

Master Thesis

Morphology Optimization of a Tilt-Rotor MAV

Spring Term 2018

Declaration of Originality

I hereby declare that the written work I have submitted entitled

Morphology	Optimization	of a	Tilt-Rotor	1// A 1/
Mornings	Oblimization	oı a	Till-Rotor	WAV

is original work which I alone have authored and which is written in my own words. 1

Author(s)		
Luca	Rinsoz	
Student supervisor(s)		
Karen Zachary	Bodie Taylor	
Supervising lecturer		
Roland	Siegwart	
citation rules and that I hav quette' (https://www.ethz abschluesse/leistungsko citation conventions usual to The above written work ma	e that I have been informed re read and understood the information.ch/content/dam/ethz/maintrollen/plagiarism-citate the discipline in question have be tested electronically for	formation on 'Citation eti- n/education/rechtliches- tionetiquette.pdf). The ere have been respected.
Place and date	Signature	

¹Co-authored work: The signatures of all authors are required. Each signature attests to the originality of the entire piece of written work in its final form.

Contents

Al	ostra	act	iii
$\mathbf{S}\mathbf{y}$	mbo	ıls	v
1	Intr	roduction	1
2	Met	thod	3
	2.1	Modelisation of MAVs	4
	2.2	Optimization problem	6
	2.3	Optimization tool	8
	2.4	Simulation Approach	10
3	Opt	cimization Results	11
	3.1^{-2}	Platonic Solids	11
	3.2	Even Designs	12
		3.2.1 Quad-copter	12
		3.2.2 Hexa-copter	12
		3.2.3 Octa-copter	12
	3.3	Odd Designs	12
		3.3.1 Tri-copter	12
		3.3.2 Penta-copter	12
		3.3.3 Hepta-copter	12
	3.4	Comparison of Different Designs	12
	3.5	Results when n is an Optimization Parameter	12
4	Sim	ulation Results	13
	4.1	Hexa-copter	13
	4.2	Hepta-copter	13
	4.3	Octa-copter	13
5	Con	nclusion	15
	5.1	Summary/Achieved	15
	5.2	Improvements	15
	5.3	Further Developement	15
Bi	bliog	graphy	17
Δ	IJМ	IL: Activity Diagram	19

Abstract

Hier kommt der Abstact hin ...

Symbols

Symbols

 ϕ, θ, ψ roll, pitch and yaw angle \mathcal{F}_W inertial world frame \mathcal{F}_B inertial body frame \mathcal{F}_{P_i} i-th propeller frame position of the MAV in \mathcal{F}_W angular velocity of the MAV in \mathcal{F}_B ω_B WR_B rotation matrix from \mathcal{F}_B to \mathcal{F}_W ${}^{B}R_{P_{i}}$ rotation matrix from \mathcal{F}_{P_i} to \mathcal{F}_B canonical rotation matrix about the X axis of angle γ $R_X(\gamma)$ canonical rotation matrix about the Y axis of angle γ $R_Y(\gamma)$ $R_Z(\gamma)$ canonical rotation matrix about the Z axis of angle γ i-th propeller tilt angle α_i i-th propeller rotation speed w_i i-th propeller counter rotation torque τ_{ext_i} T_i i-th thrust total mass of the MAV mbody inertia of the MAV I_B MAV's number of propellers nLMAV's arms length propeller thrust coefficient κ_f

Acronyms and Abbreviations

propeller drag coefficient

gravity constant cosine of the angle γ

sine of the angle γ

ccw counterclockwise cw clockwise

CoM Center of Mass

 κ_m

 $c(\gamma)$ $s(\gamma)$

ETH Eidgenössische Technische Hochschule

GUI Graphical User Interface
MAD Mean Absolute Deviation

MAV Micro Aerial Vehicle

ROS Robotic Operating System

sqp sequential quadratic programming

UAV Unmanned Aerial Vehicle

 ${\bf URDF} \qquad {\bf Unified \ Robot \ Description \ Format}$

Introduction

Rotary wing micro aerial vehicles (MAVs) have been well studied in academia and found a lot of applications in the world such as search operations [1], photography [2] or even toys [3]. They encountered such a broad success because of their agility and mechanical simplicity. Nevertheless, traditional multi-rotor vehicles are under-actuated, which means that they cannot control their torque and force independently [4]. They are thus unable to change their position without changing their orientation.

