Importing required libraries

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
```

Load the dataset

In [2]: df = pd.read_csv("C:/Users/ADMIN/Desktop/Data Science/Datasets/Datasets/breast-canc

View the first few observations of the dataset

In [3]: df.head()

\cap	L 2 J	0
Out	Lつl	۰

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothn
0	842302	М	17.99	10.38	122.80	1001.0	
1	842517	М	20.57	17.77	132.90	1326.0	
2	84300903	М	19.69	21.25	130.00	1203.0	
3	84348301	М	11.42	20.38	77.58	386.1	
4	84358402	М	20.29	14.34	135.10	1297.0	

 $5 \text{ rows} \times 32 \text{ columns}$

Droping unnecessary columns

In [4]: df = df.drop(columns = "id")

Checking for unique levels of diagnosis

In [5]: df.diagnosis.unique()

Out[5]: array(['M', 'B'], dtype=object)

Label Encoding

```
In [6]: df['diagnosis'] = df['diagnosis'].apply(lambda val: 1 if val == 'M' else 0)
In [7]: df.diagnosis.unique()
```

Out[7]: array([1, 0], dtype=int64)

Assess the structure of the dataset

```
In [8]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 569 entries, 0 to 568
Data columns (total 31 columns):

#	Column	•	-Null Count	Dtype
0	diagnosis	569	non-null	int64
1	radius_mean	569	non-null	float64
2	texture_mean	569	non-null	float64
3	perimeter_mean	569	non-null	float64
4	area_mean	569	non-null	float64
5	smoothness_mean	569	non-null	float64
6	compactness_mean	569	non-null	float64
7	concavity_mean	569	non-null	float64
8	concave points_mean	569	non-null	float64
9	symmetry_mean	569	non-null	float64
10	<pre>fractal_dimension_mean</pre>	569	non-null	float64
11	radius_se	569	non-null	float64
12	texture_se	569	non-null	float64
13	perimeter_se	569	non-null	float64
14	area_se	569	non-null	float64
15	smoothness_se	569	non-null	float64
16	compactness_se	569	non-null	float64
17	concavity_se	569	non-null	float64
18	concave points_se	569	non-null	float64
19	symmetry_se	569	non-null	float64
20	<pre>fractal_dimension_se</pre>	569	non-null	float64
21	radius_worst	569	non-null	float64
22	texture_worst	569	non-null	float64
23	perimeter_worst	569	non-null	float64
24	area_worst	569	non-null	float64
25	smoothness_worst	569	non-null	float64
26	compactness_worst	569	non-null	float64
27	concavity_worst	569	non-null	float64
28	concave points_worst	569	non-null	float64
29	symmetry_worst	569	non-null	float64
30	fractal_dimension_worst	569	non-null	float64
dtype	es: float64(30), int64(1)			

dtypes: float64(30), int64(1)

memory usage: 137.9 KB

Checking for null values

```
In [9]: df.isna().sum()
```

```
Out[9]: diagnosis
                                    0
        radius_mean
                                     0
         texture_mean
                                    0
                                    0
         perimeter_mean
         area_mean
                                    0
                                    0
         smoothness_mean
         compactness mean
                                    0
                                    0
         concavity_mean
         concave points_mean
                                    0
         symmetry_mean
                                    0
         fractal_dimension_mean
         radius_se
                                    0
                                    0
         texture se
                                     0
         perimeter_se
         area_se
                                    0
                                    0
         smoothness_se
         compactness_se
                                    0
         concavity_se
                                    0
         concave points se
         symmetry_se
                                     0
         fractal_dimension_se
                                    0
         radius_worst
                                    0
         texture_worst
                                    0
                                    0
         perimeter_worst
                                    0
         area worst
                                    0
         smoothness_worst
         compactness_worst
                                    0
         concavity_worst
                                    0
         concave points_worst
         symmetry_worst
                                    0
         fractal_dimension_worst
                                    0
         dtype: int64
```

