TEST REPORT

Reference No. : WTF15S0831379-1E

FCC ID : 2AIBS-2SP8635JK04

Applicant...... : COMET INTERNATIONAL CORPORATION

Taipei City, Taiwan

Manufacturer : The same as above

Address...... The same as above

Product Name...... : BLE SPEAKER LIGHTING

Standards...... FCC CFR47 Part 15 Section 15.247:2016

Date of Receipt sample : Aug. 06, 2015

Test Result..... : Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by:

Zero Zhou / Tested Engineer

13 . /

pproved by:

Philo Zhong / Manager

Reference No.: WTF15S0831379-1E Page 2 of 43

2 Test Summary

Test Items	Test Requirement	Result
Dadiated Emissions	15.205(a)	PASS
Radiated Emissions	15.209(a)	PASS
Conducted Emissions	15.207(a)	PASS
Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

4	COVER BACE		Page
1 2			
3			
4		TORY	
5		N	
3		N OF E.U.T.	
		N OF E.U.1.	
6		ING TEST	
		IBRATION	
7			
•			
		RIPTION	
		N TEST RESULT	
8			
		Setup	
		GETUF	
		ESULTS	
9	BAND EDGE MEASUREM	MENT	20
	9.1 TEST PRODUCE		20
	9.2 TEST RESULT		21
10	BANDWIDTH MEASURE	MENT	
11		IT POWER	
12		ISITY	
13		NT	
		N1	
14			
		/ LIMIT	
		I METHOD	
15	PHOTOGRAPHS -MODE	L JK04 TEST SETUP	31
	15.1 PHOTOGRAPH – CO	ONDUCTED EMISSION TEST SETUP AT TEST SITE 2#	31
		DIATION SPURIOUS EMISSION TEST SETUP	31
Wal	tek Services (Shenzhen) Co	o I td	

Reference No.: WTF15S0831379-1E Page 4 of 43

16	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS		
	16.1	Model JK04 - External Photos	33
	16.2	MODEL JKO4 - INTERNAL PHOTOS	39

Reference No.: WTF15S0831379-1E Page 5 of 43

4 Report Revision History

Report No.	Report Version	Description	Issue Date
WTF15S0831379-1E	NONE	Original	Feb. 27, 2017
WTF15S0831379-1E	Revision1	Identify all ports of device	Mar. 01, 2017

Reference No.: WTF15S0831379-1E Page 6 of 43

5 General Information

5.1 General Description of E.U.T.

Product Name: BLE SPEAKER LIGHTING

Model No.: JK04, COMET01-99, MAGIC01-99, SOUND&LIGHT01-99

Model Difference: Only model names are different.

Operation Frequency: 2402MHz ~ 2480MHz, 79 channels for EDR, 40 channels for BLE

Type of modulation: GFSK, Pi/4DQPSK, 8DPSK, GFSK (BLE)

The lowest oscillator: 8 MHz

Antenna installation: PCB printed antenna

Antenna Gain: 0dBi

5.2 Details of E.U.T.

Technical Data: DC 3.7V Power by battery or

Charging: DC 5V from DC Jack to USB port from PC

5.3 Channel List

	BLE mode						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
No.	(MHz)	No.	(MHz)	No.	(MHz)	No.	(MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

5.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2440MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207&15.209

Test Item	Test Mode
Conducted Emissions	Communication
Radiated Emissions	Communication

Reference No.: WTF15S0831379-1E Page 7 of 43

5.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A-1

Waltek Services (Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October. 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

Equipment Used during Test 6

	6.1 Equipments List						
Condu	Conducted Emissions Test Site 1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017	
2.	LISN	R&S	ENV216	101215	Sep.12, 2016	Sep.11, 2017	
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017	
Condu	cted Emissions Test \$	Site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017	
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017	
4.	Cable	LARGE	RF300	-	Sep.12, 2016	Sep.11, 2017	
3m Sei	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMC Analyzer	Agilent	E7405A	MY45114943	Apr.29, 2016	Apr.28, 2017	
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Oct.17, 2016	Oct.16, 2017	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09, 2016	Apr.08, 2017	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09, 2016	Apr.08, 2017	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017	
3m Se	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017	
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.13, 2016	Apr.12, 2017	
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017	

RF Coi	RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.15,2016	Sep.14,2017		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Apr. 29, 2016	Apr. 28, 2017		

6.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Emissions test	± 4.74 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTF15S0831379-1E Page 10 of 43

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Live line:

9

10

11

12

1.0140

1.0140

4.0500

4.0500

29.71

25.23

31.71

23.56

10.21

10.21

10.23

10.23

39.92

35.44

41.94

33.79

56.00

46.00

56.00

46.00

-16.08

-10.56

-14.06

-12.21

QP

AVG

QP

AVG

Neutral line:

Reference No.: WTF15S0831379-1E Page 13 of 43

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

_	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance uV/m		dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: $25.5 \, ^{\circ}\text{C}$ Humidity: $51 \, ^{\circ}\text{RH}$ Atmospheric Pressure: 1016 mbar

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

	•	
Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	Z	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTF15S0831379-1E Page 16 of 43

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. New battery was used during test.

