杭州师范大学《概率与统计》 练习题(1)参考答案

命题教师 杨益民

题目	_	11	三	四	五.	总分
分值	30	10	16	32	12	100
得分						

的序

		`备选答案中选出 ፬ 5 分,共 30 分		,并将正确答案
概率是:	地投入到四个	邮筒,则前两个 (A)		得分
2. 袋内装有两 数超过1角的	个 5 分、三个 的概率。 (B	C. 0. 45 2 分、五个 1 分) C. 0. 45	的硬币,任意	取出5个,求总
两个黑球。由 白球的概率。	日甲袋任取一个	两个白球,一个 、球放入乙袋,再 (从乙袋中取出A)	
12		C. 0. 45 1, 0, 1, 2 四 ⁻		率依次为 $\frac{1}{2c}$,
,	则常数 c 的值	直是	(A)	
, 37	D 4			

A. $\frac{37}{16}$ B. 1 C. 2 D. $\frac{1}{2}$

5、已知某炼铁厂的铁水含碳量在正常生产情况下服从正态分布,其方差 $\sigma^2 = 0.108^2$ 。现在测定了 9 炉铁水, 其平均碳含量为 4.484。, 若要求有 95%的可 靠性,则该厂铁水平均碳含量的置信区间是 (A)

A.
$$4.484 - \frac{0.108}{\sqrt{9}} \times 1.96 < \mu < 4.484 + \frac{0.108}{\sqrt{9}} \times 1.96$$

B.
$$4.484 - \frac{0.108}{\sqrt{9}} \times 2.58 < \mu < 4.484 + \frac{0.108}{\sqrt{9}} \times 2.58$$

C.
$$4.484 - \frac{0.108^2}{\sqrt{9}} \times 1.96 < \mu < 4.484 + \frac{0.108^2}{\sqrt{9}} \times 1.96$$

D.
$$4.484 - \frac{0.108^2}{\sqrt{9}} \times 2.58 < \mu < 4.484 + \frac{0.108^2}{\sqrt{9}} \times 2.58$$

6. 某商店为了了解居民对某种商品的需要,调查了 100 家住户,得出每户每月平均需要量为 10kg,方差为 9。如果这个商店供应 1000 户,试就居民对该种商品的平均需求量进行区间估计($\alpha=0.01$),并依此考虑最少要准备多少这种商品才能以 0.99 的概率满足需要。(B)

A.
$$(10 - \frac{3}{\sqrt{100}} \times 1.96, 10 + \frac{3}{\sqrt{100}} \times 1.96)$$

B.
$$(10 - \frac{3}{\sqrt{100}} \times 2.58, 10 + \frac{3}{\sqrt{100}} \times 2.58)$$

C.
$$(10 - \frac{9}{\sqrt{100}} \times 1.96, 10 + \frac{9}{\sqrt{100}} \times 1.96)$$

D.
$$(10 - \frac{9}{\sqrt{100}} \times 2.58, 10 + \frac{9}{\sqrt{100}} \times 2.58)$$

- 二、名词解析(每小题5分,共10分。)
- 7. 全概率定理:如果事件 A_1,A_2,\cdots 构成一个完备的事件组,并且都具有正概率,则对任何一个事件 B,有:

得分

$$P(B) = \sum_{i} P(A_i) P(B/A_i)$$

8. 李雅普诺夫定理: 设 ξ_1,ξ_2,\cdots 是互相独立的随机变量,有期望值 $\mathrm{E}\,\xi_i=a_i$ 及方

差 D $\xi_i = \sigma_i^2 < +\infty (i = 1, 2, \cdots)$,若每个 ξ_i ,对总和 $\sum_{i=1}^n \xi_i$ 影响不大,令 $S_n = \left(\sum_{i=1}^n \sigma_i^2\right)^{\frac{1}{2}}$, 则

$$\lim_{n \to \infty} P\left(\frac{1}{S_n} \sum_{i=1}^{n} (\xi_i - a_i) \le x\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt = \Phi_0(x)$$

- 三、填空题(每空4分,共16分。)
- 9. 若ξ有概率密度:

得分

 $\varphi(x) = \begin{cases} \lambda & \alpha \le x \le b(a < b) \\ 0 & \text{其 它} \end{cases}$ 则称 ξ 服从区间 [a,b] 上的均匀分布。 试求 $\lambda = \frac{1}{b-a}$

10 、 设 随 机 变 量 ξ 的 概 率 密 度 是 $F_{\xi}(x)$,则 ξ^2 的分布函数是 $F_{\xi}\left(\sqrt{x}\right) - F_{\xi}\left(-\sqrt{x}\right)$

- 11、设 ξ 是区间[a,b]上均匀分布的随机变量,则 D $\xi = \frac{1}{12}(a-b)^2$

得分

四、计算题(每小题 8 分, 共 32 分。) 13. 假定某工厂甲、乙、丙 3 个车间生产统一中螺钉,产量 依次占全厂的45%、35%、20%。如果各车间的次品率依次为4%、2%、5%。 现从待出厂的产品中检查出1个次品,试计算它是甲车间生产的概率。

解:设事件 B 表示"产品为次品", A_1 、 A_2 、 A_3 分别表示"产品为甲、乙、 丙车间生产的"。显然, A_1 、 A_2 、 A_3 构成一个完备事件组。依题意有:

$$P(A_1) = 45\%$$
 $P(A_2) = 35\%$ $P(A_3) = 20\%$ (2 $\%$)

$$P(B|A_1) = 4\%$$
 $P(B|A_2) = 2\%$ $P(B|A_3) = 5\%$ (2 $\%$)

于是由贝叶斯公式有:

$$P(|A_{1}|B) = \frac{P(A_{1})P(B|A_{1})}{\sum_{i=1}^{3} P(A_{i})P(B|A_{i})}$$
(2 $\%$)

$$= \frac{45\% \times 4\%}{45\% \times 4\% + 35\% \times 2\% + 20\% \times 5\%} \approx 0.514 \tag{2 }$$

14、同一品种的 5 个产品中,有 2 个正品。每次从中取 1 个检验质量,不放回地抽取,连续 2 次。用 " $\xi_k = 0$ "表示第 k 次取到正品,而 " $\xi_k = 1$ " 为第 k 次取到次品(k=1,2)。写出(ξ_1,ξ_2)的联合分布律。

解: 试验结果共由 4 个基本事件组成,相应概率可按公式计算:

$$P\{\xi_1 = 0, \xi_2 = 0\} = P\{\xi_1 = 0\} P\{\xi_2 = 0 | \xi_1 = 0\} = \frac{2}{5} \times \frac{1}{4} = 0.1 \quad (2 \text{ }\%)$$

$$P\{\xi_1 = 0, \xi_2 = 1\} = P\{\xi_1 = 0\} P\{\xi_2 = 1 | \xi_1 = 0\} = \frac{2}{5} \times \frac{3}{4} = 0.3 \quad (2 \%)$$

$$P\{\xi_1 = 1, \xi_2 = 0\} = P\{\xi_1 = 1\}P\{\xi_2 = 0 | \xi_1 = 1\} = \frac{3}{5} \times \frac{2}{4} = 0.3 \quad (2 \%)$$

$$P\{\xi_1 = 1, \xi_2 = 1\} = P\{\xi_1 = 1\} P\{\xi_2 = 1 | \xi_1 = 1\} = \frac{3}{5} \times \frac{2}{4} = 0.3$$

具体分布如下表: (2 分)

S ₁	0	1
ξ_2		
0	0.1	0.3
1	0.3	0.3

15. 根据长期经验和资料分析,某砖瓦厂生产砖的"抗断强度" ξ 服从正态分布,方差 $\sigma^2=1.21$ 。现从该厂产品中随机抽取 6 块,测得抗断强度的平均值为 $\overline{X}=31.13kg/cm^2$ 若设 $\alpha=0.05$,试检验这批砖的平均抗断强度为 32.50kg/ cm^2 是否成立?

