$12n_{0641} \ (K12n_{0641})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 8.49827 \times 10^{54} u^{47} + 2.37919 \times 10^{54} u^{46} + \dots + 1.70744 \times 10^{55} b + 8.16269 \times 10^{54}, \\ &= 2.71230 \times 10^{55} u^{47} + 6.45531 \times 10^{54} u^{46} + \dots + 1.70744 \times 10^{55} a - 5.14701 \times 10^{56}, \ u^{48} - u^{47} + \dots + 55u - 1 \\ I_2^u &= \langle -u^{14} - 2u^{13} + 3u^{12} + 8u^{11} - 6u^{10} - 21u^9 + 5u^8 + 33u^7 - u^6 - 36u^5 - 2u^4 + 22u^3 + u^2 + b - 8u, \\ &- 7u^{14} - 6u^{13} + \dots + a + 9, \\ &u^{15} + u^{14} - 4u^{13} - 5u^{12} + 10u^{11} + 14u^{10} - 15u^9 - 25u^8 + 16u^7 + 28u^6 - 11u^5 - 19u^4 + 5u^3 + 7u^2 - u - 1 \rangle \\ I_3^u &= \langle b + 1, \ a + 1, \ u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 64 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $\begin{matrix} \text{I.} \\ I_1^u = \langle 8.50 \times 10^{54} u^{47} + 2.38 \times 10^{54} u^{46} + \dots + 1.71 \times 10^{55} b + 8.16 \times 10^{54}, \ 2.71 \times 10^{55} u^{47} + 6.46 \times 10^{54} u^{46} + \dots + 1.71 \times 10^{55} a - 5.15 \times 10^{56}, \ u^{48} - u^{47} + \dots + 55 u - 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.58851u^{47} - 0.378069u^{46} + \dots + 195.933u + 30.1446 \\ -0.497719u^{47} - 0.139342u^{46} + \dots + 94.5690u - 0.478065 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2.00213u^{47} + 1.12164u^{46} + \dots + 231.824u - 45.9301 \\ 0.532079u^{47} - 0.731391u^{46} + \dots + 30.3920u - 2.14822 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2.00213u^{47} + 1.12164u^{46} + \dots + 231.824u - 45.9301 \\ 0.836676u^{47} - 0.793694u^{46} + \dots + 16.0332u - 1.26772 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.852685u^{47} - 0.569587u^{46} + \dots + 123.900u + 31.4741 \\ 0.238109u^{47} - 0.330861u^{46} + \dots + 22.5362u + 0.851455 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.07589u^{47} - 0.438793u^{46} + \dots + 131.390u + 30.0699 \\ -0.529673u^{47} - 0.199681u^{46} + \dots + 108.525u - 0.735248 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.634463u^{47} - 0.0674825u^{46} + \dots + 11.2930u + 67.9453 \\ -0.184246u^{47} + 0.409138u^{46} + \dots + 14.0906u + 2.82587 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0720669u^{47} + 0.836777u^{46} + \dots + 39.2316u - 83.6537 \\ 0.845245u^{47} - 0.416255u^{46} + \dots - 32.8739u - 2.52326 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $5.23094u^{47} 3.23434u^{46} + \cdots 404.902u + 24.1944$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{48} + 15u^{47} + \dots + 2837u + 1$
c_2, c_7	$u^{48} + u^{47} + \dots - 55u - 1$
c_3	$u^{48} + u^{47} + \dots - 14u + 1$
c_4, c_8	$u^{48} - 2u^{47} + \dots + 14560u + 15853$
c_5, c_6, c_{11}	$u^{48} + 2u^{47} + \dots - 12u - 1$
c_9	$u^{48} + u^{47} + \dots + 719u - 293$
c_{10}	$u^{48} - 3u^{47} + \dots + 10344u + 649$
c_{12}	$u^{48} + 4u^{47} + \dots - 10508u - 1369$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{48} + 53y^{47} + \dots - 7937733y + 1$
c_2, c_7	$y^{48} - 15y^{47} + \dots - 2837y + 1$
c_3	$y^{48} + 5y^{47} + \dots - 56y + 1$
c_4, c_8	$y^{48} - 64y^{47} + \dots - 8556537210y + 251317609$
c_5, c_6, c_{11}	$y^{48} - 50y^{47} + \dots - 66y + 1$
c_9	$y^{48} - 61y^{47} + \dots - 3226039y + 85849$
c_{10}	$y^{48} - 39y^{47} + \dots - 45579572y + 421201$
c_{12}	$y^{48} - 60y^{47} + \dots - 53809914y + 1874161$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.780489 + 0.693178I		
a = 0.705695 - 0.209382I	-0.43674 - 2.43309I	6.83450 + 4.39555I
b = 0.862042 + 0.604842I		
u = 0.780489 - 0.693178I		
a = 0.705695 + 0.209382I	-0.43674 + 2.43309I	6.83450 - 4.39555I
b = 0.862042 - 0.604842I		
u = 0.529535 + 0.795568I		
a = 1.41726 + 0.21633I	7.15738 + 1.35453I	12.13081 - 1.57989I
b = 0.20894 + 1.50824I		
u = 0.529535 - 0.795568I		
a = 1.41726 - 0.21633I	7.15738 - 1.35453I	12.13081 + 1.57989I
b = 0.20894 - 1.50824I		
u = -1.052950 + 0.007832I		
a = -0.707699 + 0.058294I	1.65094 + 0.00093I	6.00000 + 0.11555I
b = -0.965617 + 0.004183I		
u = -1.052950 - 0.007832I		
a = -0.707699 - 0.058294I	1.65094 - 0.00093I	6.00000 - 0.11555I
b = -0.965617 - 0.004183I		
u = 1.05847		
a = 1.90687	8.27045	10.2350
b = 3.40742		
u = 0.912791 + 0.183084I		
a = -1.080850 - 0.514657I	-0.81244 - 3.97179I	3.30801 + 3.48283I
b = -1.221840 + 0.446864I		
u = 0.912791 - 0.183084I		
a = -1.080850 + 0.514657I	-0.81244 + 3.97179I	3.30801 - 3.48283I
b = -1.221840 - 0.446864I		
u = 0.918294 + 0.651222I		
a = -0.957067 - 0.032883I	-1.09728 - 2.73985I	8.74885 + 1.99555I
b = -0.745662 - 0.216607I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.918294 - 0.651222I		
a = -0.957067 + 0.032883I	-1.09728 + 2.73985I	8.74885 - 1.99555I
b = -0.745662 + 0.216607I		
u = -1.064190 + 0.512825I		
a = 1.060480 - 0.792956I	-0.91409 + 4.62733I	6.00000 - 9.84335I
b = 0.694905 - 1.218350I		
u = -1.064190 - 0.512825I		
a = 1.060480 + 0.792956I	-0.91409 - 4.62733I	6.00000 + 9.84335I
b = 0.694905 + 1.218350I		
u = -0.798516 + 0.871376I		
a = -1.77948 + 0.85153I	14.6213 + 0.5837I	11.01767 + 0.I
b = 0.462172 + 1.321260I		
u = -0.798516 - 0.871376I		
a = -1.77948 - 0.85153I	14.6213 - 0.5837I	11.01767 + 0.I
b = 0.462172 - 1.321260I		
u = 0.846297 + 0.834975I		
a = -0.598082 - 0.641634I	7.53406 - 1.71339I	6.00000 + 0.I
b = -0.31678 - 1.81032I		
u = 0.846297 - 0.834975I		
a = -0.598082 + 0.641634I	7.53406 + 1.71339I	6.00000 + 0.I
b = -0.31678 + 1.81032I		
u = -0.717176 + 0.997613I		
a = 0.584667 - 0.723750I	7.96025 - 3.20779I	0
b = -0.218697 - 1.389430I		
u = -0.717176 - 0.997613I		
a = 0.584667 + 0.723750I	7.96025 + 3.20779I	0
b = -0.218697 + 1.389430I		
u = -0.734348 + 0.989945I		
a = -0.626011 - 0.351788I	4.61963 + 5.43773I	0
b = -0.795948 + 0.818156I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.734348 - 0.989945I		
a = -0.626011 + 0.351788I	4.61963 - 5.43773I	0
b = -0.795948 - 0.818156I		
u = 0.958511 + 0.797758I		
a = 1.47360 + 0.69247I	7.17999 - 4.40128I	0
b = 0.338863 + 1.303150I		
u = 0.958511 - 0.797758I		
a = 1.47360 - 0.69247I	7.17999 + 4.40128I	0
b = 0.338863 - 1.303150I		
u = 1.177050 + 0.420372I		
a = -0.180221 - 0.366873I	-1.66489 - 2.36125I	0
b = -0.0135532 + 0.0338086I		
u = 1.177050 - 0.420372I		
