Министерство науки и высшего образования Российской Федерации Московский политехнический университет Факультет принтмедиа и информационных технологий

Кафедра «Информатика и Информационные Технологии»

Промежуточный отчет по дисциплине «Проектная деятельность»

Способы выполнения задания «Поиск источника света»

Выполнили:

Карпушкин С.

Мосягин А.

Попереков В.

Шлячков Е.

Андреев Е.

Бежнарь М.

(Группа 201-723)

Проверил:

Ильин Г.

Москва, 2020

Оглавление

Описание основных принципов работы, необходимых компонентов и технологии их	
Описание основных принципов работы, необходимых компонентов и технологии их производства	3
Компоненты:	
Смета	4
Технология производства изделия	4
Чертежи и 3D модель изделия	5
Электросхема изделия	8
Апгоритм поиска света истоиника света и навеления	Q

Проектная деятельность.

Поиск источника света.

Описание основных принципов работы, необходимых компонентов и технологии их производства.

Принцип действия: светодиод ищется путём вращения верхней части башни с фоторезистором.

Алгоритм: Устройство начинает поиск светодиода с вращения башни по горизонтали с целью поиска самого яркого столбца. Затем выполняет поиск самой яркой точки в нём и стреляет в это место лазером.

Компоненты:

- 1. Плата Arduino UNO
- 2. Сервопривод х2
- 3. Набор проводов «папа-мама»
- 4. Набор проводов «папа-папа»
- 5. Фоторезистор
- 6. Лазерный мини-модуль
- 7. Макетная плата ВВ-601Р
- 8. Металлический уголок
- 9. Фанера
- 10. Брус

Смета Таблица 1 - Смета

Название	Количество	Цена	Стоимость	Ссылки
Плата Arduino UNO	1	389₽	389₽	
Сервопривод	2	415 ₽	830₽	
Набор проводов «папа-мама»	1	140 ₽	140 ₽	
Набор проводов «папа-папа»	1	140 ₽	140 ₽	
Фоторезистор	1	30₽	30₽	
Лазерный мини- модуль	1	150₽	150₽	
Макетная плата ВВ-601Р	1	250₽	250₽	
Фанера 1,525 кв. м	1	215₽	215₽	https://green- ply.ru/fanera/fk/1525x1525-3mm-sort-4- 4/
Брус	1	50₽	50₽	https://clck.ru/RnpuM
Клей	1	52₽	52₽	https://www.bafus.ru/100002825/
Саморезы	2	5₽	10₽	
Металлический уголок	1	8₽	8 P	https://lidoma- kuhni.ru/products/47120404
Итого	2 264 ₽			

Технология производства изделия

В нижней части изделия установлена плата Ардуино, сервопривод, макетная плата. Корпус нижней платформы сделан из частей фанеры, которые склеены между собой. В верхней части распложен сервопривод, лазер и фоторезистор. Корпус верхней платформы сделан из частей фанеры, которые склеены между собой.

Чертежи и 3D модель изделия

Рисунок 1 - Вид сбоку

Рисунок 2 - Вид спереди

Рисунок 3 - Вид сверху

Рисунок 4 – Вид в перспективе

Рисунок 5 – Внутреннее строение

Электросхема изделия

Рисунок 6 – Электросхема изделия

Алгоритм поиска источника света и наведения

```
#include <Servo.h>
#include <math.h>
Servo servog;
Servo servov;
#define LASER 8 // пин лазера
int PhotoRes = 0; // номер пина после равно
const int l = 5;
int max = 0, x = 0, y = 1;
boolean centr = false, f = 0;
float ygolX = 0.0, ygolY = 0.0;
void setup()
    servog.attach(5); // поменять номер пина
    servov.attach(6); // поменять номер пина
    pinMode(LASER, OUTPUT);
    pinMode(PhotoRes, INPUT);
    Serial.begin(9600); // функция для работы с портом, в скобках
указывается скорость вывода на экран
}
void loop()
    if (f == 0)
        delay(30000);
        digitalWrite(LASER, HIGH);
        delay(12000);
        digitalWrite(LASER, LOW);
        f = 1;
    }
    for (int i = 0; i < 3; i++)
        while ((analogRead(PhotoRes) > max) && (x < 4))
        {
            max = analogRead(PhotoRes);
            x++;
            servog.write(atan2(x, 1) - ygolX);
            ygolX = atan2(x, 1);
            if ((x == 4) && (max < analogRead(PhotoRes)))</pre>
                max = analogRead(PhotoRes);
        }
        if (abs(max - analogRead(PhotoRes)) > 2) // погрешность
        {
            x = x - 2;
            if (x >= 0)
```

```
servog.write(atan2(x, 1) - ygolX);
        ygolX = atan2(x, 1);
    }
    else
    {
        servog.write(-atan2(abs(x), 1) - ygolX);
        ygolX = -atan2(abs(x), 1);
    centr = true;
    while ((analogRead(PhotoRes) > max) && (x > -4))
        centr = false;
        max = analogRead(PhotoRes);
        x--;
        if (x >= 0)
            servog.write(atan2(x, 1) - ygolX);
            ygolX = atan2(x, 1);
        }
        else
            servog.write(-atan2(abs(x), 1) - ygolX);
            ygolX = -atan2(abs(x), 1);
        if ((x == -4) \&\& (max < analogRead(PhotoRes)))
            max = analogRead(PhotoRes);
    }
    if ((abs(max - analogRead(PhotoRes)) > 2) || (centr))
        x++;
        if (x >= 0)
            servog.write(atan2(x, 1) - ygolX);
            ygolX = atan2(x, 1);
        }
        else
        {
            servog.write(-atan2(abs(x), 1) - ygolX);
            ygolX = -atan2(abs(x), 1);
        }
    }
}
max = analogRead(PhotoRes);
y++;
servov.write(atan2(y, 1) - ygolY);
ygolY = atan2(y, 1);
while ((analogRead(PhotoRes) > max) && (y < 4))
```

```
max = analogRead(PhotoRes);
            y++;
            servov.write(atan2(y, 1) - ygolY);
            ygolY = atan2(y, 1);
            if ((y == 4) && (max < analogRead(PhotoRes)))</pre>
                max = analogRead(PhotoRes);
        }
        if (abs(max - analogRead(PhotoRes)) > 2)
            y--;
            servov.write(atan2(y, 1) - ygolY);
            ygolY = atan2(y, 1);
        }
        digitalWrite(LASER, HIGH);
        delay(12000);
        digitalWrite(LASER, LOW);
        servov.write(-ygolY);
        ygolY = 0.0;
        servog.write(-ygolX);
        ygolX = 0.0;
        x = 0;
        y = 1;
        max = 0;
        centr = false;
   }
}
```