TMS320DM643x DMP General-Purpose Input/Output (GPIO)

User's Guide

Literature Number: SPRU988B March 2008

Contents

Prefa	ice		6
1	Introdu	uction	7
	1.1	Purpose of the Peripheral	7
	1.2	Features	7
	1.3	Functional Block Diagram	7
	1.4	Industry Standard(s) Compliance Statement	7
2	Periph	eral Architecture	8
	2.1	Clock Control	8
	2.2	Signal Descriptions	8
	2.3	Pin Multiplexing	8
	2.4	Endianness Considerations	8
	2.5	GPIO Register Structure	9
	2.6	Using a GPIO Signal as an Output	12
	2.7	Using a GPIO Signal as an Input	12
	2.8	Reset Considerations	13
	2.9	Initialization	13
	2.10	Interrupt Support	13
	2.11	EDMA Event Support	15
	2.12	Power Management	15
	2.13	Emulation Considerations	16
3	Registe	ers	16
	3.1	Peripheral Identification Register (PID)	17
	3.2	Peripheral Control Register (PCR)	18
	3.3	GPIO Interrupt Per-Bank Enable Register (BINTEN)	19
	3.4	GPIO Direction Registers (DIRn)	
	3.5	GPIO Output Data Register (OUT_DATAn)	22
	3.6	GPIO Set Data Register (SET_DATAn)	24
	3.7	GPIO Clear Data Register (CLR_DATAn)	26
	3.8	GPIO Input Data Register (IN_DATAn)	28
	3.9	GPIO Set Rising Edge Interrupt Register (SET_RIS_TRIGn)	30
	3.10	GPIO Clear Rising Edge Interrupt Register (CLR_RIS_TRIGn)	32
	3.11	GPIO Set Falling Edge Interrupt Register (SET_FAL_TRIGn)	
	3.12	GPIO Clear Falling Edge Interrupt Register (CLR_FAL_TRIGn)	
	3.13	GPIO Interrupt Status Register (INTSTATn)	
Appe	endix A	Revision History	40

List of Figures

1	GPIO Peripheral Block Diagram	. 8
2	Peripheral Identification Register (PID)	17
3	Peripheral Control Register (PCR)	18
4	GPIO Interrupt Per-Bank Enable Register (BINTEN)	19
5	GPIO Banks 0 and 1 Direction Register (DIR01)	20
6	GPIO Banks 2 and 3 Direction Register (DIR23)	20
7	GPIO Banks 4 and 5 Direction Register (DIR45)	20
8	GPIO Bank 6 Direction Register (DIR6)	20
9	GPIO Banks 0 and 1 Output Data Register (OUT_DATA01)	22
10	GPIO Banks 2 and 3 Output Data Register (OUT_DATA23)	22
11	GPIO Banks 4 and 5 Output Data Register (OUT_DATA45)	22
12	GPIO Bank 6 Output Data Register (OUT_DATA6)	22
13	GPIO Banks 0 and 1 Set Data Register (SET_DATA01)	24
14	GPIO Banks 2 and 3 Set Data Register (SET_DATA23)	24
15	GPIO Banks 4 and 5 Set Data Register (SET_DATA45)	24
16	GPIO Bank 6 Set Data Register (SET_DATA6)	24
17	GPIO Banks 0 and 1 Clear Data Register (CLR_DATA01)	26
18	GPIO Banks 2 and 3 Clear Data Register (CLR_DATA23)	26
19	GPIO Banks 4 and 5 Clear Data Register (CLR_DATA45)	26
20	GPIO Bank 6 Clear Data Register (CLR_DATA6)	26
21	GPIO Banks 0 and 1 Input Data Register (IN_DATA01)	28
22	GPIO Banks 2 and 3 Input Data Register (IN_DATA23)	28
23	GPIO Banks 4 and 5 Input Data Register (IN_DATA45)	28
24	GPIO Bank 6 Input Data Register (IN_DATA6)	
25	GPIO Banks 0 and 1 Set Rising Edge Interrupt Register (SET_RIS_TRIG01)	30
26	GPIO Banks 2 and 3 Set Rising Edge Interrupt Register (SET_RIS_TRIG23)	30
27	GPIO Banks 4 and 5 Set Rising Edge Interrupt Register (SET_RIS_TRIG45)	31
28	GPIO Bank 6 Set Rising Edge Interrupt Register (SET_RIS_TRIG6)	31
29	GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG01)	32
30	GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG23)	32
31	GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG45)	33
32	GPIO Bank 6 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG6)	33
33	GPIO Banks 0 and 1 Set Falling Edge Interrupt Register (SET_FAL_TRIG01)	34
34	GPIO Banks 2 and 3 Set Falling Edge Interrupt Register (SET_FAL_TRIG23)	34
35	GPIO Banks 4 and 5 Set Falling Edge Interrupt Register (SET_FAL_TRIG45)	35
36	GPIO Bank 6 Set Falling Edge Interrupt Register (SET_FAL_TRIG6)	35
37	GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG01)	36
38	GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG23)	36
39	GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG45)	37
40	GPIO Bank 6 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG6)	37
41	GPIO Banks 0 and 1 Interrupt Status Register (INTSTAT01)	
42	GPIO Banks 2 and 3 Interrupt Status Register (INTSTAT23)	38
43	GPIO Banks 4 and 5 Interrupt Status Register (INTSTAT45)	39
44	GPIO Bank 6 Interrupt Status Register (INTSTAT6)	39

List of Tables

1	GPIO Register Bits and Banks Associated With GPIO Signals	9
2	GPIO Interrupts to the DSP CPU	. 14
3	GPIO Synchronization Events to the EDMA	. 15
4	General-Purpose Input/Output (GPIO) Registers	. 16
5	Peripheral Identification Register (PID) Field Descriptions	. 17
6	Peripheral Control Register (PCR) Field Descriptions	. 18
7	GPIO Interrupt Per-Bank Enable Register (BINTEN) Field Descriptions	. 19
8	GPIO Direction Register (DIRn) Field Descriptions	. 21
9	GPIO Output Data Register (OUT_DATAn) Field Descriptions	. 23
10	GPIO Set Data Register (SET_DATAn) Field Descriptions	. 25
11	GPIO Clear Data Register (CLR_DATAn) Field Descriptions	. 27
12	GPIO Input Data Register (IN_DATAn) Field Descriptions	. 29
13	GPIO Set Rising Edge Interrupt Register (SET_RIS_TRIGn) Field Descriptions	. 31
14	GPIO Clear Rising Edge Interrupt Register (CLR_RIS_TRIGn) Field Descriptions	. 33
15	GPIO Set Falling Edge Interrupt Register (SET_FAL_TRIGn) Field Descriptions	. 35
16	GPIO Clear Falling Edge Interrupt Register (CLR_FAL_TRIGn) Field Descriptions	. 37
17	GPIO Interrupt Status Register (INTSTATn) Field Descriptions	. 39
Δ-1	Document Revision History	40

Read This First

About This Manual

Describes the general-purpose input/output (GPIO) peripheral in the TMS320DM643x Digital Media Processor (DMP). The GPIO peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an input, you can detect the state of the input by reading the state of an internal register. When configured as an output, you can write to an internal register to control the state driven on the output pin.

Notational Conventions

This document uses the following conventions.

- Hexadecimal numbers are shown with the suffix h. For example, the following number is 40 hexadecimal (decimal 64): 40h.
- Registers in this document are shown in figures and described in tables.
 - Each register figure shows a rectangle divided into fields that represent the fields of the register.
 Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties below. A legend explains the notation used for the properties.
 - Reserved bits in a register figure designate a bit that is used for future device expansion.

Related Documentation From Texas Instruments

The following documents describe the TMS320DM643x Digital Media Processor (DMP). Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com.

The current documentation that describes the DM643x DMP, related peripherals, and other technical collateral, is available in the C6000 DSP product folder at: www.ti.com/c6000.

- SPRU978 TMS320DM643x DMP DSP Subsystem Reference Guide. Describes the digital signal processor (DSP) subsystem in the TMS320DM643x Digital Media Processor (DMP).
- <u>SPRU983</u> *TMS320DM643x DMP Peripherals Overview Reference Guide.* Provides an overview and briefly describes the peripherals available on the TMS320DM643x Digital Media Processor (DMP).
- SPRAA84 TMS320C64x to TMS320C64x+ CPU Migration Guide. Describes migrating from the Texas Instruments TMS320C64x digital signal processor (DSP) to the TMS320C64x+ DSP. The objective of this document is to indicate differences between the two cores. Functionality in the devices that is identical is not included.
- SPRU732 TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+ digital signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP generation comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an enhancement of the C64x DSP with added functionality and an expanded instruction set.
- SPRU871 TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache.

General-Purpose Input/Output (GPIO)

1 Introduction

The GPIO peripheral provides dedicated general-purpose pins that can be configured as either inputs or outputs. When configured as an output, you can write to an internal register to control the state driven on the output pin. When configured as an input, you can detect the state of the input by reading the state of an internal register.

1.1 Purpose of the Peripheral

Most system-on-chip (SoC) devices require some general-purpose input/output (GPIO) functionality in order to interact with other components in the system using low-speed interface pins. The control and use of the GPIO capability on this device is grouped together in the GPIO peripheral and is described in the following sections.

1.2 Features

The GPIO peripheral consists of the following features.

- Output set/clear functionality through separate data set and clear registers allows multiple software processes to control GPIO signals without critical section protection.
- Set/clear functionality through writing to a single output data register is also supported.
- Separate input/output registers
 - Output register can be read to reflect output drive status.
 - Input register can be read to reflect pin status.
- All GPIO signals can be used as interrupt sources with configurable edge detection.
- All GPIO signals can be used to generate events to the EDMA.

1.3 Functional Block Diagram

Figure 1 shows a block diagram of the GPIO peripheral.

1.4 Industry Standard(s) Compliance Statement

The GPIO peripheral connects to external devices. While it is possible that the software implements some standard connectivity protocol over GPIO, the GPIO peripheral itself is not compliant with any such standards.

Figure 1. GPIO Peripheral Block Diagram

2 Peripheral Architecture

The following sections describe the GPIO peripheral.

2.1 Clock Control

The input clock to the GPIO peripheral represents PLL1 divided by 6. The maximum operation speed for the GPIO peripheral is 10 MHz.

2.2 Signal Descriptions

The DM643x device supports up to 111 GPIO signals, GP[110-0]. For information on the package pinout of each GPIO signal, refer to the device data manual.

2.3 Pin Multiplexing

On the DM643x DMP extensive pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. Refer to the device-specific data manual to determine how pin multiplexing affects the GPIO module.

2.4 Endianness Considerations

The GPIO operation is independent of endianness; therefore, there are no endianness considerations for the GPIO module.

2.5 GPIO Register Structure

The GPIO signals are grouped into banks of 16 signals per bank.

Associated with each bank of GPIO signals, there are several registers that control use of the GPIO bits, and within those registers, various control fields for each GPIO signal. The GPIO control registers are organized as one 32-bit register per pair of banks of GPIO signals. These control registers are further grouped into banks with one set of control registers per bank.

The register names for each bank of control registers (or pair of banks of GPIO bits) are all of the form register_nameXY, where X and Y are the two banks of GPIO bits controlled, such as 01, 23, 45, etc. The register fields associated with each GPIO are all of the form field_nameN, where N is the number of the GPIO signal. For example, for GP[0], which is located in GPIO bank 0, the control register names are of the form register_name01, and the register fields associated with GP[0] are all of the form field_name0. The GP[0] control bits are located in bit 0 of each of these registers. Contrastingly, for GP[110], which is located in GPIO bank 6, the control register names are all of the form register_name6, and the register fields associated with GP[110] are of the form field_name110. The GP[110] control bits are located in bit 14 of each of these registers.

Table 1 shows the banks and register control bit information associated with each GPIO pin on the device. Table 1 can be used to locate the register bits that control each GPIO signal. Detailed information regarding the specific register names for each bank and the contents and function of these registers is presented in Section 3.

Since there are an odd number of banks of GPIOs, the upper 16-bit of registers for the last pair are reserved and have no effect. For the interrupt configuration, the registers associated with GPIO signals that do not support interrupt capability are also reserved and have no effect.

Table	1. GPIO Register E	Bits and Banks Asso	ciated With GPIO Sig	ınals
al	Bank Number	Control Registers	Register Field	

GPIO Signal	Bank Number	Control Registers	Register Field	Bit Number
GP[0]	0	register_name01	field_name0	Bit 0
GP[1]	0	register_name01	field_name1	Bit 1
GP[2]	0	register_name01	field_name2	Bit 2
GP[3]	0	register_name01	field_name3	Bit 3
GP[4]	0	register_name01	field_name4	Bit 4
GP[5]	0	register_name01	field_name5	Bit 5
GP[6]	0	register_name01	field_name6	Bit 6
GP[7]	0	register_name01	field_name7	Bit 7
GP[8]	0	register_name01	field_name8	Bit 8
GP[9]	0	register_name01	field_name9	Bit 9
GP[10]	0	register_name01	field_name10	Bit 10
GP[11]	0	register_name01	field_name11	Bit 11
GP[12]	0	register_name01	field_name12	Bit 12
GP[13]	0	register_name01	field_name13	Bit 13
GP[14]	0	register_name01	field_name14	Bit 14
GP[15]	0	register_name01	field_name15	Bit 15
GP[16]	1	register_name01	field_name16	Bit 16
GP[17]	1	register_name01	field_name17	Bit 17
GP[18]	1	register_name01	field_name18	Bit 18
GP[19]	1	register_name01	field_name19	Bit 19
GP[20]	1	register_name01	field_name20	Bit 20
GP[21]	1	register_name01	field_name21	Bit 21
GP[22]	1	register_name01	field_name22	Bit 22
GP[23]	1	register_name01	field_name23	Bit 23

Table 1. GPIO Register Bits and Banks Associated With GPIO Signals (continued)

GPIO Signal	Bank Number	Control Registers	Register Field	Bit Number
GP[24]	1	register_name01	field_name24	Bit 24
GP[25]	1	register_name01	field_name25	Bit 25
GP[26]	1	register_name01	field_name26	Bit 26
GP[27]	1	register_name01	field_name27	Bit 27
GP[28]	1	register_name01	field_name28	Bit 28
GP[29]	1	register_name01	field_name29	Bit 29
GP[30]	1	register_name01	field_name30	Bit 30
GP[31]	1	register_name01	field_name31	Bit 31
GP[32]	2	register_name23	field_name32	Bit 0
GP[33]	2	register_name23	field_name33	Bit 1
GP[34]	2	register_name23	field_name34	Bit 2
GP[35]	2	register_name23	field_name35	Bit 3
GP[36]	2	register_name23	field_name36	Bit 4
GP[37]	2	register_name23	field_name37	Bit 5
GP[38]	2	register_name23	field_name38	Bit 6
GP[39]	2	register_name23	field_name39	Bit 7
GP[40]	2	register_name23	field_name40	Bit 8
GP[41]	2	register_name23	field_name41	Bit 9
GP[42]	2	register_name23	field_name42	Bit 10
GP[43]	2	register_name23	field_name43	Bit 11
GP[44]	2	register_name23	field_name44	Bit 12
GP[45]	2	register_name23	field_name45	Bit 13
GP[46]	2	register_name23	field_name46	Bit 14
GP[47]	2	register_name23	field_name47	Bit 15
GP[48]	3	register_name23	field_name48	Bit 16
GP[49]	3	register_name23	field_name49	Bit 17
GP[50]	3	register_name23	field_name50	Bit 18
		•	_	Bit 19
GP[51]	3	register_name23	field_name51	
GP[52]	3	register_name23	field_name52	Bit 20
GP[53]	3	register_name23	field_name53	Bit 21
GP[54]	3	register_name23	field_name54	Bit 22
GP[55]	3	register_name23	field_name55	Bit 23
GP[56]	3	register_name23	field_name56	Bit 24
GP[57]	3	register_name23	field_name57	Bit 25
GP[58]	3	register_name23	field_name58	Bit 26
GP[59]	3	register_name23	field_name59	Bit 27
GP[60]	3	register_name23	field_name60	Bit 28
GP[61]	3	register_name23	field_name61	Bit 29
GP[62]	3	register_name23	field_name62	Bit 30
GP[63]	3	register_name23	field_name63	Bit 31
GP[64]	4	register_name45	field_name64	Bit 0
GP[65]	4	register_name45	field_name65	Bit 1
GP[66]	4	register_name45	field_name66	Bit 2
GP[67]	4	register_name45	field_name67	Bit 3
GP[68]	4	register_name45	field_name68	Bit 4
GP[69]	4	register_name45	field_name69	Bit 5

Table 1. GPIO Register Bits and Banks Associated With GPIO Signals (continued)

GPIO Signal	Bank Number	Control Registers	Register Field	Bit Number
GP[70]	4	register_name45	field_name70	Bit 6
GP[71]	4	register_name45	field_name71	Bit 7
GP[72]	4	register_name45	field_name72	Bit 8
GP[73]	4	register_name45	field_name73	Bit 9
GP[74]	4	register_name45	field_name74	Bit 10
GP[75]	4	register_name45	field_name75	Bit 11
GP[76]	4	register_name45	field_name76	Bit 12
GP[77]	4	register_name45	field_name77	Bit 13
GP[78]	4	register_name45	field_name78	Bit 14
GP[79]	4	register_name45	field_name79	Bit 15
GP[80]	5	register_name45	field_name80	Bit 16
GP[81]	5	register_name45	field_name81	Bit 17
GP[82]	5	register_name45	field_name82	Bit 18
GP[83]	5	register_name45	field_name83	Bit 19
GP[84]	5	register_name45	field_name84	Bit 20
GP[85]	5	register_name45	field_name85	Bit 21
GP[86]	5	register_name45	field_name86	Bit 22
GP[87]	5	register_name45	field_name87	Bit 23
GP[88]	5	register_name45	field_name88	Bit 24
GP[89]	5	register_name45	field_name89	Bit 25
GP[90]	5	register_name45	field_name90	Bit 26
GP[91]	5	register_name45	field_name91	Bit 27
GP[92]	5	register_name45	field_name92	Bit 28
GP[93]	5	register_name45	field_name93	Bit 29
GP[94]	5	register_name45	field_name94	Bit 30
GP[95]	5	register_name45	field_name95	Bit 31
GP[96]	6	register_name6	field_name96	Bit 0
GP[97]	6	register_name6	field_name97	Bit 1
GP[98]	6	register_name6	field_name98	Bit 2
GP[99]	6	register_name6	field_name99	Bit 3
GP[100]	6	register_name6	field_name100	Bit 4
GP[101]	6	register_name6	field_name101	Bit 5
GP[102]	6	register_name6	field_name102	Bit 6
GP[103]	6	register_name6	field_name103	Bit 7
GP[104]	6	register_name6	field_name104	Bit 8
GP[105]	6	register_name6	field_name105	Bit 9
GP[106]	6	register_name6	field_name106	Bit 10
GP[107]	6	register_name6	field_name107	Bit 11
GP[108]	6	register_name6	field_name108	Bit 12
GP[109]	6	register_name6	field_name109	Bit 13
GP[110]	6	register_name6	field_name110	Bit 14

2.6 Using a GPIO Signal as an Output

GPIO signals are configured to operate as inputs or outputs by writing the appropriate value to the GPIO direction register (DIR). This section describes using the GPIO signal as an output signal.

2.6.1 Configuring a GPIO Output Signal

To configure a given GPIO signal as an output, clear the bit in DIR that is associated with the desired GPIO signal. For detailed information on DIR, see Section 3.

2.6.2 Controlling the GPIO Output Signal State

There are three registers that control the output state driven on a GPIO signal configured as an output:

- GPIO set data register (SET_DATA) controls driving GPIO signals high
- GPIO clear data register (CLR DATA) controls driving GPIO signals low
- GPIO output data register (OUT_DATA) contains the current state of the output signals

Reading SET_DATA, CLR_DATA, and OUT_DATA returns the output state not necessarily the actual signal state (since some signals may be configured as inputs). The actual signal state is read using the GPIO input data register (IN_DATA) associated with the desired GPIO signal. IN_DATA contains the actual logic state on the external signal.

