

COMP4007: 并行处理和体系结构

第五章: GPU计算和CUDA并行编程II

授课老师: 王强、施少怀助 教: 刘虎成、田超

哈尔滨工业大学(深圳)

大纲

- ▶ CUDA线程组织结构
- > 基于多维度数据的线程映射
- 基于硬件的线程映射
- ▶ 示例: 矩阵乘法
- ▶ GPU内存: 共享内存
- ▶ 分析-并行-优化-部署[Assess, Parallelize, Optimize and Deploy, APOD]设计流程
- ▶ CUDA优化技术
 - ▶ 内核(Kernel)配置: #线程块数, #线程数/线程块
 - ⋒控制流
 - **№**全局内存访问
 - ●共享内存访问
 - ♪指令优化

CUDA线程组织结构

- ▶ 内核执行时线程网格(Grid)会按配置被组织成 1-D、2-D 或 3-D 线程块阵列
 - - gridDim.x, gridDim.y, gridDim.z
 - ☞ GPU计算能力小于3.0时, x, y, z必须小于65536
 - ☞ GPU计算能力大于3.0时, x必须小于2³¹, 同时y和z必须小于65536
 - ●每个线程块由内置变量 blockIdx 标识
 - blockIdx.x, blockIdx.y, blockIdx.z
 - ●线程块中线程的最大数量
 - ☞ 计算能力为1.x时为512
 - ☞ 计算能力为2.x或以上时为1024

CUDA线程组织结构(续)

- ▶ 线程块(Block)被进一步按照配置组织成1-D、2-D或3-D线程阵列
 - ◢通过内置变量 blockDim 可以获得线程块的结构
 - blockDim.x, blockDim.y, blockDim.z
 - ☞ blockDim.z 必须小于或等于 64
 - ▶同一线程块中的所有线程共享相同的 blockIdx 值
 - ▶每个线程由内置变量 threadIdx 标识
 - * threadIdx.x, threadIdx.y, threadIdx.z

1D 示例

- ▶ 如果要创建一个有 16 个 1D 线程块的网格,每个 1D 线程块中有 128 个线程:
 - **I** dim3 dimBlock(128, 1, 1); /* 设置 y和z为1, 可得到1D线程块 */
 - **I** dim3 dimGrid(16, 1, 1); /* 设置y和z为1, 可得到1D网格 */
 - vecAddkernel<<<dimGrid, dimBlock>>>(...);

2D 示例

- ▶ 如果想创建一个拥有2×2个线程块的二维网格,每个线程块有8×8个线程:
 - **I** dim3 dimBlock(8, 8, 1); /* 设置z为1, 可得到2D线程块 */
 - **I** dim3 dimGrid(2, 2, 1); /* 设置z为1, 可得到2D网格 */
 - vecAddkernel<<<dimGrid, dimBlock>>>(...);

基于多维度数据的线程映射

▶ 通常会基于数据的天然属性选择使用1D, 2D或3D线程组织结kjsq

- ▶ 例如: 图像是2D像素阵列
 - グ使用由2D线程块组成的2D网格表示较为方便
 - グ每个线程处理一个像素: 通过 blockDim、blockIdx 和 threadIdx 可以轻松计算出像素的位置

示例: 76×62分辨率的图片表示

图片大小: 76×62

线程块大小: 16×16

共需要5×4个线程 块!

最终生成80×64 个线程,其中一 些会被浪费。

参考文献1中的图4.5

启动内核

▶ 假设图像的分辨率为n×m

- // dim3 dimGrid(ceil(n/16.0), ceil(m/16.0), 1);
- pictureKernel<<<dimGrid, dimBlock>>>(...);

线程如何在 GPU 上执行?

为线程块分配资源

▶ 内核启动后, CUDA 会生成相应的线程网格

▶ 线程首先会被组织成多个线程块,然扣以线程块为单位分配给执行资源(即流式 多处理器SM)

参需求:需要执行多个线程块,比如总共 N 个块

♪资源:数量有限的 SM,如 P个SM

参每个 SM 将平均执行 N/P 个区块

▶ 活动线程块(或"常驻区块")

≥ 当前的活动线程块结束后,一组新的线程块将分配给 SM,并成为新的活动线程块

线程调度

- ▶ 线程块被分配给SM后会被进一步划分为warps
 - ▶每个warp包括 32个线程
 - **№Warp** 0: 线程 0 31
 - **№Warp 1:** 线程 32 63
 - **№Warp 2:** 线程 64 95
 - *A*
- ▶ Warp是线程在SM中调度的基本单位
 - ✓Warp中的 32 个线程遵循SIMD模型
 - 承取一条指令后,warp中的所有 32 个线程均同时执行该指令

