STAT1301 Assignment 4

Caleb Yates s49886351

October 14, 2025

1 Question 4

Let X be the random variable for the number of people received the direct mail strategy and compelted screening. Let Y be the random variable for the number of people who received the education only outreach and completed screening.

1.1 Part a)

The notation p_X and p_Y represent the population proportion for X and Y respectively.

The null hypothesis is that both population proportions are equal: $H_0: p_X = p_Y = p$. The alternative hypothesis is therefore: $H_1: p_X > p_Y$.

1.2 Part b)

 $X \sim Bin(n_X, p_X)$ where $n_X = 1415$ so $X \sim Bin(1415, p_X)$. It is (implicitely) assumed that samples X_i from X follow the distribution of X and are all independent, hence:

$$X_i \sim Bin(n_X, p_X)$$

Since $n_{\rm X}p_{\rm X}=505\gg 5$ and $n_{\rm X}(1-p_{\rm X})=910\gg 5$, the conditions for the Central Limit Theorem (CLT) to be a good approximation are met, as well as a suitably large $n_{\rm X}$. Hence the CLT is reasonable for the research problem. Therefore:

$$X_i \stackrel{\text{approx}}{\sim} N(n_X p_X, n_X p_X (1 - p_X))$$

$$\bar{\mathbf{X}} = \hat{P}_{\mathbf{X}} \stackrel{\text{approx}}{\sim} N(p_{\mathbf{X}}, \frac{p_{\mathbf{X}}(1 - p_{\mathbf{X}})}{n_{\mathbf{X}}})$$

Under H_0 :

$$\hat{P}_{\rm X} \sim N(p, \frac{p(1-p)}{n_{\rm X}})$$

 $Y \sim Bin(n_Y, p_Y)$ where $n_Y = 1408$ so $Y \sim Bin(1408, p_Y)$. It is (implicitely) assumed that samples Y_i from Y follow the distribution of Y and are all independent, hence:

$$Y_i \sim Bin(n_Y, p_Y)$$

Since $n_Y p_Y = 264 \gg 5$ and $n_Y (1 - p_Y) = 1144 \gg 5$, the conditions for the Central Limit Theorem (CLT) to be a good approximation are met, as well as a suitably large n_Y . Hence the CLT is reasonable for the research problem. Therefore:

$$Y_i \stackrel{\text{approx}}{\sim} N(n_Y p_Y, n_Y p_Y (1 - p_Y))$$

$$\bar{\mathbf{Y}} = \hat{P}_{\mathbf{Y}} \stackrel{\text{approx}}{\sim} N(p_{\mathbf{Y}}, \frac{p_{\mathbf{Y}}(1 - p_{\mathbf{Y}})}{n_{\mathbf{Y}}})$$

Under H_0 :

$$\hat{P}_{Y} \sim N(p, \frac{p(1-p)}{n_{Y}})$$

It is additionally assumed that X and Y are independent from each other.

We can now give notation for the specific sample information we are given: $\bar{x} = \hat{p}_X = \frac{505}{1415} \approx 0.3568$ and $\bar{y} = \hat{p}_Y = \frac{264}{1408} \approx 0.1875$

1.3 Part c) 1 QUESTION 4

1.3 Part c)

$$\hat{P}_{X} - \hat{P}_{Y} \sim N(p_{X} - p_{Y}, \frac{p_{X}(1 - p_{X})}{n_{X}} + \frac{p_{Y}(1 - p_{Y})}{n_{Y}})$$

Under H_0 , or assuming H_0 :

$$\hat{P}_{X} - \hat{P}_{Y} \sim N(0, \frac{p(1-p)}{n_{X}} + \frac{p(1-p)}{n_{Y}})$$

To find a pivital variable that doesn't depend on the unknown p, a pooled unbiased estimator $\hat{P} = \frac{X+Y}{n_X+n_Y}$ will be used in place of $p = \hat{P}$. For our sample $\hat{P} = \frac{505+264}{1415+1408} \approx 2.724$. Rearranging gives:

$$T = \frac{\hat{P}_{X} - \hat{P}_{Y}}{\hat{P}(1 - \hat{P})(\frac{1}{n_{X}} + \frac{1}{n_{Y}})} \sim N(0, 1)$$

The p-value is therefore computable relative to our specific sample:

$$p-value = P(\{\hat{P}_X - \hat{p}_X \ge \hat{P}_Y - \hat{p}_Y\})$$

In a slightly more useful arrangement:

p-value =
$$P(\{\hat{P}_{X} - \hat{P}_{Y} \ge \hat{p}_{X} - \hat{p}_{Y}\})$$

p-value = P({
$$\frac{\hat{P}_{X} - \hat{P}_{Y}}{\hat{P}(1 - \hat{P})(\frac{1}{n_{X}} + \frac{1}{n_{Y}})} \ge \frac{\hat{p}_{X} - \hat{p}_{Y}}{\hat{P}(1 - \hat{P})(\frac{1}{n_{X}} + \frac{1}{n_{Y}})}$$
})

Note $\hat{p}_{\rm X} - \hat{p}_{\rm Y} \approx 0.16939$ and $\hat{P}(1 - \hat{P})(\frac{1}{n_{\rm X}} + \frac{1}{n_{\rm Y}}) \approx 0.01676$, hence:

p-value =
$$P(\{Z \ge \frac{0.16939}{0.01676}\})$$

p-value =
$$P({Z \ge 10.1079})$$

$$p$$
-value = $1 - P({Z < 10.1079})$

Looking at the stats table, this is way off the charts! $\Phi(3.69) = 0.9999$, so

p-value
$$< 1 - 0.9999$$

p-value
$$< 0.0001$$

This is very strong evidence to reject the null hypothesis H_0 . Therefore we can conclude we have very strong evidence that direct-mail self-sampling kits have a higher screening population proportion than education only outreach.

1.4 Part d) 1 QUESTION 4

1.4 Part d)

A 97% confidence interval means $\alpha = 3\% = 0.03$. The formula for a 2-sample binomial confidence interval is as follows:

$$\hat{P}_{\rm X} - \hat{P}_{\rm Y} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{P}_{\rm X}(1-\hat{P}_{\rm X})}{n_{\rm X}} + \frac{\hat{P}_{\rm Y}(1-\hat{P}_{\rm Y})}{n_{\rm Y}}}$$

 $z_{\frac{\alpha}{2}}$ is the the solution to:

$$P(\{Z > z_{\frac{\alpha}{2}}\}) = \frac{\alpha}{2} = 0.015$$
$$P(\{Z < z_{\frac{\alpha}{2}}\}) = 0.985$$

From the stats table, $z_{\frac{\alpha}{2}} = 2.17$. Plugging in our specific sample notation:

$$\hat{p}_{X} - \hat{p}_{Y} \pm 2.17 \sqrt{\frac{\hat{p}_{X}(1 - \hat{p}_{X})}{n_{X}} + \frac{\hat{p}_{Y}(1 - \hat{p}_{Y})}{n_{Y}}}$$

Evaluating yields the CI (0.1337, 0.2051) for $p_X - p_Y$. This confidence interval does not contain 0, therefore this is evidence that the proportions p_X and p_Y are not equal.

1.5 Part e)

$$X \sim Bin(n_X, p_X)$$

 $Y \sim Bin(n_Y, p_Y)$

Under H_0 $p_X = p_Y = p$

$$Var(X) = n_X p(1 - p)$$
$$Var(Y) = n_Y p(1 - p)$$

$$\hat{P}^w = w \frac{\mathbf{X}}{n_{\mathbf{X}}} + (1 - w) \frac{\mathbf{Y}}{n_{\mathbf{Y}}}$$

To show $E(\hat{P}^w) = p$ under H_0 :

$$\begin{split} \mathbf{E}(\hat{P}^w) &= \mathbf{E}(w\frac{\mathbf{X}}{n_{\mathbf{X}}}) + \mathbf{E}((1-w)\frac{\mathbf{Y}}{n_{\mathbf{X}}}) \\ &= w\mathbf{E}(\frac{\mathbf{X}}{n_{\mathbf{X}}}) + (1-w)\mathbf{E}(\frac{\mathbf{Y}}{n_{\mathbf{Y}}}) \\ &= wp + (1-w)p \\ &= (w+1-w)p \\ &= p \end{split}$$

To show the variance, we must additionally assume that X and Y are independent:

1.5 Part e) 1 QUESTION 4

$$\begin{aligned} \text{Var}(\hat{P}^w) &= \text{Var}(w \frac{Y}{n_X} + (1 - w) \frac{Y}{n_Y}) \\ &= w^2 \text{Var}(\frac{X}{n_X}) + (1 - w)^2 \text{Var}(\frac{Y}{n_Y}) \\ &= w^2 \frac{p(1 - p)}{n_X} + (1 - w)^2 \frac{p(1 - p)}{n_Y} \\ &= p(1 - p) \left(\frac{w^2}{n_X} + \frac{(1 - w)^2}{n_Y} \right) \end{aligned}$$