Data Mining (EECS 6412)

Data Preprocessing

Aijun An
Department of Electrical Engineering and Computer Science
York University

Outline

- ▶ Why preprocess the data?
- ▶ Data integration
- ▶ Data cleaning
- ▶ Data transformation
- ▶ Data reduction
- Discretization

3

Why Data Preprocessing?

- ▶ Heterogeneous data data integration
 - ▶ From various departments, in various forms
- ▶ Dirty data data cleaning
 - ▶ Incomplete data: missing attribute values
 - e.g., occupation=""
 - ▶ Noisy data: containing errors
 - ▶ e.g., Salary="-10"
 - ▶ Discrepancies in codes or names
 - ▶ e.g., US=USA
- ▶ Data not in the right format data transformation
 - Normalization, discretization, etc.
- ▶ A huge amount of data data reduction
 - Speed up mining

No quality data, no quality mining results!

Major Tasks in Data Preprocessing

- Data integration
 - ▶ Integration of multiple databases or files
- Data cleaning
 - ► Fill in missing values, identify outliers and smooth out noisy data, and resolve discrepancies
- Data transformation
 - ▶ Feed right data to the mining algorithm
- Data reduction
 - Obtains reduced representation in volume but produces the same or similar analytical results
- Data discretization
 - ► Part of data reduction and data transformation but with particular importance, transform numerical data into symbolic (discrete) data

5

Data Integration

- ▶ Data integration:
 - combines data from multiple sources into a coherent store
- Schema integration
 - integrate metadata from different sources
 - ► Entity identification problem: identify real world entities from multiple data sources, e.g., A.cust-id = B.cust-#
- Detecting and resolving data value conflicts
 - for the same real world entity, attribute values from different sources are different
 - possible reasons: different representations, different scales,
 - e.g., hotel price in different currencies, metric vs. British units
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"

Data Cleaning

- ▶ Why is data dirty?
 - ▶ Incomplete data come from
 - ▶ human/hardware/software problems (e.g. equipment malfunction)
 - different consideration between the time when the data was collected and when it is analyzed.
 - certain data may not be considered important at the time of entry
 - ▶ Noisy data come from the process of
 - ▶ data collection
 - data entry
 - ▶ data transmission
- ▶ Data cleaning tasks
 - ▶ Fill in missing values
 - ▶ Identify outliers and smooth out noisy data

-

How to Handle Missing Values?

- Fill in the missing value manually: tedious + infeasible?
- ▶ Ignore the tuple containing missing values:

Cust-id	Age	Gender	Income	Credit	
1	36	M	\$54K	good	
2	24	M	\$20K	bad	
3	37	M	\$50K	?	\vdash
4	23	F	\$30K	good	1
5	55	F	\$25K	good	
6	35	?	\$16K	bad	\vdash
U	33	•	ψισιν		1
7	33	F	\$10K	bad	l

- usually done when class label is missing (assuming the task is classification)
- ▶ not effective when missing values in attributes spread in many different tuples.
- ▶ Fill it in with a value "unknown"
 - ▶ patterns containing "unknown" is ugly

How to Handle Missing Values? (Contd.)

- ▶ Global estimation
 - ▶ the attribute mean/median for numeric attributes
 - the most probable value for symbolic (i.e. categorical) attributes
- ▶ Local estimation: smarter
 - ▶ the attribute mean/median for all the tuples belonging to the same class (for numeric attributes)
 - the most probable value within the same class (for symbolic attributes)

Cust-id	Age	Gender	Income	Credit
1	36	F	\$55K	good
2	24	?	\$20K	bad
3	37	F	\$50K	good
4	23	F	\$30K	good
5	55	F	\$25K	good
6	35	M	?	bad
7	33	M	\$10K	bad

- Use inference-based prediction techniques, such as
 - Nearest-neighbor estimator, decision tree, regression, neural network, etc.
 - good method with overhead

9

Noisy Data

- ▶ Noise: random error or variance in a measured variable
- Incorrect attribute values may be due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems

How to Handle Noisy Data?

- Clustering
 - ▶ detect and remove outliers (An outlier is a value that does not follow the general pattern of the rest)
- Regression
 - ▶ smooth by fitting the data into regression functions
- ▶ Binning method:
 - first sort data and partition into bins
 - ▶ then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Moving average
 - Use the arithmetic mean of neighborhood examples
- ▶ Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

11

Cluster Analysis

Regression

- Fit the data to a function.
- ▶ Data points too far away from the function are outliers.
- ► A single linear regression, for instance, finds the line to fit data with 2 variables so that one variable can predict the other.
- ► More variables can be involved in *multiple linear regression*.

13

Binning:

- ► Equal-width (distance) partitioning:
 - ▶ It divides the range of an attribute into *N* intervals of equal size: uniform grid
 - ▶ if *A* and *B* are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - ▶ The most straightforward
 - ▶ But outliers may dominate presentation
 - ▶ Skewed data is not handled well.
- ► Equal-depth (frequency) partitioning:
 - ▶ It divides the range into *N* intervals, each containing approximately the same number of values
 - ▶ Good data scaling; better handle skewed data

Equal-width Binning Methods for Smoothing Data

- * Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- * Partition into (equi-width) bins: 3 intervals of equal size
 - Bin 1: 4, 8, 9
 - Bin 2: 15, 21, 21, 24
 - Bin 3: 25, 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 7, 7, 7
 - Bin 2: 20, 20, 20, 20
 - Bin 3: 28, 28, 28, 28, 28
- * Smoothing by bin boundaries:
 - Bin 1: 4, 9, 9
 - Bin 2: 15, 24, 24, 24
 - Bin 3: 25, 25, 25, 25, 34

15

Equal-depth Binning Methods for Smoothing Data

- Smoothing Data

 * Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34 (12 points in total)
- * Partition into 3 (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
- * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Moving Average

- ▶ Use neighborhood values to smooth out noise
- ▶ Typically used for time-series data
 - ▶ Use series of arithmetic means over time
 - ▶ Result depends on choice of length L for computing mean.
- Can also be used on spatial data such as images

17

Moving Average Example

Year	Sales	Moving Average
1994	2	NA
1995	5	3
1996	2	3
1997	2	3.67
1998	7	5
1999	6	NA

Outline

- ▶ Why preprocess the data?
- ▶ Data integration
- ▶ Data cleaning
- ▶ Data transformation
- ▶ Data reduction
- Discretization

19

Data Transformation

- ▶ Transform the data into appropriate form for mining
- ▶ Attribute/feature construction
 - ▶ New attributes constructed from the given ones
 - e.g., compute average sale amount using total sale amount divided by units sold.
- Normalization: scale attribute values to fall within a small, specified range
 - ▶ min-max normalization
 - ▶ z-score normalization
 - normalization by decimal scaling
- Discretization
 - ▶ Transform numeric attributes into symbolic attributes

Data Transformation: Normalization

min-max normalization

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new _max_{A} - new _min_{A}) + new _min_{A}$$

where min_A and max_A are the minimum and maximum values of attribute A, and $[new_min_A, new_max_A]$ is the new range

- ▶ Example: Attribute *income* has values
 - **\$12,000, \$20,000, \$25,000, \$30,000, \$45,000, \$60,000, \$73,600, \$98,000**
 - normalized into values in range [0, 1]:0, 0.093, 0.151, 0.209, 0.384, 0.558, 0.716, 1
- ▶ Problems:
 - "Out of bounds" error occurs if a future input case falls outside the original range for A
 - ▶ A too big or too small value could be noise. If they are used as min or max value for normalization, the results are not reliable.

21

Data Transformation: Normalization (Contd.)

z-score normalization

$$v' = \frac{v - mean_A}{}$$

 S_A

where $mean_A$ is the mean of attribute A and s_A is the standard deviation of A (suppose values are : v_1 , v_2 , ..., v_n):

$$s_A = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (v_i - mean_A)^2}$$

- **Example:**
 - The mean and standard deviation of the attribute income are 45,450 and 29735
 - ▶ With z-score normalization, the values are transformed into:
 - -1.12, -0.86, -0.69, -0.52, -0.02, 0.49, 0.95, 1.77
- Advantages:
 - ▶ useful when the actual min and max are unknown
 - better deal with outliers than min-max normalization

Data Transformation: Normalization (Contd.)

Normalization by decimal scaling

$$v_i' = \frac{v_i}{10^k}$$

where k is the smallest integer such that $Max(|v_i'|) \le 1$

- Example:
 - ▶ Suppose the recorded values of A range from -986 to 97
 - ▶ The maximum absolute value of A is 986.
 - ▶ Then k= 3
 - ▶ -986 is normalized to -0.986 and 97 is normalized to 0.097

23

Outline

- ▶ Why preprocess the data?
- ▶ Data integration
- ▶ Data cleaning
- ▶ Data transformation
- ▶ Data reduction
- Discretization

Data Reduction

- ▶ What is data reduction?
 - A preprocessing step before applying learning or mining techniques to the data
 - ▶ Purpose: reduce the size of data.
- ▶ Why data reduction?
 - A data set may be too large for a learning program.

 The dimensions exceed the processing capacity of the program.
 - ► The expected time for inducing a solution may be too long. Trade off accuracy for speed-up.
 - Sometimes, better answers are found by using a reduced subset of the available data. Too large data may cause the program to fit too many exceptions.

2!

Data Reduction Operations

Standard data form

Case/Example	feature ₁	 $feature_k$	Class
e_1	$V_{1,1}$	 $V_{1,k}$	c_1
•••	•••	 	•••
e_i	$V_{i,1}$	 $V_{i,k}$	c_i
e_n	$V_{n,1}$	 $V_{n,k}$	C_n

- ▶ Data reduction operations
 - ▶ Feature reduction (reduce the number of columns)
 - Case reduction (reduce the number of rows)
 - ▶ Value reduction (reduce the number of distinct values in a column)

Types of Attributes (Features)

- ▶ Three types of attributes:
 - Nominal (symbolic, categorical) values from an unordered set
 - ▶ Eg: {red, yellow, blue,}
 - ▶ Ordinal values from an ordered set
 - ▶ Eg: {low, medium, high}
 - ▶ Continuous real numbers
 - ► Eg: {-9.8, 3.9, 8.7, 19.1}
- Next: feature selection for classification tasks.

27

Feature Selection

- Objective
 - Find a subset of features with predictive performance comparable to the full set of features.
 - ▶ An optimal subset selection

A practical objective is to remove clearly extraneous features - leaving the table reduced to manageable dimensions - not necessarily to select the optimal subset.

Feature Selection Methods

- ▶ Filter Methods: select a subset of original features.
 - Feature Selection from Means and Variances ($\sqrt{}$)
 - Feature Selection by Mutual Information ($\sqrt{}$)
 - Feature Selection by Decision Trees ($\sqrt{}$)
 - ▶ Feature Selection by Rough Sets, etc.
- ▶ Merger Methods: merge features, resulting in a new set of fewer columns with new values.
 - ▶ Principal component analysis (PCA)
- Wrapper Methods: feature selection is being "wrapper around" a learning algorithm.
 - ▶ This is the optimal method in the last slide.
 - ▶ Running time is long; infeasible in practice if there are many features.