

Variabilidade

Felin

HHS Public Access

Author manuscript

Clin Neurophysiol. Author manuscript; available in PMC 2016 September 01.

Published in final edited form as:

Clin Neurophysiol. 2015 September; 126(9): 1790-1796. doi:10.1016/j.clinph.2014.11.017.

Inter-session reliability of electrical impedance myography in children in a clinical trial setting

Tom R. Geisbush, BA¹, Nicole Visyak, BA², Lavanya Madabusi, BA², Seward B. Rutkove, MD¹, and Basil T. Darras, MD²

¹Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

²Department of Boston Children's Hospital, Harvard Medical School, Boston, MA, USA

Desvio padrão?

Subjects

A total of 22 healthy boys and 14 boys with DMD and underwent repeated measurements 3 - 7 days after the first measurement. The age ranges for the DMD and healthy groups were 2.2 - 13.2 and 2.1 - 12.4 years, respectively. The mean age \pm the standard deviations were 7.7 \pm 3.0 for the DMD group and 7.1 \pm 3.2 for the healthy group.

A idade média \pm desvio padrão do grupo DMD é 7.7 \pm 3.0.

- O que significa este 3.0?
- Como estas descrições se comparam com as do grupo controle?
- Os grupos têm idades diferentes?
- Os grupos têm variabilidades diferentes?
- Que outras informações você precisa para responder?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis Quantificando com variância e DP N ou N-1? Interpretação do DP

Objetivo

Variabilidade

Felipe Figueiredo

Maniabilialasia

Abstract

Objective—High reliability is a prerequisite for any test to be useful as a biomarker in a clinical trial. Here we assessed the reproducibility of electrical impedance myography (EIM) in children by comparing data obtained by different evaluators on separate days.

Methods—Healthy boys and boys with Duchenne muscular dystrophy (DMD) aged 2-14 years underwent EIM of multiple muscles performed by two evaluators on two visits separated by 3-7 days. Single and multifrequency data were analyzed. Reliability was assessed via calculation of the percent relative standard deviation (% RSD), Bland-Altman analysis, and the intraclass correlation coefficient (ICC).

Medidas Sumárias

- Medidas sumárias resumem a informação contida nos dados em um pequeno conjunto de números.
- Medidas sumárias de populações se chamam parâmetros, e são representadas por letras gregas (μ , σ^2 , σ , etc).
- Medidas sumárias de amostras se chamam estatísticas e são representadas por letras comuns (x̄, s², s, etc).
- Geralmente trabalhamos com estatísticas descritivas.

INTO

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis Quantificando com variancia e DP

N ou N-1? Interpretação do DP

Medidas Sumárias

Tipos de medidas sumárias

Os dois principais tipos de medidas sumárias utilizadas na literatura são:

- Medidas de Tendência Central
- Medidas de Variabilidade (ou Dispersão)

Veremos hoje ambas, com foco na Variabilidade

Variabilidade

Felipe Figueiredo

Variabilidade de dados

numéricos Fontes de variabilidade com histogramas Média e a mediana Quantificando com percentis N ou N-1?

Fontes comuns de variabilidade

- Imprecisão ou erro experimental
- Variabilidade biológica
- "Mancadas" experimentais

Conceito de Erro na Estatística

No contexto acadêmico, erro não tem o mesmo significado do cotidiano.

Erro se refere a todas as fontes de variabilidade acima.

Outro nome comum é dispersão (scatter).

Variabilidade

Felipe Figueiredo

Fontes de Variabilidade

variabilidade com Média e a mediana Quantificando com percentis N ou N-1?

Variabilidade em Medições

Figura: Variabilidade da medição de uma esfera metálica de 1000g. Balança A, "imprecisão" de 50g, balança B, "imprecisão" de 100g (Fonte: Reis, Reis, 2002)

100 estudantes de [insira aqui um curso da área da saúde] trabalharam

Ao final do exercício, a turma obteve 100 valores de pressão sistólica.

em pares, e mediram a pressão sistólica de seu parceiro(a).

