

J Component Project Review 3

Smart Walking System for the Elderly and Blind

ITE1014 Human
Computer
Interaction

Fall Semester 2020 - 2021

By

Alekya Kowta 18BIT0123 Manya Smriti 18BIT0127

Faculty-In-Charge Prof. Ramya G

Index

Sno	Topic Name	Page No.
1.	Introduction	3
2.	Objective	3
3.	Scope	3
4.	Motivation	3
5.	Provided Suggestions	4
6.	Problem Statement	4
7.	Literature Survey	5
8.	Requirements	31
9.	Input Output Device Comparison	32
10.	Task Analysis	40
11.	Features	44
12.	Prototype	47
13.	Story Boarding	51
14.	Personas	55
15.	Cognitive Walkthrough	55
16.	Poster	59
17.	Navigation Map	59
18.	References	64

Title: Smart Walking System for the Elderly and Blind

Introduction:

We propose a smart walking stick system especially made keeping the elderly in mind. With age comes diminishing memory and many more problems that seek support for both balance and navigation- cognitive and motor functions are diminished. Science and technology always make human life easier. Our application is on the go solution. A smart walking system which helps them navigate through life! Additional perks are that it can monitor heart rate and send out alerts to the nearest hospital whilst also alarming the people around for additional help. It also helps them cross the roads in a better and much safer way. Reminders for taking medicines in time/ general reminders can also be provided. We understand that the elderly might even have a very weak sense of vision. Keeping that in mind, we will be constructing a microcontroller based automated software that can corroborate a blind person to detect obstacles in front of him immediately. We implement this using ad hoc networks.

Objective:

- To help the elderly/visually impaired in navigating to the right path by directing routes to them.
- To help user by alerting if it comes across any obstacles in path.
- To help users with reminders to carry out their plan.
- Alerts if the user's heart rate changes or user feels uncomfortable.

Scope:

The scope of this project is the elderly and the visually impaired. With integration of features like ad hoc networks, sensors and claw vibrators and providing services like reminders and heart monitoring system integrated with a GPS ensuring safety of the elders.

Motivation:

- The existing smart walking system design concentrates on only the elderly and fails to consider the blinded / weak-vision of the elderly.
- It concentrates on only sending/ navigating the elderly in the right path by providing routes to them.

- It doesn't provide perks like giving them reminders or alerting them etc.
- It doesn't alert the people around if something goes wrong with the person (e.g. if elderly fells down) using the stick.

Provided suggestions:

- Elderly could have very weak vision, and this is not considered in the current design. We could incorporate OCR (Optical character recognition) techniques that helps the elderly. This could signal them and still help the same way even if they cannot see.
- It will be able to suggest how to cross the roads in a safe manner.
- It can also analyze the heart rate of the person and if it seems to be very high, then there may be chances of discomfort so the system will suggest a different route. E.g., there might be a route where there are a lot of stairs or a high slope, in this case the person's heart rate would be high. When this is the case, the stick could suggest an alternative, comfortable route.
- The elderly can only remember so little, they probably forget to take their medicines. The system can send daily reminders to them so that everything happens on time.
- If the person using the stick, unfortunately collapses or say, something happens to them, the stick should be able to sense it and alert the surroundings by an alarm.
- Our main aim is to make this stick as cost effective and reliable as possible, keeping in mind that it should be light weighted and portable.

Problem Statement:

Vision impairment affects approximately 18% of the world population and impacts directly on people's quality and style of life. The cane is a self-help device used by visually impaired people to improve their functional abilities.

The very same cane integrated with multiple functionalities like reminders, obstacle detection, optimal GPS navigation would prove to be very fruitful.

Literature Survey:

Paper 1:

Paper	Author	Advantage	Technique	Disadvanta
Title		G	-	ge
		1) to avoid leg	1)	1) Ultrasonic
Smart	Srinivas	weakness, balance	Combination	sensor and
Walking	an,	loss and improper	of ultrasonic	force sensor
Stick	Srinidhi	navigation of	sensor and	is needed to
	Rajesh,	indoors and	force sensor	be placed in
	M	outdoors.	placed in the	the tip of
			tip of shoe	shoe. Smart
		2) Robot cane used	which will	stick is not
		to monitor	help to	sufficient on
		improvised	measure the	its own to
		navigation of	distance	detect if the
		outdoors and	between stick	person fell.
		indoor by	and leg.	
		detecting obstacle		2) Alert
		at different heights	2) Alert	
		on flat road.	during falling	_
				not increase
		3) consider real-	pressure will	•
		time movements of		has fell for
		person walking or		longer time.
		their different style	1	
		of walking by	sensor will	
		counting each step	sense that	
		they are heading to	pressure and	
		and how much they	force will be	
		travelled.	exerted to the	
			shoe.	

Paper 2:

Paper	Author	Advantage	Technique	Disadvanta
Title			-	ge
_	Lachtar, Abdelfatt eh Val, Thierry Kachouri	1) The proposed design involves a cane cased transmitter node, enabling to send data related to the position and the state of the elderly to a base station. 2) Successful M-	1) Implementatio n of sending data related to the position and the state of the elderly the LoRa technology 2) The	ge 1) Isn't helpful on its own in case of emergency. 2) No alert
		Health system to help elderly to devise a special elderly tracking and monitoring system.	transport	

Paper	Author	Advantage	Technique	Disadvanta
Title		_	_	ge
	Jadhav,	1) Insists on	1) Deals with	1) Image
Designs of	Atharva	camera-based	technique	converted
an	Sarkar,	image processing	similar as	into text
Effective	Joydeep	as an effective	Optical	should be
Smart	Patil,	solution to visual	character	further read
Walking	Roopali	disability	recognition or	by the device
Stick for	Pardesh		OCR in which	in case if the
Visually	i, Jay	2) Allowing texture	images can be	user
Disabled		recognition, face	converted into	is blind.
		recognition	text.	
		(elderly may find it		2) In this
		hard to recognize		paper,
		face)		elderly
		& text recognition		disabilities
		to support visual		and visually
		disability.		impaired are
		·		mainly dealt
				in regard to
				vision only.