For detailed information on these registers, see Section 3.

2.6.2.1 Driving a GPIO Output Signal High

To drive a GPIO signal high, use one of the following methods:

- Write a logic 1 to the bit in SET_DATA associated with the desired GPIO signal(s) to be driven high. Bit positions in SET_DATA containing logic 0 do not affect the state of the associated output signals.
- Modify the bit in OUT_DATA associated with the desired GPIO signal by using a read-modify-write operation. The logic states driven on the GPIO output signals match the logic values written to all bits in OUT_DATA.

For GPIO signals configured as inputs, the values written to the associated SET_DATA, CLR_DATA, and OUT_DATA bits have no effect.

2.6.2.2 Driving a GPIO Output Signal Low

To drive a GPIO signal low, use one of the following methods:

- Write a logic 1 to the bit in CLR_DATA associated with the desired GPIO signal(s) to be driven low. Bit positions in CLR_DATA containing logic 0 do not affect the state of the associated output signals.
- Modify the bit in OUT_DATA associated with the desired GPIO signal by using a read-modify-write operation. The logic states driven on the GPIO output signals match the logic values written to all bits in OUT_DATA.

For GPIO signals configured as inputs, the values written to the associated SET_DATA, CLR_DATA, and OUT_DATA bits have no effect.

2.7 Using a GPIO Signal as an Input

GPIO signals are configured to operate as inputs or outputs by writing the appropriate value to the GPIO direction register (DIR). This section describes using the GPIO signal as an input signal.

2.7.1 Configuring a GPIO Input Signal

To configure a given GPIO signal as an input, set the bit in DIR that is associated with the desired GPIO signal. For detailed information on DIR, see Section 3.

2.7.2 Reading a GPIO Input Signal

The current state of the GPIO signals is read using the GPIO input data register (IN_DATA).

- For GPIO signals configured as inputs, reading IN_DATA returns the state of the input signal synchronized to the GPIO peripheral clock.
- For GPIO signals configured as outputs, reading IN_DATA returns the output value being driven by the
 device.

Some signals may utilize open-drain output buffers for wired-logic operations. For open-drain GPIO signals, reading IN_DATA returns the wired-logic value on the signal (which will not be driven by the device alone). Information on any signals using open-drain outputs is available in the device data manual.

To use GPIO input signals as interrupt sources, see section Section 2.10.

2.8 Reset Considerations

The GPIO peripheral has two reset sources: software reset and hardware reset.

2.8.1 Software Reset Considerations

A software reset (such as a reset initiated through the emulator) does not modify the configuration and state of the GPIO signals. A reset invoked via the Power and Sleep Controller (PSC) (GPIO clock disable, PSC reset, followed by GPIO clock enable) will result in the default configuration register settings.

2.8.2 Hardware Reset Considerations

A hardware reset does reset the GPIO configuration and data registers to their default states; therefore, affecting the configuration and state of the GPIO signals.

2.9 Initialization

The following steps are required to configure the GPIO module after a hardware reset:

- 1. Perform the necessary device pin multiplexing setup (see the device-specific data manual).
- 2. Program the VDD3P3V_PWDN register to power up the IO pins for the GPIO module (see the device-specific data manual).
- 3. Program the Power and Sleep Controller (PSC) to enable the GPIO module. For details on the PSC, see the *TMS320DM643x DMP DSP Subsystem Reference Guide* (SPRU978).
- 4. Program the direction, data, and interrupt control registers to set the configuration of the desired GPIO pins (described in this document).

The GPIO module is now ready to perform data transactions.

2.10 Interrupt Support

The GPIO peripheral can send an interrupt event to the DSP CPU.

2.10.1 Interrupt Events and Requests

All GPIO signals can be configured to generate interrupts. The DM643x device supports interrupts from single GPIO signals, interrupts from banks of GPIO signals, or both. The interrupt mapping from the GPIO peripheral to the DSP CPU is shown in Table 2. Note that the GPIO interrupts can also be used to provide synchronization events to the EDMA. See Section 2.11 for additional information.

2.10.2 Enabling GPIO Interrupt Events

GPIO interrupt events are enabled in banks of 16 by setting the appropriate bit(s) in the GPIO interrupt per-bank enable register (BINTEN). For example, to enable bank 0 interrupts (events from GP[15-0]), set bit 0 in BINTEN; to enable bank 3 interrupts (events from GP[63-48]), set bit 3 in BINTEN.

For detailed information on BINTEN, see Section 3.

Table 2. GPIO Interrupts to the DSP CPU

Interrupt Source	Acronym	DSP Interrupt Number
GP[0]	GPIO0	64
GP[1]	GPIO1	65
GP[2]	GPIO2	66
GP[3]	GPIO3	67
GP[4]	GPIO4	68
GP[5]	GPIO5	69
GP[6]	GPIO6	70
GP[7]	GPIO7	71
GPIO Bank 0	GPIOBNK0	72
GPIO Bank 1	GPIOBNK1	73
GPIO Bank 2	GPIOBNK2	74
GPIO Bank 3	GPIOBNK3	75
GPIO Bank 4	GPIOBNK4	76
GPIO Bank 5	GPIOBNK5	77
GPIO Bank 6	GPIOBNK6	78

2.10.3 Configuring GPIO Interrupt Edge Triggering

Each GPIO interrupt source can be configured to generate an interrupt on the GPIO signal rising edge, falling edge, both edges, or neither edge (no event). The edge detection is synchronized to the GPIO peripheral module clock.

The following four registers control the configuration of the GPIO interrupt edge detection:

- The GPIO set rising edge interrupt register (SET_RIS_TRIG) enables GPIO interrupts on the occurrence of a rising edge on the GPIO signal.
- The GPIO clear rising edge interrupt register (CLR_RIS_TRIG) disables GPIO interrupts on the occurrence of a rising edge on the GPIO signal.
- The GPIO set falling edge interrupt register (SET_FAL_TRIG) enables GPIO interrupts on the occurrence of a falling edge on the GPIO signal.
- The GPIO clear falling edge interrupt register (CLR_FAL_TRIG) disables GPIO interrupts on the occurrence of a falling edge on the GPIO signal.

To configure a GPIO interrupt to occur only on rising edges of the GPIO signal:

- Write a logic 1 to the associated bit in SET_RIS_TRIG.
- Write a logic 1 to the associated bit in CLR_FAL_TRIG.

To configure a GPIO interrupt to occur only on falling edges of the GPIO signal:

- Write a logic 1 to the associated bit in SET_FAL_TRIG.
- Write a logic 1 to the associated bit in CLR_RIS_TRIG.

To configure a GPIO interrupt to occur on both the rising and falling edges of the GPIO signal:

- Write a logic 1 to the associated bit in SET_RIS_TRIG.
- Write a logic 1 to the associated bit in SET_FAL_TRIG.

To disable a specific GPIO interrupt:

- Write a logic 1 to the associated bit in CLR_RIS_TRIG.
- Write a logic 1 to the associated bit in CLR FAL TRIG.

For detailed information on these registers, see Section 3.

Note that the direction of the GPIO signal does not have to be an input for the interrupt event generation to work. When a GPIO signal is configured as an output, the software can change the GPIO signal state and, in turn, generate an interrupt. This can be useful for debugging interrupt signal connectivity.

2.10.4 GPIO Interrupt Status

The status of GPIO interrupt events can be monitored by reading the GPIO interrupt status register (INTSTAT). Pending GPIO interrupts are indicated with a logic 1 in the associated bit position; interrupts that are not pending are indicated with a logic 0.

For individual GPIO interrupts that are directly routed to the DSP subsystem, the interrupt status can be read by reading the associated interrupt flag in the CPU. For the GPIO bank interrupts, INTSTAT can be used to determine which GPIO interrupt occurred. It is the responsibility of software to ensure that all pending GPIO interrupts are appropriately serviced.

Pending GPIO interrupt flags can be cleared by writing a logic 1 to the associated bit position in INTSTAT.

For detailed information on INTSTAT, see Section 3.

2.10.5 Interrupt Multiplexing

No GPIO interrupts are multiplexed with other interrupt functions on the DM643x device.

2.11 EDMA Event Support

The GPIO peripheral can provide synchronization events to the EDMA. The EDMA events supported on this device are listed in Table 3.

Event Source	Event Name	EDMA Synchronization Event Number
GP[0] Interrupt	GPINT0	32
GP[1] Interrupt	GPINT1	33
GP[2] Interrupt	GPINT2	34
GP[3] Interrupt	GPINT3	35
GP[4] Interrupt	GPINT4	36
GP[5] Interrupt	GPINT5	37
GP[6] Interrupt	GPINT6	38
GP[7] Interrupt	GPINT7	39
GPIO Bank 0 Interrupt	GPBNKINT0	40
GPIO Bank 1 Interrupt	GPBNKINT1	41
GPIO Bank 2 Interrupt	GPBNKINT2	42
GPIO Bank 3 Interrupt	GPBNKINT3	43
GPIO Bank 4 Interrupt	GPBNKINT4	44
GPIO Bank 5 Interrupt	GPBNKINT5	45
GPIO Bank 6 Interrupt	GPBNKINT6	46

Table 3. GPIO Synchronization Events to the EDMA

2.12 Power Management

The GPIO peripheral can be placed in reduced-power modes to conserve power during periods of low activity. The power management of the GPIO peripheral is controlled by the processor Power and Sleep Controller (PSC). The PSC acts as a master controller for power management for all of the peripherals on the device. For detailed information on power management procedures using the PSC, see the TMS320DM643x DMP DSP Subsystem Reference Guide (SPRU978).

When the GPIO peripheral is placed in a low-power state by the PSC, the interrupt generation capability is suspended until the GPIO peripheral is removed from the low-power state. While in the low-power state, the GPIO signals configured as outputs are maintained at their state prior to the GPIO peripheral entering the low-power state.

