Complex Scaling

James Leng

July 21, 2020

Motivation

- ▶ $R_V: L_c^2 \to H_{loc}^2$. Want an operator from L^2 to H^2 without the "c" or the "loc." While $R_V(\lambda): L_c^2 \to H_{loc}^2$ only on $Im(\lambda) > 0$, we want to achieve more.
- ▶ To do this, we focus on a class of operators $P_{V,\Gamma}(\lambda): L^2(\Gamma) \to H^2(\Gamma)$ on $\lambda \in \Lambda_{\Gamma}$ and show that on Λ_{Γ} , the resonances of P_V and $P_{V,\Gamma}$ agree. We can then study the resonances of P_V by studying the family $P_{V,\Gamma}$.
- The upshot to this is that taking the trace gives the rank of the projection. Also, we can assume that there are no resonances on Γ by perturbing Γ.
- ▶ The downside is $P_{V,\Gamma}(\lambda)$ still has problems at $\lambda = 0$ and that $P_{V,\Gamma}$ is no longer self-adjoint.

Notation and Definitions

Let Γ be a simple curve with $\gamma: \mathbb{R} \to \gamma$ a parameterization with $\gamma \in C^2$ at least. For $f \in C^1(\Gamma)$ (e.g. $f \circ \gamma \in C^1(\mathbb{R})$ define

$$\partial_z^{\Gamma} f(z_0) = \gamma'(t_0) \partial_t (f \circ \gamma)(t_0), \quad \gamma(t_0) = z_0$$

$$D_z^{\Gamma} = \frac{1}{i} \partial_z^{\Gamma}$$

(does not depend on parameterization) If f is holomorphic in a neighborhood of Γ , then ∂_z^{Γ} coincides with the holomorphic differential operator. To integrate along Γ , we define $dz=\gamma(t)dt$.

Notation and Definitions 2

Given potential $V \in L^{\infty}_{c}(\mathbb{R}, \mathbb{C})$, assume that

$$\Gamma \cap \mathbb{R} \supset [-L, L], \operatorname{supp}(V) \subset (-L, L)$$

so we can define

$$P_{V,\Gamma}=(D_z^{\Gamma})^2+V.$$

Also assume that there exists $\theta \in (0,\pi)$, $a_{\pm} \in \mathbb{C}$, $K \subset \mathbb{C}$

$$\Gamma \setminus K = ((a_+ + e^{i\theta}(0,\infty)) \cup (a_- - e^{i\theta}(0,\infty))) \setminus K$$

Also, orient Γ such that $\operatorname{Im}(\gamma(t)) \to \infty$ as $t \to \infty$. Define

$$\Lambda_{\Gamma} = \{ \lambda \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}, -\theta < \arg(\lambda) < \pi - \theta \}$$

where arg $\in (-\pi, \pi)$.

Notation and Definitions 3

Figure 2.7. Curve Γ used in complex scaling. The curve is given by $x\mapsto x+ig(x)$ for a C^∞ function g satisfying g(x)=0 for $-R\le x\le R$ and $g(x)=x\tan\theta$ for |x| sufficiently large, where θ is a given constant.

Free Laplacian

Theorem

For $\lambda \in \mathbb{C} \setminus \{0\}$ and $f \in C_c^1(\Gamma)$ define

$$R_{0,\Gamma}(\lambda)f(z) := \frac{i}{2\lambda} \int_{\Gamma} e^{i\lambda\varphi(z,w)} f(w) dw$$

$$\varphi(\gamma(t),\gamma(s)):=\pm(\gamma(t)-\gamma(s)), \ \ \pm(t-s)\geq 0.$$

Then $R_{0,\Gamma}$ extends to an operator $L^2(\Gamma) \to H^2(\Gamma)$ which is a two-sided inverse of $D_{\Gamma}^2 - \lambda^2$ for $\lambda \in \Lambda_{\Gamma}$.

