# 29 de Abril 2022 Registro multimodal de imágenes mediante Información Mutua

Bruno M. Breggia FI-UNER Paper Original

- IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 2, APRIL 1997.
- "Multimodality Image Registration by
   Maximization of Mutual Information"
- Frederik Maes, André Collignon, Dirk Vandermeulen, Guy Marchal, Paul Suetens
- Miembros del *Laboratory for Medical Imaging* Research, Leuven, Bélgica.

### 1. Introducción

#### © El Problema

- Registro de imágenes: proceso de
- transformación de diferentes conjuntos de datos (imágenes) a un mismo sistema
- $^{ullet}$  coordenado.



#### Aplicación

- Visión computacional, imagenología médica, reconocimiento automático de blancos militares, astrofotografía.
- 5
- •
- **(**
- €



#### Aplicación: Imagenología Médica



#### Técnicas convencionales

- Los métodos habituales para el registro de imágenes son:
- Basado en frames (estereotáctico)
- Basado en puntos característicos de la imagen
- Basado en superficies
- Basado en vóxeles



Histograma 2D

## 2. Un Nuevo Criterio de Registro

#### Información Mutua

Información Mutua (o Entropía Relativa) es un parámetro que cuantifica el grado de dependencia de dos variables aleatorias A y B a partir de la similitud entre la probabilidad conjunta  $p_{AB}$  con el producto de las marginales  $p_{A}p_{B}$ .





Propiedades de Información Mutua

No negativa

$$I(A,B) \geq 0$$

Independencia

$$I(A,B) = 0 \iff p_{AB}(a,b) = p_A(a)p_B(b)$$

Simetría

(10)

$$I(A,B) = I(B,A)$$

- Información propia
- I(A,A)=H(A)

#### Procedimiento 1

- Se toman dos imágenes, una será la **imagen de referencia (R)** y la otra la **imagen flotante (F)**, que iremos desplazando y rotando.
- La transformación que nos permite ir de F hasta R es una transformación de cuerpo rígido (traslaciones y
- n rotaciones).



#### Procedimiento 2

- A partir de la transformación  $T_{lpha}$ , se obtienen las
- intensidades de cada voxel de  $\overline{F}$  y la correspondiente de R. La frecuencia de ocurrencia de este par de
- valores permite armar un histograma 2D.

$$p_{FR,\alpha}(f,r) = \frac{h_{\alpha}(f,r)}{\sum_{f,r} h_{\alpha}(f,r)}$$

$$p_{F,\alpha}(f) = \sum_{r} p_{FR,\alpha}(f,r)$$

$$p_{R,\alpha}(r) = \sum_{f} p_{FR,\alpha}(f,r)$$



Procedimiento 3

- Suposición
- La dependencia estadística entre las intensidades de los voxeles correspondientes de ambas imágenes es máxima si están alineadas.

$$I(\alpha) = \sum_{f,r} p_{FR,\alpha}(f,r) \log \frac{p_{FR,\alpha}(f,r)}{p_{F,\alpha}(f)p_{R,\alpha}(r)}$$

- La optimización de la MI en base a las traslaciones y rotaciones se realiza numéricamente con el método

#### Puesta a prueba 1

DATASETS USED IN THE EXPERIMENTS DISCUSSED IN SECTIONS V AND VI

| Set | Image               | Size               | Voxels (mm)          | Range            |
|-----|---------------------|--------------------|----------------------|------------------|
| A   | MR                  | $256^2 \times 180$ | $0.98^2 \times 1.00$ | $0 \times 4094$  |
| 1   | $\operatorname{CT}$ | $256^2 \times 100$ | $0.94^2 \times 1.55$ | $0 \times 4093$  |
| В   | MR                  | $200^2 \times 45$  | $1.25^2 \times 4.00$ | $38 \times 2940$ |
|     | CT                  | $192^2 \times 39$  | $1.25^2 \times 4.00$ | $0 \times 2713$  |
| C   | MR                  | $256^2 \times 24$  | $1.25^2 \times 4.00$ | $2 \times 2087$  |
|     | CT                  | $512^2 \times 29$  | $0.65^2 \times 4.00$ | $0 \times 2960$  |
|     | PET                 | $128^2 \times 15$  | $2.59^2 \times 8.00$ | 0×683            |
| D   | MR                  | $256^2 \times 30$  | $1.33^2 \times 4.00$ | $2 \times 3359$  |

