Binarne drzewo przeszukiwań z łączem do rodzica

+ algorytm równoważący DSW

Spis treści

1.	Używanie biblioteki	1
	Klasa Node	
	Klasa Btree	
	Jak działa biblioteka	
	Clasa Node	
	Klasa Btree	1
3.	Bibliografia	2

1. Używanie biblioteki

Klasa Node

• Konstruktor inicjowany wartością przechowywaną

Klasa Btree

Klasa przechowuje wskaźnik do korzenia drzewa w zmiennej top.

- Konstruktor opcjonalnie inicjowany elementem klasy Node
- btree_print_indented funkcja rysująca drzewo na ekranie
- btree_insert wstawia element klasy Node i zwraca nowy korzeń
- btree_search zwraca węzeł lub None zawierający element podany jako argument
- btree delete usuwa z drzewa element klasy Node podany jako argument
- btree_DSW równoważy drzewo

2. Jak działa biblioteka

Clasa Node

- data dane
- left wskaźnik do lewego dziecka
- right wskaźnik do prawego dziecka
- parent wskaźnik do rodzica

Klasa Btree

- btree_print_indented funkcja rysująca drzewo na ekranie
- btree_test_print_indented funkcja wypisująca elementy w specjalnej kolejności do testów
- bst_insert wstawia element i zwraca nowy korzeń

Funkcja rekurencyjnie wyszukuje pierwsze wolne miejsce aby wstawić nowy element zgodnie z zasadą po prawej stronie drzewa większe elementy. Jeśli wstawiany element jest duplikatem funkcja go on ignorowany.

• btree_search – zwraca węzeł lub None zawierający element podany jako argument

Funkcja rekurencyjnie poszukuje węzła który przechowuje dane podane jako argument.

• btree_delete – usuwa z drzewa element klasy Node podany jako argument

Podczas usuwania funkcja rozważa trzy przypadki:

- Węzeł nie ma dzieci. Węzeł możemy bez problemu usunąć.
- Węzeł ma jedno dziecko. Wtedy podnosimy dziecko do poziomu usuwanego węzła.
- Węzeł ma dwoje dzieci. Tutaj musimy wykonać operację podnoszenia następników odpowiedniego syna.
 - _btree_transplant

Funkcja wstawia jedno poddrzewo w miejsce drugiego.

o _btree_find_min

Funkcja zwraca element klasy Node przechowujący najmniejszą wartość. W tym celu porusza się po drzewie aż do liścia w lewą stronę.

DSW – równoważy drzewo

Funkcja pierw uruchamia metodę createSpine() a następnie CreateWeightedTree.

Spine_height – zwraca wysokość "Kręgosłupa"

Funkcja zakłada że podane drzewo ma w swojej strukturze tylko prawych dzieci. Liczy wszystkie węzły i zwraca wynik.

right_rotation – rotacja drzewa w prawo

Funkcja wykonuje na drzewie rotację w prawo przepinając odpowiednio wskaźniki do rodzica oraz prawego i lewego dziecka.

o createSpine – tworzy "Kręgosłup" czyli zmienia drzewo w listę

Funkcja z drzewa tworzy drzewo w którym węzły mają tylko prawych potomków.

o CreateWeightedTree – tworzy idealnie wyważone drzewo z listy

Funkcja wykorzystując obroty w prawo z drzewa w formie "kręgosłupa" tworzy idealnie wyważone drzewo.

3. Bibliografia

- Drzewo binarne: http://users.uj.edu.pl/~ufkapano/algorytmy/lekcja09/btree1.html
- Alogrytm DSW: https://pl.wikipedia.org/wiki/Algorytm DSW