

Telecommunication Basics (WCDMA Network)

Software Engineering Lab - 김영기 책임

Remember Again !!!

WCDMA? (1/2)

WCDMA

- Wideband Code Division Multiple Access
- 광대역 부호 분할 다중 접속

	W-CDMA	CDMA2000 1X
Carrier Spacing	5 MHz	1.25 MHZ
Chip rate	3.84 Mcps	1.2288 Mcps
Frame size	10msec	20msec

WCDMA? (2/2)

WCDMA

- Wideband Code Division Multiple Access : 광대역 부호 분할 다중 접속
- Multiple Access: TDMA, FDMA, CDMA, CSMA, OFDMA, ODMA, SDMA

Time Division Multiple Access

Frequency Division Multiple Access

Code Division Multiple Access

- WCDMA = CDMA Based + Partially TDMA, FDMA
 - ✓ TDD (Time Division Duplex)
 - ✓ FDD (Frequency Division Duplex)

Progress of WCDMA

14 Mbps Rel-5 Rel-7 + 64 QAM +2x2 MIMO 21 Mbps 28 Mbps Rel-8 **Dual Carrier** 2x2 MIMO 42 Mbps Rel-9 Dual Carrier + 2x2 MIMO + 64QAM 84 Mbps Rel-10 +4 Carriers 168 Mbps Rel-11 + 8 carriers +4x4 MIMO 336 Mbps 336 Mbps

WCDMA Network

WCDMA Network Standard

- Release 99, Release 4, Release 5
- UMTS (Universal Mobile Telecommunications System)
 - ✓ Proposed by 3GPP (3rd Generation Partnership Project)
 - ✓ Conceptual Architecture

UMTS Release 99 Architecture

CN (Core Network)

Functionalilty

- Protocol 구조에서 상위 레벨의 데이터 처리
- UTRAN을 거쳐 UE와 전화 통화 연결, 데이터 통신 연결 처리
- 요금 과금 시스템
- 망보안 관련 처리

UTRAN (UMTS Terrestrail Radio Access Network)

Functionalilty

- CN과 UE 연결
- 전파 자원 제어, 할당
- 사용자 이동성 보장

구성 요소	기능
Node B	■ Call 과 상응하는 Carrier 보유 → Cell 안의 UE와 연결되어 있으며, 이에 사용하는 주파수 확보
RNC	■ Node B 제어 및 통신 자원 할당 ■ Handover, RB (Radio Bearer) 담당
RNS	■ Radio Network Subsystem ■ RNC + 이에 딸린 Node B = RNS ■ UE와 연결 상태에 따라 SRNS와 DRNS 로 구분 ■ SRNS (Serving RNS): UE와 연결을 유지하고 있는 RNS ■ DRNS (Draft RNS): UE가 RNC간 이동하는 상황에서 새롭게 UE와 연결되는 RNS

Domain

Main Domains of CN

- CS domain, PS domain, BS domain
 - → lu Interface를 통하여 RNC와 연결
- CS (Circuit Switched) domain

CS Domain	PS Domain	기능
MM Protocol	GMM Protocol	사용자 위치 추적, 식별, UE 위치 등록
CC Protocol	SM Protocol	CS/PS 연결 수립 및 제어
HLR/AuC		사용자 정보 저장 및 인증

- ✔ Dedicated Channel (송신자와 수신자가 1:1로 연결) 할당하여 데이터 전송
- ✓ MSC, HLR, AuC(Authentication Center)

MM	CM	CC	SMS
Mobility Managment	Connection Management	Call Control	Short Message Service
■ 단말과 기지국간 연결 전환	■ 통화 연결 제어	■ CN과 연결 담당 ■ 통화 재연결 ■ 음송 통화 송수신 관리	■ 핸드폰 문자 서비스

PS (Packet Switched) domain

- ✓ User Data를 Packet 단위로 전송 (Voice/Video Data + Control Command)
- ✓ GMM (GPRS Mobility Management) Protocol, SM (Session Management) Protocol

BS (Boradcast Switched) domain

✓ 일정 구역안의 UE들에게 일괄 배포 시

Service	Audio	Video	Data
Throughput	12.2 Kbps	64 Kbps	128 Kbps
Error	10 ⁻⁸ BER ↓	10 ⁻⁸ BER ↓	10 ⁻⁹ BER ↓

[QoS (Quality of Service)]

Protocol Architecture

Control Plane

Protocol Architecture

User Plane

WCDMA Protocol Architecture

Protocol

Focus on Logical aspect

AS (Access Stratum)

AS

 Functional Layer in the UMTS wireless telecom protocol stack between radio network and user equipment

Functionality

- 무선 구간을 통한 데이터 전송과 관련된 기능 수행
- NAS 메시지의 전달

HTTP April 1 April 2 A

Application
Transport
Internet
Network (L3)
Link (L2)
Physical (L1)

^{*} SM(Session Management), CC(Call Control), SS(Supplementary Service), GSMS/SMS

WCDMA Protocols (1/4)

Physical Channel

- Data Sending & Receving
 - ✓ Channelization code
 - ✓ Scrambling code
- 목적에 따라 세분화
 - ✓ 전송 방향 : uplink, downlink, 양방향
 - ✔ FDD/TDD 지원 여부
 - ✔ Transport channel, Logical Channel 과 조를 이루어 전송키도 함

Physical Layer

Channelization code & Scrambling code

Uplink (동일 Cell)	Downlink (동일 Cell)	Downlink (다른 Cell)
■ 같은 Channelization Code	■ 다른 Channelization Code	■ 같은 Channelization Code
■ 다른 Scrambling Code	■ 같은 Scrambling Code	■ 다른 Scrambling Code

- Handover
- Compressed mode
 - ✔ Data Stream 사이에 공백을 넣어 다른 Cell을 체크할 시간을 할당
- Power control

WCDMA Protocols (2/4)

Transport Channel

- Physical Layer와 MAC 사이의 Interface
 - ✓ Dedicated channel: 1:1 통신 Channel
 - ✔ Common channel : 1:N 통신 Channel

MAC (Medium Access Control)

- 통신 수단 자원 접근 제어 (상위 Layer인 RRC의 제어를 받음)
 - ✔ 통신 자원의 동적 할당
 - ✔ 사용자 간의 우선 순위 할당
 - Logical, transport channel 연결 → 전송 Data Format 결정 → 데이터 우선 순위 결정
 - ✓ UE 당 하나의 Instance 생성
 - 다수의 Logical channel과 다수의 transport channel 사용하여 입출력

Logical channel

- Data 전송 특징 결정
 - ✓ 1:1 또는 1:N, user plane 또는 control plane 인지 결정
 - ✔ Physical channel, Transport channel, Logical channel의 통신 방향과 division duplex 사용 여부

WCDMA Protocols (3/4)

RLC (Radio Link Control) protocol

- Service 당 RLC Instance 할당 → 서비스 별 QoS 기준이 다름
 - ✓ 서비스 마다 다른 전송 속도와 신뢰성 조건을 만족하는 RLC Setting 필요
- Segmentation & Reassembly
- 신뢰성 있는 RLC간 데이터 전송을 위한 서비스
 - ✔ ARQ (Automatic Repeat Request): Error 감지 시 데이터 재전송 요구
 - ✔ Flow control : Buffer Overflow 감시 기능
 - ✔ Ciphering : 데이터 암호화 담당
 - 일반적으로 RLC에서 담당하나 RLC가 transparent하게 동작할 경우 MAC Layer에서 담당

❖ SAP

- Layer간 Interface 역할을 하는 논리 영역
 - ✔ RRC 와 각 AS layer들 간의 control message 전달을 할 때 인터페이스 역할
 - ✔ PDCP, BMC와 AS layer 들과의 연결 사이에도 인터페이스 역할

WCDMA Protocols (4/4)

* RRC (Radio Resource Control) Protocol

- RRC Connection 생성, 수정, 해제 (UE (1) UTRAN (N))
- User Plane connection 생성
 - ✔ RAB (Radio access bearer) : UE → CN으로 가는 Voice, Packet Data 처리
- Mobility Support
 - ✓ Handover Control
 - ✓ Cell, URA 영역 Update → 효과적인 망내 단말기 위치 파악

PDCP (Packet Data Convergence Protocol)

- PS Domain에서 사용
- Handover시 SRNC 전환이 생기는 경우, 데이터를 재전송 → 데이터 손실방지

❖ BMC (Broadcast and Multicast Control) Protocol

- Cell에 SMS를 Broadcast
- 메시지는 주기적으로 Common physical channel로 들어옴
 - ✓ UE에 뿌려진 SIB5, SIB6 메시지로 결정 → 조작 가능

NAS (Non-Access Stratum)

NAS

- UE와 CN 사이의 통신을 제어하는 Control Layer 프로토콜 집합
- Support signalling and traffic between those two elements

Functionality

- Mobility management
- Call control
- Session management
- Identify management

HTTP
TCP
IP
NAS
AS
Channels

^{*} SM(Session Management), CC(Call Control), SS(Supplementary Service), GSMS/SMS

RRC STATE

WCDMA Handover

- FA 별 Sector 각각을 Cell이라 한다
- 인접한 Cell은 서로 다른 PSC (Primary Scrambling Code, 0~511) 사용한다.

Authentication

Bi-directional

WCDMA Channel Mapping

Logical/Transport/Physical Channel Mapping

DTCH Traffic Channel
DCCH Control Channel
DCH Dedicated Channel
PCH Common Channel

Mapping in Downlink
Mapping in Uplink
Mapping in Uplink & Downlink

W-CDMA 와 CDMA 비교

비교 항목	W-CDMA(비동기식)	CDMA 2000(동기식)
주도 지역	유럽	북미
기술표준 단체	3GPP	3GPP2
구성 단체	ETSI(유럽),TI(미국), ARIB/TTC(일본), CWTS(중국), TTA(한국)	TIA(미국), ARIB/TTC(일본), CWTS(중국), TTA(한국)
기지국간 동기	기지국마다 상이 PN code를 갖는 비동기	동일한 PNcode를 사용 :시간차를 이용 기지국 구분
초기동기 시간	상대적으로 길다	상대적으로 짧다 (동일 PN code 사용)
Cell Planning	용이함(인접기지국과 셀 반경을 고려치 않음)	어렵움 (인접기지국 PN code의 Time-offset값 고려)
일반적 표현	W-CDMA	CDAM2000
RF개념의 표현	DS(Direct Sequence)방식의 FDD와 TDD 2가지	MC(Multi Carrier) 3X 3개의 Carrier 사용
시스템 개발업체	에릭슨, 노키아, NTT, DoCoMo 등	퀄컴, 루슨트, 모토로라 등
핵심망 기반	GSM-MAP	ANSI-41
기반 기술	GSM	IS-95
Chip rate	3.84Mcps	3.6864Mcps
국내적용시 장점	DS방식으로 용량개선, 기술 시장성과 성장성이 큼	기존에 운용중인 IS-95계열과 호환 가능, 운용경험과 기술면에서 국제경쟁력이 높음.
국내적용시 단점	국내 기술력부족, 새로운 시스템의 Network 구성	시장성 미흡, 미국의 GPS에 예속 우려

