

Cap.1 – Funções reais de variável real em IR

Fundamentos de Matemática

Curso Técnico Superior Profissional

Ana Isabel Araújo

aiaraujo@ipca.pt

Conceito de função

Considere que o custo de aluguer de um automóvel, num local de férias, é de 25 € de taxa fixa acrescido de 0,25 € por cada km percorrido.

 $A \rightarrow X$ $B \rightarrow Y$

Se a Ana alugou um automóvel e percorreu 80 km, ela pagou o aluguer em função do número de km que percorreu.

Definição: Função

Dá-se o nome de função ou aplicação f a uma correspondência entre um conjunto A e um conjunto B que a cada elemento x do primeiro conjunto faz corresponder um e um só elemento y = f(x) do segundo conjunto.

Exemplo:

Não são funções as seguintes correspondências entre A e B:

Exemplo:

É função a seguinte correspondência entre A e B:

Exemplo:

NÃO FUNÇÃO

De um modo geral, tem-se:

$$f: A \to B$$

 $x \to y = f(x)$

expressão: f(x)=2x+1

- x é o objeto, y = f (x) é a imagem;
- y é a variável dependente;
- x é a variável independente;
- A é o domínio (D_f ou D) ou conjunto dos objetos;
- B é o conjunto de chegada da função;
- D'_f ou Im_f é o contradomínio ou conjunto das imagens.

Definição: Domínio de uma Função

O domínio de uma função é o conjunto de valores de "entrada" para os quais a função é definida.

Nota: Quando o domínio e o conjunto de chegada de uma função são subconjuntos de \mathbb{R} , a função diz-se função real de variável real.

Como determinar o domínio e o contradomínio em funções representadas graficamente?

O domínio de uma função definida por uma representação práfica é o conjunto das abcissas dos pontos da curva.

E em funções definidas por expressão analítica, como determinar o domínio?

Há condições a impor ao domínio de uma função representada por uma expressão analítica:

- Uma função polinomial : D=IR
- Uma função com uma variável no denominador , $y = \frac{f(x)}{g(x)}$

$$D = \{x \in IR: g(x) \neq 0\}$$

- Uma função com uma variável dentro de uma raíz índice par, $v = \sqrt[2n]{g(x)}$

$$D = \{x \in IR: g(x) \ge 0\}$$

- Uma função logarítmica do tipo $v = \log_a g(x)$

$$D = \{x \in IR: g(x) > 0\}$$

Exemplo:

A partir dos gráficos das funções representadas indique os seus domínios e contradomínios.

Exemplos:

Determine o domínio das funções reais de variável real definidas por:

- $\bullet \quad f(x) = \frac{1}{x};$
- $g(x) = \sqrt{x}$;
- $h(x) = \sqrt[3]{x}$.

Exemplos:

Determine o domínio das funções reais de variável real definidas por:

$$f(x) = \frac{2x+5}{x^2-x};$$

$$h(x) = \frac{2 + \sqrt{x}}{3 - \sqrt{x + 5}}.$$

Características de uma função

✓ Zero de uma função é todo o objeto que tem imagem nula.

Tem-se:

- zeros da função: -1, 1, 3;
- f(x) > 0 se $x \in]-1,1[\cup]3,+\infty[$;
- f(x) < 0 se $x \in]-\infty, -1[\cup]1, 3[$.

✓ Monotonia de uma função

Função crescente

A função f é crescente em [u, v]

Função decrescente

A função g é decrescente em [u, v]

✓ Monotonia de uma função

f é decrescente em [a,b] e crescente em [b,c].

Uma função crescente ou decrescente diz-se monótona.

Se nas definições dadas não admitirmos a igualdade, obtemos definições de funções **estritamente crescentes** e **estritamente decrescentes**.

✓ Injetividade de uma função

fé injectiva em [u, v]

Uma função f é **injectiva** num intervalo $E \subset D_f$ se para dois valores quaisquer de E, x_1 e x_2 , se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$

f não é injectiva em [u, v]

Uma função f é **não injectiva** em $E \subset D_f$ se existem pelo menos dois objectos distintos com a mesma imagem

✓ Extremos de uma função

Extremos absolutos

5 é o máximo absoluto de f; **0** é mínimo absoluto de f.

Seja *f* uma função de domínio *D*.

- f(a) é o **máximo absoluto** de f se, para todo o x de D, $f(a) \ge f(x)$;
- f(b) é o **mínimo absoluto** de f se, para todo o x de D, $f(b) \le f(x)$.

Extremos relativos

1,2 e 4 são extremos relativos de f:1 é mínimo relativo e 2 e 4 são máximos relativos

Aos valores do domínio a que correspondem os máximos relativos da função chamam-se **maximizantes**: 11 é um maximizante.

Aos valores do domínio a que correspondem os mínimos relativos da função chamam-se **minimizantes**: -2 é minimizante.

Seja f uma função de domínio D.

