Ejercicio 2 -- 2 puntos

Construya el árbol de expresión a partir de la siguiente expresión, muestre cada uno de los pasos seguidos hasta completarlo

Ejercicio 3 -- 1 punto

- a.- ¿Cuál es la cantidad mínima de nodos en un árbol general COMPLETO de grado 4 y altura 3?
 - (a) 85
- (b) **21**
- (c) 22
- (d) **64**
- (e) Ninguna de las anteriores
- b. Dada la Máx-Heap 91, 63, 70, 49, 22, 25, 14, 21, 18, 11. ¿Cuál es la clave del hijo izquierdo de la clave 63, luego de haber insertado la clave 75 ?
 - (a) 25
- (b) 11
- (c) 22
- (d) 49
- c.- Dado el siguiente **árbol general**, ¿Cuál de las siguientes opciones representa el recorrido **Inorden**?

- (a) t f m n b a c g o p h d s q j e k
- (b) t f m n b a o g p c h d s q j e k
- (c) t f m n b a c o g p h d s q j e k
- (d) t f m n b o g p c a h d s q j e k
- (e) Ninguna de las anteriores

 (a) Exactamente 2^h nodos hojas (b) Como mínimo 2^h nodos hojas (c) Como máximo 2^h nodos hojas (d) Ninguna de las otras opciones 													
Ejercicio	4	2 pı	ınto	S									
Aplique 2 resultado d				nda fa	se del	algori	tmo F	leapS	Sort en la	a sigui	ente Mi	nHeap,	que es e
	21	27	23	40	34	29	25	53]				
									J				

d.- Un árbol binario COMPLETO de altura h, $h \ge 0$ tiene: