I. **Notion de vecteur:**

Définition I.1:

Soient A et B deux points du plan. La translation qui transforme A en B est appelée translation de vecteur \overrightarrow{AB} .

Un vecteur est définie par sa direction, son sens et sa longueur (ou norme), ils sont constamment représenté par une flèche. Ici, les vecteur AB a pour direction celle de la droite (AB), pour sens celui de A vers B et pour longueur la longueur AB.

 \overrightarrow{AB}

Attention, il ne faut pas confondre direction et sens. La droite (AB) définit une direction qui possède deux sens : de A vers B ou de B vers A.

Définition I.2 :

Il existe une infinité de vecteurs égaux à un vecteur donné.

La translation de vecteur \overrightarrow{AB} transforme A en B, C en D et E en F. On a donc : $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$. \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont des représentants d'un même vecteur que l'on peut appeler par un seule lettre, le plus souvent \vec{u} ou \vec{v} . On dit alors : « \overrightarrow{AB} est le représentant d'origine A du vecteur \vec{u} . Son extrémité est B. »

П. **Calcul vectoriel:**

Définition II.1:

Deux vecteurs \overrightarrow{AB} et \overrightarrow{DC} si est seulement si, le quadrilatère ABCD est un parallélogramme (éventuellement aplati). On note alors $\overrightarrow{AB} = \overrightarrow{DC}$.

Propriété II.1 :

 \overrightarrow{AB} et \overrightarrow{CD} sont deux vecteurs égaux si et seulement si :

- AB = CD (les vecteurs on la même norme).
- (AB) et (CD) sont parallèles (les vecteurs ont la même direction).
- On se déplace de A vers B comme de C vers D (les vecteur ont le même sens).

Remarques:

- $\overrightarrow{AB} = \overrightarrow{0}$ si et seulement si A = B.
- Si on fixe un point O, alors pour tout vecteur \vec{u} , il existe un unique point M vérifiant $\vec{u} = \overrightarrow{OM}$.

Définition II.2:

Soient \vec{u} et \vec{v} deux vecteurs, on définit le vecteur $\vec{w} = \vec{u} + \vec{v}$ de la façon suivante : Soit A un point du plan, on trace le représentant de \vec{u} d'origine A : il a pour extrémité B, puis on trace me représentant de \vec{v} d'origine : il a pour extrémité C. Le vecteur \overrightarrow{AC} est un représentant du vecteur \vec{w} .

<u>Propriété 2 : Relation de</u> Chasles :

Pour tous points A, B et C du plan, on a $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Propriété 3 :

Quels que soient les vecteurs \vec{u} , \vec{v} et \vec{w} du plan, on a :

- $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- $\vec{u} + \vec{0} = \vec{u}$

III. <u>Vecteurs Particuliers :</u>

<u>Définition III.1</u>:

Le vecteur opposé au vecteur \overrightarrow{AB} est le vecteur $-\overrightarrow{AB}$ associé à la translation qui transforme B en A. Par conséquent, l'opposé du vecteur \overrightarrow{AB} est le vecteur \overrightarrow{BA} . Donc $-\overrightarrow{AB} = \overrightarrow{BA}$.

Propriété III.1 Caractérisation du milieu :

Le point I est milieu du segment [AB] si, et seulement si, $\overrightarrow{AI} = \overrightarrow{IB}$.

IV. Vecteurs et coordonnées :

Précision:

Dans un plan (P), on considère trois points non alignés O, I, et J. Un repère orthonormé d'origine O est un triplet $\{(O,I,J)\}$ tel que le triangle OIJ soit restangle isocèle en O. Tout point M est repéré par un unique de coordonnées (x;y). La lettre x représente l'axe dit des abcisses, tandis que la lettre y représente l'axe dit des ordonnées. x et y sont respectivement appelées abscisse et ordonnée du point M.

Propriété IV.1 :

Le plan est rapporté à un repère (0, I, J). Soit un vecteur \vec{u} non nul. Les coordonnées du vecteur \vec{u} sont les coordonnées du point M tel que $\vec{u} = \overrightarrow{OM}$. On note respectivement \vec{i} et \vec{j} les vecteurs \overrightarrow{OI} et \overrightarrow{OJ} . Le repère (0, I, J) se note aussi $(0, \vec{i}, \vec{j})$.

Propriété IV.2:

Soient les vecteurs \vec{u} et \vec{v} , de coordonnées respectives (x; y) et (x'; y') et les points A et B, de coordonnées respectives $(x_A; y_A)$ et $(x_B; y_B)$.

$$\vec{u} = \vec{v}$$
 si et seulement si $x = x'$ et $y = y'$. Donc $\vec{u} = \vec{v} \iff x = x'; y = y'$.

Les coordonnées du vecteur \overrightarrow{AB} sont $(x_B - x_A; y_B - y_A)$.

