What is Bayesian SSVS?

Stoachstic Search Variable Selection (SSVS)

G. Zens

Department of Economics Vienna University of Economics and Business

June 2020 Advanced Macroeconometrics (Science Track)

Motivation

- often, it is not clear a priori which variables are relevant enough to be included in a model
- especially relevant in large data settings and settings with no theoretical guidance
- we would like to find a method to conduct variable selection, i.e. finding a subet of most relevant predictors
- similarly, including to many predictors makes models prone to overfitting
- here, we need to avoid noisy estimates and to regularize our models
- ▶ one method is to push coefficients of irrelevant predictors to 0, commonly referred to as **shrinking** the coefficients to 0

Variable selection

- ▶ suppose we have a regression model with 3 potential predictors x_1, x_2, x_3
- ▶ for each β_j we have a binary indicator δ_j indicating whether x_j should be included in the model or not

$$y_i = \delta_1 x_{1i} \beta_1 + \delta_2 x_{2i} \beta_2 + \delta_3 x_{3i} \beta_3 + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$$
 (1)

 \blacktriangleright for $\delta = (\delta_1, \delta_2, \delta_3)' = (1, 0, 1)'$, we obtain

$$y_i = x_{1i}\beta_1 + x_{3i}\beta_3 + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$$
 (2)

▶ George and McCulloch (1993) specify a prior that allows you to estimate δ_j

SSVS

 the stochastic search variable selection (SSVS) prior is specified as mixture of Gaussian distributions

$$\beta_j | \delta_j \sim \delta_j N(0, \sigma_{1j}^2) + (1 - \delta_j) N(0, \sigma_{0j}^2)$$
 (3)

- $ightharpoonup \sigma_{1j}^2 >> \sigma_{0j}^2$ leads to a so-called "spike-and-slab prior"
- ▶ if a variable is included ($\delta_i = 1$), the prior variance is large
- ▶ if a variable is excluded ($\delta_i = 0$), the variance is small
- ▶ hence, excluded variables are pushed towards 0 through the prior (= shrinkage)

Stylized Spike and Slab Prior

SSVS Intuition

In each iteration of the Gibbs sampler, we will...

- ▶ check for each β_j whether it is more likely that it comes from the spike or from the slab component
- multiply this likelihoods with the prior probabilities of inclusion/exclusion (often 0.5)
- based on these measures, compute the posterior inclusion probability (PIP)
- \blacktriangleright with this PIP, we can sample the inclusion indicator δ_i

The posterior mean over all δ_j gives us the overall PIP for β_j . This tells you the probability that x_j is a relevant predictor of y_i (variable selection). At the same time, irrelevant coefficients are pushed into the spike component and will be estimated close to 0 to avoid noisy estimates (shrinkage).

SSVS Details

▶ note that the conditional prior on β_j can be written as

$$\beta_j | \delta_j \propto (\sigma_{1j}^{-1} \exp\{-\beta_j^2 / 2\sigma_{1j}^2\})^{\delta_j} (\sigma_{0j}^{-1} \exp\{-\beta_j^2 / 2\sigma_{0j}^2\})^{(1-\delta_j)}$$
 (4)

- ▶ indicators $\delta = (\delta_1, \dots, \delta_k)$ have a Bernoulli prior $\delta = \prod_{j=1}^k \rho_j^{\delta_j} (1 p_j)^{1 \delta_j}$ with success probability p_j
- ▶ combining the likelihood $p(\beta_j|\delta_j)$ with the prior $p(\delta_j)$ yields again a Bernoulli distribution

$$p(\delta_{j} = 1 | \beta_{j}) = Ber(u_{1j}/(u_{1j} + u_{0j}))$$

$$u_{1j} = p_{j} \times \sigma_{1j}^{-1} exp\{-\beta_{j}^{2}/2\sigma_{1j}^{2}\}$$

$$u_{0j} = (1 - p_{j}) \times \sigma_{0j}^{-1} exp\{-\beta_{j}^{2}/2\sigma_{0j}^{2}\}$$
(5)

Further notes on shrinkage and variable selection

Note that ...

- ... the SSVS is only one example out of a massive universe of shrinkage priors
- ... other combinations than Gaussian spike & Gaussian slab are available (Malsiner-Walli and Wagner 2018)
- ... there is a huge amount of continuous shrinkage priors around. These are not based on a spike and a slab, but try to approximate a spike and a slab using a single, continuous prior distribution
- ▶ ... in macroeconometrics, you are regularly going to encounter:
 - ► Bayesian LASSO (Park and Casella 2008)
 - ► Horseshoe prior (Carvalho et al. 2010)
 - ► Normal-Gamma prior (Griffin and Brown 2010)
 - ► Dirichlet-Laplace prior (Bhattacharya et al. 2015)
 - ► Triple-Gamma prior (brand-new, published two weeks ago! Cadonna et al. 2020)

Example: Continuous shrinkage prior (Normal-Gamma)

Fig. 1 Normal gamma prior with a variance of 1 for different values of v_1 , $v_1 = 0.5$ (black dot-dashed line), $v_1 = 1$ (red dotted line), $v_1 = 2$ (blue long-dashed line), and the standard normal density (green solid line), at zero (left-hand side) and the tails (right-hand side). (Color figure online)

Figure: The Normal-Gamma shrinkage prior. Figure taken from Malsiner-Walli, Frühwirth-Schnatter, et al. (2016).

A continuous shrinkage prior should be able to simultaneously...

- ... put the vast majority of the prior mass extremely close to zero (this overrules weak likelihood information and pushes irrelevant coefficient towards zero)
- ... exhibit "fat tails" such that the information in the likelihood can still overrule the prior information, if strong enough

References I

- Bhattacharya, Anirban, Debdeep Pati, Natesh S Pillai, and David B Dunson (2015). 'Dirichlet–Laplace priors for optimal shrinkage'. In: *Journal of the American Statistical Association* 110.512, pp. 1479–1490.
- Cadonna, Annalisa, Sylvia Frühwirth-Schnatter, and Peter Knaus (2020). 'Triple the Gamma—A Unifying Shrinkage Prior for Variance and Variable Selection in Sparse State Space and TVP Models'. In: *Econometrics* 8.2, p. 20.
- Carvalho, Carlos M, Nicholas G Polson, and James G Scott (2010). 'The horseshoe estimator for sparse signals'. In: *Biometrika* 97.2, pp. 465–480.
- George, Edward I and Robert E McCulloch (1993). 'Variable selection via Gibbs sampling'. In: *Journal of the American Statistical Association* 88.423, pp. 881–889.
- Griffin, Jim E. and Philip J. Brown (2010). 'Inference with normal-gamma prior distributions in regression problems'. In: Bayesian Analysis 5.1, pp. 171–188.

References II

Malsiner-Walli, Gertraud and Helga Wagner (2018). 'Comparing spike and slab priors for Bayesian variable selection'. In: *arXiv* preprint *arXiv*:1812.07259.

Park, Trevor and George Casella (2008). 'The bayesian lasso'. In: Journal of the American Statistical Association 103.482, pp. 681–686.

Bayesian SSVS for Hunger modelling

Spike and slab prior

density.default(x = rnorm(10000, 0, sqrt(sig2h)))

Posterior distributions

Posterior boxplots

Posterior dataframe

term ‡	mean ‡	pip ‡	median ‡	sd ‡	cred0.05 [‡]	cred0.95 [‡]	cred0.01 [‡]	cred0.99 [‡]	scaled \$
(Intercept)	2.465024e+00	1.00000000	2.464592e+00	1.642944e-01	2.1951347336	2.735597e+00	2.0826847113	2.8494416749	NA
urban_perc	-1.126987e-01	0.06716222	-1.124820e-01	4.137246e-02	-0.1811215110	-4.496794e-02	-0.2100676490	-0.0168353152	-0.0340147792
wasting	-6.958151e-02	0.16598889	-2.666910e-02	2.458187e-01	-0.5931115389	1.663797e-01	-1.0775209430	0.3917311855	-0.0009936429
school_mean	9.311932e-03	0.03078000	9.315781e-03	8.123169e-03	-0.0040758013	2.266904e-02	-0.0095645672	0.0281954583	0.0278637661
ruggedness	-2.436385e-05	0.03060667	-2.442272e-05	9.077163e-05	-0.0001733941	1.249918e-04	-0.0002356860	0.0001872051	-0.0031281407
gdp_percap	-6.400185e-01	1.00000000	-6.400748e-01	1.962266e-02	-0.6722517703	-6.077633e-01	-0.6858136894	-0.5943289349	-0.7624603979
gini	3.852238e+00	1.00000000	3.852134e+00	1.354230e-01	3.6299234067	4.074648e+00	3.5370489027	4.1668965663	0.4007571369
mal_falciparum	-2.285057e+00	0.65942889	-1.526777e+00	2.776749e+00	-7.4232958219	4.903141e-01	-9.4268444876	2.5075981367	-0.0035734208
mean_annual_precip	-3.810528e-04	0.03053111	-3.810742e-04	2.275194e-04	-0.0007554246	-7.092767e-06	-0.0009124053	0.0001497397	-0.0233679512
hci	1.447094e+00	1.00000000	1.446677e+00	1.138138e-01	1.2603226575	1.634836e+00	1.1832105444	1.7134376970	0.2354817557
tavg	2.855834e-02	0.03259333	2.854794e-02	2.486625e-03	0.0244858518	3.266546e-02	0.0228167265	0.0344224579	0.2199976218
wci_index	3.626797e-03	0.03083111	3.621381e-03	8.965913e-03	-0.0110773143	1.838806e-02	-0.0172357625	0.0244937766	0.0047999961

Results compared to LASSO

Change in Rate of Mod+Sev Food Insecurit With increase of 1 SD in Var For SSP2 LASSO Regression Model (LASSO)

Change in Rate of Mod+Sev Food Insecurit With increase of 1 SD in Var For SSP2 LASSO Regression Model (Bayes SSVS)

Model Performance (LASSO)

Mean Absolute Error: 0.0651 R-squared: 0.922

Model Performance (Bayes SVSS)

Mean Absolute Error: 0.0648 R-squared: 0.9228

