Generalization in NLI: Ways to (Not) Go Beyond Simple Heuristics

Prajjwal Bhargava ¹ Aleksandr Drozd ² Anna Rogers ³

¹The University of Texas at Dallas ²Riken ³University of Copenhagen

Introduction

Problem: DL models pick up spurious correlations in NLP datasets.

Case study: MNLI dataset "teaches" the following heuristics, tested by adversarial HANS dataset.

Heuristic	Premise	Hypothesis	Label
Lexical Overlap	The banker near the judge saw the actor.	The banker saw the actor.	E
Subsequence	The artist and the student called the judge.	The student called the judge.	Е
Constituent	Before the actor slept, the senator ran.	The actor slept.	E

Motivation: How to learn to generalize to adversarial data when the training data has spurious patterns?

Subsampling Training Data with Cartography 🐸

cartography characterizes training data points via the model's confidence in the true class, and the variability of this confidence across epochs.

MNLI data map (with RoBERTa-large)

- For RoBERTa-large there does exist a MNLI subsample (at about 25% training data) yielding good performance on both HANS and MNLI.
- RoBERTa initially "learns" HANS at 5% of training data, but "loses" it before reaching even 60% accuracy on MNLI

Model based approaches •••

Adapter Networks:

- Motivation: Separate task-specific components could lead to increase in the amount of non-task-specific knowledge in the model.
- How: two linear layers (up and down) with a bottleneck of reduction factor of 16 and the ReLU non-linearity.

HEX Projection [Premise, Hypothesis]

Motivation: bottlenecking the interaction

encourage the learning of more abstract

transformer layer of two BERT encoders are

between premise and hypothesis to

How: mean-pooled outputs of last

fed as inputs to an MLP classifier

Siamese Transformer:

patterns

Explicit Debiasing:

- Motivation: If MNLI 'teaches' to rely on superficial features, we could try to avoid them.
- How: 'Naive' model learns superficial features. The transformer representation is projected orthogonally to that of the 'naive' model.

Architecture	Encoder	HF trainer		Custon	Custom Trainer	
		MNLI	HANS	MNLI	HANS	
Siamese networks / frozen encoder	BERT-base BERT-large	51.43 51.72	50.74 51.12	57.2 / 0.2 61.4 / 0.1	51.3 / 0.1 51.6 / 0.1	
Siamese networks / trainable encoder	BERT-base BERT-large	58.9 59.9	52.79 51.21	76.5 / 0.03 78.7	51.3 / 0.03 52.5	
Adapter networks	BERT-base BERT-large RoBERTa-base RoBERTa-large	82.6 84.75 86.33 90.4	50.97 57.17 57.21 75.93			
HEX debiasing	BERT-base	56.25	50.58			

Increasing Model Size

If pre-training "teaches" transferable linguistic knowledge, the models absorbing more data could be expected to generalize better.

Analysis: Bias Under Low Confidence

In low-confidence samples, BERT is biased towards entailment even if lexical overlap is reduced! Motivation: Once the model learns that some pattern is a strong signal for a label, it will over-rely on it. But how much heuristic-matching evidence does it need?

ythink ubout Premise: do it now, think bout it later zthink late (r Hypothesis: think about it now, do it later

Corruption	Labels	BERT	RoBERTa
Character insert	Entailment Neural Contradiction	+18.2 $+13.78$ -28.89	$+11.9 \\ +0.8 \\ -8.4$
Character substitute	Entailment Neural Contradiction	+35.5 $+1.6$ -23.9	+20.4 $+5.9$ -17.6
Character swap	Entailment Neural Contradiction	+23.8 -1.6 -15.5	+18.1 $+3.3$ -13.9

arxiv.org/abs/2110.01518