Problem Set 2

All parts are due Thursday, October 13 at 11:59PM.

Name: Milo H. Knowles

Collaborators: Gillian P. Belton

Part A

Problem 2-1.

(a) $T(n) = \theta(n^2 * \log n)$ is a solution to $T(n) = aT(\frac{n}{2}) + \theta(n^2)$. Consider $n^{\log_2 a}$ vs. n^2

Compare the exponents: $\log_2 a$ and 2 must be equal.

$$\implies a = 4$$

(b) $T(n) = \theta(n^2)$ is a solution to $T(n) = aT(\frac{n}{3}) + \theta(n)$.

Consider $n^{\log_3 a}$ vs. n^1

Because the runtime is $\theta(n^2)$, $n^{\log_3 a}$ must be the dominant term, and equal to n^2 $n^{\log_3 a}=2$

$$\implies a = 9$$

(c) $T(n) = \theta(n^2)$ is a solution to $T(n) = 4T(\frac{n}{b}) + \theta(n^2)$.

Consider $n^{\log_b 4}$ vs. n^2

Because the runtime is $\theta(n^2)$, the $\theta(n^2)$ term must be dominant.

This will occur when $\log_b 4 < 2$

$$b^{\log_b 4} < b^2$$

$$b^2 > 4$$

|b| > 2. But we are only considering positive real b, so b > 2.

(d) $T(n) = \theta(n^{6.006})$ is a solution to $T(n) = 5T(\frac{n}{h}) + \theta(n^5)$.

Consider $n^{\log_b 5}$ vs. n^5 . The left side must be dominant in order for $T(n) = \theta(n^{6.006})$

$$\implies \log_b 5 = 6.006$$

$$b^{6.006} = 5$$

$$\log b = \frac{\log 5}{6.006}$$

$$b = 1.3073$$

$$T(n) = \theta(n^2)$$
 is a solution to $T(n) = 6T(\frac{n}{6}) + f(n)$.

(e) Consider $n^{\log_6 6}$ vs. f(n)Equivalent to: nvs.f(n)In order for the runtime to be $\theta(n^2)$, f(n) must be asymptotically similar to n^2 . $\implies f(n) = n^2$ is one possible f(n).

Problem 2-2.

(a) Sorting a Rectangle

This algorithm is essentially a modified version of merge sort. The array A can be split up into individual columns, each of which is a leaf in the binary tree above.

The "merging" subroutine: To merge two length n columns into a single sorted array, keep taking the largest element from either column until the merged array is complete (has length 2n). This takes $\theta(n)$ time, because there are n elements in each column.

At each layer of the tree, there are $\frac{m}{2^l}$ arrays to merge, where l is the layer in the tree. However, the size of each array is $n \cdot 2^l$. So each layer will take the same amount of

Problem Set 2

time to merge: $\theta(mn)$.

The height of the tree is $\log_2 m$, and each layer takes $\theta(mn)$ time, so the runtime will be $\theta(mn \cdot \log_2 m)$.

Problem 2-3.

(a) Algorithm to swap two arbitrary trucks and return all the trucks that were moved in the process to their original positions:

- 1. Given an arbitrary pair of trucks A and B, their distance from each other is, at most, n-1 spaces. Let Truck A have lower index and Truck B have higher index. While the distance between the two trucks (in spaces) is $\geq k$, swap Truck A with the truck k spaces ahead. This will take, at most, $\frac{n}{k}-1$ swaps.
- 2. Once the Truck A is within k spaces of the Truck B, swap them with each other. Now, Truck A is in the correct position and there have been, at most, $\frac{n}{k}$ swaps.
- 3. Excluding the final swap, make every swap again in reverse chronological order. This will leave Truck A in place, put Truck B in the original space of Truck A, and return every other truck to its original space. This will require, at most, $\frac{n}{k}-1$ swaps, because we exclude the final swap.

At this point, there have been at most, $\frac{2n}{k}-1$ swaps. This means that the algorithm has taken $O(\frac{n}{k})$ time.

- (b) Algorithm to compare two arbitrary trucks, and return all trucks that were moved in the process to their original positions:
 - 1. Given an arbitrary pair of trucks A and B, their distance from each other is, at most, n-1 spaces. Let Truck A have lower index and Truck B have higher index. While the distance between the two trucks (in spaces) is > k, swap Truck A with the truck k spaces ahead. This will take, at most, $\frac{n}{k}-1$ swaps.
 - 2. Once the Truck A is within k spaces of the Truck B, the two trucks can be compared.
 - 3. Make every swap again in reverse chronological order. This will return every truck to its original space. This will require, at most, $\frac{n}{k} 1$ swaps, because this is the maximum number of swaps we made in step 1.

At this point, there have been at most, $\frac{2n}{k} - 2$ swaps. This means that the algorithm has taken $O(\frac{n}{k})$ time.

(c) To sort the trucks in $O(\frac{n^2 \log n}{k})$ time, we can use a modified version of heapsort. Building the heap takes $O(\frac{n^2}{k}$ time, because heapify will do, at most, n comparison-based swaps, each of which take $O(\frac{n}{k}$ time. Although comparisons and swaps each take

4 Problem Set 2

 $O(\frac{n}{k})$ time, they can be easily combined into a single $O(\frac{n}{k})$ process that compares two trucks and then swaps them before restoring other trucks to their correct positions.

Heapsort runs the extract_min subroutine n times on the heap, taking the minimum element in constant time and running min_heapify after every extraction. The subroutine min_heapify runs in $O(\frac{n\log n}{k})$, because at most $\log n$ violations of the MHP must be fixed in the heap, and each fix requires an $O(\frac{n}{k})$ comparison-swap, as we saw previously. Therefore, the runtime of heapsort is $O(\frac{n^2\log n}{k})$.

(d) Extra credit.

Part B

Problem 2-4.

(a) The following is an $O(n^2)$ algorithm that computes Bowser's final rank. Consider the pseudocode below:

losetimes = $\{\ \}$ # this dict stores players as keys, and each player's "lose-time" as a value

for s in competitors:

```
for f in competitors:
    min_losetime = 1,000,000,000 # initialized with a really high integer
    if s == f:
        continue
    else:
        if vel_f > vel_s:
            time = calculate_losetime(f, s)
            if time < min_losetime:
                min_losetime = time
losetimes[s] = min_losetime</pre>
```

increment bowser's rank every time a competitor is found with a longer finish time (meaning they outlast for time in losetimes.values():

```
if time > losetimes['bowser']:
  bowser_rank += 1
```

This algorithm will take $O(n^2)$ time because it takes O(n) time to compute the minimum lose-time for each competitor, and there are n competitors.

(b) Submit your implementation on alg.csail.mit.edu

Problem Set 2 5

- (c) Submit your implementation on alg.csail.mit.edu
- (d) We assume that Charlie does pass Bowser. In this case, we must consider 3 additional events:
 - Bowser passes Alice before Charlie passes Bowser. This is only possible if $v_b > v_a$. As a result, Alice is removed from the race and Bowser is removed from the race.
 - Deborah passes Charlie after Charlie passes Bowser. This is only possible if $v_d > v_c$. This results in Bowser being removed and then Charlie being removed from the race.
 - Alice passes Deborah. This will happen if $v_a > v_d$. This means that Bowser and then Deborah will be removed from the race.
 - We can remove the possibility of Bowser passing Alice or Deborah from consideration, because Charlie passes Bowser and removes him from the race first.
- (e) Submit your implementation on alg.csail.mit.edu