Multilevel Modeling

An Introduction

Roadmap

- Why MLM?
- Some technical features
- What are things to consider when you run an MLM?
- Running an MLM in R
- Resources

Many words for the same thing

- Multilevel Modeling (not Multilevel Marketing)
- Hierarchical Linear Modeling
- Mixed Effects Modeling

• . . .

MLM Distribution Structure

Why MLM?

MLM helps when assumptions of independence are violated

- Example:
 - Does spending more time with friends predict higher well-being?
 - 6 people in our study (terribly under-powered)
 - We ask them once every day for a week a) how much time they spent with their friends and b) how high they rate their well-being that day

Time spent with Friends

Time spent with Friends

Time spent with Friends

Between- and within-person effects matter

MLM beats RM-ANOVA

- Simultaneous estimation of within and between effects
- RM ANOVA uses listwise deletion
- Participants or items with more missing cases have weaker influences on parameter estimates (i.e., the parameter estimates are precision weighted), and extreme values are "shrunk" toward the mean
- Categorical and Continuous predictors possible in MLM
- Can be adapted to continuous and categorical outcomes (GLMER)
 - dependent variable is continuous and the independent variables are categorical in ANOVA

Technical Aspects

Maximum Likelihood

- No ordinary least squares for MLM
- Instead, we are using Maximum Likelihood Estimation

Pooling

- Grouping variable is treated as coming from a population. All groups are alike (because they are from the same population), but different in their own way.
- Because of this it is helpful to use information from other groups to help make predictions.
- MLM is running a regression for each group. We want to pool as this leads to better predictions as we are not overfitting our data!

Important Considerations

- Centering is very important for the interpretation of variables in MLM
- What does 0 mean?
- What do deviations from 0 mean? (important for within-person effects)

- Grand-mean centering
 - Similar to what we have been doing in regression (subtracting the overall mean from each value)

Participant	Happiness _{ji}	
Shelly	2	-1
Shelly	3	0
Messi	3	0
Messi	4	1

Grand Mean of Happiness = 3

- Group-mean centering (or Person-mean centering)
 - New! (subtracting the person (or group) mean from each value)

Participant	Happiness _{ji}	
Shelly	2	-0.5
Shelly	3	0.5
Messi	3	-0.5
Messi	4	0.5

Shelly Mean of Happiness = 2.5

Messi Mean of Happiness= 3.5

- Group-mean centering (or Person-mean centering)
 - New! (subtracting each value from the person (or group) mean)

Participant	Happiness _{ji}			
Shelly	2	-0.5		When Shelly feels5 less happy than she
Shelly	3	0.5		normally feels
Messi	3	-0.5		When Messi feels5 less happy than he
Messi	4	0.5		normally feels

Shelly Mean of Happiness = 2.5

Messi Mean of Happiness= 3.5

Power

PowerAnalysisIL Shiny App

Lafit, Ginette, Janne Adolf, Egon Dejonckheere, Inez Myin-Germeys, Wolfgang Viechtbauer, & Eva Ceulemans. (in press). Selection of the Number of Participants in Intensive Longitudinal Studies: A User-Friendly Shiny App and Tutorial for Performing Power Analysis in Multilevel Regression Models That Account for Temporal Dependencies. Advances in Methods and Practices in Psychological Science.

Preregistration

- Be explicit about different parts of your model (researcher degrees of freedom!)
 - Random effects included? Which ones?
 - What happens if the models do not converge?
 - How are you centering your variables?

Reporting Standards

- Subfield dependent
 - Focus on fixed effects (like for a regression)
 - Highlight random effects
 - Random effect correlations
 - Report model fit model comparisons

Running MLMs in R

Our data

```
fPID esm_happy interaction_pleasure
<dbl>
          <dbl>
                               <dbl>
 302
 302
 302
 302
 302
 302
 302
 302
 302
 302
with 11,801 more rows
```

60 times for each person

Centering - Getting Person Means

```
df<-data%>%group_by(fPID)%>%summarise(
  interaction_pleasure_pm=mean(interaction_pleasure,na.rm=T))
df$interaction_pleasure_pm_c<-df$interaction_pleasure_pm - mean(df$interaction_pleasure_pm,na.rm=T)</pre>
```

fPID	<pre>interaction_pleasure_pm</pre>	<pre>interaction_pleasure_pm_c</pre>
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
302	4.6	1.29
303	3.55	0.238
305	2.95	-0.359
306	3.55	0.238
308	3.18	-0.137
309	3.4	0.086 <u>6</u>
311	3.32	0.002 <u>39</u>
312	3.67	0.353
314	2.96	-0.357
315	2.98	-0.338

Centering - Getting Person-Mean-Centered Variables

fPID	esm_happy	interaction_pleasure	interaction_pleasure_pm	interaction_pleasure_pm_c
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
302	2	2	4.6	1.29
302	1	5	4.6	1.29
302	5	5	4.6	1.29
302	5	5	4.6	1.29
302	5	5	4.6	1.29
302	5	5	4.6	1.29
302	1	5	4.6	1.29
302	5	5	4.6	1.29
302	5	5	4.6	1.29
302	3	5	4.6	1.29

data\$interaction_pleasure_pmc<-data\$interaction_pleasure-data\$interaction_pleasure_pm

fPID	esm_happy	interaction_pleasure	interaction_pleasure_pm	interaction_pleasure_pm_c	interaction_pleasure_pmc
<dbl></dbl>		<db1></db1>	-dbl>	<db1></db1>	-dbl>
302	2	2	4.6	1.29	-2.6
302	1	5	4.6	1.29	0.400
302	5	5	4.6	1.29	0.400
302	5	5	4.6	1.29	0.400
302	5	5	4.6	1.29	0.400
302	5	5	4.6	1.29	0.400
302	1	5	4.6	1.29	0.400
302	5	5	4.6	1.29	0.400
302	5	5	4.6	1.29	0.400
302	3	5	4.6	1.29	0.400