Paper 4:

Paper	Author	Advantage	Technique	Disadvanta
Title				ge
Smart	Boppan	1) Walking stick	1) Using a	1) The
Stick for	a,	can monitor	low-cost Wi-	proposed
Elderly	Lakshm	various health	Fi chip with	stick does
	i	parameters and	TCP/IP stack	not ensure
	Jain,	informs the nearby		security of
	Vishal	primary health	2) Battery for	elderly/visua
	Kishore	center and	remainder is	lly impaired
	, Ravi	caretaker of any	concealed	if in case

abnormalities	inside the	he fell in the
	stick to reduce	way- no
2) It can help elder	the risk of	automatic
persons to reach	damage to the	invoked
home safely if they	circuit	alert.
lost themselves		
when go out alone		2) No heart
3) The proposed		rate
stick can also be		monitoring
used to control		and
home appliances		redirection
and to remind the		to elderly in
user for taking the		case of
medicine on time		emergency.

Paper 5:

Paper	Author	Advantage	Technique	Disadvanta
Title				ge
Smart	Divya,	1) Helps blind	1) Ultrasonic	1) No
Assistance	S.	people to detect	blind walking	variation in
Navigatio	Raj,	obstacles.	stick with the	buzzer
nal System	Shubha		use of	sound in
for	m	2) Sound	Arduino.	case the user
Visually	Praveen	generated by the	The device	collapses for
Impaired	Shai,	Buzzer if they hit	measures the	a longer
Individual	M.	obstacles.	distance	time(It
S	Jawaha		between	should get
	r	3) Recognize the	objects and	louder after
	Akash,	fallen stick if	Smart	3-4 min).
	A.	elderly collapses in	Walking Stick	
	Nisha,	between.	by Ultrasonic	2) Cannot
	V.		sensor.	assist in
				knowing the
			2) GSM and	surrounding
			GPS module	to the user.
			is used	

provide alert message and location during the time of emergency.	
3) RF transmitter and receiver which is utilized to recognize the fallen stick from the client if the stick is far from the visually impaired individual.	

Paper 6:

Paper	Author	Advantage	Technique	Disadvanta
Title				ge
Smart	Srinivas	1) Helps in	1) Uses Force	1) No
walking	an, S.	detecting and	sensor and	assistance
stick	Rajesh,	alarming in case	Pressure	provided to
	M.	the elderly	Sensor to	nearest
		collapses	sense user grip	hospital in
		_	on the stick.	case of
		2) Detecting		emergency
		obstacles in path	2) Uses	
		_	Ultrasonic	2) No GPS
			sensor for	monitoring.
			detecting	
			obstacles in	

	path.	

Paper 7:

Paper	Autho	Advantage	Technique	Disadvantage
Title	r			
Design	Chang	1) An intelligent	1) walking	1) No alert
and	, Wan-	assistive system	stick can	system
Implemen	Jung	based on intelligent	vibrate to	
tation of	Chen,	walking stick and	guide	2) No
an	Liang-	wearable smart	visually	assistance
Intelligent	Bi	glasses for aerial	impaired	provided to
Assistive	Chen,	obstacle	people to	nearest hospital
System for	Ming-	avoidance.	avoid aerial	in case of
Visually	Che		obstacle	emergency.
Impaired	Su,	2) It is also	collision	
People for	Jian-	effective in fall	accidents.	
Aerial	Ping	detection.		
Obstacle	Sie,		2) It can	
Avoidanc	Cheng		detect aerial	
e and Fall	-You		obstacles	
Detection.	Yang,		within 3	
	Ching-		meters, and	
	Hsiang		the average	
			accuracy of	
			fall detection	
			up to 98.3%	

Paper 8:

Paper	Author	Advantage	Technique	Disadvanta
Title			_	ge
Navigation	Varalak	1) Navigational	1) Ultrasonic	1) No
System for	shmi, I.	tool that will detect	sensor is used	reminder if
the	Kumara	manhole and	as	in case user
Visually	krishna	staircase in an	navigational	needs one.
Challenge	n, S.	environment.	tool	
d Using				2) No alert to
Internet of		2) It detect the	2) Detect the	surrounding
Things		obstacles and	obstacles	if user
		provide the	through GSM	collapses.
		alternate way to the	and also	
		visually impaired	calculates the	
		or elderly.	shortest	
			distant to the	
			destination for	
			their	
			convenience.	

Paper 9:

Paper	Author	Advantage	Technique	Disadvanta
Title				ge
	Obaid,	1) A light-weight	1) Ultrasound	1) No
Design and	Nada	stick	sensor that	image- text-
Testing of	M.		detects	sound
a Practical	Hamad,	2) Helps the users	barriers of	conversion
Smart	Ibrahim	locate places and	various	for
Walking	A.	move from one	shapes and	assistance.
Cane for	Madkha	place to another	types.	
the	ne, Ali	with the aid of a		2) No
Visually	M.	communication	2) The	reminder if

Impaired	Hamad,	system.	GPS/GSM	in case user
Impaned	· ·	system.		
	Yousif		technology	needs one.
	A.		that helps the	
	El-		users locate	
	Hassan,		places.	
	Fadi T.			
			3) Speech	
			recognition	
			technology	
			that facilitates	
			interactive	
			communicatio	
			n between the	
			user and the	
			cane.	

Paper 10:

Paper	Author	Advantage	Technique	Disadvantage
Title			_	
Smart	Ray,	1) Designed and	1) Device is	1) No alert system
Portable	Aritra	developed version	built on low	
Assisted	Ray,	of a portable, low	power	2) No assistance
Device for	Hena	powered	embedded	provided to nearest
Visually		instrument while	hardware and	hospital in case of
Impaired		user walk on road	software	emergency.
People		easier.	technologies,	
			sensors and	
		2) Device is a	sensing	
		miniaturized, non-	technologies	
		invasive and is able		
		to detect the	2)	
		obstruction in front	Combination	
		of a road	of pressure	
		in all the three	sensors and	

dimensions in space and also to detect the potholes or speed brakers on the road. 3) the speaker attached would respond with voice messages denoting the distance of obstruction in metres.	sensor embedding	
metres.		

Paper 11:

Paper Title	Author	Advantage	Technique	Disadvantage
Blind Mate:	Kairamk	1) GPS controlled	1) Wireless	1) No
A Friend to	onda,	walking stick with a		variation in
The Blind	Dheeraj	portable wheel	between the	buzzer sound
	Dhanvee	module to facilitate	stick's	in case the
	Chandan	usage in both internal	microcontroller	user collapses
	a	and external	Raspberry pi 3b	for a longer
	Kodimel	environments.	and	time (It should
	a, Sree		wheel module's	get louder
	Kuchula	2) User-friendly	microcontroller	after 3-4 min).
	kanti,	speed and direction	Arduino Mega	
	Harish	control system	through	2) Cannot
			nrf24L01	assist in

	3) Obstacle detection	transceiver	knowing the
		module	surrounding to
		for portable	the user.
		wheel module.	
		2) Navigation is achieved by means of GPS and compass meter modules.	
		3) Obstacle detection is achieved by ultrasound and camera sensors.	

