Homework 2

Matthew Corley and Melissa Murphy

Problem 1 (Golan 56). Is it possible to define on $\mathbb{Z}/(4)$ the structure of a vector space over GF(2) in such a way that the vector addition is the usual addition in $\mathbb{Z}/(4)$?

[Hints: Recall that (n) denotes the set $\{\ldots, -2n, -n, 0, n, 2n, 3n, \ldots\}$, which we denoted in lecture by $n\mathbb{Z}$. This is the ideal generated by n in the ring \mathbb{Z} , but don't worry about that for now. Just take $\mathbb{Z}/(n)$ to be the abelian group of integers $\{0, 1, 2, \ldots, n-1\}$ with addition modulo n. In lecture, we used $\mathbb{Z}/n\mathbb{Z}$ to denote $\mathbb{Z}/(n)$. Use whichever notation you prefer.]

Solution. Assume toward a contradiction that $\mathbb{Z}/(4)$ is a vector space over GF(2), with vector addition defined as the usual modular addition. Then for any $v \in \mathbb{Z}/(4)$,

$$0 = (0)v$$

$$= (1+1)v$$

$$= 1 \cdot v + 1 \cdot v$$

$$= v + v$$

Now, let v = 3 to see that $3 + 3 = 2 \mod 4 \neq 0$. Thus we have a contradiction. The answer is no, it is not possible with the usual modular vector addition.

Problem 2 (Golan 60).¹ Let V = C(0,1). Define the relation \vee on V by setting $(f \vee g)(x) = \max\{f(x), g(x)\}$. If we think of \vee as a "vector addition," does this, together with the usual scalar multiplication, make V into a vector space over \mathbb{R} ?

Solution. It is true that C(0,1) is closed uder \vee (see the Appendix for a proof), and we can easily verify that \vee is a commutative associative binary operation on the set C(0,1), so $\langle C(0,1),\vee\rangle$ is a commutative semigroup. In fact, letting $f \wedge g = \min\{f,g\}$, we can check that $\langle C(0,1),\vee,\wedge\rangle$ is a lattice.²

However, recall that a vector space is built up from an additive abelian group. Is it possible for \vee to serve as vector addition? If so, what would be the additive identity? We need a function $e \in C(0,1)$ such that for all $f \in C(0,1)$ we have $f \vee e = f$. It is clear that no such e exists.

¹ In the original problem, the notation $f \boxplus g$ was used. We use $f \lor g$ instead, since this is fairly standard notation for the function $\max\{f,g\}$.

² See [1, Sec. 30] for a discussion of vector lattices, such as $\langle C(0,1), \vee, \wedge \rangle$.

Problem 3 (Golan 63). Let $V = \{i \in \mathbb{Z} \mid 0 \le i < 2^n\}$ for some fixed positive integer n. Define operations of vector addition and scalar multiplication on V in such a way as to turn it into a vector space over GF(2).

[Hints: Recall that GF(2) denotes the Galois field with two elements, $\{0,1\}$, with addition mod 2 and the usual multiplication. Other than this field, the only restriction given in the problem is that V must have 2^n elements. Do you know of any sets of this size?]

Solution. Let W be the set of binary strings of length n, that is, length n sequences of 0's and 1's. We can also view these as maps from the set $n := \{0, 1, ..., n-1\}$ to the set $2 := \{0, 1\}$. So, in this sense, W is the set 2^n of maps from n to 2. So, it is not really an abuse of notation to write $W = 2^n$.

