PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-306390

(43)Date of publication of application : 21.11.1995

(51)Int.CI.

G02F 1/09

(21)Application number: 06-123143

(71)Applicant : FUJI ELELCTROCHEM CO LTD

(22)Date of filing:

12.05.1994

(72)Inventor: UMEZAWA HIROMITSU

SUZUKI YOICHI

IMURA TOMOKAZU RIKUKAWA HIROSHI TOKUMASU TSUGIO

(54) POLARIZATION PLANE CHANGEOVER DEVICE AND OPTICAL SWITCH USING THE SAME

(57)Abstract:

PURPOSE: To improve the switching speed of a magneto-optical

polarization plane changeover device and an optical switch. CONSTITUTION: This polarization plane changeover device has a Faraday rotor 16 consisting of an iron-contg. garnet single crystal film and a magnetic field impressing means which is invertable in magnetic field and which impresses the magnetic field thereto. This magnetic field impressing means consists of a nearly C-shaped flat planar yoke 10 made of semihard magnetic materials and windings 12 formed thereon. A part of the Faraday rotor 16 has the unsatd. state of magnetization and the remaining part has the satd. state of magnetization at the time of impressing the magnetic field thereto by the magnetic field impressing means. A light beam passes this satd. part of the magnetization in a direction nearly perpendicular to the film plane. For example, the Faraday rotor 16 is formed into a shape projecting largely from a gap part 14 and a magnetic shielding material is put on its front end to cover it. The magnetic fields of a reverse direction may be impressed to the Faraday rotor by combining a main yoke and auxiliary yoke. There is also the constitution provided with the parts where the gap length is short at plural points.

LEGAL STATUS

[Date of request for examination]

01.03.1996

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2772759

[Date of registration]

24.04.1998

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2. **** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The remaining portion is the plane-of-polarization change machine with which a light beam passes mostly perpendicularly the portion with which the magnetization of some these Faraday-rotation children is in an unsaturation state at the time of the magnetic field impression by the magnetic field impression means, and the magnetization has been saturated by magnetization being in a saturation state to a film surface in the plane-of-polarization change machine possessing the Faraday-rotation child who consists of an iron content garnet single crystal film, and a magnetic field impression means in which magnetic field reversal is possible impress a magnetic field to this Faraday-rotation child.

[Claim 2] In the yoke which consists of a magnetic material, the coil given to this yoke, and the gap section prepared in the aforementioned yoke The Faraday-rotation child who consists of an iron content garnet single crystal film perpendicularly inserted to the direction of gap length is provided. this Faraday-rotation child It is the plane-of-polarization change machine with which the most is the size protruded outside from the gap section, the point of the flash portion is the unsaturation field of magnetization, and a light beam passes the saturation region of the magnetization of the flash portions perpendicularly mostly to a film surface.

[Claim 3] In the yoke which consists of a magnetic material, the coil given to this yoke, and the gap section prepared in the aforementioned yoke The Faraday-rotation child who consists of an iron content garnet single crystal film perpendicularly inserted to the direction of gap length is provided. this Faraday-rotation child The plane-of-polarization change machine with which the most is the size protruded outside from the gap section, magnetic-shielding material is attached in the point of the flash portion, the unsaturation field of magnetization is formed, and a light beam passes the saturation region of the magnetization of the flash portions perpendicularly mostly to a film surface.

[Claim 4] The main yoke and auxiliary yoke which consist of a magnetic material, and the coil given to both yokes, respectively, The Faraday-rotation child who consists of an iron content garnet single crystal film perpendicularly inserted to the direction of gap length common to the gap section prepared in both yokes is provided. The plane-of-polarization change machine with which the magnetic field by the main yoke and the magnetic field by the auxiliary yoke are impressed to an opposite direction to a Faraday-rotation child, and a light beam passes mostly the saturation region of the magnetization by a Faraday-rotation child's main yoke perpendicularly to a film surface.

[Claim 5] In the yoke which consists of a magnetic material, the coil given to this yoke, and the gap section prepared in the aforementioned yoke The Faraday-rotation child who consists of an iron content garnet single crystal film perpendicularly inserted to the direction of gap length is provided, the gap section of the aforementioned yoke The short portion of gap length sets two or more place interval, and is prepared, and the portion of the Faraday-rotation child corresponding to a portion with short gap length serves as a saturation region of magnetization. The plane-of-polarization change machine with which other portions serve as an unsaturation field of magnetization, and a light beam passes the saturation region of the aforementioned magnetization perpendicularly mostly to a film surface.

[Claim 6] The aforementioned Faraday-rotation child is the plane-of-polarization change machine according to claim 1 to 5 which it is raised by the liquid-phase-epitaxial method, consists of a bismuth substitution iron garnet single crystal film with compensation temperature, and are 1120 degrees C or more and 1180 degrees C or less in temperature, and used to be heat-treated on the top conditions of less than 7 hours.

[Claim 7] The optical switch which consists of two wedge-action-die birefringence single crystals which carried out opposite arrangement, a plane-of-polarization change machine according to claim 1 to 4 which has stationed the Faraday-rotation child among them, and the optical fiber and the lens for condensing the object for an input, and for an output

[Claim 8] The optical switch which consists of 1/2 wavelength plate located between two polarization beam splitters which carried out opposite arrangement, the plane-of-polarization change machine according to claim 5 which has

stationed the Faraday-rotation child among them, and a Faraday-rotation child and one polarization beam splitter. [Claim 9] The optical switch which consists of a monotonous birefringence single crystal for compensation located between two monotonous birefringence single crystals which carried out opposite arrangement, the plane-of-polarization change machine according to claim 1 to 5 which has stationed the Faraday-rotation child among those them, and a Faraday-rotation child and one monotonous birefringence single crystal, and the optical fiber and the lens for condensing the object for an input, and for an output.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Industrial Application] this invention relates to the plane-of-polarization change machine of the magneto-optics formula which switches the polarization direction of light, and the optical switch using it by reversing the direction of the magnetic field impressed to a Faraday-rotation child. furthermore -- if it states in detail -- this invention -- the time of magnetic field impression -- some Faraday-rotation children -- magnetization -- an unsaturation state -- it is -- the remaining portion -- magnetization -- a saturation state -- ** -- it becomes and is related with the plane-of-polarization change machine with which it was made for a light beam to pass mostly the portion with which the magnetization is saturated perpendicularly to a film surface [0002]

[Description of the Prior Art] In an optical transmission system, an optical measuring unit, etc., the optical switch for switching the travelling direction of light spatially is required. 1x1 type optical switch (optical shutter), 2x2 type optical switch, or the thing that combined these is used for this. The method with which the structure of an optical switch used a mechanical cable type, the electro-optical effect, and the acousto optic effect, or the magneto-optics formula is proposed variously. Also in it, with the plane-of-polarization change vessel of a magneto-optics formula installed in the interior, a magneto-optics formula switches the plane of polarization of a light beam magnetically, compares it mechanically, and it operates at high speed, and can miniaturize, and it has the advantage which has reliability over a long period of time [outstanding].

