Lecture 9: Policy Gradient Methods

Shiyu Zhao

Introduction

Shiyu Zhao 1/43

Introduction

In this lecture, we will move

- from value-based methods to policy-based methods
- from value function approximation to policy function approximation

Shiyu Zhao 2/43

Outline

- 1 Basic idea of policy gradient
- 2 Metrics to define optimal policies
- 3 Gradients of the metrics
- 4 Gradient-ascent algorithm (REINFORCE)
- 5 Summary

Shiyu Zhao 3/43

Outline

- 1 Basic idea of policy gradient
- 2 Metrics to define optimal policies
- 3 Gradients of the metrics
- 4 Gradient-ascent algorithm (REINFORCE)
- 5 Summary

Shiyu Zhao 4/43

Previously, policies have been represented by tables:

ullet The action probabilities of all states are stored in a table $\pi(a|s)$. Each entry of the table is indexed by a state and an action.

	a_1	a_2	a_3	a_4	a_5
s_1	$\pi(a_1 s_1)$	$\pi(a_2 s_1)$	$\pi(a_3 s_1)$	$\pi(a_4 s_1)$	$\pi(a_5 s_1)$
:	:	:	i i	:	:
s_9	$\pi(a_1 s_9)$	$\pi(a_2 s_9)$	$\pi(a_3 s_9)$	$\pi(a_4 s_9)$	$\pi(a_5 s_9)$

• We can directly access or change a value in the table.

Shiyu Zhao 5/43

Now, policies can be represented by parameterized functions:

$$\pi(a|s,\theta)$$

where $\theta \in \mathbb{R}^m$ is a parameter vector.

- The function can be, for example, a neural network, whose input is s, output is the probability to take each action, and parameter is θ .
- **Advantage:** when the state space is large, the tabular representation will be of low efficiency in terms of storage and generalization.
- The function representation is also sometimes written as $\pi(a,s,\theta)$, $\pi_{\theta}(a|s)$, or $\pi_{\theta}(a,s)$.

Shiyu Zhao 6/43

Differences between tabular and function representations:

- First, how to define optimal policies?
 - When represented as a table, a policy π is optimal if it can maximize every state value.
 - When represented by a function, a policy π is optimal if it can maximize certain scalar metrics.

Shiyu Zhao 7/43

Differences between tabular and function representations:

- Second, how to access the probability of an action?
 - In the tabular case, the probability of taking a at s can be directly accessed by looking up the tabular policy.
 - In the case of function representation, we need to calculate the value of $\pi(a|s,\theta)$ given the function structure and the parameter.

Shiyu Zhao 8 / 43

Differences between tabular and function representations:

- Third, how to update policies?
 - When represented by a table, a policy π can be updated by directly changing the entries in the table.
 - When represented by a parameterized function, a policy π cannot be updated in this way anymore. Instead, it can only be updated by changing the parameter θ .

Shiyu Zhao 9 / 43

The basic idea of the policy gradient is simple:

- First, metrics (or objective functions) to define optimal policies: $J(\theta)$, which can define optimal policies.
- Second, gradient-based optimization algorithms to search for optimal policies:

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J(\theta_t)$$

Although the idea is simple, the complication emerges when we try to answer the following questions.

- What appropriate metrics should be used?
- How to calculate the gradients of the metrics?

These questions will be answered in detail in this lecture.

Shiyu Zhao 10 / 43

Outline

- 1 Basic idea of policy gradient
- 2 Metrics to define optimal policies
- 3 Gradients of the metrics
- 4 Gradient-ascent algorithm (REINFORCE)
- 5 Summary

Shiyu Zhao

There are two metrics.

The first metric is the average state value or simply called average value. In particular, the metric is defined as

$$\bar{v}_{\pi} = \sum_{s \in \mathcal{S}} d(s) v_{\pi}(s)$$

- \bar{v}_{π} is a weighted average of the state values.
- d(s) > 0 is the weight for state s.
- Since $\sum_{s \in \mathcal{S}} d(s) = 1$, we can interpret d(s) as a probability distribution. Then, the metric can be written as

$$\bar{v}_{\pi} = \mathbb{E}[v_{\pi}(S)]$$

where $S \sim d$.

Shiyu Zhao 12/4

Vector-product form:

$$\bar{v}_{\pi} = \sum_{s \in \mathcal{S}} d(s) v_{\pi}(s) = d^T v_{\pi}$$

where

$$v_{\pi} = [\dots, v_{\pi}(s), \dots]^T \in \mathbb{R}^{|\mathcal{S}|}$$
$$d = [\dots, d(s), \dots]^T \in \mathbb{R}^{|\mathcal{S}|}.$$

This expression is particularly useful when we analyze its gradient.

Shiyu Zhao 13/4

How to select the distribution d? There are two cases.

The first case is that d is **independent** of the policy π .

- This case is relatively simple because the gradient of the metric is easier to calculate.
- In this case, we specifically denote d as d_0 and \bar{v}_π as \bar{v}_π^0 .
- How to select d_0 ?
 - One trivial way is to treat all the states equally important and hence select $d_0(s) = 1/|\mathcal{S}|$.
 - Another important case is that we are only interested in a specific state s_0 . For example, the episodes in some tasks always start from the same state s_0 . Then, we only care about the long-term return starting from s_0 . In this case,

$$d_0(s_0) = 1, \quad d_0(s \neq s_0) = 0.$$

Shiyu Zhao 14/43

How to select the distribution d? There are two cases.

The second case is that d depends on the policy π .

- A common way to select d as $d_{\pi}(s)$, which is the stationary distribution under π . Details of stationary distribution can be found in the last lecture and the book.
 - ullet One basic property of d_π is that it satisfies

$$d_{\pi}^T P_{\pi} = d_{\pi}^T,$$

where P_{π} is the state transition probability matrix.

- The interpretation of selecting d_{π} is as follows.
 - If one state is frequently visited in the long run, it is more important and deserves more weight.
 - If a state is hardly visited, then we give it less weight.

Shiyu Zhao 15/43

The second metric is average one-step reward or simply average reward. In particular, the metric is

$$\bar{r}_{\pi} \doteq \sum_{s \in \mathcal{S}} d_{\pi}(s) r_{\pi}(s) = \mathbb{E}[r_{\pi}(S)],$$

where $S \sim d_{\pi}$. Here,

$$r_{\pi}(s) \doteq \sum_{a \in \mathcal{A}} \pi(a|s) r(s,a)$$

is the average of the one-step immediate reward that can be obtained starting from state $s,\,$ and

$$r(s,a) = \mathbb{E}[R|s,a] = \sum_{r} rp(r|s,a)$$

- The weight d_{π} is the stationary distribution.
- As its name suggests, \bar{r}_{π} is simply a weighted average of the one-step immediate rewards.

An equivalent definition!

- Suppose an agent follows a given policy and generate a trajectory with the rewards as $(R_{t+1}, R_{t+2}, ...)$.
- The average single-step reward along this trajectory is

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[R_{t+1} + R_{t+2} + \dots + R_{t+n} | S_t = s_0 \right]$$
$$= \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{k=1}^n R_{t+k} | S_t = s_0 \right]$$

where s_0 is the starting state of the trajectory.

Shiyu Zhao 17/43

An important property is that

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{k=1}^{n} R_{t+k} | S_t = s_0 \right] = \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left[\sum_{k=1}^{n} R_{t+k} \right]$$
$$= \sum_{s} d_{\pi}(s) r_{\pi}(s)$$
$$= \bar{r}_{\pi}$$

Note that

- The starting state s_0 does not matter.
- The two definitions of \bar{r}_{π} are equivalent.

See the proof in the book.

Shiyu Zhao

Remark 1 about the metrics:

- All these metrics are functions of π .
- Since π is parameterized by θ , these metrics are functions of θ .
- ullet In other words, different values of heta can generate different metric values.
- ullet Therefore, we can search for the optimal values of heta to maximize these metrics.

This is the basic idea of policy gradient methods.

Shiyu Zhao 19/43

Remark 2 about the metrics:

- One complication is that the metrics can be defined in either the discounted case where $\gamma \in (0,1)$ or the undiscounted case where $\gamma = 1$.
- We only consider the discounted case so far in this book. For details about the undiscounted case, see the book.

Shiyu Zhao 20 / 4

Remark 3 about the metrics:

- Intuitively, \bar{r}_{π} is more short-sighted because it merely considers the immediate rewards, whereas \bar{v}_{π} considers the total reward overall steps.
- However, the two metrics are equivalent to each other. In the discounted case where $\gamma < 1$, it holds that

$$\bar{r}_{\pi} = (1 - \gamma)\bar{v}_{\pi}.$$

See the proof in the book.

Shiyu Zhao 21/4

Metrics to define optimal policies - Exercise

Exercise:

You will see the following metric often in the literature:

$$J(\theta) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1}\right]$$

What is its relationship to the metrics we introduced just now?

Shiyu Zhao 22/4

Metrics to define optimal policies - Exercise

$$J(\theta) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1}\right]$$

Answer: First, clarify and understand this metric.

- It starts from $S_0 \sim d$ and then $A_0, R_1, S_1, A_1, R_2, S_2, \dots$
- $A_t \sim \pi(S_t)$ and $R_{t+1}, S_{t+1} \sim p(R_{t+1}|S_t, A_t), p(S_{t+1}|S_t, A_t)$

Then, we know this metric is the same as the average value because

$$J(\theta) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1}\right] = \sum_{s \in \mathcal{S}} d(s) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t R_{t+1} | S_0 = s\right]$$
$$= \sum_{s \in \mathcal{S}} d(s) v_{\pi}(s)$$
$$= \bar{v}_{\pi}$$

Shiyu Zhao 23/4

Outline

- 1 Basic idea of policy gradient
- 2 Metrics to define optimal policies
- 3 Gradients of the metrics
- 4 Gradient-ascent algorithm (REINFORCE)
- 5 Summary

Shiyu Zhao 24/43

Given a metric, we next

- derive its gradient
- and then, apply gradient-based methods to optimize the metric.

The gradient calculation is one of the most complicated parts of policy gradient methods! That is because

- first, we need to distinguish different metrics \bar{v}_{π} , \bar{r}_{π} , \bar{v}_{π}^0
- second, we need to distinguish the discounted and undiscounted cases.

The calculation of the gradients:

- We will not discuss the details in this lecture.
- Interested readers may see my book for details.

Shiyu Zhao 25/4

Summary of the results about the gradients:

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s, \theta) q_{\pi}(s, a)$$

where

- $J(\theta)$ can be \bar{v}_{π} , \bar{r}_{π} , or \bar{v}_{π}^{0} .
- "=" may denote strict equality, approximation, or proportional to.
- ullet η is a distribution or weight of the states.

Shiyu Zhao 26 / 43

Some specific results:

$$\nabla_{\theta} \bar{r}_{\pi} \simeq \sum_{s} d_{\pi}(s) \sum_{a} \nabla_{\theta} \pi(a|s,\theta) q_{\pi}(s,a),$$

$$\nabla_{\theta} \bar{v}_{\pi} = \frac{1}{1 - \gamma} \nabla_{\theta} \bar{r}_{\pi}$$

$$\nabla_{\theta} \bar{v}_{\pi}^{0} = \sum_{s \in \mathcal{S}} \rho_{\pi}(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s, \theta) q_{\pi}(s, a)$$

Details are not given here. Interested readers can read my book.

Shiyu Zhao 27 /-

A compact and useful form of the gradient:

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s, \theta) q_{\pi}(s, a)$$
$$= \mathbb{E} \left[\nabla_{\theta} \ln \pi(A|S, \theta) q_{\pi}(S, A) \right]$$

where $S \sim \eta$ and $A \sim \pi(A|S, \theta)$.

Why is this expression useful?

Because we can use samples to approximate the gradient!

$$\nabla_{\theta} J \approx \nabla_{\theta} \ln \pi(a|s,\theta) q_{\pi}(s,a)$$

Shiyu Zhao 28 / 4

$$\nabla_{\theta} J(\theta) = \sum_{s \in \mathcal{S}} \eta(s) \sum_{a \in \mathcal{A}} \nabla_{\theta} \pi(a|s, \theta) q_{\pi}(s, a)$$
$$= \mathbb{E} \left[\nabla_{\theta} \ln \pi(A|S, \theta) q_{\pi}(S, A) \right]$$

How to prove the above equation?

Consider the function $\ln \pi$ where \ln is the natural logarithm. It is easy to see that

$$\nabla_{\theta} \ln \pi(a|s,\theta) = \frac{\nabla_{\theta} \pi(a|s,\theta)}{\pi(a|s,\theta)}$$

and hence

$$\nabla_{\theta} \pi(a|s,\theta) = \pi(a|s,\theta) \nabla_{\theta} \ln \pi(a|s,\theta).$$

Shiyu Zhao 29 / 43

Then, we have

$$\nabla_{\theta} J = \sum_{s} d(s) \sum_{a} \nabla_{\theta} \pi(a|s,\theta) q_{\pi}(s,a)$$

$$= \sum_{s} d(s) \sum_{a} \pi(a|s,\theta) \nabla_{\theta} \ln \pi(a|s,\theta) q_{\pi}(s,a)$$

$$= \mathbb{E}_{S \sim d} \left[\sum_{a} \pi(a|S,\theta) \nabla_{\theta} \ln \pi(a|S,\theta) q_{\pi}(S,a) \right]$$

$$= \mathbb{E}_{S \sim d,A \sim \pi} \left[\nabla_{\theta} \ln \pi(A|S,\theta) q_{\pi}(S,A) \right]$$

$$\doteq \mathbb{E} \left[\nabla_{\theta} \ln \pi(A|S,\theta) q_{\pi}(S,A) \right]$$

Shiyu Zhao 30/43

Some remarks: Because we need to calculate $\ln \pi(a|s,\theta)$, we must ensure that for all s,a,θ

$$\pi(a|s,\theta) > 0$$

- This can be archived by using softmax functions that can normalize the entries in a vector from $(-\infty, +\infty)$ to (0, 1).
- \bullet For example, for any vector $x = [x_1, \dots, x_n]^T$,

$$z_i = \frac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

where $z_i \in (0,1)$ and $\sum_{i=1}^n z_i = 1$.

• Then, the policy function has the form of

$$\pi(a|s,\theta) = \frac{e^{h(s,a,\theta)}}{\sum_{a' \in \mathcal{A}} e^{h(s,a',\theta)}},$$

where $h(s, a, \theta)$ is another function.

Some remarks:

- Such a form based on the softmax function can be realized by a neural network whose input is s and parameter is θ . The network has $|\mathcal{A}|$ outputs, each of which corresponds to $\pi(a|s,\theta)$ for an action a. The activation function of the output layer should be softmax.
- Since $\pi(a|s,\theta) > 0$ for all a, the parameterized policy is stochastic and hence exploratory.

• There also exist deterministic policy gradient (DPG) methods.

Shiyu Zhao 32 / 43

Outline

- 1 Basic idea of policy gradient
- 2 Metrics to define optimal policies
- 3 Gradients of the metrics
- 4 Gradient-ascent algorithm (REINFORCE)
- 5 Summary

Shiyu Zhao 33/43

Now, we are ready to present the first policy gradient algorithm to find optimal policies!

 \bullet The gradient-ascent algorithm maximizing $J(\theta)$ is

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} J(\theta)$$

$$= \theta_t + \alpha \mathbb{E} \Big[\nabla_{\theta} \ln \pi(A|S, \theta_t) q_{\pi}(S, A) \Big]$$

• The true gradient can be replaced by a stochastic one:

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t, \theta_t) q_{\pi}(s_t, a_t)$$

Shiyu Zhao 34/43

• Furthermore, since q_{π} is unknown, it can be approximated:

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t, \theta_t) q_t(s_t, a_t)$$

There are different methods to approximate $q_{\pi}(s_t, a_t)$

- In this lecture, Monte-Carlo based method, REINFORCE
- In the next lecture, TD method and more

Shiyu Zhao 35 / 43

Remark 1: How to do sampling?

$$\mathbb{E}_{S \sim d, A \sim \pi} \Big[\nabla_{\theta} \ln \pi(A|S, \theta_t) q_{\pi}(S, A) \Big] \longrightarrow \nabla_{\theta} \ln \pi(a|s, \theta_t) q_{\pi}(s, a)$$

- How to sample S?
 - $S \sim d$, where the distribution d is a long-run behavior under π .
- How to sample A?
 - $A \sim \pi(A|S,\theta)$. Hence, a_t should be sampled following $\pi(\theta_t)$ at s_t .
 - Therefore, the policy gradient method is on-policy.

Shiyu Zhao 36/43

Remark 2: How to interpret this algorithm?

Since

$$\nabla_{\theta} \ln \pi(a_t | s_t, \theta_t) = \frac{\nabla_{\theta} \pi(a_t | s_t, \theta_t)}{\pi(a_t | s_t, \theta_t)}$$

the algorithm can be rewritten as

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t | s_t, \theta_t) q_t(s_t, a_t)$$
$$= \theta_t + \alpha \underbrace{\left(\frac{q_t(s_t, a_t)}{\pi(a_t | s_t, \theta_t)}\right)}_{\beta_t} \nabla_{\theta} \pi(a_t | s_t, \theta_t).$$

Therefore, we have the important expression of the algorithm:

$$\theta_{t+1} = \theta_t + \alpha \beta_t \nabla_{\theta} \pi(a_t | s_t, \theta_t)$$

Shiyu Zhao 37/43

It is a gradient-ascent algorithm for maximizing $\pi(a_t|s_t,\theta)$:

$$\theta_{t+1} = \theta_t + \alpha \beta_t \nabla_\theta \pi(a_t | s_t, \theta_t)$$

Intuition: When $\alpha\beta_t$ is sufficiently small

• If $\beta_t > 0$, the probability of choosing (s_t, a_t) is enhanced:

$$\pi(a_t|s_t,\theta_{t+1}) > \pi(a_t|s_t,\theta_t)$$

The greater β_t is, the stronger the enhancement is.

• If $\beta_t < 0$, then $\pi(a_t|s_t, \theta_{t+1}) < \pi(a_t|s_t, \theta_t)$.

Math: When $\theta_{t+1} - \theta_t$ is sufficiently small, we have

$$\pi(a_t|s_t, \theta_{t+1}) \approx \pi(a_t|s_t, \theta_t) + (\nabla_{\theta}\pi(a_t|s_t, \theta_t))^T(\theta_{t+1} - \theta_t)$$

$$= \pi(a_t|s_t, \theta_t) + \alpha\beta_t(\nabla_{\theta}\pi(a_t|s_t, \theta_t))^T(\nabla_{\theta}\pi(a_t|s_t, \theta_t))$$

$$= \pi(a_t|s_t, \theta_t) + \alpha\beta_t \|\nabla_{\theta}\pi(a_t|s_t, \theta_t)\|^2$$

Shiyu Zhao 38/43

$$\theta_{t+1} = \theta_t + \alpha \underbrace{\left(\frac{q_t(s_t, a_t)}{\pi(a_t|s_t, \theta_t)}\right)}_{\beta_t} \nabla_{\theta} \pi(a_t|s_t, \theta_t)$$

The coefficient β_t can well balance exploration and exploitation.

- First, β_t is proportional to $q_t(s_t, a_t)$.
 - If $q_t(s_t, a_t)$ is great, then β_t is great.
 - Therefore, the algorithm intends to enhance actions with greater values.
- Second, β_t is inversely proportional to $\pi(a_t|s_t,\theta_t)$.
 - If $\pi(a_t|s_t, \theta_t)$ is small, then β_t is large.
 - Therefore, the algorithm intends to explore actions that have low probabilities.

Shiyu Zhao 39/43

REINFORCE algorithm

Recall that

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t | s_t, \theta_t) q_{\pi}(s_t, a_t)$$

is replaced by

$$\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t, \theta_t) q_t(s_t, a_t)$$

where $q_t(s_t, a_t)$ is an approximation of $q_{\pi}(s_t, a_t)$.

- If $q_{\pi}(s_t, a_t)$ is approximated by Monte Carlo estimation, the algorithm has a specifics name, REINFORCE.
- REINFORCE is one of earliest and simplest policy gradient algorithms.
- Many other policy gradient algorithms such as the actor-critic methods can be obtained by extending REINFORCE (next lecture).

Shiyu Zhao 40 / 43

REINFORCE algorithm

Pseudocode: Policy Gradient by Monte Carlo (REINFORCE)

Initialization: A parameterized function $\pi(a|s,\theta)$, $\gamma\in(0,1)$, and $\alpha>0$.

 $\label{eq:Aim: Search for an optimal policy maximizing } J(\theta).$

For the kth iteration, do

Select s_0 and generate an episode following $\pi(\theta_k)$. Suppose the episode is $\{s_0, a_0, r_1, \dots, s_{T-1}, a_{T-1}, r_T\}$.

For
$$t=0,1,\ldots,T-1$$
, do

Value update: $q_t(s_t, a_t) = \sum_{k=t+1}^{T} \gamma^{k-t-1} r_k$

Policy update: $\theta_{t+1} = \theta_t + \alpha \nabla_{\theta} \ln \pi(a_t|s_t, \theta_t) q_t(s_t, a_t)$

 $\theta_k = \theta_T$

Shiyu Zhao 41/4:

Outline

- 1 Basic idea of policy gradient
- 2 Metrics to define optimal policies
- 3 Gradients of the metrics
- 4 Gradient-ascent algorithm (REINFORCE)
- 5 Summary

 Shiyu Zhao
 42/43

Summary

Contents of this lecture:

- Metrics for optimality
- Gradients of the metrics
- Gradient-ascent algorithm
- A special case: REINFORCE

Next lecture: Actor-critic

Shiyu Zhao 43 / 43