

Nanopore Data Analysis Update

Ashleigh Thomas

Topics

- YACRD:
 - Yet Another Chimeric Read Detector
- MetaBAT 3.0
 - Ideas for future research

YACRD Background

Nanopore sequencing:

- Ultra long read sequencer
- Currently working on adoption process
- MinION and PromethION

Chimeric reads:

- Chimeric reads impact downstream analysis process and introduce errors
- Present in both single-genome sequencing and metagenome sequencing projects, including within-genome chimera and between-genome chimera
- Currently we don't have established chimeric read removal in our Nanopore analysis pipeline
 - Will YACRD work correctly?

YACRD workflow

Image from yacrd github

YACRD Experimental Design Goals

First stage:

- How good is YACRD? There is no paper on it.
- Can it successfully identify chimeric reads and low coverage regions of reads?
- Will this tool improve our analysis of Nanopore runs?
- Will it work with real data, including metagenomes?

Second stage:

- Estimate the true positive and false positive rates by using the reference genome
- Do this with real Nanopore data, both with a single genome and with a metagenome

Third stage:

Determine whether or not YACRD should be incorporated into the Nanopore analysis pipeline

YACRD Experimental Design Steps

- 1. Run minimap2 on dataset (start with E. coli first)
- 2. Run YACRD on the minimap2 output
- 3. Create new fastq file with the following:
 - a. If read is marked by YACRD as not covered, remove it if it the not covered region is over 25% of the total read
 - b. If the read is marked as chimeric, split up the reads that correspond to different regions of a single genome

4. Randomly sample 20 reads from the final fastq file

a. Determine if each is a true or false positive by mapping them to the reference genome, and comparing their distances apart

Chimeric read illustration

Typical example of chimeric read where adapter is making it chimeric

0,10

3880,3890

Example of chimeric read with adapter and cross-genome chimeric read

YACRD Experiment Results

Chimeric read statistics

Sample name	Sample type	New # reads	Original # chimeric reads
X0161	E. coli	380,000	4296
ActinoMock X0163	Metagenome	500,000	10,337

YACRD Experiment Results

Random sampling results

Sample name	Sample type	Number samples	# True positives	# False positives
X0161	E. coli	20	20	0
ActinoMock X0163	Metagenome	20	20	0

YACRD Experiment Conclusion

- Overall, YACRD is good at detecting chimeric reads and no coverage regions
- 0 out of 20 random samples are false positives, so the false positive rate should be less than or equal to 5%
- If JGI decides to adopt Nanopore sequencing, YACRD should be added to the Nanopore data analysis pipeline

Future Research

- MetaBAT 3.0 exploration:
 - Want to improve the accuracy of MetaBAT
 - Explicitly want to improve the sensitivity, as the specificity is already quite good
- Will explore using new metrics for improving metagenome binning results
 - May utilize machine learning

Questions

Thank you

Zhong Wang, Rob Egan, Volkan Sevim

Link to YACRD analysis repo and summary:

https://github.com/JGI-Bioinformatics/yacrd_analysis

