Linear model for predictions

川田恵介

Table of contents

1	予測問題	2
1.1	問題の定式化	2
1.2	予測精度の推定	2
1.3	予測精度の指標	2
1.4	理想の予測モデル	3
1.5	一致推定結果	3
1.6	予測誤差の分解	3
1.7	例	3
1.8	例	4
1.9	練習問題 (リンク)	4
1.10	例	4
1.11	まとめ	4
1.12	まとめ	5
1.13	補論: 過剰適合	5
1.14	数值例	5
2	Penalized Regression	6
2.1	LASSO Algorithm	6
2.2	Constrained optimization としての書き換え	6
2.3	λ の役割: OLS	6
2.4	練習問題 (リンク)	7
2.5	λ の役割: 平均	7
2.6	数值例	7
2.7	λ の役割 \ldots	8
3	交差推定	8
3.1	交差推定のアイディア	8
3.2	シンプルなサンプル分割	8
3 3	交差 給 証	8

3.4	数值例: 3 分割	9
3.5	数值例	9
3.6	数值例: Step 1	9
	数值例: Step 2	
3.8	数值例: Step 3	10
	他の評価法との比較	
	実践: 単位問題	
3.11	実践: 一致推定量	11
	実践: 変数の除外	
3.13	まとめ	12
Refer	ence	12

1 予測問題

1.1 問題の定式化

- 課題: データと同じ母集団からランダムサンプリングされる事例について、X から Y を予測するモデル $g_Y(X)$ をデータから構築する
 - 予測精度は二乗誤差の**母平均** (平均二乗誤差; MSE) で測定

$$E[(Y - g_Y(X))^2]$$

• 母集団外へ拡張可能? (Rothenhäusler and Bühlmann 2023)

1.2 予測精度の推定

- あるモデルの予測精度は母集団上で定義された Estimand
 - データから推定する必要がある
- 代表的なアプローチは、データ分割
 - データを Training/Test にランダム分割し、Training に対して Algorithm を提供し、Test で予測 精度を推定する
 - * 80:20, 95:5 などの比率が代表的

1.3 予測精度の指標

- 例: 推定されたモデル $\hat{g}_Y(X)$ について、Test から、平均二乗誤差 $E[(Y-\hat{g}_Y(X))^2]$ を推定
 - 決定係数 $(\mathbf{R2}) = 1 (E[(Y \hat{g}_Y(X))^2]/var(Y))$ はより解釈しやすい

- $* g_Y(X)$ が予測した Yの変動
- Linear Model については、伝統的な理論的指標である AIC/BIC も候補

1.4 理想の予測モデル

- $E[(Y-g_Y(X))^2]$ を最小化する予測モデルは母平均 E[Y|X]
 - 母平均を Estimand として推定する問題に帰結
 - * 事例数が多く、X の数が少なければ、OLS 推定は有力候補
 - $-\iff \mathrm{OLS}$ は E[Y|X] の (研究者が設定する) 線形近似 (Linear approximation) が Estimand

1.5 一致推定結果

- 無限大の事例数で推定されたモデル = $g_{Y,\infty}(X)$
- 必ずしも母平均とは一致しない
 - 例: Mis-specification があれば、 $g_{Y,\infty}(X) \neq E[Y|X]$

1.6 予測誤差の分解

.

1.7 例

• $Price \sim \beta_0 + \beta_1 Size$ を 10 事例で推定

•

$$Y-g_Y(X)=$$
 $Y-E[Y|X]$ $Y-E[Y|$

1.8 例

• 事例数を 100 万に増やし、同じモデルを推定する

•

$$Y-g_Y(X)=\underbrace{Y-E[Y|X]}_{\text{不変!!!}}$$

$$+\underbrace{E[Y|X]-g_{Y,\infty}(X)}_{\text{不変!!!}}$$

$$+\underbrace{g_{Y,\infty}(X)-g_Y(X)}_{\text{ほとんど0になることが期待できる}}$$

1.9 練習問題 (リンク)

• 10 事例のまま、 $Y \sim \beta_0 + \beta_1 \times poly(Size,9)$ を推定した結果、予測性能が大幅に悪化した。何が起こったか?

.

$$Y - g_Y(X) = \underbrace{Y - E[Y|X]}_{Irreducible\ Error} \\ + \underbrace{E[Y|X] - g_{Y,\infty}^*(X)}_{Approximation\ Error} + \underbrace{g_{Y,\infty}^*(X) - g_Y(X)}_{Estimation\ Error}$$

1.10 例

• 10 事例のまま、 $Y \sim \beta_0 + \beta_1 \times poly(Size,9)$ を推定

•

$$Y-g_Y(X)=\underbrace{Y-E[Y|X]}$$
 不変!!!
$$+\underbrace{E[Y|X]-g_{Y,\infty}(X)}_{$$
減少
$$+\underbrace{g_{Y,\infty}(X)-g_Y(X)}_{$$
非常に大きくなる可能性が高い

1.11 まとめ

- モデルを複雑にすると、近似誤差は低下する一方で、推定誤差は増加することが多い
 - Bias-variance トレードオフとして知られる
 - * 直感的には、モデルが複雑であれば、より多くをデータに決めさせるので、推定されたモデルはデータの特徴により強く依存する

