Lección 5 Sistemas lineales.

Ecuaciones Diferenciales I Apuntes de Rafael Ortega Ríos transcritos por Gian Nicola Rossodivita

Sistemas lineales 1

Estudiaremos ecuaciones del tipo

$$x' = A(t) x + b(t),$$

donde la incógnita
$$x=x(t)$$
, es un vector $x=\begin{pmatrix} x_1\\x_2\\\vdots\\x_N \end{pmatrix} \in \mathbb{R}^N$ y los coeficientes $A:I\to\mathbb{R}^{N\times N}$ $h:I\to\mathbb{R}^N$ son funciones continuas

cientes $A:I\to\mathbb{R}^{N\times N},\,b:I\to\mathbb{R}^N$ son funciones continuas.

Se supone que I es un intervalo abierto, $A(t) = (a_{ij}(t))_{1 \leq i,j \leq N}$ es una matriz en $\mathbb{R}^{N \times N}$ y $b(t) = (b_i(t))_{1 \leq i \leq N}$ es un vector en \mathbb{R}^N . La continuidad de A y b es equivalente a la continuidad de los coeficientes $a_{ij}, b_i : I \to \mathbb{R}^N$. Veamos un ejemplo:

Un sistema de dos muelles

Suponemos que la posición de equilibrio natural de los dos muelles es

de manera que el muelle 1 está comprimido y el muelle 2 está dilatado. Hay una fuerza externa F(t) que actúa sobre m_2 . Denotamos por $y_1(t)$ a la diferencia entre la posición de m_1 y ε_1 (en el dibujo $y_1(t) < 0$) y por $y_2(t)$ la diferencia entre la posición de m_2 y ε_2 (en el dibujo $y_2(t) > 0$)

Sobre m_1 actúan los dos muelles

Por la segunda Ley de Newton,

$$m_1 y_1''(t) = -k_1 y_1(t) + k_2 (y_2(t) - y_1(t)).$$

Sobre m_2 actúan el segundo muelle y la fuerza externa

$$m_1 y_2''(t) = -k_2 (y_2(t) - y_1(t)) + F(t).$$

Hemos llegado al sistema lineal

$$\begin{cases} m_1 y_1''(t) = -k_1 y_1(t) + k_2 (y_2(t) - y_1(t)) \\ m_1 y_2''(t) = -k_2 (y_2(t) - y_1(t)) + F(t) \end{cases}$$

Todavía no está en el formato inicial porque se trata de un sistema de segundo orden. Para pasarlo a primer orden declaramos incógnitas tanto las posiciones como las velocidades,

$$x_1 = y_1, x_2 = y'_1, x_3 = y_2, x_4 = y'_2.$$

Entonces

$$\begin{cases} x'_1 &= x_2 \\ x'_2 &= -\frac{k_1}{m_1} x_1 + \frac{k_2}{m_1} (x_3 - x_1) \\ x'_3 &= x_4 \\ x'_4 &= \frac{k_2}{m_2} (x_3 - x_1) + \frac{1}{m_2} F(t), \end{cases}$$

N=4, con coeficientes

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -\frac{k_1 + k_2}{m_1} & 0 & \frac{k_2}{m_1} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_2}{m_2} & 0 & -\frac{k_2}{m_2} & 0 \end{pmatrix}, \qquad b(t) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{m_2} F(t) \end{pmatrix}.$$

Para determinar una solución de manera única debemos prescribir la posición y velocidad de ambos muelles en un instante fijado.

2 Teorema de existencia y unicidad

Volviendo al caso general consideraremos el problema de valores iniciales

$$x' = A(t) x + b(t), \quad x(t_0) = x_0,$$
 (1)

donde $t_0 \in I$, $x_0 \in \mathbb{R}^N$ están dados.

Teorema. En las condiciones anteriores el problema (1) tiene una única solución $x \in C^1(I, \mathbb{R}^N)$.

Comentamos:

- (1) Es un resultado **global:** la solución está definida en el mismo intervalo I que los coeficientes.
- (2) En la lección anterior probamos el teorema para N=1.

(3) El teorema de existencia y unicidad para la ecuación de orden k es un **corolario**: dado el problema

$$\begin{cases} y^{(k)} + a_{k-1}(t)y^{(k-1)} + \dots + a_1(t)y' + a_0(t)y = \beta(t) \\ x(t_0) = \gamma_0, \ x'(t_0) = \gamma_1, \dots, x^{(k-1)}(t_0) = \gamma_{k-1} \end{cases}$$

definimos la nueva incógnita (vectorial)

$$x = \begin{pmatrix} y \\ y' \\ \vdots \\ y^{(k-1)} \end{pmatrix}$$

y llegamos al problema equivalente (1) con

$$N = k, \quad A(t) = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 \\ -\alpha_0(t) & -\alpha_1(t) & -\alpha_2(t) & \cdots & -\alpha_{k-1}(t) \end{pmatrix},$$

$$b(t) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \beta(t) \end{pmatrix}, \quad x_0 = \begin{pmatrix} \gamma_0 \\ \gamma_1 \\ \vdots \\ \gamma_{k-1} \end{pmatrix}.$$

Emprendemos el largo e interesante camino que nos llevará a la demostración.

3 Preliminares

3.1 Normas matriciales

Trabajaremos con una norma fija en \mathbb{R}^N , $||\cdot||$, y definiremos en el espacio vectorial de las matrices cuadradas $\mathbb{R}^{N\times N}$ la norma matricial asociada (también denotada por $||\cdot||$). Dada $A \in \mathbb{R}^{N\times N}$,

$$||A|| = \max\{||Ax|| : ||x|| = 1\}.$$

En primer lugar observamos que esta cantidad siempre existe porque estamos buscando el máximo de la función continua $x \in \mathbb{R}^N \mapsto ||Ax||$ en el conjunto compacto $\{x \in \mathbb{R}^N : ||x|| = 1\}$.

Ejemplo. N=2, Norma Euclídea en \mathbb{R}^2 , $||x||=\sqrt{x_1^2+x_2^2}$

$$A = \left(\begin{array}{cc} 2 & 0 \\ 0 & 1/2 \end{array}\right).$$

La circunferencia unidad $S^1=\{x\in\mathbb{R}^2:||x||=1\}$ se transforma por la aplicación lineal y=Ax en la elipse $\varepsilon=\left\{y\in\mathbb{R}^2:\frac{1}{4}y_1^2+4y_2^2=1\right\}$.

Entonces ||A||=2 ya que $(\pm 2,0)$ son los puntos de ε más lejanos del origen. Con la definición anterior se demuestra que $||\cdot||$ es una norma en $\mathbb{R}^{N\times N}$ con tres propiedades extra:

- i) ||I|| = 1, I matriz identidad
- ii) $||Ax|| \leq ||A|| \, ||x||, \ A \in \mathbb{R}^{N \times N}, \, x \in \mathbb{R}^N$
- iii) $||AB|| \le ||A|| \, ||B||, \ A, B \in \mathbb{R}^{N \times N}.$

3.2 Integral vectorial

Dada una función continua $f:[a,b]\to\mathbb{R}^N,\,f=f(t),$ con coordenadas $f=\begin{pmatrix}f_1\\\vdots\\f_N\end{pmatrix},$ definimos su integral como el vector de \mathbb{R}^N

$$\int_{a}^{b} f(t) dt = \begin{pmatrix} \int_{a}^{b} f_{1} dt \\ \cdots \\ \int_{a}^{b} f_{N} dt \end{pmatrix}.$$
Ejemplo. $f = \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, t \in [0, \pi], \int_{a}^{b} f(t) dt = \begin{pmatrix} 0 \\ 2 \end{pmatrix}.$

Como se ha hecho una definición por coordenadas, la integral vectorial hereda la linealidad. Además, cumple dos propiedades más delicadas

i)
$$A\left(\int_a^b f(t) dt\right) = \int_a^b A f(t) dt$$
, si $A \in \mathbb{R}^{N \times N}$

ii)
$$\left| \left| \int_a^b f(t) dt \right| \right| \le \int_a^b \left| \left| f(t) \right| \right| dt$$
.

(En esta desigualdad la primera integral es vectorial y la segunda es escalar).

