浅析"最小表示法"思想

在字符串循环同构问题中的应用

安徽省芜湖市第一中学 周 源

前言

"最小表示法"比起动态规划、贪心等思想,在当今竞赛中似乎并不是很常见。但是在解决判断"同构"一类问题中却起着重要的作用。

本文即将讨论字符串中的同构问题,如何巧妙地运用最小表示法来解题呢, 让我们继续一起思考吧。

问题引入

有两条环状的项链,每条项链上各有 N 个多种颜色的珍珠,相同颜色的珍珠,被视为相同题:判断两条项链是否相同。

简单分析:由于项链是环状的,因此循环以后的项链被视为相同的,如图的两条项链就

是一样的。

- (1). |s|=length(s), 即 s 的长度。
- (2). s[i]为s的第i个字符。
- (3) . s[i→j]=copy(s,i,j-i+1)。这里 1≤ i≤ j≤ |s|。

(4) . 定义 s 的一次循环 $s^{(1)}=s[2\rightarrow|s|]+s[1]$; s 的 k 次循环 $(k>1)s^{(k)}$ 为 $s^{(k-1)}$ 的一次循环; s 的 0 次循环 $s^{(0)}=s$ 。

(5). 如果字符串 s1 可以经过有限次循环得到 s2,则称 s1 和 s2 是循环同构的。例如:

(6). 设有两个映射 f_1 , $f_2:A\rightarrow A$, 定义 f_1 和 f_2 的连接 $f_1 \bullet f_2(\mathbf{x}) = f_1(f_2(\mathbf{x}))$ 。

问题的数学语言表达形式

给定两个长度相等的字符串, |s1|=|s2|, 判断它们是否是循环同构的。

枚举算法

易知, s1 的不同的循环串最多只有 |s1| 个, 即 s1,s1(1),s1(2),...s1(|s1|-1), 所以只需要把他们一一枚举, 然后分别与 s2 比较即可。

枚举算法 Time Limit Exceeded!

优点: 思维简单, 易于实现。

时间复杂度是 O(N2) 级 (N=|s1|=|s2|)

(2) 如果 N 大一些,几十万,几百万......

构造新的算法

首先构造新的模型:

S=s1+s1 为主串, s2 为模式串。 如果 s1 和 s2 是循环同构的,

那么 s2 就一定可以在 S 中找到匹配!

匹配算法:理论的下界

在 S 中寻找 s2 的匹配是有很多 O(N) 级的算法的。本题最优算法的时空复杂度均为 O(N) 级。 这已经是理论的下界了。

小结: 枚举和匹配算法

很容易得到的枚举算法显然不能满足大数据的要求, 于是我们从算法的执行过程入手, 探查到了枚举算法的实质:模式匹配。

最后,通过巧妙的构造、转换模型,直接套用模式匹配算法,得到了 O(N) 级的算法。

探索新的算法

但是问题是否已经完美解决了呢?

KMP 算法的缺点:

难理解,难记忆;

可扩展性不强。

安徽 周源

[引例]

有两列数 $a_1,a_2...a_n$ 和 $b_1,b_2...b_n$, 不记顺序,判断它们是否相同。

相同的两列数 $\{a_n\}: 4263$ $\{b_n\}: 6234$

[分析]

由于题目要求"不记顺序",因此每一列数的不同形式高达 n! 种之多!

如果要一一枚举,显然是不科学的。

如果两列数是相同的,那么将它们排序之后得到的数列一定也是相同的。

 $\{a_n\}: 426$ $\{a_n\}: 234$ $\{b_n\}: 3623$ $\{b_n\}: 6234$

小结:引例

这道题虽然简单,却给了我们一个重要的启示 : 当某两个对象有多种表达形式,且需要判 断它们在某种变化规则下是否能够达到一个 相同的形式时,可以将它们都按一定规则变 化成其所有表达形式中的最小者,然后只需 要比较两个"最小者"是否相等即可!

设有事物集合 $T=\{t_1, t_2, ..., t_n\}$, 映射集合 $F=\{f_1, f_2, ..., f_m\}$ 。 任意 $f \in F$ 均为 T 到 T 的映射, $f_i:T \to T$ 。

如果两个事物 $s,t \in T$,有一系列 F 的映射的连接 $f_{i1} \cdot f_{i2} \cdot ...$ $\cdot f_{ik}(s) = t$,

则说s和t是F本质相同的。

其中 F 满足两个条件:

- (1). 任意 $t \in T$, 一定能在 F 中一系列映射的连接的作用下,仍被映射至 t 。即任意一个事物 $t \in T$,它和自己是 F 本质相同的。
 - 即"本质相同"这个概念具有自反性。
- ②. 任意 s,t ∈ T , 若在 F 的一系列映射作用下, s 和 t 是 F 本质相同的。那么一定有另一系列属于 F 的映射作用下, t 和 s 是 F 本质相同的 即"本质相同"这个概念具有对称性。

另外,根据"本质相同"概念的定义很容易知道,"本质相同"这个概念具有传递性。

即若 t_1 和 t_2 是F本质相同, t_2 和 t_3 是F本质相同,那么一定有 t_1 和 t_3 是本质相同的。

给定T和F,如何判断T中两个事物s和t是否互为F本质相同呢?

