Chapter1 神经元和数学方法

黄志权

2023年5月25日

目录

第 一 章	IF 模型 (Integrate-and-fire models)	1
1.1	膜电压 $u(t)$ 演变的线性微分方程推导 \dots	1

第一章 IF 模型

(Integrate-and-fire models)

神经元的动力模型可以被简化为: 树突接收若干的脉冲信号,并积累到细胞膜上,致使细胞膜电压改变,从而产生动作电位。LF 模型则是将动作电位描述成事件的模型。它由两个部分组成: 1、描述膜电压 u(t) 演变的线性微分方程; 2、描述 spike 的发射机制。

1.1 膜电压 u(t) 演变的线性微分方程推导

对于神经元细胞,我们可以将其想象为如下的 RC 电路。细胞膜就像是一个与电阻并联的电容器,而电阻连接着一个电压为 u_{rest} 电池。当没有外界输入时,膜电压 u(t) 为初始值 u_{rest} ; 当有外界脉冲输入时,相当于给电容提供电流为 I(t) 的充电,从而改变模电压 u(t)。//PS: 这个电阻也被称为漏电阻。由于在没有外界输入时,膜上电荷会逐渐穿过细胞膜泄露出去,让膜电压回归 u_{rest} ,因此引入一个漏电阻来模拟这种现象。

图 1.1: 细胞膜等效电路

考虑 I(t) 不为零的情况,即有外界输入时,来分析膜电压的变化。首先总电流由并联电路支电流和组成 $I(t) = I_r + I_C$ 。即:

$$I(t) = \frac{u(t) - u_{rest}}{R} + C\frac{du(t)}{dt}$$
(1.1)

模仿电路分析,定义膜时间常数 (membrane time constant) $\tau_m = RC$ 。 从而可以得到 u(t) 的线性微分方程:

$$\tau_m \frac{du(t)}{dt} = -[u(t) - u_{rest}] + RI(t) \tag{1.2}$$

上式在电路分析中称为 RC 电路响应方程,在神经科学领域称为无源膜方程 (equation of a passive membrane)。这个方程的解分为两个部分。即输入脉冲的充电过程(零状态响应),和没有输入脉冲,电压泄露到 u_{rest} 的过程(零状态响应)。首先是输入脉冲的充电过程(零状态响应),我们假设输入电流脉冲是一个幅值为 I_{max} 的方波,则其方程如下:

$$u(t) = u_{rest} + I_{max}R(1 - e^{-\frac{t}{\tau}})$$
(1.3)

图 1.2: 脉冲充电图

然后是电压泄露到 u_{rest} 的过程 (零状态响应):

$$u(t) = u_{rest} + I_{max} Re^{-\frac{t}{\tau}} \tag{1.4}$$

图 1.3: 脉冲放电图

从而,当没有外部脉冲输入的情况下,膜电压会以指数形式衰减到 u_{rest} 。 其衰减时间系数 τm 一般为 10 ms,与一般持续 1 ms 的尖峰脉冲相比长了很多。

接下来,考虑输入电流 I(t) 为一个短的脉冲。因为是有脉冲输入,因此对应的是公式 1.3。