2.76 / 2.760 Lecture 1: Logistics & Intro

Tablet PCs

Goals

- □ Perception
- ☐ Design approach
- □ Manufacturing
- ☐ Integration

Macro-scale Hexflex Nanomanipulator

Student-built Scanning
Tunneling Microscope (STM)

Activities

- ☐ Topical overview
- ☐ Project overview
- ☐ Literature review

Micro-scale Hexflex Nanomanipulator

Tools and resources

Tablet PCs

□ SolidWorks Unigraphics ProE

☐ Matlab MathCad Excel 2003

□ CoMeT CosmosWorks

□OMAX layout

□ Word 2003 PPT 2003

To do:

☐ Wireless set up

☐ Sign agreement

☐ Expected to have your Tablets at each class

What is a multi-scale system?

Figure by MIT OCW.

Systems are characterized by:

Component functions

Component interfaces

Component arrangements (parallel, series, sub-systems)

For MuSS, not well understood /covered in literature

Multi-scale systems

Span size scales of several orders of magnitude (OOM)

What can be coupled?

Is it as simple as saying connection pts?

Cross-scale coupling

Macro

Meso

Micro

Nano

-Function

_Form

-Flows

-Physics

—Fabrication

		1	1 -		
пп		C	т		
				W	
	_		υц		

What

Who

Why

Where

Etc...

Form

Geometry

Motion

Interfaces

Constraints

Etc...

Flow

Mass

Momentum

Energy

Information

Etc...

Physics

Application

Modeling

Limiting

Dominant

Etc...

Fabrication

Compatibility

Quality

Rate

Cost

Etc...

Cross-scale coupling

Macro Meso Micro

Nano

FullCuon				
What				
Who				
Why				
Where				
Etc				

Eunotion

Form
Geometry
Motion
Interfaces
Constraints
Etc...

Mass

Momentum

Energy

Information

Etc...

Flow

Application

Modeling

Limiting

Dominant

Etc...

Physics

Fabrication
Compatibility
Quality
Rate
Cost
Etc...

Why 2.76 / 2.760?

Components

- ☐ Machine elements
- □ Electronics
- □ Fabrication

Integration

- □ No MS integration edu
- □No MS mfg. edu

Range: .05 nm – 10cm

Ratio: 2 000 000 000

http://www.stephensonmarine.i12.com/

Diagram of engine components removed for copyright reasons.

Range: .01 mm - 500mm

Ratio: 50 000

What are the consequences of this?

E.g. say errors which scale with size?

Thermal, vibration, gravity, electrical, sound, noise, etc...

Isn't this "careful" design of each part & using precision assembly (PA)?

Careful design with the wrong perspective leads to bad FRs and CSs?

PA often needed to cross scales, BUT goal is to eliminate need for PE!!!

We want to manufacture not fabricate

George Patton had his perspective right

"No "body" ever won a war by dying for his country. He won it by making the other poor dumb "guy" die for his country."

Get everything you want with minimal effort while maintaining future productivity:

Maximize use/re-use of complimentary parts Minimize conflicts / incompatibilities

Semester at a glance

Sept. Perception Approach Model **PSets** Oct. Components •3 p. max! Interfaces Project Schedule System Model Nov. Examples Design Integration Validation Characterize Dec.

Course goals

Inter and intra-scale perspective

- ☐ MoSS modeling
- ☐ MuSS modeling
- ☐ Error modeling
- ☐ Cross-scale interfacing
- ☐ Application & examples

Our focus is on mechanical aspects

Fabricating MuSS

- ☐MuSS DFM
- ☐ Process compatibility
- □ Characterization
- □ Calibration
- ☐ Integration

Our Research

Culpepper Kim Macro Meso Micro Nano

Examples

How can you engineer (not just model!) the small-scale with no experience?

Should we:

Applied math & modeling = "idea"

Or should we:

Do fundamentals

Learn to design small to large

Use the STM to learn about the small!!!

Figure by MIT OCW.

Bias voltage (mV – few volts) applied between tip and sample

At ~10 Ångstroms current (nA) flows

Figure by MIT OCW.

Overlapping tip-sample atom wave functions

Electrons "tunnel" across the gap i(gap) ~ e^(-2 K gap)

Two images removed for copyright reasons. Source: IBM Almaden Research Center http://www.almaden.ibm.com

i(gap) ~ e^(-2 K gap) drives coupled scale ratio

Why this project

- ☐ Learn how to model/apply lecture
- ☐ Investigate small-scale (get a feel for small-scale)
- ☐ Prepare you for research/experiment/industry

i(gap) ~ e^(-2 K gap) drives coupled scale ratio

Why this project

- ☐ Learn how to model/apply lecture
- ☐ Investigate small-scale (get a feel for small-scale)
- ☐ Prepare you for research/experiment/industry

i(gap) ~ e^(-2 K gap) drives coupled scale ratio

Why this project

- ☐ Learn how to model/apply lecture
- ☐ Investigate small-scale (get a feel for small-scale)
- ☐ Prepare you for research/experiment/industry

Is this an overly ambitious project?

Yes, but...
our freshman engineering students do...

Photos removed for copyright reasons.

Problem sets

Two birds with one stone

- ☐ Ambitious project
- \square Problem set = project steps

Quality:

- ☐ Typed, stapled, neat sketches
- □3 page maximum

On time, every time

- □ No late work for credit
- ☐ Must hand in all work to pass
- □ Submission

Literature critique

Logistics

- □ 3 papers per team, 2 papers per student
- □ 3 page critique per paper
- □ 10 minute presentation

Guidelines

- ☐ Scientific/scholarly merit
- ☐ Impact and importance
- ☐ Scientific and engineering approaches

Purpose

- ☐ Extend knowledge beyond pure mechanical
- □ Project suggestions
- ☐ Professional preparation

What is important for 2.76 / career?

Identifying & prioritizing importance

Nice vs. necessary & moving fast

Qualitative, but rational modeling

Quantitative modeling

Concise communication (3 pagers)

Assessment test

?

Assignment

E-mail resume to Course Secretary

Don't forget tablet agreement form!!

Reading: Design & Complexity