PY2010 Intermediate Logic UNIVERSITY OF ST. ANDREWS Assessed Logic Exercises - wk.05

ID: 200007413

October 11, 2021

I hereby declare that the attached piece of written work is my own work and that I have not reproduced, without acknowledgement, the work of another.

- 1. Explain why the following are true in the semantics of classical propositional logic.
 - (a) $q \vee \neg q \models_{\mathcal{C}} ((p \supset q) \supset p) \supset p$

Show: For all interpretations of v where $v(q \vee \neg q) = 1$: $v(((p \supset q) \supset p) \supset p) = 1$.

Assume for reductio that for some $v, v(((p \supset q) \supset p) \supset p) \neq 1$. i.e. $v(((p \supset q) \supset p) \supset p) = 0$

To begin, we know by the semantic clause for \vee that $v(q \vee \neg q) = 1$ iff v(q) = 1 or $v(\neg q) = 1$.

By \neg semantics, we know that $v(\neg q) = 1$ when v(q) = 0. Therefore $v(q \lor \neg q) = 1$ iff v(q) = 1 or v(q) = 0, which means that $v(q \lor \neg q) = 1$ is always the case.

Next, by the semantics of \supset , we know $v(((p \supset q) \supset p) \supset p) = 0$ iff $v((p \supset q) \supset p) = 1$ and v(p) = 0.

Therefore, because $v((p \supset q) \supset p) = 1$ iff $v(p \supset q) = 0$ or v(p) = 1.

If v(p)=1, then we have a contradiction as v(p)=1. By the $\neg\supset$ semantic clause, $v(p\supset q)=0$ iff v(p)=1 and v(q)=0.

However, this also means that v(p) = 0 at the same time that v(p) = 1 which cannot be, since v is a function.

So, there is no v such that $v(((p \supset q) \supset p) \supset p) = 0$ at the same time that $v(q \lor \neg q) = 1$. QED

(b) $\neg\neg\neg(p \land q) \models_C \neg p \lor \neg q$

Show: For all interpretations of v, where $v(\neg \neg \neg (p \land q)) = 1$, $v(\neg p \lor \neg q) = 1$

Assume, for some $v, v(\neg \neg \neg (p \land q)) = 1$.

By the \neg semantic clause, $v(\neg\neg\neg(p \land q)) = 1$ iff $v(\neg\neg(p \land q)) = 0$. Then by the same clause, $v(\neg\neg(p \land q)) = 0$ iff $v(\neg(p \land q)) = 1$. Finally the same clause again means that $v(\neg(p \land q)) = 1$ iff $v(p \land q) = 0$.

With the \wedge semantic clause, we know that $v(p \wedge q) = 0$ iff v(p) = 0 or v(q) = 0.

Using the \neg semantics, we know that v(p) = 0 iff $v(\neg p) = 1$, and v(q) = 0 iff $v(\neg q) = 1$.

Finally, using the \vee semantic clause, we know that $v(\neg p \vee \neg q) = 1$ iff v(p) = 0 and v(q) = 0 and so for all interpretations of v where $v(\neg \neg \neg (p \wedge q)) = 1$, $v(\neg p \vee \neg q) = 1$. QED

ID: 200007413

2. Give a proof of each of the following using natural deduction.

```
(a) q \supset r \vdash_{NC} (p \land q) \supset r
                                          Ass(Premise)
       1
               (1) q \supset r
       2
                                          Ass(\supset E)
               (2)
                     q
       1,2
               (3) r
                                          1,2\supset E
       4
               (4) p
                                          Ass(\land I)
       2,4
              (5) p \wedge q
                                          2.4 \wedge I
       1
               (6)
                      (p \land q) \supset r \quad 3,5 \supset I
(b) (\neg p \land \neg q) \lor (p \land q) \vdash_{NC} p \equiv q
```

hint: use the definition $p \equiv q :\equiv (p \supset q) \land (q \supset p)$

1
 (1)

$$(\neg p \land \neg q) \lor (p \land q)$$
 Ass(Premise)

 2
 (2)
 $\neg p \land \neg q$
 Ass($\lor E$)

 2
 (3)
 $\neg p$
 $2 \land E$

 2
 (4)
 $\neg q$
 $2 \land E$

 (5)
 $\neg p \supset \neg q$
 $3,4 \supset I$

 (6)
 $\neg q \supset \neg p$
 $3,4 \supset I$

 (7)
 $\neg p \equiv \neg q$
 $5,6 \land I$

 8
 (8)
 $p \land q$
 Ass($\lor E$)

 8
 (9)
 p
 $8 \land E$

 8
 (10)
 q
 $8 \land E$

 8
 (10)
 q
 q

 9
 $q \supset p$
 $q \supset p$

 (12)
 $q \supset p$
 $q \supset p$

 (13)
 $p \equiv q$
 $q \supset p$

 1
 $q \supset p$
 $q \supset p$

 1

3. Check the following using tableaux for classical propositional logic. Give a countermodel if the argument is invalid. (Make sure you explain why the interpretation you give 'works

(b)
$$\neg (p \supset (q \lor r)) \vdash_{TC} \neg ((q \lor r) \supset p)$$

ID: 200007413

Counter-model: Let v(q) = 0, v(r) = 0, and v(p) = 1.

The \supset semantic clause means that $v(\neg(p \supset (q \lor r))) = 1$ iff v(p) = 1 and $v(q \lor r) = 0$, and the semantic clause for \lor means that $v(q \lor r) = 0$ iff v(q) = 0 and v(r) = 0 and so the premises are satisfied.

