PROJECT IDEAS

Petnica Science Center

August 2025 Prof. Miloš Božović, PhD University of Belgrade – Faculty of Economics and Business

Topics

- VIX-based dynamic hedging
- Value vs. growth: a macro-based strategy
- Stock return kurtosis and crash exposure
- Timing beta exposure using idiosyncratic volatility
- Cross-sectional volatility spread as a timing signal
- Testing and extending the Betting Against Beta strategy
- Exploiting predictable intraday patterns with 0DTE options

VIX-BASED DYNAMIC HEDGING

Idea

Dynamically hedge downside risk in an equity portfolio

Objective

- Volatility timing relies on scaling exposure
 - Barroso & Santa-Clara (2015), Daniel & Moskowitz (2016), Moreira & Muir (2017), Liu et al. (2019), Cederburg et al. (2020), Eisdorfer & Misirli (2020), Barroso & Detzel (2021), Wang & Yan (2021)
- Use the VIX as a forward-looking signal
 - Božović (2024)

- Trigger signal (VIX threshold or regime classification)
 - Define volatility regimes using VIX:

Low: VIX < 15

Medium: 15 ≤ VIX < 25

• High: VIX ≥ 25

- Alternatively, use a percentile-based threshold (e.g., hedge when VIX is in the top 20% of its trailing 1-year distribution)
- Use liquid, high-convexity hedging instruments

Hedge construction rules

- When VIX enters a high regime:
 - Buy out-of-the-money (OTM) SPX put options (e.g., 5% OTM, 1-month expiry)
 - Size the notional of puts to hedge a portion of portfolio delta (e.g., hedge 20–50% of the equity notional depending on VIX level)
 - Alternatively, buy VIX calls or long VIX futures to benefit directly from a spike in volatility
- When VIX is low:
 - Let the hedges expire, or monetize residual value if they're in the money
 - Refrain from initiating new hedges

Dynamic adjustment

- Rebalance hedge positions weekly or daily, based on updated VIX levels
- Use rolling windows (e.g., trailing 21-day average VIX) for smoothing

Data

- VIX
- Hedging instruments
 - SPX puts
 - VIX futures or VIX calls
- More feasible ETF equivalents:
 - VIXY
 - SPLV
 - TLT
 - SH
 - SWAN, TAIL

ETF-based hedge execution

 When VIX triggers a high-risk regime, execute one of the following:

ETF Ticker	Description	Role in Hedge
VIXY	Short-term VIX futures ETF	Direct exposure to volatility spikes
SPLV	S&P 500 Low Volatility ETF	Reduce portfolio beta, smooth drawdowns
TLT	Long-term Treasuries (20+ yr)	Flight-to-quality hedge
SH	Short S&P 500 (inverse ETF, 1x)	Linear hedge vs. equity downside

Implementation example

- Assume a fund that manages a \$100M active equity portfolio (pick any core strategy)
- In high-VIX regime:
 - Reduce 5–10% equity exposure
 - Reallocate into a hedge basket (e.g., 50% VIXY, 25% TLT, 25% SH)
 - Keep the core strategy unchanged: this is a temporary allocation shift, not a full regime switch
- Rebalance weekly or as VIX exits the high-risk zone

Performance expectations: derivatives

- VIX contains forwardlooking information about volatility and kurtosis
 - Not just second moments but higher-order (tail) risk
- When VIX is high:
 - Options are expensive, but so is the risk
 - You're paying for insurance when you need it
- This strategy targets the source of tail risk instead of exposure reduction

Performance expectations: ETFs

- When markets are stable:
 - Hedge underperforms
 - But cost is limited
- During tail events:
 - Hedge ETFs (esp. VIXY and TLT) gain sharply
- Net result:
 - Smoothed equity P&L
 - Improved Sharpe ratio
 - Lower drawdown

VALUE VS. GROWTH: A MACRO-BASED STRATEGY

Idea

 Test whether simple macro indicators can improve the performance of value-vs-growth portfolios

Value vs. growth

Will value re-take leadership?

Objective

- Dynamically allocate between value and growth equities based on prevailing macroeconomic conditions
- Exploit predictable shifts in factor performance across business cycles
- Generate improved riskadjusted returns by aligning exposures with the macro environment

Signal construction:

- Define macro regimes (e.g., expansion, slowdown, stagflation, recovery) using thresholds
- Estimate expected relative performance of value vs. growth in each regime

Portfolio implementation:

- Allocate between value and growth based on current macro regime
- Adjust weights monthly or quarterly with a lag to avoid data snooping

Data

- Monthly macroeconomic indicators (e.g., inflation, unemployment, real GDP growth)
- Fama-French style portfolios

Performance expectations

• Why it works?

- Value and growth styles respond differently to inflation, interest rates and earnings outlooks
- Timing exposure reduces prolonged underperformance from static allocation
- Macro regimes exhibit persistence, providing exploitable predictability

Expected outcomes:

- Higher Sharpe ratio than unconditional value or growth exposure
- Reduced drawdowns during adverse cycles
- Improved performance over full market cycles

STOCK RETURN KURTOSIS AND CRASH EXPOSURE

Idea

 Investigate whether elevated realized kurtosis in index or stock returns signals impending market crashes or volatility spikes

Objective

- Identify and measure individual stock exposure to tail risk via return kurtosis
- Construct portfolios that balance return and crash exposure by filtering high-kurtosis stocks
- Explore the pricing of higher-moment risk in crosssectional stock returns

Signal construction:

- Estimate ex-ante return kurtosis for each stock
- Identify stocks with persistently high crash risk profiles
- Form long-short portfolios that overweight low-kurtosis stocks and underweight high-kurtosis stocks

Portfolio implementation:

- Simple equal weighting
- Monthly rebalancing to update crash exposure estimates

Data

- Daily or weekly stock returns (e.g., CRSP data, S&P 500 universe)
- Computed rolling kurtosis over fixed windows (e.g., 6 or 12 months)

Performance expectations

Why it works?

- Kurtosis captures crash risk that volatility overlooks
- Market participants underprice extreme left-tail risk, creating a premium for low-kurtosis stocks
- Avoiding crash-prone assets enhances compound returns during market stress

Expected outcomes:

- Improved downside protection and lower tail risk exposure
- Consistent performance during crisis periods and high-volatility regimes
- Potential alpha from neglected pricing of higher-moment risks

TIMING BETA EXPOSURE USING IDIOSYNCRATIC VOLATILITY

Idea

- Test whether periods of high average idiosyncratic volatility predict lower equity market returns
- Use that to modulate beta exposure

Objective

- Investigate whether idiosyncratic volatility (IVOL) contains information about future stock returns
- Dynamically time market beta exposure based on aggregate IVOL levels
- Design a risk-managed portfolio that adapts to changes in firm-specific uncertainty
- Explore IVOL as a proxy for sentiment or market fragility

Signal construction:

- Cross-sectionally rank stocks by IVOL
- Define IVOL quintiles or deciles
- Compute average market beta for each group

Timing rule:

- When aggregate IVOL is high (market-wide average IVOL above threshold):
 - Reduce beta exposure (shift to low-beta, low-IVOL stocks)
- When aggregate IVOL is low:
 - Increase beta exposure (allow for higher-beta positions)
- This can be applied to dynamically allocate weights in a betaneutral or risk-managed portfolio.

Data

- Daily returns of individual stocks or portfolios
- Market model regressions to extract IVOL (residual variance from CAPM)
- Aggregate IVOL signal constructed by averaging across stocks or sectors

Performance expectations

• Why it works?

- IVOL reflects stock-specific noise or disagreement among investors
- High IVOL periods are associated with lower aggregate returns, especially for high-beta stocks
- Using IVOL helps time factor exposures more precisely, especially when traditional beta strategies underperform

Expected outcomes:

- Improved risk-adjusted returns vs. static beta exposure
- Reduced drawdowns in volatile environments
- Outperformance during market reversals or sentiment shifts

CROSS-SECTIONAL VOLATILITY SPREAD AS A TIMING SIGNAL

Idea

 Use the spread between the most and least volatile stocks as a signal for aggregate market volatility or trend reversals

Objective

- Explore the predictive power of the cross-sectional volatility spread (CSVS) for market returns
- Use dispersion in stock-level volatilities as a forward-looking risk signal
- Develop a dynamic asset allocation strategy that reduces exposure during volatility clustering
- Investigate CSVS as an early warning indicator for systemic stress or market turning points

Signal construction:

- Compute rolling realized volatility (e.g., 20-day or 60-day standard deviation of daily returns) for each stock
- Sort stocks by realized volatility and calculate:

$$CSVS_t = Average Vol_{top decile} - Average Vol_{bottom decile}$$

Normalize the CSVS signal:

$$z_t = \frac{\text{CSVS}_t - \mu}{\sigma}$$

Portfolio implementation:

- High dispersion (z > 1)
 - Signals elevated risk aversion or fragmentation
 - Defensive regime (reduce the risk exposure / beta)
- Neutral zone (-1 < z < 1)
 - Signals intermediate risk aversion or steady market
 - Neutral regime (maintain the baseline risk exposure / beta)
- Low dispersion (z < −1)
 - Signals low risk aversion or market calm
 - Aggressive regime (increase the risk exposure / beta)

Data

- Daily returns of a large stock universe
- Rolling estimates of individual stock volatilities

Performance expectations

• Why it works?

