US-08-380-051-2 rsp Nov 17 08:25 ŒL)

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

Fri Nov 17 08:30:37 1995; MasPar time 12.94 Seconds 585.410 Million cell updates/sec Run on:

Tabular output not generated.

>US-08-380-051-2 (1:494) from USO8380051.pep 3614 1 MIKLIVPFIKRESAFNEMTM......KTETDMSLHPLLQEIYKDLY 494

Description: Perfect Score:

Sequence:

PAM 150 Gap 11 Scoring table:

43470 seqs, 15335248 residues

Searched:

swiss-prot31 Database:

part4 part5 part6 part7 part8 part1 part2 part3

Mean 52:508; Variance 112.681; scale 0.466 Statistics:

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Pred No.		0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	0.00e+00	1.37e - 303
-	:	PROLIFERAT	PROLIFERAT	PROLIFERAT	PROLIFERAT	PROLIFERAT	PROLIFERAT	PEROXISOME PROLIFERAT	PROXISOME PROLIFERAT	PROLIFERAT	PROLIFERAT
Description		PEROXISOME	PEROXISOME	щ	PEROXISOME	PEROX I SOME	_	_		PEROXISOME	PEROXISOME
91		PPAT HUMAN	PPAT MOUSE	PPAT XENLA	PPAR HUMAN	PPAR MOUSE	PFAR RAT	PPAS HUMAN	PPAR XENLA	PPAS MOUSE	PPAS_XENLA
ĕ	3	9	9	9	9	9	9	9	9	9	9
Suery Match Lenath DR		475	470	477	468	468	468	441	474	440	396
Query Match		95.0	91.6	71.4	53.8	53.5	53.4	53.2	52.4	52.2	48.2
Store	2	3433	3311	2579	1946	1932	1930	1921	1894	1886	1743
Result		1	7	æ	₽"	5	9	7	œ	S	10

US-08-380-051-2.rsp Nov 17 08:25

્ય

6.45e-103	36e-	7.64e-70	2.71e-69	2.71e-69	16e-	5.16e-68	7.86e-68	1.20e-67	2.78e-67	2.78e-67	6.44e-67	9.80e-67	9.80e-67	1.49e - 66	1.49e - 66	1.49e - 66	2.82e-65	8.07e-64	6.54e-63	3.48e-62	3.43e-60	5.21e-60	2.21e - 58	2.21e-58	3.34e-58	5.07e-58	5.07e-58	7.68e-58	2.67e-57	9.27e-57		9.27e-57	1.40e-56
ECDYSONE-INDUCIBLE PR	~	ECDYSONE-INDUCIBLE PR	THYROID HORMONE RECEP		THYROID HORMONE RECEP	THYROID HORMONE RECEP	V-ERBA RELATED PROTEI	THYROID HORMONE RECEP	THYROID HORMONE RECEP	ERBA ONCOGENE PROTEIN	ACID	RETINOIC ACID RECEPTO																					
E75A DROME	PPAU MOUSE	E75B_DROME	THB1 XENLA	THB5 XENLA	THB CHICK	THBZ HUMAN	THA1 MOUSE	THA1 HUMAN	THB1 MOUSE	THB2 MOUSE	THB1 HUMAN	THB6 XENLA	THB7 XENLA	THB1 RAT	THB2 RAT	THA1 RAT	THA CHICK	THA RANCA	EAR I HUMAN	THAA XENLA	THAB XENLA	ERBA AVIER	RRB1_CHICK	RRB2_CHICK	RRA1 HUMAN	RRA1 MOUSE	RRA2 MOUSE	RRA NOTVI	RRB2 HUMAN	RRB1 MOUSE	RRB3 MOUSE	RRB2 MOUSE	RRG2_HUMAN
~ ~	ی ہ	2	-	_	_	_	-	~	<u>~</u>	_	-	-	_	~	-	_	~	_	7	-	_	m	9	و	9	9	9	9	9	9	9	9	9
1237	158	1394	369	373	369	476	410	410	461	475	461	373	414	461	514	410	408	418	614	418	418	382	455	448	462	462	459	458	448	455	482	448	443
19.5	15.4	14.6	14.5	14.5	14,3	14.3	14.3	14.3	14.2	14.2	14.2	14.1	14.1	14.1	14.1	14.1	13.9	13.7	13.6	13.4	13.1	13.1	12.9	12.9	12.8	12.8	12.8	12.8	12.7	12.6	12.6	12.6	12.6
706	558	528	525	525	518	518	517	516	514	514	512	511	511	510	510	510	503	495	490	486	475	474	465	4 65	4 64	463	463	462	459	456	456	456	455
112	13	14	15	16	17	18	19	20	21	22	23	24	52	56	27	58	53	8	31	32	33	34	32	36	37	38	39	40	41	42	43	44	45

ALI GNMENTS

	PRT; 475 AA.		(Ω)	01-0CT-1994 (REL. 30, LAST SEQUENCE UPDATE)	INNOTATION UPDATE)	PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA (PPAR-GAMMA).			SUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;					APERIO C., POGNONEC P., AUMERX J., BOULUKOS K.;	SUBMITTED (MAR-1994) TO EMBL/GENBANK/DDBJ DATA BANKS.	-!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS	HYPOLIPIDEMIC DRUGS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND,	THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE GENE FOR ACYL-COA	OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE	PEROXISOMAL BETA-OXIDATION PATHWAY OF FATTY ACIDS.	ICLEAR.	SUBUNIT: HETEROLIMER WITH THE RETINOID X RECEPTOR.	SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC	S.
	STANDARD;		30, CREA	30, LAST	30, LAST	RATOR AC		(X	CHORDA					C P., AU	4) TO EN	PTOR THA	DRUGS AN	INDS TO	TIVATES	TA-OXIDA	CATION:	DI IMER W	OTHER M	NUCLEAR HORMONE RECEPTORS.
	STA		(REL.	(REL	(REL.	PROLIFE		S (HUMA	ETAZOA	RIMATES		OM N.A.	ä	POGNONE	4AR-199	4: RECE	IDEMIC	EPTOR B	AND AC	MAL BE	JLAR 1.0	HETER	ITY: TO	HORMON
1	PPAT HUMAN	P37231;	01-0CT-1994 (REL. 30, CREATED)	11-0CT-1994	11-0CT-1994	EROXISOME I	PPARG.	HOMO SAPIENS (HUMAN).	SUKARYOTA; P	EUTHERIA; PRIMATES.	Ξ	SEQUENCE FROM N.A.	TISSUE=LIVER;	APERIO C., F	SUBMITTED (N	-!- FUNCTION	HYPOLIP	THE RECE	OXIDASE	PEROXISC	-!- SUBCELLULAR LOCATION: NUCLEAR.	-!- SUBUNIT:	-!- SIMILARI	NUCLEAR
RESULT	1 11	AC F	DT (DT (DT (DE 1	NS	OS	0C	20	RN	RP.	RC 1	RA /	_	ე	ည	ပ္ပ	ខ	ည	:	ც	ည	ပ္ပ

셤 ð 셤 ð 염 8 셤 à 염 Š

m

US-08-380-051-2.rsp

PPAT XENLA PIR; JN088 SEQUENCE P37234; PPARG. Matches 181 260 241 ÷ RESULT BB g g g P ð ð ð 쇰 ð g 5 9 δ g ð δ 0.00e+00; grmpqaekekllaeissdidqlnposadlralakhlydsyiksfpltkakarailtgktt 240 61 adykydlklqeyqsaikvepasppyysekaqlynrpheepsnslmaiecrvcgdkasgfh 120 80 ADYKYDIKIQEYQSAIKVEPASPPYYSEKTQLYNKPHEEPSNSLMAIECRVCGDKASGFH 139 ipgfinldlndqvtllkygvheiiytmlaslmnkdgvlisegqgfmtreflkslrkpfgd 360 fmepkfefavkfnalelddsdlaifiaviilsgdrpgllnvkpiediqdnllgalelqlk 420 121 ygvhacegckgffrrtirlkliydrcdlncrihkksrnkcgycrfqkclavgmshnairf 180 200 GRMPQAEKEKLLAEISSDIDQINPESADIRALAKHLYDSYIKSFPLTKAKARAILTGKTT 259 9 20 MVDTEMPFWPTNFGISSVDLSVMEDHSHSFDIKPFTTVDFSSISTPHYEDIPFTRTDPVV 79 Gaps 1 mvdtempfwptnfqissvdlsmmddhshsfdikpfttvdfssisaphyedipftradpmv 421 lnhpessqlfakvlqkmtdlrqivtehvqllhvikktetdmslhpllqeiykdly 475 OryMatch 95.0%; Pred. No. ismatches 0; Indels 0; MUS MUSCULUS (MOUSE). EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA; 01-0CT-1994 (REL. 30, 1AST SEQUENCE UPDATE) 01-0CT-1994 (REL. 30, 1AST ANNOTATION UPDATE) PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA (PPAR-CAMMA) EMBL; 230972; CGPPARRN. PIR; S42489; S42489. HSSP; P10826; 1HRA. RECEPTOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING; LIGAND-BINDING (POTENTIAL) C4-TYPE ZINC FINGERS (TWO) CHEN F., LAW S.W., O'MALLEY B.W.; BIOCHEM: BIOPHYS: RES. COMMUN. 196:671-677(1993) NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY 470 AA. 11; Mismatches MM; 1146250 CN; C4-TYPE. C4-TYPE. PRT; Match 97.7%; CREATED) STRAIN=BALB/C; TISSUE=HEART; 54472 Conservative STANDARD; 173 129 168 475 01-0CT-1994 (REL. 30, 01-0CT-1994 (REL. 30, 01-0CT-1994 (REL. 30, 3433; 475 AA; EUTHERIA; RODENTIA. SEQUENCE FROM N.A. 464; LT 2 PPAT MOUSE Score DNA BIND 94059089 SEQUENCE ZN FING ZN FING P37238; DOMAIN DB 6; So Matches PPARG. 181 241 260 301 320 361 380 440

셤

ð 셤 ð g ð Score 3311; Match 96.2%; QryMatch 91.6%; Pred. No. 0.00e+00; 457; Conservative II; Mismatches 2; Indels 5; Gaps 1 THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE GENE FOR ACYL-COA OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE PEROXISOMAL BETA-OXIDATION PATHMAY OF FATTY ACIDS.
SUBCELLULAR LOCATION: NUCLEAR. 180 140 YGVHACEGCKGFFRRTIRIKLIYDRCDIACRIHKKSRNKCQYCRFQKCLAVGMSHNAIRF 199 361 fmepkfefavkfnalelddsdlaifiaviilsgdrpgllnvkpiediqdnllq----lk 415 439 grdrqaekekllaeissdidqlnpesadlralakhlydsyiksfpltkakarailtgktt 240 301 ipgfinldlndqvtllkygvheiiytmlaslmnkdqvliseqqqfmtreflkslrkpfgd 360 ||||:||||||||||||||||||||| 320 IPGFVNLDIANDQVTLLKYGVHEIIYTMLASLMNKDGVLISEGQGFMTREFLKSLRKPFGD 379 dkspfviydmssfmmgedkikfkhitplqeqskevairifqgcqfrsveavqeiteyakn 300 9 20 MYDTEMPEWPTNFGISSVDLSVAEDHSHSFDIKPFTTVDFSSISTPHYEDIPFTRTDPVV 79 HYPOLIPIDEMIC DRUGS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND, 121 ygvhacegckgffrrtirlkliydrcdlncrihkksrnkcgycrfqkclavgmshnairf -!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS 1 mvdtempfwptnfgissvdlsvmedhshsfdikpfttvdfssisaphyedipftradpmv -!- SUBUNIT: HETERODIMER WITH THE RETINOID X RECEPTOR. -!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC 416 Inhpessqlfakvlqkmtdlrqivtehvqllhvikktetdmslhplfqeiykdly PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR BETA (PPAR-GAMMA) RECEPTOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING, NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY.

DNA BIND 109 173 C4-TYPE ZINC FINGERS (TWO)
ZN_FING 109 129 C4-TYPE.

ZN_FING 109 129 C4-TYPE.

ZN_FING 168 C4-TYPE.

DOMAIN 288 470 LICAND-BINDING (POTENTIAL) 01-0CT-1994 (REL. 30, CREATED) 01-0CT-1994 (REL. 30, IAST SEQUENCE UPDATE) 01-0CT-1994 (REL. 30, IAST ANNOTATION UPDATE) Ä 477 1 54014 MW; 1131104 CN NUCLEAR HORMONE RECEPTORS STANDARD; ; JN0881. EMBL; U01664; MM664. 470 AA; HSSP; P10826; 1HRA.

Nov 1708.25

US-08-380-051-2.rsp

Nov 17 08:25

S

S		*
၂၀ န		
£ 2 3	RP SEQUENCE FROM N.A.	
8 8 5		
æ æ		
. ₹	94100165	
£ £		
R.		
ဗဗ	CC -!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS CC HYPOLIPIDEMIC DRIGS AND FATTY ACIDS. ONCE ACTIVATED BY A LICAND	
පු		
ဗ		
38	CC PEROAISOMAL BETA-OXIDATION FATHWAY OF FATTY ACIDS. CC -!- SUBCELLUIAR LOCATION: NUCLEAR.	
ဗ	-	
ខ	<u>-</u> !!.	
ខ	· -¦·	
පු පු	CC NUCLEAR HORMONE RECEPTORS. DR FMRI: M84163: XIDDARG	
ž ž	PIR;	
B G		
ž		*
3 5		<i>!</i> .
F	ZN_FING 150 172 C4-TYPE.	
Z OS	FT DOMAIN 293 477 LIGAND-BINDING (POTENTIAL). SQ SEQUENCE 477 Aa, 54055 MW; 1113537 CN;	
ä :	Score 2579; Match 73.9%; OryMatch 71.4%; Pred. No. 0.00e+0	
ž	Conservative 62;	
අු	-	
õ	Qy 20 MVDTEMPFWPT-NFGISSVDLSVMEDHSHSFDIKPFTTVDFSSISTPHYEDIPFT- 73	
9	09	
δ	Qy 74 RTDPVVADYKYDIKLQEYQSAIKVEPASPPYYSEKTQLYNRPHEEPSNSLMAIECRVCGD 133	
q 0	119	
à	Qy 134 KASGFHYGWHACEGCKGFFRRTIRLKLIYDRODIACRIHKKSRNKCQYCREQKCLAVGMS 193	
g	179	
Š	Qy 194 HNAIREGRUPQAEKEKLIAEISSDIDQIAPESADLRALAKHLYDSYIKSFPLTKAKARAI 253	
q 0	239 pdgqshrqnsrgytrheladdgggsdqgavre-praeqgggdsnlpal-svalrg	
δ	Qy 254 LTGKT-TDKSP-FVIYDMNSLAMGEDKIKFKHITPLQEGSKEVAIRIFQGGGFRSVEAVQ 311	
9	Db 295 eitefaknipgfvsldlndqvtllkygvheiiftmlaslmnkdgvlvaegggfmtreflk 354	
δ	312	
qq	Db 355 slrkpfsdfmepkfefairfnslelddsdlaifvaviilsgdrpgllnvkpiedigdsll 414	

Score 1946; Match 55-28, OryMatch 53.8%; Pred. No. 0.00e+00; 247; Conservative 78; Mismatches 51; Indels 3; Gaps 3; THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE GENE FOR ACYL-COA OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE PEROXISONAL BETA-OXIDATION PATHWAY OF FATTY ACIDS.