多warp的优势: 延迟隐藏

- ▶ 通过多warp可隐藏延迟
 - ✓ warp 执行的指令需要等待数据时,该warp会"休眠"
 - ☞ 全局存储器的延迟时间可达数百个 GPU 周期
 - ♪数据准备就绪的另一个warp将被选中执行
 - ☞ 为了充分利用执行硬件
 - ▶零开销的线程调度
 - ☞选择新的活动warp执行的开销很小

▶ 一般来说,应该为每个 SM 调度"足够的"活动Warp

硬件限制

▶ 每个 SM 的活动线程块/warps/线程数量有限。

计算能力	1.x	2.x	3.x	5.0	7.0
每个 SM 的最大活动线程块数	8	8	16	32	32
每个 SM 的最大活动warp数	24 → 32	48	64	64	64
每个 SM 的最大活动线程数	768 → 1024	1536	2048	2048	2048
每个线程块包含的最大线程数	512	1024	1024	1024	1024

备注: 其他限制因素包括寄存器和共享内存, 这此将在后面讨论

示例

▶ 假设计算能力为 3.0

内核函数


```
/* d Pin指向图片数据*/
  global void PictureKernel(float *d Pin, float *d Pout, int n, int m)
  int Row = blockIdx.y * blockDim.y + threadIdx.y;
  int Col = blockIdx.x * blockDim.x + threadIdx.x;
  if (Row < m) & (Col < n)
    d Pout[Row * n + Col] = 2 * d Pin[Row * n + Col];
```

查找线程对应的输入数据

> 考虑目标线程:

♪线程所属的本地线程块上方有blockIdx.y行线程块

Row = blockIdx.y * blockDim.y + threadIdx.y

♪线程所属的本地线程块左边有blockIdx.x个线程块

Col = blockIdx.x * blockDim.x + threadIdx.x

示例: 矩阵乘法

▶ 问题: *P* = *M*×*N*

▶ *M*, *N*, *P*为方阵: *WIDTH*×*WIDTH*

▶ GPU 上的并行化

★矩阵P中每个元素的计算由 GPU 线程完成
 ★ 计算两个向量的点积

╱问题:如何将线程组织成线程块?

串行方案


```
// CPU上的矩阵乘法
void MatMulOnHost(float* M, float* N, float* P, int Width)
                                                                                          k
  for (int i = 0; i < Width; i++)
     for (int j = 0; j < Width; j++) {
       float sum = 0.0;
       for (int k = 0; k < Width; k++) {
          sum += M[i * width + k] * N[k * width + j];
       P[i * Width + j] = sum;
```

分块并行方案

▶ 将矩阵 P 划分为成 2-D 小块

▶ 按 2-D 块的形式组织线程

▶ 每个线程块计算矩阵**P**的一个小块

简易代码实现

▶ WIDTH = 4

TILE_WIDTH = 2

 \rightarrow 2 x 2 = 4 blocks

 \triangleright Each block has 2 x 2 = 4 threads

简易代码实现(续)

内核函数


```
global void MatMulKernel(float* Md, float* Nd, float* Pd, int Width)
// 线程需计算的矩阵P中结果元素的行索引
 int Row = blockIdx.y*blockDim.y + threadIdx.y;
// 线程需计算的矩阵P中结果元素的列索引
 int Col = blockIdx.x*blockDim.x + threadIdx.x;
 if ( (Row < Width) && (Col < Width) ) {
  float Pvalue = 0.0;
// 每个线程计算矩阵P的一个元素
  for (int k = 0; k < Width; ++k)
   Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
  Pd[Row*Width+Col] = Pvalue;
```

启动内核

#define TILE_WIDTH 16

```
// 设置内核执行时的配置
int NB = Width/TILE_WIDTH;
if (Width % TILE_WIDTH != 0) NB++;
dim3 dimGrid(NB, NB);
dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

// 启动设备上的计算线程
MatMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
```

通过gettimeofday()对内核函数计时


```
#include <sys/time.h>
double cpuTime() {
  struct timeval tp;
  gettimeofday(&tp, NULL);
  return ( (double)tp.tv sec + (double)tp.tv_usec * 1.e-6 );
double t start = cpuTime();
/* 调用CUDA核函数 */
your kernel << grid, block >>>(...);
/* 等待GPU完成核函数计算*/
cudaDeviceSynchronize();
double kernel time = cpuTime() - t start;
printf("The kernel elapsed %f seconds.\n", kernel_time);
```

性能有多好?

▶ 测试平台: 一台安装windows 7操作系统的台式机

GPU: Nvidia GT640 with 384 cores @900MHz

> 运行时间对比

Matrix Size	N = 512	N = 1024	N = 1536	N = 2048
GPU time	18.5ms	141ms	470.7ms	1112ms*
CPU time	181.6ms	6817ms	23863ms	67797ms
GPU Flops	14.5G	15.2G	15.4G	15.4G
CPU Flops	1.48G	0.31G	0.30G	0.25G
Speedup	9.8	48.3	50.7	61

*备注: N = 2048时,程序在Nvidia GTX780上的运行时间为112.7ms

性能足够了吗?

▶ GTX780 拥有 2304 个CUDA核, 其理论单精度计算能力接近 4TFlops

☞前文的代码仅能达到 2x20483/112.7ms = 152.4GFlops

●即 GPU 利用率仅为3.8%!

▶ 问题出在哪儿?

▶ 内存访问是瓶颈!

CGMA: 计算与全局内存访问比率

/* 内核函数的关键部分 */
for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

- ▶ 上述核函数有 2*Width 的计算量和 2*Width 的全局内存访问量

 - **▶**Pvalue位于GPU 寄存器中,速度非常快
- ▶ CGMA 比率仅为1

GPU全局内存

▶ GPU 全局内存容量大

GTX780: 3GB

✓ Tesla K40: 12GB

▶ 带宽: GPU全局内存传输数据的速度有多快?

GTX640: 28.5GB/s

GTX780: 288GB/s

> 延迟:

₹200-400 GPU时钟周期

内存瓶颈

- ▶ 前文内核代码的 CGMA 值为 1
- ▶ 每次计算都需要从全局内存访问一次数据
- > 因此, 性能受到内存带宽的限制
 - ♪大多数时候,ALU都无事可做!

如何改进?

- ▶ CPU 利用缓存缓解内存瓶颈

- ▶ GPU利用片上"共享内存"
 - ♪最新的 GPU 还使用Cache提高数据访问性能
 - グCache由硬件管理,而"共享内存"可由程序员管理

随堂小测

共享内存

- ▶ 每个线程块都有一个共享内存
 - ●位于芯片上
 - ●带宽极高和延迟极低
 - グ容量有限: 计算能力 2.x 或以上版本最多 48KB
 - ●线程块中的所有线程共享

提高 CGMA 比率的基本策略

▶ 准备工作: 分配共享内存

▶ 数据加载:将数据从全局内存加载到共享内存

- ▶ 数据处理: 重复使用共享内存中的数据 ●每个数据参与的计算次数越多, CGMA 比率就越高
- ▶ 如果未结束,跳至步骤 2

回到矩阵乘法

▶ 分析大小为2×2的线程块(0,0)

◢观察

- 1. 计算 $P_{0.0}$ 和 $P_{0.1}$ 都需要访问矩阵M的第一行
- 2. 计算 $P_{1,0}$ 和 $P_{1,1}$ 都需要访问矩阵M的第二行
- 3. 计算 $P_{0.0}$ 和 $P_{0.1}$ 都需要访问矩阵N的第一行
- 4. 计算 $P_{1,0}$ 和 $P_{1,1}$ 都需要访问矩阵N的第二行

前文方案

- ▶ 每个线程块有 32 次全局内存访问
- 使用共享内存可将每个线程块的全局内存访问次 数减少为16次

回到矩阵乘法

▶ 假设线程块大小为n×n。矩阵大小为N×N

▶ 之前的方案中每个线程块需进行2*n*²*N*次全局内存 访问

 \triangleright 利用共享内存,在计算时单个线程块时可只装载矩阵M的n行数据,矩阵N的n列数据,只需访问2nN

次全局内存

▶ 可将全局内存访问量减少n倍!

niv							
$M_{0,0}$	$M_{0,1}$	$M_{0,2}$	$M_{0,3}$	P _{0,0}	P _{0,1}	P _{0,2}	P _{0,3}
$M_{1,0}$	$M_{1,1}$	$M_{1,2}$	$M_{1,3}$	P _{1,0}	P _{1,1}	P _{1,2}	P _{1,3}
				P _{2,0}	P _{2,1}	P _{2,2}	P _{2,3}
				P _{3,0}	P _{3,1}	P _{3,2}	P _{3,3}

新的挑战

共享内存的大小有限

▶ 同时将矩阵M的n行和矩阵N中的n列加载到共享内存是不现实

▶ 解决方法:

- 矛将n行和n列划分为多个tile,这样可按tile将矩阵M和矩阵N加载到共享内存中
- ♂计算共享内存中两个tiles

加载和计算

		Phase 1		F	Phase 2	
T _{0,0}	M _{0,0} ↓ Ms _{0,0}	N _{0,0} ↓ Ns _{0,0}	PValue _{0,0} += Ms _{0,0} *Ns _{0,0} + Ms _{0,1} *Ns _{1,0}	M _{0,2} ↓ Ms _{0,0}	N _{2,0} ↓ Ns _{0,0}	PValue _{0,0} += Ms _{0,0} *Ns _{0,0} + Ms _{0,1} *Ns _{1,0}
T _{0,1}	M _{0,1} ↓ Ms _{0,1}	N _{0,1} ↓ Ns _{0,1}	PValue _{0,1} += Ms _{0,0} *Ns _{0,1} + Ms _{0,1} *Ns _{1,1}	M _{0,3} ↓ Ms _{0,1}	N _{2,1} ↓ Ns _{0,1}	PValue _{0,1} += Ms _{0,0} *Ns _{0,1} + Ms _{0,1} *Ns _{1,1}
T _{1,0}	M _{1,0} ↓ Ms _{1,0}	N _{1,0} ↓ NS _{1,0}	PValue _{1,0} += Ms _{1,0} *Ns _{0,0} + Ms _{1,1} *Ns _{1,0}	M _{1,2} ↓ Ms _{1,0}	N _{3,0} ↓ Ns _{1,0}	PValue _{1,0} += Ms _{1,0} *Ns _{0,0} + Ms _{1,1} *Ns _{1,0}
T _{1,1}	M _{1,1} ↓ Ms _{1,1}	N _{1,1} ↓ Ns _{1,1}	PValue _{1,1} += Ms _{1,0} *Ns _{0,1} + Ms _{1,1} *Ns _{1,1}	M _{1,3} ↓ Ms _{1,1}	N _{3,1} ↓ Ns _{1,1}	PValue _{1,1} += Ms _{1,0} *Ns _{0,1} + Ms _{1,1} *Ns _{1,1}

time

新的内核函数


```
#define TILE WIDTH 16
 _global__ void MatMulKernel(float* Md, float* Nd, float* Pd, int Width)
   __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
__shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;
// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {</pre>
       // Collaborative loading of Md and Nd tiles into shared memory
       Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10.
       Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11.
       __syncthreads();
12.
        for (int k = 0; k < TILE_WIDTH; ++k)
13.
            Pvalue += Mds[ty][k] * Nds[k][tx];
14.
        __syncthreads();
15. Pd[Row*Width + Col] = Pvalue;
```

新的内核函数详解(1)


```
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
```

▶ 利用关键字 shared 分配共享内存

每个线程块将分配相同数量的共享内存

▶ 将为每个线程块创建一对 Mds[][] 和 Nds[][]。

▶ 线程块中的所有线程都可以访问 Mds[][] 和 Nds[][]。

新的内核函数详解(2)


```
3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
```

▶ 上述语句用于计算线程所需要计算的结果在矩阵 d P 中的位置

▶ Row与Y轴相对应

▶ Col与X轴相对应

新的内核函数详解(3)

- 7. float Pvalue = 0;
 // Loop over the Md and Nd tiles required to compute the Pd element
 8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

 }
 15. Pd[Row*Width + Col] = Pvalue;</pre>
- ▶ 第7行中的Pvalue 是一个"局部变量",通常存储在 GPU 速度最快的寄存器中

 - ♪寄存器溢出:如果线程有本地变量过多,寄存器被用完后会使用全局内存存放一些本地变量
- ▶ 第15行,将结果 Pvalue 复制到全局内存Pd[]。

新的内核函数详解(4)

▶ 计算Pvalue的过程被划分为Width/TILE WIDTH个子阶段

- ▶ 第 9 行和第 10 行,每个线程将数据从全局内存 Md[] 和 Nd[] 加载到共享内存 Mds[][] 和 Nds[][] 中
 - ▶ 每个线程块的共享内存 Mds[][]和Nds[][]将被完全填满
- ▶ 第 11 行,__syncthreads() 为屏障函数,用于确保线程块中的所有线程都已完成数据加载
 - ≥ 发程块中有多个线程且可能在不同的时间被调度,因此不同的线程可能在不同的时间完成第10行

新的内核函数详解(5)

```
哈爾濱フ葉大学(深圳)
HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN
```

- ▶ 共享内存中的数据准备就绪后,第12-13行将被执行
 - **✓**运算所需的数据都在共享内存中,因此数据访问效率比旧版本更高
- 第 14 行确保线程块中的所有线程都完成当前阶段的计算
 - ●共享内存可在下一阶段重复使用

新内核的运行结果

▶ 运行于 GTX640 上

Matrix Size	N = 512	N = 1024	N = 1536	N = 2048
全局内存版本	18.5ms	141ms	470.7ms	1112ms
共享内存版本	7ms	50.7ms	172.3ms	394.6ms
Speedup	2.64	2.78	2.73	2.82

展开循环

▶ 不展开(unrolling)会导致每次乘法和加法都需要更多额外指令

▶ 通过展开,"for循环"被"TILE_WIDTH"句代码替代

Matrix Size	N = 512	N = 1024	N = 1536	N = 2048
Without unrolling	7ms	50.7ms	172.3ms	394.6ms
With unrolling	5.5ms	39.1ms	131.9ms	303.3ms
Speedup	1.27	1.30	1.31	1.30

内存会限制并行性

> 寄存器和共享内存速度快但大小有限

如果单个线程使用大量寄存器和/或共享内存, "活动线程"的数量会减少,从而可能导致性能低下

- ▶ 例如,在计算能力为2.x的GPU中,每个 SM 有 32768 个寄存器,最多可支持 1536 个活动线程

硬件限制

计算能力	1.1	1.2, 1.3	2.x	3.0	3.5	5.0	7.0
每个SM中可使用的32-bit寄存器数	8K	16K	32K	64K	64K	64K	64K
每个线程可使用的32-bit寄存器的上限	128	128	63	63	255	255	255
SM每个SM可使用的共享内存上限	16KB	16KB	48KB	48KB	48KB	64KB	96KB
每个线程块可使用的共享内存上限	16KB	16KB	48KB	48KB	48KB	48KB	48KB

APOD 动机

- ▶ GPU 由多种硬件资源组成,每种资源的容量各不相同
 - ♪算术单元:
 - ☞ 吞吐量:单位时间内可进行多少次计算?
 - ☞ 延迟: 单次计算需要多长时间?
 - ▶ 内存系统:
 - ☞ 带宽/吞吐量:单位时间可传输多少字节?
 - ☞ 延迟: 单次数据访问需要多长时间?
- ▶ CUDA 内核的速度很大程度上取决于 GPU 设备的资源限制

- ▶ 了解目标程序在GPU 中的主要资源限制类型后才能开发出高效的 CUDA 程序
 - ▶ 例如,在第二部分中,"全局内存"可能是瓶颈,可使用"共享内存"改善
- ▶ APOD: 建模,并行,优化和部署(Assess, Parallelize, Optimize, and Deploy)

APOD 设计周期

▶ APOD: 分析,并行,优化和部署(Assess, Parallelize, Optimize, and Deploy)

I. 分析

- 第一步是对应用程序进行分析,找出热点,即大部分执行时间都来自哪些代码的 执行
 - ╱通过理论分析:对应用程序的每个主要步骤进行时间复杂性分析
 - ╱通过性能分析实验:性能分析程序是测量函数调用或指令耗时的软件工具。例如
 - ☞ 面向Linux开发的GNU gprof
 - https://www.cs.utah.edu/dept/old/texinfo/as/gprof toc.html
 - ☞ 面向CUDA 开发:
 - № 面向Linux操作系统的nvprof
 - № 面向Windows操作系统的Nvidia Visual Profiler
 - Ref: http://docs.nvidia.com/cuda/profiler-users-guide

\$ nvprof ./matrix

==19300== NVPROF is profiling process 19300, command: ./matrix

CUDA initialized.

GPU done!

Elaspsed Time by event: 16.180511 ms

GPU (shared memory) done!

Elaspsed Time by event: 6.920672 ms Elaspsed Time by CPU: 1458.828125 ms ==19300== Profiling application: ./matrix

==19300== Profiling result:

Time(%) Time Calls Avg Min Max Name

59.04% 13.146ms 1 13.146ms 13.146ms MatrixMulKernel(float*, float*, float*, int)

20.27% 4.5129ms 1 4.5129ms 4.5129ms SharedMatrixMulKernel(float*, float*, float*, int)

11.90% 2.6503ms 4 662.59us 659.75us 669.44us [CUDA memcpy HtoD] 8.79% 1.9560ms 2 978.02us 749.31us 1.2067ms [CUDA memcpy DtoH]

==19300== API calls:

Time(%) Time Calls Min Max Name Avg 2 114.16ms 1.7350us 228.31ms cudaEventCreate 77.83% 228.31ms 1 41.047ms 41.047ms 41.047ms cudaDeviceReset 13.99% 41.047ms 7.85% 23.016ms 6 3.8360ms 588.40us 14.740ms cudaMemcpy 0.10% 302.22us 166 1.8200us 164ns 61.213us cuDeviceGetAttribute 0.09% 257.85us 3 85.949us 63.839us 128.96us cudaMalloc 0.06% 186.60us 3 62.198us 46.782us 92.858us cudaFree 0.02% 52.845us 2 26.422us 26.248us 26.597us cudaLaunch 0.02% 46.251us 2 23.125us 22.843us 23.408us cuDeviceTotalMem 0.01% 34.460us 2 17.230us 16.290us 18.170us cuDeviceGetName 0.01% 33.645us 6 5.6070us 1.6740us 14.791us cudaEventRecord

公園 海濱ノ業大学(深圳)HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

II. 并行化

▶ 确定热点后,尝试将其并行化

●可以使用现有的并行库,如 cuBLAS、cuFFT等。

╱或者,也可以自行设计并行算法

III. 优化

▶ 如何在特定硬件上实现并行算法,以达到最佳性能?

- ▶ 程序优化是一项具有挑战性的任务
 - ●充分了解应用程序
 - ₹充分了解目标硬件
 - **ℤ**进行多轮 APOD
 - 承优化后性能可提高 10 倍

CUDA 优化技术

- ▶ 内核(kernel)优化
 - ▶ 内核配置:#线程块数,#线程数/线程块
 - ❷控制流
 - ✓全局内存访问
 - ●共享内存访问
 - ❷指令优化
- ▶ 优化 CPU 与 GPU 的交互
 - ♪最大化 PCI-e 吞吐量
 - ●内核执行与内存数据拷贝重叠

内核配置:

哈爾濱フ葉大学(深圳)HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

> 要启动多少线程块/线程?

- 理解的关键点:
 - ◢指令按发射
 - ▶ 当其中一个操作数尚未准备好时,线程会暂停
 - ◢通过切换线程能够隐藏延迟
 - ☞全局内存延迟: 几百个时钟周期
 - ☞ 算术计算延迟: 18-22 个周期
- > 结论:
 - **▶**每个 SM 需要足够多Warps隐藏延迟

全局内存带宽

Tesla C2050, 开启ECC后的理论带宽: ~120 GB/s

建议

- ▶ 需要足够的Warps保持 GPU 忙碌
 - グ线程块数量应远远大于 SM 数量
 - ◢通常情况下,每个SM至少需要有16个活动Warps
- > 线程块配置
 - ♂每个线程块的线程数应该是Warp大小(32)的倍数
 - ▶通常每块 128-256 个线程即可

控制流

控制流指令

- ▶ 分支的主要性能问题是分歧(divergence)
 - ╱单个warp内的各线程执行路径不同
 - ✓不同的执行路径被序执行
 - ☞ Warp中的线程走过的控制路径会被逐次遍历,直到没有控制路径为止
- 》常见情况: 当分支条件是线程 ID 的函数时,要避免分歧
 - ≥有分歧的例子:
 - \mathcal{F} If (threadIdx.x > 2) { }
 - ☞上述语句为线程块中的线程创建了两种不同的控制路径
 - 分支粒度 < warp大小;以第一个warp为例,线程 0、1 和 2 的执行路径与Warp中的其他线程不同
 - ✓无分歧的例子:
 - If (threadIdx.x / WARP_SIZE > 2) { }
 - ☞上述代码为线程块中的线程创建了两种不同的控制路径
 - ☞ 分支粒度为warp大小的整数倍;任何给定warp中的所有线程都遵循相同的路径

Warp内的执行是连续的

Warp中的执行分歧

并行归约

▶ 给定数值数组,并行将其"归约(reduce)"为单一数值

> 示例

- ▶ 求和归约: 求数组中所有值的总和
- ▶最大化归约: 求数组中所有数值的最大值

) 典型并行实现:

- ●递归将#个线程减半,每个线程对两个值求和
- ✓处理n个元素需要 log(n) 步,共需n/2个线程

矢量归约示例

哈爾濱フ葉大學(深圳)HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

- ▶ 假设使用共享内存进行就地归约
 - ●原始矢量位于设备全局内存
 - ●共享内存用于保存部分和矢量
 - ●每次迭代都会使部分和矢量更接近最终结果
 - ♪最终结果是元素 0的值

简单实现

假设已将数组加载到共享内存中

```
1 __shared__ float partialSum[];
2
3 unsigned int t = threadIdx.x;
4 for (unsigned int stride = 1; stride < blockDim.x; stride *= 2)
5 {
6    __syncthreads();
7    if (t % (2*stride) == 0)
8        partialSum[t] += partialSum[t+stride];
9 }</pre>
```

利用分支分歧进行矢量归约

一些观察

- ▶ 在每次迭代中,每个 warp 将依次遍历两条控制流路径
 - ▶️执行加法运算的线程和不执行加法运算的线程
 - ▶ 取决于分歧的执行情况,不执行加法运算的线程可能会耗费额外的周期
- ▶ 任何时候执行的线程都不会超过一半
 - 矛所有奇数索引线程从一开始就被禁用!
 - ╱随着时间的推移,所有warp中,平均只有不到 1/4 的线程被激活
 - ●第5次迭代后,每个线程块中都存在完全被禁用的warp,资源利用率很低,但不会存在分歧
 - ☞ 持续一段时间后,最多再进行 4 次迭代(512/32=16=2⁴),每次迭代只会激活一个线程,直到所有warp运行结束

实现中的不足

假设已经将数组加载到共享内存中

```
1 __shared__ float partialSum[];
2
3 unsigned int t = threadIdx.x;
4 for (unsigned int stride = 1; stride < blockD: .x; stride *= 2)
5 {
6    __syncthreads();
7    if (t % (2*stride) == 0)
8        partialSum[t] += partialSum[t+stride];
9 }</pre>
```

