

Lógica para Programação

Solução do Primeiro Teste

3 de Novembro de 2007

09:00-10:30

- 1. **(6.0)** Para cada uma das seguintes questões, indique se é verdadeira ou falsa. NOTA: Uma resposta errada desconta 0.4 valores.
 - (a) A regra de inferência derivada conhecida por *modus tollens* afirma que numa prova que contém $\neg \alpha$ e $\alpha \to \beta$ se pode derivar $\neg \beta$.

Resposta: Falsa

(b) O facto de $(P \land \neg P) \rightarrow Q$ ser um teorema mostra que uma contradição implica qualquer proposição.

Resposta: Verdadeira

(c) A regra da eliminação da disjunção corresponde ao seguinte raciocínio (dito por casos): se formos capazes de derivar γ , quer a partir de α , quer de β , então podemos derivar γ a partir de $\alpha \vee \beta$.

Resposta: Verdadeira

(d) Uma fórmula na forma clausal (CNF) corresponde a disjunções de conjunções de literais.

Resposta: Falsa

(e) A geração por saturação de níveis é uma estratégia de resolução que se baseia na utilização de cláusulas unitárias.

Resposta: Falsa

(f) Uma prova hipotética cria um ambiente onde se assume que uma dada hipótese é verdadeira.

Resposta: Verdadeira

(g) Para qualquer conjunto de fbfs Δ , o conjunto $Th(\Delta)$ é finito.

Resposta: Falsa

(h) A regra da resolução é sólida mas não é completa.

Resposta: Falsa

(i) Os BDDs permitem representar de modo compacto a informação presente numa tabela de verdade.

Resposta: Verdadeira

(j) A remoção de testes redundantes num BDD é feita quando ambos os arcos que saem de um nó se dirigem ao mesmo nó.

Resposta: Verdadeira

(k) A *fbf* $\alpha \land \beta$ pode ser criada através da composição de BDDs, a partir dos BDDs correspondentes a α e a β , seguindo o seguinte raciocínio: o nó \boxed{F} do BDD correspondente a α deve ser substituido pelo BDD correspondente a β .

Resposta: Falsa

Número: _____ Pág. 2 de 8

(l) Dada uma relação de ordem total e uma *fbf*, o OBDD reduzido correspondente é único.

Resposta: Verdadeira

(m) A ordenação canónica de BDDs permite a realização de testes de equivalência semântica.

Resposta: Verdadeira

- (n) Num BDD não ordenado existem caminhos com ordenações incompatíveis. **Resposta:** Verdadeira
- (o) As ordenações para BDDs [P,Q,S] e [R,P,S,T,Q] são compatíveis. **Resposta:** Falsa
- 2. Forneça definições para os seguintes conceitos:
 - (a) (0.5) Regra de inferência.

Resposta:

Uma regra de inferência é uma regra de manipulação de símbolos que especifica como gerar novas fórmulas bem formadas a partir de fórmulas que já existem.

(b) (0.5) Consequências lógicas de um conjunto de premissas.

Resposta:

Dado um conjunto de fbfs, Δ , as suas consequências lógicas são todas as fbfs (α) para as quais não existe nenhuma interpretação que torna Δ verdadeiro (todas as proposições em Δ verdadeiras) e α falso. Formalmente, as consequências lógicas de Δ correspondem ao conjunto

$$\{\alpha \,:\, \Delta \,\models \alpha\}$$

(c) (0.5) Fórmula satisfazível.

Resposta:

Uma fbf diz-se satisfazível se e só se existe uma interpretação na qual a fbf é verdadeira.

(d) (0.5) Substituição (e condições que lhe são impostas).

Resposta:

Uma substituição é um conjunto finito de pares ordenados $\{t_1/x_1,\ldots,t_n/x_n\}$ em que cada x_i $(1 \le i \le n)$ é uma variável individual e cada t_i $(1 \le i \le n)$ é um termo. Numa substituição, todas as variáveis individuais são diferentes (ou seja, para todo o i e $j, 1 \le i \le n, 1 \le j \le n$ se $i \ne j$ então $x_i \ne x_j$) e nenhuma das variáveis individuais é igual ao termo correspondente (ou seja, para todo o $i, 1 \le i \le n$ $x_i \ne t_i$).

3. (a) (1.0) Dê um exemplo de um argumento válido no qual quer as premissas, quer a conclusão sejam falsas.

Resposta:

Todos os planetas são feitos de queijo

- O Sol é um planeta
- ∴ O Sol é feito de queijo
- (b) (1.0) Diga, justificando, se o seguinte argumento é válido ou inválido.

O céu é azul

A relva é branca

∴ A relva é branca

Resposta:

O argumento é válido pois sendo a conclusão uma das premissas é impossível ter as premissas verdadeiras e a conclusão falsa.

Número: _____ Pág. 3 de 8

4. Usando as regras do sistema de dedução natural, demonstre os seguintes teoremas:

(a) (1.5)
$$(A \vee \neg B) \rightarrow \neg (\neg A \wedge B)$$

Resposta:

1
$$A \lor \neg B$$
 Hyp
2 $A \lor \neg B$ Hyp
3 $A \lor \neg A \lor B$ Hyp
4 Rei, 2
5 $A \lor \neg A \lor B$ $A \lor \neg A \lor B$ $A \lor \neg A \lor B$ Hyp
8 $A \lor \neg A \lor B$ Hyp
9 $A \lor B$ Hyp
9 $A \lor B$ Hyp
9 $A \lor B$ Hyp
10 $A \lor B$ Hyp
10 $A \lor B$ Hyp
11 $A \lor B$ Hyp
12 $A \lor B$ $A \lor B$

(b) (1.5) $(\forall x[F(x) \to H(x)] \land \exists x[F(x)]) \to \exists x[H(x)]$ Resposta:

1
$$\forall x[F(x) \to H(x)] \land \exists x[F(x)]$$
 Hyp
2 $\forall x[F(x) \to H(x)]$ $\land E, 1$
3 $\exists x[F(x)]$ $\land E, 1$
4 $t \mid F(t)$ Hyp
5 $\forall x[F(x) \to H(x)]$ Rei, 2
6 $F(t) \to H(t)$ $\forall E, 5$
7 $H(t)$ $\to E, (4, 6)$
8 $\exists x[H(x)]$ $\exists I, 7$
9 $\exists x[H(x)]$ $\exists E, (3, (4, 8))$
10 $(\forall x[F(x) \to H(x)] \land \exists x[F(x)]) \to \exists x[H(x)]$ $\to I, (1, 9)$

Número: _____ Pág. 4 de 8

5. (a) (1.0) Desenhe a árvore de decisão correspondente à seguinte *fbf*:

$$P \wedge (Q \vee (P \wedge R))$$

Resposta:

(b) (1.0) Transforme a árvore de decisão da alínea anterior num BDD reduzido. Indique os passos seguidos.

Resposta:

Número: _____ Pág. 5 de 8

6. **(2.0)** Considere os seguintes OBDDs:

Utilizado o algoritmo aplica, calcule o OBDD que resulta de disjunção das $\it fbfs$ que correspondem a estes OBDDS. Mostre os passos utilizados.

Resposta:

Número: _____ Pág. 6 de 8

7. **(1.5)** Transforme a seguinte *fbf* para a forma clausal:

$$(P \to \neg (Q \lor ((R \land S) \to P)))$$

Resposta:

$$(P \rightarrow \neg (Q \lor ((R \land S) \rightarrow P)))$$

$$((\neg P \lor \neg (Q \lor (\neg (R \land S) \lor P)))$$

$$((\neg P \lor (\neg Q \land \neg (\neg (R \land S) \lor P)))$$

$$(((\neg P \lor (\neg Q \land (\neg \neg (R \land S) \land \neg P)))$$

$$((((\neg P \lor \neg Q) \land (\neg P \lor ((R \land S) \land \neg P)))$$

$$((((\neg P \lor \neg Q) \land (\neg P \lor (R \land S)) \land (\neg P \lor \neg P))$$

$$((((\neg P \lor \neg Q) \land (\neg P \lor R) \land (\neg P \lor S) \land (\neg P \lor \neg P))$$

$$(\{\neg P \lor \neg Q\}, \{\neg P \lor R\}, \{\neg P \lor S\}, \{\neg P\}\}$$

$$(\{\neg P, \neg Q\}, \{\neg P, R\}, \{\neg P, S\}, \{\neg P\}\}$$

8. (1.5) Produza uma demonstração por refutação para

$$\{\{\neg P, Q\}, \{\neg Q, R\}, \{\neg R, S\}, \{P\}\} \vdash \{S\}$$

usando a estratégia de resolução linear e $\{P\}$ como cláusula central. Resposta:

