Лекція 6

ВПОРЯДКОВАНІ МНОЖИНИ

1. Перестановки

Нехай множина A складається з n елементів a_1, \ldots, a_n . В цьому випадку ми записуємо $A = \{a_1, \ldots, a_n\}$.

Означення 1. Розташування елементів множини A у певному порядку називається $nepecmanos \kappa o \omega$.

Кожну перестановку можна однозначно визначити, якщо записати елементи множини A у певному порядку, наприклад $\{a_{i_1},\ldots,a_{i_n}\}$. Щоб визначити скільки існує різних перестановок, зауважимо, що їх стільки, скільки існує різних векторів (a_{i_1},\ldots,a_{i_n}) , у яких всі координати різні і належать A. Множину таких векторів позначимо V. Розглянемо операцію

$$(1) O = \{ \text{вибрати вектор 3 } V \}.$$

Цю операцію можна виконати за допомогою послідовності таких дій:

(2)

 $\hat{D_k} = \{$ вибрати елемент з A для k-ої координати вектора $\}$

 $1\leq k\leq n$, тобто $O=D_1\otimes\cdots\otimes D_n$. Оскільки координати вектора (a_{i_1},\ldots,a_{i_n}) не повторюються, то $m_1=n,\ m_2=n$

 $^{^{0}}$ Printed from the file [discretka_L=05.tex] on 25.7.2013

 $n-1, \ldots, m_n=1$. За основним правилом комбінаторики (див. розділ 5.4) операцію O можна виконати $n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1$ способами.

Означення 2. Число $1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n$ називається факторіалом числа n і позначається n!. Ми покладаємо також 0! = 1 та 1! = 1.

Інший розв'язок. Позначимо через p_i кількість можливих перестановок i елементів. Задача полягає у знаходженні p_n . Множину V всіх перестановок можна розбити на n множин $V_k = \{$ на останньому місці стоїть елемент $a_k \}, \ 1 \leq k \leq n$. Оскільки ці множини попарно не перетинаться, то за правилом додавання (3.2) отримуємо $p_n = |V_1| + \cdots + |V_n|$. Всі числа $|V_k|$ рівні між собою і дорівнюють p_{n-1} . Тому

$$(3) p_n = np_{n-1}, n \ge 2.$$

Оскільки $p_1=1$, то методом математичної індукції легко довести, що $p_n=n!$. \square

Задача 1. Методом математичної індукції довести, що $p_n = n!$.

Рівняння (3) називається рекурентним рівнянням для ϕ акторіала.

Задача 2. В чемпіонаті країни з футболу приймають участь 16 команд. Після закінчення змагань складається таблиця, в якій команди розташовані згідно за їхніми результатами. (а) Скільки існує різних таблиць результатів чемпіонату? (b) Скільки існує різних таблиць, у яких перше і друге місце займають певні дві команди?

Відповідь (задача 2). (a) 16!; (b) 14! (оскільки треба впорядкувати тільки 14 команд).

2. Впорядковані розміщення

Задача 3. (продовження задачі 2) Тільки перші чотири команди отримують право грати в європейських змаганнях. Скільки існує таблиць чемпіонату з різними розподілами перших чотирьох місць?

Відповідь (задача 3). $\frac{16!}{12!}$.

Розв'язання задачі 3. Кожна таблиця чемпіонату починається з запису команд, які зайняли перші чотири місця, тобто (c_1, c_2, c_3, c_4) , де c_i — це команда, яка посіла i-те місце. Формування такого запису є операцією O, а кількість способів, якими цю операцію можна здійснити, є відповіддю до задачі.

Щоб сформувати такий запис, необхідно здійснити чотири дії D_1, D_2, D_3, D_4 : i-та дія D_i полягає у виборі команди для i-го місця. Зрозуміло, що $|D_1|=16$. Оскільки дія D_2 виконується після D_1 , то $|D_2|=15$ (одна з команд вже обрана дією D_1). Аналогічно, $|D_3|=14$ та $|D_4|=13$. Згідно з основним правилом комбінаторики (див. розділ 5.4) $|O|=|D_1|\cdot |D_2|\cdot |D_3|\cdot |D_4|$, тобто $|O|=16\cdot 15\cdot 14\cdot 13$. Це число можна записати таким чином $\frac{16!}{12!}$.

Означення 3. Нехай множина A складається з n елементів, а $r \leq n$. Будь-який запис $(a_{i_1}, \ldots, a_{i_r})$ різних елементів з A називається розміщенням r елементів з множини A; для скорочення ми також кажемо, що $(a_{i_1}, \ldots, a_{i_r})$ — це posmi- щення з n no r.

Позначимо через V множину векторів, що мають r (різних) координат, кожна з яких є елементом множини A. Як і у випадку перестановок, розглянемо операцію (1) (але вже для іншої множини V) та дії (2), але вже для $1 \le k \le r$. Тоді

 $O = D_1 \otimes \cdots \otimes D_r$. Крім того, $m_1 = n, m_2 = n-1, \ldots, m_r = n-r+1$. За правилом множення, операцію O можна виконати $n \cdot (n-1) \cdot \ldots \cdot (n-r+1)$ способами. Зрозуміло, що $n \cdot (n-1) \cdot \ldots \cdot (n-r+1) = \frac{n!}{(n-r)!}$. Ми позначаємо $A_n^r = \frac{n!}{(n-r)!}$.

Інший розв'язок задачі 3. Позначимо через p(i,j) кількість можливих розміщень j елементів з існуючих i елементів. Задача полягає у знаходженні p(n,r). Множину V всіх розміщень можна розбити на n підмножин

 $V_k = \{$ на останньому місці стоїть елемент $a_k \}, \quad 1 \le k \le n.$

Оскільки ці множини попарно не перетинаються, то за правилом додавання (3.2) отримуємо $p(n,r) = |V_1| + \cdots + |V_n|$. Всі числа $|V_k|$ рівні між собою і дорівнюють p(n-1,r-1). Тому

(4)
$$p(n,r) = np(n-1,r-1), \qquad n \ge 2.$$

Оскільки p(i,1)=i для будь-якого $1\leq i\leq n$, то методом математичної індукції легко довести, що $p(n,r)=A_n^r$. \square

Задача 4. Методом математичної індукції довести, що $p(n,r)=A_n^r$.

Приклад 1. Обирається Miss World. У змаганні приймає участь 30 учасниць, серед яких Miss Ukraine. Оголошуються перші 6 місць. (а) Скільки існує різних результатів змагань? (b) Скільки існує різних результатів, у яких Miss Ukraine займає одне з перших шести місць? Відповідь до (а): $A_{30}^6 = \frac{30!}{24!}$. Відповідь до (b): $A_{30}^6 - A_{29}^6$ (з загальної кількості можливих результатів віднімаємо такі, у яких Miss Ukraine *не займає* одне з перших шести місць).

3. НЕ ВПОРЯДКОВАНІ РОЗМІЩЕННЯ

Існує багато задач, де порядок, в якому записані числа $\{a_{i_1},\ldots,a_{i_r}\}$, не має жодного значення.

Задача 5. У бібліотеці існує обмеження, що кожний студент може отримати не більше 5 книжок. Список рекомендованої лекторами літератури складається з 8 назв. Скільки існує способів для студента вибрати 5 книжок з 8 назв? (Зрозуміло, що порядок, в якому книжки будуть видані студенту, жодного значення не мае).

Відповідь (задача 5).
$$C_8^5 = \frac{8!}{3!5!} = 56.$$

Розв'язання задачі 5. Для розв'язання цієї задачі роглянемо спочатку загальний підхід. Нехай $r \leq n$. Загалом існує A_n^r розміщень. Серед них існують такі, які відрізняються тільки порядком запису елементів. Розіб'ємо всі розміщення на групи наступним чином. Спочатку оберемо довільне розміщення і до першої групи включимо всі ті, які відрізняються від нього тільки порядком елементів. З решти розміщень оберемо тепер довільне розміщення і до другої групи включимо всі ті, які відрізняються від нього тільки порядком елементів. Така процедура має скінченну кількість кроків.

Задача 6. В кожній групі знаходиться r! розміщень.

Тому існує $A_n^r/r!$ різних груп розміщень.

Означення 4. Комбінацією називається будь-яка з побудованих груп розміщень. Кількість комбінацій з n по r позначається C_n^r . Маємо $C_n^r = \frac{n!}{r!(n-r)!}$.

Це означає, що загалом існує C_n^r різних комбінацій r елементів з n (різних означає, що склад елементів однієї комбінації відрізняється від складу елементів іншої комбінації).

4. Кількість підмножин заданої множини

Викладений у розділі 3 матеріал можна подати у наступному вигляді.

Теорема 1. Нехай множина A складаеться з n елементів, $r \leq n$. Існуе C_n^r підмножин A, які складаються з r елементів.

А скільки ж загалом існує підмножин у A?

Теорема 2. Нехай множина A складаеться з n елементів. Тоді у A існує 2^n різних підмножин. (Серед таких підмножин враховані \varnothing та сама A).

Доведення. Позначимо через q_i кількість підмножин множини, що складається з i елементів. Всі підмножини розділимо на дві групи: до першої групи входять такі підмножини, які містять a_1 , а до другої — такі, що не містять a_1 . Наприклад сама множина A належить першій групі, а \varnothing — другій. Зауважимо, що друга група складається з усіх можливих підмножин множини $\{a_1,\ldots,a_n\}$, тому кількість таких підмножин є q_{n-1} . Такою ж є кількість підмножин у першій групі, оскільки між цими групами існує бієкція. А саме, будь-яка підмножина з першої складається або тільки з a_1 , або містить a_1 та деякі елементи з $\{a_2,\ldots,a_n\}$, тобто для довільної підмножина B з першої групи підмножина $B\setminus\{a_1\}$ належить другій групі. Тому бієкцію f між двома групами можна означити так: $f: B \to B\setminus\{a_1\}$.

Задача 7. Довести, що f дійсно є бієкцією.

За правилом бієкції 5.1 дві зазначені групи мають однакову кількість елементів і тому $q_n = 2q_{n-1}$. Звідси і випливає твердження теореми.

Задача 8. Довести за індукцією, що $q_n = 2^n$.

П

Наслідок 1. $C_1^0 + C_1^1 = 2$. $Hexaŭ \ n \geq 2$. Todi

$$C_n^0 + C_n^1 + \dots + C_n^n = 2^n.$$

5. Біноміальні коефіцієнти

Числа C_n^0, \ldots, C_n^n називаються біноміальними коефіцієнтами степеня n. Ця назва пояснюється тим, що вони є коефіцієнтами бінома Ньютона $(1+x)^n$.

Теорема 3. *Нехай* $n \ge 1$. *Тоді* C_n^r *е* коефіцієнтом при x^r у розкладі $(1+x)^n$ за степенями x.

Доведення. Розглянемо добуток

$$(1+x)(1+x)\dots(1+x)$$
 (загалом n множників $1+x$).

Розкриваючи дужки, ми отримуємо багато разів доданок x^r . Кількість таких доданків дорівнює кількості способів, якими можна обрати r співмножників x і n-r співмножників 1. Ця кількість і є C_n^r . \square

Твердження теореми 3 можна записати таким чином:

$$(1+x)^n = \sum_{r=0}^n C_n^r x^r.$$

Задача 9. Довести, що $(1-x)^n = \sum_{r=0}^n (-1)^r C_n^r x^r$, $(a+b)^n =$ $\sum_{r=0}^{n} C_n^r a^r b^{n-r}.$

Найбільш важливі властивості біноміальних коефіцієнтів включено в наступний результат.

Теорема 4.

(i)
$$C_n^r = C_n^{n-r}, n \ge 0, 0 \le r \le n$$
;

$$\begin{array}{ll} \text{(i)} \ \ C_n^r = C_n^{n-r}, \ n \geq 0, \ 0 \leq r \leq n; \\ \text{(ii)} \ \ C_n^r = C_{n-1}^{r-1} + C_{n-1}^r, \ n \geq 2, \ 1 \leq r \leq n-1. \end{array}$$

Доведення. (i) Кожна комбінація з n по r визначає не тільки r обраних елементів, але і інші n-r елементів. Тому кількість комбінацій з n по r є такою ж, як кількість комбінацій з n по n-r.

(ii) У кожній комбінації з n по r елемент a_1 або присутній, або ні. Кількість комбінацій, де його немає, дорівнює C_{n-1}^r . Кількість же комбінацій, де він ϵ , дорівнює C_{n-1}^{r-1} . Звідси і випливає (ii). 🗆

Задача 10. Довести теорему 4 з використанням означення 4.

6. ТРИКУТНИК ПАСКАЛЯ

Трикутником Паскаля називається нескінченна трикутна матриця, n-ий рядок якої складається з чисел P_{nr} , $0 \le$ $r \leq n$. Вважаємо, що матриця починається з рядка, який має номер 0. Числа $P_{nr}, n \geq 0, 0 \leq r \leq n$ визначаються наступним чином:

(5)
$$P_{00} = 1$$

(6)
$$P_{n0} = P_{nn} = 1, \qquad n \ge 1,$$

(7)
$$P_{nr} = P_{n-1,r-1} + P_{n-1,r}, \qquad 0 < r < n-1, \ n \ge 2.$$

Ниж че зображено перші рядки трикутника Паскаля з використанням символів P_{nr} для його елементів:

Зважаючи на рівності (5)-(6), замінемо крайні елементи трикутника Паскаля на одиниці:

Згідно до правила (7), кожне число P_{nr} , що залишилось у трикутнику Паскаля невизначеним у рядку n, дорівнює сумі двох чисел у попередньому рядку, між якими розташовано P_{nr} . Тому трикутник Паскаля починається так:

Теорема 5. $P_{nr} = C_n^r$ для $\operatorname{scix} 0 \le r \le n \text{ ma } n \ge 0.$

Доведення. Безпосередньо з означення випливає, що

$$P_{00} = C_0^0$$
.

Таким чином твердження теореми виконано для нульового рядка трикутника Паскаля. Скористаємось тепер методом математичної індукції. Припустимо, що $P_{nr}=C_n^r$ для n-ого рядка, тобто для всіх $0\leq r\leq n$. Доведемо, що $P_{n+1,r}=C_{n+1}^r$ для всіх $0\leq r\leq n+1$. Оскільки за означенням $P_{n0}=P_{nn}=1$ та $C_n^0=C_n^n=1$, то

$$P_{n0} = C_n^0, \qquad P_{nn} = C_n^n,$$

тобто необхідна рівність виконується для крайніх членів (n+1)-го рядка. Доведемо її і для 0 < r < n+1. На підставі припущення індукції та властивості (іі) теореми 4 маємо

$$P_{n+1,r} = P_{n,r-1} + P_{nr} = C_n^{r-1} + C_n^r = C_{n+1}^r.$$