The Digital Banking Revolution: Effects on Competition and Stability Naz Koont (2024)¹

Presenter: Giselle Labrador-Badia

University of Wisconsin-Madison

November 18, 2024

¹Stanford University, Graduate School of Business

Introduction

- The Bank industry went through a deregulation process in the 1980s and 1990s.
 - In 1981 a bank could only operate in their home state or county.
 - Deregulation process started in the 1980s with voluntary reciprocal interstate agreements.
 - 1994 Riegle-Neal Act: banks could operate across state lines.

Introduction

- The Bank industry went through a deregulation process in the 1980s and 1990s.
 - In 1981 a bank could only operate in their home state or county.
 - Deregulation process started in the 1980s with voluntary reciprocal interstate agreements.
 - 1994 Riegle-Neal Act: banks could operate across state lines.

- Goal:

- Document the evolution of spatial sorting and expansion in response to deregulation.
- Provide a theory that rationalizes the observed patterns (framework Oberfield et al. (2024)).
 - 1. "Span-of-control sorting": more productive banks sort into denser more expensive locations.
 - 2. "Mismatch sorting": banks match the location's characteristics to the funding needs.

Introduction

- Contribution:

- Theory that incorporates space and decision to locate branches.²³
- Understanding location choice of bank through two forms of sorting: span-of-control and mismatch sorting.
- Literature of expansion of multi-plant firms ⁴

²Aguirregabiria et al. (2016, 2020), Corbae and E'Erasmos (2021,2021,2022) focus on diversification.

³Other recent papers are Ji et al (2023) and d'Avernas et al (2023).

⁴Rossi-Hansberg et al (2021), Hsieh and Rossi-Hansberg (2022)); international context: Antras et al (2017), Tintelnot (2016), and others.

Data

- Bank branches and deposits from the FDIC (SOD) from 1981 to 2006.
 - county as the geographical unit of analysis
- Bank-level wholesale funding from Call Reports
 - time deposits, FR funds, brokered deposits.
- Aggregate to holding companies.
- County-level data on population and income from the Census and BEA.

Basic Pattern: Fewer banks with many more branches

Basic Pattern: Top banks expanded by growing geographically

For size group g, in terms of total deposits, branch growth is:

$$\Delta \log \left(\text{ branches } g_t \right) = \underbrace{\Delta \log \left(\text{ branches per county } \right)_{gt}}_{\text{intensive margin growth}} + \underbrace{\Delta \log \left(\text{ counties } \right)_{gt}}_{\text{extensive margin growth}} \ .$$

Basic Pattern: Large banks use more wholesale funding

Figure 4. Geographic Variation in Cellular Provider Coverage

This figure shows county-level proportional differences in AT&T and Verizon LTE coverage, defined to be $(ATT - Verizon)/Verizon \cdot 100$. Darker colors correspond to higher AT&T coverage relative to Verizon coverage. Coverage data at the provider-level come from FCC form F477 in 2015, and are averaged across census blocks within each county.

Evidence of Sorting

Evidence of spatial sorting

- Largest banks were in the densest counties in 1981.
- Relative sorting: banks in group sort across space.
- Absolute sorting: changes in bank size with county density.

Panel A: Mortgage and Business Lending

15 Number of Banks in County 2011 2013 2015 2017 2019 SME Loans: Adopting Banks SME Loans: Non-Adopting Banks Mortgages: Adopting Banks Mortgages: Non-Adopting Banks

Panel B: Branch Presence

Evidence of spatial sorting

- Define the average local population density of bank j in state s in year t to be

$$Z_b \equiv \sum_c \text{ Shares } _{b,c} \cdot \text{ Shocks } _c$$
 Shocks $_c \equiv \text{ AT\&T } _c$ Shares $_{b,c} \equiv \frac{\text{Deposit Share } _{b,c} \cdot \text{Population } _c}{\sum_c \text{ Deposit Share } _{b,c} \cdot \text{Population } _c}$

Main regression specification is

$$\begin{aligned} \text{Digital }_{b,t} &= \delta_1 Z_b + \delta_2 \text{ Coverage }_b + \delta_3 X_{b,t} + \eta_{b,t} \\ Y_{b,t} &= \beta_1 \widehat{\text{Digital }}_{b,t}^{+\beta_2} \text{ Coverage }_{b} + \beta_3 X_{b,t} + \varepsilon_{b,t} \end{aligned}$$

ATT Coverage as instrument

Table 1 Instrument First Stage

	$\operatorname{Digital}$				
	(1)	(2)	(3)		
ATT Coverage	0.57***	0.57***	0.43***		
	(0.11)	(0.11)	(0.11)		
Overall Coverage	-0.00**	-0.00**	-0.00***		
	(0.00)	(0.00)	(0.00)		
Nonbank Fintech Exposure		0.08	0.15		
•		(0.15)	(0.15)		
Prop Over 60			-0.49***		
-			(0.14)		
Median Income			-0.03		
			(0.02)		
Prop Urban			0.11***		
•			(0.02)		
Year FE	Yes	Yes	Yes		
Observations	50358	50358	50358		
Adjusted R^2	0.264	0.264	0.271		
\mathbf{F}	23.15	15.50	24.36		

- Table 1:

- $\beta > 0$ coefficient is evidence of span-of-control sorting.
- Larger banks are located disproportionately in dense counties.