First check that it's two-sided inverse in $C_c^2(\Gamma)$:

$$(D_{\Gamma}^2 - \lambda^2) R_{0,\Gamma} = (D_{\Gamma}^2 - \lambda^2) \frac{e^{i\lambda\varphi(z,w)}}{2\lambda} = \frac{\lambda}{2i} e^{i\lambda\varphi(z,w)} - \frac{\lambda}{2i} e^{i\lambda\varphi(z,w)} = 0$$

at $z \neq w$ and at z = w, it's equal to ∞ . Other direction: check via integration by parts.

Proof

Suffices to show that $R_{0,\Gamma}$ is bounded on $L^2(\Gamma)$ since $C_c^2(\Gamma)$ is dense (since $D_\Gamma^2 R_{0,\Gamma} = I + \lambda^2 R_{0,\Gamma}$ and taking norms, we see that $R_{0,\Gamma}$ has range in H^2 since by Sobolev interpolation inequality suffices to only consider $\|\cdot\|_2$ and $\|D^2\cdot\|_2$). To do this, we use Schur's lemma:

Theorem

Suppose T is a integral operator

$$Tf = \int_Y K(x, y) f(y) dy$$

Then

$$||T||_{L^2}^2 \leq \sup_{x} \int |K(x,y)| dy \times \sup_{y} \int |K(x,y)| dx.$$

Proof

By reparametrization, can assume that $\gamma(t)=b_{\pm}+e^{i\theta}t$ for $\pm t\geq \mathcal{C}_0$. Then

$$\mathsf{Re}(i\lambda\varphi(\gamma(t),\gamma(s))) = -\sin(\theta + \arg\lambda)|\lambda||t-s| + O(1) \leq -\epsilon|\lambda||t-s| + O(1)$$

so

$$\sup_t \int_{\mathbb{D}} |e^{i\lambda \varphi(\gamma(t),\gamma(s))}| |\gamma'(s)| ds < \infty$$

Complex Scaling in Dim 1

Theorem

▶ $P_{V,\Gamma} - \lambda^2 : H^2(\Gamma) \to L^2(\Gamma)$ is a Fredholm operator and $Spec(P_{V,\Gamma}) \cap \Lambda_{\Gamma}$ is discrete

$$m_R(\lambda) = tr_{L^2(\Gamma)} \frac{1}{2\pi i} \oint (\zeta^2 - P_{V,\Gamma})^{-1} 2\zeta d\zeta, \quad \lambda \in \Lambda_{\Gamma}$$

(where m_R is the usual scattering resonance)

$$m_D(\lambda) = tr_{L^2(\Gamma)} \frac{1}{2\pi i} \oint (\zeta^2 - P_{V,\Gamma})^{-1} 2\zeta d\zeta$$

where

$$m_D(\lambda) = \frac{1}{2\pi i} \oint \frac{D'(\zeta)}{D(\zeta)} d\zeta$$

 $D(\lambda) = \det(I + VR_{0,\Lambda}\rho)$

$$ho \equiv 1$$
 on $supp(V)$

Remarks

Theorem

Let $\Omega \subset \mathbb{C}$ be an open set. Suppose X_1, X_2 Banach spaces, $X_1 \subset X_2$. If P-z is a Fredholm operator and $P-z_0$ is invertible, then $(P-z)^{-1}$ is a meromorphic family of Fredholm operators. In addition,

$$\Pi_z := \frac{1}{2\pi i} \oint_z (w - P)^{-1} dw$$

is a projection of finite rank from X_2 to X_1 .

From Yonah's talk (?), near a pole λ ,

$$(P_{V,\Gamma} - \lambda^2)^{-1} = \sum_{j=1}^m \frac{(P_{V,\Lambda} - \lambda^2)^{j-1}\Pi}{(\lambda^2 - \zeta^2)^j} + A(\zeta,\lambda)$$

where π is the projection.

