LECTURE 5 & 6

KARNAUGH MAP (K – MAP)

KARNAUGH- MAP (K-MAP)

- Pictorial form of a truth table / Boolean function.
- Graphical tool to simplify a logical equation by forming groups of cells.
- Each cell corresponds to a input(minterm/maxterm)
- Content of cell is the output for the corresponding input, i.e. output is '0',' I' or don't care

K-MAP CONTINUED...

TWO VARIABLE K - MAP

A	В	SOP	POS
0	0	$\overline{A}\overline{B}$	$A + B \smile$
0	I	$\overline{A}B$	$A + \overline{B} \smile$
I	0	\overline{AB}	$\overline{A} + B$
I	I	AB	$\overline{A} + \overline{B}$

B. POS:	-	
AB	B 0	B 1
A 0	A+B	A+B
Ā 1	Ā+B	Ā+B

EXAMPLE I:

EXAMPLE 2:

EXAMPLE 3:

A	В	F
0	0	1
0	I	I
I	0	1
I	I	I

THREE VARIABLE K - MAP

$$2^{3} = 8 cells$$
 4700×20015
 2700×40015

THREE VARIABLE K - MAP

	MSB	LSB	MIN	Ma
--	-----	-----	-----	----

Α	В	С	SOP	POS
0	0	0	ABC	A + B + C
0	0	I	\overline{ABC}	$A + B + \overline{C}$
0	I	0	$\overline{A}B\overline{C}$	$A + \overline{B} + C$
0	I	I	- ABC	$A + \overline{B} + \overline{C}$
1	0	0	\overline{ABC}	$\overline{A} + B + C$
	0	I	\overline{ABC}	$\overline{A} + B + \overline{C}$
I	I	0	$AB\overline{C}$	$\overline{A} + \overline{B} + C$
I	I	ĺ	ABC	$\overline{A} + \overline{B} + \overline{C}$
			0/-	313

	>		
A. SOP	\sim		
ABCBC	BC	BCE	
AVABO		ABCA	BC
AVABO	ABG	ABUA	2
A1 ABC	ABG	BEA	ВС
			6
\		$\bigcup_{I \cup I}$	/
B B00		7	
B. POS: -		•	

. POS	8: -		7	
B-	+C B+C	B+C	B+C	B+C
A	0 0	0 1	11	10
A 0	A+B+C 0	A+B+C 1	A+B+C 3	A+B+C 2
Ā 1	A+B+C 4	A+B+C 5	A+B+C 7	A+B+C 6

3-VARIABLE K-MAP

EXAMPLE I:

Given the Boolean function:

$$F = \overline{AC} + \overline{AB} + A\overline{BC} + BC$$

- Express it in Sum of minterms form.
- Find the minimal sum of products expression using k-map.

$$SOP = C + AB$$

$$POS = C) ()$$

EXAMPL2 3: $F(x,y,z) = \sum (0,2,4,5,6)$

$$\begin{array}{c|c}
\hline
& & & & & \\
\hline
& & &$$

EXAMPLE 4: F(A, B, C)=
$$\prod M(0,2,5,7) = 2m(1,3,4,6)$$

FOUR VARIABLE K - MAP

FOUR VARIABLE K - MAP

A+BC+	D C+D 0 0	C+ D 0 1	C+D 1 1	C+D 1 0
A+B 0 0	A+B+C+D	A+B+C+D	A+B+Ĉ+D	A+B+C+D
	0	1	3	2
A+B 0 1	A+B+C+D	A+B+C+D	A+B+C+D	A+B+C+D
	4	5	7	6
Ā+B 1 1	Ā+B+C+D	Ā+B+C+D	Ā+B+C+D	Ā+B+C+D
	12	13	15	14
Ā+B 1 0	Ā+B+C+D	Ā+B+C+D	Ā+B+Ĉ+D	Ā+B+Շ+D
	8	9	11	10

EXAMPLE I:

- Simplify the following expression into
 - · SOP => 15,
 - · POS = > 0 5

EXAMPLE 2: $F(A, B, C, D) = \sum (0,1,2,4,5,6,8,9,10,12,13)$

EXAMPLE 3: $F(A,B,C,D) = \Pi M(0,2,3,4,6,8,9,10,14)$

CONTINUED...

EXAMPLE 5:

$$F(AB,C,D)=D(\overline{A}+B)+\overline{B}(C+AD)$$

DON'T CARE CONDITION

- The "Don't Care" conditions indicate the input combinations which are invalid for a particular circuit.
- While forming groups of cells, we can consider a "Don't Care" cell as either 1 or 0 or we can simply ignore that cell.
- Therefore, "Don't Care" condition are used to form a larger group of cells.

Ø, D, d, 中, X~

EXAMPLE I:

$$F(A, B, C) = \sum_{m} (1,3,5,7) + \sum_{d} (0,2)$$

$$= \overline{3c} \ \overline{3c} \ BC \ BC$$

$$= \overline{3c} \ BC \ BC$$

EXAMPLE 2:

$$F(W, X, Y, Z) = \sum_{m} (1,3,7,11,15) + \sum_{d} (0,2,5)$$

	C'D'	C'D	CD	CD'
A'B'				
A'B				
AB				
AB'				

EXAMPLE 3:

$$F(W,X,Y,Z) = \prod_{M} (0,1,3,5,\$9,14) \prod_{D} (2,6,10)$$

EXAMPLE 4:

EXAMPLE 5:

Design a 4-bit odd parity bit generator circuit.

PARITY BIT

- Used for error detection in data communication
- Two types: Odd parity and even parity system.
- In odd parity: Total number of logic 'I's including parity bit should be odd

- In even parity: Total number of logic 'I's including parity bit should be even
- Ex: input: 1001 p=0, input 1101 p=1;

USE OF PARITY BIT

XOR GATE

 $P = \sum (0,3,5,6,8,9,10,12,15)$ $= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$ $= \overline{ABCD} + \overline{ABCD} + \overline{ABCD} + \overline{ABCD}$ $= \overline{AB(CPD)} + \overline{AB(CPD)} + \overline{AB(CPD)}$ $= \overline{X} + \overline{AB(CPD)}$ $= \overline{X} + \overline{AB(CPD)} + \overline{AB(CPD)}$ $= \overline{X} + \overline{AB(CPD)} + \overline{AB(CPD)}$ $= \overline{X} + \overline{AB(CPD)} + \overline{AB(CPD)}$

$$X = (\overrightarrow{D}) \qquad Y = A (\overrightarrow{D}) B$$

$$P = X (\overrightarrow{A} (\overrightarrow{D})) + X (\overrightarrow{A} (\overrightarrow{D}))$$

$$= X \cdot Y + X \cdot Y = X (\overrightarrow{D}) Y$$

$$= A (\overrightarrow{D}) (\overrightarrow{D}) P$$

EXAMPLE 6:

Design a combinational circuit with 4- input lines that represents a decimal digit in BCD and 4- output lines that generates 2's complement of input digit.

2 S COIII	plement of input	uigit.	n = 9
	4-bit BCD	2'S	2000 1001 1010 Ebinary
	B3 B2 B1 B0	COMPLEMENT	0000 1001 1010 - DINGOT
		Y3 Y2 Y1 Y0	
0	0000	0000	0000 1001 /O (-BCD
	0001		
	0010	(110	0001 0000
	0011_	1101	
	0100	1100	16-10110) - 1001) (-10
	0101	1011	117 = (110)2 - (10) = 15
	0110	1010	trek 1
	0111	1001	25 1010 = 25
8	1000	1000	$(0110)_{0}$ - $(1010)_{0}$
9	1001	0111	(01012 - (1010)2

 $7_3 = 2 m(1,2,3,4,5,6,7,8)$ $7_2 \neq 2 m(1,2,3,4,9)$ $7_1 = 2 m(1,2,5,6,9)$ $7_0 = 2 m(1,3,5,7,9)$ +d(10,11,12,13)/1,5 +d(10,11,12,13)/1,5 +d(10,11,12,13)/1,5 +d(10,11,12,13)/1,5 +d(10,11,12,13)/1,5

EXAMPLE 7:

Design a combinational circuit that multiplies by '5' an input decimal digit represented in BCD. The output is also in BCD.

SIMPLIFICATION PROBLEMS

- I. $F(A,B,C,D) = \Sigma m(1,3,4,5,10,11,12,13,14,15)$
- 2. $F(A,B,C,D) = \Sigma m (0,2,5,7,8,10,13,15) + D(1,4,11,14)$
- 3. $F(A,B,C,D) = \Pi M(0,1,4,5,8,9,11) . D(2,10)$
- 4. $F(A,B,C,D) = \prod M(0, 2,6,11,13,15) \cdot D(1,9,10,14)$
- 5. F(w,x,y,z) = w'x'z+xyz+wx'z+xy'z'
- 6. F(w,x,y,z) = (w+y+z')(x'+y+z')(w'+x'+y)(w+x+y+z).(w+x'+y'+z')(w'+x'+y'+z)

•Any Qns?