Bayesian nonparametric models for bipartite graphs François Caron

Andrea Teruzzi

September 5, 2022

Table of Contents

- Bipartite Networks
- 2 Statistical model
- Update of hyperparameters
- 4 Power-law properties and real-world examples

Bipartite Networks

Definition

A **bipartite graph** is a graph g = (V, E), where vertices V are divided in two sets A and B and edges E can occur only between elements of two different sets.

Real world examples:

- Scientists authoring papers
- Internet users posting messages on forums
- Readers reading books

Definition

We say **degree of a vertex** the number of edges connected to that vertex.

Bipartite Networks

Bayesian nonparametric (BNP) models for network growth:

- Parameter of interest is infinite-dimensional (i.e. infinite number of books)
- Bayesian nonparametric (BNP) models:
 - ▶ Indian Buffet Process (IBP), but does not induce power-law behaviour
 - ▶ Stable IBP, but induces Poissonian distribution for the degree of readers
- Flexible BNP model able to capture power-law behaviour for both books and readers, while retaining computational tractability

Table of Contents

- Bipartite Networks
- Statistical model
- Update of hyperparameters
- 4 Power-law properties and real-world examples

Bipartite graph

• We represent a bipartite graph using a collection of atomic measure Z_i . For each reader $i=1,\ldots,n$ with books $j=1,\ldots,\infty$:

$$Z_i = \sum_{j=1}^{\infty} z_{ij} \delta_{\theta_j}$$

where $\{\theta\} \subset \Theta$ the set of books and z_{ij} equal 1 if reader i has read book j, 0 otherwise.

• For each reader we consider the latent process V_i:

$$V_i = \sum_{j=1}^{\infty} \mathsf{v}_{ij} \delta_{ heta_j}$$

where v_{ij} (inversely) controls the **probability of the existence of the edge** between reader i and book j.

Latent process

Assuming:

$$|v_{ij}||w_j \sim \textit{Exp}(w_j \gamma_i)$$

- ► A positive **popularity parameter** w_j assigned to each book
- A positive interest-in-reading parameter γ_i assigned to each reader
- Then, the probability that reader i reads book j is:

$$p(z_{ij}=1|w_j,\gamma_i)=1-exp(w_j\gamma_i)$$

For tractability issues, we consider $u_{ij} = \min(v_{ij}, 1)$ and the process U_i . Z_i can be obtained deterministically from U_i .

Book popularity parameter

Definition

Let Θ be a measurable space. A **completely random measure** (**CRM**) is a random measure G such that for any collection of disjoint measurable subsets A_1, \ldots, A_n of Θ , the random masses of the subsets $G(A_1), \ldots, G(A_n)$ are independent.

 $G \sim CRM(\lambda, h)$ with Levy measure:

$$\Lambda(\mathsf{d} w, \mathsf{d} \theta) = \lambda(w) h(\theta) \mathsf{d} w \mathsf{d} \theta$$

Realizations of G take the form of Poisson processes over $\{(w_j,\theta_j), j=1,\ldots,\infty\}\subset \mathbb{R}_+ imes\Theta$:

$$G = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$$

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

G is an homogeneous CRM:

- ullet Atoms i.i.d from h (base density), independently from masses
- ullet Masses distributed according to Poisson process over \mathbb{R}^+ with intensity λ (Levy intensity)

We assume:

$$\begin{cases} \int_0^\infty \lambda(w) \mathrm{d} w = \infty \\ \int_0^\infty (1 - e^{-w}) \lambda(w) \mathrm{d} w < \infty \end{cases} \Rightarrow \mathbf{G}(\Theta) = \sum_{j=1}^\infty w_j \text{ finite and positive}$$

Hierarchical model

Z_i is a Poisson process, obtained from transformations of Poisson processes.

