Math 112

Chapter 7.7: Numerical Integration.

The goal of this section is to approximate the value of definite integrals by using finite sums.

EXAMPLE:

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 Suppose we want to know $\operatorname{erf}(1)$.

Estimate
$$\int_0^1 e^{-x^2} dx$$
 using L_4 , R_4 , and M_4

It would be even more useful if we could bound the difference $\left|L_4 - \int_0^1 e^{-x^2} dx\right|$

We could then ask what size of N do we need to make L_N "good enough"

If we want a more accurate approximation, we might try using shapes other than rectangles. Estimate $\int_0^1 e^{-x^2} dx$ using 4 trapezoids. Call this T_4 .

Trapezoid Rule T_N

$$\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{N-1}) + f(x_N) \right]$$

COMPARISON OF APPROXIMATIONS

We can compare the different approximations by looking at the errors. Define the error in using the Midpoint rule as

$$E_M = \int_a^b f(x) \, dx - M_N$$

We can define E_L , E_R , and E_T similarly.

To get a sense of the errors, we can approximate the value of a known integral, $\int_1^3 \frac{1}{x} dx$.

Several calculations by computer gives us...

N	E_L	E_R	E_T	E_M
5	-0.1449	0.121678	-0.01165	0.005755
10	-0.06962	0.063716	-0.00295	0.00147
20	-0.03407	0.032593	-0.00074	0.00037

We notice some trends...

- 1.
- 2.
- 3.
- 4.

ERROR BOUNDS

For the Midpoint Rule and Trapezoid rule we have the following formula to estimate the error

$$|E_M| \le \frac{K(b-a)^3}{24N^2} \qquad |E_T| \le \frac{K(b-a)^3}{12N^2}$$

where K is a number such that |f''(x)| < K when x is in the interval [a, b].

EXAMPLES:

Again consider the integral $\int_1^3 \frac{1}{x} dx$.

- 1. If N=20, what is the largest that $|E_T|$ could be? How about $|E_M|$?
- 2. How large would N need to be if we want $|E_M| < 0.0001$?

Estimate the error E_T in the approximation T_8 for the following integral.

$$\int_0^1 \cos x^2 \, dx$$

EXERCISE: Consider the following integral:

$$\int_0^\pi \sin x \, dx$$

- 1. Find M_{10} , and T_{10} , and the corresponding errors E_M , and E_T .
- 2. Compute the error bounds using the formulas and then compare them with the true errors E_M , and E_T .
- 3. How large do we have to choose N so that $|E_T| < 0.00001$? Use the error bound formula.

For Simpson's Rule we have a similar formula to estimate the error

$$|E_S| \le \frac{K(b-a)^5}{180N^4}$$

where K is a number such that |f''''(x)| < K when x is in the interval [a, b].

EXAMPLE:

For the integral $\int_1^3 \frac{1}{x} dx$ how large do we have to choose N so that $|E_S| < 0.0001$?

EXERCISE: Consider the following integral:

$$\int_0^\pi \sin x \, dx$$

- 1. Find S_{10} and the corresponding error E_S .
- 2. Compute the error bound using the formula and then compare them with the true error E_S .
- 3. How large do we have to choose N so that $|E_S| < 0.00001$? Use the error bound formula.