Checking for duplicates

```
In [10]: df.duplicated().sum()
```

Out[10]: 0

Exploratory Data Analysis (EDA)

```
In [11]: plt.figure(figsize = (20, 15))
plotnumber = 1

for column in df:
    if plotnumber <= 30:
        ax = plt.subplot(5, 6, plotnumber)
        sns.distplot(df[column])
        plt.xlabel(column)

    plotnumber += 1

plt.tight_layout()
plt.show()</pre>
```


Heatmap

```
In [12]: plt.figure(figsize = (20, 12))
    corr = df.corr()
    mask = np.triu(np.ones_like(corr, dtype = bool))

sns.heatmap(corr, mask = mask, linewidths = 1, annot = True, fmt = ".2f")
    plt.show()
```


Distribution of the Study Outcome

```
In [13]: df['diagnosis'].value_counts()

Out[13]: diagnosis
    0    357
    1    212
    Name: count, dtype: int64
```

Defining the X and y features

```
In [15]: X = df.drop(columns = ['diagnosis'])
y = df['diagnosis']
```

Handling Class Imbalance

```
In [16]: ## Load the required module
    from imblearn.over_sampling import RandomOverSampler

## Initialize the RandomOverSampler
    ros = RandomOverSampler(random_state = 42)

## Apply the RandomOverSampler
    X_resampled, y_resampled = ros.fit_resample(X, y)

## Print the oversampled data
    dict(zip(*np.unique(y_resampled, return_counts = True)))
```

```
Out[16]: {0: 357, 1: 357}
```

Splitting data into training and test set

```
In [18]: ## Loading the required libraries
    from sklearn.model_selection import train_test_split

## Splitting
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_
```

Standardization

```
In [19]: ## Load the required module
    from sklearn.preprocessing import StandardScaler

## Initialize the standard scaler
    scaler = StandardScaler()

## Apply the standard scaler

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)
```

Training various Machine Learning models

1. Logistic Regression

```
In [22]: ## Load the required module
         from sklearn.linear model import LogisticRegression
         from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
         ## Initialize the model
         log = LogisticRegression()
         ## Fit the model
         log.fit(X_train, y_train)
         ## Model predictions
         log_pred = log.predict(X_test)
         log_score = accuracy_score(y_test, log_pred)
         ## Evaluate performance
         print("Classification Report:\n", classification_report(y_test, log_pred))
         print("F1 Score:", f1_score(y_test, log_pred))
         print("Precision:", precision_score(y_test, log_pred))
         print("Recall:", recall_score(y_test, log_pred))
         print("Accuracy:", accuracy_score(y_test, log_pred))
```

Classification	Report: precision	recall	f1-score	support
0	0.97	0.99	0.98	119
1	0.99	0.96	0.97	96
accuracy macro avg	0.98	0.97	0.98 0.98	215 215
macro avg	0.98	0.97	0.98	215
weighted avg	0.98	0.98	0.98	215

F1 Score: 0.9735449735449735 Precision: 0.989247311827957 Recall: 0.958333333333334 Accuracy: 0.9767441860465116

2. K Nearest Neighbors

```
In [24]: ## Load the required modules
from sklearn.neighbors import KNeighborsClassifier

## Initialize the model
knn = KNeighborsClassifier()

## Fit the model
knn.fit(X_train, y_train)

## Model predictions
knn_pred = knn.predict(X_test)
knn_score = accuracy_score(y_test, knn_pred)

## Evaluate performance
print("Classification Report:\n", classification_report(y_test, knn_pred))
print("F1 Score:", f1_score(y_test, knn_pred))
print("Precision:", precision_score(y_test, knn_pred))
print("Recall:", recall_score(y_test, knn_pred))
print("Accuracy:", accuracy_score(y_test, knn_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	0.94	0.98	0.96	119
1	0.98	0.93	0.95	96
accuracy			0.96	215
macro avg	0.96	0.96	0.96	215
weighted avg	0.96	0.96	0.96	215

F1 Score: 0.9518716577540107 Precision: 0.978021978021978 Recall: 0.927083333333334 Accuracy: 0.958139534883721

3. Support Vector Machines

```
In [23]: ## Load the required module
from sklearn.svm import SVC
```

```
from sklearn.model_selection import GridSearchCV
## Initialize the model
svc = SVC()
## Define parameters
parameters = {
    'gamma' : [0.0001, 0.001, 0.01, 0.1],
    'C': [0.01, 0.05, 0.5, 0.1, 1, 10, 15, 20]
## Fit the model using the best parameters
grid_search = GridSearchCV(svc, parameters)
grid_search.fit(X_train, y_train)
## Model predictions
svm_pred = grid_search.predict(X_test)
svm_score = accuracy_score(y_test, svm_pred)
## Evaluate performance
print("Classification Report:\n", classification_report(y_test, svm_pred))
print("F1 Score:", f1_score(y_test, svm_pred))
print("Precision:", precision_score(y_test, svm_pred))
print("Recall:", recall_score(y_test, svm_pred))
print("Accuracy:", accuracy_score(y_test, svm_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	0.95	0.99	0.97	119
1	0.99	0.94	0.96	96
accuracy			0.97	215
macro avg	0.97	0.96	0.97	215
weighted avg	0.97	0.97	0.97	215

F1 Score: 0.9625668449197861 Precision: 0.989010989010989

Recall: 0.9375

Accuracy: 0.9674418604651163

4. Stochastic Gradient Descent Classifier

```
In [25]: ## Load the required module
from sklearn.linear_model import SGDClassifier

## Initialize the model
sgd = SGDClassifier()

## Define the parameters
parameters = {
        'alpha': [0.0001, 0.001, 0.01, 1],
        'loss': ['hinge', 'log_loss'], # Changed 'log' to 'log_loss'
        'penalty': ['11', '12']
}
```

```
## Fit the model with parameters
grid_search = GridSearchCV(sgd, parameters, cv = 10, n_jobs = -1)
grid_search.fit(X_train, y_train)

## Make Predictions
sdg_pred = grid_search.predict(X_test)
sdg_score = accuracy_score(y_test, sdg_pred)

## Evaluate performance
print("Classification Report:\n", classification_report(y_test, sdg_pred))
print("F1 Score:", f1_score(y_test, sdg_pred))
print("Precision:", precision_score(y_test, sdg_pred))
print("Recall:", recall_score(y_test, sdg_pred))
print("Accuracy:", accuracy_score(y_test, sdg_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	0.97	0.99	0.98	119
1	0.99	0.96	0.97	96
accuracy			0.98	215
macro avg	0.98	0.97	0.98	215
weighted avg	0.98	0.98	0.98	215

F1 Score: 0.9735449735449735 Precision: 0.989247311827957 Recall: 0.958333333333334 Accuracy: 0.9767441860465116

5. Decision Tree Classifier

```
In [26]: ## Load the required module
         from sklearn.tree import DecisionTreeClassifier
         ## Initialize the model
         dtc = DecisionTreeClassifier()
         ## Define the parameters
         parameters = {
             'criterion' : ['gini', 'entropy'],
             'max_depth' : range(2, 32, 1),
             'min_samples_leaf' : range(1, 10, 1),
             'min_samples_split' : range(2, 10, 1),
             'splitter' : ['best', 'random']
         }
         ## Fit the models with parameters
         grid_search_dt = GridSearchCV(dtc, parameters, cv = 5, n_jobs = -1, verbose = 1)
         grid_search_dt.fit(X_train, y_train)
         ## Make Predictions
         dtc_pred = grid_search_dt.predict(X_test)
         dtc_score = accuracy_score(y_test, dtc_pred)
         ## Evaluate performance
```

