

PERSONALIZED E-COMMERCE RECOMMENDATION SYSTEM

MSA 8010 Data Programming

December 11, 2024

TEAM: 5-Star Recommenders
Akshara Ravishankar
Komal Naidu
Mayadir Sandoval
Nivethitha Pandi

Sandra Soy Kipsang

5 Star Recommenders

Akshara Ravishankar

Mayadir Sandoval

Sandra Soy Kipsang

Komal Naidu

Nivethitha Pandi

FRAMEWORK/CONTENT

- 1.Business problem
- 2.Proposed Solution Overview
- 3. Exploratory Data Analysis (EDA)
- **4.Data Preprocessing**
- **5.ML Models**
- 6.Evaluation and choosing best model
- 7.Incorporation into business

BUSINESS PROBLEM:

Are you a confused customer overwhelmed by too many choices?

- E-commerce platforms like "Olist" face challenges like high customer churn and low conversion rates, impacting continuous revenue.
- Customers churn because they don't find content or products they like.

PROPOSED SOLUTION

PERSONALISED PRODUCT RECOMMENDATIONS

Why recommendation system is necessary?

- A ranked list of recommended products tailored to each user, enhances the user experience and encourages repeat visits
- Recommendations account for 10-30% of e-commerce revenue by driving upselling and cross-selling.
- Promotes lesser-known products that might match specific user preferences

Dataset Overview

Olist is a Brazilian e-commerce platform that functions as a marketplace, connecting small and medium-sized businesses with customers by allowing them to list their products on various online marketplaces.

Features: 39 Columns

Number of data points: 117329

Target Features: User id(object), product id(object), review id(object).

https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce?select=olist_order_items_dataset.csv

Brazilian E-Commerce Public Dataset by Olist

COLLABORATIVE FILTERING

User Based Collaborative Filtering

Based on user's neighborhood

Item Based Collaborative Filtering

Based on item's similarity

(a)

CF MODELING CYCLE

Selection

tuning

Model Evaluation

Recommendations

Summary Statistics

From skimpy import skim skim(df)

> Number of rows Number of columns

skimpy summary Data Types

Data Summary dataframe

117329

Column Type	Count
string	23
float64	10
int32	6

number

column_name	NA	NA %	mean	sd	р0	p25	p50	p75	p100	hist
payment_sequential	0	0	1.1	0.73	1	1	1	1	29	
payment_installments	0	0	2.9	2.8	0	1	2	4	24	
payment_value	0	0	170	270	9	61	110	190	14000	
<pre>customer_zip_code_pref ix</pre>	0	0	35000	30000	1000	11000	24000	59000	100000	
review_score	0	0	4	1.4	1	4	5	5	5	i — -
order_item_id	0	0	1.2	0.68	1	1	1	1	21	
price	0	0	120	180	0.85	40	75	130	6700	
freight_value	0	0	20	16	0	13	16	21	410	
product_name_lenght	1695	1.44	49	10	5	42	52	57	76	
<pre>product_description_le nght</pre>	1695	1.44	790	650	4	350	600	980	4000	
product_photos_qty	1695	1.44	2.2	1.7	1	1	1	3	20	
product_weight_g	20	0.02	2100	3800	0	300	700	1800	40000	
product_length_cm	20	0.02	30	16	7	18	25	38	100	
product_height_cm	20	0.02	17	13	2	8	13	20	100	
product_width_cm	20	0.02	23	12	6	15	20	30	120	
seller_zip_code_prefix	0	0	24000	28000	1000	6400	14000	28000	100000	

string

strina

str triy									
column_name	NA	NA %	words per row	total words					
order_id	0	0	1	117329					
customer_id	0	0	1	117329					
order_status	0	0	1	117329					
order_purchase_timestamp	0	0	2	23465					
order_approved_at	15	0.01	2	23462					
order delivered carrier date	1235	1.05	2	23218					
order delivered customer date	2471	2.11	2	22971					
order_estimated_delivery_date	0	0	2	23465					
payment_type	0	0	1	11732					
customer unique id	0	0	1	11732					
customer city	0	0	1.8	20573					
customer_state	0	0	1	11732					
review id	0	0	1	11732					
review comment title	103437	88.16	0.25	2892					
review comment message	67650	57.66	5.1	60305					
review creation date	0	0	2	23465					
review answer timestamp	0	0	2	23465					
product id	0	0	1	11732					
seller id	0	0	1	11732					
shipping_limit_date	0	0	2	23465					
product_category	1695	1.44	0.99	11568					
seller city	0	0	1.7	20163					
seller state	0	0	1	11732					

EDA Highlights

	Missing Count	Missing Percentage
review_comment_title	103437	88.159790
review_comment_message	67650	57.658379
order_delivered_customer_date	2471	2.106044
product_category	1695	1.444656
product_name_lenght	1695	1.444656
product_description_lenght	1695	1.444656
product_photos_qty	1695	1.444656
order_delivered_carrier_date	1235	1.052596
product_length_cm	20	0.017046
product_weight_g	20	0.017046
product_height_cm	20	0.017046
product_width_cm	20	0.017046
order_approved_at	15	0.012785

EDA Highlights

Top 5 Product Category by Total Sales Value

Sales Heatmap: Performance of Top 5 Product Categories Over the Years

EDA Highlights

Review Score

- The distribution is skewed
- Over 50% of customers have given a 5-star rating followed by a little below 20 % with 4-star ratings

EDA Highlights

Most Interacted Customers

- The top-most customer interactions are on the lower range
- Indicates less interaction data sparsity

DATA PREPROCESSING

2. Reducing Sparsity:

We have retained only interactions of users that had **atleast 1 review**, and items that were **ordered atleast 10** times.

Shape of final_ratings_matrix: (24014, 420)
given_num_of_ratings = 24212
possible_num_of_ratings = 10085880
density: 0.24%

product_id 162 306 397 498 613 664 731 836 854 860 ... 31130 31150 31188 31192 31213 31453 3145

customer_unique_id

custome	r_unique_id																				
	21	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	37	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	44	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

FEATURE ENGINEERING

User Features:

Mean rating, Recency of order, Average price bought

Product Features:

Relative price of product based on products in same category

ML Models Tested

MODEL	SVD	SVD++	ALS
	 decomposes the user-item 		

PROPERTIES

- decomposes the user-item interaction matrix into three smaller matrices
- captures latent factors that influence user-item relationships
- can considers both explicit ratings and implicit feedback
- incorporates user and item biases improving accuracy

- decomposes interaction matrix into user latent factors & item latent factors.
- optimizes user, item matrices alternately

REASON FOR CHOOSING

- captures Latent Features
- scalable for Explicit Feedback
- more accurate recommendations
- captures complex relationships
- robustness with sparsity
- regularization for Better Generalization

Initial Iterations

SVD (Singular Value Decomposition) & SVD++

- a matrix factorization technique, which reduces the number of latent features
- decomposes into 3 other matrices: R=U·S·VT
- U: User latent feature matrix.
- S: Diagonal matrix of singular values (importance weights of latent factors).
- VT: Item latent feature matrix.

SVD

- 1. Data Normalization
- 2. Sparse Matrix Representation
- 3. keep only the top 50 latent features
- 4. Split to Train-Test

RMSE: 0.129

Precision at 5: 0.294

Recall at 5: 0.300

SVD++: (extension of SVD)

- 1. From "Surprise" Library
- 2. Data Normalization
- 3. Sparse Matrix Representation
- 4. Split to Train-Test

```
Evaluating RMSE, MAE of algorithm SVDpp on 5 split(s).

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Std

RMSE (testset) 1.3184 1.3190 1.3185 1.3174 1.3152 1.3177 0.0014

MAE (testset) 1.0323 1.0349 1.0300 1.0316 1.0279 1.0313 0.0023
```


ALS (ALTERNATING LEAST SQUARES) MODEL FOR RECOMMENDATIONS

Model Testing

PySpark: Python API for Apache Spark for realtime, large-scale data processing in a distributed environment.

Hyperparameter tuning:

Rank: 30, MaxIter: 10 RegParam: 0.05

Evaluation:

• RMSE: 0.2314

• MAE: 0.0122

Mean Average Precision: 0.618

Ref: https://medium.com/@brunoborges_38708/recommender-system-using-als-in-pyspark-10329e1d1ee1

CLUSTERING CUSTOMERS BASED ON ORDER DETAILS

Pre-processing:

- Reducing skew (Log transformation)
- Standardize data (Standard scaler)
- Principal Component Analysis (PCA) to reduce dimensionality

Model Testing

- K-Means clustering model
- Evaluation: Silhouette score

$$s(oldsymbol{o}) = rac{b(oldsymbol{o}) - a(oldsymbol{o})}{\max\{a(oldsymbol{o}), b(oldsymbol{o})\}}$$

- s(o) is the silhouette coefficient of data point o
- a(o) is the average distance between o and all the other data points in same cluster
- -b(o) is the minimum average distance from o to all clusters to which o does not belong
- -Ranges between -1 to 1.

Silhouette score =0.7167

MODEL EVALUATION

Root Mean Square Error (RMSE)

Calculates the square root of the average squared differences between predicted and actual ratings

- In predicting explicit feedback (e.g., ratings), RMSE is the most reliable metrics to assess accuracy
- provides a more detailed view of errors, since it penalizes larger errors more
- Expected in the range 0.8 to 1.3 on a 5 point scale

Interpretation & Results:

RMSE 0.1290 1.3175 0.2314	Evaluation Metric	SVD	SVD++	ALS
	RMSE	0.1290	1.3175	0.2314

Based on the above RMSE score, we deem the **SVD++** model to be performing better, as the RMSE falls within range.

We use the SVD++ model to generate product recommendations.

- Recommendations are generated for all the users, suggesting products with highest ratings.
- Recommendation function accepts 'Customer ID' as input and generates top 'K' recommendations.

Top 10 product recommendations for user 3333: [29547, 15647, 10545, 12917, 21925, 10019, 13783, 28729, 20967, 27230]

Top 10 product recommendations for user 1911: [18217, 8418, 29079, 13783, 26023, 7893, 6782, 13440, 12917, 18475]

INCORPORATION INTO BUSINESS

OLIST should integrate the Recommendation Model into their backend Systems, linking product catalogs and user profiles for **REAL-TIME** recommendations

Deploy the model via APIs to ensure seamless interaction with the websites front-end

Create REAL-TIME data pipeline to process user interactions

CAPACITY REQUIREMENTS

Data Storage and Processing

Computational Resources

Monitoring through Dashboarding

REFERENCES

- [1] https://medium.com/@brunoborges_38708/recommender-system-using-als-in-pyspark-10329e1d1ee1
- [2] https://towardsdatascience.com/recommendation-system-matrix-factorization-d61978660b4b
- [3] https://medium.com/@eliasah/deep-dive-into-matrix-factorization-for-recommender-systems-from-basics-to-implementation-79e4f1ea1660
- [4] https://tatevkarenaslanyan.medium.com/using-customer-and-product-features-in-recommender-systems-2734258873cf#:~:text=Matrix%20Factorization,and%20Item%20Factor%20matrices%2C%20respectively.
- [5] https://haneulkim.medium.com/matrix-factorization-part-i-from-derivation-of-stochastic-gradient-descent-step-to-learning-17a7d8975965

