High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

Eric Han, ¹ Ishank Arora, ² Jonathan Scarlett ^{1,3}

²Indian Institute of Technology (BHU) Varanasi ishank.arora.cse14@iitbhu.ac.in,

³Department of Mathematics & Institute of Data Science, NUS scarlett@comp.nus.edu.sg

Highlights

Considering high-dimensional BO, we lower the computational resources required and facilitate faster model learning by reducing the model complexity while retaining the *sample-efficiency* of existing methods.

- 1. Trade-off expressiveness for scalability via tree-structures
- 2. Extend message passing via zooming technique to **continuous** domains
- 3. **Hybrid** method, exploiting tree structures
- 3.1 Grows tree via Gibbs sampling
- 3.2 Edge mutation
- 4. Demonstrate the effectiveness of our approach in a variety of experiments

Introduction

Goal: Find $x_{\max} = \arg \max_{x \in \mathcal{X}} f(x)$ for black-box function $f: \mathcal{X} \to \mathbb{R}$

► Assume *f* decomposes as a sum of lower-dimensional functions [1]:

$$f(x) = \sum_{G \in \mathcal{G}} f^G(x^G), \qquad (1)$$

where $G \subseteq \{1, \dots, D\}$ denotes one subset of variables, and \mathcal{G} represents the **tree-structured** additive structure (See example h(x)).

Figure: $h(x) = h^A(x_1, x_6) + h^B(x_1, x_5) + h^C(x_1, x_4) + h^D(x_3, x_4) + h^E(x_2)$.

▶ We model $f \sim \mathcal{GP}(\mu, \kappa)$, with each f^G being an independent sample from a Gaussian Process $\mathcal{GP}(\mu^G, \kappa^G)$, and

$$\mu(x) = \sum_{G \in \mathcal{G}} \mu^G(x^G),$$

$$\kappa(x, x') = \sum_{G \in \mathcal{G}} \kappa^G(x^G, x'^G).$$
(2)

Focus on upper confidence bound (UCB) – global acquisition function $\phi_t(x)$ be the sum of the individual acquisition functions with respect to structure \mathcal{G} :

$$\phi_t(x) = \sum_{G \in \mathcal{G}} \phi_t^G(x^G),$$

$$\phi_t^G(x^G) = \mu_{t-1}^G(x^G) + \beta_t^{1/2} \sigma_{t-1}^G(x^G).$$
(4)

Additive GP-UCB on Tree Structures

Algorithm 1: TREE-GP-UCB

- 1 Initialize $\mathcal{D}_0 \leftarrow \{(x_t, y_t)\}_{x_t \in X_{\text{init}}}$
- 2 for $t=N_{\mathrm{init}}+1,\ldots,N_{\mathrm{iter}}$ do
- if $t \mod C = 0$ then

eric_han@nus.edu.sg,

- Learn $\mathcal{G} \leftarrow \mathsf{TREE}\text{-}\mathsf{LEARNING}$ (Alg. 3)
- Update $\mu_t^G, \sigma_t^G : \forall G \in \mathcal{G}$ (3)
- Optimize $x_t \leftarrow \arg\max_{x \in \mathcal{X}} \phi_t(x)$ (Alg. 2)
- Observe $y_t \leftarrow f(x_t) + \epsilon$
- Augment $\mathcal{D}_t \leftarrow \mathcal{D}_{t-1} \cup \{(x_t, y_t)\}$
- 9 return $\arg \max_{(x,y)\in\mathcal{D}} y$

Hybrid Dependency Tree Structure Learning

Exploiting tree-structures to enable efficient tree structure learning

- ▶ **Gibbs**: Sample approximately, avoiding the difficult task of sampling directly from the high-dimensional distribution over tree structures.
- ▶ **Mutate**: Mutate edges while maintain tree structure diversity from one generation to another.

Optimize Acquisiton Functions via Zooming Technique

Extends [2], recursively zoom into the corresponding sub-domain

- Due to tree structure, message-passing computation is reduced to quadratic of the domain.
- Different zoom strategy can be employed
- Extend generalized additive models to continuous domains.

Experiments

Experiments:

- Additive GP f (see right)
- ► Non-GP *f*

Grid-3×3 (Continuous): Tree and Graph No-Overlap are not realizable; Tree remains competitive despite the poorer graph learning.

Scalability: Test Tree's scalability to higher dimensions up to 225D; Tree incurs the lowest cost, as the message passing cost is quadratic in grid size

Real: Tune lpsolve's 74 parameters, finding the best parameters with a time limit of 5 seconds.

Figure: Scalability of Tree over dimensions

Figure: Lpsolve-misc05inf Performance

Additional Experiments: HPOLib2, NAS, Black-box adversarial attack

References

- [1] K. Kandasamy, J. Schneider, and B. Póczos, "High dimensional Bayesian optimisation and bandits via additive models," in Int. Conf. Mach. Learn. (ICML), 2015, pp. 295-304.
- [2] P. Rolland, J. Scarlett, I. Bogunovic, and V. Cevher, "High-dimensional Bayesian optimization via additive models with overlapping groups," in Int. Conf. Art. Intel. Stats. (AISTATS), 2018, pp. 298-307.