1.12 まとめ

- 活用できる変数が増えると削減不可能な誤差を減らせる
 - アルゴリズムがうまく扱わないと、予測精度そのものは悪化しうる
- 事例数の増加は、トレードオフを緩和
 - ただし人間が適切にモデルを複雑化する介入が必要
 - * 多くの実践で、人間には困難

1.13 補論: 過剰適合

- モデルが複雑 (β の数が多い) であれば、推定に用いたデータへの適合度は高くなるが、予測精度は悪化しうる
 - 過剰適合/過学習
- 直感: OLS は $\sum (Y g_Y(X))^2$ を最小にするように β を決定
 - β の数が増えれば、最小化に用いるフリーパラメタが増えるので、必ず $\sum (Y-g_Y\!(X))^2$ は減少する

1.14 数值例

2 Penalized Regression

- 事例数に応じて、適切にモデルの複雑性を調整することは困難
 - Xの数が多いと特に難しい
- データ主導で"自動化"する
 - 代表例は LASSO

2.1 LASSO Algorithm

- 0. 十分に複雑なモデルからスタート
- 1. 何らかの基準 (後述) に基づいて Hyper (Tuning) parameter λ を設定
- 2. 以下の最適化問題を解いて、Linear model $g(X)=\beta_0+\beta_1X_1+\beta_2X_2+\dots$ を推定

$$\min \sum (y_i-g(x_i))^2 + \lambda(|\beta_1|+|\beta_2|+..)$$

2.2 Constrained optimization としての書き換え

- 1. 何らかの基準 (後述) に基づいて Hyper parameter A を設定
- 2. 以下の最適化問題を解いて、Linear model $g(X)=\beta_0+\beta_1X_1+\beta_2X_2+\dots$ を推定

$$\min \sum (y_i - g(x_i))^2$$

where

$$|\beta_1| + |\beta_2| + \dots \le A$$

2.3 λ **の役割**: OLS

• $\lambda = 0$ と設定すれば、(複雑なモデルを)OLS で推定した推定結果と一致

•

$$Y-g_Y(X)=\underbrace{Y-E[Y|X]}_{\text{不変}}$$

$$+\underbrace{E[Y|X]-g_{Y,\infty}(X)}_{\text{小ざい}}+\underbrace{g_{Y,\infty}(X)-g_Y(X)}_{\text{大きい傾向}}$$

2.4 練習問題 (リンク)

- λ を極めて大きな値に設定した
- 1. どのようなモデルになるか?
- 2. 予測性能が OLS よりも改善した。何が起こったか?

•

$$Y - g_Y(X) = \underbrace{Y - E[Y|X]}_{Irreducible\ Error} \\ + \underbrace{E[Y|X] - g_{Y,\infty}^*(X)}_{Approximation\ Error} + \underbrace{g_{Y,\infty}^*(X) - g_Y(X)}_{Estimation\ Error}$$

2.5 λ の役割: 平均

• $\lambda = \infty$ と設定すれば、必ず $\beta_1 = \beta_2 = .. = 0$ となる

- β_0 のみ、最小二乗法で推定: g(X)= サンプル平均

•

$$Y-g_Y(X)=\underbrace{Y-E[Y|X]}_{\text{不変}}$$

$$+\underbrace{E[Y|X]-g_{Y,\infty}(X)}_{\text{大きい}}+\underbrace{g_{Y,\infty}(X)-g_Y(X)}_{\text{小さい傾向}}$$

2.6 数值例

2.7 λ の役割

- やりたい事: 予測性能を最大化できるように λ を設定し、単純すぎるモデル (Approximation error が大きすぎる) と複雑すぎるモデル (Estimation error が大きすぎる) の間の" ちょうどいい" モデルを構築する
- 設定方法: サンプル分割 (交差推定, glmnet で実装)、情報基準 (gamlr で採用)、理論値 (hdm で採用)
 - 本スライドでは交差推定 (Cross fit/Cross validation) を紹介

3 交差推定

- モデルを中間評価しながら、Tunning Parameter を決定する
- 適切に、全ての事例を中間評価に用いる

3.1 交差推定のアイディア

- 予測性能の高いモデルを算出しやすい λ を使用したい
 - 母平均 E[Y|X] の良い近似モデルを算出しやすい λ を使用したい
- ある λ が牛み出すモデルの平均的な予測性能がわかれば、最善の λ を見つけ出せる

3.2 シンプルなサンプル分割

- ある λ のもとで推定されるモデルの性能を評価する
- 0. データを Training/中間評価用 (Validation) データに分割
- 1. Training を用いて、モデルを"試作"する
- 2. Validation を用いて、予測性能を評価する
- 異なる λ について繰り返し、最も性能の良いものを採用

3.3 交差検証

- ある λ のもとで推定されるモデルの平均的な性能を評価する
- 0. データを細かく分割 (第 1,..,10 サブグループなど)
- 1. 第1 サブグループ以外で推定して、第1 サブグループで評価

