

Data Preprocessing

Machine Learning (PM chap 4, 5)

Data Preprocessing: Build Good Training Sets

- Building Good Training Sets
 - Integration
 - Cleaning Dealing with missing data, outliers
 - Transformation Handling categorical data, bringing features onto the same scale
 - Reduction Selecting meaningful features, dimensionality reduction

Data Preprocessing: Build Good Training Sets

Example

Titanic dataset – predict 'survived'

4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 37	599 71.283 282 7.925 303 53.100	3 C85	C S
2 3 1 3 Heikkinen, Miss. Laina female 26.0 0 0 STON/O2. 310 3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 11 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 37	282 7.925 303 53.100	0 NaN	S
3 4 1 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 0 11 4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 37	303 53.100		
4 5 0 3 Allen, Mr. William Henry male 35.0 0 0 37		0 C123	S
	150 8 050		
	0.000	0 NaN	S
886 887 0 2 Montvila, Rev. Juozas male 27.0 0 0 21	36 13.000	0 NaN	S
887 888 1 1 Graham, Miss. Margaret Edith female 19.0 0 0 11	30.000	0 B42	S
888 889 0 3 Johnston, Miss. Catherine Helen "Carrie" female NaN 1 2 W./C.	07 23.450	0 NaN	S
889 890 1 1 1 Behr, Mr. Karl Howell male 26.0 0 0 11	30.000	0 C148	С
890 891 0 3 Dooley, Mr. Patrick male 32.0 0 0 37	376 7.750	0 NaN	Q

Data Preprocessing: Build Good Training Sets

- Sklearn.preprocessing
 - Encoding, scaling, standardizing, etc.
- Sklearn.decomposition
 - Matrix decomposition algorithms, including PCA
- Methods
 - fit(): fit the model for preprocessing
 - transform(): transform feature values
 - fit_transform() : fit + transform
 - **X** fit() using training data

Missing Values

- Pandas NaN
- Eliminating samples or features with missing values. dropna(axis=0)

	Α	В	C	label		Α	В	С	labe
0	1	0.1	10.0	0	0	1	0.1	10.0	
1	2	0.2	20.0	0	1	2	0.2	20.0	
2	2	0.1	NaN	1	3	3	0.3	20.0	
3	3	0.3	20.0	1					
4	2	0.2	NaN	0					

Imputing missing values. fillna(df.mean())

	Α	В	С	label		Α	В	С	
	1	0.1	10.0	0	0	1	0.1	10.000000	
1	2	0.2	20.0	0	1	2	0.2	20.000000	
2	2	0.1	NaN	1	2	2	0.1	16.666667	
3	3	0.3	20.0	1	3	3	0.3	20.000000	
4	2	0.2	NaN	0	4	2	0.2	16.666667	

Missing Values

- Imputing missing values using scikit-learn
 - impute.SimpleImputer()

get X array from df dataframe

```
X = df.values
print(X)
[[ 1.
     0.1 10. 0. 1
 [ 2. 0.2 20.
 [ 2. 0.1 nan 1. ]
 [3. 0.3 20. 1.]
 [ 2. 0.2 nan 0. ]]
from sklearn.impute import SimpleImputer
# replace missing values, encoded as np.nan, using the mean value of the columns
imr = SimpleImputer(missing values=np.nan, strategy='mean')
imr.fit(X)
imputed_X = imr.transform(X)
print(imputed_X)
[[ 1.
                         10.
                                     0.
              0.1
              0.2
                         20.
              0.1
                        16.66666667
 [ 3.
              0.3
                         20.
 Γ2.
              0.2
                         16.66666667
                                               11
```

- Encoding class labels pandas
 - .map(<dictionary>)

```
label_mapping = {'class1': 0, 'class2': 1, 'class3': 2 }
pdf['classlabel'] = pdf['classlabel'].map(label_mapping)
```

- Encoding class labels scikit-learn
 - preprocessing.LabelEncoder()

```
enc = LabelEncoder()
sdf['classlabel'] = enc.fit_transform(sdf['classlabel'])
```

	color	size	price	classlabel
0	green	М	10.1	class1
1	red	L	13.5	class1
2	blue	XL	15.3	class3
3	red	М	14.5	class2

	color	size	price	classia	iber	1
0	green	М	10.1		0	,
1	red	L	13.5		0	
2	blue	XL	15.3		2	
3	red	М	14.5		1	

- Encoding features
 - Ordinal feature Order information should be encoded CORRECTLY

1 led L 15.5 0		color	size	price	classlabel
2 blue XL 15.3 2 2 0.0 2.0 15.3 2	0	green	М	10.1	0
2 blue XL 15.3 2	1	red	L	13.5	0
3 red M 14.5 1 3 2.0 1.0 14.5 1	2	blue	XL	15.3	2
	3	red	М	14.5	1

Nominal feature - Order information should NOT be encoded

- Encoding ordinal features pandas
 - .map(<dictionary>)

```
size_mapping = {'M': 0, 'L': 1, 'XL': 2 }
pdf['size'] = pdf['size'].map(size_mapping)
```

- Encoding ordinal features scikit learn
 - preprocessing.OrdinalEncoder()

```
enc = OrdinalEncoder(categories=[['M', 'L', 'XL']])
sdf[['size']] = enc.fit_transform(sdf[['size']])
```

		color	size	price	classlabel
	0	green	М	10.1	0
1	1	red	L	13.5	0
	2	blue	XL	15.3	2
3	red	М	14.5	1	

	color	size	price	classlabel
0	green	0	10.1	0
1	red	1	13.5	0
2	blue	2	5.3	2
3	red	0	14.5	1

- One-hot encoding of nominal features pandas
 - .get_dummies()

```
pd.get_dummies(pdf, columns=['color'])
```

- One-hot encoding of nominal features scikit learn
 - OneHotEncoder()

```
enc = OneHotEncoder(sparse=False)

color_enc = enc.fit_transform(sdf[['color']])
sdf_color_enc = pd.DataFrame(color_enc, columns=['color0', 'color1', 'color2',])
sdf = pd.concat([sdf_color_enc, sdf[['size', 'price', 'classlabel']]],axis=1)
```

	color	size	price	classlabel
0	green	0	10.1	0
1	red	1	13.5	0
2	blue	2	15.3	2
3	red	0	14.5	1

size price classlabel color blue color green color red

Transformation of Numerical Values

- Brining features onto the same scale
- Normalization
 - Change all values in the range [0, 1]

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

- Standardization
 - Transform all values to have zero mean and unit variance

$$x_{new} = \frac{x - \mu}{\sigma}$$

Transformation of Numerical Values

- Example Wine Dataset
 - From 13 features → predict class label (1, 2, 3)

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185
3	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.80	0.86	3.45	1480
4	1	13.24	2.59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.32	1.04	2.93	735

Transformation of Numerical Values

- Normalization, standardization (using training data)
 - MinMaxScaler(), StandardScaler()

```
X = df wine.iloc[:, 1:].values
y = df wine.iloc[:, 0].values
X train, X test, y train, y test = train test split(X, y,
 mms = MinMaxScaler()
 X train norm = mms.fit transform(X train)
 X test norm = mms.transform(X test)
                                                  [[ 0.64619883
                                                               0.83201581
                                                                          0.4248366
                                                                                     0.46236559
                                                                                                0.27160494]
[[ 13.62
                         20.
           4.95
                                92.
                                                   [ 0.6871345
                                                               0.43548387
                                                                                                0.7654321 1
           1.53
                  2.7
                         19.5
                               132.
[ 13.76
                                                               0.15019763 0.65359477
                                                                                     0.59677419
                                                                                                0.3827160511
[ 13.73
                         22.5
                               101. 11
                                                  \max[0] = 1.0
stdsc = StandardScaler()
X train std = stdsc.fit transform(X train)
X_test_std = stdsc.transform(X test)
[[ 13.62
           4.95
                  2.35
                         20.
                                92.
                                                               2.22048673 -0.13025864
                                                                                     0.05962872 -0.504327331
                  2.7
[ 13.76
           1.53
                         19.5
                               132.
                                                   [ 0.88229214 -0.70457155 1.17533605 -0.09065504
                                                   L 0.84585645 -0.73022996 1.17533605 0.81104754
   13.73
                         22.5
                               101.
                                                  mean[0] = 0.00
```

- Select meaningful features using information gain
 - feature_importances_ in Decision tree
 - The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature
 - Use features with high importance

$$IG(D_p, f) = I(D_p) - \sum_{j=1}^{m} \frac{N_j}{N_p} I(D_j)$$

- Example
 - Learn the tree

```
tree = DecisionTreeClassifier(random_state=0)
tree.fit(X_train, y_train)
```

Get the feature importances

```
[0.01745058 0.
                                 0.02392638.0.
                                                       0.
0.39714318 0.01635992 0.
                                 0.10565781.0.
                                                       Π
0.439462141
[12 6 9 3 0 7 11 10 8 5 4 2 1]
1. Proline
                                  0.439462
 2. Flavanoids
                                  0.397143
 Color intensity
                                  0.105658
 4. Alcalinity of ash
                                  0.023926
5. Alcohol.
                                  0.017451
6. Nonflavanoid phenols
                                  0.016360
 7. OD280/OD315 of diluted wines
                                  0.000000
 8. Huel
                                  0.000000
9. Proanthocvanins
                                  0.000000
10. Total phenols
                                  0.000000
11. Magnesium
                                  0.000000
12. Ash
                                  0.000000
13. Malic acid
                                  0.000000
```

- Select meaningful features using regularization
 - L1 and L2 regularization as penalties against model complexity
 - L2 regularization is one approach to reduce the complexity of a model by penalizing large individual weights

$$L_2: \|\mathbf{w}\|_2^2 = \sum_{j=1}^m w_j^2 \qquad \Longrightarrow \qquad w_j = w_j - \alpha \frac{\partial J}{\partial w_j} - \alpha \lambda w_j$$

Another approach to reduce the model complexity is L1 regularization.
 With L1, small weight goes to 0.

$$L_1: \|\mathbf{w}\|_1 = \sum_{j=1}^m |w_j| \qquad \Longrightarrow \qquad w_j = w_j - \alpha \frac{\partial J}{\partial w_j} - \alpha \lambda$$

Select meaningful features using regularization

$$L_2$$
 regularization
$$Cost = J(w) + \lambda \sum_{j=0}^{n} w_j^2$$

$$L_1$$
 regularization
$$Cost = J(w) + \lambda \sum_{j=0}^{n} |w_j|$$

Example - Logistic regression with L1 regularization

```
# Logistic regression with L1 regularization. Lamda = 1
lr = LogisticRegression(penalty='11', C=1, solver='liblinear')
lr.fit(X train std, y train)
print('Training accuracy:', lr.score(X train std, y train))
print('Test accuracy:', lr.score(X test std, y test))
Training accuracy: 1.0
Test accuracy: 1.0
# learned parameters with L1
lr.coef
array([[ 1.24621325, 0.18053788, 0.74592794, -1.16359758, 0.
              , 1.16054466, O.       , O.
               , 0.55619053, 2.50878509],
      [-1.53653546, -0.38772029, -0.99500573, 0.36495134, -0.0597017,
              , 0.66781059, 0. , 0. , -1.9342868 ,
        1.23335332, 0. , -2.23126477],
      [ 0.13547325, 0.16858336, 0.35732342, 0.
                                                , 0. ,
             , −2.43747781, O.      , O.
                                                , 1.56369187.
       -0.81842988, -0.49300554, 0.
```

- Sequential feature selection
 - Aims to reduce the dimensionality of the initial feature subspace with a minimum decay in performance of the classifier
 - Sequential Backward Selection(SBS) algorithm
 - 1. Initialize the algorithm with k=d, where d is the dimensionality of the full feature space X_d
 - 2. Determine the feature x^- that maximizes the criterion $x^- = \operatorname{argmax} J(X_k x)$ where $x \in X_k$
 - 3. Remove the feature x^- from the feature set:

$$X_{k-1} \coloneqq X_k - x^-; k \coloneqq k-1$$

4. Terminate if k equals the number of desired features, if not, go to step 2

- d features → k new features. k << d</p>
- Principal Component Analysis(PCA)
 - PCA is linear transformation technique that is widely used for dimensionality reduction
 - PCA aims to find the principal components (directions of maximum variance) in high-dimensional data, and projects it to fewer dimensions
 - Example
 - x₁ and x₂ are the original feature axes, and PC1 and PC2 are the principal components of new axes

Covariance

 Covariance between two variables x and y

$$cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)}$$

Covariance matrix of dataset X

$$x = (x_1, x_2, ..., x_d)$$

$$\sum = cov(X, X)$$

$$\begin{bmatrix} cov(x_1, x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & cov(x_2, x_2) \end{bmatrix}$$

- Eigenvectors and eigenvalues
 - Unit vector x whose directions are not changed by the transformation A

$$Ax = \lambda x$$

Example

• Transformation $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$

$$x = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow Ax = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

• Let $Ax = \lambda x$ then $(A - \lambda I)x = 0$

$$det(A - \lambda I) = det \begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix} = 0$$

$$(2 - \lambda)^2 - 1 = 0 \rightarrow \lambda = 1, 3$$
Eigenvalues

• For
$$\lambda = 1$$
, $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
For $\lambda = 3$, $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \rightarrow \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Eigenvectors