Proof Step 1

$$\rho R_{0,\Gamma}: L^2(\Gamma) \to H^2([-L,L]) \to L^2(\Gamma). \ V \rho R_{0,\Gamma}: L^2(\Gamma) \to L^2(\Gamma)$$
 is compact.

$$(P_{V,\Gamma} - \lambda^2)R_{0,\Gamma} = I + VR_{0,\Gamma}(\lambda)$$

As before, $(I + VR_{0,\Gamma}(\lambda))^{-1}$ is a meromorphic family of operators so

$$R_{V,\Gamma} = (I + VR_{0,\Gamma}(\lambda))^{-1}R_{0,\Gamma}$$

Implies that $\operatorname{Spec}(P_{V,\Gamma}) \cap \Lambda_{\Gamma}$ is discrete.

Proof Step 2

Suppose λ is a pole with $m_R(\lambda) = m$. Arguing as before, this implies that there exists u_m such that

$$(P_V - \lambda^2)^m u_m(x) = 0$$

and

$$(P_V - \lambda^2)^{m-1} u_m(x) = \begin{cases} A e^{i\lambda x} & x \ge L \\ B e^{-i\lambda x} & x \le -L \end{cases}$$

SO

$$u_m = \begin{cases} P(x)e^{i\lambda x} & x \ge L \\ Q(x)e^{-i\lambda x} & x \le -L \end{cases}$$

with deg(P) = deg(Q) = m - 1. Put

$$\tilde{u_m} = \begin{cases} e^{i\lambda x} & x \in \Gamma^+ \\ Q(x)e^{-i\lambda x} & x \in \Gamma^- \\ u_m(x) & x \in [-L, L] \end{cases}$$

Proof Step 2 cont.

where $\Gamma = \Gamma^+ \cup [-L, L] \cup \Gamma^-$. Then

$$(P_{V,\Gamma} - \lambda^2)^m \tilde{u_m} = 0, \quad (P_{V,\Gamma} - \lambda^2)^{m-1} \tilde{u_m} \neq 0.$$

Arguing as before, we see that $\operatorname{Re}(i\lambda z) < -\epsilon |\lambda| |z| + O(1)$ so

$$\|\tilde{u}_m\|_2^2 \le \int_{-L}^L |u_m(x)|^2 dx + C \sum \int_{\pm} |z|^{m-1} e^{-\epsilon|\lambda||z|} d|z| < \infty.$$

hence \tilde{u}_m is unique L^2 solution. Hence, for each eigenvector of λ of P_V with order m, we obtain an eigenvector of λ of $P_{V,\Gamma}$ of order m.

Proof Step 2 cont.

Conversely, suppose λ is an eigenvalue of $P_{V,\Gamma}$ order m with $\tilde{u_m}$ as the eigenvector, then the only possible value of $(P_{V,\Gamma}-\lambda^2)^{m-1}\tilde{u_m}$ on Γ^+ are $e^{i\lambda z}$ or $e^{-i\lambda z}$. Only one of them is L^2 . Similar argumnt for Γ^- . Hence

$$\tilde{u_m} = \begin{cases} e^{i\lambda x} & x \in \Gamma^+ \\ Q(x)e^{-i\lambda x} & x \in \Gamma^- \\ u_m(x) & x \in [-L, L] \end{cases}$$

for some u_m . Then can define u_m as before.

Proof Step 3

Let ρ be a cutoff function supported on [-L,L] and is 1 on the support of V. Then

$$VR_{0,\Gamma}(\lambda)\rho = VR_0(\lambda)\rho.$$

As before

$$R_{V,\Gamma}(\lambda) = R_{0,\Gamma}(\lambda)(I + VR_{0,\Gamma}\rho)^{-1}(I - VR_{0,\Gamma}(1-\rho))$$

just replace $R_{0,\Gamma}$ with R_0 . Then apply Theorem C.11.

