Lois continues

1) Loi uniforme

On dit que X suit la loi uniforme sur [a, b], notée $\mathcal{U}_{[a,b]}$, si

$$\begin{cases} X(\Omega) = [a, b] \\ f(x) = \frac{1}{b-a} 1_{[a,b]}(x) \end{cases}$$

On a

$$E\left(X\right) = \frac{a+b}{2}$$
 $V\left(X\right) = \frac{\left(b-a\right)^2}{12}$

2) Loi exponentielle

On dit que X suit la loi exponentielle de paramètre λ , notée $\mathcal{E}(\lambda)$ si

$$\left\{ \begin{array}{l} X\left(\Omega\right)=\mathbb{R}^{+}\\ f\left(x\right)=\lambda e^{-\lambda x}1_{\mathbb{R}^{+}}\left(x\right) \end{array} \right.$$

et on a

$$E(X) = \frac{1}{\lambda}$$
 $V(X) = \frac{1}{\lambda^2}$

La loi exponentielle intervient dans les processus continus sans mémoire comme la désintégration d'un noyau atomique, l'émission d'un électron... Elle généralise au cas continu la loi géométrique.

3) Loi normale (de Laplace-Gauss)

On dit que X suit la loi normale de paramètres (μ, σ^2) , notée $\mathcal{N}(\mu, \sigma^2)$ si

$$\begin{cases} X(\Omega) = \mathbb{R} \\ f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \end{cases}$$

Par intégration par parties, on obtient

$$E(X) = \mu$$
 $V(X) = \sigma^2$

On a le résultat suivant

Proposition 3-1

Si X suit une loi normale $\mathcal{N}(0,1)$, alors pour $\sigma \neq 0$, la variable aléatoire $Y = \sigma X + \mu$ suit une loi normale $\mathcal{N}(\mu, \sigma^2)$. Plus généralement, toute transformation affine d'une loi normale est encore une loi normale.

Cette propriété justifie l'intérêt particulier donné à la la loi normale centrée réduite $\mathcal{N}\left(0,1\right)$. Son espérance est nulle (elle est centrée) et sa variance est 1(elle est réduite), sa densité est donnée par

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$$

Elle admet des moments de tout ordre, par parité, ils sont nuls pour les ordres impairs et

$$E(X^{2k}) = m_{2k} = \frac{(2k)!}{2^k k!}$$

Remarque : Afin de calculer les probabilité d'un événement pour une variable aléatoire suivant une loi normale, on utilisera des tables (voir ouvrages de probastats).

Voici quelques propriétés de la loi normale $\mathcal{N}\left(0,1\right)$

Propriétés 3-2

Soit $X \hookrightarrow \mathcal{N}\left(0,1\right),$ on note la fonction de répartition de X, F_{X} par Φ , alors

1) $\forall x \in \mathbb{R}$,

$$\Phi\left(x\right) = 1 - \Phi\left(-x\right)$$

2) $\forall x \geq 0$,

$$P(|X| \le x) = 2\Phi(x) - 1$$

4) Loi Gamma

On dit que X suit la loi Gamma de paramètres (α, β) , $\alpha > 0$, $\beta > 0$, et on note $X \hookrightarrow \gamma(\alpha, \beta)$ si

$$\begin{cases} X(\Omega) = \mathbb{R}^+ \\ f_{\alpha,\beta}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \end{cases}$$

La loi Gamma généralise la loi exponentielle, on a

$$E(X) = \frac{\alpha}{\beta}$$
 $V(X) = \frac{\alpha}{\beta^2}$

Remarque: On rappelle que la fonction Gamma est définie par

$$\Gamma(z) = \int_{0}^{+\infty} t^{z-1} e^{-t} dt$$

C'est un prolongement de la factorielle. On a entre autres les relations

$$\Gamma(n+1) = n!$$
 $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$

5) Loi Bêta

On dit que X suit la loi Bêta de paramètres (a,b), a>0,b>0, et on note $X\hookrightarrow\beta\left(a,b\right)$ si

$$\begin{cases} X(\Omega) =]0, 1[\\ f_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \end{cases}$$

et on a

$$E(X) = \frac{a}{a+b} \qquad V(X) = \frac{a(a+1)}{(a+b)(a+b+1)}$$

Remarque: On rappelle que la fonction Bêta est définie par

$$B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

6) Loi du χ^2

On dit que X suit la loi du χ^2 ("khi deux") à k degrés de liberté si

$$\begin{cases} X\left(\Omega\right) = \mathbb{R}^{+} \\ f_{k}\left(x\right) = \frac{1}{2^{\frac{k}{2}}\Gamma\left(\frac{k}{2}\right)} x^{\frac{k}{2}-1} e^{-\frac{x}{2}} \end{cases}$$

La loi du χ^2 est une loi classique en statistique. Elle est liée au 'test du χ^2 ' qui permet, par exemple, de savoir si un échantillon donné est en adéquation avec une loi de probabilité définie à priori, de plus

$$E(X) = k$$
 $V(X) = 2k$

Exercice:

1) Montrer que la loi du χ^2 à 1 degré de liberté est la loi du carré d'une loi normale centrée réduite.

Plus généralement, la somme de k lois normales centrées réduites indépendantes suit une loi du χ^2 à k degrés de liberté.

7) Loi de Cauchy

On dit que X suit la loi de Cauchy (ou loi de Cauchy de paramètres 0 et 1), et on note $X \hookrightarrow \mathcal{C}au(0,1)$ si

$$\begin{cases} X(\Omega) = \mathbb{R} \\ f(x) = \frac{1}{\pi(1+x^2)} \end{cases}$$

Cette loi est symétrique, ce qui signifie que X et -X ont même loi, ceci résultant ici de la parité de f. La fonction de répartition F est donnée par :

$$F(x) = \int_{-\infty}^{x} \frac{1}{\pi (1+t^2)} dt = \frac{1}{\pi} \left(\frac{\pi}{2} + \arctan x \right)$$

où arctan x est l'unique réel $y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ tel que $\tan y = x.$

Remarque:

1) Cette loi n'admet pas d'espérance, en effet

$$E(X) = \int_{\mathbb{R}} \frac{x}{\pi (1 + x^2)} dx$$

et cette intégrale n'existe pas

2) si $Y = \beta X + \alpha$, avec $X \hookrightarrow \mathcal{C}au\left(0,1\right), \alpha \in \mathbb{R}, \beta \in \mathbb{R}_{*}^{+}$, on dit encore que Y suit une loi de Cauchy, de paramètres (α,β) , on note $Y \hookrightarrow \mathcal{C}au\left(\alpha,\beta\right)$, la densité devient alors

$$f_{\alpha,\beta}(x) = \frac{\beta}{\pi \left(\beta^2 + (x - \alpha)^2\right)}$$

8) Loi Log-normale

On dit que X suit la loi Log-normale de paramètres (m,σ^2) , $m\in\mathbb{R},\sigma>0$, si $Y=\ln X\hookrightarrow\mathcal{N}$ (m,σ^2) et

$$\begin{cases} X(\Omega) =]0, +\infty[\\ f(x) = \frac{1}{\sigma\sqrt{2\pi}} \frac{1}{x} \exp\left(-\frac{1}{2} \left(\frac{\ln x - m}{\sigma}\right)^2\right) \end{cases}$$

on a

$$E(X) = \exp\left(m + \frac{\sigma^2}{2}\right)$$
 $V(X) = \exp\left(2m + \sigma^2\right)\left(\exp\left(\sigma^2\right) - 1\right)$