho V_i(\tau_i^{\star}(a_i), \tau_i^{\star}(\bar{a})) + (1 - \rho)V_i(\tau_i^{\star}(\bar{a}), \tau_i^{\star}(a_j)) - V_i(\tilde{\tau}) > 0$$

Proof: From the proof of r PeqTau,

$$W_i(a_i, a_j) > G(\tau_i, \cdot; a_i)$$

$$\rho \left(a_i V_i(\tau_i^{\star}(a_i), \tau_j^{\star}(\bar{a})) + \Pi_i(\tau_i^{\star}(a_i), \tau_j^{\star}(\bar{a})) \right) + (1 - \rho)$$