<u>Nom : Correcteur : Note : </u>

Soit (Ω, P) un espace probabilisé fini, sur lequel on définit des événements A, B, A_1, \ldots, A_n et des variables aléatoires X, Y, X_1, \ldots, X_n à valeurs dans des ensembles E, F, E_1, \ldots, E_n .

Donner les définitions d'indépendance de A et de B, d'indépendance mutuelle de A_1, \ldots, A_n , d'indépendance de X et de Y et enfin d'indépendance mutuelle de X_1, \ldots, X_n .

Soit (Ω, P) un espace probabilisé fini, sur lequel on définit une variable aléatoire X. Définir les notions suivantes : «X suit une loi uniforme», «X suit une loi de Bernoulli» et «X suit une loi binomiale».

Soit (Ω, P) un espace probabilisé fini, sur lequel on définit deux variables aléatoires X et Y de la manière suivante :

- Déterminer la loi de Y.

Énoncer la formule de Taylor avec reste intégral.