Oscilations	$\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$	$e = 1.602 \times 10^{-19} C$	1V/m	Calculating Capacitance
Simple Harmonic Motion	Interference of Waves	Electric Fields	1eV = e(1V) =	$C = \frac{\varepsilon_0 A}{d}$: placas paralelas
$T = \frac{1}{f}$	$y'(x,t) = y_1(x,t) + y_2(x,t)$	$\vec{E} = \frac{\vec{F}}{q_0} (N/C)$	$(1.60 \times 10^{-19} C)(1J/C) =$	$C = 2\pi\varepsilon_0 \frac{L}{\ln(\frac{b}{a})}$: cilindros
$x(t) = x_m cos(\omega t + \phi)$	y'(x,t) =	due to a Point	$1.60 \times 10^{-19} J$	$C = 2\pi c_0 \ln(\frac{b}{a})$. Children
$\omega = \frac{2\pi}{T} = 2\pi f$	$\left[2y_m cos\left(\frac{1}{2}\phi\right)\right] sin\left(kx - \omega t + \frac{1}{2}\phi\right)$	$\vec{E} = \frac{1}{4\pi} \frac{ q }{\varepsilon_0} \hat{r}^2$	Work done by Applied Force	$C = 4\pi\varepsilon_0 \frac{ab}{b-a}$: esferas
$v(t) = -\omega x_m \sin(\omega t + \phi)$	StandingWavesResonance		$\Delta K = K_f - K_i = W_{appF} + W_{efF}$	$C = 4\pi\varepsilon_0 R$: esfera isolada
$a(t) = -\omega^2 x_m \cos(\omega t + \phi)$	$y'(x,t) = [2y_m sin(kx)] cos(\omega t)$	$\vec{E} = \frac{\vec{F_0}}{q_0} = \frac{\vec{F_{01}}}{q_0} + \frac{\vec{F_{02}}}{q_0} + \dots =$	$W_{appF} = -W_{efF}$ if stationary be-	Capacitors
$> F = ma = m(-\omega^2 x)$	$f = \frac{v}{\lambda} = n \frac{v}{2L} \text{ n=1,2,3}$	$\vec{E}_1 + \vec{E}_2 + \dots$ due to Electric Dipole	fore and after move $K_f = K_i = 0$	$C_{eq} = \sum_{j=1}^{n} (C_j)$: in paralel,
	Waves 2	due to Electric Dipole	$\Delta U = U_f - U_i = W_{appF}$	mesmo V separa q
$ F = -kx = -\left(m\omega^2\right)x $	Speed of Sound	$\vec{p} = qd$	$\Delta U = U_f - U_i = W_{appF}$	* / \
$\omega = \sqrt{\frac{k}{m}}$	$v = \sqrt{\frac{B}{\rho}}$	if z >> d F = 1	Equipotential Surfaces	$\frac{1}{C_{eq}} = \sum_{j=1}^{n} \left(\frac{1}{C_j}\right)$: in series,
' <u> </u>	v: som no ar a 20 o C é 343 m/s	$E = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3}$	$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}$	mesmo q separa V
$T = 2\pi \sqrt{\frac{m}{k}}$	Traveling Sound Waves	Dipole in eletric field	$V = -\int_{i}^{f} \vec{E} \cdot d\vec{s}$ se $V_{i} = 0$	Energy Stored Electric Field
k: constante da mola Energy in	$s(x,t) = s_m \cos(kx - \omega t)$	$\vec{\tau} = \vec{p} \times \vec{E}$	31	$U = \frac{q^2}{2C} = \frac{1}{2}CV^2$
SHM	$\Delta p(x,t) = \Delta p_m sin(kx - \omega t)$	$U = -\vec{p} \cdot \vec{E}$	ex:infinity Potential due to Point Charge	$u = \frac{1}{2} \varepsilon_0 E^2$: energy density
$U\left(t\right) = \frac{1}{2}kx^2$	$\Delta p = (v\rho\omega)s_m$	Gauss's Law Eletric FLux		Capacitor with a Dieletric
$K(t) = \frac{1}{2}mv^2$	Intensity and Sound Level	$\Phi = \oint \vec{E} \cdot d\vec{A}$	$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$	If dieletric replace ε with $k\varepsilon$, k
$E = U + K = \frac{1}{2}kx_m^2$	$> I = \frac{P}{A}$	Gauss's Law	Potential due to GroupOfPoint-	dieletric constant
Damped SHM	$I = \frac{1}{2}\rho\nu\omega^2 s_m^2$	$\varepsilon_0 \Phi = q_{enc}$	Charges Superposition principle,	$\varepsilon_0 \oint k \vec{E} \cdot d\vec{A} = q$: GaussLaw w/
b: damping constante $F_d = -bv$	distance $I = \frac{P_s}{4\pi r^2}$	ChargedIsolConducExternEF	the sum of the values, un-	Dialetric
$x(t) = x_m e^{-\frac{bt}{2m}} \cos(\omega' t + \phi)$		σ : charge per unit area	like electric fields that	Current And Resistance Electric Current