-! SUBCELLULAR LOCATION: UNCLEAR.
-!- SUBJUNT: HETRENOLDER WITH THE RETINOID X RECEPTOR.
-!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC 151 nkcqycrfhkclsvgmshnairfgrmprsekaklkaeiltcehdiedsetadlkslakri 210 211 yeaylknfnmnkvkarvilsgkasnnppfvihdmetlcmaektlvaklvan-gignkeve 269 EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA; EUTHERIA; PRIMATES. 01-0CT-1994 (REL. 30, CREATED) 01-0CT-1994 (REL. 30, LAST SEQUENCE UPDATE) 01-0CT-1994 (REL. 30, LAST ANNOTATION UPDATE) PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA). HSSP; P10826; 1HRA. MIM; 170998; 11TH EDITION. RECEPPOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING; NUCLEAR PROTEIN; ZINC-FINGER; MULTICERE FABILY. C4-TYPE ZINC FINGERS (TWO) C4-TYPE. LIGAND-BINDING (POTENTIAL) 468 AA. 102 122 C4-TYPE. 139 161 C4-TYPE. 281 468 LICAND-BINDIN 468 AA; 52267 MW; 1083954 CN; PRT; NUCLEAR HORMONE RECEPTORS STANDARD; EMBL; L02932; HSPPAR. PIR; A49289; A49289. (HUMAN) [1] SEQUENCE FROM N.A. TISSUE=LIVER; 93277839 PPARA OR PPAR. HOMO SAPIENS 475 dly 477 111 492 DLY 494 BIOCHEMISTRY PPAR HUMAN DNA BIND SEQUENCE ZN FING DOMAIN 007869; ZN FING Matches 111 STATEMENT OF STATE OF g 셤 ð Š ð P ð 쇰 ð g à

US-08-380-051-2.rsp

5;

Nov 17 08:25

Matches 245; Conservative 79; Mismatches 53; Indels 2; Gaps 2	lniecricgdkasgyhygvhacegckgffrrtirlklyydkcdrsckigkl	Qy 117 EEPSNSLMAIECRVGGDKASGFHYGVHACEGCKGFFRRTIRLKLIYDRCDLNCRIHKKSR 176	Db 151 nkcqycrfhkclsvgmshnairfgrmprsekaklkaeiltcehdlkdsetadlkslgkri 210	211 heaylknfnmnkvkarvilagktsnnppfvihdmetlcmaektlvakmvangved-keae :: : : : : :	270 vrffhccqcmsvetvteltefakaipgfanldIndqvtllkygvyeaiftmlsslmnkdg :1:1:	Db 330 mliaygngfitreflknlrkpfcdimepkfdfamkfnalelddsdislfvaaiiccgdrp 389 : :	Db 390 gllnigyieklqegivhvlkihlqsnhpddtflfpkilqkmvdlrqlvtehaqlvqvikk 449 : : : : : :	Db 450 tesdaalhpllqeiyrdmy 468 : : : : Qy 476 TETDMSLHPLIQEIYKDLY 494	5		DT. 01-OCT-1994 (REL. 30, LAST SEQUENCE UPDATE) DT 01-OCT-1994 (REL. 30, LAST ANNOTATION UPDATE) DE PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA (PPAR-ALPHA).	GN PPARA OR PPAR. OS RATTUS NORVEGICUS (RAT). OC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;	RN (1) RP SEQUENCE FROM N.A. RP 97552408		CC -!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS CC HYPOLIPIDEMIC DRUGS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND, CC THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE GENE FOR ACYL-COA	CC OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE CC PEROXISOMAL BETA-OXIDATION PATHWAY OF FAITY ACIDS.		EMBL PIR;	DK H3SF; F10876; IHKA. KW RECEPTOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING; KW NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY. FT NNA RIND 102 16, C4-TYPE 71NC FINERS (TMO).	ZN FING 102 122 ZN FING 139 161
	270 vrifhccqctsvetvteltefakaipafanldlndqvtllkygvyeaifamlssvmnkdg illi	OY 290 IKIROGOORKSVEAVOEITETAKSIROEKVILDIANDOVILLATGVHELLITIMLASLANANDG 353 Dh. 330 mlusunnafitrafilkolrbafaddimankfdfsmyfnslalddadielfussiinnadan 380	356 VIISEGQGFWTREFIKSIRKPFGDFWEPKFFEAVKFNALELDDSDIAIFIAVIILSGDRP	Db 390 gllnyghiekmqegivhvlrlhlqsnhpddiflfpkllqkmadlrqivtehaqlyqiikk 449 : : ::: : : :	Db 450 tesdaalhpllqeiyrdmy 468 : : : : Qy 476 TETDMSLAPLLQEIYKDLY 494	301		GN PPARA OR PPAR. OS MUS MUSCULUS (MOUSE). OC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA;	- 1	IAN .	CC HYPOLIPIDEMIC DRUGS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND, CC THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE CENE FOR ACYL-COA CC OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE	CC PEROXISOMAL BETA-OXIDATION PATHWAY OF FATTY ACIDS. CC -!- SUBCELLUIAR LOCATION: WUCLEAR. CC -!- SUBUNIT: HETERODIMER WITH THE RETINOID X RECEPTOR.	!. !	PEROXISOMES AS WELL AS LIVER HYPERPLASIA.	CC HEART, VERY WEAKLY EXPRESSED IN BRAIN AND TESTIS. CC -!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC CC NUCLEAR HORMONE RECEPTORS.	EMBL PIR;	TEROID FINGER.		FT ZN FING 102 122 C4-TYPE. FT ZN FING 139 161 C4-TYPE. FT DOMAIN 281 468 LIGAND-BINDING (POTENTIAL). SO SPONIENCE 468 AA: 5,243 MM: 1104492 NN:	DB 6; Score 1932; Match 64.6

Score

; è

贸

Matches

셤 õ 셤 ð 쇰 ð 9 ð 셤 ð අ ð

151

211

330

SEQUENCE

DOMAIN

S

6

PPAS HUMAN

RESULT

원

ð

003181;

RODAN G.A.;

93078797

US-08-380-051-2 rsp Nov 17 08:25

```
1921; Match 65.6%; QryMatch 53.2%; Pred. No. 0.00e+00;
                                                                                                                                                                                                                                                                                        70 Inmecrycgdkasgfhygvhacegckgffrrtirmkleyekcersckigkknrnkcgycr 129
                                                                                                                                                                                                                                                                                                                  130 fqkclalgmshnairfgrmpeaekrklvagltanegsqynpqvadlkafskhiynaylkn 189
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       190 fnmtkkkarsiltgkashtapfvihdietlwqaekglvwkqlvnglppykeisvhvfyrc 249
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     250 gcttvetvreltefaksipsfsslflndqvtllkygvheaifamlasivnkdgllvangs 309
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      310 gfvtreflrslrkpfsdilepkfefavkfnalelddsdlalfiaaiilcgdrpglmnvpr 369
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; AMPHIBIA; ANURA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     J. STEROID BIOCHEM. MOL. BIOL. 47:65-73(1993).
-!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS HYPOLIPIDEMIC DRUGS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND,
                                                                                                                                                                                                                                  Gaps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DREYER C., KREY G., KELLER H., GIVEL F., HELFTENBEIN G., WAHLI W.; CELL 68:879-887(1992).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               KREY G., KELLER H., MAHFOUDI A., MEDIN J., OZATO K., DREYER C.,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR ALPHA (PPAR-ALPHA)
                                                                                                                                                                                                                                                                                                                                                                                                                                 LIGAND-BINDING (BY SIMILARITY)
                                                                                                                                                                                                                                  79; Mismatches 48; Indels
NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY.
DNA_BIND 74 138 C4-TYPE ZINC FINGERS (TWO)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        01-OCT-1994 (REL. 30, CREATED)
01-OCT-1994 (REL. 30, LAST SEQUENCE UPDATE)
01-OCT-1994 (REL. 30, LAST ANNOTATION UPDATE)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                474 AA.
                                                                                                                                            973846 CN
                                                           C4-TYPE.
                                                                                        C4-TYPE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       XENOPUS LAEVIS (AFRICAN CLAWED FROG)
```

Nov 17 08:25

US-08-380-051-2.rsp

g 요 δ 1894; Match 64.8%; QryMatch 52.4%; Pred. No. 0.00e+00; THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE GENE FOR ACYL-COA OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE 216 liydaylknfnmnkvkarailtgkasn-ppfvihdmetlcmaektlvaklvan-giqnke 273 97 aedaacksl-nlecrvcsdkasgfhygvhacegckgffrrtirlklvydrcermckigkk 155 dgmlvaygngfitreflkslrkpigdmmepkfefamkfnalelddsdlslfvaaliccgd 393 rpglvnipsiekmqesivhvlklhlqsnhpddsflfpkllqkmadlrqlvtehaqlvqti 453 414 RPGLIAVKPIEDIQDNLLQALELQIKIAHPESSQLFAKLLQKMTDLRQIVTEHVQLLQVI 473 -!- DEVELOPMENTAL STAGE: OOCYTES, EMBRYOS, AND ADULTS
 -!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC NUCLEAR HORMONE RECEPTORS. 4: EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA; EUTHERIA; RODENTIA. 01-OCT-1994 (REL. 30, LAST ANNOTATION UPDATE) PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR BETA (PPAR-BETA) HSSP; P10826; 1HRA. RECEPTOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING; 74; Mismatches 56; Indels C4-TYPE ZINC FINGERS (TWO) LIGAND-BINDING (POTENTIAL) PEROXISOMAL BETA-OXIDATION PATHWAY OF FATTY ACIDS. SUBUNIT: HETERODIMER WITH THE RETINOID X RECEPTOR. NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY DNA BIND 109 173 C4-TYPE ZINC FING 440 AA LAST SEQUENCE UPDATE) 287 474 LIGAND-BINDIN 474 AA; 52856 MW; 1122618 CN; C4-TYPE. -!- TISSUE SPECIFICITY: UBIQUITOUS. PRT; SUBCELLULAR LOCATION: NUCLEAR. 454 kktetdaalhpllqeiyrdmy 474 01-JUN-1994 (REL. 29, CREATED) Conservative STANDARD; 129 168 474 EMBL; M84161; XLPPARA. MUS MUSCULUS (MOUSE). 01-JUN-1994 (REL. 29, 01-OCT-1994 (REL. 30, PIR; A42214; A42214. 247; LT 9 PPAS_MOUSE Score SEQUENCE FING P35396; ZN FING DB 6; Sc Matches PPARB. DOMAIN 334 354 394 NZ RESULT 1D PE AC PC DT 01 DT 00 DE PI GN PE OS ME OC EE RN [

음 8 요 ð 쇰 8 셤 ð 셤 6 셤 ð

HYPOLIPIDEMIC DRUGS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND, THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE CENE FOR ACYL-COA OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE PEROXISOMAL BETA-OXIDATION PATHRAY OF FATTY ACIDS. -!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS -!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC PROSÍTE; PS00031; STEROID FINGER. RECEPTOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING; NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY. C4-TYPE ZINC FINGERS (TWO) LIGAND-BINDING (POTENTIAL) -!- SUBUNIT: HETERODIMER WITH THE RETINOID X RECEPTOR AMRI E.-Z., BONINO F., AILHAUD G., GRIMALDI P.; SUBMITTED (XXX-1994) TO EMBL/GENBANK/DDBJ DATA BANKS. 253 440 LIGAND-BINDI 440 AA; 49715 MM; 980155 CN; C4-TYPE. C4-TYPE SEQUENCE FROM N.A.
STRAIN=C57BL/6J; TISSUE=ADIPOCYTE; -!- SUBCELLULAR LOCATION: NUCLEAR, NUCLEAR HORMONE RECEPTORS 93 132 440 EMBL; L28116; MMPPARA. HSSP; P10826; 1HRA. 73 73 DNA BIND ZN FING SEQUENCE ZN FING DOMAIN

1886; Match 63.6%; QryMatch 52.2%; Pred. No. 0.00e+00; onservative 84; Mismatches 53; Indels 1; Gaps 1 241; Conservative Score Matches

121 181 177 NKCQYCRFQKCLAVGMSHNAIRFGRMPQAEKEKLLAEISSDID-QIMPESADLRALAKHL 235 62 dgasggslnmecrvcgdkasgfhygvhacegckgffrrtirmkleyekcdrickiqkknr 122 nkcgycrfqkclalgmshnairfgrmpeaekrklvagltasegcqhnpqladlkafskhi g δ ð

182 ynaylknfnmtkkkarsiltgksshnapfvihdietlwqaekglvwkqlvnglppyneis 241 셤 ò

296 IRIFQGCQFRSVEAVQEITEYAKSIPGEVNLDLADQVTLLKYGVHEIIYTMLASLMAKDG 355 301 242 whvfyrcqsttvetvreltefaknipnfsslflndqvtllkygvheaifamlasivnkdg g ð

361 356 VLISEGQGEMTREFLKSLRKPFGDFMEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRP 415 302 llvangsgfvtheflrslrkpfsdijepkfefavkfnalelddsdlalfiaaiilcgdrp 셤 ð

421 362 glmnvpqveaiqdtilralefhlqvnhpdsqylfpkllqkmadlrglvtehaqmmqwlkk g δ

g

õ

422 tesetllhpllgeiykdmy 440 ||:: |||||||||:| 476 TETDMSLHPLLQEIYKDLY 494

396 AA. PRT; STANDARD; PPAS XENLA P37233; 10 RESULT SEARAGE

PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR BETA (PPAR-BETA). 01-0CT-1994 (REL. 30, CREATED) 01-0CT-1994 (REL. 30, LAST SEQUENCE UPDATE) 01-0CT-1994 (REL. 30, LAST ANNOTATION UPDATE) PPARB. US-08-380-051-2 rsp Nov 17 08:25

7

||:||: :|||||||:||:|| 473 || IKKTETDMSLHPLLQEIYKDLY 494 ð

706; Match 34.1%; QryMatch 19.5%; Pred. No. 6.45e-103; nservative 92; Mismatches 127; Indels 19; Gaps 17; 302 rlkkciavgmsrdavrfgrvpkrekarilaamqqst-q-nr-qqq-ralatel-ddqprl 356 242 tvlcrvcgdkasgfhygvhscegckgffrrsiqqkiqyrpctknqqcsilrinrnrcqyc 301 PROSITE; PSO0031; STEROID FINGER. RECEPTOR; TRANSCRIPTION REGULATION; DNA-BINDING; NUCLEAR PROTEIN; RECULATED AND IS CORRELATED WITH THE 20-OH-ECDYSONE INDUCED ACTIVITY OF PUFF 75B.
-!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC GENES DEV. 4:204-219(1990). -!- FUNCTION: IMPLICATED IN THE REGULATION OF ECDYSONE-TRIGGERED GENE HIERARCHIES. PROBABLY PLAYS A KEY ROLE IN MEDIATING THE REGULATION OF THE LARVAL MOLT BY 20-04-ECDYSONE. -!- INDUCTION: THE EXPRESSION OF THIS PROTEIN IS DEVELOPMENTALLY -!- ALTERNATIVE PRODUCTS: THE DIFFERENT FORMS OF PROTEIN E75 AF PROBABLY PRODUCED BY ALTERNATIVE SPLICING OF THE SAME GENE. C4-TYPE ZINC FINGERS DROSOPHILA MELANOGASTER (FRUIT FLY). EUKARYOTA; METAZOA; ARTHROPODA; INSECTA; DIPTERA. SUBCELLULAR LOCATION: NUCLEAR (POTENTIAL). 01-AUG-1990 (REL. 15, LAST SEQUENCE UPDATE) 01-OCT-1994 (REL. 30, LAST ANNOTATION UPDATE) 1237 AA; 133331 MW; 7722251 CN; PRT; 1237 AA. C4-TYPE. C4-TYPE. POLY-GLN. POLY-SER ZINC-FINGER; ALTERNATIVE SPLICING. ECDYSONE-INDUCIBLE PROTEIN E75-A. 01-AUG-1990 (REL. 15, CREATED) NUCLEAR HORMONE RECEPTORS FLYBASE; FBGN0000568; EIP75B. SEGRAVES W.A., HOGNESS D.S.; 123; Conservative STANDARD; 1077 EMBL; X51548; DME75A. PIR; A34598; A34598. HSSP; P10826; 1HRA. SEQUENCE FROM N.A. STRAIN=CANTON-S; TRANSFAC; T01367; 1049 LT 11 E75A DROME P17671; Score DNA BIND ZN FING ZN FING DOMAIN SEQUENCE 90249727 DOMAIN DB 2; So Matches g 셤 ð

g

8

g

8

375 ikrtessaalhpllqeiyrdmy 396

셤

δ

US-08-380-051-2.rsp Nov 17 08:25

9

558; Match 77.4%; QryMatch 15.4%; Pred. No. 2.36e-75; BIOCHEM. BIOPHYS, RES. COMMUN. 196:671-677(1993).

-!- FUNCTION: RECEPTOR THAT BIND PEROXISOME PROLIFERATORS SUCH AS HYPOLIPIDEMIC DRUCS AND FATTY ACIDS. ONCE ACTIVATED BY A LIGAND, THE RECEPTOR BINDS TO A PROMOTER ELEMENT IN THE GENE FOR ACYL-COA OXIDASE AND ACTIVATES ITS TRANSCRIPTION. IT THEREFORE CONTROL THE PEROXISOMAL BETA-OXIDATION PATHWAY OF FATTY ACIDS. 301 GCQFRSVEAVQEITEYAKSIPGFVNLDIANDQVTLIKYGVHEIIYTMLASLANKD-GVLIS 359 732 75 dgasggslnmecrvcgdkasgfhygvhacegckgffrrtirmkleyekcdrickiqkknr 134 243 FPLTKAKARALLTGKTTDKSPFVIYDMNSLAMGEDKIKFKHITPL-QEQSKEV-AIRIFQ 300 618 s-q-rfahvirgvidfagmipgfqlltqddkftllkaglfdalfvrlicmfdssinsiic 675 rnleliekmysrlkgclqyivaqnrpdqpeflaklletmpdlrtlstlhteklvvfrteh 792 567 -ppccc-ah-letceft-kek-vs-amrh-grglpstpc-htsglsaepapelqseqef- 617 676 Ingqv-mrrdaiqnganarf--lvdstfnfaermnsmnltdaeiglfcaivlitpdrpgl -!- SUBUNIT: HETERODIMER WITH THE RETINOID X RECEPTOR.
 -!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; MAMMALIA; 01-OCT-1994 (REL. 30, CREATED)
01-OCT-1994 (REL. 30, LAST SEQUENCE UPDATE)
01-OCT-1994 (REL. 30, LAST ANNOTATION UPDATE)
PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR NUC1 (PPAR-NUC1) RECEPTOR; TRANSCRIPTION REGULATION; ACTIVATOR; DNA-BINDING; C4-TYPE ZINC FINGERS (TWO) NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY Conservative 12; Mismatches 158 AA. 158 AA; 17316 MW; 110700 CN; ¢ PRT; -!- SUBCELLULAR LOCATION: NUCLEAR. CHEN F., LAW S.W., O'MALLEY B.W.; NUCLEAR HORMONE RECEPTORS STRAIN=BALB/C; TISSUE=BRAIN; STANDARD; 106 145 01-0CT-1994 (REL. 30, 01-0CT-1994 (REL. 30, 01-0CT-1994 (REL. 30, EMBL; U01665; MM665. MUS MUSCULUS (MOUSE) EUTHERIA; RODENTIA. HSSP; P10826; 1HRA. [1] SEQUENCE FROM N.A. 65; 478 TDM 480 793 kel 795 LT 13 PPAU MOUSE Score (FRAGMENT) DNA BIND ZN FING 94059089 ZN FING SEQÜENCE P37239; NON TER Matches ; 6 RESULT 8 à g ð g ð 염 ð g à 셤 ð

17; Match 30.4%; QryMatch 14.6%; Pred. No. 7.64e-70; htive 90; Mismatches 131; Indels 19; Gaps 17 415 avtanedadgffrrsiggkigyrpctknggcsilrinrnrcgycrlkkciavgmsrdavr 474 fgrvpkrekarilaamqqst-q-nr-gqq-ralatel-ddqprlla-avlrahletceft 528 529 kekvs-amrqrardcpsysmptl-lacplnpapelqseqef-s-q-rfahvirgvidfag 583 259 TDKSPFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRSVEAVQEITEYAK 318 584 mipgfqlltqddkftllkaglfdalfvrlicmfdssinsiiclngqv-mrrdaiqngana 642 643 rf--lvdstfnfaermnsmnltdaeiglfcaivlitpdrpglrnleliekmysrlkgclg 700 -!- SUBCELLULAR LOCATION: NUCLEAR (POTENTIAL).
-!- INDUCTION: THE EXPRESSION OF THIS PROTEIN IS DEVELOPMENTALLY REGULATED AND IS CORRELATED WITH THE 20-OH-ECDYSONE INDUCED ACTIVITY OF PUPE 75B.
-!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC RECEPTOR; TRANSCRIPTION REGULATION; DNA-BINDING; NUCLEAR PROTEIN; ZINC-FINGER; ALTERNATIVE SPLICING. -!- FUNCTION: IMPLICATED IN THE RECUIATION OF ECDYSONE-TRIGGERED GENE HIERARCHIES. PROBABLY PLAYS A KEY ROLE IN MEDIATING THE REGULATION OF THE LARVAL MOLT BY 20-OH-ECDYSONE. NUCLEAR HORMONE RECEPTORS BUT LACK THE DNA-BINDING REGION. -!- ALTERNATIVE PRODUCTS: THE DIFFERENT FORMS OF PROTEIN E75 ARE PROBABLY PRODUCED BY ALTERNATIVE SPLICING OF THE SAME GENE. EUKARYOTA; METAZOA; ARTHROPODA; INSECTA; DIPTERA. 01-AUG-1990 (REL. 15, LAST SEQUENCE UPDATE) 01-OCT-1994 (REL. 30, LAST ANNOTATION UPDATE) ECDYSONE-INDUCIBLE PROTEIN E75-B. PRT; 1394 AA. 9605497 CN; DROSOPHILA MELANOGASTER (FRUIT FLY) 177 NKCQYCRFQKCLAVGMSHNAIRFG 200 1394 AA; 152097 MW; CREATED) SEGRAVES W.A., HOGNESS D.S.; FLYBASE; FBGN0000568; EIP75B GENES DEV. 4:204-219(1990). Conservative STANDARD; 01-AUG-1990 (REL. 15, EMBL; X51549; DME75B. PIR; B34598; B34598. 528; HSSP; P10826; 1HRA. SEQUENCE FROM N.A. TRANSFAC; T01368; STRAIN=CANTON-S; 105; 14 3 DROME 2; Score SEQUENCE 90249727 P17672; E75B Matches 475 BB 셤 ð g ð 셤 ð 셤 ð 셤 ò 쉽 ð

US-08-380-051-2.rsp Nov 17 08:25

745 701 yivaqnrpdqpeflaklletmpdlrtlstlhteklvvfrtehkel 염

: |:|: :::||||: | || || : | |:: :: 436 LQLKINHPESSQLFAKLLQKMTDLRQIVTEHVQLLQVIKKTETDM 480

ð

369 AA PRT; STANDARD; THB1 XENLA RESULT

01-oct-1994 (REL. 30, LAST ANNOTATION UPDATE) (REL. 16, LAST SEQUENCE UPDATE) 01-NOV-1990 (REL. 16, CREATED) 01-NOV-1990

THYROID HORMONE RECEPTOR BETA-A1. XENOPUS LAEVIS (AFRICAN CLAWED FROG).

EUKARYOTA; METAZOA; CHORDATA; VERTEBRATA; TETRAPODA; AMPHIBIA; ANURA

SEQUENCE FROM N.A. 90384953

YAOITA Y., SHI Y.-B., BROWN D.D.; PROC. NATL. ACAD. SCI. U.S.A. 87:7090-7094 (1990)

91046059 ERRATUM.

YAOITA Y., SHI Y.-B., BROWN D.D.; PROC. NATL. ACAD. SCI. U.S.A. 87:8684-8684(1990)

-:- FUNCTION: HIGH AFFINITY RECEPTOR FOR TRIIODOTHYRONINE.

-!- SUBCELLULAR LOCATION: NUCLEAR

-!- DOMAIN: COMPOSED OF THREE DOMAINS: A MODULATING N-TERMINAL DOMAIN, A DNA-BINDING DOMAIN AND A C-TERMINAL STEROID-BINDING DOMAIN.

-!- SIMILARITY: TO OTHER MEMBERS OF THE STEROID/THYROID/RETINOIC NUCLEAR HORMONE RECEPTORS.
-!- ALTERNATIVE PRODUCTS: SPLICING OF THE BETA-A GENE PRODUCES

VARIANTS OF THE RECEPTOR. EMBL; M35359; XLBETA.

PIR; C36067; C36067.

HSSP; P10826; 1HRA.

PROSITE; PS00031; STEROID FINGER.

RECEPTOR; TRANSCRIPTION REGULATION; DNA-BINDING; NUCLEAR PROTEIN; ZINC-FINGER; MULTIGENE FAMILY; ALTERNATIVE SPLICING.

C4-TYPE ZINC FINGERS (TWO) MODULATING (POTENTIAL) 14 82 35 77 369 DNA BIND ZN FING DOMAIN

LIGAND-BINDING. C4-TYPE. C4-TYPE. ZN FING DOMAIN

691170 CN; 369 AA; 41939 MW; SEQUENCE 525; Match 31.4%; QryMatch 14.5%; Pred. No. 2.71e-69; Gaps 56; 99; Mismatches 131; Indels 117; Conservative 7; Score Matches 8

15 cvvcgdkatgyhyrcitcegckgffrrtiqknlhpsysckyegkcvidkvtrnqcqecrf 74 g

à

75 kkciavgmatdlv-lddnkrlakrkliee-nre-krrkde-iq-kslvqkp-eptqeewe 128 244 ||:||||: : : : | ||: | : : : | :: :: | :: 셤 ð

180 129 liqvvteahvatnaqg-shw-k-qkrkfl-ped-igqapivnapeggk-vdleaf-s-qf 셤

304 245 LTKAKARAILIGKTTDKSPFVIYDMNSIAMGEDKIKFKHITPLQEQSKEVAIRIFQGCQF δ 181 tkiitpaitrvvdfakklpmfcelpcedqiillk-gccmeimslraavrydpesetltln 239 염

305 -RSVE-AVQEITEYAKSIPGEVALDIANDQYTLIKYGVHEIIYTMIASIAM-NKDG-VLISE 360

ð

σ.
200000000000000000000000000000000000000
460000000000000000000000000000000000000
200000000000000000000000000000000000000
100000
200

300000000000000000000000000000000000000

200000000000000000000000000000000000000
300000000000000000000000000000000000000
200000000000000000000000000000000000000
10
200000000000000000000000000000000000000
200000000000000000000000000000000000000

7.00
500000000000

200000000000000000000000000000000000000
300000000000000000000000000000000000000
I
300000000000000000000000000000000000000
400000000000000000000000000000000000000
200000000000000000000000000000000000000
0.0000000000000000000000000000000000000
100000000000000000000000000000000000000
100000000000000000000000000000000000000
100000000000000000000000000000000000000
1-2 rsp

200000000000000000000000000000000000000
200000000000000000000000000000000000000
200000000000000000000000000000000000000

400000 246 00
A
55555555555555
500000000000000000000000000000000000000
000000000000000000000000000000000000000
200000000000000000000000000000000000000
90
8
8
86
03:380-051-2 rsp 19
-08-38
3-08-38
S-80-38
IS-08-38
US-08-38
US-08-380-051-
US-08-38
13-08-38
US-08-38
US-08-38
RF-80-SN
US-08-38
US-08-38
S US-08-38
S US-08-38
25 US-08-38
25 US-08-38
8.25 US-08-38
8.25 US-08-38
08:25 US-08-38
08:25 US-08:38
7 08 25 US-08-38
7.08.25 US-08-38
17 08:25 US-08:38
17 08:25 US-08:38
, 17 08:25 US-08:38
w 17 08:25 US-08:38
ov 17 08 25 US-08-38
loy 17 08 25 US-08-38
Noy 17 08:25 US-08:38
Nov 17 08 25 US-08-38
Nov 17 08:25 US-08:38
Nov 17 08:25 US-08:38
Nov 17 08:25 US-08:38
HSI

õ

358 1-fpplflevfed 369 ::||:|:| 480 MSLHPLLQEIYKD 492

ОР

ð

g G δ

Search completed: Fri Nov 17 08:30:52 1995 Job time: 15 secs.

US-08-380-051-2.pr

Nov 17 08:26

Nov 17 08:26

(TM)
_''
[======

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

Fri Nov 17 08:31:10 1995; MasPar time 19.96 Seconds 590.346 Million cell updates/sec Run on:

Tabular output not generated.

Title:

Description: Perfect Score:

1 MIKLIVPFIKRESAFNEMTW..........KTETDMSLHPLLQEIYKDLY 494 √2US=08-380-051-2
(1:494) from US08380051.pep
3614 Sequence:

PAM 150 Gap 11 Scoring table:

78488 seqs, 23849247 residues Searched:

Database:

ann3 unann1 unann2 unann3 unann5 unann4 unanne ann2 annl (Spino

Mean 49.868; Variance 143.995; scale 0.346 Statistics:

unrevl unrev2

unann

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		de						
Result		Query						
No.	Score	Match	Match Length DB I	88	ΩI	Description		Pred. No.
1	3454	95.6	505	2	A54101	peroxisome p	rolifera	0.00e+00
7	3439	95.2	475	10	A49294	peroxisome p	prolifera	
c	3433	95.0	475	10	542489	peroxisome p	prolifera	
4	3311	91.6	470	10	JN0881	peroxisome p	rolifera	
S	2579	71.4	477	6	C42214	peroxisome p	rolifera	0.00e+00
9	1946	53.8	468	10	A49289	peroxisome p	prolifera	

7	1932	Α,	468	2	\$11659	peroxisome prolifera	4.42e-254
· 00	1932	53.5	468	2	0	or activa	.42e-25
Ó	1930	ς.	468	10	A45288	prolifer	.69e-25
10	1919	ж.	441	10	3	hoz	.58e-2
Ξ	1894	?	474	6	A42214	peroxisome prolifera	6e-24
12	1743	æ	396	6	~	peroxisome prolifera	.22e-22
13	90/	6	1237	6	A34598	ecdysone-induced pro	.84e-7
14	672	ω.	711	12	46	roid-induc	7e-7
15	641	Ċ.	1443	6	805979	steroid hormone rece	į,
16	528	4.	39	6	9	ecdysone-induced pro	e-5
17	525		373	9	C36067	d hormone r	1.22e-51
18	518	4	369	ო	TVCHTB	bid	9-5
19	517		410	12	S14416	7	e5
70	517	14.3	398	9	523614	т,	.52e-5
21	516	•	410	9	S26828	thyroid hormone rece	.09e-5
22	516	4.	410	9	A40917	thyroid hormone rece	.09e-5
23	516		410	m	QRMSA1	thyroid hormone rece	.09e-5
24	514	14.2	461	9	A40377	thyroid hormone rece	.92e-5
52	514	14.2	461	9	A31820	thyroid hormone rece	.92e-5
56	513	14.2	456	ო	TVHUAR	thyroid hormone rece	5.37e-50
27	511		373	9	D36067	thyroid hormone rece	-
88	510		456	9	A31116	thyroid hormone rece	1.38e-49
29	510		410	12	S09178	thyroid hormone rece	
30	503	÷.	408	m	TVCHVR	thyroid hormone rece	•
31	496		208	10	A30226	thyroid/steroid horm	.12e-4
32	491		410	9	S06410	thyroid hormone rece	8e-4
33	490		614	10	A32608	thyroid hormone rece	, 36e-4
34	488		418	'n	TVXLTA	thyroid hormone rece	4
32	485	13.4	65	10	PN0676	0	
36	482		578	_	91		9.01e-46
37	482		461	$\overline{}$	2		.01e-4
38	482		383	_	S52909	hormone r	.01e-4
39	482		533	_	JC2390	e	.01e-4
40	479		955	Н	94	PML/retinoic acid re	2.30e-45
41	477		459		A41977	retinoic acid recept	.30e-4
42	475		418		360		8.03e-45
43	474		387		35	sforming prote	.10e-4
44	472	13.1	797		B40044	c ac	2e-4
45	471		398		TVFVVR	transforming protein	2.80e - 44

ALI GNMENTS

A54101 #type complete peroxisome proliferator-activated receptor gamma-2 - mouse #formal name Mus musculus #common name house mouse 02-Muq-1994 #sequence_revision 02-Auq-1994 #text_change	A54101 A54101 Tontonoz, P.: Hu. E.: Graves, B.A.: Budavari, A.I.:	Spiegelman, B.M. Genes Dev. (1994) 8:1224-1234 mPPARgamma2: tissue-specific regulator of an adipocyte	enhancer. cession A54101 ##status preliminary ##molecule_type_mRNA	ferenc recep
RESULT 1 ENTRY TITLE ORGANISM DATE	ACCESSIONS REFERENCE #authors	<pre># journal # title</pre>	#accession ##status ##molecule	**icsiques ##cross-re KEYWORDS SUMMARY

US-08-380-051-2 mr

Qy 20 MUDTEMPWPINFGISSVDLSVMEDHSHSFDIKPFTTVDFSSISTPHYEDIPFTRTDPVV 79	Db 61 adykydlklqeyqsaikvepasppyysektqlynrpheepsnslmaiecrvcgdkasgfh 120	Db 121 ygvhacegckgffrrtirlkliydrcdlncrihkksrnkcqycrfqkclavgmshnairf 180 	Db 181 grmpqaekekllaeissdidqlnpesadlralakhlydsyiksfpltkakarailtgktt 240 	Db 241 dkspfviydmnslmmgedkikfkhitplqeqskevairifqgcqfraveavqeiteyakn 300 	Db 301 ipgfinldlndqvtllkygvheiiytmlaslmnkdylisegggfmtreflknlrkpfgd 360 	Db 361 fmepkfefavkfnalelddsdlaifiavillsgdrpgllnvkpledigdnllgalelglk 420 	Db 421 Inhpessqlfakvlqkmtdlrqivtehvqllhvikktetdmslhpllqeiykdly 475 	RESULT 3 S42489 ftype complete ENTRY peroxisome proliferator activated receptor - human ORCANISM formal name Homo sapiens fcommon_name man DATE 06-Jan-1995 fsequence_revision 06-Jan-1995 ftext_change ACTESTONS 447489	### ### ##############################	##status preliminary ##molecule_type mRNA ##residues 1-475 ##label APE ##cross-references EMBL:230972 SUMMARY #length 475 #molecular-weight 54472 #checksum 5251	DB 10; Score 3433; Match 97.7%; Orywatch 95.0%; Pred. No. 0.00e+00; Matches 464; Conservative 11; Mismatches 0; Indels 0; Gaps 0; Db I mvdtempfwptnfqissvdlsmmddhshsfdikpfttvdfssisaphyedipftradpmv 60	61 adykydlklqeyqsaikvepasppyysekaqlynrpheepsnslmaiecrvcgdkasgfh 	Db 121 ygwhacegckgffrrtirlkliydrcdlncrihkksrnkcgycrfqkclavgmshnairf 180
DB 10; Score 3454; Match 97.3%; OryMatch 95.6%; Pred. No. 0.00e+00; Matches 469; Conservative 11; Mismatches 2; Indels 0; Gaps 0;	<pre>Db 24 stsqeitmvdtempfwptnfgissvdlsvmedhshsfdikpfttvdfssisaphyedipf 83 1: 1:111111111111111111111111111111111</pre>	Db 84 tradpmvadykydlklqeyqsaikvepasppysektqlynrpheepsnslmaiecrvcg 143 	Db 144 dkasgfhygvhacegckgffrrtirlkliydrcdlncrihkksrnkcqycrfqkclavgm 203 	Db 204 shnairfgrmpqaekekllaeisedidqlnpesadlralakhlydsyiksfpltkakara 263 	Db 264 iltgktdkspfviydmnslmmgedkikfkhitplqegskevairifggcqfrsveavge 323 	<pre>Db 324 iteyaknipgfinldIndqvtllkygvheiiytmlaslmnkdgvlisegqgfmtrefikn 383 </pre>	Db 384 lrkpfgdfmepkfefavkfnalelddsdlaifiaviilsgdrpgllnvkpiedigdnllg 443 	Db 444 alelqikinhpessqlfakvlqkmtdirqivtehvqilhvikktetdmslhpllqeiykd 503	RESULT 2 A49294	ACCESSIONS A49294 REFERENCE A49294 #authors Zhu, Y.; Alvares, K.; Huang, Q.; Rao, M.S.; Reddy, J.K. #journal J. Biol. Chem. (1993) 268:26817-26820 #title Cloning of a new member of the peroxisome #title Cloning of a new member of the peroxisome	#accession A49294 #factession A49294 #fattus preliminary #fresidues 1-475 #flabel ZHU #fresidues 1-475 #flabel ZHU #foross-references GB:U01841	SUMMARY #length 475 #molecular-weight 54511 #checksum 6045 DB 10; Score 3439; Match 98.1%; QryMatch 95.2%; Fred. No. 0.00e+00; Matches 466; Conservative 9; Mismatches 0; Indels 0; Gaps 0;	Db 1 mvdtempfwptnfgissvdlsvmedhshsfdikpfttvdfssisaphyedipftradpmv 60

121

g

US-08-380-051-2 mr Nov 17 08:26

9

6: #formal name Xenopus laevis #common name African clawed frog 04-Mar-1993 #sequence_revision 18-Nov-1994 #text_change 2579; Match 73.9%; QryMatch 71.4%; Pred. No. 0.00e+00; onservative 62; Mismatches 50; Indels 14; Gaps 10; a novel xPPARgamma=nuclear hormone receptor - African clawed frog preliminary; not compared with conceptual translation 301 ipgfinldIndqvtllkygvheiiytmlaslmnkdgvlisegqgfmtreflkslrkpfgd 360 320 IPGFVNLDINDQVTLLKYGVHEIIYTMLASLMAKDGVLISEGQGFWTREFLKSLRKPFGD 379 439 Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, Wahli, W. 60 rndqspidykydlklqecqssikleppsppyfsdkpq-cskafedtpnsfiaiecrvcgd 118 119 kasgfhygvhacegckgffrrtirlkliyercdlncrihkksrnkcqfcrfqkclavgms 178 193 300 260 DKSPFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRSVEAVQEITEYAKS 319 fmepkfefavkfnalelddsdlaifiaviilsgdrpgllnvkpiediqdnllq----lk 415 179 hnairfgrmpqaekekllaeissdidq1npesadqrvlakhlydsyvksfpltkakapgh 238 20 MVDTEMPFWPT-NFGISSVDLSVMEDHSHSFDIKPFTTVDFSSISTPHYEDI----PFT- 73 1 mvdtempfwsnlnfgmnsmdmsaledhcqpydikpfttvdfssins-hyddildektflc 59 140 YGVHACEGCKGFFRRTIRLKLIYDRCDLNCRIHKKSRNKCQYCRFQKCLAVGMSHNAIRF grdrqaekekllaeissdidqlnpesadlralakhlydsyiksfpltkakarailtgktt 241 dkspfviydmssfmmgedkikfkhitplqeqskevairifqgcqfrsveavqeiteyakn 134 KASGFHYGVHACEGCKGFFRRTIRLKLIYDRCDLNCRIHKKSRNKCQYCRFQKCLAVGMS ģ sequence extracted from NCBI backbone #length 477 #molecular-weight 54055 #checksum 6850 Control of the peroxisomal beta-oxidation pathway peroxisome proliferator-activated receptor gamma family of nuclear hormone receptors. #type complete 1-477 ##label DRE Cell (1992) 68:879-887 ##cross-references NCBIP:88295 ##molecule_type nucleic acid cross-references MUID:92191267 Score 23/9; macun 357; Conservative 18-Nov-1994 C42214 C42214 A42214 C42214 ##residues ##status faccession | #note #authors DB 9; So Matches f journal ACCESSIONS 361 181 #title REFERENCE ORGANISM RESULT TITLE 셤 셤 8 염 g ð 셤 8 임 ð 쇰 ð a ð g ð õ Š ð

۳.

US-08-380-051-2.mr

Db 330 mlvaygngfitreflkslrkpfcdimepkfdfamkfnalelddsdislfvaaiiccgdrp 389 : ::	ENTRY ENTRY ENTRY ENTRY TITLE peroxisome proliferator-activated receptor - mouse ORGANISM fformal name Mus musculus frommon name house mouse 13-Jan-1995 fsequence_revision 13-Jan-1995 ftext_change 13-Jan-1995 ACCESSIONS S11659 REFERENCE S11659 fjournal Nature (1990) 347:645-650 filtle Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. fcross-references MID:91015382 faccossion fifthe faccossion faccossion filte from the steroid hormone receptor superfamily by peroxisome proliferators. faccossion S11659	olecule_type_mrNs olecule_type_mrNs esidues 1-468 ##label ISS #length 468 #molecular-weight 52432 #checksum 41	DB 10; Score 1932; Match 64.68; UryMatch 53.58; Fred. No. 4.4426-234; Matches 245; Conservative 79; Mismatches 53; Indels 2; Gaps 2; Db 91 despgsalniecricgdkasgyhygvhacegckgffrrtirlklvydkcdrsckiqkknr 150	Oy 177 NKCQYCREQKCLANGMSHNAIRFCRMPQAEKEKLIAEI-SSDIDQLAPESADIRALAKHL 235 Db 211 heaylknfnmnkvkarvilagktsnnppfvihdmetlcmaektlvakmvangved-keae 269 :: : : : :	296 IRLFQGQFRSVEAVQETTEYAKSIPCEVNLDLANDVTLLKYGVHEIIYTMLASLANKNDG 330 mliaygngfitreflknlrkpfcdimepkfdfamkfnalelddsdislfvaaiiccgdrp : :	Db 390 gllnigyjeklqegjvhvlklhlqsnhpddtflfpkllqkmvdlrqlvtehaqlvqvikk 449
Db 239 pdgqshrqnsrgytrheladdggsdggavre-praeqgggdsnlpal-svalrggvr 294 : :: : : : : : : : : : : : : : : : :	Db 415 galelqlklnhpdsaqlfakllqkmtdlrqvvtehvqllqlikkteadmclhpllqeiyk 474	ACCESSIONS A49289 REFERENCE A49289 #authors Sher, T.; Yi, H.F.; McBride, O.W.; Gonzalez, F.J. #journal Biochemistry (1993) 32:5598-5604 #itity on A control of the cont	#ILLE CUNA CLOLING, CHROMOSOMAL Mapping, and IUNCTIONAL CHATACTERIZATION of the human peroxisome proliferator activated receptor. #accession A49289 #factus preliminary #factus preliminary #facile type mANA #fresidues 1-468 #flabel SHE #fresidues 1-468 #flabel SHE #fresidue 33 as Asp	GENETICS #map_position 22 SUMMARY #length 468 #molecular-weight 52267 #checksum 6622 SUMMARY #length 468 #molecular-weight 52867 #checksum 6622 BB 10; Score 1946; Match 65.2%; QryMatch 53.8%; Pred. No. 3.90e-256; Matches 247; Conservative 78; Mismatches 51; Indels 3; Gaps 3;	Db 92 espsgal-niecricgdkasgyhygvhacegckgffrrtirlklyydkcdrsckiqkknr 150	211 yeaylknfnmnkvkarvilsgkasnnppfvihdmetlcmaektlvaklvan-giqnkeve 1:: : : : :

US-08-380-051-2 m	, 6	New 17	
JC2085 #type complete proliferator activated receptor alpha chain - mouse #formal name Mus musculus #common name house mouse id-nul-1994 #sequence_revision 14-Jul-1994 #text_change	a chain - mouse ne house mouse 1-1994 #text_change	~ II	ACCESSIO REFERENC #auth #jour #titl
14-2017-1994 J022085 J022085 Gearing, K.L.; Crickmore, A.; Gustafsson, J.A. Biochem. Biophys. Res. Commun. (1994) 199:255-263 Structure of the mouse peroxisome proliferator activated receptor alpha gene.	sson, J.A. 1 199:255-263 bliferator activated		**************************************
cession JC2085 ##molecule_type_DNA ##residues 1-468 ##label_CEA			
##CIOSS-TETETENCES EMBL:X/3/28/) EMBL:X/3/28/) EMBL:X/3/29/) This protein mediates transcription of responsive genes which include those encoding peroxisomal enzymes and members of the	5B.X75289; EMBL:X75290; 3L:X75293 ponsive genes which ses and members of the		g &
cytochrome P450 family of drug metabolising enzymes.	ing enzymes.		qq
PPARalpha 70/1; 123/2; 170/1; 237/3; 387/1 DNA binding; receptor; zinc finger #length 468 #molecular-weight 52347 #checksum 3890	fchecksum 3890		Qy Db
1932; Match 64.6%; QryMatch 53. Conservative 79; Mismatches 53	OryMatch 53.5%; Pred. No. 4.42e-254; smatches 53; Indels 2; Gaps 2;		δ ï
despgsalniecricgdkasgyhygvhacegckgffrrtirlklyydkcdrsckigknr 150 : :: :	lvydkedrsckiqkknr 150 : : : : : LIYDRCDLMCRIHKKSR 176		oy Qy
151 nkcqycrfhkclsvgmshnairfgrmprsekaklkaeiltcehdlkdsetadlkslgkri 	dlkdsetadlkslgkri 210 :::! :: : : DQLNPESADLRALMKLL 235		a & a
<pre>211 heaylknfnmnkvkarvilagktsnnppfvihdmetlcmaektlvakmvangved-keae ::::::: : :: :: : :</pre>	lvakmvangved-keae 269 : :: : IKFKHITPLQEQSKEVA 295		g & 2
270 vrffhccqcmsvetvteltefakaipgfanldIndqvtllkygvyeaiftmlsslmnkdg :1:1: 1 1: 1: 1: 1	yyeaiftmisslmnkdg 329 : : VHEIIYTMLASLANKDG 355		Oy Oy
330 mliaygngfitreflknlrkpfcdimepkfdfamkfnalelddsdislfvaaiiccgdrp : : :	sdislfvaaiiccgdrp 389 :::i: SDIAIFIAVIILSGDRP 415		RESULT ENTRY TITLE
390 gllnigyiekiqegiwhvlklhlgsnhpddtflfpkllqkmvdlrglvtehaqlvqvikk : : : ::: : :	Irgivtehaqluqvikk 449 : : RQIVTEHVQLLQVIKK 475		DATE ACCESSIC
tesdaalhpllqeiyrdmy 468 : : : TETDMSLHPLLQEIYKOLY 494			G
A45288 #type complete peroxisome proliferator-activated receptor - rat #formal_name Rattus norvegicus #common_name Norway rat 27-Jun-1994 #sequence_revision 27-Jun-1994 #text_change 27-Jun-1994	ceptor - rat on_name Norway rat n-1994 #text_change		

Nov 17 08:26 US-08-380-051-2 rpr

TONS A45288 WCE A45288 WCE Goetlicher, M.; Widmark, E.; Li, Q.; Gustafsson, J.A. Unnal Proc. Natl. Acad. Sci. U.S.A. (1992) 89:4653-4657 Lle Fatty acids activate a chimera of the clofibric acid-activated receptor and the qlucocorticoid receptor. ##status preliminary ##status prel	Score 1930; Match 65.2%; QryMatch 53.4%; Pred. No. 8.69e-254; 247; Conservative 76; Mismatches 53; Indels 3; Gaps 3;	espgnal-niecricgdkasgyhygvhacegckgffrrtirlklaydkcdrsckiqkknr 150 	nkcgycrfhkclsvgmshnairfgrmprsekaklkaeiltcehdlkdsetadlkslakri 210 : : : : :: : :: :: NKCQYCRFQKCLAVGMSHNAIRFGRMPQAEKEKLLAEI-SSDIDGIAPESADLARIAKHL 235	heaylknfnmnkvkarvilagktsnnppfvihdmetlcmaektlvakmvan-gvenkeae 269 :: : : : ::: : : :: VDSYIKSFPLTKAKARALLTGKTTDKSFFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVA 295	vrffhccqcmsvetvteltefakaipgfanldIndqvtllkygvyeaiftmlsslmnkdg 329 : : : : : : : :	mliaygngfitreflknlrkpfcdimepkfdfamkfnalelddsdislfvaaiiccgdrp 389 : : : : : :	glinigyieklqegivhvlklhlqsnhpddtflfpkllqkmvdlrqlvtehaqlvqvikk 449 : : : ::: : : : : : :	tesdaalhpllqeiyrdmy 468 : : : : TETDMSLHPLLQEIYKDLY 494	A45360 #type complete steroid hormone receptor NUCl - human fformal_name Homo sapiens #common name man 10-Unn-1993 #sequence_revision 18-Nov-1994 #text_change 11-Apr-1995 IONS A45360 A45360 Lural A45360 Lural Mol. Endor, N.; Rutledge, S.J.; Vogel, R.; Shinar, D.; Rodan, G.A. urnal Mol. Endocrinol. (1992) 6:1634-1641 Lie Indertification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids. osss-references MUID:93078797 sossion A45360 ##status
ACCESSIONS REFERENCE #authors #journal #journal #title #accession ##accession ##accession ##cross-	DB 10; So Matches	Db 92 es	Db 151 n Qy 177 N	Db 211 h	Db 270 v.	Db 330 m : Qy 356 V	Db 390 g Qy 416 G	Db 450 to Qy 476 T	RESULT 10 ENTRY TITLE ORCANISM DATE ACCESSIONS REFERENCE # authors # journal # journal # title # cross-refer # accession # # scross-refer # # scross-refer # # scross-refer # # scross-refer # fross-refer # # scross-refer

sequence extracted from NCBI backbone #length 441 #molecular-weight 49929 #checksum 7063 #fexperimental_source osteosarcoma SAOS-2/B10 cells ##cross-references NCBIP:118801 #note SUMMARY

QryMatch 53.1%; Pred. No. 3.58e-252; Gaps Indels 49; 78; Mismatches 1919; Match 65.6%; Conservative DB 10; Score Matches 244;

70 Inmecrvcgdkasgfhygvhacegckgffrrtirmkleyekcersckiqkknrnkcgycr 129 음 ð

fqkclalgmshnairfgrmpeaekrklvagltanegsgynpqvadlkafskhiynaylkn 189 130 염

ð

fnmtkkkarsiltgkashtapfvihdietlwqaekglvwkqlvnglppykeisvhvfyrc 249 243 FPLTKAKARAILTGKTTDKSPFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVAIRIFQGC 302 190 셤 ò

250 gcttvetvreltefaksipsfsslflndgvtllkygvheaifpmlasivnkdgllvangs 309 g

310 gfvtreflrslrkpfsdiiepkfefavkfnalelddsdlalfiaaiilcgdrpglmnvpr 369

ò

셤 ð

370 veaiqdtilralefhlqanhpdaqylfpkllqkmadlrqlvtehaqmmqrikktetetsl 429 원

õ

430 hpllqeiykdmy 441 a a

483 HPLLQEIYKDLY 494 ð Π

peroxisome proliferator-activated receptor alpha, xPPARalpha=nuclear hormone receptor - African clawed frog #type complete TITLE

#formal name Xenopus laevis #common name African clawed frog 04-Mar-I993 #sequence_revision 18-Nov-1994 #text_change ORGANISM DATE

18-Nov-1994

A42214 ACCESS IONS REFERENCE

H.; Givel, F.; Helftenbein, Dreyer, C.; Krey, G.; Keller, Cell (1992) 68:879-887 Wahli, W. fauthors

ů.

Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. fcross-references MUID:92191267 title

journal

A42214 accession

preliminary; not compared with conceptual translation ##molecule_type nucleic acid #fresidues 1-474 ##label DRE #status

sequence extracted from NCBI backbone cross-references NCBIP:88292 note

#length 474 #molecular-weight 52855 #checksum 8486 SUMMARY

OryMatch 52.4%; Pred. No. 1.66e-248; Gaps Indels 74; Mismatches 1894; Match 64.8%; Conservative Score s 247; DB 9; : Matches

97 aedaacksl-nlecrvcsdkasgfhygvhacegckgffrrtirlklvydrcermckiqkk 155 g

US-08-380-051-2.mr Nov 17 08:26

215 156 nrnkcqycrfekclnvgmshnairfgrmprsekaklkaevlmcdqdvkdsqmadllslar 셤 ò

233 SINKCQYCRFQKCLAVGMSHNAIRFGRMPQAEKEKLIAEI-SSDIDQLAPESADLRALAK 175

273 293 216 liydaylknfnmnkvkarailtgkasn-ppfvihdmetlcmaektlvaklvan-giqnke 234 HLYDSYIKSFPLTKAKARAILTGKTTDKSPFVIYDMNSLAMGEDKIKFKHITPLQEQSKE :: -:: <u>::</u>

а

ð g ð 염

ð

274 aevrifhccqctsvetvteltefaksipgfteldlndqvtllkygvyeamfamlasvmnk 333

413 354 ð

dgmlvaygngfitreflkslrkpigdmmepkfefamkfnalelddsdlslfvaaliccgd

334

윤 à

393

rpglvnipsiekmqesivhvlklhlgsnhpddsflfpkllgkmadlrglvtehaglvgti 453 414 RPGLINVKPIEDIQDNLLQALELQLKLNHPESSQLFAKLLQKMTDLRQIVTEHVQLLQVI 473 -----<u>::</u> 394

454 kktetdaalhpllqeiyrdmy 474 셤

ò

12 RESULT

TITLE

ENTRY

peroxisome proliferator-activated receptor beta, #type complete

xPPARbeta=nuclear hormone receptor - African clawed frog #formal_name Xenopus laevis #common_name African clawed frog 04-Mar-1993 #sequence_revision 18-Nov-1994 #text_change ORGANISM

18-Nov-1994

B42214 ACCESSIONS

Dreyer, C.; Krey, G.; Keller, H.; Givel, F.; Helftenbein, A42214 #authors REFERENCE

3

by a novel

Control of the peroxisomal beta-oxidation pathway Cell (1992) 68:879-887 iournal j #title

Wahli,

family of nuclear hormone receptors.

tross-references MUID:92191267 B42214 #accession

#status preliminary; not compared with conceptual translation sequence extracted from NCBI backbone 1-396 ##label DRE ##cross-references NCBIP:88294 #residues ##note

OryMatch 48.2%; Pred. No. 2.22e-226; ismatches 80; Indels 2; Gaps 2; 79; Mismatches 1743; Match 57.9%; Conservative 221; 9; Score Matches DB

#length 396 #molecular-weight 44991 #checksum 4744

SUMMARY

75 17 stplehgets-gsvdckicgdrasgfhygvhacegckgffrrtirmrlgyehcdrnckig 셤

8

76 kknrnkcqycrfnkclslgmshnairfgrmpesekrklvqapvsdsaapdspvsdldvls 135 임

173 KKSRNKCQYCRFQKCLAVGMSHNAIRFGRMPQAEKEKLLAEISSDIDQLNPESADLRALA 232 à 136 qlihssymntftmtkkrardiltgrns-ispfvihdmdtlwqaeqgtvweqlptqnltgt 194 :: අ

	:	٥	3	2	٥		þ
	•	Š	4		۶	١	
	5	8	8	8	٠		۹
۰	3	٥	3	3	٥		۶
	٠	٤	1	٠	٠	3	
	e	¢	٠	s	ç		١
	c	٠	٥	ŧ.	8	3	٥
•	ì	٤	b	ŧ	ŧ		۶
	ď		٠	٠	٠	3	Č
	1	5	9	9	Č		١
۰	3	2	2	3	٥		١
	٠	К	٠	٠	٠	3	
	2	٥	2	3	¢		۶
	2	٥	×	×	٥		þ
	٠	×	٠	٠	٠		
•	3	5	3	3	ċ		۶
	2	8	8	8	٠		
	٥	6	9	9	ð		
	2	٥	۶	۶	:		١
	٠	К	٠	٠	۰		
	2	5	9	9	٠		۹
	B	R	8	8	۹		ð
	٩	8	٩	٩	٠	3	٥
	3	٥	٥	٥	٥		þ
	e	8	8	8	٠	9	Č
	8	8	5	3	٠	3	Ç
۰	۰	٥		3	٥	٠	۱
	٠	S	8	٠	٠	8	٥
	>	٥	3	3	٠		þ
	e	8	8	6	۶	3	Č
	3	8	8		٠		۹
۰	٠	٥	8	×	٥		١
	٠	Š	8	٠	۶	ı	
	١	ŏ	٥	۰	:		١
	٥	ď	٠	d	٠	8	Č
	۶	٥	١	٥	ċ		
	ŝ	٥		ŕ	:		ċ
	٠	К	×	×			٥
	3	٥	8	8	:		۶
	8	8	۹	8	۹	9	
	1	8		8	٠		
	٥	٥	٥	e	٥		þ
	۹	8	8	8	۶		
	۶	٥	ĕ	٥	٥		١
	8	8	8		۶	9	Č
	9	8	8	ě.			Ç
٠	3	٥	٠	٥	٥		þ
	•	×	8	в	٠	8	
	9	3	8	8	t		١
۰	3	٠		Ç,	٥		١
	S	8	н	-	۰	3	٥
	:	ě	e	7	1		۹
	ě.	ě,	۲	۲	•	۹	۲
	٠	z	Ŋ	4	۰		٥
•	:	٥	٥	a	•		۶
	4	S	S	١	ı	ě	
	3	ĕ	1	ŧ.	ı		۶
	3	×					
					i		
	1	ī	۰	۱	ŧ		١
	ŝ	Š	١	۱	۱		۱
	١	l	į		١		
					•		

	** * * * * * * * * * * * * * * * * * * *						
	** ** * * * * * * * * * * * * * * * * *						

	** * * * * * * * * * * * * * * * * * * *						
	** ** * * * * * * * * * * * * * * * * *						
	** ** ***						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						

	1 X X 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	1 X X 4 6 X 1 4 1						
	1 X X 4 6 X 14 1						
	** * * * * * * * * * * * * * * * * * * *						

	1 1 X 2 4 6 X 2 4 5						
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	1						

Nov 17 08:26	08:26 US-08-380-051-2.pr	13
233	233 KHLYDSYIKSFPLTKAKARAILTGKTTDKSPFVIYDMNSIAMGEDKIKFKHITPLQEQSK	κ 292
195	95 eigvhvfyrcqctsvetvraltdfakripgfgtlylndqvtllkygvheaifcmlaslmn ::::: : :	n 254 352
255 353	<pre>55 kdgllvaggrgfvtreflrslrqpfchimepkfhfaskfnalelndsdlalfvasiilcg</pre>	3 314
315		s 374 7 472
375 473	375 ikrtessaalhpllqeiyrdmy 396 : : : 473 IKKTETDMSLAPLLQEIYKDLY 494	
RESULT] ENTRY TITLE	13 A34598 #type complete ecdysone-induced protein E75A - fruit fly (Drosophil	m.
ORGANISM DATE	#formal name Drosophila melanogaster 29-Jun-1990 #sequence_revision 29-Jun-1990 #text	change
ACCESSIONS REFERENCE # authors # journal # title	A34598 A34598 Segraves, W.A.; Hogness, D.S. Cenes Dev. (1990) 4:204-219 The E75 ecdysone-inducible gene responsible for puff in Drosophila encodes two new members of receptor superfamily.	the 75B early the steroid
#cross-ref #accesion ##statu ##moleci ##resid ##cross CLASSIFICATION	s-references MUID:90 ssion A34598 status prelim molecule_type DNA residues 1-1237 cross-references GB: CATION #superfamil	·
FEATURE 243-520 SUMMARY	\$40main erbA transforming protein homology \$label \$1237 \$molecular-weight 133330 \$checksum 6126	el ERBA 26
DB 9; Matches	Score 706; Match 34.1%; QryMatch 19.5%; Pred. No. 123; Conservative 92; Mismatches 127; Indels 19;	8.84e-77; Gaps 17;
242	42 tvlcrvcgdkaagfhygvhscagckgffrrsiqqkiqyrpctknqqcsilrinrnrcqyc ::	c 301
302	02 rlkkciavgmsrdavrfgrvpkrekarilaamgqst-q-nr-gqq-ralatel-ddqprl : :	1 356 s 242
357	57 la-avirahletceftkekvs-amrgrardcpsysmptl-lacpinpapelgseqef-s-::: : : : : : : : : : : : :	- 411 c 302
412	12 q-rfahvirgvidfagmipgfqlltqddkftllkaglfdalfvrlicmfdssinsiicln :::: : ::: :: GESVEAVGEITEYAKSIPGFVNLDINDQVTLLKYGVHEIIYTMLASLMNKD-GVLIS-E	n 470 : E 360

US-08-380-051-2 pr Nov 17 08:26

귤

qq	471	gqv-mrrdaiqnganarflvdstfnfaermnsmnltdaeiglfcaivlitpdrpglrn 527
δy	361	
qu	528	leliekmysrlkgclqyivaqmrpdqpeflaklletmpdlrtlstlhteklvvfrtehke 587
٥y	420	
qq	588	1 588
δ	480	: M 480
RESULT	-	14 cA2A6A struct courts
TITLE	- (±)	
ORGANISM DATE	WISM	<pre>#formal name Galleria mellonella 23-Nov-1994 #sequence revision 23-Nov-1994 #text change</pre>
ACCE	ACCESSIONS	
REFE	REFERENCE	,
and the s	journal	Jingra, M.; Sennal, F.; Argairord, L.M. Eur. J. Biochem. (1994) 221:665-675
CHE C	title	Isolation, characterization and developmental expression of the ecdysteroid-induced E75 gene of the wax moth Galleria
1361	accession ##statu	S4346
# SUMMARY	rate rate	##residues 1-711 ##labbl JIN ##cross-references GB:U02620 Y #length 711 #molecular-weight 78529 #checksum 2665
DB Mat	DB 12; Matches	Score 672; Match 33.4%; QryMatch 18.6%; Pred. No. 5.17e-72; 121; Conservative 92; Mismatches 126; Indels 23; Gaps 20;
OP	44	tvlcrvcgdkasgfhygvhscegckgffrrsiggkigyrpctkngqcsilrinrnrcgyc 103
δy	125	
ΩP	104	rlkkciavgmsrdavrfgrypkrekarilaamqssttrah-eqaaa-a-elddg-pr- 156
٥y	183	
QQ	157	- arv-vrah dtceftrdr-va-amrngardcptysqpt acp npape qsekef-s 211
δy	243	. [-,
q	212	
Qy	302	
QQ	270	ngg-lmkrdsigsganarflvdstfkfaermnsmnltdaeiglfcaivlitpdrpglr 326
٥y	360	
Op	327	nvelvermhsrlksclqtviaqmrsdgpgfirelmdtlpdlrtlstlhteklvvfrtehk 386
Qy	419	NVKP IEDIQDNLLQALELQIKINHPESSQLFAKLLQKMTDLRQI
QQ	387	el 388
0	479	:: 479 DM 480

15

```
core 641; Match 34.2%; QryMatch 17.7%; Pred. No. 1.11e-67; 124; Conservative 88; Mismatches 126; Indels 25; Gaps 23;
                                                                                                                                                                                                                                                                                                                                                                                                                      #domain erbA transforming protein homology #label ERBA #length 1443 #molecular-weight 156264 #checksum 6391
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      567 -ppccc-ah-letceft-kek-vs-amrh-grglpstpc-htsglsaepapelqseqef- 617
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          676 Ingqv-mrrdaiqnganarf--lvdstfnfaermnsmnltdaeiglfcaivlitpdrpgl 732
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           733 rnleliekmysrlkgclqyivaqnrpdqpeflaklletmpdlrtlstlhteklvvfrteh 792
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            steroid hormone receptor homolog - fruit fly (Drosophila
                                                                                                                                                                  Feigl, G.; Gram, M.; Pongs, O. Nucleic Acids Res. (1989) 17:7167-7178

A member of the steroid hormone receptor gene family is expressed in the 20-0H-ecdysone inducible puff 758 in
                                                                                #formal name Drosophila melanogaster
01-Dec-1989 fsequence_revision 01-Dec-1989 ftext_change
15-Oct-1994
S05979
                                                                                                                                                                                                                                                                                                                                                                      #superfamily erbA transforming protein homology
                                                                                                                                                                                                                                                                                                                                                                                   alternative splicing; DNA binding; zinc finger
                                                                                                                                                                                                                                  Drosophila melanogaster.
#cross-references MUID:90016778
#accession S05979
                    #type complete
                                                                                                                                                                                                                                                                     #accession S05979
##molecule_type mRNA
##residues 1-1443 ##label FEI
##cross-references EMBL:X15586
                                                                 puff 75B protein
                                                   melanogaster)
                                                                                                                                                   S05979
                                                                                                                                                                                                                                                                                                                                                      #map_position 3 75B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                ::
478 TDM 480
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            793 kel 795
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    DB 9; Score
Matches 124;
                                                                  ALTERNATE NAMES
                                                                                                                                                                                                                                                                                                                                                                       CLASSIFICATION
                                                                                                                                                                                   #journal
#title
                                                                                                                                ACCESSIONS
REFERENCE
                                                                                                                                                                    #authors
                                                                                                                                                                                                                                                                                                                                                                                                                      452-727
                                                                                  ORGANISM
                                                                                                                                                                                                                                                                                                                                     GENETICS
                                                                                                                                                                                                                                                                                                                                                                                        KEYWORDS
                                                                                                                                                                                                                                                                                                                                                                                                                                       SUMMARY
                                                                                                                                                                                                                                                                                                                                                                                                      FEATURE
RESULT
ENTRY
                                   TITLE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         g
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         g
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ð
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          셤
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           δ
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           염
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            염
```

Search completed: Fri Nov 17 08:31:34 1995 Job time : 24 secs.

Release 2.1D John F. Collins, Biocomputing Research Unit. Copyright (c) 1993, 1994, 1995 University of Edinburgh, U.K. Distribution rights by IntelliGenetics, Inc.

protein - protein database search, using Smith-Waterman algorithm MPsrch_pp

MasPar time 8.68 Seconds 361.722 Million cell updates/sec

Fri Nov 17 08:31:51 1995; Run on:

Tabular output not generated.

565<u>=05=050=5050=34</u> (1:494) from USO8380051.pep 3614 1 MIKLIVPFIKRESAFNEMTM......KTETDMSLHPLIQEIYKDLY 494

Description: Perfect Score: Sequence:

PAM 150 Gap 11 Scoring table:

53402 seqs, 6354270 residues Searched:

Database:

part4 part5 part6 part7 part8 part9 part2 part3

Mean 36.352; Variance 186.140; scale 0.195 Statistics: Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

11 10	471	13.0	440	و	∞ ~	XR2.	7.05e-27
	464	12.8	462	2	33	RAR-alpha protein.	2
	463	2	462	7	10	tinoi	.03e-
	462	oi o	462	, , , , , , , , , , , , , , , , , , ,	88	noic acid r	. 64e-
	459	70	448	٦ إ	P90341	nap (nepatoma) protei Retinoic acid recento	
	456	12.6	448	2	R10548	tinoi	09e-
	455	~	S	~	346	Mouse retinoic acid r	1.30e-25
	455	12.6	454	7	R10182	ian ga	1.30e - 25
	455	12.6	454	7	R10550		1.30e - 25
	455	12.6	447	m	R20466		1.30e - 25
	453	2	636	7	R07683	ein prec	•
	452	12.5	4 90	7	P80926		. 25e-
	446	12.3	4 90	<u>م</u>	R26899	HerbA-T sequence.	-69e
	444	2	458	7	R10549	cific mu	9.63e-25
	440	~	345	7	P80922	Sequence of the carbo	-98e-
	432		548	. و	R33741	XR1.	.50e
	411	11.4	487	m ·	R13794	phila h	-81e-
	385	10.7	483	'n	R12226	TRZ-5 andr	-971
	385	10.7	463	~ე (R13800	KXK-9	4.12e-20
	385	10.7	407	n -	R12221	NO C	126-
	385	10.7	603	- c	R12228	TR2-	.12e-
	385	10.7	463	_	R39471	gamma.	12e-
	382		533	_	R39468	hRXR-betal.	.06e-
	382		446	7	R11837	H2RIIBP nuclear hormo	.06e-
	382		448	_	R39467	mRXR-beta.	•
36	381		151	10	R55161	Fragment of retinoic	.45e-
_	381		418	1	72	Chicken ovalbumin ups	.45e-2
38	379		467	-	R39470		
_	379		462	~	379	ret	
_	379		467	m	379	Mouse RXR-alpha retin	.21e-1
	311		510	-	R39469	hRXR-beta2.	۲.
۵.	373		513	æ	1430	ect steroid re	.55e-1
~	373		513	œ	4806	D. melanogaster ultra	.55e-1
_	362		601	9	m		.54e-1
	359	6.6	184	m	R12225	Human TR2-7 DNA bindi	4.34e - 18

ALIGNMENTS

RESULT 1	R41875 standard; Protein; 441 AA.	R41875;	13-APR-1994 (first entry)	Steroid hormone receptor (NUCI).	Steroid; hormone; receptor; osteosarcoma; superfamily.	Homo sapiens.	GB2265376-A.	29-SEP-1993.	23-MAR-1993; 006043.	24-MAR-1992; US-857055.	(MERI) MERCK & CO INC.	Rodan GA, Rutledge SJ, Schmidt A, Vogel RL;	WPI; 93-305586/39.		New human steroid hormone receptor NUCI - used to assay and				identify and evaluate chemical entities that bind to it.	Sequence 441 AA;	
RESUL	1	AC	DI	DE	Κ¥	SO	PN	PD	PF	PR	PA	ΡΙ	DR	DR	ΡŢ	PT	PS	႘	ပ္ပ	Ö,	

1921; Match 65.6%; QryMatch 53.2%; Pred. No. 3.70e-146;

8; Score

03

alpha (hRXR-alpha). XR4 receptor can be used for testing a compound

for its ability to regulate transcription-activating effects of a

identity with the DNA binding domain of human retinoid X receptor-

US-08-380-051-2.rag Nov 17 08:26

ന

d

1862; Match 62.3%; QryMatch 51.5%; Pred. No. 3.09e-141; 240 300 296 IRIFQCCQFRSVEAVQEITEYAKSIPGEVNLDLNDQVTLLKYGVHEIIYTMLASLMNKDG 355 420 475 62 dgasggslnmecrvcgdkasgfhygvhacegckgffrrtirmkleyekcdrickiqkknr 121 nkcqycrfqkclalgmshnairfgrmpdgekrklvagltasegcqhnpqladlkafskhi 181 301 llvangsgfvtheflrslrkpfsdilepkfefavkfnalelddtdlalfiaaiilcgdrp 360 receptor polypeptide, identifying compounds which act as ligands for the receptor polypeptides and for identifying response elements for the receptor polypeptides. Sequence 439 AA; receptor family. Since the putative hormone binding E domain of the E75 proteins does not show high sequence homology to the known ecdysone receptor (R13793) it is likely that the E75 proteins bind 241 vhvfyrcqsttvetvreltefaknipnfsslflndevtllkygvheaifamlasivnkdg 361 glmnvpqveaiqdtilralefhlqvnhpdsqylfpkllgkmadlrhvvtehagmmqwlkk either a terpenoid juvenile hormone or a novel Drosophila hormone. ynaylknfnmtkkkapsiltgksshnapfvihdietlwqaekglvwkqlvnvp-pyneis aB proteins show considerable similarity to members of the steroid The protein is encoded by the E75A transcription unit. The E75 DNA encoding insect steroid receptors - and ligands, for use 89; Mismatches 52; Indels /note= "cDNA clone Dm4925 codes for Arg not Leu" Disclosure; Page 94; 126pp; English. Hogness DS, Koelle MR, Segraves WA; WPI; 91-281480/38. Location/Qualifiers Ä Insect steroid receptor; hormone. (STRD) LELAND STANFORD JR UNIV. R13791 standard; Protein; 1237 421 tesqtllhpllqeiykdmy 439 476 TETDMSLHPLLQEIYKDLY 494 236; Conservative 29-NOV-1991 (first entry) Drosophila melanogaster. 15-FEB-1991; U01189. 26-FEB-1990; US-485749. benign inducing factors N-PSDB; 013572. E75A protein. 05-SEP-1991. WO9113167-A. 6; Score Sequence R13791; Region Matches 122 182 B g 1D DAY ON BENT OF THE PRINCE O 88888 음 ð g 임 g ð q 3 g ð ð ð à

See also R13792-R13794.

Sequence

೮೪

120; Conservative

680; 1237 AA;

Score

DB 3; S Matches

셤

염

ð

g

8

413

셤 Š 셤 ò

ð

267 304

162 kkciyvgmatdlv-lddskrlakrkliee-nre-kr-rreelq-ksig-hkpeptdeewe 215

US-08-380-051-2.rag

Nov 17 08:26

5

P80921 standard; protein; 456 AA.

£

염

à

29-DEC-1990 (first entry)

Homo sapiens. W08803168-A. 05-MAY-1988

>

Evans RM, Weinberger CA, Hollenberg SM, Giguere V; WPI; 88-133242/19.

23-0CT-1987; U02782. 20-0CT-1987; US-108471. (SAIK) Salk Inst for Biol Stud.

Recombinant DNA encoding hormone recpetors

N-PSDB; N80918

and novel hormone receptors

166 dlihv-ateahrstnaggshw-k-grrkfl-pdd-iggspivsmpdgdk-vdleaf-s-e 217

184

ð

DB 2; Matches

용 ð

g

= --

3 염 à a ð

r>

AC DET THE PROPERTY OF THE PRO

9

RESULT

임

셤

δ

ð

유

쇰 ð g

ð

Š

US-08-380-051-2.rag Nov 17 08:26

ò	305 -RSVE-AVQEITEYAKSIPGFVNLDLADQVTLLKYGVHEIIYTMLASLM-NKDG-VLISE 360
g	385 gemavtrgqlkngglgvvsdaifdlgmslssfnlddtevallqavllmssdrrglacv 442
δy	361 GGGFWIRETKSLRKPFGDFWEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRPGLLAV 420
OP	50
ò	421 KPIEDIQDNLLQALELQIKINHPESSQLFAKLLQKMTDLRQIVTEHV-QLLQVIKKTETD 479
qq	503 1-fpplflevfed 514
δ	480 MSLHPLLQEIYKD 492
RESU	LT 7
O A	R52980 standard; Protein; 461 AA. R5208A:
DT	(first entry)
Z E	Human recombinant steroid normone receptor NEM1 protein. Steroid hormone receptor; NERI.
SS H	Homo sapiens. Key Location/Qualifiers
FI	ding site 87154
P. N.	/note= "una binding area" W09407916-A.
E 5	14-APR-1994. 27ssp.1003. IN0165
P. R.	27-3gr 1333, 003103. 07-0cT-1992; US-958137.
PA P1	(MERI) MERCK & CO INC. Rodan GA. Rutledge SJ, Schmidt A, Vogel RL;
N.	
PT L	NERI and corresp. DNA - u
PT	identify steroid hormone agonists
PS PT	
ც ც	The NERI protein may be expressed in a CHO cell culture and used
38	develop assays to identify steriord normalie agomists.
Š	Sequence 461 AA;
ದರ್	DB 9; Score 482; Match 29.8%; QryMatch 13.3%; Pred. No. 9.45e-28; Matches 117; Conservative 91; Mismatches 161; Indels 23; Gaps 21
OP	72 krkkgpapkmlghelcrvcgdkasgfhynvlscegckgffrrsvvrggarryacrgggtc 131
Qy	114 KPHEEPSNSIMAIE-CRVCGDKASGFHYGVHACEGCKGFFRRTI-RIKLI-YD-RCDIMC 169
q	132 gmdafmrrkoqqcrlrkckeagmreqcvlseeqirkkkirkqqqqesqsqsqspvgpqgs 191
οy	::
qq	192 sssasgpgaspggscagsggsgegegvqltaaqelmiqqlvaaqlqcnkrsfsdqpkvtp 251
δ	227 DLRALAKHLYDSYIKSFPLTKAKARAI-LTGKTTDK-SPFVIYDMNSLAMG-EDKIKFKH 283
qq	252 -wplgadpgsrdarggrfahftel-aiisvgeivdfakgpgflqlgredgiallkasti 309
δ	284 ITPL-QE-QSKEVAIRIF-QGCQFRSVEAVQEITEYAKSIPGFVNLDLADQVTLLKYGVH 340
qq	310 eimlletarrynhetecitflkdftyskddfhra-glqv-efinpifefsramrrlgldd 367
ò	:

g ð

à

	۱
	١
	8
	:
	•
	:
	1
	١
	•
	:
	۰
	:
	2
	3
	•

OP	368 aeyalliainifsadrpnvqepgrvealqqpyveallsytrikrpqd-qlrfprmlmklv 426	δ
á	399 SDLAIFIAVIILSGDRPGLLNVKPIEDIQDNLLQALELQIKIAHPESSQL-FAKLLQKMT 457	Ωp
qq	alrlq	δy
δ	458 DIRQIVTEHVQLLQVIKKTETDMSLHPLLQEI 489	Dp
RESULT	8 171	ργ
1 S 12		RES
品品	UMak-1993 (list entry) myl/RAR-alpha fusion.	KE
X	Retinoic acid receptor; RAR-alpha; myl; acute promyelocytic leukemia;	E E
2 2	tru; craimstocatton; circumosome 1; circumosome 15; rox; primer; [t(15;17) (q21;q11-22)]; breakpoint; polymerase chain reaction.	2
S N	Synthetic. NO9216660-A.	ž ž
8 5	01-0CT-1992,	S S
: E	23-MAR-1991; US-673838.	PN
PR PA	22-mar-1991; US-675084.	P.D.
I I	E, Evans RM,	PR .
Z E	marrell RF; WPL; 92-342042.	PI
F F	N-PSDB; Q29334. Marker for acute promyelocytic leukaemia and other neoplasias -	. K
PT	comprising nucleic acid and encoded abnormal retinoic acid	DR PT
P.T.	receptor-aipna receptor Disclosure; Fig 4; 84pp; English.	PT
ဗ	The sequence given shows a fusion between retinoic acid receptor	PT PS
ខ្លួ	leukemia (APL). This is caused by a translocation of a portion of	88
38	the long arm of chromosome 1, once the rough aim of chromosome 19 [t (15,17) (q21;q11-22)]. The breakpoint region has been cloned and it	888
ខខខ	hsa been shown that DNA rearrangements are clustered in the region of the first intron of RAR-alpha. This sequence was isolated by polymerase chain reaction (PCR) using primers which correspond to	888
ಬ್ಬ	sequences both 5' and 3' to the breakpoint region. Sequence 197 AA;	888
DB Mat	DB 5; Score 472; Match 31.8%; QryMatch 13.1%; Pred. No. 5.87e-27; Matches 130; Conservative 100; Mismatches 137; Indels 42; Gaps 23;	888
qq	379 fkvrlqdlsscitggkaietgsssseeivpsppspplpriykpcfvcqdkssgyhygvs 438	ප ස
ò	QSAIKVEPASPPYYSEKTQLYNKPHEEPSNSLMAIE	
g	439 acegckgffrrsigknmvytchrdknciinkvtrnrcgycrlgkcfevgmskesvrndr- 497	
δ	144 ACEGCKGFFRRTIRLKLIYD-RCDLNCRIHKKSRNKCQYCRFQKCLAVGMSHNAIRFGRM 202	a G
QQ	498 nkkkkevpkpe-csesytltpevgeliek-vrkahqetfpalcql-gk 542	Qλ
δλ	DQLNPESADLRALAKHLYDSYIK	a
g	543 -ytt-n-nssegrvsl-did-lwdkfselstkc-iiktvefakqlpg 583	, Qy
ρŷ	263 PFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRSVEAVQEITEYAKSIPC 322	οΩ

	380
 =	KPFGDF
	SLRKP
	ĸ
_	널
-	Ĕ
	ĞE.
	EG
_	S
	Z
_	8
	-NKDGVLISEGQGFI
	L-ASIM
••	TML
	Ξ
••	呈
••	25
_	. ⊊
=	뎙
_	E
_	.6
_	3
	<u>.</u>
_	Ë
_	.∑
	323

US-08-380-051-2.rag

- 641 tdlvfafangllplemddaetgllsaiclicgdrqdleqpdrvdmlqepllealkvyvrk 700

 - 381 MEPKFEFAVKENALELDDSDLAIF1AVIILSGDRPGLINVKPIEDIQDNLLQALELQLKL 440
- 701 rrpsrphmfpkmlmkitdlrsisakgaervitlkm-eipgsmppligem 748
- 41 NHPESSQLFAKLLQKMTDLRQIVTEHVQLLQVIKKTETDMSLHPLLQEI 489

.r 9 R33744 standard; Protein; 440 AA.

```
Receptor; XR2; DNA binding domain; human; retinoic acid receptor-alpha;
                                                                                  hRAR-alpha; thyroid receptor-beta; hTR-beta; glucocorticoid receptor; hGR; retinoid X receptor-alpha; hRXR-alpha; verht3; verhr5; ligand;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    super-family - useful for screening for agonists-antagonists of
                                                                                                                                                                                                                                                                                                                                                                                                                                                    DNA encoding proteins of thyroid-steroid hormone receptor
                                                                                                                                                                                                                                                                                                                                          Evans RM, Giguere V, Mangelsdorf DJ;
3, Yao TP;
                                                                                                                                         transcription-activation; response element.
                                                                                                                                                                                                                      01-APR-1993.
08-SEP-1992; U07570.
17-SEP-1991; US-761068.
(SALK ) SALK INST BIOLOGICAL STUDIES.
23-JUL-1993 (first entry)
                                                                                                                                                                                                                                                                                                                                                                                                    93-117536/14.
                                                                                                                                                                                                                                                                                                                                                                       Oro AE,
                                                                                                                                                                                                                                                                                                                                     Borgmeyer UK,
Ong ES, Oro AE
WPI; 93-117536/
                                                                                                                                                                                                                                                                                                                                                                                                                                 N-PSDB; Q39088.
                                                                                                                                                                              Homo sapiens.
                                                                                                                                                                                                      WO9306215-A.
```

such receptors

This sequence represents the receptor XR2. This polypeptide has Claim 9; Page 40-42; 71pp; English.

With the DNA binding domain comprising approx. 55% amino acid sequence identity with the DNA binding domain of human retinoic acid receptor-alpha (hRAR-alpha), about 56% amino acid sequence identity with the DNA binding domain of human thyroid receptor-beta (hTR-beta), about 50% amino acid sequence identity with the DNA binding domain of human amino acid sequence identity with the DNA binding domain of human elucocrticoid receptor (hGR) and about 52% amino acid sequence identity with the DNA binding domain of human retinoid X receptoralpha (hRXR-alpha). XR2 receptor can be used for testing a compound receptor polypeptide, identifying compounds which act as ligands for the receptor polypeptides and for identifying response elements for for its ability to regulate transcription-activating effects of a

the receptor polypeptides. Sequence 440 AA; Sequence Score 471; Match 28.3%; QryMatch 13.0%; Pred. No. 7.05e-27; 108; Conservative 100; Mismatches 147; Indels 26; Gaps 22 DB 6; So Matches

136 dtymrrkcqecplrkcrqagmreecv----lse-eqirl-kklkrqeee-qahatsl-p- 186

187 prrssppqilp-qlspeql-gmi-eklva-aq-qqcnrrsfs-drlrvtpwpmap-dphs 239

132 AKHLYDSYIKSEPLTKAKARAILTGKTTDKSPFVIYDMNSLAMGEDKIKFKHITPLQEQS 291 õ

584 fttltiadqitllkaacldililrictrytpeqdtmtfsdglt-lnrtqmhna--gfgpl 640

g

용 à 9

ð

148 cfevgmskesvrndr-nkkkkevpkpe-csesytltpevgel--iek-vrkahqetfp-- 200

US-08-380-051-2.rag Nov 1708:26

236 364 292 Inrtqmhna--gfgpltdlvfafanqllplemddaetgllsaiclicgdrqdleqpdrvd 349 365 MTREFLKSLRKPFGDFMEPKFEFAVKFNALELDDSDLAIFIAVILLSGDRPGLLAVKP1E 424 350 mlqepllealkvyvrkrrpsrphmfpkmlmkitdlrsisakgaervitlkm-eipgsmpp 408 291 Disclosure; Fig 1; 33pp; English.

An 11.5 day-old total mouse embryo lambda gt10 cDNA library was screened with labelled human RAR-alpha probes. Positive clones were isolated, mapped and sequenced. A set of mRAR-alpha clones was 247 KAKARAILTGKTTDKSPFVIYDMNSLMMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRS 237 iktv----efakqlpgfttltiadqitllkaacldililrictrytpeqdtmtfsdglt----ytt-n-ns---segrvsl-did-lwdkfselstk----c-i--Novel human and mouse retinoic acid receptors - encode proteins mouse; retinoic acid receptor; mRAR-alpha; embryogenesis 11-APR-1991 (first entry) Murine Retinoic Acid Receptor-alpha (deduced from CDNA). (SQUI) LES LABS SQUIBB SA. Chambon P, Kastner P, Krust A, Petkovich M, Zelent A; Leroy P, Mendelsoh C, Staub A; WPI; 91-038271/06. 'note= "DNA binding domain. 95 per cent amino acid /note= "important for differential trans-activaused to assay for agonists and antagonists 'note= "well conserved between mRAR's" Location/Qualifiers LT 11 R10547 standard; protein; 462 AA. tion by other nuclear receptors" 'note= "putative hinge region" 'note= "ligand binding domain" (INRM) INSERM INST NAT SANTE. 200.,419 154..199 420..462 identity between mRAR's" 88..153 29-JUN-1990; 112469. 30-JUN-1989; US-374690. 29-MAR-1990; US-502140. 60..87 1..59201 -alcq--l-gk--Region 1 /label= Region A /label= Region D /label= Region E /label= Region F EP-411323-A. /label= Region B /label= Region C 409 liqem 413 485 LLQEI 489 Mus musculus. 16-FEB-1991. R10547; Region Region Region Region Region RESULT 8 염 8 g δ g ð g ð

Nov 170826

88888

셤

g

S

음

8

g

8

원 ò 염 ò 유 ð

ð

US-08-380-051-2.rag

protein shows strong homology with human retinoic acid receptor, RAR-beta, and can be used to assay for RAR (ant)agonists. isolation of complementary DNA and RNA sequences. Conservative 448 AA; 122; Homo sapiens 120; EP-321362-A. Score Score DB 1; S Matches Matches 201 RESULT BB 임 쇰 õ q ð g ð g ò g ð 쇰 ð ð 463; Match 33.4%; QryMatch 12.8%; Pred. No. 3.03e-26; onservative 91; Mismatches 110; Indels 42; Gaps 23; 88 cfvcqdkssgyhygvsacegckgffrrsiqknmvytchrdknciinkvtrnrcqycrlqk 147 cfdvgmskesvrndr-nkkkkeapkpe-csesytltpevgel--iek-vrkahqetfp-- 200 -alcq--1-gk----ytt-n-ns---seqrvsl-did-1wdkfselstk----c-i-- 236 247 KAKARAILIGKTTDKSPFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRS 306 292 Inrtqmhna--gfgpltdlvfafangllplemddaetgllsaiclicgdrqdleqpdkvd 349 365 MTREFIKSLRKPFGDFMEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRPGLLAVKPIE 424 350 mlqepllealkvyvrkrrpsrphmfpkmlmkitdlrsisakgaervitlkm-eipgsmpp 408 237 iktv----efakqlpgfttltiadqitllkaacldililrictrytpeqdtmtfsdglt- 291 deduced amino acid sequence with that of human RAR-alpha. There are 8 amino acid substitutions (mostly conservative) between the human and mouse sequences. See also R10548, Q10388-9 and Q10405-8. identified on the basis of a 98 percent homology of their cDNA-Evans RM, Giquere V, Ong ES, Segui PS, Umesono K, Thompson CC; transcription activating properties of retinoic acid receptor (RAR) protein (see corresp. N90124). Used to make chimeric receptors, to produce receptor, to study binding complexes, Disclosure; fig 1b; 74; English Primary sequence of a protein that has ligand binding and DNA encoding retinoic acid receptor proteins - used to produce proteins for studying complexes with and to screen cpds. for RAR-agonists and antagonists. Retinoic acid receptor Clone phRARI; retinoic acid receptor; 02-DEC-1987; US-276536. (SALK) Salk Inst for Biological Stud ligands and in diagnostic assays. JT 12 P90395 standard; protein; 462 -.. 122; Conservative 1-NOV-1989 (first entry) ligand complexes; human. Homo sapiens (Human) 01-DEC-1988; U04284 WPI; 89-192701/26. N-PSDB; N90124. 462 AA; 409 liqem 413 485 LLQEI 489 W08905355-A. 15-JUN-1989 Score Sequence Sequence DB 2; : Matches 148 201

No. 3.64e-26; | : | | | : | : | | : | 247 KAKARAILTGKTTDKSPFVIYDMNSLAMGEDKIKEKHITPLQEQSKEVAIRIFQGCQFRS 306 187 CLAVGMSHNAIRFGRMPQAEKEKLLAEISSDIDOLNPESADLRALAKHLYDSYIKSFPLT 246 -alcq--1-gk-----ytt-n-ns---seqrvsl-did-lwdkfselstk----c-i-- 236 292 Inrtqmhna--gfgpltdlvfafangllplemddaetgllsaiclicgdrqdleqpdrvd 349 148 cfevgmskesvrndr-nkkkkevpkpe-csesytltpevgel--iek-vrkahqetfp-- 200 365 WTREFLKSLRKPFGDFMEDKFEFAVKFNALELDDSDLAIFIAVIIISGDRPGLLAVKPIE 424 350 mlqepllealkvyvrkrrpsrphmfpkmlmkitdlrsisakgaervitlkm-eipgsmap 408 237 iktv----efakglpgfttltiadqitllkaacldililrictrytpeqdtmtfsdglt- 291 307 VEAVQEITEYAKSIPGFVNLDLNDQVTLLKYGVHEIIYTML-ASLM-NKDGVLISEGQGF 364 425 DIQDNILQALELQIKIMHPESSQLFAKLLQKMTDLRQIVTEHVQLLQVIKKTETDMSLHP 484 91; Mismatches 110; Indels 42; Gaps hap protein; hepatoma protein; retinoic acid receptor; probe; human Hap (hepatoma) protein (see corresp. N90093). DNA isolated from human liver cDNA using a DNA fragment with a hepatitis B virus insert isolated from a hepatoma. Specific hap fragments include amino acids 49-196, 151-167, 175-185, and 440-448. The pure hap protein and its fragments can be used as probes for detn. and shows strong homology with retinoic acid receptor protein. Match 33.4%; QryMatch 12.8%; Pred. Tiollais P, Dejean A, Blaudin de The H, Marchio A; WPI; 89-180193/25. 448 AA. Disclosure; fig 2; 46pp; English. Conservative P90341 standard; protein; P90341; 1-NOV-1989 (first entry) 16-DEC-1987; US-278136. (INSP) Inst Pasteur. hap (hepatoma) protein 462; 21-JUN-1989. 16-DEC-1988; 403229. New cloned hap gene = = = N-PSDB; N90093. 409 ligem 413 485 LLQEI 489

24;

459; Match 32.9%; QryMatch 12.7%; Pred. No. 6.29e-26; Onservative 91; Mismatches 112; Indels 42; Gaps 24

The hap

DAC DATE OF THE PARTY OF T

81 cfvcgdkssgyhygvsacegckgffrrsigknmiytchrdkncvinkvtrnrcgycrlgk 140

δ 유 195 -l-cq--l-gk---

염

δ

유

δ

No. 9.05e-26; 42; Gaps 24;

231 306 284 342

စ္

US-08-380-051-2.rag

81 cfvcqdkssgyhygvsacegckgffrrsiqknmiytchpdkncvinkvtrnrcqycrlqk 140 141 cfevgmskesvrndr-nkkkketskqe-ctesyemtaelddl-t-ek-irkahqetfp-s 194 365 MTREFLKSLRKPFGDFMEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRPGLLNVKPIE 424 343 klqepllealkiyirkrrpskphmfpkilmkitdlrsisakgaervitlkm-eipgsmpp 401 247 KAKARAILIGKTIDKSPFVIYDMNSLAMGEDKIKFKHITPLOEQSKEVAIRIFGGCQFRS i--vq----fakrlpgftgltiadqitllkaacldililrictrytpeqdtmtfsdglt--yttns--sadhrvrl-dlg-lwdkfselatk----ciiklnrtqmhna--gfgpltdlvftfanqllplemddtetgllsaiclicgdrqdleeptkvd 92; Mismatches 111; Indels 42; retinoic acid receptor; mRAR-beta; embryogenesis. Murine Retinoic Acid Receptor-beta (deduced from cDNA) OryMatch 12.6%; /note= "important for trans-activation by other per cent amino /note= "well conserved between mRAR's" Location/Qualifiers 457; Match 32.9%; JT 15 R10548 standard; Protein; 448 AA. acid identity between mRAR's" Region 'note= "putative hinge region" /note= "ligand-binding domain" Conservative 11-APR-1991 (first entry) 193..412 413..448 81..146 53..80 06-FEB-1991. 29-JUN-1990; 112469. 30-JUN-1989; US-374C90. 1..52 nuclear receptors Region B -1-cq--1-gk-/label= Region A 'label= Region C 'label= Region D 'label= Region E /label= Region F 402 ligem 406 LLQEI 489 Mus musculus. 120; Score Region /label= | R10548; monse; Region Region Region Region Matches 195 232 285 485 DB 10; OP 염 δ 염 셤 ð 셤 δ 염 ð 8 ò ò lnrtqmhna--gfgpltdlvftfangllplemddtetgllsaiclicgdrqdleeptkvd 342 365 WTREFIKSLRKPFGDFMEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRPGLLAVKPIE 424 128 CRVCGDKASGFHYGVHACEGCKGFFRRTIRIKLIYD-RCDLNCRIHKKSRNKCQYCRFQK 186 141 cfevgmskesvrndr-nkkkketskqe-ctesyemtaelddl-t-ek-irkahqetfp-s 194 247 KAKARALLIGKTIDKSPFVIYDMNSLAMGEDKIKFKHITPLQEQSKEVAIRIFQGCQFRS 306 229 i--ik-ivefakrlpgftgltiadqitllkaacldililrictrytpeqdtmtfsdglt- 284 343 klqepllealkiyirkrrpskphmfpkilmkitdlrsisakgaervitlkm-eipgsmpp 401 the hepatoma or hepatoma-derived cell lines express a small hap transcript which is undetectable in normal adult and foetal livers but present in all non-hepatic tissues tested. Sequence 448 AA; hap gene is transcribed at low level in most human tissues, but gene is overexpressed in prosate and kidney. Six out of seven Claim 1; Figure 2; 35pp; English. The retinoic acid receptor is encoded by a gene designated hap. detecting, quantifying and identifying agonists and antagonists Retinoic acid receptor RAR beta. Liver, hap, retinoic acid receptor; steroid; thyroid; hormone; Antibody specific for retinoic acid receptor-beta - useful for ---yttns--sadhrvrl-dlg-lwdkfselatk----c-Krust A;

.T 14
R55128 standard; Protein; 448 AA.

ď à

ð

285

염

8

셤

8

11-JAN-1995 (first entry)

hepatoma; retinoid; antibody

Homo sapiens

US5317090-A 31-MAY-1994 De THE HB, Dejean A, M, Tiollais P;

Marchio A, Petkovich M,

WPI; 94-176333/21.

N-PSDB; R55128

retinoid activity

(INSP) INST PASTEUR. Brand N, Chambon P,

30-MAR-1989; US-330405. 21-AUG-1991; US-751612. 30-MAR-1992; US-860577. 11-DEC-1992; US-989902.

20-JUN-1988; US-209009. 30-NOV-1988; US-278136. 16-DEC-1987; US-133687

US-134130

17-DEC-1987;

16-DEC-1987; 133687.

towor) Accounts and a provided by:

I Chambon P, Kastner P, Krust A, Petkovich M, Zelent A;

I Icroy P, Mendelsoh C, Staub A;

PI Leroy P, Mendelsoh C, Staub A;

NPI; 91-038271/06.

RPI; 91-038271/06.

Novel human and mouse retinoic acid receptors - encode proteins for used to assay for agonists and antagonists

Disclosure; Fig 1; 33pp; English.

PS Disclosure; Fig 1; 33pp; English.

CC An 11.5 day-old total mouse embryo lambda gt10 cDNA library was creened with labelled human RAR-beta probes. Positive clones were isolated, mapped and sequenced. A set of mRAR-beta clones was cidentified on the basis of a 98 percent homology of their cDNA-deduced amino acid sequence with that of human RAR-beta. There are and mouse sequences. See also R10547, Q10388-9 and Q10405-8.

Sequence 448 AA; 29-MAR-1990; US-502140. (INRM) INSERM INST NAT SANTE. LES LABS SQUIBB SA. Nov 17 08:26 (SQUI)

DB 2; Score 456; Match 32.9%; QryMatch 12.6%; Pred. No. 1.09e-25; Matches 120; Conservative 91; Mismatches 112; Indels 42; Gaps 24;

g õ

141 cfevgmskesvrndr-nkkkkepskqe-ctesyemtaelddl-t-ek-irkahqetfp-s 194 g

187 CLAVGMSHNAIRFGRMPQAEKEKLLAEISSDIDQINPESADIRALAKHLYDSYIKSFPLT 246 à 195 -l-cq--l-gk-----yttns--sadhrvrl-dlg-lwdkfselatk----c--- 228 g ð 셤

285 lnrtqmhna--gfgpltdlvftfanqllplemddtetgllsaiclicgdrqdleeptkvd 342 : | : | | : | | : | | : | | : | 342 365 MTREFIKSLRKPFGDFWEPKFEFAVKFNALELDDSDLAIFIAVIILSGDRPGLLNVKPIE 424 8 g

343 klgepllealkiyirkrrpskphmfpkilmkitdlrsisakgaervitlkm-eipgsmpp 401 à 셤

Š

402 liqem 406 쇰

485 LLQEI 489

8

Search completed: Fri Nov 17 08:32:06 1995

Job time : 15 secs.