

INDEX

1 st Bagging 2nd Boosting 3nd GBM 4rd XGB 5th LGBM

0 ML FLOW

Bagging

Bagging = Bootstrap + Aggregating

※ bootstrap : 통계학에서는 중복을 허용한 리샘플링(resampling)을 부트스트래핑(bootstrapping)이라고 함

분류의 경우 : 최빈값

회귀의 경우: 평균값

- ① Row data에서 bootstrap 데이터 추출 ② 추출을 반복하여 n개의 데이터 생성
- ③ 각 데이터를 각각 모델링 하여 모델 생성
- ④ 단일 모델들의 예측 값을 결합

Bagging

RandomForest

'max_features'인자를 통한 변수 무작위성

Bootstrap

Decision

Trees

2 Boosting

Bagging vs Boosting

Bagging	Boosting
병렬적	순차적
모델들이 학습 시 상호 영향을 주지 않음	학습 시 앞의 모델의 결과가 뒤에 모델에 영향을 줌

면접 단골문제

2 Boosting

Boosting이란?

약한 학습기를 여러 개 연결하여 강한 학습기를 만드는 앙상블 방법 학습된 모델을 보완해 나가면서 더 나은 모델로 학습시켜가는 방법 종류: AdaBoost, GradientBoost

AdaBoost: 이전 분류기의 학습 결과를 토대로 다음 분류기의 <mark>학습 데이터의 샘플가중치를 조정</mark>해 학습을 진행하는 방법

- ① Row data에 동일가중치로 모델 생성
- ② 생성된 모델로 인한 오분류 데이터 수집
- ③ 오분류 데이터에 높은 가중치 부여
- ④ 과정 반복을 통하여 모델의 정확도 향상

Break Time

Gradient Boosting = Gradient Descent + Boosting

※ Gradient Boosting은 잔치를 활용하여 다음 학습기에 영향을 미친다

$$\hat{y} = f_1(x)$$
 $y - \hat{y} = y - f_1(x)$ $y - f_1(x) = r_1 = f_2(x)$ $y - f_1(x) - f_2(x) = r_2 = f_3(x)$ (residual)

Main idea							
Original Dataset		Modified Dataset I			Modified Dataset 2		
χl	yl		χl	$y^{l}-f_{l}(x^{l})$		χI	$y^{1}-f_{1}(x^{1})-f_{2}(x^{1})$
x ²	y ²		x ²	$y^2-f_1(x^2)$		x ²	$y^2-f_1(x^2)-f_2(x^2)$
x ³	y ³		x ³	$y^3-f_1(x^3)$		x ³	$y^3-f_1(x^3)-f_2(x^3)$
x ⁴	y ⁴		x ⁴	$y^4-f_1(x^4)$		x ⁴	$y^4 - f_1(x^4) - f_2(x^4)$
x ⁵	y ⁵		x ⁵	$y^5-f_1(x^5)$		x ⁵	$y^5-f_1(x^5)-f_2(x^5)$
x ⁶	y ⁶		x ⁶	$y^6 - f_1(x^6)$		x ⁶	$y^6-f_1(x^6)-f_2(x^6)$
x ⁷	y ⁷		x ⁷	$y^7 - f_1(x^7)$		x ⁷	$y^7 - f_1(x^7) - f_2(x^7)$
x ⁸	y ⁸		x ⁸	$y^8-f_1(x^8)$		x ⁸	$y^8-f_1(x^8)-f_2(x^8)$
x ⁹	y ⁹		x ⁹	$y^9 - f_1(x^9)$		x ⁹	$y^9-f_1(x^9)-f_2(x^9)$
x ¹⁰	y ¹⁰		x ¹⁰	$y^{10}-f_1(x^{10})$		x ¹⁰	y^{10} - $f_1(x^{10})$ $-f_2(x^{10})$

$$\hat{y} = f_1(\mathbf{x})$$
 $\hat{y} - f_1(\mathbf{x}) = f_2(\mathbf{x})$ $\hat{y} - f_1(\mathbf{x}) - f_2(\mathbf{x}) = f_3(\mathbf{x})$

Gradient Descent

- How is this idea related to the gradient?
 - √ Loss function of the ordinary least square (OLS)

$$\min L = \frac{1}{2} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i))^2$$

✓ Gradient of the Loss function

$$\partial L = (f(x_i) - yi)\partial f(x_i)$$

$$\frac{\partial L}{\partial f(\mathbf{x}_i)} = f(\mathbf{x}_i) - y_i$$

✓ Residuals are the negative gradient of the loss function

$$y_i - f(\mathbf{x}_i) = -\frac{\partial L}{\partial f(\mathbf{x}_i)}$$

- Gradient Descent Algorithm
 - ✓ Blue line: value of loss function with a given parameter
 - √ Black point: current state
 - ✓ Arrows: the direction that the parameter should follow to minimize the loss function
 - = negative gradient of the loss function

Gradient Boosting Machine

GBM Example

4 XGB

4 XGB

eXtreme Gradient Boost

학습속도 up 성능 up

Features of XGBoost

- Regularized boosting (prevents overfitting)
- Can handle missing values automatically —
- Parallel processing
- Can cross-validate at each iteration
 - Enables early stopping, finding optimal number of iterations
- Incremental training
- Can plug in your own optimization objectives —
- Tree pruning
 - Generally results in deeper, but optimized, trees

→ 정규화

→ Missing Value

→ 병렬처리

CV, 조기종료

→ 연이어 추가 학습

→ Objective 설정

→ 가지치기

4 XGB

XGB Parameters

종류	파라미터명	default값	설명
	learning_rate	0.1	- 학습률 - 범위: 0 ~ 1
	n_estimators	100	- 생성할 약한 학습기 개수
	max_depth	3	- 트리의 최대 깊이 - 보통 3~10 사이의 값 적용
	min_child_weight	1	- 트리에서 추가적으로 가지를 나눌지 결정하기 위해 필요한 데이터들의 가중치 총합 - 과적합 조절 용도 - 범위: 0 ~ Inf
부스터 파라미터	gamma	0	- 트리의 리프 노드를 추가적으로 나눌지 결정할 최소 손실 감소값 - 해당 값보다 큰 손실이 감소된 경우에 리프 노드 분리 - 값이 클수록 과적합 방지
	early_stopping_rounds	None	- 조기 중단을 위한 반복 횟수. N번 반복하는 동안 성능 평가 지표가 향상되지 않으면 반복이 멈춤
	subsample	1	- 트리가 커져 과적합되는 것을 제어하기 위해 데이터를 샘플링하는 비율을 지정 - sub_sample = 0.5면 전체 데이터의 절반을 트리 생성에 사용 - 보통 0.5 ~ 1 사이의 값 적용 - 범위: 0 ~ 1
	colsample_bytree	1	- 트리 생성에 필요한 피처를 임의로 샘플링
	reg_lambda	1	- L2 Regularization 적용 값
	reg_alpha	0	- L1 Regularization 적용 값
	scale_pos_weight	1	- 특정값으로 치우친 비대칭한 클래스로 구성된 데이터 세트의 균형을 유지하기 위한 파라미터
	objective	reg:linear	손실함수 - binary:logistic: 이진 분류, 확률 반환 - multi:softmax: 다중 분류, num_class 파라미터 지정 필요 - multi:softprob: 개별 레이블 클래스에 해당하는 예측 확률 반환
학습 태스크 파라미터	eval_metric	- 회귀: rmse - 분류: error	검증에 사용하는 함수 정의 - rmse: Root Mean Square Error - mae: Mean Absolute Error - logloss: Negative log-likelihood - merror: Multiclass classification error rate - mlogloss: Multiclass logloss - auc: Area under the curve
	eval_set	None	- 성능 평가에 사용하는 데이터세트 (evaluation set)

LightGBM

속도 느림 오버피팅 가능성

속도 보통 오버피팅 규제

속도 빠름 적으면 오버피팅

XGB vs LGBM

Level – wise tree

Level – wise tree : 균형 트리 분할

사용 모델 : RF, XGB

성장 방법 : 균형을 맞춤, 연산추가, 수평성장

Leaf – wise tree

Leaf – wise tree : 리프 중심 트리 분할

사용 모델 : LGBM

성장 방법 : 균형 맞추지 않음, 손실 값이 큰 리프 노드에서

분할, <mark>수직성장</mark>

LGBM 특징

- 속도가 빠르고, 성능이 좋다.
- 저장 공간을 덜 차지한다.
- 병렬적인 학습(동시적)이 가능하다.
- Overfitting에 민감하다.

대용량 data에 적합 (적어도 10,000건 이상)

LGBM Parameters

종류	파라미터명	default값	설명
	learning_rate	0.1	- 학습률 - 범위: 0 ~ 1
	n_estimators	100	- 생성할 약한 학습기 개수
	max_depth	3	- 트리의 최대 깊이 - 보통 3~10 사이의 값 적용
	min_child_samples	20	- 최종 리프 노드가 되기 위해 최소한으로 필요한 레코드 수 - 과적합 제어를 위한 파라미터
부스터 파라미터	num_leaves	31	- 하나의 트리가 가질 수 있는 최대 리프 개수
मुद्यगद	subsample	1	- 트리가 커져 과적합되는 것을 제어하기 위해 데이터를 샘플링하는 비율을 지정 - sub_sample = 0.5면 전체 데이터의 절반을 트리 생성에 사용 - 보통 0.5 ~ 1 사이의 값 적용 - 범위: 0 ~ 1
	colsample_bytree	1	- 트리 생성에 필요한 피처를 임의로 샘플링
	reg_lambda	1	- L2 Regularization 적용 값
	reg_alpha	0	- L1 Regularization 적용 값
	objective	reg:linear	손실함수 - binary:logistic: 이진 분류, 확률 반환 - multi:softmax: 다중 분류, num_class 파라미터 지정 필요 - multi:softprob: 개별 레이블 클래스에 해당하는 예측 확률 반환
학습 태스크 파라미터	eval_metric	- 회귀: rmse - 분류: error	검증에 사용하는 함수 정의 - rmse: Root Mean Square Error - mae: Mean Absolute Error - logloss: Negative log-likelihood - merror: Multiclass classification error rate - mlogloss: Multiclass logloss - auc: Area under the curve
	eval_set	None	- 성능 평가에 사용하는 데이터세트 (evaluation set)

첫번째 Baseline을 넘어라!

THANK YOU