$\frac{\chi(t) = \chi_{mc} = 0.000}{k \cdot k^2}$	decibel $\beta = (10dB)log(\frac{I}{I_0})$	$E = \frac{\sigma}{\varepsilon_0}$	was a sum of vectors	$i = \frac{dq}{dt}$ 1ampere(1A)=1 coulomb
$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$	$I_0 = 10^{-12} W/m^2$ SourcesMusic	Cylindrical Line	$V = \sum_{i=1}^{n} (V_i) = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \left(\frac{q_i}{r_i}\right)$	
if b small $\omega' \approx \omega$	SourcesMusic dois lados $f = \frac{v}{\lambda} = \frac{nv}{2L}$	λ : linear charge density	Potential due to Electric Dipole	per second(1C/s) Current Density
$E(t) \approx \frac{1}{2}kx_m^2 e^{-\frac{bt}{m}}$		$E = \frac{\lambda}{2\pi\varepsilon_0 r}$	$\vec{p} = qd$	$i = \int \vec{J} \cdot d\vec{A}$
Waves	um lado $f = \frac{v}{\lambda} = \frac{nv}{4L}$	Planar Non-conducting Sheet	$\inf r >> d$	<u> </u>
Transverse Waves	Beats $f_{beat} = f_1 - f_2$	$E = \frac{\sigma}{2\varepsilon_0}$	$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2}$	$\vec{J} = (ne)\vec{v_e} : \vec{v_e} \text{ drift speed Resi-}$
Luz vacuo: <i>c</i> = 299792458m/s k: numero de onda	Doppler Effect	Planar Two Conducting Plates	Potential due to ContinousDis-	stance and Resistivity
λ : comprimento de onda	Detector: aprox + , afast -	$E = \frac{\sigma}{\varepsilon_0}$	tribution	$R = \frac{V}{i} : 1 \text{ ohm } (1\Omega) = 1 \text{ volt per}$
$y(x,t) = y_m \sin(kx - \omega t)$	Source: aprox - , afast +	Spherical	$> V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} = \frac{1}{4\pi\varepsilon_0} \int \frac{\lambda dx}{r}$	ampere = 1 V/A
$k = \frac{2\pi}{\lambda}$	$f' = \frac{\nu \pm \nu_D}{\nu \pm \nu_S}$	Shell	Calculating field from potential	$ \rho = \frac{1}{\sigma} = \frac{\vec{E}}{\vec{r}} : \rho $ Resistivity, σ
$> \omega = \frac{2\pi}{T}$	SupersonicSpeedShockWave	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} : r \ge raioShell$	$> E_S = -\frac{\partial V}{\partial s}$	conductivity
$f = \frac{1}{T} = \frac{\omega}{2\pi}$	$sin\theta = \frac{vt}{v_s t} = \frac{v}{v_s}$	E = 0 : r < raioShell	$> E_x = -\frac{\partial V}{\partial x}$; $E_y = -\frac{\partial V}{\partial y}$; $E_z =$	$R = \rho \frac{L}{A}$
	Electric Charge	Sphere		· A
$v = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$	Coulomb's Law	$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^3} r$	$-\frac{\partial V}{\partial z}$	$p - p_0 = p_0 \alpha (T - T_0)$ Power Potencia
EnergPow Wave String	$> i = \frac{dq}{dt}$	Electric Potential	$> E = -\frac{\Delta V}{\Delta s}$ ElectricPotentialEnergy System-	P = iV: rate eletrical energy
$> dK = \frac{1}{2}dm u^2$	$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{r}$	$V = -\frac{W}{q}$	ElectricPotentialEnergy System-	transfer
$P_{avg} = \frac{1}{2}\mu v\omega^2 y_m^2$	r^2	$V = \frac{-W_{\infty}}{q_0} = \frac{U}{q_0}$ (volt=joule per	PointCharges	$P = i^2 R = \frac{V^2}{R}$: resistive dissipa-
Wave Equation	$k = \frac{1}{4\pi\varepsilon_0} = 8.99 \times 10^9 N \cdot m^2 / C^2$		$U = W = q_2 V = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	tion
	$\varepsilon_0 = 8.85 \times 10^{-12} C^2 / N \cdot m^2$	coulomb) Units	Capacitance	1 volt-ampere $1V \cdot A =$
	Charge is Quantized	$1N/C = \left(1\frac{N}{C}\right)\left(\frac{1V\cdot C}{1J}\right)\left(\frac{1J}{1N\cdot m}\right) =$	q = CV 1 farad (1 F) = 1 cou-	$\left(1\frac{J}{C}\right)\left(1\frac{C}{s}\right) = 1\frac{J}{s} = 1W \text{ 1 watt}$
	$q = ne, n = \pm 1, \pm 2, \pm 3$	(C / (1 / (1 N·m)	lomb per volt (1 C/V)	

