Deformation Retracts of Neighborhood Complexes of Stable Kneser Graphs

Ben Braun
Matthew Zeckner*

Department of Mathematics University of Kentucky Advisor: Dr. Ben Braun

17. April 2010

• In 1978 Laszlo Lovász proved Martin Kneser's conjecture that if one partitions all the subsets of size n of a (2n + k)-element set into (k + 1) classes, then one of the classes must contain two disjoint subsets.

- In 1978 Laszlo Lovász proved Martin Kneser's conjecture that if one partitions all the subsets of size n of a (2n + k)-element set into (k + 1) classes, then one of the classes must contain two disjoint subsets.
- Lovász proved this conjecture by modeling the problem as a graph coloring problem: define the *Kneser graph*, denoted $KG_{n,k}$, to be the graph with vertices the *n*-subsets of [2n+k] and edges between disjoint subsets. Kneser's conjecture is equivalent to the statement that the chromatic number of $KG_{n,k}$ is equal to k+2.

• Lovász's proof methods actually provided a general lower bound on the chromatic number of any graph G as a function of the topological connectivity of an associated simplicial complex called the neighborhood complex of G. Of particular interest in his proof was the critical role played by the Borsuk-Ulam theorem.

- Lovász's proof methods actually provided a general lower bound on the chromatic number of any graph G as a function of the topological connectivity of an associated simplicial complex called the neighborhood complex of G. Of particular interest in his proof was the critical role played by the Borsuk-Ulam theorem.
- Later that year, Alexander Schrijver identified a vertex-critical family of subgraphs of $KG_{n,k}$, called the stable Kneser graphs and denoted $SG_{n,k}$, and determined their chromatic numbers using a method developed by Barany that also used the Borsuk-Ulam theorem.

• In 2003, Anders Björner and Mark de Longueville gave a new proof of Schrijver's result by applying Lovász's method to the stable Kneser graphs; in particular, they proved that the neighborhood complex of $SG_{n,k}$ is homotopy equivalent to a k-sphere.

- In 2003, Anders Björner and Mark de Longueville gave a new proof of Schrijver's result by applying Lovász's method to the stable Kneser graphs; in particular, they proved that the neighborhood complex of $SG_{n,k}$ is homotopy equivalent to a k-sphere.
- In the final section of their paper, Björner and De Longueville showed that when n=2, the neighborhood complex of $SG_{2,k}$ contains the boundary complex of a (k+1)-dimensional associahedron as a deformation retract. Their paper concluded with the following open problem:

Question

For all n and k, does the neighborhood complex of $SG_{n,k}$ contain as a deformation retract the boundary complex of a simplicial polytope?

Question

For all n and k, does the neighborhood complex of $SG_{n,k}$ contain as a deformation retract the boundary complex of a simplicial polytope?

We show the following:

Theorem

There exists a discrete Morse matching that simplicially collapses the neighborhood complex of $SG_{n,2}$ onto a subcomplex homeomorphic to a triangulated 2-sphere.

Given a graph G=(V,E), the neighborhood complex of G is the simplicial complex $\mathcal{N}(G)$ with vertex set V and faces given by subsets of V sharing a common neighbor in G, i.e.

$$\{F \subset V : \exists v \in V \text{ s.t. } \forall u \in F, \{u, v\} \in E\}.$$

•C

Becomes

For $n \ge 1$ and $k \ge 0$ the *Kneser graph*, denoted $KG_{n,k}$, is the graph whose vertices are the subsets of $[2n+k] = \{1,2,\ldots,2n+k\}$ of size n. We connect two such

 $[2n + \kappa] = \{1, 2, ..., 2n + \kappa\}$ of size n. We connect two such vertices with an edge iff they are disjoint as sets.

Let $\alpha = \{\alpha_1, \dots, \alpha_n\}$ be an *n*-set of [2n+2]. We call α stable if α does not contain the subset $\{1, 2n+2\}$ or any of the subsets $\{i, i+1\}$ for $i=1, \dots, 2n+1$.

The stable Kneser graph, denoted $SG_{n,k}$, is the induced subgraph of $KG_{n,k}$ whose vertices are the stable subsets of [2n + k].

For α and β stable *n*-sets, we call α and β *immediate neighbors* if $\alpha \pm 1 = \beta$, where

$$\alpha + 1 := \{\alpha_1 + 1, \dots, \alpha_n + 1\}$$

 $(\alpha - 1)$ is defined similarly).

We call α and β outer neighbors if

$$\beta = (\alpha_1 + 1, \alpha_2 + 1, \dots, \alpha_{i-1} + 1, \alpha_i + 2, \alpha_{i+1} + 1, \dots, \alpha_n + 1)$$

and α and β are neighbors in $SG_{n,2}$.

We call a stable *n*-set α *tight* if

$$\alpha = \{\alpha_i, \alpha_i + 2, \alpha_i + 4, \dots, \alpha_i + 2(n-1)\}\$$

for some $\alpha_i \in [2n+2]$. Otherwise, we call α a *loose* stable *n*-set.

By definition, all facets of $\mathcal{N}(SG_{n,2})$ arise from either a loose set or tight set. We handle the two cases separately.

Definition

For γ a vertex of $SG_{n,2}$, let Σ_{γ} be the facet in $\mathcal{N}(SG_{n,2})$ formed by the neighbors of γ .

• For any loose stable *n*-set γ , Σ_{γ} is a 3-simplex in $\mathcal{N}(SG_{n,2})$.

- For any loose stable *n*-set γ , Σ_{γ} is a 3-simplex in $\mathcal{N}(SG_{n,2})$.
- The edge consisting of γ 's outer neighbors is free in $\mathcal{N}(SG_{n,2})$.

- For any loose stable *n*-set γ , Σ_{γ} is a 3-simplex in $\mathcal{N}(SG_{n,2})$.
- The edge consisting of γ 's outer neighbors is free in $\mathcal{N}(SG_{n,2})$.
- Why? For a loose stable set $\gamma = \{\gamma_1, \gamma_2, \dots, \gamma_n\}$, there exists $1 \le r < s \le n$, such that $\gamma_r + 3 = \gamma_{r+1}$, $\gamma_s + 3 = \gamma_{s+1}$ and for all other i, $\gamma_i + 2 = \gamma_{i+1}$.

• Why? Note, for a tight stable set, between every element there is a gap of size 1 except for two elements, where there is a gap of size 3.

- Why? Note, for a tight stable set, between every element there is a gap of size 1 except for two elements, where there is a gap of size 3.
- A gap of size greater than 3 is not possible nor is more than two gaps of size 2.

- Why? Note, for a tight stable set, between every element there is a gap of size 1 except for two elements, where there is a gap of size 3.
- A gap of size greater than 3 is not possible nor is more than two gaps of size 2.
- Thus, for each 3-simplex in $\mathcal{N}(SG_{n,2})$ we may collapse all faces that contain that edge.

• For a tight stable n-set α of [2n+2], assign its neighbors the labels $1,2,\ldots,n+2$ as follows: for $i=1,\ldots,n+1$, let i be the tight stable n-set $\{1,3,5,\ldots,2(n-1)\}+2(i-1)$ or $\{2,4,6,\ldots,2n\}+2(i-1)$, whichever is a neighbor of α .

- For a tight stable n-set α of [2n+2], assign its neighbors the labels $1,2,\ldots,n+2$ as follows: for $i=1,\ldots,n+1$, let i be the tight stable n-set $\{1,3,5,\ldots,2(n-1)\}+2(i-1)$ or $\{2,4,6,\ldots,2n\}+2(i-1)$, whichever is a neighbor of α .
- The remaining vertex, n + 2, is α 's unique outer neighbor.

• For a tight, stable *n*-set α of [2n+2], all of its elements are either odd or even.

- For a tight, stable *n*-set α of [2n+2], all of its elements are either odd or even.
- $[2n+2] \setminus \alpha$ consists of the n+1 elements of the opposite parity of the elements of α and the one remaining element of the same parity as the elements of α .

- For a tight, stable *n*-set α of [2n+2], all of its elements are either odd or even.
- $[2n+2] \setminus \alpha$ consists of the n+1 elements of the opposite parity of the elements of α and the one remaining element of the same parity as the elements of α .
- An outer neighbor of α must contain the one element p of the same parity as the elements of α .

- For a tight, stable *n*-set α of [2n+2], all of its elements are either odd or even.
- $[2n+2] \setminus \alpha$ consists of the n+1 elements of the opposite parity of the elements of α and the one remaining element of the same parity as the elements of α .
- An outer neighbor of α must contain the one element p of the same parity as the elements of α .
- As the outer neighbor is a stable *n*-set, it cannot contain $p \pm 1$.

- For a tight, stable *n*-set α of [2n+2], all of its elements are either odd or even.
- $[2n+2] \setminus \alpha$ consists of the n+1 elements of the opposite parity of the elements of α and the one remaining element of the same parity as the elements of α .
- An outer neighbor of α must contain the one element p of the same parity as the elements of α .
- As the outer neighbor is a stable *n*-set, it cannot contain $p \pm 1$.
- There are only n-1 viable elements left in $[2n+2] \setminus \alpha$, an outer neighbor of α must contain them all. Hence, α has a unique outer neighbor, and our claim is verified.

• Consider Σ_{α} . Let P_{α} be the face poset of Σ_{α} .

- Consider Σ_{α} . Let P_{α} be the face poset of Σ_{α} .
- Σ_{α} collapses to the simplicial complex N_{α} where N_{α} consists of the following facets and their subsets:

$$\{1,2,3\},\{1,3,4\},\{1,4,5\},\ldots,\{1,n,n+1\},\{j,j+1,n+2\}$$
 for some $j\in[n+1]$.

- Consider Σ_{α} . Let P_{α} be the face poset of Σ_{α} .
- Σ_{α} collapses to the simplicial complex N_{α} where N_{α} consists of the following facets and their subsets:

$$\{1,2,3\},\{1,3,4\},\{1,4,5\},\ldots,\{1,n,n+1\},\{j,j+1,n+2\}$$
 for some $j\in[n+1].$

• That is, Σ_{α} collapses to a triangulated (n+1)-gon where all diagonals in the triangulation emanate from the vertex labeled 1 and there is a triangle $\{j, j+1, n+2\}$ attached to the (n+1)-gon. Note: if j=n+1 then the last set listed above is replaced by $\{1, n+1, n+2\}$.

What does our collapsed complex look like?

Thank You!