#### Puesta a prueba 2

(\*)

|    | 614                         | E/D       |        | Detet              | (1-   | \    | TT.                | 1 4 2 7 |       |
|----|-----------------------------|-----------|--------|--------------------|-------|------|--------------------|---------|-------|
| )  | Set $\mathbf{F}/\mathbf{R}$ |           |        | Rotation (degrees) |       |      | Translation $(mm)$ |         |       |
|    |                             |           |        | x                  | У     | Z    | х                  | У       | z     |
|    | A                           | Reference | e [25] | 9.62               | -3.13 | 2.01 | 7.00               | 1.14    | 18.15 |
| •) |                             | CT/MR     | NN     | 10.23              | -3.23 | 2.10 | 6.98               | 1.00    | 18.24 |
| n  | ļ                           |           | TRI    | 10.24              | -3.21 | 2.08 | 6.97               | 1.05    | 18.22 |
|    |                             |           | PV     | 10.36              | -3.17 | 2.09 | 6.94               | 1.15    | 18.20 |
| 5) |                             | MR/CT     | NN     | 10.24              | -3.17 | 2.09 | 6.95               | 1.04    | 18.18 |
| 1  |                             |           | TRI    | 10.24              | -3.15 | 2.07 | 6.92               | 1.00    | 18.23 |
|    |                             |           | PV     | 10.39              | -3.14 | 2.09 | 6.90               | 1.15    | 18.18 |
|    | В                           | Reference | e [25] | 9.62               | -3.13 | 2.01 | 7.00               | 1.14    | 18.15 |
|    |                             | CT/MR     | NN     | 10.02              | -3.42 | 2.25 | 6.63               | 0.34    | 18.28 |
|    |                             |           | TRI    | 10.27              | -3.11 | 2.05 | 6.53               | 0.54    | 18.34 |
|    |                             |           | PV     | 10.57              | -3.17 | 2.11 | 6.60               | 0.62    | 18.36 |
| F) |                             | MR/CT     | NN     | 10.17              | -3.06 | 2.25 | 6.47               | 0.30    | 17.90 |
|    |                             |           | TRI    | 10.03              | -3.05 | 2.22 | 6.44               | 0.37    | 18.19 |
|    |                             |           | PV     | 10.29              | -3.16 | 2.08 | 6.48               | 0.33    | 17.95 |

#### Puesta a prueba 3

(\*)

| í                | ,                           |           |                    |       |       |                  |       |        |        |
|------------------|-----------------------------|-----------|--------------------|-------|-------|------------------|-------|--------|--------|
| 0                | Set $\mathbf{F}/\mathbf{R}$ |           | Rotation (degrees) |       |       | Translation (mm) |       |        |        |
|                  |                             |           |                    | x     | У     | Z                | Х     | У      | z      |
|                  | С                           | Reference | [10]               | -0:63 | 0.05  | 4.74             | 26.15 | -41.08 | -12.35 |
| <b>)</b>         |                             | CT/MR     | NN                 | 0.87  | 0.05  | 4.84             | 26.70 | -40.67 | -9.92  |
| A                |                             |           | TRI                | 1.21  | -1.94 | 3.67             | 29.51 | -39.78 | 43.61  |
| 2                |                             |           | PV                 | -0.00 | 0.00  | 4.95             | 26.57 | -40.72 | -10.00 |
| 6)               |                             | MR/CT     | NN                 | -0.21 | 0.00  | 4.95             | 26.56 | -41.27 | -12.01 |
| $\boldsymbol{L}$ |                             |           | TRI                | -0.51 | 0.25  | 5.03             | 26.35 | -40.80 | -11.84 |
| <b>b</b> )       |                             |           | PV                 | -1.58 | 0.13  | 4.97             | 26.48 | -41.39 | -12.18 |
|                  | С                           | Reference | [10]               | 1.52  | -1.17 | 4.22             | 27.62 | -2.60  | -4.46  |
|                  |                             | PET/MR    | NN                 | 0.70  | 0.26  | 5.20             | 27.57 | -0.74  | -5.08  |
|                  |                             |           | TRI                | 0.38  | 0.01  | 5.25             | 27.50 | -1.29  | -1.37  |
|                  |                             |           | PV                 | 1.63  | 0.18  | 4.98             | 27.65 | -0.46  | -4.94  |
|                  |                             | MR/PET    | NN                 | 0.42  | 0.14  | 5.04             | 27.93 | -1.28  | -5.03  |
|                  |                             |           | TRI                | 0.16  | -0.11 | 4.90             | 27.99 | -1.60  | -4.27  |
|                  | L                           |           | PV                 | 1.46  | -0.34 | 4.71             | 27.94 | -0.85  | -4.49  |

3. Discusión y Conclusiones

Registro multimodal de imágenes mediante Información Mutua

#### Discusión y conclusiones

- Este método puede detectar relaciones no lineales entre las intensidades de imágenes multimodales.
- Permite detección de similitudes en base a criterios más generales (no sólo transformación de cuerpo sólido).
- La selección de rasgos a comparar más eficientes es un área a explorar.
  - El proceso no es necesariamente igual de eficiente intercambiando *F* con *R*, se desconoce el motivo.
  - La variación continua y suave de la MI puede ser aprovechada con optimización basada en gradientes.
  - El proceso es directo: no requiere preprocesamiento ni interacción con el usuario. Ideal para el ámbito clínico.

(ullet)