Algoritmos y Estructuras de Datos

Repaso de Lógica Proposicional

2023

Bibliografía

- Michael Huth y Mark Ryan, Logic in computer science. Modelling and Reasoning about Systems, Cambridge University Press, 2004.
- ▶ Dirk Van Dalen, Logic and Structure, Series Universitext, Springer, 4th edition, 2008.
- ➤ Steve Reeves y Michael Clarke, Logic for computer science, Addison-Wesley, 1990.
- Michael Genesereth y Eric Kao (Synthesis Lectures on Computer Science), Introduction to Logic, Morgan & Claypool Publishers, 2012.

Por qué estudiar lógica

- Queremos usar lógica en nuestras especificaciones
- usamos lógica en nuestros programas
- Queremos lenguajes para modelar situaciones
- Queremos poder razonar y argumentar
- Queremos poder hacer esto formalmente
- y vamos a entender más sobre la computación y sus raíces

símbolos

$$\neg\ ,\ \wedge\ ,\ \vee\ ,\ \rightarrow\ ,\ \leftrightarrow\ ,\ \big(,\ \big)$$

símbolos

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

variables proposicionales (infinitas)

$$p$$
, q , r , ...

símbolos

$$\neg$$
, \wedge , \vee , \rightarrow , \leftrightarrow , (,)

variables proposicionales (infinitas)

$$p, q, r, \ldots$$

- fórmulas
 - combinaciones apropiadas de símbolos y variables proposicionales
 - ► Ejemplo de combinación inapropiada: (∧p((

Fórmulas

1. cualquier variable proposicional es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula
- 5. si ϕ y ψ son fórmulas, $(\phi \rightarrow \psi)$ es una fórmula

- 1. cualquier variable proposicional es una fórmula
- 2. si ϕ es una fórmula, $(\neg \phi)$ es una fórmula
- 3. si ϕ y ψ son fórmulas, $(\phi \wedge \psi)$ es una fórmula
- 4. si ϕ y ψ son fórmulas, $(\phi \lor \psi)$ es una fórmula
- 5. si ϕ y ψ son fórmulas, $(\phi \rightarrow \psi)$ es una fórmula
- 6. si ϕ y ψ son fórmulas, $(\phi \leftrightarrow \psi)$ es una fórmula
 - Muy entre paréntesis: Las fórmulas son un ejemplo de un conjunto inductivo
 - Vienen provistos de
 - Esquema de prueba para probar propiedades sobre ellos (inducción estructural)
 - Esquema de recursión para definir funciones sobre el conjunto (recursión estructural)
- No es tema primario del curso, quizás lo veremos de pasada, pero quería que lo supieran

Lógica proposicional - sintaxis

Ejemplos

$$((p \land q) \rightarrow r) \quad (p \lor p)$$

¿Y estas expresiones son fórmulas?

$$p(\land q), \neg p$$

- Convenciones de notación
 - ▶ Precedencia: \land y \lor ligan más fuerte que \rightarrow y \leftrightarrow , \neg liga más fuerte que los demás
 - Omisión de paréntesis más externos y los de negaciones
 - ightharpoonup Asociatividad de \wedge y \vee

Semántica clásica

- Consiste en asignarle valores de verdad a las fórmulas
- ► El conjunto de valores de verdad es

$$\{\textbf{T},\textbf{F}\}$$

- Dos enfoques para darle semántica a las fórmulas de PROP
 - 1. Tablas de verdad
 - 2. Valuaciones
- Son equivalentes

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

φ	ų/y	$(\phi \wedge \psi)$
Ψ	Ψ	$(\varphi \wedge \varphi)$
Т	T	Т
Т	F	F
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	T
Т	F	F
F	Т	F
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	
T	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
T	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \to \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \to \psi)$
Т	Т	Т
Т	F	F
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
T	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
T	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \to \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	T	Т
T	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \to \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	
F	Т	
F	F	

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	
F	F	

Tablas de verdad

Conociendo el valor de las variables proposicionales de una fórmula, conocemos el valor de verdad de la fórmula

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	

Tablas de verdad

Conociendo el valor de las variables proposicionales de una fórmula, conocemos el valor de verdad de la fórmula

ϕ	ψ	$(\phi \wedge \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

ϕ	ψ	$(\phi \lor \psi)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

ϕ	ψ	$(\phi \rightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

ϕ	ψ	$(\phi \leftrightarrow \psi)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Ejemplo: tabla de verdad para $((p \land q) \to r)$

р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
Т	Т	Т		
Т	Т	F		
Т	F	Т		
Т	F	F		
F	Т	Т		
F	Т	F		
F	F	Т		
F	F	F		

Ejemplo: tabla de verdad para $((p \land q) \rightarrow r)$

р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
Т	Т	Т	Т	
Т	Т	F	Т	
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

