5. Nonlinear Models and Limited Dependent Variables Part 1: Nonlinear Models

LPO.7870: Research Design and Data Analysis II

Sean P. Corcoran

LPO.7870 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

1/40

Last time

Statistical power: do we have enough information to detect "real" effects?

- Type I and Type II errors
- Power calculations (examples using a hypothesis test about the mean)
- Things that affect statistical power: effect size, the standard error (especially n), significance level, 1- vs. 2-sided test.
- Finding the minimum required sample size for a given power.
- Finding the minimum detectable effect size.

Practical significance and effect size

Tonight's sample datasets

We will refer to one dataset tonight (on Github):

nyvoucher.dta: pre and post-test scores from the New York Scholarship Program, a randomized experiment of private school vouchers in NYC (see M&W ch. 4). Same as Lecture 2.

PO.7870 (Corcoran) Lecture 5-1 Last update: February 26, 2024 3 / 40

Nonlinear regression models

Linear regression models

The regression models we've considered thus far have been *linear* in x: Simple regression:

$$y = \beta_0 + \beta_1 x + u$$

Multiple regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k + u$$

In these models, the slopes are *constant*. That is, β_1 is the predicted change in y for a unit change in x_1 (holding constant other x), at <u>any</u> value of x_1 . The slope does not depend on the value of x_1 (or any other x).

LPO.7870 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

5 / 40

Nonlinear regression models

But there are many applications where we think the slope may depend on the value of one or more regressors. Example:

- Diminishing returns: there may be diminishing returns to the intensity of an input, program, or policy (e.g., parental time working with children).
- Heterogeneous effects: populations may differ in the extent to which they benefit from an input, program, or policy.

In general, a $\operatorname{nonlinear}$ regression model is one in which one or more slopes are not constant.

LPO.7870 (Corcoran)

Lecture 5.

Last update: February 26, 2024

6 / 40

Nonlinear regression models

Source: Stock & Watson chapter 8.

Last update: February 26, 2024

7 / 40

Nonlinear regression models

Consider the relationship between test scores and average annual income in *caschool.dta*:

Nonlinear regression models

A quadratic function does a better job capturing the relationship between these variables:

LPO.7870 (Corcoran) Lecture 5-1 Last update: February 26, 2024 9 / 40

Regressions on polynomials

Regressions on polynomials

In general, the multiple regression model can accommodate **polynomial functions** of *x*. A *p*th order polynomial is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3 \dots + \beta_p x_1^p + u$$

Quadratic:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + u$$

Cubic:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3 + u$$

LPO.7870 (Corcoran)

Lecture 5-

Last update: February 26, 2024

11 / 40

Regressions on polynomials

Some things to know about this regression specification:

- Estimation is exactly the same (OLS)! This is a standard multiple regression where the regressors happen to be powers of x.
- Interpretation is a little different: it doesn't make sense to say β₁ is the predicted change in y for a unit change in x₁ "holding other variables constant" since the other variables are powers of x₁.
- Adding higher-power terms of x gives you more *flexibility*, since a polynomial of order p can have up to p-1 inflection points/bends.
- In practice, analysts don't often go higher than p = 4 to avoid over-fitting. It's rare to see more than a quadratic or cubed term.

LPO.7870 (Corcoran)

Lecture 5

Last update: February 26, 2024

Example: test scores and average income

In Stata: fit a regression in which test scores are a quadratic function of average income.

- Preferred: use Stata's factor variable notation. E.g.,
 c.avginc##c.avginc tells Stata to include the "main effect" of avginc and the "interaction" with avginc (which is just the squared term).
- Alternatively: you can create the squared term yourself, but there are advantages to Stata's factor variable notation.

LPO.7870 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

13 / 40

Stata's margins command

Stata's margins command is useful for working with nonlinear models. It can give you the predicted y (or the slope) at specified levels of x

- margins, at(avginc=(10 11))
- margins , at(avginc=(10)) dydx(avginc)

The first of these gives you \hat{y} at x=10 and x=11. The second gives you the slope of the regression line at x=10. Note this will differ a bit from the difference between $(\hat{y}|x=11)-(\hat{y}|x=10)$.

In general, the slope of y with respect to x_1 in a quadratic model is: $\beta_1+2\beta_2x_1$. It depends on the level of x_1 .

Example: test scores and average income

Compare the slope at x = 10 and x = 40:

LPO 7970 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

15 / 40

Regressions on polynomials

We can test for the significance of higher-order polynomial terms to decide whether or not they should be included.

				-
٠	reg	testscr	c.avginc##c	.avginc##c.avginc

source	55	ar	MS	Number of obs	=	420
Mode1	84939.9014		28313.3005	F(3, 416) Prob > F	-	175.35
Residual	67169.6923		161.465606	R-squared		0.5584
Nebrudar	07103.0323	410	101.403000	Adi R-squared	-	0.5552
Total	152109.594	419	363.030056	Root MSE	=	12.707

	SSUSCI	COGI.	Std. Eff.		PAICI	[30% COIII	· Interval
ě	avginc	5.018677	.8594538	5.84	0.000	3.329263	6.70809
c.avginc#c.a	avginc	0958052	.0373592	-2.56	0.011	1692415	0223688
c.avginc#c.avginc#c.	vginc	.0006855	.000472	1.45	0.147	0002422	.0016132
	_cons	600.079	5.829588	102.94	0.000	588.6199	611.5381

Using logarithms

Using logarithms

In some applications it can be useful to transform variables using a **natural logarithm**. Why?

- Logs convert changes into percentage changes, which are often the most relevant change to think about (e.g., earnings and work experience)
- Sometimes the conditional distribution of y is skewed, or there are a
 lot of outliers. Log transformations can reduce skewness and make
 the distribution look more normal. (This is because the log
 transformation shrinks large values more than small values).
- Sometimes a log transformation can mitigate heteroskedasticity.

A change in logs is an approximate percentage change

Suppose x increases by Δx from x_1 to x_2 :

$$x_2 = x_1 + \Delta x$$

This can be written as:

$$x_2 = x_1(1+r)$$

where $r = \Delta x/x$, the change expressed as a proportion of x. Take logs of both sides:

$$\ln(x_2) = \ln(x_1) + \ln(1+r)$$

 $\ln(x_2) - \ln(x_1) = \ln(1+r)$
 $\approx r$

It turns out that—for small values of r, the difference in logs is the approximate proportion change in x.

LPO 7870 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

19 / 40

A change in logs is an approximate percentage change

A few additional notes:

- Logs are only defined for values > 0. Cannot use with negative or zero values.
- The approximation tends to understate r when r is positive, and overstate r when r is negative.
- The approximation gets worse the larger the change you are considering.
- To convert a logged variable back to the original units, take the exponential function: exp(ln x) = x

Regressions with logs

Three possible uses of logs in regression models:

Linear-log model:

$$y = \beta_0 + \beta_1 \ln(x_1) + u$$

Log-linear model:

$$ln(y) = \beta_0 + \beta_1 x_1 + u$$

Log-log model:

$$\ln(y) = \beta_0 + \beta_1 \ln(x_1) + u$$

LPO 7870 (Corcoran

Lecture 5-

act undate: Echruani 26, 2024

1 / 40

Regressions with logs

Again there is no change in our estimation procedure for these regressions (OLS)! These are standard regression models—it just so happens that some of the variables are measured in log units.

Interpretation

Bearing in mind that a change of 0.01 in the *log* of a variable represents an (approximate) one-percentage point change in that variable:

- **Linear-log**: $0.01 \times \beta_1$ is the predicted change in y for an (approximate) one-percentage point change in x_1 .
- Log-linear: β₁ is the predicted change in ln(y) for a one-unit change in x₁. So—for example—if β₁ is 0.05, we predict an (approximate) 5 percentage point change in y for a one-unit change in x₁.
- Log-log: $0.01 \times \beta_1$ is the predicted (approximate) percentage-point change in y for an (approximate) one-percentage point change in x_1 .

Note: a 1 log-point change in x_1 is very large (more than 100%)! Use caution when interpreting coefficients with logs, and when assessing practical significance.

