I008 Výpočtová logika

nikoliv teorie modelů (algebraická logika), ale teorie důkazů

Vstup: množina formulí

Výstup: logický důsledek vstupní množiny

mechanické prostředky pro dokazování formulí

Proces dokazování = v jistém smyslu totéž jako proces výpočtu programu

1 Úvod. Logický kalkul, syntaxe, sémantika

1.1 Úvod

$$\exists F \{ F(a) = b \land \forall x [p(x) \rightarrow F(x) = G(x, f(x))] \}$$

(syntakticky) dobře utvořená formule (well formed formula, wff) Sémantika

- standardní $\wedge \vee \neg \rightarrow \leftrightarrow \forall \exists$
- interpretací
 - $-a,b \in D$
 - $-p:D \rightarrow \{true, false\}$
 - $-f: D \to D, g: D \times D \to D$

Příklad 1.1 $\exists F\{\ F(a)=b \land \forall\ x\ [\ p(x)\to F(x)=G(x,f(x))\]\ \}$ Možné interpretace

- 1. D=N, a=0, b=1, f(x)=x-1, g(x,y)=x*y, p(x)=x>0
- 2. $D=\Sigma^*$, $\Sigma=\{\alpha,\beta\}$, a=b=nil, f(x)=x bez 1. znaku zřetězeno s 1. znakem z x
- 3. D=N, a=0, b=1, f(x)=x, g(x,y)=y+1, p(x)=x>0

1.2 Syntaxe

1.2.1 Abeceda

```
pravdivostní symboly T,F výrokové spojky \land \lor \lnot \to \longleftrightarrow operátory = kvantifikátory \forall \exists konstanty - funkční f_i^n (n-ární), n=0 individuové - predikátové p_i^n, n=0 výrokové proměnné - funkční F_i^n, n=0 x,y,z,... individuové - predikátové P_i^n, n=0 výrokové
```

1.2.2 Dobře utvořená formule

Definice 1.2 Term

- 1. Individuové konstanty a proměnné jsou termy;
- 2. $jsou-li\ t_1, t_2, ..., t_n\ termy, jsou\ f_i^n(t_1, ..., t_n), F_i^n(t_1, ..., t_n)\ termy.$

Definice 1.3 Atomická formule (atf)

- 1. T a F jsou atf;
- 2. $jsou-li\ t_1, t_2, ..., t_n\ termy, jsou\ p_i^n(t_1, ..., t_n), P_i^n(t_1, ..., t_n)\ atf;$
- 3. jsou- $li t_1, t_2 termy, je t_1 = t_2 atf.$

Definice 1.4 Dobře utvořená formule (wff)

- 1. Každá atf je wff;
- 2. $jsou-li\ A, B\ wff,\ jsou\ i\ \neg A,\ A\wedge B,\ A\vee B,\ A\to B,\ A\leftrightarrow B\ wff;$
- 3. je-li x proměnná a A wff, jsou $(\forall x \ A)$, $(\exists x \ A)$ wff.

Definice 1.5 Proměnná je vázaná, je-li kvantifikovaná. Je-li mimo dosah kvantifikátoru, je volná.

Příklad 1.6 $\forall P \ [\ P(a) \land \exists x \ (\ x \neq a \land P(f(x)) \) \ \rightarrow P(x) \]$

1.3 Klasifikace logických kalkulů

1. pouze výrokové konstanty (p^0) , žádné proměnné $(\to$ žádné kvantifikátory): **výrokový počet(kalkul)**

$$(p \land q) \to (\neg q \lor r)$$

2. pouze individuové konstanty a funkční individuové proměnné:

kalkul rovnosti

$$\forall x \forall y \forall z \ [\ (x = y \land y = z) \rightarrow x = z \]$$

3. všechny konstanty, ale pouze funkční individuové proměnné:

predikátový počet 1. řádu

$$(x \neq a) \rightarrow \forall y \ [\exists z \ p(x, f(y, z)) \rightarrow q(y) \]$$

- s funkcemi a rovnostmi
- 4. predikátový počet 2. řádu

1.4 Sémantika

Definice 1.7 Interpretace I dobře utvořené formule A je trojice (D, I_C, I_V) ,

 $kde D \neq \emptyset je obor interpretace$

 I_C je interpretace konstant

 I_V je interpretace proměnných.

