روش های ریاضی در مهندسی تمرین سری پنج،

باسمه تعالی دانشگاه صنعتی شریف

دانشکده مهندسی برق

روشهای ریاضی در مهندسی - گروه دکتر امینی نیمسال اول ۲۰-۱۴۰۱

تمرین تئوری سری پنجم

- ۱. مهلت تحویل این تمرین مطابق تاریخ اعلام شده در سامانه CW می باشد.
- ۲. ۱۰ روز تاخیر مجاز برای تحویل تمرین های تئوری در اختیار شما خواهد بود.
- ۳. سقف تاخیر برای تحویل هر تمرین ۷ روز خواهد بود و پس از آن پاسخنامه تمرین منتشر خواهد شد.
- ۴. ابهامات و مشكلات خود در مورد این تمرین را می توانید با دستیاران طراح، آقایان رامی و صفوی مطرح كنید.
 9. سamin_rami, @Safavi_MRS

سوال اول

با استفاده از الگوریتم MP و OMP مسئله P_0 را برای ${f x}$ حل نمایید. همچنین مقدار spark(A) و $\mu(A)$ را محاسبه کنید.

$$A = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}, y = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 5 \end{bmatrix}$$

سوال دوم (امتیازی)

جلال و امیرعلی میخواهند spark ماتریس شبه واندرموند که به صورت زیر است را بیابند اما بلد نیستند. به جای آن ها spark ماتریس را بیابید.

$$z_1,...,z_n \in \mathbb{C}: \mathbf{\Phi_{m imes n}} = egin{bmatrix} z_1^a & z_2^a & \cdots & z_n^a \ z_1^{a+1} & z_2^{a+1} & \cdots & z_n^{a+1} \ dots & dots & \ddots & dots \ z_1^{a+m-1} & z_2^{a+m-1} & \cdots & z_n^{a+m-1} \end{bmatrix}$$

سوال سوم

در الگوریتم OMP در گام شماره k ، مجموعه S به صورت $\{j_0\}$ به روز رسانی میشود که j_0 ستونی از ماتریس واژه نامه $A \in (R)^{m imes n}$ است که $\epsilon(j)$ تعریف شده به صورت زیر را حداگل میکند:

$$||\mathbf{r}^{k-1}||_2^2 - \frac{(\mathbf{a}_j^T \mathbf{r}^{k-1})^2}{||\mathbf{a}_i||_2^2}$$

روش های ریاضی در مهندسی تمرین سری پنجم

نشان دهید برای بردار دلخواه ${f b}$ و تکرار ${f k}$ ،مجموعه S^k در دوحالت زیر یکسان است:

 $\mathbf{A} = egin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{bmatrix}$ ماتریس واژه نامه

ماتریس واژه نامه $\widetilde{\mathbf{A}} = \mathbf{A}\mathbf{D}$ که در آن $\mathbf{D} \in \mathbb{R}^{n imes n}$ یک ماتریس گطری معکوس پذیر است.

سوال چهارم

الف. بردار دلخواه $\mathbf{b} \in \mathbb{R}^m$ را در نظر بگیرید. میخواهیم بردار $\mathbf{x} \in \mathbb{R}^n$ در همسایگی b را به گونهای به دست آوریم که نسخه هموارشده آن باشد. این مسئله را به صورت حداقل مربعات چندهدفه زیر مدلسازی نمایید $(\lambda > 0)$:

$$\min_{\mathbf{x}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{D}\mathbf{x} - \mathbf{d}||^2$$

 ${f A}$ که در مسئله فوق عبارت اول نزدیکی دو بردار ${f x}$ و ${f b}$ و عبارت دوم، همواری بردار ${f x}$ را برآورده مینماید (ماتریسهای ${f A}$ که در مسئله فوق عبارت اول نزدیکی دو بردار ${f D}$ است).

ب. برای حالت خاص n=2 ، $\hat{\mathbf{x}}(\lambda)$ (پاسخ مسئله بهینهسازی فوق) را به دست آورید.

ج. بردار $\hat{\mathbf{x}}(\lambda)$ را به دست آورید و توجیه کنید.

سوال پنجم

در مسئله حداقل مربعات، تابع هدف ما (جهت كمينه كردن)، به صورت زير است:

$$||Ax - b||^2 = \sum_{i=1}^{m} (\tilde{a}_i^T - b_i)^2$$

که در آن \tilde{a}_i^T سطر iام ماتریس A است و هدف، یافتن بردار $\hat{x}\in\mathbb{R}^n$ است. در یک نسخه دیگر از مسئله حداقل مربعات، تابع هدف ما به صورت زیر است:

$$\sum_{i=1}^{m} w_i (\tilde{a}_i^T - b_i)^2$$

که وزنهای w_i مثبت هستند و به ما داده شدهاند.

الف. نشان دهید با انتخاب ماتریس قطری D به صورت مناسب، میتوان این مسئله را به مسئله حداقل مربعات معمولی تبدیل کرد به طوری که تابع هدف به صورت $||D(Ax-b)||^2$ خواهد شد و عملا تابع هدف در مسئله جدید خواهد بود:

$$||Bx - d||^2$$

d = Db و B = DA به طوری که

A مستقل خطی هستند. شان دهید اگر ستونهای ماتریس A مستقل خطی باشند، ستونهای ماتریس B نیز مستقل خطی

چ. جواب مسئله حداقل مربعات جدید را بر حسب A و b و b و $W:=\operatorname{diag}(w)$ به دست آورید.