Theorem

Suppose that $V_0 \in L_c^{\infty}([-L,L])$ and $\Omega \subset \mathbb{C}$ with C^1 boundary such that P_{V_0} has no resonances in $\partial\Omega$. Then for V near V_0

$$\sum_{\lambda\in\Omega}m_V(\lambda)=\sum_{\lambda\ in\Omega}m_{V_0}(\lambda).$$

Let Γ be a curve as we were considering. Suppose $0 \not\in \Omega$. Writing Ω as a union of piecewise C^1 boundary with no resonances in its boundary, we may assume that $\Omega \subset \Lambda_{\Gamma}$ or $\Omega \subset \Lambda_{\overline{\Gamma}}$. Assume $\Omega \subset \Lambda_{\Gamma}$. Resonances of P_{V_0} in Ω are the same as eigenvalues of $P_{V_0,\Gamma}$ in Ω :

$$\sum_{\lambda \in \Omega} m_{V_0}(\lambda) = \frac{1}{2\pi i} \mathrm{tr} \oint_{\partial \Omega} (\zeta - P_{V_0,\Gamma})^{-1} d\zeta$$

Want to show that

$$\left|\frac{1}{2\pi}\left|\operatorname{tr}\oint_{\partial\Omega}(\zeta-P_{V_0,\Gamma})^{-1}d\zeta-\operatorname{tr}\oint_{\partial\Omega}(\zeta-P_{V,\Gamma})^{-1}d\zeta\right|<1\right|$$

for V sufficiently close to V_0 . First, note that

$$\|(\zeta - P_{V_0,\Gamma})^{-1}\|_{L^2 \to H^2} \le M$$

Note that

$$\zeta - P_{V,\Gamma} = (\zeta - P_{V_0,\Gamma})(I - (\zeta - P_{V_0,\Gamma})^{-1}(V - V_0))$$

If $\|V-V_0\|<\epsilon$, the last factor can be inverted into a Neumann series so

$$\|(\zeta - P_{V,\Gamma})^{-1}\|_{L^2 \to H^2} \lesssim M.$$

Let ρ be a cutoff. Then by theorem B.21,

$$\|\rho(\zeta-P_{V_0,\Gamma})^{-1}\|_1 \leq \|(\zeta-P_{V_0,\Gamma})^{-1}\|_{L^2\to H^2} \lesssim M.$$

The bound then follows from this

$$\left| rac{1}{2\pi} \left| \operatorname{tr} \oint_{\partial \Omega} (\zeta - P_{V_0,\Gamma})^{-1} d\zeta - \operatorname{tr} \oint_{\partial \Omega} (\zeta - P_{V,\Gamma})^{-1} d\zeta \right| =$$

$$\frac{1}{2\pi} \left| \mathsf{tr} \oint ((\zeta - P_{V_0, \Gamma})^{-1} (V - V_0) \rho (\zeta - P_{V, \Gamma})^{-1} d\zeta \right| \leq C M \|V - V_0\|_{\infty} < 1.$$

If $0 \in \Omega$, then can assume that $\Omega = B(0, r)$ since we can apply argument with $\Omega \setminus B(0, r)$. Also, assume that V_0 has resonance at 0. Since $m_D(0) = m_R(0) - 1$, we have

$$m_R(0)-1=\operatorname{tr}\int_{|\zeta|=r}(I+V_0R_0(\zeta)\rho)^{-1}V_0\partial_{\zeta}(\rho R_0(\zeta)\rho)d\zeta.$$

Also, since R_0 has no resonances on $\partial B(0, r)$, we have

$$I + V \rho R_0(\lambda) \rho = (I + V_0 \rho R_0(\lambda) \rho) (I + (I + V_0 \rho R_0(\lambda) \rho)^{-1} (V - V_0) R_0(\lambda) \rho).$$

Hence, we can assume

$$\|(I + V\rho R_0(\lambda)\rho)^{-1}\|_{L^2} \lesssim \|(I + V\rho R_0(\lambda)\rho)^{-1}\|_{L^2} \lesssim M$$

for λ on the boundary.