Running the MLM with a Random Intercept

 $model.int < -lmer(esm_happy \sim 1 + interaction_pleasure_pm_c + interaction_pleasure_pmc + (1|fPID), data=data)$

Running the MLM with a Random Intercept

```
Fixed effects:
                          Estimate
                                    Std. Error
                                                      df t value
                                                                          Pr(>|t|)
(Intercept)
                          4.013923
                                      0.058997
                                               278.828284
                                                           68.04 < 0.000000000000000000
interaction_pleasure_pm_c
                          1.133289
                                      0.079146
                                               interaction_pleasure_pmc
                          0.368370
                                      0.009438 11513.711258
                                                           39.03 < 0.00000000000000000 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
```

Running the MLM with a Random Intercept

```
Random effects:
Groups Name Variance Std Dev.
fPID (Intercept) 0.9621 0.9809
Residual 1.2532 1.1195
Number of obs: 11811, groups: fPID, 290
```

An individual whose Intercept is one SD above the Mean would be almost 1 unit higher in happiness

Predictor Variable x

 $model.int < -lmer(esm_happy \sim 1 + interaction_pleasure_pm_c + interaction_pleasure_pmc + (1|fPID), data=data)$

model.intslope<-lmer(esm_happy~1+interaction_pleasure_pm_c+interaction_pleasure_pmc+(1+interaction_pleasure_pmc|fPID),data=data)

An individual whose Intercept is one SD above the Mean would be almost 1 unit higher in happiness

AND

An individual whose Slope is one SD above the Mean would have a slope of ~.56


```
Random effects:
Groups Name Variance Std.Dev. Corr
fPID (Intercept) 0.96441 0.9820
interaction_pleasure_pmc 0.03901 0.1975 -0.25
Residual 1.20304 1.0968
Number of obs: 11811, groups: fPID, 290
```

People who have higher mean levels of happiness when they experience average pleasure during a social interaction show a lower association between interaction pleasure and happiness

What do the individual estimates look like for these models?

	(Intercept)	<pre>interaction_pleasure_pm_c</pre>	<pre>interaction_pleasure_pmc</pre>
302	2.456996	1.133289	0.3683698
303	3.280112	1.133289	0.3683698
305	3.398064	1.133289	0.3683698
306	3.419967	1.133289	0.3683698
308	4.992923	1.133289	0.3683698
309	4.038525	1.133289	0.3683698

	(Intercept)	interaction_pleasure_pm_c	interaction_pleasure_pmc
30	2 2.429388	1.152062	0.4824074059
30	3.271820	1.152062	0.4472887873
30	3.396268	1.152062	0.4853060932
30	3.411305	1.152062	0.5035916966
308	4.990474	1.152062	0.5041272775
309	4.037405	1.152062	0.3390767027

Should we include a random slope?

• Let's compare the models we just ran and see which one provides more information!

• Yes! Including the random slope results in a better model (significant Chi-Square test, lower BIC)

Convergence Issues

- Estimation issues can occur when we are trying the model to do a lot with little information (e.g., too many random slopes, too little variance)
- Adjusting the optimizer can help

Other ways of running MLMs in R

- Glmer
 - For non-continuous outcomes (e.g., binary outcomes)
- NIme
 - Precursor to Imer, can do some things Imer cannot do like modifying covariance structure
- Brms (Bayesian MLM)
 - Can predict variance parameter and run multivariate models more easily

Example: MLM in Experimental Settings

Aggregated data set

PID	modality	stim	RT	PID	modality	RT
301	Audio-only	gown	1024	301	Audio-only	1027
301	Audio-only	might	838	301	Audiovisual	1002
301	Audio-only	fern	1060	302	Audio-only	1047
301	Audio-only	vane	882	302	Audiovisual	1043
301	Audio-only	pup	971	303	Audio-only	883
301	Audio-only	rise	1064	303	Audiovisual	938

Note: PID = participant identification number; stim = stimulus; RT = response time.

Example: MLM in Experimental Settings

```
rt_full.mod <- lmer(RT ~ 1 + modality + (1 + modality|PID) +
(1 + modality|stim), data = rt_data)</pre>
```

Response time predicted by modality (audiovisual, audio only). Random intercepts and slopes added for both participants and stimulus

Example: MLM in Experimental Settings

```
Random effects:
Groups
         Name
                  Variance
                            Std. Dev.
                                      Corr
                    303.9
stim (Intercept)
                               17.43
      modality 216.6
                              14.72
                                       0.16
                             168.98
      (Intercept) 28552.7
PID
      modality 7709.8
                               87.81
                                      -0.17
                             255.46
Residual
                  65258.8
```

- SD for by- item random intercepts (in boldface in the output above) indicates that response times for particular items varied around the average intercept of 1,044 ms by about 17 ms.
- Similarly, the standard deviation for by-participant random slopes (in boldface in the output above) indicates that participants' estimated slopes varied around the average slope of 83 ms by about 88 ms.

Resources

- Violet Brown's amazing paper for an application to experimental settings
 - Brown, V. A. (2021). An introduction to linear mixed-effects modeling in R. Advances in Methods and Practices in Psychological Science, 4(1)
- Take classes
 - Hierarchical Linear Modeling (Mike Strube)
 - Applied Longitudinal Data Analysis (Josh Jackson)
 - APA Advanced Training Institute Longitudinal Modeling
 - APA Methods lectures
 - CenterStat (classes for free sometimes)

Resources

Books

- Longitudinal Analysis: Modeling within person fluctuation and change Lesa Hoffman
- Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling -Tom Snijders and Roel Bosker