"最小表示法"就是可以应用于此类题目的一种思想

t 本质相同 m_2 本质相同 m_1 本质相同 s

在本题中,

事物集合表示的是不同的字符串,

映射集合则表示字符串的循环法则,

"事物中的大小关系"就是字符串间的大小关系。

最直接最简单的方法:

分别求出 s1 和 s2 的最小 表示比较它们是否相同

现在换一种思路:

设函数 M(s) 返回值意义为:

从 s 的第 M(s) 个字符引起的 s 的一个循环表示是 s 的最小表示。

若有多个值,则返回最小的一个。

如 M('bbbaab')=4

现在换一种思路:

设 u=s1+s1 , w=s2+s2 并设指针 i,j 指向 u,w 第一个 字符

现在换一种思路:

如果 s1 和 s2 是循环同构的,那么当 i,j 分别指向 M(s1),M(s2) 时,一定可以得到 $u[i \rightarrow i + |s1| - 1] = w[j \rightarrow j + |s2| - 1]$,迅速输出正确解。

现在换一种思路:

同样 s1 和 s2 循环同构时,当 i,j 分别满足 $i \leq M(s1), j \leq M(s2)$ 时, 两指针仍有机会达到 i = M(s1), j = M(s2) 这个状态。

问题转化成,两指针分别向后滑动比较,如果比较失败,如 何正确的滑动指针,新指针 i',j' 仍然满足 i'≤M(s1),j'≤M(s2)

设指针 i,j 分别向后滑动 k 个位置后比较失败 $(k \ge 0)$,即有 $u[i+k] \ne w[j+k]$

设 u[i+k]>w[j+k], 同理可以讨论 u[i+k]<w[j+k] 的情况。

当 i≤x≤i+k 时, 我们来研究 s1(x-1)。

u:	1	• • •	i	• • •	Σ	x i+k i+k+1 s1 .						
		大于										
W:	1	• • •		j	• • •	• • •	• •		j+k	j+k+1	• • •	s2

u:

"最小表示法"在本题的应用

因为 u[x] 在 u[i] 后 (x-i) 个位置, 对应的可以找到在 w[j] 后 (x-i) 个位置的 w[j+(x-i)], 同样对应的有 u[x+1] 和 w[j+(x+1-i)], u[x+2] 和 w[j+(x+2)-i],

直到面(研解是相等的k-1]。

即有 u[x \rightarrow i+k-1]=w[j+(x-i) \rightarrow j+k-1] \circ ... i ... i+k i+k+1 ... |s1|...

相等

很容易就得到 u[x→i+k]>w[j+(x-i)→j+k]。

所以 s1(x-1) 不可能是 s1 的最小表示!

因此 M(s1)>i+k,

指针 i 滑到 u[i+k+1] 处仍可以保证小于等于 M(s1)!

同理, 当 u[i+k]<w[j+k] 的时候, 可以将指针 j 滑到 w[j+k+1] 处!

也就是说,两指针向后滑动比较失败以后, 指向较大字符的指针向后滑动 k+1 个位 置。

下面让我们将这种方法应用于一个实例。

设s1='babba', s2='bbaba'。

比较失败时 k=1

因为 u[i+k]<w[j+k] 所以移动指针 j

不相等

设 s1='babba', s2='bbaba'。

比较失败时 k=0

因为 u[i+k]>w[j+k] 所以移动指针 i

不相等

设 s1='babba', s2='bbaba'。

比较失败时 k=2

因为 u[i+k]>w[j+k] 所以移动指针 i

不相等

设s1='babba', s2='bbaba'。

 $u[5\rightarrow 9]=w[3\rightarrow 7]$!

所以 s1 和 s2 是循环同构的!

在这个例子中,算法正确出解。

算法的具体描述和证明请同学们自行完成,这里不再赘述

小结:"最小表示法"思想

经过努力,我们终于找到了一个与匹配算法本质不同的线性算法。

	比较点	匹配算法	"最小表示法"思想			
The same of the same of	时间复杂度	O(N) 级	同样优秀的线性算法			
	辅助空间	记录 next 数组 O(N) 级	只需要记录两个指针 常数级别			
A CONTRACTOR	算法实现	难懂,难记忆	简洁, 便于记忆			
	可扩展性	受 next 数组严重制约	很强			

安徽 周源

"最小表示法"是判断两种事物本质是否相同的一种常见思想,它的通用性也是被人们认可的——无论是搜索中判重技术,还是判断图的同构之类复杂的问题,它都有着无可替代的作用。仔细分析可以得出,其思想精华在于引入了"序"这个概念,从而将纷繁的待处理对象化为单一的形式,便于比较。

然而值得注意的是,在如今的信息学竞赛中,试题纷繁复杂,使用的算法也不再拘泥于几个经典的算法,改造经典算法或是将多种算法组合是常用的方法之一。正如本文讨论的问题,单纯的寻求字符串的最小表示显得得不偿失,但利用"最小表示法"的思想,和字符串的最小表示这个客观存在的事物,我们却找到了一个简单、优秀的算法。

安徽 周源

总结

解决实际问题时,只有深入分析,敢于创新,才能将问题

化纷繁为简洁

化无序为有序

谢谢大家