a = -0.180221 + 0.366873I	-1.66489 + 2.36125I	0
b = -0.0135532 - 0.0338086I		
u = 1.076140 + 0.640039I		
a = -1.46685 - 0.95325I	5.49499 - 6.77666I	0
b = -0.59898 - 2.24608I		
u = 1.076140 - 0.640039I		
a = -1.46685 + 0.95325I	5.49499 + 6.77666I	0
b = -0.59898 + 2.24608I		
u = -0.724809 + 1.033950I		
a = 1.064180 + 0.400574I	4.91559 + 3.36660I	0
b = 0.486196 - 0.793628I		
u = -0.724809 - 1.033950I		
a = 1.064180 - 0.400574I	4.91559 - 3.36660I	0
b = 0.486196 + 0.793628I		
u = -0.712486		
a = -1.97788	2.80010	-4.83520
b = -2.16627		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.014230 + 0.800845I		
a = 0.675996 - 0.593941I	13.9471 + 5.6591I	0
b = 0.53182 - 2.37364I		
u = -1.014230 - 0.800845I		
a = 0.675996 + 0.593941I	13.9471 - 5.6591I	0
b = 0.53182 + 2.37364I		
u = -0.694037 + 0.060458I		
a = 1.24961 - 1.05080I	-4.12135 + 0.22643I	0.431456 + 0.910944I
b = 0.696219 + 0.640293I		
u = -0.694037 - 0.060458I		
a = 1.24961 + 1.05080I	-4.12135 - 0.22643I	0.431456 - 0.910944I
b = 0.696219 - 0.640293I		
u = -0.414437 + 0.505333I		
a = -0.950768 + 0.151291I	0.970583 - 0.357083I	10.29975 + 3.20108I
b = -0.409586 + 0.582781I		
u = -0.414437 - 0.505333I		
a = -0.950768 - 0.151291I	0.970583 + 0.357083I	10.29975 - 3.20108I
b = -0.409586 - 0.582781I		
u = -1.086260 + 0.818808I		
a = -1.40570 + 0.48518I	6.79477 + 9.83464I	0
b = -0.89489 + 1.58340I		
u = -1.086260 - 0.818808I		
a = -1.40570 - 0.48518I	6.79477 - 9.83464I	0
b = -0.89489 - 1.58340I		
u = 0.602545 + 0.150612I		
a = -0.74027 + 2.02291I	0.44759 - 3.90440I	6.22150 + 4.06117I
b = -0.480320 - 0.677791I		
u = 0.602545 - 0.150612I		
a = -0.74027 - 2.02291I	0.44759 + 3.90440I	6.22150 - 4.06117I
b = -0.480320 + 0.677791I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.587564		
a = 6.68300	10.3493	-7.38360
b = 2.00737		
u = 0.748414 + 1.199110I		
a = -0.608875 - 0.775844I	14.9212 + 6.6040I	0
b = 0.92843 - 1.37321I		
u = 0.748414 - 1.199110I		
a = -0.608875 + 0.775844I	14.9212 - 6.6040I	0
b = 0.92843 + 1.37321I		
u = 1.17568 + 0.88106I		
a = 1.43185 + 0.33117I	13.4534 - 14.0241I	0
b = 1.26045 + 2.00959I		
u = 1.17568 - 0.88106I		
a = 1.43185 - 0.33117I	13.4534 + 14.0241I	0
b = 1.26045 - 2.00959I		
u = -1.40098 + 0.67383I		
a = 0.295089 + 0.214824I	2.75175 + 3.73669I	0
b = 0.930979 + 0.758020I		
u = -1.40098 - 0.67383I		
a = 0.295089 - 0.214824I	2.75175 - 3.73669I	0
b = 0.930979 - 0.758020I		
u = 0.0188398		
a = 33.6749	6.34803	16.5030
b = 1.27318		

$$II. \\ I_2^u = \langle -u^{14} - 2u^{13} + \dots + b - 8u, \ -7u^{14} - 6u^{13} + \dots + a + 9, \ u^{15} + u^{14} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 7u^{14} + 6u^{13} + \dots + 25u - 9 \\ u^{14} + 2u^{13} + \dots - u^{2} + 8u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{14} - 5u^{12} + \dots + 2u - 7 \\ -4u^{14} - 4u^{13} + \dots - 5u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{14} - 5u^{12} + \dots + 2u - 7 \\ -4u^{14} - 4u^{13} + \dots - 6u^{2} - 5u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 6u^{14} + 6u^{13} + \dots + 21u - 7 \\ 2u^{13} + 2u^{12} + \dots + 4u + 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 6u^{14} + 5u^{13} + \dots + 19u - 8 \\ u^{14} + 2u^{13} + \dots - u^{2} + 8u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{14} + 5u^{12} + \dots - 2u + 8 \\ 5u^{14} + 4u^{13} + \dots + 15u^{2} + 8u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -8u^{14} - 2u^{13} + \dots - 16u + 18 \\ -6u^{14} - u^{13} + \dots - 8u + 9 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-12u^{14} + 58u^{12} + 12u^{11} - 169u^{10} - 44u^9 + 317u^8 + 107u^7 - 433u^6 - 113u^5 + 392u^4 + 65u^3 - 214u^2 - 6u + 58$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} - 9u^{14} + \dots + 15u - 1$
c_2	$u^{15} + u^{14} + \dots - u - 1$
c_3	$u^{15} + 4u^{13} + \dots - 3u^2 - 1$
c_4	$u^{15} + 3u^{13} + \dots + 4u^2 + 1$
c_5, c_6	$u^{15} - 8u^{13} + \dots - 12u^3 - 1$
C ₇	$u^{15} - u^{14} + \dots - u + 1$
<i>C</i> ₈	$u^{15} + 3u^{13} + \dots - 4u^2 - 1$
c_9	$u^{15} - u^{14} + \dots - u + 1$
c_{10}	$u^{15} - 8u^{12} + \dots - 3u^2 + 1$
c_{11}	$u^{15} - 8u^{13} + \dots - 12u^3 + 1$
c_{12}	$u^{15} - u^{13} + \dots + 4u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} + 11y^{14} + \dots + 31y - 1$
c_2, c_7	$y^{15} - 9y^{14} + \dots + 15y - 1$
c_3	$y^{15} + 8y^{14} + \dots - 6y - 1$
c_4, c_8	$y^{15} + 6y^{14} + \dots - 8y - 1$
c_5, c_6, c_{11}	$y^{15} - 16y^{14} + \dots + 12y^2 - 1$
c_9	$y^{15} - 15y^{14} + \dots + 9y - 1$
c_{10}	$y^{15} - 22y^{13} + \dots + 6y - 1$
c_{12}	$y^{15} - 2y^{14} + \dots - 8y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.894768 + 0.381504I		
a = 0.561192 - 0.613047I	-3.89584 + 1.58539I	2.11826 - 3.74447I
b = -0.133265 + 0.484278I		
u = -0.894768 - 0.381504I		
a = 0.561192 + 0.613047I	-3.89584 - 1.58539I	2.11826 + 3.74447I
b = -0.133265 - 0.484278I		
u = 1.002760 + 0.378711I		
a = -0.492433 - 0.387786I	-0.33265 - 5.51163I	4.94815 + 7.40556I
b = -0.380671 + 0.657450I		
u = 1.002760 - 0.378711I		
a = -0.492433 + 0.387786I	-0.33265 + 5.51163I	4.94815 - 7.40556I
b = -0.380671 - 0.657450I		
u = 0.800420 + 0.321515I		
a = -0.433427 - 0.987439I	0.48032 + 2.56256I	7.50726 + 0.32927I
b = 0.703055 + 0.417003I		
u = 0.800420 - 0.321515I		
a = -0.433427 + 0.987439I	0.48032 - 2.56256I	7.50726 - 0.32927I
b = 0.703055 - 0.417003I		
u = -0.712036		
a = -1.36567	5.68620	3.34500
b = -2.13667		
u = 1.083910 + 0.722936I		
a = -0.725633 - 0.017802I	-1.62262 - 3.23030I	-0.70757 + 9.71898I
b = -0.738745 - 0.392095I		
u = 1.083910 - 0.722936I		
a = -0.725633 + 0.017802I	-1.62262 + 3.23030I	-0.70757 - 9.71898I
b = -0.738745 + 0.392095I		
u = -0.945359 + 0.963665I		
a = 0.814338 + 0.249756I	3.65766 + 5.39923I	5.36277 - 6.12141I
b = 0.603655 - 0.873044I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.945359 - 0.963665I		
a = 0.814338 - 0.249756I	3.65766 - 5.39923I	5.36277 + 6.12141I
b = 0.603655 + 0.873044I		
u = 0.620323		
a = 2.57729	3.14873	19.3840
b = 2.00007		
u = -1.268280 + 0.578450I		
a = 0.548163 - 0.056389I	1.86244 + 1.54512I	7.16780 - 3.17961I
b = 1.152480 - 0.111993I		
u = -1.268280 - 0.578450I		
a = 0.548163 + 0.056389I	1.86244 - 1.54512I	7.16780 + 3.17961I
b = 1.152480 + 0.111993I		
u = -0.465662		
a = -7.75602	10.6056	24.4780
b = -2.27641		

III.