Proposition

 Z_i is marginally characterized by a Poisson process. Furthermore, **the total mass** $Z_i(\Theta) = \sum_{j=1}^{\infty} z_{ij}$, which corresponds to the total number of books read by reader i, **is finite with probability one and admits a Poisson** $(\psi_{\lambda}(\gamma_i))$ **distribution**, with:

$$\psi_{\lambda}(\gamma_i) = \int_0^{\infty} (1 - e^{-\gamma_i w}) \lambda(w) dw$$

We can sum up the model in the following hierarchical form:

$$v_{ij}|G \sim \mathsf{Exp}(w_j \gamma_i)$$
 $G \sim \mathsf{CRM}(\lambda, h)$

Posterior Characterization

We observe a set of edges $\{z_{ij}\}$ of a bipartite network Z_1, \ldots, Z_n of n reader:

- K books $\{\theta_1, \ldots, \theta_K\}$
- $K_i = Z_i(\Theta) = \sum_{i=1}^{\infty} z_{ij}$ the degree of reader i
- $m_j = \sum_{i=1}^n Z(\{\theta_j\}) = \sum_{i=1}^n z_{ij}$ the degree of book j

Posterior distribution of the CRM given the latent process U coincides with the distribution of another CRM having a rescaled intensity and fixed observed points of discontinuity:

$$\mathbf{G} = \mathbf{G}^* + \sum_{j=1}^K w_j \delta_{\theta_j}$$

Posterior Characterization

• G^* and $\{w_i\}$ are mutually independent with:

$$\mathsf{G}^* \sim \mathsf{CRM}(\lambda^*, h)$$
 and $\lambda^*(w) = \lambda(w) \exp(-w \sum_{i=1}^n \gamma_i)$

and the masses:

$$p(w_j | \operatorname{rest}) \propto \lambda(w_j) w_j^{m_j} \exp(-w_j \sum_{i=1}^n \gamma_i U_{ij})$$

• For the GGP, G^* is still a GGP with parameters $\alpha^* = \alpha$, $\sigma^* = \sigma$ and $\tau^* = \tau + \sum_{i=1}^{n} \gamma_i$ and:

$$|w_j| \operatorname{rest} \sim \mathsf{Gamma}(m_j - \sigma, au + \sum_{i=1}^n \gamma_i u_{ij})$$

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

13 / 21

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

 K_1

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$$K_1 = 3$$
 \cdots

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$$K_1 = 3$$
 18 4 14 \cdots

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books $K_1=3$ K_2 $K_1=3$ K_2 K_2 $K_1=3$ K_2 K_2

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14			
$K_2^+ = 2$						

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$$K_1 = 3$$
 $K_2 = 4$

18	4	14				
12	0	8	13	4		

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14				
$K_2 = 4$	12	0	8	13	4		

 K_3

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

		Bo	Ok

$K_1=3$	18	4	14				
$K_2 = 4$	12	0	8	13	4		
K_3							

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14				
$K_2 = 4$	12	0	8	13	4		
$K_3^+ = 2$							

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14					
$K_2 = 4$	12	0	8	13	4			
$K_3 = 5$	16	10	0	0	14	9	6	

Gibbs sampling

We use Gibbs sampler to derive the posterior distribution of $U, G \mid Z$.

For the GGP:

• For $i=1,\ldots,n$ and $j=1,\ldots,K$ set $u_{ij}=1$ if $z_{ij}=0$, otherwise:

$$u_{ij}|z_{ij}, w_j, \gamma_i \sim \mathsf{rExp}(\gamma_i w_j, 1)$$

② For j = 1, ..., K:

$$w_j | U, \gamma_i \sim \mathsf{Gamma}(m_j - \sigma, \tau + \sum_i^n \gamma_i u_{ij})$$

and

$$G^*(\Theta) \sim \mathsf{Exponentially}$$
 tilted stable¹

¹For general cases $G^*(\Theta)$ follows $g^*(w) \propto g(w) \exp^{-w \sum_{i=1}^{n} \gamma_i}$ with g(w) the distribution of $G(\Theta)$

Table of Contents

- Bipartite Networks
- 2 Statistical model
- Update of hyperparameters
- 4 Power-law properties and real-world examples

Update of γ_i

• Parametric: γ_i to be unknown and estimate them from the graph by assigning a prior $\gamma_i \sim \text{Gamma}(a_\gamma, b_\gamma)$ and update:

$$\gamma_i | G, U \sim \mathsf{Gamma}\Big(a_\gamma + \sum_j^K z_{ij}, \ b_\gamma + \sum_j^K w_j u_{ij} + G^*(\Theta)\Big)$$

But $Z_i(\Theta)$ still have a (but more flexible) Poisson distribution!

