Chapter 5: Distributions

DSCC 462
Computational Introduction to Statistics

Anson Kahng Fall 2022

Random Variables

- Random variable: A variable that can take a number of different values and whose outcome is determined by chance
- Discrete random variable: A random variable whose possible outcomes are a list of discrete values (finite or countably infinite sample space)
 - Example: Coin flip (heads/tails)
- Continuous random variable: A random variable whose possible outcomes are any value in an interval (uncountable sample space)
 - Examples: Time required to run a mile

Notation

- Random variable: Uppercase letters (e.g., X, Y)
- Outcome of a random variable: Lowercase letters (e.g., x, y)
- Example: Let X= the number of surgeries a person has had
 - Pr(X = 1): Probability of having 1 surgery
 - Pr(X = x): Probability of having x surgeries

Probability Distribution

- Probability distribution: List of all possible values that a random variable can take, along with their corresponding probabilities
 - Discrete: Probability mass function (PMF)
 - Continuous: Probability density function (PDF)
- Let X be a random variable defined over sample space S_X
- For any $E \subseteq S_X$, we can define $p_X(E) = \Pr(X \in E)$

Discrete Probability Distribution

• For a discrete random variable X with sample space S_X , a probability mass function (PMF) p_X maps $x \in S_X$ to a number in [0,1] such that:

$$0 \le p_X(s) = \Pr(X = x) \le 1$$
$$\sum_{x \in S_X} p_X(x) = \sum_{x \in S_X} \Pr(X = x) = 1$$

• The support S_X consists of all x for which $p_X(x) > 0$ (all achievable outcomes)

Discrete Probability Distribution: Example

- Setup: A fair coin is flipped 3 times. Let
 X be a random variable that counts the
 number of heads observed
- Fill in the following table:
- Probability distribution tables resemble relative frequency distribution tables: probability of each outcome is the relative frequency distribution of each outcome in a large number of trials

X	Pr(X = x)
0	
1	
2	
3	

Discrete Probability Distribution: Example

- Setup: A fair coin is flipped 3 times. Let X be a random variable that counts the number of heads observed
- Fill in the following table:
- Probability distribution tables resemble relative frequency distribution tables: probability of each outcome is the relative frequency distribution of each outcome in a large number of trials

X	Pr(X = x)
0	1/8
1	3/8
2	3/8
3	1/8

Continuous Probability Distribution

- Specify continuous probability distributions through a density function, f(x)
- Properties:

$$f(x) \ge 0$$
, for all $x \in S_X$ (nonnegative density)
$$\int f(x) dx = 1 \text{ (total probability is 1)}$$

• X is continuous iff there is a density function f_X such that the following holds:

$$Pr(a \le X \le b) = \int_{a}^{b} f_{X}(x) dx$$

$$= Area under f between a and b$$

• The support S_X consists of all x for which $f_X(x) > 0$

Normalization

- We must ensure that probability distributions sum / integrate to 1 (i.e., total probability must equal 1)
- Normalization: Scalar adjustment in order to ensure that $\Pr(S_X) = 1$
- If g(x) > 0 for all $x \in S_X$, then

Discrete:
$$p(x) = \frac{g(x)}{\sum_{x^* \in S_X} g(x^*)}$$

Continuous:
$$f(x) = \frac{g(x)}{\int_{x^* \in S_X} g(x^*) dx^*}$$

• Normalization constant: 1/denominator

Normalization: Example

 Suppose that we generally know that probability is distributed according to the following curve:

Normalization: Example

We can generally define the shape of this curve as

$$g(x) = 1 - x^2, -1 \le x \le 1$$

Is this a proper density?

• What's the normalization constant?

• What is f(x)?

Normalization: Example

We can generally define the shape of this curve as

$$g(x) = 1 - x^2, -1 \le x \le 1$$

Is this a proper density?

$$\int_{-1}^{1} (1 - x^2) \, dx = \left(x - \frac{x^3}{3} \right) \Big|_{-1}^{1} = \frac{4}{3}$$

What's the normalization constant?

$$f(X) = \int_{\beta} (x) dx$$
der to make it integrate to

 $\int_{-1}^{1} (1 - x^2) dx = (x - x^3/3) \Big|_{-1}^{1} = \frac{4}{3}$ rmalization constant? $f(x) = \frac{3}{3} = \frac{3}{3}$ Multiply both sides by $\frac{3}{4}$ in order to make it integrate to 1

What is f(x)?

$$f(x) = \frac{3}{4}(1 - x^2)$$

Cumulative Distribution Functions (CDFs)

