

빅데이터 군집 분석

2

K-평균 군집 분석

K- 평균 소개

실습: 숫자 데이터 분석

- 1) 개요
- ◆ 최적의 군집화
- 군집 중앙은 해당 군집에 속하는 모든 점의 산술 평균이다.
- 각 점은 다른 군집의 중앙보다 자신이 속한 군집의 중앙에 더 가깝다.

1) 개요

◆ 표준 패키지 불러오기

%matplotlib inline import matplotlib.pyplot as plt import seaborn as sns; sns.set() import numpy as np

from sklearn.datasets.samples_generator import make_blobs X, y_true = make_blobs(n_samples=300, centers=4,cluster_std=0.60,random_state=0) plt.scatter(X[:, 0], X[:, 1], s=50);

from sklearn.datasets.samples_generator import make_blobs X, y_true = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:, 0], X[:, 1], s=50);

- 2) 절차
- ◆ 모델 클래스 불러오기
- from sklearn.cluster import KMeans

2) 절차

- ◆ 모델 클래스 불러오기
- from sklearn.cluster import KMeans

2) 절차

- ◆ 모델 인스턴스 생성 및 초모수 설정
- kmeans = KMeans(n_clusters=4)

사물년((m))와함에라는 박네이터

2) 절차

- ◆ 모델 인스턴스 생성 및 초모수 설정
- kmeans = KMeans(n_clusters=4)

중심점의 개수를 설정하는 초모수

K-평균 군집 분석은 군집 중심의 수를 변경하면서 최적의 군집을 만드는 군집 중심의 수를 찾는다.

- 2) 절차
- ◆ 모델 적합
- kmeans.fit(X)

- ◆ 모델 적용
- y_kmeans = kmeans.predict(X)

- ◆ 군집 중심 시각화
- centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);

2) 절차

- ◆ 군집 중심 시각화
- centers = kmeans cluster_centers_
 plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);

2) 절차

- ◆ 데이터 시각화
- plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis');

3) 원리

- ◆ 기댓값-최대화(E-M)
- 관측되지 않는 잠재 변수에 의존하는 확률 모델에서 최대가능도를 갖는 모수의 추정값을 찾는 반복적인 알고리즘

3) 원리

◆ 기댓값-최대화(E-M)

1 군집 중심을 임의로 추측한다.

군집 중심의 위치가 수렴할 때까지 다음을 반복한다.

- 기댓값 단계: 각 점을 가장 가까운 군집 중심에 할당한다.

- 최대화 단계: 할당된 데이터들의 산술평균을 통해 새로운 군집 중심을 찾는다.

3) 원리

◆ 기댓값-최대화(E-M)

1 군집 중심을 임의로 추측한다.

군집 중심의 위치가 수렴할 때까지 다음을 반복한다.

- 기댓값 단계 : 각 점을 가장 가까운 군집 중심에 할당한다.

- 최대화 단계: 할당된 데이터들의 산술평균을 통해 새로운 군집 중심을 찾는다.

3) 원리

◆ 기댓값-최대화(E-M)

1 군집 중심을 임의로 추측한다.

군집 중심의 위치가 수렴할 때까지 다음을 반복한다.

- 기댓값 단계: 각 점을 가장 가까운 군집 중심에 할당한다.

- 최대화 단계 : 할당된 데이터들의 산술평균을 통해 새로운 군집 중심을 찾는다.

사물년네(m)와함에라는 바레이터

1. K-평균 알고리즘

3) 원리

◆ 기댓값-최대화(E-M)

1 군집 중심을 임의로 추측한다.

군집 중심의 위치가 수렴할 때까지 다음을 반복한다.

- 기댓값 단계: 각 점을 가장 가까운 군집 중심에 할당한다.

- 최대화 단계 : 할당된 데이터들의 산술평균을 통해 새로운 군집 중심을 찾는다.

3) 원리

◆ 기댓값-최대화(E-M)

1 군집 중심을 임의로 추측한다.

군집 중심의 위치가 수렴할 때까지 다음을 반복한다.

- 기댓값 단계: 각 점을 가장 가까운 군집 중심에 할당한다.

- 최대화 단계 : 할당된 데이터들의 산술평균을 통해 새로운 군집 중심을 찾는다.

- ◆ 숫자 데이터 불러오기
- from sklearn.datasets import load_digits digits = load_digits()

▲ 대구가톨릭대학교 从是时以(IT)外部州沿片中州的村

- 1) 숫자 데이터 분석
- ◆ 숫자 데이터 시각화
- for i in range(3): for j in range(5): ax[i][j].axis('off') ax[i][j].imshow(digits.data[i*4+j].reshape(8, 8), cmap='binary',);

01234 45678 89012

1) 숫자 데이터 분석

- ◆ 숫자 데이터 시각화
- for i in range(3):
 for j in range(5):

ax[i][j].axis('off')

ax[i][j].imshow(digits.data[i*4+j].reshape(8, 8), cmap='binary',);

1) 숫자 데이터 분석

- ◆ K-평균 군집 분석
- from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=10, random_state=0) clusters = kmeans.fit_predict(digits.data) kmeans.cluster_centers_.shape

1) 숫자 데이터 분석

- ◆ 군집 분석 시각화
- fig, ax = plt.subplots(2, 5, figsize=(8, 3))
 centers = kmeans.cluster_centers_.reshape(10, 8, 8)
 for axi, center in zip(ax.flat, centers):

 axi.axis('off')
 axi.imshow(center, cmap=plt.cm.binary)

이번 시간에는

2

K-평균 군집 분석

K- 평균 소개

실습: 숫자 데이터 분석

이번 시간에는

실습 참고 자료

- · Colab 노트북 파일
- Scikit-Learn 공식 사이트 자료
 - https://scikit-learn.org/stable/user_guide.html

다음 시간에는

3

심화:가우스 혼합 모델

가우스 혼합 모델 등장 배경

가우스 혼합 모델 실습

