PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		11) International Publication Number: WO 95/00554
C07K 15/00	A2	43) International Publication Date: 5 January 1995 (05.01.95
(21) International Application Number: PCT/US (22) International Filing Date: 17 June 1994 (European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR
(30) Priority Data: 08/080,244 08/081,508 08/157,490 18 June 1993 (18.06.93) 21 June 1993 (21.06.93) 23 November 1993 (23.11.5)	1 1 93) 1	upon receipt of that report.
(71) Applicant: THE TRUSTEES OF PRINCETON UNIT [US/US]; 5 New South Building, P.O. Box 36, NJ 08544 (US).	VERSI Princet	
(72) Inventor: LEMISCHKA, Ihor, R.; 5T Hibben A Faculty Road, Princeton, NJ 08540 (US).	partmei	,
(74) Agents: FEIT, Irving, N. et al.; ImClone Systems Inc 180 Varick Street, New York, NY 10014 (US).	orporat	
•		
(50) TS410. TOTTPOTENT HEMATOPOIETIC STEM (<u></u>	CHESTODS AND THEIR LICANIDS

(54) Title: TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

(57) Abstract

Isolated mammalian nucleic acid molecules encoding receptor protein tyrosine kinases expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells are provided. Also included are the receptors encoded by such nucleic acid molecules; the nucleic acid molecules encoding receptor protein tyrosine kinases having the sequences shown in Figure 1a (murine Flk2), Figure 1b (human Flk2) and Figure 2 (murine Flk1); the receptor protein tyrosine kinases having the amino acid sequences shown in Figure 1a, Figure 1b and Figure 2; ligands for the receptors; nucleic acids sequences that encode the ligands; and methods of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
	•	HU	Hungary	NO	Norway
BF	Burkina Paso	TE	Ireland	NZ	New Zealand
BG	Bulgaria	n	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE.	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic	K.F	of Korea	SE	Sweden
CG	Congo			SI	Slovenia
CH	Switzerland	KR	Republic of Korea	SK	Slovakia
CI	Côte d'Ivoire	KZ	Kazakhstan	SN	Scnegal
CM	Cameroon	u	Liechtenstein		-
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA.	Gebon		-		

5

10

15

20

25

30

35

TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

This application is a continuation-in-part of serial number 08/125,669, filed September 23, 1993, which is a continuation-inpart of serial number 08/096,759, filed July 22, 1993, which is a continuation-in-part of serial number 08/081,508, filed June 21, 1993, which is a continuation-in-part of serial number 08/080,244, filed June 18, 1993, which is a continuation-in-part of serial number 08/076,022, filed June 9, 1993, which is a continuation-in-part of serial number 08/045,272, filed April 1, 1993, which is a continuation-in-part of serial number 08/005,941, filed January 15, 1993, which is a continuation-inpart of serial number 07/977,451, filed November 19, 1992, which is a continuation-in-part of serial number 07/975,049 filed November 12, 1992, which is a continuation-in-part of serial number 07/906,397 filed June 26, 1992 which is a continuation-inpart of serial number 07/813,593 filed December 24, 1991, which is a continuation-in-part of serial number 07/793,065 filed November 15, 1991, which is a continuation-in-part of serial number 07/728,913 filed June 28, 1991, which is a continuationin-part of serial number 07/679,666 filed April 2, 1991, all of which are incorporated herein by reference.

The invention described in this application was made with U.S. government support from Grant Numbers R01-CA45339 and R01-DK42989 awarded by the National Institutes of Health. The government has certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to hematopoietic stem cell receptors, ligands for such receptors, and nucleic acid molecules encoding such receptors and ligands.

BACKGROUND OF THE INVENTION

The mammalian hematopoietic system comprises red and white blood cells. These cells are the mature cells that result from more primitive lineage-restricted cells. The cells of the hematopoietic system have been reviewed by Dexter and Spooncer in the Annual Review of Cell Biology 3, 423-441 (1987).

5

10

15

20

25

30

35

The red blood cells, or erythrocytes, result from primitive cells referred to by Dexter and Spooncer as erythroid burst-forming units (BFU-E). The immediate progeny of the erythroid burst-forming units are called erythroid colony-forming units (CFU-E).

The white blood cells contain the mature cells of the lymphoid and myeloid systems. The lymphoid cells include B lymphocytes and T lymphocytes. The B and T lymphocytes result from earlier progenitor cells referred to by Dexter and Spooncer as preT and preB cells.

The myeloid system comprises a number of cells including granulocytes, platelets, monocytes, macrophages, and megakaryocytes. The granulocytes are further divided into neutrophils, eosinophils, basophils and mast cells.

Each of the mature hematopoietic cells are specialized for specific functions. For example, erythrocytes are responsible for oxygen and carbon dioxide transport. T and B lymphocytes are responsible for cell-and antibody-mediated immune responses, respectively. Platelets are involved in blood clotting. Granulocytes and macrophages act generally as scavengers and accessory cells in the immune response against invading organisms and their by-products.

At the center of the hematopoietic system lie one or more

totipotent hematopoietic stem cells, which undergo a series of differentiation steps leading to increasingly lineage-restricted progenitor cells. The more mature progenitor cells are restricted to producing one or two lineages. Some examples of lineage-restricted progenitor cells mentioned by Dexter and spooncer include granulocyte/macrophage colony-forming cells (GM-CFC), megakaryocyte colony-forming cells (Meg-CFC), eosinophil colony-forming cells (Eos-CFC), and basophil colony-forming cells (Bas-CFC). Other examples of progenitor cells are discussed above.

The hematopoietic system functions by means of a precisely controlled production of the various mature lineages. The totipotent stem cell possesses the ability both to self renew and to differentiate into committed progenitors for all hematopoietic lineages. These most primitive of hematopoietic cells are both necessary and sufficient for the complete and permanent hematopoietic reconstitution of a radiation-ablated hematopoietic system in mammals. The ability of stem cells to reconstitute the entire hematopoietic system is the basis of bone marrow transplant therapy.

It is known that growth factors play an important role in the development and operation of the mammalian hematopoietic system. The role of growth factors is complex, however, and not well understood at the present time. One reason for the uncertainty is that much of what is known about hematopoietic growth factors results from in vitro experiments. Such experiments do not necessarily reflect in vivo realities.

In addition, <u>in vitro</u> hematopoiesis can be established in the absence of added growth factors, provided that marrow stromal cells are added to the medium. The relationship between stromal cells and hematopoietic growth factors <u>in vivo</u> is not understood. Nevertheless, hematopoietic growth factors have been shown to be

highly active in vivo.

From what is known about them, hematopoietic growth factors appear to exhibit a spectrum of activities. At one end of the spectrum are growth factors such as erythropoietin, which is believed to promote proliferation only of mature erythroid progenitor cells. In the middle of the spectrum are growth factors such as IL-3, which is believed to facilitate the growth and development of early stem cells as well as of numerous progenitor cells. Some examples of progenitor cells induced by IL-3 include those restricted to the granulocyte/macrophage, eosinophil, megakaryocyte, erythroid and mast cell lineages.

At the other end of the spectrum is the hematopoietic growth factor that, along with the corresponding receptor, was discussed in a series of articles in the October 5, 1990 edition of Cell. The receptor is the product of the W locus, c-kit, which is a member of the class of receptor protein tyrosine kinases. The ligand for c-kit, which is referred to by various names such as stem cell factor (SCF) and mast cell growth factor (MGF), is believed to be essential for the development of early hematopoietic stem cells and cells restricted to the erythroid and mast cell lineages in mice; see, for example, Copeland et al., Cell 63, 175-183 (1990).

25

30

35

20

5

10

15

It appears, therefore, that there are growth factors that exclusively affect mature cells. There also appear to be growth factors that affect both mature cells and stem cells. The growth factors that affect both types of cells may affect a small number or a large number of mature cells.

There further appears to be an inverse relationship between the ability of a growth factor to affect mature cells and the ability of the growth factor to affect stem cells. For example, the c-kit ligand, which stimulates a small number of mature

cells, is believed to be more important in the renewal and development of stem cells then is IL-3, which is reported to stimulate proliferation of many mature cells (see above).

Prior to the present specification, there have been no reports of growth factors that exclusively stimulate stem cells in the absence of an effect on mature cells. The discovery of such growth factors would be of particular significance.

As mentioned above, c-kit is a protein tyrosine kinase (pTK). It is becoming increasingly apparent that the protein tyrosine kinases play an important role as cellular receptors for hematopoietic growth factors. Other receptor pTKs include the receptors of colony stimulating factor 1 (CSF-1) and PDGF.

The pTK family can be recognized by the presence of several conserved amino acid regions in the catalytic domain. These conserved regions are summarized by Hanks et al. in Science 241, 42-52 (1988), see Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989), see Figure 2 on page 1605.

Additional protein tyrosine kinases that represent hematopoietic growth factor receptors are needed in order more effectively to stimulate the self-renewal of the totipotent hematopoietic stem cell and to stimulate the development of all cells of the hematopoietic system both in vitro and in vivo. Novel hematopoietic growth factor receptors that are present only on primitive stem cells, but are not present on mature progenitor cells, are particularly desired. Ligands for the novel receptors are also desirable to act as hematopoietic growth factors. Nucleic acid sequences encoding the receptors and ligands are needed to produce recombinant receptors and ligands.

30

5

10

15

20

25

SUMMARY OF THE INVENTION

These and other objectives as will be apparent to those with ordinary skill in the art have been met by providing isolated mammalian nucleic acid molecules encoding receptor protein tyrosine kinases expressed in primitive hematopoietic cells and not expressed in mature hematopoietic cells. Also included are the receptors encoded by such nucleic acid molecules; the nucleic acid molecules encoding receptor protein tyrosine kinases having the sequences shown in Figure 1a.1-1a.6 (hereinafter Figure la)(murine Flk2), Figure 1b.1-1b.6 (hereinafter Figure 1b)(human Flk2) and Figure 2.1-2.9 (hereinafter Figure 2)(murine Flk1)(See SEQ. ID. NOS. 1, 3 and 5, respectively); the receptor protein tyrosine kinases having the amino acid sequences shown in Figure la, Figure 1b and Figure 2 (See SEQ. ID. NOS. 2, 4 and 6, respectively); ligands for the receptors; nucleic acid sequences that encode the ligands; and methods of stimulating the proliferation of primitive mammalian hematopoietic stem cells comprising contacting the stem cells with a ligand that binds to . a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

DESCRIPTION OF THE FIGURES

25

30

35

20

5

10

15

Figure 1a.1 through 1a.6 shows the cDNA and amino acid sequences of murine Flk2. All subsequent references to Figure 1a are intended to refer to Figure 1a.1 through 1a.6. The amino acid residues occur directly below the nucleotides in the open reading frame. Amino acids -27 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 517 constitute the extracellular receptor domain. Amino acids 518 to 537 constitute the transmembrane region. Amino acids 538 to 966 constitute the intracellular catalytic domain. Counting amino acid residue -27 as residue number 1, the following amino acid residues in the

intracellular domain are catalytic sub-domains identified by Hanks (see above): 618-623, 811-819, 832-834, 857-862, 872-878. The sequence at residues 709-785 is a signature sequence characteristic of Flk2. The protein tyrosine kinases generally have a signature sequence in this region. (See SEQ. ID. NOS. 1-2)

Figure 1b.1 through 1b.6 shows the complete cDNA and amino acid sequences of human Flk2 receptor. All subsequent references to Figure 1b are intended to refer to Figure 1b.1 through 1b.6. Amino acids -27 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 516 constitute the extracellular receptor domain. Amino acids 517 to 536 constitute the transmembrane region. Amino acids 537 to 966 constitute the intracellular catalytic domain. (See SEQ. ID. NOS. 3-4)

15

20

10

5

Figure 2.1 through 2.9 shows the cDNA and amino acid sequences of murine Flk1. All subsequent references to Figure 2 are intended to refer to Figure 2.1 through 2.9. Amino acids -19 to -1 constitute the hydrophobic leader sequence. Amino acids 1 to 743 constitute the extracellular receptor domain. Amino acids 744 to 765 constitute the transmembrane region. Amino acids 766 to 1348 constitute the intracellular catalytic domain. (See SEQ. ID. NOS. 5-6)

Figure 3 shows the time response of binding between a murine stromal cell line (2018) and APtag-Flk2 as well as APtag-Flk1.

APtag without receptor (SEAP) is used as a control. See Example 8.

Figure 4 shows the dose response of binding between stromal cells (2018) and APtag-Flk2 as well as APtag-Flk1. APtag without receptor (SEAP) is used as a control. See Example 8.

DETAILED DESCRIPTION OF THE INVENTION

Receptors

25

In one embodiment, the invention relates to an isolated mammalian nucleic acid molecule encoding a receptor protein tyrosine kinase expressed in primitive mammalian hematopoietic cells and not expressed in mature hematopoietic cells.

The nucleic acid molecule may be a DNA, cDNA, or RNA molecule. The mammal in which the nucleic acid molecule exists may be any mammal, such as a mouse, rat, rabbit, or human.

The nucleic acid molecule encodes a protein tyrosine kinase (pTK). Members of the pTK family can be recognized by the conserved amino acid regions in the catalytic domains. Examples of pTK consensus sequences have been provided by Hanks et al. in Science 241, 42-52 (1988); see especially Figure 1 starting on page 46 and by Wilks in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989); see especially Figure 2 on page 1605. A methionine residue at position 205 in the conserved sequence WMAPES is characteristic of pTK's that are receptors.

The Hanks et al article identifies eleven catalytic subdomains containing pTK consensus residues and sequences. The pTKs of the present invention will have most or all of these consensus residues and sequences.

Some particularly strongly conserved residues and sequences are shown in Table 1.

TABLE 1

Conserved Residues and Sequences in pTKs1

Residue or Catalytic Sequence Domain

	50	G	I
	52	G	I
	57	V	I
	70	A	II
5	72	K	II
	91	E	III
	166	D	VI
_	171	N	VI
,	184-186	DFG	VII
10	208	· E	VIII
	220	D	IX
9	225	G	IX
	280	R	XI

1. See Hanks et al., Science 241, 42-52 (1988) 2. Adjusted in accordance with Hanks et al., Id.

A pTK of the invention may contain all thirteen of these
highly conserved residues and sequences. As a result of natural
or synthetic mutations, the pTKs of the invention may contain
fewer than all thirteen strongly conserved residues and
sequences, such as 11, 9, or 7 such sequences.

25 The receptors of the invention generally belong to the same class of pTK sequences that c-kit belongs to. It has surprisingly been discovered, however, that a new functional class of receptor pTKs exists. The new functional class of receptor pTKs is expressed in primitive hematopoietic cells, but not expressed in mature hematopoietic cells.

For the purpose of this specification, a primitive hematopoietic cell is totipotent, i.e. capable of reconstituting all hematopoietic blood cells in vivo. A mature hematopoietic cell is non-self-renewing, and has limited proliferative capacity - i.e., a limited ability to give rise to multiple lineages. Mature hematopoietic cells, for the purposes of this specification, are generally capable of giving rise to only one or two lineages in vitro or in vivo.

35

5

10

25

30

35

It should be understood that the hematopoietic system is complex, and contains many intermediate cells between the primitive totipotent hematopoietic stem cell and the totally committed mature hematopoietic cells defined above. As the stem cell develops into increasingly mature, lineage-restricted cells, it gradually loses its capacity for self-renewal.

The receptors of the present invention may and may not be expressed in these intermediate cells. The necessary and sufficient condition that defines members of the new class of receptors is that they are present in the primitive, totipotent stem cell or cells, and not in mature cells restricted only to one or, at most, two lineages.

An example of a member of the new class of receptor pTKs is called fetal liver kinase 2 (Flk2) after the organ in which it was found. There is approximately 1 totipotent stem cell per 10' cells in mid-gestation (day 14) fetal liver in mice. In addition to fetal liver, Flk2 is also expressed in fetal spleen, fetal thymus, adult brain, and adult marrow.

For example, Flk2 is expressed in individual multipotential CFU-Blast colonies capable of generating numerous multilineage colonies upon replating. It is likely, therefore, that Flk2 is expressed in the entire primitive (i.e. self-renewing) portion of the hematopoietic hierarchy. This discovery is consistent with Flk2 being important in transducing putative self-renewal signals from the environment.

It is particularly relevant that the expression of Flk2 mRNA occurs in the most primitive thymocyte subset. Even in two closely linked immature subsets that differ in expression of the IL-2 receptor, Flk2 expression segregates to the more primitive subset lacking an IL-2 receptor. The earliest thymocyte subset is believed to be uncommitted. Therefore, the thymocytes

expressing Flk2 may be multipotential. Flk2 is the first receptor tyrosine kinase known to be expressed in the T-lymphoid lineage.

The fetal liver mRNA migrates relative to 28S and 18S ribosomal bands on formaldehyde agarose gels at approximately 3.5 kb, while the brain message is considerably larger. In adult tissues, Flk2 m-RNA from both brain and bone marrow migrated at approximately 3.5 kb.

10

15

20

5

A second pTK receptor is also included in the present invention. This second receptor, which is called fetal liver kinase 1 (Flk1), is not a member of the same class of receptors as Flk2, since Flk1 may be found in some more mature hematopoietic cells. The amino acid sequence of murine Flk1 is given in Figure 2. (See SEQ. ID. NOS. 5-6)

The present invention includes the Flk1 receptor as well as DNA, cDNA and RNA encoding Flk1. The DNA sequence of murine Flk1 is also given in Figure 2. (See SEQ. ID. NO. 5) Flk1 may be found in the same organs as Flk2, as well as in fetal brain, stomach, kidney, lung, heart and intestine; and in adult kidney, heart, spleen, lung, muscle, and lymph nodes.

25

30

The receptor protein tyrosine kinases of the invention are known to be divided into easily found domains. The DNA sequence corresponding to the pTKs encode, starting at their 5'-ends, a hydrophobic leader sequence followed by a hydrophilic extracellular domain, which binds to, and is activated by, a specific ligand. Immediately downstream from the extracellular receptor domain, is a hydrophobic transmembrane region. The transmembrane region is immediately followed by a basic catalytic domain, which may easily be identified by reference to the Hanks et al. and Wilks articles discussed above.

35

The following table shows the nucleic acid and amino acid numbers that correspond to the signal peptide, the extracellular domain, the transmembrane region and the intracellular domain for murine Flk1 (mFlk1), murine Flk2 (mFlk2) and human Flk2 (hFlk2).

5

10

15

mFlk1

Signal Peptide	Extracellular	<u>Transmembrane</u>	<u>Intracellular</u>
aa # -19 to -1	1 to 743	744 to 765	766 to 1348
aa code M A	A E	v v	R A
na # 208-264	265-2493	2494-2559	2560-4308

mFlk2

Signal Peptide	<u>Extracellular</u>	Transmembrane	Intracellular
aa # - 27 to - 1	1 to 517	518 to 537	538 to 966
aa code M T	n s	F C	H S
na # 31-111	112-1662	1663-1722	1723-3006

hFlk2

	Signal Peptide	Extracellular	<u>Transmembrane</u>	<u>Intracellular</u>
20	aa # -27 to -1	1 to 516	517 to 536	537 to 966
	aa code M N	Q F	Y C	H S
	na # 58-138	139-1689	1690-1746	1747-3036

The present invention includes the extracellular receptor domain lacking the transmembrane region and catalytic domain. Preferably, the hydrophobic leader sequence is also removed from the extracellular domain. In the case of human and murine Flk2, the hydrophobic leader sequence includes amino acids -27 to -1. (See SEQ. ID. NOS. 2 and 4)

30

35

25

These regions and domains may easily be visually identified by those having ordinary skill in the art by reviewing the amino acid sequence in a suspected pTK and comparing it to known pTKs. For example, referring to Figure 1a, the transmembrane region of F1k2, which separates the extracellular receptor domain from the

catalytic domain, is encoded by nucleotides 1663 (T) to 1722 (C). These nucleotides correspond to amino acid residues 545 (Phe) to 564 (Cys). (See SEQ. ID. NOS. 1-2) The amino acid sequence between the transmembrane region and the catalytic sub-domain (amino acids 618-623) identified by Hanks et al. as sub-domain I (i.e., GXGXXG) is characteristic of receptor protein tyrosine kinases.

The extracellular domain may also be identified through commonly recognized criteria of extracellular amino acid sequences. The determination of appropriate criteria is known to those skilled in the art, and has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA 78, 3824-3828 (1981); Kyte et al, J. Mol. Biol. 157, 105-132 (1982); Emini, J. Virol. 55, 836-839 (1985); Jameson et al, CA BIOS 4, 181-186 (1988); and Karplus et al, Naturwissenschaften 72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed characteristic of extracellular domains.

As will be discussed in more detail below, the nucleic acid molecules that encode the receptors of the invention may be inserted into known vectors for use in standard recombinant DNA techniques. Standard recombinant DNA techniques are those such as are described in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987) and by Ausubel et al., Eds, "Current Protocols in Molecular Biology," Green Publishing Associates and Wiley-Interscience, New York (1987). The vectors may be circular (i.e. plasmids) or non-circular. Standard vectors are available for cloning and expression in a host. The host may be prokaryotic or eucaryotic. Prokaryotic hosts are preferably <u>E. coli</u>. Preferred eucaryotic hosts include yeast, insect and mammalian cells. Preferred mammalian cells include, for example, CHO, COS and human cells.

Ligands

5

10

15

20

The invention also includes ligands that bind to the receptor pTKs of the invention. In addition to binding, the ligands stimulate the proliferation of additional primitive stem cells, differentiation into more mature progenitor cells, or both.

The ligand may be a growth factor that occurs naturally in a mammal, preferably the same mammal that produces the corresponding receptor. The growth factor may be isolated and purified, or be present on the surface of an isolated population of cells, such as stromal cells. A partial amino acid sequence of a Flk2 ligand is AQSLSFXFTKFDLD, wherein X is any amino acid. (See SEQ. ID. NO. 11)

The ligand may also be a molecule that does not occur naturally in a mammal. For example, antibodies, preferably monoclonal, raised against the receptors of the invention or against anti-ligand antibodies mimic the shape of, and act as, ligands if they constitute the negative image of the receptor or anti-ligand antibody binding site. The ligand may also be a non-protein molecule that acts as a ligand when it binds to, or otherwise comes into contact with, the receptor.

25

30

35

In another embodiment, nucleic acid molecules encoding the ligands of the invention are provided. The nucleic acid molecule may be RNA, DNA or cDNA.

Stimulating Proliferation of Stem Cells

The invention also includes a method of stimulating the proliferation and/or differentiation of primitive mammalian hematopoietic stem cells as defined above. The method comprises contacting the stem cells with a ligand in accordance with the

present invention. The stimulation of proliferation and/or differentiation may occur <u>in vitro</u> or <u>in vivo</u>.

The ability of a ligand according to the invention to stimulate proliferation of stem cells in vitro and in vivo has important therapeutic applications. Such applications include treating mammals, including humans, whose primitive stem cells do not sufficiently undergo self-renewal. Example of such medical problems include those that occur when defects in hematopoietic stem cells or their related growth factors depress the number of white blood cells. Examples of such medical problems include anemia, such as macrocytic and aplastic anemia. Bone marrow damage resulting from cancer chemotherapy and radiation is another example of a medical problem that would be helped by the stem cell factors of the invention.

Functional Equivalents

5

10

15

receptors, receptor domains, and ligands described above as well as of the nucleic acid sequences encoding them. A protein is considered a functional equivalent of another protein for a specific function if the equivalent protein is immunologically cross-reactive with, and has the same function as, the receptors and ligands of the invention. The equivalent may, for example, be a fragment of the protein, or a substitution, addition or deletion mutant of the protein.

For example, it is possible to substitute amino acids in a sequence with equivalent amino acids. Groups of amino acids known normally to be equivalent are:

⁽a)Ala(A) Ser(S) Thr(T) Pro(P) Gly(G);

⁽b)Asn(N) Asp(D) Glu(E) Gln(Q);

^{*35 (}c)His(H) Arg(R) Lys(K);

(d)Met(M) Leu(L) Ile(I) Val(V); and
(e)Phe(F) Tyr(Y) Trp(W).

5

10

15

20

25

35

Substitutions, additions and/or deletions in the receptors and ligands may be made as long as the resulting equivalent receptors and ligands are immunologically cross reactive with, and have the same function as, the native receptors and ligands.

The equivalent receptors and ligands will normally have substantially the same amino acid sequence as the native receptors and ligands. An amino acid sequence that is substantially the same as another sequence, but that differs from the other sequence by means of one or more substitutions, additions and/or deletions is considered to be an equivalent sequence. Preferably, less than 25%, more preferably less than 10%, and most preferably less than 5% of the number of amino acid residues in the amino acid sequence of the native receptors and ligands are substituted for, added to, or deleted from.

Equivalent nucleic acid molecules include nucleic acid sequences that encode equivalent receptors and ligands as defined above. Equivalent nucleic acid molecules also include nucleic acid sequences that differ from native nucleic acid sequences in ways that do not affect the corresponding amino acid sequences.

ISOLATION OF NUCLEIC ACID MOLECULES AND PROTEINS

Isolation of Nucleic Acid Molecules Encoding Receptors

In order to produce nucleic acid molecules encoding mammalian stem cell receptors, a source of stem cells is provided. Suitable sources include fetal liver, spleen, or thymus cells or adult marrow or brain cells.

For example, suitable mouse fetal liver cells may be

obtained at day 14 of gestation. Mouse fetal thymus cells may be obtained at day 14-18, preferably day 15, of gestation. Suitable fetal cells of other mammals are obtained at gestation times corresponding to those of mouse.

Total RNA is prepared by standard procedures from stem cell receptor-containing tissue. The total RNA is used to direct cDNA synthesis. Standard methods for isolating RNA and synthesizing cDNA are provided in standard manuals of molecular biology such as, for example, in Sambrook et al., "Molecular Cloning," Second Edition, Cold Spring Harbor Laboratory Press (1987) and in Ausubel et al., (Eds), "Current Protocols in Molecular Biology," Greene Associates/Wiley Interscience, New York (1990).

The cDNA of the receptors is amplified by known methods. For example, the cDNA may be used as a template for amplification by polymerase chain reaction (PCR); see Saiki et al., Science, 239, 487 (1988) or Mullis et al., U.S. patent 4,683,195. The sequences of the oligonucleotide primers for the PCR amplification are derived from the sequences of known receptors, such as from the sequences given in Figures 1a and 1b for Flk2 and in Figure 2 for Flk1, preferably from Flk2. (See SEQ. ID. NOS. 1, 3 and 5, respectively) The oligonucleotides are synthesized by methods known in the art. Suitable methods include those described by Caruthers in Science 230, 281-285 (1985).

In order to isolate the entire protein-coding regions for the receptors of the invention, the upstream oligonucleotide is complementary to the sequence at the 5' end, preferably encompassing the ATG start codon and at least 5-10 nucleotides upstream of the start codon. The downstream oligonucleotide is complementary to the sequence at the 3' end, optionally encompassing the stop codon. A mixture of upstream and downstream oligonucleotides are used in the PCR amplification.

The conditions are optimized for each particular primer pair according to standard procedures. The PCR product is analyzed by electrophoresis for the correct size cDNA corresponding to the sequence between the primers.

5

Alternatively, the coding region may be amplified in two or more overlapping fragments. The overlapping fragments are designed to include a restriction site permitting the assembly of the intact cDNA from the fragments.

10

15

20

30

35

The amplified DNA encoding the receptors of the invention may be replicated in a wide variety of cloning vectors in a wide variety of host cells. The host cell may be prokaryotic or eukaryotic. The DNA may be obtained from natural sources and, optionally, modified, or may be synthesized in whole or in part.

The vector into which the DNA is spliced may comprise segments of chromosomal, non-chromosomal and synthetic DNA sequences. Some suitable prokaryotic cloning vectors include plasmids from <u>E. coli</u>, such as <u>colE1</u>, <u>pCR1</u>, <u>pBR322</u>, <u>pMB9</u>, pUC, pKSM, and <u>RP4</u>. Prokaryotic vectors also include derivatives of phage DNA such as <u>M13</u> and other filamentous single-stranded DNA phages.

25 <u>Isolation of Receptors</u>

DNA encoding the receptors of the invention are inserted into a suitable vector and expressed in a suitable prokaryotic or eucaryotic host. Vectors for expressing proteins in bacteria, especially <u>E.coli</u>, are known. Such vectors include the PATH vectors described by Dieckmann and Tzagoloff in J. Biol. Chem. <u>260</u>, 1513-1520 (1985). These vectors contain DNA sequences that encode anthranilate synthetase (TrpE) followed by a polylinker at the carboxy terminus. Other expression vector systems are based on beta-galactosidase (pEX); lambda P_L; maltose binding protein

(pMAL); and glutathione S-transferase (pGST) - see Gene $\underline{67}$, 31 (1988) and Peptide Research $\underline{3}$, 167 (1990).

Vectors useful in yeast are available. A suitable example is the 2μ plasmid.

Suitable vectors for use in mammalian cells are also known. Such vectors include well-known derivatives of SV-40, adenovirus, retrovirus-derived DNA sequences and shuttle vectors derived from combination of functional mammalian vectors, such as those described above, and functional plasmids and phage DNA.

Further eukaryotic expression vectors are known in the art (e.g., P.J. Southern and P. Berg, J. Mol. Appl. Genet. 1, 327-341 (1982); S. Subramani et al, Mol. Cell. Biol. 1, 854-864 (1981); R.J. Kaufmann and P.A. Sharp, "Amplification And Expression Of Sequences Cotransfected with A Modular Dihydrofolate Reductase Complementary DNA Gene," J. Mol. Biol. 159, 601-621 (1982); R.J. Kaufmann and P.A. Sharp, Mol. Cell. Biol. 159, 601-664 (1982); S.I. Scahill et al, "Expression And Characterization Of The Product Of A Human Immune Interferon DNA Gene In Chinese Hamster Ovary Cells," Proc. Natl. Acad. Sci. USA 80, 4654-4659 (1983); G. Urlaub and L.A. Chasin, Proc. Natl. Acad. Sci. USA 77, 4216-4220, (1980).