2.13 Emulation Considerations

The GPIO peripheral is not affected by emulation suspend events (such as halts and breakpoints).

3 Registers

Table 4 lists the memory-mapped registers for the general-purpose input/output (GPIO). See the device-specific data manual for the memory address of these registers.

Table 4. General-Purpose Input/Output (GPIO) Registers

Offset	Acronym	Register Description	Section
0h	PID	Peripheral Identification Register	Section 3.1
4h	PCR	Peripheral Control Register	Section 3.2
8h	BINTEN	GPIO Interrupt Per-Bank Enable Register	Section 3.3
Ch	-	Reserved	-
		GPIO Banks 0 and 1	
10h	DIR01	GPIO Banks 0 and 1 Direction Register	Section 3.4
14h	OUT_DATA01	GPIO Banks 0 and 1 Output Data Register	Section 3.5
18h	SET_DATA01	GPIO Banks 0 and 1 Set Data Register	Section 3.6
1Ch	CLR_DATA01	GPIO Banks 0 and 1 Clear Data Register	Section 3.7
20h	IN_DATA01	GPIO Banks 0 and 1 Input Data Register	Section 3.8
24h	SET_RIS_TRIG01	GPIO Banks 0 and 1 Set Rising Edge Interrupt Register	Section 3.9
28h	CLR_RIS_TRIG01	GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register	Section 3.10
2Ch	SET_FAL_TRIG01	GPIO Banks 0 and 1 Set Falling Edge Interrupt Register	Section 3.11
30h	CLR_FAL_TRIG01	GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register	Section 3.12
34h	INTSTAT01	GPIO Banks 0 and 1 Interrupt Status Register	Section 3.13
		GPIO Banks 2 and 3	
38h	DIR23	GPIO Banks 2 and 3 Direction Register	Section 3.4
3Ch	OUT_DATA23	GPIO Banks 2 and 3 Output Data Register	Section 3.5
40h	SET_DATA23	GPIO Banks 2 and 3 Set Data Register	Section 3.6
44h	CLR_DATA23	GPIO Banks 2 and 3 Clear Data Register	Section 3.7
48h	IN_DATA23	GPIO Banks 2 and 3 Input Data Register	Section 3.8
4Ch	SET_RIS_TRIG23	GPIO Banks 2 and 3 Set Rising Edge Interrupt Register	Section 3.9
50h	CLR_RIS_TRIG23	GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register	Section 3.10
54h	SET_FAL_TRIG23	GPIO Banks 2 and 3 Set Falling Edge Interrupt Register	Section 3.11
58h	CLR_FAL_TRIG23	GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register	Section 3.12
5Ch	INTSTAT23	GPIO Banks 2 and 3 Interrupt Status Register	Section 3.13
		GPIO Banks 4 and 5	
60h	DIR45	GPIO Banks 4 and 5 Direction Register	Section 3.4
64h	OUT_DATA45	GPIO Banks 4 and 5 Output Data Register	Section 3.5
68h	SET_DATA45	GPIO Banks 4 and 5 Set Data Register	Section 3.6
6Ch	CLR_DATA45	GPIO Banks 4 and 5 Clear Data Register	Section 3.7
70h	IN_DATA45	GPIO Banks 4 and 5 Input Data Register	Section 3.8
74h	SET_RIS_TRIG45	GPIO Banks 4 and 5 Set Rising Edge Interrupt Register	Section 3.9
78h	CLR_RIS_TRIG45	GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register	Section 3.10
7Ch	SET_FAL_TRIG45	GPIO Banks 4 and 5 Set Falling Edge Interrupt Register	Section 3.11
80h	CLR_FAL_TRIG45	GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register	Section 3.12
84h	INTSTAT45	GPIO Banks 4 and 5 Interrupt Status Register	Section 3.13

Table 4. General-Purpose Input/Output (GPIO) Registers (continued)

Offset	Acronym	Register Description	Section						
	GPIO Bank 6								
88h	DIR6	GPIO Bank 6 Direction Register	Section 3.4						
8Ch	OUT_DATA6	GPIO Bank 6 Output Data Register	Section 3.5						
90h	SET_DATA6	GPIO Bank 6 Set Data Register	Section 3.6						
94h	CLR_DATA6	GPIO Bank 6 Clear Data Register	Section 3.7						
98h	IN_DATA6	GPIO Bank 6 Input Data Register	Section 3.8						
9Ch	SET_RIS_TRIG6	GPIO Bank 6 Set Rising Edge Interrupt Register	Section 3.9						
A0h	CLR_RIS_TRIG6	GPIO Bank 6 Clear Rising Edge Interrupt Register	Section 3.10						
A4h	SET_FAL_TRIG6	GPIO Bank 6 Set Falling Edge Interrupt Register	Section 3.11						
A8h	CLR_FAL_TRIG6	GPIO Bank 6 Clear Falling Edge Interrupt Register	Section 3.12						
ACh	INTSTAT6	GPIO Bank 6 Interrupt Status Register	Section 3.13						

3.1 Peripheral Identification Register (PID)

The peripheral identification register (PID) contains identification data (type, class, and revision) for the peripheral. PID is shown in Figure 2 and described in Table 5.

Figure 2. Peripheral Identification Register (PID)

31 30	29 28	27							16
SCHEME	Reserved					FUNC	CTION		
R-1	R-0					R-4	183h		
15		11	10	8	7	6	5		0
	RTL		MAJOF	₹	CUS	ТОМ		MINOR	
	R-0		R-1		R	-0		R-5h	

LEGEND: R = Read only; -n = value after reset

Table 5. Peripheral Identification Register (PID) Field Descriptions

Bit	Field	Value	Description
31-30	SCHEME	1	Scheme of PID encoding. This field is fixed to 01.
29-28	Reserved	0	Reserved
27-16	FUNCTION	0-FFFh	Function.
			For GPIO = 483h
15-11	RTL	0-1Fh	RTL identification.
			For GPIO = 0
10-8	MAJOR	0-Fh	Major Revision. GPIO code revisions are indicated by a revision code taking the format MAJOR_REVISION.MINOR_REVISION.
			Major revision = 1h
7-6	CUSTOM	0-3h	Custom identification.
			For GPIO = 0
5-0	MINOR	0-Fh	Minor Revision. GPIO code revisions are indicated by a revision code taking the format MAJOR_REVISION.MINOR_REVISION.
			Minor revision = 5h

3.2 Peripheral Control Register (PCR)

The peripheral control register (PCR) determines the emulation suspend mode. The FREE bit is fixed at 1 so the GPIO ignores an emulation suspend request signal and operates as usual in emulation suspension. PCR is shown in Figure 3 and described in Table 6.

Figure 3. Peripheral Control Register (PCR)

LEGEND: R = Read only; -n = value after reset

Table 6. Peripheral Control Register (PCR) Field Descriptions

Bit	Field	Value	Description
31-2	Reserved	0	Reserved
1	SOFT	0	Soft bit enable mode bit. This bit is used in conjunction with FREE bit to determine the emulation suspend mode. FREE = 1, so this bit has no effect.
0	FREE	1	Free-running enable mode bit. The FREE bit is fixed at 1, so the GPIO is free-running in emulation suspend mode.

3.3 GPIO Interrupt Per-Bank Enable Register (BINTEN)

The GPIO interrupt per-bank enable register (BINTEN) is shown in Figure 4 and described in Table 7. For information on which GPIO signals are associated with each bank, see Table 1. Note that the bits in BINTEN control both the interrupt and EDMA events.

Figure 4. GPIO Interrupt Per-Bank Enable Register (BINTEN)

Table 7. GPIO Interrupt Per-Bank Enable Register (BINTEN) Field Descriptions

Bit	Field	Value	Description
31-7	Reserved	0	Reserved
6	EN6		Bank 6 interrupt enable is used to disable or enable the bank 6 interrupts (events from GP[110-96]).
		0	Bank 6 interrupts are disabled.
		1	Bank 6 interrupts are enabled.
5	EN5		Bank 5 interrupt enable is used to disable or enable the bank 5 interrupts (events from GP[95-80]).
		0	Bank 5 interrupts are disabled.
		1	Bank 5 interrupts are enabled.
4	EN4		Bank 4 interrupt enable is used to disable or enable the bank 4 interrupts (events from GP[79- 64]).
		0	Bank 4 interrupts are disabled.
		1	Bank 4 interrupts are enabled.
3	EN3		Bank 3 interrupt enable is used to disable or enable the bank 3 interrupts (events from GP[63-48])
		0	Bank 3 interrupts are disabled.
		1	Bank 3 interrupts are enabled.
2	EN2		Bank 2 interrupt enable is used to disable or enable the bank 2 interrupts (events from GP[47- 32]).
		0	Bank 2 interrupts are disabled.
		1	Bank 2 interrupts are enabled.
1	EN1		Bank 1 interrupt enable is used to disable or enable the bank 1 interrupts (events from GP[31-16]).
		0	Bank 1 interrupts are disabled.
		1	Bank 1 interrupts are enabled.
0	EN0		Bank 0 interrupt enable is used to disable or enable the bank 0 interrupts (events from GP[15-0]).
		0	Bank 0 interrupts are disabled.
		1	Bank 0 interrupts are enabled.

3.4 GPIO Direction Registers (DIRn)

The GPIO direction register (DIR*n*) determines if GPIO pin *n* in GPIO bank *l* is an input or an output. Each of the GPIO banks may have up to 16 GPIO pins. By default, all the GPIO pins are configured as inputs (bit value = 1). The GPIO direction register (DIR01) is shown in Figure 5, DIR23 is shown in Figure 6, DIR45 is shown in Figure 7, DIR6 is shown in Figure 8, and described in Table 8. See Table 1 to determine the DIR*n* bit associated with each GPIO bank and pin number.

Figure 5. GPIO Banks 0 and 1 Direction Register (DIR01)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DIR31	DIR30	DIR29	DIR28	DIR27	DIR26	DIR25	DIR24	DIR23	DIR22	DIR21	DIR20	DIR19	DIR18	DIR17	DIR16
							RΛ	V-1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 DIR15	14 DIR14		12 DIR12	11 DIR11	10 DIR10	9 DIR9	8 DIR8	7 DIR7	6 DIR6	5 DIR5	4 DIR4	3 DIR3	2 DIR2	1 DIR1	0 DIR0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 6. GPIO Banks 2 and 3 Direction Register (DIR23)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DIR63	DIR62	DIR61	DIR60	DIR59	DIR58	DIR57	DIR56	DIR55	DIR54	DIR53	DIR52	DIR51	DIR50	DIR49	DIR48
							RΛ	V-1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIR47	DIR46	DIR45	DIR44	DIR43	DIR42	DIR41	DIR40	DIR39	DIR38	DIR37	DIR36	DIR35	DIR34	DIR33	DIR32
							RΛ	N-1							

LEGEND: R/W = Read/Write; -n = value after reset

Figure 7. GPIO Banks 4 and 5 Direction Register (DIR45)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
DIR95	DIR94	DIR93	DIR92	DIR91	DIR90	DIR89	DIR88	DIR87	DIR86	DIR85	DIR84	DIR83	DIR82	DIR81	DIR80
							R/V	V-1							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIR79	DIR78	DIR77	DIR76	DIR75	DIR74	DIR73	DIR72	DIR71	DIR70	DIR69	DIR68	DIR67	DIR66	DIR65	DIR64
							R/V	N 4							<u>-</u>

LEGEND: R/W = Read/Write; -n = value after reset

Figure 8. GPIO Bank 6 Direction Register (DIR6)

Table 8. GPIO Direction Register (DIRn) Field Descriptions

Bit	Field	Value	Description
31-16	DIRn		Direction of GPIO pin n . The DIR n bit is used to control the direction (output = 0, input = 1) of pin n on GPIO bank $2l + 1$. This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	GPIO pin <i>n</i> is an output.
		1	GPIO pin <i>n</i> is an input.
15-0	DIRn		Direction of GPIO pin n . The DIR n bit is used to control the direction (output = 0, input = 1) of pin n on GPIO bank 2 l . This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	GPIO pin <i>n</i> is an output.
		1	GPIO pin <i>n</i> is an input.

3.5 GPIO Output Data Register (OUT_DATAn)

The GPIO output data register (OUT_DATA*n*) determines the value driven on the corresponding GPIO pin *n* in GPIO bank *I*, if the pin is configured as an output (DIR*n* = 0). Writes do not affect pins not configured as GPIO outputs. The bits in OUT_DATA*n* are set or cleared by writing directly to this register. A read of OUT_DATA*n* returns the value of the register not the value at the pin (that might be configured as an input). The GPIO output data register (OUT_DATA01) is shown in Figure 9, OUT_DATA23 is shown in Figure 10, OUT_DATA45 is shown in Figure 11, OUT_DATA6 is shown in Figure 12, and described in Table 9. See Table 1 to determine the OUT_DATA*n* bit associated with each GPIO bank and pin number.

Figure 9. GPIO Banks 0 and 1 Output Data Register (OUT_DATA01)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OUT31	OUT30	OUT29	OUT28	OUT27	OUT26	OUT25	OUT24	OUT23	OUT22	OUT21	OUT20	OUT19	OUT18	OUT17	OUT16
							RΛ	V-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 OUT15	14 OUT14	13 OUT13	12 OUT12	11 OUT11	10 OUT10	9 OUT9	8 OUT8	7 OUT7	6 OUT6	5 OUT5	4 OUT4	3 OUT3	2 OUT2	1 OUT1	0 OUT0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 10. GPIO Banks 2 and 3 Output Data Register (OUT_DATA23)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OUT63	OUT62	OUT61	OUT60	OUT59	OUT58	OUT57	OUT56	OUT55	OUT54	OUT53	OUT52	OUT51	OUT50	OUT49	OUT48
							R/V	V-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 OUT47	14 OUT46	13 OUT45	12 OUT44	11 OUT43	10 OUT42	9 OUT41	8 OUT40	7 OUT39	6 OUT38	5 OUT37	4 OUT36	3 OUT35	2 OUT34	1 OUT33	0 OUT32

LEGEND: R/W = Read/Write; -n = value after reset

Figure 11. GPIO Banks 4 and 5 Output Data Register (OUT DATA45)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
OUT95	OUT94	OUT93	OUT92	OUT91	OUT90	OUT89	OUT88	OUT87	OUT86	OUT85	OUT84	OUT83	OUT82	OUT81	OUT80
							R/V	V-0							
						•	•	_	_	_		•	_		_
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 OUT79	14 OUT78		12 OUT76	11 OUT75	10 OUT74	9 OUT73		OUT71	6 OUT70	5 OUT69	4 OUT68	OUT67	OUT66	1 OUT65	0 OUT64

LEGEND: R/W = Read/Write; -n = value after reset

Figure 12. GPIO Bank 6 Output Data Register (OUT_DATA6)

Table 9. GPIO Output Data Register (OUT_DATAn) Field Descriptions

Bit	Field	Value	Description
31-16	OUTn		Output drive state of GPIO pin n . The OUT n bit is used to drive the output (low = 0, high = 1) of pin n on GPIO bank $2l + 1$ only when pin n is configured as an output (DIR n = 0). The OUT n bit is ignored when GPIO pin n is configured as an input. This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	GPIO pin <i>n</i> is driven low.
		1	GPIO pin <i>n</i> is driven high.
15-0	OUTn		Output drive state of GPIO pin n . The OUT n bit is used to drive the output (low = 0, high = 1) of pin n on GPIO bank $2I$ only when pin n is configured as an output (DIR n = 0). The OUT n bit is ignored when GPIO pin n is configured as an input. This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	GPIO pin <i>n</i> is driven low.
		1	GPIO pin <i>n</i> is driven high.

3.6 GPIO Set Data Register (SET_DATAn)

The GPIO set data register (SET_DATA*n*) controls driving high the corresponding GPIO pin *n* in GPIO bank *I*, if the pin is configured as an output (DIR*n* = 0). Writes do not affect pins not configured as GPIO outputs. The bits in SET_DATA*n* are set or cleared by writing directly to this register. A read of the SET*n* bit returns the output drive state of the corresponding GPIO pin *n*. The GPIO set data register (SET_DATA01) is shown in Figure 13, SET_DATA23 is shown in Figure 14, SET_DATA45 is shown in Figure 15, SET_DATA6 is shown in Figure 16, and described in Table 10. See Table 1 to determine the SET_DATA*n* bit associated with each GPIO bank and pin number.

Figure 13. GPIO Banks 0 and 1 Set Data Register (SET_DATA01)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SET31	SET30	SET29	SET28	SET27	SET26	SET25	SET24	SET23	SET22	SET21	SET20	SET19	SET18	SET17	SET16
							R/V	V-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SET15	SET14	SET13	SET12	SET11	SET10	SET9	SET8	SET7	SET6	SET5	SET4	SET3	SET2	SET1	SET0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 14. GPIO Banks 2 and 3 Set Data Register (SET_DATA23)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SET63	SET62	SET61	SET60	SET59	SET58	SET57	SET56	SET55	SET54	SET53	SET52	SET51	SET50	SET49	SET48
							R/V	V-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SFT47	SET/16	SET45	SET44	SET43	SFT42	SFT41	SFT40	SFT39	SFT38	SFT37	SFT36	SFT35	SFT34	SET33	SFT32
OL 1 -17	OL 140	02173	06177	OL 173	01172	02171	0_1.10	000	01.00	0_10,			00.		00-

LEGEND: R/W = Read/Write; -n = value after reset

Figure 15. GPIO Banks 4 and 5 Set Data Register (SET_DATA45)

LEGEND: R/W = Read/Write; -n = value after reset

Figure 16. GPIO Bank 6 Set Data Register (SET DATA6)

Table 10. GPIO Set Data Register (SET_DATAn) Field Descriptions

Bit	Field	Value	Description
31-16	SETn		Set output drive state of GPIO pin n . The SET n bit is used to set the output of pin n on GPIO bank $2l + 1$ only when pin n is configured as an output (DIR $n = 0$). The SET n bit is ignored when GPIO pin n is configured as an input. Writing a 1 to the SET n bit sets the output drive state of the corresponding GPIO pin n ; reading the SET n bit returns the output drive state of the corresponding GPIO pin n . This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	No effect.
		1	Set GPIO pin <i>n</i> output to 1.
15-0	SETn		Set output drive state of GPIO pin n . The SET n bit is used to set the output of pin n on GPIO bank $2l$ only when pin n is configured as an output (DIR n = 0). The SET n bit is ignored when GPIO pin n is configured as an input. Writing a 1 to the SET n bit sets the output drive state of the corresponding GPIO pin n ; reading the SET n bit returns the output drive state of the corresponding GPIO pin n . This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	No effect.
		1	Set GPIO pin <i>n</i> output to 1.

3.7 GPIO Clear Data Register (CLR_DATAn)

The GPIO clear data register (CLR_DATAn) controls driving low the corresponding GPIO pin n in GPIO bank I, if the pin is configured as an output (DIRn = 0). Writes do not affect pins not configured as GPIO outputs. The bits in CLR_DATAn are set or cleared by writing directly to this register. A read of the CLRn bit returns the output drive state of the corresponding GPIO pin n. The GPIO clear data register (CLR_DATA01) is shown in Figure 17, CLR_DATA23 is shown in Figure 18, CLR_DATA45 is shown in Figure 19, CLR_DATA6 is shown in Figure 20, and described in Table 11. See Table 1 to determine the CLR_DATAn bit associated with each GPIO bank and pin number.

