电子科技大学

2016级本科毕业设计(顶岗实习)任务书

拟题单位 电子科技大学 **审题人 (院内代管教师签名)** ______

题目及副标题 基于深度学习的停车空位找寻及车牌追踪系统

题目来源: 1.工程研究

主要任务及支撑毕业要求指标情况:

给予树莓派,安卓编程和深度学习实现停车场空车位排序找寻,车牌追 踪和车位识别。

际和牛位识别。		
主要任务	支撑毕业 要求指标	考核点
对停车峰值期用户需求进行分析。采用 UML,ER 图等实现。	GR3.1	通过需求分析确定设计目标。
选择目前国际热门的深度学习中的图像识别作为研究方向。	GR10.4	对毕设课题相关的国际前沿技术进 行分析。
从现实中拍摄训练集和测试集进 行,主要实现最简化模型	GR3.2	从技术、经济等角度进行可行性分 析。
制定空车牌找寻和车牌追踪项目开发计划。	GR11.3	制定项目计划。
对车辆定位系统进行系统总体设 计,安卓端开发以及深度学习图 像检测等模块的详细设计。	GR3.3	进行总体设计和详细设计。
深度学习、图像检测,实时数据 传输等具体问题自学相关开发知识。	GR12.3	针对具体工程问题,能够通过自学掌握相关知识。
对于高效准确的深度学习提出改进方案,并能通过分析文献提出 多种解决方案,能对多种方案进行分析。	GR2.3 GR2.4	针对具体工程问题,能通过文档描述解决方案;能分析文献寻求可替代的解决方案并证实方案合理。
基于高效准确的深度学习提出改进方案进行流程设计,提出不同设计方案并进行优选。	GR3.4	针对具体工程问题进行流程设计,并能对不同设计方案进行优选。
选择 Linux 操作系统,Python 和 TensorFlow 框架进行数据处理和 机器学习,JAVA 进行安卓端开发	GR5.2	选择合适的开发环境、工具与技术标准进行软件开发。
训练集,测试集选用树莓派实景 摄像头捕捉并采样分类	GR4.2	为了解决具体工程问题,能够进行实验,并能对实验结果分析。
项目完成后提出改进方案,并分析该项目带来的社会、经济影响。	GR7.2	评价项目的后续改进以及可能的对社会、经济的影响。

预期成果或目标:

通过机器学习图像识别的方式检测停车峰值期空白车位排序及找寻,对大型停车场实现车牌追踪车辆位置。最后通过安卓端和服务器进行连接传输停车场数据。

成果形式:硬件、硬件+软件、软件(选择其中一种)

硬件 + 软件

企业导师签名: 30

起止时间: 2020年 02月 25日至 2020年 06月 20日

学生姓名 李达梽 专业 信息与软件工程 学号 2016220102015

指导单位 新泽西州立罗格斯大学

企业导师姓名、职称 Bo Yuan; Assistant Professor

设计地点 美国新泽西州新布朗斯维克

2020年 03月 01日

备注: 1.此任务书应由企业指导教师填写, 签名处须由教师亲笔签名。

2.此任务书一般应在学生毕业设计前下达给学生,若有企业要求学生到岗后方才部署具体

任务等特殊情况,学生应在毕业设计(顶岗实习)初期检查前提交任务书。

3.此任务书必须双面打印。