COMP3271 Computer Graphics

Orientation Representation

2019-20

Objectives

Focus on the rotation transformation

Four orientation formats

- Rotation matrices
- Euler angles
- Axis-angle representation
- Quaternions

Comparisons of these representations

Criteria for Orientation Formats

How much storage is needed for the representation?

How many numbers are needed to represent an orientation/rotation?

How efficient to form new orientations?

How efficient to rotate points and vectors?

How well the representation can be interpolated?

How suitable for numeric integration (e.g. for physical simulation)?

Rotation Matrices

$$R = \begin{pmatrix} u_0 & v_0 & w_0 \\ u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \end{pmatrix}$$

The column vectors
$$u=(u_0,u_1,u_2)^T,v=(v_0,v_1,v_2)^T,$$
 $w=(w_0,w_1,w_2)^T\in\mathbb{R}^3$ are three orthonormal basis vectors.

Nine numbers needed for a rotation

 Euler's rotation theorem states that we just need three numbers to represent a rotation

New rotations are obtained by matrix-matrix multiplication; vectors are rotated by matrix-vector multiplication $q \in \mathbb{R} \cdot V$

 Can be performed quite efficiently, some hardware has built-in circuitry for the multiplications

Use 3 sequential rotations about a set of orthogonal axes to specify an orientation.

- If axes are fixed, need only 3 numbers for the angles (the Euler angles)
- If we choose the standard x-,y-,z-axes, the rotations are given by $R_{x\prime}$, $R_{y\prime}$, R_z
- No standard order for the use of the three axes

Composition of rotations and vector rotations resort to converting back to matrix representation and therefore are not efficient

Axis-Angle Representation (x,y,)

Represent a rotation by an axis of rotation $\dot{\mathbf{r}}$, and the angle of rotation θ about this axis

f r is normalized so the degree of freedom is 3

The axis-angle rotation to bring a vector \mathbf{v} to another vector \mathbf{w} is given by

$$\mathbf{r} = \hat{\mathbf{v}} \times \hat{\mathbf{w}}$$
$$\theta = \arccos(\hat{\mathbf{v}} \cdot \hat{\mathbf{w}})$$

Composition of rotations and vector rotations are not trivial.

Quaternions

Mathematical object developed by Sir William Rowan Hamilton in 1843 as an extension to the complex numbers

General form of a quaternion:

$$\mathbf{q} = w + x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

where i, j, k are "complex" numbers such that $i^2 = j^2 = k^2 = ijk = -1$

A quaternion can therefore be represented as a 4-dimensional vector $\mathbf{q} = (w, x, y, z)$

$\propto +yi$

Quaternions

The xi + yj + zk part is similar to a 3D vector, so we may express a quaternion as

$$\mathbf{q} = (w, \mathbf{v})$$

A vector is represented as a quaternion by setting the scalar part 0:

$$\mathbf{q}_{\mathbf{u}} = (0, \mathbf{u})$$

Quaternion Normalization

Magnitude:

$$\|\mathbf{q}\| = \sqrt{(w^2 + x^2 + y^2 + z^2)}$$

Normalization:

$$\hat{\mathbf{q}} = rac{\mathbf{q}}{\|\mathbf{q}\|}$$

Unit Quaternions as Rotations

A unit quaternion is a quaternion $\mathbf{q} = (w, \mathbf{v})$ such that

$$w^2 + \mathbf{v} \cdot \mathbf{v} = 1$$

q can also be written as

$$\mathbf{q} = (\cos \frac{\theta}{2}, \sin \frac{\theta}{2} \mathbf{r})$$

Example $\gamma = (5, 75, 16)$ What is the quater in the superior of the superior

What is the quaternion representing a rotation about the z-axis by 90 degrees?

$$w = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$x = 0 \cdot \sin\left(\frac{\pi}{4}\right) = 0$$

$$y = 0 \cdot \sin\left(\frac{\pi}{4}\right) = 0$$

$$z = 1 \cdot \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

$$q = \left(\frac{\sqrt{2}}{2}, 0, 0, \frac{\sqrt{2}}{2}\right)$$

Quaternion Operations

For addition and scalar multiplication, a quaternion behaves like a 4-vector:

$$(w_1, x_1, y_1, z_1) + (w_2, x_2, y_2, z_2)$$

= $(w_1 + w_2, x_1 + x_2, y_1 + y_2, z_1 + z_2)$
 $a(w, x, y, z) = (aw, ax, ay, az)$

Given a quaternion \mathbf{q} , what is $-\mathbf{q}$?

$$(\omega, x, y, z)$$
 $(-\omega, -x, -y, -z)$

Quaternion Negation

$$Cos(\Pi+\varphi) = -cos\varphi$$

 $Sin(\Pi+\varphi) = -sin\varphi$

Quaternion Composition . . . q. q.

Let \mathbf{q}_1 and \mathbf{q}_2 be two unit quaternions representing two rotations.

$$\mathbf{q}_1 = (w_1, \mathbf{v}_1) \qquad \mathbf{q}_2 = (w_2, \mathbf{v}_2) \qquad \mathbf{q}_2 = \mathbf{q}_2 \mathbf{v}_2 \mathbf{v}$$

The composition of first a rotation by \mathbf{q}_1 and then a rotation by \mathbf{q}_2 is given by the multiplication of \mathbf{q}_2 and \mathbf{q}_1 :

$$\mathbf{q}_{2}\mathbf{q}_{1} = (w_{1}w_{2} - \mathbf{v}_{1} \cdot \mathbf{v}_{2}, \ w_{1}\mathbf{v}_{2} + w_{2}\mathbf{v}_{1} + \mathbf{v}_{2} \times \mathbf{v}_{1})$$

The product of the product o

Order matters!

Vector dot product

Vector cross product

Compositing two rotations using quaternions take 16 multiplications and 12 additions

negation:-g

Quaternion Inverse

The inverse of a quaternion $\bf q$ is denoted by ${\bf q}^{-1}$, such that

$$\mathbf{q}\mathbf{q}^{-1} = (1, 0, 0, 0)$$

Identity quaternion, also representing zero rotation

Given $\mathbf{q} = (w, \mathbf{v})$, what is \mathbf{q}^{-1} ?

$$\mathbf{q}^{-1} = (w, -\mathbf{v})$$

Negating the axis of rotation

Inverting a quaternion is fast!

Rotating Vectors with Quaternions

Let v be a quaternion representing a vector (x, y, z):

$$\mathbf{v} = (0, x, y, z)$$

Rotating a vector **v** by a unit quaternion **q** is done by:

$$\mathbf{v}' = \mathbf{q}\mathbf{v}\mathbf{q}^{-1}$$

Further apply a rotation by a unit quaternion **p**:

$$\mathbf{v}'' = \mathbf{p}\mathbf{q}\mathbf{v}\mathbf{q}^{-1}\mathbf{p}^{-1} = \mathbf{p}\mathbf{q}\mathbf{v}(\mathbf{p}\mathbf{q})^{-1}$$

PQ is the composite rotation