Курс "Практикум по математической статистике"

3 курс ФПМИ МФТИ, осень 2022

Домашнее задание 3. Сравнение оценок и эффективные оценки

Мы предлагаем выполнять задания прямо в этом ноутбуке. Пожалуйста, не стирайте условия задач.

Настоятельно рекомендуемая форма оформления домашних заданий — это Jupyter Notebook:

- условием задачи,
- решением (если требуется некоторый теоретический вывод),
- описанием плана решения, который потом реализуется в коде,
- собственно кодом,
- построенными графиками (если это требуется) и **выводом**, который как правило должен заключаться в объяснении практических результатов с использованием теоретических фактов. **Вывод требуется даже в том случае, если в условии об этом явно не сказано!**
- некоторыми другими вещами, если об этом будет указано в задании.

Оценка за каждую задачу складывается из правильного выполнения всех этих пунктов. Закрывая на них глаза, вы сознательно понижаете свою оценку.

Каждая задача в этом задании оценивается в 15 баллов.

Пожалуйста, не переименовывайте этот ноутбук

```
import numpy as np
from scipy import stats as sps
import seaborn as sns
from matplotlib import pyplot as plt
sns.set(style="darkgrid", font_scale=1.4)

%pylab inline

Populating the interactive namespace from numpy and matplotlib
/usr/local/lib/python3.7/dist-packages/IPython/core/magics/pylab.py:160: UserW
    `%matplotlib` prevents importing * from pylab and numpy
    "\n`%matplotlib` prevents importing * from pylab and numpy"
```

→ Задача 1

Сгенерируйте выборку из трех распределений: нормального, Лапласа и Коши размера n=500.

Далее для всех графиков в этом задании используйте обозначенные цвета для каждого из распределений (даже если графики будут на разных осях). То есть если график касается нормального распределения то рисуйте его синим цветом.

```
color_for_normal=sns.color_palette("colorblind")[0]
color_for_laplace=sns.color_palette("colorblind")[1]
color_for_cauchy=sns.color_palette("colorblind")[2]
N=500

norm_distr = sps.norm()
laplacian_distr = sps.laplace()
cauchy_distr = sps.cauchy()
np.random.seed(2020)

norm_X = norm_distr.rvs(N)
laplacain_X = laplacian_distr.rvs(N)
cauchy X = cauchy distr.rvs(N)
```

Постройте график плотности распределения для всех трех распределений на одних осях.

```
grid = np.linspace(-10, 10, 500)

plt.figure(figsize=(20, 15))

plt.plot(grid, norm_distr.pdf(grid), color = color_for_normal, label = 'Нормальное ра

plt.plot(grid, laplacian_distr.pdf(grid), color = color_for_laplace, label = 'Распре,

plt.plot(grid, cauchy_distr.pdf(grid), color = color_for_cauchy, label = 'Распределенирlt.title('График плотностей распределений')

plt.xlabel('значение величины')

plt.ylabel('значение плотности распределения')

plt.show()
```


Подумайте для каких распределений сложнее найти значение математического ожидания по выборке? Почему?

Ответ: Думаю, что для распределения Коши, т. к. у него нет теоретического мат. ожидания

Часто, в реальной жизни, мы сталкиваемся с данными в которых есть выбросы возникшие, например, из-за опечаток. Пусть в выборке содержится 99 точек на интервале [0; 1] и один элемент равный 300. Тогда среднее значение нашей выборки будет не меньше трех. Ясно, что так дело не пойдет, что же делать?

Можно использовать медиану или усеченное среднее.

Усеченное среднее порядка α это среднее составленное из выборки от которой отрезаны α и $1-\alpha$ квантили. Как ее получить?

- 1. Отсортировать выборку
- 2. Отрезать первые и последние (α · размер выборки) элементов выборки
- 3. Посчитать среднее полученной выборки

Напишите функцию для подсчета этой статистики.

import math

```
def truncated_mean(sample, alpha=0.3):
    sorted = np.sort(sample)
    size = sorted.shape[0]
    modified = sorted[int(size*alpha) : size - 1 - int(size*alpha)]
    return np.mean(modified)
```

Теорема Пусть распределение симметрично относительно нуля и имеет одну моду в нуле, тогда асимптотическая дисперсия усеченного среднего порядка α может быть выражена по формуле:

$$\sigma^{2}(\alpha) = 2 \cdot \frac{\int_{0}^{u_{1-\alpha}} x^{2} dF(x) + \alpha \cdot (u_{1-\alpha})^{2}}{(1 - 2\alpha)^{2}},$$

где u_{α} – квантиль порядка α .