• f(a) é um **máximo relativo** de f se existir um intervalo aberto E contendo a tal que

$$f(a) \ge f(x)$$
, qualquer que seja $x \in E \cap D$

f(b) é um mínimo relativo de f se existir um intervalo aberto F contendo b tal
 que

$$f(b) \le f(x)$$
, qualquer que seja $x \in F \cap D$

√ Sinal de uma função

Estudar o sinal de uma função consiste em determinar para que valores da variável independente a função é negativa ou positiva. É óbvio que a função é positiva para os valores de x para os quais o gráfico se situa acima do eixo das abcissas e é negativa para os valores de x para os quais o gráfico se situa abaixo do eixo das abcissas.

Exercício:

A partir dos gráficos das funções representadas indique:

- ✓ Domínio e contradomínio:
- ✓ Os intervalos de monotonia;
- ✓ Os zeros, o máximo e mínimo absolutos, nos casos em que se aplique;
- ✓ Os intervalos onde as funções são positivas e negativas

Exercício:

A partir dos gráficos das funções representadas indique:

- ✓ Domínio e contradomínio:
- ✓ Os intervalos de monotonia;
- ✓ Os zeros, o máximo e mínimo absolutos, nos casos em que se aplique;
- ✓ Os intervalos onde as funções são positivas e negativas

Funções afim, quadrática e polinomial

Função afim

Definição: Uma **função afim** é definida por uma expressão algébrica do tipo y=ax+b, $a,b \in IR$.

O gráfico de uma função afim é uma reta.

Função afim

Definição: Uma função afim, cujo gráfico contém a origem do referencial, tem o nome de **função linear** e é definida por uma expressão algébrica do tipo y=ax, $a \in IR$.

Função afim

Definição: Uma função afim cujo gráfico é uma reta paralela ao eixo dos xx é uma **função constante**: y=b, b ϵ IR.

Função Quadrática

Na vida real encontram-se muitas situações entre variáveis cujo modelo matemático é uma função quadrática.

Função quadrática é uma função do tipo:

$$f: R \to R$$

$$x \rightarrow y = ax^2 + bx + c$$

 $a,b \in c$ são números reais e $a \neq 0$.

O modelo matemático que representa esta situação é uma função quadrática cujo gráfico é uma parábola.

Exemplo:

Considere-se a seguinte situação da Física:

"Disparou-se uma bala, de baixo para cima, com uma velocidade inicial de 30 km/s. A altura h atingida pela bala ao fim de t segundos é, em metros: $h(t) = 30t - 4,9t^2$."

Concavidade, vértice e eixo de simetria

Uma parábola pode ter a concavidade voltada para baixo ou voltada para cima:

- Se a > 0 a concavidade é voltada para cima;
- Se a < 0 a concavidade é voltada para baixo.

Zeros da função quadrática

$$ax^{2} + bx + c = 0^{3}$$

$$\Leftrightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Seja
$$\Delta = b^2 - 4ac$$
.

$\Delta > 0$	A parábola intersecta o eixo dos xx em dois pontos
$\Delta = 0$	A parábola é tangente ao eixo dos xx
Δ < 0	A parábola não intersecta o eixo dos xx

Assim:

$a \Delta$	$\Delta > 0$	$\Delta = 0$	$\Delta < 0$
a > 0	0 x1 x2 x	0 x1 x	Q ×
	$f(x) > 0$ se $x > x_2 \lor x < x_1$ $f(x) < 0$ se $x_1 < x < x_2$	$f(x) > 0$ se $x \neq x_1$	$f(x) > 0$ se $x \in R$
a < 0	0 ×4 2 ×	y ×	Δ
	$f(x) > 0$ se $x_1 < x < x_2$ $f(x) < 0$ se $x > x_2 \lor x < x_1$	$f(x) < 0$ se $x \neq x_1$	$f(x) < 0$ se $x \in R$

Inequações do 2.º grau

Para resolvermos uma inequação do 2.º grau, consideramos a função quadrática correspondente e determinamos os zeros e a concavidade.

Resumimos as conclusões num esboço gráfico e por observação deste esboço obtemos as soluções.

Seja
$$y = x^2 - 5x + 6$$
.

$$x^2 - 5x + 6 = 0 \Leftrightarrow x = \frac{5 \pm \sqrt{25 - 24}}{2} \Leftrightarrow x = \frac{5 \pm 1}{2} \Leftrightarrow x = 2 \lor x = 3$$

Temos:

- Zeros: 2 e 3;
- 1>0: concavidade voltada para cima;
- Esboço gráfico

Chama-se **função polinomial** a toda a função do tipo

$$f: R \to R$$

$$x \to a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

em que $n \in N_0$ e $a_0, a_1, ..., a_n \in R$.

Chama-se **polinómio** na variável x a toda a expressão do tipo

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

em que $n \in N_0$ e $a_0, a_1, ..., a_n \in R$.

Num polinómio $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, tem-se

$$a_n x^n$$
, $a_{n-1} x^{n-1}$, ..., $a_1 x$, $a_0 \rightarrow \text{os termos}$

$$a_n, a_{n-1}, ..., a_1, a_0 \rightarrow \text{os coeficientes}$$

$$a_0 \rightarrow o$$
 termo independente

Reduzir um polinómio é escrevê-lo sem que apareçam monómios semelhantes.