- 2. 第2...サブグループについて、繰り返す
- 3. 全評価値の平均を最終評価値とする

3.4 数值例: 3分割

A tibble: 9 x 3

	${\tt StationDistance}$	Price	Group
	<int></int>	<dbl></dbl>	<fct></fct>
1	9	6.05	3
2	4	3.94	2
3	7	31.0	3
4	1	8.64	1
5	2	-5.99	3
6	7	-4.48	1
7	2	-0.895	1
8	3	0.00785	2
9	1	-3.12	2

3.5 数值例

- $f_Y(X) = \beta_0 + \beta_1 X + ... + \beta_5 X^5 \approx$
 - OLS で推定
 - LASSO ($\lambda = 4$) で推定

3.6 **数値例**: Step 1

A tibble: 3 x 4

A tibble: 6×4

3	31.0	14.8	30.3	3
4	-5.99	0.0725	-5.82	3
5	0.00785	0.462	-0.228	2
6	-3.12	3.92	-2.76	2

• R2 in Validation: -2.57 with 0.01, -0.04 with 4

• R2 in Training: 1 with 0.01, 0.53 with 4

3.7 **数値例**: Step 2

A tibble: 3 x 4

	Price	`Prediction with 4`	`Prediction wit	h 0.01`	SubGroup
	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<fct></fct>
1	3.94	-0.448		-5.27	2
2	0.00785	21.0		21.9	2
3	-3.12	8.18		8.67	2

A tibble: 6×4

Price	Prediction with 4	Prediction wi	th 0.01	SubGroup
<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<fct></fct>
6.05	6.81		6.06	3
31.0	7.48		13.2	3
8.64	8.18		8.67	1
-5.99	2.22		-3.39	3
-4.48	7.48		13.2	1
-0.895	2.22		-3.39	1
		<dbl> <dbl> 6.05 6.81 31.0 7.48 8.64 8.18 -5.99 2.22 -4.48 7.48</dbl></dbl>	<dbl> <dbl> 6.05 6.81 31.0 7.48 8.64 8.18 -5.99 2.22 -4.48 7.48</dbl></dbl>	6.05 6.81 6.06 31.0 7.48 13.2 8.64 8.18 8.67 -5.99 2.22 -3.39 -4.48 7.48 13.2

3.8 **数値例**: Step 3

A tibble: 3 x 4

	Price	`Prediction with 4`	`Prediction wit	h 0.01`	${\tt SubGroup}$
	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<fct></fct>
1	6.05	0.683		-3.50	3
2	31.0	0.683		-4.44	3
3	-5.99	0.683		-0.905	3

A tibble: 6 x 4

	Price	`Prediction with 4`	`Prediction wi	ith 0.01	SubGroup
	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>	<fct></fct>
1	3.94	0.683		3.91	2
2	8.64	0.683		2.76	1
3 -	-4.48	0.683		-4.44	1
4 -	-0.895	0.683		-0.905	1
5	0.00785	0.683		0.0172	2
6 -	-3.12	0.683		2.76	2

• R2 in Validation: -2.6 with 0.01, -1.6 with 4

• R2 in Training: 0.91 with 0.01, 0.85 with 4

3.9 他の評価法との比較

- 全データを Trainig と Validation に使用すると、複雑なモデルを過大評価
 - 過剰適合と区別できない
- データを分割すると、全データを用いた評価はできない
 - 事例数が少ないと評価制精度が悪い
- 交差推定を行えば、過剰適合を避けながら、全データを評価に使用できる
 - 計算時間などの問題点もある

3.10 実践: 単位問題

- LASSO の推定結果は、X の"単位"に影響を受ける
 - $-\ X = 10\ km/10,000\ m$
 - 実戦では、推定前に平均 0/分散 1 に標準化することが多い
 - -標準化された $X = \frac{X mean(X)}{var(X)}$
- 「X の一部はYと強く相関する一方で、相関が弱い変数も大量に存在する」(Approximate Sparsity) 状況で LASSO の予測性能は良好な傾向

3.11 実践: 一致推定量

- 十分に複雑なモデルを設定できれば、LASSO (+ λ のデータ主導の決定)、定式化への依存を減らせる
 - 例えば、元々の X について、交差項と連続変数については二乗項を作成

- 事例数に応じて λ が減少すれば、母平均の一致推定量を得られる
 - * 交差推定など多くの方法で満たされる

3.12 実践: 変数の除外

- LASSO で推定した場合、 β は厳密に 0 になりえる
 - 非常に稀な場合を除いて、OLS では厳密に 0 にならない (非常に小さいのみあり得る)
- $\beta_1 \times X_1$ であれば、 X_1 をモデルから変数をデータ主導で除外している、と解釈できる
 - Double Selection において重要な手法

3.13 まとめ

- 良い予測には、適度な複雑性を持つモデルが必要
- OLS は人間がモデルを事前に定式化する必要があるが、非常に困難
- ここまでの内容は CausalML Chapter 1/3, ISL Chapter 2/3/5/6 参照

Reference

Rothenhäusler, Dominik, and Peter Bühlmann. 2023. "Distributionally Robust and Generalizable Inference." Statistical Science 38 (4): 527–42.