Chapter 11: Relations

Relation: $R \subseteq A \times A$. $(x,y) \in R$ is xRy

Reflexive: xRx. Symmetric: $xRy \Rightarrow yRx$.

Transitive: $xRy, yRz \Rightarrow xRz$.

Equivalence Relation: Reflexive, Symmetric and Transitive

Equivalence class containing a is the subset $\{x \in A : xRa\}$ of i_A and $f^{-1} \circ f = i_A$

A consisting of all elements of A that relate to a. Denoted by [a] Image and Preimage

$$[a] = \{x \in A : xRa\}$$
$$[a] = [b] \iff aRb$$

equal A and intersection of any is ϕ

Integer Modulo n: For $n \in N$ equivalence classes of the rela-1. $f(f^{-1}(Y)) \neq X$ in general tion (mod n) are $[0], \ldots, [n-1]$ The integers modulo n is the set If f is not injective the pre-image could contain a_1 and a_2 but X $Z_n\{[0], [1], \dots, [n-1]\}$. Following hold,

$$[a] + [b] = [a+b], [a] \cdot [b] = [ab]$$

If we have [a][b] = [0] and the classes are for integer mod n. If n is **Chapter 14: Cardinality** prime then either [a] = [0] or [b] = [0]. If n is composite then a or $b|A| = |B| \iff \exists f : A \to B$ and f is bijective. could be its factors.

Chapter 12: Functions

Function: $f: A \to B$ is a relation $f \subseteq A \times B$ s.t. $\forall a \in A$ there is $3 \cdot |(0, \infty)| = |(0, 1)|$: Let $f(x) = \frac{x}{x+1}$ exactly one ordered pair $(a, b) \in f$ or f(a) = b.

4. |R| = |(0, 1)|: $|R| = |(0, \infty)|$ by $g(x) = 2^x$ then we use (3.)

- A is domain
- B is co domain
- $\{f(a): a \in A\}$ is range

A function $f: A \to B$ is,

- injective: $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \text{ OR } x_1 \neq x_2 \Rightarrow f(x_1) \neq^{\text{Eg}}$
- surjective: $\forall y \in B, \exists x \in A, f(x) = y$
- bijective: injective and surjective

Pigeonhole Principle Given $f: A \to B$

- If |A| > |B| then f is not injective.
- If |A| < |B| then f is not surjective.

Examples:

1. Show if $a \in \exists k, l \text{ s.t. } 10|a^k - a^l$

A=N and $B=\{0,\ldots,9\}$ and the function $f:A\to B$ such that it Functions to use for bijections in uncountable sets maps $k \in A$ to the last digit of a^k which will be in B.

2. Show any set of 7 integers contain pair of integers whose sum or difference is divisible by 10.

 $A = \{a_1, \dots, a_7\}$ and $B = \{\{0\}, \{1, 9\}, \{2, 8\}, \{3, 7\}, \{4, 6\}, \{5\}\}.$ Let $f: A \to B$ such that it maps any of the numbers to the set in B that contain its last digit.

Composition

If $f: A \to B$ and $g: B \to C$ then, $g \circ f: A \to C$ is g(f(x))

• $(h \circ g) \circ f = h \circ (g \circ f)$

Properties, let $f: A \to B$, $g: B \to C$ consider $g \circ f$

1. Show f is injective if $g \circ f$ is injective.

Assume f is not injective, so $\exists a_1 \neq a_2 \text{ s.t. } f(a_1) = f(a_2)$. Now, $g(f(a_1)) = g(f(a_2))$ but as $g \circ f$ is injective this implies $a_1 = a_2$ which contradicts our assumption.

2. Show g is surjective if $g \circ f$ is surjective.

Definition implies that $\forall c \in C, \exists a \in A \text{ s.t. } g(f(a)) = c. \text{ Let } f(a) =_{\mathbf{Theorems}}$ $b \in B$. So we have $\forall c \in C, \exists b \in B, g(b) = c \Rightarrow g$ is surjective.

3. Show f, g is bijective $\Rightarrow g \circ f$ is bijective.

(a). Injectivity: Consider $g(f(a_1)) = g(f(a_2))$. As g is injective we have $f(a_1) = f(a_2)$, as f is injective we have $a_1 = a_2 \Rightarrow g \circ f$ is injective.

(b). Surjectivity: As g is surjective $\forall c \in C, \exists b \in B \text{ s.t. } g(b) = c.$ As f is surjective $\forall b \in B, \exists a \in A \text{ s.t. } f(a) = b$. So we have $\forall c \in C, \exists a \in A \text{ s.t. } g(f(a)) = c \text{ Inverse}$

 $f: A \to B$ is bijective $\iff f^{-1}$ is a function from $B \to A$

If $A \to B$ is bijective the inverse is $f^{-1}: B \to A$ such that $f \circ f^{-1} =$

If $f: A \to B$ then,

- If $X \subseteq A$ image of X is $f(X) = \{f(x) : x \in X\} \subseteq B$
- If $Y \subseteq B$ preimage of Y is $f^{-1}(Y) = \{x : f(x) \in Y\} \subseteq A$

Examples $(f: A \to B)$,

could only contain a_1 .

2. f is injective $\iff X = f^{-1}(f(X)), \forall X \subseteq A$ To show backward direction assume f is not injective and construct X such that it is not true.

- 1. |N| = |Z|: $f: N \to Z$, $f(n) = \frac{(-1)^n (2n-1)+1}{4}$
- **2.** $|N| \neq |R|$: We can show by using diagonal table.

- **5.** |Q| = |N|. We show $|Q^+| = |N|$ and $|Q^{-1}| = |N|$ and use union.

Countable And Uncountable Sets

 $|N| \neq |R|$ as there is not bijection from $N \to R$

A is **countably infinite** if |N| = |A| or if there is a bijection from N to A else its uncountable.

A set A is countable infinite \iff its elements can be arranged in an infinite list a_1, a_2, \ldots

We can show that Q is countable by plotting a 2x2 graph of all rationals and drawing a snake path from the top left which represents the list a_1, a_2, \ldots

If A and B are countably infinite then so is $A \times B$. we can draw 2x2 "matrix" and draw snake from top left indicating each of the elements.

If A and B are countably infinite, their union in countable infinite.

Power Set: |A| < |P(A)|

We show this by constructing a $B = \{x \in A : x \notin f(x)\}$. There is no $x \in A$ that belongs to this set hence there cannot be a surjection so no bijection. Implies |A| < |P(A)| as we have an injection but no bijection.

- 1. ln(x) maps from R^+ to R as if its smaller than 1 its negative.
- 2. $e^x, 2^x$ maps from R to R^+
- 3. $\frac{kx}{x+1}$ maps from $(0, \infty)$ to (0, k).
- 4. Diagonal argument can be used for uncountable sets (set of infinite sequences, reals, etc)
- 5. $R \to R \times R$. Injection from R to $R \times R$ we have f(x) = (x, 0). For injection from $R \times R$ to R we can interleave the decimals for a, b in $(a, b) \in R \times R$ to create a new decimal for R.
- 6. $[0,1) \to (0,1)$. $f(x) = \frac{1}{4} + \frac{1}{2}x$ from [0,1) to (0,1)
- 7. $R \times R = \{(x, y) : aconditiononx, y\}$. Easy to show injection to right to left. For left to right we can use $\frac{1}{1+x}$ and map to a square than can fit in our contour.

- 1. A is countable if we can list the elements of A as a_1, a_2, \ldots
- 2. A and B are countable then $A \times B$ are countable.
- 3. An infinite subset of a countably infinite subset is countably