Vetores

Pedro H A Konzen

21 de novembro de 2024

Konzen, Pedro Henrique de Almeida

Vetores: notas de aula / Pedro Henrique de Almeida Konzen. –2024. Porto Alegre.- 2024.

"Esta obra é uma edição independente feita pelo próprio autor."

1. Vetores. 2. Espaço euclidiano. 3. Base canônica.

Licença CC-BY-SA 4.0.

Licença

Este texto é disponibilizado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR

ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

O site notaspedrok.com.br é uma plataforma que construí para o compartilhamento de minhas notas de aula. Essas anotações feitas como preparação de aulas é uma prática comum de professoras/es. Muitas vezes feitas a rabiscos em rascunhos com validade tão curta quanto o momento em que são concebidas, outras vezes, com capricho de um diário guardado a sete chaves. Notas de aula também são feitas por estudantes - são anotações, fotos, prints, entre outras formas de registros de partes dessas mesmas aulas. Essa dispersão de material didático sempre me intrigou e foi o que me motivou a iniciar o site.

Com início em 2018, o site contava com apenas três notas incipientes. De lá para cá, conforme fui expandido e revisando os materais, o site foi ganhando acessos de vários locais do mundo, em especial, de países de língua portugusa. No momento, conta com 13 notas de aula, além de minicursos e uma coleção de vídeos e áudios.

As notas de **Vetores** abordam tópicos introdutórios sobre vetores no espaço euclidiano.

Aproveito para agradecer a todas/os que de forma assídua ou esporádica contribuem com correções, sugestões e críticas! ;)

Pedro H A Konzen

https://www.notaspedrok.com.br

Conteúdo

Li	cenç	a		iii
P	refác	io		iv
1	Fun	ıdamer	ntos	1
	1.1	Segme	entos Orientados	1
		1.1.1	Segmento	1
		1.1.2	Segmento Orientado	3
		1.1.3	Exercícios Resolvidos	6
		1.1.4	Exercícios	8
	1.2	Defini	ção de Vetor	11
		1.2.1	Exercícios Resolvidos	14
		1.2.2	Exercícios	16
	1.3	Opera	ções Elementares com Vetores	20
		1.3.1	Adição de Vetores	20
		1.3.2	Vetor oposto	22
		1.3.3	Subtração de vetores	23
		1.3.4	Multiplicação de Vetor por Escalar	23
		1.3.5	Resumo das Propriedades	26
2	Bas	es e C	oordenadas	34
	2.1	Comb	inação Linear	34
		2.1.1	Interpretação Geométrica	
		2.1.2	Exercícios Resolvidos	
		2.1.3	Exercícios	38
	2.2	Deper	ndência Linear	41

CONTEÚDO vi

		2.2.1 Dois Vetores no Espaço
		2.2.2 Três Vetores no Espaço
		2.2.3 Quatro ou Mais Vetores no Espaço
		2.2.4 Exercícios Resolvidos
		2.2.5 Exercícios
	2.3	Bases e Coordenadas
		2.3.1 Operações de Vetores com Coordenadas 50
		2.3.2 Dependência linear
		2.3.3 Bases Ortonormais
		2.3.4 Exercícios Resolvidos
		2.3.5 Exercícios
	2.4	Mudança de base
3	Pro	dutos 71
	3.1	Produto Escalar
	0.1	3.1.1 Propriedades do Produto Escalar
		3.1.2 Exercícios Resolvidos
		3.1.3 Exercícios
	3.2	Ângulo entre Vetores
	J	3.2.1 Desigualdade Triangular
		3.2.2 Exercícios Resolvidos
		3.2.3 Exercícios
	3.3	Projeção Ortogonal
		3.3.1 Exercícios Resolvidos
		3.3.2 Exercícios
	3.4	Produto Vetorial
	9	3.4.1 Interpretação Geométrica
		3.4.2 Vetores Canônicos
		3.4.3 Associatividade por Escalar 90
		3.4.4 Produto Vetorial por Coordenadas 91
		3.4.5 Exercícios Resolvidos
		3.4.6 Exercícios
	3.5	Propriedades do Produto Vetorial
		3.5.1 Exercícios Resolvidos
		3.5.2 Exercícios
	3.6	Produto Misto
		3.6.1 Interpretação Geométrica
		3.6.2 Propriedades

CONTEUDO											vii
3.6.3	Exercícios	Resolvidos									106
3.6.4	Exercícios			•							108
Bibliografia											109

Capítulo 1

Fundamentos

Neste capítulo, seguimos uma abordagem geométrica para introduzir os conceitos fundamentais e as operações básicas envolvendo vetores.

1.1 Segmentos Orientados

O conceito de **segmento orientado** é fundamental na definição de vetores. Como o próprio nome indica, trata-se de definir uma orientação a um dado **segmento de reta**. Antes, portanto, vamos definir o que entendemos por um segmento.

1.1.1 Segmento

https://youtu.be/J-GN-uulfRs

Sejam dados dois pontos A e B sobre uma reta r. O conjunto de todos os pontos de r entre A e B é chamado de **segmento** e denotado por AB. A reta r é chamada de **reta suporte** e os pontos A e B de **pontos extremos**. Consulte a Figura 1.1.

Figura 1.1: Um segmento AB de uma reta (direção) r.

Comprimento e Direção

O comprimento de um segmento AB é denotado por |AB| e definido como a distância entre seus pontos extremos A e B. Em outras palavras, é o tamanho do segmento¹. Consulte a Figura 1.2

Figura 1.2: Comprimento de um segmento AB.

A direção de um segmento AB é a direção de sua reta suporte, i.e. a direção da reta que fica determinada pelos pontos A e B. Logo, dois segmentos AB e CD têm a mesma direção, quando suas retas suportes são paralelas ou coincidentes (ou seja, elas têm a mesma direção).

Figura 1.3: Segmentos de mesma direção $r \parallel s$.

Exemplo 1.1.1. Consideramos os segmentos representados na Figura 1.4. Observamos que $AB \in CD$ têm as mesmas direções, mas comprimentos dife-

¹Em aplicações, o comprimento é medido em unidades de comprimento, metro (m), no sistema internacional de unidades (SI).

rentes. Já, o segmento EF tem o mesmo comprimento que AB (verifique!), mas tem direção diferente dos segmentos AB e CD.

Figura 1.4: Segmentos de diferentes comprimentos e direções.

Segmento Nulo

Se A e B são pontos coincidentes, então chamamos AB de **segmento nulo** e temos |AB| = 0. Observamos que a representação geométrica de um segmento nulo é um ponto, tendo em vista que seus pontos extremos são coincidentes. Como existem infinitas retas de diferentes direções que passam por um único ponto, temos que segmentos nulos não têm direção definida.

1.1.2 Segmento Orientado

https://youtu.be/Mv0fW3_6kVg

Observamos que um dado segmento AB é igual ao segmento BA. Agora, podemos associar a noção de **sentido** a um segmento, escolhendo um dos pontos como sua **origem** (ou **ponto de partida**) e o outro como sua **extremidade** (ou **ponto de chegada**). Ao fazermos isso, definimos um **segmento orientado**.

Mais precisamente, um segmento orientado \overrightarrow{AB} é o segmento definido pelos pontos A e B, sendo A o ponto de partida (origem) e B o ponto de chegada (extremidade). Consulte a Figura 1.5.

Figura 1.5: Um segmento orientado \overrightarrow{AB} .

Comprimento e Direção

As noções de comprimento e de direção para segmentos estendem-se diretamente a segmentos orientados. Dizemos que dois segmentos orientados não nulos \overrightarrow{AB} e \overrightarrow{CD} têm a **mesma direção**, quando as retas AB e CD são paralelas ou coincidentes. Em outras palavras, dois segmentos orientados não nulos têm a mesma direção quando suas retas suporte são paralelas ou coincidentes.

O comprimento de um segmento orientado \overrightarrow{AB} é a norma do segmento \overrightarrow{AB} , i.e. $\left|\overrightarrow{AB}\right| = |AB|$. O segmento orientado nulo \overrightarrow{AA} tem comprimento $\left|\overrightarrow{AA}\right| = 0$ e não tem direção definida.

Sentido

https://youtu.be/nT0VUIp7nIM

O sentido de um segmento orientado é o do ponto de partida (origem) para o ponto de chegada (extremo). Por exemplo, o segmento orientado \overrightarrow{AB} tem sentido do ponto A ao B.

Segmentos orientados \overrightarrow{AB} e \overrightarrow{CD} de mesma direção podem ter o mesmo sentido ou sentidos opostos. No caso de suas retas suportes não serem coincidentes, os segmentos orientados \overrightarrow{AB} e \overrightarrow{CD} têm o mesmo sentido, quando os segmentos AC e BD não se interceptam. No contrário, caso estes se interceptam, os segmentos orientados \overrightarrow{AB} e \overrightarrow{CD} têm sentidos opostos.

Exemplo 1.1.2. Na Figura 1.6, temos que os segmentos \overrightarrow{AB} e \overrightarrow{CD} têm o mesmo sentido. De fato, observamos que eles têm a mesma direção e que os

segmentos AC e BD têm interseção vazia.

Figura 1.6: Segmentos orientados \overrightarrow{AB} e \overrightarrow{CD} de mesmo sentido. Segmentos orientados \overrightarrow{EF} e \overrightarrow{GH} de sentidos opostos.

Na mesma Figura 1.6, temos que os segmentos orientados \overrightarrow{EF} e \overrightarrow{GH} têm sentidos opostos, pois têm a mesma direção e os segmentos EG e FH se interceptam.

Observação 1.1.1. (Transitividade do sentido.) A propriedade de segmentos orientados terem o mesmo sentido é transitiva. Ou seja, se \overrightarrow{AB} e \overrightarrow{CD} têm o mesmo sentido e \overrightarrow{CD} e \overrightarrow{EF} têm o mesmo sentido, então \overrightarrow{AB} e \overrightarrow{EF} têm o mesmo sentido.

Com base na Observação 1.1.1, analisamos o sentido de dois segmentos orientados e colineares escolhendo um deles e construindo um segmento orientado de mesmo sentido e não colinear. Então, analisamos o sentido dos segmentos orientados originais com respeito ao introduzido.

Relação de Equipolência

https://youtu.be/CgfyqqvhBng

Um segmento orientado não nulo \overrightarrow{AB} é **equipolente** a um segmento orientado \overrightarrow{CD} , quando \overrightarrow{AB} tem o **mesmo comprimento**, a **mesma direção** e o **mesmo sentido** de \overrightarrow{CD} (consulte a Figura 1.7). Segmentos nulos também são considerados equipolentes entre si.

Usamos a notação $\overrightarrow{AB} \sim \overrightarrow{CD}$ para indicar que \overrightarrow{AB} é equipolente a \overrightarrow{CD} . Caso

6

contrário, escrevemos $\overrightarrow{AB} \nsim \overrightarrow{CD}$.

Figura 1.7: Dois segmentos orientados equipolentes.

A relação de equipolência é uma relação de equivalência. De fato, temos:

• relação reflexiva: $\overrightarrow{AB} \sim \overrightarrow{AB}$;

• relação simétrica: $\overrightarrow{AB} \sim \overrightarrow{CD} \Rightarrow \overrightarrow{CD} \sim \overrightarrow{AB}$;

• relação transitiva: $\overrightarrow{AB} \sim \overrightarrow{CD}$ e $\overrightarrow{CD} \sim \overrightarrow{EF} \Rightarrow \overrightarrow{AB} \sim \overrightarrow{EF}$.

Com isso, dado um segmento orientado \overrightarrow{AB} , definimos a classe de equipolência de \overrightarrow{AB} como o conjunto de todos os seus segmentos equipolentes. O segmento \overrightarrow{AB} é um representante desta classe, a qual é denotada por $|\overrightarrow{AB}|_{\sim}$.

1.1.3 Exercícios Resolvidos

ER 1.1.1. Sejam dados três pontos não colineares A, B e D. Escreva a área do paralelogramo determinado pelos segmentos AB e AD com respeito aos comprimentos deles e ao ângulo determinado por eles.

Solução. Começamos desenhando um paralelogramo determinado por segmentos AB e AD. Consulte a Figura 1.8.

Figura 1.8: Paralelogramo determinado por segmentos AB e AD.

Denotando por α o ângulo determinado pelos segmentos AB e AD, temos que a área deste paralelogramo pode ser escrita por

$$A = |AB| \cdot |AD| \operatorname{sen} \alpha. \tag{1.1}$$

 \Diamond

ER 1.1.2. Mostre que $\overrightarrow{AB} \sim \overrightarrow{CD}$ se, e somente se, $\overrightarrow{BA} \sim \overrightarrow{DC}$.

Solução. Para mostrar que

$$\overrightarrow{AB} \sim \overrightarrow{CD} \Leftrightarrow \overrightarrow{BA} \sim \overrightarrow{DC},$$
 (1.2)

vamos primeiro mostrar a implicação, i.e. que

$$\overrightarrow{AB} \sim \overrightarrow{CD} \Rightarrow \overrightarrow{BA} \sim \overrightarrow{DC}.$$
 (1.3)

Logo, assumimos que $\overrightarrow{AB} \sim \overrightarrow{CD}$, mostramos que

a)
$$|\overrightarrow{BA}| = |\overrightarrow{DC}|$$
.

De fato, temos

$$\left| \overrightarrow{BA} \right| = \left| \overrightarrow{AB} \right| \stackrel{\sim}{=} \left| \overrightarrow{CD} \right| = \left| \overrightarrow{DC} \right|.$$
 (1.4)

b) \overrightarrow{BA} e \overrightarrow{DC} têm as mesmas direções.

A direção de \overrightarrow{BA} é a mesma de \overrightarrow{AB} , pois suas retas suportes são coincidentes. Pela equipolência, essa também é a direção de \overrightarrow{CD} . Por fim, \overrightarrow{CD} e \overrightarrow{DC} têm a mesma direção, pois suas retas suportes são coincidentes. O resultado segue por transitividade.

c) \overrightarrow{BA} e \overrightarrow{DC} têm os mesmos sentidos.

Como, por hipótese, \overrightarrow{AB} tem o mesmo sentido de \overrightarrow{CD} , temos que os segmentos AC e BD não se interceptam. Isto, por sua vez, mostra que \overrightarrow{BA} e \overrightarrow{DC} têm o mesmo sentido.

Dos items, a), b) e c), concluímos que

$$\overrightarrow{AB} \sim \overrightarrow{CD} \Rightarrow \overrightarrow{BA} \sim \overrightarrow{DC}.$$
 (1.5)

Para mostrar a recíproca, i.e. que

$$\overrightarrow{AB} \sim \overrightarrow{CD} \Leftarrow \overrightarrow{BA} \sim \overrightarrow{DC}.$$
 (1.6)

basta substituir \overrightarrow{AB} (\overrightarrow{BA}) por \overrightarrow{BA} (\overrightarrow{AB}) e \overrightarrow{CD} (\overrightarrow{DC}) por \overrightarrow{DC} (\overrightarrow{CD}) nos itens a), b) e c) demonstrados acima. Em outras palavras, a demonstração é analoga. Verifique!

 \Diamond

1.1.4 Exercícios

E.1.1.1. Complete as lacunas.

- a) Seja r a reta determinada pelos pontos A e B. O segmento AB é o conjunto de _____ pertencentes a r e que estão ____ A e B (inclusive).
- b) O comprimento de um segmento AB é definido como a _____ entre A e B e é denotada por ____.
- c) Chamamos de _____ de um dado segmento AB, a reta determinada pelos pontos A e B.
- d) AB é dito ser um segmento nulo, quando A e B são pontos ______.

E.1.1.2. Complete as lacunas.

- a) Segmento orientado é um segmento com _____ definido.
- b) Em um segmento orientado \overrightarrow{AB} , A é chamado de ______ e
- c) Se as retas AB e CD são paralelas ou coincidentes, então \overrightarrow{AB} e \overrightarrow{CD} têm a mesma .

- d) O comprimento de um segmento orientado \overrightarrow{AB} é definido como o comprimento do segmento .
- e) \overrightarrow{AB} e \overrightarrow{CD} têm _____ quando os segmentos AC e BD não se interceptam (se interceptam).

E.1.1.3. Complete as lacunas.

- a) \overrightarrow{AB} e \overrightarrow{CD} são _____ se, e somente se, \overrightarrow{AB} e \overrightarrow{CD} têm a mesma ____ e o mesmo ____ .
- b) Pela reflexividade da relação de equipolência, $\overrightarrow{CD} \sim$ ____.
- c) Pela simetria da relação de equipolência, se $\overrightarrow{EF} \sim \overrightarrow{AB}$, então ______.
- d) Pela transitividade da relação de equipolência, se $\overrightarrow{CD} \sim \overrightarrow{AB}$ e ______, então $\overrightarrow{CD} \sim \overrightarrow{EF}$.
- **E.1.1.4.** Faça o esboço de dois segmentos $AB \in CD$ com $|AB| \neq |CD|$ e cujas retas determinadas por eles sejam coincidentes.
- **E.1.1.5.** Faça o esboço de dois segmentos orientados $AB \not\sim CD$ e de mesmo sentido.
- **E.1.1.6.** Faça o esboço de dois segmentos orientados colineares, de comprimentos iguais e sentidos opostos.

E.1.1.7. Mostre que segmentos terem o mesmo comprimento é uma:

- a) relação reflexiva.
- b) relação simétrica.
- c) relação transitiva.
- d) relação de equivalência.

E.1.1.8. Mostre que $\overrightarrow{AB} \sim \overrightarrow{CD}$, então $\overrightarrow{AC} \sim \overrightarrow{BD}$.

E.1.1.9. Mostre que se $AC \sim CB$, então C é ponto médio do segmento AB.

E.1.1.10. Mostre que se \overrightarrow{AB} e \overrightarrow{CD} são equipolentes, então os pontos médios de AD e BC são coincidentes.

Respostas

E.1.1.1. a) pontos; entre; c) distância; |AB|; d) reta suporte; e) coincidentes;

E.1.1.2. a) sentido; b) ponto de origem; ponto de extremidade; c) direção; d) |AB|; e) o mesmo sentido (sentidos opostos); não se interceptam (se interceptam)

E.1.1.3. a) equipolentes; direção; comprimento; sentido; b) \overrightarrow{CD} ; c) $\overrightarrow{AB} \sim \overrightarrow{EF}$; d) $\overrightarrow{AB} \sim \overrightarrow{EF}$

E.1.1.4.

E.1.1.5.

E.1.1.6.

E.1.1.7. a) Por óbvio, que AB tem o mesmo comprimento que si próprio. b) Se AB tem o mesmo comprimento de CD, |AB| = |CD|, então é dizer que CD tem o mesmo comprimento de AB. c) Se |AB| = |CD| e |CD| = |EF|, então |AB| = |EF|. d) Por definição, segue dos itens a), b) e c).

E.1.1.8. Dica: Se \overrightarrow{AB} e \overrightarrow{CD} não são coincidentes, então ABCD determina um paralelogramo.

E.1.1.9. $AC \sim CB$ implica que $C \in AB$. Como $|\overrightarrow{AC}| = |\overrightarrow{CB}|$, conclui-se que C é o ponto médio de AB.

E.1.1.10. Dica: as diagonais de um paralelogramo interceptam-se em seus pontos médios.

1.2 Definição de Vetor

https://youtu.be/2qxgs37JNBo

Um vetor \vec{u} é definido como a classe de equipolência² dos segmentos

²Consulte a Seção 1.1 para a definição de classe de equipolência.

orientados \overrightarrow{AB} de dado comprimento, dada direção e dado sentido, i.e. $\vec{u} = \begin{bmatrix} \overrightarrow{AB} \end{bmatrix}_{\sim}$. Qualquer $\overrightarrow{AB} \in \begin{bmatrix} \overrightarrow{AB} \end{bmatrix}_{\sim}$ é uma representação do vetor \vec{u} como um segmento orientado. Consulte a Figura 1.9.

Figura 1.9: Duas representações de dado vetor \vec{u} .

Observação 1.2.1. (Notação.) Para simplificar a notação, usualmente, escrevemos $\vec{u} = \overrightarrow{AB}$ no lugar de $\vec{u} = \left[\overrightarrow{AB}\right]_{i}$.

A norma de um vetor \vec{u} é denotada por $||\vec{u}||$ e definida como o comprimento de qualquer uma de suas representações. Mais precisamente, se o segmento orientado \overrightarrow{AB} é uma representação de \vec{u} , i.e. $\vec{u} = \overrightarrow{AB}$, então

$$\|\vec{u}\| := |\overrightarrow{AB}| := |AB|. \tag{1.7}$$

Consulte a Figura 1.10.

Figura 1.10: Norma de um vetor \vec{u} .

O vetor nulo é aquele que tem como representante um segmento orientado nulo. É denotado por $\vec{0}$ e geometricamente representado por um ponto.

Proposição 1.2.1. (Vetor Nulo.) $\|\vec{u}\| = 0$ se, e somente se, $\vec{u} = \vec{0}$.

Demonstração. Primeiramente, vamos mostrar a implicação. Por hipótese, temos que $\|\vec{u}\| = 0$. Seja, \overrightarrow{AB} uma representação de \vec{u} . Então, por definição da norma de vetor, $\|\vec{u}\| := |\overrightarrow{AB}| = 0$. Logo, AB é um segmento nulo, i.e. A é coincidente a B e, portanto, $\vec{u} = \vec{0}$.

Agora, mostramos a recíproca, i.e., se $\vec{u} = \vec{0}$, então $||\vec{u}|| = 0$. Como $\vec{u} = \vec{0}$, temos que \vec{u} pode ser representado por qualquer segmento orientado \overrightarrow{AA} . Temos que $|\overrightarrow{AA}| = 0$ e, portanto, $||\vec{u}|| := |\overrightarrow{AA}| = 0$.

Usualmente, escolhemos um ponto O como origem do espaço. A seguinte proposição, garante que todo o vetor admite uma única representação a partir dessa origem.

Proposição 1.2.2. (Representação de Vetor a partir da Origem) Seja dado um ponto O no espaço. Todo vetor \vec{u} admite uma única representação \overrightarrow{OA} .

Demonstração. Seja dado um ponto O e um vetor \vec{u} . Começamos por mostrar a existência, i.e. que existe A tal que $\vec{u} = \overrightarrow{OA}$. Seja \overrightarrow{BC} uma representação de \vec{u} e r sua reta suporte. Seja, então, s a reta que passa pelo ponto O e é paralela (ou coincidente) a r. Consulte a Figura 1.11.

Figura 1.11: Representação de um vetor a partir da origem do espaço.

Escolhemos, então, $A \in p$ tal que $|OA| = |\overrightarrow{BC}|$ e tal que \overrightarrow{OA} tenha o mesmo sentido de \overrightarrow{BC} . Logo, \overrightarrow{BC} é equipolente a \overrightarrow{OA} , que é a representação desejada de \overrightarrow{u} .

Agora, vamos **mostrar a unicidade**, i.e. que se A e B são pontos tais que $\vec{u} = \overrightarrow{OA} \sim \overrightarrow{OB}$, então A e B são coincidentes. **Por negação**, se A e B não forem coincidentes, então O, A e B são pontos colineares ou não, exclusivamente. Neste caso, \overrightarrow{OA} e \overrightarrow{OB} não tem a mesma direção. Noutro caso, $|\overrightarrow{OA}| \neq |\overrightarrow{OB}|$ ou \overrightarrow{OA} e \overrightarrow{OB} têm sentidos opostos. Em qualquer um dos casos $\overrightarrow{OA} \not\sim \overrightarrow{OB}$.

Dois vetores não nulos determinam um único ângulo³.

Proposição 1.2.3. (Ângulo entre Vetores.) Dois vetores não nulos determinam uma única classe de ângulos congruentes.

Demonstração. Existência. Sejam dados os vetores \vec{u} e \vec{v} não nulos e suas representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$. Logo, OA e OB determinam duas semiretas de ângulo \hat{O} (consulte a Figura 1.12).

Figura 1.12: Dois vetores determinam um ângulo.

Unicidade. Sejam dois ângulos \hat{O} e \hat{O}' determinados pelos vetores \vec{u} e \vec{v} . Sejam, também, as representações $\vec{u} = \overrightarrow{OA} = \overrightarrow{O'A'}$ e $\vec{v} = \overrightarrow{OB} = \overrightarrow{O'B'}$. Logo, as semi-retas OA e O'A' têm as mesmas direções. Bem como, as semi-retas OB e O'B' têm as mesmas direções. Concluímos que os ângulos \hat{O} e \hat{O}' são congruentes.

Dois vetores são ditos paralelos quando admitem representações paralelas. De forma análoga, definem-se vetores coplanares, vetores não coplanares, vetores ortogonais, etc.

Exemplo 1.2.1. Na Figura 1.13, temos \vec{u} vetor paralelo a \vec{v} , enquanto que \vec{x} é ortogonal a \vec{y} .

Agora, na Figura 1.14, temos que os vetores $\vec{a},\,\vec{b}$ e \vec{c} são coplanares.

1.2.1 Exercícios Resolvidos

ER 1.2.1. Mostre que um plano fica unicamente determinado por um ponto e dois vetores não nulos de diferentes direções.

³Mais precisamente, uma classe de ângulos congruentes

Figura 1.13: Vetores paralelos $\vec{u} \parallel \vec{v}$ e vetores ortogonais $\vec{x} \perp \vec{y}$.

Figura 1.14: Vetores coplanares.

Solução. Primeiramente, vamos mostrar a existência de um plano α tal que $O, \vec{u}, \vec{v} \in \alpha$ (consulte a Figura 1.15). Sejam um ponto O e dois vetores \vec{u} e \vec{v} não nulos e de diferentes direções. Escolhemos, então, suas representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$. Como \vec{u} e \vec{v} não nulos e têm diferentes direções, temos que os pontos O, A e B são não colineares. Logo, estes pontos determinam um plano α , tal que $O, \vec{u}, \vec{v} \in \alpha$.

A unicidade segue imediatamente do fato de que três pontos não colineares determinam unicamente um plano.

ER 1.2.2. Mostre que dois vetores não nulos e de diferentes direções determinam unicamente uma classe de paralelogramos congruentes⁴.

 $^{^4\}mathrm{Dois}$ polígonos são congruentes, quando seus lados e ângulos correspondentes têm a mesma medida.

Figura 1.15: Vetores e planos.

Solução. Existência. Sejam \vec{u} e \vec{v} dois vetores não nulos e de diferentes direções. Sejam, então, suas representações $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AD}$ (consulte a Figura 1.16). Sejam, agora, as retas r e s tais que $B \in r$, $r \parallel \vec{v}$, $D \in s$ e $s \parallel \vec{u}$. Seja, C o ponto de interseção de r e s. Por construção, temos que $AB \parallel DC$ e $AD \parallel BC$, o que mostra que ABCD é um paralelogramo.

Figura 1.16: Paralelogramo determinado por vetores não nulos de diferentes direções.

Unicidade. Falta mostrar que, dados \vec{u} e \vec{v} vetores não nulos e de diferentes direções, então são congruentes quaisquer dois paralelogramos determinados por \vec{u} e \vec{v} . Consulte o exercício E.1.2.9.

1.2.2 Exercícios

E.1.2.1. Complete as lacunas.

a)	Um vetor é definido por sua, direção e
b)	Se \vec{u} tem representação \overrightarrow{AB} , então $\ \vec{u}\ = $
c)	Se $\ \vec{v}\ = 0$, então \vec{v} é um

d) Vetores paralelos são vetores de mesma/o . .

E.1.2.2. Diga se é verdadeira ou falsa cada uma das seguintes afirmações:

- a) Todos os vetores podem ser representados a partir de um mesmo ponto de origem.
- b) Dois vetores de mesma norma são vetores paralelos.
- c) Dois vetores são sempre coplanares entre si.

E.1.2.3. Diga se é verdadeira ou falsa cada uma das seguintes afirmações:

- a) Dois vetores não nulos determinam uma única classe de ângulos congruentes.
- b) Dois vetores não nulos de diferentes direções determinam um único plano.
- c) Dois vetores não nulos de diferentes direções determinam uma única classe de paralelogramos congruentes.

E.1.2.4. Com base na figura abaixo, qual(is) dos vetores indicados são iguais ao vetor \overrightarrow{AB} .

E.1.2.5. Sejam $A, B \in C$ pontos dois a dois distintos. Se \vec{b} é um vetor nulo, então \vec{b} é igual a:

- a) $\vec{0}$
- b) \overrightarrow{AB}
- c) \overrightarrow{CC}
- d) \overrightarrow{CA}
- e) \overrightarrow{BB}

 ${\bf E.1.2.6.}$ Com base na figura abaixo, qual(is) dos vetores indicados são paralelos entre si.

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA $4.0\,$

E.1.2.7. Com base na figura abaixo, qual(is) dos vetores indicados são ortogonais (perpendiculares) entre si.

E.1.2.8. Mostre que uma reta fica unicamente determinada por um ponto O e um vetor não nulo \vec{u} .

E.1.2.9. No ER.1.2.2, mostrou-se que dados \vec{u} e \vec{v} vetores não nulos e de diferentes direções, então existe um paralelogramo associado de lados congruentes a \vec{u} e \vec{v} . Mostre que são congruentes quaisquer dois paralelogramos determinados por \vec{u} e \vec{v} .

Respostas

E.1.2.1.a) norma; sentido. b) $\left|\overrightarrow{AB}\right|$. c) vetor nulo. d) direção.

E.1.2.2. a) V. b) F. c) V.

E.1.2.3. a) V. b) F. c) V.

E.1.2.4. \vec{w}, \vec{c}

E.1.2.5. a), c), e)

E.1.2.6. $\vec{d} \parallel \vec{e}; \vec{c} \parallel \vec{v} \parallel \vec{w}$

E.1.2.7. $\vec{e} \perp \vec{m}$.

E.1.2.8. Seja A tal que $\vec{u} = \overrightarrow{OA}$. Como $\vec{u} \neq \vec{0}$, temos que O e A são não coincidentes. Temos então, uma única reta r tal que $O, A \in r$.

E.1.2.9. Sejam as representações $\vec{u} = \overrightarrow{AB} = \overrightarrow{A'B'}$ e $\vec{v} = \overrightarrow{AD} = \overrightarrow{A'D'}$. Do demonstrado no ER 1.2.2, temos os paralelogramos associados ABCD e A'B'C'D'. Por construção, AB é congruente a A'B', bem como, são congruentes AD e A'D'. Também, são congruentes os ângulos \hat{A} e $\hat{A'}$. Logo, conclui-se que os paralelogramos ABCD e A'B'C'D' são congruentes.

1.3 Operações Elementares com Vetores

Vamos introduzir operações vetoriais de adição e multiplicação por escalar.

1.3.1 Adição de Vetores

https://youtu.be/RBOTLOUqoq8

Sejam dados dois vetores \vec{u} e \vec{v} . Sejam, ainda, suas representações $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{BC}$. Então, definimos o **vetor soma** $\vec{u} + \vec{v}$ como o vetor que admite a representação $\vec{u} + \vec{v} = \overrightarrow{AC}$. Consulte a Figura 1.17.

Propriedades

A operação de adição tem as seguintes propriedades notáveis.

• Elemento neutro da adição

$$\vec{u} + \vec{0} = \vec{u}. \tag{1.8}$$

De fato, seja a representação do vetor $\vec{u} = \overrightarrow{AB}$. Observamos que pode-

Figura 1.17: Vetor soma resultante da adição entre dois vetores.

mos representar $\vec{0} = \overrightarrow{BB}$. Por definição da adição de vetores, temos

$$\vec{u} + \vec{0} = \overrightarrow{AB} + \overrightarrow{BB} \tag{1.9}$$

$$= \overrightarrow{AB} = \overrightarrow{u}. \tag{1.10}$$

Associatividade da adição

$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}). \tag{1.11}$$

De fato, sejam as representações $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{BC}$ e $\vec{w} = \overrightarrow{CD}$. Então, segue

$$(\vec{u} + \vec{v}) + \vec{w} = (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD}$$

$$= \overrightarrow{AC} + \overrightarrow{CD}$$
(1.12)

$$= \overrightarrow{AC} + \overrightarrow{CD} \tag{1.13}$$

$$= \overrightarrow{AD}, \tag{1.14}$$

bem como,

$$\vec{u} + (\vec{v} + \vec{w}) = \overrightarrow{AB} + \left(\overrightarrow{BC} + \overrightarrow{CD}\right) \tag{1.15}$$

$$= \overrightarrow{AB} + \overrightarrow{BD} \tag{1.16}$$

$$= \overrightarrow{AD}. \tag{1.17}$$

Comutatividade da adição

$$\vec{u} + \vec{v} = \vec{v} + \vec{u}. \tag{1.18}$$

Para vetores \vec{u} e \vec{v} de mesma direção, a comutatividade de adição é direta. Noutro caso, podemos usar a regra do paralelogramo, que introduziremos logo mais. Consulte, também, o exercício resolvido ER.1.3.2.

1.3.2 Vetor oposto

Definimos o **vetor oposto** a \vec{u} , pelo vetor $-\vec{u}$ que tem o mesmo comprimento e a mesma direção de \vec{u} , mas tem sentido oposto a \vec{u} . Consulte a Figura 1.18.

Figura 1.18: Vetor oposto $-\vec{u} = \overrightarrow{BA}$ do vetor $\vec{u} = \overrightarrow{AB}$.

Observação 1.3.1. (Oposto do Vetor Nulo.) Por completude, definimos $-\vec{0} = \vec{0}$.

Propriedade

• Elemento oposto da adição

$$\vec{u} + (-\vec{u}) = \vec{0}. \tag{1.19}$$

Dado um vetor e sua representação $\vec{u} = \overrightarrow{AB}$. Por definição, $-\vec{u} = \overrightarrow{BA}$ e, então,

$$\vec{u} + (-\vec{u}) = \overrightarrow{AB} + \overrightarrow{BA} \tag{1.20}$$

$$=\overrightarrow{AA}$$
 (1.21)

$$= \vec{0}. \tag{1.22}$$

Consulte a Figura 1.18.

1.3.3 Subtração de vetores

https://youtu.be/J43moqi9qNI

A subtração do vetor \vec{u} pelo vetor \vec{v} é denotada por $\vec{u} - \vec{v}$ e definida por

$$\vec{u} - \vec{v} := \vec{u} + (-\vec{v}). \tag{1.23}$$

Consultamos a Figura 1.19.

Figura 1.19: Representação geométrica de $\vec{u} - \vec{v}$.

Regra do Paralelogramo

 ${\tt https://youtu.be/3idRJmEP_qA}$

Sejam $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OC}$ vetores não nulos e de diferentes direções. Seja, então o paralelogramo OABC determinado por eles (consulte o exercício resolvido ER.1.2.2). Por observação direta, temos que $\vec{u} + \vec{v} = \overrightarrow{OB}$ e $\vec{u} - \vec{v} = \overrightarrow{CA}$. Consulte a Figura 1.20.

1.3.4 Multiplicação de Vetor por Escalar

A multiplicação de um número real $\alpha > 0$ (escalar) por um vetor \vec{u} é denotado por $\alpha \vec{u}$ e é definido pelo vetor de mesma direção e mesmo sentido de \vec{u} e com norma $\alpha ||\vec{u}||$. Quando $\alpha = 0$, definimos $\alpha \vec{u} = \vec{0}$. Consulte a Figura 1.21.

Observação 1.3.2. (
$$\alpha < 0$$
.) No caso de $\alpha < 0$, definimos
$$\alpha \vec{u} = -(-\alpha \vec{u}). \tag{1.24}$$

Figura 1.20: Regra do paralelogramo. $\vec{u} + \vec{v} = \overrightarrow{OB}$. $\vec{u} - \vec{v} = \overrightarrow{CA}$.

Figura 1.21: Multiplicação vetor-escalar.

Proposição 1.3.1. Para quaisquer número real α e vetor \vec{u} , temos

$$\|\alpha \vec{u}\| = |\alpha| |\vec{u}|. \tag{1.25}$$

Demonstração. De fato, se $\alpha \ge 0$, temos $|\alpha| = \alpha$ e o resultado segue imediatamente. Agora, se $\alpha < 0$, então⁵

$$\|\alpha \vec{u}\| = \|-\alpha \vec{u}\| \tag{1.26}$$

$$= -\alpha \|\vec{u}\| \tag{1.27}$$

$$= |\alpha| \|\vec{u}\|. \tag{1.28}$$

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

 $^{^5}$ Por definição, $|\alpha|=\alpha$ para $\alpha\geq 0,$ e $|\alpha|=-\alpha$ para $\alpha<0.$

Propriedades

• Elemento neutro da multiplicação por escalar

$$1\vec{u} = \vec{u}.\tag{1.29}$$

De fato, como 1>0, temos que $1\vec{u}$ e \vec{u} têm a mesma direção e o mesmo sentido. Também, têm a mesma norma, pois

$$||1\vec{u}|| = |1| \, ||\vec{u}|| \tag{1.30}$$

$$= \|\vec{u}\|. \tag{1.31}$$

Compatibilidade da multiplicação

$$\alpha(\beta \vec{u}) = (\alpha \beta) \vec{u} \tag{1.32}$$

De fato, dados α , β números reais e \vec{u} vetor, é direto que $\alpha(\beta \vec{u})$ e $(\alpha\beta)\vec{u}$ têm a mesma direção e o mesmo sentido. Por fim, temos

$$\|\alpha(\beta \vec{u})\| = |\alpha| \|\beta \vec{u}\| \tag{1.33}$$

$$= |\alpha| \, |\beta| \, \|\vec{u}\| \tag{1.34}$$

$$= |\alpha\beta| \, \|\vec{u}\| \tag{1.35}$$

$$= \|(\alpha\beta)\vec{u}\|. \tag{1.36}$$

Distributividade

$$(\alpha + \beta)\vec{u} = \alpha \vec{u} + \beta \vec{u} \tag{1.37}$$

$$\alpha \left(\vec{u} + \vec{v} \right) = \alpha \vec{u} + \alpha \vec{v} \tag{1.38}$$

A primeira, segue diretamente da noção de comprimento de segmentos orientados. A segunda, segue da semelhança de triângulos. Consulte a Figura 1.22.

Figura 1.22: Distributividade da multiplicação vetor por escalar.

1.3.5 Resumo das Propriedades

Para quaisquer vetores \vec{u} , \vec{v} e \vec{w} e quaisquer escalares α e β , valem as seguintes propriedades:

Associatividade da adição

$$\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w} \tag{1.39}$$

Comutatividade da adição

$$\vec{u} + \vec{v} = \vec{v} + \vec{u} \tag{1.40}$$

Elemento neutro da adução

$$\vec{u} + vec0 = \vec{u} \tag{1.41}$$

• Compatibilidade da multiplicação por escalar

$$\alpha(\beta \vec{u}) = (\alpha \beta) \vec{u} \tag{1.42}$$

Elemento neutro da multiplicação por escalar

$$1\vec{u} = \vec{u} \tag{1.43}$$

Distributividade

$$(\alpha + \beta)\vec{u} = \alpha\vec{u} + \beta\vec{u} \tag{1.44}$$

$$\alpha(\vec{u} + \vec{v}) = \alpha \vec{u} + \alpha \vec{v} \tag{1.45}$$

Exercícios resolvidos

ER 1.3.1. Com base na Figura 1.23, forneça o vetor \vec{w} como resultado de operações básicas envolvendo os vetores \vec{u} e \vec{v} .

Figura 1.23: Representação dos vetores para o exercício resolvido ER.1.3.1.

Solução. Vamos construir dois vetores auxiliares \overrightarrow{HB} e \overrightarrow{HI} a partir de operações envolvendo os vetores \overrightarrow{u} e \overrightarrow{v} . Notamos que $\overrightarrow{HC} = \overrightarrow{HI} + \overrightarrow{HB}$.

Começamos buscando formar o vetor \overrightarrow{HI} . Para tanto, observamos que $\overrightarrow{u} = \overrightarrow{NG}$ e, portanto, $\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{JG}$. Com isso, obtemos que

$$\overrightarrow{HI} = -\frac{1}{3}\overrightarrow{JG} \tag{1.46}$$

$$= -\frac{1}{3}(\vec{v} + \vec{u}). \tag{1.47}$$

Agora, vamos formar o vetor \overrightarrow{HB} . Isso pode ser feito da seguinte forma

$$\overrightarrow{HB} = \overrightarrow{WQ} \tag{1.48}$$

$$= \vec{u} + \overrightarrow{PQ} \tag{1.49}$$

$$= \vec{u} + \overrightarrow{HI} \tag{1.50}$$

$$= \vec{u} - \frac{1}{3}(\vec{v} + \vec{u}) \tag{1.51}$$

$$= \frac{2}{3}\vec{u} - \frac{1}{3}\vec{v}.\tag{1.52}$$

Por tudo isso, concluímos que

$$\overrightarrow{HC} = \overrightarrow{HI} + \overrightarrow{HB} \tag{1.53}$$

$$= -\frac{1}{3}(\vec{v} + \vec{u}) \tag{1.54}$$

$$+\frac{2}{3}\vec{u} - \frac{1}{3}\vec{v} \tag{1.55}$$

$$=\frac{1}{3}\vec{u} - \frac{2}{3}\vec{v}.\tag{1.56}$$

 \Diamond

ER 1.3.2. Mostre que $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Solução. Seja ABCD o paralelogramo com $\vec{u} = \overrightarrow{AB} = \overrightarrow{DC}$ e $\vec{v} = \overrightarrow{AD} = \overrightarrow{BC}$. Logo, pela regra do paralelogramo temos

$$\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{BC} \tag{1.57}$$

$$= \overrightarrow{AC} \tag{1.58}$$

$$= \overrightarrow{AD} + \overrightarrow{DC} \tag{1.59}$$

$$= \vec{v} + \vec{u}. \tag{1.60}$$

 \Diamond

Exercícios

E.1.3.1. Complete as lacunas.

	\longrightarrow	\longrightarrow			
a)	Se $\vec{u} = \overrightarrow{FE}$	$e \vec{v} = EG$,	então	$\vec{u} + \vec{v}$	= .

b)
$$2\vec{0} + \vec{u} =$$
__.

c) Pela associatividade da adição de vetores, temos $= \vec{w} + (\vec{v} + \vec{u}).$

d) Pela _____, temos $\vec{w} + \vec{u} = \vec{u} + \vec{w}$.

E.1.3.2. Complete as lacunas.

a) O vetor oposto de $\vec{u} = \overrightarrow{HA}$ é $-\vec{u} = \underline{\hspace{1cm}}$.

b)
$$+\vec{w} = \vec{0}$$
.

c) Pela definição de vetor oposto, $||-\vec{v}|| =$.

d) Se $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AC}$, então $\vec{u} - \vec{v} = \underline{\hspace{1cm}}$.

E.1.3.3. Complete as lacunas.

a) O vetor $3\vec{w}$ tem o _____ sentido ____ do vetor \vec{w} .

b) O vetor $-\pi \vec{v}$ tem o _____ sentido do vetor \vec{v} .

c) $||-2\vec{w}|| =$.

d) Pela para quaisquer escalares α, β e vetor \vec{v} .

e) Pela distributividade, temos ____ = $\beta \vec{v} + \beta \vec{u}$ para quaisquer escalar β e vetores \vec{u}, \vec{v} .

f) Outra forma de ______, fornece $(\beta + \alpha)\vec{w} = \beta\vec{w} + \alpha\vec{w}$ para quaisquer escalares α, β e vetor \vec{w} .

