```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import metrics
from sklearn.impute import SimpleImputer

train_df = pd.read_csv('train.csv')
test_df = pd.read_csv('test.csv')
```

train_df.head()

₹		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
	1	2	1	1	Cumings, Mrs. John Bradley (Florence	female	38.0	1	0	PC 17599	71.2833

Data Preprocessing

- · get rid of nulls
- · encoding categorical data

train_df.isna().any()

```
→ PassengerId
    Survived
                  False
    Pclass
                  False
    Name
                  False
    Sex
                  False
    Age
                   True
    SibSp
                  False
    Parch
                  False
    Ticket
                  False
                  False
    Fare
    Cabin
    Embarked
                   True
    dtype: bool
```

```
# any one without a cabin just place None
train_df['Cabin'] = train_df['Cabin'].apply(lambda x: 'None' if pd.isna(x) else x)
test_df['Cabin'] = test_df['Cabin'].apply(lambda x: 'None' if pd.isna(x) else x)
```

train_df.isna().any()

∑ ≠	PassengerId	False
	Survived	False
	Pclass	False
	Name	False
	Sex	False
	Age	True
	SibSp	False
	Parch	False
	Ticket	False
	Fare	False
	Cabin	False
	Embarked	True
	dtype: bool	

```
# find the most common location embarked
train_df['Embarked'] = train_df['Embarked'].fillna(train_df['Embarked'].mode()[0])
test_df['Embarked'] = test_df['Embarked'].fillna(test_df['Embarked'].mode()[0])
train_df.isna().any()
→ PassengerId
                    False
     Survived
                    False
     Pclass
                    False
     Name
                    False
     Sex
                    False
     Age
                     True
     SibSp
                    False
     Parch
                    False
     Ticket
                    False
     Fare
                    False
     Cabin
                    False
     Embarked
                    False
     dtype: bool
# Age is usually correlated with the amount of money they make and sex.
# find the average age based on sex and passenger class (1st 2nd or 3rd)
corr_df = train_df.groupby(['Pclass', 'Sex']).Age.mean().reset_index()
def update_age(params):
    pclass = params.iloc[0]
    sex = params.iloc[1]
    age = params.iloc[2]
    if pd.isnull(age):
        age = float(corr_df[(corr_df['Pclass'] == pclass) & (corr_df['Sex'] == sex)]['Age'].iloc[0])
    return age
\label{train_df['Age'] = train_df['Pclass', 'Sex', 'Age']].apply(lambda x : update_age(x), axis = 1)} \\
corr_df = test_df.groupby(['Pclass', 'Sex']).Age.mean().reset_index()
test_df['Age'] = test_df[['Pclass', 'Sex', 'Age']].apply(lambda x : update_age(x), axis = 1)
train_df.isna().any()
→ PassengerId
                    False
     Survived
                    False
     Pclass
                    False
     Name
                    False
     Sex
                    False
     Age
                    False
     SibSp
                    False
     Parch
                    False
     Ticket
                    False
     Fare
                    False
     Cabin
                    False
     Embarked
                    False
     dtype: bool
test_df.isna().any()
→ PassengerId
                    False
     Pclass
                    False
     Name
                    False
     Sex
                    False
                    False
     Age
     SibSp
                    False
     Parch
                    False
     Ticket
                    False
     Fare
                     True
     Cabin
                    False
     Embarked
                    False
     dtype: bool
```

```
corr_df = train_df.groupby(['Pclass']).Fare.mean().reset_index()
def update_fare(params):
   pclass = params.iloc[0]
    fare = params.iloc[1]
    if pd.isna(fare):
        fare = float(corr_df[(corr_df['Pclass'] == pclass)]['Fare'].iloc[0])
    return fare
test_df['Fare'] = test_df[['Pclass', 'Fare']].apply(lambda x : update_fare(x), axis = 1)
test_df.isna().any()
→ PassengerId
                    False
     Pclass
                    False
     Name
                    False
                    False
     Sex
     Age
                    False
     SibSp
                    False
     Parch
                    False
     Ticket
                    False
     Fare
                    False
     Cabin
                    False
     Embarked
                    False
     dtype: bool
# get rid of uneeded columns
train_df = train_df.drop(columns=['Name', 'Ticket', 'Cabin'])
test_df = test_df.drop(columns=['Name', 'Ticket', 'Cabin'])
train_df.head()
```

_		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
	0	1	0	3	male	22.0	1	0	7.2500	S
	1	2	1	1	female	38.0	1	0	71.2833	С
	2	3	1	3	female	26.0	0	0	7.9250	S
	3	4	1	1	female	35.0	1	0	53.1000	S

3 male 35.0

0

0 8.0500

S

Data Analysis

4

5

```
sns.countplot(x='Sex', hue='Survived', data=train_df)
plt.title('Survival by Gender')
plt.show()
```

0


```
sns.countplot(x='Pclass', hue='Survived', data=train\_df) \\ plt.title('Survival by Passenger Class') \\ plt.show()
```


Survival by Passenger Class


```
plt.figure(figsize=(10, 6))
sns.histplot(data=train_df, x='Age', bins=20, kde=True)
plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```


 $train_df[['Age', 'Pclass']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Age', ascending=False).mean().sort_values(by='Age', ascending=False).me$

_			
		Pclass	Age
	0	1	38.378866
	1	2	29.907295
	2	3	25 112288

 $\label{train_df[['Pclass', 'Survived']]} groupby(['Pclass'], as_index=False). \\ mean(). sort_values(by='Survived', ascending=False) label{train_df[['Pclass', 'Survived']]} label{train_df[['Pclass']]} label{train_df[['Pclass']]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]]} label{train_df[['Pclass']]} label{train_df[['Pclass']]} label{train_df[['Pclas$

→ ▼		Pclass	Survived
	0	1	0.629630
	1	2	0.472826
	2	3	0.242363

```
g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)
```


One hot encode categorical data

- take text data like Sex and Embarked and split them into binary columns of different cateories
- · aka one hot encoding

```
# one hot encode sex and embarked columns
encoder = OneHotEncoder()
sex_arr = encoder.fit_transform(train_df[['Sex']]).toarray()

# split sex column into male and female columns
categories = ['female', 'male']
for i in range(len(sex_arr.T)):
    train_df[categories[i]] = sex_arr.T[i]

sex_arr = encoder.fit_transform(test_df[['Sex']]).toarray()

# split sex column into male and female columns
categories = ['female', 'male']
for i in range(len(sex_arr.T)):
    test_df[categories[i]] = sex_arr.T[i]
```

train_df.head()

→		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	female	m
	0	1	0	3	male	22.0	1	0	7.2500	S	0.0	
	1	2	1	1	female	38.0	1	0	71.2833	С	1.0	
	2	3	1	3	female	26.0	0	0	7.9250	S	1.0	
	3	4	1	1	female	35.0	1	0	53.1000	S	1.0	
	•	_		-				-			•	

emb_arr = encoder.fit_transform(train_df[['Embarked']]).toarray()

```
# split sex column into male and female columns
categories = ['C','S','Q','N']
for i in range(len(emb_arr.T)):
    train_df[categories[i]] = emb_arr.T[i]

emb_arr = encoder.fit_transform(test_df[['Embarked']]).toarray()

# split sex column into male and female columns
categories = ['C','S','Q','N']
for i in range(len(emb_arr.T)):
    test_df[categories[i]] = emb_arr.T[i]
```

train_df.head()

→		PassengerId	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	female	m
	0	1	0	3	male	22.0	1	0	7.2500	S	0.0	
	1	2	1	1	female	38.0	1	0	71.2833	С	1.0	
	2	3	1	3	female	26.0	0	0	7.9250	S	1.0	
	3	4	1	1	female	35.0	1	0	53.1000	S	1.0	
		-		-			-	-			•	

remove uneeded columns
train_df = train_df.drop(columns=['Sex', 'Embarked'])
test_df = test_df.drop(columns=['Sex', 'Embarked'])
train_df.head()

		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	female	male	С	S	Q
	0	1	0	3	22.0	1	0	7.2500	0.0	1.0	0.0	0.0	1.0
	1	2	1	1	38.0	1	0	71.2833	1.0	0.0	1.0	0.0	0.0
	2	3	1	3	26.0	0	0	7.9250	1.0	0.0	0.0	0.0	1.0
	3	4	1	1	35.0	1	0	53.1000	1.0	0.0	0.0	0.0	1.0
	4	5	0	3	35.0	0	0	8.0500	0.0	1.0	0.0	0.0	1.0

→		PassengerId	Pclass	Age	SibSp	Parch	Fare	female	male	С	S	Q
	0	892	3	34.500000	0	0	7.8292	0.0	1.0	0.0	1.0	0.0
	1	893	3	47.000000	1	0	7.0000	1.0	0.0	0.0	0.0	1.0
	2	894	2	62.000000	0	0	9.6875	0.0	1.0	0.0	1.0	0.0
	3	895	3	27.000000	0	0	8.6625	0.0	1.0	0.0	0.0	1.0
	4	896	3	22.000000	1	1	12.2875	1.0	0.0	0.0	0.0	1.0
	413	1305	3	24.525104	0	0	8.0500	0.0	1.0	0.0	0.0	1.0
	414	1306	1	39.000000	0	0	108.9000	1.0	0.0	1.0	0.0	0.0
	415	1307	3	38.500000	0	0	7.2500	0.0	1.0	0.0	0.0	1.0
	416	1308	3	24.525104	0	0	8.0500	0.0	1.0	0.0	0.0	1.0
	417	1309	3	24.525104	1	1	22.3583	0.0	1.0	1.0	0.0	0.0

418 rows × 11 columns

Normalize Data Points

• use standard scaler to make 0 the mean and 1 the standard deviation

```
def normalize_data(df):
    numeric_data = df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']]
    scaler = StandardScaler()
    norm_data = scaler.fit_transform(numeric_data)
    norm_df = pd.DataFrame(norm_data, columns=numeric_data.columns)
    df[['Pclass', 'Age', 'SibSp', 'Parch', 'Fare']] = norm_df

normalize_data(train_df)
normalize_data(test_df)
```

train_df.head()

		PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	female	male
	0	1	0	0.827377	-0.551366	0.432793	-0.473674	-0.502445	0.0	1.(
	1	2	1	-1.566107	0.654030	0.432793	-0.473674	0.786845	1.0	0.0
	2	3	1	0.827377	-0.250017	-0.474545	-0.473674	-0.488854	1.0	0.0
	3	4	1	-1.566107	0.428018	0.432793	-0.473674	0.420730	1.0	0.0
	•	_								•

test_df.head()

→		PassengerId	Pclass	Age	SibSp	Parch	Fare	female	male	С	s
	0	892	0.873482	0.392121	-0.499470	-0.400248	-0.497374	0.0	1.0	0.0	1.0
	1	893	0.873482	1.357557	0.616992	-0.400248	-0.512238	1.0	0.0	0.0	0.0
	2	894	-0.315819	2.516080	-0.499470	-0.400248	-0.464061	0.0	1.0	0.0	1.0
	3	895	0.873482	-0.187140	-0.499470	-0.400248	-0.482436	0.0	1.0	0.0	0.0
	4										•

Logistic Regression Model

```
# setup data
X = train_df.iloc[:, 2:]
Y = train_df.iloc[:, 1]
x_train, x_test, y_train, y_test = train_test_split(X, Y, train_size = 0.8)
x_eval = test_df.iloc[:, 1:]
log_mod = LogisticRegression()
log_mod.fit(x_train, y_train)
y_pred = log_mod.predict(x_test)
print(f"accuracy of training set: {100*log_mod.score(x_train,y_train):.2f}%")
print(f"accuracy of training set: {100*log_mod.score(x_test,y_test):.2f}%")
⇒ accuracy of training set: 80.76%
     accuracy of training set: 85.47%
actual = y_test
predicted = y_pred
confusion_matrix = metrics.confusion_matrix(actual, predicted)
cm_display = metrics.ConfusionMatrixDisplay(confusion_matrix = confusion_matrix, display_labels = [0, 1])
cm_display.plot()
plt.show()
\overline{\Rightarrow}
                                                                    100
                                                                    80
                      102
         0
```


print(metrics.classification_report(y_test, y_pred, target_names={'Did not Survive', 'Survived'}))

₹		precision	recall	f1-score	support
	Survived	0.85	0.93	0.89	110
	Did not Survive	0.86	0.74	0.80	69
	accuracy			0.85	179
	macro avg	0.86	0.83	0.84	179
	weighted avg	0.86	0.85	0.85	179

```
y_pred_proba = log_mod.predict_proba(x_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.title("ROC Curve")
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```

```
def print_prediction(pred):
    if pred[0] == 1:
        print("This person probably survived")
    else:
        print("This person probably did not survive")

# P_class:3 Age: 27.0 sibsp:0 parch:0 Fare: 8.6625 Sex: Male Embarked to: Q
prediction_eval = log_mod.predict(x_eval.iloc[[3]])
print_prediction(prediction_eval)

This person probably did not survive

# P_class:1 Age: 39.0 sibsp:0 parch:0 Fare: 108.90 Sex: Female Embarked to: C
prediction_eval = log_mod.predict(x_eval.iloc[[414]])
print_prediction(prediction_eval)

This person probably survived
```

Get Evaluation data results into csv file

prediction_eval = log_mod.predict(x_eval)

result_data = pd.DataFrame(test_df['PassengerId'], columns=['PassengerId'])
result_data = result_data.assign(Survived=prediction_eval)
result_data.head()

₹		PassengerId	Survived
	0	892	0
	1	893	0
	2	894	0
	3	895	0
	4	896	0

result_data.to_csv("titanic_submission.csv", index=False)
!cat titanic_submission.csv

```
PassengerId, Survived 892,0 893,0 894,0 895,0 896,0 897,0 898,1
```

899,0 900,1 901,0 902,0 903,0 904,1 905,0 906,1 907,1 908,0 911,0 911,0 911,0 915,1 915,1 915,1 915,1 915,1 920,0 921,0 922,0 922,0 923,0 924,0 925,0 925,0 925,0 926,0 927,0 928,1 929,1 929,0 931,0