Propriété IV.3:

 \vec{u} est un vecteur différent de $\vec{0}$ et k un nombre réel non nul.

On appelle produit du vecteur \vec{u} par le réel k, le vecteur noté $k\vec{u}$:

- De même direction que \vec{u} ,
- De même sens que \vec{u} si k > 0,
- De norme égale à :
 - o k fois la norme de \vec{u} si k > 0,
 - o -k fois la norme de \vec{u} si k < 0.

Si $\vec{u} = \vec{0}$ ou k = 0 alors $k\vec{u} = \vec{0}$.

Propriété IV.4 :

Quels que soient les vecteurs \vec{u} , \vec{v} et les réels λ et μ , on a :

- $\lambda(\vec{u} + \vec{v}) = \lambda \vec{u} + \lambda \vec{v}$
- $(\lambda + \mu)\vec{u} = \lambda \vec{u} + \mu \vec{u}$
- $\quad \lambda(\mu\vec{u}) = (\lambda\mu)\vec{u}$
- $\lambda \vec{u} = \vec{0} \iff \lambda = 0 \text{ ou } \vec{u} = \vec{0}$

V. Calcul avec les coordonnées :

Propriété V.1 :

Soient $\vec{u}(x; y)$ et k un réel. Le vecteur $\vec{w} = k\vec{u}$ a pour coordonnées $\vec{w}(kx; ky)$

Propriété V.2 :

Soient un repère orthonormé $(0, \vec{i}, \vec{j})$, $A(x_A; y_A)$, $B(x_B; y_B)$ deux point et $\vec{u}(x; y)$ un vecteur.

- Le milieu *I* du <u>segment</u> [*AB*] a pour coordonnées $\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$
- La norme du vecteur \vec{u} notée $||\vec{u}||$ est $||\vec{u}|| = \sqrt{x^2 + y^2}$
- La distance entre les points A et B est $AB = \sqrt{(x_B x_A)^2 + (y_B y_A)^2}$

VI. <u>Colinéarité de deux vecteurs :</u>

Définition VI.1:

Deux vecteurs \vec{u} et \vec{v} sont colinéaires s'il existe un réel k non nul tel que $\vec{v} = k\vec{u}$. Autrement dit, les vecteurs \vec{u} et \vec{v} ont la même direction.

Propriété VI.1 :

- Trois points A, B et C sont alignés si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.
- Deux droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

VII. <u>Coordonnées vectorielles et déterminant de deux vecteurs :</u>

<u>Définition VII.1</u>:

Dans un repère orthonormée $(0, \vec{\iota}, \vec{\jmath})$, on considère les vecteurs non nuls $\vec{u}(x; y)$ et $\vec{u'}(x'; y')$. Les déterminants de $(\vec{u}; \vec{u'})$ est le réel tel que : $det(\vec{u}; \vec{u'}) = xy' - yx'$.

Propriété VII.1 :

Soient nuls $\vec{u}(x; y)$ et $\vec{u'}(x'; y')$ deux vecteurs.

Si $det(\vec{u}; \vec{u'}) = 0$ alors \vec{u} et \vec{v} sont colinéaires.

Démonstration:

I. Nous supposerons que les deux vecteurs $\vec{u}(x; y)$ et $\vec{u'}(x'; y')$ sont colinéaires. Nous démontrerons que leurs déterminants est nul.

II. Réciproquement, nous supposerons que xy' - x'y = 0. Nous montrerons que les deux vecteurs $\vec{u}(x; y)$ et $\vec{u'}(x'; y')$ sont colinéaires.

I.

Il existe un réel k tel que $\overrightarrow{u'} = k\overrightarrow{u}$. Les coordonnées de $k\overrightarrow{u}$ étant (kx; ky) nous savons que : x' = kx et y' = ky donc le déterminant vaut xy' - x'y = kx - kx = 0.

II.

Réciproquement, supposons que xy' - x'y = 0:

- Si x' = y' = 0 alors $\vec{u} = 0$ et le vecteur nul étant colinéaire à tout vecteur, \vec{u} et $\vec{u'}$ sont donc linéaires.
- Sinon l'un des deux nombres x' ou y' est différent de 0. Supposons par exemple que l'on ait $x' \neq 0$. Alors : $xy' x'y = 0 \Leftrightarrow x'y = xy' \Leftrightarrow y\frac{xy'}{x'}$.

Donc:
$$\vec{u} = x\vec{i} - x\frac{y'}{x'}\vec{j} = x\left(\vec{i} + \frac{y'}{x'}\vec{j}\right) = \frac{x}{x'}(x'\vec{i} + y'\vec{j}) = \frac{x}{x'}\vec{u}$$
.

Cela prouve donc que \vec{u} et $\vec{u'}$ sont colinéaires.