A Simple example showing the implementation of k-means algorithm (using K=2)

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Step 1:

<u>Initialization</u>: Randomly we choose following two centroids (k=2) for two clusters.

In this case the 2 centroid are: m1=(1.0,1.0) and m2=(5.0,7.0).

Individual	Variable 1	Variable 2
	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0

	Individual	Mean Vector
Group 1	1	(1.0, 1.0)
Group 2	4	(5.0, 7.0)

Step 2:

- Thus, we obtain two clusters containing:
 - {1,2,3} and {4,5,6,7}.
- Their new centroids are:

$m_1 = (\frac{1}{3}(1.0 + 1))$	$.5 + 3.0$), $\frac{1}{3}(1.0 + 2.$	(0+4.0) = $(1.83, 2.33)$
$m_2 = (\frac{1}{4}(5.0 + 3))$	$3.5 + 4.5 + 3.5$, $\frac{1}{4}$	7.0+5.0+5.0+4.5))

= 14	1	9.	5	3	23
-12	1	4	Ψ.	120	Θ).

individual	Centrold 1	Centroid 2
1	0	7.21
2 (1.5, 2.0)	1,12	6:10
3	3,61	3.61
4	7.21	0
5	4.72	2.5
6	5.31	2.06
7	4.30	2.92

$$d(m_1, 2) = \sqrt{|1.0 - 1.5|^2 + |1.0 - 2.0|^2} = 1.12$$

$$d(m_2, 2) = \sqrt{|5.0 - 1.5|^2 + |7.0 - 2.0|^2} = 6.10$$

Step 3:

- Now using these centroids we compute the Euclidean distance of each object, as shown in table.
- Therefore, the new clusters are:
 {1,2} and {3,4,5,6,7}
- Next centroids are: m1=(1.25,1.5) and m2 = (3.9,5.1)

Individual	Centroid 1	Centroid 2	
1	1,57	5.38	
2	0.47	4.28	
3	2.04	1.78	
4	5.64	1.84	
5	3.15	0.73	
6	3.78	0.54	
7	2.74	1.08	

Step 4: The clusters obtained are: {1,2} and {3,4,5,6,7}

- Therefore, there is no change in the cluster.
- Thus, the algorithm comes to a halt here and final result consist of 2 clusters {1,2} and {3,4,5,6,7}.

Individual	Centroid 1	Centroid 2
1	0.58	5.02
2	0.58	3.92
3	3.05	1.42
4	6.88	2.20
5	4.16	0.41
- 6	4.78	0.61
7.	3.75	0.72

PLOT

Therefore, the new clusters are:

Cluster 1: {1,2}

Cluster 2: {3,4,5,6,7}

Centroids are:

$$m1 = (1.25, 1.5)$$

 $m2 = (3.9, 5.1)$

Calculate the SSE using Manhattan Distance

Individual	Variable 1	Variable 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} d^2(m_i, x)$$

$$d(x,y) = \sum_{i=1}^p |x_i - y_i|$$

 $SSE=[dis^2(m1,x1)+dis^2(m1,x2)] +$

 $[dis^2(m2,x3)+dis^2(m2,x4)+dis^2(m2,x5)+dis^2(m2,x6)+dis^2(m2,x7)]$

$$dis^{2}(m1,x1) = (|1.25-1|)+|1.5-1|)^{2} = 0.5625$$

 $dis^{2}(m1,x2) = (|1.25-1.5|)+|1.5-2|)^{2} = 0.5625$

$$\begin{aligned} \text{dis}^2(\text{m2,x3}) &= (|3.9\text{-}3.0|) + |5.1\text{-}4.0|)^2 &= 4.0 \\ \text{dis}^2(\text{m2,x4}) &= (|3.9\text{-}5.0|) + |5.1\text{-}7.0|)^2 &= 9.0 \\ \text{dis}^2(\text{m2,x5}) &= (|3.9\text{-}3.5|) + |5.1\text{-}5.0|)^2 &= 0.25 \\ \text{dis}^2(\text{m2,x6}) &= (|3.9\text{-}4.5) + |5.1\text{-}5.0|)^2 &= 0.49 \\ \text{dis}^2(\text{m2,x7}) &= (|3.9\text{-}3.5|) + |5.1\text{-}4.5|)^2 &= 1.0 \end{aligned}$$

(with K=3)

Individual	m ₁ = 1	$m_2 = 2$	$m_3 = 3$	cluster
31	0	1,11	3.61	1
2	1.12	Ū	2.5	2
3	3.61	2.5	0	3
4	7.21	8.10	3.61	3
5	4.72	3.61	1.12	3
6	5.31	4.24	1.80	3
7	4.30	3.20	0.71	3

Individual	m _t (1.0, 1.0)	m ₂ (1.5, 2.0)	m ₃ (3.9,5.1)	cluster
4	0	1.11	5.02	1
2	1.12	0	3.92	2
3	3.61	2.5	1.42	3
4	7.21	6.10	2.20	3
5	4,72	3.61	0.41	3
в	5.31	4.24	0.61	3
7	4.30	3.20	0.72	3

clustering with initial centroids (1, 2, 3)

Step 1

Step 2

Example

• Exercise:

Calculate the SSE when K=3?

PLOT

