

BG-ranks and 2-cores

William Y. C. Chen, Kathy Q. Ji, and Herbert S. Wilf

February 2, 2008

Abstract

We find the number of partitions of n whose BG-rank is j , in terms of $pp(n)$, the number of pairs of partitions whose total number of cells is n , giving both bijective and generating function proofs. Next we find congruences mod 5 for $pp(n)$, and then we use these to give a new proof of a refined system of congruences for $p(n)$ that was found by Berkovich and Garvan.

1 Introduction

If π is a partition of n we define the *BG-rank* $\beta(\pi)$, of π as follows. First draw the Ferrers diagram of π . Then fill the cells with alternating ± 1 's, chessboard style, beginning with a $+1$ in the $(1, 1)$ position. The sum of these entries is $\beta(\pi)$, the BG-rank of π . For example, the BG-rank of the partition $13 = 4 + 3 + 3 + 1 + 1 + 1$ is -1 .

+1	-1	+1	-1
-1	+1	-1	
+1	-1	+1	
-1			
+1			
-1			

Figure 1: A partition with BG-rank -1

This partition statistic has been encountered by several authors ([1, 2, 3, 6, 7]), but its systematic study was initiated in [1]. Here we wish to study the function

$$p_j(n) = |\{\pi : |\pi| = n \text{ and } \beta(\pi) = j\}|.$$

We will find a fairly explicit formula for it (see (2) below), and a bijective proof for this formula. We will then show that a number of congruences from [1] can all be proved from a single set of congruences for the function $pp(n)$ defined by (1) below.

2 The theorem

We write $p(n)$ for the usual partition function, and $\mathcal{P}(x)$ for its generating function. If π is a partition of n then we will write $|\pi| = n$. $pp(n)$ will be the number of ordered pairs π', π'' of partitions such that $|\pi'| + |\pi''| = n$, i.e., $pp(n)$ is the sequence that is generated by

$$\sum_{n \geq 0} pp(n)x^n = \mathcal{P}(x)^2 = \prod_{i \geq 1} \frac{1}{(1 - x^i)^2}. \quad (1)$$

By convention $pp(n)$ vanishes unless its argument is a nonnegative integer. Our main result is as follows.

Theorem 1 *The number of partitions of n whose BG-rank is j is given by*

$$p_j(n) = pp\left(\frac{n - j(2j - 1)}{2}\right). \quad (2)$$

A non-bijective proof of this is easy, given the results of [1]. The authors of [1] found the two variable generating function for $\bar{p}_j(m, n)$, the number of partitions of n with BG-rank $= j$ and “2-quotient-rank” $= m$, in the form

$$\sum_{n,m} \bar{p}_j(m, n)x^m q^n = \frac{q^{j(2j-1)}}{(q^2x, q^2/x; q^2)_\infty}.$$

If we simply put $x = 1$ here, and read off the coefficients of like powers of q , we have (2). \square

3 Bijective proof

A bijective proof of (2) follows from the theory of 2-cores. The *2-core* of a partition π is obtained as follows. Begin with the Ferrers diagram of π . Then delete a horizontal or a

vertical pair of adjacent cells, subject only to the restriction that the result of the deletion must be a valid Ferrers diagram. Repeat this process, making arbitrary choices, until no further such deletions are possible. The remaining diagram is the 2-core of π , $C(\pi)$, say.

The 2-core of a partition is always a staircase partition, i.e., a partition of the form

$$\binom{k+1}{2} = k + (k-1) + \dots + 1.$$

The following representation theorem is well known, and probably goes back to Littlewood [4] or to Nakayama [5]. For a lucid exposition see Schmidt [6].

Theorem 2 *There is a 1-1 (constructive) correspondence between partitions π of n and triples (S, π', π'') , where S is a staircase partition (the 2-core of π), and π', π'' are partitions such that $n = |S| + 2|\pi'| + 2|\pi''|$.*

The proof of Theorem 1 will follow from the following observations:

1. First, the BG-rank of a partition and of its 2-core are equal, since at each stage of the construction of the 2-core we delete a pair of adjacent cells, which does not change the BG-rank.
2. An easy calculation shows that the BG-rank of a staircase partition of height k is $(k+1)/2$, if k is odd, and $-k/2$, if k is even.
3. Therefore, if π is a partition of BG-rank $= j$ then its 2-core is a staircase partition of height $2j - 1$, if $j > 0$, and $-2j$, if $j \leq 0$.
4. In either case, if π is a partition whose BG-rank is j , then its 2-core is a diagram of exactly $j(2j - 1)$ cells, i.e., a partition of the integer $j(2j - 1)$.