Paper 12:

Paper	Author	Advantage	Technique	Disadvantage
Title			_	_
An	Chen,	1) Obstacle	1) GPS to	1) No reminder if in
Implement	Liang-	detection	detect if	case user needs one.
ation of an	Bi		visually	
Intelligent	Su,	2)Visually	impaired/blin	2) No image- text-
Assistance	Jian-	impaired/blind	d person fall	sound conversion for
System for	Ping	person is fall down,	down.	assistance.
Visually	Chen,	its information will		
Impaired/	Ming-	be recorded and	2) On-line	
Blind	Che	uploaded to the on-	information	
People	Chang,	line information	platform to	
	Wan-	platform.	record and	
	Jung		upload	
	Yang,		information	
	Ching-		about the user.	

Hsiang Sie, Cheng- You		

Paper 13:

Paper	Author	Advantage	Technique	Disadvantage
Title				
Smart	Al-	1) By using	1) Open CV	1) No assistance
Technolog	Muqbali,	artificial intelligent	and Python is	provided to
ies for	Fatma	and image	used for	nearest hospital
Visually	Al-	processing, this	programming	in case of
Impaired:	Tourshi,	smart device is able	and	emergency.
Assisting	Noura	to detect faces,	implementation	
and	Al-	colors and different		2) No variation
conquerin	Kiyumi,	objects.		in buzzer sound
g infirmity	Khuloud		2) The project	in case the user
of blind	Hajmohide	2) Visually	prototype	collapses for a
people	en, Faizal	impaired person is	investigates the	longer time.
using AI		notified through	algorithms	
Technolog		either a sound alert	which are used	
ies		or vibration.	for detecting	
			the objects.	

Paper 14:

Paper	Author	Advantage	Technique	Disadvantage
Title				

Microcont	Ikbal,	1) Acts as a good	1) Microcontr	1) No alert system
roller	M.A.	navigator for	oller:	·
based	Rahma	elderly/visually	Wireless	2) No assistance
smart	n, F.	impaired	communicatio	provided to nearest
walking	Hasnat		n between the	hospital in case of
stick for	Kabir,	2) Detection of	stick's	emergency.
visually	M.	obstacles	microcontroll	
impaired			er for portable	
people			wheel	
			module.	
			2) Ultrasonic	
			sensor is used	
			for	
			navigation.	
			3) IR sensor	
			for detection	
			of obstacles.	

Paper 15:

Paper	Author	Advantage	Technique	Disadvantage
Title				
Smart	Mohd	1) It communicates	1) Ultrasonic	1) Does not calculates
Cane:	Helmy	with the users	sensor is used	the shortest distant to
Assistive	Abd	through vibration	for navigation.	the destination for
Cane for	Wahab	and voice alert.		their convenience.
Visually-	Amirul		2)	
impaired	A. Talib	2) It detects objects	Microcontroll	2) No variation in
People	Herdawat	or obstacles in front	er used has the	buzzer sound in case
	ie Abdul	of users and feeds	ability to store	the user collapses for
	Kadir	warning back.	and run	a longer time.
	Ayob		programs.	
	Johari			

Paper 16:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S		_	ges
		Detects objects in	Ultrasonic	Haar
Smart	Sathya,	front of the person	sensor is used	Features
Walking	Santhos	with the help of a	to measure the	have to be
Stick for	hini,	camera	obstacles	determined
the Blind	Betty,		distance from	manually.
	Sabhari	Measures the	the user.	So, there's a
	nath,	distance between		certain limit
	Ahanaa	the objects and	Sensors are	as to the type
		signals the blind	placed in 5	of things it
		person with the	locations to	can detect.
		help of	cover	
		headphones.	maximum	Degree of
			bandwidth.	freedom is
				less.
			Image	However,
			manipulation	the more you
			of images	train, the
			from camera	better the
			is done	results are.
			through	
			Raspberry Pi.	
			It is processed	
			using Haar	
			Classifier.	

Paper 17:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S			ges
		Earphones that are	The system	More safety
Path	Badri	used by the blind	uses IoT based	measures of
Guidance	Naraya	people so that they	smart	execution
System for	n	are made aware of	electronic aid.	should be
Blind	Mohapa	the direction		taken.
People	tra,	they're going in	Uses	
_	R.K.	through GPS.	ultrasonic	Uses
	Mohapa	_	sensors along	ultrasonic
	tra, P.	Alerts the blind	with a voltage	sensors-
	Panda	people when there	divider circuit.	which are
		are obstacles		useful for
		around and keeps	IoT based	short range
		them safe.	GPS Trackers	distances
			are inserted	only.
			and buzzer	
			sounds are	
			provided.	

Paper 18:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S			ges
_		Movement of the blind is controlled and monitored. Very fast and efficient. Safety protection of the elderly and blind people can be provided, moreover, the special events, for instance, blind rally and disabled people networks	The system uses wireless sensors incorporating ad hoc networks. Vehicular ad hoc network adapted from mobile ad hoc network is	ges Ad hoc networks cannot disable SSID. Some WIFI enabled technology, like android,
	Yupapi	and disabled		1 1

Paper 19:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S	_	_	ges
An IOT Security Based Electronic Aid for Visually Impaired detection with Navigation Assistance System	R.Aiysh wariya Devi, U.Indu	Notify the impaired through voice commands. Active location can be shared to the care taker. Panic Switch is also integrated.		Infrared sensors have limited range. They can be affected by

Paper 20:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S	_	_	ges
Cane with Electronic Wet Dirt Identifier for the Visually Impaired.	Andreia Insabral de, Marcos Antonio Ferreira Junior, Iandara Schetter t Silva, Maria Lucio Ivo.	Better storage for canes. Self-helping cane. Protects user from harmful bacteria deriving from the dirt on the streets.		must be perfect for it to detect a

Paper 21:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S		_	ges
Evolution of Electronic Aid for Navigation	Afroz Sultana Pathan, Athar Mustafa , Imran Khazi, Chaitan ya Krishna Jambot kar	depend on others. Artificial vision by	with ultrasonic range finder circuit, for hurdle detection. H	with vibration. Cost effectiveness compromise s

Paper 22:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S		_	ges
Design of a				
Cheap	Almalki	Mountable and	GPS Module	Information
Mountable	,	cheap means for a	for navigation.	regarding
Device for	Ahmed	smart walking	_	barriers is
Walking	&	stick.	IoT	provided
Cane to	Alzahra		Microcontroll	with
Help Blind	ni,	Direction of	ers for	vibration.
People	Abdulla	obstacle is	vibration.	
_	tif &	informed with a		Durability
	Alkhoz	vibration.	\	and accuracy
	aee,			must be kept
	Ahmed			in mind.
	&			
	Alsham			Cost
	rani,			effectiveness
	Abdulla			compromise
	h.			S
				performance.

Paper 23:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S			ges
Title Low-Cost Portable Heart Rate Monitorin g Based on Photopleth ysmograph y and	Tatiya Padang Tunggal , Abdul Latif, and	and then make	decision using a decision tree depending on	Feasibility and cost must be kept in mind.
Decision Tree	15 wante	Portable and simple device design is provided.	Algorithm and method for doing the same has been provided.	be very

Paper 24:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S		_	ges
Portable				
Heart Rate	Hasmah	Designed as a	Uses pulse	Remotely
Measurem	Mansor,	remote health	sensor for the	monitored at
ent for	Siti	monitoring system.	pulse	the doctor's
Remote	Sarah		detection.	computer.
Health	Meska	Real-time data is		
Monitorin	m,	observed by	A	
g System	Nasiha	doctors via the	microcontroll	Isn't very
	Sakinah	internet.	er- Arduino	feasible.
	Zamery		with ethernet	
	and Nur		shield and a	
	Quraisy		wireless	
	ia		communicatio	
	Aqilah		n device.	
	Mohd			
	Rusli,			
	Rini			
	Akmeli			
	awati			

Paper 25:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S			ges
Heart beat	Hamidr			
rate	eza	Designed for	Heart rate	Not portable.
monitoring	Shirzad	measuring heart	detector with	Is carried out
using	far,	rate in a non-	IR.	with a
optical	Mahsa	invasive way.		machine.
sensors	Sadat		The IR is	
	Ghazias	Measures it in 15-	transmitted to	Could find
	gar,	20 seconds.	the fingertip	ways to
	Zeinab		and then	make it
	Piri,		reflects a light	portable so
	Mahtab		on a	as to
	Khanah		photodiode.	integrate it
	madi		This is	with a
			converted to a	walking
			signal which	system.
			is then used	
			for measuring	
			heart rate.	

Paper 26:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S	_	_	ges
_	Shalini Singh,	Designed for providing support for the elderly. It lets the user sense the location of obstacle without the waggling problem.	Sensors are mounted on top of each other to help navigate outdoors and	Feasibility is limited. Should be cost

Paper 27:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S		-	ges
An	Nadia			
Intelligent	Nowshi	Designed for	Uses Arduino	Arduino can
Walking	n, Sakib	providing support	Nano, HC SR-	be replaced
Stick for	Shadma	for the elderly and	04 ultrasonic	with
the	n, Saha	blind people.	sensor.	microcontrol
Visually-	Joy,			ler chip.
Impaired	Sarker	Informs the blind	Bluetooth	
People	Aninda,	person about the	Module, push	Can include
	Islam	obstacles in the	buttons and is	VLSI
	Md	path.	developed	technology
	Minhaj		with MIT App	to design the
	ul	A reliable, light	Inventor.	PCB Unit.
		weight, portable		
		walking stick.		High range
				ultrasonic
				sensor could
				be used.

Paper 28:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S	_	_	ges
Smart	Dada			
Walking	Emman	A smart white cane	Uses a	Moisture
Stick for	uel	for the elderly so	microcontroll	detection
Visually	Gbenga	that they can be	er.	sensors for
Impaired	, Arhyel	independent.		detection of
People	Ibrahim		Programmed	damp areas/
Using	Shani,	Easy to use. Puts	in C to detect	puddles can
Ultrasonic	Adebim	their needs first.	obstacles.	be added.
Sensors	pe			
and	Lateef	Detects obstacles	Low cost and	
Arduino	Adekun	within 2m distance	low weight	
	le	from the user.	system.	

Paper 29:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S	_	_	ges
Smart walking stick - an electronic approach to assist visually disabled persons	Mahmu d, Rana	Abates the difficulties of the blind by constructing a ping sonar sensor. Helps the elderly and the blind.		Heavy. Could make it lighter so that it is portable and

Paper 30:

Paper	Author	Advantages	Techniques	Disadvanta
Title	S			ges
Hardware	Saurabh			
Based	Mittal,	Helps the visually	Wireless	Limitations
Traffic	M.	impaired while	modules are	are
System for	Meenal	crossing roads.	used coupled	introduced
Visually	akshmi,		with	for the
Impaired	Kirti	Direct application	ultrasonic	system
Persons	Garg,	with good security	sensors and	integration,
with Voice	Amlan	and strident	voice	but can be
Guidance	Basu	usability.	synthesizers	minimized
			to alert the	easily.
			user.	

Requirements:

- 1. 3 AI Alloy telescoping tubes (Firm and solid)
- 2. Alert system equipped with sensors to sense and alert in case of emergency
- 3. OCR device to perceive surrounding and convert it according to user's convenience.
- 4. Led indicator- to help in navigation
- 5. Power supply to recharge the stick
- 6. Claw controller- for better grip
- 7. Proximity Sensor to sense the surrounding
- 8. GPS chip

Input and Output Devices Comparison:

- Secure 45CSET-1 Chair Exit Alarm: Default vs static settings
- ECG (electrocardiography) sensors Vs **PPG sensors**
- PPG sensor **or force sensor**
- Audio based device Vs Claw Vibrator and an audio input

Traditional:

Heart rate monitoring

Input:	Input device	Output Device	Output
electrical signals produced by heart activity	ECG (electrocardiography) sens ors measure the bio-potential generated by electrical signals that control the expansion and contraction of heart chambers	ECG recorder: first to take rest if high fluctuation in heart rate is observed. Alarm 140db safe sound personal alarm: The emergency alarm can	Pictures displaying
		make a loud sound to draw attention if in case user has fainted for more time.	

