Posloupnosti

Posloupnost je zobrazení (funkce) definované na množině přirozených čísel \mathbb{N} . Obvykle posloupnosti zapisujeme jako $\{a_n\}$, čímž myslíme uspořádanou nekonečnou množinu $\{a_1, a_2, a_3, ...\}$, kterou někdy také zapisujeme $\{a_n\}_{n=1}^{\infty}$. V případě nutnosti začít nultým členem je pak posloupnost $\{a_0, a_1, a_2, a_3, ...\}$ s definičním oborem $\mathbb{N}_0 \equiv \mathbb{N} \cup \{0\}$. Rozdíl mezi množinou a posloupností je ten, že v množině nám nezáleží na pořadí, v posloupnosti na něm záleží, a navíc se prvky mohou v posloupnosti opakovat, což v množině nemohou.

Řadu pojmů, které jsme zavedli u funkcí, lze přenést také na posloupnosti. Posloupnosti mohou být přirozeně rostoucí, nerostoucí, klesající, neklesající, nebo také omezené a neomezené. Uvedeme si příklady tří základních posloupností.

- a) Konstantní posloupnost je posloupnost $\{a, a, a, ..., a, ...\}$, kde $a \in \mathbb{R}$.
- b) **Aritmetická** posloupnost s diferencí d a počátečním členem a_0 je posloupnost definovaná rekurentně $a_{n+1} = a_n + d$, nebo také $a_n = a_0 + n \cdot d$. Pro $a_0 = 3$ a d = 2 je

$${a, a+d, a+2d, a+3d, a+4d, ...} = {3, 5, 7, 9, 11, ...}.$$

Pro d>0 je posloupnost rostoucí a neomezené, pro d<0 je posloupnost klesající a neomezená, pro d=0 je posloupnost konstantní. Součet prvních n členů posloupnosti lze určit pomocí vzorce

$$s_n = \frac{n \cdot (a_0 + a_{n-1})}{2}.$$

c) Geometrická posloupnost s počátečním členem $a_0 = a$ a kvocientem q je definovaná rekurentně $a_{n+1} = a_n \cdot q$, nebo také $a_n = a \cdot q^n$. Například pro $a_0 = 3$ a pro q = 2 je

$$\{a,aq,aq^2,aq^3,aq^4,\ldots\}=\{3,6,12,24,48,\ldots\}.$$

Pokud a > 0, pak podle hodnoty q rozlišujeme šest případů:

q > 1 - posloupnost roste do nekonečna,

q = 1 - posloupnost je konstantní,

0 < q < 1 - posloupnost klesá k nule,

-1 < q < 0 - členy a_n oscilují kolem nuly, k níž se zároveň přibližují,

q = -1 - posloupnost osciluje, tj. $\{a, -a, a, -a, ...\}$

q < -1 - posloupnost osciluje do $\pm \infty$.

Pro případ a<0 je situace analogická. Součet prvních n členů geometrické řady lze určit vzorcem

$$s_n = a_0 \cdot \frac{1 - q^n}{1 - q},$$

a součet celé řady lze určit vzorcem

$$s = \frac{a_0}{1 - q}.$$

Limita a spojitost

Limita posloupnosti

Posloupnost definovanou na množině přirozených zapisujeme jako $\{a_n\}_{n=1}^{\infty}$, kde n-tý člen zapisujeme jako a_n . Pokud se hodnoty a_n při rostoucím n přibližují k nějaké hodnotě A, pak A je limitou této posloupnosti. Definici limity posloupnosti zapíšeme formálně následujícím způsobem.

Limita posloupnosti

Řekneme, že číslo A je limitou posloupnosti $\{a_n\}$, což zapisujeme $\lim_{n\to\infty} A$, jestliže

Pro každé kladné ϵ existuje přirozené n_0 , že pro každé $n > n_0$ platí $|a_n - A| < \epsilon$.

Tato definice v podstatě říká, že pokud všechny další členy od určitého člene posloupnosti a_n jsou od čísla A vzdáleny o méně než ϵ , pak je A limitou této posloupnosti, nebo také limita konverguje k číslu A. Význam definice dobře ilustruje následující obrázek.

Obrázek 1: Číslo A je limitou posloupnosti $\{a_n\}$, pokud pro každé $n > n_0$ je rozdíl $|a_n - A|$ menší než libovolně malé ϵ .

