

Decision Tree R Exercise: Classification Tree

Pilsung Kang
School of Industrial Management Engineering
Korea University

R Exercise: Data Set

Personal Loan

✓ Purpose: identify future customer who will use the personal loan service based on his/her demographic information and banking service history

	Α	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	ID	Age	Experience	Income	ZIP Code	Family	CCAvg	Education	Mortgage	Personal L	Securities	CD Accou	Online	CreditCard
2	1	25	1	49	91107	4	1.6	1	0	0	1	0	(0
3	2	45	19	34	90089	3	1.5	1	0	0	1	0	(0
4	3	39	15	11	94720	1	1	1	0	0	0	0	(0
5	4	35	9	100	94112	1	2.7	2	0	0	0	0	(0
6	5	35	8	45	91330	4	1	2	0	0	0	0	(1
7	6	37	13	29	92121	4	0.4	2	155	0	0	0	1	0
8	7	53	27	72	91711	2	1.5	2	0	0	0	0	1	0
9	8	50	24	22	93943	1	0.3	3	0	0	0	0	(1
10	9	35	10	81	90089	3	0.6	2	104	0	0	0	1	0

- A total of 14 variables (columns)
- ID, ZIP Code: irrelevant column (remove)
- Personal loan: target variable

R Exercise: Preprocessing (Post-Pruning)

- Data: Personal loan prediction
 - √ Write a performance evaluation function
 - ✓ Load the data
 - √ Use the "tree" package
 - √ Transform the target variable as "factor" type
 - \checkmark Divide the dataset into the training (1,500) and validation (1,000)

R Exercise: Preprocessing (Post-Pruning)

Install packages & write a performance evaluation function

```
# Performance Evaluation Function
perf eval <- function(cm){</pre>
     # True positive rate: TPR (Recall)
     TPR \leftarrow cm[2,2]/sum(cm[2,])
     # Precision
     PRE \leftarrow cm[2,2]/sum(cm[,2])
     # True negative rate: TNR
     TNR \leftarrow cm[1,1]/sum(cm[1,1])
     # Simple Accuracy
     ACC \leftarrow (cm[1,1]+cm[2,2])/sum(cm)
     # Balanced Correction Rate
     BCR <- sqrt(TPR*TNR)
     # F1-Measure
     F1 <- 2*TPR*PRE/(TPR+PRE)
     return(c(TPR, PRE, TNR, ACC, BCR, F1))
Perf_Table <- matrix(0, nrow = 2, ncol = 6)
rownames(Perf Table) <- c("Post-Pruning" , "Pre-Pruning")</pre>
colnames(Perf Table) <- c("TPR", "Precision", "TNR", "Accuracy", "BCR",</pre>
                               "F1-Measure")
Perf Table
```

R Exercise: Preprocessing (Post-Pruning)

Load the dataset and set the input/target indices

```
# Load the data & Preprocessing
Ploan <- read.csv("Personal Loan.csv")
input_idx <- c(2,3,4,6,7,8,9,11,12,13,14)
target_idx <- 10

Ploan_input <- Ploan[,input_idx]
Ploan_target <- as.factor(Ploan[,target_idx])

trn.idx <- 1:1500
tst.idx <- 1501:2500</pre>
```

- √ [ID], [ZIP Code], [Personal Loan] are excluded from the input variable set.
- √ [Personal Loan] is set to the target variable.
- ✓ Convert the variable type of [Personal Loan] from binary(0/1) to factor for building a
 classification model
- ✓ Use the first 1,500 customers to train the model and use the remaining 1,000 customers to validate the model

Training and evaluating CART

```
# Classification and Regression Tree (CART)
install.packages("tree")
library(tree)

CART_trn <- data.frame(Ploan_input[trn_idx,], PloanYN = Ploan_target[trn_idx])
CART_tst <- data.frame(Ploan_input[tst_idx,], PloanYN = Ploan_target[tst_idx])

# Training the tree
CART_post <- tree(PloanYN ~ ., CART_trn)
summary(CART_post)</pre>
```

✓ tree() function

- Formula: the left side of (~) is target and the right side of (~) is input variables
- Y ~ XI: Set XI as the input variable and Y as the target variable
- Y ~ XI+X2: Set XI and X2 as the input variables and Y as the target variable
- Y ~ .: Set Y as the target variable and all the remaining variables as the input variables

Training and evaluating CART

```
> summary(CART_post)

Classification tree:
tree(formula = PloanYN ~ ., data = CART_trn)
Variables actually used in tree construction:
[1] "Income" "CCAvg" "CD.Account" "Education" "Family"
Number of terminal nodes: 10
Residual mean deviance: 0.06996 = 104.2 / 1490
Misclassification error rate: 0.01267 = 19 / 1500
```

- ✓ A total of 5 variables are used at least once as a split variable during the tree
 construction
 - [Income], [CCAvg], [CD.Account], [Education], [Family]
- \checkmark The number of terminal/leaf nodes = 10
- √ Training error: I.267% (19 out of 1,500 observations)

Training and evaluating CART

```
# Plot the tree
plot(CART_model)
text(CART_model, pretty = 1)
```


Find the best tree based on cross-validation

```
# Find the best tree
set.seed(12345)
CART_post_cv <- cv.tree(CART_post, FUN = prune.misclass)

# Plot the pruning result
plot(CART_post_cv$size, CART_post_cv$dev, type = "b")
CART_post_cv</pre>
```



```
> CART_post_cv
$size
[1] 10 9 8 6 5 4 3 1

$dev
[1] 27 28 28 28 32 67 68 148

$k
[1] -Inf 0.0 1.0 1.5 9.0 17.0 19.0 42.0

$method
[1] "misclass"

attr(,"class")
[1] "prune" "tree.sequence"
```

Find the best tree based on cross-validation

```
# Select the final model
CART_post_pruned <- prune.misclass(CART_post, best = 6)
plot(CART_post_pruned)
text(CART_post_pruned, pretty = 1)</pre>
```


• Prediction performance with the best tree

```
# Prediction
CART_post_prey <- predict(CART_post_pruned, CART_tst, type = "class")
CART_post_cm <- table(CART_tst$PloanYN, CART_post_cm)
CART_post_cm

Perf_Table[1,] <- perf_eval(CART_post_cm)
Perf_Table</pre>
```

Confusio	an manatuis.	Predicted						
Confusio	on matrix	No (0)	Yes (I)					
A atal	No (0)	888	8					
Actual	Yes (I)	П	93					

	TPR	Precision	TNR	Accuracy	BCR	FI-Measure
Post-Pruning	0.8942	0.9208	0.9911	0.9810	0.9414	0.9073
Pre-Pruning	0	0	0	0	0	0

R Exercise: Preprocessing (Pre-Pruning)

Install necessary packages

```
# CART with Post-Pruning -----
# For CART
install.packages("party")
library(party)

# For AUROC
install.packages("ROCR")
library(ROCR)
```

Divide the dataset into training/validation/test datasets (4:2:4)

```
# Divide the dataset into training/validation/test datasets
trn_idx <- 1:1000
val_idx <- 1001:1500
tst_idx <- 1501:2500

CART_trn <- data.frame(Ploan_input[trn_idx,], PloanYN = Ploan_target[trn_idx])
CART_val <- data.frame(Ploan_input[val_idx,], PloanYN = Ploan_target[val_idx])
CART_tst <- data.frame(Ploan_input[tst_idx,], PloanYN = Ploan_target[tst_idx])</pre>
```

Define parameter search space for pre-pruning

```
# Construct single tree and evaluation # tree parameter settings
min_criterion = c(0.9, 0.95, 0.99)
min_split = c(10, 30, 50, 100)
max_depth = c(0, 10, 5)

CART_pre_search_result =
matrix(0,length(min_criterion)*length(min_split)*length(max_depth),11)

colnames(CART_pre_search_result) <- c("min_criterion", "min_split", "max_depth",
"TPR", "Precision", "TNR", "ACC", "BCR", "F1", "AUROC", "N_leaves")</pre>
```

- ✓ min_criterion: minimum statistical significance to split the current node.
- √ min_split: minimum number of observations to consider splitting the current node
- √ max_depth: maximun depth of the entire tree

- √ Run for loop for three difference model parameters
- √ cat(): print the strings in the console

- √ ctree(): training a classification tree
 - Arg I: Formula
 - Arg 2: Dataset for training
 - Arg 3: Parameter values
- ✓ predict(): make predictions
 - Arg I:Trained model
 - Arg 2: Dataset to predict

```
tmp tree val prediction <- predict(tmp tree, newdata = CART val)</pre>
tmp tree val response <- treeresponse(tmp tree, newdata = CART val)</pre>
tmp tree val prob <- 1-unlist(tmp tree val response,
                             use.names=F)[seq(1,nrow(CART val)*2,2)]
tmp tree val rocr <- prediction(tmp tree val prob, CART val$PloanYN)
# Confusion matrix for the validation dataset
tmp tree val cm <- table(CART val$PloanYN, tmp tree val prediction)</pre>
 ✓ tmp tree val prediction: binary outcome
 ✓ tmp tree val response: predicted probability for the two classes
  ✓ tmp tree val prob: predicted probability for "I" class (for AUROC computation)
  ✓ tmp tree val rocr: summary data to draw ROC curve
```

Find the optimal parameters

```
# parameters
CART_pre_search_result[iter_cnt,1] = min_criterion[i]
CART_pre_search_result[iter_cnt,2] = min_split[j]
CART_pre_search_result[iter_cnt,3] = max_depth[k]

# Performances from the confusion matrix
CART_pre_search_result[iter_cnt,4:9] = perf_eval(tmp_tree_val_cm)
# AUROC
CART_pre_search_result[iter_cnt,10] = unlist(performance(tmp_tree_val_rocr, "auc")@y.values)
# Number of leaf nodes
CART_pre_search_result[iter_cnt,11] = length(nodes(tmp_tree, unique(where(tmp_tree))))
iter_cnt = iter_cnt + 1
```

✓ Compute seven performance metrics and stores them with the corresponding parameters

- ✓ Sort the performance matrix in terms of AUROC
- ✓ Find the best parameter values

> CART	_pre_search_re	esult	•								-	
	min_criterion		max_depth	TPR	Precision	TNR	ACC	BCR		F1	AUROC	N_leaves
[1,]	0.90	10		0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[2,]	0.90	10	10	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[3,]	0.90	10	5	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[4,]	0.90	30	0	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[5,]	0.90	30	10	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[6,]	0.90	30	5	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[7,]	0.90	50	0	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[8,]	0.90	50	10	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[9,]	0.90	50	5	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[10,]	0.90	100		0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[11,]	0.90	100	10	0.7678571	1	1	0.974	0.8762746	0.	8686869	0.9920568	6
[12,]	0.90	100		0.7678571	1			0.8762746				6
[13,]	0.95	10		0.7678571	1			0.8762746				6
[14,]	0.95	10		0.7678571	1			0.8762746				6
[15,]	0.95	10	_	0.7678571	1			0.8762746				6
[16,]	0.95	30		0.7678571	1			0.8762746				6
[17,]	0.95	30		0.7678571	1			0.8762746				6
[18,]	0.95	30		0.7678571	1			0.8762746				6
[19,]	0.95	50		0.7678571	1			0.8762746				6
[20,]	0.95	50		0.7678571	1			0.8762746				6
[21,]	0.95	50		0.7678571	1			0.8762746				6
[22,]	0.95	100		0.7678571	1			0.8762746				6
[23,]	0.95	100		0.7678571	1			0.8762746				6
[24,]	0.95	100		0.7678571	1			0.8762746				6
[25,]	0.99	10		0.7678571	1			0.8762746				5
[26,]	0.99	10		0.7678571	1			0.8762746				5
[27,]	0.99	10		0.7678571	1			0.8762746				5
[28,]	0.99	30		0.7678571	1	_		0.8762746				5
[29,]	0.99	30		0.7678571	1						0.9777389	5
[30,]	0.99	30		0.7678571	1			0.8762746				5
[31,]	0.99	50		0.7678571	1			0.8762746				5
[32,]	0.99	50		0.7678571	1			0.8762746				5
[33,]	0.99	50		0.7678571	1			0.8762746				5
[34,]	0.99	100		0.7678571	1			0.8762746				5
[35,]	0.99	100		0.7678571	1	_		0.8762746				5
[36,]	0.99	100	5	0.7678571	1	T	0.9/4	0.8762746	υ.	8080869	0.9///389	5

Training the tree with the best parameters

• Performance comparison

✓ Post-pruning vs. Pre-pruning

	TPR	Precision	TNR	Accuracy	BCR	FI-Measure
Post-Pruning	0.8942	0.9208	0.9911	0.9810	0.9414	0.9073
Pre-Pruning	0.8173	0.9444	0.9944	0.9760	0.9015	0.8762

Plot the ROC curve

```
# Plot the ROC
CART_pre_prob <- 1-unlist(CART_pre_response,use.names=F)[seq(1,nrow(CART_tst)*2,2)]
CART_pre_rocr <- prediction(CART_pre_prob, CART_tst$PloanYN)
CART_pre_perf <- performance(CART_pre_rocr, "tpr","fpr")
plot(CART_pre_perf, col=5, lwd = 3)</pre>
```


Plot the best tree

```
# Plot the best tree
plot(CART_pre)
plot(CART_pre, type="simple")
```


Plot the best tree

```
# Plot the best tree
plot(CART_pre)
plot(CART_pre, type="simple")
```


