COMPUTE PROJECT BILL OF MATERIALS (B.O.M)

EAC-B01

BILL OF MATERIALS, B.O.M. OVERVIEW

The purpose of this lesson is to provide you with the knowledge to estimate the material requirements for a vertical construction project.

LEARNING OBJECTIVES TLO

Provided a vertical construction mission, a scientific calculator, a computer, software applications, and references, compute a project bill of materials to account for all Class IV

auantities nor the

3

LEARNING OBJECTIVES ELO

- (1). Provided written project specifications, design
- drawings, a scientific calculator, blank material takeoff sheets,
- and references, calculate concrete requirements per the FM
- 5-428. (1361-SRVY-2003a)
- (2). Provided written project specifications, design
- drawings, a scientific calculator, blank material takeoff sheets,
- and references, calculate masonry requirements per the FM
- 5-428. (1361-SRVY-2003b)
- (3). Provided written project specifications, design
- drawings, a scientific calculator, blank material takeoff sheets

LEARNING OBJECTIVES ELO

- (4). Provided written project specifications, design
- drawings, a scientific calculator, blank material
- takeoff sheets, and references, calculate finish
- material requirements per the FM 5-426.
- (1361-SRVY-2003d)
- (5). Provided written project specifications, design
- drawings, a scientific calculator, completed
- lumber/plywood consolidations, blank material
- estimate sheets, and references, estimate
- construction hardware quantities per the FM 5-426.

METHOD & MEDIA

- Lecture
- Demonstration
- Practical Application
 - Computer Slides
 - Dry-erase Board

EVALUATION

Performance Evaluation Exam

SAFETY / CEASE TRAINING (CT) BRIEF

Fire

Tornado

Safety is Paramount

QUESTIONS

PRINCIPLES OF ESTIMATING

- Estimating is the calculation of the approximate amount of material and/or labor requirements to build a construction project.
- Estimates are prepared from finished working drawings and project specifications.

QUALIFICATIONS:

- Be able to read and scale drawings.
- Posses a good working knowledge of math.
- Be able to visualize the work required.
- Working knowledge of construction methods and materials.
- Knowledge and ability to assemble materials into working units.

2 BASIC CALCULATIONS

Measurement:

- Descriptions of materials and items of work.
- Dimensions of items of work, and materials required.
- Calculating the quantities of materials, and items of work.

Pricing:

Arithmetic used to determine the costs of items

- Name some of the qualifications an estimator need to have in order to compile accurate estimates.
- What are the two basic calculations involved in construction project estimations?

MATHEMATICAL EQUATIONS

The application of basic mathematical computations is all

that is necessary to compile accurate project material and/or

labor requirements.

- Three basic conversions:
 - Linear
 - Area
 - Volume

LINEAR CONVERSION (INCHES / FEET)

Conversions used to determine such items of work such as: rafter, joist & stud

requirements.

- Feet x 12 = inches
 - $3' \times 12 = 36''$
- Inches / 12 = Decimal feet
 - $36" \div 12 = 3'$
- Fractions:
 - Numerator / denominator = Decimal parts of an inch.
 - 3/4": $3 \div 4 = 0.75$ "
- Decimals:
 - Decimal parts of an inch / 12 = Decimal parts of a foot.
 - $0.75" \div 12 = .0625'$

LINEAR CONVERSION CALCULATION

DEMONSTRATION

AREA CONVERSION (SQUARE FEET)

- Conversion used to determine such items of work such as: plywood, paint, siding & concrete block requirements.
 - Rectangles:
 - Walls: L (ft) x H (ft) = Area (sqft/sf)
 - Floors: L (ft) x W (ft) = Area (sqft/sf)
 - $10' \times 8' = 80 \text{ sqft}$
 - Triangles:
 - Base (ft) x H (ft) = Area (sqft/sf)

- Trapezoids:
 - If $f(t) = \frac{1}{2}$ H (ft) H (ft) H (ft) H (ft) H (ft) Area (sqft/sf)
 - $10' \times ((20 + 40) \div 2) = 300 \text{ sqft}^{17}$

AREA CONVERSION CALCULATION

DEMONSTRATION

VOLUME CONVERSION (CUBIC FEET & CUBIC YARDS)

