ALPhA Summer Week 4 Presentation

BRADEN KRONHEIM
JUNE 24, 2019

Summary

- Ran gradient ascent over all input parameters
- Froze higgsino and wino mass parameters and ran gradient ascent
 - ▶ This didn't really work, so I ran a more global optimization method
- Found approximate top calculation speed
 - ▶ 112,000 points a second on GPU using batches of 5 million points
 - ▶ 112,000 points would take around 7.7 days on the cluster running SUSY-HIT and Prospino
- Measured impact of changes in an individual parameter by incrementing it and using a collection of random values for the other parameters
 - ▶ Higgsino and wino set to 1.0 when not be varied to dilute their impact
- Added a feature to the BNN code which trains a normal neural network first and then extracts its weights
 - Best performance came from using Nadam or AMSgrad with several training cycles with decreasing learning rate

Maximization

Bino mass parameter Maximum cross sections

Minimum cross sections

Network Error

Wino mass parameter Maximum cross sections

Minimum cross sections

Network Error

Gluino mass parameter Maximum cross sections

Atop trilinear coupling Maximum cross sections

Minimum cross sections

Network Error

trilinear coupling Maximum cross sections bottom

Atau trilinear coupling Maximum cross sections

Minimum cross sections

Network Error

Cross section spread

Higgsino mass parameter Maximum cross sections Ne

Cross section spread

Tan beta

Maximum cross sections

Minimum cross sections

Pseudoscalar Higgs boson mass

Maximum cross sections

Minimum cross sections

Network Error

Cross section spread

M_el

Maximum cross sections

Minimum cross sections

Cross section spread

M_tauL

Maximum cross sections

Minimum cross sections

Network Error

M_eR

Maximum cross sections

Minimum cross sections

Network Error

Parameter 11

M_tauR

Maximum cross sections

Minimum cross sections

Network Error

M_q1L

Maximum cross sections

Minimum cross sections

Network Error

Cross section spread

M_q3L

Maximum cross sections

Minimum cross sections

Network Error

M_uR

Maximum cross sections

Minimum cross sections

Cross section spread

M_tR

Maximum cross sections

Minimum cross sections

Network Error

M_dR

Maximum cross sections

Minimum cross sections

Network Error

M_bR

Maximum cross sections

Minimum cross sections

Network Error

Network

5 Deep 50 Wide, pretrained with Nadam optimizer with Ir=1e-2, 1e-3, 1e-4, 1e-5, and 1e-6 1e-7 Train % Error 6.73% Validation % Error 7.38% Train % inside 3 SD 95.7% Validation% inside 3 SD 95.4% Test % inside 3 SD 95.6%

Just slightly higher at 9, gives 66 networks

Min at increment of 1, giving 600 networks

Goals for next week

- Figure out how to generate actual masses of particles given parameters using SUSPECT
- Research known parameter constraints
- Make graphs of one parameter against another
- Look at paper which goes the other direction