- Eigenvector of covariance matrix
 - The eigenvectors of covariance matrix \sum correspond to principal components
 - The eigenvalues correspond to the variance explained by the principal components

PCA Algorithm

- 1. Standardize the d-dimensional dataset
- 2. Construct the covariance matrix $\sum (d \times d)$
- 3. Find its eigenvectors $(d \times d)$ and eigenvalues (d)
- 4. Select k eigenvectors that correspond to the k largest eigenvalues, where k is the dimensionality of the new feature subspace $(k \le d)$
- 5. Construct a projection matrix W ($d \times k$) from the top k eigenvectors $W = [e_1, e_2, \dots e_k]$
- 6. Transform the d-dimensional data \mathbf{x} to new k-dimensional data \mathbf{x}' using the projection W

$$\mathbf{x}' = \mathbf{x} W$$
$$(k) = (d)(d \times k)$$

Data:		Zero me	an:	Covariance	= =
x_1	x_2	x_1	X_2		
2.5	2.4	0.69	0.49	(0.67)	0.62
0.5	0.7	-1.31	-1.21		I
2.2	2.9	0.39	0.99	(0.62)	0.72)
1.9	2.2	0.09	0.29		
3.1	3.0	1.29	1.09		
2.3	2.7	0.49	0.79		
2.0	1.6	0.19	-0.31		
1.0	1.1	-0.81	-0.81		
1.5	1.6	-0.31	-0.31		
1.1	0.9	-0.71	-1.01		

$$\mathbf{W} = [vector 1 \quad vector 2]$$

Reduced:

$$x'_1 = -0.68 x_1 - 0.74 x_2$$

 $x'_2 = -0.74 x_1 + 0.68 x_2$

PCA using Numpy

X_train_std

```
print(X_train_std.shape)
print(X_train_std[:3])

(124, 13)
[[ 0.71225893     2.22048673 -0.13025864     0.05962872 -0.50432733 -0.52831584
     -1.24000033     0.84118003 -1.05215112 -0.29218864 -0.20017028 -0.82164144
     -0.62946362]
```

Covariance matrix - np.cov(X.T)

```
cov mat = np.cov(X train std.T)
print(cov mat.shape)
print(cov mat)
(13.13)
[[ 1.00813008
           0.06709556  0.17405351  -0.35439069  0.26374703
                                               0.29079481
  0.21835807 -0.08111974 0.10436705 0.54282846
                                      0.05893536 -0.01797029
  0.6415292 1
-0.41035281
           0.33653916 -0.21602672 0.17504154 -0.551593
                                              -0.40561695
 -0.240899911

    □ 0.17405351

           0.08326463 1.00813008 0.46420355 0.29092834
                                               0.18020384
  0.02039019
  0.223495 ]
```

PCA using Numpy

Eigenvalues and eigenvectors of covariance matrix - np.linalg.eig(A)

```
eigen vals, eigen vecs = np.linalg.eig(cov mat)
Eigenvalues
[4.84274532 2.41602459 1.54845825 0.96120438 0.84166161 0.6620634
0.51828472 0.34650377 0.3131368 0.10754642 0.21357215 0.15362835
0.1808613 ]
Eigenvectors
[[-1.37242175e-01 5.03034778e-01 -1.37748734e-01 -3.29610003e-03
  2.90625226e-01 -2.99096847e-01 -7.90529293e-02 3.68176414e-01
  3.98377017e-01 -9.44869777e-02 3.74638877e-01 -1.27834515e-01
  2.62834263e-01]
 -8.95378697e-02 -6.27036396e-01 2.74002014e-01 1.25775752e-02
 -1.10458230e-01 2.63652406e-02 -1.37405597e-01 8.06401578e-02
 -2.66769211e-01]
 [-2.54515927e-02 2.44564761e-01 6.77775667e-01 -1.08977111e-01
  1.60834991e-01 -3.89128239e-04 -1.32328045e-01 -1.77578177e-01
 -3.82496856e-01 1.42747511e-01 4.61583035e-01 1.67924873e-02
 -1.15542548e-011
```