25

30

35

5

10

15

20

The expression vectors useful in the present invention contain at least one expression control sequence that is operatively linked to the DNA sequence or fragment to be expressed. The control sequence is inserted in the vector in order to control and to regulate the expression of the cloned DNA sequence. Examples of useful expression control sequences are the <u>lac</u> system, the <u>trp</u> system, the <u>tac</u> system, the <u>trc</u> system, major operator and promoter regions of phage lambda, the control region of fd coat protein, the glycolytic promoters of yeast, e.g., the promoter for 3-phosphoglycerate kinase, the promoters

of yeast acid phosphatase, e.g., Pho5, the promoters of the yeast alpha-mating factors, and promoters derived from polyoma, adenovirus, retrovirus, and simian virus, e.g., the early and late promoters or SV40, and other sequences known to control the expression of genes of prokaryotic or eukaryotic cells and their viruses or combinations thereof.

Vectors containing the receptor-encoding DNA and control signals are inserted into a host cell for expression of the receptor. Some useful expression host cells include well-known prokaryotic and eukaryotic cells. Some suitable prokaryotic hosts include, for example, E.coli, such as E.coli SG-936, <a href="E.co

The human homologs of the mouse receptors described above are isolated by a similar strategy. RNA encoding the receptors are obtained from a source of human cells enriched for primitive stem cells. Suitable human cells include fetal spleen, thymus and liver cells, and umbilical cord blood as well as adult brain and bone marrow cells. The human fetal cells are preferably obtained on the day of gestation corresponding to mid-gestation in mice. The amino acid sequences of the human flk receptors as well as of the nucleic acid sequences encoding them are homologous to the amino acid and nucleotide sequences of the mouse receptors.

In the present specification, the sequence of a first protein, such as a receptor or a ligand, or of a nucleic acid molecule that encodes the protein, is considered homologous to a second protein or nucleic acid molecule if the amino acid or nucleotide sequence of the first protein or nucleic acid molecule

is at least about 30% homologous, preferably at least about 50% homologous, and more preferably at least about 65% homologous to the respective sequences of the second protein or nucleic acid molecule. In the case of proteins having high homology, the amino acid or nucleotide sequence of the first protein or nucleic acid molecule is at least about 75% homologous, preferably at least about 85% homologous, and more preferably at least about 95% homologous to the amino acid or nucleotide sequence of the second protein or nucleic acid molecule.

10

15

20

25

30

35

5

Combinations of mouse oligonucleotide pairs are used as PCR primers to amplify the human homologs from the cells to account for sequence divergence. The remainder of the procedure for obtaining the human flk homologs are similar to those described above for obtaining mouse flk receptors. The less than perfect homology between the human flk homologs and the mouse oligonucleotides is taken into account in determining the stringency of the hybridization conditions.

Assay for expression of Receptors on Stem Cells

In order to demonstrate the expression of flk receptors on the surface of primitive hematopoietic stem cells, antibodies that recognize the receptor are raised. The receptor may be the entire protein as it exists in nature, or an antigenic fragment of the whole protein. Preferably, the fragment comprises the predicted extra-cellular portion of the molecule.

Antigenic fragments may be identified by methods known in the art. Fragments containing antigenic sequences may be selected on the basis of generally accepted criteria of potential antigenicity and/or exposure. Such criteria include the hydrophilicity and relative antigenic index, as determined by surface exposure analysis of proteins. The determination of appropriate criteria is known to those skilled in the art, and

has been described, for example, by Hopp et al, Proc. Nat'l Acad. Sci. USA 78, 3824-3828 (1981); Kyte et al, J. Mol. Biol. 157, 105-132 (1982); Emini, J. Virol. 55, 836-839 (1985); Jameson et al, CA BIOS 4, 181-186 (1988); and Karplus et al, Naturwissenschaften 72, 212-213 (1985). Amino acid domains predicted by these criteria to be surface exposed are selected preferentially over domains predicted to be more hydrophobic or

The proteins and fragments of the receptors to be used as antigens may be prepared by methods known in the art. Such methods include isolating or synthesizing DNA encoding the proteins and fragments, and using the DNA to produce recombinant proteins, as described above.

15

20

25

30

35

5

hidden.

Fragments of proteins and DNA encoding the fragments may be chemically synthesized by methods known in the art from individual amino acids and nucleotides. Suitable methods for synthesizing protein fragments are described by Stuart and Young in "Solid Phase Peptide Synthesis," Second Edition, Pierce Chemical Company (1984). Suitable methods for synthesizing DNA fragments are described by Caruthers in Science 230, 281-285 (1985).

If the receptor fragment defines the epitope, but is too short to be antigenic, it may be conjugated to a carrier molecule in order to produce antibodies. Some suitable carrier molecules include keyhole limpet hemocyanin, Ig sequences, TrpE, and human or bovine serum albumen. Conjugation may be carried out by methods known in the art. One such method is to combine a cysteine residue of the fragment with a cysteine residue on the carrier molecule.

The antibodies are preferably monoclonal. Monoclonal antibodies may be produced by methods known in the art. These

methods include the immunological method described by Kohler and Milstein in Nature 256, 495-497 (1975) and Campbell in "Monoclonal Antibody Technology, The Production and Characterization of Rodent and Human Hybridomas" in Burdon et al., Eds, Laboratory Techniques in Biochemistry and Molecular Biology, Volume 13, Elsevier Science Publishers, Amsterdam (1985); as well as by the recombinant DNA method described by Huse et al in Science 246, 1275-1281 (1989).

5

25

30

35

Polyclonal or monoclonal antisera shown to be reactive with receptor-encoded native proteins, such as with Flkl and Flk2 encoded proteins, expressed on the surface of viable cells are used to isolate antibody-positive cells. One method for isolating such cells is flow cytometry; see, for example, Loken et al., European patent application 317,156. The cells obtained are assayed for stem cells by engraftment into radiation-ablated hosts by methods known in the art; see, for example, Jordan et al., Cell 61, 953-963 (1990).

20 <u>Criteria for Novel Stem Cell Receptor Tyrosine Kinases</u> <u>Expressed in Stem Cells</u>

Additional novel receptor tyrosine kinase cDNAs are obtained by amplifying cDNAs from stem cell populations using oligonucleotides as PCR primers; see above. Examples of suitable oligonucleotides are PTKl and PTK2, which were described by Wilks et al. in Proc. Natl. Acad. Sci. USA 86, 1603-1607 (1989). Novel cDNA is selected on the basis of differential hybridization screening with probes representing known kinases. The cDNA clones hybridizing only at low stringency are selected and sequenced. The presence of the amino acid triplet DFG confirms that the sequence represents a kinase. The diagnostic methionine residue in the WMAPES motif is indicative of a receptor-like kinase, as described above. Potentially novel sequences obtained are compared to available sequences using databases such as

Genbank in order to confirm uniqueness. Gene-specific oligonucleotides are prepared as described above based on the sequence obtained. The oligonucleotides are used to analyze stem cell enriched and depleted populations for expression. Such cell populations in mice are described, for example, by Jordan et al. in Cell 61, 953-956 (1990); Ikuta et al. in Cell 62, 863-864 (1990); Spangrude et al. in Science 241, 58-62 (1988); and Szilvassy et al. in Blood 74, 930-939 (1989). Examples of such human cell populations are described as CD33-CD34 by Andrews et al. in the Journal of Experimental Medicine 169, 1721-1731 (1989). Other human stem cell populations are described, for example, in Civin et al., European Patent Application 395,355 and in Loken et al., European Patent Application 317,156.

15

20

25

30

35

10

5

Isolating Ligands and Nucleic Acid Molecules Encoding Ligands

Cells that may be used for obtaining ligands include stromal cells, for example stromal cells from fetal liver, fetal spleen, fetal thymus and fetal or adult bone marrow. Cell lines expressing ligands are established and screened.

For example, cells such as stromal (non-hematopoietic) cells from fetal liver are immortalized by known methods. Examples of known methods of immortalizing cells include transduction with a temperature sensitive SV40 T-antigen expressed in a retroviral vector. Infection of fetal liver cells with this virus permits the rapid and efficient establishment of multiple independent cell lines. These lines are screened for ligand activity by methods known in the art, such as those outlined below.

Ligands for the receptors of the invention, such as Flkl and Flk2, may be obtained from the cells in several ways. For example, a bioassay system for ligand activity employs chimeric tagged receptors; see, for example, Flanagan et al., Cell 63,

185-194 (1990). One strategy measures ligand binding directly via a histochemical assay. Fusion proteins comprising the extracellular receptor domains and secretable alkaline phosphatase (SEAP) are constructed and transfected into suitable cells such as NIH/3T3 or COS cells. Flanagan et al. refer to such DNA or amino acid constructs as APtag followed by the name of the receptor - i.e. APtag-c-kit. The fusion proteins bind with high affinity to cells expressing surface-bound ligand. Binding is detectable by the enzymatic activity of the alkaline phosphatase secreted into the medium. The bound cells, which are often stromal cells, are isolated from the APtag-receptor complex.

5

10

15

30

35

For example, some stromal cells that bind APtag-Flk1 and APtag-Flk2 fusion proteins include mouse fetal liver cells (see example 1); human fetal spleen cells (see example 3); and human fetal liver (example 3). Some stromal fetal thymus cells contain Flk1 ligand (example 3).

To clone the cDNA that encodes the ligand, a cDNA library is constructed from the isolated stromal cells in a suitable expression vector, preferably a phage such as CDM8, pSV Sport (BRL Gibco) or piH3, (Seed et al., Proc. Natl. Acad. Sci. USA 84, 3365-3369 (1987)). The library is transfected into suitable host cells, such as COS cells. Cells containing ligands on their surface are detected by known methods, see above.

In one such method, transfected COS cells are distributed into single cell suspensions and incubated with the secreted alkaline phosphatase-flk receptor fusion protein, which is present in the medium from NIH/3T3 or COS cells prepared by the method described by Flanagan et al., see above. Alkaline phosphatase-receptor fusion proteins that are not bound to the cells are removed by centrifugation, and the cells are panned on plates coated with antibodies to alkaline phosphatase. Bound

cells are isolated following several washes with a suitable wash reagent, such as 5% fetal bovine serum in PBS, and the DNA is extracted from the cells. Additional details of the panning method described above may be found in an article by Seed et al., Proc. Natl. Acad. Sci. USA <u>84</u>, 3365-3369 (1987).

In a second strategy, the putative extracellular ligand binding domains of the receptors are fused to the transmembrane and kinase domains of the human c-fms tyrosine kinase and introduced into 3T3 fibroblasts. The human c-fms kinase is necessary and sufficient to transduce proliferative signals in these cells after appropriate activation i.e. with the Flk1 or Flk2 ligand. The 3T3 cells expressing the chimeras are used to screen putative sources of ligand in a cell proliferation assay.

15

20

10

5

An alternate approach for isolating ligands using the fusion receptor-expressing 3T3 cells and insertional activation is also possible. A retrovirus is introduced into random chromosomal positions in a large population of these cells. In a small fraction, the retrovirus is inserted in the vicinity of the ligand-encoding gene, thereby activating it. These cells proliferate due to autocrine stimulation of the receptor. The ligand gene is "tagged" by the retrovirus, thus facilitating its isolation.

25

35

Examples

Example 1. Cells containing mouse Flk1 and Flk2 ligands. Murine stromal cell line 2018.

In order to establish stromal cell lines, fetal liver cells are disaggregated with collagen and grown in a mixture of Dulbecco's Modified Eagle's Medium (DMEM) and 10% heat-inactivated fetal calf serum at 37°C. The cells are immortalized

5

10

15

20

35

by standard methods. A suitable method involves introducing DNA encoding a growth regulating- or oncogene-encoding sequence into the target host cell. The DNA may be introduced by means of transduction in a recombinant viral particle or transfection in a plasmid. See, for example, Hammerschmidt et al., Nature 340, 393-397 (1989) and Abcouwer et al, Biotechnology 7, 939-946 (1989). Retroviruses are the preferred viral vectors, although SV40 and Epstein-Barr virus can also serve as donors of the growth-enhancing sequences. A suitable retrovirus is the ecotropic retrovirus containing a temperature sensitive SV40 T-antigen (tsA58) and a G418 resistance gene described by McKay in Cell 66, 713-729 (1991). After several days at 37°C, the temperature of the medium is lowered to 32°C. Cells are selected with G418 (0.5 mg/ml). The selected cells are expanded and maintained.

A mouse stromal cell line produced by this procedure is called 2018 and was deposited on October 30, 1991 in the American Type Culture Collection, Rockville, Maryland, USA (ATCC); accession number CRL 10907.

Example 2. Cells containing human Flk1 and Flk2 ligands.

25 Human fetal liver (18, 20, and 33 weeks after abortion), spleen (18 weeks after abortion), or thymus (20 weeks after abortion) is removed at the time of abortion and stored on ice in a balanced salt solution. After mincing into 1 mm fragments and forcing through a wire mesh, the tissue is washed one time in 30 Hanks Balanced Salt Solution (HBSS).

The disrupted tissue is centrifuged at 200 xg for 15 minutes at room temperature. The resulting pellet is resuspended in 10-20 ml of a tissue culture grade trypsin-EDTA solution (Flow Laboratories). The resuspended tissue is transferred to a

sterile flask and stirred with a stirring bar at room temperature for 10 minutes. One ml of heat-inactivated fetal bovine calf serum (Hyclone) is added to a final concentration of 10% in order to inhibit trypsin activity. Collagenase type IV (Sigma) is added from a stock solution (10 mg/ml in HBSS) to a final concentration of 100 ug/ml in order to disrupt the stromal cells. The tissue is stirred at room temperature for an additional 2.5 hours; collected by centrifugation (400xg, 15 minutes); and resuspended in "stromal medium," which contains Iscove's modification of DMEM supplemented with 10% heat-inactivated fetal calf serum, 5% heat-inactivated human serum (Sigma), 4 mM Lglutamine, 1x sodium pyruvate, (stock of 100x Sigma), 1x nonessential amino acids (stock of 100x, Flow), and a mixture of antibiotics kanomycin, neomycin, penicillin, streptomycin. Prior to resuspending the pellet in the stromal medium, the pellet is washed one time with HBSS. It is convenient to suspend the cells in 60 ml of medium. The number of cultures depends on the amount of tissue.

20 Example 3. Isolating Stromal cells

5

10

15

25

30

35

Resuspended Cells (example 2) that are incubated at 37°C with 5% carbon dioxide begin to adhere to the plastic plate within 10-48 hours. Confluent monolayers may be observed within 7-10 days, depending upon the number of cells plated in the initial innoculum. Non-adherent and highly refractile cells adhering to the stromal cell layer as colonies are separately removed by pipetting and frozen. Non-adherent cells are likely sources of populations of self-renewing stem cells containing Flk2. The adherent stromal cell layers are frozen in aliquots for future studies or expanded for growth in culture.

An unexpectedly high level of APtag-Flk2 fusion protein binding to the fetal spleen cells is observed. Two fetal spleen lines are grown in "stromal medium," which is described in

example 2.

Non-adherent fetal stem cells attach to the stromal cells and form colonies (colony forming unit - CFU). Stromal cells and CFU are isolated by means of sterile glass cylinders and expanded in culture. A clone, called Fsp 62891, contains the Flk2 ligand. Fsp 62891 was deposited in the American Type Culture Collection, Rockville, Maryland, U.S.A on November 21, 1991, accession number CRL 10935.

10

15

5

Fetal liver and fetal thymus cells are prepared in a similar way. Both of these cell types produce ligands of Flk1 and, in the case of liver, some Flk2. One such fetal thymus cell line, called F.thy 62891, and one such fetal liver cell line, called FL 62891, were deposited in the American Type Culture Collection, Rockville, Maryland, U.S.A on November 21, 1991 and April 2, 1992, respectively, accession numbers CRL 10936 and CRL 11005, respectively.

Stable human cell lines are prepared from fetal cells with the same temperature sensitive immortalizing virus used to prepare the murine cell line described in example 1.

Example 4. Isolation of human stromal cell clone

25

Highly refractile cells overgrow patches of stromal cells, presumably because the stromal cells produce factors that allow the formation of the CFU. To isolate stromal cell clones, sterile glass cylinders coated with vacuum grease are positioned over the CFU. A trypsin-EDTA solution (100 ml) is added in order to detach the cells. The cells are added to 5 ml of stromal medium and each (clone) plated in a single well of 6-well plate.

30

Example 5. Plasmid (AP-tag) for expressing secretable alkaline phosphatase (SEAP)

Plasmids that express secretable alkaline phosphatase are described by Flanagan and Leder in Cell 63, 185-194 (1990). The plasmids contain a promoter, such as the LTR promoter; a polylinker, including HindIII and BglII; DNA encoding SEAP; a poly-A signal; and ampicillin resistance gene; and replication site.

Example 6. Plasmid for expressing APtaq-Flk2 and APtaq-Flk1 fusion proteins

15

20

10

5

Plasmids that express fusion proteins of SEAP and the extracellular portion of either Flk1 or Flk2 are prepared in accordance with the protocols of Flanagan and Leader in Cell 63, 185-194 (1990) and Berger et al., Gene 66, 1-10 (1988). Briefly, a HindIII-Bam HI fragment containing the extracellular portion of Flk1 or Flk2 is prepared and inserted into the HindIII-BglII site of the plasmid described in example 5.

Example 7. Production Of APtaq-Flk1 Or -Flk2 Fusion Protein

25

30

35

The plasmids from Example 6 are transfected into Cos-7 cells by DEAE-dextran (as described in Current Protocols in Molecular Biology, Unit 16.13, "Transient Expression of Proteins Using Cos Cells," 1991); and cotransfected with a selectable marker, such as pSV7neo, into NIH/3T3 cells by calcium precipitation. The NIH/3T3 cells are selected with 600µg/ml G418 in 100 mm plates. Over 300 clones are screened for secretion of placental alkaline phosphatase activity. The assay is performed by heating a portion of the supernatant at 65°C for 10 minutes to inactivate background phosphatase activity, and measuring the OD405 after incubating with 1M diethanolamine (pH 9.8), 0.5 mM MgCl2, 10 mM L-homoarginine (a phosphatase inhibitor), 0.5 mg/ml BSA, and 12

mM p-nitrophenyl phosphate. Human placental alkaline phosphatase is used to perform a standard curve. The APtaq-Flk1 clones (F-1AP21-4) produce up to 10 μ g alkaline phosphatase activity/ml and the APtaq-Flk2 clones (F-2AP26-0) produce up to 0.5 μ g alkaline phosphatase activity/ml.

Example 8. Assay For APtaq-Flkl Or APtaq-Flk2 Binding To Cells

The binding of APtaq-Flk1 or APtag-Flk2 to cells containing the appropriate ligand is assayed by standard methods. example, Flanagan and Leder, Cell 63:185-194, 1990). Cells (i.e., mouse stromal cells, human fetal liver, spleen or thymus, or various control cells) are grown to confluency in six-well plates and washed with HBHA (Hank's balanced salt solution with 0.5 mg/ml BSA, 0.02% NaN3, 20 mM HEPES, pH 7.0). Supernatants from transfected COS or NIH/3T3 cells containing either APtaq-Flk1 fusion protein, APtag-Flk2 fusion protein, or APtag without a receptor (as a control) are added to the cell monolayers and incubated for two hours at room temperature on a rotating The concentration of the APtaq-Flk1 fusion protein, APtag-Flk2 fusion protein, or APtag without a receptor is 60 ng/ml of alkaline phosphatase as determined by the standard alkaline phosphatase curve (see above). The cells are then rinsed seven times with HBHA and lysed in 350 μl of 1% Triton X-100, 10 mM Tris-HCl (pH 8.0). The lysates are transferred to a microfuge tube, along with a further 150 μl rinse with the same solution. After vortexing vigorously, the samples are centrifuged for five minutes in a microfuge, heated at 65°C for 12 minutes to inactivate cellular phosphatases, and assayed for phosphatase activity as described previously. Results of experiments designed to show the time and dose responses of binding between stromal cells containing the ligands to Flk2 and Flkl (2018) and APtag-Flk2, APtag-Flk1 and APtag without receptor (as a control) are shown in Figures 3 and 4, respectively.

5

10

15

20

25

30

35

Example 8A. Plasmids for expressing Flk1/fms and Flk2/fms fusion proteins

portion of either Flk1 or Flk2 and the intracellular portion of c-fms (also known as colony-stimulating factor-1 receptor) are prepared in a manner similar to that described under Example 6 (Plasmid for expressing APtag-Flk2 and APtag-Flk1 fusion proteins). Briefly, a Hind III - Bam HI fragment containing the extracellular portion of Flk1 or Flk2 is prepared and inserted into the Hind III - Bgl II site of a pLH expression vector containing the intracellular portion of c-fms.

15 8B. Expression of Flk1/fms or Flk2/fms in 3T3 cells

25

30

35

The plasmids from Example 8A are transfected into NIH/3T3 cells by calcium. The intracellular portion of c-fms is detected by Western blotting.

Example 9. Cloning and Expression of cDNA Coding For Mouse Ligand To Flk1 and Flk2 Receptors

cDNA expressing mouse ligand for Flk1 and Flk2 is prepared by known methods. See, for example, Seed, B., and Aruffo, A. PNAS 84:3365-3369, 1987; Simmons, D. and Seed, B. J. Immunol. 141:2797-2800; and D'Andrea, A.D., Lodish, H.F. and Wong, G.G. Cell 57:277-285, 1989).

The protocols are listed below in sequence: (a) RNA isolation; (b) poly A RNA preparation; (c) cDNA synthesis; (d) cDNA size fractionation; (e) propagation of plasmids (vector); (f) isolation of plasmid DNA; (g) preparation of vector pSV Sport (BRL Gibco) for cloning; (h) compilation of buffers for the above steps; (i) Transfection of cDNA encoding Ligands in Cos 7 Cells;

(j) panning procedure; (k) Expression cloning of Flk1 or Flk2 ligand by establishment of an autocrine loop.

9a. Guanidinium thiocyanate/LiCl Protocol for RNA Isolation

5

10

15

20

25

30

35

For each ml of mix desired, 0.5 g guanidine thiocyanate (GuSCN) is dissolved in 0.55 ml of 25% LiCl (stock filtered through 0.45 micron filter). 20 μ l of mercaptoethanol is added. (The resulting solution is not good for more than about a week at room temperature.)

The 2018 stromal cells are centrifuged, and 1 ml of the solution described above is added to up to 5×10^7 cells. cells are sheared by means of a polytron until the mixture is non-viscous. For small scale preparations (<108 cells), the sheared mixture is layered on 1.5 ml of 5.7M CsCl (RNase free; 1.26 g CsCl added to every ml 10 mM EDTA pH8), and overlaid with RNase-free water if needed. The mixture is spun in an SW55 rotor at 50 krpm for 2 hours. For large scale preparations, 25 ml of the mixture is layered on 12 ml CsCl in an SW28 tube, overlaid as above, and spun at 24 krpm for 8 hours. The contents of the tube are aspirated carefully with a sterile pasteur pipet connected to a vacuum flask. Once past the CsCl interface, a band around the tube is scratched with the pipet tip to prevent creeping of the layer on the wall down the tube. The remaining CsCl solution is aspirated. The resulting pellet is taken up in water, but not redissolved. 1/10 volume of sodium acetate and three volumes of ethanol are added to the mixture, and spun. The pellet is resuspended in water at 70°C, if necessary. The concentration of the RNA is adjusted to 1 mg/ml and frozen.

It should be noted that small RNA molecules (e.g., 5S) do not come down. For small amounts of cells, the volumes are scaled down, and the mixture is overlaid with GuSCN in RNase-free water on a gradient (precipitation is inefficient when RNA is

dilute).

5

10

15

20

25

30

35

9b. Poly A- RNA preparation

(All buffers mentioned are compiled separately below)
A disposable polypropylene column is prepared by washing
with 5M NaOH and then rinsing with RNase-free water. For each
milligram of total RNA, approximately 0.3 ml (final packed bed)
of oligo dT cellulose is added. The oligo dT cellulose is
prepared by resuspending approximately 0.5 ml of dry powder in 1
ml of 0.1M NaOH and transferring it into the column, or by
percolating 0.1M NaOH through a previously used column. The
column is washed with several column volumes of RNase-free water
until the pH is neutral, and rinsed with 2-3 ml of loading
buffer. The column bed is transferred to a sterile 15 ml tube
using 4-6 ml of loading buffer.

Total RNA from the 2018 cell line is heated to 70°C for 2-3 minutes. LiCl from RNase-free stock is added to the mixture to a final concentration of 0.5M. The mixture is combined with oligo dT cellulose in the 15 ml tube, which is vortexed or agitated for 10 minutes. The mixture is poured into the column, and washed with 3 ml loading buffer, and then with 3 ml of middle wash buffer. The mRNA is eluted directly into an SW55 tube with 1.5 ml of 2 mM EDTA and 0.1% SDS, discarding the first two or three drops.

The eluted mRNA is precipitated by adding 1/10 volume of 3M sodium acetate and filling the tube with ethanol. The contents of the tube are mixed, chilled for 30 minutes at -20° C, and spun at 50 krpm at 5°C for 30 minutes. After the ethanol is decanted, and the tube air dried, the mRNA pellet is resuspended in 50-100 μ l of RNase-free water. 5 μ l of the resuspended mRNA is heated to 70°C in MOPS/EDTA/formaldehyde, and examined on an RNase-free 1% agarose gel.

9c. cDNA Synthesis

The protocol used is a variation of the method described by Gubler and Hoffman in Gene $\underline{25}$, 263-270 (1983).

5

1. First Strand. 4 μg of mRNA is added to a microfuge tube, heated to approximately 100°C for 30 seconds, quenched on ice. The volume is adjusted to 70 μ l with RNAse-free water. 20 μ l of RT1 buffer, 2 μ l of RNAse inhibitor (Boehringer 36 u/μ l), 1 μ l of 5 μ g/ μ l of oligo dT (Collaborative Research), 2.5 μ l of 20 mM dXTP's (ultrapure - US Biochemicals), 1 μ l of 1M DTT and 4 μ l of RT-XL (Life Sciences, 24 u/μ l) are added. The mixture is incubated at 42°C for 40 minutes, and inactivated by heating at 70°C for 10 minutes.

15

20

25

30

35

- 2. Second Strand. 320 μ l of RNAse-free water, 80 μ l of RT2 buffer, 5 μ l of DNA Polymerase I (Boehringer, 5 U/ μ l), 2 μ l RNAse H (BRL 2 u/ μ l) are added to the solution containing the first strand. The solution is incubated at 15°C for one hour and at 22°C for an additional hour. After adding 20 μ l of 0.5M EDTA, pH 8.0, the solution is extracted with phenol and precipitated by adding NaCl to 0.5M linear polyacrylamide (carrier) to 20 μ g/ml, and filling the tube with EtOH. The tube is spun for 2-3 minutes in a microfuge, vortexed to dislodge precipitated material from the wall of the tube, and respun for one minute.
- 3. Adaptors. Adaptors provide specific restriction sites to facilitate cloning, and are available from BRL Gibco, New England Biolabs, etc. Crude adaptors are resuspended at a concentration of 1 μ g/ μ l. MgSO₄ is added to a final concentration of 10 mM, followed by five volumes of EtOH. The resulting precipitate is rinsed with 70% EtOH and resuspended in TE at a concentration of 1 μ g/ μ l. To kinase, 25 μ l of resuspended adaptors is added to 3 μ l of 10% kinasing buffer and 20 units of kinase. The mixture is incubated at 37°C overnight. The precipitated cDNA is

resuspended in 240 μ l of TE (10/1). After adding 30 μ l of 10X low salt buffer, 30 μ l of 10X ligation buffer with 0.1mM ATP, 3 μ l (2.4 μ g) of kinased 12-mer adaptor sequence, 2 μ l (1.6 μ g) of kinased 8-mer adaptor sequence, and 1 μ l of T4 DNA ligase (BioLabs, 400 u/ μ l, or Boehringer, 1 Weiss unit ml), the mixture is incubated at 15°C overnight. The cDNA is extracted with phenol and precipitated as above, except that the extra carrier is omitted, and resuspended in 100 μ l of TE.

10 9d. cDNA Size Fractionation.

5

15

20

25

30

35

A 20% KOAC, 2 mM EDTA, 1 µg/ml ethidium bromide solution and a 5% KOAc, 2 mM EDTA, 1 µg/ml ethidium bromide solution are 2.6 ml of the 20% KOAc solution is added to the back chamber of a small gradient maker. Air bubbles are removed from the tube connecting the two chambers by allowing the 20% solution to flow into the front chamber and forcing the solution to return to the back chamber by tilting the gradient maker. The passage between the chambers is closed, and 2.5 ml of 5% solution is added to the front chamber. Any liquid in the tubing from a previous run is removed by allowing the 5% solution to flow to the end of the tubing, and then to return to its chamber. apparatus is placed on a stirplate, and, with rapid stirring, the topcock connecting the two chambers and the front stopcock are opened. A polyallomer 5W55 tube is filled from the bottom with The gradient is overlaid with 100 μl of cDNA the KOAc solution. solution, and spun for three hours at 50k rpm at 22°C. collect fractions from the gradient, the SW55 tube is pierced close to the bottom of the tube with a butterfly infusion set (with the luer hub clipped off). Three 0.5 ml fractions and then six 0.25 ml fractions are collected in microfuge tubes (approximately 22 and 11 drops, respectively). The fractions are precipitated by adding linear polyacrylamide to 20 $\mu g/ml$ and filling the tube to the top with ethanol. The tubes are cooled, spun in a microfuge tube for three minutes, vortexed, and respun

for one minute. The resulting pellets are rinsed with 70% ethanol and respun, taking care not to permit the pellets to dry to completion. Each 0.25 ml fraction is resuspended in 10 μ l of TE, and 1 μ l is run on a 1% agarose minigel. The first three fractions, and the last six which contain no material smaller than 1 kb are pooled.

