	Utech
Name:	A
Roll No.:	As filmed (N'Executivity and Explane)
Invigilator's Signature :	

DIGITAL SIGNAL PROCESSING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) The system y(n) = x(n) + x(n-1) is
 - a) linear time-invariant
 - b) non-linear time-invariant
 - c) linear time-variant
 - d) none of these.
 - ii) $x(n) = \left(\frac{1}{3}\right)^n u(n)$ is
 - a) energy signal
- b) power signal
- c) both of these
- d) none of these.

6004 [Turn over

- The value of the twiddle factor W_8^4 is given by iii)
 - a)

- c) $\frac{1}{\sqrt{2}} \frac{j}{\sqrt{2}}$
- If F_s is the minimum sampling rate, F_{max} is the highest frequency available in the analog signal, then at Nyquist rate
 - $F_s = 2 F_{max}$ a)
- b) $F_s = 0.5 F_{max}$
- $F_s = F_{max}$
- d) $F_s < F_{max}$.
- v) Overlap save method is used to find
 - circular convolution a)
- b) linear convolution
- z-transform c)
- d) DFT.
- A system having impulse response h(t) will be BIBO vi) stable if

a)
$$\int_{-\infty}^{\infty} |h(t)| dt < \infty$$
b)
$$\int_{-\infty}^{\infty} h(t) dt < \infty$$
c)
$$\int_{-\infty}^{\infty} |h(t)| dt > \infty$$
d)
$$\int_{-\infty}^{\infty} |h(t)| dt = 0$$

b)
$$\int_{-\infty}^{\infty} h(t) dt < \infty$$

c)
$$\int_{-\infty}^{\infty} |h(t)| dt > \infty$$

$$d) \int_{-\infty}^{\infty} |h(t)| dt = 0$$

6004

vii) Why 16 point DFT is preferable than 4 point DFT?

- a) Resolution of spectrum is poor for 4 point DFT than 16 point DFT
- b) Resolution of spectrum is high but not reliable in 4 point DFT
- c) Calculation of 4 point DFT is more complex
- d) None of these.
- viii) The mapping from analog to digital domain in impulse invariant method is
 - a) one to many
- b) many to one
- c) one to one
- d) none of these.
- ix) If $x[n] = \{1, 0, 0, 1\}$, the DFT value x(0) is
 - a) 2

b) 1 + j

c) 0

d) 1 - j.

- x) IIR filter is
 - a) recursive and linear
 - b) non-recursive and linear
 - c) recursive and non-linear
 - d) none of these.

6004 3 [Turn over

- xi) Zero padding of a signal
 - a) reduces aliasing
 - b) increases frequency
 - c) increases time resolution
 - d) has no effect.
- xii) The digital system in $y(n) = x(n^2)$ is
 - a) non-linear and causal
 - b) linear and causal
 - c) linear and non-causal
 - d) non-linear and non-causal.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

2. Determine the z-transform of the following sequence and find its ROC.

$$x(n) = (n + 0.5) \left(\frac{1}{3}\right)^n u(n).$$

3. Determine the Fourier transform of the signal :

$$x(n) = 2^{n} u(-n) - 2^{-n} u(n)$$
.

6004 4

- 4. Determine the DFT of the sequence $x(n) = \{0, 2,$
- 5. For the analog filter having transfer function

(
$$s$$
) = $\frac{2}{(s+1)(s+2)}$, determine H (z) using impulse invariance method. Assume $T=1$ sec.

6. Determine the direct form of realization of a linear phase FIR filter specified by the impulse response

$$h(n) = \{2, 4, 6, 6, 4, 2\}.$$

$\begin{aligned} & \textbf{GROUP-C} \\ \textbf{(Long Answer Type Questions)} \end{aligned}$

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Determine the direct form of realization of a linear phase FIR filter specified by the impulse response h(n) { 1, 2, 3, 3, 3, 2, 1 }.
 - b) Draw: (i) direct form I (ii) direct form II (iii) cascade

 (iv) parallel structures for the system described by the

 difference equation

$$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$$
5 + 10

6004 5 Turn over

$$x(z) = \frac{1}{(1-2z^{-1})(1-z^{-1})^2}$$
 for ROC: $|z| > 2$.

c) Determine the *z*-transform of the following signal :

$$x(n) = (-1)^n \cos\left(\frac{\pi}{3}n\right) u(n)$$
 5 + 5 + 5

- 9. a) Determine the sectional convolution whose impulse response is $h(n) = \{1, 1, 1\}$ and input signal is $X(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ using overlap
 - b) Describe IIR low-pass filter design using bilinear transformation mode. 7 + 8
- 10. a) Compute the 8-point DFT of the following sequence :

$$x(n) = \left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0 \right\}.$$

Use in-place radix-2 decimation in time FFT algorithm.

- b) What is a butterfly regarding FFT?
- c) What are the difference and similarities between DIT and DIF algorithms? 10 + 2 + 3

6004

save method.

11. a) Design the symmetric FIR lowpass filter using rectangular window for which desired frequency response is expressed as

$$H_d(\omega) = \begin{cases} e^{-j\omega\tau} & \text{for } |\omega| \le \omega_c \\ 0 & \text{elsewhere} \end{cases}$$

b) Determine H (z) using impulse invariant method at 5 Hz sampling frequency from

$$H(z) = \frac{2}{(s+1)(s+2)}$$
. 9+6

- 12. Write short notes on any *three* of the following : 3×5
 - a) Causal and non-causal system
 - b) Overlap-add and overlap-save method
 - c) Butterworth filter
 - d) Utility of FFT and DFT
 - e) Bilinear transformation.