### stuff about the MRI?

set-up boundary conditions parameter range open questions, etc

#### momentum

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla P - \nabla \Phi + \frac{1}{\rho} (\mathbf{J} \times \mathbf{B}) + \nu \nabla^2 \mathbf{u} - 2\mathbf{\Omega} \times \mathbf{u} - \mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$

### induction

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}$$

### set-up, boundary conditions, dedalus



Weakly nonlinear analysis explores behavior at the margin of instability.



### Identify the most unstable mode of the linear MRI.



Tune this mode just over the threshold of instability.

Multiscale analysis tracks the evolution of fast and slow variables.



# Equations are solved in a matrix formulation.

The fluid quantities are expanded in a perturbation series.

$$\mathbf{V} = \epsilon \mathbf{V_1} + \epsilon^2 \mathbf{V_2} + \epsilon^3 \mathbf{V_3} + \dots$$

#### something about boundary layers?



# The removal of secular terms yields solvability criteria.



# The removal of secular terms yields solvability criteria.



First order velocity perturbations



Second order velocity perturbations



First and second order velocity perturbations



First order magnetic field perturbations



### Second order magnetic field perturbations



First and second order magnetic field perturbations  ${\cal B}_y$ 



#### Future work:

non-thin gap approximation helical MRI explore parameter space comparison to experiment