Realizzazione di un driver Linux per Raspberry Pi

Pietro Lorefice

Linux & Firmware Engineer, Develer

OBIETTIVI

Prendere familiarità con il workflow di sviluppo su SoC ARM Linux

Acquisire le basi per lo sviluppo su piattaforme Linux

• Realizzare un driver completo e funzionante per il kernel Linux!

HARDWARE

Raspberry Pi 3 - Model B+

- Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB SDRAM
- WiFi, BT 4.2, BLE & Ethernet
- Header da 40 pin per GPIO e bus di comunicazione

HARDWARE

Raspberry SenseHat

- 8×8 RGB LED matrix
- Five-button joystick
- 9-DoF IMU (**LSM9DS1**)
- Temperature & Pressure sensor (**LPS25H**)
- Humidity sensor (HTS221)

SOFTWARE

Raspbian

- Distribuzione Linux Debian-based
- Kernel Linux v4.14.98
- Pacchetti APT: sense-hat & raspberrypi-kernel-headers

LAB SETUP

- Assegnare l'IP statico 10.10.0.1/16 all'interfaccia Ethernet del proprio PC
- Verificare che la uSD sia correttamente inserita nella RPi
- Collegare la RPi tramite cavo Ethernet al PC e alimentarla tramite cavo micro-USB
 - Da terminale Linux e macOS: ssh pi@raspberrypi
 - \circ Da **Windows**: PuTTY \rightarrow SSH \rightarrow pi@raspberrypi

IP della scheda: 10.10.10.254 Username: pi Password: raspberry

RISORSE UTILI

• Documentazione dei sorgenti kernel con link clickabili:

https://elixir.bootlin.com/linux/latest/source

• Documentazione ufficiale kernel:

https://www.kernel.org/doc/Documentation/

REQUISITI PER SVILUPPO KERNEL

Workflow classico

- Ambiente installato sulla macchina di sviluppo
 - o Toolchain, sysroot, etc.
- Sorgenti kernel o header sulla macchina di sviluppo
 - Che matchino la versione del kernel installata sul target!
- Strumenti di deploy sul target
 - o scp, server TFTP, boot media, etc.

REQUISITI PER SVILUPPO KERNEL

Workflow di oggi

- Tutto lo sviluppo verrà fatto sul target!
 - o Più comodo e veloce, non richiede deploy incrementale
- Tutti i pacchetti necessari sono già disponibili:
 - Toolchain: build-essential
 - Header kernel: raspberrypi-kernel-headers

CODE TIME!

LPS25H

- Sensore barometrico MEMS
- Range di pressione: 260 1260 hPa
- Interfaccia SPI e I²C
- Integra un sensore di temperatura
- Datasheet @ http://dvlr.it/lps25h

I2C

- Bus di comunicazione seriale sincrono
- Modello di comunicazione master-slave
- Utilizzato per collegamento di periferiche a bassa velocità verso uC

COMUNICAZIONE

- Una transazione sul bus è costituita da uno o (raramente) più messaggi
- Solo il master può iniziare una nuova transazione!
- Ogni messaggio inizia con un simbolo di **START** (S) e termina con uno **STOP** (P)
- Ogni messaggio può contenere un numero variabile di bit (Bn)

INDIRIZZAMENTO

- Ogni slave sul bus è identificato da un indirizzo a 7 bit
- Su ciascun bus gli indirizzi degli slave devono essere univoci
- Il primo byte di ogni trasferimento contiene sempre l'indirizzo dello slave!
- Il bit immediatamente successivo all'indirizzo indica la direzione del trasferimento
 - Se vale '1' (read), il trasferimento avviene dallo slave al master
 - Se vale '0' (write), il trasferimento avvene dal master allo slave

s	ADDRESS	R W	A C K	DATA 0	•••	DATA n	P
---	---------	--------	-------------	--------	-----	--------	---

CODE TIME!

REGISTER-MAPPED IC

- Molti IC con interfaccia I²C sono organizzati in registri
- Ciascun registro è raggiungibile ad uno specifico indirizzo
 - o In genere l'indirizzo è lungo un byte per IC semplici
- Il contenuto di ciascun registro è tipicamente cosituito da un singolo byte
 - Dati più lunghi sono in genere suddivisi tra più indirizzi
- Esistono eccezioni, in particolare per IC che implementano memorie

MAPPA REGISTRI LPS25H

Table 15. Registers address map

Name	Туре	Register address	Default	Function and	
		Hex	Binary	comment	
Reserved (do not modify)		00-07 0D - 0E		Reserved	
REF_P_XL	R/W	08	00000000		
REF_P_L	R/W	09	00000000		
REF_P_H	R/W	0A	00000000		
WHO_AM_I	R	0F	10111101	ID register	
RES_CONF	R/W	10	00000101		
Reserved (Do not modify)		11-1F		Reserved	
CTRL_REG1	R/W	20	00000000		
CTRL_REG2	R/W	21	00000000		
CTRL_REG3	R/W	22	00000000		
CTRL_REG4	R/W	23	00000000		
INT_CFG	R/W	24	00000000		
INT_SOURCE	R	25	00000000		
Reserved (Do not modify)		26		Reserved	
STATUS_REG	R	27	00000000		
PRESS_POUT_XL	R	28	output		
PRESS_OUT_L	R	29	output		
PRESS_OUT_H	R	2A	output		
TEMP_OUT_L	R	2B	output		
TEMP_OUT_H	R	2C	output		
Reserved (do not modify)		2D		Reserved	
FIFO_CTRL	R/W	2E	00000000		
FIFO_STATUS	R	2F	00000000		
THS_P_L	R/W	30	00000000		
THS_P_H	R/W	31	00000000		
Reserved		32-38			
RPDS_L	R/W	39	00111000		
RPDS_H	R/W	3A	00000000		

