

Data Pre-processing

WHY DATA PREPROCESSING?

"Dirty Data" is often seen in real world.

incomplete
irrelevant
noisy
unreliable

cleaning / normalization / transformation / feature extraction / etc.

STEP 1

DATA CLEANING

TASK OF DATA CLEANING

- 1. Fill in missing values
- 2. Identify outlier and smooth noisy data
- 3. Correct inconsistent data

FILL IN MISSING VALUES

- 1. **Ignore** the tuple
- 2. Fill in the missing value manually
- 3. Use a global constant to fill the missing value
- 4. Use the attribute mean
- 5. Use the most probable value

SMOOTH NOISY DATA

1. Binning method

2. Clustering

CORRECT INCONSISTENT DATA

- 1. Manually detection with external reference
- 2. Semi-automatic using various tools

STEP 2

FEATURE EXTRACTION

SELECT RELEVANT FEATURES

Discard irrelevant features

Example: Select features for predicting milage of a car

Engine Capacity (O)

Top Speed (O)

Color (X)

FEATURE EXTRACTION FOR TEXT

- 1. One-hot vector
- 2. Bag of Words (BOW)
 - Count vectorizer
 - **TF-IDF** vectorizer
- 3. Word2Vec

01-1 ONE-HOT VECTOR

01-2 BAG OF WORDS (BOW)

"The quick brown fox jumps over the lazy dog"

"Never jump over the lazy dog quickly"

```
Dictionary
```

```
{
    brown: 0,
    dog: 1,
    fox: 2,
    jump: 3,
    jumps: 4,
    lazy: 5,
    never: 6,
    over: 7,
    quick: 8,
    quickly: 9,
    the: 10,
}

Vectorization

[1, 1, 1,

[0, 1, 0,

]
```

[1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 2]

[0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1]

< Count Vectorizer >

Term Frequency - Inverse Document Frequency

```
tf - idf(d, t) = tf(d, t) \cdot idf(t)
tf(d, t) : term\ frequncy
df(t) : document\ frequncy
n : \sharp\ of\ documents
idf(d, t) = log \frac{n}{1 + df(t)}
```

01-3 Word2vec

FEATURE EXTRACTION FOR IMAGE

Mainly dependent on the type of dataset / images

Mean Subtraction / Normalization / PCA / Whitening

Low-level

- Edge detection
- Corner detection
- Blob detection
- Ridge detection
- Scale-invariant feature transform

Shape based

- Thresholding
- Blob extraction
- Template matching
- Hough transform

STEP 3

DEMENTIONALITY REDUCTION

SINGULAR VALUE DECOMPOSITION (SVD)

PRINCIPLE COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $\underline{u}_{R}^{(1)} \in \mathbb{R}^{n}$) onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k vectors $\underline{u^{(1)}, u^{(2)}, \dots, u^{(k)}}$ onto which to project the data, so as to minimize the projection error.

Principal Component Analysis (PCA) algorithm summary

After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

PRINCIPLE COMPONENT ANALYSIS (PCA)

PCA & Whitening

AND SO ON...

- Independent Component Analysis (ICA)
- Non-negative Matrix Factorization (NMF)
- Eigen Decomposition
- Random Projection
- Factor Analysis (FA)

Reference

1. S. Kotsiantis, D. Kanellopoulos, P. Pintelas,

"Data Preprocessing for Supervised Learning", International Journal of Computer Science, 2007, Vol 1 Link: https://pdfs.semanticscholar.org/c640/1e515a58fc36c37fc97e3b0cb18ce4682743.pdf

2. Data Preprocessing Techniques for Data Mining

Link: http://iasri.res.in/ebook/win_school_aa/notes/Data_Preprocessing.pdf

3. Data Preprocessing Steps for Machine Learning & Data analytics

Link: https://www.youtube.com/watch?v=NBm4etNMT5k

4. Scikit-Learn의 문서 전처리 기능

Link: https://datascienceschool.net/view-notebook/3e7aadbf88ed4f0d87a76f9ddc925d69/

5. Image Compression with SVD

Link: http://fourier.eng.hmc.edu/e161/lectures/svdcompression.html

6. CS231n (CNN for Visual Recognition), Setting up the data and the model

Link: http://cs231n.github.io/neural-networks-2/

7. Machine Learning by Andrew Ng, Dimensionality Reduction

Link: https://www.coursera.org/learn/machine-learning/home/welcome