Introduction to Statistics: Problems

Nicholas Wardle

April 2022

1 Kolmogorov axioms

Show that the definitions of *frequentist* and *Bayesian* probabilities given in the lectures satisfy the three Kolmogorov axioms. I don't expect any rigorous proofs here!

2 No correlation does not mean independence

In the lectures, we said that two random variables which are independent will have a zero correlation coefficient.

- 1. Show that two continuous random variables X and Y, with $(X,Y) \sim f(X,Y)$ which are independent will have a 0 correlation coefficient.
- 2. Let X be a continuous random variable symmetrically distributed around 0 with a density function f(X). Let $Y = X^2$. Show that despite the fact that Y and X are clearly dependent, their correlation coefficient is 0.

3 Cauchy distribution

In the lectures, we showed how the sum of two Gaussian distributed random variables is itself Gaussian distributed. Suppose now that $X \sim \phi(X;0,1)$ and $Y \sim \phi(Y;0,1)$ are independent random variables. Show that the distribution of $Z = \frac{X}{Y}$ is Cauchy, i.e that $p(Z) = \frac{1}{\pi(1+Z^2)}$.

Hint: You should start by deriving the marginal distribution formula for the ratio of two independent random variables. Careful that the case Y=0 will cause a problem, so split the marginal distribution into two cases, one for Y>0 and one for Y<0. The sum of these marginal distributions will be the total distribution.

4 Normal approximation to a Poisson

Show that the Poisson probability density distribution $P(k) = \frac{\lambda^k}{k!} e^{-\lambda}$ converges (in distribution) to a normal probability density distribution as $\lambda \to \infty$. What are the mean and variance of the normal distribution that it converges to?

Hint: Start by considering a "standardized" Poisson random variable $K = \frac{k - \lambda}{\sqrt{\lambda}}$.