Напишите функцию, которая это делает.

Подсказка. Для численного интегрирования используйте функцию quad из модуля scipy.integrate

```
from scipy.integrate import quad

def asymp_var(distr, alpha):
    u = distr.ppf(1 - alpha)
    integ = quad(func=lambda x: x**2 * distr.pdf(x), a=0, b=u)[0]
    return 2 * (integ + alpha * np.square(u)) / (1 - 2 * alpha)**2
```

Постройте графики для фсимптотической дисперсии в зависимости от α для всех трех распределений на назных осях (используйте plt.subplots(1, 3, figsize=(21,7))). Не забудьте про цвета. Для загаловка графика используйте $ax[i].set_title$, для заголовка всей картинки используйте fig.suptitle.

Как можно интепретировать такой график? Напишите развернутый вывод.

Подсказка. Подумайте, какой известной оценке соответствует усеченное среднее порядка 0.5? А порядка 0?

Ответ: усеченное среднее порядка 0 - это математическое ожидание, а порядка 0.5 - медиана. По графику видно, что для нормального распределения лучше всего использовать среднее значение, а для распределения Лапласа медиану у распределения Коши огромный разлет у среднего, а усеченное среднее порядка где-то 0.35 имеет минимальную дисперсию.

Для каждого распределение на отдельном графике постройте значение трех оценок: среднего, медианы и усученного среднего порядка 0.35. Для усеченного среднего проведите линию пунктиром (fmt="--"), для медианы точечками (fmt=":"). **Не забудьте про цвета**. То есть цвета на одном графике одинаковые, разные оценки отличает только формат линии.

Ниже посчитайте все оценки необходимые для всех распределений

```
norm_mean = np.cumsum(norm_X) / np.arange(1, N + 1)
laplacain_mean = np.cumsum(laplacain_X) / np.arange(1, N + 1)
cauchy_mean = np.cumsum(cauchy_X) / np.arange(1, N + 1)

norm_median = np.array([np.median(norm_X[:i]) for i in range(1, N + 1)])
laplacain_median = np.array([np.median(laplacain_X[:i]) for i in range(1, N + 1)])
cauchy_median = np.array([np.median(cauchy_X[:i]) for i in range(1, N + 1)])
```

norm trunc mean = np.array([truncated mean(norm X[:i], 0.35) for i in range(1, N +

Нормальное распределение

```
grid = np.arange(1, N + 1)
plt.figure(figsize=(20, 15))
plt.plot(grid, norm_mean, label='mean', color=color_for_normal)
plt.plot(grid, norm_median, label='median', linestyle=':', color=color_for_normal)
plt.plot(grid, norm_trunc_mean, label='truncated mean', linestyle='--', color=color
plt.xlabel('размер выборки')
plt.ylabel('значение оценки')
plt.title('Нормальное распределение')
plt.legend()
plt.show()
```


Распределение Лапласа

```
grid = np.arange(1, N + 1)
plt.figure(figsize=(20, 15))
plt.plot(grid, laplacain_mean, label='mean', color=color_for_laplace)
plt.plot(grid, laplacain_median, label='median', linestyle=':', color=color_for_lap
plt.plot(grid, laplacain_trunc_mean, label='truncated mean', linestyle='--', color=
plt.xlabel('размер выборки')
plt.ylabel('значение оценки')
plt.title('Нормальное распределение')
plt.legend()
plt.show()
```


Распределение Коши

ĕ

Чтобы изменить содержимое ячейки, дважды нажмите на нее (или выберите "Ввод")

```
grid = np.arange(1, N + 1)
plt.figure(figsize=(20, 15))
plt.plot(grid, cauchy_mean, label='mean', color=color_for_cauchy)
plt.plot(grid, cauchy_median, label='median', linestyle=':', color=color_for_cauchy
plt.plot(grid, cauchy_trunc_mean, label='truncated mean', linestyle='--', color=col
plt.xlabel('paзмер выборки')
plt.ylabel('значение оценки')
plt.title('Нормальное распределение')
plt.legend()
plt.show()
```


Как эти три графика соотносятся с графиками асимптотической дисперсии усеченного среднего для всех этих распределений? Сделайте вывод.

Вывод: Для нормального распределения и распределения Лапласа оценки не сильно отличаются с увеличением n. А вот для распределения Коши медиана и усеченное среднее ведут себя гораздо устойчивее чем стандартное среднее, которое сильно скачет из-за выбросов.

размер выборки

Задача 2

Wine dataset

Давайте загрузим и проанализируем датасет, состоящий из различных показателей для красного вина и оценок сомелье.

```
!pip install -q gdown
!gdown https://drive.google.com/uc?id=1LsNeROfnVQb2ksdtwZvxrZREdy_Z-jta

Downloading...
   From: https://drive.google.com/uc?id=1LsNeROfnVQb2ksdtwZvxrZREdy_Z-jta
   To: /content/winequality-red.csv
   100% 101k/101k [00:00<00:00, 65.2MB/s]

import pandas as pd

data = pd.read_csv("winequality-red.csv")</pre>
```

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	1
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.

Поделите вина на три категории по содержанию алкоголя. Добавьте колонку "category" со значениями "low alcohol", "medium alcohol", "high alcohol" для относительного объемного содержания алкоголя $x \le 10$, 10 < x < 12, x > 12 соответственно.

```
def category(x):
    if x <= 10:
        return 'low alcohol'
    if x > 12:
        return 'high alcohol'
    return 'medium alcohol'
    data['category'] = data['alcohol'].apply(category)
data
```

```
fixed volatile citric residual chlorides sulfur sulfur density acidity acid sugar dioxide dioxide
```

Для каждой категории посчитайте среднее и медиану содержания остаточного сахара ("residual sugar"). Сделайте pandas.DataFrame с индексами в виде категории содержания алкоголя и колнками в виде среднего и медианы.

```
low_mean = np.mean(data["residual sugar"][data['category'] == "low alcohol"])
low_mediana= np.median(data["residual sugar"][data['category'] == "low alcohol"])
medium_mean = np.average(data["residual sugar"][data['category'] == "medium alcoho medium_mediana = np.median(data["residual sugar"][data['category'] == "medium alcoho high_mean = np.average(data["residual sugar"][data['category'] == "high alcohol"])
high_mediana = np.median(data["residual sugar"][data['category'] == "high alcohol"])
category = ['low alcohol', 'medium alcohol', 'high alcohol']
data_sugar=[]
data_sugar.append([low_mean, low_mediana]))
data_sugar.append([medium_mean, medium_mediana]))
data_sugar.append([high_mean, high_mediana]))
df = pd.DataFrame(data_sugar, columns=['mean', 'median'], index=category)
df
```

	mean	median	1
low alcohol	2.445984	2.1	
medium alcohol	2.592264	2.2	
high alcohol	2.760993	2.3	

Что можно сказать о распределении сахара по этим категориям? О распределении остаточного сахара в целом?

Ответ: Чем больше алкоголя, тем больше сахара)

Постройте boxplot для остаточного сахара по категориям, полученным ранее на основании доли алкоголя.

```
palette = sns.color_palette("viridis", n_colors=3)[::-1]
plt.figure(figsize=(20, 15))
plt.title("Содержание сахара")
sns.boxplot(x=data["residual sugar"], y=data['category'], palette=palette)
plt.show()
```


Как соотнясятся оценки из предыдущего пункта и график сверху? Что лучше использовать для оценивания содержания сахара: медииану или среднее? Почему?

Ответ: медианы из боксплота и из предыдущего пункта практически совпали. Видно, что есть выбросы в каждой группе вин, поэтому тут лучше использовать медиану для оценивания содержания сахара.