One Nonparametric: Let $\Gamma \sim \mathsf{CRM}(\lambda_{\gamma}, \mathsf{h}_{\gamma})$ and a measurable space of readers $\tilde{\Theta}$, which we can represent in the form $\Gamma = \sum_{i=1}^{\infty} \gamma_i \delta_{\theta_i}$. Conditionally on $(U, w, G^*(\Theta))$, we update:

$$\Gamma = \Gamma^* + \sum_{i=1}^n \gamma_i \delta_{\tilde{\theta}_i}$$

We have more of flexibility in the modelling of the distribution of the degree of readers (power-law behavior)!

Posterior characterization for GGP for w_i and γ_i

Let G and Γ GGP distributed with parameters (α, σ, τ) and $(\alpha_{\gamma}, \sigma_{\gamma}, \tau_{\gamma})$:

• Reader update: $\Gamma = \Gamma^* + \sum_{i=1}^n \gamma_i \delta_{\tilde{\theta_i}}$ with:

$$\Gamma^* \sim \mathsf{CRM}(\lambda_\gamma^*, h_\gamma)$$
 $\gamma_i | \textit{U}, \textit{G} \sim \mathsf{Gamma}ig(\textit{K}_i - \sigma_\gamma, au_\gamma + \sum_{j=1}^K \textit{w}_j \textit{u}_{ij} + \textit{G}^*(\Theta) ig)$

• Book update: $G = G^* + \sum_{i=1}^K w_i \delta_{\theta_i}$ with:

$$G^* \sim \mathsf{CRM}(\lambda^*, h)$$
 $w_i | U, \Gamma \sim \mathsf{Gamma}ig(m_j - \sigma, au + \sum_{i=1}^n \gamma_i u_{ij} + \Gamma^*(ilde{\Theta})ig)$

Table of Contents

- Bipartite Networks
- 2 Statistical mode
- Update of hyperparameters
- Power-law properties and real-world examples

Power-law properties

For the GGP with $\sigma > 0$, we can achieve **power-law behavior of the network growth**:

• The total number of books read by n readers is $O(n^{\sigma})$ \rightarrow **Proof.** When $\gamma_i = \gamma$, the total number of books is Poisson $(\psi_{\lambda}(n\gamma))$ distributed. Considering the GGP:

$$\psi_{\lambda}(n\gamma) = \frac{\alpha}{\sigma}((n\gamma + \sigma)^{\sigma} - \tau^{\sigma})$$

which for large n, is of order n^{σ} .

Similar results are achievable also with an S-IBP for the degree distribution of books, but not for readers for which it will always be Poisson!

Real world example – Book-crossing community network

Figure 1: Degree distribution for readers (a-d) and books (e-h) with 4 models: a stable Indian Buffet Process (S-IBP); our model with $\gamma_i = \gamma$ and flat prior assigned (GS); our model with $\gamma_i \sim$ Gamma (a_γ, a_γ) and flat prior assigned to the parameters (IG); our model with GGP prior for γ_i (GGP). Data are presented in red and samples from the models in blue.

Bibliography I

Bayesian nonparametric models for bipartite graphs.

In NIPS, 2012.

Probability and Stochastics.

Graduate Texts in Mathematics. Springer New York, 2011.

L. F. James, A. Lijoi, and I. Pruenster.

Posterior analysis for normalized random measures with independent increments. *Scandinavian Journal of Statistics*, 36(1):76–97, 2009.

J. F. C. Kingman.

Poisson Processes.

Oxford Studies in Probability. Oxford University Press, 1993.

