Monitoraggio in tempo reale delle apnee respiratorie del sonno attraverso uno stetoscopio elettronico

Federico Viscomi

20 Marzo 2013

Outline

Obiettivi

Apnea

Sindrome da apnea del sonno

Motivazione

Diagnosi e terapia d'emergenza

Svegliare il soggetto

Architettura del sistema

Schema di funzionamento

Segnale di input

Implementazione

Estrarre i suoni respiratori dal segnale

Riconoscimento delle apnee

Dettagli implementativi

Test

Sviluppi futuri

Conclusioni

Obiettivi

Progettare, prototipare e valutare un software di riconoscimento in tempo reale delle apnee respiratorie nel sonno attraverso uno stetoscopio elettronico applicato sul petto di un soggetto.

Cos'è una apnea?

- ► Respirazione
- ► Fasi respiratorie: inspirazione, espirazione e pausa respiratoria.
- ► Apnea: pausa respiratoria di durata uguale o maggiore di 10s.

Sindrome da apnea del sonno

Motivazione

Diagnosi

Utile di per sé. Meno invasiva. Meno costosa.

Terapia d'emergenza

Svegliare il soggetto. Come scegliere la soglia di allarme? Conviene svegliare il soggetto?

Conviene svegliare il soggetto?

Motivi empirici1 e biologici

¹DayNight Pattern of Sudden Death in Obstructive Sleep Apnea. Apoor S. Gami, Daniel E. Howard, Eric J. Olson, and Virend K. Somers. The new england journal of medicine.

Schema di funzionamento

Caratteristiche del segnale di input

Sorgenti sonore del segnale

Caratteristiche del segnale di input²

Valutazione sperimentale in assenza di rumore esterno

²Breath Analysis of Respiratory Flow using Tracheal Sounds. Saiful Huq, Azadeh Yadollahi, Zahra Moussavi. 2007 IEEE International Symposium on Signal Processing and Information Technology

Caratteristiche del segnale di input

Valutazione anatomico funzionale

- Origine anatomico funzionale dei suoni respiratori
- ► Osservazione chiave: L'apnea c'è quando il flusso è zero

Estrarre i suoni respiratori dal segnale

Pattern pipeline

Riconoscimento delle apnee

Dettagli implementativi

Linguaggio	Java
Ambiente di sviluppo	Eclipse
Librerie	JSTK

Calcolatore	Laptop Hp Pavilion g6
Microprocessore	Intel Core $i3 - 2330M$ da $2,2GHz$
Cache microprocessore	3MB di cache L3
Memoria	DDR3 da 6GB

Creare i casi di test

- Approccio black box.
- ► Analisi dello spazio dell'input e degli scenari di uso reale.
- ► Concatenazione di segmenti di file audio:

contenuto	tipo o sorgente	itensità
respiro	[normale, anormale, misto, bronchiale, vescicolare, continuo,	[0-10]
rumori] [bianco, rosa, interno, esterno, gastrointestinale,]	[0-10]
pausa res- piratoria	-	-

Valutazione dell'output

Localizzazione delle apnee a rischio

- Classificazione dello spazio dell'input: sequenze di intervalli di numeri razionali che indicano la posizione temporale di ciascuna fase di apnea.
- Classificazione dell'output rispetto alla classe di input:

apnea troppo lunga	evento presente	evento assente
evento riconosciuto	vero positivo	falso negativo
evento non riconosciuto	falso positivo	vero negativo

Risultati dei test

Casi di test sulle registrazioni

File (.wav)	Tempo di	Errore nella localizzazione di ap-	
	esecuzione	nee non a rischio	
Coarse crackles	2ms	0.4s più un falso negativo	
Normal vesicular	14 <i>ms</i>	0.2 <i>s</i>	
Pleural friction	3 <i>ms</i>	0.4s più 2 falsi negativi	
Inspiratory stridor	3 <i>ms</i>	 riconosce la fine delle pause e l'inizio delle inspirazioni con un margine di errore di 0.4s confonde le espirazioni con una pausa perché queste hanno intensità molto bassa 	

Risultati dei test

Caso di test di localizzazione di una apnea troppo lunga

- ► Apnea aggiunta con Audacity dall'istante 35s all'istante 1m: 17s.
- ▶ Apnea riconosciuta in modo corretto dall'istante 36*s* all'istante 1*m* : 16*s*.
- L'allarme suona all'istante 66s cioè 30s dopo l'inizio della pausa.

Risultati dei test

Resistenza al rumore bianco

Se il rumore bianco ha una intensità che supera il 30% dell'intensità massima dei suoni respiratori allora il sistema non riconosce nessuna pausa respiratoria.

Sviluppi futuri

- Classificare i suoni respiratori (normali, anormali, soffi, crackles, ...).
- Riconoscere gli schemi respiratori (normale, Cheyne Stokes, agonico, Kussmaul, ...).
- ▶ Implementare un'interfaccia con uno stetoscopio elettronico.
- Implementare un algoritmo di stima del flusso.
- ▶ Portare il software su un dispositivo mobile.
- Creare un database di registrazioni di suoni respiratori.
- Creare un database di casi di test.
- Implementare dei meccanismi di tolleranza al rumore esterno. Ad esempio attraverso la creazione di un modello acustico approssimato del torace.

Conclusioni

Obiettivi Progettare, prototipare e valutare un software di riconoscimento delle apnee notturne attraverso uno stetoscopio elettronico applicato sul petto o sulla trachea di un soggetto.

Risultati I risultati raggiunti sono incoraggianti e fanno da un punto di partenza verso un sistema usabile in uno scenario reale.