Revisiting Enumerative Instantiation

Andrew Reynolds¹, Haniel Barbosa^{1,2} and Pascal Fontaine²

¹University of Iowa, Iowa City, U.S.A.

²University of Lorraine, CNRS, Inria, LORIA, Nancy, France

TACAS 2018/Matryoshka 2018/SMT 2018

Outline

- Quantifier handling in SMT solving
- Strengthening the Herbrand Theorem
- ▶ Effective enumerative instantiation
 - Combination with other instantiation strategies
 - Implementation

Evaluation

Quantifier handling in SMT

Problem statement

Ground solver enumerates assignments $E \cup Q$

► E is a set of ground literals
$$\{a \le b, b \le a + x, x \ge 0, f(a) \not\simeq f(b)\}$$

Q is a set of quantified clauses

$$\{\forall xyz. \ f(x) \not\simeq f(z) \lor g(y) \simeq h(z)\}$$

Instantiation generates instances of Q

$$f(a) \not\simeq f(b) \lor g(a) \simeq h(b)$$

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of triggers and *E*-matching

Instantiation strategies: trigger-based [Detlefs et al. J. ACM'05]

Trigger-based instantiation (E-matching): search for relevant instantiations according to a set of triggers and E-matching

► E = {
$$\neg P(a)$$
, $\neg P(b)$, $P(c)$, $\neg R(b)$ } and Q = { $\forall x. P(x) \lor R(x)$ }

- Assume trigger P(x)
- ▶ Find substitution σ for x such P(x) is a know term (in E)
- ▶ Suitable substitutions are $x \mapsto a$, $x \mapsto b$, or $x \mapsto c$. E.g. $E \models P(x)[x/a] = P(a)$ and $P(a) \in E$
- Formally
 - $\mathbf{e}(\mathsf{E},\,\forall \bar{x}.\,\varphi)$ 1. Select a set of triggers $\{\bar{t}_1,\ldots\bar{t}_n\}$ for $\forall \bar{x}.\,\varphi$
 - 2. For each $i=1,\ldots,n$, select a set of substitutions S_i s.t for each $\sigma \in S_i$, $\mathsf{E} \models \overline{t}_i \sigma \simeq \overline{g}_i$ for some tuple $\overline{g}_i \in \mathsf{T}(\mathsf{E})$
 - 3. Return $\bigcup_{i=1}^n S_i$

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that makes E unsatisfiable

Instantiation strategies: conflict-based [Reynolds et al. FMCAD'14]

Conflict-based instantiation: search for instantiations of a quantified formula in Q that makes E unsatisfiable

► E = {
$$\neg P(a)$$
, $\neg P(b)$, $P(c)$, $\neg R(b)$ } and Q = { $\forall x. P(x) \lor R(x)$ }

▶ Since E, $P(b) \lor R(b) \models \bot$, this strategy returns $x \mapsto b$

- Formally
 - $\mathbf{c}(\mathsf{E},\,\forall\bar{x}.\,\varphi)$ Either returns σ where $\mathsf{E},\varphi\sigma\models\bot$, or return \emptyset

Instantiation strategies: model-based [Ge and de Moura CAV'09]

Model-based instantiation (MBQI): build a candidate model for $E \cup Q$ and instantiate with counter-examples from model checking

Model-based instantiation (MBQI): build a candidate model for $E \cup Q$ and instantiate with counter-examples from model checking

- ► E = $\{\neg P(a), \neg P(b), P(c), \neg R(b)\}$ and $Q = \{ \forall x. P(x) \lor R(x) \}$
- Assume that $P^{\mathcal{M}} = \lambda x$. ite $(x \simeq c, \top, \bot)$ and $R^{\mathcal{M}} = \lambda x$. \bot
- ▶ Since $\mathcal{M} \not\models P(a) \lor R(a)$, MBQI may return $x \mapsto a$
- Formally
 - $\mathbf{m}(\mathsf{E},\,\forall\bar{\mathsf{x}}.\,\varphi)$ 1. Construct a model \mathcal{M} for E
 - Return $\bar{x} \mapsto \bar{t}$ where $\bar{t} \in \mathbf{T}(\mathsf{E})$ and $\mathcal{M} \models \neg \varphi[\bar{x}/\bar{t}]$, or Ø if none exists

Shortcomings

- ► Conflict-based instantiation (c)
 - ► Inherently incomplete
- E-matching (e)
 - Too many instances
 - Butterfly effect
- MBQI (m)
 - Complete for many fragments, but slow convergence for UNSAT
 - Better suited for model finding

Generally SMT solvers implement complete techniques by applying \boldsymbol{m} as a last resort after trying \boldsymbol{c} and \boldsymbol{e}

Strengthening the Herbrand Theorem

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable set of its instances

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable set of its instances

- ▶ The earliest theorem provers relied on *Herbrand instantiation*
 - Instantiate with all possible terms in the language
- Enumerating all instances is unfeasible in practice!
- Enumerative instantiation was then discarded

Why can we use instantiation?

