#### Introduction to Artificial Intelligence



# COMP307 Reasoning Under Uncertainty 2: Naïve Bayes Classifier

Yi Mei *yi.mei@ecs.vuw.ac.nz* 

#### **Outline**

- Rules from last lecture
- Bayes Rule
- Naive Bayes Classifier
  - Assumption
  - Deal with zero count
- Summary

#### Important Rules

The product rule:

$$- P(A, B) = P(B) * P(A | B) = P(A) * P(B | A)$$

The sum rule

$$-P(X=x) = \sum_{y \in \Omega} P(X=x, Y=y)$$

The normalisation rule

$$-\sum_{x} P(X=x)=1$$

$$-\sum_{x} P(X = x | Y = y) = 1$$

Independence

$$- P(A | B) = P(A)$$

$$- P(B | A) = P(B)$$

$$- P(A, B) = P(A) * P(B)$$

#### **Bayes Rules**

The product rule:

$$- P(A, B) = P(B) * P(A | B) = P(A) * P(B | A)$$

Transform to Bayes Rule

$$-P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

More variables

$$- P(Y \mid X_1, ..., X_n) = \frac{P(X_1, ..., X_n \mid Y)P(Y)}{P(X_1, ..., X_n)}$$



**Thomas Bayes** (/'beɪz/; c. 1701 – 7 April 1761)

#### Interpretation of Bayes Rules

- Proposition A and evidence B
  - P(A I B): the posterior degree of belief in A, given evidence B
  - P(B I A): if A is true, the degree of belief that the evidence B is shown
  - P(A): the prior degree of belief in A, without any evidence
  - P(B): the degree of belief that evidence B is shown

• 
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

 For calculating P(A I B), need to estimate P(B I A), P(A) and P(B)

#### Example: Medical Test

- You are worried about having a rare cancer.
- The cancer is very rare, occurring in only one of every 10,000 people.
- You go with the test, which has 99% accuracy (if you have the disease, it shows that you do with 99% probability, and if you don't have the disease, it shows that you do not with 99% probability).
- If your test results come back positive, what are your chances that you actually have the disease?
- (a) 99% (b) 90% (c) 10% (d) 1%

## **Example Training Dataset**

| Applicant | Job   | Deposit | Family   | Class   |
|-----------|-------|---------|----------|---------|
| 1         | true  | low     | single   | Approve |
| 2         | true  | low     | couple   | Approve |
| 3         | true  | high    | single   | Approve |
| 4         | true  | high    | single   | Approve |
| 5         | false | high    | couple   | Approve |
| 6         | true  | low     | couple   | Decline |
| 7         | false | low     | couple   | Decline |
| 8         | true  | low     | children | Decline |
| 9         | false | low     | single   | Decline |
| 10        | false | high    | children | Decline |

#### **Example Classification Task**

- Determine whether to approve a mortgage application, given data/features about the client:
  - Whether they have a job (true or false)
  - The level of their deposit (low or high)
  - Their family status (single, couple[but no kids], children)
- Classification: either Approve or Decline
- Given a set of data about past clients and the classification by the Bank's experts
- Construct a classifier that will output the right answer (class)
  when given a new (unseen) client (instance)

#### Bayes Rules for Classification

- Very simple probability-based technique
- Computes P(class I instance data) for each class, and choose the class with the highest probability.
- Problem: Hard to measure P(class I data)
- e.g. P(Decline I Job=true, Dep=high, Fam=children)
- Needs lots of examples of (Job=true & Dep=high & Fam=children)
- Then count the fraction that are Decline.
- Usually do NOT have enough data
- Use Bayes Rules

$$P(Decline|Job = true, Dep = high, Fam = children) \\ = \frac{P(Deline) * P(Job = true, Dep = high, Fam = children|Deline)}{P(Job = true, Dep = high, Fam = children)}$$

#### Naïve Bayes

- Why this is better?
  - No better if just like this
  - We still need a lot of data to have a comprehensive estimation of the multivariate distribution (Job, Dep, Fam) and (Job, Dep, Fam I Decline)
  - But what if the features are independent?

