

Caravel + Nucleo Board

Caravel Board V4 Block Diagram

Nucleo Board: ST Morpho Connectors

Nucleo Board: Interface with Caravel

- CN4 jumpers in ST-Link part is used to program ST32 microcontroller, hence, configuring Caravel I/Os
- The board has a 3.3V Regulator (Max 500mA)
- Default clock supply is 8 MHz from ST-Link on PF0
- Caravel SPI/HKSPI interface could be on PE11: PE14 or PF6: PF9
- Caravel UART interface could be on PE0: PE1
- PA13 and PA14 are shared with SWD signals connected to ST-LINK. If ST-LINK part is not cut, it is not recommended to use them as I/Os.
- Caravel BB dimensions would be $67.5mm \times 92.5mm$

Caravel + Nucleo Board Block Diagram

Caravel + Nucleo Board Block Diagram

Dynamic Voltage Scaling (DVS)

- Dynamic power supply is required to test the chip with non-nominal supplies
- The required ranges are from 1.4V to 2.2V for $V_{1.8}$ and 3V to 3.6V for $V_{3.3}$
- Adjustable dual LDO (MIC2211) is capable of suppling from 1.25V to 5V at 150mA for V_{out1} and at 300mA for V_{out2}
- A digital potentiometer (D-POT) could be used with R network to dynamically tune the voltage outputs of the LDO using I^2C on PF0:PF1
- D-POT (10 $k\Omega$ device) range to be used in the calculations is from 0 $k\Omega$ to 7 $k\Omega$, since its maximum resistance range is from 8 $k\Omega$ to 12 $k\Omega$
- MCP4661 has 257 taps

$$N = \frac{R_{MAX}}{R_{TOT}} * 256 = 179.2 \approx 179$$
 $R_{step} = \frac{R_{TOT}}{256} = 39 \Omega$

Resistance Calculations

• For $V_{1.8}$,

$$V_{out1min} = 1.4V \qquad V_{out1max} = 2.2V$$

$$R_{LSmax} = 3 \ k\Omega \qquad V_{Ref} = 1.25V$$

$$V_{out1min} = V_{Ref} \left(1 + \frac{R_1}{R_{LSmax}} \right) \quad \therefore R_1 = R_{LSmax} \left(\frac{V_{out1min}}{V_{Ref}} - 1 \right) = 360 \ \Omega$$

$$R_{LSmin} = R_1 * \left(\frac{V_{Ref}}{V_{out1max} - V_{Ref}} \right) = 473.7\Omega$$

$$R_{DPmin} = 0 \ k\Omega \qquad R_{DPmax} = 7 \ k\Omega$$

$$R_{LSmin} = \frac{R_2 * (R_3 + R_{DPmin})}{R_2 + R_3 + R_{DPmin}} = \frac{R_2 * R_3}{R_2 + R_3} \qquad R_{LSmax} = \frac{R_2 * (R_3 + R_{DPmax})}{R_2 + R_3 + R_{DPmax}}$$

Assume $R_3 = 500 \Omega$,

$$R_2 = \frac{R_{LSmax} * (R_3 + R_{DPmax})}{(R_3 + R_{DPmax}) - R_{LSmax}} = 5 k\Omega$$

Verify:

$$R_{LSmin} = \frac{R_2 * R_3}{R_2 + R_3} = 455 \,\Omega$$
 $\therefore V_{out2max} = V_{Ref} \left(1 + \frac{R_1}{R_{LSmin}} \right) = 2.24 V$

Notes:

- V_{Ref} is from the adjustable dual LDO (MIC2211) data sheet
- R_{LSmax} is set to ensure loop stability, not sure of the basis of this value

Resistance Calculations

• For $V_{3.3}$,

$$\begin{split} V_{out2min} &= 3V & V_{out2max} &= 3.6V \\ R_{LSmax} &= 3 \ k\Omega & V_{Ref} &= 1.25V \\ \\ V_{out2min} &= V_{Ref} \left(1 + \frac{R_1}{R_{LSmax}} \right) & \therefore R_1 &= R_{LSmax} \left(\frac{V_{out2min}}{V_{Ref}} - 1 \right) = 4.2 \ k\Omega \\ \\ R_{LSmin} &= R_1 * \left(\frac{V_{Ref}}{V_{out2max} - V_{Ref}} \right) = 2. \ 2k\Omega \\ \\ R_{DPmin} &= 0 \ k\Omega & R_{DPmax} &= 7 \ k\Omega \\ \\ R_{LSmin} &= \frac{R_2 * (R_3 + R_{DPmin})}{R_2 + R_3 + R_{DPmin}} = \frac{R_2 * R_3}{R_2 + R_3} & R_{LSmax} &= \frac{R_2 * (R_3 + R_{DPmax})}{R_2 + R_3 + R_{DPmax}} \end{split}$$

Assume $R_3 = 5 k\Omega$,

$$R_2 = \frac{R_{LSmax} * (R_3 + R_{DPmax})}{(R_3 + R_{DPmax}) - R_{LSmax}} = 4 k\Omega$$

Verify:

$$R_{LSmin} = \frac{R_2 * R_3}{R_2 + R_3} = 2.2 \ k\Omega$$
 $\therefore V_{out2max} = V_{Ref} \left(1 + \frac{R_1}{R_{LSmin}} \right) = 3.64 V$

Notes:

- V_{Ref} is from the dual LDO (MIC2211) datasheet
- R_{LSmax} is set to ensure loop stability in the TI note, not sure of the basis of this value

Resistance Calculations

For nominal supplies:

$$V_{out1} = 1.8V \qquad V_{out2} = 3.3V$$

$$R_{LS} = R_1 * \left(\frac{V_{Ref}}{V_{out} - V_{Ref}}\right)$$

$$\therefore R_{LS1} = 818.2 \,\Omega \qquad \qquad \therefore R_{LS2} = 2.6 \,k\Omega$$

$$R_{LS} = \frac{R_2 * (R_3 + R_{DP})}{R_2 + R_3 + R_{DP}} \qquad \therefore R_{DP} = \frac{R_{LS} * (R_2 + R_3) - R_2 R_3}{R_2 - R_{LS}}$$

$$\therefore R_{DP1} = 478 \,\Omega \qquad \qquad \therefore R_{DP2} = 2.4 k\Omega$$

$$R_{DP} = \frac{R_{TOT}N}{256} + R_W \qquad \therefore N = (R_{DP} - R_W) * \frac{256}{R_{TOT}}$$

$$R_W = 75 \,\Omega \qquad \qquad R_{TOT} = 10 \,k\Omega$$

$$\therefore N_1 = 10.3 \approx 11 \,(Bh) \qquad \therefore N_2 = 59.5 \approx 60 \,(3Ch)$$

Resistors Components

Output	Resistor	Computed Value	Size $0805~1\%$
V_{out1}	R_1	360 Ω	$360~\Omega$
	R_2	$5~k\Omega$	$4.99~k\Omega$
	R_3	500 Ω	499 Ω
V_{out2}	R_1	$4.2~k\Omega$	$4.22~k\Omega$
	R_2	$4~k\Omega$	$4.02~k\Omega$
	R_3	$5 k\Omega$	$4.99~k\Omega$

Notes:

• MIC2211 datasheet recommends that to prevent low quiescent current performance being compromised Resistor values are between $100 \mathrm{k}\Omega$ and $500 \mathrm{k}\Omega$. This can't be achieved with the R_{LSmax} assumption

Caravel + Nucleo Board Schematic

Notes:

- *MCO* clock is 8 *MHz* on *PH*0 and a timer could be used to supply the clock to caravel as a PWM signal. I followed this and I connected the clock to *TIM3_CH2* on *PB*5
- Caravel SPI connected to SPI4 (PE2 PE4: PE6) and HKSPI to SPI5 (PF6: PF9)
- Caravel UART connected to UART8 (PE0: PE1)
- Caravel Reset with \overline{RST}
- Caravel remaining 32 I/Os connected to pins that have no conflict on them and are in the order of the breakout board pinout order
- I connected the supplies to external pin header with gpio, xclk and \overline{RST}
- Nucleo Board: NUCLEO144-F429ZI

Caravel + Nucleo Pinout

Caravel BB Pin	ST Morpho Pin
1: io[37]	98: PB15
2: io[36]	96: PB1
3: io[35]	94: PB2
4: io[34]	89: PB6
5: GND	GND
6: vccd	-
7: vddio	-
8: GND	GND
9: io[33]	88: PB12
10: io[32]	77: PB9
11: io[31]	76: PC6
12: io[30]	75: PB8
13: io[29]	74: PC8
14: io[28]	73: PC9

Caravel BB Pin	ST Morpho Pin
15: io[27]	4: PD2
16: io[26]	13: PA13
17: io[25]	15: PA14
18: io[24]	17: PA15
19: io[23]	28: PA0
20: io[22]	32: PA4
21: io[21]	35: PC2
22: io[20]	37: PC3
23: io[19]	38: PC0
24: io[18]	39: PD4
25: io[17]	40: PD3
26: io[16]	41: PD5
27: io[15]	42: PG2
28: io[14]	43: PD6

Caravel + Nucleo Pinout

Caravel BB Pin	ST Morpho Pin
29: io[13]	44: PG3
30: io[12]	45: PD7
31: io[11]	58: PG1
32: io[10]	59: PG0
33: io[9]	63: PG9
34: io[8]	64: PG15
35: io[7]	66: PG10
36: io[6]/tx	136:PE0
37: io[5]/rx	61: PE1
38: io[4]/SCK	11: PF7
39: io[3]/CSB	9: PF6
40: io[2]/SDI	54: PF8
41: io[1]/SDO	56: PF9
42: io[0]	65: PG12

Caravel BB Pin	ST Morpho Pin
43: vccd1	-
44: vdda1	-
45: vdda	-
46: Caravel/SCK	121: PE12
47: gpio	-
48: Caravel/D1	127: PE13
49: Caravel/D0	123: PE14
50: vccd	-
51: Caravel/CSB	128: PE11
52: xclk	-
53: NRST	14: NRST
54: vdda2	-
55: vddio	-
56: vccd2	-

Caravel + Nucleo Board Schematic

Caravel + Nucleo Board Modes

The board has two modes of operation:

- HAT mode:
- MAIN mode: