SZABADKAI MŰSZAKI FŐISKOLA

mr. Rozgonyi Endre

MECHANIKA második rész KINEMATIKA

TARTALOM

I. BEVEZETÉS	
2. A TÖMEGPONT KINEMATIKÁJA	
2.1. A pont helyzetének meghatározása a térben	
2.1.1. A pont helymeghatározása vektorilag	
2.1.2. Analitikus (koordináta) módszer	
2.1.3. Természetes vagy ívkoordináta-rendszer	
2.2. A pont sebessége	
2.2.1. Sebességvektor	
2.2.2. A pont sebessége derékszögű koordináta-rendszerben	
2.2.3. A pont sebessége természetes v. ívkoordináta-rendszerben	
2.2.4. Hodográf	
2.3. A pont gyorsulása	
2.3.1. Gyorsulásvektor	
2.3.2. Derékszögű koordináta-rendszer	
2.3.3. Ívkoordináta-rendszer.	
2.4. A pont mozgásának külön esetei	
2.4.1. Egyenesvonalú egyenletes mozgás	
2.4.2. Görbevonalú egyenletes mozgás	
2.4.3. Egyenletesen változó egyenesvonalú mozgás	
2.4.3.1.Egyenletesen gyorsuló egyenesvonalú mozgás	
2.4.3.2.Egyenletesen lassuló egyenesvonalú mozgás	
2.4.4.1 Egyenletesen változó görbevonalú mozgás	
2.4.4.1. Egyenletesen gyorsuló görbevonalú mozgás	
2.4.4.2. Egyenletesen lasssuló görbevonalú mozgás	
2.4.5. Körmozgás	
2.4.5.1. Egyenletes körmozgás	
2.4.5.2. Egyenletesen gyorsuló körmozgás	
2.4.5.3. Egyenletesen lassuló körmozgás	
2.4.6. Egyszerű harmonikus mozgás (harmonikus rezgőmozgás).	
A MEREV TEST KINEMATIKÁJA	
3.1. Haladó mozgás (transzláció)	
3.2. Merev test forgómozgása álló tengely körül	
3.2.1. Szögsebesség és szöggyorsulás	
3.2.2. A forgómozgás külön esetei	
3.2.2.1. Egyenletes forgómozgás	
3.2.2.2. Egyenletesen változó forgómozgás	
3.2.3. Az álló tengely körül forgó test pontjainak sebessége	· • •
3.2.4.Az álló tengely körül forgó test pontjainak gyorsulása	
3.3. A merev test síkmozgása	
3.3.1.Síkmozgással mozgó test pontjainak mozgáspályája	
3.3.2. Síkmozgással mozgó test pontjainak sebessége	
3.3.2.1.Két pont sebességvetületének tétele	
3.3.3. A sebességpólus	
3.3.4. A pont sebességének meghatározása sebességpólus segítségével	
3.3.5.A sebességpólus meghatározásának külön esetei	

3.3.5.2. Ha az A és B pontok sebességvektorai \vec{v}_A és \vec{v}_B	
egymással párhuzamosak, de az \overline{AB} egyenes nem merőleges a sebességvektorokra	. 54
3.3.5.3. Ha az A és B pontok sebességvektorai \vec{v}_A és \vec{v}_B	
egymással párhuzamosak, a pontokat összekötő	
AB egyenes merőleges a sebességvektorokra	
3.3.6. Síkmozgást végző test pontjainak gyorsulása	. 58
4. MEREV TEST FORGÓMOZGÁSA ÁLLÓ PONT KÖRÜL	
(GÖMBMOZGÁS)	65
4.1. Mozgásegyenletek	65
4.2. Pillanatnyi szögsebesség	69
4.3. Pillanatnyi szöggyorsulás	70
5. SZABAD TEST MOZGÁSA (ÁLTALÁNOS MOZGÁS)	. 76
5.1. Szabad test mozgásának törvényszerűsége	
5.2. Az általános mozgással mozgó test sebessége	. 76
5.3. Az általános mozgással mozgó test gyorsulása	
6. A PONT ÖSSZETETT MOZGÁSA	80
6.1. A pont relatív, szállító és abszolút mozgása	
6.2. A pont abszolút sebessége	80
6.3. A pont abszolút gyorsulása	84
6.3.1.A Coriolis-féle gyorsulás meghatározása	. 86
6.3.2.Példák a Coriolis-gyorsulás értelmének meghatározására	. 87
6.3.3. A szállítómozgás gyorsulásvektorának külön esetei	. 87
6.3.4.Az abszolút gyorsulás komponenseinek meghatározása	. 88
7. MEREV TEST ÖSSZETETT MOZGÁSA	98
7.1. A test abszolút sebessége	98
7.2. A test abszolút gyorsulása	99
7.3. A merev test összetett mozgásának főbb esetei	. 99
7.3.1. Haladó mozgások	99
7.3.2. Párhuzamos tengelyek körüli forgómozgások	. 100
7.3.2.1. A két forgás értelme megegyezik	. 100
7.3.2.2. A két forgás ellentétes értelmű	
7.4. Fogaskerekű bolygóművek számítása	103
8. IRODALOM	109

1. BEVEZETÉS

A mechanika első részének bevezetőjében a *statikában* szó volt a mechanika alapfeladatairól, fejlődéséről valamint felosztásáról. Ott látható volt, hogy a merev testek mechanikája *statikára*, *kinematikára és dinamikára* osztható.

A kinematika a mechanikus mozgásokat tanulmányozza, figyelmen kívül hagyva a mozgást kiváltó okot (az erőt és a test tömegét). A pont, illetve a pontrendszer (merev test) mozgása, adott geometriai összefüggések figyelembevételével, mindig egy *időben* történő jelenség.

A kinematika tulajdonképpen bevezetés a dinamikába (kinetikába), hiszen az alapvető kinematikai összefüggések meghatározása, elengedhetetlen a testekre ható erőhatások tanulmanyozásakor is. Ellenben, különféle mechanizmusok, illetve azok alrendszereinek tanulmányozásakor, a kinematika módszerei igen hatékonyan, önállóan is alkalmazhatók. Éppen ez a folyamat vezetett a kinematika, mint a mechanika önálló ágának kiválásához a 19. század első felében.

A test mozgása alatt, annak helyzetváltoztatása értendő, egy másik térbeli testhez viszonyítva.

Egy mozgó pont illetve test helyzetét, ahhoz a ponthoz illetve testhez képest, amelyhez a mozgás tanulmányozása történik *referens koordináta-rendszerrel* lehet meghatározni, amely az utóbbi ponthoz illetve testhez kötött. Amennyiben, a kiválasztott koordináta rendszerben elhelyezkedő test pontjainak koordinátái a mozgás tartama alatt állandóak, akkor a koordináta-rendszerben elhelyezkedő test nyugalmi állapotban van. Ellenben, ha a test bármely pontjának koordinátája időben változik, akkor a referens koordináta-rendszerhez viszonyítva a test mozgásban van.

A mechanikában a tér fogalma alatt az Euklides-féle háromdimenziós tér értendő. Ebben a térben a hosszúság (*L*) mértékegysége a *méter* [m]. A mechanikában az idő (*t*) univerzálisnak tekintendő, vagyis minden koordináta-rendszerben egyöntetűen változik. Mértékegysége a *másodperc* (secundum) [s]. Minden kinematikai jellemzőt, mint pl.: út (pálya), sebesség, gyorsulás, ezekkel az alapmértékegységekkel kell kifejezni.

Az ilymódon definiált tér és idő csak megközelítően fejezi ki a tér valós tulajdonságait. Ettől eltekintve, mint ahogy azt különböző kísérletekkel igazolni is lehet, a mindennapi életben előforduló mozgások esetében, amelyek sebessége sokszorta elmarad a fény sebességétől, ez a megközelítés elfogadható, mivel gyakorlatilag teljesen kielégítő pontosságot eredményez.

A klasszikus mechanikában (amely a gépészetben gyakorlati feladatok megoldására használatos), az idő mindig pozitív skaláris mennyiség, amely folyamatosan változik. A kinematikai problémák felállításakor a *t* idő mindig független változó. Minden egyéb változó mennyiség a kinematikában az idő függvénye. Az idő minden esetben egy *kezdeti időpillanattól* (t=0) számítódik, amelyet minden egyes feladat esetében meg kell határozni. Minden *meghatározott időpillanat* (*t*) azzal a másodpercben kifejezett idővel definiált, amely a kezdeti időpillanattól telt el. A mozgás tartama alatt mért bármely két időpillanat közti különbség az *időintervallum*.

A kinematika törvényeinek felállítása gyakorlati megfigyelések alapján történt, amelyek kísérletekkel igazolhatók. Éppen ezért, a kinematikában mozgások tanulmányozásakor, semminemű külön törvényekre, axiómákra nincs szükség.

Bármilyen mozgás tanulmányozása esetén, amennyiben kinematikai jellemzőinek definiálása a cél, fontos, hogy a mozgás valamiképpen meghatározott (megadott) legyen.

Egy mozgás, illetve egy test vagy pont mozgástörvénye akkor meghatározott, ha a test vagy pont helyzete minden időpillanatban egyértelműen meghatározható, az adott referens koordinátarendszerben. A kinematika alapfeladata olyan matematikai összefüggések feltárása, amelyek segítségével az adott mozgás tanulmányozható. Ezek:

A kinematika alapvetően két részre osztható:

- a tömegpont kinematikája.
- a merev test kinematikája.

2. A TÖMEGPONT KINEMATIKÁJA

A mozgó test akkor tekinthető *tömegpontnak*, ha méretei a mozgás méreteihez képest elhanyagolhatóan kicsinyek. Ilyenkor az egész test mozgása egyetlen pontjának mozgásával jellemezhető. Hogy egy test tömegpontnak tekinthető-e, az tehát a vizsgált mozgástól függ, pl. egy bolygó a Nap körüli mozgását tekintve tömegpontnak tekinthető, de a tengelye körüli forgását vizsgálva már nem.

A tömegpont kinematikája a tömegpont mozgásának leírásával foglalkozik.

Alapvetően két alap-probléma megoldására keres megoldást, ezek:

- 1. Olyan analitikus módszerek definiálása, amelyek segítségével a pont mozgása követhető egy definiált koordináta rendszerben.
- 2. Egy pont adott mozgástörvénye alapján, annak kinematikai jellemzői meghatározása, amelyek:
 - a pont mozgásegyenlete (mozgástörvénye),
 - a pont sebessége,
 - a pont gyorsulása.

A pont pályája v. trajektóriája az az elképzelt folyamatos vonal, amelyen az M pont a térben mozgást végez.

A pályának egy szakaszát, amelyet a mozgó M pont két helyzete között megtesz **útnak** nevezik. Amennyiben a pálya **egyenes vonal**, a pont **egyenesvonalú** mozgást végez, ha viszont **görbe vonal**, a pont is **görbevonalú** mozgást végez.

A tömegpont mozgásának leírására általában három módszer alkalmazható, ezek:

- 1. a pont mozgásának meghatározása vektorilag,
- 2. a pont mozgásának analitikai meghatározása,
- 3. a pont mozgásának meghatározása *ívkoordináta segítségével* (természetes mód).

2.1. A PONT HELYZETÉNEK MEGHATÁROZÁSA A TÉRBEN

2.1.1. A PONT HELYMEGHATÁROZÁSA VEKTORILAG

2.1. ábra. Helymeghatározás vektorilag

Derékszögű térbeli koordináta-rendszert (Descartes-féle jobbsodrású koordináta-rendszer) választva vonatkozási alapul, a vizsgált M pont helyzetét az \vec{r} helyzetvektor segítségével lehet egyértelműen megadni a koordináta-rendszer O középpontjához viszonyítva, ahogy az a 2.1. ábrán látható.

Minden vektor meghatározásához $h\acute{a}rom$ adatra van szükség, így az M pont helyzetének megadásához szükséges ismerni az \vec{r} helyzetvektorának $nagys\acute{a}g\acute{a}t$ (intenzitását), irányát és irányítottság $\acute{a}t$.

Mivel az M pont mozgást végez, az \vec{r} helyzetvektor az idő függvényében változik, vagyis az \vec{r} vektor függvénye a t időnek, tehát felírható:

$$|\vec{r} = \vec{r}(t)|. \tag{2.1}$$

A fenti (2.1) egyenlet a *pont mozgástörvényét fejezi ki vektor alakban*. Segítségével minden időpillanatban meghatározható az \vec{r} helyzetvektor, illetve a mozgó pont helye a térben. Az \vec{r} helyzetvektor csúcspontjainak egyes helyzetei az M pont pályáját határozzák meg. Külön esetként tekinthető az $\vec{r} = const$ amikor a pont nyugalomban van.

2.1.2. ANALITIKUS (KOORDINÁTA) MÓDSZER

Az M pont koordinátái skaláris mennyiségek (számok), melyeknek értékeivel a mozgó pont helyzete meghatározható. Ezeknek a koordinátáknak az összessége alkotja a koodináta-rendszert. Legáltalánosabban a **Descartes féle merőleges jobbsodrású koordináta-rendszer** alkalmazása az elterjedt, amely három irányított Ox, Oy, Oz tengelyből áll, melyeknek O kezdőpontja közös és nem egy síkban fekszenek. Ha ezek a tengelyek **egymásra merőlegesek**, az ilyen Descartes-féle koordináta-rendszer **merőleges (ortogonális).** Ha a tengelyek **irányítottsága** megfelel a **jobb kéz** hüvelyk, mutató és középsőujjainak irányával (tenyérrel felfelé) a koordináta rendszer **jobbsodrású.** Az ilyen rendszerben az Oz irányból nézve, az Ox tengelyt **az óramutató járásával ellentétes irányba elfordítva** az az Oy tengellyel fedésbe kerül. A koordinátatengelyekkel egyirányban felvett $(\vec{i}, \vec{j}, \vec{k})$ egységvektorok egységnyi triédert alkotnak (2.1 ábra).

Az M pont \vec{r} helyzetvektorának a Descartes-féle koordináta-rendszer tengelyeire vetített vetületei az x,y,z számok, amelyek a mozgó pont algebrai vetületeit (skaláris komponenseit) adják, melynek alakja:

$$\vec{r} = x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k} . \tag{2.2}$$

ahol:

- \vec{i} , \vec{j} , \vec{k} egységvektorok,

-x,y,z az M pont koordinátái.

Mivel a pont mozgásban van, mindhárom koordinátája az időben változik, tehát a (2.2) egyenlet:

$$\vec{r}(t) = x(t) \cdot \vec{i} + y(t) \cdot \vec{j} + z(t) \cdot \vec{k} . \tag{2.3}$$

A pont mozgástörvényének ismeretéhez, illetve hogy meghatározható legyen a mozgó pont helyzete a térben bármely időpillanatban, ismerni kell az adott koordinátáknak időbeni változásait, melyeknek alakjai:

$$x = x(t),$$

$$y = y(t),$$

$$z = z(t).$$
(2.4)

A fenti (2.4) egyenletek a *pont mozgástörvényének analitikus alakját* adják. Szokás ezt még *skaláris, vagy parametrikus alaknak* is nevezni, amelyekben a *t* idő szerepel paraméterként. A (2.4) egyenletekből kiküszöbölve (eliminálva) a *t* időt, megkapható a *mozgáspálya egyenlete*. Külön esetként tekinthető a pont síkban történő mozgása, amely a következő két egyenlettel határozható meg:

$$x = x(t)$$
 ; $y = y(t)$. (2.5)

2.1. példa

A pont mozgása a következő egyenletekkel adott (x,y - méterben kifejezve, t - másodpercben):

$$x = 8t - 4t^2$$
, $y = 6t - 3t^2$.

Meghatározni a pont mozgáspályájának egyenletét.

Megoldás:

Az adott egyenletekből kiküszöbölve a paramétert, vagyis a *t* időt, megkapható a pont mozgáspályája. Az első egyenletet *3*-al, a másodikat *4*-el szorozva, és kivonva a másodikból az elsőt, a következő egyenlet adódik:

$$3x - 4y = 0$$
, vagy

$$y = \frac{3}{4}x.$$

Az egyenletből megállapítható, hogy a mozgáspálya egy egyenes, amely az Ox tengellyel a szöget zár be, melynek tangense $tg\alpha = 3/4$ (2.2 ábra).

2.2. példa

A pont mozgása a következő egyenletekkel adott:

$$x = 10\cos\frac{2}{5}\pi t$$
, $y = 10\sin\frac{2}{5}\pi t$.

Meghatározni a pont mozgáspályájának egyenletét.

Megoldás:

A fenti egyenletekből ki kell küszöbölni a *t* időt. Az egyenletek mindkét oldalát *10*-el elosztva, majd négyzetre emelve és összeadva megkapható a következő egyenlet:

$$x^2 + y^2 = 100$$
.

Amely nem más, mint egy R=10 sugarú kör.

2.3.példa

Az Oxy síkban mozgó pont mozgástörvénye az alábbi vektoregyenlettel adott:

$$\vec{r} = \vec{b} \sin 2t + \vec{c} \cos 2t .$$

Ahol a \vec{b} és \vec{c} vektorok koordinátái \vec{b} (2;3), \vec{c} (3;4).

Meghatározni a mozgáspálya egyenletét.

Megoldás:

A fenti vektorok komponenseikkel kifejezve:

$$\vec{r} = x \cdot \vec{i} + y \cdot \vec{j}; \quad \vec{b} = 2 \cdot \vec{i} + 3 \cdot \vec{j}; \quad \vec{c} = 3 \cdot \vec{i} + 4 \cdot \vec{j},$$

ahol:

- \vec{i} , \vec{j} a koordinátatengelyek egységvektorai.

Kiegyenlítve a megfelelő egységvektorok előtti értékeket, a mozgást leíró egyenletrendszer:

$$x = 2 \sin 2t + 3 \cos 2t$$
, $y = 3 \sin 2t + 4 \cos 2t$.

Ezekből az egyenletekből kiküszöbölve az időt, kifejezve a következő szögfüggvényeket:

$$\sin 2t = 3v - 4x$$
, $\cos 2t = 3x - 2v$.

Négyzetreemelve majd összeadva, a következő mozgáspálya adódik:

$$(3y-4x)^2+(3x-2y)^2-1=25x^2-36xy+13y^2-1=0$$
.

Amely egy ellipszis egyenlete. 2.4.példa

2.3. ábra. A 2.4.példa illusztrációja

pont mozgásegyenletei:

Meghatározni a 2.3. ábrán bemutatott mechanizmus AB karjának közepén elhelyezkedő M pont mozgástörvényét, ha $\overline{OA} = \overline{AB} = 2a$, és a φ szög a mozgás időtartama alatt az idővel egyenes arányban növekszik: $\varphi = \omega \cdot t$.

Megoldás:

Az ábrán látható koordináta tengelyekre az *M* pont (*x* és *y*) koordinátái:

$$x = 2a \cdot \cos \varphi + a \cdot \cos \varphi$$
, $y = a \cdot \sin \varphi$.

Behelyettesítve a φ szög értékét, az M

$$x = 3a \cdot \cos \omega \cdot t$$
, $y = a \cdot \sin \omega \cdot t$.

Az M pont mozgáspályájának meghatározásához, a fenti egyenleteket a következő alakban felírva:

$$\frac{x}{3a} = \cos \omega \cdot t, \quad \frac{y}{a} = \sin \omega \cdot t.$$

Négyzetreemelve majd összeadva következik:

$$\frac{x^2}{9a^2} + \frac{y^2}{a^2} = 1.$$

Amely egy ellipszis alakú pálya, az ellipszis 3a és a főtengelyeivel.

2.1.3. TERMÉSZETES VAGY ÍVKOORDINÁTA-RENDSZER

Amennyiben a mozgó pont pályája előre ismert, mozgását előnyős ívkoordináta-rendszerben

2.4. ábra. Ívkoordináta-rendszer

meghatározni. Ha ismert az l mozgáspálya, amelyen az M pont mozog, helyzete a pálya segítségével meghatározható (2.4. ábra), alapul véve a mozgáspályát mint ívkoordinátát egy O kezdőponttól (referens pont). Az s=OM ívkoordináta, amely az M pont O ponttól mért távolsága, egyértelműen meghatározza az M pont helyzetét, annak pályáján. Az s hossz egyik irányban pozitív, a másik irányban negatív (mint az a "közönséges" koordináta tengelyekre is vontakozik), amelyet fontos a referens pontnál megjelölni.

Az s ívkoordináta a mozgás időtartama alatt állandóan változik, tehát az idő függvénye, így felírható:

$$s = s(t). (2.6)$$

A (2.6) egyenlet a pont *mozgásegyenletét* fejezi ki, illetve a lefutás törvényét.

A pont mozgásának meghatározásakor ívkorordináta-rendszerben, ismerni kell a következőket:

- 1. a mozgó pont pályáját,
- 2. a koordináta-rendszer kezdőpontját a pályán, valamint a pozitív és negatív irányt,
- 3. *a pont* s = s(t) *alakú mozgásegyenletét*, ahol az s távolság a pont ívkoordinátája.

Az s = s(t) ívkoordinátát nem szabad azonosítani az M pont megtett útjával a mozgáspályán, azért mert az ívkoordináta segítségével az M pont helyzete a mozgáspályán az *adott időpontban* van meghatározva a kezdőponttól. M_0 -az M pont helyzete a $t=t_0=0$ időpontban vagyis a pont kezdeti helyzetében (2.4. ábra).

A pont mozgásának pálya (vonal) mentén történő vizsgálata, leggyakrabban az un. *természetes triéder* segítségével történik. Ennek tengelyei a következőképpen képezhetők:

A mozgáspálya tetszőleges *M* pontjában mindenkor

2.5. ábra. Természetes triéder

felvehető egy érintő, melynek egységvektora \vec{T} , majd erre egy merőleges, melynek egységvektora \vec{N} , és amely a sugarának pálva görbületi középpontja felé mutat. Ezek a vektorok a simuló (oszkulációs) síkot alkotják. Ez a sík a ds görbéhez símul (2.5. ábra). A harmadik koordinátatengely merőleges erre a síkra az M pontban, egységvektora \vec{B} .

Az egységvektorok elnevezései:

 \vec{T} - érintő,

 \vec{N} - főnormális,

 \vec{B} - binormális.

Az *M* pontban felvett merőleges koordináta-rendszert, amelynek

tengelyei az érintő(\vec{T}), a főnormális (\vec{N}) és a binormális (\vec{B}) irányába mutatnak *természetes triédernek* nevezik. A pont helyzetét, annak pályáján, ebben a koordináta-rendszerben a *természetes koordináták* adják.

A \vec{T} és \vec{N} egységvektorok a *símuló síkot* határozzák meg, az \vec{N} és a \vec{B} a *normál síkot*, míg a \vec{T} és a \vec{B} a *rektifikációs síkot* (2.5. ábra).

Fontos itt megjegyezni, hogy a természetes triéder a pont mozgásával egyidejűleg mozog, tehát a tengelyek iránya is állandóan változik, és a pont minden helyzetének külön triéder felel meg. Ebben a koordináta-rendszerben a következő öszefüggések érvényesek:

 $\vec{B} = \vec{T} \times \vec{N}$ - a merőlegesség elve,

 $\vec{r} = \vec{r}(s)$ - bármely, a mozgáspályán elhelyezkedő tetszőleges pont helyzetvektora az ívkoordináta (s) függvénye,

 $\vec{T} = \frac{d\vec{r}}{ds}$ -az érintő, a helyzetvektor ívkoordináta szerint vett első deriváltja,

 $\frac{d\vec{T}}{ds} = K \cdot \vec{N} = \frac{1}{R_k} \cdot \vec{N} - \text{az \'erint\'o \'ivkoordin\'ata szerinti differenciálhányadosa (deriváltja)}$

egyenlő a *görbület* K és a főnormális szorzatával, illetve a görbületi sugár R_k reciprokértékének és a főnormálisnak szorzatával.

2.2. A PONT SEBESSÉGE

2.2.1. SEBESSÉGVEKTOR

A pont mozgásának egyik igen fontos és szemléletes jellemzője a sebesség. Egy tetszőleges térbeli pályán mozgó M pont helyzete a t időpillanatban az $\vec{r}(t)$ helyzetvektorral határozható meg. A $t_I = t + \Delta t$ időpillanatban a mozgó pont a mozgáspálya egy másik M_I pontjába kerül, melynek helyzete $\vec{r}_I = \vec{r} + \Delta \vec{r}$ vektorral adott. A pont Δt időtartam alatti elmozdulását kifejező $\Delta \vec{r}$ vektor a **pont elmozdulási vektora.** Ez a vektor kifejezhető a pont helyzetvektorainak különbségeként, az OMM_I háromszögből (2.6.ábra):

$$\overrightarrow{MM}_{I} = \overrightarrow{r}_{I} - \overrightarrow{r} = \Delta \overrightarrow{r}$$
.

A pont elmozdulási vektorának és az elmozdulás idejének hányadosa a **középsebességvektor**, amely azt mutatja, miként mozdul el a pont az *M* helyzetből az *M*₁ helyzetbe.

$$\vec{v}_{SR} = \frac{\overrightarrow{MM}_{I}}{\Delta t} = \frac{\Delta \vec{r}}{\Delta t}.$$
 (2.7)

Ennek a vektornak iránya és irányítottsága megegyezik a $\Delta \vec{r}$ irányával, mivel a Δt idő mindenkor pozitív skaláris mennyiség. A $\Delta \vec{r}$ vektort

elosztva a Δt -vel, annak csak nagysága, illetve intenzitása változik, átalakulva \vec{v}_{SR} -ré, iránya és irányítottsága ellenben változatlan marad, amint az a 2.6. ábrán látható.

Ha a Δt időtartam csökken, és nullához közelít, a \vec{v}_{SR} középsebesség annál inkább megközelíti a mozgó pont *sebességét* egy adott időpillanatban, vagyis a \vec{v} sebességvektor matematikailag kifejezve:

$$\vec{v} = lim_{\Delta t \to 0} \; \vec{v}_{SR} = lim_{\Delta t \to 0} \; \frac{\Delta \vec{r}}{\Delta t} \; .$$

A $\Delta \vec{r}/\Delta t$ határértéke, amikor $\Delta t \rightarrow 0$ nem más, mint a $\Delta \vec{r}$ vektor t idő szerinti deriváltja, melynek jelölése:

$$\frac{d\vec{r}}{dt} = \dot{\vec{r}} \ .$$

Végső alakban tehát:

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{\vec{r}} \,. \tag{2.8}$$

A pont sebességvektora egy adott időpillanatban, egyenlő a pont helyzetvektorának, idő szerint vett első differenciálhányadosával (deriváltjával). A pont sebességvektora minden időpillanatban a pálya érintőjének irányába mutat, irányítása megegyezik a mozgás irányával. A sebességvektor tulajdonságai:

- 1. Ha a sebességvektor *iránya változik* a mozgás *görbevonalú*.
- 2. Ha a sebességvektor iránya állandó, a mozgás egyenesvonalú.

- 3. Ha a sebességvektor nagysága (intenzitása) állandó (konstans), a mozgás egyenletes.
- 4. Ha a sebességvektor *intenzitása időtől függő*, a mozgás *változó*.

A sebesség mértékegysége $\left\lceil \frac{m}{s} \right\rceil$.

2.2.2. A PONT SEBESSÉGE DERÉKSZÖGŰ KOORDINÁTA-RENDSZERBEN

Az M pont helyzete egyértelműen meghatározott az $\vec{r}(t)$ helyzetvektorral (2.3 alapján), amely a térbeli derékszögű koordináta rendszerben, következőképpen jellemezhető:

$$\vec{r}(t) = x(t) \cdot \vec{i} + y(t) \cdot \vec{j} + z(t) \cdot \vec{k}$$
.

A gyorsulásvektor a helyzetvektor idő szerint vett első deriváltja (2.8 szerint), tehát felírható:

$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{x} \cdot \vec{i} + \dot{y} \cdot \vec{j} + \dot{z} \cdot \vec{k} = v_x \cdot \vec{i} + v_y \cdot \vec{j} + v_z \cdot \vec{k} .$$

A 2.7. ábra alapján látható, hogy a sebességvektor \vec{v} vetületei:

$$v_x = \frac{dx}{dt} = \dot{x}, \quad v_y = \frac{dy}{dt} = \dot{y}, \quad v_z = \frac{dz}{dt} = \dot{z}$$

(2.9)

A pont sebességvektorának vetületei a koordináta-tengelyek irányába egyenlőek a koordináták idő szerint vett deriváltjaival.

Ha ismertek a pont sebességének vetületei, a sebesség intenzitása (nagysága) ezekből meghatározható a következő összefüggés alapján:

2.7. ábra. A pont sebességvektorának vetületei

$$|\vec{v}| = v = \sqrt{v_x^2 + v_y^2 + v_z^2} = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}.$$
 (2.10)

A \vec{v} sebességvektor iránya meghatározható az α, β, γ szögekkel, amelyeket a sebességvektor a koordinátatengelyekkel bezár (2.7.ábra). Ezeknek koszinuszai:

$$\cos \angle(\vec{v}, \vec{i}) = \cos \alpha = \frac{v_x}{v} = \frac{\dot{x}}{\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}},$$

$$\cos \angle(\vec{v}, \vec{j}) = \cos \beta = \frac{v_y}{v} = \frac{\dot{y}}{\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}},$$

$$\cos \angle(\vec{v}, \vec{k}) = \cos \gamma = \frac{v_z}{v} = \frac{\dot{z}}{\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}},$$
(2.11)

Ha a mozgás síkban történik (z=0), a 2.10 és 2.11 összefüggések alakjai:

$$v = \sqrt{\dot{x}^2 + \dot{y}^2} ,$$

$$\cos \alpha = \frac{v_x}{v}, \quad \cos \beta = \frac{v_y}{v}.$$

2.2.3. A PONT SEBESSÉGE TERMÉSZETES V. ÍVKOORDINÁTA-RENDSZERBEN

A pont mozgásegyenlete ívkoordináta-rendszerben (2.6 alapján):

$$s = s(t)$$
.

A mozgáspályán mozgó pont helyzete szintén ismert, és a következőképpen definiált:

$$\vec{r} = \vec{r}(s)$$
.

A pont sebességvektora, definíció szerint, a helyzetvektor idő szerint vett deriváltja, tehát:

$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d\vec{r}}{ds} \cdot \frac{ds}{dt}$$
,

ahol:

- az első tag $\frac{d\vec{r}}{dt}$ a mozgáspálya érintőjének egységvektora \vec{T} ,

- a második tag $\frac{ds}{dt}$ az út idő szerint vett első deriváltja, vagyis \dot{s} .

A sebességvektor alakja:

$$\vec{v} = \vec{s} \cdot \vec{T}$$
, vagy
$$\vec{v} = \vec{v} \cdot \vec{T}$$
. (2.12)

A pont v sebességvektorának vetülete a mozgáspálya érintőjének irányába esik, nagysága (intenzitása, vagy számbeli értéke-v) egyenlő az ívkoordináta idő szerinti deriváltjával. A pont mozgásának irányától függően, lehet + vagy - előjelű.

Amennyiben $v = \frac{ds}{dt} > 0$ (+) a pont pozitív irányba mozog (abba az irányba, amelyben az

ívkoordináta növekszik), ha $v = \frac{ds}{dt} < 0$ (-) a pont negatív értelemben mozog (2.8. ábra).

2.8. ábra. A pont sebességének iránya

2.2.4. HODOGRÁF

A pontnak egy tetszőleges görbevonalú mozgása esetén, az M pont néhány helyzetében sebességvektorai meghatározott nagyságúak és irányúak. Áthelyezve a sebességvektorokat egy közös O_v pontba (2.9. ábra), csúcsaik egy új görbét definiálnak, a *mozgó pont sebességvektorainak hodográfját*.

2.9. ábra A hodográf

2.5.Példa

Meghatározni a 2.1. példában megadott pont mozgástörvényei alapján, annak sebességét. *Megoldás:*

A pont sebességkomponensei (vetületei) a koordináták első deriváltjaiként határozhatók meg, amelyek:

$$v_x = \frac{dx}{dt} = \dot{x} = 8(1-t), \quad v_y = \frac{dy}{dt} = \dot{y} = 6(1-t),$$

a pont sebessége:

$$v = \sqrt{\dot{x}^2 + \dot{y}^2} = 10(1-t)$$
 [m/s].

A \vec{v} sebességvektor a mozgáspálya irányába mutat, AB egyenes (2.2. ábra). A sebességvektor vetületei a 0 < t < 1 időintervallumban pozitívak, ami annyit jelent, hogy a sebességvektor az O-tól a B pont felé mutat. A t=0 időintervallumban a pont sebessége v=10 [m/s], a t=1[s] pedig v=0. A pont további mozgásakor, amikor t>1 [s], a sebességkomponensek negatív előjelűek, ami annyit jelent, hogy a sebesség iránya a B-től az A pont felé mutat. Végül megfigyelhető, hogy a t=0 [s] időpillanatban t=0 és t=0; a t=1[s] t=1, t=1,

A 2.1. példában megadott mozgástörvényekkel tehát a mozgás egész menetét ki lehet fejezni. A mozgás az O pontból indul v_0 =10 [m/s] sebességgel, az AB egyenes mentén, amely az Ox tengellyel α szöget zár be. Az OB utat a pont egy másodperc alatt teszi meg, amelynek elteltével a B(4,3) pontba ér. Ebben a helyzetben a pont sebessége nulla, a pont ellenkező irányba mozdul el és t=2[s] elteltével a pont ismét a koordináta-rendszer középpontjába kerül. A mozgás tovább folytatódik az OA egyenes mentén.

2.6. példa

Meghatározni a sebesség hodográfját a 2.2. példa adataiból.

Megoldás:

A sebességkomponensek:

$$\dot{x} = -4\pi \sin \frac{2}{5}\pi \cdot t = -\frac{2}{5}\pi \cdot y, \quad \dot{y} = 4\pi \cos \frac{2}{5}\pi \cdot t = \frac{2}{5}\pi \cdot x.$$

A sebesség nagysága:

$$v = \sqrt{\dot{x}^2 + \dot{y}_2} = 4\pi$$
.

A felső egyenletekből (\dot{x} és \dot{y}) kiküszöbölve a t időt, megkapható a hodográf. Amint az látható, a hodográf egy kör, melynek átmérője 4π és pólusa egybeesik a kör középpontjával.

2.7.példa

Mekkora a 2.4. példában bemutatott mechanizmus *M* pontjának a sebessége? *Megoldás:*

Az M pont komponenseinek sebessége:

$$v_x = \dot{x} = -3a\omega \cdot \sin\omega \cdot t$$
, $v_y = \dot{y} = a\omega \cdot \cos\omega \cdot t$.

A sebesség nagysága (intenzitása):

$$v = a\omega \cdot \sqrt{9 \sin^2 \omega \cdot t + \cos^2 \omega \cdot t}$$
.

A sebesség időben változó, és a $v_{min}=a\omega$ tól a $v_{max}=3a\omega$ értékek között változik.

2.3. A PONT GYORSULÁSA

2.3.1. GYORSULÁSVEKTOR

2.10.ábra. A gyosulásvektor

adja:

Tetszőleges görbevonalú mozgás esetén a gyorsulás, a pont sebességvektorának időbeni változását mutatja.

A t időpillanatban a pont az Mhelyzetben található, ahol sebessége \vec{v} . $t+\Lambda t$ időpillanatban már az M_1 helyen van, és sebessége $\vec{v} + \Delta \vec{v}$, ahol a $\Delta \vec{v}$ a sebességvektor változását mutatja (2.10.ábra). A $\Delta \vec{v}$ és Δt hányadosa, adott az időintervallumban, a pont közép gyorsulásvektorát (közepes)

$$\vec{a}_{SR} = \frac{\Delta \vec{v}}{\Delta t}.$$
 (2.13)

A $\Delta \vec{v}$ vektor legegyszerűbben a \vec{v} és $\vec{v} + \Delta \vec{v}$ vektorokkal alkotott vektorháromszögből határozható meg (2.10.ábra). Felrajzolva a \vec{v} és $\vec{v} + \Delta \vec{v}$ vektorokat egy tetszőleges O_I pontból, a \vec{v} és $\Delta \vec{v}$ vektorok alkotta átló, a $\vec{v} + \Delta \vec{v}$ vektort adja, amely egyúttal a pont sebességvektora az M_I pontban.

 $A \Delta \vec{v}$ vektor mindenkor a mozgáspálya konkáv (homorú) oldala felé mutat. A közép gyorsulásvektor iránya megegyezik a $\Delta \vec{v}$ irányával, tehát mindenkor a mozgáspálya homorú oldala felé mutat.

Egy adott t időpillanatban a pont \vec{a} gyorsulásvektora a közép gyorsulásvektor \vec{a}_{SR} határértéke, ha a Δt időintervallum nullához közelít, tehát felírható:

$$\vec{a} = \lim_{\Delta t \to 0} \vec{a}_{SR} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$
, vagy

$$\vec{a} = \frac{d\vec{v}}{dt} = \dot{\vec{v}} = \frac{d^2\vec{r}}{dt^2} = \ddot{\vec{r}}.$$
 (2.14)

A pont \vec{a} gyorsulásvektora az adott időpillanatban, egyenlő a sebességvektor idő szerinti első deriváltjával, vagy a pont helyzetvektorának idő szerinti második deriváltjával.

A gyorsulásvektor tulajdonképpen a pont sebességének idő szerinti változását mutatja, mind nagyságra (intenzitásra), mind irányra vonatkoztatva.

Fontos még megvizgálni az \vec{a} gyorsulásvektor helyzetét a pont mozgáspályájához viszonyítva. Amennyiben a pont síkgörbe mentén mozog (a pont állandóan egy síkban helyezkedik el), ekkor gyorsulásvektora \vec{a} , valamint középgyorsulásvektora \vec{a}_{SR} is a mozgáspálya síkjába esik, és a görbe homorú oldala felé mutat.

Térgörbe mentén mozgó pont esetében, a pont mozgása nem egy síkban történik, ekkor az \vec{a}_{SR} középgyorsulásvektor (amely a görbe homorú oldala felé mutat), az M pontban húzott érintő és a szomszédos M_I pontban húzott érintővel párhuzamos egyenes alkotta síkban helyezkedik el

(2.10.ábra). Határesetben, amikor az M és M_1 pontok egybeesnek, a sík a mozgáspálya símulósíkját alkotja.

Mindebből következik, hogy általános esetben az \vec{a} gyosulásvektor mindenkor a mozgáspálya símulósíkjában helyezkedik el, a pálya görbületének homorú oldala felé mutat, de nem érintő irányú.

A gyorsulás mértékegysége $\left\lceil \frac{m}{s^2} \right\rceil$.

2.3.2. DERÉKSZÖGŰ KOORDINÁTA-RENDSZER

Az olyan vektoregyenletek, amelyek deriváltakat tartalmaznak, vektoraik és vetületeik közötti összefüggés felállítására a következő teoréma alkalmazható: a vektor deriváltjának bármely állandó koordinátatengelyre vett vetülete, megegyezik a vektor vetületének deriváltjával ugyanarra a tengelyre vonatkoztatva.

A 2.2 összefüggés alapján, a pont helyzetvektora Descartes-féle koordináta-rendszerben:

$$\vec{r} = x \cdot \vec{i} + y \cdot \vec{j} + z \cdot \vec{k} .$$

A pont sebessége 2.8 alapján:

$$\vec{v} = \frac{d\vec{r}}{dt} \, .$$

Gyorsulása (2.14) szerint:

$$\vec{a} = \frac{d\vec{v}}{dt}$$
,

a fent említett teoréma alapján felírható:

$$\vec{a} = \frac{d}{dt}(\dot{x} \cdot \vec{i} + \dot{y} \cdot \vec{j} + \dot{z} \cdot \vec{k}) = \ddot{x} \cdot \vec{i} + \ddot{y} \cdot \vec{j} + \ddot{z} \cdot \vec{k},$$

vagy

$$\vec{a} = a_x \cdot \vec{i} + a_y \cdot \vec{j} + a_z \cdot \vec{k} ,$$

ahol:

$$a_{x} = \frac{dv_{x}}{dt} = \frac{d^{2}x}{dt^{2}} = \ddot{x}, \quad a_{y} = \frac{dv_{y}}{dt} = \frac{d^{2}y}{dt^{2}} = \ddot{y}, \quad a_{z} = \frac{dv_{z}}{dt} = \frac{d^{2}z}{dt^{2}} = \ddot{z}.$$
 (2.15)

A gyorsulásvektor vetületei a Descartes-féle derékszögű koordináta-rendszer tengelyeire

2.11. ábra. Gyorsulás a Descartes-féle derékszögű koordináta-rendszerben

egyenlőek a mozgó pont koordinátáinak idő szerinti második deriváltjával.

A gyorsulásvektor nagysága (intenzitása) a 2.11. ábra alapján:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} = \sqrt{\ddot{x}^2 + \ddot{y}^2 + \ddot{z}^2}.(2.16)$$

A gyorsulásvektor iránya a koordinátatenge- lyekkel bezárt irányszögekkel adott, melyeknek koszinuszai:

$$\cos \alpha_{a} = \frac{a_{x}}{a} = \frac{\ddot{x}}{\sqrt{\ddot{x}^{2} + \ddot{y}^{2} + \ddot{z}^{2}}},$$

$$\cos \beta_{a} = \frac{a_{y}}{a} = \frac{\ddot{y}}{\sqrt{\ddot{x}^{2} + \ddot{y}^{2} + \ddot{z}^{2}}},$$

$$\cos \gamma_{a} = \frac{a_{z}}{a} = \frac{\ddot{z}}{\sqrt{\ddot{x}^{2} + \ddot{y}^{2} + \ddot{z}^{2}}}.$$
(2.17)

Ha a pont mozgása egy derékszögű koordináta-rendszerben a (2.2) és (2.3) összefüggésekkel adott, akkor sebessége a (2.9) és (2.10), gyorsulása a (2.15) és (2.16) összefüggések alapján határozható meg. Amennyiben a pont egy síkban mozog, a fenti egyenletekben z=0.

2.3.3. ÍVKOORDINÁTA-RENDSZER

Definíció szerint a gyorsulás:

$$\vec{a} = \frac{d\vec{v}}{dt}$$
.

Ívkoordináta-rendszerben a pont sebessége (2.12) alapján határozható meg, tehát a gyorsulásvektor alakja:

$$\vec{a} = \frac{d}{dt}(\dot{s} \cdot \vec{T}) = \ddot{s} \cdot \vec{T} + \dot{s} \cdot \dot{\vec{T}}.$$

Amint látható, a pont gyorsulásvektora két vektor öszegeként adódik.

Az érintő \vec{T} deriváltja átalakítható a következőképpen (megszorozva a számlálót és a nevezőt ds-el):

$$\frac{d\vec{T}}{dt} = \frac{d\vec{T}}{dt} \cdot \frac{ds}{ds} = \frac{d\vec{T}}{ds} \cdot \frac{ds}{dt} = \frac{\vec{N}}{R_K} \cdot \dot{s} ,$$

ahol:

- \vec{N} főnormális,
- R_k görbületi sugár,
- *s* a pont sebessége.

Az ívkoordináta idő szerinti második deriváltja:

$$\ddot{s} = \frac{d}{dt}(\dot{s}) = \frac{dv}{dt}.$$

És végül, a gyorsulásvektor:

$$\vec{a} = \frac{dv}{dt} \cdot \vec{T} + \dot{s} \cdot \dot{s} \frac{\vec{N}}{R_K} = \frac{dv}{dt} \cdot \vec{T} + \frac{\dot{s}^2}{R_K} \cdot \vec{N} . \tag{2.18}$$

A pont gyorsulása két vektor összegéből adódik, amelyekből az egyik az érintő irányában, a másik meg a főnormális irányában hat. Mivel az érintő és a főnormális egységvektorai a mozgáspálya símuló (oszkulációs) síkját alkotják, ebből következik, hogy a gyorsulásvektor mindenkor a pálya símulósíkjába esik.

2.12. ábra. A gyorsulás komponensei ívkoordinátarendszerben

A gyorsulás összetevői a 2.12. ábra alapján:

$$\vec{a}_t = \frac{dv}{dt} \cdot \vec{T}$$
 - tangenciális (pályamenti) gyorsulás,

$$\vec{a}_n = \frac{\dot{s}^2}{R_K} \cdot \vec{N}$$
 - normális (centripetális) gyorsulás.

A fenti komponensek vektoriális összege adja a pont gyorsulását, melynek alakja:

$$\vec{a} = a_t \cdot \vec{T} + a_n \cdot \vec{N} \,. \tag{2.19}$$

levetítve a gyorsulásvektort a természetes triéder tengelyeire, a gyorsulás komponensei:

$$a_t = \frac{dv}{dt} = \frac{d}{dt}(\dot{s}) = \ddot{s}.$$
 (2.20)

Az érintőirányú vetület, vagyis *a tangenciális gyorsulás a sebességváltozás intenzitását mutatja*, és egyenlő a sebesség érintőirányú vetületének idő szerinti első deriváltjával, vagy az ívkoordináta idő szerinti második deriváltjával.

$$a_n = \frac{\dot{s}^2}{R_K} = \frac{v^2}{R_K}.$$
 (2.21)

A főnormális-irányú vetület, illetve a *normális (centripetális) gyorsulás, a gyosulásvektor irányának változását mutatja*, egyenlő a sebesség négyzetének és az adott pont görbületi sugarának a hányadosával, mindig a *pálya konkáv (homorú) iránya felé mutat, vagyis a görbületi sugár középpontja felé.*

Mivel a pont gyorsulása a símulósíkban fekszik, a harmadik tengelyre vett vetülete:

$$a_B = 0$$
.2.13. ábra. A tangenciális gyorsulás iránya

A fenti eredménynek nagy jelentősége van a kinematikában.

2.13. ábra. A tangenciális gyorsulás iránya

gyorsulásvektort komponenseire \vec{a}_t és \vec{a}_n bontva, ábrázolva a T érintő, valamint az \vec{N} főnormális irányában, nagyságukat egyformáknak véve, a alapján 2.13. ábra leszögezhető következő: \vec{a}_n komponens mindenkor a pálya görbületének homorú iránya felé mutat, tehát az a_n értéke mindig pozitív

mennyiség. Az \vec{a}_t vektor ellenben, a \vec{T} érintő mindkét irányába (pozitív és negatív) mutathat, az a_t vetület előjelétől függően. Amennyiben:

 $a_t > 0$ a mozgás **gyorsuló**,

 $a_t < 0$ a mozgás *lassuló*.

A gyorsulás nagysága, mivel komponensei egymásra merőlegesek:

$$a = \sqrt{a_t^2 + a_n^2} = \sqrt{\left(\frac{dv}{dt}\right)^2 + \left(\frac{v^2}{R_K}\right)^2}.$$
 (2.22)

A gyorsulásvektor a főnormális irányához viszonyítva α_n szöget zár be, melynek értéke:

$$tg\alpha_n = \frac{|a_t|}{a_n}. (2.23)$$

Ismerve a pont mozgását ívkoordináta rendszerben (2.6), amely alapján a pálya bármely pontjában meghatározható annak görbületi sugara is, a (2.8) és a (2.18)-tól a (2.23)-ig tárgyalt összefüggések alapján, meghatározható a pont sebesség és gyorsulásvektora bármely időpillanatban.

2.8. példa

Meghatározni a pont gyorsulását a 2.1. példából.

Megoldás:

A (2.15) összefüggés alapján a gyorsulás komponensei (vetületei):

$$a_x = \frac{d^2x}{dt^2} = \ddot{x} = -8$$
, $a_y = \frac{d^2y}{dt^2} = \ddot{y} = -6$,

amelyek alapján a gyorsulás számértéke:

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{(-8)^2 + (-6)^2} = 10 \left[\frac{m}{s^2} \right].$$

A gyorsulás a sebességtől eltérően, amely egy bizonyos törvényszerűség szerint változik, állandó értéke $10 \ [m/s^2]$.

2.9. példa

Meghatározni a pont gyorsulását a 2.4. példából.

Megoldás:

Az M pont gyorsulásának komponensei:

$$a_x = \ddot{x} = -3a\omega^2 \cos\omega \cdot t = -x\omega^2$$
, $a_y = \ddot{y} = -a\omega^2 \sin\omega \cdot t = -y\omega^2$,

a pont gyorsulása:

$$a = \sqrt{\omega^4 (x^2 + y^2)} = r\omega^2,$$

ahol r az \overline{OM} távolság, illetve az M pont helyzetvektora. A pont gyorsulása arányosan változik az ellipszis központjától mért távolságától.

Az \vec{a} gyorsulásvektor irányának meghatározása a (2.17) alapján:

$$\cos \alpha_a = \frac{a_x}{a} = \frac{\ddot{x}}{a} = -\frac{x}{r}, \qquad \cos \beta_a = \frac{a_y}{a} = \frac{\ddot{y}}{a} = -\frac{y}{r}.$$

Az M pont gyorsulása a mozgás időtartama alatt az \overline{OM} egyenes irányában hat, az ellipszis középpontja felé.

2.10. példa

2.14. ábra. A 2.10. példa illusztrációja

Az M pont lengőmozgást végez az l sugarú mentén (2.14.ábra). pont mozgásegyenlete ívkoordináta-rendszerben $s=Csin\omega \cdot t$ (az O pontot véve kezdőpontnak), ahol C és ω állandók. Meghatározni a pont sebességét, tangenciális és normális gyorsulását, valamint azokat a helyzeteket, amelyekben ezek a mennyiségek nullával egyenlők.

Megoldás:

A keresett mennyiségek a megfelelő összefüggésekből meghatározhatók, ezek értékei:

$$v = \frac{ds}{dt} = C\omega \cos \omega \cdot t,$$

$$a_t = \frac{dv}{dt} = -C\omega^2 \sin \omega \cdot t,$$

$$a_n = \frac{v^2}{l} = \frac{C^2 \omega^2}{l} \cos^2 \omega \cdot t.$$

A mozgástörvény alapján látható, hogy a pont harmonikus rezgőmozgással mozog, melynek amplitúdója C. Az A és B végpontokban $sin\omega \cdot t = \pm 1$, tehát $cos\omega \cdot t = 0$. Ezekben a pontokban (A és B pontok) a sebesség illetve a normális gyorsulás zérus, ellenben a tangenciális gyorsulás értéke a legnagyobb, amely $a_{tmax} = C\omega^2$. Áthaladva a koordináta-rendszer O kezdőpontján s = 0, tehát $sin\omega \cdot t = 0$ és $cos\omega \cdot t = 1$. Ebben a pontban $a_t = 0$, a v és a_n viszont legnagyobbak, értékeik:

$$v_{max} = C\omega$$
, $a_{n max} = \frac{C^2 \omega^2}{l}$.

Ebből a példából látható, hogy a görbevonalú változó mozgás esetén a mozgáspálya bizonyos pontjaiban az a_t és a_n gyorsulások értékei lehetnek zérusok. A tangenciális gyorsulás a_t =0 akkor, ha $\frac{dv}{dt}$ =0, tehát ott, ahol a v legnagyobb, vagy legkisebb. A normális gyorsulás a_n =0 azokban a pontokban, ahol v=0 vagy R_K = ∞ - a mozgáspálya inflexiós pontja.

2.4. A PONT MOZGÁSÁNAK KÜLÖN ESETEI

2.4.1. EGYENESVONALÚ EGYENLETES MOZGÁS

Az egyenesvonalú mozgás tekinthető a görbevonalú mozgás külön esetének, amennyiben $R_k=\infty$. Ekkor a normális gyorsulás értéke $a_n=\frac{v^2}{R_k}=0$.

Amennyiben a mozgás egyenletes is, a pont sebessége állandó (constans), tehát felírható:

$$\begin{vmatrix} v = v_0 = const \\ a_t = \frac{dv}{dt} = 0 \end{vmatrix} \implies a = 0.$$
 (2.24)

Fontos megjegyezni, hogy a gyorsulás csak az egyenesvonalú egyenletes mozgás esetében zérus.

A 2.15. ábrán látható a pont egyenesvonalú mozgása. Ha ismert a pont *v* sebessége, amely egyenletes:

$$\dot{s} = v = v_0 = const,$$

 $\vec{v} = \vec{v}_0 = v_0 \cdot \vec{i},$

ekkor a pont mozgástörvénye:

2.15. ábra. A pont egyenesvonalú mozgása

$$\frac{ds}{dt} = v_0$$
,

$$ds = v_o \cdot dt$$
.

Integrálva az egyenlet mindkét oldalát:

$$\int ds = v_0 \cdot \int dt \Rightarrow s = v_0 \cdot t + C,$$

a C integrációs állandó a kezdőfeltételekből határozható meg, melyek:

$$a \ t = 0 \ eset\'eben \quad s = s_0 \implies C = s_0$$

és végül, a pont mozgástörvénye:

$$s = s_0 + v_0 \cdot t \tag{2.25}$$

A pont kezdeti helyzetéből kiindulva, a megtett út (s- s_0 =x) nagysága (2.15. ábra):

$$x = v_0 \cdot t$$

A pont sebessége:

$$v_0 = v = \frac{x}{t}$$
.

2.16. ábra. Egyenesvonalú egyenletes mozgás mozgástani görbéi

A kinematikai jellemzők grafikusan un. *mozgástani görbékkel* ábrázolhatók. Ezek a bejárt út, a sebesség és a gyorsulás időbeni függvényeinek ábrái, merőleges (síkbeli) koordináta-rendszerben. Az abszcisszán az időt t [s] az ordinátán pedig az egyes kinematikai jellemzőket kell ábrázolni.

Az alapvető mozgástani görbék tehát a következők:

- a) Bejárt út-idő (x;t) diagramm,
- b) Sebesség-idő (*v*;*t*) diagramm,
- c) Gyorsulás-idő (*a;t*) diagramm.

Az egyenesvonalú egyenletes mozgás mozgástani görbéi a 2.16. ábrán láthatók. Az a) alatt látható a bejárt út és idő diagramm, amely tulajdonképpen horizontális tengelyre (abszcisszára) α szögben húzott egyenes. A b) látható sebesség-idő diagramm horizontális tengellyel párhuzamos egyenes. A c) alatt látható a gyorsulás-idő diagramm, amely valójában megegyezik az abszcisszával, mivel a gyorsulás zérus (a=0).

2.4.2 GÖRBEVONALÚ EGYENLETES MOZGÁS

Az egyenletes görbevonalú mozgás fő tulajdonságaként állandó pályasebessége emelhető ki, amelyből következik:

$$\begin{vmatrix} v_0 = \dot{s} = const, \\ a_t = \frac{dv}{dt} = 0 \end{vmatrix} \Rightarrow a = a_n = \frac{v^2}{R_K}.$$
 (2.26)

A mozgás *gyorsulásának kizárólag normális gyorsuláskomponense létezik*. A mozgás teljes időtartama alatt az \vec{a} gyorsulásvektor mindvégig a pálya főnormálisa irányában fekszik, irányítottsága a görbületi sugár középpontja felé mutat, ahogy az a 2.17. ábrán látható. Az ismert sebességből meghatározható a pont mozgástörvénye:

$$\frac{ds}{dt} = v_0,$$

$$ds = v_0 \cdot dt$$
.

Integrálva az egyenlet mindkét oldalát:

integrációs

$$\int ds = v_0 \cdot \int dt \quad \Rightarrow s = v_0 \cdot t + C \,,$$

állandó

kezdőfeltételekből meghatározható, mivel 2.17. ábra. Görbevonalú egyenletes mozgás a kezdőpillanatban, tehát a mozgás kezdetekor, (t=0) a pont s_0 távolságban helyezkedett el a referens ponttól, tehát:

az

$$C = s_o$$

a pont mozgástörvénye:

$$s = s_0 + v_0 \cdot t$$
 (2.27)

Fontos itt rámutatni még egyszer arra, hogy görbevonalú egyenletes mozgás esetében a gyorsulás nem egyenlő nullával, hanem egyenlő a normális gyorsulással, amely a gyorsulásvektor irányának változását mutatja.

2.4.3. EGYENLETESEN VÁLTOZÓ EGYENESVONALÚ MOZGÁS

Az egyenletesen változó egyenesvonalú mozgás alapvető tulajdonsága az állandó gyorsulás:

$$a = const. (2.28)$$

Két eset különböztethető meg. Amennyiben a gyorsulás nagyobb nullánál a>0 (pozitív), és iránya megegyezik a sebesség irányával, a mozgás egyenletesen gyorsuló. Ellenkező esetben, ha a gyorsulás kisebb nullánál a<0 (negatív) a mozgás egyenletesen lassuló.

2.4.3.1. Egyenletesen gyorsuló egyenesvonalú mozgás

Amint az már előbbiekben említést nyert, az egyenletesen gyorsuló egyenesvonalú mozgás gyorsulása állandó és pozitív:

egyenesvonalú mozgás

$$a = \ddot{x} = const > 0. \tag{2.29}$$

Az \vec{a} gyorsulásvektor és a \vec{v} sebességvektor irányai megegyeznek, amint az a 2.18. ábrán látható.

A mozgás sebessége a (2.29) összefüggés integrálásával 2.18. ábra. Egyenletesen gyorsuló megkapható:

$$\ddot{x} = \frac{d\dot{x}}{dt} \Rightarrow d\dot{x} = \ddot{x} \cdot dt \Rightarrow \int d\dot{x} = a \int dt$$
,

2.19. ábra. Az egyenesvonalú egyenletesen gyorsuló mozgás mozgástani görbéi

mozgás mozgástani görbéi a 2.19.ábrán láthatók.

$$\boxed{\dot{x} = v_0 + a \cdot t}. (2.30)$$

A mozgás sebessége az idővel arányosan növekszik (egyenletesen), iránya megegyezik a gyorsulás irányával.

A (2.30) összefüggés felírható a következőképpen is:

$$\dot{x} = \frac{dx}{dt} = v_0 + a \cdot t \Rightarrow dx = v_0 \cdot dt + at \cdot dt$$
.

Újabb integrálással, a (2.30) egyenletből, megkapható az egyenletesen gyorsuló egyenesvonalú mozgás mozgástörvénye, melynek alakja:

$$x = x_0 + v_0 \cdot t + \frac{a \cdot t^2}{2}.$$
 (2.31)

Látható, hogy az út az idő négyzetével növekszik.

Az egyenesvonalú egyenletesen gyorsuló

2.4.3.2. Egyenletesen lassuló egyenesvonalú mozgás

Ennek a mozgásnak is állandó a gyorsulása, ellenben előjele negatív:

2.20. ábra. Egyenletesen lassuló egyenesvonalú mozgás

Az \vec{a} gyorsulásvektor a \vec{v} sebességvektor irányával ellentétes irányú, amint az a 2.20. ábrán látható.

A mozgás sebessége a (2.32) összefüggés integrálásával megkapható:

$$v = \dot{x} = v_0 - a \cdot t \,. \tag{2.33}$$

A mozgás sebessége állandóan, lineárisan csökken az idő függvényében ami azt jelenti, hogy az egyenletesen lassuló mozgásnak mindig rendelkeznie kell kezdősebességgel.

A (2.33) egyenlet ismételt integrálásával az egyenletesen lassuló egyenesvonalú mozgás mozgásegyenlete kapható meg, melynek alakja:

$$x = x_0 + v_0 \cdot t - \frac{a \cdot t^2}{2}.$$
 (2.34)

Mivel a mozgás sebessége az idő függvényében állandóan csökken, létezik egy időpillanat (t_l) ,

amelyben a sebesség nulla, amint az a 2.21. ábrán

 $ha t = t_1 v = 0$,

melyből következik:

$$v = v_0 - a \cdot t_1 = 0 \Longrightarrow t_1 = \frac{v_0}{a}$$
.

Amennyiben a mozgás folytatódik, annak iránya ellentétes. A t_1 időpillanatban a lefutott út diagrammján szélső érték figyelhető meg.

Behelyettesítve a t_1 időértéket a (2.34) egyenletbe, megkapható az út szélsőértéke, illetve a pont legnagyobb távolsága, mozgása közben (x_1) :

$$x_{I} = x_{0} + v_{0} \cdot t_{I} - \frac{a \cdot t_{I}^{2}}{2} = x_{0} + v_{0} \cdot \frac{v_{0}}{a} - \frac{1}{2} \cdot a \cdot \left(\frac{v_{0}}{a}\right)^{2}$$

illetve az x_1 értéke:

$$x_I = x_0 + \frac{v_0^2}{2a} \,.$$

2.21. ábra. Egyenletesen lassuló egyenesvonalú mozgás mozgástani görbéi

A lefutott út diagrammján (2.21.ábra) látható, hogy a mozgás kezdetén a pont x_0 távolságra helyezkedett el, amelytől fokozatosan távolodott x_1 ig, szélső értékéig, amelyet t_1 időpillanatban ért el. Továbbhaladva, a pont mozgása irányt változtat (sebessége negatív), így mozgása ellentétes irányú.

2.4.4. EGYENLETESEN VÁLTOZÓ GÖRBEVONALÚ MOZGÁS

A görbevonalú mozgás gyorsulásvektora, a sebessébvektor időbeni változását fejezi ki, mind nagyságra mind irányra vonatkoztatva, ellentétben az egyenesvonalú mozgással, melynek gyorsulása egy komponensből áll $(a_n=0)$, hiszen a mozgás egyenes vonal mentén történik. A görbevonalú mozgás tangenciális gyosulása a pont sebességének intenzitását, míg normális gyorsulása a sebesség irányváltozását fejezi ki.

Egyenletesen változó görbevonalú mozgás esetén, (mint, ahogy az az egyenletesen változó egyenesvonalú mozgás esetében is fennáll), a mozgás tartama alatt, annak gyorsulása állandó. Ebben az esetben (görbevonalú mozgás) ez a tangenciális gyorsulásra vonatkozik.

Tehát, a pont görbevonalú mozgása egyenletesen változó, ha a mozgás időtartama alatt a tangenciális gyorsulás állandó:

$$a_t = \frac{dv}{dt} = \ddot{s} = const \,. \tag{2.35}$$

Megkülönböztethető két eset. Amennyiben a tangenciális gyorsulás nagyobb nullánál $(a_t>0)$, tehát a gyorsulás előjele megegyezik a sebesség előjelével, a mozgás egyenletesen gyorsuló. Ellenkező esetben, ha a tangenciális gyorsulás negatív $(a_i<0)$, a mozgás egyenletesen lassuló.

2.4.4.1. Egyenletesen gyorsuló görbevonalú mozgás

2.22. ábra. Egyenletesen gyorsuló görbevonalú mozgás A (2.36) összefüggésből meghatározható a mozgás sebessége:

A mozgás jellemzője, az állandó, pozitív tangenciális gyorsulás:

$$a_t = \frac{dv}{dt} = \ddot{s} = const > 0. \quad (2.36)$$

A gyorsulásvektor \vec{a}_t és a sebességvektor \vec{v} irányai megegyeznek, amint az a 2.22.ábrán látható.

Megfelelő határok közt (ha t=0, az út $s=s_0$, a sebesség $v=v_0$) integrálva az egyenlet mindkét oldalát, a mozgás sebessége:

 $\frac{dv}{dt} = a_t = \ddot{s} \Longrightarrow dv = \ddot{s} \cdot dt.$

$$\dot{s} = v_0 + a_t \cdot t \tag{2.37}$$

A (3.37) összefüggés ismételt integrálásával az egyenletesen gyorsuló görbevonalú mozgás mozgástörvénye:

$$s = s_0 + v_0 \cdot t + \frac{a_t \cdot t^2}{2}. \tag{2.38}$$

A normális (centripetális) gyorsulás alakja:

$$a_n = \frac{\dot{s}^2}{R_K} = \frac{(v_0 + a_t \cdot t)^2}{R_K}.$$
 (2.39)

A mozgás gyorsulásvektora \vec{a} a tangenciális \vec{a}_t és normális \vec{a}_n gyorsulásvektorok vektoriális összegeként határozható meg. Mivel a tangenciális gyorsulásvektor \vec{a}_t és a sebességvektor \vec{v} iránya megegyezik, az \vec{a} és a \vec{v} közötti szög hegyesszög (2.22. ábra).

2.4.4.2. Egyenletesen lassuló görbevonalú mozgás

2.23. ábra. Egyenletesen lassuló görbevonalú mozgás

A mozgás sajátossága az állando tangenciális gyorsulás, melynek értéke kisebb nullától (negatív):

$$a_t = \ddot{s} = const < 0. \tag{2.40}$$

A mozgás sebességvektora \vec{v} és a tangenciális gyorsulásvektor \vec{a}_t ellentétes irányításúak (2.23. ábra).

A mozgás sebessége, integrálva a 2.40 összefüggést:

$$\dot{s} = v_0 - a_t \cdot t$$

(2.41)

Ismételt integráció után, a mozgástörvény:

$$s = s_0 + v_0 \cdot t - \frac{a_t \cdot t^2}{2}. \tag{2.42}$$

Végül, a normáli gyorsulás alakja:

$$a_n = \frac{(v_0 - a_t \cdot t)^2}{R_K}.$$
 (2.43)

A mozgás gyorsulása \vec{a} ebben az esetben is a tangenciális gyorsulásvektor \vec{a}_t , és a normális gyorsulásvektor \vec{a}_n vektoriális összegeként kapható meg. Mivel a tangenciális gyorsulásvektor \vec{a}_t és a sebességvektor \vec{v} irányítása ellentétes, az \vec{a} és a \vec{v} közötti szög tompasszög (2.23. ábra).

Az egyenletesen változó görbevonalú mozgás (2.37), (2.38), (2.41), (2.42), és az egyenletesen változó egyenesvonalú mozgás (2.30), (2.31), (2.33), (2.34) közötti különbség abban mutatkozik meg, hogy a görbevonalú mozgás összefüggéseiben az összgyorsulás a helyett a tangenciális gyorsulás a_t szerepel, valamint az egyenesvonalú x koordináta helyett az s ívkoordináta. Ebböl következik, hogy mindkét mozgás mozgástani görbéi megegyeznek.

Összegezve az *egyenesvonalú egyenletes* és a *görbevonalú egyenletes* mozgás közti különbségeket, leszögezhetők a következők:

- az egyenesvonalú egyenletes mozgás gyorsulása zérus (egyedi eset),
- a görbevonalú egyenletes mozgás gyorsulása egyenlő a normális gyorsulással.

Ugyanígy az *egyenletesen változó egyenesvonalú* és az *egyenletesen változó görbevonalú* mozgás között is fellelhetők a következő különbségek:

- -az egyenletesen változó egyenesvonalú mozgás gyorsulása állandó (pozitív illetve negatív előjelű) és a tangenciális gyorsulással egyenlő (normális komponense nem is létezik).
- az egyenletesen változó görbevonalú mozgás gyorsulása ugyancsak állandó, de két komponens, a normális és tangenciális gyorsulás vektoriális összege:

$$a = \sqrt{a_t^2 + a_n^2}$$

Amennyiben egy M pont olymódon mozog, hogy mindkét gyorsuláskomponense $(a_t$ és $a_n)$ is létezik, tehát görbevonalú mozgással mozog, ha a pálya görbülete R_K állandó, ekkor az M pont pályája kör, és a pont körmozgást végez (2.24. ábra). A mozgás jellemzői:

$$a_t = \frac{dv}{dt} \neq 0$$
, $a_n = \frac{v^2}{R_K} \neq 0$, $R_k = const$.

2.24. ábra. Körmozgás

A megtett út s (2.24. ábra) az elfordulás szöge φ és a pálya görbületének R_K (amely nem más mint a körpálya sugara) függvényeként kifejezhető:

$$s = R \cdot \varphi . \tag{2.44}$$

Ha ismert az elfordulás szögének φ időbeni változása, illetve a *pont mozgástörvénye* $\varphi = \varphi(t)$, ebből a mozgás sebessége:

$$v = \dot{s} = R \cdot \dot{\phi} \,. \tag{2.45}$$

A (2.45) szerint meghatározott sebesség a körmozgás kerületi sebessége, amelynek sebességvektora \vec{v} a mozgáspálya érintőirányába esik.

Az elfordulás szögének idő szerinti deriváltja (φ) a körmozgás szögsebessége, jelölése ω ($\omega = \dot{\varphi}$).

A mozgás gyorsuláskomponensei a már tárgyalt (2.20) és (2.21) összefüggések alapján határozhatók meg. Így a körmozgás tangenciális

$$a_t = \ddot{s} = R \cdot \ddot{\varphi} \,. \tag{2.46}$$

Ahol az elfordulás szögének idő szerinti második deriváltja ($\ddot{\varphi}$) a körmozgás szöggyorsulása, jelölése ε ($\varepsilon = \ddot{\varphi}$).

A körmozgás normális gyorsulása:

$$a_n = \frac{\dot{s}^2}{R_K},$$

figyelembe véve a (2.45) összefüggést, a normális gyorsulás:

$$a_n = \frac{R^2 \cdot \dot{\varphi}^2}{R} \,,$$

végső alakja:

gyorsulása:

$$a_n = R \cdot \dot{\varphi}^2$$
 (2.47)

A mozgás *gyorsulása* a két komponens vektoriális összegeként határozható meg:

$$a = \sqrt{a_t + a_n} ,$$

amelynek alakja, figyelembe véve a (2.46) és (2.47) összefüggéseket:

$$a = R \cdot \sqrt{\ddot{\varphi}^2 + \dot{\varphi}^4} \,. \tag{2.48}$$

A gyorsulásvektor iránya α_n szöget zár be a normális komponens irányával (2.24. ábra), amelynek nagysága:

$$tg\alpha_n = \frac{a_t}{a_n},$$

figyelembe véve a (2.46) és (2.47) összefüggéseket:

$$tg\alpha_n = \frac{R \cdot \ddot{\varphi}}{R \cdot \dot{\varphi}^2},$$

végleges alakban:

$$tg\alpha_n = \frac{\ddot{\varphi}}{\dot{\varphi}^2}.$$
 (2.49)

A szögsebesség (ω) és tangenciális gyorsulás, illetve szöggyorsulás (ε) jellegéből kifolyólag a körmozgás lehet egyenletes, vagy változó (egyenletesen gyorsuló vagy lassuló) körmozgás.

2.4.5.1. Egyenletes körmozgás

A körmozgás *akkor egyenletes*, ha *sebessége* (kerületi sebessége) állandó ($v = \dot{s} = const$). Mivel a mozgáspálya sugara R állandó, a (2.45) alapján a *szögsebesség* (ω) *is állandó* (2.25. ábra). Az egyenletes körmozgás szögsebességének (ω) neve *körfrekvencia*.

Mivel a mozgás sebessége állandó a (2.46) alapján a tangenciális gyorsulás értéke zérus. Így az *egyenletes körmozgás jellemzői:*

$$\begin{aligned}
\omega &= const, \\
a_t &= 0
\end{aligned}$$
(2.50)

A mozgás szögsebessége, definíció szerint:

$$\omega = \dot{\varphi} = \frac{d\varphi}{dt}$$
,

illetve:

$$d\varphi = \omega \cdot dt$$
.

2.25. ábra. Egyenletes körmozgás

Figyelembe véve, hogy a t = 0 időpillanatban az elfordulás szöge $\varphi = \varphi_0$, a fenti egyenlet mindkét oldalát integrálva, a kezdőfeltételek figyelembe vételével, a *mozgásegyenlet* alakja:

$$\begin{aligned}
\varphi &= \varphi_0 + \omega \cdot t \\
illetve \\
s &= R(\varphi_0 + \omega \cdot t)
\end{aligned} (2.51)$$

Egy teljes kör megtétele esetén ($\varphi = 2\pi$), felírható:

$$2\pi = \omega \cdot T$$
,

ahol $T = \frac{2\pi}{\omega}$ az az idő, amely alatt a pont egy teljes kört megtesz.

A normális gyorsuláskomponens a (2.47) és (2.50) alapján:

$$a_n = R \cdot \omega^2 = const. \tag{2.52}$$

2.4.5.2. Egyenletesen gyorsuló körmozgás

A körmozgás egyenletesen gyorsuló, ha tangenciális gyorsulása állandó és nagyobb nullánál (pozitív):

$$a_t = \ddot{s} = R \cdot \ddot{\varphi} = const > 0. \tag{2.53}$$

A fenti összefüggésből adódóan, a mozgás szöggyorsulása állandó és pozitív:

$$\ddot{\varphi} = \varepsilon = const > 0. \tag{2.54}$$

A szöggyorsulás felírható a következő alakban is:

$$\varepsilon = \ddot{\varphi} = \frac{d\dot{\varphi}}{dt} = \frac{d\omega}{dt}$$

illetve

$$d\omega = \varepsilon \cdot dt$$
,

Az egyenlet mindkét oldalát integrálva, figyelembe véve a kezdeti feltételeket (a t = 0 időpillanatban a pont szögsebessége $\omega = \omega_0$), az egyenletesen gyorsuló körmozgás *szögsebessége*:

$$\omega = \dot{\varphi} = \omega_0 + \varepsilon \cdot t$$
 (2.55)

A 2.55 egyenlet ismételt integrálásával, figyelembe véve kezdőfeltételként, hogy a t=0 időpillanatban a szögsebesség $\omega = \omega_0$, a pont helyzete $\varphi = \varphi_0$, szöggel adott, megkapható a *mozgásegyenlet*:

$$\varphi = \varphi_{\theta} + \omega_{\theta} \cdot t + \frac{\varepsilon \cdot t^2}{2}. \tag{2.56}$$

Az egyenletesen gyorsuló körmozgás kerületi sebessége, valamint gyorsulásának komponensei a következő összefüggésekkel határozhatók meg:

$$v = R \cdot \dot{\varphi} = R(\omega_0 + \varepsilon \cdot t),$$

$$a_t = R \cdot \ddot{\varphi} = R \cdot \varepsilon$$
,

$$a_n = R \cdot \dot{\varphi}^2 = R(\omega_0 + \varepsilon \cdot t)^2$$
.

2.4.5.3. Egyenletesen lassuló körmozgás

A körmozgás egyenletesen lassuló, ha tangenciális gyorsulása állandó és negatív:

$$a_t = \ddot{s} = R \cdot \ddot{\varphi} = const < 0$$
 (2.57)

A mozgás szöggyorsulása ugyancsak állandó és negatív:

$$|\ddot{\varphi} = \varepsilon = const < 0|. \tag{2.58}$$

Kifejezve a szöggyorsulást a következő alakban:

$$d\omega = \varepsilon \cdot dt$$
.

Az egyenlet mindkét oldalát integrálva, figyelembe véve a kezdeti feltételeket (a t=0 időpillanatban a pont szögsebessége $\omega=\omega_0$ valamint azt, hogy értéke negatív), az egyenletesen lassuló körmozgás *szögsebessége*:

$$\omega = \dot{\varphi} = \omega_{\theta} - \varepsilon \cdot t \,. \tag{2.59}$$

A (2.59) egyenlet mindkét oldalát integrálva, figyelembevéve kezdőfeltételként, hogy a t=0 időpillanatban a szögsebesség $\omega = \omega_0$, a pont helyzete $\varphi = \varphi_0$, szöggel adott, a **mozgásegyenlet**:

$$\varphi = \varphi_0 + \omega_0 \cdot t - \frac{\varepsilon \cdot t^2}{2}. \tag{2.60}$$

Az egyenletesen lassuló körmozgás kerületi sebessége, valamint gyorsulásának komponensei a következő összefüggésekkel határozhatók meg:

$$v = R \cdot \dot{\phi} = R(\omega_0 - \varepsilon \cdot t),$$

$$a_t = R \cdot \ddot{\varphi} = R \cdot \varepsilon$$
,

$$a_n = R \cdot \dot{\varphi}^2 = R(\omega_0 - \varepsilon \cdot t)^2$$
.

A fentiek alapján leszögezhető, ha a mozgás szögsebességeω és szöggyorsulása ε ugyan olyan előjelű (2.55) a forgás egyenletesen gyorsuló, amennyiben előjelük különböző (2.59) a forgás egyenletesen lassuló.

Hasonlóság fedezhető fel az egyenesvonalú és a körmozgás összefüggései között is. Összehasonlítva az egyenesvonalú mozgás képleteiben (2.25),(2.30),(2.31),(2.33),(2.43) szereplő kinematikai jellemzőket (x,v,a), helyettesítve ezeket a körmozgás megfelelő kinematikai jellemzőivel $(\varphi,\omega,\varepsilon)$, a körmozgás (2.51),(2.55),(2.56),(2.59),(2.60) képletei kaphatók meg.

2.4.6. EGYSZERŰ HARMONIKUS MOZGÁS (HARMONIKUS REZGŐMOZGÁS)

Amennyiben egy pont *egyenesvonalú* mozgást végez, amelynek mozgásegyenlete:

$$x = R \sin(\omega \cdot t + \varphi_{\theta}), \tag{2.61}$$

ahol:

- R, ω és φ_{θ} állandók,

az ilyen mozgást *harmonikus rezgőmozgásnak* nevezik.

2.26. ábra. Harmonikus rezgőmozgás mozgás *amplitúdója*.

Az x távolság az O középpont körül a (2.61) törvényszerűség szerint változik, miközben az M pont a+R és -R határok között rezgőmozgást végez (2.26. ábra).

