Machine Learning Applications

Predictive Maintenance (band saw application, neural networks for condition monitoring and prediction)

TECHNISCHE UNIVERSITÄT DARMSTADT

TU DARMSTADT

Prof. Dr. Ing. Joachim Metternich, Tobias Biegel M.Sc. Darmstadt | 23.01.2020

Agenda

- 1 Introduction Al
- 2 Potentials of AI in production technology
- 3 Extension of CRISP-DM: DMME
- 4 Use Case: Predictive Maintenance

AI encompasses various methods...?

Artificial Intelligence

Machine Thinking (i.e. based on logic)

Natural Language/ Voice Processing

Automated Planning

Machine Learning

= create a mathematical model by training with data

AI encompasses various methods...?

Agenda

- 1 Introduction AI
- 2 Potentials of AI in production technology
- 3 Extension of CRISP-DM: DMME
- 4 Use Case: Predictive Maintenance

What is changed by the application of AI based methods, especially machine learning?

Conventional Data Analysis Domain Knowledge Program/ Decisions based on Experience **Technical Dependencies** domain knowledge Rules Historical quality data **Data Analysis via AI Process data** E.g. current, pressure, temperature, ... **Trained** Decisions based on **Algorithm** historical data **Quality data** E.g. Good & Bad parts, measurement results

Combination of domain knowledge and expert knowledge

Typical problem sets for Machine Learning

Issues from the practice:

Machine Learning Task:

Condition

Is the tool/component worn or not?

Clustering of data

"Unsupervised"

Remaining Lifetime

How long will the tool/part last?

Recognition of patterns to predict target variables

"Supervised"

Decision/Problem Solving

Is strategy A or B better to process the part?

Influence behaviour through feedback on success or failure

"Reinforcement"

AI in production technology

Application potentials for AI

In Anlehnung an: https://refa.de/blog-industrial-engineering/407-gestaltung-von-unternehmensnetzwerken

Potentials for companies through application of AI?

AI in production technology Application areas of AI at PTW

Instandhaltung

Vorhersage der Ausfallzeit des Sägebands zur Reduzierung der Instandhaltungskosten

Qualitätsmanagement

Vorhersage der Qualitätsmerkmale im Bohrprozess zur Optimierung der Qualitätssicherung

Prozesseffizienz

Bauteilindividuelle Prozess parameter zur Verbesserung der Prozessstabilität und Produktivität

Energie und Nachhaltigkeit

Energieeffizienter und -flexibler Betrieb von
Produktion und
Versorgungstechnik

Datenschutz und -sicherheit

Process Learning Factory CiP Realistic Production Environment

Agenda

- 1 Introduction AI
- 2 Potentials of AI in production technology
- 3 Extension of CRISP-DM: DMME
- 4 Use Case: Predictive Maintenance

Completing AI projects with the help of CRISP-DM

Cross Industrie Standard Process for Data Mining

Data collection is one of the biggest issues in production technology

R. Wirth; J. Hipp, "CRISP-DM: Towards a standard process model for data mining," in Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining

Completing AI projects with the help of CRISP-DM Cross Industrie Standard Process for Data Mining

14 |

R. Wirth; J. Hipp, "CRISP-DM: Towards a standard process model for data mining," in Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining

DMME Process for AI projects in production technologyData Mining Methodology for Engineering Applications

Huber, Wiemer et al. 2019 – DMME: Data mining methodology

Agenda

- 1 Introduction Al
- 2 Potentials of AI in production technology
- 3 Extension of CRISP-DM: DMME
- 4 Use Case: Predictive Maintenance

Einordnung verschiedener Instandhaltungsstrategien

Different models for maintenance and necessity for action

Reactive maintenance:

- Maintenance after machine failure
- Unplanned, after shutdown
- Best possible utilisation of the lifetime

Time-based, Quantity-based, preventive maintenance:

- Maintenance according to fixed intervals
- True machine condition remains unnoticed: Exchange often not necessary

Condition-based, predictive maintenance:

- Indication of imminent failures
- Best possible utilization of the "machine life"

DMME: Business Understanding und Technical Understanding

Reasons to rethink data-based maintenance...

- Sensors and data evaluation can quickly become expensive
- Not every component failure is important
- Some component failures happen (statistically) very regularly and do not require monitoring
- Some components do not fail, just need regular maintenance

Basically: Data-based maintenance only where it pays off!

Based on a machine analysis, the essential components can be differentiated according to suitable maintenance strategies

Three questions are of particular relevance:

- Which essential (functional) components does the machine consist of?
- What is the importance of a component failure?
- How often & how reliably do these components fail?