Again, the semantic clause for \supset means that $v(\neg((q \lor r) \supset p)) = 1$ iff $v(q \lor r) = 1$ and v(p) = 0.

As v(p) = 0, it means that $v(\neg((q \lor r) \supset p)) = 0$, meaning the conclusion is false, despite the premises being true. QED

- 4. Explain why the following are true in the semantics of the various modal logics.
 - (a) $\Diamond p \models_K \neg \Box \neg p$

Take any interpretation with world w where $v_w(\lozenge p) = 1$.

The semantics of \Diamond mean that $v_w(\Diamond p) = 1$ iff at some x such that wRx, $v_x(p) = 1$.

Through the double negation rule, we can write this as $v_x(\neg \neg p) = 1$.

Due to the semantics of \lozenge , $v_w(\lozenge \neg \neg p) = 1$ iff at some x such that wRx, there is $v_x(\neg \neg p) = 1$. Therefore, with $v_w(\lozenge \neg \neg p) = 1$, the semantics of \lozenge mean that this can be written as $v_w(\neg \Box \neg p) = 1$. QED

(b) $\Box\Box\Box p \models_{K\rho\tau}\Box p$

For reductio, assume an arbitrary $\langle W, R, v \rangle$ with reflexive and transitive R such that $v_w(\Box\Box\Box p) = 1$, and $v_w(\Box p) = 0$.

Next, the semantics of \Box dictate that $v_w(\Box\Box\Box p)=1$ iff at ALL x such that wRx with reflexive and transitive R, $v_x(\Box\Box p)=1$.

Again, the \square semantics mean that $v_x(\square \square p) = 1$ iff at ALL y such that xRy with reflexive and transitive R, $v_y(\square p) = 1$.

Finally, we know that $v_y(\Box p) = 1$ iff at ALL z such that yRz with reflexive and transitive R, $v_z(p) = 1$.

However, as R is transitive, because wRx, and xRy, and yRz, we have wRy, and wRz Therefore, $v_z(p) = 1$ would contradict the fact that $v_w(\square) = 0$. So there cannot be y such that wRy where $v_y(\square) = 0$, so $v_y(\square) = 1$ at at all y such that wRy so $v_w(\square) = 1$. QED

ID: 200007413 4

5. Check the following using tableaux for the various modal logics. Give a countermodel if the argument is invalid. (Make sure you explain why the interpretation you give works

(b)
$$p \rightarrow r, q \rightarrow r \vdash_{TK\rho\tau} p \rightarrow q$$

$$\Box(p \supset r), 0 / 1$$

$$\Box(q \supset r), 0 / 1$$

$$\neg\Box(p \supset q), 0 \checkmark$$

$$|$$

$$0r1$$

$$\neg(p \supset q), 1 \checkmark$$

$$|$$

$$p, 1$$

$$\neg q, 1$$

$$|$$

$$p \supset r, 1 \checkmark$$

$$q \supset r, 1 \checkmark$$

$$q \supset r, 1 \checkmark$$

$$\neg p, 1 \qquad r, 1$$

$$\otimes \neg q, 1 \qquad r, 1$$

Counter-model:

$$W = \{w_0, w_1\}$$

$$R = \{\langle w_0, w_1 \rangle\}$$

$$v_{w_1}(q) = 0$$

ID: 200007413 5

$$v_{w_1}(r) = 1$$

$$v_{w_1}(p) = 1$$

This countermodel works as $v_{w_1}(q \supset r) = 1$ iff $v_{w_1}(q) = 0$ or $v_{w_1}(r) = 1$ which is the case. So, because w_0 only has relation 0r1, the \square semantics are that $v_w(\square(q \supset r)) = 1$ iff at all worlds x such that wRx $v_x(q \supset r) = 1$, which is the case for w_0 , and so $v_{w_0}(\square(q \supset r)) = 1$. Also, $v_{w_1}(p \supset r) = 1$ iff $v_{w_1}(p) = 0$ or $v_{w_1}(r) = 1$, and we have $v_{w_1}(r) = 1$ so $v_{w_1}(p \supset r) = 1$.

Similarly to before, as w_0 only has relation 0r1, the \square semantics are that $v_w(\square(p \supset r)) = 1$ iff at all worlds x such that wRx $v_x(p \supset r) = 1$, which is the case for w_0 , and so $v_{w_0}(\square(p \supset r)) = 1$.

Finally, as we have $v_{w_1}(p)=1$, and $v_{w_1}(q)=0$. The semantics for \supset mean that $v_{w_1}(p\supset q)=1$ iff $v_{w_1}(p)=0$ or $v_{w_1}(q)=1$, meaning that $v_{w_1}(p\supset q)=0$, which can be written $v_{w_1}(\neg(p\supset q))=1$.

Therefore, the \lozenge rule states that $v_w(\lozenge \neg (p \supset q)) = 1$ iff at some x such that wRx $v_x(\neg (p \supset q)) = 1$. As we have 0r1 and $v_{w_1}(\neg (p \supset q)) = 1$, we can write $v_{w_0}(\lozenge \neg (p \supset q)) = 1$.

The semantics of \lozenge means $v_{w_0}(\lozenge \neg (p \supset q)) = 1$ can be written $v_{w_0}(\neg \Box (p \supset q)) = 1$, which can be written as $v_{w_0}(\Box (p \supset q)) = 0$, which is our conclusion.

This constructs a world in which all of the premises: $\Box(p \supset r)$, and $\Box(q \supset r)$ are true in world 0, whilst the conclusion $\Box(p \supset q)$ is false also at world 0. QED