• The cumulative distribution function (CDF) of random variable X is

$$F_X(x) = \Pr(X \le x) \text{ for all } x \in (-\infty, \infty)$$

• If X is discrete with support S_X , then the CDF is defined as

$$F_X(x) = \Pr(X \le x) = \sum_{u \in S_X: u \le x} \Pr(X = u)$$

ullet If X is continuous, then the CDF is defined as

$$F_X(x) = \Pr(X \le x) = \int_{-\infty}^x f_X(u) \, du$$

Cumulative Distribution Functions (CDFs)

Consider the parabolic density

$$f(x) = \begin{cases} 0 & x \in (-\infty, -1) \\ \frac{3}{4}(1 - x^2) & x \in [-1, 1] \\ 0 & x \in (1, \infty) \end{cases}$$

- Over the range $x \in (-\infty, -1)$, we have F(x) = 0
- Over the range $x \in [-1,1]$, we have

$$F(x) = \int_{-1}^{x} \frac{3}{4} (1 - u^2) du = -x^3/4 + 3x/4 + 1/2$$

• Over the range $x \in (1, \infty)$, we have F(x) = 1

Quantiles and Percentiles

Percentiles and Quartiles

- Suppose that a student with an 85 on an exam scored higher than 72% of their classmates
- Then, $Pr(X \le 85) = 0.72$
- We say that q=85 is the p=0.72 quantile of this distribution (also called the $72^{\rm nd}$ percentile)

Quantiles and Percentiles

• More generally: For a random variable X, q is the p-quantile of X if

$$\Pr(X < q) \le p \text{ and } \Pr(X > q) \le 1 - p$$

ullet The quantile function of X is then defined as

$$Q(p) = \min\{x \in S_X : \Pr(X \le x) \ge p\}$$

• If the CDF $F_X(x)$ is continuous and strictly increasing on S_X , then

$$Q(p) = F_x^{-1}(p)$$

• Although $\mathcal{Q}(p)$ is uniquely defined, the p-quantile may not be unique

Quantiles and Percentiles: Example

- Consider the parabolic density, $f(x) = \frac{3}{4}(1 x^2)$ parabola 抛物线
- What is the 0.25-quantile?

Quantiles and Percentiles: Example

- Consider the parabolic density, $f(x) = \frac{3}{4}(1 x^2)$
- What is the 0.25-quantile?

$$Q(p) = \min\{x \in S_X : \Pr(X \le x) \ge p\}$$

Want to find x such that $Pr(X \le x) = 0.25$

Solve for x: integrate(f(x)) = 0.25- $x^3/4 + 3x/4 + 1/2 = 1/4$

in r: polyroot(c(-1,-3,0,1)) $x^3 - 3x - 1 = 0$ this function solves the following equition: -1-3x+0x^2+x^3 = 0 roots: $x = \{-1.53, -0.35, 1.879\}$

Because we know that $x \in [-1,1]$, we have that the 0.25-quantile occurs at

$$x = -0.35$$

Summarizing Probability Distributions

- Many random variables can take a large number of values, so an explicit probability distribution may be quite complicated
- We can describe a probability distribution with measures of central tendency and dispersion
- Population mean: Average value that a random variable takes
- Population variance: Dispersion of the values relative to the population mean
- Population standard deviation: The square root of the population variance

Expected Value

The Expected value of X is the population mean of X

- **Expected value** of X, denoted E(X), represents a theoretical average of an infinitely large sample
 - E(X) is what we "expect" X to equal; the population mean of X
- We use the notation $\mu = \mu_X = E(X)$

Expected Value

• If X is a discrete random variable:

$$\mu_X = E(X) = \sum_{x \in S_X} x \cdot \Pr(X = x)$$

• If X is a continuous random variable:

$$\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx$$

• If c is a constant, then

$$E(c) = c$$

Linearity of Expectation

• For any random variables X and Y:

$$E(X + Y) = E(X) + E(Y)$$

- This holds even if X and Y are not independent
- In general, for random variables $X_1, ..., X_n$:

$$E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)$$

• Q1: What is the expected number of heads when flipping a fair coin (1/2 H, 1/2 T)?

 Q2: What is the expected number of heads when flipping an unfair coin (2/3 H, 1/3 T)?

 Q3: What is the expected number of heads when flipping three fair coins (1/2 H, 1/2 T) and two unfair coins (2/3 H, 1/3 T)?

• Q1: What is the expected number of heads when flipping a fair coin (1/2 H, 1/2 T)? Let X be the random variable representing the number of heads $E(X) = (1/2) \cdot 1 + (1/2) \cdot 0 = 1/2$

Q2: What is the expected number of heads when flipping an unfair coin (2/3 H, 1/3 T)?

$$E(X) = (2/3) \cdot 1 + (1/2) \cdot 0 = 2/3$$

Q3: What is the expected number of heads when flipping three fair coins (1/2 H, 1/2 T) and two unfair coins (2/3 H, 1/3 T)?

$$E(X) = 3 \cdot (1/2) + 2 \cdot (2/3) = 3/2 + 4/3 = 17/6$$
 by linearity of expectation

- Consider the parabolic density, $f(x) = \frac{3}{4}(1 x^2)$
- What is E(X)?

• Intuition: By symmetry, E(X) = 0

- Consider the parabolic density, $f(x) = \frac{3}{4}(1 x^2)$
- What is E(X)?

$$E(X) = \int_{-1}^{1} (x) \frac{3}{4} (1 - x^2) dx = \int_{-1}^{1} \frac{3x}{4} - \frac{3x^3}{4} dx$$
$$= \frac{3x^2}{8} - \frac{3x^4}{16} \Big|_{-1}^{1}$$
$$= \frac{3}{8} - \frac{3}{16} - \left(\frac{3}{8} - \frac{3}{16}\right)$$
$$= 0$$

Intuition: By symmetry, E(X) = 0

Variance

• The variance of X, denoted var(X), measures the tendency of X to deviate from E(X) and is defined as follows

$$var(X) = E\left(\left(X - E(X)\right)^{2}\right)$$
$$= E(X^{2}) - E(X)^{2}$$

- We use the notation $\sigma^2 = \sigma_X^2 = var(X)$
 - σ: sigma, Σ: capitalized sigma
- The standard deviation is the square root of the variance: $\sigma = \sigma_X = \sqrt{var(X)}$

Variance

- Recall: $var(X) = E\left(\left(X E(X)\right)^2\right)$
- Let X be a discrete random variable with mean μ_X :

$$\sigma_X^2 = \sum_{S_X} (x - \mu_X)^2 \Pr(X = x)$$

• Let X be a continuous random variable with mean μ_X

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) \, dx$$

Variance: Example

• Setup: Flip two fair coins; let X be the number of heads

• Q: What is var(X)?

• Q: What is the standard deviation of X?

Variance: Example

- Setup: Flip two fair coins; let X be the number of heads
- Q: What is var(X)?

We have that
$$\sigma_X^2 = \sum_{S_X} (x - \mu_X)^2 \Pr(X = x)$$

We also know that $\mu_X = 1$, P(X = 0) = P(X = 2) = 1/4, and P(X = 1) = 1/2

Therefore,
$$\sigma_X^2 = (0-1)^2 \cdot (1/4) + (1-1)^2 \cdot (1/2) + (2-1)^2 \cdot (1/4) = 1/2$$

• Q: What is the standard deviation of X?

$$\sigma_X = \sqrt{\sigma_X^2} = \frac{1}{\sqrt{2}}$$

Functions of Random Variables

- Take random variable X and function g(.)
- We can obtain a new random variable: Y = g(X)
- This is what is called a transformation of variables
- In general, to get the distribution of Y, we have that for any event $E \subseteq S_Y$, we have $p_Y(E) = p_X(g^{-1}(E))$

如果Y=g(X),事件Y的发生概率和与其对应的事件X的发生概率相等

Linear Transformations: Mean and Variance

- Let g be a linear function of the form g(X) = aX + b
- Let X be a random variable with mean μ_X and variance σ_X^2
- Define a new random variable Y = g(X) = aX + b
- Finding the mean of Y:

$$\mu_Y = E(Y) = E(aX + b) = aE(X) + b = a\mu_X + b$$

• Finding the variance of *Y*:

$$\sigma_Y^2 = var(Y) = E((aX + b - E(aX + b))^2)$$

$$= E((aX + b - aE(X) - b)^2) = E((aX - aE(X))^2)$$

$$= E(a^2(X - E(X))^2) = a^2E((X - E(X))^2)$$

$$= a^2 \cdot var(X) = a^2 \cdot \sigma_X^2$$

General Transformations: Mean

• If we have Y = g(X) for general g(X), then we have:

$$\mu_Y = E(Y) = E(g(X))$$

We do not necessarily have that:

$$E(g(X)) = g(E(X))$$

• Example: Consider X = the outcome of rolling a fair six-sided die, and let $g(X) = X^2$

$$E(g(X)) = \frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2}{6} = \frac{91}{6} \approx 15.17$$

$$g(E(X)) = \left(\frac{1+2+3+4+5+6}{6}\right)^2 = (3.5)^2 = 12.25$$

Independence

• Two random variables X_1 and X_2 are independent if the following holds, for any two events E_1 and E_2 :

$$P(X_1 \in E_1 \cap X_2 \in E_2) = P(X_1 \in E_1) \cdot P(X_2 \in E_2)$$

Notation:

$$X_1 \perp X_2$$
 means X_1 and X_2 are independent

- If a collection of random variables $X_1, X_2, ..., X_n$ are all independent and have the same distribution, we say that they are i.i.d. (independent and identically distributed)
 - Example: Roll two dice, or flip three fair coins

Covariance

- If two variables are not independent, we measure their dependency through their **covariance**
- Let X and Y be two random variables with means μ_X and μ_Y , respectively
- The covariance of X and Y is defined as follows: $\mu X = E(X)$, $\mu Y = E(Y)$, they can be considered as constants

$$cov(X, Y) = \sigma_{XY} = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - E(X)E(Y)$$

Correlation (essentially normalized covariance):

$$corr(X, Y) = \rho = \rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$$

Properties of Covariance

- Given random variables X and Y, the following hold:
 - If either X or Y is a constant, then cov(X, Y) = 0 and corr(X, Y) is undefined
 - If $X \perp Y$, then cov(X, Y) = corr(X, Y) = 0
 - cov(X, X) = var(X)
 - cov(X, Y) = cov(Y, X)

Linear Combinations

- Suppose you have random variables X and Y with means μ_X, μ_Y and variances σ_X^2, σ_Y^2
- Let Z = aX + bY
- The mean of Z is

$$\mu_Z = E(Z) = E(aX + bY) = E(aX) + E(bY) = a\mu_X + b\mu_Y$$

• The variance of Z is

$$\sigma_Z^2 = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}$$

• The standard deviation of Z is

$$\sigma_Z = \sqrt{a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab\sigma_{XY}}$$

Theoretical Distributions

- Theoretical probability distributions describe what we expect to happen based on populations on a theoretical level
- We will consider the following theoretical distributions (D = discrete, C = continuous):
 - Bernoulli distribution (D)
 - Binomial distribution (D)
 - Poisson distribution (D)
 - Geometric distribution (D)
 - Uniform distribution (C)
 - Exponential distribution (C)
 - Normal distribution (C)

Bernoulli Distribution

- Let Y be a dichotomous random variable (takes one of two mutually exclusive values)
 - Classic example: Coin flip
- Successes (= 1) occur with probability p and failures (= 0) occur with probability 1-p, for constant $p \in [0,1]$
- Notation: $Y \sim Bern(p)$

Bernoulli Distribution: Example

- \bullet Let Y be a dichotomous random variable representing a coin flip
 - Y = 1: heads
 - Y = 0: tails
- If the coin is fair, then p = and 1 p =
- If the coin has a 60% chance of landing heads, then p=1 and 1-p=1
- What is E(Y) in terms of p?
- What is var(Y) in terms of p?

Bernoulli Distribution: Example

- \bullet Let Y be a dichotomous random variable representing a coin flip
 - Y = 1: heads
 - Y = 0: tails
- If the coin is fair, then p = 1/2 and 1 p = 1/2
- If the coin has a 60% chance of landing heads, then p=0.6 and 1-p=0.4
- What is E(Y) in terms of p? $E(Y) = p \cdot 1 + (1 p) \cdot 0 = p$
- What is var(Y) in terms of p? $var(Y) = E(Y^2) E(Y)^2 = p p^2 = p(1 p)$

Binomial Distribution

- Suppose we flip n i.i.d. coins instead of just one coin
- Let $X = \sum_{i=1}^{n} X_i$ be the number of heads we observe
- X is binomially distributed
- **Binomial distribution**: If we have a sequence of n Bernoulli random variables, each with a probability of success p, then the total number of successes is a binomial random variable
 - ullet Assumptions: fixed number of trials, independent, constant p
- Notation: $X \sim Bin(n, p)$

Binomial Distribution

Binomial Coefficients

- Let $X = \sum_{i=1}^{n} X_i$ be the number of heads we observe when we flip n i.i.d. coins
- ullet Each coin has probability of heads p, and flips are independent
- Q: What is the probability of getting exactly x out of n successes?
 - Choose which x trials succeed:
 - Probability that these x trials succeed:
 - Probability that the other n x trials fail:
- In general,

Binomial Coefficients

- Let $X = \sum_{i=1}^{n} X_i$ be the number of heads we observe when we flip n i.i.d. coins
- ullet Each coin has probability of heads p, and flips are independent
- Q: What is the probability of getting exactly x out of n successes?
 - Choose which x trials succeed: $\binom{n}{x}$
 - Probability that these x trials succeed: p^x
 - Probability that the other n-x trials fail: $(1-p)^{n-x}$
- In general, $Pr(X = x) = \binom{n}{x} p^x (1-p)^{n-x}$

Binomial Probabilities in R

- Calculate probabilities in R:
 - Calculate Pr(X = x) using dbinom (x, n, p)
 - Calculate $Pr(X \le x)$ using phinom (x, n, p)
 - Calculate $Pr(X \ge x)$ using 1-pbinom (x-1, n, p)

Binomial Distribution: Summary Measures

• Note that a binomial distribution with parameters n and p is the sum of n independent Bernoulli distributions with parameter p

$$E(X) = \mu_X = np$$

$$var(X) = \sigma_X^2 = np(1 - p)$$

$$stdev(X) = \sigma_X = \sqrt{np(1 - p)}$$

• Q: How does var(X) change with $p \in [0,1]$?

Binomial Distribution: Summary Measures

• Note that a binomial distribution with parameters n and p is the sum of n independent Bernoulli distributions with parameter p

$$E(X) = \mu_X = np$$

$$var(X) = \sigma_X^2 = np(1 - p)$$

$$stdev(X) = \sigma_X = \sqrt{np(1 - p)}$$

• Q: How does var(X) change with $p \in [0,1]$? Highest when p = 0.5, lowest (= 0) when p = 0 or 1

Binomial Distribution: Summary

- Main take-away points from the binomial distribution:
 - Fixed number of independent Bernoulli trials, n
 - Constant probability of success, p (Bernoulli parameter)
 - Interested in the total number of successes in *n* trials (not order)
 - Mean: $\mu_X = np$
 - Variance: $\sigma_X^2 = np(1-p)$
- Examples:
 - Number of heads in 15 flips of a fair coin

Poisson Distribution

- **Poisson distribution**: Probability of observing a certain number of discrete events within a known interval
 - Models discrete events that occur infrequently in time or space
- Example:
 - The number of babies born at Strong Memorial Hospital between 10 am and 2 pm today
 - The number of students who enter River Campus today

Poisson Distribution

- Let $X \in [0,\infty)$ be the number of occurrences of some event over a given interval
- Let $\lambda > 0$ be the average number of occurrences of the event over the specified interval
- In this case, we say that $X \sim Pois(\lambda)$
- The probability function is given by $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$
- If $X \sim Pois(\lambda)$, then $\mu_X = \sigma_X^2 = \lambda$
 - ullet For a Poisson distribution, both the mean and the variance are equal to λ

Poisson Distribution

- Poisson distribution assumptions:
 - The probability of an event occurring is proportional to the length of the interval
 - Within an interval, an infinite number of events is theoretically possible
 - Events occur independently
 - The number of events that occur must be non-negative

Poisson Distribution: Example

- Setup: We want to examine the probability of certain numbers of people developing a rare disease in the next year. On average, 1.95 people develop the disease per year
- Q: What is the probability of no one developing the disease in the next year?

• Q: What is the probability of one person developing the disease in the next year?

Poisson Distribution: Example

- Setup: We want to examine the probability of certain numbers of people developing a rare disease in the next year. On average, 1.95 people develop the disease per year
- Q: What is the probability of no one developing the disease in the next year?

$$P(X=0) = \frac{e^{-1.95}1.95^0}{0!} = e^{-1.95} \approx 0.142$$

• Q: What is the probability of one person developing the disease in the next year?

$$P(X=1) = \frac{e^{-1.95}1.95^1}{1!} = 1.95 \cdot e^{-1.95} \approx 0.277$$

Poisson Distribution: Visualized

Poisson Probabilities in R

- Calculate probabilities in R:
 - Calculate Pr(X = x) using dpois (x, lambda)
 - Calculate $Pr(X \le x)$ using ppois (x, lambda)
 - Calculate $Pr(X \ge x)$ using 1-ppois (x-1, lamda)

Poisson Distribution: Summary

- Main take-away points from the Poisson distribution:
 - Fixed interval, independent events, interested in number of events in interval
 - Unlimited number of events is theoretically possible
 - Mean: $\mu_X = \lambda$
 - Variance: $\sigma_X^2 = \lambda$
- Examples:
 - Number of calculators the book store sells this year
 - Number of babies born today

Geometric Distribution

- Suppose Y_1,Y_2,\ldots is an *infinite* sequence of independent Bernoulli random variables with parameter p
- Let X be the first index i for which $Y_i = 1$ (location of first success)
- The probability mass function (PMF) is given by

$$P(X = x) = p(1 - p)^{x-1}$$

- Notation: $X \sim Geom(p)$
- Mean and variance:

$$E(X) = \mu_X = \frac{1}{p}$$

$$var(X) = \sigma_X^2 = \frac{1 - p}{p^2}$$

• CDF: $P(X \le x) = 1 - (1 - p)^x$

Continuous Distributions

- Continuous random variables: Intuitively, discrete random variables that are infinitesimally close together
- Instead of having discrete bars for the density at each discrete value, we now have a continuous density curve
- The area under the curve equals 1 (law of total probability)
- Since the random variable X can take on an infinite number of values, the probability associated with any single outcome equals $\mathbf{0}$
- The probability that $X \in (x_1, x_2)$ is equal to the area under the curve that lies between these two values

Uniform Distribution

- Let X be a continuous random variable which can take on any value between a and b with equal probability
- Any value outside the range [a, b] cannot occur
- The uniform probability density is

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

• Notation: $X \sim Unif(a, b)$

•
$$\mu_X = \frac{a+b}{2}$$
 and $\sigma_X^2 = \frac{(b-a)^2}{12}$

Exponential Distribution

• A continuous random variable X is exponentially distributed if it follows the following density:

$$f_X(x) = \lambda e^{-\lambda x}, \lambda > 0$$

- Notation: $X \sim Exp(\lambda)$
- Generalizes the geometric distribution

•
$$\mu_X = \frac{1}{\lambda}$$
 and $\sigma_X^2 = \frac{1}{\lambda^2}$

• CDF: $F_X(x) = 1 - e^{-\lambda x}$

Normal Distribution

- The most common continuous distribution is the normal distribution (also called a Gaussian distribution or bell-shaped curve)
 - Shape of the binomial distribution when p is constant but $n \to \infty$
 - Shape of the Poisson distribution when $\lambda \to \infty$
- Given μ , σ , the density function is

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Notation: $X \sim N(\mu, \sigma^2)$ but in R, use standard deviation instead of variance
- Mean = median = mode = μ , variance = σ^2 , standard deviation = σ

Normal Distribution: Visualization

- μ (center) and σ^2 (spread) fully define the normal distribution
- Always symmetric
- When $\mu = 0$ and $\sigma^2 = 1$, we have the standard normal distribution

Normal Distribution: z-scores

• Recall from Chapter 2 that a z-score tells us how many standard deviations an observation is from its mean:

$$z = \frac{x - \mu}{\sigma}$$

- Z has the nice property that it will always be N(0,1)
- Given $X \sim N(\mu, \sigma)$, we can calculate a z-score, which will be $Z \sim N(0, 1)$
- Standardizes the procedures for all normal distribution problems

Normal Distribution

 Recall that for continuous distributions, we are interested in determining the probability of being in an interval:

$$\Pr(X \le a), \Pr(X \ge b), \text{ or } \Pr(a \le X \le b)$$

- We can look at the plot of the normal distribution and determine the probability (= area under the curve between endpoints)
- In general, we will use R to calculate area under the curve (i.e., probabilities)
- By default, R works in terms of z-scores:

```
Pr(Z \le z) : pnorm(z)
Pr(Z \ge z) : 1-pnorm(z)
Pr(z_1 \le Z \le z_2) : pnorm(z_2) - pnorm(z_1)
```

Normal Distribution

• The general process for calculating probabilities based on a normal distribution is as follows:

• Calculate appropriate z-scores:
$$z = \frac{X - \mu}{\sigma}$$

• Use R to calculate the probability based on this z-score (pnorm (z))

Normal Distribution: Example

 Suppose that test scores are normally distributed with mean 78 and standard deviation 9

• Q: What is the probability that a person scored below 60?

• Q: What is the probability that a person scored between 80 and 90?

Normal Distribution: Example

- Suppose that test scores are normally distributed with mean 78 and standard deviation 9
- Q: What is the probability that a person scored below 60?

z-score:
$$\frac{60 - 78}{9} = -2$$

Use R: pnorm(-2) = 0.0228

• Q: What is the probability that a person scored between 80 and 90? z-scores: $\frac{80-78}{9}=2/9$, $\frac{90-78}{9}=4/3$

z-scores:
$$\frac{80-78}{9} = 2/9, \frac{90-78}{9} = 4/3$$

Use R: pnorm(4/3) - pnorm(2/9) = 0.3209

Normal Probabilities in R (Shortcut)

 We can let R do the entire process of calculating a z-score and probability for us

• Let $X \sim N(\mu, \sigma)$

```
Pr(X \le x) : pnorm(x, mean, sd)
```

$$Pr(X \ge x) : 1-pnorm(x, mean, sd)$$

$$\Pr(x_1 \le X \le x_2)$$
: pnorm $(x_2, \text{mean, sd})$ -pnorm $(x_1, \text{mean, sd})$

Normal Distribution

- Suppose that BMI is normally distributed with mean 26.6 and standard deviation 3.2
- What is the probability that a person has a BMI in the range (18.5, 24.9)?
- Find $Pr(18.5 \le X \le 24.9)$:

$$z_1 = \frac{18.5 - 26.6}{3.2} = -2.53$$

$$z_2 = \frac{24.9 - 26.6}{3.2} = -0.53$$

$$Pr(-2.53 \le Z \le -0.53) = 0.2924$$

- pnorm(-0.53) pnorm(-2.53) = 0.2924
- pnorm (24.9, 26.6, 3.2) -pnorm (18.5, 26.6, 3.2) = 0.2919

Revisiting the Empirical Rule

- How well does the empirical rule approximate the normal distribution?
 - $Pr(-1 \le Z \le 1) = 0.683$
 - $Pr(-2 \le Z \le 2) = 0.954$
 - $Pr(-3 \le Z \le 3) = 0.997$
- Empirical rule (68%, 95%, 99.7%) appears to be quite good

Normal Distribution: Percentiles

- Given data $x_1, ..., x_n$, what value of x corresponds to a probability of the p^{th} percentile?
- Strategy:
 - Find z value such that $\Pr(Z \le z) = p$ (lower tail probability is p)
 - Solve for x by inverting z-score: $x = z \cdot \sigma + \mu$
- Directly in R: qnorm(p, mean, sd); qnorm(p) for z value

Normal Distribution: Example

- Setup: Let X be a random variable that represents weights of patients in American hospital EDs; X is normally distributed with $\mu=160$ and $\sigma=15$
- Q1: Find the probability that a randomly selected patient in the ED weighs between 140 pounds and 210 pounds

• Q2: Find the value that cuts off the upper 10% of the curve in American ED patient weights

Normal Distribution: Example

- Setup: Let X be a random variable that represents weights of patients in American hospital EDs; X is normally distributed with $\mu=160$ and $\sigma=15$
- Q1: Find the probability that a randomly selected patient in the ED weighs between 140 pounds and 210 pounds

Find z-scores:
$$z = \frac{x - \mu}{\sigma}$$
, so $z_1 = \frac{140 - 160}{15} = -4/3$ and $z_1 = \frac{190 - 160}{15} = 2$
pnorm(2) - pnorm(-4/3) = 0.886

• Q2: Find the value that cuts off the upper 10% of the curve in American ED patient weights

Find z-score:
$$z_{0.9} = \text{qnorm}(0.9) = 1.282 = \frac{x - 160}{15}$$

$$x = 160 + 1.282 \cdot 15 = 179.2$$

Sampling Distributions

- Suppose we want to estimate the mean value of some continuous random variable of interest
- We can take a sample from the population and use the sample mean as an estimate of the population mean: \bar{x} is an estimate for μ
- For a normally distributed population, \bar{x} is the maximum likelihood estimator for μ
 - Value of the parameter that is most likely to have produced the observed sample data
- Different samples will have different means

Sampling Distributions

- What if you continued sampling *m* times?
 - You take one random sample and get mean \bar{x}_1 , take another random sample and get mean \bar{x}_2 , and repeat until you have $\bar{x}_1, \bar{x}_2, ..., \bar{x}_m$
 - Take m random samples for a total of m sample means
- These m means form a distribution with mean μ and variance $\frac{\sigma^2}{n}$ where n is the sample size
- Key idea: \overline{X} has its own distribution
- Standard deviation of \overline{X} is $\frac{\sigma}{\sqrt{n}}$; this is known as the **standard error**

Sampling Normal Distributions

• If the population we are sampling from is normal, then the distribution of \overline{X} will also be normal

• If
$$X \sim N(\mu, \sigma)$$
, then $\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Central Limit Theorem (CLT)

- If the population we are sampling from is not normal, then we can use the Central Limit Theorem (CLT) to get the distribution of \overline{X}
- **Central Limit Theorem**: If the population we are sampling from is not normal, then the shape of the distribution of \overline{X} will be normal as long as n is sufficiently large (typically $n \geq 30$ suffices)

Central Limit Theorem (CLT)

- In particular, given that the distribution of an underlying population has mean μ and standard deviation σ , the distribution of the sample means computed for samples of size n has three important properties:
 - ullet The mean of the sampling distribution equals the population mean μ
 - The standard deviation of the distribution of sample means is equal to $\frac{\sigma}{\sqrt{n}}$, which is the standard error of the mean
 - ullet Given that n is sufficiently large, the shape of the sampling distribution is approximately normal
- In notation: $\overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$

Central Limit Theorem (CLT)

- The further the underlying population is from normal, the larger the sample size you need to ensure normality of the sampling distribution
- However, if the underlying population is normal, you do not need the central limit theorem to ensure normality of the sampling distribution – normality will hold regardless of the sample size if the underlying population is normal
- Since $\overline{X} \sim N\left(\mu, \sigma/\sqrt{n}\right)$, we can standardize \overline{X} to a standard normal distribution as follows:

$$Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

Sampling Distributions Example

- Setup: Suppose house prices have a distribution with a mean of $\mu = \$450,000$ and standard deviation $\sigma = \$100,000$. You draw a random sample of n = 64 houses and determine their prices
- Q1: What is the mean of the distribution of sample means?
- Q2: What is the standard error of the sample mean?
- Q3: What distribution does the sample mean follow?
- Q4: What is the probability that the sample mean of n=64 house prices is greater than \$500,000?

Sampling Distributions Example

- Setup: Suppose house prices have a distribution with a mean of $\mu = \$450,000$ and standard deviation $\sigma = \$100,000$. You draw a random sample of n = 64 houses and determine their prices
- Q1: What is the mean of the distribution of sample means? $\mu = \$450,000$
- Q2: What is the standard error of the sample mean? $\sigma/\sqrt{n} = \$100,000/8 = \$12,500$
- Q3: What distribution does the sample mean follow? By CLT, $\overline{X} \sim N(450000, 12500)$
- Q4: What is the probability that the sample mean of n = 64 house prices is greater than \$500,000? $\Pr(\overline{X} > 500000) = \Pr\left(Z > \frac{500000 450000}{12500}\right) = \Pr(Z > 4) = 0.000032$

Sampling Distribution of a Proportion

- Suppose we are interested in the proportion of the time that an event occurs
- If we take a sample of size n and observe x successes, then we could estimate the population proportion p by $\hat{p}=x/n$
- We can do this sampling process m times for a total of m different values of \hat{p}_i for $i \in \{1,2,...,m\}$
- These m proportions form a distribution with mean p
- Standard deviation of \hat{p} , known as standard error, is $\sqrt{\frac{p(1-p)}{n}}$

Sampling Distribution of a Proportion

- The shape of the distribution of \hat{p} will be approximately normal as long as two conditions are met:
 - $np \geq 5$
 - $n(1-p) \ge 5$
- If both of these conditions are met, then $\hat{p} \sim N\left(p,\sqrt{\frac{p(1-p)}{n}}\right)$

Sampling Distribution of a Proportion: Example

- Setup: Suppose 20% of Americans favor Advil as a pain reducer. A polling organization takes a sample of 100 Americans and asks if they prefer Advil or some other pain relief medicine.
- Q1: What is the mean of this sample proportion? $\mu = 0.20$
- Q2: What is the standard error of this sample proportion? $\sqrt{\frac{0.2(1-0.2)}{100}} = 0.04$
- Q3: What distribution does the sample proportion follow? np = 20 > 5, and n(1-p) = 80 > 5, so by CLT, $\hat{p} \sim N(0.2,0.04)$
- Q4: What is the probability that the sample proportion is less than 18%? $\Pr(\hat{p} < 0.18) = \Pr(Z < (0.18 0.2)/0.04) = \Pr(Z < -0.5) \approx 0.31$
- Q5: What is the 20th percentile of the distribution of the sample proportion? $z_{0.20} = \frac{x \mu}{\sigma} \rightarrow x = 0.2 + (-0.84) \cdot 0.04 \approx 0.167$