3.3 Convergencia uniforme

Dado un intervalo Iy una función $\varphi:I\to\mathbb{R}^N,$ definimos

$$||\varphi||_{\infty} = \sup_{t \in I} ||\varphi(t)||.$$

La cantidad $||\varphi||_{\infty}$ en ocasiones tomará el valor infinito.

Ejemplo.
$$I =]0,1[, \varphi(t) = \begin{pmatrix} t \\ 2t^2 \end{pmatrix}, \psi(t) = \begin{pmatrix} \frac{1}{t} \\ e^t \end{pmatrix}.$$

Si usamos la norma Euclídea en \mathbb{R}^2 ,

$$||\varphi||_{\infty} = \sup_{t \in I} \sqrt{t^2 + 4t^4} = \sqrt{5}, \quad ||\psi||_{\infty} = \sup_{t \in I} \sqrt{\frac{1}{t^2} + e^{2t}} = \infty.$$

Dada una sucesión de funciones $f_n: I \to \mathbb{R}^N$, diremos que $\{f_n\}$ converge uniformemente a $f: I \to \mathbb{R}^N$ si se cumple

$$||f_n - f||_{\infty} \longrightarrow 0.$$

Para entender geométricamente esta definición dibujamos la gráfica de f y un tubo de radio ε alrededor de dicha gráfica,

entonces $f_n \to f$ c.u. si y solo si para cada ε todas las gráficas de f_n salvo un número finito están dentro del tubo. La convergencia uniforme tiene dos propiedades muy útiles

- i) Va bien con las integrales. Si $[a,b]\subset I,\, f_n\to f$ c.u. en $I\Rightarrow \int_a^b f_n\to \int_a^b f$
- ii) Va bien con la continuidad. Si $f_n: I \to \mathbb{R}^N$ es continua para cada $n \text{ y } f_n \to f$ c.u. en $I \Rightarrow f$ es continua en I.

Ejercicio (la c.u. no va bien con las derivadas). Prueba que $f_n(t) = \frac{\operatorname{sen}(nt)}{n}$ c.u. a $f(t) \equiv 0$ en $I = \mathbb{R}$ mientras que $f'_n(t)$ no tiene límite en $t = \frac{\pi}{2}$.

El **criterio de Weierstrass** permite probar que una sucesión $\{f_n\}$ converge uniformemente de manera sencilla.

Supongamos que $\sum_{n\geq 0} M_n$ es una serie convergente de números positivos¹ y se cumple $||f_{n+1}(t) - f_n(t)|| \leq M_n$ para cada $t \in I$. Entonces $\{f_n\}$ es c.u. en I a alguna función $f: I \to \mathbb{R}^N$.

Ejemplo. La sucesión $f_n(t) = 1 + t + \frac{t^2}{2!} + \cdots + \frac{t^n}{n!}$ es c.u. en I =]-20, 20[porque

$$|f_{n+1}(t) - f_n(t)| = \frac{|t|^{n+1}}{(n+1)!} \le \frac{20^{n+1}}{(n+1)!}$$

y la serie $\sum \frac{20^{n+1}}{(n+1)!}$ converge (criterio del cociente).

4 Demostración del Teorema

Vamos a probar la existencia y unicidad de solución. Para ello comenzamos con una versión menos fuerte del teorema, en la que imponemos la **hipótesis** extra:

 (H_e) El intervalo I tiene longitud finita y existen números $\alpha, \beta > 0$ tales que

$$||A(t)|| \le \alpha$$
, $||b(t)|| \le \beta$, si $t \in I$.

Esquema de la demostración de existencia

- (1) Construcción de soluciones aproximadas $\{x_n\}, x_n: I \to \mathbb{R}^N$
- (2) La sucesión $\{x_n\}$ es c.u. en I
- (3) $x(t) = \lim_{n \to \infty} x_n(t)$ es solución de (1)
- **Paso 1.** Imaginamos por el momento que x(t) es ya solución de (1) e integramos entre t_0 y t

$$x' = A(t) x + b(t), \quad x(t_0) = x_0 \Rightarrow \int_{t_0}^t x'(s) ds = \int_{t_0}^t [A(s) x(s) + b(s)] ds.$$

Por la regla de Barrow aplicada a cada coordenada de x(t),

$$x(t) = x_0 + \int_{t_0}^t [A(s) x(s) + b(s)] ds.$$

¹Importante: M_n es independiente de t

Esta identidad no nos permite calcular x(t), hemos pasado de una ecuación diferencial a una integral, pero las dificultades subsisten. No obstante esta fórmula nos va dar la pista para definir las soluciones aproximadas.

Definimos por recurrencia, la sucesión de funciones $x_n: I \to \mathbb{R}^N$

$$x_0(t) \equiv x_0 \text{ condición inicial}$$

 $x_{n+1}(t) = x_0 + \int_{t_0}^t \left[A(s) x_n(s) + b(s) \right] ds.$

Hemos completado el primer paso pero, antes de seguir con la demostración vamos a calcular estas soluciones aproximadas (**Iterantes de Picard**) en un caso concreto.

Ejemplo. Suponemos A(t) = A matriz constante, $b(t) \equiv 0$

$$x' = Ax , x_0(t_0) = x_0$$

$$x_1(t) = x_0 + \int_{t_0}^t [Ax_0(s)] ds = x_0 + (t - t_0) Ax_0$$

$$x_2(t) = x_0 + \int_{t_0}^t [Ax_1(s)] ds = x_0 + \int_{t_0}^t [Ax_0 + (s - t_0) A^2x_0] ds$$

$$x_2(t) = x_0 + (t - t_0) Ax_0 + \frac{(t - t_0)^2}{2} A^2x_0$$

$$\dots \dots$$

$$x_n(t) = x_0 + (t - t_0) Ax_0 + \frac{(t - t_0)^2}{2!} A^2x_0 + \dots + \frac{(t - t_0)^n}{n!} A^nx_0.$$

Paso 2. Vamos a emplear el criterio de Weierstrass y para ello debemos acotar

$$||x_{n+1}(t) - x_n(t)||$$
. Comenzamos

$$||x_{1}(t) - x_{0}(t)|| = \left| \left| \int_{t_{0}}^{t} \left[A(s) \, x_{0}(s) + b(s) \right] \, ds \right| \right| \leq$$
por la propiedad ii) de la integral vectorial
$$\leq \left| \int_{t_{0}}^{t} ||A(s) \, x_{0}(s) + b(s)|| \, ds \right| \leq$$
por las propiedades de la norma y (H_{e})

$$\leq \left| \int_{t_{0}}^{t} \left[\alpha \, ||x_{0}|| + \beta \right] \, ds \right| \leq \left(\alpha \, ||x_{0}|| + \beta \right) \, |I| := \mathcal{C}$$

$$||x_{2}(t) - x_{1}(t)|| = \left| \left| \int_{t_{0}}^{t} A(s) \, \left[x_{1}(s) - x_{0}(s) \right] \, ds \right| \leq \left| \int_{t_{0}}^{t} \alpha \, ||x_{1}(s) - x_{0}(s)|| \, ds \right|$$

$$\leq \mathcal{C}\alpha |t - t_{0}|$$

$$||x_{3}(t) - x_{2}(t)|| = \left| \left| \int_{t_{0}}^{t} A(s) \, \left[x_{2}(s) - x_{1}(s) \right] \, ds \right| \leq \left| \int_{t_{0}}^{t} \alpha \, ||x_{2}(s) - x_{1}(s)|| \, ds \right|$$

$$\leq \mathcal{C}\alpha^{2} \left| \int_{t_{0}}^{t} |s - t_{0}| \, ds \right| = \mathcal{C}\alpha^{2} \frac{|t - t_{0}|^{2}}{2}.$$

En general

$$||x_{n+1}(t) - x_n(t)|| \le C\alpha^n \frac{|t - t_0|^n}{n!}, t \in I.$$

La serie $\sum \alpha^n \frac{|I|^n}{n!}$ converge (criterio del cociente), donde |I| denota la longitud de I. Por tanto $\{x_n\}$ es c.u. en I.

Paso 3. Definimos $x(t) = \lim_{n \to \infty} x_n(t)$ y pretendemos probar que x(t) es solución de (1). Para ello comenzamos observando que x(t) es continua en I. Esto es cierto porque la c.u. y la continuidad van bien y las iterantes de Picard $x_n(t)$ son continuas (T^a fundamental del Cálculo).

A continuación pasamos al límite $(n \to \infty)$ en la definición iterativa de x_n ,

$$x_{n+1}(t) = x_0 + \int_{t_0}^t A(s)x_n(s) ds + \int_{t_0}^t b(s) ds.$$

$$\downarrow \qquad \qquad \downarrow$$

$$x(t) \qquad \qquad \int_{t_0}^t A(s)x(s) ds$$

El límite $\int_{t_0}^t A(s) x_n(s) ds \longrightarrow \int_{t_0}^t A(s) x(s) ds$ se justifica porque la integral va bien con la convergencia uniforme.

Ejercicio. Prueba que la sucesión de funciones $A(t)x_n(t)$ converge uniformemente a A(t)x(t) en I.

Así la función x(t) cumple

$$x(t) = x_0 + \int_{t_0}^t A(s) x(s) ds + \int_{t_0}^t b(s) ds.$$

Las funciones A(t) x(t) y b(t) son continuas y el teorema del Cálculo implica que x(t) es C^1 con

$$x'(t) = A(t) x(t) + b(t).$$

Como $x(t_0) = x_0$ hemos probado que (1) tiene solución definida en I.

Unicidad

Comenzamos con un resultado preliminar sobre la desigualdad integral

$$(\star)$$
 $f(t) \le \alpha \left| \int_{t_0}^t f(s) ds \right|, \text{ si } t \in J,$

donde Jes un intervalo cualquiera, $t_0\in J,\;\alpha>0$ y $f:J\to [0,\infty[$ es continua.

Lema. En las condiciones anteriores la función f cumple

$$f(t) = 0$$
 si $t \in J$.

Demostración. Suponemos primero que J es compacto. Entonces la cantidad $M = \max_{t \in J} f(t)$ existe. De la desigualdad (\star) ,

$$0 \le f(t) \le M\alpha |t - t_0| \text{ si } t \in J.$$

Si introducimos esta estimación en (\star) ,

$$0 \le f(t) \le \alpha \left| \int_{t_0}^t M\alpha |s - t_0| ds \right| = M\alpha^2 \frac{|t - t_0|^2}{2} \quad \text{si } t \in J.$$

Repitiendo el proceso n veces.

$$0 \le f(t) \le M\alpha^n \frac{|t - t_0|^n}{n!} \quad \text{si } t \in J.$$

Como la sucesión $\alpha^{n} \frac{|t-t_0|^n}{n!}$ tiende a cero, llegamos a la conclusión haciendo n tener a infinito.

Supongamos ahora que J no es compacto. Entonces podemos expresarlo como una unión expansiva,

$$J = \cup_{n \ge 0} J_n,$$

con J_n intervalo compacto, $t_0 \in J_0 \subset J_1 \subset \cdots \subset J_n \subset \cdots$ La desigualdad (\star) se cumple en cada J_n , por tanto $f \leq 0$ en J_n . Como n es cualquiera, $f \leq 0$ en J.

Después de este lema estamos preparados para probar la unicidad de (1) si se cumple la hipótesis adicional (H_e) . Dadas dos soluciones x(t), y(t) del problema (1) definidas en I, debemos probar que coinciden. Si integramos la ecuación entre t_0 y t obtenemos

$$x(t) = x_0 + \int_{t_0}^t [A(s) x(s) + b(s)] ds$$

$$y(t) = x_0 + \int_{t_0}^t [A(s) y(s) + b(s)] ds.$$

Restando estas identidades,

$$x(t) - y(t) = \int_{t_0}^t A(s)[x(s) - y(s)]ds.$$

Si tomamos normas,

$$||x(t) - y(t)|| \le \left| \int_{t_0}^t ||A(s)|| \, ||x(s) - y(s)|| ds \right| \le \alpha \left| \int_{t_0}^t ||x(s) - y(s)|| ds \right|.$$

Observamos que la función continua f(t) = ||x(t) - y(t)|| cumple la desigualdad (\star) y el lema es aplicable. Entonces ||x(t) - y(t)|| = 0 si $t \in I$. Es decir, x(t) = y(t) si $t \in I$.

Hemos probado el teorema con la hipótesis adicional (H_e) , que ahora vamos a eliminar considerando una sucesión expansiva de intervalos. Escribimos I en la forma

$$I = \bigcup_{n=1}^{\infty} I_n,$$

donde cada I_n es un intervalo abierto y acotado y se cumple $\overline{I_n} \subset I_{n+1}, t_0 \in I_1$

Los intervalos $\overline{I_n}$ son compactos y así las cantidades

$$\alpha_n = \max_{t \in \overline{I_n}} ||A(t)||, \quad \beta_n = \max_{t \in \overline{I_n}} ||b(t)||$$

son finitas. La hipótesis (H_e) se cumple en cada intervalo I_n .

Ejemplo:
$$x' = \frac{1}{t}x + t^2$$
, $x(1) = 2$
 $I =]0, \infty[$, $I_n =]\frac{1}{n+1}, n+1[$, $\alpha_n = n+1, \beta_n = (n+1)^2$.

Unicidad sin (H_e)

Supondremos que x(t), y(t) son dos soluciones de (1) definidas en I. La restricción de x(t), y(t) al intervalo I_n es solución del mismo problema de valores iniciales en I_n . Como aquí se cumple (H_e) deducimos que x(t) = y(t) si $t \in I_n$. Como n es arbitrario, x(t) = y(t) si $t \in I$.

Existencia sin (H_e)

Aplicamos el Teorema de existencia con (H_e) a cada intervalo I_n y obtenemos una solución del p.v.i, $x_n(t)$ definida en I_n Por la unicidad sabemos que si n < m entonces

$$x_n(t) = x_m(t)$$
 para $t \in I_n$.

Esta última propiedad permite definir la función

$$x: I \to \mathbb{R}^N, x(t) = x_n(t) \text{ si } t \in I_n.$$

Dado $t \in I$ podemos encontrar un n manera que x y x_n coincidan en un entorno de t. Entonces x es derivable en t y

$$x'(t) = x'_n(t) = A(t) x_n(t) + b(t) = A(t) x(t) + b(t).$$

Deducimos finalmente que $x \in C^1(I, \mathbb{R}^N)$ cumple (1).

Ejercicio. Dadas funciones $f, g: I \to \mathbb{R}^N$, se supone que f es derivable en $t_* \in I$ y que f(t) = g(t) si $t \in [t_* - \delta, t_* + \delta]$. Demuestra que g es también derivable en t_* con $f'(t_*) = g'(t_*)$. (La derivada es local)

5 Sistemas Lineales Homogéneos

Consideramos el sistema

$$x' = A(t)x$$

con $A:I\to\mathbb{R}^{N\times N}$ continua y lo asociamos al operador diferencial

$$L: V \to W, \quad L[x] = x' - Ax$$

donde V y W son los espacios vectoriales $V = C^1(I, \mathbb{R}^N)$, $W = C^1(I, \mathbb{R}^N)$. Como L es lineal, identificamos el conjunto de soluciones con el núcleo; así

$$\mathcal{Z} = \operatorname{Ker} L$$
, es un espacio vectorial de V .

Si fijamos un instante inicial $t_0 \in I$, la correspondencia que asigna a cada solución su condición inicial es un isomorfismo

$$\Phi_{t_0}: I \to \mathbb{R}^N, \ \Phi_{t_0}(x) = x(t_0).$$

Ejercicio. Demuestra que Φ_{t_0} es un isomorfismo.

Como $\mathcal{Z}\cong\mathbb{R}^N$ las bases tendrán N soluciones. La prueba de la siguiente proposición queda como ejercicio.

Proposición 1. Dadas $\varphi_1, \ldots, \varphi_N \in \mathcal{Z}$, son equivalentes:

- (i) $\varphi_1, \ldots, \varphi_N$ base de \mathcal{Z}
- (ii) $\det (\varphi_1(t)| \dots |\varphi_N(t)) \neq 0$ para cada $t \in I$
- (iii) Existe $t_0 \in tal\ que\ det(\varphi_1(t_0)|\ldots|\varphi_N(t_0)) \neq 0$.

Veamos algunos **ejemplos** de lo anterior:

1. Un sistema triangular

$$A(t) = \begin{pmatrix} 1 & 1 \\ 0 & \frac{1}{t} \end{pmatrix}, \quad I =]0, \infty [\quad \begin{cases} x_1' = x_1 + x_2 \\ x_2' = \frac{1}{t}x_2 \end{cases}$$

Resolvemos la segunda ecuación

$$x_2' = \frac{1}{t}x_2 \Rightarrow x_2(t) = c_2t, \ c_2 \in \mathbb{R}.$$

Ahora podemos interpretar la primera ecuación como una lineal completa $x'_1 = x_1 + c_2t$, que admite la solución particular $x_1(t) = -c_2t - c_2$. Entonces

$$x_1(t) = c_1 e^t - c_2 t - c_2.$$

Ya tenemos la solución general del sistema

$$x(t) = \begin{pmatrix} c_1 e^t - c_2 t - c_2 \\ c_2 t \end{pmatrix}, c_1, c_2 \in \mathbb{R}$$

y con las elecciones $c_1=1,\,c_2=0$ y $c_1=0,\,c_2=1,$ obtenemos las soluciones

$$\varphi_1(t) = \begin{pmatrix} e^t \\ 0 \end{pmatrix}, \ \varphi_2(t) = \begin{pmatrix} -t - 1 \\ t \end{pmatrix},$$

que forman una base porque

$$\det (\varphi_1(t)|\varphi_2) = t e^t \neq 0 \text{ si } t > 0.$$

2. Coeficientes constantes. Caso I

Suponemos ahora que $A \in \mathbb{R}^{N \times N}$ es una matriz constante con x' = Ax. Si $\lambda \in \sigma(A) \cap \mathbb{R}$ es un valor propio real con vector asociado $v \in \mathbb{R}^N \setminus \{0\}$, $Av = \lambda v$, entonces $x(t) = e^{\lambda t}v$ es una solución del sistema

$$x'(t) = e^{\lambda t} \lambda v = e^{\lambda t} A v = A(e^{\lambda t} v) = Ax(t).$$

Usamos esta observación para resolver el sistema x' = Ax con

$$A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$$
, que tiene la descomposición espectral

$$\sigma(A) = \{\lambda_1 = 4, \ \lambda_2 = -2\}, \ v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

 $Av_i = \lambda_i v_i, i = 1, 2.$ Obtenemos las soluciones

$$\varphi_1(t) = e^{4t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \varphi_2 = e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

y como det $(\varphi_1(t)|\varphi_2(t)) = -2e^{2t} \neq 0$ hemos encontrado una base de \mathcal{Z} . La solución general es

$$x(t) = \begin{pmatrix} c_1 e^{4t} + c_2 e^{-2t} \\ c_1 e^{4t} - c_2 e^{-2t} \end{pmatrix}, c_1, c_2 \in \mathbb{R}.$$

3. Coeficientes constantes. Caso II

En ocasiones una matriz real tendrá valores propios complejos y entonces será conveniente considerar soluciones a valores complejos; es decir,

$$x: \mathbb{R} \to \mathbb{C}^N, x \in C^1, x'(t) = Ax(t)$$

Si llamamos $u, w : \mathbb{R} \to \mathbb{R}^N$ a las partes reales e imaginarias de x = u + iw, obtenemos

$$u'(t) + iw'(t) = x'(t) = Ax(t) = Au(t) + iAw(t).$$

Como A es real, esta identidad equivale a

$$u'(t) = Au(t) \ w'(t) = Aw(t).$$

Es decir, la parte real e y la parte imaginaria de una solución compleja son soluciones reales.

Supongamos ahora que $\lambda \in \sigma(A)$ es un valor propio complejo con vector propio asociado $v \in \mathbb{C}^N \setminus \{0\}$. Entonces $x(t) = e^{\lambda t}v$ es una solución compleja. Usamos esta observaciones para resolver

$$x' = Ax$$
, $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\sigma(A) = \{\lambda_1 = i, \lambda_2 = -i\}$, $v_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ -i \end{pmatrix}$

$$x(t) = e^{it} \begin{pmatrix} 1 \\ i \end{pmatrix}$$
 solución compleja
$$= \begin{pmatrix} \cos t + i \sin t \\ -\sin t + i \cos t \end{pmatrix}.$$
 Tomando parte real e imaginaria

$$\varphi_1(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}, \quad \varphi_2 = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}.$$

En este caso det $(\varphi_1(t)|\varphi_2(t)) = 1$ y hemos encontrado una base de \mathcal{Z} .

Ejercicio. Resuelve este sistema reduciéndolo a una ecuación de segundo orden.

6 Matriz solución y matriz fundamental

Dadas soluciones $\varphi_1, \ldots, \varphi_N \in \mathcal{Z}$, consideramos la función a valores matriciales

$$\Phi: I \to \mathbb{R}^{N \times N}, \ \Phi(t) = (\varphi_1(t)| \dots |\varphi_N(t))$$

y decimos que se trata de una **matriz solución** (m.s.). Es decir, Φ es m.s. si sus columnas son soluciones de x' = A(t) x.

Una m.s. se dice matriz fundamental (m.f.) si cumple

$$\det \Phi(t) \neq 0 \quad \forall t \in I.$$

Las m.f. permiten describir el espacio \mathcal{Z} de forma cómoda,

$$\mathcal{Z} = \{ \Phi(t) \, c : c \in \mathbb{R}^N \}.$$

Para entender esto solo hay que observar la siguiente propiedad del producto de una matriz (descrita por columnas) y un vector,

$$\begin{cases} A = (\alpha_1 | \dots | \alpha_N) \in \mathbb{R}^{N \times N}, \ \alpha_i \in \mathbb{R}^N \\ c = \begin{pmatrix} c_1 \\ \vdots \\ c_N \end{pmatrix} \in \mathbb{R}^N, \ c_i \in \mathbb{R} \end{cases} \Rightarrow Ac = \sum_{i=1}^N c_i \alpha_i.$$

Por tanto $\Phi(t)c = \sum_{i=1}^{N} c_i \varphi_i(t)$.

Hasta ahora hemos pensado que la incógnita x = x(t) del sistema x' = A(t)x era un vector, también es posible pensar que x = x(t) es una matriz $N \times N$. Se habla entonces de solución matricial. Antes de iniciar el estudio de las soluciones matriciales necesitamos algunas propiedades de las **funciones** a valores matriciales

Una función $\Psi: I \to \mathbb{R}^{N \times N}, \ \Psi = \Psi(t), \ \Psi = (\Psi)_{1 \leq i,j \leq N}$ se dice derivable en $t \in I$ si existe el límite

$$\lim_{h \to 0} \frac{1}{h} \left[\Psi(t+h) - \Psi(t) \right] = \Psi'(t).$$

En la definición de este límite se puede emplear cualquier norma matricial porque todas son equivalentes. De hecho, el límite matricial equivale al límite coordenada a coordenada y por eso

 Ψ es derivable en $t \Leftrightarrow \Psi_{ij} : I \to \mathbb{R}$ es derivable en t para cada i, j.

Se cumple

$$\Psi'(t) = (\Psi'(t))_{1 \le i,j \le N}.$$

En otras palabras, estas funciones se derivan coordenada a coordenada. Como consecuencia se heredan las propiedades usuales de la derivada, pero hay sutilezas ligadas al producto que ahora no es conmutativo.

Dadas Φ , $\Psi: I \to \mathbb{R}^{N \times N}$ derivables, se cumple

$$(\Phi \cdot \Psi)' = \Phi' \, \Psi + \Phi \, \Psi'.$$

No es correcto cambiar el orden en estos productos.

La demostración de este resultado es fácil a partir de la siguiente identidad

$$\frac{1}{h} \left[\Phi(t+h) \, \Psi(t+h) - \Phi(t) \, \Psi(t) \right] =
\frac{1}{h} \left[\Phi(t+h) \, \Psi(t+h) - \Phi(t) \, \Psi(t+h) \right] + \frac{1}{h} \left[\Phi(t) \, \Psi(t+h) - \Phi(t) \, \Psi(t) \right].$$

Después de estas definiciones podemos volver a las matrices solución y caracterizarlas como soluciones en sentido matricial.

Lema 2. Dada $\Phi: I \to \mathbb{R}^{N \times N}$ de clase C^1 , son equivalentes:

- (i) $\Phi(t)$ es m.s.
- (ii) $\Phi'(t) = A(t) \Phi(t)$ para cada $t \in I$.

Demostración. Usamos una observación sobre el producto de matrices (la segunda descrita por columnas):

$$\left. \begin{array}{l} A, B \in \mathbb{R}^{N \times N} \\ B = (B_1 | \dots | B_N) \end{array} \right\} \Rightarrow A B = (A B_1 | \dots | A B_N) \, .$$

La matriz solución $\Phi = (\Phi_1|\dots|\Phi_N)$ cumple $\Phi'(t) = (\Phi'_1(t)|\dots|\Phi'_N(t))$ y $A(t) \Phi(t) = (A(t) \Phi_1(t)|\dots|A(t) \Phi_N(t))$. Ahora es fácil deducir la equivalencia de (i) y (ii).

A la hora de resolver el problema de valores iniciales

$$x' = A(t)x, \quad x(t_0) = x_0$$

es útil disponer de una m.f. que cumpla $\Phi(t_0) = I$ (matriz identidad). Entonces la solución se expresa como $x(t) = \Phi(t)x_0$. Vamos a ver que siempre es posible construir una m.f. principal en t_0 . Para ello necesitamos un resultado preliminar.

Lema 3. Sea $\Phi(t)$ m.f. $y \in \mathbb{R}^{N \times N}$ una matriz constante con $\det C \neq 0$. Entonces $\Phi(t)C$ también es m.f.

Demostración.

$$\begin{array}{cccc} (\Phi(t)\,C)' & \underbrace{=}_{\text{Derivada del producto}} & = \Phi'(t)\,C + \Phi(t) \underbrace{C'}_{0} \underbrace{=}_{\Phi\,\text{m.s.}} (A(t)\,\Phi(t)) \; C \\ & \underbrace{=}_{\text{producto asociativo}} & A(t)\;(\Phi(t)\,C) \Rightarrow \Phi(t)\cdot C \; \text{m.s.} \end{array}$$

$$\det (\Phi(t) C) = \det \Phi(t) \det C \neq 0.$$

Dada una m.f. $\Phi(t)$ tomamos $C = \Phi(t_0)^{-1}$. Entonces $\Phi(t) \Phi(t_0)^{-1}$ es m.f. principal en t_0 .

Acabamos esta sección con una nueva versión de la **Fórmula de Jacobi-Liouville:**

Si $\Phi(t)$ es m.s. de x' = A(t)x, dados $t, t_0 \in I$, se cumple

$$\det \Phi(t) = \det \Phi(t_0) e^{\int_{t_0}^t \operatorname{tr} A(s) \, ds},$$

donde tr es la traza de la matriz A; es decir

$$\operatorname{tr} A = a_{11} + a_{22} + \dots + a_{NN}.$$

La demostración se deja como ejercicio. El determinante se debe derivar por filas.

7 La ecuación completa: fórmula de variación de constantes

La noción de m.f. nos va a permitir encontrar una fórmula para la solución de la ecuación completa. Consideramos

$$x' = A(t)x + b(t)$$

con $A:I\to\mathbb{R}^{N\times N},\,b:I\to\mathbb{R}^N$ continuas y suponemos que conocemos una m.f. $\Phi(t)$ del sistema homogéneo x'=A(t)x. Sabemos que las soluciones

del sitema homogéneo son de la forma $\Phi(t)$ c con c es un vector constante y vamos a buscar una solución de la ecuación completa del tipo

$$x(t) = \Phi(t)c(t)$$

donde $c: I \to \mathbb{R}^N$ es la nueva incógnita.

La fórmula de la derivada del producto también es válida para el caso de matriz por vector (**Ejercicio**) y se obtiene

$$x'(t) = \Phi'(t)c(t) + \Phi(t)c'(t).$$

Como Φ es m.s., $\Phi' = A\Phi$, lo que implica

$$x'(t) = [A(t)\Phi(t)]c(t) + \Phi(t)c'(t).$$

Por otra parte al ser x(t) solución,

$$x'(t) = A(t) \left[\Phi(t)c(t) \right] + b(t).$$

Como el producto de matrices es asociativo,

$$\Phi(t)c'(t) = b(t)$$

y llegamos a la fórmula para la derivada de c,

$$c'(t) = \Phi^{-1}(t) b(t)$$
 porque Φ es m.f.

Como buscamos una solución particular, fijamos $t_0 \in I$ y definimos

$$c(t) = \int_{t_0}^t \Phi^{-1}(s)b(s) ds.$$

Hemos encontrado la solución particular

$$x_*(t) = \underbrace{\Phi(t)}_{\text{matriz } N \times N} \underbrace{\int_{t_0}^t \Phi^{-1}(s) \, b(s) \, ds}_{\text{vector de } \mathbb{R}^N}.$$

Observaciones:

1. Podemos decir que el método de variación de constantes es más natural para sistemas que para ecuaciones de orden superior. Ahora c tiene la misma dimensión que x y no hay que imponer ligaduras.

- 2. Los cálculos anteriores son más o menos formales. Hay dos vías para darles rigor
 - i) Observamos que $t \in I \to \Phi^{-1}(t) \in \mathbb{R}^{N \times N}$ es de clase C^1 . **Ejercicio.** Si $\Psi : I \to \mathbb{R}^{N \times N}$ es derivable y det $\Psi(t) \neq 0$ para cada $t \in I$, entonces $\Psi^{-1} : I \to \mathbb{R}^{N \times N}$ es derivable y se cumple

$$(\Psi^{-1})' = -\Psi^{-1} \, \Psi' \, \Psi^{-1}.$$

Enonces $c(t) = \Phi^{-1}(t) x(t)$ está bien definida, es C^1 y todos los cálculos que siguen están justificados.

ii) Partimos de la fórmula

$$x_*(t) = \Phi(t) \int_{t_0}^t \Phi^{-1}(s) b(s) ds.$$

y observamos que la función $t \to \Phi^{-1}(t) \, b(t)$ es continua. Entonces $x_*(t)$ es C^1 por el Teorema del Cálculo y se comprueba derivando que $x_*(t)$ es solución de la ecuación completa.

De nuevo el conjunto de soluciones de la ecuación completa se expresa como

$$L^{-1}[b] = x_* + \ker L = x_* + \mathcal{Z}$$

y escribimos la solución general (espacio afín) como

$$x(t) = \underbrace{\Phi(t) c}_{\ker L} + \underbrace{\Phi(t) \int_{t_0}^t \Phi^{-1}(s) b(s) ds}_{\text{solución particular}}$$

donde $c \in \mathbb{R}^N$ es constante.

Para resolver el problema de valores iniciales

$$x' = A(t) x + b(t), x(t_0) = x_0$$

usamos la noción de matriz principal en t_0

$$x(t) = \Phi(t) \Phi^{-1}(t_0) x_0 + \Phi(t) \int_{t_0}^t \Phi^{-1}(s)b(s) ds.$$

8 Exponencial de una matriz

Volvemos al principio del curso y recordamos que si $A \in \mathbb{R}$ es un número entonces las soluciones de x' = Ax se escriben como $x(t) = e^{At}c$. Pretendemos que esta fórmula también tenga sentido para sistemas lineales (homogéneos) de coeficientes constantes. Como ahora A es una matriz cuadrada tenemos que darle sentido a la exponencial de una matriz.

Dado un polinomio

$$p(\lambda) = a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda^n$$

y una matriz $A \in \mathbb{R}^{N \times N}$ definimos

$$p(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_n A^n$$
.

