GEN024 Final Exam 2014/5

解答用紙に ID と名前を書き、すべての解答は解答欄の定められた場所に書くこと。Write your name and student ID number, and all your answers in the places provided on the separate answer sheets. (5pts× 20)

Part I.

- 2. 連立一次方程式について、以下の記述のうち、正しいものには、○ を、誤っているものには、× を解答欄に記入せよ。Write for true and × for false in the answer sheets.

$$\begin{cases} x+y+z &= 1\\ 2x-y-4z &= 2\\ 3x+2y+z &= 3 \end{cases}, A = \begin{bmatrix} 1 & 1 & 1\\ 2 & -1 & -4\\ 3 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) A は上の連立一次方程式の拡大係数行列である。The matrix A is the augmented matrix of the system of linear equations above.
- (b) B は既約ガウス行列である。The matrix B is in reduced row echelon form.
- (c) A の階数は3である。The rank of A is 3.
- (d) A は可逆である。The matrix A is invertible.
- (e) 上の連立一次方程式の解 (x, y, z) は無限組存在する。There are infinitely many solutions to the system of linear equations above.

Part II. 次の計算をし、途中式もふくめ、解答欄の定められた場所に書くこと。命題を用いるときは番号または内容を明確に述べること。Write the answers of the following in the places provided in answer sheets. Show work! If you apply a proposition, state the number or the statement clearly.

- 3. p(x) は多項式で、p(-3) = p(1) = p(5) = 1 かつ、p(-1) = p(3) = -1 を満たすものとする。 次数が 4 のものと、次数が 10 のものを一つずつ書け。Let p(x) be a polynomial satisfying p(-3) = p(1) = p(5) = 1 and p(-1) = p(3) = -1. Write two such polynomials p(x), one with degree 4 and the other with degree 10.
- 4. 前問の条件を満たす次数 4 の多項式を p(x) とする。すると、p(c) = 0 となる点 c が (-3, -1), (-1,1), (1,3), (3,5) の開区間の中にそれぞれ丁度一個ずつあることを説明せよ。ここで開区間 (a,b) は $\{x \mid a < x < b\}$ を意味する。Let p(x) be a polynomial of degree 4 satisfying the conditions in the previous problem. Show that each interval (-3,-1), (-1,1), (1,3), (3,5) contains exactly one point c such that p(c) = 0. Here $(a,b) = \{x \mid a < x < b\}$.

- 5. $f(x) = x^4 8x^3 + 20x^2 12x = q(x)(x-3) + r = c_4(x-3)^4 + c_3(x-3)^3 + c_2(x-3)^2 + c_1(x-3) + c_0$ であるとき、多項式 q(x)、定数 r および c_4, c_3, c_2, c_1, c_0 を求めよ。 Find a polynomial q(x), constants r and c_4, c_3, c_2, c_1, c_0 .
- 6. $f(x)=(x^2-3)e^x$ とする。このとき、 f(x) は、x=-3 で増加しているか、減少しているか、f(-3) は極小値か、極大値か判定し、その理由も述べよ。すべての x について $e^x>0$ である。Let $f(x)=(x^2-3)e^x$. Determine whether f(x) is increasing, decreasing at x=-3 or f(-3) is a local maximum or a local minimum. Why? Note that $e^x>0$ for all x.
- 7. $\lim_{x\to 3} \frac{2x^3 11x^2 + 12x + 9}{x^4 8x^3 + 20x^2 12x 9}$ を求めよ。 Find the limit.
- 8. $\lim_{x\to 0} \frac{(x^2-3)e^x+3}{x}$ を求めよ。ただし、 $e^0=1$ である。Find the limit. Note that $e^0=1$. (Hint: Let $f(x)=(x^2-3)e^x$. Write the definition of f'(0).)
- 9. $\frac{1}{(x^2+1)^3}$ の導関数を求めよ。 Find the derivative.
- 10. $(x^2+1)^3e^{-x}$ の導関数を求めよ。Find the derivative.
- 11. $\int \left(\frac{1}{2x} 3 + 3\sqrt{x}\right) dx$ を求めよ。 Find the indefinite integral.
- 12. $\int \frac{x}{(x^2+1)^4} dx$ を求めよ。 Find the indefinite integral.
- 13. $\int_{-2}^{2} (x+2)^9 dx$ を求めよ。 Find the definite integral.
- 14. $F(x) = \int_{-1}^{x} (t^2 + 1)^3 e^{-t} dt$ の導関数を求めよ。 Find the derivative of F(x).

Part III. 次の問題の解答を解答欄の定められた場所に書くこと。Write your answers on the answer sheets.

$$B = \begin{bmatrix} -2 & -3 & -5 & -2 & -9 & 2 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 2 & 4 & 8 & 3 & 13 & 0 \\ 1 & 2 & 4 & 1 & 4 & -1 \end{bmatrix} \longrightarrow C = \begin{bmatrix} 1 & 2 & 4 & 1 & 4 & -1 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 1 & 3 & 0 & -1 & 0 \end{bmatrix}, A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 4 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

- 15. 左上の行列 B に行に関する基本変形を三回施して C を得た。その基本変形を順番に、[i,j;c] (i 行に j 行の c 倍を加える), [i,j] (i 行と j 行を入れ替える), [i;c] (i 行を c 倍する)の記号を用いて書け。The matrix C is obtained from the matrix B by performing elementary row operations three times. Write them in order using notation [i,j;c] (add c times row j to row i), [i,j] (interchange row i and row j), [i;c] (multiply every entry in row i by c).
- 16. B, C を上の行列とする。3 回の基本変形からできる 4×4 行列 T で TB = C となるものを一つ求めよ。Find a 4×4 matrix T obtained by three row operations above satisfying TB = C.

- 17. 上の行列 A の逆行列を求めよ。Find the inverse of the matrix A above.
- 18. 左上の行列 B はある連立一次方程式の拡大係数行列であるする。B を既約ガウス行列に変形し、解 x_1, x_2, x_3, x_4, x_5 を求めよ。Suppose the matrix B above is an augmented matrix of a system of linear equations with unknowns x_1, x_2, x_3, x_4, x_5 . Find the reduced row echelon form of B and the solutions of the system.
- 19. y = f(x) は、次の微分方程式および、初期条件を満たすとき、y = f(x) を求めよ。Solve the following differential equation with initial condotion for y = f(x).

$$y' = \frac{dy}{dx} = 3x^2y$$
, $y(0) = f(0) = -3$.

20. Hamming 符号 は、2 進 4 桁の情報 (0,1) が四つ並んだもの a に、次の行列 G を右からかけ、

$$0+0=0, \ 0+1=1, \ 1+0=1, \ 1+1=0$$

の計算規則で求めた $\mathbf{c} = \mathbf{a}G$ を符号としたものである。ノイズで一箇所 0 が 1 または、1 が 0 になっても、行列 H を利用することにより、ノイズが入る前の \mathbf{c} を復元することができる。この符号に関して次の問いに答えよ。ただし、G,H を以下の行列とする。

Let a be a binary data with 4 digits. An encoder sends c = aG, and a receiver receives a code with possible errors. If there is at most one error in a code word, the receiver can recover the original data by this system called the Hamming code. Answer the following questions.

- (a) a = [1,0,1,1] としたとき、aG は何か。Find aG when a = [1,0,1,1].
- (b) ノイズが最大一箇所入ったものが $\mathbf{c}' = [1,0,0,1,1,1,1]$ とすると、もとの符号 \mathbf{c} は何であったか。簡単に理由を記せ。Suppose $\mathbf{c}' = [1,0,0,1,1,1,1]$ is received after at most one position is changed by an error. What is the original code \mathbf{c} in this case?

GEN024 FINAL 2014/5 Answer Sheets

ID#: Name:

Part I-1.

p	q	r	(p	\Rightarrow	(¬	q))	\Rightarrow	r	(p	\wedge	q)	V	r
T	T	T											
T	T	F											
T	F	T											
T	F	F											
F	T	T											
F	T	F											
F	F	T							·				
F	F	F											

論理同値かどうかの判定 (Are these logically equivalent?):

2.

(a)	(a) (b)		(d)	(e)

メッセージ Message: 数学少しは楽しめましたか。苦しんだ人もいるかな。以下のことについて書いて下さい。Did you enjoy mathematics, or did you suffer a lot? I appreciate your feedbacks on the following.

- (A) この授業について。改善点など何でもどうぞ。About this class, especially on improvements.
- (B) ICU の教育一般について。改善点など、ICU に関すること何でもどう ぞ。About the education at ICU, especially on improvements. Any comments concerning ICU are welcome.

No.	PTS.
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	
20.	
Total	

Part II.

- 4. Let p(x) be a polynomial of degree 4 satisfying the conditions in the previous problem. Show that each interval (-3,-1), (-1,1), (1,3), (3,5) contains exactly one point c such that p(c) = 0.
- 5. Let $f(x) = x^4 8x^3 + 20x^2 12x = q(x)(x-3) + r = c_4(x-3)^4 + c_3(x-3)^3 + c_2(x-3)^2 + c_1(x-3) + c_0$. Find a polynomial q(x), constants r and c_4, c_3, c_2, c_1, c_0 .

6. Let $f(x) = (x^2 - 3)e^x$. Determine whether f(x) is increasing, decreasing at x = -3 or f(-3) is a local maximum or a local minimum. Why? Note that $e^x > 0$ for all x.

7.
$$\lim_{x \to 3} \frac{2x^3 - 11x^2 + 12x + 9}{x^4 - 8x^3 + 20x^2 - 12x - 9}$$
.

8.
$$\lim_{x \to 0} \frac{(x^2 - 3)e^x + 3}{x}.$$

9. The derivative of
$$\frac{1}{(x^2+1)^3}$$
.

10. The derivative of
$$(x^2 + 1)^3 e^{-x}$$
.

$$11. \int \left(\frac{1}{2x} - 3 + 3\sqrt{x}\right) dx.$$

12.
$$\int \frac{x}{(x^2+1)^4} dx$$
.

13.
$$\int_{-2}^{2} (x+2)^9 dx.$$

14. Find the derivative of
$$F(x) = \int_{-1}^{x} (t^2 + 1)^3 e^{-t} dt$$
.

Part III.

- 15. The matrix C is obtained from the matrix B by performing elementary row operations three times. Write these operations in order using notation [i,j;c], [i,j], and [i;c].
- 16. Find a 4×4 matrix T obtained by three row operations above satisfying TB = C.
- 17. Find the inverse of the matrix A above.

18. Suppose the matrix B above is an augmented matrix of a system of linear equations with unknowns x_1, x_2, x_3, x_4, x_5 . Find the reduced row echelon form of B and the solutions of the system.

19. Solve the following differential equation with initial condotion for y = f(x).

$$y' = \frac{dy}{dx} = 3x^2y, \quad y(0) = f(0) = -3.$$

- 20. (a) Find aG when a = [1, 0, 1, 1].
 - (b) Suppose $\mathbf{c}' = [1, 0, 0, 1, 1, 1, 1]$ received after at most one position is changed by an error. What is the original code \mathbf{c} in this case?

Solutions to GEN024 FINAL 2014/5

Part I.

1.

p	q	r	(p	\Rightarrow	$(\neg q))$	\Rightarrow	r	(p	\wedge	q)	V	r
T	T	T	T	F	F	T	T	T	T	T	T	T
T	T	F	T	F	F	T	F	T	T	T	T	F
T	F	T	T	T	T	T	T	T	F	F	T	T
T	F	F	T	T	T	$oldsymbol{F}$	F	T	F	F	$oldsymbol{F}$	F
F	T	T	F	T	F	$oldsymbol{T}$	T	F	F	T	T	T
F	T	F	F	T	F	$oldsymbol{F}$	F	F	F	T	$oldsymbol{F}$	F
F	F	T	F	T	T	T	T	F	F	F	T	T
F	F	F	F	T	T	$oldsymbol{F}$	F	F	F	F	$oldsymbol{F}$	F

論理同値かどうかの判定 (Are these logically equivalent?):論理同値 (YES)

2.

•	(a)	(b)	(c)	(d)	(e)
	×	\circ	×	×	\bigcirc

Part II.

3. 次数 4 (degree 4):

$$p(x) = \frac{(x+1)(x-1)(x-3)(x-5)}{(-3+1)(-3-1)(-3-3)(-3-5)} - \frac{(x+3)(x-1)(x-3)(x-5)}{(-1+3)(-1-1)(-1-3)(-1-5)}$$

$$+\frac{(x+3)(x+1)(x-3)(x-5)}{(1+3)(1+1)(1-3)(1-5)}-\frac{(x+3)(x+1)(x-1)(x-5)}{(3+3)(3+1)(3-1)(3-5)}+\frac{(x+3)(x+1)(x-1)(x-3)}{(5+3)(5+1)(5-1)(5-3)}.$$

次数 10 (degree 10): p(x) を上のものとする。下の多項式は次数が 10 で条件を満たす。 Propostion 4.2 参照。

$$p(x) + x^5(x+3)(x+1)(x-1)(x-3)(x-5).$$

4. Let p(x) be a polynomial of degree 4 satisfying the conditions in the previous problem. Show that each interval (-3,-1), (-1,1), (1,3), (3,5) contains exactly one point c such that p(c) = 0.

Soln. p(x) 多項式だから連続で、閉区間 [-3,-1], [-1,1], [1,3], [3,5] の端点 -3,-1,1,3,5 で +1, -1, +1, -1, +1 の値を取るから、中間値の定理 Proposition 5.3 より それぞれの区間内に f(c)=0 となる点が全部で 4 つはある。p(x) の次数は 4 だから、Theorem 4.1 (3) より他には f(c)=0 となる点はない。

5. Let
$$f(x) = x^4 - 8x^3 + 20x^2 - 12x = q(x)(x-3) + r = c_4(x-3)^4 + c_3(x-3)^3 + c_2(x-3)^2 + c_1(x-3) + c_0$$
. Find a polynomial $q(x)$, constants r and c_4, c_3, c_2, c_1, c_0 .

Soln.
$$x^4 - 8x^3 + 20x^2 - 12x = (x^3 - 5x^2 + 5x + 3)(x - 3) + 9$$
, $x^3 - 5x^2 + 5x + 3 = (x^2 - 2x - 1)(x - 3)$, $x^2 - 2x - 1 = (x + 1)(x - 3) + 2$, $x + 1 = (x - 3) + 4$ だから、 $q(x) = x^3 - 5x^2 + 5x + 3$, $r = c_0 = 9$, $c_1 = 0$, $c_2 = 2$, $c_3 = 4$, $c_4 = 1$ である。組み立て除法を用いるとよい。

6. Let
$$f(x) = (x^2 - 3)e^x$$
. Determine whether $f(x)$ is increasing, decreasing at $x = -3$ or $f(-3)$ is a local maximum or a local minimum. Why? Note that $e^x > 0$ for all x .

Soln.
$$f'(x) = 2xe^x + (x^2 - 3)e^x = (x^2 + 2x - 3)e^x = (x - 1)(x + 3)e^x$$
 だから $f'(-3) = 0$. $f''(x) = (2x + 2 + x^2 + 2x - 3)e^x = (x^2 + 4x - 1)e^x$. $f''(-3) = (-4)e^{-3} < 0$. 従って、 Proposition 6.5 (Second Derivative Test) によって $f(-3)$ は極大 (local maximum)。

7.
$$\lim_{x \to 3} \frac{2x^3 - 11x^2 + 12x + 9}{x^4 - 8x^3 + 20x^2 - 12x - 9}$$

Soln. 5 を用いると、 $x^4 - 8x^3 + 20x^2 - 12x - 9 = (x^2 - 2x - 1)(x - 3)^2$. 組み立て除法を用いると $2x^3 - 11x^2 + 12x + 9 = (2x + 1)(x - 3)^2$ だから、

$$= \lim_{x \to 3} \frac{(2x+1)(x-3)^2}{(x^2-2x-1)(x-3)^2} = \lim_{x \to 3} \frac{2x+1}{x^2-2x-1} = \frac{7}{2}.$$

8.
$$\lim_{x\to 0} \frac{(x^2-3)e^x+3}{x}$$
.

Soln. $f(x) = (x^2 - 3)e^x$ とおくと f(0) = -3 だから、定義より

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{(x^2 - 3)e^x + 3}{x}.$$

よって、f'(0) を求めれば良い。6. より $f'(x)=(x-1)(x+3)e^x$ だったから f'(0)=-3. 従って上の極限は -3 である。

9. The derivative of $\frac{1}{(x^2+1)^3}$.

Soln

$$\left(\frac{1}{(x^2+1)^3}\right)' = ((x^2+1)^{-3})' = -3(x^2+1)^{-4}(2x) = -6x(x^2+1)^{-4} = -\frac{6x}{(x^2+1)^4}$$

10. The derivative of $(x^2 + 1)^3 e^{-x}$.

Soln.
$$(e^{-x})' = -e^{-x} \, this$$
,

$$((x^{2}+1)^{3}e^{-x})' = 3(x^{2}+1)^{2}(2x)e^{-x} + (x^{2}+1)^{3}(-e^{-x}) = -(x^{2}-6x+1)(x^{2}+1)^{2}e^{-x}.$$

11.
$$\int \left(\frac{1}{2x} - 3 + 3\sqrt{x}\right) dx.$$

Soln. $\sqrt{x} = x^{\frac{1}{2}} \text{ big } x \geq 0 \text{ this}$

$$= \frac{1}{2}\log x - 3x + 3\frac{2}{3}x^{\frac{3}{2}} + C = \frac{1}{2}\log x - 3x + 2x\sqrt{x} + C.$$