Hence V has no resonances on $\partial B(0, r)$. Hence

$$\sum_{|\lambda| < r} m_V(\lambda) = 1 + \frac{1}{2\pi i} \operatorname{tr} \oint_{|\zeta| = r} (I + V \rho R_0(\zeta) \rho)^{-1} V \partial_{\zeta} (\rho R_0(\zeta) \rho) d\zeta.$$

By lemma 2.18 and Cauchy's integral theorem, we have that

$$\|\partial_{\zeta}\rho R_0(\lambda)\rho\|_1 \leq C.$$

Multiplicity ≤ 1 is Generic

Theorem

For the generic (Baire category) V, $m_R(\lambda) \leq 1$ for all λ

- ▶ Order the resonances with $z \le w$ if |z| < |w| or if |z| = |w| and $\arg(z) \le \arg(w)$.
- ▶ Define V_n as the set of all potentials where the first n resonances are simple.
- ▶ By continuity of Resonances, V_n is open.
- Use Rouche's theorem to prove that a small perturbation of a function with a zero with multiplicity m has m simple zeros near that zero.
- ▶ Do some Grushin problem stuff (invertibility) to reduce an eigenvector of order m to the subspace generated by that eigenvector.
- \triangleright Show that \mathcal{V}_n is dense.

Manifolds

An n dimensional submanifold of \mathbb{C}^n is (maximally) totally real if for all m, $T_mM \cap iT_mM = 0$.

Example

Clifford Torus $\mathbb{T}^n \subset \mathbb{C}^n$. Any Lagrangian submanifold is totally real since $\langle u, v \rangle = \omega(u, iv)$ is the standard inner product.

If $u \in C^\infty(M)$, then $\tilde{u} \in C^\infty(\mathbb{C}^n)$ is an almost analytic extension if

$$\bar{\partial}_{z_j}\tilde{u}(z)=O(d(z,M)^\infty)$$

For $0 \le \theta < \pi$, let Γ_{θ} be a deformation of \mathbb{R}^n in \mathbb{C}^n with

$$\Gamma_{ heta} \cap B_{\mathbb{C}^n}(0,R_1) = B_{\mathbb{R}^n}(0,R_1)$$
 $\Gamma_{ heta} \cap \mathbb{C}^n \setminus B_{\mathbb{C}^n})(0,R_2) = e^{i heta}\mathbb{R}^n \cap \mathbb{C}^n \setminus B_{\mathbb{C}^n}(0,R_2)$
 $\Gamma_{ heta} = f_{ heta}(\mathbb{R}^n), f_{ heta} : \mathbb{R}^n o \mathbb{C}^n$

injective, $R_0 < R_1 < R_2$.

Lemmas

Lemma

 Γ_{θ} is totally real if and only if $\det(\partial_x f_{\theta}) \neq 0$. In particular, it is totally real for $f_{\theta}(x) = x + i\partial_x F_{\theta}$ where F_{θ} is convex.

Exercise

Prove the above lemma.

Lemma

Every $u \in C^{\infty}(M)$ has an almost analytic extension \tilde{u} . Furthermore, if \tilde{P} is a holomorphic differential operator near M, then it defines a differential operator P_M on M such that $P_M(u) = \tilde{P}(\tilde{U})$.

Complex Scaling Operator

Let P be a black box Hamiltonian with P equal to the Laplacian outside $B(0, R_0)$ defined on a Hilbert space $\mathcal{H}_{R_0} \oplus L^2(\mathbb{C} \setminus B(R_0))$. Define

$$\mathcal{H}_{ heta} = \mathcal{H}_{R_0} \oplus L^2(\Gamma_{ heta} \setminus B(0, R_0))$$
 $D_{ heta} = \{u \in \mathcal{H}_{ heta} : \chi u \in \mathcal{D}, (1 - \chi)u \in H^2(\Gamma_{ heta})\}$
 $P_{ heta}u = P(\chi u) + \Delta_{ heta}((1 - \chi)u)$
 $\Delta_{ heta} = \Delta_{\Gamma_{ heta}}$

What is Δ_{θ} ?

