

🛘 (858)-952-2680 | 💌 ritvikvasan@gmail.com | 🌴 ritvikvasan.github.io | 🖸 ritvikvasan | 🛅 ritvikvasan

Skills

General Engineering, Data Science, Statistics, Modeling, Machine Learning

Programming and software packages Python, R, SQL, LaTeX, PyTorch, Tensorflow, MATLAB, Jython, Git, COMSOL, Solidworks

Soft Communication, Collaboration, Presentation, Analytical Ability, Team Player

Summary_

I am a PhD candidate with significant experience in data science, engineering and entrepreneurship. I leverage interdisciplinary skills including theoretical modeling, machine learning, software engineering and quantitative biology to answer complex biophysical questions. Along the way, I develop usable tools for the community. I am seeking to expand my experience in technology, innovation and entrepreneurship to make a lasting impact.

Education_

University of California, San Diego

PHD IN MECHANICAL ENGINEERING (3.97/4.00) M.S. IN MECHANICAL ENGINEERING (3.97/4.00)

BITS Pilani

B.S. IN MECHANICAL ENGINEERING (8.76/10.00)

Pilani, Rajasthan, India 2011 - 2015

San Diego, CA

2017 - 2020

2015 - 2017

Experience

Laboratory for computational and cellular mechanobiology, UCSD

San Diego, CA

PHD CANDIDATE

Dec 2015 - Present

- Transitioned research from bio-medical device prototyping to computational biophysics.
- Published 3 peer reviewed papers in 3 years, before most peers, with 3 other papers in review.
- Participated as chair and platform speaker in 3 international conferences including Biophysical Society.
- Awarded competitive Frontiers of Innovation and Scholars Program (FISP) fellowship and the UCSD outstanding graduate student award (\sim 2 % acceptance rate).
- Created 2 open-source tools that have received press attention from websites like phys.org, sciencedaily.com and jacobsschool.ucsd.edu.
- Led collaborative teams of scientists across 4 universities.

Allen Institute for Cell Science

Seattle, WA

SUMMER TRAINEE

June - Sept 2018 and 2019

- Executed research using both theoretical biophysical models and advanced machine learning based data-driven models.
 - · Initiated project leveraging Conditional Variational Autoencoders to analyze 33000 cell image features.
 - · Implemented and published a force-inference Python package named DLITE to estimate forces from cell monolayers.
- Worked in an open-science and team-science environment.
- Coordinated collaboration between the Allen Institute for Cell Science and UCSD.

Nano-bio imaging and devices lab, UCSD

San Diego, CA

RESEARCH ASSISTANT

Sept - Dec 2015

- Implemented preliminary protocols to develop *nano-bowls* for targeted drug delivery.
- Systematically analyzed for the presence of nano-bowls using a Scanning Electron Microscope (SEM).
- Briefed supervisors on my assessment of the capabilities of nano-bowl technology.

Applied physics and instrumentation lab, Indian Institute of Science

Bangalore, India

July 2014 - Aug 2015

RESEARCH ASSISTANT

- Designed a proof of concept of an affordable and portable cell-phone microscope for malaria diagnosis.
- Created a company MuScope and acquired seed funding worth 10000 USD.
- Selected as one of the top innovation projects in India for the Gandhian award by SRISTI.
- Publicized work through national newspapers and networks.

Mechanical engineering lab, Indian Institute of Science

RESEARCH ASSISTANT

Bangalore, India

May - July 2014

• Determined stiffness of MCF-7 breast cancer cells using cell aspiration techniques, atomic-force microscopy (AFM) and microgrippers.

DECEMBER 2, 2019 RITVIK VASAN · RÉSUMÉ

Activities

- Startup competitions: Winner, 2019 IPHatch, Hong Kong. Pitched a business plan and technical details for a startup utilizing
- image processing IP made available through the competition.

 Social innovation competitions: Winner, 2014 SRISTI grant, India. Pitched a preliminary prototype of a cellphone microscope and received funding for executing a market-viable product.
- Graduate mentor: Directed 4 undergraduates and 1 junior graduate student on software engineering tasks and their research.
 Teaching assistant: Held discussion sessions and designed assignments for various biomechanics classes and a workshop on
- Git, Python and UNIX.
- Outreach: Designed and advised research projects for high school students through outreach programs like the Center for Talented Youth (CTY) and ENLACE.
- Web development: Created 2 research-lab websites and a side-project website at happyhoursinbangalore.appspot.com to return happy hour information for every bar near a given location in Bangalore.

Publications _____(* denotes equal contribution)

2019	Applications and challenges of machine learning to enable realistic cellular simulations	In review
2013	Vasan , Rowan, Lee, Johnson, Rangamani, Holst	IIITEVIEW
2019	Branched actin filament self-organization and force generation during clathrin-mediated	
	endocytosis	In review
	Akamatsu, Vasan , Serwas, Ferrin, Rangamani, Drubin	
	A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier	
2019	associated with membrane neck constriction	Soft Matter
	Vasan, Rudraraju, Akamatsu, Drubin, Garikipati, Rangamani	
2019	DLITE uses cell-cell interface movement to better infer cell-cell forces	Biophysical
	Vasan, Maleckar, Williams, Rangamani	Journal
2018	The role of traction in membrane curvature generation	Molecular Biology
	Alimohamadi*, Vasan *, Hassinger, Stachowiak, Rangamani	of the Cell
2018	Intracellular membrane trafficking: modeling local movements in cells	Springer
	Vasan, Akamatsu, Schoeneberg, Rangamani	

Conferences

2019	Chair Cell mechanics, mechanosensing and motility	Baltimore, MD
2019	Platform speaker Biophysical Society meeting	Baltimore, MD
2018	Platform speaker American Society for Cell Biology meeting	San Diego, CA
2018	Poster Biophysical Society meeting	San Diego, CA
2017	Platform speaker FISP symposium	San Diego, CA
2017	Poster Biophysical Society meeting	New Orleans, LA

Awards_____

2017	Outstanding graduate student Mechanical and Aerospace Engineering	UCSD
2016	Frontiers of Innovation and Scholars Program (FISP) fellowship	UCSD
2014	Social innovation grant	SRISTI
2011	Merit scholarship \sim 1 % acceptance	BITS Pilani
2011	KVPY scholarship \sim 1 % acceptance	Indian Institute of Science
2011	INSPIRE scholarship \sim 1 % acceptance	CBSE