Az ilyen rezgőmozgásoknak a műszaki gyakorlatban igen nagy jelentőségük van.

A koordinátatengely középpontjától (a rezgés középpontjától) mért legnagyobb *R* távolság a

Az M pont, amely mozgását a t=0 időpillanatban kezdte M_0 helyzetből (ahol $\varphi = \varphi_0$), a t_1 idő alatt ér ugyanoda vissza, tehát $sin(\omega \cdot t_1 + \varphi_0) = 0$ illetve $\omega \cdot t_1 = 2\pi$.

A $T=t_1=2\pi/\omega$ időintervallumot, amely alatt a pont egy teljes rezgést végez, *rezgésidőnek* (*periódusnak*) nevezik.

A rezgésidő reciprok értéke $f=1/T=\omega/2\pi$ a **frekvencia**. A frekvencia mértékegysége a Hertz [Hz], amely a másodpercenkénti rezgések számát jelöli.

A harmonikus rezgőmozgás igen szemléltetően bemutatható az egyenletes körmozgás vetületeként (2.27. ábra). Az egyenletes körmozgás mozgásegyenlete szerint(2.51):

$$\varphi = \varphi_0 + \omega \cdot t$$
.

Levetítve a pont helyzetét az *x* tengelyre:

$$x = R \cdot \sin(\omega \cdot t + \varphi_0)$$

amely nem más mint a harmonikus rezgőmozgás egyenlete(2.61).

Ha a pont a koordináta-tengely kezdőpontjából indul (O pont), ekkor t=0, $\varphi_0=0$, vetülete pedig:

$$x = R \cdot \sin \omega \cdot t$$
.

A pont vetülete az *y* tengelyre:

$$y = R \cdot \cos \omega \cdot t$$
.

Mindkét egyenlet harmonikus rezgőmozgás $\pi/2$ fáziskülönbséggel. A mozgáspálya

2.27. ábra. A harmonikus rezgőmozgás illusztrációja

egyenlete a fenti egyenletekből megkapható, kiküszöbölve az egyenletek paraméterét-az időt (t), amely nem más mint a körpálya sugara R:

$$x^2 + y^2 = R^2,$$

tehát a körpályán mozgó M pont két harmonikus rezgőmozgás komponenseként is bemutatható, melyeknek fáziskülönbsége $\pi/2$.

A harmonikus rezgőmozgást végző pont sebessége:

$$v = \dot{x} = R \cdot \omega \cos(\omega \cdot t + \varphi_{\theta}). \tag{2.62}$$

A harmonikus rezgőmozgást végző pont gyorsulása:

$$a = \ddot{x} = -R \cdot \omega^2 \sin(\omega \cdot t + \varphi_0). \tag{2.63}$$

A mozgás sebességének és gyorsulásának időbeni változása is harmonikus változást mutat. Mozgástani görbéik színusz és koszinusz függvények (2.28. ábra).

2.28. ábra. A harmonikus rezgőmozgás mozgástani görbéi

Befutott út-idő diagramm, melynek képletei:

$$x = R \cdot \sin(\omega \cdot t + \varphi_0),$$

$$za \ t = 0,$$

$$x_0 = R \cdot \sin\varphi_0.$$

Sebesség-idő diagramm alakja:

$$v = \omega \cdot R \cos(\omega \cdot t + \varphi_0)$$
,

a legnagyobb sebesség:

$$v_{max} = \omega \cdot R$$

Gyorsulás-idő diagramm alakja:

$$a = -R \cdot \omega^2 \sin(\omega \cdot t + \varphi_0)$$
,

a legnagyobb gyorsulás:

$$a_{max} = R \cdot \omega^2$$

Meg kell itt jegyezni, hogy a befutott út-idő diagrammot nem szabad összetéveszteni a mozgáspályával, amely egyenes vonal.

A tömegpont kinematikájában tárgyalt törvényszerűségek, utalnak az alapvető feladatok, példák megoldására is. Ezek általában a pont sebessége, gyorsulása, valamint egy időintervallumban megtett út hosszának meghatározására vonatkoznak.

Első lépésként a pont mozgásegyenletét kell meghatározni. Egy feladatban a pont mozgásegyenlete megadható közvetlenül a mozgás egyenletével, illetve a mozgás tulajdonságainak leírásával, mint pl. "a pont egyenletes mozgással mozog", "a pont egyenletesen lassuló mozgással mozog". Az ilyen eseteknél a feladat megoldására a levezetett képletek szolgálnak.

Előfordulnak olyan feladatok is, amelyekben a pont mozgásegyenlete nincs meghatározva, ellenben egy másik pont mozgásának függvénye. Az ilyen feladatok megoldását a keresett pont mozgásegyenletének meghatározásával kell kezdeni.

A vonat, amelynek sebessége v_0 =54 [km/h], elkezd fékezni és t_1 =2[min] idő múlva áll meg. Ha a vonat fékezése folyamán egyenletesen lassuló mozgással mozgott, meghatározni a fékezés közben megtett utat.

Megoldás:

A példa feltételeiből következik, hogy a vonat mozgása egy pont egyenesvonalú egyenletesen lassuló mozgásának tekinthető, melynek mozgástörvénye a (2.34) egyenlettel adott, tehát:

$$x = v_0 \cdot t - \frac{a \cdot t^2}{2} \,,$$

ahol x a vonat fékezésének pillanatától mért távolság, mivel x_0 =0. A vonat sebessége a (2.33) alapján:

$$v = v_0 - a \cdot t$$
,

Mivel a vonat a $t=t_1$ időpillanatban megállt, ekkor sebessége $v_1=0$. Behelyettesítve a fenti egyenletbe:

$$0 = v_0 - a \cdot t_1$$

illetve

$$a = \frac{v_0}{t_1}.$$

Behelyettesítve a kapott gyorsulást a mozgásegyenletbe, ahol $t=t_1$, a keresett út:

$$x_1 = \frac{v_0 \cdot t_1}{2} = 900 \, [m].$$

Fontos megjegyezni, hogy számításoknál a mértékegységek helyes kifejezésére nagy figyelmet kell helyezni. Általában a hosszúságot méterben, az időt szekundumban kell kifejezni. A példára vonatkoztatva:

$$v_0 = \frac{54 \cdot 1000}{3600} = \frac{54}{3.6} = 15 [m/s], \qquad t_1 = 120 [s].$$

A h magasságú ember v_1 sebességgel távolodik a lámpától, amelynek magassága H (2.29. ábra). Meghatározni, milyen sebességgel távolodik az ember árnyéka?

Megoldás:

A példa megoldásához legelőször meg kell határozni az árnyék mozgásának törvényszerűségét. A lámpa függőleges helyzetében elhelyezkedő O pontot véve a koordináta-rendszer központjának, tőle jobbra az x tengellyel (2.12. ábra). Ha az ember tetszőleges x_1 távolságra helyezkedik el ezen a tengelyen az O ponttól,

árnyékának távolsága x_2 lesz ugyancsak az O ponttól.

Az OAM és DAB háromszögek hasonlóságából következik:

2.29. ábra. A 2.12. példa illusztrálása

$$x_2 = \frac{H}{H - h} \cdot x_1.$$

A fenti egyenlet az árnyék M végének mozgástörvényét fejezi ki, ismerve az ember $x_1=x_1(t)$ mozgástörvényét.

Deriválva az egyenlet mindkét oldalát, figyelembe véve, hogy $\frac{dx_1}{dt} = v_1$ és $\frac{dx_2}{dt} = v_2$, ahol v_2 a keresett sebesség, a következő összefüggés adódik:

$$v_2 = \frac{H}{H - h} \cdot v_I.$$

Ha az ember állandó sebességgel mozog (v_1 =const), akkor a v_2 sebesség is állandó lesz, de a $\frac{H}{H-h}$ aránnyal nagyobb az ember sebességénél.

Fontos itt megjegyezni, hogy a *testre (mechanizmusra) vonatkoztatott mozgásegyenleteket a test tetszőleges helyzetére kell felállítani.* Egyedül ebben az esetben lehetséges olyan mozgásegyenletek felállítása, amelyek a mozgó pont helyeztét tetszőleges időpillanatban határozzák meg.

2.13. példa

A 2.30. ábrán bemutatott mechanizmus A,B csúszói, amelyek egymáshoz viszonyítva merőlegesen mozoghatnak, az $AB \ l=30 \ [cm]$ hosszúságú karral vannak összekötve, amelyet az OD forgókar mozgat. Az OD kar, melynek hossza l/2, csuklóval van az AB kar közepéhez kapcsolva. Meghatározni az A és B csúszók mozgástörvényét, ha a forgókar forgásakor a ϕ szög időben arányosan növekszik (egyenletes forgómozgással forog), percenkénti két fordulattal. Abban az időpillanatban, amelyben $\phi=30^{\circ}$, mekkora a csúszók sebessége és gyorsulása?

Megoldás: 2.30. ábra. A 2.13. példa illusztrációja

Az A és B pontok mozgástörvényeinek meghatározásához ismerni kell az OD kar mozgástörvényét. A példában közölt feltételek alapján $\varphi=\omega \cdot t$, ahol ω egy állandó. Ismert továbbá, hogy a t=60 [s] időpillanatban $\varphi=4\pi$ (két fordulat); tehát $4\pi=60\omega$, amelyből $\omega=\pi/15$ [s⁻¹].

Az ábrán feltüntetett x,y koordináta-tengelyekre célszerű meghatározni a csúszók mozgástörvényét. Mivel $\overline{OD} = \overline{AD}$, következik, hogy $\angle OAB = \varphi$, valamint $x_A = l\cos\varphi$, $y_B = l\sin\varphi$, illetve:

$$x_A = l \cos \omega \cdot t$$
, $y_B = l \sin \omega \cdot t$.

Ezek a csúszók mozgásegyenletei. Mint ahogy az látszik is, a csúszók harmonikus rezgést végeznek. Idő szerint deriválva az x_A és y_B összefüggéseket, a csúszók sebességei, valamint gyorsulásai a következők:

$$v_A = \dot{x}_A = -l\omega \sin \omega \cdot t,$$
 $a_A = \ddot{x}_A = -l\omega^2 \cos \omega \cdot t,$
 $v_B = \dot{y}_B = l\omega \cos \omega \cdot t,$ $a_B = \ddot{y}_B = -l\omega^2 \sin \omega \cdot t.$

Ha $\varphi = 30^\circ$, az ω· $t = \pi/6$, így ebben az időpillanatban:

$$v_A = \dot{x}_A = -1/2l\omega = -3.14 \text{ [cm/s]}, \quad a_A = \ddot{x}_A = -1/2l\omega^2 \sqrt{3} = -1.14 \text{ [cm/s}^2],$$

 $v_B = \dot{y}_B 1/2l\omega \sqrt{3} = 5.44 \text{ [cm/s]}, \quad a_B = \ddot{y}_B = -1/2l\omega^2 = -0.66 \text{ [cm/s}^2]$

A számértékek előtti előjelek, a sebesség-és gyorsulásvektor előjeleire utalnak. A fennt vázolt helyzeteikből kiindulva az *A* csúszó gyorsuló, a *B* csúszó lassuló mozgással mozog.

2.14. példa

Az M mozgása az $x = R \sin \omega \cdot t$, $y = R \cos \omega \cdot t$, $z = u \cdot t$ egyenletekkel adott, ahol R, ω és u állandók. Meg kell határozni a pont mozgásegyenletét, sebeségét és gyorsulását. *Megoldás:*

Az első két egyenletet négyzetre emelve, majd összeadva, mivel $sin^2 \omega \cdot t + cos^2 \omega \cdot t = I$, következik:

$$x^2 + y^2 = R^2$$
.

2.31. ábra. A 2.14. példa illusztrációja

A pont egy *R* sugarú henger palástja mentén mozog, melynek központja egybeesik a *z* tengellyel (2.31. ábra). Kifejezve a *t* időt a harmadik egyenletből, amelyet az elsőbe behelyettesítve:

$$x = R \sin\left(\frac{\omega}{u} \cdot z\right).$$

A pont egy vonal mentén mozog, amely az R sugarú henger és egy y tengellyel párhuzamos színuszgörbe metszésvonalaként keletkezik. Tulajdonképpen egy csavarvonalról van szó. Az $\omega \cdot t_1 = 2\pi$ mozgásegyenlet alapján meghatározható az a t_1 idő, amely alatt a pont egy teljes menetemelkedéssel elmozdul. A z tengely mentén a pont elmozdulása $h = u \cdot t_1 = \frac{2\pi \cdot u}{\omega}$, amely a menetemelkedés.

A sebességkomponensek a mozgásegyenletek idő

szerinti deriváltjaikként meghatározhatók:

$$\dot{x} = R\omega \cos \omega \cdot t$$
, $\dot{y} = -R\omega \sin \omega \cdot t$, $\dot{z} = u$,

ahonnan:

$$v = \sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2} = \sqrt{R^2 \omega^2 (\cos^2 \omega \cdot t + \sin^2 \omega \cdot t) + u^2} = \sqrt{R^2 \omega^2 + u^2}.$$

A gyökjel alatti mennyiségek állandók, ami azt jelenti, hogy a pont egyenletes sebességgel mozog, melynek irányítottsága a pálya érintőjének irányába esik.

A gyorsulás komponensei a sebességek idő szerinti deriváltjaiból határozhatók meg, ezek:

$$\ddot{x} = -R\omega^2 \sin \omega \cdot t$$
, $\ddot{y} = -R\omega^2 \cos \omega \cdot t$, $\ddot{z} = 0$,

ahonnan:

$$a = \sqrt{\ddot{x}^2 + \ddot{y}^2} = R\omega^2.$$

A pont gyorsulása állandó. A gyorsulásvektor iránya az irányszögekkel határozható meg (2.17) alapján:

$$\cos \alpha_a = \frac{a_x}{a} = \frac{\ddot{x}}{a} = -\sin \omega \cdot t = -\frac{x}{R}$$
, $\cos \beta_a = \frac{a_y}{a} = \frac{\ddot{y}}{a} = -\cos \omega \cdot t = -\frac{y}{R}$, $\cos \gamma_a = \frac{a_z}{a} = \frac{\ddot{z}}{a} = 0$.

Az ábra alapján:

$$\frac{x}{R} = \cos \alpha$$
, $\frac{y}{R} = \cos \beta$,

ahol az α és β szögek az R sugár által az x és y tengelyekkel bezárt szögek. Mivel az α_a és β_a szögek koszinuszai az α és β szögek koszinuszaitól csak előjelben különböznek egymástól, így a pont gyorsulásának iránya a mozgás időtartama alat mindvégig a henger sugara irányában mutat annak tengelye felé.

Ebben a példában világosan látható, hogy az állandó sebességgel mozgó pont gyorsulása nem feltétlenül zérus. Mivel a pont mozgása egy hengerfelületre símuló csavarvonal mentén történik, iránya állandóan változik, tehát normális (centripetális) gyorsulása van.

2.15. példa

A vonat az R=800 [m] sugarú pályán egyenletesen gyorsuló mozgással indul, és $v_1=36$ [km/h] sebességet ér el. Meghatározni a vonat sebességét és gyorsulását pályájának közepén. Megoldás:

A vonat egyenletesen gyorsuló mozgással mozog, kezdősebessége $v_0 = 0$, mozgástörvénye a (2.38) összefüggés alapján, figyelembevéve, hogy $s_0 = 0$:

$$s = \frac{a_t \cdot t^2}{2},$$

sebessége (2.37) szerint:

$$v = a_t \cdot t$$
.

A fenti egyenletekből kiküszöbölve a *t* időt:

$$v^2 = 2a_s$$
.

A feladat feltételeiből, amikor $s = s_I$, akkor $v = v_I$ amelynek alapján:

$$a_t = \frac{v_I^2}{2s_I}.$$

A pálya közepén, ahol $s_2 = 1/2s_1$, a v_2 sebesség nagysága:

$$v_2 = \sqrt{2a_t s_2} = \sqrt{a_t s_1} = \frac{1}{\sqrt{2}} v_1.$$

A normális gyorsulás nagysága:

$$a_{n2} = \frac{v_2^2}{R} = \frac{v_1^2}{2R}$$
.

A vonat gyorsulása pályájának közepén:

$$a = \sqrt{a_t^2 + a_n^2} = \frac{1}{2}v_I^2\sqrt{\frac{I}{s_I^2} + \frac{I}{R^2}}$$
.

Behelyettesítve a megfelelő értékeket:

$$v_2 \approx 7.1 [m/s], \quad a_2 = \frac{5}{48} \approx 0.1 [m/s^2].$$

2.16. példa

Egy vízszintesen elhajított pont sebessége a következő összefüggésekkel adott:

$$x = v_0 \cdot t$$
, $y = \frac{1}{2}g \cdot t^2$,

ahol v_0 és g valamilyen állandók.

Meghatározni a mozgó pont mozgásegyenletét, sebességét és gyorsulását! Ezenkívül tangenciális, normális gyorsulását és a pálya görbületi sugarát a pont sebességének függvényében kifejezve! Megoldás:

Az első egyenletből kifejezett időt behelyettesítve a második egyenletbe:

$$y = \frac{g}{2v_0^2} x^2.$$

A pont pályája parabola (2.32.ábra).

A mozgásegyenleteket idő szerint deriválva:

 $v = \sqrt{v_x^2 + v_y^2} = \sqrt{v_0^2 + g^2 \cdot t^2}$.

$$v_x = \frac{dx}{dt} = \dot{x} = v_0$$
, $v_y = \frac{dy}{dt} = \dot{y} = g \cdot t$,

ahonnan

A mozgás kezdetén (t=0) a pont sebessége $v=v_0$, és állandóan növekszik. A pont gyorsulásának komponensei:

$$a_x = \frac{d^2x}{dt^2} = \ddot{x} = 0$$
, $a_y = \frac{d^2y}{dt^2} = \ddot{y} = g$,

illusztrációja

(a)

A gyorsulása:

$$a = g$$
.

A pont állandó gyorsulással mozog, melynek iránya az y tengely. Függetlenül attól, hogy a pont gyorsulása a=const, a pont mégsem mozog egyenletesen változó görbevonalú mozgással, amelynek feltétele a 2.35 összefüggés, vagyis a_t =const, de nem a=const. Ennél a mozgásnál a_t nem állandó.

A sebesség-idő függvénye alapján (a) szerint, a tangenciális gyorsulás:

$$a_t = \frac{dv}{dt} = \frac{g^2 t}{\sqrt{v_0^2 + g^2 t^2}} = \frac{g^2 t}{v},$$

Az (a) egyenletből $v^2 = v_0^2 + g^2 t^2$, tehát a t idő:

$$t = \frac{I}{g}\sqrt{v^2 - v_0^2} \ .$$

Behelyettesítve a t időt az a_t egyenletébe, annak alakja a v függvényében:

$$a_t = g\sqrt{1 - \frac{v_0^2}{v^2}}.$$

Ebből az egyenletből látható, hogy a kezdeti időpillanatban amikor $v=v_0$, a tangenciális gyorsulás $a_t=0$. A v sebesség növekedésével a_t értéke is növekszik. Ha $v\to\infty$, $a_t\to g$ ami annyit jelent, hogy határesetben a tangenciális gyorsulás az összgyorsulás értékéhez közelít, tehát g-hez. Az a_n normális gyorsulás megkapható:

$$a^2 = a_t^2 + a_n^2$$
.

Ahonnan:

$$a_n^2 = a^2 - a_t^2 = g^2 - g^2 \left(I - \frac{v_0^2}{v^2} \right) = g^2 \frac{v_0^2}{v^2},$$

illetve

$$a_n = \frac{v_0 \cdot g}{v}$$
.

A kezdeti időpillanatban ($v = v_0$) $a_n = g$, a v növekedésével a_n állandóan csökken, és határesetben nullához közelít.

A pálya görbületi sugarának alakja:

$$a_n = \frac{v^2}{R_K}.$$

Ahonnan:

$$R_k = \frac{v^2}{a_n} = \frac{v^2}{v_0 \cdot g}.$$

A mozgás kezdeti fázisában a görbületi sugár a legkisebb:

$$R_{K\min} = \frac{v_0^2}{g},$$

a mozgás későbbi fázisában, ha v sebessége növekszik a görbületi sugara is nő, aminek következtében a K görbület állandóan csökken. Ha $v \rightarrow \infty$ akkor $R_K \rightarrow \infty$, a pálya görbülete K viszont nullához közelít.

3. A MEREV TEST KINEMATIKÁJA

A természetben minden valós test szilárdnak tekinthető, hiszen erők hatására pontjainak távolsága megváltozik, tehát formája alakítható. A kinematika tárgyát képező mozgó testek mind merev testek. Egy test akor tekinthető merevnek, ha mozgása közben pontjainak egymástól mért távolsága nem változik. Ilyen testek a természetben nem léteznek, tehát csak elképzelt testek. Merev testek mozgásainak tanulmányozásakor el kell tekinteni anyagi mivoltuktól, ebből kifolyólag kizárólag a mértani alakjuk mérvadó.

Merev testnek tekinthető tehát a térben elhelyezkedő pontok halmaza, amelyek *pontrendszert* alkotnak.

A merev test térbeli helyzete általános esetben, generalizált koordináták segítségével határozható meg. A generalizált koordináták olyan független paraméterek, amelyek segítségével egy test helyzete minden időpillanatban egyértelműen meghatározható egy adott (választott) koordinátarendszerhez képest. A generalizált koordináták száma megegyezik a mozgás szabafságfokainak számával. A generalizált koordináták, valamint a test szabadságfokának fogalmai a mechanika első fejezetében, az analitikus statikában részletesen megtalálhatók.

Egy szabad test mozgása alapvetően két mozgásfajta lehet: *haladó* és *forgó* mozgás. Ezeknek a kombinációjából adódnak az összes többi mozgásfajták, amelyek kötött (nem szabad) merev testekre vonatkoznak, amelyek:

- 1. Haladó mozgás (tisztán haladó),
- 2. Forgás álló tengely körül (tiszta forgómozgás),
- 3. Síkmozgás (haladó+forgómozgás síkban),
- 4. Álló pont körüli forgás,
- 5. Szabad (általános) mozgás,
- 6. Összetett mozgás.

A továbbiakban ezek a mozgásfajták kerülnek bemutatásra.

3.1. HALADÓ MOZGÁS (TRANSZLÁCIÓ)

A merev test haladó mozgása olyan mozgás, melynek során a test bármely két pontját összekötő egyenes a mozgás időtartama alatt állandóan párhuzamos marad önmagával. A test minden egyes pontja ugyanolyan utat fut be.

3.1. ábra. Haladó mozgás

haladó mozgást nem szabad egyenesvonalú összetéveszteni az mozgással. A haladó mozgással mozgó test pontjai bármilyen görbevonalú pályán mozoghatnak, tehát a haladó mozgás lehet egvenesvonalú görbevonalú (3.1. ábra). Az ábrán látható test két AB pontját összekötő egyenes párhuzamosan eltolva, az A_1B_1 helyzetbe kerül. Ez a haladó mozgás történhet egyenes (folytonos) vonal mentén illetve görbe (pontozott) vonal mentén.

A test A és B pontjainak helyzete a t időpillanatban \vec{r}_A , \vec{r}_B helyzetvektorokka l adott. A $\vec{\rho}$ vektor, amely az A pont

helyzetét határozza meg a B ponthoz képest állandó, mivel a test merev. Ugyanígy a $\vec{\rho}$ vektor irányítottsága sem változik, mert a mozgás haladómozgás. Így tehát felírható:

$$\overrightarrow{AB} = \overrightarrow{\rho} = const,$$

$$\overrightarrow{r}_B = \overrightarrow{r}_A + \overrightarrow{\rho}.$$
(3.1)

Mozgás közben az \vec{r}_A és \vec{r}_B helyzetvektorok időben változnak. Az A és a B pont sebessége meghatározható a (3.1) összefüggés idő szerinti első deriváltjaként:

$$\vec{v}_B = \frac{d\vec{r}_B}{dt} = \frac{d}{dt} (\vec{r}_A + \vec{\rho}) = \frac{d\vec{r}_A}{dt} + \frac{d\vec{\rho}}{dt},$$

ahol:

- $\frac{d\vec{r}_A}{dt}$ az A pont sebessége, - $\frac{d\vec{\rho}}{dt} = 0$ mivel a $\vec{\rho}$ vektor állandó.

Amelyből következik:

$$\vec{\mathbf{v}}_A = \vec{\mathbf{v}}_B. \tag{3.2}$$

Ami annyit jelent, hogy az A és B pontok sebessége egyenlő nagyságú, irányú és irányítottságú bármely időpillanatban.

A (3.2) kifejezés mindkét oldalát idő szerint deriválva:

$$\frac{d\vec{v}_A}{dt} = \frac{d\vec{v}_B}{dt},$$

$$\vec{a}_A = \vec{a}_B.$$
(3.3.)

vagy

Tehát az A és B pontok gyorsulásai is egyenlő nagyságúak, irányúak és irányítottságúak minden időpillanatban.

A fenti eredmányek alapján megállapítható, hogy ha egy test haladó mozgást végez, minden egyes pontja azonos módon mozog, ugyanolyan pályát ír le, sebességvektora és gyorsulásvektora azonos. A test haladó mozgása ezek szerint egyértelműen meghatározható valamely pontjának mozgásaként, így elegendő a test egyetlen pontjának, pl. súlypontjának mozgását vizsgálni.

A haladómozgásnak három szabadságfoka van n=3, mozgástörvénye tehát:

$$x_C = x_C(t),$$

$$y_C = y_C(t),$$

$$z_C = z_C(t).$$

Haladó mozgással mozognak pl.:

1. Belsőégésű motorok dugattyúi, vagy az autó karosszériája egyenes, síma úton. Mindkét haladó mozgás egyenesvonalú, hiszen mindkét test pontjainak mozgása egyenes vonal mentén történik.

2. A 3.2. ábrán bemutatott AB rúd mozgása az O_1A és O_2B karok elfordulásakor szintén haladó mozgás abban az esetben, ha a karok egymás közt egyenlő hosszúságúak ($\overline{O_1A} = \overline{O_2A} = R$).

Ha ismert a φ szög időbeni változása, illetve mozgástörvénye, melynek alakja:

$$\varphi = k \cdot t$$
,

ahol:

- k állandó.

Az *A* pont vetületei az adott koordináta-rendszerben:

$$x_A = R\cos\varphi = R\cos k \cdot t,$$

 $y_A = R\sin\varphi = R\sin k \cdot t.$

Kifejezve a szögfüggvényeket a fenti egyenletekből:

3.2. ábra. Az AB rúd haladó mozgása

$$\cos k \cdot t = \frac{x_A}{R},$$

$$\sin k \cdot t = \frac{y_A}{R}.$$

Négyzetre emelve az egyenleteket, majd összeadva, kiküszöbölhető a *t* paraméter, miáltal a mozgáspálya egyenlete:

$$\cos^2 k \cdot t + \sin^2 k \cdot t = \frac{x_A^2}{R^2} + \frac{y_A^2}{R^2} = 1$$
,

illetve

$$x^2 + y^2 = R^2$$

Amely egy körpálya egyenletét eredményezi:

A mozgástörvény:

$$s_A = R \cdot \varphi = R \cdot k \cdot t$$
.

Sebesség:

$$v_A = \frac{ds_A}{dt} = R \cdot k = const$$
,

minden egyes pont sebességvektora megegyezik:

$$\vec{v}_A = \vec{v}_B = \vec{v}_C$$
.

A gyorsuláskomponensek (mivel görbevonalú mozgásról van szó):

$$a_{At} = \frac{dv_A}{dt} = 0 ,$$

$$a_{An} = \frac{v^2}{R} = R \cdot k^2.$$

A fenti összefüggések alapján megállapítható, hogy a rúd *AB* pontjai körpálya mentén mozognak egyenletes körmozgással. A sebességvektorok iránya a mozgáspálya érintőirányába mutat, a gyorsulásvektoroké (csak normális gyorsulás létezik) a főnormális irányába.

Ebben a példában görbevonalú haladó mozgás volt látható.

Még egyszer fontos megjegyezni, hogy haladó mozgás esetén minden pont \vec{v} sebessége ugyanakkora: ez a *haladó mozgás sebessége*, a test pontjainak \vec{a} gyorsulása is megegyezik: ez a *haladó mozgás gyorsulása*. Haladó mozgással mozgó test bármely pontjában felrajzolhatók a \vec{v} és \vec{a} vektorok. A *test* sebességéről illetve gyorsulásárol *csak haladó mozgás* esetében lehet beszélni. A test *minden egyes egyéb mozgása esetében pontjainak sebessége illetve gyorsulása változó*.

3.2. MEREV TEST FORGÓMOZGÁSA ÁLLÓ TENGELY KÖRÜL

3.3. ábra. Merev test forgása álló tengely körül

A merev test akkor végez forgómozgást álló tengely körül, ha a mozgás időtartama alatt legalább két pontjának sebessége zérus. E két A B pontot összekötő egyenes a forgástengely. A testnek, forgástengelyén elhelyezkedő pontjai nyugalomban vannak, minden más pontja a mozgás időtartama alatt körpályán mozog a forgástengelyre merőleges síkban (3.3. ábra). Az ábrán vázolt forgástengely egyik végével (A) gömbcsuklóban, másik végével (B) vezetőben rögzített. Léteznek olyan forgó testek is, melyeknek pontjai nem helyezkednek el a forgástengelyen, pl. az autókerék gumitömlője.

A forgó test helyzete, tekintettel arra, hogy pontjai koncentrikus körök mentén mozognak, megadható a φ szöggel, amely egy referens, álló *O* síktól mérhető. Ez egyúttal azt is jelenti, hogy az ilyen mozgásnak egy szabadságfoka van, így kizárólag egy adatra van szükség a mozgás leírásához.

Ahhoz, hogy a test helyzete ismert legyen bármely időpillanatban, ismerni kell a φ szög *t* időbeni változását, melynek általános alakja:

$$\varphi = \varphi(t). \tag{3.4}$$

A(3.4) összefügés a merev test forgómozgásának törvénye (egyenlete).

3.2.1. SZÖGSEBESSÉG ÉS SZÖGGYORSULÁS

A merev test álló tengely körüli forgómozgásának kinematikai jellemzői a következők:

- a szögsebesség ω,
- szöggyorsulás ε.

Mindkét jellemző a forgásszög φ időbeni változásából ered.

Amennyiben a merev test az M_1 helyzetből elfordul az M_2 helyzetbe, $\Delta t = t_2 - t_1$ időintervallum alatt, miközben az elfordulás szöge $\Delta \varphi = \varphi_2 - \varphi_1$, a szögelfordulás és időintervallum hányadosa a *forgó test közép-(átlag) szögsebességét* eredményezi:

$$\omega_{sr} = \frac{\Delta \varphi}{\Delta t} = \frac{\varphi_2(t_2) - \varphi_I(t_I)}{t_2 - t_I}.$$

A test szögsebessége az adott t időpillanatban a közép-szögsebesség ω_{sr} határértéke, amikor a Δt időintervallum nullához közelít:

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \varphi}{\Delta t},$$

illetve

$$\omega = \frac{d\varphi}{dt} = \dot{\varphi}.$$
 (3.5)

Egy álló tengely körül forgó merev test, amely szögsebességének nagysága ω , egyenlő a szögelfordulás idő szerint vett első deriváltjával.

A szögsebesség mértékegysége:

$$\omega = \frac{sz\ddot{o}g}{id\ddot{o}} = \frac{radi\acute{a}n}{m\acute{a}sodperc} = \frac{1}{s} = \left[s^{-1}\right].$$

Változó mozgás esetén az ω szögsebesség is változik az időben, és ezt az időbeni változását a szöggyorsulás fejezi ki.

Ha t_1 időpillanatban a szögsebesség ω_1 , a $t_2 = t_1 + \Delta t$ időpillanatban ω_2 , a szögsebesség változásának $\Delta \omega = \omega_2 - \omega_1$ és a Δt időváltozásnak hányadosa a **közép-szöggyorsulás** (átlag-szöggyorsulás):

$$\varepsilon_{sr} = \frac{\Delta \omega}{\Delta t} = \frac{\omega_2(t_2) - \omega_I(t_I)}{t_2 - t_I}.$$

A test szöggyorsulása az adott t időpillanatban a közép-szöggyorsulás ε_{sr} határértéke, amikor a Δt időintervallum nullához közelít:

$$\varepsilon = \lim_{\Delta t \to 0} \varepsilon_{sr} = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t},$$

illetve

$$\varepsilon = \frac{d\omega}{dt} = \dot{\omega} = \frac{d^2 \varphi}{dt^2} = \ddot{\varphi}.$$
 (3.6)

Egy álló tengely körül forgó merev test szöggyorsulása, bármely időpillanatban, egyenlő a szögsebesség első, illetve a forgási szög törvényszerűségének idő szerint vett második deriváltjával.

A szöggyorsulás mértékegysége [s⁻²].

A *szögsebesség és a szöggyorsulás vektorral* is jellemezhető, amelyek a forgástengely irányába mutatnak (3.4. ábra).

$$\vec{\omega} = \omega \cdot \vec{k}, \quad \vec{\varepsilon} = \varepsilon \cdot \vec{k}$$
.

Ezeknek a vektoroknak nagysága (intenzitása) a (3.5) és (3.6) összefüggések alapján határozható meg. Az $\vec{\omega}$ vektor abba az irányba mutat, amelyből szembefordulva, a test forgása az óramutató járásával ellentétes.

ha
$$\omega > 0$$
 a forgás *pozitív*, ha $\omega < 0$ a forgás *negatív*.

3.4. ábra. A szögsebesség és szöggyorsulás vektorai

Az $\vec{\epsilon}$ és $\vec{\omega}$ vektorok azonos irányba mutatnak ha a mozgás gyorsuló forgómozgás, tehát $\epsilon > 0$ (vagyis az ω és ϵ előjelei megegyeznek), illetve irányításuk ellentétes ha a mozgás lassuló forgómozgás, vagyis $\epsilon < 0$ (ekkor az ω és ϵ előjelei különböznek).

3.2.2. A FORGÓMOZGÁS KÜLÖN ESETEI

3.2.2.1. Egyenletes forgómozgás

Egy test *egyenletes forgómozgással* forog, ha *szögsebessége* a forgás időtartama alatt *állandó* (ω =*const*). Az állandó szögsebesség következményeként a mozgás *szöggyorsulása zérus* (ε = 0):

$$\begin{aligned}
\omega &= const, \\
\varepsilon &= 0.
\end{aligned} \tag{3.7}$$

A forgási szög törvényszerűsége (a mozgástörvény) meghatározható a (3.5) egyenlet integrálásával:

$$d\varphi = \omega \cdot dt$$
.

Az egyenlet mindkét oldalát integrálva:

$$\int d\varphi = \omega \int dt \quad \Rightarrow \quad \varphi = \omega \cdot t + C \,,$$

a mozgás kezdeti feltételeit figyelembe véve (ha t=0 akkor $\phi=0$), az integrációs konstans értéke C=0, tehát:

$$\boxed{\varphi = \omega \cdot t}.\tag{3.8}$$

A (3.8) egyenletből következik, hogy egyenletes forgómozgás esetén a test szögsebessége:

$$\omega = \frac{\varphi}{t}.\tag{3.9}$$

A műszaki gyakorlatban az egyenletes forgómozgásnak külön jelentősége van. Az egyenletes forgómozgás sebességét rendszerint a percenkénti fordulatszámmal fejezik ki. A percenkénti fordulatszám jelölése n [ford/perc], és fel kell itt hívni a figyelmet arra, hogy az n mértékegysége nem szög, hanem szögsebesség. Az n [ford/perc], és az ω [1/s] közötti összefüggés a következőképpen határozható meg: Egy fordulat alatt a test 2π (teljes kör) szöggel fordul el, n fordulat alatt az elfordulás szöge $\varphi=2\pi n$. Ha a test n fordulatot tesz meg t=1 [perc]=60 [s] idő alatt, a (3.9) összefüggés alapján:

$$\omega = \frac{\pi \cdot n}{30} \approx 0.\ln\left[s^{-1}\right]. \tag{3.10}$$

3.2.2.2. Egyenletesen változó forgómozgás

A merev test forgása *egyenletesen változó forgómozgás*, ha a mozgás időtartama alatt *szöggyorsulása állandó*:

$$\varepsilon = \frac{d\omega}{dt} = const$$
 (3.11)

A mozgás szögsebessége a (3.11) összefüggés integrálásával kapható meg:

$$d\omega = \varepsilon \cdot dt \Rightarrow \int d\omega = \varepsilon \int dt \Rightarrow \omega = \varepsilon \cdot t + C_{t}$$

az integrációs állandó meghatározható a kezdő feltételekből, és ha a t=0 időpillanatban a mozgás szögsebessége $\omega=\omega_{\theta}$, az integrációs konstans értéke $C_{I}=\omega_{\theta}$. Az egyenletesen változó forgómozgás szögsebessége tehát:

$$\omega = \omega_0 + \varepsilon \cdot t \tag{3.12}$$

A (3.12) összefüggés ismételt integrálásával az egyenletesen változó forgómozgás mozgásegyenlete (a forgási szög törvényszerűsége):

$$\omega = \frac{d\varphi}{dt} \Rightarrow d\varphi = \omega \cdot dt \Rightarrow \varphi = \omega_{\theta} \cdot dt + \varepsilon t \cdot dt \Rightarrow \int d\varphi = \omega_{\theta} \int dt + \varepsilon \int t \cdot dt \Rightarrow \varphi = \omega_{\theta} \cdot t + \frac{1}{2} \varepsilon \cdot t^{2} + C_{2},$$

a C_2 integrációs állandó ugyancsak a kezdő feltételek segítségével határozható meg, melyek t=0, $\omega=\omega_0$ és $\varphi=\varphi_0$, és ezekből $C_2=0$. Tehát *az egyenletesen változó forgómozgás mozgásegyenlete* (a forgási szög törvényszerűsége):

$$\varphi = \varphi_{\theta} + \omega_{\theta} \cdot t + \frac{1}{2} \varepsilon \cdot t^{2}. \tag{3.13}$$

A forgás lehet:

ha ε = const > 0 egyenletesen gyorsuló (ω és ε előjelei megegyeznek), ha ε = const < 0 egyenletesen lassuló (ω és ε előjelei különböznek).

Ha a forgómozgás szöggyorsulása nem állandó, a test forgása tetszőlegesen változó.

3.2.3. AZ ÁLLÓ TENGELY KÖRÜL FORGÓ TEST PONTJAINAK SEBESSÉGE

Az előző fejezetben meghatározott kinematikai jellemzők a tesre, mint egészre vonatkoztak. Előfordulnak azonban olyan esetek is, amelyek során a *forgó test egyes pontjainak kinematikai jellemzőit kell meghatározni*.