Recently the focus has been on designing MAVs able to perform more complex tasks such as camera motion for the film industry [5] or bridge inspection where huge resources (i.e. cranes and large man-power) are needed. The ultimate goal would be for a drone to be able to interact with its surrounding and apply forces to it, in order to perform maintenance where human can not access, or to do construction work in harsh environments.

To perform these tasks, an MAV has to be able to hover in any orientation, and for a proper disturbance rejection while manipulating, the drone must have the potential to accelerate instantaneously in any direction. Hence, the MAV has to be able to decouple its orientation and position control. A drone that has a decoupled force and torque control is referred to as an omni-directional MAV.

The problem of overcoming the under-actuation and achieving omni-directionality is not straightforward. To address this problem, several MAV's designs have been presented over the past years. For instance, in [5], Voliro (name of the vehicle) is based on a traditional hexa-copter (see Figure 1.1). The omni-directionality issue is addressed by adding motors to rotate the thrusters around their arm axis, thus allowing a control not only of the thrust produced by each propeller, but also on the orientation of this thrust. This tilting rotor system allows for decoupling the control of position and orientation. By using a control scheme based on an allocation technique, the system provides very good maneuverability.

Figure 1.1: Voliro [5].

In [4], the Omnicopter (name of the vehicle) is described. It is a drone with eight fixed rotors and the drone shape is the result of a mathematical optimization (see Figure 1.2) which maximizes the vehicle's agility with the constraint that its dynamical properties would be as independent as possible on the vehicle orientation.

Figure 1.2: Ominicopter [4].

In [6], the MAV is a fixed propeller multi-rotor. The design is also the result of an optimization, which tends to minimize the body volume, maximize the control-lability of the system, avoid eventual aerodynamic interactions and maximizes the efficiency in performing manipulation tasks.

The idea presented in [7] is a mix between Voliro and the Omnicopter because the design is a modified hexarotor (see Figure 1.3), which achieves full control over the vehicle's position and orientation using manually tiltable propellers. The paper also provides a methodology to optimize the fixed tilting angles depending on the desired trajectory.

Figure 1.3: Hexacopter with manually tiltable rotors [7].

Yet, nothing in the literature is found about the morphology optimization of MAVs with tilting rotors. Hence the need for the present research project. The aim of this thesis is thus to design a morphology optimization problem for a tilt rotor MAV that accounts for the different factors that influence the morphology such as:

- Omni-directionality
- Flight efficiency
- Controlability

To reach this goal the chosen approach is to build an optimization engine that solves the optimization problem and returns different MAV designs. The most interesting designs are then tested in simulation.

In this report the methods used to build the optimization engine and to simulate the results are discussed. Afterwards, the results returned by the engine are shown and compared based on different criteria. Finally, the results gathered during the simulation phase are also covered.

Method

As explained in Chapter 1 the aim of this work is to find a drone design that is the result of an optimization problem, which tends to maximize the MAV's omnidirectionality, flight efficiency and controllability. To do so, it is important to first state what are the parameters that define the design of an MAV. These parameters are defined as:

- β (angles formed by the arms with the horizontal plane see Figure 2.1)
- θ (angles formed by the arms in the horizontal plane see Figure 2.1)
- L (arm length)
- n (number of propeller)

Figure 2.1: Quadcopter to illustrate the parameters that define the morphology of an MAV $(n=4, \beta=[30,30,30,30]$ [°], $\theta=[22,22,22,22]$ [°], and L=0.4 [m]).