8.5 Summary of Test Results

Test Frequency: 8MHz~30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Receiver			Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading Detector table Angle Height Polar Factor	Factor	Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Low	Channel				
176.20	20.81	QP	114	1.5	Н	11.01	31.82	43.50	-11.68
176.20	19.39	QP	48	2.0	V	11.01	30.40	43.50	-13.10
4804.00	53.25	PK	78	1.4	V	-0.99	52.26	74.00	-21.74
4804.00	43.09	Ave	78	1.4	V	-0.99	42.10	54.00	-11.90
7206.00	52.65	PK	23	1.6	Н	1.52	54.17	74.00	-19.83
7206.00	42.44	Ave	23	1.6	Н	1.52	43.96	54.00	-10.04
2336.93	46.58	PK	88	1.4	V	-12.89	33.69	74.00	-40.31
2336.93	38.08	Ave	88	1.4	V	-12.89	25.19	54.00	-28.81
2358.81	43.67	PK	60	1.9	Н	-13.00	30.67	74.00	-43.33
2358.81	37.99	Ave	60	1.9	Н	-13.00	24.99	54.00	-29.01
2484.50	42.01	PK	195	1.5	V	-12.78	29.23	74.00	-44.77
2484.50	38.41	Ave	195	1.5	V	-12.78	25.63	54.00	-28.37

	Receiver		Turn	RX Antenna		Corrected	Corrected		
Frequency		Factor	Amplitude	Limit	Margin				
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	e Channe	el			
176.20	20.73	QP	89	1.5	Н	10.88	31.61	43.50	-11.89
176.20	18.41	QP	126	1.8	V	11.01	29.42	43.50	-14.08
4882.00	52.02	PK	69	1.9	V	-0.59	51.43	74.00	-22.57
4882.00	43.79	Ave	69	1.9	V	-0.59	43.21	54.00	-10.79
7323.00	52.94	PK	141	1.4	Н	2.00	54.94	74.00	-19.06
7323.00	41.87	Ave	141	1.4	Н	2.00	43.87	54.00	-10.13
2334.00	45.51	PK	188	1.6	V	-13.20	32.31	74.00	-41.69
2334.00	37.45	Ave	188	1.6	V	-13.20	24.25	54.00	-29.75
2358.84	42.53	PK	297	1.7	Н	-13.50	29.03	74.00	-44.97
2358.84	38.16	Ave	297	1.7	Н	-13.50	24.66	54.00	-29.34
2497.11	43.45	PK	309	1.7	V	-12.88	30.57	74.00	-43.43
2497.11	37.21	Ave	309	1.7	V	-12.88	24.33	54.00	-29.67

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High C	Channel				
176.20	20.12	QP	200	1.7	Н	10.59	30.71	43.50	-12.79
176.20	18.47	QP	218	1.5	V	11.01	29.48	43.50	-14.02
4960.00	53.08	PK	300	1.3	V	-0.22	52.86	74.00	-21.14
4960.00	43.11	Ave	300	1.3	V	-0.22	42.89	54.00	-11.11
7440.00	53.33	PK	302	1.3	Н	2.74	56.07	74.00	-17.93
7440.00	42.68	Ave	302	1.3	Н	2.74	45.42	54.00	-8.58
2335.19	46.16	PK	334	1.9	V	-13.11	33.05	74.00	-40.95
2335.19	37.60	Ave	334	1.9	V	-13.11	24.49	54.00	-29.51
2381.98	42.66	PK	52	1.2	Н	-13.99	28.67	74.00	-45.33
2381.98	36.77	Ave	52	1.2	Н	-13.99	22.78	54.00	-31.22
2496.75	44.34	PK	299	1.3	V	-12.88	31.46	74.00	-42.54
2496.75	37.29	Ave	299	1.3	V	-12.88	24.41	54.00	-29.59

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTF15S0831379-1E Page 20 of 43

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) and

15.205(c).

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

Test Mode: Transmitting

9.1 Test Produce

1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.

3. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto

Detector function = peak, Trace = max hold

- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Band edge-left side

Band edge-right side

Reference No.: WTF15S0831379-1E Page 22 of 43

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result

Operation mode	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low channel	1.204	1.054
Middle channel	1.204	1.048
High channel	1.204	1.048

Test result plot as follows:

Mode: Low channel

Mode: Middle channel

Mode: High channel

Reference No.: WTF15S0831379-1E Page 24 of 43

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 8.1.2 Option 2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result

Maximum Peak Output Power (dBm)					
Low channel Middle channel High channel					
2.49 3.59 5.30					
Limit					
1W/30dBm					

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

Reference No.: WTF15S0831379-1E Page 26 of 43

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB558074 D01 DTS Meas Guidance v03r05

12.1 Test Procedure

KDB558074 D01 DTS Meas Guidance v03r05 section 9.1 Option 1

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Power Spectral Density							
Low channel	Low channel Middle channel High channel						
-13.48 -12.20 -10.92							
Limit							
	8dBm per 3kHz						

Test mode: Low channel

Test mode: Middle channel

Test mode: High channel

13 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB printed antenna, the gain is 0dBi. meets the requirements of FCC 15.203.

Reference No.: WTF15S0831379-1E Page 29 of 43

14 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

14.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

14.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTF15S0831379-1E Page 30 of 43

14.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (numeric)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
0.00	1.000	5.30	3.39	0.000674	1

15 Photographs – Model JK04 Test Setup

15.1 Photograph – Conducted Emission Test Setup at Test Site 2#

15.2 Photograph – Radiation Spurious Emission Test Setup

Test frequency from 8MHz ~ 30MHz at Test Site 2#

Test frequency from 30MHz to 1GHz at Test Site 2#

Test frequency above 1GHz at Test Site 1#

16 Photographs - Constructional Details

16.1 Model JK04 - External Photos

Reference No.: WTF15S0831379-1E Page 34 of 43

Reference No.: WTF15S0831379-1E Page 35 of 43

Reference No.: WTF15S0831379-1E Page 36 of 43

Reference No.: WTF15S0831379-1E Page 37 of 43

Reference No.: WTF15S0831379-1E Page 38 of 43

16.2 Model JK04 - Internal Photos

Reference No.: WTF15S0831379-1E Page 40 of 43

Reference No.: WTF15S0831379-1E Page 41 of 43

Reference No.: WTF15S0831379-1E Page 42 of 43

=====End of Report=====