```
print("Classification Report:\n", classification_report(y_test, dtc_pred))
print("F1 Score:", f1_score(y_test, dtc_pred))
print("Precision:", precision_score(y_test, dtc_pred))
print("Recall:", recall_score(y_test, dtc_pred))
print("Accuracy:", accuracy_score(y_test, dtc_pred))
```

Fitting 5 folds for each of 8640 candidates, totalling 43200 fits Classification Report:

	precision	recall	f1-score	support
0	0.94	0.97	0.96	119
1	0.97	0.93	0.95	96
accuracy			0.95	215
macro avg	0.96	0.95	0.95	215
weighted avg	0.95	0.95	0.95	215

F1 Score: 0.9468085106382979 Precision: 0.967391304347826 Recall: 0.927083333333334 Accuracy: 0.9534883720930233

6. Random Forest Classifier

```
In [29]: ## Load the required module
    from sklearn.ensemble import RandomForestClassifier

## Initialize the model
    rf = RandomForestClassifier(criterion = 'entropy', max_depth = 11, max_features = '

## Fit the model
    rf.fit(X_train, y_train)

## Make predictions
    rf_pred = rf.predict(X_test)
    rf_score = accuracy_score(y_test, rf_pred)

## Evaluate performance
    print("Classification Report:\n", classification_report(y_test, rf_pred))
    print("F1 Score:", f1_score(y_test, rf_pred))
    print("Precision:", precision_score(y_test, rf_pred))
    print("Recall:", recall_score(y_test, rf_pred))
    print("Accuracy:", accuracy_score(y_test, rf_pred))
```

Classification Report:

		precision	recall	f1-score	support
	0	0.97	0.97	0.97	119
	О	0.97	0.97	0.97	119
	1	0.96	0.97	0.96	96
accura	су			0.97	215
macro a	ıvg	0.97	0.97	0.97	215
weighted a	ıvg	0.97	0.97	0.97	215

F1 Score: 0.9637305699481865 Precision: 0.9587628865979382

Recall: 0.96875

Accuracy: 0.9674418604651163

7. Voting Classifier

```
In [32]: ## Load the required module
         from sklearn.ensemble import VotingClassifier
         ## Define the base models
         classifiers = [('Logistic Regression', log), ('K Nearest Neighbours', knn), ('Suppo')
                        ('Decision Tree', dtc)]
         ## Initialize the voting classifier
         vc = VotingClassifier(estimators = classifiers)
         ## Fit the model
         vc.fit(X_train, y_train)
         ## Model predictions
         vc_pred = vc.predict(X_test)
         vc_score = accuracy_score(y_test, vc_pred)
         ## Evaluate performance
         print("Classification Report:\n", classification_report(y_test, vc_pred))
         print("F1 Score:", f1_score(y_test, vc_pred))
         print("Precision:", precision_score(y_test, vc_pred))
         print("Recall:", recall_score(y_test, vc_pred))
         print("Accuracy:", accuracy_score(y_test, vc_pred))
```

Classification Report:

	preci	sion re	ecall f1-	score sup	port
	0 0	.95	a.99	0.97	119
	1 0	.99	0.94	0.96	96
accurac	у			0.97	215
macro av	g 0	.97	a.96	0.97	215
weighted av	g 0	.97	ð . 97	0.97	215

F1 Score: 0.9625668449197861 Precision: 0.989010989010989

Recall: 0.9375

Accuracy: 0.9674418604651163

8. Ada Boost Classifier

```
In [33]: ## Load the required model
    from sklearn.ensemble import AdaBoostClassifier

