all 2110) custer of	Ay (5,8) Couster 02	A7 (112) custer 03	Belong to
0	5	9	c 1
5	c	4	<i>e</i> 3
12	7	9	0 2
5	0	10	C 2
10	5	9	C 2
10	5	7	c 2
9	10	0	С 3
3	2.	10	C 2
	Cluster 01 0 5 12 5 10 10	Custer 01 Custer 02 Custer 02	Custer 01 Custer 02 Custer 03 Custer 03 Custer 03 Guster 03 Guster 03 Custer 03 Guster 03

new cluster o1 =
$$(2.10)$$

new cluster o2 = $(8+5+7+6+4)$, $(4+8+5+4+9)$ = (6.6)
new cluster o3 = $(2+1)$, $(5+2)$ = $(\frac{3}{2}, \frac{7}{2})$ = $(1.5, 3.5)$

and :

Points	A1 (2110) clu s (2001	A4 (6,6) dustiv 02	47 (1.5,3.5) chuylin 03	Belmg to
AI (2110)	0	8	7	CI
A2 (215)	5	5	2_	c3
A3 (814)	12	4	٦	c 2
Ay (5,8)	5	3	8	C2
KS (715)	10	2	7	C2
AG (614)	10	2	5	C 2
7 (112)	9	9	2	C3
A8 (419)	3	5	8	CI

new dustry 2 =
$$\frac{(2+4)}{2}$$
, $\frac{(10+9)}{2}$, = $(3,9.5)$
new dustry 2 = $\frac{(8+5+7+6)}{24}$, $\frac{(4+8+5+4)}{24}$ = $(6.5,5.25)$
new dustry 3 = $\frac{(2+1)}{2}$, $\frac{(5+2)}{2}$ = $(1.5,3.5)$

(4,9)	A7 (1,2)	£ (6,4)	A5 (715)	Au (5,8)	A3 (8,4)	A2 (215)	A (2,16)	Points
1,5	9.5	8.5	5.8	্ন ১	5.01	5.5	1.5	(3,9.5)
6.25	8.75	1.75	0.75	4·25	2-75	y.75	9.25	(6-5,5-25) chaster 02
8	þ	ഗ്വ	1	8	1	2		(1.5/3.5) etuster 03
Cl	c ₃	C 2	CZ	<u>c</u>	C2	C3	C1	belongto.

iividual	variable 1	variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
Ġ	4.5	5.0
7	3.5	4.5

cluster	variable L	variable 2
KI	1.0	1.0
K2	5•0	7.0

			(5.017.0)
-	0	2	7.21
	1-11	=	6.10
_	3,60		3.61
	7.21		0
	4.71		2.5
	5.32		2.06
	4.30	2	2.92
	 	= 0 = 1.11 = 3.60 7.21 4.71 5.32 4.30	= 0 = 1·11 = 3,60 = 7·21 = 4·71 = 5·32 = =

· new centroids

new centroids
$$Ci = \frac{1}{3} (1.0 + 1.5 + 3.0), \frac{1}{3} (1.0 + 2.0 + 4.0) = (1.83, 2.33)$$

$$Q = \frac{1}{4} (5.0+3.5+4.5+3.5), \frac{1}{4} (7.0+5.0+5.0+4.5) = (4.12,5.38)$$

	•	centroid		individual	centroid 1	centroid 2	
in	aividual	centroid 1	centroid 2 7.21	1	1.57	2-47-5.37	١
	1	1.11	6.10		0.47	4.27	2
	2 3	3:60	3:61		2.03	1.77	2
	4	7.21	2.5		5.64	1.84	2
	5	4,71	2.06		3.14	0.727	2
	6 7	5.32	2.92		3.77	0.53	2
	•	4.30			2.74	1.08	2

-ADVANTAGE

At at first calculate distances from the selected cluster points and classify them is dusters according to the minimum points.

w then find the new centroid and calculate distances again do this until the dusters are classified.

ADVAN TAGES

- * easy to represent
- a crun work in nultiple dimensions
- * depends on initial value.
- * scales to large datasets.

DISADVANTAGES

- * time-consuming to find optimal number of clusters.
- * feature must be numeric and normalized.

MACHINE LEARNING REGRESSION ANALYSIS

- * prediction and forecasting.
- * linear regression model

$$Y = b_0 + b_1 X + E$$
 : $b_0 = y$ intercept $b_1 = slop$ $E = error variable$

- * co-efficient of determination -D R2 . Scove() -> r_sq = model.scove (n1y)
- * applications economic growth, product price, housing sales, score predictions.

- * internal node represents a feature lattribute.
- * branch represents decision rule.
- * leaf node represents outcome.
- * attribute selection measures are Information gain, gain score, gint index

haf

11 spit dataset into feature and target variables.

feature whumns are independent

target columns are dependent.

11 dividing dataset ento training set and test set.

3 parameters are feature itarget and test-set size.

11 train decision tree y-pred = cif-predict(x-test)

11 predict response and accuracy (actual test set and predicted values)

metrics. accuracy-scove (y-test, y - pred)

PROS

- * easy to interpret and visualize.
- * fewer data preprocessing.
- * suitable for feature engineering.
- * no assumptions.

CONS

- * sensitive to noisy data.
- * small variation result in different data tree.
- * blased with imbalanced dataset.

MACHING LEARNING PERFORMANCE METRICS

CONFUSION MATRIX

- * correctness and accuracy.
- * output can be of two or more type of classes
- * ideal scenario is that model should give.

0	CP	and	DEN
v	-1	with	0111

		Acti	ial		
		Positive	1	segative	,
٠,	Positive	TP	,t.	EP.	
Predict				72	

ACCURACY

$$* A = \frac{TP + TN}{TP + TN + FP + FN}$$

* target variable classes are nearly balanced.

PRECISION

$$\star P = \frac{TP}{TP+FP}$$

RECAU SENSITIVITY

$$R = \frac{TP}{TP + FN}$$

- * precision is about being precise.
- * if focus is on minimizing FN, Recall should be as close to 100.1.
- * if focus is on minimizing FP, Precision should be as close to 100%.

FISCORE

- 2 (Precision) (Recall) Precision + Recall
- * if one number is really small between precision and recall, Flacove is move closer to smaller number.

SPECIFICITY

AREA UNDER ROC CURVE

Mean Absolute Error - average of difference between original and predicted.

Hean Squared Error - average of square of difference between original & predicted.

Hean Absolute of Error -> difference between actual & predicted | actual value, mean is taken.

LATORY DATA ANALYSIS

americal methods and graphical tools.

proving data for pattern, trends

haximize insight

- · extract variables
- · detect outliers and anomalies.
- · classification

Lo non-graphical: statistics

1> graphical

: pictorial

1) univariate

: one variable column.

Lomultivariate

: two or more variables.

· data types

ls categorical , nominal (no rank)

ordinal (order)

Isnumerical: discrete (counted)

continuous (measured)

- · high SD, scores are spreadout
- · low SD, scores near to mean.

COMPUTER VISION/IMAGE PROCESSING

- · image bluming: reduce noise or smooth out sharp edges
- · applications

4 image dassification

hobject detention

12 face recognition

wface generation

bimage inpainting

istext to image

isoptical character recognition

- · cv2. imread
- · edge detection: Keeps important structural feature.
- . sobel and prewitt: high frequency signals go through.
- · canny edge : highest accuracy .

SUPERVISED LEARNING

· labelled data

L>classification: predict y labels (classes) for input x, discrete spam detection, ock, medical diagnosis, fraud detection.

Image classification, customer retention

L> regression: predict continuous valued output.

Predicting price, income, age, weather prediction

Population growth, market forecasting, life expectancy

6000

UNBUPERVISED LEARNING

- · unlabelled data.
- · finds hidden pattern
- · only input is provided

L> clustering targeted marketing, customer segmentation detection anomalies.

TEXT PREPROCESSING IN NLP

· normalization

sentence = sentence. lower()

· tokenization

sentences = nitk. sent_tokenize (text)

words = netk. word_tokenize (sentence)

· stemming

L> finds common base root words L> chops start or end.

· Lemmatization

L) existing word.

· unigrams

unigrams = nutk.ngrams (tokens, 1)

bigrams = nutk - ngrams (tokens,2)

trigrams = nutk-ngrams (tokens, 3)

FD = nitk. FreqDist(text)

0000

-ABUANTAGES SE DIFFIRE

a = ny mray (c1, 2, 5, 41)

(second supply ((s. s. s)) survey du . q

enmodes or some am (100, 83) some que

my ence ((2,3,0)) - 2 emmys, 3 cmas, 4 comme

5 My random random (12,29) - 2 212 by andy

e. necest encompleis)

7. b[0.2,1] we stimm at any 5 and 1 in votumn !

PRINTPLET LIP

- t jug ambijug -- a cove i mage
- 2. ptt legend —a surestyle and celep , matches with correct label
- 5. sipha transparency level
- " " " est -- " tienr entire file
- 5. cia chem entire axis

son (say seemes)

· of the four - o cana 1 are included

. al . suc [e. i] - I not included

-ADVANTAGES NO N.

PANDAS

```
1. pd. read_csv
```