Bap. 1 (7500)

	/ 3	6	-9	-9	-3
1. Дана матрица $A=% {\displaystyle\int\limits_{0}^{\infty}} \left({{{\bf R}}_{{\bf R}}} \right) {{\bf R}} {$	1	3	-1	-2	-2
	-1	-2	3	3	1
	2	9	4	-1	-7
	\ 2	4	-6	-6	-2

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0

2. Даны столбцы
$$e_1 = (1,1,0)^T, e_2 = (-2,-2,1)^T,$$
 $e_3 = (2,3,1)^T, f_1 = (1,1,2)^T, f_2 = (1,2,2)^T,$ $f_3 = (0,-1,1)^T, x = (-6,-3,-1)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -3 & -1 & -1 \\ -1 & -1 & 4 \\ -1 & 0 & 1 \end{pmatrix}.$$

Bap. 2 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -1 & 1 & -3 & 3 & 2 \\ -2 & -1 & -3 & 6 & -5 \\ -2 & 3 & -7 & 6 & 7 \\ 1 & -2 & 4 & -3 & -5 \\ 1 & -2 & 4 & -3 & -5 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0

2. Даны столбцы
$$e_1 = (1, -1, -1)^T$$
, $e_2 = (0, 1, 2)^T$, $e_3 = (2, -2, -1)^T$, $f_1 = (0, 1, 1)^T$, $f_2 = (1, -2, -2)^T$, $f_3 = (2, -3, -2)^T$, $x = (-10, 5, -8)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- с) Найти матрицу оператора L в базисе f, если $L_e = \begin{pmatrix} 1 & 3 & -3 \\ 4 & 4 & -1 \\ -3 & -2 & -2 \end{pmatrix}.$

Bap. 3 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -3 & -2 & 3 & 1 & 3 \\ 2 & 1 & -2 & 1 & -1 \\ 4 & 1 & -5 & 5 & 2 \\ -1 & -2 & 2 & 9 & 4 \\ -3 & -1 & 1 & -8 & 2 \end{pmatrix}$$

- b) Найти базис пространства решений системы Ax=0

b) Найти базис пространства решений системы
$$Ax = 0$$
2. Даны столбцы $e_1 = (1, -1, 3)^T$, $e_2 = (2, -2, 7)^T$, $e_3 = (1, 0, 2)^T$, $f_1 = (1, 1, 1)^T$, $f_2 = (-2, -1, -2)^T$, $f_3 = (1, 3, 2)^T$, $x = (-9, -7, 5)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 3 & -3 & 3 \\ -1 & 1 & -1 \\ -4 & -4 & -4 \end{pmatrix}.$$

Bap. 4 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 2 & -5 & 9 & -3 & -8 \\ 1 & -3 & 7 & -2 & -6 \\ -5 & 8 & 0 & 3 & 2 \\ 4 & -6 & -2 & -2 & 0 \\ -1 & 2 & -2 & 1 & 2 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A
- b) Найти базис пространства решений системы Ax = 0

2. Даны столбцы
$$e_1 = (1,1,2)^T$$
, $e_2 = (-1,-1,-1)^T$, $e_3 = (-2,-1,-5)^T$, $f_1 = (1,2,-1)^T$, $f_2 = (-1,-2,2)^T$, $f_3 = (-2,-3,-1)^T$, $x = (5,6,7)^T$

- а) Найти матрицы перехода $C_{e o f}$ и $C_{f o e}$
- b) Найти координаты x в базисе e.
- c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 4 & -4 & -2 \\ -1 & -4 & -3 \\ 3 & -1 & -3 \end{pmatrix}.$$

Bap. 5 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 1 & -2 & 4 & 2 & 1 \\ -2 & 9 & -3 & 0 & 8 \\ 1 & -8 & 7 & -1 & -2 \\ 1 & -3 & 2 & 1 & -2 \\ 2 & -3 & 0 & 3 & -5 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0

