Auto-Encoding Variational Bayes

Xinghu Yao

September 26, 2018

1 Problem Establishment

Using auto-encoding variational Bayes we can perform efficient approximate inference and learning with directed probabilistic models whose continuous latent variables and/or parameters have intractable posterior distributions.

Let us consider some dataset $\mathbf{X} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ consisting of N i.i.d samples of some continuous or discrete variable \mathbf{x} . We assume that the data are generated by some random process, involving an unobserved continuous random variable \mathbf{z} . The process consists of two steps: (1) a value $\mathbf{z}^{(i)}$ is generated from some prior distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$. (2) a value $\mathbf{x}^{(i)}$ is generated from some conditional distribution $p_{\boldsymbol{\theta}}(\mathbf{z})$.

We can use two networks to train a generative model and the two parts of our networks have the following relationship.

$$\mathbf{x} \xrightarrow{F_{\boldsymbol{\theta}}} (\mathbf{z}|\mathbf{x}) \xrightarrow{G_{\boldsymbol{\theta}}} \hat{\mathbf{x}}$$
 (1)

where F_{θ} is a network to cover the latent hidden variable **z** and G_{θ} is another network to decode **x** using the hidden variable **z**. Thus, the marginal likelihood of this structure can be written as:

$$lnp(\mathbf{x}) = \ln \int p(\mathbf{x}|\mathbf{z})p(\mathbf{z})d\mathbf{z}
= \ln \int \frac{p(\mathbf{x}|\mathbf{z})}{q(\mathbf{z}|\mathbf{x})}p(\mathbf{z})q(\mathbf{z}|\mathbf{x})d\mathbf{z}
= \ln \underset{\mathbf{z} \sim (\mathbf{z}|\mathbf{x})}{\mathbb{E}} \left(\frac{p(\mathbf{x}|\mathbf{z})}{q(\mathbf{z}|\mathbf{x})}p(\mathbf{z})\right)
\geq \underset{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})}{\mathbb{E}} \ln \left(\frac{p(\mathbf{x}|\mathbf{z})}{q(\mathbf{z}|\mathbf{x})}p(\mathbf{z})\right)$$
(Jensen Inequality)
$$= \underset{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})}{\mathbb{E}} \ln \frac{p(\mathbf{x}|\mathbf{z})}{q(\mathbf{z}|\mathbf{x})} + \underset{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})}{\mathbb{E}} \ln p(\mathbf{z})$$

$$= \int q(\mathbf{z}|\mathbf{x}) \ln p(\mathbf{x}|\mathbf{z}) d\mathbf{z} - \text{KL} \left[q(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z})\right]$$
(2)

where $q(\mathbf{z}|\mathbf{x})$ is the probabilistic encoder, since given a datapoint \mathbf{x} it produce a distribution over the possible values of the code \mathbf{z} from which the datapoint \mathbf{x} could have been generated. In a similar vein we will refer to $p(\mathbf{x}|\mathbf{z})$ as a probabilistic decoder, since given a code \mathbf{z} it produce a distribution over the possible corresponding values of \mathbf{x} . Thus, we can get the following optimization problem

$$\max_{q(\mathbf{z}|\mathbf{x})} \mathbb{E}_{\mathbf{z} \sim q(\mathbf{z}|\mathbf{x})} \left[\ln p(\mathbf{x}|\mathbf{z}) \right] - \text{KL} \left[q(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}) \right]$$
(3)

2 The reparameterization trick

In order to solve our problem we invoke an alternative method for generating samples from $q(\mathbf{z}|\mathbf{x})$. The essential parameterization trick is quite simple. Let $z \backsim p(z|x) = \mathcal{N}(\mu, \sigma^2)$. In this case, a valid reparameterization is $z = \mu + \sigma \epsilon$, where ϵ is an auxiliary noise variable $\epsilon \backsim \mathcal{N}(0, 1)$