Naproti tomu, jestliže hodnoty a_n rostou "nade všechny meze", pak limita diverguje a je rovna nekonečnu.

Důležité vlastnosti limit posloupnosti

- a) Limita posloupnosti je určena jednoznačně.
- b) Nechť $\{a_n\}$ je konvergentní posloupnost s limitou A. Potom každá vybraná podposloupnost $\{a_{n_k}\}\subset\{a_n\}$ je také konvergentní a má stejnou limitu A.

Nevlastní limity posloupnosti

Řekneme, že limitou posloupnosti $\{a_n\}$ je nekonečno, jestliže:

Pro každé kladné K existuje přirozené n_0 , že pro každé $n > n_0$ platí $a_n > K$.

Analogicky je limitou posloupnosti $\{a_n\}$ minus nekonečno, jestliže:

Pro každé kladné K existuje přirozené n_0 , že pro každé $n > n_0$ platí $a_n < -K$.

Je důležité si uvědomit fakt, že každá neklesající posloupnost $\{a_n\}$ má limitu. Buď je shora omezená a má nějakou konečnou limitu A, nebo je neomezená a má limitu rovnu nekonečnu. Analogicky pro nerostoucí posloupnost.

Limita funkce

V historii matematici pracovali se spojitými funkcemi. Postupem času se ale ukázalo, že existují i funkce nespojité, a proto bylo potřeba se zabývat definicí funkce spojité. V následující části se budeme věnovat limitám a spojitosti funkce, protože ne všechny funkce jsou "hezké", tedy spojité. Pro ilustraci na následujícím obrázku jsou uvedeny příklady funkce spojité a funkcí nespojitých.

Obrázek 2: Příklady funkce spojité a funkcí nespojitých.

Limita funkce - epsilon-delta definice

Nechť f(x) je funkce definovaná v nějakém okolí bodu x_0 (v tomto bodě funkce nemusí být definována), například tedy na množině $M = (x_0 - \Delta, x_0 + \Delta) \setminus \{x_0\}$ pro nějaké $\Delta > 0$.

Řekneme, že funkce f(x) má v bodě x_0 limitu A, pokud pro každé $\epsilon > 0$ existuje $\delta > 0$ tak, že pro každé $x \in M$ splňující $0 < |x - x_0| < \delta$ platí $|f(x) - A| < \epsilon$. Limitu funkce f(x) v bodě x_0 rovnu číslu A zapisujeme

$$\lim_{x \to x_0} f(x) = A.$$

Řekneme, že funkce f(x) má v bodě x_0 limitu, pokud existuje číslo A tak, že $\lim_{x\to x_0} f(x) = A$.

Číslo δ závisí na volbě ϵ . Obvykle čím menší vezmeme ϵ , tím menší je nutno vzít δ , které může být libovolně malé, ale stále kladné. Číslo ϵ tedy vyjadřuje "přesnost" a číslo δ udává v jaké vzdálenosti δ od bodu x_0 je tato přesnost dosažena, tj. chyba |f(x) - A| je menší, než požadovaná přesnost ϵ . Pro libovolně malé kladné ϵ existuje dostatečně malé kladné δ . Definice tak zaručuje "nekonečnou" přesnost.

Pro menší a menší ϵ dostáváme menší a menší δ , což zmenšuje červený obdélník a přibližuje nás to k bodu x_0 .

Obrázek 3: Hodnoty f(x) z δ -okolí x_0 musí ležet v ϵ -okolí bodu A.

Okolí bodu

Otevřený interval I = (l, p) nazveme okolím bodu x_0 , pokud x_0 je vnitřním bodem intervalu I, tj. pokud $l < x_0 < p$. Speciálně pak pro r > 0 interval $(x_0 - r, x_0 + r)$ nazveme r-okolí bodu x_0 .

Množinu všech okolí bodu x_0 budeme označovat $\mathcal{O}(x_0)$.

Pro úplnost zavedeme ještě levé a pravé okolí, která budou potřeba později.

Pro každé $(l < x_0 < p)$ je interval (l, x_0) levým okolí a $\langle x_0, p \rangle$ pravým okolí bodu x_0

V definici limity potřebujeme ryzí okolí bodu x_0 , tj. okolí bodu bez bodu x_0 . Dříve uvedený výraz "pro každé $\epsilon > 0$ " lze nahradit výrazem "pro každé okolí bodu x_0 ". Podobně "existuje $\delta > 0$ " lze nahradit "existuje okolí limity A".

Obrázek 4: Okolí bodu x_0 .

Limita funkce pomocí okolí

Necht f(x) je funkce definovaná na nějakém ryzím okolí bodu x_0 . Řekneme, že funkce f(x) má v bodě x_0 limitu rovnu A, jestliže

Pro každé okolí U bodu A existuje okolí V bodu x_0 , že každé $x \in V \setminus \{x_0\}$, splňuje $f(x) \in U$.

Jednoznačnost - Limita, pokud existuje, je určena jednoznačně. Funkce spojitá

Řekneme, že funkce f(x) je spojitá v bodě x_0 , jestliže platí následující tři podmínky.

- a) funkce f(x) je definovaná v nějakém okolí bodu x_0 ,
- b) existuje limita funkce f(x) v bodě x_0 , tj. existuje $\lim_{x\to x_0} f(x)$
- c) a tato limita se rovná funkční hodnotě, tj. $\lim_{x \to x_0} f(x) = f(x_0)$.

Dále řekneme, že funkce f(x) je spojitá v otevřeném intervalu I, jestliže je spojitá v každém bodě tohoto intervalu.

Obrázek 5: Hodnoty f z okolí V leží v okolí U.

Jednou z otázek zůstává jak poznat, zda funkce má či nemá limitu v bodě, v němž není definována. V takovém případě nám pomůžou limity zprava a zleva. Pokud se limita zprava rovná limitě zleva, funkce v bodě x_0 limitu má. Pokud si limity rovny nejsou, funkce limitu v bodě x_0 nemá. Příkladem je například funkce $\frac{1}{x}$, která v bodě $x_0 = 0$ limitu nemá, ale naproti tomu funkce $\frac{1}{x^2}$ limitu v bodě $x_0 = 0$ má.

Jednostranné limity a spojitost

Pojmy limita a spojitost rozšíříme na případy, kdy je funkce definovaná pouze v pravém či levém ryzím okolí bodu x_0 , abychom mohli mluvit o spojitosti funkce na uzavřeném intervalu. Zavedeme tedy limity zleva a zprava. Předchozí podmínky nyní budeme vyžadovat pouze v jednostranném okolí bodu x_0 .

Jednostranné limity a spojitost - epsilon-delta definice

Řekneme, že funkce f(x) definovaná v nějakém levém ryzím okolí bodu x_0 má limitu A v bodě x_0 zleva, jestliže

pro každé
$$\epsilon > 0$$
 existuje $\delta > 0$, že pro každé $x \in (x_0 - \delta, x_0)$ platí $|f(x) - A| < \epsilon$

a zapisujeme $\lim_{x\to x_0^-} f(x) = A$. Podobně funkce f(x) definovaná na nějakém pravém ryzím okolí bodu x_0 má limitu A v bodě x_0 zprava, jestliže

pro každé
$$\epsilon>0$$
 existuje $\delta>0$, že pro každé $x\in(x_0,x_0+\delta)$ platí $|f(x)-A|<\epsilon$ a zapisujeme $\lim_{x\to x_0^+}f(x)=A$.

Řekneme, že funkce f(x) definovaná na nějakém levém okolí bodu x_0 je spojitá v bodě x_0 zleva, jestliže

pro každé
$$\epsilon > 0$$
 existuje $\delta > 0$, že pro každé $x \in (x_0 - \delta, x_0)$ platí $|f(x) - f(x_0)| < \epsilon$ a funkce $f(x)$ definovaná na pravém okolí bodu x_0 je spojitá v bodě x_0 zprava, jestliže, pro každé $\epsilon > 0$ existuje $\delta > 0$, že pro každé $x \in (x_0, x_0 + \delta)$ platí $|f(x) - f(x_0)| < \epsilon$.

