- - \blacktriangleright а) Докажите, что $\mathbb{Z}[u]$ является областью целостности.

То, что $\mathbb{Z}[u]$ кольцо проверяется непосредственно. Поскольку $\mathbb{Z}[u] \subset \mathbb{C}$ и \mathbb{C} — область целостности (*потому что* \mathbb{C} — *поле*), то и $\mathbb{Z}[u]$ область целостности.

б) При каких $u \in \mathbb{C}$ данное $\mathbb{Z}[u]$ "конечномерно над \mathbb{Z} ", то есть найдётся такое N, что $\mathbb{Z}[u] = \bigcup_{n=0}^{\infty} \{a_0 + a_1 u + \dots + a_n u^N | a_0, a_1, \dots, a_N \in \mathbb{Z}\}$?

Покажем, что $\mathbb{Z}[u]$ "конечномерно над \mathbb{Z} ", $\Leftrightarrow \exists f \in \mathbb{Z}[x] : f(u) = 0, f \neq 0$ и старший коэффициент f(x) равен 1 (*).

 \Rightarrow

Поскольку
$$u^{N+1} \in \mathbb{Z}[u] \Rightarrow \exists a_0, \dots, a_N \in \mathbb{Z} : u^{N+1} = \sum_{k=0}^N a_k u^k \Rightarrow u - \text{корень } f(x) = x^{N+1} - \sum_{k=0}^N a_k x^k$$

Пусть u — корень многочлена $f(x)=u^N+\sum\limits_0^N a_k x^k$, удовл. условию (*). Тогда u^N выражается через меньшие степени. $(u^N=-\sum\limits_0^{N-1} a_k u^k)$

Индукцией по $k \geqslant N$ легко показать, что u^k выражается через $1, u, \dots u^{N-1}$.

$$(u^{k+1} = u \cdot u^k \stackrel{\text{предположение индукции}}{=} u \cdot (\sum_{0}^{N-1} b_k u^k) = (\sum_{1}^{N-1} b_{k-1} u^k) + b_{N-1} u^N \stackrel{\text{база индукции}}{=} (\sum_{1}^{N-1} b_{k-1} u^k) + b_{N-1} \sum_{0}^{N-1} -a_k u^k$$

ightharpoonup 2. (1.2) Для комплексного числа $z \in C$ введём норму $N(z) = |z|^2.$

a) N(zw) = N(z)N(w).

Для каждого $z \in D$:

- б) Верно ли, что N(z) натуральное число?
- в) Верно ли, что $N(z) = 1 \Leftrightarrow z$ обратим?
- ▶ а) Просто проверим: $N(zw) = N(a_z + b_z i)(a_w + b_w i) = N(a_z a_w b_z b_w + (a_z b_w + a_w b_z) i) = (a_z a_w b_z b_w)^2 + (a_z b_w + b_z a_w)^2 =$ раскрыли скобки $= (a_z^2 + b_z^2)(a_w^2 + b_w^2) = N(z)N(w)$
 - б) Заметим, что $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$

Значит, $|a + bi| = a^2 + b^2 \in |N|$. Аналогично:

$$\mathbb{Z}[2i] = \{a + 2bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + 2bi| = a^2 + 4b^2 \in \mathbb{N}$$

$$\mathbb{Z}[\sqrt{2}i] = \{a + \sqrt{2}bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + \sqrt{2}bi| = a^2 + 2b^2 \in \mathbb{N}$$

$$\mathbb{Z}[\sqrt{3}i] = \{a + \sqrt{3}bi \mid a, b \in \mathbb{Z}\} \Rightarrow |a + \sqrt{3}bi| = a^2 + 3b^2 \in \mathbb{N}$$

 $_{\rm B}) \Rightarrow$

$$N(z) = a^2 + b^2 = 1$$

 $\frac{1}{z}=\frac{1}{a+bi}=\frac{a-bi}{a^2+b^2}=\frac{a-bi}{1}=a-bi=\overline{z},$ а z и \overline{z} одновременно лежат в D, значит $\exists z^{-1}=\overline{z}.$

$$zz^{-1} = 1 \Rightarrow \begin{cases} N(zz^{-1}) = N(z)N(z^{-1}) = 1\\ N(z) = a^2 + b^2 \geqslant 1 \end{cases} \Rightarrow N(z) = 1$$

- **№** 3 Пример нефакториального кольца вида Z[u].
 - ▶ Пример: $\mathbb{Z}[2i]$ не является факториальным кольцом, потому что $4 = 2 \cdot 2 = (2i)(-2i)$, но при этом $2 \nsim 2i$ противоречие с единственностью разложения в факториальном кольце.