A test tetszőleges M pontja, amely R távolságra helyezkedik el a forgástengelytől (3.4. ábra), és amely körmozgást végez, mozgástörvénye a (2.44) összefüggés alapján írható fel:

$$s = R \cdot \varphi(t)$$
.

A pont körpályájának síkja merőleges a forgástengelyre, középpontja a C pontban helyezkedik el, amely tulajdonképpen a forgástengely döféspontja.

A pont sebessége:

$$v = \frac{ds}{dt} = \frac{d}{dt} (R \cdot \varphi) = R \cdot \frac{d\varphi}{dt} ,$$

$$v = R \cdot \dot{\varphi} = R \cdot \omega .$$
(3.14)

illetve

Tehát, egy álló tengely körül forgó merev test M pontjának sebessége, egyenlő ennek a pontnak a tengelytől mért merőleges távolságának (a körpálya sugarának) és a szögsebességnek a szorzatával.

A v sebesség a kerületi v. pályairányú sebesség.

3.5. ábra. Álló tengely körül forgó test pontjainak kerületi sebességei

Fontos itt megjegyezni, hogy $az \omega sz \ddot{o}gsebess \acute{e}g a forg\acute{o}$ test minden pontjában állandó, a test pontjainak kerületi sebess égei v_i viszont arányosak a forgástengelytől mért távolságaikkal.

A pontok kerületi sebességei érintő irányúak arra a körpályára, amelyet a pont forgás közben leír. A körpályák síkja merőleges a forgástengelyre (3.5.ábra).

Az *M* pont, koordináta-központtól mért *r* távolságát véve alapul (3.4.ábra), kerületi sebessége:

$$v = R \cdot \omega$$
,

illetve

$$v = \omega \cdot r \cdot sin\alpha$$
,

ahol:

- α a forgástengely és az r között bezárt szög.

Mivel az M pont helyzete \vec{r} helyzetvektorral adott, a szögsebesség vektora $\vec{\omega}$ tengelyirányú (3.6.ábra), a kerületi sebesség vektora, a vektoriális szorzat értelmében felírható:

$$\vec{\mathbf{v}} = \vec{\mathbf{\omega}} \times \vec{\mathbf{r}} \,. \tag{3.15}$$

Tehát, a forgó test pontjának kerületi-sebességvektora egyenlő a pont helyzetvektorának és a szögsebesség vektorának vektoriális szorzatával.

3.6. ábra. A kerületi sebesség vektora

3.2.4. AZ ÁLLÓ TENGELY KÖRÜL FORGÓ TEST PONTJAINAK GYORSULÁSA

Mint ahogy az látható volt, a forgó test pontjai körpályán mozognak, tehát görbevonalú mozgást végeznek, így gyorsulásaik is két komponensből (tangenciális és normális) tevődnek össze. *A tangenciális gyorsulás nagysága* a (2.20) összefüggés alapján:

$$a_{t} = \frac{dv}{dt} = \frac{d}{dt}(R \cdot \omega) = R \cdot \frac{d\omega}{dt},$$

$$a_{t} = R \cdot \varepsilon.$$
(3.16)

illetve végső alakban:

A normális gyorsulás nagysága a (2.21) összefüggés alapján:

$$a_n = \frac{v^2}{R_K} = \frac{R^2 \cdot \omega^2}{R},$$

$$a_n = R \cdot \omega^2.$$
(3.17)

illetve végső alakban:

Az a_t tangenciális gyorsulás a mozgáspálya érintőirányába mutat (a mozgással azonos irányba, ha a test gyorsuló forgással forog, illetve ellentétes irányba ha lassuló a forgás). A normális gyorsulás a mozgás időtartama alatt mindvégig az R sugár irányában hat, a forgástengely irányába (3.7.ábra). *Az M pont gyorsulása* a (2.22) összefüggés alapján:

$$a = \sqrt{a_t^2 + a_n^2} = \sqrt{R^2 \cdot \varepsilon^2 + R^2 \cdot \omega^4},$$

illetve

$$a = R \cdot \sqrt{\varepsilon^2 + \omega^4}. \tag{3.18}$$

A gyorsulásvektor iránya, a mozgó pont helyzetét meghatározó körpálya sugarához viszonyítva α_n szöggel adott, amely a (2.23) összefüggés alapján:

$$tg\alpha_{n} = \frac{|a_{t}|}{a_{n}} = \frac{|R \cdot \varepsilon|}{R \cdot \omega^{2}},$$

$$tg\alpha_{n} = \frac{|\varepsilon|}{a_{n}}.$$
(3.19)

3.7. ábra. A mozgó pont gyorsulása

Tekintettel arra, hogy egy adott időpillanatban a forgó test minden pontjának ω szögsebessége és ε szögsyorsulása egyenlő, a (3.18) és (3.19) összefüggésekből következik, hogy a test egyes pontjainak gyorsulása arányos a pontok forgástengelytől mért távolságával, a gyorsulásvektor pedig a körpályája sugarával α_n szöget zár be (3.7.ábra).

illetve

A test tetszőleges M pontjának gyorsulásvektora a (3.15) vektoregyenlet idő szerint vett deriváltjaként is megkapható:

3.8. ábra. A gyorsulásvektor iránya egyenletesen gyorsuló és lassuló forgómozgás esetén

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(\vec{\omega} \times \vec{r}) = \frac{d\vec{\omega}}{dt} \times \vec{r} + \vec{\omega} \times \frac{d\vec{r}}{dt},$$
ahol:
$$-\frac{d\vec{\omega}}{dt} \text{ szöggyorgyorsulás-vektor } (\vec{\varepsilon}),$$

$$-\frac{d\vec{r}}{dt} \text{ szögsebesség-vektor } (\vec{v} = \vec{\omega} \times \vec{r}).$$

Következésképpen:

$$\vec{a} = \vec{\varepsilon} \times \vec{r} + \vec{\omega} \times (\vec{\omega} \times \vec{r}). \tag{3.20}$$

A (3.20) összefüggésben az első tag ($\vec{\epsilon} \times \vec{r}$) az M pont tangenciális gyorsulásvektorát (\vec{a}_t), míg a második tag [$\vec{\omega} \times (\vec{\omega} \times \vec{r})$] a normális gyorsulásvektorát (\vec{a}_n) fejezi ki.

A normális gyorsulásvektor iránya minden esetben a körpálya központja felé mutat (a forgástengely irányába). A tangenciális gyorsulásvektor iránya a forgástól függő. Egyenletesen gyorsuló mozgás esetén a tangenciális gyorsulásvektor iránya megegyezik a kerületi sebesség vektorirányával (3.8.a) ábra). Egyenletesen lassuló mozgás esetén iránya ellentétes a kerületi sebességvektor irányától (3.8.b) ábra).

3.1. példa

Egy motor tengelye n=90 [ford./perc] fordulatszámmal forog. Kikapcsolva a motort, tengelye egyenletesen lassuló forgással fog forogni, és $t_1 = 40$ [s] elteltével megáll. Meghatározni, hány fordulatot tett meg a tengely a t_1 idő alatt!

Megoldás:

Mivel a tengely egyenletesen lassuló forgással forog, a (3.13), (3.12) összefüggésekből következik:

$$\varphi = \omega_0 \cdot t - \frac{1}{2} \varepsilon \cdot t^2 \,, \tag{a}$$

$$\omega = \omega_0 - \varepsilon \cdot t \,. \tag{b}$$

A tengely kezdeti szögsebessége az a szögsebesség, amellyel a tengely forgott a kikapcsolás pillanatában, tehát:

$$\omega_0 = \frac{\pi \cdot n}{30}.$$

A $t=t_I$ időpillanatban a tengely megállt, így szögsebessége $\omega_I=0$. Behelyettesítve ezt az értéket a (b) egyenletbe:

 $0 = \frac{\pi \cdot n}{30} - \varepsilon \cdot t_1,$

és

$$\varepsilon = \frac{\pi \cdot n}{30 \cdot t_I}.$$

Ha a t_I időtartam alatt megtett fordulatok száma N (nem összetévesztendő az n-el, mert az n szögsebességet jelent!) akkor az elfordulás szöge, amennyit a tengely ezidő alatt elfordult $\varphi_I = 2\pi N$. Behelyettesítve az ω és φ_I értékeit az (a) egyenletbe:

$$2\pi N = \frac{\pi \cdot n}{30} \cdot t_I - \frac{\pi \cdot n}{60} \cdot t_I = \frac{\pi \cdot n}{60} \cdot t_I,$$

ahonnan

$$N = \frac{n \cdot t_1}{120} = 30$$
 [fordulat].

3.2. példa

Az R=1,2[m] sugarú lendkerék egyenletes forgómozgással forog, melynek fordulatszáma n=90 [ford./perc]. Meghatározni a lendkerék kerületén elhelyezkedő pont sebességét és gyorsulását! *Megoldás:*

A szemlélt pont sebessége a (3.14) összefüggés alapján $v=R\cdot\omega$, ahol ω a kerék szögsebessége, amelyet mindenképpen radián/secundum-ban kell kifejezni. Ebben az esetben:

$$\omega = \frac{\pi \cdot n}{30} = 3\pi \left[s^{-1} \right].$$

És a sebesség:

$$v = \frac{\pi \cdot n}{30} R \approx 11.3 \left[m / s \right].$$

Mivel $\omega = const$, így $\varepsilon = 0$, és a pontnak csak normális gyorsulása létezik, amely:

$$a = a_n = R \cdot \omega^2 = \frac{\pi^2 \cdot n^2}{900} \cdot R \approx 106.6 \, [m/s^2].$$

A pont gyorsulásvektorának iránya a forgástengely középponja felé mutat. 3.3. példa

A mozgás kezdeti állapotában a lendkerék mozgásegyenlete $\varphi = \frac{9}{32}t^3$.

Meg kell határozni a forgástengelytől mért R=0,8[m] távolságra elhelyezkedő pont sebességét és gyorsulását abban az időpillanatban, amikor a pont tangenciális és normális gyorsuláskomponensei megegyeznek.

Megoldás:

A lendkerék szögsebessége és szöggyorsulása a (3.5) és (3.6) összefüggések alapján:

$$\omega = \frac{d\varphi}{dt} = \frac{27}{32}t^2, \quad \varepsilon = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2} = \frac{27}{16}t.$$

A tangenciális és normális gyorsuláskomponensek a (3.16) és (3.17) összefüggések alapján:

$$a_t = R \cdot \varepsilon$$
, $a_n = R \cdot \omega^2$.

Azt az időpontot amikor $a_t = a_n$, t_I -nek véve, ekkor $\varepsilon_I = \omega_I^2$ illetve:

$$\frac{27}{16}t_1 = \left(\frac{27}{32}\right)^2 \cdot t_1^4,$$

ahonnan

$$t_1^3 = \frac{64}{27}$$
, illetve $t_1 = \frac{4}{3}[s]$.

A t_1 időpillanat értékét behelyettesítve az ω és ε képleteibe a t_1 időpillanatban ezek:

$$\omega_I = \frac{3}{2} \left[s^{-I} \right] \quad \varepsilon_I = \frac{9}{4} \left[s^{-2} \right].$$

Amelyek alapján, a keresett mennyiségek:

$$v_1 = R \cdot \omega_1 = 1.2 [m/s], \quad a_1 = R \cdot \sqrt{\epsilon_1^2 + \omega_1^2} = 1.8\sqrt{2} \approx 2.54 [m/s^2].$$

Az \vec{a}_1 vektor helyzete az R sugárhoz viszonyítva 45° szöget zár be.

3.9. ábra. A 3.4. példa illusztrációja

3.4. példa

A B súly (3.9. ábra) forgásba hozza az r sugarú tengelyt és a rajta elhelyezkedő 1 fogaskereket, melynek sugara r_1 . A súly álló helyzetből mozdul el, miközben gyorsulása (a) állandó. Meghatározni a 2 kapcsolt fogaskerék mozgástörvényét, ha sugara r_2 . Megoldás:

Mivel a súly álló helyzetből indul, kezdősebessége zérus, és egy tetszőleges t időpillanatban sebessége v_B , amely meghatározható a v_B =at összefüggésből. A tengely kerületén elhelyezkedő pont sebessége is ugyanekkora lesz. Másrészről ennek a pontnak sebessége felírható mint $r \cdot \omega_I$ ahol ω_I a tengely és az 1-es fogaskerék közös kerületi sebessége, tehát:

$$v_B = r \cdot \omega_I = a \cdot t \Longrightarrow \omega_I = \frac{a \cdot t}{r}$$
.

A következő lépésben meg kell határozni ω_2 alakját. Mivel a fogaskerekek a C pontban érintkeznek egymással, ebben a pontban kerületi sebességük is megegyezik, tehát $v_C = r_I \cdot \omega_1 = r_2 \cdot \omega_2$, ahonnan:

$$\omega_2 = \frac{r_I}{r_2} \cdot \omega_I = \frac{r_I \cdot a}{r_2 \cdot r} \cdot t$$
.

A fenti egyenletből látható, hogy a 2-es fogaskerék szögsebessége az idővel arányosan növekszik. Mivel $\omega_2 = \frac{d\varphi_2}{dt}$, ahol φ_2 a 2-es fogaskerék elfordulási szöge, felírható:

$$d\varphi_2 = \frac{r_1 \cdot a}{r_2 \cdot r} \cdot tdt.$$

Integrálva a fenti egyenlet mindkét oldalát, figyelembe véve, hogy a t=0 kezdeti időpillanatban a szögelfordulás $\varphi_2=0$, megkapható a 2-es fogaskerék mozgástörvénye. Ennek alakja:

$$\varphi_2 = \frac{r_l \cdot a}{2r_2 r} \cdot t^2.$$

3.3. A MEREV TEST SÍKMOZGÁSA

Ha egy merev test oly módon mozog, hogy minden pontja síkgörbét ír le és ennek a görbének síkja párhuzamos egy П alapsíkkal, akkor a test síkmozgást végez. (3.10. ábra). Síkmozgással mozog pl.az egyenes úton gördülő kerék, a belsőégésű motor dugattyúrúdja stb.

Kinematikai értelemben a test xy síkban elhelyezkedő S síkmetszete helyettesíti az egész testet, így elegendő ennek a mozgását vizsgálni.

3.10. ábra. Síkmozgással mozgó test

Az xy síkban elhelyezkedő S metszet két $A(x_A, y_A)$ és $B(x_B, y_B)$ pontjával, tehát négy adattal meghatározható (3.11. ábra). Mivel a test merev, így az S metszet is merevnek tekinthető, és pontjainak $\overline{AB} = l$ távolsága állandó, amelyből felírható a következő összefüggés:

$$l^2 = (x_B - x_A)^2 + (y_B - y_A)^2$$
,

ebből adódóan következik, hogy csak három koordináta független, tehát a síkmozgás három független paraméterrel határozható meg, illetve a *síkmozgásnak három szabadságfoka van*. Ezek közül kettő haladó mozgás, az *x* és *y* tengelyek irányában, egy pedig forgómozgás az *S* síkra merőleges tengely (*z* tengely) körül.

3.11. ábra. Az S síkmetszet helyzete Az S metszet helyzete meghatározható egy tetszőleges A pont x_A és y_A koordinátáival, valamint egy φ szöggel, amelyet az S síkban elhelyezkedő \overline{AB} egyenes zár be az x tengellyel. Az S metszetben felvett tetszőleges A pont a **pólus**. Mozgás közben az x_A , y_A és φ időben változnak. A test mozgása akkor válik ismertté, ha az előbbi generalizált koordináták időbeni változása ismert, tahát:

$$\begin{aligned}
x_A &= f_1(t), \\
y_A &= f_2(t), \\
\varphi &= f_3(t).
\end{aligned} (3.21)$$

A (3.21) egyenletek a síkmozgás mozgástörvényének egyenletei.

3.12. ábra. Síkmozgással mozgó test mozgásainak összetevői

Síkmozgással mozgó S metszet két (I. és II.) helyzetét vizsgálva a 3.12. ábra szerint, az elmozdulás módját tekintve, történhet az először egy haladó mozgással, amelynek során az A_1B_1 egyenes az $\overline{A_2B_I^{'}}$ helyzetbe mozdul, majd az A2 pólus körül elfordulva φ szöggel, az S metszet a B_2 pontba jut. Ennek alapján megállapítható, hogy a összetevőből síkmozgás két melyek: haladó mozgás, amelynek során a test minden pontja az A pólussal összhangban mozog, és a körüli forgómozgásból. pólus Pólusként, síkmozgás vizsgálatakor, bármely pont választható. Ennek bizonyítására ugyacsak a 3.13. ábrán

látható test két (I. és II.) helyzete szolgál. A B pontot véve pólusként, a test ekkor először a B_2 pontig mozdul el haladó mozgással (eközben a $\overline{B_1A_1}$ egyenes a $\overline{B_2A_1}$ helyzetbe mozdul), majd a B_2 pont körül elfordulva ugyancsak ϕ szöggel a végső II. helyzetét veszi fel. Látható, hogy a B_1B_2 haladó mozgás különbözik az A_1A_2 haladó mozgástól, ellenben a forgómozgás (az elfordulás) ugyanakkora, mivel $\overline{B_2A_1}$ A_2B_1 (tehát a ϕ szög ugyanakkora). Megállapítható, hogy változtatva pólust, a síkmogás forgómozgás-komponense állandó marad.

A (3.21) egyenletekből az első kettő a merev test haladó mozgását, a harmadik a pólus körüli forgómozgását határozza meg. A síkmozgás alapvető kinematikai jellemzői haladómozgásának sebessége és gyorsulása, amelyek megegyeznek a pólus sebességével és gyorsulásával (\vec{v}_A és \vec{a}_A), valamint a pólus körüli forgómozgás szögsebessége és szöggyörsulása (ω és ε). Mindezek bármely t időpillanatban meghtározhatók a (3.21) öszefüggésekből. Változtatva a póluson a haladómozgás-komponens változik, a forgómozgás-komponens ellenben változatlan marad.

3.3.1. SÍKMOZGÁSSAL MOZGÓ TEST PONTJAINAK MOZGÁSPÁLYÁJA

Ahhoz, hogy a mozgó test egyes pontjainak mozgáspályája ismert legyen, elegendő az S metszetében elhelyezkedő pontjának mozgáspályáját ismerni. Amennyiben az S metszetben elhelyezkedő tetszőleges M pont helyzete $\overline{AM} = l$ távolsággal és α szöggel adott (3.13. ábra), ekkor az M pont koordinátái a következő alakban írhatók fel:

$$\begin{bmatrix} x_M = x_A + l\cos(\varphi + \alpha), \\ y_M = y_A + l\sin(\varphi + \alpha), \end{bmatrix}$$
(3.22)

ahol:

 $-x_A = x_A(t)$; $y_A = y_A(t)$; $\varphi = \varphi(t)$ időtől függő összefüggések.

A (3.22) összefüggések az *xy* síkban elhelyezkedő *M* pont mozgásegyenletei. Az *M* pont mozgáspályája megkapható, kiküszöbölve a *t* időt a (3.22) egyenletekből.

3.5. példa

Az A és a B csúszó, amelyek távolsága AB = l az u.n. ellipszográf karjához kapcsolódnak, mozgásuk két merőleges tengely mentén történhet (3.14. ábra). Meghatározni az M pont mozgáspályáját!

Megoldás:

3.13. ábra. Az M pont helyzete Az A pontot pólusnak tekintve, az M pont távolsága $\overline{AM} = b$. Ugyanakkor a kar helyzete φ szöggel meghatározható, és ilymódón az M pont x és y koordinátái felírhatók:

$$x = (b-l)\cos\varphi$$
,
 $y = b\sin\varphi$.

Kiküszöbölve a ϕ szöget a fenti egyenletekből, megkapható az M pont mozgáspályája, amely egy ellipszis:

$$\frac{x^2}{(b-l)^2} + \frac{y^2}{b^2} = 1,$$

az ellipszis féltengelyei a=(b-l) és b, amelyeknek központja az O pont. Az l és b távolságok változtatásával, rögzítve a csúszókat megfelelő csavarokkal, az M pontba elhelyezett ceruza segítségével tetszőleges ellipszis

3.14. ábra. A 3.5. példa illusztrációja

rajzolható, természetesen tengelyei hosszának határt szab a kar hossza. Az ilyen mechanizmust ezért hivják ellipszográfnak.

3.3.2. A SÍKMOZGÁSSAL MOZGÓ TEST PONTJAINAK SEBESSÉGE

A síkmozgással mozgó merev test mozgása, amint az már látható volt, áll egy haladó mozgásból, miáltal a test pontjainak sebessége megegyezik a pólus \vec{v}_A sebességével, és a pólus körüli forgó mozgásból. Egy tetszőleges B pont sebessége tehát, e két sebességvektor-komponens összegeként

határozható meg. Alapul véve az S metszetet, ebben a B pont helyzete, az adott xy koordinátarendszerben (3.15. ábra) a következő helyzetvektorral határozható meg:

$$\vec{r}_B = \vec{r}_A + \vec{r}_{AB} \; .$$

A B pont sebességvektora, definíció szerint:

$$\vec{v}_B = \frac{d\vec{r}_B}{dt} = \frac{d\vec{r}_A}{dt} + \frac{d\vec{r}_{AB}}{dt}.$$

3.15. ábra. A *B* pont sebessége

A fenti egyenlet első tagja $\frac{d\vec{r}_A}{dt} = \vec{v}_A$ az A pont (pólus) sebessége.

Az egyenlet második tagja $\frac{d\vec{r}_{AB}}{dt} = \vec{v}_{B}^{A}$ a B pont sebessége, amely a test A pólus körüli forgómozgásából ered. Tulajdonképpen a B pontnak az A ponthoz viszonyított, A pont körüli forgómozgás sebessége. A B pont sebességvektorának alakja:

$$\vec{v}_B = \vec{v}_A + \vec{v}_B^A. \tag{3.23}$$

A B pontnak az A ponthoz viszonyított sebessége \vec{v}_B^A , álló tengely körüli forgás kerületi sebességének tekinthető, és a (3.15) összefüggés alapján, ahol az álló tengely az A pólusban helyezkedik el és merőleges az S metszet síkjára:

$$\boxed{\vec{v}_B^A = \vec{\omega} \times \overrightarrow{AB}},\tag{3.24}$$

ahol:

- ω a test szögsebessége.

A fenti összefüggésből következik, hogy síkmozgással mozgó test (síkmetszet) bármely pontjának sebessége az A pólus sebességvektorának és a pont pólushoz viszonyított sebességvektorának, illetve a pólus körüli forgómozgás sebességvektorának vektoriális összege.

A B pont sebességének nagysága és iránya (sebességvektora) \vec{v}_B a sebességvektor-komponensek által szerkesztett paralelogramma átlójaként határozható meg (3.16. ábra). A B pontnak A ponthoz viszonyított sebessége $v_B^A = \overline{AB} \cdot |\vec{\omega}| = \overline{AB} \cdot \omega$ azzal, hogy ez a sebességvektor merőleges az AB egyenesre $(v_B^A \perp \overline{AB})$, iránya a forgás irányába mutat.

3.6. példa

Meghatározni a sík alapon gördülő kerék kerületén elhelyezkedő M pont sebességét, ha C középpontjának sebessége v_C , a CKM szög pedig α (3.17. ábra). Megoldás:

3.17. ábra. A 3.6. példa illusztrációja ahol $v_K^C = \overline{KC} \cdot \omega = R \cdot \omega$.

3.16. ábra. A *B* pont sebességvektora Az ismert sebességű *C* pontot választva pólusként, az *M* pont sebessége:

$$\vec{v}_M = \vec{v}_C + \vec{v}_M^C,$$

ahol $\vec{v}_M^C \perp \overline{CM}$, nagysága: $v_M^C = \overline{MC} \cdot \omega = R \cdot \omega$ (R a kerék sugara).

Az ω szögsebesség meghatározható abból a feltételből, hogy a K pont mozdulatlan, így $v_K = 0$. Másrészről, amint az M pontra, úgy a K pontra is érvényes a következő összefüggés:

$$\vec{v}_K = \vec{v}_C + \vec{v}_K^C,$$

Mivel a K pontra vonatkoztatva a \vec{v}_K^C és \vec{v}_C sebességvektorok hatásvonalai megegyeznek, és $v_K = 0$, tehát $v_K^C = v_C$, ahonnan $\omega = \frac{v_C}{R}$. Végeredmenyként $v_M^C = R \cdot \omega = v_C$.

A \vec{v}_M^C és \vec{v}_C vektorokkal képzett paralelogramma rombusz. A \vec{v}_C és \vec{v}_M^C vektorok által bezárt szög egyenlő β-val, hiszen merőlegesszárú szög. Felírható a β=2α, összefüggés is, mint ugyanarra a körívre húzott kerületi és központi szög. A rombusz tulajdonságából kifolyólag a \vec{v}_C és \vec{v}_M , valamint a \vec{v}_M^C és \vec{v}_M között bezárt szögek is azonosak, és egyenlőek α-val. Továbbá, a rombusz átlói egymásra merőlegesek, amiből következik:

$$v_M = 2v_C \cos \alpha$$
 és $\vec{v}_M \perp \overline{KM}$.

Az eljárás, amely ezt az eredményt eredményezte meglehetősen körülményes. A továbbiakban tárgyalt eljárás, hasonló feladatok megoldására, sokkal egyszerűbb megoldást kínál.

3.3.2.1. Két pont sebességvetületének tétele

A (3.23) összefüggés alapján, a pont sebességének meghatározása meglehetősen körülményes módón történik, mint ahogy az a 3.6. példából is látható. Az említett összefüggést alapul véve, léteznek egyszerűbb módszerek is a sebesség meghatározására.

Egyike ezeknek a módszereknek a következő tételen alapszik: *a merev test két pontja sebességvektorának vetülete arra az egyenesre, amely a két ponton halad át egymással egyenlő.* Egy test két tetszőleges *A* és *B* pontját véve alapul, az *A* pontot tekintve pólusnak (3.18.ábra), a

3.18. ábra. Két pont sebességének vetülete

(3.23) képlet alapján felírható, hogy $\vec{v}_B = \vec{v}_A + \vec{v}_B^A$. Az egyenlet mindkét oldalát levetítve az AB egyenesre, mivel a \vec{v}_B^A vektor a AB egynesre merőleges, felírható:

$$v_A \cos \alpha = v_B \cos \beta \,. \tag{3.25}$$

Ezzel a fenti tétel bizonyítást nyert. A fenti összefüggés segítségével könnyen meghatározható a test pontjának sebessége, ha ismert a pont mozgásának iránya és a test bármely másik pontjának sebessége.

3.19. ábra. A 3.7. példa illusztrációja

3.7. példa

Meghatározni a 3.19.ábrán bemutatott ellipszográfkar *A* és *B* pontjának sebességét ha adott a φ szög.

Megoldás:

Az A és B pont sebességének irányai ismertek, hiszen a csúszóknak meghatározott kötött mozgásirányuk van. Levetítve a \vec{v}_A és \vec{v}_B vektorokat az A és B pontokat összekötő egyenesre, a fent bebizonyított (3.25) tétel alapján felírható:

$$v_A \cos \varphi = v_B \cos(90^\circ - \varphi),$$

ahonnan

$$v_A = v_B t g \varphi$$
.

3.3.3. A SEBESSÉGPÓLUS

Test síkmozgásakor, minden időpillanatban, az S metszetben létezik egy pont, amelynek sebessége

3.20. ábra. A sebességpólus

zérus, és ez a pont a pillanatnyi forgáspont, vagy sebességpólus. Tehát a sebességpólus az S metszet azon pontja, amelynek az adott időpillanatban a sebessége zórus

Ennek bizonyítására szolgál a 3.20. ábra, amelyen A és B pontok sebességvektorai \vec{v}_A és \vec{v}_B , melyek egymással nem párhuzamosak. Az A és B pontokból a sebességvektorokra húzott merőlegesek metszéspontjában elhelyezkedő P pontnak, ebben az időpillanatban, sebessége zérus ($\vec{v}_P = 0$), így tehát ez a sebességpólus.

A két pont sebességvetületének tétele alapján, két pont sebességének vetülete, a pontokon áthaladó egyenesre megegyezik. Így tehát, ha a P pontnak lenne sebessége, ez a sebesség egyidejűleg merőleges lenne mind a \overline{PA} mind a \overline{PB} távolságra, amely teljes mértékben lehetetlen.

Amint a test elmozdul, sebességpólusának helyzete is változik, tehát minden időpillanathoz egy adott sebességpólus rendelhető.

3.3.4. PONT SEBESSÉGÉNEK MEGHATÁROZÁSA SEBESSÉGPÓLUS SEGÍTSÉGÉVEL

Síkmozgással mozgó test pontjainak sebessége igen hatásosan meghatározható sebességpólus segítségével. Ha a *t* időpillanatban a *P* pont a sebességpólus (3.20. ábra), az *A* pont sebessége a (3.24) összefüggés alapján:

$$\vec{v}_A = \vec{v}_P + \vec{v}_A^P = \vec{v}_A^P,$$

mert $\vec{v}_P = 0$.

A test bármely más pontjára ugyanez az eredmény kapható. Tehát, *a síkmetszet bármely pontjának sebessége az adott időpillanatban, egyenlő a pontnak a P sebességpólushoz viszonyított sebességével* (a sebességpólusban elhelyezett merőleges tengely körüli forgómozgás kerületi sebességével).

A pontok sebességeinek nagysága (intenzitása) a (3.24) öszefüggés alapján:

$$\overline{v_A = \overline{PA} \cdot \omega \quad (\vec{v}_A \perp \overline{PA})},
v_B = \overline{PB} \cdot \omega \quad (\vec{v}_B \perp \overline{PB}).$$
(3.26)

A (3.26) egyenletből következik:

$$\frac{\overline{v_A}}{\overline{PA}} = \frac{v_B}{\overline{PB}} = \omega \tag{3.27}$$

A pontok sebességeinek nagysága, arányos a sebességpólustól mért távolságukkal. A pontok sebességpólustól mért távolságát *pillanatnyi forgássugárnak* nevezik. Az *S* síkmetszet bármely pontjának sebessége tehát, megkapható a pillanatnyi forgás sugár, és a síkmozgás pólus körüli forgómozgása szögsebességének szorzataként.

A fenti eredmények alapján összefoglalhatók a következők:

- 1. A pillanatnyi sebességpólus meghatározásához, ismerni kell bármely két pont sebességének irányát. Ha ismertek az A és B pontok \vec{v}_A és \vec{v}_B sebességei, a sebességpólus helyzete az A és B pontokból, a sebességekre húzott merőlegesek metszéspontjában helyezkedik el.
- 2. Egy tetszőleges M pont sebességének meghatározásához, ismerni kell a test bármely másik (pl.A pont) sebességének nagyságát és irányát, valamint egy másik pont (pl.B pont) sebességének irányát. Ekkor, első lépésben, meg kell határozni a sebességpólus helyzetét, a \vec{v}_A és \vec{v}_B sebességek irányára húzott merőlegesekkel az A és B pontokban, továbbá mivel ismert a \vec{v}_A sebesség iránya, ismert a test elfordulásának iránya is. Második lépésben, addig a pontig, amelynek sebességét meg kell határozni (M pont), a sebességpólusból \overline{PM} egyenest kell húzni. A (3.27) összefüggés alapján, a már ismert v_A sebesség nagyságából meghatározható az M pont v_M sebességének nagysága is. Az M pont \vec{v}_M sebességvektorának iránya a \overline{PM} egyenesre merőleges, irányítottsága a test elfordulásának irányába mutat.
- 3. A test forgómozgásának szögsebessége bármely időpillanatban, a (3.27) egyenletből meghatározható az S metszet bármely pontjának sebessége és a P sebességpólustól mért távolságának hányadosaként.

3.21. ábra. A 3.8. példa illusztrációja

3.8.példa

Az ellipszográf AM karján, az A és B pontok sebességeinek irányai ismertek (3.21. ábra). Meg kell határozni az M pont sebességének irányát és irányítottságát.

Megoldás:

Első lépésben meg kell határozni a sebességpólust. A \vec{v}_A és \vec{v}_B sebességvektorokra az A és B pontokból húzott merőleges egyenesek metszéspontjában helyezkedik el a kar P sebességpólusa. A (3.27) összefüggés alapján:

$$\frac{v_A}{\overline{PA}} = \frac{v_B}{\overline{PB}}$$
, illetve $v_A = v_B \cdot \frac{\overline{PA}}{\overline{PB}} = v_B \cdot tg\varphi$.

Az eredmény megegyezik a 3.7. példa eredményével. Az *M* pont sebességének nagysága:

$$v_M = v_B \cdot \frac{PM}{\overline{PB}}.$$

A \overline{PM} hossz kiszámítható ha ismert az \overline{AB} és \overline{AM} távolság, valamint a ϕ szög. A \vec{v}_M sebességvektor iránya és irányítottsága a 3.21. ábrán látható. Merőleges a \overline{PM} egyenesre $(\vec{v}_M \perp \overline{PM})$, irányítottsága megegyezik az elfordulás szögsebességének irányával. A kar forgómozgásának szögsebessége: $\omega = \frac{v_B}{\overline{PR}}$.

3.3.5. A SEBESSÉGPÓLUS MEGHATÁROZÁSÁNAK KÜLÖN ESETEI

3.3.5.1. Csúszás nélküli gördülő mozgás

Ha egy henger alakú test csúszás nélkül gördül álló felületen, az ilyen síkmozgás sebességpólusa P az érintkezési pontban lesz (3.22. ábra). Csúszásmentes gördüléskor, a közös érintkezési pont sebessége mindkét testre vonatkoztatva egyforma. Mivel ebben az esetben egyik test áll a P pont sebessége zérus v_P =0. Példa erre a sínen gördülő kerék.

Sebességpólus ismeretében, a kerék további pontjainak (*A*,*B*, *C*,*O* pontok) sebességvektorai egyszerűen meghatározhatók. Összekötve a pontokat a sebességpólussal, a pontok

3.22. ábra. Gördülő kerék sebességpólusa

sebességvektorai erre az egyenesre merőlegesek, és a forgás ω szögsebessége irányába mutatnak.

3.3.5.2. Ha az A és B pontok sebességvektorai \vec{v}_A és \vec{v}_B egymással párhuzamosak, de az \overline{AB} egyenes nem merőleges a sebességvektorokra

3.23. ábra. Párhuzamos sebességek

Ilyen esetet szemléltet a 3.23. ábra. Merőlegeseket húzva a sebességvektorok irányára, azonnal látható, hogy a sebességpólus a végtelenben van.

A sebességvetületek tétele alapján felírható:

$$v_A \cos \alpha = v_B \cos \beta$$
,

illetve

$$v_A = v_B$$
.

Az eredmény kézenfekvő, hiszen az α és β szög egyenlő. Ebből következik, hogy a vizsgált időpillanatban a test minden pontjának sebességvektora egymás közt ugyanakkora, tehát megegyezik nagyságra, irányra és irányítottságra, illetve *ebben az időpillanatban a test haladó mozgással mozog.* A test szögsebessége, ebben az időpillanatban zérus.

3.5.5.3. Az A és B pontok sebességvektorai \vec{v}_A és \vec{v}_B egymással párhuzamosak, a pontokat összekötő \overline{AB} egyenes merőleges a sebességvektorokra

A sebességpólus P helyzete a sebességvektorok végpontjait összekötő egyenes és az \overline{AB} egyenes irányába fektetett egyenesek metszéspontjában található (3.24. ábra).

Ez nem más mint a (3.27) aránypár szemléltetése. Ehhez a szerkesztéshez ismerni kell a sebességek nagyságát v_A v_{R} , irányát, és irányítottságát. 3.24.a) ábrán azonos irányítottságú sebességek sebességpólusának, a 3.24.b) ábrán ellentétes irányítottságú sebességek sebességpólusának szerkesztése látható. Szembetűnő, hogy sebsségpólus az S metszeten

3.24. ábra. Párhuzamos sebességek

kívül is eshet, ebben az esetben az S metszethez egy végtelen kiterjedésű síkot kell gondolatban hozzárendelni. Ha a sebességek irányítottsága ellentétes 3.24.b) ábra, ebben az esetben a P sebességpólus mindig az \overline{AB} egyenesen van.

Megfigyelhető az is, hogy a sebességpólusban elhelyezkedő és az *S* metszetre merőleges tengelyhez viszonyítva a sebességek aránya megegyezik a forgómozgás kerületi sebességeinek arányával. Ebből kifolyólag az ilyen tengely a *pillanatnyi forgástengely*.

Ellentétben a forgómozgás tengelyével, amely mozdulatlan, a *síkmozgással mozgó test pillanatnyi forgástengelye a mozgás időtartama alatt állandóan változtatja helyzetét*, ezért a síkmozgás a pillanatnyi forgástengelyek körüli elemi elfordulások összességének is tekinthető.

Feladatok megoldásakor, a test egyes pontjainak sebességeinek, valamint a test szögsebességének meghatározásához ismerni kell a test egy pontjának sebességét (nagyságát és irányát) és egy másik pont sebességének irányát. A feladat megoldását, ezeknek az adatoknak meghatározásával kell kezdeni.

Mechanizmusok vizsgálatakor, amelyek több merev testből épülnek fel, az ilyen együttest először fel kell rajzolni abban a pillantnyi helyzetben, amelyben a keresett kinematikai jellemzőket meg kell határozni. Fontos itt megjegyezni, hogy minden egyes merev test (amely a mechanizmus részét képezi), amennyiben síkmozgással mozog, az adott időpillanatban saját szögsebességgel és sebességpólussal rendelkezik.

3.9. példa

Meghatározni a 3.6.példában ismertetett gördülő kerék kerületén elhelyezkedő M pont sebességét, a sebességpólus alkalmazásával.

3.25. ábra. A 3.9. példa illusztrációja

Medoldás:

A felület és a kerék érintkezési pontja P (3.25. ábra), sebességpólusként tekinthető, hiszen v_P =0. Ismert továbbá, hogy $\vec{v}_M \perp \overline{PM}$.

Mivel a PMD szög félkörön fekszik, tehát derékszög, a kerék kerületén fekvő bármely pont sebességvektora a D ponton fog áthaladni, mint pl. az E pont sebessége \vec{v}_E .

A következő aránypárból:

$$\frac{v_M}{\overline{PM}} = \frac{v_C}{\overline{PC}}$$
,

ahol:

$$- \overline{PC} = R,$$

$$- \overline{PM} = 2R \cos \alpha.$$

következik:

$$v_M = 2 \cdot v_C \cos \alpha$$
.

Az eredmény megegyezik a 3.6. példa eredményével. Az is látható, hogy minél távolabb helyezkedik el az M pont a P ponttól, sebessége annál nagyobb lesz. Legnagyobb sebessége a D pontnak lesz, (ha $cos\alpha=I$, illetve $\alpha=0^{\circ}$), nagysága $v_D=2v_C$. A kerék szögsebessége (3.26) összefüggés alapján:

$$\omega = \frac{v_C}{\overline{PC}} = \frac{v_C}{R}.$$

3.10. példa

A 3.26. ábrán bemutatott mechanizmus OA forgattyúrúdja, melynek hossza r, állandó ω_{OA} szögsebességgel forog. A hajtórúd hossza $\overline{AB} = l$. A φ szög ismeretében meghatározni:

3.26. ábra. A 3.10. példa illusztrációja alapján felírható:

- 1. a hajtórúd (B pont) sebességét,
- 2. az *AB* hajtórúd azon *M* pontjának helyzetét, amelynek sebessége legkisebb,
- 3. a hajtórúd ω_{AB} szögsebességét.

Külön megvizsgálni a mechanizmus $\phi=0$ és $\phi=90^{\circ}$ helyzeteit.

Megoldás:

A rendelkezésre álló adatok alapján, az A pont sebessége $v_A = r \cdot \omega_{OA}$ és merőleges az OA forgattyúrúdra, ugyanakkor a B pont sebességének iránya a BO egyenes. Ezekből az adatokból már meg lehet határozni az AB hajtórúd kinematikai jellemzőit.

1. A sebességek vetületének tétele

$$v_A \cos \alpha = v_B \cos \beta$$
.

Az OAD szög, az OAB háromszög külső szöge, tehát nagysága $\varphi+\beta$, amely alapján $\alpha=90^{\circ}-(\varphi+\beta)$. A B pont sebessége:

$$v_B = r \cdot \omega_{OA} \frac{\sin(\phi + \beta)}{\cos \beta} = r \cdot \omega_{OA} (\sin \phi + \cos \phi t g \beta).$$

Az AOB háromszögből kifejezve a β szöget:

$$\frac{\sin\beta}{r} = \frac{\sin\phi}{l}$$
.

Ugyanakkor felírható:

$$tg\beta = \frac{\sin\beta}{\sqrt{1-\sin^2\beta}}.$$

A B pont sebességének végső alakja:

$$v_{B} = r \cdot \omega_{OA} \left(I + \frac{r \cdot \cos \varphi}{\sqrt{l^{2} - r^{2} \sin^{2} \varphi}} \right) \sin \varphi .$$

2. Az A és B pontok sebességvektoraira merőlegest húzva, ezek metszéspontjában helyezkedik el az AB kar P sebességpólusa (az AP egyenes az OA kar meghosszabbítása). Legkisebb sebessége annak az M pontnak lesz, amely legközelebb helyezkedik el a P sebességpólushoz. Ez a pont a P pontból az AB karra húzott PM merőleges metszéspontjában lesz. Ennek a pontnak a sebessége:

$$v_M = v_A \cos \alpha = r \cdot \omega_{OA} \sin(\varphi + \beta).$$

3.27. ábra. A 3.10. példa illusztrációja

3. Az *AB* kar szögsebessége a (3.26) összefüggés alapján:

$$\omega_{AB} = \frac{v_A}{PA}$$
, illetve $\omega_{AB} = \frac{v_B}{PB}$.

A \overline{PB} és \overline{PA} hosszúságok a feladatban megadott adatokból kiszámíthatók.

4. Ha $\varphi=0$ (3.27 a) ábra), akkor a \vec{v}_A sebességvektorra, és a \vec{v}_B sebességvektorra húzott Bb merőlegesek a B pontban metszik egymást. Ebben az időpillanatban tehát a B pont sebességpólusnak tekinthető és $v_B=0$. Ebben a helyzetben:

$$\omega_{Ab} = \frac{v_A}{4R} = \frac{r}{l} \omega_{OA}$$
.

Az AB hajtórúd sebesség eloszlása az ábrán látható.

5. Ha $\varphi=90^\circ$ (3.27. b) ábra) a \vec{v}_A és \vec{v}_B sebességvektorok egymással párhuzamosak, tehát a vektorokra húzott merőlegesek metszéspontja a végtelenben van. Ebből az következik, hogy ebben az időpillanatban az AB kar minden egyes pontjának sebessége egyforma és egyenlő \vec{v}_A -val, tehát $\omega_{AB}=0$.

3.11.

Az OA kar ω_{OA} szögsebességgel forog az O pontban elhelyezett tengely körül, végén az 1-es

3.28. ábra. A 3.11. példa illusztrációja

fogaskereket viszi, amely az álló 2 fogaskerék kerületén csúszásmentesen gördül. A fogaskerekek egyformák, sugaruk r. Az 1-es fogaskerékhez kapcsolódik az l hosszúságú BD kar, amelyhez még egy kiegyensúlyozó DC kar is kapcsolódik (3.28. ábra). Meghatározni a BD kar ω_{BD} szögsebességét abban az időpillanatban, amikor merőleges az OA karra, és ekkor a BDC szög 45° .

Megoldás:

Az ω_{BD} meghatározásához, ismerni kell a BD kar bármely pontjának sebességét, valamint sebességpólusának helyzetét. Elsőként a B pont sebességét kell meghatározni, amely egyúttal az 1-es fogaskerékhez is hozzátartozik. Ismert a fogaskerék $v_A = 2r\omega_{OA}$ sebessége, és $\vec{v}_A \perp \overline{OA}$, sebességpólusa P_I (az 1-es és 2-es fogaskerék érintkezési pontja). Továbbá $\vec{v}_B \perp \overline{P_I B}$, és a sebességek vetületének tétele alapján:

$$v_B \cos 45^\circ = v_A$$

ahonnan

$$v_B = v_A \sqrt{2} = 2r\omega_{OA} \sqrt{2}.$$

Így most a BD kar \vec{v}_B sebessége ismert, és a \vec{v}_D sebesség iránya ($\vec{v}_D \perp \overline{DC}$). Merőlegeseket húzva a \vec{v}_B és \vec{v}_D sebességvektorokra, metszéspontjukban helyezkedik el a BD kar sebességpólusa P_{BD} . Az ábra alapján:

$$\overline{BP_{BD}} = \frac{1}{2}l\sqrt{2}$$
.

Amely alapján

$$\omega_{BD} = \frac{v_B}{\overline{BP_{BD}}} = 4\frac{r}{l}\omega_{OA}.$$

Fontos megjegyezni, hogy a \vec{v}_A és \vec{v}_D sebességvektorokból húzott merőlegesek a sebességpólus meghatározása céljából nem megfelelők, hiszen az A és D pontok más és más testekhez tartoznak, tehát az így meghúzott merőlegesek semmilyen sebességpólust nem eredményeznek.

3.12. példa

Az O tengelyen egymástól függetlenül helyezkedik el az 1-es fogaskerék és az OA kar, amelynek szögsebessége ω_{OA} . A kar A pontjában levő tengelyen helyezkedik el a 2-es fogaskerék, egy szilárdan hozzákapcsolt AB karral, amely a C pontban vezetőben végződik (3.29. ábra). Az 1-es és 2-es fogaskerék átmérője egyenlő. Meghatározni az 1-es fogaskerék ω_I szögsebességét abban a pillanatban, amikor $\overline{OA}\bot\overline{OC}$, ha ekkor az ACO szög 30° .

Megoldás:

Az 1-es fogaskerék ω_I szögsebessége meghatározható, ha ismert az E pont kerületi sebessége. Ez abból a feltételből határozható meg, hogy az E pont egyúttal a 2-es fogaskerék pontja is. A 2-es fogaskerék A pontjában ismert a sebesség nagysága és iránya:

$$\vec{v}_A \perp \overline{OA}$$
, $v_A = 2r\omega_{OA}$,

Ahol *r* a fogaskerék sugara..

Ezenkívül ismert még a \vec{v}_E sebesség irányítottsága, ellenben ebben az esetben ez még nem elégséges, hiszen $\vec{v}_E \| \vec{v}_A$. A sebességek vetületének tételével a v_E sebesség nagyságát nem lehet meghatározni, mert a \vec{v}_E és \vec{v}_A sebességvektorok merőlegesek az AE egyenesre. Kihasználható ellenben az a tény, hogy a 2-es fogaskerék és az AB kar egy egységet képez. Ennek a testnek sebessége a C pontban ismert. A \vec{v}_C vektor a CA irányba mutat, mert a C pontban a kar

3.29. ábra. A 3.12. példa illusztrációja

vezetőben mozog. A \vec{v}_A és \vec{v}_C vektorokra húzott merőlegesek metszéspontjában helyezkedik el a BAE test sebességpólusa P.

A feladatban megadott ACO=30° alapján a CPA szög 30°. Ebből felírható:

$$\overline{AC} = 2 \cdot \overline{AO} = 4r$$
, $\overline{PA} = 2 \cdot \overline{AC} = 8r$, $\overline{PE} = 7r$.

Az arányok alapján:

$$\frac{v_e}{PE} = \frac{v_A}{PA}$$
,

amelynek alapján

$$v_E = \frac{7}{8}v_A = \frac{7}{8}r \cdot \omega_{OA}.$$

És végül:

$$\omega_I = \frac{v_E}{OE} = \frac{7}{4}\omega_{OA}$$
.

3.3.6. SÍKMOZGÁST VÉGZŐ TEST PONTJAINAK GYORSULÁSA

Hasonlóképpen a síkmozgás sebességéhez, egy tetszőleges pont gyorsulása is két komponensből tevődik össze. Ezek a haladó és a forgómozgás által kiváltott gyorsuláskomponensek. Síkmozgással mozgó test pontjának gyorsulása, a síkmozgás sebessége (3.23 összefüggés), idő szerint vett deriváltjaként határozható meg. A síkmozgással mozgó test pontjának sebessége:

$$\vec{v}_B = \vec{v}_A + \vec{v}_B^A = \vec{v}_A + \vec{\omega} \times \overrightarrow{AB} .$$

Deriválva a fenti egyenletet:

$$\frac{d\vec{v}_B}{dt} = \frac{d\vec{v}_A}{dt} + \frac{d\vec{\omega}}{dt} \times \overrightarrow{AB} + \vec{\omega} \times \frac{d\overrightarrow{AB}}{dt},$$

ahol:

-
$$\frac{d\vec{v}_B}{dt} = \vec{a}_B$$
 a B pont gyorsulásvektora,
- $\frac{d\vec{v}_A}{dt} = \vec{a}_A$ az A pont gyorsulásvektora,
- $\frac{d\vec{\omega}}{dt} = \vec{\varepsilon}$ az S síkmetszet szöggyorsulás-vektora,
- $\frac{d\overrightarrow{AB}}{dt} = \vec{\omega} \times \overrightarrow{AB} = \vec{v}_B^A$ a (3.24) összefüggés alapján.

A gyorsulás tehát:

$$\vec{a}_B = \vec{a}_A + \vec{\varepsilon} \times \overrightarrow{AB} + \vec{\omega} \times (\vec{\omega} \times \overrightarrow{AB}),$$

az egyenlet utolsó tagja:

$$\vec{\omega} \times (\vec{\omega} \times \overrightarrow{AB}) = -\overrightarrow{AB} \cdot \vec{\omega}^2$$
, mert $\vec{\omega} \perp \overrightarrow{AB}$,

majd:

$$\vec{a}_{R} = \vec{a}_{A} + \vec{\varepsilon} \times \overrightarrow{AB} - \overrightarrow{AB} \cdot \omega^{2}$$
.

Ennek az egyenletnek utolsó két tagja a B pont gyorsulását adja, amely a testtel együtt forgómozgást végez az A pólus körül, tehát az $\vec{\varepsilon} \times \overrightarrow{AB} - \overrightarrow{AB} \cdot \omega^2 = \vec{a}_B^A$, a B pont A pólus körüli forgómozgásának gyorsulása.

Síkmozgással mozgó test pontjának gyorsulása végső alakban:

$$\vec{a}_B = \vec{a}_A + \vec{a}_B^A. \tag{3.28}$$

Síkmozgással mozgó merev test tetszőleges B pontjának gyorsulása egyenlő a pólusnak vett A pont gyorsulásának és a B pont pólus körüli forgómozgása gyorsulásának vektoriális összegével. A B pont forgómozgásának gyorsulása két komponensből áll a normális és a tangenciális gyorsulásból:

$$\vec{a}_B^A = \vec{\varepsilon} \times \overrightarrow{AB} - \overrightarrow{AB} \cdot \omega^2,$$

ahol:

 $-\vec{a}_{Bt}^{A} = \vec{\varepsilon} \times \overrightarrow{AB}$ a tangenciális komponens,

- $\vec{a}_{Bn}^{A} = -\overrightarrow{AB} \cdot \omega^{2}$ a normális komponens.

Így tehát a *B* pont gyorsulásának alakja:

$$\vec{a}_B = \vec{a}_A + \vec{a}_{Bt}^A + \vec{a}_{Bn}^A. \tag{3.29}$$

Az \vec{a}_B gyorsulásvektort a komponensei segítségével szerkesztett paralelogramma alapján lehet meghatározni a 3.30. ábra szerint. Az \vec{a}_{Bt}^A vektor az AB egyenesre merőleges, irányítottsága megegyezik az elfordulás irányával, ha a mozgás gyorsuló, illetve ellentétes irányítottságú, ha a forgómozgás lassuló. Az \vec{a}_{Bn}^A vektor irányítottsága minden esetben a B ponttól az A pont (pólus) felé mutat.

3.30. ábra. Síkmozgással mozgó test pontjának gyorsuláskomponensei

A tangenciális és normális gyorsulások nagyságai a következő képletek segítségével számíthatók:

$$\overline{a_{Bt}^{A} = \overline{AB} \cdot \varepsilon,}
\overline{a_{Bn}^{A} = \overline{AB} \cdot \omega^{2}}.$$
(3.30)

A pólus körüli forgómozgás gyorsulásának nagysága:

$$a_B^a = \overline{AB}\sqrt{\varepsilon^2 + \omega^4}.$$
 (3.31)

A forgómozgás gyorsulásvektora és a forgómozgás normális gyorsulásvektora között bezárt szög:

$$tg\gamma = \frac{|\varepsilon|}{\omega^2}.$$
 (3.32)

Ha az *A* pólus haladó mozgás helyett görbevonalú mozgással mozog, akkor gyorsulása szintén két komponensből tevődik össze (tangenciális, normális), és ekkor a *B* pont gyorsulásának alakja:

$$\vec{a}_B = \vec{a}_{An} + \vec{a}_{At} + \vec{a}_{Bt}^A + \vec{a}_{Bn}^A. \tag{3.33}$$

Az S metszet bármely B pontjának gyorsulása egyenlő a pólusnak vett A pont gyorsulásának és a B pont pólus körüli forgómozgása gyorsulásának vektoriális összegével. 3.13. példa

Az egyenes úton (sínen) gördülő kerék O középpontjának az adott időpillanatban sebessége $v_O=I[m/s]$, gyorsulása $a_O=2[m/s^2]$. A kerék sugara R=0,2[m] (3.31. ábra). Meghatározni a B

3.31. ábra. A 3.13. példa illusztrációja

kerületi pont gyorsulását, amely az *AB* egyenesen fekszik, és merőleges az *OP* sugárra, valamint a *P* pont gyorsulását, amely egybeesik a sebességpólussal.

Megoldás:

Mivel a \vec{v}_O és \vec{a}_O ismertek, legcélszerűbb az O pontot pólusnak választani. Első lépésben meg kell határozni a test ω szögsebességét. Mivel a P pont a sebességpólus, a szögsebesség:

$$\omega = \frac{v_O}{\overline{PO}} = \frac{v_o}{R}.$$
 (a)

Az ω irányát és irányítottságát a \vec{v}_O vektor

iránya és irányítottsága adja (3.31. ábra).

Második lépésben az ε szöggyorsulást kell meghatározni. Az (a) egyenletben a $\overline{PO} = R$ távolság a kerék bármely helyzetében állandó, deriválva ezt az egyenletet az eredmény:

$$\frac{d\omega}{dt} = \varepsilon = \frac{I}{R} \cdot \frac{dv_O}{dt}, \text{ illetve } \varepsilon = \frac{a_O}{R}.$$
 (b)

Az ε és ω előjelei megegyeznek, tehát a kerék forgása gyorsuló mozgás.

Megjegyzés: Függetlenül attól, hogy a $v_O = I[m/s]$ értéke a feladatban meg van adva, az még nem jelenti azt is, hogy a v_O sebesség állandó, hiszen a sebességérték egy adott időpillanatra vonatkozik. Az, hogy a v_O időben változik abból is látszik, hogy $a_O \neq 0$.

Ebben az esetben $\frac{dv_O}{dt} = \dot{v}_O = a_O$, mert a kerék egyenesvonalú mozgással mozog. Általános

esetben a sebesség idő szerinti deriváltja a tangenciális gyorsulás: $\frac{dv_o}{dt} = a_{Ot}$.

Harmadik lépésben a pólus körüli forgómozgás gyorsulásvektor-komponenseit (\vec{a}_{Bt}^O i \vec{a}_{Bn}^O) kell meghatározni. Mivel a pólus az O pont, a (3.29) összefüggés alapján:

$$\vec{a}_{B} = \vec{a}_{O} + \vec{a}_{Bt}^{O} + \vec{a}_{Bn}^{O} \tag{c}$$

A feladat szerint
$$\overline{PO} = R$$
, így: $a_{Bt}^O = \overline{BO} \cdot \varepsilon = a_O = 2 \left[m / s^2 \right]$, $a_{Bn}^O = \overline{BO} \cdot \omega^2 = \frac{v_O^2}{R} = 5 \left[m / s^2 \right]$. (d)

A 3.31. ábrán a B pont \vec{a}_B gyorsulásvektorának komponensei külön láthatók. Az \vec{a}_O vektort az O pontból át lehet helyezni, az \vec{a}_{Bt}^O vektor irányítottsága az elfordulás irányába mutat, mert a mozgás gyorsuló, az \vec{a}_{Bt}^O pedig mindenkor a B pont-tól az O pólus felé mutat.

Végül a B pont \vec{a}_B gyorsulását ki is kell számítani. A B pontban elhelyezkedő gyorsulásvektorokat, az xy koordináta-rendszer tengelyeire levetítve:

$$a_{Bx} = a_{Bn}^{O} - a_{O} = 3 [m/s^{2}], \quad a_{By} = a_{Bt}^{O} = 2 [m/s^{2}],$$

ahonnan

$$a_b = \sqrt{a_{Bx}^2 + a_{By}^2} = \sqrt{13} \approx 3.6 \left[m / s^2 \right].$$

Hasonlóképpen megkapható a P pont gyorsulása is, amelynek értéke $a_P = a_{Pn}^O = 5 \left[m / s^2 \right]$, és a PO irányba mutat. Látható, hogy a P pont gyorsulása nem zérus, függetlenül attól, hogy sebessége az adott időpillanatban zérus.

3.14. példa

Az 1-es álló fogaskerékhez, amelynek sugara r_1 =0,3 [m], az OA kar segítségével kapcsolódik az r_2 =0,2[m] sugarú 2-es fogaskerék. A kar az O pont körül forog, pillanatnyi szögsebessége ω =1 [s^{-1}], szöggyorsulása ε = -4 [s^{-2}] (3.32. ábra). Meghatározni az adott időpillanatban a mozgó

3.32. ábra. A 3.14. példa illusztrációja

fogaskerék kerületi D pontjának gyorsulását, ha az AD sugár a karra merőleges.

Megoldás:

A feladat megoldásakor a 2-es fogaskerék mozgását kell figyelembe venni. A rendelkezésre álló adatokból az A pont, amely egyúttal pólusnak is vehető, \vec{v}_A sebessége és \vec{a}_A gyorsulása egyszerűen meghatározható.

- A \vec{v}_A és \vec{a}_A meghatározása. Mivel ismert a kar szögsebessége ω és szöggyorsulása ε , a sebesség és gyorsulás:

$$v_A = \overline{OA} \cdot \omega = 0.5 [m/s],$$

$$a_{At} = \overline{OA} \cdot \varepsilon = -2 [m/s^2],$$

$$a_{An} = \overline{OA} \cdot \omega^2 = 0.5 [m/s^2].$$

Mivel a v_A és az a_{At} előjelei különbözőek, az A pont mozgása az adott helyzetből lassuló mozgás. Az \vec{a}_{At} és \vec{a}_{An} vektorok irányítottságai a 3.32. ábrán láthatók.

- $Az \omega_2$ meghatározása. A P érintkezési pont a 2-es fogaskerékre vonatkoztatva sebességpólus (mivel az 1-es fogaskerék mozdulatlan), tehát a szögsebessége:

$$\omega_2 = \frac{v_A}{PA} = \frac{v_A}{r_2}, \quad \omega_2 = 2.5 [s^{-1}].$$

Az ω_2 iránya (a fogaskerék forgásiránya) a v_A sebesség irányából meghatározható, amint az az ábrán látható.

- Az ε_2 meghatározása. Amint az előző példában is, ebben az esetben is $\overline{PA} = r_2$ és a mozgás időtartama alatt állandó, tehát a szöggyorsulás:

$$\varepsilon_2 = \frac{d\omega_2}{dt} = \frac{1}{r_2} \cdot \frac{dv_A}{dt} = \frac{a_{At}}{r_2}, \quad \varepsilon_2 = -10 \left[s^{-2} \right].$$

Az ω_2 és ε_2 előjelei különbözők, így a 2-es fogaskerék forgása lassuló.

- Az \vec{a}_{Dt}^A és \vec{a}_{Dn}^A meghatározása. A D pont gyorsulása a (3.33) összefüggés alapján:

$$\vec{a}_D = \vec{a}_{At} + \vec{a}_{An} + \vec{a}_{Dt}^A + \vec{a}_{Dn}^A$$
.

Ebben az esetben $\overline{DA} = r_2$, és

$$a_{Dt}^A = \overline{DA} \cdot \varepsilon_2 = -2 \left[m/s^2 \right], \quad a_{Dn}^A = \overline{DA} \cdot \omega_2^2 = 1.25 \left[m/s^2 \right].$$

Az \vec{a}_D vektor komponensei az ábrán külön is láthatók. Az \vec{a}_{At} , \vec{a}_{An} a D pontból áthelyezve, az \vec{a}_{Dt}^A irányítottsága ellentétes a forgásiránnyal, mert a mozgás lassuló, az \vec{a}_{Dn}^A a D ponttól az A pólus felé mutat.

- $Az \vec{a}_D$ gyorsulás számítása. Az xy koordináta-rendszerben:

$$a_{Dx} = |a_{At}| + a_{Dn}^A = 3.25 [m/s^2], \quad a_{Dy} = |a_{Dt}^A| - a_{An} = 1.5 [m/s^2],$$

ahonnan:

$$a_D = \sqrt{a_{Dx}^2 + a_{Dy}^2} \approx 3.58 \left[m / s^2 \right].$$

3.15. példa

Az O ponti tengely körül, egyenletes $\omega_{OA}=4$ [s^{-1}] szögsebességgel forgó OA karhoz csatlakozik az AB kar, amely egy BC karban végződik. A karok méretei: $\overline{OA}=r=0.5$ [m], $\overline{AB}=2r$, $\overline{BC}=r\sqrt{2}$. A 3.33. ábrán bemutatott helyzetben az OAB szög 90° , az ABC szög 45° . Meghatározni a mechanizmus adott helyzetére a B pont gyorsulását, és a BC kar szögsebességét és szöggyorsulását.

Megoldás:

A feladat grafikus, és analitikus módszerrel egyaránt megoldható.

I Grafikus megoldás. Figyelembe véve az AB kar mozgását, pólusként választható az A pont. Mivel az ω_{OA} =const, az A pontra vonatkozóan felírható:

$$v_A = r \cdot \omega_{OA} = 2 [m/s], \quad a_A = a_{An} = r \cdot \omega_{OA}^2 = 8 [m/s^2].$$
 (a)

3.33. ábra. A 3.15. példa illusztrációja

 \vec{v}_A és \vec{a}_A vektorok. - $Az \omega_{AB}$ meghatározása. ismert (BC

A 3.33. ábrán láthatók a

A B pont mozgáspályája sugarú kör). $\vec{v}_{\scriptscriptstyle B} (\vec{v}_{\scriptscriptstyle B} \perp BC)$ sebesség irányítottsága is, és meghatározható az AB kar sebességpólusa P. Az ábra alapján AP = AB = 2r

Ekkor:

$$\omega_{AB} = \frac{v_A}{AP}$$
, illetve
$$\omega_{AB} = \frac{1}{2}\omega_{AO} = 2\left[s^{-1}\right]. \text{ (b)}$$

A forgásirány az ábra szerint.

Ebben a példában a mechanizmus mozgása közben a PA távolság változó, így nem alkalmazható az ε_{AB} meghatározására, mint az előző példában. Ezért elsőként az a_{Bn}^A és az a_{Bn} meghatározására kerül sor.

- Az \vec{a}_{Bn}^{A} meghatározása. Az ismert ω_{AB} alapján a (3.30) összefüggésből:

$$a_{Bn}^{A} = \overline{AB} \cdot \omega_{AB}^{2} = 4 \left[m / s^{2} \right]. \tag{c}$$

- Az \vec{a}_{Bn} meghatározása. A B pont mozgáspályája ismert, így meghatározható a pont a_{Bn} gyorsulása. A sebességvetületek tételét alkalmazva, a sebességek vetületei a BA karra:

 $v_R \cos 45^\circ = v_A$

ebből

$$v_R = v_A \sqrt{2}$$
,

valamint

$$a_{Bn} = \frac{v_B^2}{\overline{BC}} = \frac{2v_A^2}{r\sqrt{2}} = 8\sqrt{2} \quad [m/s^2].$$
 (d)

- Az \vec{a}_B meghatározása. A B pont gyorsulása két komponensből tevődik össze $\vec{a}_B = \vec{a}_{Bt} + \vec{a}_{Bn}$. Másrészről az \vec{a}_B meghatározható a (3.29) összefüggésből is:

$$\vec{a}_A + \vec{a}_{Bn}^A + \vec{a}_{Bt}^A = \vec{a}_{Bn} + \vec{a}_{Bt}. \tag{e}$$

A 3.33. ábrán a fenti egyenlet grafikus megoldása látható. Egy tetszőleges O_1 pontból, megfelelő arányban először az $\vec{a}_A = O_I a_I$ vektort, majd az a_I ponttól az $\vec{a}_{Bn}^A = a_I k$ vektort kell felrajzolni $(\vec{a}_{Bn}^A | \overrightarrow{AB})$. A k pontból az $a_I k$ -ra merőleges $k b_I$ egyenes az \vec{a}_{Bt}^A irányát adja, amelyen egyúttal az $\vec{a}_{\scriptscriptstyle B}$ vektor végpontja is megtalálható. Ennek meghatározásához, az $O_{\scriptscriptstyle I}$ pontból meg kell szerkeszteni az $\vec{a}_{Bn} = \overrightarrow{O_I n}$ vektort $(\vec{a}_{Bn} \| \overrightarrow{BC})$, majd végpontjából erre merőlegesen az nb_I egyenest, amely az \vec{a}_{Bl} irányát határozza meg. Az \vec{a}_B vektor szintén ezen az egyenesen fekszik, ami annyit jelent, hogy a kb_I egyenes és az nb_I egyenes b_I metszéspontja a keresett vektor \vec{a}_B végpontja. Tehát $\vec{a}_B = \overrightarrow{O_I b_I}$. Az $\overrightarrow{O_I b_I}$ távolságot lemérve, és megszorozva az ábra arányával, a B pont gyorsulása $a_B \approx 13 \ [m/s^2]$.

A rajzról meghatározhatók az egyéb gyorsuláskomponensek is: $\overrightarrow{kb_l} = \vec{a}_{Bt}^A$ és $\overrightarrow{nb_l} = \vec{a}_{Bt}$.

- $Az \in_{AB}$ meghatározása. A $\overline{kb_1}$ hossz alapján a (3.30) összefüggésből:

$$\left|\varepsilon_{AB}\right| = \frac{\left|a_{Bt}^{A}\right|}{\overline{BA}} = \frac{\overline{kb_{I}}}{\overline{BA}}.$$

Az ábra arányából (léptékéből) az $|\varepsilon_{AB}| = 20 \left[s^{-2} \right]$. Látható ezenkívül, hogy a $\vec{v}_B^A = \vec{v}_B - \vec{v}_A$ vektor irányítottsága ellentétes az \vec{a}_{Bt}^A vektor irányítottságától, tehát az AB rúd forgása lassuló forgás, és ezért $\varepsilon_{AB} = -20 \left[s^{-2} \right]$.

II Analitikus megoldás. Az előző pontokban elvégzett számítások alapján (a tól d-ig), az (e) vektoregyenlet alapján vektorsokszöget kell rajzolni (arányok nélkül, betartva a vektorok irányát). Az ismeretlen \vec{a}_{Bt}^A vektorra merőleges x koordináta-tengelyt húzva, és erre az (e) egyenlet mindkét oldalát levetítve:

$$a_{Bn}^{A} = a_{Bn} \cos 45^{\circ} - |a_{Bt}| \cos 45^{\circ}$$
.

Ebből az egyenletből:

$$|a_{Bt}| = a_{Bn} - a_{Bn}^A \cdot \sqrt{2} = 8\sqrt{2} - 4\sqrt{2} = 4\sqrt{2}$$
.

A végeredmény:

$$a_B = \sqrt{(a_{Bt})^2 + (a_{BN})^2} = 4\sqrt{10} \approx 12,65 \, [m/s^2].$$

Az ε_{AB} számszerű meghatározásához az (e) egyenletet az \vec{a}_{Bt} vektorra merőleges $O_{I}n$ tengelyre vetítve:

$$-a_a \cos 45^\circ + a_{Bn}^A \cos 45^\circ + |a_{Bt}^A| \cos 45^\circ = a_{Bn}$$
.

Ebből az egyenletből:

$$|a_{Bt}^{A}| = a_{A} - a_{Bn}^{A} + a_{Bn}\sqrt{2} = 20 [m/s^{2}],$$

és

$$\left|\varepsilon_{Ab}\right| = \frac{\left|a_{Bt}^A\right|}{\overline{AB}} = 20\left[s^{-2}\right].$$

A v_B és a_{Bt} meghatározása után, a BC kar szögsebessége és szöggyorsulása:

$$\omega_{BC} = \frac{v_B c}{\overline{RC}}, \quad |\varepsilon_{BC}| = \frac{|a_{Bt}|}{\overline{RC}}.$$

Kiszámítva ezek értékeit: $\omega_{Bc} = 4 [s^{-1}]$, $\varepsilon_{BC} = -8 [s^{-2}]$ (a negatív előjel arra utal, hogy az \vec{a}_{Bt} gyorsulás irányítottsága ellentétes a \vec{v}_B sebességétől).

4. MEREV TEST FORGÓMOZGÁSA ÁLLÓ PONT KÖRÜL (GÖMBMOZGÁS)

4.1. MOZGÁSEGYENLETEK

A merev test olyan mozgását, amely folyamán a test bármely tetszőleges pontja, a mozgás tartama alatt mozdulatlan marad, egy pont körüli forgómozgásnak, illetve szférikus (gömb v. pörgettyű) mozgásnak nevezik. A test pontjai gömbfelületen mozognak, amelynek középpontjai a mozdulatlan pontban vannak.

Az álló (mozdulatlan) pont, lehet a test pontja (a testen belüli pont), de a testen kívül is elhelyezkedhet, ekkor azonban valamilyen módon a testhez kötődnie kell.

A mozdulatlan O pontba helyezve egy álló (x_0, y_0, z_0) Descart féle kordinátarendszert, valamint egy mozgó koordináta rendszert is (x_1, y_1, z_1) , amely a testtel együtt mozog (4.1. ábra), ekkor a test O pont körüli forgása a mozgó (x_1, y_1, z_1) koordináta-rendszernek az álló (x_0, y_0, z_0) koordináta-rendszerhez viszonyított helyzetével definiálható.

4.1. ábra. Módosított Euler-féle szögek

Ennek a helyzetnek a meghatározására szolgál az un. Euler-féle módszer.

Euler bebizonyította, hogy a test helyzete egy álló pont körüli forgómozgásakor három szöggel határozható meg, ezek az Euler-féle szögek. A továbbiakban a módszer alapvető ismertetésére kerül sor, az eredetitől eltérő un. módosított Euler szögek segítségével. Kezdeti helyzetben mindkét koordinátarendszer fedi egymást. Ezután első lépésben az x_1, y_1, z_1 koordinátarendszer a függőleges z_0 tengely körül fordul el ψ szöggel (csavarási szög). A második elfordulás az *y*₀ tengely körüli 9 szöggel (billenési szög) történik. A az x_0 tengely körüli harmadik elfordulás a φ szöggel (forgatási szög), a 4.1. ábra szerint. A ψ,9 és φ szögek a módosított Euler-féle szögek. Ezeknek a független szögeknek a

segítségével, amelyek generalizált koordinátáknak tekinthetők, a merev test helyzete, álló pont körüli forgómozgása esetén egyértelműen meghatározható, ami annyit jelent, hogy az ilyen mozgásnak három szabadságfoka van n = 3 (három független forgás).

A ψ , θ , ϕ szögek (mivel mozgásról van szó) időben változnak, tehát a t időtől függő törvényszerűségekkel definiálhatók (megadhatók). Az így képzett paraméteres egyenletek alakjai:

$$\psi = f_1(t),
\vartheta = f_2(t),
\varphi = f_3(t).$$
(4.1)

A (4.1) egyenletek a szférikus (gömb v. pörgettyű) mozgás mozgásegyenletei.

A koordinátatengelyek körűli forómozgások elfordulási szögeinek elnevezései:

- ψ a *precesszió* szöge (csavarási szög, ang. **ROLL**)
- 9 a *nutáció* szöge (billentési szög, ang. **PITCH**)
- φ a saját tengely körüli elfordulás szöge (forgatási szög, ang. YAW)

A mozgó és a mozdulatlan koordináta-rendszerek közötti összefüggést az elfordulások egyenkénti vizsgálatával célszerű megadni, a következőképpen:

1. A ψ szöggel történő elforduláskor (csavarási szög, ang. **ROLL**).

4.2. ábra. A ψ szöggel történő elfordulás

A z_0 tengely körüli első elfordulás a 4.2. ábrán látható. Az a) alatt a térben, a b) alatt az x_0 y_0 síkban.

A mozgó és mozdulatlan koordináta-rendszerek egységvektorai közötti összefüggések, a 4.2.b) ábra alapján, a következő alakban írhatók fel:

$$\begin{split} \vec{i}' &= \vec{i}_0 \cdot cos\psi + \vec{j}_0 \cdot sin\psi \,, \\ \vec{j}' &= -\vec{i}_0 \cdot sin\psi + \vec{j}_0 \cdot cos\psi \,, \\ \vec{k}' &= \vec{k}_0 \,. \end{split}$$

A fenti egyenletek mátrix alakban:

$$\psi = f_{1} (t),$$
 $\theta = f_{2} (t),$
 $\phi = f_{3} (t).$

A két koordináta-rendszer közötti összefüggést, ψ szöggel történő elfordulás következtében, a következő transzformációs mátrix szolgáltatja:

$$R(\psi) = \begin{vmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{vmatrix}. \tag{4.2}$$

2. A ϑ szöggel történő elforduláskor (billentési szög, ang. PITCH).

4.3. ábra. A 9 szöggel történő elfordulás

Az előbb elfordított koordináta-rendszert, az y' tengely körül tovább kell forgatni a 4.3. ábra szerint. Az a) alatt a térben, a b) alatt az x'z' síkban (az y' tengely irányából nézve).

A mozgó és mozdulatlan koordináta-rendszerek egységvektorai közötti összefüggések, a 4.3.b) ábra alapján, a következő alakban írhatók fel:

$$\vec{i}'' = \vec{i}' \cdot \cos \vartheta - \vec{k}' \cdot \sin \vartheta,$$

$$\vec{j}'' = \vec{j}',$$

$$\vec{k}'' = \vec{i}' \cdot \sin \vartheta + \vec{k}' \cdot \cos \vartheta.$$

A két koordináta-rendszer közötti összefüggést, 9 szöggel történő elfordulás következtében, a következő transzformációs mátrix szolgáltatja:

$$R(\vartheta) = \begin{vmatrix} \cos\vartheta & 0 & \sin\vartheta \\ 0 & 1 & 0 \\ -\sin\vartheta & 0 & \cos\vartheta \end{vmatrix}. \tag{4.3}$$

3. A φ szöggel történő elforduláskor (forgatási szög, ang. YAW).

A harmadik elfordulás az x'' tengely körül történik a 4.4. ábra szerint. Az a) alatt a térben, a b) alatt az y''z'' síkban (az x'' tengely irányából nézve).

A mozgó és mozdulatlan koordináta-rendszerek egységvektorai közötti összefüggések, a 4.4.b) ábra alapján, a következő alakban írhatók fel:

$$\vec{i}''' = \vec{i}'',$$

$$\vec{j}''' = \vec{j}'' \cdot \cos\varphi + \vec{k}'' \cdot \sin\varphi,$$

$$\vec{k}''' = -\vec{j}'' \cdot \sin\varphi + \vec{k}'' \cdot \cos\varphi.$$

A két koordináta-rendszer közötti összefüggést, φ szöggel történő elfordulás következtében, a

4.3. ábra. A φ szöggel történő elfordulás

következő transzformációs mátrix szolgáltatja:

$$R(\varphi) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{vmatrix}. \tag{4.4}$$

A teljes transzformáció, figyelembevéve midhárom egyidejű elfordulást, a (4.2, 4.3 és 4.4) mátrixok szorzataként kapható, ennek elnevezése a *rotációmátrix*, alakja:

$${}_{0}R^{1} = R(\psi)R(\vartheta)R(\varphi) = \begin{vmatrix} \cos\psi\cos\vartheta & \cos\psi\sin\vartheta\sin\varphi - \sin\psi\cos\varphi & \cos\psi\sin\vartheta\cos\varphi + \sin\psi\sin\varphi \\ \sin\psi\cos\vartheta & \sin\psi\sin\vartheta\sin\varphi + \cos\psi\cos\varphi & \sin\psi\sin\vartheta\cos\varphi - \cos\psi\sin\varphi \\ -\sin\vartheta & \sin\varphi\cos\vartheta & \cos\vartheta\cos\varphi \end{vmatrix}.$$

A fenti mátrix legtöbbször (az egyszerűség kedvéért) a következő alakban használatos:

$$R = \begin{vmatrix} e_{1x} & e_{2x} & e_{3x} \\ e_{1y} & e_{2y} & e_{3y} \\ e_{1z} & e_{2z} & e_{3z} \end{vmatrix}. \tag{4.5}$$

A mátrix e elemei az egyes elfordulási szögek trigonometriai összefüggéseit jelölik. A mozdulatlan (x_0, y_0, z_0) koordináta-rendszerben elhelyezkedő \vec{r} helyzetvektor, és a mozgó (x_1, y_1, z_1) koordináta-rendszer \vec{p} helyzetvektora közötti összefüggés alakja:

$$\vec{r} = R \cdot \vec{p} \tag{4.6}$$

ahol:

- R a rotációmátrix.

$$\vec{\omega} = \dot{\vec{\psi}} + \dot{\vec{9}} + \dot{\vec{\phi}} = \dot{\vec{\phi}} \cdot \vec{i}'' + \dot{\vec{9}} \cdot \vec{j}' + \dot{\vec{\psi}} \cdot \vec{k}_{o}. \tag{4.7}$$

ahol:

- $\vec{\psi}$ a *precesszió* szögsebessége,
- 9 a *nutáció* szögsebessége,
- $\vec{\phi}$ a saját tengely körüli forgás szögsebessége.

