Graph of Equations

1 Review

Assume...

 P_1 : (x_1, y_1)

 P_2 : (x_2, y_2)

1.1 Distance Formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

where:

d: Distance between P_1 and P_2

1.2 The Midpoint Formula

$$m = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

where:

m: Midpoint between P_1 and P_2

2 Equations of Circles

You can draw a circle using an **relationship** not a function.

$$(x-h)^2 + (y-k)^2 = r^2$$

where:

(h,k): Center Point

r: Radius

3 Symmetry

3.1 Y-Axis

- Called an "Even Function"
- Looks the same after reflection over Y-Axis
- Has to meet the following requirement(s)...

$$f(x) = f(-x)$$

One example of such a function is $y = x^2$.

$$f(4) = 16$$

 $f(-4) = 16$
 $16 = 16$

3.2 X-Axis

- Not a function, doesn't pass vertical line test
- Called a **relationship**
- Has to meet the following requirement(s)...

$$x \mapsto \{-y, y\}$$

One example of such a equation is $x = y^2$ but **not** $y = \sqrt{x}$ because that would only allow positive x values.

$$9^2 = 81$$
$$(-9)^2 = 81$$

3.3 Origin

- Called an "Odd Function"
- Visually the same after 180° rotation about (0,0)
- Has to meet the following requirement(s)...

$$f(x) = y$$
$$f(-x) = -y$$

One example of such a function is $y = x^3$

$$f(2) = 8$$
$$f(-2) = -8$$

4 Equations of Lines

Assume...

m: Slope

4.1 Slope

You can use the slope formula to find the rate of change between two points.

$$m = \frac{\text{"Ryse"}}{\text{Run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

4.2 Forms

4.2.1 Slope-Intercept Form

y = mx + b

where:

b: x-intercept

4.2.2 Point Slope Form

If you need point-slope form, just sub out values. However, if you need to find slope-intercept form you can solve for y.

$$y - y_1 = m(x - x_1)$$

4.2.3 Intercept Form

$$\frac{x}{a} + \frac{y}{b} = 1$$

where:

a: x-intercept, point (a, 0) falls on the line

b: y-intercept, point (0, b) falls on the line

This form can be converted into **General Form** through the multiplication of the least common multiple of a and b. Then subtracting the value on the right side of the equation.

4.2.4 General Form

$$Ax + By + C = 0$$

where:

A is non-negative

A, B,and Care all integers

4.3 Relationships of Lines

4.3.1 Parallel Lines

- same slopes.

4.3.2 Perpendicular Lines

- opposite reciprocal slopes.

Consider the following where lines t_1 and t_2 are perpendicular.

$$t_1 = 3/8$$

 $t_2 = -8/3$

5 Functions and Equations

5.1 Is it a function?

- Each x only maps to one y

6 Domain & Range

6.1 Formatting

 ${\bf Example...}$

$$D: (-1,2]$$

 $R: (-\infty, 12)$

- "(", ")" means exclusive
- "[", "]" means inclusive
- Never use [] with ∞

6.2 Zeros

Solve for when y = 0They are x-intercepts

6.3 Increasing and Decreasing

Never use "[", "]", always "(", ")" Always Least \rightarrow Greatest

6.4 Relative Maximum and Minimum

A **point** on a line where the line is either above on both sides (*Minimum*) or below on both sides (*Maximum*). Cannot be an **end point**.

6.5 New Functions

6.5.1 Greatest Integer Function (Floor)

Represented by

$$f(x) = [[x]]$$

Left side solid (*Included*), right side empty (*Excluded*)

6.5.2 Peace-wise Function

An equation, but with conditionals Example...

$$f(x) = \begin{cases} x^2 - 3 & \text{if } x \ge 3 \\ -2x^4 + 9x^3 & \text{if } x < 3 \end{cases}$$

Plug it into calculator by multiplying things and conditions

$$f(x) = (x^2 - 3)(x \ge 3) + (-2x^4 + 9x^3)(x < 3)$$

6.6 Algebra of functions

Assume...

$$f(x)$$
: $3x + 1$

$$g(x)$$
: 4x - 1

Can be done in 2 different ways

- Do the algebra on the function
- Do the algebra on the return from the function
- $\,$ Only one example will be shown, but it works on them all

