Machine Learning para el Modelamiento y Gestión Sistemas Complejos

Programación y Python

Complejidad e incertidumbre como reto técnico

Complejidad e incertidumbre como reto técnico

Los datos como fuente de los modelos computacionales

Los **datos** se han incrementado, pero además se han **diversificado** y no necesariamente se presentan estructurados.

La ampliación de captura de datos significa también un reto de cómo **estructurarlos**.

Elementos básicos de Python

LIBRERÍA

Elegimos un dispositivo que ya está preparado para hacer imágenes

COMANDO

Queremos compartir con alguien un paisaje

Enviamos esa imagen a la persona que queremos compartir

Elementos básicos de Python

LIBRERÍA

Usamos la librería de Pandas que administra la lectura e importación de archivos

COMANDO

Queremos importar un archivo

Convertimos ese archivo en una variable con al cual podemos operar

Plataformas y Arquitecturas para Programar en Python

Estructuras para Programar en Python

Librerías típicas en Python

Pandas - used for data analysis	NumPy - multidimensional arrays
SciPy - algorithms to use with numpy	Matplotlib - data visualization tool
HDF5 - used to store and manipulate data	PyTables - used for managing HDF5 datasets
Jupyter - research collaboration tool	IPython - powerful shell
HDFS - C/C++ wrapper for Hadoop	Pymongo - MongoDB driver
SQLAIchemy - Python SQL Toolkit	Redis - Redis' access libraries
pyMySQL - MySQL connector	Scikit-learn - used for machine learning algorithms
Theano - deep learning with neural networks	Keras - high-level neural networks API
Lasagne - build and train neural networks in Theano	Bokeh - data visualization tool
Seaborn - data visualization tool	Dask - data engineering tool
Airflow - data engineering tool	Luigi - data engineering tool
Elasticsearch - data search engine	SymPy - symbolic math
PyBrain - algorithms for ML	Pattern - natural language processing

Resumen: Introducción a Python

- Nunca aprendas Python, es mejor aprender a hacer algo usando Python, primero debes definir ese algo
- Python juega el rol de los simuladores, pero de una manera más flexible. Es una herramienta para hacer simuladores.
- Siempre antes de Python tiene que estar el **sentido** para el cual se necesita una **solución**. Sin el sentido de aplicación de la solución el código prácticamente no tiene valor.
- Sin Python (o Julia, C++) no se puede plantear una exploración seria, porque la capacidad de simulación manual siempre se quedará corta respecto a los niveles de complejidad de las realidades exploradas.
- Sólo formar equipos con programadores no funciona.

¡Muchas gracias!