Bank Geographic expansion and digitalization

- dist $_{is}^q = 1 \{ \log (\text{dist}_{is}) \text{ in quartile } q \}$ for q = 2, 3, 4 and dist $_{is}$ to be the avg dist. to HQ.

Table 2 Bank Geographic Expansion

	All		High Inc		Low Inc	
	(1)	(2)	(3)	(4)	(5)	(6)
Digital	0.99**	0.86**	1.33**	1.24**	0.70**	0.53*
	(0.42)	(0.37)	(0.56)	(0.52)	(0.32)	(0.28)
Overall Coverage	0.00**	0.00**	0.00**	0.00**	-0.00	-0.00
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
L.Y	0.70***	0.71***	0.65***	0.66***	0.74***	0.76***
	(0.03)	(0.03)	(0.05)	(0.05)	(0.02)	(0.02)
L.Br Num Markets	0.01**	0.02***	0.01*	0.01*	0.02***	0.02***
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.00)
Nonbank Fintech Exposure	-0.42	-0.37	-0.36	-0.34	-0.50**	-0.43*
-	(0.31)	(0.29)	(0.38)	(0.38)	(0.25)	(0.23)
Log Change Establishments		-0.19**		-0.21		-0.11
-		(0.10)		(0.13)		(0.11)

10 / 41

Evidence of spatial sorting

- Bla bla example slides with colors

Evidence of spatial sorting

Table 3 Bank Branch Response

	(1)	(2)	(3)
	Num Markets	Num Markets	Within-Market
Digital	-0.007	-0.008	-0.059*
	(0.024)	(0.024)	(0.032)
L.Num Markets	0.997***	0.997***	0.004
	(0.004)	(0.004)	(0.003)
L.Within-Market			0.983***
			(0.001)
Nonbank Fintech Exposure		-0.019	
•		(0.023)	
Overall Coverage	0.000	0.000	-0.000
	(0.000)	(0.000)	(0.000)
FE	Year	Year	County-Year
Observations	50,357	50,357	212,798
F	177.45	179.20	325.71

Sorting over time and impact of deregulation

- Top 1% of banks grew in the densest counties, but lost branch share in the most dense counties.

Controls include establishments, employment, payroll, deposit, loan growth and year fixed effects.

Table 4 Bank Balance Sheet Growth

	Assets				Deposits			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
Digital, \$100B+	-0.001	-0.002	-0.010	0.007	0.006	-0.001	0.000	
	(0.007)	(0.007)	(0.007)	(0.008)	(0.008)	(0.008)	(0.006)	
Digital, \$10B - \$100B	0.038***	0.036***	0.034***	0.042***	0.040***	0.038***	0.025***	
	(0.010)	(0.010)	(0.010)	(0.011)	(0.011)	(0.010)	(0.008)	
Digital, \$10B-	-0.012	-0.015	-0.009	-0.012	-0.015	-0.009	-0.018	
	(0.015)	(0.015)	(0.013)	(0.017)	(0.017)	(0.014)	(0.013)	
Overall Coverage	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	
L.Y	0.464***	0.465***	0.458***	0.415***	0.416***	0.419***	0.587***	
	(0.012)	(0.012)	(0.014)	(0.012)	(0.012)	(0.015)	(0.011)	
Nonbank Fintech Exposure		-0.068***	-0.070***		-0.071***	-0.072***	-0.050**	
•		(0.016)	(0.015)		(0.017)	(0.017)	(0.013)	

Sorting over time and impact of deregulation

- Decline in relative sorting patterns until 1998. Staggered changes

$$\log(\text{ Density })_{jst} = \beta_t \text{ Size }_{jt} + \gamma_{st} + \varepsilon_{jst}, \quad t = 1981, \dots, 2006.$$

Table 5 Bank Insured Deposit Ratio

	Insured Deposit Ratio				
	(1)	(2)	(3)		
Digital, \$100B+	-0.017**	-0.017**	-0.012		
	(0.009)	(0.009)	(0.008)		
Digital, \$10B - \$100B	-0.024***	-0.023***	-0.016**		
	(0.009)	(0.009)	(0.008)		
Digital, \$10B-	0.006	0.007	0.006		
	(0.008)	(0.008)	(0.007)		
Overall Coverage	-0.000***	-0.000***	-0.000***		
	(0.000)	(0.000)	(0.000)		
L.Insured Deposit Ratio	0.945***	0.945***	0.971***		
-	(0.011)	(0.011)	(0.008)		
Nonbank Fintech Exposure		0.018**	0.016*		
		(0.009)	(0.009)		

Effect on bank insured deposit ratio

- conclusions of table here

Table 6 Insured Deposits and Business Payroll

	Insured Deposit Ratio		
	(1)	(2)	
Payroll × Digital	-0.013***	-0.012***	
	(0.004)	(0.004)	
Payroll	0.003	0.001	
•	(0.003)	(0.003)	
L.Insured Deposit Ratio	0.643***	0.644***	
	(0.016)	(0.016)	
Log Change Payroll		0.003	
		(0.005)	
Log Change Establishments		0.001	
Dog change Dougholmento		(0.005)	
Log Change Employment		-0.007	
208 01111180 2111911111		(0.005)	
Log Change Dep Growth		-0.003	
		(0.005)	
Voor FF	Voc	Voc	

