Relações de Ordem

13/10/2009 e 15/10/2009

Definição

Seja S um conjunto e R uma relação em S.

R é uma relação de ordem parcial em S ⇔R é Reflexiva, Anti-simétrica e Transitiva.

O par (S,R), onde S é um conjunto e R uma relação de ordem parcial em S é chamado um conjunto parcialmente ordenado, que resumiremos dizendo que é um conjunto PO.

Exemplos

- 1) Os pares (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) e (\mathbb{R}, \leq) , onde \leq é a ordem usual dos números são conjuntos PO.
- 2) Consideremos $S = \{1, 2, 3, 4, 6, 12\}$, o conjunto dos divisores inteiros positivos de 12, com a ordem |, definida por: $a|b \iff (\exists n \in \mathbb{N}) [b = n \times a]$.

Mostremos que o par (S, |) é um conjunto PO.

| é reflexiva? \iff $(\forall a \in S) [a|a] \iff (\exists n \in \mathbb{N}) [a = n \times a]$?

Seja $a \in S$. Basta tomarmos n = 1 e teremos $a = 1 \times a$.

| é simétrica? \iff $(\forall a, b \in S) [a|beb|a \implies a = b]?$

Sejam $a, b \in S$, tais que a|b e b|a. Então, existem $k, n \in \mathbb{N}$ tais que $b = k \times a$ e $a = n \times b$. Daí segue que $b = k \times n \times b$.

Portanto, cancelando b temos $1=k\times n$, de onde segue que k=n=1 pois ambos estão em \mathbb{N} . Assim, temos a=b.

| é transitiva?
$$\iff$$
 $(\forall a,b,c\in S)$ [$a|b\,e\,b|c\Longrightarrow a|c$]?
Sejam $a,b,c\in S$, tais que $a|b\>$ e $b|c$. Então, existem $k,m\in \mathbb{N}$ tais que $b=k\times a$ e $c=m\times b$. Daí segue que $c=m\times k\times a$. Portanto, $a|c$.

Ao lado temos o diagrama de Hasse desta relação.

- 3) Dados $a, b \in \mathbb{N}^*$, podemos definir a|b como no exemplo anterior e teremos que $(\mathbb{N}^*, |)$ é um conjunto ordenado.
 - 4) O par $(\mathbb{P}(X), \subseteq)$, onde X é um conjunto qualquer, é um conjunto PO.

Dados A, B e C em $\mathbb{P}(X)$, sabemos pelas propriedades da inclusão, que:

$$A \subseteq A$$
;

$$[A \subseteq B e B \subseteq A \implies A = B];$$

$$[A \subseteq B e B \subseteq C \implies A \subseteq C]$$

Portanto, \subseteq é uma relação de ordem.

Tomando $X = \{a, b, c\}$, temos ao lado o diagrama de Hasse da ordem parcial \subseteq , definida em $\mathbb{P}(X)$.

Definições

Seja (S, R) um conjunto PO e sejam $a, b \in S$.

- a) $a \in b$ são elementos $comparáveis \iff (a,b) \in R$ ou $(b,a) \in R \iff aRb$ ou bRa.
- b) a e bsão elementos $\textit{ não comparáveis} \Longleftrightarrow (a,b) \notin R$ e $(b,a) \notin R$.
- c) Um subconjunto C de S é uma cadeia de S \iff os elementos de C são dois a dois comparáveis \iff $(\forall a,b\in C)$ [aRb ou bRa]
- d) Um subconjunto A de S é uma anticadeia de $S \iff$ os elementos de C são dois a dois não-comparáveis \iff $(\forall a,b\in C)$ [$(a,b)\notin R$ e $(b,a)\notin R$].
 - d) A altura de S é o número de elementos da maior cadeia de S.
 - e) A largura de S é o número de elementos da maior anticadeia de S.
 - f) Quando S é uma cadeia de S, dizemos que (S, R) é um conjunto totalmente ordenado.

Exemplos

- a) No exemplo 2 acima, os elementos 2 e 3 são não-comparáveis e também os elementos 6 e 4. No mesmo exemplo, o conjunto $C = \{1, 2, 4\}$ é uma cadeia de comprimento 3. A altura de S é 4 e sua largura é 2.
- b) No exemplo 3 acima, os elementos $\{a\}$ e $\{b,c\}$ são não-comparáveis. No mesmo exemplo, o conjunto $C = \{\{a\}, \{a,b\}\}\}$ é uma cadeia de comprimento 2 e o conjunto $A = \{\{a,b\}, \{a,c\}, \{b,c\}\}\}$ é uma anticadeia de S de comprimento 3. A altura de S é 3 e sua largura é 3.
- c) Se \leq é a ordem usual dos números, então (\mathbb{Z}, \leq) é um conjunto totalmente ordenado, mas ($\mathbb{Z}, |$) não é totalmente ordenado, onde "|" é a relação de divisibilidade.

Observação: Em geral, usaremos o símbolo \leq para representar uma relação de ordem qualquer em um conjunto S, não necessariamente a ordem usual dos números. Para evitarmos confusão, quando tivermos " $a \leq b$," lemos "a antecede (ou precede) b".

Dados dois elementos $a, b \in S$, diremos que a < b (lê-se "a" é estritamente menor que "b") se,

e somente se, $a \le b$ e $a \ne b$.

Definição: Sejam (S_1, \leq_1) e (S_2, \leq_2) conjuntos PO.

a) Definimos, no produto cartesiano $S_1 \times S_2$, a relação chamada de ordem *lexicográfica*, baseada no ordenamento das letras do alfabeto, que notaremos por \leq_{lex} , da seguinte maneira:

$$(a,b) \leq_{lex} (c,d) \Longleftrightarrow \begin{cases} [a=c \land b=d] \\ \lor \\ [(a <_1 b) \lor (a=b \land c <_2 d)] \end{cases}$$

b) No produto cartesiano $S_1 \times S_2$, também definimos a ordem produto, por:

$$(a,b) \leq_{pro} (c,d) \iff [a \leq_1 c \land b \leq_2 d]$$