

n n	b) Prove that $\beta(m,n) = \frac{\Gamma(m+1)}{\Gamma(m+n)}$ with usual notations.	a) Evaluate $\int_{0}^{\infty} \frac{1}{(1+x^2)^4} dx$) j (x+)	c) By changing to polar co-ordinates evaluate	b) Show that the area between the parabolias $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$	8. a) Evaluate $\iint e^{-x} dy dx$	c) Find the area of _ the Cardioid $r = a (1 + \cos \theta)$ _	$\int_{0}^{\infty} \int_{0}^{\infty} y^{2} dy dx$	b) Change the order of integration and hence evaluate	7. a) Evaluate $\iint_0^1 \int_0^2 x^2 yz dx dy dz$	Unit-IV	$z = x^3 + y^2 + 1$ at $(0,1,2)$ c) Establish the following identities:	(1,-2,-1) in the direction of vector $2i-j-2k$ b) Find the angle between the surfaces $x^2+y^2+z^2$	c) If U=e' sin (yz), where $x=t^2$, $y=t-1$, $z=\frac{1}{2}$, find $\frac{1}{dt}$ at $t=2$ 6. a) Find the directional derivative of $\phi = x^2 + 4x^2$ at the point	ii) If $U = \log \left(\frac{x^4 + y^4}{x + y} \right)$ then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$		 5. a) Find the extreme values of x = x² + y² + 12x - 6 b) i) If u is a homogeneous function of degree t in x and y, then 	 c) Obtain the Madaurin's expansion of log (1 + x) upto three non-vanishing terms. Unit - III 	18MA101 Supplementary – July 2018
	7	0)	7	-		0)	7	4		03	-	7	01	7	7		01	7	
	Fi .	5	E	6		in a	E .	E .		E	R	K	EA.	R	12		II.	Ex.	
	in	ZA.	*				*	-			141	63	10	14 4	10		103	5.1 At	
							į							ではまる人	A Comment	121	100	On the last of the	

State Rolle's theorem, & verify Note: Answer Five full questions choosing One full question from each Unit State and prove Cauchy's mean value theorem . Obtain Taylor's series expansion of $\log x$ about x = 1 upto fourth degree terms series $\sum \left(\frac{nx}{n+2}\right)^n x > 0$ State Cauchy's root test and test the convergence of the in $[0,\pi]$ II) Test the convergence of the following series Diagonalize the matrix Show that the transformation i)State Comparison test. 1+12 1+213 1+314 represent a regular linear transformation. Find the inverse of this transformation. $y_1 = x_1 + x_2 + 3x_3$; $y_2 = x_1 + 3x_2 - 3x_3$; $y_3 = -2x_1 - 4x_2 - 4x_3$ Reduce the quadratic form $8x^2 + 7y^2 + 3z^2$ into canonical form Find the eigen values and eigen vectors of the following matrix by Gauss elimination method Test for consistency and solve the following system of equations Find the rank of the following matrix using elementary row x + 4y + 9z = 6x + 2y + 3z = 4x+ y+ z = 3 First Semester B.E. (Credit System) Degree Examinations NMAM INSTITUTE OF TECHNOLOGY, NITTEM (An Autonomous Institution affiliated to VTU, Belagavi) Supplementary Examinations - July 2019 18MA101 - ENGINEERING MATHEMATICS - I Unit - II Unit -1 the theorem for $f(x) = \frac{\sin x}{e^x}$ NSU Marks BT* CO* PO* 0 Max. Marks: 100 70 L*2 12 12 5 5 12 -5 5 22 20 אוסרספו רופצ 2

