Wen-Chieh (Laurent) Lo

Taipei, Taiwan, +886 978428236, jack910817@gmail.com

Education

National Taiwan University

Sept. 2020 - June 2024

Bachelor of Science in Electrical Engineering

- GPA: 3.99/4.3
- Relevant Coursework: , Computer Architecture(A), Digital Circuit Design Lab(A), Computer-aided VLSI System Design(A), Integrated Circuit Design(A), Algorithm, Data Structure, Linear Algebra, Discrete Math, Operating System, Computer Vision

Work Experience

Digital IC Design Intern, Mediatek

July. 2023 – August 2023

- Designing NoC IP low-power clock control flow using clock management IP
 - Designed an automatic power-saving SPEC for the clock tree in NoC System Modules
 - Utilizing **Verdi** for module behavior tracing.
- Performance, Power, and Area analysis of Configuration BUS in interconnect
 - Utilizing **Perl**, and **Shell Script** for Synthesis flow design.

Lab Intern in Prof. Ryan Kastner's Lab, UC San Diego July. 2022 – August 2022

• Implemented an accumulator bitwidth optimization feature for the HLS4ML real-time Machine Learning Model Inference toolkit, reducing the user's time spent on finetuning.

Project Experience

Memory-Efficient Hardware Accelerator for Spliced Genome Alignment

Prof. Yi-Chang Lu's Lab

- Developed an end-to-end spliced genome alignment in ASIC.
 - Developed a pipeline syncmer-minimizer extraction in the seeding stage.
 - Performing bitwidth reduction for alignment traceback that reduces over **98%** of memory usage.
 - Achieved over 10x speedup compared to minimap2 under TSMC 28nm process.

Automated Audio Beat Detection On FPGA

Digital Circuit Lab

- Developed and implemented FPGA-based hardware for real-time music recording and automatic beat detection, utilizing an onset detection algorithm.
 - Analyzed Onset Strength in the frequency domain to detect potential beat formation.
 - Utilized a mere 25% of the Altera DE2-115 FPGA's total logic, ensuring a lightweight implementation.
 - Achieved 70% accuracy compared to fine-tuned Python onset detection tool Librosa.
 - Received the 2nd highest score among all the teams

QR Decomposition of MIMO Demodulation

Computer-Aided VLSI System Design

- Designed modified Gram-Schmidt Algorithm demodulation hardware for QR Decomposition in MIMO Receiver
 - Ranked 3rd among Undergraduate Students in Final Performance.
 - Utilized Verilog, Design Vision, Innovus, and PrimeTime for ASIC RTL to APR design flow.

Automated Bitwidth Optimization for HLS4ML

Prof. Ryan Kastner's Lab

- Developed an automatic accumulator bitwidth selection feature for a machine learning model deployment tool on FPGA.
 - Allowed users to automatically set up optimal accumulator bitwidth for different layers to achieve the most effective resource usage.
 - Established bitwidths for each layer using mathematical bounds to guarantee overflow prevention.

Technical Skills

- Language: Verilog, System Verilog, C++, Python, Perl, Matlab
- Tools: Verdi, Design Vision, Innovus, PrimeTime, Quartus FPGA