Pozn: Dosazujeme jen volné proměnné.

Příklad 1.8 $A: \exists x \ \forall y \ p(x,y)$

$$I_1: D=N, p(x,y)=x \le y; < A, I_1 > ?$$

$$I_2: D=N, p(x,y)=x\geq y; < A, I_2>?$$

$$I_3: D=N, p(x,y)=x=1; < A, I_3 > ?$$

$$B: \forall x \; \exists y \; p(x,y)$$

$$< B, I_1 > ?$$

$$< B, I_2 > ?$$

$$< B, I_3 > ?$$

Příklad 1.9 [$\forall x \ p(x) \ \lor \ \forall x \ q(x) \] \rightarrow \forall x \ (\ p(x) \lor q(x) \)$

Příklad 1.10 $\forall x \ (p(x) \lor q(x)) \rightarrow [\forall x \ p(x) \lor \forall x \ q(x)]$

Definice 1.11 Interpretace dané formule, která vede k pravdivému výroku, se nazývá model formule. Jinými slovy,tato interpretace splňuje formuli.

Definice 1.12 Formule je splnitelná, existuje-li alespoň jeden její model. V opačném případě je nesplnitelná.

Definice 1.13 Je-li formule pravdivá v každé interpretaci, nazývá se logicky pravdivá (validní). (Ve výrokovém počtu též tautologie).

Definice 1.14 Dvě formule A,B nazýváme ekvivalentní, jestliže každá interpretace, která je modelem jedné z nich, je modelem i druhé (tj. právě když $A \leftrightarrow B$ je logicky pravdivá formule). Fromule B je logickým důsledkem formule A, jestliže každá interpretace, která je modelem A, je i modelem B (tj. právě když $A \rightarrow B$ je logicky pravdivá.

Příklad 1.15 $\forall x \ p(x) \rightarrow \exists x \ p(x)$

$$\forall x \ q(x) \to q(x)$$

$$\forall x \ q(x) \to q(x)$$
$$\exists x \ p(x) \to \forall x \ p(x)$$
$$p(a) \land \neg p(a)$$

$$p(a) \wedge \neg p(a)$$

1 Intro

2 Výroková logika

2.1 Uspořádání a strom

Definice 2.1 Částečné uspořádání je množina S spolu s binární relací < na S, která je tranzitivní, tj. $(x < y) \land (y < z) \rightarrow x < z$, a ireflexivní, tj. x < x neplatí pro žádné x.

Definice 2.2 Částečné uspořádání < je lineární uspořádání (uspořádání), jestliže $splňuje \ podmínku \ (x < y) \lor (x = y) \lor (y < x) \ pro \ \forall x,y \in S.$

Příklad 2.3

Definice 2.4 Lineární uspořádání je dobře založené (nebo dobré) uspořádání, když neobsahuje žádný nekonečný sestupný řetězec $x_0, x_1, ... \in S$ takový, že ... $x_2 < x_1 < x_0$.

Definice 2.5 Strom je množina T, jejíž prvky nazýváme uzly, částečně uspořádaná relací $<_T$ s jediným nejmenším prvkem, zvaným kořen, kde předchůdci každého uzlu jsou dobře uspořádány relací $<_T$ (např. neexistuje tam cyklus).

Cesta P ve stromu T je maximální lineárně uspořádaná podmnožina T .

Příklad 2.6 1. Vytvářecí strom

2. Rozhodovací strom

Definice 2.7 Úroveň ve stromu T je definována indukcí takto:

- 1. Nultá úroveň obsahuje kořen T.
- 2. (k+1)-tá úroveň T obsahuje všechny bezprostřední následníky všech uzlů k-té úrovně.

