Condensed Calculus

Trigonometry

 $(\cos \theta, \sin \theta)$ is the coordinate on the unit circle that makes angle θ with the positive *x*-axis.

$$\sec \theta = \frac{1}{\cos \theta} \qquad \csc \theta = \frac{1}{\sin \theta}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$

 $sin(A \pm B) = sin A cos B \pm cos A sin B$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

Limits

Law	Let $\lim f(x) =$	= L and $\lim_{x \to a} g(x) = M$.
	$r \rightarrow a$	$r \rightarrow a$

Sum
$$\lim_{x \to a} (f(x) + g(x)) = L + M$$

Scalar
$$\lim_{x \to a} cf(x) = cL$$

Product
$$\lim_{x \to a} (f(x) \cdot g(x)) = L \cdot M$$

Quotient
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{L}{M}$$
 for $M \neq 0$

Power
$$\lim_{n \to \infty} (f(x))^n = L^n$$

Root
$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{L}$$
 for all L if n is odd,

and for
$$L \ge 0$$
 if n is even and $f(x) \ge 0$. $\delta > 0$, such that

Squeeze Theorem:

Let f, g, and h be functions with $g(x) \le f(x) \le h(x)$ for all x and $\lim_{x \to a} g(x) = L = \lim_{x \to a} h(x), \text{ then } \lim_{x \to a} f(x) = L.$

Indeterminate Forms:

$$\frac{0}{0}, \frac{\infty}{\infty}, 0^0, \infty - \infty, 1^{\infty}, 0 \cdot \infty, \infty^0$$

$\varepsilon - \delta$ definition:

L is the limit of f as x approaches *a* if for all $\varepsilon > 0$, there is some $|x - a| < \delta \implies |f(x) - L| < \varepsilon$.

$$|x \quad u| \quad v \quad \longrightarrow |y(x) \quad D| \quad v$$

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \qquad \lim_{x \to \infty} \frac{ax^n + \dots}{bx^m + \dots} = \begin{cases} 0 & m > n \\ \infty & n > m \\ a/b & n = m \end{cases}$$

Continuity

Definition: f is continuous at x = a if $\lim_{x \to a} f(x) = f(a)$.

- The following functions are **continuous on their domains**: polynomials, rational functions, trig and inverse trig functions, exponential functions, logarithms.
- The sum, product, and composition of continuous functions is continuous.

Composite Function Theorem: The Intermediate Value Theorem:

If f(x) is continuous at Land $\lim_{x \to a} g(x) = L$, then $\lim f(g(x)) = f(L).$

Let f be continuous over a closed, bounded interval [a, b]. If z is any real number between f(a) and f(b), then there is a number c in [a, b] satisfying f(c) = z.

Derivatives

Limit definition of the derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Tangent line to f(x) at x = a:

$$L(x) = f(a) + f'(a)(x - a)$$

L'Hôpital's Rule:

If $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ or ∞ , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Logarithmic Differentiation:

To take the derivative of $y = f(x)^{g(x)}$, take $\ln()$ of both sides, bring q(x) down using the log rule $(\ln(a^b) = b \ln(a))$, implicitly differentiate, and then solve for y':

$$y' = f(x)^{g(x)} \left(g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right).$$

The Scalar Multiple Rule [af]' = af'

The Sum Rule [f + q]' = f' + q'

[fq]' = f'q + fq'The Product Rule

 $\left[\frac{f}{g}\right]' = \frac{f'g - fg'}{g^2}$ The Quotient Rule

[f(q(x))]' = f'(q(x))q'(x)The Chain Rule

 $[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$ The Inverse Rule

The Constant Rule [a]' = 0

The Power Rule $[x^a]' = ax^{a-1}$

Trig Rules $[\sin(x)]' = \cos(x)$ $[\cos(x)]' = -\sin(x)$

 $[\cot(x)]' = -\csc^2(x)$ (PSST!) $[\tan(x)]' = \sec^2(x)$

 $[\sec(x)]' = \sec(x)\tan(x) [\csc(x)]' = -\csc(x)\cot(x)$

 $[a^x]' = \ln(a)a^x$ **Exponent Rule**

 $[\log_a(x)]' = \frac{1}{x \ln(a)}$ Logarithm Rule