GATE - EC 27

EE23BTECH11215 - Penmetsa Srikar Varma

QUESTION

Q27) Let m(t) be a strictly band-limited signal with bandwidth B and energy E. Assuming $\omega_0 = 10$ B, the energy in the signal m(t) cos (ω_0 t)

- (A) $\frac{E}{4}$
- (B) $\frac{E}{2}$
- (C) E

(D) 2E

(GATE EC 2023)

Solution

I	Variables	Conditions
	M(f)	Fourier transform of m(t)
	y(t)	$y(t)=m(t)\cos(2\pi f_0 t)$
	Y(f)	Fourier transform of y(t)

Table of Parameters

Let us assume for a case of M(f),

Energy (E) of the signal M(f) is given by,

$$E = \frac{1}{2\pi} \int_{-B}^{B} |M(f)|^2 df = \frac{B}{\pi}$$
 (1)

Fourier transform of y(t) is given by,

$$Y(f) = M(f) * \frac{1}{2} (\delta(f + f_0) + \delta(f - f_0))$$
 (2)

$$Y(f) = \frac{1}{2} (M(f + f_0) + M(f - f_0))$$
 (3)

Energy (E₁) of the signal Y(f) is given by,

$$E_1 = \frac{1}{2\pi} \left(\int_{-11B}^{-9B} \frac{1}{4} df + \int_{9B}^{11B} \frac{1}{4} df \right) = \frac{B}{2\pi}$$
 (4)

So, from (1) and (4),

$$E_1 = \frac{E}{2} \tag{5}$$

Hence, option B is correct