Cross-Entropy Loss

Natalie Parde UIC CS 421

Loss Function

- We need to determine the distance between the predicted and true output value
 - How much does ŷ differ from y?
- We do this using a conditional maximum likelihood estimation
 - Select w and b such that they maximize the log probability of the true y
 values in the training data, given their observations x
- This results in a negative log likelihood loss
 - More commonly referred to as cross-entropy loss

Cross-Entropy Loss

- Most common loss function for many classification tasks
- Measures the distance between the probability distributions of predicted and actual values
 - $loss(y_i, \widehat{y_i}) = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}}$
 - *C* is the set of all possible classes
 - $p_{i,c}$ is the actual probability that instance i should be labeled with class c
 - $\widehat{p_{i,c}}$ is the predicted probability that instance i should be labeled with class c
- Observations with a big distance between the predicted and actual values have much higher cross-entropy loss than observations with only a small distance between the two values

I'm just thrilled that I have five final exams on the same day.

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.			1	0

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.96	0.04	1	0

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.96	0.04	1	0

$$loss(y_i, y_i') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log p_{i,sarcastic} - p_{i,not \ sarcastic} \log p_{i,not \ sarcastic}$$

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.96	0.04	1	0

$$loss(y_i, y_i') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log p_{i,sarcastic} - p_{i,not \ sarcastic} \log p_{i,not \ sarcastic}$$

$$loss(y_i, y_i') = -1 * \log 0.96 - 0 * \log 0.04$$

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.7	0.3	1	0

$$loss(y_{i}, y_{i}') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log \widehat{p_{i,sarcastic}} - p_{i,not \ sarcastic} \log \widehat{p_{i,not \ sarcastic}}$$
$$loss(y_{i}, y_{i}') = -1 * \log 0.96 - 0 * \log 0.04 = -\log 0.96 = 0.02$$

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.			1	0

What if our predicted values were switched?

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.04	0.96	1	0

$$loss(y_i, y_i') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log p_{i,sarcastic} - p_{i,not \, sarcastic} \log p_{i,not \, sarcastic}$$

$$loss(y_i, y_i') = -1 * \log 0.04 - 0 * \log 0.96 = -\log 0.04 = 1.40$$
Greater loss value!