Rank-65867 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_3^3 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65867

General information

Number of lines	8
Number of points	11
Number of singular points	3
Number of Eckardt points	2
Number of double points	6
Number of single points	2
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	38
Type of lines on points	$4, 3^2, 2^6, 1^2$

Singular Points

The surface has 3 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$
 $2: P_{11} = \mathbf{P}(1,1,0,1) = \mathbf{P}(1,1,0,1)$ $1: P_9 = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1)$

The 8 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]_0 = \mathbf{Pl}(1,0,0,0,0,0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{4} = \mathbf{PI}(0,0,1,0,0,0)_{2}$$

$$\ell_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{11} = \mathbf{PI}(0,0,1,0,0,1)_{22}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{14} = \mathbf{PI}(1,0,0,1,0,0)_{6}$$

$$\ell_{4} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{25} = \mathbf{PI}(0,1,1,0,0,1)_{24}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{18} = \mathbf{PI}(0,1,1,0,0,0)_{4}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{10} = \mathbf{PI}(1,1,1,0,1,1)_{30}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{17} = \mathbf{PI}(1,1,1,1,1,1,0)_{18}$$

Rank of lines: (0, 4, 11, 14, 25, 18, 10, 17)

Rank of points on Klein quadric: (0, 2, 22, 6, 24, 4, 30, 18)

Eckardt Points

The surface has 2 Eckardt points:

0:
$$P_9 = \mathbf{P}(1, 0, 0, 1) = \mathbf{P}(1, 0, 0, 1), T = -1$$

1: $P_{11} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1). T = -1$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_0 = (1,0,0,0) = \ell_0 \cap \ell_1$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_2$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_3$$

$$P_6 = (1,0,1,0) = \ell_1 \cap \ell_6$$

$$P_8 = (1, 1, 1, 0) = \ell_2 \cap \ell_7$$

 $P_{14} = (0, 1, 1, 1) = \ell_6 \cap \ell_7$

Single Points

The surface has 2 single points: The single points on the surface are:

 $\begin{array}{l} 0: \ P_4 = (1,1,1,1) \ \text{lies on line} \ \ell_4 \\ 1: \ P_{13} = (1,0,1,1) \ \text{lies on line} \ \ell_5 \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

	01234567
0	01110000
1	10101110
2	11001101
3	10001111
4	01110110
5	01111001
6	01011001
7	$\begin{array}{c} 0.1234307 \\ 0.1110000 \\ 1.0101110 \\ 1.1001101 \\ 1.0001111 \\ 0.1110110 \\ 0.1111001 \\ 0.1011001 \\ 0.0110110 \end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_0	P_5	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_5	ℓ_6
in point	P_0	P_2	P_2	P_2	P_6

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_5	ℓ_7
in point	P_5	P_2	P_2	P_2	P_8

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_5	ℓ_6	ℓ_7
in point	P_1	P_{11}	P_9	P_{11}	P_9

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_2	P_2	P_{11}	P_2	P_{11}

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_7
in point	P_2	P_2	P_9	P_2	P_9

Line 6 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_7
in point	P_6	P_{11}	P_{11}	P_{14}

Line 7 intersects

Line	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_8	P_9	P_9	P_{14}

The surface has 11 points:

The points on the surface are:

$$\begin{array}{lll} 0: \ P_0 = (1,0,0,0) & 4: \ P_5 = (1,1,0,0) & 8: \ P_{11} = (1,1,0,1) \\ 1: \ P_1 = (0,1,0,0) & 5: \ P_6 = (1,0,1,0) & 9: \ P_{13} = (1,0,1,1) \\ 2: \ P_2 = (0,0,1,0) & 6: \ P_8 = (1,1,1,0) & 10: \ P_{14} = (0,1,1,1) \\ 3: \ P_4 = (1,1,1,1) & 7: \ P_9 = (1,0,0,1) & \end{array}$$