Mean-field modeling of brain-scale dynamics for the evaluation of EEG source-space networks

Sahar Allouch^{1,2}, Maxime Yochum¹, Aya Kabbara¹, Joan Duprez¹, Mohamad Khalil^{2,4}, Fabrice Wendling¹, Mahmoud Hassan³, Julien Modolo¹

¹Univ Rennes, LTSI - INSERM U1099, F-35000 Rennes, France

²Azm Center for Research in Biotechnology and its Applications, EDST, Tripoli, Lebanon

³NeuroKyma, F-35000 Rennes, France

⁴CRSI research center, Faculty of Engineering, Lebanese University, Beirut, Lebanon

Introduction

Problematic:

• The absence of a 'ground truth' when applying EEG-source connectivity on real EEG data represents a challenge for comparative studies

Objective:

- Use **COALIA**, a physiologically-inspired model to generate epileptiform, cortical activity and evaluate the effect of:
 - five different electrode densities
 - 2 two inverse solution algorithms
 - 3 two functional connectivity measures

Methods and Materials

1. Reference network

2. Simulated cortical activity

COALIA computational model

3. Forward model

19/32/64/128/256 channels

4. Scalp EEG

8. Accuracy assessment

7. Estimated networks

6. Functional connectivity

PLV wPLI

5. Source reconstruction

Results

Qualitative results:

- Higher sensor density
 - → Better performance
- wMNE/wPLI
 - → Best Performance
- eLORETA/wPLI
 - → Worst performance

Results

- Significant effect of the inverse solution and connectivity measure combination as well as the number of electrodes
- Significant difference between 256 channels and 64, 32 and 19 electrodes

Results

• Mean accuracy and standard error of each inverse solution/connectivity measure combination plotted against different levels noise for the case of 256 electrodes

Conclusions

- Proof of concept that COALIA can provide a ground-truth for comparative studies aiming at optimizing the EEGsource connectivity pipeline.
- A higher network estimation accuracy requires a high number of EEG electrodes
- A careful choice of an inverse solution/connectivity measure combination is necessary.

Citation:

Allouch, S., Yochum, M., Kabbara, A., Duprez, J., Khalil, M., Wendling, F., Hassan, M., Modolo, J. (2020). Mean-field modeling of brain-scale dynamics for the evaluation of EEG source-space networks. Brain Topography (minor revision). BioRxiv. https://doi.org/10.1101/2020.09.16.299305

Thank You!