

Sequential CNN

Deep Learning Predicts Lung Cancer Treatment Response from Serial Medical Imaging

Yiwen Xu, Ahmed Hosny, Roman Zeleznik, Chintan Parmar, Thibaud Coroller, Idalid Franco, Raymond H. Mak, and Hugo J.W.L. Aerts

- 1. Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- 2. Radiology and Nuclear Medicine, GROW, Maastricht University Medical Centre, Maastricht, the Netherlands
- 3. Department of Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts

Abstract

Motivation

- Non-small cell lung cancer (NSCLC) ,晚期患者5年生存率仅为18%
- 晚期一般使用非手术方案,需要对病变发展以及治疗效果进行跟踪
- 受到血管及免疫系统影响,病变具有明显的动态特征

Contribution

- CNN + RNN 预测NSCLC晚期患者的生存率以及治疗效果

Dataset-A

- 179 patients with stage III NSCLC, 2003 2014
- 使用放疗、化疗方案
- 治疗前1期CT+治疗1、3、6月后的CT,会有缺失(平均3.2期)
- 排除在治疗前或治疗后有手术史的病例
- 107 for training/tuning, 72 for test
- 评估指标,放化疗1、2年后
 - 生存与否
 - 远处转移
 - 局部复发
 - 进展

- Dataset-B (additional test)
 - 89 patients with stage III NSCLC, 2001 2013
 - 使用术前辅助放疗、化疗方案
 - 每个病人两期图像:治疗前、治疗后
 - 排除病例
 - 远端转移
 - 放化疗与手术间隔大于120天
 - 没有生存数据
 - 评估指标,放化疗后1年
 - 手术时的病情诊断(14个完全缓解,28个支气管癌变,47个残留病变)

- 病变区域
 - 人工定位病变位置,点击获取病变中心点
 - 截取上下5mm处共3张切片, $50 \times 50 \ mm^2$ 大小

- 1. Imagenet 预训练网络参数,迁移学习
- 2. 缺失数据跳过

- Baseline
 - 使用RF进行预测
 - 肿瘤分期、性别、年龄、病变分级、吸烟史、病变体积等

Results

Predicting 2-year survival

	1 pre	1 + 1	1 + 2	1+3	RF
AUC	0.58	0.64	0.69	0.74	0.51
P值	0.3	0.04	0.007	0.001	0.93

Results

- 将低风险与高风险 人群分开,分别绘制 生存率曲线

ATTAIN: Attention-based Time-Aware LSTM Networks for Disease Progression Modeling

Yuan Zhang, Xi Yang, Julie Ivy and Min Chi

- 1. Computer Science, North Carolina State University
- 2. Industrial and System Engineering, North Carolina State University

IJCAI, 2019

Abstract

Motivation

- 使用 Electronic Health Records (EHRs) 预测疾病发展 Disease Progression Modeling (DPM)
- 数据之间的时间间隔不规则

Contribution

- 引入 attention 机制建模时间间隔

AATAIN network

- LSTM: 越靠近当前时刻的输入对当前的预测影响越大
- 作者观点
 - 病变发展不仅仅与邻近时刻有关
 - 医生需要查看病情的历史变化,来判断当前病情及未来病情的发展

- LSTM
 - 信息隐含在"细胞状态C"和"隐状态H"中,缺少对时间间隔的建模
- Attention 机制

- Global: 全部

- Local: 固定数目

Flexible: sigmoid attention

• 重要程度随时间衰减

$$g(\Delta t) = 1/\log(e + \Delta t)$$

Datasets

- Christiana Care Health System Health System (CCHS), 2013 2015
- 真菌、细菌、病毒感染,是否发生感染性休克
- 共 2100 例: 1869 正样本 + 231 负样本
- 共 209346 次记录: 22430 正样本 + 186916 负样本

- Results
 - Local attention,选择 m

- Results
 - Overall prediction: 1, 2, ..., t 预测 t+1

Method	A	T	Sensitivity/Recall	Specificity	PPV/Precision	F1-score	AUC
LSTM	-	-	$0.627(\pm 0.023)$	$0.632(\pm 0.021)$	$0.635(\pm0.020)$	$0.631(\pm 0.021)$	$0.716(\pm 0.020)$
RETAIN	\checkmark	-	$0.618(\pm 0.015)$	$0.654(\pm 0.016)$	$0.651(\pm 0.016)$	$0.634(\pm 0.016)$	$0.732(\pm 0.010)$
T-LSTM	-	✓	$0.643 (\pm 0.009)$	$0.680(\pm 0.012)$	$0.702(\pm 0.013)$	$0.671 (\pm 0.010)$	$0.745 (\pm 0.013)$
$\overline{LSTM_g}$	√	-	$0.628(\pm0.013)$	0.798 (±0.015)	0.747 (±0.018)	$0.682(\pm0.016)$	$0.748(\pm0.014)$
$LSTM_l$	\checkmark	-	$0.684 (\pm 0.007)$	$0.742(\pm 0.013)$	$0.707(\pm0.012)$	$0.695 (\pm 0.011)$	$0.763 (\pm 0.008)$
$LSTM_f$	\checkmark	-	$0.667(\pm 0.022)$	$0.731(\pm 0.017)$	$0.726(\pm 0.016)$	$0.695(\pm 0.019)$	$0.755(\pm0.016)$
$\overline{\text{ATTAIN}_g}$	√	√	$0.636(\pm0.016)$	* 0.818 (±0.008)	* 0.803 (±0.010)	$0.710(\pm 0.014)$	$0.782(\pm0.015)$
$ATTAIN_l$	\checkmark	\checkmark	\star 0.695 (\pm 0.014)	$0.746(\pm 0.012)$	$0.744(\pm 0.015)$	$0.718(\pm 0.014)$	$0.804(\pm 0.010)$
$ATTAIN_f$	√	√	$0.686(\pm 0.018)$	$0.767(\pm0.016)$	$0.758(\pm0.016)$	\star 0.720 (\pm 0.017)	* 0.811 (±0.011)

- RETAIN: NIPS 2016,从 LSTM 的隐状态中计算 attention 权重

- T-LSTM: ACM 2017, 引入时间衰减作为门控

- Results
 - Early prediction: 1, 2, ..., t 预测 t+1, t+2, ..., $t+\eta$

Figure 3: (a) F1-score of early prediction at different hours. (b) AUC of early prediction at different hours.

- Results
 - 权重分析
 - 影响相邻时刻预测的权重应该类似

Figure 4: Attention weights for the 11th and 12th events achieved from (a) RETAIN; (b) LSTM $_l$; (c) ATTAIN $_l$.

Time-aware Adversarial Networks for Adapting Disease Progression Modeling

Yuan Zhang, Xi Yang, Julie Ivy and Min Chi

- 1. Computer Science, North Carolina State University
- 2. Industrial and System Engineering, North Carolina State University

IJCAI, 2019

Abstract

Motivation

- 使用 Electronic Health Records (EHRs) 预测疾病发展 Disease Progression Modeling (DPM)
- 数据之间的不均匀性(异质性)
 - 不同人群下的指标数值分布不同(例如不同年龄人的血压)
 - 不同人群某类观察指标的样本分布不均(例如老年人更易得病)

Contribution

- 引入 attention 机制建模时间间隔

Thanks for listening!

2020/6/11