Enhancing NHL Salary Evaluation through Dimensionality Reduction

Raphaël Fontaine McGill University Montreal, Canada raphael.fontaine@mail.mcgill.ca

Baseline

```
In [29]: import common
   import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib.pyplot as plt
   from sklearn.svm import SVR
   from sklearn.ensemble import RandomForestRegressor
   from sklearn.neighbors import KNeighborsRegressor
   from sklearn.pipeline import Pipeline
   from sklearn.model_selection import GridSearchCV
```

Dataset

Load Dataset and Preprocess

```
In [30]: original_df = common.load_dataset(preprocess=False)
    original_df
```

Out[30]:

	name	season	team	adjustedSalary	salary	capPercentage	playerId	weight	heig
0	Corey Perry	2013	ANA	11197350	8625000	0.1341	8470621	206.0	19
1	Ryan Getzlaf	2013	ANA	10713050	8250000	0.1283	8470612	225.0	19
2	Cam Fowler	2013	ANA	5193700	4000000	0.0622	8475764	206.0	18
3	Francois Beauchemin	2013	ANA	4542400	3500000	0.0544	8467400	208.0	18
4	Bryan Allen	2013	ANA	4542400	3500000	0.0544	8467332	223.0	19
						•••			
4015	Colin Miller	2023	WPG	1853700	1850000	0.0222	8476525	196.0	18
4016	Dylan Samberg	2023	WPG	1402800	1400000	0.0168	8480049	190.0	1!
4017	Morgan Barron	2023	WPG	1352700	1350000	0.0162	8480289	220.0	1!
4018	Logan Stanley	2023	WPG	1002000	1000000	0.0120	8479378	228.0	2(
4019	Rasmus Kupari	2023	WPG	1002000	1000000	0.0120	8480845	183.0	1{

4020 rows × 723 columns

Out[31]:

	season	adjustedSalary	weight	height	age	games_played	icetime	shifts	gameScore
0	2013	11197350	206.0	190	28	81	94679.0	1879.0	93.23
1	2013	10713050	225.0	193	28	77	98338.0	1943.0	87.28
2	2013	5193700	206.0	188	22	70	100224.0	2048.0	35.95
3	2013	4542400	208.0	180	33	70	97017.0	1917.0	26.55
4	2013	4542400	223.0	196	33	68	71605.0	1642.0	14.35
4015	2023	1853700	196.0	185	31	46	43346.0	1004.0	20.42
4016	2023	1402800	190.0	190	24	78	73128.0	1617.0	29.47
4017	2023	1352700	220.0	193	25	80	50385.0	1162.0	23.25
4018	2023	1002000	228.0	201	25	25	20651.0	458.0	3.58
4019	2023	1002000	183.0	185	23	28	15357.0	358.0	2.54

4020 rows × 766 columns

 \triangleleft

•

Split Dataset

```
In [32]: # Split features and label
X_data, y_data = common.split_dataset(df)

X_columns = X_data.columns

# Split train and test data
X_train, y_train, X_test, y_test = common.split_train_test(X_data, y_data)
```

Dataset Statistics

Basic Statistics

```
In [33]: print(f"Train data: {X_train.shape[0]} samples")
    print(f"Test data: {X_test.shape[0]} samples")
    print(f"Features: {X_train.shape[1]}")
    print(f"Percentage of test data: {X_test.shape[0] / X_data.shape[0] * 100:.2
    f}%")

    Train data: 3581 samples
    Test data: 439 samples
    Features: 765
    Percentage of test data: 10.92%
```

Salary Distribution

```
In [34]: sns.kdeplot(y_data, fill=True)
    plt.title('Density Plot of Adjusted Salary')
    plt.gca().xaxis.set_major_formatter(common.get_mformatter())
    plt.xlim(0, max(y_data))
    plt.xlabel('Adjusted Salary')
    plt.ylabel('Density')
    plt.show()
```


Season Distribution

```
In [35]: data = X_data['season']
    plt.clf()
    sns.barplot(x=data.value_counts().index, y=data.value_counts().values)
    plt.title('Number of Samples by Season')
    plt.xlabel('Season')
    plt.ylabel('Count')
    plt.show()
```


2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Season

Mean Salary by Season

0

```
In [36]: mean_salary = df.groupby('season')['adjustedSalary'].mean()
    plt.clf()
    plt.plot(mean_salary.index, mean_salary.values, marker='o')
    plt.title('Mean Adjusted Salary by Season')
    plt.gca().yaxis.set_major_formatter(common.get_mformatter(2))
    plt.xlabel('Season')
    plt.ylabel('Mean Adjusted Salary')
    plt.grid()
    plt.show()
```


Models

```
In [37]: # Standardize the features
X_train, X_test = common.standard_scaler(X_train, X_test)
```

Parameters Tuning

Random Forest Regressor Tuning

```
In [ ]: | pipeline = Pipeline([
            ('rf', RandomForestRegressor(random_state=12345))
        ])
        # Hyperparameter tuning
        param_grid = {
            'rf__n_estimators': [10, 20, 50],
            'rf criterion': ['squared error', 'absolute error', 'friedman mse', 'pois
        son'],
             'rf__max_features': [1, 'sqrt', 'log2'],
        }
        grid_search = GridSearchCV(pipeline, param_grid, scoring='neg_mean_squared_err
        or')
        grid_search.fit(X_train, y_train)
        print("Best parameters:", grid_search.best_params_)
        Best parameters: {'rf criterion': 'squared error', 'rf max features': 'sqr
        t', 'rf__n_estimators': 50}
```

Support Vector Regressor tuning

K-Nearest Neighbors Regressor Tuning

Training and Evaluation

Training data

Out[38]:

	R2	MAE	IOP-100 MAE	10p-50 MAE	SMAPE	Irain time (sec)
Model						
Linear Regression	0.6740	1,057,512	2,177,704	2,134,722	0.2846	0.50
Random Forest	0.9323	480,988	1,357,448	1,482,247	0.1374	6.46
Support Vector	0.5856	1,160,698	3,341,279	3,774,270	0.2987	5.54
K-Nearest Neighbors	1.0000	0	0	0	0.0000	0.02

Testing data

```
In [39]: test_results_df, test_predictions = common.train_and_evaluate(X_train, y_train, X_test, y_test)
    test_results_df
```

Out[39]:

	R2	MAE	Top-100 MAE	Top-50 MAE	SMAPE	Train time (sec)
Model						
Linear Regression	0.5000	1,445,622	1,957,624	2,272,306	0.3712	0.62
Random Forest	0.5693	1,351,450	1,771,227	2,198,727	0.3462	6.82
Support Vector	0.5814	1,293,746	1,902,587	2,425,087	0.3263	5.56
K-Nearest Neighbors	0.5568	1,352,233	2,011,678	2,576,639	0.3426	0.02

Results Analysis

Overpaid Players

```
In [27]: overpaid_df = results_df.sort_values(by="Difference", ascending=True)
    overpaid_df.head(10).style.format({col: '{:,.0f}' for col in numeric_cols})
```

Out[27]:

	Salary	Prediction	Difference	Abs difference
Name				
Tyler Seguin	9,853,000	3,670,927	-6,182,073	6,182,073
Jamie Benn	9,502,300	4,645,998	-4,856,302	4,856,302
Dmitry Orlov	7,748,800	3,115,172	-4,633,628	4,633,628
Darnell Nurse	9,251,800	4,659,247	-4,592,553	4,592,553
Connor McDavid	12,499,950	8,085,991	-4,413,959	4,413,959
Marc-Edouard Vlasic	6,997,300	2,610,566	-4,386,734	4,386,734
Drew Doughty	10,996,950	6,611,234	-4,385,716	4,385,716
Pierre-Luc Dubois	8,500,300	4,126,454	-4,373,846	4,373,846
Jacob Trouba	7,999,300	3,651,010	-4,348,290	4,348,290
Adam Fox	9,502,300	5,220,924	-4,281,376	4,281,376

Underpaid Players

```
In [28]: underpaid_df = results_df.sort_values(by="Difference", ascending=False)
underpaid_df.head(10).style.format({col: '{:,.0f}' for col in numeric_cols})
```

Out[28]:

	Salary	Prediction	Difference	Abs difference
Name				
Owen Tippett	1,503,000	5,931,997	4,428,997	4,428,997
Sean Monahan	1,987,300	6,185,321	4,198,021	4,198,021
Fabian Zetterlund	1,452,900	5,571,977	4,119,077	4,119,077
Sean Durzi	1,703,400	5,448,178	3,744,778	3,744,778
Cam York	1,603,200	5,297,559	3,694,359	3,694,359
Philipp Kurashev	2,246,150	5,889,607	3,643,457	3,643,457
Mike Matheson	4,876,400	8,358,199	3,481,799	3,481,799
Casey Mittelstadt	2,496,650	5,934,007	3,437,357	3,437,357
Ryan Hartman	1,703,400	4,893,939	3,190,539	3,190,539
James van Riemsdyk	1,002,000	4,171,882	3,169,882	3,169,882

```
In [21]: highest_df = results_df.sort_values(by="Salary", ascending=False)
highest_df.head(10).style.format({col: '{:,.0f}' for col in numeric_cols})
```

Out[21]:

	Salary	Prediction	Difference	Abs difference
Name				
Nathan MacKinnon	12,600,150	10,263,599	-2,336,551	2,336,551
Connor McDavid	12,499,950	8,085,991	-4,413,959	4,413,959
Artemi Panarin	11,639,900	8,835,594	-2,804,306	2,804,306
Auston Matthews	11,639,900	8,471,733	-3,168,167	3,168,167
Erik Karlsson	11,497,950	7,505,942	-3,992,008	3,992,008
David Pastrnak	11,247,450	8,226,533	-3,020,917	3,020,917
Drew Doughty	10,996,950	6,611,234	-4,385,716	4,385,716
John Tavares	10,996,950	8,088,330	-2,908,620	2,908,620
Mitch Marner	10,905,100	6,874,046	-4,031,054	4,031,054
Jonathan Huberdeau	10,495,950	6,247,389	-4,248,561	4,248,561

Density Plots

```
In [24]: sns.kdeplot(data=results_df, x="Salary", y="Abs difference", fill=True)

plt.gca().xaxis.set_major_formatter(common.get_mformatter(precision=0))

plt.gca().yaxis.set_major_formatter(common.get_mformatter(precision=0))

plt.title('Density Plot of Absolute Error by Salary')

plt.xlabel('Salary')

plt.ylabel('Absolute Error')

plt.xlim(0, max(results_df["Salary"]))

plt.ylim(0, max(results_df["Abs difference"]))

plt.show()
```



```
In [25]: sns.kdeplot(data=results_df, x="Salary", y="Difference", fill=True)

plt.gca().xaxis.set_major_formatter(common.get_mformatter(precision=0))

plt.gca().yaxis.set_major_formatter(common.get_mformatter(precision=0))

plt.title('Density Plot of Error by Salary')

plt.xlabel('Salary')

plt.ylabel('Error')

plt.ylabel('Error')

plt.xlim(0, max(results_df["Salary"]))

plt.ylim(min(results_df["Difference"]), max(results_df["Difference"]))

plt.show()
```