更好地实现方法

假设已经将数组加载到共享内存中

```
1 __shared__ float partialSum[];
2
3 unsigned int t = threadIdx.x;
4 for (unsigned int stride = blockDim.x; stride > 1; stride >> 1)
5 {
6    __syncthreads();
7    if (t < stride)
8        partialSum[t] += partialSum[t+stride];
9 }</pre>
```

部分和数<16之前无分歧

CUDA设备内存空间:回顾

▶ 每个线程都可以:

- ♪读/写线程寄存器
- ♪读/写线程局部内存(Local Memory)
- ●读/写所属线程块共享内存
- ♪读/写全局内存
- ●读常量内存
- ♪读纹理内存

, /	
声明	存储
int v	寄存器
int vArray[10]	本地内存
shared int sharedV	共享内存
device int globalV; or cudaMalloc()	全局内存
constant int constantV[10]; and cudaMemcpyToSymbol();	常量内存
cudaBindTexture2D structtextureReference	纹理内存

Memory	Location on/off chip	Cached	Access	Scope	Lifetime
Register	On	n/a	R/W	1 thread	Thread
Local	Off	Yes††	R/W	1 thread	Thread
Shared	On	n/a	R/W	All threads in block	Block
Global	Off	+	R/W	All threads + host	Host allocation
Constant	Off	Yes	R	All threads + host	Host allocation
Texture	Off	Yes	R	All threads + host	Host allocation

[†] Cached in L1 and L2 by default on devices of compute capability 6.0 and 7.x; cached only in L2 by default on devices of lower compute capabilities, though some allow opt-in to caching in L1 as well via compilation flags.

⁺⁺ Cached in L1 and L2 by default except on devices of compute capability 5.x; devices of compute capability 5.x cache locals only in L2.

并行内存共享

- ▶ 本地内存:按线程
 - ●线程私有
 - ●自动变量、寄存器溢出
- **)** 共享内存: 按块
 - ●同一线程块内的线程共享
 - ●线程间通信
- ▶ 全局内存:按应用程序
 - ●所有线程共享
 - ≥线程块间通信

Sequential Grids in Time

GPU 内存层次结构

全局内存聚合

- ▶ 按warp (32 个线程) 进行内存操作
 - ▶一条指令,32次数据访问
 - ▶如何满足这32次数据访问请求?

聚合:

✓ 当满足某些访问要求时,一个 warp中(对于计算能力为 1.x 的设备为半个warp)线程的全局内存加载和存储可合并为一个事务

全局内存聚合

- ▶ 计算能力为2.x的设备的全局内存访问默认在 L1(128 字节大小的缓存行) 中缓存
 - 承基本的全局内存事务是读/写一个连续的 128 字节段
 - 承自 warp 的每个内存请求都被分解为缓存行请求
- ▶ 计算能力为 3.x 和 5.x 的设备的全局内存访问在 L2(32 字节段)中缓存
 - 承基本的全局内存事务是读/写一个连续的 32 字节段

"不良"访问模式

▶ 错位的数据访问

引自参考文献[3] 75

示例 1

4-Byte Word per Thread

Cached: L1 (CC 2.x)

Uncached: no cache (CC 1.x), or L2 (CC 3.x or above)

示例 2

对于计算能力为1.0和1.1的设备,非顺序数据访问的性能非常差

引自参考文献[2] 77

数据访问错位: 起始地址不是 32 或 I28 的倍数。缓存行中的某些字节无用。

78

示例 4: 按步长访问

相邻线程访问内存的步长为2

步长为2会导致加载/存储效率降低50%,因为事务中有一半的元素没有被使用,浪费了带宽

共享内存

- > 共享内存位于芯片内
 - ◢高带宽、低延迟
 - ▶ 不如寄存器,但优于全局内存

▶ 用途:

- ●线程块内的线程间通信
- 灣缓存数据以减少多余的全局内存访问
- ●改进全局内存访问模式
- ▶ 硬件组织形式
 - √划分为大小相等的内存模块,命名为bank
 - グ连续的 4 字节或 8 字节字属于不同的bank

共享内存的硬件组织形式

哈爾濱フ葉大学(深圳)HARBIN INSTITUTE OF TECHNOLOGY, SHENZHEN

- ▶ 计算能力 1.x
 - ▶16 个bank, 4 字节位宽
- ▶ 计算能力 2.x
 - ▶32 个bank, 4 字节位宽
- ▶ 计算能力 3.x
 - ₹32位模式: 32 个bank, 4 字节位宽
 - ▶64位模式: 32 个bank, 8 字节位宽
- ▶ 计算能力 5.x
 - **≥**32 个bank, 4 字节位宽
- ▶ 计算能力 7.x
 - **≥**32 个bank, 4 字节位宽

Bank访问冲突

▶ 共享内存访问按 32 个线程(warp)发射一次

▶ 串行化: bank冲突

✓如果一个 warp 中有 n 个线程访问同一bank中的不同字,则 n 次共享内存访问将串行执行

●应尽可能避免bank冲突

示例 1: 无Bank冲突

示例 2: 无Bank冲突

示例 3: 2-路Bank冲突

示例 4: 8-路Bank冲突

Bank冲突的延迟

费米架构上的Bank冲突 (计算能力 2.x)

Stride / #-Way Bank Conflict

避免Bank冲突

▶ 32x32 共享内存数组

▶ 如果每个Warp访问一列 → 32-路bank冲突

> Bank 0 Bank 1

> > . . .