Еще пример: $\mathbb{Z}[\sqrt{3}i]$ (аналогичное рассуждение $4=2\cdot 2=(1+\sqrt{3}i)(1-\sqrt{3}i)$).

- № 4 (2.7 [Каргальцев)] Простой элемент области целостности является неразложимым.
- ightharpoonup Пусть p- простой и $p=xy\Rightarrow x|p\wedge y|p$. Из определения простоты $p|x\vee p|y$. Но тогда или $x|p\wedge p|x$, или $y|p\wedge p|y$. Тогда $p \sim y \lor p \sim x \Rightarrow y \in K^* \lor x \in K^*$, то есть p — неразложимый.
- № **5 (2.8)** В факториальном кольце любой неразложимый элемент является простым.
 - ▶ Пусть x = ab неразложимый. $x = ab \Rightarrow x \mid ab$.

x неразложимый, значит б.о.о. $a \in K^*$. Тогда в силу единственности разложения $x = ab = ap_1 \dots p_k \Rightarrow x \sim b \Rightarrow$

- № 6 (часть 2.9 [Каргальцев)] K евклидово кольцо. Верно ли, что если для $a,b \neq 0$ выполнено равенство N(ab) = N(a), то b обратим?
 - ightharpoonup Поделим a с остатком на ab:

$$a = abq + r : r = 0 \lor N(r) < N(ab)$$

r = a(1 - bq)

Если r=0, то bq=1 и b обратим. Иначе $N(ab)>N(r)=N(a(1-bq))\geqslant N(a)=N(ab)$. Противоречие.

- № 7 (2.10) Геометрический способ доказательства того, что $\mathbb{Z}[i]$, $\mathbb{Z}[\omega]$ евклидово кольцо.
- ightharpoonup ВСТАВИТЬ КАРТИНКУ Пусть $a,b\in\mathbb{Z}[i]$. Поделим a на b с остатком:

a = pb + q.

Надо доказать, что если $q \neq 0$, то N(q) < N(b). Рассмотрим точку $\frac{a}{b}$, пусть ближайший к ней узел в решетке p, тогда $\frac{a}{b}=p+\frac{q}{b}$. Но $\frac{q}{b}$ по модулю меньше половины диагонали единичного квадрата $\left|\frac{q}{b}\right|\leqslant\left|\frac{\sqrt{2}}{2}\right|\leqslant1$, т.е. $|q|^2 < |b|^2 \Rightarrow N(q) < N(b)$, если $\frac{q}{b}$ не совпадает с центром квадрата.

(ТОDО иначе)

 $\mathbb{Z}[\omega]$ аналогично.

№ 9 (3.1) а) Если p – простое целое число и существует такое $z \in D$, что N(z) = p, то z — неразложимый элемент.

- б) Если p простое целое число и не существует такого $z \in D$, что N(z) = p, то p неразложимый элемент.
 - в) Если D факториальное кольцо, то для любого неразложимого элемента $z \in D$ либо N(z) = p, либо $z \sim p$ для некоторого целого простого числа p.
- \blacktriangleright а) Имеем: $z\in D$, N(z)=p. Пусть z=bc, тогда $N(z)=N(b)N(c)=p\Rightarrow N(b)=1$ или N(c)=1, т.е $b\in D^*$ или $\in D^* \Rightarrow z$ – неразложим (исп. задачу 2в)
 - б) Пусть p = bc. Тогда $N(p) = N(b)N(c) = p^2$. Два случая:
 - N(b) = N(c) = p невозможно по условию
 - N(a) = 1, $N(b) = p^2$ или $N(a) = p^2$, $N(b) = 1 \Rightarrow b \in D^*$ или $c \in D^*$ (исп. задачу 2в).
 - в) $N(z)=z\overline{z}=p_1^{k_1}\cdot\ldots\cdot p_m^{k_m}$ (в силу факториальности кольца). z неразложим $\Rightarrow \exists i\colon p_i\colon z\Rightarrow zk=p_i$ $N(p_i)=p_i^2=N(z)N(k)\Rightarrow$ либо $N(z)=p_i\Rightarrow z$ – неразложим, либо $N(z)=p_i^2\Rightarrow z\sim p_i$.
- № 10 (2.7 [Каргальцев)] Если $z \in D$, z|x, и N(z) = N(x), то $z \sim x$.
- ▶ Пусть x = yz. Тогда $N(yz) = N(z) \Rightarrow y$ обратим (по №6) и, значит, $x \sim z$.
- № 11 (3.3 [Каргальцев)] (Простые гауссовы числа) Пусть p простое целое число.
 - ▶ а) Если p = 4k + 3, то p неразложим в $\mathbb{Z}[i]$.

