Le package tnsseq : théorie générale des suites

 ${\bf Code\ source\ disponible\ sur\ https://github.com/typensee-latex/tnsseq.git.}$

Version ${\tt 0.1.0\text{-}beta}$ développée et testée sur $\operatorname{Mac}\operatorname{OS}\operatorname{X}.$

Christophe BAL

2020-08-08

Table des matières

I. Introduction	2
II. Beta-dépendance	2
III.Packages utilisés	2
IV.Des notations complémentaires pour des suites spéciales	2
V. Sommes et produits en mode ligne	2
VI.Comparaison asymptotique de suites et de fonctions	2
1. Les notations \mathcal{O} et σ	
2. La notation Ω	
3. La notation Θ	
VI H istorique	4
VIIIoutes les fiches techniques	5
1. Des notations complémentaires pour des suites spéciales	5
2. Sommes et produits en mode ligne	. 5
3. Comparaison asymptotique de suites et de fonctions	. 5
i. Les notations \mathcal{O} et σ	5
ii. La notation Ω	
iii. La notation Θ	

I. Introduction

Le package tnsseq propose quelques macros utiles quand l'on parle de suites ou de séries. La saisie proposée se veut sémantique et simple.

II. Beta-dépendance

\tnscom qui est disponible sur https://github.com/typensee-latex/tnscom.git est un package utilisé en coulisse.

III. Packages utilisés

La roue ayant déjà été inventée, le package tnsseq réutilise les packages suivants sans aucun scrupule.

- amssymb
- bm

- mathtools
- yhmath

IV. Des notations complémentaires pour des suites spéciales

Voici trois types de suites avec deux ou quatre indices.

```
$\seqplus{F}{1}{2}$$ $$ F_1^2 $$ F_1^2 $$ F_2^2 $$ Seqsuprageo{F}{1}{2}{3}{4}$ pour les fous\dots:-)
```

V. Sommes et produits en mode ligne

Pour limiter l'espace, LATEX affiche $\sum_{k=0}^{n}$ et non $\sum_{k=0}^{n}$ sauf si l'on utilise la commande \displaystyle. Les macros \dsum et \dprod permettent de se passer de \displaystyle. Voici un exemple.

Remarque. On peut taper $\sum_{k=0}^{n} \frac{1}{n}$ où la fraction n'est pas en mode \displaystyle.

VI. Comparaison asymptotique de suites et de fonctions

1. Les notations \mathcal{O} et \mathcal{O}

Exemple 1

Les notations suivantes sont dues à Landau.

\$\bigO\$ ou \$\smallO\$	O ou o
--------------------------	--------

Exemple 2

<pre>\$\bigO(x) \neq \smallO(x)\$ ou \$e^{t + \smallO(t)} = e^{\bigO(t)}\$</pre>	$\mathcal{O}(x) \neq \mathcal{O}(x)$ ou $e^{t+\mathcal{O}(t)} = e^{\mathcal{O}(t)}$
--	---

2. La notation Ω

Exemple 1

La notation suivante est due à Hardy et Littlewood.

$\sigma \$	
------------	--

Exemple 2

Dans l'exemple suivant, $f(n) = \Omega(g(n))$ signifie : $\exists (m, n_0)$ tel que $n \ge n_0$ implique $f(n) \ge mg(n)$.

<pre>\$f(n) = \bigomega(g(n))\$</pre>	$f(n) = \Omega(g(n))$

3. La notation Θ

Exemple 1

\$\bigtheta\$	Θ	
	-	

Exemple 2

Dans l'exemple suivant, $f(n) = \Theta(g(n))$ signifie : $\exists (m, M, n_0)$ tel que $mg(n) \le f(n) \le Mg(n)$ dès que $n \ge n_0$.

$$f(n) = \phi(g(n))$$

VII. Historique

Nous ne donnons ici qu'un très bref historique récent ¹ de tnsseq à destination de l'utilisateur principalement. Tous les changements sont disponibles uniquement en anglais dans le dossier change-log : voir le code source de tnsseq sur github.

2020-08-08 Nouvelle version mineure 0.1.0-beta.

• COMPARAISON ASYMPTOTIQUE : ce sont de vrais opérateurs mathématiques qui sont définis en coulisse (du coup les macros \big0, \small0, \big0mega et \bigTheta n'ont plus d'argument).

2020-07-10 Première version 0.0.0-beta.

^{1.} On ne va pas au-delà de un an depuis la dernière version.

VIII. Toutes les fiches techniques

1. Des notations complémentaires pour des suites spéciales

\seqplus{#1#2}
— Argument 1: l'exposant à droite.
— Argument 2: l'indice à droite.
\seqhypergeo{#1#2}
— Argument 1: l'indice à gauche.
— Argument 2: l'indice à droite.
\seqsuprageo{#1#4}
— Argument 1: l'indice à gauche.
— Argument 2: l'indice à droite.
— Argument 3: l'exposant à droite.
— Argument 4: l'exposant à gauche.
2. Sommes et produits en mode ligne
Les opérateurs suivants ont un comportement spécifique vis à vis des mises en index et en exposant.
\dprod

3. Comparaison asymptotique de suites et de fonctions

i. Les notations \mathcal{O} et \mathcal{O}

\big0 \small0

\dsum

ii. La notation Ω

\bigomega

iii. La notation Θ

\bigtheta