Knowledge Representation: Probabilistic Graphs

Alexia Toumpa, Brandon Bennett

Knowledge Representation and Reasoning Module

November 21, 2019

Slides based on material from Daphne Koller, Adrian Weller, Zoubin Ghahramani, Henrik I. Christensen, and Karteek Alahari.

What is this class about?

Introduction to **probabilistic graphical models** and modeling the uncertainty.

Introduction to **ProbLog Framework**.

Motivation

Image Segmentation

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]

Task : pixels \rightarrow pixel labels {building, grass, cow, sky}

- many variables
- uncertainty of the correct answer, i.e. label

Motivation

Image Segmentation

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]

Task : pixels \rightarrow pixel labels {building, grass, cow, sky}

- many variables
- uncertainty of the correct answer, i.e. label

Motivation

Image Segmentation

e.g., [He et al., 2004; Shotton et al., 2006; Gould et al., 2009]

Task : pixels \rightarrow pixel labels {building, grass, cow, sky}

- many variables
- uncertainty of the correct answer, i.e. label

Probabilistic Graphical Models provide a framework to address these problems.

Why probabilistic?

To model **uncertainty**, due to :

- partial knowledge of state of the world
- noisy observations
- cases/phenomena not observed by the model

Probabilistic theory provides

- standalone representation with clear semantics
- reasoning patterns
- learning methods

Why probabilistic?

To model uncertainty, due to:

- · partial knowledge of state of the world
- noisy observations
- cases/phenomena not observed by the model

Probabilistic theory provides

- standalone representation with clear semantics
- reasoning patterns
- learning methods

Why probabilistic?

To model **uncertainty**, due to :

- partial knowledge of state of the world
- noisy observations
- cases/phenomena not observed by the model

Probabilistic theory provides:

- standalone representation with clear semantics
- reasoning patterns
- learning methods

Why graphical?

Intersection of ideas from probability theory and computer science.

For representing large number of variables **Random variables** $Y_1, Y_2, ... Y_n$

Graphical models capture uncertainty through joint distribution $P(Y_1, Y_2, ..., Y_n)$.

Why graphical?

Intersection of ideas from probability theory and computer science.

For representing large number of variables **Random variables** $Y_1, Y_2, ... Y_n$

Graphical models capture uncertainty through joint distribution $P(Y_1, Y_2, ..., Y_n)$.

(Probabilistic) Graphical Models

Figure - Image by David Barber

Graphs

The Basics

Basics concepts:

- Vertices/Nodes
- Edges
- Directed & Undirected
- Degree & In/Out Degree
- Neighbours & Parent/Child
- Walk, Path, and Cycle

Probabilistic Graphs

Knowledge Representation

Nodes represent random variables.

Edges represent dependencies between variables.

Directed Acyclic Graphical Model

Bayesian Networks

A **Bayesian network** is specified by a DAG = (V, \overrightarrow{E}) with :

- ullet one node $i\in V$ for each random variable X_i
- one conditional probability distribution (CPD) per node, $p(x_i|x_{Pa(i)})$, specifying the variable's probability conditioned on its parents' values

So the probability distribution which describes the DAG is :

$$p(x_i,...,x_n) = \prod_{i \in V} p(x_i|x_{Pa(i)})$$

A DAG Model, as the one shown above, corresponds to the joint probability distribution :

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)$$

Basic concepts

• Consider inference of p(x, y) we can formulate this as :

$$p(x,y) = p(x|y)p(y) = p(y|x)p(x)$$

• We can further marginalize

$$p(y) = \sum_{x'} p(y|x')p(x')$$

• Using Bayes Rule we can reverse the inference

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Inference in a Graphical Model

Consider the graph shown above, which represents:

$$p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)$$

Inference: Evaluates the probability distribution over some set of variables, given the values of another set of variables.

For example, how can we compute p(A|C=c)? Assume each variable is binary.

Inference in a Graphical Model

$$p(A|C=c) = \frac{p(A,C=c)}{p(C=c)}$$

$$p(C=c) = \sum_A p(A,C=c)$$

Naive method:

$$p(A, C = c) = \sum_{B,D,E} p(A, B, C = c, D, E)$$

More efficient method:

$$p(A, C = c) = \sum_{B,D,E} p(A)p(B)p(C = c|A,B)p(D|B, C = c)p(E|C = c,D)$$

$$= \sum_{B} p(A)p(B)p(C = c|A,B) \sum_{D} p(D|B, C = c) \sum_{E} p(E|C = c,D)$$

$$= \sum_{B} p(A)p(B)p(C = c|A,B)$$

Introduction to *ProbLog*

Used for:

- computing marginal probabilities given evidences
- learn form partial interpretations
- solve inference tasks
- solve decision theoretic problems
- model uncertainty
- express complex probabilistic models

Installation

 Online Editor https://dtai.cs.kuleuven.be/problog/editor.htm1

- Import as a python package
 pip3 install problog --user
- Standalone tool

ProbLog Program

A ProbLog program consists of two parts :

- a set of ground probabilistic facts
 i.e. p::f
- 2. a logic program, a set of logic rules and non-probabilistic facts

More examples: https://dtai.cs.kuleuven.be/problog/tutorial/basic/08_rule_probs.html

Example Heads

Calculate the probability of both coins being head.

```
P(\text{allHeads}) = P(\text{heads1}) * P(\text{heads2}) % Probabilistic facts:
```

```
0.5::heads1.
0.6::heads2.
```

```
% Rules:
allHeads :- heads1, heads2.
```

```
% Queries:
query(allHeads).
```

Example Heads

Calculate the probability of neither of the coins being head.

```
P(\text{noHeads}) = (1 - P(\text{heads}1)) * (1 - P(\text{heads}2))
% Probabilistic facts:
0.5::heads1.
0.6::heads2.
% Rules:
noHeads :- \+heads1, \+heads2.
% Oueries:
query(noHeads).
```

% Oueries:

query(someHeads).

Coding in *ProbLog*

Example *Heads*

Calculate the probability of at least one of the two coins is head: one of the two is bend(biased).

```
P(\text{someHeads}) = (1 - P(\text{noHeads}))
 P(\text{noHeads}) = (1 - P(\text{heads}1)) * (1 - P(\text{heads}2))
% Probabilistic facts:
0.5::heads1.
0.6::heads2.
% Rules:
someHeads:- heads1.
someHeads: - heads2.
```

Example Smokers

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
0.4::asthma(X) :- smokes(X).
person(angelika).
person(joris).
person(jonas).
person(dimitar).
friend(joris, jonas).
friend(joris,angelika).
friend(joris,dimitar).
friend(angelika, jonas).
```

Example Smokers

What is the probability of Dimitar smoking?

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y)
0.4::asthma(X) :- smokes(X).
person(angelika).
person(joris).
person(joris).
person(dimitar).
friend(joris,jonas).
friend(joris,angelika).
friend(joris,dimitar).
friend(angelika,jonas).
query(smokes(dimitar)).
```

Example Smokers

What is the probability of Dimitar smoking?

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
0.4::asthma(X) :- smokes(X).

person(angelika).
person(joris).
person(joris).
person(dimitar).

friend(joris,jonas).
friend(joris,angelika).
friend(joris,dimitar).
friend(angelika,jonas).

query(smokes(dimitar)).
```

Example Smokers

What is the probability of Dimitar smoking?

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X, Y), influences(Y, X), smokes(Y).
0.4::asthma(X) :- smokes(X).
person(angelika).
person(ioris).
person(jonas).
person(dimitar).
friend(joris, jonas).
friend(joris,angelika).
friend(joris,dimitar).
friend(angelika, jonas).
query(smokes(dimitar)).
                         P(smokes(Dimitar)) = P(stress(Dimitar))
```


Example Smokers

What is the probability of Angelika smoking?

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
0.4::asthma(X) :- smokes(X).
person(angelika).
person(joris).
person(joris).
person(dimitar).
friend(joris,jonas).
friend(joris,angelika).
friend(joris,dimitar).
friend(angelika,jonas).
query(smokes(angelika)).
```

Example Smokers

What is the probability of Angelika smoking?

```
0.3::stress(X) :- person(X).
0.2::influences(X,Y) :- person(X), person(Y).
smokes(X) :- stress(X),
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
0.4::asthma(X) :- smokes(X).

person(angelika).
person(joris).
person(joris).
person(dimitar).
friend(joris, jonas).
friend(joris, dimitar).
friend(angelika, jonas).
query(smokes(angelika)).
```

Example Smokers

What is the probability of Angelika smoking?

```
0.3::stress(X) :- person(X).
0.2::influences(X.Y) :- person(X), person(Y).
smokes(X) :- stress(X).
smokes(X) :- friend(X,Y), influences(Y,X), smokes(Y).
0.4::asthma(X) :- smokes(X).
person(angelika).
person(joris).
person(jonas).
person(dimitar).
friend(joris, jonas).
friend(joris,angelika).
friend(joris,dimitar).
friend(angelika.ionas).
query(smokes(angelika)).
                                         P(smokes(Angelika)) =
 1 - \left[ \left( 1 - P(\text{stress}(\text{Angelika})) \right) * \left( 1 - \left( P(\text{influences}(\text{Jonas}, \text{Angelika})) * P(\text{smokes}(\text{Jonas}))) \right) \right]
```


Useful Resources

- ProbLog Editor: https://dtai.cs.kuleuven.be/problog/editor.html
- ProbLog python package installation: https://problog.readthedocs.io/en/latest/install.html#installing-python
- Python installation: https://docs.python.org/3.5/using/windows.html
- Use ProbLog as a python library: https://dtai.cs.kuleuven.be/problog/tutorial/advanced/01_python_interface.html
- ProbLog Documentation: https://problog.readthedocs.io/en/latest/
- ProbLog examples: https://dtai.cs.kuleuven.be/problog/tutorial/basic/01_coins.html