Если p разложим, тогда $p = z\overline{z} = Re^2z + Im^2z$. Но число, дающее остаток 3 при делении на 4 не быть представлено в виде суммы двух квадратов (квадраты дают остаток 1 при делении на 4).

б) Если p = 4k + 1, то p — разложим в $\mathbb{Z}[i]$.

Если p = 4k + 1, то -1 — вычет по модулю p, т. е $\exists x \in \mathbb{Z} : p|x^2 + 1 \Rightarrow p|(x+i)(x-i)$. Если p — неразложим, тогда p — прост и либо p|(x+i), либо p|(x-i).

• $p|(x+i) \Rightarrow x+i = p(c+di) \Rightarrow 1 = pd \Rightarrow p|1$ – плохо.

• $p|(x-i) \Rightarrow x-i = p(c+di) \Rightarrow -1 = pd \Rightarrow p|1$ – плохо.

Значит, p разложим.

в) Если p=4k+1, то $p=z\overline{z}$, где z — неразложим в $\mathbb{Z}[i]$.

Следует из предыдущего пункта и пункта г) предыдущей задачи.

г) Неразложимые элементы $\mathbb{Z}[i]$, не описанные в предыдущих пунктах — $\pm 1 \pm i$.

Неразложимые элементы, не описанные в предыдущих задачах могут иметь норму или 2, или 4. Норму 4 имеет только 2 и ассоциированные с ней, но 2 = (1+i)(1-i).

С другой стороны, $N(\pm 1 \pm i) = 2$, то есть силу пункта в) предыдущей задачи $\pm 1 \pm i$ неразложимы.

№ 12 (3.10) Евклидово кольцо является кольцом главных идеалов.

▶ Пусть K – евклидово кольцо, $a \in K$, причем

$$N(a) = \min_{x \in K \setminus \{0\}} N(x)$$

Предположим, что $K \neq (a) \Rightarrow \exists b \in K \setminus (a) \Rightarrow b = aq + r$, где либо r = 0, либо N(r) < N(a).

- $r = 0 \Rightarrow b = aq \Rightarrow b \in (a)$ противоречие
- $N(r) < N(a) \Rightarrow r = b aq \in I$ противоречие с минимальностью нормы a.

№ 13 (3.13) Пусть $D = \mathbb{Z}[i]$ или $\mathbb{Z}[\omega]$.

- а) Верно ли, что из a|b следует, что N(a)|N(b)?
- б) Верно ли, что из HOД(N(a), N(b)) = 1, следует HOД(a, b) = 1?
- в) Пусть HOД(N(a), N(b)) = p простое целое число, причём $p \nmid a, p \nmid b$. Тогда p разложим, и если $p = z\overline{z}$, то либо z и \overline{z} порождает идеал (a, b), либо z делит одно из этих чисел, а \overline{z} другое.
- ▶ а) Верно. $a \mid b \Rightarrow b = ak \Rightarrow N(b) = N(a)N(k)$ (по свойству нормы в D) $\Rightarrow N(a) \mid N(b)$
 - б) HOД(N(a), N(b)) = p

Допустим, что $HOД(a,b) = k \notin D^*$.

Тогда a=kx,b=ky, и

$$N(a) = N(kx) = N(k)N(x)$$

$$N(b) = N(ky) = N(k)N(y)$$

$$\Rightarrow \text{HOД}(N(a), N(b)) \neq 1$$

$$(1)$$

– противоречие. Значит, HOД(a,b) = 1.

в) HOД(N(a), N(b)) = p

Покажем, что p – разложим. $N(a) = a\overline{a} = pt, p \not| a, p$ – простое число \Rightarrow допустим, что p неразложима: $p \mid \overline{a}$ (по свойству факториального кольца). Тогда $\overline{a} = x - iy : p \Leftrightarrow x : p, y : p \Rightarrow a : p$ – противоречие $\Rightarrow p$ – разложим.

$$\begin{cases}
 a\overline{a} = z\overline{z}k \\
 b\overline{b} = z\overline{z}l
\end{cases} \Rightarrow
\begin{cases}
 a : z + b : \overline{z} \\
 a : \overline{z} + b : z
\end{cases}$$

$$a : z + b : z$$

$$a : z + b : z$$
(2)

В последнем случае идеал $(t)=(a,b)\subseteq(z,\overline{z})$ – очевидно. Докажем в обратную сторону, что $(z,\overline{z})\subseteq(a,b)$

 $z\overline{z} = a\overline{a}\xi + b\overline{b}\eta$: t

№ 14 (3.14) Умение находить порождающий элемент идеала в кольце $\mathbb{Z}[i]$.