2. Даны столбцы
$$e_1 = (1, -1, -2)^T$$
, $e_2 = (1, -1, -3)^T$, $f_3 = (-2, 3, 7)^T$, $f_4 = (1, -1, -3)^T$, $f_2 = (-2, 3, 4)^T$, $f_3 = (-1, 2, 2)^T$, $f_4 = (7, -4, -3)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- c) Найти матрицу оператора L в базисе f, если $L_e = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 4 & -3 \\ -1 & 0 & -4 \end{pmatrix}.$

1. Дана матрица
$$A = \begin{pmatrix} 5 & 1 & 0 & -4 & -9 \\ -1 & -1 & 1 & 5 & 1 \\ -4 & -1 & 2 & -1 & 7 \\ 2 & 1 & -2 & -1 & -3 \\ 1 & 1 & -3 & 1 & -1 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0

2. Даны столбцы
$$e_1 = (1, -1, 0)^T$$
, $e_2 = (1, -1, 1)^T$, $e_3 = (-2, 3, -1)^T$, $f_1 = (1, -3, -3)^T$, $f_2 = (-1, 4, 6)^T$, $f_3 = (0, -2, -5)^T$, $x = (1, 2, -4)^T$ а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.

- b) Найти координаты x в базисе e.
- c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 4 & 2 & 1 \\ 1 & 2 & -2 \\ 2 & 2 & -4 \end{pmatrix}.$$

Bap. 7 (7500)

- 1. Дана матрица $A = \begin{pmatrix} 1 & -1 & 1 & 2 & 3 \\ -2 & 7 & 6 & -1 & -4 \\ 2 & -1 & 5 & 6 & 5 \\ -1 & 6 & 4 & 0 & 1 \end{pmatrix}$

 - b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (0,1,1)^T, \ e_2 = (1,2,-1)^T, \ e_3 = (2,2,-3)^T, \qquad f_1 = (1,2,0)^T, \ f_2 = (2,4,1)^T,$ $f_3 = (3,7,4)^T, x = (8,9,1)^T$
 - а) Найти матрицы перехода $C_{e o f}$ и $C_{f o e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -4 & 1 & 4 \\ 4 & 1 & -4 \\ -2 & -3 & -3 \end{pmatrix}.$$

Bap. 9 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 1 & -3 & 1 & -1 & 2 \\ -6 & -6 & 3 & 0 & 4 \\ -1 & -5 & 2 & -1 & 2 \\ 4 & -4 & 1 & -2 & 3 \\ -5 & 7 & -2 & 3 & -2 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (1, 2, -1)^T$, $e_2 = (-1, -2, 2)^T$, $e_3 = (0, 1, 1)^T$, $f_1 = (1, 1, -3)^T$, $f_2 = (2, 3, -8)^T$, $f_3 = (2, 3, -7)^T$, $x = (1, 10, 3)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 3 & 0 & -1 \\ -3 & 0 & 0 \\ -2 & -1 & -2 \end{pmatrix}.$$

Bap. 11 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 9 & 1 & -9 & 8 & -2 \\ -1 & 1 & -6 & 1 & 3 \\ 4 & -3 & 6 & -2 & -6 \\ -3 & -1 & 1 & -3 & 0 \\ 1 & 1 & -2 & 2 & 1 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- 2. Даны столбцы $e_1 = (1,1,1)^T$, $e_2 = (1,1,2)^T$, $e_3 = (3,4,2)^T$, $f_1 = (1,2,3)^T$, $f_2 = (-2,-4,-5)^T$, $f_3 = (0,1,2)^T$, $x = (-8,-7,-8)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если $L_e = \begin{pmatrix} -2 & 3 & -2 \\ 2 & 3 & -3 \\ -1 & -1 & -4 \end{pmatrix}.$

Bap. 8 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -4 & 3 & 2 & -5 & -5 \\ -1 & 2 & 1 & -2 & -3 \\ 4 & -3 & -2 & 5 & 5 \\ 1 & 3 & 1 & -1 & -4 \\ 0 & -5 & -2 & 3 & 7 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1, -1, -2)^T$, $e_2 = (1, 0, -3)^T$, $e_3 = (-1, 3, 1)^T$, $f_1 = (0, 1, -1)^T$, $f_2 = (1, -4, 3)^T$, $f_3 = (1, -5, 5)^T$, $x = (-1, -8, 7)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -2 & -2 & -2 \\ 1 & 0 & 2 \\ -3 & -4 & 1 \end{pmatrix}.$$

Bap. 10 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -1 & -2 & 2 & -1 & -1 \\ 2 & 1 & -1 & 1 & 2 \\ 7 & 2 & -2 & 3 & 7 \\ -7 & -2 & 2 & -3 & -7 \\ 6 & 0 & 0 & 2 & 6 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1,2,1)^T$, $e_2 = (-2,-4,-1)^T$, $e_3 = (-3,-5,-1)^T$, $f_1 = (1,1,1)^T$, $f_2 = (1,1,2)^T$, $f_3 = (3,4,2)^T$, $x = (9,-2,-4)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 2 & -2 & 0 \\ -1 & -3 & 0 \\ 2 & 2 & -1 \end{pmatrix}.$$

1. Дана матрица
$$A = \begin{pmatrix} 3 & 3 & 1 & -3 & -3 \\ 1 & 2 & -2 & -2 & -2 \\ 3 & 5 & -3 & -5 & -3 \\ -2 & -2 & -4 & 1 & -4 \\ -1 & 0 & -5 & -1 & -3 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (0,1,-2)^T$, $e_2 = (1,4,-6)^T$, $e_3 = (1,3,-3)^T$, $f_1 = (1,3,-2)^T$, $f_2 = (1,4,-3)^T$, $f_3 = (3,9,-5)^T$, $x = (1,-1,6)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 1 & 3 & 4 \\ -4 & -4 & -2 \\ 1 & -3 & 0 \end{pmatrix}.$$

Bap. 13 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 1 & -8 & 4 & 4 & -9 \\ -2 & 2 & -2 & 0 & -4 \\ 2 & 3 & 2 & -5 & -1 \\ -2 & 3 & -3 & 0 & 1 \\ 1 & -3 & 2 & 1 & -2 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1,2,0)^T, \ e_2 = (1,3,-3)^T, \ e_3 = (1,3,-2)^T, \ f_1 = (1,1,1)^T, \ f_2 = (0,1,1)^T, \ f_3 = (1,2,3)^T, \ x = (4,6,-7)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 1 & -1 & 3 \\ 3 & 4 & 0 \\ -1 & -3 & 0 \end{pmatrix}.$$

Bap. 15 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 4 & 5 & -3 & -8 & 2 \\ -1 & 3 & -3 & -6 & 2 \\ 4 & 3 & -3 & -3 & 1 \\ -6 & -4 & 2 & 5 & -1 \\ 1 & 2 & -2 & -3 & 1 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (0, 1, -1)^T$, $e_2 = (1, -3, 2)^T$, $e_3 = (2, -7, 6)^T$, $f_1 = (1, 1, -3)^T$, $f_2 = (2, 2, -5)^T$, $f_3 = (1, 2, -4)^T$, $x = (10, -3, -6)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 2 & 1 & -3 \\ -2 & -1 & 2 \\ 1 & 0 & 0 \end{pmatrix}.$$

Bap. 17 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -4 & -1 & -7 & -2 & 5 \\ 1 & 7 & 4 & 2 & -2 \\ 1 & 2 & 1 & 1 & -1 \\ 5 & -1 & -4 & 3 & -2 \\ -2 & -8 & -2 & -3 & 2 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0

2. Даны столбцы
$$e_1 = (1, -1, -2)^T$$
, $e_2 = (2, -2, -3)^T$, $e_3 = (-3, 4, 4)^T$, $f_1 = (0, 1, 3)^T$, $f_2 = (1, -2, -3)^T$, $f_3 = (1, -1, 1)^T$, $x = (2, -7, -5)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -2 & -4 & -4 \\ 1 & 4 & 0 \\ 0 & 3 & -4 \end{pmatrix}.$$

Bap. 14 (7500)

Вар. 14 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 3 & -1 & 1 & 3 & -2 \\ -1 & 1 & -1 & -2 & 1 \\ -5 & 2 & -4 & -5 & 3 \\ 0 & -2 & 3 & 4 & -1 \\ -4 & -1 & 2 & 3 & 1 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0

2. Даны столбцы
$$e_1 = (1, -2, -1)^T$$
, $e_2 = (-1, 3, 2)^T$, $e_3 = (-1, 1, 1)^T$, $f_1 = (0, 1, 2)^T$, $f_2 = (1, -5, -5)^T$, $f_3 = (-1, 4, 4)^T$, $x = (6, -3, -9)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -4 & -4 & 1\\ 2 & -2 & -4\\ -1 & -1 & -4 \end{pmatrix}.$$

Bap. 16 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 5 & -1 & -2 & 1 & 4 \\ 4 & -1 & -2 & 3 & 2 \\ -1 & 1 & 3 & -2 & -1 \\ -3 & -1 & -4 & 2 & -1 \\ -5 & 1 & 1 & -6 & -1 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (0,1,-1)^T$, $e_2 = (1,2,-2)^T$, $e_3 = (2,-4,5)^T$, $f_1 = (1,-2,2)^T$, $f_2 = (3,-6,7)^T$, $f_3 = (-3,7,-8)^T$, $x = (9,6,-7)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 0 & -1 & 2 \\ -1 & 1 & -3 \\ -1 & 1 & 3 \end{pmatrix}.$$

1. Дана матрица
$$A = \begin{pmatrix} -3 & -3 & 1 & -1 & -1 \\ 1 & -1 & -3 & 3 & 1 \\ 4 & -1 & -8 & 8 & 3 \\ 3 & 0 & -5 & 5 & 2 \\ 1 & -4 & -7 & 7 & 2 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (0,1,-3)^T$, $e_2 = (1,-2,3)^T$, $e_3 = (1,-1,1)^T$, $f_1 = (1,-2,1)^T$, $f_2 = (2,-4,3)^T$, $f_3 = (-1,3,-2)^T$, $x = (1,2,4)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -1 & -1 & -3 \\ 0 & -3 & -4 \\ -1 & 1 & -4 \end{pmatrix}.$$

Bap. 19 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 1 & -3 & 3 & -1 & 1 \\ 1 & 4 & 6 & -5 & -8 \\ -2 & 8 & -5 & 0 & -4 \\ 2 & 1 & 9 & -6 & -7 \\ 1 & 4 & 6 & -5 & -8 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1, -1, 2)^T, e_2 = (2, -1, 1)^T, e_3 = (-2, 2, -3)^T, f_1 = (0, 1, 1)^T, f_2 = (1, 1, 2)^T, f_3 = (2, -1, 2)^T, x = (-5, -2, -8)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 0 & 4 & -1 \\ 0 & -3 & 1 \\ -2 & -3 & 4 \end{pmatrix}.$$

Bap. 21 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -2 & 5 & 0 & 2 & -2 \\ -8 & 3 & -2 & 8 & -2 \\ -1 & -3 & -2 & 1 & 1 \\ -8 & -9 & 2 & 8 & 2 \\ 4 & 4 & 3 & -4 & -1 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (1, -2, 0)^T, e_2 = (-1, 3, 2)^T, e_3 = (-1, 3, 3)^T, f_1 = (0, 1, 2)^T, f_2 = (1, -2, 4)^T, f_3 = (-1, 2, -3)^T, x = (-5, 10, -1)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если $\begin{pmatrix} -1 & -1 & 4 \end{pmatrix}$

$$L_e = \begin{pmatrix} -1 & -1 & 4 \\ -2 & 2 & 1 \\ 2 & -4 & 0 \end{pmatrix}.$$

Bap. 23 (7500)

1. Дана матрица
$$A = \begin{pmatrix} -5 & 3 & -3 & 2 & 7 \\ -3 & 1 & -2 & 1 & 4 \\ -2 & 2 & -1 & 1 & 3 \\ -5 & 7 & -2 & 3 & 8 \\ -5 & 7 & -2 & 3 & 8 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы $Ax\!=\!0$
- **2.** Даны столбцы $e_1 = (1,0,2)^T, \ e_2 = (3,1,3)^T, \ e_3 = (3,1,4)^T, \ f_1 = (1,-1,-2)^T, \ f_2 = (1,-1,-1)^T, \ f_3 = (0,1,3)^T, \ x = (2,8,-4)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -4 & 3 & -4 \\ 4 & 0 & 0 \\ -1 & -4 & 0 \end{pmatrix}.$$

Bap. 20 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 6 & 1 & -4 & -2 & -1 \\ 3 & 1 & -2 & -3 & -2 \\ 6 & 1 & -9 & -1 & -9 \\ 1 & -2 & 1 & 8 & 9 \\ 4 & -1 & -1 & 5 & 7 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0

2. Даны столбцы
$$e_1 = (1,2,0)^T$$
, $e_2 = (3,6,1)^T$, $e_3 = (-1,-1,-1)^T$, $f_1 = (1,0,1)^T$, $f_2 = (-1,1,-1)^T$, $f_3 = (-2,3,-1)^T$, $x = (1,4,-7)^T$

- а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
- b) Найти координаты x в базисе e.
- с) Найти матрицу оператора L в базисе f, если $\begin{pmatrix} -2 & 3 & 1 \\ 2 & 1 & 0 \end{pmatrix}$

$$L_e = \begin{pmatrix} -2 & 3 & 1\\ 2 & 1 & 0\\ 1 & -1 & -1 \end{pmatrix}.$$

Bap. 22 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 4 & 9 & -1 & 9 & -1 \\ -2 & -3 & 1 & -3 & -1 \\ 3 & 6 & -1 & 6 & 0 \\ 3 & 6 & -1 & 6 & 0 \\ -3 & -3 & 2 & -3 & -3 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (1, -2, -2)^T$, $e_2 = (-2, 4, 5)^T$, $e_3 = (-2, 5, 7)^T$, $f_1 = (1, -1, -2)^T$, $f_2 = (-1, 1, 3)^T$, $f_3 = (0, 1, 1)^T$, $x = (-4, 7, 5)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 2 & 1 & 2 \\ 4 & -1 & 0 \\ -4 & 2 & 3 \end{pmatrix}.$$

Bap. 24 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 2 & -1 & 1 & -2 & 1 \\ -7 & 1 & -3 & 5 & -4 \\ 7 & -1 & 3 & -5 & 4 \\ -5 & 0 & -2 & 3 & -3 \\ -5 & 5 & -3 & 7 & -2 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1, -2, 0)^T$, $e_2 = (-1, 2, 1)^T$, $e_3 = (3, -5, -1)^T$, $f_1 = (0, 1, 1)^T$, $f_2 = (1, 1, 3)^T$, $f_3 = (2, -2, 3)^T$, $x = (7, -4, -1)^T$
 - а) Найти матрицы перехода $C_{e o f}$ и $C_{f o e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -2 & -2 & 4 \\ -2 & 1 & 2 \\ -2 & 1 & -1 \end{pmatrix}.$$

Bap. 25 (7500)

	/ - 3	4	-9	-4	-5
1. Дана матрица $A=% {\displaystyle\int\limits_{0}^{\infty}} \left({{{\bf A}}_{{\bf A}}} \right) {{\bf A}} {$	-2	-1	5	1	− 7
	- 1	2	-5	-2	-1
	1	-1	2	1	2
	$\setminus -1$	-2	7	2	-5/

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1,0,1)^T$, $e_2 = (-1,1,-3)^T$, $e_3 = (3,-1,6)^T$, $f_1 = (1,2,-1)^T$, $f_2 = (-2,-3,1)^T$, $f_3 = (-1,-4,4)^T$, $x = (-7, -10, 10)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если $L_e = \begin{pmatrix} 4 & 4 & -1 \\ 3 & 0 & 0 \\ -2 & -4 & 0 \end{pmatrix}.$

Bap. 27 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 1 & 4 & 0 & 1 & 5 \\ -1 & 3 & 3 & -1 & 9 \\ 1 & 1 & -1 & 3 & -1 \\ -2 & -1 & 3 & -4 & 3 \\ -1 & 3 & 4 & 0 & 6 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (1,1,3)^T$, $e_2 = (-1,-1,-2)^T$, $e_3 = (-2,-1,-5)^T$, $f_1 = (1,-1,-2)^T$, $f_2 = (-1,1,3)^T$, $f_3 = (1,0,4)^T$, $x = (6,3,7)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 1 & -2 & -1 \\ 0 & 1 & 3 \\ -3 & 2 & 2 \end{pmatrix}.$$

Bap. 29 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 9 & 2 & 8 & -5 & 4 \\ -7 & -1 & 0 & 3 & 2 \\ 1 & 1 & 4 & -1 & 6 \\ 6 & 1 & 0 & -4 & -3 \\ 3 & 1 & 3 & -2 & 3 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- ез толоцы $e_1 = (1,3,2)^T$, $e_2 = (-1,-2,-1)^T$, $e_3 = (-3,-8,-4)^T$, $f_1 = (0,1,1)^T$, $f_2 = (1,-1,2)^T$, $f_3 = (1,-2,2)^T$, $x = (-5,2,-2)^T$ **2.** Даны столбцы
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если $L_e = \begin{pmatrix} -3 & 3 & 0 \\ 1 & -2 & -3 \\ -3 & 1 & 2 \end{pmatrix}.$

Bap. 26 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 5 & -2 & -2 & -1 & 5 \\ -3 & 1 & 2 & 1 & -2 \\ -5 & 2 & 9 & 4 & -3 \\ 4 & 1 & 2 & 0 & -5 \\ 9 & 1 & -1 & -2 & -8 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax=0
- **2.** Даны столбцы $e_1 = (1,1,-1)^T$, $e_2 = (0,1,-1)^T$, $e_3 = (-1,-4,5)^T$, $f_1 = (1,2,-3)^T$, $f_2 = (0,1,-3)^T$, $f_3 = (1,3,-5)^T$, $x = (-3,4,-2)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 2 & 3 & -4 \\ -3 & -1 & 2 \\ -1 & -1 & 1 \end{pmatrix}.$$

Bap. 28 (7500)

1. Дана матрица
$$A = \begin{pmatrix} 1 & -6 & -2 & 4 & 6 \\ 2 & -5 & 3 & -6 & 5 \\ -1 & 5 & 1 & -2 & -5 \\ 1 & -3 & 1 & -2 & 3 \\ -2 & 8 & 0 & 0 & -8 \end{pmatrix}$$

- b) Найти базис пространства решений системы Ax = 0
- **2.** Даны столбцы $e_1 = (1, -1, 0)^T, e_2 = (-2, 3, 1)^T, e_3 = (-1, 1, 1)^T, f_1 = (1, -3, 2)^T, f_2 = (0, 1, -2)^T, f_3 = (2, -5, 3)^T, x = (-1, -4, 2)^T$
 - а) Найти матрицы перехода $C_{e \to f}$ и $C_{f \to e}$.
 - b) Найти координаты x в базисе e.
 - с) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} -2 & 4 & 2 \\ -4 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix}.$$

1. Дана матрица
$$A = \begin{pmatrix} -5 & 3 & -3 & -6 & -5 \\ -4 & 5 & -3 & -7 & -4 \\ -9 & -5 & -3 & -2 & -9 \\ 2 & -1 & 1 & 2 & 1 \\ 7 & -1 & 3 & 5 & 4 \end{pmatrix}$$

- а) Найти базис линейной оболочки строк матрицы A.
- b) Найти базис пространства решений системы Ax = 0
- 2. Даны столбцы $e_1=(1,2,-2)^T,\ e_2=(1,2,-1)^T,\ e_3=(1,3,-4)^T,$ $f_1=(1,1,-1)^T,\ f_2=(2,2,-1)^T,\ f_3=(1,2,0)^T,\ x=(-1,-2,-7)^T$ а) Найти матрицы перехода $C_{e\to f}$ и $C_{f\to e}$.

 - b) Найти координаты x в базисе e.
 - c) Найти матрицу оператора L в базисе f, если

$$L_e = \begin{pmatrix} 2 & -1 & -2 \\ 1 & -3 & -2 \\ -4 & 1 & -4 \end{pmatrix}.$$