### **Kubernetes**

### 1. Problem without Kubernetes

- If there is more than one container of application its hard to manage
- Containers could not communicate with each other
- The container had to be deployed appropriately
- The container had to manage carefully
- Autoscaling was not possible
- Distributing traffic was still challenging

## 2. Kubernetes Introduction

- Kubernetes is an open-source <u>Container Management</u> tool that automates container deployment, container (de)scaling & container load balancing
- Benefit: Works brilliantly with all cloud vendors: public, hybrid & on-premises
- Written on golang, it has a huge community because it was first developed by Google & later donated to CNCF
- Can group 'n' no of containers into one logical unit for managing & deploying them easily

## 3. Features of Kubernetes

- Automatic Bin Packing
- Service Discovery & Load Balancing
- Storage Orchestration
- Self Healing
- Secret & Configuration Management
- Batch Execution
- Horizontal Scaling
- Automatic Rollbacks & Rollouts

# 4. Kubernetes Myth

#### Kubernetes "is not"

>It's not the same as Docker

>It's not for application with simple architecture

> it's not for containerizing apps

#### Kubernetes "is"

- >Robust & Reliable
- >Best soln. For scaling up Containers
- >A container Orchestration platform
- >Backed by a huge community

# 5. <u>Difference B/W Kubernetes and Docker Swarm</u>

# **Kubernetes vs. Docker Swarm**

| FEATURES                             | Kubernetes                                                                  | Docker Swarm                                                            |
|--------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Installation & Cluster configuration | Complicated & time consuming                                                | Easy & fast                                                             |
| GUI                                  | GUI available                                                               | GUI not available                                                       |
| Scalability                          | Scaling up is slow compared to Swarm; but guarantees stronger cluster state | Scaling up is faster than K8S;<br>but cluster strength not as robust    |
| Load Balancing                       | Load balancing requires manual service configuration                        | Provides built in load balancing technique                              |
| Updates & Rollbacks                  | Process scheduling to maintain services while updating                      | Progressive updates and service health monitoring throughout the update |
| Data Volumes                         | Only shared with containers in same Pod                                     | Can be shared with any other container                                  |
| Logging & Monitoring                 | Inbuilt logging & monitoring tools                                          | Only 3 <sup>rd</sup> party logging & monitoring tools                   |

# **Kubernetes vs. Docker Swarm Mindshare**



## 6. <u>Kubernetes Architecture</u>

# **Kubernetes Architecture**



# **Working Of Kubernetes**



- → Master controls the cluster; and the nodes in it
- → Nodes host the containers inside them; Containers are inside separate PODS
- → PODS are logical collection of containers which need to interact with each other for an Application
- → Replication Controller is Master's resource to ensure that requested no. of pods are running on nodes always
- → Service is an object on Master that provides load balancing across a replicated group of PODS

#### 7. Hands-ON Kubernetes

- -follow these link
- -https://www.edureka.co/blog/install-kubernetes-on-ubuntu
- -https://phoenixnap.com/kb/install-kubernetes-on-ubuntu

Extra points-

- -Add this in kubeadm init command in last
- --ignore-preflight-errors=NumCPU
- -for status check

systemctl status kubelet

-for pod

kubectl apply -f "https://cloud.weave.works/k8s/net?k8s-version=\$(kubectl version | base64 | tr -d '\n')"

-for source list

sudo -H gedit /etc/apt/sources.list

-dashboard command

kubectl apply -f

https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml

http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/

kubectl describe secret \$(kubectl get secret | grep cluster-admin | awk
'{print \$1}')