

Axis

Logarithms What is a Logarithm?

Log 10 X means	raised to get X
• $\log_{10} 1000 = 3$ b	• 10 ³ = 1000

•
$$log_{10}1000 = 3$$
 because
• $log_{10}10,000 = 4$ because

•
$$\log_{10}10,000,000 = 7$$

• $\log_{10}30 = 1.477$ because

•
$$10^{1.477} = 30$$

• $10^{2.477} = 30$

•
$$\log_{10} 300 = 2.477$$
 because • $10^{2.477} = 300$

So in general ...
$$\log_{h} X = Y$$
 because $b^{Y} = X$

• $10^4 = 10000$ • $10^7 = 10,000,000$

the Power to which 10 is

= 1000

Angle	θ					
Degrees	Radians	$\sin \theta$	cosθ	$\tan \theta$		
0	0	0	1	0		
30	$\frac{\pi}{6}$	1/2	√3 2	$\frac{1}{\sqrt{3}}$		
45	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1		
60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	1/2	√3		
90	$\frac{\pi}{2}$	1	0	undefined		
180	π	0	-1	0		
270	3x 2	-1	0	undefined		
360	2π	0	1	0		

What is in Pandas Package

- Provides Fast, flexible, and expressive data structures.
- Designed to make working with "relational" or "labeled" data both easy and intuitive.
- Aims to be the fundamental high-level building block for doing practical, real world data analysis in Python.
- Series: 1D, DF: 2D
 - Indices can be Labeled, not just integers
 - Multiple Data types supported.

	mpg	cylinders	displacement	horsepower	weight	acceleration	model_year	origin
name								
volkswagen 1131 deluxe sedan	26.0	4	97.0	46.0	1835	20.5	70	europe
volkswagen super beetle	26.0	4	97.0	46.0	1950	21.0	73	europe
volkswagen rabbit custom diesel	43.1	4	90.0	48.0	1985	21.5	78	europe
vw dasher (diesel)	43.4	4	90.0	48.0	2335	23.7	80	europe
vw rabbit c (diesel)	44.3	4	90.0	48.0	2085	21.7	80	europe
fiat 128	29.0	4	68.0	49.0	1867	19.5	73	europe
chevrolet chevette	29.0	4	85.0	52.0	2035	22.2	76	usa
toyota corona	31.0	4	76.0	52.0	1649	16.5	74	japan
mazda glc deluxe	32.8	4	78.0	52.0	1985	19.4	78	japan
vw pickup	44.0	4	97.0	52.0	2130	24.6	82	europe

Box Plot Boundaries

13

Violin Plot