	 a) Prove that ∫₀^{π/2} √sin θ dθ = π b) Evaluate ∫₀^a x⁴√a² - x² dx by using Beta & Gamma functions. c) Find the surface area of the solid generated by the revolution of the cardioid r = a(1 - cosθ) about the initial line. BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome 	9. a) Find the volume of the solid generated by revolving one arch of the cycloid $x=a(\theta+\sin\theta)$, $y=a(1+\cos\theta)$ about the X-axis. b) Prove that $\beta(m,n)=\frac{\sqrt{m}\sqrt{n}}{\sqrt{m+n}}$ with usual notations. c) Obtain the reduction formula for $\int \sin^n x dx$ and hence evaluate $\int_0^{\pi/2} \sin^n x dx$.	8. a) Evaluate $\int_{-c}^{c} \int_{-b}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz$ b) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the 1st quadrant. c) Evaluate $\int_{0}^{1} \int_{x}^{\sqrt{x}} xy dy dx$ by changing the order of integration.	Unit – IV 7. a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^3 + y^2) dx dy$ b) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integral. c) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2 + y^2)} dx dy$ by changing the polar coordinates.	19MA101 SEE - November - December 2019 6. a) If $u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$, show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$ b) Expand $x^2y + 3y - 2$ at the point $(1, -2)$ using Taylor's theorem upto terms of 2^{nd} degree. c) The period of a simple pendulum is $T = 2\pi \sqrt{l/g}$. Find the maximum error in T due to the possible error upto 1% in 1 and 2.5% in G
	ome 6	7 6	7 7 6	7 7 6	7 6
	222	5 5 5	Z 2 Z	Z 2 Z	5 5 5
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 5 5a)	4 4 4	4 4 4	ω ω ω
9 6			T 0-1	Note tra	
Obtain T degree to State Rc in [0, π]	Diagonali j)State C ii) Test th 1 1+√2 State Ca series ∑	Reduce th Show that $y_1 = x_1 + x_1$ represent the inven	Test for c by Gauss x+y+: x+2y+ x+4y+ Find the e	Note: Answ Note: Answ a) Find the ritransforma 1 2 2 1 3 2 0 1	4
T T	May + #O all	the the transfer of the transf	0 + + 1 - 0	na w	Fir

(An Autonomous Institution affiliated to VTU, Belagay)

1. a)		Duration: 3 Hours		
1. a) Find the rank of the matrix using elementary row transformation. Marks BT* CO* PO*	Note: Answer Five full questions choosing One full question from easts United	3 Hours 19MA101 - ENGINEERING MATHEMATICS - I	First Semester B.E. (Credit System) Degree Examinations November - December 2019	NMAM INSTITUTE OF TECHNOLOGY, NITTE
	A	- 10	A	

0	9	
2x + y + 4z = 12, $4x + 11y - z = 33$, $8x - 3y + 2z = 20$. c) Diagonalize the matrix $-19 - 7 = 16$	b) Test for consistency and solve the system of equations by Gauss elimination method.	1 1 1 6 1 -1 2 5 1 1 8
1		

1

2 L3

N 2

2. a) Find the eigen values and eigen vectors of the matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

6

5

二

13

i) State D'Alembert's ratio test. Unit - II

w

2

	c	0)	
terms.	c) Expand $\log_e(1+x)$ by using Maclaurin's series upto 4"	State and prove Lagrange's me	ii) Test the convergence of the series $1 + \frac{2!}{2^2} + \frac{3!}{3^2} + \cdots \infty$
	Maclaurin's	ean value the	series 1 +
	series	eorem.	$\frac{2!}{2^2} + \frac{3}{3}$
	upto		+
	400	;	8

4th degree

-

ロロ

22

13

2

76

L3

	0	5	<u>a</u>	
units. What must be the dimensions of the box so that the total surface area of the box is a minimum?	$f = \sigma(u, v, w)/\sigma(x, y, z)$ at $(1, -1, 0)$ A rectangular box open at the top is to have a volume of 32 cubic	If $u = x + 3y^2$, $v = 4x^2yz$, $w = 2z^2 - xy$. Then find	a) If $\tan u = \frac{x^3 + y^3}{x - y}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$	Unit - III

S

L3