Datagram Congestion Control Protocol (DCCP)

SUBMITTED BY
JINASH P
S5 COMPUTER ENGINEERING

Overview

- Introduction.
- History.
- Important Differences from TCP.
- DCCP packets.
- Features negotiation.
- Choice of congestion control.
- Applications of DCCP.
- Security of DCCP.

Introduction

- DCCP is a Message-oriented, Transport layer protocol.
- DCCP implements
 - Reliable connection setup and teardown.
 - **■** Explicit Congestion Notification (ECN).
 - Congestion control.
 - Feature negotiation.
- DCCP is suitable for applications that transfer large amounts of data.
- Benefits from control over the tradeoff between timeliness and reliability.

DCCP in Transport Layer

History of DCCP

- Initially Datagram Control Protocol (DCP)
- July 2001: First Internet Draft
- February 2002: DCCP Problem Statement
- May 2002: Changed name to DCCP
- October 2003: Latest Internet Draft
- Implementations circa 2002 and late 2003
 - FreeBSD (kernel-level)
 - Linux (kernel-level and user-level)

Important Differences from TCP

- DCCP is a packet stream protocol, not a byte stream protocol. The application is responsible for framing.
- DCCP will never retransmit a datagram. Options are retransmitted as required to make feature negotiation and ack information reliable.
- Every packet sent by a DCCP endpoint gets a new sequence number.
- Copious space for options (up to 1020 bytes).
- DCCP only included minimal functionality to minimize overhead.

Important Differences from TCP

Feature	UDP	TCP	DCCP
Packet size	8 bytes	20 bytes	12 or 16 bytes
Transport layer packet entity	Datagram	Segment	Datagram
Port numbering	Yes	Yes	Yes
Error detection	Optional	Yes	Yes
Reliability: Error recovery by ARQ	No	Yes	No
Sequence numbering and reordering	No	Yes	Yes/No
Flow control	No	Yes	Yes
Congestion Control	No	Yes	Yes
ECN support	No	Yes	Yes

DCCP Packet Types

DCCP-Request	
DCCP-Response	
DCCP-Ack	
DCCP-Data	
DCCP-DataAck	
DCCP-CloseReq	
DCCP-Close	
DCCP-Reset	
DCCP-Sync, DCCP-SyncAck	

DCCP Packet Formats

Generic Header

Additional Fields (depending on type)

Options (optional)

Application Data Area

- DCCP header can be from 12 to 1020 bytes.
- Generic header: 12 bytes.
- Additional fields: fixed length field.
- Options: variable length field.

Packet Structure

- Basic packet similar to UDP
- Small (12 bytes)
- Extensible for additional features instead of using a fixed-length flag field

Congestion Control in DCCP

- Each congestion control mechanism supported by DCCP is assigned a congestion control identifier, or CCID: a number from 0 to 255.
 - CCID 0 and CCID 1 are reserved
 - TCP-like congestion control CCID 2
 - TCP friendly rate control (TFRC) CCID 3
 - CCID 4-255 are reserved

Feature Numbers

- The first data byte of every Change, Prefer, or Confirm option is a feature number, defining the type of feature being negotiated.
- The remainder of the data gives one or more values for the feature.

Applications of DCCP

- DCCP is useful for applications with timing constraints on the delivery of data.
 - Media Streaming.
 - Online Multiplayer Gaming.
 - Internet Voice calling

Online Video/Audio Streaming

Online Multiplayer Video Games

Voice/Video Calls over Internet

Security Considerations

- DCCP does not provide cryptographic security guarantees.
- Applications desiring hard security should use IPsec or end-to-end security of some kind.
- Attackers cannot hijack a DCCP connection unless they can guess valid sequence numbers.
- The sequence number validity and mobility mechanisms provide security.

Security Considerations

- Prevents DDoS attacks init cookie
- Prevents Sequence Number Attack
 - Large Sequence Number
 - Sequence and Acknowledgement Number Windows
- Data Corruption
 - CRC data Checksum Option

Conclusion

- DCCP a relatively simple protocol that robustly manages congestion controlled connections without reliability.
- Modular congestion control mechanism makes it possible to adapt congestion control within a fixed protocol framework.
- Robustness against attack addressed in a more thorough way.

THANK YOU