Pooblem 1

a)
$$j_1=5$$
, $j_2=4$, $j_3=2$

$$j_1 + j_2 = 9$$

$$|j_1-j_2|=1$$

ا باء	j, j2+j3	j, j2-j3	Jtoc
9	11	7	7.8,9,10,11
8	10	6	6~10
7	9	5	5~9
6	8	4	428
5 4	7	3	3~7
	6	2	226
3	5	1	1,2,3,4,5
Z	4	0	0,1,2,3,4
'	3	1	1,2,3
•	l	J	

allowed: 0~11, 12 jeacs

Then do j, js, j2
$$|jj3|jj2tj2||jj3tj$$

jest: 0~11 , 12 Volues

allow on1

12 volues

it doesn't matter how to combine, always 12 values

b)
$$T_{ot} = N_{(N_1)} \times N_{(M_2)} \times N_{(M_2)}$$

= $(2j_1+1)(2j_2+1)(2j_3+1)$
= $(2x5+1)(2x4+1)(2x2+1)$
= $11x9x5$
= $11x45$
= 495

c) total states (
$$j,m,5,4,2$$
)
$$= \sum_{j=0}^{n} (2j+1)$$

How many coples? (Using computer program go through all combs)

J-tol	copies	
1	3	total State of each
2	4	j is just (2jt1) x copies"
3	5	J 15 Just Egits & Copies
4	5	
5	5	do jtot= { (zji+1)x Copies!
6 7	5	is of the Copies i
1	5	~ // AF
8 9	3	= 495
10	2	
(1)	1	
0	1	

Problem 2.

(Followed the note a bit)
$$|\uparrow\uparrow\uparrow\uparrow\rangle = |2,2\rangle \text{ is initial state.}$$

$$|\uparrow\downarrow\oplus\downarrow\ominus|$$

$$= \int \frac{1}{5}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) + |\uparrow\downarrow\rangle|$$

$$|\uparrow\uparrow\uparrow\rangle|$$

$$|\downarrow\uparrow\uparrow\rangle|$$

$$|\downarrow\downarrow\downarrow\rangle|$$

$$|\downarrow\downarrow\downarrow\rangle|$$

$$\begin{array}{lll}
\mathcal{O} \oplus 1 = & 1 \\
11,0 > = (0) \oplus 1 \\
11,0 > = (0) \oplus 1 \\
11,-1 > = (0) \oplus 1 \\
11,-1 > = (0) \oplus 1 \\
11,-1 > = (0) \oplus 1 \\
11,0 > (0)$$

$$|\mathcal{D}| = \begin{cases} 2 & |\uparrow\uparrow\rangle = 1 \\ | \frac{1}{12} (|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle = 0 \\ |\downarrow\downarrow\rangle = 1 \end{cases}$$

2:
$$|2,2\rangle = |1/1/1\rangle$$

$$|2,1\rangle = |\frac{1}{5}|1/1/0\rangle + \frac{1}{5}|1/1/0\rangle + \frac{1}{5}|$$

$$|2,-1\rangle = \int_{\frac{1}{2}}^{\frac{1}{2}} |0 \psi\rangle + \int_{\frac{1}{2}}^{\frac{1}{2}} |\psi\rangle$$

$$= \frac{1}{2} |1/\psi\rangle + \frac{1}{2} |1/\psi\rangle + \int_{\frac{1}{2}}^{\frac{1}{2}} |1/\psi\rangle$$

$$= |1/\psi\rangle$$

$$= |1/\psi\rangle$$

1:
$$|1,+1\rangle = \sqrt{\frac{1}{2}} |\pi_0\rangle - \sqrt{\frac{1}{2}} |0\pi\rangle$$

$$= \sqrt{\frac{1}{2}} |\pi_0\rangle - \frac{1}{2} |0\pi\rangle - \frac{1}{2} |n\pi\rangle$$

$$|1,0\rangle = \sqrt{\frac{1}{2}} |\pi_0\rangle - \sqrt{\frac{1}{2}} |0\pi\rangle$$

$$= \sqrt{\frac{1}{2}} |\pi_0\rangle - \sqrt{\frac{1}{2}} |0\pi\rangle$$

Problem 3

$$V(x) = \begin{cases} ax & x > 0 \\ \infty & x < 0 \end{cases}$$

Original
$$\hat{H}$$
 of form $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{mw^2}{2}\hat{x}^2$

$$H = \frac{\hat{P}^{\circ}}{2m} + \frac{1}{2}mw^{2}\hat{\chi}^{2} + V(x)$$

$$\frac{1}{14} = \frac{1}{2m} \frac{\partial^2}{\partial x^2} \psi + \frac{1}{2} m w^2 x^2 \psi + V(x) \psi$$

$$= \int_0^\infty -\frac{\hbar^2}{2m} \psi^* \frac{\partial^2}{\partial x^2} \psi + \psi^{t} \frac{1}{2} m w^2 x^2 \psi + \psi^{t} \frac{\partial}{\partial x} \psi dx$$

$$= \frac{3am\beta + tB^4 + 3m^2w^2}{8mB^5}$$

This equation closes not have a minimum for postive values of B.

$$\frac{d}{d\beta} \frac{3an\beta + h\beta^4 + 3m^2w^2}{8m\beta^5} = -\frac{1}{8m\beta^6} \left(12an\beta + h\beta^4 + 15m^2w^2 \right)$$

One possible way by obsavordon is such 12 amp + tip 4+15m2 = 0

$$E' = \frac{-9 \, \text{am} \beta - 12 \, \text{m}^2 w^2}{8 \, \text{mB}^5}$$

$$\frac{d}{d\beta}E'=0$$
, $\beta=\frac{6\sqrt{2}}{a^{\frac{2}{6}}}$, plug back for E

if take
$$\psi = xe^{-7x^2}$$
, then
$$E' = \langle \psi | H' | \psi \rangle$$

$$= \frac{16 \text{ am JB} + 3 \sqrt{2\pi} (4 t_B^2 + w^2 w^2)}{128 m \beta^{\frac{5}{2}}}$$