Secure 45CSET-1 Chair Exit Alarm: Low sound alarm just after sudden fluctuation in heart beat.
--

Our handy approach:

Input:	Input device	Output Device	Output
electrical	PPG sensors - a	LED	Vibration,
signals	light-based	It alerts the user first	Audio
derived	technology to sense	to take a rest if high	Sound,
from light	the rate of blood flow	fluctuation in heart	Light Alert
reflected	as controlled by the	rate is observed.	Indication
due to	heart's pumping		
changes in	action.	Alarm	
blood flow			
during	An analog front end	140db safe sound	
heart	(AFE) for detecting	personal alarm: The	
activity,	the reflective PPG	emergency alarm can	
Pulse rate	signal.	make a loud sound to	
	PPG signal which	draw attention if in	
	S	case user has fainted	
	of blood volume in	for more time.	
	the microvascular bed		
		Secure 45CSET-1	
		Chair Exit Alarm:	
		Low sound alarm just	

after sudden fluctuation in heart beat.	

Compare:

ECG	PPG
1) HR can be measured accurately	1) suitable for average or moving
	average measurements
2) ECG sensor features extremely	2) ECG sensor features
low power consumption	comparatively high-power
	consumption
3) No external microcontroller unit	3) requires external microcontroller
for HR calculation	unit for HR calculation
4) Not very handy to use for	4) Very handy to use for walking
walking stick	stick
5) Comparatively difficult	5) Easy Interpretation
Interpretation	

Reminder:

Input/output devices for setting new reminders:

Input:	Input device	Output Device	Output
Time	LCD screen	LED	Vibration,
setting		It alerts the user first	Audio
using	To set time (generally	to take a rest if high	Sound,
buttons or	16*2 LCD)	fluctuation in heart	Light Alert
touch		rate is observed.	Indication
screen	Buttons:		
(whenever	To choose to set	Alarm	
required)	reminder		
		Secure 45CSET-1	

	Chair Exit Alarm:	
	Low sound alarm just	
	after sudden	
	fluctuation in heart	
	beat.	

The default(static) setting:

Input:	Input device	Output Device	Output
No	LCD screen	LED	Vibration,
personal		It alerts the user first	Audio
time setting	To set time (generally	to take a rest if high	Sound,
on daily	16*2 LCD)	fluctuation in heart	Light Alert
basis		rate is observed.	Indication
needed.	Buttons:		
Alarm	To choose to set	Alarm	
triggered	reminder		
either by		Secure 45CSET-1	
default		Chair Exit Alarm:	
setting or		Low sound alarm just	
alarm set		after sudden	
for		fluctuation in heart	
medicine,		beat.	
walks just			
once			

Compare:

Static reminder (Default set)	Reminder of the day		
1) Helps to carry out activities that	1) Temporal reminder is not good		
user needs to do on daily basis.	option for static reminders		
2) Ensures user doesn't miss the	2) Temporal reminder is not good		
routine, beeps till reminder is not	option for static reminders		
switched off, with intervals.			
3) Static reminder is not good option	3) Very handy for temporal		
for temporal reminders.	reminders like buying fruit on the		
	way.		
4) Static reminder is not good option	4) Ensures user doesn't miss the		
for temporal reminders	target, beeps till reminder is not		
	switched off, with intervals.		

Person collapsing

When a person faints there is a drop in blood flow.

Traditional:

Input:	Input device	Output Device	Output
reflected due to changes in	the rate of blood flow as controlled by the heart's pumping	LED It alerts the user first to take a rest if high fluctuation in heart rate is observed. Alarm	Sound,
activity,	<u> </u>	personal alarm: The emergency alarm can make a loud sound to draw attention if in case user has fainted	

Secure 45CSET-1
Chair Exit Alarm:
Low sound alarm just
after sudden
fluctuation in heart
beat.

Our static approach:

Input:	Input device	Output Device	Output
Hand/Finger Touching	a force sensor (for sensing grasping and touching)	A servo motors Using position tracking, a voice coil actuator at the index fingertip generates vibrations for various textures synchronized with finger movement	Vibration, Audio Sound, Light Alert Indication
		LED It alerts the user first to take a rest if high fluctuation in heart rate is observed.	
		Secure 45CSET-1 Chair Exit Alarm: Low sound alarm just after sudden fluctuation in heart beat.	

Compare:

Claw Controller (Our approach	Heart rate monitor
for helping the fainting user)	
1) Suitable even after user heart rate	1) suitable for average or moving
is increased due to fast movements.	average measurements
2) Comparatively high-power	2) Sensor needs comparatively high-
consumption	power consumption
3) Lesser chance of false fainting	3) Higher chance of false fainting
alarms (due to lesser influence due	alarms
to other reasons of heart rate	
increase)	
4) Comparatively more obvious	4) Easy Interpretation
Interpretation with buzzers of high	
volume.	

Crossing Roads

Alert system for obstacles and crossing the road

Traditional:

Input:	Input device	Output Device	Output
			Audio as to
Input can be	Cameras can capture	Audio based device –	which route
the images	the images and it can	a headphone that	to choose
processed	be processed through	directs the user to the	
by a camera	Raspberry Pi and	right side.	
	directions can be		
	given		

Our static approach:

Input:	Input device	Output Device	Output
OCR devices, incorporating portability.	A camera detector, With a python	Claw Vibrator and an audio input which gives the user the right direction and	Vibration, Audio Sound,
	obstacles.		

Compare:

Claw Vibrator along with an	Just Audio Input
Audio Input	
Sends a vibration along with audio	Limited to certain barriers.
directions. This will help in crossing	
the barriers and limitations.	
Comparatively high-power	Sensor needs comparatively high-
consumption	power consumption
Lesser chance of missing an	Just audio, could be interrupted due
important change of direction	to signal problems.
Comparatively more obvious	Easy Interpretation
Interpretation with two way helping.	

Task Analysis:

The listing of actions a user carries out in performing a task by gaining knowledge and arranging ingredients to carry out necessary actions for accomplishment of goal.

Our aim is to determine:

- a) What they do
- b) What things they use
- c) What they must know

T.A. 1: Helping in finding way

- 1) Acquiring knowledge about how the device could help user in finding way.
- 2) Availability of enough time needed to understand the GPS signals on small screen on the walking stick and use of headphone.
- 3) User forgets which way to go/ want to take the shortest path.
- 4) Small screen attached to the claw controller shows an arrow in the direction user has to head.
- 5) Audio also helps directing the elder or visually impaired to take the right path.
- 6) User listens the audio on the headphone or see the screen (the option is restricted to the disability user is facing, some elder may having hearing issues while some may be suffering with vision problems).
- 7) User getting directed to the right direction.