LPO.7870 (Corcoran)

Lecture 5-

Last update: February 26, 2024

2 / 40

Interpretation

Note the practical change in our interpretation:

- Linear-log: every percentage point increase in x₁ has the same effect on y (constant slope). This is different from saying every 1-unit change in x₁ has the same effect on y.
- Log-linear: every one-unit change in x₁ has the same effect on y in percentage point terms.
- Log-log: every percentage point increase in x₁ has the same effect on y in percentage point terms. (In economics, known as an elasticity).

Example: test scores and average income

In Stata: fit a regression in which test scores are a function of (logged) average income.

 No factor variable notation to use here. Just create your log-transformed variable: gen logavginc=ln(avginc)

. ** regress test scores on logged avginc . req testscr logavginc

Source	SS	df	MS	Number of obs	=	420
Model	85562.7343	1	85562.7343	F(1, 418) Prob > F	-	537.44 0.0000
Residual	66546.8593	418	159.203013	R-squared Adj R-squared Root MSE	-	0.5625
Total	152109.594	419	363.030056		-	0.5615 12.618

testscr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
logavginc _cons	36.41968 557.8323	1.570976 4.200348	23.18 132.81	0.000	33.33169 549.5758	39.50768 566.0887

LPO.7870 (Corcoran) Lecture 5-1 Last update: February 26, 2024 25 / 40

Example: test scores and average income

Fitted model: plotting predicted test score against (original) average income variable:

LPO.7870 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

Comparing model fit

The adjusted R^2 is useful for comparing the "predictive power" of two regression models (how much of the variation in y is explained).

You can only compare the R^2 , however, for two models with the same dependent variable y. You cannot compare the R^2 for a model in which y is logged to the R^2 for a model in which y is not logged.

LPO 7870 (Corcoran

Locturo

Last update: February 26, 2024

Interaction effects

Interaction effects

Use interaction effects if you think the slope coefficient on one variable (e.g., x_1) depends on the level of another variable (e.g., x_2). Examples:

- The effect of an intervention is larger for one group than another (i.e., group is a moderator)
- Inputs are complementary: the effect of one input depends on the level of another.
- Time trends differ by group (e.g., region)

Types of (two variable) interactions:

- Two binary variables
- One binary one continuous variable
- Two continuous variables

LPO 7870 (Corcoran)

Lecture 5-

ast update: February 26, 2024

29 / 40

Interaction effects

General form (two variable interaction):

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u$$

What is the predicted change in y for a one unit change in x_1 ?

$$\beta_1 + \beta_3 x_2$$

And the predicted change in y for a one unit change in x_2 ?

$$\beta_2 + \beta_3 x_1$$

The slope on x_1 depends on the level of x_2 , and vice versa.

Example: test scores and class size (1)

Does the impact of larger classes depend on the share of the student population that is learning English? Example using two binary variables interacted.

- \bullet Let $\mathit{hiel} = 1$ if the %EL in the district is greater than 10% (zero otherwise)
- ullet Let $\mathit{lgstr}=1$ if the average class size in the district is "large" (≥ 20) (zero otherwise)

$$testscr = \beta_0 + \beta_1 lgstr + \beta_2 hiel + \beta_3 lgstr \times hiel + u$$

In Stata: can use factor variable notation: i.lgstr##i.hiel

LPO.7870 (Corcoran) Lecture 5-1 Last update: February 26, 2024 31/40

•

Interpret each coefficient:

Example: test scores and class size (1)

Source	SS	df	MS	Numb	er of obs	-	420
				F(3,	416)	=	58.18
Model	44956.7879	3	14985.596	Prob	> F	=	0.0000
Residual	107152.806	416	257.57886		uared	=	0.295
				Adj	R-squared	=	0.2905
Total	152109.594	419	363.030056	Root	MSE	-	16.049
testscr	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval)
1.lgstr	-1.907842	2.233654	-0.85	0.394	-6.2984	97	2.482813
1.hiel	-18.16295	2.150084	-8.45	0.000	-22.389	33	-13.93656
Lgstr#hiel							
1 1	-3.494335	3.22244	-1.08	0.279	-9.828	63	2.83996
_cons	664.1433	1.314807	505.13	0.000	661.55	88	666.7278

Be sure to pay attention to the "omitted group"!