PCA using Numpy

Projection to 2 dimension using PC1, PC2

```
w = eigen_vecs[:, [0, 1]]
                              X train pca = np.dot(X train std, w)
print(w)
                              print(X_train_std[0])
[[-0.13724218
              0.503034781
                              print(X train pca[0])
 [ 0.24724326
              0.16487119]
 [-0.02545159
              0.24456476]
                                            2.22048673 -0.13025864 0.05962872 -0.50432733 -0.52831584
                              [ 0.71225893
 [ 0.20694508 -0.11352904]
                               -1.24000033
                                            0.84118003 -1.05215112 -0.29218864 -0.20017028 -0.82164144
 [-0.15436582
              0.28974518]
                               -0.62946362]
              0.05080104]
 [-0.39376952
                               [2.38299011 0.45458499]
 [-0.41735106 -0.02287338]
 [ 0.30572896
              0.09048885]
                                                                    13
 [-0.30668347
              0.00835233]
 [ 0.07554066
              0.54977581]
 [-0.32613263 -0.20716433]
 [-0.36861022 -0.24902536]
 [-0.29669651
              0.38022942]]
                                            X'
                                   124
                                                                    X
```

	Class label	Alcohol	Malic acid	Ash	Alcalinity of ash	Magnesium	Total phenols	Flavanoids	Nonflavanoid phenols	Proanthocyanins	Color intensity	Hue	OD280/OD315 of diluted wines	Proline
0	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.64	1.04	3.92	1065
1	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.38	1.05	3.40	1050
2	1	13.16	2.36	2.67	18.6	101	2.80	3.24	0.30	2.81	5.68	1.03	3.17	1185

PCA

```
from sklearn.decomposition import PCA

pca = PCA()
X_train_pca = pca.fit_transform(X_train_std)
```

```
X_train_std[0]
```

```
array([ 0.71225893,  2.22048673, -0.13025864,  0.05962872, -0.50432733, -0.52831584, -1.24000033,  0.84118003, -1.05215112, -0.29218864, -0.20017028, -0.82164144, -0.62946362])
```

X_train_pca[0]

```
array([ 2.38299011,  0.45458499, -0.22703207,  0.57988399, -0.57994169, -1.73317476,  0.70180475,  0.21617248, -0.23666876, -0.16548767,  0.29726982,  0.23489704, -0.40161994])
```


Explained variance ratio

The ratio between the variance of that principal component and the total variance

Dimensionality reduction to 2 PC

Logistic regression with 2 dimensional data

```
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
lr = lr.fit(X_train_pca, y_train)

acc = lr.score(X_test_pca, y_test)
print("Test accuracy : %.4f" % acc)

Test accuracy : 0.9259
```


- Linear discriminant analysis(LDA)
 - LDA finds a linear combination of features that separates classes well, so that it maximize the between-class scatter and minimize the within-class scatter
 - Assumption
 - Each class has normal distribution
 - Each class has same covariance structure
 - It can be used for dimensionality reduction by projection of data to that axis

- Maximum separation
 - Original data in 2 classes have means
 - → Projected data have means

s have means
$$m_1$$
, m_2 means $w^T m_1$, $w^T m_2$ variances $\sum (w^T x - w^T m_1)^2$, $\sum (w^T x - w^T m_2)^2$

Between class distance

$$(w^T m_1 - w^T m_2)^2 = w^T (m_1 - m_2) (m_1 - m_2)^T w = w^T S_B w$$

Within class variance

$$\sum (w^T x - w^T m_1)^2 + \sum (w^T x - w^T m_2)^2$$

$$= w^T \left(\sum (x - m_1)(x - m_1)^T + \sum (x - m_2)(x - m_2)^T \right) w = w^T S_w w$$

Maximize

$$J(w) = \frac{Between\ class\ distance}{Within\ class\ variance} = \frac{w^T S_B w}{w^T S_w w}$$

• Maximize
$$J(w) = \frac{w^T S_B w}{w^T S_W w}$$
$$\frac{dJ(w)}{dw} = \frac{2S_B w}{(w^T S_W w)} - \frac{w^T S_B w \cdot 2S_W w}{(w^T S_W w)^2} = 0$$
$$2S_B w \cdot w^T S_W w - w^T S_B w \cdot 2S_W w = 0$$
$$S_W^{-1} S_B w = \frac{w^T S_B w}{w^T S_W w} w$$

• \therefore w is eigenvector of $S_w^{-1}S_B$ ($Ax = \lambda x$)

 $S_w^{-1}S_Rw = I(w)w$

LDA using scikit-learn

```
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

Ida = LDA(n_components=2)
X_train_Ida = Ida.fit_transform(X_train_std, y_train)
```


- PCA vs. LDA
 - PCA is unsupervised dimensionality reduction
 - It does not require any class labels
 - PCA tries to find the axes where the data is most spread
 - LDA is supervised dimensionality reduction
 - It is used for datasets with class labels
 - LDA tries to separate classes
 - PCA performs better in case where number of samples per class is less, LDA performs better with large dataset having multiple classes
 - LDA is inappropriate when the classes do not have normal distribution, or the classes have different covariance structures

