Modern Cryptography

Pseudorandomness and Pseudorandom Generator

Shashank Singh

Pseudorandomness

Pseudo-randomness?

- Pseudorandomness is a property of a probability distribution.
- In cryptography, we deal with probability distributions having sample space $\{0,1\}^{128}$ or even bigger.

Remark

- Listing all probabilities in such a vast sample space can be challenging and often not possible.
- We define distributions using sampling algorithms, which effectively draw elements from the specified distribution.
- This approach allows us to manage complexity while still being valuable to crypto applications.

Shashank Singh IISERB 3 / 9

Pseudo-randomness..

Definition 1 (Pseudorandom)

Let D_n be a distribution over $\ell(n)$ bit strings i.e., on the set $\{0,1\}^{\ell(n)}$, $\{D_n\}$ is said to be a pseudorandom distribution if for every PPT algorithm \mathscr{A} , there is a negligible function $\varepsilon()$ such that,

$$|\operatorname{Pr}_{s \leftarrow D_n}[\mathscr{A}(s) = 1] - \operatorname{Pr}_{s \leftarrow U_{\ell(n)}}[\mathscr{A}(s) = 1]| < \varepsilon(n), \quad (1)$$

where $U_{\ell(n)}$ is a uniform distribution on $\{0,1\}^{\ell(n)}$.

*

Recap: $\varepsilon(n) = o\left(\frac{1}{n^c}\right)$ for all $c \in \mathbb{N}$. In other words, ε is smaller than any inverse polynomial function of n.

A distribution D on $\{0,1\}^{\ell}$ is called pseudorandom if it passes all efficient statistical tests. For example:

- $\Pr_{s \leftarrow D} \left[\bigoplus_{i=1}^{\ell} s_i = 1 \right] = \frac{1}{2}$, where s_i is the *i*-th bit of *s*.
- $Pr_{s \leftarrow D}[\text{last bit of } s \text{ is } 1] = 1.$

The NIST Statistical Test Suite, outlined in NIST SP 800-22 Rev.1a, is a standard collection of statistical tests used to assess the randomness of binary sequences produced by true and pseudo-random number generators for cryptographic applications.

Shashank Singh IISERB 4 / 9

Pseudorandom Generator

Definition 1 (Pseudorandom Generator)

A pseudo-random generator G is a deterministic polynomialtime algorithm which takes input a string $s \stackrel{\$}{\leftarrow} \{0, 1\}^n$, and outputs a string $G(s) \in \{0, 1\}^{\ell(n)}$, for some polynomials $\ell(n)$, with the following properties:

- $\ell(n) > n \quad \forall n$.
- For any PPT algorithm \mathcal{A} , there is a negligible function $\varepsilon()$, such that

$$|\operatorname{Pr}_{s} \underset{\leftarrow}{\$} \{0,1\}^{n} [\mathscr{A}(s) = 1] - \operatorname{Pr}_{s} \underset{\leftarrow}{\$} \{0,1\}^{\ell(n)} [\mathscr{A}(s) = 1] | < \varepsilon(n)$$

*

Pseudorandom Generator..

In informal terms, a pseudorandom generator G is an efficient, deterministic algorithm that converts a short, uniform string known as the seed into a longer output string that appears uniform.

Does there exist a PRG?

Remark

- We do not know how to definitively prove the existence of pseudorandom generators; however, we have compelling reasons to believe that they do exist.
- Furthermore, there are several practical constructions of candidate pseudorandom generators, known as stream ciphers, for which no efficient distinguishers are currently known.

Pseudo One Time Pad encryption scheme

Let $G : \{0, 1\}^n \mapsto \{0, 1\}^{\ell(n)}$, be a PRG, and let $\mathcal{M} = \mathcal{C} = \{0, 1\}^{\ell(n)}$, while $\mathcal{K} = \{0, 1\}^n$. We define the pseudo OTP through the tuple $\Pi = (\text{GEN}, \text{ENC}, \text{DEC})$ as follows:

- The keygen algorithm GEN, returns a key chosen uniformly from $\{0, 1\}^n$.
- ENC $(k, m) = G(k) \oplus m$ for $m \in \mathcal{M}$ and $k \in \mathcal{K}$.
- DEC $(k, c) = G(k) \oplus c$ for $c \in \mathscr{C}$ and $k \in \mathscr{K}$.

*

Theorem

The pseudo one-time pad is a fixed-length private-key encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper.

Proof. On the contrary, suppose there exists a PPT adversary \mathscr{A} for which $\Pr[\operatorname{PrivK}_{\mathscr{A},\Pi}^{\operatorname{eav}}(n) = 1] > \frac{1}{2} + \varepsilon(n)$. Using \mathscr{A} , we construct a PPT distinguisher \mathscr{D} as follows. On input $s \in \{0, 1\}^{\ell(n)}$,

- \mathscr{D} runs \mathscr{A} and gets a pair of messages $m_0, m_1 \in \mathscr{M}$.
- \mathscr{D} gives $c := s \oplus m_b$, where $b \stackrel{\$}{\leftarrow} \{0, 1\}$, to \mathscr{A} and gets a bit b' back from \mathscr{A} .
- \mathscr{D} return $b' \stackrel{?}{=} b$.

Г