TA2: Device helps out user if it come across puddle or obstacle

Lens-Style Cameras

- 1) Acquiring knowledge about how the device could help user if he comes across any obstacle in the way.
- 2) Availability of enough time needed to understand the GPS signals on small screen on the walking stick and use of headphone.

- 3) User comes across an obstacle.
- 4) Small camera at the bottom of walking stick captures pic.
- 5) The AI enabled data training model attached to stick analyzes if it hits an obstacle.
- 6) Small screen attached to the claw controller shows an arrow in the direction user has to head.
- 7) Audio also helps directing the elder or visually impaired to take the right path.
- 8) User listens the audio on the headphone or see the screen (the option is restricted to the disability user is facing, some elder may having hearing issues while some may be suffering with vision problems).
- 9) User getting directed to the right direction.

TA3: Heart rate monitoring during uneasy situations

1) Acquiring knowledge about how the device could help user in heart rate monitoring.

Ex: Knowing normal heart rate, LED, alarm.

2) Analyzing components and technology that would monitor heart rate.

Ex: PPG sensors - a light-based technology to sense the rate of blood flow as controlled by the heart's pumping action.

- 3) Availability of enough time needed to set feed some extra information for emergency conditions.
- 4) User feels uneasy while climbing on stair or due to other factors.
- 5) PPG sensors (a light-based technology to sense the rate of blood flow as controlled by the heart's pumping action) attached to the walking stick senses fluctuation in blood flow rate.
- 6) LED alerts the user first to take a rest if high fluctuation in heart rate is observed.

- 7) Secure 45CSET-1 Chair Exit Alarm attached to walking stick produces low sound alarm just after sudden fluctuation in heart beat.
- 8) 140db safe sound personal alarm emergency alarm makes a loud sound to draw attention if in case user's condition shows no improvement for 2-3 min.
- 9) People in surrounding helps out the elderly as per the situation demands.

TA 4: Reminders

1) Acquiring knowledge about how the device could help user in setting reminder.

Ex: Knowing about normal reminder an elderly or visually impaired would need, function of LCD screen, LED, alarm.

2) Analyzing components and technology that would be needed to add the reminder and how it would be invoked.

Ex: LCD screen

- 3) Availability of enough time needed to learn to set the reminder.
- 4) User wants to set a reminder for carrying out any task.
- 5) Button pressed by user for enabling reminder option.
- 6) User sets time 16*2 LCD screen (like a touch mobile).
- 7) LED alerts the user about the activation of reminder.
- 8) Secure 45CSET-1 Chair Exit Alarm attached to walking stick produces low sound alarm just after sudden fluctuation in heart beat.
- 9) User gets reminded about the task he wanted to carry out.

Task 1:

Scenario	Analysis
User lost way	1) Acquiring knowledge about how the
	device could help user in finding way.
	2) Availability of enough time needed to
	understand the GPS signals on small
	screen on the walking stick and use of
	headphone.
	3) User forgets which way to go/ want
	to take the shortest path.
	4) Small screen attached to the claw
	controller shows an arrow in the
	direction user has to head.
	5) Audio also helps directing the elder
	or visually impaired to take the right
	path.
	6) User listens the audio on the
	headphone or see the screen (the option
	is restricted to the disability user is
	facing, some elder may having hearing
	issues while some may be suffering with
	vision problems).
	7) User getting directed to the right
	direction.

TA2:

User comes across puddle or obstacle	1)Acquiring knowledge about how the device could help user if he comes across any obstacle in the way.
	2) Availability of enough time needed to understand the GPS signals on small screen on the walking stick and use of headphone.

- 3) User comes across an obstacle.
- 4) Small camera at the bottom of walking stick captures pic.
- 5) The AI enabled data training model attached to stick analyzes if it hits an obstacle.
- 6) Small screen attached to the claw controller shows an arrow in the direction user has to head.
- 7) Audio also helps directing the elder or visually impaired to take the right path.
- 8) User listens the audio on the headphone or see the screen (the option is restricted to the disability user is facing, some elder may having hearing issues while some may be suffering with vision problems).
- 9) User getting directed to the right direction.

Features:

- GPS system that shows optimal routes to the user.
- Integrating OCR devices to make it accessible to the visually impaired too.
- Obstacle and Bacteria detecting features
- Heart Rate Monitoring System integrated with the smart walking system.
- Reminder and Alert System.
- Adding audio signals and integrate them with a claw controller (vibrations) to assist the elderly and the blind.

- Heart Rate Detection + GPS integration. (Suggest optimal routes based on pulse rate)
- Have a panic switch to alert surrounding people if necessary.

Bob wants to go on the road

Walking stick detects obstacles

D Audio

O Vibrates

Bob is feeling uneasy (heart rates)

Bob forgot to take medicines Detects

pulse and

alerts

the care taker

and audio

for people around

to help.

UU

Daily reminders given

Prototype:

Control Unit
Sound of power

Sensors
Power supply

Proposed additions

Control system
Sound of power
Atert system
Sensors
Fower Supply

Controller

LED Indication

Power supply and
Circuit box

CS Scanned with CamScanner

CS Scanned with CamScanner

DCR device to detect
surroundings
control system
Sound of power
Alert system
Sensors
Power Supply

Claw

CS Scanned with CamScanne

Story-Boarding:

Sends an audion Signal to Change direction

CS Scanned with CamScanner

Bob wants to go on the road

Walking stick detects
obstades

e violates

CS Scanned with CamScanner

Bob is going on a stail case

The stick will doted heart best

and suggest a butter path.

Bob is feeling uneasy (heart rates)

and audio for people around to help.

Bob forgot to take medicines

Bob is feeling uneasy (heart rates)

Bob forgot to take medicines Detects
pulse an
alerts
the care to
and audio
for people as

for people around to help.

Daily reminders
given

CS Scanned with CamScanne

If Bob is confused which way to go, the GPS module enabled will give optimat route

Personas:

- 1. Persona is about customer experience and how to make them feel comfortable while using the product.
- 2. Our main aim with the following walking system is to make it hassle free for the elderly and the visually impaired.
- 3. Integrating vibrating claw controllers makes it easier for the blind and the elderly with vision problems.
- 4. Taking feedback and trying to make it comfortable for the customers and accommodating new changes will always be priority

PERSONA

Name: Mr. Benjamin

Age: 60 Work: Retired

Family: Married, 2 Children Location: Hyderabad Bio

Mr. Benjamin is retired and loves taking walks on a fine evening. His vision is a little weak. He likes being independent and doesn't want to bother his children for his work. He prefers doing things on his own and is capable of taking care of himself, but with a push. Goals:

To not be dependent. To have a navigator. Reminder scheduled.

Frustrations:

Wants to go on walks alone, without anyone worrying. Needs to be reminded to take his medicines.

Cognitive Walkthrough:

Let's walk through a series of tasks and ask a set of questions from user's point of view.

Step 1: Choosing user or persona.

The persona of our user $-\operatorname{Mr.}$ Benjamin.

• Knowing persona's ability and assistive technology they use.

The elderly or visually impaired people are incapable to go to the market on their own. Generally, they use a simple cane. It might help them in providing support in their way, but wait that's not a smart solution for them. They need someone to take care of them and our smart walking stick is all set to help them out.

• Knowing the effect of their disability/ability on their digital experience.

Many elders are not able to call out by dialing on emergency numbers like hospital's no when they meet with any accident due to weak memory problem or since it freaks them badly. Our smart walking stick is just a button away to any such help they desire.

• Knowing their motivation, emotion, risk tolerance and persistence.

We generally find elderly or impaired people involved in spiritual activities. Our product's user is highly inclined towards visiting temples, gardens or shop nearby. These emotional inclinations of our user can be fulfilled by using the static settings of navigation helper using our smart walking stick. The user is highly intolerant to any physical hurt and thus we incorporate an alert system.

Example of persona and the stigma of our stick user: Mr. Benjamin

Mr. Benjamin is an old man incapable to go to the market on his own.

Staying home all day gets tiring and very routine.

His family members will be worried if he loses his way in between or unfortunately meets any accident.

He even forgets taking her daily medicines.

He is getting stressed and weak day by day.

Step 2: Creating a list of tasks a user wants to do

- User want to visit places safely
- User wants to cross any obstacle that comes in the way safely.
- User is worried about what if a health issue like abnormal heart rate problem occurs in way, he wants a monitoring system.

• The targeted users of our project are challenged at physical levels may be due to age or some inborn issues, they want an assistance or kind of reminder to carry out their work.

Step 3: Creating of list of steps needed to complete each task with Scenario-Based Designing

User wants to visit places safely.

Scenario: User forgets which way to go/ want to take the shortest path.

Steps: No extra effort, just see the static settings already incorporated in stick.

Small screen attached to the claw controller shows an arrow in the direction user has to head.

Audio also helps directing the elder or visually impaired to take the right path.

User listens the audio on the headphone or see the screen.

User wants to cross any obstacle that comes in the way safely.

Scenario: User comes across an obstacle.

Small camera at the bottom of walking stick captures pic. The AI enabled data training model attached to stick analyzes if it hits an obstacle.

User is worried about what if a health issue like abnormal heart rate problem occurs in way, he wants a monitoring system.

Scenario: User feels uneasy while climbing on stair or due to other factors.

PPG sensors (a light-based technology to sense the rate of blood flow as controlled by the heart's pumping action) attached to the walking stick senses fluctuation in blood flow rate.

LED alerts the user first to take a rest if high fluctuation in heart rate is observed.

The targeted users of our project are challenged at physical levels may be due to age or some inborn issues, they want an assistance or kind of reminder to carry out their work.

Scenario: User wants to set a reminder for carrying out any task.

Steps:

Button pressed by user for enabling reminder option.

User sets time 16*2 LCD screen (like a touch mobile).

Step 4: Perform the complete walkthrough

If I am the user of smart walking stick and I see myself in user's foot i.e. I am assuming myself to be 65 years old lady.

In such condition, the only priority for me would be carrying out task comfortably and easily.

Ex: I want to set a reminder but I wouldn't want a complex task for that, a single button click would do.

I want short path, I am not so updated with technology at this age, a click or signal will do.

I want immediate help and since its urgency situation, I should be able to tackle the situation with single button click.

How to make it happen:

Participatory Design

Our approach throughout project:

Poster:

SMART WALKING SYSTEM

- Alerts People Around
- Monitors Heart Rate
- \$ Portable and cost efficient

The introduction, scope, problem statement, features, requirements (like OCR), features, personas and prototype are tried to be covered without making the poster clumsy. Each topic is already discussed in detail in document above.

Navigation Map:

Navigation maps represent how the user navigates through the system.

- 1. Help identify how the user might navigate
- 2. Help identify how the information should flow
- 3. Plan for site creation and linking

Ours is a simple and intuitive interface. Story boarding will help see how the users can utilize various features in the system.

A picturized approach to navigation map

Bob heading toward a puddle

Sends an audio
Signal to
Change
Orizection

CS Scanned with CamScanner

Bob wants to go on the road

Walking stick detects

CS Scanned with CamScanner

Bob wants to go on the road

Walking stick detects obstades

CS Scanned with CamScanner

Bob is feeling uneasy (heart rates)

UU

Detects and audio for people around to help.

Bob forgot to take medicines

Bob is feeling uneasy (heart rates

Bob forgot to take medicines Detects

pulse and

alerts

the care taker

and audio

for people around

to help.

Daily reminders
given

CS Scanned with CamScanne

9

1-

No Salara

If Bob is confused which way to go, the GPS module enabled will give optimal route

References:

- [1] Srinivasan, Srinidhi Rajesh, M. (2019) Smart Walking Stick. 3rd International Conference on. :576-579
- [2] Lachtar, Abdelfatteh Val, Thierry Kachouri, Abdennaceur(2020) IET Wireless Sensor Systems Vol. 10 Issue 2, p70-77, 8p
- [3] Jadhav, Atharva Sarkar, Joydeep Patil, Roopali Pardeshi, Jay (2019). Designs of an Effective Smart Walking Stick for Visually Disabled. 2019 IEEE International Conference on. :1-5 Feb, 2019
- [4] Boppana, Lakshmi Jain, Vishal Kishore, Ravi(2019). Smart Stick for Elderly. 2019 International Conference on.:259-266 Jul, 2019
- [5] Divya, S. Raj, Shubham Praveen Shai, M. Jawahar Akash, A. Nisha, V. (2019). Smart Assistance Navigational System for Visually Impaired Individuals. IEEE International Conference on.:1-5 Apr, 2019
- [6] Srinivasan, S. Rajesh, M. (2019) Smart walking stick. Conference on Trends in Electronics and Informatics, ICOEI 2019, April 2019, :576-579
- [7] Chang, Wan-Jung Chen, Liang-Bi Chen, Ming-Che Su, Jian-Ping Sie, Cheng-You Yang, Ching-Hsiang. (2020) Design and Implementation of an Intelligent Assistive System for Visually Impaired People for Aerial Obstacle Avoidance and Fall Detection. IEEE Sensors Journal; Sep, Vol. 20 Issue 17, p10199-10210, 12p
- [8] Varalakshmi, I. Kumarakrishnan, S. (2019) Navigation System for the Visually Challenged Using Internet of Things. International Conference on. :1-4 Mar, 2019

