Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances D_{S1-Pi}
- b- Calculez les dénivelées dh_{P1-Pi} entre le point P1 et le point Pi.
- c- Calculez les dénivelées dh_{Pi-Pi+1} entre le point Pi et le point Pi+1.
- d- Sachant que la cote du point 1 est $C_{P1} = 20$ m, calculez les cotes des autres points.
- e- Calculez la dénivelée dh_{Pli-P6} entre le point P1 et le point P6.

N° station	N° Point	fil sup. (cm)	fil axial (cm)	fil inf. (cm)	distance (m)	dénivelée dh1-i:(m)	dénivelée dhi-i+1:(m)	Cote (m)
1	1	156.5	143.2	130.0				20
	2	144.2	126.2	108.2				
	3	182.8	169.4	156.0				
	4	193.4	180.1	166.8				
	5	157.1	132.8	108.6				
	6	138.5	124.9	111.3				

- a- Calcul des distances
- b- Calcul des dénivelées entre le point P1 et le point Pi
- c- Calcul des dénivelées entre le point Pi et le point Pi+1

- d- calculez les cotes des autres points
- e- Calcul de la dénivelée dh_{Pli-P6} entre le point P1 et le point P6

Il s'agit d'un levé par rayonnement à l'aide d'un théodolite.

- a- Calculez les distances réduites à l'horizontale D_{S1-Pi}.
- b- Calculez les dénivelées dh_{S1-pi} entre S1 et le point Pi sachant que H_{théod}=1.50 m.
- c- Sachant que la cote de la station S1 est $C_{S1} = 10$ m, calculez les cotes des différents points 1 à 5.
- d- Sachant que le gisement de la direction S1-P1 est 48.00 gr et que les coordonnées de la station S1 sont (100, 100) m, calculez les coordonnées des différents points.
- e- Représentez les différents points à l'échelle 1/500 ème.
- f- Calculez analytiquement la surface (réelle) du polygone (1,2,3,4,5,1).

N° Station			1		
N° Point	1	2	3	4	5
fil sup. (cm)	156,5	144,2	182,8	157,1	149,3
fil axial (cm)	143,2	126,2	169,4	132,8	124,6
fil inf. (cm)	130	108,2	156	108,6	100
angle H. (gr)	48	92	170	305,4	354,2
angle V. (gr)	0	0	2	0	4
distance (m)					
D tg(V)					
dénivelée (m)					
Cote (m)					
X (m)					
Y (m)					
Dist.Ech. (mm)					

a- Calcul des distances

b- Calcul des dénivelées

c- Calcul des côtes

d- Calcul des coordonnées Comme le gisement de la direction S1-P1 est égal à l'angle horizontal AH on prendra donc :
e- Représentation des points Calcul des distances à l'échelle 1/500 ^{ème} .
f- Calcul de la surface On va appliquer la méthode analytique se basant sur les distances et les angles α i au sommet. On représente une esquisse à main levée pour respecter l'ordre des points dans le polygone obtenu. La formule à appliquer est : $2S = l_1 \ l_2 \sin \alpha_1 + l_2 \ l_3 \sin \alpha_2 + l_3 \ l_4 \sin \alpha_3 + l_4 \ l_5 \sin \alpha_4 + \ l_5 \ l_1 \sin \alpha_5 \ .$

Cours de topographie Néjib BEN JAMAA GCV1-GEE1 -29-

Représentation des points à l'échelle 1/500ème.

Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances.
- b-Calculez la différence de niveau entre le 1^{er} points et les autres points.
- c- Sachant que la côte du point 1 est Cp1 = 20 m, calculez les côtes des autres points.

Tableau de mesures N°1:

N° St.	N° Pt	Fil Sup	Fil Axial	Fil Inf	Distance	Dénivel.	Côte
		(cm)	(cm)	(cm)	(m)	(cm)	(m)
1	1	138.5	124.9	111.3			20
	2	151.9	137.9	123.9			
	3	190.2	176.4	162.6			
	4	150.1	136.5	122.9			
	5	143.8	132.4	121.0			
	6	103.6	88.8	74.0			

Exercice N°4

Il s'agit d'un nivellement par cheminement à l'aide d'un niveau.

- a- Calculez les distances et les dénivelées.
- b- Calculez la dénivelée entre le point 1 et le point 5 (Dh₁₋₅).

Tableau de mesures N°1:

Station	Points	Fil Sup	Fil Axial	Fil Inf	Distances	Dénivelée
N°:	N°:	(cm)	(cm)	(cm)	(m)	(cm)
1	1	117.5	104.2	91.1		
	2	170.2	154.2	138.8		
2	2	138.5	124.9	111.3		
	3	151.9	137.9	123.9		
3	3	190.2	176.4	162.6		
	4	150.1	136.5	122.9		
4	4	143.8	132.4	121.0		
	5	103.6	88.8	74.0		
					$Dh_{1-5} =$	

Exercice N°5

Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances.
- b-Calculez la différence de niveau entre le 1^{er} points et les autres points.
- c- Sachant que la côte du point 1 est Cp1 = 20 m, calculez les côtes des autres points.

N° St.	N° Pt	Fil Sup	Fil Axial	Fil Inf	Distance	Dénivel.	Côte
		(cm)	(cm)	(cm)	(m)	(cm)	(m)
1	1	138.5	124.9	111.3			20
	2	151.9	137.9	123.9			
	3	190.2	176.4	162.6			
	4	150.1	136.5	122.9			
	5	143.8	132.4	121.0			
	6	103.6	88.8	74.0			

Il s'agit d'un levé à l'aide d'un théodolite.

- a- Calculez les distances réduites à l'horizontale D_{S1-Pi} et D_{S2-Pi} , (K = 100).
- a- Calculez les dénivelées dh_{S1-pi} entre la station S1 et les points 1,2,3 et S2. HS₁ =1.45m
- b- Calculez les dénivelées d h_{S2-pi} entre la station S2 et les points 7 et 8. $HS_2 = 1.50m$.
- d- Sachant que la côte de la station S1 est $C_{\text{S1}} = 10$ m, calculez les côtes des différents points.
- e- Calculez les coordonnées des différents points en prenant comme origine des angles horizontaux de la station S1 le Nord Lambert et comme coordonnées de S1 (10,10) m.

HS1 = 1.45 m HS2 = 1.50 m S1 (10,10,10) Angle H = Gisement

N° St.	N° Pt	fil sup. (cm)	fil axial (cm)	fil inf. (cm)	angle H. (gr)	angle φ. (gr)	Dist. (m)	Déniv. dh (m)	Cote (m)	D cotg(φ) (m)	X (m)	Y (m)
S1	1	192,2	180	167,8	328,945	102,73						
	2	143,5	125	107	306,445	102,87						
	3	79	50	21	305,117	102,607						
	S2	159,6	140	120,1	154,688	97,856						
S2	S1	-	-	-	0	-						
	7	171,8	160	148,1	311,876	99,721						
	8	169	150	131	363,005	102,307						

Exercice N°7

Il s'agit d'un levé par rayonnement à l'aide d'une station totale.

- a- Calculez les dénivelées dh_{S1-pi} entre la station S1 et les point 1 et S1 sachant que HS1= 1 50 m
- b- Calculez les dénivelées dh_{S2-pi} entre la station S2 et les point 2 et S1 sachant que HS2= 1.43 m.
- c- Calculez les coordonnées des différents points en prenant comme origine des angles horizontaux de la station S1 le Nord Lambert et comme coordonnées de S1 (10,10) m.

HS1 = 1.50 m HS2 = 1.43 m S1 (0, 0, 0) Angle H = Gisement

N°Pt	H Prisme (m)	Gisement (gr)	angle H. (gr)	angle φ. (gr)	Distance (m)	Dénivelée (m)	Cote (m)	Dcotg(φ) (m)	X (m)	Y (m)
P1	1.80	88.289	88.289	94.917	7.093					
S2	1.80	2.8726	2.8726	100.818	98.697					
S1	1.80	202.872	0	98.837	98.699					
P2	1.80	172.037	369.1646	98.638	32.333					

Il s'agit d'un nivellement par rayonnement à l'aide d'un niveau.

- a- Calculez les distances D_{S1-Pi} et les dénivelées dh_{p1-pi} entre le <u>point 1 et le point i</u>.
- b- Sachant que la cote du point 1 est C_{Pl} = 30 m, calculez les cotes des points 2 et 3.

N° station	N° Point	fil sup. (cm)	fil axial (cm)	fil inf. (cm)	distance (m)	dénivelée dh : (cm)	Cote (m)
1	1	182.8	169.4	156.0			30
	2	157.1	132.8	108.6			
	3	138.5	124.9	111.3			

D1 = 100(fil sup - fil inf)

Exercice N° 9

On a effectué un levé topographique à l'aide d'un tachéomètre. Les mesures sont données dans le tableau suivant.

- a- Calculez les distances réduites à l'horizontale d₁ et d_{moy}.
- b- Représenter sur cercle gradué les différents points à l'échelle 1/250ème.
- c- Calculez la surface du polygone (1,2,S2,3).
- d- Sachant que GS1-S2 = 19.900 gr et S1 (10, 100), déterminez les gisements des directions S1-2, S1-3 et S2-4.
- e- Déterminez les coordonnées des points 3, S2 et 4.

N°station	N° Point	L0 (cm)	L1 (cm)	L2 (cm)	L3 (cm)	angle H. (gr)
S 1	1	265.0	290.0	310.2	319.8	269.0
	2	14.4	35.9	53.0	61.5	7.5
	3	37.5	66.4	89.5	101.0	223.5
	S2	120.0	141.4	158.6	167.0	95.9
S2	S1	100.0	121.4	138.6	147.0	309.2
	4	121.2	163.5	197.4	214.1	267.2

Néjib BEN JAMAA Cours de topographie

N°station	N° Point	D1 (m)	Dmoy (m)	Gisement (gr)	X (m)	Y (m)
S1	1					
	2			GS1-2 =		
	3			GS1-3 =		
	S2			GS1-S2 =		
S2	S1				10	100
	4			GS2-4 =		

a- Calcul des distances:

Dmoy (m) =
$$(L1 + L2 + L3 - 3 * L0) / 5$$
 Li (cm) $D1(m) = (L1-L0)/1$

b- Représentation graphique

c- Calcul de la surface du polygone (1,2,S2,3).

On calcule les angles au sommet $\alpha 1$ à $\alpha 4$ à partir des angles horizontaux et en tenant compte de la disposition des différents points sur le graphique.

$$\alpha 1 = 138.5 \text{ gr} = AH2 - AH1 = (400+7.5)-269$$

$$2S = 11x12 \sin \alpha 1 + 12x13 \sin \alpha 2 + 13x14 \sin \alpha 3 + 14x11 \sin \alpha 4$$

$$S = m^{2}$$

d- Calcul des gisements

 $G_{S1-S2} = 19.900 \text{ gr}$ Angle H. S1-S2 = 95.9 gr Différence = 95.9-19.9 = 76 gr.

Donc pour retrouver les différents gisements de S1-P2 et S1-P3 on doit retrancher à chaque fois 76 gr.

$$G_{S1-P2} = AH_{P2} - 76 = 7.5 - 76 = -68.5 \text{ gr}$$

Comme les gisements sont tous positifs, donc $G_{S1-P2} = -68.5 + 400 = 331.5$ gr.

$$G_{S1-P3} = AH_{P3} - 76 = 223.5 - 76 = 147.5 \text{ gr}$$

Pour calculer le gisement $G_{S2\text{-P4}}$, il faut déterminer l'angle $\alpha 4$ et appliquer la relation suivante :

$$G_{S2-P4} = G_{S1-S2} + 200 + \alpha 4$$

$$\alpha 4 = 267.2 - 309.2 = -42 gr$$
 $\alpha 4 = -42 + 400 = 358 gr$

$$G_{S2-P4} = 19.9 + 200 + 358 = 577.9 \text{ gr}$$

$$G_{S2-P4} = 177.9 \text{ gr}$$

Il s'agit d'un levé par rayonnement à l'aide d'un théodolite.

- a- Calculez les distances réduites à l'horizontale $D_{\text{S1-Pi}}$.
- b- Calculez les dénivelées dh_{S1-pi} entre la station S1 et le point i sachant que H= 1.45 m.
- c- Représentez sur le cercle gradué les différents points à l'échelle 1/250 ème.
- d- Sachant que la côte de la station S1 est $C_{\text{S1}}=10$ m, calculez les côtes des différents points 1 à 7.
- e- Calculez la surface (réelle) du polygone (1, 2, 3, 4, 5, 6, 7, 1).
- f- Sachant que le gisement de la direction S1-P1 est 4.999 gr et que les coordonnées de la station S1 sont (100, 200) m, calculez les coordonnées des différents points.

N°	N°	fil	fil	fil	angle	angle	distance	dénivelée	Cote	D	X	Y
station	Point	sup.	axial	inf.	H.	V.	(m)	dh: (cm)	(m)	tg(V)	(m)	(m)
		(cm)	(cm)	(cm)	(gr)	(gr)				(m)		
1	1	229,2	208,1	187	4,999	0						
	2	238,7	222,2	204,8	6,915	0,462						
	3	247,8	230,2	212,8	16,011	4,16						
	4	65,5	49,1	33	24,555	394,96						
	5	87,5	71,2	55	27,387	395,51						
	6	134,5	113,5	92,8	49,175	395,51						
	7	78,5	52	22,5	51,278	397,08						

Cours de topographie Néjib BEN JAMAA GCV1-GEE1 -34-

N°	Cote	X	Y
Point	(m)	(m)	(m)
P1	0.2675	6.973	1.297
S2	-1.5689	4.452	98.597
P2	-1.2475	18.202	69.333

Cours de topographie Néjib BEN JAMAA GCV1-GEE1 -35-