Test 6.1: Faraday's Law

According to Faraday's law, an electromotive force $V_{\rm emf}$ is induced:

- (a) whenever a magnetic field **B** crosses through the loop cross section.
- **(b)** only if **B** is time-varying.
- (c) only if the loop is rotating.
- (d) Either **B** is changing with time, the loop is rotating and **B** is static, or **B** is changing in time and the loop is rotating.

Test 6.2: Lenz's Law

The purpose of Lenz's law is to:

- (a) Compute the magnetic flux through the loop surface.
- (b) Compute the induced field B_{ind} .
- (c) Determine the direction of *I*.
- (d) Determine the internal resistance R_i .

(a) Loop in a changing B field

(b) Equivalent circuit

Test 6.3: Ideal Transformer

In an ideal transformer, the secondary to primary turns ration is $N_2/N_1 = 10$. Consequently, only one of the following statements is true, which one?

(a)
$$\frac{V_2}{V_1} = 0.1$$
, $\frac{I_2}{I_1} = 10$, $\frac{P_2}{P_1} = 100$

(b)
$$\frac{V_2}{V_1} = 10$$
, $\frac{I_2}{I_1} = 0.1$, $\frac{P_2}{P_1} = 1$

(c)
$$\frac{V_2}{V_1} = 10$$
, $\frac{I_2}{I_1} = 10$, $\frac{P_2}{P_1} = 100$

(d)
$$\frac{V_2}{V_1} = 0.1$$
, $\frac{I_2}{I_1} = 10$, $\frac{P_2}{P_1} = 1$

Test 6.4: Piezoelectricity

Piezoelectric crystals are used in:

- (a) Ultrasound transducers, microphones, and speakers.
- **(b)** Thermocouples to measure temperature.
- (c) Accelerometers.

(d) Proximity sensors.

Test 6.5: TV Antenna

A circular-loop TV antenna with 0.02-m^2 area is in the presence of a uniform-amplitude 300 MHz signal. When oriented for maximum response, the loop develops an emf with a peak value of 15 (mV). What is the peak magnitude B_0 of the incident wave?

- (a) $B_0 = 2 \text{ (nT)}$
- **(b)** $B_0 = 0.4 \text{ (nT)}$
- (c) $B_0 = 0.1 \text{ (nT)}$
- (d) $B_0 = 2 (\mu T)$

Test 6.6: Square Loop

The square loop shown in the figure is coplanar with (but not touching) a long, straight wire carrying a current

$$I(t) = 5\cos(2\pi \times 10^4 t)$$
 (A).

What is the emf induced across a small gap created in the loop?

- (a) $V_{\rm emf} = 7\cos(2\pi \times 10^4 t) \text{ (mV)}$ (b) $V_{\rm emf} = 3.5\sin(2\pi \times 10^4 t) \text{ (mV)}$ (c) $V_{\rm emf} = 0$ (d) $V_{\rm emf} = 7\sin(2\pi \times 10^4 t) \text{ (mV)}$

Test 6.7: EM Generator

The rectangular conducting loop shown in the figure rotates at 6,000 revolutions per minute in a uniform magnetic flux density given by

$$\mathbf{B} = \hat{\mathbf{z}} 50 \qquad (mT).$$

When an EE student connected a voltmeter across a small gap in the loop, the

voltmeter registered a voltage of zero. How should the configuration be changed so as to generate the maximum possible emf?

- (a) Reverse direction of **B**.
- **(b)** Reverse direction of loop rotation.
- (c) Increase the magnitude of **B**.
- (d) Change **B** so it points along any direction in the x-y plane.

Test 6.8: EM Generator

The electromagnetic generator shown in the figure is connected to an electric bulb with a resistance of 150 Ω . If the loop area is 0.1 m² and it rotates at 1800 revolutions per minute in a uniform magnetic flux density $B_0 = 1.6$ T, determine the amplitude of the current generated in the light bulb.

- (a) $I \approx 200 \text{ (mA)}$
- **(b)** $I \approx 10 \text{ (mA)}$
- (c) $I \approx 100 \text{ (mA)}$
- (d) $I \approx 1 \text{ (mA)}$

Test 6.9: EM Potentials

The magnetic field in a dielectric material with $\varepsilon = 9\varepsilon_0$, $\mu = \mu_0$, and $\sigma = 0$ is

given by

$$\mathbf{H}(y,t) = \hat{\mathbf{x}}5\cos(2\pi \times 10^7 t + 0.2\pi y)$$
 (A/m).

Find the associated electric field **E**.

- (a) $\hat{\mathbf{y}} 30\cos(2\pi \times 10^7 t + 0.2\pi y)$ (V/m)
- **(b)** $-\hat{\mathbf{z}}630\cos(2\pi \times 10^7 t + 0.2\pi y)$ (V/m)
- (c) $\hat{\mathbf{z}} 30\cos(2\pi \times 10^7 t + 0.2\pi y)$ (V/m)
- (d) $\hat{\mathbf{x}} 60 \cos(2\pi \times 10^7 t + 0.2\pi y)$ (V/m)

Test 6.10: EM Potentials

The electric field of an electromagnetic wave propagating in air is given by

$$\mathbf{E}(z,t) = \hat{\mathbf{x}} 4\cos(3 \times 10^8 t - z) + \hat{\mathbf{y}} 3\sin(3 \times 10^8 t - z)$$
 (V/m).

Find the associated magnetic field $\mathbf{H}(z,t)$.

- (a) $\mathbf{H}(z,t) = \hat{\mathbf{x}} 12\cos(3 \times 10^8 t z) + \hat{\mathbf{y}} 8\cos(3 \times 10^8 t z)$ (A/m)
- **(b)** $\mathbf{H}(z,t) = -\hat{\mathbf{x}} 8\cos(3 \times 10^8 t z) + \hat{\mathbf{y}} 10.6\cos(3 \times 10^8 t z) \text{ (mA/m)}$
- (c) $\mathbf{H}(z,t) = -\hat{\mathbf{x}} 8 \sin(3 \times 10^8 t z) + \hat{\mathbf{y}} 10.6 \cos(3 \times 10^8 t z)$ (mA/m)
- (d) $\mathbf{H}(z,t) = \hat{\mathbf{x}} 16\cos(3 \times 10^8 t z) + 2y\cos(3 \times 10^8 t z)$ (A/m)

Test 6.11: Lenz's Law

Based on your understanding of Lenz's law, which of currents I_1 through I_4 is/are pointed in the wrong direction?

- (a) I_2 and I_3 are printed in the wrong direction.
- **(b)** All four currents are printed in the wrong direction.
- (c) I_1 and I_4 are printed in the wrong direction.
- (d) All four currents are printed correctly.

Test 6.12: Charge Dissipation

Suppose a certain amount of electric charge is placed at a point inside a block of carbon. Given that for carbon, $\varepsilon_r = 20$ and $\sigma = 3 \times 10^4$ (S/m), how long does it take the charge density at that point to dissipate to 0.1% of its original value?

- (a) $t \approx 4 \text{ ms}$
- **(b)** $t \approx 4 \text{ ns}$
- (c) $t \approx 40 \text{ ps}$
- (d) $t \approx 40 \text{ fs}$

Test 6.13: Boundary Conditions

At the interface between two different materials, the boundary conditions for electric and magnetic fields:

- (a) are the same for static and dynamic (time-varying) conditions.
- (b) are not the same for static and dynamic (time-varying) conditions.
- (c) may or may not be the same depending on the relative conductivities of the two materials.
- (d) may or may not be the same depending on the charge relaxation time constants for the two materials.