判断债券被高估 or 被低估方法 2:

● 每支债券的波动率(即,标准差 σ)、市场组合(债券指数:US Broad)的波动率(标准差 σ)如下:(直接用 Excel 数据即可)

	Α	В
1	Name	Volatility, Std Dev.1 年
2	US1MT=RR	1.5948%
3	US2MT=RR	1.2057%
4	US3MT=RR	1.0495%
5	US6MT=RR	0.9774%
6	US1YT=RR	1.3749%
7	US2YT=RR	0.1188%
8	US3YT=RR	0.1625%
9	US5YT=RR	0.3096%
10	US7YT=RR	0.4247%
11	US10YT=RR	0.6286%
12	US30YT=RR	1.2731%
13	.MERUS00(US Broad Market市场组合)	0.1946%

ullet 每支债券的 $r_{\!\scriptscriptstyle i}$ 、市场组合的 $r_{\!\scriptscriptstyle M}$ 、无风险利率 $r_{\!\scriptscriptstyle f}$:

 \checkmark 市场组合的 $r_{\scriptscriptstyle M}$ 和 $r_{\scriptscriptstyle M}$

•	市场组合的 r_M 和 r_M		0		
4	A	B B	C (D-il-2000)		
1	Name	Daily Avg Return	Yearly (Daily*260)		
2	Rm(1) 2009~2010	0.0355%	(0.0923		
3	Rm(2) 2010~2011	0.0155%	0.0403		
4	Rm(3) 2011~2012	0.0226%	0.05876		
5	Rm(4) 2012~2013	-0.0069%	-0.01794		
6	Rm(5) 2013~2014	0.0207%	0.05382		
7	Rm(6) 2014~2015	0.0083%	0.02158		
8	Rm(7) 2015~2016	0.0179%	0.04654		
9	Rm(8) 2016~2017	0.0024%	0.00624		
10	Rm(9) 2017~2018	-0.0080%	-0.0208		
11	Rm(10) 2018~2019	0.0455%	0.1183		
12	Rm平均(十年)	0.0154%	0.03991		
13					
14	Rf平均(十年)	0.0185%	0.0481		
✓ 每支债券的 r_i 和 r_i r_i					
求法见视频,得出像上图 Excel 的数据					

求法见视频,得出像上图 Excel 的数据 \checkmark 无风险利率 $\overset{-}{r_f}$

✓ 用 CAPM,算出每个债券的必要收益率 K(正确定价下的收益率)

$$K_{i} = (\overrightarrow{r_{f}} + \beta_{i}) (\overrightarrow{r_{M}} - \overrightarrow{r_{f}})$$

再跟每个债券的实际收益率(yield)相比,判断哪个被高估、哪个被低估 (K > yield, 说明被高估; K < yield, 说明被低估)

🗸 算出两两债券之间 Yield 的相关系数 $ho_{i,j}$,后面构建 MPT 中的有效边界会用到。

$$\rho_{i,j} = \frac{COV(r_i, r_j)}{\sigma_i \cdot \sigma_j}$$