3000788 Intro to Comp Molec Biol

Week 7: Single-cell transcriptomics

Fall 2024

Sira Sriswasdi, PhD

- Research Affairs
- Center of Excellence in Computational Molecular Biology (CMB)
- Center for Artificial Intelligence in Medicine (CU-AIM)

Single-cell transcriptomics key points

- Bulk transcriptomics cannot reveal heterogeneity
- Lower sequencing depth per cell makes data analysis difficult
- Batch effect is also very strong
- How to visualize cell-cell similarity as 3D scatter plot?
- Key analyses: cell clustering and trajectory
- Spatial transcriptomics

Tissue consists of multiple cell types

Knowledge at single-cell resolution

Heterogeneity

Treatment response

10x Genomics' chromium technique

https://bauercore.fas.harvard.edu/10x-chromium-system

- Droplets of sequencing reagents
- Cell barcode + pooled sequencing

Single-nucleus sequencing

- Isolate nuclei instead of whole-cells
 - Only capture RNA expression in nucleus
- Good for cells that are difficult to isolate: adipocyte, neuron, etc.
 - Also works well with preserved tissues

UMI and cell barcode

Hwang et al. Exp & Mol Med 50:96 (2018)

- All beads in each droplet have the same cell barcode
 - Reads with the same barcode came from the same cell
- Each PCR adapter contains different Unique Molecular Identifiers (UMI)
 - Reads with the same UMI came from the same original RNA molecule

Single-cell vs bulk data

Challenges in single-cell data analysis

- Low read count per cell and gene
 - A lot of zeros in expression data
- Cells are biologically different
 - High variance across cells
- Cells are in continuous states of development
 - Not just control vs treatment
- Data is very large (256 GB of RAM for medium project)
 - 10,000 cells x 5,000 genes

Data processing and QC

Key steps in single-cell data processing

- Quality filter
 - Low read count & gene count = non-cells
 - Very high read count & gene count = multi-cells
 - High mitochondrial expression = dead cells
- Within-sample normalization
 - Dealing with missing expression values
- Multi-sample integration
 - Single-cell data have strong batch effects

Basic quality filters

Stem cell markers in high-mitochondrial cells

Normalization with pooling

Low expression

Gene A

Gene B

Gene C

Medium expression

Gene D

Gene E

Gene F

Gene G

High expression Gene I

Gene H

Data integration

High bias across datasets

https://towardsdatascience.com/how-to-batch-correct-single-cell-7bad210c7ae1

Linear effect removal (Combat-Seq)

Negative binomial regression models

Gene-wise model: for a certain gene g, count in sample j from batch i $y_{gij} \sim NB(\mu_{gij}, \phi_{gi})$

Explicit addition of batch parameter $\gamma_{a,i}$

$$\log \mu_{gij} = \alpha_g + X_j \beta_g + \gamma_{gi} + \log N_j$$
$$Var(y_{gij}) = \mu_{gij} + \phi_{gi} \mu_{gij}^2$$

Decompose scaled counts into 3 components
$$\begin{bmatrix} \alpha_g & \text{Average level for gene g (in "negative" samples)} \\ X_j\beta_g & \text{Biological condition of sample j} \\ \gamma_{gi} & \text{Mean batch effect} & N_j = \text{total read count for sample j} \\ \end{bmatrix}$$

Dispersion batch effect

Estimate batch effect parameters

Estimate parameters using established methods in edgeR

Calculate "batch-free" distributions

We assume the adjusted data also follow a negative binomial distribution: $y_{ai}^* \sim NB(\mu_{ai}^*, \phi_a^*)$

Subtract batch parameter $\gamma_{g,i}$ \Longrightarrow $\log \mu_{gj}^* = \log \hat{\mu}_{gij} - \hat{\gamma}_{gi}$ $\phi_g^* = \frac{1}{N_{batch}} \sum_i \hat{\phi}_{gi}$

$$\phi_g^* = \frac{1}{N_{batch}} \sum_{i} \hat{\phi}_g$$

Mutual nearest neighbor (MNN)

- Map clusters of cells together rather than individual cells
- Similar to reciprocal best hits from BLAST for identifying orthologs
- Apply the average mapping vector to unique cell types

Haghverdi et al., Nat. Biot. 36, 2018

Integration via canonical correlation

Canonical correlation analysis (CCA)

- Same samples with two different systems of observations
- Identify correlation structure observation systems (features)

Rajasundaram et al. PLoS ONE (2014)

Integrating RNA-seq with ATAC-seq

- ATAC-seq = open chromatin ~ gene expression level
- Transfer cell type label

Visualizing single-cell data

with dimensionality reduction techniques

Dimensionality reduction

 Collapse high-dimensional data on to 2D or 3D scatter plot that preserve some information in original dimension

Dimensionality reduction algorithm sketch

Step 1: Compute a graphical representation of the dataset

Sainburg, T. et al., Neural Comput 33(11):2881-2907 (2021)

Step 2 (non-parametric): Learn an embedding that preserves the structure of the graph

Similarity = correlation in gene expression across cells

t-SNE vs UMAP on single-cell data

Becht, E. et al. Nature Biotechnology 37:38-44 (2019)

Clustering and trajectory analyses

Cell clustering and trajectory reconstryction

Clustering of cells with similar omics signatures reveal groups of different cell types and developmental stages

Trajectory modeling with random walk, diffusion, or Markov chain reconstruct the paths of cell development

Algorithm sketch for cell type clustering

- Connect cells with similar gene expression profile
- Split network into modules with dense edges

Cells can be arrange along developmental path

(b) UMAP Embeddings

- Cells are in continuous developmental states
- Similar gene expression implies similar state
- Reconstruct pseudotime
- Identify important genes for development
 - Expression change along the trajectory
 - Expression switch at a particular time point

Minimum spanning tree

Trajectory along the most similar cells

Diffusion approach for cell-cell transitions

Estimating differentiation potential

Differentiation potential = probability of reaching multiple final cell types

Dynamics of unspliced transcript

La Manno et al. Nature 2018

- When a gene is activated, level of unspliced transcripts rises first
- When a gene is repressed, level of unspliced transcripts drops first

Proof of RNA velocity

Circadian genes are genes whose expression cycle with the time of day

Spatial transcriptomics

Spatial barcoding

Longo et al. Nature Reviews Genetics 22:627-644 (2021)

Spatial cell isolation + barcoding

Extended NanoString

Longo et al. Nature Reviews Genetics 22:627-644 (2021)

In-situ fluorescence labeling of selected RNA transcripts

Any question?