- Conversions used to determine such items as concrete, sand, aggregate & mortar.
 - L (ft) x W (ft) x H (ft) = Volume (cuft/cf)
 - $10' \times 10' \times 8' = 800 \text{ cuft}$
 - Volume (cf) ÷ 27 = Volume (cuyd/cy)
 - $800 cf \div 27 = 29.63 cuyd$
 - Volume (cy) x 27 = Volume (cuft/cf)
 - $29.63 \text{ cy } \times 27 = 800 \text{ cuft}$

VOLUME CONVERSION CALCULATION

DEMONSTRATION

PERIMETER RULE

- A progressive calculation to compute areas and volumes.
- Rectangular Shaped:
 - Footing dimensions:

Length: 32.67'

Width: 16.67'

Height: 0.67'

Depth: 1.33'

(Outside length (ft) + Inside width (ft)) x 2 = Total perimeter length (ft)

 $(32.67' + 14.01') \times 2 = 93.36'$

- Total perimeter length (ft) x H (ft) = Area (sqft/sf)
 - $93.36' \times 0.67' = 62.55$ sqft
- Area (sf) x D (ft) = Volume (cuft/ft)
 - $62.55 (sf) \times 1.33' = 83.19^2$

PERIMETER RULE (CONTINUED)

- Irregular Shaped:
 - Pentagon (5 sides)
 - Footing Length (one side): 20.48'
 - Height: 0.67'
 - Depth: 1.33'
 - Total outside perimeter length: 102.4'
 - Total inside perimeter length: 95.75'
 - (Outside Length (ft) + Inside Length (ft)) ÷ 2 = Total continuous perimeter length (ft)
 - · (102.4' + 95.75') ÷ 2 = 99.08'
 - Total continuous perimeter length (ft)x H (ft) = Area (sqft/sf)
 - $97.58' \times 0.67' = 66.38$ sqft
 - Area (sf) x D (ft) = Volume (cuft/cf)

PERIMETER RULE CALCULATION

DEMONSTRATION

STANDARD LUMBER LENGTH CALCULATION

Used to determine the optimum length of lumber to minimize waste, when cutting specific small items of work.

Used for:

- Bridging
- Blocking
- Treads & Risers
- Headers
- Jack Studs
- etc...

STANDARD LENGTH CALCULATION (PART 1)

- Length In Place (LIP) Measurement (in):
 - Actual length of one piece of the small item of work
- Quantity of LIP Requirements (ea):
 - Counted off drawings or by calculation.
- Convert Standard Lengths (in):
 - Convert each standard length of lumber to inches.

8' x 12" = 96"	14' x 12" = 168"	
10' x 12" = 120"	16' x 12" = 192"	
12' x 12" = 144"		

STANDARD LUMBER LENGTH CALCULATION (PART 2)

- Number of LIP Pieces (ea): Number of LIP pieces that can be cut from each Standard Length of Lumber.
 - Standard lumber length (in) ÷ LIP Measurement (in) = LIP pieces per standard lumber length. (Round Down)
 - 96" ÷ 21" = 4 Lip Pieces
- Number of Standard Lengths (ea): How many Standard Lengths required to cut all LIP Pieces.
 - Total LIP Requirements 4 Total LIP Pieces per Standard Lumber Length = Total Standard Lumber Lengths required. (Round Up)
 - 13 ÷ 4 = 4 8' Lengths of Lumber

STANDARD LENGTH CALCULATION (PART 3)

- Standard Length to Use (ea) to minimize waste.
 - Standard Lumber Length x Number of LIP Pieces which can be cut from that length = Total Linear feet of Standard Lumber Length.
 - $8' \times 4 = 32'$
 - Compare each value. The lowest value will identify the Standard Lumber Length with the minimal amount of waste.

STANDARD LUMBER LENGTH CALCULATION EXAMPLE

13 pieces of floor bridging,
 1'-9" long are needed to
 stiffen the floor joists.

Converted Standard Length	LIP pcs cut from std lgth	Number of std lgth	Standard Igth to use
8' x 12" = 96"	96" ÷ 21" = 4	13 ÷ 4 = 4	8' x 4 = 32'
10' x 12" = 120"	120" ÷ 21" = 5	13 ÷ 5 = 3	10' x 3 = 30'
12' x 12" = 144"	144" ÷ 21" = 6	13 ÷ 6 = 3	12' x 3 = 36'
14' x 12" = 168"	168" ÷ 21" = 8	13 ÷ 8 = 2	14' x 2 = 28'
16' x 12" = 192"	192" ÷ 21" = 9	13 ÷ 9 = 2	16' x 2 = 32'

Round

Round

BREAK

PRACTICAL APPLICATION

Math Review

- Why would you want to select the lowest value of your LIP calculations off of the standard lumber length?
- What are the three fundamental conversion formulas that are used to estimate material requirements?

MATERIAL TAKEOFF LIST (MTO)

- MTO: Lists all items of work, detailing:
 - Dimensions
 - Quantities of work
 - Units of measure conversions
- Rules for Compiling:
 - Study <u>all</u> drawings, notes & specifications.
 - Measure everything as shown.
 - Measure everything you can see.

TIME SAVERS

- Never use long words if short ones will do.
- Use abbreviations.
- Keep all dimensions, figures and notes.
- Always start in the same place on each drawing.
- Highlight / mark-off items, notes and specifications when completed.
- Take advantage of duplication of design.

MTO - PRECEDENCE

- If a work item is different, list it separately on the MTO. The items of work are estimated in a logical sequence using the following order of precedence:
 - 1st EXCAVATION
 - 2nd CONCRETE
 - 3rd MASONRY
 - 4th LUMBER
 - 5th FINISH MATERIALS

CONCRETE & MASONRY MTO ESTIMATING SEQUENCE

- Excavation: cuyd/cy
 - Calculate amount by using the dimension measurements for the outside face of the footings ≠ dimensions of the outside face of the walls.

Concrete:

- Ready-Mix cuft/cf
- Batch Mix cuft/cf
- Reinforcement Bar ft
- Wire Mesh sqft/sf
- Poly Vapor Barrier sqft/sf
- Expansion Joint Filler ft
- Base Course cuft/cf

Masonry Wall Surface

sqft/sf

Vertical Reinforcement ft

35

LUMBER MTO LIST

- Lumber is taken off the notes drawings and specifications as:
 - Lumber as the number of standard lumber lengths.
 - Plywood & Siding by the square footage to be covered.
 - Finish Trim by the linear foot.

<u>Two Categories for Lumber MTO:</u>

Rough Carpentry

- Floor Framing (lumber & plywood)
- Wall Framing (lumber & plywood)
- Roof Framing (lumber & plywood)
- Wooden Forms (lumber & plywood)

Finish Carpentry

- Siding
- Trim Work

FINISH MATERIAL MTO LIST

Finish materials are items required to "finish" the exterior and interior of a structure:

Doors & Windows ea

Shingles sqft/sf

Drywall sqft/sf

Paint sqft/sf

Insulation sqft/sf

MATERIALS TAKEOFF LIST

DEMONSTRATION

MTO DEMO FOUNDATION PLAN

MTO DEMO FOUNDATION DETAILS

MTO DEMO FOUNDATION & FLOOR SECTION

Concrete and Masonry Material Takeoff Sheet						
Dimensions	Quantit y Require d	Concrete Volume (L x W x H)	Masonr y Area (L x H)			
		Quantit y Require	Quantit Concrete y Volume Require (L x W x			

MTO DEMO FLOOR FRAMING PLAN

Lumber Material Takeoff Sheet								
Descriptive Item of Work	Ite m U/ M	LIP Measur e	LIP Qty	STD Lgth to Use	STD Lgth Qty	LIP PCS/ STD Lgth		

Number of

std lgth

Standard

lgth to use

Bridging Calculation: LIP

Converted

8' x 12" = 96"

10' x 12" =

Standard

Length

LIP pieces cut

from std lgth

BREAK

PRACTICAL APPLICATION

Part #1

Material Takeoff Sheets

- What is a materials takeoff sheet used for?
- Where does the information come from to create a MTO?

BREAK

MATERIAL ESTIMATE SHEET (MES)

- MES puts the information on the MTO into detail, showing:
 - Description of work.
 - Detailed description of materials.
 - Units of measure of materials.
 - Quantities of "dissimilar" materials.
 - Quantities of "like" materials.
 - Waste factor allowances.
 - Total material quantities, including waste.

MES (READY-MIX CONCRETE)

- Ready-mix Concrete volumes from the MTO are converted and rounded up to the nearest whole cuyd.
 - The appropriate waste factor is calculated and added, after the concrete volume is converted to cuyds.

MES (BATCH MIX CONCRETE)

- Batch mix concrete is a proportional mix of:
 - Portland Cement
 - Sand
 - Aggregate (Gravel)
 - Water (not figured into the estimate)
- Standard mix ratio (1:2:3) of:
 - (1) part Portland Cement
 - (2) parts Sand
 - (3) parts Aggregate (Gravel)
 - A 1:2:3 mix concrete will achieve a compressive strength of 2000 psi at 28 days.

BATCH MIX CONCRETE ESTIMATING CALCULATION

- Total concrete volume from MTO x 1.5 (3/2 rule) = Concrete Proportion Ratio (CPR)
 - 92.98 cy \times 1.5 = 139.47
- Multiply CPR to mix ratio.
 - (1/6 x CPR) + Waste Factor = Total bags of Portland Cement. (Round up)
 - $1/6 \times 139.47 = 23.25 + 5\% = 25.0$ bg
 - ((2/6 x CPR) ÷ 27) + Waste Factor = Total cuyds of Sand
 - (Round up to nearest half cubic yard)
 - $((2/6 \times 139.47) \div 27 = 1.72 + 10\%$ = 2.0 cy
 - ((3/6 x CPR) ÷ 27) + Waste Factor = Total cuyds of Aggregate
 - (Round up to the whole cubic yard)
 - $((3/6 \times 139.47) \div 27 = 2.58 + 10\%^{2}$

MES CONCRETE MASONRY UNITS (CMU)

- Nominal Dimensions:
 - 16" x 8" x 8"
- Actual Dimensions
 - 15 5/8" x 7 5/8" x 7 5/8"
 - 3/8" mortar joint between blocks.
- Estimate CMU by Square Feet
- One concrete block = 0.89 sqft of surface area.

CMU ESTIMATING CALCULATION

- Total masonry surface area from MTO (sf) ÷ 0.89 (sf) = Number of CMU blocks (ea)
 - $325.02 \div 0.89 = 365.19$
- Number of CMU + Waste Factor
 Total CMU blocks (ea) (Round up to nearest whole block)
 - 365.19 + 2% = 373.0 blocks

MES (MORTAR)

- Mortar is a proportional mix of:
 - Portland Cement
 - Masonry Cement
 - Sand
 - Water (not figured into the estimate)
- Standard mix ratio (1:1:6) of:
 - (1) part Portland Cement
 - (1) parts Masonry Cement
 - (6) parts Sand
 - A 1:1:6 mix concrete will achieve a compressive strength of 2000 psi at 28 days.
 - Bonded by a 3/8" mortar joint, bonding 0.054 cuft of block area.

MORTAR ESTIMATING CALCULATIONS

- Total number of blocks from MTO x 0.054 (cf) = Total amount of mortar to bond all blocks (cf)
 - $373 \times 0.054 = 20.14$

- Multiply total mortar requirement to mix ratio.
 - (1/8 x total mortar) + Waste Factor = Total bags of Portland Cement. (Round up)
 - $1/8 \times 20.14 = 2.52 + 5\% = 3.0 \text{ bg}$
 - (1/8 x total mortar) + Waste Factor = Total bags of Masonry Cement. (Round up)
 - $1/8 \times 20.14 = 2.52 + 5\% = 3.0 \text{ bg}$
 - ((6/8 x total mortar) ÷ 27) + Waste Factor
 = Total cuyds of Sand (Round up to the nearest half cubic yard)

MES (BOARDS, LUMBER, TIMBER & PLYWOOD)

- The unit of measure to estimate boards, lumber, and timber is board feet (bf).
 - One board foot is equal to a piece of wood having 12 square inches of end area, and is 1 foot long.
- The unit of measure to estimate plywood is sheet (sh).
 - One sheet of plywood has 32 square feet of surface area.