Since $|V| = 2^n$ (here 2^n is a number!), there is a bijection between V and W, and we will identify each $i \in V$ with its string representation in W using the notation $i = (i_0, i_1, \ldots, i_{n-1})$, where $i_k \in \{0, 1\}$. Define vector addition in V by adding strings "bitwise" modulo 2. That is

$$i + j = (i_0, i_1, \dots, i_{n-1}) + (j_1, \dots, j_{n-1})$$

= $(i_0, i_1, \dots, i_{n-1}) + (j_1, \dots, j_{n-1})$
= $(i_0 + j_0, i_1 + j_1, \dots, i_{n-1} + j_{n-1})$

where for each $0 \le k < n$, the k-th element of i + j is

$$i_k + j_k = \begin{cases} 0, & i_k = j_k \\ 1, & i_k \neq j_k. \end{cases}$$

Clearly the latter addition is commutative, and therefore, the vector addition is commutative: i+j=j+i. The zero vector $\mathbf{0}=(0,\ldots,0)$ is the additive identity, and each vector is its own additive inverse, that is, -v=v. Thus, we have an abelian group $\langle 2^n,+,-,\mathbf{0}\rangle$. To make this into a vector space over GF(2), take the set of scalars $\{0,1\}$ and define scalar multiplication as follows: 0i=0 and 1i=i. It is easily verified that $\langle 2^n,+,\mathbf{0},\{0,1\}\rangle$ has the remaining (GF(2)-module) properties that make it a vector space over GF(2).

Problem 4 (Golan 70). Show that \mathbb{Z} is not a vector space over any field.

Solution. Let $\mathbb{F} = GF(2)$. Assume \mathbb{Z} is a vector space over \mathbb{F} . Then

$$0 = 1_Z(1_F + 1_F)$$

= 1_Z(1_F) +_Z 1_Z(1_F)
= 2

But $0 \neq 2$, so \mathbb{Z} is not a vector space over GF(2). Now let \mathbb{F} be a field with characteristic greater than 2. Assume \mathbb{Z} a vector space over \mathbb{F} . Then we know

$$1_F + 1_F = 2_F \implies 1_F = \frac{1}{2_F} + \frac{1}{2_F}$$

Therefore

$$1_{Z} = 1_{F}(1_{Z})$$

$$= \left(\frac{1}{2_{F}} + \frac{1}{2_{F}}\right)1_{Z}$$

$$= \frac{1}{2_{F}}(1_{Z}) +_{Z} \frac{1}{2_{F}}(1_{Z})$$

Now let $\frac{1}{2_F}(1_Z) = n \in \mathbb{Z}$. But there is no element in $n \in \mathbb{Z}$ that satisfies n + n = 1. So \mathbb{Z} is not a vector space over any field with characteristic greater than 2. Thus \mathbb{Z} is not a vector space over any field.

Problem 5 (Golan 76). Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V containing the constant function $x \mapsto 0$ and all of those functions $f \in V$ satisfying the following condition: f(a) = 0 for at most finitely many real numbers a. Is W a subspace of V.

[Hint: It's easy.]

Solution. Let us assume toward a contradiction that W is a subspace of V. Let p(x), g(x), h(x) be distinct functions in W, such that p(x) = g(x) + h(x) and g(x) = 0 for $x = b_0, \ldots, b_l \in \mathbb{R}$ and h(x) = 0 for $x = c_0, \ldots, c_m \in \mathbb{R}$. Then p(x) = 0 when g(x) = h(x) = 0 or when g(x) = -h(x). The former happens when $b_i = c_j$ for $1 \le i \le l, 1 \le j \le m$. We can see this is a finite set of points. The latter, however, could happen for an infinite number of points (e.g. define g(x) = -h(x) for $x > \max(b_l, c_m) \in \mathbb{R}$). In that case, p(a) = 0 for infinitely many real numbers a, but it is not the constant function $x \mapsto 0$. So vector addition is not closed and therefore W is not a subspace in V.

Problem 6 (Golan 79). A function $f \in \mathbb{R}^{\mathbb{R}}$ is piecewise constant if and only if it is a constant function $x \mapsto c$ or there exist $a_1 < a_2 < \cdots < a_n$ and c_0, c_1, \cdots, c_n in \mathbb{R} such that

$$f: x \mapsto \begin{cases} c_0 & \text{if } x < a_1, \\ c_i & \text{if } a_i \le x < a_i \text{ for } 1 \le i < n, \\ c_n & \text{if } a_n \le x. \end{cases}$$

Does the set of all piecewise constant functions form a subspace of the vector space $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} ?

Solution. Let W denote the set of piecewise constant functions. Then W is clearly a subset of $\mathbb{R}^{\mathbb{R}}$. Let $r \in \mathbb{R}$ and $k_i = rc_i$. Then

$$rf: x \mapsto \begin{cases} k_0 & \text{if } x < a_1, \\ k_i & \text{if } a_i \le x < a_i \text{ for } 1 \le i < n, \\ k_n & \text{if } a_n \le x. \end{cases}$$

So W is closed under scalar multiplication.

Let us describe $f,g\in W$ using the characteristic function χ :

$$f(x) = \sum_{i=1}^{n} f(a_i) \chi_{[a_i, a_{i+1})}(x),$$

$$g(x) = \sum_{i=1}^{m} g(b_i) \chi_{[b_i, b_{i+1})}(x),$$

where $\chi_{[c_i, c_{i+1})}(x)$ is 1 if $c_i \leq x < c_{i+1}$ and 0 otherwise.

Now let the set $\{z_0, z_1, \ldots, z_N\}$ be the union $\{a_0, a_1, \ldots, a_n\} \cup \{b_0, b_1, \ldots, b_m\}$ such that $z_0 < z_1 < \cdots < z_N$. Then we can describe the sum f + g as follows:

$$f + g = \sum_{i=1}^{N} (f(z_i) + g(z_i)) \chi_{[z_i, z_{i+1})}.$$

Thus f+g is a piecewise constant function and so W is closed under vector addition. Therefore W is a subspace of $\mathbb{R}^{\mathbb{R}}$.

Problem 7 (Golan 81). Let W be the subset of $V = GF(2)^5$ consisting of all vectors (a_1, \ldots, a_5) satisfying $\sum_{i=1}^5 a_i = 0$. Is W a subspace of V?

Solution. We know W is a subset of V and $O_V \in V$. Let $x \in V, x = (a_1, a_2, a_3, a_4, a_5)$ and $\sum_{i=1}^5 a_i = 0$. Let $b \in F$. Then

$$bx = (b(a_1), b(a_2), b(a_3), b(a_4), b(a_5))$$

³ Note to students: we use the word "union" explicitly to emphasize that the resulting $\{z_0, z_1, \ldots, z_N\}$ will be a set—i.e., there will be no repetitions.

And

$$\sum_{i=1}^{5} (ba_i) = b\left(\sum_{i=1}^{5} a_i\right) = b(0) = 0$$

So W is closed under scalar multiplication.

Let $y \in V$, $y = (c_1, c_2, c_3, c_4, c_5)$ such that $\sum_{i=1}^{5} c_i = 0$. Then

$$x + y = (a_1 + c_1, a_2 + c_2, a_3 + c_3, a_4 + c_4, a_5 + c_5)$$

Now let $d_i = a_i + c_i$.

$$\sum_{i=1}^{5} d_i = \sum_{i=1}^{5} (a_i + c_i)$$
$$= \sum_{i=1}^{5} a_i + \sum_{i=1}^{5} c_i$$
$$= 0 + 0 = 0$$

Therefore W is closed under vector addition and scalar multiplication so it is a subspace.

Problem 8 (Golan 85). Let $V = \mathbb{R}^{\mathbb{R}}$ and let W be the subset of V consisting of all functions f satisfying the following condition: there exists $c \in \mathbb{R}$ (that depends on f) such that $|f(a)| \le c|a|$ for all $a \in \mathbb{R}$. Is W a subspace of V?

Solution. We know W is a subset of V. Let $g(x) \in W$. There exists a $c_1 \in \mathbb{R}$ such that $\forall x \in \mathbb{R} |h(x)| \leq c|x|$. Let $b \in \mathbb{R}$. Let h(x) = b(g(x)). Then

$$|h(x)| = |b(g(x))|$$

$$\leq |b||g(x)|$$

$$\leq |b|(c_1|x|)$$

$$= c|x|$$

Where $c = |b|c_1$. So $\exists c \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$ we have

$$|h(x)| \le c|x|$$

Therefore W is closed under scalar multiplication.

Let $p(x), g(x) \in W$. There exist $c_1, c_2 \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$

$$|p(x)| \le c_1|x|$$

$$|q(x)| \le c_2|x|$$

Let t(x) = p(x) + g(x). Then

$$t(x) = |p(x) + g(x)|$$

$$\leq |p(x)| + |g(x)|$$

$$\leq c_1|x| + c_2|x|$$

$$= (c_1 + c_2)|x|$$

$$= c_3|x|$$

where $c_3 = c_1 + c_2$. Therefore $\exists c \in \mathbb{R}$ such that $\forall x \in \mathbb{R}$ we have

$$t(x) \le c|x|$$

Thus W is closed under addition and scalar multiplication so W is a subspace of V.

Problem 9 (Golan 93). Let V be a vector space over a field F and let P be the collection of all subsets of V, which we know is a vector space over GF(2). Is the collection of all subspaces of V a subspace of P?

Solution. P is the collection of all subset of V. Let U be the collection of all subspaces of V. As all subspaces of V must be subsets of V, we know that $U \subseteq V$. We want to show that U is a subspace of P.

Let $X \in U$. Then $X \in P$. Let $a \in F$. Let $y, z \in X$. Then $ay, az \in aX$. ay + az = a(x + y). As X is a subspace, $(x + y) \in X$ so $a(x + y) \in aX$. Thus aX is closed under addition. Let $b \in F$.

$$b(ay) = (ba)y$$
$$= (ab)y$$
$$= a(by)$$

So $by \in X \implies a(by) \in aX$. Therefore aX is closed under scalar multiplication. And $X \subseteq V \implies aX \subseteq V$. Then aX is a subspace, so U is closed under scalar multiplication.

Let $Y \in U, x \in X, y \in Y$. $X + Y = \mathbb{F}\{x, y\}$. Let $p, q \in X + Y$ such that for $x_1, x_2 \in X, y_1, y_2 \in Y, a, b \in F$

$$p = ax_1 + by_1$$
$$q = cx_2 + dy_2$$

Now we add p+q

$$p+q = (ax_1 + by_1) + (cx_2 + dy_2)$$

$$= (ax_1 + cx_2) + (by_1 + dy_2)$$
(1)

Since we know $(ax_1 + cx_2) \in X$ and $(by_1 + dy_2) \in Y$, we can deduce that $p + q \in X + Y$. Then U is closed under addition. So U is a subspace of P. Problem 10 (Golan 105). Let V be a vector space over a field F and let $0_V \neq w \in V$. Given a vector $v \in V \setminus Fw$, find the set G of all scalars $a \in F$ satisfying $F\{v, w\} = F\{v, aw\}$.

Solution.

$$F\{v, w\} = \{bv + cw | b, c \in \mathbb{F}\}$$
$$F\{v, aw\} = \{dv + e(aw) | d, e \in \mathbb{F}\}$$

F is a field, so it is closed under multiplication. v is not a scalar multiple of w. We know $1 \in G$. Thus $\mathbb{F}\{v, aw\} \leq \mathbb{F}\{v, w\} \forall a \in \mathbb{F}$. Let $x \in \mathbb{F}\{v, w\}$.. Then for $s, t \in \mathbb{F}$

$$x = sv + tw$$
$$= sv + \frac{t}{a}(aw)$$

So $\frac{t}{a} = ta^-1$, and $t \in \mathbb{F}$, $a^-1 \in \mathbb{F}$ so $ta^-1 \in \mathbb{F}$ as long as $a \neq 0$. So $G = \mathbb{F} \setminus 0_V$.

