## ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

3. Masa m jest przyczepiona do dwóch sprężyn o stałych sprężystości  $k_1$  i  $k_2$  (patrz rysunki). W obu przypadkach zostaje ona wychylona z położenia równowagi i puszczona; porusza się bez tarcia. Pokazać, że wykonuje ona ruch harmoniczny prosty o okresach odpowiednio  $T_A = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$  i  $T_B = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$ .



Aby rozwiazać to zadanie, użyjemy zasad dynamiki ruchu harmonicznego prostego oraz praw Hooke'a dla spreżyn.

## Przypadek A

Dla przypadku A, masa m jest przymocowana do dwóch spreżyn nastepujaco: jedna z lewej strony o stałej spreżystości  $k_1$ , a druga z prawej o stałej  $k_2$ .

Całkowita siła przywracajaca działajaca na mase, gdy jest ona wychylona o x, jest dana wzorem:

$$F = -k_1 x - k_2 x = -(k_1 + k_2) x$$

Z równania ruchu harmonicznego prostego:

$$F = ma = m\frac{d^2x}{dt^2}$$

Podstawiajac:

$$m\frac{d^2x}{dt^2} = -(k_1 + k_2)x$$

Równanie różniczkowe ma postać:

$$\frac{d^2x}{dt^2} + \left(\frac{k_1 + k_2}{m}\right)x = 0$$

Okres T oscylacji w ruchu harmonicznym prostym wynosi:

$$T_A = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

## Przypadek B

Dla przypadku B, masa m jest przymocowana miedzy dwiema spreżynami szeregowo: jedna o stałej spreżystości  $k_1$ , a druga o stałej  $k_2$ . Efektywna stała spreżystości dla spreżyn w szeregu jest dana wzorem:

$$\frac{1}{k_{ef}} = \frac{1}{k_1} + \frac{1}{k_2}$$

Stad:

$$k_{ef} = \frac{k_1 k_2}{k_1 + k_2}$$

Zastosowujac równanie ruchu harmonicznego prostego:

$$T_B = 2\pi \sqrt{\frac{m}{k_{ef}}}$$

Podstawiajac  $k_{ef}$ :

$$T_B = 2\pi \sqrt{\frac{m(k_1 + k_2)}{k_1 k_2}}$$

Rozwiazujac oba przypadki, pokazaliśmy, że masa m wykonuje ruch harmoniczny prosty o okresach  $T_A$  i  $T_B$ , zgodnie z zadaniem.