- **Câu 1.** Thay đổi thứ tự tính trong tích phân $I = \int_0^1 dx \int_x^{\sqrt{l-(x-l)^2}} f(x,y) dy$.
- **Câu 2.** Tính thể tích khối vật thể Ω giới hạn bởi $\begin{cases} x=-\sqrt{y^2+z^2}-4\\ x=y^2+z^2+2\\ y^2+z^2=4 \end{cases}.$
- **Câu 3.** Tính tích phân $I = \int_C 8xydl$, với C là cung parabol $y = (x-1)^2 từ (0,1)$ đến (3,4).
- **Câu 4.** Tính tích phân $I = \int_C y dx + (x-1)y dy$, trong đó C là một nửa đường tròn $(x-1)^2 + (y+1)^2 = 1, lấy phần \begin{cases} y \ge -1 \\ x \le 1 \end{cases} \text{ cùng chiều kim đồng hồ.}$
- **Câu 5.** Giải phương trình vi phân: $xdy + (y + x^2y^2)dx = 0$.
- **Câu 6.** Giải phương trình vi phân: $y'' 5y' + 6y = 3xe^{2x}$.

ĐỀ ÔN TẬP MÔN GIẢI TÍCH (2019-2020)

Câu 1: Thay đổi thứ tự lấy tích phân

a)
$$I = \int_{0}^{2} dx \int_{\sqrt{8x-x^2}}^{\sqrt{16-x^2}} f(x, y) dy$$

b)
$$I = \int_{-2}^{3} dy \int_{y^2}^{y+2} f(x, y) dx$$

c)
$$I = \int_{-2}^{3} dy \int_{y^{2}}^{y+2} f(x, y) dx$$

d)
$$I = \int_{0}^{1} dx \int_{\sqrt{\frac{x}{3}}}^{\sqrt{x}} f(x, y) dy + \int_{1}^{\frac{4}{3}} dx \int_{\sqrt{\frac{x}{3}}}^{2-x} f(x, y) dy$$

Câu 2: Hãy tính tích phân đường loại 1 sau:

a) $I = \int_{C} (2xy - x - y) dl$, với (C) là đoạn gấp khúc ABC, trong đó A(-4,0), B(0,4), C(8,0).

b) $I = \int_{(C)} (x+1)dl$, với (C) là một phần của parabol $y = x^2$, nối từ A(-1,0) đến B(2,4).

c)
$$I = \int_{(C)} (xy - x - y) dl$$
, với (C) là chu vi của hình vuông $|x| + |y| = 1$

d)
$$I = \int_{(C)}^{(C)} \sqrt{x^2 + y^2} dl$$
, với (C) là đường tròn: $x^2 + y^2 - 4y = 0$

e)
$$I = \int_{C} \sqrt{x^2 + y^2} dl$$
 với (C) là đường tròn: $x^2 + y^2 - 2x = 0$

Câu 3: Giải phương trình vi phân cấp 1:

a)
$$y' = (y-1)x\sqrt{x^2+1}$$

b)
$$y' = \frac{y}{x} + \left(\frac{y}{x}\right)^2$$

c)
$$y' - y = 1 - x$$

d)
$$(x^2 - xy)dy + y^2 dx = 0$$

e)
$$(2xy+3)dy - y^2dx = 0$$

Câu 4. Giải phương trình vi phân cấp hai:

a)
$$y''-3y'+2y = (2x+3)e^x$$
.

b)
$$y'' + y' - 12y = xe^{3x}$$

c)
$$y''-3y'+2y=2x^3-25$$

Câu 5. Tính tích phân bội 3

a) Tính
$$I = \iiint_{\Omega} x dx dy dz$$
 với Ω là khối vật thể bị giới hạn bởi:
$$\begin{cases} x^2 + y^2 + z^2 \le 4 \\ x^2 + y^2 \le 1 \\ z \ge \sqrt{x^2 + y^2} \end{cases}$$

b) Tính thế tích Ω là khối vật thể bị giới hạn bởi:
$$\begin{cases} x = y^2 + z^2 \\ z^2 + y^2 = 4 \\ x = 3y^2 + z^2 \end{cases}$$

c) Biểu diễn tích phân sang tọa độ trụ
$$\Omega$$
 là khối vật thể bị giới hạn bởi:
$$\begin{cases} x = \sqrt{y^2 + z^2} \\ x + y + z = 1 \\ y \ge 0, z \ge 0 \end{cases}$$

d) Tính thế tích
$$\Omega$$
 là khối vật thể bị giới hạn bởi:
$$\begin{cases} x^2+z^2 \le 4 \\ x^2+z^2+y^2 \le 16 \end{cases}$$

ĐỀ ÔN TẬP MÔN GIẢI TÍCH 2

Đề 1

Câu 1: Thay đổi thứ tự lấy tích phân $I = \int_{0}^{2} dx \int_{\sqrt{8x-x^2}}^{\sqrt{16-x^2}} f(x,y) dy$

Câu 2: Chuyển sang toạ độ cầu và xác định cận của tích phân

$$J = \iiint\limits_{\Omega} f\left(\sqrt{x^2 + y^2 + z^2}\right) dx dy dz \quad \text{V\'oi} \quad \Omega \quad \text{là miền xác định bởi} \quad x^2 + y^2 + z^2 \le a^2 \left(a > 0\right), y \ge 0.$$

- Câu 3: Tính tích phân đường $K = \int_{L} (2x+y+1)dx + (x+y^2+2)dy$, với L là các đoạn thẳng nối các điểm theo thứ tự O(0,0) -> A(1,1) -> B(2,3) -> C(4,0).
- Câu 4: Giải phương trình vi phân

a)
$$y' = (y-1)x\sqrt{x^2+1}$$

b)
$$y'' + y = 2(\cos x + e^{-x})$$

ĐÈ 2

Câu 1: Tính tích phân: $I = \iint_{x^2+y^2 \le 1} 2e^{x^2+y^2} dxdy$

Câu 2: Chuyển sang toạ độ cầu và xác định cận của tích phân

$$J = \iiint\limits_{\Omega} f\left(x^2 + y^2 + z^2\right) dx dy dz \text{ V\'oi } \Omega \text{ là miền xác định bởi } z^2 \ge x^2 + y^2, z \ge 0, x^2 + y^2 + z^2 \le 4.$$

- Câu 3: Tính tích phân đường $K = \int_{L} 2y dx (y^3 + x^2) dy$, với L là cung nối từ O(0,0) đến A(2,0) theo đường có phương trình $y = \sqrt{2x x^2}$.
- Câu 4: Giải phương trình vi phân

a)
$$y' = \frac{y}{x} + \left(\frac{y}{x}\right)^2$$

b)
$$y'' - 2y' + 2y = 2\cos x$$

ĐÈ 3.

Câu 1: Thay đổi thứ tự lấy tích phân $I = \int_{-2}^{3} dy \int_{y^2}^{y+2} f(x, y) dx$

Câu 2: Xác định cận của tích phân sau theo thứ tự tính: z, x,y

$$J = \iiint_{\Omega} f(x, y, z) dx dy dz \text{ với } \Omega \text{ là miền xác định bởi } 0 \le z \le 4 - x^2 - y^2$$

Câu 3: Tìm hàm U(x,y) thoả $dU = (1+x+y)dx + (2+x+y^2)dy$

Câu 4: Giải phương trình vi phân

a)
$$y' - y = 1 - x$$

b)
$$y'' + y = \frac{\sin^2 x}{e^x}$$

ĐÈ 4.