$$-\Delta_{\theta} = -\partial_{z} \cdot \partial_{z}$$

$$z = x + i\partial_{x}F_{\theta}(x)$$

$$\frac{\partial}{\partial z} = \frac{\partial x}{\partial z}\frac{\partial}{\partial x} = (I + i\partial_{x}^{2}F_{\theta}(x))^{-1}\frac{\partial}{\partial x}$$

$$-\Delta_{\theta} = (I + i\partial_{x}^{2}F_{\theta}(x))^{-1}\partial_{x} \cdot (I + i\partial_{x}^{2}F_{\theta}(x))^{-1}\partial_{x}$$

Lemma

 $-\Delta_{\theta}$ is elliptic of order 2, or in other words:

$$|\xi|^2/C \le \sigma(\Delta_\theta) \le |\xi|^2/C$$

Comment on proof in the book: note that for x large enough $f_{\theta}(x) = x + e^{i\theta}x$ so $\partial_x^2 F_{\theta}$ is bounded.

Resolvent of Δ_{θ}

Exercise (Exercise 4.8)

Show that $-\Delta_{\theta} - \lambda^2 : H^2(\Gamma) \to L^2(\Gamma)$ is a Fredholm operator if $\text{Im}(e^{i\theta}\lambda) > 0$.

Hint: invert $e^{-2i\theta}\Delta - \lambda^2 = e^{-2i\theta}(\Delta - (e^{-i\theta}\lambda)^2)$ and use ellipticity of Δ_{θ} . Free resolvent of the Laplacian:

$$R_0(\lambda, x, y) = \frac{e^{i\lambda|x-y|}}{|x-y|^{n-2}} P_n(\lambda|x-y|)$$

We want to define

$$R_{\theta}(\lambda, x, y) = \frac{e^{i\lambda}((x-y)\cdot(x-y))^{1/2}}{((x-y)\cdot(x-y))^{n-2/2}} P_n(\lambda((x-y)\cdot(x-y))^{1/2})$$

Defining the Square Root

the function $z\mapsto \sqrt{z}$ has a branch point at 0. Want a branch cut along the negative real ray (the one that gives the principle square root). Hence

Lemma

For $0 \le \theta < \frac{\pi}{2}$, $z, w \in \Gamma_{\theta}$, $(z - w) \cdot (z - w) = 0 \implies z = w$ and the principle square root is well defined for $\sqrt{(z - w) \cdot (z - w)}$ and satisfies

$$Im, Re((z-w)\cdot(z-w)) \geq 0$$

Comment on proof: The identity

$$f(x) - f(y) = \int_0^1 f(tx + (1-t)y)dt$$

("Taylor's integral remainder theorem") follows from the fundamental theorem of calculus.

Resolvent

Theorem

Define

$$R_{\theta}(\lambda)\varphi(x) = \int_{-\infty}^{\infty} R_{\theta}(\lambda, x, y)\varphi(y)det(I + i\partial^2 F_{\theta}(y))dy.$$

Then $R_{\theta}: H^2(\Gamma) \to L^2(\Gamma)$ is the two-sided inverse of $\Delta_{\theta} - \lambda^2$. Moreover, for $\delta > 0$, $Im(\lambda) > \delta Re(\lambda) \ge 0$

$$R_{\theta}(\lambda) = O_{\delta}(Im(\lambda)^{-2}) : L^{2}(\Gamma) \to L^{2}(\Gamma).$$

We will show later that $R_{\theta}(\lambda)$ is a two sided inverse for $C_c^{\infty}(\Gamma)$ functions. Assuming that, we show that it is true for $R_{\theta}(\lambda): L^2(\Gamma) \to L^2(\Gamma)$. Then by elliptic regularity and arguing as before, we have the desired result.