$$I_3^u = \langle b+1, a+1, u+1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_{1}, c_{12}	u+1
c_2, c_4, c_5 c_6, c_7, c_8 c_9, c_{11}	u-1
c_3, c_{10}	u

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_6, c_7 c_8, c_9, c_{11} c_{12}	y-1
c_3, c_{10}	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = -1.00000	1.64493	6.00000
b = -1.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u+1)(u^{15} - 9u^{14} + \dots + 15u - 1)(u^{48} + 15u^{47} + \dots + 2837u + 1) $
c_2	$(u-1)(u^{15} + u^{14} + \dots - u - 1)(u^{48} + u^{47} + \dots - 55u - 1)$
c_3	$u(u^{15} + 4u^{13} + \dots - 3u^2 - 1)(u^{48} + u^{47} + \dots - 14u + 1)$
c_4	$(u-1)(u^{15} + 3u^{13} + \dots + 4u^2 + 1)(u^{48} - 2u^{47} + \dots + 14560u + 15853)$
c_5, c_6	$(u-1)(u^{15}-8u^{13}+\cdots-12u^3-1)(u^{48}+2u^{47}+\cdots-12u-1)$
C ₇	$(u-1)(u^{15}-u^{14}+\cdots-u+1)(u^{48}+u^{47}+\cdots-55u-1)$
<i>C</i> ₈	$(u-1)(u^{15} + 3u^{13} + \dots - 4u^2 - 1)(u^{48} - 2u^{47} + \dots + 14560u + 15853)$
<i>c</i> ₉	$(u-1)(u^{15}-u^{14}+\cdots-u+1)(u^{48}+u^{47}+\cdots+719u-293)$
c_{10}	$u(u^{15} - 8u^{12} + \dots - 3u^2 + 1)(u^{48} - 3u^{47} + \dots + 10344u + 649)$
c_{11}	$(u-1)(u^{15}-8u^{13}+\cdots-12u^3+1)(u^{48}+2u^{47}+\cdots-12u-1)$
c_{12}	$(u+1)(u^{15}-u^{13}+\cdots+4u^2+1)(u^{48}+4u^{47}+\cdots-10508u-1369)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^{15}+11y^{14}+\cdots+31y-1)(y^{48}+53y^{47}+\cdots-7937733y+1)$
c_2, c_7	$(y-1)(y^{15}-9y^{14}+\cdots+15y-1)(y^{48}-15y^{47}+\cdots-2837y+1)$
c_3	$y(y^{15} + 8y^{14} + \dots - 6y - 1)(y^{48} + 5y^{47} + \dots - 56y + 1)$
c_4, c_8	$(y-1)(y^{15} + 6y^{14} + \dots - 8y - 1)$ $\cdot (y^{48} - 64y^{47} + \dots - 8556537210y + 251317609)$
c_5, c_6, c_{11}	$(y-1)(y^{15} - 16y^{14} + \dots + 12y^2 - 1)(y^{48} - 50y^{47} + \dots - 66y + 1)$
c_9	$(y-1)(y^{15} - 15y^{14} + \dots + 9y - 1)$ $\cdot (y^{48} - 61y^{47} + \dots - 3226039y + 85849)$
c_{10}	$y(y^{15} - 22y^{13} + \dots + 6y - 1)$ $\cdot (y^{48} - 39y^{47} + \dots - 45579572y + 421201)$
c_{12}	$(y-1)(y^{15} - 2y^{14} + \dots - 8y - 1)$ $\cdot (y^{48} - 60y^{47} + \dots - 53809914y + 1874161)$