# ORES Custom Documentation IV

Disclaimer: No guarantee for the correctness of information / explanations / sources is given.

# Goals

- 1. Adjust crucial metrics list
  - to match the damaging model metrics  $\checkmark$
  - ullet add 2 last metrics  $\checkmark$
- 2. Check out mail attachments  $\checkmark$
- 3. Check out new Confluence pages and goals  $\checkmark$
- 4. Research
  - Check out FAT Conference Docs
  - In what other cases than confusion matrices are those parameters explained?
  - Are there already visualizations of some of these parameters in any contexts?
  - Are there any applications, where I can filter for these parameters → visualizations or just about anything?

# 1 Crucial metrics: damaging-model

Metrics simple list:

| !f1         | <b>✓</b> |
|-------------|----------|
| !precision  | <b>✓</b> |
| !recall     | <b>✓</b> |
| accuracy    | <b>✓</b> |
| counts      | <b>✓</b> |
| f1          | <b>✓</b> |
| filter_rate | <b>✓</b> |
| fpr         | <b>✓</b> |
| match_rate  | <b>✓</b> |
| pr_auc      | <b>✓</b> |
| precision   | <b>✓</b> |
| rates       | <b>✓</b> |
| recall      | <b>✓</b> |
| roc_auc     | <b>✓</b> |

The metrics are the same for the damaging and itemquality models, but a few changes will be made to the explanatory parts nontheless (compared to the version in oresDoc3). Also the structure of explanations will be changed to the following:

For each metric (if possible) there will be:

- 1. An intuitive explanation
- 2. The formula based on the **confusion matrix**
- 3. Its meaning based on the "confusion circle"
- 4. Its meaning based on the **loan threshold** representation by Google (Link)

### **Explanations: References**

• Confusion Matrix

|           |          | Actual         |                |
|-----------|----------|----------------|----------------|
|           |          | Positive       | Negative       |
| cted      | Positive | True Positive  | False Positive |
| Predicted | Negative | False Negative | True Negative  |

#### • "Confusion Circle"



#### • Loan Threshold



### 1.1 recall

1. Recall ( $\equiv$  True Positive Rate) is defined as the ability of a model to find all relevant cases within the dataset.



# 1.2 precision

1. Ability of the model to find only relevant cases within the dataset



### 1.3 f1

1. F1-Score, the harmonic mean of recall and precision, a metric from 0 (worst) to 1 (best), used to evaluate the accuracy of a model by taking recall and precision into account

| 2. | 3. | 4. |
|----|----|----|
| -  | -  | -  |

$$= 2*\frac{\texttt{precision*recall}}{\texttt{precision+recall}}$$

Compared to the simple average (of recall and precision), the harmonic mean punishes extreme values (e.g. precision 1.0 and recall  $0.0 \rightarrow$  average 0.5, but F1 = 0)

### 1.4 fpr

1. The false positive rate (**FPR**) is the probability of a false alarm



### 1.5 roc\_auc

1. The **area under** the **curve** of the **ROC**-curve, a measure between 0.5 (worthless) and 1.0 (perfect: getting no FPs), rates the ability of a model to achieve a blend of recall and precision

| 2. | 3. | 4. |
|----|----|----|
| -  | -  | -  |

The receiver operating characteristic (ROC) curve plots the TPR versus FPR as a function of the model's threshold for classifying a positive



Increasing the threshold  $\rightarrow$  moving up a curve ( $\equiv$  model) to the top right corner, where all data is predicted as positive (threshold = 1.0) and vice versa

### 1.6 pr\_auc

(see: link 1 and link 2)

1. The **area under** the **curve** of the **PR**-curve, same: similar objective as the **roc\_auc**, but PR curves are better than ROC curves if the populations are imbalanced

The PR-curve plots the Precision versus the Recall



Instead of the top left corner for the ROC-curve, here, we want to be in the top right corner for our classifier to be perfect

# 1.7 accuracy

1. Measuring the portion of correctly predicted data



### 1.8 match\_rate

1. The proportion of observations matched/not-matched



### 1.9 filter\_rate

1. The proportion of observations filtered/not-filtered



### 1.10 counts

1. The number of edits labeled as false and true

When calling the enwiki damaging model for example (Link), you'll notice the following under counts:

```
"counts": {
    "labels": {
        "false": 18677,
        "true": 751
    },
    "n": 19428,
    "predictions": {
        "false": {
            "false": 17958,
            "true": 719
        },
        "true": {
            "false": 320,
            "true": 431
        }
    }
},
```

The information stored in *labels* is what we defined above under 1.

n is the total number of edits taken into account

predictions is where it gets interesting: false and true as parents of another two of those are the labels and the values of their "child"-booleans are the actual values of their edits

