Отчёт по лабораторной работе № 5.4.2. Исследование энергетического спектра β -спектра частиц и определение их максимальной энергии при помощи магнитного спектрометра.

Плюскова Н.А. Б04-004

27 января 2023 г.

1. Аннотация

В данной работе были получены сила тока, соответствующая конверсионному пику, коэффициент пропорциональности, зависящий от параметров установки. Построен график Ферми-Кюри, по которому была найдена максимально возможная энергия электрона.

2. Теоретические сведения

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами. Период полураспада β - активных ядер изменяется от ничтожных долей секунды до 10^{18} лет. Выделяющаяся при единичном акте β - распада энергия варьируется от 18 кэВ до 13,4 МэВ.

В данной работе мы будем иметь дело с электронным распадом

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Вероятность dw того, что при распаде электрон вылетит с импульсом в интервале d^3p , а антинейтрино с импульсом в интервале d^3k , пропорциональна произведению этих дифференциалов. Но мы должны еще учесть закон сохранения энергии, согласно которому импульсы p и k электрона и антинейтрино связаны соотношением

$$E_e - E - ck = 0, (2)$$

где E_e - максимальная энергия электрона, кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = c\sqrt{p^2 + m^2c^2} - mc^2, (3)$$

а через ck обозначена энергия антинейтрино с импульсом k. Условие можно учесть введением в выражение для dw δ - функции

$$\delta(E_e - E - ck). \tag{4}$$

Таким образом, вероятность dw может быть записана в виде

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}},$$
 (5)

где D — некоторый коэффициент пропорциональности, $d\Omega_e$, $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино. Вероятность dw непосредственно связана с β -спектром, поскольку для большого числа N_0 распадов число dN распадов с вылетом электрона и антинейтрино с импульсом соответственно от p до p+dp и от k до k+dk определяется соотношением

$$dN = N_0 dw (6)$$

Коэффициент D в формуле (5) можно считать для рассматриваемых нами так называемых разрешенных фермиевских типов распадов с хорошей точностью константой (разрешенными называются такие переходы, при которых не изменяются ни момент, ни четность состояния ядра). В этом случае величину dw из (6) можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино.

После умножения на полное число распадов N проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p иp+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (7)

Чтобы получить распределение электронов по энергиям, надо в (7) перейти от dp к dE:

$$dE = \frac{c^2 p}{E + mc^2} dp,\tag{8}$$

после чего выражающая форму β — спектра величина N(E)=dN/dE приобретает вид

$$\frac{dN}{dE} = N_0 B c p (E + mc^2) (E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc^2)$$
 (9)

где $B=(16\pi^2/c^4)D$. В нерелятивистском приближении, которое и имеет место с нашем случае, выражение (9) упрощается, и мы имеем

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{10}$$

Выражение (10) приводит к спектру, имеющему вид широкого колокола (рис 1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Рис. 1: Форма спектра -частиц при разрешенных переходах

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис. 1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной, по ней можно оценить разрешающую силу спектрометра.

3. Экспериментальная установка

Для определения энергии β -частиц в работе используется магнитный спектрометр, схема которого показана на рисунке 2 слева. Электроны испускаются радиоактивным источником и попадают в магнитное поле катушки, ось которой параллельна OZ. Траектории электронов сходятся в одной точке — фокусе, где и установлен сцинтилляционный счетчик, сигналы которого усиливаются фотоумножителем и регистрируются пересчетным

прибором. Фокусное расстояние f магнитной линзы связано с током в катушке I и импульсом p_e регистрируемых частиц следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2}$$

При неизменной геометрии установки, увеличивая и уменьшая силу тока, можно фокусировать электроны разных импульсов, причем

$$p_e = kI, (11)$$

где k — коэффициент пропорциональности, являющийся параметром установки.

Рис. 2: слева — схема β -спектрометра; справа — блок-схема установки для изучения спектра

В β -спектрометре установлены диафрагмы для ограничения углов вылета частиц из источника и свинцовый фильтр для защиты от прямого попадания γ -лучей.

Число частиц N, регистрируемых на установке, равно: $N \approx W \cdot \Delta p_e$, где Δp_e - разрешающая способность спектрометра. Дифференцируя выражение для форуса магнитной линзы, получим: $\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$, то есть $\Delta p_e \propto p_e$. Таким образом, для количества частиц справедлива формула:

$$N = CW(p_e)p_e \tag{12}$$

Здесь C - некоторая константа.

4. Ход работы

Проведем измерения β -спектра, изменяя ток I магнитной линзы:

I, A	σ_I , A	N, c^{-1}	σ_N, c^{-1}	I, A	σ_I , A	N, c^{-1}	σ_N, c^{-1}
0,20		0,860	0,093	3,00		3,449	0,186
0,40		0,960	0,098	3,10	3,109	0,176	
0,60		0,770	0,088	3,20		2,559	0,160
0,80		1,040	0,102	3,30		2,119	0,146
1,00		1,380	0,117	3,40		1,809	0,134
1,10		1,560	0,125	3,50		1,410	0,119
1,20		2,049	0,143	3,60		1,180	0,109
1,30		2,489	0,158	3,70		1,090	0,104
1,40		2,669	0,163	3,80		1,759	0,133
1,50		3,099	0,176	3,85		2,659	0,163
1,60		3,149	0,177	3,90		3,379	0,184
1,70	0,01	3,189	0,179	3,95	0,01	4,189	0,205
1,80	0,01	3,959	0,199	4,00	0,01	4,369	0,209
1,90		3,699	0,192	4,05		4,988	0,223
2,00		4,069	0,202	4,10		6,828	0,261
2,10		4,449	0,211	4,15		6,368	0,252
2,20		4,489	0,212	4,20		5,698	0,239
2,30		4,399	0,210	4,25		5,548	0,236
2,40		4,449	0,211	4,30		5,388	0,232
2,50		4,189	0,205	4,32		4,359	0,209
2,60		4,419	0,210	4,35		3,129	0,177
2,70		4,029	0,201	4,40		2,279	0,151
2,80		4,029	0,201	4,45		1,480	0,122
2,90		3,649	0,191	4,50		0,970	0,098

Таблица 1: Измерение β -спектра

Также измерим фон, чтобы в дальнейших рассуждениях учесть его:

	<i>I</i> , A	σ_I , A	N, c^{-1}	σ_N, c^{-1}	t, c
	0	0,01	0,707	0,049	300
Ī	5,98		0,403	0,037	300

Таблица 2: Измерение фона

Построим график N(I), с помощью которого прокалибруем спектрометр:

Рис. 3: N(I)

График N(I) аппроксимируем полиномом 10 степени. По уравнению аппроксимирующей кривой находим величину силы тока, соответствующую конверсионному пику: $I=(4.16\pm0.04)~{\rm A}$

Отсюда находим константу k, являющуюся параметром установки:

$$k=rac{pc}{I}=(244\pm2)$$
 кэ $\mathrm{B/A}$

Построим график Ферми-Кюри:

Из графика находим максимальную энергию электронов, как пересечение аппроксимирующей прямой с осью абсцисс: $E_e=\frac{-b}{a}=(561\pm3)$ кэВ. (Погрешность σ_{E_e} нашли из МНК)

M ₀=1		p D	- mD	$\frac{\sqrt{N-N_{bg}}}{v^{3/2}}*10^{-6}, \text{кэ} \text{B}^{-3/2}*c^{-1/2}$	E vo D
N, c^{-1}	σ_N, c^{-1}	$\frac{p}{c}$,кэВ	$\sigma_{\frac{p}{c}}$,кэВ	F	E, кэ B
0,770	0,088	146,4	12,2	173	20
1,040	0,102	195,2	16,2	225	36
1,380	0,117	244,0	20,1	224	55
1,560	0,125	268,4	22,1	217	66
2,049	0,143	292,8	24,1	237	78
2,489	0,158	317,2	26,1	241	90
2,669	0,163	341,6	28,1	226	103
3,099	0,176	366,0	30,1	224	117
3,149	0,177	390,4	32,1	206	132
3,189	0,179	414,8	34,1	190	147
3,959	0,199	439,2	36,1	199	162
3,699	0,192	463,6	38,1	176	178
4,069	0,202	488,0	40,1	173	195
4,449	0,211	512,4	42,1	170	212
4,489	0,212	536,8	44,1	159	229
4,399	0,210	561,2	46,1	147	247
4,449	0,211	585,6	48,1	139	265
4,189	0,205	610,0	50,1	126	284
4,419	0,210	634,4	52,1	123	303
4,029	0,201	658,8	54,1	110	322
4,029	0,201	683,2	56,1	104	341
3,649	0,191	707,6	58,0	94	361
3,449	0,186	732,0	60,0	86	380
3,109	0,176	756,4	62,0	77	400
2,559	0,160	780,8	64,0	65 55	421
2,119	0,146	805,2 829,6	66,0	47	441 462
1,809	0,134	-	68,0	38	483
1,410	0,119 0,109	854,0 878,4	70,0 $72,0$	31	504
1,090	0,109 $0,104$	902,8	74,0	28	525
1,759	0,104 $0,133$	927,2	76,0	40	546
2,659	0,163	939,4	77,0	51	557
3,379	0,103	951,6	78,0	58	567
4,189	0,104 $0,205$	963,8	79,0	64	578
4,369	0,209	976,0	80,0	65	589
4,988	0,203 $0,223$	988,2	81,0	68	600
6,828	0,223	1000,4	82,0	80	611
6,368	0,252	1012,6	83,0	75	621
5,698	0,239	1012,8	84,0	70	632
5,548	0,236	1037,0	85,0	67	643
5,388	0,232	1049,2	86,0	65	654
4,359	0,209	1054,1	86,4	58	658
3,129	0,203 $0,177$	1061,4	87,0	47	665
2,279	0,151	1073,6	88,0	38	676
1,480	0,131	1075,8	89,0	28	687
0,970	0,098	1098,0	90,0	19	698
0,510		1000,0	50,0	10	000

Таблица 3: Данные для построения графика Ферми-Кюри

5. Выводы

В работе был изучен спектр β -распада ^{136}Cs , получены значение тока для конверсионного пика $I=(4.16\pm0.04)$ А, k - коэффициент пропорциональности, являющийся параметром установки $k=(244\pm2)$ кэ $\mathrm{B/A}$, а также максимально возможная энергия электрона $E_e=(561\pm3)$ кэ $\mathrm{B/A}$