Euler's Method

Citation: https://www.mathworks.com/matlabcentral/answers/278300-matlab-code-help-on-euler-smethod Initial conditions and setup

```
h = 0.1; % step size
x = 0:h:4; % the range of x
y = zeros(size(x)); % allocate the result y
y(1) = 0; % the initial y value
n = numel(y); % the number of y values
% The loop to solve the DE
for i=1:n-1
    f = x(i)+2*y(i); %the expression for y' in your DE
   y(i+1) = y(i) + h*f;
end
х
У
plot(x,y)
x =
 Columns 1 through 7
             0.1000
                       0.2000
                                0.3000
                                          0.4000
                                                    0.5000
                                                              0.6000
 Columns 8 through 14
   0.7000
            0.8000
                       0.9000
                                1.0000
                                          1.1000
                                                    1.2000
                                                              1.3000
 Columns 15 through 21
   1.4000
            1.5000
                      1.6000
                                1.7000
                                          1.8000
                                                    1.9000
                                                              2.0000
 Columns 22 through 28
   2.1000
            2.2000 2.3000
                                2.4000
                                          2.5000
                                                    2.6000
                                                              2.7000
 Columns 29 through 35
                                                              3.4000
   2.8000
             2.9000 3.0000
                                3.1000
                                          3.2000
                                                    3.3000
 Columns 36 through 41
    3.5000 3.6000 3.7000
                                 3.8000
                                          3.9000
                                                    4.0000
y =
 Columns 1 through 7
                  0
                       0.0100
                                0.0320
                                          0.0684
                                                    0.1221
                                                              0.1965
```

Columns 8 through 14						
0.2958	0.4250	0.5899	0.7979	1.0575	1.3790	1.7748
Columns 15 through 21						
2.2598	2.8518	3.5721	4.4465	5.5058	6.7870	8.3344
Columns 22 through 28						
10.2013	12.4515	15.1618	18.4242	22.3491	27.0689	32.7426
Columns 29 through 35						
39.5612	47.7534	57.5941	69.4129	83.6055	100.6466	121.1059
Columns 36 through 41						
145.6671	175.1505	210.5406	253.0187	304.0024	365.1929	

Solve 1st order linear ODE symbolically

 $\label{lem:com/help/symbolic/solve-a-single-differential-equation. Syms y(t) \\$

```
ode = diff(y,t) == t+2*y; % diff(dependent, independent)
ySol(t) = dsolve(ode)

%With initial condition
cond = y(1) == 0;
ySol(t) = dsolve(ode,cond)

ySol(t) =

(C5*exp(2*t))/4 - t/2 - 1/4

ySol(t) =

(3*exp(2*t)*exp(-2))/4 - t/2 - 1/4
```

Published with MATLAB® R2018a