Figure 17. GPIO Banks 0 and 1 Clear Data Register (CLR_DATA01)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CLR31	CLR30	CLR29	CLR28	CLR27	CLR26	CLR25	CLR24	CLR23	CLR22	CLR21	CLR20	CLR19	CLR18	CLR17	CLR16
							R/V	V-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CLR15	CLR14	CLR13	CLR12	CLR11	CLR10	CLR9	CLR8	CLR7	CLR6	CLR5	CLR4	CLR3	CLR2	CLR1	CLR0
							R/V	V-0							

LEGEND: R/W = Read/Write; -n = value after reset

Figure 18. GPIO Banks 2 and 3 Clear Data Register (CLR DATA23)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CLR63	CLR62	CLR61	CLR60	CLR59	CLR58	CLR57	CLR56	CLR55	CLR54	CLR53	CLR52	CLR51	CLR50	CLR49	CLR48
							R/V	V-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CLR47	CLR46	CLR45	CLR44	CLR43	CLR42	CLR41	CLR40	CLR39	CLR38	CLR37	CLR36	CLR35	CLR34	CLR33	CLR32
							RΛ	V-O							

LEGEND: R/W = Read/Write; -n = value after reset

Figure 19. GPIO Banks 4 and 5 Clear Data Register (CLR_DATA45)

LEGEND: R/W = Read/Write; -n = value after reset

Figure 20. GPIO Bank 6 Clear Data Register (CLR DATA6)

Table 11. GPIO Clear Data Register (CLR_DATAn) Field Descriptions

Bit	Field	Value	Description
31-16	CLRn		Clear output drive state of GPIO pin n . The CLR n bit is used to clear the output of pin n on GPIO bank $2/+1$ only when pin n is configured as an output (DIR n = 0). The CLR n bit is ignored when GPIO pin n is configured as an input. Writing a 1 to the CLR n bit clears the output drive state of the corresponding GPIO pin n ; reading the CLR n bit returns the output drive state of the corresponding GPIO pin n . This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	No effect.
		1	Clear GPIO pin <i>n</i> output to 0.
15-0	CLRn		Clear output drive state of GPIO pin n . The CLR n bit is used to clear the output of pin n on GPIO bank $2I$ only when pin n is configured as an output (DIR n = 0). The CLR n bit is ignored when GPIO pin n is configured as an input. Writing a 1 to the CLR n bit clears the output drive state of the corresponding GPIO pin n ; reading the CLR n bit returns the output drive state of the corresponding GPIO pin n . This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	No effect.
		1	Clear GPIO pin <i>n</i> output to 0.

3.8 GPIO Input Data Register (IN_DATAn)

The current state of the GPIO signals is read using the GPIO input data register (IN_DATAn).

- For GPIO signals configured as inputs, reading IN_DATAn returns the state of the input signal synchronized to the GPIO peripheral clock.
- For GPIO signals configured as outputs, reading IN_DATAn returns the output value being driven by the device.

The GPIO input data register (IN_DATA01) is shown in Figure 21, IN_DATA23 is shown in Figure 22, IN_DATA45 is shown in Figure 23, IN_DATA6 is shown in Figure 24, and described in Table 12. See Table 1 to determine the IN_DATA*n* bit associated with each GPIO bank and pin number.

Figure 21. GPIO Banks 0 and 1 Input Data Register (IN_DATA01)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IN31	IN30	IN29	IN28	IN27	IN26	IN25	IN24	IN23	IN22	IN21	IN20	IN19	IN18	IN17	IN16
							R	-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IN15	IN14	IN13	IN12	IN11	IN10	IN9	IN8	IN7	IN6	IN5	IN4	IN3	IN2	IN1	IN0
							R	-0							

LEGEND: R = Read only; -n = value after reset

Figure 22. GPIO Banks 2 and 3 Input Data Register (IN_DATA23)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IN63	IN62	IN61	IN60	IN59	IN58	IN57	IN56	IN55	IN54	IN53	IN52	IN51	IN50	IN49	IN48
							R	-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 IN47	14 IN46	13 IN45	12 IN44	11 IN43	10 IN42	9 IN41	8 IN40	7 IN39	6 IN38	5 IN37	4 IN36	3 IN35	2 IN34	1 IN33	0 IN32

LEGEND: R = Read only; -n = value after reset

Figure 23. GPIO Banks 4 and 5 Input Data Register (IN_DATA45)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
IN95	IN94	IN93	IN92	IN91	IN90	IN89	IN88	IN87	IN86	IN85	IN84	IN83	IN82	IN81	IN80
							R	-0							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IN79	IN78	IN77	IN76	IN75	IN74	IN73	IN72	IN71	IN70	IN69	IN68	IN67	IN66	IN65	IN64
								0							

LEGEND: R = Read only; -n = value after reset

Figure 24. GPIO Bank 6 Input Data Register (IN_DATA6)

R-0

LEGEND: R = Read only; -n = value after reset

Table 12. GPIO Input Data Register (IN_DATAn) Field Descriptions

Bit	Field	Value	Description
31-16	IN <i>n</i>		Status of GPIO pin <i>n</i> . Reading the IN <i>n</i> bit returns the state of pin <i>n</i> on GPIO bank 2/ + 1. This bit field returns the status of the GPIO pins on GPIO banks 1, 3, and 5.
		0	GPIO pin <i>n</i> is logic low.
		1	GPIO pin <i>n</i> is logic high.
15-0	IN <i>n</i>		Status of GPIO pin <i>n</i> . Reading the IN <i>n</i> bit returns the state of pin <i>n</i> on GPIO bank 2 <i>l</i> . This bit field returns the status of the GPIO pins on GPIO banks 0, 2, 4 and 6.
		0	GPIO pin <i>n</i> is logic low.
		1	GPIO pin <i>n</i> is logic high.

3.9 GPIO Set Rising Edge Interrupt Register (SET_RIS_TRIGn)

The GPIO set rising edge interrupt register (SET_RIS_TRIG*n*) enables a rising edge on the GPIO pin to generate a GPIO interrupt. The GPIO set rising edge interrupt register (SET_RIS_TRIG01) is shown in Figure 25, SET_RIS_TRIG23 is shown in Figure 26, SET_RIS_TRIG45 is shown in Figure 27, SET_RIS_TRIG6 is shown in Figure 28, and described in Table 13. See Table 1 to determine the SET_RIS_TRIG*n* bit associated with each GPIO bank and pin number.

Figure 25. GPIO Banks 0 and 1 Set Rising Edge Interrupt Register (SET_RIS_TRIG01)

31	30	29	28	27	26	25	24
SETRIS31	SETRIS30	SETRIS29	SETRIS28	SETRIS27	SETRIS26	SETRIS25	SETRIS24
R/W-0							
23	22	21	20	19	18	17	16
SETRIS23	SETRIS22	SETRIS21	SETRIS20	SETRIS19	SETRIS18	SETRIS17	SETRIS16
R/W-0							
15	14	13	12	11	10	9	8
SETRIS15	SETRIS14	SETRIS13	SETRIS12	SETRIS11	SETRIS10	SETRIS9	SETRIS8
R/W-0							
7	6	5	4	3	2	1	0
SETRIS7	SETRIS6	SETRIS5	SETRIS4	SETRIS3	SETRIS2	SETRIS1	SETRIS0
R/W-0							

LEGEND: R/W = Read/Write; -n = value after reset

Figure 26. GPIO Banks 2 and 3 Set Rising Edge Interrupt Register (SET_RIS_TRIG23)

31	30	29	28	27	26	25	24
SETRIS63	SETRIS62	SETRIS61	SETRIS60	SETRIS59	SETRIS58	SETRIS57	SETRIS56
R/W-0							
23	22	21	20	19	18	17	16
SETRIS55	SETRIS54	SETRIS53	SETRIS52	SETRIS51	SETRIS50	SETRIS49	SETRIS48
R/W-0							
15	14	13	12	11	10	9	8
	• • •						
SETRIS47	SETRIS46	SETRIS45	SETRIS44	SETRIS43	SETRIS42	SETRIS41	SETRIS40
SETRIS47 R/W-0	ı	_	SETRIS44 R/W-0	i .	SETRIS42 R/W-0	SETRIS41 R/W-0	SETRIS40 R/W-0
	SETRIS46	SETRIS45		SETRIS43			
R/W-0	SETRIS46 R/W-0	SETRIS45 R/W-0	R/W-0	SETRIS43 R/W-0	R/W-0		R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 27. GPIO Banks 4 and 5 Set Rising Edge Interrupt Register (SET_RIS_TRIG45) 31 SETRIS95 SETRIS94 SETRIS93 SETRIS92 SETRIS91 SETRIS90 SETRIS89 SETRIS88 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23 22 21 20 19 18 17 16 SETRIS87 SETRIS86 SETRIS85 SETRIS84 SETRIS83 SETRIS82 SETRIS81 SETRIS80 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 12 10 9 8 11 SETRIS74 SETRIS72 SETRIS79 SETRIS78 SETRIS77 SETRIS76 SETRIS75 SETRIS73 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 0 SETRIS71 SETRIS70 SETRIS69 SETRIS68 SETRIS67 SETRIS66 SETRIS65 SETRIS64 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 28. GPIO Bank 6 Set Rising Edge Interrupt Register (SET_RIS_TRIG6)

31							16
			Rese	erved			
			R	-0			
15	14	13	12	11	10	9	8
Reserved	SETRIS110	SETRIS109	SETRIS108	SETRIS107	SETRIS106	SETRIS105	SETRIS104
R/W-0							
7	6	5	4	3	2	1	0
SETRIS103	SETRIS102	SETRIS101	SETRIS100	SETRIS99	SETRIS98	SETRIS97	SETRIS96
R/W-0							

Table 13. GPIO Set Rising Edge Interrupt Register (SET_RIS_TRIGn) Field Descriptions

Bit	Field	Value	Description
31-16	SETRIS <i>n</i>		Enable rising edge interrupt detection on GPIO pin <i>n</i> . Reading the SETRISn bit in either SET_RIS_TRIGn or CLR_RIS_TRIGn always returns an indication of whether the rising edge interrupt generation function is enabled for pin n on GPIO bank 2I + 1. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	No effect.
		1	Interrupt is caused by a low-to-high transition on GPIO pin n.
15-0	SETRIS <i>n</i>		Enable rising edge interrupt detection on GPIO pin <i>n</i> . Reading the SETRISn bit in either SET_RIS_TRIGn or CLR_RIS_TRIGn always returns an indication of whether the rising edge interrupt generation function is enabled for pin n on GPIO bank 2I. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	No effect.
		1	Interrupt is caused by a low-to-high transition on GPIO pin n.