9e. Propagation of Plasmids

SupF plasmids are selected in nonsuppressing bacterial hosts 10 containing a second plasmid, p3, which contains amber mutated ampicillin and tetracycline drug resistance elements. See Seed, Nucleic Acids Res., 11, 2427-2445 (1983). The p3 plasmid is derived from RP1, is 57 kb in length, and is a stably maintained, single copy episome. The ampicillin resistance of this plasmid 15 reverts at a high rate so that amp plasmids usually cannot be used in p3-containing strains. Selection for tetracycline resistance alone is almost as good as selection for ampicillintetracycline resistance. However, spontaneous appearance of chromosomal suppressor tRNA mutations presents an unavoidable 20 background (frequency about 10⁻⁹) in this system. Colonies arising from spontaneous suppressor mutations are usually larger than colonies arising from plasmid transformation. plasmids are selected in Luria broth (LB) medium containing ampicillin at 12.5 μ g/ml and tetracycline at 7.5 μ g/ml. For 25 scaled-up plasmid preparations, M9 Casamino acids medium containing glycerol (0.8%) is employed as a carbon source. The bacteria are grown to saturation.

Alternatively, pSV Sport (BRL, Gaithersberg, Maryland) may be employed to provide SV40 derived sequences for replication, transcription initiation and termination in COS 7 cells, as well as those sequences necessary for replication and ampicillin resistance in $\underline{\text{E. coli}}$.

30

9f. Isolation of Vector DNA/Plasmid

One liter of saturated bacterial cells are spun down in J6 bottles at 4.2k rpm for 25 minutes. The cells are resuspended in 40 ml 10 mM EDTA, pH 8. 80 ml 0.2M NaOH and 1% SDS are added, and the mixture is swirled until it is clear and viscous. 5M KOAc, pH 4.7 (2.5M KOAc, 2.5M HOAc) is added, and the mixture is shaken semi-vigorously until the lumps are approximately 2-3 mm in size. The bottle is spun at 4.2k rpm for 5 minutes. supernatant is poured through cheesecloth into a 250 ml bottle, which is then filled with isopropyl alcohol and centrifuged at 4.2k rpm for 5 minutes. The bottle is gently drained and rinsed with 70% ethanol, taking care not to fragment the pellet. After inverting the bottle and removing traces of ethanol, the mixture is resuspended in 3.5 ml Tris base/EDTA (20 mM/10 mM). of resuspended pellet and 0.75 ml 10 mg/ml ethidium bromide are added to 4.5 g CsCl. VTi80 tubes are filled with solution, and centrifuged for at least 2.5 hours at 80k rpm. Bands are extracted by visible light with 1 ml syringe and 20 gauge or lower needle. The top of the tube is cut off with scissors, and the needle is inserted upwards into the tube at an angle of about 30 degrees with respect to the tube at a position about 3 mm beneath the band, with the bevel of the needle up. After the band is removed, the contents of the tube are poured into bleach. The extracted band is deposited in a 13 ml Sarstedt tube, which is then filled to the top with n-butanol saturated with 1M NaCl If the amount of DNA is large, the extraction procedure extract. may be repeated. After aspirating the butanol into a trap containing 5M NaOH to destroy ethidium, an approximately equal volume of 1M ammonium acetate and approximately two volumes of 95% ethanol are added to the DNA, which is then spun at 10k rpm for 5 minutes. The pellet is rinsed carefully with 70% ethanol, and dried with a swab or lyophilizer.

5

10

15

20

25

9q. Preparation of Vector for Cloning

20 μg of vector is cut in a 200 μl reaction with 100 units of BstXI (New York Biolabs) at 50°C overnight in a well thermostated, circulating water bath. Potassium acetate 5 solutions (5 and 20%) are prepared in 5W55 tubes as described above. 100 μ l of the digested vector is added to each tube and spun for three hours, 50k rpm at 22°C. Under 300 nm UV light, the desired band is observed to migrate 2/3 of the length of the 10 tube. Forward trailing of the band indicates that the gradient is overloaded. The band is removed with a 1 ml syringe fitted with a 20 gauge needle. After adding linear polyacrylamide and precipitating the plasmid by adding three volumes of ethanol, the plasmid is resuspended in 50 μ l of TE. Trial ligations are carried out with a constant amount of vector and increasing amounts of cDNA. Large scale ligation are carried out on the basis of these trial ligations. Usually the entire cDNA prep requires 1-2 µg of cut vector.

20 <u>9h. Buffers</u>

Loading Buffer: .5M LiCl, 10 mM Tris pH 7.5, 1 mM EDTA .1% SDS. Middle Wash Buffer: .15M LiCl, 10 mM Tris pH 7.5, 1 mM EDTA .1% SDS.

- 25 RT1 Buffer: .25M Tris pH 8.8 (8.2 at 42^{-}), .25M KCl, 30 mM MgCl₂. RT2 Buffer: .1M Tris pH 7.5, 25 mM MgCl₂, .5M KCl, .25 mg/ml BSA, 50 mM dithiothreitol (DTT).
 - 10% Low Salt:60 mM Tris pH 7.5, 60 mM MgCl $_2$, 50 mM NaCl, 2.5 mg/ml BSA 70 mM DME
- 30 10X Ligation Additions: 1 mM ATP, 20 mM DTT, 1 mg/ml BSA 10 mM spermidine.
 - 10X Kinasing Buffer:.5M Tris pH 7.5, 10 mM ATP, 20 mM DTT, 10 mM spermidine, 1 mg/ml BSA 100 mM MgCl2

9i. Transfection of cDNA encoding Ligands in Cos 7 Cells

Cos 7 cells are split 1:5 into 100 mm plates in Dulbecco's modified Eagles medium (DME)/10% fetal calf serum (FCS), and allowed to grow overnight. 3 ml Tris/DME (0.039M Tris, pH 7.4 in DME) containing 400 µg/ml DEAE-dextran (Sigma, D- ' 9885) is prepared for each 100 mm plate of Cos 7 cells to be transfected. 10 μg of plasmid DNA preparation per plate is The medium is removed from the Cos-7 cells and the DNA/DEAE-dextran mixture is added. The cells are incubated for 4.5 hours. The medium is removed from the cells, and replaced with 3 ml of DME containing 2% fetal calf serum (FCS) and 0.1 mM chloroquine. The cells are incubated for one hour. After removing the chloroquine and replacing with 1.5 ml 20% glycerol in PBS, the cells are allowed to stand at room temperature for one minute. 3 ml Tris/DME is added, and the mixture is aspirated and washed two times with Tris/DME. 10 ml DME/10% FCS is added and the mixture is incubated overnight. The transfected Cos 7 cells are split 1:2 into fresh 100 mm plates with (DME)/10% FCS and allowed to grow.

9j. Panning Procedure for Cos 7 cells Expressing Ligand

1) Antibody-coated plates:

25

5

10

15

20

Bacteriological 100 mm plates are coated for 1.5 hours with rabbit anti-human placental alkaline phosphatase (Dako, California) diluted 1:500 in 10 ml of 50 mM Tris.HCl, pH 9.5. The plates are washed three times with 0.15M NaCl, and incubated with 3 mg BSA/ml PBS overnight. The blocking solution is aspirated, and the plates are utilized immediately or frozen for later use.

2) Panning cells:

The medium from transfected Cos 7 cells is aspirated, and 3 ml PBS/0.5 mM EDTA/0.02% sodium azide is added. incubated at 37°C for thirty minutes in order to detach the The cells are triturated vigorously with a pasteur pipet and collected in a 15 ml centrifuge tube. The plate is washed with a further 2 ml PBS/EDTA/azide solution, which is then added to the centrifuge tube. After centrifuging at 200 xg for five minutes, the cells are resuspended in 3 ml of APtaq-Flkl (F-1AP21-4) or Flk2 (F-2AP26-0) supernatant from transfected NIH/3T3 cells (see Example 7.), and incubated for 1.5 hours on ice. cells are centrifuged again at 200 xg for five minutes. supernatant is aspirated, and the cells are resuspended in 3 ml PBS/EDTA/azide solution. The cell suspension is layered carefully on 3 ml PBS/EDTA/azide/2% Ficoll, and centrifuged at 200 xg for four minutes. The supernatant is aspirated, and the cells are resuspended in 0.5 ml PBS/EDTA/azide solution. cells are added to the antibody-coated plates containing 4 ml PBS/EDTA/azide/5% FBS, and allowed to stand at room temperature one to three hours. Non-adhering cells are removed by washing gently two or three times with 3 ml PBS/5% FBS.

3) <u>Hirt Supernatant:</u>

25

30

35

5

10

15

20

0.4 ml 0.6% SDS and 10 mM EDTA are added to the panned plates, which are allowed to stand 20 minutes. The viscuous mixture is added by means of a pipet into a microfuge tube. 0.1 ml 5M NaCl is added to the tube, mixed, and chilled on ice for at least five hours. The tube is spun for four minutes, and the supernatant is removed carefully. The contents of the tube are extracted with phenol once, or, if the first interface is not clean, twice. Ten micrograms of linear polyacrylamide (or other carrier) is added, and the tube is filled to the top with ethanol. The resulting precipitate is resuspended in 0.1 ml

water or TE. After adding 3 volumes of EtOH/NaOAc, the cells are reprecipitated and resuspended in 0.1 ml water or TE. The cDNA obtained is transfected into any suitable <u>E. coli</u> host by electroporation. Suitable hosts are described in various catalogs, and include MC1061/p3 or Electromax DH10B Cells of BRL Gibco. The cDNA is extracted by conventional methods.

5

10

15

20

25

30

35

The above panning procedure is repeated until a pure $\underline{E.\ coli}$ clone bearing the cDNA as a unique plasmid recombinant capable of transfecting mammalian cells and yielding a positive panning assay is isolated. Normally, three repetitions are sufficient.

9k. Expression cloning of Flkl or Flk2 ligand by establishment of an autocrine loop

Cells expressing Flk1/fms or Flk2/fms (Example 10) are transfected with 20-30 µg of a cDNA library from either Flk1 ligand or Flk2 ligand expressing stromal cells, respectively. The cDNA library is prepared as described above (a-h). are co-transfected with 1 µg pLTR neo cDNA. Following transfection the cells are passaged 1:2 and cultured in 800 $\mu g/ml$ of G418 in Dulbecco's medium (DME) supplemented with 10% CS. Approximately 12 days later the colonies of cells are passaged and plated onto dishes coated with poly -D- lysine (1 mg/ml) and human fibronectin (15 μ g/ml). The culture medium is defined serum-free medium which is a mixture (3:1) of DME and Ham's F12 medium. The medium supplements are 8 mM NaHCO3, 15 mM HEPES pH 7.4, 3 mM histidine, 4 μ M MnCl₂, 10 uM ethanolamine, 0.1 μ M selenous acid, 2 μM hydrocortisone, 5 $\mu g/ml$ transferrin, 500 $\mu g/ml$ bovine serum albumin/linoleic acid complex, and 20 $\mu g/ml$ insulin (Ref. Zhan, X, et al. Oncogene $\underline{1}$: 369-376,1987). cultures are refed the next day and every 3 days until the only cells capable of growing under the defined medium condition remain. The remaining colonies of cells are expanded and tested for the presence of the ligand by assaying for binding of APtag -

Flkl or APtag - Flk2 to the cells (as described in Example 8). The DNA would be rescued from cells demonstrating the presence of the Flk1 or Flk2 ligand and the sequence.

Example 10. Expression of Ligand cDNA

5

10

15

20

25

30

• 35

The cDNA is sequenced, and expressed in a suitable host cell, such as a mammalian cell, preferably COS, CHO or NIH/3T3 cells. The presence of the ligand is confirmed by demonstrating binding of the ligand to APtag-Flk2 fusion protein (see above).

Example 11. Chemical Cross Linking of Receptor and Ligand

Cross linking experiments are performed on intact cells using a modification of the procedure described by Blume-Jensen et al et al., EMBO J., 10, 4121-4128 (1991). Cells are cultured in 100mm tissue culture plates to subconfluence and washed once with PBS-0.1% BSA.

To examine chemical cross linking of soluble receptor to membrane-bound ligand, stromal cells from the 2018 stromal cell line are incubated with conditioned media (CM) from transfected 3T3 cells expressing the soluble receptor Flk2-APtag. Cross linking studies of soluble ligand to membrane bound receptor are performed by incubating conditioned media from 2018 cells with transfected 3T3 cells expressing a Flk2-fms fusion construct.

Binding is carried out for 2 hours either at room temperature with CM containing 0.02% sodium azide to prevent receptor internalization or at 4°C with CM (and buffers) supplemented with sodium vanadate to prevent receptor dephosphorylation. Cells are washed twice with PBS-0.1% BSA and four times with PBS.

Cross linking is performed in PBS containing 250 mM

disuccinimidyl suberate (DSS; Pierce) for 30 minutes at room temperature. The reaction is quenched with Tris-HCL pH7.4 to a final concentration of 50 mM.

Cells are solubilized in solubilization buffer: 0.5% Triton - X100, 0.5% deoxycholic acid, 20 mM Tris pH 7.4, 150 mM NaCl, 10mM EDTA, 1mM PMFS, 50 mg/ml aprotinin, 2 mg/ml bestatin, 2 mg/ml pepstatin and 10mg/ml leupeptin. Lysed cells are immediately transferred to 1.5 ml Nalgene tubes and solubilized by rolling end to end for 45 minutes at 4°C. Lysates are then centrifuged in a microfuge at 14,000g for 10 minutes. Solubilized cross linked receptor complexes are then retrieved from lysates by incubating supernatants with 10% (v/v) wheat germ lectin-Sepharose 6MB beads (Pharmacia) at 4°C for 2 hours or overnight.

Beads are washed once with Tris-buffered saline (TBS) and resuspended in 2X SDS-polyacrylamide nonreducing sample buffer. Bound complexes are eluted from the beads by heating at 95°C for 5 minutes. Samples are analyzed on 4-12% gradient gels (NOVEX) under nonreducing and reducing conditions (0.35 M 2-mercaptoethanol) and then transferred to PVDF membranes for 2 hours using a Novex blotting apparatus. Blots are blocked in TBS-3% BSA for 1 hour at room temperature followed by incubation with appropriate antibody.

Cross linked Flk2-APtag and Flk2-fms receptors are detected using rabbit polyclonal antibodies raised against human alkaline phosphatase and fms protein, respectively. The remainder of the procedure is carried out according to the instructions provided in the ABC Kit (Pierce). The kit is based on the use of a biotinylated secondary antibody and avidin-biotinylated horseradish peroxidase complex for detection.

Example 12. Expression and purification of Flaq-Flk2.

Design of the Flag-Flk2 expression plasmids.

5

10

15

20

25

30

` 35

A synthetic DNA fragment (Fragment 1) is synthesized using complementary oligonucleotides BP1 and BP2 (see below and SEQ. ID. NOS. 7 and 8). The fragment encoded the following features in the 5' to 3' order: Sal I restriction site, 22 base pair (bp) 5' untranslated region containing an eukaryotic ribosome binding site, an ATG initiation codon, preprotrypsinogen signal sequence, coding region for the FLAG peptide (DYKDDDDKI) and Bgl II restriction site.

A cDNA fragment (Fragment 2) encoding Asn 27 to Ser 544 of murine Flk2 is obtained by polymerase chain reaction (PCR) using primers designed to introduce an in frame Bgl II site at the 5' end (oligonucleotide BP5, see below and SEQ. ID. NO. 9) and a termination codon followed by a Not I site at the 3' end (oligonucleotide BP10, see below and SEQ. ID. NO. 10). The template for the PCR reaction is full length Flk2 cDNA (Matthews et al., Cell 65:1143 (1991)). Fragment 2 is extensively digested with Bgl II and Not I restriction enzymes prior to ligation.

To assemble the complete Flag-Flk2 gene, Fragments 1 and 2 are ligated in a tripartate ligation into Sal I and Not I digested plasmid pSPORT (Gibco/BRL, Grand Island, NY) to give the plasmid pFlag-Flk2.

Preferably, the Flag-Flk2 protein is attached at either end to the Fc portion of an immunoglobulin (Ig). The Ig is preferably attached to the Flk2 portion of the Flag-Flk2 protein. To assemble the construct pFlag-Flk2-Ig, the sequences coding for the CH¹ domain of human immunoglobulin G (IgG¹) are placed downstream of the Flk2 coding region in the plasmid pFlag-Flk2 as per the method described by Zettlemeissl et al., DNA and Cell

Biology 9: 347-352 (1990).

The sequences of oligonucleotides used to construct the Flag-Flk2 gene are given below:

5

Oligonucleotide BP1:

5 - AATTCGTCGACTTTCTGTCACCATGAGTGCACTTCTGATCCTAGCCCTTGTG GGAGCTGCTGTTGCTGACTACAAAGATGATGATGACAAGATCTA-3 '

10 Oligonucleotide BP2:

5'-AGCTTAGATCTTGTCATCATCTTTGTAGTCAGCAACAGCAGCTCCCACA AGGGCTAGGATCAGAAGTGCACTCATGGTGACAGAAAGTCGACG-3'

Oligonucleotide BP5:

15 5'-TGAGAAGATCTCAAACCAAGACCTGCCTGT-3'

Oligonucleotide BP10:

5'-CCAATGGCGGCCGCTCAGGAGATGTTGTCTTGGA-3'

20

(See SEQ. ID. NOS. 7-10, respectively)

- Expression of the Flag-Flk2 construct.
- For transient expression of the Flag-Flk2 construct, the Sall to Not I fragment from pFlag-Flk2 is subcloned into the plasmid pSVSPORT (Gibco/BRL) to give the plasmid pSVFlag-Flk2. For expression of the Flag-Flk2 protein pSVFlag-Flk2 is transfected into COS monkey cells using the DEAE-dextran method.

30

For stable expression in eukaryotic cells, the Sal I-Not I fragment of pFlag-Flk2 is cloned into the EcoRV and Not I sites of the plasmid pcDNA I/Neo (Invitrogen Co., San Diego, CA). The Sal I 3' recessed terminus of pFlag-Flk2 is filled with the

35 Klenow fragment of DNA polymerase I and a mixture of

deoxyribonucleotides to make the site compatible with the ECORV site of the vector. The resulting construct is introduced into cultured mammalian cells using either the Lipofectin (Gibco/BRL) or the calcium phosphate methods.

5

10

For expression in insect cells, the SalI to Hind III (from pSPORT polylinker) fragment of pFlag-Flk2 is subcloned into the BamH1-Hind III sites of the baculovirus transfer vector pBlueBac III (Invitrogen). The vector Bam HI site and the insert Sal I site are blunted with Klenow (see above). Production of the recombinant virus and infection of the Sf9 insect cells is performed as per manufacturers directions (Invitrogen).

Expression of the Flag-Flk2 protein is detected by Western blotting of SDS-PAGE separated conditioned media (mammalian cells) or cell lysates (insect cells) with the anti-Flag monoclonal antibody (mAb) M1 (International Biotechnology, Inc. [IBI], New Haven, CT).

- 20 3. Affinity purification of the Flag-Flk2 protein from conditioned media or insect cell lysates is performed using immobilized mAb M1 (IBI) as per manufacturers specifications.
- 3.1 Affinity purification of the Flag-Flk2-Ig¹ protein from conditioned media is performed using immobilized Protein A (Pharmacia LKB, Piscataway, NJ) as per the manufacturers instructions.
 - II. Use of the Flag-Flk2 protein to search for the Flk2 ligand.
 - 1. Binding and cross-linking studies to detect membrane-bound ligand:
 - A. Binding studies.

35

5

10

15

20

Murine stromal lines (eg. 2018 cells ATCC CRL 10907 (see below), see example 1, supra) considered to be candidates for expression of the Flk2 ligand were deposited at the American Type Culture Collection, ATCC CRL 10907 (see below) and cultured in Dulbecco's modified Eagles medium (DMEM; Gibco/BRL) supplemented with 10% fetal calf serum. The cells are grown to confluency in 10 cm plates and washed once with PBS. Conditioned media containing Flag-Flk2 is incubated with the cells at 4°C for 2 The cell monolayers are rinsed extensively to remove the non-bound protein, solubilized and centrifuged to remove insoluble cellular material. Glycoproteins in the lysates are partially purified with wheat germ agglutinin-Sepharose (Pharmacia LKB, Piscataway, NJ), boiled in an SDS sample buffer, separated on SDS-PAGE gels and transferred to nitrocellulose membranes. The membranes are probed with the M1 antibody to detect the presence of cell-associated Flag-Flk2 protein.

- B. In a cross-linking study, the above protocol is followed except that prior to solubilization the monolayer are treated with the crosslinker disuccinimidyl suberate (DSS; Pierce, Rockford, IL). The presence of a putative ligand is detected by an upward shift in the apparent molecular weight of the Flag-Flk2 band on Western blots.
- C. Purified Flag-Flk2 protein labelled with Na125I via the Chloramine T method is used to asses the ability of the soluble extracellular domain of the Flk2 receptor to bind transmembrane form of the Flk2 ligand in cultured stromal lines. The labelled protein is added to monolayers of stromal cells on ice for 2 hr in the presence or absence of excess unlabelled protein. Specific binding is calculated by subtracting counts bound in the presence of excess unlabelled protein from the total counts bound.
- Use of the Flag-Flk2 protein to search for secreted form of the ligand.

5

10

15

20

30

35

The Flag-Flk2 protein is used in attempts to identify the Flk2 ligand in conditioned media from stromal cell cultures via modification of the direct N-terminal sequencing method of Pan et al., Bioch. Biophys. Res. Comm. 166:201 (1990). Briefly, the Flag-Flk2 protein N-terminally sequenced by automatic Edman degradation chemistry an an ABI 477A sequncer with on line PTH amino acid analysis. Approximatelly 15 amino acids are determined. The protein is then immobilized on Nugel PAF silica beads via free NH4+ groups. The immobilized Flaq-Flk2 is incubated with conditioned media from putative ligand-producing cells for 30 min at 4°C and washed free off non-bound proteins with phosphate buffered saline adjusted to 2M NaCl. The resulting protein complex is resequenced. For each sequencing cycle, any amino acid not expected at this position in the FLAG-Flk2 protein is considered as possibly originating from a protein complexed to the Flk2 receptor.

- B. For conventional affinity chromatography, the Flag-Flk2 protein is immobilized on a stable support such as Sepharose.

 35S-methionine labelled-conditioned media from stromal cell lines are passed over the affinity matrix and bound material is analyzed by SDS-PAGE gel electrophoresis and autoradiography.
- Use of the Flag-Flk2 protein in expression cloning
 experiments.

A method of expression cloning of integral membrane proteins in COS cells has been described (Aruffo and Seed, Proc. Natl. Acad. Sci. 84:8573 (1987)). A cDNA library is prepared from an appropriate stromal cell line such as 2018 and is transfected into COS cells. Cells transiently expressing the Flk2 ligand are affinity adsorbed onto plastic plates coated with the Flag-Flk2 protein. The cells are lysed, the plasmid DNA is recovered and amplified in a bacterial host. The cycle of transfection into COS cells is repeated until a single cDNA clone encoding the ligand

molecule is isolated.

In a modification of the above technique, pools of transfected COS cells are screened for binding of 125I-Flag-Flk2. Positive cells pools are selected and plasmid DNA is recovered and amplified in E. coli. The resulting DNA preparation is used in subsequent rounds of transfection and transient expression until all cells are positive for binding of 125I-Flag-Flk2. The cDNA in the final plasmid preparation is then sequenced to determine the sequence of the putative Flk-2 ligand.

Example 13 Isolating the Human Flk2 Ligand from PHA-LCM

13a. Source of the human Flk2 ligand

15

20

25

10

5

The F1k2 ligand is isolated from tissue culture medium conditioned by phytohemagglutinin-stimulated human peripheral blood leukocytes (PHA-LCM). The medium is prepared by isolating normal human peripheral blood mononuclear cells (leukocytes) from whole blood by density centrifugation (Ficoll-Hypaque, Pharmacia Biotech, Inc, Piscataway, NJ) and incubating these cells at a concentration of 2 X 10⁶ cells/ml with the lectin phytohemagglutinin (PHA, Gibco Laboratories, Grand Island, NY) in a commercially-prepared, serum-free defined culture medium (AIMV; Gibco Laboratories, Grand Island, NY) for one week. PHA-LCM is harvested by removal of cells and debris by centrifugation.

13b. Isolating the human Flk2 ligand from PHA-LCM

The Flk2 ligand is one of a large number of proteins that are specifically secreted by PHA-activated cells into the medium. Several purification steps using conventional chromatographic techniques are required to isolate the Flk2 ligand. The chromatographic columns used (not listed in specific order) include: Blue Sepharose Fast Flow (Pharmacia Biotech, Inc,

Piscataway, NJ) to remove the medium component albumin, anion exchange (Q-Sepharose Fast Flow, Pharmacia Biotech, Inc, Piscataway, NJ), cation exchange (S-Sepharose Fast Flow, Pharmacia Biotech, Inc, Piscataway, NJ), gel filtration (Superdex 75, Pharmacia Biotech, Inc, Piscataway, NJ), heparin sepharose (Pharmacia Biotech, Inc, Piscataway, NJ), ConA (Pharmacia Biotech, Inc, Piscataway, NJ), wheat germ agglutinin (Pharmacia Biotech, Inc, Piscataway, NJ), and C4 reverse phase (Vydac, The Separations Group, Hesperia, CA).

10

15

20

25

30

35

5

Biological assays are used throughout the purification to identify which column fractions contain the Flk2 ligand. Flk2 ligand specifically stimulates proliferation in vitro of cell lines transfected with constructs expressing the full length Flk2 receptor or a chimeric receptor comprising of the the extracellular domain of the Flk2 receptor and the intracellular domain of a different protein tyrosine kinase receptor such as fms, the receptor for CSF-1. For example, the Flk2 ligand specifically stimulates proliferation of murine NIH 3T3 fibroblast cell line transfected with constructs expressing the murine or human Flk2 receptor in either full length or chimeric The parent untransfected 3T3 cells do form (see example 8B). not respond to the Flk2 ligand. The format of the Flk2 receptor 3T3 cell assay uses 96 well tissue culture plates (Becton Dickenson, Lincoln Park, NJ), where column fractions or other test samples are serially diluted across the plates in wells containing a mixture of AIMV and Dulbecco's modification of Eagle's medium (DMEM, Gibco Laboratories, Grand Island, NY). Samples are tested for their ability to stimulate proliferation of Flk2 receptor 3T3 cells initially cultured at 3 X 104 cells/well. Survival of Flk2 receptor 3T3 cells is dependent on the presence of the Flk2 ligand. Viable Flk2 receptor 3T3 cells are quantitated after three to five days in culture either visually or spectrophotometrically (Molecular Devices Corporation, Menlo Park, CA) using a tetraformazan salt (XTT,

Diagnostic Chemicals Ltd, Oxford, CT) that when cleaved by actively respiring cells forms diformazan salt which absorbs light at a wavelength (450 nm) that is different from the starting compound (560 nm). Relative (units/ml) and specific (units/mg) activities are defined as the reciprocal dilution at which half-maximal stimulation is detected.

13c. Physical properties of the human Flk2 ligand

5

20

25

30

35

The human F1k2 ligand isolated from PHA-LCM is a glycosylated protein and has an apparent molecular weight of 18 kDa, as determined by SDS-PAGE analysis run under reducing (β-mercaptoethanol) and non-reducing conditions. Its N-terminal fourteen amino acid sequence is A Q S L S F X F T K F D L D, wherein X is any amino acid. (See SEQ. ID. NO. 11) Its biological activity is inactivated at 100° C but not 60° C in five minutes and the activity is retained after the F1k2 ligand is subjected to a pH of 2.8 at room temperature for two hours.

The 18 kDa Flk2 ligand may act alone, in combination with other cytokines (e.g., interleukin 1, interleukin 3, interleukin 6, interleukin 11 or the kit ligand), or as a component of a complex of proteins that stimulate the Flk2 receptor in transfected 3T3 cell or in primitive hematopoietic progenitors. The complex of proteins may include a soluble or membrane-bound form of the Flk2 receptor.

A radiolabeled form of the Flk2 ligand may be used to detect and to measure the levels of Flk2 receptor, such as the soluble form of the Flk2 receptor, for example, in serum or urine of patients with bone marrow disorders.

13d. Biological activity of the human Flk2 ligand

In addition to acting on Flk2 receptor-expressing 3T3 cells,

the Flk2 ligand specifically stimulates proliferation of cells that naturally express the Flk2 receptor. In assays using either a human myeloid cell line or a subset of primitive hematopoietic progenitors expressing the surface phenotype CD34, the Flk2 ligand promotes proliferation but not differentiation into mature progeny. These observations suggest that the Flk2 ligand alone or in combination with other cytokines (e.g. Interleukin 1, Interleukin 3, Interleukin 6, Interleukin 11, or the kit ligand) may act to preserve or expand primitive hematopoietic progenitors in vitro and in vivo.

SUPPLEMENTAL ENABLEMENT

5

10

15

25

30

35

The invention as claimed is enabled in accordance with the above specification and readily available references and starting materials. Nevertheless, Applicants have deposited with the American Type Culture Collection, Rockville, Md., USA (ATCC) the cell lines listed below:

20 2018, ATCC accession no. CRL 10907, deposited October 30, 1991.

