

Case of Study of a Distributed Machine Learning Pipeline

Supervisor Prof. Massimo Callisto De Donato

Students Luca Bianchi Michele Martini Angelica Berdini

Aim and Objectives

The aim of the project is to study different ML libraries and how they work in a distributed environment.

Creating a distributed environment with Docker

Study different approaches

Extract meaningful insight

Non-distributed Pipeline

Distributed Pipeline

Performance: PySparkML vs Scikit-learn

Pyspark generally works better as the dataset volume increases

https://medium.co m/geekculture/whe n-should-you-use-p yspark-over-scikit-le arn-b10b91e41252

kaggle

Yelp Dataset on Kaggle

The Yelp **dataset** is a rich collection of real-world data encompassing information on businesses, **reviews**, user interactions, pictures, tips, business attributes, and aggregated check-ins from multiple metropolitan areas.

Project architecture

Sentiment analysis

PySpark ML

Bert-sentiment

To train	Pre-trained
Results depends on stars and text	Results depends only on text
Low accuracy depending on low reliability	High accuracy

User reliability

User reliability is calculated for each user by comparing the sentiment and the stars.

Review reliability

Review reliability is calculated for each review with a simple formula. First we calculate prediction score

Review reliability

Conclusions

Research

- Distributed environments as a future development for data science
- PySpark can already outperform standard Data Science technologies on certain scenarios

Conclusions

Study Case

- Reliability played a fundamental role in the trained model
- Complete distributed machine learning pipeline

Conclusions

CONS

- Still new technology and needs many updates
- Cluster execution needs heavy performance

Further Works

- Improve reliability system considering "sentence-distance" approaches
- Leverage on cloud services to have a lighter execution
- Improve Recommendation System using more sophisticated algorithms and approaches

Thanks For the attention