Variabilidade

Felipe Figueiredo

de dados

Fontes de Variabilidade

percentis Quantificando com variância e DP

Variabilidade

Felipe Figueiredo

Fontes de Visualizando a variabilidade com

histogramas Quantificando com

Quantificando con variância e DP

Pergunta

Exemplo

Como "entender" essa listagem de 100 números?

O histograma

Média

Variabilidade

Quantificando com percentis

Felipe Figueiredo

de dados

Fontes de Variabilidade variabilidade com histogramas

Média e a mediana

Quantificando com variância e DP N ou N-1?

Quantas barras?

Number of Individuals

Variabilidade

Felipe Figueiredo

de dados Fontes de

Bin Width = 1

100 110 120 130 140

Sysolic BP (mmHg)

Variabilidade Visualizando a variabilidade com histogramas

Quantificando com percentis Quantificando com variância e DP

Variabilidade

Felipe Figueiredo

de dados

Fontes de Variabilidade variabilidade com histogramas

Média e a mediana Quantificando com

percentis Quantificando com variância e DP

Exemplo - Colesterol

Foram observados os seguintes níveis de colesterol de uma amostra de pacientes. Qual é o nível médio de colesterol nestes pacientes?

144 146 139 *x*₄ 155 144 148

$$\bar{x} = \frac{876}{6} = 146$$

Percentis e a Mediana

(posição central).

Para se calcular a mediana, deve-se ordenar os dados.

A mediana é o dado que ocupa o percentil de 50% dados

Bin Width = 20

Sysolic BP (mmHg)

of Individuals

Number

• Encontrar o valor do meio se *n* for ímpar.

• Encontrar a média dos dois valores do meio se *n* for par.

Mediana

Colesterol

144

144

= 146 = 148 = 155

*x*₃

*x*₁

*x*₅

Conforme no exemplo (colesterol)

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabilidade

Visualizando a variabilidade com histogramas Média e a mediana

Quantificando com percentis Quantificando com variância e DP

N ou N-1? Interpretação do DP O que acontece...

... na presença de valores extremos?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos Fontes de Variabilidade

variabilidade com histogramas

Média e a mediana Quantificando com

percentis

Quantificando com
variância e DP

N ou N-1?

Interpretação do DP

Aprofundamento

Qual é a diferença?

O que acontece com a média, na presença de um valor extremo?

(muito grande, ou muito pequeno em relação aos outros)

Colesterol

O que acontece se você digitar 13 ao invés de 139?

 $M_d = \frac{144 + 146}{2} = 145$

- $\bar{x} = 146, M_d = 145$
- $\bar{x} = 125, M_d = 145$

Pense...

Qual é a implicação disso em seu projeto?

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana

Quantificando com percentis Quantificando com variância e DP N ou N-1?

Aprofundamento

135

140

Efeito do outlier nas medidas centrais

Colestero

145

colesterol

$$\bar{x} = 125; M_d = 145$$

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com

percentis

Quantificando com
variância e DP

N ou N-1?

Interpretação do DP

Atenção!

Variabilidade

Felipe Figueiredo

de dados

Fontes de Variabilidade

Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis Quantificando com variância e DP

N ou N-1? Interpretação do DP

Aprolundamento

Valores extremos podem ser:

- erros de digitação/tabulação
- erros de mensuração/instrumentais
- valores legítimos, porém raros
- valores legítimos.

(i.e., apenas parecem extremos, mas não são)

Medida central de dados numéricos

Descrição de dados amostrais

Dados "bem comportados"^a

Dados "mal comportados"

Mediana (M_d)

Média (x̄)

Dados numéricos são minimamente descritos pelo seu Centro

^aparamétricos: veremos o que isso significa em aulas futuras

Variabilidade

Felipe Figueiredo

de dados numéricos Fontes de Variabilidade

Variabilidade
Visualizando a
variabilidade com

Média e a mediana

percentis
Quantificando com
variância e DP
N ou N-1?