[0003] The typical plane-of-polarization change machine of a magneto-optics formula consists of the yoke which consists of a magnetic material, a coil given to this yoke, and a Faraday-rotation child of the shape of sheet metal inserted in the gap section of a yoke. As a Faraday-rotation child, the bismuth substitution iron garnet single crystal film by the LPE method is being used abundantly. The reason is that as for bismuth substitution iron garnet it is made to a comparatively thin membrane structure, and, as for the LPE method, productivity has a high advantage greatly [a Faraday-rotation coefficient] therefore.

[0004] This Faraday-rotation child is perpendicularly inserted in the gap section prepared in the yoke to the direction of gap length. In this case, the Faraday-rotation child has a size which the part protrudes outside from the gap section, and a light beam passes the flash portion. With the conventional technology, a Faraday-rotation child's above-mentioned flash portion is made small as much as possible, and it is used here, impressing a magnetic field with which magnetization of a garnet single crystal film is saturated over the whole surface by the magnetic field by the yoke.

[Problem(s) to be Solved by the Invention] The switching time in the conventional magneto-optics formula optical switch is dozens-250micro second (by comparison, it is usually about 80micro second conventionally by this invention person etc.). By the way, there is an excessive light interrupting device which this invention person etc. proposed as one of the uses of 1x1 type optical switch (optical shutter). Since the light of the excessive intensity exceeding convention level may spread this and it may destroy optical parts, such as a photo detector, and the electronic parts of the photo-detector latter part when a light amplifier causes an unusual oscillation When the optical power detector, the delay fiber, and the optical switch are arranged in series for the path of light and excessive light is detected, it is equipment which turns OFF an optical switch quickly, intercepts the excessive light which passes a delay fiber, and protects optical parts and electronic parts.

[0006] Although the interrupting time demanded by the above optical switches is decided by the time delay of a fiber, when fiber length is 200m, for example, about 1micro second and in the case of 2000m, it is about 10micro second. Fiber length has direct influence on the size of an excessive light interrupting device, and it cannot be overemphasized that the shorter possible one is desirable. Actually, interrupting time can intercept light at the high speed below

10micro second, and the optical switch of reliability with high interrupting time is needed.

[0007] The purpose of this invention is offering the plane-of-polarization change machine and optical switch of a magneto-optics formula which are switched at high speed.

[Means for Solving the Problem] This invention persons considered the relation of the magnetic field distribution impressed with switching speed about the Faraday-rotation child who consists of an iron content garnet single crystal film. Consequently, there is a distribution of magnetization more nearly spatially than the time of applying the magnetic field with which magnetization of an iron content garnet single crystal film is saturated over the whole surface, and the direction when applying the magnetic field from which magnetization of some iron content garnet single crystal films serves as unsaturation found out that switching speed improved. this invention is made based on this learning.

[0009] this invention is a plane-of-polarization change machine possessing the Faraday-rotation child who consists of an iron content garnet single crystal film, and a magnetic field impression means in which magnetic field reversal is possible to impress a magnetic field to this Faraday-rotation child. In this invention, the magnetization of some these Faraday-rotation children is in an unsaturation state at the time of the magnetic field impression by the magnetic field impression means, magnetization will be in a saturation state, the remaining portion has the structure where a light beam passes mostly the portion with which the magnetization is saturated perpendicularly to a film surface, and the feature is in the point.

[0010] The about C type plate-like yoke which specifically consists of a semi-hard magnetic material, In the coil given to this yoke and the gap section prepared in the aforementioned yoke The Faraday-rotation child who consists of an iron content garnet single crystal film perpendicularly inserted to the direction of gap length is provided. this Faraday-rotation child The most is the size protruded outside from the gap section, and the point of the flash portion is the unsaturation field of magnetization, and it is made for a light beam to pass the saturation region of the magnetization of the flash portions perpendicularly mostly to a film surface. Or magnetic-shielding material may be attached in the point of a Faraday-rotation child's flash portion, and the unsaturation field of magnetization may be formed. Moreover, there is also composition in which the magnetic field by them is impressed to an opposite direction to a Faraday-rotation child using the main yoke and an auxiliary yoke. Furthermore, it is good also as composition in which the short portion of gap length sets two or more place interval, prepares the gap section of a yoke, and a portion with long gap length serves as an unsaturation field of magnetization in it.

[0011] What it is raised by the liquid-phase-epitaxial method, consists of a bismuth substitution iron garnet single crystal film with compensation temperature as the aforementioned Faraday-rotation child, and is 1120 degrees C or more and 1180 degrees C or less in temperature, and was heat-treated on the top conditions of less than 7 hours is the optimal.

[0012] Two wedge-action-die birefringence single crystals which carried out opposite arrangement, for example, the above plane-of-polarization change machines which have stationed the Faraday-rotation child among them, and the object for an input and the lens one apparatus optical fiber for an output constitute an optical switch from this invention. Or 1/2 wavelength plate located between two polarization beam splitters which carried out opposite arrangement, the above plane-of-polarization change machines which have stationed the Faraday-rotation child among them, and a Faraday-rotation child and one polarization beam splitter can also constitute an optical switch.

[Function] Although the Faraday-rotation child who consists of an iron content garnet single crystal film is inserted in the gap section of a yoke and magnetic saturation of near [this] the gap section is carried out in this invention, the left portion is the unsaturation field of magnetization. Switching speed improves that it is in such a magnetization state. The reason is considered as follows. Namely, a part of magnetic moment turns to opposite direction first, that serves as a nucleus, magnetic-domain-wall movement takes place, and the flux reversal process of an iron content garnet single crystal film when the conventional whole surface carries out magnetic saturation results in all flux reversal soon. By this invention, since magnetization is in an unsaturation state in some iron content garnet single crystal films, the nucleus for flux reversal will already have existed in the stage of the beginning of switching operation. Therefore, in this invention, since a nucleation stage can be excluded, the part and flux reversal will happen early and the switching time will be shortened.

[0014] In this invention, since a light beam passes the portion which carried out magnetic saturation near the gap section, neither isolation nor an insertion loss changes with elegance conventionally.