Estimates for $P_n(x)/x^{n-2}$ and $e(i\lambda x)$

First, we estimate $P_n(x)/x^{n-2}$: P_n is degree $\frac{n-3}{2}$ so we get an estimate

$$|\zeta^{2-n}P_n(\lambda\zeta)| \lesssim n\zeta^{2-n}(1+(\lambda\zeta)^{(n-3)/2})$$

To estimate $e(i\lambda x)$, we estimate $\text{Re}(i\lambda x)$: Let $\delta = \frac{\text{Im}(e^{i\theta}\lambda)}{|\lambda|}$. Because $\Gamma_{\theta} \cap \mathbb{C}^n \setminus B(0,R_2) = e^{i\theta}\mathbb{R}^n \setminus B(0,R_2)$, we have

$$Re((z-w)\cdot(z-w))^{1/2} = Re(i\lambda e^{i\theta} + O((1+|w|+|z|)^{-1}))|w-z|$$

and that is equal to

$$-\text{Im}(e^{i\theta}\lambda)(1+O(\delta^{-1}(1+|w|+|z|)^{-1}))|w-z|$$

R_{θ} is bounded

$$\int_{\Gamma_{\theta}} |R(\lambda, z, w)| |dw| \lesssim \int_{|z-w| \ge C} \frac{e^{-|z-w|/C}}{|z-w|^{(n-1)/2}} \lesssim \int_{C}^{\infty} e^{-r/C} r^{(n-1)/2} dt$$

$$< \infty$$

Then by Schur's lemma, R_{θ} is bounded. Hence by Elliptic regularity,

$$\|R_{\theta}\|_{H^{2}} \lesssim \|R_{\theta}\|_{L^{2}} + \|\Delta_{\theta}R_{\theta}\|_{L^{2}} \lesssim \|R_{\theta}\|_{L^{2}} + \|Id + \lambda^{2}R_{\theta}\|_{L^{2}} \lesssim \|R_{\theta}\|_{L^{2}}$$

R_{θ} is a two-sided inverse on C_c^{∞}

Lemma

Let \tilde{u} and \tilde{v} be almost analytic extensions of u and v compactly supported smooth functions. Then

$$\int_{\Gamma_{\theta}} \partial_{z_{j}} \tilde{u}(x) v(x) dx = -\int_{\Gamma_{\theta}} u(x) \partial_{z_{j}} \tilde{v}(x) dx$$

$$\partial_{z_j} \tilde{u} dz_1 \wedge dz_2 \wedge \cdots \wedge dz_n = (-1)^{j-1} d(\tilde{u} dz_1 \wedge \cdots \wedge \hat{d}z_j \wedge \cdots \wedge dz_n)$$

$$-\sum_{k=1}^n \bar{\partial}_{z_k} \tilde{u} d\bar{z}_k \wedge \cdots \wedge dz_n$$

the latter term is 0 on Γ_{θ} . Hence

$$\int_{\Gamma_0} v \partial_{z_j} u dz = (-1)^{j-1} \int_{\Gamma_0} v du = -(-1)^{j-1} \int_{\Gamma_0} u dv = -\int_{\Gamma_0} u \partial_{z_j} v dz.$$

R_{θ} is a two-sided inverse

By integration by parts $\int v\Delta_{\theta}u = \int u\Delta_{\theta}v$. Hence, it suffices to show

$$\begin{split} &\int_{\Gamma_{\theta}} (\Delta_{z} - \lambda^{2}) R_{\theta}(\lambda, z, w) \varphi(w) dw = \varphi(z) \\ &\int_{\Gamma_{\theta}} (\Delta_{w} - \lambda^{2}) R_{\theta}(\lambda, z, w) \varphi(w) dw = \varphi(z). \end{split}$$

Since $\Delta_z R_\theta = \Delta_w R_\theta$, it suffices to prove the first identity. Since $R_\theta = R_0$ for z, w in \mathbb{R}^n and $\Delta_z = -\sum \partial_{z_j}^2$, $(\Delta_z - \lambda^2) R_\theta(\lambda, z, w) = 0$ for $z \neq w$ in \mathbb{R}^n . Since $R_\theta(\lambda, z, w)$ is analytic away from the diagonal, it follows that $(\Delta_z - \lambda^2) R_\theta(\lambda, z, w) = 0$

R_{θ} two-sided inverse.