## Initialize the model
    ada = AdaBoostClassifier(estimator=DecisionTreeClassifier(max_depth = 1), n_estimat

## Fit the model
    ada.fit(X_train, y_train)

## Model predictions
    ada_pred = ada.predict(X_test)

## Evaluate performance
    ada_score = accuracy_score(y_test, ada_pred)
    print("Classification Report:\n", classification_report(y_test, ada_pred))
    print("F1 Score:", f1_score(y_test, ada_pred))
    print("Precision:", precision_score(y_test, ada_pred))
    print("Recall:", recall_score(y_test, ada_pred))
    print("Accuracy:", accuracy_score(y_test, ada_pred))
```

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.97	0.97	119
1	0.96	0.98	0.97	96
accuracy			0.97	215
macro avg	0.97	0.97	0.97	215
weighted avg	0.97	0.97	0.97	215

9. Gradient Boosting Classifier

```
In [34]: ## Load the required module
    from sklearn.ensemble import GradientBoostingClassifier

## Initialize the model
    gbc = GradientBoostingClassifier()

## Define the parameters

parameters = {
        'loss': ['deviance', 'exponential'],
        'learning_rate': [0.001, 0.1, 1, 10],
        'n_estimators': [100, 150, 180, 200]
}

## Fit the model using gridsearch
    grid_search_gbc = GridSearchCV(gbc, parameters, cv = 5, n_jobs = -1, verbose = 1)
    grid_search_gbc.fit(X_train, y_train)
```

```
## Make predictions
gbc_pred = grid_search_gbc.predict(X_test)

## Evaluate performance
gbc_score = accuracy_score(y_test, gbc_pred)
print("Classification Report:\n", classification_report(y_test, gbc_pred))
print("F1 Score:", f1_score(y_test, gbc_pred))
print("Precision:", precision_score(y_test, gbc_pred))
print("Recall:", recall_score(y_test, gbc_pred))
print("Accuracy:", accuracy_score(y_test, gbc_pred))
```

Fitting 5 folds for each of 32 candidates, totalling 160 fits Classification Report:

	precision	recall	f1-score	support
0	0.98	0.97	0.97	119
1	0.96	0.98	0.97	96
accuracy			0.97	215
macro avg	0.97	0.97	0.97	215
weighted avg	0.97	0.97	0.97	215

10. Stochastic Gradient Boosting (SGB)

```
In [39]: ## Initialize the model
    sgbc = GradientBoostingClassifier(max_depth=4, subsample=0.9, max_features=0.75, n_

## Fit the model
    sgbc.fit(X_train, y_train)

## Model predictions
    sgbc_pred = sgbc.predict(X_test)

## Evaluate performance
    sgbc_score = accuracy_score(y_test, sgbc_pred)
    print("Classification Report:\n", classification_report(y_test, sgbc_pred))
    print("F1 Score:", f1_score(y_test, sgbc_pred))
    print("Precision:", precision_score(y_test, sgbc_pred))
    print("Recall:", recall_score(y_test, sgbc_pred))
    print("Accuracy:", accuracy_score(y_test, sgbc_pred))
```

Classification	Report: precision	recall	f1-score	support
0	0.98	0.97	0.98	119
1	0.97	0.98	0.97	96
accuracy			0.98	215
macro avg	0.98	0.98	0.98	215
weighted avg	0.98	0.98	0.98	215

Extreme Gradient Boosting

Model Comparison

	mo	dels.sort_values(by = 'Sc	ore, asc
Out[40]:		Model	Score
	0	Logistic Regression	0.976744
	3	SGD Classifier	0.976744
	8	Gradient Boosting Classifier	0.976744
	9	Stochastic Gradient Boosting	0.976744
	7	Ada Boost Classifier	0.972093
	2	SVC	0.967442
	5	Random Forest Classifier	0.967442
	6	Voting Classifier	0.967442
	1	KNN	0.958140
	4	Decision Tree Classifier	0.953488

Best model for diagnosing breast cancer is "Gradient Boosting Classifier" with an accuracy of 97.44%.

```
In [41]: ## Lets save our model using pickle
import pickle as pkl
pkl.dump(grid_search_gbc, open("breast_cancer_model1.sav","wb"))
```