Wireless Security

7. Csapat

Ferencz ALBERT László FÜLEKI Attila PÉTER Zsolt SIMON

- 1. Security algorithm for IEEE 802.11 wireless networks
- 2. Was ratified as a security standard in 1999
- 3. First versions were not particularly strong, the US limited manufacturers to a 64-bit key

Encryption Details

- 1. Stream Cipher RC4 for confidentiality
- 2. CRC-32 for integrity

RC4 streamcipher and WEP Demo

Problems

- 1. CRC-32 is linear, which means that it is possible to compute the bit difference of two CRCs based on the bit difference of the messages over which they are taken.
- 2. Initially 64-bit WEP keys, then 128-bit WEP keys
 - ∘ IV 24 bits, small space, overlaps fast: 2^24 possible IVs
 - with an average pps of 97.6 (me watching YT) it takes 1 day, 22:36:12 to exhaust the IVs
 - with an average pps of 1000 (hypothetical, while gaming) it takes 4:39:37.21 to exhaust the IVs

Attacks

- 1. Passive Attack to Decrypt Traffic: intercept data, look for overlaps, create statistics
- 2. Active Attack to Inject Traffic: modify the content of a packet with a know plaintext to inject data into the access point
- 3. Active Attack from Both Ends: modify packet header, not content, redirect to port, route to victim
- 4. Aircrack-ng: PTW, FMS/KoreK method
- 5. Aircrack-ng: Caffe Latte Attack: sending forged ARP messages, generating ARP responses, cracking a 128-bit WEP key in 6 minutes (source)

Remedies

- 1. 802.11i (WPA and WPA2)
- 2. Implemented non-standard fixes:
 - WEP2: extended both the IV and the key values to 128 bits
 - WEPplus/WEP+: enhances WEP security by avoiding "weak IVs"
 - Dynamic WEP: combination of 802.1x technology and the Extensible Authentication Protocol

- Remedies WEP by using TKIP
- Was created to quickly work around the problems of WEP
- Introduces WPA-Enterprise which uses 802.1X/EAP with a RADIUS server to authenticate clients

TKIP

- Was designed to run on WEP hardware, intentionally as a transition, or stopgap, protocol
- Is a preprocessing step before WEP encryption
- RC4 is still the encryption algorithm, and the WEP CRC-32 could not be eliminated
- Adds features into the selection of the per-frame key, and introduces a new MIC to sit beside the CRC-32 and provide better integrity

WPA & TKIP - Changes

- IV is expanded to 6 bytes = $48 \text{ bits} = 2^48 \text{ space, much larger, less overlaps}$
- IV is now a sequence counter
- A per connection key is used which is negotiated at the beggining of a new connection PTK = Pairwise Temporal Key using the four-way handshake over cleartext communication:
 - AP -> C: AP sends the security settings (RSN IE) and a nonce (randomly generated)
 - C -> AP: C sends its own security settings and the nonce generated by it, also creating the PTK, by mixing the two nonces, the address of the client and AP and the PMK (PMK = Pairwise Master Key , eg, the password chosen by the user). The client signs the message with a MIC
 - ∘ AP -> C: Same message as the first, but signed with the MIC by the AP
 - C -> AP: Response to Message 4
- TSC is used (updated on message count basis)
- MIC is used
- Detecting an ongoing attack

WPA & TKIP - Problems & Attacks

- Weak password: brute force of four-way handshake
- Lack of forward secrecy
- If the attacker is on the network, it is possible to forge packets
- WPS PIN recovery

- Introduces a new encryption algorithm AES Advanced Encryption Standard
- AES: a non-linear block cypher
- Uses Counter mode
- MIC is also updated
- (CCMP) Counter Mode with Cipher Block Chaining Message Authentication Code replaces TKIP

WPA2 - AES

- Computerphile AES Explained
 - Uses 128-, 192- 256-bit keys
 - Key expansion
 - Plaintext data is chunked into 4byte x 4byte matrices
 - Finite fields
 - Substitute:
 - 1. SubBytes no fixed points
 - Permutate:
 - 1. ShiftRows rotate right in row by value
 - 2. MixCols multiply columns with predefined 4x4 matrices
 - Add round key
 - Perform above process multiple rounds, depending on keylength
 - There are AES insturctions in the CPU

WPA2 - Attacks

- Computerphile Krack Attacks
 - Man in the middle
 - Attacks the four-way handshake by exploiting message 3 and 4
 - Man in the middle causes the loss of message 4
 - Nonce is reset, same message with different encrypted data is sent twice

Bluetooth

- Managed by the Bluetooth Special Interest Group (Bluetooth SIG)
- Initially there were two implementations Bluetooth Low Energy and Bluetooth Classic
- Bluetooth 4.0 combines the two, and LE Privacy is born
- Bluetooth is using a protocol stack
- L4 is L2CAP (Logical Link Control and Adaptation Protocol)
- L5 is SMP (Security Manager Protocol)
 - 1. Pairing
 - 2. Encryption
 - 3. Signing

Bluetooth

Bluetooth Security Modes

- Security Levels
 - 1. Security Level 1 communication w/o any security
 - 2. Security Level 2 AES-CMAC for communication between unpaired devices
 - 3. Security Level 3 Support encryption, paring is needed
 - 4. Security Level 4 Everything above + ECDHE of AES-CMAC
- Security Modes
 - 1. Security Mode 1 no data signing
 - 2. Security Mode 2 all data is signed
 - 3. Mixed Security Mode includes both above
- Mixing is possible
 - Secure Connection Only Mode SM1 + SL4

Bluetooth

Attacks

- BlueSmack attack
 - 1. DOS Attack
 - 2. L2PING to calculate RTT
 - 3. Transfers an oversized packet over the L2CAP layer
- BlueJacking
 - 1. Sending unsolicited contacts over bluetooth
- Bluesnarfing Attack
 - 1. Only works when the device is discoverable
 - 2. Exploits the OBEX protocol
 - 3. Permits copy of data
- Bluebugging Attack
 - 1. Only works after pairing
 - 2. Permits installing a backdoor