THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

MATH1903/1907
Integral Calculus and Modelling (Advanced)

November 2010 Lectures	as: H Dullin, J Parkinson
TIME ALLOWED: One and a half hour	°S
Family Name:	
Other Names: SID: Seat Number:	
This examination has two sections: Multiple Choice and Extended A	nswer. Marker's use Only
The Multiple Choice Section is worth 35% of the total examination there are 20 questions; the questions are of equal value; all questions may be attempted.	n;
Answers to the Multiple Choice questions must be entered on the Multiple Choice Answer Sheet.	
The Extended Answer Section is worth 65% of the total examination there are 4 questions; the questions are of equal value; all questions may be attempted; working must be shown.	on;
Approved non-programmable calculators may be used. There is a table of integrals after the last question in this bookle THE QUESTION PAPER MUST NOT BE REMOVED FROM T EXAMINATION ROOM.	

Extended Answer Section

There are four questions in this section, each with a number of parts. Write your answers in the space provided below each part. There is extra space at the end of the paper.

	MARK
1. (a) Let D be the region of the plane bounded by the x -axis, the y -axis, the line $x=1$, and the curve $y=\cosh x$.	
(i) Compute the area of D .	2
(ii) Compute the volume of the solid obtained by rotating D about the y -axis	2
(w) compare the volume of the solid obtained by folding D about the y axis	4

Λ	1	٨	D	V	C

(b) Let $I(x) = \int_0^x \sqrt{1+t^3} dt$. Calculate the integral

$$\int_0^1 x I(x) \, dx.$$

Note: The constant I(1) will appear in your answer.

M		

	MAR
(c) Let $s_n = \sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n}$. (i) Let P be the partition of $[0, n]$ into n subintervals of length 1. Use the corresponding upper and lower Riemann sums for the integral $\int_0^n \sqrt{x} dx$ to find	3
upper and lower bounds for s_n , such that the bounds differ by at most \sqrt{n} .	
(ii) Hence, or otherwise, calculate the limit $\lim_{n\to\infty} \frac{s_n}{n^{3/2}}$.	1

2. (a) (i)	Use a comparison test to show that $\int_0^\infty \frac{e^x}{7 + 2\cosh(2x)} dx$ converges.	2
(ii)	Using an appropriate substitution, or otherwise, calculate the integral $\int_0^1 \frac{xe^{\sqrt{1+x^2}}}{\sqrt{1+x^2}}dx.$	2
(ii)		2
(ii)		2
(ii)		2

M	Δ	\mathbf{R}	K	•

(b) (i)	For integers $m, n \ge 0$ let $I_{m,n} = \int_0^1 x^m (\ln x)^n dx$. Show that for $n \ge 1$,
	$I_{m,n}=-\frac{n}{m+1}I_{m,n-1},$

and hence compute $I_{m,n}$.

[You may use the fact that $\lim_{x\to 0^+} x^{\alpha} (\ln x)^{\beta} = 0$ for all $\alpha > 0$ and $\beta \geq 0$.]

1	١л	٨	\mathbf{p}	T/	c
- 1	VΙ	4	к	n	

(ii) Hence show th

$$\int_0^1 x^{-x} \, dx = \sum_{k=1}^\infty n^{-n}.$$

You may assume that any reasonable series manipulations are valid.

3. (a) Find the general solution		4
	$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = 3e^{-2x}$	

(b) Find the general solution of $\frac{dy}{dx}=\frac{2x+1}{x^2+x+1}(1-y),$ and show that every solution converges to the equilibrium solution $y=1$ for $x\to\infty$.

of the form $e^{-x-y}+1=0$. We use $u=x+y$, and hence find the general

4. (a) A spherical raindrop evaporates at a rate proportional to its surface area, retaining the spherical shape. Derive a differential equation for the radius $r(t)$ of the raindrop and solve it for a raindrop with initial radius r_0 to show that
$r(t) = r_0 - \alpha t$
for a constant $\alpha > 0$.
[Note that the volume of a sphere of radius r is $V = 4\pi r^3/3$, and that the surface area is $A = 4\pi r^2$, and assume that the density of water is 1.]

(b) The evaporating raindrop is falling towards the ground. For this type of problem with time-dependent mass the appropriate form of Newton's second law states that the rate of change of the product of mass m with velocity v is equal to the force. The force is given by mg (with positive direction down), where g is the constant gravitational acceleration, with an additional air friction force proportional to the area πr^2 times the velocity. The friction force opposes the velocity. Show that the differential equation for the velocity v of the falling raindrop can be written as

$$\frac{dv}{dt} - \frac{k\alpha}{r(t)}v = g$$

for some constant k .	

(c) Find the particular solution of the differential equation for the falling raindrop which initially the raindrop is at rest. Assume that $k \neq -1$.						
	•					

(d) Assume that $k = -2$. completely evaporated.	Compute	the	distance	the c	drop f	alls fi	om r	est u	intil i	it is
				~~~~~						
					***************************************		***************************************			
				***************************************	•••••••••••••••••••••••••••••••••••••••				•••••••••••••••••••••••••••••••••••••••	
									***************************************	
										***************************************
		***************************************								
					***************************************				***************************************	······································
										•••••••••••••••••••••••••••••••••••••••
						***************************************		······	***************************************	