3.10 GPIO Clear Rising Edge Interrupt Register (CLR_RIS_TRIGn)

The GPIO clear rising edge interrupt register (CLR_RIS_TRIG*n*) disables a rising edge on the GPIO pin from generating a GPIO interrupt. The GPIO clear rising edge interrupt register (CLR_RIS_TRIG01) is shown in Figure 29, CLR_RIS_TRIG23 is shown in Figure 30, CLR_RIS_TRIG45 is shown in Figure 31, CLR_RIS_TRIG6 is shown in Figure 32, and described in Table 14. See Table 1 to determine the CLR_RIS_TRIG*n* bit associated with each GPIO bank and pin number.

Figure 29. GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG01)

31	30	29	28	27	26	25	24
CLRRIS31	CLRRIS30	CLRRIS29	CLRRIS28	CLRRIS27	CLRRIS26	CLRRIS25	CLRRIS24
R/W-0							
23	22	21	20	19	18	17	16
CLRRIS23	CLRRIS22	CLRRIS21	CLRRIS20	CLRRIS19	CLRRIS18	CLRRIS17	CLRRIS16
R/W-0							
15	14	13	12	11	10	9	8
CLRRIS15	CLRRIS14	CLRRIS13	CLRRIS12	CLRRIS11	CLRRIS10	CLRRIS9	CLRRIS8
R/W-0							
7	6	5	4	3	2	1	0
7 CLRRIS7	6 CLRRIS6	5 CLRRIS5	4 CLRRIS4	3 CLRRIS3	2 CLRRIS2	1 CLRRIS1	0 CLRRIS0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 30. GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG23)

31	30	29	28	27	26	25	24
CLRRIS63	CLRRIS62	CLRRIS61	CLRRIS60	CLRRIS59	CLRRIS58	CLRRIS57	CLRRIS56
R/W-10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23	22	21	20	19	18	17	16
CLRRIS55	CLRRIS54	CLRRIS53	CLRRIS52	CLRRIS51	CLRRIS50	CLRRIS49	CLRRIS48
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15	14	13	12	11	10	9	8
CLRRIS47	CLRRIS46	CLRRIS45	CLRRIS44	CLRRIS43	CLRRIS42	CLRRIS41	CLRRIS40
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			10,44	10,44	10,00	1011 0	
7	6	5	4	3	2	1	0
7 CLRRIS39						1 CLRRIS33	

LEGEND: R/W = Read/Write; -n = value after reset

Figure 31. GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG45)

31	30	29	28	27	26	25	24
CLRRIS95	CLRRIS94	CLRRIS93	CLRRIS92	CLRRIS91	CLRRIS90	CLRRIS89	CLRRIS88
R/W-0							
23	22	21	20	19	18	17	16
CLRRIS87	CLRRIS86	CLRRIS85	CLRRIS84	CLRRIS83	CLRRIS82	CLRRIS81	CLRRIS80
R/W-0							
15	14	13	12	11	10	9	8
CLRRIS79	CLRRIS78	CLRRIS77	CLRRIS76	CLRRIS75	CLRRIS74	CLRRIS73	CLRRIS72
R/W-0							
7	6	5	4	3	2	1	0
CLRRIS71	CLRRIS70	CLRRIS69	CLRRIS68	CLRRIS67	CLRRIS66	CLRRIS65	CLRRIS64
R/W-0							

LEGEND: R/W = Read/Write; -n = value after reset

Figure 32. GPIO Bank 6 Clear Rising Edge Interrupt Register (CLR_RIS_TRIG6)

31							16
			Rese	erved			
			R	-0			
15	14	13	12	11	10	9	8
Reserved	CLRRIS110	CLRRIS109	CLRRIS108	CLRRIS107	CLRRIS106	CLRRIS105	CLRRIS104
R/W-0							
7	6	5	4	3	2	1	0
CLRRIS103	CLRRIS102	CLRRIS101	CLRRIS100	CLRRIS99	CLRRIS98	CLRRIS97	CLRRIS96
R/W-0							

Table 14. GPIO Clear Rising Edge Interrupt Register (CLR_RIS_TRIGn) Field Descriptions

Bit	Field	Value	Description
31-16	CLRRIS <i>n</i>		Disable rising edge interrupt detection on GPIO pin <i>n</i> . Reading the CLRRISn bit in either SET_RIS_TRIGn or CLR_RIS_TRIGn always returns an indication of whether the rising edge interrupt generation function is enabled for pin n on GPIO bank 2I + 1. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	No effect.
		1	No interrupt is caused by a low-to-high transition on GPIO pin n.
15-0	CLRRIS <i>n</i>		Disable rising edge interrupt detection on GPIO pin <i>n</i> . Reading the CLRRISn bit in either SET_RIS_TRIGn or CLR_RIS_TRIGn always returns an indication of whether the rising edge interrupt generation function is enabled for pin n on GPIO bank 2I. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	No effect.
		1	No interrupt is caused by a low-to-high transition on GPIO pin n.

3.11 GPIO Set Falling Edge Interrupt Register (SET_FAL_TRIGn)

The GPIO set falling edge interrupt register (SET_FAL_TRIG*n*) enables a falling edge on the GPIO pin to generate a GPIO interrupt. The GPIO set falling edge interrupt register (SET_FAL_TRIG01) is shown in Figure 33, SET_FAL_TRIG23 is shown in Figure 34, SET_FAL_TRIG45 is shown in Figure 35, SET_FAL_TRIG6 is shown in Figure 36, and described in Table 15. See Table 1 to determine the SET_FAL_TRIG*n* bit associated with each GPIO bank and pin number.

Figure 33. GPIO Banks 0 and 1 Set Falling Edge Interrupt Register (SET_FAL_TRIG01)

31	30	29	28	27	26	25	24
SETFAL31	SETFAL30	SETFAL29	SETFAL28	SETFAL27	SETFAL26	SETFAL25	SETFAL24
R/W-0							
23	22	21	20	19	18	17	16
SETFAL23	SETFAL22	SETFAL21	SETFAL20	SETFAL19	SETFAL18	SETFAL17	SETFAL16
R/W-0							
15	14	13	12	11	10	9	8
SETFAL15	SETFAL14	SETFAL13	SETFAL12	SETFAL11	SETFAL10	SETFAL9	SETFAL8
R/W-0							
7	6	5	4	3	2	1	0
SETFAL7	SETFAL6	SETFAL5	SETFAL4	SETFAL3	SETFAL2	SETFAL1	SETFAL0
R/W-0							

LEGEND: R/W = Read/Write; -n = value after reset

Figure 34. GPIO Banks 2 and 3 Set Falling Edge Interrupt Register (SET_FAL_TRIG23)

31	30	29	28	27	26	25	24
SETFAL63	SETFAL62	SETFAL61	SETFAL60	SETFAL59	SETFAL58	SETFAL57	SETFAL56
R/W-0							
23	22	21	20	19	18	17	16
SETFAL55	SETFAL54	SETFAL53	SETFAL52	SETFAL51	SETFAL50	SETFAL49	SETFAL48
R/W-0							
15	14	13	12	11	10	9	8
SETFAL47	SETFAL46	SETFAL45	SETFAL44	SETFAL43	SETFAL42	SETFAL41	SETFAL40
R/W-0							
7	6	5	4	3	2	1	0
OFTENIOS							
SETFAL39	SETFAL38	SETFAL37	SETFAL36	SETFAL35	SETFAL34	SETFAL33	SETFAL32

LEGEND: R/W = Read/Write; -n = value after reset

Figure 35. GPIO Banks 4 and 5 Set Falling Edge Interrupt Register (SET_FAL_TRIG45) 31 SETFAL91 SETFAL95 SETFAL94 SETFAL93 SETFAL92 SETFAL90 SETFAL89 SETFAL88 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23 22 21 20 19 18 17 16 SETFAL87 SETFAL86 SETFAL85 SETFAL84 SETFAL83 SETFAL82 SETFAL80 SETFAL81 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 12 10 9 8 11 SETFAL75 SETFAL79 SETFAL78 SETFAL77 SETFAL76 SETFAL74 SETFAL73 SETFAL72 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 0 SETFAL71 SETFAL70 SETFAL69 SETFAL68 SETFAL67 SETFAL66 SETFAL65 SETFAL64 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 36. GPIO Bank 6 Set Falling Edge Interrupt Register (SET_FAL_TRIG6)

31							16		
	Reserved								
	R-0								
15	14	13	12	11	10	9	8		
Reserved	SETFAL110	SETFAL109	SETFAL108	SETFAL107	SETFAL106	SETFAL105	SETFAL104		
R/W-0									
7	6	5	4	3	2	1	0		
SETFAL103	SETFAL102	SETFAL101	SETFAL100	SETFAL99	SETFAL98	SETFAL97	SETFAL96		
R/W-0									

Table 15. GPIO Set Falling Edge Interrupt Register (SET_FAL_TRIGn) Field Descriptions

Bit	Field	Value	Description
31-16	SETFALn		Enable falling edge interrupt detection on GPIO pin <i>n</i> . Reading the SETFALn bit in either SET_FAL_TRIGn or CLR_FAL_TRIGn always returns an indication of whether the falling edge interrupt generation function is enabled for pin n on GPIO bank 2I + 1. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	No effect.
		1	Interrupt is caused by a high-to-low transition on GPIO pin n.
15-0	SETFALn		Enable falling edge interrupt detection on GPIO pin <i>n</i> . Reading the SETFALn bit in either SET_FAL_TRIGn or CLR_FAL_TRIGn always returns an indication of whether the falling edge interrupt generation function is enabled for pin n on GPIO bank 2I. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	No effect.
		1	Interrupt is caused by a high-to-low transition on GPIO pin n.

