Matrices in Quantum Computing

Huan Q. Bui

Matrix Analysis

Professor Leo Livshits

CLAS, May 2, 2019

Presentation layout

Background

2 Matrices in an entanglement circuit

Recap

Components:

Components:

Quantum bits - Qubits

Components:

- Quantum bits Qubits
- Quantum gates: single and multiple-qubit gates

Components:

- Quantum bits Qubits
- Quantum gates: single and multiple-qubit gates
- Measurement

Classical Bit

Qubit

$$a\begin{bmatrix}1\\0\end{bmatrix}+b\begin{bmatrix}0\\1\end{bmatrix}$$

Classical Bit

Qubit

$$aegin{bmatrix}1\\0\end{bmatrix}+begin{bmatrix}0\\1\end{bmatrix} &|a|^2+|b|^2=1$$

 \rightarrow linear transformations on one or many qubits.

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H|0\rangle$$

ightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H|0\rangle = H\begin{bmatrix}1\\0\end{bmatrix}$$

ightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H\ket{0} = H\begin{bmatrix}1\\0\end{bmatrix} = \frac{1}{\sqrt{2}}\begin{bmatrix}1\\1\end{bmatrix}$$

 \rightarrow linear transformations on one or many qubits.

Example: Hadamard gate.

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H\ket{0} = H \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \ket{0} + \frac{1}{\sqrt{2}} \ket{1}$$

Qubit 1:
$$a|0\rangle + b|1\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$
 Qubit 2: $c|0\rangle + d|1\rangle = \begin{bmatrix} c \\ d \end{bmatrix}$

Qubit 1:
$$a|0\rangle + b|1\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$
 Qubit 2: $c|0\rangle + d|1\rangle = \begin{bmatrix} c \\ d \end{bmatrix}$
$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \begin{bmatrix} c \\ d \\ b \end{bmatrix} \\ b \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} ac \\ ad \\ bc \\ bd \end{bmatrix}.$$

Do this for the basis states

$$|0\rangle\boxtimes|0\rangle=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}\ |0\rangle\boxtimes|1\rangle=\begin{bmatrix}0\\1\\0\\0\end{bmatrix}\ |1\rangle\boxtimes|0\rangle=\begin{bmatrix}0\\0\\1\\0\end{bmatrix}\ |1\rangle\boxtimes|1\rangle\boxtimes|1\rangle=\begin{bmatrix}0\\0\\0\\1\end{bmatrix}$$

Do this for the basis states

$$|0\rangle\boxtimes|0\rangle=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}\ |0\rangle\boxtimes|1\rangle=\begin{bmatrix}0\\1\\0\\0\end{bmatrix}\ |1\rangle\boxtimes|0\rangle=\begin{bmatrix}0\\0\\1\\0\end{bmatrix}\ |1\rangle\boxtimes|1\rangle\boxtimes|1\rangle=\begin{bmatrix}0\\0\\0\\1\end{bmatrix}$$

Notation:

$$egin{array}{ll} |00
angle = |0
angle oxtimes |0
angle & |01
angle = |0
angle oxtimes |1
angle \ |10
angle = |1
angle oxtimes |0
angle & |11
angle = |1
angle oxtimes |1
angle \end{array}$$

Do this for the basis states

$$|0\rangle\boxtimes|0\rangle = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \ |0\rangle\boxtimes|1\rangle = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \ |1\rangle\boxtimes|0\rangle = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \ |1\rangle\boxtimes|1\rangle = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

Notation:

$$egin{array}{ll} |00
angle = |0
angle oxtimes |0
angle & |01
angle = |0
angle oxtimes |1
angle \ |10
angle = |1
angle oxtimes |0
angle & |11
angle = |1
angle oxtimes |1
angle \end{array}$$

Can see that we have a basis for describing the combined state.

$$\left[egin{aligned} \mathbf{a} \ \mathbf{b} \end{aligned}
ight] oxtimes \left[egin{aligned} \mathbf{c} \ \mathbf{d} \end{aligned}
ight] = \mathbf{a}\mathbf{c} \ket{00} + \mathbf{a}\mathbf{d} \ket{01} + \mathbf{b}\mathbf{c} \ket{10} + \mathbf{b}\mathbf{d} \ket{11}. \end{aligned}$$

Not all combined states can be written as $|a\rangle \boxtimes |b\rangle \leftarrow$ **Elementary**.

Not all combined states can be written as $|a\rangle \boxtimes |b\rangle \leftarrow$ **Elementary**.

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x) \cdot q(y) = xy + 1,$$

even though xy + 1 is a legitimate "combined state."

Not all combined states can be written as $|a\rangle \boxtimes |b\rangle \leftarrow$ **Elementary**.

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x) \cdot q(y) = xy + 1,$$

even though xy + 1 is a legitimate "combined state."

Not all combined states can be written as $|a\rangle \boxtimes |b\rangle \leftarrow$ **Elementary**.

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x) \cdot q(y) = xy + 1,$$

even though xy + 1 is a legitimate "combined state."

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

Not all combined states can be written as $|a\rangle \boxtimes |b\rangle \leftarrow$ **Elementary**.

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x) \cdot q(y) = xy + 1,$$

even though xy + 1 is a legitimate "combined state."

$$\left| rac{1}{\sqrt{2}} \left| egin{matrix} 1 \\ 0 \\ 0 \\ 1 \end{matrix}
ight] = rac{1}{\sqrt{2}} \left| 00
ight
angle + rac{1}{\sqrt{2}} \left| 11
ight
angle$$

Not all combined states can be written as $|a\rangle \boxtimes |b\rangle \leftarrow$ **Elementary**.

Ex: $p(x) \cdot q(y)$ is a "combined state." But there are NO p(x), q(y) s.t.

$$p(x) \cdot q(y) = xy + 1,$$

even though xy + 1 is a legitimate "combined state."

$$egin{array}{c|c} rac{1}{\sqrt{2}} & 0 \ 0 \ 1 \ \end{array} &= rac{1}{\sqrt{2}} \ket{00} + rac{1}{\sqrt{2}} \ket{11} \longrightarrow extbf{Entangled}$$

Kronecker Product

Kronecker Product

 \mathcal{A} is a matrix acting on $|a\rangle$, \mathcal{B} on $|b\rangle$

 ${\cal A}$ is a matrix acting on |a
angle, ${\cal B}$ on |b
angle

$$\mathcal{A}\ket{\mathsf{a}}\boxtimes\mathcal{B}\ket{\mathsf{b}}=(\mathcal{A}\otimes\mathcal{B})(\ket{\mathsf{a}}\boxtimes\ket{\mathsf{b}})$$

 ${\cal A}$ is a matrix acting on |a
angle, ${\cal B}$ on |b
angle

$$\mathcal{A}\ket{a}\boxtimes\mathcal{B}\ket{b}=(\mathcal{A}\otimes\mathcal{B})(\ket{a}\boxtimes\ket{b})$$

 \otimes : Kronecker product, of two matrices.

 \mathcal{A} is a matrix acting on $|a\rangle$, \mathcal{B} on $|b\rangle$

$$\mathcal{A}\ket{a}\boxtimes\mathcal{B}\ket{b}=(\mathcal{A}\otimes\mathcal{B})(\ket{a}\boxtimes\ket{b})$$

 \otimes : Kronecker product, of two matrices.

lf

$$\mathcal{A} = \begin{bmatrix} m & n \\ o & p \end{bmatrix} \quad \text{and } \mathcal{B} = \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix}$$

then

 $\mathcal{A}\otimes\mathcal{B}$

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \\ o & p \end{bmatrix}$$

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ o & p & \end{bmatrix}$$

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ o \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & p \end{bmatrix}$$

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ o \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & p \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \end{bmatrix}$$

$$\mathcal{A} \otimes \mathcal{B} = \begin{bmatrix} m \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} & n \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \\ \begin{bmatrix} q & r & s \\ o & t & u & v \\ w & x & y \end{bmatrix} & p \begin{bmatrix} q & r & s \\ t & u & v \\ w & x & y \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} mq & mr & ms & nq & nr & ns \\ mt & mu & mv & nt & nu & nv \\ mw & mx & ms & nw & nx & ny \\ oq & or & os & pq & pr & ps \\ ot & ou & ov & pt & pu & pv \\ ow & ox & oy & pw & px & py \end{bmatrix}$$

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

Check that
$$I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$$
:

$$I\ket{0}\boxtimes H\ket{0}$$

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

$$I |0\rangle \boxtimes H |0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

$$I |0\rangle \boxtimes H |0\rangle = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

= $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

$$a: |0\rangle$$
 $b: |0\rangle$ H

$$\begin{split} I \left| 0 \right\rangle \boxtimes H \left| 0 \right\rangle &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \boxtimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \end{split}$$

Check that
$$I | 0 \rangle \boxtimes H | 0 \rangle = (I \otimes H) | 00 \rangle$$
:

Check that $I |0\rangle \boxtimes H |0\rangle = (I \otimes H) |00\rangle$:

RHS:

Check that $I | 0 \rangle \boxtimes H | 0 \rangle = (I \otimes H) | 00 \rangle$:

RHS:

$$(I \otimes H)(|00\rangle) = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & \mathcal{O} \\ \mathcal{O} & \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Check that $I|0\rangle \boxtimes H|0\rangle = (I \otimes H)|00\rangle$:

RHS:

$$(I \otimes H)(|00\rangle) = \begin{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} & \mathcal{O} \\ \mathcal{O} & \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

 \otimes and \boxtimes are very much alike.

 \otimes and \boxtimes are very much alike.

Bilinear

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - Oistributive.

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - ② Distributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix}$$

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a|0\rangle + b|1\rangle) \boxtimes (c|0\rangle + d|1\rangle)$$

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a|0\rangle + b|1\rangle) \boxtimes (c|0\rangle + d|1\rangle)$$
$$= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle.$$

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a|0\rangle + b|1\rangle) \boxtimes (c|0\rangle + d|1\rangle)$$
$$= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle.$$

Associative

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a|0\rangle + b|1\rangle) \boxtimes (c|0\rangle + d|1\rangle)$$
$$= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle.$$

- Associative
- NOT commutative.

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - ② Distributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a|0\rangle + b|1\rangle) \boxtimes (c|0\rangle + d|1\rangle)$$
$$= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle.$$

- Associative
- **•** NOT commutative. Ex: $|01\rangle \neq |10\rangle$.

- \otimes and \boxtimes are very much alike.
 - Bilinear
 - Oistributive.

$$\begin{bmatrix} a \\ b \end{bmatrix} \boxtimes \begin{bmatrix} c \\ d \end{bmatrix} = (a|0\rangle + b|1\rangle) \boxtimes (c|0\rangle + d|1\rangle)$$
$$= ac|00\rangle + ad|01\rangle + bc|10\rangle + bd|11\rangle.$$

- Associative
- NOT commutative. Ex: $|01\rangle \neq |10\rangle$.
- Elementariness.

Ex:

Ex:

The Control-NOT gate:

Ex:

The Control-NOT gate:

$$CNOT_b = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix}$$

Ex:

The Control-NOT gate:

$$\mathit{CNOT}_b = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} & \longrightarrow egin{bmatrix} |00
angle
ightarrow |00
angle \ |10
angle
ightarrow |10
angle \ |01
angle
ightarrow |11
angle \ |11
angle
ightarrow |01
angle \end{aligned}$$

Ex:

The Control-NOT gate:

$$CNOT_b = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \end{bmatrix} \qquad \longrightarrow egin{bmatrix} |00
angle
ightarrow |00
angle
ightarrow |10
angle
ightarrow |11
a$$

Also called "entangled."

Time to decode:

Time to decode:

1 Step 1:

Time to decode:

1 Step 1:

$$\begin{aligned} a: |0\rangle &\rightarrow |0\rangle \\ b: |0\rangle &\rightarrow \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \\ |a'b'\rangle &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^{\top} \end{aligned}$$

2 Step 2:

2 Step 2:

$$CNOT_b \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix}$$

2 Step 2:

$$\mathit{CNOT}_b \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

which is:

$$egin{array}{c|c} rac{1}{\sqrt{2}} egin{array}{c} 1 \ 0 \ 0 \ 1 \ \end{array} = rac{1}{\sqrt{2}} \ket{00} + rac{1}{\sqrt{2}} \ket{11} \leftarrow extbf{Entangled}$$

Simulation on IBM-Q

Quantum State: Computation Basis

 \otimes and \boxtimes are really "the same!"

 \otimes and \boxtimes are really "the same!" \to Tensor products.

 \otimes and \boxtimes are really "the same!" \to Tensor products.

Why tensor product?

 \otimes and \boxtimes are really "the same!" \to Tensor products.

Why tensor product?

Postulate (QM):

The state space of a composite physical system is the *tensor product* of the state spaces of the component physical systems.

Roughly speaking...

Giving the $\hat{f}: \mathbf{V} \otimes \mathbf{W} \stackrel{\text{linear}}{\longrightarrow} \mathbf{X}$ is the same as giving $f: \mathbf{V} \times \mathbf{W} \stackrel{\text{bilinear}}{\longrightarrow} \mathbf{X}$. $f = \hat{f} \circ \phi$

If the target space \boldsymbol{X} is $\boldsymbol{V}\otimes\boldsymbol{W}.$ $\boldsymbol{\mathcal{L}}$ is an operator on $\boldsymbol{V},$ $\boldsymbol{\mathcal{M}}$ on $\boldsymbol{W},$

If the target space \boldsymbol{X} is $\boldsymbol{V}\otimes\boldsymbol{W}.$ $\boldsymbol{\mathcal{L}}$ is an operator on $\boldsymbol{V},$ $\boldsymbol{\mathcal{M}}$ on $\boldsymbol{W},$

If the target space \boldsymbol{X} is $\boldsymbol{V}\otimes\boldsymbol{W}.$ $\boldsymbol{\mathcal{L}}$ is an operator on $\boldsymbol{V},$ $\boldsymbol{\mathcal{M}}$ on $\boldsymbol{W},$

$$\mathcal{L}[v] \otimes \mathcal{M}[w]$$

If the target space ${f X}$ is ${f V}\otimes {f W}.$ ${\cal L}$ is an operator on ${f V},$ ${\cal M}$ on ${f W},$

$$(\mathcal{L} \otimes \mathcal{M})(v \otimes w) \quad \mathcal{L}[v] \otimes \mathcal{M}[w]$$

If the target space ${f X}$ is ${f V}\otimes {f W}$. ${\cal L}$ is an operator on ${f V}$, ${\cal M}$ on ${f W}$,

 \rightarrow by uniqueness

$$(\mathcal{L} \otimes \mathcal{M})(v \otimes w) = \mathcal{L}[v] \otimes \mathcal{M}[w]$$

u a basis for ${f V}$, ω for ${f W} o$ can make a basis au for ${f V} \otimes {f W}$

 ν a basis for ${f V},\,\omega$ for ${f W} o$ can make a basis au for ${f V}\otimes{f W}$

 ν a basis for \mathbf{V} , ω for $\mathbf{W} \to \mathsf{can}$ make a basis τ for $\mathbf{V} \otimes \mathbf{W}$

$$[\mathcal{L} \otimes \mathcal{M}]_{\tau \leftarrow \tau} = [\mathcal{L}]_{\nu \leftarrow \nu} \otimes [\mathcal{M}]_{\omega \leftarrow \omega}$$

• How a 2-qubit entangling circuit works

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement
- Tensor product

- How a 2-qubit entangling circuit works
- Qubits, quantum gates as matrices
- Kronecker product
- Entanglement
- Tensor product
- Why quantum computer?

References

- **EXECUTE:** CERN, Appendix a: Linear algebra for quantum computation.
- Chih-Sheng Chen Chao-Ming Tseng and Chua-Huang Huang,

 Quantum gates revisited: A tensor product based interpretation model.
- Bryan Eastin and Steven T Flammia, *Q-circuit tutorial*, arXiv preprint quant-ph/0406003 (2004).
- Joel Kamnitzer, Tensor products.
- Michael A Nielsen and Isaac Chuang, Quantum computation and quantum information, 2002.