# Группы и алгебры Ли II

## Лекция 8

### Приведенное разложение

На прошлой лекции мы выяснили следующее:

- 1. Группа Вейля W действует транзитивно на множестве наборов простых корней;
- 2. Любой корень можно получить из простого действием W:

$$W(\Pi) = R;$$

3. Группа Вейля W порождена простыми отражениями.

Это значит, что любой набор простых корней однозначно задает систему корней.

**Определение.** Пусть  $w \in W$ . Тогда длиной l(w) элемента w назовем число плоскостей  $L_{\alpha}$  таких, что  $C_+$  и  $w(C_+)$  лежат по разные стороны от  $L_{\alpha}$ .

**Пример.** В обозначениях системы корней  $A_3 \ l(s_1) = 1, \ l(s_1 s_2) = 2.$ 

**Теорема 1.** Пусть  $w = s_{i_1} \dots s_{i_l}$  - приведенное разложение, то есть l минимально. Тогда l = l(w).

Доказательство. Обратим доказательство последней леммы предыдущей лекции. Тогда мы имели  $C=s_{\beta_l}\dots s_{\beta_1}(C_+)$  и выяснили, что  $s_{\beta_l}\dots s_{\beta_1}=s_{i_1}\dots s_{i_l}$ , где  $\beta_j=s_{i_1}\dots s_{i_{j-1}}(\alpha_{i_j})$ . Но мы помним, что  $L_{\beta_j}$  - стенка камер  $C_j$  и  $C_{j-1}$ , содержащихся в последовательности

$$C_+ = C_0 \rightarrow C_1 \rightarrow \ldots \rightarrow C_l = C$$

Таким образом, взяв  $\beta_j$ , определенные по формулам выше, мы имеем оценку  $l(w) \leq l$ . Из приведенности следует l(w) = l.

Упражнение. Доказать последнее утверждение.

Следствие. Действие группы Вейля на множестве камер Вейля свободное.

Доказательство. Если 
$$w(C_+)=C_+$$
, то  $l(w)=0$ , значит  $w=1$ .

#### Классификация систем корней

**Определение.** Приведенная система корней R называется приводимой, если  $R = R_1 \sqcup R_2$ ,  $R_1 \perp R_2$ . Если система корней R не является приводимой, то мы называем ее неприводимой.

**Лемма 1.** Если R приводима и  $R = R_1 \sqcup R_2$ , то  $\Pi = \Pi_1 \sqcup \Pi_2$ . Обратно, если  $\Pi = \Pi_1 \sqcup \Pi_2$ ,  $\Pi_1 \perp \Pi_2$ , то  $R = R_1 \sqcup R_2$ .

Доказательство. Первое очевидно, второе следует из того, что простые отражения, соответствующие  $\Pi_1$ , и простые отражения, соответствующие  $\Pi_2$ , коммутируют.

Определение. Матрица Картана A системы корней R - это матрица c элементами  $a_{ij}=n_{\alpha_i\alpha_j}=\frac{2(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}$ 

Лемма 2. Сформулируем свойства матрицы Картана.

- 1. Матрица Картана приводимой системы корней имеет блочно диагональный вид с блоками, соответствующими неприводимым подсистемам корней;
- 2.  $a_{ii} = 2$ ;
- $\beta. \ a_{ij} \in \mathbb{Z}_{\leq 0};$
- 4.  $a_{ij}a_{ji}=4\cos^2(\varphi)$ , где  $\varphi$  угол между простыми корнями  $\alpha_i$  и  $\alpha_j$ . Если  $\varphi\neq\pi/2$ , то

$$\frac{|\alpha_i|^2}{|\alpha_j|^2} = \frac{a_{ji}}{a_{ij}}$$

Матрицу Картана удобно кодировать диаграммами Дынкина по следующему алгоритму.

- 1. Каждому простому корню мы сопоставляем вершину диаграммы.
- 2. В зависимости от угла мы соединяем вершины некоторым количеством ребер:
  - $\varphi = \pi/2$  0 pe6ep;
  - $\varphi = 2\pi/3$  1 peбpo;
  - $\varphi = 3\pi/4$  2 peбpa;
  - $\varphi = 5\pi/6$  3 peбpa;
- 3. Если  $|\alpha_i| > |\alpha_j|$ , то ориентируем все ребра в направлении от вершины, соответствующей длинному корню, к вершине, соответствующей короткому.

Заметим, что диаграммы Дынкина, соответствующие приводимым системам корней, несвязны и распадаются на диаграммы Дынкина, соответствующие неприводимым системам корней, которые связны. Поэтому наша задача - классифицировать связные диаграммы Дынкина.

**Теорема 2.** Пусть приведенная система корней R приводима. Тогда ее диаграмма Дынкина изоморфна одной из следующих диаграмм.



Рис. 1: Системы корней

Доказательство. Мы проведем классификацию в symply-laced случае, то есть, когда все ребра одинарные, чтобы понять дух доказательства. Пусть I - множество вершин диаграммы Дынкина D. В symply-laced случае длины всех корней одинаковы. В самом деле, рассмотрим корни  $\alpha_i$  и  $\alpha_j$  и ограничимся на плоскость, проходящую через них. Пересечение этой плоскости с R дает нам систему корней ранга 2, а поскольку угол между  $\alpha_i$  и  $\alpha_j$  равен  $\pi/2$  или  $2\pi/3$ , с учетом классификации имеем  $|\alpha_i| = |\alpha_2|$ . Выберем нормировку так, чтобы  $|\alpha_i|^2 = 2$ , тогда  $(\alpha_i, \alpha_i) = 2$ ,  $(\alpha_i, \alpha_j) = -1$  или 0. Это все значит, что  $a_{ij} = (\alpha_i, \alpha_j)$ , а значит A положительно определена. Теперь по шагам будем прояснять устройство D.

- 1. D не имеет циклов. В самом деле, допустим, имеется цикл J. Причем можно считать, что вершины цикла соединены только с соседними вершинами (иначе мы найдем цикл меньше и будем продолжать процедуру до тех пор, пока это условие не будет выполнено). Тогда  $v = \sum_{j \in J} \alpha_j$  таков, что (v, v) = 0.
- 2. Каждая вершина D соединена не более чем с тремя соседними. В самом деле, предположим, имеется поддиаграмма как на рисунке. Тогда  $v=2\alpha+\gamma_1+\gamma_2+\gamma_3+\gamma_4$  таков, что (v,v)=0.



Рис. 2: Системы корней

3. D содержит не более одной вершины валентности 3. В самом деле, пусть имеется две вершины валентности 3. Тогда имеется такая поддиаграмма. Рассмотрим корень  $\alpha = \alpha_1 + \ldots + \alpha_n$ .



Рис. 3: Системы корней

Корни  $(\alpha, \gamma_1, \dots, \gamma_4)$  линейно независимы, значит их матрица Картана (которая в simply-laced случае совпадает с матрицей Грама) должна быть положительно определена. Но она совпадает с матрицей Картана из предыдущего пункта.

Итого, мы получили, что диаграмма Дынкина может иметь только такой вид. Рассмотрим корни  $\beta = \sum_{i=1}^{k-1} i\beta_i, \ \gamma = \sum_{i=1}^{l-1} i\gamma_i, \ \delta = \sum_{i=1}^{m-1} i\delta_i.$  Они ортогональны, а корни  $\alpha, \beta, \gamma, \delta$  линейно независимы. Длина проекции вектора на подпространство меньше чем длина вектора, так что

$$(\alpha, \frac{\beta}{|\beta|})^2 + (\alpha, \frac{\gamma}{|\gamma|})^2 + (\alpha, \frac{\delta}{|\delta|})^2 < |\alpha|^2$$

 $(\beta,\beta) = k(k-1)$  (проверьте!),  $(\alpha,\beta) = -k+1$ , так что последнее неравенство перепишется в виде

$$\frac{k-1}{k} + \frac{l-1}{l} + \frac{m-1}{m} < 2$$

или

$$\frac{1}{k} + \frac{1}{l} + \frac{1}{m} > 1$$

Без ограничения общности пусть  $k \le l \le m$ . Тогда k < 3.



Рис. 4: Системы корней

- Если k=1, то l,m любые, так что система корней  $A_n$ .
- Если k=2, то  $\frac{1}{l}+\frac{1}{m}>\frac{1}{2}$ . Если l=2, то m любое, и мы получили систему корней  $D_n$ . Если l=3, то m=3,4,5 и мы получили системы корней  $E_6,\,E_7$  или  $E_8$ .

## Классификация полупростых алгебр Ли

**Теорема 3.** Пусть  $\mathfrak{g}$  - полупростая алгебра Ли с системой корней  $R \subset \mathfrak{h}^*$ . Пусть выбрана поляризация  $R = R_+ \sqcup R_-$  и соответствующий ей набор простых корней  $\Pi = \{\alpha_1, \ldots, \alpha_r\}$ .

- 1. Подпространства  $\mathfrak{n}_{\pm}=\bigoplus_{\alpha\in R_{\pm}}\mathfrak{g}_{\alpha}$  являются подалгебрами в  $\mathfrak{g},$
- 2. Выберем  $e_i \in \mathfrak{g}_{\alpha_i}$  и  $f_i \in \mathfrak{g}_{-\alpha_i}$  так что  $(e_i, f_i) = \frac{2}{(\alpha_i, \alpha_i)}$ , а  $h_i = h_{\alpha_i}$  (тогда  $\{e_i, h_i, f_i\}$  это  $\mathfrak{sl}_2$ -тройка). Элементы  $e_i$  порождают  $\mathfrak{n}_+$ ,  $f_i$  порождают  $\mathfrak{n}_-$ ;
- 3. Пусть  $a_{ij}$  матрица Картана системы корней R. Тогда выполнены соотношения Серра:

$$[h_i, h_j] = 0, (1a)$$

$$[h_i, e_j] = a_{ij}e_j, \quad [h_i, f_j] = -a_{ij}f_j,$$
 (1b)

$$[e_i, f_j] = \delta_{ij} h_i, \tag{1c}$$

$$(ade_i)^{1-a_{ij}}e_j = 0, (1d)$$

$$(adf_i)^{1-a_{ij}}f_i = 0. (1e)$$

**Замечание.** Поскольку  $h_i$ ,  $i \in \{1, ..., r\}$  образуют базис в  $\mathfrak{h}$ ,  $\{e_i, h_i, f_i\}$ ,  $i \in \{1, ..., r\}$  порождают  $\mathfrak{g}$ .

Доказательство. 1. Сразу следует из  $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]=\mathfrak{g}_{\alpha+\beta}$ .

2. Сперва докажем

**Лемма 3.** Пусть  $\alpha \in R_+$  и не простой, тогда найдется положительный  $\beta$  и простой  $\alpha_i$  такие, что  $\alpha = \beta + \alpha_i$ .

Доказательство. Среди простых корней найдется такой  $\alpha_i$ , что  $(\alpha_i, \alpha) > 0$ , иначе  $\alpha, \alpha_1, \dots, \alpha_r$  линейно независимы. Тогда  $(\alpha, -\alpha_i) < 0$ , значит  $\beta = \alpha - \alpha_i$  положительный корень.

Докажем утверждение для  $\mathfrak{n}_+$  индукцией по высоте корня.

Определение. Пусть  $\alpha = \sum_{i=1}^r n_i \alpha_i$ , где  $n_i \in \mathbb{Z}_{\geq 0}$ , если  $\alpha$  положительный или  $n_i \in \mathbb{Z}_{\leq 0}$ , если  $\alpha$  отрицательный. Тогда высота  $\alpha$   $ht(\alpha) = \sum_{i=1}^r |n_i|$ .

Очевидно  $\mathfrak{g}_{\alpha_i}$  порождены  $e_i$ . Теперь пусть  $\alpha$  непростой положительный корень веса l. Тогда по лемме найдется положительный корень  $\beta$  веса l-1, такой что  $\alpha=\beta+\alpha_i$ . По предположению индукции  $\mathfrak{g}_{\beta}$  порождена  $\{e_j\}$ . Но  $\mathfrak{g}_{\alpha}=[\mathfrak{g}_{\beta},\mathfrak{g}_{\alpha_i}]=[\mathfrak{g}_{\beta},e_i]$ , значит и  $\mathfrak{g}_{\alpha}$  порождена  $\{e_j\}$ .

- 3. Первые 3 соотношения это определения  $\mathfrak{h}$  и  $\mathfrak{g}_{\alpha_i}$ :  $[h_i,e_j]=\alpha_j(h_{\alpha_i})e_j=\frac{2(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)}e_j=a_{ij}e_j$ . Четвертое следует из того, что  $[e_i,f_j]\in\mathfrak{g}_{\alpha_i-\alpha_j}=0$  при  $i\neq j$ . Чтобы доказать шестое, рассмотрим  $\bigoplus_{k\in\mathbb{Z}}\mathfrak{g}_{-\alpha_j+k\alpha_i}$  как неприводимое представление  $\mathfrak{sl}_2$ , образованной  $e_i,h_i,f_i$ . Его старший вектор  $f_j$ , так как  $e_i.f_j=0$ , а старший вес  $-a_{ij}$ . Значит  $e_i^{-a_{ij}+1}.f_j=0$ . Пятое доказывается аналогично.
- **Теорема 4.** 1. Пусть  $\mathfrak{g}(R)$  алгебра Ли с генераторами  $e_i, h_i, f_i, i \in \{1, ..., r\}$  и соотношениями Серра. Тогда  $\mathfrak{g}(R)$  канонически изоморфна конечномерной полупростой алгебре Ли с системой корней R.
  - 2. Существует биекция между классами изоморфизма приведенных систем корней и классами изоморфизма конечномерных комплексных полупростых алгебр Ли. Полупростая алгебра Ли проста если и только если ее система корней неприводима.

Следствие. Классы изоморфизма конечномерных простых алгебр Ли нумеруются неприводимыми системами корней.