Aquí hemos usado que $\mathbb{R}^{N\times N}$ es un álgebra. De manera no muy precisa podemos pensar en una series de potencias como en un "polinomio de grado infinito"

$$f(\lambda) = a_0 + a_1\lambda + a_2\lambda^2 + \dots + a_n\lambda^n + \dots = \sum_{n=0}^{\infty} a_n\lambda^n.$$

Como disponemos de una norma en $\mathbb{R}^{N\times N}$, tiene sentido de hablar de series de matrices y podemos intentar definir

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \dots + a_n A^n + \dots = \sum_{n=0}^{\infty} a_n A^n.$$

Para que esta fórmula tenga sentido debemos probar que la serie converge. Vamos a ver que este programa funciona para

$$f(\lambda) = e^{\lambda} = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!}, \ \lambda \in \mathbb{R}.$$

Pretendemos definir, dada $A \in \mathbb{R}^{N \times N}$

$$e^{A} = exp(A) = \sum_{n=0}^{\infty} \frac{1}{n!} A^{n} = 1 + A + \frac{1}{2!} A^{2} + \dots + \frac{1}{n!} A^{n} + \dots$$

[Las sumas parciales de esta serie ya aparecieron al calcular las iterantes de Picard de x' = Ax].

Para probar la convergencia de la serie usaremos un lema cuya prueba queda como ejercicio. Usaremos una norma matricial $||\cdot||$ en $\mathbb{R}^{N\times N}$.

Lema 4. Sea $\{M_n\}$ una sucesión de matrices en $\mathbb{R}^{N\times N}$ tales que la serie numérica $\sum ||M_n||$ converge. Entonces la serie matricial $\sum M_n$ también converge.

En el caso de la exponencial

$$M_n = \frac{1}{n!}A^n, ||M_n|| = \frac{1}{n!}||A^n|| \underbrace{\leq}_{\text{norma matricial}} \frac{1}{n!}||A||^n.$$

La serie $||M_n||$ está mayorada por $\sum \frac{1}{n!} ||A||^n = e^{||A||} < \infty$.

De paso hemos obtenido una primera propiedad de la exponencial de una matriz

$$||e^A|| \le e^{||A||}$$
, para cada $A \in \mathbb{R}^{N \times N}$.

Ejercicio. En las condiciones del lema anterior

$$||\sum M_n|| \le \sum ||M_n||.$$

Vamos a calcular la exponencial de algunas matrices sencillas.

Ejemplos

1. Matrices diagonales

$$A = \left(\begin{array}{ccc} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_N \end{array}\right).$$

Para estas matrices las potencias son muy fáciles de calcular,

$$A^n = \left(\begin{array}{ccc} \lambda_1^n & & & \\ & \lambda_2^n & & \\ & & \ddots & \\ & & & \lambda_N^n \end{array}\right).$$

Como el límite se calcula coordenada a coordenada,

$$e^{A} = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{\lambda_{1}^{n}}{n!} & & & \\ & \sum_{n=0}^{\infty} \frac{\lambda_{2}^{n}}{n!} & & & \\ & & \ddots & & \\ & & & \sum_{n=0}^{\infty} \frac{\lambda_{N}^{n}}{n!} \end{pmatrix} = \begin{pmatrix} e^{\lambda_{1}^{n}} & & & \\ & e^{\lambda_{2}^{n}} & & \\ & & \ddots & \\ & & & e^{\lambda_{N}^{n}} \end{pmatrix}.$$

2. Una matriz nilpotente

$$A = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ & \cdots & & \cdots & & \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}.$$

Al calcular las potencias de esta matriz la línea de unos se va desplazando hacia el vértice superior derecho y luego desaparece.

$$A^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ & & & \cdots & \cdots & & \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}, \dots A^{N-1} = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 0 \\ & \cdots & & & \\ 0 & \cdots & & & & \\ 0 & \cdots & & & & 0 \end{pmatrix},$$

$$A^n = 0 \sin n > N.$$

En este caso la serie se reduce a una suma finita

$$e^{A} = I + A + \frac{1}{2!}A^{2} + \dots + \frac{1}{(N-1)!}A^{N-1} = \begin{pmatrix} 1 & 1 & \frac{1}{2!} & & \frac{1}{(N-1)!} \\ 0 & 1 & 1 & & \frac{1}{(N-2)!} \\ & & \dots & \dots & \\ 0 & 0 & \dots & 1 & 1 & \frac{1}{2!} \\ 0 & 0 & \dots & 0 & 1 & 1 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}.$$

Nota. 1. Sería un error pensar que la exponencial de una matriz se obtiene exponenciando cada coordenada. Esto ya falla para la matrices diagonales y para la matriz nilpotente estudiada.

A continuación estudiamos el resultado que justifica nuestro interés en la exponencial.

Teorema 5. $\Phi(t) = e^{At}$ es m.f. principal en t = 0 del sistema x' = Ax.

Comentarios al teorema:

1. Como consecuencia la solución del problema de valores iniciales x' = Ax, $x(0) = x_0$ es $x(0) = e^{At}x_0$.

2. La m.f. en $t=t_0$ es única ya que sus columnas son soluciones de

$$x' = A x, \quad x(t_0) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \leftarrow i, \quad i = 1, \dots, N.$$

Demostración. Comenzamos definiendo las sumas parciales

$$S_n: \mathbb{R} \to \mathbb{R}^{N \times N}, \ S_n(t) = \sum_{k=0}^n \frac{1}{k!} t^k A^k$$

y observamos que la definición de exponencial lleva a la convergencia puntual,

$$\lim_{n\to\infty} S_n(t) = e^{tA} \text{ para cada } t \in \mathbb{R}.$$

A continuación vamos a probar que también se cumple

$$\lim_{n \to \infty} S_n(t) = \Phi(t) \text{ para cada } t \in \mathbb{R}$$
 (2)

donde $\Phi(t)$ es la m.f. en $t_0 = 0$ del sistema x' = Ax. La unicidad del límite implica que $\Phi(t) = e^{tA}$, el resultado que queremos probar.

Para probar (2) comenzamos construyendo las iterantes de Picard del problema

$$x' = A x, \ x(0) = v$$

donde v es un vector cualquiera de \mathbb{R}^N . Este ejemplo ya lo analizamos y lleva a la fórmula

$$x_n(t) = v + tAv + \frac{t^2}{2!}A^2v + \dots + \frac{1}{n!}A^nv = S_n(t)v.$$

Si expresamos la recta real como unión de intervalos acotados

$$\mathbb{R} = \bigcup_{h=1}^{\infty} I_h, \qquad I_h =]-h, h[$$

deducimos de la demostración del teorema de existencia y unicidad que las iterantes convergen a la solución del problema, y además lo hacen de manera uniforme en cada I_h . Es decir,

$$x_n(t) \to \Phi(t) v$$
 uniformemente en $t \in I_h$.

Aplicamos este hecho a los vectores de la base canónica $v=e_i,\ 1\leq i\leq N$ y deducimos que

$$\lim_{n \to \infty} S_n(t) e_i = \Phi(t) e_i \text{ para cada } t \in \mathbb{R}.$$

Entonces cada columna de $S_n(t)$ converge a la columna correspondiente de $\Phi(t)$ y por tanto se cumple (2).

El resultado que acabamos de probar tienes muchas consecuencias. Vamos a ilustrar su uso probando una bonita propiedad de la matriz exponencial:

$$\det(e^A) = e^{\operatorname{tr}(A)} \ \text{para cada} \ A \in \mathbb{R}^{N \times N}.$$

Demostración de esta identidad. Aplicamos la fórmula de Jacobi-Liouville

$$\det \Phi(t) = \det \Phi(t_0) e^{\int_{t_0}^t \operatorname{tr} A(s) \, ds}$$

con $t_0 = 0$, A(t) = A constante, $\Phi(t) = e^{At}$ y obtenemos

$$\det(e^{At}) = \det(I) e^{t \operatorname{tr}(A)}.$$

Para t = 1 encontramos la fórmula buscada.

8.1 Cálculo de la matriz exponencial

Hay muchos métodos para calcular e^{At} . Describiremos primero un método válido para matrices diagonalizables y luego un método más complicado, basado en la forma canónica de Jordan, que permite tratar el caso no diagonalizable.

Caso 1a: A diagonalizable en \mathbb{R}

Suponemos que existe una base de \mathbb{R}^N , v_1, \ldots, v_N formada por vectores propios,

$$A v_i = \lambda_i v_i, \quad i = 1, \dots, N.$$

En este caso $\sigma(A) = \{\lambda_1, \lambda_2, \dots, \lambda_N\}$ y algunos λ_i pueden aparecer repetidos. Sabemos que

$$\psi_i(t) = e^{\lambda_i t} v_i$$

es solución de x' = Ax. Consideramos la m.s.

$$\Psi(t) = (\psi_1(t)|\dots|\psi_N(t))$$

y observamos que

$$\det \Psi(t) = e^{(\lambda_1 + \dots + \lambda_N)t} \det (v_1 | \dots | v_N) \neq 0.$$

Entonces $\Psi(t)$ es m.f. y $\Psi(t)\,\Psi(0)^{-1}$ es m.f. principal en t=0. Por la unicidad de dicha matriz

$$e^{At} = \Psi(t) \Psi(0)^{-1}$$
.

Ejemplo: $\begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$.

Los vectores $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, forman una base de vectores propios con $\lambda_1 = 4$, $\lambda_2 = -2$. Las soluciones asociadas son

$$\psi_1(t) = e^{4t} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \psi_2(t) = e^{-2t} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Entonces

$$\Psi(t) = \left(\begin{array}{cc} e^{4t} & e^{-2t} \\ e^{4t} & -e^{-2t} \end{array} \right),$$

$$\Psi(0) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \ \Psi(0)^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$
$$e^{At} = \Psi(t) \Psi(0)^{-1} = \frac{1}{2} \begin{pmatrix} e^{4t} + e^{-2t} & e^{4t} - e^{-2t} \\ e^{4t} - e^{-2t} & e^{4t} + e^{-2t} \end{pmatrix}.$$

Caso 1b: A diagonalizable en \mathbb{C}

Como A es una matriz real el espectro tiene la forma

$$\sigma(A) = \{\lambda_1, \dots, \lambda_k, \mu_1, \dots, \mu_r, \overline{\mu_1}, \dots, \overline{\mu_r}\}, \ \lambda_i \in \mathbb{R}, \ \mu_j \in \mathbb{C} \setminus \mathbb{R}$$

con k + 2r = N. Algunos valores propios pueden aparecer repetidos

Si A es diagonalizable en $\mathbb C$ existe una base de $\mathbb C^N$ del tipo

$$\{v_1,\ldots,v_k,w_1,\ldots,w_r,\overline{w_1},\ldots,\overline{w_r}\}$$

con $v_i \in \mathbb{R}^N$, $w_j \in \mathbb{C}^N$, $A v_i = \lambda_i v_i$ $A w_i = \mu_i w_i$. Sabemos que las siguientes funciones son soluciones reales

$$\psi_i(t) = e^{\lambda_i t} v_i, \ \widetilde{\psi_j}(t) = \text{Re} \left(e^{\mu_j t} w_j \right), \ \psi_i^*(t) = \text{Im} \left(e^{\mu_j t} w_j \right).$$

Construimos la m.s.

$$\Psi(t) = \left(\psi_1(t)|\dots|\psi_k(t)|\widetilde{\psi_1}(t)|\dots|\widetilde{\psi_r}(t)|\psi_1^*(t)|\dots|\psi_k^*(t)\right)$$

y observamos que

$$\Psi(0) = (v_1|\dots|v_k|\operatorname{Re}(w_1)|\dots|\operatorname{Re}(w_r)|\operatorname{Im}(w_1)|\dots|\operatorname{Im}(w_r))$$

Es fácil probar que $\det \Psi(0) \neq 0$.

Ejercicio. Si $v_1, \ldots, v_k, w_1, \ldots, w_r, \overline{w_1}, \ldots, \overline{w_r}$ es base de \mathbb{C}^N , entonces $v_1, \ldots, v_k, \operatorname{Re}(w_1), \ldots, \operatorname{Re}(w_r), \operatorname{Im}(w_1), \ldots, \operatorname{Im}(w_r)$ es base de \mathbb{R}^N .

Ahora podemos repetir el proceso del caso anterior

$$e^{At} = \Psi(t) \Psi(0)^{-1}$$
.

Ejemplo:
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

$$\sigma(A) = \{\mu_1 = i, \overline{\mu_1} = -i\}, \quad w_1 = \begin{pmatrix} 1 \\ i \end{pmatrix}, \overline{w_1} = \begin{pmatrix} 1 \\ -i \end{pmatrix}$$

$$\widetilde{\psi_1}(t) = \operatorname{Re}\left(e^{it}\begin{pmatrix} 1 \\ i \end{pmatrix}\right) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix}$$

$$\psi_1^*(t) = \operatorname{Im}\left(e^{it}\begin{pmatrix} 1 \\ i \end{pmatrix}\right) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$$

$$\Psi(t) = \left(\widetilde{\psi_1}(t)|\psi_1^*(t)\right) = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}.$$

En este caso $\Psi(0) = I$ y

$$e^{At} = \Psi(t).$$

Caso 2: A no es diagonalizable

Comenzamos con dos observaciones generales sobre la exponencial:

1. La exponencial y la semejanza van bien. Si $A, B \in \mathbb{R}^{N \times N}$ son semejantes, $A = PBP^{-1}$ con $P \in \mathbb{R}^{N \times N}$, det $P \neq 0$, entonces

$$e^A = P e^B P^{-1}$$

Demostración. Recordamos que $A^k = P B^k P^{-1}$. Entonces

$$e^A \quad \underbrace{=}_{\text{definición de exponencial}} \quad \lim_{n \to \infty} \left(\sum_{k=0}^n \frac{1}{k!} P \, B^k \, P^{-1} \right) =$$

El producto de matrices es continuo + propiedad distributiva

$$= \lim_{n \to \infty} P\left(\sum_{k=0}^{n} \frac{1}{k!} B^{k}\right) P^{-1} = P e^{B} P^{-1}$$

2. La exponencial y las matrices diagonales por bloques

Si
$$A=\begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_r \end{pmatrix}$$
 donde cada A_i es un bloque cuadrado, entonces

$$A^{n} = \begin{pmatrix} A_{1}^{n} & & & \\ & A_{2}^{n} & & \\ & & \ddots & \\ & & & A_{r}^{n} \end{pmatrix}.$$

Como consecuencia
$$e^A=\left(\begin{array}{ccc} e^{A_1}&&&&\\&e^{A_2}&&&\\&&\ddots&&\\&&&e^{A_r}\end{array}\right)$$
. Toda matriz $A\in$

 $\mathbb{R}^{N\times N}$ es semejante a una forma canónica de Jordan J,

$$A = P J P^{-1}, \quad J = \begin{pmatrix} J_1 \\ & \ddots \\ & & \ddots \\ & & \ddots & \ddots \\ & & & \ddots & 1 \\ & & & \lambda_k \end{pmatrix},$$

$$\cot J_k = \begin{pmatrix} \lambda_k & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & 1 \\ & & & & \lambda_k \end{pmatrix} \quad \text{y } \lambda_k \in \sigma(A). \text{ Entonces}$$

$$e^{At} = P e^{Jt} P^{-1}, \quad \begin{pmatrix} e^{J_1 t} & & \\ & \ddots & \\ & & e^{J_r t} \end{pmatrix}$$

y será suficiente calcular la exponencial de bloques de Jordan. Lo vamos hacer usando el teorema que caracteriza a las exponenciales como

m.f. principales. Supongamos que
$$J=\left(\begin{array}{cccc} \lambda & 1 & & & \\ & \ddots & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda & \end{array}\right)$$
 es un

bloque de dimensión p y resolvamos el sistema lineal homogéneo

$$x' = J x, \begin{cases} x'_1 &= \lambda x_1 + x_2 \\ \dots & \dots \\ x'_{p-1} &= \lambda x_{p-1} + x_p \\ x'_p &= \lambda x_p \end{cases}$$

Podemos resolver este sistema en escalera $(x_p \Rightarrow x_{p-1} \Rightarrow \cdots \Rightarrow x_2 \Rightarrow x_1)$ pero será más cómodo hacer antes el cambio de variable $x_i = e^{\lambda t} y_i i = 1, \dots, p$. Entonces el sistema se transforma en

$$\begin{cases} y'_1 & = y_2 \\ \dots & \dots \\ y'_{p-1} & = y_p \\ y'_p & = 0 \end{cases} \Rightarrow y_p(t) = c_p, \ c_p \in \mathbb{R}; \ y_{p-1}(t) = c_{p-1} + c_p t$$

$$y_{p-2}(t) = c_{p-2} + c_{p-1} t + c_p \frac{t^2}{2}, \dots, y_1(t) = c_1 + c_2 t + \dots + c_p \frac{t^{p-1}}{(p-1)!}.$$

Haciendo elecciones de las constantes $(c_1 = 1, c_2 = \cdots = c_p = 0; c_1 = 0, c_2 = 1, c_3 \cdots = c_p = 0, \ldots)$ y deshaciendo el cambio obtenemos las soluciones de x' = J x,

$$\varphi_1(t) = e^{\lambda t} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \, \varphi_2(t) = e^{\lambda t} \begin{pmatrix} t \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \varphi_p(t) = e^{\lambda t} \begin{pmatrix} \frac{t^{p-1}}{(p-1)!} \\ \vdots \\ t \\ 1 \end{pmatrix}.$$

Entonces $\Phi(t) = (\varphi_1(t)| \dots | \varphi_p(t))$ es m.f. de x' = J x y como $\Phi(0) = I$,

$$e^{Jt} = \Phi(t) = e^{\lambda t} \begin{pmatrix} 1 & t & \cdots & \frac{t^{p-1}}{(p-1)!} \\ 0 & 1 & & \frac{t^{p-2}}{(p-2)!} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & t \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Ejemplo: $A = \begin{pmatrix} 2 & 0 \\ -1 & 2 \end{pmatrix}$, $\sigma(A) = \{2\}$. Esta matriz no es diagonalizable y admite la forma canónica

$$A = P J P^{-1}, J = \begin{pmatrix} 2 & 0 \\ -1 & 2 \end{pmatrix}, P = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Entonces

$$e^{At} = P e^{J} P^{-1} = e^{2t} P \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} P^{-1} = e^{2t} \begin{pmatrix} 1 & 0 \\ -t & 1 \end{pmatrix}.$$

La discusión anterior merece una crítica: ¿Qué pasa si algunos valores propios de A no son reales?

Supongamos que $A \in \mathbb{R}^{N \times N}$, pero $\sigma(A) \cap (\mathbb{C} \setminus \mathbb{R}) \neq \emptyset$. Entonces la matriz J está en $\mathbb{C}^{N \times N}$, pero no en $\mathbb{R}^{N \times N}$.

Este hecho nos lleva a considerar la **exponencial de una matriz compleja.** Partimos de una norma en \mathbb{C}^N y definimos la norma matricial asociada en $\mathbb{C}^{N\times N}$.

La serie que define la exponencial converge en este espacio de matrices y todas las discusiones anteriores se extienden sin dificultad al contexto complejo.

Al final llegaríamos al cálculo de una exponencial real pasando por la exponencial compleja

$$\underbrace{e^{A\,t}}_{\mathbb{R}^{N\times N}} = \underbrace{P}_{\mathbb{C}^{N\times N}} \cdot \underbrace{e^{J\,t}}_{\mathbb{C}^{N\times N}} \cdot \underbrace{P^{-1}}_{\mathbb{C}^{N\times N}}.$$

Ejemplo: $A = \begin{pmatrix} 0 & +1 \\ -1 & 0 \end{pmatrix}$, $\sigma(A) = \{i, -i\}$. En este caso la matriz es diagonalizable y tiene dos cajas de Jordan de dimensión de 1

$$J = \begin{pmatrix} \boxed{i} & 0 \\ 0 & \boxed{-i} \end{pmatrix}, \ P = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}, \ A = P J P^{-1}.$$

$$e^{At} = \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix} = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{i}{2} \end{pmatrix} = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}.$$

9 Circuitos eléctricos

Se componen de un número finito de ramas y nodos. En cada rama se fija una orientación.

Hay dos cantidades a medir en cada rama: la corriente o intesidad i=i(t) y el voltaje v=v(t). Estas cantidades varían con el tiempo y son por tanto funciones. En cada instante tienen un signo; por ejemplo, i>0 significa que la corriente fluye en el sentido que se ha orientado la rama mientras que v<0 significa que el potencial eléctrico en el nodo final es mayor que el inicial.

9.1 Ley de Kirchoff de las corrientes

La suma orientada de las corrientes que entran en cada nodo es nula

9.2 Ley de Kirchoff de los voltajes

La suma orientada de las caidas de voltaje en un bucle cerrado es nula

9.3 Elementos de un circuito

En cada rama se sitúa un dispositivo, definido por la forma en que se ligan las funciones i(t) y v(t).

Condensador
$$(x^1 | b) = i(b)$$
 $(x^2 | b) = i(b)$ $(x^2 | b)$ $($

Usaremos también **fuentes de voltaje.** Se trata de una fuente independiente que nos da de manera explícita el voltaje en la rama

$$v(t) = E(t)$$
 función conocida

Normalmente la fuente se fabrica de manera que E(t) es una función constante o una función trigonométrica

Ejemplo

Usamos la orientación

y designamos la intensidad y voltaje de cada rama según el dispositivo, $i_R,\ v_R,$ etcétera.

LK de corrientes:

$$\left. \begin{array}{ll} \operatorname{En} 1, & i_R = i_C \\ \operatorname{En} 2, & i_C = i_L \end{array} \right\}$$

Usaremos la notación $i=i_R=i_C=i_L$

LK de voltajes
$$v_R + v_C + v_L = E(t)$$

$$R i(t) + v_C(t) + L i'(t) = E(t).$$

Introducimos una nueva cantidad (carga eléctrica) definida por

$$q(t) = q(t_0) + \int_{t_0}^{t} i(s) ds, \ q(t_0) = c v(t_0).$$

Entonces llegamos al sistema de dos ecuaciones y dos incógnitas

$$\left. \begin{array}{l} R \, i + \frac{1}{c} \, q + L \, i' = E(t) \\ q' = i \end{array} \right\}$$

que se escribe en la forma habitual

$$\frac{d}{dt} \left(\begin{array}{c} q \\ i \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ -\frac{1}{C\,L} & -\frac{R}{L} \end{array} \right) \left(\begin{array}{c} q \\ i \end{array} \right) + \left(\begin{array}{c} 0 \\ \frac{1}{L}\,E(t) \end{array} \right).$$

También lo podemos reducir a una ecuación de segundo orden en la carga

$$L q'' + R q' + \frac{1}{C} q = E(t)$$

y obtenemos que hay una analogía entre este circuito y un muelle que se mueve en un medio con fricción y sobre el que actúa una fuerza externa,

$$mx'' + cx' + kx = f(t).$$

Los parámetros son m = masa, c = fricción, k = constante de elasticidad (Ley de Hooke) y f(t) es la fuerza externa.

Fijamos la orientación

LK I:

$$\begin{array}{|c|c|}\hline 1 & i_{R_1} = i_{R_2} + i_{L_1} \\\hline 2 & i_C = i_L \end{array} \right\}$$

Trabajaremos con $i_{R_2},\,i_{L_1}$ como incógnitas

LK II:

$$\begin{array}{lll} \text{Bucle izquierdo}: & R_1 \, i_{R_1} + L_1 \, \frac{d i_{L_1}}{dt} = E \\ \text{Bucle derecho}: & R_2 \, i_{R_2} + L_2 \, \frac{d i_{L_2}}{dt} = L_1 \, \frac{d i_{L_1}}{dt} \\ & R_1 (i_{R_2} + i_{L_1}) + l_1 \, \frac{d i_{L_1}}{dt} \, = \, E \\ & R_2 \, i_{R_2} + L_2 \, \frac{d i_{L_2}}{dt} \, = \, L_1 \, \frac{d i_{L_1}}{dt} \, \end{array} \right\} \\ & \frac{d}{dt} \left(\begin{array}{c} i_{L_1} \\ i_{R_2} \end{array} \right) = \left(\begin{array}{c} -\frac{R_1}{L_1} \\ -\frac{R_1}{L_2} \\ -\frac{(R_1 + R_2)}{L_2} \end{array} \right) \left(\begin{array}{c} i_{L_1} \\ i_{R_2} \end{array} \right) + \left(\begin{array}{c} \frac{E}{L_1} \\ \frac{E}{L_2} \end{array} \right).$$

Ejercicio: