1

Control System Tutorial Subject Code: EC380

Subject Code: EC380
INDIAN INSTITUTE OF INFORMATION TECHNOLOGY GUWAHATI

I. BLOCK DIAGRAM REPRESENTATION

1. Simplify the block diagram shown below and obtain the closed-loop transfer function C(s)/R(s)

2. Obtain the closed-loop transfer function Y(s)/U(s) of the following system

3. Following is the block-diagram of the position-control system of an electronic word processor. Obtain the loop transfer function $\theta_0(s)/\theta_e(s)$ (considering outer feedback path open) and closed-loop transfer function $\theta_0(s)/\theta_r(s)$.

4. The following is a block diagram of electric train control, The system parameters are given below: $e_r(t)$ =voltage representing the desired train speed, V v_t =speed of train in ft/sec

 $M=30,000lb/sec^2$

K=amplifier gain

 K_t =gain of speed indicator=0.15V/ft/sec

To determine the transfer function of the controller, a step function of 1V is applied to the input of the

controller i.e., $e_c(t) = u_s(t)$. The output of the controller is measured and described by the following equation:

$$f(t) = 100(1 - 0.3e^{-6t} - 0.7e^{-10t})u_s(t)$$

- (a) Find the transfer function $G_c(s)$ of the controller. (b) Derive the forward path transfer function $\frac{V(s)}{Es}$ of the system. (c) Derive the closed loop transfer function $\frac{V(s)}{Ers}$ of the system. (d) Assuming that K is set at a value so that the train will not run-away i.e. unstable, find the steady-state speed of the train in ft/sec when input is $e_r(t) = u_s(t) V$

II. SIGNAL FLOW GRAPH

5. Consider the following signal flow graph (SFG). Find the input-output relationship between y_7 and y_1 using gain formula

6. Find the transfer function Y_7/Y_1 of the following SFG

III. SIGNAL FLOW GRAPH TO BLOCK DIAGRAM REPRESENTATION

7. Obtain the equivalent SFG of the following block diagram representation and hence find the closed-loop transfer-function Y(s)/R(s) of the system.

8. Find closed-loop transfer function Y(s)/R(s) of the following by applying gain formula to the equivalent SFG.

IV. TIME-DOMAIN ANALYSIS

- 9. The open-loop transfer function of a unity feedback system is given by $G(s) = \frac{5}{s(s+1)}$. Find the rise time, percentage overshoot, time of peak overshoot and settling time (2% criterion) for a unit step input.
- 10. The plant shown below has open-loop transfer functions as $G(s) = \frac{1}{s^2}$. The plant is controlled by a forward proportional controller with gain K_P , and a rate controller in its feedback path. It is desired to obtain a response to a step input as shown below. Design the values of the gain K_P and K_D to get the desired response.

11. Automatically controlled insulin injection by means of a pump and a sensor can be very effective for better lives of diabetic persons. Such a pump and an injection system has a feedback control as shown below. Considering unity feedback, calculate the suitable gain K so that overshoot of the step-response due to the drug-injection is approximately 7%. R(s) is the desired blood-sugar level and Y(s) is the actual blood-sugar level.

12. Find the steady-state error for a step and ramp input in a unity feedback system with open-loop transfer function $G(s) = \frac{5(s+8)}{s(s+1)(s+4)(s+10)}$

- 13. For a unity feedback system, find the steady-state error for a step and ramp input when $G(s) = \frac{20}{s^2 + 14s + 50}$
- 14. Consider the feedback control system shown below. The controller is an integrator with a gain of K. Find the value of K for which steady-state error to unit ramp input is less than 0.01

V. Answers

1.
$$\frac{C(s)}{R(s)} = \frac{G_1 G_2 G_3 G_4}{1 + G_1 G_2 H_1 + G_3 G_4 H_2 - G_2 G_3 H_3 + G_1 G_2 G_3 G_4 H_1 H_2}$$

2.
$$\frac{Y(s)}{U(s)} = \frac{10(s+1)}{s^3 + 6s^2 + 5s + 10}$$

3a.
$$OLTF = \frac{\theta_0(s)}{\theta_e(s)} = \frac{KK_sK_1K_iN}{s[L_aJ_ts^2 + (L_aB_t + R_aJ_t + K_1K_2J_t)s + R_aB_t + K_iK_b + KK_1K_iK_t + K_1K_2B_t]}$$

$$3b. \frac{\theta_0(s)}{\theta_r(s)} = \frac{KK_sK_1K_iN}{[L_aJ_ts^3 + (L_aB_t + R_aJ_t + K_1K_2J_t)s^2 + (R_aB_t + K_iK_b + KK_1K_iK_t + K_1K_2B_t)s + KK_sK_1K_iN]}$$

4.a)
$$G_c(s) = \frac{F(s)}{E_c(s)} = \frac{880(s+6.818)}{(s+6)(s+10)}$$

4.b)
$$\frac{V(s)}{E(s)} = \frac{KG_c(s)}{Ms} = \frac{0.0293K(s+6.818)}{s(s+6)(s+10))}$$

4.c)
$$\frac{Vs}{E_r(s)} = \frac{\frac{KG_c(s)}{Ms}}{1 + \frac{KK_tG_c(s)}{Ms}} = \frac{0.0293K(s + 6.818)}{s^3 + 16s^2 + (0.0044K + 60)s + 0.03K}$$

4.d)
$$e_r = 1V$$
 i.e., $E_r(s) = \frac{1}{s}$
$$\lim_{t \to \infty} v(t) = \lim_{s \to 0} sV(s) = 6.66ft/sec$$

5.
$$\frac{y_7}{y_1} = \frac{G_1G_2G_3G_4 + G_1G_5(1 + G_3H_2)}{\Lambda}$$

where $\Delta = 1 + G_1H_1 + G_3H_2 + G_1G_2G_3H_3 + H_4 + G_1G_3H_1H_2 + G_1H_1H_4 + G_3H_2H_4 + G_1G_2G_3H_3H_4 + G_1G_3H_1H_3H_4$

6.
$$\frac{Y_7}{Y_1} = \frac{G_1G_2G_3G_4G_5 + G_5G_6(1 + G_2H_2 + G_3H_3)}{\Lambda}$$

where $\Delta=1+G_1H_1+G_2H_2+G_3H_3+G_4G_5H_4+H_6+G_2G_3G_4G_5H_5-G_5G_6H_1H_5-G_5G_6H_1H_2H_3H_4+G_1G_3H_1H_3+G_1G_4G_5H_1H_4+G_1H_1H_6+G_2G_4G_5H_2H_4+G_2H_2H_6+G_3H_3H_6-G_3G_5G_6H_1H_3H_5+G_1G_3H_1H_3H_6$

8.

- 9. $t_r = 0.83sec, M_p = 48.7\%, t_p = 1.44sec, t_s = 8sec$
- 10. $M_p=1$ implies $\zeta=0$, which implies $w_n=1.57 rad s^{-1}$ which in turn gives $K_P=1.25$ and $K_D=0$
- 11. *K*=1.67
- 12. $K_p=\infty$ and $K_v=1.0$ for type-1 system. So, $e_{ss}=0$ for step-input and $e_{ss}=1a_0$ for rampinput where a_0 is the slope of ramp signal.
- 13. $e_{ss}=0.71$ for step input and $e_{ss}=\infty$ for a ramp input
- 14. K > 10