Feuille de TD 3 : dérivation

Exercice 1. Ensemble de dérivabilité

Étudier la dérivabilité des fonctions suivantes :

1.
$$f_1(x) = x^2 \cos \frac{1}{x} \text{ si } x \neq 0$$
 $f_1(0) = 0$

2.
$$f_2(x) = \sin x \sin \frac{1}{x} \text{ si } x \neq 0$$
 $f_2(0) = 0$

3.
$$f_3(x) = \frac{|x|\sqrt{x^2-2x+1}}{x-1}$$
 si $x \neq 1$ $f_3(1) = 1$

Exercice 2. Calcul de tangente

Ecrire l'équation de la tangente à la courbe au point d'abscisse x=0 des fonctions

1.
$$f(x) = x^2 + x + 1, x \in \mathbb{R}$$

2.
$$g(x) = \tan(x), x \in (-\pi/2, \pi/2)$$

3.
$$h(x) = \exp(4x), x \in \mathbb{R}$$

Exercice 3. Dérivabilité

Déterminer $a, b \in \mathbb{R}$ de manière à ce que la fonction f définie sur \mathbb{R}_+ par :

$$f(x) = \sqrt{x}$$
 si $0 \le x \le 1$ et $f(x) = ax^2 + bx + 1$ sinon

soit dérivable sur \mathbb{R}_+^*

Exercice 4. Dérivabilité et dérivation

Etudier la dérivabilité des fonctions suivantes (éventuellement de leur prolongement) et donner leurs dérivées :

$$x \to x(\ln x - 1), \quad x \to \frac{x}{\ln x}, \quad x \to \sqrt{x}, \quad x \to \sqrt{|x|}, \quad x \to \ln(1 + |x|)$$

Exercice 5. Dérivabilité et continuité

Soit $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $f(x) = x^2 \sin \frac{1}{x}$. Montrer que f est prolongeable par continuité en 0; on note encore f la fonction prolongée. Montrer que f est dérivable sur \mathbb{R} mais que f' n'est pas continue en 0.

Exercice 6. Dérivés successives

Calculer la fonction dérivée d'ordre n des fonctions f,g,h définies par :

$$f(x) = \sin x$$
; $g(x) = \sin^2 x$; $h(x) = \sin^3 x + \cos^3 x$.

Exercice 7. Extrema

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = (1-k)^3 x^2 + (1+k) x^3$ où k est un nombre réel. Déterminer les valeurs de k pour lesquelles l'origine est un extremum local de f.

Exercice 8. Extrema et points d'inflexion

Quel est le lieu des points d'inflexion (puis des extrémums relatifs) de f_{λ} quand λ décrit \mathbb{R} , où :

$$f_{\lambda}: x \to \lambda e^x + x^2.$$