Self-test and non-locality detection

Hugo Abreu[†], Fanny Terrier[†] and Hugo Thomas[†]

[†]Master in Quantum Information, Sorbonne Université April 30, 2022

Abstract

1 Introduction

A faire

- local correlations def + can be written as deterministic LHV model (page 8 bell review, local polytope
- Quantum correlations
- self-testing scenario
- Mayers Yao

2 Non-locality detection

2.1 Linear Programming formulation

Proposition 1 A behaviour **p** is local if and only if it can be written as a convex sum of deterministic behaviours, i.e

$$\mathbf{p} = \sum_{\lambda} \mu_{\lambda} \mathbf{d}_{\lambda} \ , \ \mu_{\lambda} \ge 0 \ , \ \sum_{\lambda} \mu_{\lambda} = 1 \tag{1}$$

Proposition 2 The set \mathcal{L} of local behaviours is convex, i.e

$$\mathcal{P}_1, \mathcal{P}_2 \in \mathcal{L} \Rightarrow \forall \alpha \in [0, 1] : \alpha \mathcal{P}_1 + (1 - \alpha) \mathcal{P}_2 \in \mathcal{L}$$
 (2)

Hence, it is possible to detect a non-local behaviour using linear programming.

Let \mathcal{P} be the behaviour for which one want to learn whether it is local. Let $\mathbb{1}$ be the behaviour corresponding to the random outcome strategy. It is clear that $\mathbb{1}$ is a local behaviour. It is possible to write the following linear program

If the optimal value is $\alpha^* = 0$, then \mathcal{P} is a local behaviour since it can be written as

$$\mathcal{P} = \sum_{\lambda} \mu_{\lambda}^* \mathbf{d}_{\lambda}$$

where μ^* is the coefficients find at the optimum. On the other hand, if $\alpha^* > 0$, \mathcal{P} is non-local.

The variable α is linked to the visibility $V = 1 - \alpha$.

2.2 CHSH correlations

The behaviour \mathcal{P} obtained by solving the system of equations induced by the quantum correlations (put ref to introduction) is

\mathcal{P}	(x,y)					
(a,b)	(0,0)	(0,1)	(1,0)	(1,1)		
(-1, -1)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(-1, 1)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(1, -1)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(1, 1)	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$		

The linear program 2.1 gives an optimal

$$\alpha_{CHSH}^* = 1 - 1/\sqrt{2} \tag{4}$$

, meaning that the visibility is $V_{CHSH}^* = 1/\sqrt{2}$.

2.3 Mayer-Yao's correlations

The behaviour \mathcal{P} obtained by solving the system of equations induced by the quantum correlations (put ref to introduction) is

\mathcal{P}	(a,b)					
(x,y)	(-1,-1)	(-1,1)	(1,-1)	(1,1)		
(0,0)	1/2	0	0	1/2		
(0,1)	1/4	1/4	1/4	1/4		
(0,2)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(1,0)	1/4	1/4	1/4	1/4		
(1,1)	1/2	0	0	1/2		
(1, 2)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(2,0)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(2,1)	$\cos^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\sin^2(\pi/8)/2$	$\cos^2(\pi/8)/2$		
(2,2)	1/2	0	0	1/2		

The linear program 2.1 gives an optimal

$$\alpha_{MV}^* = 0.1715 \tag{5}$$

, meaning that the visibility is $V_{CHSH}^* = 0.8284$.

3 Inequalities from duality

The linear program for non-locality detection also comes in a useful dual form

$$\max_{\gamma, \mathbf{y}} - \mathcal{P} \cdot \mathbf{y} + \gamma - \omega$$

$$\left\{ \begin{array}{rcl} (\mathbb{1} - \mathcal{P}) \cdot \mathbf{y} - \omega & \leq & 1 \\ \gamma + \mathbf{d}_{\lambda} \cdot \mathbf{y} & \leq & 0, & \forall \lambda \\ \mathbf{y} \in \mathbb{R}^{n}, & \gamma \in \mathbb{R}, \omega \geq 0 \end{array} \right.$$

(6)

The results from CHSH and Mayers-Yao show that (FIND WHY) one always has at the optimum

$$\mathcal{P} \cdot \mathbf{y}^* = -\alpha^* \tag{7}$$

$$1 \cdot \mathbf{y}^* = 1 - \alpha^* \tag{8}$$

and thus, multiplying the first constraint of the primal by \mathbf{y}^* , one finds that

$$\sum_{\lambda} \mu_{\lambda}^* \mathbf{d}_{\lambda} \cdot \mathbf{y}^* = 0 \tag{9}$$

which means that the solution \mathbf{y}^* of the dual problem is perpendicular to the optimal convex sum of deterministic behaviours. Therefore, the solution \mathbf{y}^* corresponds to the non-zero coefficients which maximally violate the Bell inequality surement très faux

$$\mathbf{y}^* \cdot \mathcal{P} \ge S_l \tag{10}$$

but this dual form only inform that

$$\mathbf{y}^* \cdot \mathcal{P} \ge \alpha$$

Therefore, it does not give any information on the local bound mais peut etre que si.

3.1 CHSH correlations

\mathbf{y}^*	(a,b)				
(x,y)	(-1, -1)	(-1,1)	(1,-1)	(1,1)	
(0,0)	$-\sqrt{2}$	0	0	0	
(0,1)	0	$\sqrt{2}$	0	0	
(1,0)	0	0	$\sqrt{2}$	0	
(1,1)	$\sqrt{2}$	0	0	0	

3.2 Mayer-Yao's correlation

3.3 Another Dual find better name

One can notice that another primal is possible for detecting non-locality

$$\begin{cases}
(1 - \alpha)\mathcal{P} + \alpha \mathbb{1} & \leq \sum_{\lambda} \mu_{\lambda} \mathbf{d}_{\lambda} \\
\sum_{\lambda} \mu_{\lambda} & = 1 \\
\alpha & \leq 1 \\
\forall \lambda, \ \mu_{\lambda} \geq 0, \ \alpha \geq 0
\end{cases} (11)$$

and the results are exactly the same at the optimum.

However, the following dual will give different results

$$max_{\gamma,\mathbf{v}} \mathcal{P} \cdot \mathbf{y} + \gamma - \omega$$

$$\begin{cases}
(\mathcal{P} - 1) \cdot \mathbf{y} - \omega & \leq 1 \\
\gamma + \mathbf{d}_{\lambda} \cdot \mathbf{y} & \leq 0 \\
\mathbf{y} \in \mathbb{R}^{n}_{+}, \ \gamma \in \mathbb{R}, \omega \geq 0
\end{cases}$$
(12)

From this dual, we have that

$$\sum_{\lambda} \mu_{\lambda} \mathbf{d}_{\lambda} \le -\gamma \text{ and } \mathbb{1} \cdot \mathbf{y} \le -\gamma$$
 (13)

Hence we can write

$$(1 - \alpha)\mathcal{P} \cdot \mathbf{y} + \alpha \mathbb{1} \cdot \mathbf{y} \leq \sum_{\lambda} \mu_{\lambda} \mathbf{d}_{\lambda} \cdot \mathbf{y}$$

$$\Leftrightarrow (1 - \alpha)\mathcal{P} \cdot \mathbf{y} + \alpha \mathbb{1} \cdot \mathbf{y} \leq \sum_{\lambda} \mu_{\lambda} (-\gamma)$$

$$\Leftrightarrow (1 - \alpha)\mathcal{P} \cdot \mathbf{y} + \alpha \mathbb{1} \cdot \mathbf{y} \leq -\gamma$$

$$\Leftrightarrow \mathcal{P} \cdot \mathbf{y} \leq \frac{-\gamma - \alpha \mathbb{1} \cdot \mathbf{y}}{1 - \alpha}$$

$$\Leftrightarrow \mathcal{P} \cdot \mathbf{y} \leq \frac{-\gamma + \alpha \gamma}{1 - \alpha}$$

and conclude on a maximum violation of the Bell inequality

4 Robustness against white noise

The aim of this section is to study robustness against the addition of a white noise.

Consider a Werner state

$$\rho = \beta |\Phi\rangle \langle \Phi| + (1 - \beta)\mathbb{1} \tag{14}$$

where $|\Phi\rangle$ is a maximally entangled state and 1 a fully randomized behaviour.

Procedure 1 1. Start with $\beta = 1$ and a given precision δ

2. While the result of the primal is non local for the state $\rho: \beta = \beta - \delta$

Procedure 1 is applied by a dichotomic algorithm in order to have a good precision with the fewer iterations possible.

For the CHSH game, we obtained $\beta_{CHSH}^*=1/\sqrt{2}$ and for Mayer-Yao's correlations, $\beta_{MY}^*=\approx 0.82.$ In each case, one can noticed that $\beta^*=1-\alpha^*$ where α^* was the optimal objective obtained in Section .. The study of the robustness was already given by the primal detecting non-local behaviour since it was written using a convex combination of the behaviour and a fully randomized behaviour which is actually a white noise. However, if one wants to study another type of noise, this study would be necessary.

A conclusion we can draw is that the maximally entangled state is more robust for CHSH correlations than for Mayer-Yao's correlations.

References