

Code Module: MAT2053

Intitulé du Module : Mathématiques et cryptographie (partie Maths)

Date : 14 février 2019

Durée : 45 mn

Professeur : A. DAOUDI et H. MECHKOUR

Nbre de pages : 01

Contrôle : Oui

Documents autorisés : Non Calculatrice autorisée : Non

Remarques : Soignez votre présentation. Une rédaction précise et concise est exigée.

Niveau: 2A

Sujet (partie mathématiques)

Exercice 1. Sans justifier votre réponse, répondre par vrai : V ou par Faux : F.

1) (\mathbf{R}^*,\times) est un groupe

2) ($\mathbf{Z}/12\mathbf{Z}$,+) est un groupe

3) $((\mathbf{Z}/8\mathbf{Z})\setminus\{\overline{0}\},\times)$ est un groupe

4) ($]-\infty,0[,\times)$ est un groupe

Exercice 2.

1) Prouvez que $\bar{5}$ est inversible dans $\mathbf{Z}/46\mathbf{Z}$

2) Dans $\mathbb{Z}/46\mathbb{Z}$ calculez \bar{a} où $a = 343 \times 46 + 9 \times 5$

3) Résoudre dans $\mathbb{Z}/46\mathbb{Z}$ l'équation : $\overline{5}x + \overline{24} = \overline{34}$

Exercice 3.

Soit Z muni de la loi de composition interne « * » définie par :

Si
$$(x, y) \in \mathbb{Z} \times \mathbb{Z}$$
, $x * y = x - 2y$

- 1) La loi « * » est-elle commutative dans Z ? Justifiez votre réponse
- 2) Z muni de la loi « * » admet-il un élément neutre ? Justifiez votre réponse

Exercice 4.

Dans (S_3, \circ) le groupe des permutations de $\{1, 2, 3\}$, on considère les éléments suivants :

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
; $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ et $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

- 1) Calculer $\sigma \circ \tau$.
- 2) Montrer que ($\{id; \tau\}, \circ$) est un sous-groupe de (S_3, \circ)
- 3) Montrer que $(\{id; \tau; \sigma; \sigma \circ \tau\}, \circ)$ n'est pas un sous-groupe de (S_3, \circ)

NOM PRENOM : groupe :		
		-

Exercice 1. Répondre par vrai : V ou par Faux : F

- 1) (\mathbf{R}^*, \times) est un groupe
- 2) ($\mathbf{Z}/12\mathbf{Z}$,+) est un groupe
- 3) $(\mathbf{Z}/8\mathbf{Z})\setminus\{\overline{0}\},\times$ est un groupe
- 4) (] $-\infty$,0[,×) est un groupe

Exercice 2.

- 1) Prouvez que $\bar{5}$ est inversible dans $\mathbf{Z}/46\mathbf{Z}$
- 2) Dans $\mathbb{Z}/46\mathbb{Z}$ calculez \bar{a} où $a = 343 \times 46 + 9 \times 5$
- 3) Résoudre dans $\mathbb{Z}/46\mathbb{Z}$ l'équation : $\overline{5x} + \overline{24} = \overline{34}$

Suite de l'exercice 2.

Exercice 3. Soit \mathbb{Z} muni de la loi de composition interne « * » définie par : Si $(x,y) \in \mathbb{Z} \times \mathbb{Z}$, x*y=x-2y

- 1) La loi « * » est-elle commutative dans **Z** ? Justifiez votre réponse
- 2) Z muni de la loi « * » admet-il un élément neutre ? Justifiez votre réponse

Exercice 4.

Dans (S_3,\circ) le groupe des permutations de $\{1,2,3\}$, on considère les éléments suivants :

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; \ \sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \text{ et } \tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

- 1) Calculer $\sigma \circ \tau$.
- 2) Montrer que $(\left\{id\,;\tau\right\},\circ)$ est un sous-groupe de (S_3,\circ)
- 3) Montrer que $(\{id;\tau;\sigma;\sigma\circ\tau\},\circ)$ n'est pas un sous-groupe de (S_3,\circ)