Exemplo:

Considere-se o polinómio $3x^2 - x + x^2$

Reduzindo-o, vem $4x^2 - x$.

Ordenar um polinómio é escrevê-lo segundo as potências crescentes ou decrescentes de x .

Exemplo:

Considere-se o polinómio $\frac{x}{2} - \frac{x^2}{5} + 3$

Ordenando-o, vem $-\frac{x^2}{5} + \frac{x}{2} + 3$ ou $3 + \frac{x}{2} - \frac{x^2}{5}$

<u>Definição</u>: Grau de um polinómio é o maior dos expoentes da variável x com coeficiente não nulo.

Se um polinómio tem não nulos todos os coeficientes da variável x , diz-se **completo**.

Exemplo:

$$x^3 + x^2 + 3x + 1 \rightarrow \text{polinómio completo}$$

$$x^3 + 3x + 1$$
 \rightarrow polinómio incompleto

Função polinomial

Operações com polinómios

As operações com polinómios são baseadas nas propriedades operatórias dos números reais, uma vez que a variável do polinómio representa um número real.

Considerem-se os polinómios: $P(x) = 2x^2 - 3x + 5$ e Q(x) = -3x + 2.

Adição

Para somar dois polinómios, soma-se os termos semelhantes.

$$P(x) + Q(x) = (2x^2 - 3x + 5) + (-3x + 2)$$
$$= 2x^2 + (-3x - 3x) + (5 + 2)$$
$$= 2x^2 - 6x + 7$$

Subtração

Para subtrair dois polinómios, soma-se o primeiro com o simétrico do segundo.

$$P(x) - Q(x) = (2x^{2} - 3x + 5) - (-3x + 2)$$
$$= 2x^{2} - 3x + 5 + 3x - 2$$
$$= 2x^{2} + 3$$

Função polinomial

Multiplicação

Para multiplicar dois polinómios, multiplica-se cada termo do primeiro polinómio por todos os termos do segundo polinómio (propriedade distributiva), e soma-se os termos semelhantes obtidos.

$$P(x) \times Q(x) = (2x^2 - 3x + 5) \times (-3x + 2)$$
$$= -6x^3 + 9x^2 - 15x + 4x^2 - 6x + 10$$
$$= -6x^3 + 13x^2 - 21x + 10$$

Divisão

Para calcular a divisão de polinómios em que o polinómio divisor é de grau 1, há um método simples denominado de **Regra de Ruffini**, que permite determinar os coeficientes do polinómio quociente e o resto da divisão.

Determinar o quociente e o resto da divisão de $M(x) = 2x^2 - 3x^2 + 5x + 2$ por N(x) = x + 1.

Como o divisor é da forma $x - a_i$, tem-se $a = -1_i$, atendendo a que $x + 1 = x - (-1)_i$

Função polinomial

Regra de Ruffini:

Noção intuitiva de Limite

Noção intuitiva de Limite

O significado intuitivo da expressão **f(x) tende para b quando x tende para a** é o de que se considerarmos apenas valores de x suficientemente próximos de a, os valores correspondentes f(x) estarão tão próximos quanto se queira de b.

Limite

- ✓ De acordo com a definição de limite anterior, basta que o ponto seja ponto de acumulação do domínio de f. Não faz sentido calcular o limite, quando a é ponto isolado do domínio de f;
- ✓Não se exige assim, que o ponto a pertença ao domínio de f;
- \checkmark O facto de $\lim_{x\to a} f(x) = b$, nada nos diz acerca do valor de f(a).

Unicidade do Limite

Seja E⊆ IR, f: E \rightarrow IR, a ∈ E' (E' é o conjunto dos pontos de acumulação de E).

Se o limite de uma função f(x) existe então ele é único.

Matematicamente falando temos que:

Se $\lim_{x\to a} f(x) = L$ e $\lim_{x\to a} f(x) = A$, então L = A.

Operações Algébricas

- $\lim_{x\to a}(f(x)\pm g(x))=L\pm A;$
- $\lim_{x\to a} (f(x) \times g(x)) = L \times A$;
- Se $A \neq 0$, $\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{L}{A}$.
- $\lim_{x\to a} [f(x)]^n = [\lim_{x\to a} f(x)]^n = L^n$;
- $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)} = \sqrt[n]{L}$, com $L \ge 0$ para n par.

Exercícios:

Calcule cada um dos seguintes limites:

- 1 $\lim_{x\to 4}(x^2+3)$;
- 2 $\lim_{x\to 1}(x^2-3x+1)$;
- 3 $\lim_{x\to 2}(2x+4)(3x^2)$;
- **1** $\lim_{x\to 2} \frac{x^3+x^2}{x}$.

Limites Laterais

Consideremos a função real de variável real

$$f(x) = \begin{cases} x & se \ x \le 2 \\ x+1 & se \ x > 2 \end{cases}$$

O que acontece a y quando x se aproxima de 2?

Limites Laterais

Limites Laterais

Diz-se que o número real b é o **limite à direita** de f(x) quando x tende para a, e escreve-se $\lim_{x\to a^+} f(x) = b$

Diz-se que o número real b é o **limite à esquerda** de f(x) quando x tende para a, e escreve-se $\lim_{x\to a} -f(x) = b$

Observação:

Só faz sentido falar nos limites laterais se a é ponto de acumulação à direita, no caso do limite lateral direito, ou a é ponto de acumulação à esquerda, no caso do limite lateral esquerdo.

Existência de limite

Seja $E \subseteq \mathbb{R}$, $f:E \to \mathbb{R}$, $a \in \mathbb{R}$. Então, existe $\lim_{x \to a} f(x)$ se e só se

$$\lim_{x\to a^+} f(x) = \lim_{x\to a^-} f(x) = b$$

Exemplo:

Estude a existência de limite f(x), quando x tende para 2, da seguinte função

$$f(x) = \begin{cases} x^2 - 5 & \text{, se } x < 2 \\ 0 & \text{, se } x = 2 \\ 1 - x & \text{, se } x > 2 \end{cases}$$

Exercício:

Estude a existência de limite f(x), quando x tende para 2, da seguinte função

$$f(x) = \begin{cases} -x & , \text{ se } x > 2\\ 1 & , \text{ se } x \le 2 \end{cases}$$

Limites no Infinito e Infinitos

Diz-se que o número real b é o **limite** de f(x) quando x tende para $+\infty$, e escreve-se

$$\lim_{x\to +\infty} f(x) = b$$

Diz-se que +∞ é o **limite** de f(x) quando x tende para a, e escreve-se

$$\lim_{X\to C} f(X) = +\infty$$

Exemplo:

$$f: x \to y = \frac{x^2 - 6}{x + 2}$$

 $\lim_{x\to -2} f(x)$ não existe

Mas pode-se dizer que:

$$\lim_{x \to -2^{-}} f(x) = +\infty$$

$$\lim_{x \to -2^+} f(x) = -\infty$$

Exemplo:

$$\lim_{x \to 0^{-}} f(x) = +\infty$$

$$\lim_{x\to 0^+} f(x) = +\infty$$

Apesar do limite não existir, porque +∞ não é um número real, escreve-se:

$$\lim_{x\to 0}\frac{1}{x^2}=+\infty$$

Propriedades

- Se $\lim_{x\to a} f(x) = \pm \infty$, então $\lim_{x\to a} \left(\frac{1}{f}\right)(x) = 0$;
- Se $\lim_{x\to a} f(x) = 0$, então

$$\lim_{x\to a} \left(\frac{1}{f}\right)(x) = \begin{cases} +\infty & \text{, se } f(x) > 0 \text{ em vizinhança de } a \\ -\infty & \text{, se } f(x) < 0 \text{ em vizinhança de } a \end{cases}$$

Indeterminações

Nos casos em que, por aplicação direta dos teoremas sobre limites, somos conduzidos aos símbolos $\infty - \infty, 0 \times \infty, \frac{\infty}{\infty}, \frac{0}{0}$ a que se chama **símbolos de indeterminação**, temos de seguir outro caminho para procurar, se existir, o limite, isto é, "levantar a indeterminação".

Indeterminação ∞-∞

Exemplo:

Calcule:

$$\lim_{x\to+\infty}(x^2-x+3)$$

Regra prática:

A indeterminação é levantada escolhendo o termo de maior grau.

Indeterminação $\frac{\infty}{\infty}$

Exemplo:

Calcule:

$$\lim_{x\to-\infty}\frac{x^2+3x+2}{x^3+4x+1}$$

Regra prática:

A indeterminação é levantada escolhendo o termo de maior grau do numerador e o termo de maior grau do denominador.

Indeterminação $\frac{0}{0}$

Exemplo:

Calcule:

a)
$$\lim_{x\to 0} \frac{x^2-x}{x}$$
 b) $\lim_{x\to 5} \frac{x^2-25}{x-5}$ **c)** $\lim_{x\to 1} \frac{x^3-1}{x-1}$

b)
$$\lim_{x\to 5} \frac{x^2-25}{x-5}$$

c)
$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1}$$

Regra prática:

A indeterminação é levantada por uma das metodologias:

- Pôr fatores comuns em evidência
- Usar o caso notável diferença de quadrados
- Aplicar a Regra de Ruffini.

Indeterminação 0×∞

Exemplo:

Calcule: $\lim_{x\to 0} x^2 \times \frac{1}{x}$

Regra prática:

A indeterminação é levantada transformando-a numa das indeterminações anteriores.

Noção intuitiva de Continuidade

EXEMPLOS

Intuitivamente, dizemos que a primeira função é contínua e que a segunda não.

Continuidade

- Ao contrário da definição de limite, só faz sentido verificar se f é contínua no ponto a quando a é ponto do domínio da função;
- De acordo com a definição, se a é ponto isolado do domínio de f, então f é contínua em a;
- Seja $a \in D_f$ ponto de acumulação do domínio de f. Então f é contínua em a se e só se $\lim_{x \to a} f(x) = f(a)$

Isto reduz essencialmente a noção de função contínua à de limite.

Exemplos:

- f(a) existe $(a \in D_f)$?
- $\lim_{x\to a} f(x)$ existe?
- $\lim_{x\to a} f(x) = f(a)$?

Continuidade num ponto

Estude a continuidade das seguintes funções nos pontos respectivos:

0

$$f(x) = \begin{cases} x^2 + 5 & \text{, se } x < 2\\ 3 & \text{, se } x = 2\\ 1 + x^3 & \text{, se } x > 2 \end{cases}$$

2

$$g(x) = \begin{cases} x^2 + 1 & \text{, se } x \le 1 \\ 2x & \text{, se } x > 1 \end{cases}$$
, (em $x = 1$)

Continuidade

Operações com funções

Seja $E \subseteq \mathbb{R}$, $f: E \to \mathbb{R}$, $g: E \to \mathbb{R}$. Se f e g são contínuas em $a \in E$, então f+g, f-g e $f \times g$ são contínuas em a. Se, além disso, $g(a) \neq 0$, então $\frac{f}{g}$ é contínua em a.

Nota

Este teorema permite concluir que:

- as funções polinomiais são contínuas em R;
- as funções racionais são contínuas em todo o seu domínio.

Exercícios:

Estude a continuidade das seguintes funções:

$$f(x) = x^3 - 4x^2 + 2;$$

2
$$g(x) = \frac{x+3}{x^2-4}$$
.

Continuidade lateral

Estudemos a continuidade das seguintes funções para x=a.

f não é continua em x=a

Mas:
$$\lim_{x \to a^-} f(x) = f(a)$$

e

$$\lim_{x\to a+} f(x) \neq f(a)$$

f é contínua à esquerda no ponto a mas não à direita g não é contínua em x=a

Mas:
$$\lim_{x \to a} g(x) \neq g(a)$$

e

$$\lim_{x \to a^+} g(x) = g(a)$$

f é contínua à direita no ponto a mas não à esquerda

h não é contínua em x=a

E:
$$\lim_{x\to a^-} h(x) \neq h(a)$$

$$\lim_{x\to a+}h(x)\neq h(a)$$

h não é contínua nem à esquerda nem à direita no ponto a

Continuidade lateral

CONTINUIDADE LATERAL

Diz-se que:

- $f: E \to \mathbb{R}$ é **contínua à direita** num ponto $a \in E$ se $\lim_{x \to a^+} f(x) = f(a)$;
- $f: E \to \mathbb{R}$ é **contínua à esquerda** num ponto $a \in E$ se $\lim_{x \to a^{-}} f(x) = f(a)$.

Nота

Uma função pode ser apenas contínua à direita (ou à esquerda) num ponto e ser contínua nesse ponto. Basta, para isso, que apenas esteja definida à direita (ou à esquerda, respectivamente) desse ponto.

Continuidade em intervalos

CONTINUIDADE EM INTERVALOS

- Seja I =]a, b[um intervalo aberto de \mathbb{R} , seja $f : I \to \mathbb{R}$. f é contínua em I se e só se for contínua em todos os pontos de I;
- Seja I = [a, b] um intervalo fechado de \mathbb{R} . f é contínua em I se e só se for contínua em]a, b[e também o é à direita de a e à esquerda de b.

$\operatorname{Exemplo}$

Estude a continuidade das seguintes funções no seu domínio:

•

$$f(x) = \begin{cases} \sqrt{x-5} & , \text{ se } x > 3\\ x^2 - 3x + 6 & , \text{ se } x \le 3 \end{cases}$$

2

$$g(x) = \begin{cases} \frac{x^3 - 3x}{x} & \text{, se } x \neq 0 \\ -3 & \text{, se } x = 0 \end{cases}$$

Teoremas importantes:

Teorema de Bolzano-Cauchy ou Teorema dos valores intermédios

Seja f uma função real de variável real contínua num intervalo $[a,b] \subset D$. Então, para qualquer $k \in IR$ do intervalo aberto de extremos f(a) e f(b), existe pelo menos um número $c \in Ja$, $b \in IR$, tal que f(c) = k.

Corolário do Teorema de Bolzano-Cauchy

Se f contínua num intervalo $[a,b]_{\subset D}$ e se $f(a) \times f(b) < 0$, então existe pelo menos um valor $c_{\in}]a$, b[, tal que f(c)=0.

Teorema de Weierstrass

Sendo f uma função real de variável real contínua num intervalo [a , b], fadmite um máximo e um mínimo absolutos.

Cap.2 – Função Exponencial e Logarítmica

Fundamentos de Matemática

Curso Técnico Superior Profissional

Ana Isabel Araújo aiaraujo@ipca.pt

Funções logarítmica e exponencial

Função exponencial

Existem fenómenos que crescem de tal forma que as funções polinomiais não são os modelos matemáticos mais apropriados para a sua modelização.

É necessário usar funções exponenciais para a definição de modelos matemáticos de tais fenómenos.

Mas o que é uma função exponencial?

Nenhuma das funções $f(x)=x^2$ ou $f(x)=x^{1/3}$ são funções exponenciais, uma vez que a base é variável e o expoente é constante.

Nas funções exponencias a base é constante e o expoente é variável.

Definição:

Uma função exponencial de base a é uma função exponencial da forma:

$$f(x)=a^x$$
,

sendo a e x números reais tais que a > 0 e $a \ne 1$.

Propriedades:

Propriedades:

A função exponencial $f(x) = a^x$, a > 0 e $a \ne 1$, tem as seguintes propriedades:

- A função f é estritamente crescente para a > 1 e estritamente decrescente para 0 < a < 1.
- O gráfico da função intersecta o eixo dos yy no ponto de coordenadas (0,1).
- A recta de equação y = 0 (eixo dos xx) é uma assimptota horizontal ao gráfico de f.
- O contradomínio de f é D'_f =]0,+∞[e o domínio de f é R.
- A função f é injectiva.

Funções exponenciais e condições:

As funções exponenciais $f(x) = a^x são$:

- injetivas (se $a_1^x = a_2^x$, então $x_1 = x_2$)
- crescentes, se a >1
- decrescentes, se 0 < a < 1

Estas propriedades permitem resolver equações e inequações exponenciais.

Exemplo (condições envolvendo exponenciais):

$$\bullet \quad \left(\frac{1}{2}\right)^{2x} = \sqrt{8} \; ;$$

•
$$(0,1)^{-x} < 10^3$$
.

<u>Função exponencial de base e</u>

Sabe-se que
$$\lim_{n\to+\infty} \left(1+\frac{1}{n}\right) = e$$
.

O número e, designado número de Neper, é um número irracional.

Na vida real, as funções da família das funções exponenciais de

base e têm particular interesse.

Funções logarítmicas

Seja a função $f: x \to y = 2^x$.

Trata-se de uma função exponencial de base 2.

A função f é injetiva e, por isso, tem inversa.

Para qualquer função f a inversa representa-se por f^{-1} e os gráficos de

f e f^{-1} são simétricos relativamente à reta de equação y = x .

No caso de qualquer função exponencial a função inversa tem o

nome de função logarítmica (log).

Funções logarítmicas

X	0	1	2	3	$y = \log_2 x$
$y = 2^x$	1	2	4	8	X

$$\log_2 1 = 0$$
; $\log_2 2 = 1$; $\log_2 4 = 2$; $\log_2 8 = 3$

De um modo geral: $\log_2 x = y \Leftrightarrow 2^y = x$.

Definição de função logarítmica

Para a > 0 e $a \ne 1$,

a função logarítmica com base a representa-se por:

$$f: x \to y = \log_a x$$
,

sendo

$$\log_a x = y \Leftrightarrow a^y = x$$
.

Da definição conclui-se:

- O logaritmo de 1 em qualquer base é 0;
- Só é possível calcular o logaritmo de um número positivo.

Função exponencial e logarítmica de base maior que 1

Função exponencial

$$f: R \to R$$

 $x \to a^x$

- $D_f = R$
- $D_f' = R^+$
- f é injectiva
- f é contínua e derivável em R.
- $f(x) > 0, \forall x \in R$
- f é estritamente crescente

Função logarítmica

$$g: R^+ \to R$$
$$x \to \log_a x$$

- $D_g = R^+$
- $D'_{g} = R$
- $g(x)=0 \Leftrightarrow x=1$
- g é injectiva
- g é contínua e derivável em R⁺
- g é estritamente crescente

Função exponencial e logarítmica de base positiva e menor que 1

Função exponencial

$$f: R \to R$$

 $x \to a^x$

- $D_f = R$
- $D_f' = R^+$
- f é injectiva
- f é contínua e derivável em R
- $f(x) > 0, \forall x \in R$
- f é estritamente decrescente

Função logarítmica

 $g: R^+ \to R$ $x \to \log_a x$

- $D_g = R^+$
- $D_g' = R$
- $g(x) = 0 \Leftrightarrow x = 1$
- g é injectiva
- g é contínua e derivável em R⁺
- g é estritamente decrescente

Logaritmos de bases especiais

No cálculo com logaritmos há duas bases que são usadas com maior frequência: a base 10 (também designada como base comum) e a base e (também chamada base natural).

Estas bases são quase sempre suprimidas e a escrita normal é $\log_{10} x \rightarrow \log x$

 $\log_e x \rightarrow \ln x$

Assim,

$$\log 10 = 1 \rightarrow 10^1 = 10$$

$$\log 100 = 2 \rightarrow 10^2 = 100$$

$$\log 1000 = 3 \rightarrow 10^3 = 1000$$

$$\ln e = 1 \rightarrow e^1 = e$$

$$\ln e^2 = 2 \rightarrow e^2 = e^2$$

$$\ln \sqrt{e} = \frac{1}{2} \rightarrow e^{\frac{1}{2}} = \sqrt{e}$$

<u>Propriedades dos logaritmos</u>

Logaritmo do produto

$$\log_a(x \ y) = \log_a x + \log_a y$$

Logaritmo do quociente

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

Logaritmo da potência

$$\log_a(x^p) = p \log_a x$$

Mudança de Base

$$\log_a(x) = \frac{\ln x}{\ln a}$$

Equações e inequações com logaritmos

As funções logarítmicas são injetivas e, como tal, tem-se:

$$\log_a(x_1) = \log_a(x_2) \Leftrightarrow x_1 = x_2, \quad a > 0 \text{ e } a \neq 1$$

A função $f(x) = \log_a x é$

- crescente se a >1;
- decrescente se 0 < a < 1.

Atendendo a estas propriedades é possível resolver algumas condições envolvendo logaritmos.

Exemplo (Condições com logaritmos):

$$\log(x+1) - \log x = \log(2x)$$

Resolução:

O domínio é $D = \{x \in R : x+1 > 0 \land x > 0 \land 2x > 0\} =]0,+\infty[$.

Em D vamos, então, resolver a equação dada:

$$\log(x+1) - \log x = \log(2x) \Leftrightarrow \log \frac{x+1}{x} = \log(2x) \Leftrightarrow \frac{x+1}{x} = 2x \Leftrightarrow$$

$$\Leftrightarrow -2x^2 + x + 1 = 0 \land x \neq 0 \Leftrightarrow \left(x = -\frac{1}{2} \lor x = 1\right) \land x \neq 0$$

Em D só existe uma solução.

$$S = \{1\}$$

Derivada Função derivada

Introdução ao conceito de derivada:

Introdução ao conceito de derivada:

Quando h \rightarrow 0, a linha secante, definida pelos pontos de abcissas x_0 e x_0 + h, tende para uma posição limite que é a reta tangente à curva no ponto $(x_0, f(x_0))$.

O declive da reta tangente é dado por:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Definição de derivada de uma função num ponto:

Considere-se a função real de variável real y=f(x), definida no intervalo]a,b[, a \neq b e seja x_0 um ponto desse intervalo.

<u>Def.</u> Chama-se derivada da função f no ponto x_0 , ao $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$

quando existir. Esta derivada representa-se por:

$$f'(x_0)$$
 ou $\left(\frac{df}{dx}\right)_{x=x_0}$ ou $\left(D_f\right)_{x=x_0}$

Se h = x - x_0 , dizer que h tende para zero é o mesmo que dizer que x tende para x_0 e a expressão para f'(x_0) pode apresentar a seguinte forma:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Equação reduzida da reta tangente ao gráfico de uma função num ponto:

A derivada de uma função num ponto representa geometricamente o declive da reta tangente ao gráfico da função nesse ponto, ou seja, a tangente trigonométrica do ângulo positivo que a reta faz com o semieixo positivo dos xx.

Exemplo:

Dada a função real de variável real , definida por $f(x) = x^2 + 4x - 3$, determine a equação da reta tangente ao gráfico de f no ponto de abcissa 1.

Resolução:

$$f'(x) = 2x + 4$$

O declive da reta tangente ao gráfico de f no ponto de abcissa 1 é igual a:

$$f'(1) = \lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{x^2 + 4x - 3 - 2}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x + 5)}{x - 1} = \lim_{x \to 1} (x + 5) = 6$$

A equação da reta será do tipo: y = mx + b

Logo,
$$y = 6x + b$$

O ponto de coordenadas (1, f(1)) pertence ao gráfico da função f e à reta

tangente ao gráfico. Como $f(1) = 1^2 + 4 \times 1 - 3 = 2$

Então
$$2 = 6 \times 1 + b \Leftrightarrow b = -4$$

Assim a equação da reta tangente ao gráfico de f no ponto de abcissa 1 é:

Exemplo:

Considere a função $f: x \rightarrow y = x^2$

- **a)** Calcular, aplicando a definição, f'(1) e f'(3) e interpretar geometricamente os valores obtidos;
- **b)** Escrever a equação reduzida das retas tangentes ao gráfico de f nos pontos de abcissas 1 e 3.

Interpretação geométrica:

Definição: Função derivável/diferenciável

Uma função diz-se derivável (ou diferenciável) num ponto x_0 se tem nesse ponto derivada finita.

Quando é que uma função não é derivável num ponto?

Derivadas laterais

Derivadas laterais

Quando $a \in E \cap E'_+$, pode-se definir a **derivada à direita** da função f no ponto a como sendo o limite (caso exista):

$$f'_{+}(a) = \lim_{x \to a^{+}} \frac{f(x) - f(a)}{x - a}.$$

Da mesma forma, quando $a \in E \cap E'_{-}$, pode-se definir a **derivada** à esquerda da função f no ponto a como sendo o limite (caso exista):

$$f'_{-}(a) = \lim_{x \to a^{-}} \frac{f(x) - f(a)}{x - a}.$$

Nота

Quando a pertence ao domínio de f e é ponto de acumulação à direita e à esquerda, então f'(a) existe se e só se existem e são iguais as derivadas laterais $f'_{+}(a)$ e $f'_{-}(a)$.

Derivadas laterais

EXEMPLO

Considere a função

$$f(x) = \begin{cases} x^2 & , \text{ se } x \le 1 \\ -x + 2 & , \text{ se } x > 1 \end{cases}$$
 Será que existe derivada da função em $x = 1$?

Diferenciabilidade e continuidade

Observação

Uma função pode ser contínua num ponto onde não tenha derivada. A continuidade nem sequer garante a existência de derivadas laterais.

Teorema

Se f é diferenciável em a, então f é contínua em a.

Definição: Função derivada

Função derivada de uma função f ou derivada da função f é uma outra função:

- cujo domínio é o conjunto de todos os pontos em que f tem derivada finita;
- que a cada ponto do seu domínio faz corresponder a derivada da função nesse ponto.

Regras de derivação

$$(u+v)' = u'+v'$$

$$(u\cdot v)' = u'\cdot v + u\cdot v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'\cdot v - u\cdot v'}{v^2}$$

$$(u^n)' = n\cdot u^{n-1}\cdot u' \quad (n\in\mathbb{R})$$

$$(e^{u})' = u' \cdot e^{u}$$

$$(a^{u})' = u' \cdot a^{u} \cdot \ln a \qquad (a \in \mathbb{R}^{+} \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_{a} u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^{+} \setminus \{1\})$$

EXEMPLOS

Calcule a derivada das seguintes funções:

A)
$$f(x) = 1 - 2x$$
;

B)
$$g(x) = -x^4 + x^3 - 3x^2 + \frac{x}{2} + 5$$
;

c)
$$h(x) = (x^2 - 1)(7x^2 + \frac{3}{2});$$

D)
$$i(x) = \frac{x^3 + x^2 + 1}{x^4}$$
.

Regra de L'Hopital

Regra de L'Hopital

❖ Regra de L'Hopital

A regra de L'Hopital dá-nos uma grande ajuda no cálculo dos limites de uma função quando nos deparamos com

indeterminações do tipo:
$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{0}{0}$$
 ou $\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\infty}{\infty}$.

Nesses casos recorremos a diversos casos de factorização (por exemplo a regra de Ruffini) para levantar a indeterminação.

No entanto, a regra de L'Hopital permite-nos levantar estas indeterminações, de uma forma mais rápida, recorrendo às

Regra de L'Hopital

Regra de L'Hopital

Se $\lim_{x\to a} \frac{f(x)}{g(x)}$ tem uma forma indeterminada $\frac{0}{n}$ ou $\frac{\infty}{\infty}$, então:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

caso o limite $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exista (sendo finito ou infinito).

Exemplo: Calcular $\lim_{x\to 2} \frac{x^2-x-2}{3x^2-5x-2}$, aplicando à regra de L'Hopital.

$$\lim_{x \to 2} \frac{x^2 - x - 2}{3x^2 - 5x - 2} = \lim_{x \to 2} \frac{(x^2 - x - 2)'}{(3x^2 - 5x - 2)'} = \lim_{x \to 2} \frac{2x - 1}{6x - 5} = \frac{2 \times 2 - 1}{6 \times 2 - 5} = \frac{3}{7}$$

<u>Funções estritamente crescentes e funções estritamente decrescentes</u>

Seja f uma função real de variável real definida num intervalo E, e sejam a e b números de E.

• f é estritamente crescente em E quando para todos os números reais a e b de E,

se
$$a < b$$
, então $f(a) < f(b)$

 f é estritamente decrescente em E quando para todos os números reais a e b de E,

se
$$a < b$$
, então $f(a) > f(b)$

• f é constante em E quando para todos os números reais a e b de E,

$$f(a) = f(b)$$

Extremos de uma função

Considere-se a representação gráfica da função f:

- f(d) é um máximo absoluto de f.
- f(e) é um mínimo absoluto de f.
- f(b) é um máximo relativo de f.
- f(c) e f(a) são mínimos relativos de f.

<u>Intervalos de monotonia e primeira derivada de uma função:</u>

Teorema

Seja f uma função contínua em [a,b] e derivável em [a,b].

- Se f'(x) > 0 para todo $x \in [a, b[$, então f é estritamente crescente em [a, b].
- Se f'(x) < 0 para todo $x \in [a, b[$, então f é estritamente decrescente em [a, b].

Máximos e mínimos absolutos e primeira derivada da função:

Teorema

Se uma função f é contínua em [a,b] e tem um máximo ou um mínimo em c do intervalo [a,b[, então f'(c)=0 ou f'(c) não existe.

Definição

Um número c do domínio de uma função f é um número crítico de f se f'(c)=0 ou f'(c) não existe.

Máximos e mínimos absolutos e primeira derivada da função:

Seja c um ponto crítico de f, e suponha-se que f é contínua em c e derivável num intervalo aberto E contendo c, com a possível excepção de poder não ser diferenciável em c.

- Se f' muda de positiva para negativa em c, então f(c) é um máximo relativo.
- Se f' muda de negativa para positiva em c, então f(c) é um mínimo relativo.
- Se f'(x) > 0 ou f'(x) < 0 para todo o x do intervalo E excepto para x = c, então f(c) não é um extremo relativo de f.

Exemplo:

Determinar os extremos relativos da seguinte função: $f(x)=x^2-1$