$$P(Decline|Job = true, Dep = high, Fam = children)$$

$$= \frac{P(Deline) * P(Job = true, Dep = high, Fam = children|Deline)}{P(Job = true, Dep = high, Fam = children)}$$

- A naïve Bayes approach assumes that the features are conditionally independent
  - If A and B are conditional independent on C, then P(A, B | C) = P(A | C) \* P(B | C)

- More variables 
$$P(X_1, ..., X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

Example:

$$P(Job = true, Dep = high, Fam = children|Decline)$$
  
=  $P(Job = true|Decline) * P(Dep = high|Decline) * P(Fam = children|Decline)$ 

There is usually enough data for the univariate distributions

## Computing Probabilities: Example

| Class          | Approve | Decline |
|----------------|---------|---------|
| Total          | 5       | 5       |
| Job = true     | 4       | 2       |
| Job = false    | 1       | 3       |
| Dep = low      | 2       | 4       |
| Dep = high     | 3       | 1       |
| Fam = single   | 3       | 1       |
| Fam = couple   | 2       | 2       |
| Fam = children | 0       | 2       |

|                           | Approve | Decline |
|---------------------------|---------|---------|
| P(Class)                  | 5/10    | 5/10    |
| P(Job = true   Class)     | 4/5     | 2/5     |
| P(Job = false   Class)    | 1/5     | 3/5     |
| P(Dep = low   Class)      | 2/5     | 4/5     |
| P(Dep = high   Class)     | 3/5     | 1/5     |
| P(Fam = single   Class)   | 3/5     | 1/5     |
| P(Fam = couple   Class)   | 2/5     | 2/5     |
| P(Fam = children   Class) | 0/5     | 2/5     |

#### Using Naïve Bayes Classifier

- Classify a new case: (Job=true, Dep=high, Fam=children)
- Calculate P(Decline | Job=true, Dep=high, Fam=children)
- Calculate P(Approve I Job=true, Dep=high, Fam=children)
- See which probability is higher

```
=\frac{P(Decline}{Job = true, Dep = high, Fam = children)}{P(Deline) * P(Job = true, Dep = high, Fam = children|Decline)}{P(Job = true, Dep = high, Fam = children)}
=\frac{P(Deline) * P(Job = true|Decline) * P(Dep = high|Decline) * P(Fam = children|Decline)}{P(Job = true, Dep = high, Fam = children)}
=\frac{0.4 \times 0.2 \times 0.4 \times 0.5}{P(Job = true, Dep = high, Fam = children)}
=\frac{0.016}{P(Job = true, Dep = high, Fam = children)}
```

### Using Naïve Bayes Classifier

- Classify a new case: (Job=true, Dep=high, Fam=children)
- Calculate P(Decline | Job=true, Dep=high, Fam=children)
- Calculate P(Approve I Job=true, Dep=high, Fam=children)
- See which probability is higher

```
P(\begin{subarray}{c} Approve \ | Job = true, Dep = high, Fam = children) \\ = \frac{P(\begin{subarray}{c} Approve) * P(\begin{subarray}{c} Job = true, Dep = high, Fam = children \ ) \\ P(\begin{subarray}{c} P(\begin{subarray}{c} Approve) * P(\begin{subarray}{c} Job = true \ | Approve) * P(\begin{subarray}{c} Dep = high \ | Approve) * P(\begin{subarray}{c} Fam = children \ ) \\ P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ ) \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children) \ )} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children)} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children)} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children)} \\ = \frac{0}{P(\begin{subarray}{c} Job = true, Dep = high, Fam = children)} \\ = \frac{0}{P(\begin{subarr
```

- Denominator does not need to calculate (the same for all the classes)
- Probability of Approve = 0? Just because (Fam = children) has never occurred for Approve. Need to deal with zero occurrence

## Computing Probabilities: Example

| Class          | Approve | Decline |
|----------------|---------|---------|
| Total          | 5       | 5       |
| Job = true     | 4       | 2       |
| Job = false    | 1       | 3       |
| Dep = low      | 2       | 4       |
| Dep = high     | 3       | 1       |
| Fam = single   | 3       | 1       |
| Fam = couple   | 2       | 2       |
| Fam = children | 0       | 2       |

|                           | Approve | Decline |
|---------------------------|---------|---------|
| P(Class)                  | 5/10    | 5/10    |
| P(Job = true   Class)     | 4/5     | 2/5     |
| P(Job = false   Class)    | 1/5     | 3/5     |
| P(Dep = low   Class)      | 2/5     | 4/5     |
| P(Dep = high   Class)     | 3/5     | 1/5     |
| P(Fam = single   Class)   | 3/5     | 1/5     |
| P(Fam = couple   Class)   | 2/5     | 2/5     |
| P(Fam = children   Class) | 0/5     | 2/5     |

#### Dealing with Zero Occurrence

- Initialise the table to contain small constant, e.g. 1
- This is not quite sound, but reasonable in practice

| Approve | Decline                         |
|---------|---------------------------------|
| 6       | 6                               |
| 5       | 3                               |
| 2       | 4                               |
| 3       | 5                               |
| 4       | 2                               |
| 4       | 2                               |
| 3       | 3                               |
| 1       | 3                               |
|         | 6<br>5<br>2<br>3<br>4<br>4<br>4 |

|                           | Approve | Decline |
|---------------------------|---------|---------|
| P(Class)                  | 6/12    | 6/12    |
| P(Job = true   Class)     | 5/7     | 3/7     |
| P(Job = false   Class)    | 2/7     | 4/7     |
| P(Dep = low   Class)      | 3/7     | 5/7     |
| P(Dep = high   Class)     | 4/7     | 2/7     |
| P(Fam = single   Class)   | 4/8     | 2/8     |
| P(Fam = couple   Class)   | 3/8     | 3/8     |
| P(Fam = children   Class) | 1/8     | 3/8     |

- Denominator of Job and Dep is 7 (e.g. (Job = true) = 5, (Job = false) = 2, 5+2=7
- Denominator of Fam is 8, 4+3+1=8

### Using Naïve Bayes Classifier

```
P(\begin{subarray}{c} P(\begin{subarray}{c
```

```
P(Approve|Job = true, Dep = high, Fam = children)
= \frac{P(Approve) * P(Job = true, Dep = high, Fam = children|Approve)}{P(Job = true, Dep = high, Fam = children)}
= \frac{P(Approve) * P(Job = true|Approve) * P(Dep = high|Approve) * P(Fam = children|Approve)}{P(Job = true, Dep = high, Fam = children)}
= \frac{5/7 \times 4/7 \times 1/8 \times 1/2}{P(Job = true, Dep = high, Fam = children)}
= \frac{0.0255}{P(Job = true, Dep = high, Fam = children)}
```

#### Summary

Bayes rule:

$$- P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$
$$- P(Y \mid X_1, ..., X_n) = \frac{P(X_1, ..., X_n \mid Y)P(Y)}{P(X_1, ..., X_n)}$$

 In classification, Y is the class label, X1, ..., Xn are features. The probability of an instance belonging to a class is

$$P(Y \mid X_1, ..., X_n) = \frac{P(X_1, ..., X_n \mid Y)P(Y)}{P(X_1, ..., X_n)}$$

- Calculate  $P(Y | X_1, ..., X_n)$  for each class, and predict as the class with the highest conditional probability
  - The denominator  $P(X_1, ..., X_n)$  can be ignored, as it is the same for all the classes
  - $-P(X_1,...,X_n \mid Y)$  is still hard to estimate (high-dimensional multivariate distribution)
- Assume conditional independence (Naïve Bayes)
  - $P(X_1, ..., X_n \mid Y) = P(X_1 \mid Y) \times P(X_2 \mid Y) \times \cdots \times P(X_n \mid Y)$
  - Easy to estimate the univariate distribution