Supervised Learning of Behaviors

CS 294-112: Deep Reinforcement Learning
Sergey Levine

Class Notes

- 1. Make sure you sign up for Piazza!
- 2. Homework 1 is now out
 - Milestone due soon good way to check your TensorFlow knowledge
- 3. Remember to start forming final project groups
- 4. Waitlist

Today's Lecture

- 1. Definition of sequential decision problems
- 2. Imitation learning: supervised learning for decision making
 - a. Does direct imitation work?
 - b. How can we make it work more often?
- 3. Case studies of recent work in (deep) imitation learning
- 4. What is missing from imitation learning?
- Goals:
 - Understand definitions & notation
 - Understand basic imitation learning algorithms
 - Understand their strengths & weaknesses

Terminology & notation

 \mathbf{o}_t – observation

Terminology & notation

Aside: notation

 \mathbf{s}_t – state

 \mathbf{a}_t – action

Richard Bellman

 \mathbf{x}_t – state

 \mathbf{u}_t – action управление

Lev Pontryagin

Imitation Learning

Images: Bojarski et al. '16, NVIDIA

Does it work?

No!

Does it work?

Yes!

Video: Bojarski et al. '16, NVIDIA

Why did that work?

Can we make it work more often?

Learning from a stabilizing controller

 $p(s_1)$, a Gaussian distribution obtained using variant of iterative LQR test terrain 1 learned policy (more on this later)

Can we make it work more often?

Can we make it work more often?

```
can we make p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)?
idea: instead of being clever about p_{\pi_{\theta}}(\mathbf{o}_t), be clever about p_{\text{data}}(\mathbf{o}_t)!
```

DAgger: **D**ataset **A**ggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ but need labels \mathbf{a}_t !

- ⇒ 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
 - 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
 - 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger Example

What's the problem?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = {\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Can we make it work without more data?

- DAgger addresses the problem of distributional "drift"
- What if our model is so good that it doesn't drift?
- Need to mimic expert behavior very accurately
- But don't overfit!

- 1. Non-Markovian behavior
- Multimodal behavior

$$\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_t)$$
 $\pi_{ heta}(\mathbf{a}_t|\mathbf{o}_1,...,\mathbf{o}_t)$ behavior depends only on current observation all past observations

If we see the same thing twice, we do the same thing twice, regardless of what happened before

Often very unnatural for human demonstrators

How can we use the whole history?

variable number of frames, too many weights

How can we use the whole history?

1. Non-Markovian behavior

2. Multimodal behavior

when using continous states - the gaussian distribution would lead to a crash because the agent would drive forward

- Output mixture of Gaussians
- 2. Implicit density model
- 3. Autoregressive discretization

- 1. Output mixture of Gaussians
- 2. Implicit density model
- 3. Autoregressive discretization

1. Output mixture of Gaussians

2. Implicit density model

3. Autoregressive discretization

use noise in the model
- models are a lot harder to train

- Output mixture of Gaussians
- 2. Implicit density model
- 3. Autoregressive discretization

Imitation learning: recap

- Often (but not always) insufficient by itself
 - Distribution mismatch problem
- Sometimes works well
 - Hacks (e.g. left/right images)
 - Samples from a stable trajectory distribution
 - Add more **on-policy** data, e.g. using Dagger
 - Better models that fit more accurately

Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹

Case study 2: DAgger & domain adaptation

Learning Transferable Policies for Monocular Reactive MAV Control

Shreyansh Daftry, J. Andrew Bagnell, and Martial Hebert

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA {daftry,dbagnell,hebert}@ri.cmu.edu

1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$

2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$

3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Fig. 2. Experiments and Results for (Row-1) Transfer across physical systems from ARDrone to ArduCopter, (Row-2) Transfer across weather conditions from summer to winter and (Row-3) Transfer across environments from Univ. of Zurich to CMU.

Case study 3: Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh¹, Pooya Abolghasemi¹, Aman Behal² and Ladislau Bölöni¹

Learning Manipulation Trajectories Using Recurrent Neural Networks

Controller	Pick and place	Push to pose	
Feedfoward-MSE	0%	0%	
LSTM-MSE	85%	0%	
Feedforward-MDN	95%	15%	
LSTM-MDN	100%	95%	

Environment	Pick and place	Push to pose	
Virtual world	100%	95%	
Physical world	80%	60%	

Follow-up: adding vision

Vision-Based Multi-Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demonstration

Other topics in imitation learning

Structured prediction

x: where are you y: I'm at work

- See Mohammad Norouzi's lecture in November!
- Interaction & active learning
- Inverse reinforcement learning
 - Instead of copying the demonstration, figure out the goal
 - Will be covered later in this course

Imitation learning: what's the problem?

- Humans need to provide data, which is typically finite
 - Deep learning works best when data is plentiful
- Humans are not good at providing some kinds of actions

- Humans can learn autonomously; can our machines do the same?
 - Unlimited data from own experience
 - Continuous self-improvement

Next time: learning without humans

Terminology & notation

$$\min_{\mathbf{a}_1,...,\mathbf{a}_T} \underbrace{\sum_{t=1}^T}_{t=1} p(\mathbf{s}_t, \mathbf{a}_t) \text{ byttiger} \mathbf{a}_t f(\mathbf{s}_t, \mathbf{a}_t, \mathbf{a}_t)$$

Aside: notation

 \mathbf{s}_t - state \mathbf{a}_t - action $r(\mathbf{s}, \mathbf{a})$ - reward function

Richard Bellman

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

 \mathbf{x}_t — state \mathbf{u}_t — action — управление $c(\mathbf{x},\mathbf{u})$ — cost function

Lev Pontryagin

Cost/reward functions in theory and practice

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if object at target} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = -w_1 \|p_{\text{gripper}}(\mathbf{s}) - p_{\text{object}}(\mathbf{s})\|^2 +$$
$$-w_2 \|p_{\text{object}}(\mathbf{s}) - p_{\text{target}}(\mathbf{s})\|^2 +$$
$$-w_3 \|\mathbf{a}\|^2$$

$$r(\mathbf{s}, \mathbf{a}) = \begin{cases} 1 \text{ if walker is running} \\ 0 \text{ otherwise} \end{cases}$$

$$r(\mathbf{s}, \mathbf{a}) = w_1 v(\mathbf{s}) +$$

$$w_2 \delta(|\theta_{\text{torso}}(\mathbf{s})| < \epsilon) +$$

$$w_3 \delta(h_{\text{torso}}(\mathbf{s}) \ge h)$$

A cost function for imitation?

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

The trouble with cost & reward functions

reinforcement learning agent

what is the reward?

Sim-to-Real Robot Learning from Pixels with Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, Raia Hadsell

> Google DeepMind London, UK

{andreirusu, matejvecerik, tcr, heess, razp, raia}@google.com

More on this later...

Rewards are given automatically by tracking the colored target

A note about terminology... the "R" word

a bit of history...

reinforcement learning (the **problem** statement)

$$\max \sum_{t=1}^{T} E[r(\mathbf{s}_t, \mathbf{a}_t)] \quad \mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$$

reinforcement learning (the **method**)

without using the **model**

$$\mathbf{s}_{t+1} \sim p(\mathbf{s}_{t+1}|\mathbf{s}_t,\mathbf{a}_t)$$

Lev Pontryagin

Richard Bellman

Andrew Barto

Richard Sutton