Simple decision rules for maintenance strategies

Use Case Band Saw in the Process Learning Factory CiP DMME: Business Understanding und Technical Understanding

Use Case Band Saw in the Process Learning Factory CiP: Failures of the saw blade

Wear

saw blade

Break

 Weakening of the strip (often in the weld seam) leads to strip tearing within a short time

Defects

Broken teeth lead to "knocks during sawing" and locally increased wear

Search for dependencies within the data to explain machine failure

DMME: Technical Realisation

Choose appropriate sensor technology depending on the failure hypotheses :

- Which physical parameters describe the symptoms?
 - Vibrations / structure-borne sound
 - Temperature
 - Power consumption, etc.
- What demands does the process make on the sensor technology?
 - Frequency/Sampling rate
 - safety requirements, etc.
- Other signals that are important to understand the system behavior?
 - Start/stop signal of the process
 - "Counter", how often was produced, etc

Quelle: Wöstmann, R. et al. (2017): Predictive Maintenance in der Produktion, in: wt Werkstatttechnik online, jahrgang 107 (201), H. 7/8

DMME: Technical Realisation

Error	Symptoms (Hypotheses)	Sensor
Wear	Drive power increases	Power sensor
	Feed force increases	Hydr. Feed pressure
	Cutting duration increases	Position sensor
	Temperature at tooth mesh increases	IR-Thermometer Temperature sensor
	Gearbox temperature increases	Temperature sensor
	Band velocity increases	Light barrier
	Hydraulic temperature increases	Temperature sensor
	Vibrations increase	Accelerometer x,y,z

DMME: Technical Realisation

Sensorkonzept der Bandsäge

DMME: Data Understanding und Data Preparation

Values of multiple measuring series (Example: Motor Power, 1 Measurement every 0,5s)

DMME: Data Understanding und Data Preparation

Values during a single cut (Example: Motor Power, 1 Measurement every 0,5s)

DMME: Data Understanding und Data Preparation

Feature selection using unsupervised neural networksThe Self Organising Map

What to do when sensors are life and data are collected?

- How do we know which data are relevant for the intended application?
- What kind of preprocessing of data do we need?
- Which software packages/toolboxes shall we use?

Unsupervised Learning

K-Means Clustering

Principal Component Analysis (PCA)

Self-Organizing Map

etc.

DMME: Data Understanding und Data Preparation

DMME: Data Understanding und Data Preparation

Elimination of redundant and useless Information:

 Light barrier leads to separation, but this is due to a special effect when a saw blade is retracted

 Influences of T1, T2, T3, T4 as well as T_IR almost identical, as temperature increases similarly

 Signals with low contrast (explanatory component) can be eliminated, such as "Vib03Kurtosis".

Use Case Band Saw in the Process Learning Factory CiP DMME: Data Understanding und Data Preparation

Supervised Learning: Neuronale Netze for state recognition

Training and Evaluation

- Input vector \vec{p} and corresponding output values \vec{t} given
- Neuronal net trained till output values \vec{t} will be approximated through \vec{y} with little error

$$\overrightarrow{E_p} = \begin{pmatrix} t_1 - y_1 \\ \vdots \\ t_m - y_m \end{pmatrix} \to \min.$$

Implementation

- Input vector \vec{x} from runnig process
- \vec{y} predicted

Use of a neural network for approximation

As input values \vec{t} for training the percentage condition values determined during the wear measurement are used :

Condition = 100% – wear in percent

Split of data: 40% of the data for training, 20% as validation data set and the remaining 40% for testing.

Prediction of the future: (1) linear

Advantage:

Ease of implementation

Disadvantage:

Assumption of a linear wear behaviour

Prediction of the future: (2) approximation

Advantage:

- Prediction of the real wear behaviour
- Valid, even if boundary conditions (material, cutting speed, feed rate) have been changed before the estimation **Disadvantage:**
- Only valid if current and future boundary conditions correspond to the curve.

Prediction of the future: (3) Time series prediction with neural networks

Advantage:

- Prediction of the real wear behaviour
- Can recognize and distinguish different wear behavior

Disadvantage:

- At least one continuous wear curve must be available for each case
- Data of the last cuts (in the example 500 cuts) must be available.

DMME: Technische Implementation

DMME: Deployment in a GUI with Matlab

Conclusion

- Initial technical effort is high, especially when cause-effect relationships are unclear
- Data technical competence necessary (sampling frequencies, measuring times, etc.)
- Industry already offers powerful tools ("Edge Computing"), yet: individual data cleansing and reduction necessary
- After identification of the meaningful measured values, sensor expenditure and investment is rather low
- Targeted combination of different procedures necessary (unsupervised/supervised), but not trivial
- Setting up and training machine learning is time-consuming and requires prior knowledge and suitable "labels".
- It does not (yet) work without trial and error
- The expected added value of a functioning system is high

Thank you for your kind attention!!

If you have any questions, do not hesitate to contact us.

Prof. Dr.-Ing. Eberhard Abele Prof. Dr.-Ing. Joachim Metternich Prof. Dr.-Ing. Matthias Weigold

Institute of Production Management, Technology and Machine Tools

Technische Universität Darmstadt

Otto-Berndt-Straße 2 64287 Darmstadt

Phone.: +49 61 51 | 16 20080 Fax: +49 61 51 | 16 20087 E-Mail: info@ptw.tu-darmstadt.de Internet: www.ptw.tu-darmstadt.de

