Further Consequences of the Colorful Helly Hypothesis: Beyond Point Transversals

Leonardo I. Martínez Sandoval (Ben-Gurion University \rightarrow Sorbonne Université)

Joint work with Edgardo Roldán Pensado (UNAM) and Natan Rubin (BGU) IRP - DCG, Barcelona

May 8, 2018

Helly's Theorem

Let \mathcal{F} be a finite family of at least d+1 convex sets in \mathbb{R}^d .

Theorem (Helly's Theorem '23)

If each subfamily in $\binom{\mathcal{F}}{d+1}$ has non-empty intersection, then \mathcal{F} has non-empty intersection.

Helly's Theorem

Let \mathcal{F} be a finite family of at least d+1 convex sets in \mathbb{R}^d .

Theorem (Helly's Theorem '23)

If each subfamily in $\binom{\mathcal{F}}{d+1}$ has non-empty intersection, then \mathcal{F} has non-empty intersection.

Note. Non-empty intersection ←⇒ single piercing point.

Helly's Theorem

Variations: Two of (many) possible directions

Problem (Weaker intersection hypothesis)

What can we say if we know that fewer of the subfamilies in $\binom{\mathcal{F}}{d+1}$ have non-empty intersection?

Variations: Two of (many) possible directions

Problem (Weaker intersection hypothesis)

What can we say if we know that fewer of the subfamilies in $\binom{\mathcal{F}}{d+1}$ have non-empty intersection?

Problem (Higher dimensional transversals)

What happens if we replace piercing points with higher k-dimensional transversal flats for $1 \le k \le d-1$?

Colorful Helly's Theorem

Definition

Let k be an integer. Let \mathcal{F} be a family of convex sets split into k non-empty color classes $\mathcal{F}=\mathcal{F}_1\cup\cdots\cup\mathcal{F}_k$. We say that this (split) family has the colorful intersection hypothesis if every rainbow selection $K_i\in\mathcal{F}_i$ for $1\leq i\leq k$, satisfies $\bigcap_{i=1}^k K_i\neq\emptyset$.

Colorful Helly's Theorem

Definition

Let k be an integer. Let \mathcal{F} be a family of convex sets split into k non-empty color classes $\mathcal{F}=\mathcal{F}_1\cup\cdots\cup\mathcal{F}_k$. We say that this (split) family has the colorful intersection hypothesis if every rainbow selection $K_i\in\mathcal{F}_i$ for $1\leq i\leq k$, satisfies $\bigcap_{i=1}^k K_i\neq\emptyset$.

Theorem (Colorful Helly, Lovász, '82)

A family $\mathcal F$ of convex sets in $\mathbb R^d$ split into d+1 color classes that satisfy the colorful intersection hypothesis has a class with non-empty intersection.

Colorful Helly's Theorem

And the rest of them?

What happens with the rest of the colors?

And the rest of them?

What happens with the rest of the colors? Can we pierce another color class with a single point?

And the rest of them?

What happens with the rest of the colors? Can we pierce another color class with a single point?

Then what?

Colorful Helly's Theorem for Boxes

Colorful Helly's Theorem for Boxes

The (p, q)-theorem

Theorem (The (p,q)-theorem, Alon and Kleitman '92) For each $p \geq q \geq d+1$ there is a P=P(p,q,d) with the following property: If any subfamily $\mathcal{F}' \in \binom{\mathcal{F}}{p}$ contains an intersecting family $\mathcal{F}'' \in \binom{\mathcal{F}'}{q}$, then \mathcal{F} can be pierced by P points.

The (p, q)-theorem

Problem

Let $1 \leq k \leq d$ be an integer and \mathcal{F} a family of convex sets in \mathbb{R}^d . Suppose that each subfamily in $\binom{\mathcal{F}}{d+1}$ has a single k-flat transversal. Can we find a transversal for \mathcal{F} with one (or few) k-flats? Can we find a k-flat transversal to a positive fraction of the sets?

Problem

Let $1 \le k \le d$ be an integer and \mathcal{F} a family of convex sets in \mathbb{R}^d . Suppose that each subfamily in $\binom{\mathcal{F}}{d+1}$ has a single k-flat transversal. Can we find a transversal for \mathcal{F} with one (or few) k-flats? Can we find a k-flat transversal to a positive fraction of the sets?

Problem (On the plane, and k = 1)

Suppose that each 3 sets of \mathcal{F} have a transversal line. Is it true that \mathcal{F} has a transversal line?

Problem

Let $1 \leq k \leq d$ be an integer and \mathcal{F} a family of convex sets in \mathbb{R}^d . Suppose that each subfamily in $\binom{\mathcal{F}}{d+1}$ has a single k-flat transversal. Can we find a transversal for \mathcal{F} with one (or few) k-flats? Can we find a k-flat transversal to a positive fraction of the sets?

Problem (On the plane, and k = 1)

Suppose that each 3 sets of $\mathcal F$ have a transversal line. Is it true that $\mathcal F$ has a transversal line? No

Problem

Let $1 \leq k \leq d$ be an integer and \mathcal{F} a family of convex sets in \mathbb{R}^d . Suppose that each subfamily in $\binom{\mathcal{F}}{d+1}$ has a single k-flat transversal. Can we find a transversal for \mathcal{F} with one (or few) k-flats? Can we find a k-flat transversal to a positive fraction of the sets?

Problem (On the plane, and k = 1)

Suppose that each 3 sets of \mathcal{F} have a transversal line. Is it true that \mathcal{F} has a transversal line? No Can it be pierced with few lines?

Problem

Let $1 \leq k \leq d$ be an integer and \mathcal{F} a family of convex sets in \mathbb{R}^d . Suppose that each subfamily in $\binom{\mathcal{F}}{d+1}$ has a single k-flat transversal. Can we find a transversal for \mathcal{F} with one (or few) k-flats? Can we find a k-flat transversal to a positive fraction of the sets?

Problem (On the plane, and k = 1)

Suppose that each 3 sets of $\mathcal F$ have a transversal line. Is it true that $\mathcal F$ has a transversal line? No Can it be pierced with few lines? Yes

Piercing by few hyperplanes

Theorem (Eckhoff '93, Holmsen '13)

On the plane, if each 3 sets can be pierced with a line then:

- ▶ There is a transversal set of 4 lines that pierce \mathcal{F} .
- ▶ There is a line through at least $\frac{1}{3}|\mathcal{F}|$ of the sets of \mathcal{F}

Piercing by few hyperplanes

Theorem (Eckhoff '93, Holmsen '13)

On the plane, if each 3 sets can be pierced with a line then:

- ▶ There is a transversal set of 4 lines that pierce \mathcal{F} .
- ▶ There is a line through at least $\frac{1}{3}|\mathcal{F}|$ of the sets of \mathcal{F}

Theorem (Alon and Kalai '95)

On \mathbb{R}^d , if each d+1 sets can be pierced with one hyperplane then:

- \triangleright \mathcal{F} admits a transversal of h := h(d) hyperplanes.
- ▶ There is a hyperplane through at least $\delta |\mathcal{F}|$ of the sets of \mathcal{F} .

Transversal lines in high dimensions

What happens for $1 \le k \le d - 2$?

Transversal lines in high dimensions

What happens for $1 \le k \le d - 2$?

Theorem (Alon et al. '02)

For every integers $d \ge 3$, m and sufficiently large $n_0 > m+4$ there is a family of at least n_0 convex sets so that any m of the sets can be pierced with a line but no m+4 of them can.

Transversal lines in high dimensions

What happens for $1 \le k \le d - 2$?

Theorem (Alon et al. '02)

For every integers $d \ge 3$, m and sufficiently large $n_0 > m+4$ there is a family of at least n_0 convex sets so that any m of the sets can be pierced with a line but no m+4 of them can.

In particular, no (p, q)-theorem.

Our main result

We go back to the Colorful Helly's Theorem context.

Our main result

We go back to the Colorful Helly's Theorem context.

Theorem (-, Roldán-Pensado, Rubin, '18+)

For each dimension d there exist f(d) and g(d) for which: If $\mathcal F$ is split into d+1 color classes with the colorful intersection hypothesis and $\mathcal F_{d+1}$ is the intersecting class given by CHT, then either

- ightharpoonup an additional \mathcal{F}_i for $i \in [d]$ can be pierced by f(d) points or
- ▶ the entire family \mathcal{F} admits a transversal by g(d) lines.

The 2-colored picture

Some words on the proof

Blackboard and diagram time!

The Transversal Step-Down Lemma

Theorem (-, Roldán-Pensado, Rubin, '18+)

For each dimension d, every postive integer m and every $k \in [d+1]$ there exist numbers F(m,k,d) and G(m,k,d) for which:

If $\mathcal{F} = \mathcal{A} \cup \mathcal{B}$ and the family of bicolorful intersections

$$\mathcal{I}(\mathcal{A},\mathcal{B}) := \{A \cap B : A \in \mathcal{A}, B \in \mathcal{B}\}$$

can be crossed by m k-flats then either:

- ightharpoonup A can be pierced by F(m, k, d) points, or
- $ightharpoonup \mathcal{B}$ can be crossed by G(m, k, d) (k-1)-flats

Thank you!

Thank you!

Thank you for your attention!