BOARDS, LUMBER & TIMBER ESTIMATING CALCULATIONS

- Consolidate and total all "like" wood sizes & grades.
 Calculate board feet.
- Total all "dissimilar" wood sizes & grades. Calculate board feet.
- Board Feet Calculation
 - ((Thickness (in) x Width (in) x Length (ft) x Quantity) ÷ 12) + Waste Factor = Total Board Feet (Round up)

$$(2" \times 6" \times 16' \times 6) \div 12 = 96.0 \text{ bf} + 10\% = 106.0 \text{ bf}$$

PLYWOOD ESTIMATING CALCULATION

- Consolidate and total all "like" plywood sizes & grades. Calculate sheets required.
- Total all "dissimilar" plywood sizes & grades. Calculate sheets required.
- Sheet Calculation
 - Total Surface area to be covered from MTO ÷ 32 (sf) = Total sheets required + waste factor = Total sheets to order. (Round up)

512 sqft ÷ 32 sqft = 1 6.0 sh + 15% = 19.0 sh

MES (NAILS) & NAIL ESTIMATING CALCULATIONS

- Unit of measure for nails by the pound (lb).
- Three formulas, based on nail size, are used to determine nail requirements.
 - 2d to 12d Nails:
 - ((Nail size x Total bf of lumber to be fastened) ÷ 400) + Waste Factor = Total nails (lbs) (Round up)

NAIL ESTIMATING CALCULATIONS (CONT)

12d to 60d Nails:

((Nail size x Total bf of lumber to be fastened) ÷ 600) + Waste Factor =
 Total nails (lbs) (Round up)

$$(763 \text{ bf } \times 16d) \div 600 = 20.35 + 10\%$$
=
23.0 lbs

2d to 12d Nails for plywood:

((32 sqft x Total sheets to be fastened)÷ 400) + Waste Factor = Total nails(lbs) (Round up)

$$(32 sf \times 19 sh) \div 400 = 1.52 + 10\% = 2.0 lbs$$

Material Estimate SheetDetailed Material DescriptionMateria I U/IMateria I U/IWaste Factor QtyWork Descriptiony

MATERIALS ESTIMATION SHEET (MES)

DEMONSTRATION

BREAK

PRACTICAL APPLICATION

Part #1 & #2

Material Estimate Sheets

- What is the purpose of a materials estimate sheet?
- What is a "board foot"?

BREAK

BILL OF MATERIALS (BOM)

- Consolidated list of:
 - All material descriptions
 - Quantities
 - NSN's
 - Unit of issue
 - Unit cost
 - Total cost of individual items
 - Total cost of all materials required
- Source document used to order project materials.
 - Manufacturers, venders, companies and acceptable replacement items are also listed to prevent poor

BILL OF MATERIALS (BOM)

STANDARD UNITS OF MEASURE							
MATERIAL	U/M	MATERIAL	U/M				
CONCRETE (Ready Mix)	cuyd	DIMENSION LUMBER	bf				
SAND	1/2 cuyd	TIMBER	bf				
GRAVEL	1/2 cuyd	PLYW00D	sh				
CEMENT	bg	TRUSS'S	ea				
CONCRETE BLOCK	ea	DRYWALL	sh				
REINFORCEMENT BAR	ft	NAILS	lb				
WELDED WIRE	ro	SCREWS	bx				
CRUSHED ROCK	cuyd	ANCHOR BOLTS	ea				
POLY VAPOR BARRIER	ro	BOLTS	ea				
FILL DIRT	cuyd	DRYWALL SCREWS	bx				
BATT INSULATION	ro	DRYWALL TAPE	ro				
PAINT	ga	DRYWALL COMPOUND	ga				
HINGES	ea	LAP SIDING	sq				
INSECT SCREEN	ro	T-111 SIDING	sh				
ROOFING FELT	ro	CORRUGATED ROOFING	sh				
ROLL ROOFING	ro	ASPHALT SHINGLES	sq				
D00RS	ea	WINDOWS	ea				
ELECTRICAL WIRE	ft	ELECTRICAL OUTLETS	ea				
ELECTRICAL SWITCHES	ea	LIGHTING	ea				
ELECTRICAL CONDUIT	ft	JUNCTION BOXES	ea				
SERVICE HEAD	ea	CONDUIT CONNECTORS	ea				
PLUMBING FIXTURES	ea	PLUMBING PIPE	ft				
PIPE COUPLINGS	ea	FORM TIE WIRE	ft				

Detailed
Nomenclature
Description

NSN

| Detailed | Unit | Qty | Total | Source/ | Cost | Req | Cost | Substitu | te |

What is a bill of materials?

What is a bill of materials used for?

SUMMARY

- MATHEMATICAL CONVERSIONS
- MATERIAL TAKEOFF LISTS
- MATERIAL ESTIMATION SHEET
- BILL OF MATERIALS