Jednostranné limity a spojitost - definice pomocí okolí

Necht f(x) je funkce definovaná v levém (pravém) ryzím okolí bodu x_0 . Řekneme, že funkce f(x) má limitu A v bodě a zleva (zprava), pokud

$$\forall U$$
-okolí bodu $A \exists V$ -levé (pravé) okolí bodu x_0 , že $\forall x \in V, x \neq x_0$ platí $f(x) \in U$.

Necht f(x) je funkce definovaná v levém (pravém) okolí bodu x_0 včetně bodu x_0 . Řekneme, že funkce f(x) je v bodě x_0 spojitá zleva (zprava), pokud

$$\forall U$$
-okolí bodu $f(x_0) \exists V$ -levé (pravé) okolí bodu x_0 , že $\forall x \in V$ platí $f(x) \in U$.

Řekneme, že funkce je spojitá na uzavřeném intervalu $I = \langle a, b \rangle$, jestliže ve vnitřních bodech intervalu je spojitá (oboustranně) a v koncových bodech a a b je spojitá jednostranně: v bodě a spojitá zprava, v bodě b spojitá zleva.

Důležité vlastnosti limit

- a) Pokud existuje oboustranná limita, existují i obě jednostranné limity a jsou si rovny.
- b) Pokud jsou jednostranné limity různé, potom oboustranná limita neexistuje. Pokud obě jednostranné limity existují a jsou stejné, existuje i jim rovná oboustranná limita.
- c) Obdobně, je-li funkce spojitá zleva i zprava, je spojitá.

Vlastnosti limit a spojitosti

Pokud je funkce f(x) spojitá, nebo jednostranně spojitá v bodě x_0 , potom je limita rovna funkční hodnotě $f(x_0)$. Pokud je funkce dána jako kombinace elementárních funkcí, polynomů apod, je možné při určování limit využít jejich vlastností.

Vlastnosti limit

Předpokládejme, že všechny níže uvedené limity jsou konečné. Obvykle operace zachovávají limitu:

a) Limita násobku limit je násobek limit, tedy pokud limita na pravé straně rovnosti existuje, existuje i limita na leve straně a pro libovolně $c \in \mathbb{R}$ platí:

$$\lim_{x \to x_0} (c \cdot f(x)) = c \cdot \lim_{x \to x_0} f(x).$$

b) Limita součtu a součinu limit je součet a součin limit, tedy pokud existují limity vpravo, existuje i limita vlevo a platí rovnost:

$$\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x),$$
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x).$$

c) **Limita podílu je podíl limit**, tedy pokud existují limity vpravo a limita ve jmenovateli je různá od nuly, potom existuje i limita vlevo a platí:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}, \quad (\text{pokud } \lim_{x \to x_0} g(x) \neq 0).$$

d) Limita složené funkce je rovna složené funkci limit pokud vnitřní funkce je spojitá v bodě x_0 a existují limity napravo. Jestliže $\lim_{x\to x_0} g(x) = g(x_0) = y_0$ a $\lim_{y\to y_0} f(y) = A$, potom existuje limita složené funkce a platí:

$$\lim_{x \to x_0} f(g(x)) = \lim_{y \to y_0} f(y) = A$$
, kde $y_0 = \lim_{x \to x_0} g(x)$.

Určování spojitosti funkce

Obvyklé operace zachovávající spojitost funkcí jsou:

- a) Násobek, součet a součin funkcí spojitých v bodě (na intervalu) je funkce spojitá v bodě (na intervalu).
- b) Podíl funkcí spojitých v bodě (na intervalu) je funkce spojitá, pokud funkce ve jmenovateli je různá od nuly v bodě (na interval)
- c) Složením spojitých funkcí dostaneme funkci spojitou, pokud složená funkce je definovaná, tj. obor hodnot vnitřní funkce je částí definičního oboru vnější funkce.

Podrobněji: Je-li g(x) spojitá na intervalu D(g)=(a,b) s oborem hodnot H(g)=(c,d) a f(y) spojitá na D(g)=(A,B), přičemž $(c,d)\subset (A,B)$, tj. $H(g)\subset D(f)$, potom složená funkce f(g(x)) je spojitá na (a,b).

Limity nevlastní a v nevlastních bodech

Dosud jsme mluvili o vlastních limitách ve vlastních bodech, tedy hledali jsme limitu v konečném bodě x_0 a limita nabývala konečných hodnot A., tj. $\lim_{x\to x_0} f(x) = A$. Abychom pojem limity rozšířili i na nevlastní limity i limity v nevlastních bodech, zavedeme pojem okolí nekonečna.

Okolí nekonečna

Libovolný interval (K, ∞) , kde K > 0, nazveme okolím nekonečna, resp. K-okolí nekonečna. Množinu všech okolí nekonečna označíme $\mathcal{O}(\infty)$. Obdobně libovolný interval $(-\infty, -K)$ nazveme okolím minus nekonečna, případně K-okolím minus nekonečná. Množinu všech těchto okolí označíme $\mathcal{O}(-\infty)$.

V případě r-okolí bodu jsme požadovali vždy kladný poloměr r>0, hlavní význam měla logicky malá r. V případě okolí nekonečná požadavek K>0 není nutný. V definici mají význam velká K, připustíme-li K záporná, význam definice se nezmění. Například pro K=-10 pokud f(x) je v okolí $(10,\infty)$ je i ve větším okolí $(-10,\infty)$.

Vždy předpokládáme, že funkce f(x) je definovaná v okolí bodu x_0 m případně v levém či pravém okolí. Pomocí okolí nekonečna zavedeme nevlastní (nekonečné) limity ve vlastním bodě x_0 tak, že okolí A nahradíme okolím nekonečna.

Obrázek 6: Nevlastní limita v x_0 .

Nevlastní limity

Nevlastní limitu definujeme zároveň pomocí "epsilon-delta" definice i pomocí okolí následovně.

$$\lim_{x \to x_0} f(x) = \infty \iff \forall K > 0 \ \exists \delta > 0 \ \forall x \neq x_0, \ |x - x_0| < \delta \text{ platí } f(x) > K,$$

$$\iff \forall U \in \mathcal{O}(\infty) \ \exists V \in \mathcal{O}(x_0), \ \forall x \in V, x \neq x_0, \ \text{platí } f(x) \in U,$$

a analogicky limitu minus nekonečno

$$\lim_{x \to x_0} f(x) = -\infty \iff \forall K > 0 \ \exists \delta > 0 \ \forall x \neq x_0, \ |x - x_0| < \delta \text{ platí } f(x) < -K.$$

Definici nevlastní limity v bodě x_0 zleva nebo zprava dostaneme tak, že místo celého okolí bodu x_0 bereme jenom levé nebo pravé okolí.

V definicích konečné limity A v nevlastních bodech $x \to \infty$ nebo $x \to -\infty$ okolí bodu x_0 nahradíme okolím plus nebo minus nekonečna.

Limity v nevlastních bodech

$$\lim_{x \to \infty} f(x) = A \iff \forall \epsilon > 0 \ \exists L > 0 \ \forall x > L \ \text{plati} \ |f(x) - A| < \epsilon.$$
$$\lim_{x \to -\infty} f(x) = A \iff \forall \epsilon > 0 \ \exists L > 0 \ \forall x < -L \ \text{plati} \ |f(x) - A| < \epsilon.$$

Obrázek 7: Limita v nevlastním bodě. Pro x > K hodnoty f(x) leží v ϵ -pásu limity A.

Nevlastní limita v nevlastním bodě

Pro úplnost ještě uvedeme definici nevlastní limity v nevlastním bodě.

$$\lim_{x \to \infty} f(x) = \infty \iff \forall K > 0 \ \exists L > 0 \ \forall x > L \text{ platí } f(x) > K.$$

Vlastnosti nevlastních limit

Limity v nevlastních bodech $x \to \pm \infty$ mají stejné vlastnosti jako limity ve vlastních bodech a lze s nimi počítat jako s jednostrannými limitami ve vlastních bodech.

Pravidla počítání s nevlastními limitami

Pro reálné číslo A platí:

- a) Součet: $A + \infty = \infty + A = \infty + \infty = \infty$, $A \infty = -\infty + A = -\infty \infty = -\infty$.
- b) Násobek a součin:
 - Je-li A > 0, potom $A \cdot \infty = \infty$ a $A \cdot (-\infty) = -\infty$.
 - Je-li A < 0, potom $A \cdot \infty = -\infty$ a $A \cdot (-\infty) = \infty$.
 - Navíc $\infty \cdot \infty = (-\infty) \cdot (-\infty) = \infty$ a $\infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty$.
- c) Podíl: Je-li A konečné, potom $\frac{A}{\infty} = 0$.

Jestliže $\lim_{x\to x_0} g(x) = 0$ a v okolí bodu x_0 platí g(x) > 0, potom pro A > 0 je $\lim_{x\to x_0} \frac{A}{g(x)} = \infty$ a pro A < 0 je $\lim_{x\to x_0} \frac{A}{g(x)} = -\infty$.

Podobně, pokud v okolí g(x) < 0, potom $\lim_{x \to x_0} \frac{A}{g(x)} = -\operatorname{sgn}(A) \cdot \infty$.

Pokud funkce g(x) mění v bodě x_0 znaménko, potom tvrzení platí pro jednostranné limity.

- d) Mocnina: Pro A>1 platí $A^{\infty}=\infty$ a $A^{-\infty}=0$. Pro $A\in(0,1)$ platí obráceně $A^{\infty}=0$ a $A^{-\infty}=\infty$.
- e) Záměna proměnné (složená funkce), například pokud $y=\frac{1}{x}$, potom

$$\lim_{x \to \infty} f(x) = \lim_{y \to 0^+} f\left(\frac{1}{y}\right) \qquad \text{a} \qquad \lim_{x \to 0^+} f(x) = \lim_{y \to \infty} f\left(\frac{1}{y}\right).$$

Varování

V případě neurčitých výrazů nelze dříve uvedenými způsoby určit limitu z jednotlivých limit. **Neurčité výrazy** jsou:

$$\infty - \infty, \quad -\infty + \infty, \quad 0 \cdot \infty, \quad \infty \cdot 0, \quad \frac{\infty}{\infty}, \quad \frac{0}{0}, \quad 1^{\infty}.$$

V těchto případech je potřeba limitu vypočíst nějakou úpravou výrazu, nebo je pro výpočet potřeba použít L'Hospitalovo pravidlo, s nímž se seznámíme později.

Vlastnosti spojitých funkcí

Spojité funkce mají řadu důležitých vlastností. Hodnoty funkce spojité na intervalu tvoří tzv. souvislou množinu, což znamená, že graf funkce není nikde "roztržený".

Vlastnosti spojitých funkcí

Mějme funkci f(x) spojitou na intervalu $I = \langle a, b \rangle$.

- a) Potom funkce f(x) nabývá všech hodnot mezi f(a) = A a f(b) = B, tj. $\forall C \in \langle A, B \rangle$ (resp. $\forall C \in \langle B, A \rangle$) existuje alespoň jedno $c \in \langle a, b \rangle$ takové, že f(c) = C.
- b) Speciálně, pokud hodnoty funkce v koncích intervalu mají opačná znaménka, tj. $f(a) \cdot f(b) < 0$, potom rovnice f(x) = 0 má alespoň jedno řešení, tj. existuje alespoň jedno $c \in (a, b)$ takové, že f(c) = 0.

Obrázek 8: Funkce spojitá na intervalu $\langle a,b \rangle$ nabývá libovolné hodnoty C mezi f(a) a f(b) v alespoň jednom bodě $c \in \langle a,b \rangle$. Pokud $f(a) \cdot f(b) < 0$, potom rovnice f(x) = 0 má alespoň jedno řešení.

Omezenost a existence absolutních extrémů

Mějme funkci f(x), která je spojitá na uzavřeném omezeném intervalu $I = \langle a, b \rangle$. Potom

a) funkce f(x) je **omezená shora i zdola**, tj. existují reálná čísla K < L taková, že

$$K < f(x) < L \qquad \forall x \in I,$$

b) funkce f(x) na intervalu I nabývá svého minima i maxima, tj. existují čísla $c,d\in I$ taková, že

$$f(c) = \min_{x \in I} f(x), \quad f(d) = \max_{x \in I} f(x), \quad \text{tj.} \quad f(c) \le f(x) \le f(d), \ \forall \ x \in I.$$

Důležité limity

Bez dalšího odvození budou uvedeny tři důležité limity, které je potřeba si pamatovat a které dále využijeme při odvozování derivace elementárních funkcí.

Tři důležité limity

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \qquad \lim_{x \to 0} \frac{e^x - 1}{x} = 1, \qquad \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1.$$