

FIGURE 1

CCAATGCCCGGTGCGGTGGTGCAGGGCTCGGGCTAGTC**ATG**GCCTCCCCGTCTCGGAGAC
TGCAGACTAAACCAGTCATTACTTGTTCAGAGAGCGTTCTGCTAATCTACACTTTATTTTC
TGGATCACTGGCGTTATCCTCTTGAGTTGGCATTGGGGCAAGGTGAGCCTGGAGAATTA
CTTTCTCTTTAAATGAGAAGGCCACCAATGTCCCCTCGTGCTCATTGCTACTGGTACCG
TCATTATTCTTTGGGCACCTTGGTTGTTGCTACCTGCCAGCTCTGCATGGATGCTA
AAACTGTATGCAATGTTCTGACTCTCGTTTTGGTCGAAGTGGCGCTGCCATCGTAGG
ATTGTTTCAGACATGAGATTAAGAACAGCTTAAGAATAATTATGAGAAGGCTTGAAGC
AGTATAACTCTACAGGAGATTATAGAACGCATGCAGTAGACAAGATCCAAAATACGTTGCAT
TGTGTGGTGTACCGATTATAGAGATTGGACAGATACTAATTATTACTCAGAAAAAGGATT
TCCTAAGAGTTGCTGTAACCTGAAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA
ATGAAGGTTGTTTATAAAGGTGATGACCATTATAGAGTCAGAAATGGGAGTCGTTGCAGGA
ATTTCCTTGGAGTTGCTTGCCTCAACTGATTGGAATCTTCTGCCTACTGCCWCTCTCG
TGCCATAACAAATAACCAAGTATGAGATAGT**GTA**CCCAATGTATCTGTGGCCTATTCCCT
CTACCTTAAGGACATTAGGGTCCCCCTGTGAATTAGAAAGTTGCTTGGCTGGAGAACTG
ACAACACTACTGATAGACCAAAAAACTACACCAAGTAGGTTGATTCAATCAAGATGTAT
GTAGACCTAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGGCTGAT
TCAATCAAGATGTATGTTGCTATGTTCTAAGTCCACCTCTATCCCATTGTTAGATCG
TTGAAACCCGTATCCCTCTGAAACACTGGAAGAGCTAGTAAATTGTAATGAAGT

FIGURE 2

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902
><subunit 1 of 1, 245 aa, 1 stop, 1 unknown
><MW: -1, pI: 8.36, NX(S/T): 1
MASPSRRLQTKPVITCFKSVL LIYTFIFWITGVILLAVGIWGKVSLEN YFSLLNEKATNVPF
VLIATGTVI ILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN
NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKLEDCTPQ
RDADKVNNEGCFIKVMTII ESEMGVVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV
```

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230,

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

FIGURE 3

CCCACCGCGTCCGGCGCCGTGGCCTCGCGTCCATCTTGCCGTTCTCGGACCTGTACAAA
 GGAGTCGCGCCGCCGGCCGCCCCCTCCCTCCGGTGGGCCGGGAGGTAGAGAAAGTCAGT
 GCCACAGCCCGACC CGC GTG CT GAG CC CT GGG CAC GCG GA AC GGG AGG GAG T CT GAG GGT
 TGGGGACGTCTGTGAGGGAGGGAACAGCCGCTCGAGCCTGGGC GGG CGG ACC GG ACT GGG
 GCCGGGGTAGGCTCTGAAAGGGCCGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA
 GCCGAGAGGTTTCCACCGAGGCCGCGCTTGAGGGATCTGAAGAGGTTCTAGAAGAGGGT
 GTTCCCTCTTCGGGGTCCTCACCAAGAAGAGGTTCTGGGGTCGCCCTCTGAGGAGGCT
 GC GG CTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTGATAATGTTG
 GGAATAAGCTCTGCAACTTCTTGGCATTCA GTT G T T A A A A C A A A T A G G A T G C A A A T T C C
 TCAACTCCAGGTTATGAAAACAGTACTTGGAAA ACTGAAA ACTACCTAAATG ATCGTCTTG
 GTTGGGCCGTGTTCTTAGCGAGCAGAACGCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG
 CACATAGCCCACCTCCTAGGGACTGGAGGTGCCGCTACTACCATGGTAATT CCTGTATCTG
 CCGAGATGACAGTGGAACAGATGACAGTGTGACACCCAACAGCAACAGGCCGAGAACAGTG
 CAGTACCCACTGCTGACACAAGGAGCCAACCACGGGACCCCTGTCGGCCACCAAGGAGGGC
 CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAATGTGGATGGCTAGTGTGGACACACT
 GGCAGTAATACGGACTCTGTAGATAAGTAAGTATCTGACTCACGGTCACCTCCAGTGGAAAT
 GAAAAGTGTCTGCCCGAACCATGACTTTAGGACTCCTCAGTCCTTAGGACATACTCG
 CCAAGCCTGTGCTCACAGGGCAAAGGAGAATATTTAATGCTCCGCTGATGGCAGAGTAAA
 TGATAAGATTTGATGTTTGCTTGCTGTCACTACTTGTCTGGAAATGTCTAAATGTTTC
 TGTAGCAGAAAACACGATAAAGCTATGATCTTATTAGAG

FIGURE 4

MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ
AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKQNVVDGLVLDTLAVIRTLVDKO

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

FIGURE 5

GGCAGGCGCTGTCCACCGGGGGCGTGGGAGTGAGGTACCAGATTCA
GCCAGGCCTCTGTTCTCGGAATCCGGGTGCTGCGGATTGAGGTCCC
GTTCTAACGGACTG
CAAG**ATG**GAGGAAGGCGGGAACCTAGGAGGCCTGATTAAGATGGTCC
CATCTACTGGTCTTGT
CAGGTGCCTGGGCATGCAAATGTGGGTGACCTCGTCTCAGGCT
CTCCTGCTTTCCGAAGC
CTTCCCCGACATACCTCGGACTAGTGCA
GAGCAA
ACTCTTCCCCTACTTCCACATCTC
CATGGGCTGTGCCTTCATCAACCTCTGCATCTGGCTTCACAGC
ATGCTGGGCTCAGCTCA
CATTCTGGGAGGCCAGCCAGCTTACCTGCTGTTCTGAGC
CTTACGCTGGCCACTGTCAAC
GCCCGCTGGCTGGAACCCCGCACACAGCTGCCATGTGGGCC
CTGCAAACCGTGGAGAAGGA
GCGAGGCCTGGGTGGGGAGGTACCAGGCAGCCACCAGGG
TCCCGATCCCTACCGCCAGCTGC
GAGAGAAGGACCCAAGTACAGTGCTCTCGCCAGA
ATTCTCCGCTACCATGGGCTGTCC
TCTCTTGCAATCTGGCTGCGTCTGAGCAATGGGCT
CTGCTGCTGGCCTGCCCTGGA
AATAAGGAGCCT**TAG**CATGGGCC
CTGCATGCTAATAAA
ATGCTTCTCAGAA
ATGAAAAAAA
AAAAAAAAAAAAA

FIGURE 6

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107
<subunit 1 of 1, 231 aa, 1 stop
<NX(S/T): 0
MEEGGNLGGGLIKMVHLLVLSGAWGMQMWWTFVSGFLLFRSLPRHTFGLVQSKLFPFYFHISM
GCAFINLCILASQHAWAQLTFWEASQLYLLFLSLLATVNARWLEPRTTAAMWALQTVEKER
GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSLCNLGCVLSNGLCLAGLALEIRSL
```

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 86-103, 60-75

Casein kinase II phosphorylation site.

amino acids 82-86

Tyrosine kinase phosphorylation site.

amino acids 144-151

N-myristoylation site.

amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 54-65

G-protein coupled receptors proteins.

amino acids 44-85

FIGURE 7

AATTAGTAACTCTTCTGAGGGAGGTACCTATCACACAGGGGGAAAA**ATG**CTCTTTGGGT
GCTAGGCCTCCAATCCTCTGTGGTTCTGTGGACTCGTAAAGGAAA~~ACTAAAGATTGAAG~~
ACATCACTGATAAGTACATTTTATCACTGGATGTGACTCGGGCTTGGAAACTTGGCAGCC
AGAACCTTGATAAAAAGGGATTTCATGTAATCGCTGCCTGTCTGACTGAATCAGGATCAAC
AGCTTAAAGGCAGAACCTCAGAGAGACTCGTACTGTGCTTCTGGATGTGACCGACCCAG
AGAATGTCAAGAGGACTGCCAGTGGGTGAAGAACCAAGTTGGGAGAAAGGTCTCTGGGT
CTGATCAATAATGCTGGTGTCCCGCGTGCTGGCTCCACTGACTGGCTGACACTAGAGGA
CTACAGAGAACCTATTGAAGTGAACCTGTTGGACTCATCAGTGTGACACTAAATATGCTC
CTTGTCAGAAAGCTCAAGGGAGAGTTATTAAATGTCAGTGGAAAGGTTCAATGACAGCTTAAG
ATCGTTGGAGGGGGCTATACTCCATCAAATATGCACTGGAAAGGTTCAATGACAGCTTAAG
ACGGGACATGAAAGCTTTGGTGTGCACGTCTCATGCATTGAACCAGGATTGTTCAAAACAA
ACTTGGCAGATCCAGTAAAGGTATTGAAAAAAACTGCCATTGGAGCAGCTGTCTCCA
GACATCAAACACAATATGGAGAAGGTTACATTGAAAAAAAGTCTAGACAAACTGAAAGGCAA
TAAATCCTATGTGAACATGGACCTCTCCGGTGGTAGAGTGCATGGACCAACGCTTAACAA
GTCTCTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAATTCTGGATACCTCTG
TCTCACATGCCAGCAGCTTGCAAGACTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA
TCCCAGGCAGTGT**TGA**CTCAGCTAACCAATGTCCTCCAGGCTATGAAATTGGCCGAT
TTCAAGAACACATCTCCTTCAACCCCCATTCTTATCTGCTCCAACCTGGACTCATTAGA
TCGTGCTTATTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCAGGGTCCCTG
CTCAAGTTCTTGAAAAGGAGGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGT
ATTTAGGCTTGCCTGCTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCTTCAAAATG
ATCTTACCGTGGCCTGCCCATGCTTATGGTCCCCAGCATTACAGTAACGTGAATGTT
AAGTATCATCTCTTATCTAAATATTAAAGATAAGTCAACCCAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

FIGURE 8

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56406
><subunit 1 of 1, 319 aa, 1 stop
><MW: 35227, pI: 8.97, NX(S/T): 3
MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIACLT
ESGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDW
LTLEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINSSVGGRLAIVGGGYTPSKYAVEGF
NDSSLRRDMKAFGVHVSCTIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEFYIEKSLD
KLKGNKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQK
AELANPKAV
```

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

FIGURE 9

GCGGGCTGTTGACGGCGCTGCG**ATGG**CTGCCTGCGAGGGCAGGAGAAGCGGAGCTCTCGGTT
 CCTCTCAGTCGGACTCCTGACGCCGCCAGTGGCGGGGCCCTGGGCCGCTGCCACCACT
 GTAGTCATGTACCCACCAGCCGCCGCGCCCTCATCGGGACTTCATCTCGGTGACGCTGAG
 CTTGGCGAGAGCTATGACAACAGCAAGAGTGGCGGCCGCTCGTGCTGGAGGAATGGA
 AGCAACTGTCGAGATTGCAAGCGGAATATGATTCTCTCCTGCCTTCTGCTTTCTGT
 GGACTCCTCTTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTTCAGGCTAGAGGA
 AGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCCACCCGCTTACCAAG
 CTCCTCAGAAGGCCGACACCCTGAGAACTTACCTGAGATTTCGTACAGAACAGACAA
 AGACACATCAGCGGGGACCCACCTCACCTGCAGATTAGACCCCCAAGCCAAGACCTGAAGGA
 TGGGACCCAGGAGGAGGCCACAAAAAGGCAAGAAGGCCCTGTGGATCCCCGCCGAAGGAG
 ATCCCGAGAGGACAGTCATCAGCTGGAGGGAGCGGTGATCGAGCCTGAGCAGGGCACCGAG
 CTCCCTTAAGAAGAGCAGAAAGTGCCTCCACCAAGCCTCCCCTGCCACCGGCCAGGACACAGGG
 CACACCAGTGCATCTGAACATCGCCAGAAGGGCTGATTGACGTCTCCTGCATGCATGGA
 AAGGATAACCGCAAGTTGCATGGGCCATGACGAGCTGAAGCCTGTGTCCAGGTCTTCAGT
 GAGTGGTTGGCCTCGGTCTCACACTGATCGACCGCTGGACACCATGTGGATCTGGGTCT
 GAGGAAAGAATTGAGGAAGCCAGGAAGTGGGTGTCGAAGAAGTTACACTTTGAAAAGGACG
 TGGACGTCAACCTGTTGAGAGCACGATCCGCATCCTGGGGGGCTCCTGAGTGCCTACAC
 CTGCTGGGGACAGCCTCTTGAGGAAAGCTGAGGATTTGAAATCGGCTAATGCCTGC
 CTTCAGAACACCATCCAAGATTCTTACTCGGATGTGAACATCGGTAUTGGAGTTGCCACC
 CGCACGGTGGACCTCCGACAGCACTGTGGCGAGGTGACCAGCATTGAGCTGGAGTTCCGG
 GAGCTCTCCGTCTCACAGGGATAAGAAGTTCAAGGAGGAGCTGGTGCCTGTTCAATACCCACAGCA
 CATCCACGGCTGTCTGGGAAGAAGGATGGCTGGTGCCTGTTCAATACCCACAGCA
 GCCTCTTACCCACCTGGCGTATTCACGCTGGCGCCAGGGCCGACAGCTACTATGAGTAC
 CTGCTGAAGCAGTGGATCCAGGGCGGGAAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGA
 AGCCATCGAGGGTGTCAAGACGCACCTGCTGCCACTCCGAGCCCAGTAAGCTCACCTTG
 TGGGGAGCTGCCACGGCGCTTCAGTGCCTGCAAGATGGACCACCTGGTGTCTCCTGCCA
 GGGACGCTGGCTCTGGCGTCTACCACGGCCTGCCAGCCACATGGAGCTGGCCCAGGA
 GCTCATGGAGACTTGTACCAAGATGAACCGGCAGATGGAGACGGGCTGAGTCCCAGATCG
 TGCACTTCAACCTTACCCCCAGCCGGCGTCTGGACGTGGAGGTCAAGCCAGCAGACAGG
 CACAACCTGCTGCCAGAGACCGTGGAGAGCCTGTTACCTGTACCGCGTCACAGGGGA
 CCGCAAATACCAGGACTGGGCTGGAGATTCTGCAGAGCTCAGCCATTCAACACGGGCC
 CCTCGGGTGGCTATTCTCATCAACATGTCCAGGATCCTCAGAAGCCGAGCCTAGGGAC
 AAGATGGAGAGCTTCTTCTGGGGAGACGCTCAAGTATCTGTTCTGCTCTCCGATGA
 CCCAAACCTGCTCAGCCTGGACGCCACGTGTTCAACACCGAAGCCCACCCCTGCTTCA
 GGACCCCTGCC**TAG**GGTGGATGGCTGCTGGTGTGGGACTTCGGGTGGCAGAGGCACCTTG
 CTGGGTCTGGCATTTCAGGGCCACGTAGCACCAGCAACCGCAAGTGGCCAGGGCT
 CTGAACCTGGCTCTGGCTCTCGTCTGCTTAACTCAGGACACCGTGAGGACAAGTGA
 GGCGTCAGTCTGGTGTATGGGGCTGGGCCGCTGGAGCCTCCGCCCTGCTTCTC
 CAGAACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAGGTCTCTGTGGGCCAGCA
 GAGGGGGCTCGAGGGTGGTCCCTGGTACTGGGGTGACCGAGTGAGCAGCCCAGGGTGCAGC
 TCTGCCCGGCTCGTAAGCCTCAGATGTCCCCAATCCAAGGGCTGGAGGGCTGCCGTGA
 CTCCAGAGGCCTGAGGCTCCAGGGCTGGCTCTGGTGTGTTACAAGCTGGACTCAGGGATCCTC
 CTGGCCGCCCGCAGGGGCTTGGAGGGCTGGACGGCAAGTCCGTCTAGCTCACGGGCC
 CCAGTGGAAATGGGTCTTCGGTGGAGATAAAAGTTGATTGCTTAACCGCAA

FIGURE 10

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529
><subunit 1 of 1, 699 aa, 1 stop
><MW: 79553, pI: 7.83, NX(S/T): 0
MAACEGRRSGALGSSQSDFLTPVGGAPWAVATTVVMYPPPPPPHRDFISVTLSFGESYDN
SKSWRRRSCWRKWKQLSRLQRNMILFLLFCGLLFYINLADHWKALAFRLEEEQKMRPE
IAGLK PANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEEAT
KRQEAPVDPRPEGDPQRTVISWRGA VIEPEQGT ELP SRAEVPTK PPLP PART QGTPVHLNY
RQKGVIDVFLHAWKG YRKFAWGHDELKPVSRSFSEWFG LGLTLIDALDTM WILGLRKEFEEA
RKWVSKKLHFEKDVDVNL FESTIRILGGLLSAYHLSGDSLFLRKAEDFGNRLMPAFRTPSKI
PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKVTQHIHGLSGK
KDGLVPMFINTHSGLFTHLGVFTL GARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT
HLLRHSEPSKLT FVGELAHGRFSAKMDHLCFLPGTLALGVYHGLPASHMELAQELMETCYQ
MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNL RPETVESLFYLYRVTGDRKYQDWG
WEILQSFSRFTRVPSSGYSSINNVQDPQKPEPRDKMESFFLGETIKYLFL FSDDPNLLSLD
AYVFNTEAHPLPIWTPA
```

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCGTAGGCCGGAGGCCGGCCGGCTGCGAGCGCCTGCCCATGCGCCGC
 CGCCTCTCCGCACG**ATG**TTCCCCTCGCGAGGAAAGCGCGCAGCTGCCCTGGGAGGAACGGC
 AGGTCCGGGTTGCTCTCCGGCGCTCCCTCGGAAGTGTTCGTCTTCCACCTGTTCGTGGC
 CTGCCTCTCGCTGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGACGTGG
 CCCGGCAGTCAGGGACAAGGGCAGGAGACCTCGGGCCCTCCCCGTGCCTGCCCTGGCAGAG
 CCGCCCCCTGAGCACTGGGAAGAAGACGCATCCTGGGGCCCCACCGCCTGGCAGTGCTGGT
 GCCCTCCGCGAACGCTCGAGGAGCTCCTGGCTTCGTGCCACATGCGCCGCTCCTGA
 GCAGGAAGAAGATCCGGCACCATCTACGTGCTCAACCAGGTGGACCACCTCAGGTTAAC
 CGGGCAGCGCTCATCAACGTGGCTTCCTGGAGAGCAGAACAGCACGGACTACATTGCCAT
 GCACGACGTTGACCTGCTCCCTCTCAACGAGGAGCTGGACTATGGCTTCGTAGGGCTGGC
 CCTTCCACGTGGCCTCCCCGGAGCTCCACCCCTCTACCAACTACAAGACCTATGTCGGCGGC
 ATCCTGCTGCTCTCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTCTGGG
 CTGGGCCGCGAGGACGAGTTCTACCGCGCATTAAAGGGAGCTGGCTCCAGCTTTCC
 GCCCTCGGAATACAACACTGGTACAAGACATTGCCACCTGCATGACCCAGCCTGGCGG
 AAGAGGGACCAGAAGCGCATCGCAGCTAAAAACAGGAGCAGTTCAAGGTGGACAGGGAGGG
 AGGCCTGAACACTGTGAAGTACCATGTGGCTCCCGACTGCCCTGTCTGTGGCGGGGCC
 CCTGCACTGTCCTAACATCATGTTGGACTGTGACAAGACGCCACACCCCTGGTGCACATT
AGCTGAGCTGGATGGACAGTGAGGAAGCCTGTACCTACAGGCCATTGCTCAGGCTCAGGA
 CAAGGCCTCAGGTCGTGGCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA
 AGCTACGCAATTGCAGCCACCCGGGCCAAGGCAGGCTTGGCTGGCCAGGACACGTGGG
 GTGCCCTGGGACGCTGCTGCCATGCACAGTGATCAGAGAGAGGCTGGGTGTCCCTGTCCG
 GGACCCCCCTGCCTCCTGCTCACCTACTCTGACCTCCTCACGTGCCAGGCCTGTGG
 TAGTGGGAGGGCTGAACAGGACAACCTCTCATCACCTACTCTGACCTCCTCACGTGCC
 AGGCCTGTGGGTAGTGGGGAGGGCTGAACAGGACAACCTCTCATCACCCCCAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 12

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531
><subunit 1 of 1, 327 aa, 1 stop
><MW: 37406, pI: 9.30, NX(S/T): 1
MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLVACLSLGFFSLLWLQLSCSGDVARAVR
GQQQETSGPPRACPPEPPPEHWEEDASWGPRLAVLVPFRERFEELLVFVPHMRRFLSRKKI
RHIIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDV DLLPLNEELDYGFPEAGPFHVA
SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDDEFYRRIKGAGLQLFRPSGI
TTGYKTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVL
NIMLDCKTATPWCTFS
```

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 13

CAATGTTGCCTATCCACCTCCCCAAGCCCCTTACCT**ATG**GCTGCTGCTAACGCTGCTGCT
GCTGCTGCTGCTGCTAAAGGCTCATGCTTGGAGTGGGACTGGTCGGTGCCAGAAAGTCT
CTTCTGCCACTGACGCCCATCAGGGATTGGCCTTCTTCCCCCTCCCTTCTGTGTCTC
CTGCCTCATCGGCCTGCCATGACCTGCAGCCAAGCCCAGCCCCGTGGGAAGGGGAGAAAGT
GGGGGATGGC**TAA**GAAAGCTGGAGATAGGAACAGAACAGGGTAGTGGGTGGCTAGGGGG
GCTGCCTTATTAAAGTGGTGTTATGATTCTTATACTAATTATAACAAAGATATTAAGGC
CCTGTTCATTAAGAAATTGTTCCCTCCCTGTGTTCAATGTTGTAAAGATTGTTCTGTGT
AAATATGTCTTATAATAACAGTTAAAGCTGAAAAAAAAAAAAAAA

FIGURE 14

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862
<subunit 1 of 1, 73 aa, 1 stop
<MW: 7879, pI: 7.21, NX(S/T): 0
MLLLTLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCQAO
PRGEGEKVGDG
```

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 15

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCAGCGCAGCCGAGCGGACAAAG
 GAGCATGTCCGCGCCGGGAAGGCCGTCCTCCGGCCATAAGGCTCCGGTCGCCGCTGG
 GCCCGCGCCCGCCTGCCGCCGGCTCCGGGCCGCTAGGCCAGTGCGCCGCCG
 CTCGCCCGCAGGCCGGCCGCAGCATGGAGGCCACCCGGACGCCGGCGGGGCCGCGCA
 GCCGCCGCTGTTGCTGCCGCTCGCTGTTAGCGCTGCTCGCCTGCTGGGAGGCGGCG
 GCGCGGCCGCCGCGCTGCCGCCGGCTCAAGCACCGATGGCGGCCGGAGGGCTGGC
 AGGGCGGCCGGCGCCGCCGAGGGCAAGGTGGTGTGCAGCAGCCTGGAACTCGCGCAGGTCC
 GCCCCCAGATACTCTGCCAACCGCACGGTACCCCTGATTCTGAGTAACAATAAGATATCCG
 AGCTGAAGAATGGCTCATTCTGGGTTAAGTCTCCTGAAAGATTGGACCTCGAAACAAT
 CTTATTAGTAGTATAGATCCAGGTGCCTCTGGGACTGTCATCTCTAAAAAGATTGGATCT
 GACAAACAATCGAATAGGATGTCTGAATGCAGACATATTGAGGACTACCAATCTGGTTC
 GGCTAAACCTTCGGGAAATTGTTCTCATTATCTCAAGGAACCTTGATTATCTTGC
 TCATTACGGTCTTGGAAATTCCAGACTGAGTATCTTTGTGTGACTGTAACATACTGTGGAT
 GCATCGCTGGTAAAGGAGAAGAACATCACGGTACGGGATACCAGGTGTGTTATCCTAAGT
 CACTGCAGGCCAACCAACCAGTCACAGCGTGAAGCAGGAGCTGTTGACATGCGACCCCTCCGCT
 GAATTGCCGTCTTCTACATGACTCCATCTCATGCCAACGTTGTGTTGAAGGAGACAGCCT
 TCCCTTCCAGTGCATGGCTCATATATTGATCAGGACATGCAAGTGTGTTGATCAGGATG
 GGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTGTTGAAAAGAACATGATTCAAAC
 TGCTCCTGATTGCAAGTGCCTAACCATTTCTAATATTGAGGCTGGATCTACTGAAATTG
 GGGCTGTATGTCCAGACCAACGTGGAAATAACGAGGACTGTGGATATTGTGGTATTAG
 AGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTGGTAAACAACAAAGGTGACTTCAGATGG
 CCCAGAACATTGGCAGGCATTACTGCATATCTCAGTGTACCGGAACACCCATGGCAGTGG
 GATATATCCGGAAACCCACAGGATGAGAGAAAAGCTGGCGCAGATGTGATAGAGGTGGCT
 TTTGGCAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCAGTAGAGTTCTTAT
 ATGTTAACATCAGATGCCCTCAATCTACCAATGCCGTGGCAACAGCTGACAGTTACTGGC
 TTACACTGTGGAAGCAGCCAACCTTCTGACAAAATGGATGTTATTTGTCAGGAAATGA
 TTGAAAATTGGAAAGATTACCAAGGGAGAAAATCAAAGAGCTAGGTGACGTGATGGTT
 GACATTGCAAGTAACATCATGTTGGCTGATGAAACGTGTCCTGTGGCTGGCAGAGGGAAAGC
 TAAAGCCTGCAGTAGGATTGTCAGTGTCTTCAGCGATTGCTACCTACCGGCTAGCCGGTG
 GAGCTCACGTTATTCAACATATTACCCAATTGCTCTGGAAGCTTATGTCATCAAGTCT
 ACTGGCTCACGGGATGACCTGTCAGGAAAGTGGCAGCCTCTGATCGTACAGG
 ACTTCGGATTATGGAGGCGGGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTAAGT
 GCAATGTTCAAATACATTTCAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATTT
 AAGACTATTACAGTTAAATTAGAATGCTCAAATGTTCTGCTCGAAAATAACCTTATTA
 AAAGATTTTTTGCAAGGAAGATAGGTATTATTGCTTTGCTACTGTTAAAGAAAAC
 ACCAGGAAGAACTGCATTACGACTTCAAGGGCCCTAGGCATTGCTTGCCTTGATTCCCTT
 CTTCACATAAAATACAGAAATTACATTATACTGCACTGGTATAATGCAAATATACT
 ATTGTTACATGTGAAAAATTGACTTAAAGTTATTGTTATTGTTTTGCTCCT
 GATTTAAGACAATAAGATGTTCATGGGCCCTAAAGTATCATGAGCCTTGGCACTGC
 GCCTGCCAACGCTAGTGGAGAAGTCACCCCTGAGACCAGGTGTTAATCAAGCAAGCTGTAT
 ATCAAAATTGGCAGAAAACAAATATGTCATATATCTTTTAAAGTATTCA
 TTGAAGCAAGCAAATGAAAGCATTGACTGATTAAAATTGGTGTCTTAGATATATT
 GACTACACTGTATTGAAGCAAATAGAGGGAGGCACAACCTCCAGCACCCCTAATGGAACCACATT
 TTTTCACTTAGCTTCTGTGGCATGTGTAATTGTTAGTCTGCGGTTTAATCTCACAG
 TACTTATTCTGTCTGTCCTCAATAATACAAACAATATTCCAGTCATTAAATGGC
 TGCATAATAACTGATCCAACAGGTGTTAGGTGTTAGTGTGAGCACTCAATAAATA
 TTGAATGAATGAACGAAAAAAAAAAAAAA

FIGURE 16

MEPPGRRRGRAQPPLLPLSLLALLALLGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLLSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGA
FWGLSSLKRDLTNNRIGCLNADIFRGLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQT
EYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPVTGVKQELLCDPPELPSFYMTP
SHRQVVFEGDSLFPQCMASYIDQDMQVLWYQDGRISETDESQGI FVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNRTVDIVVLESSAQYCPPERVVNNKGDFRWPRLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDYSRCQYANDVTRVLYMFNQMPLNL
TNAVATARQLLAYTVEAANFSDKMDVIFVAEMIEKFGRTKEKSKELGDVMDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336,
433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57,
57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326,
384-390, 403-409, 554-560

FIGURE 17

GCGTGGGGATGTCTAGGAGCTCGAAGGTGGTGCCTGGCCTCTCGTGCTGCTGACGGCGGCC
ACAGTGGCCGGCGTACATGTGAAGCAGCAGTGGGACCAGCAGAGGCTCGTGACGGAGTTAT
CAGAGACATTGAGAGGCAAATTGGAAAAAGAAAACATTGTCCTTGGGAGAACAGATTA
TTTGACTGAGCAACTTGAAGCAGAAAGAGAGAAGATTTATTGGCAAAAGGATCTAAAAAA
TCATGACTTGAATGTGAAATATCTGTTGGACAGACAACACGAGTTGTGTGTGTTGATCA
GGAGAGTAGCTTAGTATCTTCATCTTTGGTCACTGTCCTTTAAACTGATCA
AATAAAGGACAGTGGTCATATAAGTTACTGCTTCAGGGTCCCTATATCTGAATAAAGGA
GTGTGGGCAGACACTTTGGAAGAGTCTGTCGGGTGATCCTGGTAGAAGCCCCATTAGGG
TCACTGTCCAGTGCTTAGGGTTGTTACTGAGAACACTGCCGAGCTTGTGAGAAGGAAGGGA
TGGATAGTAGCATCCACCTGAGTAGTCTGATCAGTCGGCATGATGACGAAGCCACGAGAACAC
TCGACCTCAGAAGGACTGGAGGAAGGTGAAGTGGAGGGAGAGACGCTCCTGATCGTCGAATCC

FIGURE 18

MSRSSKVVLGLSVLLTAATVAGVHVKKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILT
EQLEAEREKMLLAKGSQKS

Signal peptide:

amino acids 1-21

FIGURE 19

CTGTCGTCTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTACAGCCTGTC
CAAGTGTGGCTTAATCCGTCTCCACCACCAAGATCTTCTCCGTGGATTCCCTCTGCTAAGACC
GCTGCC**ATG**CCAGTGACGGTAACCGCACCACCATCACAAACCACCGACGTATCTTCGGG
CCTGGGGTCCCCATGATCGTGGGTCCCCTGGGCCCTGACACAGCCCTGGTCTCCTCGC
CTGCTGCAGCTGGTGTACCTGCCTGGCTTCTCGCTGGTGGCTAGCGTGGCGCTGGAC
GGGGTCCATGGGCAACTGGTCCATGTTCACCTGGTCTGCTTCTCCGTGACCCTGATCA
TCCTCATCGTGGAGCTGTGCAGGCTCCAGGCCGCTTCCCTGTCTGGCGCAACTTCCC
ATCACCTCGCCTGCTATGCAGGCCCTCTGCCTCTGCCATCATCTACCCACAC
CTATGTCCAGTCCCTGTCCCACGGCGTTCGCAGGACACGCCATGCCGCCACCTTCTTCT
CCTGCATCGCGTGTGGCTTACGCCACCGAACGGCTGCTGAAGGTGCTGGAGACCTCGTGCCTG
CATCATCTTCGCGTTCATCAGCGACCCAAACCTGTACCAAGCACCAGCCGGCCCTGGAGTG
GCGTGGCGGTGTACGCCATCTGCTTACCTAGCGGCCATGCCATCCTGCTGAACCTGGGG
GAGTGCACCAACGTGCTACCCATCCCCTCCCCAGCTTCTGTCGGGCTGGCTTGCTGTC
TGTCCCTCTATGCCACCGCCCTGTTCTCTGGCCCTCTACAGTCATGAGAAGTATG
GCGGCCAGCCTCGCGCTCGAGAGATGTAAGCTGCAGCCGAGCCATGCCACTACGTGT
GCCCTGGACCAGCGACTGGCTGTGGCATCCTGACGCCATCAACCTACTGGCGTATGTGG
TGACCTGGTGCACTCTGCCACCTGGTTTGTCAGGTCTAA**TAA**GACTCTCCAAGAGGCTCC
CGTCCCTCTCCAACCTTTGTTCTTCTGCCAGTTCTTATGGAGTACTTCTTCC
TCCGCCTTCCCTGTTCTCTGCTCCCTGCTCTCCCTCCACCTTTCTTCCCTGCTGT
CAATTCTTGCACTCTAACAGTTCTGGATGCATCTTCTCCCTTCCCTGCTGT
TTCTTCTGTTGTTGCCACATCCTGTTTCAACCTGAGCTGTTCTCTTCTTCTTCTTCT
CTTTCTTCTTTTTTTTTTAAGACGGATTCTCACTCTGTCGCCAGGCTGGAG
TGCAGTGGTGCATCTCAGCTCACTGCAACCCCGCCTGGTTCAAGCGATTCTCC
CCCAGCCTCCAAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTCTT
TTCCACTCTTTCTCATCTTCTGGGTGCCTGCGCTTCTTATCTGCC
TTTGCAAGCACCTCTGTCCTGGGAGCCCTGAGACTTCTTCTCCCTGCC
CCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTGCAAGCGTCCATGCC
CCAAGGGGCCATTGCCAAAGCATGCCCTGCCACCCCTCGCTGTCCTAGTCAGTGT
GTGTGTGTGTGTGTTGGGGGTGGGGTAGCTGGGATTGGCCCTTCTTCT
CCCAGTGGAGGAAGGTGTGCAGTGTACTTCCCTTAAATTAAAAACATATATATAT
ATTGGAGGTCACTAATTCCAATGGCGGGAGGCATTAAGCACCACCTGGTCC
CCCCGCCTGGCACTCAGCCTGCCAGAGATTGGCTCCAGAATTGGCCAGGCTACAGAACAC
CCACTGCCCTAGAGGCCATCTAAAGGAAGCAGGGCTGGATGCCTTCACTCC
CTGTGGTATGAAAAAG

FIGURE 20

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727
<subunit 1 of 1, 322 aa, 1 stop
<MW: 35274, pI: 8.57, NX(S/T): 1
MPVTVTRTTITTTTSSSGLSPMIVGSPRALTQPLGLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTЛИLIVELCGLQARFPLSWRNFPITFACYAALFCLSASIYPTTY
VQFLSHGRSRDHAIATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLETFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNLGECTNVLPPIPFPSSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILTAINLLAYVAD
LVHSAHLVFKV
```

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192,
205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

FIGURE 21

GAACGTGCCACCATGCCAGCTAATTGGTATTTAGTAGAGACGGGTTTACCATGTTGCCAGGCTGGTC
 TTGAACCTCGTACCTCATGATCGCTCACCTCGGCCTCCAAAGTGTGGATTACAGGCATGACCAACTGACGC
 CTGCCAGCCTATGCATTAAAGAAATTATTCTGTATTAGTGCTGTGCTAAACATTGGCACTACAGTGACCA
 AAACAGACTGAATTCCCCAAGAGCAAAGACCAAGGAGACCAACAAGAAACAGGAATGCAAAAGAGACCA
 TTATTACTCACTATGACTAAGGTACAATGGGTACGGTATGGAGAGTGTGTTAAGAGACTACAGAGGG
 AGGACAGACTACCAAGAGGGGCCAGGAAAGCTCCTGACGAGGTGGTATTCAAGCCAAACTGGAAGAATGA
 GAAAGAGCTAGCCAGCCATCAGAATAGTCCAGAAGAGATGGGAGCACTACACTACACTTTGGCCTGAGAA
 AATAGCATGGGATTGGAGGAGCTGGGGAACACCACTCTGCCGACCTGGGCAGGAGGCATTGAGGGCTTGAGA
 AAGGGCAATGGCAGTAGCAGTAGAAAGGACAGGGTAGGAGCAGGGACTTGCAGGTGGAAATCATTAGGTCTTATC
 AACAGATATGGCAAGCAAAGCCAGGGAGAATTGATGGTAATGCTGAGGTTGGAGGCCAGGCTAGATGGACAG
 TGGTGGGTGATGCAAAGGAAAGAGGTCAAGGAAGCAGGGCAGACGTGGGAGAAGGTGTGGGGTTGGTTCCA
 TCTTGCAGTCTGCCGAATGTGGATGGGAAGACCAAGAGGAGGAGCAAGGGCAGAGGGAAAGGGAAATCTTAA
 AGAAGTCCTGGATGCCACACTCTTCTCTCTCCCTCAGAGGTCTCACTCGTGGTCTTCA
 TTCCTGCCCTGCCTCCATCTCCTCTGGGTGCTGGAAAGTGGAGGATTAGCTGAAGTTTGCTTCTCGGGGCTG
 TCTGAATCTCATTGCTTCTGGGAGGACATAATTACCTGTCTAGCTTCTATCATCTTACATTCCCTGTAG
 CCACTGGGACATATGTGGTCTCTAGCTCTGTCTCCTCATGCCCTTGCTGGGTATGGCATGTTAG
 GGGGAAGGTATTGCTGTCAGAGGGCACTGACTTTCTAATGGTGTACCCAAGGTGAATGTTGGAGACACAGTC
 GCGATGCTGCCAAGTCCCGCGAGCCCTAATCCAGGAGATCGTGCCTGCCAGGTCCCTGCGATGGT
 ATGCAGCCCCCTCCC**AT**GTTCTGGCCTTGTCTCCCTCCGTTGCACATCCCTTGGAACTGTTCT
 GTGAGTACATGCTGGGTCTCCCCCTTCTCCCTTGCTCAGGTGAATCTCAGGCCCTCTCCCACCCAAAGGTTC
 ACATGGATCCTAACTACTGCCACCCCTCCACCTCCCTGCACTGTGCTCCCTGCCCTGGTCTTACCCAGGCTTC
 TCCACCTCCCTATCTCAGGTATTCCCAGGTGGAGGACCGACGTGACCAAGCCTACGCCATGGCCAGG
 GCCGAGTGGCTCACCTCATTGAGTGGAGGGCTGGAGCAAGCCGAGTGACTIONCCTGCTGCCCTGGAATCAGCCT
 TTCCCTCATTACAGACCTCAGCGAGGGAGAACAAGAGGCTCGCTTGCAGCAGGAGTGGCTGAGCAGTTGCCA
 TCGCGGAAGCCAAGCTCCGAGCATGGTCTCAGGTGGATGGCGAGGACTCCACTGATGACTCTATGATGAGGACT
 TTGCTGGGGGAATGGACACAGACATGGCTGGCAGCTGCCCTGGGCCGACCTCCAGGACCTGTTACCGGCC
 ACCGGTTCTCCGGCTGTGCGCCAGGGCTCGTGGAGCCTGAGAGCGACTGCTCACAGACCGTGTCCCCAGACA
 CCCTGTGCTCTAGTCTGTCAGCCTGGAGGATGGGTGTTGGCTCCCCGGCCGGCTGGCTCCCAGCTGCTGG
 GCGATGAGCTGCTCTGCCAAACTGCCCCCAGCCGGAAAGTGCCTTCCGAGCTGGCCACTGGAGGCCCC
 AGGACTCACTACAACTGCCCTCACAGAGTCCTGCCCTCCCCGGGGAGGAGGCCAGCCCCCTCCAAGG
 ACTGCCAGCCACTCTGCCACCCTAACGGCAGCTGGGAACGGCAGCGGCAAGCCTGACCTGCCCTTCT
 GGGTGGTGTCTTAGATGAGGATGAGGCAGAGCCAGAGGAACAG**TGA**CCCACATCATGCCCTGGCAGTGGCATGCA
 TCCCCGGCTGCTGCCAGGGCAGAGCCTCTGTGCCCAAGTGTGGCTCAAGGCTCCAGCAGAGCTCCACAGCC
 TAGAGGGCTCTGGGAGCGCTGCTCTCCGTGTTGCTGTTGCTGATGAAAGTGTGTTGGAGAGGAGGCAGGGCTG
 GGCTGGGGGCCATGTCTGCCCTCCCTCCGGCTTGGCGGGGGTGGCCGGGGCTCTGGGCATGGCTACA
 GCTGTGGCAGACAGTGATGTTCATGTTCTAAATGCCACACACATTTCTCTCGGATAATGTGAACCACTA
 AGGGGTTGTGACTGGGCTGTGAGGGTGGGGAGGGGCCAGCAACCCCCCACCCTCCATGCCCTCTC
 TCTTCTGCTTTCTCTCACTTCCGACTCCATGTGCACTGCTGTTGATAGAATACCCCCCACCCTGGAGGGCTG
 CTCTGCCCTCCCGAGCCTATGGGTGAGCCGTCCTCAAGGGCCCTGCCAGCTGGCTCGTGTGCTTC
 ATTACACTCTCATGTCCTAAATCTCTTTCTAAAGACAGAAGGTTTTGGCTGTTCTCAGTC
 GGATCTCTCTCTGGGAGGCTTGGAAATGATGAAACATGACCTCCACCCCTTCTGGCCCCCTAAATGG
 GGCTGGGCCCTTCCAAACCCCTCTAGGATGTGCGGCAGTGTGCTGGCGCTCACAGCCAGCCGGCTGCC
 ATTACAGCAGAGCTCTGAGCGGGAGGTGGAGAAGAAAGGATGGCTGGTTGCCACAGAGCTGGACTCATGTT
 CTTCTAGAGAGGGCCACAGAGGGCAGGGGTGGCCGGAGTTGTCAGCTGATGCCCTGCTGAGAGGCAGGAAT
 TGTGCCAGTGAGTGACAGTCATGAGGGAGTGTCTCTGGGAGGAAAGAAGGTAGAGCCTTCTGCTGAAT
 GAAAGGCCAGGCTACAGTACAGGGCCCGCCAGCCAGGGTGTAAATGCCACGTAGTGGAGGCCTGGCAG
 ATCTGCATTCCAAGGTCACTGGACTGTACGTTTATGGTTGTGGAGGGTGGCTTGAATAAGGGC
 CTTGAGGCTTGGCAGGTAAGAGGGCCAAGGTAAGAACGAGGCCAACGGCACAAGCATTCTATATAAGT
 GGCTCATTAGGTGTTATTTGTTCTATTAAAGAATTGTTTATTAAATAAATAAAACTTGTAAATCTC
 TAAAA

FIGURE 22

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSFPSHPKVHMDPNYCHPSTSLHLCS
LAWSFTRLLHPPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPALESAFSSY
SDLSEGEQELEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLG
PHLQDLFTGHRFSRPVRQGSVEPESDCSQTVPDTLCSSLCSLEDGLLGSPARLASQLLGDE
LLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPPLTGSWER
QRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232,
285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 23

GGTCCTGGCGCTGTTACACAAGCAAGATAACGCCAGCCCCACCTAATTTGTTCCCT
 GGCACCCTCCTGCTCAGTGCACATTGTACACTTAACCCATCTGTTCTCTAATGCACGA
 CAGATTCCCTTCAGACAGGACAACGTGATATTCAAGTTCAGTTCTGATTGTAAATACCTCCTAAG
 CCTGAAGCTCTGTTACTAGCCATTGTGAGCTCAGTTCTCATCTGCAAAATGGGCATAA
 TACAATCTATTCTGCCACATCAAGGGATTGTTATTCCCTTAAAAAAACCAATACCAAAG
 AAGCCTACAATGTTGGCCTAGCCAAAATTCTGTTGATTCAACGTTGTTTATTCACTTCT
 ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACACAGAACATTGCAGAAGTT
 TTAAAACAATGGAAAATAAACCTATTCTTGAAAGTGAAGCAAACCTAAACTCAGATAAA
 GAAAATATAACCACCTCAAATCTCAAGGCGAGTCATTCCCCTCCTTGAATCTACCCAA
 CAGCCACGGAATAACAGATTCTCCAGTAACTCATCAGCAGAGCATTCTGGCAGTCTAA
 AACCCACATCTACCATTCCACAAGCCCTCCCTGATCCATAGCTTGTCTAAAGTGCCT
 TGGAATGCACCTATAGCAGATGAAGATCTTGCCTCTCAGCACATCCAATGCTACACC
 TGCTCTGTCTCAGAAAACCTCACTGGTCTTGGTCAATGACACCGTGAAAACCTCTGATA
 ACAGTCCATTACAGTTAGCATCCTCTTCAGAACCAACTCTCCATCTGTGACCCCTTG
 ATAGTGGAACCAAGTGGATGGCTTACCAACAGTGTAGCTACTGGTTACCCCTTA
 TCAAGAAAAACAACTCTACAGCCTACCTTAAATTCCAATAATTCAAACACTCTTCAA
 ATACGTAGATCCCCAAAAGAAAATAGAAATACAGGAATAGTATTGGGCCATTTAGGT
 GCTATTCTGGGTGTCCTTGCTACTCTGTGGCTACTTGTGTGGAAAAAGGAAAC
 GGATTCAATTCCCCTCGGCAGTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACA
 ATGCACCGAACCTTATGATGTGAGTTGGAAATTCTAGCTACTACAATCAAACCTTGAAT
 GATTCAAGCCATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCTATGGATGACATA
 TCCACTTCGTACTTCTGTATAGAACTAACAGCAAAAGCGTTAACAGCAAGTGTCTA
 CATCCTAGCCTTGTACAATTCTTCAAAAGGTACACAAATTACTGTACGTGGAT
 TTTGTCAAGGAGAATCATAAAAGCAGGAGACCGAGTAGCAGAAATGTAGACAGGATGTATCAT
 CCAAAGGTTTCTTACAATTGGCATCCTGAGGCATTACTAAGTAGCCTTAATT
 TGTATTAGTAGTATTCTTAGTAGAAAATATTGTGGAAATCAGATAAAACTAAAAGATT
 TCACCAATTACAGCCCTGCCTCATAACTAAATAAAAATTATTCCACCAAAATTCTAAA
 ACAATGAAGATGACTCTTACTGCTCTGCCTGAAGCCCTAGTACCATATTCAAGATTGCAT
 TTTCTTAAATGAAAATTGAAAGGGTGTGTTAAAGAAAATTGACTAAAGCTAAAAGAG
 GACATAGCCCAGAGTTCTGTTATTGGAAATTGAGGCAATAGAAATGACAGACCTGTATT
 TAGTACGTTATAATTCTAGATCAGCACACACATGATCAGCCACTGAGTTATGAAGCTGA
 CAATGACTGCATTCAACGGGCCATGGCAGGAAAGCTGACCCTACCCAGGAAAGTAATAGCT
 TCTTAAAGTCTTCAAAGGTTGGAAATTAACTTGTCTTAATATATCTTAGGCTTCAA
 TTATTGGGTGCCTTAAAACCTCAATGAGAATCATGGT

FIGURE 24

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732
><subunit 1 of 1, 334 aa, 1 stop
><MW: 36294, pI: 4.98, NX(S/T): 13
MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI
TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPPLIHSFVSKVPWNA
PIADEDLLPISAHPNATPALSSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE
PSGWLTTSNDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL
GVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSSYYNPTLNSA
MPESEENARDGIPMDDIPPLRTSV
```

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159,
163-167, 218-222, 225-229, 298-302, 307-311

FIGURE 25

AACAGGATCTCCTTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGC
 AGCCCCAAGATTCACT**ATG**TGAAAATCGCCTCAATAACCCCTACCGCCGTGAAAAGGGAGG
 AGGCAGCGCAAGACGTGGAGGCCCTCCTGAGCCGACGGTCAGAACTCAGATACTGACCGGC
 AAGGAGCTCCGAGTTGCCACCCAGGAAAAGAGGGCTCCTCTGGGAGATGTATGCTTACTCT
 CTTAGGCCTTCATTCATCTGGCAGGACTTATTGTTGGAGCCTGCATTACAAGTACT
 TCATGCCAAGAGCACCATTACCGTGGAGAGATGTGCTTTTGATTCTGAGGATCCTGCA
 AATTCCCTCGTGGAGGAGAGCCTAACCTCCTGCCTGTGACTGAGGAGGCTGACATTGTGA
 GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTCTGTGATAGTGACCCCTGCAG
 CAATTATTCATGACTTGAAAAGGAATGACTGCTTACCTGGACTTGTGCTGGGGAACTGC
 TATCTGATGCCCTCAATACTTCTATTGTTATGCCTCCAAAAAACTGGTAGAGCTTTGG
 CAAACTGGCGAGTGGCAGATATCTGCCTCAAACCTATGTGGTCAGAAGACCTAGTTGCTG
 TGGAGGAAATTGATGTTAGTAACCTGGCATCTTACCAACTTGCAATAACAGA
 AAGTCCTCCGCCTCGTCGCAGAGACCTCTGCTGGTTCAACAAACGTGCCATTGATAA
 ATGCTGGAAGATTAGACACTTCCCCAACGAATTATTGTTGAGACCAAGATCTGTCAAGAG**T**
AAGAGGCAACAGATAGAGTGCCTTGGTAATAAGAAGTCAGAGATTACAATATGACTTTAA
 CATTAAGGTTATGGGATACTCAAGATATTTACTCATGCATTACTCTATTGCTTATGCTTT
 AAAAGGAAAAAAAAAAACTACTAACCAACTGCAAGCTTGTCAAATTAGTTAAT
 TGGCATTGCTTGTGAAACTGAAATTACATGAGTTCACTTTCTTGATTTAG
 GTTTAGATTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAATTCCATCC
 GTGTTTTTTGTTGTTGTTCTTCTTAAAGTAAGCTTTATTGATTTAG
 GTGGAGCAATTAAAATTGAAATATTAAATTGTTGAACTTTGTGAAATATA
 TCAGATCTAACATTGTTGGTTCTTGTGTTCTTCAATTGACTTACACTTCTGAAATTAGA
 ATTACATCTTGCAGTTCTGTTAGGTGCTCTGAATTAAACCTGACTTATATGTGAACAAATT
 TTCATGAGACAGTCATTTAACTAATGCAGTGATTCTTCTCACTACTATCTGATTGTGG
 AATGCACAAAATTGTGTAGGTGCTGAATGCTGTAAGGAGTTAGGTGTATGAATTCTACAA
 CCCTATAATAAAATTACTCTACAAAAA

FIGURE 26

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828
<subunit 1 of 1, 263 aa, 1 stop
<MW: 29741, pI: 5.74, NX(S/T): 1
MVKIAFNTPTAVQKEEARQDVALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF
ILAGLIVGGACIYKYFMPKSTIYRGEMCFDSEDPANSLRGEPNFLPVTEEADIREDDNIA
IIDVPVPSFSDPAAIIHDFEKGMTAYLDLLLGNCYLMPNNTSIVMPPKNLVELFGKLASG
RYLPQTYVVREDLVAVEEIRDVSNLGIFYQLCNNRKSFRRLRRDLLLGFNKRAIDKCWKIR
HFPNEFIVETKICQE
```

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

FIGURE 27

GGAGGAGGGAGGGCGGGCAGGCGCCAGCCCAGAGCAGCCCCGGGACCAGCACGGACTCTCT
 CTTCCAGCCCAGGTGCCCTTCACTCTCGCTCCATTGGCGGGAGCACCCAGTCCTGTACGCC
 AAGGAACCTGGTCTGGGGCACC**ATG**TTTCGGCGGCAGCCCCAGCCTCCTCATCCTTCTG
 TTGCTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCGCTCTGTGCCCTGAAGGCCACGTT
 CCTGGAGGATGTGGCGGGTAGTGGGGAGGCCAGGGCTCGTCGGCCTCCTCCCCGAGCCTCC
 CGCCACCCCTGGACCCCGCCCTCAGCCCCACATCGATGGGCCAGCACAACCCCTGGGG
 GCCCATCACCCCCCACAACTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGAT
 GCTGATTGCTGTGGTGGGCTCCCTGGCCTTCTGCTGATGTTATCGTCTGTGCCCGGTCA
 TCACCCGGCAGAACGAGAACGGCCTCGGCCTATTACCCATCGTCCTTCCCCAAGAAGAAGTAC
 GTGGACCAGAGTGACCGGGCCGGGGCCCTCGGCCTTCAGTGAGGTCCCCGACAGAGCCCC
 CGACAGCAGGCCAGGAAGCCCTGGATTCCCTCCGGCAGCTCCAGGCCAGATCTGGCCG
 CCACCCAGAACCTCAAGTCCCCCACCAAGGGCTGCACTGGCGGTGGGACGGAGCCAGGATG
 GTGGAGGGCAGGGCGCAGAGGAAGAGGAGAACGGCAGCCAGGAGGGGACCAGGAAGTCCA
 GGGACATGGGTCCCAGTGGAGACACCAGAGCGCAGGAGGAGCCGTGCTCAGGGTCCTTG
 AGGGGGCTGTGGTGGCGGTGAGGGCAAGGGAGCTGGAAGGGTCTCTTGTAGCCCAG
 GAAGCCCAGGGACCAGTGGTCCCCCGAAAGCCCTGTGCTTGCAGCAGTGTCCACCCAG
 TGT**TAA**CAGTCCTCCGGCTGCCAGCCCTGACTGTGGGCCCTCAAGTGGTCACCTCCCC
 GTGTATGAAAAGGCCTTCAGCCCTGACTGCTTCTGACACTCCCTCCTGGCCTCCCTGTGG
 TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTCCCCCGGA
 GGAATCTTACCAAGTGCATCATCCTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC
 ACAGCTCCCTGACAAAGTGAGGGAGGGCACGTGTCCTGTGACAGCCAGGATAAAACATCC
 CCCAAAGTGCTGGATTACAGGCAGGTGAGCCACCGTGCCGGCCAAACTACTTTAAAACA
 GCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTCTGAAGG
 TGGCCCCCTGTTCTAGTTGGTCCAGGATTAGGGATGTGGGTATAGGGCATTAAATCCTC
 TCAAGCGCTCTCCAAGCACCCCCGGCTGGGGTGAGTTCTCATCCGCTACTGCTGCTGG
 GATCAGGTTGAATGAATGGAACCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGG
 GCTGTGTTGAGGGGACCTCCACCCCTGGGAAGTCCGAGGGGCTGGGAAGGGTTCTGACG
 CCCAGCCTGGAGCAGGGGGCCCTGGCACCCCTGTTGCTCACACATTGCTGGCAGCCTG
 TGTCCACAATATCGTCAGTCCTCGACAGGGAGCCTGGCTCCGTGCTTGGAGGCT
 CTGGCAGGAGGTCTCTCCCCATCCCTCCATCTGGGCTCCCCAACCTCTGCACAGCTCT
 CCAGGTGCTGAGATATAATGCACCAGCACAATAACCTTATTCCGGCCTGAAAAAAAAGA
 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGA

FIGURE 28

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852
><subunit 1 of 1, 283 aa, 1 stop
><MW: 29191, pI: 4.52, NX(S/T): 0
MVSAAAPSLLLLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPAL
SPTSMGPQPTTLGGPSPPTNFLDGIVDFRQYVMLIAVVGSLAFLMFIVCAAVITRQKQKA
SAYYPSSFPKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP
TRAALGGGDGARMVEGRGAEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVLEGAVVAGE
GQGELEGSLLLQAQEAQGPVGPPESPCACSSVHPSV
```

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199,
211-217, 238-244, 242-248

FIGURE 29

GTGGACTCTGAGAAGCCCAGGCAGTTGAGGACAGGAGAGAGAAGGCTGCAGACCCAGAGGGA
 GGGAGGACAGGGACTCGGAAGGGAGGAGGACAGAGGAGGGCACAGAGACGCAGAGCAAGGGCG
 GCAAGGAGGAGACCCCTGGTGGGAGGAAGACACTCTGGAGAGAGAGGGGCTGGCAGAG**ATG**
 AAGTTCCAGGGGCCCTGGCCTGCCTCCTGCTGGCCCTCTGCCTGGCAGTGGGAGGCTGG
 CCCCTGCAGAGCGGAGAGGAAAGCACTGGACAAATATTGGGAGGCCCTGGACATGGCC
 TGGGAGACGCCCTGAGCGAAGGGTGGAAAGGCCATTGGCAAAGAGGCCGGAGGGCAGCT
 GGCTCTAAAGTCAGTGAGGCCCTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG
 GCAGGTTCCAGGCTTGGCGCAGCAGATGCTTGGCAACAGGGCAGGGAAAGCAGGCCATG
 CTCTGGAAACACTGGCACGAGATTGGCAGACAGGCAGAAGATGTCAATTGACACGGAGCA
 GATGCTGTCCCGGGCTCCTGGCAGGGGTGCCTGCCACAGTGGTGCCTGGAAACTCTGG
 AGGCCATGGCATCTTGGCTCTCAAGGTGGCCTGGAGGCCAGGGCAATCCTGGAG
 GTCTGGGACTCCGTGGTCCACGGATAACCCGGAAACTCAGCAGGCAGCTTGGAAATGAAT
 CCTCAGGGAGCTCCCTGGGTCAAGGAGGCAATGGAGGCCACCAAACCTTGGACCAACAC
 TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTCAGTGAGAGGCCAGCAACCAGAACATGAAGGGT
 GCACGAATCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGAGGCAGCGGC
 TCACAGTCGGGCAGCAGTGGCAGTGGCAGCAATGGTACAACAACAAATGGCAGCAGCAGTGG
 TGGCAGCAGCAGTGGCAGCAGCAGTGGCAGCAGCAGTGGCGGCAGCAGTGGCGGCAGCAGTGG
 GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGGAGTCCTGGGAA
 TCCAGCACCGGCTCCTCCGGCAACCACGGTGGAGCGGGAGGAAATGGACATAAAC
 CGGGTGTAAAAGCCAGGAATGAAGCCCGGGAGCAGGGAAATCTGGATTAGGGCTTCA
 GAGGACAGGGAGTTCCAGCAACATGAGGAATAAGCAAAGAGGGCAATCGCCTCTGG
 GGCTCTGGAGACAATTATCGGGGCAAGGGTCAGCTGGGCAGTGGAGGAGGTGACGCTGT
 TGGTGGAGTCAATACTGTGAACCTCTGAGACGTCTCTGGATGTTAACCTTGACACTTCT
 GGAAGAATTAAATCCAAGCTGGTTCATCAACTGGGATGCCATAAACAGGACCAAGA
 AGCTCTCGCATCCCG**TGA**CCTCCAGACAAGGAGCCACCAGATTGGATGGAGGCCACACT
 CCCTCCTAAACACCACCCCTCTCATCACTAACTCAGCCCTGCCCTGAAATAACCTTA
 GCTGCCCAACAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAA

FIGURE 30

```
>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212
><subunit 1 of 1, 440 aa, 1 stop
><MW: 42208, pI: 6.36, NX(S/T): 1
MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGA
AGSKVSEALGQGTREAVGTGVRQVPFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHG
ADAVRGSWQGVPGHSGAWETSGGHGIFGSQGGIQQGQGPGLGTPWVHGYPGNSAGSFGM
NPQGAPWGQGGNGGPPNFGTNTQGAVAQPGYGSVRASNQNEGCTNPPPSGSGGGSSNSGGGS
GSQSGSSGSGSNGDNNNGSSSGSSSGSSGGSSGGSSGGSSGGSGSRGDGSSESSW
GSSTGSSSGNHGGSGGGNGHPGCEKPGNEARGSGESGIQGFRGQGVSSNMREISKEGNRLI
GGSGDNYRGQGSSWGSGGDAVGGVNTVNSETSPGMNFDTFWKNFKSKLGFINWDAINKDQ
RSSRIP
```

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70,
 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158,
 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205,
 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252,
 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281,
 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298,
 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328,
 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387,
 383-389, 387-393, 389-395, 395-401

Cell attachment sequence.

