Curso Completo de Cálculo Diferencial

Daniel Alejandro

July 31, 2023

1 Introducción al Cálculo Diferencial

En esta lección, aprenderemos los conceptos básicos del cálculo diferencial y cómo se relacionan con las tasas de cambio y las pendientes de curvas.

1.1 Derivadas

La derivada de una función describe su tasa de cambio en un punto específico. Representaremos la derivada de una función f(x) como f'(x) o $\frac{df}{dx}$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{1}$$

1.2 Reglas de Derivación

Existen reglas que facilitan el cálculo de derivadas para diferentes tipos de funciones. Aquí hay algunas reglas fundamentales:

Regla de la Potencia:

$$\frac{d}{dx}(x^n) = nx^{n-1} \tag{2}$$

Regla de la Suma y Resta:

$$\frac{d}{dx}(f(x) + g(x)) = \frac{df}{dx} + \frac{dg}{dx}$$
(3)

Regla del Producto:

$$\frac{d}{dx}(f(x)\cdot g(x)) = f(x)\cdot \frac{dg}{dx} + g(x)\cdot \frac{df}{dx} \tag{4}$$

Regla del Cociente:

$$\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot \frac{df}{dx} - f(x) \cdot \frac{dg}{dx}}{(g(x))^2} \tag{5}$$

1.2.1 Ejemplo 1

Dada la función $f(x) = 3x^2 + 2x - 1$, calcula f'(x). Solución:

$$f'(x) = \frac{d}{dx}(3x^2) + \frac{d}{dx}(2x) - \frac{d}{dx}(1)$$

= 6x + 2 - 0
= 6x + 2

2 Aplicaciones de las Derivadas

En esta lección, exploraremos cómo aplicar las derivadas para resolver problemas del mundo real, como optimización y análisis de gráficas.

2.1 Máximos y Mínimos

Las derivadas nos ayudan a encontrar los máximos y mínimos de una función. Para ello, buscamos puntos críticos donde la derivada se anula (f'(x) = 0) y usamos la segunda derivada para determinar si el punto es un máximo o un mínimo.

Ecuación bonita (Segunda derivada):

$$f''(x) = \frac{d^2f}{dx^2} \tag{6}$$

2.1.1 Ejemplo 2

Dada la función $g(x) = x^3 - 6x^2 + 9x$, encuentra los máximos y mínimos locales. Solución:

- 1. Calculamos la primera derivada: $q'(x) = 3x^2 12x + 9$.
- 2. Igualamos a cero para encontrar puntos críticos: $3x^2 12x + 9 = 0$.
- 3. Resolvemos la ecuación cuadrática y obtenemos dos puntos críticos: x=1 y x=3.
- 4. Calculamos la segunda derivada: g''(x) = 6x 12.
- 5. Evaluamos la segunda derivada en los puntos críticos: g''(1) = -6 y g''(3) = 6.
- 6. Como g''(1) < 0, tenemos un máximo local en x = 1, y como g''(3) > 0, tenemos un mínimo local en x = 3.

2.2 Tasa de Cambio

Las derivadas también nos ayudan a analizar la tasa de cambio instantáneo de una función. En el caso de una función de posición s(t), la derivada s'(t) nos da la velocidad instantánea en el tiempo t.

2.2.1 Ejemplo 3

Un coche se mueve a lo largo de una carretera recta. La posición del coche en el tiempo t está dada por $s(t)=2t^2-3t+1$ (en metros). Calcula la velocidad del coche en el instante t=3 segundos.

Solución: La velocidad instantánea está dada por la derivada de la posición: v(t) = s'(t).

$$v(t) = \frac{ds}{dt} = 4t - 3$$

 $v(3) = 4(3) - 3 = 9 \text{ m/s}$

¡Felicidades! Has completado la primera parte de este curso sobre Cálculo Diferencial. En las siguientes lecciones, abordaremos temas como la regla de la cadena, derivadas implícitas y más aplicaciones interesantes. ¡Sigue adelante!