Discrete Transforms – 개요

김성영교수 금오공과대학교 컴퓨터공학과

학습 목표

- 변환의 의미와 절차를 설명할 수 있다.
- 공간 주파수의 의미를 설명할 수 있다.

변환 (transform)

- 변환 수식에 의해 주어진 데이터(영상)을 다른 공간으로 매핑하는 과정 ➡ discrete transform의 형태를 가짐
- 주파수 변환 (frequency transform)
 - □공간(spatial) 도메인의 영상 데이터를 주파수 도메인으로 매핑
 - □입력 영상의 모든 픽셀들은 출력 데이터의 각 값에 기여

Basis function

- Transforms are based on basis functions
- Typically sinusoidal or rectangular form
- basis vector : 1-D sampling of basis function
- basis image or basis matrix : 2-D sampling of basis function

Process of Transform

- Projecting the image into the basis images
- Projecting process is an inner product

basis vector set =
$$\{\mathbf{i}, \mathbf{j}\}$$

 $\|\mathbf{i}\| = \|\mathbf{j}\| = 1 \& \mathbf{i} \cdot \mathbf{j} = 0$

basis vector set =
$$\{\mathbf{i}, \mathbf{j}\}$$
 $\mathbf{p} \cdot \mathbf{i} = \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a$ $\|\mathbf{i}\| = \|\mathbf{j}\| = 1 & \mathbf{i} \cdot \mathbf{j} = 0$ $\mathbf{p} \cdot \mathbf{j} = \begin{bmatrix} a \\ b \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = b$

$$(a,b) \Rightarrow (a',b')$$

공간 주파수 (Spatial Frequency)

- The ways in which image brightness levels change in space
- High spatial frequency: rapidly changing brightness level
- Low spatial frequency: slowly changing brightness level
- Zero frequency: image with a constant value

f = 1, square wave

f = 20, square wave

General Form of Transformation

Forward Transformation

$$\mathbf{T}(u,v) = \sum_{r=0}^{M-1} \sum_{c=0}^{N-1} \mathbf{I}(r,c) \mathbf{B}(r,c;u,v)$$

 $\square u, v$: frequency variables

 $\Box \mathbf{T}(u,v)$: transform coefficients

 $\square \mathbf{B}(r,c;u,v)$: basis images

Backward (Inverse) Transformation

$$\mathbf{I}(r,c) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \mathbf{T}(u,v) \mathbf{B}^{-1} (r,c;u,v)$$

General Form of Transformation

- $\mathbf{T}(u,v)$ is the projections of $\mathbf{I}(r,c)$ onto each $\mathbf{B}(u,v)$
 - □ Represent similarity of the image to the basis image
 - The more alike they are, the bigger the coefficient
 - $\square \mathbf{B}(u,v)$'s are orthogonal to each other
 - □ Image is decomposed into a weighted sum of the basis images, where T(u,v)'s are the weights

A set of basis vector: $\mathbf{B}(r,c;u,v)$

Transform Coefficients

Example

학습 정리

- 변환 (transform)
 - □변환 수식에 의해 주어진 데이터를 다른 공간으로 매핑하는 과정
- 기저 함수 (Basis function)
 - □변환에 사용되는 기반 함수
 - □주로 주파수의 변화 정도를 표현
- 변환 절차 (Process of Transform)
 - □기저 영상에 영상을 투영하여 처리
- ●공간주파수
 - □공간에서 영상의 밝기가 변화는 정도를 나타냄
 - □zero frequency, low frequency, high frequency

Reference

- Scott E Umbaugh, Computer Imaging, CRC Press, 2005
- R. Gonzalez, R. Woods, Digital Image Processing
 (2nd Edition), Prentice Hall, 2002

Thank you