Fsp 62891, ATCC accession no. CRL 10935, deposited November 21, 1991.

F.thy 62891, ATCC accession no. CRL 10936, deposited November 21, 1991.

FL 62891, ATCC accession no. CRL 11005, deposited April 2, 1992.

These deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure and the regulations thereunder (Budapest Treaty). This assures

5

maintenance of a viable culture for 30 years from date of deposit. The organisms will be made available by ATCC under the terms of the Budapest Treaty, and subject to an agreement between Applicants and ATCC which assures unrestricted availability upon issuance of the pertinent U.S. patent. Availability of the deposited strains is not to be construed as a license to practice the invention in contravention of the rights granted under the authority of any government in accordance with its patent laws.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Lemischka, Ihor R.

(ii) TITLE OF INVENTION: TOTIPOTENT HEMATOPOIETIC STEM CELL RECEPTORS AND THEIR LIGANDS

(iii) NUMBER OF SEQUENCES: 11

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: ImClone Systems Incorporated

STREET: 180 Varick Street

CITY: New York

(Ú)

STATE: New York

COUNTRY: U.S.A.

F) ZIP: 10014

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk

(B) COMPUTER: IBM PC Compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS

(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US

(B) FILING DATE: 23-SEP-1993

CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/679,666

(B) FILING DATE: 02-APR-1991

(vii) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: US 07/728,913

(B) FILING DATE: 28-JUN-1991

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/793,065

(B) FILING DATE: 15-NOV-1991

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/813,593

(B) FILING DATE: 24-DEC-1991

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/906,397

(B) FILING DATE: 26-JUN-1992

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/975,049

(B) FILING DATE: 12-NOV-1992

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 07/977,451

(B) FILING DATE: 19-NOV-1992

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/005,941

(B) FILING DATE: 15-JAN-1993

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/045,272

(B) FILING DATE: 01-APR-1993

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/076022

(B) FILING DATE: 09-JUN-1993

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/080244

(B) FILING DATE: 18-JUN-1993

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/081508 (B) FILING DATE: 21-JUN-1993

PRIOR APPLICATION DATA: (vii)

(A) APPLICATION NUMBER: US 08/096759 (B) FILING DATE: 22-JUL-1993

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/125669

(B) FILING DATE: 23-SEP-1993

ATTORNEY/AGENT INFORMATION: (tiiv) (C)

(A) NAME: Feit, Irving N.(B) REGISTRATION NUMBER: 28,601

REFERENCE/DOCKET NUMBER: LEM-3-15P

TELECOMMUNICATION INFORMATION: (ix)

(A) TELEPHONE: 212-645-1405 (B) TELEFAX: 212-645-2054

(2) INFORMATION FOR SEQ ID NO:1:

SEQUENCE CHARACTERISTICS: (i)

(A) LENGTH: 3453 base pairs

TYPE: nucleic acid STRANDEDNESS: double TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

<pre>(ix) FEATURE: (A) NAME/KEY: mat_peptide (B) LOCATION: 1123006</pre>	<pre>(ix) FEATURE: (A) NAME/KEY: sig_peptide (B) LOCATION: 31111</pre>	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 313009	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	GCGGCCTGGC TACCGCGCG TCCGGAGGCC ATG CGG GCG TTG GCG CAG CGC AGC Met Arg Ala Leu Ala Gln Arg Ser -27 -25	CGG CGG CTG CTG CTT GTT GTT TTG TCA GTA ATG ATT CTT GAG Arg Arg Leu Leu Leu Leu Val Val Leu Ser Val Met Ile Leu Glu -15	GTT ACA AAC CAA GAC CTG CCT GTG ATC AAG TGT GTT TTA ATC AGT Val Thr Asn Gln Asp Leu Pro Val Ile Lys Cys Val Leu Ile Ser 1	GAG AAC AAT GGC TCA TCA GCG GGA AAG CCA TCA TCG TAC CGA ATG Glu Asn Asn Gly Ser Ser Ala Gly Lys Pro Ser Ser Tyr Arg Met 15	CGA GGA TCC CCA GAA GAC CTC CAG TGT ACC CCG AGG CGC CAG AGT Arg Gly Ser Pro Glu Asp Leu Gln Cys Thr Pro Arg Arg Gln Ser 35	GAA GGG ACG GTA TAT GAA GCG GCC ACC GTG GAG GTG GCC GAG TCT GGG
(ix)	(ix)	(ix)	(xi)	SGCCTGG	CGG Arg	GTT Val	GAG Glu 15	G CGA (1 Arg (A GGG 1
				Ö	GAC	ACC Thr	CAT His	GTG Val 30	GA

	342	390	438	486	534	582	630	678	726
Gly	TGC Cys	GAT Asp	GAG Glu	AAC Asn 125	GTG Val	CTC Leu	TGC Cys	AGA Arg	TGC Cys
Ser G	TCC TC Ser Cy	TTT G	ACA G Thr G	GCC AN	TAT G Tyr V	CTG C' Leu L	CIC I	GTC A	AGA TA
Glu S	CTT T Leu S 75	CAC I	GTG A	CGC GARG A	CTG 1 Leu 1	GCA CALA I	GTG C	Grr (Val V	ATC A
Ala	GAC Asp	CCG Pro 90	AAC Asn	GAA Glu	CAG Gln	GAT Asp	TGG Trp 170	GCT	GAC
Val	GGG G1y	CAG Gln	TTG Leu 105	AGC Ser	ACA Thr	CAG Gln	GAG Glu	CCT Pro 185	ACA Thr
Glu	CCA Pro	TGC	ATC Ile	CAG Gln 120	GAT Asp	AAC Asn	GTG Val	66c 61y	GGA Gly
va1 55	ACC Thr	66 <i>C</i> G1y	GCC Ala	ATT Ile	AGA Arg 135	GAA Glu	ACT Thr	GAA Glu	TTC
Thr	GCC Ala 70	CTG	ATG Met	CAT His	GTA Val	ATG Met 150	CCC	GAA Glu	TTG
Ala	CTC	TCC Ser 85	TCC Ser	CTC	AAT Asn	AAG Lys	GAG Glu 165	AAA Lys	GAG Glu
Ala	CAG	AGC	GTT Val 100	CTA	GTG Val	AGG Arg	CCG	TGT Cys 180	CAT His
Glu	GTG Val	CAC His	ATC Ile	TAC Tyr 115	ACA Thr	TTT Phe	GTT Val	AGC Ser	CTT
Tyr 50	CAA Gln	AAG Lys	GGA G1y	GAA Glu	TTC Phe 130	TAC	GGT Gly	GAA Glu	GTA Val
Val	CTG Leu 65	TTT Phe	AGA Arg	GGA Gly	CTG Leu	CCT Pro 145	GAG Glu	agg arg	AAG Lys
Thr	ACC Thr	GTC Val 80	AAC Asn	GCA Ala	GTA Val	AGA Arg	TCC Ser 160	CAC His	GAA Glu
G1y	ATC Ile	TGG Trp	CAA Gln 95	CAG Gln	ACA Thr	AGG Arg	ATC Ile	TCC Ser 175	GAG Glu
Glu	TCC	CTC	TTA Leu	ACC Thr 110	TAC Tyr	CTA	TGC Cys	AGC	AAG Lys

	774	822	870	918	996	1014	1062	1110	1158
205	ATA Ile	aaa Lys	CAT His	GGC Gly	CGG Arg 285	TAT Tyr	ACC Thr	TAT Tyr	GCG Ala
	ACC Thr 220	CTG	AAC Asn	GAG Glu	ATT Ile	GGA G1y 300	GTG Val	GAG Glu	AAA Lys
	TTC Phe	TTC Phe 235	GTG Val	GAG Glu	ATG Met	ACC Thr	TTG Leu 315	GAA Glu	TTT Phe
	CTG	TTA Leu	CAT His 250	CTG	ACC	GAC Asp	GCG Ala	CAA G1n 330	AGG Arg
	AAG Lys	CAG Gln	ATC Ile	GCC Ala 265	AGG Arg	AAC Asn	TCA	TCG	GTC Val 345
200	ACC Thr	CCC Pro	GCC Ala	AAA Lys	AAC Asn 280	AGG Arg	CAG Gln	AGC Ser	TCA
	TGC Cys 215	CTG	AAG Lys	GAC	ACA Thr	GGA G1y 295	AGC	ACC Thr	TTC Phe
	GAA Glu	ACA Thr 230	TGT Cys	GAA Glu	TCC	GTG Val	CCC Pro 310	GCT Ala	TGC Cys
	CGC Arg	AGC Ser	AGG Arg 245	CTG	TAC Tyr	TCC	CAC His	AAC Asn 325	TTC Phe
	66C G1Y	CAG Gln	ATC Ile	GAG Glu 260	ACC Thr	TCT	AAG Lys	ATA Ile	AAG Lys 340
195	CTG	CCT Pro	TGG Trp	TGG Trp	AGT Ser 275	GTG Val	TCA Ser	TTT Phe	GAA Glu
	GCA Ala 210	GCT Ala	TTG	ACC Thr	ATG Met	TTT Phe 290	TCC	666 G1y	TAC Tyr
	AAT Asn	CAG Gln 225	CCC	CIC	GAG Glu	GCC Ala	TCT Ser 305	AAA Lys	CCG
	AGA Arg	AAC Asn	GAA Glu 240	GGG G1y	TTT Phe	TTG	TGC Cys	GAA G1u 320	GAC Asp
	GCT	CTA	666 G1y	TTC Phe 255	TAC Tyr	CTC	ACC Thr	CTA	ATT Ile 335
190	TGT	GAT Asp	GTG Val	GGA Gly	AGC Ser 270	ATT Ile	TAC Tyr	ATC Ile	GAA Glu

1206	1254	1302	1350	1398	1446	1494	1542	1590	1638
CCT Pro 365	TGC Cys	GAT Asp	CCT Pro	GAT Asp	TCT Ser 445	GCT	ATG . Met	TCT Ser	TTC
TTT Phe	TTT Phe 380	AAT Asn	AAA Lys	TCT Ser	AAA Lys	AAG Lys 460	AAT Asn	AAT Asn	ညည
TCA Ser	AAA Lys	GAA Glu 395	AAG Lys	TCC	gac Asp	AAA Lys	CTA Leu 475	TAC Tyr	299
GCC Ala	TCT Ser	GCA Ala	AGA Arg 410	TGT Cys	TCG	AAT Asn	ACT Thr	GCG Ala 490	CCA
CAA Gln	ATA Ile	TAT Tyr	ATA Ile	TCC Ser 425	TGT Cys	TGG Trp	AGT	TGT Cys	TCA
TCT Ser 360	AGC	TTC Phe	AAT Asn	GCG Ala	AAG Lys 440	GTT Val	AGC	TGC Cys	AAC
TTC Phe	TAC Tyr 375	ATA Ile	CTG	CAG Gln	AAG Lys	GGA G1y 455	TCG	AAA Lys	TTA
ATC Ile	666 61y	TAC Tyr 390	ACG Thr	AGC Ser	TGG Trp	GAA Glu	GTG Val 470	GTC Val	TTT
TGG Trp	GAT Asp	GAG Glu	TTC Phe 405	GCC	ACC Thr	CCA	TGG Trp	CTG Leu 485	ATC
ACG Thr	GAG Glu	GGA Gly	ATG Met	TCA Ser 420	TGG Trp	ATC Ile	CAG Gln	CTT Leu	ACC
TGC Cys 355	CTG	CCA	AAA Lys	GCC	TCT Ser 435	GAA Glu	GGC	$\frac{\text{GGG}}{\text{G1}\gamma}$	GAA
CGA Arg	GGC G1y 370	AAG Lys	ACC Thr	AAT Asn	CCC	GAG Glu 450	TTT Phe	AAA Lys	TGC
ATC Ile	AGA Arg	AAC Asn 385	TTC Phe	GCA Ala	CTA	ACG Thr	GTG Val 465	666 61y	TCT
CGA Arg	CAG Gln	AAG Lys	CAG Gln 400	CTA	CCG	TGC Cys	AAA Lys	GCC Ala 480	ACG
CCA	GAA Glu	CAT His	GCC	GTG Val 415	TAC	AAT Asn	AGA Arg	GAG Glu	၁၅၅
TAC Tyr 350	TGT Cys	GAT ASP	GAC Asp	CAA Gln	GGC G1y 430	CCC	AAC Asn	AGT Ser	ATG

	1686	1734	1782	1830	1878	1926	1974	2022	2070
Phe	TGT Cys 525	AAA Lys	66C 61y	TAT Tyr	GTC Val	GGC G1y 605	AAA Lys	AAA Lys	666 G1y
Pro	CTC	TAC TYF 540	ACT	GAA Glu	AAG Lys	TAT Tyr	CTA Leu 620	CTC	CTG
Gly	666 61y	AAA Lys	GTG Val 555	TAT Tyr	666 61y	GCC	ATG Met	GAG Glu 635	CTG
Pro	ATT Ile	CAC His	CAG Gln	GAC ASP 570	TTT Phe	ACG Thr	AAG Lys	TCG Ser	AAT Asn
Ser 505	ACC Thr	TGC Cys	ATC Ile	AGG Arg	GAG G1u 585	GCC Ala	GTG Val	ATG Met	GTG Val
Asn	GCG Ala 520	ATC Ile	ATG Met	TTC Phe	TTA Leu	AAC Asn 600	GCG Ala	CTC	ATC
Leu	TAT TY r	TTG Leu 535	CAG Gln	GAC Asp	AAC Asn	ATG Met	GTG Val 615	GCT Ala	AAC Asn
Phe	TTC	GTG Val	CTG Leu 550	GTT Val	GAG Glu	GTG Val	CAG Gln	GAA G1u 630	GAC
Ile	TCC	ATT Ile	CAG Gln	TAC Tyr 565	AGA Arg	AGG Arg	ATT Ile	AAA Lys	CAT His
Thr 500	ATC Ile	CIC	AGT Ser	TTC	CCG Pro 580	GGG G1y	TCA	GAA Glu	CAC His
Glu	AAC Asn 515	GTT Val	GAG Glu	TAC Tyr	TTC Phe	TTC Phe 595	GTC Val	TGT Cys	GGA G1y
Cys	GAC Asp	GTT Val 530	TAC	GAG Glu	GAG Glu	GCT	GGA G1y 610	AGC	CTG Leu
Ser	CAA Gln	ATT Ile	AGG Arg 545	AAC Asn	TGG Trp	GGC Gly	ACG Thr	GAC Asp 625	CAC His
Thr	ATC Ile	TTC	TTT Phe	GAT Asp 560	AAG Lys	TCT Ser	AAA Lys	GCT	ACC Thr
G1y 495	TTC	CCC	CAA Gln	CTG	CTT Leu 575	666 61y	AGT Ser	AAA Lys	ATG Met
Met	CCT Pro 510	CTC	AAG Lys	CCC Pro	GAC Asp	CTG Leu 590	ATT Ile	GAG Glu	ATG Met

	2118	2166	2214	2262	2310	2358	2406	2454	2502
	TGC Cys	CAC His 685	CCT Pro	GTT Val	TCA Ser	GCA Ala	CTT Leu 765	AAG Lys	CAC His
	TGT Cys	TTT Phe	TAC Tyr 700	GAA Glu	AAT Asn	CTG	CIC	TTC Phe 780	ACC Thr
	tat Ty <i>e</i>	AAG Lys	TCT Ser	CGA Arg 715	666 G1y	AGG Arg	GAC Asp	GAG Glu	GTC Val 795
650	GAA Glu	GAG Glu	AGT Ser	TCA Ser	AAT Asn 730	AAG Lys	GAA Glu	CTG Leu	TTG
	TTT Phe 665	AGA Arg	TTC Phe	GGT Gly	TTC Phe	CAG Gln 745	TTT Phe	TTC Phe	GTG Val
	ATT Ile	AAA Lys 680	AAT Asn	CCT Pro	666 G1y	AAC Asn	ACG Thr 760	GAA Glu	AAT Asn
	TTG	AGT Ser	CAT His 695	ATG Met	TCA	GAA Glu	CTG	ATG Met 775	AGG Arg
	TAC	AGA	GAA Glu	AGC Ser 710	CTC	TAT Tyr	GTG Val	66c 61y	GCC Ala 790
645	GTG Val	CTA	AAG Lys	TCC	CAG Gln 725	GAA Glu	AAC Asn	AAA Lys	GCA
	CCA Pro 660	TAC Tyr	TTT Phe	AAT Asn	GAT Asp	ATT Ile 740	TTG	GCC Ala	CTG
	666	AAC Asn 675	ATT Ile	TCA Ser	TTG	GAG Glu	GAT ASP 755	GTG Val	GAC Asp
	TCA	CTC	GAG Glu 690	CAT His	CCC	GAT Asp	GAA Glu	CAA Gln 770	AGA Arg
	CTG	CTC	ACA Thr	GCA Ala 705	CCG	GAA Glu	GAG Glu	TAC Tyr	CAC His 785
640	ACA Thr	GAC Asp	TGG Trp	CAG Gln	CAC His 720	TCT Ser	GAG Glu	GCG Ala	GTC Val
	TGC Cys 655	GGT Gly	ACA Thr	TTC Phe	TTA	CAT His 735	GAA Glu	TTT Phe	TGT Cys
	GCA Ala	TAT TYr 670	AGG	ACT Thr	CAG Gln	ATT Ile	GAA Glu 750	TGC Cys	TCG

2550	2598	2646	2694	2742	2790	2838	2886	2934	2982
CTG	AAG Lys	AGT Ser 845	GGT Gly	CTG	666 611	CGG Arg	GAG Glu 925	GCG Ala	CAG
ATC Ile	GTG Val	AAG Lys	CTG Leu 860	AAA Lys	GAA Glu	AAG Lys	GCA Ala	CAG Gln 940	ວອວ
GAC Asp	CCG	ATC Ile	TCA	TAT TYr 875	ACA Thr	AGG Arg	CTG	AAA Lys	CAG
CGA Arg 810	CTG	ACA Thr	TTT Phe	TTC Phe	GCC Ala 890	TCA	CAG Gln	CCA	CCA
GCC	CGG Arg 825	TAC	ATA Ile	AAC Asn	TAT Tyr	GAC Asp 905	TGT Cys	CTA Leu	TCG
CTG	GCA Ala	ATC Ile 840	GAG Glu	GCT Ala	TTC	TTT Phe	GGA G1y 920	CAT His	CAG
GGA G1 <u>y</u>	AAC Asn	GGG Gly	TGG Trp 855	GAC Asp	CCA	GCT Ala	TTA Leu	ATC Ile 935	၁၁၅
TTT Phe	GGC G1y	GAA Glu	CTC	GTC Val 870	CAG Gln	TGG Trp	TTT Phe	TCC	AGA
GAC ASP 805	AGG Arg	TTT Phe	CTT Leu	CCT	GAG Glu 885	TGC	TCA	ACA Thr	CTC
TGT Cys	GTC Val 820	TTA	ATC Ile	ATT Ile	ATG Met	TCC Ser 900	ACT Thr	AGA Arg	999
ATC Ile	GTC Val	AGC Ser 835	66C G1y	66C 61y	AAA Lys	CAA Gln	CTG Leu 915	ATC Ile	299
AAG Lys	TAC	GAG Glu	TAC TYI 850	CCT Pro	TTT Phe	ATG Met	AAC Asn	TGT Cys 930	AGA
GTG Val	AGC Ser	CCC Pro	TCC	TAC Tyr 865	GGA Gly	GTA Val	CCC	GCA Ala	CAG
GTG Val 800	TCC	GCA Ala	TGG Trp	CCT	AGT Ser 880	TTT Phe	TTC Phe	GAA Glu	CAG
AAG Lys	GAC ASP 815	ATG Met	GTC Val	AAC Asn	CAG Gln	TAC TYF 895	TCC	GAA Glu	CCT
GGG G1y	AGC	TGG Trp 830	GAC Asp	GTG Val	ATT Ile	ATA Ile	CCA Pro 910	GCA	၁၁၅

3036 3096 3156 3216 3276 3336 3396 3453 CGTTGCTTCG CTGGACTTT CTCTAGATGC TGTCTGCCAT TACTCCAAAG TGACTTCTAT AAAATCAAAC CTCTCCTCGC ACAGGCGGGA GAGCCAATAA TGAGACTTGT TGGTGAGCCC GCCTACCCTG GGGGCCTTTC CACGAGCTTG AGGGGAAAGC CATGTATCTG AAATATAGTA TATTCTTGTA AATACGTGAA ACAAACCAAA CCCGTTTTTT GCTAAGGGAA AGCTAAATAT GATTTTTAAA AATCTATGTT TTAAAATACT ATGTAACTTT TTCATCTATT TAGTGATATA TAGCGAGGAG GCCTTGGACC CCGCCACCCT Ala Pro Gln Gln Arg Gly Gly Leu Arg Ala Gln Ser Pro Gln Arg Gln 945 TTTTATGGAT GGAAATAAAC TTTCTACTGT AAAAAAAAA AAAAAAAA AAAAAA GTG AAG ATT CAC AGA GAA AGA AGT Val Lys Ile His Arg Glu Arg Ser 960

(2) INFORMATION FOR SEQ ID NO:2:

- SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 992 amino acids
 - (B) TYPE: amino acid(D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Arg Ala Leu Ala Gln Arg Ser Asp Arg Arg Leu Leu Leu Leu val -27 -25 -15

Val Leu Ser Val Met Ile Leu Glu Thr Val Thr Asn Gln Asp Leu Pro

Glu Glu Gly Pro Ala Val Val Arg Lys Glu Glu Lys Val Leu His Glu 185

Ser Ala 20 Glu 165 Lys Ser Tyr Arg Met Val Arg Gly Ser Pro Glu Asp Leu Tyr Glu Ala Ala Ala Thr Pro Gly Asp Leu Ser Cys Leu Trp Val Phe Lys His Ser Ser 70 80 85 Met Ala Ile Leu Asn Val Thr Glu Thr Gln Ala Gly Glu Tyr Leu Leu Gln Ser Glu Arg Ala Asn Tyr Thr Val Leu Phe Thr Val Asn 120 Arg Asp Thr Gln Leu Tyr Val Leu Arg Arg Pro Tyr Phe Arg Lys Thr Val Glu Val Ala Glu Ser Gly Ser Ile Thr Leu Gln Val Gln Leu Ser Glu Gly Val Pro Leu Gly Cys Gln Pro His Phe Asp Leu Gln Asn Arg Gly Ile Val Val Ile Lys Cys Val Leu Ile Ser His Glu Asn Asn Gly Ser Ser His Arg Glu Ser Gln Cys Thr Pro Arg Arg Gln Ser Glu Gly Thr Val Met Glu Asn Gln Asp Ala Leu Leu Cys Ile Pro Thr Val Glu Trp Val Leu Cys Ser Gly Lys Pro Ser Val

Cys Cys Ala Arg Asn Ala Leu Gly Arg 205 Gly Thr Asp Ile Arg 200 Leu Phe

Gln Ala Pro Gln 225 Thr Ile Asp Leu Asn 220 Thr Lys Leu Phe Glu

Cys 215

Glu Pro Leu Trp Ile 240 G1yThr Leu Pro Gln Leu Phe Leu Lys Val 230

Len Phe Gly Leu Thr 255 Val Asn His Gly His 250 Ile Lys Ala

 Thr Tyr Phe Glu Met Ser 270 G1yLeu Glu Glu Ala 265

Ser Val Phe 290 Ile Leu Leu Ala Arg 285 Arg Thr Met Ile

Ser Ser Lys His Ser 305 Cys Tyr Tyr Thr G1y ' Thr Arg Asn Asp

Ser Gln Ser Ala Leu Val Thr Ile Leu Glu Lys Gly Phe Ile 320

Gln Glu Glu Tyr Glu Ile Asp Pro Tyr Glu Lys 330 Ser

Val Arg Phe Lys Ala Tyr Pro Arg Ile Arg 345

Gln Ala Ser Phe Pro Cys Glu Gln Arg Gly Leu Glu Asp 365 Ile Phe Ser

Glu Ser Ile Ser Lys Phe Cys Asp His Lys Asn Lys Pro Gly 380 G1y

Tyr Ile Phe Tyr Ala Glu Asn Asp Asp Ala Gln Phe Thr Lys Met Phe

Val

Asn 280

Glu Asp Lys

405	Ala	Thr	Pro	Trp	Leu 485	Ile	Ser	Ile	Gln	TY <i>r</i> 565	Arg	Arg
	Ser 420	Trp	Ile	Gln	Leu	Thr 500	Ile	Leu	Ser	Phe	Pro 580	G1y
	Ala	Ser 435	Glu	$_{ m G1y}$	$_{ m G1y}$	Glu	Asn 515	Val	Glu	Tyr	Phe	Phe 595
	Asn	Pro	Glu 450	Phe	Lys	Cys	Asp	Val 530	Tyr	Glu	Glu	Ala
	Ala	Leu	Thr	val 465	Gly	Ser	Gln	Ile	Arg 545	Asn	Trp	Gly
400	Leu	Pro	Cys	Lys	Ala 480	Thr	Ile	Phe	Phe	Asp 560	Lys	Ser
	Val 415	Tyr	Asn	Arg	Glu	G1y 495	Phe	Pro	Gln	Leu	Leu 575	Gly
	Gln	G1y 430	Pro	Asn	Ser	Met	Pro 510	Leu	Lys	Pro	Asp	Leu 590
	Pro	Asp	Ser 445	Ala	Met	Ser	Phe	Cys 525	Lys	Gly	Tyr	Val
	Lys	Ser	Lys	Lys 460	Asn	Asn	Pro	Leu	Tyr 540	Thr	Glu	Lys
395	Lys	Ser	Asp	Lys	Leu 475	Tyr	Gly	Glγ	Lys	Val 555	Tyr	Glγ
	Arg 410	Cys	Ser	Asn	Thr	Ala 490	Pro	11e	ຜ	Gln	Asp 570	Phe
		0	S	Æ	H	A 4	ቯ	F	His	ច	A io	Ā
	Ile /		Cys s	Trp A	Ser T	Cys A	Ser P1 505	Thr 13	Cys Hi	ile G	Arg As	Glu P 585
	Ile	Ser 425									מ	
			s Cys	Trp	Ser	Cys	Ser 505	Thr	Cys	Ile	Arg	G1u 585
390	Asn Ile	Ala Ser 425	Lys Cys 440	Val Trp	Ser Ser	Cys Cys	Asn Ser 505	Ala Thr 520	Ile Cys	Met Ile	Phe Arg	Leu Glu 585

Val Met Asn Ala Thr Ala Tyr Gly Ile Ser Lys Thr Gly Val Ser Ile 600 Gln Gln Val Ala Val Lys Met Leu Lys Glu Lys Ala Asp Ser Cys Glu Lys 615 625 Ser Glu Leu Lys Met Met Thr His Leu Gly His His 635 Val Ser Tyr Glu Asn Gln Lys Arg Leu Ala Glu Glu Glu Glu Asp Leu Asn 755 Ala Arg Asn Val Leu Val Thr His Gly Lys Val Val Lys Ile Cys Asp Tyr Gly Asp Leu Leu Asn Tyr Leu 670 675 Glu Ile Phe Lys Val Leu Thr Phe Glu Asp Leu Leu Cys Phe Ala Tyr Gln Val Ala Lys 760 Met Glu Phe Leu Glu Phe Lys Ser Cys Val His Arg Asp Leu Ala 775 Tyr Pro Thr Phe Gln Ala His Ser Asn 700 Gly Phe Asn Gly Asn Ser Ile His Ser Glu Asp Glu Ile Gln Leu His Pro Pro Leu Asp 720 Asn Leu Leu Gly Ala Cys Thr Leu Ser Gly 650 Arg Glu Lys Phe His Arg Thr Trp Thr 685 Tyr Leu Ile Phe Glu Tyr Cys Cys 665 Ser Arg Glu Val Ser Ser His Asn Phe 695 Glu Ala Leu Met 630 Ser Met Pro Gly Ile Val $_{
m Gly}$ Glu

802	Arg	Phe	Leu	Pro	G1u 885	Cys	Ser	Thr	Leu	Ser 965
	Val 820	Leu	Ile	Ile	Met	Ser 900	Thr	Arg	Gly	Arg
	Val	Ser 835	Gly	$_{ m G1y}$	Lys	Gln	Leu 915	Ile	Gly	Glu
	Tyr	Glu	Tyr 850	Pro	Phe	Met	Asn	Cys 930	Arg	Arg
	Ser	Pro	Ser	Tyr 865	Gly	Val	Pro	Ala	Gln 945	His
800	Ser	Ala	Trp	Pro	Ser 880	Phe	Phe	Glu	Gln	11e 960
	Asp 815	Met	Val	Asn	Gln	Tyr 895	Ser	Glu	Pro	Lys
	Ser	Trp 830	Asp	Val	Ile	Ile	Pro 910	Ala Glu	Ala	Gln Val
	Leu	Lys	Ser 845	Glу	Leu	G1y	Arg	Glu 925	Ala	Gln
	Ile	Val	Lys	Leu 860	Lys	Glu	Lys	Ala	Gln 940	Arg
795	Asp	Pro	Ile	Ser	Tyr 875	Thr	Arg	Leu	Lys	Gln 955
	Arg 810	ren	Thr	Phe	Phe	A1a 890	Ser	Gln	Pro	Pro
	Ala	Arg 825	Tyr	Ile	Asn	Tyr	Asp 905	Cys	Leu	Ser
	Leu	Ala	11e 840	Glu	Ala	Phe	Phe	G1y 920	His	Gln
	$_{ m Gly}$	Asn	Gly	Trp 855	Asp	Pro	Ala	ren	11e 935	Ala
190	Phe	$_{ m G1y}$	Glu	Leu	val 870	Gln	Trp	Phe	Ser	Arg 950
						7.0				

(2) INFORMATION FOR SEQ ID NO:3:

	201	249	297	345	393	441	489	537	585
Val 5	666 G1y	666 Gly	GCT Ala	GAT Asp	CTG Leu 85	ATG Met	TTT Phe	ATA Ile	ATG Met
Pro	GTG Val 20	CTC	GCC Ala	GTC Val	TCC	TCC Ser 100	CTT	AGT Ser	AAA Lys
Leu	TCA Ser	GAC ASP 35	GCT	CTG	AGC Ser	GTT Val	CTA Leu 115	GTG Val	AGA Arg
Asp	TCA	GAA Glu	GAA Glu 50	GTG Val	CAC His	GTT Val	TAC Ty e	ACA Thr 130	TTT Phe
Gln Asp Leu 1	GAT Asp	CCG	тас Туг	CAA Gln 65	AAG Lys	GGA Gly	GAA Glu	TTT Phe	TAC Tyr
Asn	AAT Asn	TCC	GTG Val	CTG	TTT Phe 80	AGA Arg	GGA Gly	TTG Leu	CCT
Thr	AAC Asn 15	GAA Glu	ACA Thr	ACA Thr	GTC Val	AAC Asn 95	GCT Ala	ATA Ile	AGA Arg
Ile	AAG Lys	TCA Ser 30	666 G1y	ATC Ile	TGG Trp	CAA Gln	CAA Gln 110	ACA Thr	AGA Arg
\mathtt{Thr}	CAT His	GTA Val	TCA Ser 45	TCC Ser	CTC	TTA Leu	ACC Thr	TAC TYr 125	TTA
G1y -5	AAT Asn	ATG Met	AGC Ser	GCT Ala 60	TGT Cys	GAT Asp	GAA Glu	AAT Asn	ACA Thr
Phe	ATC Ile	CCC Pro	CAG Gln	TCT Ser	TCC Ser 75	TTT Phe	ACA Thr	ACC Thr	TAC
11e	TTA Leu 10	TAT Tyr	CCC Pro	GTA Val	ATT Ile	CAT His 90	ATG Met	GCT Ala	CTT
Met	GTT Val	TCA Ser 25	AGA Arg	GAT Asp	AAC Asn	CCA	AAA Lys 105	GAA Glu	CTG
Ala	TGT Cys	TCA	TTG Leu	GTG Val	666 G1y	CAG Gln	TTG Leu	AGT Ser 120	ACC Thr
Ser -10	AAG Lys	TCA	GCG Ala	GAA Glu 55	CCA	TGC	ATT Ile	CAG Gln	AAT Asn
Phe	ATC Ile	AAG Lys	TGT Cys	GTG Val	GCC Ala 70	AAT Asn	GTC Val	ATT Ile	AGA Arg

	633	681	729	777	825	873	921	696	1017
	CCG Pro 165	GAA Glu	TTA Leu	GAA Glu	ACA Thr	TGC Cys 245	GAA Glu	TCA	GTG Val
	GAG Glu	AAA Lys 180	GAA Glu	AGG Arg	ACC Thr	AGG Arg	TTA Leu 260	TAT Tyr	TCA Ser
	CCA	TGT Cys	CAT His 195	66C G1y	CAG Gln	ATA Ile	GAA Glu	ACC Thr 275	TCA
	GTT Val	AGC Ser	CTT	CTG Leu 210	CCT	TGG Trp	TGG Trp	AGT Ser	GTA Val 290
145	AGC Ser	GAA Glu	GTG Val	GAA Glu	ACT Thr 225	TTA	ACC Thr	ATG Met	TTT Phe
	GAG Glu 160	666 61y	AAA Lys	AAT Asn	CAA Gln	CCC Pro 240	CTC	GAG Glu	GCT Ala
	TCT Ser	CAG Gln 175	GAA Glu	AGA Arg	AAT Asn	GAA Glu	GGG G1y 255	TTT Phe	TTT Phe
	ATA Ile	TCA Ser	GAG Glu 190	GCC Ala	CTA Leu	666 G1y	TTC Phe	TAC TYT 270	CTG
	TGC Cys	GAT Asp	AAG Lys	TGT Cys 205	GAT Asp	GTA Val	GGA Gly	AAC Asn	ATT Ile 285
140	GTC Val	TGC Cys	AAA Lys	TGC Cys	ATA Ile 220	AAA Lys	CAT His	66c 61y	CGG Arg
	CTG Leu 155	CTT	GTT Val	AGG Arg	ACA Thr	CTT Leu 235	AAC Asn	GAG Glu	ATA Ile
	GCC Ala	GTG Val 170	GTT Val	ATA Ile	TTC Phe	TTT Phe	GTG Val 250	GAG Glu	ATG Met
	GAC Asp	TGG Trp	GCT Ala 185	GAC Asp	CTG	TTA Leu	CAT His	CTC Leu 265	ACT Thr
	CAG Gln	GAA Glu	CCA	ACG Thr 200	AGG Arg	CAA Gln	GTT Val	GCA Ala	AGA Arg 280
135	AAC Asn	GTG Val	AGT Ser	666 G1y	ACC Thr 215	CCA	GCT Ala	AAA Lys	AAC Asn
	GAA Glu 150	ATC Ile	GAA Glu	TTT Phe	TGC	TTG Leu 230	AAA Lys	AAC	ACA

1065	1113	1161	1209	1257	1305	1353	1401	1449	1497
CCC	GCT Ala 325	TGT Cys	ACC Thr	GGA Gly	\mathtt{TAT}	ACG Thr 405	AGT Ser	TGG Trp	GAA
CAT His	AAT Asn	TTT Phe 340	TGG Trp	AAC Asn	GAA Glu	TTC Phe	GCA Ala 420	ACC Thr	ACA
AAG Lys	ATA Ile	GAG Glu	ACG Thr 355	GAT Asp	GGA Gly	A TG Met	TCG Ser	TGG Trp 435	ATC
TCA	TTT Phe	GAA Glu	TGT Cys	CTT Leu 370	CCA Pro	AAA Lys	GCA Ala	TCT	GAG
rcr Ser 305	GGA Gly	TAT TYE	AGA Arg	GGT Gly	CAG Gln 385	ACC Thr	GAA Glu	CCA Pro	GAA
rcc Ser	AAG Lys 320	CAA Gln	ATC Ile	AAG Lys	CAC His	TTT Phe 400	GCA Ala	TTA	ACA
TGT	GGA G1y	GAC Asp 335	CAA Gln	CAA Gln	AAG Lys	CAA Gln	CTC Leu 415	CCA Pro	IGC
ACT Thr	GTA Val	ATT Ile	CCA Pro 350	GAG Glu	CAT His	GCC	GTG Val	TAC Tyr 430	AAC
TAC Tyf	ATC Ile	GAA Glu	TAC	TGT Cys 365	AAT Asn	GAT Asp	CAA Gln	GGA G1y	၁၁၁
TAC TYF 300	ACC Thr	тат Туг	GCC	CCT Pro	TGC Cys 380	GAT Asp	CCT	GAT Asp	TCT
GGA Gly	GTT Val 315	GAT Asp	AAA Lys	TTT Phe	TTT Phe	AAT Asn 395	AAA Lys	TCG Ser	AAG
ACC Thr	TTG	GAA Glu 330	TTT Phe	TCA	AAG Lys	GAA Glu	AGG Arg 410	TTC Phe	GAC
GAC Asp	GCT Ala	AGT Ser	AGG Arg 345	AAA Lys	TCC	GCA Ala	AGA Arg	TGT Cys 425	TCA
AAC Asn	TCA	TCA Ser	GTC Val	CGA Arg 360	ATA Ile	CAT His	ATA Ile	TCC	TGT
AGA Arg 295	CAA Gln	AAT Asn	TCT Ser	TCT Ser	AGC Ser 375	TTC Phe	AAT Asn	GCG Ala	AAG
GCA Ala	AGT Ser 310	ACC Thr	TTT Phe	TTC Phe	TAC Tyr	ATA Ile 390	CTG	CAG Gln	AAG

	1545	1593	1641	1689	1737	1785	1833	1881	1929
	·								
Glu	GTG Val	GTC Val 485	CTT	TTC Phe	CTG	CTA	GTT Val 565	GAA Glu	GTG Val
Thr	TGG Trp	CTG	ATC 11e 500	TCA	ACC Thr	CAG Gln	TAC Tyr	AGA Arg 580	AAA Lys
Ile	CAG Gln	TTC Phe	ACG Thr	ATC 11e 515	TTA Leu	AGC	TTC Phe	CCA	GGA Gly
Glu 450	GGA Gly	666 61y	GAG Glu	AAC Asn	GTT Val 530	GAA Glu	TAC Tyr	TTT Phe	TTT Phe
Glu	TTT Phe 465	AAA Lys	TGT Cys	GAC Asp	GTC Val	TAT TYr 545	GAG Glu	GAG Glu	GCT Ala
Thr	GTG Val	ATA Ile 480	TCT Ser	CAA Gln	ATT Ile	AGG Arg	AAT Asn 560	TGG Trp	$_{\rm GLY}^{\rm GGT}$
Cys	AAA Lys	GCC Ala	ACA Thr 495	ATC Ile	TTC Phe	TTT Phe	GAT Asp	AAA Lys 575	TCA
Asn	aga Arg	GAA Glu	66C 61Y	TTC Phe 510	CTC	CAA Gln	TCA	CIC	GGA Gly
Pro 445	AAC Asn	AGT Ser	CTT	CCT	CTC Leu 525	AAG Lys	TCC	GAT Asp	CTA Leu
Ser	GCT Ala 460	ATG Met	TCC	TTC Phe	TGT Cys	AAA Lys 540	GGC Gly	TAT Tyr	GTA Val
Lys	AAG Lys	AAC Asn 475	AAT Asn	CCC Pro	GTT Val	TAC Tyr	ACC Thr 555	GAA Glu	AAG Lys
Asp	aga Afg	CTA	TAC TYr 490	66c 61y	GGT Gly	AAG Lys	GTG Val	TAT Tyr 570	$_{\rm GGG}$
Ser	AAT Asn	ACT Thr	GCA	CCA Pro 505	ATT Ile	CAC His	CAG Gln	GAA Glu	TTT Phe
Cys 440	TGG Trp	AGT Ser	TGT Cys	TCT Ser	ACA Thr 520	TGT Cys	GTA Val	aga arg	GAG Glu
Lys	GTC Val 455	AGC Ser	TGC	AAC Asn	GCA Ala	ATT Ile 535	ATG Met	TTC Phe	TTA
Lys	GGA Gly	TCG Ser 470	AAG Lys	TTA	TAT Tyr	CTA	CAG Gln 550	GAT Asp	AAT Asn

	1977	2025	2073	2121	2169	2217	2265	2313	2361
	CAG Gln	GAG Glu	GAG Glu 645	TAC Tyr	AGA Arg	GAA Glu	AGC	ATC Ile 725	TAT Tyr
	ATC Ile	AGA Arg	CAC His	ATT Ile 660	CTA	AAG Lys	TCC	CAA Gln	GAA Glu 740
595	TCA	GAA Glu	AGC Ser	CCA	TAT Tyr 675	TTC	AAT Asn	GAT Asp	ATT Ile
	GTC Val 610	TCT Ser	GGA Gly	GGA G1y	AAC Asn	ATT Ile 690	CCA Pro	TCG	GAA Glu
	GGA Gly	AGC Ser 625	CTG	TCA	CTC	GAG Glu	CAT His 705	GAC Asp	GAT Asp
	ACA Thr	gac Asp	CAG Gln 640	CTG	CTT	ACA Thr	TCA	CCG Pro 720	GAA Glu
	AAA Lys	GCA Ala	ACC Thr	ACA Thr 655	GAT Asp	TGG Trp	CAA Gln	CAC His	TCT Ser 735
590	AGC	AAA Lys	ATG Met	TGC	GGT G1y 670	ACT Thr	TTC Phe	ATA Ile	CAC His
	ATT Ile 605	GAA Glu	ATG Met	GCG Ala	TAT Tyr	AGG Arg 685	ACT Thr	CAG Gln	TTT Phe
	GGA Gly	AAA Lys 620	AAG Lys	666 61y	TGC Cys	CAC His	CCC Pro 700	GTT Val	TCA
	TAT Tyr	CTG	CTC Leu 635	CTG	TGT Cys	TTT Phe	TAC Tyr	GAA Glu 715	AAT Asn
	GCT	ATG Met	GAA Glu	CTG Leu 650	TAC	AAA Lys	TTT Phe	AGA Arg	GGG G1y 730
585	ACA	AAA Lys	TCA	AAC Asn	GAA Glu 665	GAA Glu	AGT Ser	TCA	CAT His
	GCA Ala 600	GTC Val	ATG Met	GTG Val	TTT Phe	AGA Arg 680	TTC Phe	GGT Gly	CTT
	AAC Asn	GCC Ala 615	CTC	ATT Ile	ATT Ile	AAA Lys	AAT Asn 695	CCT	666 G1y
	ATG Met	GTT Val	GCA Ala 630	AAT Asn	TTG Leu	AGT Ser	CAC His	ATG Met 710	TCA

2409	2457	2505	2553	2601	2649	2697	2745	2793	2841
ACA Thr	GAA Glu	AAC Asn	ເີດ 35	ည် ရ	ည် စ	₹ ¤	Εœ	ក្នុម្ភា	Ē.
			TTG Leu 805	GCC	ATC	GAA Glu	GCT	TTT Phe 885	TTT
CTT	ATG	agg Arg	GGA Gly	AAT Asn 820	66C G1Y	TGG Trp	GAT Asp	CCA Pro	GCT
GTG Val 755	GGA Gly	GCC Ala	TTT Phe	GGC G1y	GAA Glu 835	CTG	GTT Val	CAG Gln	TGG
AAT Asn	AAA Lys 770	GCC Ala	gac Asp	agg Arg	TTT Phe	TTA Leu 850	CCG Pro	GAT Asp	TGC
TTG	GCC Ala	CTG Leu 785	TGT Cys	GTC Val	CTG	ATA Ile	ATT Ile 865	ATG Met	TCC
GAC Asp	GTT Val	GAC Asp	ATA Ile 800	GTT Val	AGC Ser	GGA Gly	66c 61y	AAA Lys 880	CAA
GAG Glu	CAA Gln	aga Afg	AAG Lys	TAT Tyr 815	GAA Glu	TAT Tyr	CCT	TTT Phe	ATG
GAG G1u 750	TAT Tyr	CAC His	GTG Val	AAC Asn	CCC Pro 830	TCA Ser	TAC Tyr	GGA Gly	ATA
GAA Glu	GCA Ala 765	GTT Val	GTG Val	TCC	GCC Ala	TGG Trp 845	CCT	AAT Asn	ATT
GAA Glu	TTT Phe	TGT Cys 780	AAA Lys	GAT Asp	ATG Met	GTC Val	AAT Asn 860	CAA Gln	TAC
CTG	TGC Cys	TCG	GGG G1y 795	AGT Ser	TGG Trp	GAT Asp	GTG Val	ATT Ile 875	ATA
AGG Arg	CTT	AAG Lys	CAC His	ATG Met 810	AAA Lys	AGT Ser	GGT Gly	CTG	GAA
AAA Lys 745	CLL	TTT Phe	ACC Thr	ATC Ile	GTA Val 825	AAG Lys	CTT Leu	AAA Lys	GAA
CAA Gln	GAT ASP 760	GAA Glu	GTC Val	GAT Asp	CCT	ATT 11e 840	TCA	TAC Tyr	ACA
AAC Asn	GAA Glu	CTG Leu 775	CTT	CGA Arg	CTG	ACC Thr	TTC Phe 855	TTC Phe	GCT
GAA Glu	TTT Phe	TTT Phe	GTG Val 790	GCT Ala	CGT Arg	TAC Tyr	ATC Ile	AAC Asn 870	TAT

	2889	2937	2985	3033	3086	3146	3206	3266	3326	3386	3446	3501
p Ala Phe 900	T TTA GGA e Leu Gly 5	G GAT GGC 1 Asp Gly	T TTC AGC o Phe Ser	c GAA GAT 1 Glu Asp 965	Taac	ATTATCAACT	TCAAAGGGAC	ACTTTATTGG	TACCTGAAGT	GCTAATATGA	TGATATATT	AAAAA
Gln Ser Cys Trp Ala 900	ACT TCG TTT Thr Ser Phe	CAG AAT GTG Gln Asn Val 930	AAC AGG CGA CCT Asn Arg Arg Pro 945	GCT CAG GTC Ala Gln Val	CACC TATCCCTAAC	AAGAAAATCT	ACTCTTGTTT	CTGATAATGA ACTTTATTGG	GTGAATTGTG	CTAAGGAGAA	AGCTATTTAG	CTACTACAGA AAAAAAAAA AAAAAAAAA AAAAA
Ile Met 895	CCT AAT TTG Pro Asn Leu 910	GCG ATG TAT Ala Met Tyr	TAC CAA Tyr Gln	TCT CCG CAG Ser Pro Gln 960	TTCA TCCCTC	TCATCACTAA	GTCTGCGTTT	GCAGGAGGAG	GCCGGCTTGA	CATAAAACAA AAGCATTTTG	TAAATTTTTC	AAAAAAAAA
ile Tyr ile	CCA TCC TTC Pro Ser Phe	GCA GAA GAA Ala Glu Glu 925	CCT CAC ACC Pro His Thr 940	GGG CTA CTC GIY Leu Leu 955	TAGAGGAACA ATTTAGTTTT AAGGACTTCA TCCCTCCACC	AGGCTGTAGA TTACCAAAAC AAGATTAATT TCATCACTAA AAGAAAATCT ATTATCAACT	GCTGCTTCAC CAGACTTTTC TCTAGAAGCC	TTTTGTAAAA TCAAATCATC CTGTCACAAG GCAGGAGGAG	TGCATCCAAG GCCTTCTCAG GCCGGCTTGA		AAATAATATG	CTACTACAGA
Thr Glu Glu 890	AGG AAA CGG (Arg Lys Arg 1 905	GCA GAT Ala Asp	TCG GAA TGT C Ser Glu Cys F	GAT TTG Asp Leu	AACA ATTTAG	TTACCAAAAC	CAGACTTTTC	TCAAATCATC	TGCATCCAAG	CTTGTAAATA	CTATGTTTTA	TATGGGTGGG AATAAAATTT
Tyr Ala T	GAC TCA A(Asp Ser A)	TGT CAG CTG Cys Gln Leu 920	CGT GTT TC Arg Val Se 935	AGA GAG ATG Arg Glu Met 950	TCG TAGAGG Ser	AGGCTGTAGA	GCTGCTTCAC	TTTTGTAAAA	AGCATTGATC	ACAGTATATT	TTTTTTAAGT	TATGGGTGGG

- (2) INFORMATION FOR SEQ ID NO:4:
- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 993 amino acids (B) TYPE: amino acid
 - TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Pro Ala Leu Ala Arg Asp Ala Gly Thr Val Pro Leu Leu Val Val -27 -25

Phe Ser Ala Met Ile Phe Gly Thr Ile Thr Asn Gln Asp Leu Pro Val $^{-10}\,$

Ile Lys Cys Val Leu Ile Asn His Lys Asn Asn Asp Ser Ser Val Gly 10

Lys Ser Ser Tyr Pro Met Val Ser Glu Ser Pro Glu Asp Leu Gly 25

Cys Ala Leu Arg Pro Gln Ser Ser Gly Thr Val Tyr Glu Ala Ala Ala 40

Val Glu Val Asp Val Ser Ala Ser Ile Thr Leu Gln Val Leu Val Asp 55

Ala Pro Gly Asn Ile Ser Cys Leu Trp Val Phe Lys His Ser Ser Leu 70 85

Asn Cys Gln Pro His Phe Asp Leu Gln Asn Arg Gly Val Val Ser Met

Val Ile Leu Lys Met Thr Glu Thr Gln Ala Gly Glu Tyr Leu Leu Phe 105

Ser Gln Ser Ala Leu Val Thr Ile Val Gly Lys Gly Phe Ile Asn Ala

Glu Glu Ser Val Pro Glu Pro 160 Arg Leu Phe Thr Ile Asp Leu Asn Gln Thr Pro Gln Thr Thr 225 Thr Leu Leu Tyr Thr Leu Arg Arg Pro Tyr Phe Arg Lys Met 140 Ile Gln Ser Glu Ala Thr Asn Tyr Thr Ile Leu Phe Thr Val Ser 120 Cys Ala Arg Asn Glu Leu Gly Arg 205 Ser Lys His Arg Val Asn His Gly Phe Gly Leu Thr Trp Glu Leu 250 Ser Thr 275 Gln Gly Glu Ser Cys 175 Val Val Lys Lys Glu Glu Lys Val Leu His 190 Pro Gln Leu Phe Leu Lys Val Gly Glu Pro Leu Trp Ile 240 Val Asn Asp Thr Gly Tyr Tyr Thr Cys Ser Ser 305 Ile Arg Ile Leu Phe Ala Phe Leu Glu Glu Gly Asn Tyr Phe Glu Met 265 Glu Asn Gln Asp Ala Leu Val Cys Ile Ser 150 Ile Val Glu Trp Val Leu Cys Asp Ser
170 Thr Asp Ile Arg Cys 200 Thr Asn Arg Thr Met 280 Glu Ser Pro Ala 185 His Lys Ala Val Ala Arg 1 295 Arg cys

	20	6 1	. .	u	L IO	Li	٥.	5		2	5	o)
325	Cys	Thr	Gly	Τγr	Thr 405	Ser	Trp	Glu	Val	Va 48	Leu	Phe
	Phe 340	Trp	Asn	Glu	Phe	Ala 420	Thr	Thr	Trp	Leu	11e 500	Ser
	Glu	Thr 355	Asp	$_{ m G1y}$	Met	Ser	Trp 435	Ile	Gln	Phe	Thr	11e 515
	Glu	Cys	Leu 370	Pro	Lys	Ala	Ser	Glu 450	Gly	Gly	Glu	Asn
	Tyr	Arg	$_{\mathrm{Gly}}$	Gln 385	Thr	Glu	Pro	Glu	Phe 465	Lys	Cys	Asp
320	Gln	Ile	Lys	His	Phe 400	Ala	Leu	Thr	Val	Ile 480	Ser	Gln
	Asp 335	Gln	Gln	Lys	Gln	Leu 415	Pro	Cys	Lys	Ala	Thr 495	11e
	Ile	Pro 350	Glu	His	Ala	Val	TYr 430	Asn	Arg	Glu	Glγ	Phe 510
	Glu	Tyr	Cys 365	Asn	Asp	Gln	$_{ m G1y}$	Pro 445	Asn	Ser	Leu	Pro
	Tyr	Ala	Pro	Cys 380	Asp	Pro	Asp	Ser	Ala 460	Met	Ser	Phe
315	Asp	Lys	Phe	Phe	Asn 395	Lys	Ser	Lys	Lys	Asn 475	Asn	Pro
	Glu 330	Phe	Ser	Lys	Glu	Arg 410	Phe	Asp	Arg	Leu	TYT 490	$_{ m G1y}$
	Ser	Arg 345	Lys	Ser	Ala	Arg	Cys 425	Ser	Asn	Thr	Ala	Pro 505
	Ser	Val	Arg 360	Ile	His	Ile	Ser	Cys 440	Trp	Ser	Cys	Ser
	Asn	Ser	Ser	Ser 375	Phe	Asn	Ala	Lys	Val 455	Ser	Cys	Asn
310	Thr	Phe	Phe	Tyr	11e 390	Ten	Gln	Lys	Gly	Ser 470	Lys	Leu

Leu	Leu	Val 565	Glu	Val	Gln	Glu	G1u 645	Tyr	Arg	Glu	Ser	Ile
Thr	Gln	Tyr	Arg 580	Lys	Ile	Arg	His	11e 660	Leu	Lys	Ser	Gln
Leu	Ser	Phe	Pro	G1y 595	Ser	Glu	Ser	Pro	Tyr 675	Phe	Asn	Asp
Val 530	Glu	Tyr	Phe	Phe	Val 610	Ser	Gly	Gly	Asn	11e 690	Pro	Ser
Val	Tyr 545	Glu	Glu	Ala	Gly	Ser 625	Leu	Ser	Leu	Glu	His 705	Asp
Ile	Arg	Asn 560	Trp	Glγ	Thr	Asp	Gln 640	Leu	Leu	Thr	Ser	Pro
Phe	Phe	Asp	Lys 575	Ser	Lys	Ala	Thr	Thr 655	Asp	Trp	Gln	His
Leu	Gln	Ser	Leu	Gly 590	Ser	Lys	Met	Cys	G1y 670	Thr	Phe	Ile
Leu 525	Lys	Ser	Asp	Leu	11e 605	G1 u	Met	Ala	Tyr	Arg 685	Thr	Gln
Cys	Lys 540	Gly	Tyr	Val	$_{ m G1y}$	Lys 620	Lys	$\mathtt{Gl}\mathtt{y}$	Cys	His	èro 700	Val
Val	Tyr	Thr 555	Glu	Lys	Τγr	Leu	Leu 635	Leu	Cys	Phe	Tyr	Glu
Gly	Lys	Val	Tyr 570	Gly	Ala	Met	Glu	Leu 650	Tyr	Lys	Phe	Arg
Ile	His	Gln	Glu	Phe 585	Thr	Lys	Ser	Asn	Glu 665	Glu	Ser	Ser
Thr 520	Cys	Val	Arg	Glu	Ala 600	Val	Met	Val	Phe	Arg 680	Phe	Gly
Ala	Ile 535	Met	Phe	Leu	Asn	Ala 615	Leu	Ile	Ile	Lys	Asn 695	Pro
Tyr	Leu	Gln 550	Asp	Asn	Met	Val	Ala 630	Asn	Leu	Ser	His	Met

725	Tyr	Thr	Glu	Asn	Leu 805	Ala	Ile	Glu	Ala	Phe 885	Phe	$_{ m G1y}$
	Glu 740	ren	Met	Arg	$_{ m G1y}$	Asn 820	Gly	Trp	Asp	Pro	Ala 900	Leu
	11e	Val 755	Gly	Ala	Phe	G1y	G1u 835	Leu	Val	Gln	Trp	Phe 915
	Glu	Asn	Lys 770	Ala	Asp	Arg	Phe	Leu 850	Pro	Asp	Cys	Ser
	Asp	Leu	Ala	Leu 785	Cys	Val	Leu	Ile	11e 865	Met	Ser	Thr
720	Glu	Asp	Val	Asp	11e 800	Val	Ser	Gly	Gly	Lys 880	Gln	Asn Leu
	Ser 735	Glu	Gln	Arg	Lys	Tyr 815	Glu	Tyr	Pro	Phe	Met 895	
	His	G1u 750	Tyr	His	Val	Asn	Pro 830	Ser	Tyr	Gly	Ile	Pro 910
	Phe	Glu	Ala 765	Val	Val	Ser	Ala	Trp 845	Pro	Asn	Ile	Phe
	Ser	Glu	Phe	Cys 780	Lys	Asp	Met	Val	As n 860	Gln	Tyr	Ser
715	Asn	Leu	Cys	Ser	G1y 795	Ser	Trp	Asp	Val	11e 875	Ile	Pro
	G1y 730	Arg	Leu	Lys	His	Met 810	Lys	Ser	Glγ	Leu	G1u 890	Arg
	His	Lys 745	Leu	Phe	Thr	Ile	Val 825	Lys	Leu	Lys	Glu	Lys 905
	Leu	Gln	Asp 760	Glu	Val	Asp	Pro	11e 840	Ser	Tyr	Thr	Arg
	$_{ m G1y}$	Asn	Glu	Leu 775	Leu	Arg	Leu	Thr	Phe 855	Phe	Ala	Ser
710	Ser	Glu	Phe	Phe	Val 790	Ala	Arg	Τγr	Ile	Asn 870	Tyr	Asp

Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 920

Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser 935

Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 950 955

(2) INFORMATION FOR SEQ ID NO:5:

(A) LENGTH: 5406 base pairs (i) SEQUENCE CHARACTERISTICS:

(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(v) FRAGMENT TYPE: N-terminal

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 208..4311

FEATURE: (ix)

(A) NAME/KEY: mat_peptide (B) LOCATION: 265..4308

(ix) FEATURE:

(A) NAME/KEY: sig_peptide

471

(B) LOCATION: 208..264

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

09	120	180	231
CTGTGTCCCG CAGCCGGATA ACCTGGCTGA CCCGATTCCG CGGACACCCG TGCAGCCGCG	GCTGGAGCCA GGGCGCCGGT GCCCGCGTC TCCCCGGTCT TGCGCTGCGG GGGCCGATAC	CGCCTCTGTG ACTTCTTTGC GGGCCAGGGA CGGAGAAGGA GTCTGTGCCT GAGAAACTGG	GCTCTGTGCC CAGGCGCGAG GTGCAGG ATG GAG AGC AAG GGC CTG CTA GCT Met Glu Ser Lys Gly Leu Leu Ala -19

279	327
TTG Leu 5	ATA Ile
GGT Gly	GAC Asp 20
GTG Val	AAA Lys
TCT Ser	CAG Gln
GCC Ala 1	ACA
GCC Ala	AGC
CGA Arg	CTC Leu 15
ACC Thr	AAG Lys
GAG Glu	CCC Pro
GTG Val	CCC
TGC Cys	CAT His
TTC Phe	CTC Leu 10
TGG Trp	TTT Phe
CIG	GAT Asp
GCT Ala -10	GGC Gly
GTC Val	CCT

Gln
Gly
Arg 35
Cys
Thr
Ile
Gln
Leu 30
Thr
Thr
Asn
Ala
Leu 25
Ile
Thr
Leu

423		
GAA	Glu	
GAG	Glu	
TCT		
GAT	Asp 50	
CGT	Arg	
CAG	Gln	
g_{CI}	Ala	
AAT	Asn	
ပ္ပပ္ပ	Pro 45	
\mathbf{TGG}		
CIT		
TGG	Trp	
GAC	Asp	
CTG	Leu 40	
GAC		
CGG	Arg	

AAA	Lys
TGC	Cys
TTC	Phe
ATC	ITe
	ser 65
GAC	ASp
GGT	GLY
GGT	GTY C
<u> </u>	
TGC	cys 60
GAA	n T S
ACT	T.U.T.
GTG	Val
TTG	ren
GTA	va1 55
AGG	

	567	615	663	711	759	807	855	903	951
85	GTT Val	GGC Gly	TGC Cys	CCA	GAG Glu 165	GTC Val	TAC Tyr	CCC	TGT
	TAT Tyr 100	CAT His	CCC	TAT Tyr	AGC Ser	ATG Met 180	ATG Met	AGC Ser	AAT Asn
	GTC Val	CAG Gln 115	ATC Ile	AGG Arg	GAC Asp	GGC G1у	ATC Ile 195	CTG	TTA
	TAT Tyr	GAC Asp	GTG Val 130	GCT Ala	TGG Trp	GCC	TCT Ser	ATT Ile 210	GTC Val
	GTT Val	AGT	GTG Val	TGC Cys 145	TCC	TAT Tyr	CAG Gln	GTG Val	CTT Leu 225
80	ACT Thr	GTC Val	ACT Thr	CTT	ATT Ile 160	AGC	TAT Tyr	GAT Asp	AAA Lys
	TCC Ser 95	TCT	AAA Lys	TCT Ser	AGA Arg	ATC 11e 175	ACC Thr	TAT Tyr	GAA Glu
	GCC Ala	GCC Ala 110	AAC Asn	GTG Val	AAC Asn	ATG Met	GAA G1u 190	ATT Ile	GGA Gly
	ATA Ile	ATC Ile	AAG Lys 125	AAT Asn	GGA G1y	TAC	GAT Asp	AGG Arg 205	GCC
	GAC Asp	TTC Phe	AAC Asn	CTC Leu 140	GAT Asp	AGT Ser	AAT Asn	TAT Tyr	TCT Ser 220
75	GTC Val	CCA	GAG Glu	AAC Asn	CCG Pro 155	CCC Pro	ATC Ile	GGA Gly	CTA
	GAC ASP 90	TCA Ser	ACC Thr	TCA Ser	GTT Val	CTC Leu 170	AAG Lys	GTA Val	GAG Glu
	CGG Arg	AGA Arg 105	ATC Ile	ATT Ile	TTT Phe	ACT Thr	GCA Ala 185	GTT Val	ATT Ile
	TAC Tyr	TAC Tyr	TAC TYF 120	TCG Ser	AGA Arg	TTT Phe	GAG Glu	GTG Val 200	GAA Glu
	TCG	GAT Asp	GTG Val	GGG G1Y 135	AAG Lys	GGC G1у	TGT Cys	GTT Val	CAT His 215
7.0	TGC Cys	CGA Arg	ATC Ile	CGA Arg	GAA Glu 150	ATA Ile	TTC Phe	ATA Ile	CCG

666	1047	1095	1143	1191	1239	1287	1335	1383	1431
TCT Ser 245	AAA Lys	ATA Ile	TCC	ACA Thr	GCC Ala 325	CCA Pro	AAC Asn	GAA Glu	ATG
CAC His	GTG Val 260	ACA Thr	GCG Ala	CAC His	GAA Glu	TAC Tyr 340	TCC	ACT Thr	TCA
TGG Trp	GAT Asp	TTG Leu 275	GTA Val	GTT Val	GrG Val	AGT Ser	GAG Glu 355	GTG Val	ATT
ACC Thr	CGG Arg	ACC Thr	TGT Cys 290	CGA Arg	TTG	CTC Leu	ATT Ile	GAA Glu 370	သသ
TTC Phe	AAC	AGC Ser	ACC Thr	GTC Val 305	TCT Ser	TAT TYE	CCC	ATG Met	AAC
GAT ASP 240	GTA Val	TTG	TAC Tyr	TTT Phe	AAA Lys 320	AAG Lys	AGG Arg	ATC Ile	ACC
CTT Leu	ATT Ile 255	TTT Phe	GAA Glu	ACA Thr	ATG Met	GTG Val 335	GGA Gly	ACC Thr	CIC
666 G1y	AAG Lys	ATG Met 270	GGG G1y	AGA Arg	666 61y	CCT	AAT Asn 350	CTC	ATC
GTG Val	AAG Lys	AAG Lys	CAA Gln 285	AAT Asn	AGT Ser	ATC Ile	AGA Arg	GAA Glu 365	GTC
AAT Asn	CAT His	GCG Ala	GAC Asp	AGA Arg 300	GGT Gly	CGA Arg	TAC Tyr	GAT Asp	ACG
CTC Leu 235	CAT His	GTG Val	AGT Ser	AAG Lys	TTC Phe 315	GTC Val	TGG Trp	GGC G1у	TAC
GAG Glu	TCT Ser 250	ACT Thr	AAG Lys	ATC Ile	GCT Ala	CAA Gln 330	AAA Lys	GTT Val	AAC
ACA Thr	AAG Lys	GGG G1y 265	ACC Thr	ATG Met	ATT Ile	AGT Ser	ATC Ile 345	ATT Ile	GGA
AGA Arg	TCA	CCT	GTG Val 280	CGG Arg	TTT Phe	66c 61y	GAT Asp	ATG Met 360	GCA
GCG Ala	CCT	TTT Phe	AGT Ser	GGA G1Y 295	CCT Pro	GTG Val	CCT Pro	ACA Thr	GAT
ACA Thr 230	CCA	CCC	GAA Glu	AGT Ser	AAG Lys 310	ACA Thr	GCT	TAC Tyr	AGA
		-							

	1479	1527	1575	1623	1671	1719	1767	1815	1863
r Met	CAG C1n 405	r 666 c 61y	GAC His	A CCC J Pro	GAT ASP	CTG Leu 485	GCC	. CGA	ACT Thr
Ser	CCC	TAT TYr 420	CTG	AGA Arg	GAG Glu	GCC	GCT Ala 500	GGA Gly	ATT Ile
Ile	CCA	CAG Gln	CCC Pro 435	TAC	GTG Val	TAT Tyr	CAA Gln	GCG Ala 515	GAA Glu
Pro	GTC Val	TAC Tyr	CCT Pro	TCC Ser 450	CAC His	CAA Gln	ATC Ile	AAA Lys	CCT
Asn 385	AAT Asn	TCC	AAC Asn	TGC Cys	AGA Arg 465	AAC Asn	GTC Val	AAC Asn	GGT Gly
Thr	GTG Val 400	GAT Asp	GCC Ala	GCC Ala	TGG Trp	AAA Lys 480	CTG	ATC Ile	AGG
Leu	GTT Val	ATG Met 415	TAC Tyr	GAA Glu	GAA Glu	ACC Thr	ACG Thr 495	GCC Ala	ATC Ile
Ile	CTG	CCT	GTC Val 430	GAA Glu	AAA Lys	GTC Val	AGT Ser	GAA G1u 510	GTG Val
Val	TCT Ser	TCG	ACA Thr	CTA Leu 445	TGT Cys	GAA Glu	GTA Val	TGT Cys	CAT
Thr 380	GTC Val	ATC Ile	TGC Cys	CAG Gln	GCT Ala 460	ATC Ile	ACT Thr	AAA Lys	TTC
Tyr	ATG Met 395	TTG	ACA	TGG Trp	TAT Tyr	AAG Lys 475	AAA Lys	TAC Tyr	TCC
Asn	CAC His	GCC Ala 410	TTG	TAC Tyr	CCG	AAC Asn	AAC Asn 490	TTG	ATC Ile
Gly	AGC Ser	AAA Lys	ACA Thr 425	TGG Trp	AGC	GGA Gly	AAA Lys	GCG Ala 505	GTC Val
Ala	CAG Gln	GAG Glu	CAG Gln	CAG Gln 440	ACA Thr	GGG G1y	GGA G1y	TCA	AGG Arg
Asp 375	AAA Lys	GGT G1y	ATG Met	ATC Ile	CAA Gln 455	CAG Gln	GAA Glu	GTG Val	GAG Glu
Arg	GAG G1u 390	ATC Ile	ACC	CAC	66C G1y	TTC Phe 470	ATT Ile	AAC	GGA Gly

	1911	1959	2007	2055	2103	2151	2199	2247	2295
	TTG	CTT Leu 565	GTT	Ser	CTG	AAG Lys	GCA Ala 645	GAG Glu	ATT
	CTG	AAG Lys	CCA Pro 580	TTT Phe	TCT	ACC Thr	ATG Met	GGC G1y 660	CAC His
	TCC	TAC	ACA Thr	ATG Met 595	GCC	AAG Lys	CGC Arg	ATT Ile	CCA Pro 675
530	GTG Val	TGG Trp	CTC	ACC Thr	AAT Asn 610	AAG Lys	GAG Glu	ACC Thr	ACC Thr
	AGT Ser 545	ACG Thr	TCA Ser	66c 61y	CAG Gln	GAT ASP 625	CTA	ACA Thr	CCT Pro
-	GAG Glu	CTC Leu 560	GAA Glu	AAT Asn	TTT Phe	CAA Gln	ATC Ile 640	ACA Thr	AAT Asn
	CAG Gln	AAC Asn	GGC G1y 575	CTG	GCA Ala	GCT Ala	ATC Ile	CAG Gln 655	GGA Gly
	GAG Glu	GAG Glu	ATG Met	AAA Lys 590	GTG Val	TCT Ser	CIC	AAT Asn	TCT Ser 670
525	ACT Thr	TTT Phe	CAC His	TGG Trp	ATT Ile 605	TGC Cys	CAG Gln	GAG Glu	GCA Ala
	CCA Pro 540	A CG Thr	GTC Val	CTT	TTG	GTT Val 620	AAA Lys	CIG	CCA
	CAG Gln	AAT Asn 555	rcg Ser	GCT Ala	ATC Ile	TAT Tyr	GTC Val 635	AAT Asn	TGC
	GCC Ala	AGA Arg	ACA Thr 570	GAT Asp	GAC Asp	GAC Asp	CTG	GGA G1Y 650	ACT Thr
	GCT Ala	GAC Asp	GCA Ala	TTG Leu 585	AAT Asn	66c 61y	TGC Cys	ACC Thr	GTG Val 665
520	CCT Pro	GCA Ala	CAG Gln	AAC Asn	ACA Thr 600	CAA Gln	CAT His	ATC Ile	GAA Glu
	CAA G1n 535	ACT Thr	TCA Ser	AAG Lys	AGC Ser	GAC ASP 615	AGA Arg	ATG Met	ATT Ile
	GTG	TGC Cys 550	GGC	TGC	AAC	CAG	AAA Lys 630	CCC	ACC

2343	2391	2439	2487	2535	2583	2631	2679	2727	2775
GTA Val	GAG Glu	GCA Ala 725	AAC Asn	TTC Phe	GAA Glu	GAA Glu	AAG Lys 805	CGC Arg	AAG
ATT Ile	AAG Lys	TGT Cys	ACC Thr 740	TTC Phe	AAT Asn	GAT Asp	AGC	GGC G1y 820	GAC
66c 61y	AGG Arg	66C G1y	AAG Lys	ATG Met 755	GCC Ala	CCA	GCC	CTT Leu	ATT
TCA Ser 690	GTG Val	CTT	GAA Glu	GCC Ala	CGG Arg 770	GAT Asp	GAT Asp	CCT	GGA
GAT Asp	AGG Arg 705	GTC Val	CAG Gln	ATT Ile	AAG Lys	ATG Met 785	TAT Tyr	AAA Lys	TTT
GAA Glu	CGC Arg	AAT Asn 720	GCC Ala	GTG Val	GTT Val	GTC Val	CCT Pro 800	GGA Gly	GCT
GTA Val	ATC Ile	TGC	GGT Gly 735	GCA Ala	ACC Thr	ATT Ile	TTG	CTA Leu 815	GAC
CTG	ACT Thr	GCC	GAA Glu	ACT Thr 750	CGG Arg	TCT Ser	CGC Arg	AAA Lys	GCA
ACC Thr 685	CTG	CAG Gln	ATA Ile	66C 61Y	GTA Val 765	TTG Leu	GAA Glu	CTG	GAG
GAG Glu	AAC Asn 700	TGC Cys	ATA Ile	GTC Val	CTC	TAC TYI 780	TGT Cys	CGG Arg	ATT
AAC Asn	CGG Arg	ACC Thr 715	TTC Phe	CTC	ATT Ile	660 61y	CGC Arg 795	GAC Asp	GTG
GAC Asp	AAC Asn	TAC Ty f	CTC Leu 730	ATC Ile	GTC Val	ACA Thr	GAG Glu	AGG Arg 810	CAA
AAA Lys	666 61y	CTC	ACG Thr	ATT Ile 745	CTT	AAG Lys	GAT Asp	CCC	၁၅၅
TTC Phe 680	GAT Asp	66c 61y	GAG Glu	GTC Val	CTT Leu 760	CTG	TTG	TTC Phe	TTC
TGG Trp	AGA Arg 695	GGA Gly	GCG Ala	GAA Glu	CTC	GAA Glu 775	CCC Pro	GAA Glu	225
ACA Thr	CTG Leu	GAT ASP 710	AGA Arg	TTG	TGG Trp	666 61y	TTG Leu 790	TGG Trp	GGT

	282	287	291	296.	301	306.	3111	3159	3207
Lys	GCA	ATC Ile	ACC Thr 885	GGA Gly	TAT Tyr	GAG Glu	CAG Gln ·	GTA Val 965	TTG
Asp	GGA Gly	CTC	TGC	TTT Phe 900	CCC Pro	666 61y	AGC Ser	GAT Asp	ACC
Ile 835	GAA Glu	ATC Ile	GCC	AAG Lys	GTT Val 915	GTT Val	AGC Ser	AGT	CTG
Gly	AAA Lys 850	AAG Lys	66C G1y	TCG Ser	TTT Phe	TAC Tyr 930	ACC Thr	CTC	TTC Phe
Phe	TTG	CTC Leu 865	CTA	TTC	GAA Glu	GAC Asp	ATC 11e 945	TCG	GAC
Ala	ATG Met	GAA Glu	CTC Leu 880	GAA Glu	AAT Asn	AAG Lys	AGC Ser	AAA Lys 960	AAG Lys
Asp	AAG Lys	TCT	AAC Asn	GTG Val 895	AGA Arg	66c 61y	gac Asp	GAG Glu	TAC
Ala 830	GTC Val	ATG Met	GTG Val	ATT Ile	AAG Lys 910	CAG Gln	TTG	GAG Glu	CTG
Glu	GCC Ala 845	CTC	GTG Val	GTG Val	66C 61y	CGC Arg 925	CGC Arg	GTT Val	GAA Glu
Ile	GTA Val	GCC Ala 860	AAT Asn	ATG Met	CGG Arg	TTC Phe	AGA Arg 940	TTT Phe	GAA Glu
Val	ACA Thr	CGA Arg	CTC Leu 875	CTC	TTA Leu	CGC Arg	AAA Lys	GGC G1y 955	TCT Ser
Gln	AAA Lys	CAT His	CAT His	CCT Pro 890	TAC Tyr	GCA Ala	CTG Leu	TCA	GCT
G1y 825	TGC	GAG Glu	CAC His	666 G1y	ACT Thr 905	GGG G1y	GAT Asp	AGC	GAA Glu
Phe	ACT Thr 840	AGC Ser	GGT Gly	GGA Gly	TCA	AAA Lys 920	GTG Val	GCC	GAA Glu
Ala	GCG Ala	CAC His 855	ATT Ile	CCG Pro	CTA	AGC Ser	TCC Ser 935	TCT	GAA Glu
G1y	ACA Thr	ACA Thr	CAC His 870	AAG Lys	AAC Asn	AAG Lys	CTC	AGC Ser 950	GAG Glu

	3255	3303	3351	3399	3447	3495	3543	3591	3639
	TTC Phe	ATT Ile	GCC	CGA Arg 1045	TAC TYr	ATA Ile	GAA Glu	TAC Tyr	GAC Asp 1125
980	GAG Glu	AAC Asn	TTG	GCC	GTA Val 1060	GAA Glu 5	GAA Glu	GAC Asp	GAG Glu
	ATG Met 995	CGA Arg	66C 61y	GAT Asp	AGA Arg	TGG Trp 1075	GAT ASP 0	CCT Pro	CAT His
	GGC Gly	GCA Ala 1010	TTC Phe	GGA Gly	GAC	CTC	ATT Ile 1090	CGG GCT Arg Ala 1105	TGG Trp
	AAG Lys	GCA Ala	GAC Asp 1025	AGA AAA Arg Lys 1040	TTT Phe	TTG	AAG Lys	CGG Arg 1105	GAC TGC Asp Cys 1120
	GCT	CTG	TGT Cys	AGA Arg 1040	TT	GTG Val	GTC Val	ATG Met	GAC ASP 1120
975	GTG Val	GAC Asp	ATC Ile	GTC Val	ACC A Thr I	GGT Gly	666 G1y	AGA Arg	CTG
	CAA Gln 990	AGG Arg	AAG Lys	TAT TY r	GAA Glu	TTC Phe 1070	CCT	ACT Thr	ATG Met
	TTC Phe	CAC His 1	GTT Val	GAT Asp	CCG	TCT Ser	TAC CCT Tyr Pro 1085	A GAA GGA AC s Glu Gly Th 1100	ACC Thr
	AGC	ATC	GTG Val	CCG	GCC	TGG Trp	CCA	GAA G1u 110(CAG Gln
	TAC	TGT Cys	AAT Asn	GAC ASP 1035	ATG Met)	GTG Val	TCC	AAA Lys	TA TY 11
970	TGT Cys	AAG Lys	AAG Lys	AAA Lys	TGG A Trp M 1050	GAT Asp	GCC Ala	TTG	ATG Met
	ATC Ile 985	1GG Arg	GAG Glu	TAT TY E	AAG Lys	AGC (Ser 1065	GGT Gly	AGA Arg	GAA Glu
	CTC	TCA Z Ser Z 1000	TCG	ATT Ile	TTG	CAG Gln	TTA (Leu (AGG Arg 5	CCA Pro
	CAT His	GCA Ala	CTA Leu 1015	GAC Asp	CCT	ATT Ile	TCC	TGT Cys 1095	ACC Thr
	GAG Glu	TTG	CTC	CGG (Arg 1030	CTC	ACA Thr	TTT Phe	TTT Phe	ACT A Thr T

3687	3735	3783	3831	3879	3927	3975	4023	4071	4119
									-
AAC Asn	CTT	CTG	CCC	AAC Asn 1205	ATC Ile	ACA Thr	GAC Asp	AGC	CAG
GGA G1Y 1140	GTT Val	TCC	GAC Asp	CAG Gln	GAT Asp 1220	31n	GAA Glu	AAA Lys	TAC
TTG Leu	ATT (Ile 1	GGA CTC Gly Leu 1170	TGC Cys	CTC	GAA Glu	AGC Ser 1235	CTG	AGT Ser	၁၅၅
CAT His	TAT TYE	GGA G1y 117(GTG Val	TAT Tyr	TTT Phe	GAC Asp	ACT Thr 125	CCC	AGT
GAG Glu	GAC Asp	TCT Ser	GAA GTG Glu Val 1185	CAT His	ACA Thr	GAT Asp	AAA Lys	ATG (Met 1 1265	ACC AGT
TTG GTG Leu Val 1135	AAA Lys	GAT Asp	GAG Glu	AGT C Ser H 1200	AAA Lys	CCA	CTG	ATG Met	CAG
TTG Leu 113	GAT GGC Asp Gly 1150	GAG Glu	GAA Glu	ATC Ile	GTA 1 Val 1 1215	GTG ATC Val Ile	GAG Glu	GGA Gly	AAC
GAG Glu	GAT ASP 115(AA :1u	GAG Glu	GGA Gly	AGT Ser	GTG Val 1230	GAA Glu 5	GGT Gly	TCC
TCA	CAG Gln	ATG Met 116	TGT ATG Cys Met	GCA Ala	GTG Val	AAA Lys	TCA Ser 124	TTT Phe)	၁၅၅
TTT Phe	CAG Gln	AGC	TGT Cys 118(ACA Thr	CCA Pro	GTA Val	GCA Ala	TCT 1 Ser 1 1260	GAA GGC
CCC TCG Pro Ser 1130	GCG Ala	CTG	TCC	AAC ACA Asn Thr 1195	CGG Arg	GAA Glu	CTT Leu	CCA	TCG
CCC Pro 113	GCA AAT Ala Asn 1 1145	ACA	GTT Val	GAC Asp	AGC C Ser A	CCA Pro	GTC Val	TCT Ser	၁၁၅
aga Arg	GCA Ala 114	TCA GAG Ser Glu 1160	CCT Pro	TAT Tyr	AAG Lys	GAA (Glu)	ATG Met)	TTA	GTG
CAG Gln	CAA Gln	TCA Ser 1160	TCA	CAT His	CGA Arg	GAG Glu	r GGG ATG G' r Gly Met V, 1240	AAC AAA Asn Lys 1255	TCT
AAC Asn	CTG	ATG Met	ACC Thr 1175	TTC Phe	AAG Lys	TTG	AGT Ser	AAC Asn 1255	GAG
CCC	CTC	CCA	CCT	AAA J Lys I	AGT Ser	CCA Pro	GAC Asp	AGG Arg	AGG

	4167	4215	4263	rrca 4318	4378	4438	4498	4558	4618	4678	4738	4798	4858
Arg Glu Ser Val Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln 1270	TCT GGG TAT CAC TCA GAT GAC ACA GAC ACC ACC GTG TAC TCC AGC GAC Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp 1295	GAG GCA GGA CTT TTA AAG ATG GTG GAT GCT GCA GTT CAC GCT GAC TCA Glu Ala Gly Leu Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser 1305	GGG ACC ACA CTG CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Gly Thr Thr Leu Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1320	CCG GCT CCG CCC CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAGATTTTCA Pro Ala Pro Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1335	AGTGTTGTTC TTTCCACCAC CCGGAAGTAG CCACATTTGA TTTTCATTTT TGGAGGAGGG	ACCTCAGACT GCAAGGAGCT TGTCCTCAGG GCATTTCCAG AGAAGATGCC CATGACCCAA	GAATGTGTTG ACTCTACTCT CTTTTCCATT CATTTAAAAG TCCTATATAA TGTGCCCTGC	TGTGGTCTCA CTACCAGTTA AAGCAAAAGA CTTTCAAACA CGTGGACTCT GTCCTCCAAG	AAGTGGCAAC GGCACCTCTG TGAAACTGGA TCGAATGGGC AATGCTTTGT GTGTTGAGGA	TGGGTGAGAT GTCCCAGGGC CGAGTCTGTC TACCTTGGAG GCTTTGTGGA GGATGCGGCT	ATGAGCCAAG TGTTAAGTGT GGGATGTGGA CTGGGAGGAA GGAAGGCGCA AGCCGTCCGG	AGAGCGGTTG GAGCCTGCAG ATGCATTGTG CTGGCTCTGG TGGAGGTGGG CTTGTGGCCT	GTCAGGAAAC GCAAAGGCGG CCGGCAGGGT TTGGTTTTGG AAGGTTTGCG TGCTCTTCAC

	Ser Val Gly Leu Pro Gly Asp Phe Leu His Pro Pro	Thr Arg Ala Ala Ser Va
	Lys Gly Leu Leu Ala Val Ala Leu Trp Phe Cys Val Glu -15	Met Glu Ser Lys Gly Le -19
	DESCRIPTION: SEQ ID NO:6:	(xi) SEQUENCE DE
	PE: protein	(ii) MOLECULE TYPE:
	QUENCE CHARACTERISTICS: (A) LENGTH: 1367 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1367 amino (B) TYPE: amino acid (D) TOPOLOGY: linear
	Q ID NO:6:	(2) INFORMATION FOR SEQ ID NO:6:
5406	540	ААААААА
5398	GAATTTTAAC CTATAAAACT ATGTCTACTG GTTTCTGCCT GTGTGCTTAT GTTAAAAAAA 539	GAATTTTAAC CTATAAAACT
5338	TAGCCAGATT TCGAAATTAC TTTTTAGCCG AGGTTATGAT AACATCTACT GTATCCTTTA 533	TAGCCAGATT TCGAAATTAC
5278	CCTGATGGCA GAAAATCTT AATTGGTTGG TTTGCTCTCC AGATAATCAC 527	TTTGTGGCTT CCTGATGGCA
5218	CTTCCTCTAT CTCCACTCCT GTCAGGCCCC CAAGTCCTCA GTATTTTAGC 521	GGCTGGTGTT CTTCCTCTAT
5158	CCCACGIGGC GCCCIGGIGG CAGGICIGAG GGITCICIGI CAAGIGGCGG IAAAGGCICA 515	CCCACGTGGC GCCCTGGTGG
2098	TGACGGGGCC GAAGAATTGT GAGAACAGAA CAGAAACTCA GGGTTTCTGC TGGGTGGAGA 509	TGACGGGCC GAAGAATTGT
5038	CTGTGCCTTA ATTCAGAACA CCAAAAGAGA GGAACGTCGG CAGAGGCTCC 503	ATCTCTCAGG CTGTGCCTTA
4978	ACTCTTACGT GTCTCCTGGC CTGGCCCCAG GAAGGAAATG ATGCAGCTTG CTCCTTCCTC 497	ACTCTTACGT GTCTCCTGGC
4918	AGTCGGGTTA CAGGCGAGTT CCCTGTGGCG TTTCCTACTC CTAATGAGAG TTCCTTCCGG 491	AGTCGGGTTA CAGGCGAGTT

Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro 30 45 Asn Ala Gln Arg Asp Ser Glu Glu Arg Val Leu Val Thr Glu Cys Gly 50 60 Lys Leu Ser Thr Gln Lys Asp Ile Leu Thr Ile Leu Ala Asn Thr 15 25 Gly Gly Asp Ser Ile Phe Cys Lys Thr Leu Thr Ile Pro Arg Val Gly Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg Asp Val Asp 85 Ser Thr Val Tyr Val Tyr Val Arg Asp Tyr Arg Ser Pro Phe 95 Tyr Ile Thr Glu Asn 120 Gln His Gly Ile Val Ser Asp Ser Val

Gly Pro Asp (Arg Ile Ser Trp Asp Ser Glu Ile Gly Phe Thr Leu Pro Ser Ser Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val 145 Val Ile Pro Cys Arg Gly 130

Ser Ile Ser Asn Leu Asn

Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn 185

Glu Thr Tyr Gln Ser Ile Met Tyr Ile Val Val Val Gly Tyr Arg

Ile Tyr Asp Val Ile Leu Ser Pro Pro His Glu Ile Glu Leu Ser Ala

Asn Lys Thr Val

	Val	Lys	Lys	Gln 285	Asn	Ser	le	Arg	G1u 365	Val	Ser	Ser
220	Asn V	His L	Ala L	Asp G	Arg A	Gly s	Arg I	Tyr A	Asp G	Thr V 380	val s	Ile S
•	Leu P 235	His E	Val A	Ser A	Lys P	Phe (315)	Val A	Trp 1	Gly A	Tyr 1	Met v 395	Leu 1
	Gl u]	Ser 1 250	Thr	Lys :	Ile]	Ala 1	Gln 330	Lys ?	Val (Asn	His	Ala 1
	Thr	Lys	G1y 265	Thr	Met	Ile	Ser	Ile 345	Ile	Gly	Ser	Lys
	Arg	Ser	Pro	Val 280	Arg	Phe	Gly	Asp	Met 360	Ala	Gln	Glu
215	Ala	Pro	Phe	Ser	G1Y 295	Pro	Val	Pro	Thr	Asp 375	Lys	$\mathtt{Gl} \mathbf{y}$
	Thr 230	Pro	Pro	G1u	Ser	$^{\rm Lys}_{310}$	Thr	Ala	Tyr	Arg	Glu 390	Ile
	Cys	Ser 245	Lys	Ile	Ser	Thr	Ala 325	Pro	Asn	Glu	Met	Gln 405
	Asn	His	Val 260	Thr	Ala	His	Glu	Tyr 340	Ser	Thr	Ser	Pro
	Leu	Trp	Asp	Leu 275	Val	Val	Val	Ser	Gl u 355	Val	Ile	Pro
210	Val	Thr	Arg	Thr	Cys 290	Arg	Leu	Leu	Ile	G1u 370	Pro	Val
	Leu 225	Phe	Asn	Ser	Thr	Val 305	Ser	Tyr	Pro	Met	Asn 385	Asn
	Lys	Asp 240	Val	Leu	Tyr	Phe	Lys 320	Lys	Arg	Ile	Thr	Val 400
	Glu	Leu	Ile 255	Phe	Glu	Thr	Met	Val 335	Gly	Thr	Leu	Val
	Gly	Gly	Lys	Met 270	σ1у	Arg	Gly	Pro	Asn 350	Leu	Ile	Leu