Ejemplo: tabla de verdad para $((p \land q) \to r)$

р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

Ejemplo: tabla de verdad para $((p \land q) \rightarrow r)$

р	q	r	$(p \wedge q)$	$((p \land q) \to r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	
Т	F	F	F	
F	Т	Т	F	
F	Т	F	F	
F	F	Т	F	
F	F	F	F	

Ejemplo: tabla de verdad para $((p \land q) \to r)$

р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
Т	Т	Т	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
Т	F	F	F	Т
F	Т	Т	F	Т
F	Т	F	F	Т
F	F	Т	F	Т
F	F	F	F	Т

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Solución 1:

p = Juan está cursando

q= Juan no conoce a nadie

r= Juan no tiene grupo

$$(p \wedge q) \rightarrow r$$

Ejemplo

Escribir la siguiente frase como una fórmula de lógica proposicional.

"Si Juan está cursando y no conoce a nadie entonces Juan todavía no tiene grupo"

Solución 1:

p =Juan está cursando

q= Juan no conoce a nadie

r= Juan no tiene grupo

$$(p \land q) \rightarrow r$$

Solución 2:

p =Juan está cursando

q= Juan conoce a alguien

r= Juan tiene grupo

$$(p \land \neg q) \rightarrow \neg r$$

Valuaciones

- ▶ Una valuación es una función $v : \mathcal{V} \to \{\mathbf{T}, \mathbf{F}\}$ que asigna valores de verdad a las variables proposicionales
- ▶ Una valuación satisface una proposición ϕ si $v \models \phi$ donde:

$$v \models p \quad sii \quad v(p) = \mathbf{T}$$

$$v \models \neg \phi \quad sii \quad v \not\models \phi \ (i.e. \ no \ v \models \phi)$$

$$v \models \phi \lor \psi \quad sii \quad v \models \phi \ o \ v \models \psi$$

$$v \models \phi \land \psi \quad sii \quad v \models \phi \ y \ v \models \psi$$

$$v \models \phi \rightarrow \psi \quad sii \quad v \not\models \phi \ o \ v \models \psi$$

$$v \models \phi \leftrightarrow \psi \quad sii \quad (v \models \phi \ sii \ v \models \psi)$$

Tautologías y satisfactibilidad

Dadas fórmulas ϕ y ψ

 \blacktriangleright ϕ es lógicamente equivalente a ψ cuando $v \models \phi$ sii $v \models \psi$

Una fórmula ϕ es

- ightharpoonup una tautología si $v \models \phi$ para toda valuación v
- ightharpoonup satisfactible si existe una valuación v tal que $v \models \phi$
- insatisfactible si no es satisfactible

Un conjunto de fórmulas S es

- ▶ satisfactible si existe una valuación v tal que para todo $\phi \in S$, se tiene $v \models \phi$
- insatisfactible si no es satisfactible

Ejemplos

Tautologías

- ightharpoonup p
- ightharpoonup
 abla
 abla
 p
- $\blacktriangleright \ (p \to q) \leftrightarrow (\neg q \to \neg p)$

Fórmulas insatisfactibles

- $\blacktriangleright (\neg p \lor q) \land (\neg p \lor \neg q) \land p$
- $\blacktriangleright (p \rightarrow q) \land p \land \neg q$

Tautologías e insatisfactibilidad

Teorema

Una fórmula ϕ es una tautología sii $\neg \phi$ es insatisfactible

Demostración

- \rightarrow . Si ϕ es tautología, para toda valuación v, $v \models \phi$. Entonces, $v \not\models \neg \phi$ (i.e. v no satisface $\neg \phi$).
- \leftarrow . Si $\neg \phi$ es insatisfactible, para toda valuación v, $v \not\models \neg \phi$. Luego $v \models \phi$.

Observación

Este resultado sugiere un método indirecto para probar que una fórmula ϕ es una tautología, que es probar que $\neg \phi$ es insatisfactible

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
v_1	Т	Т	Т		
<i>V</i> 2	Т	Т	F		
<i>V</i> 3	Т	F	Т		
<i>V</i> ₄	Т	F	F		
<i>V</i> ₅	F	Т	Т		
<i>v</i> ₆	F	Т	F		
<i>V</i> 7	F	F	Т		
<i>v</i> ₈	F	F	F		

¿Cuántas valuaciones diferentes existen para una fórmula de n variables?

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
v_1	Т	Т	Т	Т	
<i>V</i> 2	Т	Т	F	Т	
<i>V</i> 3	Т	F	Т	F	
<i>V</i> ₄	Т	F	F	F	
<i>V</i> ₅	F	Т	Т	F	
<i>v</i> ₆	F	Т	F	F	
<i>V</i> 7	F	F	Т	F	
<i>v</i> ₈	F	F	F	F	

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
v_1	Т	Т	Т	Т	Т
<i>V</i> 2	Т	Т	F	Т	
<i>V</i> 3	Т	F	Т	F	
<i>V</i> ₄	Т	F	F	F	
<i>V</i> ₅	F	Т	Т	F	
<i>v</i> ₆	F	Т	F	F	
<i>V</i> 7	F	F	Т	F	
<i>v</i> ₈	F	F	F	F	

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
v_1	Т	Т	Т	Т	Т
<i>V</i> 2	Т	Т	F	Т	F
<i>V</i> 3	Т	F	Т	F	
<i>V</i> ₄	Т	F	F	F	
<i>V</i> ₅	F	Т	Т	F	
<i>v</i> ₆	F	Т	F	F	
<i>V</i> 7	F	F	Т	F	
<i>v</i> 8	F	F	F	F	

Filas de una tabla se corresponden con las valuaciones

	р	q	r	$(p \wedge q)$	$((p \land q) \rightarrow r)$
v_1	Т	Т	Т	Т	Т
<i>V</i> 2	Т	Т	F	Т	F
<i>V</i> 3	Т	F	Т	F	Т
<i>V</i> ₄	Т	F	F	F	Т
<i>V</i> ₅	F	Т	Т	F	Т
<i>v</i> ₆	F	Т	F	F	Т
<i>V</i> 7	F	F	Т	F	Т
<i>v</i> 8	F	F	F	F	Т

¿Cuántas valuaciones diferentes existen para una fórmula de n variables?

Semántica trivaluada

- Supongamos que contamos con un símbolo relacional == que nos permite comparar números reales
- ¿Valor de verdad de las siguientes fórmulas?

$$1 == 1$$
 $(1+1) == 2$ $0.5 == 2/4$

► ¿Y esta?

$$1/0 == 2$$

Semántica trivaluada

Pasos para determinar si $e_1 == e_2$ es verdadero o falso

- 1. Obtener el número real r_1 denotado por e_1
- 2. Obtener el número real r_2 denotado por e_2
- 3. Comparar r_1 con r_2 para determinar si son iguales o no Consideremos

$$1/0 == 2$$

Semántica trivaluada

Pasos para determinar si $e_1 == e_2$ es verdadero o falso

- 1. Obtener el número real r_1 denotado por e_1
- 2. Obtener el número real r_2 denotado por e_2
- 3. Comparar r_1 con r_2 para determinar si son iguales o no

Consideremos

$$1/0 == 2$$

- ► Trabado en paso 1
- Expresión 1/0 no denota ningún número
- ► 1/0 == 2 no es ni verdadera ni falsa porque no contamos con los números a comparar
- ▶ Le damos un valor especial: ⊥ (indefinido)

Se llama secuencial porque ...

Se llama secuencial porque ...

los términos se evalúan de izquierda a derecha,

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

n	а	$(p \wedge_L q)$
р	q	$(P \land L \lor I)$
Τ	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		
F		
	Т	
\perp	F	
T	上	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		
F	上	
1	Т	
上	F	
T	1	

р	q	$(p \vee_L q)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
Т		
F	上	
	Т	
上	F	
\perp		

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

p	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		
F	上	
\perp	Т	
丄	F	
T	T	

р	q	$(p \vee_L q)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
Т		
F	上	
上	Т	
T	F	
\perp	上	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		
F	上	F
\perp	Т	
T	F	
T	T	

р	q	$(p \vee_L q)$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F
Т	T	
F		
	Т	
上	F	
\perp	L	

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		Т
F	上	F
Т	Т	Т
上	F	
\perp	T	Т

р	q	$(p \vee_L q)$
Т	T	Т
Т	F	Т
F	Т	Т
F	F	F
Т		
F	1	
\perp	Т	
\perp	F	
\perp		

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		Т
F		F
\perp	Т	\perp
丄	F	Т
\perp	T	

p	q	$(p \vee_L q)$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F
Т		Т
F		
上	Т	
上	F	
L		

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

p	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		
F		F
1	Т	
\perp	F	
1	1	

р	q	$(p \vee_L q)$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
Т		Т
F	上	
L	Т	
上	F	
\perp		

Se llama secuencial porque ...

- los términos se evalúan de izquierda a derecha,
- ▶ la evaluación termina cuando se puede deducir el valor de verdad, aunque el resto esté indefinido.

р	q	$(p \wedge_L q)$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F
Т		Т
F	上	F
Т	Т	Т
上	F	
\perp	T	Т

р	q	$(p \vee_L q)$
Т	Т	T
Т	F	Т
F	Т	Т
F	F	F
Т		Т
F		
	Т	
\perp	F	Т
\perp		