3.12 GPIO Clear Falling Edge Interrupt Register (CLR_FAL_TRIGn)

The GPIO clear falling edge interrupt register (CLR_FAL_TRIG*n*) disables a falling edge on the GPIO pin from generating a GPIO interrupt. The GPIO clear falling edge interrupt register (CLR_FAL_TRIG01) is shown in Figure 37, CLR_FAL_TRIG23 is shown in Figure 38, CLR_FAL_TRIG45 is shown in Figure 39, CLR_FAL_TRIG6 is shown in Figure 40, and described in Table 16. See Table 1 to determine the CLR_FAL_TRIG*n* bit associated with each GPIO bank and pin number.

Figure 37. GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG01)

31	30	29	28	27	26	25	24
CLRFAL31	CLRFAL30	CLRFAL29	CLRFAL28	CLRFAL27	CLRFAL26	CLRFAL25	CLRFAL24
R/W-0							
23	22	21	20	19	18	17	16
CLRFAL23	CLRFAL22	CLRFAL21	CLRFAL20	CLRFAL19	CLRFAL18	CLRFAL17	CLRFAL16
R/W-0							
15	14	13	12	11	10	9	8
CLRFAL15	CLRFAL14	CLRFAL13	CLRFAL12	CLRFAL11	CLRFAL10	CLRFAL9	CLRFAL8
R/W-0							
7	6	5	4	3	2	1	0
CLRFAL7	CLRFAL6	CLRFAL5	CLRFAL4	CLRFAL3	CLRFAL2	CLRFAL1	CLRFAL0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 38. GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG23)

31	30	29	28	27	26	25	24
CLRFAL63	CLRFAL62	CLRFAL61	CLRFAL60	CLRFAL59	CLRFAL58	CLRFAL57	CLRFAL56
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23	22	21	20	19	18	17	16
CLRFAL55	CLRFAL54	CLRFAL53	CLRFAL52	CLRFAL51	CLRFAL50	CLRFAL49	CLRFAL48
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15	14	13	12	11	10	9	8
01.5541.45							
CLRFAL47	CLRFAL46	CLRFAL45	CLRFAL44	CLRFAL43	CLRFAL42	CLRFAL41	CLRFAL40
R/W-0	CLRFAL46 R/W-0	CLRFAL45 R/W-0	CLRFAL44 R/W-0	CLRFAL43 R/W-0	CLRFAL42 R/W-0	CLRFAL41 R/W-0	CLRFAL40 R/W-0
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 39. GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG45) 31 CLRFAL95 CLRFAL93 CLRFAL91 CLRFAL94 CLRFAL92 CLRFAL90 CLRFAL89 CLRFAL88 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 23 22 21 20 19 18 17 16 CLRFAL87 CLRFAL86 CLRFAL85 CLRFAL84 CLRFAL83 CLRFAL82 CLRFAL81 CLRFAL80 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 12 10 9 8 11 CLRFAL79 CLRFAL76 CLRFAL75 CLRFAL78 CLRFAL77 CLRFAL74 CLRFAL73 CLRFAL72 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 0 CLRFAL71 CLRFAL68 CLRFAL64 CLRFAL70 CLRFAL69 CLRFAL67 CLRFAL66 CLRFAL65 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; -n = value after reset

Figure 40. GPIO Bank 6 Clear Falling Edge Interrupt Register (CLR_FAL_TRIG6)

31							16	
	Reserved							
			R	-0				
15	14	13	12	11	10	9	8	
Reserved	CLRFAL110	CLRFAL109	CLRFAL108	CLRFAL107	CLRFAL106	CLRFAL105	CLRFAL104	
R/W-0								
7	6	5	4	3	2	1	0	
CLRFAL103	CLRFAL102	CLRFAL101	CLRFAL100	CLRFAL99	CLRFAL98	CLRFAL97	CLRFAL96	
R/W-0								

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Table 16. GPIO Clear Falling Edge Interrupt Register (CLR_FAL_TRIGn) Field Descriptions

Bit	Field	Value	Description
31-16	CLRFALn		Disable falling edge interrupt detection on GPIO pin <i>n</i> . Reading the CLRFALn bit in either SET_FAL_TRIGn or CLR_FAL_TRIGn always returns an indication of whether the falling edge interrupt generation function is enabled for pin n on GPIO bank 2I + 1. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 1, 3, and 5.
		0	No effect.
		1	No interrupt is caused by a high-to-low transition on GPIO pin n.
15-0	CLRFALn		Disable falling edge interrupt detection on GPIO pin <i>n</i> . Reading the CLRFALn bit in either SET_FAL_TRIGn or CLR_FAL_TRIGn always returns an indication of whether the falling edge interrupt generation function is enabled for pin n on GPIO bank 2I. Therefore, this bit will be one in both registers if the function is enabled, and zero in both registers if the function is disabled. This bit field configures the GPIO pins on GPIO banks 0, 2, 4, and 6.
		0	No effect.
		1	No interrupt is caused by a high-to-low transition on GPIO pin n.

3.13 GPIO Interrupt Status Register (INTSTATn)

The status of GPIO interrupt events can be monitored by reading the GPIO interrupt status register (INTSTAT*n*). In the associated bit position, pending GPIO interrupts are indicated with a logic 1 and GPIO interrupts that are not pending are indicated with a logic 0. The GPIO interrupt status register (INTSTAT01) is shown in Figure 41, INTSTAT23 is shown in Figure 42, INTSTAT45 is shown in Figure 43, INTSTAT6 is shown in Figure 44, and described in Table 17. See Table 1 to determine the INTSTAT*n* bit associated with each GPIO bank and pin number.

Figure 41. GPIO Banks 0 and 1 Interrupt Status Register (INTSTAT01)

31	30	29	28	27	26	25	24
STAT31	STAT30	STAT29	STAT28	STAT27	STAT26	STAT25	STAT24
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
23	22	21	20	19	18	17	16
STAT23	STAT22	STAT21	STAT20	STAT19	STAT18	STAT17	STAT16
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
15	14	13	12	11	10	9	8
15 STAT15	14 STAT14	13 STAT13	12 STAT12	11 STAT11	10 STAT10	9 STAT9	8 STAT8
	i .	_		i .	_	_	
STAT15	STAT14	STAT13	STAT12	STAT11	STAT10	STAT9	STAT8
STAT15	STAT14 R/W1C-0	STAT13 R/W1C-0	STAT12 R/W1C-0	STAT11 R/W1C-0	STAT10 R/W1C-0	STAT9	STAT8 R/W1C-0

LEGEND: R/W = Read/Write; W1C = Write 1 to clear bit (writing 0 has no effect); -n = value after reset

Figure 42. GPIO Banks 2 and 3 Interrupt Status Register (INTSTAT23)

31	30	29	28	27	26	25	24
STAT63	STAT62	STAT61	STAT60	STAT59	STAT58	STAT57	STAT56
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
23	22	21	20	19	18	17	16
STAT55	STAT54	STAT53	STAT52	STAT51	STAT50	STAT49	STAT48
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
15	14	13	12	11	10	9	8
STAT47	STAT46	STATSTAT45	STAT44	STAT43	STAT42	STAT41	STAT40
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
7	6	5	4	3	2	1	0
STAT39	STAT38	STAT37	STAT36	STAT35	STAT34	STAT33	STAT32
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0

LEGEND: R/W = Read/Write; W1C = Write 1 to clear bit (writing 0 has no effect); -n = value after reset

							•
	Figu	re 43. GPIO B	anks 4 and 5	Interrupt Stat	tus Register (l	INTSTAT45)	
31	30	29	28	27	26	25	24
STAT95	STAT94	STAT93	STAT92	STAT91	STAT90	STAT89	STAT88
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
23	22	21	20	19	18	17	16
STAT87	STAT86	STAT85	STAT84	STAT83	STAT82	STAT81	STAT80
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
15	14	13	12	11	10	9	8
STAT79	STAT78	STAT77	STAT76	STAT75	STAT74	STAT73	STAT72
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
7	6	5	4	3	2	1	0
STAT71	STAT70	STAT69	STAT68	STAT67	STAT66	STAT65	STAT64
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0

LEGEND: R/W = Read/Write; W1C = Write 1 to clear bit (writing 0 has no effect); -n = value after reset

Figure 44. GPIO Bank 6 Interrupt Status Register (INTSTAT6)

31							16
			Res	erved			
			R	1-0			
15	14	13	12	11	10	9	8
Reserved	STAT110	STAT109	STAT108	STAT107	STAT106	STAT105	STAT104
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0
7	6	5	4	3	2	1	0
STAT103	STAT102	STAT101	STAT100	STAT99	STAT98	STAT97	STAT96
R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0	R/W1C-0

LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear bit (writing 0 has no effect); -n = value after reset

Table 17. GPIO Interrupt Status Register (INTSTATn) Field Descriptions

Bit	Field	Value	Description
31-16	STATn		Interrupt status of GPIO pin n . The STAT n bit is used to monitor pending GPIO interrupts on pin n of GPIO bank $2I + 1$. This bit field returns the status of GPIO pins on GPIO banks 1, 3, and 5. Write a 1 to the STAT n bit to clear the STAT n bit; a write of 0 has no effect.
		0	No pending interrupt on GPIO pin n.
		1	Pending interrupt on GPIO pin <i>n</i> .
15-0	STATn		Interrupt status of GPIO pin n . The STAT n bit is used to monitor pending GPIO interrupts on pin n of GPIO bank $2I$. This bit field returns the status of GPIO pins on GPIO banks 0 , 2 , 4 , and 6 . Write a 1 to the STAT n bit to clear the STAT n bit; a write of 0 has no effect.
		0	No pending interrupt on GPIO pin <i>n</i> .
		1	Pending interrupt on GPIO pin <i>n</i> .

Appendix A Revision History

Table A-1 lists the changes made since the previous version of this document.

Table A-1. Document Revision History

Reference	Additions/Modifications/Deletions
Table 13	Revised descriptions for bits 31-16 and 15-0.
Table 14	Revised descriptions for bits 31-16 and 15-0.
Table 15	Revised descriptions for bits 31-16 and 15-0.
Table 16	Revised descriptions for bits 31-16 and 15-0.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated