I - synthèse comparative

title	champs électrostatique	champs magnétostatique
Sa définition à partir d'une loi de force	la force électrostatique : $\vec{F} = q\vec{E}$	la force de Lorentz magnétique $\vec{F}_{m\to M} = q_M \vec{v}_M \wedge \vec{B}(M)$
Les formulations locales et intégrales des équations de Maxwell	La formule locale sur la divergence du champ électrostatique $\operatorname{div} \vec{E}(M) = \frac{\rho(M)}{\varepsilon_0}$ La circulation le long d'un contour (\mathscr{C}) (circulation conservative de E) $C = \oint_{(\mathscr{C})} \vec{E}(M) \cdot \overrightarrow{\mathrm{d}\ell} = 0$ La formule locale sur le rotationnel du champ électrostatique $\overrightarrow{\mathrm{rot}} \vec{E}(M) = \overrightarrow{0}$ Le théorème de Gauss $ \oint_{P \in (S)} \vec{E}(P) \cdot \overrightarrow{\mathrm{d}S}_P = \frac{Q_{\mathrm{int}}}{\varepsilon_0} $	La formule locale sur la divergence du champ magnéto-statique $\operatorname{div} \vec{B}(M) = 0$ Le flux à travers une surface fermée (flux conservatif de B) $\Phi = \iint_{M \in (S)} \vec{B}(M) \cdot \overrightarrow{\mathrm{d}S}_M = 0$ La formule locale sur le rotationnel du champ magnéto-statique $\overrightarrow{\mathrm{rot}} \vec{B}(M) = \mu_0 \vec{j}(M)$ Le théorème d'Ampère $\oint_{P \in (\mathscr{C})} \vec{B}(P) \cdot \overrightarrow{\mathrm{d}\ell}_P = \mu_0 I_{\mathrm{int}}$
Ses propriétés de symétrie selon les propriétés de symétrie de la distribution source	Les propriétés de symétrie du champ électrostatique et de ses sources sont identiques	Les propriétés de symétrie du champ magnétostatique et de ses sources sont opposées

	champs électrostatique	champs magnétostatique
Des informations sur sa topographie	Les lignes de champ électrostatique divergent à partir d'une charge positive et convergent vers une charge négative. Les lignes de champ électrostatique divergent à partir d'une charge positive et convergent vers une charge négative	Les lignes de champ magnétostatique divergent à partir d'un pôle magnétique nord (N) et convergent vers un pôle magnétique sud (S). Les lignes de champ magnétostatique se referment toujours sur elles-mêmes (ou à l'infini)
Son expression intégrale	loi de Coulomb $\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \iiint_{P\in (V)} \frac{\rho(P) \mathrm{d}\tau_P}{PM^2} \vec{u}_{PM}$	loi de Biot et Savart $\vec{B}(M) = \oint_{P \in (\mathscr{C})} \frac{\mu_0}{4\pi} \frac{I \overrightarrow{\mathrm{d}\ell_P} \wedge \vec{u}_{PM}}{PM^2}$
Ses propriétés de continuité selon la distribution	— distribution volumique de charge : $\vec{E}(M)$ est défini et continu — distribution surfacique de charge : $\vec{E}(M)$ subit une discontinuité à la traversée de la surface chargée — distribution linéique de charge : $\vec{E}(M)$ n'est pas défini	— distribution volumique de charge : $\vec{B}(M)$ est défini et continu — distribution surfacique de charge : $\vec{B}(M)$ subit une discontinuité à la traversée de la surface chargée — distribution linéique de charge : $\vec{B}(M)$ n'est pas défini
Un exemple simple et rapide de calcul de champ	$ec{E}(M)=rac{3Q}{\epsilon_04\pi R^3}ec{e}_r$	$\overrightarrow{B}(M) = \frac{\mu_0 I}{2\pi R} \vec{e}_{\theta}$

2