Year FE Yes Yes 15/41

Bank Low Income Mortgages in New Counties

Table 7 Bank Low Income Mortgages in New Counties

	(1)	(2)	(3)
	Number	Volume	Avg Income Jumbo
Digital	-0.265**	-0.384**	243.518***
	(0.126)	(0.178)	(68.553)
L.Y	0.516***	0.476***	0.129***
	(0.005)	(0.005)	(0.008)
L.Br Num Markets	-0.000***	-0.000***	-0.124***
	(0.000)	(0.000)	(0.026)
Overall Coverage	0.000	0.001	-2.160***
	(0.001)	(0.001)	(0.687)
County-Year FE	Yes	Yes	Yes
Observations	58422	58422	35675
F	179.88	179.78	159.56

Loan Activity in New Counties

Table 8 Loan Applications and Rejections in New Counties

	(1)	(2)	(3)
	Applications	Low Income Application Ratio	Low Income Rejection Ratio
Digital	0.597***	-0.257***	0.763***
	(0.107)	(0.091)	(0.170)
L.Y	0.778***	0.499***	0.620***
	(0.004)	(0.005)	(0.009)
L.Br Num Markets	0.000**	-0.000***	-0.000***
	(0.000)	(0.000)	(0.000)
Overall Coverage	0.001	-0.000	0.001
	(0.001)	(0.001)	(0.003)
County-Year FE	Yes	Yes	Yes
Observations	164531	80331	23159
F	457.42	359.70	253.63

Model Framework

Demand for banking services: Deposits

- Each location ℓ is composed of a set households $I_{\ell}.$
- **Heterogeneous households** choose bank j and branch $o_{j\ell}^D \in O_j$ for deposits, and bank k and branch $o_{k\ell}^L$ for loans,
- given distance to branch and rates $r^D_{j,o^D_{j\ell}}$ and $r^L_{k,o^L_{k\ell}}$,
- common taste for bank j deposit $Q_{i\ell}^D$ and loan $Q_{i\ell}^L$ in ℓ :

$$Q_{j\ell}^D = \bar{Q}_j^D J_{j\ell}^D \phi_{j\ell} \tag{1}$$

$$Q_{j\ell}^L = \bar{Q}_j^L J_{j\ell}^L \phi_{j\ell}, \tag{2}$$

- \bar{Q}_{i}^{D} and \bar{Q}_{i}^{L} are common for bank j (from bank's investment decisions),
- $J^D_{i\ell}$ and $J^L_{i\ell}$ are decreasing functions of distance to bank j 's headquarters,
- $\{\phi_{j\ell}\}_\ell$ are idiosyncratic appeal shifters drawn from a multivariate Frechet distribution.

Demand for banking services: Deposits

Consumers choose to deposit insured deposits in bank j and maximize utility:

$$\max_{b \in B} \quad \mu_{ib} = \underbrace{\alpha_{DI}^R R_b^{DI} + \alpha_{DI}^N N_b + \alpha_{DI}^{O,S} O_b S_b + \alpha_{DI}^{\ominus} \Theta_b + \xi_{ib}}_{\equiv \alpha_{DI} X_b} + \epsilon_{ib}$$

- R_b^{DI} is the interest rate on bank b for insured deposits,
- N_b is the number of branches of bank b,
- O_b is the dummy for banks digital platform,
- S_b is the size of bank b,
- Θ_b are other bank characteristics,
- ξ_{ib} is the structural error term,
- ε_{ib} is the idiosyncratic taste for bank b that distributes as a T1EV.

$$Q_b^{DI} = M^{DI} \cdot s_b^{DI} = M^{DI} \cdot \frac{\exp\left(\alpha_{DI} X_b\right)}{1 + \sum_{b' \in \mathcal{B}} \exp\left(\alpha_{DI} X_{b'}\right)},$$

- Similar demands for uninsured deposits DU.

Demand for banking services: Loans

- Consumers H choose to mortgage in bank j and maximize utility:

$$\max_{b \in B_c} \quad \mu_{ibc} = \underbrace{\alpha_H^R R_{bc}^H + \alpha_H^N N_{bc} + \alpha_H^O O_b + \alpha_H^\Theta \Theta_{bc} + \xi_{ib}}_{\equiv \alpha_H X_{bc}} + \varepsilon_{ibm}$$

- R_{bc}^{H} is the interest rate on bank b for mortgage in county c,
- N_{bc} is the number of branches of bank b in county c,
- O_b is the dummy for banks digital platform,
- Θ_{bc} are other bank characteristics,
- ξ_{ib} is the structural error term,
- ε_{ib} is the idiosyncratic taste for bank b that distributes as a T1EV.
- ε_{ibm} is the idiosyncratic taste for bank b that distributes as a T1EV.

$$Q_{bc}^{H} = M_{c}^{H} \cdot s_{bc}^{H} = M_{c}^{H} \cdot \frac{\exp\left(\alpha_{H} X_{bc}\right)}{1 + \sum_{b' \in \mathcal{B}_{c}} \exp\left(\alpha_{H} X_{b'c}\right)},$$

Similar demands for segment L.

