Sankaran Vaidyanathan

 ♦ Amherst, MA
 Image: Sankaranv@cs.umass.edu
 Image: Sankaranv.com
 Image: Sankaranv.com

Goal

Developing principled tools grounded in causal reasoning for explaining and evaluating complex AI systems, including large language models and reinforcement learning agents.

Education

University of Massachusetts Amherst

Sept 2021–Dec 2026

Ph.D. in Computer Science

University of Massachusetts Amherst

Sept 2019-May 2024

M.S. in Computer Science

Anna University

Aug 2013-May 2017

B.E. in Electrical and Electronics Engineering

Experience

Research Assistant

Amherst, MA

Knowledge Discovery Lab, University of Massachusetts Amherst

 $May\ 2020-present$

Project Associate
Robert Bosch Center for Data Science and AI

Chennai, India July 2017–June 2019

Indian Institute of Technology Madras

Publications

- [1] Adaptive Circuit Behavior and Generalization in Mechanistic Interpretability Jatin Nainani*, Sankaran Vaidyanathan*, AJ Yeung, Kartik Gupta, David Jensen arXiv:2411.16105 (under review), 2024
- [2] Judging the Judges: Evaluating Alignment and Vulnerabilities in LLMs-as-Judges

 Aman Singh Thakur*, Kartik Choudhary*, Venkat Srinik Ramayapally*, Sankaran Vaidyanathan, Dieuwke Hupkes
 arXiv:2406.12624 (under review), 2024
- [3] Automated Discovery of Functional Actual Causes in Complex Environments

 Caleb Chuck*, Sankaran Vaidyanathan*, Stephen Giguere, Amy Zhang, David Jensen, Scott Niekum

 arXiv:2404.10883 (under review), 2024
- [4] Data-driven Learning of Chaotic Dynamical Systems using Discrete-Temporal Sobolev Networks Connor Kennedy, Trace Crowdis, Haoran Hu, Sankaran Vaidyanathan, Hong-Kun Zhang Neural Networks, Volume 173, May 2024, 106152
- [5] Hypergraph Clustering by Iteratively Reweighted Modularity Maximization Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan Parthasarathy, Balaraman Ravindran Complex Networks and Their Applications VIII, 2019
- [6] A New Measure of Modularity in Hypergraphs: Theoretical Insights and Implications for Effective Clustering

Tarun Kumar*, **Sankaran Vaidyanathan***, Harini Ananthapadmanabhan, Srinivasan Parthasarathy, Balaraman Ravindran Applied Network Science 5 (1), 52

Collaborative Research Projects

Sequential Circuit Discovery in LLMs

Feb 2025-May 2025

AI Safety Camp

• Investigating multi-token mechanisms in LLMs that explain how specific components and features in the model influence not just the next token generated, but also tokens further ahead in the sentence generated.

• Extending causal mediation analysis with time-varying treatments and mediators to identify how specific model components and features affect token sequences over multiple prediction steps.

Quantitative LLM Judges

Adobe Research

- Analyzing the limitations of the LLM-as-a-Judge paradigm, a popular approach for evaluating the performance of an LLM by having another LLM assess its outputs and generate a score.
- Designing judge models that are explicitly trained to produce calibrated, quantitative scores with uncertainty estimates and worst-case performance guarantees, while still leveraging pretrained LLMs.

Evaluating Alignment and Vulnerabilities in LLMs-as-Judges Moto

Feb 2024-Dec 2024

Feb 2025-May 2025

- Evaluated the performance of 9 exam-taker models solving a multiple-choice question answering test using 13 different LLM judge models, to study the performance and behavior of the judges.
- Discovered significant performance gaps between the highest-performing judge models and human evaluators, while demonstrating competitive accuracy from smaller models and simple lexical metrics.
- \circ Identified Scott's π as a more reliable metric for evaluating judges, and revealed further issues with judge models such as leniency, sensitivity to prompt quality, and struggles with underspecified answers.

Analysis and Prediction of Cognitive Load During Cardiac Surgery

May 2023-May 2024

National Institute of Health and Harvard Medical School

- Modeled and visualized various measures of heart rate variability, to predict cognitive load and stress among members of a surgical team while performing cardiac surgery.
- Developed Transformer and LSTM models for time-series prediction of heart-rate variability, and an MCMC based imputation scheme to fill in missing data from faulty heart rate monitors.
- Leveraged Explainable AI (XAI) techniques including SHAP, feature ablation, and permutation importance, to identify key features that the models prioritized when predicting cognitive load.

Competence-Aware Machine Learning

May 2020-Aug 2022

DARPA Competence-Aware Machine Learning Program

- Determined the causes of failure for a pre-trained reinforcement learning agent navigating in the AirSim driving environment, by estimating causal effects of various environmental conditions on mission failure.
- Learned causal models that estimated the agent's competence, or probability of mission success, for a route with pre-specified environmental conditions.
- Developed a system that allowed a human operator to specify environmental conditions for a new episode prior to deployment, and returned an upper and lower bound on the agent's estimated competence.

Technical Skills

Languages: Python, R, C++

Frameworks: PyTorch, Pyro-PPL, Box2D, TransformerLens, SAELens

Tools: Git, Linux, Figma

Teaching Experience

Data Structures
 Decarbonization and Data Science
 Probabilistic Graphical Models
 Artificial Intelligence
 Probability Theory (Guest Lecture: Markov Chain Monte Carlo)
 Introduction to Machine Learning
 UMass Amherst, Spring 2023
 UMass Amherst, Fall 2022
 UMass Amherst, Fall 2021
 IIT Madras, Spring 2019

Service and Outreach

0	Data Science Industry Mentor: Adobe, Meta		2024	-2025
0	Mentor, UMass PhD Applicant Support Program		2021	-2024
0	Co-organizer, UMass Machine Learning and Friends Lunch	2019-2020,	2023-	-2024
0	M.S. Graduate Representative, UMass College of Information and Computer Science	es		2020
0	Social and New Student Committee, UMass College of Information and Computer	Sciences	2023-	-2025
0	Volunteer Pen-Pal, Letters to a Pre-Scientist		2024	-2025

Relevant Graduate Coursework

Bayesian Statistics, Intro to Causal Inference, Probabilistic Graphical Models, Machine Learning, Reinforcement Learning, Artificial Intelligence, Advanced Natural Language Processing, Neural Networks: A Modern Introduction, Optimization in Computer Science, Math Statistics, Research Methods in Empirical CS, Probability Theory, Distributed and Operating Systems, Quantum Information Systems, Fixing Social Media