A szögsebesség-vektor ($\vec{\omega}$) vetületei az álló koordináta-rendszer (x_0,y_0,z_0) tengelyeire, a transzformációs egyenletek segítségével határozhatók meg:

$$\begin{aligned}
\omega_{x} &= \vec{\omega} \cdot \vec{i}_{0} = (\vec{\varphi} \cdot \vec{i}'' + \vec{9} \cdot \vec{j}' + \vec{\psi} \cdot \vec{k}_{0}) \cdot \vec{i}_{0}, \\
\omega_{y} &= \vec{\omega} \cdot \vec{j}_{0} = (\vec{\varphi} \cdot \vec{i}'' + \vec{9} \cdot \vec{j}' + \vec{\psi} \cdot \vec{k}_{0}) \cdot \vec{j}_{0}, \\
\omega_{z} &= \vec{\omega} \cdot \vec{k}_{0} = (\vec{\varphi} \cdot \vec{i}'' + \vec{9} \cdot \vec{j}' + \vec{\psi} \cdot \vec{k}_{0}) \cdot \vec{k}_{0}.
\end{aligned}$$

Behelyettesítve a megfelelő transzformációs egyenleteket, a következő összefüggések adódnak:

Elrendezésük után, a fenti egyenletek végső alakban:

$$\begin{aligned}
\omega_{x} &= \dot{\varphi} \cdot cos\psi \cdot cos\vartheta - \dot{\vartheta} \cdot sin\psi, \\
\omega_{y} &= \dot{\varphi} \cdot sin\psi \cdot cos\vartheta + \dot{\vartheta} \cdot cos\psi, \\
\omega_{z} &= -\dot{\varphi} \cdot sin\vartheta + \dot{\psi}.
\end{aligned} \tag{4.8}$$

A (4.8) összefüggések alapján meghatározott ($\vec{\omega}$) szögsebesség-vektor koordinátatengelyekre vett vetületeit *Euler féle kinematikai egyenleteknek* nevezik.

A pillanatnyi szögsebesség nagysága:

$$\omega = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2}.$$
 (4.9)

A koordinátatengelyekkel bezárt irányszögei:

$$\cos \angle \left(\vec{\omega}, \vec{i}_{\theta}\right) = \frac{\omega_{x}}{\omega}, \quad \cos \angle \left(\vec{\omega}, \vec{j}_{\theta}\right) = \frac{\omega_{y}}{\omega}, \quad \cos \angle \left(\vec{\omega}, \vec{k}_{\theta}\right) = \frac{\omega_{z}}{\omega}$$
 (4.10)

Ha a ψ , θ, φ forgásszögek kicsik, a trigonometriai összefüggések $cos\psi$, θ, φ ≈ l, $sin\psi$, θ, φ ≈ 0 helyettesíthetők, és a pillanatnyi szögsebesség vetületei:

$$\omega_x \approx \dot{\varphi}, \quad \omega_y \approx \dot{\vartheta}, \quad \omega_z \approx \dot{\psi}$$
 (4.11)

4.3. PILLANATNYI SZÖGGYORSULÁS

Az $\vec{\epsilon}$ szöggyorsulás-vektor vetületei az álló koordináta-rendszer tengelyeire, egyenlőek az $\vec{\omega}$ szögsebesség-vektor vetületeinek idő szerinti deriváltjával:

$$\varepsilon_{x} = \frac{d\omega_{x}}{dt} = \dot{\omega}_{x}, \quad \varepsilon_{y} = \frac{d\omega_{y}}{dt} = \dot{\omega}_{y}, \quad \varepsilon_{z} = \frac{d\omega_{z}}{dt} = \dot{\omega}_{z}.$$
(4.12)

A pillanatnyi szöggyorsulás-vektor nagysága:

$$\varepsilon = \sqrt{\varepsilon_x^2 + \varepsilon_y^2 + \varepsilon_z^2}.$$
 (4.13)

A pillanatnyi szöggyorsulás-vektor, koordinátatengelyekkel bezárt irányszögei:

$$\cos \angle \left(\vec{\varepsilon}, \vec{i}_{\theta}\right) = \frac{\varepsilon_{x}}{\varepsilon}, \quad \cos \angle \left(\vec{\varepsilon}, \vec{j}_{\theta}\right) = \frac{\varepsilon_{y}}{\varepsilon}, \quad \cos \angle \left(\vec{\varepsilon}, \vec{k}_{\theta}\right) = \frac{\varepsilon_{z}}{\varepsilon}.$$
(4.14)

Az egy pont körüli forgómozgás gyakorlati alkalmazása repülők, hajók mozgásainak tanulmányozására, és alapvető kinematikai jellemzői meghatározására (4.5. ábra) szolgál, valamint a robotikában, a robotkarok csuklók körüli mozgásainak tanulmányozására használatos.

4.5. ábra. Hajó és repülő mozgása

Az egy pont körüli forgómozgás (gömbmozgás) legegyszerűbb példája egy mozdulatlan kúpfogaskeréken gördülő, vele páros, másik kúpfogaskerék.

4.1. példa

Meghatározni a kúpfogaskerék B és C pontjának sebességét (4.6. ábra), ha ismert az A középpontjának sebessége. A kúpfogaskerék egy másik mozdulatlan K keréken gördül csúszásmentesen.

4.6. ábra. A 4.1. példa illusztrációja

Megoldás:

A kúpkerék forgást végez az O álló pont körül. A fogaskerék OB egyenesen elhelyezkedő pontjainak sebessége megegyezik a K kerék pontjainak sebességével, hiszen a forgás csúszásmentes. Mivel a K mozdulatlan, az OB egyenes pontjai is mozdulatlanok, tehát ez az egyenes a kúpkerék pillanatnyi forgástengelye. Az A pont sebessége $v_A = h_I \cdot \omega$, ahol ω a fogaskerék szögsebessége az OB forgástengelyre vonatkoztatva, h_I az A pont távolsága ettől a tengelytől. Ebből az összefüggésből $\omega = v_A/h_I$.

A C pont v_C sebessége egyenlő $h_2 \cdot \omega$, ahol h_2 a C pont távolsága az OB tengelytől. Az adott esetben $h_2 = 2h_I$, így $v_C = 2v_A$. A B pont sebessége, mivel a pillanatnyi forgástengelyen fekszik, $v_B = 0$.

4.2. példa

Az R=20 [cm] alapsugarú és $h=20\cdot\sqrt{3}$ [cm] magasságú (1) kúp a (2) kúp felületén csúszásmentesen gördül, és 1 perc alatt 15 fordulatot tesz meg (4.7.ábra). Meghatározni: a) a precesszió szögsebességét, saját tengelye körüli forgásának szögsebességét és az (1) mozgó kúp pillanatnyi szögsebességét, b) a mozgó kúp A pontjának sebességét. Megoldás:

a) Az (1) kúp gömbmozgást végez, mert az *O* pontja mozdulatlan. A precesszió szögsebessége a következő összefüggés alapján számítható:

$$\omega_p = \frac{\pi \cdot n}{30} = 1.57 \left[s^{-1} \right].$$

A szögsebesség-vektor az Oz tengelyen fekszik, nyila függőlegesen lefelé mutat, az (1) kúp feltételezett forgásirányával összhangban. A saját tengely körüli forgás szögsebesség-vektora $\vec{\omega}_s$ az Oy tengelyen fekszik, és a pozitív irányba

4.7. ábra. A 4.2. példa illusztrációja

mutat. A pillantnyi forgástengely, a kúpok közös alkotói irányában helyezkedik el, amely egyúttal a pillanatnyi szögsebesség-vektor $\vec{\omega}$ helyzetét is meghatározza. A pillanatnyi szögsebesség nagysága a 4.7. ábra szerinti szögsebességek alkotta vektorparalelogrammából határozható meg:

$$\omega = \frac{\omega_p}{\sin \alpha} = \pi = 3.14 [s^{-1}],$$

valamint:

$$\omega_s = \omega_p \cdot ctg\alpha = \frac{\pi\sqrt{3}}{2} = 2.72 [s^{-1}],$$

hiszen:

$$tg\alpha = \frac{R}{h} = \frac{1}{\sqrt{3}} \Rightarrow \alpha = arctg\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}.$$

A pillanatnyi szögsebesség-vektor vége körpályán mozog, mert $\omega = const$. Az $\vec{\epsilon} = \dot{\vec{\omega}}$ gyorsulásvektor az $\vec{\omega}$ pillanatnyi szögsebesség-vektor végének sebességével egyenlő, amely nem más mint az \vec{u} vektor. Ez a vektor a pillanatnyi szögsebesség-hodográf érintőjének irányába mutat, meghatározható:

$$\dot{\vec{\omega}} = \vec{u} = \vec{\omega}_p \times \vec{\omega} .$$

A szöggyörsulás nagysága (intenzitása), a fenti vektoriális szorzat alapján határozható meg:

$$\varepsilon = \vec{\omega} = \omega_p \cdot \omega \cdot \sin \angle (\vec{\omega}_p, \vec{\omega}).$$

 $Megjegyz\acute{e}s$: Általános esetben, gömbmozgással mozgó test szöggyorsulása, amennyiben $\omega \neq const$, még egy komponenssel is rendelkezik, amelynek nagysága a pillanatnyi szögsebesség deriváltjaként határozható meg, és a pillanatnyi forgástengelyen fekszik. Általános esetben a szöggyorsulás-vektor:

$$\dot{\vec{\omega}} = \frac{d\omega}{dt} \vec{\omega}_0 + \vec{\omega}_p \times \vec{\omega} ,$$

ahol:

- $\vec{\omega}_{\scriptscriptstyle{\theta}}$ a pillanatnyi forgástengely egységvektora Ω .

Ebben a feladatban $\angle (\vec{\omega}_p, \vec{\omega}) = 90^{\circ} - \alpha$, és a szöggyorsulás nagysága:

$$\varepsilon = \dot{\omega} = \omega_p \cdot \omega \cdot \sin(90^\circ - \alpha) = \frac{\pi}{2} \cdot \pi \cdot \frac{\sqrt{3}}{2} = \frac{\pi^2 \cdot \sqrt{3}}{4} = 4,26 \left[s^{-2} \right].$$

b) Az *A* pont sebességének iránya, az (1) kúp forgásirányából kifolyólag, az *Ox* tengely irányába mutat (4.7. ábra), nagysága kiszámítható a következő összefüggésből:

$$v_A = h_O \cdot \omega = 2R \cdot \cos \alpha \cdot \omega = 20\sqrt{3}\pi = 108.6 \text{ [cm/s]},$$

az A pont legkisebb távolsága a pillanatnyi forgástengelytől:

$$h_{\Omega} = 2R \cdot \cos \alpha = 20\sqrt{3} \ [cm]$$
.

4.3. példa

A 4.8. ábrán vázolt mechanizmus K karjának szögsebessége $\omega_K = \frac{\pi}{2} [s^{-1}]$, kezdő szögsebessége

 $\omega_{K0} = \pi \left[s^{-1} \right]$. A kar forgásba hozza az r sugarú (1) kúpkereket, amely a (2) mozdulatlan R = 2r sugarú kúpkerékhez kapcsolódik. Meghatározni a t = 1 [s] időpillanatban az 1-es kerék szögsebességét és szöggyorsulását, valamint az A pontjának sebességét.

Megoldás:

Az *O* pont mozdulatlan, tehát az (1) kúpkerék egy álló pont körüli forgómozgással mozog. A kar szögsebessége a precesszió szögsebessége, amely a következő törvényszerűség szerint változik:

$$\omega_p = \omega_{K0} + \omega_K \cdot t = \pi \left(I + \frac{t}{2} \right) [s^{-1}].$$

4.8. ábra. A 4.3. példa illusztrációja

A saját tengely körüli szögsebesség és a pillanatnyi szögsebesség nagysága a 4.8. ábrán

látható vektorparalelogrammából határozható meg. A szögsebességek nagysága:

$$\omega_s = \omega_p \cdot ctg\alpha = 2\pi \cdot \left(1 + \frac{t}{2}\right),$$

$$\omega = \frac{\omega_p}{\sin \alpha} = \frac{\omega_p}{\frac{\sqrt{5}}{5}} = \sqrt{5}\pi \cdot \left(1 + \frac{t}{2}\right),$$

ahol:

$$tg\alpha = \frac{1}{2}$$
, $sin\alpha = \frac{\sqrt{5}}{2}$, és $cos\alpha = \frac{2 \cdot \sqrt{5}}{5}$.

Az adott időpillanatban t = 1 [s] a szögsebességek:

$$\omega_{s} = 3\pi \ [s^{-1}], \quad \omega = \frac{3\sqrt{5}}{2}\pi \ [s^{-1}].$$

Az (1) fogaskerék szöggyorsulásának két komponense van, ezek:

$$\dot{\vec{\omega}} = \dot{\vec{\omega}}_1 + \dot{\vec{\omega}}_2$$
.

Az első, a pillanatnyi forgástengely irányában fekszik, nagysága a pillanatnyi szögsebesség deriváltjaként határozható meg, amely:

$$\dot{\omega}_I = \frac{d\omega}{dt} = \frac{\sqrt{5}}{2} \pi \left[s^{-2} \right].$$

A másik a következő összefüggésből határozható meg:

$$\dot{\vec{\omega}}_2 = \vec{\omega}_p \times \vec{\omega} = \dot{\vec{\psi}} \times \vec{\omega},$$

nagysága:

$$\vec{\omega}_2 = \omega_p \cdot \omega \cdot \sin \angle (\vec{\omega}_p, \vec{\omega}) = 2\pi^2 \cdot \left(1 + \frac{t}{2}\right)^2,$$

amely a t = 1 [s] értékére:

$$\dot{\omega}_2 = \frac{9}{2}\pi^2 [s^{-2}].$$

Az $\vec{\omega}_2$ vektor az $\vec{\omega}_p$ és $\vec{\omega}$ alkotta síkra merőleges, míg az $\vec{\omega}_1$ vektor az $\vec{\omega}$ -val kollineáris. Ez annyit jelent, hogy $\vec{\omega}_1 \perp \vec{\omega}_2$, amely mindig fennáll. Ezért a szöggyorsulás nagysága (Pythagorastétel) kiszámítható. Ebben az esetben:

$$\dot{\omega} = \sqrt{\dot{\omega}_{I}^{2} + \dot{\omega}_{2}^{2}} = \sqrt{\frac{\pi}{2} \cdot (5 + 8I\pi^{2})} [s^{-2}].$$

Az (1) kúpkerék A pontjának sebessége:

$$v_A = h_O \cdot \omega = 6r\pi \left[cm / s \right],$$

ahol az A pont legkisebb távolsága a pillanatnyi forgástengelytől:

$$h_{\Omega} = \sqrt{R^2 + r^2} \cdot \sin 2\alpha = r \cdot \sqrt{5} \cdot 2 \sin \alpha \cos \alpha = \frac{4\sqrt{5}}{5} r,$$

és végül a szögsebesség nagysága: $\omega = \frac{3 \cdot \sqrt{5}}{2} \left[s^{-1} \right]$.

4.4. példa

Az OC tengely az O pont körül olymódon forog, hogy a függőleges iránnyal $\alpha=60^\circ$ szöget zár be. Eközben az $R=20\sqrt{3}$ [cm] sugarú tárcsa egy vízszintes síkon csúszásmentesen gördül (4.9. ábra). A tárcsa tengelye egyenletes forgómozgással forog, melynek szögsebessége $\omega_p=\omega_s=2\sqrt{3}$. Meghatározni a tárcsa szögsebességét, szöggyorsulását, a tárcsa A és B pontjainak sebességét és gyorsulását, ha H=60 [cm].

Megoldás:

A 4.10.a) ábrán vázolt szögsebességvektorok vektorparalellogrammája alapján, alkalmazva a koszinusz-tételt, a tárcsa szögsebessége:

4.9. ábta. A 4.4. példa illusztrációja

$$\omega = \sqrt{\omega_p^2 + \omega_s^2 + 2\omega_p\omega_s \cdot \cos\alpha} = 6 [s^{-1}].$$

4.10. ábra. A 4.4. példa illusztrációja

A koszinusz-tétel alapján:

$$\frac{\omega_s}{\sin\beta} = \frac{\omega}{\sin(180^\circ - \alpha)} = \frac{\omega}{\sin\alpha},$$

majd:

$$\sin \beta = \frac{\omega_s}{\omega} \cdot \sin \alpha = \frac{2\sqrt{3}}{6} \cdot \frac{\sqrt{3}}{2} = \frac{1}{2} \Rightarrow \beta = 30^{\circ}.$$

Mivel:

$$\overline{O'A} = H \cdot tg\beta = 20\sqrt{3}$$
,

következik:

$$\overline{O'A} = R$$
,

tehát a tárcsa A pontja az Ω pillanatnyi forgástengelyen fekszik, sebessége v_A =0, a B pont sebessége:

$$v_B = h_{\Omega} \cdot \omega = 2R \cos(\alpha - \beta) \cdot \omega = 360 [cm/s].$$

A tárcsa szöggyorsulásának csak egy komponense van, ez pedig:

$$\dot{\vec{\omega}}_2 = \vec{\omega}_p \times \vec{\omega} ,$$

mert $\omega = const$ (igy $\omega_p = \omega_s = const$).

Az $\dot{\vec{\omega}} = \dot{\vec{\omega}}_2$ szöggyorsulás-vektor az ábra síkjára merőleges, és az Ox tengely irányába mutat, nagysága:

$$\omega = \omega_p \cdot \omega \cdot \sin \beta = 6\sqrt{3} \left[s^{-2} \right].$$

Mivel az A pont a pillanatnyi forgástengelyen fekszik, normális gyorsulása zérus, a pont gyorsulása tehát:

$$a_A = a_{At} = h_{\varepsilon} \cdot \dot{\omega} = \overline{OA} \cdot \dot{\omega} = \frac{H \cdot \dot{\omega}}{\cos \beta} = \frac{360\sqrt{3}}{\sqrt{3}/2} = 720 \left[cm / s^2 \right].$$

A B pont mindkét gyorsulás komponenssel rendelkezik, amelyek:

$$a_{Bn} = h_{\Omega} \cdot \omega^2 = 60 \cdot 36 = 2160 [cm/s^2],$$

és

$$a_{Bt} = h_{\varepsilon} \cdot \dot{\omega} = \overline{OB} \cdot \dot{\omega} = \overline{OA} \cdot \dot{\omega} = 720 [cm/s^2].$$

A B pont gyorsulása a 4.10.b) ábra szerint, alkalmazva a koszinusz-tételt:

$$a_B = \sqrt{a_{Bt}^2 + a_{Bn}^2 - 2a_{Bt}a_{Bn}\cos\alpha} = \sqrt{3628800} = 1905[cm/s^2] = 19,05[m/s^2].$$

5. SZABAD TEST MOZGÁSA (ÁLTALÁNOS MOZGÁS)

5.1. SZABAD TEST MOZGÁSÁNAK TÖRVÉNYSZERŰSÉGE

A szabad (általános) mozgással mozgó test, tetszőlegesen elmozdulhat a térben.

5.1. ábra. Szabad merev test általános mozgása

Az 5.1. ábrán látható szabad test, az (x_0,y_0,z_0) álló koordináta-rendszerhez viszonyítva általános mozgással mozog. A test tetszőleges A pontja tekinthető póluslnak, amelyhez hozzárendelhető egy mozgó (x_1,y_1,z_1) koordináta-rendszer kezdőpontja, amely a testtel együtt mozog a térben.

A test helyzetének meghatározása ilymódon a mozgó, (x_1y_1,z_1) koordinátarendszernek az álló, (x_0,y_0,z_0) koordinátarendszerhez viszonyított helyzetének meghatározására korlátozódik.

A mozgó (x_1,y_1,z_1) koordináta-rendszer (A) pólushoz viszonyított helyzete az Eulerféle szögekkel $\varphi; \theta; \psi$ határozható meg,

mivel azonban az A pont is elmozdul az álló (x_0, y_0, z_0) koordináta-rendszerhez képest, helyzete ebben a koordináta-rendszerben az x_A, y_A, z_A koordinátákkal adott.

Ebből következik, hogy az általános mozgást végző merev test helyzete hat generalizált koordinátával határozható meg, tehát a testnek hat szabadságfoka van - három haladómozgás az x_0,y_0,z_0 tengelyek irányában és három független forgómozgás az x_1,y_1,z_1 tengelyek körül, amelyek az A póluson haladnak keresztül.

A generalizált koordináták időben változnak, és az idő függvényei:

$$x_{A} = f_{I}(t), \quad \varphi = f_{4}(t),$$

$$y_{A} = f_{2}(t), \quad \vartheta = f_{5}(t),$$

$$z_{A} = f_{3}(t), \quad \psi = f_{6}(t).$$
(5.1)

Az (5.1) egyenletek a szabad test mozgásának törvényszerűségei (mozgásegyenletei).

5.2. AZ ÁLTALÁNOS MOZGÁSSAL MOZGÓ TEST SEBESSÉGE

A test *B* pontjának helyzete, a mozdulatlan (x_0, y_0, z_0) koordináta-rendszerben határozható meg:

$$\vec{r}_B = \vec{r}_A + \overrightarrow{AB} ,$$

ahol:

- $\vec{r}_{\scriptscriptstyle A}$ a mozgó A pólus helyzetvektora,
- \overrightarrow{AB} a B pont helyzetvektora az A pólushoz viszonyítva.

A B pont sebessége \vec{r}_B helyzetvektorának idő szerinti deriváltjával egyenlő:

$$\vec{v}_B = \frac{d\vec{r}_B}{dt} = \frac{d\vec{r}_A}{dt} + \frac{d(\overrightarrow{AB})}{dt},\tag{5.2}$$

ahol:

- $\frac{d\vec{r}_A}{dt} = \vec{v}_A$ a pólus haladó mozgásának sebessége, - $\frac{d(\overrightarrow{AB})}{dt}$ a B pont sebessége az A pólus körüli elfordulásakor.

Az (5.2) egyenlet második tagja felírható a következő alakban:

$$\frac{d(\overrightarrow{AB})}{dt} = \vec{\omega} \times \overrightarrow{AB} = \vec{v}_B^A,$$

ahol:

- $\vec{\omega}$ a pillanatnyi szögsebesség,
- \vec{v}_B^A a B pont A pont körüli forgómozgásának sebessége.

A B pont sebességének végleges alakja:

$$\vec{v}_B = \vec{v}_A + \vec{v}_B^A vagy, \vec{v}_B = \vec{v}_A + \vec{\omega} \times \overrightarrow{AB}$$
(5.3)

A szabad test bármely B pontjának sebessége egyenlő a pólus (A) haladómozgássebességvektorának \vec{v}_A és a B pontnak az A ponthoz viszonyított forgómozgás-vektorának \vec{v}_B^A vektoriális összegével.

5.3. AZ ÁLTALÁNOS MOZGÁSSAL MOZGÓ TEST GYORSULÁSA

A gyorsulásvektor a sebességvektor idő szerinti deriváltja:

$$\vec{a}_B = \frac{d\vec{v}_B}{dt} = \frac{d\vec{v}_A}{dt} + \frac{d\vec{\omega}}{dt} \times \overrightarrow{AB} + \vec{\omega} \times \frac{d(\overrightarrow{AB})}{dt},$$

ahol:

- $\vec{a}_{\scriptscriptstyle A}$ az ${\cal A}$ pólus haladómozgásának gyorsulása,
- $\frac{d\vec{\omega}}{dt} = \vec{\varepsilon}$ pillanatnyi szöggyorsulás-vektor.

Az (5.3) egyenlet utolsó tagja: $\vec{\omega} \times (\vec{\omega} \times \overrightarrow{AB})$, így *B* a pont gyorsulása:

$$\vec{a}_B = \vec{a}_A + \vec{\varepsilon} \times \overrightarrow{AB} + \vec{\omega} \times (\vec{\omega} \times \overrightarrow{AB}),$$

ahol:

- $\vec{\varepsilon} \times \overrightarrow{AB} + \vec{\omega} \times (\vec{\omega} \times \overrightarrow{AB})$ a *B* pont *A* pólus körüli forgómozgásának gyorsulása.

A B pont gyorsulásának végső alakja:

$$\vec{a}_B = \vec{a}_A + \vec{a}_B^A. \tag{5.4}$$

Általános mozgással mozgó test tetszőleges B pontjának gyorsulása, egyenlő a pólus (A) haladómozgásának \vec{a}_A és a B pont A pont körüli forgómozgása gyorsulásvektorának \vec{a}_B^A vektoriális összegével.

Általános mozgással mozgó, szabad merev test mozgásegyenlete a következő egyenletekkel adott:

$$x_A = 2t^2$$
, $y_A = t^2 + 2$, $z_A = 4t$, $\omega_x = \frac{\pi}{4} \sin \pi t$, $\omega_y = -\frac{\pi}{4} \cos \pi t$, $\omega_z = \frac{\pi}{4} (4 + \sqrt{3})$.

ahol:

- *x*,*y*,*z*, [*cm*]-ben,

- *t* [*s*]-ban.

Meghatározni a test szögsebességét, szöggyorsulását, valamint a test M pontjának sebességét és abszolút gyorsulását, amelynek koordinátái: $x_M = 4$ [cm], $y_M = 2$ [cm], $z_M = 4$ [cm], t=2 [s] elteltével.

Megoldás:

Az A pólus sebességének és gyorsulásának komponensei az álló koordináta-rendszerben:

$$\dot{x}_A = 4t, \quad \dot{y}_A = 2t, \quad \dot{z}_A = 4,$$

 $\ddot{x}_A = 4, \quad \ddot{y}_A = 2, \quad \ddot{z}_A = 0,$

az A pont sebessége és gyorsulása:

$$v_A = \sqrt{\dot{x}_A^2 + \dot{y}_A^2 + \dot{z}_A^2} = 2(4 + 5t^2)^{1/2},$$

$$a_A = \sqrt{\ddot{x}_A^2 + \ddot{y}_A^2 + \ddot{z}_A^2} = 4,46 \left[cm / s^2 \right],$$

az adott t=2/s/ időpillanatban a sebesség értéke:

$$v_A = 9.8 [cm/s].$$

A szögsebesség:

$$\omega = \sqrt{\omega_x^2 + \omega_y^2 + \omega_z^2} = \frac{\pi}{4} \left[1 + \left(4 + \sqrt{3} \right)^2 \right]^{1/2} \left[s^{-1} \right].$$

A szögyorsulások a szögsebességek deriváltjaiként határozhatók meg:

$$\dot{\omega}_{x} = \varepsilon_{x} = \frac{d\omega_{x}}{dt} = \frac{\pi^{2}}{4}\cos\pi t = \frac{\pi^{2}}{4} = 2,46 \left[s^{-2}\right],$$

$$\dot{\omega}_{y} = \varepsilon_{y} = \frac{d\omega_{y}}{dt} = \frac{\pi^{2}}{4}\sin\pi t = 0,$$

$$\dot{\omega}_{z} = \varepsilon_{z} = \frac{d\omega_{z}}{dt} = 0.$$

Az M(4,2,8) pont sebessége:

$$\vec{v}_M = \vec{v}_A + \vec{\omega} \times (\vec{r}_M - \vec{r}_A),$$

amelynek tengelyirányú vetületei:

$$\dot{x}_{M} = \dot{x}_{A} + \omega_{y}(z_{M} - z_{A}) - \omega_{z}(y_{M} - y_{A}),$$

$$\dot{y}_{M} = \dot{y}_{A} + \omega_{z}(x_{M} - x_{A}) - \omega_{x}(z_{M} - z_{A}),$$

$$\dot{z}_{M} = \dot{z}_{A} + \omega_{x}(y_{M} - y_{A}) - \omega_{y}(x_{M} - x_{A}).$$

Figyelembe véve az A pont vetületeit az adott időpillanatban: $x_A=8$ [cm], $y_A=6$ [cm], $z_A=8$ [cm], valamint sebességének és szögsebességének vetületeit, az M pont sebességének vetületei:

$$\dot{x}_{M} = 8 - \frac{\pi}{4}(8 - 8) - 4.5(2 - 6) = 26[cm/s],$$

$$\dot{y}_{M} = 4 + 4.5(4 - 8) - 0 = -14[cm/s],$$

$$\dot{z}_{M} = 4 + 0 + \frac{\pi}{4}(4 - 8) = 0.86[cm/s],$$

a sebesség nagysága:

$$v_M = \sqrt{\dot{x}_M^2 + \dot{y}_M^2 + \dot{z}_M^2} = \sqrt{872,74} = 29,54 \text{ [cm/s]}.$$

Az M pont gyorsulásvektora a következő összefüggésből számítható ki:

$$\vec{a}_M = \vec{a}_A + \vec{\varepsilon} \times \overrightarrow{AM} + \vec{\omega} \times \left(\vec{\omega} \times \overrightarrow{AM} \right) = \vec{a}_A + \dot{\vec{\omega}} \times \left(\vec{r}_M - \vec{r}_A \right) + \vec{\omega} \left[\vec{\omega} \cdot \left(\vec{r}_M - \vec{r}_A \right) \right] - \left(\vec{r}_M - \vec{r}_A \right) \cdot \vec{\omega}^2.$$

Az M pont A ponthoz viszonyított \overrightarrow{AM} helyzetvektorának és az $\overrightarrow{\omega}$ pillanatnyi szögsebességvektornak skaláris szorzata:

$$\vec{\omega} \cdot (\vec{r}_M - \vec{r}_A) = \omega_x \cdot (z_M - z_A) + \omega_y \cdot (y_M - y_A) + \omega_z \cdot (x_M - x_A) = 0 - \frac{\pi}{2}(2 - 6) + 4.5(8 - 8) = \pi.$$

Az M pont gyorsulásvektorának vetületei:

$$\begin{split} \ddot{x}_{M} &= \ddot{x}_{A} + \dot{\omega}_{y} (z_{M} - z_{A}) - \dot{\omega}_{z} (y_{M} - y_{A}) + \omega_{x} \left[\vec{\omega} \cdot (\vec{r}_{M} - \vec{r}_{A}) \right] - \omega^{2} (x_{M} - x_{A}), \\ \ddot{y}_{M} &= \ddot{y}_{A} + \dot{\omega}_{z} (x_{M} - x_{A}) - \dot{\omega}_{x} (z_{M} - z_{A}) + \omega_{y} \left[\vec{\omega} \cdot (\vec{r}_{M} - \vec{r}_{A}) \right] - \omega^{2} (y_{M} - y_{A}), \\ \ddot{z}_{M} &= \ddot{z}_{A} + \dot{\omega}_{x} (y_{M} - y_{A}) - \dot{\omega}_{y} (x_{M} - x_{A}) + \omega_{z} \left[\vec{\omega} \cdot (\vec{r}_{M} - \vec{r}_{A}) \right] - \omega^{2} (z_{M} - z_{A}), \end{split}$$

a példa számszerű adataival:

$$\ddot{x}_{M} = 4 + 4\omega^{2} = 86,8 \left[cm / s^{2} \right],$$

$$\ddot{y}_{M} = 2 - \frac{\pi^{2}}{4} + 4\omega^{2} = 82,3 \left[cm / s^{2} \right],$$

$$\ddot{z}_{M} = -\pi^{2} + 4,5\pi = 4,3 \left[cm / s^{2} \right],$$

és végül az M pont abszolút gyorsulása:

$$a_M = \sqrt{\ddot{x}_M^2 + \ddot{y}_M^2 + \ddot{z}_M^2} = \sqrt{14326} = 119.7 \text{ [cm/s}^2\text{]}.$$

6. A PONT ÖSSZETETT MOZGÁSA

Az előző fejezetekben a pont mozgása minden esetben, egy abszolút nyugvó koordinátarendszerhez viszonyítva volt tárgyalva. Vannak ellenben olyan esetek, amikor egy pont mozgását célszerű egy mozgó koordináta-rendszerhez képest is vizsgálni, amely az álló v.abszolút nyugvó koordináta- rendszerhez képest mozgásban van. Ebben az esetben tehát, a pont mozgását egyidejűleg két koordináta-rendszerhez képest kell vizsgálni. Ezek közül az egyik abszolút nyugalomban van, a másik pedig az elsőhöz képest valamilyen törvényszerűséggel (mozgástörvénnyel) mozog.

6.1. A PONT RELATÍV, SZÁLLÍTÓ ÉS ABSZOLÚT MOZGÁSA

Vizsgálva az M pont mozgását az (x,y,z) koordináta-rendszerben, amely az álló (x_1,y_1,z_1) koordináta-rendszerhez képest mozog (6.1. ábra), megkülönböztethetők a következő mozgástípusok:

6.1. ábra. Pont összetett mozgása

- 1. A pont mozgása a mozgó (x,y,z,) koordináta-rendszerhez viszonyítva, a *relatív* mozgás. (A relatív mozgást csak a mozgó koordináta-rendszerrel együtt mozgó megfigyelő észlelheti.)

 2. A pont mozgása az álló (x_l,y_l,z_l)
- 2. A pont mozgása az álló (x_l, y_l, z_l) koordináta-rendszerhez viszonyítva az *abszolút* v. *összetett* mozgás.
- 3. A mozgó (x,y,z,) koordinátarendszer mozgása az álló (x_1,y_1,z_1) koordináta-rendszerhez viszonyítva a *szállító* mozgás.
- Pl. a vonat folyosóján sétáló utas. Az utas mozgása a folyosón relatív mozgás a földhöz képest (amely abszolút nyugvó koordinátarendszernek tekinthető) abszolút mozgás, és a vonat mozgása a földhöz képest a szállító mozgás.

Általában véve, az összetett mozgással mozgó pont kinematikai jellemzőinek meghatározása arra

korlátozódik, hogy az ismert relatív és szállítómozgás alapján, az abszolút mozgás jellemzői miként határozhatók meg.

6.2. A PONT ABSZOLÚT SEBESSÉGE

A mozgó (x,y,z,) koordináta-rendszer helyzete az álló (x_l,y_l,z_l) koordináta-rendszerhez viszonyítva \vec{r}_0 helyzetvektorral határozható meg. Az M pont helyzete az (x,y,z) mozgó koordináta-rendszerben $\vec{\rho}$ helyzetvektorral definiált (6.1. ábra). A $\vec{\rho}$ vektor alakja:

$$\vec{\rho} = x(t) \cdot \vec{i} + y(t) \cdot \vec{j} + z(t) \cdot \vec{k} ,$$

ahol:

-x(t),y(t),z(t) az M pont relatív koordinátái, amelyek időben változnak, és ismert függvények.

A mozgó pont helyzete a mozdulatlan (x_1,y_1,z_1) koordináta-rendszerhez viszonyítva \vec{r} helyzet vektorral határozható meg, amelynek alakja:

$$\vec{r} = \vec{r}_0 + \vec{\rho} = \vec{r}_0 + x(t) \cdot \vec{i} + y(t) \cdot \vec{j} + z(t) \cdot \vec{k}$$
.

Fontos itt felhívni a figyelmet arra, hogy nemcsak az \vec{r}_0 , x(t), y(t), z(t) a változók, hanem az \vec{i} , \vec{j} , \vec{k} egységvektorok is, hiszen ezeknek iránya változik a mozgó koordináta-rendszer O pólus körüli elfordulásakor.

Az M pont abszolút sebessége egyenlő az \vec{r} helyzetvektor idő szerinti deriváltjával:

$$\frac{d\vec{r}}{dt} = \frac{d\vec{r}_0}{dt} + \frac{d\vec{\rho}}{dt},$$

a ρ vektor deriváltja:

$$\frac{d\vec{\rho}}{dt} = \underbrace{\dot{x} \cdot \vec{i} + \dot{y} \cdot \vec{j} + \dot{z} \cdot \vec{k}}_{\vec{v}_r} + \underbrace{x \cdot \frac{d\vec{i}}{dt} + y \cdot \frac{d\vec{j}}{dt} + z \cdot \frac{d\vec{k}}{dt}}_{\vec{\sigma} \times \vec{\delta}}, \tag{6.1}$$

ahol:

- \vec{v}_r a relatív sebességvektor,
- ω a mozgó koordináta-rendszer szállítómozgásának pillanatnyi szögsebesége,
- $\vec{\omega} \times \vec{\rho}$ a mozgó koordináta-rendszer *O* pólus körüli forgását jellemzi,

az abszolút sebességvektor \vec{v} tehát:

$$\vec{v} = \underbrace{\vec{v}_0 + \vec{\omega} \times \vec{\rho}}_{\vec{v}_p} + \vec{v}_r,$$

$$\vec{v} = \vec{v}_p + \vec{v}_r.$$
(6.2)

vagy végleges alakban:

ahol:

- \vec{v}_0 az O pólus sebességvektora,
- \vec{v}_r a relatív sebességvektor,
- \vec{v}_p a szállító sebességvektor.

A pont abszolút sebessége (sebességvektora) a szállítósebesség-vektor \vec{v}_p és a relatív sebességvektor \vec{v}_r vektoriális összegével egyenlő.

A szállítósebesség-vektor \vec{v}_p az O pólus sebességvektorának \vec{v}_0 és az $\vec{\omega} \times \vec{\rho}$ sebességvektornak vektoriális összegével egyenlő. Az $\vec{\omega} \times \vec{\rho}$ vektoriális szorzat, a mozgó koordináta-rendszer O pólus körüli forgását jellemzi. Az ilymódon meghatározott szállítósebesség-vektor a legáltalánosabb eset. A mozgó koordináta-rendszer mozgásának jellegét tekintve, a szállítósebesség ennek a mozgásnak függvényében alakul. Az ilyen külön esetekben a szállítósebesség a következőképpen határozható meg:

- A mozgó koordináta-rendszer síkmozgással mozog:

$$\vec{v}_p = \vec{v}_o + \vec{v}_M^o, \tag{6.3}$$

ahol:

- \vec{v}_o az O pólus haladó mozgása,
- \vec{v}_M^o az M pont O ponthoz viszonyított forgómozgása síkban.

- Ha a szállítómozgás forgómozgás:

$$\vec{v}_{n} = \vec{\omega} \times \vec{\rho} , \qquad (6.4)$$

ahol:

- $\vec{\omega}$ a forgómozgás szögsebesség-vektora.

- Ha a szállítómozgás haladó mozgás:

$$\vec{v}_p = \vec{v}_o, \tag{6.5}$$

Fontos még egyszer kiemelni, hogy függetlenül a szállítómozgás jellegétől, az M pont abszolút sebességét a (6.2) összefüggésből kell meghatározni azzal, hogy a szállító sebességvektor a merev test szállítósebességének alakjától függ a (6.3), (6.4),(6.5) összefüggések szerint.

6.1. *példa*

Az OA egyenes mentén az M pont v sebességgel mozog, miközben az egyenes az O pont körül az Ox_1y_1 síkban forgómozgással mozog, melynek szögsebessége ω (6.2.ábra). Meghatározni az M pont sebességét az Ox_1y_1 koordináta rendszerben az $r = \overline{OM}$ távolság függvényében.

6.2. ábra. A 6.1. példa illusztrációja

Megoldás:

Az M pont mozgása összetett mozgás, amely az OA egyenes menti relatív mozgásból, és az egyenes szállítómozgásából (forgómozgás) tevődik össze. Ebben az esetben tehát az OA egyenes menti sebesség a pont relatív sebessége $\vec{v} = \vec{v}_r$. Az OA egyenesnek O pont körüli forgómozgása az M pontra vonatkoztatva szállítómozgás, és az OA egyenes azon pontja, amely az adott időpillanatban egybeesik az M ponttal, annak \vec{v}_p szállítósebességével egyenlő. Mivel az egyenesnek ez a pontja az $r = \overline{OM}$ sugarú körön mozog, ennek a sebességnek nagysága $v_p = r \cdot \omega$, amely merőleges az OM irányra, nyila az elfordulás irányába mutat. A \vec{v}_r és \vec{v}_p vektorokra szerkesztett

paralelogrammából meghatározható az M pont abszolút sebessége \vec{v}_a az Ox_1y_1 koordinátarendszerben. Mivel ezek a sebességek egymásra merőlegesek, az abszolút sebesség nagysága:

$$v_a = \sqrt{v^2 + r^2 \cdot \omega^2} \ .$$

6.2. *példa*

A h szélességű folyó, állandó v sebességgel folyik. Az evezős a csónakot v_I sebességgel mozgatja a mozdulatlan vízhez viszonyítva. Milyen szög alatt kell átszelni a folyót, hogy a tulsó partot a csónak a legrövideb idő alatt érje el? Hol fog ekkor a csónak kikötni?

Megoldás:

A csónak feltételezett kiindulópontja, 6.3. ábra szerint az *O* pont.

Az Ox_1y_1 koordináta-rendszerben egy tetszőleges időpillanatban a csónak az M pontban lesz. Feltételezve, hogy az evezős a csónakot állandó szög alatt mozgatja, melynek

6.3. ábra. A 6.3. példa illusztrációja

nagysága α az Oy_I tengelyhez képest. A csónak abszolút sebessége \vec{v}_a a relatív sebesség \vec{v}_r (melynek nagysága az evezők által mozgatott csónak sebessége $\vec{v}_r = \vec{v}_I$), és a szállítósebesség \vec{v}_p , (amely a folyó sebessége $\vec{v}_p = \vec{v}$), vektoriális összegeként kapható meg:

$$\vec{v}_a = \vec{v}_r + \vec{v}_p = \vec{v}_I + \vec{v} .$$

Az abszolút sebességet levetítve a koordinátatengelyekre (melyek a sebességvetületek tétele alapján) egyenlőek:

$$(v_a)_{x_i} = v_i \cdot \sin\alpha + v, \qquad (v_a)_{v_i} = v_i \cdot \cos\alpha.$$

Mivel mindkét vetület állandó, a csónak időben történő elmozdulása a koordinátatengelyek irányában felírható a következő alakban:

$$x_1 = (v_1 \cdot \sin \alpha + v) \cdot t, \qquad y_1 = (v_1 \cdot \cos \alpha) \cdot t.$$

Ha a csónak átér a tulsó partra $y_I = h$, és ebből az összefüggésből kifejezhető az az idő, amely a folyó átszeléséhez szükséges:

$$t_I = \frac{h}{v_I \cdot \cos \alpha} \,.$$

A t_l idő akkor lesz legkisebb, ha $cos\alpha=1$, illetve amikor $\alpha=0$. Az evezős akkor fog legrövidebb idő alatt átevezni a folyón, ha a másik part irányára merőlegesen evez. Ekkor:

$$t_{min} = \frac{h}{v_{I}}.$$

Az x_1 képletébe behelyettesítve $\alpha = 0$, és $t = t_{min}$:

$$x_I = \frac{v}{v_I} \cdot h .$$

Ami azt jelenti, hogy a csónak a B pontban fog kikötni, amely a vízfolyással egyirányban az Oy_I tengelytől x_I távolságra van. Ez a távolság annál kisebb lesz, minél kisebb a v sebesség, a folyó h szélessége, és minél nagyobb a v_I sebesség.

6.3. példa

A műszer OM tolla az adott időpillanatban a vizszintes iránnyal α szöget zár be, sebessége v, amely merőleges az OM irányra 6.4. ábra. A műszer papírt hordozó dobja a függőleges tengely körül ω szögsebességgel forog. Meghatározni a toll \vec{v}_I sebességét, amellyel a papíron elmozdul, ha a dob sugara r.

Megoldás:

A toll abszolút sebessége $\vec{v}_a = \vec{v}$ ismert. Ez a \vec{v} sebesség egyenlő a toll papírhoz viszonyított sebességének (amely a

6.4. ábra. A 6.3. példa illusztrációja

 \vec{v}_l keresett sebesség) és a \vec{v}_p szállítósebességnek (amelynek nagysága megegyezik a papír azon pontjának sebességével, amely az adott időpillanatban a tollat érinti, $v_p = r \cdot \omega$) vektoriális összegével.

A sebességvektorok összegéből adódóan:

$$\vec{v} = \vec{v}_I + \vec{v}_p \,,$$

ahonnan:

$$\vec{v}_I = \vec{v} - \vec{v}_p.$$

A \vec{v} és $(-\vec{v}_p)$ vektorokkal szerkesztett paralelogrammából a keresett \vec{v}_I sebességvektor határozható meg. A \vec{v} és $(-\vec{v}_p)$ vektorok által bezárt szög nagysága 90° - α , amelynek alapján:

$$v_1 = \sqrt{v^2 + r^2 \cdot \omega^2 + 2vr\omega \sin \alpha} \ .$$

6.4. példa

Az AB rúd B vége csuklósan egy csúszóhoz kapcsolódik, amely az OC kar megfelelő hornyában elmozdulhat, miközben azt az O pont körüli forgásra kényszeríti a 6.5. ábra szerint. Az O pont távolsága az AB rúdtól h. Meghatározni a kar szögsebességét a ϕ szög és a rúd v sebességének függvényében.

6.5. ábra. A 6.4. példa illusztrációja

Megoldás:

A csúszó abszolút sebessége, amely a rúd \vec{v} sebessége, ismert. Ez a sebesség a csúszó \vec{v}_r relatív sebességének (amellyel a horonyban elmozdul), és \vec{v}_p szállító-sebességének (amely a kar azon pontjának sebességével egyenlő, amely az adott időpillanatban egybeesik a csúszóval) vektoriális összegével egyenlő. A sebességek irányai ismertek, hiszen a \vec{v}_r az OB egyenes irányában fekszik, a \vec{v}_p merőleges az OB-re. Felbontva az adott \vec{v} sebességet a \vec{v}_r és \vec{v}_p irányaikra, ezek a sebességek meghatározhatók. Az ábra alapján $v_p = v \cdot cos \varphi$. Másrészről a szállítósebesség $v_p = \overline{OB} \cdot \omega = \frac{h}{cos \varphi} \cdot \omega$, ahol az

ω az OC kar szögsebessége. Kiegyenlítve a szállítósebesség összefüggéseit, a kar szögsebessége:

$$\omega = \frac{v}{h} \cdot \cos^2 \varphi \ .$$

6.3. A PONT ABSZOLÚT GYORSULÁSA

Az összetett mozgással mozgó M pont abszolút gyorsulása az abszolút sebesség idő szerinti deriváltjaként határozható meg. Ennek alakja:

$$\vec{a} = \frac{d\vec{v}}{dt}$$
.

Mivel a (6.1) összefüggés szerint $\vec{v} = \vec{v}_p + \vec{v}_r$, és $\vec{v}_p = \vec{v}_o + \vec{\omega} \times \vec{\rho}$ a fenti egyenlet alakja:

$$\vec{a} = \frac{d\vec{v}_o}{dt} + \frac{d\vec{v}_r}{dt} + \frac{d}{dt} (\vec{\omega} \times \vec{\rho}). \tag{6.6}$$

- A (6.5) egyenlet első tagja $\vec{a}_o = \frac{d\vec{v}_o}{dt}$ az O pólus gyorsulása.
- A relatív sebesség idő szerinti deriváltja (a 6.6 egyenlet második tagja), a 6.1 alapján:

$$\frac{d\vec{v}_r}{dt} = \ddot{x} \cdot \vec{i} + \ddot{y} \cdot \vec{j} + \ddot{z} \cdot \vec{k} + \dot{x} \cdot \frac{d\vec{i}}{dt} + \dot{y} \cdot \frac{d\vec{j}}{dt} + \dot{z} \cdot \frac{d\vec{k}}{dt},$$

ahol:

- $\ddot{x} \cdot \vec{i} + \ddot{y} \cdot \vec{j} + \ddot{z} \cdot \vec{k} = \vec{a}_r$ a relatív gyorsulás,

 $-\dot{x}\cdot\frac{d\vec{i}}{dt}+\dot{y}\cdot\frac{d\vec{j}}{dt}+\dot{z}\cdot\frac{d\vec{k}}{dt}=\vec{\omega}\times\vec{v}_r$ a relatív sebesség változása, a szállító-forgómozgás miatt,

- ω a mozgó koordináta-rendszer szállítómozgásának pillanatnyi szögsebessége.
- A mozgó koordináta-rendszer O pólus körüli forgómozgásának deriváltja (a 6.6 egyenlet 3. tagja)

$$\frac{d}{dt}(\vec{\omega} \times \vec{\rho}) = \frac{d\vec{\omega}}{dt} \times \vec{\rho} + \vec{\omega} \times \frac{d\vec{\rho}}{dt},$$

ahol:

- $\frac{d\vec{\omega}}{dt} = \vec{\varepsilon}$ a mozgó koordináta-rendszer pillanatnyi szöggyorsulása,

-
$$\frac{d\vec{\rho}}{dt} = \vec{v}_r + \vec{\omega} \times \vec{\rho}$$
 a (6.1) összefüggés alapján,

felírható továbbá:

$$\vec{\omega} \times \frac{d\vec{\rho}}{dt} = \vec{\omega} \times (\vec{\omega} \times \vec{\rho}) + \vec{\omega} \times \vec{v}_r,$$

ahol:

- $\vec{\omega} \times (\vec{\omega} \times \vec{\rho})$ az O pólus körüli forgómozgás gyorsulásának második része

- $\vec{\omega} \times \vec{v}_r$ a szállítómozgás sebességének változása a relatív mozgás következtében.

Az abszolút gyorsulásvektor (6.6) alakja tehát:

$$\vec{a} = \vec{a}_o + \vec{a}_r + (\vec{\omega} \times \vec{v}_r) + (\vec{\varepsilon} \times \vec{\rho}) + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}) + (\vec{\omega} \times \vec{v}_r),$$

illetve

$$\vec{a} = \vec{a}_o + \vec{\varepsilon} \times \vec{\rho} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}) + \vec{a}_r + 2 \cdot (\vec{\omega} \times \vec{v}_r),$$

ahol:

- $\vec{\varepsilon} \times \vec{\rho} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho})$ az O pólus körüli forgómozgás gyorsulása,

 $-\vec{a}_o + \vec{\varepsilon} \times \vec{\rho} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}) = \vec{a}_p$ a pont szállítógyorsulása,

- \vec{a}_r a pont relatív gyorsulása,

- $2 \cdot (\vec{\omega} \times \vec{v}_r) = \vec{a}_c$ a pont Coriolis-féle gyorsulása.

A pont abszolút gyorsulásának végleges alakja:

$$\vec{a} = \vec{a}_p + \vec{a}_r + \vec{a}_c \,. \tag{6.7}$$

Az M pont abszolút gyorsulásának vektora az \vec{a}_p szállítógyorsulás-vektor, az \vec{a}_r relatív gyorsulás-vektor, és az \vec{a}_c Coriolis-féle gyorsulásvektor vektoriális összegével egyenlő.

A (6.7) összefüggés egyes gyorsuláskomponensei a következőképpen értelmezhetők:

- \vec{a}_p a pont szállítómozgásának gyorsulása, amely a szállítómozgás változását jellemzi. Az \vec{a}_p meghatározásakor a pont relatív elmozdulását figyelmen kívül kell hagyni. Ez annyit jelent, hogy a pont \vec{a}_p gyorsulását egy, az Oxzy koordináta-rendszerhez kötött merev test pontjának gyorsulásaként kell meghatározni, a merev test kinematikájában tárgyalt módszerek szerint.
- \vec{a}_r a pont relatív gyorsulása, amely relatív sebességének változását jellemzi. Az \vec{a}_r számításakor az Oxyz mozgó koordináta-rendszer mozgását kell figyelmen kívül hagyni, tehát a relatív gyorsulás (\vec{a}_r) a pont kinematikájában tárgyalt módszerekkel számítható ki.
- \vec{a}_c a Coriolis-féle gyorsulás úgy jellemezhető, mint a relatív sebesség változása a szállító mozgás, és a szállító sebesség változása a relatív mozgás következtében. A Coriolis-féle gyorsulásvektort a mozgás jellegétől függően kell minden esetben meghatározni.

6.3.1. A CORIOLIS-FÉLE GYORSULÁS MEGHATÁROZÁSA

A Coriolis-féle gyorsulás $\vec{a}_c = 2 \cdot (\vec{\omega} \times \vec{v}_r)$ a pont relatív és szállító mozgásának kölcsönhatását jellemzi.

Amennyiben az $\vec{\omega}$ és \vec{v}_r vektorok által bezárt szög α , a Coriolis gyorsulás nagysága:

$$a_c = 2|\omega \cdot v_r| \sin \angle (\vec{\omega}, \vec{v}_r). \tag{6.8}$$

6.6. ábra. A Coriolis féle gyorsulás irányítottságának meghatározása

Az \vec{a}_c vektor az $\vec{\omega}$ és \vec{v}_r vektorok által képzett síkra merőleges 6.6.a) ábra, nyila olyan irányba mutat, hogy az \vec{a}_c végpontjából nézve az $\vec{\omega}$ vektort elforgatva az órmutató járásával ellentétes irányban a \vec{v}_r vektort a legkisebb szögelfordulással fedi.

A Coriolis-féle gyorsulás irányítottsága meghatározható más módszerrel is, a 6.6.b) ábra szerint. $A\vec{v}_r$ sebességvektort az $\vec{\omega}$ vektorra merőleges Π síkra vetítve, majd a szállítómozgás szögsebességének irányában elfordítva 90°-kal a kapott eredmény a Coriolis-féle gyorsulás irányítottsága.

A Coriolis gyorsulás értéke zérus ($\vec{a}_c = 0$) a következő esetekben:

- a) ha a szállítómozgás haladó mozgás, hiszen ekkor $\vec{\omega} = 0$,
- b) ha a pillanatnyi szögsebesség-vektor $\vec{\omega}$ és a relatív sebességvektor \vec{v}_r egyirányúak (kollineárisak) $\vec{\omega} \| \vec{v}_r$, hiszen az ilyen vektorok vektoriális szorzata zérus,
- c) azokban az időpillantokban, amikor a relatív sebesség zérus $\vec{v}_r = 0$.

6.3.2. PÉLDÁK A CORIOLIS GYORSULÁS ÉRTELMÉNEK MEGHATÁROZÁSÁRA

Az M gömbnek, amely az AB csőben mozog, miközben a cső először egy síkban, majd térben végez mozgást, meg kell határozni a Coriolis gyorsulását.

6.7. ábra. Síkban történő mozgás

1. A 6.7. ábra szerint az *AB* cső síkban mozog, tehát szállítómozgása forgómozgás.

A Coriolis gyorsulás a forgómozgás síkjában helyezkedik el, értelme legegyszerűbben a relatív sebesség, szögsebesség irányában 90°-al történő elfordításával határozható meg.

2. Az *AB* cső az *A* pont körül egy kúpfelületen forog (6.8. ábra).

Az M pont ebben az esetben is a B ponttól az A pont felé mozog v_r relatív sebességgel. A Coriolis gyorsulás iránya a \vec{v}_r vektor és az $\vec{\omega}$ szögsebesség-vektor által alkotott síkra merőleges. Értelme meghatározható a

6.8. ábra. Mozgás kúppaláston

relatív sebességvektor vetületének \vec{v}_r^{Π} 90°-os szögsebesség irányú elfordításával.

6.3.3. A SZÁLLÍTÓMOZGÁS GYORSULÁSVEKTORÁNAK KÜLÖN ESETEI

A szállítómozgás gyorsulásvektorának legáltalánosabb esete a következő:

$$\vec{a}_p = \vec{a}_o + \vec{\varepsilon} \times \vec{\rho} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}), \tag{6.9}$$

ahol:

- \vec{a}_o az O pólus gyorsulása,
- $-\vec{\varepsilon} \times \vec{\rho} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho})$ az *O* pólus körüli forgómozgás gyorsulása,
- ε a mozgó koordináta-rendszer pillanatnyi szöggyorsulás-vektora,
- $-\vec{\omega}$ a mozgó koordináta-rendszer szállítómozgásának pillanatnyi szögsebesség-vektora,
- $\vec{\rho}$ a pont helyzetvektora a mozgó *Oxyz* koordinátarendszerhez viszonyítva.

Külön esetként tekinthetők, a következő szállítómozgások: *a) Ha a mozgó koordináta-rendszer álló pont körül forog* Ebben az esetben a pont szállítógyorsulása:

$$\vec{a}_{p} = \vec{\epsilon} \times \vec{\rho} + \vec{\omega} \times (\vec{\omega} \times \vec{\rho}). \tag{6.10}$$

Az O pólus gyorsulása zérus ($\vec{a}_o = 0$), hiszen a pólus mozdulatlan.

b) A szállítómozgás sikmozgás

A szállítógyorsulás alakja ebben az esetben:

$$\vec{a}_P = \vec{\epsilon} \times \vec{\rho} + \vec{\omega} \times \vec{v}_M^o, \tag{6.11}$$

ahol:

- $\vec{\epsilon}$ a síkmozgás szöggyorsulása,
- $\vec{\omega}$ a síkmozgás szögsebessége,
- \vec{v}_{M}^{o} az M pontnak az O ponthoz viszonyított síkbeli forgómozgása.

Síkmozgással mozgó pont szögsebesség-vektora $\vec{\omega}$ és a relatív sebességvektora \vec{v}_r egymás közt merőlegesek ($\angle(\vec{\omega}, \vec{v}_r) = 90^\circ$), tehát a Coriolis-gyorsulás nagysága:

$$a_c = 2 \cdot |\omega \cdot v_r| \,. \tag{6.12}$$

c)A szállítómozgás álló tengely körüli forgómozgás

A pont szállítómozgásának gyorsulása a következőképpen alakul:

$$\vec{a}_p = \vec{\varepsilon} \times \vec{\rho} + \vec{\omega} \times \vec{v} . \tag{6.13}$$

A szögsebesség-vektor $\vec{\omega}$, és a szöggyorsulás-vektor $\vec{\epsilon}$ az álló tengely irányában vannak. Minden esetben azonban, az abszolút gyorsulásvektor a három gyorsuláskomponens vektoriális összege:

$$\vec{a} = \vec{a}_p + \vec{a}_r + \vec{a}_c$$

d)Ha a szállítómozgás haladó mozgás

Haladómozgással mozgó koordináta-rendszer szállítómozgásának gyorsulásvektora:

$$\vec{a}_{p} = \vec{a}_{o}. \tag{6.14}$$

Haladómozgás esetén $\vec{\epsilon} = 0$ és $\vec{\omega} = 0$, így a Coriolisá-gyorsulás vektor is zérus:

$$a_c = 0$$
.

Ebben az esetben az abszolút gyorsulásvektor:

$$\boxed{\vec{a} = \vec{a}_p + \vec{a}_r}.\tag{6.15}$$

Abban az esetben tehát, amikor a szállítómozgás haladómozgás, az M pont abszolút gyorsulásvektora a szállítógyorsulásvektor és a relatív gyorsulásvektor vektoriális összegével egyenlő.

6.3.4. AZ ABSZOLÚT GYORSULÁS KOMPONENSEINEK MEGHATÁROZÁSA

a) A szállítómozgás haladómozgás

Abban az esetben, ha a szállítómozgás haladómozgás, az abszolút gyorsulásvektor meghatározása, megegyezik a sebességvektorok meghatározásával.

6.5. példa

Az \vec{a}_1 gyorsulással vízszintesen mozgó ék, az AB rudat függőleges irányban elmozdítja (6.9. ábra). Meghatározni a rúd gyorsulását, ha az ék hajlásszöge α .

Megoldás:

A rúd A pontjának abszolút gyorsulása \vec{a}_A függőleges irányba mutat. Meghatározható a relatív

6.9. ábra. A 6.5. példa illusztrációja

gyorsulás \vec{a}_r (melynek iránya az ék peremével egyirányú), és a szállítógyorsulás \vec{a}_p (amely az ék \vec{a}_l gyorsulásával egyenlő), vektoriális összegével. Tekintettel arra, hogy az ék szállítómozgása haladó mozgás, a (6.15) egyenlet alapján, valamint $a_p = a_l$, megszerkeszthető a megfelelő vektorparalelogramma (6.9.ábra), amelyből:

$$a_A = a_I \cdot tg\alpha$$
.

Az a_A a rúd keresett gyorsulása.

b)A szállítómozgás forgómozgás

A következő példában az abszolút gyorsulás \vec{a} meghatározása látható arra az esetre, ha a szállítómozgás álló tengely körüli forgómozgás.

6.6. példa

Az AMB relatív mozgáspályán mozgó M pont, ebben az esetben ez egy gömbfelület, amely AB pontjain áthaladó tengely körül forog is, (6.6. ábra). Meghatározni a pont abszolút gyorsulását a t_I időpillanatban.

Megoldás:

Annak érdekében, hogy az adott időpillanatban a gyorsulást meg lehessen határozni tudni kell:

- 1. a pont helyzetét az AB görbén,
- 2. a pont relatív \vec{v}_r sebességét,
- 3. a test ω szögsebességét és ε szöggyorsulását, amely nem más mint a szállítómozgás.

Ha nincsennek megadva, akkor a feladat feltételeiből kell ezeket meghatározni.

A következő lépésben, fel kell rajzolni az M pont helyzetét a t_1 időpillanatban, valamint a \vec{v}_r és $\vec{\omega}$ vektorokat.

A további eljárás a következő:

1. $Az = \vec{a}_r$ (relatív gyorsulás) meghatározása.

Gondolatban a testet megállítva, annak forgómozgását meg kell szüntetni, és az *AB* pályán mozgó pont gyorsulását kell kiszámítani

6.10. ábra. A 6.6. példa illusztrációja

a pont kinematikájában tárgyalt képletek (2.20 és 2.21), alapján:

$$a_{rt} = \frac{dv_r}{dt}, \qquad a_{rn} = \frac{v_r^2}{R_L}.$$

ahol:

- R_k az AB görbe görbületi sugara az M pontban.

2. Az \vec{a}_{p} (szállítógyorsulás) meghatározása.

A szállítógyorsulás a mozgó test azon pontjának gyorsulása, amellyel az adott időpillanatban az *M* pont helyzete egybeesik. A gyorsuláskomponensek a merev test pontjának gyorsulásaként határozhatók meg, ebben az esetben a (3.16 és 3.17) összefüggések alapján:

$$a_{pt} = R \cdot \varepsilon, \qquad a_{pn} = R \cdot \omega^2,$$

ahol:

- $R = \overline{MD}$ az M pont forgástengelytől mért távolsága a t_I időpillanatban.

3. Az \vec{a}_c (Coriolis-gyorsulás) meghatározása.

A Coriolis-gyorsulás a (6.8) összefüggés szerint:

$$a_c = 2 \cdot |\omega \cdot v_r| \cdot \sin \angle (\vec{\omega}, \vec{v}_r).$$

Iránya és értelme az ábrán látható

4. Az \(\vec{a}\) (abszol\(\u00e4t\) gyorsul\(\u00e4s\)) meghat\(\u00e4r\) oz\(\u00e4s\) a.

Az abszolút gyorsulásvektor meghatározásához mindenek előtt minden gyorsulásvektor-komponenst precízen fel kell rajzolni az *M* pont pillanatnyi helyzetében, külön figyelmet szentelve a vektorok irányára és értelmére. Az összeadást a következő vektoregyenlet szemlélteti:

$$\vec{a} = \vec{a}_{rt} + \vec{a}_{rn} + \vec{a}_{pt} + \vec{a}_{pn} + \vec{a}_{c}$$
.

A fenti egyenlet vektorainak összegezésénél szigorúan be kell tartani a vektorok összeadására vonatkozó szabályokat, és ezért legtöbb esetben egy lokális *Mxyz* koordináta-rendszert kell felvenni, (6.10. ábra), majd minden vektor vetületét meg kell ebben határozni. Az abszolút gyorsulásvektor vetületei tehát:

$$a_x = \sum a_{ix}$$
, $a_y = \sum a_{iy}$, $a_z = \sum a_{iz}$.

Amelyek alapján meghatározható az abszolút gyorsulás nagysága:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} \ .$$

Megjegyzés: Az \vec{a} számításakor, nagyságát tilos a következő képlettel számolni: $a \neq \sqrt{a_r^2 + a_p^2 + a_c^2}$

hiszen általános esetben az \vec{a}_r , \vec{a}_p , \vec{a}_c vektorok egymásra nem merőlegesek, az ilyen "melléfogás" gyakran előforduló hiba szokott lenni.

<u>6.7. példa</u>

Az *OA* forgattyúrúd az *O* pontban elhelyezett tengely körül állandó ω szögsebességgel forog (6.11. ábra). A rúd hornyában állandó *v* sebességgel egy *B* csúszó mozog. Meghatározni a csúszó abszolút gyorsulását az *O* ponttól mért *x* távolság függvényében.

Megoldás:

Gondolatban leállítva a forgattyúrudat a t_1 időpillanatban, a csúszó relatív mozgása a kar hornyában, egyenletes egyenesvonalú mozgás, amelyből következik, hogy $a_r = 0$.

Az OA forgattyúrúd mozgása a B csúszót tekintve szállítómozgás. A csúszó \vec{a}_p szállítógyorsulása a kar azon pontjának gyorsulásával egyenlő, amely az adott időpillanatban egybeesik a csúszó B

pontjával. A forgattyúrúdnak ez a pontja körmozgást végez, az $x = \overline{OB}$ sugarú körön $\omega = const$ szögsebességgel. Ebből adódóan a szállítómozgás gyorsulásvektorának csak normális $\vec{a}_p = \vec{a}_{pn}$ komponense létezik, amely az OB irányban helyezkedik el, nagysága $a_p = a_{pn} = x \cdot \omega^2$. A Coriolis-gyorsulás nagysága $a_c = 2v\omega$, mert a mozgás egy síkban történik. Ennek iránya és értelme meghatározható a relatív sebesség \vec{v} B pont körüli 90° -os elforgatásával a szállítómozgás irányában.

A csúszó abszolút sebessége:

$$\vec{a} = \vec{a}_r + \vec{a}_p + \vec{a}_c .$$

6.11. ábra. A 6.7. példa illusztrációja

A példában $a_r = 0$ az \vec{a}_c vektor merőleges az \vec{a}_p vektorra, ezért az abszolút gyorsulás:

$$a = \sqrt{a_p^2 + a_c^2} = \omega \sqrt{x^2 \omega^2 + v^2}$$
.

6.8. példa

Az R sugarú tárcsa a kerületi O pontjában elhelyezett tengely körül állandó ω szögsebességgel forog (6.12. ábra). A tárcsa kerületén állandó v relatív sebességgel egy M csúszó mozog, amely az A pontból indult. Meghatározni a csúszó abszolút gyorsulását egy tetszőleges t időpillanatban. A mozgás iránya az ábrán látható.

Megoldás:

6.12. ábra. A 6.8. példa illusztrációja

A t időpillanatban a csúszó A ponttól $s = AM = v \cdot t$ távolságban van. Ebben az időpillanatban az $\angle AOM = \alpha$ szög nagysága:

$$\alpha = \frac{s}{2R} = \frac{v}{2R} \cdot t \,. \tag{a}$$

mert az α szög az ACM központi szög fele.

A t időpillanatban leállítva a tárcsát látható, hogy az M csúszó relatív mozgása körmozgás az R sugarú körön. Mivel $v_r = v = const$, ezért:

$$a_{rt} = \frac{dv}{dt} = 0, \qquad a_{rn} = \frac{v^2}{R}.$$
 (b)

Az $\vec{a}_r = \vec{a}_{rn}$ vektor iránya az MC sugár. A tárcsa mozgása az M csúszót tekintve szállítómozgás. A csúszó \vec{a}_p szállító-

gyorsulása tehát egyenlő a tárcsa azon pontjának gyorsulásával, amely az adott időpillanatban egybeesik a csúszó M pontjával. A tárcsának ez a pontja az $\overline{OM} = 2R \cdot \cos \alpha$ sugarú körön mozog.

Tekintettel arra, hogy a tárcsa szögsebessége ω =const, így szöggyorsulása zérus ϵ =0, amelyek alapján:

$$a_{pt} = \overline{OM} \cdot \varepsilon = 0, \qquad a_{pn} = \overline{OM} \cdot \omega^2 = 2R\omega^2 \cos \alpha.$$
 (c)

Az $\vec{a}_p = \vec{a}_{pn}$ vektor az MO irányba esik.

A mozgás síkban történik, a Coriolis-gyorsulás tehát:

$$a_c = 2v\omega$$
 . (d)

Az \vec{a}_c vektor iránya és irányítottsága a $\vec{v}_r = \vec{v}$ vektor 90° -os elfordításával határozható meg az M pontban a szállítómozgás irányában.

Az csúszó M pontjának abszolút gyorsulása:

$$\vec{a} = \vec{a}_r + \vec{a}_p + \vec{a}_c.$$

Ebben az esetben az \vec{a}_r és \vec{a}_c vektorok egy egyenesen fekszenek, és egy \vec{a}_I vektorral helyettesíthetők, amely ugyancsak azon az egyenesen fekszik, nagysága $a_I=a_r$ - a_c .

Összeadva ezutan az \vec{a}_1 és \vec{a}_p vektorokat (a paralelogramma-szabály szerint) a végeredmény:

$$a = \sqrt{a_p^2 + (a_r - a_c)^2 + 2a_p(a_r - a_c)\cos\alpha}$$
,

ahol az α , a_r , a_p , a_c mennyiségek az (a), (b), (c), (d) egyenletekből határozhatók meg.

6.9. példa

A Cz_1 tengely körül forgó merőleges ABC háromszög, amelynek átfogója $\overline{AB} = 2a = 20[\,cm]$, az α szöge $\angle CBA = \alpha = 60^{\circ}$ (6.13. ábra), mozgástörvénye $\varphi = 10t - 2t^2$. A háromszög AB átfogójának O közepe táján az M pont rezgőmozgást végez, amelynek törvényszerűsége

6.13. ábra. A 6.9. példa illusztrációja

 $\xi = a \cos \frac{\pi}{3} t$ (az $O\xi$ tengely az OA irányában fekszik).

Meghatározni az M pont abszolút gyorsulását a $t_1 = 2$ [s] időpillanatban.

Megoldás:

1. Első lépésben az M pont helyzetét kell meghatározni az AB relatív mozgáspályáján t_I időpillanatban.

A pont mozgásegyenletéből:

$$\xi_I = a \cdot \cos \frac{2\pi}{3} = -\frac{1}{2}a.$$

A t_1 időpillanatban az M pont az OB szakasz közepén helyezkedik el. Ebben a helyzetében látható a 6.13. ábrán.

2. $A \vec{v}_r$ meghatározása.

A relatív mozgás egyenesvonalú, tehát:

$$v_r = \frac{d\xi}{dt} = -\frac{\pi}{3} a \cdot \sin \frac{\pi}{3} t.$$

A $t_1 = 2$ [s] időpillanatban:

$$v_{rl} = -\frac{\pi}{6} a\sqrt{3}, \qquad |v_{rl}| = \frac{5}{3} \pi \sqrt{3} [cm/s].$$

A \vec{v}_r vektor negatív előjele azt mutatja, hogy a t_I időpillanatban az M-től a B felé mutat.

3. Az ω és ε meghatározása.

A φ szög (a forgómozgás mozgástörvénye) idő szerinti első deriváltja:

$$\omega = \frac{d\varphi}{dt} = 10 - 4t, \qquad \omega_1 = 2\left[s^{-1}\right],$$

ahol ω_I az ω nagysága $t_I = 2$ [s] időpillanatban. Ismételten deriválva:

$$\varepsilon = \frac{d\omega}{dt} = -4 \left[s^{-2} \right].$$

Az előjelekből látható, hogy a t_I időpillanatban a forgás az óramutató járásával ellentétes irányú (a Cz_I forgástengely végéből nézve), valamint a forgás lassuló. 4. $Az \ \bar{a}_r \ meghatározása$.

A relatív mozgás egyenesvonalú, ezért:

$$a_r = \frac{dv_r}{dt} = -\frac{\pi^2}{9} a \cos \frac{\pi}{3} t.$$

A $t_1 = 2 / s$ időpillanatban:

$$a_{r1} = \frac{\pi^2}{18} a = \frac{5}{9} \pi^2 \left[cm/s^2 \right].$$

5. Az \vec{a}_p meghatározása.

Az M pont mozgásához viszonyítva, a háromszög alakú lemez mozgása szállítómozgás. Az M pont \vec{a}_p szállítógyorsulása egyenlő a háromszög azon pontjának gyorsulásával, amely az adott időpillanatban az M ponttal egybeesik. A háromszögnek ez a pontja körmozgással mozog a $h = \overline{MD}$ sugarú körön, amelynek nagysága a $t_1 = 2$ [s] időpillanatban:

$$h = \frac{1}{2} a \sin \alpha = \frac{5}{2} \sqrt{3} [cm].$$

Ebben a pillanatban tehát:

$$a_{pt} = h \cdot \varepsilon = -10\sqrt{3} \left[cm / s^2 \right], \qquad a_{pn} = h \cdot \omega^2 = 10\sqrt{3} \left[cm / s^2 \right].$$

Az \vec{a}_{pt} vektor az ABC síkra merőleges, értelme a háromszög forgásával ellentétes irányú. Az \vec{a}_{pn} vektor az MD egyenes irányában fekszik, nyila az Oz_1 forgástengely irányába mutat. 6. $Az \vec{a}_c$ meghatározása.

Az a_c Coriolis-gyorsulás nagysága a $t_1 = 2$ [s] időpillanatban:

$$a_c = 2|\omega \cdot v_r| \sin \alpha = 10\pi \left[cm/s^2 \right],$$

mert a \vec{v}_r relatív sebesség és a Cz_I tengely közti szög nagysága α .

Levetítve a \vec{v}_r vektort a Cz_I tengelyre merőleges síkba (a vetület az MD egyenes irányába esik), és elforgatva a vetületet 90° -al a szállítómozgás irányába, tehát az óramutató irányával ellentétes irányba, meghatározható a Coriolis-gyorsulás \vec{a}_c értelme. Ebben az esetben az \vec{a}_{pt} gyorsulásvektor irányával és értelmével azonos.

7. Az ā meghatározása.

Az M pont abszolút gyorsulása a t_1 időpillanatban:

$$\vec{a} = \vec{a}_r + \vec{a}_{pt} + \vec{a}_{pn} + \vec{a}_c$$
.

A *a* gyorsulás nagyságának meghatározásához, legcélszerűbb a gyorsuláskomponensek vetületeit meghatározni az *M* ponban felvett *Oxyz* koordináta-rendszerben (6.13. ábra). Ezek a vetületek a következők:

$$a_{x} = a_{c} + |a_{pt}| = 10\pi + 10\sqrt{3} \approx 48.7 \left[cm/s^{2} \right],$$

$$a_{y} = a_{r} \sin\alpha + a_{pn} = \frac{5\pi^{2}}{18} \sqrt{3} + 10\sqrt{3} \approx -12.6 \left[cm/s^{2} \right],$$

$$a_{z} = -a_{r} \cos\alpha = -\frac{5}{18} \pi^{2} \approx -2.7 \left[cm/s^{2} \right]$$

A vetületekből a gyorsulás nagysága:

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2} \approx 50.4 \left[cm / s^2 \right].$$

Az \vec{a} vektor megszerkeszthető az Oxyz koordináta-rendszerben vetületei segítségével.

6.10. példa

A 6.14. ábrán bemutatott mechanizmus AB karja vízszintes vezetőkben mozog, és az adott időpillanatban sebessége v=20 [cm/s], gyorsulása a=20 [cm/s²]. A kar A pontjába csúszó illeszkedik, amely az OC forgattyúkart mozgatja. A forgattyúkar D pontjához ujabb DE kar illeszkedik, amelynek vége vízszintesen mozog. Adottak a következő adatok: $\Theta=60^{\circ}$,

6.14. ábra. A 6.10. példa illusztrációja

 $\angle ODE = 90^{\circ}$, $\overline{OD} = r = 10$ [cm], $h = 20\sqrt{3}$ [cm], meghatározni az E pont sebességét és gyorsulását. Megoldás: Az ábrán bemutatott forgattyúkaros mechanizmus *A* csúszója relatív mozgással mozog. A mechanizmus mozgásakor a csúszó pontnak tekinthető, és kinematikai vizsgálatakor a pont összetett mozgására vonatkozó összefüggések alkalmazhatók.