MAPPA REGISTRI LPS25H

- Consideriamo il registro who AM_I
- Molto diffuso in IC di questo tipo
 - Può assumere altre nomenclature,
 ma il significato è spesso simile
- Molto utile per testare il funzionamento del bus di comunicazione verso l'IC

Table 15. Registers address map

Name	Туре	Register address	Default	Function and	
		Hex	Binary	comment	
Reserved (do not modify)		00-07 0D - 0E		Reserved	
REF_P_XL	R/W	08	00000000		
REF_P_L	R/W	09	00000000		
REF P H	R/W	0A	00000000		
WHO_AM_I	R	0F	10111101	ID register	
RES_CONF	R/W	10	00000101		
Reserved (Do not modify)		11-1F		Reserved	
CTRL_REG1	R/W	20	00000000		
CTRL_REG2	R/W	21	00000000		
CTRL_REG3	R/W	22	00000000		
CTRL_REG4	R/W	23	00000000		
INT_CFG	R/W	24	00000000		
INT_SOURCE	R	25	00000000		
Reserved (Do not modify)		26		Reserved	
STATUS_REG	R	27	00000000		
PRESS_POUT_XL	R	28	output		
PRESS_OUT_L	R	29	output		
PRESS_OUT_H	R	2A	output		
TEMP_OUT_L	R	2B	output		
TEMP_OUT_H	R	2C	output		
Reserved (do not modify)		2D		Reserved	
FIFO_CTRL	R/W	2E	00000000		
FIFO_STATUS	R	2F	00000000		
THS_P_L	R/W	30	00000000		
THS_P_H	R/W	31	00000000		
Reserved		32-38			
RPDS_L	R/W	39	00111000		
RPDS_H	R/W	3A	00000000		

MAPPA REGISTRI LPS25H

- Consideriamo il valore di temperatura
- E' un intero con segno da 16 bit
 - Suddiviso in due registri da 8 bit
- Il valore grezzo va elaborato
 secondo le indicazioni descritte nel datasheet:

 $T[^{\circ}C] = 42.5 + (TEMP OUT/480)$

Table	15	Registers	addroce	man
lable	15.	Registers	address	map

Name	Туре	Register address	Default	Function and	
		Hex	Binary	comment	
Reserved (do not modify)		00-07 0D - 0E		Reserved	
REF_P_XL	R/W	08	00000000		
REF_P_L	R/W	09	00000000		
REF_P_H	R/W	0A	00000000		
WHO_AM_I	R	0F	10111101	ID register	
RES_CONF	R/W	10	00000101		
Reserved (Do not modify)		11-1F		Reserved	
CTRL_REG1	R/W	20	00000000		
CTRL_REG2	R/W	21	00000000		
CTRL_REG3	R/W	22	00000000		
CTRL_REG4	R/W	23	00000000		
INT_CFG	R/W	24	00000000		
INT_SOURCE	R	25	00000000		
Reserved (Do not modify)		26		Reserved	
STATUS_REG	R	27	00000000		
PRESS_POUT_XL	R	28	output		
PRESS_OUT_L	R	29	output		
PRESS_OUT_H	R	2A	output		
TEMP_OUT_L	R	2B	output		
TEMP_OUT_H	R	2C	output		
Reserved (do not modify)		2D		Reserved	
FIFO_CTRL	R/W	2E	00000000		
FIFO_STATUS	R	2F	00000000		
THS_P_L	R/W	30	00000000		
THS_P_H	R/W	31	00000000		
Reserved		32-38			
RPDS_L	R/W	39	00111000		
RPDS_H	R/W	3A	00000000		

ACCESSO AI REGISTRI

- **Lettura** di un registro di un IC tramite I²C:
 - 1. Inviare un comando l²C di scrittura con l'indirizzo del registro da leggere
 - 2. Inviare un comando l²C di lettura, in cui l'IC trasmetterà il contenuto del registro
- **Scrittura** di un registro di un IC tramite I²C:
 - 1. Inviare un comando l²C di scrittura con l'indirizzo del registro da leggere
 - 2. Inviare un comando l²C di scrittura con il *valore* da scrivere nel registro
 - Equivalente a trasmettere un singolo comando di scrittura da 2 byte
- Queste sono regole generali, non necessariamente valide per ogni IC!

CODE TIME!

PSEUDO FILE SYSTEMS

- Nella filosofia Unix, tutto è rappresentabile come un file
- Ciascun file deve necessariamente risiedere in un file system
- I file system classici risiedono su supporti non-volatili per la memorizzazione dati
 - o Eg. dischi, memorie flash, nastri, etc.
- Gli pseuso file system espongono un'interfaccia standard a strutture interne al kernel
 - o Eg. descrittori di processi, statistiche, configruazioni dispositivi, etc.

SYSFS

- Tipicamente montato su / sys
- Esporta informazioni su diversi sottosistemi del kernel
- Molto utile per esportare anche informazioni sull'hardware e relative configurazioni
- Ciascun driver del kernel può esportare e popolare uno o più in sysfs

CODE TIME!

INDUSTRIAL IO

- Noto più diffusamente come I/O
- Sottosistema contenente supporto per apparati che operano nel dominio analogico
 - Eg. DAC, ADC, sensori di temperatura, etc.
- Fornisce un'interfaccia standard sia a chi scrive il driver che a chi lo usa
- Sottosistema molto vasto e articolato, ma sono disponibili molti esempi

CODE TIME!

DOMANDE?

CONTATTI

github

github.com/plorefice

e-mail

pietro@develer.com

web

develer.com/pietro-lorefice