E.1.3.4. Com base na figura abaixo, forneça uma representação de cada um dos seguintes vetores:

- a) $\overrightarrow{v} + \overrightarrow{u}$.
- b) $3\vec{u}$.
- c) $-\vec{v}$.
- d) $\vec{u} \vec{v}$.
- e) $\vec{v} \vec{u}$.
- f) $\vec{v} + 2\vec{u}$.

E.1.3.5. Com base na figura abaixo, forneça uma representação do vetor $\vec{w} + \vec{v} + \vec{u}$.

E.1.3.6. Com base na figura abaixo, escreva os seguintes vetores como resultado de operações envolvendo \vec{u} ou \vec{v} .

- a) \overrightarrow{QK}
- b) \overrightarrow{KI}
- c) \overrightarrow{TO}
- d) \overrightarrow{PE}
- e) \overrightarrow{FT}

E.1.3.7. Seja dado um vetor $\vec{u} \neq 0$. Calcule a norma do vetor⁶ $\vec{v} = \vec{u}/|\vec{u}|$.

E.1.3.8. Diga se é verdadeira ou falsa cada uma das seguintes afirmações. Justifique sua resposta.

1.
$$\vec{u} + \vec{u} = 2\vec{u}$$

2.
$$\vec{u} = -\vec{u} \Leftrightarrow \vec{u} = \vec{0}$$
.

Respostas

E.1.3.1. a) \overrightarrow{FG} . b) \overrightarrow{u} . c) $(\overrightarrow{w} + \overrightarrow{v}) + \overrightarrow{u}$. d) comutatividade da adição.

E.1.3.2. a)
$$\overrightarrow{AH}$$
. b) $-\overrightarrow{w}$. c) $\|\overrightarrow{v}\|$. d) \overrightarrow{CB} .

E.1.3.3. a) mesmo; -x-. b) -x-; oposto. c) $2 \|\vec{w}\|$. d) compatibilidade da multiplicação. e) $\beta(\vec{v} + \vec{u})$. f) distributividade.

 $^{{}^6\}vec{u}/|\vec{u}|$ é chamado de vetor \vec{u} normalizado, ou a normalização do vetor \vec{u} .

E.1.3.4. a) \overrightarrow{JG} . b) \overrightarrow{WB} . c) \overrightarrow{JF} . d) \overrightarrow{NC} . e) \overrightarrow{CN} . f) \overrightarrow{KA} .

E.1.3.5. \overrightarrow{MJ} .

E.1.3.6. a) $\frac{1}{2}\vec{v}$; b) $-\frac{2}{3}\vec{u}$; c) $\frac{1}{2}\vec{v} + \frac{1}{3}\vec{u}$; d) $\vec{v} + \frac{1}{3}\vec{u}$; e) $-\frac{4}{3}\vec{u} - \frac{3}{2}\vec{v}$

E.1.3.7. $|\vec{v}| = 1$.

E.1.3.8. a) verdadeira; b) verdadeira.

Capítulo 2

Bases e Coordenadas

2.1 Combinação Linear

Dados vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ e números reais c_1, c_2, \ldots, c_n , com n inteiro positivo, chamamos de

$$\vec{u} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n \tag{2.1}$$

uma **combinação linear** de $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$. Neste caso, também dizemos que \vec{u} é **gerado** pelos vetores $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$ ou, equivalentemente, que estes vetores **geram** o vetor \vec{u} .

Exemplo 2.1.1. Sejam dados os vetores \vec{u} , \vec{v} , \vec{w} e \vec{z} . Então, temos:

- a) $\vec{u}_1 = \frac{1}{2}\vec{v} + \sqrt{2}\vec{z}$ é uma combinação linear dos vetores \vec{v} e \vec{z} .
- b) $\vec{u_2} = \vec{u} 2\vec{z}$ é uma outra combinação linear dos vetores \vec{u} e \vec{z} .
- c) $\vec{u_3} = 2\vec{u} \vec{w} + \pi \vec{z}$ é uma combinação linear dos vetores \vec{u} , \vec{w} e \vec{z} .
- d) $\vec{u_4} = \frac{3}{2}\vec{z}$ é uma combinação linear do vetor \vec{z} .

2.1.1 Interpretação Geométrica

Combinação Linear e Vetores Paralelos

Se \vec{u} é combinação linear não nula de \vec{v} apenas, então \vec{u} é paralelo a \vec{v} . De fato, se

$$\vec{u} = \alpha \vec{v},\tag{2.2}$$

com $\alpha \neq 0$, então, por definição da multiplicação por escalar, \vec{u} tem a mesma direção de \vec{v} . Em outras palavras, temos a seguinte proposição. Consulte a Figura 2.1.

Figura 2.1: Combinação linear de vetores paralelos.

Proposição 2.1.1. (Combinação Linear entre Vetores Paralelos.) Se \vec{u}, \vec{v} são vetores não nulos tais que

$$\alpha \vec{u} + \beta \vec{v} = \vec{0},\tag{2.3}$$

com escalares α, β não simultaneamente nulos, então $\vec{u} \parallel \vec{v}$.

Demonstração. Sem perda de generalidade, vamos assumir que $\alpha \neq 0.$ Logo, temos que

$$\vec{u} = -\frac{\beta}{\alpha}\vec{v},\tag{2.4}$$

o que mostra que \vec{u} têm a mesma direção de \vec{v} .

Observação 2.1.1. (Vetores Paralelos Têm Combinação Não Trivial.) A recíproca da Proposição 2.1.1 é válida, i.e., se $\vec{u} \parallel \vec{v}$ e não nulos, então existem escalares α, β não simultaneamente nulos tais que

$$\alpha \vec{u} + \beta \vec{v} = \vec{0}. \tag{2.5}$$

Consulte o exercício E.2.1.8.

Combinação Linear e Vetores Coplanares

Se \vec{w} é combinação linear não nula de \vec{u} e \vec{v} , então \vec{w} é coplanar a estes vetores. De fato, temos

$$\vec{w} = \alpha \vec{u} + \beta \vec{w},\tag{2.6}$$

com escalares α, β . Se pelo menos um dos \vec{u} , \vec{v} , α ou β é nulo, então, é certo, que \vec{u} , \vec{v} e \vec{w} são coplanares. Caso sejam todos não nulos, $\alpha \vec{u} = \overrightarrow{OA}$ e $\beta \vec{v} = \overrightarrow{OC}$ determinam um plano γ e um paralelogramo $OABC \in \gamma$. Segue que

$$\vec{w} = \alpha \vec{u} + \beta \vec{w} \tag{2.7}$$

$$= \overrightarrow{OA} + \overrightarrow{OC} \tag{2.8}$$

$$= \overrightarrow{OB} \in \gamma. \tag{2.9}$$

Concluímos que \vec{u} , \vec{v} e \vec{w} são coplanares.

Figura 2.2: Combinação linear de um vetor.

Proposição 2.1.2. (Combinação Linear entre Vetores Coplanares.) Vetores $\vec{u}, \ \vec{v} \in \vec{w}$ não nulos têm combinação linear não trivial se, e somente se, são coplanares.

Demonstração. Consulte o E.2.1.9.

2.1.2 Exercícios Resolvidos

ER 2.1.1. Com base na Figura 2.3, escreva o vetor \vec{u} como combinação linear dos vetores \vec{i} e \vec{j} .

Figura 2.3: Vetor \vec{u} como combinação linear de \vec{i} e \vec{j} .

Solução. Para escrevermos o vetor \vec{u} como combinação linear dos vetores \vec{i} e \vec{j} , devemos determinar números c_1 e c_2 tais que

$$\vec{u} = c_1 \vec{i} + c_2 \vec{j}. \tag{2.10}$$

Com base na Figura 2.3, podemos tomar $c_1 = 3$ e $c_2 = 2$, i.e. temos

$$\vec{u} = 3\vec{i} + 2\vec{j}.\tag{2.11}$$

 \Diamond

ER 2.1.2. Sabendo que $\vec{u} = 2\vec{v}$, forneça três maneiras de escrever o vetor nulo $\vec{0}$ como combinação linear dos vetores \vec{u} e \vec{v} .

Solução. Dado que

$$\vec{u} = 2\vec{v} \tag{2.12}$$

podemos escrever $\vec{0}$ como combinação linear de \vec{u} e \vec{v} das seguintes formas:

a) subtraindo \vec{u} .

$$\vec{u} - \vec{u} = 2\vec{v} - \vec{u} \tag{2.13}$$

$$\vec{0} = 2\vec{v} - \vec{u} \tag{2.14}$$

b) subtraindo $2\vec{v}$.

$$\vec{u} - 2\vec{v} = 2\vec{v} - 2\vec{v} \tag{2.15}$$

$$\vec{u} - 2\vec{v} = \vec{0} \tag{2.16}$$

$$\vec{0} = \vec{u} - 2\vec{v} \tag{2.17}$$

c) multiplicando por 1/2 e subtraindo $-(1/2)\vec{u}$.

$$\frac{1}{2}\vec{u} = \frac{1}{2} \cdot 2\vec{v} \tag{2.18}$$

$$\frac{1}{2}\vec{u} = \frac{1}{2} \cdot 2\vec{v} \tag{2.18}$$

$$\frac{1}{2}\vec{u} - \frac{1}{2}\vec{u} = \vec{v} - \frac{1}{2}\vec{u} \tag{2.19}$$

$$\vec{0} = \vec{v} - \frac{1}{2}\vec{u} \tag{2.20}$$

 \Diamond

2.1.3 Exercícios

E.2.1.1. Com base na figura abaixo, escreva cada um dos seguintes vetores como combinação linear de \vec{i} e \vec{j} .

- a) \vec{u} .
- b) \vec{v} .
- c) \vec{w} .
- d) \vec{x} .

E.2.1.2. Com base na figura abaixo, escreva os seguintes vetores como combinação linear de \vec{x} e \vec{y} .

- a) \vec{u} .
- b) \vec{v} .
- c) \vec{w} .
- d) \vec{z} .
- **E.2.1.3.** Sabendo que $\vec{u} = 3\vec{w} + \vec{v}$, escreva \vec{w} como combinação linear de \vec{u} e \vec{v} .
- **E.2.1.4.** Sejam \vec{u} e \vec{v} vetores de mesma direção e \vec{w} um vetor não paralelo a \vec{u} , todos não nulos. Pode-se escrever \vec{w} como combinação linear de \vec{u} e \vec{v} ? Justifique sua resposta.
- **E.2.1.5.** Sejam \vec{u} e \vec{v} ambos não nulos e de mesma direção. Pode-se afirmar que \vec{u} gera \vec{v} ? Justifique sua resposta.
- **E.2.1.6.** Sejam \vec{u} e \vec{v} vetores não paralelos entre si e \vec{w} um vetor não coplanar a \vec{u} e \vec{v} , todos não nulos. É possível gerar \vec{w} com \vec{u} e \vec{v} ?
- **E.2.1.7.** Sejam \vec{u} e \vec{v} não nulos, coplanares e com direções distintas. Se \vec{w} é um vetor também coplanar a \vec{u} e \vec{v} , então \vec{u} e \vec{v} geram \vec{w} ? Justifique sua resposta.

E.2.1.8. Mostre que se \vec{u}, \vec{v} são vetores não nulos e paralelos entre si, então existem escalares α, β não simultaneamente nulos tais que

$$\alpha \vec{u} + \beta \vec{v} = \vec{0}. \tag{2.21}$$

E.2.1.9. Faça a demonstração da Proposição 2.1.2.

Respostas

E.2.1.1. a)
$$\vec{u} = 2\vec{i} + 3\vec{j}$$
. b) $\vec{v} = -2\vec{i} + 2\vec{j}$. c) $\vec{w} = -2\vec{i} - \vec{j}$. d) $\vec{x} = 3\vec{i} - \vec{j}$.

E.2.1.2. a)
$$\vec{u} = -2\vec{x} + \frac{3}{2}\vec{y}$$
. b) $\vec{v} = 2\vec{x} + \vec{y}$. c) $\vec{w} = 2\vec{x} - \frac{1}{2}\vec{y}$. d) $\vec{z} = -3\vec{x} - \frac{1}{2}\vec{y}$.

E.2.1.3.
$$\vec{w} = \frac{1}{3}\vec{u} - \frac{1}{3}\vec{v}$$

E.2.1.4. Não.

E.2.1.5. Sim.

E.2.1.6. Não.

E.2.1.7. Sim.

E.2.1.8. Sem perda de generalidade, existe $\gamma \neq 0$ tal que $\vec{u} = \gamma \vec{v}$. Logo, escolhendo $\alpha = 1$ e $\beta = -\gamma$, temos que $\alpha \vec{u} + \beta \vec{v} = \vec{0}$.

E.2.1.9. Implicação. Sem perda de generalidade, assumimos que $\gamma \neq 0$, logo

$$\vec{w} = -\frac{\alpha}{\gamma}\vec{u} - \frac{\beta}{\gamma}\vec{v},\tag{2.22}$$

o que mostra que \vec{w} é coplanar aos vetores \vec{u} e \vec{v} .

Recíproca. Se dois dos vetores forem paralelos entre si, o resultado segue da Proposição 2.1.1. Caso contrário, sejam $\vec{u} = \overrightarrow{OA}$ e r a reta paralela a \vec{v} que passa por A. Seja, então, P a interseção entre r e a reta suporte de \vec{w} que passa por O. Logo, existem γ, β tal que $\gamma \vec{w} = \overrightarrow{OP}$ e $\beta \vec{v} = \overrightarrow{AP}$. Segue que $\vec{u} + \beta \vec{v} = \gamma \vec{w}$.

2.2 Dependência Linear

Dois ou mais vetores dados são linearmente dependentes (l.d.) quando um deles for combinação linear dos demais. Mais precisamente, $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n\}$ é um **conjunto de vetores l.d.** quando

$$c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n = \vec{0}, \tag{2.23}$$

para escalares c_1, c_2, \ldots, c_n não todos nulos. Caso contrário, dizemos tratar-se de um conjunto de vetores linearmente independentes (l.i.).

Exemplo 2.2.1. Estudamos cada caso:

a) Sejam \vec{u}_1 e $\vec{u}_2 = -2\vec{u}_1$. Temos que \vec{u}_1 e \vec{u}_2 são linearmente dependentes, pois

$$2\vec{u}_1 + 1\vec{u}_2 = \vec{0}. ag{2.24}$$

b) Sejam \vec{u} , \vec{v} e $\vec{w} = \vec{u} - \vec{v}$. Temos que $\{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto l.d., pois

$$\vec{u} - \vec{v} - \vec{w} = \vec{0}. {(2.25)}$$

Observação 2.2.1. (Vetor Nulo.) Todo conjunto de vetores que contenha o vetor nulo é um conjunto l.d.. De fato, para quaisquer $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n$, tem-se que

$$\vec{0} + 0\vec{u}_1 + 0\vec{u}_2 + \dots + 0\vec{u}_n = \vec{0}. \tag{2.26}$$

2.2.1 Dois Vetores no Espaço

Dois vetores de mesma direção são linearmente dependentes (l.d.).

Proposição 2.2.1. Dois vetores não nulos \vec{u} e \vec{v} são l.d. se, e somente se, qualquer uma das seguinte condições é satisfeita:

a) um deles é combinação linear do outro, i.e.

$$\vec{u} = \alpha \vec{v} \tag{2.27}$$

ou

$$\vec{v} = \beta \vec{u}. \tag{2.28}$$

- b) eles têm a mesma direção;
- c) eles são paralelos.

Demonstração. De fato, a afirmação a) é a definição de dependência linear. A afirmação b) é consequência imediata da a), bem como a c) é equivalente a b). Por fim, se \vec{u} e \vec{v} são vetores paralelos, então um é múltiplo por escalar do outro. Ou seja, c) implica a).

Esta proposição também mostra que dois vetores não nulos são linearmente independentes (l.i.) se, e somente se, eles têm direções diferentes.

Exemplo 2.2.2. Considere dois vetores não nulos \vec{u} e \vec{v} de mesma direção. Então, no caso de terem sentidos opostos, segue que

$$\frac{1}{\|\vec{u}\|}\vec{u} + \frac{1}{\|\vec{v}\|}\vec{v} = \vec{0}. \tag{2.29}$$

noutro caso, temos que

$$\frac{1}{\|\vec{u}\|}\vec{u} + \frac{-1}{\|\vec{v}\|}\vec{v} = \vec{0}. \tag{2.30}$$

Consulte a Figura 2.2.

2.2.2 Três Vetores no Espaço

Três vetores quaisquer \vec{u} , \vec{v} e \vec{w} são l.d., quando um deles pode ser escrito como combinação linear dos outros dois. Sem perda de generalidade, isto significa que existem constantes α e β tais que

$$\vec{u} = \alpha \vec{v} + \beta \vec{w}. \tag{2.31}$$

Figura 2.4: Dois vetores linearmente dependentes.

ou, equivalentemente,

$$\vec{u} + (-\alpha)\vec{v} + (-\beta)\vec{w} = \vec{0}. \tag{2.32}$$

Afirmamos que se \vec{u} , \vec{v} e \vec{w} são l.d., então \vec{u} , \vec{v} e \vec{w} são coplanares. Do fato de que dois vetores quaisquer são sempre coplanares, temos que \vec{u} , \vec{v} e \vec{w} são coplanares caso qualquer um deles seja o vetor nulo. Suponhamos, agora, que \vec{u} , \vec{v} e \vec{w} são não nulos e seja π o plano determinado pelos vetores \vec{v} e \vec{w} . Se $\alpha=0$, então $\vec{u}=\beta\vec{w}$ e teríamos uma representação de \vec{u} no plano π . Analogamente, se $\beta=0$, então $\vec{u}=\alpha\vec{v}$ e teríamos uma representação de \vec{u} no plano π . Por fim, observamos que se $\alpha,\beta\neq0$, então $\alpha\vec{v}$ tem a mesma direção de \vec{v} e $\beta\vec{w}$ tem a mesma direção de \vec{v} . Isto é, $\alpha\vec{v}$ e $\beta\vec{w}$ admitem representações no plano π . Sejam \overrightarrow{AB} e \overrightarrow{BC} representações dos vetores $\alpha\vec{v}$ e $\beta\vec{w}$, respectivamente. Os pontos A, B e C pertencem a π , assim como o segmento AC. Como $\overrightarrow{AC}=\vec{u}=\alpha\vec{v}+\beta\vec{w}$, concluímos que \vec{u} , \vec{v} e \vec{w} são coplanares.

Reciprocamente, se \vec{u} , \vec{v} e \vec{w} são coplanares, então \vec{u} , \vec{v} e \vec{w} são l.d.. Consulte a Figura 2.5.

De fato, se um deles for nulo, por exemplo, $\vec{u}=\vec{0}$, então \vec{u} pode ser escrito como a seguinte combinação linear dos vetores \vec{v} e \vec{w}

$$\vec{u} = 0\vec{v} + 0\vec{w}.\tag{2.33}$$

Neste caso, \vec{u} , \vec{v} e \vec{w} são l.d.. Também, se dois dos vetores forem paralelos,

Figura 2.5: Três vetores coplanares são l.d..

por exemplo, $\vec{u} \parallel \vec{v}$, então temos a combinação linear

$$\vec{u} = \alpha \vec{v} + 0 \vec{w}. \tag{2.34}$$

E, então, \vec{u} , \vec{v} e \vec{w} são l.d.. Agora, suponhamos que \vec{u} , \vec{v} e \vec{w} são não nulos e dois a dois concorrentes (i.e. todos com direções distintas). Sejam, então $\overrightarrow{PA} = \vec{u}$, $\overrightarrow{PB} = \vec{v}$ e $\overrightarrow{PC} = \vec{w}$ representações sobre um plano π . Sejam r e s as retas determinadas por PA e PC, respectivamente. Seja, então, D o ponto de interseção da reta s com a reta paralela a r que passa pelo ponto B. Seja, também, E o ponto de interseção da reta r com a reta paralela a s que passa pelo ponto B. Sejam, então, α e β tais que $\alpha \vec{u} = \overrightarrow{PE}$ e $\beta \vec{w} = \overrightarrow{PD}$. Como $\vec{v} = \overrightarrow{PB} = \overrightarrow{PE} + \overrightarrow{PD} = \alpha \vec{u} + \beta \vec{w}$, temos que \vec{v} é combinação linear de \vec{u} e \vec{w} , i.e. \vec{u} , \vec{v} e \vec{w} são l.d..

2.2.3 Quatro ou Mais Vetores no Espaço

Quatro ou mais vetores são sempre l.d.¹. De fato, sejam dados quatro vetores \vec{a} , \vec{b} , \vec{c} e \vec{d} . Se dois ou três destes forem l.d.entre si, então, por definição, os quatro são l.d.. Assim sendo, suponhamos que três dos vetores

¹No espaço euclidiano tridimensional.

sejam l.i. e provaremos que, então, o outro vetor é combinação linear desses três.

Sem perda de generalidade, suponhamos que \vec{a} , \vec{b} e \vec{c} são l.i.. Logo, eles não são coplanares. Seja, ainda, π o plano determinado pelos vetores \vec{a} , \vec{b} e as representações $\vec{a} = \overrightarrow{PA}$, $\vec{b} = \overrightarrow{PB}$, $\vec{c} = \overrightarrow{PC}$ e $\vec{d} = \overrightarrow{PD}$.

Figura 2.6: Quatro vetores são l.d..

Tomamos a reta r paralela a \overrightarrow{PC} que passa pelo ponto D. Então, seja E o ponto de interseção de r com o plano π . Consultamos a Figura 2.6. Observamos que o vetor \overrightarrow{PE} é coplanar aos vetores \overrightarrow{PA} e \overrightarrow{PB} e, portanto, exitem números reais α e β tal que

$$\overrightarrow{PE} = \alpha \overrightarrow{PA} + \beta \overrightarrow{PB}. \tag{2.35}$$

Além disso, como \overrightarrow{ED} tem a mesma direção e sentido de $\overrightarrow{PC}=\overrightarrow{c},$ temos que

$$\overrightarrow{ED} = \gamma \overrightarrow{PC} \tag{2.36}$$

para algum número real $\gamma.$ Por fim, observamos que

$$\overrightarrow{PD} = \overrightarrow{PE} + \overrightarrow{ED}$$

$$= \alpha \overrightarrow{PA} + \beta \overrightarrow{PB} + \gamma \overrightarrow{PC}$$

$$= \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}.$$

2.2.4 Exercícios Resolvidos

ER 2.2.1. Se \vec{u} e \vec{v} são l.i. e

$$\vec{a} = 2\vec{u} - 3\vec{v},\tag{2.37}$$

$$\vec{b} = \vec{u} + 2\vec{v},\tag{2.38}$$

então \vec{a} e \vec{b} são l.d.?

Solução. Os vetores \vec{a} e \vec{b} são l.i. se, e somente se,

$$\alpha \vec{a} + \beta \vec{b} = \vec{0} \Rightarrow \alpha = \beta = 0. \tag{2.39}$$

Observemos que

$$\vec{0} = \alpha \vec{a} + \beta \vec{b} \tag{2.40}$$

$$= \alpha(2\vec{u} - 3\vec{v}) + \beta(\vec{u} + 2\vec{v}) \tag{2.41}$$

$$= (2\alpha + \beta)\vec{u} + (-3\alpha + 2\beta)\vec{v} \tag{2.42}$$

implica

$$2\alpha + \beta = 0 \tag{2.43}$$

$$-3\alpha + 2\beta = 0 \tag{2.44}$$

Resolvendo este sistema, vemos que $\alpha=\beta=0$. Logo, concluímos que \vec{a} e \vec{b} são l.i..

 \Diamond

ER 2.2.2. Sejam \vec{u} , \vec{v} e \vec{w} três vetores. Verifique a seguinte afirmação de que se \vec{u} e \vec{v} são l.d., então \vec{u} , \vec{v} e \vec{w} são l.d.. Justifique sua resposta.

Solução. A afirmação é verdadeira. De fato, se \vec{u} e \vec{v} são l.d., então existe um escalar α tal que

$$\vec{u} = \alpha \vec{v}. \tag{2.45}$$

Segue que

$$\vec{u} = \alpha \vec{v} + 0 \vec{w}. \tag{2.46}$$

Isto é, \vec{u} é combinação linear de \vec{v} e \vec{w} . Então, por definição, \vec{u} , \vec{v} e \vec{w} são l.d..

 \Diamond

ER 2.2.3. Sejam $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AC}$. Mostre que A, B e C são colineares se, e somente se, \vec{u} e \vec{v} são l.d..

Solução. Primeiramente, vamos verificar a implicação. Se $A, B \in C$ são colineares, então os segmentos \overrightarrow{AB} e AC têm a mesma direção. Logo, são l.d. os vetores $\overrightarrow{u} = \overrightarrow{AB}$ e $\overrightarrow{v} = \overrightarrow{AC}$.

Agora, verificamos a recíproca. Se $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AC}$ são l.d., então os segmentos AB e AC têm a mesma direção. Como eles são concorrentes, segue que A, B e C são colineares.

2.2.5 Exercícios

E.2.2.1. Sendo $\overrightarrow{AB} + 2\overrightarrow{BC} = \vec{0}$, mostre que \overrightarrow{PA} , \overrightarrow{PB} e \overrightarrow{PC} são l.d. para qualquer ponto P.

E.2.2.2. Sejam dados três vetores quaisquer \vec{a} , \vec{b} e \vec{c} . Mostre que os vetores $\vec{u} = 2\vec{a} - \vec{b}$, $\vec{v} = -\vec{a} - 2\vec{c}$ e $\vec{w} = \vec{b} + 4\vec{c}$ são l.d..

E.2.2.3. Sejam $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AC}$ e $\vec{w} = \overrightarrow{AD}$. Mostre que A, B, C e D são coplanares se, e somente se, \vec{u} , \vec{v} e \vec{w} são l.d..

E.2.2.4. Se \vec{u} e \vec{v} são l.i. e

$$\vec{a} = 2\vec{u} - \vec{v},\tag{2.47}$$

$$\vec{b} = 2\vec{v} - 4\vec{u},\tag{2.48}$$

então \vec{a} e \vec{b} são l.i.? Justifique sua resposta.

E.2.2.5. Verifique se é verdadeira ou falsa cada uma das seguintes afirmações. Justifique sua resposta.

- a) \vec{u} , \vec{v} , \vec{w} l.d. $\Rightarrow \vec{u}$, \vec{v} l.d..
- b) \vec{u} , $\vec{0}$, \vec{w} são l.d..
- c) \vec{u} , \vec{v} l.i. $\Rightarrow \vec{u}$, \vec{v} e \vec{w} l.i..
- d) \vec{u} , \vec{v} , \vec{w} l.d. $\Rightarrow -\vec{u}$, $2\vec{v}$, $-3\vec{w}$ l.d..

Respostas

E.2.2.1. Dica: os vetores \overrightarrow{AB} e \overrightarrow{BC} são l.d..

E.2.2.2. Dica: Escreva um dos vetores como combinação linear dos outros.

E.2.2.3. Três vetores são l.d. se, e somente se, eles são coplanares.

E.2.2.4. Não.

E.2.2.5. a) falsa; b) verdadeira; c) falsa; d) verdadeira.

2.3 Bases e Coordenadas

Seja V o conjunto de todos os vetores no espaço tridimensional. Conforme discutido na Seção 2.2, se \vec{a} , \vec{b} e \vec{c} são l.i., então qualquer vetor $\vec{u} \in V$ pode ser escrito como uma combinação linear destes vetores, i.e. existem escalares α , β e γ tal que

$$\vec{u} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}. \tag{2.49}$$

Isso motiva a seguinte definição: uma base de V é uma sequência de três vetores l.i. de V.

A seguinte proposição vai nos fornecer a noção de coordenadas no espaço.

Proposição 2.3.1. Seja $B=\left(\vec{a},\vec{b},\vec{c}\right)$ uma base de V. Então, dado qualquer

 $\vec{u} \in V$, existe uma única tripla de escalares (α, β, γ) tais que

$$\vec{u} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}. \tag{2.50}$$

Demonstração. A existência dos escalares α , β e γ segue imediatamente do fato de que \vec{a} , \vec{b} e \vec{c} são l.i. e, portanto, \vec{u} pode ser escrito como uma combinação linear destes vetores (Consulte a Subseção 2.2.3).

Agora, para verificar a unicidade de (α, β, γ) , suponhamos que existam α' , β' e γ' tais que

$$\vec{u} = \alpha' \vec{a} + \beta' \vec{b} + \gamma' \vec{c}. \tag{2.51}$$

Subtraindo (2.51) de (2.50), obtemos

$$\vec{0} = (\alpha - \alpha')\vec{a} + (\beta - \beta')\vec{b} + (\gamma - \gamma')\vec{c}. \tag{2.52}$$

Como \vec{a} , \vec{b} e \vec{c} são l.i., segue que²

$$\alpha - \alpha' = 0, \ \beta - \beta' = 0, \ \gamma - \gamma' = 0,$$
 (2.53)

i.e.
$$\alpha = \alpha', \ \beta = \beta' \ e \ \gamma = \gamma'.$$

Desta última proposição, fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, cada vetor \vec{u} é representado de forma única como combinação linear dos vetores da base, digamos

$$\vec{u} = u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}, \tag{2.54}$$

onde a sequência de escalares (u_1, u_2, u_3) é chamada de **coordenadas** do vetor \vec{u} na base B e escrevemos

$$\vec{u} = (u_1, u_2, u_3)_B, \tag{2.55}$$

para expressar o vetor \vec{u} nas suas coordenadas na base B. Consulte a Figura 2.7.

Exemplo 2.3.1. Fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$, o vetor \vec{u} de coordenadas

$$\vec{u} = (-2, \sqrt{2}, -3)_B \tag{2.56}$$

é o vetor

$$\vec{u} = -2\vec{a} + \sqrt{2\vec{b}} - 3\vec{c}. \tag{2.57}$$

²Pela definição de vetores linearmente independentes, consulte Seção 2.2.

Figura 2.7: Representação de um vetor $\vec{u}=(u_1,u_2,u_3)_B$ em uma dada base $B=(\vec{a},\vec{b},\vec{c})$.

2.3.1 Operações de Vetores com Coordenadas

Na Seção 1.2, definimos as operações de adição, subtração e multiplicação por escalar do ponto de vista geométrico. Aqui, estudamos como estas operações são definidas a partir das coordenadas de vetores.

A partir daqui, assumimos dada uma base de vetores $B = (\vec{a}, \vec{b}, \vec{c})$.

Adição

Dados vetores $\vec{u} = (u_1, u_2, u_3)_B$ e $\vec{v} = (v_1, v_2, v_3)_B$, i.e.

$$\vec{u} = u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}, \tag{2.58}$$

$$\vec{v} = v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}, \tag{2.59}$$

a adição de \vec{u} com \vec{v} é a soma

$$\vec{u} + \vec{v} = \underbrace{u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c}}_{\vec{u}} + \underbrace{v_1 \vec{a} + v_2 \vec{b} + v_3 \vec{c}}_{\vec{v}}$$

$$(2.60)$$

$$= (u_1 + v_1)\vec{a} + (u_2 + v_2)\vec{b} + (u_3 + v_3)\vec{c}.$$
(2.61)

Ou seja,

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)_B. \tag{2.62}$$

Exemplo 2.3.2. A adição do vetor

$$\vec{u} = (2, -1, -3)_B \tag{2.63}$$

com o vetor

$$\vec{v} = (-1, 4, -5)_B \tag{2.64}$$

resulta no vetor

$$\vec{u} + \vec{v} = (2 + (-1), -1 + 4, -3 + (-5))_B \tag{2.65}$$

$$= (1, 3, -8)_B. (2.66)$$

Vetor Oposto

O vetor oposto ao vetor \vec{u} é

$$-\vec{u} = -(\underbrace{u_1\vec{a} + u_2\vec{b} + u_3\vec{c}}) \tag{2.67}$$

$$= (-u_1)\vec{a} + (-u_2)\vec{b} + (-u_3)\vec{c}, \tag{2.68}$$

ou seja,

$$-\vec{u} = (-u_1, -u_2, -u_3)_B. \tag{2.69}$$

Exemplo 2.3.3. Dado o vetor $\vec{v} = (2, -1, -3)_B$, temos

$$-\vec{v} = (-2, 1, 3)_B. \tag{2.70}$$

Subtração de Vetores

Lembrando que subtração de \vec{u} com \vec{v} é definida por

$$\vec{u} - \vec{v} := \vec{u} + (-\vec{v}),\tag{2.71}$$

temos que

$$\vec{u} - \vec{v} = (u_1, u_2, u_3)_B$$

$$- (v_1, v_2, v_3)_B$$

$$= (u_1, u_2, u_3)_B$$
(2.72)

$$+(-v_1,-v_2,-v_3)_B$$
 (2.73)

$$= (u_1 + (-v_1), u_2 + (-v_2), u_3 + (-v_3))$$
(2.74)

$$= (u_1 - v_1, u_2 - v_2, u_3 - v_3). (2.75)$$

Em resumo, a subtração de \vec{u} com \vec{v} é o vetor

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3). \tag{2.76}$$

Exemplo 2.3.4. Sejam os vetores

$$\vec{u} = (2, -1, -3)_B \tag{2.77}$$

e

$$\vec{v} = (-1, 4, -5)_B, \tag{2.78}$$

temos que

$$\vec{u} - \vec{v} = (2 - (-1), -1 - 4, -3 - (-5))_B$$
 (2.79)

$$= (3, -5, 2)_B. (2.80)$$

Multiplicação por Escalar

Dado um escalar α e um vetor \vec{u} , temos a multiplicação por escalar

$$\alpha \vec{u} = \alpha \underbrace{(u_1 \vec{a} + u_2 \vec{b} + u_3 \vec{c})}_{\vec{u}} \tag{2.81}$$

$$= (\alpha u_1)\vec{a} + (\alpha u_2)\vec{b} + (\alpha u_3)\vec{c}, \tag{2.82}$$

ou seja,

$$\alpha \vec{u} = (\alpha u_1, \alpha u_2, \alpha u_3). \tag{2.83}$$

Exemplo 2.3.5. Dado o vetor $\vec{v} = (2, -1, -3)_B$, temos

$$-\frac{1}{3}\vec{v} = -\frac{1}{3}(2, -1, -3)_B \tag{2.84}$$

$$= \left(-\frac{1}{3} \cdot 2, -\frac{1}{3} \cdot (-1), -\frac{1}{3} \cdot (-3)\right) \tag{2.85}$$

$$= \left(-\frac{2}{3}, \frac{1}{3}, 1\right)_{B}. \tag{2.86}$$

2.3.2 Dependência linear

Vamos estudar como podemos analisar a dependência linear de vetores a partir de suas coordenadas. Assumimos fixada uma base $B = (\vec{a}, \vec{b}, \vec{c})$.

Dois vetores

Na Proposição 2.2.1, provamos que dois vetores \vec{u} , \vec{v} são linearmente dependentes (l.d.) se, e somente se, um for múltiplo do outro, i.e. existe um número real α tal que

$$\vec{u} = \alpha \vec{v},\tag{2.87}$$

sem perda de generalidade³. Em coordenadas, temos

$$(u_1, u_2, u_3)_B = \alpha(v_1, v_2, v_3)_B \tag{2.88}$$

$$= (\alpha v_1, \alpha v_2, \alpha v_3)_B, \tag{2.89}$$

donde

$$u_1 = \alpha v_1, \tag{2.90}$$

$$u_2 = \alpha v_2, \tag{2.91}$$

$$u_3 = \alpha v_3. \tag{2.92}$$

Concluímos que dois vetores são l.d. se, e somente se, as coordenadas de um deles forem, respectivamente, múltiplas (de mesmo fator) das coordenadas do outro.

Exemplo 2.3.6. Estudamos os seguintes casos:

³Formalmente, pode ocorrer $\vec{v} = \beta \vec{u}$.

a) Dois vetores l.d..

Sejam

$$\vec{u} = (2, -1, -3)_B \tag{2.93}$$

e

$$\vec{v} = \left(1, -\frac{1}{2}, -\frac{3}{2}\right)_B. \tag{2.94}$$

Ao buscarmos por um escalar α tal que

$$\vec{u} = \alpha \vec{v},\tag{2.95}$$

temos

$$\underbrace{(2,-1,-3)_B}_{\vec{u}} = \alpha \underbrace{\left(1, -\frac{1}{2}, -\frac{3}{2}\right)_B}_{\vec{s}}$$
(2.96)

$$= \left(\alpha - \frac{\alpha}{2}, -\frac{3\alpha}{2}\right)_B,\tag{2.97}$$

donde segue que

$$2 = \alpha \Rightarrow \alpha = 2 \tag{2.98}$$

$$-1 = -\frac{\alpha}{2} \Rightarrow \alpha = 2 \tag{2.99}$$

$$-3 = -\frac{3\alpha}{2} \Rightarrow \alpha = 2. \tag{2.100}$$

Concluímos que $\vec{u} = 2\vec{v}$, logo \vec{u} e \vec{v} são l.d..

b) Dois vetores l.i..

Sejam, agora, os vetores

$$\vec{u} = (2, -1, -3) \tag{2.101}$$

 \mathbf{e}

$$\vec{v} = \left(2, -\frac{1}{2}, -\frac{3}{2}\right). \tag{2.102}$$

Buscando por α tal que

$$\vec{u} = \alpha \vec{v},\tag{2.103}$$

chegamos no sistema de equações

$$\begin{cases}
2 = 2\alpha \\
-1 = -\frac{\alpha}{2} \\
-3 = -\frac{3\alpha}{2}
\end{cases} \tag{2.104}$$

que não tem solução. De fato, na primeira equação $\alpha=1$, mas na segunda $\alpha=2$, logo não existe α tal que $\vec{u}=\alpha \vec{v}$. Concluímos que \vec{u} e \vec{v} são l.i..

Três Vetores

Na Subseção 2.2.2, estudamos que três vetores \vec{u} , \vec{v} e \vec{w} são linearmente independentes (l.i.), quando

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0}$$

$$\Rightarrow \alpha = \beta = \gamma = 0.$$
(2.105)

Assumimos fixada uma base $B=(\vec{a},\vec{b},\vec{c})$ no espaço. Então, temos que

$$\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w} = \vec{0} \tag{2.106}$$

é equivalente a

$$\alpha(u_1, u_2, u_3)_B + \beta(v_1, v_2, v_3)_B + \gamma(w_1, w_2, w_3)_B = (0, 0, 0)_B.$$
 (2.107)

ou, ainda,

$$(\alpha u_1 + \beta v_1 + \gamma w_1, \alpha u_2 + \beta v_2 + \gamma w_2,$$

$$\alpha u_3 + \beta v_3 + \gamma w_3)_B$$

= (0,0,0)_B. (2.108)

Esta, por sua vez, nos leva ao seguinte sistema linear

$$\begin{cases} u_1 \alpha + v_1 \beta + w_1 \gamma = 0 \\ u_2 \alpha + v_2 \beta + w_2 \gamma = 0 \\ u_3 \alpha + v_3 \beta + w_3 \gamma = 0 \end{cases}$$
 (2.109)

Agora, lembremos que um tal sistema tem solução única⁴ se, e somente se, o determinante de sua **matriz dos coeficientes** é não nulo, i.e.

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} \neq 0.$$
 (2.110)

Neste caso, concluímos que $\{\vec{u}, \vec{v}, \vec{w}\}$ é um conjunto de vetores l.i. e, noutro caso, é l.d..

Exemplo 2.3.7. Os vetores

$$\vec{u} = (2, 1, -3)_B, \vec{v}$$
 = $(1, -1, 2)_B, \vec{w} = (-2, 1, 1)_B,$ (2.111)

formam um conjunto l.d., pois

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & -2 \\ 1 & -1 & 1 \\ -3 & 2 & 1 \end{vmatrix}$$
 (2.112)

$$= -2 - 4 - 3 + 6 - 4 - 1 \tag{2.113}$$

$$= -8 \neq 0. \tag{2.114}$$

2.3.3 Bases Ortonormais

Uma base $B = (\vec{i}, \vec{j}, \vec{k})$ é dita ser ortonormal⁵, quando

- \vec{i} , \vec{j} e \vec{k} são dois a dois ortogonais, e
- $\|\vec{i}\| = \|\vec{j}\| = \|\vec{k}\| = 1.$

Figura 2.8: Representação gráfica de uma base ortonormal de vetores.

Lema 2.3.1. (Pitágoras¹.) Se $\vec{u} \perp \vec{v}$, então

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2. \tag{2.115}$$

Demonstração. Consulte o E.2.3.7.

Proposição 2.3.1. Seja $B = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal $e \vec{u} = (u_1, u_2, u_3)_B$. Então,

$$\|\vec{u}\| = \sqrt{u_1^2 + u_2^2 + u_3^2}. (2.116)$$

Demonstração. Temos $\|\vec{u}\|^2 = \|u_1\vec{i} + u_2\vec{j} + u_3\vec{k}\|^2$. Seja π um plano determinado por dadas representações de \vec{i} e \vec{j} . Como \vec{i} , \vec{j} e \vec{k} são ortogonais, temos que \vec{k} é ortogonal ao plano π . Além disso, o vetor $u_1\vec{i} + u_2\vec{j}$ também admite uma representação em π , logo $u_1\vec{i} + u_2\vec{j}$ é ortogonal a \vec{k} . Do Lema 2.3.1, temos

$$\|\vec{u}\|^2 = \|u_1\vec{i} + u_2\vec{j}\|^2 + \|u_3\vec{k}\|^2. \tag{2.117}$$

⁴Neste caso, a solução trivial $\alpha = \beta = \gamma = 0$

⁵Quando \vec{u} ortogonal a \vec{v} , denotamos $\vec{u} \perp \vec{v}$.

Analogamente, como $u_1\vec{i} \perp u_2\vec{j}$, temos

$$\|\vec{u}\|^2 = \|u_1\vec{i}\|^2 + \|u_2\vec{j}\|^2 + \|u_3\vec{k}\|^2 \tag{2.118}$$

$$= |u_1|^2 ||\vec{i}|| + |u_2|^2 ||\vec{j}|| + |u_3|||\vec{k}||^2$$
(2.119)

$$= u_1^2 + u_2^2 + u_3^2. (2.120)$$

Extraindo a raiz quadrada de ambos os lados da última equação, obtemos o resultado desejado. $\hfill\Box$

A partir daqui, salvo dito o contrário, vamos assumir fixada uma base ortonormal $B = (\vec{i}, \vec{j}, \vec{k})$ e, por simplicidade, escrevemos

$$\vec{u} = (u_1, u_2, u_3) \tag{2.121}$$

$$= u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}. \tag{2.122}$$

Exemplo 2.3.8. A norma de $\vec{u} = (-1, 2, -\sqrt{2})$ é

$$\|\vec{u}\| = \sqrt{(-1)^2 + 2^2 + (-\sqrt{2})^2}$$
 (2.123)

$$=\sqrt{7}. (2.124)$$

2.3.4 Exercícios Resolvidos

ER 2.3.1. Considere a base $B=(\vec{i},\vec{j},\vec{k})$ ortonormal conforme dada na Figura 2.8. Faça uma representação do vetor

$$\vec{u} = \left(2, \frac{1}{2}, 1\right)_{B}.\tag{2.125}$$

Solução. Primeiramente, observamos que

$$\vec{u} = \left(2, \frac{1}{2}, 1\right)_B \tag{2.126}$$

$$=2\vec{i} + \frac{1}{2}\vec{j} + \vec{k}. \tag{2.127}$$

Assim sendo, podemos construir uma representação de \vec{u} como dada na figura abaixo. Primeiramente, representamos os vetores $2\vec{i}$ e $\frac{1}{2}\vec{j}$ (cinza). Então,

representamos o vetor $2\vec{i} + \frac{1}{2}\vec{j}$ (cinza). Por fim, temos a representação de \vec{u} (vermelho).

ER 2.3.2. Fixada uma base qualquer B e dados $\vec{u}=(1,-1,2)_B$ e $\vec{v}=(-2,1,-1)_B$, encontre o vetor \vec{x} que satisfaça

$$\vec{u} + 2\vec{x} = \vec{v} - (\vec{x} + \vec{u}). \tag{2.128}$$

Solução. Primeiramente, podemos manipular a equação de forma a isolarmos \vec{x} como segue

$$\vec{u} + 2\vec{x} = \vec{v} - (\vec{x} + \vec{u}) \tag{2.129}$$

$$2\vec{x} = -\vec{u} + \vec{v} - \vec{x} - \vec{u} \tag{2.130}$$

$$3\vec{x} = \vec{v} - 2\vec{u} \tag{2.131}$$

$$\vec{x} = \frac{1}{3}\vec{v} - \frac{2}{3}\vec{u} \tag{2.132}$$

Agora, sabendo que $\vec{u}=(1,-1,2)_B$ e $\vec{v}=(-2,1,-1)_B$, temos

$$\vec{x} = \frac{1}{3}(-2, 1, -1)_B - \frac{2}{3}(1, -1, 2)_B \tag{2.133}$$

$$\vec{x} = \left(-\frac{2}{3}, \frac{1}{3}, -\frac{1}{3}\right)_B - \left(\frac{2}{3}, -\frac{2}{3}, \frac{4}{3}\right)_B \tag{2.134}$$

$$\vec{x} = \left(-\frac{2}{3} - \frac{2}{3}, \frac{1}{3} + \frac{2}{3}, -\frac{1}{3} - \frac{4}{3}\right) \tag{2.135}$$

$$\vec{x} = \left(-\frac{4}{3}, 1, -\frac{5}{3}\right)_B. \tag{2.136}$$

 \Diamond

ER 2.3.3. Fixada uma base B qualquer, verifique se os vetores $\vec{u} = (1, -1, 2)_B$, $\vec{v} = (-2, 1, -1)_B$ e $\vec{w} = (-4, 3, -5)$ também formam um base para o espaço de vetores.

Solução. Uma base para o espaço tridimensional V é uma sequência de três vetores l.i.. Logo, para resolver a questão, basta verificar se $(\vec{u}, \vec{v}, \vec{w})$ é l.i.. Com base na Subseção 2.3.2, basta calcularmos o determinante da matriz cujas colunas são formadas pelas coordenadas dos vetores da sequência, i.e.

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix}$$
 (2.137)

$$= \begin{vmatrix} 1 & -2 & -4 \\ -1 & 1 & 3 \\ 2 & -1 & -5 \end{vmatrix}$$
 (2.138)

$$= -5 - 4 - 12 - (-8 - 3 - 10) \tag{2.139}$$

$$= -21 + 21 = 0. (2.140)$$

Como este determinante é nulo, concluímos que $(\vec{u}, \vec{v}, \vec{w})$ é l.d. e, portanto, não forma uma base para V.

 \Diamond

2.3.5 Exercícios

E.2.3.1. Considere a base $B = (\vec{i}, \vec{j}, \vec{k})$ conforme dada na Figura 2.8. Faça um esboço do vetor $\vec{u} = (1, -1, \frac{1}{2})_B$.

E.2.3.2. Fixada uma base $B = (\vec{i}, \vec{j}, \vec{k})$ e sabendo que $\vec{v} = (2, 0, -3)_B$, escreva \vec{v} como combinação linear de \vec{i}, \vec{j} e \vec{k} .

E.2.3.3. Fixada uma base B qualquer e $\vec{a} = (0, -1, 1)_B$, $\vec{b} = (2, 0, -1)_B$ e $\vec{c} = (\frac{1}{2}, -\frac{1}{3}, 1)_B$, calcule:

- a) $6\vec{c}$
- b) $-\vec{b}$
- c) $\vec{c} \vec{b}$
- d) $2\vec{c} (\vec{a} \vec{b})$

E.2.3.4. Faxada uma base B qualquer, verifique se os seguintes conjuntos de vetores são l.i. ou l.d..

- a) $\vec{i} = (1, 0, 0)_B$, $\vec{j} = (0, 1, 0)_B$
- b) $\vec{a} = (1, 2, 0)_B$, $\vec{b} = (-2, -4, 1)_B$
- c) $\vec{a} = (1, 2, 0)_B, \vec{c} = (-2, -4, 0)_B$
- d) $\vec{i} = (1, 0, 0)_B$, $\vec{k} = (0, 0, 1)_B$
- e) $\vec{j} = (0, 1, 0)_B$, $\vec{k} = (0, 0, 1)_B$
- f) $\vec{a} = (1, 2, -1)_B$, $\vec{d} = (\frac{1}{2}, 1, -\frac{1}{2})_B$

E.2.3.5. Faxada uma base B qualquer, verifique se os seguintes conjuntos de vetores são l.i. ou l.d..

- a) $\vec{i} = (1, 0, 0)_B$, $\vec{j} = (0, 1, 0)_B$, $\vec{k} = (0, 0, 1)_B$
- b) $\vec{a} = (0, -1, 1)_B$, $\vec{b} = (2, 0, -1)$, $\vec{c} = (\frac{1}{2}, -\frac{1}{3}, 1)_B$
- c) $\vec{u} = (0, -1, 1)_B$, $\vec{v} = (2, 0, -1)$, $\vec{w} = (2, -1, 0)_B$

E.2.3.6. Seja $B = (\vec{a}, \vec{b}, \vec{c})$ uma base ortogonal, i.e. \vec{a}, \vec{b} e \vec{c} são l.i. e dois a dois ortogonais. Mostre que $C = (\vec{a}/|\vec{a}|, \vec{b}/|\vec{b}|, \vec{c}/|\vec{c}|)$ é uma base ortonormal.

E.2.3.7. Demostre o Lema 2.3.1.

Respostas

E.2.3.2.
$$\vec{v} = 2\vec{i} + 0\vec{j} - 3\vec{k}$$

E.2.3.3. a)
$$6\vec{c} = (3, -2, 6)_B$$
; b) $-\vec{b} = (-2, 0, 1)_B$; c) $\vec{c} - \vec{b} = (-\frac{3}{2}, -\frac{1}{3}, 2)_B$; d) $2\vec{c} - (\vec{a} - \vec{b}) = (3, \frac{1}{3}, 0)_B$

E.2.3.4. a) l.i.; b) l.i.; c) l.d.; d) l.i.; e) l.i.; f) l.d.

E.2.3.5. a) l.i.; b) l.i.; c) l.d.

E.2.3.6. Segue imediatamente do fato de que $|\vec{u}/|u||=1$ para qualquer vetor $\vec{u}\neq 0$.

E.2.3.7.

Sejam as representações $\vec{u} = \overrightarrow{AB}, \ \vec{v} = \overrightarrow{BC}$ e, portanto, $\vec{u} + \vec{v} = \overrightarrow{AC}$. Como $\vec{u} \perp \vec{v}$, temos que o triângulo ABC é retângulo e, pelo Teorema de Pitágoras, segue que $\|\overrightarrow{AC}\|^2 = \|\overrightarrow{AB}\|^2 + \|\overrightarrow{BC}\|^2$. Logo, $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$.

2.4 Mudança de base

Em revisão

Sejam $B = (\vec{u}, \vec{v}, \vec{w})$ e $C = (\vec{r}, \vec{s}, \vec{t})$ bases do espaço V. Conhecendo as coordenadas de um vetor na base C, queremos determinar suas coordenadas na base B. Mais especificamente, seja

$$\vec{z} = (z_1, z_2, z_3)_C \tag{2.141}$$

$$= z_1 \vec{r} + z_2 \vec{s} + z_3 \vec{t}. \tag{2.142}$$

Agora, tendo $\vec{r} = (r_1, r_2, r_3)_B$, $\vec{s} = (s_1, s_2, s_3)_B$ e $\vec{t} = (t_1, t_2, t_3)_B$, então

$$(z_1, z_2, z_3)_C = z_1(r_1, r_2, r_3)_B (2.143)$$

$$+z_2(s_1,s_2,s_3)_B$$
 (2.144)

$$+z_3(t_1,t_2,t_3)_B$$
 (2.145)

$$= \underbrace{(r_1 z_1 + s_1 z_2 + t_1 z_3)}_{z_1'} \vec{u} \tag{2.146}$$

$$+\underbrace{(r_2z_1+s_2z_2+t_2z_3)}_{z_0}\vec{v}$$
 (2.147)

$$+\underbrace{(r_3z_1 + s_3z_2 + t_3z_3)}_{z_3'}\vec{w}$$
 (2.148)

o que é equivalente a

$$\begin{bmatrix} z_1' \\ z_2' \\ z_3' \end{bmatrix} = \underbrace{\begin{bmatrix} r_1 & s_1 & t_1 \\ r_2 & s_2 & t_2 \\ r_3 & s_3 & t_3 \end{bmatrix}}_{MGR} \underbrace{\begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}}_{,$$
 (2.149)

onde $\vec{z} = (z'_1, z'_2, z'_3)_B$.

A matriz M_{CB} é chamada de matriz de mudança de base de C para B. Como os vetores \vec{r} , \vec{s} e \vec{t} são l.i., temos que a matriz de mudança de base M_{BC} tem determinante não nulo e, portanto é invertível. Portanto, multiplicando por

 M_{BC}^{-1} pela esquerda em (2.149), temos

$$\begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \underbrace{\begin{bmatrix} r_1 & s_1 & t_1 \\ r_2 & s_2 & t_2 \\ r_3 & s_3 & t_3 \end{bmatrix}}_{M_{BG}} \begin{bmatrix} z_1' \\ z_2' \\ z_3' \end{bmatrix}, \tag{2.150}$$

ou seja

$$M_{BC} = (M_{CB})^{-1}. (2.151)$$

Exemplo 2.4.1. Sejam dadas as bases $B = (\vec{a}, \vec{b}, \vec{c})$ e $C = (\vec{u}, \vec{v}, \vec{w})$, com $\vec{u} = (1, 2, 0)_B$, $\vec{v} = (2, 0, -1)_B$ e $\vec{w} = (-1, -3, 1)_B$. Seja, ainda, o vetor $\vec{z} = (1, -2, 1)_B$. Vamos encontrar as coordenadas de \vec{z} na base C.

Há duas formas de proceder.

Método 1.

A primeira consiste em resolver, de forma direta, a seguinte equação

$$(1, -2, 1)_B = (x, y, z)_C. (2.152)$$

Esta é equivalente a

$$\vec{a} - 2\vec{b} + \vec{c} = x\vec{u} + y\vec{v} + z\vec{w}$$

$$= x(1,2,0)_B$$

$$+ y(2,0,-1)_B$$

$$+ z(-1,-3,1)_B$$

$$= x(\vec{a} + 2\vec{b})$$

$$+ y(2\vec{a} - \vec{c})$$

$$+ z(-\vec{a} - 3\vec{b} + \vec{c})$$

$$= (x + 2y - z)\vec{a}$$

$$+ (2x - 3z)\vec{b}$$

$$+ (-y + z)\vec{c}$$

$$(2.153)$$

$$(2.154)$$

$$(2.155)$$

$$(2.156)$$

$$(2.157)$$

$$(2.159)$$

$$(2.160)$$

$$(2.161)$$

Pedro H A Konzen - Notas de Aula */* Licença CC-BY-SA 4.0

Isto nos leva ao seguinte sistema linear

$$\begin{cases} x + 2y - z = 1\\ 2x - 3z = -2\\ -y + z = 1 \end{cases}$$
 (2.163)

Resolvendo este sistema, obtemos x = 7/5, y = 3/5 e z = 8/5, i.e.

$$\vec{z} = \left(\frac{7}{5}, \frac{3}{5}, \frac{8}{5}\right)_C. \tag{2.164}$$

Método 2.

Outra maneira de se obter as coordenadas de \vec{z} na base C é usando a matriz de mudança de base. A matriz de mudança da base C para a base B é

$$M_{CB} = \begin{bmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{bmatrix}$$
 (2.165)

$$= \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}. \tag{2.166}$$

Entretanto, neste exemplo, queremos fazer a mudança de B para C. Portanto, calculamos a matriz de mudança de base M_{BC} . Segue:

$$M_{BC} = M_{CB}^{-1} (2.167)$$

$$M_{BC} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}^{-1} \tag{2.168}$$

$$M_{BC} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}^{-1}$$

$$M_{BC} = \begin{bmatrix} \frac{3}{5} & \frac{1}{5} & \frac{6}{5} \\ \frac{5}{5} & -\frac{1}{5} & -\frac{1}{5} \\ \frac{2}{5} & -\frac{1}{5} & \frac{4}{5} \end{bmatrix}$$
(2.168)

Com esta matriz e denotando $\vec{z} = (x, y, z)_C$, temos

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \underbrace{\begin{bmatrix} \frac{3}{5} & \frac{1}{5} & \frac{6}{5} \\ \frac{5}{5} & -\frac{1}{5} & -\frac{1}{5} \\ \frac{2}{5} & -\frac{1}{5} & \frac{4}{5} \end{bmatrix}}_{M_{BC}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 (2.170)

Logo, temos

$$\vec{z} = \left(\frac{7}{5}, \frac{3}{5}, \frac{8}{5}\right)_C. \tag{2.172}$$

Exercícios resolvidos

ER 2.4.1. Sejam B e C bases dadas do espaço V. Sabendo que a matriz de mudança de base de B para C é

$$M = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix}, \tag{2.173}$$

calcule a matriz de mudança de base de C para B.

Solução. Sejam $M_{BC}=M$ a matriz de mudança de base de B para C e M_{CB} a matriz de mudança de base de C para B. Temos

$$M_{CB} = M_{BC}^{-1} (2.174)$$

$$M_{CB} = M^{-1} (2.175)$$

$$M_{CB} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix}^{-1} \tag{2.176}$$

$$M_{CB} = \begin{bmatrix} \frac{1}{6} & -\frac{1}{2} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{6} \\ -\frac{5}{6} & -\frac{1}{2} & \frac{1}{6} \end{bmatrix}$$
 (2.177)

 \Diamond

ER 2.4.2. Fixadas as mesmas bases do ER 2.4.1, determine as coordenadas do vetor \vec{u} na base C, sabendo que $\vec{u} = (2, -1, -3)_B$.

Solução. Denotando $\vec{u} = (u_1, u_2, u_3)_B$, temos

$$\vec{u}_C = M_{BC}\vec{u}_B \tag{2.178}$$

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix}$$
 (2.179)

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ -2 \end{bmatrix} \tag{2.180}$$

 \Diamond

ER 2.4.3. Considere dadas as bases A, B e C. Sejam, também, M_{AB} a matriz de mudança de base de A para B e M_{BC} a matriz de mudança de base de B para C. Determine a matriz de mudança de base de A para C em função das matrizes M_{AB} e M_{BC} .

Solução. Para um vetor \vec{u} qualquer, temos

$$\vec{u}_B = M_{AB}\vec{u}_A \tag{2.181}$$

$$\vec{u}_C = M_{BC}\vec{u}_B \tag{2.182}$$

Logo, temos

$$\vec{u}_C = M_{BC} (M_{AB} \vec{u}_A) \tag{2.183}$$

$$= (M_{BC}M_{AB})\,\vec{u}_A. \tag{2.184}$$

Concluímos que $M_{AC} = M_{BC}M_{AB}$.

 \Diamond

Exercícios

E.2.4.1. Sejam A e B bases dadas de V (espaço tridimensional). Sabendo que $\vec{v} = (-2, 0, 1)_A$ e que a matriz de mudança de base

$$M_{AB} = \begin{array}{cccc} 1 & 0 & -1 \\ 0 & 2 & -1, \\ -1 & 1 & 0 \end{array}$$
 (2.185)

determine \vec{v}_B , i.e. as coordenadas de \vec{v} na base B.

E.2.4.2. Sejam A e B bases dadas de V (espaço tridimensional). Sabendo que $\vec{v} = (-2, 0, 1)_B$ e que a matriz de mudança de base

$$M_{AB} = \begin{array}{cccc} 1 & 0 & -1 \\ 0 & 2 & -1, \\ -1 & 1 & 0 \end{array}$$
 (2.186)

determine \vec{v}_A , i.e. as coordenadas de \vec{v} na base A.

E.2.4.3. Sejam $B = (\vec{a}, \vec{b}, \vec{c})$ e $C = (\vec{u}, \vec{v}, \vec{w})$ bases de V com

$$\vec{u} = (0, 1, 1)_B \tag{2.187}$$

$$\vec{v} = (1, 0, 1)_B \tag{2.188}$$

$$\vec{w} = (2, 1, -1)_B \tag{2.189}$$

Forneça a matriz de mudança de base M_{CB} .

E.2.4.4. Sejam $B = (\vec{a}, \vec{b}, \vec{c})$ e $C = (\vec{u}, \vec{v}, \vec{w})$ bases de V com

$$\vec{a} = (0, 1, 1)_C \tag{2.190}$$

$$\vec{b} = (1, 0, 1)_C \tag{2.191}$$

$$\vec{c} = (2, 1, -1)_C \tag{2.192}$$

Forneça a matriz de mudança de base M_{CB} .

E.2.4.5. Sejam $B = (\vec{a}, \vec{b}, \vec{c})$ e $C = (\vec{u}, \vec{v}, \vec{w})$ bases de V com

$$\vec{u} = (0, 1, 1)_B \tag{2.193}$$

$$\vec{v} = (1, 0, 1)_B \tag{2.194}$$

$$\vec{w} = (2, 1, -1)_B \tag{2.195}$$

Sabendo que $\vec{d} = (0, -1, 2)_C$, forneça \vec{d}_B , i.e. as coordenadas do vetor \vec{d} na base B.

E.2.4.6. Sejam
$$B = (\vec{a}, \vec{b}, \vec{c})$$
 e $C = (\vec{u}, \vec{v}, \vec{w})$ bases de V com $\vec{u} = (0, 1, 1)_B$ (2.196)

$$\vec{v} = (1, 0, 1)_B \tag{2.197}$$

$$\vec{w} = (2, 1, -1)_B \tag{2.198}$$

Sabendo que $\vec{d} = (1, -2, 1)_B$, forneça \vec{d}_C , i.e. as coordenadas do vetor \vec{d} na base C.

E.2.4.7. Considere dadas as bases A, B e C do espaço tridimensional V. Sejam, também, M_{AB} a matriz de mudança de base de A para B e M_{CB} a matriz de mudança de base de C para B. Determine a matriz de mudança de base de A para C em função das matrizes M_{AB} e M_{CB} .

Respostas

E.2.4.1.
$$\vec{v} = (-3, -1, 2)_B$$

E.2.4.2.
$$\vec{v} = (0, 1, 2)_A$$

$$\mathbf{E.2.4.3.} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix}$$

E.2.4.4.
$$\begin{bmatrix} -\frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

E.2.4.5.
$$\begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$$

E.2.4.6.
$$\begin{bmatrix} -\frac{3}{2} \\ 2 \\ -\frac{1}{2} \end{bmatrix}$$

E.2.4.7. $M_{AC} = M_{CB}^{-1} M_{AB}$

Capítulo 3

Produtos

Em revisão

3.1 Produto Escalar

Em revisão

Ao longo desta seção, assumiremos $B=(\vec{i},\vec{j},\vec{k})$ uma base ortonormal no espaço¹. Por simplicidade de notação, vamos denotar as coordenas de um vetor \vec{u} na base B por

$$\vec{u} = (u_1, u_2, u_3), \tag{3.1}$$

i.e. $\vec{u} = u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}$.

O **produto escalar** dos vetores $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ é o número real

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3. \tag{3.2}$$

Exemplo 3.1.1. Se $\vec{u} = (2, -1, 3)$ e $\vec{v} = (-3, -4, 2)$, então

$$\vec{u} \cdot \vec{v} = 2 \cdot (-3) + (-1) \cdot (-4) + 3 \cdot 2 = 4. \tag{3.3}$$

3.1.1 Propriedades do Produto Escalar

Quaisquer que sejam \vec{u} , \vec{v} , \vec{w} e qualquer número real α , temos:

• Comutatividade:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} \tag{3.4}$$

Dem.:

$$\vec{u} \cdot \vec{v} = (u_1, u_2, u_3) \cdot (v_1, v_2, v_3) \tag{3.5}$$

$$= u_1 v_1 + u_2 v_2 + u_3 v_3 \tag{3.6}$$

$$= v_1 u_1 + v_2 u_2 + v_3 u_3 \tag{3.7}$$

$$= \vec{v} \cdot \vec{u}. \tag{3.8}$$

• Associatividade com a multiplicação por escalar:

$$(\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v}) = \alpha (\vec{u} \cdot \vec{v}) \tag{3.9}$$

Dem.:

$$(\alpha \vec{u}) \cdot \vec{v} = (\alpha u_1, \alpha u_2, \alpha u_3) \cdot (v_1, v_2, v_3) \tag{3.10}$$

$$= (\alpha u_1)v_1 + (\alpha u_2)v_2 + (\alpha u_3)v_3 \tag{3.11}$$

$$= \alpha(u_1v_1) + \alpha(u_2v_2) + \alpha(u_3v_3)$$
 (3.12)

$$= \alpha(u_1v_1 + u_2v_2 + u_3v_3) = \alpha(\vec{u} \cdot \vec{v})$$
 (3.13)

$$= u_1(\alpha v_1) + u_2(\alpha v_2) + u_3(\alpha v_3) \tag{3.14}$$

$$= (u_1, u_2, u_3) \cdot (\alpha v_1, \alpha v_2, \alpha v_3) \tag{3.15}$$

$$= \vec{u} \cdot (\alpha \vec{v}). \tag{3.16}$$

• Distributividade com a adição:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} \tag{3.17}$$

Dem.:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = (u_1, u_2, u_3) \cdot ((v_1, v_2, v_3) + (w_1, w_2, w_3)) \tag{3.18}$$

$$= (u_1, u_2, u_3) \cdot [(v_1 + w_1, v_2 + w_2, v_3 + w_3)] \tag{3.19}$$

$$= u_1(v_1 + w_1) + u_2(v_2 + w_2) + u_2(v_2 + w_2)$$
 (3.20)

$$= u_1v_1 + u_1w_1 + u_2v_2 + u_2w_2 + u_3v_3 + u_3w_3 \qquad (3.21)$$

$$= u_1v_1 + u_2v_2 + u_3v_3 + u_1w_1 + u_2w_2 + u_3w_3 \qquad (3.22)$$

$$= \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}. \tag{3.23}$$

• Sinal:

$$\vec{u} \cdot \vec{u} > 0$$
, e (3.24)

$$\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0} \tag{3.25}$$

Dem.:

$$\vec{u} \cdot \vec{u} = u_1^2 + u_2^2 + u_3^2 \ge 0. \tag{3.26}$$

Além disso, observamos que a soma de números não negativos é nula se, e somente se, os números forem zeros.

• Norma:

$$|u|^2 = \vec{u} \cdot \vec{u} \tag{3.27}$$

Dem.: Como fixamos uma base ortonormal B, a Proposição $\ref{eq:constraint}$ nos garante que

$$|u|^2 = u_1^2 + u_2^2 + u_3^2 = \vec{u} \cdot \vec{u}. \tag{3.28}$$

Exemplo 3.1.2. Sejam $\vec{u} = (-1, 2, 1), \ \vec{v} = (2, -1, 3) \ e \ \vec{w} = (1, 0, -1).$ Vejamos se as propriedades se verificam para estes vetores.

• Comutatividade:

$$\vec{u} \cdot \vec{v} = -1 \cdot 2 + 2 \cdot (-1) + 1 \cdot 3 = -1 \tag{3.29}$$

$$\vec{v} \cdot \vec{u} = 2 \cdot (-1) + (-1) \cdot 2 + 3 \cdot 1 = -1 \checkmark \tag{3.30}$$

• Associatividade com a multiplicação por escalar:

$$(2\vec{u}) \cdot \vec{v} = (-2, 4, 2) \cdot (2, -1, 3) = -4 - 4 + 6 = -2 \tag{3.31}$$

$$2(\vec{u} \cdot \vec{v}) = 2(-2 - 2 + 3) = -2 \checkmark \tag{3.32}$$

$$\vec{u} \cdot (2\vec{v}) = (-1, 2, 1) \cdot (4, -2, 6) = -2 \checkmark \tag{3.33}$$

• Distributividade com a adição:

$$\vec{u} \cdot (\vec{v} + \vec{w}) = (-1, 2, 1) \cdot (3, -1, 2) = -3 - 2 + 2 = -3$$
 (3.34)

$$\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} = (-2 - 2 + 3) + (-1 + 0 - 1) = -3 \checkmark \tag{3.35}$$

• Sinal:

$$\vec{w} \cdot \vec{w} = 1 + 0 + 1 = 2 \ge 0 \checkmark \tag{3.36}$$

• Norma:

$$|u|^2 = (-1)^2 + 2^2 + 1^2 = 6 (3.37)$$

$$\vec{u} \cdot \vec{u} = (-1) \cdot (-1) + 2 \cdot 2 + 1 \cdot 1 = 6 \checkmark \tag{3.38}$$

3.1.2 Exercícios Resolvidos

ER 3.1.1. Sejam

$$\vec{u} = (-1, 0, 1) \tag{3.39}$$

$$\vec{v} = (0, 2, 1) \tag{3.40}$$

$$\vec{w} = (2, -1, -1) \tag{3.41}$$

calcule $\vec{w} \cdot (2\vec{u} - \vec{w}) - 2\vec{u} \cdot \vec{w}$.

Solução. Vamos começar calculando o último termo.

$$\vec{w} \cdot (2\vec{u} - \vec{w}) - 2\vec{u} \cdot \vec{w} \tag{3.42}$$

$$= \vec{w} \cdot (2\vec{u} - \vec{w}) - 2(-1, 0, 1) \cdot (2, -1, -1) \tag{3.43}$$

Calculamos 2(-1,0,1) = (-2,0,2), logo, temos

$$\vec{w} \cdot (2\vec{u} - \vec{w}) - (-2, 0, 2) \cdot (2, -1, -1) \tag{3.44}$$

$$= \vec{w} \cdot (2\vec{u} - \vec{w}) - (-2 \cdot 2 + 0 \cdot (-1) + 2 \cdot (-1)) \tag{3.45}$$

$$= \vec{w} \cdot (2\vec{u} - \vec{w}) - (-4 - 2) \tag{3.46}$$

Agora, para o primeiro termo, podemos usar a propriedade distributiva, como segue

$$2\vec{w}\cdot\vec{u} - \vec{w}\cdot\vec{w} + 6 \tag{3.47}$$

$$= 2(2, -1, -1) \cdot (-1, 0, 1) - |\vec{w}|^2 + 6 \tag{3.48}$$

$$= 2(-2+0-1) - (2^2 + (-1)^2 + (-1)^2) + 6$$
(3.49)

$$= -6 - 6 + 6 \tag{3.50}$$

$$= -6 \tag{3.51}$$

Com isso, concluímos que $\vec{w} \cdot (2\vec{u} - \vec{w}) - 2\vec{u} \cdot \vec{w} = -6$.

 \Diamond

ER 3.1.2. Sendo $B = (\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal, mostre que o produto interno entre vetores distintos de B é igual a zero. Ainda, o produto interno de um vetor de B por ele mesmo é igual a 1.

Solução. Calculamos o produto interno entre vetores diferentes:

$$\vec{i} \cdot \vec{j} = (1, 0, 0) \cdot (0, 1, 0) \tag{3.52}$$

$$= 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 \tag{3.53}$$

$$=0\checkmark \tag{3.54}$$

$$= \vec{j} \cdot \vec{i} \tag{3.55}$$

$$\vec{i} \cdot \vec{k} = (1, 0, 0) \cdot (0, 0, 1) \tag{3.56}$$

$$= 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 \tag{3.57}$$

$$=0\checkmark \tag{3.58}$$

$$= \vec{k} \cdot \vec{i} \tag{3.59}$$

$$\vec{j} \cdot \vec{k} = (1, 0, 0) \cdot (0, 0, 1) \tag{3.60}$$

$$= 1 \cdot 0 + 0 \cdot 0 + 0 \cdot 1 \tag{3.61}$$

$$=0\checkmark \tag{3.62}$$

$$=\vec{k}\cdot\vec{j}\tag{3.63}$$

Por fim, verificamos os casos do produto interno de um vetor por ele mesmo:

$$\vec{i} \cdot \vec{i} = 1^2 + 0^2 + 0^2 = 1 \checkmark \tag{3.64}$$

$$\vec{j} \cdot \vec{j} = 0^2 + 1^2 + 0^2 = 1 \checkmark \tag{3.65}$$

$$\vec{k} \cdot \vec{k} = 0^2 + 0^2 + 1^2 = 1 \checkmark \tag{3.66}$$

 \Diamond

3.1.3 Exercícios

E.3.1.1. Sendo $\vec{u} = (2, -1, 1)$ e $\vec{v} = (1, -3, 2)$, calcule:

- a) $\vec{u} \cdot \vec{v}$
- b) $\vec{v} \cdot \vec{u}$
- c) $2\vec{u} \cdot \vec{v}$
- d) $\vec{u} \cdot (2\vec{v})$

E.3.1.2. Sendo $\vec{u} = (2, -1, 1)$, calcule:

- a) $\vec{u} \cdot \vec{i}$
- b) $\vec{u} \cdot \vec{j}$
- c) $2\vec{u} \cdot \vec{k}$

E.3.1.3. Sendo $\vec{u} = (2, -1, 1), \vec{v} = (1, -3, 2)$ e $\vec{w} = (-2, -1, -3)$, calcule:

- a) $\vec{u} \cdot (\vec{w} + \vec{v})$
- b) $\vec{v} \cdot (\vec{v} 2\vec{u})$

E.3.1.4. Sendo $\vec{u}=(2,-1,1), \ \vec{v}=(1,-3,2)$ e $\vec{w}=(-2,-1,-3),$ calcule:

- a) $|\vec{u}|$
- b) $|\vec{u} + \vec{v}|$
- c) $|\vec{u} \cdot \vec{w}|$

E.3.1.5. Sendo $\vec{u} = (2, -1, 1)$, $\vec{v} = (1, -3, 2)$ e $\vec{w} = (-2, -1, -3)$, encontre o vetor \vec{x} que satisfaz as seguintes condições:

$$\vec{u} \cdot \vec{x} = -1 \tag{3.67}$$

$$\vec{v} \cdot \vec{x} = 2 \tag{3.68}$$

$$\vec{w} \cdot \vec{x} = -4 \tag{3.69}$$

(3.70)

E.3.1.6. Sendo $\vec{u} = (2, -1, 1)$ e $\vec{v} = (1, -3, 2)$, encontre o vetor \vec{x} que satisfaz as seguintes condições:

$$\vec{u} \cdot \vec{x} = 0 \tag{3.71}$$

$$\vec{v} \cdot \vec{x} = 0 \tag{3.72}$$

E.3.1.7. Sendo $\vec{u} = (2, -1, 1)$, $\vec{v} = (1, -3, 2)$ e $\vec{w} = (-2, -1, -3)$, encontre o vetor \vec{x} que satisfaz as seguintes condições:

$$\vec{u} \cdot \vec{x} = 0 \tag{3.73}$$

$$\vec{v} \cdot \vec{x} = 0 \tag{3.74}$$

$$\vec{w} \cdot \vec{x} = 0 \tag{3.75}$$

(3.76)

3.2 Ângulo entre Vetores

Em revisão

O ângulo formado entre dois vetores \vec{u} e \vec{v} não nulos, é definido como o menor ângulo determinado entre quaisquer representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$.

Figura 3.1: Ângulo entre dois vetores.

Proposição 3.2.1. Dados \vec{u} e \vec{v} , temos

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha, \tag{3.77}$$

onde α é o ângulo entre os vetores \vec{u} e \vec{v} .

Demonstração. Tomamos as representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OB}$. Observamos que $\vec{u} - \vec{v} = \overrightarrow{BA}$. Então, aplicando a lei dos cossenos no triângulo $\triangle OAB$, obtemos

$$|\overrightarrow{BA}|^2 = |\overrightarrow{OA}|^2 + |\overrightarrow{OB}|^2 - 2|\overrightarrow{OA}||\overrightarrow{OB}|\cos\alpha, \tag{3.78}$$

ou, equivalentemente,

$$|\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha \tag{3.79}$$

$$(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v}) = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
(3.80)

$$\vec{u} \cdot \vec{u} - 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
(3.81)

$$|\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v} = |\vec{u}|^2 + |\vec{v}|^2 - 2|\vec{u}||\vec{v}|\cos\alpha$$
(3.82)

donde

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \alpha. \tag{3.83}$$

Exemplo 3.2.1. Vamos determinar ângulo entre os vetores $\vec{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0\right)$ e $\vec{u} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right)$. Da Proposição 3.2.1, temos

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|u| \cdot |v|} \tag{3.84}$$

$$\cos \alpha = \frac{\frac{\sqrt{3}}{2} \frac{1}{2} + \frac{1}{2} \frac{\sqrt{3}}{2}}{\sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2 + 0^2} \cdot \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 + 0^2}}$$
(3.85)

$$\cos \alpha = \frac{\frac{\sqrt{3}}{2}}{1 \cdot 1} = \frac{\sqrt{3}}{2}.\tag{3.86}$$

Portanto, temos $\alpha = \pi/6$.

Observação 3.2.1. O ângulo entre dois vetores \vec{u} e \vec{v} é:

- agudo se, e somente se, $\vec{u} \cdot \vec{v} > 0$;
- obtuso se, e somente se, $\vec{u} \cdot \vec{v} < 0$.

De fato, de (3.77), temos que o sinal de $\vec{u} \cdot \vec{v}$ é igual ao sinal de $\cos \alpha$ (o cosseno do ângulo entre os vetores). Também, por definição, $0 \le \alpha \le \pi$. Logo, se $\cos \alpha > 0$, então $0 < \alpha < \pi/2$ (ângulo agudo) e, se $\cos \alpha < 0$, então $\pi/2 < \alpha < \pi$ (ângulo obtuso).

Observação 3.2.2. (Vetores ortogonais) Se $\vec{u}, \vec{v} \neq \vec{0}$, então:

• $\vec{u} \perp \vec{v}$ se, e somente se, $\vec{u} \cdot \vec{v} = 0$.

De fato, seja α o ângulo entre \vec{u} e \vec{v} . Se $\vec{u} \perp \vec{v}$, então $\alpha = \pi/2$ e

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\alpha \tag{3.87}$$

$$= |\vec{u}||\vec{v}|\cos\left(\frac{\pi}{2}\right) \tag{3.88}$$

$$= |\vec{u}| \cdot |\vec{v}| \cdot 0 \tag{3.89}$$

$$=0. (3.90)$$

Reciprocamente, se $\vec{u} \cdot \vec{v} = 0$, então

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}||\vec{v}|} \tag{3.91}$$

$$=\frac{0}{|\vec{u}||\vec{v}|}\tag{3.92}$$

$$=0. (3.93)$$

Lembrando que $0 \le \alpha \le \pi$, segue que $\alpha = \pi/2$, i.e. $\vec{u} \perp \vec{v}$.

Exemplo 3.2.2. Os vetores $\vec{i}=(1,0,0)$ e $\vec{u}=(0,1,1)$ são ortogonais. De fato, temos

$$\vec{i} \cdot \vec{j} = 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 1 \tag{3.94}$$

$$=0. (3.95)$$

3.2.1 Desigualdade Triangular

Dados dois vetores \vec{u} e \vec{v} temos

$$|\vec{u} + \vec{v}| \le |\vec{u}| + |\vec{v}|,$$
 (3.96)

esta é conhecida como a **desigualdade triangular**. Para demonstrá-la, começamos observando que

$$|\vec{u} + \vec{v}|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) \tag{3.97}$$

$$= \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} \tag{3.98}$$

$$= |\vec{u}|^2 + |\vec{v}|^2 + 2\vec{u} \cdot \vec{v}. \tag{3.99}$$

Agora, vamos estimar $\vec{u} \cdot \vec{v}$. Pela Proposição 3.2.1, temos

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|\cos\alpha,\tag{3.100}$$

onde α é o ângulo entre \vec{u} e \vec{v} . Mas, então:

$$\vec{u} \cdot \vec{v} \le |\vec{u}||\vec{v}||\cos \alpha|. \tag{3.101}$$

Daí, como $|\cos \alpha| \le 1$, temos

$$\vec{u} \cdot \vec{v} \le |\vec{u}| |\vec{v}|,\tag{3.102}$$

a qual é chamada de **desigualdade de Cauchy-Schwarz**².

²Augustin-Louis Cauchy, 1798-1857, matemático francês. Fonte: Wikipeida. Hermann Schwarz, 1843-1921, matemático alemão. Fonte: Wikipedia.

3.2.2 Exercícios Resolvidos

ER 3.2.1. Sejam $\vec{u} = (x, -1, 2)$ e $\vec{v} = (2, x, -3)$. Determine x tal que

$$\vec{u} \cdot \vec{v} = \frac{1}{2}.\tag{3.103}$$

Solução. Da definição do produto escalar, temos

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3 \tag{3.104}$$

$$\frac{1}{2} = 2x - x - 6 \tag{3.105}$$

$$x - 6 = \frac{1}{2} \tag{3.106}$$

$$x = \frac{1}{2} + 6 \tag{3.107}$$

$$x = \frac{13}{2}. (3.108)$$

 \Diamond

ER 3.2.2. Determine x tal que $\vec{u} = (-1, 0, x)$ seja ortogonal a $\vec{v} = (1, 2, -1)$.

Solução. Para que $\vec{u} \perp \vec{v}$ devemos ter

$$\vec{u} \cdot \vec{v} = 0 \tag{3.109}$$

$$-1 + 0 - x = 0 (3.110)$$

$$x = -1. (3.111)$$

 \Diamond

3.2.3 Exercícios

E.3.2.1. Determine o ângulo entre os vetores $\vec{u} = (1,0,1)$ e $\vec{v} = (0,0,2)$.

E.3.2.2. Seja $\vec{v} = (1, 2, -1)$. Determine a norma do vetor \vec{u} de mesma direção de \vec{v} e tal que $\vec{u} \cdot \vec{v} = 2$.

- **E.3.2.3.** Se \vec{u} e \vec{v} são vetores unitários e $\vec{u} \cdot \vec{v} = 1$, então \vec{u} e \vec{v} têm a mesma direção e o mesmo sentido? Justifique sua resposta.
- **E.3.2.4.** Se \vec{u} e \vec{v} são vetores tais que $\vec{u} \cdot \vec{v} = -1$, então \vec{u} e \vec{v} têm a mesma direção e sentidos opostos? Justifique sua resposta.
- **E.3.2.5.** Encontre o vetor x ortogonal a $\vec{u} = (1, -2, 0)$ e $\vec{v} = (2, -1, 1)$ tal que $\vec{x} \cdot (0, -1, 2) = 1$.

3.3 Projeção Ortogonal

Em revisão

Sejam dados os vetores $\vec{u} = \overrightarrow{OA}$, $\vec{v} = \overrightarrow{OB} \neq \vec{0}$. Seja, ainda, P a interseção da reta perpendicular a OB que passa pelo ponto A. Observemos a Figura 3.2. Com isso, definimos a **projeção ortogonal de** \vec{u} **na direção de** \vec{v} por \overrightarrow{OP} . Denotamos

$$\overrightarrow{OP} = \operatorname{proj}_{\vec{v}} \vec{u}. \tag{3.112}$$

Figura 3.2: Ilustração da definição da projeção ortogonal.

Da definição, temos que³

$$\operatorname{proj}_{\vec{v}} \vec{u} = \beta \cdot \vec{v} \tag{3.113}$$

para algum número real β . Além disso, temos

$$\operatorname{proj}_{\vec{v}} \vec{u} = \vec{u} + \overrightarrow{AP}. \tag{3.114}$$

Portanto

$$\beta \vec{v} = \vec{u} + \overrightarrow{AP}. \tag{3.115}$$

Tomando o produto escalar com \vec{v} em ambos os lados desta equação, obtemos

$$\beta \vec{v} \cdot \vec{v} = \vec{u} \cdot \vec{v} + \overrightarrow{AP} \cdot \vec{v} \tag{3.116}$$

$$= \vec{u} \cdot \vec{v},\tag{3.117}$$

 $^{^3}$ proj $_{\vec{v}}$ \vec{u} é um vetor múltiplo por escalar de \vec{v} .

pois $\overrightarrow{AP} \perp \overrightarrow{v}$. Daí, lembrando que $\overrightarrow{v} \cdot \overrightarrow{v} = |v|^2$, temos

$$\alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \tag{3.118}$$

e concluímos que

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v}. \tag{3.119}$$

Exemplo 3.3.1. Sejam $\vec{u} = (-1, 1, -1)$ e $\vec{v} = (2, 1, -2)$. Usando a equação (3.119), obtemos

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{(-1, 1, -1) \cdot (2, 1, -2)}{|(2, 1, -2)|^2} (2, 1, -2)$$
(3.120)

$$= \frac{-2+1+2}{4+1+4}(2,1,-2) \tag{3.121}$$

$$= \left(\frac{2}{9}, \frac{1}{9}, \frac{-2}{9}\right). \tag{3.122}$$

3.3.1 Exercícios Resolvidos

ER 3.3.1. Determine x tal que a projeção de $\vec{u} = (1, x, x)$ em $\vec{v} = (1, 1, 0)$ tenha o dobro da norma de \vec{v} .

Solução. De (3.119), a projeção de \vec{u} em \vec{v} é

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v}, \tag{3.123}$$

$$|\operatorname{proj}_{\vec{v}}\vec{u}| = \left| \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \right| |\vec{v}| \tag{3.124}$$

$$|\operatorname{proj}_{\vec{v}}\vec{u}| = \left| \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} \right| \tag{3.125}$$

$$|\operatorname{proj}_{\vec{v}} \vec{u}| = \frac{|1+x|}{|\vec{v}|}$$
 (3.126)

Queremos que

$$|\operatorname{proj}_{\vec{v}}\vec{u}| = 2|\vec{v}|. \tag{3.127}$$

Segue que

$$\frac{|1+x|}{|\vec{v}|} = 2|\vec{v}|\tag{3.128}$$

$$|1+x| = 2|\vec{v}|^2 \tag{3.129}$$

$$|1+x| = 2 \cdot 2 \tag{3.130}$$

$$1 + x = -4$$
 ou $1 + x = 4$ (3.131)

$$x = -5$$
 ou $x = 3$. (3.132)

 \Diamond

ER 3.3.2. Verifique que se $\vec{u} \perp \vec{v}$, então proj $_{\vec{v}} \vec{u} = \vec{0}$. Justifique sua resposta.

Solução. Temos que

$$\operatorname{proj}_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2} \vec{v}. \tag{3.133}$$

Tendo em vista que $\vec{u} \perp \vec{v}$, temos $\vec{u} \cdot \vec{v} = 0$. Logo,

$$\operatorname{proj}_{\vec{v}} \vec{u} = 0 \cdot \vec{v} \tag{3.134}$$

$$=\vec{0}.$$
 (3.135)

 \Diamond

3.3.2 Exercícios

E.3.3.1. Sejam $\vec{u} = (-1, 1, 2)$ e $\vec{v} = (1, -2, 0)$. Calcule $\text{proj}_{\vec{v}} \vec{u}$.

E.3.3.2. Sejam \vec{u} e \vec{v} vetores unitários e seja $\alpha = \pi/6$ o ângulo entre eles. Calcule a norma da projeção ortogonal de \vec{u} na direção de \vec{v} .

E.3.3.3. Determine x tal que $\operatorname{proj}_{\vec{v}} \vec{u} = (1/6, -1/3, 1/6)$, sendo $\vec{u} = (x, 1, 2)$ e $\vec{v} = (1, -2, 1)$.

E.3.3.4. Verifique se a $\operatorname{proj}_{\vec{v}} \vec{u}$ tem o mesmo sentido de \vec{v} para quaisquer vetores \vec{u} e \vec{v} dados. Justifique sua resposta.

E.3.3.5. Determine as coordenadas de todos os vetores \vec{u} tais que proj $_{\vec{v}}\vec{u} = \vec{v}$, sendo que $\vec{v} = (1, 0, 0)$.

3.4 Produto Vetorial

Em revisão

De agora em diante, vamos trabalhar com um base ortonormal $B = (\vec{i}, \vec{j}, \vec{k})$ dita com **orientação positiva**, i.e. os vetores $\vec{i} = \overrightarrow{OI}$, $\vec{j} = \overrightarrow{OJ}$ e $\vec{k} = \overrightarrow{OK}$ estão dispostos em sentido anti-horário, veja Figura 3.3.

Figura 3.3: Base ortonormal com orientação positiva.

Dados vetores \vec{u} e \vec{v} , definimos o produto vetorial de \vec{u} com \vec{v} , por

$$\vec{u} \times \vec{v} = \|\vec{u}\| \|\vec{v}\| \operatorname{sen}(\alpha) \vec{n}, \tag{3.136}$$

onde θ é ângulo entre \vec{u} e \vec{v} , e \vec{n} é o vetor unitário ortogonal ao plano determinado por \vec{u} e \vec{v} , e com sentido tal que $(\vec{u}, \vec{v}, \vec{n})$ tem orientação positiva.

Em outras palavras, temos que:

- se \vec{u} e \vec{v} são l.d., então $\vec{u} \times \vec{v} = \vec{0}$.
- se \vec{u} e \vec{v} são l.i., então
 - a) $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \operatorname{sen} \alpha$, onde α é o ângulo entre \vec{u} e \vec{v} ,
 - b) $\vec{u} \times \vec{v}$ é ortogonal a \vec{u} e \vec{v} , e
 - c) \vec{u} , \vec{v} e $\vec{u} \times \vec{v}$ formam uma base positiva.

3.4.1 Interpretação Geométrica

Sejam dados \vec{u} e \vec{v} l.i.. Estes vetores determinam um paralelogramo (consulte Figura 3.4 (esquerda)). Seja, então, h a altura deste paralelogramo tendo \vec{u} como sua base. Logo, a área do paralelogramo é o produto do comprimento da base com sua altura, neste caso

$$\|\vec{u}\|h = \|\vec{u}\|\|\vec{v}\|\operatorname{sen}(\alpha)$$
 (3.137)

$$= \|\vec{u} \times \vec{v}\|. \tag{3.138}$$

Ou seja, o produto vetorial $\vec{u} \times \vec{v}$ tem norma igual à área do paralelogramo determinado por \vec{u} e \vec{v} .

Ainda, por definição, $\vec{u} \times \vec{v}$ é ortogonal a \vec{u} e \vec{v} . Isto nos dá a direção de $\vec{u} \times \vec{v}$. O sentido é, então, determinado pela definição de que $(\vec{u}, \vec{v}, \vec{u} \times \vec{v})$ tem orientação positiva. Consulte a Figura 3.4 (direita).

Figura 3.4: Interpretação geométrica do produto vetorial.

3.4.2 Vetores Canônicos

Vamos ver alguns resultados fundamentais envolvendo o produto vetorial de vetores da base canônica.

•
$$\vec{i} \times \vec{i} = \vec{i} \times \vec{i} = \vec{k} \times \vec{k} = \vec{0}$$

Segue, imediatamente, da definição de que é nulo o produto vetorial de vetores l.i..

•
$$\vec{i} \times \vec{j} = \vec{k}$$
, $\vec{j} \times \vec{k} = \vec{i}$, $\vec{k} \times \vec{i} = \vec{j}$

No primeiro caso, temos

$$\vec{i} \times \vec{j} := \|\vec{i}\| \|\vec{j}\| \operatorname{sen}(\alpha) \vec{n} \tag{3.139}$$

$$= 1 \cdot 1 \cdot \operatorname{sen}\left(\frac{\pi}{2}\right) \vec{k} \tag{3.140}$$

$$=\vec{k}.\tag{3.141}$$

Análogo para os outros casos. Consulte o E.3.4.1.

$$\bullet \ \ \, \vec{j}\times\vec{i}=-\vec{k}, \ \, \vec{k}\times\vec{j}=-\vec{i}, \ \, \vec{i}\times\vec{k}=-\vec{j}$$

No primeiro, temos

$$\vec{j} \times \vec{i} := \|\vec{j}\| \|\vec{i}\| \operatorname{sen}(\theta) \vec{n} \tag{3.142}$$

$$= 1 \cdot 1 \cdot \operatorname{sen}\left(\frac{\pi}{2}\right)(-\vec{k}) \tag{3.143}$$

$$= -\vec{k}. \tag{3.144}$$

Análogo para os outros casos. Consulte o E.3.4.3.

Distributividade

A propriedade de distributividade do produto vetorial com vetores da base canônica também pode ser mostrada. Por exemplo, é verdade que

$$\vec{i} \times (\vec{j} + \vec{k}) = \vec{i} \times \vec{j} + \vec{i} \times \vec{k}. \tag{3.145}$$

De fato, assumindo \vec{n} o vetor normal unitário aos vetores \vec{i} e $\vec{j} + \vec{k}$, temos

$$\vec{i} \times (\vec{j} + \vec{k}) := \|\vec{i}\| \|\vec{j} + \vec{k}\| \operatorname{sen}\left(\frac{\pi}{2}\right) \vec{n}$$
 (3.146)

$$=1\cdot\sqrt{2}\cdot 1\vec{n}=\sqrt{2}\vec{n}.\tag{3.147}$$

Por outro lado, temos

$$\vec{i} \times \vec{j} + \vec{i} \times \vec{k} = \vec{k} - \vec{j} \tag{3.148}$$

Seria, então,

$$\vec{n} \stackrel{?}{=} \frac{\sqrt{2}}{2} \vec{k} - \frac{\sqrt{2}}{2} \vec{j} \tag{3.149}$$

De fato, enquanto a positividade de $(\vec{i}, \vec{j} + \vec{k}, \vec{n})$ e a norma unitária $||\vec{n}|| = 1$ são diretas, a ortogonalidade pode ser mostrada do produto interno

$$\vec{i} \cdot \vec{n} = \vec{i} \cdot \left(\frac{\sqrt{2}}{2}\vec{k} - \frac{\sqrt{2}}{2}\vec{j}\right) \tag{3.150}$$

$$= \frac{\sqrt{2}}{2}\vec{i} \cdot \vec{k} - \frac{\sqrt{2}}{2}\vec{i} \cdot \vec{j} \tag{3.151}$$

$$= 0 + 0 = 0 \tag{3.152}$$

o que mostra que $\vec{i} \perp \vec{n}$. Bem como, temos

$$\left(\vec{j} + \vec{k}\right) \cdot \vec{n} = \left(\vec{j} + \vec{k}\right) \cdot \left(\frac{\sqrt{2}}{2}\vec{k} - \frac{\sqrt{2}}{2}\vec{j}\right) \tag{3.153}$$

$$=\frac{\sqrt{2}}{2}\left(\vec{j}\cdot\vec{k}-\vec{j}\cdot\vec{j}+\vec{k}\cdot\vec{k}-\vec{k}\cdot\vec{j}\right) \tag{3.154}$$

$$=\frac{\sqrt{2}}{2}(0-1+1-0)=0, (3.155)$$

donde concluímos que $(\vec{j} + \vec{k}) \perp \vec{n}$. Isso mostra que

$$\vec{n} = \frac{\sqrt{2}}{2}\vec{k} - \frac{\sqrt{2}}{2}\vec{j} \tag{3.156}$$

e, portanto, de (3.147)

$$\vec{i} \times (\vec{j} + \vec{k}) = \sqrt{2}\vec{n} \tag{3.157}$$

$$=\sqrt{2}\left(\frac{\sqrt{2}}{2}\vec{k} - \frac{\sqrt{2}}{2}\vec{j}\right) \tag{3.158}$$

$$=\vec{k}-\vec{j}\tag{3.159}$$

$$= \vec{i} \times \vec{j} + \vec{i} \times \vec{k}. \tag{3.160}$$

Proposição 3.4.1. (Distributividade para Vetores Canônicos.) Se \vec{u} , \vec{v} e \vec{w} são vetores da base canônica⁴, então vale a distributividade do produto vetorial

$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}. \tag{3.161}$$

Demonstração. Consulte o E.3.4.5.

3.4.3 Associatividade por Escalar

Uma das propriedades fundamentais do produto vetorial é a associatividade com a multiplicação por escalar

$$(\alpha \vec{u}) \times \vec{v} = \alpha \vec{u} \times \vec{v}. \tag{3.162}$$

Para mostrarmos isso, vamos precisar do seguinte resultado.

Mudança do Sentido

No produto vetores $\vec{u} \times \vec{v}$, ao mudarmos o sentido de apenas um dos vetores, obtemos a seguinte relação

$$(-\vec{u}) \times \vec{v} = -(\vec{u} \times \vec{v}) = \vec{u} \times (-\vec{v}). \tag{3.163}$$

De fato, assumindo que o ângulo θ e o vetor unitário \vec{n} são tais que

$$\vec{u} \times \vec{v} = \|\vec{u}\| \|\vec{v}\| \operatorname{sen}(\theta) \vec{n}, \tag{3.164}$$

temos

$$(-\vec{u}) \times \vec{v} = \| -\vec{u} \| \|\vec{v}\| \operatorname{sen}(\theta)(-\vec{n})$$
(3.165)

$$= |-1| \|\vec{u}\| \|\vec{v}\| \operatorname{sen}(\theta)(-\vec{n}) \tag{3.166}$$

$$= -\|\vec{u}\|\|\vec{v}\| \operatorname{sen}(\theta)\vec{n}. \tag{3.167}$$

E, de forma análoga, segue que $\vec{u} \times (-\vec{v}) = -\vec{u} \times \vec{v}$ (consulte o E.3.4.11).

 $^{4\}vec{i}, \vec{j} \text{ ou } \vec{k}.$

Associatividade com Multiplicação por Escalar

Agora, temos tudo para mostrar a associatividade

$$(\alpha \vec{u}) \times \vec{v} = \alpha(\vec{u} \times \vec{v}). \tag{3.168}$$

De fato, assumindo $\alpha > 0$, o ângulo θ e o vetor normal unitário \vec{n} tais que

$$\vec{u} \times \vec{v} = \|\vec{u}\| \|\vec{v}\| \operatorname{sen}(\theta) \vec{n}, \tag{3.169}$$

temos que⁵

$$(\alpha \vec{u}) \times \vec{v} = \|\alpha \vec{u}\| \|\vec{v}\| \operatorname{sen}(\theta) \vec{n} \tag{3.170}$$

$$= |\alpha| \|\vec{u}\| \|\vec{v}\| \operatorname{sen}(\theta) \vec{n} \tag{3.171}$$

$$= \alpha \|\vec{u}\| \|\vec{v}\| \operatorname{sen}(\theta) \vec{n} \tag{3.172}$$

$$= \alpha(\vec{u} \times \vec{v}). \tag{3.173}$$

No caso de $\alpha < 0$, o resultado da propriedade da mudança do sentido (3.163), i.e.

$$(\alpha \vec{u}) \times \vec{v} = -(-\alpha \vec{u}) \times \vec{v} \tag{3.174}$$

$$= -(-\alpha)(\vec{u} \times \vec{v}) \tag{3.175}$$

$$=\alpha(\vec{u}\times\vec{v}). \tag{3.176}$$

Por raciocínio análogo, segue também que

$$\vec{u} \times (\alpha \vec{v}) = \alpha (\vec{u} \times \vec{v}) \tag{3.177}$$

para qualquer escalar α (consulte o E.3.4.12).

3.4.4 Produto Vetorial por Coordenadas

Usando as propriedades que estudamos até aqui, vamos mostrar que dados $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$ em uma base ortonormal positiva, então

$$\vec{u} \times \vec{v} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}$$
(3.178)

 $^{^5 \}text{Observamos}$ que \vec{u} também é vetor normal unitário aos vetores $\alpha \vec{u}$ e $\vec{v}.$

ou, mnemonicamente,

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}. \tag{3.179}$$

De fato, das propriedades da distributividade e da associatividade estudadas, temos

$$\vec{u} \times \vec{v} = (u_1 \vec{i} + u_2 \vec{j} + u_3 \vec{k}) \tag{3.180}$$

$$\times (v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}) \tag{3.181}$$

$$= (u_2 v_3 - u_3 v_2) \vec{i} \tag{3.182}$$

$$+\left(u_{3}v_{1}-u_{1}v_{3}\right)\vec{j}\tag{3.183}$$

$$+ (u_1 v_2 - u_2 v_1) \vec{k} \tag{3.184}$$

$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} \tag{3.185}$$

$$-\begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} \tag{3.186}$$

$$+ \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}. \tag{3.187}$$

Temos, portanto, mostrado (3.179).

Exemplo 3.4.1. Dados os vetores $\vec{u}=(1,-2,1)$ e $\vec{v}=(0,2,-1)$, temos

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 0 & 2 & -1 \end{vmatrix}$$
(3.188)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 1 \\ 0 & 2 & -1 \end{vmatrix} \tag{3.189}$$

$$=0\vec{i} + \vec{j} + 2\vec{k} \tag{3.190}$$

$$= (0, 1, 2). (3.191)$$

3.4.5 Exercícios Resolvidos

ER 3.4.1. Calcule \vec{x} tal que $(0, 2, -1) \times \vec{x} = (-3, -1, -2)$.

Solução. Denotando $\vec{x} = (x_1, x_2, x_3)$, temos

$$(0,2,-1) \times \vec{x} = (-3,-1,-2) \tag{3.192}$$

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 2 & -1 \\ x_1 & x_2 & x_3 \end{vmatrix} = (-3, -1, -2)$$
(3.193)

$$(x_2 + 2x_3)\vec{i} - x_1\vec{j} - 2x_1\vec{k} = \tag{3.194}$$

$$-3\vec{i} - \vec{j} - 2\vec{k} \tag{3.195}$$

Segue que

$$x_2 + 2x_3 = -3$$
$$-x_1 = -1$$
$$-2x_1 = -2$$

Logo, $x_1 = 1$, $x_2 = -3 - 2x_3$ e x_3 é arbitrário. Concluímos que $\vec{x} = (1, -3 - 2x_3, x_3)$ com $x_3 \in \mathbb{R}$.

 \Diamond

ER 3.4.2. Determine a área do paralelogramo determinado pelos vetores $\vec{u} = (-1, 2, 3)$ e $\vec{v} = (1, -2, 1)$.

Solução. Tomando representações $\vec{u} = \overrightarrow{OA}$ e $\vec{v} = \overrightarrow{OC}$, temos que \vec{u} e \vec{v} determinam um paralelogramo OABC, onde B é tal que $\vec{u} + \vec{v} = \overrightarrow{OB}^6$. Da definição do produto vetorial, temos que

$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \operatorname{sen} \theta,$$
 (3.196)

o que é igual a área do paralelogramo OABC, onde θ é o ângulo entre os vetores \vec{u} e \vec{v} . Logo, a área do paralelogramo é

$$\|\vec{u} \times \vec{v}\| = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ -1 & 2 & 3 \\ 1 & -2 & 1 \end{vmatrix}$$
 (3.197)

$$\|\vec{u} \times \vec{v}\| = \|(8, 4, 0)\| \tag{3.198}$$

$$\|\vec{u} \times \vec{v}\| = 4\sqrt{5}.\tag{3.199}$$

 \Diamond

⁶Consulte a regra do paralelogramo na Subseção 1.3.3.

94

3.4.6 Exercícios

E.3.4.1. A partir da definição do produto vetorial (3.136), calcule

- a) $\vec{i} \times \vec{j}$
- b) $\vec{j} \times \vec{k}$
- c) $\vec{k} \times \vec{i}$

E.3.4.2. Repita o E.3.4.1, calculando cada item a partir do cálculo do produto vetorial por coordenadas (3.179).

E.3.4.3. A partir da definição do produto vetorial (3.136), calcule

- a) $\vec{i} \times \vec{i}$
- b) $\vec{k} \times \vec{j}$
- c) $\vec{i} \times \vec{k}$

E.3.4.4. Repita o E.3.4.3, calculando cada item a partir do cálculo do produto vetorial por coordenadas (3.179).

E.3.4.5. A partir da definição do produto vetorial (3.136), mostre que

- a) $\vec{i} \times (\vec{i} + \vec{j}) = \vec{k}$
- b) $\vec{j} \times (\vec{j} + \vec{k}) = \vec{i}$
- c) $\vec{j} \times (\vec{i} + \vec{k}) = -\vec{k} + \vec{i}$
- d) $\vec{k} \times (\vec{i} + \vec{j}) = \vec{j} \vec{i}$
- e) $\vec{k} \times (\vec{i} + \vec{k}) = \vec{j}$

f)
$$\vec{k} \times (\vec{j} + \vec{k}) = -\vec{i}$$

E.3.4.6. Sejam $\vec{u} = (2, -3, 1)$ e $\vec{v} = (1, -2, -1)$. Calcule:

- a) $\vec{u} \times \vec{v}$.
- b) $\vec{v} \times \vec{u}$.
- c) $\vec{v} \times (2\vec{u})$.

E.3.4.7. Sejam \vec{u} e \vec{v} tais que $\vec{u} \times \vec{v} = (2, -1, 0)$. Forneça $\vec{v} \times \vec{u}$. Justifique sua resposta.

E.3.4.8. Seja \vec{u} um vetor qualquer. Calcule $\vec{u} \times \vec{u}$.

E.3.4.9. Sejam \vec{u} e \vec{v} tais que $(2\vec{u}) \times \vec{v} = (2, -1, 0)$. Forneça $\vec{v} \times \vec{u}$. Justifique sua resposta.

E.3.4.10. Calcule \vec{x} tal que $\vec{x} \times (2, -2, 3) = (11, 8, -2)$.

 ${\bf E.3.4.11.}\;\;$ A partir da definição de produto vetorial (3.136), mostre que

$$\vec{u} \times (-\vec{v}) = -\vec{u} \times \vec{v}. \tag{3.200}$$

E.3.4.12. Mostre que vale a seguinte associatividade com multiplicação por escalar

$$\vec{u} \times (\alpha \vec{v}) = \alpha (\vec{u} \times \vec{v}), \tag{3.201}$$

para quaisquer vetores \vec{u} , \vec{v} e escalar α .

3.5 Propriedades do Produto Vetorial

Em revisão

Nesta seção, discutiremos sobre algumas propriedades do produto vetorial. Para tanto, sejam dados os vetores $\vec{u}=(u_1,u_2,u_3), \vec{v}=(v_1,v_2,v_3), \vec{w}=$ (w_1, w_2, w_3) e o número real γ .

Da definição do produto vetorial, temos $\vec{u} \perp (\vec{u} \times \vec{v})$ e $\vec{v} \perp (\vec{u} \times \vec{v})$, logo

$$\vec{u} \cdot (\vec{u} \times \vec{v}) = 0 \tag{3.202}$$

е

$$\vec{v} \cdot (\vec{u} \times \vec{v}) = 0. \tag{3.203}$$

Exemplo 3.5.1. Sejam $\vec{u} = (1, -1, 2), \vec{v} = (2, -1, -2)$. Temos

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 2 & -1 & -2 \end{vmatrix}$$
 (3.204)

$$= (4, 6, 1) \tag{3.205}$$

Segue, que

$$\vec{u} \cdot (\vec{u} \times \vec{v}) = (1, -1, 2) \cdot (4, 6, 1) \tag{3.206}$$

$$= 4 - 6 + 2 \tag{3.207}$$

$$=0.$$
 (3.208)

Em relação à multiplicação por escalar, temos

$$\gamma(\vec{u} \times \vec{v}) = (\gamma \vec{u}) \times \vec{v} \tag{3.209}$$

$$= \vec{u} \times (\gamma \vec{v}). \tag{3.210}$$

De fato,

$$(\gamma \vec{u}) \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \gamma u_1 & \gamma u_2 & \gamma u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \gamma \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \gamma (\vec{u} \times \vec{v})$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ \gamma v_1 & \gamma v_2 & \gamma v_3 \end{vmatrix} = \vec{u} \times (\gamma \vec{v})$$

$$(3.211)$$

$$(3.212)$$

$$= \gamma \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \gamma(\vec{u} \times \vec{v})$$
 (3.212)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ \gamma v_1 & \gamma v_2 & \gamma v_3 \end{vmatrix} = \vec{u} \times (\gamma \vec{v})$$
(3.213)

Exemplo 3.5.2. Sejam $\vec{u} = (1, -1, 2)$ e $\vec{v} = (2, -1, -2)$. Temos

$$2(\vec{u} \times \vec{v}) = 2 \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 2 & -1 & -2 \end{vmatrix}$$
(3.214)

$$= 2(4,6,1) \tag{3.215}$$

$$= (8, 12, 2) \tag{3.216}$$

$$\frac{(2\vec{u}) \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -2 & 4 \\ 2 & -1 & -2 \end{vmatrix} }{(3.217)}$$

$$= (8, 12, 2) \tag{3.218}$$

$$\vec{u} \times (2\vec{v}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 4 & -2 & -4 \end{vmatrix}$$
 (3.219)

$$= (8, 12, 2) \tag{3.220}$$

Também, vale a propriedade distributiva com a operação de soma, i.e.

$$\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}. \tag{3.221}$$

De fato, temos

$$\vec{u} \times (\vec{v} + \vec{w}) \tag{3.222}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 + w_1 & v_2 + w_2 & u_3 + w_3 \end{vmatrix}$$
 (3.223)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 + w_1 & v_2 + w_2 & u_3 + w_3 \end{vmatrix}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

$$(3.223)$$

$$(3.224)$$

$$= \vec{u} \times \vec{v} + \vec{u} \times \vec{w}. \tag{3.225}$$

Exemplo 3.5.3. Sejam $\vec{u} = (1, -1, 2), \ \vec{v} = (2, -1, -2) \ e \ \vec{w} = (0, -1, -1).$ Temos

$$\vec{u} \times (\vec{v} + \vec{w}) \tag{3.226}$$

$$= \vec{u} \times [(2, -1, -2) + (0, -1, -1)] = (1, -1, 2) \times (2, -2, -3)$$
 (3.227)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 2 & -2 & -3 \end{vmatrix}$$
 (3.228)

$$= (7,7,0) (3.229)$$

$$(\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w}) \tag{3.230}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 2 & -1 & -2 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 0 & -1 & -1 \end{vmatrix}$$
 (3.231)

$$= (4,6,1) + (3,1,-1) \tag{3.232}$$

$$= (7,7,0) \tag{3.233}$$

Observamos que o produto vetorial não é comutativo, entretanto

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}. \tag{3.234}$$

De fato, temos

$$\vec{u} \times \vec{v}$$
 (3.235)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (3.236)

$$= - \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ v_1 & v_2 & v_3 \\ u_1 & u_2 & u_3 \end{vmatrix}$$
 (3.237)

$$= -\vec{v} \times \vec{u}. \tag{3.238}$$

Exemplo 3.5.4. Sejam $\vec{u} = (1, -1, 2)$ e $\vec{v} = (2, -1, -2)$. Temos

$$\vec{u} \times \vec{v}$$
 (3.239)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -1 & 2 \\ 2 & -1 & -2 \end{vmatrix}$$
 (3.240)

$$= (4, 6, 1) \tag{3.241}$$

$$\vec{v} \times \vec{u}$$
 (3.242)

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & -2 \\ 1 & -1 & 2 \end{vmatrix} \tag{3.243}$$

$$= (-4, -6, -1) \tag{3.244}$$

Também, o produto vetorial não é associativo sendo $(\vec{u} \times \vec{v}) \times \vec{w}$, em geral, é diferente de $\vec{u} \times (\vec{v} \times \vec{w})$. Com efeito, temos

$$(\vec{i} \times \vec{i}) \times \vec{j} = \vec{0},\tag{3.245}$$

$$\vec{i} \times (\vec{i} \times \vec{j}) = \vec{i} \times \vec{k} = -\vec{j}. \tag{3.246}$$

Por outro lado, suponhamos que \vec{u} , \vec{v} e \vec{w} são l.i. e seja π um plano determinado por \vec{u} e \vec{v} . Então, $\vec{u} \times \vec{v}$ é ortogonal a π . Como $(\vec{u} \times \vec{v}) \times \vec{w}$ é ortogonal a $\vec{u} \times \vec{v}$ e a \vec{w} , temos que $(\vec{u} \times \vec{v}) \times \vec{w}$ também pertence a π . Logo, \vec{u} , \vec{v} e $(\vec{u} \times \vec{v}) \times \vec{w}$ são l.d. e existem α e β tais que

$$(\vec{u} \times \vec{v}) \times \vec{w} = \alpha \vec{u} + \beta \vec{v}. \tag{3.247}$$

Vamos determinar α e β . Para tanto, consideremos uma base ortonormal $B = (\vec{i}, \vec{j}, \vec{k})$ tal que $\vec{i} \parallel \vec{u}$ e $\vec{j} \in \pi$. Nesta base, temos

$$\vec{u} = (u_1, 0, 0) \tag{3.248}$$

$$\vec{v} = (v_1, v_2, 0) \tag{3.249}$$

$$\vec{w} = (w_1, w_2, w_3). \tag{3.250}$$

Também, temos

$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & 0 & 0 \\ v_1 & v_2 & 0 \end{vmatrix}$$
 (3.251)

$$= (0, 0, u_1 v_2) \tag{3.252}$$

e

$$(\vec{u} \times \vec{v}) \times \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & u_1 v_2 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
(3.253)

$$= (-u_1v_2w_2, u_1v_2w_1, 0). (3.254)$$

Daí, temos

$$\underbrace{(-u_1v_2w_2, u_1v_2w_1, 0)}_{(\vec{u} \times \vec{v}) \times \vec{w}} = \underbrace{\alpha(u_1, 0, 0) + \beta(v_1, v_2, 0)}_{\alpha \vec{u} + \beta \vec{v}}, \tag{3.255}$$

donde

$$\alpha u_1 + \beta v_1 = -u_1 v_2 w_2, \tag{3.256}$$

$$\beta v_2 = u_1 w_1 v_2. \tag{3.257}$$

Resolvendo para α e β , obtemos

$$\alpha = -v_1 w_1 - v_2 w_2 = -\vec{v} \cdot \vec{w} \tag{3.258}$$

$$\beta = \vec{u}\vec{w}.\tag{3.259}$$

Portanto, temos

$$(\vec{u} \times \vec{v}) \times \vec{w} = -(\vec{v} \cdot \vec{w})\vec{u} + (\vec{u} \cdot \vec{w})\vec{v}. \tag{3.260}$$

Usando as identidades acima, obtemos

$$\vec{u} \times (\vec{v} \times \vec{w}) = -(\vec{v} \times \vec{w}) \times \vec{u} \tag{3.261}$$

$$= (\vec{w} \cdot \vec{u})\vec{v} - (\vec{v} \cdot \vec{u})\vec{w} \tag{3.262}$$

$$= (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} \tag{3.263}$$

ou seja,

$$\vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w}. \tag{3.264}$$

3.5.1 Exercícios Resolvidos

ER 3.5.1. Sejam $\vec{u} = (-3, -2, -1), \vec{v} = (0, 1, 2)$ e $\vec{w} = (-1, 0, 1)$. Calcule

$$(\vec{u} \times \vec{v}) \times \vec{w}. \tag{3.265}$$

Solução. Seguindo a identidade (3.261), segue

$$(\vec{u} \times \vec{v}) \times \vec{w} \tag{3.266}$$

$$= -(\vec{v} \cdot \vec{w})\vec{u} + (\vec{u} \cdot \vec{w})\vec{v} \tag{3.267}$$

$$= -(0+0+2)\vec{u} + (3+0-1)\vec{v} \tag{3.268}$$

$$= -2(-3, -2, -1) + 2(0, 1, 2) \tag{3.269}$$

$$= (6,4,2) + (0,2,4) \tag{3.270}$$

$$= (6, 6, 6) \tag{3.271}$$

 \Diamond

ER 3.5.2. Sejam $\vec{u} = (2, x, 1), \ \vec{v} = (-2, 3, 1)$ e $\vec{w} = (-3, -1, 1)$. Calcule x tal que

$$\vec{v} \cdot (\vec{u} \times \vec{w}) = -16. \tag{3.272}$$

Solução. Por cálculo direto, temos

$$\vec{v} \cdot (\vec{u} \times \vec{w}) = -16 \tag{3.273}$$

$$\vec{v} \cdot \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & x & 1 \\ -3 & -1 & 1 \end{vmatrix} = -16 \tag{3.274}$$

$$(-2,3,1)\cdot(x+1,-5,3x-2) = -16\tag{3.275}$$

$$x - 19 = -16 \tag{3.276}$$

$$x = 3. (3.277)$$

 \Diamond

3.5.2 Exercícios

E.3.5.1. Sejam $\vec{u} = (2, -3, 1)$ e $\vec{v} = (3, -2, 1)$. Calcule $\vec{u} \cdot (\vec{v} \times \vec{u})$. Se \vec{w} é um vetor qualquer, forneça o valor de $\vec{u} \cdot (\vec{w} \times \vec{u})$. Justifique sua resposta.

E.3.5.2. Sabendo que $\vec{u} \times \vec{v} = (1, 1, 1)$, calcule $\vec{u} \times (2\vec{v})$.

E.3.5.3. Sabendo que $\vec{u} \times \vec{v} = (1, 1, 1)$ e $\vec{u} \times \vec{w} = (-1, -1, -1)$, calcule $\vec{u} \times (\vec{v} + \vec{w})$.

E.3.5.4. Sendo $\vec{a} = (3, -1, 2), \vec{b} = (2, -1, -1), \text{ calcule } (\vec{a} \cdot \vec{k})(\vec{i} \times \vec{b}).$

E.3.5.5. Calcule $\vec{w} \times (\vec{u} \times \vec{v})$, sendo $\vec{u} = (1, -1, 2)$, $\vec{v} = (0, -1, 1)$ e $\vec{w} = (1, 0, -1)$.

3.6 Produto Misto

Em revisão

O produto misto de três vetores \vec{u} , \vec{v} e \vec{w} , nesta ordem, é definido por

$$[\vec{u}, \vec{v}, \vec{w}] := \vec{u} \times \vec{v} \cdot \vec{w}. \tag{3.278}$$

Em coordenadas, temos

$$[\vec{u}, \vec{v}, \vec{w}] := (\vec{u} \times \vec{v}) \cdot \vec{w} \tag{3.279}$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \cdot \vec{w}$$
 (3.280)

$$= \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k} \end{pmatrix} \cdot (w_1, w_2, w_3)$$
(3.281)

$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} w_1 - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} w_2 + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} w_3$$
 (3.282)

$$= \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$
 (3.283)

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
 (3.284)

Ou seja, temos

Exemplo 3.6.1. Dados os vetores $\vec{u} = (1, -1, 0), \ \vec{v} = (1, 0, 2)$ e $\vec{w} = (1, -1, 1)$, temos

$$= \begin{vmatrix} 1 & -1 & 0 \\ 1 & 0 & 2 \\ 1 & -1 & 1 \end{vmatrix} \tag{3.287}$$

$$=1 \tag{3.288}$$

3.6.1 Interpretação Geométrica

Seja $(\vec{u}, \vec{v}, \vec{w})$ uma sequência de vetores l.i. e com orientação positiva. Assumindo as representações $\vec{u} = \overrightarrow{AB}$, $\vec{v} = \overrightarrow{AD}$ e $\vec{w} = \overrightarrow{AH}$ temos a determinação de um paralelepípedo (consulte a Figura 3.5).

A base do paralelepípedo é o paralelepípedo é o paralelepípedo é sendo, o volume do paralelepípedo é

$$V = \|\vec{u} \times \vec{v}\| \cdot h,\tag{3.289}$$

onde h é a altura do prisma. Por sua vez,

$$h = \left\| \operatorname{proj}_{\vec{u} \times \vec{v}} \vec{w} \right\| \tag{3.290}$$

$$= \left\| \frac{\vec{w} \cdot (\vec{u} \times \vec{v})}{\|\vec{u} \times \vec{v}\|^2} \vec{u} \times \vec{v} \right\| \tag{3.291}$$

Figura 3.5: Interpretação geométrica do produto misto.

$$= \frac{|\vec{w} \cdot (\vec{u} \times \vec{v})|}{\|\vec{u} \times \vec{v}\|^2} \|\vec{u} \times \vec{v}\|$$

$$(3.292)$$

$$=\frac{|\vec{w}\cdot(\vec{u}\times\vec{v})|}{\|\vec{u}\times\vec{v}\|}\tag{3.293}$$

Logo, retornando a (3.289), obtemos

$$V = \|\vec{u} \times \vec{v}\| \cdot h \tag{3.294}$$

$$= \|\vec{u} \times \vec{v}\| \cdot \frac{|\vec{w} \cdot (\vec{u} \times \vec{v})|}{\|\vec{u} \times \vec{v}\|}$$

$$(3.295)$$

$$= |\vec{w} \cdot (\vec{u} \times \vec{v})| \tag{3.296}$$

$$= |\vec{u} \times \vec{v} \cdot \vec{w}|. \tag{3.297}$$

Ou seja, o **volume do paralelepípedo** formado pelos vetores \vec{u} , \vec{v} e \vec{w} é igual a norma do produto misto destes vetores, i.e.

$$V = |[\vec{u}, \vec{v}, \vec{w}]|. \tag{3.298}$$

Exemplo 3.6.2. Vamos calcular o volume do paralelepípedo determinado pelos vetores $\vec{u} = (1, 1, 0), \vec{v} = (-1, 2, 0)$ e $\vec{w} = (0, 1, 1)$. De (3.298), temos

$$V = |[\vec{u}, \vec{v}, \vec{w}]| \tag{3.299}$$

$$= \begin{vmatrix} 1 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 1 & 1 \end{vmatrix} \tag{3.300}$$

$$= |3| = 3. (3.301)$$

3.6.2 Propriedades

Valem as seguintes propriedades:

a)
$$[\vec{u}, \vec{v}, \vec{w}] = -[\vec{v}, \vec{u}, \vec{w}]$$

Demonstração. De fato, quando permutamos duas linhas em uma matriz, seu determinante troca de sinal.

b)
$$[\vec{u}, \vec{v}, \vec{w}] = -[\vec{u}, \vec{w}, \vec{v}]$$

Demonstração. Mesmo argumento da letra a).

c)
$$[\vec{u}, \vec{v}, \vec{w}] = [\vec{w}, \vec{u}, \vec{v}] = [\vec{v}, \vec{w}, \vec{u}]$$

Demonstração. De fato, cada caso acima corresponde a duas consecutivas permutações de linha na matriz associada ao produto misto.

d)
$$[\vec{u}, \vec{v}, \vec{w}] = \vec{u} \times \vec{v} \cdot \vec{w} = \vec{u} \cdot \vec{v} \times \vec{w}$$

Demonstração. Isto segue de c), i.e.

$$[\vec{u}, \vec{v}, \vec{w}] = [\vec{v}, \vec{w}, \vec{u}]$$
 (3.302)

$$\vec{u} \times \vec{v} \cdot \vec{w} = \vec{v} \times \vec{w} \cdot \vec{u} \tag{3.303}$$

$$= \vec{u} \cdot \vec{v} \times \vec{w}. \tag{3.304}$$

e)
$$[\alpha \vec{u}, \vec{v}, \vec{w}] = [\vec{u}, \alpha \vec{v}, \vec{w}] = [\vec{u}, \vec{v}, \alpha \vec{w}] = \alpha [\vec{u}, \vec{v}, \vec{w}]$$

Determinação. De fato, ao multiplicarmos uma linha de uma matriz por um escalar α , seu determinante fica multiplicado por α .

f)
$$[\vec{u} + \vec{z}, \vec{v}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}] + [\vec{z}, \vec{v}, \vec{w}]$$

Determinante. Também segue da propriedade análoga do determinante de matrizes.

Exemplo 3.6.3. Sabendo que $[\vec{u}, 2\vec{w}, \vec{v}] = 2$, vamos calcular $[\vec{u}, \vec{v}, \vec{w}]$. Do

item e) acima, temos

$$2 = [\vec{u}, 2\vec{w}, \vec{v}] \tag{3.305}$$

$$=2[\vec{u},\vec{w},\vec{v}],\tag{3.306}$$

donde

$$[\vec{u}, \vec{w}, \vec{v}] = 1. \tag{3.307}$$

Agora, do item b), temos

$$[\vec{u}, \vec{w}, \vec{v}] = -[\vec{u}, \vec{v}, \vec{w}]. \tag{3.308}$$

Ou seja, concluímos que $[\vec{u}, \vec{v}, \vec{w}] = -1$.

Também, temos as seguinte propriedades envolvendo o produto misto:

a) Se $[\vec{u}, \vec{v}, \vec{w}] = 0$, então $(\vec{u}, \vec{v}, \vec{w})$ não é base.

Demonstração. Seja $[\vec{u}, \vec{v}, \vec{w}] = 0$, i.e. $\vec{u} \times \vec{v} \cdot \vec{w} = 0$. No caso de um dos vetores serem nulos, então $(\vec{u}, \vec{v}, \vec{w})$ não é base. Suponhamos, então, que \vec{u}, \vec{v} e \vec{w} são vetores não nulos. Isso implica que $\vec{u} \times \vec{v} = 0$ ou $(\vec{u} \times \vec{v}) \perp \vec{w}$. No primeiro caso, \vec{u} e \vec{v} são l.d. e, portanto, $(\vec{u}, \vec{v}, \vec{w})$ não é base. No segundo caso, $(\vec{u} \times \vec{v}) \perp \vec{w}$, temos que \vec{w} é coplanar aos vetores \vec{u} e \vec{v} , logo $(\vec{u}, \vec{v}, \vec{w})$ não é base.

b) Se $[\vec{u}, \vec{v}, \vec{w}] > 0$, então $(\vec{u}, \vec{v}, \vec{w})$ é uma base positiva.

Demonstração. Se $[\vec{u}, \vec{v}, \vec{w}] > 0$, implica que o ângulo entre $\vec{u} \times \vec{v}$ e \vec{w} é agudo, o que garante que $(\vec{u}, \vec{v}, \vec{w})$ seja uma base positiva.

c) Se $[\vec{u}, \vec{v}, \vec{w}] < 0$, então $(\vec{u}, \vec{v}, \vec{w})$ é uma base negativa.

Demonstração. Se $[\vec{u}, \vec{v}, \vec{w}] < 0$, implica que o ângulo entre $\vec{u} \times \vec{v}$ e \vec{w} é obtuso, o que garante que $(\vec{u}, \vec{v}, \vec{w})$ seja uma base negativa.

3.6.3 Exercícios Resolvidos

ER 3.6.1. Calcule a área do paralelogramo determinado pelos vetores $\vec{v} = (1, 0, -2)$, $\vec{w} = (1, -2, 1)$ e $\vec{u} = (0, 2, 1)$.

Solução. Da Subseção 3.6.1, temos que o volume do paralelogramo é

$$V = |[\vec{u}, \vec{v}, \vec{w}]|, \tag{3.309}$$

não importando a ordem dos vetores⁷. Assim sendo, temos

$$V = |[\vec{u}, \vec{v}, \vec{w}]| \tag{3.310}$$

$$= \begin{vmatrix} \begin{vmatrix} 0 & 2 & 1 \\ 1 & 0 & -2 \\ 1 & -2 & 1 \end{vmatrix}$$
 (3.311)

$$= |-8| = 8. (3.312)$$

 \Diamond

ER 3.6.2. Sejam \vec{u} , \vec{v} e \vec{w} vetores dados. Verifique a seguinte afirmação:

$$[\vec{u}, \vec{v} + \alpha \vec{u} + \beta \vec{w}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}], \tag{3.313}$$

onde α e β são quaisquer escalares.

Solução. Das propriedades do produto misto⁸, temos

$$[\vec{u}, \vec{v} + \alpha \vec{u} + \beta \vec{w}, \vec{w}] \tag{3.314}$$

$$= [\vec{u}, \vec{v}, \vec{w}] + [\vec{u}, \alpha \vec{u} + \beta \vec{w}, \vec{w}]. \tag{3.315}$$

Agora, observamos que $\alpha \vec{u} + \beta \vec{w}$ é combinação linear de \vec{u} e \vec{v} , logo $(\vec{u}, \alpha \vec{u} + \beta \vec{w}, \vec{w})$ é l.d. e, portanto,

$$[\vec{u}, \alpha \vec{u} + \beta \vec{w}, \vec{w}] = 0. \tag{3.316}$$

Concluímos que

$$[\vec{u}, \vec{v} + \alpha \vec{u} + \beta \vec{w}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}]. \tag{3.317}$$

 \Diamond

⁷A ordem dos vetores não altera o módulo do valor do produto misto.

 $^{{}^{8}[\}vec{u}, \vec{v} + \vec{z}, \vec{w}] = [\vec{u}, \vec{v}, \vec{w}] + [\vec{u}, \vec{z}, \vec{w}].$

3.6.4 Exercícios

- **E.3.6.1.** Calcule $[\vec{u}, \vec{v}, \vec{w}]$ sendo $\vec{u} = (-1, 0, 1), \vec{v} = (1, 3, 0)$ e $\vec{w} = (1, -2, -1)$.
- **E.3.6.2.** Sejam $\vec{a} = (0, 0, 2), \vec{d} = (-1, 1, 1) e \vec{e} = (1, 1, 1).$ Calcule $[\vec{d}, \vec{a}, \vec{e}].$
- **E.3.6.3.** Sendo $[\vec{u}, \vec{v}, \vec{w}] = 2$, calcule $[2\vec{u}, -3\vec{v}, \vec{w}]$.
- **E.3.6.4.** Sendo $[\vec{u}, \vec{v}, \vec{w}] = 2$, calcule $[2\vec{u} 5\vec{w}, -3\vec{v}, \vec{w}]$.
- **E.3.6.5.** Sejam $\vec{u} = (0, x, 2), \ \vec{v} = (-1, 1, 1)$ e $\vec{w} = (1, 1, 1)$. Calcule x de forma que $[\vec{u}, \vec{v}, \vec{w}] = 2$.

Bibliografia

- [1] Camargo, I. & Boulos, P.. Geometria Analítica: um tratamento vetorial, 3. ed., Pearson, 2005. ISBN: 978-8587918918
- [2] Gómez, S.L.. Vetores com aplicações em física, Blucher, 2020. ISBN: 978-6555060089
- [3] Maciel, T.. Vetores e geometria analítica: do seu jeito. Blucher, 2022. ISBN: 978-6555064001
- [4] Mello, D.A. & Watanabe, R.G.. Vetores e uma iniciação à geometria analítica, 2. ed., Livraria da Física, 2012. ISBN: 978-8578611071.