Hloubka stromu T je maximální n takové, že strom T obsahuje uzel úrovně n. Existuje-li uzel úrovně n pro $\forall n \in N$, pak strom T je nekonečný.

Jestliže každý uzel stromu T má nejvýše n následovníků, pak strom nazýváme n-ární. Pokud mají všechny uzly konečně mnoho bezprostředních následovníků, strom nazýváme strom s konečným větvením.

Příklad 2.8

Věta 2.9 Königova věta

Jestliže strom s konečným větvením je nekonečný (má nekonečnou hloubku), pak obsahuje nekonečnou cestu.

Důsledek: Žádný strom T nemá současně následující 3 vlastnosti:

- 1. Každý uzel v T má konečně mnoho přímých následníků.
- 2. Kařdá cesta v T je konečně dlouhá.
- 3. Strom T má nekonečně mnoho uzlů.

Definice 2.10 Ohodnocený strom T je strom T spolu s funkcí f, která přiřazuje každému uzlu v T nějaký objekt, který nazýváme ohodnocení nebo hodnota uzlu. Příklad 2.11

2.2 Výroky, spojky a pravdivostní tabulky

Definice 2.12 Formule je řetězec nad abecedou výrokových symbolů a logických spojek

- 1. výrokový symbol je formule;
- 2. jsou-li α , beta formule, jsou i $(\alpha \wedge beta)$, $(\alpha \vee beta)$, $(\alpha \rightarrow beta)$, $(\neg \alpha)$ formule;
- 3. řetězec symbolů je formule, právě když ji lze získat aplikací (1) a (2).

Lemma 2.13 Každá formule má jednoznačný vytvářecí strom.

Definice 2.14 Množina pravdivostně funkcionálních spojek je po_{stačující}, jestliže pro libovolnou pravdivostní tabulku existuje výrok složený z těchto spojek, který má stejnou pravdivostní tabulku.

Věta 2.15 *Množina* $\{\land, \lor, \neg\}$ *je posta\check{c}uj\acute{c}i.*

Příklad 2.16 (idea důkazu věty 2.15)

A B C ?

TTTT

TTFF

TFTF

TFFF

FTTT

FTFF

F F T F

FFFT

Z pohledu na tuto tabulku vidíme, kdy hledaná funkce nabývá hodnot T (pravda). V našem případě js ou to 1., 5. a 8. řádek. Tedy výsledná funkce je logickým součtem podmínek, které je nutno splnit , aby hledaná funkce nabyla hodnoty pravda. Každá podmínka je konjunkcí požadavků na pravdivost všech výrokových symbolů A; B; C. Tedy hledaná funkce je:

Důsledek:

- 1. Množina $\{\neg, \lor\}$ je postačující.
- 2. Shefferova spojka je postačující.

A B AB

T T F

T F T

F T T

F F T

2.3 Přiřazeni pravdivostních hodnot. Valuace

Definice 2.17 Pravdivostní přiřazení \mathcal{A} je funkce, která přiřazuje každému výrokovému symbolu A jedinou pravdivostní hodnotu $\mathcal{A}(\mathcal{A}) \in \{\mathcal{T}, \mathcal{F}\}.$

Definice 2.18 Pravdivostní ohodnocení (valuace, interpretace) \mathcal{V} je funkce přiřazující každému výroku α jedinou pravdivostní hodnotu $\mathcal{V}(\alpha)$ podle pravdivostních tabulek pro logické spojky.

Věta 2.19 Pro danné pravdivostní přiřazení \mathcal{A} existuje právě jedno pravdivostní ohodnocení \mathcal{V} takové, že $V(\alpha) = A(\alpha)$ pro každý výrokový symbol α .

Důsledek: Jestliže dvě valuace $\mathcal{V}_1, \mathcal{V}_2$ souhlasí na všech výrokových proměnných formule α , pak $\mathcal{V}_1(\alpha) = \mathcal{V}_2(\alpha)$ pro lib. fomuli α .

Platná formule $V(\alpha) = \mathcal{T}$

 α je (logický) důsledek množiny formulí Σ ($\Sigma \models \alpha$)

Tautologie

 ${\mathcal V}$ je modelem množiny formulí Σ

- 1 Intro
- 2 Výroková logika
- 2.1 Výroky, spojky a pravdivostní tabulky
- 2.2 Přiřazení pravdivostních hodnot. Valuace

Tabulkové du*kazy, o nichž si zde budeme povídat, jsou stromy s označenými formulemi v uzlech. Probrat všechny možnosti pro du*kaz formule není v podstatě možný (neuvažujeme matematickou proveditelnost, ale proveditelnost z hlediska automatizovaného dokazování formulí; zde uvedenou nemožnost chápeme jako extrémně vysokou složitost). Proto rozvíjíme strom s označenými formulemi tak, abychom dostali kontradikci.

2.3 Tabulkové důkazy ve výrokové logice

Definice 2.1 Označená formule je TA nebo FA pro libovolnou formuli A.

Definice 2.2 Konečná tabulka je binární strom, kde v uzlech jsou označené formule, definovaný takto:

- 1. Každá atomická tabulka je konečná tabulka;
- 2. Je-li τ konečná tabulka, P cesta v tabulce τ , E je uzel na P a τ' je tabulka, která vznikne z tabulky P přidáním atomické tabulky s kořenem E na konec cesty P, pak τ' je též konečná tabulka.

Definice 2.3 1. Uzel E na cestě P je redukovaný, jestliže se na cestě P vyskytuje jako kořen atomické tabulky;

- 2. Cesta P je kontradiktorická, jestliže se na ní vyskytuje dvojice uzlů TA a FA pro nějaké A;
- 3. Tabulka τ se nazývá ukončená, jsou-li v ní na každé nekontradiktorické cestě všechny uzly redukované. Jinak je neukončená.

 $Tabulka \ au \ se \ nazývá \ kontradiktorická, je-li \ v \ ní \ každá \ cesta \ kontradiktorická.$

Definice 2.4 Tabulkový důkaz formule A je kontradiktorická tabulka s kořenem FA.

Tabulkové vyvrácení formule A je kontradiktorická tabulka s kořenem TA.

- 1 Intro
- 2 Výroková logika
- 2.1 Výroky, spojky a pravdivostní tabulky
- 2.2 Přiřazeni pravdivostních hodnot. Valuace
- 2.3 Tabulkové důkazy ve výrokové logice

2.4 Rezoluce

Definice 2.1 Literál l je výrokový symbol P nebo jeho negace $\neg P$. Literál s negací je negativní, bez ní je pozitivní.

Klauzule C je konečná množina literálů (ve smyslu jejich dizjunkce). Klauzule je pravdivá, jestliže alespoň jeden z jejích prvků je pravdivý. Prázdná klauzule □ je vždy nepravdivá.

Formule je (potenciálně nekonečná) množina klauzulí. Prázdná formule je vždy pravdivá. 2.4.1 Prolog, alternativní notace

Definice 2.2 Rezoluční pravidlo. Buďte $C_1 = \{p\} \sqcup C_1', C_2 = \{\neg p\} \sqcup C_2'$ klauzule. Jejich **rezolventu** definujeme jako klauzuli $C = C_1 \cup C_2$.

 $C_1, C_2 \dots \text{rodiče}, C \dots \text{dítě}$

Příklad 2.3 $\{p, q, \neg r, s\}, \{\neg p, q, r, t\}$

Definice 2.4 Rezoluční důkaz klauzule C z množiny klauzulí S je konečná posloupnost klauzulí $C_1, C_2, ..., C_n = C$ taková, že každé C_i je buď prvkem S nebo je rezolventou klauzulí C_j, C_k pro j, k < i.

Existuje-li rezoluční důkaz klauzule C z množiny klauzulí S, říkáme, že C je (rezolučně) dokazatelná z S a píšeme $S \vdash_R C$.

 $Odvození prázdné klauzule \square z S se nazývá vyvrácením množiny klauzulí <math>S$.

Definice 2.5 Strom rezolučního důkazu klauzule C z množiny S je strom T následujících vlastností:

- 1. C je kořenem stromu T;
- 2. Listy T jsou prvky množiny S;
- 3. Je-li C_2 uzel, který není listem, a jeho následníky jsou uzly C_1, C_2 , pak C_2 je rezolventou C_1, C_2 .

Příklad 2.6 $\{\{p,r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{s, \neg t\}\}$

Věta 2.7 Korektnost a úplnost rezoluce.

Existuje-li rezoluční vyvrácění množiny klauzulí S, pak S je nesplnitelná. Je-li množina S nesplnitelná, pak existuje rezoluční vyvrácení S.

Důsledek: Existuje-li rezoluční strom s listy z množiny S a kořenem \square , pak S je nesplnitelná.

2.4.2 Zjemnění rezoluce

- Vyloučení všech klauzulí, které obsahují literál, který se v S vyskytuje jen v jedné paritě;
- Odstranění tautologií, tj. klauzulí C takových, že existuje literál p, který se vyskytuje v klauzuli jako pozitivní i jako negativní. Příklad: $\{m, a, l, \neg a\}$;
- Sémantická rezoluce. Volba libovolného přiřazení pravdivostních hodnot A a odmítnutí rodičovských klauzulí, které jsou v něm splněny.

Každé zjemnění korektní metody je opět korektní metodou.

Uvedená zjemnění nemění nic na úplnosti zjemněné metody.

2.5 Lineární rezoluce, Hornovské klauzule, a Prolog

Definice 2.8 Lineární (rezoluční) dedukce (důkaz)klauzule C z S, kde S je množina klauzulí, je posloupnost dvojic $(C_0; B_0), \ldots, (C_n; B_n)$ taková, že $C_{n+1} = C$ a

- 1. C_0 a všechna B_i jsou z množiny S nebo nějaké C_j takové, že j < i;
- 2. Každá C_{i+1} , $i \leq n$ je rezolventou C_i a B_i .

Klauzule C je lineárně odvoditelná (dokazatelná) z S, jestliže existuje lineární dedukce klauzule C z S. Množinu S nazveme množina vstupních klauzulí, klauzule Ci nazveme střední (průběžné; angl. center) klauzule a klauzule B_j nazveme boční (side) klauzule.

Příklad 2.9

Definice 2.10 Prologovský program.

Hornova klauzule je klauzule s nejvýše jedním pozitivním literálem.

Programová klauzule je klauzule s právě jedním pozitivním literálem.

Pravidlo je programová klauzule s negativními literály.

Fakt je programová klauzule bez negativních literálů.

Cíl je Hornova klauzule bez pozitivních literálů.

Prologovský program je množina klauzulí obsahující jen programové klauzule (pravidla nebo fakta).

Lemma 2.1 Je-li S množina Hornových klauzulí nesplnitelná, pak S obsahuje alespoň jeden fakt a alespoň jeden cíl.

Důkaz: Uvažujme ohodnocení, které přiřazuje všem výrokovým symbolům TRUE. Potom je splněna každá programová klauzule (fakt nebo pravidlo). Přiřazení, které přiřazuje všem výrokovým symbolům FALSE, splňuje cílovou klauzuli a každé pravidlo. Tedy lib. nesplnitelná množina Hornových klauzulí musí obsahovat jak fakt, tak cílovou klauzuli.

Věta 2.2 Úplnost lineární rezoluce pro Hornovy klauzule.

Je-li S nesplnitelná množina Hornových klauzulí, pak existuje lineární (rezoluční) odvození \square z S.

Definice 2.3 Nechť P je množina programových klauzulí a G cílová klauzule. Lineární vstupní rezoluce (LI-rezoluce) množiny $P \cup \{G\}$ je lineární vyvrácení S začínající v G, kde všechny boční klauzule jsou z P.

Příklad 2.4 Neúplnost LI-rezoluce.

$$S = \{ \{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\} \}$$

Věta 2.5 Buď P množina Hornových klauzulí a G cíl. Jestliže $S = P \cup \{G\}$ je nesplnitelná, pak existuje lineární vstupní vyvrácení S.

Idea důkazu: cílovou klauzuli můžeme rezolvovat jen s programovou klauzulí ($\neg p$ z cílové s p z programové). Výsledkem rezoluce je opět cílová klauzule. Tj. pro lib. lineární důkaz \Box z P, který začína v G platí, že všechny děti jsou cílové klauzule a všechny boční klauzule musí být programové. Stači tedy dokázat, že existuje lineární důkaz \Box z P začínající v G (indukcí přes počet literálů v S).

Definice 2.6 Uspořádané klauzule (definite clauses) jsou konečné posloupnosti literálů.

Definice 2.7 Je-li $P \cup \{G\}$ množina uspořádaných klauzulí, pak **LD-rezoluční vyvrácení** $P \cup \{G\}$ je posloupnost $\langle G_0, C_0 \rangle$, . . . , $\langle G_n, C_n \rangle$ uspořádaných klauzulí $\langle G_i, C_i \rangle$ taková, že $G_0 = G$, $G_{n+1} = \square$ a

- 1. $ka\check{z}d\acute{a}\ G_i,\ i\leq n\ je\ uspo\check{r}\acute{a}dan\acute{a}\ c\acute{u}lov\acute{a}\ klauzule\ \{\neg A_{i,0},\ \dots\ ,\neg A_{i,n(i)}\}$
- 2. každá $C_i = \{B_i, \neg B_{i,0}, \dots, \neg B_{i,m(i)}\}$ je programová klauzule délky m(i) + 2 z P. (délka $C_i = \{B_i\}$ je 1).
- 3. pro každé i < m existuje rezoluce usporadanych klauzuli G_i a C_i s rezolventou jako uspořádanou klauzulí

$$G_{i+1} = \{ \neg A_{i,0}, \dots, \neg A_{i,k-1}, \neg B_{i,0}, \dots, \neg B_{i,m(i)}, \neg A_{i,k+1}, \dots, \neg A_{i,n(i)} \}$$
(rezoluce pro $B_i = A_{i,k}$)

Lemma 2.8 Je-li $S = P \cup \{G\}$ nesplnitelná, pak existuje LD-rezoluční vyvrácení S, které začíná klauzulí G.

Důkaz: indukcí podle délky LI-rezolučního vyvrácení $P \cup \{G\}$

Selekční pravidlo R je funkce, která vybírá literál z uspořádané cílové klauzule.

SLD-rezoluce - lineární vstupní rezoluce se selekčním pravidlem

Definice 2.9 SLD-rezoluční vyvrácení $P \cup \{G\}$ pomocí selekčního

pravidla R je LD-rezoluční vyvrácení $\langle G_0, C_0 \rangle$, ... $\langle G_n, C_n \rangle$,

 $G_0=G, G_{n+1}=\square$, kde $R(G_i)$ je literál z G_n rezolvovaný v i+1-ním kroku.

Poznámka: Není-li R explicitně uvedeno, předpokládá se výběr nejlevějšího literálu.

Příklad 2.10

Věta 2.11 Úplnost SLD-rezoluce pro Prolog.

Je-li $P \cup \{G\}$ nesplnitelná a R libovolné selekční pravidlo, potom existuje SLD-rezoluční vyvrácení $P \cup \{G\}$ pomocí R.