LogPar: Logistic PARAFAC2 Factorization for Temporal Binary Data with Missing Values

Kejing Yin, Ardavan Afshar, Joyce C. Ho, William K. Cheung, Chao Zhang, Jimeng Sun

Background: Binary Irregular Tensors

- Real-world data are often collected over time.
- Irregular Tensor: A collection of matrices with varying sizes in one dimension.
- Handles the temporally irregular data.
- Example: Electronic health records

Other applications: spatio-temporal modeling, recommender systems, etc.

Background: Implicit one-class missingness

- Values of 1s: confirmed diagnosis codes assigned by doctors.
- Values of 0s?
 - The patient does have the disease.
 - The diagnosis was not performed: missing data.
- We do not know the missing entries (implicit) & we only consider missing 1s (one-class)

Research Questions

• How to complete the missing data in binary irregular tensors?

How to discover meaningful latent factors from such data?

Our solution: Logistic PARAFAC2 (LogPar)

Problem:

Given a temporal binary irregular tensor \mathcal{X} , discover its latent factors and completion.

Observation model for binary data:

Our solution: Logistic PARAFAC2 (LogPar)

Handling the implicit one-class missing

Extending nnPU learning to logistic PARAFAC2:

$$\widetilde{R}_{\mathrm{pu}}(g) = \pi_{\mathrm{p}} \widehat{R}_{\mathrm{p}}^{+}(g) + \max \left\{ 0, \widehat{R}_{\mathrm{u}}^{-}(g) - \pi_{\mathrm{p}} \widehat{R}_{\mathrm{p}}^{-}(g) \right\}$$
 $\widehat{R}_{\mathrm{p}}^{-}(g) = (1/n_{\mathrm{p}}) \sum_{i=1}^{n_{\mathrm{p}}} \ell(g(x_{i}^{\mathrm{p}}), -1)$

$$\begin{split} \widehat{R}_{\rm p}^+(g) &= (1/n_{\rm p}) \sum_{i=1}^{n_{\rm p}} \ell(g(x_i^{\rm p}), +1) \\ \widehat{R}_{\rm p}^-(g) &= (1/n_{\rm p}) \sum_{i=1}^{n_{\rm p}} \ell(g(x_i^{\rm p}), -1) \\ \widehat{R}_{\rm n}^-(g) &= (1/n_{\rm n}) \sum_{i=1}^{n_{\rm n}} \ell(g(x_i^{\rm p}), -1) \\ Sample-wise~loss \end{split}$$

Replace the loss function with the point-wise loss of logistic PARAFAC2

$$\ell(\widehat{x}_{k,i,j},x_{k,i,j}) = \left(x_{k,i,j}\log\widehat{x}_{k,i,j} + (1-x_{k,i,j})\log(1-\widehat{x}_{k,i,j})\right)$$

• Leading to the final objective function: $\widetilde{\mathcal{L}}\left(\widehat{X}\right) = \pi \frac{\langle X, \, \log(\widehat{X}) \rangle}{\|X\|_1} + \max \left\{0, \, \frac{\langle 1-X, \, \log(1-\widehat{X}) \rangle}{\|1-X\|_1} - \pi \frac{\langle X, \, \log(1-\widehat{X}) \rangle}{\|X\|_1}\right\}$

Our solution: Logistic PARAFAC2 (LogPar)

Regularizations for Better Interpretability

Uniqueness Regularization:

$$\mathcal{R}_1 = \sum_{k=1}^K \frac{\mu}{2} \left\| \mathbf{U}_k^\top \mathbf{U}_k - \Phi \right\|_F^2 \qquad \text{(promotes factor invariance)}$$

Time-Aware Temporal Smoothing:

$$\mathcal{R}_2 = \sum_{k=1}^K \sum_{i=2}^{I_k} e^{-\beta \delta_i} \left| \mathbf{u}_{k,t} - \mathbf{u}_{k,t-1} \right| \qquad \text{(discovers smoother temporal factors)}$$

Datasets

- **Sutter**: collected from Sutter health, a large US based health provider network. We use diagnoses and medications of each clinical visit of patients.
- CMS: publicly available CMS Linkable 2008-2010
 Medicare Data Entrepreneurs' Synthetic Public Use
 File (DE-SynPUF). We use diagnoses of each clinical
 visit of patients.
- MIMIC-III: a large-scale ICU dataset. We use medications and abnormal lab tests.

	Sutter	CMS	MIMIC-III
#Patients (K)	34,905	74,153	28,485
#Features (J)	328	319	405
$Median(I_k)$	26	26	22
Average (I_k)	30.5	29	28.4
#Positive entries	2.3M	4.5M	14.5M
Sparsity	0.80%	0.65%	4.43%
Single-feature visits	29.5%	37.4%	0.67%
Predictive task	Heart failure	-	Mortality
Positive label ratio	8.92%	_	8.86%

Baselines

- COPA: SOTA PARAFAC2 factorization model.
- SPARTan: PARAFAC2 for sparse data.
- PU-MC: Binary matrix completion model based on PU learning.
- One-class MF (OCMF): SOTA binary matrix completion model based on sampling.

Experiment Setting

- Extract 10% positive entries for validation and parameter tuning.
- Hold out 20% positive entries for test.
- Randomly match 10 negative entries (value 0s) for each positive test entry as test set.
- Use the remaining 70% positive entries as training set.

Evaluation Metric

• PR-AUC: binary & imbalanced

Completion performance with varying ranks

- LogPar consistently outperforms all baselines for all target ranks
- Performance of PU-MC decrease with increasing rank: severe overfitting.

- Completion performance with varying missing ratios
 - Fix rank of all models to 30

LogPar consistently outperforms all baselines for all level of missingness.

- Downstream prediction tasks
 - Fix missing ratio to 30% and split patients into training set and test set
 - Train LogPar with training set to learn the latent factor V
 - Project test set onto the learned factor V
 - Use S_k as features and train a logistic regression for classification. We use five-fold cross validation.

LogPar outperforms all baselines

Conclusion

- We propose LogPar for binary irregular tensor factorization with explicit consideration of one-class missingness.
- LogPar is the <u>first PARAFAC2 model considering missingness</u>.
- We incorporated the PU learning, which greatly helps the completion.
- We propose the uniqueness and the temporal smoothness regularization.
- Empirical evaluation validates the effectiveness of LogPar and its components.

LogPar: Logistic PARAFAC2 Factorization for Temporal Binary Data with Missing Values

Kejing Yin, Ardavan Afshar, Joyce C. Ho, William K. Cheung, Chao Zhang, Jimeng Sun

