Состязательные атаки на нейронные сети для работы с временными рядами

Владимиров Э.А.

Московский физико-технический институт

Научный руководитель: к. ф.-м. н. А. А. Зайцев

2023

Состязательные атаки и временные ряды

Проблема

Состязательные атаки в области временных рядов могут быть легко обнаружены

Задача

Предложить свой метод состязательной атаки, которую тяжело задетектировать

Решение

Использование регуляризаторов, которые "маскируют" атаку

Состязательные атаки в разных доменах

Image domain

Проблема

Состязательные атаки в домене временных рядов легко обнаружить человеческим взглядом или специальными моделями

Статьи по теме

- 1. Sokerin P., Zaytsev A Adversarial attacks on neural networks for sequential data
- 2. Vivek B. S., Babu R. V. Regularizers for single-step adversarial training chaos from measurement error in time series.
- 3. Pialla G. et al. Time series adversarial attacks: an investigation of smooth perturbations and defense approaches

Постановка задачи

Имеется обученный классификатор временных рядов $\mathbf{f}_{\theta}: \mathbb{R}^{E \times T} \longrightarrow [0,1]$ Имеется обученный дискриминатор, определяющий искажённость данных: $\mathbf{g}_{\varkappa}: \mathbb{R}^{E \times T} \longrightarrow [0,1]$

Цель: найти преобразование данных $\varphi:\mathbb{R}^{E imes T}\longrightarrow\mathbb{R}^{E imes T}$, оптимальное с точки зрения

- ▶ эффективности: effectiveness $=\frac{1}{n}\sum_{i=1}^{n}[\mathbf{f}_{\theta}(\mathbf{x}^{i})=y^{i}]-\frac{1}{n}\sum_{i=1}^{n}[\mathbf{f}_{\theta}(\varphi(\mathbf{x}^{i}))=y^{i}]$
- ightharpoonup скрытности: concealability $=1-rac{1}{n}\sum_{i=1}^{n}\mathbf{g}_{\varkappa}(\varphi(\mathbf{x}^{(i)}))$

IFGSM и его модификация

Iterative Fast Gradient Sign Method $\mathbf{x}_{t+1} = \mathbf{x}_t + \varepsilon \cdot sign(\nabla_{\mathbf{x}} \mathbb{L}(\mathbf{f}_{\theta}(\mathbf{x}_t), \mathbf{y}))$

Предлагаемое улучшение

$$\begin{split} \mathbf{h}_{t+1} &= \mathbf{x}_t + \varepsilon \cdot \textit{sign}\big(\nabla_{\mathbf{x}} \mathbb{L}(\mathbf{f}_{\theta}(\mathbf{x}_t), \mathbf{y})\big) \\ \Delta_{t+1} &= ||\mathbf{x}_0 - \mathbf{h}_{t+1}|| \\ \mathbf{x}_{t+1} &= \mathbf{x}_t + \varepsilon_{\text{max}} \textit{clip}\big(\nabla_{\mathbf{x}} \mathbb{L}(\mathbf{f}_{\theta}(\mathbf{x}_t), \mathbf{y}), -\exp(-\Delta_{t+1}^2), \exp(-\Delta_{t+1}^2)\big) \end{split}$$

Вычислительный эксперимент

Цель

Сравнение состязательных атак для разных датасетов и архитектур нейросети

Attack	Dataset	Coffee	FordA
	Target model	TS2Vec	TS2Vec
Vanilla IFGSM	Effectiveness	1.00	1.00
	Concealability	0.08	0.28
Modified IFGSM	Effectiveness	1.00	0.99
	Concealability	0.97	0.92

Визуализация состязательных атак

Заключение

- 1. Предложен новый способ состязательной атаки
- 2. Проведён вычислительный эксперимент на нескольких датасетах