Câu 1. (1,5 điểm)

Hãy xác định cận cho tích phân bội sau (không cần tính I):

$$I = \iint\limits_{D_{xy}} f(x,y) dx dy, \text{ với } D_{xy} \text{ là miền phẳng bị giới hạn bởi: } \begin{cases} x^2 + y^2 \ge 2y \\ y \ge 0; x \ge 0 \\ y \le 1 - (x-1)^2 \end{cases}$$

Câu 2. (2 điểm)

Hãy tính tích phân đường loại 1 sau:

$$I = \int_{(C)} (2xy - x - y) dl, \text{ với } (C) \text{ là đoạn gấp khúc ABC,}$$

trong đó A(-4,0), B(0,4), C(8,0).

Câu 3. (2 điểm)

Hãy tính tích phân đường loại 2 sau:

$$I = \int_{(C)} (ye^x - 2xy + 3x^2) dx + (e^x - x^2 + 2^y) dy,$$

, với (C) là một nửa đường tròn $x^2 + y^2 = 4$, phần $x \ge 0$, nối từ A(0,-2) đến B(0,2).

Câu 4. (2 điểm)

Giải phương trình vi phân cấp một: $ydx + (x + x^2y^2)dy = 0$

Câu 5. (2,5 điểm)

Giải phương trình vi phân cấp hai: $y''-3y'+2y = (2x+3)e^x$.

Đề 5.

Câu 1. (1,5 điểm)

Hãy xác định cận cho tích phân bội sau (không cần tính I):

$$I = \iiint_{\Omega} f(x, y, z) dx dy dz, \text{ với } \Omega \text{ là khối vật thể bị giới hạn bởi: } \begin{cases} x^2 + y^2 + z^2 \le 4 \\ x^2 + y^2 \le 1 \\ z \ge \sqrt{x^2 + y^2} \end{cases}$$

Câu 2. (2 điểm)

Hãy tính tích phân đường loại 1 sau:

$$I = \int_{(C)} (x+1)dl$$
, với (C) là một phần của parabol $y = x^2$, nối từ $A(-1,0)$ đến $B(2,4)$.

Câu 3. (2 điểm)

Hãy tính tích phân đường loại 2 sau:

$$I = \int_{(C)} \left(e^{x+y} + 2y - e^{\sqrt{x}} \right) dx + \left(e^{x+y} + 2x - ye^{y} \right) dy,$$

, với (C) là một nửa đường tròn $x^2 + y^2 = 4$, phần $y \ge 0$, nối từ A(-2,0) đến B(2,0).

Câu 4. (2 điểm)

Giải phương trình vi phân cấp một: $(x^2 - xy)dy + y^2dx = 0$

Câu 5. (2,5 điểm)

Giải phương trình vi phân cấp hai: $y''+y'-12y = xe^{3x}$.

ĐÈ 6.

Câu 1.

Hãy xác định cận cho tích phân bội sau (không cần tính I):

$$I = \iint_{D_{xy}} f(x, y) dx dy, \text{ với } D_{xy} \text{ là miền phẳng bị giới hạn bởi: } \begin{cases} x^2 + (y - 1)^2 = 1\\ y = x^2\\ x \ge 0 \end{cases}$$

Câu 2.

Hãy tính tích phân đường loại 1 sau:

$$I = \int_{(C)} (|x| + |y| - |xy|) dl, \text{ với } (C) \text{ là đoạn gấp khúc ABC,}$$
 trong đó A(-3,0), B(0,3), C(3,0).

Câu 3.

Hãy tính tích phân đường loại 2 sau:

$$I = \int_{(C)} (3^{x+y} - x^2 y + \ln x) dx + \left(3^{x+y} - \frac{x^3}{3} + 4y^3 - 1 \right) dy,$$

, với (C) là một nửa đường tròn $x^2 + y^2 = 4x$, phần $x \le 2$, nối từ A(2,-2) đến B(2,2).

Câu 4.

Giải phương trình vi phân cấp một: $y'-2y \tan x + y^2 \sin^2 x = 0$

Câu 5.

Giải phương trình vi phân cấp hai: $y''-2y'+2y = e^x \sin x$.

ĐÈ 7.

Câu 1.

Hãy đổi thứ tự lấy tích phân sau (không cần tính I):

$$I = \int_{0}^{1} dx \int_{\sqrt{\frac{x}{3}}}^{\sqrt{x}} f(x, y) dy + \int_{1}^{\frac{4}{3}} dx \int_{\sqrt{\frac{x}{3}}}^{2-x} f(x, y) dy$$

Câu 2.

Hãy xác định cận cho các biến khi tính tích phân sau (không cần tính I):

$$I = \iiint_{\Omega} f(x,y,z) dx dy dz , \quad \text{với } \Omega \text{ là khối vật thể bị giới hạn bởi } \begin{cases} x^2 + y^2 + z^2 \leq 4x \\ x \leq 2 - \sqrt{y^2 + z^2} \end{cases}$$

Câu 3.

Tính tích phân đường loại 1 sau:

En phan duong loại i sau.
$$I = \int_{(C)} (xy - x - y) dl, \quad \text{v\'oi} (C) \text{ là chu vi của hình vuông } |x| + |y| = 1$$

Câu 4.

Tính tích phân

$$\int_{(1:1)}^{(3:2)} \frac{(x+2y)dx + ydy}{(x+y)^2}$$
, theo đường tron từng khúc không cắt d: x+y = 0.

Câu 5.

a/ Giải phương trình vi phân cấp 1 sau:
$$(2xy+3)dy - y^2dx = 0$$

b/ Giải phương trình vi phân cấp 2 sau: $y''-3y'+2y=2x^3-25$

ĐÈ 8.

Câu 1.

Tính diện tích hình phẳng:

$$D = \left\{ (x, y) \in \mathbb{R}^2 \,\middle|\, x \le y \le x\sqrt{3}, x^2 + y^2 \le 2x \right\}$$

Câu 2.

Tính thể tích của khối ellipsoid:

$$V = \left\{ (x, y, z) \in R^{3} \left| \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} + \frac{z^{2}}{c^{2}} \le 1 \right\} \right\}$$

Câu 3.

Tính tích phân $I = \int\limits_L (x+y) ds$ với L là ΔOAB có các đỉnh O(0;0), A(1;0), B(1;2).

Câu 4.

Cho đường cong kín, tron từng khúc C gồm đoạn thẳng OA và cung OA có phương trình: $y = \sqrt{x}$ với O(0,0) và A(4,2). Tính $I = \oint_C dx + 4xy dy$

Câu 5. Giải các phương trình vi phân sau:

a/
$$y'-2xy = x^3y^4$$

b/ $y''-y' = 5e^x - \sin 2x$

ĐÈ 9.

Câu 1.

Biểu diễn tích phân $I = \iint\limits_{D} f(x,y) dx dy$ trong toạ độ cực , cho biết miền D là hình tròn

$$x^2 + y^2 \le 6x + 2\sqrt{3}y.$$

Câu 2.

Biểu diễn tích phân $I = \iiint\limits_V f(x,y,z) dx dy dz$ trong toạ độ cầu , cho biết miền V là:

$$V = \left\{ (x,y,z) \in R^3, y \ge 0, x^2 + y^2 + z^2 \le 4, z \ge 0 \right\}$$

Câu 3.

Tính tích Phân $I = \int_L (x+y) ds$ với L là ΔOAB có các đỉnh O(0;0), A(1;0), B(1;2).

Câu 4.

 $T\text{inh tích phân } I = \oint_C (x \arctan x + y^2) dx + (x + 2xy + y^2 e^{-y}) dy \ \text{v\'ent C là đường tròn } \ x^2 + y^2 - 2y = 0 \ .$

Câu 5. Giải các phương trình vi phân sau:

a/
$$y'-2xy = x^3y^4$$

b/ $y''+2y'+y = xe^x + 2e^{-x}$