Waste Classification Using Computer Vision

Student: José Tuozzo

Course: ITAI 1378 — Computer

Vision & Al

Project Tier: Tier 1

Platform: Google Colab + PyJorch

Problem Statement

Manual trash sorting is slow, errorprone, and leads to recycling contamination.

When waste is placed in the wrong bin, it reduces recycling efficiency and increases processing cost.

Why it matters:

- Contaminated recycling → wasted materials
- 2. Higher labor & sorting cost
- 3. Environmental pollution
- 4. Goal: Use AI to classify waste images automatically and support smarter recycling systems.

Proposed Solution

The proposed solution is to build a computer vision system that automatically classifies waste into six categories using a deep learning model. By analyzing images and predicting the correct material type in real time, the system can assist recycling efforts, reduce sorting mistakes, and support the development of smart and sustainable waste-management technologies.

Technical Approach

Method: Image classification (Computer Vision)

Model: EfficientNet-B0 (pretrained

on ImageNet)

Technique: Transfer learning

Why this approach:

Strong performance on small datasets

Efficient for limited compute (Colab GPU)

Proven architecture for real-world image tasks

Tools:

PyTorch, torchvision, grad-cam, sklearn, Colab GPU

Dataset

 Θ

a) Source: TrashNet-style dataset structure Classes (6): Cardboard, Glass, Metal, Paper, Plastic, Trash

- b) Format:
- c) train/
- d) val/
- e) test/
- f) Total images: ~2527 (balanced across classes) Synthetic fallback dataset used if missing (for reproducibility)
- g) Preprocessing:
- h) Resize (224x224)
- i) Normalization
- Data augmentation (flip, rotation)

System Diagram

Metrics & Targets

Outputs:

- Accuracy score
- Confusion matrix
- Class-by-class precision/recall
- Attention heatmaps

Metric	Target
Accuracy	≥ 90%
Recall (similar classes)	≥ 88%
Explainability	Grad-CAM heatmaps

Timeline

Challenge	Solution
Class imbalance	Weighted loss + augmentation
Model overfitting	Early stopping + data augmentation
Low accuracy	Adjust learning rate / optimizer / batch size
Data missing	Synthetic dataset auto-generated

Challenges & Backup

References

- ▶ Algahtani, F., & Kavakli, M. (2021). Deep learning-based waste classification in smart cities. IEEE Access, 9, 123256-123271. https://doi.org/10.1109/ACCESS.2021.3109619 7
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. CVPR. https://doi.org/10.1109/CVPR.2009.5206848 a
- Rad, M. S., Zolfaghari, R., Rahmani, A. M., & Hosseinzadeh, M. (2021). A comprehensive survey of deep learning for garbage waste classification. Expert Systems with Applications, 171, 114834. https:// doi.org/10.1016/j.eswa.2021.114834 a
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. ICCV. https://doi.org/10.1109/ICCV.2017.747
- ► Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. ICML. https://arxiv.org/abs/1905.11946 a
- ▶ UNEP. (2022). Single-use plastics: A roadmap for sustainability. United Nations Environment Programme.
- https://www.unep.org/resources/report/single-use-plastics-roadmap-sustainability a

THANK YOU!!