Amendments to the Claims

Following is a complete listing of the claims pending in the application, as amended.

1. (Currently amended) A method of increasing telomerase activity in a cell or tissue, comprising:

identifying a cell or tissue in which an increase in telomerase activity is desired, and contacting said cell or tissue with a formulation of <u>an effective amount of an</u> isolated compound of formula **I**:

$$X^1$$
 X^2
 X^3
 X^3
 X^4
 X^3
 X^4
 X^3

where:

each of X^1 , X^2 , and X^3 is independently selected from hydroxy, or β -D-xylopyranoside;

 \underline{X}^2 is hydroxy or β -D-glucopyranoside; lower alkoxy, lower acyloxy, keto, and a glycoside;

 X^3 is hydroxy or keto;

OR' is selected from hydroxy, lower alkoxy, lower acyloxy, and a glycoside;

wherein any of the hydroxyl groups on said glycoside may be substituted with a further glycoside, lower alkyl, or lower acyl, such that the compound includes a maximum of three glycosides; and

R² is methyl and ____ represents a double bond between carbons 9 and 11; or, R² forms, together with carbon 9, a fused cyclopropyl ring, and ____ represents a single bond between carbons 9 and 11 wherein telomerase activity is increased.

- 2. (Currently amended) The method of claim 1, wherein said compound includes zero, one, or two glycosides, none of which is substituted with a further glycoside.
- 3. (Currently amended) The method of claim 2, wherein said compound includes zero or two glycosides, none of which is substituted with a further glycoside.
- 4. (Canceled)
- 5. (Original) The method of claim 1, wherein R² forms, together with carbon 9, a fused cyclopropyl ring, and ____ represents a single bond between carbons 9 and 11.
- 6. (Currently amended) The method of claim $\underline{1}$ [[2]], wherein each of X^1 and X^2 is independently selected from hydroxy, lower alkoxy, lower acyloxy, and a glycoside, and X^3 is selected from hydroxy, lower alkoxy, lower acyloxy, keto, and a glycoside.
- 7. (Currently amended) The method of claim $\underline{1}$ [[2]], wherein X^1 is OH and or a glycoside, each of X^2 and OR^4 is independently OH or a glycoside, and X^3 is OH or keto.
- 8. (Currently amended) The method of claim $\underline{1}$ [[2]], wherein the compound is selected from astragaloside IV, cycloastragenol, astragaloside IV I6-one, cycloastragenol 6- β -D-glucopyranoside, and or cycloastragenol 3- β -D-xylopyranoside.
- 9. (Currently amended) The method of claim 8, wherein the compound is selected from astragaloside IV, cycloastragenol, astragenol, nd or astragaloside IV 16-one.
- 10. (Original) The method of claim 9, wherein said compound is astragaloside IV. 11-29. (Canceled)
- 30-34. (Canceled)

35-82 (Canceled)

83-87. (Canceled)

- 88. (Previous presented) The method of claim 9, wherein the compound is cycloastragenol.
- 89. (Previous presented) The method of claim 9, wherein the compound is astragenol.
- 90. (Previous presented) The method of claim 9, wherein the compound is astragaloside IV 16-one.
- 91. (new) A method of increasing telomerase activity in a cell or tissue, in which an increase in telomerase activity is desired, comprising contacting said cell or tissue with a formulation comprising an effective amount of an isolated compound of formula **I**:

$$X^1$$
 X^1
 X^2
 X^3
 X^3
 X^4
 X^3
 X^4
 X^3

where:

 X^1 is hydroxy, or β-D-xylopyranoside;

 X^2 is hydroxy or β -D-glucopyranoside;

X³ is hydroxy or keto;

OR' is hydroxy; and

R² is methyl and ____ represents a double bond between carbons 9 and 11; or, R² forms, together with carbon 9, a fused cyclopropyl ring, and ____ represents a single bond between carbons 9 and 11 wherein telomerase activity is increased.

92. (new) A method of increasing telomerase activity in a cell or tissue, comprising contacting said cell or tissue with a formulation comprising an effective amount of an isolated compound selected from cycloastragenol, astragenol, astragaloside IV I6-one, cycloastragenol 6- β -D-glucopyranoside, or cycloastragenol 3- β -D-xylopyranoside wherein telomerase activity is increased.