

计分项目	报告分数	课堂表现	总分
分值	70	30	100
得分			

姓名: 陈薇羽 应逸雯 学号:12210460 12210159 实验班级: ______

组合逻辑电路

1. 实验目的

- ▶ 掌握组合逻辑电路的功能测试;
- ▶ 验证半加器和全加器的逻辑功能;
- ▶ 掌握集成译码器及数据选择器的原理;
- > 了解译码器及数据选择器的应用。

2. 预习要求

- ▶ 预习组合逻辑电路的分析方法;
- ▶ 阅读本实验所用各门电路 IC 的数据手册;
- ▶ 预习用与非门和异或门构成的半加器、全加器的工作原理;
- ▶ 预习二进制数的运算。

3. 实验器材

序号	名 称	型号与规格	数量	备 注
1	直流稳压电源	DP1308A	1	
2	数字示波器	数字示波器 TDS2012C		
3	函数信号发生器	DG1022	1	
4	模电数电综合试验箱	TPE-ADII	1	

		74LS00 二输入端四与非门 3片,		
		74LS86 二输入端四异或门 1片,		
5	元器件	74LS54 四组输入与或非门 1片,	7	
		74LS139 2-4线译码器 1片,		
		74LS153 双4选1数据选择器 1片。		

4. 实验内容

4.1 组合逻辑电路功能测试

用 2 片 74LS00 组成图 1.1 所示逻辑电路,图中 U1A,U1B,U1C,U1D 为第一片 74LS00 的四个单元,U2A,U2B,U2D 为第二片 74LS00 的其中三个单元。图中输入 A、B、C 接电平开关,输出 Y1、Y2 接 LED 电平指示。

按照表 1.1 改变 A、B、C 的状态,根据 LED 电平指示填表,并写出 Y1 和 Y2 的逻辑表达式。

图 1.1 组合逻辑电路功能测试

表 1.1 组合逻辑电路功能测试

	输入	输出		
A	В	C	Y1	Y2
0	0	0	0	0
0	0	1	0	1
0	1	1	1	1
1	1	1	1	0
1	1	0	1	0
1	0	0	1	0
1	0	1	1	1
0	1	0	1	1

$$Y1 = A+B$$
 $Y2 = AB+BC$

4.2 半加器的逻辑功能测试

根据半加器的逻辑表达式可知,半加器 Y 是A、B的异或,而进位 Z 是A、B相与,故半加器可用一个集成异或门和两个与非门组成如图2.1所示的电路。其中输入A、B接电平开关,输出Y、Z接LED电平指示。按表2.1要求改变A、B的状态,填表。

表 2.1 半加器电路逻辑功能测试

输	λ	输出		
A	В	Y	Z	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

4.3 全加器的逻辑功能测试

全加器电路如图3.1所示,写出以下逻辑表达式(请使用原始输入,不要用中间结果)。

$$Y = A \Theta B$$
 $Z = Ci-1$ $X1 = A \Theta B + Ci-1$ $X2 = A \Theta B + Ci-1$ $X3 = A \Theta B + Ci-1$ $Si = A \Theta B \Theta Ci-1$ $Ci = AB + (A \Theta B) Ci-1$

图 3.1 全加器

根据以上逻辑表达式列真值表如表 3.1 所示, 填写真值表

表 3.1 真值表

输入				输出						
Ai	Bi	Ci-1	Y	Z	X1	X2	X3	Si	Ci	
0	0	0	0	0	1	1	1	0	0	
0	0	1	0	1	1	1	0	1	0	
0	1	0	1	0	1	0	1	1	0	
0	1	1	1	1	0	1	1	0	1	
1	0	0	1	0	1	0	1	1	0	
1	0	1	1	1	0	1	1	0	1	
1	1	0	0	0	1	1	1	0	1	
1	1	1	0	1	1	1	0	1	1	

根据真值表,画出逻辑函数 Si、Ci 的卡诺图

Si 的卡诺图

Ci 的卡诺图

Bi Ci-1	0 0	0 1	1 1	1 0	
0	0	1	0	1	
1	1	0	1	0	

Ai Bi Ci-1	0 0	0 1	1 1	1 0	
0	0	0	1	0	
1	0	1	1	1	

按原理图选择与非门接线进行测试,检查逻辑功能是否与表 3.1 一致。

4.4 测试用异或、与或非门组成的全加器的逻辑功能

全加器可以用两个半加器和两个与门一个或门组成,在实验中,常用一块双异或门、一个与或非门(3-2-2-3 输入)和一个与非门实现。

画出用异或门、与或非门和与非门实现全加器的逻辑电路图,写出逻辑表达式。

Si = AOBOC

G = AB+ (ABB) Ci-1

找出异或门、与或非门以及与非门器件按自己画出的图连线,接线时注意与或非门中不用的与门输入端接地。

当输入端 Ai、Bi 及 Ci-1 接逻辑电平开关, Si 和 Ci 接 LED 电平显示, 填写下表。

松)	Ai	0	0	0	0	1	1	1	1
输入	Bi	0	0	1	1	0	0	1	1
端	Ci-1	0	1	0	1	0	1	0	1
输出	Si	0	1	1	0	1	0	0	1
端	Ci	0	0	0	1	0	1	1	1

4.5 译码器功能测试

将 74LS139 译码器的管脚 1、2、3 接电平开关,管脚 4、5、6、7 接 LED 电平显示,接好电源和地,改变管脚 1、2、3 的状态,将结果记录于表 5.1。

图 5.1 译码器 74LS139 引脚图表 5.1 译码器 74LS139 逻辑功能测试

	输入			绘	Ш		
使能	选	择	输出				
G	В	A	YO	Y1	Y2	Ү3	
Н	X	X	1		l		
L	L	L	0	((
L	L	Н		0	١		

-	L	Н	L			Ô	
	L	Н	Н	(((Ò

4.6 译码器转换

将双2-4线译码器(带使能端,三输入四输出)转换为带使能端的3-8线译码器(四输入八输出,可以额外增加与非门等逻辑门),画出转换电路图并在实验箱上接线并验证设计是否正确。

4.7 数据选择器的测试及应用

将双4选1数据选择器74LS153的管脚如图7.1所示,将管脚1、2、14接入逻辑开关,连接电源,测试其功能并填写功能表7.1。

图 7.1 数据选择器 74LS153

选择端 数据输入端 输出控制 输出 В Α C0C1 C2C3G Y X X X X X X Η L L L X X X L H L L Η X X X L L Η X L X X L L X Η X H Η X L X X Η L L X L Η L X X Η X L H X X X Η Η L L H X X Η Η X Η L

表 7.1 数据选择器 74LS153 的逻辑功能测试

将实验箱脉冲信号源中固定连续脉冲 4 个不同频率的信号接到数据选择器 4 个输入端 (3 脚接 80kHz, 4 脚接 40kHz, 5 脚接 20kHz, 6 脚接 10kHz),将选择端置位,在输出端用示波器可以观察到 4 种不同频率的脉冲信号。

附录: IC引脚图

74LS54

三人表决器

全减器

D= a 0 b' C= a+b'

无符号的流法器

Co 符位 差: CoD.Do