amino acids 301-304

FIGURE 31

GACCGGGTCCCTCCGGTCTGGATGTGCGGACTCTGCTGCAGCGAGGGCTGCAGGCCGCCGGTGCCTCACCG
 TGCCCTGGCTGGTGGAGTTCTCTCCTTGCTGACCATGTTGTCAGGAGACTGAGGGAAAG**ATGT**TTCCTGAACAAAGC
 CTCTCCTGCTGCCCTGCACCGGACCTGGTGTGCGCAGGAGACTGAGGGAAAG**ATGT**TTCCTGAACAAAGC
 TGCTGCTACTTGCTGCTGGCTGGCTTCCAGATTCCCACAGTCCCTGAGGACTTGTCTTCTGGAAGAGG
 GTCCCTCATATGCCTTGAGGTGGACACAGTAGCCCCAGAGCATGGCTGGACAATGCGCTGTGGTGGACCAGC
 AGCTGCTCTACACCTGCTGCCCTACATCGGAGAGCTCCGAAACTGCTCGCTTCGTGGTGTCAAGGAGTAGTG
 GACGGAGTGGGGCTTCATGAGGAAAATCACCCCCCACCACCTACCAACAGCCTGGGAGGCCAGCCTCCAGACCA
 GCCAGGGCTGCAGGCACAGCTGCCAGGCCCTTCCACAACCAGCCGCCCTCCTGCCGGGACCGTAGAGT
 TCGTGGCAGAAAGAATTGGATCAAACATGTGTCAAACATATCAAGGCTACACTGGTGGCAGATCTGGTGCAGCAGG
 CAGAGTCACTTCTCCAAGAGCAGCTGGTACACAGGGAGAGGAAGGGGGAGACCCAGCCAGCTGGAGAGATCT
 TGTGTTCCCAGCTGTGCCCTCACGGGGCCAGCATTGGCCCTGGGGGGAGTTCTGTCAGGAAAGAGCCCTG
 GGGCTGTGCGGGCGCTGCTCCAGAGGAGACCCGGCAGCCGTTCTGAGCAGTGCAGAGAACATTGCTGTGGGGC
 TTGCAACAGAGAAAGCCTGTGCTGGCTGTCAACATCACAGCACTGATCAGGAGGGAGGTGAAAGCAGCAG
 TGAGTCGCACACTTCGAGCCAGGGCTGAACCTGCTGCCGGGGAGCGGGAGCTGCTCCGCC**TGAC**
 GTGCTCTCCTGGCCGTGGGCCACGGGACCCCTGACGAGGGAGTCTCCCAGAGCATCTGGAACAGCTCTAGGC
 CAGCTGGGCCAGCAGCTGCCGCGCCAGTCCCTGTGCCCACCTGTCAGCAGCAGCATCTGCAAAGTGCCTGTG
 GAGTTAGCTCCCTCCTCGTTGCAAGATCAAATTCTATCCTAGGGCCCCGGCACAGTACAGGCTGGAGAGAGGG
 CAGGCTCGAAGGCTCTGCACATGCTGCTTCTGTGAGGAAAGAGACTTCAGGGCCGGTCCGCTGCAGCTG
 CTGCTGAGCCCAAGAAATGTGGGCTTCTGGCAGACACAAGGCAAGGGAGTGGACTTGTGCTATTCTGCTA
 CGGGAGCTGGTGGAGAAGGGCTGATGGGACGGATGGAGATAGAGGCTGCCCTGGCAGCCCTCACCAGGCCAG
 TGGCCAGGGACTTGTGAGAAGAATTAGCAACACTGCTAACTCTGTTCTAGCCGAGCCCCACCTGCCAGAACCC
 CAGCTAAAGAGCCTGTGAGTTGGTGCAGCCAAACCGGGGACTGTGCTGGCCAGAGCTAGGGCTGAGAACGG
 CTGCTCTGGGCAATTGACACCAGAACCCCTGGACCCCCGCTCACAGGAGGGCCAAGTGCCTGGCAGACCC
 TGGTTGGGGTAGCTGGGTCTACAGTCAGACTTCTGCTTAAGGGTGTCACTGCCCTGGCATCCCCACAGCGA
 ATCCTAGAGGAAGGGAGATTGGCCTGATTGGGATTATGGCAGAAAAGTCCAGAGATGCCAGTCTGGAGTAGAA
 GAGGTGGTTGTTGTTATCTCTGGATAACTAAATGAAATGAGGTGTGTTGGCTGTCAACACAGAAATTCAAGCCT
 CATTGCTATCCCAGCATCTCTTAAACACTTGTAGTCTGGAAATTGATCACAGAGGGCAAATGACTCCTGCTTAAC
 TTATGAAAGAAAGTTAAACATGAATCTGGGAGTCTACATTCTTATCACCAGGAGCTGACTGCCATCTCCTT
 ATAATGCCAACACAGGCCGGCTGGCTCATGCCGTAACTCCAGCACTTGTGAGAGGCCCTGAGGTGGCG
 GACTGCCGTGGAGTCAGGAATTCAAGACCAGCTGGCAACATGGAAAACCCCATCTCTACTAAAAA
 TTATTAGCTGGGATGGTGGTGTGCTGTAATCCCAGCTACTCAGGAGGATGAGGCAGGGAGACCTGCTGAAC
 CTGGAGGTGGAGGTTGCACTGAGGCCAGGTCGCCACTGCACTCCAGTCTGGTAACAGAGCGAGACTTTCTAG
 AAAAACGCTAACAAACAGATAAGTAGGACTCAACCAACTGAAACCTGACTTTCCCTGTACCTTCAGCCCTG
 TGCAGGTAGTAACCTCTTGAGACCTCCCTGACCGAGGACCAAGCACAGGGCATTTAGAGCTTTTAA
 CTGGTTTCTTAAAAAAGGGCTTTATTAAATCTCCCCACAGATGGCTCTGCAATCTGCCACAGCTC
 TGGGGCTGCTGTAGGAAAGGCCCTGTTCCCTGAGGCCGGCTGGCTTGTCCATGGTCCGGAGCTG
 GCCGTGCTGGGCCCTGGCGTGTGCTAGTGTCTTGTGCGGGCACAGAGCTGCCGGCTGGGGGACCCGGG
 AGCTAAGAGCAGGCTCTGGTGCAGGGGTGGAGGCCTGTCTTAACCGACACCCCTGAGGTGCTCTGAGATGCTG
 GGTCACCCCTGAGTGGCACGGGGAGCAGCTGTCGGCGGTGCTCCCTCYAGGCCAGTCTGGGAAACTAAGCTC
 GGGCCCTTCTTGCACAGGAGATGGGGTGGGTGAGGGACTCATGGGAATGGCTGAGGAGCTACGTGT
 GAAGAGGGGCCGGTTGGCTGCAGGCCCTGGAGGCCCTCTCCTGAGGCTCAGTTCCCTTCCGTCTA
 ATGAAGAACATGCCGTCTCGGTGTCTCAGGGCTATTAGGACTTGCCCTCAGGAAGTGGCCTGGACGAGCGTCAT
 GTTATTTACAACACTGTCTGCGACGTGGCTGGCACGTGAGGAGGCCAGACGTGCGCCCTGGGGTGA
 GGGGGAGGCCAGGGCCACCCAGGCAGGGGGCTCCGCCGCCGCCACCGTCCAGG
 CCTCACAGGAAGTGGAGTGGCTCCGCACCCAGGCAGGGGGCTCCGCCGCCACCGTCCAGG
 GGCGGTAGACAAAGTGGAGTGGCTGCGCTGGGCTGCGCAGCAGGTAGCCCTTGATGCA
 GAGTGCAGGCCAGCGCCTGCGCCT

FIGURE 32

MCFLNKLLLLAVLGWLFQIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQQLLYTC
CPYIGELRKLLASWVSGSSGRSGGFMRKITPTTTSLGAQPSQTSQLQQAQLAQAFFHNQPP
SLRRTVEFVAERIGSNCVKHIKATLVALVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL
CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL
IRREVKAAVSRTLRAQGPEPAARGERRGCSRA

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 89-93

Casein kinase II phosphorylation site.

amino acids 21-25, 167-171, 223-227

N-myristoylation site.

amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.

amino acids 278-282

FIGURE 33

TCCCTTGACAGGTCTGGTGGCTGGTCGGGCTACTGAAGGCTGTCTGATCAGGAAACTG
AAGACTCTGCTTTGCCACAGCAGTCCCTGCAGCTCCTTGAGGTGTGAACCCACATCCC
TGCCCCCAGGGCCACCTGCAGGACGCCACCTACCCCTCAGCAGACGCCGGAGAGAA**ATG**
AGTAGCAACAAAGAGCAGCGGTCAAGCAGTGTGATCCTCTTGCCCTCATCACCATCCT
CATCCTCTACAGCTCAACAGTCCAATGAGGTCTTCCATTACGGCTCCCTGCAGGGCCGTA
GCCGCCGACCTGTCAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCCCATTCTCGGC
AACAAAGACACTGCCCTCTGGTGCACCAGTGTGATTGTCAAGCAGCTCCAGCCACCTGCT
GGCACCCAAGCTGGGCCCTGAGATCGAGCAGGGCTGAGTGTACAATCCGATGAATGATGCAC
CCACCACTGGCTACTCAGCTGATGTGGCAACAAGACCACTACCGCGTGTGGCCATTCC
AGTGTGTTCCCGTGTGAGGAGGCCAGGAGTTGTCAACCAGGACCCCTGAAACCGTGT
CATCTTCTGGGGGCCCGAGCAAGATGCAGAAGCCCCAGGGCAGCCTCGTGCATGATCC
AGCGAGCGGGCTGGTGTCCCCAACATGGAAGCATATGCCGTCTCTCCGGCCGATGCGG
CAATTGACGACCTCTCCGGGTGAGACGGCAAGGACAGGGAGAAGTCTCATTGTGGTT
GAGCACAGGCTGGTTACCATGGTGTGACGCCAGCAGGGCCCTCCAGCGCATGCCCTACCACTAC
GCATGGTCCCCCCCCAACTACTGCAGCCAGCAGGGCCCTCCAGCGCATGCCCTACCACTAC
TACGAGCCAAGGGCCGGACGAATGTGTCACCTACATCCAGAATGAGCACAGTCGAAGGG
CAACCACCACCGCTTCATCACCAGAAAAGGGCTTCTCATCGTGGGCCAGCTGTATGGCA
TCACCTTCTCCCACCCCTGGACC**TAG**GCCACCCAGCCTGTGGGACCTCAGGAGGGTCAG
AGGAGAACGCCTCCGCCAGCCGCTAGGCCAGGGACCATCTCTGGCCAATCAAGGCTTG
CTGGAGTGTCTCCAGCCAATCAGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCC
TGGGAATCTGTTGGGAATCAGGGATTGGGAGTCTATGTGGTTAATCAGGGGTGTCTTC
TTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGTATTCAGTCAATCTG
AGGCTAAGGACATGTCTTCCATGAGGCCTGGTTAGAGGCCAGGAATGGACCCCCCA
ATCACTCCCCACTCTGCTGGATAATGGGGCTGTCCAAGGAGCTGGAACTTGGTGT
CCCCCTCAATTCCAGCACCAAGAGAGATTGTGTGGGGTAGAAGCTGTCTGGAGGCC
GGCCAGAGAATTGTGGGTTGTGGAGGTTGTGGGGCGGTGGGAGGTCCCAGAGGTGGGA
GGCTGGCATCCAGGTCTGGCTCTGCCCTGAGACCTGGACAAACCCCTCCCCCTCTGGG
CACCTTCTGCCACACCAGTTCCAGTGCAGGAGTCTGAGACCCCTTCCACCTCCCTACAA
GTGCCCTCGGGTCTGCTCTCCCGTCTGGACCCCTCCAGCCACTATCCCTGCTGGAAAGGCT
CAGCTCTTGGGGGTCTGGGTGACCTCCCCACCTCCTGGAAAACCTTAAAGGTATTTGC
GCAAACCTTCAGGGTGGGGACTCTGAAGGAAACGGACAAAACCTTAAGCTGTTTCT
TAGCCCCCTAGCCAGCTGCCATTAGCTGGCTCTTAAAGGGCAGGCCTCTTCTGCCCT
CTAGCAGGGAGGTTTCAACTGTTGGAGGCGCTTGGGGCTGCCCTTGTCTGGAGTCA
CTGGGGCTCCGAGGGTCTCCCTCGACCCCTGTGCTCCTGGATGGCTGTGGAGCTGT
ATCACCTGGGTCTGCTCCCTGGCTCTGTATCAGGCACTTAAAGCTGGCCTCAGTGG
GGTGTGTTGTCTCCTGCTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGA
GGCTGGAGGGACCAGATGGAGGAGGCCAGCAGCTAGCCATTGCACACTGGGTGATGGGTGG
GGCGGTGACTGCCAGACTGGTTGTAAATGATTGTACAGGAATAAACACACCTACGC
TCCGGAAAAAAAAAAAAAA

FIGURE 34

MSSNKEQRSAVFVILFALITILYLSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL
GNKTLPSRCHQCVIVSSSSHILGTKLGEIERAECTIRMNDAPTTGYSADVGNKTYRVVAH
SSVFRVLRRPQEJVNRTPETVFIFWGPPSKMQKPGSLVRVIQRAGLVFPNMEAYAVSPGRM
RQFDLFRGETGKDREKSHSWLSTGWFTMVIACHELCDHVHVYGMVPPNYCSQRPRLQRMPYH
YYEPKGDPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

FIGURE 35

GTTTCTCATAGTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCAGGGAGCGACGCAGCTT
 GAGGGAAAGCATTCCCTAGCTGTGGCGCAGAGGGCGAGGTGAAGCGAGTGGCCGAGGTGTCTGAGGGGCTGG
 GCCTAAAGGTGAAAGACTTCAGAACAGCTCTGGAACCCATGACCCATGAAGTCTTGTGACATTATACCGT
 CTGAGGGTAGCAGCTGAAACTAGAAGAAGTGGAGTGTGCCAGGGACGGCAGTATCTCTTGTGACCCCTGGC
 GGCTATGGGACGTTGGCTTCAGACCTTGATGACACCACTGCTGCGTGGGAGCAGTGAACGGCTGGAGAGGAATG
 AGGCCTGAGGTACACTGGCTTGCCTCCTCCTAGCCACAGCAGGCTGCTTGACTTAAGCAGGTCAGCTCCAG
 GTCACCGTCCAGCCTGCGTCCACGGACTGTGATCTGGCTGCGTGGAGACCTCCA
 AGGATGAATGTAACCTGGCGCTGAATGGAAGAGCTGAATGGCTCGGATGATGCTCTGGGTGCTCCTCATCACC
 CACGGGACCCCTCGTCATCACTGCCCCAACACACTGTGGGACGGTACCGTGTGGCCGGATGCCTGCG
 GGGCTGTGGCCAGCGTGGCAGGACTGTGACACTAGCCAATCTCCAGGACTTAAGTTAGATGTGACAGCTG
 ATTGAAGTGGATGAGGGAAACACAGCAGTCACTGCTGCACCTGCTGAGAGCCACCCCAAAGGCCAGGTCCGG
 TACAGCGTCAAACAAGAGTGGCTGGAGGCTCAGAGGTAACACCTGATCATGCCCTCAGGGAACCTCCAGATT
 GTGAATGCCAGGCCAGGAGGACGAGGGCATGTACAAGTGTGAGCCTACAACCCAGTGACCCAGGAAGTGAACACC
 TCCCGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGTGCCCAGCATCATCTACCCCCCAGAGGCC
 CAAACCATCATGTCACCAAAGGCCAGACTCTCATCTGAGGTGTGGCCAGTGGAAATCCCACCCCCACGGGTC
 ACCTGGGCAAGGATGGGTCAGTCACCGGCTAACAAAGACGCCCTCTGTGAGCAACCTCCTCATCGAC
 ACCACCGCAGGAGGAGACTCACGGCACCTACCGCTGATGCCGACAATGGGTTGGGAGCCGGCAGCGGTC
 ATCCTCTACAATGTCAGGTGTTGAACCCCCCTGAGGTACCATGGAGCTATCCCAGCTGGTCATCCCCGGGG
 CAGAGTGCACAGCTTACCTGTGAGGTGCGTGGGAAACCCCCCGCCCTCCGTGCTGTGGCTGAGGAATGCTGTG
 CTCATCTCCAGGCCAGCGCCTCCGGCTCTCCCGCAGGGCCCTGCGCGTCTGAGCATGGGGCTGAGGAAGGC
 GTCTACCAAGTGCATGGCGAGAACGAGGTGGGAGCGCCATGCCGTAGTCCAGCTGCCAGCTCCAGGCAAGC
 ATAACCCCAAGGATGGCAGGATGCTGAGCTGGCTACTGGCACACCTCTGTATCACCTCCAAACTCGGCAAC
 CCTGAGCAGATGCTGAGGGGCAACCGCGCTCCCGCAGACCCCCAACGTCAGTGGGGCTGCTTCCCCAGGT
 CCAGGAGGAGAGGGCAGGGGCTCCCGCAGGCTCCCATCATCCTCAGTCGCCCCCGCACCTCCAAGACAGAC
 TCATATGAACTGGTGTGGCGGCCTCGGATGAGGGCAGTGGCCGGGCGCAATCCTCTACTATGTGGTGAACAC
 CGCAAGCAGGTACAAATTCTCTGACGATTGGACCATCTGGCATTCCAGCCAACCGACCGCCTGACCC
 ACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTACAACACTGTGCGGGAGAGGGCCAGACAGC
 ATGGTCACCTTCCGAACTGGACGGCGCCAAACCCGAGATCATGGGCAGCAGACAGATCCAGAGAGAC
 GACCCCTGGAGGGCAGTCCCGAGACGAGCAGCCAGCACACGCCGCGCTCTCCCCCGAGAAGCTCCGACAGG
 CCCACCATCTCACGGCCTCCGGAGACCTCAGTGTACGTGACCTGGATTCCCCGGGAAATGGTGGGTCTCCAATC
 CAGTCCTTCCGTGGAGTACAAGAAGCTAAAGAAGTGGGAGACTGGATTCTGGCCACCAGGCCATCCCCCA
 TCGCGCTGTCGTGGAGATCACGGCCTAGAGAAAGGCACCTCTACAAGTTGAGTCCGGCTCTGAACATG
 CTGGGGAGAGCGAGCCCAGCGCCCCCTCTGCCCTACGTGGTGTGGCTACAGCGGTGCGTGTACGAGAGG
 CCCGTGGCAGGTCTTATATCACCTCACGGATGCGGTCAATGAGACCACCATATGCTCAAGTGGATGTACATC
 CCAGCAAGTAACAACACCCCAATCCATGGCTTATATCTATTATGACCCACAGACAGTACAATGATA
 GACTACAAGAAGGATATGGTGAAGGGGAAAGTACTGGCAGCTTACAGGCCACCTCAGGCCACAGCAGAGACCTCCTAC
 GACATTAAGATGCACTGCTTCATGAAGGAGGGGAGAGCGAGTTCAGCAACAGTGTATGTCAGGACCAAAGCT
 CGGAAGTCTCTGCCAGCCTGGTCACTGCCACCCCCAACACTCTGGCCCCACACAGCCGCCCTCTGAAACC
 ATAGAGCGGCCGGTGGGACTGGGCCATGGTGGCTCGCTCCAGCGACCTGCCCTATCTGATTGTCGGGCTGTC
 CTGGGCTCCATCGTCTCATCGTACCTCATCCCCCTCTGCTGTGGAGGGCTGGCTAAGCAAAACAT
 ACAACAGACCTGGTTTCCTGAAAGTGCCTCCACCCCTCTGCCGTATAACTATGGTGCCTGGGAGGACTC
 CCAGGCCACCAGGCCAGTGGACAGCAGCTACCTCAGTGGCATGAGGGCCTGCTGCTAATGGGATCCACATG
 AATAGGGGCTGCCCTCGGCTGAGTGGGCTACCCGGCATGAAGGCCAGCAGCACTGCCAGGCCAGCTT
 CAGCAGAGTGAACACAGCAGCCTGAGGAGACCCATCTGGCAATGGATATGACCCCCAAAGTCACCA
 ACGAGGGTCCAAGTCTAGCCGGACGAGGGCTTTCTTATACACACTGCCGACGACTCCACTCACCAGCTG
 CTGAGCCCCCATCACGACTGCTGCCAACGCCAGGAGCAGCCTGCTGTGGGCCAGTCAGGGGTGAGGAGGCC
 CCCACAGTCTGCTGGAAAGCAGTGTGGACCCCTCCATTCACTCAGGGCCCCCATGCTGCTGGCCTTGTG
 CCAGTGTGAAGAGGTGGACAGTCTGACTCTGCCAAGTGAAGTGGAGGAGACTGGTGTCCCCAGCACCCGTAGGG
 GCCTACGTAGGGACAGGAACCTGGAATGCAGCTCTCCCGGGGCACTGGTGTGTCTTGTGAAACACCACCT
 CTCACAAATTAGCAGAAAGCTGATATCCCAGAAAGACTATATATTGTTTTTTTAAAGAAGAAAAAA
 AGAGACAGAGAAAATTGGTATTATTTCTATTATAGCATATTATATGCACTGTAATAAATGTA
 TATGTTTATAATTCTGGAGAGACATAAGGAGTCCTACCGTTGAGGTGGAGAGGGAAAATAAGAAGCTGCCA
 CCTAACAGGAGTCACCCAGGAAAGCACCGCACAGGCTGGCGGGACAGACTCTAACCTGGGCCCTGCA
 GCAGGCGAGGCTGCAGGAGGCCACAGATAAGCTGGCAAGAGGAAGGATCCCAGGCACATGGTTCATCAC
 TGAGGGAAACAGCAAGGGGACGGTATCACAGCCTGGAGACACCCACACAGATGGCTGGATCCGGTGTAC
 ACATTTCCTAAAGATGCCCATGAGAACAGACCAAGAGATGTGACAGCACTATGAGCATTAAAAACCT
 TCCAGAATCAATAATCCGTGGCAACATATCTGTAAAAACAAACACTGTAACCTCTAAATAATGTTAG
 TCTCCCTGTAAAA

FIGURE 36

MLRGTMATAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTIVLGCVVEPP
 RMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTL
 ANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIMPSGNLQ
 IVNASQEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEEAARIIYPPEAQTIIVTKGQSL
 ILECVASGI PPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGA
 AVILYNVQVFEPPEVTMELSQLVIPWGQSAKLTCERGNPPPSVLWLRNAVPLISSQLRLS
 RRALRVLSMGPEDEGVYQCMAENEVGSAAHVVQLRTSRPSITPRLWQDAELATGTPPVSPSK
 LGNPEQMLRGQPALPRPPTSVGAPSPKCPGEKGQGAPAEAPIIILSSPRTSKTDSYELVWRPR
 HEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGE
 GQTAMVTFRGRRPKPEIMASKEQQIQRDDPGASPQSSQPDHGRLSPPEAPDRPTISTASE
 TSVYVTWI PRGNGGFPIQSFRVEYKKLKVGDWILATS AIPPSRLSVEITGLEKGTSYKFRV
 RALNMLGESEPSAPS RPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNT
 PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWH SISHLQPETSYDIKMOCFNEGGEFSNVM
 ICETKARKSSGQPGRLPPPTLAPPQPLPETIERPVGTGAMVARSSDL PYLIVGVVLGSIVL
 II VTFIPFCLWRAWSKQKHTTDLGFP RSALPPSCP YTMVPLGGLPGHQASGQPYLSGISGRA
 CANGIHMNRCCPSAAVGYPGMKPQQHCPGELQQQSDTSSLIRQTHLGNGYDPQSHQITRGPK
 SSPDEGSFLYTL PDDSTHQLLQPHDCCQRQE QPAAVGQSGVRRAPDSPVLEAVWDPPFHSG
 PPCC LGLVPVEEV DSDP DSCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVS FETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGGTGTCATGATCCGGACCCATTGTCGGCCTCTGCCCATGCCTGCTCCTC
 CCAGGCTCCCGCGGCCGACCCCCGCGCAAC**ATG**CAGCCCACGGGCCCGAGGGTTCCCGCG
 GCTCAGCCGGCGGTATCTGCGCGTCTGCTGCTCCTGCTACTGCTGCTGCTGCTGCGGCAGC
 CCGTAACCCGCGGGAGACCACGCCGGCGCCCCAGAGCCCTCTCCACGCTGGCTCCCC
 AGCCTCTTACCAACGCCGGGTGTCAGCGCCCTCACTACCCAGGCCTCACTACGCCAGG
 CACCCCCAAAACCTGGACCTCGGGTCGCGCGAGGCCCTGATGCGGAGTTCCACTCG
 TGGACGGCCACAATGACCTGCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT
 GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGCCCTCGT
 GGGTGCCAGTTCTGGTCAGCCTCCGTCTCATGCCAGTCCCAGGACCAGACTGCCGTGCGCC
 TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCTCCTACTCTGAACCTGAGCTT
 GTGACCTCAGCTGAAGGTCTGAACAGCTCTCAAAGCTGGCCTGCCTCATGGCGTGNAGGG
 TGGTCACTCACTGGACAGCAGCCTCTGTGCTGCGCAGTTCTATGTGCTGGGGTGCGCT
 ACCTGACACTTACCTCACCTGCAGTACACCATGGCAGAGAGTTCCACCAAGTTCAGACAC
 CACATGTACACCAACGTCAAGCGGATTGACAAGCTTGGTGAGAAAGTAGTAGAGGAGTTGAA
 CCGCCTGGGCATGATGATAGATTGTCCTATGCATGGACACCTGATAAGAAGGGCCTGG
 AAGTGTCTCAGGCTCCTGTGATCTTCTCCACTCAGCTGCCAGAGCTGTGTGACAATTG
 TTGAATGTTCCCGATGATATCCTGCAGCTCTGAAGAACGGTGGCATCGTGTGGACT
 GTCCATGGGGTGCTGCAGTGCAACCTGCTGCTAACGTGTCCTGTGGCAGATCACTTG
 ACCACATCAGGGCAGTCATTGGATCTGAGTTCATGGGATTGGTGAAATTATGACGGGACT
 GGCGGTTCCCTCAGGGCTGGAGGATGTGTCCACATACCCAGTCCTGATAAGAGGAGTTGCT
 GAGTCGTASCTGGAGCGAGGAAGAGCTCAAGGTGTCCTCGTGGAAACCTGCTGCGGGTCT
 TCAGACAAGTGGAAAAGGTGAGAGAGGGAGAGCAGGGCGCAGAGCCCCGTGGAGGCTGAGTT
 CCATATGGCAACTGAGCACATCCTGCCACTCCCACCTCGTGCCTCAGAATGGACACCAAGGC
 TACTCATCTGGAGGTGACCAAGCAGCCAACCAATGGGCTCCCTGGAGGTCCCTCAAATGCCT
 CCCCATACCTTGTCCAGGCCTTGTGGCTGCCACCATCCAACCTCACCCAGTGGCTC
 TG**TGA**CACAGTCGGTCCCCGAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCCT
 AGTTCAATTACAAGCATATGCTGAGAATAACATGTTACACATGGAAAA

FIGURE 38

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817
><subunit 1 of 1, 487 aa, 1 stop, 2 unknown
><MW: 53569.32, pI: 7.68, NX(S/T): 5
MQPTGREGSRALSRRYLRRLLLLLRLQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS
ALTPGLTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ
TSLDRLRDGLVGAQFWASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVSAEGLNSS
QKLA CLIGVXGGHSLDSSLVLSFYVLGVRYLTLCSTPWAESSTKFRHHMYTNVSGLT
SFGEKVVEELNRIGMMIDL SYASDTLIRR VLEVSQAPVIFSHSAARAVCDNLLNPDDILQL
LKNGGIVMVTL SMGV LQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDV
STYPV LIEELLSRXWSEEELQGVLRGNLLRVFRQVEK VREESRAQSPVEAEFPYQQLSTSCH
SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWL C
```

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGA
 TCCCTCTATGACTGCAATGTGAGGTGTCGGCTTGCTGGCCAGCAAGCCTGATAAGC**ATG**
 AAGCTCTTATCTTGGTGGCTGTGGTGGGTGTTGCTGGTGCCAGCTGAAGCCAACAA
 GAGTTCTGAAGATATCCGGTGCACCGAGAATGCATCTGTCCACCTTATAGAAACATCAGTGGGCACA
 TTTACAACCAGAATGTATCCCAGAAGGACTGCAACTGCCTGCACGTGGTGGAGCCCAGGCCA
 GTGCCTGGCCATGACGTGGAGGCCTACTGCCTGCTGTGCGAGTGCAGGTACGAGGAGCGCAG
 CACCACCACCATCAAGGTACATTGTCATCTACCTGTCCGTGGTGGGTGCCCTGTTGCTCT
 ACATGGCCTTCCTGATGCTGGTGGACCCCTGATCCGAAAGCCGGATGCATACACTGAGCAA
 CTGCACAATGAGGAGGAGAATGAGGATGCTCGCTCTATGGCAGCAGCTGCTGCATCCCTCGG
 GGGACCCCCAGCAAACACAGTCCTGGAGCGTGTGGAAGGTGCCAGCAGCGGTGGAAGCTGC
 AGGTGCAGGAGCAGCGGAAGACAGTCAGTGGCACAAGATGCTCAGC**TAG**ATGGGCTGG
 TGTGGTTGGGTCAAGGCCAACACCATGGCTGCCAGCTCCAGGCTGGACAAAGCAGGGGG
 CTACTTCTCCCTCCCTCGGTTCCAGTCTTCCCTTAAAAGCCTGTGGCATTTCCTCCTT
 CTCCCTAACCTTAGAAATGTTGACTTGGCTATTTGATTAGGAAAGAGGGATGTGGTCTCT
 GATCTCTGTTGTCCTGGGTCTTGGGTTGAAGGGAGGGGAAGGCAGGCCAGAAGGGA
 ATGGAGACATTGAGGCCCTCAGGAGTGGATGCGATCTGTCTCCTGGCTCCACTCTG
 CCGCCTTCCAGCTCTGAGTCTGGGAATGTTGTTACCTTGGAAAGATAAAAGCTGGGTCTTCA
 GGAACTCAGTGTCTGGGAGGAAAGCATGGCCAGCATTAGCATGTGTTCTTCTGCAGTG
 GTTCTTATCACCAACCTCCCTCCCAGCCCCGGCGCCTCAGCCCCAGCCCCAGCTCCAGCCCTG
 AGGACAGCTCTGATGGGAGAGCTGGGCCCCCTGAGCCCAGTGGCTTCAGGGTGCAGTG
 AGCTGGTGGTCGCTGTCCTGCACTTCTCGCACTGGGCATGGAGTGCCAGTCATACT
 CTGCTGCCGGTCCCTCACCTGCACTTGAGGGGTCTGGCAGTCCCTCTCCCCAGTGTG
 CACAGTCAGTGGCCAGACGGTCGGTTGAAACATGAGACTCGAGGCTGAGCGTGGATCTGAA
 CACCACAGCCCCTGTACTGGGTTGCCTCTGTCCCTGAACCTCGTTGTAACAGTGCATGGA
 GAGAAAATTTGTCCTTGTCTTAGAGTTGTTGAAATCAAGGAAGCCATCATTAAATTG
 TTTTATTCCTCTCA

FIGURE 40

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278
<subunit 1 of 1, 183 aa, 1 stop
<MW: 20574, pI: 6.60, NX(S/T): 3
MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM
PVPGHDVAYCLLCECRYEERSTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTE
QLHNEEENEDARSMAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS
```

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

FIGURE 41

AGCGGGTCTCGCTGGGTCCGCTAATTCTGCTCTGAGGCCTGAGACTGAGTCATAGGGTCTGGGTCCCCGA
 ACCAGGAAGGGTGAGGGAACACAATCTGCAAGCCCCCGCACCAAGTGAGGGGCCGTGTTGGGTCCCTCCC
 TCCCCTTGCATTCCCACCCCTCGGGCTTGCCTCTCCTGGGGACCCCTCGCCGGAGA**TG**GCCCGCTGATG
 CGGAGCAAGGATTCGTCCTGCCTGCCTACTGGCCGGTGTGATGGTGGAGAGCTCACAGATCGGAGT
 TCGCAGGGCAAACCTCAACTCCATCAAGTCCTCTGGGGGGAGACGCCTGGTCAAGGCCCAATCGATCTGCG
 GGCATGTACCAAGGACTGGCATTGGCGAGTAAGAAGGGCAAAACCTGGGCAGGCCTACCCCTGAGCAGT
 GATAAGGAGTGTGAAGTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATGGCCTGCATGGTGTGCGGAGA
 AAAAGAAGCGCTGCCACCGAGATGGCATGTGCTGCCAGTACCCGCTGCAATAATGGCATCTGTATCCAGTT
 ACTGAAAGCATCTTAACCCCTCACATCCCAGCTGGATGGTACTCGGCACAGAGATCGAAACCACGGTCATTAC
 TCAAACCATGACTGGGATGGCAGAATCTAGGAAGACACACACTAAGATGTACATATAAAGGCATGAAGGA
 GACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTGCTGTGCTGTCATTCTGGACAAAATCTGCAA
 CCAGTGCTCCATCAGGGGAAAGTCTGTACCAAACAACGCAAGAAGGGTCTCATGGCTGAAATTTCAGCGT
 TGCGACTGTGCGAAGGGCCTGCTTGCAAAGTATGAAAGATGCCACCTACTCCTCAAAGCCAGACTCCATGTG
 TGTCAGAAAATT**TG**ATCACCATTGAGGAACATCATCAATTGCAAGACTGTGAAGTTGTATTTAATGCATTATAG
 CATGGTGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAATATAGATGATCACAA
 AAAGGGAGAAAGAAAATGAACTGAATAGATTAGAATGGGTGACAAATGCAAGTCAGTGCAAGCCAGTGT
 CAACITGTCTATGTAATAATGTACACATTGTTGAAAATGCTATTATTAAGAGAACAGCACAGTGGAAATT
 ACTGATGAGTAGCATGTGACTTTCAAGAGTTAGGTTGCTGGAGGGAGGGTTCTCAGATTGCTGATTG
 TTATACAAATAACCTACATGCCAGATTCTATCAACGTTAGAGTTAACAAAATACTCCTAGAATAACTGTTA
 TACAATAGGTTCTAAAATAATGCTAAACAAGAAATGAAAACATGGAGCATGTTAATTACACAGAAAAT
 TACCTTTGATTGTAACACTACTCTGCTGTCATCAAGAGTCTGGTAGATAAGAAAAAAATCAGTCATAT
 TTCCAATAATGCAAATAATGGCAGTTGTTAGGAAGGCCCTTAGGAAGACAAATAACAAACACAG
 CCACAAATACTTTTCTCAAATAATGTTACCTGTAATTAAAGAAACTGATACAGACAAAACAGTTCC
 TTCAGATTCTACGGAATGACAGTATATCTCTTCTATCTGATTCTGCTCTGAATGCATTATATTTC
 AACTATACCCATAAATTGACTAGTAAATACTACACAGAGCAGAAATTTCACAGATGGCAAAAATTTAAA
 GATGTCAAATATATGTTGAAAAGAGCTAACAGAGAGATCATTATTCTAAAGATTGCCATAACCTATATT
 GATAGAATTAGATTGGTAATAACATGTATTACATACACTCTGTTAGAATAGAGACTTAAGCTGGATCTGACTG
 CACTGGAGTAAGCAAGAAAATTGGGAAACTTTCTGTTGTCAGGTTTGGCAACACATAGATCATATGCTG
 AGGCACAAGTGGCTGTCATCTTGAAACCAGGGGATGCACAGTCTAAATGAATATCTGCATGGATTGCTAT
 CATAATATTACTATGCAGATGAATTGCACTGAGGTCTGTGCTCCGTACTATCCTCAAATTATTTATTTATAG
 TGCTGAGATCCTCAAATAATCTCAATTTCAGGAGGTTCAAAAATGTAACCTGCAAGTAGACAGAGTAG
 TTTCTGTTGCCCTCTATAAGCTCTGACTAGCCAATGGCATCATCCAATTCTCCCAAACCTCTGCAGCATCTG
 CTTTATTGCCAAAGGGCTAGTTCTGTTCTGCAGCCATTGCGGTTAAAAATATAAGTAGGATAACTGTAAA
 ACCTGCATATTGCTAATCTATAGACACCACAGTTCTAAATTCTTGAACCAACTTACTACTTTTTAAACTT
 AACCTCAGTTCTAAATACTTTGTCGGAGCACAAAACAATAAAAGGTTATCTTATAGTCGTGACTTTAAACTTTG
 TAGACCACAATCACTTTTAGTTCTTTACTTAAATCCCATCTGCAGTCTCAAATTAAAGTTCTCCAGTAG
 AGATTGAGTTGAGCCTGTTATCTATTAAAATTCACACTCCCACATATTTACTAAGATGATTAAGACTTA
 CATTCTGCACAGGTCTGCAAAAACAAAATATAAAACTAGTCCATCCAAGAACCAAGTTGTATAACAGGT
 TGCTATAAGCTGAAATGAAAATGGAACATTCACAAACATTCCCTATATAACAATTATTATTTACAAAT
 TTGGTTCTGCAATATTCTTCTTATGTCACCCCTTTAAAATTATTGAAAGTAATTATTTACAGGAAATG
 TTAATGAGATGTATTCTTCTTATAGAGATATTCTTACAGAAAGCTTGTAGCAGAATATATTGCAGCTATTGAC
 TTTGTAATTAGGAAAATGTATAAAAGATAAAACTTAAATTCTCCCTAAACACTGAAAAA
 AAAAAAAAAAAAAAAA

FIGURE 42

MAALMRSKDSSCCLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA
FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRKKRCHRDGMCCPSTRCNN
GICIPVTEILTYPHI PALDGTRHRDRNHHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCRLS
SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKWKDATYS
SKARLHVCQKI

Signal peptide:

amino acids 1-25

FIGURE 43

TCTCAATCTGCTGACCTCGT GATCCGCCTGACCTTGT AATCCACCTACCTGGCCTCCAAA
 GTGTTGGGATTACAGGC GTGAGCCACCGCGCCGGCAACATCACGTTTTAAAAATTGATT
 TCTTCAAATT CATGGCAAATATTC CCCCCTTAACCTCTTATGTCAGAATGAGGAAGGA
 TAGCTGCATTATTTAGTCAGTTTCATTGCATAGTAATATTCATGTAGTATTTCTAAG
 TTATATTTAGTAATT CATATGTTAGATTAGGTTAACATACTTGAGAAACTTG
ATGT GTTTAAAGCCTGGGCAGAAATTCTGTATTGTTGAGGATTGTTCTTTATCCCCCT
 TTTAAAGTCATCCGTCCTGGCTCAGGATTGGAGAGCTGCACCACCAAAATGGCAAACA
 TCACCAAGCTCCCAGATTTGGACCAGTTGAAAGCTCCGAGTTGGCCAGTTACCACCA
 CCAAGTACACAGCAGAATAGTACAAGTCACCCCTACAACACTACTACTTCTGGGACCTCAAGCC
 CCCAACATCCCAGTCCTCAGTCCTCAGTCATCTGACTCAAATCTAACCTGAGCCATCCC
 CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCAGTCACTGTTCTCCT
 CCTGGTTGGAGTCCTTCCTCCCAGGCAAACCTCGAGAATCAACACCTGGAGACAGTCC
 CTCCACTGTGAACAAGCTTTGCAGCTCCAGCAGCACCATTGAAAATATCTCTGTGCTG
 TCCACCAGCCACAGCCAAACACATCAAACCTGCTAAGCGCGGATACCCCCAGCTCTAAG
 ATCCCCAGCTCTGCAGTGGAAATGCCTGGTCAGCAGATGTCACAGGATTAAATGTGCAGTT
 TGGGGCTCTGGAATTGGGT CAGAACCTTCTCTCTGAATTGGATCAGCTCCAAGCAGTG
 AAAATAGTAATCAGATTCCCCTCAGCTGTATTGAGCTTTAAGTGAGCCCTTGAATACA
 TCTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACCTCCGT CATTACCTCCTG
 CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTCCTTATGACC
 AGAGTTCTGTGCATAACAGGATCCCACACAAAGCCCTGTGAGTCATCAGAGTCAGCTCCA
 GGAACCACATGAATGGACATGGGGTGGTCAGTCAGCAGACACTAGACAGTAAGTATAG
 CAGCAAGCTACTCTGTCACTGGCTGGGCCAACAAACAGAGGAAGAGGAGTAGCTACGTGA
 TGTGGAAAACACCAGTTGGTCAATGGCTCATTCTGTTAAAGCAGCCCTTTGCTTTTGT
 TTTGGACCAGGTGTGGCTGTGGTATTAGAAATGTCTTAACCACAGCAAGAAGGGAGGT
 GGTGGTCTCATATTCTCTGCCCTAATCAGACTGCACCACAAGTGCAGCAGTACAGTATGCAT
 TTTAAAGATGCTTGGCCAGGCAGGGTGGCTGATGCCATAATCCAGTGCTTGGGGGCC
 AAGGCAGGCAGATTGCCAAGCTCAGGAGTTGAGACCACCCCTGGCAACATGGTAAACTC
 TGTCTACTAAAATACGAAAAACTAGCCGGGTGGTGGCGCGCGTGCCTGTAATCCCAG
 CTACTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGCTACAAAGTGAGACTCC
 GTCTGAAAAGA

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLQLPSTTIENISVSVHQQPQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSSENSNQIPISILYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGRSQQTLDKYSSKLLLWLVPDKQRKRIAHVMWKTPVGQWLIR

Signal peptide:

amino acids 1-24

FIGURE 45

GCCGAGTGGGACAAAGCCTGGGCTGGCGGGGCC **ATG** GCGCTGCCATCCGAATCCTGCT
 TTGGAAACTGTGCTCTGCAGAGCTCTGCTGTTCTCCTGCACTCAGCGGTGGAGGAGACGG
 ACGCGGGCTGTACACCTGCAACCTGCACCACACTACTGCCACCTTACGAGAGCCTGGCC
 GTCCGCCTGGAGGTACCGACGGCCCCCGGCCACCCCCGCTACTGGGACGGCGAGAAGGA
 GGTGCTGGCGGTGGCGCGCGCACCCCGCGCTTGACCTGCGTAACCGCAGGGCACGTGT
 GGACCGACCGCACGTGGAGGAGGCTAACAGGTGGTGCACGGGACCGGCAGCCGCCGGG
 GTCCCGCACGACCGCGCGACCGCCTGCTGGACCTTACCGTCGGCGAGCGCCGCCCTA
 CGGGCCCTTTCTGCGCACCGCGTGGCTGTGGCGCGATGCCCTTGAGCGCGGTGACT
 TCTCACTGCGTATCGAGCCGCTGGAGGTGCGCCACGAGGGCACCTACTCCTGCCACCTGCAC
 CACCAATTACTGTGGCCTGCACGAACGCCGCTTCCACCTGACGGTCGCCAACCCCACGC
 GGAGCCGCCCGGGCTCTCCGGGCAACGGCTCCAGGCCACAGCGGCCAGGGCAGGCCAG
 ACCCCACACTGGCGCGGCCACAACGTATCAATGTATCGTCCCCGAGAGCCGAGCCCAC
 TTCTTCCAGCAGCTGGCTACGTGCTGGCACGCTGCTGCTTACCTGCTACTGGTCAC
 TGTCCTCCTGGCGCCCGCAGCGCCGGAGGCTACGAATACTCGGACAGAAGTCGGAA
 AGTCAAAGGGGAAGGATGTTAACTTGGCGAGTTGCGCTGTGGCTGCAGGGACCAAGATGTT
 TACAGGAGTGAGGACATCCAGCTAGATTACAAAAAACATCCTGAAGGAGAGGGCGGAGCT
 GGCCCACAGCCCCCTGCCTGCCAAGTACATCGACCTAGACAAAGGGTCCGGAAAGGAGAACT
 GCAAAT**AG**GGAGGCCCTGGCTCTGGCTGGGCTGGCTGGGAGCAGCTGCACCTCTCTGTCTGTGCTC
 CTCGGGGCATCTCTGATGCTCCGGGCTCACCCCCCTCCAGCGGCTGGTCCCGCTTCC
 GGAATTGGCCTGGCGTATGCAGAGGCCGCTCCACACCCCTCCCCAGGGCTTGGTGGC
 AGCATAGCCCCACCCCTGCGGCTTGCTCACGGGTGCCCTGCCACCCCTGGCACAAACC
 AAAATCCCACGTGATGCCCATCATGCCCTCAGACCCCTCTGGCTCTGCCGCTGGGGCCTG
 AACACATTCTGGAGGACACTCCCATCAGAACCTGGCAGCCCCAAACTGGGTCAACCTCA
 GGGCAGGAGTCCCACCTCCAGGGCTTGCTCGTCCGGGCTGGAGATGTTCTGGAGGA
 GGACACTCCCACAGAACATTGGCAGCCTGAAGTTGGGTCAAGCTGCCAGGAGTCCCAC
 CCTCCTGGGTGCTGCCTGCCACCAAGAGCTCCCCACCTGTACCAACCATGTGGACTCCAG
 GCACCATCTGTTCTCCCCAGGGACCTGCTGACTGAATGCCAGCCCTGCTCCTCTGTGTTG
 CTTGGGCCACCTGGGCTGCACCCCTGCCCTTCTGCCCATCCCTACCTAGCCTTG
 CTCTCAGCCACCTTGATAGTCACTGGCTCCCTGTGACTTCTGACCCCTGACACCCCTCC
 GGACTCTGCCCTGGGCTGGAGTCTAGGGCTGGGCTACATTGGCTTCTGACTGGCTGAGGA
 CAGGGGAGGGAGTGAAGTTGGTTGGGTGCCACTCTCAGCACCCACATTT
 GCATCTGCTGGTGGACCTGCCACCATCACAATAAGTCCCCATCTGATTTAAAAAAA
 AAAAA

FIGURE 46

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618
<subunit 1 of 1, 341 aa, 1 stop
<MW: 38070, pI: 6.88, NX(S/T): 1
MALPSRILLWKLVLLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVLA VARGAPALLTCVNRGHVWTDRHVEEAQQVVHWDRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADA FERGDFSLRIE PLEVADEGTYSCHLHHHYCGLHERRVF
HLTVAE PHA EPPP RGS PGNG S SHSGAPGP DPTI LARGHN VINV PESRAH FFQQLGYV LATL
LLFILLLVTVLLAARRRRGGYEYSDQKSGKSKGDVNLA EFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPLPAKYIDL DKGFRKENCK
```

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

FIGURE 47

CGCCGGAGGCAGCGCGGCGTGGCGCAGCGGCAC **ATGCCGTTGTCAGAGGACGACTTT**
 CAGCACAGTCAAACCTCACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGC
 ACTGCTTGAGAAGCTGCTGGACCGCCCCCTGGCCTGCAGAGGCCGAGGACCGCTTCT
 GTGGCACATACATCATCTTCTCAGCCTGGCATTGGCAGTCACTGCCATGGAACCTCTT
 ATCACTGCCAAGGAGTACTGGATGTTCAAACCTCGCAACTCCTCCAGCCCAGCCACCGGGGA
 GGACCCCTGAGGGCTCAGACATCCTGAACACTTGTAGAGCTACCTTGCCTTGCCTCCACCG
 TGCCCTCATGCTGTGCCTGGCCAACCTCCTGCTGTCAACAGGGTTGCAGTCACATC
 CGTGTCCCTGGCCTCACTGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAA
 GGTGGACACTTCCTCTGGACCCGTGGTTTTTGCGGTCACCATTGTCTGCATGGTGATCC
 TCAGCGGTGCCCTCACTGTCTCAGCAGCAGCATCACGGCATGACCGGCTCCTTCCTATG
 AGGAACCTCCAAGCAGCAGTGAATATCAGGAGGGACCATGGGCGGGACGGTCAGCGCCGTGGCCTC
 ATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGG
 CCACCATCTCCTCGTCTGCATGGACTCTACCTGCTGCTGTCAGGCTGGAGTATGCC
 AGGTACTACATGAGGCCTGTTCTGGCCCATGTGTTCTGGTAAGAGGGAGCTCCCCA
 GGACTCCCTCAGTGCCTTCGGTGGCCTCCAGATTGATTCCCACACACCCCCCTCTCC
 GCCCCATCCTGAAGAAGACGGCAGCCTGGCTCTGTGTCACCTACGTCTTCATCACC
 AGCCTCATCACCCGCCGTGCACCAACATCGAGTCCTCAACAAGGGCTCGGGCTCACT
 GTGGACCACCAAGTTTCATCCCCCTCACTACCTTCCTGTACAACATTGCTGACCTAT
 GTGGCCGGCAGCTCACGCCTGGATCCAGGTGCCAGGGCCAACAGCAAGGCGCTCCAGGG
 TTCGTGCTCTCGGACCTGCTCATCCCCCTTCGTGCTGTAACTACCAGCCCCCGGT
 CCACCTGAAGACTGTGGTCTTCAGTCCGATGTGATCCCCGACTCCTCAGCTCCGCTGG
 GGCTCAGCAACGGCTACCTCAGCACCCCTGGCCCTCTACGGGCTAAGATTGTGCCAGG
 GAGCTGGCTGAGGCCACGGGAGTGGTGATGTCCTTTATGTGTGCTGGCTAACACTGGG
 CTCAGCCTGCTCACCCCTGGTCACCTCATC **TAGAAGGGAGGACACAAGGACATTGGTG**
 CTTCAGAGCCTTGAAGATGAGAAGAGAGTGCAGGAGGGCTGGGGCCATGGAGGAAAGGCC
 TAAAGTTCACTGGGGACAGAGAGCAGACACTCGGGCCTCATCCCTCCAAAGATGCCA
 GTGAGCCACGTCCATGCCATTCCGTGCAAGGCAGATATTCCAGTCATATTAAACAGAACACT
 CCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGTACTCCCTCACAGCTGATGGTTA
 ACATTCCACCTTCTTAGCCCTCAAAGATGCTGCCAGTGTGCTGCCCTAGAGTTATTACA
 AAGCCAGTGCCAAAACCCAGCCATGGCTTTGCAACCTCCAGCTCGCCTCATCCAGCT
 GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCATTACCCCTGAAGGGTCTCCCTGGAATGGA
 AGTCCCCTGGCATGGTCAGTCCTCAGGCCAAGACTCAAGTGTGCACAGACCCCTGTGTTCT
 GCAGGGTGAACAACTGCCACTAACCAAGAGACTGGAAAACCCAGAAAGATGGGCTTCCATGAAT
 GCTCATTCCAGAGGGACCAGAGGGCTCCCTGTGCAAGGGATCAAGCATGTCTGGCCTGGG
 TTTCAAAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTC
 TTTCAGTGTCCCTGTTACAACATGTCAAAGCCATTGGTTCAAGGGCGTAATAAAACTTGC
 GTATTCAAAA

FIGURE 48

MAVVSEDDFQHSSNSTYGTTSRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFSLGI
GSLLPWNFFITAKEWMFKLRNSSLATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLSRLEYARYYMRPVLAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLG
CVTYVFFITSЛИYPAVCTNIESLNKGSGSLWTTKFFIPLTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252,
305-330, 448-472

FIGURE 49

GACAGTGGAGGGCAGTGGAGAGGACCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACACCA
 TCTCCCACCGAGAGTC**ATG**CCCCATTGGCCCTGCACCTCCTCGCCTCGTCCCCATCCTCC
 TCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTCGAGAAATGC
 ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGCTCAATCGGACCCT
 GAAGCCCCAGAGGGTGATTGTGGTTGGCGCTGGTGTGGCCGGCTGGTGGCCGCCAAGGTGC
 TCAGCGATGCTGGACACAAGGTACCATCCTGGAGGCAGATAACAGGATGGGGGCCGATC
 TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGAGCTGGGAGGCCATGCGCATGCCAG
 CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCTGGGCTCAACCTGACCAAGTCACCC
 AGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAG
 AAGGTGCCCGAGAAGCTGGCTACGCCCTGCGTCCCCAGGAAAAGGGCCACTGCCCGAAGA
 CATCTACCAAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGCTGCAGAAAGG
 CGATGAAGAAGTTGAAAGGCACACGCTCTTGAATATCTCTGGGGAGGGAACCTGAGC
 CGGCCGGCCGTGCAGCTCTGGAGACGTGATGTCCGAGGATGGCTTCTTATCTCAGCTT
 CGCCGAGGCCCTCCGGGCCACAGCTGCCCTGCGCAGACTCCAGTACAGCCGCATCGTGG
 GTGGCTGGACCTGCTGCCCGCGCTGCTGAGCTCGCTGTCCGGCTTGTGCTGTTGAAC
 GCGCCCGTGGTGGCGATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCC
 CCCGGCGCGGAATCTGAAGGTGCTGAAGGCCGACGTGGTGTGCTGACGGCGAGCGGGACCGG
 CGGTGAAGCGCATCACCTCTGCCGCCGCTGCCCGCACATGCAGGAGGCGCTGCCGGAGG
 CTGCACTACGTGCCGCCACCAAGGTGTTCTAACGCTCCGCAGGCCCTCTGGCGCGAGGA
 GCACATTGAAGGCCGCACTCAAACACCGATGCCCGTCGCGCATGATTTCTACCGCCGC
 CGCGCAGGGCGCGCTGCTGGCTCGTACACGTGGTGGACGCCGGCAGCGTTCGCC
 GGCTTGAGCCGGAAAGAGGCCTGGCGCTCGACGACGTGGCGGCATTGCACGGGCC
 TGCGTGCAGCTCTGGACGGCACCGCGCTGCTAACGCTTGGCGAGGACAGCACA
 GCCAGGGTGGCTTGTTGTTGACAGCCGCCGGCGCTCTGGCAAACCGAAAAGGATGACTGGACG
 GTCCCTTATGGCCGCATCTACTTGGCCGGCGACACCCGCTACCGCACGGCTGGGTGGA
 GACGGCGGTCAAGTCGGCGCTGCCGCCATCAAGATCAACAGCCGGAAAGGGCCTGCAT
 CGGACACGGCCAGCCCCGAGGGGCACGCATCTGACATGGAGGGCAGGGCATGTGCATGG
 GTGGCCAGCAGCCCTCGCATGACCTGGCAAAGGAAGAAGGCAGCCACCCCTCCAGTCCAAGG
 CCAGTTATCTCTCCAAAACACGACCCACACGAGGACCTCGCAT**TAA**AGTATTTCGGAAAAAA
 AA

FIGURE 50

MAPIALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRV
IVVGAGVAGLVAAKVLSAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKPEKLGYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRQLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPARNL
KVLKADVVLLTASGPRAVKRITFSPPPLPRHMQEALRRLYVPATKVFLSFRRPFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSAAAAFAGLSREEARLALDDVAALHGPVVRQL
WDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYRIYFAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVAASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTS

Signal peptide:

amino acids 1-21

FIGURE 51

CTGACATGGCCTGACTCGGGACAGCTCAGAGCAGGGCAGAACTGGGGACACTCTGGGCCGGCCTTCTGCCTGC**AT**
GGACGCTCTGAAGCCACCCCTGTCTGGAGGAACCACGAGCAGGGAAAGAAGGACAGGGACTCGTGTGGCAGGAA
 GAACTCAGAGCCGGGAAGCCCCCATTCACTAGAACGACTGAGAGATGCGGCCCGCCTCGCAGGGCTGAATTTCCT
 GCTGCTGTTACAAGATGCTTTTATCTTAACCTTTGTTTCCCCACTTCCGACCCGGCGTTGATCTGCAT
 CCTGACATTTGGAGCTGCCATCTTCTGTGGCTGATCACAGACCTCAACCGCTTACCTCTTGACCTGAA
 CAATCAGTCTGTGGGAATTGAGGGAGGAGCACCGAAGGGGTTCCCAGAAGAACAAATGACCTAACAAAGTGTG
 CTTCTCAGATGCCAAGACTATGTATGAGGTTTCCAAGAGGACTCGCTGTGTCAGAACATGGGCCCTGCTTGGG
 ATATAGAAAACCAAACCGCCCTACAGATGGCTATCTTACAAACAGGTGTCAGTAGAGCAGAGTACCTGGGTT
 CTGTCCTGCATAAAGGTTATAAATCATCACAGACCCAGTTGTCGGCATCTTGCTCAGAACATAGGCAGAGT
 GATCATCTCCGAATTGGCTTGTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACACCTTGGGACCAGAAC
 CATCGTACATATTGTCAACAAGGCTGATATGCCATGGTATCTGTGACACACCCAAAAGGCATTGGTGTG
 AGGGAAATGTAGAGAAAGGCTCACCCCGAGCCTGAAGGTGATCATCCTTATGGACCCCTTGATGATGACCTGAA
 GCAAAGAGGGGAGAAGAGTGGAAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCAAAGAGCACTTCAG
 AAAACCTGTGCCTCCTAGCCCAGAACGACTGAGCCTACAGGATCTACGATAAGGTACAAATGAGGCTAACAGG
 AGCCATGATAACCCATCAAATATTGTTCAAATGCTGCTGCCTTCTCAAATGTGTGGAGCATGCTTATGAGCC
 CACTCCTGATGATGTGGCCATATCCTACCTCCCTGGCTCATATGTTGAGAGGATTGTACAGGCTGTTGTGTA
 CAGCTGTGGAGGCCAGAGTGGATTCTTCAAGGGATATTGGTTGCTGGCTGACGACATGAAGACTTGAAGCC
 CACATTGTTCCCGCGTGCCTGACTCTTAACAGGATCTACGATAAGGTACAAATGAGGCTAACAGG
 GAAGAAGTTCTGTTGAAGCTGGCTGTTCCAGTAAATTCAAAGAGCTCAAAAGGGTATCATCAGGCATGATAG
 TTTCTGGGACAAGCTCATTTGCAAAGATCCAGGACAGCCTGGGCCGAAGGGTCTGTGTAATTGTCACTGGAGC
 TGCCCCCATGTCACCTCACTGACATTCTCCGGGAGCAGGATTCGGGACTGTCAGGTGATGAAGCTTATGGTCA
 AACAGAATGACAGGTGGCTGACATTACCTGGGACTGGACATCAGGTACGGTGGGGTGCCTGGC
 TTGCAATTACGTGAAGCTGGAAAGATGTGGCTGACATGAACACTTACAGTGAATAATGAAGGAGAGGTCTGCAT
 CAAGGGTACAAACGTTCAAAGGATACCTGAAGGACCTGAGAACACAGGAAGCCCTGGACAGTGTGGCTG
 GCTTACACAGGAGACATTGGTCGCTGGCTCCGAATGGAACCTGACAGTCAACCGTAAAGAACATT
 CAAGCTGGCCAAGGAGAATACATTGACACCAGAGATGAAAGATGAAAGCATACAGGAGTCAACCGTGTACA
 AATTGGTACACGGGGAGAGCTACGGTACCTTAGTAGGAGTGGTGGTCTGACACAGATGACTTCCCTC
 ATTGAGCCAAAGCTGGGTGAAGGGCTCCTTGAGGAACGTGTGACAAACAGTTGTAAGGGAGCCATT
 AGAAGACTTGCAGAAAATGGGAAAGAAAAGTGGCTTAAACTTTGAAACAGGTCAAAGCCATTTCATCC
 AGAGCCATTTCATTGAAAATGGGCTCTGACACCAACATTGAAAGCAAAGCGAGGAGAGCTTCCAATACTT
 TCGGACCCAAATTGACAGCCTGTATGAGCACATCCAGGATTAGGATAAGGTACTTAAGTACCTGCCGGCCACTG
 TGCACGTGTTGTGAGAAAATGGATTAAAAACTATTCTACATTGTTTGCCTTCCTCATTTTTTTAAC
 TGTAAACTCTAAAGCCATAGCTTGTGTTATATTGAGACATATAATGTGAAACTTAGTCCAAATAATCA
 ATCCGTCTTCCCCTTCATCTCGATGTTGCTAATATTAAAGGCTCAGGCTACTTTATCAACATGCCTGCTTCAA
 GATCCCAGTTATGTTCTGTGTCCTCCTCATGATTCCAACCTTAACACTATTAGTAACCACAAGTTCAAGGGT
 CAAAGGGACCTCTGTGCCCTCTTGTGATAAACATAACTTGCAACAGTCTCATGCTTATTACA
 TCTTCACTGTTCAAACTAAGAGATTTAAATTCTGAAAAACTGCTTACAATTGATGTTCTAGCCACTCCAC
 AAACCACTAAAATTGTTAGGTTAGCCTACTCATGTCATCAATCTATGAGACAAATGTCTCCGATGCTCTT
 CTGCGTAAATTAAATTGTTGACTGAAGGGAAAAGTGTGATCATACCAACATTCTAAACTCTAGTTAGATA
 TCTGACTTGGAGTATTAAAATTGGGTCTATGACATACTGTCAAAGGAATGCTGTTCTAAAGCATTATT
 CAGTAGGAACCTGGGGAGTAAATCTGTTCCCTACAGTTGCTGAGCTGGAAAGCTGTGGGGAGAGTTGACA
 GGTGGGCCAGTGAACCTTCCAGTAAATGAAGCAAGCAACTGAATAAAAACCTCTGAACACTGGGAACAAAGATCT
 ACAGGGCAAGCAAGATGCCACACAAACAGGCTTATTCTGTGAAGGAACCAACTGATCTCCCCACCCCTGGATT
 AGAGTTCTGCTCTACCTAACCCACAGATAACACATGTTGTTCTACTTGTAAAGTCTTAAAGTAAAC
 TATTACAGATAAAAAAA

FIGURE 52

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775
<subunit 1 of 1, 739 aa, 1 stop
<MW: 82263, pI: 7.55, NX(S/T): 3
MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPWEWIISELACYTYSMVAPELYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTTLKPTLFPAPVPRLLNRIYDKVQNEAKTPLKKFLLKLA
VSSKFKELOQGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMFFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHGVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPKTQEALDSGWLHTGDIGRWLPGNTLKIIDRKKNIFKLAQGEYIAPEKIENIYNR
SQPVLQIFVHGESLRSSLGVVVVPDTDVLPSFAAKLGVKGSFEELCQNQVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLPTLKAKRGELSKYFRTQIDSPLYEHQD
```

Important features:**Type II transmembrane domain:**

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

FIGURE 53

GGAGGC GGAGGCCGCGCGAGCCGGCCGAGCAGTGAGGGCCCTAGCGGGGCCGAGCGGGG
 CCCGGGGCCCTAAGCCATT CCTGAAGTCATGGCTGGCCAGGACATTGGTGACCCGCCAAT
 CCGT**A**TGGACGACTGGAAGCCCAGCCCCCTCATCAAGCCCTTGGGCTCGGAAGAACGG
 AGCTGGTACCTTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTCGGGAGATTCTGTCA
 GACAGGGCCGTGCTTTCTGCTGGTACTGTCAATTGCAATATCAAGTTGATCCTGGACA
 CTGGCGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGATGAGGCC
 CTAGGCCGCTGGAGCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGGTCTGGACGTAGA
 GGTGTATTCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCGTGCTGGAGGATG
 AGGCCGGGAGCAGGGCCGGGCATCCATGTCATTGTCCTCAACCAGGCCACGGGCACGTG
 ATGGAAAACGTGTGTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGTATTCT
 CAACATGGTAGCGCCCGGGCAGTGCTCATCTGCACTGTCAAGGATGAGGCCCTTCCACC
 TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGCAGCCAGGCTGGCCTGCCCTGGC
 TGGAGGGACACATGGCCTCTGGAGAAAAGGAGGTCTGTCTCGGGAGAAACATTC
 TAAGTCACCTGCCCTCTTCCCTGGGGGACCCAGTCCTGCTGAAGACAGATGTGCCATTGA
 GCTCAGCAGAAGAGGCAGAGTGCCACTGGCAGACACAGAGCTGAACCGTCGCCGGCGC
 TTCTGCAGCAAAGTTGAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCACACCATCGA
 GTTCAGCCCTGACCCACTCCCAGACAACAAGGTCTCAATGTGCCGTGGCTGTCAATTGCAG
 GGAACCGACCCAATTACCTGTACAGGATGCTGCCCTCTGCTTCAGGCCAGGGGTGTCT
 CCTCAGATGATAACAGTTTCAATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACT
 GTTGGTCTGAGGGCATCCAGCATACTCCCATTGACATCAAGAATGCCCGTGTCTCAGC
 ACTACAAGGCCAGCCTCACTGCCACTTCAACCTGTTCCGGAGGCCAAGTTGCTGTGGTT
 CTGGAAGAGGACCTGGACATTGCTGTGGATTTCAGTTCTGAGCCAATCCATCCACCT
 ACTGGAGGAGGATGACAGCCTGTACTGCATCTGCCTGGAATGACCAGGGTATGAAACACA
 CGGCTGAGGACCCAGCACTACTGTACCGTGTGGAGACCATGCCCTGGCTGGCTGGGTGCTC
 AGGAGGTCTGTACAAGGAGGAGCTTGAGGCCAAGTGGCTACACCGGAAAAGCTCTGGGA
 TTGGGACATGTGGATGCGGATGCCCTGAACAACGCCGGGCGAGAGTGCATCATCCCTGACG
 TTTCCGATCCTACCACTTGGCATCGTCGGCTCAACATGAATGGCTACTTTCACGAGGCC
 TACCTCAAGAAGCACAAGTTCAACACGGTCCAGGTGTCAGCTCAGGAATGTGGACAGTCT
 GAAGAAAGAAGCTTATGAAGTGGAAAGTTCACAGGCTGCTCAGTGGAGGCTGAGGTTCTGGACC
 ACAGCAAGAACCCCTGTGAAGACTCTTCCCTGCCAGACACAGAGGCCACACCTACGTGGCC
 TTTATTGCAATGGAGAAAGATGATGACTTCACCACCTGGACCCAGCTGCCAAGTGCCTCCA
 TATCTGGGACCTGGATGTGCGTGGCAACCCTGGGGCTGTGGAGATTGTTCGGAAGAAGA
 ACCACTCCTGGTGGTGGGGTCCCGCTTCCCTACTCAGTGAAGAACGCCACCCCTAGTC
 ACCCCAAATTTCCTGGAGGCCACCCCAAAGGAGGAGGGAGGCCAGGAGGCCAGAACAGAC
ATGA GACCTCCTCCAGGACCCCTGCAGGGCTGGTACTGTGTAACCCAGGCTGGCTAGCCCT
 TCCCTCCATCCTGTAGGATTTGTAGATGCTGGTAGGGCTGGCTACCTTGTGTTTAACA
 TGAGACTTAATTACTAACCAAGGGAGGGTCCCTGCTCCAACACCCGTTCTGAGTT
 AAAAGTCTATTATTACTTCCCTGTTGGAGAAGGGCAGGAGAGTACCTGGGAATCATTACG
 ATCCCTAGCAGCTCATCCTGCCCTTGAATACCCCTACTTCCAGGCCTGGCTCAGAATCTA
 ACCTATTATTGACTGTGCTGAGGGCCTTGAAAACAGGCCGAACCTGGAGGGCTGGATTTC
 TTTTGGGCTGGAATGCTGCCCTGAGGGTGGGCTGGCTTACTCAGGAAACTGCTGTGCC
 CAACCCATGGACAGGCCAGCTGGGGCCACATGCTGACACAGACTCACTCAGAGACCCTA
 GACACTGGACCAGGCCCTCTCAGCCTCTTGTCCAGATTCAAAGCTGGATAAGTT
 GGTCAATTGATTAAGGAGAAGCCCTCTGGAAAAA

FIGURE 54

```
>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185
>subunit 1 of 1, 660 aa, 1 stop
><MW: 75220, pI: 6.76, NX(S/T): 0
MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPDRVLDVEVYSSRSKVVAVDGTTVLEDEA
REQRGRIHVIVLNQATGHVMAKRVFDTYSYPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGKPVGKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRLRFCSKVEGYGSVCSCDKPTPIEFSPDPLPDNKVLNPVAVIAGN
RPNLYRMLRSLLSAQGVSPQMITVFIDGYEEMDVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPEAKFAVVLEEDLDIAVDFSFLSQSIIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMWMRMPEQRRGRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKKHKFNTVPGVQLRNDSLKKEAYEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGWLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPEQT
```

Important features of the protein:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

FIGURE 55

CGGACGCGTGGCTGGTGGAAAGCCTAAAGAACGAACTGGAAAGCCACTCTCTTGGAACCAACAC
 CTGTTAAAGAACCTAACGACCATTAAAGCCACTGGAAATTGTTGTCTAGTGGTGTGGGTGAATA
 AAGGAGGGCAGA**ATGG**ATGATTCTCATCTCATTAGCCTGCTGTCTGGCTATGTTGGTGGGATGTTA
 CGTGGCCGGAATCATTCCCTGGCTGTTAATTCTCAGAGGAACGACTGAAGCTGGTACTGTTTGG
 GTGCTGGCCTCTCTGTGGAACGTGCTGTGCAGTCAGTGCCTGAAGGAGTACATGCCCTTATGAA
 GATATTCTTGAGGGAAAACACCAAGCAAGTGAACACATAATGTGATTGCATCAGACAAAGCAGC
 AGAAAAATCAGTTGTCATGAACATGAGCACGCCACACAGCTGCATGCCTATATTGGTG
 TTTCCCTCGTCTGGGCTCGTTTCATGTTGCTGGTGGACCAGATTGTAACCTCCATGTGCATTCT
 ACTGACGATCCAGAACGAGCAAGGTCTAGCAATTCAAACATCACCACCGCTGGGTCTGGGTGTCCA
 TGCTGCAGCTGATGGTGTGCTTGGGAGCAGCAGCATCTACACAGACAGTGTCCAGTTAATTG
 TGTTGTGGCAATCATGCTACATAAGGCACCAGCTGCTTTGGACTGGTTCTTGTGATGCATGCT
 GGCTTAGAGCGGAATCGAACAGAACACTGCTGGTCTTGCAATTGGCAGCACAGTTATGTCCAT
 GGTGACATACTTAGGACTGAGTAAGAGCAGTAAAGAACGCCCTTCAGAGGTGAACGCCACGGGAGTGG
 CCATGCTTTCTCTGCCGGACATTCTTATGTTGCCACAGTACATGTCCTCCCTGAGGTGGCGGA
 ATAGGGCACAGCCACAAGCCGATGCCACGGGAGGGAGAGGCCTCAGGCCCTGGAAGTGGCAGCCCT
 GGTTCTGGGTGCCTCATCCCTCATCCCTGTCAGTAGGACACCAGCAT**TAA**ATGTTCAAGGTCCAGC
 CTTGGTCCAGGGCCGTTGCCATCCAGTGAGAACAGCCGGCACGTGACAGCTACTCACTCCTCAGTC
 TCTTGTCTCACCTGCGCATCTACATGTATTCTAGAGTCCAGAGGGGAGGTGAGGTTAAAACCTG
 AGTAATGGAAAAGCTTTAGAGTAGAACACATTACGTTGCAAGTTAGCTATAGACATCCCATTGTG
 TATCTTTAAAAGGCCCTGACATTTGCGTTTAATATTCTCTTAACCTATTCTCAGGGAAAGATG
 GAATTAGTTAAGGAAAAGAGGAGAACCTCATACTCACAATGAAATAGTGATTATGAAAATACAGT
 GTTCTGTAATTAGCTATGCTCTTCTTAGTTAGAGGCTGCTACTTATCCATTGATT
 AACATGGTTCCCACCATGTAAGACTGGTGCTTAGCATCTATGCCACATGCGTTGATGGAAGGTATA
 GCACCCACTCACTTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAGGAAAATGATAGC
 AAGACACATTGAAAGCTCTTTACTCAAAAGAGATATCCATTGAAAAGGGATGTCTAGAGGGATT
 TAAACAGCTCTTGGCACGTGCCCTCTGAATCCAGCCTGCCATTCCATCAAATGGAGCAGGAGAGG
 TGGGAGGAGCTCTAAAGAGGTGACTGGTATTTGTTAGCATTCTGTCAAGTTCTCCTTGCGAGAAT
 ACCTGTCCTCACATTCTAGAGAGGAGCCAAGTTCTAGTTCTAGGCTTCTTCAGAA
 CAGTCAGATCACAAAGTGTCTTGGAAATAAGGGATATTAAATTAAAGTGA
 TGATATCTTGTAGCTTTTTAAAGACTACCAAAATGTATGGTGTCTTTTTGTT
 TTTTTTTAATTATTCTCTTAGCAGATCAGCAATCCCTCTAGGGACCTAAATACTAGGTCACT
 GGCGACACTGTGCTCTCACATAACCACCTGCTAGCAAGATGGATCAAATGAGAAGTGTGCTA
 TTGATTAAAGCTTATGGAATCATGTCCTGTCTTCGTCTTGTCTTCTTCTA
 TCCCTCTAGCCTCTGCCACAATTGCTGCTACTGCTGGTGTAAATTGTTGTTG
 CTTATCAGGACAACCACCTCTGAACTGTAATAATGAAGATAATAATCTTATCTT
 CAAAGAAATTACCTTGTGTCAAATGCCCTTGTGAGCCCTAAACACCACCTCT
 ATTGACACAATCACTAATCTGGTAATTAAACAATTGAGATAGCAGGAAAGTGT
 ATTGTTCTTGCATATTGCCAAATTGTTGAAACCCCTGTCTGTCAAATAAGTGT
 TATAATTATTACTTCTATACCATTCAAAACACATTACACTAAGGGGAACCAAGACTAGTT
 TCTCAGGGCAGTGGACGTAGTAGTTGTAACAGCTTCTATGACGCTAGCATGCCTATG
 ATTATTCTTCTCATGAATTGTCAGGGATCAGCAGCTGTGGAATAAGCTTGT
 GGCCACAGTGAGGAAAGTAGCAGAACATAGGATACAGTTGTTAGTCATTGG
 ATTTACTACCAAGAGAAGGTAGTATGAAAGTCAAATGACTCCTGATTGGATG
 GACTGGTGTGAGACTTGAGGTTCATCTAGCTTCAAAACTATATGGTGCCTAGATTCTCT
 AACTGACTTTGTCAAATAAGCAGATTGTTAGTGTCAAAAAAAA

FIGURE 56

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL
YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDO
IGNSHVHSTDDPEAARSSNSKITTLGLVVHAAADGVALGAAASTSQTSQLIVFVAIMLHK
APAAFGLVSFLMHAGLERNRIRKHLVFAAAPVMSMVTYLGLSKSSKEALSEVNATGVAML
FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLIISVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGGCGGCGGGAGAGCGACCCGGCGGCCTCGTAGCGGGGCCGGATCCC
CGAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTGAGATGATGGGCTTGG
GAAACGGCGTCGCAGCATGAAGTCGCCGCCCTCGTGTGGCCGCCCTGGTGGCCTGCATC
ATCGTCTTGGGCTTCAACTACTGGATTGCGAGCTCCGGAGCGTGGACCTCCAGACACGGAT
CATGGAGCTGGAAGGCAGGGTCCGCAGGGCGGCTGCAGAGAGAGGGCGCCGTGGAGCTGAAGA
AGAACGAGTTCCAGGGAGAGCTGGAGAAGCAGCAGGGAGCAGCTTGACAAAATCCAGTCCAGC
CACAACTCCAGCTGGAGAGCGTCAGAACAGCTGTACCAGGACGAAAAGGCGTTTGGTGAA
TAACATCACACAGGTGAGAGGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCCTGCAGA
GGAATTACGGCAGGCTGCAGCAGGATGTCCTCCAGTTCAAAGAACAGACCAACCTGGAG
AGGAAGTTCTCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTG
TGAGGAGCGAATAGAAGAGGTACCAAAAAGGGAATGAAGCTGTAGCTTCAGAGACCTGA
GTGAAAACAACGACCAGAGACAGCAGCTCCAAGCCCTCAGTGAGCCTCAGCCCAGGCTGCAG
GCAGCAGGCCCTGCCACACACAGAGGTGCCACAAGGGAAACGTGCTTGGTAACAGCAA
GTCCCAGACACCAGCCCCAGTTCCGAAGTGGTTTGGATTCAAAGAGACAAAGTTGAGAAAG
AGGAAACCAATGAGATCCAGGTGGTAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAG
CCAGGCCGGGAGCAGGTGGTAAGACAGACCTGTAGGTGGAAAGAGGCTCGGGGAGCCGG
AGAACTGGGCCAGACCCCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGA
TGGAGGGCCCTGAGCGAGACCAGCTTGTCAATCCCCGACGGACAGGAGGAGCAGGAAGCT
GCCGGGAAGGGAGAAACCAGCAGAAACTGAGAGGGAGAAGATGACTACAACATGGATGAAAA
TGAAGCAGAATCTGAGACAGACAAGCAAGCAGCAGCCCTGGCAGGGAAATGACAGAAACATAGATG
TTTTAATGTTGAAGATCAGAAAAGAGACACCATAAATTACTTGATCAGCGTGAAAAGCGG
AATCATAACTCTGAATTGAACGTGGAAATCACATATTCACAACAGGGCGAAGAGATGACTA
TAAAATGTTCATGAGGGACTGAATACTGAAAATGTACTAAATAATGTACATCTGA

FIGURE 58

MMGLGNRGRSMKSPPVLAALVACIIVLGFNYWIASSRSVLDLQTRIMELEGRVRRAAAERGA
VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLQYQDEKAVLVNNITTGERLIRVLQDQL
KTLQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA
SRDLSENNDQRQQLQALSEPQPRLQAAGLPHTEPQGKGNVLGNSKSQTPAPSSEVVLDSKR
QVEKEETNEIQVVNEEPQRDRLPQEPMREQVVEDRPVGGRGF GGAGELGQTPQVQAALSVSQ
ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND
RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:

amino acids 1-29

FIGURE 59

GGATGCAGAAAGCCTCAGTGTGCTTCCTGGCCTGGGCTGTTCTCTACGCTGGCATTGCCCTTTCA
 CCAGTGGCTTCCTGCTCACCGTTGGAGCTCACCAACCATAAGCAGCTGCCAAGAGCCCCAGGCCCTGGTCCC
 TGCCATGGGGAGCCAAGGAAACCTGGGCTGCTGGATGGCTCCGATTTCGCGGGTTGTGTTGGCTGA
 TAGATGCTCTGCGATTGACTTCGCCAGCCCCAGCATTACACGTGCCCTAGAGAGCCTCTGTCTCCCTACCCCT
 TCCTGGGCAAACATAAGCTCTTGCAAGGAGATCCTGGAGATTAGCCCCACCATGCCCGCTCTACCGATCTCAGG
 TTGACCCCTCCTACCAACCATGCAGGCCCTCAAGGCCCTCACCACTGGCTACTGCCCTACCTTATTGATGCTG
 GTAGTAACCTGCCAGGCCACGGCATAGTGGAAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGGCGTAG
 TCTTCATGGGAGATGATACTGGAAAGACCTTCCCTGGTCTTCTCAAAGCTTCTTCTCCATCCTCA
 ATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCACCCACCATGGACAGTGGTAATGGG
 ACGTGCTGATTGTCACTTCTGGGTGTGGACACTGTGCCACAAGCATGCCCTCACCAACCTGAAATGCCA
 AGAAACTTAGCCAGATGGACCAAGGTGATCCAGGGACTTGTGGAGCGTCTGGAGAATGACACACTGCTGGTAGTGG
 CTGGGACCATGGGATGACCAACAAATGGAGACCATGGAGGGACAGTGGAGCTGGAGGTCTAGCTGCTCTTT
 TGTATAGCCCCACAGCAGTCTTCCCCAGCACCCACAGAGGGAGCCAGAGGTGATTCTCAAGTTAGCCTGTGC
 CCACGCTGGCCCTGCTGGGCTGCCATCCCATTGGAATATCGGGAAAGTGTGAGCTGAGCTATTCTCAG
 GGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTAGCCAAGCCTCAGCTCTCATCAATGCTCAGCAGGTGT
 CCCGATTTCTTCATACCTACTCAGCTGACTCAGGACCTCAAGCTAAGGAGCTTCAGCTGCAGAACCTCT
 TCTCCAAGGCCCTGCTGACTACCAGTGGCTTCTCCAGAGCCCCAAGGGGGCTGAGGCAGACTGCCACTGTGA
 TTGCTGAGCTGCAGCTCTGCCAGCTGGGAGCTGGCCATGTGCATCAGTCTGGCTCGTTCTCTGGTCC
 GCATGGCGGGGGTACTGCTCTTGGCTGCTTATCTGCTGCTGGCATCTCAGTGGCAATATCCC
 CAGGCTTCCATTCTGCCCTACTCCTGACACCTGTGGCTGGGCTGGTTGGGCCATAGCTATGCTGGAC
 TCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGTCTAGGGCTGTGGCTGCAGTGAAGCTCATTCTCCCTT
 TTCTGTGAAAGCCTGGCTGGCTGGGCTCAAGAGGCCCTGGCAACCCCTGTTCCCATCCCTGGGCCGTCC
 TGTTACTCCTGCTGTTGCTTGGCTGTGTTCTCTGATAGTTGTTAGCTGAGGCCAGGGCACCCCT
 TCCTTTGGGCTCATTCTGCTCTGGTGTCCAGCTTCACTGGAGGGCCAGCTGCTTCCACCTAACCTAC
 TCACAATGCCCGCCCTGGCACTTCAGCCACAAACAAACCCCCACGGCACAATGGCATATGCCCTGAGGTTG
 GAATTGGGTTGCTTTATGTACAAGGCTAGCTGGCTTTTATGGTGCATGGCTGAGAGACACCTGTTGCACT
 CCTCTCCCTGGCTGAGTCTCTGGCATTGGTGGTGTGAGCCAAGAATTATGGTATGGAGCTGTTG
 CGGCCCTGGTGGCCCTGTAGCTCCCGTGCCTGGCTTGGCTCGCCGCTATGGTAACTCAAGAGCCCCAGGCCAC
 CCATGCTCTTGTGCGCTGGGACTGCCCCATAATGGCATTGGTACTGCTGCCTACTGGCATTGGCTGGGG
 CAGATGAGGCTCCCCCGCTCCGGTCTGGCTCTGGGCTGACAGTGTGGTAAGGCTGGGCAGGGCTCCAA
 TGGCTGCTTCAAGGCTCGCCTGCTGCTCTGGAGCTGACAGTGTGGTAAGGCTGGGCAGGGCTCCAA
 GGACCAAGACTGTCCTCACTCCCTCTCAGGCCCTTCAAGCTGACTGGATTATGTGGCTCTCAA
 TCTACCGACACATGCAGGAGGAGTCCGGGCGGTTAGAGAGGACAAATCTCAGGGTCCCTGACTGTGGCTG
 CTTATCAGTTGGGAGTGTCTACTCAGCTGCTATGGTCACAGCCCTACCCCTGTTGGCTTCCCACCTCTGCTG
 TGCTGCGAGCGCATCAGCCTTGTGTTCTGCTTCTGCTGAGCTCCCTCCTACATCTGCTGCTG
 CTGGGATACCGTCACCAACCCCTGGCTTTACTGTGCATGGCAGGAGTCTCGGCTGGCCCTCATGGCCA
 CACAGACCTACTCCACAGGCCACCAGCCTGCTTCCAGCCATCCATTGGCATGCAGCCCTGTTGGGATTCC
 CAGAGGGCATGGCTCTGACTTGGCTGCCCTTGCTAGTGGAGGCAACACCTTGCCTCCACCTCT
 TTGAGTAGGTTGCCACTGCTCTGCTCTGGCTTCTGTTGAGAGTCAAGGGCTGCCAGAGACAGCAGC
 CCCAGGGAAATGAAGCTGATGCCAGAGTCAGACCCGAGGGAGGAAGAGGAGGCCACTGATGGAGATGCC
 ATGCGCCTCAGCACTTCTATGCAGCACTGCTGCCAGGCCCTAAGTACCTCTTATCTGGTATTCA
 TGGGCTGTGCCCTGGCAGGCCATCCTCTGCAAGGCATCTCATGGTCTGGAAAGTGTGTTGGCC
 TAAGTTCAATTGAGGCTGTTGAGAGTGGATGAGAGTGGATGGT
 CTGTGAGCTCTGGTTCAGGCAGCTATTCTGGCCAGCAGGATTAGCTGCTGATTACTGGCATTGGCT
 ACAGAGAGTGTGGAGAACAGTGTAGCCTGGCCTGTACAGGTAAGTGTGATCTGCAAGACAGGCTGCC
 ATACCTTACTATCATGCAGCCAGGGCCGCTGACATCTAGGACTTCATTATTCTATAATT
 CAGGACCAAGTGGAGTA
 TGATCCCTAACTCCTGATTGGATGCATCTGAGGGACAAGGGGGCGGTCTCGGAAGTGGAAATAA
 ATAGGCCGG
 GCGTGGTGAATTGCACCTATAATCCAGCACTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCA
 AGACCAGCCTGTGAAACATAACAAGACCCGCTCTACTATTAAAAAAAGTGAATAAAATGATAATAT

FIGURE 60

```

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809
<subunit 1 of 1, 1089 aa, 1 stop
<MW: 118699, pI: 8.49, NX(S/T): 2
MQKASVLLFLAWVCFLFYAGIALFTSGFLTRLELTNHSSCQEPPPGPSLPWGSQGKPGACW
MASRFSRVVLVLIDALRFDFAQPOQHSHVPREPPVSLPFLGKLSSIQRILEIQPHHARLYRSQ
VDPPTTMQRLKALTGSLPTFIDAGSNFASHAIVEDNLIKQLTSAGRVVFMGDDTWKDLF
PGAFSKAFFFPSFNVRDLDLTVNGILEHLYPTMDSGEWDVLIAHFLGVDHCGKHGPHEM
AKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFLYSPTAVFPST
PPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQ
QVSRLFHTYSAATQDLQAKELHQQLQNLFSKASADYQWLLQSPKGAEATLPTVIAELQQFLRG
ARAMCIESWARFSLVRMAGGTALLAASCFCILLASQWAISPGFPFCPLLLTPVAWGLVGAIA
YAGLLGTIELKLDLVLLGAVA AVSSFLPFLWKAWAGWGSKRPLATLFPPIP GPVLLLLFRLA
VFFSDSFVVAEARATPFLGSFILLLVQLHWEGQLLPPKLLTMRPLGTSATTNPPRHNGAY
ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVAALVALLA
AVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLP
RAVAGLAASGLALLIWKPVTVLVKAGAGAPRTRTLTFSGPPTSQADLDYVVPQIYRHMQE
EFRGRLERTKSQGPLTVAAYQLGSVYSAAMVTALTLLAFPLLLHAERISLVFLLLFLQSFL
LLHLLAAGIPVTTPGPFTVPWQAVSAWALMATQTFYSTGHQPVFPAIHWAAFVGPEGHGS
CTWLPALLVGANTFASHLLFAVGCPLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEP
LMEMRLRDAPQHFYAALLQLGLKYLFI LGI QILACALAASI LRRHLMVWKVFAPKFIFEAVG
FIVSSVGLLGLIALVMRVDGAVSSWFRQLFLAQQR

```

Important features:**Signal peptide:**

amino acids 1-16

Transmembrane domains:amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850,
1016-1034, 1052-1070**Leucine zipper pattern.**

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

FIGURE 61

TGCCCGCTGCCGCCGCTGCTGCTGGCTCCTGGCGGCCTGGGGACGGGCAGTCCCTGT
GTCTCTGGTGGTTGCCTAACACTGCAAACATCACCTCTTATCCATCAACATGAAGA**ATGT**
CCTACAATGGACTCCACCAGAGGGTCTTCAAGGAGTTAAAGTTACTTACACTGTGCAGTATT
TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTCTGTTGT
CCTGACAGCTCCAGAGAAGTGGAGAGAAATCCAGAAGACCTCCTGTTCCATGCAACAAA
TATACTCCAATCTGAAGTATAACGTGTCTGTTGAATACTAAATCAAACAGAACGTGGTCC
CAGTGTGTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTACTGCCT
ACACGTGGAGTCCTCGTCCCAGGGCCCCCTGCCGTGCTCAGCCTCTGAGAAGCAGTGTG
CCAGGACTTGAAGATCAATCATCAGAGTTCAAGGCTAAATCATCTCTGGTATGTTTG
CCCATATCTATTACCGTGTCTTTCTGTGATGGGCTATTCCATCTACCGATATATCCA
CGTTGGCAAAGAGAAACACCCAGCAAATTGATTTGATTATGAAATGAATTGACAAAA
GATTCTTGTGCCGTGCTGAAAAAATCGTATTAACCTTATCACCTCAATATCTCGGATGAT
TCTAAAATTCTCATCAGGATATGAGTTACTGGAAAAAGCAGTGATGTATCCAGCCTAA
TGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGAGGAAGAGGAGGTGAAACATTAG
GGTATGCTCGCATTGATGGAAATTCTGTGACTCTGAAGAAAACACGGAAGGTACTTCT
CTCACCCAGCAAGAGTCCCTCAGCAGAACAAATACCCCCGGATAAAACAGTCATTGAATATGA
ATATGATGTCAGAACCACTGACATTGCGGGGCTGAAGAGCAGGAGCTCAGTTGCAGG
AGGAGGTGTCCACACAAGAACATTATTGGAGTCGCAGGCAGCGTTGGCAGTCTGGGCCG
CAAACGTTACAGTACTCATACACCCCTCAGCTCAAAGACTTAGACCCCTGGCGCAGGAGCA
CACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCCTGGTCAGTGGATCCCC
AAACTGGCAGGCTGTGATTCTCGCTGTCAGCTCGACCAGGATTCAAGGGCTGCGAG
CCTCTGAGGGGATGGCTCGGAGAGGGTCTCTATCTAGACTCTATGAGGAGGCCG
TCCAGACAGGCCACCAGGAGAAATGAAACCTATCTCATGCAATTCAAGGGGATGGGGT
TATATGTGCAGATGGAAA**TGA**TGCCAACACTCCCTTGCCTTGTGAAAC
AAAGTGAAGTCACCCCTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTCCAGT
TTGTCAGTGTGTGAGAATTACTTATTCTCTATTCTCATAGCACGTGTGATTG
GTTCATGCATGTAGGTCTCTAACATGATGGTGGCCTCTGGAGTCCAGGGCTGGCCGGT
TGTTCTATGCAGAGAAAGCAGTCAATAATGTTGCCAGACTGGGTGCAGAATTATTATTCAAGG
TGGGTGT

FIGURE 62

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815
<subunit 1 of 1, 442 aa, 1 stop
<MW: 49932, pI: 4.55, NX(S/T): 5
MSYNGLHQRFKELKLLTLCISISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNTKSRTWSQCVTNHTLVLTWLEPNLTYCVHVESFVPGPPRRAQPSEKQ
CARTLKQDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILYGNEDF
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLSQAAALAVLGPQLQSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDSLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVQmen
```

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 63

CGGACGCGTGGCGGACGCGTGGCGGACGCGTGGGTCTCTGCAGGGAGACGCCAGCCTGCG
TCTGCC**ATG**GGGCTCGGGTTGAGGGCTGGGACGTCCCTGCTGACTGTGCCACGCCCT
GATGCTGCCGTGAAGCCCCCGCAGGCTCCTGGGGGCCAGATCATGGGGGCCACGAGG
TGACCCCCCACTCCAGGCCCTACATGGCATCCGTGCGCTTCGGGGCCAACATCACTGCGA
GGCTTCCTGCTGCGAGCCCCTGGGTGGTCTCGGCCGCCACTGCTTCAGCCACAGAGACCT
CCGCACGGCCTGGTGGTGCTGGCGCCACGTCCCTGAGTACTGCGGAGCCCACCCAGCAGG
TGTTTGGCATCGATGCTCTCACACGACCCGACTACCACCCATGACCCACGCCAACGAC
ATCTGCCTGCTGCGCTGAACGGCTCTGCTGTCCTGGGCCCTGCAGTGGGCTGCTGAGGCT
GCCAGGGAGAAGGGCAGGCCACAGGGGGACACGGTGCCGGTGGCTGGCTGGGCT
TCGTGTCTGACTTTGAGGAGCTGCCCTGGACTGATGGAGGCCAAGGTCCGAGTGCTGGAC
CCGGACGTCTGCAACAGCTCCTGGAAGGGCACCTGACACTTACCATGCTCTGCACCCGAG
TGGGGACAGCCACAGACGGGCTTCTGCTGCCGACTCCGGAGGGCCCTGGTGTGCAGGA
ACCGGGCTCACGCCCTGTTCTCGGGCCTCTGGTGCGGGACCCCAAGACCCCGAC
GTGTACACGCAAGGTGTCGCCCTTGATCTGGGACGTGGTTCGGCAGCAGTCC
CCAGCCCCGGCCCTGCCTGGGACCACCAAGGCCCCAGGAGAAGCCGCC**TGA**GCCACAACCT
TGGGGCATGCAAATGAGATGCCGCTCCAGGCCTGGAATGTTCCGTGGCTGGGCCCCACGGG
AAGCCTGATGTTCAAGGGTTGGGTGGGACGGGAGCGGGCACACCCATTCCACATGCA
AAGGGCAGAAGCAAACCCAGTAAATGTTAACTGACAaaaaaaaaaaaaAGAAA

FIGURE 64

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845
><subunit 1 of 1, 283 aa, 1 stop
><MW: 30350, pI: 9.66, NX(S/T): 2
MGLGLRGWGRPLLTVALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF
LLRARWVVSAAHCFSHRDLRTGLVVLGAHVLSTAEPQQVFGIDALTTHPDYHPMTHANDIC
LLRLNNGSAVLGPAVGLLRLPGRARRPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD
VCNSSWKGHLTLMCTRSGDSHRRGFCASADSGGPLVCRNRAHGLVSFSGLWC GDPKTPDVY
TQVSAFVAWIWDVVRRSSPQPGPLPGTTRPPGEAA
```

Signal peptide:

amino acids 1-30

FIGURE 65

GAGCTACCCAGGCGGCTGGTGTGCAGCAAGCTCCGCGCCACTCCGGACGCCGTACGCCCTGA
 CGCCTGTCCCCGGCCCGGCATGAGCCGCTACCTGCTGCCGCTGTCGGCGCTGGGCACGGTAG
 CAGGCGCCGCCGTGCTCAAGGACTATGTCACCGGTGGGCTGCCCCAGCAAGGCCACC
 ATCCCTGGGAAGACGGTCATCGTGACGGCGCCAACACAGGCATCGGGAAAGCAGACCGCCTT
 GGAACCTGCCAGGAGAGGAGGCAACATCATCCTGGCCTGCCAGACATGGAGAAGTGTGAGG
 CGGCAGCAAAGGACATCCGCGGGAGACCCCTCAATCACCATGTCAACGCCGGCACCTGGAC
 TTGGCTTCCCTCAAGTCTATCCGAGAGTTGCAGCAAAGATCATTGAAGAGGGAGGAGCGAGT
 GGACATTCTAACACAACGCGGGTGTGATGCGGTGCCACTGGACCAACGAGGACGGCT
 TCGAGATGCAGTTGGCGTTAACACCACCTGGTCACTTCTCTTGACAAACTTGCTGCTGGAC
 AAGCTGAAAGCCTCAGCCCCTCGCGGATCATCAACCTCTCGTCCCTGCCCATTTGCTGCTGG
 GCACATAGACTTTGACGACTTGAACGGCAGACGAGGAAGTATAAACACCAAAGCCGCCTACT
 GCCAGAGCAAGCTGCCATCGCCTCTCACCAAGGAGCTGAGCCGGCGCTGCAAGGCTCT
 GGTGTACTGTCAACGCCCTGCACCCGGCGTGGCCAGGACAGAGCTGGCAGACACACGGG
 CATCCATGGCTCCACCTTCTCAGCACCAACTCGGGCCCATCTCTGGCTGCTGGTCAAGA
 GCCCGAGCTGCCGCCAGCCCAGCACATACCTGGCGTGGCGAGGAACGGCGGATGTT
 TCCGGAAAGTACTCGATGGACTCAAACAGAAGGCCCCGGCCCCGAGGCTGAGGATGAGGA
 GGTGGCCCGGAGGCTTGGCTGAAAGTGCCGCCTGGTGGCTTAGAGGCTCCCTGTGA
 GGGAGCAGCCCTCCCCAGATAACCTCTGGAGCAGATTGAAAGCCAGGATGGCGCCTCCAG
 ACCGAGGACAGCTGCCCATGCCCGAGCTCCTGGCACTACCTGAGCCGGAGACCCAG
 GACTGGCGGCCCATGCCCGAGTAGTTCTAGGGGGCGTGCTGCCAGTGGACTGGC
 CTGCAGGTGAGCACTGCCCGGCTCTGGCTGGTCTGCTCTGCTGCCAGCAGGGAG
 AGGGGCCATCTGATGCTTCCCTGGGAATCTAAACTGGGAATGCCGAGGAGGAAGGGGCTC
 TGTGCACTGCAGGCCACGTCAAGGAGAGCCAGCGGTGCCTGTCGGGGAGGGTCAAGGTGC
 TCCGTGAAGAGCATGGCAAGTTGTCTGACACTGGTGGATTCTGGTCCCTGTGGACCT
 TGTGCATGCATGGCCTCTCTGAGCCTGGTTCTCAGCAGTGAGATGCTCAGAATAACTG
 CTGTCTCCCATGATGGTGTGGTACAGCGAGCTGTTGTCTGGCTATGGCATGGCTGTGCCGG
 GGTGTTGCTGAGGGCTTGTGCCAGAGCCAGCCAGAGAGCAGGTGCAGGTGTCACTCCC
 GAGTTCAAGGCTCTGCACGGCATGGAGTGGGAACCCCACCAAGCTGCTACAGGACCTGGGA
 TTGCCTGGACTCCCACCTTCTATCAATTCTCATGGTAGTCAAACACTGCAGACTCTCAAAC
 TTGCTCATT

FIGURE 66

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842
><subunit 1 of 1, 331 aa, 1 stop
><MW: 35932, pI: 8.45, NX(S/T): 1
MSRYLLPLSALGTVAGAAVLLKDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG
GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN
AGVMRCPHWTTEDGFEMQFGVNHLGHFLLTNLLLKLKASAPSRIINLSSLAHVAGHIDFDD
LNWQTRKYNTKAAYCQSCLAIQLFTKELSRRLQGSGVTVNALHPGVARTELGRHTGIHGSTF
SSTTLGPIFWLLVKSPELAAQPSTYLAVALADVSGKYFDGLKQKAPAPEAEDEEVARRLW
AESARLVGLEAPSvreQPLPR
```

Signal peptide:

amino acids 1-17

FIGURE 67

GAAGTTCGCGAGCGCTGGC**ATG**TGGCCTGGGGCGCGCTGGCGGCCTGCTGGCGGTGCTG
 GCGCTCGGGACAGGAGACCCAGAAAGGCTGCGGCTCGGGCGACACGTTCTCGGCCTGAC
 CAGCGTGGCGCGCCCTGGCGCCCGAGCGCCGGCTGCTGGGGCTGCTGAGGCCTGACCTGC
 GCGGGGAGGAGGCGCGGCTGCGGGACCTGACTAGATTCTACGACAAGGTACTTCATGCAT
 GAGGATTCAACAAACCCCTGTGGCTAACCCCTGCTGCTTACTCTCATCAAACGCTGCA
 GTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTGTAAGG
 ATGGCTATGAGAAGGTGGAGCAAGACCTCCAGCCTTGAGGACCTTGAGGGAGCAGCAAGG
 GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCGAGGTGTCTT
 TCAGAGAGTCAGTGGCTCTGCCATCACTGACCTGTACAGCCCCAACGGCTTTCTCTCA
 CAGGGGATGACTGCTCCAAGTTGGCAAGGTGGCTATGACATGGGGGATTATTACCATGCC
 ATTCCATGGCTGGAGGAGGCTGTCAGTCTCTTCCGAGGATCTTACGGAGAGTGGAAAGACAGA
 GGATGAGGCAAGTCTAGAAGATGCCCTGGATCACTTGGCTTGTCTTACAGCCCAGATAATAAGAGG
 ATGTTCTGTGCCCCCTCAGCCTCTCTCGGGAGTTCTCTACAGCCCAGATAATAAGAGG
 ATGGCCAGGAATGTCTGAAATATGAAAGGCTCTGGCAGAGAGCCCCAACACGTGGTAGC
 TGAGGCTGTCACTCCAGAGGCCAATATAACCCACCTGCAGACCAGAGACACCTACGAGGGGC
 TATGTCAGACCCCTGGGTTCCCAGCCCACCTCTACCAAGATCCCTAGCCTCTACTGTTCTAT
 GAGACCAATTCCAACGCCAACCTGCTGCTCCAGCCATCCGGAAGGGAGGTACCCACCTGG
 GCCCTACATTGCTCTTACCATGACTTCGTCACTGACTCAGAGGCTCAGAAAATTAGAGAAC
 TTGCAGAACCATGGCTACAGAGGTCACTGGTGGCATCAGGGGAGAAGCAGTTACAAGTGGAG
 TACCGCATCAGAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAATGGTGACCCCTCAA
 CCACCGCATTGCTGCCCTCACAGGCCTTGTATGTCCGGCTCCCTATGCAGAGTATCTGCAGG
 TGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTGTACGACACGTCACCAAGC
 AGCCCCCTTACAGAACATGAAGTCAGGAAACCGAGTTGCAACATTATGATCTATGAGCTC
 GGTGGAAGCTGGAGGAGCCACAGCCTTACATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGA
 ATGCAGCACTGTTGGTGGAACCTGCACAGGAGTGGTGAAGGGGACAGTGACACACTTCAT
 GCTGGCTGTCTGTCTGGTGGAGATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGG
 ACAGGAATTCCGAGACCCCTGCAAGCTCCAGCCCTGAAGACT**TGA**ACTGTTGGCAGAGAGAAC
 TGGTGGAGTCTGTGGCTTCCAGAGAACGCCAGGAGCCAAAAGCTGGGTAGGAGAGGAGAA
 AGCAGAGCAGCCTCTGGAAAGAACGGCCTTGTCACTTGTCTGTGCCTCGCAAATCAGAGGC
 AAGGGAGAGGTTGTTACCAAGGGACACTGAGAACATGTACATTGATCTGCCCAAGCCACGGAA
 GTCAGAGTAGGATGCACAGTACAAAGGAGGGGGAGTGGAGGCCAGAGGGAAAGTTCTGG
 AGTTCAAGATACTCTGTGGAACAGGACATCTCAACAGTCTCAGGTTGATCAGTGGTC
 TTTGGCACTTGAACCTTGACCACAGGGACCAAGAACAGTGGCAATGAGGACACCTGCAGGAG
 GGGCTAGCCTGACTCCAGAACCTTAAGACTTCTCCCCACTGCCTCTGCTGCAGCCCAAG
 CAGGGAGTGTCCCCCTCCCAGAACATCCCAGATGAGTGGTACATTATATAAGGATTTT
 TTTAAGTTGAAAACAACCTTCTTTCTTTGTATGATGGTTTTAACACAGTCATTAAAA
 ATGTTATAAATCAAAA

100156410 - 121204

FIGURE 68

MGPGARLAALLAVLALGTGDPERAARGDTFSALTSGVARALAPERRLLGLLRRYLRGEEARL
RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGYEKVE
QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ
VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAGFAYFRAGNVSCALS
LSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHQLQTRDTYEGLCQTLGS
QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVILLEPYIALYHDFVSDSEAQKIRELAEPWLQ
RSVVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRPPYAELYQVVNYGIG
GHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIYANLSVPVVRNAALFWW
NLHRSGEGDSDLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSSSPED

Signal peptide:

amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTAAGTCCTGCTCCATCTCAGGAGCCCCGTGCTCCCACCCCTAG
 GAAGGCCACCAGACTCCACGGTGTGGGCCAATCAGGTGGAATCGGCCCTGGCAGGTGGGCC
 ACGAGCGCTGGCTGAGGGACCGAGCCGGAGAGCCCCGGAGCCCCCGTAACCCGCGCGGGAG
 CGCCCAGGATGCCGCGCGGGACTCGGAGCAGGTGCGCTACTGCGCGCCTTCTCCTACCTC
 TGGCTCAAGTTTCACTTATCATCTATTCCACCGTGTCTGGCTGATTGGGCCCTGGTCT
 GTCTGTGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCTTGAAAGTGCCTTCC
 TGGCTCCAGCCATCATCCTCATCCTGGCGTGTGTCATGTTATGGTCTCCTCATTGGT
 GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTGTCATGTACATCCTGGGAT
 CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCAGACCATTG
 ACTTCCTGAACGACAACATTCGAACAGAGGAATTGAGAACTACTATGATGATCTGGACTTC
 AACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACCGAGATTG
 GAGCAAGAACATCAGTACACGACTGCAGTGCCCCCTGGACCCCTGGCCTGTGGGTGCCCTACA
 CCTGCTGCATCAGGAACACGACAGAACAGTTGTCACACACCATGTGTGGCTACAAA
 AACATCGAC
 AAGGAGCGTTCAGTGTGCAGGATGTCATCTACGTGCGGGCTGCACCAACGCCGTGATCAT
 CTGGTTCATGGACAACCATACCATGGCGTGCATCCTCCTGGCATTGCTTCCCCAGT
 TCCTGGGGGTGCTGCTGACGCTGTCATCACCCGGTGGAGGACATCATGGAGCAC
 TCTGTCACTGATGGCCTCTGGGCCCGGTGCCAACGCCAGCGTGGAGGCGGCAGGCACGGG
 ATGCTGCTTGTGCTACCCAAATTAGGGGCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC
 TGGGATAGCACCTCTCAGTCAACATCGTGGGCTGGACAGGGCTGCCCTCTGCCACA
 CTCAGTACTGACCAAAGCCAGGGCTGTGTGCCTGTGTAGGTCCCACGCCCTGCCTC
 CCCAGGGAGCAGAGCCTGGCCTCCCTAACAGAGGCTTCCCCGAGGCAGCTCTGGAATCTGT
 GCCCACCTGGGCCTGGGAACAAGGCCCTCCTTCTCCAGGCCTGGCTACAGGGAGGGA
 GAGCCTGAGGCTCTGCTCAGGCCATTTCATCTGGCAGTGCCTGGCGGTGGTATTCAA
 GGCAGTTTGTAGCACCTGTAATTGGGAGAGGGAGTGTGCCCTCGGGCAGGAGGGAAGG
 GCATCTGGGAAGGGCAGGAGGGAAGAGACTGTCCATGCAGCCACGCCATGCCAGGTTGGC
 CTCTCTCAGCCTCCAGGTGCCTTGAGCCCTTGTCAAGGGCGGCTGCTCCTTGAGCCTA
 GTTTTTTACGTGATTTGTAACATTCACTTTGTACAGATAACAGGAGTTCTGAC
 TAATCAAAGCTGGTATTCGGCATGTCTATTCTGCCCTCCCCAACCAGTTGTTAA
 TCAAACAATAAAACATGTTGTTGTTAAAAAAA

FIGURE 70

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863
><subunit 1 of 1, 294 aa, 1 stop
><MW: 33211, pI: 5.35, NX(S/T): 3
MPRGDSEQVRYCARFSYWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAP
AIILILLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFL
NDNIIRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN
```

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTCCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA
 CACCTGGGAAG**ATGGCCGGCCCGTGGACCTTCACCCTCTGTGGTTGCTGGCAGCCACC**
 TTGATCCAAGCCACCCTCAGTCCCCTGCAGTTCTCATCCTCGGCCAAAAGTCATCAAAGA
 AAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGC
 TCAGTGCCATGCCGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGCAGCCTGGTAAACACC
 GTCCTGAAGCACATCATCTGGCTGAAGGTCACTCACAGCTAACATCCTCCAGCTGCAGGTGAA
 GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAGATCCCCCTGGACATGGTGGCTGGATTCA
 ACACGCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCAAGCCACCATC
 CGCATGGACACCAGTGCAAGTGGCCCCACCCGCTGGTCTCAGTGACTGTGCCACCAGCCA
 TGGGAGCCTGCGCATCCAAGTGTGTTGACCTCTGGTGAACGCCCTAGCTAACGC
 AGGTCACTGAACCTCCTAGTGCCATCCCTGCCAATCTAGTGAAAACCAGCTGTGTCCCCTG
 ATCGAGGCTTCCTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCATTTC
 CCTCAGCATTGACCGTCTGGAGTTGACCTCTGTATCCTGCCATCAAGGGTGACACCATTC
 AGCTCTACCTGGGGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAAC
 TCTGCAGCTTCCTGACAATGCCAACCTGGACAACATCCGTTAGCCTCATCGTGAGTCA
 GGACGTGGTGAAGCTGCAGTGGCTGCTGTGCTCTCCAGAAGAATTGATGGTCTGTTGG
 ACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATTGAGATCCGCTGATCAATGAAAAG
 GCTGCAGATAAGCTGGATCTACCCAGATCGTAAGATCCTAACTCAGGACACTCCGAGTT
 TTTTATAGACCAAGGCCATGCCAAGGTGGCCAAGTGTGCTGGAAAGTGGTCCCTCCA
 GTGAAGCCCTCCGCCCTTGTTCACCCCTGGCATCGAAGCCAGCTCGGAAGCTCAGTTTAC
 ACCAAAGGTGACCAACTTATACTCAACTGAAATAACATCAGCTCTGATCGGATCCAGCTGAT
 GAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC
 ACTCCATCCTGCTGCCGAACCAGAAATGGCAAATTAAAGATCTGGGTCCCAGTGTGATTGGT
 AAGGCCTTGGGATTGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTGTGCTTACTCC
 AGCCTCCTTGTGGAAACCCAGCTCCTGTCTCCAG**TGAAGACTTGGATGGCAGCCATCAG**
 GGAAGGCTGGTCCCAGCTGGAGTATGGGTGTGAGCTATAGACCATCCCTCTGCAAT
 CAATAAACACTTGCCTGTGAAAAA

FIGURE 72

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881
><subunit 1 of 1, 484 aa, 1 stop
><MW: 52468, pI: 7.14, NX(S/T): 3
MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLSAM
REKPAGGI PVLGSLVNTVLKHI IWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL
VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN
LLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYL
GAKLLDSQGKVTKWFNNSAASLTMP LDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL
PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSeAL
RPLFTLGIEASSEAQFYTKGDQLI LNLNNI SDRQLMNSGIGWFQPDVLKNIITEIIHSIL
LPNQNGKLRSGVPVSLVKALGFEEAESSLTKDALVLTPASLWKPSSPVSQ
```

Important features of the protein:**Signal peptide:**

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 73

GAGCGAAC**ATG**GCAGCGCGTGGCGTTGGTGTCTCTGTGACCATGGTGGTGGCGCTG
 CTCATCGTTGCGACGTTCCCTCAGCCTCTGCCAAAGAAAGAAGGAGATGGTGTATCTGA
 AAAGGTTAGTCAGCTGATGGAATGGACTAACAAAAGACCTGTAATAAGAATGAATGGAGACA
 AGTTCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGTTCACTGCT
 CTCCAAGTCGATAGACAGTGTGTCGTTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGGC
 AAACTCCTGGCGATACTCCAGTGCATTACCAACAGGATATTTTGCCATGGTGGATTTG
 ATGAAGGCTCTGATGTATTCAGATGCTAAACATGAATTCACTGCTCAAATTTCATCAACTTT
 CCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTCAGC
 TGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCATATTAGAGTGATTAGACCCC
 CAAATTATGCTGGTCCCTTATGTTGGGATTGCTTTGGCTGTTATTGGTGGACTTGTGTAT
 CTTCGAAGAAGTAATATGAAATTCTCTTTAATAAAACTGGATGGCTTTGAGCTTGTG
 TTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACCATAAGAGGACCACCATATGCC
 ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGAAAGCAGTCAAGCCCAGTTGTA
 GCTGAAACACACATTGTTCTGTTAATGGTGGAGTTACCTTAGGAATGGTGTGGCTGGTATTG
 TGAAGCTGCTACCTCTGACATGGATATTGAAAGCGAAAGATAATGTGTGTGGCTGGTATTG
 GACTTGTGTATTATTCTCAGTTGGATGCTCTATTAGATCTAAATATCATGGCTAC
 CCATACAGCTTCTGATGAGT**TAAA**AGGTCCCAGAGATATAGACACTGGAGTACTGGAA
 ATTGAAAAACGAAATCGTGTGTTGAAAAGAAGAATGCAACTGTATATTGTATTAC
 CTCTTTTTCAAGTGAATTAAAGTTAATCATTAAACAAAGAAGATGTGTAGTGCCTTA
 ACAAGCAATCCTCTGTCAAATCTGAGGTATTGAAAATAATTATCCTCTTAACCTCTCTT
 CCCAGTGAACTTATGGAACATTAAATTAGTACAATTAAAGTATATTATAAAATTGAAAA
 CTACTACTTGTGTTAGTTAGAACAAAGCTAAAACACTTTAGTTAACCTGGTCATCTGAT
 TTTATATTGCCTTATCCAAAGATGGGAAAGTAAGTCCCTGACCAGGTGTTCCCACATATGCC
 TGTTACAGATAACTACATTAGGAATTCTAGCTTCTCATCTTGTGTGGATGTGTAT
 ACTTACGCATCTTCTTTGAGTAGAGAAATTATGTGTGTATGTGGCTTCTGAAATG
 GAACACCATTCTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTCTCTCCT
 GCATATTCTACTGCGCTCCAGCCTGAGTGTAGAGACTCTGTCATAAAAAAGTA
 TCTCTAAATAACAGGATTATAATTCTGCTTGAGTATGGTGTAACTACCTGTATTAGAAA
 GATTTCAGATTCATTCCATCTCCTTAGTTCTTAAGGTGACCCATCTGTGATAAAAATA
 TAGCTTAGTGCTAAAATCAGTGTAACTTACATGGCTAAAATGTTCTACAAATTAGAGT
 TTGTCACTTATTCCATTGTACCTAAGAGAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG
 CCAGGGCAGTGACTTACGCCTGTAATCTCAGCACTTGGGAGGCCAAGGCAGGCAGATCAC
 GAGGTGAGGAGTTGAGACCATCCTGGCAACATGGTGAACACCCGTCTACTAAAATA
 AAAAATTAGCTGGGTGTGGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGCTGAGGCAC
 GAGAATCACTGAACTCAGGAGATGGAGGTTCACTGAGCCGAGATCACGCCACTGCACTCC
 AGCCTGGCAACAGAGCGAGACTCCATCTCAAAAAAAAAAA

FIGURE 74

MAARWRFWCVSVTMVALLIVCDVPSASAQRKKEMVLSEKVSQLMETNKRPVIRMNGDKFR
RLVKAPPRNYSVIVMFALQLHRQCVVCKQADEFQILANSWRYSSAFTNRIFFAMVDFDEG
SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY
AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAAACFVLAMTSQMWNHIRGPPYAHKN
PHTGHVNYIHGSQAQFVAETHIVLLFNGGVTLMVLLCEAATSDMDIGKRKIMCVAGIGLV
VLFFSWMLSIFRSKYHGYPSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

FIGURE 76

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64885
<subunit 1 of 1, 536 aa, 1 stop
<MW: 61450, pI: 9.17, NX(S/T): 7
MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPsRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLRQEGRPMVNLI RNRTKVRVMERDWQNTDKAVNW
LRKEAINYTEPFVIYLGLNLPHYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQDLLQKTIVIY
SSDHGELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPL
PQNLSGYSLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELNVAVKFPEITYSLDQKLHSIIINYPKVSASVHQYNKEQFIKWQSIG
QNYSNVIANLRWHQDWQKEPRKYENAI DQWLKTHMN PRAV
```

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416,
498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG
AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATG
GCCTCTTGGCCTCCAACTTGTGGCTACATCCTAGGCCTCTGGGCTTGGGACACT
GGTTGCCATGCTGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAG
CAGTTGGCTTCTCCAAGGGCCTCTGGATGGAATGTGCCACACACAGCACAGGCATCACCAG
TGTGACATCTATAGCACCCCTCTGGGCTGCCGCTGACATCCAGGCTGCCAGGCCATGAT
GGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGCATGAGATGCA
CAGTCTTCTGCCAGGAATCCCGAGCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTC
ATCCTGGAGGCCTCTGGATTCTTCCTGTTGCCTGGAATCTCATGGGATCCTACGGGA
CTTCTACTCACCACTGGTGCCTGACAGCATGAAATTGAGATTGGAGAGGCTCTTACTTGG
GCATTATTTCTCCCTGTTCTCCCTGATAAGCTGGAATCATCCTCTGCTTTCTGCTCATCC
CAGAGAAATCGCTCCAACTAACGATGCCAACCTTGTGCCACAAGGAGCTC
TCCAAGGCCTGGTCAACCTCCAAAGTCAAGAGTGAAGTCAATTCTACAGCCTGACAGGGT
ATGTGTGAAGAACCCAGGGCCAGAGCTGGGGGTGGCTGGTCTGTGAAAAACAGTGGACAG
CACCCCGAGGCCACAGGTGAGGGACACTACCACTGGATCGTGTAGAAGGTGCTGCTGAGG
ATAGACTGACTTGGCATTGGATTGAGCAAAGGCAGAAATGGGGCTAGTGTAAACAGCATG
CAGGTTGAATTGCCAAGGATGCTGCCATGCCAGCCTTCTGTTCTCACCTGCTGCTGCTC
CCCTGCCCTAACGCCCCAACCTCAACTTGAAACCCATTCCCTAACGCCAGGACTCAGAGG
ATCCCTTGTCCCTGTGTTACCTGGACTCCATCCCCAACCCACTAACATCACATCCACTG
ACTGACCCCTGTGATCAAAGACCCCTCTCTGGCTGAGGTTGGCTTAGCTCATTGCTGG
GGATGGGAAGGAGAAGCAGTGGCTTGTGGCATTGCTCTAACCTACTTCTCAAGCTTCCC
TCCAAAGAAACTGATTGCCCTGGAACCTCCATCCACTCTGTTATGACTCCACAGTGTCC
AGACTAATTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAG
GATGCAGGATGGGAGGACAGGAAGGCAGCCTGGACATTAAAAAAATA

FIGURE 78

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886
><subunit 1 of 1, 230 aa, 1 stop
><MW: 24549, pI: 8.56, NX(S/T): 1
MASLGLQLVGYILGLLGLGTIVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT
QCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVF
FILGGLLGFIPVAWNLHGILRDFYSPLVPSMKEIGEALYLGISSLFSLIAGIILCFSCS
SQQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKEFNSYSLTGYV
```

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

GCAC TGCT GCT GTCCC ATCAG CTGCT CTGA AGCT CC **ATGGT** GCC CAGA ATCT CGCT CCT GC
TTAT GTGT CAGT CTGT CTCC TCT CTT GTGT CCA AGGG AAGT CATCG CTCC GCT GGCT CAG
AACCATGGCTGTGCCAGCCGGCACCCAGGTGTGGAGACAAGATCTACAACCCCTGGAGCAG
TGCT GTTACAATGACGCCATCGTGTCCCTGAGCGAGACCCGCAATGTGGTCCCCCTGCAC
CTTCTGGCCCTGCTT GAGCTCTGCTGTGATT CTTGGCCTCACAAACGATT TTGTTG
TGAAGCTGAAGGTT CAGGGTGTGA ATT CCCAGT GCCACTCATCTCCATCTCCAGTAAATGT
GAAAGCAGAAGACGTTTCCC **TGA** GAAGACATAGAAAGAAAATCAACTTCACTAAGGCATC
TCAGAAACATAGGCTAAGGTAATATGTGTACCA GTAGAGAAGCCTGAGGAATTACAAAATG
ATGCAGCTCCAAGCCATTGTATGGCCATGTGGGAGACTGATGGGACATGGAGAATGACAGT
AGATTATCAGGAAATAATAAGTGGTTTCCAATGTACACACCTGTAAAA

FIGURE 80

MVPRIFAPAYVSVC~~LLL~~CPREVIAPAGSEPWLQPA~~P~~R~~C~~GDKIYNPLEQCCYND~~A~~I~~V~~SLSE
TRQCGPPCTFWPCFELCCLDSFG~~L~~TNDFVVKLKVQGVNSQCHSSPISSKCESRRRFP

Signal peptide:

amino acids 1-25

FIGURE 81

CTCCACTGCAACCACCCAGAGCC**ATG**GCTCCCCGAGGCTGCATCGTAGCTGTCTTGCATT
TTCTGCATCTCCAGGCTCCTCTGCTCACACGGAGCCCCAGTGGCCCCCATGACTCCTTACCT
GATGCTGTGCCAGCCACACAAGAGATGTGGGGACAAGTTCTACGACCCCCCTGCAGCACTGTT
GCTATGATGATGCCGTCGTGCCCTGGCCAGGACCCAGACGTGTGGAAACTGCACCTTCAGA
GTCTGCTTGAGCAGTGCTGCCCTGGACCTTCATGGTGAAGCTGATAAACCAGAACTGCGA
CTCAGCCGGACCTCGGATGACAGGCTTGTGCGAGTCAGC**TAA**TGGAACATCAGGGAA
CGATGACTCCTGGATTCTCCTCTGGTGGCCTGGAGAAAGAGGCTGGTGTACCTGAGA
TCTGGGATGCTGAGTGGCTGTTGGGGCCAGAGAAACACACACTCAACTGCCACTTCATT
CTGTGACCTGTCTGAGGCCACCCCTGCAGCTGCCCTGAGGAGGCCACAGGTCCCCTCTAG
AATTCTGGACAGCATGAGATGCGTGTGCTGATGGGGCCAGGGACTCTGAACCCTCCTGAT
GACCCCTATGCCAACATCAACCCGGCACCAACCCAAGGCTGGCTGGGAACCCTCACCCCT
TCTGTGAGATTTCCATCATCTCAAGTTCTCTTCTATCCAGGAGCAAAGCACAGGATCATAA
TAAATTATGTACTTATAAATGAAAA

FIGURE 82

MAPRGCIVAVFAIFCISRLLC SHGAPVAPMTPYLM CQPHKRCGDKFYDPLQHCCYDDAVVP
LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCD SARTSDDR LCRSVS

Signal peptide:

amino acids 1-24

FIGURE 83

GGGGGCGGGTGCCTGGAGCACGGCGTGGGCCGCCGCAGCGCTACTCGCTCGCACTCAG
 TCGCGGGAGGCTCCCCGCGCCGGCGTCCCCGGCTCCCCGGCACCAGAAGTTCCCTCT
 GCGCGTCCGACGGCGACATGGGCGTCCCCACGGCCCTGGAGGCCAGCTGGCGTGGGA
 TCCCTGCTCTCGCTCTTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTCAAGGTGCG
 CACGCCGTATTCCCTGTATGTCTGTCCCAGGGCAGAACGTACCCCTACCTGCAGGCTCT
 TGGGCCCTGTGGACAAAGGCACGATGTGACCTCTACAAGACGTGGTACCGCAGCTCGAGG
 GGCGAGGTGCAGACCTGCTCAGAGGCCGGCCCATCCGCAACCTCACGTTCCAGGACCTTCA
 CCTGCACCAGGAGGCCACCAGGCTGCCAACACCAGGCCACGACCTGGCTCAGGCCACGGC
 TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATACCATGCGAACCTGACCTGCTG
 GATAGCGGCCTCTACTGCTGCCTGGTGGAGATCAGGCACCACACTGGAGCACAGGGT
 CCATGGTGCCATGGAGCTGCAGGTGCAGACAGGCAAAGATGCACCATCCAACATGTGTGGTGT
 ACCCATCCTCCTCCCAGGATAGTGAAAACATCACGGCTGCAGCCCTGGCTACGGGTGCCTGC
 ATCGTAGGAATCCTCTGCCTCCCCCTATCCTGCTCCTGGTCTACAAGCAAAGGCAGGCAGC
 CTCCAACCGCCGTGCCAGGAGCTGGTGCAGGATGGACAGCAACATTCAAGGGATTGAAAACC
 CCGGCTTGAAGCCTCACCACCTGCCAGGGATAACCGAGGCCAAAGTCAGGCACCCCTG
 TCCTATGTGGCCCAGCGGCAGCCTCTGAGTCTGGCGGCATCTGCTTGGAGGCCAGCAC
 CCCCCCTGTCTCCTCCAGGCCCCGGAGACGTCTTCTCCATCCCTGGACCCCTGTCCCTGACT
 CTCCAAACTTGAGGTACTAGCCCAGCTGGGGACAGTGGCTGTTGTGGCTGGGTCTGG
 GGCAGGTGCATTGAGCCAGGGCTGGCTCTGTGAGTGGCCTCCTGGCCTGGCCCTGGTTC
 CCTCCCTCCTGCTCTGGCTCAGATACTGTGACATCCCAGAACGCCAGCCCTCAACCCCTC
 TGGATGCTACATGGGATGCTGGACGGCTCAGCCCTGTTCCAAGGATTTGGGTGCTGAG
 ATTCTCCCCTAGAGACCTGAAATTCAACCAGCTACAGATGCCAAATGACTTACATCTTAAGAA
 GTCTCAGAACGTCCAGCCCTCAGCAGCTCTGTTCTGAGACATGAGCCTGGATGTGGCA
 GCATCAGTGGACAAGATGGACACTGGCCACCCCTCCAGGCACCAGACACAGGGCACGGT
 GAGAGACTTCTCCCCGTGGCCGCTGGCTCCCCGTTGGCCGAGGCTGCTCTGTGTC
 AGACTTCCCTTTGTACCACAGTGGCTCTGGGCCAGGCCTGCCACTGCCATGCC
 ACCTTCCCCAGCTGCCTCCTACCAGCAGTTCTGAAAGATCTGTCAACAGGTTAAGTCAAT
 CTGGGCTTCCACTGCCTGCATTCCAGTCCCCAGAGCTGGTGGTCCGAAACGGGAAGTAC
 ATATTGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGCAATCTGAGGCCAGGACAG
 ATGTTGCCCAACCCACTGGAGATGGTGTGAGGGAGGTGGTGGGCCCTCTGGGAAGGTGA
 GTGGAGAGGGCACCTGCCCTCCCCATCCCTACTCCACTGCTCAGCGCGGGCC
 ATTGCAAGGGTGCCACACAATGTCTGTCCACCTGGACACTTCTGAGTATGAAGCGGGAT
 GCTATTAAAAACTACATGGGAAAAAAAAAAAAAAAAAAAAAAAAGA

FIGURE 84

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64897
><subunit 1 of 1, 311 aa, 1 stop
><MW: 33908, pI: 6.87, NX(S/T): 6
MGVPTALEAGSWRWGSILLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK
GHDVTFYKTWYRSSRGEVQTCERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLEASAD
HHGNFSITMRNLTLLDGLYCCLVVEIRHHSEHRVHGAMELQVQTGKDAPSNCVVPSSSQ
DSENITAAALATGACIVGILCPLLLLVLVYKQRQAASNRAQELVRMDSNIQGIENPGFEAS
PPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPPGDVFFPSLDPPDSPNFEVI
```

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 190-216

FIGURE 85

CCCACGCGTCCCGCCTCTCCCTCTGCTGGACCTTCCTCGTCTCCATCTCTCCCTCCT
 TTCCCCCGTTCTCTTCCACCTTCTCTTCCCACCTAGACCTCCCTCCTGCCCTCC
 TTTCTGCCAACCGCTGTTCTGGCCCTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGG
 GGTCTGTGGGTTGATCTGTGGCCCTGTGCCTCCGTGTCCTTCGTCTCCCTCCTCCGA
 CTCCGCTCCCGGACCAGCGGCCTGACCTGGGGAAAGGATGGTTCCCGAGGTGAGGGTCCTC
 TCCTCCTTGCTGGACTCGCGCTGCTCTGGTTCCCCCTGGACTCCCACGCTCGAGCCCGCCC
 AGACATGTTCTGCCTTTCCATGGGAAGAGATACTCCCCCGCGAGAGCTGGCACCCCTACT
 TGGAGCCACAAGGCCTGATGTAUTGCCTGCGCTGTACCTGCTCAGAGGGCGCCATGTGAGT
 TGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCGGAGCCTGTGACGGAGCCACAGCAATG
 CTGTCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCC
 AGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCTCATGAGCTGTTCCCCCTCC
 CGCCTGCCAACCAGTGTGTCCCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCAC
 AACCTGCCCGAACCAAGGCTGCCAGCACCCCTCCACTGCCAGACTCCTGCTGCCAACGCT
 GCAAAGATGAGGCAAGTGTGAGCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGTG
 AGACATCCTCAGGATCCATGTTCCAGTGTGCTGGAGAAAGAGAGGGCCGGCACCCAGC
 CCCCACGGCCTCAGGCCCTCTGAGCTTCATCCCTGCCACTTCAGACCCAAGGGAGCAG
 GCAGCACAACTGTCAAGATCGTCCCTGAAGGAGAAACATAAGAAAGCCTGTGTGCATGGCGGG
 AAGACGTACTCCCACGGGAGGTGTGGCACCCGGCCTCCGTGCCTCGGCCCTTGCCCTG
 CATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGT
 ACCCCTGCCGTACCCCGAGAAAGTGGCTGGGAAGTGTGCTGCAAGATTGCCAGAGGACAAA
 GCAGACCCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCAAGGCACCGGGCGGGTCT
 CGTCCACACATCGGTATCCCCAAGCCAGACAACCTGCGTCGCTTGCCCTGGAACACGAGG
 CCTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAG
 AGAGGTGAAGTACCTGGCCAAGGCCACACAGCCAGAATCTTCCACTGACTCAGATCAAGA
 AAGTCAGGAAGCAAGACTCCAGAAAGAGGCACAGCACTCCGACTGCTCGCTGGCCCCAC
 GAAGGTCACTGGAACGTCTTCCTAGGCCAGACCCCTGGAGCTGAAGGTACGGCCAGTCCAGA
 CAAAGTGACCAAGACATAACAAAGACCTAACAGTTGCAGATATGAGCTGTATAATTGTTGTT
 ATTATATATTATAAAATAAGAAGTTGCATTACCCCTCAAAAAAAAAAAAAAAA

FIGURE 86

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902
><subunit 1 of 1, 451 aa, 1 stop
><MW: 49675, pI: 7.15, NX(S/T): 1
MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT
CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF
SAHELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEED
SVQSLHGVRHPQDPCSSDAGRKRGPGT PAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH
KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC
CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV
KDEETEAQRGEVPGPRPHSQNLPLSDQESQEARNPERGTALPTARWPPRRSLERLPSPDPG
AEGHGQSRQSDQDITKT

Signal peptide:

amino acids 1-25

FIGURE 87

CTAGCCTGCGCCAAGGGTAGTGAGACCGCGCGGCAACAGCTTGC GGCTGC GGGGAGCTCCC
GTGGCGCTCCGCTGGCTGTGCAGGC GGCCATGGATT CCTGC GGAAAATGCTGATCTCAGT
CGCAATGCTGGCGCAGGGCTGGCGTGGCTACCGCCTCGTTATCGTACCCGGAG
AGCGGCGGAAGCAGGAAATGCTAAAGGAGATGCCACTGCAGGACCCAAAGGAGCAGGGAGGAG
GCGGCCAGGACCCAGCAGCTATTGCTGCCACTCTGCAGGAGGCAGCGACCACGCAGGAGAA
CGTGGCCTGGAGGAAGAACTGGATGGTGGCGCGAAGGC GGCGCAGCGGGAGGT CACCGT
GAGACCGGACTTGCCTCCGTGGCGCCGGACCTTGGCTTGGCGCAGGAATCCGAGGCAGCC
TTTCTCCTCGTGGGCCAGCGGAGAGTCGGACCGAGATAACCATGCCAGGACTCTCCGGG
TCCTGTGAGCTGCCGTGGGTGAGCACGTTCCCCAACCCCTGGACTGACTGCTTAAGGT
CCGCAAGGCGGGCCAGGGCGAGACGCGAGTCGGATGTGGTGAAGTGAACAAAAAAACCAATAAAA
TCATGTTCCCTCAA
AAAAAAAAAAA

FIGURE 88

MDSLRKMLISVAMLGAGAGVGYALLVIVTPGERRKQEMLKEMPLQDPRSREEAARTQQLLA
TLQEATTQENVAWRKNWMVGEGGASGRSP

Signal peptide:

amino acids 1-18

FIGURE 89

CAGGAGAGAAGGCACGCCCAACCGCCTCCAAAGCTAACCTCGGGCTTGAGGGGAAGA
 GGCTGACTGTACGTTCTTACTCTGGCACACTCTCCAGGCTGCC**TG**GGGCCAGCACC
 CCTCTCCTCATCTTGTCTTGTATGGTCGGGACCCCTCCAAGGACAGCAGCACCACT
 TGTGGAGTACATGGAACGCCGACTAGCTGCTTAGAGGAACGGCTGGCCAGTGCAGGACC
 AGAGTAGTCGGCATGCTGCTGAGCTGCGGGACTTCAAGAACAGATGCTGCCACTGCTGGAG
 GTGGCAGAGAAGGAGCGGGAGGCACTCAGAACTGAGGCCGACACCATCTCGGGAGAGTGG
 TCGTCTGGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTAGAGT
 TTGATGAGAAGGTGACTGGAGGCCCTGGGACCAAAGGAAGGGAAAGGAATGAGAAAGTAC
 GATATGGTGACAGACTGTGGCTACACAATCTCAAGTGAGATCAATGAAGATTCTGAAGCG
 ATTTGGTGGCCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACG
 TGTTAGATGGGACACAGAACATGACACAGCCTTGTCTCCAAAGGCTGCGTGACTTCACCC
 GCCATGGCTGCCCGGAAAGCTCCGAGTCCGGGTGCCCTCCCTGGTAGGCACAGGGCA
 GCTGGTATATGGTGGCTTCTTATTTGCTCGGAGGCCTCCTGGAAGACACTGGTGGAGGTG
 GTGAGATGGAGAACACTTGCAGCTAACAAATTCCACCTGGCAAACCGAACAGTGGTGGAC
 AGCTCAGTATTCCCAGCAGAGGGCTGATCCCCCCTACGGCTGACAGCAGACACCTACAT
 CGACCTGGTAGCTGATGAGGAAGGTCTTGGCTGTCTATGCCACCCGGAGGATGACAGGC
 ACTTGTGTCTGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGACACACCA
 TGTCCCAGAGAGAACATGCTGAGGCTGCCTTGTATCTGGGACCTCTATGTCGTCTATAA
 CACCGTCCTGCCAGTCGGGCCGCATCCAGTGCTCCTTGATGCCAGCGCACCC
 CTGAACGGGCAGCACTCCCTATTTCCCGAGATATGGTGCCTGCCAGCCTCCGCTAT
 AACCCCCGAGAACGCCAGCTCATGCCCTGGGATGATGGCTACCAAGATTGCTATAAGCTGGA
 GATGAGGAAGAAAGAGGGAGGAGGTT**TGA**GGAGCTAGCCTGTTGCATCTTCACTC
 CCATACATTATATTATATCCCCACTAAATTCTTGTCTCATTCTCAAATGTGGCCAG
 TTGTGGCTCAAATCCTCTATATTTAGCCAATGGCAATCAAATTCTTCAGCTCCTTGTT
 TCATACGGAACTCCAGATCCTGAGTAATCCTTAGAGCCGAAGAGTCAAAACCC
 TTCCCTCCTGCTCCTGCCCATGTCAACAAATTCAAGGCTAACGGATGCCAG
 GCTCTAACCTTGTATGCCGGCAGGCCAGGGAGCAGGCAGCAGTGTCTTCC
 ACTTGGGGAGGGAGAAATAGGAGGAGACGTCCAGCAGTGTCTCTCCTC
 TCAGTGTCTGAGGAACAGGACTTCTCACATTGTTGTATTGCAACATT
 AGGAAAATCCACAAAAAAA
 AAAAAAAAAAAAAAAA

FIGURE 90

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64905
<subunit 1 of 1, 406 aa, 1 stop
<MW: 46038, pI: 6.50, NX(S/T): 2
MGPSTPLLILFLLWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAELRDFKNKM
LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGR
RNEKYDMVTDCGYTISQVRSMKILKRGFPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPR
RDFTLAMAARKASRVRVFPWVGTGQLVYGGFLYFARRPPGRPGGGEMENTLQLIKFH
RTVVVDSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ
QWDTPCPRENAAAFVICGTLYVVVNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH
ASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV
```

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

P
E
G
I
S
E
P
D
P
A
C
O
D

GACAGCTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTGCCCTCCGCTACGCAG
 AGCCTCTCCGTGGCTCCGCACCTTGAGCATTAGGCCAGTTCCTCTCTCTAATCCAT
 CCGTCACCTCTCCTGTCATCCGTTCCATGCCGTGAGGTCCATTACAGAACACATCCATGG
 CTCTCATGCTCAGTTGGTCTGAGTCTCCTCAAGCTGGATCAGGGCAGTGGCAGGTGTT
 GGGCCAGACAAGCCTGTCCAGGCCTGGTGGGGGAGGACGCAGCATTCTCCTGTTCTGTC
 TCCTAAGACCAATGCAGAGGCCATGGAAGTGCAGGTTCTCAGGGCCAGTTCTAGCGTGG
 TCCACCTCTACAGGGACGGGAAGGACCAGCCATTATGCAGATGCCACAGTATCAAGGCAGG
 ACAAAACTGGTGAAGGATTCTATTGCGGAGGGCGCATCTCTGAGGCTGGAAAACATTAC
 TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTCCAGTCTACTACCAGAACAGGCCA
 TCTGGGAGCTACAGGTGTCAGCACTGGCTCAGTCCCTCTCATTCCATCACGGGATATGTT
 GATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGTCCCCCGGCCACAGCGAAGTG
 GAAAGGTCCACAAGGACAGGATTGTCCACAGACTCCAGGACAAACAGAGACATGCATGGC
 TGTTGATGTGGAGATCTCTGACCGTCCAAGAGAACGCCGGAGCATACTGTTCCATG
 CGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACTTTTCA
 GCCTATATCGTGGCACCTGGCTACCAAAGTACTGGAATACTCTGCTGTGGCCTATTTTG
 GCATTGTTGGACTGAAGATTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACGGAC
 TGGAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCGGAAACACGCAGTGGAGGTGAC
 TCTGGATCCAGAGACGGCTACCCGAAGCTCTGCGTTCTGATCTGAAAATGTAACCCATA
 GAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTACAAGGAAGAGTGTGGTGGCT
 TCTCAGAGTTCCAAGCAGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAGGTG
 GCGCGTGGAGTGTGCCGGATGATGTGGACAGGAGGAAGGAGTACGTGACTTGTCTCCG
 ATCATGGGTACTGGTCCTCAGACTGAATGGAGAACATTGTATTCACATTAAATCCCGT
 TTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAAATAGGGTCTCCTGGACTATGAGTG
 TGGGACCATCTCCTTCTCAACATAATGACCAGTCCCTTATTACCCCTGACATGTCGGT
 TTGAAGGCTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACCTCC
 ATAGTCATCTGCCAGTCACCCAGGAATCAGAGAAAGAGGCCCTTGGCAAAGGGCTCTGC
 AATCCCAGAGACAAGAACAGTGAGTCCTCCTCACAGGCAACCACGCCCTCCCCAGGG
 GTGAAATGTAGGATGAATCACATCCCACATTCTTCTTAGGGATATTAGGTCTCTCTCCA
 GATCCAAAGTCCCGCAGCAGCCGCCAAGGTGGCTCCAGATGAAGGGGACTGGCCTGTCC
 ACATGGGAGTCAGGTGTCATGGCTGCCCTGAGCTGGGAGGGAAAGAAGGCTGACATTACATT
 AGTTGCTCTCACTCCATCTGGCTAAGTGTATCTGAAATACCACCTCTCAGGTGAAGAACCG
 TCAGGAATTCCCATCTCACAGGCTGTGGTAGATTAAGTAGACAAGGAATGTGAATAATGC
 TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTGTTCATTATATTACACTTCAGTA
 AAAAAA

FIGURE 92

MALMLSLVLSLLKLGSQWQVFGPDKPVQALVGEDAASFCLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPPLISITGYVDRDIQLCQSSGWFPRPTAKWKGPQGQDLSTDRTNRDMH
GLFDVEISLTQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAEWDWRKHGQAEELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFRKSVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTL
PDHGWWVRLNGEHLYFTLNPRFISVFPPTPPTKIGVFLDYECGTISFFNINDQSLIYTLTC
RFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 93

GCGATGGTGCGCCCGTGGCGGCGGTGCGGAGGCTTCCTGGTCGGATTGCA
 ACGAGGAGAAGATGACTGACCAACCGACTGGCTGAATGAATGGCGGAGCCGAGCGC
CATGAGGGAGCTGCCGAGCTGGCGGCCCTGCCCTGTTGTGCTGCCGCCGCCGCC
 CGCTCGCCTCAGCCGCTCGGCCGGGAATGTCACCGTGGCGGCCGCCGCC
 GACGCGTCGCCGGCCCCGGTTGCGGGGCGAGCCAGCCACCCCTTCCCTAGGGCGACGGC
 TCCCACGGCCCAGGCCGGGAGGACCAGGGCCCCCGCGGCCACCGTCCACCGACCCCTGGCTG
 CGACTTCTCCAGCCCAGTCCCCGGAGACCACCCCTTTGGCGACTGCTGGACCCCTTTCC
 ACCACCTTCAGGCGCCGCTGCCGCCCTGCCGACCACCCCTCGGCCGGAAACGCACTTC
 GACCACCTCTAGGCGCCGACCAAGACCCGCGGCCGACCAACCCCTTCGACGACCAACTGGCCGG
 CGCCGACCAACCCCTGTAGCACCACCGTACCGGCCACGACTCCCCGGACCCGACCC
 GATCTCCCAGCAGCACAGCAACAGCAGCGCTCTCCCCACCCACCTGCCACCGAGGGCCCC
 TTCGCCTCCTCCAGAGTATGTACTGCTCTGTGGTGAAGCCTGAATGTGAATCGCT
 GCAACCAGACCACAGGGCAGTGTGAGTGTGGCCAGGTTATCAGGGCTTCAGTGAAACC
 TGCAAAGAGGGCTTTACCTAAATTACACTCTGGCTCTGTGAGCCATGTGACTGTAGTCC
 ACATGGAGCTCTCAGCATAACCGTCAACAGGTAAGAACAGAGGGTGGAACTGAAGTTATT
 TTATTTAGCAAGGGAAAAAAAAGGCTGCTACTCTCAAGGACCATACTGGTTAAACAAAG
 GAGGATGAGGGTCATAGATTACAAAATTTTATATACTTTATTCTTACTTTATATGT
 TATATTAAATGTCAGGATTAAAAACATCTAATTACTGATTAGTTCTCAAAAGCACTAG
 AGTCGCAATTTCCTGGATAATTCTGTAAATTCTCATGGAAAAAAATTATTGAAGAAT
 AAATCTGCTTCTGGAAGGGCTTCAGGCATGAAACCTGCTAGGAGGTTAGAAATGTTCTT
 ATGTTATTAAATACCATGGAGTTGAGGAATTGTTGTTGGTTATTCTCTCTA
 ATCAAAATTCTACATTGTTCTGGACATCTAAAGCTAACCTGGGGTACCTAATT
 TTTAACTAGTGGTAAGTAGACTGGTTACTCTATTACAGTACATTGAGACCAAAAG
 TAGATTAAGCAGGAATTATCTTAAACTATTATGTTATTGGAGGTAAATTAAATCTAGTGG
 ATAATGTAAGTCTAAGCATTGCCTGTACTGCACTGAAAGTAATTATTCTTGACCT
 TATGTGAGGCATTGGCTTTGTGGACCCCAAGTCAAAAAACTGAAGAGACAGTATTAAAT
 AATGAAAAAAATAATGACAGGTTAACTCAGTGTAACTGGGTATAACCCAAGATCTGCTGC
 CACTTACGAGCTGTGTTCTGGCAAGTAATTCTTCACTGAGCTGTTCTCTCAAG
 GTTGTGAGGATTAATGAGTTGATATATAAAATGCCTAGCACATGTCACTCAATTAA
 TTCTGGTTGTTAAATTCAAAGGAATTATGGACTGAAATGAGAGAACATGTTAAAGA
 ACTTTAGCTCCTGACAAAGAAGTGTAACTTACTGACTAAATATTAAATGCTTT
 TAAATGATATTATACTGTTATGGAATTGTTGATCATATTGTTGAGTTATTAAAAATGTAGAAG
 AGGCTGGCGCGGTGGCTCACGCCGTAACTCTAGCAGCTGGGAGGCCAGGGCGGGTGGAT
 CACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCACAGTGAACACCCGTCTACTAAA
 AATACAAACAAATTAGCTGGCGTGGTGGCACACACCTGTAGTCCCAGCTACTCGGGAGGCT
 GAGGCAGGAGAATCGGTTGAACCCGGGAGGTGGAGGTTGCACTGAGCTGAGATCGGCCACT
 GCACTCCAGCCTGGTGAGAGAGGGAGACTCTGTCTAAAAAAAAAAAAAA

FIGURE 94

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952
><subunit 1 of 1, 258 aa, 1 stop
><MW: 25716, pI: 8.13, NX(S/T): 5
MRSLPSLGGIALLCCAAAAAAVASAASAGNVTGGGGAAGQVDASPGPGLRGEPSHPFPRATA
PTAQAPRTGPPRATVHRPLAATSPAQSPEPPPLWATAGPSSTTFQAPLGPSPTTPAERTS
TTSQAPTRPAPTLSTTGPAVTPVATTVPAPTPRTPTPDLPSSNSSVLPTPPATEAPS
SPPPEYVCNCNVGSINVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYSGLCQPCDCSP
HGALSIPCNR
```

Important features of the protein:**Signal peptide:**

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

FIGURE 95

TGC GGCG CAGT GTAG ACCT GGGAGG **AT**GGGCGGC TGCT GCTGGCTGCTTTCTGGCTTG
TCTCGGTGCCAGGGCCAGGCCGTGTGGTTGGGAAGACTGGACCTGAGCAGCTCTGG
CCCTGGTACGTGCTTGCGGTGGCCTCCCAGGGAAAAGGGCTTGCCATGGAGAAGGACATGAA
GAACGTCGTGGGGTGGTGGTACCCCTCACTCCAGAAAACAACCTGCGGACGCTGTCCTCTC
AGCACGGGCTGGGAGGGTGTGACCAGAGTGTATGGACCTGATAAAGCGAAACTCCGGATGG
GTGTTGAGAATCCCTCAATAGGCGTGCTGGAGCTCTGGGTGCTGGCACCAACTCAGAGA
CTATGCCATCATCTCACTCAGCTGGAGTTGGGACGAGCCCTAACACACCGTGGAGCTGT
ACAGTCTGACGGAGACAGCCAGCCAGGAGGCCATGGGCTCTCACCAAGTGGAGCAGGAGC
CTGGGCTTCCTGTACAG**TAG**CAGGCCAGCTGCAGAAGGACCTCACCTGTGCTCACAAAGAT
CCTTCTGTGAGTGCTGCGTCCCCAGTAGGGATGGCGCCACAGGGTCTGTGACCTCGGCCA
GTGTCCACCCACCTCGCTCAGCGGCTCCGGGCCAGCACCAAGCTCAGAATAAAGCGATT
CACAGCA

FIGURE 96

MGGLLLAFLALVSPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVT
LTPENNLRTLSSQHGLGGCDQSVMMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL
EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

amino acids 1-20

bio 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FIGURE 97

AACAGACGTTCCCTCGGGCCCTGGCACCTTAACCCCAGACATGCTGCTGCTGCTGCC
 CCTGCTCTGGGGAGGGAGAGGGCGGAAGGCAGACAAGTAAACTGCTGACGATGCAGAGTT
 CCGTGACGGTGCAGGAAGGCCTGTGTCCATGTGCCCTGCTCCTCCTACCCCTCGCAT
 GGCTGGATTTACCCCTGGCCCAGTAGTTCATGGCTACTGGTCCGGGAAGGGCCAATACAGA
 CCAGGATGCTCCAGTGGCCACAAACAACCCAGCTGGCAGTGTGGGAGGAGACTCGGGACC
 GATTCCACCTCCTGGGGACCCACATACCAAGAATTGCACCCGTAGCAGAGATGCCAGA
 AGAAGTGATGCGGGAGATACTTCTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAA
 ACATCACCGGCTCTGTGAATGTGACAGCCTGACCCACAGGCCAACATCCTCATCCCAG
 GCACCCCTGGAGTCCGGCTGCCCTCAGAACATCTGACCTGCTCTGTGCCCTGGCCTGTGAGCAG
 GGGACACCCCCATGATCTCCTGGATAGGGACCTCCGTGTCCCCCTGGACCCCTCCACCAC
 CCGCTCCTCGGTGTCACCCATCCCACAGCCCCAGGACCATGGCACCCAGCCTCACCTGTC
 AGGTGACCTTCCCTGGGCCAGCGTGACCACGAACAAGACCGTCCATCTAACGTGTCC
 CCGCCTCAGAACTTGACCATGACTGTCTCCAAGGAGACGGCACAGTATCCACAGTCTGGG
 AAATGGCTCATCTGTCACTCCCAGAGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATG
 CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCTGGAGAGGCCCTGACCCCTGTCCCC
 TCACAGCCCTCAAACCCGGGGTGCTGGAGCTGCCCTGGTGCACCTGAGGGATGCAGCTGA
 ATTACACCTGCAGAGCTCAGAACCCCTCTGGCTCTCAGCAGGTCTACCTGAACGTCTCC
 AGAGCAAAGCCACATCAGGAGTGACTCAGGGGTGGTCGGGGAGCTGGAGGCCACAGCC
 GTCTTCCCTGCCTCTGCGTCATCTCGTTGAGGTCTGCAGGAAGAAATCGGCAAG
 GCCAGCAGCGGGCGTGGAGATAAGGGCATAGAGGATGCAAACGCTGTCAGGGGTTCA
 CTCAGGGGCCCTGACTGAACCTGGCAGAACAGACTCCCCAGACCGCCTCCCCAGCT
 TCTGCCGCTCCTCAGTGGGGAGGAGAGCTCCAGTATGCATCCCTCAGCTCCAGATGGT
 GAAGCCTGGGACTCGGGGACAGGAGGCCACTGACACCCGAGTACTCGGAGATCAAGATCC
 ACAGATGAGAAACTGCAGAGACTCACCTGATTGAGGGATCACAGCCCTCCAGGCAAGGG
 GAAGTCAGAGGCTGATTCTGTAGAATTAAACAGCCCTAACGTGATGAGCTATGATAAC
 ATGAATTATGTGCAGAGTGAAAAGCACACAGGCTTAGAGTCAAAGTATCTAAAC
 CCACACTGTGCCCTCCCTTTATTTTTAACTAAAAGACAGACAAATTCTA

FIGURE 98

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPSCFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLISRARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMVFQGDG
TVSTVLGNSSSLPEGQSLRLVCAVDADSNPPARLSLSWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVR
CRKKSARPAAGVGDTGIEDANAVRGSAASQGPLTEPWAEDSPPDQPPPASARSSVGEGELOQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 351-370

FIGURE 99

GACGCCAGTGACCTGCCGAGGTGGCAGCACAGAGCTCTGGAGATGAAAGACCCTGTTCTG
GGTGTACGCTCGGCCTGGCCGCTGCCCTGTCCTCACCCCTGGAGGAGGAGGATATCACAGG
GACCTGGTACGTGAAGGCCATGGTGGTCGATAAGGACTTCCGGAGGACAGGAGGCCAGGA
AGGTGTCCCCAGTGAAGGTGACAGCCCTGGCGGTGGAAAGTTGGAAGGCCACGTTCACCTTC
ATGAGGGAGGATCGGTGCATCCAGAAGAAAATCCTGATGCGGAAGACGGAGGAGCCTGGCAA
ATACAGCGCCTATGGGGCAGGAAGCTCATGTACCTGCAGGAGCTGCCAGGAGGGACCACT
ACATCTTTACTGCAAAGACCAGCACCATGGGGCCTGCTCCACATGGAAAGCTTGTGGGT
AGGAATTCTGATACCAACCAGGGAGGCCCTGGAAGAATTAAAGAAATTGGTGCAGCGCAAGGG
ACTCTCGGAGGAGGACATTTCACGCCCTGCAGACGGGAAGCTGCCTTCCCACACTAGG
CAGCCCCGGGTCTGCACCTCCAGAGCCCACCCCTACCACCAAGACACAGGCCGGACCACT
GGACCTACCCCTCCAGCCATGACCCCTCCCTGCTCCCACCCACCTGACTCCAAATAAGTCCT
TTTCCCCAA

FIGURE 100

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404
<subunit 1 of 1, 170 aa, 1 stop
<MW: 19457, pI: 9.10, NX(S/T): 0
MKTLFGLGVTLGLAAALSFTLEEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL
EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH
MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH
```

Important features:

Signal peptide:

amino acids 1-17

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTCGGGACTGGAAGTCATCGGCAGAGGTCTCAC
AGCAGCCAAGAACCTGGGCCCGCTCCTCCCCCTCCAGGCCATGAGGATTCTGCAGTTAA
TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGAGACCAGGATCATCAAGGGGTCGAG
TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGG
GGCGACGCTCATGCCCAAGATGGCTCCTGACAGCAGCCACTGCCTCAAGCCCCGCTACA
TAGTTCACCTGGGCAGCACAACCTCCAGAAGGAGGAGGGCTGTGAGCAGACCCGGACAGCC
ACTGAGTCCTCCCCCACCCGGCTTCAACAACAGCCTCCCCAACAAAGACCACCGCAATGA
CATCATGCTGGTGAAGATGGCATGCCAGTCTCCATCACCTGGCTGTGCGACCCCTCACCC
TCTCCTCACGCTGTGTCAGTGGCACCAGCTGCCCTATTCCGGCTGGGCAGCACGTCC
AGCCCCCAGTTACGCCCTGCCTCACACCTTGCATGCGCAACATCACCATCATTGAGCACCA
GAAGTGTGAGAACGCCTACCCGGCAACATCACAGACACCATGGTGTGCCCCAGCGTGCAGG
AAGGGGGCAAGGACTCCTGCCAGGGTGAUTCCGGGGCCCTCTGGTCTGTAACCAGTCTTT
CAAGGCATTATCTCCTGGGCCAGGATCCGTGTGCGATCACCGAAAGCCTGGTGTACAC
GAAAGTCTGCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAATAGACTGGACCCA
CCCACACCAGCCATCACCCCTCATTCCACTTGGTGTGTTGGTCTGTTCACTCTGTTAAT
AAGAAACCTAAGCCAAGACCCCTACGAACATTCTTGGCCTCTGGACTACAGGAGATG
CTGTCACTTAATAATCAACCTGGGTTGAAATCAGTGAGACCTGGATTCAAATTCTGCCCT
GAAATATTGTGACTCTGGGAATGACAACACCTGGTTGTTCTGTGTATCCCCAGCCCCA
AAGACAGCTCCTGGCCATATCAAGGTTCAATAAATATTGCTAAATGAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

FIGURE 102

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405
<subunit 1 of 1, 250 aa, 1 stop
<MW: 27466, pI: 8.87, NX(S/T): 4
MRILQLILLALATGLVGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLAAH
CLKPRYIVHLGQHNLQKEEGCEQRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITW
AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIEHQKCENAPGNITDTM
VCASVQEGGKDSCQGDGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN
```

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site.

amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

GAGCAGTGTCTGCTGGAGCCG**ATG**CCAAAACCATGCATTCTTATTCA
GAGATTCATTGTTTCTTTATCTGTGGGCCTTTACTGCTCAGAGACAAAGAAAGAGGAGAGC
ACCGAAGAAAGTAAAGAGCTCATCGTCCAGAAAAGTCTAAGACAAGCAAGAAGGGAGAC
ACTAAATGCCATTATGACGGCTACCTGGCTAAAGACGGCTCGAAATTCTACTGCAGCC
CACAAAATGAAGGCCACCCAAATGGTTGTTCTGGTGGCAAGTCATAAAAGGC
GACATTGCTATGACAGATATGTGCCCTGGAGAAAAGCGAAAAGTAGTTAC
TACCCCCTTCATTGCTACGGAAAGGAAGGCTATGCAGAAGGCAAGATTCCAC
CGGATGCTACATTGATTGATTTTGAGATTGAACTTTATGCTGTGAC
CAAAGGACCACGGAGCATTGAGACATTAAACAAATAGAC
ATGGACAATGACAGGCAGCTCTCTAAAGCCGAGATAAACCTCTACTTG
CAAAGGGATTGAAAGATGAGAACGACGTGACAAGTCATATCAG
GATGCAGTTAGAAGATATTTTAAGAAGAATGACCATGATGGT
GATGGCTTCATTCTCCAAGGAATACAATGTATACCAACACGAT
GAACTA**TAG**CATATTTGTATTTCTACTTTTTTTAGCTATT
ACTGTACTTTATGTATAAACAAAGTCAC
TTTCTCCAAGTTGCTATTGCTATT
TTCCCCTATGAGAAGATATTTGA
TCTCCCCAATACATTGATTTGGTATAATAAATGTGAGGCT
GTTTGCAAACTTAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 104

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406
<subunit 1 of 1, 222 aa, 1 stop
<MW: 25794, pI: 6.24, NX(S/T): 1
MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG
YLAKDGSKFYCSRTQNEGHPKWVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGY
AEGKIPPDATLIFEIELYAVTKGPRSIETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD
KSYQDAVLEDIFKKNDHDGDFISPKEYNVYQHDEL
```

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 219-222

N-glycosylation site.

amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins

amino acids 202-214, 195-214

FIGURE 105

CAGAA**ATG**CAGGGACCATTGCTTCTTCCAGGCCTCTGCTTCTGCTGAGCCTCTTGGAGCT
GTGACTCAGAAAACCAAAACTCCTGTGCTAAGTGCCCCCAAATGCTTCTGTGTCAATAA
CACTCACTGCACCTGCAACCATGGATATACTTCTGGATCTGGCAGAAACTATTCACATTCC
CCTTGGAGACATGTAACGCCAGGCATGGTGGCTCGCGCTG**TAA**TCCAGTTCTTGGGAAG
CCAAGGCAGGTGGATCACCTGAGGTCAAGGAGTTGAGACCAGCCTGGCCAACATAGTGAAAC
CCC GTGTCTACTAAAAATACAAAAATCAGCCGGCGTGGTGGTGCATGCCTGCAATCCCAGT
TACTCGGGAGGCTGAGGCAGGAGAATCGCTGAACTCAGGAGGCAGAAGTTGCAGTGAACCC
AGATCCTGCCATTGCACTCCAGCATGGATGACAGAGCAAGACTCCGTCTCAAAAAGAAAAGA
TAGTTCTTGTTCATT CGCGACTGCCCTCTCAGTGTTCCTGGATCCCCTCCAAATAA
AGTACTTATATTCTC

FIGURE 106

MQGPILLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPL
ETCNARHGGSR

Signal peptide:

amino acids 1-18

FIGURE 107

CAAGCAGGT CATCCCCTGGTGACCTCAAAGAGAAGCAGAGAGGGCAGAGGTGGGGGCAC
AGGGAAAGGGT GACCTCTGAGATTCCCCTTCCCCAGACTTGGAAAGT GACCCACC**ATGG**
GGCTCAGCATTTTGCTCCTGTGTGTTGGGCTCAGCCAGGCAGCCACACCGAAGATT
TTCAATGGCACTGAGTGTGGCGTA ACTCACAGCCGTGGCAGGTGGGCTGTTGAGGCAC
CAGCCTGCCTGC GGGGGTGTCCTATTGACCACAGGTGGGCTC ACAGCGGCTCACTGCA
GCGGCAGCAGGTACTGGGTGCGCCTGGGGAACACAGCCTCAGCCAGCTGACTGGACCGAG
CAGATCCGGCACAGCGGCTCTGTGACCCATCCGGTACCTGGGAGCCTCGACGAGCCA
CGAGCACGACCTCCGGCTGCTGCCCTGCCCTGCCGTCCCGTAACCAGCAGCGTTCAAC
CCCTGCCCTGCCCAATGACTGTGCAACCCTGGCACCGAGTGCCACGTCTCAGGCTGGGC
ATCACCAACCACCCACGGAACCCATTCCGGATCTGCTCCAGTGCCTCAACCTCTCCATCGT
CTCCCATGCCACCTGCCATGGTGTATCCCGGGAGAACATCAGGAGAACATGGTGTGAG
GCGCGTCCGGGCAGGATGCCCTGCCAGGGTGATTCTGGGGCCCTGGTGTGAG
GTCCTCAAGGTCTGGTGCCTGGGGTCTGTGGGCCCTGTGGACAAGATGGCATCCCTGG
AGTCTACACCTATATTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAA**TGAC**
CTGTTCCCTCCACCTCCACCCCCACCCCTTAACCTGGGTACCCCTGGCCCTCAGAGCACC
AATATCTCCTCCATCACTCCCTAGCTCCACTCTGTTGCCCTGGAACTTCTTGGAACTT
TAACTCCTGCCAGCCCTCTAAGACCCACGAGCAGGGTGAGAGAAGTGTGCAATAGTCTGGA
ATAAAATATAAATGAAGGGAGGGGCAAAAAAAAAAAAAAAA

FIGURE 108

MGLSIFLLLCLVGLSQATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAH
CSGSRYWVRLGEHSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLRLRLPVRVTSSV
QPLPLPNDCATAGTECHVSGWGITHPRNPFPDLLQCLNLSIVSHATCHGVYPGRITSNMVC
AGGVPGQDACQGDGGPLVCGGVLQGLVSWGSVGPCGQDGIPGVYTYICKYVDWIRMIMRNN

Signal peptide:

amino acids 1-17

bio 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249

FIGURE 109

GC GGCCACACG CAGCTAGCCGGAGCCC GACCAGGC GCGCTGTGCCTCCTCGTCCCTCGC
 CGCGTCCCGAAGCCTGGAGCCGGCGGGAGCCCCCGCGCTGCC **ATGT** CGGGCGAGCTCAGCA
 ACAGGTTCCAAGGAGGGAAAGGCGTTGGCTTGCTCAAAGCCGGCAGGAGAGGAGGCTGGCC
 GAGATCAACCGGGAGTTCTGTGACCAAGAAGTACAGTGATGAAGAGAACCTCCAGAAAA
 GCTCACAGCCTCAAAGAGAAGTACATGGAGTTGACCTGAACAATGAAGGCGAGATTGACC
 TGATGTCTTAAAGAGGATGATGGAGAAGCTGGTGTCCCCAAGACCCACCTGGAGATGAAG
 AAGATGATCTCAGAGGTGACAGGAGGGTCAGTGACACTATATCCTACCGAGACTTGTGAA
 CATGATGCTGGGAAACGGTCGGCTGCC CAAGTTAGTCATGATGTTGAAGGAAAAGCCA
 ACGAGAGCAGCCCCAAGCCAGTTGGCCCCCTCCAGAGAGACATTGCTAGCCTGCC **TGA**
 GGACCCCGCCTGGACTCCCCAGCCTCCCACCCATA CCTCCCTCCGATCTGCTGCCCTT
 CTTGACACACTGTGATCTCTCTCTCATTTGTTGGTATTGAGGGTTTGTGTT
 TCATCAATGTCTTGTAAAGCACAAATTATCTGCCTTAAAGGGCTCTGGTCGGGAATCC
 TGAGCCTTGGTCCCCTCCCTCTCTTCTCCCTCCCCGCTCCGTGCAGAAGGGCTG
 ATATCAAACCAAAACTAGAGGGGGCAGGGCCAGGGCAGGGAGGCTTCCAGCCTGTGTTCCC
 CTCACTTGGAGGAACCAGCACTCTCCATCCTTCAGAAAGTCTCCAAGCCAAGTTCAGGCTC
 ACTGACCTGGCTCTGACGAGGACCCCAGGCCACTCTGAGAAGACCTGGAGTAGGGACAAGG
 CTGCAGGGCCTTTGGGTTCTGGACAGTGCATGGTCCAGTGCTCTGGTGTACCC
 AGGACACAGCCACTCGGGGCCCGCTGCCAGCTGATCCCCACTCATTCCACACCTCTTCT
 CATCCTCAGTGATGTGAAGGTGGAAAGGAAAGGAGCTGGCATTGGAGGCCCTCAAGAAGG
 TACCAAGGAACCCCTCCAGTCCTGCTCTGCCACACCTGTGCAGGCAGCTGAGAGGCAG
 CGTGCAGCCCTACTGTCCCTACTGGGGCAGCAGAGGGCTCGGAGGCAGAAGTGAGGCC
 GGGTTGGGGAAAGGTCAAGTCAGTGCTGTTCCACCTTGTAGGGAGGACTGAGGGAC
 CAGGATGGGAGAATGAGGAGTAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGA
 CTGAGAAATACAAGGTTGCTGTGACCCCAATCTGCTGAAAAA

4 3 2 6 5 4 0 * 1 2 1 2 0 1

FIGURE 110

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAKEKYMEFDLN
NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMMLGKRSAVLKLVM
MFEGKANESSPKPVGPPPERDIASLP

FIGURE 111A

CGCGCTCCCCGCGCCTCCTCGGGCTCCACCGTCTTGCCTCGAGAGGCAGGCCCTCCA
 GGAGCGGGGCCCTGCACACC**ATG**GCCCCCGGGTGGCAGGGTGGCGCCGTGCGGCC
 CGCCTGGCGCTGGCCTGGCGCTGGCGAGCGTCTGAGTGGCCTCCAGCCGTGCGCTGCC
 CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGCTGGCCTCCGCGCGGTT
 CTCGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATATCACCAAGGATC
 ACCAAGATGGACTTCGCTGGCTCAAGAACCTCCGAGTCTGCATCTGAAGAACAAACCAGGT
 CAGCGTCATCGAGAGAGGGCGCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACA
 AGAATAAGCTGCAAGTCTTCCAGAATTGCTTTCCAGAGCACGCCAAGCTCACCAAGACTA
 GATTGAGTAAAACCAGATCCAGGGATCCCAGGAAGGCGTCCCGGGCATACCGATGT
 GAAGAACCTGCAACTGGACAACAACCACATCAGCTGCATTGAAGATGGAGCCTTCCGAGCGC
 TGCGCGATTGGAGATCCTTACCCCTAACAAACAACATCAGTCGATCCTGGTCACCAGC
 TTCAACCACATGCCGAAGATCCGAACCTGCGCCTCCACTCCAACCACCTACTGCGACTG
 CCACCTGGCCTGGCTCTGGATTGGCTGGACAGGGACAGTTGGCCAGTTCACACTCT
 GCATGGCTCCTGTGCATTGAGGGCTTCAACGTGGCGGATGTGCAGAAGAAGGAGTACGTG
 TGCCCAGCCCCCCTCGGAGCCCCATCCTGCAATGCCAACTCCATCTCCTGCCCTCGCC
 CTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAGGGCTTGATGGAGATTCTGCCA
 ACTTGGCGGAGGGCATCGTCAAACAGCCTAGAACAGAACTCCATCAAAGCCATCCCTGCA
 GGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGA
 TATTGCTCCAGATGCCTCCAGGGCTGAATCACTCACATCGTGGCTGTATGGGAACA
 AGATCACCGAGATTGCCAAGGGACTGTTGATGGCTGGTGTCCCTACAGCTGCTCCTCCTC
 AATGCCAACAAAGATCAACTGCCTGCGGGTGAACACGTTTCAAGGACCTGCAGAACCTCAACTT
 GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGCTTCTCGCCCTCTGCACT
 CCATCCAGACACTCCACTTAGCCAAAACCCATTGTGTGCAGTGCCTTAAGTGGCTG
 GCCGACTACCTCCAGGACAACCCATCGAGACAAGCGGGGCCGCTGCAGCAGCCGCC
 ACTCGCCAACAAGCGCATGCCAGATCAAGAGCAAGAAGTTCCGCTGCTCAGGCTCCGAGG
 ATTACCGCAGCAGGTTCAGCAGCGAGTGCTCATGGACCTCGTGTGCCCTGAGAAGTGTG
 TGTGAGGGCAGATTGGACTGCTCCAACCAGAACGCTGGTCCGATCCCAAGGCCACCTCCC
 TGAATATGTCACCGACCTGCACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA
 TCTTCAAGAAGTTGCCAACCTGCGGAAAATAATCTGAGTAACAATAAGATCAAGGAGGTG
 CGAGAGGGAGTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCT
 GGAGACCGTGACGGCGCTGTTCCGTGGCCTCAGTGGCCTAAAACCTTGATGCTGAGGA
 GTAACCTGATCAGCTGTTGAGTAATGACACCTTGCCGGCTGAGTTGGTGGAGACTGCTG
 TCCCTCTATGACAATCGGATCACCACCATCACCCTGGGGCCTTCACCACGCTTGTCTCCCT
 GTCCACCATAAACCTCGTCCAACCCCTCAACTGCAACTGCCACCTGGCCTGGCTCGGCA
 AGTGGTTGAGGAAGAGGGGGATCGTCAGTGGAACCCCTAGGTGCCAGAACCCATTTCCTC
 AAGGAGATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAG
 TAGCTGCCAGCTGAGCCCGCTGCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCAG
 GCAGCAACAAGGGGCTCCCGCCCTCCCCAGAGGCATGCCCAAGGGATGTGACCGAGCTGTAC
 CTGGAGGAAACCACCTAACAGCGTGCAGAGAGCTGTCGCCCTCCGACACCTGACGCT
 TATTGACCTGAGCAACAACAGCATCAGCATGCTGCCAATTACACCTTCAGTAACATGTCTC
 ACCTCTCCACTCTGATCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCCTCAAC
 GGGCTGCGGTCCCTGCGAGTGCTAACCCCTCATGGCAATGACATTCCAGCGTCTGAAGG
 CTCCCTCAACGACCTCACATCTTCCCATCTGGCGTGGGAACCAACCCACTCCACTGTG
 ACTGCAGTCTCGGTGGCTGCGAGTGGTGAAGGCAGGGTACAAGGAGCCTGGCATCGCC
 CGCTGCAGTAGCCCTGAGGCCATGGCTGACAGGCTCTGCTACCACCCAAACCCACCGCTT
 CCAGTGCAAAGGGCCAGTGGACATCAACATTGTGGCCAAATGCAATGCCCTGCCTCCAGCC
 CGTGCAAGAATAACGGGACATGCACCCAGGACCCTGTGGAGCTGTACCGCTGTGCCCTGCC

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCATCAACACCTGCATCCAGAACCCCTGTCA
 GCATGGAGGCACCTGCCACCTGAGTGACAGCCACAAGGATGGGTTAGCTGCTCCTGCCCTC
 TGGGCTTGAGGGGCAGCGGTGTGAGATCAACCCAGATGACTGTGAGGAACAGACTGCGAA
 AACAAATGCCACCTGCGTGGACGGATCAACAACATACGTGTATCTGTCCGCCACTACAC
 AGGTGAGCTATGCGACGGAGGTGATTGACCACTGTGTGCTGAGCTGAACCTCTGTCAGCATG
 AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAAGCTGCGAGTGTGTCCTGGCTACAGCGGG
 AAGCTCTGTGAGACAGACAATGATGACTGTGCCCCACAAGTGCCGCCACGGGGCCAGTG
 CGTGGACACAATCAATGGCTACACATGCACCTGCCCAAGGGCTTCAGTGGACCCTTGTG
 AACACCCCCCACCCATGGCCTACTGCAGACCAGCCATGCGACCAGTACGAGTGCCAGAAC
 GGGGCCAGTGCATCGGGTGCAGCAGGAGCCCACCTGCCGCTGCCACCAGGCTTCGCCGG
 CCCCAGATGCGAGAAGCTCATCACTGTCAAACCTCGTGGGCAAAGACTCCTACGTGGAACGTGG
 CCTCCGCCAAGGTCCGACCCCAAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC
 GGCATCCTCTCTACAAAGGAGACAATGACCCCCCTGGCACTGGAGCTGTACCGAGGCAACGT
 GCGGCTGGTCTATGACAGCCTGAGTTCCCTCAACCACAGTGTACAGTGTGGAGACAGTGA
 ATGATGGGCAGTTCACAGTGTGGAGCTGGTACGCTAAACCAGACCCCTGAACCTAGTAGTG
 GACAAAGGAACCTCAAAGAGCCTGGGAAGCTCCAGAAGCAGCCAGCAGTGGCATCAACAG
 CCCCCTCTACCTTGGAGGCATCCCCACCTCCACGGGCTCTCCGCCCTGCGCCAGGGCACGG
 ACCGGCCTCTAGGCCTCCACGGATGCATCCATGAGGTGCGCATCAACAAACGAGCTGCG
 GACTTCAAGGCCCTCCACACAGTCCCTGGGGTGTACCCAGGCTGCAAGTCCGTGACCGT
 GTGCAAGCAGGCCCTGTGCCGCTCCGTGGAGAAGGACAGCGTGGTGTGCGAGTGCCGCCAG
 GCTGGACCAGGCCACTCTGCAGACCAGGAGGCCGGACCCCTGCCTCGGCCACAGATGCCAC
 CATGGAAAATGTGTGGCAACTGGACCTCATACTGTGCAAGTGTGCCGAGGGCTATGGAGG
 GGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCCTGCTCAGCCTCAAGTGTGACCATG
 GGCAGTGCCACATCTCAGACCAAGGGAGCCCTACTGCCGTGCCAGCCGGCTTAGCGGC
 GAGCACTGCCAACAAAGAGAACCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCC
 GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGCT
 GTGGGCCCTGGCTGCTGCCAGGCCACCCGCAGCAAGCGCGGAAATACGTCTCCAGTGCACG
 GACGGCTCCTCGTTGAGAAGAGGTGGAGAGACACTTAGAGTGCCTGCCGTGCGTGTTC
 CTAAGGCCCTGCCGCCCTGCCACCTCTCGACTCCAGCTTGATGGAGTTGGACAGCC
 ATGTGGACCCCTGGTGATTGACATGAAGGAAATGAAGGCTGGAGAGGAAGGTAAAGAAGA
 AGAGAATATTAAGTATTTGTAACAAAAAATAGAACTTAAAAAAAAAAAAAAA
 AAAAAA

FIGURE 112

MAPGWAGVGA AVRARLALALASVL SGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRN
 AERLDLDRNNITRITKMDFAGLK NL RVLHLEDNQSVIERGAFQDLKQLERLRLNKNKLQVL
 PELLFQSTPKLTRL DLS ENQI QGIPRKAFRGITDVKNLQLDNHHIS CIEDGAFRALRDLEIL
 TLNNNNISRI LVT SFNHMPKIRTLRLHSNHL YCDCHLAWLSDWLRQRRTVGQFTLCMAPVHL
 RGFNVADVQKKEYVC PAP HSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV
 EIRLEQNSIKAI PAGAFTQYKKLKRIDISK NQISDIAPDAFQGLKS LTSLVLYGNKITEIAK
 GLFDGLVSLQ LLLNANKINCLRVNTFQDLQNLNLLS LYDNKLQTISKGLFAPLQSIQTLHL
 AQNP FVCDCHLKWLADYLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRSRFS
 SEC FM DLVCPEKCRCEGTIVDCSNQKLVRIPSHLPEYVTDLRLNDNEVS VLEATGIFKKLPN
 LRKINLSNNKI KEVREGA FDGA ASVQELMLTGNQLET VHGRVFRGLS GLKTLM RSNL I SCV
 SNDT FAGLSSVRLLS LYDNRITTITPGAF TTLVSLSTINLLS NPFCNCNCHLAWLGKWL RKR
 IVSGNPRCQKPF FLKEI PIQDVAI QDFTCDGNEESSCQLSPRCPEQCTCMETVVRC SNKGLR
 ALPRGMPKDVT ELYLEG NHTAVPRELSALRHLTLIDLSNNS ISMLTN YTFSNM SHLSTL
 SYNRLRCIPVHAFNGLRS LRVL TLHGNDI SSVPEGSFNDLTSLSHIALGTNPLHCDCSR WL
 SEWVKAGYKEPGI ARCSSPEPMADRL LTTPTHRFQCKGPVDINIVAKCNACLSSPCKNN GT
 CTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDSHKDGFSCSCPLGEGQR
 CEINPDDCEDND CENNATCVDGINNYVCICPPNYTGELCDEVIDHC VP ELNLCQHEAKC I PL
 DKGF SCECVPGYSGKLCETDNDDCVAHKCRHGAQCVD TINGYTCTCPQGFSGPFCEHPPP MV
 LLQTSPCDQYECQNGAQ CIVVQQEPTCRCP PGFAGPRCEK LITVNFGKDSYVELASAKVR P
 QANISLQVATDKDNGILLYKGNDPLA LE LYQGHVRLVYDSLSSP TT VY SVETVNDQF HS
 VELVTLNQTLNLVVDKGTPKSLGKLQPAVGINSPLY LGGIPTSTGLS ALRQGTDRPLGG F
 HGCIHEVRINN ELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDSV VCECRPGWTGPLC
 DQEARDPCIGHRCHHGKVATGT SYMCKCAEGYGGDLC DNKN DSANACSAFKCHHGQCHI SD
 QGEPYCLCQPGFSGEHCQQENPCLGQVVREVIRRQKG YASCATASKV PIMECRGGCGPQCC Q
 PTRSKRRKYVFQCTDGSSFVEVERHLECGCLACS

Signal peptide:

amino acids 1-27

FIGURE 113

GGATGCAGGACGCTCCCTGAGCTGCCTGTCAACGACTAGGTGGAGCAGTGTTCCTCCGCA
GACTCAACTGAGAAGTCAGCCTCTGGGGCAGGCACCAGGAATCTGCCTTCAGTTCTGTCT
CCGGCAGGCTTGAGG**ATG**AAGGCTGCAGGCATTCTGACCCCTCATGGCTGCCGGTACAG
GCGCCGAGTCCAAAATCTACACTCGTTGCAAACGGCAAAATATTCTCGAGGGCTGGCCTG
GACAATTACTGGGCTTCAGCCTGGAAACTGGATCTGCATGGCATATTATGAGAGCGGCTA
CAACACCACAGCCCCGACGGCCTGGATGACGGCAGCATCGACTATGGCATCTCCAGATCA
ACAGCTTCGCGTGGTGCAGACCGGAAAGCTGAAGGAGAACAAACCACTGCCATGTCGCCTGC
TCAGCCTTGATCACTGATGACCTCACAGATGCAATTATCTGTGCCAGGAAATTGTTAAAGA
GACACAAGGAATGAACATTGGCAAGGCTGGAAGAACATTGTGAGGGCAGAGACCTGTCCG
AGTGGAAAAAAGGCTGTGAGGTTCC**TAA**ACTGGAACGGACCCAGGATGCTTGCAGAAC
GCCCTAGGATTGCAGTGAATGTCAAATGCCTGTGTACCTGTCCCCTTCCCTCCAAATA
TTCCTTCTCAAACGGAGAGGGAAAATTAGCTATACTTTAAGAAAATAATTTCCAT
TTAAATGTC

FIGURE 114

MKAAGILTLLIGCLVTGAESKIIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP
TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCCHVACSLITDDLTDATTCARKIVKETQGMN
YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTCGATCCACTGTCCTTGTGGAGCCAGGCCACACCGTCCTCAGCAGTGT
 CATGTGTTAAAACGCCAAGCTGAATATATC**ATG**CCCCTATTAAACTTGTACATGGCTCCC
 CATTGGTTTGAGAAAAGTCAAGCTTTACCTGGTCTGCCTGTATCCCAGTGTTC
 AGGCTGGCTAGACGGCGGAAGAAGATCCTATTTACTGTCACCTCCAGATCTGCTTCAC
 CAAGAGAGATTCTTCTAAACGACTATAACAGGGCCCCAATTGACTGGATAGAGGAATACA
 CCACAGGCATGGCAGACTGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTAAGGAA
 ACATTCAAGTCCCTGTCACATAGACCTGATGTCCTCTATCCATCTCAAATGTCACCAG
 CTTGACTCAGTTGTCCTGAAAAGCTGGATGACCTAGTCCCAAGGGAAAAATTCCCTGC
 TGCTCTCCATCAACAGATAAGGAAAGAAAAATCTGACTTGGCACTGGAAGCCCTAGTA
 CAGCTGCGTGGAAAGATTGACATCCAAGATTGGAGAGGGTTCATCTGATCGTGGCAGGTGG
 TTATGACGAGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC
 AGTCCGACCTGGCCAGTATGTGACCTTCTTGAGGTCTTCTCAGACAAACAGAAAATCTCC
 CTCCTCCACAGCTGCACGTGTGCTTACACACCAAGCAATGAGCACTTGGCATTGTC
 TCTGGAAAGCCATGTACATGCAGTGCCCAGTCATTGCTGTTAACATTGGGTGGACCCATTGGAGT
 CCATTGACCACAGTGTACAGGGTTCTGTGAGCCTGACCCGGTGCACCTCTCAGAAGCA
 ATAGAAAAGTCATCCGTAAACCTTCTAAAAGCCACCATGGGCTGGCTGGAAGAGCCAG
 AGTGAAGGAAAATTTCCTGAAGCATTACAGAACAGCTCTACCGATATGTTACCAAAC
 TGCTGGTA**TAA**TCAAGATTGTTTAAGATCTCCATTAATGTCATTGTTATGGATTGTAGACC
 CAGTTTGAAACCAAAAAAGAAACCTAGAATCTAATGCAGAAGAGATCTTAAAAAATAAA
 CTTGAGTCTTGAATGTGAGCCACTTCCTATATACCACACCTCCGTCCACTTCA
 AACCATGTCTTATGCTATAATCATTCCAAATTGCCAGTGTAAAGTTACAAATGTGGTG
 TCATTCCATGTTAGCAGAGTATTAAATTATATTCTCGGGATTATTGCTCTGTCTA
 TAAATTGAAATGATACTGTGCCTTAATTGGTTTCAAGTTAAAGTGTGTATCATTCAA
 AGTTGATTAATTGGCTTCAGTATAATGAGAGCAGGGCTATTGTAGTTCCAGATTCAA
 CCACCGAAGTGTCACTGTCATCTGTTAGGAAATTGTTGTCCTGTCTTGCCTGGATC
 CATAGCGAGAGTGCTCTGTATTGTTAAGATAATTGTATTGTCACACTGAGATATAA
 TAAAAGGTGTTATCATAAAAAAAAAAAAAAA

FIGURE 116

MPLLKLVHGSPLVGEKFKLFTLVSACIPVFRLLARRKKILFYCHFPDLLLTKRDSFLKRLY
RAPIDWIEEYTTGMADCILVNSQFTAASFKETFKSLSHIDPDVLYPQLPSLNVTSDSVVPEKLD
DLVPKGKKFLLSINRYERKKNLTLALEALVQLRGRLLTSQDWERVHLIVAGGYDERVLENVE
HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV
IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIKEFIREPSLKATMGLAGRARVKEKFSPEAF
TEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

FIGURE 117

GACTACGCCGATCCGAGACGTGGCTCCCTGGCGGCAGAACCAATGTTGGACTCGCGATCTT
 CGCCGTTACCTTCTTGCCTGGCGTTGGTGGGAGCCGTGCTCACCTCTATCCGGCTTCAGAC
 AAGCTGCAGGAATTCCAGGGATTACTCCAACGTAAAGAAAAAGATGGTAATCTTCCAGATATT
 GTGAATAGTGGAAAGTTGCATGAGTTCTGGTTAATTGCATGAGAGATATGGGCCTGTGGT
 CTCCTCTGGTTGGCAGGCCTCGTGGTTAGTTGGCAGTGTGATGTACTGAAGCAGC
 ATATCAATCCAATAAGACATCGGACCCTTGAAACCATGCTGAAGTCATTATTAAGGTAT
 CAATCTGGTGGTGGCAGTGTGAGTGAAAACCACATGAGGAAAAATTGTATGAAAATGGTGT
 GACTGATTCTCTGAAGAGTAACTTGCCCTCCTCTAAAGCTTCAGAAGAATTATTAGATA
 AATGGCTCTCCTACCCAGAGACCCAGCACGTGCCCTCAGCCAGCAGCATATGCTGGTTTGCT
 ATGAAGTCTGTTACACAGATGGTAATGGTAGTACATTGAAGATGATCAGGAAGTCATTG
 CTTCCAGAAGAACATGGCACAGTTGGTCTGAGATTGAAAAGGCTTCTAGATGGTCAC
 TTGATAAAAACATGACTCGGAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT
 TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACCTCAGTCAACATATTTCATTGACTC
 CTTAGTACAAGGAAACCTTAATGACCAACAGATCCTAGAAGACAGTATGATATTTCTCTGG
 CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGCAATCTGTTTTAACACCTCTGAA
 GAAGTTCAAAAAAAATTATATGAAGAGATAAACCAAGTTGGAAATGGTCTGTTACTCC
 AGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTGTGAAACTGTTCGAACTGCCA
 AACTGACTCCAGTTCTGCCAGCTCAAGATATTGAAGGAAAATTGACCGATTATTATT
 CCTAGAGAGACCCCTCGTCCTTATGCCCTGGTGTGGTACTTCAGGATCCTAATACTGGCC
 ATCTCCACACAAGTTGATCCAGATCGGTTGATGATGAATTAGTAATGAAAACCTTCT
 CACTGGATTCTCAGGCACACAGGGAGTGTCCAGAGTTGAGGTTGCATATATGGTACCC
 GTACTCTTAGTGTATTGGTAAGAGACTGCACCTACTTCTGTGGAGGGACAGGTTATTGA
 AACAAAGTATGAACTGGTAACATCATCAAGGGAAAGAAGCTTGGATCACTGTCTCAAAGAGAT
 ATTTAAAAATTATACATTAAAATCATTGTTAAATTGATTGAGGAAAACAACCATTAAAAA
 AAATCTATGTTGAATCCTTTATAAACCAAGTATCAGTTGTAATATAAACACCTATTGTAC
 TTAA

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGIPTEEKDGNDLPIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTSDFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLKLSEELLDKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQEVIREFQKNHGTWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVL CETVRTAKLTPVSAQLQDIEGKIDRFIIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDELVMKTFSSLGFSGTQECPELRFAYMVTIVLLSVLKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

FIGURE 119

CTAGATTGTCGGCTTGCAGGGAGACTTCAGGAGTCGCTGTCTGAACCCAGCCTCAGA
GACCGCCGCCCTGTCCCCGAGGGCC**ATG**GGCCGGGTCTCAGGGCTTGTGCCCTCTCGCTTC
CTGACGCTCCTGGCGCATCTGGTGGTCGTACACCTTATTCTGGTCCCAGGACAGAACAT
ACAGGCCTGCCTGCCTCACGTTCACCCCCGAGGAGTATGACAAGCAGGACATTAGCTGG
TGGCCCGCTCTGTCAACCCTGGCCTCTTGCACTGGAGCTGGCCGGTTCCCTCAGGA
GTCTCCATGTTAACAGCACCCAGAGCCTCATCTCCATTGGGCTCACTGTAGTGCATCCGT
GGCCCTGTCTTCTCATATTGAGCGTTGGGAGTGCACTAGTATTGGTACATTTTGCT
TCTGCAGTGCCTTCCAGCTGTCACTGAAATGGCTTATTGTCACCGTCTTGGGCTGAAA
AAGAAACCCCTCT**TGA**TTACCTTCATGACGGAACCTAAGGACGAAGCCTACAGGGCAAGGG
CCGCTTCGTATTCTGGAAAGAAGGAAGGCATAGGCTCGGTTCCCTCGGAAACTGCTTC
TGCTGGAGGATATGTGTTGAAATAATTACGTCTTGAGTCTGGGATTATCCGCATTGTATTTA
GTGCTTGTAATAAAATGTTGTAGTAACATTAAGACTTATACAGTTAGGGACA
ATTAAAAAAA

FIGURE 120

MGRVSGLVPSRFLTLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG
LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT
EMALFVTVFGLKKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

TCCCGGACCCTGCCGCCCTGCCACTATGTCCC GCCGCTCTATGCTGCTTGCCTGGGCTCTCC
CCAGCCTCCTCGACTCGGAGCGGCTCAGGAGACAGAAGACCCGGCCTGCTGCAGCCCCATA
GTGCCCGGAACGAGTGGAAAGGCCCTGGCATCAGAGTGCAGCCCAGCACCTGAGCCTGCCCTT
ACGCTATGTGGTGGTATCGCACACGGCGGGCAGCAGCTGCAACACCCCCGCCTCGTGCCAGC
AGCAGGCCCGGAATGTGCAGCACTACCACATGAAGACACTGGGCTGGTGCACGTGGCTAC
AACTCCTGATTGGAGAACGAGACGGCTCGTATACGAGGGCCGTGGCTGGAACTTCACGGGTGC
CCACTCAGGTCACTTATGGAACCCATGTCCATTGGCATCAGCTTATGGCAACTACATGG
ATCGGGTGCCACACCCAGGCCATCCGGGCAGCCCAGGGTCTACTGGCCTGCGGTGTGGCT
CAGGGAGCCCTGAGGTCCAATATGTGCTCAAAGGACACCGGGATGTGCAGCGTACACTCTC
TCCAGGCAACCAGCTTACCAACCTCATCCAGAATTGCCACACTACCGCTCCCCTGAGGCC
CTGCTGATCCGCACCCATTCCCTCCCATGCCAAAAACCCCACTGTCTCCTTCTCCA
ATAAAGATGTAGCTC

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT
AGSSCNTPASCQQQARNVQHYHMKTGCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP
MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL
IQNWPHYRSP

Signal peptide:

amino acids 1-20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FIGURE 123

CTGGGACCCCGAAAAGAGAAGGGGAGAGCGAGGGGACGAGAGCGGAGGAAG**ATG**CACT
 GACTCGCTGCTCGTGTCTGGTCAGGGTAGCCTATCTGGTCATCTGTGGCCAGG
 ATGATGGTCCTCCCAGGCTCAGAGGACCCGTGACGCTGATGACCACGAGGGCCAGCCCCGGCCC
 CGGGTGCCTCGGAAGCGGGGCCACATCTCACCTAACGTCAGGCCCCATGGCCAATTCCACTCT
 CCTAGGGCTGCTGGCCCCGCCTGGGGAGGCTTGGGCATTCTTGGCAGCCCCCAACGCC
 CGAACACAGCCCCCACCCCTCAGCCAAGGTGAAGAAAATCTTGGCTGGGCAGTTCTAC
 TCCAACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAAGATTGTGGACCATGGCAA
 TGGGACCTTCAGCGTCCACTTCAAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCC
 TCGTCCCCCCCAGTAAAGCTGTAGAGTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAG
 GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGGAGAAGGTAGAACGGGCCGCGACCTC
 GCTTGCACCCACGACCCAGCCAAGATCTGCTCCGAGACCACGCTCAGAGCTCAGCCACCT
 GGAGCTGCTCCAGCCCTCAAAGTCGTCTGTCTACATGCCCTTACAGCACGGACTAT
 CGGCTGGTCCAGAAGGTGTGCCAGATTACAACCTACCATAGTGATAACCCCTACTACCCATC
 TGGG**TGA**CCCGGGGCAGGCCACAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCCTGCCCATGC
 AGGAGACCATCTGGACACCAGGGCAGGGAAAGGGGTGGGCCTCAGGCAGGGAGGGGGTGGAG
 ACGAGGAGATGCCAAGTGGGCCAGGGCCAAGTCTCAAGTGGCAGAGAAAGGGTCCAAGTG
 CTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTGGCT
 CTCTGTGCAGCCTCACAGGGCTTGCACGGCACAGAGAGATGCTGGTCCCCGAGGCC
 TGTGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGAGGAAGCTAACGCCCTGGTT
 CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGAGATTTCATCAGTGTGGACAGCCTG
 TCAACTTAGGATGGATGGCTGAGAGGGCTCCTAGGAGGCCAGTCAGCAGGGTGGGTGGGC
 CAGAGGAGCTCCAGCCCTGCCTAGTGGCGCCCTGAGCCCTTGTGCTGCTGAGCATG
 GCATGAGGCTGAAGTGGCAACCCCTGGGTCTTGATGTCTTGACAGATTGACCATCTGTCTC
 CAGCCAGGCCACCCCTTCCAAAATTCCCTTCTGCCAGTACTCCCCCTGTACCAACCCATT
 GCTGATGGCACACCCATCCTTAAGCTAACAGACAGGACGATTGTGGCTCCACACTAACGCC
 ACAGCCCACCCATCCCGTGTGTGTCCCTCTCCACCCCAACCCCTGCTGGCTCCTCTGGAG
 CATCCATGTCCCGAGAGGGGTCCCTAACAGTCAGCCTCACCTGTACGACACCAGGGTTCTCC
 CGGATCTGGATGGCGCCGCTCTCAGCAGCGGGCACGGGTGGGCGGGGCCGGCGCAGA
 GCATGTGCTGGATCTGTTCTGTGTCTGTGCTGTGGGTGGGGAGGGGAGGGAAAGTCTGT
 GAAACCGCTGATTGCTGACTTTGTGTGAAGAATCGTGTCTGGAGCAGGAATAAGCTT
 GCCCCGGGGCA

FIGURE 124

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521
><subunit 1 of 1, 252 aa, 1 stop
><MW: 28127, pI: 8.91, NX(S/T): 5
MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN
STLLGLLAPPGEAWGILGQPPNRPNHSPPSAKVKKIFGWGDFYSNIKTVVALNLLVTGKIVD
HGNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR
RTSLCTHDPAKICSRDHAQSSATWSCSQPKVVCVYIAFYSTDYRLVQKCPDNYHSDTPY
YPSG
```

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTGATGACTTCAGATGTCTAGGAACCAGAGTGGTGCAGGGCCCCA
 GGCAGGGCTGATTCTGGCGGAGGAGAGTAGGGTAAAGGGTCTGCATGAGCTCCTAAAG
 GACAAAGGTAAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTGACTTCAAGCCACAGAAT
 TGGTGGAAAGTGTGCGGCCGCGCCGCGCTCGCTCCTGCAGCGCTGTCGACCTAGCCGCTAG
 CATCTTCCCAGCACCGGGATCCGGGTAGGAGGCGACGCCGGCGAGCACCAAGGCCAGCC
 GGCTGCGGCTGCCACACGGCTCACC**ATGG**GCTCCGGCGCCGGCGCTGTCGCCGGTGC
 GCCGTGCTGCTGGTCCTCACGCTGCCGGGCTGCCGTCTGGCACAGAACGACACGGAGCC
 CATCGTGCCTGGAGGGCAAGTGTCTGGTGGTGCAGTCGAACCCGCCACGGACTCCAAGG
 GCTCCTCTCCTCCCCGCTGGGATATCGGTCCGGCGGCCACTCCAAGGTGCCCTCTCG
 GCGGTGCGGAGCACCAACCACGAGCCATCCGAGATGAGCAACAAGACGCGCATATTTACTT
 CGATCAGATCCTGGTGAATGTGGTAATTTTACATTGGAGTCTGTCTTTAGCACCAA
 GAAAAGGAATTACAGTTCAAGTTCAAGTAAAGTCTACCAGAGCCAAACTATCCAG
 GTTAACTTGATGTTAAATGGAAAACCAGTAATATCTGCCTTGCAGGGGACAAAGATGTTAC
 TCGTGAAGCTGCCACGAATGGTGCCTGCTCACCTAGATAAAAGAGGATAAGGTTACCTAA
 AACTGGAGAAAGGTAAATTGGTGGAGGCTGGCAGTATTCCACGTTCTGGCTTCTGGT
 TTCCCCCTA**TAG**GATTCAATTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCCTG
 AGTTATTGGAAGATCATTTCATCATTGGATTGATGTCTTTATTGGTTCTCATGGGTG
 GATATGGATTCTAAGGATTCTAGCCTGTCGAACCAATAACAAATTACAGATTATTGTG
 TGTGCTGTTCAAGTATTTGGATTGGACTCTAACGAGATAAACCTATGCTAAATGTA
 ACAGTCAAAAGCTGCTGCAAGACTTATTCTGAATTTCATTCTGGATTACTGAATTAGT
 TACAGATGTGAAATTATTGTTAGTTAAAGACTGGCAACCAGGTCTAAGGATTAGA
 AAAACTCTAAAGTTCTGACTTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTG
 TGTTAATATATTGATTATTTGTTTATTCCCTTGAATTAGTTGTTGGTTCTGTAA
 AAAACTGGATTTTTCAGTAACTGGTATTATGTTCTCTAAAATAAGGTAATGAA
 TGGCTGCCACAAATTACCTGACTACGATATCATGACATGACTCTCTCAAAAAAAA
 GAATGCTCATAGTTGTATTTAATTGTATATGTGAAAGAGTCATATTTCCAAGTTATATT
 TTCTAAGAAGAAGAATAGATCATAATCTGACAAGGAAAAGTTGCTTACCCAAATCTAAG
 TGCTCAATCCCTGAGCCTCAGCAAAACAGCTCCCGAGGGAAATCTTATACTTTATTG
 TCAACTTAAATTAAATGATTGATAATAACCACCTTATTAAAAACCTAAGGTTTTTT
 TCCGTAGACATGACCACTTTATTAAACTGGTGGGATGCTGTTCTAATTATACCTAT
 TTTCAAGGCTCTGTTGATTGAAAGTATCATCTGGTTGCCTTAACCTTAAATTGTA
 TATATTATCTGTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTAGTGC
 ATATTCTGCTTTGTATAGGTCAATGAAATTCAAAATTATTATGCTGTTAGAATAAAGA
 TTAATATATGTTAAAAAAA

FIGURE 126

MGSRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSPATDSKGSSSPLGI
SVRAANSKVAFAVRSTNHEPSEMSNKTRIIFYFDQILVNVGNNFTLESVFVAPRKGIYSFSF
HVIKVYQSQTIQVNMLNLNGKPVISAFAAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG
GWQYSTFSGFLVFPL

Signal peptide:

amino acids 1-27

bioRxiv preprint doi: https://doi.org/10.1101/2023.09.04.553226; this version posted September 5, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

FIGURE 127

CGGTGGCC**ATG**ACTGC~~GGCC~~GTGTTCTCGGCTGCGC~~TT~~CATTGCC~~TT~~CGGGC~~CT~~GCGCTC
GCC~~CTT~~TATGTCTTCACC~~AT~~CGGCC~~AT~~CGAGCC~~GT~~GC~~GT~~ATCATCTC~~CT~~CATGCC~~GG~~GAC
TTTCTTCTGGTTGGTGTCTACTGATT~~TC~~GTCC~~CT~~TGTTGGTT~~CAT~~GGCAAGAGTC~~ATTA~~
TTGACAACAAAGATGGACCAACACAGAAATATCTGCTGATCTTGAGC~~GTT~~GTCTGTC
TATATCCAAGAAATGTTCCGATTGCATATTATAAACTCTTAAAAAAAGCCAGTGAAGGTT
GAAGAGTATAAACCCAGGTGAGACAGCACCC~~CT~~TATGCGACTGCTGCC~~CT~~TGTTCTGGCT
TGGGCTT~~GG~~AATCATGAGTGGAGTATT~~TC~~CTTGTGAATACC~~CT~~TACTGACTC~~CT~~TGGGG
CCAGGCACAGTGGGCATT~~AT~~CATGGAGATT~~TC~~C~~CT~~CAATT~~TC~~C~~TT~~ATT~~CAG~~CTTCATGAC
GCTGGTCATTATCTGCTGCATGTATTCTGGGGCATTGTATTTTGATGGCTGTGAGAAGA
AAAAGTGGGCATC~~CT~~C~~TT~~TATCGTTCTC~~CT~~GACCCACCTGCTGGTGT~~CAG~~CCCAGACCTTC
ATAAGTTCTTATTATGGAATAAACCTGGCGTCAGCATTATAATCCTGGTGCTCATGGGCAC
CTGGGCATTCTTAGCTGC~~GGG~~AGGCAGCTGCC~~GA~~AGC~~CT~~GAAACTCTGCCTGCTCTGCCAAG
ACAAGAAC~~TT~~CTT~~CT~~TTACAACCAGCGCTCCAGA**TAA**CC~~TC~~AGGGACCAGCA~~CT~~CCCCAA
ACCGCAGACTACATCTTAGAGGAAGCACA~~ACT~~GTGC~~CT~~TTTCTGAAAATCC~~CT~~TTTCTG
GTGGAATTGAGAAAGAAATAAAACTATGCAGATA

FIGURE 128

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658
><subunit 1 of 1, 257 aa, 1 stop
><MW: 28472, pI: 9.33, NX(S/T): 0
MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN
KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF
GIMSGVFSFVNTLSLPGTVGIHGDSPQFFLYSAFMTLVIIILLHVFWGIVFFDGCEKKW
GILLIVLLTHLLVSAQTFISSLYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN
FLLYNQRSR
```

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 129

CGGCAACCAGCCGCCACCACCGCTGCCACTGCCGCCCTGCCGGGGCC**ATGTTCGCTCTGGGCTTGCCCTTCT**
 TGGTGCCTTGGCCTCGGTGAGAGCCATCTGGGGTTCTGGGGCCAAGAACGTCAGCAGAAAGACGCC
 AGTTTGAAGCGCACCTACGTGGACGAGGTCAACACGGAGCTGGTAACATCTACACCTCAACCATACTGTGACCC
 GCAACAGGACAGAGGGCGTGTGTGAAACAGCAGAAGGGCGCCGTTGCTGTTGTGG
 TCCGCCAGAAGGAGGCTGTGTGTCCTCCAGGTGCCCCTAATCTGCGAGGGATGTTCAGCGCAAGTACCTCT
 ACCAAAAAGTGGAACGAACCTGTGTCAAGCCCCCACCAGAAAGATGAGTCGGAGATTCAAGTCTTCTACGTGGATG
 TGTCCACCCGTCAACAGTCACACACCATAACAGCTCCGGTCAGCCCATGGACGATTTGTGCTCAGGACTG
 GGGAGCAGTTCAAGCTTCAATACACAGCAGCACAGCCCCAGTACTTCAGTATGAGTTCAGGCTGAAGGCGTGGACT
 CGGTAATTGTCAAGGTGACCTCCAACAAGGCTTCCCTGCTCAGTCATCTCCATTCAAGGATGTGCTGTGCTG
 TCTATGACCTGGACAACAACGTTAGCCTCATCGGCATGTACAGACGATGACCAAGAAGGCGGCATCACCGTAC
 AGCGCAAAGACTTCCCCAGCAACAGCTTTATGTGGTGGTGGTGAAGACCGAAGACCAAGCCTGCCGGGCT
 CCCTGCCCTTCTACCCCTCGAGAAGATGAACGGCTGATCAAGGGCACCGCCAGAAAACCTGTCAAGTGGCTGG
 TGTCTCAAGCAGTCACGTCTGAGGCATACGTCACTGGATGCTCTTGCCTGGTATATTCTCTCTTTTAC
 TGCTGACCGTCCCTCCGTGCTGGAGAACTGGAGGCAGAAGAAGAACCCCTGCTGGTGGCCATTGACCGAG
 CCTGCCAGAAGCGGTACCCCTGAGCTGGCTGATTCTTCCTGGCAGTCCCTTATGAGGGTTACAAC
 ATGGCTCTTGAGAATGTTCTGGATCTACCGATGGTCTGGTGAACAGCGCTGGCACTGGGACCTCTTAC
 GTTACCAAGGGCCGCTCTTGAAACCTGTAGGTACTCGGCCCCAGTGGACTCCATGAGCTCTGTGGAGGGATG
 ACTACGACACATTGACCGACATCGATTCCGACAAGAATGTCATTGCAACAGCAAACTCTATGTGGCTGACC
 TGGCACCGAAGGACAAGCGTGTCTGCGGAAAAGTACCAAGATCTACTTCTGGAACATTGCCACATTGCTGTCT
 TCTATGCCCTTCTGTGGTGCAGCTGGTACCTACAGACGGTGGTGAATGTCACAGGAATCAGGACATCT
 GCTACTACAACCTTCTCTGCCACCCACTGGCAATCTCAGCGCTTCAACAAACATCCTCAGCAACCTGGGT
 ACATCCTGCTGGGCTGCTTTCTGCTCATCATCTGCAACGGAGATCAACCAACACCGGGCTGCTGCGCA
 ATGACCTCTGCGCTGGAATGTGGGATCCCCAACACTTGGGCTTCTACGCCATGGCACAGCCCTGATGA
 TGGAGGGCTGCTAGTGTCTATCATGTGTGCCAACACTAACAAATTCCAGTTGACACATCGTTCATGT
 ACATGATGCCGAACTCTGATGTAAGCTTACCAAGCAGGGCACCCGACATCAACGCCAGCGCTACAGTG
 CCTACGCCCTGCCCTGGCAATTGTCATCTCTCTGTGCTGGCGTGGCTTGGCAAAGGGAACACGGCTTCT
 GGATGCTCTCTCCATTCACATCATGCCACCCCTGCTCAGCACGAGCTCTATTACATGGCCGGTGG
 AACTGGACTCGGGATCTCCGCCGCATCCTCACGTGCTACAGACTGCATCCGGCAGTGCAGCGGGCC
 TCTACGTGGACCGCATGGTGTGCTGGTACGGCAACGTCACTGGTCAGCTGGCTGCCTATGGCTTATCA
 TGCGCCCAATGATTGCTCTACTTGTGGCATTGGCATCTGCAACCTGCTCTTACTTCGCTTCTACA
 TCATCATGAAGCTCCGGAGTGGGAGAGGATCAAGCTCATCCCCCTGCTCTGCATGTTGCACCTCCGGTCT
 GGGGCTCGCGCTTCTCTCCAGGACTCAGCACCTGGCAGAAAACCCCTGAGAGTCGAGGGAGCACA
 ACCGGGACTGCATCCTCGACTTCTTGACGACCACGACATCTGCACCTCCCTCCATGCCATGTTG
 GGTCTCTGGTGTGCTGACACTGGATGACGACCTGGATACTGTGAGCAGGGACAAGATCTATGTCCT**TAGC**
 AGGAGCTGGGCCCTCGCTCACCTCAAGGGCCCTGAGCTCTTGTGTCATAGACCGGTACTCTGCTGCT
 GTGGGAGTAGTCCCAGCACCGCTGCCAGCAGTGGATGGCAGCAGGACAGCCAGGTCTAGCTTAGGCTGGCCT
 GGGACGCCATGGGCTGGCATGGAACCTGCAAGCTGCCCTGAGGAGCAGGCCGCTGCTCCCTGGAAACCCCC
 AGATGTTGGCAAATTGCTGTTCTCTCAGTGTGGGCTTCCATGGGCCCTGCTCTTGGCTCTCCATT
 GTCCCTTGCAAGAGGAAGGAGTGGAAAGGGACACCCCTCCCCATTTCATGCCCTGCAATTGCCCCCTCTCCCC
 ACAATGCCCAAGCCTGGACCTAAAGGCCCTTCTCTCCCATACTCCCACTCCAGGGCTAGTCTGGGGCCTGA
 ATCTGTCCTGATCAGGGCCCAGTTCTCTTGGCTGCTGCCATCAGTCCCTGCCATCAGGCCATTCCAGTCAGCC
 AGGATGGATGGGGTATGAGATTGTTGGGTTGGCCAGCTGGCAGACATTGGTCAAGGCCCTGCAAGGGG
 CCTGGGGCAGTGCCTATTCTCTCCCTGACCTGTGCTCAGGGCTGGCTTCTAGAAAGGGCTTCAGGAAGGGATGTGCTGTT
 TGAGAACCGCCTCTGATTCAAGAGGCTGAATTCAAGGGCTCACCTCTTCATCCCATCAGCTCCAGACTGATGCC
 AGCACCAAGACTGGAGGGAGAAGCGCCTCACCCCTCCCTCTTCCAGGCCCTTAGTCTGCAAACCCCC
 AGCTGGTGGCCTTCAGTGCACACTGCCAAGAATGTCAGGGCAAGGGAGGATGATAACAGAGTTAG
 CCCGTTCTGCCCTCACAGCTGTGGCACCCAGTGCCTACCTAGAAAGGGCTTCAGGAAGGGATGTGCTGTT
 CCCTCTACGTGCCCTAGCCTCGCTCTAGGACCCAGGGCTGGCTCTAAGTTCCGTCAGTCAGGCC
 AGTTCTGTTAGTCATGCACACACATACCTATGAAACCTTGAGTTACAAGAATTGCCCAAGCTGGGCAC
 CCTGGCACCCCTGGCCTTGGATCCCCTCGTCCCACCTGGCCACCCAGATGCTGAGGATGGGGAGCTCAGG
 CGGGGCTCTGCTTTGGGATGGAATGTTCTCCCAAACCTGTTTATAGCTGCTGTTGAAGGGCTGG
 AGATGAGGTGGGCTGGATCTTTCTCAGAGCGTCCATGCTATGGTGCATTCCGTTCTATGAATGAATT
 TGCATTCAATAAACACCAGACTCAAAAAAAAAAA

FIGURE 130

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66659
><subunit 1 of 1, 832 aa, 1 stop
><MW: 94454, pI: 6.94, NX(S/T): 12
MFALGLPFLVLLVASVESHLGVLPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNNTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFP EGVD SVI
VKVTSNKA FPCSVISI QDVLCPVYDLDNNVA FIGMYQTMTKKA ITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPV DQGHRQKTL S VL VSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLLVAIDRACPESGHPRV LADSFPGSSPYEGYN YGSFENVSGSTDGL
VDSAGTGDL SYGYQGRSFE PVGTRPRV DSMSSVE EDDYDT LTDIDSDKNVIRTKQYLYVADL
ARKDKRVLRK KYQIYFWNIATIAF YALPVVQLVITYQ TVVNVTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLG LLFLLI ILQREINHN RALLRN DLCALECGIPKH FGLFYAMGTALM
MEGLLSACYHVC PNYTNFQFDTSF MYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFFS
VLGVVFGKGNTAFWIVFSIIHI IATLLL STQLYYMGRWKLD SGIFRRILHVLYTDCIRQCSG
PLYVDRMVLLVMGNVINWSLAAYGLIMRPND FASYLLAIGICNLLYFAFYIIMKLRSGERI
KLIPLL CIVCTSVVWGFA LFFFQGLSTWQKTPAESREHN RDCILLDFDDHDIWHF LSSIA
MFGSFLVLLTLDDDTVQRDKIYVF
```

Important features of the protein:**Signal peptide:**

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 131

GCTCAAGTGCCTGCCCTGCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC
 TCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGCCTGGAGGGCTGTCCTG
ACCATGTCCCTGCCTGGCTGTGGCTGCTTGTCTCCGCCCCAGGCTCTCCCAAGGC
 CCAGCCTGCAGAGCTGTGAGTTCCAGAAAATATGGTGGAAATTCCCTTATACC
 TGACCAAGTTGCCCTGCCCGTGAGGGGCTGAAGGCCAGATCGTGCCTGAGGGACTCA
 GGCAAGGCAACTGAGGCCATTGCTATGGATCAGATTCTGGCTTCTGCTGGTACCCAG
 GCCCTGGACCGAGAGGAGCAGGCAGAGTACCGACTACAGGTACCCCTGGAGATGCAGGATG
 GACATGTCTTGTGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTG
 CCCCCATTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGTACCAAGGCCTGGCATCCC
 CTTCCCTTCTGAGGCTTCAGACCGGGATGAGCCAGGCACAGCCAACCTGGATCTCGAT
 TCCACATCCTGAGCCAGGCTCCAGCCCAGCCTCCCCAGACATGTTCCAGCTGGAGCCTCGG
 CTGGGGCTCTGGCCCTCAGCCCCAAGGGGAGCACCAGCCTGACCACGCCCTGGAGAGGAC
 CTACCAAGCTGTTGGTACAGGTCAAGGACATGGTGACCAGGCCTCAGGCCACCAGGCCACTG
 CCACCGTGAAGTCTCCATCATAGAGGACCTGGGTGTCCTAGAGCCTATCCACCTGGCA
 GAGAATCTCAAAGTCTATAACCGCACCATGGCCAGGTACACTGGAGTGGGGTGTGATGT
 GCACTATCACCTGGAGAGCCATCCCCGGGACCTTGAAGTGAATGAGCAGAGGGAAACCTCT
 ACGTGACCAGAGAGCTGGACAGAGAACGCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG
 AATTCCCATGGCGAGGACTATGCGGCCCTCTGGAGCTGCACGTGCTGGTATGGATGAGAA
 TGACAACGTGCCTATCTGCCCTCCCCGTGACCCACAGTCAGCATCCCTGAGCTCAGTCCAC
 CAGGTACTGAAGTGAAGTAGACTGTCAAGCAGAGGATGCAGATGCCCGGCTCCCCAATTCC
 CACGTTGTGATCAGCTCTGAGCCCTGAGCCTGAGGATGGGTAGAGGGAGAGCCTTCCA
 GGTGGACCCCACCTCAGGCAGTGTGACGCTGGGGTGCCTCCACTCCAGCAGGCCAGAAC
 TCCTGCTTCTGGTGCCTGGCATGGACCTGGCAGGGCGCAGAGGGTGGCTTCAGCAGCACGTG
 GAAGTCGAAGTCGCACTGACAGATATCAATGATCACGCCCTGAGTTCATCACTCCAGAT
 TGGGCCTATAAGCCTCCCTGAGGATGTGGAGCCGGGACTCTGGTGGCCATGCTAACAGCCA
 TTGATGCTGACCTCGAGCCGCCCTCCGCTCATGGATTTGCCATTGAGAGGGAGACACA
 GAAGGGACTTTGGCCTGGATTGGGAGCCAGACTCTGGCATGTTAGACTCAGACTCTGCAA
 GAACCTCAGTTATGAGGCAGCTCAAAGTCATGAGGTGGTGGTGCAGAGTGTGGCGA
 AGCTGGTGGGGCCAGGCCAGGCCCTGGAGCCACGCCACGGTGACTGTGCTAGTGGAGAGA
 GTGATGCCACCCCCCAAGTTGGACCAAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTCCCC
 AGCCGGCTTTCCGTGACCATCCAGCCCTCCGACCCATCAGCCGAACCTCAGGTTCT
 CCCTAGTCATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGAGGTGCACACC
 GCCCAGTCCCTGCAGGGGCCAGCCTGGGACACCTACACGGTGCTGTGGAGGCCAGGA
 TACAGCCCTGACTCTGCCCTGTGCCCTCCCAATACCTCTGCACACCCCCGCAAGACCATG
 GCTTGATCGTGAGTGGACCCAGCAAGGACCCGATCTGGCCAGTGGCACGGTCCCTACAGC
 TTCACCCCTGGTCCAACCCACGGTGCAACGGGATTGGCCTCCAGACTCTCAATGGTTC
 CCATGCCCTACCTCACCTGGCCCTGCATTGGTGAGCCACGTGAACACATAATCCCCGTGG
 TGGTCAGCCACATGCCAGATGTGGCAGCTCTGGTGCAGTGATCGTGTGCTGCAAC
 GTGGAGGGCAGTGCATGCGCAAGGTGGCCGCATGAAGGGCATGCCACGAAGCTGCGC
 AGTGGGCATCCTGTAGGCACCCGGTAGCAATAGGAATCTCCTCATCCTCATTTCACCC
 ACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTCCCCCTGAAGGCG
 ACTGTCTGAATGGCCCAGGCAGCTAGCTGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC
 CTGGGAGAGAGCCCAGCACCCAAAGATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCAT
 CTGCCCTGGGGTGGAGGCACCATCACCACCAACGGCATGTGAGCAGGCCATGGACACCAAC
 TTTATGGACTGCCATGGGAGTGTCCAATGTCAGGGTGTGCCCCAATAATAAGCCCCA
 GAGAACTGGCCTGGCCCTATGGGAAAAAAAAAAAAAAAG

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPFLYLTKLPLPREGAEGQIVLSGDSG
KATEGPFAMDPDSGFLLVTRALDREEQAELYQLQVTLEMQDGHLWGPQPVLVHVKDENDQVP
HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAPAQPSPDMFQLEPRL
GALALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE
NLKVLYPHHMAQVHWSSGDVHYHLESHPPGPFEVNAEGNLYVTRELDRDREAQAEYLLQVRAQN
SHGEDYAAPPLEHLVLMMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSH
VVYQLLSPEPEDGVGRAFQVDPTSGSVTLGVPLRAGQNILLVIALMDLAGAEGGFSSSTCE
VEVAVTDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRIMDFAIERGDTE
GTFGLDWEPDGHVRLRLCKNLSYEAPSHEVVVVVQSVAKLVGPGPGATATTVLVERV
MPPPQKLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLICIEKFSGEVHTA
QSLQGAQPGDTYTVLVEAQDTALTLPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSF
TLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWMQLLVRVIVCRCNV
EGQCMRKVGRMKGMPTKLSAVGILVGTVAIGIFLILIFTHWTMSRKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 133

CCGGGGAC**ATG**AGGTGGATACTGTTCATGGGCCCTATTGGTCCAGCATCTGTGCCAA
 GAAAAATTGGGACCAAGTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAA
 ATTGAGTCAACTAGTGAATTCAAACAATTGAGCTCAATTCTGAAATCTCCCTCCCT
 TCAATCGGCCTGTGGATGTCCTGGTCCATCTGTCAGTCTGCAGGCATTAAATCCTCCTG
 AGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTAGACAATGA
 AGATGATGAAATGCAACACAATGAAGGCCAAGAACGGAGCAGTAATAACTCAACTACGGGG
 CTTACCATTCCCTGGAAGCTATTACACGAGATGGACAACATTGCCAGACTTCCTGAC
 CTGGCGAGGAGGGTGAAGATTGGACATTGTTGAAAACCGGCCGATGTATGACTGAAGTT
 CAGCACTGGGAAAGCGTGGCGCCGGCTTGGCTGAATGCAGGCATCCATTCCGAG
 AGTGGATCTCCAGGCCACTGCAATCTGGACGGCAAGGAAGATTGTATCTGATTACCAAGGG
 GATCCAGCTATCACCTCCATCTGGAGAAAATGGATATTTCTTGTGCGCTGCCCCAATCC
 TGATGGATATGTGTATACTCAAACCTCAAACCGATTATGGAGGAAGACGCCGCCCCAAATC
 CTGGAAAGCTCCTGCATTGGTGCCTGACCCAAATAGAAACTGGAACGCTAGTTTGAGGAAAG
 GGAGCCAGCGACAACCCCTGCTCCGAAGTGTACCATGGACCCCACGCCAATTGGAAGTGG
 GGTGAAATCAGTGGTAGATTCCAAAACATGGGAAATTCAAGGGCTTCATGACACTGC
 ACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTAACAGTCAAAAGGCCAGATGCC
 GAGGAACCTGACAAGTGGCGAGGCTGGCCAAAGCTCTGGCTCTGTGTCGGGCACTGA
 GTACCAAGTGGGCTCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGG
 CGTATGACAACGGCATCAAATTGCAATTGAGTTGAGAGATACCGGGACCTATGGC
 TTCCTCCTGCCAGCTAACAGATCATCCCCACTGCAGAGGAGACGTGGCTGGGCTGAAGAC
 CATCATGGAGCATGTGCGGGACAACCTCTAC**TAG**GCATGGCTCTGCTCTGTCTACATTAT
 TTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTTTCCACCTGTGAG
 TCAGAGCCCTGGGTTGTGGAGCACACAGGCCTGCCCTCTCCAGCCAGCTCCCTGGAGT
 CGTGTGCTGGCGGTGCTGCAGAAGACTGGTCTGCCAGCCTGCTCAATTGGCCTG
 CTGTTTTGATGAGCCTTGTCTGTTCTCCACCCCTGCTGGCTGGGCGGTGCACTC
 AGCATCACCCCTCCTGGGTTGGCATGTCTCTACCTCATTAGAACCAAAGAACATC
 TGAGATGATTCTCTACCCCATCCACATCTAGCCAAGCCAGTGACCTGCTCTGGGCACT
 GTGGGAGACACCACTTGTCTTAGGTGGCTCAAAGATGATGTAGAATTCCCTTAATTTC
 TCGCAGTCTCCTGGAAAATATTCCCTTGAGCAGCAAATCTGTAGGGATATCAGTGAAG
 GTCTCCCTCCCTCCTGTTTTTTGAGACAGAGTTTGCTCTGGC
 CAGGCTGGAGTGTGATGGCTCGATCTGGCTACCACAAACCTCTGCCCTGGGTTCAAGCA
 ATTCTCCTGCCCTGCCTCAGCCTCTGGAGTAGCTGGTTATAGGCGCATGCCACCATGCCCTGGCTA
 ATTTGTGTTTTAGTAGAGACAGGGTTCTCCATGTTGGTCAGGCTGGCTCAAACCTCCA
 ACCTCAGGTGATCTGCCCTGGCCTCCAGAGTGTGGATTACAGGTGTGAGCCACTG
 TGCCGGGCCGCTCCCTCTGGAGTACAGTCTACTCCCTCTCCCTGGTATTTCAGTGT
 TGTGCTGAGAATTCTAGATACTACAGTTCTACTCCCTCTCCCTGGTATTTCAGTGT
 ACCAGGATGGCGGGAGGGATCTGTGACTGTAGGTACTGTGCCAGGAAGGCTGGGTGAA
 GTGACCATCTAAATTGCAAGGATGGTGAATTATCCCCATCTGTCTTAATGGGCTTACCTCCT
 CTTTGCTTTGAECTCACTCAAAGATCTAGGCCTCATCTTACAGGTCTAAATCACTCAT
 CTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCTTGTGCTGTGGTGTATCCTGTGTT
 TCCTTGCTGGTTG
 TCTGTCTATTGTATCTGGACACAAGTCCTAAGTAGAGCAAGAATTCAACCAGCT
 GCCTCTGTTCTACCTCACGACGTACCATCTGTCTTTGTGTGTGTGTGTGTG
 TTGTTTTGCTTTACCAAACATGTCTGAAATCTAACCTCCTGCCAGGATTGTACA
 GCATCTGGTGTGCTTATAAGCCAATAATTCAATGTGAAAAAAAAAAAAAA

FIGURE 134

MRWILFIGALIGSSICGQEKFQGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDEMHQHNEGQERSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKVRRPAVWLNA
GIHSREWI
SQATAIW TARKIVSDYQRDPAIT SILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRWNNASFAGKGASDNPCSEVYHGPHANSEVEVKSVD
FIQKHGNFKGFIDLHSY
SQLLMYPYGVSVKKAPDAEELDKVARLA
AKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGYGFLLPANQIIP
TAETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

FIGURE 136

MASLYGVLFAGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFFPSPSVSTSLAMLSQLGAHSVTKTQILQGLGFNLHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFLQMDYKGDAVAFFVLPSPKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFGIAKRDSLQVSKATHKAVLDVSEEGTEATAATT
KFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:

amino acids 1-20

FIGURE 137

FIGURE 138

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNGSSVTSSGVSTATI
SGSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHRPRWSPNWFWRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGGATAAATAGCAGCGTGGCTCCCTGGCTCCTCTGCATCCTCCGACCTTC
CCAGCAATATGCATCTTGACGTCTGGCGGCTCCTGCTCCCTCTGCTACTGGGGGCC
CTGCTGGATGGCGGCCAGCGATGACCCCATTGAGAAGGTATTGAAGGGATCAACCGAGG
GCTGAGCAATGCAGAGAGAGAGGTGGCAAGGCCCTGGATGGCATCAACAGTGGAAATCACGC
ATGCCGGAAGGGAAAGTGGAGAAGGTTTCAACGGACTTAGAACATGGGAGCCACACCGGC
AAGGAGTTGGACAAAGCGTCCAGGGCTCAACCACGGCATGGACAAGGTTGCCATGAGAT
CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTTGGCCATGGGTCAACAAACG
CTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGTCCAC
CAGGCTGGGAAGGAAGCAGAGAAACTTGGCCAAGGGTCAACCATGCTGCTGACCAGGCTGG
AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCACCATGCTGCTGGCCAGGCCGGGAAGGAGC
TGCAGAATGCTATAATGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGC
AACCATCAAAGCGGATCTCCAGCCATCAAGGAGGGCCACAACCACGCCGTTAGCCTCTGG
GGCCTCAGTCAACACGCCCTTCATCAACCTCCGCCGTGGAGGAGCGTCGCCAACATCA
TGCCCTTAAACTGGCATCCGGCCTTGCTGGAGAATAATGTCGCCGTTGTCACATCAGCTGAC
ATGACCTGGAGGGTTGGGGTGGGGACAGGTTCTGAAATCCCTGAAGGGGGTTGACTG
GGATTGTGAATAAACTTGATAACACCA

FIGURE 140

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675
><subunit 1 of 1, 247 aa, 1 stop
><MW: 25335, pI: 7.00, NX(S/T): 0
MHLARLVGSCSLLLLL GALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAG
REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG
QAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHAAAGQAGKELQN
AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

FIGURE 141

CTCCGGGTCCCCAGGGGCTGGCAGGGGGCGGCTGGCAAGGGGGACGAGTCAGTGGACACTCCAGGAAGAGCGGG
CCCAGGGGGCGATGACCGTGCCTGACCTGACTCACTCCAGGTCCGGAGGCAGGGGCCGGGGCGACTCG
GGGGCGGACCAGCAGGGCGAGCTGCCGCCGTGAGTCGGCCAGGCCACCTGAGCCGAGCCGGACACCGTC
GCTCTGCTCTCGAATGCTGCACCGCATGGGCTGAGGAGCTGGCTCGCCGCCCATGGGCGCCTGGCGCTGCC
CCTCGGCCACCGCTGCTGCTCCTGCTGCTGCTCCTGCTGCAGCCGCCCTCGACCTGGCGCTCAGC
CCCCGATCAGCCTGCCTCTGGCTCTGAAGAGCGGCCATTCTCAGATTGAAGCTGAACACATCTCAA
ACAGCCCTCTGCTGAGCAGGGATGGCAGGACCTGTACGTGGGTGCTCGAGAGGCCCTTTGCACTCAGTAGC
AACCTCAGCTTCTGCCAGGGGGAGTACCAAGGAGCTGTTGGGTGAGACGCAGAGAAGAAACAGCAGTG
AGCTTCAAGGGCAAGGACCCACAGCGCAGTCAGGAACTACATCAAGATCCTCCTGCCGCTCAGCGGAGTC
CTGTTCACCTGTGCACAGCAGCCTCAGCCCCATGTGTACCTACATCAACATGGAGAACTTCACCCCTGGCAAGG
GAGCAGAAGGGAAATGTCTCTGGAAAGATGGCAAGGGCGTTGTCCTCGACCCGAATTCAAGTCCACTGCC
CTGGTGGTTGATGGCAGCTACACTGGAACAGTCAGCAGCTCCAAGGGAAATGACCCGCCATCTCGGGAGC
CAAAGCCTCGCCCCACCAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTGTGCCCTCAGCCTAC
ATTCTGAGAGCCTGGGAGCTTGCAAGGGCATGATGACAAGATCTACTTTTCTTCAGCGAGACTGGCAGGAA
TTTGAATTCTTGAGAACACCAATTGTGTCCCGCATGCCGCATCTGCAAGGGCATGAGGGTGGAGAGCGGGTG
CTACAGCAGCGCTGGACCTCCCTCTCAAGGCCAGCTGCTGTGCTCACGGCCGACGATGGCTTCCCTCAAC
GTGCTGAGGATGTTCACGCTGAGCCCCAGGCCAGGACTGGCGTACACCTTTCTATGGGTCTTCACT
TCCCACTGGCAGGGAAACTACAGAAGGCTGCGCTGTTGCTTCAACATGAAGGATGTGAGAGACTTCTC
AGCGGCCCTCATAAGGAGGTGAACCGTGGAGACACAGCAGTGGTACACCGTGACCCACCGGTGCCACACCCGG
CCTGGAGCGTGCATCACCAACAGTGGCCGGGAAAGGAAGATCAACTCATCCCTGCACTTCCAGGCCGTGCTG
AACTTCTCAAGGACCACTTCTGATGGACGGGCAAGTGGCAAGCGCATGCTGCTGTGCAAGCCCCAGGCTCG
TACCAAGCGCTGGCTGTACACCGCTCCCTGGCTGCACCAACACTACGATGCTCTTCTGGGACTGGTAC
GGCCGGCTCCACAAGGAGCTGAGCGTGGGCCCCCGGTGCACATCATTGAGGAGCTGCAGATCTCTCATCGGG
CAGCCCGTGCAGAACTGCTCTGGACACCCACAGGGGCTGTTGATGCCCTCACACTCGGGCTAGTCCAG
GTGCCCATGGCAACTGCAGGCTGTACCGGAGCTGTTGGACTGCCCTCCGGGAGCCACTGTGCTTGG
AGCGGCTCCAGCTGCAAGCACGTAGCCTCTACAGGCTCAGTGGCCACCAGGGCGTGGATCCAGGACATCGAG
GGAGCCAGCGCAAGGACCTTGCAGCGCTTCTGGTTGTGCCCCGTCTTGTACCAACAGGGGAGAAGCCA
TGTGAGCAAGTCCAGTCCAGGCCAACACAGTGAACACTTGGCTGCCCTCTCAACACTGGCGACCCGA
CTCTGGCTACGCAACGGGCCCCGTCAATGCCCTGGCTCCTGCCACGTGCTACCAACTGGGACCTGCTG
GTGGGCAACAGCTGGGGAGTTCACTGCTGGTCACTAGAGGAGGGCTTCCAGCAGTGGTAGCCAGCTAC
TGCCCAGAGGTGGTGGAGGACGGGTGGAGACACAAACAGATGGGGTGGCAGTGTACCGTCAATTACAGCACA
TCGCGTGTGAGTCACAGCTGGCAAGGCCAGTGGGTGCAAGACAGGTCTACTGGAAAGAGTTCTGGT
ATGTGACGCTTTGTGCTGCCGTGCTGCCAGTTTATTCTGCTTACCGGACCGAACAGCATGAAA
GTCTTCTGAAGCAGGGGAATGTGCCAGCGTGCACCCCAAGACCTGCCCTGTTGCTGCCCTGAGACCCGC
CCACTCAACGGCTTAAGGCCCCCTAGCACCCCGCTCGATCACCAGGGTACAGTCCCTGTCAGACAGCCCCCG
GGGGCCGAGTCTCACTGAGTCAGAGAACAGGCCACTCAGCATCCAAGACAGCTCGTGGAGGTATCCCAGTG
TGGGGCCCCGGGCCCCGGTCCGCTTGGCTGGAGATCCGTGACTCTGTGGTGTGAAGCTGACTTCCAGAGGACGC
TGCCCCCTGGCTTCAAGGGCTGTGAATGCTGGAGAGGGTCAACTGGACCTCCCTCCGCTCTGCTTCTGG
ACGACCGTGGTGGCCGGCCCTTGGGAGCCCTGGAGCCAGCTGCCCTGCTGCTCTCCAGTCAGTAGCGAAGCTCC
TACCAACAGCACCAACAGCCGTGGGCCAGAGGTCTCTGCCAAATATGGGGCCTGCCAGTGGTGGAA
CACTGCTCTTATGTAACAGGCCCTTGTAAAAAAACAAATTCCAATGTGAAACTAGAAATGAGAGGGAAAGAG
ATAGCATGGCATGCCAGCACACAGCGTCTCCAGTCATGCCCTCCAGGGTCTGGGATGCATCCAAAGTGG
TTGCTGAGACAGAGTTGAAACCCCTCACCAACTGCCCTTCCACATTATCCGCTGCCACCGGGCTGC
CCTGCTCTACTGCAATTAGGACCCAGCTTGGGCTGCCGTGCTGCCCTGCCAGTCAGCCGAGGATGTAGTTG
TTGCTGCCGTGCTCCACCACTCAGGGACCAAGGGCTAGGTGGACTGCCCTCACCAGGTCTGGGCTC
GGACCCAACCTCTGGACCTTCCAGCGTGTATCAGGCTGTTGGGACACAGGAGAGGACAGCCGAGCTCAGGAGAGA
TTTCTGACAATGTACGCCCTTCCCTCAGAAATTAGGAGAGAGACTGTCGCCCTGCCCTCCTCCGGTGTGCGTGA
GAACCCGTGTGCCCTTCCACCATATCCACCCCTGCCCTCATTTGAAACTCAAACAGGAGAACTAAGTGAC
CTGGCTCTCCCCAGTCCCCAGTTCACCCCTCCACCTCCACTCTAACGGGATATCAACACTGCC
AGCACAGGGCCCTGAATTATGTTTATACATTAAAGATGCACTTATGCTATTAAATAAA

FIGURE 142

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962
><subunit 1 of 1, 837 aa, 1 stop
><MW: 92750, pI: 7.04, NX(S/T): 6
MLRTAMGLRSWLAAPWGALPPRPLL LLLLQPPPPTWALSPRISLPLGSEERPFLRF
EAEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEEKQQCSFKG
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEGNVLLEDGKGRC
FDPNFKSTALVVDGELYTGTVSSFQGNDPAISRQSRLRPTKTESSLNLQDPAFVASAYIPE
SLGSIQGDDDKIYFFFSETGQEFEFFENTIVSRIARIICKGDEGGERVLQQRWTSFLKAQLLC
SRPDDGFPFNVLQDVFTLSPSPQDWRTLFYGVFTSQWHRGTTEGSACVFTMKDVQRVFSG
LYKEVNRETQQWYT VTHPVPTPRPGACITNSARERKINSSLQLPDRVLFNFKDHFLMDGQVR
SRMILLQHQARYQRVAVHRVPGLHHTYDVLFLGTGDGRHLHKAVSVGPRVHIIEELQIFSSGQ
PVQNLLLDTHRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP
QLATRPWIQDIEGASAKDLCASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR
LWLRNGAPVN ASASCHV LPTG D L L V GTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQ
TDEGGSVPVIISTSRVSAPAGGKASWGADRSYWK EFLVMCTL FVLAVLLPVLFLLYRH RNSM
KVFLKQGECASVHPKTCVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFT ESEKR
PLSIQDSFVEVSPVCPRPRVRLGSEIRDSVV
```

Transmembrane domains:

amino acids 23-46 (type II), 718-738

FIGURE 143A

FIGURE 143B

TTAATTTATATTCTTACTGTTACTAAATATTAAGTGTCTTGACAATTTGGTGCTCATGTGTTGG
GACAAAAGTGAATGAATCTGCATTATACCAGAAAGTTAAATTCTCAGATCAAATGTGCCTTAATAAATTGTT
TTCATTTAGATTCAAACAGTGATAGACTTGCCATTTAACACGTCATTGGAGGGCTGCGTATTTGTAATAG
CCTGATGCTATTGGAAAATAAACAGTGAACAATATTTCTATTGACTTTCGAACCAACACGAAAAAA
ATTCCGTAGCTGAAGAATTGTATTACATTGGAGAGTAAAAACTAAACACGAAAAAA

FIGURE 144

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836
><subunit 1 of 1, 802 aa, 1 stop
><MW: 91812, pI: 9.52, NX(S/T): 3
MAARGRRRAWLSVLLGLVLGFVLASRLVLPRASELKAGPRRRASPEGCRSGQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGVQFFSSEG
SDTSVPPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLAEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEQLQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPAMYGAEYILDLLLLYKKHKKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKR
INQESGSLSFLNSNLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNVKLVLLLNFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESSLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDPKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 145

GGACAACC GTT GCT GGG GTCC CAGGC CTG AGGC AGG AC GG TACT CC GCT GAC AC CCT CCC
 TT CCG GC TTG AGG GTCC CAGC CTG GTGG CCCC CAGG AC GTT CGC ATGG CAG AGT GCT
 ACGG AC GAC GC CT **ATGA** AGC CCT TAG CTT CTAG TT GCG CTT GCT ATGG CTT CGT CTG
 TGCC GG CT TATCC GAG CATA ACT GTG ACAC CTG ATGA AGAG CAAA ACT TGA ATC ATT ATATA
 CAAG TTT AGAGA ACCT AGTAC GAAGT GTT CCCT GTGG GAG CCAG GT CGT GAG AAAA AATC
 TAACT CT CCAAA ACAT GTT ATT CTAT AGCAT CAAAG GG AT CAAA ATT TAAGG AGC TAG TTA
 CACAT GGAGAC GCTT CAACT GAGA ATGAT GTT TAACCA AT CCT AT CAGT GAAG AA ACT ACA
 ACT TT CCCT ACAGG AGG CTTCAC ACCGG AAATAGG AAAG AAAA ACAC CGG AAAGT ACCCC
 ATT CTGG TC GAT CAA ACCA AAACA AT GTT CCATT GTT GAT GCAG AGG AAC CT TAT ATT G
 AAAA ATGA AGAG GCC CAG AGC CAG AGC CCG AGC CAG CTG CAA AAC AA ACT GAGG CACCA AGA ATG
 TTGCCAGTTGTTACTGAATCATCTACAGTCCATATGTTACCTCATACAGTCACCTGTCAC
 CACTT TAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCCTCAGCTCT
 CAGGTGAAACTGCGATAGAAAAACCGAAGAGTTGGAAAGCACCCAGAGAGTTGGAATAAT
 GATGACATTTGAAAAAAATTAGATATTAATTACAAGTGCAACAGGC ACTT CTTAGTGA
 CACCAGCAACCCAGCATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAACGAAGCC
 TTGCTCTAGCAGCAGCAGCAGAACATAAATTAAAAACAAATGTATAAGTCCCAGTTATTGCCA
 GTAGGACGAACAAGTAATAAAATTGATGACATCGAAACTGTTATTACATGCTGTGTAATT
 TAGATCTAAACTCTATGAATATTAGATATTAAATGTGTTCCACCAGAGATGAGAGAAAAAG
 CTGCTACAGTATTCAATACATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTA
 AAAGTTAT**TAA**ACAATAATATAAAATTAAACCTACTTGATATTCCATAACAAAGCTGA
 TTTAAGCAAAC TG CATT TTT CACAGG AGA ATA ATC AT TCG TA ATT CAA AAC AGT GTAT
 AAAA AT ATT TT CT ATT GTAG TT CAA AT GTGCC AAC AT CTT AT GTG T CAT GTG TT ATG AACA
 ATT TT CAT AT GCA CT AAA ACCT AATT AAA ATT TT GG TT CAGG AAAA

FIGURE 146

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68864
><subunit 1 of 1, 350 aa, 1 stop
><MW: 39003, pI: 5.59, NX(S/T): 1
MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSPSGEPGREKKNSPK
HVYSIASKGSKFKELVTHGDASTENDVLTNPISEETTFPTGGFTPEIGKKKTESTPFWSI
KPNNVSIVLHAEPYIENEPEPEPAAKQTEAPRMLPVVTESSSTSPYVTSYKSPVTLDK
STGIEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDILKKILDINSQVQQALLSDTSNP
AYREDIEASKDHLKRSILALAAAEEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY
```

Signal peptide:

amino acids 1-19

FIGURE 147

CGGCTCGAGCGGCTCGAGTGAAGAGGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTG
 ACCTCCAAATCATCCATCCACCCCTGCTGTCATCTGTTCATAGTGTGAGATCAACCCACA
 GGAATATCC**ATG**CTTTGTGCTCATTGGTCTCAGTTCTACGAGCTGGTGTCAAGGACA
 GTGGCAAGTCACTGGACCGGGCAAGTTGTCCAGGCCTGGTGGGGAGGACGCCGTGTTCT
 CCTGCTCCCTTTCTGAGACCAGTGCAAGAGGCTATGGAAGTGCAGGTTCTCAGGAATCAG
 TTCCATGCTGTTGACCTACAGAGATGGGGAAAGACTGGAAATCTAACAGAGATGCCACA
 GTATCGAGGGAGAAGTGGAGACTGAGTTGTGAAGGACTCCATTGCAGGGGGCGTGTCTCTAAGGC
 TAAAAAAACATCACTCCCTCGGACATCGGCTGTATGGGTGCTGGTTAGTCCCAGATTAC
 GATGAGGAGGCCACCTGGGAGCTGCGGGTGGCAGCACACTGGGCTCACTCCTCTATTCCAT
 CGTGGGATATGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTCCCCCAGC
 CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGGATTGTCTTCAGACTCCAGAGCAAATGCA
 GATGGGTACAGCCTGTATGATGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCAT
 ATTGTGTTCCATCCACCTTGTGAGCAGAGTCATGAGGTGAATCAAAGGTATTGATAGGAG
 AGACGTTTCCAGCCCTCACCTGGCGCTGGCTTCTATTACTCGGGTTACTCTGTGGT
 GCCCTGTGTGGTGTGTCATGGGATGATAATTGTTCTCAAATCCAAAGGGAAAATCCA
 GGCGGAACGGACTGGAGAAGAACGACGGACAGGCAGAATTGAGAGACGCCGGAAACACG
 CAGTGGAGGTGACTCTGGATCCAGAGACGGCTACCCGAAGCTCTGCCTTCTGATCTGAAA
 ACTGTAACCCATAGAAAAGCTCCCAGGAGGTGCTCACTCTGAGAAGAGATTACAAGGAA
 GAGTGTGGTGGCTTCTCAGGGTTCCAAGCAGGGAGACATTACTGGGAGGTGGACGTGGAC
 AAAATGTAGGGTGGTATGTGGAGTGTGCGGATGACGTAGACAGGGGAAGAACAAATGTG
 ACTTTGTCTCCAACAATGGGTATTGGGTCTCAGACTGACAACAGAACATTGTATTTCAC
 ATTCAATCCCCATTTCAGCCTCCCCCCCAGCACCCCTCTACACGAGTAGGGTCTTCC
 TGGACTATGAGGGTGGACCATCTCTTCAATACAAATGACCAGTCCCTTATTATACC
 CTGCTGACATGTCAGTTGAAGGCTTGTGAGACCCCTATATCCAGCATGCGATGTATGACGA
 GGAAAAGGGGACTCCCATATTCATATGTCAGTGTCTGGGG**TGA**GACAGAGAACCCCTG
 CTTAAAGGGCCCCACACCACAGACCCAGACACAGCCAAGGGAGGTGCTCCGACAGGTGGC
 CCCAGCTCCTCTCGGAGCCTGCGCACAGAGACTCACGCCCTACTCTCCTTAGGGAGC
 TGAGGTTCTCTGCCCCCTGAGCCCTGAGCAGCAGGGCAGTCACAGCTCCAGATGAGGGGGAT
 TGGCCTGACCCCTGTGGGAGTCAGAACCCATGGCTGCCCTGAAGTGGGACGGAATAGACTCA
 CATTAGTTTAGTTGTGAAAACATCCAGCTAACGATCTGAACAAGTCACAACCTCC
 CAGGCTCCTCATTCAGTCACGGACAGTGATTCTGCCTCACAGGTGAAGAGATTAAAGAGA
 CAACGAATGTGAATCATGCTTGAGGTTGAGGGCACAGTGTGCTATTGCTAATGATGTGTTTA
 TATTATACATTTCACCATAAAACTCTGTTGCTTATTCCACATTAATTACTTTCTCTA
 TACCAAATCACCCATGGAATAGTTATTGAACACCTGCTTGTGAGGCTAAAGAATAAAGAG
 GAGGTAGGATTTCACTGATTCTATAAGCCCAGCATTACCTGATACCAAAACCAGGCAAAG
 AAAACAGAAGAAGAGGAAGGAAAACATCACGGTCCATATCCCTCATTAACACAGACACAAAAAA
 TTCTAAATAAAATTAAACAAATTAAACTAAACATATTAAAGATGATATATAACTACT
 CAGTGTGGTTGTCCCACAAATGCAGAGTTGTTAATATTAAATATCAACCAGTGTAAATT
 CAGCACATTAATAAAGTAAAAAGAAAACCATAAAAAAAAAAAAAAA

FIGURE 148

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866
><subunit 1 of 1, 466 aa, 1 stop
><MW: 52279, pI: 6.16, NX(S/T): 2
MAFVLILVLSFYELVSGQWQVTGPGKFWQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEE
ATWELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGY
SLYDVEISIIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCALC
GVVMGMIIIVFFSKKGKIQAELDWRRKHGQAEELRDARKHAVEVTLDPETAHPKLCVSIDLKTVT
HRKAPQEVPHSEKRFRKSVASQGFQAGRHYWEVDVGQNVGWWYVGVCRDDVDRGKNNVTLS
PNNGYWVLRLTTEHLYFTFNPHFISLPPSTPPTRGVFLDYEGGTISFFNTNDQSLIYTLT
CQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG
```

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 149

CCTTCACAGGACTCTCATTGCTGGTGGCA**ATG**ATGTATCGGCCAGATGTGGTGA
 GGAAAAGAGTTGTTGGAACCTGGTTATCGGCCTCGTCATCTCATATCCCTGATTGTC
 CTGGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAGAACCTACAA
 TTACTATAGCACATTGTCATTACAACGTACAAACTATATGCTGAGTTGGCAGAGAGGCTT
 CTAACAATTTACAGAAATGAGCCAGAGACTTGAATCAATGGTAAAAATGCATTATAAA
 TCTCCATTAAGGAAAGAATTGTCAGTCTCAGGTATCAAGTTCAACAGAACGCATGG
 AGTGGTGGCTCATATGCTGTTGATTGAGATTTCACTCTACTGAGGATCCTGAAACTGTAG
 ATAAAAATTGTTCAACTGTTTACATGAAAAGCTGCAAGATGCTGAGGACCCCTAAAGTA
 GATCCTCACTCAGTTAAAATTAAAAAAATCAACAAAGACAGAAACAGACAGCTATCTAAACCA
 TTGCTGCGAACACGAAGAAGTAAAACCTCTAGGTAGGTCTCAGGATCGTTGGTGGACAG
 AAGTAGAAGAGGGTGAATGCCCTGGCAGGCTAGCCTGCAGTGGATGGAGTCATCGCTGT
 GGAGCAACCTTAATTATGCCACATGGCTTGAGTGCTGCTCACTGTTACAACATATAA
 GAACCTGCCAGATGGACTGCTCCTTGGAGTAACAATAAACCTCGAAAATGAAACGGG
 GTCTCCGGAGAATAATTGTCATGAAAATACAAACACCCATCACATGACTATGATATTCT
 CTTGCAGAGCTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTGTCTCCCTGA
 TGCACTCCTATGAGTTCAACCAGGTGATGTGATGTTGTGACAGGATTGGAGCACTGAAAA
 ATGATGGTTACAGTCAAAATCATCTCGACAAGCACAGGTGACTCTCATAGACGCTACAACT
 TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTT
 AGAAGGAAAAACAGATGCATGCCAGGGTGAECTGGAGGACCACTGGTAGTTCAAGATGCTA
 GAGATATCTGGTACCTTGCTGGAATAGTGAGCTGGGAGATGAATGTGCAAAACCCAACAAG
 CCTGGTGTACTAGAGTTACGGCCTGCGGACTGGATTACTTCAAAACTGGTATC**TA**
AGAGACAAAAGCCTCATGGAACAGATAACATTTTTTGTTTTGGGTGTGGAGGCCATT
 TTTAGAGATAACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAAC
 TGTTGCTGATGCATGTATTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTG
 CCAGATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTATGTACATAGAGAAATAGATA
 ATACAATATTACATTACAGCCTGTATTCAATTGTTCTCTAGAAGTTGTCAAGATTGAC
 TTGTTGACATAAATTGTAATGCATATATAACAATTGAAGCACTCCTTCTTCAGTTCTC
 AGCTCCTCTCATTCAGCAAATATCCATTTCAGGTGCAGAACAGGAGTGAAAGAAAATA
 TAAGAAGAAAAAAATCCCTACATTATTGGCACAGAAAAGTATTAGGTGTTCTTAGT
 GGAATATTAGAAATGATCATATTCAATTGAAAGGTCAAGCAAAGACAGCAGAACATCAAC
 ACTTCATCATTAGGAAGTATGGAACTAAGTTAAGGAAGTCCAGAAAGAACGCAAGATATA
 TCCTTATTTCATTCACAAACTACTATGATAATGTGAAGAAGATTCTGTTTTGTG
 ACCTATAATAATTACAAACTCATGCAATGTACTTGTCAAGCAAATTAAAGCAAATAT
 TTATTAAACATTGTTACTGAGGATGTCAACATATAACAATAAAATATAACACCCCA

FIGURE 150

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871
><subunit 1 of 1, 423 aa, 1 stop
><MW: 47696, pI: 8.96, NX(S/T): 3
MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTD
KLYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSSQQKHGVLAHMLLICR
FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL
GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG
VTIKPSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPTNAVHRVCLPDASYEFQPGDV
MFVTGFGALKNDGYSQNHLRQAQVTLIDATTNEPQAYNDAITPRMLCAGSLEGKTDACQGD
SGGPLVSSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI
```

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 151

GTCGAAGGTTATAAAAGCTTCCAGCAAACGGCATTGAAGTTGAAGATACAACCTGACAGCA
CAGCCTGAGATCTTGGGGATCCCTCAGCCTAACACCCCACAGACGTAGCTGGTGGATTCCCG
CTGCATCAAGGCCTACCCACTGTCTCC**ATG**CTGGCTCTCCCTGCCTCTGTGGCTCTGGC
CGTGACCTTCTTGGTTCCCAGAGCTCAGCCCTTGGCCCTCAAGACTTGAAGAAGAGGGAGG
CAGATGAGACTGAGACGGCGTGGCCGCCCTTGCCGGCTGTCCCCTGCGACTACGACCAGTC
CGACACCTGCAGGTGCCCTGCAAGGAGCTACAGAGGGTCGGGCCGGCCTGCCTGTGCC
AGGACTCTCCAGCCCCGCCAGCCGCCGACCCGCCGCATGGGAGAAGTGCAGCATTGCC
CCGAAGAGGGCCGCGCAGTGGTCCACTGGTGTGCCCTTCTCCCCGGTCCTCCACTACTGG
CTGCTGCTTGGGACGGCAGCGAGGCTGCGCAGAAGGGGCCCGCTGAACGCTACGGTCCG
CAGAGCCGAACTGAAGGGCTGAAGCCAGGGGCATTATGTCGTTGCGTAGTGGCCGCTA
ACGAGGCCGGGCAAGCCGCGTCCCCAGGCTGGAGGAGAGGGCCTCGAGGGGCCGACATC
CCTGCCTTCGGGCCTTGCAGCCGCTTGCAGGCCAACCCCCGCACTCTGGTCCACGC
GGCCGTGGGTGGGCACGGCCCTGGCCCTGCTAAGCTGTGCCGCCCTGGTGTGGCACTTCT
GCCTGCGCGATCGCTGGGCTGCCCGCCGAGCCGCCGAGCCGAGGGCGCTC**TGA**
AAGGGCCTGGGGCATCTCGGGCACAGACAGCCCCACCTGGGGCGCTCAGCCTGGCCCCG
GGAAAGAGGAAAACCCGCTGCCTCCAGGGAGGGCTGGACGGCGAGCTGGAGGCCAGCCCCAG
GCTCCAGGGCACGGCGAGTCATGGTCTCAGGACTGAGCGCTTGTAGGTCCGGTACTT
GGCGCTTGTTCCTGGCTGAGGTCTGGGAAGGAATAGAAAGGGCCCCAATTTTTTA
AGCGGCCAGATAATAATGTAACCTTGCAGTTAAAAAAA

FIGURE 152

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874
><subunit 1 of 1, 238 aa, 1 stop
><MW: 25262, pI: 6.44, NX(S/T): 1
MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE
LQRVGPAACLCGPLSSPAQPPDPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA
AQKGPPLNATVRRAELKGLKPGGIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL
AVPPNPRTLVHAAGVGTALALLSCAALVWHFCLRDRWGCPRRAAARAAGAL
```

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAGAACGCTCCAGCTGAAGCCAATGCAGCCCTCGGCTCTCCGCGAAGAAGTTCC
 CTGCCCGATGAGCCCCGCCGTGCGTCCCCGACTATCCCCAGGCGGGGTGGGCACCGGG
 CCCAGCGCCGACGATCGCTGCCGTTGCCCTGGGAGTAGGATGTGGTGAAAGGATGGGG
 TTCTCCCTACGGGCTCACAA**ATG**GCCAGAGAAGATTCCGTGAAGTGTCTGCCTGC
 CTACGCCCTCAATCTGCTCTTGGTAATGTCCATCAGTGTGTTGCAGTTCTGCTGG
 TGAGGGACTACCTAATAATGTTCTCACCTTAAC TGAGAAACGAGGGTAGAGGAAGCAGTC
 ATTTGACTTACTTCTGTGGTCATCCGGCATGATTGCTGTTGCTGTTCCATTATCAT
 TGTGGGGATGTTAGGATATTGTGGAACGGTGAAAAGAAACTGTTGCTTGCATGGTACT
 TTGGAAGTTGCTTGTCACTTCTGTGTTAGAAGTGGCTGTGGCGTTGGACATATGAACAG
 GAACTTATGGTCCAGTACAATGGTCAGATATGGTCACTTGAAAGGCCAGGATGACAAATTA
 TGGATTACCTAGATATCGGTGGCTACTCATGCTGGAATTTCAGAGAGAGTTAAGT
 GCTGTGGAGTAGTATATTCACTGACTGGTTGAAATGACAGAGATGGACTGGCCCCAGAT
 TCCTGCTGTGTTAGAGAATTCCCAGGATGTTCAAACAGGCCACCAGGAAGATCTCAGTGA
 CCTTATCAAGAGGGTTGTTGGAAAGAAAATGTATTCCATTGGGTGACACAAATCCTGGCCATGATTCTCACC
 AGGTGCTGAGGTTCTGGGAATCTCCATTGGGTGACACAAATCCTGGCCATGATTCTCACC
 ATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTC
 CTTGAAAGAATGACAACCTCAGCACCTGTCATGTCCTCAGTAGAAGTGTGAAACCAAGCC
 TGTCAAGAATCTTGAACACACATCCATGGCAAACAGCTTAATACACACTTGGAGATGGAG
 GAGTTA**TAAA**AAGAAATGTCACAGAAGAAAACCACAAACTTGTATTGGACTGTGAATT
 TTTGAGTACATACTATGTTGTTAGAAATATGAGAAATAAAATGTTGCCATAAAATAACA
 CCTAAGCATATACTATTCTATGCTTAAATGAGGATGGAAAAGTTCATGTCATAAGTCAC
 CACCTGGACAATAATTGATGCCCTTAAATGCTGAAGACAGATGTCATACCCACTGTGTAGC
 CTGTGTATGACTTTACTGAACACAGTTATGTTGAGGCAGCATGGTTGATTAGCATT
 CGCATCCATGCAAACGAGTCACATATGGGGACTGGAGCCATAGTAAAGGTTGATTACT
 CTACCAACTAGTATATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA
 ACTTTATTACTCAGCGATCTATTCTGATGCTAAATAATTATATCAGAAAACCTTC
 AATATTGGTGAACACATTGTGATTTGCTGGTTACTAAAATATTCTTACCACTAAAAA
 GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTGGTATATAAGTCTGTGTTAA
 TCTGTATAATTCACTGATTTCTGATAATGTTAGAATAACCATTATGAAAAGGAAA
 ATTGTCCTGTATAGCATCATTATTTAGCCTTCCTGTTAAAGCTTACTATTCTGT
 CCTGGGCTTATATTACACATATAACTGTTATTAATACTTAACCACTAATTGAAAATTA
 CCAGTGTGATACATAGGAATCATTATTCAAGATGTAGTCTGGTCTTAGGAAGTATTAATAA
 GAAAATTGACATAACTTAGTGATTCAAGAAAGGACTTGTATGCTGTTCTCCAAATG
 AAGACTCTTTGACACTAACACTTTAAAAAGCTTATCTTGCCCTCTCCAAACAAAGAA
 GCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAATAGTGTCTTTCTCCAGAAAAAT
 GCTTGTGAGAATCATTAAACATGTGACAATTAGAGATTCTTGTGTTATTCACTGATTA
 ATATACTGTGGCAAATTACACAGATTATAAATTGTTACAAGAGTATAGTATATT
 GAAATGGAAAAGTGCATTTACTGTATTGTTGTTATTCTCAGAATATGGAA
 AGAAAATTAAATGTGTCATAAAATATTCTAGAGAGTAA

FIGURE 154

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880
><subunit 1 of 1, 305 aa, 1 stop
><MW: 35383, pI: 5.99, NX(S/T): 0
MAREDSVKCLRCLLYALNLLFWLMSISVLAWSAWMRDYLNNVLTLTAETRVEEAVILTYFPV
VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQ
WSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVFWDWLEMTEMDWPPDSCCVREF
PGCSKQAHQEDLSLDLYQEGCGKMYSLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL
YYDRREPQTDQMMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL
```

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 155

GAGAGAGGCAGCAGCTGCTCAGCGGACAAGGATGCTGGCGTGAGGGACCAAGGCCTGCC
 TGCACTCGGGCCTCCAGCCAGTGCTGACCAGGGACTTCTGACCTGCTGCCAGCCAGGA
 CCTGTGTGGGGAGGCCCTCCTGCTGCCCTGGGTGACAATCTCAGCTCCAGGCTACAGGGAG
 ACCGGGAGGATCACAGAGCCAGC**ATGTT**ACAGGATCCTGACAGTGTCAACCTCTGAACAGC
 CTCGATGTCAAACCCCTGCGCAAACCCGTATCCCCATGGAGACCTCAGAAAGGTGGGAT
 CCCCACATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGCCATCAAGG
 TGATTCTGGATAAATACTACTTCCCTGCGGGCAGCCTCTCCACTTCATCCGAGGAAGCAG
 CTGTGTGACGGAGAGCTGGACTGTCCCTGGGGAGGACGAGGAGCACTGTGTCAAGAGCTT
 CCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGG
 ACTCGGCCACAGGGAACTGGTTCTCTGCCTGTTGACAACTTCACAGAACGCTCGCTGAG
 ACAGCCTGTAGGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCAGACCAGGATCTGGA
 TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTCGCATCGGAACCTCAAGTGGGCCCTGTC
 TCTCAGGCTCCCTGGTCTCCCTGCACTGTCTGCCGTGGGAAGAGCCTGAAGACCCCCCGT
 GTGGTGGGTGGGAGGAGGCCTCTGTGGATTCTTGGCCTGGCAGGTACGCATCCAGTACGA
 CAAACAGCACGTCTGGAGGGAGCATCCTGGACCCCCACTGGTCCTCACGGCAGCCCAGT
 GCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCAGGCTCAGACAAACTGGC
 AGCTTCCCATCCCTGGTGTGGCAAGATCATCATCATTGAATTCAACCCATGTACCCCAA
 AGACAATGACATGCCCTCATGAAGCTGCAGTCCCACACTTCAGGCACAGTCAGGC
 CCATCTGTCTGCCCTTCTTGATGAGGAGCTCACTCCAGCCACCCACTCTGGATCATGG
 TGGGGCTTACGAAGCAGAATGGAGGGAAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCA
 GGTCAATTGACAGCACCGGTGCAATGCAGACGATGCGTACCGAGGGAAAGTCACCGAGAAAGA
 TGATGTGTGCAGGCATCCCGAAGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCC
 CTGATGTACCAATCTGACCAAGTGGCATGTGGTGGCATCGTAGCTGGCTATGGCTGCC
 GGGCCCGAGCACCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATG
 TCTGGAAGGCTGAGCT**TAA**TGCTGCTGCCCTTGCAGTGCTGGAGGCCCTCCTG
 CCCTGCCACCTGGGATCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTGGTACACCC
 CTCTGCCACAGCCTCAGCATTCTGGAGCAGCAAAGGGCTCAATTCTGTAAGAGACCC
 TCGCAGCCCAGAGGCAGGGAGACACAGCCCAGAGGAAGTCAGCAGCCCTAGCTGCCACACTGGTGCTCCC
 AGCATCCCAGGGAGAGACACAGCCCAGAGGAAGTCAGCAGGCCCTAGCTGCCACACTGGTGCTCCC
 GGAACCTTCCCACACTACTGAATGGAAGCAGGCTGTCTGTAAAAGCCCAGATCACTGTGG
 CTGGAGAGGAGAAGGAAAGGGTCTGCCAGCCCTGTCCGTCTCACCCATCCCCAAGCCTA
 CTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCACTGTGGTATGACTACCGTT
 ACCTACTGTTGTCATTGTTATTACAGCTATGCCACTATTATAAGAGCTGTGTAACATCT
 CTGGCAAAAAAAA

FIGURE 156

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885
><subunit 1 of 1, 432 aa, 1 stop
><MW: 47644, pI: 5.18, NX(S/T): 2
MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYF
LCGQPLHFI PRKQLCDGELDCPLGEDEEHCVKSFP EGP AVAVRLSKDRSTLQV L DSATGNWF
SACFDNFTEAL AETACRQM GYSRAVEIGPDQDL DVVEITENSQEL RMRNSSGPCLSGSLVSL
HCLACGKSLKTP RVVGEEASV DSWPWQV SIQYDKQHVC GGSILD PHW VLTA AHCF RKHTDV
FNWKVRAGSDKLGSF PSLAVAK IIIIEFNPMYPKDNDIALMKLQFPLTFS GTVRP ICLP FFD
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDT CQGD SGGPLM YQSDQWHVV GIVSWGYGC GGPSTPGV YT KVSAYLNWIYNVWKAEL
```

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 157

GGGCTGAGGCACTGAGAGACCGGAAAGCCTGGCATTCCAGAGGGAGGGAAACGCAGCGGCATCCCAGGCTCCAG
 AGCTCCCTGGTACAGTCTGGCTGAGC**ATGGCCCTCCAGCCCTGGCCTGGACCCCTGGAGCCTCTGGGCC**
 TTTTCCCTTCCAAC TGCTCAGCTGCTGCCAGCAGACGCCGGGGAGGCAGGGCAGGGCCATGCCA
 GGGTCAGATACTATGCAGGGATGAACGTAGGGACTTAGCTTCTCACCAGAAGGGCCTCAGGATTGACA
 CTCTGCTCTGAGTGGTATGGAAATACTCTACGTGGGGCTCGAGAACGCCATTCTGGCCTGGATATCCAGG
 ATCCAGGGTCCCCAGGCTAAAGAACATGATACCGTGGCCAGCCAGTGACAGAAAAAGAGTGAATGTGCCTTA
 AGAAGAAGAGCAATGAGACACAGTGTTCAACTTCATCCGTGCTGGTTCTTACAATGTCACCCATCTAC
 CCTGGGCACCTTCGCCTCAGCCCTGCTTACCTCATTAAGATTCTACCTGTTGCCATCTCGG
 AGGACAAGGTCAAGGAGGGAAAAGGCCAAAGCCCCTTGACCCGCTCACAGCATA CGCCTGCTGGGATG
 GGATGCTCTATTCTGGTACTATGAACAACTTCCCTGGCAGTGAGCCCATTGATGCGCACACTGGGATCCCAGC
 CTGTCCTCAAGACCGACAACCTCCCTGGCAGTGATCATGACGCCCTTGTGGCAGCCATCCCTCGACCC
 AGGTCGCTACTTCTTCTCGAGGAGACAGCCAGCGAGTTGACTTGTGAGAGGCTCCACACATCGGGTGG
 CTAGAGTCTGCAAGAATGACGTGGCGCGAAAAGCTGCTGCAGAAGAAGTGGACCACCTCCTGAAGGCCAGC
 TGCTCTGCACCCAGCCGGGAGCTGCCCTCAACGTCATCCGCCACGCCCTGCTCCCCGCCGATTCTCCA
 CAGCTCCCCACATCTACGCAGTCTCACCTCCAGTGGCAGGTTGGCGGGACCAGGAGCTGCGGTTGCGCT
 TCTCTCTGGACATTGAACGTGTCTTAAGGGAAATAACAAAGAGTGAACAAAGAAACTTCACGCTGGACTA
 CTTATAGGGGCCCTGAGACCAACCCCCGGCCAGGCAGTTGCTCAGTGGCCCTCCTGATAAGGCCCTGACCT
 TCATGAAGGACCATTCTGATGGATGAGCAAGTGGTGGGAGCGCCCTGCTGGTGAATCTGGCGTGGAGTATA
 CACGGCTTGCAGTGGAGACAGCCAGGGCTTGTGGCACAGCCATCTGTCATGTACCTGGGAACCACACAG
 GGTGCGTCCACAAGGCTGTGTAAGTGGGACAGCAGTGCTCATCTGGTGGAGAGATTGAGCTGTTCCCTGACC
 CTGAACCTGTTGCAACCTGCAGCTGGCCCCACCCAGGTGCAGTGTTGAGGCTCTCAGGAGGTGCTGG
 GGGTGCCCGAGCCAACGTAGTGTCTATGAGAGCTGTGACTGTGCCCTGCCGGGACCCCCACTGTGCCT
 GGGACCCCTGAGTCCGAACCTGTTGCCCTGTCTGCCCTAACCTGAAACTCTGGAAAGCAGGACATGGAGCGGG
 GGAACCCAGAGTGGCATGTGCCAGTGGCCCATGAGCAGGAGCCTTGGCCTCAGAGCCGCCGAAATCATTA
 AAGAAGTCCTGGCTGTCCCCACTCCATCCTGGAGCTCCCTGCCCTACCTGTCAGCCTGGCTCTTATTATT
 GGAGTCATGGCCAGCAGCAGTCCAGAGCAGCTCTTCAACTGTCTACAATGGCTCCCTTGCTGATAGTCAGG
 ATGGAGTTGGGGTCTTACCAAGTGTGGCAACTGAGAATGGCTTTCATACCTGTGATCTCTACTGGTGG
 ACAGCCAGGACCAGCCCTGCCCTGGATCCTGAACTGGCAGGCATCCCCGGAGCATGTGAAGGTCCCGTTGA
 CCAGGGCAGTGGGGCCGCCCTGGCTGCCAGCAGTCTACTGCCCTACTTGTCACTGTCACTGTCT
 TTGCTTAGTGCTTCAAGGAGCCCTCATCATCCTCGTGGCCTCCCCATTGAGAGCAGTCCGGCTGGGCAAGG
 TTCAGGGCTGTGAGACCCCTGCCCTGGGAGAAGGCCCTGTTAAGCAGAGAGCAACACCTCCAGTCTCCAAGG
 AATGCAGGACCTGCCAGTGATGTGGACGCTGACAACAACTGCCCTAGGCACTGAGGTAGCT**TAA**ACTCTAGGCA
 CAGGCCGGGCTGCCGTGAGGACCTGGCCATGCTGGCTGGCAGGCCAAGCAGGCCCTGACTAGGATGACAG
 CAGCACAAAAGACCACCTTCTCCCTGAGAGGAGCTTGCTACTGTCATGACACTCAGCAGGGTG
 ATGCACAGCAGTGCCTCCCTATGGACTCCCTACCAAGCAGCATGAGCTCTAACAGGGTGGGGCTAC
 CCCCAGACCTGCTCTAACACTGATATTGAAGAACCTGGAGAGGATCCTCAGTTCTGGCATTCCAGGGACCC
 CAGAAACACAGTGTTCAGAGACCCCTAAAAAACCTGCCCTGCTCCCAGGACCCATTGTAATGAACACCAAACATC
 TAAACAATCATATGCTAACATGCCACTCCCTGGAAACTCCACTCTGAAAGCTGCCCTGGACACCAACACTCC
 TCTCCCAAGGTCTGAGGATCTGCTCCCTCCTGCTTACCAAGTGTGACCCGCTGACTCCAGGAAGTC
 TTTCTGAGTCTGACCACCTTCTGCTTACCAAGTGTGGGAGACTCTGATCCCTCTGCCCTGGCAGAATGG
 CAGGGTAATCTGAGCCTTCTCACTCCTTACCCTAGCTGACCCCTCACCTCTCCCCCTCCCTTCTTGT
 TTTGGGATTCAAGAAAATGCTGTCAGAGACTGTTATTTTATTAAAAATATAAGGCTTAAAAAA

FIGURE 158

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166
><subunit 1 of 1, 761 aa, 1 stop
><MW: 83574, pI: 6.78, NX(S/T): 4
MALPALGLDPWSLLGLFLFQLLQLLPTTAGGGGQGPMPRVRYAGDERRALSFFHQKGLO
DFDTLLLSDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSEAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGMTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHDASFVAAIPSTQVVYFFF
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFMKDHFIMDEQVVGTPLLVKSGVEYTRLAVETAQGLDGHSHLVM
YLGTTT GSLH KAVV SGDSS AHL VEE IQL FPD PEP VRNL QLAP TQG AVF VGFS GG VWR VPRAN
CSVYES CVDC VL ARDP HCA WDP E RT CCL L SAP NL NSW K QDM ERGN PEW ACAS GPM SRS LRP
QSRPQIIKEV LA VPNS ILEL PCPH LS AL AS YY WSH GP AA VPE AS STV YNG SLL I VQDG VGG
LYQC WA TENG FS YPV IS YW VD S QD QTL A LD P E L A G I P REH V KV PL TR VSG G A AL A QQ SY WP
HFVT VT VL FAL VLS GAL I I L VAS PL RAL RARG KV QGC ET LRP GEKA PL SRE QHL QSP KEC RT
SAS D VD A DN NCLG TEVA
```

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTTAGCCGGCGCAGGGCGCGAGCCCAGGCTGAGATCCGCGGCTCCGTAGAAG
TGAGC**ATG**GCTGGCAGCGAGTGCTTCTCTAGTGGCTTCCTCTCCCTGGGGCCTGCTC
 TCAGAGGCTGCCAAATCCTGACAATATCTACAGTAGGTGGAAGCATTATCTACTGATGGA
 CGGGTTCTCAGATTCTCAAGATCACGGTCATAATGTCACCATGCTAACCAAAAGAG
 GTCCTTTATGCCAGATTTAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCTTGCA
 CCTGAAGATCATCAAAGAGAATTAAAAAGAGTTGATTCTTCTGGAAGAAACTTTAGG
 TGGCAGAGGAAAATTGAAAACCTTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTC
 ATTTTTAAATAGAAAGGATATCATGGATTCCCTAAAGAATGAGAACCTCGACATGGTGATA
 GTTGAACACTTTGACTACTGTCCTTCCTGATTGCTGAGAAGCTGGGAAGCCATTGTGGC
 CATTCTTCCACTTCATTGGCTCTTGAATTGGCTACCAATCCCCTTGTCTATGTC
 CAGTATTCCGTTCTGCTGACTGATCACATGGACTTCTGGGCCGAGTGAAGAATTTCTG
 ATGTTCTTAGTTCTGCAGGAGGCAACAGCACATGCAGTCTACATTGACAAACACCATCAA
 GGAACATTCACAGAAGGCTCTAGGCCAGTTGCTCATCTCTACTGAAAGCAGAGTTGT
 GGTCATTAACCTGACTTGCCTTGATTTGCTCGACCTCTGCTTCCAACACTGTTTAT
 GTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCAAGACTGGAGAACATTGCTTGC
 CAAGTTGGGACTCTGGTTTGCCTTGACCTGGCTCCATGGTAACACCTGTCAGA
 ATCCGAAATCTCAAGGAGATGAACAATGCCTTGCTCACCTACCCCAAGGGGTGATATGG
 AAGTGTCACTGTTCTCATTGGCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGA
 CTGGCTTCTCAGAGTGACCTCCTGGCTACCCAAGCATCCGTCTGTTGTCACCCACGGCG
 GGCAGAATAGCATATGGAGGCCATCCAGCATGGTGTGCCATGGTGGGATCCCTCTCTT
 GGAGACCTGAAACATGGTCCGAGTAGAAGCCAAAAGTTGGTGTGTTCTATTGAGTT
 AAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGAT
 ACAAGTCCGGCAGTGGCTGCCAGTGTCACTCCTGCGCTCCACCCGCTCAGCCCCACACAG
 CGGCTGGTGGCTGGATTGACCACGTCCAGACAGGGGGCGCGACGCACCTCAAGCCCTA
 TGTCTTCAGCAGCCCTGGCATGAGCAGTACCTGTTGACGTTTGTGTTCTGCTGGGC
 TCACTCTGGGACTCTATGGCTTGAGCTGCTGGCATGGCTGTCTGGTGGCTGCGT
 GGGGCCAGAAAGGTGAAGGAGACA**TAA**GGCCAGGTGCGCCTGGGGGTCTGTTGGTGG
 GCGATGTCAACCATTCTAGGGAGCTTCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTC
 TAGTTATCTCCTGTTCTTGAGAACAGGAAAATGCCAAAATCATCCTTCCACTTGC
 TAATTGCTACAAATTCACTCCTACTAGCTCCTGCCTGCTAGCAGAAATCTTCCAGCCT
 CTTGCTCCTTGTGCTGCCATCAGCAAGGGCTATGCTGTGATTCTGCTCTGAGTGACTTG
 GACCACTGACCTCAGATTCCAGCCTAAAATCCACCTCCTCTCATGCGCCTCTCCGAA
 TCACACCCTGACTCTCCAGCCTCCATGTCAGACCTAGTCAGCCTCTCACTCCTGCC
 TACTATCTATCATGGAATAACATCCAAGAAAGACACCTGCATATTCTTCAGTTCTGTT
 TGTTCTCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCA
 CGGACACAGGCTCACAGGTCTCCACATTGGTCCCTGTCTGGTCCCCACAGTGAGCTC
 TCTTGGCTGAGCAGGCATGGAGACTGTAGGTTCCAGATTCTGAAAATAAAAGTTACA
 GCGTTATCTCTCCCCAACCTCACTAA

FIGURE 160

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71169
><subunit 1 of 1, 523 aa, 1 stop
><MW: 59581, pI: 8.68, NX(S/T): 1
MAGQRVLLLGVFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVMTMLNHKRGPFMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFFLEETLGGRGKFENLLNVLEYLALQCSHFLNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPVFRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLKAELWFINSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLSMVNTCQNPEIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQNSIMEAIQHGVPVMVGIPLFQGDQOPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYKSAAVAASVILRSHPPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDFVFVFLGLTLGTLWLCGKLLGMAVWWLRGARKVKET
```

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

FIGURE 161

GGGCTGTTGATTGTGGGGATTTGAAGAGAGGAGGAATAGGAGGAAGGGGTTGAGGGGCT
 GCCTCTGGCATATGCACACACTCACACATTCTGTACACCCGTACACACACATACCATGTT
 CTCCATCCCCCAGGTCCAGCCCTCAGTGTCTGCCATCCAGCAGGGCTACCCCTGAAGCTCT
 GGCTGCAGCCCTCCCCTCAGTGGGCAGGCGGCTTCATCCCTCCTTCTCTCCAAAGGCCA
 ACTGCTGTCAGTGCATGCTGCCAAGGAGGAGGAACTGCAGTGACAGCAGGAGTAAGAGT
 GGGAGGCAGGACAGAGCTGGGACACAGGTATGGAGAGGGGTTCAGCGAGCCTAGAGAGGGC
 AGACTATCAGGGTGCCGGTGGAGAATCCAGGGAGAGGAGCGGAAACAGAACAGAGAGGGCAGA
 AGACCGGGGCACTTGTGGGTTGCAGAGCCCTCAGCC**ATG**TGGGAGCCAAGCCACACTGGC
 TACCAAGGTCCCCTACACAGTCCGGCTGCCCTGGTTCTGGTGCTTCTGCCCTGGGGC
 GGGTGGGCCAGGAGGGTCAGAGCCCCTGCTGGAGGGGAGTGCCTGGTGGTCTGTGA
 GCCTGGCCGAGCTGCTGCAGGGGGCCCGGGGAGCAGCCCTGGGAGAGGCACCCCTGGC
 GAGTGGCATTGCTGCGGTCCGAAGCCACCACCATGAGCCAGCAGGGAAACCGGCAATGGC
 ACCAGTGGGGCCATCTACTCGACCAGGTCTGGTGAACCGAGGGCGGTGGCTTGACCGGGC
 CTCTGGCTCCTCGTAGCCCTGTCCGGGTGTCAGCTCCGGTTCCATGTGGTGAAGG
 TGTACAACCGCCAAACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTATCTCAGCC
 TTTGCCAATGATCCTGACGTGACCCGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTGGA
 CCCTGGGACCGAGTGTCTGCGCCTGCGTCGGGAAATCTACTGGTGGTGGAAATACT
 CAAGTTCTGGCTTCCATCTTCCCTCTC**TGA**GGACCCAAGTCTTCAAGCACAAGAAT
 CCAGCCCTGACAACCTTCTTCTGCCCTCTTGCATGGCACCTGTGCCAAACACCCAAGTTAA
 GAGAAGAGTAGAGCTGTCATCTCCAGACCAGGCCTTCCACCCACCCACCCAGTTACC
 CTCCCAGCCACCTGCTGCATCTGTTCTGCCTGCAGCCCTAGGATCAGGGCAAGGTTGGCA
 AGAAGGAAGATCTGCACTACTTGCCTCTGCTCCTCCGGTCCCCACCCAGCTTCC
 GCTCAATGCTGATCAGGGACAGGTGGCGAGGTGAGCCTGACAGGCCACAGGAGGCCAG
 ATGGACAAGCCTCAGCGTACCCCTGCAGGCTTCTCCTGTGAGGAAAGCCAGCATCACGGATC
 TCAGCCAGCACCCTGCAAGCTGAGCCAGCACCCTGAGGCTAGGGTGGGAGGCTCAGCCAC
 AGGCAGAAGGGTGGGAAGGGCTGGAGTCTGTTCTGGTGGAGGAAGGAAGGAGGGTGTATTG
 TCTAGACTGAACATGGTACACATTCTGCATGTATAGCAGAGCAGCCAGCAGGTAGCAATCCT
 GGCTGTCTTCTATGCTGGATCCCAGATGGACTCTGCCCTTACCTCCCCACCTGAGATTAG
 GGTGAGTGTGTTGCTCTGGCTGAGAGCAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG
 ACCATGGAAAACATCGATAACCCTGACATCCTCTGCTTGGCACCTCTGAAACTGCTCCAC
 CTTTGAAGTTGAACCTTACTGCTCCACACTCTGACTGCTGCCTCCTCCTCCAGCTCTC
 TCACTGAGTTATCTTCACTGTACCTGTTCCAGCATATCCCCACTATCTCTTCTCTGAT
 CTGTGCTGTCTATTCTCCTCTAGGCTTCTATTACCTGGGATTCCATGATTCAATTCTT
 CAGACCCCTCTGCCAGTATGCTAAACCCCTCTCTCTTCTTATCCCCTGTCCTCATT
 GGCCCAGCCTGGATGAATCTATCAAATAAAACAACAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG
 AGAATTACTAAGGAGAAGATGCCCTGGAGTTGGATCAGGTACAGGTACAAGTAGGTA
 TGTTGCAGAGGAAAATAATCAAACGTATACTAAAATTAAAAA

FIGURE 162

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180
><subunit 1 of 1, 205 aa, 1 stop
><MW: 21521, pI: 7.07, NX(S/T): 1
MLGAKPHWLPGPLHSPGLPLVLLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGA
ALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVY
SFRFHVVVKVYNRQTVQVSLMLNTWPVISAFAANDPDVTREAATSSVLLPLDPGDRVSLRLRRG
NLLGGWKYSSFSGFLIFPL
```

Signal peptide:

amino acids 1-32

FIGURE 163

GCTTTCTCGGCCACCACTGGCCGCCGGCCGCAGCTCCAGGTGTCCTAGCCGCCAGC
 CTCGACGCCGTCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGCCGGGCAT
 GGGCAGGGCGCGGGTGAAGCGCTTCCCGCGGGCCGTGACTGGCAGGCTCAGGCC**AT**
GAAGACCCTCATAGCCGCCTACTCCGGGTCTGCGCGAGCGTCAGGCCGAGGCTGACC
 GGAGCCAGCGCTCTCACGGAGGACCTGCCTGTCGCGAGGGCTGGAGATGGGCACT
 GGATCCAGCATTCTCCGCCCTCCAGGACCTCTCTGTCACCTGGCTCAATAGGTCAA
 GGTGGAAAAGCAGCTACAGGTATCTCAGTGCTCCAGTGGCTCTGTCCTCCTGTACTGG
 GAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTATCGCTGTG
 CTCTACTTCACTTGGCTGGTGTGACTGGAACACACCCAAGAAAGGTGGCAGGAGGTACA
 GTGGGTCCGAAACTGGGCTGTGGCGCTACTTCGAGACTACTTCCCATTCCAGCTGGTGA
 AGACACACAAACCTGCTGACCACAGGAACATATATTTGGATACCACCCCCATGGTATCATG
 GGCCTGGGTGCCTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTCCCAGG
 CATACGGCCTTACCTGGCTACACTGGCAGGCAACTCCGAATGCCGTGTTGAGGGAGTACC
 TGATGTCTGGAGGTATCTGCCCTGTCAGCCGGACACCATAGACTATTGCTTCAAAGAAT
 GGGAGTGGCAATGCTATCATCGTGGTCGGGGTGCAGCTGAGTCTCTGAGCTCCATGCC
 TGGCAAGAACATGCAGTCACCCCTGGGAACCGCAAGGGCTTGTGAAACTGGCCTGCGTCATG
 GAGCTGACCTGGTCCCACACTCCTTGGAGAGAACATGAAGTGTACAAGCAGGTGATCTC
 GAGGAGGGCTCCTGGGCCGATGGTCCAGAAGAACATACATTGGTTGCC
 ATGCATCTCCATGGTCAGGCCTTCTCCTCCGACACCTGGGGCTGGTGCCTACTCCA
 AGCCCATCACCACACTGTTGGAGAGCCCATCACCACCCAAAGCTGGAGCACCCAAACCCAG
 CAAGACATCGACCTGTACACACCATGTACATGGAGGCCCTGGTAAGCTCTCGACAAGCA
 CAAGACCAAGTCGGCCTCCGGAGACTGAGGTCCGGAGGTGAAC**TGA****GCCAGCCTCGGG**
 GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTGTCTGTAATTGGAAAGTGTCA
 TGGGTGCTGTGGTTATTAAAAGAAATTATAACAATTGCTAAACCAAAAAAAA
 AAAAAAAA
 AAAAAAAA

FIGURE 164

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184
><subunit 1 of 1, 388 aa, 1 stop
><MW: 43831, pI: 9.64, NX(S/T): 3
MKTLLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNR
KVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVDWNTPKGGRRS
QWVRNWAHWRYFRDYFPIQLVKTHNLLTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFP
GIRPYLATLAGNFRMPVLREYLMGGICPVSRTIDYLLSKNGSGNAIIVVGGAAESLSSM
PGKNAVTLRNRKGFKLALRGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFA
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPIТИPKLEHPTQQDIDLHYHTMYMEALVKLFDK
HKTGFGLPETEVLEVN
```

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-
245, 318-323, 378-383

FIGURE 165

GGGCGCGGGGATGGGGCCGGGGCGGGCGCCGCACTCGCTGAGGCCCGACGCAGGGCCGGCCGGCCA
 GGGCGAGGAGCGCGGCGGCCAGAGCAGGGCGGGAGGCACGCCGCGACGAGCAGGTGGCG
 GCGGCTGCAGGCTTGTCCAGCCGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGCTGACCTTGCGCTTGGA
 CGGCTGTCTCAGCGAGGGCGGTGCACCCGCTCTGAGCAGCGCC**ATG**GGCCTGCTGGCCTTCCTGAAGACCCA
 GTTCGTGCTGCACCTGCTGGTCGGCTTGTCTCGTGGTAGTGGCTGGTCATCAACTCGTCCAGCTGTGCAC
 GCTGGCGCTCTGCCGGTCAGCAAGCAGCTTACCGCCGCTCAACTGCCGCTGCCACTCACTCTGGAGCCA
 ACTGGTCATGCTGCTGGAGTGGTGGCTGCACGGAGTGTACACTGTTACGGACCAGGCCACGGTAGAGCGCTT
 TGGGAAGGAGCACCGCAGTCATCATCCTCAACCACAATTGAGATCGACTTCCTCTGTGGGTGGACCATGTGTGA
 GCGCTTCGGAGTGTGGGGAGCTCCAAGGTCTCGCTAAGAAGGAGCTGCTTACCGTCCCCCTCATGGCTGGAC
 GTGGTACTTTCTGGAGATTGTGTTCTGCAAGCGGAAGTGGGAGGAGGACCGGGACACCGTGGTGAAGGGCTGAG
 GCGCCTGCGACTACCCCGAGTACATGTGGTTCTCTGTACTGCGAGGGGACCGCCTCACGGAGACCAAGCA
 CCGCGTTAGCATGGAGGTGGCGGCTGCTAAGGGCTTCTGCTCAAGTACCACTGCTGCCGCGGACCAAGGG
 CTTCACCACCGCAGTCAGTGCCTCCGGGGACAGTCGAGCTGTCTATGATGTAACCTGAACATTCAAGAGGAAA
 CAAGAACCGTCCCTGCTGGGATCCTCTACGGGAAGAAGTACGAGGGGACATGTGCGTGAGGAGATTTCTCT
 GGAAGACATCCCGCTGGATGAAAGGAAGCAGCTCAGTGGCTCATAAACTGTACCAAGGAGAAGGACCGCCTCCA
 GGAGATATATAATCAGAACGGGATGTTCCAGGGAGCAGTTAACGCTGCCGGAGGCCGTGGACCCCTCTGAA
 CTTCCCTGCTGGCCACCATCTCTGTCTCCCCTTCTCAGTTGTCTGGCGCTTGGCCAGCGGATCACC
 TCTCCTGATCCTGACTTTCTGGGTTGTGGGAGCAGCTCCTTGGAGTTCGCAACTGATAGGAGAACGCT
 TGAACTGGGAGGTGGAGATTGCA**TG**GCTGAGATGGCATCACTGTACTCCAGCTAGGCAACAGAGCAAGACT
 CAGTCTAAAAAAAAAAAAACAAAAACCCAGAAATTCTGGAGTTGAACGTGTAGTTACTGACATGAAAA
 ATTCACTAGAGGCTGAACAGCAGATTGAGCAGGGAGAAAAATCAGCAAGCTGAAGATGGTACCTTGAGATT
 TTTCAGGCTAATGAAAAAATGAAGGAAAATTAAACAGCCTCAGAGACCCATGGTGCACCGTCACACAAATCAA
 CATATGCATGATGAGAGTCCAGAAGGAGAGGAGAAAGGGTCAGAAAGAATGCCACAAGCTGATGAAAAACA
 GTAACCTACCCACTCAGGAAGCTCAGTGAACCTCAATGAGGATGAATATCAGAGATCCACACCTAGATATTCAT
 AATCAAAGTGTCAAATGACAAAGAATCTGAAAGCAGCAAGAGATGAGCAACTTATCTGTTCAAAGGATTTG
 ATCAGATTAACAGCTCATTCTCTCAGAAATCATGGGAGGCCAGGAGATAGTGGGATGAACACTGTTGAAGGCAA
 AACCTCAACTGTAATTATTGGACTTTGAGTCTTAGATGGCCTGACCTCTTGCTTCAGGGACAGTTTCA
 ATTTAATCCCTAATAACAATTAGTCAGCTTCTTGACCTGTAGGAAGGCCGTCTTAGGCCGGCACAGTGGC
 TTACACCTGTAATCCAGCAGCTTGGGAGGCCAGACGGGTGGATCATTGGGTCAGGCTGATCTCAAACCTCT
 GAGTTCAGGTGATCTGCCGCCCTCAGCCTCCAAAGTGTGATTGCAAGGCGTGAAGCCACTGCGCTGGCGGA
 ATTTCTTTAAGGCTGAATGATGGGGCCAGGCACGATGGCTCACGCCGTGATCCAAGTAGCTTGATTGTA
 AACATGCACCACCATGCCTGGCTAATTTGTATTTAGTAGAGACGTGTTAGCCAGGCTGGCTCGATCTCCT
 GACCTCAAGTGACCACTGCCCTCAGCCTCCAAAGTACTGGGATTACAGGCGTGAAGCCACTGTCGCTGGCCTTGA
 GCATCTGTGATGTGTTATTGCCATTGTATATCTCTATCTTGGGAAATGTCTGTTCAAGTCTTGT
 CCTTTTAAATTTTATTATTATTATTGAGACAGGGCTTGTTCTGTTGCCAGGCTGGAGTA
 CAGTGGCACAGTCTGGCTACTGCAGCCTCGACCTCCTGGCTGAGTGTGATCCTCCACCTCAGCCTCCCTGT
 AGCTGTATTTTGATTTGTATTTGTAGCTGAGTTTGATTTTGATTTGTGGAGACAGCATTTCACCATGA
 TGCCCAAGGCTGGCTTGAACTCCTGAGCTCAAGTGTGATCTGCCCTGCTCAGCCTCCAAAGTGTGGGATTACAGA
 CATGAGGCCACTGCACCTGGCAAACCTCCAAAATTCAACACACACACACACACACACACACACACACACACAC
 GAGGGGCCGGGTGTGGCCCAAACCTACCAAGGGAGACTGAAGTGGGAGGATCGCTGGCATGAGAAGTCGAGGCTG
 CAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCCTGGACAACAGAGTGAGACCCGTCTC

FIGURE 166

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213
><subunit 1 of 1, 368 aa, 1 stop
><MW: 42550, pI: 9.11, NX(S/T): 1
MGLLAFLKTQFVLHLLVGFVFVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILHNHNFEDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKK
YEADMCVRRFPLEDIPDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLLN
FLSWATILLSPLFASFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 167

GATATTCTTATTTAAGAACCTGAAGTACTATGCATCACTCCCTCCAATGTCCTGGGC
GCCACCAGGCATATTCATCTTGTGTGTTCTTTGCTTAGCACTGGGCACCTCTT
GCTTATTCTTGCTGGTAGGAAAGGGGCTCAGTTGTCTGTGGGTTGGTGGCAGGCAGGCCG
GCTTACGCCTGATAACGCCCTGGGTTAGAAGGGAAAGGAAAGATAAACTTTATACAAATGGG
GATAGCTGGGTCTGAGACCTGCTCCTCAGTAAAATTCTGGATCTGCCTATACCTCTT
TTCTCTAACCTGGCATACCCTGCTAAAGCCTCTCAGGGCTCTCTGTTCTAGGATCAA
AGTATTAGAGCTACAAGAGCCCTCATGGTCTGGCCCTGCCCCCTGGCCAGCTCATTGT
ACATGTGGTGTCTCTGCTGTTCTGTAATGTGGTATGCCATGGGTCTTGCACAAGCCT
TTCCCTTTGGCTGGACACTGTCCCTGCCCTCCCCCATACTCTCCTACTTAATATGTAGTC
ATCCTGCAGATTCAATTCTAACATCATTCTCCAGGGATCCTGGCCTGACAGAATCTCAT
CTTGTAAATGCTCTCATAAGACCACTTGTCCCTTGCAGCACTGCCACTCAGTTGTA
TCTTATGTGCGTTGTGGTTGTATGGGTGTCTGTTCCCAGAATGCCAGCTTGAGC
TGCCTGAGGGTCAAGGGCATTGCTGTGCCAGGTATAGCCTACATGTGGTGGGTGCT
CATTTTAGAGACTAAATGGAGGGAGATGAGGAAAGATTGAAATCTCAGTTCACCA
GATGGTGTAGGGCCCAGCATTGTAATTACACAGTTGACTGTGCTTGTGAATTATCTGGGA
TGCAGGTCTGATTCACTAGGCCAGGTGGCATCTCTAACAAACTCCCACGTGATGCTGA
TGCTGGTCCTATGAACATATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGCATGGC
TCACACCTATGATCCCAGCACTTGGGAGGCTGAGGCAGGCTGATCACCTGGAGTCAGGATT
TCAAGACTAGCCTGGCCAACATGGTGGAACCCATCTGTACTAAAAATACACAAATTAGCTG
GGCATGGTGGCACATGCCCTGTTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTG
AACCTGGGAGGGCGGAGGTTGCAGTGAGCCAGTCAGGCCACTGTATTCCAACCAGGGTGAC
AGAGTGAGACTCTATGTCCAAAAAAAAAAAAAA

FIGURE 168

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234
><subunit 1 of 1, 143 aa, 1 stop
><MW: 15624, pI: 9.58, NX(S/T): 0
MHHSILQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSGVGGRQAGLRLIRPWVRR
EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWS
GPCPPGQLHCTCGVLLSFL
```

Important features of the protein:

Signal peptide:

amino acids 1-28

FIGURE 169

GGCTGGACTGGAACCTCCTGGTCCAAGTGATCCACCCGCCTCAGCCTCCAAGGTGCTGTGA
 TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTCACTAAGGAACTAAAAAGCCAC
 AGGAGTTGAAC TGCTAGGATTCTGACT**ATG**CTGTGGTGGCTAGTGCTCCTACTCCTACCTAC
 ATTAAAATCTGTTTTGTTCTTGTAACTAGCCTTACCTTCCTAACACAGAGGATCTGT
 CACTGTGGCTCTGCCAAACCTGACCTCACTCTGGAACGAGAACAGAGGTTCTACCCAC
 ACCGCCCCCTCGAAGCCGGGACAGCCTCACCTGCTGCCCTCGCTGGAGCAGTGCCCTC
 ACCAACTGTCTCACGTCTGGAGGCAGTGACTCGGGCAGTGAGGTAGCTGAGCCTCTGGTA
 GCTGCGGCTTCAAGGTGGCCTGCCCTGGCGTAGAAGGGAT**TGA**CAAGCCGAAGATT
 CATAGGCGATGGCTCCACTGCCAGGCATCAGCCTGCTGTAGTCATCAGGCCCTGGGG
 CCAGGACGGGCCGTGGACACCTGCTCAGAAGCAGTGGGTGAGACATCACGCTGCCGCCAT
 CTAACCTTTCATGTCTGCACATCACCTGATCCATGGCTAATCTGAACCTGTCCCCAAGG
 AACCCAGAGCTTGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTT
 TATGTGACAGGACTTGACATTCTCCTGAAACATGAGGGAACGCCGGAGGAAAGCAAAGTGGCA
 GGGAAAGGAACATTGTGCCAAATTATGGGTCAAGAAAAGATGGAGGTGTGGTTATCACAAGGC
 ATCGAGTCTCCTGCATTCACTGGACATGTGGGGAAAGGGCTGCCATGGCGCATGACACACT
 CGGGACTCACCTCTGGGCCATCAGACAGCCGTTCCGCCCGATCCACGTACAGCTGCTG
 AAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCAGCCAAATCTGCGATCACCAG
 CCAGGGGCAGCCGTCTGGGAGGAGCAAGCAAAGTGACCATTCTCCTCCCCCTTCCCTC
 TGAGAGGCCCTCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGCTAATG
 GCTCAGTGTGGCCCAGGAGGTCAAGAACGGCTGAGAGCTGATCAGAACGGCTGCTGTGCG
 AACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGGCT
 CAATTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGG
 TCAAATGATCTCCAAGGGCCCTATAACCCAGGAGACTTGATTTGAATTGAAACCCCAA
 TCCAAACCTAAGAACCCAGGTGCATTAAGAACATCAGTTATTGCCGGGTGTGGTGGCTGTAATG
 CCAACATTGGGAGGCCGAGGCCGGTAGATCACCTGAGGTCAAGACAGCAGGCTG
 GCCAACATGGTGAACCCCTGTCTACTAAAAATACAAAAAAACTAGCCAGGCATGGTGG
 GTGTGCCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGG
 GAAGGAGGCTGAGACAGGAGAATCACTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA
 AAAAATAAAAAAGAATTATGGTTATTGTAA

FIGURE 170

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277
><subunit 1 of 1, 109 aa, 1 stop
><MW: 11822, pI: 8.63, NX(S/T): 0
MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWPKPDLHSGTRTEVSTHTVPSKPGTA
SPCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRD
```

Signal peptide:

amino acids 1-15

FIGURE 171

GCGGGCCCGCGAGTCCGAGACCTGTCCCAGGAGCTCCAGCTCACGTGACCTGTCACTGCCTC
CCGCCGCTCCTGCCCGGCCATGACCCAGCCGGTCCCCCGCTCTCCGTGCCGCCGCGCT
GGCCCTGGCTCAGCCGACTGGCGCCCTCGCCACTGGCCTCTCCTGGGGAGGCGGT
GCCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCGAGGAACAGCCGCCTGTGG
CAGTATCTTCTGAGCCGCTCCATGCAGGGAGCACCCGGCGCTGCGAACCTGAGGCTGCTGAC
CCTGGAGCAGCCGCAGGGGATTCTATGATGACCTGCGAGCAGGCCAGCTCTGGCCAACC
TGGCGCGGCTCATCCAGGCCAAGAAGGCCGCTGGACCTGGCACCTCACGGCTACTCCGCC
CTGGCCCTGGCCCTGGCGCTGCCCGGGACGGCGCGTGGTGACCTGCGAGGTGGACGCGCA
GCCCGGGAGCTGGACGGCCCTGTGGAGGCAGGCCGAGGCCGAGCACAAAGATCGACCTCC
GGCTGAAGCCCGCTTGGAGACCCCTGGACGAGCTGCTGGCGCGGGCAGGCCGACCTTC
GACGTGGCGTGGTGGATGCGGACAAGGAGAACTGCTCCGCCTACTACGAGCGCTGCCTGCA
GCTGCTGCGACCCGGAGGCATCCTGCCGTCCAGAGTCCTGTGGCGCGGGAAAGGTGCTGC
AACCTCCGAAAGGGACGTGGCGCCGAGTGTGCGAAACCTAAACGAACGCATCCGGCGG
GACGTCAAGGTCTACATCAGCCTCTGCCCTGGCGATGGACTCACCTTGGCCTCAAGAT
CTAGGGCTGGCCCTAGTGAGTGGCTCGAGGGAGGGTTGCCTGGAACCCCAGGAATTGAC
CCTGAGTTAAATTGAAAATAGTGGGCTGGGACACAAAAAA

FIGURE 172

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71282
><subunit 1 of 1, 262 aa, 1 stop
><MW: 28809, pI: 8.80, NX(S/T): 1
MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPWRGRREQCLLPPEDSRLWQYLLSRS
MREHPALRSLLTLEQPQGDMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALAL
PADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDDELLAAGEAGTFDVAVVDA
DKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS
LLPLGDGLTLAFKI
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

FIGURE 173

CCGCCGCCGCAGCCGTACCGCCGCTGCAGCCGCTTCCGGCCTGGCCTTCGCCGTCA
GCATGCCACACGCCCTCAAGCCCCGGGACTTGGTGTGCTAAGATGAAGGGCTACCCCTCAC
 TGGCCTGCCAGGATCGACGACATCGCGGATGGCGCCGTGAAGCCCCCACCAACAAGTACCC
 CATCTTTCTTGGCACACACGAAACAGCCTCCTGGGACCCAAGGACCTGTTCCCCTACG
 ACAAAATGTAAAGACAAGTACGGGAAGGCCAACAAAGAGGAAAGGCTTAATGAAGGGCTGTGG
 GAGATCCAGAACAAACCCCCACGCCAGCTACAGC GCCCTCCGCCAGTGAGCTCCTCCGACAG
 CGAGGCCCCCGAGGCCAACCCCGCCAGGGCAGTGACGCTGACGAGGACATGAGGACCGGG
 GGGTCATGGCCGTACAGCGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA
 GACTCAGACAAGAGTAGCGACAAACAGTGGCCTGAAGAGGAAGACGCCCTGCGCTAAAGATGTC
 GGTCTCGAAACGAGCCGAAAGGCCCTCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG
 AAGAGGAGAACTCGGAAAGCTCATCTGAGTCGGAGAAGACCCAGCGACCAGGACTTCACACCT
 GAGAAGAAAGCAGCGGTCCGGCGCCACGGAGGGCCCTCTGGGGGGACGGAAAAAAAAGAA
 GGCGCCGTAGCCTCCGACTCCGACTCCAAGGCCATTGGACGGGGCCAAGCCTGAGCCGG
 TGGCCATGGCGCGTCTCCTCCTCTCTCTCTCTCTCCGACTCCGATGTG
 TCTGTGAAGAAGCCTCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCGAAGCCGCGAGG
 GCGGAAACCGAAGCCTGAACGCCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGG
 TGGACCGCATCAGTGAGTGGAAAGCGGGGACGAGGCGCGAGGCGAGCTGGAGGCCCGG
 CGCGCGAGAGCAGGAGGAGCTCGGGCGCTCGGGAGCAGGAGAAGGAGGAGAAGGA
 GCGGAGGGCGCAGCGGGCCGACCGCGGGGAGGCTGAGCGGGGAGCGGGCAGCAGCGGGG
 ACGAGCTCAGGGAGGACGATGAGCCGTCAAGAACGGGGACGCAAGGGCCGGGGCGGGG
 CCCCCGTCTCCTCTGACTCCGAGGCCGAGCTGGAGAGAGAGGCCAAGAAATCAGC
 GAAGAACGCCAGTCCTCAAGCACAGAGCCGCCAGGAAACCTGGCCAGAAGGAGAAGAGAG
 TGCGGCCCGAGGAGAACACAAGCCAAGCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCC
 GAGGGCTTCGATGGACAGGAAGGTAGAGAAGAACAGGCCCTCCGTGGAGGAGAACG
 GCAGAACGCTGCACAGTGAGATCAAGTTGGCTAAAGGTGACAGGCCGGACGTGAAGAGGT
 GCCTGAATGCCCTAGAGGAGCTGGGAACCCCTGAGGTGACCTCTCAGATCCTCCAGAAGAAC
 ACAGACGTGGTGGCCACCTTGAGAACAGATTGCGCTTACAAAGCGAACAGGACGTAATGGA
 GAAGGCAGCAGAACAGTCTATACCCGGCTCAAGTCGGGGCTCTCGGCCAAAGATCGAGGC
 TGCAGAAAGTGAACAAGGCTGGGATGGAGAACGGAGAACGGCGAGGAGAACGCTGGCC
 GAGCTGGCCGGGGAGGAGGCCCCCAGGAGAACGGCGAGGACAAGCCCAGCACCGATCTC
 AGCCCCAGTGAATGGCGAGGCCACATCACAGAACGGGGAGAGCGCAGAGGACAAGGAGCAG
 AGGAGGGTGGACTCGGAGGAGGGCCAAGGTGTTGGCTCTGAAAGACCTGCACGACAGC
 GTACGGGAGGGTCCGACCTGGACAGGCCCTGGAGCGACGGGAGCGAGGAGCGAGAGGGCAGC
 GGGGGACTCGGAGGCCCTGGACGAGGAGAG**TGA**GCCGCGGGCAGCCAGGCCAGCCCC
 CCGAGCTCAGGCTGCCCTCTCCTCCGGCTCGCAGGAGAGCAGAGCAGAGAACACTGTGGG
 GAACGCTGTGCTGTTGTATTGTCCTGGGTTTTTCTGCTGCTAAATTCTGTGATT
 TCCAACCAACATGAAATGACTATAACGGTTTTAATGA

FIGURE 174

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286
><subunit 1 of 1, 671 aa, 1 stop
><MW: 74317, pI: 7.61, NX(S/T): 0
MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFTHETAFLGPKDLFPYD
KCKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPVSSSDSEAPEANPADGSDAEDDEDRG
VMAVTAVTATAASDRMESDSDKSSDNSGLRKTPALKMSVSKRARKASSLDQASVSPSE
EENSESSSESEKTSQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDKADSDGAKPEPV
AMARSASSSSSSSSSDSVVKPPRGRKPAEKPLPKPRGRKPAPPERPPSSSSDSDSDEV
DRISEWKRRDEARRRELEARRREQEEELRRLREQEKEEKERRERADRGEAERGSGGSGD
ELREDDEPVKKRGRKGRGRGPPSSDSEPEAELEREAKSAKKPQSSTEPARKPGQKEKRV
RPEEKQQAKPVKVERTRKRSEGFMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRC
LNALEELGTIQLQVTSQILQKNTDVVATLKKIRRYKANKDVMEMKAAEVYTRLKSRLGPKIEAV
QKVNKAGMEKEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE
EGRDSEEGPRCGSSEDLHDSVREGPDLLRPGSDRQERERARGDSEALDEES
```

Signal peptide:

amino acids 1-13

FIGURE 175

GTTGGTTCTCTGGATCTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATATAAATTA
 ACACCATTGAAAGAGAACATTGTTTCATC**ATGA**ATGCTAATAAAGATGAAAGACTTAAAGCCAGAACCAAGA
 TTTCACCTTTCTGCTTGTGATGATGCTAACCATGACCATGTTGTTCTTCAGTCAGTGGCACTTGAAGCA
 AAATATTCCAAGACTCAAGCTAACCTCAAAGACTTGCTGCTTCAAATAGCTGTATCCCTTTGGGTTCATC
 AGAAGGACTGGATTTCAAACACTCTCTTAGATGAGGAAAGGGCAGGCTGCTCTGGGAGCCAAAGACACAT
 CTTCTACTCAGTCTGGTTGACTTAAACAAAATTAAAGAAGATTATTGGCCTGCTGCAAAGGAACGGGTGGA
 ATTATGTAAATTAGCTGGGAAAGATGCCAACATCAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCTATAACAA
 AACTCACATATATGTGTGGAACGGAGCATTTCATCCAATATGTGGGTATTGATCTTGGAGTCTAACAGGA
 GGATATTATATTCAAACACTAGACACACATAATTGGAGTCTGGCAGACTGAAATGTCTTCGATCCTCAGCAGCC
 TTTGCTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTCTGATTTCTTGGCAAAGATACTGCATT
 CACTCGATCCCTGGGCCTACTCATGACCACCATACATCAGAACTGACATTTCAGAGCACTACTGGCTCAATGG
 AGCAAAATTATTGGAACCTCTTACACAGACACCTACAATCCAGATGATGATAAAATATATTCTCTTCG
 TGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTCTCGAGTTGGAAAGAGTTGTAAGAATGATGT
 AGGAGGACAACGCGCCTGATAAACAAAGTGGACGACTTTCTTAAGGCCAGACTGATTGCTCAATTCTGGAAAG
 TGATGGGGCAGATACTTACTTGTGAGCTTCAAGATATTATTACTCCCCACAAGAGATGAAAGAAATCCTGT
 AGTATATGGAGTCTTACTACAACCAGCTCCATCTCAAAGGCTCTGCTGTTGTGATAGCATGGCTGACAT
 CAGAGCAGTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTGAGTATGATGGGAGAAT
 TCCTTATCCACGCCCTGGTACATGTCAAAGCAAACCTATGACCCACTGATTAAGTCCACCCGAGATTTCAGA
 TGATGTCATCAGTTCTAAAGCGGCACTCTGTGATGTATAAGTCCGTATAACCCAGTTGCAAGGAGGACAAACGTT
 CAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGGATCATGTCATTGCAAGAGATGGCAGTACGA
 TGTAATGTTCTTGGAAACAGACATTGGAACTGTGCTCTCAAAGTTGTCAGCATTCAAAGGAAAGTGGAAATATGGA
 AGAGGTAGTGTGGAGGAGTTGAGATATTCAAGCACTCATCAATCATCTTGAACATGGAATTGTCTCTGAAGCA
 GCAACAATTGTACATTGGTCCCAGATGGATTAGTTCAGCTCTTGCACAGATGCGACACTATGGGAAAGC
 TTGCGCAGACTGTGCTTGGCAGAGACCCCTACTGTGCTGGATGGAAATGCGATGCTCTCGATATGCTCCTAC
 TTCTAAAAGGAGAGCTAGCGCAAGATGTAAAATATGGCACCACATACCCAGTGTGCTGGACATCGAACAG
 CATTAGTCATGAAACTGCTGATGAAAAGGTGATTTGGCATTGAATTAACTCAACCTTCTGGAAATGTATACC
 TAAATCCAAACAGCAACTATTAAATGGTATATCAGAGGTAGGGGATGAGCATCGAGAGGAGTTGAAGCCGA
 TGAAAGAATCATCAAAACGGAAATGGGCTACTGATTGCAAGTTGCAAGAAGAAGGATTCTGGGATGTTACTG
 CAAAGCCCAGGAGCACACTTACATCCACACCAGTGAAGCTGACTTTGAATGTCATTGAGAAATGAACAGATGGA
 AAATACCCAGAGGGCAGAGCATGAGGAGGGCAGGTCAAGGATCTATTGGCTGAGTCACGGTGGAGATAACAAAGA
 CTACATCCAAATCCTAGCAGCCAAACTCAGCCTCGACCAGTACTGCGAACAGATGTCAGGAGGAGCG
 GAGACAGAGAAACAAGGGGCCAAAGTGGAAAGCACATGCAAGGAAATGAAGAAGAAACGAAATCGAACATCA
 CAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCAG**TAG**TTTCTACTTAATTAAAGAAAATCCTTAC
 TATAAAACATTGCCCTCTGTTTGATATCCCTATAGTAATTCAATAATGCTCCATGGAGTTTGCTAAGG
 CACAAGACAATACTGAAATAAGACAATATGTGATGAATATAAGAAAGGGAAAAATTATTGAACCAGTTT
 CCAAGAACAAATCTGCACAAGCAAAGTATAAGAATTATCCTAAAAATAGGGGTTACAGTTGTAATGTTTA
 TGTTTGGTAAATTATTGTCATGTAATAGTGTGAGCTAAGCAAGCCCGAATTGATAGTGTATAAGGT
 GCTTTATCCCTCGAATGTCCATTAAGCATGGAATTACCATGTCAGTTGTGCTATGTTCTTATGAACAGATAT
 CATTCCATTGAGAACAGCAGCTACCTGTGGTAGGGATAAGAGGTAGACACAAATTAAAGACAACCTCCATTATC
 AACAGGAACATTCTCAGTGAGCCATTCACTCTGGAGAAATGGTATAGGAATTGGAGAGGTGCAATTCTTCTTC
 TGGCCACTGGGGTAAATTAGTGTACTACAAACATTGATTTACTGAAAGGGCACTAATGTTCCCCCAGGATTCT
 ATTGACTAGTCAGGAGTAACAGGTTACAGAGAGAAGTTGGGCTTAGTTAGTGTGTTTTAGAGTATATACTAA
 GCTCTACAGGGACAGAACATGCTTAATAAAACTTTAATAAGATATGGGAAAATTTTAATAAAACAAGGAAAACA
 TAATGATGTATAATGCATCTGATGGGAAGGCATGCAAGATGGGATTGTAGAAGACAGAAGGAAAGACAGCCAT
 AAATTCTGGCTTGGGAAAATCATATCCCCATGAAAAGGAAGAACATCACAAATAAGTGGAGAGTAATGTA
 TGGAGCTTTCACTAGGGTATAAGTAGCTGCCAATTGTAATTGATCTGTTAAAAAAATCTAGATTATAACA
 AACTGCTAGCAAATCTGAGGAAACATAAAATTCTCTGAGAATCATAGGAAGAGTAGACATTATTATTAACC
 AATGATATTCTCAGTATATATTCTCTTTAAAAAAATTATTCATACTCTGTATATTATTCTTTACTGC
 CTTTATTCTCCTGTATATTGGATTTGTGATTATATTGAGTGAATAGGAGAAAACAATATAACACACAGA
 GAATTAAGAAAATGACATTCTGGGAGTGGGATATATTGTTGAATAACAGAACGAGTGTAAAATTAAAC
 AACGGAAAGGGTTAAATTAAACTCTTGACATCTCACTCAACCTTCTCATTGCTGAGTTAATCTGTTGAATT
 GTAGTATTGTTTGTAAATTAAACAATAAGCCTGCTACATGT

FIGURE 176

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883
><subunit 1 of 1, 777 aa, 1 stop
><MW: 89651, pI: 7.97, NX(S/T): 3
MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNI PRLKLTYKDLLLNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAKDHFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVILQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYL YSGTASDFLGKDTAFTRSLGPTHDH YIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDD KIYFFFRESSQEGSTS DKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPV VYGVFTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPV
AGGPTFKRINV DYRLTQIVVDH VIAEDGQYDVMFLGTDIGTVLKVV SISKEKWNMEEV LEE
LQIFKHSSII LNME SLKQQQLYIGSRDGLVQLSLHRCDTY GKACADC CLARDPYCAWDGNA
CSRYAPTSKRRARRQDV KYGDPI TQCWDIEDSIS HETADEKV IFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERII KTEY GLLIRSLQKKD SGMYY CKAQEHTFIHTIVKLTLN
VIENEQMENT QRAEHEEGQVK DLLAESRL RYKD YIQILSSPNFS LDQYCEQMWHREKRRQRN
KGGPKWKHMQEMKKRNRRHH RDLD ELPRAVAT
```

Important features of the protein:**Signal peptide:**

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGAGAGGTATCCTGGAGCATGCCACCAGGGAGCAGA
 CAACCTCCCAGGTAAAGCTGGGAGCAAGACCTGAAGCTGTTCTCAGGAGCCTGGTGTATTCCCCCACCCAC
 CTCAGCAGTTTCAGCCAGCAGGGACTGATCAGGTGTGTCAGGACTGGAGCTGGAGCAGAAGGCCTGGCTGCCAAGA
 GTGGCCTGGAGAAAGAGGTTCAGCGCTGACCAGCGAGCTGCCGTGACTACAAGATCCAGAACCATGGGCATC
 GGGTGAGGTGGGGGGCACAGGTGTATGTGACCTCTTGCTCAGCAAGAAGAGCTGAGAGAGGGGATCTGG
 AGCCATTGAGGGTGTATGGAGCTACAGAGGGAGGGAAAGGTATTTAAGGTAACAGTGTGGCACAATAGTTAA
 GAGCACAGTTTGGAGCTAGACCGACATAGGTCATAATTCTCTGTTGCTTCTAGTTCTGTAGCCCCAGGT
 AAGGGAGTGAECTTAACCTCTGGACTCAATTCTCATCACTAAAGTAGGGCCAATAATAGCACCCACCTCAT
 AGGGAAAGATTAATGACATAATGTATGTG**ATG**CAACTAGCAAAGTACCCAGTCCATAGTAAGTCATGCCAACAG
 TATTTCCACCCACCCCTGTTCTGCCCCCTCCAAACCAGGTACTGCAACAGACTGGAGCAGAGGGCAGCAGGCTT
 CAGAGCAGGGAGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCAGAGAGCATCCGCCGGCACAGGTGAGCC
 AGGTGAAGGGGGCTGCCCGCTGGCCCTGCTGCAGGGGGCTGGCTTAGATGTGGAGCGCTGGCTGAAGCCAGCCA
 TGACCCAGGCCAGGATGAGGTGGAGCAGGAGCAGCGGCTCAGTGAGGCTCGGCTGCTCCAGAGGGACCTCTCTC
 CAACCGCTGAGGATGCTGAGCTTCTGACTTTGAGGAATGTGAGGAGACGGGAGAGCTCTTGAGGAGCCTGCC
 CCCAAGCCCTGGCCACAGGGCCCTCCCTGCCCTGACACGTGGTATTGCTATCAGGCAGGGCGTGAGGATG
 AGCTGACAATCACGGAGGGTGAATGGCTGGAGGTATAGAGGAGGAGATGCTGACAATGGGTCAGGCTCGGA
 ACCAGCACGGCGAGGTAGGCTTGTCCCTGAGCGATATCTCAACTTCCCGACCTCTCCCTCCAGAGAGCAGCC
 AAGACAGTGACAATCCCTGCGGGCAGAGGCCACAGCATTCTGACAGGCTGTACAGCTACACCGGACAGA
 GTGCAGAGGAGCTGAGCTTCCCTGAGGGGGCACTCATCCGCTGCTGCCCGGGCCAAGATGGAGTAGATGACG
 GCTTCTGGAGGGAGAATTGGGGGGCTGTGGGGTCTTCCCTCCCTGCTGGTGGAAAGAGCTGCTTGGCCCC
 CAGGGCACCTGAACTCTGACCCCTGACACAGATGCTGCCGCTCCCTCTCCAGCTTCTCCCCACCTGCAC
 CTACCTCTGTGTTGGATGGGGCCCTGCACCTGCTGCTGGGACAAAGCCCTGGACTTCCCTGGGTTCTGG
 ACATGATGGCACCTGACTCACGGCGATGCGTCCACCCACCTCCCCCGGCTAAAGCCCCGGATCCTGCCAC
 CAGATCCCCTCAC**TGA**AGGGCAGGGAGGCTTGACCCCCAGTGAATGCTGCTGCCCTATCTCAAGCTGTCAGA
 CCACACCATCAATGATCCAGAGCAACACAGCAAAGCTGAATGCCCTTATTTCCACCTCACCTCCAAGGGT
 GGAAACTTGCCCTTCCCATTCTAGAGCTGAAACCCACTCCTTTTCCCATTGTTCTATCATCTTAGGACC
 GGAACACTACCTCTCTTCTGTATGACCTATCTAGGGTGGTGAATGCCCTGAATCTCTGGGCTGGAAACC
 ATCCATCAAGGTCTCTAGTAGTTCTGGCCACCTCTTCCCACCCCTGGCTCCATGACCCACCCACTCTGGATG
 CCAGGGTCACTGGGTTGGGCTGGGGAGAGGAACAGGCCCTGGGAATCAGGAGCTGGAGCCAGGATGCGAAGCAG
 CTGTAATGGTCTGAGCGGATTATTGACAATGAATAAGGGCACGAAGGCCAGGGCAGGGCCTGGGCTCTGTG
 CTAAGAGGGCAGGGGGCTACGGTGCTATTGCTTAGGGGCCACCACGGGAGGGGCTGCTCCAGTGCAC
 GCTCTATCATATGGAGCGAGGTGGGGGAAGGGGGCAGGCAGCCTGTTGCAGGCAGGGAGGAGAAGAGAC
 TGAGGGCTGTGACCTCTCTGAGGCCCAAGCCTGAGACTGTGCAACTCCAGGTGGAAAGTAGAGCTGGTCCCTC
 AGCTGGGGGCAGTGTGTCAGTGGAGGGAGGGCTTACGCCACCCACCCCTGGCTGCCAGCTGGTAG
 TCCATCAGCACAATGAAGGAGACTTGGAGAAGAGGAATAACACTGTTGCTTCTGTTCAAGCTGTGTCAGC
 TTTTCCCTGGGCTCCAGGACCTTCCCTACCTCACCACCAAAGGGATTATAGCAAAGGCTAACCTGC
 AGTTTACTCTGGGGTTCAGGGAGCCGAAAGGCTAAATAGTTAAGTAGGTGATGGGAAGATGAGATTACCTCA
 TTAGGGCTCAGGAGACACTACCTCACATACTCCCTGCTCCCTGTTGAGAGACACCTGAGAGAAAGGGGAGGG
 TCAACAAATGAGAGACCCAGGGTAGGTGATCAGAAGCTGGGGCCACAGAGTAGAGAGCAATAAGAGGCCAGCCAGTGC
 AGTCCCCGGCTGTGTTCTACCTGATCAGAAGTGTGCTGGTGTGGCTGCCATTGGCTCTTGAAGTGG
 GCACGCCCTGGCTGGGGCCCTCCCTCCGGGCTCAGTGTGGCTCTGAGAAGCTGTGGCTTCCCTCAAGTG
 CACGAGGGGTTAGGCTGCTGCTCCCTGAGTCTCCATTCTGTACTGGGGGCTGGCTAGGACCTGGGCTGTGGCC
 TCTCAGGGGGCAGCCTCTCCATGGCAGGCATCCCTGCTGGCTGCCCTCCCCAGACCCCTGACCACCCCTG
 GGTCTGTCCCCCACCAGAGGCCAGCTCCGTCTGTTGGGAGGCCATCACGGTGTGTCAGTCCATAGCGCT
 TCTCAATGTGTGTCACCCGGAACCTGGAGGGAGGGAACACTGGGTTAGGACCAACTCAGAGGCTGCTTG
 GCCCTCCCTCTGACCAGGGACATCCTGAGTTGGCTACTTCCCTGCTGGCTAAGGTAGGGAGGCCCTCTC
 AGATTGTGGGCACATTGTGAGCCTGACTTCTGCTGGAGCTCCAGGAGGAAAGAGCCAAGGCCACCTT
 TTGGGATCAGGTGCTGATCAGTGGGCCCTACCTCAGCCCCCTTCCCTGGAGCAGCTGCCACCTGCCCA
 CAGAGAACACAGTGGTCTCCCTGTCGGGGGGCGCTTTCTCTGGAGCGTCCCTGACGGACAAGTGGAG
 GCCTCTGCTGCGCTGCAATGGATGCAAGGGGCTGCAGAGGCCAGGTGCACTGTGATGATGGAGGGGCTC
 CGTCCCTGCAAGGCTGGAGGTGGCATCCACACTGGACAGCAGGAGGGAGGTAGGGTAACATTCCATTCC
 TCATGTTGTTCTTACGTCTTCACTGCTCTTAAACCCAGAACGCCAATTCCCCAAGGCCATT
 TTTCTGTTCTTATCTAATAACTCAATATTAAG

FIGURE 178

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401
><subunit 1 of 1, 370 aa, 1 stop
><MW: 40685, pI: 4.53, NX(S/T): 0
MQLAKYQSHSKSCPTVFPPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA
QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS
DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITGEWLEVIEEGDAEW
VKARNQHGEVGVFVPERYLNFPDLSLPESSQDSDNPCGAEPAFLAQALYSYTGQSAEELSFP
EGALIRLLPRAQDGVDDGFWRGEFGGRGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPS
FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPAKAPDPGHPDPLT
```

FIGURE 179A

CACAGGGAGACCCACAGACACATATGCACGAGAGAGACAGAGGGAGGAAGAGAGACAGAGACAAGGCACAGCGGAA
 GAAGGCAGAGACAGGGCAGGCACAGAACGGCCCAGACAGAGTCTACAGAGGGAGGGCCAGAGAACGTCAGA
 AGACACAGGCAGGGAGAGACAAGATCCAGGAAGGGAGGGCTCAGGAGGAGAGTTGGAGAACGCCAGACCCCTGG
 GCACCTCTCCAAGCCCAGGGACTAAGTTTCTCCATTCTTAAACGGTCTCAGCCCTCTGAAAACCTTGCC
 TCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGAGGAGCTTCAAAGCTAGGGTGTGGAGGACTTGGT
 GCCCTAGACGGCCTCAGTCCCTCCCAGTCAGTACCGTGC**ATGT**CCCAGACAGGCTCGCATCCGGAGGGG
 CTTGGCAGGGCGTGGCTGTGGGAGGCCAACCCCTGCCCTCTGCTCCCATTTGTGCCGCTCTCTGGCTGGTGTG
 GCTGCTTCTGCTACTGCTGCCCTCTCTGCCCTCAGGCCGGCTGGCCAGCCCCCTCCCCGGAGGAGGAGAT
 CGTGTTCAGAGAACGCTAACGGCAGCGTCTGCCCTGGCTGGCCAGGGCTGCAAGGCTGTTGTGCCGTTGCA
 GGCCTTGGGAGACGCTGTAAGAGCTGGAGCAGGACTCCGGTGTGCAGGTGAGGGGCTGACAGTCAGTA
 CCTGGCCAGGCCCTGAGCTGCTGGTGGAGCAGGCCCTGGCACCTACCTGACTGGCACCATCAATGGAGATCC
 GGAGTCGGTGGCATCTCTGCACTGGATGGGGAGGCCCTGTTAGGCGTGTACAATATCGGGGGCTGAACCTCA
 CCTCCAGCCCCCTGGAGGGAGGCACCCCTAACACTGCTGGGGACCTGGGCTCACATCCTACCCGGAAAGAGTCC
 TGCCAGCGGTCAAGGTCCTCATGTCAACGTCAAGGCTCCTCTTGAAGCCCCAGCCCCAGACCCGAAGAGCAA
 GCGCTTGCCTACTGAGTAGATTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGCCGATTCCACGGTGC
 GGGCTAAAGCGCTACCTGCTAACAGTGTGGCAGCAGCAGGCCCTCAAGCACCCAAAGCATTCCGAATCC
 TGTCAGCTGGTGGTGAECTGGCTAGTGTGATCCTGGGTCAAGCAGGAGGGGCCCAAGTGGGGCCAGTGTGC
 CCAGACCTCGCAGCTCTGTGCCTGGCAGCGGGGCTCAACACCCCTGAGGACTCGGGCCCTGACCACTTGA
 CACAGCCATTCTGTTACCCCTCAGGACCTGTGTGGAGTCTCCACTTGCACACGCTGGTATGGCTGATGTGG
 CACCGTCTGTGACCCGGCTGGAGCTGCTGCAATTGTGGAGGATGATGGCTCCAGTCAGCCTCACTGCTGCTCA
 TGAACCTGGGTATGTCCTAACATGCTCATGACAACCTCAAGGCCATGCTCATCAGTTGAATGGCCTTGAGCAC
 CTCTCGCCATGTCATGGCCCCCTGTGATGGCTCATGTGGATCCTGGAGGCCCTGGTCCCCCTGCAGTGCCTGCTT
 CATCACTGACTTCCCTGGACAAATGGCTATGGCACTGCTCTTAGACAAACCAAGGCTCATTGCATCTGCCTGT
 GACTTCCCTGGCAAGGACTATGATGTCGACCGCAGTGGCAGCTGACCTTGGGGCCGACTCACGCCATTGTCC
 ACAGCTGCCGCCCTGTGCTGCCCTCTGGTGTCTGGCACCTCAATGGCCATGCCATGTGCCAGACCAAACA
 CTCGCCCTGGGCCATGGCACACCCCTGCCGGCACAGGCCATGGTGGTCGCTGCCACATGGACCA
 GCTCCAGGACTTCAAAATATTCCACAGGCTGGTGGCTGGGACATGGGTGACTGCTCTGGACCTG
 TGGGGTGGTGTCCAGTTCTCTCCGAGACTGCAACGAGGGCTGTCCCCCGGAATGGCAAGTACTGTGAGGG
 CCGCCGTACCCGCTTCCGCTCTGCAACACTGAGGACTGCCAACTGGCTCAGGCCGACCTTCCCGGAGGAGCA
 GTGTGTCCTACAACCACCGCACCGACCTCTCAAGAGCTCCAGGGCCATGGACTGGGTCCTCGCTACAC
 AGGCCTGGCCCCCAGGACCAGTCAAACACTCACCTGCCAGGGCCGGGACTGGCTACTACTATGTGCTGGAGCC
 ACGGGTGGTAGATGGACCCCTGTTCCCGGACAGCTCTCGGTCTGTGTCCAGGGCGATGCATCCATGCTGG
 CTGTGATCGCATCATTGGCTCCAAGAAGAAGTTGACAAGTGCATGGTGTGGAGGGACGGTCTGGTGTGAG
 CAAGCAGTCAGGCTCTCAGGAAATTCAAGGTACGGATAACAACATGTGGTCACTATCCCCGGGGGCCACCCA
 CATTCTTGTCCGGCAGCAGGAAACCCCTGGCACCCGGAGCATCTACTTGGCCCTGAAGCTGCCAGATGGCTCCTA
 TGCCCTCAATGGTAATACACGCTGATGCCCTCCCCACAGATGTGGTACTGCCCTGGGAGTCAGCTTGCCTA
 CAGCGGGGCACTGAGCCTCAGAGACACTGTAGGCCATGGCACTGGCCAGCCTTGAACACTGCAAGTCCT
 AGTGGCTGGCAACCCCAAGGACACACGCCCTCCGATACAGCTCTCGTCCCCGGCCAGCCCTCAACGCCACG
 CCCCACTCCCCAGGACTGGCTGACCGAAGAGCACAGATTCTGGAGATCCTCGGGGGCGCCCTGGCGGGCAG
 GAAA**TAA**ACTCACTATCCGGCTGCCCTCTGGCACCGGGCTCGGACTTAGCTGGAGAAAGAGAGAGCTT
 CTGTTGTCGCTCATGCTAAAGACTCAGTGGGAGGGCTGTGGCGTGAAGACCTGGCCCTCTCTGCCCTAAT
 GCGCAGGCTGGCCCTGCCCTGGTTCTGCCCTGGGAGGGCAGTGTGGTTAGTGGATGGAAGGGGCTGACAGAC
 AGCCCTCCATCTAAACTGCCCTCTGCCCTGCCGGTCACAGGAGGGAGGGGAAGGCAGGGAGGGCTGGGCC
 CAGTTGTATTATTTAGTATTACTTACCTTTATTAGCACCAAGGGAAAGGGACAAGGACTAGGGTCTGGGAA
 CCTGACCCCTGACCCCTCATAGCCCTCACCCCTGGGCTAGGAATCCAGGGTGTGTGATAGGTATAAGTGGT
 TGTGTATGCGTGTGTGTGTGAAAATGTGTGTGCTTATGTATGAGGTACAACCTGTTCTGCTTCTC
 TTGCAATTATTTATTTGGAAAAGAAAAGTCAAGGGTAGGGTGGGCTCAGGGAGGTGAGGGATTATCTTT
 TTTTTTTCTT
 GCACAATCTCGGCTCACTGCATCCTCCGCTCCGGGTTCAAGTGTGATTCTCATGCCCTCAGCCTCTGAGTAGCT
 GGATTACAGGCTCTGCCACACGCCAGCTAATTTGTTGTTGTTGGAGACAGAGACTCGCTATTGTC
 ACCAGGGCTGGAATGATTCAGCTACTGCAACCTCGCCACCTGGGTTCCAGCAATTCTCCTGCCCTCAGCCTCC
 CGAGTAGCTGAGATTATAGGCACCTACCACGCCGGCTAATTTGTATTAGTAGAGACAGGGTTTCACCATGT
 CATGTTGGCCAGGCTGGCTCGAACTCCTGACCTAGGTGATCCACTGCCCTCATCTCCAAAGTGTGGGATT
 ACAGGGCTGAGGCCACCGTGCTGGCACGCCAACTAATTTGTATTAGTAGAGACAGGGTTTCACCATGT
 TGGCCAGGCTGCTTGAACCTGACCTCAGGTAAATCGACCTGCCCTGCCCTCCAAAGTGTGGGATTACAGG
 TGTGAGGCCACCCGGTACATATTTAAATTGAATTCTACTATTATGTGATCCTTGGAGTCAGACAG

FIGURE 179B

ATGTGGTTGCATCCTAACTCCATGTCTCTGAGCATTAGATTCTCATTTGCCAATAATAACCTCCCTAGAAG
TTTGTGAGGATTAATAATGTAATAAGAACTAGCATAACACTCAAAAAAAAAAAAAAAAAGGAAA
AAAAAAAAAAAAAAAAGGAAA

FIGURE 180

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492
><subunit 1 of 1, 837 aa, 1 stop
><MW: 90167, pI: 8.39, NX(S/T): 1
MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLASLLPSARLASPLPREEEIV
FPEKLNGSVLPGSGAPARLLCRLQAFGETLLELEQDSGVQVEGLTVQYLGQAPELLGGAEP
GTYLTTGTINGDPESVASLHWGGALLGVLQYRGAEHLHQPLEGGTPNSAGGPGAHILRRKSP
ASGQGPMCNVKAPLGSPSPRPRRAKRFAASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA
AAKAKFKHPSIRNPVSLVVTRLVILGSGEEGPVQGPSAAQTLSFCAWQRGLNTPEDSGPDHF
DTAILFTRQDLCGVSTCDTLMADVGTVCDPARSCAIVEDDGLQSAFTAHELGHVFNMHLHD
NSKPCISLNGPLSTSRRHMAPVMAHVDPPEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHL
PVTFPGKDYDADRQCQLTFGPDSRHCPCQLPPPACAALWCSGHLNGHAMCQTKHSPWADGTPCG
PAQACMGGRCLHMDQLQDFNIPQAGGWGPWGPGDCSRTCGGGVQFSSRDCTRVPVRNGGKY
CEGRRTRFRSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMWDWPRTGVAPQDQCK
LTCQARALGYYYVLEPRVVDGTPCSPDSSSVCVQGRCIHAGCDRIIGSKKFDKCMVCGGDG
SGCSKQSGSFRKFRYGYNNVTIPAGATHILVRQQGNPGHRSIYLAALKLPDGSYALNGEYTL
MPSPTDVVLPGAVSLRYSGATAASETLSGHGLAQLTLQVLVAGNPQDTRLRYSFFVPRPT
PSTPRPTPQDWLHRRAQILEILRRRPWAGRK
```

Important features of the protein:**Signal peptide:**

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

FIGURE 181

CAGCAGTGGCTCTCAGCCTCTAAAGCAAGGAAAGAGTACTGTGTGCTGAGAGACCATGG
 CAAAGAACCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAACGCTTTAAATCC
 AAGAAAATATGTAAATCACTTAAGATTGTGGACTGGTGTGGTATCCTGCCCTAACTCT
 ATTGTCTGTTGGGGAGCAAGCACCTCTGCCGGAGGTACCCAAAAAGCCTATGACA
 TGGAGCACACTTCTACAGCAATGGAGAGAAGAAGAAGATTACATGGAAATTGATCCTGTG
 ACCAGAACTGAAATATTCAAGCGAAATGGCACTGATGAAACATTGAAAGTGCACGACTT
 TAAAAACGGATACACTGGCATCTACTCGTGGTCTTCAAAAATGTTTATCAAAACTCAGA
 TTAAAGTGATTCTGAATTCTGAACCAGAACAGGAAATAGATGAGAACATTAC
 ACAACTTCTTGAACAGTCAGTGATTGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGA
 TTTCTTAAAAATTCCAAAATTCTGGAGATTGATAACGTGACCATGTATTGGATCAATC
 CCACTCTAATATCAGTTCTGAGTTACAAGACTTGAGGAGGGAGAACATCTCACTTT
 CCTGCCAACGAAAAAAAGGGATTGAACAAAATGAACAGTGGTGGCCCTCAAGTGAAAGT
 AGAGAACCGTCACGCCAGACAAGCAAGTGAGGAAGAACCTCCAATAATGACTATACTG
 AAAATGGAATAGAATTGATCCATGCTGGATGAGAGAGGTTATTGTTGTATTACTGCCGT
 CGAGGCAACCGCTATTGCCGCCGTCTGTGAACCTTACTAGGCTACTACCCATATCCATA
 CTGCTACCAAGGAGGACGACTCATCTGCGTGTACATGCCCTGTAAGTGGTGGGTGGCCC
 GCATGCTGGGAGGGCTTAAAGGAGGTTGAGCTAAATGCTAAACTGCTGGCAACATAT
 AATAATGCATGCTATTCAATGAATTCTGCCTATGAGGCATCTGCCCTGGTAGCCAGCT
 CTCCAGAATTACTGTAGGTAATTCTCTTCATGTTCTAAACTTACATTATCACC
 AAAAAAAAAAAAAAAA

FIGURE 182

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727
><subunit 1 of 1, 317 aa, 1 stop
><MW: 37130, pI: 5.18, NX(S/T): 3
MAKNPPENCEDCHILNAEAFSKKICKSLKICGLVFGILALTLIVLFWGSKHFPEVPKKAY
DMEHTFYSGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT
QIKVIPEFSEPEEEIDENEETTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWI
NPTLISVSELQDFEEEGLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDY
TENGIEFDPMELDERGYCCIYCRRGNRYCRRVCEPLLGYYPYCYQGGRVICRVIMPCNWWV
ARMLGRV
```

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACCTGGCTCCGGCTGGCACCTGAGGAGCGCGTGACCCCGAGGGCCCAGGGAGCTGCC
 CGGCTGGCCTAGGCAGGCAGCCGACCATGGCCAGCACGGCGTGCAGCTCTGGGCTTCCT
 GCTCAGCTCCTGGGCATGGTGGGCACGTTGATCACCAACCATCCTGCCGCACTGGCGGAGGA
 CAGCGCACGTGGGCACCAACATCCTCACGGCGTGTCTACCTGAAAGGGCTCTGGATGGAG
 TGTGTGTGGCACAGCACAGGCATCTACCAAGTGCAGATCTACCGATCCCTGCTGGCGCTGCC
 CCAAGACCTCCAGGCTGCCCGGCCCTCATGGTCATCTCCTGCCCTCGCTCGGGCATAGCCT
 GCGCCTGCGCCGTACGGGATGAAGTGCACGCGCTGCCAAGGGCACACCCGCCAACGACC
 ACCTTGCCATCCTCGCGGCACCCCTTTCATCCTGGCGCCTCCTGTGCATGGTGGCGT
 CTCCTGGACCACCAACGACGTGGTCAGAACTTCTACAACCCGCTGCTGCCAGCGGCATGA
 AGTTTGAGATTGGCCAGGCCCTGTACCTGGCTTCATCTCCTCGTCCCTCGCTCATGGT
 GGCACCCCTGCTTGCCTGTCCCTGCCAGGACGAGGCACCCCTACAGGCCCTACCAGGCCCGCC
 CAGGGCCACCACGACCACTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAG
 ACAATCGGGCCCCCTCAGTGACCTCGGCCACGCACAGCGGGTACAGGCTGAACGACTACGTG
TGAGTCCCCACAGCCTGCTCTCCCTGGCTGCTGTGGCTGGTCCCCGGCGGGACTGTC
 AATGGAGGCAGGGGTTCCAGCACAAAGTTACTCTGGCAATTTGTATCCAAGGAAATA
 ATGTGAATGCGAGGAAATGTCTTAGAGCACAGGGACAGAGGGGAAATAAGAGGAGGAGAA
 AGCTCTCTATACCAAAGACTGAAAAAAAATCCTGTCTGTTTGATTTATTATATATAT
 TTATGTGGGTGATTGATAACAAGTTAATATAAAGTGAATTGGAGTTGGTCAGTGGGGT
 TGGTTGTGATCCAGGAATAAACCTTGCAGGATGTGGCTGTTATGAAAAAAA

FIGURE 184

MASTAVQLLGFLLSFLGMVGTLITTIPLPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY
QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTL
FILAGLLCMVAWSWTNDVVQNPFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQ
DEAPYR PYQAPPRATTANTAPAYQPPAAYKDNRAPSVTSA THSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 185

GAGCTCCCTCAGGAGCGCGTTAGCTCACACCTCGGCAGCAGGAGGGCGGCAGCTCTCG
 CAGGCCAGGGCGGGCGGCCAGGATCA**TG**TCCACCACATGCCAAGTGGTGGCGTTCCT
 CCTGTCCATCCTGGGCTGGCGGCTGCATCGCGCCACCAGGATGGACATGTGGAGCACCC
 AGGACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGC
 GTGAGGCAGAGTTCAGGCTTACCGAATGCAGGCCATTTCACCATCCTGGACTTCCAGC
 CATGCTGCAGGCAGTGCAGGCCGTGATGATCGTAGGCATCGCCTGGTGCCATTGGCCTCC
 TGGTATCCATCTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCC
 AACATGACACTGACCTCCGGATCATGTTCATGTCATTGTCTCAGGTCTTGTCAATTGCTGGAGT
 GTCTGTGTTGCCAACATGCTGGTGAACACTTCTGGATGTCCACAGCTAACATGTACACCG
 GCATGGGTGGGATGGTGCAGACTGTTCAGACCAGGTACACATTGGTGCAGGCTCTGGTGTG
 GGCTGGGTGCGTGGAGGCCTCACACTAATTGGGGGTGTGATGATGTGCATGCCCTGCCGGGG
 CCTGGCACCAGAAGAAACCAACTACAAAGCCGTTCTTATCATGCCCTCAGGCCACAGTGTG
 CCTACAAGCCTGGAGGCTCAAGGCCAGCACTGGCTTGGGTCCAACACCAAAAACAAGAAG
 ATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTATCCTCCAAGCACGACTA
 TGTG**TAAT**GCTCTAACAGACCTCTCAGCACGGCGGAAGAAACTCCCAGAGCTCACCAAAA
 AACAAAGGAGATCCCATCTAGATTCTTCTTGCTTTGACTCACAGCTGGAAAGTTAGAAAAGC
 CTCGATTCATCTTGAGAGGCCAAATGGTCTTAGCCTCAGTCTGTCTCAAATATTCC
 ACCATAAAACAGCTGAGTTATTATGAATTAGAGGCTATAGCTCACATTTCATCCTCTAT
 TTCTTTTTAAATATAACTTCTACTCTGATGAGAGAATGTGGTTTAATCTCTCTCAC
 ATTTGATGATTAGACAGACTCCCCCTTCCCTAGTCAATAAACCCATTGATGATCTA
 TTTCCAGCTATCCCCAAGAAAACCTTGAAAGGAAAGAGTAGACCCAAAGATGTTTT
 CTGCTGTTGAATTGTCTCCCCACCCCCAACTGGCTAGTAATAAACACTTACTGAAGAA
 GAAGCAATAAGAGAAAGATATTGTAATCTCTCCAGCCATGATCTGGTTTCTTACACTG
 TGATCTAAAAGTTACCAAACAAAGTCATTTCAGTTGAGGCAACCAAACCTTCTACTG
 CTGTTGACATCTCTTATTACAGCAACACCATTCTAGGAGTTCTGAGCTCTCCACTGGAG
 TCCTCTTCTGCGGGTCAGAAATTGCCCTAGATGAATGAGAAAATTATTTTTAAT
 TTAAGTCCTAAATATAGTTAAAATAATGTTAGTAAATGATACTATCTCTGTGA
 AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAATAATTGCTTGACATTGTCT
 ATATGGTACTTGTAAAGTCATGCTTAAGTACAATTCCATGAAAAGCTCACACCTGTAATC
 CTAGCACTTGGGAGGCTGAGGAGGAAGGATCACCTGAGGCCAGAAGTCTGAGGACTAGCCTG
 GGCAACATGGAGAAGCCCTGTCTCACAAATACAGAGAGAAAAATCAGCCAGTCATGGTG
 GCATACACCTGTAGTCCCAGCATTCCGGAGGCTGAGGTGGGAGGATCACTTGAGGCCAGGG
 AGGTTGGGCTGCAGTGAGCCATGATCACACCACTGCACTCCAGCCAGGTGACATAGCGAGA
 TCCTGTCTAAAAAATAAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAA
 ACTAATTCTTAA

FIGURE 186

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734
><subunit 1 of 1, 261 aa, 1 stop
><MW: 27856, pI: 8.50, NX(S/T): 1
MSTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFT
CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM
FIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL
IGGVMMCIACRGLAPEETNYKAVSYHASGHHSVAYKPGGFCASTGFGSNTKNKKIYDGGARTE
DEVQSYP SKHDYV
```

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 187

GGAAAAACTGTTCTCTGTGGCACAGAGAACCCCTGCTCAAAGCAGAAGTAGCAGTTCCG
 GAGTCCAGCTGGCTAAAACATCCCAGAGGATA**ATG**GCAACCCATGCCTAGAAATCGCTG
 GGCTGTTCTGGTGGTGGAAATGGTGGGCACAGTGGCTGCACTGTCATGCCTCAGTGG
 AGAGTGTGCGGCCTTCATTGAAAACAACATCGTGGTTTGAAAACCTCTGGGAAGGACTGTG
 GATGAATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGG
 CTCTTCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGCTGCTCCGTGATGTCCTTC
 TTGGCTTCATGATGCCATCCTGGCATGAAATGCACCAGGTGCACGGGGACAATGAGAA
 GGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTCATCACGGGCATGGTGGTGC
 TCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAAT
 GTGCCCAAAACGTGAGCTGGAGAACGCTCTACTTAGGATGGACACGGCACTGGTGCT
 GATTGTTGGAGGAGCTGTTCTGCTGCGTTTTGTTGCAACGAAAAGAGCAGTAGCTACA
 GATACTCGATACTTCCCATCGCACAAACCAAAAAAGTTATCACACCGAAAGAAGTCACCG
 AGCGTCTACTCCAGAAGTCAGTATGTG**TAG**TTGTGTATGTTTTAACTTTACTATAAGC
 CATGCAAATGACAAAATCTATATTACTTTCTCAAATGGACCCAAAGAAACTTGATTAA
 CTGTTCTTAACTGCCTAATCTAATTACAGGAACGTGCACTCAGCTATTATGATTCTATAA
 GCTATTCAGCAGAATGAGATATTAAACCAATGCTTGATTGTTCTAGAAAGTATAGTAAT
 TTGTTCTAAGGTGGTCAAGCATCTACTCTTTATCATTACTCAAATGACATTGCT
 AAAGACTGCATTATTTACTACTGTAATTCTCACGACATAGCATTATGTACATAGATGAG
 TGTAACATTTATCTCACATAGAGACATGCTTATGGTTATTAAAATGAAATGCCAG
 TCCATTACACTGAATAAATAGAACTCAACTATTGCTTTCAGGGAAATCATGGATAGGGTTG
 AAGAAGGTTACTATTAAATTGTTAAAACAGCTAGGGATTAATGTCCTCCATTATAATGA
 AGATTAATGAAGGCTTAATCAGCATTGTAAGGAAATTGAATGGCTTCTGATATGCTG
 TTTTTAGCCTAGGAGTTAGAAATCCTAACTTCTTATCCTCTTCCAGAGGCTTTTT
 TTCTTGTGTATTAATTAACATTAAACATTAAACGCACTATTGTCAGGGCTTGCATTCA
 AACTGCTTCCAGGGCTACTCAGAAGAAAGATAAAAGTGTGATCTAAGAAAAGTGTG
 GTTTAGGAAAGTGAATTTGTTTGATTTGAAGAAGAATGATGCATTGACAA
 GAAATCATATGTATGGATATATTAAAGTATTGAGTACAGACTTGAGGTTCATC
 AATATAAATAAAAGAGCAGAAAAATGTCTGGTTTCATTGCTTACCAAAAAACAAACA
 ACAAAAAAAAGTTGTCCTTGAGAACCTCACCTGCTCCTATGTGGGTACCTGAGTC
 AAAATTGTCATTGTTCTGTGAAAAATAAATTCCCTTCTGTACCACTTTCTGTTAGTT
 ATCTGTAAATACTGTATTTCTGTTATTCAAATTGATGAAACTGACAATCCAATTGA
 AAGTTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTGCTTATACATTATA
 TTAATAAATTGTACATTCTAATT

FIGURE 188

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735
><subunit 1 of 1, 225 aa, 1 stop
><MW: 24845, pI: 9.07, NX(S/T): 0
MATHALEIAGLFLGGVGMVGTAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRM
QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMAILGMKCTRCTGDNEKVKAHILLAGI
IFIITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF
CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV
```

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 189

TCGCC**ATG**GCCTCTGCCGGAATGCAGATCCTGGGAGTCGTCCGTACACTGCTGGCTGGTG
 AATGGCCTGGTCTCCTGTGCCCTGCCCATGTGGAAGGTGACCGCTTCATCGGCAACAGCAT
 CGTGGTGGCCCAGGTGGTGTGGGAGGGCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGCC
 AGATGCAGTGCAAGGTGTACGACTCACTGCTGGCGCTGCCACAGGACCTGCAGGCTGCACGT
 GCCCTCTGTGTCATGCCCTCCTGTGGCCCTGTTGGCTGCTGGTCTACCTGCTGGGC
 CAAGTGTACCACCTGTGTGGAGGAGAAGGATTCCAAGGCCGCTGGTGCACCTCTGGGA
 TTGTCTTGTCATCTCAGGGTCTGACGCTAATCCCCGTGTGCTGGACGGCGATGCCATC
 ATCCGGGACTTCTATAACCCCCCTGGTGGCTGAGGCCAAAAGCGGGAGCTGGGGGCCTCCCT
 CTACTTGGGCTGGCGGCCTCAGGCCCTTTGTTGCTGGTGGGGGTTGCTGTGCTGCACTT
 GCCCCTCGGGGGGTCCCAGGGCCCCAGCCATTACATGGCCCGCTACTCAACATCTGCCCT
 GCCATCTCTCGGGGGCCCTCTGAGTACCCCTACCAAGAATTACGT**TGA**CGTGGAGGGAAATG
 GGGGCTCCGCTGGCGCTAGGCCATCCAGAAGTGGCAGTGCCAACAGCTTGGATGGGTT
 CGTACCTTTGTTCTGCCTCCTGCTATTTCTTTGACTGAGGATATTAAAATTCAATT
 GAAAATGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTCTCACCTTGG
 ATGATGGAGCCAAGAGGGATGCTTGAGATTCTGGATCTTGACATGCCATCTAGAAGC
 CAGTCAAGCTATGAACTAATGCGGAGGCTGCTGCTGGCTTGCAACAAGACAGAC
 TGTCCTCAAGAGTTCCCTGCTGCTGGCTGGGGCTGGCTTCCCTAGATGTCAGGACAGCTG
 CCCCCCATCCTACTCAGGTCTCTGGAGCTCCTCTTCACCCCTGGAAAAACAAATCATCTG
 TTAACAAAGGACTGCCACCTCCGGAATTCTGACCTCTGTTCTCCGTCTGATAAGACG
 TCCACCCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCACCTCAAACACTGCACC
 CTTCTGCCCTGCCCTCGTCTCACCCCTTACACTCACATTATCAAATAAGCATG
 TTTGTTAGTGCA

FIGURE 190

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736
><subunit 1 of 1, 220 aa, 1 stop
><MW: 23292, pI: 8.43, NX(S/T): 0
MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIIVVAQVVWEGLWMSCVVQSTGQM
QCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLTS
FVISGVTLIIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLC
SGGSQGPSPHYMARYSTSAPAISRGPSEYPTKNYV
```

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 191

GC CAAGGAGAACATCATCAAAGACTTCTAGACTCAAAAGGCTCACGTTACATCTG
AGCATCTTCTACCACTCCGAATTGAACCAGTCTTCAAAGTAAAGGCAATGGCATTATCCC
TTGCAAATTGCTGGCTGGTCTGGGTCCTGGCATGGTGGGACTCTGCCACAACCCT
TCTGCCCTCAGTGGTGGAGTATCAGCTTGTTGGCAGCAACATTATTGTCTTGAGAGGGCTC
TGGGAAGGGCTCTGGATGAATTGCATCCGACAAGCCAGGGTCCGGTTGCAATGCAAGTTCTA
TAGCTCCTTGGCTCTCCCGCCTGCCCTGGAAACAGCCCGGGCCCTCATGTGTGGCTG
TTGCTCTCTCCTTGATGCCCTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGCACA
GGCTCTAACGAGAGGGCAAAGCATACCTTCTGGGAACCTCAGGAGTCCTCTTCATCCTGAC
GGGTATCTCGTTCTGATTCCGGTGAGCTGGACAGCCAATATAATCATCAGAGATTCTACA
ACCCAGCCATCCACATAGGTAGAAACGAGAGCTGGAGCAGCACTTTCTGGCTGGCA
AGCGCTGCTGTCCTCTCATTGGAGGGGTCTGCTTGATTTGCTGCTGCAACAGAAA
GAAGCAAGGGTACAGATATCCAGTGCCTGGCTACCGTGTGCCACACACAGATAAGCGAAGAA
ATACGACAATGCTTAGTAAGACCTCCACCAAGTTATGTCTAATGCCTCCTTGGCTCCAAGT
ATGGACTATGGTCAATGTTTTATAAAGTCCTGCTAGAAACTGTAAGTATGTGAGGCAGGA
GAACCTGTTATGTCTAGATTACATTGATACGAAAGTTCAATTGTTACTGGTGGTAGG
AATGAAAATGACTTACTTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG
GACCCAATCGCTGCTCCAATTTCATATTCTAAATTCAAGTATAACCCATAATCATTAGCAAG
TGTACAATGATGGACTACTTATTACTTTGACCACATGTATTATCTGATAAGAATCTAAA
GTTGAAATTGATATTCTATAACAATAAAACATACCTATTCTA

FIGURE 192

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737
><subunit 1 of 1, 173 aa, 1 stop
><MW: 18938, pI: 9.99, NX(S/T): 1
MNCIRQARVRLQCKFYSSLLALPPALETARALMCVAVALSLIALLIGICGMKQVQCTGSNER
AKAYLLGTSGVLFILTGIFVLI PVSWTANIIIRD FYNPAIHIGQKRELGAALFLGWASAAVL
FIGGGLLCGFCCCNRKKQGYRYPVPGYRPHTDKRRNTTMLSKTSTSYY
```

Important features of the protein:

Transmembrane domains:

amino acids 31-51, 71-90, 112-133

N-glycosylation site.

amino acids 161-164

FIGURE 193

AGTGACAATCTCAGAGCAGCTTCTACACCACAGCCATTCCAGC**ATG**AAGATCACTGGGGT
CTCCTTCTGCTCTGTACAGTGGTCTATTCTGTAGCAGCTCAGAAGCTGCTAGTCTGTCTCC
AAAAAAAGTGGACTGCAGCATTACAAGAAGTATCCAGTGGTGGCCATCCCCTGCCCATCA
CATACCTACCAGTTGTGGTTCTGACTACATCACCTATGGGAATGAATGTCATTGTGTACC
GAGAGCTTGAAAAGTAATGGAAGAGTTCAGTTCTCACGATGGAAGTTGC**TAA**ATTCTCCA
TGGACATAGAGAGAAAGGAATGATATTCTCATCATCATCTCATCCCAGGCTCTGACTG
AGTTTCTTCAGTTTACTGATGTTCTGGGTGGGGACAGAGCCAGATTGAGTAATCTG
ACTGAATGGAGAAAGTTCTGTGCTACCCCTACAAACCCATGCCTCACTGACAGACCAGCAT
TTTTTTTTAACACGTCAATAAAAAATAATCTCCCAGA

FIGURE 194

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739
><subunit 1 of 1, 85 aa, 1 stop
><MW: 9232, pI: 7.94, NX(S/T): 0
MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN
ECHLCTESLKSNGRVQFLHDGSC
```

Signal peptide:

amino acids 1-19

FIGURE 195

CCCGCGCCC GGTTCTCCCTCGCAGCACCTCGAAGTGC GCCCTCGCCCTCCTGCTCGCGCCC
CGCCGCCATGGCCTGCCCTCCCCCGCGGCCCTGCTGTCCCTGCCCTGACCGGGCTGGCGCTGC
TCCTGCTCCTGTGCTGGGCCAGGTGGCATAAGTGGAAATAAACTCAAGCTGATGCTCAA
AAACGAGAACGACCTGTTCCA ACTAAGACTAAAGTGGCCGTTGATGAGAATAAAGCAAAGA
ATTCCCTGGCAGCCTGAAGCGCCAGAACGGCAGCTGTGGGACCGGACTCGGCCGAGGTGC
AGCAGTGGTACCAGCAGTTCTACATGGCTTGATGAAGCGAAATTGAAGATGACATC
ACCTATTGGCTTAACAGAGATCGAAATGGACATGAATACTATGGCGATTACTACCAACGTCA
CTATGATGAAGACTCTGCAATTGGTCCCCGGAGCCCTACGGCTTAGGCATGGAGCCAGCG
TCAACTACGATGACTTAACCATGACTGCCACACGCTGTACAAGAACAAATAGCGATT
TCTTCATGTATCTCCTAATGCCCTACACTACTTGGTTCTGATTTGCTCTATTCAAGCAGAT
CTTTTCTACCTACTTGTGATCAAAAAAGAAGAGTTAAAACAACACATGAAATGCCTT
TGATATTCATGGGAATGCCTCTCATTTAAAAATAGAAATAAAGCATTGTTAAAAGA

FIGURE 196

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742
><subunit 1 of 1, 148 aa, 1 stop
><MW: 17183, pI: 8.77, NX(S/T): 0
MAASPARPAVLALTGLALLLLCWGP GGISGNKLKLMQKREAPVPTKTKAVDENAKEFL
GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNDRNGHEY YGDYYQRHYD
EDSAIGPRSPYGFRHGASVNYDDY
```

Signal peptide:

amino acids 1-30

FIGURE 197

CGGCTCGAGCCGCCCGGAAGTCCCCGAGGGGCCGATGGAGCTGGGGAGCCGGCGCTC
 GGTAGCGCGGGCAAGGCAGGC**TG**ACCCCTGATTGAAGGGTGGGTATGAGGTGAC
 CGTCCTTTCTCGGTGCTTGCTGCCTCTGGTGCAGGCCCTGCCTGGTCTAACGCACA
 CCGCTGAGGGCGGGGACCCACTGCCAGCCGTAGGGACCCAAACGCCATCCCAGCCCAGC
 GCAGCCATGGCAGCTACCGACAGCATGAGAGGGAGGCCAGGGCAGAGACCCCCAGCCT
 GAGACACAGAGGTCAAGCTGCACAGCCAGAGCCAGCACGGGTTACAGCAACACGCCAG
 CCCCGGACTCCCCGAGGAGCCCTCGTGCACGGCTGAAATTCTCAATGATTAGCAGAGCAG
 GTGGCCAGGGCTGGCCCCACGACACCATTGGCTCTGAAAAGGACCCAGTTCCGGCCG
 GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCGACGACACCCAGACCCCTGG
 GCAGCCTTCACCTCCCTCCAACTCGTTCTCCACTGCCACGTGTCCACGAGAGTCGGTCCC
 CCAAATCCCCCTGCCGCCGGGTCCGAGCCGCCCTCCGGGCTGGAAATCGGCAGCCT
 GCTGCTGCCCTGCTGCTCTGCTGTTGCTGCTCTGGTACTGCCAGATCCAGTACCGGC
 CCTTCTTCCCCGTACCGCCACTCTGGCCTGGCCGGCTCACCTGCTCAGTCTCCTG
 GCCTTGCCATGTACCGCCCG**TAGT**GCCTCCGCCGGCGCTTGGCAGCGTCGCCGGCCCTCC
 GGACCTTGCTCCCCGCCGCCGGAGCTGCTGCCTGCCAGGCCGCCCTCCGGCCTG
 CCTCTCCCGCTGCCCTGGAGCCAGCCCTGCCAGAGGACTCCGGGACTGGCGGAGG
 CCCCGCCCTGCGACCGCCGGGCTGGGCCACCTCCCGGGCTGCTGAACCTCAGCCCGCA
 CTGGGAGTGGGCTCTCGGGCATCTGCTGCTGCTGCCCTGCCGGCAGAGCCG
 GGCGCCCCGGGGCCGTCTTAGTGTGCTGCCGGAGGACCCAGCCGCCTCCAATCCCTGAC
 AGCTCCTGGCTGAGTTGGGACGCCAGGTGGTGGAGGCTGGTAAGGGAGCGGGAG
 GGGCAGAGGAGTTCCCCGAAACCGTGCAGATTAAAGTAAGTGAAGTTAAAAAAA
 AAAAAAAA

FIGURE 198

MTLIEVGDEVTVLFSVLACLLVLALAWVSTHTAEGGDPLPQPSGTPPSQPSAAMAATDSM
RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVRLKFLNDSEQVARAWPHDT
IGSLKRTQFPGREQQVRЛИYQGQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS
EPGPSGLEIGSLLLPLLWYCQIQYRPFFPLTATLGLAGFTLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

FIGURE 199

GAGATTGGAAACAGCCAGGTTGGAGCAGTGAGTGAGTAAGGAAACCTGGCTGCCCTCCAG
ATTCCCCAGGCTCTCAGAGAAGATCAGCAGAAAGTCTGCAAGACCCTAACGAACCATCAGCCC
TCAGCTGCACCTCCTCCCTCCAAGG**ATG**ACAAAGGCGCTACTCATCTATTGGTCAGCAGC
TTTCTTGCCTAAATCAGGCCAGCCTCATCAGTCGCTGTGACTTGGCCCAAGGTGCTGCAGCT
GGAGGACTTGGATGGGTTGAGGGTTACTCCCTGAGTGACTGGCTGTGCCTGGCTTTGTGG
AAAGCAAGTTCAACATATCAAAGATAAAATGAAAATGCGGATGGAAGCTTGACTATGGCCTC
TTCCAGATCAACAGCCACTACTGGTGCAACGATTATAAGAGTTACTCGAAAAACCTTGCCA
CGTAGACTGTCAAGATCTGCTGAATCCAACCTTCTGCAGGCATCCACTGCGAAAAAGGA
TTGTGTCCGGAGCACGGGGATGAACAACTGGGTAGAATGGAGGTTGCACTGTTCAGGCCGG
CCACTCTCCTACTGGCTGACAGGATGCCGCTGAGA**TGA**ACAGGGTGCAGGTGCACCGTGG
AGTCATTCCAAGACTCCTGTCCACTCAGGGATTCTCATTCTTCTTCCACTGCCTCCA
CTTCATGTTATTTCTTCCCTCCATTACAACAAACTGACCAGAGCCCCAGGAATAAA
TGGTTTCTGGCTTCCCTTACTCCCATCTGGACCCAGTCCCTGGTCTGTCTGTTAT
TTGTAAACTGAGGACCACAATAAAGAAATCTTATATTATCG

FIGURE 200

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746
><subunit 1 of 1, 148 aa, 1 stop
><MW: 16896, pI: 6.05, NX(S/T): 1
MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI
NENADGSFDYGLFQINSHYWCNDYKSYSSENLCVDCQDLLNPNLLAGIHCAKRIVSGARGMN
NWVEWRLHCSGRPLSYWLTGCRLR
```

Signal peptide:

amino acids 1-18

FIGURE 201

TCTGACCTGACTGGAAGCGTCAAAGAGGGACGGCTGTCAAGCCCTGCTTGACTGAGAACCCA
CCAGCTCATCCCAGACACCTCATAGCAACCTATTATACAAAGGGGAAAGAAACACCTGAG
CAGAATGGAATCATTATTTTCCAAAGGAGAAAACCGGGTAAAGGGAGGGAAAGCAATT
AATTGAGTCCTGTGAATGGGCTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGAC
TTGGGTGAAACTGGGTCTGTGGTTCTGATTGTAAGTGGAAAGCAGGTCTGCACACGC
TGTTGCCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTCCAGGTGAAACAAGCA
ACCCATGTTCTGCTGCAAGCTGAGGAGCCTGGAGCAGGGAGAAAGCTAAGTGAACATGAC
CTGTTGCATTGGCAAGTTCTAGCAAC**ATG**CTCTAAGGAAGCGATAACAGGCACAGACCAG
CAGACTCCAGTCCTCCTGCTCCTGATGCTGGATGCGTCCTGATGATGGTGGCGATG
TGCACCCCTCCCCACCACACCCCTGACAGACTGTCACAGCCCAAGCCAGCAAGCACAGCC
GAAGCCAGGTACCGCCTGGACTTGGGAATCCAGGATTGGTACTGGAAGCTGAGGATGA
GGGTGAAGAGTACAGCCCTCTGGAGGGCCTGCCACCCCTTATCTACTGCGGGAGGATCAGC
TGCTGGTGGCGTGGCCTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTGG
AGCTACCGCCTCATCAAGCAGCCAAGGAGCAGGATAAGGAAGCCCCAAAGAGGGACTGGGG
GGCTGATGAGGACGGGGAGGTGCTGAAGAAGAGGAGTTGACCCGTTAGCCTGGACCCAC
GTGGCCTCCAGGAGGCACTCAGTGCCGCATCCCCCTCCAGAGGGCTGCCCCAGGAGTGG
CACCCACTGTGTCAGCAGCACCCCTCAGGACAGCCTGCCACAGCCAGCGTCATCCTCTG
TTTCATGATGAGGACGGCTGGTCCACTCTCCTGCGGACTGTACACAGCATTGACACAGTGC
CCAGGGCCTCCTGAAGGAGATCATCCTCGTGGACGACCTCAGCCAGCAAGGACAACCTCAAG
TCTGCTCTAGCGAATATGTGGCCAGGCTGGAGGGGGTGAAGTTACTCAGGAGCAACAAGAG
GCTGGGTGCCATCAGGGCCCGGATGCTGGGGGCCACCAGAGCCACCAGGGATGTGCTGCT
TCATGGATGCCACTGCCAGTGCCACCCAGGCTGGCTGGAGGCCCTCCTCAGCAGAATAGCT
GGTGACAGGAGGCCAGTGGTATCTCCGGTGTAGATGATGTTGACTGGAAGACTTCCAGTA
TTACCCCTCAAAGGACCTGCAGCGTGGGGTGTGGACTGGAAGCTGGATTCCACTGGAAC
CTTGCCAGAGCATGTGAGGAAGGCCCTCCAGTCCCCATAAGCCCCATCAGGAGCCCTGTG
GTGCCCGAGAGGTGGTGGCCATGGACAGACATTACTCCAAAACACTGGAGCGTATGACTC
TCTTATGTCGCTGCAGGGTGGTAAAACCTCGAACTGTCTTCAAGGCCTGGCTCTGTTG
GCTCTGTTGAAATCCTCCCTGCTCTCGGGTAGGACACATCTACAAAATCAGGATTCCCAT
TCCCCCTGACCAGGAGGCCACCTGAGGAACAGGGTTCGATTGCTGAGACCTGGCTGG
GTCATTCAAAGAAACCTCTACAAGCATAGCCCAGAGGCCCTCTCCTGAGCAAGGCTGAGA
AGCCAGACTGCATGGAACGCTTGCAGCTGCAAAGGAGACTGGGTTGTCGGACATTCCACTGG
TTTCTGGCTAATGTCTACCCCTGAGCTGTACCCATCTGAACCCAGGCCAGTTCTCTGGAAA
GCTCCACAACACTGGACTTGGCTCTGTGCAGACTGCCAGGAGCAAGGGGACATCCTGGCT
GTCCCAGGGTGTGGCTCTTGCAGTGACAGCCGGAGCAACAGTACCTGCAGCACACCAGC
AGGAAGGAGATTCACTTGGCAGGCCACAGCACCTGTGCTTGCTGTCAGGAGGAGCAGGT
GATTCTTCAGAACTGCACGGAGGAAGGCCATCCACCGCAGCACTGGGACTTCCAGG
AGAATGGGATGATTGTCACATTCTTCTGGAAATGCATGGAAGCTGTGGTGCAGGAA
AATAAGATTGTACCTGCGTCCGTGTGATGGAAAAGCCGCCAGCAGTGGCAGTGG
GATAAAATGCTGTGGATGAACGA**TGA**ATGTCAATGTCAGAAGGAAAAGAGAAATT
AAAATCCAGCTCAAGTGAACGTAAGAGCTTATATATTTCATGAAGCTGATCCTTTGTG
GTGTGCTCTTGTGTTAGGAGAGAAAAAGCTCTATGAAAGAATATAGGAAGTTCTCCTT
TCACACCTTATTTCATTGACTGCTGGCTGCTTA

FIGURE 202

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760
><subunit 1 of 1, 639 aa, 1 stop
><MW: 73063, pI: 6.84, NX(S/T): 2
MLLRKRYRHRPCRLQFLLLLLMLGCVLMVVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEYEYSPLEGPPFISLREDQLLVAVALPQARRNQSQGRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRLQEAALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATL
RNRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFWFLANVYPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPVLAPCSDSRQQYLQHTSRKEIHFGSP
QHLCAVRQEQQVILQNCTEEGLAIHQHQHWDFQENGIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER
```

Signal peptide:

amino acids 1-28

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTACAGCTGAGGAAGACCTCAGAC**ATGGA**
 GTCCAGGATGTGGCCTGCGCTGCTGCTGCCAACCTCCCTCTGGCCACTGCTGTTGC
 TGCCCCCTCCCACCGCCTGCTCAGGGCTCTCATCCTCCCCCTGAACCCCACCAGCCCCAGCC
 CGCCCCCCCCTGTGCCAGGGGAGGCCCTCGGCCCCACGTATGTGTGCGTGTGGGAGCGAGC
 ACCTCCACCAAGCCGATCTCCTCGGGTCCAAGATCACGTCGGCAAGTCCTGCCTGGCACTG
 CACCCCCAGCCACCCATCAGGCTTGAGGAGGGCCGCCATCCCCAATACCCCTGGGCT
 ATCGTGTGGGTCCCACCGTGTCTCGAGAGGATGGAGGGACCCCAACTCTGCCAATCCCGG
 ATTTCTGGACTATGGTTTGAGGCCCTCATGGGCTCGCAACCCCACACCCCAACTCAGACT
 CCATGCGAGGTGATGGAGATGGCTTATCCTGGAGAGGCACCTGCCACCCCTGCGGCCATT
 CTGTTCGGGGCCGTGGGAAGGTGTGGACCCCCAGCTCTATGTCACAATTACCATCTCCAT
 CATCATTGTTCTCGTGGCCACTGGCATCATCTTCAAGTTCTGCTGGGACCGCAGCCAGAAGC
 GACGCAGACCCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGGCCAGCAGCCACTGACA
 GACCTGTCCCCGGCTGGAGTCACTGTGTGGGGCTTCGGGACTCACCTACCCCCACCCC
 TGACCATGAGGAGCCCCGAGGGGACCCGGCTGGGATGCCCAACCCCAAGGGGCTCCAG
 CCTTCCAGTTGAACCGG**TGA**GGGCAGGGCAATGGGATGGGAGGGCAAAGAGGGAAAGGAAAC
 TTAGGTCTTCAGAGCTGGGTGGGGTGCCCTCTGGATGGTAGTGAGGAGGCAGGCAGGCGTGGC
 CTCCCACAGCCCTGGCCCTCCAAGGGGCTGGACAGCTCCTCTGGGAGGCACCCCTTC
 CTTCTCCCAGTCTCAGGATCTGTGTCTATTCTCTGCTGCCATAACTCCAACCTGCCC
 TCTTGGTTTTCTCATGCCACCTGTCTAAGACAACCTGCCCTTTAACCTTGATTCCC
 CCTCTTGTCTGAACCTCCCTCTATTCTGGCTACCCCTGGTTCTGACTGTGCCCTT
 TCCCTCTCCTCTCAGGATTCCCTGGTAATCTGTGATGCCCAATGTTGGGTGCAGCC
 AAGCAGGAGGCCAAGGGGCCGGCACAGCCCCCATCCACTGAGGGTGGGGCAGCTGTGGGA
 GCTGGGCCACAGGGCTCTGGCTCTGCCCTTGACACACCACCCGAACACTCCCCAGCC
 CCACGGCAATCCTATCTGCTGCCCTCTGCAGGTGGGGCCTCACATATCTGTGACTTCG
 GGTCCCTGTCCCCACCCCTGTGCACTCACATGAAAGCCTGACACTCACCTCCACCTTCAC
 AGGCCATTGACACGCTCCTGCACCCCTCTCCCGTCCATACCGCTCGCTAGCTGACTCT
 CATGTTCTCTCGTCTCACATTTGCACTCTCCTTCCCACATTCTGTGCTAGCTCACAG
 TGGTCAGCGTTCTGCACACTTACCTCTCATGTGCGTTCCCGGCCATGTTGTGGTGG
 TGTGCGCGTGTGTCACTCTCTCCCTCATGAACACCCACCCACCTCGTTCCGCAGCCCTGC
 GTGCTGCTCCAGAGGTGGGTGGGAGGTGAGCTGGGGCTCTGGGCCATCGGTATGG
 TCTCGCCATCCACACCATTGTTCTGTCTCCCCATCCTACTCCAAGGATGCCGGCA
 TCACCCCTGAGGGCTCCCCCTGGGAATGGGGTAGTGAGGCCAGACTTCACCCCCAGCCCA
 CTGCTAAAATCTGTTCTGACAGATGGGTTTGGGGAGTCGCCTGTCAGTACATGAGAA
 AGGGACTCCCATTGCCCTCCCTTCTCACAGTCCCTTGTCTGTCTGGCT
 TCTGTGTGTGCCCCATTCTCTGGACTTCAGAGCCCCCTGAGCCAGTCTCCCTCCAGCCT
 CCCTTGGGCCCTCCCTAACCTCACCTAGGCTGCCAGGGACCGGGAGTCAGCTGGTTCAAGGCC
 ATCGGGAGCTGCCTCCAAGTCTACCCCTCCCTCCGGACTCCCTCCTGGCTCCCT
 CCTCCCTCCTCCACTCTCCTTGTCTTCCACCTTCCCTCCCTTCCCTGGCTCCCTAGGCT
 GTGATATATATTTGTATTATCTCTTCTTCTTGTGGTGTGATCATCTGAATTACTGTG
 GGATGTAAGTTCAAAATTTCAAATAAGCCTTGCAAGATAA

FIGURE 204

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393
><subunit 1 of 1, 243 aa, 1 stop
><MW: 26266, pI: 8.43, NX(S/T): 1
MRPQGPAAASPQRLRGLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV
PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA
ECTFTKMRNSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECGPLPIEAIYLDQGSPEMN
STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIIEELPK
```

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 205

GTAAACCAGCGCAGTCCTCCGTGCGTCCGCCGCTGCCCTCACTCCCAGGATGG
CATCCTGTCTGGCCCTGCGCATGGCGCTGCTGGTCTCCGGGTTCTGGCCCTGCGGTG
CTCACAGACGATGTTCCACAGGAGCCGTGCCCACGCTGTGGAACGAGCCGGCGAGCTGCC
GTCGGGAGAAGGCCCCGTGGAGAGCACCAGCCCCGGCCGGAGCCGTGGACACCGGTCCCC
CAGCCCCCACCGTCGCCAGGACCCGAGGACAGCACCGCGCAGGAGCGGCTGGACCAGGC
GGCGGGTCGCTGGGCCCGCGCTATCGCGGCCATCGTATCGCCGCCCTGCTGGCACCTG
CGTGGTGCTGGCGCTCGTGGTCGCGCTGAGAAAGTTTCTGCCTCCTGAAGCGAATAAA
GGGGCCGCGCCCGGCCGCGCGACTCGGAAAAAAAAAAAAAA

FIGURE 206

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398
><subunit 1 of 1, 121 aa, 1 stop
><MW: 12073, pI: 4.11, NX(S/T): 0
MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG
PPAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS
```

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 116-119

N-myristoylation site.

amino acids 91-96

FIGURE 207

GGCGGTTGGTGGTGC~~G~~CGCGCTGAAGGGTGTGGCGAGCAGCGTC~~T~~GGTTGCCGGCG
 CGGGCCGGGACGGGCATGGCCCTGCTGCTGTGCC~~T~~GGTGTGCC~~T~~GTACGGCGCGCTGCCCA
 CGGCTGTCTGC~~A~~CTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTACCGCCACCATGTGA
 ACTTCAAGT~~C~~CTGGTGGGTGGCGACATCCCCGTGT~~C~~AGGGGCGCTGCTCACCGACTGGAGC
 GACGACACGATGAAGGAGCTGCACCTGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGA
 CCAAGTGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGAGAAGATGTACTTCC
 CCGGTATTCCCCAACGAGCTGC~~A~~ACATCTCCGGGAGCAGGTGCACCTCATCCAGAAC
 GCCATCATCGAAAGGCACCTGGCACCAGGCAGCTGGGGAGGGAGGGCAGCTCTCCAGGGAGGG
 ACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCGCCGGGACCTCCCTAAGTAGCCC
 CCAGAGGCGCTGGGAGTGTGCCACGCC~~T~~CCCTGAAGTTGCTCCATCTCACGCTGGGG
 GTCAACCTGGGGACCCCTCCGCCATGGACACACATA~~C~~ATGAAAACCAGGCCGCAT
 CGACTGTCAGCACCGCTGTGGCATCTTCAGTACGAGACC~~A~~TCC~~T~~GTCAACA~~A~~CTGCACAG
 ACTCGCACGTGC~~C~~CTG~~T~~GGTATACTGCGAGTAGGGCTCAGGCATCACACCCACCGT
 GCCAGGGCC~~T~~ACTGTCC~~T~~GGG~~T~~CC~~A~~GGCTCC~~T~~GGAGGGGCTCCGCC~~T~~CCAC
 CTGGCTGT~~C~~ATCGGGTAGGGCGGGCGTGGTT~~C~~AGGGCGCACC~~A~~CTCCAAGC~~T~~GTGT
 CCCACAGGT~~C~~TCGGCGAGTGAAGTCAGCTGTCCAGGGC~~T~~CTGA~~A~~CTACATAAAAC
 TGGCACAA~~G~~TAA~~G~~TCC~~C~~CTCAAACCAACACAGGCAGTGTGTATGTGAGCAC~~T~~CGT
 GGTGAGTATGTGGGGCACAGGCTGGCTCC~~T~~CAGCTCCACGT~~C~~CTAGAGGGCTCCGA
 GGAGGTGGAACCTCAACCCAGCTCTGC~~G~~CAGGAGGC~~G~~GCTGCAGTC~~T~~TTCTCC~~T~~CAAAG
 GTCTCCGACCC~~T~~CAGCTGGAGGC~~G~~G~~C~~ATCTTC~~T~~AAAGGGT~~C~~CCATAGGGTCTGGTTCC
 ACCCCATCCCAGGTCTGTGGT~~C~~AGAGC~~T~~GGAGGGTCC~~T~~ACGATGGTTAGGGTGCC~~C~~
 ATGGAGGGCTGACTGCC~~C~~ACATTGC~~T~~TCAGACAGGACACGAGCATGAGGTAAGGCCGC
 CCTGACCTGGACTTCAGGGGAGGGG~~T~~AAAGGGAGAGAGGGAGGGGCTAGGGGT~~C~~CT
 AGATCAGTGGGGCACTGCAGGTGGGCTCTCC~~T~~ATAC~~T~~GGACACCTGCTGGATGTCAC
 CTCTGCAACCACACCC~~A~~GTGGTGGTT~~C~~ATGAACAGACCACGCT~~C~~CTGC~~T~~CTCC~~T~~GG
 CCTGGGACACACAGAGCCACCCGCC~~T~~TGTGAGTGACCCAGAGAAGGGAGGC~~T~~CGGAGA
 AGGGGTGCTGTAAGCCAACACCAGCGTGC~~G~~CGGCC~~T~~GCACACC~~T~~CGGACATCCCAGGC
 ACGAGGGTGTGGATGTGGCACACATAGGACCACACGTCC~~C~~AGCTGGAGGAGAGGC~~T~~
 GGGGCC~~C~~CCAGGGAGGGAGGCAGGGGTGGGGACATGGAGAGCTGAGGCAGC~~T~~CGTCTCC
 CCGCAGCCTGGTATGCCAGC~~T~~TAAGGTGT~~C~~GGAGCCCCACACTGGCCAAC~~T~~GACCT
 TGGAAGATGCTGCTGAGTGTCTCAAGCAGC~~A~~CTGACAGCAGCTGGG~~C~~CTGCC~~C~~AGGGCAAC
 GTGGGGCGGAGACTCAGCTGGACAGCCC~~T~~GC~~T~~CACT~~T~~GGAGCTGGG~~C~~TGCTGCTGC
 CTCAGGACCC~~C~~CTCCGCCACAGAGCTGAGCTGCCAGGGCAGGAGGGCGGGAGG
 GAGGGAATGGGGTGGG~~C~~TGTGCGCAGCATCAGCGC~~T~~GGCAGGTCCG~~C~~AGAGCTGCC~~G~~
 TGTGATTAAAGTCC~~T~~GAT~~T~~TTCTC

FIGURE 208

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399
><subunit 1 of 1, 157 aa, 1 stop
><MW: 17681, pI: 7.65, NX(S/T): 1
MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDI
PVSGALLTDWSDDTMK
ELHLAIPIAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRN
IREQVHЛИQNAIIER
HLAPGSWGGQLSREGPSLAPEGSMPSPRGDLP
```

Signal peptide:

amino acids 1-15

FIGURE 209

AGCAGGAGCAGGAGAGGGACA**ATG**GAAGCTGCCCGTCCAGGTTCATGTTCTCTTATTCT
 CCTCACGTGTGAGCTGGCTGCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTG
 GTGCTGCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTGCTGCC
 ACTGAGGTGGCTGTCATAGGCTTCTTCAGGATTAGAAATACCAGCAGTGCCCCACTCCA
 TAGCATGGTGCAAAAATTCCCAGGCGTGTCAATTGGATCAGCACTGATTCTGAGGTTCTGA
 CACACTACAAACATCACTGGAACACCATCTGCCTCTTCGCCTGGTAGACAATGAACAACTG
 AATTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTCATGAGAT
 CAACAGCCTCCACATGGTGACAGAGTACAACCCCTGTGACTGTGATTGGTTATTCAACAGCG
 TAATTTCAGATTTCATCTCCTCTGATAATGAACAAAGGCCTCCCCAGAGTATGAAGAGAACATG
 CACAGATACCAGAAGGCAGCCAAGCTCTCCAGGGGAAGATTCTCTTATTCTGGTGGACAG
 TGGTATGAAAGAAAATGGGAAGGGTGAATATCATTTCAAACTAAAGGAGTCTCAACTGCCAG
 CTTTGGCAATTACCAGACTCTAGATGACGAGTGGATACACTGCCACAGCAGAAGTTCC
 GTAGAGCATGTGCAAAACTTTGTGATGGATTCTTAAGTGGAAAATTGTTGAAAGAAAATCG
 TGAATCAGAAGGAAAGACTCCAAAGGTGGAAC**TGA**CTTCTCCTGGAACTACATATGCC
 AAGTATCTACTTTATGCAAAGTAAAAAGGCACAACACTCAAATCTCAGAGACACTAAACACAG
 GATCACTAGGCCTGCCAACACACACACACGACGTGCACACACGCACGCACGGTGCACAC
 ACACACGCGCACACACACACACAGAGCTTCATTCCTGTCTAAATCTGTTCTC
 TTCTCCTCTTTAAATTTCATATCCTCACTCCCTATCCAATTCTCTTATCGTGCATT
 CATACTCTGTAAGGCCATCTGTAACACACCTAGATCAAGGCTTAAGAGACTCACTGTGATG
 CCTCTATGAAAGAGAGGCATTCTAGAGAAAGATTGTTCCAATTGTCATTAAATATCAAGT
 TTGTATACTGCACATGACTTACACACAAACATAGTTCTGCTCTTAAAGGTTACCTAAGGGT
 TGAAACTCTACCTCTTCATAAGCACATGTCCGTCTGACTCAGGATCAAAACCAAAGG
 ATGGTTTAAACACCTTGTGAAATTGTCTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTC
 CCTGAACTCAGCAGAAATAGACCATGTGAAACTCCATGCTGGTTAGCATCTCCAACCTCC
 TATGTAATCAACAACCTGCATAATAAATAAAGGCAATCATGTTATA

FIGURE 210

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401
><subunit 1 of 1, 273 aa, 1 stop
><MW: 30480, pI: 4.60, NX(S/T): 1
MEAAPSRFMILLFLLTCELAAEVAEEVEKSSDGPAGAAQEPTWLTDVPAAMEFIAATEVAVIG
FFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI
ESIDATKLSRFIEINSLHMVTEYNPVTIVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA
KLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDEWDTLPTAEVSVEHVQNF
CDGFLSGKLLKENRESEGKTPKVEL
```

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 211

GGAGAGCCGGCTGGGACCGGAGTGGGGAGCGCGCGGTGGAGGTGCCACCCGGCGCGGGTG
 GCGGAGAGATCAGAACGCCTCTTCCCCAAGCCGAGCCAACCTCAGCAGGGGACCCGGGCTCAGG
 GACGCGGCGGGCGGGCGACTGCAGTGGCTGGACG**ATG**GCAGCGTCCGCCGGAGCCGGG
 GCGGTGATTGCAGCCCCAGACAGCCGGCGCTGGCTGTGGTCGGTGCCTGGCGGGCGCTTGG
 GCTCTTGACAGCTGGAGTATCAGCCTGGAAGTATATACGCCAAAGAAATCTCGTGGCAA
 ATGGTACACAAGGGAAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACC
 TCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCGACACTACTGTGTCGTTTCCACTACTC
 CCAAGGGCAAGTGTACCTGGATTATCCACCATTAAAGACAGAACATCAGCTGGCTGGAG
 ACCTTGACAAGAAAGATGCATCAATCACATAGAAAATATGCAGTTATACACAATGGCACC
 TATATCTGTGATGTCAAAACCCCTCTGACATCGTGTCCAGCCTGGACACATTAGGCTCTA
 TGTCGTAGAAAAAGAGAATTCGCTGTGTTCCAGTTGGTAGTGGTGGGCATAAGTTACTG
 CTGTGGCCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCCTATAGAAGGAAA
 AACTCTAAACGGGATTACACTGGCTGCAGTACATCAGAGAGTTGTACCAGTTAACGAGGC
 TCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTCTGGATCTCACC
 AGGGCCCAGTCATATATGCACAGTTAGACCCTCCGGCGGACATCACAGTGACAAGATTAAC
 AAGTCAGAGTCTGTGGTGTGCGGATATCCGAAAGAAT**TAA**GAGAACATACAGAACATATC
 CTCAGCAAGAAACAAAACCAACTGGACTCTCGTGCAGAAAATGTAGCCCATTACCACATGT
 AGCCTGGAGACCCAGGCAAGGACAAGTACACGTACTCACAGAGGGAGAGAAAGATGTGT
 ACAAAAGGATATGTATAAATATTCTATTAGTCATCCTGATATGAGGAGCCAGTGTGCATGA
 TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTGCTGTTGTACTTCTTTTC
 AGGTCAATTACAATTGGGAGATTTCAGAAACATTCCCTTCACCATCATTAGAAATGGTTG
 CCTTAATGGAGACAATAGCAGATCCTGTAGTATTCCAGTAGACATGGCCTTTAATCTAAG
 GGCTTAAGACTGATTAGTCTTAGCATTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA
 GCATACCCAGGGTGGCCTTACAGTACGATTCAGTACCTTATTGTCTGCCGCTTTAAAA
 AATACCCATTGGCTATGCCACTTGAAAACAATTGAGAAGTTTTGAAGTTTCTCACT
 AAAATATGGGCAATTGTTAGCCTTACATGTTGTAGACTTACTTAAGTTGCACCCCTG
 AAATGTGTATCAATTCTGGATTCAATAGCAAGATTAGCAAAGGATAATGCCAAG
 GTCACTTCATTCTGGACACAGTTGGATCAACTAGTAAAGTAGAAAATCCAAGCTTGCTT
 GAGAACTTTGTAACGTGGAGAGTAAAAGTATCGGTTTA

FIGURE 212

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510
><subunit 1 of 1, 269 aa, 1 stop
><MW: 29082, pI: 9.02, NX(S/T): 3
MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKST
TSTTGGLTSVWSFQPEGADTTVSFFHYSQGQVYLGNYPFFKDRISWAGDLDKKDASINEN
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVVVGIVTAVVLGLTLISMI
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLSHGPVIYAQLDHSG
GHHSINKSESVVYADIRKN
```

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 213

GCCGGCTGTGCAGAGACGCC **ATG**TACCGGCTCCTGTCAGCAGTGACTGCCCGGGCTGCCGCC
 CCCGGGGCTTGGCCTCAAGCTGGGACGACGCCGGTCCATCAGCGGCCGGCTGCCGCC
 TCTCGGCCACGGCTGGGCTGGGCTCGGGCTGGGCTGGGCTGGCGCTGGGTGAAGC
 TGGCAGGTGGGCTGAGGGCGCGGCCCGCAGTCCCCCGGGCCCCGACCCTGAGGCG
 TCGCCTCTGGCCGAGCCGCACAGGAGCAGTCCCTGCCCGTGGTCTCCGAGACCCGGC
 GCCGCCCTGCTCCAGGTGCTGCCAGAGCCATCGAGAGCAGCCGCACCTGCTGCACAGGA
 TCAAGGATGAGGTGGGCGCACCGGCATACTGGTTGGAGTTCTGTAGATGGAAAAGAAGTC
 TGGTCAGAAGGTTAGGTTATGCTGATGTTGAGAACCGTGACCATGTAACACCAGAGACAGT
 TATGCGAATTGCTAGCATCAGAAAAGTCACCATGGTTGCTCTGCCAAATTGTGGGAAG
 CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCCAGTAAAGAAAAAGAA
 TATGAAGGTGAAAAGGTTCTGTACAACAAGATTACTGATTCCCATTAAAGCCTGAAGATGA
 TCATTATGAAAAGGACATAAAAAGGTGAAAGAAGAGAAAGCTTATAAAGCCTGAAGATGA
 TGAAAGAGAATGTTGCATTGAGCAAGAAAAGAAGGCAAAGTAATGAAAAGAATGATT
 ACTAAATTAAAACAGAGCAGGAGAATGAAGCCAATGCCGAATTCAAAACCTGGCAAGAA
 AAAGAATGATTGAAACAAGGCGAATTATATTGAGAGAAAAGTTGAAAATTCAATTGAAT
 CCCTAACGATTATTAAAAATGATCCTTGTCTTCAAACCTGGTAGTCAGTTTGATTCA
 ACTTTGGCTATACCCTACTGGCAGCCATAGTAGAGAGAGCTTCAGGATGTAAATATTGGA
 CTATATGCAGAAAATATTCCATGACTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGC
 CAGTGATTACAATAGAGCAAGG**TAA**ATGAATACTTCTGCTGTCTAGCTATATCGCATC
 TTAACACTATTATTAAATTAAAAGTCAAATTTCATTGTTCCATTCAAATCAACCTGC
 CACATTGGAGCTTCTACATGTCTGTTCTCATCTGTAAAGTGAAGGAAGTAAACA
 TGTTTATAAAGTAAAAAA

FIGURE 214

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522
><subunit 1 of 1, 373 aa, 1 stop
><MW: 41221, pI: 8.54, NX(S/T): 0
MYRLLSAVTARAAAPGGGLASSCGRRGVHQAGLPPLGHGWVGGLGLGLALGVLAGGLRG
AAPAQSPAAPDPEASPLAEPPEQSLAPWSPQTAPPSCRCFARAIESSRDLLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLSLTVALAKLWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEKEGKSNEKNDFTKFKTEQENEAKCRNSKPGKKNDFEQGELYLREKFENSIESRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR
```

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

FIGURE 215

GTGACACTATAGAAGAGCTATGACGTCGCATGCACCGTACGTAAGCTCGGAATTGGCTCG
 AGGCTGGTGGGAAGAACGCCGAG**ATG**CGCCAGCCAGCGCTGGGCAACCCGGCTGCTCCTGC
 TCTTGCTGATGGCGGTAGCAGCGCCAGTCGAGGCCGGGCAGCGGCTGCCGGCCGGACT
 GGTGCGCGAGGGCTGGGCGGAAGGTCGAGAGGGCGAGGCCTGTGGCACGGTGGGCTGCT
 GCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACCTCCGGAAAGCGGGCTCACTGCTCT
 GGAACCAGCAGGATGGTACCTTGTCCCTGTCACAGCGCAGCTCAGCGAGGAGGAGCGGGC
 CGACTCCGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCCAAGGCGACCCGG
 GGCCCTGGATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTGTCCCTGCGTGTCCCTGG
 TGGAGTCGCACCTGTCGGACCAGCTGACCCCTGCACGTGGATGTGGCCGGAACGTGGTGGC
 GTGTCGGTGGTACGCACCCGGGGCTGCCGGGCCATGAGGTGGAGGACGTGGACCTGGA
 GCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCACACAGCCCCAGGCCCTGAGACGGCGG
 CCTTCATTGAGCGCCTGGAGATGGAACAGGCCAGAAGGCCAAGAACCCCCAGGAGCAGAAG
 TCCTTCTCGCAAATACTGGATGTACATCATTCCGTCGTCCCTGTTCCCTCATGATGTCAGG
 AGCGCCAGACACCAGGGGCCAGGGTGGGGTGGGGGTGGTGGTAGTGGCC
 TTTGCTGTGTGCCACCCCTCCCTG**TAA**GTCTATTTAAAAACATCGACGATACTGAAATGTG
 TGAACGTTTGAAAAGCTACAGCTTCCAGCAGCCAAAGCAACTGTTGTTGGCAAGACGG
 TCCTGATGTACAAGCTTGATTGAAATTCACTGCTACTTGATACTGTTATTGAGAAACCCAAG
 GAATGGCTGTCCCCATCCTCATGTGGCTGTGGAGCTCAGCTGTGTTGTGGCAGTTAT
 TAAACTGTCCCCAGATCGACACGAAAAAAAAAA

FIGURE 216

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529
><subunit 1 of 1, 269 aa, 1 stop
><MW: 28004, pI: 5.80, NX(S/T): 1
MAAASAGATRLLLLLMAVAAPSRARGSGCRAVTGARGAGAEGREGEACGTVGLLLEHSFEI
DDSANFRKRGSSLWNQQDGTLSLSQRQLSEEERGLRDVAALNGLYRV RIPRRPGALDGLEA
GGYVSSFVPACSLVESHLSDQTLHVDVAGNVGVSVVTHPGGCRGHEVEDVDLELFNTSVQ
LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEOKSFFAKYWMYII PVVLFLMMMSGAPDTGGQ
GGGGGGGGGGGGSGLCCVPPSL
```

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCGGAGCACAGCAGGGAGGGTGGCCTGGCGGCCT
 GGAGCCGGACGTGTCCGGGGCGTCCCCGCAGACCGGGGCAGCAGGTGTCCTGGGGCTGGAACT
ATGCTGGTGACTGCCTACCTGCTTTGTAGGCCTCCTGGCCTCCTGCCTGGGGCTGGAACT
 GTCAAGATGCCGGCTAAACCCCTGGAAGGGCCTGCAGCAATCCCTCCTCGGTTTC
 AACTGGACTTCTATCAGGTCTACTCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC
 CTCTATAAACTCTACCAGCATTACTACTTCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG
 TGGCCTTGCCTCTACAGTCTTGGCTAGTGGCCTCCTCCCTGTGGATTGGCTGGTC
 GCAAGAATTCTTGTGCTCTTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACCTCT
 CAAGACTACTTGTGCTGCTAGTGGGGCGAGCACTGGTGGCTGTCCACAGCCCTGCTCT
 CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTCCCTGCTGAGT
 GGATCCCAGCTACCTTGCTCGAGCTGCCTCTGGAACCATGTGCTGGCTGTAGTGGCAGGT
 GTGGCAGCTGAGGCTGTAGCCAGCTGGATAGGGCTGGGCCTGTAGGCCCTTGTGGCTGC
 CATCCCTCTGGCTCTGGCAGGGCCTTGGCCCTCGAAACTGGGGGAGAACTATGACC
 GGCAGCGTGCCTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCTCTGCGACCGCCGC
 GTGCTGCTGCTGGCACCATACAAGCTCTATTGAGAGTGTCACTTCATCTTGTCTCCT
 CTGGACACCTGTGCTGGACCCACACGGGGCCCTCTGGCATTATCTCCAGCTTCATGG
 CAGCCAGCCTGCTGGCTTCCCTGTACCGTATGCCACCTCCAAGAGGTACCACCTCAG
 CCCATGCACCTGCTGTCCCTGCTGCTCATCGTCGTTCTCTCTCATGTTGACTTT
 CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTCATAGCCTTCTACTTATTGAGT
 TGGCTTGTGGATTATACTTCCAGCATGAGCTCCTACGGAGAAAGGTGATCCCTGAGACA
 GAGCAGGGCTGGTACTCAACTGGTCCGGTACCTCTGCACTCACTGGCTGCCTAGGGCT
 CCTTGTCCCTCATGACAGTGATCGAAAAACAGGCAGTCGAATATGTTCAGCATTGCTCTG
 CTGTCATGGTGTGGCTCTGCTGGCAGTGGTGGACTCTTACCGTGGTAAGGCATGATGCT
 GAGCTGCGGGTACCTCACCTACTGAGGAGCCATGCCCTGAGCTG**TAA**CCCCACTCCAG
 GACAAGATAGCTGGGACAGACTCTGAATTCCAGCTATCCGGGATTGTACAGATCTCTGT
 GACTGACTTTGTGACTGTCTGTGGTTCTCCTGCCATTGCTTGTGTTGGAGGACATGA
 TGGGGGTGATGGACTGGAAAGAAGGTGCCAAAGTCCCTCTGTGTTACTCCCATTAGAAA
 ATAAACACTTTAAATGATCAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGIVASSLVDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLFSAFEAWYIHEHVERHDFPAEWIPATFARA_AFWNHVLA
VAEAEVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCA
GGLRCLLSDRRVLLLGTIQALFESVIFIFVFLWPVLDPHGAPLGII
FSSFMAASLLGSSLYRIATSKRYHLQPMHLLSLAVLIVVFSLFMLTF
STSPGQESPVESFIAFLIELACGLYFPSMSFLRRKV
PETEQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSA
VMVMALLAVVGLFTVV
RHDAELRVPSPTEEPYAPEL

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299,
314-330, 343-359, 379-394, 410-430

FIGURE 219

GCGACGCGCGGGCGGGCGAGAGGAAACGCGGCCGGCCGGCCCTGGAG**ATG**
GTCCCCGGCGCCGGCTGGTGTCTCGTGCCTGGCTCCCCCGTGCCTCGCGCCA
CGGCTTCCGTATCCATGATTATTGTACTTCAAGTGCTGAGTCCTGGGACATTGATA
TCTTCACAGCCACACCTGCCAAGGACTTGGTGGTATCTTCACACAAGGTATGAGCAGATT
CACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCAGGGAACTCAGCAACGGTTCTCATCCA
GGACCAGATTGCTCTGGTGGAGAGGGGGGCTGCTCCTCTCCAAGACTCGGGTGGTCC
AGGAGCACGGCGGGCGGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC
GTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTTCCTGCTCGG
CCGAGACGGCTACATGATCCGCCCTCTGGAACAGCATGGCTGCCATGGCCATCATT
CCATCCCAGTCAATGTCACCAGCATCCCCACCTTGAGCTGCTGCAACCGCCCTGGACCTTC
TGG**TAGA**AAGAGTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGAAACCC
AGGAATTTGCTACTTGAATTGGAGATAGCATCTGGGACAAGTGGAGCCAGGTAGAGGA
AAAGGGTTGGCGTTGCTAGGCTGAAAGGGAACACCACGGCCTCCCTCCCCAGG
GCCCCAAGGGTCTCATGCTACAAGAACAGAGGCAAGAGACAGGCCAGGGCTCTGGCTA
GAACCCGAAACAAAAGGAGCTGAAGGCAGGTGGCTGAGGCCATCTGTGACCTGTCACACT
CACCTGGCTCCAGCCTCCCCACCCAGGGCTCTGCACAGTGACCTCACAGCAGTTGG
AGTGGTTAAAGAGCTGGTGTGGGACTCAATAAACCTCACTGACTTTAGCAATAAA
GCTTCTCATCAGGGTTGCAAAAAAAAAAAAAAA

FIGURE 220

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532
><subunit 1 of 1, 188 aa, 1 stop
><MW: 21042, pI: 5.36, NX(S/T): 2
MVPGAAGWCCLVLWLPACVAAHGFRRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ
IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSF
YVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW
```

Signal peptide:

amino acids 1-20

FIGURE 221

TCTGCCTCCACTGCTCTGTGCTGGGATC**ATG**GAACCTGCACTGCTGTGGCTGGTGGTGA
TGGCTGGTGTATTCCAATCCAGGGCGGGATCCTGAACCTGAACAAGATGGTCAAGCAAGTG
ACTGGGAAAATGCCCATCCTCTCCTACTGGCCCTACGGCTGTCAGTGCAGACTAGGTGGCAG
AGGCCAACCAAAGATGCCACGGACTGGTGTGCCAGACCCATGACTGCTGCTATGACCACC
TGAAGACCCAGGGTGCAGCATCTACAAGGACAACAACAAAGCAGCATACTTGTATGGAT
TTATCTCAACGCTATTGTTAATGGCTGTGTTAATGTGATCTATCTGGAAAATGAGGACTC
CGAA**TAA**AAAGCTATTACTAWTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA

FIGURE 222

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538
><subunit 1 of 1, 116 aa, 1 stop
><MW: 12910, pI: 6.41, NX(S/T): 1
MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDW
CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVVIYLENEDSE
```

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

CTCGCTTCTTCCTCTGGATGGGGGCCAGGGGCCAGGAGAGTATAAGGCATGTGGAG
GGTGCCCGACAACCAAGACGCCAGTCACAGGCCAGAGCCCTGGG**ATG**CACCGGCCAGAGG
CCATGCTGCTGCTCACGCTGCCCTCCTGGGGGCCACCTGGCAGGAAAGATGTAT
GGCCCTGGAGGAGGCAAGTATTTCAGCACCCTGAAGACTACGACCATGAAATCACAGGGCT
GCGGGTGTCTGTAGGTCTTCCTGGTAAAAAGTGTCCAGGTGAAACTGGAGACTCCTGGG
ACGTGAAACTGGGAGCCTAGGTGGAAATACCCAGGAAGTCACCCCTGCAGCCAGGCGAATAC
ATCACAAAAGTCTTGTGCCTCCAAGCTTCCTCCGGGTATGGTCATGTACACCAGCAA
GGACCGCTATTCTATTGGAAAGCTTGATGCCAGATCTCCTCTGCCTACCCCAGCCAAG
AGGGGCAGGTGCTGGTGGCATTCTATGCCAGTATCAACTCCTGGCATCAAGAGCATTGGC
TTTGAATGGAATTATCCACTAGAGGGAGCCGACCACTGAGCCACCACTTAATCTCACATACTC
AGCAAACTCACCCGTGGTCGC**TAG**GGTGGGTATGGGCCATCCGAGCTGAGGCCATCTGT
GTGGTGGTGGCTGATGGTACTGGAGTAACTGAGTCGGACGCTGAATCTGAATCCACCAATA
AATAAAAGCTTCTGCAGAAAA

FIGURE 224

```
></usr/seqdb2/sst/DNA/Dnaseqs:min/ss.DNA76541
><subunit 1 of 1, 178 aa, 1 stop
><MW: 19600, pI: 5.89, NX(S/T): 1
MHRPEAMLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSGLLLKVSVQVK
LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS
AYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR
```

Signal peptide:

amino acids 1-22

FIGURE 225

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTCTGGGCTCCAACGCAGCTCTGTGGCT
 GAACTGGGTGCTCATCACGGGAAC TGCTGGCTATGGAATACAGATGTGGCAGCTCAGGTAG
 CCCCAAATTGCCTGGAAGAATA CATCATGTTTCGATAAGAAGAAATTGTAGGATCCAGTT
 TTTTTTTAACCGCCCCCTCCCACCCCCAAAAAAACTGTAAAGATGCAAAACGTAATAT
 CCATGAAGATCCTATTACCTAGGAAGATTGATGTTGCTGCGAATGCGGTGTTGGGATT
 TATTGTTCTGGAGTGTCTGCGTGGCTGGCAAGAATAATGTTCAAATCGGTCCATCT
 CCCAAGGGGCTCAATTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTG
 ACAGGGGCTGTCACTGCAACTGGCCCTAAGCCAAGACCTAAGGACGACCTTGAA
 CAATACAAAGGATGGTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT
 ATAGCCCCACTGTCTACTGACAATGCTTCTTGC CGAACGAGGATGCCCTAAGGGCTG
 TAGGTGTGAAGGCAAAATGGTATATTGTAATCTCAGAAATTACAGGAGATA CCTCAAGTA
 TATCTGCTGGTTGCTTAGGTTGTCCTCGCTATAACAGCCTTCAAAAACTTAAGTATAAT
 CAATTAAAGGGCTCAACCAGCTCACCTGGCTATACTGACCATAACCATA CAGCAATAT
 TGACGAAAATGCTTTAATGGAATACG CAGACTCAAAGAGCTGATTCTAGTTCAATAGAA
 TCTCCTATTTCTTAACAATACCTTCAGACCTGTGACAAATTACGAAACTTGGATCTGTCC
 TATAATCAGCTGCATTCTGGGATCTGAACAGTTGGGCTTGCGGAAGCTGCTGAGTT
 ACATTACGGTCTA ACTCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACC
 TGGAACTTTGGACCTGGGATATAACCGGATCCGAAAGTTAGCCAGGAATGTC TTGCTGGC
 ATGATCAGACTCAAAGAAC TT CACCTGGAGCACAATCAATTTCAGCTCAACCTGGCCCT
 TTTCCAAGGTGGTCAGCCTCAGAACCTTACTTGCA GTGGAATAAAATCAGTGTCA TAG
 GACAGACC ATGTCCTGGACCTGGAGCTCCTTACAAAGGCTGATTATCAGGCAATGAGATC
 GAAGCTTCAGTGGACCCAGTGTGTTCCAGTGTGCCCAGTGTGAGCTCAACCTGGG
 TTCCAACAAGCTCACATTATTGGTCAAGAGATTGGATTCTGGATATCCCTCAATGACA
 TCAGTCTGCTGGGAATATGGGAATGCA GCAGAACATATTGCTCCCTGTAAGACTGGCTG
 AAAAGTTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCAAAGAGCTGCAAGG
 AGTAAATGTGATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGT
 TTGATCTGCCAGGGCTCTCCAAAAGCCGACGTTAAGCCCAGCTCCCCAGGCCGAAGCAT
 GAGAGCAAACCCCTTGCCCCCGACGGTGGGAGCCACAGAGCCGCCAGAGACCGATGC
 TGACGCCGAGCACATCTTTCCATAAAATCATCGCGGGCAGCGTGGCGTTTCCTGTCCG
 TGCTCGTCATCCTGCTGGTTATCTACGTGTCA TGGAAGCGGTACCCCTGCGAGCATGAAGCAG
 CTGCAGCGCCTCCCATGCGAAGGCACAGGAAAAGAAAAGACAGTCCCTAAAGCAAAT
 GACTCCCAGCACCCAGGAATTATGTAGATTATAACCCACCAACACGGAGACCAGCGAGA
 TGCTGCTGAATGGGACGGGACCCCTGCACCTATAACAAATGGGCTCCAGGGAGTGTGAGGTA
TGA ACCATTGTGATAAAAAGAGCTCTTAAAGCTGGGAATAAGTGGTGTGTTATTGAACTC
 TGGTGA CTATCAAGGGAACCGCGATGCCCTCCCTCCCTCTCCCTCACTTGGTGG
 CAAGATCCTCCTGTCGTTAGTGCATTCAATAACTGGTCATTTCCTCTCATACATA
 ATCAACCCATTGAAATTAAATACCACAAATCAATGTGAAGCTGAACTCCGGTTAATATAA
 TACCTATTGTATAAGACCTTACTGATTCCATTAAATGTCGCATTGTTAAGATAAAACT
 TCTTCATAGGTAAAAAAAAAA

FIGURE 226

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301
><subunit 1 of 1, 513 aa, 1 stop
><MW: 58266, pI: 9.84, NX(S/T): 4
MGFN VIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGK MVYCESQKLQEIPSSISAG
CLGLSL RYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF
LNNTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRI FQDCRNLELL
DLGYNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLA F PRLVSLQONLYLQWNKISVIGQTM
SWTWSSLQR LDLSGNEIEAFSGPSVFQCVPNLQRLNLD SNKLTFIGQEILD SWISLNDISLA
GNIWECSRNICSLVNWLKSFKGLRENTIICASPKE LQGVNVIDAVKNYSICGKSTTERFDLA
RALPKPTFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVI
LLVIYVSWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQE FYVDYKPTNTETSEMLLN
GTGPCTYNKSGSRECEV
```

Important features of the protein:**Signal peptide:**

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 227

AGTTCTGAGAAAGAAGGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTT
 TAAATATGTCAAGATCCAGACTTTCAGTGTACCTCAGCGATCTAACGATAGGGATCTG
 TGTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT
 AAATTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCTGCTGCTGGTTTGG
 TGGCAGCTCTCTGTGGAGCTGTGGCCTCTGCCTCCAGTGCTGGCTGAGGAGACCCCGA
 ATTGATTCTCACAGGCCACCATGGCAGTTTGCTGTTGGAGACTGGACTCTATTATGG
 GACAGAAGCAGCTGTGAGTCCAATGTTGAATTACACCTCAAACCTCAAACCCCTGACCTAT
 ATCCTGTTCTGCTCCATGTTGGCCCTTAGGCTCCCCACCTCCATATGAAGAAATTGTA
 AAAACAACCTGATTTTAGGTGTGGATTATCAATTAAAGTATTAACGACATCTGTAATTCCA
 AAACATCAAATTAGGAATAGTTATTCAGTTGGAAATGTCCAGAGATCTATTATATA
 GTCTGAGGAAGGACAATTGACAAAAGAATGGATGTTGGAAAAAATTTGGTCATGGAGATG
 TTTAAATAGTAAAGTAGCAGGCTTGATGTGCACTGCTGTATCATACTTTATGCTACAC
 AACCAAATTAATGCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTT
 TCCATCACATTAGGACTCCACTGCAGTATACAGCACACCATTCTGCTTAAACTCTTC
 CTAGCATGGGTCCATAAAATTATTATAATTAAACAATAGCCCAAGCCGAGAATCCAACAT
 GTCCAGAACCGAGAACCGAGAAAGATAGTATTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA
 GAAAAGTTGGAGTTGAAGGGTAAAGGATAATGAAGAGGAAAAGGAAAAGATTACAAGTCT
 CAGCAAAAACAAGAGGTTTATGCCCAACCTGAAGAGGAAGAAATTGTAGATAGAAGGTGA
 AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTCCC
 CTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTCTCTGGAGCCTCAGGGCTG
 GCATTATTGCAGCATCATGCTAACGACCTTCGGCATAGGTATCTGTTCCATGAGGACTGC
 AGAAAGTAGCAATGAGACATCTCAAGTGGCATTGGCAGTGGCCATCAGCAGGGGGACAGA
 CAAAAACATCCATCACAGATGACATATGATCTCAGCTGACAAATTGTTGAACAAAACAAT
 AACATCAATAGATATCTAAAAA

FIGURE 228

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303
><subunit 1 of 1, 146 aa, 1 stop
><MW: 16116, pI: 4.99, NX(S/T): 0
MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCSVNYNDQHPNGWYIWILLLVLA
ALLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYP
VPAPCFGPLGSPPPYEEIVKTT
```

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 229

GAGCGGAGTAAATCTCCACAAGCTGGGAACAAACCTCGTCCCAACTCCCACCCACCGGGGT
 TTCTCCAGCTCGATCTGGAGGCTGCCAGTGTGGACGCAGCTGACGCCGCTTATT
 GCTCTCGCTCGCTGCCCGCAGAAGCTCCGTGGCGCGACCGTGACGAGAACCC
 ACGGCCAGCTCAGTTCTCTACTTTGGGAGAGAGAGAAAGTCAGATGCCCTTTAAACT
 CCCTCTCAAAACTCATCTCTGGGTGACTGAGTTAATAGAGTGGATACAACCTGCTGAAG
 ATGAAGAATATAAATATTGAGGATATTTTTCTTTTTCAAGTCTTGATTGTGGC
 TTACCTCAAGTTACCATTTCAGTCAGTCTGTTGTTGCTTCTCAGAA**ATG**TTTTTA
 CAATCTCAAGAAAAAATATGTCCCAGAAATTGAGTTACTGTTGCTGTATTGGACTCATT
 TGGGGATTGATGTTACTGCACTATACTTTCAACAAACCAAGACATCAAAGCAGTGTCAAGTT
 ACGTGAGCAAATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGA
 ACACAGTGGATGTCGAGAACGGTGTCTATGGCAGGATATGCGGATCTGAAAAGAACAAATT
 GCTGTCCTCTGGATGACATTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATAT
 TGTTGTGAATGGCTCAGCAGCCAACACCAATGGTACTAGTGGGAATTGGTGCAGTAA
 CCACAAATAAAAGAACGAATGTCTGGGCAGTATCAGA**TAG**CAGTTGAAAATCACCTTGTGC
 TGCTCCATCCACTGTGGATTATATCCTATGGCAGAAAAGCTTATAATTGCTGGCTTAGGAC
 AGAGCAATAACTTTACAATAAAAGCTCTACACATTTCAAGGAGTATGCTGGATTATGGAAC
 TCTAATTCTGTACATAAAATTTAAAGTTATTGTTGCTTCAGGCAAGTCTGTTCAATG
 CTGTAATGTCCTTAAAGAGAATTGGTAACTGGTTGATGTGGTAAGCAGATAGGTGAGT
 TTTGTATAATCTTTGTGTTGAGATCAAGCTGAAATGAAAACACTGAAAACATGGATTC
 ATTTCTATAACACATTAAAGTATATAACACGTTTTGGACAAGTGAAGAATGTTAA
 TCATTCTGTCAATTGTTCTCAATAGATGTAAGTACTGTTAGACTACGGCTATTGAAAAAATGTG
 CTTATTGTAATATTGTTATTCCAATTATGAGCAGAGAAAAGGAAATAATGTTGAAA
 TAATGTTTGAATCATGACCCAAAGAATGTATTGACTATCCTCAGAATAACTGA
 AGGTTAATTATTGTATATTAAAATTACACTTATAAGAGTATAATTGAAATGGTAG
 CAGCCACTGTCCATTACCTATGTAACATTGGGCAATTAAACAGCATTAAATAGTT
 GTAAAATCTAACTTATACATTGAGAATAAAAGATATTGATGAGAGTAACAATA
 AAGTATTGATTTCACATACATGAATGTCATTAAAGTTAATCCTTGAGTGTCT
 ATGCTATCAGGAAAGCACATTATTCCATATTGGGTAATTGCTTTATTATATTGGTC
 TAGGAGGAAGGGACTTGGAGAATGAACTCTTGAGGACTTAGCCAGGTGTATAATAAA
 GGTACTTTGTGCTGATTAAATTGCTGGAAAGTGTAAACATTATATTATAAGAGTATC
 CTTTATGAAATTGTAACAGATGCAATTGAGTATTGCTTATATTATAATGCCAC
 TTAAAATAAGAACATTAAATATAAACTATGAAGATTGACTATCTTTCAGGAAAAAGCT
 GTATATAGCACAGGAAACCTAATCTGGGTAAATTCTAGTATAAAACAAATTATACTTTAT
 TTAAATTTCCCTGTAGCAAATCTAATTGCCACATGGTGCCTATATTGATGAGTATT
 CTCTATAGTAATGCTTAAGTGCAGCTAGCTTAGATTTAGACTATAGAATTAGATAT
 TGTATTGTTCGTCATTATAATATGCTACCACATGTAGCAATAATTACAATATTGTTATTAAA
 TAAATATGTGAAATATTGTTCATGAAAGACAGATTCCAATCTCTTCTCTGTA
 CTGTCTACCTTATGTGAAGAAATTAATTATGCCATTGCCAGGT

FIGURE 230

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648
><subunit 1 of 1, 140 aa, 1 stop
><MW: 15668, pI: 10.14, NX(S/T): 5
MFFTISRKNMSQKLSLLLLVFGЛИWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE
ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL
VPVTTNKRTNVSGSIR
```

Important features of the protein:

Signal peptide:

amino acids 1-26

FIGURE 231

CGCGGGCCGGGCCGGGGTGAGCGTGCCGAGGCGGCTGTGGCGCAGGCTTCCAGCCCCCAC
CATGCCGTGGCCCCTGCTGCTGCTGGCCGTGAGTGGGGCCCAGACAAACCGGCCATGCT
 TCCCCGGGTGCCAATGCAGGGTGGAGACCTTCGGGCTTTGACAGCTTCAGCCTGACTCGG
 GTGGATTGTAGCGGCCTGGGCCCCACATCATGCCGGTGCCCATCCCTCTGGACACAGCCC
 CTTGGACCTGTCCCTCCAACCAGCTGGAGATGGTGAATGAGTCGGTGTGGCGGGCCGGCT
 ACACGACGTTGGCTGGCCTGGATCTCAGGCCACAACCTGCTCACAGCATCTCACCCACTGCC
 TTCTCCCGCCTCGCTACCTGGAGTCGCTGACCTCAGCCACAATGGCCTGACAGCCCTGCC
 AGCGAGAGCTTCACCAGCTCACCCCTGAGCGACGTGAACCTTAGCCACAACCAGCTCCGG
 AGGTCTCAGTGTCTGCCTCACGACGCACAGTCAGGGCGGGCACTACACGTGGACCTCTCC
 CACAACCTCATTCACCGCCTCGTCCCCACCCACGAGGGCGGCCGCCTGCCTGCGCCCACCC
 TCAGAGCCTGAACCTGGCCTGGAACCGGCTCCATGCCGTGCCAACCTCCGAGACTTGGCC
 TGCGCTACCTGAGCCTGGATGGGAACCCCTCTAGCTGTATTGGTCCGGTGCCTCGGGGG
 CTGGGAGGCCTTACACACCTGTCTGGCAGCCTGCAGAGGCTCCCTGAGCTGGCGCCAG
 TGGCTCCGTGAGCTACCGGGCTGCAGGTCTGGACCTGTCGGGCAACCCCAAGCTTAAC
 GGGCAGGAGCTGAGGTGTTTCAGGCCTGAGCTCCCTGCAAGGAGCTGGACCTTCGGGCACC
 AACCTGGTGCCTGCCTGAGGCCTGCTCCTCACCTCCGGCACTGCAGAGCGTCAGCGT
 GGGCCAGGATGTGCGGTGCCGGCCTGGTGCAGGGCACCTACCCCCGGAGGCCTGGCT
 CCAGCCCCAAGGTGCCCTGCACTGCGTAGACACCCGGGAATCTGCTGCCAGGGGCCACC
ATCTTG**TGA**CAAATGGTGTGGCCAGGGCACATAACAGACTGCTGTCCTGGCTGCCTCAG
 GTCCCAGGTACTTATGTTCAATGTGCCAACACCAACTGGGAGGCCGCAGGCCTATGTGGCA
 GCGTCACCACAGGAGTTGTGGGCTAGGAGAGGCTTGGACCTGGGAGGCCACACCTAGGAGC
 AAAGTCTCACCCCTTGCTACGTTGCTTCCCAAACCATGAGCAGAGGGACTTCGATGCCA
 AACCAGACTCGGGTCCCCCTGCTTCCCTCCCCACTTATCCCCAAGTGCCTCCCTCAT
 GCCTGGGCCGGCCTGACCCGCAATGGCAGAGGGTGGGTGGGACCCCTGCTGCAGGGCAGA
 GTTCAGGTCCACTGGGCTGAGTGTCCTTGCCATGGGCCATGAGGCCATTCAGGGCGAGTT
 TCTTTCTAACATAGCCCTTCTTGCCATGAGGCCATGAGGCCATTCATCCTTTCTAT
 TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAATCAAGTCCACCCCTCTCATGTGAC
 AGATGGGAAACTGAGGCCCTGAGAAGGAAAAGGCTAATCTAAGTCCCTGCCGGCAGTGGC
 ATGACTGGAGCACAGCCTCTGCCCTCCCAGCCGGACCCAAATGCACTTCTGTCTCCTCTA
 ATAAGCCCCACCCCTCCCCGCCTGGCTCCCTGCTGCCCTGCTGTTCCCCATTAGCACA
 GGAGTAGCAGCAGCAGGACAGGCAAGAGCCTCACAGTGGACTCTGGGCCTGACAGCT
 GTGCCGCATGGCTAAAGTCACTGCCCTCGGAGCCTCTGGAAGCTAGGGCACATTGGTT
 CCAGCCTAGCCAGTTCTACCCCTGGGTGGGCTCCCGAGCATCCAGACTGGAAACCTACC
 CATTTCCTGAGCATCCTCTAGATGCTGCCCAAGGAGTGTGCAAGTCTGGAGCCTCA
 TCTGGCTGGATCTCAAGGGCCTCTGGATTCACTGCCCCACTGCCCTGAGCACGACAGC
 CCTTCTTACCCCTCCAGGAATGCCGTGAAAGGAGACAAGGTCTGCCGACCCATGTCTATGC
 TCTACCCCCAGGGCAGCATCTCAGCTCCGAACCCCTGGCTGTTCTTAGTCTTCAATTAA
 TAAAAGTTGTTGCCCTTTAACGGAGTGTCACTTCAACCGGCCTCCCTACCCCTGCTGGC
 CGGGGATGGAGACATGTCAATTGAAAAGCAGAAAAAGGTTGCATTGTTCACTTTGTAAT
 ATTGTCTGGCCTGTGTTGGGGTGGGGAGCTGGCAGTCAGTGGCCACATGGCCTAGC
 AGGGGCTGGCCCCACAGAGACCCACAGGGCAGTGTCTGCTCCCCACACTGCCCTAGC
 CCATCATCTAACCGGTCTTGATTAAACACTATAAAAGTTAAAAAAAAAAAAAAA
 AAAAAAAAAAAAAAAAAAAAAAAA

FIGURE 232

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652
><subunit 1 of 1, 353 aa, 1 stop
><MW: 37847, pI: 6.80, NX(S/T): 2
MPWPLLLLLAVSGAQTTTRPCFPGCQCEVETFGLFDSFSLDRVDCSGLGPHIMPVPIPLDTAH
LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP
AESFTSSPLSDVNLSHNQLREVSVAFTTHSQGRALHVDLSHNLIHRLVPHPTRAGLPAPTI
QSLNLAWNRLHAVPNLRDPLRYYLSLDGNPLAVIGPGAFAGLGGLTHLSSLASLQRQLPELAPS
GFRELPGLQVLDSLGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV
GQDVRCRRLVREGTYPRRPGSPPKVLHCVDTRESAARGPTIL
```

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 215-232, 287-304

FIGURE 233

GATGGCGCAGCCACAGCTCTGTGAGATTGATTCTCCCCAGTTCCCCTGTGGGTCTGAGG
 GGACCAAGGGTGAGCTACGTTGGCTTCTGGAAGGGGAGGGCTAT**ATG**CGTCAATTCCCCA
 AAACAAGTTTGACATTCCCCTGAAATGTCATTCTATCTATTCACTGCAAGTGCCTGCT
 GTTCCAGGCCTTACCTGCTGGGACTAACGGCGGAGGCCAGGATGGGGACAGAATAAAGGAGC
 CACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACCTCAGACCTGAAATCTCTTCA
 GGGAGGCTTGGCAGTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCC
 TCTAGTCTGCCTTCAGCCTCTCTGCTGCGTTTATCCTATGGACTCCTCCACTGG
 ACTGAAGACACTCAATTGGGAAGCTGTGATGCCACAAACCTCAGGAAATACGAAATG
 GATTTCTGAGATA CGGGGAGTGTGCAAGCCAAGATGAAACATGACATCAGAATCTTA
 AGGAGGACTGAGTCTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCGGCCATT
 GCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTACTCTCC
 GGAAGATCAGCAGCCTGCCAATTCTTCTTACCATCAAGAAGGACCTCCGGCTCTCAT
 GCCCACATGACATGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA
 CTTTGAAGCTGGAACCTCAGGCAGCAGTGTGAAGGCTTGGGGAACTAGACATTCTTC
 TGCAATGGATGGAGGAGACAGAA**TAG**GAGGAAAGTGATGCTGCTGCTAAGAATATTGAGGT
 CAAGAGCTCCAGTCTCAATA CCTGCAGAGGAGGCATGACCCAAACCACCATCTTTACT
 GTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTGCTTACTTGCTTCCTGCATGAT
 TGTCTTATGCATCCCCAATCTAATTGAGACCATA TTGTATAAGATTTGTAATATCTT
 TCTGCTATTGGATATATTATTAGTTAATATATTATTATTATTGCTATTAAATGTATTT
 ATTTTTTACTTGGACATGAAACTTAAAAAAATTCAAGATTATTTATAACCTGACTAG
 AGCAGGTGATGTATTTTATACAGTAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCT
 AGGGGGTTATTCAATTGTATTCAACTAAGGACATATTACTCATGCTGATGCTCTGTGAGA
 TATTTGAAATTGAACCAATGACTACTTAGGATGGGTGTGGAATAAGTTGATGTGGAATT
 GCACATCTACCTTACAATTACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTAT
 CTTCCAGCCAGGAATCCTACACGGCCAGCATGTATTCTACAAATAAGTTTCTTGCATA
 CCAAAAAAAAAAAAAAAA

FIGURE 234

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500
><subunit 1 of 1, 261 aa, 1 stop
><MW: 29667, pI: 8.76, NX(S/T): 0
MRQFPKTSFDISPEMSFSIYSLQPAVPGGLTCWALTAEPGWGQNKGATTCATNSHSDSELRP
EIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL
QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTK PANRCCLLRHLLRLYLDdrvFKNYQTP
DHYTLRKISSLANSFLTICKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG
ELDILLQWMEETE
```

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

CCGTTATCGTCTTGCCTACTGCTGAATGTCCGTCCGGAGGAGGAGAGGCTTTGCCG
CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCTACTGTCCGGCTGCCGGCTACCGTGGC
CGAGCTAGCAACCTTCCCCTGGATCTCACAAAAACTCGACTCCAATGCAAGGAGAACGAG
CTCTTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCACACA
GCCCTAGGGATCATTGAAGAGGAAGGCTTCTAAAGCTTGGCAAGGAGTGACACCCGCCAT
TTACAGACACGTAGTGTATTCTGGAGGTGAATGGTCACATATGAACATCTCCGAGAGGTTG
TGTGGCAAAAGTGAAGATGAGCATTATCCCCTTGGAAATCAGTCATTGGAGGGATGATG
GCTGGTGTATTGCCAGTTTAGCCAATCCAACGTACCTAGTGAAGGTTCAGATGCAAAT
GGAAGGAAAAAGGAAACTGGAAGGAAAACCATTGCGATTCGTGGTACATCATGCATTG
CAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTGGCAGGCTGGTACCCAATATAACAA
AGAGCAGCACTGGTGAATATGGGAGATTAAACCACTTATGATAACAGTGAAACACTACTGGT
ATTGAATAACACCACTTGAGGACAATATCATGACTCACGGTTATCAAGTTATGTTCTGGAC
TGGTAGCTTCTATTCTGGAACACCCAGCCATGTCAAAAGCAGAATAATGAATCAACCA
CGAGATAAACAGGAAGGGACTTTGTATAAATCATCGACTGACTGCTTGATTCAAGCTGT
TCAAGGTGAAGGATTCATGAGTCATATAAAGGCTTTACCATCTGGCTGAGAATGACCC
CTTGGTCAATGGTGTCTGGCTTACTTATGAAAAAATCAGAGAGATGAGTGGAGTCAGTCCA
TTTTAA

FIGURE 236

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568
><subunit 1 of 1, 323 aa, 1 stop
><MW: 36064, pI: 9.33, NX(S/T): 1
MSVPEEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGA
RESAPYRGMVRTALGIIEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH
YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMOMEGKRKLEGKPLRFRGVHHAFAKILAEGGI
RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVNTPLEDNIMTHGLSSLCGLVASILGTP
ADVIKSrimNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRTMPWSMVFWLT
YEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

CGGACCGCGGGCGCGGGACGCCGGCAGGGTTGTGGCGCAGCAGTCCTCCTGCAGCGC
 GCCTGAAGTCGGCGTGGCGTTGAGGAAGCTGGATACAGCATTAAATGAAAAATTATGC
 TTAAGAAGTAAAAATGGCAGGCTCCTAGATAATTCGTTGGCCAGAATGTGAATGTATTG
 ACTGGAGTGAGAGAAGAAATGCTGTGGCATCTGTTGCGCAGGTATATTGTTTACAGGC
 TGGTGGATAATGATTGATGCAGCTGTGGTATCCTAACAGCCAGAACAGTTGAACCATGCC
 TCACACATGTGGTGTATTTCCACATTGGCTTCTCATGATAAATGCTGTATCCAATGCTC
 AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTAGGAAGAACAGGTGCTCGAGTTGGCTT
 TTCATTGGTTCATGTTGATGTTGGTCACTTATTGCTTCCATGTGGATTCTTTGGTGC
 ATATGTTACCCAAAATACTGATGTTATCCGGGACTAGCTGTGTTTCAAAATGCACCTA
 TATTTTAGCACTCTGATCTACAAATTGGAAGAACCGAAGAGCTATGGACCTGAGATCAC
 TTCTTAAGTCACATTTCTTTGTTATTCTGTTAGATAGGTTTATCTCAGT
 ACACATTGCCAAATGGAGTAGATTGTACATTAAATGTTGTTCTTACATTTATGTC
 TGAGTTGAAATAGTTATGAAATTCTTATTTCATGCATAGACTGTTAATATGTA
 TATAATACAAGACTATATGAAATTGGATAATGAGTATCAGTTTATTCCCTGAGATTAGAA
 CTTGATCTACTCCCTGAGCCAGGGTACATCATCTGTCATTAGAAGTAACCACTCTGT
 CTCTCTGGCTGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTGGGAGGCCGAGGCC
 CCGATTGCTTGAGGTCAAGTGTGTTGAGACCAGCCTGCCAACATGGCGAAACCCATCTACT
 AAAAATACAAAAATTAGCCAGGCATGGTGGTGGTGCCTGTAATCCCAGCTACCTGGGAGGC
 TGAGGCAGGAGAATCGCTGAACCCGGGGGGCAGAGGTTGCAGTGAGCTGAGTTGCCAC
 TGCACCTAGCCTGGGGAGAAAGTGAACACTCCCTCTCAAAAAAAAGACCACTCTCAGTATC
 TCTGATTCTGAAGATGTACAAAAAATAGCTTCATATCTGGAATGAGCACTGAGCCA
 TAAAAGGTTTCAGCAAGTTGTAACCTATTTGGCCTAAAATGAGGTTTTGGTAAAGA
 AAAAATATTGTTCTTATGTATTGAAGAAGTGTACTTTATATAATGATTTTAAATGCC
 AAAGGACTAGTTGAAAGCTTCTTAAAAAGAATTCCCTCTAATATGACTTATGTGAGAA

FIGURE 238

MAGFLDNFRWPECECIDWSERRNAVASVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG
VFSTLAFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ
NTDVYPGLAVFFQNALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

FIGURE 239

GTTGATGGCAAACCTCCTCAAAGGAGGGCAGAGCCTGCGCAGGCAGGAGCAGCTGGCCA
 CTGGCGGCCCGCAACACTCCGTCTCACCTCTGGCCCAGTCATCTAGAGGAGGGCGTCT
 GTGAGGCCACTACCCCTCCAGCAACTGGGAGGTGGACTGTCAGAAGCTGGCCCAGGGTGGT
 GGTCAAGCTGGGTCAAGGACCTACGGCACCTGCTGGACCACCTGCCTCTCCATCGAAGCAG
 GGAAGTGGGAGCCTCGAGCCCTGGGTGGAAGCTGACCCCAAGCCACCCACCTGGACAG
GATGAAGAGTGTCAAGGTGTGCTTCGCCTCCTGGCCCATCTTGCCATAGTCACGACATGGA
 TGTATTGCAAGCTACATGAGCTTCAGCATGAAAACCATCCGTCTGCCACGCTGGCTGGCA
 GCCTCGCCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCC
 AGCCAACTAACTTGCGTTAAATCTGCAGTGGGCCAACGTCGTGGCCCTACTATGT
 GCTTGAAGACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGCAGAGGCCTAACATC
 GCCCTGGTGAATGGAACCACGGAGCTGTGCTGGACAGAAGGCATTGACATGTACTCTGG
 AGATGTTATGCACCTAGTGAAATTCTTAAAGAAATTCCGGGGGTGCACTGGTGCTGGTGG
 CCTCCTACGACGATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTCTGACTTG
 GGGAGTCCCTACGCAAACAACTGGCTTCCGGACAGCTGGTCTTCATAGGAGCCAAGA
 CCTCAGGGTAAAGCCCTTGAGCAGTTCTAAAGAACAGCCAGACACAAACAAATACG
 AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCGAAGCCATT**TAG**GGTGGC
 TGTGGCTTCCCTCAGCCAGGGCCTGAAGAAGCTCCTGCCTGACTTAGGAGTCAGAGCCCG
 GCAGGGCTGAGGAGGAGCAGGGGTGCTGCGTGGAAAGGTGCTGCAGGTCTTGCACGC
 TGTGTCGCGCCTCTCCTCGAAACAGAACCCCTCCCACAGCACATCCTACCCGGAAGACC
 AGCCTCAGAGGGCTTCTGGAACCAGCTGTCTGTGGAGAGAATGGGTGCTTCGTCAAGG
 ACTGCTGACGGCTGGCCTGAGGAAGGACAAACTGCCAGACTTGAGCCCAATTAAATTAA
 TTTTGCTGGTTTGAAAAAAAAAAAAAA

1 0 0 1 5 6 1 0 9 1 2 1 0 7

FIGURE 240

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59814
<subunit 1 of 1, 224 aa, 1 stop
<MW: 24963, pI: 9.64, NX(S/T): 1
MRVSGVLRLALIFAIVTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP
ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNGRGLNIALVNNGTTGAVLGQKAFDMYSG
DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKD
LRGKSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF
```

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGAGGGCAAAGAGGCAGCAAGAGAGATTGTCCTGGGGAT
 CCAGAAACCCATGATAACCCTACTGAACACCGAACATCCCCTGGAAGGCCACAGAGACAGAGACA
 GCAAGAGAAGCAGAGATAAATACACTCACGCCAGGAGCTCGCTCGCTCTCTCTCTCTC
 TCACTCCTCCCTCCCTCTCTCTGCCTGTCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCC
 CTGCACCCCTTCCGGACACTATGTTGTTCTCCGCCCTGCTGGAGGTGATTGGATCC
 TGGCTGCAGATGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCA
 GCCTCTTACCCCTGAGTGAAACAATGCCAGTCGCCATCGATATTCAAGACAGACAGTGT
 GACATTGACCCCTGATTGCTGCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGC
 CTTTGGACCTGCACAACAATGCCACACAGTCAACTCTCTGCCCTCACCTGTATCTG
 GGTGGACTTCCCCGAAAATATGTAGCTGCCAGCTCCACCTGCACTGGGTAGAAAGGATC
 CCCAGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTGCAAGAGCTCCACATTGTAC
 ATTATGACTCTGATTCTATGACAGCTTGAGTGAGGCTGCTGAGAGGCCTCAGGGCTGGCT
 GTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG
 TCACTGCATGAAGTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTCAACCTAACAGAG
 AGCTGCTCCCCAACAGCTGGGCAGTACTCCGCTACAATGGCTCGCTACAACACTCCCCCT
 TGCTACCAGAGTGTGCTGGACAGTTTATAGAAGGTCCCAGATTCAATGGAACAGCT
 GGAAAAGCTTCAGGGACATTGCTCCACAGAACAGAGGAGCCCTTAAGCTCTGGTACAGA
 ACTACCGAGCCCTCAGCCTCTCAATCAGCGCATGGCTTGCTTCAAGCAGGA
 TCCTCGTATACCACAGGTGAAATGCTGAGTCTAGGTGAGGAATCTGGTTGGCTGTCTG
 CCTTCTCCTGGCTTTATTCATTGCTAGAAAGATTGGAAGAACAGAGGCTGGAAAACCGAA
 AGAGTGTGGCTTCACCTCAGCACAAGCCACGACTGAGGCATAAATTCTCTCAGATACCA
 TGGATGTGGATGACTTCCCTCATGCCTATCAGGAAGCCTCTAAATGGGTGAGGATCTG
 GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCCTGGACATCTTAGAGAG
 GAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTCAGCCTCTCCAAACATGTA
 GGAGGAAATGAGGAATCGCTGTGTTAATGCAGAGANCAAACCTGTTAGTTGCAGGG
 GAAGTTGGATATAACCCAAAGCCTCTACCCCTCACTTTATGCCCTTCCCTAGATA
 TACTGCGGGATCTCTCCTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTGATCAATA
 TATTGGAAATTAAAGTTCTGACTTT

FIGURE 242

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812
><subunit 1 of 1, 337 aa, 1 stop
><MW: 37668, pI: 6.27, NX(S/T): 1
MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLP
ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQ
INSEATFAELHIVHYDSDSYDSLSEAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH
KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTPPCYQSVLWTVFYRRSQISMEQLEKLQGTL
FSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYF
IARKIRKKRLENRKSVVFTSAQATTEA
```

Important features of the protein:**Signal peptide:**

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

FIGURE 244

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSSLIPLTQM
LTLPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPFVTQLGAQGTILSSEE
LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG
TDDDFAVTPAGIQRSTHAIIEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 245

GGAGAGAGGCGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGGCG
GAGCCAGACGCTGACCACGTTCTCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCCTGCCCG
GCAGCCGGGAGCC**ATG**CGACCCCAGGGCCCCGCCCTCCCGCAGCGGCTCCGCGGCCTCC
TGCTGCTCCTGCTGCTGCAGCTGCCGCCGTGAGCGCCTCTGAGATCCCCAAGGGGAAG
CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGG
GCCAGCAGGAGTGCCTGGTCGAGACGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG
GGATCCCAGGTGGGATGGATTCAAAGGAGAAAAGGGGAATGTCAGGGAAAGCTTGAG
GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTCATTGAATTATGGCATAGATCT
TGGGAAAATTGCGGAGTGTACATTACAAAGATGCGTCAAATAGTGCCTAAAGAGTTTGT
TCAGTGGCTCACTCGGCTAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTCACATTC
AATGGAGCTGAATGTTCAAGGACCTCTCCATTGAAGCTATAATTATTGGACCAAGGAAG
CCCTGAAATGAATTCAACAATTAATATTCACTGCACCTCTGTGGAAGGACTTGTGAAG
GAATTGGTGTGGATTAGTGGATGTTGCTATCTGGTTGGCACTTGTTCAGATTACCCAAA
GGAGATGCTTCACTGGATGGAATTCAAGTTCTCGCATCATTATTGAAGAACTACCAAA**TA**
AATGCTTTAATTTCTACCTCTTTTATTATGCCTTGAATGGTCACTTAAAT
GACATTTAAATAAGTTATGTATACTGAATGAAAAGCAAAGCTAAATATGTTACAGA
CCAAAGTGTGATTCACACTGTTTAAATCTAGCATTATTCACTTGTCAATCAAAAGT
GGTTCAATATTTTTAGTTGGTTAGAATACTTCTCATAGTCACATTCTCAACCTA
TAATTGGAATATTGTTGTGGCTTTGTTCTTAGTATAGCATTAAAAAAATA
AAAAAGCTACCAATCTTGTACAATTGTAAATGTTAAGAATTAAAAATCTGTTAAAT
AAAAATTATTCCAACA

FIGURE 246

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393
><subunit 1 of 1, 243 aa, 1 stop
><MW: 26266, pI: 8.43, NX(S/T): 1
MRPQGPAA SPQR LRG LLLL LQL PAPSSA SEIPKG KQKA QL RQ REVVDLY NGMCL QGPAGV
PGRDGSPGANV IPGT PGIP GRDG FKGE KGE CLRESFEE SWTP NYKQ CSWSSL NYGIDL GKIA
ECTFTKMR SNSAL RVLF SGSL RLKCRN ACCQRW YFTFNG AEC SGPLPI EAI IYLDQGSPE MN
STINI HRTSS VEGL CEGIGA GLVDV AIWVGTCSDYPKGDASTGW NSVSRIII EELPK
```

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217