6.6.1 Addition of functions

Algebra on the functions...

$$h(x) = (f+g)(x) = 3x + 3 + 4x - 1 = 7x + 2$$

Algebra on the return values... (Only example)

$$(f+g)(2) = f(2) + g(2)$$

$$= (2(2) + 3) + (4(2) - 1)$$

$$= 16$$

6.6.2 Subtraction of functions

$$h(x) = (f - g)(x)$$

$$= (3x + 1) - (4x - 1)$$

$$= 3x + 1 - 4x + 1$$

$$= -x + 2$$

6.6.3 Multiplication of functions

$$h(x) = (f * g)(x)$$

$$= (3x + 1)(4x - 1)$$

$$= 12x^{2} - 3x + 4x - 1$$

$$= 12x^{2} + x - 1$$

6.6.4 Division of functions

$$h(x) = (\frac{f}{g})(x)$$
$$= \frac{3x+1}{4x-1}$$

6.6.5 Composition of functions

$$h(x) = (f \circ g)(x) = f(g(x))$$

$$= 3(4x - 1) + 1$$

$$= 12x - 3 + 1$$

$$= 12x - 2$$

6.6.6 Inverse of functions

Swap the x/y values and then solve for y;

$$y = 3x + 1$$

Swap the x and y

$$x = 3y + 1$$
$$3y = x - 1$$
$$y = \frac{x - 1}{3}$$

How to answer questions

Evaluate the trigonometric functions of the quadrant angle, if possible

- Radians

Reference Angle

- Degrees/Radians will be specified
- Always acute
- Always positive
- Between x-axis and terminal side

Find two solutions of the equation. Give your answers in degrees (0° $\leq \theta < 360^{\circ}$) and in radians (0 $\leq \theta < 2\pi$). Do not use a calculator. $\sin(\theta) = -\frac{1}{2}$

- Always positive
- Two answers
- Exact values, draw circle

Find the value of the expression, if possible $\sin^{-1}(-\frac{\sqrt{3}}{2})$ or $\arcsin(-\frac{\sqrt{3}}{2})$

- Radians assumed, unless specified otherwise
- Exact = Picture, Round = Calculator
- Positive or negative

Basic Trigonometric Functions

$$sin = \frac{y}{r}$$
 $csc = \frac{r}{y}$ $csc = \frac{r}{x}$ $tan = \frac{y}{x}$ $cot = \frac{x}{y}$

Graphing Trigonometric Functions

Assume...

$$-y = d + a * trig(bx - c)$$

- Amplitude =
$$|a|$$

$$-$$
 Vertical Shift $= d$

- Phase Shift =
$$\frac{c}{h}$$

– X-Scale (change between critical points) =
$$\frac{\text{period}}{4}$$

$$-\sin, \cos, \csc, \sec = \frac{2\pi}{h}$$

-
$$\tan$$
, $\cot = \frac{\pi}{h}$

For deriving from a word problem

$$-c = b * \text{shift}$$

$$-\sin, \cos, \csc, \sec = \frac{2\pi}{\text{period}}$$

– tan, cot =
$$\frac{\pi}{\text{period}}$$

Examples...

Figure 1: $y = \sin(x), y = \csc(x)$

Figure 2: $y = \cos(x), y = \sec(x)$

Figure 3: $y = \tan(x)$

Figure 4: $y = \cot(x)$

Trigonometric Identities

$$\sin = \frac{1}{\csc}$$

$$\cos = \frac{1}{\sec}$$

$$\tan = \frac{\sin}{\cos}$$

$$\csc = \frac{1}{\sin}$$

$$\cot = \frac{\cos}{\sin}$$

$$\sin^2 + \cos^2 = 1$$
$$1 + \tan^2 = \sec^2$$
$$1 + \cot^2 = \csc^2$$

Arcs

In **radians** unless specified otherwise Exact \implies picture

Round \implies calculator (\sin^{-1})

$$\sin(\theta) = -\frac{\sqrt{3}}{2}$$
$$\sin^{-1}(-\frac{\sqrt{3}}{2})$$
$$\arcsin(-\frac{\sqrt{3}}{2})$$

Arc function results
$$\sin^{-1}(x) \quad \cos^{-1}(x) \quad \tan^{-1}(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$