10/17/2018 Untitled2

In [1]:

```
from sklearn import datasets
from sklearn import metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
# Loads the iris datasets
dataset = datasets.load iris()
from sklearn.model_selection import train_test_split
# the data is split in such a way that the test size is 20 percent
s,testS,p,testP=train_test_split(dataset.data,dataset.target,test_size=0.20)
# Naive Bayes model is fit to the data
outcome = GaussianNB()
outcome.fit(s, p)
print(outcome)
# predictions are made
expectedvalue = testP
predictedvalue = outcome.predict(testS)
# representing the fit of the model in the form of classification report and confusion
matrix
print(metrics.classification report(expectedvalue, predictedvalue))
print(metrics.confusion_matrix(expectedvalue, predictedvalue))
accuracy_score(expectedvalue,predictedvalue)
```

GaussianNB(priors=None)

	precision	recall	f1-score	support
0	1.00	1.00	1.00	9
1	1.00	1.00	1.00	13
2	1.00	1.00	1.00	8
avg / total	1.00	1.00	1.00	30

[[9 0 0] [0 13 0] [0 0 8]]

Out[1]:

1.0