Első lépésben meghatározásra kerülnek a mechanizmus egyes elemeinek hosszai:

$$\overline{OA} = \frac{h}{\sin\Theta} = 40 \text{ [cm]}, \quad \overline{DE} = \overline{OD} \cdot tg\Theta = 10\sqrt{3} \text{ [cm]}, \quad \overline{OE} = \frac{\overline{OD}}{\cos\Theta} = 20 \text{ [cm]}.$$

A 6.15.a) ábrán bemutatott sebességek alapján, meghatározható a D pont sebessége. Ennek menete a következő: az AB kar, illetve A pontjának \vec{v} abszolút sebességét két komponensre kell bontani, ezek a \vec{v}_{Ap} szállító és \vec{v}_{Ar} relatív sebességek. Ezeknek nagyságai:

$$v_{Ar} = v \cdot cos\Theta = \frac{v}{2} = 10 \left[cm / s \right],$$

$$v_{Ap} = v \cdot \sin\Theta = \frac{v\sqrt{3}}{2} = 10\sqrt{3} \left[cm / s \right].$$

6.15. ábra. A 6.10. példa mechanizmusának sebességei

Az ábrán bemutatott vektorok alkotta háromszögek hasonlóságából felírható:

$$v_{Ap}: \overline{OA} = v_D: \overline{OD}$$
,

ahonnan a keresett sebesség:

$$v_D = v_{Ap} \frac{\overline{OD}}{\overline{OA}} = 10\sqrt{3} \frac{10}{40} = \frac{5\sqrt{3}}{2} [cm/s],$$

illetve az *E* csúszó sebessége:

$$v_E = \frac{v_D}{\cos(90^{\circ} - \Theta)} = 5 \left[cm / s \right],$$

amely a sebességvetületek tétele alapján adódott, a *DE* kar irányára vetítve annak végpontjaiban jelentkező sebességeket:

$$v_F \cdot cos(90 \circ -\Theta) = v_D$$
.

A forgattyúkar szögsebessége:

$$\omega = \frac{v_D}{r} = \frac{\sqrt{3}}{4} \left[s^{-l} \right],$$

míg a DE kar szögsebessége, figyelembevéve a P sebességpólus helyzetét, 6.15. b) ábra:

$$\omega_{DE} = \frac{v_E}{\overline{PE}} = \frac{v_E}{\overline{OE} \cdot tg\Theta} = v_E \frac{\cos^2 \Theta}{r \cdot \sin \Theta} = \frac{\sqrt{3}}{12} \left[s^{-1} \right].$$

A továbbiakban a gyorsulásokat kell meghatározni. Először is az *A* pont gyorsuláskomponenseit kell felrajzolni. Ezek a 6.16.a) ábrán láthatók, a következő vektoregyenlet alapján:

$$\vec{a} = \vec{a}_{Ar} + \vec{a}_{An}^{O} + \vec{a}_{At}^{O} + \vec{a}_{c}^{O}$$
.

6.16. ábra. A 6.10. példa mechanizmusának gyorsulásai

A gyorsulások vetületei a 6.14. ábra koordináta-rendszerében:

$$\ddot{x} = (a_{Ar} - a_{An}^{O}) \cdot \cos\Theta + (a_{At}^{O} + a_{c}) \cdot \sin\Theta,$$

$$\ddot{y} = (a_{Ar} - a_{An}^{O}) \cdot \sin\Theta - (a_{At}^{O} + a_{c}) \cdot \cos\Theta .$$

A gyorsuláskomponensek számbeli értékei:

$$\begin{split} \ddot{x} &= a = 20 \left[cm / s^2 \right], \quad \ddot{y} = 0, \\ a_{An}^O &= \overline{AO} \cdot \omega^2 = 7,5 \left[cm / s^2 \right], \quad a_{At}^O &= \overline{AO} \cdot \dot{\omega}, \\ a_c &= 2\omega \cdot v_{Ar} \sin 90^\circ = 5\sqrt{3} \left[cm / s^2 \right] \end{split}$$

Behelyettesítve a fenti értékeket az egyenletek:

$$2a_{Ar} + 80\sqrt{3}\dot{\omega} = 65$$
,

$$2\sqrt{3}a_{Ar} - 80\dot{\omega} = 25\sqrt{3}$$

amelyekből meghatározható az A pont relatív gyorsulása, valamint a forgattyúkar szöggyorsulása:

$$a_{Ar} = \frac{140}{8} = 17.5 \left[cm / s^2 \right],$$

 $\dot{\omega} = \frac{\sqrt{3}}{8} \left[cm / s^2 \right].$

Az *E* pont gyorsulásának meghatározásához először a *D* pont gyorsulását kell meghatározni. Meghatározható analitikusan is, a gyorsuláskomponensek vetületeivel, ellenben ebben az esetben egyszerűbb a 6.16.b) ábrán bemutatott vektorsokszöget felhasznalni. Ez a vektorsokszög a következő vektoregyenlet alapján szerkeszthető:

$$\vec{a}_E = \vec{a}_D + \vec{a}_{En}^D + \vec{a}_{Et}^D = \vec{a}_{Dn}^O + \vec{a}_{Dt}^O + \vec{a}_{En}^D + \vec{a}_{Et}^D$$

Az egyes gyorsulások:

$$a_{Dn}^{O} = r \cdot \omega^{2} = 10 \cdot \frac{3}{16} = \frac{15}{8} = 1,875 \left[cm / s^{2} \right],$$

$$a_{Dt}^{O} = r \cdot \dot{\omega} = 10 \cdot \frac{\sqrt{3}}{8} = \frac{5\sqrt{3}}{4} = 2,16 \left[cm / s^{2} \right],$$

$$a_{En}^{D} = \overline{DE} \cdot \omega_{DE}^{2} = 10\sqrt{3} \cdot \frac{3}{144} = \frac{15\sqrt{3}}{72} = 0,36 \left[cm / s^{2} \right],$$

az $a_{Et}^D = \overline{DE} \cdot \dot{\omega}_{DE}$ gyorsulásnak csak az iránya ismert.

A 6.16.b) ábra vektorsokszögéből meghatározhatók a hiányzó gyorsulások:

$$a_E = \frac{\left|a_{Dt}^O - a_{En}^D\right|}{\cos(90^\circ - \Theta)} = \frac{25}{12} = 12,5 \left[\cos/s^2 \right],$$

és

$$a_{Et}^{D} = |a_{Dn} + a_{E} \cdot \sin(90^{\circ} - \Theta)| = \frac{15}{8} + \frac{25}{12} \cdot \frac{1}{2} = \frac{35}{12} = 2,92 [cm/s^{2}].$$

Végül, a *DE* kar szöggyorsulása is kiszámítható:

$$\dot{\omega}_{DE} = \frac{a_{Et}^{D}}{\overline{DE}} = \frac{7\sqrt{3}}{72} = 0.168 \left[s^{-2} \right].$$

7. MEREV TEST ÖSSZETETT MOZGÁSA

Összetett mozgással mozgó merev test mozgása felbontható egy relatív mozgásra, az (x,y,z) mozgó koordináta-rendszerben, valamint egy szállító mozgásra, amely a testtel együtt mozgó koordinátarendszer mozgásából ered, az álló (x_l, y_l, z_l) koordináta-rendszerhez viszonyítva (7.1. ábra).

7.1. ábra. Merev test összetett mozgása

7.1. A TEST ABSZOLÚT SEBESSÉGE

A test abszolút sebessége a (6.2) összefüggés alapján:

 $\vec{v} = \vec{v}_p + \vec{v}_r,$ (7.1)

ahol:

- \vec{v} az abszolút sebességvektor,
- \vec{v}_p a szállító sebességvektor,
- \vec{v}_r a relatív sebességvektor.

A (6.1) összefüggés alapján a fenti sebességek összetevői:

a) A szállító sebességvektor

$$\vec{v}_p = \vec{v}_o + \vec{\omega}_p \times \vec{r}',$$

ahol:

- \vec{v}_o az O pólus haladó mozgásának sebességvektora,
- $\vec{\omega}_p$ a szállító mozgás pillanatnyi szögsebesség-vektora

b) A relatív szögsebességvektor

$$\vec{v}_r = \vec{v}_{Ar} + \vec{\omega}_r \times \vec{\rho} ,$$

ahol

- \vec{v}_{Ar} Az A pont haladó mozgásának sebességvektora,
- $\vec{\omega}_r$ a relatív mozgás pillanatnyi szögsebesség-vektora.

Összetett mozgással mozgó merev test abszolút sebességvektora:

$$\vec{\mathbf{v}} = \vec{\mathbf{v}}_o + \vec{\mathbf{\omega}}_p \times \vec{r} + \vec{\mathbf{v}}_{Ar} + \vec{\mathbf{\omega}}_r \times \vec{\mathbf{\rho}} \,. \tag{7.2}$$

7.2. A TEST ABSZOLÚT GYORSULÁSA

a test abszolút gyorsulása a (6.7) öszefüggés alapján:

Az ábrán az O pont (a mozgó koordináta-rendszer középpontja) a szállítómozgás pólusa, az A pont (a merev test tetszőleges pontja) pedig a relatív mozgás pólusa.

A kitűzött feladatként, meg kell találni a relatív, szállító és abszolút mozgások közötti összefüggéseket.

Legáltalánosabb esetet vizsgálva, a szállítómozgás összetevői lehetnek: haladó mozgással mozgó O pólus és az O pólus körüli forgómozgás, az ω_n szállítómozgás szögsebességével. A relatív mozgás összetevői lehetnek: haladó mozgással mozgó A pont és az A pont körüli forgómozgás, az ω_r relatív mozgás szögsebességével.

$$\vec{a} = \vec{a}_p + \vec{a}_r + \vec{a}_c \,, \tag{7.3}$$

ahol:

- \vec{a} az abszolút gyorsulásvektor,
- \vec{a}_p szállító mozgás gyorsulásvektora,
- \vec{a}_r ralatív gyorsulásvektor,
- \vec{a}_c Coriolis-gyorsulásvektor.

Az abszolút gyorsulásvektor komponensei:

a) Szállító mozgás gyorsulásvektora

$$\vec{a}_p = \vec{a}_o + \vec{\epsilon}_p \times \vec{r} + \vec{\omega}_p \times (\vec{\omega}_p \times \vec{r}),$$

ahol:

- \vec{a}_o az O pólus gyorsulásvektora,
- $\vec{\epsilon}_p$ a szállító mozgás pillanatnyi szöggyorsulás-vektora (a mozgó koordináta-rendszer szöggyorsulása),
- $\vec{\omega}_p$ a szállító mozgás pillanatnyi szögsebesség-vektora.
- b) A relatív gyorsulásvektor

$$\vec{a}_r = \vec{a}_{Ar} + \vec{\epsilon}_r \times \vec{\rho} + \vec{\omega}_r \times (\vec{\omega}_r \times \vec{\rho}),$$

ahol:

- \vec{a}_{Ar} az A pont relatív gyorsulásvektora,
- $\vec{\epsilon}_r$ a relatív mozgás pillanatnyi szöggyorsulás-vektora,
- $\vec{\omega}_r$ a relatív mozgás pillanatnyi szögsebesség-vektora.
- c) A Coriolis-gyorsulásvektor

$$\vec{a}_c = 2 \cdot (\vec{\omega}_n \times \vec{v}_r),$$

ahol:

- $\vec{\omega}_p$ a szállítómozgás pillanatnyi szögsebesség-vektora,
- \vec{v}_{x} a relatív sebességvektor.

7.3. A MEREV TEST ÖSSZETETT MOZGÁSÁNAK FŐBB ESETEI

A következő fejezetekben tárgyalásra kerül a merev test összetett mozgásának két leggyakrabban előforduló esete, amelyek a következőkkel jellemezhetők:

- a relatív és a szállító mozgás haladó mozgás,
- a relatív és a szállító mozgás álló tengely körüli forgómozgás.

7.3.1. HALADÓ MOZGÁSOK

Amennyiben a merev test a mozgó (x,y,z) koordináta-rendszerhez képest haladó mozgással mozog, amelynek sebessége \vec{v}_r , és a mozgó koordináta-rendszer is haladó mozgással mozog az álló (x_l,y_l,z_l)

7.2. ábra. Haladó mozgások összegzése

koordináta-rendszerhez viszonyítva \vec{v}_p sebességel, akkor a rendszer abszolút sebessége a (7.1) összefüggés alapján:

$$\vec{v} = \vec{v}_r + \vec{v}_p \,. \tag{7.4}$$

Az abszolút mozgás sebessége a ralatív és a szállító-sebességvektorok vektoriális összegével egyenlő. Ebből következik, hogy ha összetett mozgással mozgó merev test relatív és a szállító mozgása is haladó mozgás, akkor a merev test abszolút (összetett) mozgása is haladó mozgás lesz. Egy ilyen mozgást illusztrál a 7.2. ábra.

7.3.2. PÁRHUZAMOS TENGELYEK KÖRÜLI FORGÓMOZGÁSOK

Ebben az esetben a relatív mozgás forgómozgás z tengely körül ω_I szögsebességgel, valamint egyidejűleg ez a tengely egy kar segítségével újabb z_I tengely körül is forgómozgást végezhet, amely szállító mozgásként értelmezhető ω_2 szögsebességgel (7.3. ábra). Ha a forgástengelyek egymással párhuzamosak, a testek mozgása síkmozgás, a tengelyekre merőleges síkban. Az ilyen összetett mozgásoknál alapvetően két eset fordulhat elő. Az egyik esetben a forgások értelme megegyezik, a másikban ellentétes.

7.3.2.1. A két forgás értelme megegyezik

7.3. ábra. Egyértelmű forgómozgások

Ebben az esetben egy test a z tengely körül $\vec{\omega}_1$ szögsebességgel forog, és a z tengely egy újabb álló z_1 tengely körül is elfordul $\vec{\omega}_2$ szögsebességgel a 7.3. ábra szerint. A tengelyek párhuzamosak, a forgások értelme megegyezik, ami annyi jelent, hogy az I fogaskerék egy kar segítségével a II álló fogaskeréken gördül.

A z tengely körüli forgás relatív mozgás, a z_I tengely körüli pedig szállító mozgás. Az OA távolságon belül létezik egy C pont, amelynek abszolút sebessége az adott időpillanatban zérus (hiszen a II fogaskerék mozdulatlan).

A C pont abszolút sebessége:

$$\vec{v}_C = \vec{v}_{Cr} + \vec{v}_{Cp} \,,$$

ahol:

$$v_{Cr} = \overline{AC} \cdot \omega_I,$$

$$v_{Cp} = \overline{OC} \cdot \omega_2$$
.

A sebességvektorok egyirányúak, értelmük ellentétes (7.3. ábra). Mivel $\vec{v}_C = 0$, felírható:

$$\overline{AC} \cdot \omega_1 = \overline{OC} \cdot \omega_2$$

illetve

$$\frac{\omega_1}{OC} = \frac{\omega_2}{AC} \,. \tag{7.5}$$

Tekintettel arra, hogy a C pont sebessége zérus, így a C pont sebességpólusnak tekinthető.

A pillanatnyi szögsebesség ω nagysága az A pont abszolút sebességéből meghatározható, amely z és z_I tengelyek körüli forgómozgások kerületi sebességeinek eredője, de meghatározható a test C sebességpólus körüli abszolút forgómozgásának kerületi sebességeként is.

- Az A pont abszolút sebessége, a z és z_1 tengelyek körüli forgómozgások kerületi sebességeiből:

$$v_A = 0 \cdot \omega_I + \overline{OA} \cdot \omega_2 = \overline{OA} \cdot \omega_2$$
.

Az A pontnak csak szállítósebessége van (mert a z forgástengelyen fekszik).

- Az A pont sebessége a C sebességpólus körüli abszolút forgómozgás kerületi sebességeként:

$$v_A = \overline{AC} \cdot \omega$$
,

ahol:

- ω a pillanatnyi szögsebesség nagysága (intenzitása).

A fenti egyenletekből, valamint a 7.3. ábra alapján:

$$\omega = \frac{\overline{AO}}{\overline{AC}} \cdot \omega_2 = \frac{\overline{AC} + \overline{OC}}{\overline{AC}} \cdot \omega_2 = \left(I + \frac{\overline{OC}}{\overline{AC}}\right) \cdot \omega_2,$$

illetve

$$\omega = \omega_1 + \omega_2. \tag{7.6}$$

Ha egy test egyidőben forgómozgást végez két párhuzamos tengely körül egyirányban, a test abszolút mozgása a pillanatnyi forgástengely (C pont) körüli forgómozgás lesz, amelynek értelme megegyezik az összetevő forgások értelmével, szögsebességének nagysága a két összetevő szögsebesség algebrai összege $\omega = \omega_1 + \omega_2$.

A mozgás időtartama alatt a pillanatnyi forgástengely helyzetét állandóan változtatja a térben, és egy hengerfelület palástja mentén mozog.

A (7.5) összefüggés alapján, felírhatók még a következő összefüggések is:

$$\frac{\omega_I}{\overline{OC}} = \frac{\omega_2}{\overline{AC}} = \frac{\omega_I + \omega_2}{\overline{AC} + \overline{OC}} = \frac{\omega}{\overline{AO}}.$$
 (7.8)

7.3.2.2. A két forgás ellentétes értelmű

Egy ilyen forgásmodell bemutatható mint az I fogaskerék forgómozgása ω_I szögsebességgel z tengely körül, amely az OA karral a II mozdulatlan belső fogazású fogaskerék középpontjában (z_I tengely) helyezkedik el, miközben az I fogaskerék a II fogaskerék belső fogazásán gördül (7.4.ábra).

Feltételezve, hogy

7.4. ábra. Ellentétes értelmű forgómozgások

 $\omega_1 > \omega_2$ meghatározható az a C pont, amelynek sebessége az adott időpillanatban zérus. Ez a pont a nagyobb intenzitású szögsebesség, ebben az esetben $\vec{\omega}_{1}$ oldalán helyezkedik el (7.4. ábra).

> Hasonlóképpen mint az előző esetben, a C pont sebességeire felírható:

$$v_{Cr} = \overline{AC} \cdot \omega_I,$$

$$v_{Cn} = \overline{OC} \cdot \omega_2$$

illetve

$$\overline{AC} \cdot \omega_1 = \overline{OC} \cdot \omega_2$$
,

amelynek alapján:

$$\frac{\omega_1}{OC} = \frac{\omega_2}{AC} \,. \tag{7.9}$$

Az A pont kerületi sebességei felírhatók a következő formákban:

$$v_A = \overline{OA} \cdot \omega_2 + \theta \cdot \omega_1 = \overline{OA} \cdot \omega_2,$$

$$v_A = \overline{AC} \cdot \omega.$$

A fenti öszefüggések, és a 7.4. ábra alapján, felírható:

$$\omega = \frac{\overline{OA}}{\overline{AC}} \cdot \omega_2 = \frac{\overline{OC} - \overline{AC}}{\overline{AC}} \cdot \omega_2 = \left(\frac{\overline{OC}}{\overline{AC}} - I\right) \cdot \omega_2 = \left(\frac{\omega_1}{\omega_2} - I\right) \cdot \omega_2 = \omega_1 - \omega_2,$$

illetve

$$\omega = \omega_I - \omega_2. \tag{7.10}$$

Ha egy test egyidőben forgást végez két párhuzamos tengely körül különböző nagyságú és értelmű szögsebességekkel, a test abszolút mozgása pillanatnyi forgómozgás, a C sebességpólusban elhelyezkedő pillanatnyi forgástengely körül, amely a nagyobb szögsebesség tengelyének oldalára esik, szögsebességének nagysága $\omega = \omega_1 - \omega_2$, értelme megegyezik a nagyobb szögsebesség értelmével.

Figyelembe véve a (7.9) összefüggést, ennek alapján felírhatók még:

$$\left| \frac{\omega_1}{\overline{OC}} = \frac{\omega_2}{\overline{AC}} = \frac{\omega}{\overline{AO}} \right|. \tag{7.11}$$

Az ebben a fejezetben megfogalmazott eredmények kiválóan alkalmasak hengeres fogaskerekű hajtóművek kinematikai számításaira. A közönséges fogaskerekű hajtóművek olyan hajtások, amelyekben az egymással kapcsolódó fogaskerekek tengelyei mozdulatlanok. Mind a külső (7.3. ábra), mind a belső (7.4. ábra) fogazások esetében, a (7.5 és 7.9) összefüggések alapján $|\omega_1| \cdot r_1 = |\omega_2| \cdot r_2$, ahol $r_1 = \overline{AC}$, $r_2 = \overline{OC}$ a fogaskerekek megfelelő sugarai (fél átmárői). Mivel a

fogaskerék fogainak száma arányos a sugárral, forgásirányuk belső fogazásnál egyirányú, külső fogazásnál ellentétes irányú, felírhatók a következő összefüggések:

$$\left(\frac{\omega_I}{\omega_2}\right)_{kiils\tilde{o}} = -\frac{r_2}{r_I} = -\frac{z_2}{z_I}, \quad \left(\frac{\omega_I}{\omega_2}\right)_{bels\tilde{o}} = \frac{r_2}{r_I} = \frac{z_2}{z_I}.$$
(7.12)

A "közönséges" hajtóműveken kívül léteznek u.n. *planetáris (bolygó) hajtóművek* is, ezeknek kinematikai számítása a következő fejezetben kerül tárgyalásra.

7.4. FOGASKEREKŰ BOLYGÓMŰVEK SZÁMÍTÁSA

A fogaskerekű bolygómű (planetáris hajtómű) olyan fogaskerék hajtás, amelyben egy vagy több fogaskerék bolygókerékként egyidejűleg végez forgómozgást a saját és más fogaskerekek tengelye korül. A bolygókerekek egy (AB) hajtókarhoz vannak kapcsolva, amely egy álló (z_1) fogaskerék központi tengelye körül forog (7.5. ábra). Ha a z_1 fogaskerék nem mozdulatlan, henem az AB kartól függetlenül foroghat is, az ilyen hajtómű az un. differenciális fogaskerék-hajtómű. Mindkét típusú hajtómű tengelyei egymással párhuzamosak.

A fent említett hajtóművek kinematikai jellemzőinek meghatározására legcélszerűbb az un. *Willis* (1841) módszert alkalmazni. E módszernek alapja abból áll, hogy a hajtómű karjának mozgását gondolatban meg kell állítani és a kar szögsebességét ellenkező értelemmel a fogaskerék-bolygómű többi tagjára át kell vinni. Ezáltal a feladat megoldása merev testek álló tengelyek körüli forgására vezethető vissza (mint a "közönséges" hajtóművek esetében). A módszer a következő példákból sajátítható el.

7.1. *példa*

A 7.5. ábrán bemutatott bolygómű AB hajtókarja állandó ω_{AB} szögsebességgel forog, míg I fogaskereke, amelynek sugara r_I mozdulatlan. Mekkora az r_3 sugarú 3-as fogaskerék szögsebessége?

7.5. ábra. A 7.1. példa illusztrációja

Megoldás:

A fogaskerekek abszolút szögsebességei a mozdulatlan (x_I,y_I) koordináta-rendszerhez képest ω_I ($\omega_I = 0$), ω_2 és ω_3 . Az egész Ax_Iy_I síkot elforgatva $-\omega_{AB}$ szögsebességgel, a kapott szögsebesség-értékek:

$$\hat{\omega}_{I} = 0 - \omega_{AB}, \quad \hat{\omega}_{2} = \omega_{2} - \omega_{AB},$$

$$\widehat{\omega}_3 = \omega_3 - \omega_{AB}, \quad \widehat{\omega}_{AB} = 0$$

Ezáltal a hajtómű átalakult "közönséges" hajtóművé, és a (7.12) összefüggés alapján, felírhatók a következő szögsebesség-arányok:

$$\frac{\widehat{\omega}_1}{\widehat{\omega}_2} = -\frac{r_2}{r_1}, \quad \frac{\widehat{\omega}_2}{\widehat{\omega}_3} = -\frac{r_3}{r_2},$$

ahonnan:

$$\frac{\widehat{\omega}_I}{\widehat{\omega}_3} = \frac{r_3}{r_I} = \frac{z_3}{z_I} .$$

Látható, hogy a "közönséges" hajtóművek (szélső) fogaskerekeinek szögsebessége fordítottan arányos sugaraik nagyságával (fogaik számával) és nem függ a köztük beiktatott fogaskerekek sugarának nagyságától, illetve fogszámától.

Behelyettesítve a megfelelő szögsebességeket:

$$\frac{-\omega_{AB}}{\omega_3 - \omega_{AB}} = \frac{r_3}{r_I}.$$

A 3-as fogaskerék abszolút szögsebessége:

$$\omega_3 = \left(I - \frac{r_1}{r_3}\right) \cdot \omega_{AB}.$$

Ha $r_3 > r_1$ ekkor a 3-as fogaskerék forgásiránya megegyezik a kar forgásirányával, ha $r_3 < r_1$ akkor ellentétes. Ha $r_3 = r_1$ akkor $\omega_3 = 0$ és a 3-as fogaskerék haladó mozgással mozog.

7.2. példa

Az OA kar ω_0 állandó szögsebességgel forog egy álló fogaskerék körül, amelynek fogszáma z_0 =60. A karhoz csatlakoznak a z_1 , z_2 , z_3 fogaskerekek, amelyeknek fogszámai z_1 =40, z_2 =50, z_3 =25(7.6. ábra). Mekkora a 3-as fogaskerék ω_3 szögsebessége?

7.6. ábra. A 7.2. példa illusztrációja

Megoldás:

Az OA kar egy álló tengely körül forog, a z_1, z_2, z_3 fogaskerekek pedig síkmozgást végeznek, míg a z_0 fogaskerék áll. Megállítva a kart (gondolatban), a rendszer többi tagjára át kell vinni mozgását ellenkező előjellel (vonatkozik ez mind a mozgó, mind az álló tagokra egyaránt). Ezután a fogaskerekek szögsebességei:

$$\widehat{\omega}_{\theta} = \theta - \omega_{\theta}, \quad \widehat{\omega}_{12} = \omega_{12} - \omega_{\theta}, \quad \widehat{\omega}_{3} = \omega_{3} - \omega_{\theta}.$$

Álló tengelyek körüli forgómozgások esetén, az egyes tengelyek szögsebességei:

$$\frac{\widehat{\omega}_0}{\widehat{\omega}_{12}} = -\frac{r_1}{r_0}, \qquad \frac{\widehat{\omega}_{12}}{\widehat{\omega}_3} = -\frac{r_3}{r_2}.$$

A fenti egyenletekből:

$$\widehat{\omega}_{3} = \frac{r_{2} \cdot r_{\theta}}{r_{l} \cdot r_{3}} \cdot \widehat{\omega}_{\theta}, \quad \text{illetve} \qquad \omega_{3} - \omega_{\theta} = \frac{r_{2} \cdot r_{\theta}}{r_{l} \cdot r_{3}} \cdot \left(-\omega_{\theta}\right).$$

Tekintettel arra, hogy a fogaskerekek fogainak száma arányos sugarukkal (átmérőikkel):

$$\omega_{3} = \left(1 - \frac{r_{2} \cdot r_{0}}{r_{1} \cdot r_{3}}\right) \cdot \omega_{0} = \left(1 - \frac{z_{2} \cdot z_{0}}{z_{1} \cdot z_{3}}\right) \cdot \omega_{0} = \left(1 - \frac{50 \cdot 60}{40 \cdot 25}\right) \cdot \omega_{0} = -2 \cdot \omega_{0}.$$

Az I-I keret ω_I szögsebességgel forog az AB vízszintes álló tengely körül. Az II és III fogaskerék, amelyek egymással össze vannak kapcsolva, a keret tengelyén szabadon elfordulhatnak. A II kerék az álló IV fogaskerékkel, a III fogaskerék az V fogaskerékkel kapcsolódik, amely az AB tengely körül szabadon elfordulhat. A fogaskerekek sugarai r_2 , r_3 , r_4 , r_5 a 7.7. ábra szerint. Meghatározni az V fogaskerék ω_3 szögsebességét.

7.7. ábra. A 7.3. példa illusztrációja

Megoldás:

Gondolatban megállítva az *I* keretet, és szögsebességét a többi fogaskerékre átvíve, felírható:

$$\widehat{\omega}_1 = 0 - \omega_1$$
, $\widehat{\omega}_2 = \omega_2 - \omega_1$, $\widehat{\omega}_3 = \omega_3 - \omega_1$.

A áttételi viszonyok alapján:

$$\frac{\widehat{\omega}_1}{\widehat{\omega}_2} = -\frac{r_2}{r_4}, \quad \frac{\widehat{\omega}_3}{\widehat{\omega}_2} = -\frac{r_3}{r_5},$$

illetve

$$\widehat{\omega}_3 = -\frac{r_3}{r_5} \cdot \widehat{\omega}_2 = \frac{r_3 \cdot r_4}{r_5 \cdot r_2} \cdot \widehat{\omega}_I,$$

Az abszolút szögsebességeket behelyettesítve, a keresett szögsebesség:

$$\omega_3 - \omega_1 = -\frac{r_3 \cdot r_4}{r_5 \cdot r_2} \cdot \omega_1 \Longrightarrow \omega_3 = \left(I - \frac{r_3 \cdot r_4}{r_5 \cdot r_2}\right) \cdot \omega_1.$$

7.4. példa

A 7.8. ábrán bemutatott bolygómű a következő elemekből áll: mozdulatlan I-es fogaskerék, amelynek átmérője r_1 =40[cm], közös tengelyen elhelyezett két bolygókerék r_2 =20[cm], és

 r_3 =30[cm] sugárral, valamint a II tengelyen egy belső fogazású fogaskerék, amelynek sugara r_4 =90[cm]. Az I tengelyhez kapcsolt kar, amely a bolygókerekek tengelyét forgatja n_I =1800[ford/perc] fordulattal forog. Mekkora a II tengely fordulatszáma?

Megoldás:

A Willis módszer alapján:

$$\widehat{\omega}_I = 0 - \omega_I, \quad \widehat{\omega}_2 = \omega_2 - \omega_I, \quad \widehat{\omega}_{II} = \omega_{II} - \omega_I.$$

A fogaskerékpárok kapcsolódása következtében, a 7.8. ábra szerint:

$$\frac{\widehat{\omega}_{l}}{\widehat{\omega}_{2}} = -\frac{r_{2}}{r_{l}} \Longrightarrow \widehat{\omega}_{2} = -\frac{r_{l}}{r_{2}} \cdot \widehat{\omega}_{l},$$

$$\frac{\widehat{\omega}_{II}}{\widehat{\omega}_{2}} = \frac{r_{3}}{r_{4}} \Longrightarrow \widehat{\omega}_{II} = \frac{r_{3}}{r_{4}} \cdot \widehat{\omega}_{2},$$

behelyettesítve az $\widehat{\omega}_2$ szögsebességet az előző egyenletből:

7.8. ábra. A 7.4. példa illusztrációja

$$\widehat{\omega}_{II} = -\frac{r_3 \cdot r_1}{r_4 \cdot r_2} \cdot \widehat{\omega}_I.$$

Az abszolút szögsebességekkel:

$$\omega_{II} - \omega_{I} = \frac{r_3 \cdot r_I}{r_4 \cdot r_2} \cdot \omega_{I},$$

illetve

$$\omega_{II} = \left(\frac{r_I \cdot r_3}{r_2 \cdot r_4} + I\right) \cdot \omega_{I}.$$

Az I tengely szögsebessége és fordulatszáma közötti összefüggés:

$$\omega_I = \frac{\pi \cdot n}{30} = \frac{1800 \cdot \pi}{30} = 60\pi$$
.

A II tengely szögsebessége:

$$\omega_{II} = \left(\frac{40 \cdot 30}{20 \cdot 90} + I\right) \cdot 60\pi = 100\pi \left[s^{-1}\right].$$

A II tengely fordulatszáma:

$$n_{II} = \frac{30 \cdot \omega}{\pi} = \frac{30 \cdot 100\pi}{\pi} = 3000 \left[ford / perc \right].$$

7.5. példa

A 7.9. ábrán bemutatott hajtóművet a következő elemek alkotják:

- az *I*mozdulatlan fogaskerék,
- a 2 és 3 bolygó fogaskerekek, amelyek közös tengelyükkel és egy kar segítségével az AC tengelyhez vannak kapcsolva,
- a 4 fogaskerék, amely a B tengelyen van.

A fogaskerekek fogainak számai: z_1 =120, z_2 =40, z_3 =30, z_4 =50. Az AC tengely fordulatszáma n_A =1500 [ford/perc]. Mekkora a B tengely fordulatszáma?

Megoldás:

A hajtómű elemeinek szögsebességei a következők: A karral egybekapcsolt A tengelyé ω_A ; a A fogaskerék és a B tengelyé ω_B ; a A és A fogaskerék és a B tengelyé A igy szögsebessége A fogaskerék rögzítve van, így szögsebessége rögyét rögyé

Minden egyes elemhez hozzárendelve $-\omega_A$ szögsebességet, a következő szögsebesség-értékek adódnak:

$$\widehat{\omega}_A = 0$$
, $\widehat{\omega}_I = 0 - \omega_A$, $\widehat{\omega}_{23} = \omega_{23} - \omega_A$, $\widehat{\omega}_4 = \omega_B - \omega_A$.

Alkalmazva a (7.12.) összefüggést az 1 és 2 valamint a 3 és 4 fogaskerékpárokra:

$$\frac{\widehat{\omega}_{I}}{\widehat{\omega}_{23}} = \frac{z_{2}}{z_{I}}, \quad \frac{\widehat{\omega}_{23}}{\widehat{\omega}_{4}} = -\frac{z_{4}}{z_{3}}.$$

A fenti egyenletekből:

$$\frac{\widehat{\omega}_{l}}{\widehat{\omega}_{4}} = -\frac{z_{2} \cdot z_{4}}{z_{l} \cdot z_{3}},$$

illetve az abszolút szögsebességekre:

$$\frac{-\omega_A}{\omega_B - \omega_A} = -\frac{z_2 \cdot z_4}{z_1 \cdot z_3}.$$

Ebből az egyenletből, figyelembe véve, hogy az n fordulatszám és az ω szögsebesség arányosak:

$$n_{B} = \left(I + \frac{z_{1} \cdot z_{3}}{z_{2} \cdot z_{4}}\right) \cdot n_{A} = \left(I + \frac{120 \cdot 30}{40 \cdot 50}\right) \cdot 1500 = 4200 \left[ford / perc\right].$$

7.6. *példa*

Amennyiben a 7.5. példában vázolt hajtómű I-es fogaskereke az AC tengellyel egyirányban forog n_I =1100 [ford/perc] fordulatszámmal (átalakítva differenciális hajtóművé), miként változik a B tengely fordulatszáma?

Megoldás:

A példa megoldásának menete megegyezik az előzőével (7.5. példa) azzal, hogy ebben a példában $\omega_I \neq 0$, illetve az ω_I és ω_2 előjelei az adott feltétel alapján azonosak, tehát: $\widehat{\omega}_I = \omega_I - \omega_A$. Az előző példában felállított arány alapján:

$$\frac{\widehat{\omega}_I}{\widehat{\omega}_4} = -\frac{z_2 \cdot z_4}{z_1 \cdot z_3},$$

valamint:

$$\frac{\omega_I - \omega_A}{\omega_B - \omega_A} = -\frac{z_2 \cdot z_4}{z_I \cdot z_3}.$$

A fordulatszámok aránya:

$$n_B = n_A + \frac{z_1 \cdot z_3}{z_2 \cdot z_4} \cdot (n_A - n_I) = 2220 [ford / perc].$$

Ha az I-es fogaskerék ellentétes irányban forogna mint az AC kar, a kapott eredményben kizárólag az n_I fordulatszám előjelét kell megváltoztatni.

7.7. példa

A 7.10. ábrán bemutatott hajtómű bemenő O tengelye ω_0 szögsebességgel forog, és egy kar segítségével forgásba hoz egy másik tengelyt, amelyhez a II és III bolygó fogaskerekek kapcsolódnak. A II fogaskerék az V belső fogazású fogaskerékkel kapcsolódik. Meghatározni az I és IV fogaskerekek szögsebességeit, ha a fogaskerekek sugarai r_1 , r_2 , r_3 , r_4 .

Megoldás:

Az egyes fogaskerekek szögsebességeit, a kar forgásának megállítása előtt és után, a következő táblázat foglalja össze:

	KAR	I	II	III	IV	V
MEGÁLLÍTÁS ELŐTT	$\omega_{ heta}$	ω_I	ω_2	ω_2	ω_4	0
MEGÁLLÍTÁS UTÁN	0	ω_I - ω_0	ω_2 - ω_0	ω_2 - ω_0	ω_4 - ω_0	-ω _θ

7.10. ábra. A 7.7. példa illusztrációja

A 7.10. ábra alapján a fogaskerekek kapcsolódását figyelemmel kísérve, a táblázatból felállíthatók a következő szögsebesség-arányok:

$$\frac{\omega_1 - \omega_0}{\omega_2 - \omega_0} = -\frac{r_2}{r_1} \Longrightarrow \omega_1 - \omega_0 = -\frac{r_2}{r_1} \cdot (\omega_2 - \omega_0),$$

$$\frac{\omega_2 - \omega_0}{\omega_4 - \omega_0} = -\frac{r_4}{r_3} \Longrightarrow \omega_4 - \omega_0 = -\frac{r_3}{r_4} \cdot (\omega_2 - \omega_0),$$

$$\frac{\omega_2 - \omega_0}{-\omega_0} = \frac{r_5}{r_2} \Longrightarrow \omega_2 - \omega_0 = \frac{r_2}{r_1} \cdot (-\omega_0).$$

Amelyek alapján:

$$\omega_I = \left(\frac{r_5}{r_I} + I\right) \cdot \omega_\theta,$$

$$\omega_4 = \left(\frac{r_3 \cdot r_5}{r_2 \cdot r_4} + I\right) \cdot \omega_0.$$

8. IRODALOM

1. D. Rašković:

Mehanika II, kinematika (Naučna knjiga, Beograd 1950.)

2. Davorin Bazjanac:

Tehnička mehanika, Kinematika (Tehnička knjiga, Zagreb 1959.)

3. S.M.Targ:

Teorijska mehanika, Kratak kurs (Građevinska knjiga, Beograd 1985.)

4. Vladimir Šikoparija:

Kinematika (Naučna knjiga, Beograd 1983.)

5. Vladimir Šikoparija:

Kinematika, zbirka rešenih zadataka iz mehanike II (Naučna knjiga, Beograd 1990.)

6. Pattantyús:

Gépész és villamosmérnökök kézikönyve (Műszaki könyvkiadó, Budapest 1961.)