 $\Rightarrow$  e.g. of 18677 edits that were labeled as false, 719 were false negatives

#### 1.11 rates

1. The rates simply equal  $\frac{\texttt{label}}{\texttt{n}}$ , both from **counts** for rates: sample: label, and with label = false or true

So rates: sample: false:  $0.961 = \frac{18677}{19428}$ 

| 2. | 3. | 4. |
|----|----|----|
| _  | _  | -  |

Calling the API the same way as for **counts**, we get:

```
"rates": {
    "population": {
        "false": 0.966,
        "true": 0.034
    },
    "sample": {
        "false": 0.961,
        "true": 0.039
    }
},
```

As already mentioned, the size of sample equals our n in **counts** = 19428.

But why have a sample and the whole population? Because there is a significant number of bot edits and edits that don't need reviewing (admins, autopatrolled users). The sample of edits does not contain any of those.

#### 1.12 !<metric>

- Any <metric> with an exclamation mark is the same metric for the negative class
- e.g.  $recall = \frac{TP}{TP + FN} \Rightarrow !recall = \frac{TN}{TN + FP}$
- Example usage: find all items that are not "E" class  $\rightarrow$  look at !recall for "E" class.

#### 1.12.1 Existing !<metric>s

- !f1
- !precision
- !recall

### 1.13 Additional explanations

#### 1.13.1 recall vs precision

When increasing one of these two, the other one naturally decreases. For an intuitive example, let's take a look at Google's Loan Threshold Simulation:



The dark grey / dark blue dots, representing clients that would actually pay back their loan, are more and more included ( $\rightarrow$  given loans) if we move the threshold further to the left.

But so are clients that would not. Thus moving the threshold to the left increases the **recall** (**tpr**) but decreases the **precision** and vice versa when moving to the right.

#### 1.13.2 roc\_auc vs pr\_auc

see: https://www.kaggle.com/general/7517

- tl;dr: if the class imbalance problem exists,  $\mathbf{pr}$ \_auc is more appropriate than  $\mathbf{roc}$ \_auc
  - If TNs are not meaningful to the problem or there are a lot more negatives than positives, **pr\_auc** is the way to go (it does not account for TNs).
- In other words:
  - If the model needs to perform equally on the positive and negative class  $\rightarrow$  **roc\_auc**

– If it's not interesting how the model performs on negative class  $\rightarrow$  **pr\_auc** (example: detecting cancer; find all positives and make sure they're correct!)

### 2 Research

#### 2.1 Confusion Matrices Alternatives

- Already mentioned before: Confused Pie Plots (Link)
- "Visualization of Confusion Matrix for Non-Expert Users" (Link)

|                         |            | Classification from Ground-Truth |           |            |       |
|-------------------------|------------|----------------------------------|-----------|------------|-------|
|                         |            | Anchovy                          | Barracuda | Clown Fish | Other |
| Classifi and an         | Anchovy    | 85                               | 12        | 0          | 15    |
| Classification from the | Barracuda  | 12                               | 75        | 4          | 9     |
| Software                | Clown Fish | 0                                | 9         | 95         | 6     |
|                         | Other      | 3                                | 4         | 1          | 70    |



• Same project: (Link)



Personal comment: Since the most commonly mentioned problem with confusion matrices is the readability with a high amount of classes, these (and probably most other) alternative representations aim to improve that aspect, thus they might not be extremely useful for visualizations in the context of the **damaging**-model.

# 2.2 roc\_auc and pr\_auc

Of course, there are multiple tools to plot the ROC and PR curves. For example:

• ROC: Scikit-learn (Tutorial Link)

• PR: Scikit-yb (Link)

#### 2.3 Classifier Visualizations

• Actual visualization of parameters: Scikit Discrimination Threshold Visualization (Link)



For binary probabilistic classifiers only (fits the **damaging**-model).  $\rightarrow$  Is this interesting to us? We need the dataset (see link for code)! If it is, also check other visualizations on the site!

# **Additional Information**

- Interesting: ML metrics evaluation in python (Link)
- ORES Threshold Link
- Confluence Link (Bachelor Thesis)
- Amir's mail links
  - New Filters for Edit Review Documentation Link
  - ORES API Call Link
    - "Basically it asks for threshold from the API when "recall is at its maximum when precision is at least 0.995"'
  - Enwiki Damaging Modelinfo Link
  - Scikit Information on micro and macro Link
- Bowen Yu: Applying Value-Sensitive Algorithm Design to ORES

# Questions

• Q: Should I ask Aaron how he would like us to work together? I'm not sure how he meant it.



• Q: In what situations exactly do we want to optimize the threshold in the context of user centered threshold optimization?

