

第11章 习题讲解

中国海洋大学 计算机系

解 (a)的平面嵌入如下图所示

(b)有的平面嵌入如下图所示

(1) 证明: 反证。

假设G中任何面的次数均大于等于5,则有 $2m \ge 5r$,

$$m \ge \frac{5}{2}r$$

又因为 $\delta \geq 3$,所以 $2m \geq 3n$, $n \leq \frac{2}{3}m$

 $\nabla n-m+r\geq 2$,

$$r \ge m - n + 2 \ge m - \frac{2}{3}m + 2 = \frac{1}{3}m + 2 \ge \frac{5}{6}r + 2$$

 $\therefore r \ge 12$

与已知条件r<12矛盾.

■ 方法二:

因为G是简单图且 $\delta \geq 3$, 所以 $2m \geq 3n$, 得到 $n \leq (2/3)m$ r < 12, 代入 $2 \leq n - m + r$,得到m < 30。

假设所有面的次大于等5,则 $2m \ge 5r$,即 $r \le (2/5)m$,又 $n \le (2/3)m$,一同代入 $2 \le n - m + r$,得 $m \ge 30$,矛盾。

(2) 如正12面体: r=12,d(v)=3, $deg(R_i)=5$

类型	面数	棱数	顶点数	每面边数	每顶点棱数
正4面体	4	6	4	3	3
正6面体	6	12	8	4	3
正8面体	8	12	6	3	4
正12面体	12	30	20	5	3
正20面体	20	30	12	3	5

5. 设G是n阶m条边的简单平面图,已知m<30,证明存在顶点v,d(v)≤4.

[分析]反证法,利用定理11.10

证明 假设任意顶点v, $d(v) \ge 5$, 则 $2m \ge 5n$, 得 $n \le (2/5)m$, 代入 $m \le 3n-6$, 可得 $m \le (6/5)m-6$, 即 $m \ge 30$. 这与已知m < 30 矛盾。

分析: 利用欧拉公式及平面图的性质.

【方法1】将n=7,m=15代入 n-m+r=2, 得 r=10,显然G不是树,G中存在圈,又G是简单图,则任意面的次数 ≥ 3 .

【方法2】同上,任意面的次数 \geq 3,下证任意面的次数 \leq 3.若存在 R_i ,deg(R_i) \geq 4,

 $2m>3r=3*(2+m-n)\Rightarrow m<3n-6\Rightarrow 15<15.$ 矛盾.

【方法3】(反证法)设G不是极大平面图,则对任意不相邻顶点u,v, $G \cup (u,v)=G'$, G'仍为平面图.对于G', n'=7,

m'=16>3n'-6=15,则G'不是平面图,矛盾.

【方法四】

将n=7,m=15代入 *n-m+r*=2, 得 *r*=10.

假设G不是极大平面图,则一定存在次数大于等于4的面,因此有2m>3r,即30>30,矛盾。

7. 设G是 $n(n \ge 11)$ 阶无向简单图,则G或G必为非平面图.

[分析]用解二次不等式的方法,利用定理11.10

证明: 若G和G都是平面图,则

$$m+m'=\frac{1}{2}n(n-1),$$

$$m \le 3n-6, m' \le 3n-6$$

则
$$n^2$$
-13 n +24 \leq 0

$$2.22 \le n \le 10.78$$
,与 $n \ge 11$ 矛盾.

7. 设G是 $n(n \ge 11)$ 阶无向简单图,则G或G必为非平面图.

证明: G和G中至少有一个图其边数≥(1/4)n(n-1),不妨将其设为G,则

$$(1/4)$$
n(n-1) $\leq m \leq 3n-6$

则
$$n^2$$
-13 n +24 \leq 0

 $2.22 \le n \le 10.78$, 与 $n \ge 11$ 矛盾.

删除顶点a和红色的边

或者

 $K_{3,3}$

11. 设n阶m条边的平面图是自对偶图,证明 m=2n-2 [分析]利用自对偶图的定义和欧拉公式

证明 设G为自对偶图,则G与G* 同构, 因为G*是连通的, 所以G一定连通。

 $m=m^*$, $n=n^*=r$,

由欧拉公式可得 n-m+r=n-m+n=2, 故 m=2n-2.

证 因为G是极大平面图,所以G是简单图,因此G中无自环和平行边 且G中每个面的次都是3,故G*中每个结点的度都是3,即G*是3正则图。

假如G*的边连通度小于2,即G*中存在桥,那么G必存在自环,这与G是极大平面矛盾,所以G*的边连通度大于等2,即G*是2-边连通图。

综上所述,得证。

13. 设G是2-边连通的简单平面图,且每两个面的边界至多一条公共边,证明G中至少两个面的次数相同.

[分析]利用鸽巢原理

证明 G是简单图, $\forall R_i, deg(R_i) \ge 3$,又G是2-边连通图,则G无桥,每条边都是两个不同面的公共边界,且每两个面至多一条公共边界,则 $\forall R_i, deg(R_i) \le r-1$,

 $\forall R_i, 3 \leq deg(R_i) \leq r-1,$

由鸽巢原理,可知G 中至少两个面的次数相同.

[方法二]求对偶图G*;再证 $\forall v^*$, 2≤d(v^*) ≤r-1;最后由鸽巢原理得证.

14. 证明: 平面图G的对偶图G*是欧拉图当且仅当G中每个面的次数均为偶数.

[分析]利用欧拉图的充分必要条件和对偶图的性质.

证明 平面图G的对偶图G*是欧拉图

 \Leftrightarrow G* 中任意顶点 v_i^* , $d(v_i^*)$ mod $2\equiv 0$, $d(v_i^*)=deg(R_i)$.

⇔ G中每个面的次数均为偶数.

15.证明:不存在具有5个面,且每两个面的边界都共享一条公共边的平面图。

证明:

假设存在满足要求的图G,令G*是G的对偶图,则 $n^*=5$. 因为G中每两个面共享一条公共边界,则G*中任意顶点 v_i^* , $d(v_i^*)=4$,且G*中不存在自环和平行边,显然G*是 K_5 ,是非平面图,与G*是G的对偶图矛盾.

16.设G是连通的3-正则平面图, r_i 是G中次数i的面的个数,证明

$$12=3r_3+2r_4+r_5-r_7-2r_8-3r_9-...$$

证明

因为 G 是 3-正则平面图,所以有 $2m = 3n = \sum_{i=3} ir_i$

可得:
$$\mathbf{m} = \frac{1}{2} \sum_{i=3} i r_i$$
, $\mathbf{n} = \frac{1}{3} \sum_{i=3} i r_i$

代入欧拉公式 n-m+r=2,得

$$\frac{1}{3}\sum_{i=3}^{3}ir_i - \frac{1}{2}\sum_{i=3}^{3}ir_i + \sum_{i=3}^{3}r_i = 2$$

解得

$$6\sum_{i=3}^{n} r_i - \sum_{i=3}^{n} ir_i = \sum_{i=3}^{n} (6-i)r_i = 12$$

因此有 12=3r₃+2r₄+r₅-r₇-2r₈-3r₉-...