Appendix

Notes on Problem 2. Here we show how one could prove that V is closed under \boxplus , that is, for all $f, g \in C(0,1)$, we have $f \boxplus g \in C(0,1)$. (Though, as we noted in the solution to Problem 2, closure only proves that \boxplus is a binary operation on C(0,1); it does not prove that \boxplus can serve as vector addition.)

Let $\epsilon > 0$. Assume f,g are continuous on (0,1). Then, there exist $\delta_f > 0$ and $\delta_g > 0$ such that

$$|x - x_0| < \delta_f \implies |f(x) - f(x_0)| < \frac{\epsilon}{2}$$

 $|x - x_0| < \delta_g \implies |g(x) - g(x_0)| < \frac{\epsilon}{2}$

Let $h(x) = (f \vee g)(x) = \max\{f(x), g(x)\}$. Let $\delta_h = \min\{\delta_f, \delta_g\}$. Then

$$|x - x_{0}| < \delta_{h} \implies |h(x) - h(x_{0})|$$

$$= \left| \frac{f(x) + g(x) + |f(x) - g(x)| - f(x_{0}) - g(x_{0}) - |f(x_{0}) - g(x_{0})|}{2} \right|$$

$$\leq \left| \frac{f(x) - f(x_{0})}{2} \right| + \left| \frac{g(x) - g(x_{0})}{2} \right| + \left| \frac{f(x) - f(x_{0}) - (g(x) - g(x_{0}))}{2} \right|$$

$$< \frac{\epsilon}{2} + \left| \frac{f(x) - f(x_{0}) - (g(x) - g(x_{0}))}{2} \right|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Therefore $f \boxplus g$ is continuous for $x_0 \in (0,1)$, so vector addition is closed in V. With the usual scalar multiplication, V is a vector space over \mathbb{R} .

Remarks. The proof above is correct. Alternatively, you could simply note that the sum (and difference) of two continuous functions is continuous, and the functions $x \mapsto |x|$ and $x \mapsto x/2$ are continuous. Therefore, since function composition preserves continuity, it is clear that $f \vee g = \frac{1}{2}(f+g+|f-g|)$ is continuous.

Yet another alternative is to use the fact that $h \in C(0,1)$ if and only if for all $-\infty \le a < b \le \infty$ the set $h^{-1}(a,b) = \{x \in (0,1) \mid a < h(x) < b\}$ is open in (0,1). Note that

$$(f \vee g)^{-1}(a,b) = (\{x : a < f(x)\} \cup \{x : a < g(x)\}) \cap \{x : f(x) < b\} \cap \{x : g(x) < b\}.$$

If f and g are continuous, all of the sets on the right are open, so $(f \vee g)^{-1}(a,b)$ is open.

Notes on on Problem 3. Consider the proposed solution:

Let us define vector addition in a "bitwise xor" fashion such that v+v=0 and v+w=1 for all $v,w\in V, w\neq v$. Furthermore, let us define scalar multiplication in the natural way such that $1\cdot v=v$ and $0\cdot v=0$. Then we can see that vector addition is closed as $0,1\in V$, as well as being associative and commutative. And every v has an additive inverse, namely v. Scalar multiplication is also closed in V, as the product is always $0\in V$ or $v\in V$. So V is a vector space over $\mathrm{GF}(2)$.

Remarks. Having an addition that works as "xor" is the right idea. However, this proof is incorrect. In particular, you need an additive identity, that is, an $e \in V$ such that v + e = v for all $v \in V$. In the proposed solution, 0 cannot serve as the additive identity because v + w = 1 for all $w \neq v$; in particular, v + 0 = 1 whenever $v \neq 0$. (See the correct solution given above.)

References

[1] Charalambos D. Aliprantis and Owen Burkinshaw. *Principles of Real Analysis*. Academic Press, New York, 3rd edition, 1998.