ZEMRIS 14.7.2016.

LJETNI ISPITNI ROK IZ ELEKTRONIKE 1

ZADATAK 1. Koncentracije primjesa na n i p strani silicijske diode iznose $N_D = 5 \cdot 10^{15}$ cm⁻³ i $N_A = 5 \cdot 10^{17}$ cm⁻³. Parametri manjinskih nosilaca su $\mu_n = 1200$ cm²/Vs, $\mu_p = 200$ cm²/Vs, $\tau_n = 0.5$ μ s i $\tau_p = 0.8$ μ s. Vrijedi: $W_p >> L_n$ i $W_n >> L_p$. Površina pn spoja iznosi S = 2 mm². Maksimalno električno polje u osiromašenom području pri naponu diode U_D iznosi: 94 kV/cm. Vrijedi T = 300 K.

- a) Izračunati napon U_D , ukupnu širinu osiromašenog područja (d_B) i širine osiromašenih područja na n i p strani (d_{Bn}, d_{Bp}) pri tom naponu (**4 boda**).
- b) Skicirati raspodjelu električnog polja, te raspodjele manjinskih nosilaca, izračunati i označiti rubne te ravnotežne koncentracije za priključeni napon U_D (3 boda).
- c) Izračunati struju zasićenja diode I_S (3 boda).

ZADATAK 2. *N*-kanalni silicijski MOSFET ima duljinu kanala od 1 μ m i širinu kanala od 2 μ m, a kapacitet oksida upravljačke elektrode iznosi 10 μ F/cm². Pokretljivost nosilaca u kanalu je 300 cm²/Vs. Uz napon $U_{GS} = 1$ V, strmina iznosi 7,2 mA/V, a faktor naponskog pojačanja $\mu = 1$. T = 300 K. Zanemariti porast struje odvoda u zasićenju.

- a) Odrediti područje u kojem se nalazi radna točka (triodno ili zasićenje, obrazložiti) (1 bod).
- b) Izračunati napon U_{DS} u radnoj točki (3 boda).
- c) Izračunati napon praga (4 boda).
- d) Odrediti tip MOSFET-a (obrazložiti) (1 bod).
- e) Izračunati struju odvoda u radnoj točki (1 bod).

ZADATAK 3. Za pojačalo na slici zadano je: $U_{DD} = 12 \text{ V}$, $R_g = 500 \Omega$, $R_1 = 3 \text{ M}\Omega$, $R_2 = 1,8 \text{ M}\Omega$, $R_D = 2 \text{ k}\Omega$, $R_S = 1 \text{ k}\Omega$, $R_T = 4,7 \text{ k}\Omega$. Parametri *n*-kanalnog MOSFET-a su: $U_{GSO} = 1 \text{ V}$, $K = 2,2 \text{ mA/V}^2$, $\lambda = 0 \text{ V}^{-1}$.

- a) Odrediti statičku radnu točku (U_{GSQ} , I_{DQ} , U_{DSQ}) te provjeriti radi li tranzistor u zasićenju (**3 boda**).
- b) Odrediti strminu g_m i dinamički otpor r_d tranzistora u statičkoj radnoj točki (**1 bod**).
- c) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu te izvesti izraze i izračunati iznose naponskih pojačanja $A_V = u_{iz}/u_{ul}$ i $A_{Vg} = u_{iz}/u_g$, ulaznog otpora $R_{ul} = u_{ul}/i_{ul}$ te izlaznog otpora R_{iz} (6 bodova).

ZEMRIS 14.7.2016.

ZADATAK 4. Za pojačalo na slici zadani su sljedeći podaci: $R_1 = 10 \text{ k}\Omega$, $R_2 = 4.7 \text{ k}\Omega$, $R_E = 820 \Omega$, $R_C = 1.5 \text{ k}\Omega$, $R_T = 1.5 \text{ k}\Omega$, $R_g = 50 \Omega$, $U_{CC} = 12 \text{ V}$. Parametri npn tranzistora su $\beta \approx hfe = 100$, $U_{\gamma} = 0.7 \text{ V}$. Naponski ekvivalent temperature $U_T = 25 \text{ mV}$. Zanemariti porast struje kolektora u normalnom aktivnom području.

- a) Odrediti statičku radnu točku (U_{CEQ}, I_{CQ}) , strminu i ulazni dinamički otpor u radnoj točki (2 boda).
- b) Skicirati statički i dinamički radni pravac, označiti karakteristične točke i odrediti maksimalni hod izlaznog napona u_{iz} (3 boda).
- c) Nacrtati nadomjesnu shemu pojačala za dinamičku analizu te izvesti izraz i izračunati iznos naponskog pojačanja $A_{Vg} = u_{iz}/u_g$ (4 boda).
- d) Odrediti signal generatora $U_{g,max}$ za koji se dobije maksimalni izlazni signal bez izobličenja (1 bod).

ZADATAK 5. Za diferencijsko pojačalo prikazano slikom zadan je iznos otpornika $R_1 = 1 \text{ k}\Omega$ i valni oblik ulaznih napona u_1 i u_2 . Operacijsko pojačalo je idealno. Odrediti:

- a) iznos otpornika R_2 da amplituda izlaznog napona bude 3 Vpp (**5 bodova**),
- b) valni oblik izlaznog napona u_{IZ} . Nacrtati u koordinatnom sustavu i označiti osi (**5 bodova**).

