Numerical Optimization Methods in Imaging

Exercice .

Let \mathcal{H} and \mathcal{G} be real Hilbert spaces (e.g., $\mathcal{H} = \mathbb{R}^N$ and $\mathcal{G} = \mathbb{R}^M$). Let $f \in \Gamma_0(\mathcal{H})$, let $g \in \Gamma_0(\mathcal{G})$, and let $L \in \mathcal{B}(\mathcal{H}, \mathcal{G})$ (e.g., $L \in \mathbb{R}^{M \times N}$). Let $\widetilde{x} \in \mathcal{H}$ and $\gamma \in]0, +\infty[$. We denote by L^* the adjoint of L (e.g., $L^* = L^{\top}$ in the finite dimensional case).

1. Consider the operator defined as

$$(\forall y \in \mathcal{G}) \quad B(y) = -L \operatorname{prox}_f(\widetilde{x} - L^*y).$$

Show that B is β_B -cocoercive where β_B will be specified.

2. In the following, we assume that $\gamma \in]0,2/\|L\|^2[$. Deduce from the previous question that the operator defined as

$$(\forall y \in \mathcal{G}) \quad T(y) = \operatorname{prox}_{\gamma q^*} (y + \gamma L \operatorname{prox}_f (\widetilde{x} - L^* y))$$

is α_T -averaged where α_T will be specified.

3. Assume that $FixT \neq \emptyset$. Consider the iterative algorithm:

$$(\forall n \in \mathbb{N})$$
 $y_{n+1} = y_n + \lambda_n (T(y_n) - y_n).$

where $y_0 \in \mathcal{G}$. Give a sufficient condition on $(\lambda_n)_{n \in \mathbb{N}}$ for the weak convergence of $(y_n)_{n \in \mathbb{N}}$. What can be said about the limit point?

SOLUTION

1. We know that prox_f is firmly nonexpansive, that is $(\forall (x,x') \in \mathcal{H}^2) \ \langle \operatorname{prox}_f(x) - \operatorname{prox}_f(x') \mid x-x' \rangle \geq \|\operatorname{prox}_f(x) - \operatorname{prox}_f(x')\|^2.$

We deduce that

$$(\forall (x, x') \in \mathcal{H}^2) \quad \left\langle \operatorname{prox}_f(\widetilde{x} - x) - \operatorname{prox}_f(\widetilde{x} - x') \mid x' - x \right\rangle \\ \geq \|\operatorname{prox}_f(\widetilde{x} - x) - \operatorname{prox}_f(\widetilde{x} - x')\|^2.$$

This shows that $C=-\mathrm{prox}_f(\widetilde{x}-\cdot)$ is firmly nonexpansive, that is β_C -cocoercive with $\beta_C=1$. From the property given in the lecture, $B=L\circ C\circ L^*$ is thus β_B -cocoercive with

$$\beta_B = \frac{\beta_C}{\|L\|^2} = \frac{1}{\|L\|^2}.$$

2. We have $T = \operatorname{prox}_{\gamma g^*} \circ (\operatorname{Id} - \gamma B)$. Since B is β_B -cocoercive, there exists a firmly nonexpansive operator $D \colon \mathcal{G} \to \mathcal{G}$ such that

$$B = \frac{1}{\beta_B} D,$$

which means that there exists a nonexpansive operator $R\colon \mathcal{G} \to \mathcal{G}$ such that

$$B = \frac{1}{2\beta_B}(\mathrm{Id} + R).$$

We have thus

$$\mathrm{Id} - \gamma B = \left(1 - \frac{\gamma}{2\beta_B}\right)\mathrm{Id} + \frac{\gamma}{2\beta_B}(-R).$$

Since -R is nonexpansive, we deduce that, if $\gamma/(2\beta_B) \in]0,1[$, then $\mathrm{Id}-\ \gamma B$ is α_B -averaged with

$$\alpha_B = \frac{\gamma}{2\beta_B}.$$

The condition on γ is equivalent to $\gamma \in]0,2/\|L\|^2[$.

Since $\operatorname{prox}_{\gamma g^*}$ is firmly nonexpansive, that is 1/2-averaged, we

deduce from the rule of composition of α -averaged operators that T is α_T -averaged with

$$\alpha_T = \frac{1}{1 + \left(\frac{1/2}{1 - 1/2} + \frac{\alpha_B}{1 - \alpha_B}\right)^{-1}} = \frac{\frac{1}{2} + \alpha_B - \frac{2}{2}\alpha_B}{1 - \frac{\alpha_B}{2}} = \frac{1}{2 - \alpha_B} \in]1/2, 1[.$$

3. We recognize a Krasnoselskii-Wann iteration. Cherefore $(y_n)_{n\in\mathbb{N}}$ converges weakly to a fixed point of T if $\{\lambda_n\}_{n\in\mathbb{N}}\subset [0,1/\alpha_T]$ and $\sum_{n=0}^{+\infty}\lambda_n(1-\alpha_T\lambda_n)=+\infty$. Since $\alpha_T<1$, the condition is satisfied when, for every $n\in\mathbb{N}$, $\lambda_n=1$.