▶ Возможный вариант решения: найдем нормы двух чисел, потом найдем n — НОД этих норм. После этого переберем все числа, которые имеют норму n и проверим их на то, что они являются порождающим элементом. При этом искать можно только в первой четверти комплексной плоскости (т.к. найдя одно число, получаем сразу 4 поворотами на $\pi/2$). Если не один из них не подойдет, то проделаем то же самое со всеми делителями n в порядке уменьшения модуля, пока не дойдем до 1.

Рассмотрим пример:

3.14. Найти порождающий элемент (11+7i,18-i) в $\mathbb{Z}[i]$. Решение. Заметим, что $\mathbb{Z}[i]$ – евклидово кольцо, значит, оно является КГИ \Rightarrow все идеалы главные \Rightarrow идеал (11+7i,18-i) порождается одним элементом (t). Найдем этот элемент.

$$N(11 + 7i) = 170$$

$$N(18 - i) = 325$$

$$HOД(170, 325) = 5.$$

Перебором выясняем, что в первой четверти числу с нормой 5 соответствуют два числа: 1+2i и 2+i.

Заметим, что 1+2i не может быть порождающим элементом:

$$\frac{18-i}{1+2i} = \frac{(18-i)(1-2i)}{(1+2i)(1-2i)} = \dots = \frac{16}{5} - \frac{37}{5}i \notin \mathbb{Z}[i]$$

C 2 + i тоже плохо:

$$\frac{11+7i}{2+i} = \frac{29}{5} + \frac{3}{5}i \notin \mathbb{Z}[i].$$

Следовательно, среди чисел с нормой 5 нет $HOД(a,b) \Rightarrow$ его нормо $1 \Rightarrow (11+7i,18-i)=(1)$.

№ ?? [Каргальцев]

▶ а) Если z — неразложимый элемент D, то существует такое простое целое число p, что N(z) = p или $N(z) = p^2$ $N(z) = z\overline{z}$. Разложим N(z) в произведение простых как натуральное число:

$$z\overline{z} = N(z) = p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n}.$$

Так как z неразложим, а D — евклидово, то z — прост, значит $\exists k: z|p_k$.

 $p_k=zu\Rightarrow p_k=\overline{p_k}=\overline{zu}\Rightarrow \overline{z}|p_k\Rightarrow N(z)|p_k^2\Rightarrow N(z)=1,$ или p_k^2 . Но так как если N(z)=1, то z — обратим (а, следовательно, неразложим), то $(z)=p_k\vee N(z)=p_k^2$.

б) Если z — неразложимый элемент D и $N(z)=p^2$, то $z\sim p$.

Пусть $\overline{z} = ab \Rightarrow z = \overline{a}\overline{b} \Rightarrow \overline{z}$ — неразложим.

 $z\overline{z}=N(z)=p\cdot p$. В силу единственности разложения на неразложимые, $z\sim p$.

в) Если N(z)=p, то z — неразложимый элемент D.

в
$$Da|b \Rightarrow N(a)|N(b)$$
.

Пусть $a|z\Rightarrow N(a)|N(z)$. В силу простоты N(z) либо N(a)=1 и, следовательно, a — обратимый, либо N(a)=N(z) и тогда $a\sim z$. То есть z неразложим.

г) Пусть p — простое целое число. Тогда есть два варианта: либо p неразложимо в D, либо $p=z\overline{z}$, где z — неразложимо в D. Таким образом описываются все неразложимые элементы D.

Пусть p разложимо в D. Тогда найдется такой неразложимый z:z|p. Поскольку z не ассоциирован с $p, N(z) \neq N(p) \Rightarrow N(z) = p$. Тогда z – неразложимый и $z\overline{z} = N(z) = p$.

Любой неразложимый элемент D — либо простое целое число, либо его норма — простое целое число.

№ 15 Пусть $I \subset K$ является подмножеством, для которого выполнено следующее условие: для любых $a \in K, x \in I$, $y \in I$ верно, что $x + y \in I$, $ax \in I$. Верно ли что это условие равносильно тому, что I — идеал?

ightharpoonup

В предположении, что I непусто:

- 1. $(I, +) \subset (K, +)$ подгруппа по сложению.
 - Замкнутость по сложению дана по условию.
 - Нейтральный по сложению лежит в I: действительно, возьмем произвольный $x \in I$ и $a = 0 \in K$: тогда $0 = ax \in I$.

- Обратный по сложению лежит в I: т.к. $-1 \in K$, то $\forall x \in I : -x = (-1) \cdot x \in I$.
- 2. $\forall a \in K, x \in I : ax \in I$ дано по условию.

⇐:

- 1. $\forall x \in I, y \in I : x + y \in I$ выполнено, т.к. идеал подгруппа по сложению.
- 2. $\forall a \in K, x \in I : ax \in I$ выполнено по определению идеала.
- № 16 (3.17) а) Идеал (x,y) кольца $\mathbb{Q}[x,y]$ конечно порождён, но не является главным.
 - б) Приведите пример области целостности K и идеала I, который не конечно порождён.
 - ightharpoonup а) (x,y) конечно порожден по определению.

Предположим, что (x,y) — главный. Тогда $\exists f(x,y): (x,y) = (f(x,y)).$

Т.к. x: f(x,y), y: f(x,y), то $\deg f \leq 1$.

Если $\deg f(x,y)=0$, то $f(x,y)\in\mathbb{Q}$: при f(x,y)=0 (f(x,y))=0, при $f(x,y)\neq0$ $(f(x,y))=\mathbb{Q}[x,y]$. Оба случая нам не подходят.

Если $\deg f(x,y)=1$, то $\exists a,b\in\mathbb{Q}^*: f(x,y)=ax=by$, откуда $x=a^{-1}by$, что тоже неверно.

6)
$$K = \mathbb{Q}[x_1, x_2, \dots x_n, \dots]$$

$$I = (x_1, x_2, \ldots, x_n, \ldots)$$

Предположим, I конечно-порожден, т.е $\exists f_1, \ldots, f_t \in K: I = (f_1, \ldots, f_t)$. f_i можно представить в виде $x_1g_i^1 + \ldots + x_{N_i}g_i^{N_i}$ для некоторого $N_i \in \mathbb{N}$, т.к. f_i лежит в идеале $(x_1, \ldots, x_n, \ldots)$. Положим $N = \max\{N_1, \ldots, N_t\}$, тогда $f_i = x_1g_i^1 + \ldots + x_Ng_i^N$.

Т.к. $x_{N+1} \in I = (f_1, \ldots, f_t)$, то $\exists a_1, \ldots a_t : x_{N+1} = a_1 f_1 + \ldots a_t f_t$. Приравнивая $x_1 = \ldots = x_N = 0$ — на них все f_1, \ldots, f_t равны 0 — и $x_{N+1} = 1$, приходим к противоречию.

№ 25 [Каргальцев] Докажите, что в кольце главных идеалов любая возрастающая цепочка идеалов

$$(a_1) \subset (a_2) \subset \ldots \subset (a_n) \subset \ldots$$

стабилизируется, то есть найдется такое k, то $(a_k) = (a_{k+1}) = \dots$

▶ Поскольку $(a_i) \subset (a_{i+1}) \Rightarrow a_{i+1}|a_i$.

Возьмем $I = \bigcup_{k=1}^{\infty} (a_k)$. покажем, что I – идеал. Пусть $a \in I, b \in I \Rightarrow \exists k_1, k_2 : a \in (a_{k_1}), b \in (a_{k_2})$. Тогда положим $k = max(k_1, k_2)$. $a, b \in (a_k) \Rightarrow (a + b) \in (a_k)((a_k)$ — идеал) $\Rightarrow (a + b) \in I$. Аналогично $\forall x \in Kxa \in (a_k) \Rightarrow xa \in I$.

Поскольку $K - \mathrm{K}\Gamma\mathrm{M}$, то существует x: I = (x). $x \in I \Rightarrow \exists k: x \in (a_k)$. Но $a_k \in (x)$. Тогда $x | a_k \wedge a_k | x \Rightarrow x \sim a_k$. Но в силу вложенности это верно и для всех j > k, то есть $\forall j \geqslant k a_j \sim a_k \Rightarrow (a_j) = (a_k)$. То есть цепочка действительно стабилизируется.