Aprofundamento

Exemplo

RESEARCH ARTICLE

Physical Fitness Percentiles of German Children Aged 9–12 Years: Findings from a Longitudinal Study

Kathleen Golle¹*, Thomas Muehlbauer¹, Ditmar Wick², Urs Granacher¹

1 Division of Training and Movement Sciences, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany, 2 University of Applied Science in Sport and Management, Potsdam, Germany

* kathleen.golle@uni-potsdam.de

G OPENACCESS

Citation: Golle K, Muehlbauer T, Wick D, Granacher U (2015) Physical Fitness Percentiles of German Children Aged 9-12 Years: Findings from a Longitudinal Study. PLoS ONE: 10(11): e0142393. doi:10.1371/lournal.pone.0142393

Editor: Jennifer L. Baker, Institute of Preventive Medicine, DENMARK

Received: April 17, 2015

Abstract

Background

Generating percentile values is helpful for the identification of children with specific fitness characteristics (i.e., two or high fitness level) to set appropriate fitness goals (i.e., fitness/health promotion and/or long-term youth athlete development). Thus, the aim of this longitudinal study was to assess physical fitness development in healthy children aged 9–12 years and to compute sex- and age-specific percentile values.

Methods

Two-hundred and forty children (88 girls, 152 boys) participated in this study and were tested for their physical fitness. Physical fitness was assessed using the 50-m sprint test (a.e. proof), the 1-de physical fitness will be the 1-de physical fitness and physical fitness are all pure cycles from the 1-de physical fitness.

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

Quantificando com variância e DP N ou N-1?

Aprofundamento

Exemplo

doi:10.1371/journal.pone.0142393.t002

Age (yrs)	P ₁₀	P ₂₀	P ₃₀	P40	P ₅₀	P ₆₀	P70	Pso	Pg
				50-m sp	orint (s)				
Boys [1/2/10]									
9	10.8	10.3	10.0	9.8	9.5	9.3	9.1	9.0	8.6
10	10.4	10.0	9.7	9.5	9.3	9.1	8.9	8.7	8.3
11	10.1	9.7	9.4	9.2	9.0	8.8	8.6	8.5	8.1
12	9.8	9.4	9.1	8.9	8.7	8.5	8.3	8.2	7.8
Girls [1/2/10]									
9	11.1	10.6	10.2	10.0	9.8	9.6	9.4	9.1	8.8
10	10.7	10.2	9.9	9.7	9.5	9.3	9.1	8.8	8.5
11	10.3	9.9	9.6	9.3	9.1	8.9	8.7	8.5	8.3
12	10.0	9.5	9.2	9.0	8.8	8.6	8.4	8.2	8.0
				ball pu	sh (m)				
Boys [4/2/10]									
9	5.93	6.51	6.67	6.98	7.29	7.63	8.03	8.55	9.3
10	6.67	7.52	7.74	8.13	8.51	8.89	9.31	9.81	10.5
11	7.72	8.63	8.86	9.30	9.73	10.17	10.67	11.27	12.1
12	8.79	9.74	9.99	10.47	10.95	11.45	12.03	12.74	13.8
Girls [0/4/1/]									
9	4.85	5.37	5.74	6.06	6.35	6.65	6.97	7.34	7.8
10	5.42	5.99	6.41	6.76	7.09	7.42	7.78	8.19	8.7
11	6.45	7.13	7.63	8.05	8.44	8.84	9.26	9.75	10.4
12	7.23	7.99	8.55	9.02	9.46	9.91	10.38	10.93	11.7
				triple h	op (m)				
Boys [0/2/10]									
9	6.06	6.73	6.89	7.19	7.47	7.75	8.04	8.39	8.8
10	6.61	7.34	7.52	7.84	8.15	8.45	8.78	9.16	9.6
11	7.16	7.95	8.15	8.50	8.83	9.16	9.51	9.92	10.4
12	7.71	8.56	8.77	9.15	9.51	9.86	10.24	10.69	11.3
Girls [0/2/20]									
9	5.65	6.16	6.53	6.85	7.14	7.44	7.75	8.12	8.6
10	6.26	6.79	7.17	7.50	7.81	8.11	8.44	8.82	9.3
11	6.89	7.43	7.82	8.16	8.47	8.79	9.12	9.52	10.0
12	7.53	8.08	8.48	8.82	9.14	9.46	9.80	10.20	10.7

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas

Média e a mediana Quantificando com percentis

Quantificando com variância e DP N ou N-1?

