- Linear DEs: y' + p(t)y = g(t); $y(t_0) = y_0$
 - Homogeneous: g(t) = 0
 - Inhomogeneous: g(t) is not zero everywhere.
 - Constant coefficient p(t) = a, with constant a.
 - General solution of form: $y_g = y_h + y_p$
 - $v_h = Ce^{-at}$
 - y_p Method of undetermined coefficients -Skipped, will revisit

What to do if p(t) is not constant, or if undetermined coefficients doesn't work for a specific g(t)?

Use the method of integrating factors.

Want to solve y' + p(t)y = g(t)

Instead, lets do something easier. Solve

$$\frac{\mathsf{d}}{\mathsf{d}t}(q\cdot y)=h(t)$$

with some known q(t) and $\int h(t)dt = H(t) + C$.

$$rac{\mathsf{d}}{\mathsf{d}t} \left(q(t) \cdot y(t)
ight) = h(t) \qquad \qquad \qquad \qquad \qquad \qquad \mathsf{d} \left(q \cdot y
ight) = h(t) \mathsf{d}t$$
 $q(t)y(t) = H(t) + C \qquad \leftarrow \qquad \int \mathsf{d} \left(q(t)y(t)
ight) = \int h(t) \mathsf{d}t$

$$\Rightarrow y(t) = \frac{H(t) + C}{q(t)}$$

It would be very nice if we could multiply

$$y' + p(t)y = g(t)$$

by some magical function $\mu(t)$ such that

$$\mu(t) \cdot [y' + p(t)y] = \frac{d}{dt} [q(t) \cdot y(t)]$$

Unique choice of $\mu(t)$:

$$\mu(t) = e^{\int p(t)dt}$$

See full notes on Canvas for details.

Method of integrating factors: y' + p(t)y = g(t)

1. Multiply by the integrating factor $\mu(t) = e^{\int p(t)dt}$

$$\mu(t)y' + \underbrace{p(t)\mu(t)}_{\mu'(t)}y = g(t)\mu(t)$$

$$\frac{d}{dt}(\mu \cdot y) = g(t)\mu(t)$$

$$d(\mu \cdot y) = g(t)\mu(t)dt$$

2. Integrate:

$$\mu \cdot y = \int g(t)\mu(t)dt + C$$

3. Isolate y(t):

$$y(t) = \frac{\int g(t)\mu(t)dt + C}{\mu(t)}$$

Existence and Uniqueness

$$y(t) = rac{\int g(t)\mu(t)dt + C}{\mu(t)}$$

 $\mu(t) = e^{\int p(t)dt}$

- What properties does p(t) need to ensure $\mu(t)$ is differentiable?
 - Continuous and integrable.

- What properties does g(t) need to ensure y(t) is differentiable?
 - Continuous and $\mu(t) \cdot g(t)$ is integrable.

These conditions are pretty lax:

almost all linear 1st Order DEs can be solved.

Evaluating the integrals can be tough.

ex: Find the general solution of $y' - 3y = e^t$.

 $y(t) = \frac{\int g(t)\mu(t)dt + C}{\mu(t)}$ $\mu(t) = e^{\int p(t)dt}$

$$\mu(t) = e^{\int (-3)dt} = e^{-3t}$$

$$e^{-3t}y' - 3e^{-3t}y = e^{t}e^{-3t}$$

$$\frac{d}{dt}(e^{-3t}y) = e^{-2t}$$

$$d(e^{-3t}y) = e^{-2t}dt$$

$$e^{-3t}y(t) = \int e^{-2t}dt + C$$

$$y(t) = \frac{-\frac{1}{2}e^{-2t} + C}{e^{-3t}}$$

$$= \frac{1}{2}e^{t} + \underbrace{Ce^{3t}}_{y_h}$$

ex: Find the general solution of $y' - 3t^2y = 3t^2$. $y(t) = \frac{\int g(t)\mu(t)dt + C}{\mu(t)}$ $\mu(t) = e^{\int p(t)dt}$

 $\mu(t) = e^{-\int 3t^2 dt} = e^{-t^3}$

$$y(t) = \frac{\int g(t)\mu(t)dt + C}{\mu(t)}$$
$$\mu(t) = e^{\int p(t)dt}$$

$$e^{-t^{3}}y(t) = \int 3t^{2}e^{-t^{3}}dt$$

$$e^{-t^{3}}y(t) = -e^{-t^{3}} + C$$

$$y(t) = \underbrace{-1}_{y_{p}} + \underbrace{Ce^{t^{3}}}_{y_{h}}$$

$$\det u = t^{3}$$

$$du = 3t^{2}$$

$$\int 3t^{2}e^{-t^{3}}dt = \int e^{-u}du$$

$$= -e^{-u} + C$$

Solution Structure for y' + ay = g(t)

Do we always have a general solution of the form $y_g = y_p + y_h$?

Yes, always.

For all linear DEs.

Solution Structure for y' + p(t)y = g(t)

Do we always have a general solution of the form $y_g = y_p + y_h$? Suppose y_p and y_h solve the following DEs

$$y_p' + p(t)y_p = g(t) \tag{1}$$

$$y_h' + p(t)y_h = 0 (2)$$

What DE does y_g solve?

$$y'_{g} + p(t)y_{g} = y'_{p} + y'_{g} + p(t)(y_{p} + y_{h})$$

$$= (y'_{p} + p(t)y_{p}) + (y'_{h} + p(t)y_{h})$$

$$= g(t) + 0 = g(t)$$

 y_g also solves Eq. (1)! Give me some y_p that solves (1), I can always add y_h and still have a solution to (1).

Solution Structure for y' + p(t)y = g(t)

Do we always have a general solution of the form $y_g = y_p + y_h$? Suppose y_p solves the following DEs

$$y_p' + p(t)y_p = g(t) \tag{1}$$

Is y_p necessarily a particular solution? Proof by contradiction Assume y_n has some arbitrary constant.

Additive Constant: $y_p \rightarrow y_p + C$ Multiplicative Constant: $y_p \rightarrow Cy_p$

$$y'_p + a(y_p + C) = y'_p + ay_p + aC$$
 $Cy'_p + aCy_p = C(y'_p + ay_p)$
 $= g(t) + aC$ $= Cg(t)$
 $\neq g(t)$ $\neq g(t)$

 y_p cannot have any arbitrary constants!

Summary

- Looked at general linear 1st order DEs: y' + p(t)y = g(t)
 - Tried to turn the LHS into an exact derivative:

$$y' + p(t)y \rightarrow d(q \cdot y) = q'y + qy'$$

- Multiplied by an integrating factor $\mu(t)$
- After some algebra find that $\mu = q$
- General solution: $y(t) = \frac{\int g(t)\mu(t)dt + C}{\mu(t)}$
- Integrating factor: $\mu(t) = e^{\int p(t)dt}$
- Found that we could solve all linear 1st order DEs by this method, provided e.g. that p(t) and g(t) are continuous.
- General solution to a linear DE: $y_g = y_p + y_h$