Val Ala Phe Gln Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr Val Cys

Thr	Leu 445	Cys	Glu	Val	Cys	His 525	Thr	Phe	His	Trp	11e 605
Cys	Gln	Ala 460	Ile	Thr	Lys	Phe	Pro 540	Thr	Val	Leu	Leu
Thr	Trp	Tyr	Lys 475	Lys	Tyr	Ser	Gln	Asn 555	Ser	Ala	Ile
Leu	Tyr	Pro	Asn	Asn 490	Leu	Ile	Ala	Arg	Th r 570	Asp	Asp
Thr 425	Trp	Ser	Gly	Lys	Ala 505	Val	Ala	Asp	Ala	Leu 585	Asn
Gln	Gln 440	Thr	$_{ m G1y}$	Gly	Ser	Arg 520	Pro	Ala	Gln	Asn	Thr 600
Met	Ile	Gln 455	Gln	Glu	Val	Glu	Gln 535	Thr	Ser	Lys	Ser
Thr	His	$_{ m G1y}$	Phe 470	Ile	Asn	Gly	Val	Cys 550	$_{ m G1y}$	Cys	Asn
$_{ m G1y}$	His	Pro	Asp	Leu 485	Ala	Arg	Thr	Leu	Leu 565	Val	Ser
Tyr 420	Leu	Arg	Glu	Ala	Ala 500	$\mathtt{Gl}\mathtt{y}$	Ile	Leu	Lys	Pro 580	Phe
Gln	Pro 435	Tyr	Val	Tyr	Gln	Ala 515	Glu	Ser	Tyr	Thr	Met 595
Tyr	Pro	Ser 450	His	Gln	Ile	Lys	Pro 530	Val	Trp	Leu	Thr
Ser	Asn	Cys	Arg 465	Asn	Val	Asn	$_{ m G1y}$	Ser 545	Thr	Ser	$_{ m G1y}$
Asp	Ala	Ala	Trp	Lys 480	Leu	Ile	Arg	Glu	Leu 560	Glu	Asn
Met 415	Tyr	Glu	Glu	${ m Th} x$	Thr 495	Ala	ıle	Gln	Asn	G1y 575	Leu
Pro	Val 430	Glu	Lys	Val	Ser	Glu 510	Val	Glu	Glu	Met	Lys 590

	Gln	Glu	Ala	Thr 685	Leu	Gln	11e	$_{ m G1y}$	Val 765	Leu	Glu	Leu
620	Lys	Leu	Pro	Glu	Asn 700	Cys	Ile	Val	Leu	Tyr 780	Cys	Arg
	Val 635	Asn	Cys	Asn	Arg	Thr 715	Phe	Leu	Ile	Gly	Arg 795	Asp
	Leu	G1y 650	Thr	Asp	Asn	Tyr	Leu 730	Ile	Val	Thr	Glu	Arg 810
	Cys	Thr	Val 665	Lys	Gly	Leu	Thr	11e 745	Leu	Lys	Asp	Pro Arg 810
	His	Ile	Glu	Phe 680	Asp	Glγ	Glu	Val	Leu 760	Leu	ren	
615	Arg	Met	Ile	Trp	Arg 695	$_{ m G1y}$	Ala	Glu	Leu	Glu 775	Pro	Glu Phe
	Lys 630	Pro	${ m rhr}$	Thr	Leu	Asp 710	Arg	Leu	Trp	Gly	Leu 790	Trp
	Lys	Ala 645	Glu	Ile	Val	Glu	Ala 725	Asn	Phe	Glu	Glu	Lys 805
	Thr	Met	G1y 660	His	Ile	Lys	Cys	Thr 740	Phe	Asn	Asp	Ser
	Lys	Arg	Ile	Pro 675	Gly	Arg	G1y	Lys	Met 755	Ala	Pro	Ala
610	Lys	Glu	\mathtt{Thr}	Thr	Ser 690	Val	Leu	Glu	Ala	Arg 770	Asp	Asp
	Asp 625	Leu	Thr	Pro	Asp	Arg 705	Val	Gln	Ile	Lys	Met 785	Туг
	Gln	Ile 640	Thr	Asn	Glu	Arg	Asn 720	Ala	Val	Val	Val	Pro 800
	Ala	Ile	Gln 655	Gly	Val	Ile	Cys	G1y 735	Ala	$\mathbf{Th} x$	Ile	Leu
	Ser	Leu	Asn	Ser 670	Leu	Thr	Ala	Glu	Thr 750	Arg	Ser	Arg

Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Lys Asn Val Val

Glu	Ala 845	Leu	Val	Val	Gly	Arg 925	Arg	Val	Glu	Phe	His 1005
Ile	Val	Ala 860	Asn	Met	Arg	Phe	Arg 940	Phe	Glu	Ser	Ile
Val	Thr	Arg	Leu 875	Leu	Leu	Arg	Lys	G1y 955	Ser	Tyr	Cys
Gln	Lys	His	His	Pro 890	Tyr	Ala	Leu	Ser	Ala 970	Cys	Lys
G1y 825	Cys	Glu	His	G1y	Thr 905	Gly	Asp	Ser	Glu	11e 985	Arg
Phe	Thr 840	Ser	Gly	Glγ	Ser	Lys 920	Val	Ala	Glu	Leu	Ser 1
Ala	Ala	His 855	Ile	Pro	Leu	Ser	Ser 935	Ser	Glu	His	Ala
$_{ m G1y}$	Thr	Thr	His 870	Lys	Asn	Lys	Leu	Ser 950	Glu	Glu	Leu
Arg	Lys	Ala	Ile	Th r 885	Gly	Tyr	Glu	Gln	Val 965	Leu	Phe
Gly 820	Asp	Gly	Leu	Cys	Phe 900	Pro	Gly	Ser	Asp	Thr 980	G1u
Leu	11e 835	Glu	Ile	Ala	Lys	Val 915	Val	Ser	Ser	Leu	Met 995
Pro	Gly	Lys 850	Lys	G1y	Ser	Phe	TYr 930	Thr	Leu	Phe	Gly
Lys	Phe	Leu	Leu 865	Leu	Phe	Glu	Asp	11e 945	Ser	Asp	Lys
G1y	Ala	Met	Glu	Leu 880	Glu	Asn	Lys	Ser	Lys 960	Lys	Ala
Leu 815	Asp	Lys	Ser	Asn	Val 895	Arg	G1y	Asp	Glu	Tyr 975	Val
Lys	Ala 830	Val	Met	Val	Ile	$\begin{array}{c} \mathbf{LYS} \\ 910 \end{array}$	Gln	Leu	Glu	Leu	Gln 990

1010

1015

1020

Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asp Pro Asp 1025

Tyr Val Arg Lys Gly Asp Ala Arg Leu Pro Leu Lys Trp Met Ala Pro 1040

Glu Thr Ile Phe Asp Arg Val Tyr Thr Ile Gln Ser Asp Val Trp Ser

Phe Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Ala Ser Pro Tyr 1070

Pro Gly Val Lys Ile Asp Glu Glu Phe Cys Arg Arg Leu Lys Glu Gly 1000 1095

Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr Pro Glu Met Tyr Gln Thr 1115 1115

Met Leu Asp Cys Trp His Glu Asp Pro Asn Gln Arg Pro Ser Phe Ser 1120

Glu Leu Val Glu His Leu Gly Asn Leu Leu Gln Ala Asn Ala Gln Gln

Asp Gly Lys Asp Tyr Ile Val Leu Pro Met Ser Glu Thr Leu Ser Met 1150

Glu Glu Asp Ser Gly Leu Ser Leu Pro Thr Ser Pro Val Ser Cys Met 1170

Glu Glu Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn Thr Ala 1195

Gly Ile Ser His Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg Pro Val 1200

Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu Val Lys 1215

Val Ile Pro Asp Asp Ser Gln Thr Asp Ser Gly Met Val Leu Ala Ser

Glu Glu Leu Lys Thr Leu Glu Asp Arg Asn Lys Leu Ser Pro Ser Phe

Gly Gly Met Met Pro Ser Lys Ser Arg Glu Ser Val Ala Ser Glu Gly 12751250

Ser Asn Gln Thr Ser Gly Tyr Gln Ser Gly Tyr His Ser Asp Asp Thr 1280 Asp Thr Thr Val Tyr Ser Ser Asp Glu Ala Gly Leu Leu Lys Met Val 1295 Asp Ala Ala Val His Ala Asp Ser Gly Thr Thr Leu Gln Leu Thr Ser 1310

Cys Leu Asn Gly Ser Gly Pro Val Pro Ala Pro Pro Thr Pro Gly 1335

Asn His Glu Arg Gly Ala Ala 1345

- (2) INFORMATION FOR SEQ ID NO:7:
- (A) LENGTH: 96 base pairs (i) SEQUENCE CHARACTERISTICS:
 - (B) TYPE: nucleic acid (C) STRANDEDNESS: singl
- STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(i) SEQUENCE CHARACTERISTICS:

(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
AATTCGTCGA CTTTCTGTCA CCATGAGTGC ACTTCTGATC CTAGCCCTTG TGGGAGCTGC	09
TGTTGCTGAC TACAAAGATG ATGATGACAA GATCTA	96
(2) INFORMATION FOR SEQ ID NO:8:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
AGCTTAGATC TIGTCATCAT CATCTTTGTA GTCAGCAACA GCAGCTCCCA CAGAGGCTAG	09
GATCAGAAGT GCACTCATGG TGACAGAAAG TCGACG	96
(2) INFORMATION FOR SEQ ID NO:9:	

(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

30

34

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGAGAAGATC TCAAACCAAG ACCTGCCTGT

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 34 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: CDNA

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CCAATGGCGG CCGCTCAGGA GATGTTGTCT TGGA

- (2) INFORMATION FOR SEQ ID NO:11:
- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: peptide
- - (iii) HYPOTHETICAL: NO
- (v) FRAGMENT TYPE: N-terminal (iv) ANTI-SENSE: NO
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
- Ala Gln Ser Leu Ser Phe Xaa Phe Thr Lys Phe Asp Leu Asp 1

WO 95/00554 PCT/US94/06944

CLAIMS

What is claimed is:

1. A protein that binds to the Flk2 receptor comprising the amino acid sequence AQSLSFXFTKFDLD shown in SEQ. ID. NO. 11, wherein X is any amino acid.

10

5

GCGGCCTGGC	TACCGCGCGC T			G GCG CAG CGC AG La Ala Gln Arg Se
		-2	27 –25	-2
				A ATG ATT CTT GAG Met Ile Leu Glu -5
				GTT TTA ATC AGT Val Leu Ile Ser 10
				TCG TAC CGA ATG Ser Tyr Arg Met
		Asp Leu Gln		AGG CGC CAG AGT Arg Arg Gln Ser 45
				GCC GAG TCT GGG Ala Glu Ser Gly 60
-			Thr Pro Gly	GAC CTT TCC TGC Asp Leu Ser Cys 75
	Phe Lys His			CCG CAC TTT GAT Pro His Phe Asp 90
				AAC GTG ACA GAG Asn Val Thr Glu
		Leu Leu His		GAA CGC GCC AAC Glu Arg Ala Asn 125
				CAG CTG TAT GTG Gln Leu Tyr Val 140
			Glu Asn Gln	GAT GCA CTG CTC Asp Ala Leu Leu 155

														CTC Leu	
AGC Ser	TCC Ser 175	CAC His	AGG Arg	GAA Glu	AGC Ser	TGT Cys 180	AAA Lys	GAA Glu	GAA Glu	GGC Gly	CCT Pro 185	GCT Ala	GTT Val	GTC Val	AGA Arg
AAG Lys 190	GAG Glu	GAA Glu	AAG Lys	GTA Val	CTT Leu 195	CAT His	GAG Glu	TTG Leu	TTC Phe	GGA Gly 200	ACA Thr	GAC Asp	ATC Ile	AGA Arg	TGC Cys 205
TGT Cys	GCT Ala	AGA Arg	AAT Asn	GCA Ala 210	CTG Leu	GGC Gly	CGC Arg	GAA Glu	TGC Cys 215	ACC Thr	AAG Lys	CTG Leu	TTC Phe	ACC Thr 220	ATA Ile
GAT Asp	CTA Leu	AAC Asn	CAG Gln 225	GCT Ala	CCT Pro	CAG Gln	AGC Ser	ACA Thr 230	CTG Leu	CCC Pro	CAG Gln	TTA Leu	TTC Phe 235	CTG Leu	AAA Lys
GTG Val	GGG Gly	GAA Glu 240	CCC Pro	TTG Leu	TGG Trp	ATC Ile	AGG Arg 245	TGT Cys	AAG Lys	GCC Ala	ATC Ile	CAT His 250	GTG Val	AAC Asn	CAT His
GGA Gly	TTC Phe 255	GGG Gly	CTC Leu	ACC Thr	TGG Trp	GAG Glu 260	CTG Leu	GAA Glu	GAC Asp	AAA Lys	GCC Ala 265	CTG Leu	GAG Glu	GAG Glu	GGC Gly
AGC Ser 270	TAC Tyr	TTT Phe	GAG Glu	ATG Met	AGT Ser 275	ACC Thr	TAC Tyr	TCC Ser	ACA Thr	AAC Asn 280	AGG Arg	ACC Thr	ATG Met	ATT Ile	CGG Arg 285
ATT Ile	CTC Leu	TTG Leu	GCC Ala	TTT Phe 290	GTG Val	TCT Ser	TCC Ser	GTG Val	GGA Gly 295	AGG Arg	AAC Asn	GAC Asp	ACC Thr	GGA Gly 300	TAT Tyr
TAC Tyr	ACC Thr	TGC Cys	TCT Ser 305	TCC Ser	TCA Ser	AAG Lys	CAC His	CCC Pro 310	AGC Ser	CAG Gln	TCA Ser	GCG Ala	TTG Leu 315	GTG Val	ACC Thr
ATC Ile	CTA Leu	GAA Glu 320	AAA Lys	GGG Gly	TTT Phe	ATA Ile	AAC Asn 325	GCT Ala	ACC Thr	AGC Ser	TCG Ser	CAA Gln 330	GAA Glu	GAG Glu	TAT Tyr
GAA Glu	ATT Ile 335	GAC Asp	CCG Pro	TAC Tyr	GAA Glu	AAG Lys 340	TTC Phe	TGC Cys	TTC Phe	TCA Ser	GTC Val 345	AGG Arg	TTT Phe	AAA Lys	GCG Ala

2/23 SUBSTITUTE SHEET (RULE 26)

TAC Tyr 350	CCA Pro	CGA Arg	ATC Ile	CGA Arg	TGC Cys 355	ACG Thr	TGG Trp	ATC Ile	TTC Phe	TCT Ser 360	CAA Gln	GCC Ala	TCA Ser	TTT Phe	CCT Pro 365
													AAA Lys		
GAT Asp	CAT His	AAG Lys	AAC Asn 385	AAG Lys	CCA Pro	GGA Gly	GAG Glu	TAC Tyr 390	ATA Ile	TTC Phe	TAT Tyr	GCA Ala	GAA Glu 395	AAT Asn	GAT Asp
GAC Asp	GCC Ala	CAG Gln 400	TTC Phe	ACC Thr	AAA Lys	ATG Met	TTC Phe 405	ACG Thr	CTG Leu	AAT Asn	ATA Ile	AGA Arg 410	AAG Lys	AAA Lys	CCT Pro
CAA Gln	GTG Val 415	CTA Leu	GCA Ala	AAT Asn	GCC Ala	TCA Ser 420	GCC Ala	AGC Ser	CAG Gln	GCG Ala	TCC Ser 425	TGT Cys	TCC Ser	TCT Ser	GAT Asp
GGC Gly 430	TAC Tyr	CCG Pro	CTA Leu	CCC Pro	TCT Ser 435	TGG Trp	ACC Thr	TGG Trp	AAG Lys	AAG Lys 440	TGT Cys	TCG Ser	GAC Asp	AAA Lys	TCT Ser 445
CCC Pro	AAT Asn	TGC Cys	ACG Thr	GAG Glu 450	GAA Glu	ATC Ile	CCA Pro	GAA Glu	GGA Gly 455	GTT Val	TGG Trp	AAT Asn	AAA Lys	AAG Lys 460	GCT Ala
AAC Asn	AGA Arg	AAA Lys	GTG Val 465	TTT Phe	GGC Gly	CAG Gln	TGG Trp	GTG Val 470	TCG Ser	AGC Ser	AGT Ser	ACT Thr	CTA Leu 475	AAT Asn	ATG Met
AGT Ser	GAG Glu	GCC Ala 480	GGG Gly	AAA Lys	GGG Gly	CTT Leu	CTG Leu 485	GTC Val	AAA Lys	TGC Cys	TGT Cys	GCG Ala 490	TAC Tyr	AAT Asn	TCT Ser
ATG Met	GGC Gly 495	ACG Thr	TCT Ser	TGC Cys	GAA Glu	ACC Thr 500	ATC Ile	TTT Phe	TTA Leu	AAC Asn	TCA Ser 505	CCA Pro	GGC Gly	CCC Pro	TTC Phe
CCT Pro 510	Phe	ATC Ile	CAA Gln	GAC Asp	AAC Asn 515	ATC Ile	TCC Ser	TTC Phe	TAT Tyr	GCG Ala 520	ACC Thr	ATT Ile	GGG Gly	CTC Leu	TGT Cys 525
CTC Leu	CCC	TTC	ATT	GTT	GTT	CTC	ATT	GTG	TTG	ATC	TGC	CAC	AAA	TAC	AAA

Fig. 1a.4

AAG CAA TTT AGG TAC GAG AGT CAG CTG CAG ATG ATC CAG GTG ACT GGC Lys Gln Phe Arg Tyr Glu Ser Gln Leu Gln Met Ile Gln Val Thr Gly 550 CCC CTG GAT AAC GAG TAC TTC TAC GTT GAC TTC AGG GAC TAT GAA TAT Pro Leu Asp Asn Glu Tyr Phe Tyr Val Asp Phe Arg Asp Tyr Glu Tyr 565 560 GAC CTT AAG TGG GAG TTC CCG AGA GAG AAC TTA GAG TTT GGG AAG GTC Asp Leu Lys Trp Glu Phe Pro Arg Glu Asn Leu Glu Phe Gly Lys Val 575 CTG GGG TCT GGC GCT TTC GGG AGG GTG ATG AAC GCC ACG GCC TAT GGC Leu Gly Ser Gly Ala Phe Gly Arg Val Met Asn Ala Thr Ala Tyr Gly ATT AGT AAA ACG GGA GTC TCA ATT CAG GTG GCG GTG AAG ATG CTA AAA Ile Ser Lys Thr Gly Val Ser Ile Gln Val Ala Val Lys Met Leu Lys 610 GAG AAA GCT GAC AGC TGT GAA AAA GAA GCT CTC ATG TCG GAG CTC AAA Glu Lys Ala Asp Ser Cys Glu Lys Glu Ala Leu Met Ser Glu Leu Lys 625 ATG ATG ACC CAC CTG GGA CAC CAT GAC AAC ATC GTG AAT CTG CTG GGG Met Met Thr His Leu Gly His His Asp Asn Ile Val Asn Leu Leu Gly 640 GCA TGC ACA CTG TCA GGG CCA GTG TAC TTG ATT TTT GAA TAT TGT TGC Ala Cys Thr Leu Ser Gly Pro Val Tyr Leu Ile Phe Glu Tyr Cys Cys 655 TAT GGT GAC CTC CTC AAC TAC CTA AGA AGT AAA AGA GAG AAG TTT CAC Tyr Gly Asp Leu Leu Asn Tyr Leu Arg Ser Lys Arg Glu Lys Phe His 670 AGG ACA TGG ACA GAG ATT TTT AAG GAA CAT AAT TTC AGT TCT TAC CCT Arg Thr Trp Thr Glu Ile Phe Lys Glu His Asn Phe Ser Ser Tyr Pro 690 ACT TTC CAG GCA CAT TCA AAT TCC AGC ATG CCT GGT TCA CGA GAA GTT Thr Phe Gln Ala His Ser Asn Ser Ser Met Pro Gly Ser Arg Glu Val 710 705 CAG TTA CAC CCG CCC TTG GAT CAG CTC TCA GGG TTC AAT GGG AAT TCA Gln Leu His Pro Pro Leu Asp Gln Leu Ser Gly Phe Asn Gly Asn Ser 720

												AAG Lys			GCA Ala
												GAA Glu			
TGC Cys	TTT Phe	GCG Ala	TAC Tyr	CAA Gln 770	GTG Val	GCC Ala	AAA Lys	GGC Gly	ATG Met 775	GAA Glu	TTC Phe	CTG Leu	GAG Glu	TTC Phe 780	AAG Lys
TCG Ser	TGT Cys	GTC Val	CAC His 785	AGA Arg	GAC Asp	CTG Leu	GCA Ala	GCC Ala 790	AGG Arg	AAT Asn	GTG Val	TTG Leu	GTC Val 795	ACC Thr	CAC His
GGG Gly	AAG Lys	GTG Val 800	GTG Val	AAG Lys	ATC Ile	TGT Cys	GAC Asp 805	TTT Phe	GGA Gly	CTG Leu	GCC Ala	CGA Arg 810	GAC Asp	ATC Ile	CTG Leu
AGC Ser	GAC Asp 815	TCC Ser	AGC Ser	TAC Tyr	GTC Val	GTC Val 820	AGG Arg	GGC Gly	AAC Asn	GCA Ala	CGG Arg 825	CTG Leu	CCG Pro	GTG Val	AAG Lys
TGG Trp 830	ATG Met	GCA Ala	CCC Pro	GAG Glu	AGC Ser 835	TTA Leu	TTT Phe	GAA Glu	GGG Gly	ATC Ile 840	TAC Tyr	ACA Thr	ATC Ile	AAG Lys	AGT Ser 845
GAC Asp	GTC Val	TGG Trp	TCC Ser	TAC Tyr 850	GGC Gly	ATC Ile	CTT Leu	CTC Leu	TGG Trp 855	GAG Glu	ATA Ile	TTT Phe	TCA Ser	CTG Leu 860	GGT Gly
GTG Val	AAC Asn	CCT Pro	TAC Tyr 865	CCT Pro	GGC Gly	ATT Ile	CCT Pro	GTC Val 870	GAC Asp	GCT Ala	AAC Asn	TTC Phe	TAT Tyr 875	AAA Lys	CTG Leu
ATT Ile	CAG Gln	AGT Ser 880	GGA Gly	TTT Phe	AAA Lys	ATG Met	GAG Glu 885	CAG Gln	CCA Pro	TTC Phe	TAT Tyr	GCC Ala 890	ACA Thr	GAA Glu	GGG Gly
ATA Ile	TAC Tyr 895	TTT Phe	GTA Val	ATG Met	CAA Gln	TCC Ser 900	TGC Cys	TGG Trp	GCT Ala	TTT Phe	GAC Asp 905	TCA Ser	AGG Arg	AAG Lys	CGG Arg

6/23

Fig. 1a.6

CCA TCC TTC CCC AAC CTG ACT TCA TTT TTA GGA TGT CAG CTG GCA GAG Pro Ser Phe Pro Asn Leu Thr Ser Phe Leu Gly Cys Gln Leu Ala Glu 920 925 910 915 GCA GAA GCA TGT ATC AGA ACA TCC ATC CAT CTA CCA AAA CAG GCG Ala Glu Glu Ala Cys Ile Arg Thr Ser Ile His Leu Pro Lys Gln Ala 930 935 GCC CCT CAG CAG AGA GGC GGG CTC AGA GCC CAG TCG CCA CAG CGC CAG Ala Pro Gln Gln Arg Gly Gly Leu Arg Ala Gln Ser Pro Gln Arg Gln 945 950 955 GTG AAG ATT CAC AGA GAA AGA AGT TAGCGAGGAG GCCTTGGACC CCGCCACCCT Val Lys Ile His Arg Glu Arg Ser CGTTGCTTCG CTGGACTTTT CTCTAGATGC TGTCTGCCAT TACTCCAAAG TGACTTCTAT AAAATCAAAC CTCTCCTCGC ACAGGCGGGA GAGCCAATAA TGAGACTTGT TGGTGAGCCC GCCTACCCTG GGGGCCTTTC CACGAGCTTG AGGGGAAAGC CATGTATCTG AAATATAGTA TATTCTTGTA AATACGTGAA ACAAACCAAA CCCGTTTTTT GCTAAGGGAA AGCTAAATAT GATTTTTAAA AATCTATGTT TTAAAATACT ATGTAACTTT TTCATCTATT TAGTGATATA TTTTATGGAT GGAAATAAAC TTTCTACTGT AAAAAAAAA AAAAAAAAA AAAAAAAA

Fig. 1b.1

CGAGGCGCA TCCGAGGGCT GGGCCGGCGC CCTGG	AUU UUUGGGCTUU GGA	ろいらしし
---------------------------------------	--------------------	-------

ATG Met -27	CCG Pro	GCG Ala -25	TTG Leu	GCG Ala	CGC Arg	GAC Asp	GCG Ala -20	GGC Gly	ACC Thr	GTG Val	CCG Pro	CTG Leu -15	CTC Leu	GTT Val	GTT Val
TTT Phe	TCT Ser -10	GCA Ala	ATG Met	ATA Ile	TTT Phe	GGG Gly -5	ACT Thr	ATT Ile	ACA Thr	AAT Asn	CAA Gln 1	GAT Asp	CTG Leu	CCT Pro	GTG Val 5
ATC Ile	AAG Lys	TGT Cys	GTT Val	TTA Leu 10	ATC Ile	AAT Asn	CAT His	AAG Lys	AAC Asn 15	AAT Asn	GAT Asp	TCA Ser	TCA Ser	GTG Val 20	GGG Gly
AAG Lys	TCA Ser	TCA Ser	TCA Ser 25	TAT Tyr	CCC Pro	ATG Met	GTA Val	TCA Ser 30	GAA Glu	TCC Ser	CCG Pro	GAA Glu	GAC Asp 35	CTC Leu	GGG Gly
TGT Cys	GCG Ala	TTG Leu 40	AGA Arg	CCC Pro	CAG Gln	AGC Ser	TCA Ser 45	GGG Gly	ACA Thr	GTG Val	TAC Tyr	GAA Glu 50	GCT Ala	GCC Ala	GCT Ala
GTG Val	GAA Glu 55	GTG Val	GAT Asp	GTA Val	TCT Ser	GCT Ala 60	TCC Ser	ATC Ile	ACA Thr	CTG Leu	CAA Gln 65	GTG Val	CTG Leu	GTC Val	GAT Asp
GCC Ala 70	CCA Pro	GGG Gly	AAC Asn	ATT Ile	TCC Ser 75	TGT Cys	CTC Leu	TGG Trp	GTC Val	TTT Phe 80	AAG Lys	CAC His	AGC Ser	TCC Ser	CTG Leu 85
AAT Asn	TGC Cy s	CAG Gln	CCA Pro	CAT His 90	TTT Phe	GAT Asp	TTA Leu	CAA Gln	AAC Asn 95	AGA Arg	GGA Gly	GTT Val	GTT Val	TCC Ser 100	ATG Met
GTC Val	ATT Ile	TTG Leu	AAA Lys 105	ATG Met	ACA Thr	GAA Glu	ACC Thr	CAA Gln 110	GCT Ala	GGA Gly	GAA Glu	TAC Tyr	CTA Leu 115	CTT Leu	TTT Phe
ATT Ile	CAG Gln	AGT Ser 120	GAA Glu	GCT Ala	ACC Thr	AAT Asn	TAC Tyr 125	ACA Thr	ATA Ile	TTG Leu	TTT Phe	ACA Thr 130	GTG Val	AGT Ser	ATA Ile
AGA Arg	AAT Asn 135	Thr	CTG Leu	CTT Leu	TAC Tyr	ACA Thr 140	TTA Leu	AGA Arg	AGA Arg	CCT Pro	TAC Tyr 145	TTT Phe	AGA Arg	AAA Lys	ATG Met

7 / 23 SUBSTITUTE SHEET (RULE 26)

Fig. 1b.2

GAA AAC CAG GAC GCC CTG GTC TGC ATA TCT GAG AGC GTT CCA GAG CCG Glu Asn Gln Asp Ala Leu Val Cys Ile Ser Glu Ser Val Pro Glu Pro 160 ATC GTG GAA TGG GTG CTT TGC GAT TCA CAG GGG GAA AGC TGT AAA GAA Ile Val Glu Trp Val Leu Cys Asp Ser Gln Gly Glu Ser Cys Lys Glu 170 GAA AGT CCA GCT GTT AAA AAG GAG GAA AAA GTG CTT CAT GAA TTA Glu Ser Pro Ala Val Val Lys Lys Glu Glu Lys Val Leu His Glu Leu 190 185 TTT GGG ACG GAC ATA AGG TGC TGT GCC AGA AAT GAA CTG GGC AGG GAA Phe Gly Thr Asp Ile Arg Cys Cys Ala Arg Asn Glu Leu Gly Arg Glu 200 TGC ACC AGG CTG TTC ACA ATA GAT CTA AAT CAA ACT CCT CAG ACC ACA Cys Thr Arg Leu Phe Thr Ile Asp Leu Asn Gln Thr Pro Gln Thr Thr 215 TTG CCA CAA TTA TTT CTT AAA GTA GGG GAA CCC TTA TGG ATA AGG TGC Leu Pro Gln Leu Phe Leu Lys Val Gly Glu Pro Leu Trp Ile Arg Cys 230 235 AAA GCT GTT CAT GTG AAC CAT GGA TTC GGG CTC ACC TGG GAA TTA GAA Lys Ala Val His Val Asn His Gly Phe Gly Leu Thr Trp Glu Leu Glu 250 AAC AAA GCA CTC GAG GAG GGC AAC TAC TTT GAG ATG AGT ACC TAT TCA Asn Lys Ala Leu Glu Glu Gly Asn Tyr Phe Glu Met Ser Thr Tyr Ser 270 ACA AAC AGA ACT ATG ATA CGG ATT CTG TTT GCT TTT GTA TCA TCA GTG Thr Asn Arg Thr Met Ile Arg Ile Leu Phe Ala Phe Val Ser Ser Val 285 280 GCA AGA AAC GAC ACC GGA TAC TAC ACT TGT TCC TCT TCA AAG CAT CCC Ala Arg Asn Asp Thr Gly Tyr Tyr Thr Cys Ser Ser Ser Lys His Pro 300 295 AGT CAA TCA GCT TTG GTT ACC ATC GTA GGA AAG GGA TTT ATA AAT GCT Ser Gln Ser Ala Leu Val Thr Ile Val Gly Lys Gly Phe Ile Asn Ala 320 315 310 ACC AAT TCA AGT GAA GAT TAT GAA ATT GAC CAA TAT GAA GAG TTT TGT Thr Asn Ser Ser Glu Asp Tyr Glu Ile Asp Gln Tyr Glu Glu Phe Cys 335 330