Bank 31

避免Bank冲突

▶增加一列

₹32 x 33 共享内存数组

ℤ无bank冲突!

Bank 0 Bank 1

. . .

Bank 31

特殊执行单元: Tensor Core

- ▶ 首次发布于Nvidia Tesla V00 GPU (2017), 1st gen Tensor Core (Volta Architecture)
 - > 640个Tensor Cores (TC), 8 TCs/SM
 - > 64 floating point FMA ops per TC per clock
 - > 512 FMA (or 1024 individual floating point ops) per SM
 - > 40960 FMA per V100 GPU per clock

特殊执行单元: Sparse Tensor Core

➤ 首次发布于Nvidia Tesla A100 GPU (2020), 3rd gen Tensor Core (Ampere Architecture)

Fine-grained

structured pruning (2:4 non-zero)

Dense

trained

weights

- > 128 SMs
- > 512个Tensor Cores (TC), 4 TCs/SM
- > 256 floating point FMA ops per TC per clock
- > 512 FMA per clock if sparsity is enabled
- > 1024 FMA per SM
- > 131072 FMA per A100 GPU per clock

GPU互连: NVLink

- ➤ 首次发布于Nvidia Tesla P100 GPU (2016) (Pascal Architecture)的DGX-1系统中 (8张P100)
 - ➤ 每个P100有4个NVLink连接点,每个连接点提供最高 20GB/s点到点的传输带宽
 - ➤ 最高80GB/s
 - ➤ 每个GPU同时与其相连的GPU传输数据

CPU与GPU内存拷贝

- > cudaMemcpy()
 - □ 只能用于device<->host之间的传输,不能用于 device<->device
- ➤ CPU与GPU之间的内存拷贝需要经过PCIe连接
 - □ PClex16 3.0传输带宽为16GB/s
 - □ 可通过CUDA SDK中bandwidthTest工具测试PCIe传输带宽和延时
- > 在执行kernel之前和之后通常需要进行内存拷贝
 - □ 拷贝为线性执行时,有等待时间,性能低下

 cudaMemcpyAsync(H2D)
 Kernel1
 cudaMemcpyAsync(D2H)

[CUDA Bandwidth Test] - Starting... Running on... Device 0: Tesla V100-PCIE-32GB Quick Mode Host to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(GB/s) 32000000 12.3 Device to Host Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(GB/s) 32000000 13.2 Device to Device Bandwidth, 1 Device(s) PINNED Memory Transfers Transfer Size (Bytes) Bandwidth(GB/s) 32000000 729.3 Result = PASS

使用Streams并发拷贝

> 线性执行

cudaMemcpyAsync(H2D)	Kernel1	cudaMemcpyAsync(D2H)	
		f	ime

➤ 并发执行: kernel执行与D2H拷贝重叠

使用Streams并发要求

- ➤ CUDA操作必须在不同的、非0的streams中
 - □ 0号stream即默认的CUDA stream
- ➤ cudaMemcpyAsync必须与 "pinned" memory—起用
 - □ 即Page-locked memory
 - □ 使用cudaMallocHost() 或 cudaHostAlloc()申请的CPU内存
- > 有足够的硬件资源
 - □ cudaMemcpyAsyncs在不同的方向 (PCle资源)
 - □ 设备资源如共享内存、寄存器等


```
cudaStream_t stream1, stream2, stream3, stream4;
cudaStreamCreate(&stream1);
...
cudaMalloc(&dev1, size);
cudaMallocHost(&host1, size);
...
cudaMemcpyAsync(dev1, host1, size, H2D, stream1);
kernel2<<<grid, block, 0, stream2>>>(..., dev2, ...);
kernel3<<<grid, block, 0, stream3>>>(..., dev3, ...);
cudaMemcpyAsync(host4, dev4, size, D2H, stream4);
Some_CPU_Methods();
```

参考文献

- 1. David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel Processors, 2nd Edition, Morgan Kaufmann, 2013.
- 2. CUDA C Programming Guide, Nvidia. http://docs.nvidia.com/cuda/cuda-c-programming-guide/
- 3. CUDA C BEST PRACTICES GUIDE, Nvidia. http://docs.nvidia.com/cuda/cuda-c-best-practices-guide
- 4. X. Mei and X.-W. Chu, "Dissecting GPU memory hierarchy through microbenchmarking," IEEE TPDS 2017.