Постройте один scatterplot (используйте seaborn) для очень хороших и очень плохих вин (quality == 3, quality == 8) в зависимости от содержания алкоголя (alcohol не из предыдущего пункта, а из колонки исходного датасета) и от количества лимонной кислоты (citric acid). Используйте palette=[palette[0]]+[palette[-1]].

```
good = data[data['quality'] == 8][['alcohol', 'citric acid']]
bad = data[data['quality'] == 3][['alcohol', 'citric acid']]
```

```
plt.figure(figsize=(15,10))
sns.scatterplot(data=good, x="alcohol", y="citric acid", label='очень хорошее вино', к
sns.scatterplot(data=bad, x="alcohol", y="citric acid", label='очень плохое вино', pal
plt.title('Зависимость содержания алкоголя и лимонной кислоты')
plt.xlabel('Содержание алкоголя')
plt.ylabel('Лимонная кислота')
plt.show()
```


Найдите ОМП для двух этих распределений в предположении, что обе выбоки из многомерного нормального распределения. Не мудрите, μ и Σ получаются в одну команду через numpy . Далее получите плотности для сетки x , y . Используйте $\mathrm{sps.multivariate\ normal}$.

```
nu_bad = np.mean(np.array(bad), axis=0)
sigma_bad = np.cov(np.array(bad).T)
nu_good = np.mean(np.array(good), axis=0)
sigma good = np.cov(np.array(good).T)
```

Нарисуйте график плотности с линиями контура и нанесите точки выборки. Используйте зеленый цвет для вина плохого качества (get_density_cmap("Greens") и "g" для точек) и синий для вина хорошего качества (get_density_cmap("Blues") и "b"). Используйте функции plt.pcolormesh, plt.clabel и plt.scatter. Не забудьте про plt.xlabel, plt.ylabel и plt.legend.

```
from matplotlib.colors import ListedColormap

def get_density_cmap(name):
    cmap = plt.get_cmap(name)
    cmap_col = cmap(np.arange(cmap.N))
    cmap_col[:, -1] = np.linspace(0, 1, cmap.N)**2
    return ListedColormap(cmap_col)

#YOUR CODE GOES HERE
```

Что можно сказать о вине, которому сомелье дали наивысший балл по сравнению с вином, которому дали наименьший балл, основываясь на график выше?

Ответ:

Задача 3

Рассмотрим $X_1, \ldots, X_n \sim Bern(\theta)$. По сетке значений $\theta \in [0, 1]$ с шагом 0.01 постройте график зависимости нижней оценки дисперсии произвольной несмещенной оценки из неравенства Рао-Крамера от θ .

Нижняя оценка дисперсии произвольной несмещенной оценки из неравенства Рао-Крамера равна $\frac{1}{I_X(\theta)}$, Для распределения $Bern(\theta)$ это $\frac{\theta(1-\theta)}{n}$. Не будем учитывать n при построении графика, т. к. это некоторая константа для каждого θ

```
theta_grid = np.arange(0, 1, 0.01)
est = theta_grid * (1 - theta_grid)
plt.figure(figsize=(15,10))
plt.plot(theta_grid, est)
plt.title(r'График зависимости оценки дисперсии от $\theta$')
plt.ylabel(r'$\theta (1 - \theta)$')
plt.xlabel(r'$\theta$')
plt.show()
```


Какой можно сделать вывод (напишите в комментариях)?

Вывод При $\theta = 0.5$ получается самая высокая оценка снизу.

Для каждого значения θ (для той же сетки) сгенерируйте выборку размера n=1000 для параметра θ , посчитайте эффективную оценку θ и бутстрепную оценку дисперсии (количество бутстрепных выборок равно 1000) этой эффективной оценки θ .

```
samples = sps.bernoulli(theta_grid).rvs((1000, theta_grid.size))
ind = sps.randint(0, 1000).rvs(size=(1000, 1000))
means = np.mean(samples[ind].T, axis=2)
var bootstrap ests = np.mean(np.square(means), axis=1) - np.square(np.mean(means, a
```

Нарисуйте график зависимости полученных бутстрепных оценок от θ .

```
plt.figure(figsize=(15, 10))
plt.plot(theta_grid, var_bootstrap_ests)
plt.title(r"График зависимости бутстрепной оценки от $\theta$")
plt.xlabel(r"$\theta$", fontsize=15)
plt.ylabel(r"$s^2(\hat{\theta})$", fontsize=15)
plt.show()
```


Вывод График бутстрепной оценки дисперсии эффективной оценки приближается к графику зависимости нижней оценки дисперсии произвольной несмещенной оценки.

Платные продукты Colab - Отменить подписку

✓ 0 сек. выполнено в 01:12

×