Exemplo

Uma criança (9 anos) faz o sprint de 50m em 10s.

- Qual é o percentil de um menino com este tempo?
- 2 Qual é o percentil de uma menina com este tempo?
- 3 O que isto significa?

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabilidade Visualizando a variabilidade com

 $Table\ 2.\ Smoothed\ age-and\ sex-specific\ percentile\ values\ for\ the\ 50-m-sprint\ (s),\ ball\ push\ test\ (m),\ and\ triple\ hop\ test\ (m).$

Age (yrs)	P ₁₀	P ₂₀	P ₃₀	P ₄₀	P ₅₀	P ₆₀	P ₇₀	P ₈₀	P ₉₀
				50-m s	print (s)				
Boys [1/2/10]									
9	10.8	10.3	10.0	9.8	9.5	9.3	9.1	9.0	8.6
10	10.4	10.0	9.7	9.5	9.3	9.1	8.9	8.7	8.3
11	10.1	9.7	9.4	9.2	9.0	8.8	8.6	8.5	8.1
12	9.8	9.4	9.1	8.9	8.7	8.5	8.3	8.2	7.8
Girls [1/2/10]									
9	11.1	10.6	10.2	10.0	9.8	9.6	9.4	9.1	8.8
10	10.7	10.2	9.9	9.7	9.5	9.3	9.1	8.8	8.5
11	10.3	9.9	9.6	9.3	9.1	8.9	8.7	8.5	8.3
12	10.0	9.5	9.2	9.0	8.8	8.6	8.4	8.2	8.0

Descrição de dados amostrais

Medida de dispersão de dados não paramétricos

Dados numéricos são suficientemente descritos por: Centro e Dispersão

- Dados "bem comportados"^a
 - Média (DP)
- Dados "mal comportados"
 - Mediana e Amplitude Interquartil (M_d e AIQ IQR em inglês)
 - Mediana e Intervalo Interquartil (M_d e IIQ)

Variabilidade

Felipe Figueiredo

Variabilidade
de dados
numéricos
Fontes de
Variabilidade
Visualizando a
variabilidade com
histogramas
Média e a mediana
Quantificando com
percentias
Quantificando com
variância e DP

variancia e DP N ou N-1? Interpretação do DP

Aprofundamento

Na prática

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos
Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis Quantificando com variáncia e DP N ou N-12

Interpretação do DP

Aprofundamento

Variáveis	Grupo-controle n=21	Grupo-intervenção n=21	р		
Masculino	13 (62)	13 (62)	NS		
Feminino	8 (38)	8 (38)	IN5		
Idade média±DP (anos)		68,5±9,8	NS		
média±DP (kg/m²)	28,4±4,2	25,7±4,3	0,04		
média±DP	54,0±15,6	53,4±13,7	NS		
mediana (AIQ)	6 (3,5-10,5)	7 (4-12)	NS		
	Masculino Feminino média±DP (anos) média±DP (kg/m²) média±DP	Variaveis n=21 Masculino 13 (62) Feminino 8 (38) média±DP (anos) 63,0±10,8 média±DP (kg/m²) 28,4±4,2 média±DP 54,0±15,6	Variaveis n=21 n=21 Masculino 13 (62) 13 (62) Feminino 8 (38) 8 (38) média±DP (anos) 63,0±10,8 68,5±9,8 média±DP (kg/m²) 28,4±4,2 25,7±4,3 média±DP 54,0±15,6 53,4±13,7		

Preisig et al., 2014 (Ventilação não Invasiva após Cirurgia Cardiovascular: um Ensaio Clínico Randomizado)

O boxplot

- "Caixa e bigodes"
- A caixa delimita os quartis de Q₁ e Q₃ (IIQ)
 - Percentis 25% e 75%
 - O tamanho da caixa representa a AIQ
- Barra interna que representa a mediana
 - Segundo quartil (Q2) ou percentil de 50%
- Barras verticais indicam a amplitude dos dados
 - Mínimo e Máximo "razoáveis"
 - Regras para "a maioria"

^aParamétricos: veremos o que isso significa em aulas futuras

"Regras para a maioria"

200

Peso

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana

Quantificando com percentis Quantificando com variância e DP

N ou N-1?
Interpretação do DP

Aprofundamento

Sexo

macho

(todas relacionadas)o que uma significa...

uma cadência de ideias

A seguir, você verá...

o prós e contras de cada uma

... em relação à próxima.

do mais simples...... ao mais aplicado.

Variabilidade

Felipe Figueiredo

Variabilidade
de dados
numéricos
Fontes de
Variabilidade
Visualizando a
variabilidade con
histogramas
Média e a mediana
Quantificando com
percentis
Quantificando com

Quantificando com variância e DP N ou N-1?

Aprofundamento

Tenha em mente...

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis Quantificando com variancia e DP N ou N-1?

Aprofundamento

Nosso objetivo é entender...

... uma medida que descreva a variabilidade de uma amostra

Desvios em relação à média

- Uma maneira de entender a variabilidade do dataset é analisar os desvios em relação à média.
- Cada desvio é a diferença entre o valor do dado e a média.

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP N ou N-1?

Interpretação do DP

Dados

Colesterol (N = 6, média 146)

144 146 139 155 144 148

Variabilidade

Felipe Figueiredo

de dados

Fontes de variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP

N ou N-1?

Desvios em relação à média

Colesterol (N = 6, média 146)

Desvios em relação à média

144 146 139 155 144 148

Variabilidade

Felipe Figueiredo

Fontes de variabilidade com histogramas Média e a mediana Quantificando com

Quantificando com variância e DP

Desvios em relação à média

Colesterol

■ N = 6

• $\bar{x} = 146$

Variabilidade

Felipe Figueiredo

de dados

Fontes de Variabilidade Média e a mediana Quantificando com percentis

Quantificando com variância e DP

Interpretação do DP

- 1 são tão numerosos quanto os dados
- 2 têm sinal (direção do desvio)
- 3 SEMPRE têm soma nula, portanto o desvio médio é sempre 0

{144, 146, 139, 155, 144, 148}

 $D_1 = 144 - 146 = -2$

 $D_2 = 146 - 146 = 0$

 $D_3 = 139 - 146 = -7$

 $D_4 = 155 - 146 = 9$

 $D_5 = 144 - 146 = -2$ $D_6 = 148 - 146 = 2$

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Desvios em relação à média

Variabilidade

Felipe Figueiredo

de dados Fontes de Variabilidade variabilidade com histogramas Média e a mediana

Quantificando com percentis Quantificando com variância e DP

Interpretação do DP

-2 0 -7 9 -2 2

Soma dos desvios

Colesterol

Somando tudo:

$$\sum D = D_1 + D_2 + D_3 + D_4 + D_5 + D_6 =$$

$$(-2) + 0 + (-7) + 9 + (-2) + 2 = 0$$

Pense...

Uma fórmula que dá o mesmo resultado para qualquer dataset... serve para resumir seus dados?

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com

percentis

Quantificando com
variância e DP

N ou N-1?

Aprofundamento

Desvios absolutos

Definição

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana

Quantificando com percentis Quantificando com variância e DP

nterpretação do DP

Aprofundamer

Pouco usado para inferência (apesar da robustez)

Desvio médio absoluto (MAD) é a média dos desvios absolutos

• É uma medida de dispersão robusta (pouco influenciada por outliers)

Módulo não tem boas propriedades matemáticas (analíticas e algébricas).

Tomando-se o módulo dos desvios temos:

Como proceder?

Pergunta

Problema: sinais

Como tirar os sinais dos desvios?

1 Tirar o módulo (valor absoluto)

2 Elevar ao quadrado

- INTO
- Variabilidade

Felipe Figueiredo

de dados numéricos Fontes de Variabilidade Visualizando a

Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP

Interpretação do DP

Aprofundamento

Desvio médio absoluto (MAD)

Colesterol

 $\{144, 146, 139, 155, 144, 148\}, \bar{x} = 146$

Como extrair alguma informação útil (e sumária!) dos desvios?

 $|D_2| = |146 - 146| = 0$

 $|D_3| = |139 - 146| = 7$ $|D_4| = |155 - 146| = 9$

 $|D_5| = |144 - 146| = 2$

 $|D_6| = |148 - 146| = 2$

 $MAD = \frac{\sum |D_i|}{6} = 3.7$

Quantificando com variância e DP N ou N-1? Interpretação do D

Quantificando com

Fontes de

Aprofundamente

Variabilidade

Felipe

Figueiredo

Uma proposta "melhor"

desvio.

- INTO
- Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabillidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com

percentis Quantificando com variância e DP

N ou N-1? Interpretação do DP

Variância

INTO

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de

Variabilidade
Visualizando a
variabilidade com
histogramas
Média e a mediana
Quantificando com
parrentis

Quantificando com variância e DP N ou N-1?

Interpretação do DP

 $s^2 = \frac{\sum D_i^2}{5} = 28.4$

Aprofundamer

Colesterol

$$\{144, 146, 139, 155, 144, 148\}, \bar{x} = 146$$

Uma outra maneira de eliminar os sinais é elevar ao quadrado cada

Calculando a média dos quadrados dos desvios (desvios

Preserva boas propriedades matemáticas

quadráticos) temos ...

$$(D_4)^2 = (155 - 146)^2 = 9^2 = 81$$

$$(D_5)^2 = (144 - 146)^2 = (-2)^2 = 4$$

$$(D_6)^2 = (148 - 146)^2 = 2^2 = 4$$

Variância

Definicão

A variância é a média dos desvios quadráticos.

Variância populacional

$$\sigma^2 = \frac{\sum (x_j - \mu)^2}{N}$$

Variância amostral

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

- Conveniente do ponto de vista matemático (boas propriedades algébricas e analíticas).
- Unidade quadrática, pouco intuitiva para interpretação de resultados.

Variabilidade Felipe Figueiredo

Variabilidade de dados numéricos Fontes de Variabilidade Visualizando a variabilidade com

Visualizando a variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP N ou N-1?

Aprofundamento

Desvio Padrão

Definição

O desvio padrão é a raiz quadrada da variância.

Desvio padrão populacional

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Desvio padrão amostral

$$s = \sqrt{s^2} = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos Fontes de Variabilidade

Variabilidade
Visualizando a
variabilidade com
histogramas
Média e a mediana
Quantificando com
percentis

Quantificando com variância e DP N ou N-1?

Desvio Padrão

Lembre-se

- Variabilidade

Felipe Figueiredo

de dados

Fontes de variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP

Aprofundamento

- É a medida mais usada, por estar na mesma escala (unidade) dos dados.
- Boas propriedades matemáticas

Você não precisa saber fazer esses cálculos!

Eles são feitos instantaneamente por máquinas!

Boas propriedades como estimador (Inferência)

Variabilidade

Figueiredo

de dados

Fontes de variabilidade com histogramas Quantificando com Quantificando com variância e DP

Felipe

Média e a mediana Aprofundamento Desvio Padrão

Colesterol

Variabilidade

Felipe Figueiredo

de dados Fontes de Variabilidade

variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP

Tenha em mente...

Nosso objetivo é entender...

 $\{144, 146, 139, 155, 144, 148\}, \bar{x} = 146$

 $s^2 = 28.4$

 $s = \sqrt{s^2} = \sqrt{28.4} = 5.3$

... uma medida que descreva a variabilidade de uma amostra

Variabilidade

Felipe Figueiredo

de dados Fontes de Variabilidade variabilidade com histogramas Média e a mediana Quantificando com percentis

Quantificando com variância e DP Interpretação do DP

Como comparar o DP de dois grupos?

Variabilidade

Felipe Figueiredo

de dados

Fontes de

variabilidade com histogramas Média e a mediana

Quantificando com percentis Quantificando com variância e DP

O Desvio Padrão Relativo

Por que?

	50/200 kHz						
	Phase		Reactance		Resistance		
	ICC	% RSD	ICC	% RSD	ICC	% RSD	N
Trans. 6-Muscle	0.88	3.1 ± 2.5	0.92	3.6 ± 2.7	0.97	0.9 ± 1.0	28
Long. 6-Muscle	0.93	2.5 ± 1.9	0.96	2.8 ± 2.0	0.99	0.6 ± 0.5	31
Trans. Upper Extremity	0.80	3.8 ± 3.8	0.89	4.4 ± 3.8	0.98	1.1 ± 0.9	31
Long. Upper Extremity	0.90	3.1 ± 2.2	0.94	3.3 ± 2.3	0.98	0.8 ± 0.7	29
Trans. Lower Extremity	0.89	3.1 ± 2.7	0.91	3.9 ± 2.6	0.94	1.2 ± 1.1	32
Long. Lower Extremity	0.88	3.2 ± 2.8	0.92	3.5 ± 2.9	0.97	0.8 ± 0.7	33

Não podemos comparar diretamente o valor do DP de dois grupos.

Colesterol

$$CV = \frac{5.3}{146} = 4\%$$

Variabilidade

Felipe Figueiredo

Fontes de variabilidade com histogramas

Média e a mediana Quantificando com

Quantificando com variância e DP

O Desvio Padrão Relativo

Desvio Padrão Relativo

Ela ignora a escala da mensuração.

 Desvio padrão relativo (DPR) Coeficiente de Variação (CV) • Relative Standard Deviation (RSD)

Variabilidade

Felipe Figueiredo

de dados Fontes de Variabilidade Quantificando com percentis

Quantificando com variância e DP

N ou N-1?

Sinônimos

Variabilidade

Felipe Figueiredo

de dados Fontes de Variabilidade variabilidade com histogramas Média e a mediana Quantificando com percentis Quantificando com variância e DP

N ou N-1?

Fórmula com N

Usada apenas para cálculos com dados de toda a população.

O desvio padrão relativo é uma medida de dispersão normalizada.

 $DPR = \frac{s}{\bar{x}} \times 100$

Fórmula com N-1

Usada para cálculos com dados de uma amostra.

Pense...

Você tem acesso a toda a população, ou apenas a uma amostra?

Quiz

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Fontes de Variabilidade

Visualizando a variabilidade com histogramas Média e a mediana

Quantificando com percentis Quantificando com variância e DP

N ou N-1?

Aprofundamente

Pergunta

A medida de dispersão mais utilizada na prática é:

- 1 Variância (s²)
- 2 Desvio Médio absoluto (MAD)
- 3 Desvio padrão (s)
- 4 Desvio padrão relativo (DPR)

Aprofundamento

Variabilidade

Felipe Figueiredo

Variabilidade de dados

Aprofundamento

Aprofundamento

Leitura obrigatória

Capítulo 3. Pular as seções:

Calculando o DP numa calculadora

Leitura recomendada

Não há

Interpretação do DP

lados)

(considerando ambos os lados)

Cenas dos próximos capítulos

"Um pouco mais da metade" dos valores está a 1 DP da média

"Quase todos" os dados estão a 2 DP da média (considerando ambos os

Variabilidade

Felipe Figueiredo

Variabilidade de dados numéricos

Fontes de Variabilidade Visualizando a variabilidade com histogramas Média e a mediana Quantificando com

Quantificando com percentis Quantificando com variância e DP

Interpretação do DP