8/23

Fig. 1b.3

			AAA Lys					
			TTT Phe					
			TTT Phe					
			AAT Asn 395					
			AAA Lys					
			TCG Ser					
			AAG Lys					
			AAG Lys					
			AAC Asn 475					
			AAT Asn					
			CCC Pro					
			GTT Val					

Fig. 1b.4

													AGC Ser		
													TTC Phe		
													CCA Pro		
													GGA Gly 595		
													TCA Ser		
													GAA Glu		
													AGC Ser		
AAT Asn	ATT Ile	GTG Val	AAC Asn	CTG Leu 650	CTG Leu	GGG Gly	GCG Ala	TGC Cys	ACA Thr 655	CTG Leu	TCA Ser	GGA Gly	CCA Pro	ATT Ile 660	TAC Tyr
													TAT Tyr 675		
															GAA Glu
CAC His	AAT Asn 695	TTC Phe	AGT Ser	TTT Phe	TAC Tyr	CCC Pro 700	ACT Thr	TTC Phe	CAA Gln	TCA Ser	CAT His 705	CCA Pro	AAT Asn	TCC Ser	AGC Ser
ATG Met 710	CCT Pro	GGT Gly	TCA Ser	AGA Arg	GAA Glu 715	GTT Val	CAG Gln	ATA Ile	CAC His	CCG Pro 720	GAC Asp	TCG Ser	GAT Asp	CAA Gln	ATC Ile 725

10/23

Fig. 1b.5

TCA Ser	GGG Gly	CTT Leu	CAT His	GGG Gly 730	AAT Asn	TCA Ser	TTT Phe	CAC His	TCT Ser 735	GAA Glu	GAT Asp	GAA Glu	ATT Ile	GAA Glu 740	TAT Tyr
GAA Glu	AAC Asn	CAA Gln	AAA Lys 745	AGG Arg	CTG Leu	GAA Glu	GAA Glu	GAG Glu 750	GAG Glu	GAC Asp	TTG Leu	AAT Asn	GTG Val 755	CTT Leu	ACA Thr
TTT Phe	GAA Glu	GAT Asp 760	CTT Leu	CTT Leu	TGC Cys	TTT Phe	GCA Ala 765	TAT Tyr	CAA Gln	GTT Val	GCC Ala	AAA Lys 770	GGA Gly	ATG Met	GAA Glu
TTT Phe	CTG Leu 775	GAA Glu	TTT Phe	AAG Lys	TCG Ser	TGT Cys 780	GTT Val	CAC His	AGA Arg	GAC Asp	CTG Leu 785	GCC Ala	GCC Ala	AGG Arg	AAC Asn
GTG Val 790	CTT Leu	GTC Val	ACC Thr	CAC His	GGG Gly 795	AAA Lys	GTG Val	GTG Val	AAG Lys	ATA Ile 800	TGT Cys	GAC Asp	TTT Phe	GGA Gly	TTG Leu 805
GCT Ala	CGA Arg	GAT Asp	ATC Ile	ATG Met 810	AGT Ser	GAT Asp	TCC Ser	AAC Asn	TAT Tyr 815	GTT Val	GTC Val	AGG Arg	GGC Gly	AAT Asn 820	GCC Ala
CGT Arg	CTG Leu	CCT Pro	GTA Val 825	AAA Lys	TGG Trp	ATG Met	GCC Ala	CCC Pro 830	GAA Glu	AGC Ser	CTG Leu	TTT Phe	GAA Glu 835	GGC Gly	ATC Ile
TAC Tyr	ACC Thr	ATT Ile 840	AAG Lys	AGT Ser	GAT Asp	GTC Val	TGG Trp 845	TCA Ser	TAT Tyr	GGA Gly	ATA Ile	TTA Leu 850	CTG Leu	TGG Trp	GAA Glu
ATC Ile	TTC Phe 855	TCA Ser	CTT Leu	GGT Gly	GTG Val	AAT Asn 860	CCT Pro	TAC Tyr	CCT Pro	GGC Gly	ATT Ile 865	CCG Pro	GTT Val	GAT Asp	GCT Ala
AAC Asn 870	TTC Phe	TAC Tyr	AAA Lys	CTG Leu	ATT Ile 875	CAA Gln	AAT Asn	GGA Gly	TTT Phe	AAA Lys 880	ATG Met	GAT Asp	CAG Gln	CCA Pro	TTT Phe 885
TAT Tyr	GCT Ala	ACA Thr	GAA Glu	GAA Glu 890	ATA Ile	TAC Tyr	ATT Ile	ATA Ile	ATG Met 895	CAA Gln	TCC Ser	TGC Cys	TGG Trp	GCT Ala 900	TTT Phe
GAC Asp	TCA Ser	AGG Arg	AAA Lys 905	CGG Arg	CCA Pro	TCC Ser	TTC Phe	CCT Pro 910	AAT Asn	TTG Leu	ACT Thr	TCG Ser	TTT Phe 915	TTA Leu	GGA Gly

11/23

Fig. 1b.6

TGT CAG CTG GCA GAT GCA GAA GAA GCG ATG TAT CAG AAT GTG GAT GGC Cys Gln Leu Ala Asp Ala Glu Glu Ala Met Tyr Gln Asn Val Asp Gly 920 925 930 CGT GTT TCG GAA TGT CCT CAC ACC TAC CAA AAC AGG CGA CCT TTC AGC Arg Val Ser Glu Cys Pro His Thr Tyr Gln Asn Arg Arg Pro Phe Ser 935 940 945 AGA GAG ATG GAT TTG GGG CTA CTC TCT CCG CAG GCT CAG GTC GAA GAT Arg Glu Met Asp Leu Gly Leu Leu Ser Pro Gln Ala Gln Val Glu Asp 950 955 960 965 TCG TAGAGGAACA ATTTAGTTTT AAGGACTTCA TCCCTCCACC TATCCCTAAC Ser AGGCTGTAGA TTACCAAAAC AAGATTAATT TCATCACTAA AAGAAAATCT ATTATCAACT GCTGCTTCAC CAGACTTTTC TCTAGAAGCC GTCTGCGTTT ACTCTTGTTT TCAAAGGGAC TTTTGTAAAA TCAAATCATC CTGTCACAAG GCAGGAGGAG CTGATAATGA ACTTTATTGG AGCATTGATC TGCATCCAAG GCCTTCTCAG GCCGGCTTGA GTGAATTGTG TACCTGAAGT ACAGTATATT CTTGTAAATA CATAAAACAA AAGCATTTTG CTAAGGAGAA GCTAATATGA TTTTTTAAGT CTATGTTTTA AAATAATATG TAAATTTTTC AGCTATTTAG TGATATATTT TATGGGTGGG AATAAAATTT CTACTACAGA AAAAAAAAA AAAAAAAAA AAAAA

> 12/23 SUBSTITUTE SHEET (RULE 26)

Fig. 2.1

CTGTGTCCCG CAGCCGGATA ACCTGGCTGA CCCGATTCCG CGGACACCCG TGCAGCCGCG GCTGGAGCCA GGGCGCCGGT GCCCGCGCTC TCCCCGGTCT TGCGCTGCGG GGGCCGATAC CGCCTCTGTG ACTTCTTTGC GGGCCAGGGA CGGAGAAGGA GTCTGTGCCT GAGAAACTGG ATG GAG AGC AAG GGC CTG CTA GCT GCTCTGTGCC CAGGCGCGAG GTGCAGG Met Glu Ser Lys Gly Leu Leu Ala -19GTC GCT CTG TGG TTC TGC GTG GAG ACC CGA GCC GCC TCT GTG GGT TTG Val Ala Leu Trp Phe Cys Val Glu Thr Arg Ala Ala Ser Val Gly Leu -10 -5 CCT GGC GAT TTT CTC CAT CCC CCC AAG CTC AGC ACA CAG AAA GAC ATA Pro Gly Asp Phe Leu His Pro Pro Lys Leu Ser Thr Gln Lys Asp Ile 10 CTG ACA ATT TTG GCA AAT ACA ACC CTT CAG ATT ACT TGC AGG GGA CAG Leu Thr Ile Leu Ala Asn Thr Thr Leu Gln Ile Thr Cys Arg Gly Gln 30 25 CGG GAC CTG GAC TGG CTT TGG CCC AAT GCT CAG CGT GAT TCT GAG GAA Arg Asp Leu Asp Trp Leu Trp Pro Asn Ala Gln Arg Asp Ser Glu Glu 40 AGG GTA TTG GTG ACT GAA TGC GGC GGT GGT GAC AGT ATC TTC TGC AAA Arg Val Leu Val Thr Glu Cys Gly Gly Gly Asp Ser Ile Phe Cys Lys 60 ACA CTC ACC ATT CCC AGG GTG GTT GGA AAT GAT ACT GGA GCC TAC AAG Thr Leu Thr Ile Pro Arg Val Val Gly Asn Asp Thr Gly Ala Tyr Lys TGC TCG TAC CGG GAC GTC GAC ATA GCC TCC ACT GTT TAT GTC TAT GTT Cys Ser Tyr Arg Asp Val Asp Ile Ala Ser Thr Val Tyr Val Tyr Val CGA GAT TAC AGA TCA CCA TTC ATC GCC TCT GTC AGT GAC CAG CAT GGC Arg Asp Tyr Arg Ser Pro Phe Ile Ala Ser Val Ser Asp Gln His Gly 105 110 ATC GTG TAC ATC ACC GAG AAC AAG AAC AAA ACT GTG GTG ATC CCC TGC Ile Val Tyr Ile Thr Glu Asn Lys Asn Lys Thr Val Val Ile Pro Cys 120 125

13/23

Fig. 2.2

CGA G Arg G															
GAA A Glu I 150															
ATA C															
TTC T	rgt Cys	GAG Glu	GCA Ala 185	AAG Lys	ATC Ile	AAT Asn	GAT Asp	GAA Glu 190	ACC Thr	TAT Tyr	CAG Gln	TCT Ser	ATC Ile 195	ATG Met	TAC Tyr
ATA C	Val	GTG Val 200	GTT Val	GTA Val	GGA Gly	TAT Tyr	AGG Arg 205	ATT Ile	TAT Tyr	GAT Asp	GTG Val	ATT Ile 210	CTG Leu	AGC Ser	CCC Pro
CCG C Pro F	CAT His 215	GAA Glu	ATT Ile	GAG Glu	CTA Leu	TCT Ser 220	GCC Ala	GGA Gly	GAA Glu	AAA Lys	CTT Leu 225	GTC Val	TTA Leu	AAT Asn	TGT Cys
ACA C Thr A 230	GCG Ala	AGA Arg	ACA Thr	GAG Glu	CTC Leu 235	AAT Asn	GTG Val	GGG Gly	CTT Leu	GAT Asp 240	TTC Phe	ACC Thr	TGG Trp	CAC His	TCT Ser 245
CCA C	CCT Pro	TCA Ser	AAG Lys	TCT Ser 250	CAT His	CAT His	AAG Lys	AAG Lys	ATT Ile 255	GTA Val	AAC Asn	CGG Arg	GAT Asp	GTG Val 260	AAA Lys
CCC T	ITT Phe	CCT Pro	GGG Gly 265	ACT Thr	GTG Val	GCG Ala	AAG Lys	ATG Met 270	TTT Phe	TTG Leu	AGC Ser	ACC Thr	TTG Leu 275	ACA Thr	ATA Ile
GAA A	AGT Ser	GTG Val 280	ACC Thr	AAG Lys	AGT Ser	GAC Asp	CAA Gln 285	GGG Gly	GAA Glu	TAC Tyr	ACC Thr	TGT Cys 290	GTA Val	GCG Ala	TCC Ser
AGT (GGA Gly 295	CGG Arg	ATG Met	ATC Ile	AAG Lys	AGA Arg 300	AAT Asn	AGA Arg	ACA Thr	TTT Phe	GTC Val 305	CGA Arg	GTT Val	CAC His	ACA Thr
AAG (Lys 1 310	CCT Pro	TTT Phe	ATT Ile	GCT Ala	TTC Phe 315	GGT Gly	AGT Ser	GGG Gly	ATG Met	AAA Lys 320	TCT Ser	TTG Leu	GTG Val	GAA Glu	GCC Ala 325

14/23

Fig. 2.3

ACA Thr	GTG Val	GGC Gly	AGT Ser	CAA Gln 330	GTC Val	CGA Arg	ATC Ile	CCT Pro	GTG Val 335	AAG Lys	TAT Tyr	CTC Leu	AGT Ser	TAC Tyr 340	CCA Pro
GCT Ala	CCT Pro	GAT Asp	ATC Ile 345	AAA Lys	TGG Trp	TAC Tyr	AGA Arg	AAT Asn 350	GGA Gly	AGG Arg	CCC Pro	ATT Ile	GAG Glu 355	TCC Ser	AAC Asn
TAC Tyr	ACA Thr	ATG Met 360	ATT Ile	GTT Val	GGC Gly	GAT Asp	GAA Glu 365	CTC Leu	ACC Thr	ATC Ile	ATG Met	GAA Glu 370	GTG Val	ACT Thr	GAA Glu
AGA Arg	GAT Asp 375	GCA Ala	GGA Gly	AAC Asn	TAC Tyr	ACG Thr 380	GTC Val	ATC Ile	CTC Leu	ACC Thr	AAC Asn 385	CCC Pro	ATT Ile	TCA Ser	ATG Met
GAG Glu 390	AAA Lys	CAG Gln	AGC Ser	CAC His	ATG Met 395	GTC Val	TCT Ser	CTG Leu	GTT Val	GTG Val 400	AAT Asn	GTC Val	CCA Pro	CCC Pro	CAG Gln 405
ATC Ile	GGT Gly	GAG Glu	AAA Lys	GCC Ala 410	TTG Leu	ATC Ile	TCG Ser	CCT Pro	ATG Met 415	GAT Asp	TCC Ser	TAC Tyr	CAG Gln	TAT Tyr 420	GGG Gly
ACC Thr	ATG Met	CAG Gln	ACA Thr 425	TTG Leu	ACA Thr	TGC Cys	ACA Thr	GTC Val 430	TAC Tyr	GCC Ala	AAC Asn	CCT Pro	CCC Pro 435	CTG Leu	CAC His
CAC His	ATC Ile	CAG Gln 440	TGG Trp	TAC Tyr	TGG Trp	CAG Gln	CTA Leu 445	GAA Glu	GAA Glu	GCC Ala	TGC Cys	TCC Ser 450	TAC Tyr	AGA Arg	CCC Pro
GGC Gly	CAA Gln 455	ACA Thr	AGC Ser	CCG Pro	TAT Tyr	GCT Ala 460	TGT Cys	AAA Lys	GAA Glu	TGG Trp	AGA Arg 465	CAC His	GTG Val	GAG Glu	GAT Asp
TTC Phe 470	CAG Gln	GGG Gly	GGA Gly	AAC Asn	AAG Lys 475	ATC Ile	GAA Glu	GTC Val	ACC Thr	AAA Lys 480	AAC Asn	CAA Gln	TAT Tyr	GCC Ala	CTG Leu 485
ATT Ile	GAA Glu	GGA Gly	AAA Lys	AAC Asn 490	AAA Lys	ACT Thr	GTA Val	AGT Ser	ACG Thr 495	CTG Leu	GTC Val	ATC Ile	CAA Gln	GCT Ala 500	GCC Ala
AAC Asn	GTG Val	TCA Ser	GCG Ala 505	TTG Leu	TAC Tyr	AAA Lys	TGT Cys	GAA Glu 510	GCC Ala	ATC Ile	AAC Asn	AAA Lys	GCG Ala 515	GGA Gly	CGA Arg

15/23

Fig. 2.4

GGA GA Gly Gl	G AGG u Arg 520	GTC Val	ATC Ile	TCC Ser	TTC Phe	CAT His 525	GTG Val	ATC Ile	AGG Arg	GGT Gly	CCT Pro 530	GAA Glu	ATT Ile	ACT Thr
GTG CA Val Gl 53	n Pro	GCT Ala	GCC Ala	CAG Gln	CCA Pro 540	ACT Thr	GAG Glu	CAG Gln	GAG Glu	AGT Ser 545	GTG Val	TCC Ser	CTG Leu	TTG Leu
TGC AC Cys Th 550	T GCA r Ala	GAC Asp	AGA Arg	AAT Asn 555	ACG Thr	TTT Phe	GAG Glu	AAC Asn	CTC Leu 560	ACG Thr	TGG Trp	TAC Tyr	AAG Lys	CTT Leu 565
GGC TC	A CAG r Gln	GCA Ala	ACA Thr 570	TCG Ser	GTC Val	CAC His	ATG Met	GGC Gly 575	GAA Glu	TCA Ser	CTC Leu	ACA Thr	CCA Pro 580	GTT Val
TGC AA Cys Ly	G AAC s Asn	TTG Leu 585	GAT Asp	GCT Ala	CTT Leu	TGG Trp	AAA Lys 590	CTG Leu	AAT Asn	GGC Gly	ACC Thr	ATG Met 595	TTT Phe	TCT Ser
AAC AG Asn Se	C ACA r Thr 600	Asn	GAC Asp	ATC Ile	TTG Leu	ATT Ile 605	GTG Val	GCA Ala	TTT Phe	CAG Gln	AAT Asn 610	GCC Ala	TCT Ser	CTG Leu
CAG GA Gln As 61	p Gln	GGC Gly	GAC Asp	TAT Tyr	GTT Val 620	TGC Cys	TCT Ser	GCT Ala	CAA Gln	GAT Asp 625	AAG Lys	AAG Lys	ACC Thr	AAG Lys
AAA AG Lys Ar 630	A CAT g His	TGC Cys	CTG Leu	GTC Val 635	AAA Lys	CAG Gln	CTC Leu	ATC Ile	ATC Ile 640	CTA Leu	GAG Glu	CGC Arg	ATG Met	GCA Ala 645
CCC AT	G ATC	ACC Thr	GGA Gly 650	AAT Asn	CTG Leu	GAG Glu	AAT Asn	CAG Gln 655	ACA Thr	ACA Thr	ACC Thr	ATT Ile	GGC Gly 660	GAG Glu
ACC AT	T GAA e Glu	GTG Val 665	ACT Thr	TGC Cys	CCA Pro	GCA Ala	TCT Ser 670	GGA Gly	AAT Asn	CCT Pro	ACC Thr	CCA Pro 675	CAC His	ATT Ile
ACA TO	G TTC p Phe 680	Lys	GAC Asp	AAC Asn	GAG Glu	ACC Thr 685	CTG	GTA Val	GAA Glu	GAT Asp	TCA Ser 690	GGC Gly	ATT Ile	GTA Val
CTG AG Leu Ai	GA GAT cg Asp	GGG Gly	AAC Asn	CGG Arg	AAC Asn 700	Leu	ACT Thr	ATC Ile	CGC Arg	AGG Arg 705	GTG Val	AGG Arg	AAG Lys	GAG Glu

16/23

Fig. 2.5

					ACC Thr 715										
					TTC Phe										
					CTC Leu										
					ATT Ile										
					GGC Gly										
					CGC Arg 795										
					GAC Asp										
					GTG Val										
					ACA Thr										
					CGA Arg										
CAC His 870	ATT Ile	GGT Gly	CAC His	CAT His	CTC Leu 875	AAT Asn	GTG Val	GTG Val	AAC Asn	CTC Leu 880	CTA Leu	GGC Gly	GCC Ala	TGC Cys	ACC Thr 885
AAG Lys	CCG Pro	GGA Gly	GGG Gly	CCT Pro 890	CTC Leu	ATG Met	GTG Val	ATT Ile	GTG Val 895	GAA Glu	TTC Phe	TCG Ser	AAG Lys	TTT Phe 900	GGA Gly

17/23

Fig. 2.6

AAC Asn	CTA Leu	TCA Ser	ACT Thr 905	TYT	TTA Leu	CGG Arg	GGC Gly	AAG Lys 910	Arg	AAT Asn	GAA Glu	TTT Phe	GTT Val 915	CCC Pro	TAT Tyr
AAG Lys	AGC Ser	AAA Lys 920	GGG Gly	GCA Ala	CGC Arg	TTC Phe	CGC Arg 925	CAG Gln	GGC Gly	AAG Lys	GAC Asp	TAC Tyr 930	GTT Val	GGG Gly	GAG Glu
CTC Leu	TCC Ser 935	GTG Val	GAT Asp	CTG Leu	AAA Lys	AGA Arg 940	CGC Arg	TTG Leu	GAC Asp	AGC Ser	ATC Ile 945	ACC Thr	AGC Ser	AGC Ser	CAG Gln
AGC Ser 950	TCT Ser	GCC Ala	AGC Ser	TCA Ser	GGC Gly 955	TTT Phe	GTT Val	GAG Glu	GAG Glu	AAA Lys 960	TCG Ser	CTC Leu	AGT Ser	GAT Asp	GTA Val 965
GAG Glu	GAA Glu	GAA Glu	GAA Glu	GCT Ala 970	TCT Ser	GAA Glu	GAA Glu	CTG Leu	TAC Tyr 975	AAG Lys	GAC Asp	TTC Phe	CTG Leu	ACC Thr 980	TTG Leu
GAG Glu	CAT His	CTC Leu	ATC Ile 985	TGT Cys	TAC Tyr	AGC Ser	TTC Phe	CAA Gln 990	GTG Val	GCT Ala	AAG Lys	GGC Gly	ATG Met 995	GAG Glu	TTC Phe
TTG Leu	GCA Ala	TCA Ser 1000	Arg	AAG Lys	TGT Cys	ATC Ile	CAC His 1005	Arg	GAC Asp	CTG Leu	GCA Ala	GCA Ala 1010	Arg	AAC Asn	ATT Ile
CTC Leu	CTA Leu 1015	Ser	GAG Glu	AAG Lys	AAT Asn	GTG Val 1020	Val	AAG Lys	ATC Ile	TGT Cys	GAC Asp 1025	Phe	GGC Gly	TTG Leu	GCC Ala
CGG Arg 1030	Asp	ATT Ile	TAT Tyr	Lys	GAC Asp 1035	Pro	GAT Asp	TAT Tyr	GTC Val	AGA Arg 1040	Lys	GGA Gly	GAT Asp	Ala	CGA Arg 1045
CTC Leu	CCT Pro	TTG Leu	Lys	TGG Trp 1050	ATG Met	GCC Ala	CCG Pro	Glu	ACC Thr 1055	Ile	TTT Phe	GAC Asp	Arg	GTA Val 1060	TAC Tyr
ACA Thr	ATT Ile	Gln	AGC Ser 1065	Asp	GTG Val	TGG Trp	Ser	TTC Phe 1070	Gly	GTG Val	TTG Leu	Leu	TGG Trp 1075	GAA . Glu	ATA Ile
TTT Phe	Ser	TTA Leu 1080	Gly .	GCC Ala	TCC Ser	Pro	TAC Tyr 1085	CCT Pro	GGG Gly	GTC . Val :	Lys	ATT (Ile . 1090	GAT (Asp	GAA (Glu (GAA Glu

Fig. 2.7

TTT TGT AGG AGA TTG AAA GAA GGA ACT AGA ATG CGG GCT CCT GAC TAC Phe Cys Arg Arg Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr 1095 1100 ACT ACC CCA GAA ATG TAC CAG ACC ATG CTG GAC TGC TGG CAT GAG GAC Thr Thr Pro Glu Met Tyr Gln Thr Met Leu Asp Cys Trp His Glu Asp 1110 1115 1120 1125 CCC AAC CAG AGA CCC TCG TTT TCA GAG TTG GTG GAG CAT TTG GGA AAC Pro Asn Gln Arg Pro Ser Phe Ser Glu Leu Val Glu His Leu Gly Asn 1130 1135 CTC CTG CAA GCA AAT GCG CAG CAG GAT GGC AAA GAC TAT ATT GTT CTT Leu Leu Gln Ala Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu 1145 CCA ATG TCA GAG ACA CTG AGC ATG GAA GAG GAT TCT GGA CTC TCC CTG Pro Met Ser Glu Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser Leu 1165 1170 CCT ACC TCA CCT GTT TCC TGT ATG GAG GAA GAG GAA GTG TGC GAC CCC Pro Thr Ser Pro Val Ser Cys Met Glu Glu Glu Val Cys Asp Pro 1175 1180 1185 AAA TTC CAT TAT GAC AAC ACA GCA GGA ATC AGT CAT TAT CTC CAG AAC Lys Phe His Tyr Asp Asn Thr Ala Gly Ile Ser His Tyr Leu Gln Asn 1190 1195 1200 1205 AGT AAG CGA AAG AGC CGG CCA GTG AGT GTA AAA ACA TTT GAA GAT ATC Ser Lys Arg Lys Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp Ile 1210 1215 CCA TTG GAG GAA CCA GAA GTA AAA GTG ATC CCA GAT GAC AGC CAG ACA Pro Leu Glu Glu Pro Glu Val Lys Val Ile Pro Asp Asp Ser Gln Thr 1225 GAC AGT GGG ATG GTC CTT GCA TCA GAA GAG CTG AAA ACT CTG GAA GAC Asp Ser Gly Met Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp 1240 1245 AGG AAC AAA TTA TCT CCA TCT TTT GGT GGA ATG ATG CCC AGT AAA AGC Arg Asn Lys Leu Ser Pro Ser Phe Gly Gly Met Met Pro Ser Lys Ser 1255 1260 AGG GAG TCT GTG GCC TCG GAA GGC TCC AAC CAG ACC AGT GGC TAC CAG Arg Glu Ser Val Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln 1270 1275 1280

7

٦

Fig. 2.8

TCT GGG TAT CAC TCA GAT GAC ACA GAC ACC GTG TAC TCC AGC GAC Ser Gly Tyr His Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp 1290 1295 1300

GAG GCA GGA CTT TTA AAG ATG GTG GAT GCT GCA GTT CAC GCT GAC TCA
Glu Ala Gly Leu Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser
1305 1310 1315

GGG ACC ACA CTG CAG CTC ACC TCC TGT TTA AAT GGA AGT GGT CCT GTC Gly Thr Thr Leu Gln Leu Thr Ser Cys Leu Asn Gly Ser Gly Pro Val 1320 1325 1330

CCG GCT CCG CCC CCA ACT CCT GGA AAT CAC GAG AGA GGT GCT GCT TAG Pro Ala Pro Pro Pro Thr Pro Gly Asn His Glu Arg Gly Ala Ala 1335 1340 1345

ATTTTCAAGT GTTGTTCTTT CCACCACCG GAAGTAGCCA CATTTGATTT TCATTTTTGG AGGAGGGACC TCAGACTGCA AGGAGCTTGT CCTCAGGGCA TTTCCAGAGA AGATGCCCAT GACCCAAGAA TGTGTTGACT CTACTCTCTT TTCCATTCAT TTAAAAGTCC TATATAATGT GCCCTGCTGT GGTCTCACTA CCAGTTAAAG CAAAAGACTT TCAAACACGT GGACTCTGTC CTCCAAGAAG TGGCAACGGC ACCTCTGTGA AACTGGATCG AATGGGCAAT GCTTTGTGTG TTGAGGATGG GTGAGATGTC CCAGGGCCGA GTCTGTCTAC CTTGGAGGCT TTGTGGAGGA TGCGGCTATG AGCCAAGTGT TAAGTGTGGG ATGTGGACTG GGAGGAAGGA AGGCGCAAGC CGTCCGGAGA GCGGTTGGAG CCTGCAGATG CATTGTGCTG GCTCTGGTGG AGGTGGGCTT GTGGCCTGTC AGGAAACGCA AAGGCGGCCG GCAGGGTTTG GTTTTGGAAG GTTTGCGTGC TCTTCACAGT CGGGTTACAG GCGAGTTCCC TGTGGCGTTT CCTACTCCTA ATGAGAGTTC CTTCCGGACT CTTACGTGTC TCCTGGCCTG GCCCCAGGAA GGAAATGATG CAGCTTGCTC CTTCCTCATC TCTCAGGCTG TGCCTTAATT CAGAACACCA AAAGAGAGGA ACGTCGGCAG GTGGAGACCC ACGTGGCGCC CTGGTGGCAG GTCTGAGGGT TCTCTGTCAA GTGGCGGTAA AGGCTCAGGC TGGTGTTCTT CCTCTATCTC CACTCCTGTC AGGCCCCCAA GTCCTCAGTA TTTTAGCTTT GTGGCTTCCT GATGGCAGAA AAATCTTAAT TGGTTGGTTT GCTCTCCAGA

Fig. 2.9

TAATCACTAG CCAGATTTCG AAATTACTTT TTAGCCGAGG TTATGATAAC ATCTACTGTA
TCCTTTAGAA TTTTAACCTA TAAAACTATG TCTACTGGTT TCTGCCTGTG TGCTTATGTT
AAAAAAAAAA AAAAA

t

(20 to)

Sent panoa

22/23

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)