Households

- Given all banks' location choices and interest rate choices, the residual demands are:

$$D_{j\ell} = T^{D} \left(\delta_{o_{j\ell}^{D}, \ell} \right) Q_{j\ell}^{D} A_{\ell}^{D} \mathcal{D} \left(r_{j, o_{j\ell}^{D}}^{D} \right).$$

Microfundation (Appendix):

- From discrete choice model where households choose to bank and branch with idiosyncratic T1EV $arepsilon_{ij}$.

$$D_{j\ell} = \frac{e^{\eta \left[G^D\left(r_{jo_{j\ell}^D}^D\right) + \tilde{Q}_{j\ell}^D - \tilde{T}^D\left(\delta_{\ell_{j\ell}^D}\right)\right]}}{\sum_{k} e^{\eta \left[G^D\left(r_{ko_{k\ell}^D}^D\right) + \tilde{Q}_{k\ell}^D - \tilde{T}^D\left(\delta_{\ell_{k\ell}^D}\right)\right]}} \int_{i \in I_\ell} \mathfrak{d}_i \tilde{\mathcal{D}}\left(r_{j,o_{j\ell}^D}^D\right) di$$

- Bank j is born with a headquarters location ℓ_j^{HQ} , has unit costs θ_j^D and θ_j^L for deposits and loans, and draw local fixed costs ψ_ℓ .
- Bank j choose a set of branch locations O_j and deposit and lending rates r_{jo}^D and r_{jo}^L .
- If it operates in location o, pays a local fixed cost Ψ_o .
- To operate branches O_j , it must hire $H(|O_j|)$ workers at its headquarters location.
- Bank chooses bank appeal, \bar{Q}^D_j and \bar{Q}^L_j , by hiring $C\left(\bar{Q}^D_j, \bar{Q}^L_j\right)$ workers in its headquarters location.
- Wholesale funding then $W_j = L_j D_j$
- The interest rate it pays on wholesale funds is $R\left(W_{j}/D_{j}\right)$.

- Bank j's problem is:

$$\max_{R^{DI},R^{DU},\left\{R_{c}^{H}\right\},\left\{R_{c}^{L}\right\}}\pi_{b} = \pi_{b}\left(R_{b}^{DI},R_{b}^{DU},\left\{R_{bc}^{H}\right\}_{c\in\mathcal{C}_{b}},\left\{R_{bc}^{L}\right\}_{c\in\mathcal{C}_{b}}\right) = \underbrace{\sum_{c\in\mathcal{C}_{b}}\left(R_{bc}^{H}-f\right)Q_{bc}^{H}\left(R_{bc}^{H}\right) + \sum_{c\in\mathcal{C}_{b}}\left(R_{bc}^{L}-f\right)Q_{bc}^{L}\left(R_{bc}^{L}\right) + \sum_{c\in\mathcal{C}_{b}}\left(R_{bc}^{L}-f\right)Q_{bc}^{L}\left(R_{bc}^{L}\right) + \underbrace{\sum_{c\in\mathcal{C}_{b}}\left(R_{bc}^{L}-f\right)Q_{bc}^{L}\left(R_{bc}^{L}\right) + \underbrace{\sum_{c\in\mathcal{C}_{b}}\left(R_{bc}^{L}-f\right)$$

where Q_b is the set of all bank's quantities, f is the federal funds rate, and Φ_b is the bank's total costs.

- The bank can of course invest in multiple branches N and moreover use both branches N and digital platforms O.
- The probability of failure becomes $p_b + \delta^O + \delta^O_a + \delta^N_a N + \delta^N_a N$. Thus, the expected loss L^a_{bc} for lending to borrower a for bank b in county c is given by,

$$L_{bc}^{a} = p_b + \delta^{N} N_{bc} + \delta_{a}^{N} N_{bc} + \delta^{O} O_b + \delta_{a}^{O} O_b$$

- Suppose that the bank makes Q_{bc}^L loans to borrowers of type a=L and Q_{bc}^H loans to borrowers of type a=H in a county c.
- The expected loss $L_{bc}\left(Q_{bc}^{L},Q_{bc}^{H}\right)$ for bank b 's overall lending in county c is given by the following equation.

$$\begin{split} L_{bc}\left(Q_{bc}^{L},Q_{bc}^{H}\right) &= L_{bc}^{L} \cdot Q_{bc}^{L} + L_{bc}^{H} \cdot Q_{bc}^{H} \\ L_{b}\left(Q_{b}\right) &= \sum_{c \in \mathcal{C}_{b}} L_{bc}\left(Q_{bc}^{L},Q_{bc}^{H}\right). \end{split}$$

$$\frac{\partial \Phi_b^j}{\partial Q_b^j} = \phi_j^N N_{bt} Q_b^j + \phi_j^{Q,S} Q_b^j S_b + \phi_j^{O,S} O_b Q_b^j S_b + \phi_j^{\Theta} \Theta_b + \xi_b^j,$$

where Q_b^j is the quantity of insured or uninsured deposits that bank b provides, O_b is a ry variable tracking whether bank b has a digital platform, N_b is bank b 's number of aches, S_b is a categorical variable tracking whether bank b has below \$10 B, between \$10 B \$100B, or above \$100 B in assets, Θ_b is a vector of controls capturing bank b 's baseline differences, and ξ_b^j is the structural disturbance to bank b 's marginal service costs in ket j. While deposit markets are national, loan markets are local at the county-level. Accordy, I consider a parsimonious parameterization of bank b 's marginal loan market costs in ket $j \in \{H, L\}$ and county $c \in \mathcal{C}_b$ to be a linear function of digital platforms, branches, county characteristics,

$$\frac{\partial \Phi_{bc}^{j}}{\partial Q_{bc}^{j}} = \phi_{j}^{N} N_{bc} + \phi_{j}^{O} O_{b} + \phi_{j}^{\Theta} \Theta_{bc} + \xi_{bc}^{j},$$

- The banks problem in t = 0 is:

$$\max_{O_b, \textit{\textbf{N}}_b, \mathcal{C}_b} \Pi_b = \underbrace{\pi_b \left[O_b, \textit{\textbf{N}}_b, \mathcal{C}_b \right]}_{t=1 \; \text{Profits}} - \underbrace{F_O \left(O_b \right)}_{\text{Adoption Cost}} - \underbrace{F_N \left(\textit{\textbf{N}}_b \right)}_{\text{Branch Maintenance}} - \underbrace{F_C \left(\mathcal{C}_b \right)}_{\text{Entry Cost}}$$

Adoption costs:

$$F_{O}\left(O_{b}
ight) = \left(f_{O} + \xi_{b}^{O}\right) \cdot O_{b} \sqrt{\mathsf{Assets}_{b}}$$

- Branch maintenance costs:

$$F_{N}\left(\mathbf{N}_{b}\right) = \sum_{c \in C_{b}} \left(f_{N} + \xi_{b}^{N}\right) \cdot N_{bc}$$

Maintenance costs:

$$F_{C}\left(\mathcal{C}_{b}
ight) = \sum_{c \in \mathcal{C}_{b}} f_{C} \cdot \left(D_{bc} + \xi_{b}^{C}\right) \cdot \text{ Non-Local }_{bc}.$$

Estimation

In order to estimate the demand elasticities for each market segment, I take the natural logarithm of banks' demand equations and re-arrange the resulting expressions. For national insured and uninsured deposit markets $j \in \{DI, DU\}$ as given by Equation (29), I obtain the relationship in Equation (31) between log market shares and bank characteristics for bank b,

$$\log s_b^j - \log s_0^j = \alpha_j^R R_b^j + \alpha_j^N N_b + \alpha_j^{O,S} O_b S_b + \alpha_j^{\Theta} \Theta_b + \xi_b$$

- Similarly, for local high and low income mortgage markets $j \in \{H, L\}$ in counties $c \in C_b$ as given by Equation (30), I obtain Equation (32) for bank b,

$$\log s_{bc}^j - \log s_{0c}^j = \alpha_j^R R_{bc}^j + \alpha_j^N N_{bc} + \alpha_j^O O_{bc} + \alpha_j^\Theta \Theta_{bc} + \xi_{bc}.$$

Estimation

- Banks' expected loan losses satisfy Equation (22). In this section I estimate the loan loss parameters, i.e. p_b and the δ 's that appear in (22), using bank-level panel data from 2010 through 2019. For ease of interpretation, I divide both sides of the equation by the total quantity of loans that bank b has on its balance sheet, Q_{bt}^{Bal} , in order to obtain on the left hand side the per-unit loss. I map this empirically to banks' loan loss allocations divided by banks' balance sheet quantity of loans, as reported in their regulatory Call Reports. I restrict to banks whose mortgage originations in a given year represent greater than 2% of their loan portfolio. Specifically, I estimate,

$$\begin{aligned} \text{Per Unit } \ \mathsf{Loss}_{b,t} &= \underbrace{\delta^O O_{bt} \frac{\left(Q^L_{bct} + Q^H_{bct}\right)}{Q^{Bal}_{bt}} + \delta^O_L O_{bt} \frac{Q^L_{bt}}{Q^{Bal}_{bt}} + \delta^O_H O_{bt} \frac{Q^H_{bt}}{Q^{Bal}_{bt}}}_{Q^{Bal}_{bt}} \\ &+ \underbrace{\delta^N \frac{\sum_{cc\mathcal{C}} N_{bc} \left(Q^L_{bct} + Q^H_{bct}\right)}{Q^{Bal}_{bt}} + \delta^N_L \frac{\sum_{c\in\mathcal{C}} N_{bc} Q^L_{bct}}{Q^{Bal}_{bt}} + \delta^N_H \frac{\sum_{c\in\mathcal{C}} N_{bc} Q^H_{bct}}{Q^{Bal}_{bt}}}_{D^{Bal}_{bt}} \\ &+ \underbrace{\delta^N \frac{\sum_{cc\mathcal{C}} N_{bc} \left(Q^L_{bct} + Q^H_{bct}\right)}{Q^{Bal}_{bt}} + \delta^N_L \frac{\sum_{c\in\mathcal{C}} N_{bc} Q^L_{bct}}{Q^{Bal}_{bt}} + \delta^N_H \frac{\sum_{c\in\mathcal{C}} N_{bc} Q^H_{bct}}{Q^{Bal}_{bt}}}_{D^{Bal}_{bt}} \\ &+ \underbrace{\delta^N \text{ Per Unit } \text{ Loss}_{b,t-1} + \delta_C \text{ Coverage }_b + \delta_t + \xi_{bt}}_{D^{Bal}_{bt}}. \end{aligned}$$

Estimation: Service Provision Costs

- To estimate the parameters that appear in banks' service provision costs, take FOC:

$$FOC_{R^{j}}: \underbrace{f - R^{j} - Q^{j} \left(\frac{\partial Q^{j}}{\partial R^{j}}\right)^{-1}}_{\text{Spread } \frac{j}{b}} = \frac{\partial \Phi_{b}^{j}}{\partial Q^{j}} \quad \text{ for } j \in \{DI, DU\}$$

$$FOC_{R^{j}_{c}}: \underbrace{R^{j}_{c} - f + Q^{j}_{c} \left(\frac{\partial Q^{j}_{c}}{\partial R^{j}_{c}}\right)^{-1} - \frac{\partial L}{\partial Q^{j}_{c}}}_{\text{Spread } \frac{j}{b}_{c}} = \frac{\partial \Phi_{bc}^{j}}{\partial Q^{j}_{c}} \quad \text{ for } j \in \{H, L\}, c \in C_{b}.$$

- Combined with banks' first order conditions to arrive at the following expressions.

$$\begin{aligned} &\mathsf{Spread}_b^j = \phi_j^N N_{bc} Q_b^j + \phi_j^{Q,S} Q_b^j S_b + \phi_j^{O,S} O_b Q_b^j S_b + \phi_j^{\Theta} \Theta_b + \xi_b^j & \mathsf{for} \ j \in \{\mathsf{DI}, \mathsf{DU}\} \\ &\mathsf{Spread}_{b,c}^j = \phi_j^N N_{bc} + \phi_j^O O_b + \phi_j^{\Theta} \Theta_{bc} + \xi_{bc}^j & \mathsf{for} \ j \in \{\mathsf{H}, \mathsf{L}\}, \ c \in C_b \end{aligned}$$

Estimation: Service Provision Costs

$$\frac{1}{B} \sum_{b} \left[Z_{b}^{-} \left(\Delta \hat{\pi} \left(1, d_{-b}, r_{b} \right) - \Delta \hat{\pi} \left(0, d_{-b}, r_{b} \right) \right) \cdot \mathsf{Assets}_{b}^{-1/2} \mid O_{b}^{*} = 0 \right] \leq f_{O}$$

$$\frac{1}{B} \sum_{b} \left[Z_{b}^{+} \left(\Delta \hat{\pi} \left(1, d_{-b}, r_{b} \right) - \Delta \hat{\pi} \left(0, d_{-b}, r_{b} \right) \right) \cdot \mathsf{Assets}_{b}^{-1/2} \mid O_{b}^{*} = 1 \right] \geq f_{O}$$

- Maybe copy other costs
- Consumer Surplus $E[CS] = \frac{1}{\alpha} \log \left(\sum_{j=0}^{J} \exp \left(\alpha_j X_b \right) \right)$,
- Per Unit $\mathsf{Loss}_{b,t}^L = \left(\delta^O + \delta_L^O\right) \frac{O_{b,t} Q_{bt}^L}{Q_{bt}^{Bal}} + \left(\delta^B + \delta_L^B\right) \frac{\sum_{c} B_{bc} Q_{bct}^L}{Q_{bt}^{Bal}} + \delta_U$ Per Unit $\mathsf{Loss}_{b,t-1} + \delta_C$ Coverage $_b + \delta_t + \xi_{bt}$.

Demand results

- What was the effect of expansion on the dynamics of a bank's reliance on wholesale funding?
- Regress the change in a bank's outcome variable on WSF. Specification details
- Results:
 - Large firms decrease their wholesale funding exposure immediately after deregulation.
 - Number of branches and active counties have positive cumulative effects from wholesale funding.
 - Geographic deregulation relaxed liquidity constraints for banks, allowing them to raise deposits through branching and reduce their exposure to wholesale funding.

Demand estimation results

Table 9 Deposit Market Estimates

Panel A: Demands

Parameter	Symbol	j = Ins	sured	j = Unii	nsured
Deposit Rate	$lpha_j^R$	1.393**	(0.667)	2.259***	(0.628)
Digital Platforms, Banks above $100B$	$\alpha_j^{O,100B+}$	-0.060	(0.088)	0.670**	(0.283)
Digital Platforms, Banks $10B-100B$	$\alpha_j^{O,10B-100B}$	0.214***	(0.071)	0.710***	(0.259)
Digital Platforms, Banks below $10B$	$lpha_j^{O,10B-}$	0.172***	(0.057)	0.490**	(0.205)
Branches	$lpha_j^N$	0.086***	(0.033)	0.383***	(0.094)
Lag Loan Losses	$lpha_j^{Losses}$	-0.629	(0.449)	-3.223*	(1.890)
Overall Coverage	$lpha_j^{Coverage}$	0.001**	(0.000)	0.001	(0.001)
Lag Assets	$lpha_j^{Assets}$	0.970***	(0.009)	0.935***	(0.027)
Lag Insured Ratio	$lpha_j^{Insured}$	1.158***	(0.028)	-5.296***	(0.108)
Local Population	$lpha_j^{Population}$	-0.000	(0.000)	-0.000***	(0.000)

Deposits Cost estimation results

Panel B: Service Costs

Parameter	Symbol	j = Ins	sured	$j = U_1$	ninsured
Baseline, Banks above \$100B	$\phi_j^{Q,100B+}$	0.14	(0.24)	1.40	(3.10)
Baseline, Banks $10B - 100B$	$\phi_j^{Q,10B-100B}$	0.85***	(0.31)	2.63	(2.32)
Baseline, Banks below \$10B	$\phi_j^{Q,10B+}$	5.28**	(2.63)	-4.56	(17.40)
Digital Platforms, Banks above \$100B	$\phi_j^{O,100B+}$	-0.06	(0.26)	-1.36	(3.18)
Digital Platforms, Banks $10B-100B$	$\phi_j^{O,10B-100B}$	-0.66*	(0.40)	-3.49	(3.19)
Digital Platforms, Banks below $10B$	$\phi_j^{O,10B-}$	-6.51*	(3.73)	4.93	(29.76)
Branches	ϕ_j^N	-0.02***	(0.01)	0.00	(0.01)