Theorem (Herbrand)

A set of pure first-order logic formulas is unsatisfiable if and only if there exists a finite unsatisfiable set of its instances

- ▶ The earliest theorem provers relied on *Herbrand instantiation*
 - Instantiate with all possible terms in the language
- Enumerating all instances is unfeasible in practice!
- Enumerative instantiation was then discarded

We make enumerative instantiation beneficial for state-of-the-art SMT

- strengthening of Herbrand theorem
- efficient implementation techniques

Theorem (Strengthened Herbrand)

If R is a (possibly infinite) set of instances of Q closed under Q-instantiation w.r.t. itself and if $E \cup R$ is satisfiable, then $E \cup Q$ is satisfiable.

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals E_i and of finite sets of ground instances Q_i of Q such that

- ightharpoonup $E_0 = E, E_{i+1} \models E_i \cup Q_i;$

then $E \cup Q$ is satisfiable in the empty theory with equality

Theorem (Strengthened Herbrand)

If there exists an infinite sequence of finite satisfiable sets of ground literals E_i and of finite sets of ground instances Q_i of Q such that

- ▶ $Q_i = \{ \varphi \sigma \mid \forall \bar{x}. \ \varphi \in Q, \ \mathsf{dom}(\sigma) = \{\bar{x}\} \land \mathsf{ran}(\sigma) \subseteq \mathsf{T}(\mathsf{E}_i) \};$
- ightharpoonup $E_0 = E, E_{i+1} \models E_i \cup Q_i;$

then $E \cup Q$ is satisfiable in the empty theory with equality

Direct application at

- ▶ Ground solver enumerates assignments $E \cup Q$
- Instantiation module generates instances of Q

Effective enumerative instantiation

Enumerative instantiation

$$\mathbf{u}(\mathsf{E},\,\forall\bar{x}.\,\varphi)$$

- 1. Choose an ordering \leq on tuples of ground terms
- 2. Return $\bar{x} \mapsto \bar{t}$ where \bar{t} is a minimal tuple of terms w.r.t \leq , such that $\bar{t} \in T(E)$ and $E \not\models \varphi[\bar{x}/\bar{t}]$, or \emptyset if none exist

► E = {¬
$$P(a)$$
, ¬ $P(b)$, $P(c)$, ¬ $R(b)$ } and Q = { $\forall x. P(x) \lor R(x)$ }

- **u** chooses an ordering on tuples of terms, e.g. $a \prec b \prec c$
- ▶ Since E $\not\models P(a) \lor R(a)$, enumerative instantiation returns $x \mapsto a$

u as an alternative for m

Enumerative instantiation plays a similar role to MBQI

▶ It can also serve as a "completeness fallback" to **c** and **e**

However, u has advantages over m for UNSAT problems

- Moreover it is significantly simpler to implement
 - No model building
 - ► No model checking

Example

$$\begin{split} \mathsf{E} &= \left\{ \neg P(a), \, R(b), \, S(c) \right\} \\ \mathsf{Q} &= \left\{ \forall x. \, R(x) \lor S(x), \, \forall x. \, \neg R(x) \lor P(x), \, \forall x. \, \neg S(x) \lor P(x) \right\} \\ \mathsf{M} &= \left\{ \begin{array}{ccc} P^{\mathcal{M}} &= & \lambda x. \, \bot, \\ R^{\mathcal{M}} &= & \lambda x. \, \mathrm{ite}(x \simeq b, \, \top, \, \bot), \\ S^{\mathcal{M}} &= & \lambda x. \, \mathrm{ite}(x \simeq c, \, \top, \, \bot) \end{array} \right\}, \qquad a \prec b \prec c$$

	φ	$x \text{ s.t. } \mathcal{M} \models \neg \varphi$	x s.t. $E \not\models \varphi$	$\mathbf{m}(E,\forall x.\ \varphi)$	$\mathbf{u}(E,\forall x.\varphi)$
$-P(x) \vee P(x)$	$R(x) \vee S(x)$	а	а	$x \mapsto a$	$x \mapsto a$
$(K(X) \vee F(X))$ U a, b, C $X \mapsto D$ $X \mapsto$	$\neg R(x) \lor P(x)$	Ь	a, b, c	$x \mapsto b$	$x \mapsto a$
$\neg S(x) \lor P(x)$ c a, b, c $x \mapsto c$ $x \mapsto c$	$\neg S(x) \lor P(x)$	С	a, b, c	$x \mapsto c$	$x \mapsto a$

- u instantiates uniformly so that new terms are introduced less often
- m instantiates depending on how model was built
- ▶ Moreover, **u** leads to $E \wedge Q[x/a] \models \bot$
- m requires considering E' which satisfies E along the new instances

Implementation

Implementing enumerative instantiation efficiently depends on:

Restricting enumeration space

Avoiding entailed instantiations

► Term ordering to introduce new terms less often

Evaluation

CVC4 configurations on unsatisfiable benchmarks

- ▶ 42 065 benchmarks: 14 731 TPTP + 27 334 SMT-LIB
- ightharpoonup e+u stands for "interleave e and u", while e;u for "apply e first, then u if it fails"
- ► All CVC4 configurations have "c;" as prefix

Impact of **u** on satisfiable benchmarks

Library	#	u	e;u	e+u	е	m	e;m	e+m
TPTP	14731	471	492	464	17	930	808	829
UF	7293	39	42	42	0	70	69	65
Theories	20041	3	3	3	3	350	267	267
Total	42065	513	537	509	20	1350	1144	1161

- As expected, m greatly outperforms u
- ▶ u answers SAT half as often as m in empty theory
- ▶ **u** solves 13 problems **m** does not

Conclusions

 We have introduced an efficient way of applying enumerative instantiation in SMT solving

New technique is based on an strengthening of the Herbrand Theorem

- Implementation in SMT solver CVC4
 - Significantly increases success rate
 - Outperforms existing implementations of MBQI for UNSAT
 - Can be used for SAT in the empty theory

Appendix

Restricting Enumeration Space

- ightharpoonup Strengthened Herbrand Theorem allows restriction to T(E)
- Sort inference reduces instantiation space by computing more precise sort information
 - $E \cup Q = \{a \not\simeq b, f(a) \simeq c\} \cup \{P(f(x))\}$
 - ightharpoonup a,b,c,x: au
 - $f: \tau \to \tau$ and $P: \tau \to \mathsf{Bool}$
 - ▶ This is equivalent to $E^s \cup Q^s = \{a_1 \not\simeq b_1, f_{12}(a_1) \simeq c_2\} \cup \{P_2(f_{12}(x_1))\}$
 - $ightharpoonup a_1, b_1, x_1 : \tau_1$
 - ► **c**₂ : τ₂
 - $f_{12}: \tau_1 \rightarrow \tau_2$ and $P: \tau_2 \rightarrow \mathsf{Bool}$
 - ▶ **u** would derive e.g. $x \mapsto c$ for $E \cup Q$, while for $E^s \cup Q^s$ the instantiation $x_1 \mapsto c_2$ is not well-sorted

Entailment Checks

Two-layered method for checking whether $\mathsf{E} \models \varphi[\bar{x}/\bar{t}]$ holds

- Cache of instantiations already derived
- ▶ Incomplete but fast method for checking $E \models \ell$

Repeat until a fix point:

- 1. Replace each leaf term t in ℓ with [t]
- 2. Replace each term $f(t_1, \ldots, t_n)$ in ℓ with s if $(t_1, \ldots, t_n) \to s \in \mathcal{I}_f$
- 3. Replace each term $f(t_1, \ldots, t_n)$ in ℓ where f is an interpreted function with the result of the evaluation $f(t_1, \ldots, t_n) \downarrow$

Then, if the resultant ℓ is \top , then the entailment holds

- Extension to incorporate Boolean structure
- Extension to other theories through theory-specific rewriting

Term Ordering

Instantiations are enumerated according to the order

$$(t_1,\ldots,t_n) \prec (s_1,\ldots,s_n) \quad \text{ if } \quad \begin{cases} \max_{i=1}^n t_i \prec \max_{i=1}^n s_i, \text{ or } \\ \max_{i=1}^n t_i = \max_{i=1}^n s_i \text{ and } \\ (t_1,\ldots,t_n) \prec_{\text{lex}} (s_1,\ldots,s_n) \end{cases}$$

for a given order \leq on ground terms.

If
$$a \prec b \prec c$$
, then

$$(a,a) \prec (a,b) \prec (b,a) \prec (b,b) \prec (a,c) \prec (c,b) \prec (c,c)$$

- ▶ We consider instantiations with c only after considering all cases with a and b
- Goal is to introduce new terms less often
- ▶ Order on **T**(E) fixed for finite set of terms $t_1 \prec ... \prec t_n$
 - ▶ Instantiate in order with t_1, \ldots, t_n
 - ▶ Then choose new non-congruent term $t \in T(E)$ and have $t_n \prec t$

Impact of **u** on unsatisfiable benchmarks

- ▶ u solves 3 043 more benchmarks than m
- u solves 1737 problems not solvable by e
- Combinations of e with u or m lead to significant gains
- e+u is best configuration, solving 253 more problems than e+m and 1 295 more than e
- Some benchmark families only solvable due to enumeration
- Overall the enumerative strategies lead to a virtual portfolio of CVC4 solving 712 more problems

Comparison against other instantiation-based SMT solvers

- Portfolios run without interleaving strategies (not supported by Z3)
- ▶ Z3 uses several optimizations for e not implemented in CVC4
- ► Z3 does not implement c