- [9] Obaid, Nada M. Hamad, Ibrahim A, Madkhane, Ali M. Hamad, Yousif A.El-Hassan, Fadi T. (2019) Design and Testing of a Practical Smart Walking Cane for the Visually Impaired. IEEE/ACS 16th International Conference on. :1-5 Nov, 2019
- [10] Ray, Aritra Ray, Hena(2019), Smart Portable Assisted Device for Visually Impaired People. International Conference on.:182-186 Feb, 2019
- [11] Kairamkonda, Dheeraj DhanveeChandana Kodimela, Sree Kuchulakanti, Harish, Blind Mate: A Friend to The Blind IEEE 16th. :1-4 Dec, 2019
- [12] Chen, Liang-Bi Su, Jian-Ping Chen, Ming-Che Chang, Wan-Jung Yang, Ching-Hsiang Sie, Cheng-You (2019). An Implementation of an Intelligent Assistance System for Visually Impaired/Blind People. IEEE International Conference on.:1-2 Jan, 2019
- [13] Al-Muqbali, Fatma, Al-Tourshi, Noura, Al-Kiyumi, Khuloud, Hajmohideen, Faizal(2020). Smart Technologies for Visually Impaired: Assisting and conquering infirmity of blind people using AI Technologies. 12th Annual Undergraduate Research Conference on. :1-4 Apr, 2020
- [14] Ikbal, M.A., Rahman, F., Hasnat Kabir, M.(2019) Microcontroller based smart walking stick for visually impaired people. iCEEiCT 25 January 2019, :255-259
- [15] Mohd Helmy Abd Wahab, Amirul A. Talib, Herdawatie Abdul Kadir Ayob Johari. Smart Cane: Assistive Cane for Visually-impaired People
- [16] Sathya, Santhoshini, Betty, Sabharinath, Ahanaa. "Smart Walking System for the Blind." Vol. 118 No. 20 2018, 4531-4536. ISSN-1314-3395

- [17] Badri Mohapratra, R.K. Mohapatra, P. Panda. "Path Guidance System for Blind People" 2019.
- [18] Khlaikhayai, Romteera & Pavaganun, Chavana & Mangalabruks, Benja & Yupapin, Preecha. (2018). An Intelligent Walking Stick for Elderly and Blind Safety Protection. Procedia Engineering. 8. 313-316. 10.1016/j.proeng.2011.03.058.
- [19] Devi, R.Aiyshwariya & Uthaman, Indumathi & Shanthanam, Radha Rammohan & Keerthana, N & Shobana, s. (2020). An IOT Security Based Electronic Aid for Visually Impaired detection with Navigation Assistance System. MATTER: International Journal of Science and Technology. vol 29. 2991-2996.
- [20] Fernando, Luiz & Lomba, Delboni & Godoy, Josivaldo & Melo, Aislan & Orué, Alline & Cardoso, Andréia & Da, Camila & Mazzeti, Silva & Araújo, Débora & Silva, Iandara & Oliveira, Marcelo & Ferreira Júnior, Marcos & Lígia, Maria & Macedo, Rodrigues & Ivo, Maria & Schiavinato, Marina & Brunharo, Massei & Bastos, Paulo. (2019). CANE WITH ELECTRONIC WET DIRT IDENTIFIER FOR THE VISUALLY IMPAIRED.
- [21] Sultana, Afroz & Mustafa, Athar & Khazi, Imran & Jambotkar, Chaitanya. (2019). Evolution of Electronic Aid for Navigation. International Journal of Trend in Scientific Research and Development. Volume-3. 10.31142/ijtsrd21345.
- [22] Almalki, Ahmed & Alzahrani, Abdullatif & Alkhozaee, Ahmed & Alshamrani, Abdullah. (2020). Design of a Cheap Mountable Device for Walking Cane to Help Blind People.

[23] Tatiya Padang Tunggal, Abdul Latif, and Iswanto. "Low-Cost Portable Heart Rate Monitoring Based on Photoplethysmography and Decision Tree." AIP Conference Proceedings 1755, 090004 (2018); https://doi.org/10.1063/1.4958522 Published Online: 21 July 2018

[24] Hasmah Mansor, Siti Sarah Meskam, Nasiha Sakinah Zamery and Nur Quraisyia Aqilah Mohd Rusli, Rini Akmeliawati. "Portable Heart Rate Measurement for Remote Health Monitoring System" (2019). International Islamic University Malaysia (IIUM) Ministry of Higher Education under the Research Acculturation Grant Scheme no. RAGS 12-019-0019.

[25] Hamidreza Shirzadfar, Mahsa Sadat Ghaziasgar, Zeinab Piri, Mahtab Khanahmadi. "Heart beat rate monitoring using optical sensors." Volume 4 Issue 2 – 2018.

[26] Shalini Singh, Balwinder Singh. "Intelligent Walking Stick for Elderly and Blind People." International Journal of Engineering Research & Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 IJERTV9IS030043. Vol. 9 Issue 03, March-2020

[27] Nadia Nowshin, Sakib Shadman, Saha Joy, Sarker Aninda, Islam Md Minhajul. "An Intelligent Walking Stick for the Visually-Impaired People" Vol-13, no 11 2018. https://doi.org/10.3991/ijoe.v13i11.7565

[28] Dada Emmanuel Gbenga, Arhyel Ibrahim Shani, Adebimpe Lateef Adekunle. "Smart Walking Stick for Visually Impaired People Using Ultrasonic Sensors and Arduino" (2018) ISSN: 2319-8613. Vol 9 No 5 DOI:10.21817/ijet/2017/v9i5/170905302

[29] Mahmud, Mohammad Hazzaz & Saha, R & Islam, Sayemul. (2018). Smart walking stick-an electronic approach to assist visually disabled persons. International Journal of Scientific and Engineering Research.

[30] Mittal, Saurabh & Meenalakshmi, M & Garg, Kirti & Basu, Amlan. (2017). Hardware Based Traffic System for Visually Impaired Persons with Voice Guidance. 10.13140/RG.2.2.17418.98242.