- Rising dispersion often precedes market corrections
- Traditional risk metrics may lag
- CSVS provides early signal of regime shifts
- Helps mitigate downside risk while exploiting calmer trends

Expected outcomes:

- Downside protection, superior to static allocation
- Enhanced Sharpe ratio through volatility timing
- Robust outperformance in high-volatility regimes

TESTING AND EXTENDING THE BETTING AGAINST BETA STRATEGY

Idea

- Replicate the classic BAB strategy using stock-level data
- Investigate whether its performance varies across volatility, interest rate or macroeconomic regimes

Objective

- Reproduce the classic BAB strategy of Frazzini and Pedersen (2014) using updated data
- Test the robustness of BAB returns across market regimes and subperiods
- Explore enhancements by conditioning beta exposure on market volatility or macro indicators
- Investigate whether dynamic beta timing improves the risk-adjusted performance of the BAB portfolio

Strategy outline

Signal construction:

- Rank stocks based on beta estimates
- Go long low-beta stocks and short high-beta stocks, dollar-neutral
- Optional enhancements:
 - Add volatility timing à la Barroso et al. (2025)
 - Add macro filters

Portfolio implementation:

- Monthly rebalancing
- Test performance across subperiods, sectors and market conditions

Company	♦ Symbol ♦	Zacks ▲ Rank	Zacks Rank 1-wk Ago	EPS Estimate (Current Yr)	EPS Suprise (Last Qtr)	Repor
SMITH & WE	SWHC	1	2	\$1.35	33.33%	V
ARCTIC CAT	ACAT	2	3	\$3.28	-12.82%	V
CALLAWAY G	ELY	2	3	\$0.22	35.71%	V
POLARIS IN	PII	2	3	\$6.67	1.86%	V
POOL CORP	POOL	2	4	\$2.39	-6.85%	V
BLACK DIAM	BDE	3	4	\$0.10	-15.38%	V
BRUNSWICK	BC	3	4	\$2.61	11.32%	V
MARINE PRO	MPX	3	4	\$0.23	-16.67%	V
STURM RUGE	RGR	3	1	\$4.19	19.01%	V
WEST MARIN	WMAR	3	3	\$0.63	-8.57%	NA

Extensions considered

1. Factor conditioning

- Combine BAB with cross-sectional signals like:
 - Value (e.g., low-beta + cheap stocks)
 - Quality (e.g., low-beta + high profitability)
 - Volatility (e.g., low-beta + low-vol)

2. Dynamic exposure scaling

- Scale the BAB exposure based on macro indicators:
 - Credit spreads
 - VIX
 - Market trend/momentum
 - Interest rate levels

3. Sector-neutral BAB

- Prevent unintended sector tilts (e.g., low-beta tends to overweight utilities)
- Apply BAB ranking within sectors, then aggregate across sectors for neutrality

Data

- Daily or monthly returns of individual stocks
- Estimated stock betas via rolling regressions against the market portfolio (Kenneth French's Data Library)

Performance expectations

• Why it works?

- Investors often favor high-beta stocks expecting higher returns, leading to their overpricing
- Low-beta stocks can be underpriced, offering superior risk-adjusted returns
- BAB captures this anomaly while maintaining market neutrality

Expected outcomes:

- Consistent alpha with low correlation to traditional risk factors
- Lower drawdowns in bear markets due to defensive low-beta tilt
- Enhanced Sharpe ratios when combined with volatility-based scaling

EXPLOITING PREDICTABLE INTRADAY PATTERNS WITH 0DTE OPTIONS

Idea

- SPX returns show predictable intraday volatility structures (diurnal patterns)
- These patterns also align with higher probabilities of jumps

Objective

- Use predictable intraday jump and volatility patterns to exploit at-the-money SPX 0DTE straddles
- Test whether straddle returns are positive conditional on realized volatility exceeding expected value, based on historical intraday regimes
- Develop a systematic trading model

Jump patterns

Strategy outline

Signal construction:

- Estimate in-sample U-shaped diurnal component of SPX
- Use de-seasoned return residuals to obtain in-sample jump patterns
- Estimate out-of-sample realized volatility and conditional jump probability

Portfolio implementation:

- Buy 1 ATM straddle when realized volatility or jump risk is elevated
- Exit based on:
 - Profit/loss threshold
 - Time stop near market close

Data

- Intraday SPX data
- Prices of 0DTE calls and puts

Performance expectations

• Why it works?

- Intraday volatility and jumps are statistically predictable
- ATM straddles profit from timing mispricings, not just magnitude
- Strategy selectively enters high-move probability windows

Expected outcomes:

- High return with controlled downside
- Increased Sharpe ratio during volatile, macro-sensitive regimes
- Reduced drawdown

