

Serena An-6/28/20

1 Basics and Definitions

When two expressions are not necessarily equal, we can compare them using inequality signs. The two types of inequality signs are strict (< and >) and nonstrict (\le and \ge). If we multiply or divide by a negative number, or take the reciprocal of both sides of an inequality, we "reverse" the inequality sign.

Definition 1.1. The **equality condition** of a nonstrict inequality is when equality holds (the two sides are equal). The equality condition of an inequality can be very useful when solving problems.

2 The Trivial Inequality

Theorem 2.1: Trivial Inequality

If x is a real number, then $x^2 \ge 0$. Equality holds if and only if x = 0.

Problem 2.1: (AoPS Intermediate Algebra)

Prove that if x and y are positive, then $\frac{1}{x} + \frac{1}{y} \ge \frac{4}{x+y}$.

3 AM-GM Inequality

The Arithmetic Mean Geometric Mean Inequality states that the arithmetic mean of any n nonnegative numbers is greater than or equal to the geometric mean of the numbers.

Theorem 3.1: AM-GM Inequality

If $a_1, a_2, ..., a_n$ are nonnegative, then

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}$$

Equality holds if and only if all a_i are equal.

Warning:

Remember, AM-GM will only work for **nonnegative** numbers.

Problem 3.1: AM-GM 2 Variables

Prove that $\frac{a+b}{2} \ge \sqrt{ab}$ for all $a, b \ge 0$.

Problem 3.2

Show that the sum of a positive number and its reciprocal is always greater than or equal to 2.

Problem 3.3: (AoPS)

Show that $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} \ge 3$.

Problem 3.4: (Mandelbrot)

Determine the minimum value of the sum $\frac{a}{2b} + \frac{b}{4c} + \frac{c}{8a}$, where a, b, and c are positive real numbers.

4 More Problems

Problem 4.1: (AoPS Intermediate Algebra)

Show that if x, y, and z are nonnegative, then $xy + yz + zx \ge x\sqrt{yz} + y\sqrt{zx} + z\sqrt{xy}$.

Problem 4.2: (AoPS Intermediate Algebra)

Show that $(x+y)(y+z)(z+x) \ge 8xyz$ for all nonnegative numbers x, y, and z.

Problem 4.3

Serena has 48 feet of fencing.

- (a) What is the maximum area she can enclose?
- (b) Can you generalize? If Serena has n feet of fencing, what is the maximum area she can enclose?

Problem 4.4

Samyok also has 48 feet of fencing. He plans to use one side of his house as a side of his enclosure, so he will need to form three sides with his fencing.

- (a) What is the maximum area he can enclose?
- (b) Can you generalize? If Samyok has n feet of fencing and only needs to form three sides, what is the maximum area he can enclose?