

§ 4.2 绝缘栅型 场效应管

lugh@ustc.edu.cn 2016年10月26日

MOSFET

- □ 绝缘栅型场效应管又称为金属-氧化物-半导体场效应管 (MOSFET)
- □相比于JFET,MOSFET结构简单,体积小,参数可控, 温度稳定性好,更易于集成

■ 两种类型

- □增强型(EMOS)
- □耗尽型(DMOS)

■ 基本结构

- □两个PN结
- □四个电极(栅极、源 极、漏极、衬底极)
- □ 称该结构为N沟道增 强型MOSFET,记为 N-EMOS

■思考

□ 导电沟道在哪里?

■说明

□ EMOS在未加偏置之前,不存在导电沟道,必须外加栅源控制电压V_{GS},利用表面场效应感应生成导电沟道

■ N型反型层

□ 在外电场作用下,N-EMOS的P型衬底中少数载流子形成电子层导电沟道,也称为N型反型层

4

■ 工作原理

□利用P型衬底上产生的N型反型层,通过栅源电压V_{cs}控制反型层的厚度来控制沟道导电率,最终达到控制漏极电流 I_D的目标

□使N-EMOS刚刚形成电子层导电沟道时对应的栅源电压值,称为开启电压,记为V_T

■ V_{cs}控制特点

□对N-EMOS而言,正常工作的前提条件是

$$V_{GS} > V_T$$

□ 对N-EMOS而言,随着V_{GS}增大,沟道导电率逐渐上升

■电路符号

■说明

□ 虽然MOSFET结构上也具有类似于JFET的对称性,但 是一般B与S相连,因此D与S不能互换使用

■漏极伏安特性

□ 导电沟道恰好被夹断时对应的漏源电压 V_{DS} ,称为预夹断电压,记为 V_P ,且

$$V_P = V_{GS} - V_T$$

■ 三个工作区

饱和电流区:
$$\begin{cases} V_{DS} \geq V_P \\ V_T < V_{GS} \end{cases}$$
可变电阻区: $\begin{cases} V_{DS} < V_P \\ V_T < V_{GS} \end{cases}$

■ 转移特性

■ 转移特性方程

$$I_D = \begin{cases} I_{D0} \left(\frac{V_{GS}}{V_T} - 1 \right)^2 \\ K_n \left(V_{GS} - V_T \right)^2 \end{cases}$$

■ EMOS器件参数

 $\begin{cases} 饱和漏电流<math>I_{D0} \\ \mathcal{T}$ 用电压 V_T

■基本结构

- □结构与EMOS基本相同
- □差异在于导电沟道的形成

■ 说明

- □在制作过程中,预先在 S_iO₂绝缘层中掺入正离子, 则可在衬底表面感应出电 荷层,形成导电沟道
- □或直接采用掺杂工艺在衬底表面形成反型层作为导电沟道

■ 工作原理

□工作原理与EMOS相同,即通过栅源电压V_{cs}控制反型 层的厚度来控制沟道导电率,最终达到控制漏极电流I_D 的目标

■ 夹断电压V_{PG}

□使DMOS导电沟道刚刚被夹断时对应的栅源电压值,称为DMOS夹断电压,记为V_{PG}

■ V_{cs}控制特点

□ 对N-DMOS而言,正常 工作的前提条件是

$$V_{GS} > -V_{PG}$$

□ 对N-DMOS而言,随着 V_{GS}逐渐增大,沟道导 电率逐渐上升

■ 漏极伏安特性

■ 预夹断电压V_P

□ 导电沟道恰好被夹断时对应的漏源电压 V_{DS} ,称为预夹断电压,记为 V_P ,且

$$V_P = V_{GS} + V_{PG}$$

■ 三个工作区

饱和电流区:
$$\begin{cases} V_{DS} \geq V_P \\ -V_{PG} < V_{GS} \end{cases}$$
 可变电阻区: $\begin{cases} V_{DS} < V_P \\ -V_{PG} < V_{GS} \end{cases}$ 截止区: $V_{GS} \leq -V_{PG}$

■ 转移特性

$$I_D = f\left(V_{DS}, V_{GS}\right)$$

$$\Rightarrow I_D = f\left(V_{GS}\right) \bigg|_{V_{DS}} \ge V_P$$

■ 转移特性方程

$$I_{D} = \begin{cases} I_{DS} \left(1 + \frac{V_{GS}}{V_{PG}} \right)^{2} \\ K_{n} \left(V_{GS} + V_{PG} \right)^{2} \end{cases}$$

■ DMOS器件参数

 $\left\{ \begin{array}{l}$ 饱和漏电流 $I_{DS} \ \end{array} \right.$ 夹断电压 $V_{PG} \$

各种FET对比

■ 各型FET转移特性对比

三种N沟道转移特性比较

三种 P 沟道转移特性比较

各种FET对比

■ JFET、EMOS与DMOS对比

- □相同点: 各器件工作原理与伏安特性曲线形态相似
- □不同点:
 - ■导电沟道形成机制各不相同
 - ■器件参数各不相同
 - ■偏置要求(工作前提条件)各不相同
- □ 对N/P型器件而言,两者的栅源控制电压V_{GS}反相,漏极电流I_D反相