VE281

Data Structures and Algorithms

Binary Tree Traversal;

Priority Queues and Heaps

Outline

- Binary Tree Traversal
- Priority Queue
- Min Heap and Its Operations

Representing Binary Tree Using Linked Structure

```
struct node {
  Item item;
  node *left;
  node *right;
};
```

- left/right points to a left/right subtree.
 - If the subtree is an empty one, the pointer points to **NULL**.
- For a leaf node, both its left and right pointers are NULL.

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree.
- In a traversal, each node of the binary tree is visited **exactly** once.

• During the visit of a node, all actions (making a clone, displaying, evaluating the operator, etc.) with respect to this node are taken.

Binary Tree Traversal Methods

- Depth-first traversal
 - Pre-order
 - Post-order
 - In-order

• Level order traversal

Pre-Order Depth-First Traversal

Procedure

- Visit the node
- Visit its left subtree
- Visit its right subtree


```
void preOrder(node *n) {
  if(!n) return;
  visit(n);
  preOrder(n->left);
  preOrder(n->right);
}
```

Pre-Order Depth-First Traversal

Example

$$a \rightarrow b \rightarrow d \rightarrow g \rightarrow h \rightarrow e \rightarrow i \rightarrow c \rightarrow f \rightarrow j$$

Post-Order Depth-First Traversal

Procedure

- Visit the left subtree
- Visit the right subtree
- Visit the node


```
void postOrder(node *n) {
  if(!n) return;
  postOrder(n->left);
  postOrder(n->right);
  visit(n);
}
```

Post-Order Depth-First Traversal Example

g a

$$g \rightarrow h \rightarrow d \rightarrow i \rightarrow e \rightarrow b \rightarrow j \rightarrow f \rightarrow c \rightarrow a$$

In-Order Depth-First Traversal

Procedure

- Visit the left subtree
- Visit the node
- Visit the right subtree


```
void inOrder(node *n) {
  if(!n) return;
  inOrder(n->left);
  visit(n);
  inOrder(n->right);
}
```

In-Order Depth-First Traversal

Example

$$g \rightarrow d \rightarrow h \rightarrow b \rightarrow e \rightarrow i \rightarrow a \rightarrow f \rightarrow j \rightarrow c$$

Level-Order Traversal

- We want to traverse the tree level by level **from top to bottom**.
- Within each level, traverse from left to right.

How can we implement this traversal?

Level-Order Traversal

Procedure

- Use a queue!
- 1. Enqueue the root node into an empty queue.
- 2. While the queue is not empty, dequeue a node from the front of the queue.
 - 1. Visit the node.
 - 2. Enqueue its left child (if exists) and right child (if exists) into the queue.

Loop

Level-Order Traversal

Code and Example

```
void levelOrder(node *root) {
  queue q; // Empty queue
  q.enqueue(root);
  while(!q.isEmpty()) {
    node *n = q.dequeue();
    visit(n);
    if(n->left) q.enqueue(n->left);
    if (n->right) q.enqueue (n->right);
                     Queue:
                     Output: a b c d e f
```

Binary Tree Traversal

Application

- The expression a/b + (c d)e has been encoded as a tree T.
 - The leaves are **operands**.
 - The internal nodes are **operators**.
- How would you traverse the tree T to print out the expression?
 - In-order depth-first traversal.
- What is the expression printed out by post-order depth-first traversal?
 - ab/cd e * +
 - Reverse Polish Notation

Outline

- Binary Tree Traversal
- Priority Queue
- Min Heap and Its Operations

Priority Queues

- Two kinds of priority queues:
 - Min priority queue.
 - Max priority queue.
- We will focus on min priority queue.
 - The max priority queue is similar.

What Is Min Priority Queue?

- A collection of items.
- Each item has a key (or "priority").
- Support the following operations:
 - isEmpty
 - size
 - **enqueue**: put an item into the priority queue.
 - **dequeueMin**: remove element with **min** key.
 - getMin: get item with min key.

Applications of Priority Queue

- Banking services
 - VIP customer who arrives later gets served first.
- Network bandwidth management
 - The prioritized traffic, such as real-time data, is forwarded with the least delay once it reaches the network router.
- Discrete event simulation
 - One event happening triggers a few others, which are put into a queue.
 - Simulating in the order of the **beginning time** of the events.

Min Priority Queue: Implementation

- A collection of items.
- Each item has a key (or "priority").
- Support the following operations:
 - isEmpty
 - size
 - **enqueue**: put an item into the priority queue.
 - **dequeueMin**: remove element with **min** key.
 - **getMin**: get item with **min** key.

What's the time complexity for an unsorted array-based implementation?

Priority Queue Implemented with Heap

- Priority queues are most commonly implemented using **Binary Heaps** (will be shown soon).
- Complexity of the operation using heap implementation:
 - is Empty, size, and getMin are O(1) time complexity in the worst case.
 - enqueue and dequeueMin are $O(\log n)$ time complexity in the worst case, where n is the size of the priority queue.

Application of Priority Queue: Sorting

- Sorting elements (in ascending order):
 - 1. **enqueue** elements to be sorted into a min priority queue Complexity: $O(n \log n)$
 - 2. Repeatedly call **dequeueMin** to extract elements out of the queue. Complexity: $O(n \log n)$
- The resulting elements are sorted by their keys.
- What is the time complexity? $O(n \log n)$
- This is known as **heap sort**.

Outline

- Binary Tree Traversal
- Priority Queue
- Min Heap and Its Operations

Binary Heap

• A binary heap is a complete binary tree.

Min Heap

- A min heap is
 - a binary heap, and
 - a tree where for any node v, the key of v is smaller than or equal to (\leq) the keys of any descendants of v.
- <u>Property</u>: The key of the root of **any** subtree is always the smallest among all the keys in that subtree.

Min Heap

- However, the keys of nodes **across** subtrees have no required relationship.
 - Different from binary search trees, which we will show later.

Heap Height

• Assume the heap has n nodes, the height of the heap is $\lceil \log_2(n+1) \rceil - 1$

Binary Heap Implementation as an Array

- Store the elements in an array in the order produced by a level-order traversal.
- The first element is stored at index 1.

Index Relation

Index relation allows us to move up and down a heap easily.

- A node at index i ($i \neq 1$) has its parent at index $\lfloor i/2 \rfloor$.
- Assume the number of nodes is n. A node at index i ($2i \le n$) has its left child at 2i.
 - If 2i > n, it has no left child.
- A node at index i ($2i + 1 \le n$) has its right child at 2i + 1.
 - If 2i + 1 > n, it has no right child.

Min Heap Implementation

- We also have a **size** variable to keep the number of nodes in the heap.
 - The heap elements are stored in heap[1], heap[2], ..., heap[size].
- Operations
 - isEmpty: return size==0;
 - size: return size;
 - getMin: return heap[1];

Procedure of enqueue

• Insert **newItem** as the rightmost leaf of the tree.

heap[++size] = newItem;

- The tree may no longer be a heap at this point!
- **Percolate up newItem** to an appropriate spot in the heap to restore the heap property.

Percolate Up

Illustration

Percolate Up

Code

```
void minHeap::percolateUp(int id) {
   while(id > 1 && heap[id/2] > heap[id]) {
      swap(heap[id], heap[id/2]);
      id = id/2;
   }
}
```

- Pass index (**id**) of array element that needs to be percolated up.
- Swap the given node with its parent and move up to parent until:
 - we reach the root at position 1, or
 - the parent has a smaller or equal key.

enqueue

Code

```
void minHeap::enqueue(Item newItem) {
  heap[++size] = newItem;
  percolateUp(size);
}
```

- What is the time complexity?
 - $O(\log n)$