Лабораторная работа 3 Исследование статических характеристик двигателя постоянного тока

Цель работы: исследование статических режимов в двигателе постоянного тока с электромагнитным возбуждением.

В работе студенты создают схемы для проведения виртуальных экспериментов, с помощью которых получают механические и передаточные характеристики двигателя постоянного тока (ДПТ) при различных способах управления.

Анализируют результаты моделирования. Исследуют ограничения мощности на валу двигателя в первой зоне регулирования и момента на валу двигателя во второй зоне регулирования.

Виртуальные эксперименты проводятся на базе пакета *MultiSim 10*. Используются библиотечные модели контрольно-измерительных приборов и компонент.

Рис.1. Схема виртуального эксперимента для построения идеальных механических характеристик ДПТ с независимым возбуждением

Тип двигателя: 2ПН90МУХЛ4

<u>№</u> п/п	Параметры	Обозначени	е параметра	Значение	Размерность
		стандарт	Multisim		
1	2	3	4	5	6
1.	Сопротивление обмотки якоря	R_a	R_a	17,27	Ом
2.	Индуктивность обмотки якоря	L_a	L_a	190	мГн
3.	Сопротивление обмотки возбуждения	Rf	Rf	610	Ом
4.	Индуктивность обмотки возбуждения	L_f	Lf	190	мГн
5.	Коэффициент вязкого скоростного трения	β _f	Bf	0,002227	Н·м·с/рад
6.	Момент инерции ротора двигателя	J	J	0,004	$H \cdot M \cdot c^2 / paд = K \Gamma \cdot M$
7.	Частота вращения ротора в номинальном режиме	$n_{\scriptscriptstyle \mathrm{HOM.}}$	NN	1500	об/мин
8.	Ном. напряжение питания обмотки якоря	$U_{a{ m HOM.}}$	Van	220	В
9.	Ток в обмотке якоря в номинальном режиме	I_{a HOM.	Ian	2,374	A
10.	Ном. напряжение питания обмотки возбуждения	$U_{f ext{ t hom.}}$	Vfn	220	В
11.	Момент статической нагрузки на валу двигателя	$M_{ m cH}$	Tl	2,357	Н∙м
12.	Угловая скорость в номинальном режиме	$\Omega_{ ext{ t HOM.}}$		157	рад/с
13.	Коэффициент ЭДС двигателя при неизменном потоке полюса	K_E		1,14	В·с/рад
14.	Коэффициент электромагнитного момента при неизменном потоке полюса	K_{M}		1,14	Н∙м/А
15.	Электромагнитный момент двигателя в номинальном режиме.	$M_{\scriptscriptstyle{ ext{ m 2HOM.}}}$		2,70636	Н∙м
16.	Пусковой электромагнитный момент двигателя при прямом пуске с номинальным напряжением на обмотке якоря	M_{Π}		14,52	Н∙м
17.	Электромагнитная постоянная времени двигателя	$T_{\mathfrak{I}}$		0,000011	С
18.	Электромеханическая постоянная времени двигателя	$T_{ m M}$		0,0532	с

Естественная (идеальная) механическая характеристика ДПТ с независимым возбуждением

<u>№</u> п/п	n	$M_{\mathfrak{I}}$	I_a	U_a	$M_{ m cH}$	$M_{\scriptscriptstyle m T}$	Примечание
	об/мин	Н·м	A	В	Н∙м	Н∙м	
1	1,791	0,418	0,366	220	0	0,418	реальный хол.ход
2	1645	1,563	1,371	220	1,1785	0,3845	
3	1500	2,708	2,375	220	2,357	0,351	

Искусственная механическая характеристика ДПТ с независимым возбуждением при пониженном напряжении на обмотке якоря

№ п/п	n	$M_{\mathfrak{I}}$	I_a	U_a	$M_{ m c}$	$M_{\scriptscriptstyle m T}$	Примечание
	об/мин	Н·м	A	В	Н·м	Н∙м	-
1	895	0,209	0,183	110	0	0,209	реальный хол.ход
2	750	1,354	1,188	110	1,1785	0,1755	
3	605	2,499	2,192	110	2,357	0,142	

Искусственная механическая характеристика ДПТ с независимым возбуждением при пониженном значении магнитного потока возбуждения и U_a = $U_{a\ \text{hom.}}$

№ п/п	n	$M_{\mathfrak{I}}$	I_a	U_a	U_f	$M_{ m c}$	$M_{\scriptscriptstyle m T}$	Примечание
-	об/мин	Н∙м	A	В	В	Н∙м	Н∙м	-
1	3,297	1,538	1,349	220	110	0	1,538	реальный
						U		хол.ход
2	2,761	3,646	3,199	220	110	1,1785	2,4675	
3	2226	5,755	5,048	220	110	2,357	3,398	

Графики естественной и искусственных механических характеристик.

2.Определение границы допустимых значений момента статической нагрузки двигателя постоянного тока с независимым возбуждением при регулировании скорости изменением потока.

Естественная (идеальная) механическая характеристика ДПТ с независимым возбуждением

№ п/п	n	$M_{\mathfrak{I}}$	I_a	U_a	$M_{ m c}$	$M_{\scriptscriptstyle m T}$	Примечание
	об/мин	Н∙м	A	В	Н∙м	Н∙м	
1	1645	1,563	1,371	220	1,1785	0,3845	U_f =220B
2	1500	2,708	2,375	220	2.357	0,351	U_f =220B

Искусственная механическая характеристика ДПТ с независимым возбуждением для Ф=0,7Ф _н

					- / 11		
№ п/п	n	$M_{\mathfrak{I}}$	I_a	U_a	$M_{ m c}$	$M_{\scriptscriptstyle m T}$	Примечание
	об/мин	Н∙м	A	В	Н∙м	Н·м	
1	2196	1,691	2,119	220	1,1785	0,5125	U_f =154B
2	1907	2,803	3,512	220	2,357	0,446	U_f =154B

Итоговая таблица результатов виртуального эксперимента для построения границы ограничения момента нагрузки двигателя

U_f B	220	198	176	154	132
U_f %	100	90	80	70	60
Мс Н∙м	2,357	2,011	1,686	1,33	0,943
n об/мин	1500	1672	1883	2158	2532
М₃ Н∙м	2,708	2,669	2,657	2,620	2,557
I_a	2,375	2,341	2,331	2,298	2,243

Граница ограничения момента нагрузки двигателя независимого возбуждения при ослаблении потока возбуждения

