Facultad de Ciencias Económicas Machine Learning Models 2022

Project 2

You can choose between two options to complete the project. Details of each option are shown below:

- **Option 1:** Logistic Regression Implementation. Can be delivered as a two-student cooperative project or as a single student project.
- Option 2: Rain prediction Model delivered. Can only be delivered as a single student project.

Logistic Regression implementation

In this project you will dive into the details of multinomial logistic regression and build a model that is able to classify the **Iris** dataset. All code must be implemented from scratch. To be considered as a successful implementation your model must produce the same results as the scikit-learn's Logistic Regression multinomial classification model.

Objectives

This project will help you gain better understanding of the implementation of mathematical concepts using Python, apply object-oriented programming and explore the details of the entire ML model development process (from training with data to model evaluation).

Dataset

Your classification model must be trained using all features and classes of the well-known **Iris** dataset compiled by R.A. Fisher. (https://archive.ics.uci.edu/ml/datasets/iris)

Requirements

Your project is required to follow these guidelines. If one of the requirements is not met, the entire project will be considered as undelivered.

Split data, Scaler Logistic

- 1. Implement data preprocessing and a multinomial logistic regression model using only your python code (your code can only have dependencies from the Numpy or Pandas packages).

 Metricas / co librerias accuracy, recall...
- 2. Use a scikit-learn's metrics and logistic regression classifier to compare the results of your model.
- 3. Your model must be implemented in a class and contain at least the following methods:
 Metodos
 - a) .fit(x,Y): Train the model with samples x and labels Y.
 - b) .predict(x): Predict the class labels of x. Returns a numpy array.
 - c) .predict_proba(x): Probability estimates of each class of x. Returns a numpy array.

Rain prediction model

In this project you will explore the provided weather prediction dataset, verify data validity, create a **classification** model to predict the **Rain Tomorrow** target variable, analyze its performance, persist and deliver your best solution.

Your delivered model will be evaluated and ranked among all submissions using F1 score performance over a dataset of 4K reserved observations (Make sure you deliver the best performing model you can train).

Objectives

During this project you will master the use of scikit-learn's pipelines and improve your confidence on model training techniques, evaluation metrics, and model selection process.

Dataset

The provided dataset contains about 10 years (2007-10-31 to 2017-06-24) of daily weather observations from many locations across Australia.

RainTomorrow is the target variable to predict. It means -- did it rain the next day? Yes or No? This column is Yes if the rain for that day was 1mm or more.

Source & Acknowledgements

Observations were drawn from numerous weather stations. The daily observations are available from http://www.bom.gov.au/climate/data.

An example of latest weather observations in Canberra:

http://www.bom.gov.au/climate/dwo/IDCJDW2801.latest.shtml

- Definitions adapted from http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml
- Data source: http://www.bom.gov.au/climate/dwo/ and http://www.bom.gov.au/climate/data.
- Copyright Commonwealth of Australia 2010, Bureau of Meteorology.

Dataset Columns

Date: The date of observation

Location: The common name of the location of the weather station

Location: The minimum temperature in degrees celsius

MinTemp: The maximum temperature in degrees celsius

MaxTemp: The amount of rainfall recorded for the day in mm

Rainfall: The amount of rainfall recorded for the day in mm

Evaporation: The so-called Class A pan evaporation (mm) in the 24 hours to 9am

Sunshine: The number of hours of bright sunshine in the day.

WindGustDir: The direction of the strongest wind gust in the 24 hours to midnight

WindGustSpeed: The speed (km/h) of the strongest wind gust in the 24 hours to midnight

WindDir9am: Direction of the wind at 9am **WindDir3pm**: Direction of the wind at 3pm

WindSpeed9am: Wind speed (km/hr) averaged over 10 minutes prior to 9am **WindSpeed3pm**: Wind speed (km/hr) averaged over 10 minutes prior to 3pm

Humidity9am: Humidity (percent) at 9am **Humidity3pm**: Humidity (percent) at 3pm

Pressure9am: Atmospheric pressure (hpa) reduced to mean sea level at 9am **Pressure3pm**: Atmospheric pressure (hpa) reduced to mean sea level at 3pm

Cloud9am: Fraction of sky obscured by cloud at 9am. This is measured in "oktas", which are a unit of eigths. **Cloud3pm**: Fraction of sky obscured by cloud (in "oktas": eighths) at 3pm. See Cload9am for a **description** of the values

Temp9am: Temperature (degrees C) at 9am **Temp3pm**: Temperature (degrees C) at 3pm

RainToday: Boolean: 1 if precipitation (mm) in the 24 hours to 9am exceeds 1mm, otherwise 0

RainTomorrow: The amount of next day rain in mm. Used to create response variable RainTomorrow. A

kind of measure of the "risk". (Target variable)

Requirements

Your project is required to follow these guidelines. If one of the requirements is not met, the entire project will be considered as undelivered.

- 1. Implement a classification model using only **one** of the following algorithms (No additional algorithms must be included or evaluated in the project):
 - a. Logistic regression classifier
 - b. SVM classifier
 - c. Decision tree classifier
- 2. Use a scikit-learn pipeline object which contains all pre-processing, feature selection and training stages.
- 3. Your trained model must be **persisted** as name_lastname.pkl using **joblib** and submitted **with the provided model delivery template** with your additional code needed to load and predict data. (Ensure that the model will be executed and can predict without errors).

Expected delivery for both options

You are expected to deliver in a zip file named as **name_lastname.zip**:

- 1. A .pdf report with the sections described below.
- 2. .ipynb notebook with all your code.
- 3. Model selection code and main reasoning for each step of the process.*
- 4. Model training and evaluatin metrics.
- 5. Persisted model in name_lastname.pkl format and delivery template with the required code to run the persisted model.*
- 6. Presentation slides.

Grading

Note: Max possible grade can be up to 110

Model ranking	F1 score model rank among all submissions	10	
Code		20	
	 High-level overview of dataset done Initial data visualizations performed Cleaned dataset used for further analysis Sections and comments that make it easy to understand what's being done. Algorithm selection reasons and interpretations are presented Hyper parameter tuning for best performance done 		
Report		55	
	Introduction:		5

^{*}Only for option 2.

	- Summarize the purpose of the report and summarize the data /		
	subject.		
	- Include important contextual information about the reason for		
	the report.		
	- Summarize your analysis questions, your conclusions, and		
	briefly outline the report.		
	Data:		5
	- Include written descriptions of dataset(s).		
	Analyze any bias and specific attention to features.		
	Methods:		15
	- Explain how you gathered and analyzed data.		
	- Explain the algorithms you used.(Analysis, preprocessing, models)		
	- Explain your training and parameter selection process.(Description		
	and reasoning)		
	Results:		20
	- Describe the results of your analysis.		
	- Provide all relevant metrics to evaluate the performance of your		
	model.		
	- Present metrics in an easy-to-understand format.		
	Conclusion:		10
	- Restate the questions from your introduction.		
	- Restate important results.		
	- Include any recommendations for additional data as needed.		
Presentation		25	
	Comprehensibility to those outside DS		5
	Logic of presentation flow		5
	Clear recommendations		5
	Validity of ideas and strength of recommendation support		10
L			