[0015] Moreover, if suitable heat treatment for an iron content garnet single crystal film is performed, the area S which the hysteresis about the magnetic field dependency of a Faraday-rotation angle surrounds will decrease greatly, without a Faraday-rotation angle, saturation magnetization, and the magnetic field that saturation takes changing, and this area

S will be further set to about 0 by optimum conditions. If the area which this hysteresis surrounds has the switching time and correlation and this Faraday-rotation child is used, switching of an optical switch will be accelerated very much.

[0016]

[Example] One example of the optical switch concerning this invention is shown in A of drawing 1. This is the example of 1x1 type optical switch (optical shutter). A plane-of-polarization change machine is the composition of providing the about C type plate-like yoke 10 which consists of a semi-hard magnetic material, the coil 12 given to it, and the Faraday-rotation child 16 of the tabular perpendicularly inserted in the gap section 14 prepared in the aforementioned yoke 10 to the direction of gap length. The Faraday-rotation child 16 is raised by the LPE method (liquid-phase-epitaxial method), and consists of a bismuth substitution iron garnet single crystal film with compensation temperature here. And as it is the size in which the most protrudes this Faraday-rotation child 16 outside from the gap section 14 and is shown in B of drawing 1, the nose of cam of the flash portion is unsaturation field 16a of magnetization, and a light beam passes mostly saturation-region 16b of the magnetization of the flash portions perpendicularly to a film surface. The wedge-action-die birefringence single crystals 18 and 20 have been arranged on the Faraday-rotation child's 16 both sides, respectively, and the lens one apparatus optical fiber 22 further for an input and the lens one apparatus optical fiber 24 for an output are formed in them.

[0017] That is, in this example, it enlarges as [protrude / the most / the Faraday-rotation child 16 / from the gap section 14], and it is set up so that the Faraday-rotation child's 16 magnetization may not be saturated over the whole film by the magnetic field impression means by the yoke 10 and the coil 12. Conversely, if it says, the leakage magnetic field by the magnetic field impression means is set as a size which is not saturated with the whole film in the Faradayrotation child's 16 magnetization.

[0018] The Faraday-rotation child 16 processes into 2x7x0.50mm the single crystal film of 3 (GdBi) 5 (FeAlGa) O12 which formed membranes by the LPE method, and processes a 2x7mm field into a mirror plane. Composition of a single crystal film is Gd2.02Bi0.98Fe4.43aluminum0.44Ga 0.13O12, and this has compensation temperature at -5 degrees C. It is the magnetic field Hs which 80G and saturation take the saturation magnetization in a room temperature when you make it magnetized at right angles to a film surface. It is 800e(s) and a Faraday-rotation angle with a wavelength of 1.55 micrometers is 45 degrees. As birefringence single crystals 18 and 20 used as a polarizer and an analyzer, the wedge-action-die rutile single crystal was used. The single mode fiber was used for the lens one apparatus optical fibers 22 and 24.

[0019] Drawing 2 is the explanatory drawing of operation. When it sees in the direction of input light, the wedgeaction-die birefringence single crystal 20 used as the wedge-action-die birefringence single crystal 18 used as a polarizer and an analyzer is together put so that thickness may differ by right and left and a thick portion and a thin portion may counter. angle alpha (=22.5 degree) And the optical axis of the wedge-action-die birefringence single crystal 20 which the optical axis of the wedge-action-die birefringence single crystal 18 used as a polarizer angle alpha (=22.5 degree) Leans clockwise to the perpendicular direction, and serves as an analyzer leans counterclockwise to the perpendicular direction. Arrow H is the direction of the magnetic field impressed to the Faraday-rotation child 16 at the time of the forward direction. In this state, input light penetrates and carries out outgoing radiation of both wedgeaction-die birefringence single crystals 18 and 20. If the driver voltage to a coil is switched and the magnetic field of a retrose is impressed, the directions of Faraday rotation differ 90 degrees, and an input light beam cannot penetrate the wedge-action-die birefringence single crystal 20 used as an analyzer, but will be intercepted. In such switching operation, a light beam passes the saturation region of magnetization of the Faraday-rotation child 16, and the amount of [which keeps away from the gap section 14 of a yoke 10] point has always become the field of unsaturation. Therefore, since the nucleus of flux reversal always exists, transparency and interception of input light are controllable by supply of the pulse current to a coil at high speed. According to the trial production result, the switching time of the optical switch of the above-mentioned composition was 25micro second. Moreover, the insertion loss was 0.5dB and isolation was 40dB.

[0020] Drawing 3 shows other examples of the optical switch concerning this invention. Since fundamental composition may be the same as that of the example of drawing 1, in order to simplify explanation, the same sign is given to a corresponding portion. Also in this example, although the Faraday-rotation child 16 is a size which the most protrudes outside from the gap section 14, he has put the magnetic-shielding material 28 of the shape of a character of KO on the point of the flash portion. By the magnetic field impression means which consists of a yoke 10 and a coil 12, a magnetic field is impressed to the Faraday-rotation child 16. Although the portion which is not covered by the magnetic-shielding material 28 serves as a saturation region of magnetization by this, the portion covered by the magnetic-shielding material 28 remains with unsaturation. Although part mark of this composition increase, there is an advantage which can make a Faraday-rotation child's size smaller than the composition of drawing 1.

[0021] A of drawing 4 shows the example of further others of the optical switch concerning this invention. It has the coil 33 given to the about C type plate-like main yoke 30 which consists of a semi-hard magnetic material, the about C type plate-like auxiliary yoke 31 which consists of a semi-hard magnetic material besides the coil 32 given to the main yoke 30, and the auxiliary yoke 31, and opposite arrangement is carried out so that the gap section 34 in which they are prepared by the main yoke 30, and the gap section 35 prepared in the auxiliary yoke 31 may serve as the same flat surface. And it considers as the composition which inserted the Faraday-rotation child 36 who becomes both the gap sections 34 and 35 from an iron content garnet single crystal film perpendicularly to the direction of gap length in common. It is made for the direction of the magnetic field which supplies a direct-current pulse current so that the magnetic field by the main yoke 30 and the magnetic field by the auxiliary yoke 31 may be impressed to an opposite direction to the Faraday-rotation child 36, and is generated with the main yoke 30 to become larger than the magnetic field generated with the auxiliary yoke 31. As it follows, for example, is shown in B of drawing 4, partial 36b of the remainder [child / Faraday-rotation / 36] when / that / 36a is mostly magnetized downward with the main yoke 30 will be magnetized upward with the auxiliary yoke 31. And a light beam passes mostly partial 36a with which magnetization is saturated perpendicularly to a film surface with the Faraday-rotation child's 36 main yoke. On the Faraday-rotation child's 36 both sides, the wedge-action-die birefringence single crystals 38 and 40 are arranged, respectively.

[0022] It is good to supply a pulse current to the auxiliary yoke 31 to the timing which did not switch usually frequently at this kind of optical switch although you could carry out to the timing that a switch of the magnetic field by magnetic field [both] impression means is the same, therefore supplied the pulse current to the direction of the main yoke 30 when first required, switched the optical switch, and was delayed after that and suitably, to make opposite direction magnetized locally, and to make it prepare for the next switching. Since the nucleus for magnetization of a retrose will have arisen with the auxiliary yoke 31 in the case of switching of the magnetization by the main yoke 30, the speed of switching becomes very quick like each aforementioned example. [0023] A of drawing 5 shows other examples of the optical switch concerning this invention. The about C type platelike yoke 50 which consists of a semi-hard magnetic material, the coil 52 given to this yoke 50, and the Faradayrotation child 56 who consists of an iron content garnet single crystal film perpendicularly inserted in the gap section 54 prepared in the aforementioned yoke 50 to the direction of gap length are provided. Two heights 51 are opposite-** (ed) at a time by the both sides of an opposite end face, respectively, and the gap section of a yoke 50 is structure which the short portion of gap length sets a two-place interval by it, and is formed here. Although the portion of the Faraday-rotation child corresponding to a portion with short gap length becomes the saturation region of magnetization since a magnetic field concentrates on a height 51 as shown in B of drawing 5, other portions can serve as an unsaturation field of magnetization. And a light beam passes mostly two places with which magnetization is saturated perpendicularly to a film surface.

[0024] A polarization beam splitter 58 is installed in the aforementioned Faraday-rotation child's 56 one side, and 1/2 wavelength plate 59 and a polarization beam splitter 60 are arranged to an opposite side. Polarization beam splitters 58 and 60 are the structures which sandwiched the polarization demarcation membrane by parallelogram prism and righttriangle prism, and have formed the total reflection film in the field parallel to the polarization demarcation membrane of parallelogram prism. At the ON state of an optical switch, input light is divided into P polarization and S polarization by the polarization demarcation membrane, plane of polarization rotates by the Faraday-rotation child 56 45 degrees, P polarization is changed into S polarization, S polarization is changed into P polarization by 1/2 wavelength plate 59, and it joins together by the polarization beam splitter 60, and becomes output light. In an OFF state, since the rotatory polarization by the Faraday-rotation child 56 serves as an opposite direction 45 degrees, the direction of the aforementioned output light turns into a direction different 90 degrees, and does not carry out outgoing radiation of the output light from a polarization beam splitter 60 to a regular output port. Thus, it operates as a 1x1 type

[0025] Now, what it is raised by the LPE method, consists of a bismuth substitution iron garnet single crystal film with compensation temperature as a Faraday-rotation child who uses by this invention, and is 1120 degrees C or more and 1180 degrees C or less in temperature, and was heat-treated on the top conditions of less than 7 hours is desirable. As concrete composition of a single crystal film, there are above Gd2.02Bi0.98Fe4.43aluminum0.44Ga(s) 0.13O12, for example. the above-mentioned heat treatment conditions are ** drawn from various experiments The heat treatment conditions in which it experimented are shown in drawing 6. Heat treatment carried the element on the platinum board, put it into the electric furnace, and was performed in air atmosphere. O'clock, a programming rate and temperature fall speed changed various 120 degrees C /, maximum temperatures (top temperature), and holding times, and performed them, respectively. 1150 degrees C shows the measurement result of the magnetic field dependency of Faraday rotation of the heat-treated element (this invention article) to drawing 7 for 3 hours. The area S which a

hysteresis surrounds is 0.1 kdeg/Oe, and, as for the extinction ratio, 30dB or more is obtained. [0026] In drawing 6, the field (a boundary line is also included) which gave the slash is the range of the top conditions of desirable heat treatment. If the application as an optical switch is taken into consideration, as a property required of a Faraday-rotation child, it is the magnetic field Hs which saturation takes. 100 or less Oes and a Faraday-rotation angle are 45 degrees and coercive force Hc. The area S which the hysteresis about the magnetic field dependency of 5 or less Oes and a Faraday-rotation angle surrounds needs to fulfill the conditions of 1 or less kdeg/Oe. In addition, since heat treatment passes through the process of a temperature up-top condition maintenance-temperature fall in a furnace, top conditions are included when the holding time is zero (namely, processing in which the temperature is lowered immediately after carrying out a temperature up and reaching predetermined temperature). When heat treatment temperature is less than 1120 degrees C, it is coercive force Hc. It becomes large and the area S which a hysteresis surrounds does not decrease. If it exceeds 1180 degrees C, in order that a Faraday-rotation angle may decrease, thickness must be thickened, and a front face will be ruined. This is considered for a bismuth to disperse out of a crystal, and composition also shifts. Magnetic field Hs which saturation will take if it becomes so long that heat treatment time exceeds 7 hours It increases. A perpendicular magnetic anisotropy falls and this is considered for approaching the magnetization film within a field. as a result of [these] conducting a various experiment, heat treatment of 7 hours was the optimal at the temperature of 1150 degrees C especially If such a Faraday-rotation child is used, with the composition of drawing 1, 1 or more figures of switching times of an optical switch will be conventionally accelerated rather than elegance, for example like 6micro second.

[0027] In addition, the plane-of-polarization change machine concerning this invention cannot be overemphasized by that it can use not only for the above 1x1 type optical switches but for a 2x2 type optical switch, other magneto-optics type light devices, etc.

[0028]

[Effect of the Invention] Since a Faraday-rotation child's magnetization is not saturated over the whole film surface but this invention has in part the field (or field where magnetization serves as a retrose even if saturated) of unsaturation as mentioned above, it becomes possible for the nucleus of flux reversal to always exist, in case it is made to switch, therefore to make it switch at high speed. Especially as for the thing heat-treated on proper conditions, the hysteresis about the magnetic field dependency of a Faraday-rotation angle becomes very small, and switching speed's preparing an unsaturation field as mentioned above with that improves extremely like ****** and below 10micro second. By this, in case an excessive light interrupting device etc. is constituted, equipment can be miniaturized and a reliable system can be constituted.

[Translation done.]

* NOTICES *

Japan Patent Office is not r sponsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

[Drawing 5] A 56 H 54 59

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-306390

(43)公開日 平成7年(1995)11月21日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

G02F 1/09

505

審査請求 未請求 請求項の数9 FD (全 7 頁)

(21)出願番号	特願平6-123143	(71) 出顧人 000237721
		富士電気化学株式会社
(22) 出顧日	平成6年(1994)5月12日	東京都港区新橋5丁目36番11号
		(72)発明者 梅沢 浩光
		東京都港区新橋 5 丁目36番11号 富士電気
		化学株式会社内
		(72)発明者 鈴木 洋一
		東京都港区新橋 5 丁目36番11号 富士電気
		化学株式会社内
		(72)発明者 井村 智和
		東京都港区新橋 5 丁目36番11号 富士電気
		化学株式会社内
		(74)代理人 弁理士 茂見 穢
		最終頁に続く

(54) 【発明の名称】 偏光面切換器及びそれを用いた光スイッチ

(57)【要約】

【目的】 磁気光学式偏光面切換器及び光スイッチのスイッチング速度を向上させる。

【構成】 鉄含有ガーネット単結晶膜からなるファラデー回転子16と、それに磁界を印加する磁界反転可能な磁界印加手段とを具備する。磁界印加手段は、半硬質磁性材料からなるほぼC型平板状のヨーク10と、それに施した巻線12とからなる。磁界印加手段による磁界印加時に該ファラデー回転子の一部分は磁化が未飽和状態であり、残りの部分は磁化が飽和状態となって、その磁化が飽和している部分を膜面に対してほぼ垂直方向に光ビームが通過する。例えば、ファラデー回転子をギャップ部から大きくはみ出す形状にしたり、先端に磁気シールド材を被せる。主ヨークと補助ヨークを組み合わせて、逆向きの磁界を印加するようにしてもよい。ギャップ長が短い部分を複数箇所設ける構成もある。

器。

1

【特許請求の範囲】

【請求項1】 鉄含有ガーネット単結晶膜からなるファラデー回転子と、該ファラデー回転子に磁界を印加する 磁界反転可能な磁界印加手段とを具備する偏光面切換器 において、磁界印加手段による磁界印加時に該ファラデー回転子の一部分は磁化が未飽和状態であり、残りの部分は磁化が飽和状態となって、その磁化が飽和している部分を膜面に対してほぼ垂直方向に光ビームが通過する 偏光面切換器。

【請求項2】 磁性材料からなるヨークと、該ヨークに 10 施した巻線と、前記ヨークに設けられているギャップ部 に、ギャップ長の方向に対して垂直に挿入した鉄含有ガーネット単結晶膜からなるファラデー回転子とを具備 し、該ファラデー回転子は、その大部分がギャップ部から外側へはみ出す大きさであり、そのはみ出し部分の先端部は磁化の未飽和領域であって、はみ出し部分のうちの磁化の飽和領域を膜面に対してほぼ垂直方向に光ビームが通過する偏光面切換器。

【請求項3】 磁性材料からなるヨークと、該ヨークに施した巻線と、前記ヨークに設けられているギャップ部 20 に、ギャップ長の方向に対して垂直に挿入した鉄含有ガーネット単結晶膜からなるファラデー回転子とを具備し、該ファラデー回転子は、その大部分がギャップ部から外側へはみ出す大きさであり、そのはみ出し部分の先端部に磁気シールド材を取り付けて磁化の未飽和領域を形成し、はみ出し部分のうちの磁化の飽和領域を膜面に対してほぼ垂直方向に光ビームが通過する偏光面切換器。

【請求項4】 磁性材料からなる主ヨーク及び補助ヨークと、両ヨークにそれぞれ施した巻線と、両ヨークに設 30 けられているギャップ部に共通に、ギャップ長の方向に対して垂直に挿入した鉄含有ガーネット単結晶膜からなるファラデー回転子とを具備し、主ヨークによる磁界と補助ヨークによる磁界がファラデー回転子に対して逆方向に印加され、ファラデー回転子の主ヨークによる磁化の飽和領域を膜面に対してほぼ垂直方向に光ビームが通過する偏光面切換器。

【請求項5】 磁性材料からなるヨークと、該ヨークに施した巻線と、前記ヨークに設けられているギャップ部に、ギャップ長の方向に対して垂直に挿入した鉄含有ガ 40 ーネット単結晶膜からなるファラデー回転子とを具備し、前記ヨークのギャップ部は、ギャップ長の短い部分が複数箇所間隔をおいて設けられ、ギャップ長が短い部分に対応するファラデー回転子の部分が磁化の飽和領域となり、その他の部分が磁化の未飽和領域となって、前記磁化の飽和領域を膜面に対してほぼ垂直方向に光ビームが通過する偏光面切換器。

【請求項6】 前記ファラデー回転子は、液相エピタキシャル法により育成され、補償温度をもつビスマス置換鉄ガーネット単結晶膜からなり、1120℃以上、11

80℃以下の温度で、且つ7時間以内のトップ条件で熱 処理されたものである請求項1乃至5記載の偏光面切換

【請求項7】 対向配置した2個の楔型複屈折単結晶と、それらの間にファラデー回転子を配置した請求項1乃至4記載の偏光面切換器と、入力用と出力用の光ファイバと集光用レンズとからなる光スイッチ。

【請求項8】 対向配置した2個の偏光ビームスブリッタと、それらの間にファラデー回転子を配置した請求項5記載の偏光面切換器と、ファラデー回転子と一方の偏光ビームスブリッタとの間に位置する1/2波長板とからなる光スイッチ。

【請求項9】 対向配置した2個の平板複屈折単結晶と、それらのそれらの間にファラデー回転子を配置した請求項1乃至5記載の偏光面切換器と、ファラデー回転子と一方の平板複屈折単結晶との間に位置する補償用の平板複屈折単結晶と、入力用と出力用の光ファイバと集光用レンズとからなる光スイッチ。

【発明の詳細な説明】

0 [0001]

【産業上の利用分野】本発明は、ファラデー回転子に印加する磁界の方向を反転させることにより、光の偏光方向を切り換える磁気光学式の偏光面切換器、及びそれを用いた光スイッチに関するものである。更に詳しく述べると本発明は、磁界印加時に、ファラデー回転子の一部分は磁化が未飽和状態であり、残りの部分は磁化が飽和状態にとなって、その磁化が飽和している部分を膜面に対してほぼ垂直方向に光ビームが通過するようにした偏光面切換器に関するものである。

[0002]

【従来の技術】光通信システムや光学測定装置などにおいては、光の進行方向を空間的に切り換えるための光スイッチが必要である。これには1×1型光スイッチ(光シャッタ)や2×2型光スイッチ、あるいはこれらを組み合わせたものが用いられる。光スイッチの構造は、機械式、電気光学効果や音響光学効果を利用した方式、あるいは磁気光学式など、種々提案されている。そのなかでも磁気光学式は、内部に設置した磁気光学式の偏光面切換器によって、光ビームの偏光面を磁気的に切り換えるものであり、機械式に比べて高速で動作し且つ小形化でき、優れた長期信頼性をもつ利点がある。

【0003】代表的な磁気光学式の偏光面切換器は、磁性材料からなるヨークと、該ヨークに施した巻線と、ヨークのギャップ部に挿入した薄板状のファラデー回転子とからなる。ファラデー回転子としては、LPE法によるビスマス置換鉄ガーネット単結晶膜が多用されつつある。その理由は、ビスマス置換鉄ガーネットはファラデー回転係数が大きく、そのため比較的薄い膜構造にできるし、またLPE法は生産性が高い利点を有するからである。

10

ある。

【0004】このファラデー回転子は、ヨークに設けら れているギャップ部に、ギャップ長の方向に対して垂直 に挿入される。その場合、ファラデー回転子は、その一 部がギャップ部から外側へはみ出す大きさとなってお り、そのはみ出し部分を光ビームが通過するようになっ ている。ここで従来技術では、ファラデー回転子の上記 はみ出し部分を極力小さくし、ヨークによる磁界によっ てガーネット単結晶膜の磁化が全面にわたって飽和する ような磁界を印加して使用してる。

[0005]

【発明が解決しようとする課題】従来の磁気光学式光ス イッチにおけるスイッチング時間は、数十~250μ秒 (本発明者等による従来比較では、通常80 μ秒程度) である。ところで、1×1型光スイッチ(光シャッタ) の用途の一つとして、本発明者等が提案した過大光遮断 装置がある。これは、光増幅器が異常発振を起こすと、 規定レベルを超える過大な強度の光が伝播してしまい、 受光素子などの光部品や受光素子後段の電子部品を破壊 することがあるので、光の経路に光パワー検出器と遅延 ファイバと光スイッチを直列に配置し、過大光を検出し 20 た時に、素早く光スイッチをオフにして、遅延ファイバ を通過してくる過大光を遮断して、光部品や電子部品を 保護する装置である。

【0006】上記のような光スイッチで要求される遮断 時間は、ファイバの遅延時間で決まるが、例えばファイ バ長が200mの場合は約1μ秒、2000mの場合は 10μ秒程度である。ファイバ長は過大光遮断装置の大 きさに直接影響を及ぼし、できるだけ短い方が好ましい ことは言うまでもない。現実的には、遮断時間が遮断時 間が10μ秒以下の高速で光を遮断でき、且つ信頼性の 髙い光スイッチが必要となる。

【0007】本発明の目的は、高速でスイッチングする 磁気光学式の偏光面切換器及び光スイッチを提供するこ とである。

[0008]

【課題を解決するための手段】本発明者らは、鉄含有ガ ーネット単結晶膜からなるファラデー回転子についてス イッチング速度と印加する磁界分布の関係について検討 した。その結果、鉄含有ガーネット単結晶膜の磁化が全 磁化の分布があり、鉄含有ガーネット単結晶膜の一部の 磁化が未飽和となる磁界をかけた時の方が、スイッチン グ速度が向上することを見出した。本発明は、かかる知 得に基づきなされたものである。

【0009】本発明は、鉄含有ガーネット単結晶膜から なるファラデー回転子と、該ファラデー回転子に磁界を 印加する磁界反転可能な磁界印加手段とを具備する偏光 面切換器である。本発明では、磁界印加手段による磁界 印加時に該ファラデー回転子の一部分は磁化が未飽和状 態であり、残りの部分は磁化が飽和状態となって、その 50 り、スイッチング時間が短縮されるととになる。

磁化が飽和している部分を膜面に対してほぼ垂直方向に 光ビームが通過する構造になっており、その点に特徴が

【0010】具体的には例えば、半硬質磁性材料からな るほぼC型平板状のヨークと、該ヨークに施した巻線 と、前記ヨークに設けられているギャップ部に、ギャッ プ長の方向に対して垂直に挿入した鉄含有ガーネット単 結晶膜からなるファラデー回転子とを具備し、該ファラ デー回転子は、その大部分がギャップ部から外側へはみ 出す大きさであり、そのはみ出し部分の先端部は磁化の 未飽和領域であって、はみ出し部分のうちの磁化の飽和 領域を膜面に対してほぼ垂直方向に光ビームが通過する ようにする。あるいはファラデー回転子のはみ出し部分 の先端部に磁気シールド材を取り付けて磁化の未飽和領 域を形成してもよい。また主ヨークと補助ヨークを用 い、それらによる磁界がファラデー回転子に対して逆方 向に印加されるような構成もある。更には、ヨークのギ ャップ部を、ギャップ長の短い部分が複数箇所間隔をお いて設けて、ギャップ長が長い部分が磁化の未飽和領域 となるような構成としてもよい。

【0011】前記のファラデー回転子としては、液相エ ピタキシャル法により育成され、補償温度をもつビスマ ス置換鉄ガーネット単結晶膜からなり、1120℃以 上、1180℃以下の温度で、且つ7時間以内のトップ 条件で熱処理されたものが最適である。

【0012】本発明では、例えば対向配置した2個の楔 型複屈折単結晶と、それらの間にファラデー回転子を配 置した上記のような偏光面切換器と、入力用と出力用の レンズ一体型光ファイバとによって光スイッチを構成す る。あるいは、対向配置した2個の偏光ビームスプリッ タと、それらの間にファラデー回転子を配置した上記の ような偏光面切換器と、ファラデー回転子と一方の偏光 ビームスプリッタとの間に位置する1/2波長板とによ って光スイッチを構成することもできる。

[0013]

30

【作用】本発明では、鉄含有ガーネット単結晶膜からな るファラデー回転子は、ヨークのギャップ部に挿入され ており、該ギャップ部近傍は磁気飽和するが、離れた部 分は磁化の未飽和領域である。とのような磁化状態であ 面にわたって飽和する磁界をかけた時よりも、空間的に 40 ると、スイッチング速度が向上する。その理由は、次の ように考えられる。即ち、従来の全面が磁気飽和した場 合の鉄含有ガーネット単結晶膜の磁化反転プロセスは、 まず初めに磁気モーメントの一部が反対方向を向き、そ こが核となって磁壁移動が起こり、やがて全ての磁化反 転に至るというものである。本発明では鉄含有ガーネッ ト単結晶膜の一部分で磁化が未飽和状態であるため、ス イッチング動作の最初の段階で、磁化反転のための核が 既に存在していることになる。従って、本発明では、核 生成段階を省けるので、その分、磁化反転が早く起と

30

【0014】本発明では、光ビームはギャップ部近傍の 磁気飽和した部分を通過するので、アイソレーションや 挿入損失は従来品と変わらない。

【0015】また、鉄含有ガーネット単結晶膜に適切な 熱処理を施すと、ファラデー回転角や飽和磁化、飽和に 要する磁界は変わらずに、ファラデー回転角の磁界依存 性に関するヒステリシスの囲む面積Sが大きく減少し、 更に最適条件では該面積Sがほぼ零になる。このヒステ リシスの囲む面積はスイッチング時間と相関があり、と のファラデー回転子を用いると、光スイッチのスイッチ ングが非常に高速化される。

[0016]

【実施例】本発明に係る光スイッチの一実施例を図1の Aに示す。これは1×1型光スイッチ (光シャッタ) の 例である。偏光面切換器は、半硬質磁性材料からなるほ ぼC型平板状のヨーク10と、それに施した巻線12 と、前記ヨーク10に設けられているギャップ部14 に、ギャップ長の方向に対して垂直に挿入した板状のフ ァラデー回転子16とを具備する構成である。 ここでフ ァラデー回転子16は、LPE法(液相エピタキシャル 法) により育成され、補償温度をもつビスマス置換鉄ガ ーネット単結晶膜からなる。そして、このファラデー回 転子16は、その大部分がギャップ部14から外側へは み出す大きさであり、図1のBに示すように、そのはみ 出し部分の先端は磁化の未飽和領域16aであって、は み出し部分のうちの磁化の飽和領域16bを、膜面に対 してほぼ垂直方向に光ビームが通過する。ファラデー回 転子16の両側には、それぞれ楔型複屈折単結晶18. 20を配置し、更に入力用のレンズ一体型光ファイバ2 2と出力用のレンズ一体型光ファイバ24とを設けてい

【0017】つまり、この実施例では、ファラデー回転 子16を、その大部分がギャップ部14からはみ出すよ うに大きくして、ヨーク10と巻線12による磁界印加 手段によって、ファラデー回転子16の磁化が膜全体に わたって飽和しないように設定されている。逆に言う と、磁界印加手段による漏れ磁界は、ファラデー回転子 16の磁化を膜全体では飽和しないような大きさに設定 してある。

【0018】ファラデー回転子16は、LPE法により 成膜した(GdBi), (FeAlGa), O12の単結 晶膜を2×7×0.50mmに加工し、2×7mmの面を鏡 面に加工したものである。単結晶膜の組成はGd、のB i 。 . , , F e , , , , A l 。 , , , G a 。 , , , O , , であり、これはー 5℃に補償温度を有する。膜面に垂直に磁化させた場 合、室温での飽和磁化は80G、飽和に要する磁界Hs は800eであり、波長1.55 µmでのファラデー同 転角は45度である。偏光子及び検光子となる複屈折単 結晶18,20としては、楔型ルチル単結晶を使用し た。レンズ一体型光ファイバ22,24にはシングルモ 50 ー回転子36を挿入した構成とする。直流パルス電流

ードファイバを使用した。

【0019】図2はその動作説明図である。入力光の方 向に見たときに、偏光子となる楔型複屈折単結晶18と 検光子となる楔型複屈折単結晶20は、左右で厚みが異 なり且つ厚い部分と薄い部分が対向するように組み合わ されている。そして偏光子となる楔型複屈折単結晶18 の光学軸は、鉛直方向に対して時計回りに角度α (= 2 2. 5度)傾いており、また検光子となる楔型複屈折単 結晶20の光学軸は、鉛直方向に対して反時計回りに角 度α(=22.5度)傾いている。矢印Hが順方向時に ファラデー回転子16に印加する磁界の方向である。と の状態では、入力光は両方の楔型複屈折単結晶18.2 0を透過して出射する。巻線への駆動電圧を切り換え て、逆向きの磁界を印加すると、ファラデー回転方向が 90度異なり、入力光ビームは検光子となる楔型複屈折 単結晶20を透過できず、遮断される。これらのスイッ チング動作において、光ビームはファラデー回転子16 の磁化の飽和領域を通過し、ヨーク10のギャップ部1 4から遠ざかる先端部分は、常に未飽和の領域となって いる。従って磁化反転の核が常に存在しているため、巻 線へのパルス電流の供給によって、入力光の透過・遮断 を高速で制御できる。試作結果によれば、上記構成の光 スイッチのスイッチング時間は25μ秒であった。また 挿入損失は0.5dB、アイソレーションは40dBで

【0020】図3は本発明に係る光スイッチの他の実施 例を示している。基本的な構成は図1の例と同様であっ てよいので、説明を簡略化するため、対応する部分には 同一符号を付す。この実施例でも、ファラデー回転子1 6は、その大部分がギャップ部14から外側へはみ出す 大きさであるが、そのはみ出し部分の先端部にコの字状 の磁気シールド材28を被せてある。ヨーク10と巻線 12とからなる磁界印加手段により、ファラデー回転子 16には磁界が印加される。これによって、磁気シール ド材28で覆われていない部分は磁化の飽和領域となる が、磁気シールド材28で覆われている部分は未飽和の まま残る。この構成は、部品点数が増えるが、図1の構 成よりもファラデー回転子の寸法を小さくできる利点が

40 【0021】図4のAは本発明に係る光スイッチの更に 他の実施例を示している。半硬質磁性材料からなるほぼ C型平板状の主ヨーク30と、主ヨーク30に施した巻 線32の他に、半硬質磁性材料からなるほぼC型平板状 の補助ヨーク31と、補助ヨーク31に施した巻線33 を有し、それらを主ヨーク30に設けられているギャッ プ部34と補助ヨーク31に設けられているギャップ部 35とが同一平面となるように対向配置する。そして両 ギャップ部34、35に共通に、ギャップ長の方向に対 して垂直に鉄含有ガーネット単結晶膜からなるファラデ

は、主ヨーク30による磁界と補助ヨーク31による磁界が、ファラデー回転子36に対して逆方向に印加されるように供給し、且つ主ヨーク30により発生する磁界の方が補助ヨーク31により発生する磁界よりも大きなるようにする。従って、例えば図4のBに示すように、ファラデー回転子36は、その大部分36aが主ヨーク30によって下向きに磁化されているときに、残りの部分36bは補助ヨーク31によって上向きに磁化されることになる。そしてファラデー回転子36の主ヨークによって磁化が飽和している部分36aを、膜面に対してほば垂直方向に光ビームが通過するようになっている。ファラデー回転子36の両側に、それぞれ楔型複屈折単結晶38,40を配置する。

【0022】両方の磁界印加手段による磁界の切り換えは、同じタイミングで行ってもよいが、との種の光スイッチでは、通常、頻繁に切り換えることはなく、従って、まず必要な時点で主ヨーク30の方にパルス電流を供給して光スイッチのスイッチングを行い、その後適当に遅らせたタイミングで補助ヨーク31にパルス電流を供給して局部的に反対方向に磁化させて次のスイッチングに備えるようにするのがよい。主ヨーク30による磁化のスイッチングの際は、補助ヨーク31によって逆向きの磁化のための核が生じていることになるため、前記各実施例と同様にスイッチングの速度は非常に速くなる。

【0023】図5のAは本発明に係る光スイッチの他の 実施例を示している。半硬質磁性材料からなるほぼC型 平板状のヨーク50と、該ヨーク50に施した巻線52 と、前記ヨーク50に設けられているギャップ部54 に、ギャップ長の方向に対して垂直に挿入した鉄含有ガ ーネット単結晶膜からなるファラデー回転子56とを具 備している。ことでヨーク50のギャップ部は、対向端 面の両側に2箇所ずつ、それぞれ突起部51が対設され ていて、それによってギャップ長の短い部分が2箇所間 隔をおいて形成されている構造である。図5のBに示す ように、磁界は突起部51に集中するため、ギャップ長 が短い部分に対応するファラデー回転子の部分は磁化の 飽和領域となるが、その他の部分は磁化の未飽和領域と なるようにできる。そして、磁化が飽和している2箇所 を、膜面に対してほば垂直方向に光ビームが通過する。 【0024】前記ファラデー回転子56の片側に偏光ビ ームスプリッタ58を設置し、反対側には1/2波長板 59と偏光ビームスプリッタ60とを配置する。偏光ビ ームスプリッタ58,60は、偏光分離膜を平行四辺形 プリズムと直角三角形プリズムとで挾んだ構造であり、 平行四辺形プリズムの偏光分離膜と平行な面には全反射 膜を形成してある。光スイッチのオン状態では、入力光 は、偏光分離膜でP偏光とS偏光とに分離し、45度フ ァラデー回転子56で偏光面が回転し、1/2波長板5 9によってP偏光はS偏光に、S偏光はP偏光に変換さ れ、偏光ビームスプリッタ60によって結合して出力光となる。オフ状態では45度ファラデー回転子56による偏光面の回転が逆方向となるため、偏光ビームスプリッタ60からの出力光は前記出力光の方向とは90度異なる方向となり、正規の出力ポートへは出射しない。このようにして1×1型光スイッチとして動作する。

【0025】さて、本発明で用いるファラデー回転子と しては、LPE法により育成され、補償温度をもつビス マス置換鉄ガーネット単結晶膜からなり、1120℃以 上、1180℃以下の温度で、且つ7時間以内のトップ 条件で熱処理されたものが望ましい。単結晶膜の具体的 組成としては、例えば前記のようなGdぇ。2Bi。。。F e, ,, A l ,, , G a , , , O , , がある。上記の熱処理条件 は種々の実験から導かれたたものである。実験した熱処 理条件を図6に示す。熱処理は、白金板上に素子を載せ て電気炉に入れて、大気雰囲気で行った。昇温速度及び 降温速度は、それぞれ120℃/時、最高温度(トップ 温度)と保持時間を種々変えて行った。1150℃で3 時間、熱処理した素子(本発明品)のファラデー回転の 磁場依存性の測定結果を図7に示す。ヒステリシスの囲 む面積Sは0.1kdeg/0eで、消光比は30dB以上が 得られている。

【0026】図6において、斜線を施した領域(境界線 も含む)が好ましい熱処理のトップ条件の範囲である。 光スイッチとしての応用を考慮すると、ファラデー回転 子に要求される特性としては、飽和に要する磁界Hs が 1000 e 以下、ファラデー回転角は45度、保磁力H c が50e以下、ファラデー回転角の磁界依存性に関す るヒステリシスの囲む面積Sが1kdeg/Oe以下の条件を 満たす必要がある。なお熱処理は炉内で昇温ートップ条 件維持-降温というプロセスを経るので、トップ条件は 保持時間が零の場合(即ち、昇温して所定温度に達した 後、直ちに降温するという処理)も含む。熱処理温度が 1120℃未満の場合は、保磁力Hc が大きくなり、ヒ ステリシスが囲む面積Sが低減しない。1180℃を超 えると、ファラデー回転角が減少するため膜厚を厚くし なければならなくなるし、表面が荒れてくる。これはビ スマスが結晶中から飛散するためと考えられ、組成もず れてくる。熱処理時間が7時間を超えるほど長くなる と、飽和に要する磁界Hs が増加する。これは垂直磁気 異方性が低下し、面内磁化膜に近づくためと考えられ る。とれら種々実験した結果、特に、温度1150℃ で、7時間の熱処理が最適であった。このようなファラ

【0027】なお本発明に係る偏光面切換器は、上記のような1×1型の光スイッチのみならず、2×2型の光スイッチ、その他の磁気光学式光デバイスなどに利用で50 きることはいうまでもない。

デー回転子を使用すると、例えば図1の構成では、光ス

イッチのスイッチング時間は6μ秒というように、従来

品よりも1桁以上高速化する。

[0028]

【発明の効果】本発明は上記のように、ファラデー回転子の磁化が膜全面にわたって飽和しておらず、一部に未飽和の領域(あるいは飽和していても磁化が逆向きとなっている領域)があるため、スイッチングさせる際に磁化反転の核が常に存在し、そのため高速でスイッチングさせることが可能となる。特に、適正な条件で熱処理したものは、ファラデー回転角の磁界依存性に関するヒステリシスが非常に小さくなり、そのことと上記のように未飽和領域を設けることとが相俟て、10μ秒以下といりように極めてスイッチング速度が向上する。これによって、過大光遮断装置などを構成する際に、装置を小形化でき、信頼性の高いシステムを構成できる。

【図面の簡単な説明】

【図1】本発明に係る光スイッチの一実施例を示す説明図。

【図2】その動作説明図。

*【図3】本発明に係る光スイッチの他の実施例を示す説明図。

【図4】本発明に係る光スイッチの更に他の実施例を示す説明図。

【図5】本発明に係る光スイッチの他の実施例を示す説明図。

【図6】ファラデー回転子の熱処理条件を示す説明図。

【図7】最適条件で熱処理したファラデー回転子のファラデー回転角と消光比の磁場依存性を示すグラフ。

0 【符号の説明】

10 ヨーク

12 巻線

14 ギャップ部

16 ファラデー回転子

18,20 楔型複屈折単結晶

22, 24 レンズ一体型ファイバ

],

【図1】 【図2】 【図3】 出力光 入力光 В 【図6】 160 1300 未飽和領域 熱処理温度("C) 166 1200 好ましい範囲 飽和領域 1100

10

熱処理時間 (h)

E5

*

発ビーム 33 36 35 34 38 32 32 32 32 34 35 36

【図4】

【図5】

フロントページの続き

(72)発明者 陸川 弘 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 徳増 次雄 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内