

I) Produit scalaire de deux vecteurs cas1

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AH$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -AB \times AH$$

Cas 3

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = AB \times AA = 0$$

Définition:

 \vec{u} et \vec{v} deux vecteurs du plan P tel que : $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$

On appelle le produit scalaire de $ec{u}$ par $ec{v}$ le nombre réel \overrightarrow{u} . \overrightarrow{v} tel que :

$$\Rightarrow$$
 Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors:

$$\vec{u} \cdot \vec{v} = 0$$

 \Leftrightarrow Si $\overrightarrow{u} \neq \overrightarrow{0}$ et $\overrightarrow{v} \neq \overrightarrow{0}$ et H la projection orthogonale de C sur (AB)

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = AB \times AH$$

 \circ Si \overrightarrow{AB} et \overrightarrow{AH} ont deux sens contraires alors:

$$\overrightarrow{u}.\overrightarrow{v} = \overrightarrow{AB}.\overrightarrow{AC} = -AB \times AH$$

La norme d'un vecteur:

$$\overrightarrow{u} \cdot \overrightarrow{u} = AB \times AB = AB^2$$

$$*\vec{u} \cdot \vec{u} = ||\vec{u}||^2$$

$$||\vec{u}|| = \sqrt{||\vec{u}||^2} = \sqrt{\vec{u} \cdot \vec{u}}$$

*On pose $(\vec{u})^2 = \vec{u} \cdot \vec{u}$ (Le carré scalaire de \vec{u})

$$Donc AB^2 = \overrightarrow{AB}^2 = ||\overrightarrow{AB}||^2$$

Formule trigonométrique du produit scalaire:

Si
$$\overrightarrow{u} = \overrightarrow{AB}$$
 et $\overrightarrow{v} = \overrightarrow{AC}$ et $(\overrightarrow{u}, \overrightarrow{v}) = \overrightarrow{BAC} = \alpha$

$$\overrightarrow{u}.\overrightarrow{v} = ||\overrightarrow{u}|| \times ||\overrightarrow{v}|| \times \cos \alpha$$
 ou encore

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos B\widehat{AC}$$

Propriétés:

1) Pour tous vecteurs \vec{u} et \vec{v} , on a \vec{u} . $\vec{v} = \vec{v}$. \vec{u}

On dit que le produit scalaire est Symétrique

2) Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} et tout $k \in \mathbb{R}$, on a :

$$\overrightarrow{u}.(\overrightarrow{v}+\overrightarrow{w})=\overrightarrow{u}.\overrightarrow{v}+\overrightarrow{u}.\overrightarrow{w}$$

$$- \overrightarrow{u} \cdot (k\overrightarrow{v}) = k\overrightarrow{u} \cdot \overrightarrow{v}$$

On dit que le produit scalaire est bilinéaire

Les identités remarquables:

Quels que soit deux vecteurs u et v on a:

$$(\overrightarrow{\boldsymbol{u}} + \overrightarrow{\boldsymbol{v}}) \cdot (\overrightarrow{\boldsymbol{u}} - \overrightarrow{\boldsymbol{v}}) = ||\overrightarrow{\boldsymbol{u}}||^2 - ||\overrightarrow{\boldsymbol{v}}||^2$$

Deux vecteurs orthogonaux

Pour que deux vecteurs \vec{u} et \vec{v} soient orthogonaux il faux et il suffit que \vec{u} . \vec{v} = 0

II) Applications du produit scalaire

Les relations métriques dans un triangle

Soit ABC un triangle. On a :

$$\overrightarrow{AB}.\overrightarrow{AC} = \frac{1}{2}(AB^2 + AC^2 - BC^2)$$

Théorème d'Al-Kashí

Soit ABC un triangle on a:

$$BC^2 = AB^2 + AC^2 - 2ABACcos(\hat{A})$$

Autrement dit : $BC^2 = AB^2 + AC^2 - 2\overrightarrow{AB}.\overrightarrow{AC}$

$$AB^2 = AC^2 + BC^2 - 2BCACcos(\hat{C})$$

Autrement dit : $AB^2 = AC^2 + BC^2 - 2\overrightarrow{BC}.\overrightarrow{AC}$

$$AC^2 = AB^2 + BC^2 - 2BCABcos(\hat{B})$$

Autrement dit : $AC^2 = AB^2 + BC^2 - 2\overrightarrow{AB}.\overrightarrow{BC}$

Théorème de la médiane

Soient A et B deux points du plan et I le milieu du segment [AB]. Soit M un point du plan P.

On a les égalités suivantes:

$$\circ \overrightarrow{MA}.\overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$$

o
$$MA^2 - MB^2 = 2 \overrightarrow{MI} \cdot \overrightarrow{BA}$$

o
$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$