Theorem 1 now follows from Theorem 2 and remark 4 above. \square

Corollary 1 *There exists a partition of n with BG-rank $= j$ if and only if $j + n$ is even and $j(2j - 1) \leq n$.*

4 Congruences

The motivation for introducing the BG-rank lay in the wish to refine some known congruences for $p(n)$. We can give quite elementary proofs of some of their congruences, in particular the

following:

$$p_j(5n) \equiv 0 \pmod{5}, \text{ if } j \equiv 1, 2 \pmod{5}, \quad (3)$$

$$p_j(5n+1) \equiv 0 \pmod{5}, \text{ if } j \equiv 0, 3, 4 \pmod{5}, \quad (4)$$

$$p_j(5n+2) \equiv 0 \pmod{5}, \text{ if } j \equiv 1, 2, 4 \pmod{5}, \quad (5)$$

$$p_j(5n+3) \equiv 0 \pmod{5}, \text{ if } j \equiv 0, 3 \pmod{5}, \quad (6)$$

$$p_j(5n+4) \equiv 0 \pmod{5}, \forall j. \quad (7)$$

First, we claim that all of the above congruences would follow if we could prove that

$$pp(n) \equiv 0 \pmod{5} \text{ if } n \equiv 2, 3, 4 \pmod{5}. \quad (8)$$

This is because of the result

$$p_j(n) = pp\left(\frac{n - j(2j-1)}{2}\right)$$

of Theorem 1 above. There are 15 cases to consider, but fortunately they can all be done at once.

We want to prove that for each of the above pairs $(n, j) \pmod{5}$, the quantity $(n - j(2j-1))/2$ is either not an integer or else is 2, 3 or 4 mod 5. For it to be an integer we must have $j \equiv n \pmod{2}$. Hence we have a pair (n, j) which modulo 5 have given values (n', j') , say, and are such that $j \equiv n \pmod{2}$. This means that

$$n = 5s + 5j' - 4n' + 10t, \text{ and } j = 5s + j',$$

for some integers s, t . But then

$$\frac{n - j(2j-1)}{2} \equiv 3j' - 2n' - j'^2 \pmod{5}. \quad (9)$$

Thus, to prove that (8) imply all of (3)–(7) we need only verify that for each of the 15 pairs (n', j')

$$(0, 1), (0, 2), (1, 0), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 0), (3, 3), (4, \text{all}),$$

mod 5 it is true that the right side of (9) is 2, 3 or 4 mod 5, which is a trivial exercise. \square

It remains to establish (8). We have, modulo 5,

$$\frac{1}{(1-t)^2} \equiv \frac{(1-t)^3}{(1-t^5)},$$

and therefore

$$\prod_{j \geq 1} \frac{1}{(1-x^j)^2} \equiv \frac{\prod_{j \geq 1} (1-x^j)^3}{\prod_{j \geq 1} (1-x^{5j})}.$$

On the other hand it is known that

$$\prod_{j \geq 1} (1-x^j)^3 = \sum_{n \geq 0} (-1)^n (2n+1) x^{\binom{n+1}{2}}.$$

Consequently,

$$\sum_{k \geq 0} pp(k) x^k \equiv \left(\sum_{n \geq 0} (-1)^n (2n+1) x^{\binom{n+1}{2}} \right) \left(\sum_{m \geq 0} p(m) x^{5m} \right).$$

Now all exponents of x on the right are of the form $5m + \binom{n+1}{2}$. Since $\binom{n+1}{2}$ is always 0,1, or 3 mod 5, we have surely that $pp(k) \equiv 0$ if $k \equiv 2, 4 \pmod{5}$. Finally, if $\binom{n+1}{2} \equiv 3 \pmod{5}$, then $n \equiv 2$, so $2n+1 \equiv 0$, and again the coefficient of x^k vanishes mod 5. \square

References

- [1] Alexander Berkovich and Frank Garvan, On the Andrews-Stanley refinement of Ramanujan's partition congruence modulo 5 and generalizations, *Trans. Amer. Math. Soc.* **358** (2006), 703-726.
- [2] — —, The BG-rank of a partition and its applications, *arXiv:math.CO/0602362 v2*, Mar. 2006.
- [3] Koen de Naeghel and Nicolas Marconnet, An inequality on broken chessboards, *arXiv:math.CO/0601094 v1*, Jan. 2006.
- [4] D. E. Littlewood, Modular representations of symmetric groups, *Proc. Roy. Soc. London. Ser. A.* **209** (1951), 333-353.
- [5] T. Nakayama, On some modular properties of irreducible representations of a symmetric group, I, II, *Jap. J. Math.*, **17**, (1940) 165-184, 411-423.
- [6] Frank Schmidt, Integer Partitions and Binary Trees, on the web at <http://www.math.umn.edu/~stanton/rodicaFPSAC/intparttrees.ps>
- [7] Sydney University Mathematical Society Problems Competition 2004, on the web at <http://www.maths.usyd.edu.au/SUMS/sols2004.pdf>

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China
cchen@nankai.edu.cn

Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China
ji@nankai.edu.cn

Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104, USA
wilf@math.upenn.edu