CS 241 Homework 5

Christian Gutierrez Spring 2022

Theorem 1. Let \approx be an equivalence relation on a finite set A. Suppose that

$$f: A/\approx \to A$$
 (1)

is a bijective function. Find and prove what \approx is.

Proof. Suppose we have f^{-1} and are assigning pigeons to boxes. Pigeons = A ; Boxes = A/\approx

Since f is a bijection, also f^{-1} is.

So f^{-1} assigns pigeons to boxes, and there must be at least as many boxes as there are pigeons.

So, \approx must be equal or else there will be fewer boxes than pigeons.

Q.E.D.

Theorem 2. Let A be a finite set and $f: A \to A$. Define the sequence

$$x_0, x_1, x_2, x_3 \dots \tag{2}$$

 $to\ be$

$$x_0 \in A, x_{n+1} = f(x_n).$$
 (3)

There exists a value of N such that if n > N then x_n is guaranteed to be inside of an infinitely repeating cycle of the sequence.

Proof. Since A is finite, $x_N = x_n$ for some n and N.

 $x_{N+j} = x_{n+j}$ for all j and for some k, N= n+k.

Using induction, we can show that $x_{n+j} = x_{N+j} = x_{N+j+k} = x_{N+j+2k} = x_{N+j+3k} = \dots$

Base Case: $x_{N+j} = x_{n+j+k}$

Inductive Case: $x_{n+j} = x_{n+j+mk}$ Q.E.D.