Demand and cost for loans results

Panel A: Demands

Parameter	Symbol	j = High	Income	j = Low	Income
Mortgage Rate	$lpha_j^R$	-0.66***	(0.04)	-0.56***	(0.04)
Digital	$lpha_j^O$	2.27**	(1.05)	1.73	(1.34)
Branches	$lpha_j^N$	0.04***	(0.00)	0.03***	(0.00)
Local Market	α_j^{Local}	1.89***	(0.03)	1.17***	(0.03)
Overall Coverage	$lpha_j^{Coverage}$	0.00	(0.00)	-0.00	(0.00)

Panel B: Service Costs

Parameter	Symbol	j = High	Income	j = Low	Income
Digital	ϕ^O_j	-1.93***	(0.25)	-1.30***	(0.18)
Branches	ϕ^N_j	-0.01***	(0.00)	-0.00***	(0.00)
County Income	ϕ_j^{Income}	-0.00***	(0.00)	-0.00***	(0.00)

Loan losses estimation results

Panel C: Loan Losses

Parameter	Symbol	Estimate	S.E.
Digital, Overall	δ_O	-0.033	(0.118)
Digital, Low Income	δ_L^O	0.836*	(0.444)
Digital, High Income	δ_H^O	-0.526***	(0.196)
Branches, Overall	δ^N	-0.261*	(0.150)
Branches, Low Income	δ_L^N	0.214	(0.167)
Branches, High Income	δ^N_H	0.212	(0.153)
Lag Losses	δ_U	85.124***	(0.419)
Overall Coverage	δ_C	-0.000*	(0.000)

Banks fixed costs estimation results

Table 11 Bank Fixed Investment Costs

	Adoption f_O	Branch f_N	Entry f_C	
Estimate	407,700	25,640	164.4	
Bounds (L, U)	(398,800 , 416,600)	(25,270 , 26,010)	(10.8 , 318.0)	

Aggregate Effects on Competition

Table 12 Aggregate Effect of Digital Platforms on Competition

Panel A: Consolidation and Integration

	Non-Digital Equilibrium	Digital Equilibrium	Change
нні	0.177	0.164	-6.9%
Top Share	0.909	0.894	-1.7%
Banks in County	27.59	29.83	8.2%
Bank Branches	56.43	53.15	-5.8%

Competition Implications

Panel B: Markups, Quantities, and Expected Consumer Surplus

	Change Adj. Markup	Change Q	Change E[CS]
Deposits	-0.3%	6.3%	15.1%
Insured	-1.0%	0%	0%
Uninsured	0.4%	15.3%	32.1%
Mortgages	-7.7%	60.3%	239.6%
High Income	-5.7%	63.3%	307.2%
Low Income	-14.2%	18.8%	26.0%
Overall			26.6%

Panel C: Bank Profits

	Change Profit
Aggregate	0%
Average, $100B+$	4.0%
Average, $10B-100B$	15.0%
Average, \$10B-	-44.2%

Financial Stability implications

Table 13 Financial Stability Implications of Digital Platforms

Panel A: Systemic Importance

	Sum	Insured	Uninsured	High Income	Low Income	Counties
Digital, \$100B+	4.0%	-1.4%	12.5%	44.2%	7.0%	5.1%
Digital, $10B-100B$	29.0%	29.1%	25.2%	60.0%	16.2%	6.9%
Digital, \$10B-	17.1%	22.3%	0.8%	70.1%	19.1%	5.3%
Non-Digital	-20.7%	0%	-38.3%	-92.4%	-47.2%	0.1%

Panel C: Funding Risk

Uninsured Ratio	Non-Digital Equilibrium	Digital Equilibrium	Change
Aggregate	0.41	0.45	8.5%
Digital, \$100B+	0.38	0.44	17.6%
Digital, $10B-100B$	0.29	0.31	7.7%
Digital, \$10B-	0.20	0.19	-3.6%
Non-Digital	0.22	0.17	-22.5%

Conclusion

- Paper proposes a model of spatial sorting of banks.
- Banks sort into locations based on mismatch sorting and span-of-control sorting.
- Evidence evidence seems to support the model.
- Deregulation relaxed liquidity constraints for banks through branching.

Thank you!

Appendix

Impact of deregulation: Staggered changes in deregulation

	(1)	(2)	(3)
	Num Markets	Num Markets	Within-Marke
Digital	-0.007	-0.008	-0.059*
	(0.024)	(0.024)	(0.032)
L.Num Markets	0.997***	0.997***	0.004
	(0.004)	(0.004)	(0.003)
L.Within-Market			0.983***
			(0.001)
Nonbank Fintech Exposure		-0.019	
		(0.023)	
Overall Coverage	0.000	0.000	-0.000
	(0.000)	(0.000)	(0.000)
FE	Year	Year	County-Year

Observations

Connecting mismatch sorting to the level of wholesale funding

- Denser locations are less deposit intensive.

$$\log(D/L)_{ct} = \phi \log \left(\text{ Density }_{ct} \right) + \text{controls }_{ct} + \gamma_t + \varepsilon_{ct}$$

Table 4 Bank Balance Sheet Growth

		Assets			Dep	osits	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Digital, \$100B+	-0.001	-0.002	-0.010	0.007	0.006	-0.001	0.000
	(0.007)	(0.007)	(0.007)	(0.008)	(0.008)	(0.008)	(0.006)
Digital, \$10B - \$100B	0.038***	0.036***	0.034***	0.042***	0.040***	0.038***	0.025***
	(0.010)	(0.010)	(0.010)	(0.011)	(0.011)	(0.010)	(0.008)
Digital, \$10B-	-0.012	-0.015	-0.009	-0.012	-0.015	-0.009	-0.018
	(0.015)	(0.015)	(0.013)	(0.017)	(0.017)	(0.014)	(0.013)
Overall Coverage	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***	0.000***
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
L.Y	0.464***	0.465***	0.458***	0.415***	0.416***	0.419***	0.587***
	(0.012)	(0.012)	(0.014)	(0.012)	(0.012)	(0.015)	(0.011)
Nonbank Fintech Exposure		-0.068***	-0.070***		-0.071***	-0.072***	-0.050***
•		(0.016)	(0.015)		(0.017)	(0.017)	(0.013)
Est. Growth			0.031***			0.033***	
			(0.010)			(0.011)	

2/7

Headquarter location and the use of wholesale funding

- Less wholesale funding in counties that are deposit intensive.

WFE_{j,1984} =
$$\beta \log(D/L)_{c_i^{HQ}} + \text{controls}_{j,1984} + \varepsilon_{j,1984}$$
.

where $WFE_{i,1984}$ denotes the log of bank j 's wholesale funding exposure in 1984.

Table 5 Bank Insured Deposit Ratio

	Insur	Insured Deposit Ratio		
	(1)	(2)	(3)	
Digital, \$100B+	-0.017**	-0.017**	-0.012	
	(0.009)	(0.009)	(0.008)	
Digital, \$10B - \$100B	-0.024***	-0.023***	-0.016**	
	(0.009)	(0.009)	(0.008)	
Digital, \$10B-	0.006	0.007	0.006	
,	(0.008)	(0.008)	(0.007)	
Overall Coverage	-0.000***	-0.000***	-0.000***	
	(0.000)	(0.000)	(0.000)	
L Insured Deposit Ratio	0.945***	0.945***	0.971***	

Spatial expansion patterns and the level of wholesale funding

Estimate the Poisson regression:

$$\begin{split} \log \left(\mathbb{E} \left[\text{ branches } _{jct} \right] \right) = & \beta_0 \text{WFE}_{j,1984} \times \log(D/L)_c + \beta_1 \text{WFE}_{j,1984} \times \log\left(\text{ Density } _{ct} \right) \\ & + \phi_0 \operatorname{Size}_{jt} \times \log(D/L)_c + \phi_1 \operatorname{Size}_{jt} \times \log\left(\text{ Density } _{ct} \right) \\ & + \delta \log\left(\text{ Dist } _{jc} \right) + \gamma_{jt} + \gamma_{ct} + \varepsilon_{jct}. \end{split}$$

Banks with more exposure to wholesale funding expanded into locations that were deposit-abundant.

Spatial expansion patterns and the level of wholesale funding

Table 6 Insured Deposits and Business Payroll

	Insured Deposit Ratio		
	(1)	(2)	
Payroll × Digital	-0.013***	-0.012***	
	(0.004)	(0.004)	
Payroll	0.003	0.001	
	(0.003)	(0.003)	
L.Insured Deposit Ratio	0.643***	0.644***	
-	(0.016)	(0.016)	
Log Change Payroll		0.003	
		(0.005)	
Log Change Establishments		0.001	
		(0.005)	

Spatial expansion patterns and the level of wholesale funding

$$\log(D/L)_{jst} = \beta_0 \operatorname{Size}_{jt} + \beta_1 \operatorname{Size}_{jt} \times \operatorname{Recip}_{st} + \beta_2 \operatorname{WFE}_{j,1984} + \beta_3 \operatorname{WFE}_{j,1984} \times \operatorname{Recip}_{st} + \gamma_{st} + \varepsilon_{jst}$$

Standard errors are reported in parentheses and are two-way clustered at the state and bank level.

Table 7 Bank Low Income Mortgages in New Counties

	(1)	(2)	(3)
	Number	Volume	Avg Income Jumbo
Digital	-0.265**	-0.384**	243.518***
	(0.126)	(0.178)	(68.553)
L.Y	0.516***	0.476***	0.129***
	(0.005)	(0.005)	(0.008)
L.Br Num Markets	-0.000***	-0.000***	-0.124***
	(0.000)	(0.000)	(0.026)

The impact of deregulation on bank expansion and wholesale funding

- What was the effect of expansion on the dynamics of a bank's reliance on wholesale funding?
- Regress the change in a bank's outcome variable on the change in wholesale funding.

$$Y_{jt+h} - Y_{jt} = \underbrace{\beta_{0h} \operatorname{Recip}_{jt}}_{\text{baseline}} + \underbrace{\beta_{1h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt}}_{\text{additional effect}} + \underbrace{\beta_{2h} \operatorname{Recip}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}} + \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{0h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

$$= \underbrace{\beta_{3h} \operatorname{Recip}_{jt} \times \operatorname{WFE}_{jt} \times \operatorname{Large}_{j}}_{\text{additional size effect}}$$

where h = 1, ..., 7, Large; is equal to 1 if bank j is in the top 5% of banks by deposits in the first sample year, 1984; Recip_{ir} is equal to 1 if bank j is in a state that has opened up to any other state by year t.