To solve the problem, an optimization engine is developed with MATLAB[®]. This tool returns the aforementioned parameters along with other information on the corresponding MAV design. The interesting drone designs outputted by the tool are then simulated on Gazebo[®] and the control of the different models is achieved using a Robotic Operating System² (ROS) node.

This chapter first covers the theory needed to obtain a generalize mathematical model for a n-rotor MAV with an arbitrary morphology. Then, the optimization problem is defined. Afterwards, the optimization tool is described. In the end, the theoretical background needed to perform the simulations is covered.

¹An open source robot simulation software [8].

²An open source collection of software that help developers to create robot applications [9].

2.1 Modelisation of MAVs

In the following part, a dynamical model for a general design of MAV is presented. Such a modelisation is much needed to mathematiacally optimize the morphology of a MAV. This model is inspired from the models presented in [5] and [10].

Assumptions

In this model, the first assumption is that the MAV is composed of n+1 rigid bodies: one for each propeller unit P_i and one for the body B. Then, it is considered that the thrust is produced by irreversible fixed-pitch motor-propeller actuators. Finally, only the aerodynamic forces and torques that are responsible for the MAV actuation are considered, all the second order effects and disturbances are neglected and also the airflow interactions between the different rotors are neglected.

Initial Definitions

In order to understand correctly the dynamical model, a few definitions are much needed. First, let us define $\mathcal{F}_W: \{O_W; X_W, Y_W, Z_W\}$ as the world fixed inertial frame and $\mathcal{F}_B: \{O_B, X_B, Y_B, Z_B\}$ as a moving frame attached to the MAV. Also, $\mathcal{F}_{P_i}: \{O_{P_i}; X_{P_i}, Y_{P_i}, Z_{P_i}\}, i=1...n$ is the frame of the i-th propeller. The propeller rotate around the axis Z_{P_i} , and thus the thrust T_i is produced along this axis. The tilt movement of the rotors is a simple rotation around X_{P_i} . Now let WR_B be the orientation of the body frame with respect to the world frame and ${}^BR_{P_i}$ be the orientation of the i-th propeller with respect to the body frame. From there, it straightforward with the help of Figure 2.2 that

$${}^{B}R_{P_{i}} = R_{Z}\left((i-1)\frac{2\pi}{n}\right)R_{Z}(\theta_{i})R_{Y}(\beta_{i})R_{X}(\alpha_{i}), \ i = 1...n.$$
 (2.1)

Equivalently, let

$${}^{B}O_{P_{i}} = R_{Z}\left((i-1)\frac{2\pi}{n}\right)R_{Z}(\theta_{i})R_{Y}(\beta_{i})\begin{bmatrix}L\\0\\0\end{bmatrix}, i = 1...n$$
 (2.2)

be the origin of the i-th propeller frame \mathcal{F}_{P_i} . In Equation (2.1) and (2.2), $(i-1)\frac{2\pi}{n}$ is the angle that the i-th arm would form with axis X_B if the arms of the drone are evenly distributed in the horizontal plane, θ_i is the angle that i-th arm forms in the horizontal plane with respect to its evenly distributed position (see Figure 2.1), β_i is the angle that the i-th arm forms with the horizontal plane (see Figure 2.1), α_i is the tilting angles of the i-th propeller about the X_{P_i} axis, L is the arm length and n is the number of propellers.

Equations of motion

Using Newton-Euler formalism, the general equations of motion of the MAV are

$$\begin{cases}
\dot{\omega}_{B} = I_{B}^{-1} \sum_{i=1}^{n} \left({}^{B}R_{P_{i}} \tau_{ext,i} + \tau_{Bi} \right), \\
\ddot{p} = \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix} \frac{1}{m} {}^{W}R_{B} \sum_{i=1}^{n} T_{i}.
\end{cases}$$
(2.3)

Where

$$\tau_{Bi} = {}^{B}O_{P_i} \times {}^{B}R_{P_i}T_{P,i}, \qquad (2.4)$$

Figure 2.2: Representation of the i-th tilting arm [10].

$$\tau_{ext,i} = \begin{bmatrix} 0 & 0 & -c_i \kappa_m w_i^2 \end{bmatrix}^T \tag{2.5}$$

 $\begin{cases} c_i = 1, & \text{if } i \text{ is odd } (cw \ rotation \ to \ produce + thrust}) \\ c_i = -1 & \text{if } i \text{ is even } (ccw \ rotation \ to \ produce + thrust}) \end{cases}$

and

$$T_i = {}^B R_{P_i} T_{P_i}, \quad T_{P_i} = \begin{bmatrix} 0 & 0 & \kappa_f w_i^2 \end{bmatrix}^T.$$
 (2.6)

In Equation (2.3) g is the gravity constant, in Equation (2.5), κ_m is the propeller drag coefficient, in Equation (2.6) κ_f is the propeller thrust coefficient and in Equation (2.5) and (2.6) w_i is the i-th propeller rotation speed.

The force and torque that the drone produce in body frame \mathcal{F}_B are

$$\begin{bmatrix} M_B \\ F_B \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n \begin{pmatrix} {}^B R_{P_i} \tau_{ext,i} + \tau_{Bi} \end{pmatrix} \\ \sum_{i=1}^n T_i \end{pmatrix}, \tag{2.7}$$

that can be rewritten

$$\begin{bmatrix} M_B \\ F_B \end{bmatrix} = A(\alpha)W. \tag{2.8}$$

Where $W = [w_1^2, w_2^2, ..., w_n^2]$ and

$$A(\alpha) \ = \begin{bmatrix} (-\kappa_f Ls(\beta_1)c(\theta_1) + c_1\kappa_m s(\theta_1))s(\alpha_1) + (\kappa_f Ls(\theta_1) + c_1\kappa_m c(\theta_1)s(\beta_1))c(\alpha_1) & \dots \\ (-\kappa_f Ls(\beta_1)s(\theta_1) - c_1\kappa_m c(\theta_1))s(\alpha_1) + (-\kappa_f Lc(\theta_1) + c_1\kappa_m s(\beta_1)s(\theta_1))c(\alpha_1) & \dots \\ (-L\kappa_f c(\beta_1))s(\alpha_1) + (c_1\kappa_m c(\beta_1))c(\alpha_1) & \dots \\ s(\theta_1)\kappa_f s(\alpha_1) + s(\beta_1)c(\theta_1)\kappa_f c(\alpha_1) & \dots \\ -c(\theta_1)\kappa_f s(\alpha_1) + s(\beta_1)s(\theta_1)\kappa_f c(\alpha_1) & \dots \\ c(\beta_1)\kappa_f c(\alpha_1) & \dots \end{bmatrix}$$

is the $6 \times n$ allocation matrix and $c(\cdot)$ and $s(\cdot)$ represent the cosine and sine operator respectively.

Static allocation

The optimization engine has to compute the maximal reachable force and torque in a large number of direction. So to compute that in a reasonable times in [5] an approach to transform the non-linear allocation matrix into a static allocation matrix, which renders the problem of inverse kinematic linear. To do so, the system in Equation (2.8) is rewritten as

$$\begin{bmatrix} M_B \\ F_B \end{bmatrix} = A_{static} F_{dec} \,. \tag{2.9}$$

Where F_{dec} is the decomposed force vector defined as follow

$$F_{dec} = \begin{pmatrix} F_{h,1} \\ F_{v,1} \\ \dots \\ F_{h,n} \\ F_{v,n} \end{pmatrix}, \qquad (2.10)$$

with $F_{v,1} = \kappa_f cos(\alpha_i)$ the vertical force produced by the i-th propeller and $F_{h,1} = \kappa_f sin(\alpha_i)$ the horizontal force produced by the i-th propeller. And the static matrix defined as

$$A_{static} \; = \; \begin{bmatrix} -\kappa_f L s(\beta_1) c(\theta_1) + c_1 \kappa_m s(\theta_1) & +\kappa_f L s(\theta_1) + c_1 \kappa_m c(\theta_1) s(\beta_1) & \dots & \dots \\ -\kappa_f L s(\beta_1) s(\theta_1) - c_1 \kappa_m c(\theta_1) & -\kappa_f L c(\theta_1) + c_1 \kappa_m s(\beta_1) s(\theta_1) & \dots & \dots \\ -L \kappa_f c(\beta_1) & c_1 \kappa_m c(\beta_1) & \dots & \dots \\ s(\theta_1) \kappa_f & s(\beta_1) c(\theta_1) \kappa_f & \dots & \dots \\ -c(\theta_1) \kappa_f & s(\beta_1) s(\theta_1) \kappa_f & \dots & \dots \\ 0 & c(\beta_1) \kappa_f & \dots & \dots \end{bmatrix} \; ,$$

a $6 \times 2n$ matrix that is invariant for a drone design. Using the Moore-Penrose pseudo inverse we can easily get the inverse kinematic as follow

$$F_{dec} = A_{static}^{\dagger} \begin{bmatrix} M_{des} \\ F_{des} \end{bmatrix} . \tag{2.11}$$

Which returns the decomposed force vector for a desired force and torque. Finding the tilting angles and propellers rotation speed required to attain this desired force and torque is then pretty straightforward

$$\begin{cases} w_i^2 = \frac{1}{\kappa_f} \sqrt{F_{v,i}^2 + F_{h,i}^2} \\ \alpha_i = atan2(F_{h,i}, F_{v,i}) \end{cases}$$
 (2.12)

2.2 Optimization problem

The following section focuses on the optimization problem that the engine has to solve in order to obtain a MAV design that is optimal. The criteria that make this design optimal are also discussed.

Problem statement

The optimization problem is stated as follow

$$\underset{x}{\operatorname{arg max}} \quad f(x) \quad \text{subject to} \begin{cases} c(x) \leq 0 \\ ceq(x) = 0 \\ A \cdot x \leq 0 \\ Aeq \cdot x = 0 \\ lb \leq x \leq ub \,, \end{cases} \tag{2.13}$$

where f(x) is the cost function, x the argument vector, c(x) the non-linear inequality constraint vector, ceq(x) the non-linear equality constraint vector, A the linear inequality constraint matrix, Aeq the linear equality constraint matrix, lb the lower bound vector of the arguments (x) and ub the upper bound vector.

Once the optimization problem solved, the output is the optimal argument vector x^* that maximizes the cost function f(x). In our case the argument vector x is composed of the MAV's morphology parameters (β, θ, L, n) and the cost functions are the subject of next section.

Cost Functions

As stated in Chapter 1 the aim of the project is to obtain a multi-rotor design that is omni-directional. Therefore, it is the heart of the problem to define meaningful cost functions for the optimization problem, which when solved would return parameters for an omni-directional drone. In this section, the few cost functions that capture at best the omni-directionality are described.

The first, and also one of the more meaningful cost function consists in maximizing the minimal attainable force and the minimal attainable torque that the MAV can produce in any direction. It makes sense because the omni-directionality is defined as the drone capacity to accelerate instantaneously in every directions. In order to do that the MAV has to have high minimal attainable force and torque, hence this cost function. It turns out this cost function is also computationally quite lighter than the other. Indeed, as when the multi-rotor apply a force or torque in the direction parallel to one of its arm, the propeller on this arm is perfectly unable to produce any force or torque in this direction. This is due to the fact that no matter what the tilting angle for this propeller is, the thrust it produces is parallel to the arm direction (see Figure 2.2). Therefore, the minimal attainable forces and torques for the drone are in the direction where it looses a propeller, i.e. the arm directions. So instead of optimizing the force and torque in a large number of direction, it is enough for this cost function to optimize the force and torque in n directions.