Stata's margins command, revisited

Can use Stata's margins command again to get predicted ys at specified levels of x:

margins, at(lgstr=0 hiel=1)

Notice the margins command reports standard errors and a confidence interval for the prediction!

Notice also the lack of statistical significance for the *lgstr* coefficients above—this seems counterintuitive! One issue issue is that there is high collinearity between the *lgstr* variable and its interaction, which increases standard errors on both. We can do a <u>joint</u> *F*-test for the significance of both variables containing *lgstr*.

LPO.7870 (Corcoran)

Lecture 5-1

Last update: February 26, 2024

2 / 40

Interaction effects: one continuous and one binary variable

One continuous variable (x_1) and one binary variable (x_2) :

LPO 7870 (Corcoran)

Lecture 5

Last update: February 26, 2024

Example: test scores and class size (2)

Does the impact of larger classes depend on the share of the student population that is learning English? Example using one continuous and one binary variables interacted.

- ullet Let $\mathit{hiel} = 1$ if the %EL in the district is greater than 10% (zero otherwise)
- Use the original (continuous) str

$$testscr = \beta_0 + \beta_1 str + \beta_2 hiel + \beta_3 str \times hiel + u$$

In Stata: can use factor variable notation: c.str##i.hiel (the c is for continuous)

LPO.7870 (Corcoran) Lecture 5-1 Last update: February 26, 2024 35 / 40

Example: test scores and class size (2)

Interpret each coefficient:

reg testscr	c.str##i.hiel					
Source	ss	df	MS	Number of ob	s =	420
				F(3, 416)	-	62.40
Model	47205.8516	3	15735.2839	Prob > F	=	0.0000
Residual	104903.742	416	252.172457	R-squared	-	0.3103
				Adj R-square	ed =	0.3054
Total	152109.594	419	363.030056	Root MSE	-	15.88
testscr	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
str	9684601	.539787	-1.79	0.074 -2.02	951	.0925899
1.hiel	5.639141	16.71767		0.736 -27.2		38.50078
hiel#c.str						
1	-1.276613	.8440608	-1.51	0.131 -2.935	769	. 3825425
cons	682.2458	10.51094	64.91	0.000 661.5	847	702.907

Be sure to pay attention to the "omitted group"!

Example: test scores and class size (3)

Does the impact of larger classes depend on the share of the student population that is learning English? Example using two continuous variables interacted.

- Use the original (continuous) el_pct
- Use the original (continuous) str

$$testscr = \beta_0 + \beta_1 str + \beta_2 el_pct + \beta_3 str \times el_pct + u$$

In Stata: can use factor variable notation: c.str##c.el_pct

LPO.7870 (Corcoran) Lecture 5-1 Last update: February 26, 2024 37 / 40

Example: test scores and class size (3)

Interpret each coefficient:

. reg testscr c.str##c.el pct

Source	SS	df		MS		of obs	-	420
Model	64864 . 891	3		621 6303	F(3, 4		=	103.10
								0.0000
Residual	87244.7026	416	20	9.722843	R-squa		-	0.4264
						squared	=	0.4223
Total	152109.594	419	36	3.030056	Root M	ISE	-	14.482
testscr	Coef.	Std. Er	r.	t	P> t	[95%	Conf.	Interval]
str	-1.117018	. 482536	8	-2.31	0.021	-2.06	5533	1685039
el_pct	6729114	. 437984	9	-1.54	0.125	-1.53	3851	.1880281
c.str#c.el_pct	.0011618	.021905	2	0.05	0.958	041	3969	.0442204
_cons	686.3385	9.40260	5	72.99	0.000	667	.856	704.8211

Be sure to pay attention to the "omitted group"!

Comparing model specifications

See handout (Table 8.3 from Stock & Watson)

- o col (1): control for %EL, %FRPL
- o col (2): add avg district income
- col (3): drop the above, add binary hiel and hiel*str interaction
- col (4): same but add back income variables
- o col (5): cubic in str, hiel
- col (6): cubic in str, hiel*str (cubic)

LPO.7870 (Corcoran)

Lecture 5

Last update: February 26, 2024

9/40

Next time

- Midterm!
- Spring break!
- Continue Lecture 5: limited dependent variables (chapter 11)