解: $H_0: \mu = 32.50$.如果 H_0 是正确的,即样本 (X_1, X_2, \dots, X_6)

来自正态总体 N(32.50,1.1²),于是有:

$$\frac{\overline{X} - 32.50}{1.1/\sqrt{6}} \sim N(0,1)$$
, 因而选取统计量

$$U = \frac{\overline{X} - 32.50}{1.1/\sqrt{6}},\tag{4 \%}$$

对于给定的 $\alpha=0.05$,可以确定 $u_{\alpha}=1.96$,其中满足: $P(|U|>u_{\alpha})=\alpha$. 这就是说,对于 H_0 拒绝与否的临界值 $u_{\alpha}=1.96$,再由取定的样本观察值实际计算得到 U的值,

$$|u| = \left| \frac{31.13 - 32.50}{1.1/\sqrt{6}} \right| \approx 3.05 > 1.96$$

最后结论是否定 H_0 。

(4分)

16、某炼铁厂的铁水含碳量在正常情况下服从正态分布。现对操作工艺进行了某些改进,从中抽取 5 炉铁水测得含碳量数据 $S^2=0.228^2$.若设 $\alpha=0.05$,据此是否可以认为新工艺炼出的铁水含碳量的方差仍为 0.108^2 ?

解: $H_0:\sigma^2=0.108^2$;.如果 H_0 是正确的,即样本 $\left(X_1,X_2,\cdots,X_n\right)$ 的函数

 $\chi^2 \stackrel{\hat{}}{=} (n-1)S^2/0.108^2$ 作为统计量于是有样本来自正态总体 N (μ ,0.108 2),于是有:

$$\chi^2 = (n-1)S^2/0.108^2 \sim \chi^2(n-1),$$
 (4 $\%$)

对于给定的 $\alpha = 0.05$,可以确定 χ^2_{α} 及 χ^2_{b} 使

$$P((n-1)S^2/0.108^2 > \chi_b^2) = \frac{\alpha}{2}, \quad P((n-1)S^2/0.108^2 < \chi_a^2) = \frac{\alpha}{2}$$

其中 :
$$\chi_a^2 = \chi_{0.975}^2(4) = 0.484, \chi_b^2 = \chi_{0.275}^2(4) = 11.1$$

具体计算统计量 χ^2 的值有:

$$\chi^2 = \frac{4 \times 0.228^2}{0.108^2} \approx 17.827 > 11.1$$

因而拒绝 H_0 (4分)

五、证明题(每小题12分,共12分。)

得分

1. 从总体 ξ 中取一样本 $\left(X_{1},X_{2},\cdots,X_{n}\right)$,E $\xi=\mu$,D $\xi=\sigma^{2}$,

试证明样本平均数 \overline{X} 及样本方差 S^2 分别是 μ 及 σ^2 的无偏估计。

$$\overline{\mathbf{i}E} : \quad E\overline{X} = E\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}EX_{i} = \frac{1}{n}n\mu \qquad (3 \%)$$

$$D\overline{X} = D\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}DX_{i} = \frac{1}{n}\sigma^{2}$$
 (3 $\%$)

$$ES^{2} = E\left[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i} - \overline{X})^{2}\right]$$

$$=\frac{1}{n-1}E\sum_{i=1}^{n}\left[x-\mu-(\bar{X}-\mu)\right]^{2}$$

$$= \frac{1}{n-1} E \left[\sum_{i=1}^{n} (X_i - \mu)^2 - n (\overline{X} - \mu)^2 \right]$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \mu)^2 - \frac{n}{n-1} E(\bar{X} - \mu)^2$$
 (6 \(\frac{1}{2}\))

证明完毕