The second cost function consist in maximizing the minimal attainable force and the minimal attainable torque that the MAV can produce in any direction and minimizing the MAV's inertia. It is the same as the first cost function, but the last term is added in order to have an easier drone to control and thus put a criterion on the controllability.

The next cost function is designed to maximize the volume of the reachable force and torque space. The force and torque spaces are two polyhedron formed by the drone's attainable forces and torques in every directions (see Figure 2.4a and Figure 2.4b). The idea behind this cost function is to have the biggest task space for the drone and hence increase the MAV's ability to navigate in any orientation and to any position. This cost function is computationally heavy, because in order to have precise polyhedrons for the different spaces, the forces and torques has to be computed in 7490 directions.

Another cost function that maximize the force, the torque and the hover efficiency in all directions is developed. The aim of this cost function is to maximize the agility of the MAV for good disturbance rejection. Moreover, the term that maximizes the hover efficiency is designed to give the drone design the ability to perform manipulation efficiently in any orientation. Solving the optimization problem for this cost function can also be computationally heavy depending on how many directions you choose to represent "all directions".

The last cost function maximizes the force and the torque in one defined direction d. It is mostly designed to test the optimization engine as it is computationally light and given specific directions the optimal design is pretty straightforward. For instance, if you maximize the force in the Z direction for a 4-rotor MAV, the expected optimal solution would be a traditional quad-copter. The presented cost functions use the multi-rotor model described in Section 2.1 to compute the different forces and torques in the different directions.

Solver

To solve the problem in Equation (2.13), the tool uses MATLAB[®] function fmincon, with different algorithm. The one showing the quickest convergence and the best results being the sequential quadratic programming (sqp) algorithm.

2.3 Optimization tool

As explained before, an optimization engine or tool has been developed to perform the design optimization of the drone and return information on the resulting design. In this section the tool is showed and its working principle is explained.

User Guide

To use the tool, the graphical user interface (GUI) represented in Figure 2.3 first has to be opened. Then, the parameters to optimize have to be selected. The choice is between optimizing just β angles, or β angles with other selected parameters (see Figure 2.3). Afterwards, the design parameters that are not selected for the optimization have to be specified. For instance, if the arm length is not to optimize, the user has to specify an arm length. To solve the optimization the sqp algorithm needs an initial solution. Hence, an initial solution is expected from the user. Then the cost function has to be chosen from the list (see Figure 2.3). Finally, in order to obtain a result the user only needs to push the "start optimization" button.

Figure 2.3: MAV morphology optimization tool GUI.

Outcome

Apart from the optimal design parameters (β , θ , L and n), the optimization tool returns a MATLAB® plot containing the attainable force space, the attainable torque space, the hover efficiency in every orientation and a schematic of the MAV's design (see Figure 2.4). It is important to note that the force and torque space and the hover efficiency diagram are all represented in the drone's body frame.

Figure 2.4: Example of what is outputted by the optimization engine.

Along with the design parameters and the figure the optimization engine also returns information on the drone capabilities called metrics. These metrics are listed in Table 2.1.

Table 2.1: List of the metrics returned by the optimization tool.

Metrics:	Minimal	Maximal	Mean	MAD	Task space volume	Task space surface
Force:	[N]	[N]	[N]	[N]	$[N^3]$	$[N^2]$
Torque:	[Nm]	[Nm]	[Nm]	[Nm]	$[N^3m^3]$	$[N^2m^2]$
Hover efficiency:	[%]	[%]	[%]	[%]	-	-

Limitations

Due to the non-linearity of the cost functions and the fact that the algorithms available in MATLAB® only guarantee convergence to local optima, the solution returned by the engine is strongly dependent to the chosen initial solution. And also the more parameters wants to be optimized the more the algorithms get stuck in local optima.

2.4 Simulation Approach

As said before, a few of the optimal designs are tested in simulation on Gazebo®. In order to be simulated on Gazebo® a robot model, which is represented in a Unified Robot Description Format³ (URDF) file, is first launched on Gazebo[®]. In the mean time, a ROS node to control the robot's joints is also launched and the simulation can then properly start (see Figure 2.5). So as to simulate the chosen optimal MAV designs, they first have to be modeled in URDF files. Once that done, the ROS node responsible for the control of the MAV, that is referred to as the control node, has to be built. The access to Voliro's control node was luckily granted during this work [5]. Therefore, to properly control the different design of MAV obtained, only a few changes are needed on Voliro's control node. First, the controller node has to be generalized for a n-rotor drone (opposed to a 6-rotor drone for Voliro). Then, the static allocation matrix (which is how Voliro transforms a desired angular and linear acceleration into desired motor speeds and rotor tilting angles) has to be generalized to a n-rotor MAV with an arbitrary arm orientation. Finally, the arbitrary arm orientation can cause a center of mass (CoM) offset. An additional angular acceleration thus has to be added to the desired angular acceleration, in order to compensate for the CoM offset. This angular acceleration is calculated as follow

$$\dot{\omega}_{CoM} = -I_B^{-1}(R_{CoM} \times m\ddot{p}_{des}), \qquad (2.14)$$

where R_{CoM} is the CoM position vector and \ddot{p}_{des} the desired linear acceleration. Once all these changes done, the MAV model can be controlled in Gazebo[®] as it can be seen in Figure 2.5).

Figure 2.5: MAV design successfully launched and controlled in Gazebo®.

 $^{^3}$ Format based on XML used to represent robot models in ROS

Optimization Results

This chapter focuses on showing and analyzing the most interesting MAV designs outputted by the optimization tool. A short digression on platonic solid is first needed to properly analyse the results. The optimal designs with an even number of propellers are then described. Afterwards, the designs with an odd number of propellers are shown. A comparison of the different optimal drone design is then proposed. Finally, a few results of optimizations performed with the number of propeller as an argument are presented.

3.1 Platonic Solids

Platonic solids are five regular and convex polyhedrons named after the ancient Greek philosopher Plato to honor his memory [11]. The five platonic solids are:

- The tetrahedron composed of four faces and four vertices (see Figure 3.1a).
- The octahedron composed of eight faces and six vertices (see Figure 3.1b).
- The cube composed of six faces and eight vertices (see Figure 3.1c).
- The icosahedron composed of twenty faces and twelve vertices.
- The dodecahedron composed of twelve faces and twenty vertices.

There is a angle that can be found at least in the first three platonic solids. This angle is found between the horizontal plane and the vertices of the polyhedron (see Figure 3.1). To ensure simplicity, in the rest of this work this angle will be referred to as the platonic solids angle and β_{PS}).

Figure 3.1: The first three platonic solids ($\cos(\beta_{PS}) = \sqrt{\frac{2}{3}} => \beta_{PS} \simeq 35.26^{\circ}$).

3.2 Even Designs

- 3.2.1 Quad-copter
- 3.2.2 Hexa-copter
- 3.2.3 Octa-copter

3.3 Odd Designs

3.3.1 Tri-copter

Show tricopter.

