

home / study / engineering / mechanical engineering / machine design / machine design solutions manuals / shigley's mechanical engineering design / 10th edition / chapter 13 / problem 36p

Shigley's Mechanical Engineering Design (10th Edition)

Find me a tutor

Step 3 of 20

Let
$$\frac{N_2}{N_3} = \frac{N_4}{N_5}$$

Substitute $\frac{N_2}{N_3}$ for $\frac{N_4}{N_5}$ in equation (2).

$$\frac{N_2}{N_3} \frac{N_4}{N_5} = \frac{1}{8.333}$$

$$\frac{N_2}{N_3} \left(\frac{N_2}{N_3} \right) = \frac{1}{8.333} \dots (3)$$

$$\left(\frac{N_2}{N_3}\right)^2 = \frac{1}{8.333}$$

$$\frac{N_2}{N_2} = \frac{1}{2.887}$$

Comment

Step 4 of 20

Calculate the minimum number of teeth on smallest gear to avoid interference.

$$N_p \ge \frac{2k}{\left(1+2m\right)\sin^2\phi} \left(m + \sqrt{m^2 + \left(1+2m\right)\sin^2\phi}\right)$$

Here, the gear ratio is m, the constant is k and the pressure angle is ϕ .

Substitute 1 for k (full depth teeth), 2.887 for m, and 20° for ϕ .

$$N_{p} \ge \frac{2(1)}{(1+2(2.887))\sin^{2}(20^{\circ})} \left(2.887 + \sqrt{2.887^{2} + (1+2(2.887))\sin^{2}(20^{\circ})}\right)$$
>14.9

Number of teeth should be an integer value. Therefore, consider the nearest integer.

$$N_p = 15$$

Let,

$$N_2 = 15$$

$$N_4 = 15$$

Substitute 15 for N_2 in equation (3).

$$\frac{N_2}{N_3} = \frac{1}{2.887}$$

$$\frac{15}{N_3} = \frac{1}{2.887}$$

$$N_3 = 2.887(15)$$

=43.31 teeth

Comment

Step 5 of 20

Try,

 $N_3 = 43$ teeth

 $N_5 = 43 \text{ teeth}$

Substitute 2500 rev/min for ω_i , 15 teeth for N_2, N_4 , and 43 teeth for N_3, N_5 in equation (1).

Chegg Study Textbook Solutions Expert Q&A Practice NEW!

Search

=304.2 rev/min

Since, the output speed is not in the specified range.

So now try,

 $N_3 = 44 \text{ teeth}$

 $N_5 = 44 \text{ teeth}$

Substitute 2500 rev/min for ω_i , 15 teeth for N_2, N_4 , and 44 teeth for N_3, N_5 in equation (1).

$$\frac{\omega_o}{\omega_c} = \frac{N_2}{N_2} \frac{N_2}{N_2}$$

$$\omega_o = \left(\frac{15}{44}\right) \left(\frac{15}{44}\right) \left(2500\right)$$

 $= 290.55 \, \text{rev/min}$

Therefore, the out speed is within range for N_2, N_4 with 15 teeth and N_3, N_5 with 44 teeth.

Comment

Step 6 of 20

Calculate the pitch diameter for gear 2 using the following equation:

$$d_2 = \frac{N_2}{P}$$

Here, the diametric pitch is $\ P$.

Substitute 15 teeth for N_2 and 6 teeth/in for P .

$$d_2 = \frac{15}{6}$$

$$= 2.5 in$$

Therefore, the pitch diameter for gear 2 is 2.5 in

Comment

Step 7 of 20

Calculate the pitch diameter for gear 4 using the following equation:

$$d_4 = \frac{N_4}{P}$$

Substitute 15 teeth for $N_{\rm 4}$ and 6 teeth/in for P .

$$d_4 = \frac{15}{6}$$

Therefore, the pitch diameter for gear 4 is 2.5 in

Comment

Step 8 of 20

Calculate the pitch diameter for gear 3 using the following equation:

$$d_3 = \frac{N_3}{P}$$

Substitute 44 teeth for N_3 and 6 teeth/in for P.

Therefore, the pitch diameter for gear 3 is 7.33 in

Comment

Step 9 of 20

Calculate the pitch diameter for gear 5 using the following equation:

$$d_5 = \frac{N_5}{p}$$

Substitute 44 teeth for N_s and 6 teeth/in for P.

$$d_5 = \frac{44}{6}$$
$$= 7.33 \text{ in}$$

Therefore, the pitch diameter for 5 is 7.33 in

Comment

Step 10 of 20

(b)

Calculate the pitch line velocities for the gear set 2,3 using the following equation:

$$V_i = \frac{\pi d_2 n_2}{12}$$

Here, the rotational speed of gear 2 is n_2 .

Substitute 2.5 in for d_2 and 2500 rev/min for n_2 .

$$V_i = \frac{\pi (2.5)(2500)}{12}$$

= 1636 ft/min

Therefore, the pitch line velocity for the gear set 2,3 is 1636 ft/min

Comment

Step 11 of 20

Calculate the following relation for the mating gears 2-3.

$$n_3 = \frac{N_2}{N_3} (n_2)$$

Since gears 3 and 4 lie on the same shaft. So, the rotational speeds of gears 3 and 4 are same.

$$n_4 = n_3$$

$$n_4 = \frac{N_2}{N_3} (n_2)$$

Substitute 15 teeth for N_2 , 44 teeth for N_3 , and 2500 rev/min for n_2

$$n_4 = \frac{15}{44} (2500)$$

= 852.27 rev/min

Comment

Search

Calculate the pitch line velocities for the gear set 4,5 using the following equation:

$$V_o = \frac{\pi d_4 n_4}{12}$$

Substitute $2.5 \, \mathrm{in} \, \mathrm{for} \, d_4$ and $852.27 \, \mathrm{rev/min} \, \mathrm{for} \, n_4$.

$$V_o = \frac{\pi (2.5)(852.27)}{12}$$

= 557.8 ft/min

Therefore, the pitch line velocity for the gear set 4,5 is 557.8 ft/min

Comment

Step 13 of 20

(c)

Input gears:

Calculate the tangential force transmitted by the input gears using the following relation:

$$W_{ii} = 33000 \frac{H}{V_i}$$

Here, the power transmitted is H.

Substitute 25 hp for H and 1636 ft/min for V_i .

$$W_{ii} = 33000 \frac{(25)}{1636}$$
$$= 504.3 \, \text{lbf}$$

Therefore, the tangential force transmitted by input gears is 504.3 lbf

Comment

Step 14 of 20

Calculate the radial force transmitted by the input gears using the following relation:

$$W_{ri} = W_{ti} \tan \phi$$

Substitute 504.3 lbf for W_{ii} and 20° for ϕ

$$W_{ri} = 504.3 \tan(20^\circ)$$

= 184 lbf

Therefore, the radial force transmitted by input gears is 1841bf

Comment

Step 15 of 20

Calculate the total force transmitted by the input gears using the following relation:

$$W_i = \frac{W_{ii}}{\cos \phi}$$

Substitute 504.3 lbf for W_{ii} and 20° for ϕ

$$W_i = \frac{504.3}{\cos(20^\circ)}$$

Therefore, the total force transmitted by input gears is 537 lbf

Search

Step 16 of 20

Output gears:

Calculate the tangential force transmitted by the output gears using the following relation:

$$W_{to} = 33000 \frac{H}{V_o}$$

Substitute 25 hp for H and 558 ft/min for V_a .

$$W_{to} = 33000 \frac{(25)}{558}$$

Therefore, the tangential force transmitted by output gears is 1478 lbf

Comment

Step 17 of 20

Calculate the radial force transmitted by the output gears using the following relation:

$$W_{ro} = W_{to} \tan \phi$$

Substitute 14781bf for W_{10} and 20° for ϕ .

$$W_{ro} = 1478 \tan \left(20^{\circ}\right)$$

=538 lbf

Therefore, the radial force transmitted by output gears is 538 lbf

Comment

Step 18 of 20

Calculate the total force transmitted by the output gears using the following relation:

$$W_o = \frac{W_{to}}{\cos \phi}$$

Substitute 14781bf for W_{to} and 20° for ϕ .

$$W_i = \frac{1478}{\cos(20^\circ)}$$

Therefore, the total force transmitted by output gears is 1573 lbf

Comment

Step 19 of 20

Calculate the input torque using the following relation:

$$T_i = W_{ii} \left(\frac{d_2}{2} \right)$$

Substitute 504.3 lbf for W_{ii} and 2.5 in for d_2 .

$$T_i = 504.3 \left(\frac{2.5}{2}\right)$$

 $=630 \, lbf \cdot in$

Recommended solutions for you in Chapter 13

Chapter 13, Problem 38P

For the countershaft in Prob. 3?72, p. 138, assume the gear ratio from gear B to its mating gearis 2 to 1.(a) Determine the minimum number of teeth that can be used on gear B without an interference problem in the teeth.(b) Using the number of...

See solution

Chapter 13, Problem 7P

A parallel helical gearset consists of a 19-tooth pinion driving a 57-tooth gear. The pinion has a lefthand helix angle of 30°, a normal pressure angle of 20°, and a normal module of 2.5 mm. Find:(a) The normal, transversa and axial circular...

See solution

ABOUT CHEGG

LEGAL & POLICIES

CHEGG PRODUCTS AND SERVICES