

Exploratory graphs

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Why do we use graphs in data analysis?

- To understand data properties
- · To find patterns in data
- To suggest modeling strategies
- To "debug" analyses
- · To communicate results

Exploratory graphs

- To understand data properties
- To find patterns in data
- To suggest modeling strategies
- To "debug" analyses
- · To communicate results

Characteristics of exploratory graphs

- · They are made quickly
- · A large number are made
- · The goal is for personal understanding
- · Axes/legends are generally cleaned up
- · Color/size are primarily used for information

Background - perceptual tasks

Figure 1. Elementary perceptual tasks.

Position versus length

Position versus length - results

Position versus angle

Figure 3. Graphs from position-angle experiment.

Position versus angle - results

More experimental results

Graphical Perception and Graphical Methods for Analyzing Scientific Data

Summary

- · Use common scales when possible
- When possible use position comparisons
- Angle comparisons are frequently hard to interpret (no piecharts!)
- · No 3-D barcharts

Housing data

pData <- read.csv("./data/ss06pid.csv")

Boxplots

· Important parameters: col, varwidth, names, horizontal

boxplot(pData\$AGEP,col="blue")

Boxplots

boxplot(pData\$AGEP ~ as.factor(pData\$DDRS),col="blue")

Boxplots

boxplot(pData\$AGEP ~ as.factor(pData\$DDRS),col=c("blue","orange"),names=c("yes","no"),varwidth=TRUE)

Barplots

barplot(table(pData\$CIT),col="blue")

Histograms

· Important parameters: breaks,freq,col,xlab,ylab, xlim, _ylim ,main

hist(pData\$AGEP,col="blue")

Histogram of pData\$AGEP

Histograms

hist(pData\$AGEP,col="blue",breaks=100,main="Age")

Density plots

Important parameters (to plot): col,lwd,xlab,ylab,xlim,ylim

```
dens <- density(pData$AGEP)
plot(dens,lwd=3,col="blue")</pre>
```

density.default(x = pData\$AGEP)

Density plots - multiple distributions

```
dens <- density(pData$AGEP)
densMales <- density(pData$AGEP[which(pData$SEX==1)])
plot(dens,lwd=3,col="blue")
lines(densMales,lwd=3,col="orange")</pre>
```

density.default(x = pData\$AGEP)

