

Análise de Diferentes GMMs e o seu Impacto numa RBFN

Vasco Pereira, 103368

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
06	RBFN - Conceito	
07	RBFN - Resultado	
08	Conclusões	
09	Agradecimento & Questões	

O projeto tem como objetivo principal, além de 5 secundários, criar o modelo mais eficaz em classificar corretamente o dataset

Explorar o uso de Gaussian Mixture Models (GMMs) para determinar o número de neurónios ideais em RBFNs. Comparar diferentes configurações de covariância (full vs. tied) e avaliar o seu impacto na precisão do modelo. Investigar o efeito da normalização e redução de dimensionalidade (PCA) no desempenho dos modelos.

Validar e medir a accuracy da RBFN em relação a outros modelos de referência (p.ex., Regressão Logística).

Comparar os clusters ideais para o valor de silhueta e para a accuracy.

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
06	RBFN - Conceito	
0-		
07	RBFN - Resultado	
2.0		
08	Conclusões	
0.0	A	
09	Agradecimento & Questões	

O dataset possui 30 atributos como o raio, a textura, o perímetro e a área e tem como objetivo classificar um tumor como maligno ou benigno

O conjunto de dados será dividido em três versões:

1.Base: sem quaisquer alterações ao conjunto original;

2.Normalizado: os atributos passam por normalização para uniformizar a escala;

3.PCA: redução dimensional para manter 95% da

variância original dos dados.

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
00	DDENL Occasión	
06	RBFN - Conceito	
07	RBFN - Resultado	
07	NDFN - Nesultado	
08	Conclusões	
	00110103003	
09	Agradecimento & Questões	
3 0	, ig. s.s. 5 1111	

A regressão logística utiliza a função sigmoid para modelar probabilidades em problemas de classificação binária

Resultados da regressão logística		
Dataset	Accuracy	
Base	96.5%	
Normalizado	97.7%	
PCA	97.7%	

Tanto o dataset normalizado como o dataset PCA apresentaram resultados superiores ao dataset base.

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
06	RBFN - Conceito	
07	DDEN D K I	
07	RBFN - Resultado	
00	O I ~	
08	Conclusões	
00	Agradacimenta 9 Questãos	
09	Agradecimento & Questões	

Os GMMs serão utilizados para identificar o número ideal de clusters com base nos valores de silhueta e accuracy, variando entre 1 a 150 clusters. Comparemos os resultados utilizando as covariâncias tied e full

Valor de silhueta: Métrica utilizada para avaliar a qualidade de clusters. Mede o quão bem cada ponto está associado ao seu próprio cluster em comparação com os clusters vizinhos. Os valores variam de -1 a 1, onde valores próximos a 1 indicam que os pontos estão bem ajustados ao seu cluster, valores próximos de 0 sugerem sobreposição entre clusters e valores negativos indicam que os pontos podem estar no cluster errado.

Diferenças entre Full e Tied:

- •Full: Cada cluster tem a sua própria matriz de covariância, permitindo que cada um assuma uma forma específica e mais flexível.
- •**Tied**: Todos os clusters partilham a mesma matriz de covariância, resultando em clusters com a mesma forma.

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
06	RBFN - Conceito	
07	RBFN - Resultado	
80	Conclusões	
09	Agradecimento & Questões	

Clusters ideais identificados com base na avaliação da silhueta e da accuracy

Full		
Dataset	Clusters que maximizam a silhueta	Clusters que maximizam a accuracy
Base	2	2
Normalizado	2	7
PCA	2	5

Tied			
Dataset	Clusters que maximizam a silhueta	Clusters que maximizam a accuracy	
Base	2	10	
Normalizado	2	58	
PCA	2	29	

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
06	RBFN - Conceito	
07	RBFN - Resultado	
80	Conclusões	
09	Agradecimento & Questões	

RBFN (Radial Basis Function Network) é um tipo de rede neuronal que utiliza funções de base radial (como a Gaussiana) na camada oculta

RBFN

Representação de uma RBFN. A hidden layer terá um número de neurónios igual ao número de clusters previamente calculados. A função gaussiana utilizada será a seguinte:

$$\vartheta(x) = e^{-\beta_i \|x - c_i\|^{-2}}$$

Onde c_i é o centro do cluster i e β_i é igual a $\frac{1}{2d_{mean}^2}$, sendo d_{mean} a distância média dos pontos do cluster i relativamente ao seu centro.

01	Objetivos do projeto	
02	Dataset	
03	Regressão Logística	
04	GMMs, covariâncias e valor de silhueta	
05	GMMs - Resultados	
06	RBFN - Conceito	
07	RBFN - Resultado	
2.2		
08	Conclusões	
00	A ' () (
09	Agradecimento & Questões	

Accuracy das RBFNs calculados utilizando o número de clusters ideias

Full			
Dataset	Accuracy com clusters que maximizam a silhueta	Accuracy com clusters que maximizam a accuracy	
Base	88.9%	88.9%	
Normalizado	93.0%	96.5%	
PCA	88.9%	94.7%	

Tied			
Dataset	Accuracy com clusters que maximizam a silhueta	Accuracy com clusters que maximizam a accuracy	
Base	89.5%	90.6%	
Normalizado	93.6%	96.5%	
PCA	94.7%	98.8%	

01	Objetivos do projeto
02	Dataset
03	Regressão Logística
04	GMMs, covariâncias e valor de silhueta
0.5	
05	GMMs - Resultados
06	DDENL Consoits
06	RBFN - Conceito
07	RBFN - Resultado
O I	RDI IV ROGUITAGO
08	Conclusões
09	Agradecimento & Questões

Chegou-se a conclusão que o melhor modelo é uma RBFN com o dataset PCA, covariância tied e 29 neurónios na hidden layer

Gráficos a comparar a variação do valor de silhueta e da accuracy em ambas as covariâncias com o dataset PCA.

01	Objetivos do projeto
02	Dataset
03	Regressão Logística
04	GMMs, covariâncias e valor de silhueta
05	GMMs - Resultados
06	RBFN - Conceito
07	RBFN - Resultado
80	Conclusões
09	Agradecimento & Questões

