Simulations of Sequence Evolution

How (Un)realistic They Are and Why

J. Trost, J. Haag, D. Höhler, L. Jacob, A. Stamatakis & B. Boussau

Motivation

Data Al Magic

The state of the

Motivation

MSA Al Phylogeny

White the state of the sta

Motivation

Julia Haag

2

HITS Heidelberg

How (un)realistic are simulations?

Empirical Data Collection

Model of Evolution

Simulated Data Collection

How realistic is

the data?

Alignment Simulation

- 15 simulated data collections
 - DNA: 5 + 2
 - Protein: 7 + 1
- Models of Evolution:
 - DNA: JC, HKY, GTR, GTR+G, GTR+G+I
 - Protein: Poisson, WAG, LG, LG+C60, LG+S256, LG+S256+G4, LG+S256+GC
- Empirical data collections
 - DNA: TreeBASE (9460 MSAs)
 - Protein: HOGENOM (6971 MSAs)

Alignment Simulation

- Phylogeny + simulation parameters based on empirical data collections
- Simulation Tool: AliSim
- Simulations without indels
- Indel Simulation:
 - Mimick approach: superimpose gap patterns
 - SPARTA approach: empirical indel parameteres (SpartaABC)

Simulated Data Collections

- DNA (5 + 2):
 - Gapless: JC, HKY, GTR, GTR+G, GTR+G+I
 - With Indels: GTR+G+I+mimick, GTR+G+I+sparta

- Protein (7 + 1):
 - Gapless: Poisson, WAG, LG, LG+C60, LG+S256, LG+S256+G4, LG+S256+GC
 - With Indels: LG+S256+GC+sparta

Empirical Data Collection

Model of Evolution

Simulated Data Collection

Training and Evaluation

- Two distinct classifiers
 - Gradient Boosted Trees (GBT)
 - Convolutional Neural Network (CNN)
- 1 classifier each for each simulated data collection
 - \Rightarrow 15 GBTs + 15 CNNs
- Training data: simulated + empirical data collection
- 10-fold CV + Balanced Accuracy (BACC)
- Final accuracy: average BACC over all 10 folds

Gradient Boosted Trees

GBT: Features

- Branch length features
 - Based on RAxML-NG tree inference
 - Average branch length, maximum branch length, ...
- Difficulty features (Pythia)
 - Based on Pythia difficulty prediction
 - Predicted difficulty, sites-per-taxa ratio, proportion of invariant sites, ...
- Randomness features (FRST)
 - Based on parsimony substation counts and FRST
 - Entropy, Serial Correlation Coefficient, ...

Convolutional Neural Network

Classification Performance

	BACC		
	GBT	CNN	
DNA data collections			
JC	0.96	0.99	
HKY	0.96	0.99	
GTR	0.94	0.93	
GTR+G	0.89	0.94	
GTR+G+I	0.89	0.94	
GTR+G+I+mimick	0.77	0.97	
GTR+G+I+sparta	0.94	0.97	

	BACC		
	GBT	CNN	
Protein data collections			
Poisson	0.99	0.9996	
WAG	0.99	0.97	
LG	0.99	0.95	
LG+C60	0.98	0.99	
LG+S256	0.99	0.995	
LG+S256+G4	0.99	0.99	
LG+S256+GC	0.98	0.99	
LG+S256+GC+sparta	0.99	0.996	

GBT Feature Importance

Most important features: randomness metrics

Empirical DNA MSA

Simulated DNA MSA

GBT Feature Importance

- Most important features: randomness metrics
 - Randomness across sites
 - Randomness within sites
- Empirical data:
 - Higher proportion of invariant sites
 - Longer branches

CNN: Feature Importance

- Logistic Regression
 - Feature: Alignment-wise AA/Nucleotide frequency
- DNA data:
 - BACC ~ 0.5
- Protein data:
 - BACC > 0.94 (mixture models)
 - MSA composition highly informative

Discussion

- Remarkable Classification Accuracy ⇒ low simulation realism
- Representative empirical data + as-good-as-possible simulations
- Two distinct approaches = two distinct sets of characteristics
 - GBTs: hand-crafted, MSA global features
 - CNNs: site-compositions
- Important features:
 - Site-composition
 - Uniformity of evolution across sites

Conclusion

- What now?
 - Better models
 - New (model-free?) simulators
- Classification approach as testing framework for simulation realism
 - High accuracy ⇒ low realism
 - Low accuracy ⇒ high realism
- Models ≠ real-world, is that surprising?
 - No, but the degree of unrealism is!