Homework Sheet 3

Author: Abdullah Oğuz Topçuoğlu

Exercise 9

We are given the function:

$$f(x_1, x_2) := \begin{cases} \frac{x_1^2 x_2}{x_1^2 + x_2^2}, & (x_1, x_2) \neq (0, 0) \\ 0, & (x_1, x_2) = (0, 0) \end{cases}$$

(i)

To show that f is continuous at the point (0,0), we need to verify that every sequence $(x_1^{(n)}, x_2^{(n)})$ converging to (0,0), $f(x_1^{(n)}, x_2^{(n)})$ also converges to f(0,0) = (0,0).

Fix a sequence $(x_1^{(n)}, x_2^{(n)})$ such that $(x_1^{(n)}, x_2^{(n)}) \to (0, 0)$.

Then, we have:
If
$$(x_1^{(n)}, x_2^{(n)}) \neq (0, 0)$$

$$|f(x_1^{(n)}, x_2^{(n)}) - f(0, 0)| = \left| \frac{(x_1^{(n)})^2 x_2^{(n)}}{(x_1^{(n)})^2 + (x_2^{(n)})^2} - 0 \right|$$

$$= \left| \frac{(x_1^{(n)})^2 x_2^{(n)}}{(x_1^{(n)})^2 + (x_2^{(n)})^2} \right|$$

$$\leq \left| \frac{(x_1^{(n)})^2 x_2^{(n)}}{(x_1^{(n)})^2} \right| \quad (\text{since } (x_1^{(n)})^2 + (x_2^{(n)})^2 \ge (x_1^{(n)})^2)$$

$$= |x_2^{(n)}|$$

 $|x_2^{(n)}| \to 0$ since $(x_1^{(n)}, x_2^{(n)}) \to (0, 0)$. Therefore $f(x_1^{(n)}, x_2^{(n)}) \to (0, 0)$.

If
$$(x_1^{(n)}, x_2^{(n)}) = (0, 0)$$

$$|f(x_1^{(n)}, x_2^{(n)}) - f(0, 0)| = |0 - 0| = 0$$

which also converges to 0.

Thats what we wanted to show.

(ii)