Exercise

If u is a distribution such that $|u(\phi)| \lesssim \sum_{|\alpha| \leq k} \sup |\partial^{\alpha} \phi|, \phi \in C_{c}^{k}(K)$ with K compact and $\sup(u) = \{y\}$, then $u(\phi) = \sum_{\alpha} c_{\alpha} \partial^{\alpha} \phi(y)$ for $c \in L^{\infty}$.

As $R_{\theta}(\lambda, z, w)$ is a smooth family of distributions. Hence

$$((\Delta_{\theta})_{z} - \lambda^{2})R_{\theta}(\lambda, z, w) = \sum_{|\alpha| \leq k} c_{\alpha}\partial^{\alpha}\delta(z).$$

We claim that $z\mapsto \int_{\Gamma_\theta} R_\theta(\lambda,z,w)\varphi(w)dw$ is can be holomorphically continuied in a neighborhood of Γ_θ (where φ is a rapidly decreasing holomorphic function). To see this, we have

$$\int_{\Gamma_{\theta}} R_{\theta}(\lambda, z, w) \varphi(w) dw$$

for
$$\varphi(z) = \exp(-e^{-2i\theta}z \cdot z)$$
.

R_{θ} two-sided inverse.

Then by Cauchy's theorem,

$$\begin{split} \int_{\Gamma_{\theta}} R_{\theta}(\lambda, z, w) \varphi(w) dw &= \int_{-z+\Gamma_{\theta}} R_{\theta}(\lambda, w, 0) \varphi(z+w) dw \\ &= \int_{\Gamma_{\theta}} R_{\theta}(\lambda, w, 0) \varphi(z+w) dw. \end{split}$$

(both Γ_{θ} and $-z + \Gamma_{\theta}$ pass through 0) Hence,

$$z \mapsto \int_{\Gamma_{\theta}} R_{\theta}(\lambda, z, w) \varphi(w) dw$$

has a holomorphic continuation and in particular, $\Delta_{\theta} - \lambda^2$ of it is holomorphic. As $\Delta_{\theta} - \lambda^2$ of it is the delta function on \mathbb{R}^n , it follows that it is the δ function everywhere.

General P_{θ}

Theorem

Let P_{θ} be a black box Hamiltonian in Δ_{θ} . If $Im(\lambda e^{i\theta}) > 0$, then $P_{\theta} - \lambda^2$ is Fredholm with index 0. In particular, the spectrum of P_{θ} is decrete in $C \setminus e^{i\theta}[0,\infty)$

The spectrum of P_{θ} away from $\mathbb{C} \setminus e^{-2i\theta}[0,\infty)$ doesn't depend on the curve Γ_{θ} or θ :

Theorem

Let λ be a complex number with $Im(\lambda e^{i\theta}) > 0$. Then

$$m_{P_{\theta}}(\lambda) = m_{P}(\lambda).$$

Applications

Theorem (Smoothness of Resonances)

Suppose P(s) is a family of black box hamiltonians and $\lambda \in \mathbb{R} \setminus 0$ is a simple eigenvalue of P(0). Let u be an eigenvector corresponding to λ . Then there exists $s_1, \epsilon_1 > 0$ and

$$u(s) \in C^{\infty}((-s_1, s_1), \mathcal{D}_{loc}), \lambda(s) \in C^{\infty}((-s_1, s_1); \mathbb{C}), u(0) = \lambda(0)$$

and $\lambda(s)$ is the unique resonance of P(s) in $D(\lambda, \epsilon_1)$ and u(s) is the corresponding eigenvector.

Theorem

The generic potential $V \in C^{\infty}(B(0,R_1) \setminus B(0,R_0))$ has all its resonances λ of P+V (where P is a black box Hamiltonian) with $0 > arg(\lambda) > -\frac{\pi}{2}$ simple.