3.3.2 Penta-copter

3.3.3 Hepta-copter

3.4 Comparison of Different Designs

3.5 Results when n is an Optimization Parameter

$$\begin{split} F_{min} &= 34.74, F_{max} = 42.55, M_{min} = 17.42, M_{max} = 21.34, H_{eff,min} = 81.65\%, H_{eff,max} = 100\% \\ F_{min} &= 26.6, F_{max} = 52.11, M_{min} = 15.1, M_{max} = 26.13, H_{eff,min} = 75\%, H_{eff,max} = 100\% \\ \text{Design 1: } F_{min} &= 23.18, F_{max} = 28.56, M_{min} = 11.61, M_{max} = 14.3, H_{eff,min} = 81.11\%, H_{eff,max} = 95.2\% \\ \text{Design 2: } F_{min} &= 23.22, F_{max} = 28.37, M_{min} = 11.65, M_{max} = 14.23, H_{eff,min} = 81.65\%, H_{eff,max} = 94.73\% \\ F_{min} &= 44.7, F_{max} = 58.8, M_{min} = 22.4, M_{max} = 29.5, H_{eff,min} = 81.78\%, H_{eff,max} = 96.65\% \\ F_{min} &= 46.46, F_{max} = 56.73, M_{min} = 23.3, M_{max} = 28.45, H_{eff,min} = 81.64\%, H_{eff,max} = 94.77\% \end{split}$$

Table 3.1: Comparison between the different number of propellers.

MAV Design	$F_{min}[N]$	$F_{max}[N]$	$F_{mean}[N]$	$M_{min}[Nm]$	$M_{max}[Nm]$	$M_{mean}[Nm]$	$H_{eff,mean}$ [%]
Tri-copter	17.17	21.21	17.95	8.61	10.64	9	85.46
Quad-copter	23.22	28.37	26.87	11.65	14.23	13.47	87.1
Penta-copter	28.95	35.46	29.4	14.52	17.78	14.74	85.35
Hexa-copter	34.74	42.55	39.52	17.42	21.34	19.82	88.9
Hepta-copter	39.96	49.44	47.2	20.04	24.8	23.66	91.1
Octa-copter	44.7	58.8	53.95	22.4	29.48	27.06	91.42

Simulation Results

Evaluate results in simulation.

- 4.1 Hexa-copter
- 4.2 Hepta-copter
- 4.3 Octa-copter

Conclusion

- 5.1 Summary/Achieved
- 5.2 Improvements
- 5.3 Further Developement

Bibliography

- [1] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, "Multipurpose UAV for search and rescue operations in mountain avalanche events," *Geometrics, Natural Hazards and Risk*, vol. 8, no. 1, pp. 18–33, Jan. 2017.
- [2] DJI Mavic Pro & Mavic Pro Platinum Every Creative Moment DJI. https://www.dji.com/mavic. Accessed: 2018-09-03.
- [3] Aura. https://aura-drone.com/us/. Accessed: 2010-09-30.
- [4] D. Brescianini and R. D'Andrea, "Design, modeling and control of an omnidirectional aerial vehicle," in 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 3261–3266.
- [5] M. Kamel, S. Verling, O. Elkhatib, C. Sprecher, P. Wulkop, Z. Taylor, R. Siegwart, and I. Gilitschenski, "Voliro: An Omnidirectional Hexacopter With Tiltable Rotors," arXiv:1801.04581 [cs], Jan. 2018, arXiv: 1801.04581.
- [6] A. Nikou, G. C. Gavridis, and K. J. Kyriakopoulos, "Mechanical design, modelling and control of a novel aerial manipulator," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 4698–4703.
- [7] S. Rajappa, M. Ryll, H. H. Bülthoff, and A. Franchi, "Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers," in 2015 IEEE International Conference on Robotics and Automation (ICRA), May 2015, pp. 4006–4013.
- [8] "Gazebo," http://wiki.ros.org/ROS/Tutorials, (Online: accessed September 3, 2018).
- [9] "ROS/Tutorials ROS Wiki," http://wiki.ros.org/ROS/Tutorials, (Online: accessed August 12, 2018).
- [10] M. Ryll, H. H. Bülthoff, and P. R. Giordano, "Modeling and control of a quadrotor UAV with tilting propellers," in 2012 IEEE International Conference on Robotics and Automation, May 2012, pp. 4606–4613.
- [11] "Solide de Platon," https://fr.wikipedia.org/w/index.php?title=Solide_de_Platon&oldid=150277971, Jul. 2018, (Online: accessed September 7, 2018).

Bibliography 18

Appendix A

UML: Activity Diagram