Thesis defense

Simulating multi-wavelength observations from low-resolution spectrographs

Lasse L. S. Berthelsen

Supervisor: Hans Kjeldsen

Co-supervisor: Victoria Antoci

22/1-2020

Aarhus University

Outline

- Motivation
 - Exoplanetary atmospheres
- Simulation
 - Step-by-step walkthrough
- Using the simulator
- Future work

Search for alien life

- Search for alien life
- Biosignatures and indicators

- Search for alien life
- Biosignatures and indicators
 - Water, CO₂, oxygen

- Search for alien life
- Biosignatures and indicators
 - o Water, CO₂, oxygen
- Atmospheres

Exoplanetary atmospheres

Exoplanetary atmospheres

How to detect them:

- Direct imaging
- Transit method

Exoplanetary atmospheres

How to detect them:

- Direct imaging
- Transit method

W.M. Keck observatory, J. Wang, C. Marois

Fig. 8.1

Transmission spectrum:

Transmission spectrum:

Transmission spectrum:

$$S_{Transmission} = \frac{\left(S_{in} - S_{out}\right)}{S_{out}}$$

Another atmosphere...

Satellite-based spectroscopy

NASA

NASA

ESA

Simulator

- HIDRA: Hyperspectral Instrument Data Resemblance Algorithm
 - Modular simulator for low-resolution spectroscopy
 - Written in Python

• 1 nm spectral resolution $(\Delta \lambda)$

Fig. 6.1

Inputs

- Input spectra
 - In and out of transit
- Spectral throughput, η_{in}
 - CCD QE, spectral response of optics, etc.
- Pixel size, plate scale, etc.

Parameter	Value
in_spec	See figure 8.1
wl_ran	300-1000
col_area	$200~\mathrm{cm^2}$
img_size	1000×100
pl_scale	$355.63 \mathrm{\ arcsec \ mm^{-1}}$
pix_size	13.5 μm
exp	$300 \mathrm{\ s}$
PSF FWHM	3 pix. @300 nm
sub_pix	$10 \mathrm{pixel^{-1}}$
eta_in	See figure 8.2
slit	variable
jitter	1.3 arcsec (RMS)

Tab. 8.1

Fig. 7.1

Fig. 8.2

Step 2: Image formation

Point Spread Function Spacecraft jitter / seeing Convolution

Point Spread Function Spacecraft jitter / seeing Convolution

Point Spread Function Spacecraft jitter / seeing Convolution

Step 2: Image formation

Step 2: Image formation

PSF & Jitter

Point Spread Function - Next color Spacecraft jitter / seeing Convolution

Step 3: Noise and read-out

Multiply by CCD

Fig. 6.7

Multiply by CCD

Fig. 6.7

Janesick & Blouke 1987

Sum up pixels

Fig. 7.5

Sum up pixels

Fig. 7.5

Sum up pixels

Fig. 8.3

Adding noise

$$noise_{i,j} = (\sqrt{N_{i,j}} + RON) \cdot \mathcal{N}(\mu = 0, \sigma = 1)$$

Adding noise

$$noise_{i,j} = (\sqrt{N_{i,j}} + RON) \cdot \mathcal{N}(\mu = 0, \sigma = 1)$$

Addir

 $noise_{i,}$

Read-out

Results

Fig. 8.11

Results

Fig. 8.12

Using the simulator - misalignment

Fig. 8.5

Using the simulator - jitter

Future improvements

- Faster run-time
- Higher spectral resolution
- Secondary light sources / background stars
- Improved format checking during setup

Conclusion

- Goals of this thesis:
 - Create a simulator for low-resolution spectroscopy
 - Tests were conducted
- Realistic input values were used to conduct a "real-life test"
 - Jitter is a major obstacle!
- Future improvements
 - Faster, more robust, and with higher spectral resolution