PHYSICS 2APHY and 2BPHY

Formulae and constants sheet

Physics 2A/2B: Formulae and constants sheet

Forces and motion

Mean velocity $v_{av} = \frac{s}{t} = \frac{v + u}{2}$

Equations of motion $a = \frac{\Delta v}{\Delta t} \; ; \quad s = ut + \tfrac{1}{2}at^2 \; ; \quad v^2 = u^2 + 2as \; ; \quad v = u + at$

Force F = ma

Weight force F = mg

 $\label{eq:momentum} \text{Momentum} \qquad \qquad p = mv$

Change in momentum (impulse) $F\Delta t = mv - mu$

Kinetic energy $E_k = \frac{1}{2}mv^2$

Gravitational potential energy $E_p = mgh$

Work done $W = Fs = \Delta E$

Power $P = \frac{W}{t} = \frac{\Delta E}{t} = Fv_{av}$

Particles

Energy of photon E = hf

Activity $A = \frac{\Delta N}{\Delta t}$

Half-life $A = A_0 \left(\frac{1}{2} \right)^n$

Absorbed radiation dose absorbed dose = $\frac{E}{m}$

Dose equivalent dose equivalent = absorbed dose x quality factor

Mass-energy relationship $E = mc^2$

Change of temperature $Q = mc\Delta T$

Change of state Q = mL

Absolute zero of temperature $0 \text{ K} = -273 \,^{\circ}\text{C}$

Electricity and magnetism

Electric field

Electric current $I = \frac{q}{t} \label{eq:I}$

 $E = \frac{F}{q} = \frac{V}{d}$

Work and energy W = qV = VIt

Ohm's law V = IR

Resistances in series $R_T = R_1 + R_2 + ...$

Resistances in parallel $\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Power $P=VI=I^2R=\frac{V^2}{R}$

Physical constants

Speed of light in vacuum or airc	$= 3.00 \times 10^8 \mathrm{m s^{-1}}$
Electron charge e	$= -1.60 \times 10^{-19} \mathrm{C}$
Electron volt1 eV	$= 1.60 \times 10^{-19} \text{ J}$
Unified atomic mass unit1 u	$= 1.66 \times 10^{-27} \text{ kg}$
Mass of electronm _e	$= 9.11 \times 10^{-31} \text{ kg}$
Mass of protonm _p	$= 1.67 \times 10^{-27} \text{ kg}$
Mass of neutronm _n	$= 1.68 \times 10^{-27} \text{ kg}$
Mass of alpha m_{α}	$= 6.65 \times 10^{-27} \text{ kg}$
Mass-energy equivalent1 u	= 931 MeV
Tonne1 tonn	$e = 10^3 \text{ kg} = 10^6 \text{ g}$

Physical data

Mean acceleration due to gravity on Earth $g = 9.80 \text{ m s}^{-2}$

Quality factors

Approximate quality factor for alpha radiation...... $QF_{\alpha}=20$ Approximate quality factor for beta radiation $QF_{\beta}=1$ Approximate quality factor for gamma radiation..... $QF_{\gamma}=1$ Approximate quality factor for slow neutrons $QF_{sn}=3$ Approximate quality factor for fast neutrons $QF_{fn}=10$

Prefixes of the metric system

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ¹²	tera	T	10 ⁻³	milli	m
10^{9}	giga	G	10^{-6}	micro	μ
10^{6}	mega	M	10 ⁻⁹	nano	n
10^3	kilo	k	10^{-12}	pico	p

Mathematical expressions

Given
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

The following expressions apply to the triangle ABC as shown:

The following expressions apply to the right-angled triangle ABC as shown:

Electromagnetic spectrum

Note: 1. Shaded areas represent regions of overlap.

2. Gamma rays and X-rays occupy a common region.