Camino Más Largo

¡Los organizadores de la IOI 2023 están en un problema grande! Se les olvidó planear el paseo a Ópusztaszer para el dia siguiente. Pero tal vez todavía no es demasiado tarde ...

Hay N atracciones en Ópusztaszer numeradas de 0 a N-1. Algunos pares de estas atracciones están conectados por **carreteras** *bidireccionales*. Cada par de atracciones está conectado por a lo sumo una carretera. Los organizadores *no saben* cuáles atracciones están conectadas por carreteras.

Decimos que la **densidad** de una red de carreteras en Ópusztaszer es **al menos** δ si cada 3 atracciones distintas tienen al menos δ carreteras entre ellas. En otras palabras, para cada terna de atracciones (u,v,w) tales que $0 \le u < v < w < N$, entre los pares de atracciones (u,v),(v,w) y (u,w) al menos δ pares están conectadas por una carretera.

Los organizadores *conocen* un entero positivo D tal que la densidad de la red de carreteras es al menos D. Note que el valor de D no puede ser mayor que 3.

Los organizadores pueden hacer **llamadas** telefónicas al informador de Ópusztaszer para obtener información sobre las conexiones de carreteras entre ciertas atracciones. En cada llamada se debe especificar dos arreglos no vacíos de atracciones $[A[0],\ldots,A[P-1]]$ y $[B[0],\ldots,B[R-1]]$. Las atracciones deben ser distintas dos a dos; es decir,

- A[i]
 eq A[j] para cada i y j tales que $0 \le i < j < P$;
- B[i]
 eq B[j] para cada i y j tales que $0 \le i < j < R$;
- $\bullet \ \ A[i] \neq B[j] \ \mathsf{para} \ \mathsf{cada} \ i \ \mathsf{y} \ j \ \mathsf{tales} \ \mathsf{que} \ 0 \leq i < P \ \mathsf{y} \ 0 \leq j < R.$

Para cada llamada, el informador reporta si hay una carretera conectando una atracción de A con una atracción de B. Más precisamente, el informador itera sobre todos los pares i y j tal que $0 \le i < P$ y $0 \le j < R$. Si, para cualquiera de ellas, las atracciones A[i] y B[j] están conectadas por una carretera, el informador devuelve true. De lo contrario, el informador devuelve false.

Un **camino** de longitud l es una secuencia de atracciones $distintas\ t[0], t[1], \ldots, t[l-1]$, donde para cada i entre 0 y l-2, inclusive, las atracciones t[i] y t[i+1] están conectados por una carretera. Un camino de longitud l se llama un **camino más largo** si no existe un camino de longitud al menos l+1.

Tu tarea es ayudar a los orgnizadores a encontrar un camino más largo en Ópusztaszer haciendo llamadas al informador.

Detalles de Implementación

Debes implementar la función siguiente:

```
int[] longest_trip(int N, int D)
```

- N: el número de atracciones en Ópusztaszer.
- *D*: la densidad mínima garantizada para la red de carreteras.
- Esta función debe devolver un arreglo $t=[t[0],t[1],\ldots,t[l-1]]$, representando un camino más largo.
- Esta función puede ser llamada **múltiples veces** en cada caso de prueba.

La función anterior puede hacer llamados a la siguiente función:

```
bool are_connected(int[] A, int[] B)
```

- A: un arreglo no vacío de atracciones distintas.
- *B*: un arreglo no vacío de atracciones distintas.
- *A* y *B* deben ser disjuntos.
- Este procedimiento devuelve true si hay una atracción de A y una atracción de B conectadas por una carretera. En otro caso, devuelve false.
- Este procedimiento puede ser llamado a lo sumo $32\,640$ veces en cada invocación de longest_trip, y a lo sumo $150\,000$ veces en total.
- $\bullet\,$ La longitud total de los arreglos A y B pasados a este procedimiento sobre todas las invocaciones no puede exceder $1\,500\,000.$

El evaluador es **no adaptativo**. Cada envío es evaluado bajo el mismo conjunto de casos de prueba. Es decir, los valores de N y D, así como los pares de atracciones conectadas por carreteras, se fijan antes de hacer un llamada a longest_trip dentro de cada caso de prueba.

Ejemplos

Ejemplo 1

Considere un escenario en el cual $N=5,\,D=1,\,$ y las carreteras son las mostradas en la figura siguiente:

La función longest_trip se llama de la siguiente manera:

La función puede hacer llamados a are_connected de la siguiente manera.

Llamado	Pares conectados por un carretera	Valor devuelto
are_connected([0], [1, 2, 4, 3])	(0,1) y $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	ninguno	false

Después de la cuarta llamada, resulta que *ninguno* de los pares (1,4), (0,4), (1,3) y (0,3) está conectado por una carretera. Como la densidad de la red es al menos D=1, vemos que en la terna (0,3,4), el par de atracciones (3,4) debe estar conectado por una carretera. De manera similar, las atracciones 0 y 1 deben estar conectadas.

En este punto, se puede concluir que t=[1,0,2,3,4] es un camino de longitud 5, y que no existe un camino de longitud mayor que 5. Por lo tanto, el procedimiento longest_trip puede devolver [1,0,2,3,4].

Considere otro escenario en el cual N=4, D=1, y las carreteras entre las atracciones son como se muestra en la siguiente figura:

La función longest_trip se llama de la manera siguiente:

En este escenario la longitud de un camino más largo es 2. Por lo tanto, después de unas cuantas llamadas a la función are_connected, la función longest_trip puede devolver uno de [0,1], [1,0], [2,3] o [3,2].

Ejemplo 2

La subtarea 0 contiene un ejemplo adicional de caso de prueba con N=256 atracciones. Este caso de prueba se incluye en el paquete adjunto que puedes descargar del sistema de competencia.

Restricciones

- $3 \le N \le 256$
- ullet La suma de N en todas las llamadas a longest_trip no excede $1\,024$ en cada caso de prueba.
- $1 \le D \le 3$

Subtareas

- 1. (5 puntos) D = 3
- 2. (10 puntos) D = 2
- 3. (25 puntos) D=1. Sea l^* la longitud de un camino más largo. La función longest_trip no tiene que devolver un camino de longitud l^* . En vez de eso, debería devolver un camino de longitud al menos $\left\lceil \frac{l^*}{2} \right\rceil$.
- 4. (60 puntos) D = 1

En la subtarea 4 su puntaje se determina basado en el numero de llamadas a la función $are_connected$ en una sola invocación a $longest_trip$. Sea q el número máximo de llamadas en todas las invocaciones a $longest_trip$ en todos los casos de prueba de la subtarea. Su puntaje para esta subtarea se calcula de acuerdo a la siguiente tabla:

Condición	Puntos
$2750 < q \leq 32640$	20
$550 < q \leq 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

Si en cualquiera de los casos de prueba, los llamados a la función are_connected no cumplen con las restricciones decritas en Detalles de Implementación, o el arreglo devuelto por longest_trip no es correcto, el puntaje de tu solución para esa subtarea será 0.

Evaluador local

Sea C el numero de escenarios; es decir, el numero de llamadas a longest_trip. El calficador local lee la entrada en el siguiente formato:

• linea 1: *C*

Siguen las descripciones de ${\cal C}$ escenarios.

El evaluador local lee la descripción de cada escenario en el siguiente formato:

• linea 1: ND

• linea 1 + i ($1 \le i < N$): $U_i[0] \ U_i[1] \ \dots \ U_i[i-1]$

Aqui, cada U_i ($1 \le i \le N$) es un arreglo de longitud i, describiendo qué parejas de atracciones están conectadas por una carretera. Para cada i y j tales que $1 \le i < N$ y $0 \le j < i$:

- Si las atracciones j e i están conectadas por una carretera, entonces el valor de $U_i[j]$ debe ser 1;
- ullet Si no hay una carretera conectando las atracciones j e i, entonces el valor de $U_i[j]$ debe ser 0

En cada escenario, antes de llamar a longest_trip, el evaluador local verifica que la densidad de la red de carreteras sea al menos D. Si la condicion no se cumple, imprime el mensaje Insufficient Density y termina.

Si el evaluador local detecta una violación a las restricciones imprimirá Protocol Violation: <MSG>, donde <MSG> es uno de los siguientes mensajes de error:

- ullet invalid array: en una llamada a are_connected, al menos uno de los arreglos A y B
 - o esta vacio, o
 - \circ contiene un elemento que no es un entero entre 0 y N-1, inclusive, o
 - o contiene el mismo elemento al menos dos veces

- \bullet non-disjoint arrays: en una llamada a are_connected, los arreglos A y B no son disjuntos.
- too many calls: el número de llamadas hechos a are_connected excede $32\,640$ en la invocacion actual de longest trip, o excede $150\,000$ en total.
- too many elements: el número total de atracciones enviadas a are_connected en todas las llamadas excede $1\,500\,000$.

De lo contrario, sean $t[0], t[1], \ldots, t[l-1]$, los elementos del arreglo devueltos por longest_trip en un escenario, para algún l no negativo. El evaluador local imprime tres lineas para este escenario en el siguiente formato:

- linea 1: *l*
- linea 2: t[0] t[1] ... t[l-1]
- linea 3: el número de llamadas a are_connected en este escenario.

Finalmente, el evaluador local imprime:

• linea $1+3\cdot C$: El máximo número de llamados a are_connected sobre todas las llamadas a longest_trip