12.
$$\int \frac{x}{(x^2+1)^4} dx = -\frac{1}{6} \int \frac{-6x}{(x^2+1)^4} dx = -\frac{1}{6} \frac{1}{(x^2+1)^3} + C = -\frac{1}{6(x^2+1)^3} + C, \text{ by } 9.$$

13.
$$\int_{-2}^{2} (x+2)^9 dx = \left[\frac{1}{10} (x+2)^{10} \right]_{-2}^{2} = \frac{1}{10} 4^{10} = \frac{2^{19}}{5}.$$

14. Find the derivative of $F(x) = \int_{-1}^{x} (t^2 + 1)^3 e^{-t} dt$.

Soln. F(x) は、微積分学の基本定理より $(x^2+1)^3e^{-x}$ の原始関数の一つだったから、 $F'(x)=(x^2+1)^3e^{-x}$.

Part III.

15. The matrix C is obtained from the matrix B by performing elementary row operations three times. Write these operations in order using notation [i, j; c], [i, j], and [i; c].

Soln.

$$B \xrightarrow{[1,4]} \begin{bmatrix} 1 & 2 & 4 & 1 & 4 & -1 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 2 & 4 & 8 & 3 & 13 & 0 \\ -2 & -3 & -5 & -2 & -9 & 2 \end{bmatrix} \xrightarrow{[3,1;-2]} \begin{bmatrix} 1 & 2 & 4 & 1 & 4 & -1 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ -2 & -3 & -5 & -2 & -9 & 2 \end{bmatrix} \xrightarrow{[4,1;2]} C.$$

したがって、[1,4],[3,1;-2],[4,1;2] の順で行う。他の方法も可能。たとえば、[1,4;2],[3,4;-2],[1,4].

16. Find a 4×4 matrix T obtained by three row operations above satisfying TB = C.

Soln. 単位行列に、上の順番で基本変形を施せばよい。

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{[1,4]} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{[3,1;-2]} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{[4,1;2]} \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 1 & 0 & 0 & 2 \end{bmatrix} = T.$$

17. Find the inverse of the matrix A above.

Soln.

$$[A,I] = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 2 & 4 & 3 & 0 & 1 & 0 \\ 1 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 2 & 4 & 3 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & 1 & -2 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -2 & -1 & 3 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -2 \end{bmatrix}, A^{-1} = \begin{bmatrix} -2 & -1 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & -2 \end{bmatrix}.$$

18. Suppose the matrix B above is an augmented matrix of a system of linear equations with unknowns x_1, x_2, x_3, x_4, x_5 . Find the solutions of the system.

3

Soln. $B \to \to \to C$ だから C を変形する。

$$C = \begin{bmatrix} 1 & 2 & 4 & 1 & 4 & -1 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 1 & 3 & 0 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 4 & 1 & 4 & -1 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 1 & 6 & -1 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & -2 & 0 & 1 & -3 \\ 0 & 1 & 3 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{cases} x_1 &= 2s - t - 3, \\ x_2 &= -3s + t, \\ x_3 &= s, \text{ free,} \\ x_4 &= -5t + 2, \\ x_5 &= t, \text{ free.} \end{cases}$$

19. Solve the following differential equation with initial condition for y = f(x).

$$y' = \frac{dy}{dx} = 3x^2y$$
, $y(0) = f(0) = -3$.

Soln. Proposition 7.4 を用いる。

$$y' = 3x^2y = \frac{3x^2}{1/y} = \frac{h(x)}{g(y)}, \ h(x) = 3x^2, \ g(y) = \frac{1}{y}.$$

h(x) の原始関数の一つは、 x^3 、g(y) の原始関数の一つは $\log |y|$ だから

$$\log |y| = x^3 + C$$
, $y = C'e^{x^3}$, $-3 = y(0) = C'$.

したがって、 $y = -3e^{x^3}$.

20. (a) Find aG when a = [1, 0, 1, 1].

(b) Suppose $\mathbf{c}' = [1, 0, 0, 1, 1, 1, 1]$ received after at most one position is changed by an error. What is the original code \mathbf{c} in this case?

$$m{c}'H = [1,0,0,1,1,1,1] \left[egin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}
ight] = [0,0,1].$$

よって、1番目が変わってしまっていたと考えられ [0,0,0,1,1,1,1] となる。