CANDIDATE'S DECLARATION

We hereby declare that the work presented in this report entitled "Emotion Recognition

for Real-Time Feedback" in fulfilment of the requirements for the award of Bachelor of

Technology with specialization in Computer Science and Engineering, submitted to

National Institute of Technology, Jalandhar is an authentic record of our own work

carried out during the period,

August 2018 to May 2019 under the supervision of Dr.Nonita Sharma and Mr. Rahul

Aggarwal, Assistant Professors of Department of Computer Science & Engineering,

National Institute of Technology, Jalandhar.

We have not submitted the matter presented in this report to any other university

or institute for the award of any degree or for any other purpose.

Date: 29 May, 2019

Shelly

Himakshi Salhotra

Shubham Mittal

Shanuj Shekhar

(15103012)

(15103015)

(15103030)

(15103060)

This is to certify that the declaration submitted by the above candidates is correct and true

to best of our knowledge, further it is recommended for external evaluation.

(Mentor)

(Mentor)

Dr.Nonita Sharma

Mr. Rahul Aggarwal

Assistant Professor

Assistant Professor

Ι

ACKNOWLEDGEMENTS

Foremost, we would like to express our gratitude to our supervisors Dr.Nonita Sharma, Assistant Professor, and Mr. Rahul Aggarwal, Assistant Professor for the useful comments, remarks and engagement through the learning process of this master thesis. We cannot thank them enough for their tremendous support and help. They motivated and encouraged us throughout this work. Without their encouragement and guidance this project would not have materialized. We consider ourselves extremely fortunate to have a chance to work under their supervision. In spite of their busy schedule, they were always approachable and took their time off to guide us and gave appropriate advice.

We also wish to thank whole heartily all the faculty members of the Department of `Computer Science and Technology for the invaluable knowledge they have imparted on us and for teaching the principles in most exciting and enjoyable way. We also extend our thanks to the technical and administrative staff of the department for maintaining an excellent working facility.

We would like to thank our families for their continuous support and blessings throughout the entire process, both by keeping us harmonious and helping us putting the pieces together. We also like to thank all our batch mates for the useful discussions, constant support and encouragement during whole period of the work.

Last but not the least, we would like to thank almighty GOD for giving us enough strength and lifting us uphill this phase of life.

Shelly

Himakshi Salhotra

Shubham Mittal

Shanuj Shekhar

ABSTRACT

This project titled "Emotion Recognition for Real-Time Feedback" performs facial expression analysis in near real-time from a live webcam feed. It classifies human expressions into 8 different classes (Happy, Sad, Angry, Contempt, Disgust, Fear, Surprise, and Neutral). Facial detection is carried out to obtain facial expression using an in-built python library followed by training of Support Vector Machine model. To solve this multi-class problem, Support Vector Machine uses several tuning parameters such as kernels, gamma and regularization. This model is trained on the dataset which comprises of 10,708 images. SVM model obtained an accuracy of 78% against testing dataset when Sampling techniques were used to train the model. To further improve the accuracy, Ensembling techniques were used. The real time accuracy achieved is 67%.

Based on this project we have developed two working applications for obtaining real-time feedback. The first application detects the genre of the song with the help of facial expression of the end-user while he/she is listening to song. The other application interprets the category of news by reading the facial expression of the user. Both these applications give us genuine real-time feedback.

TABLE OF CONTENTS

1.	Introduction				
	1.1. Definition	1			
	1.2. Feature of Project	1			
	1.3. Motivation	2			
2.	Literature Survey				
	2.1. Pre-processing of input images				
	2.2. Face Detection Methods				
	2.3. Facial Expression Recognition				
	2.4. Facial Expression Classification				
3.	Problem Statement and Objectives				
	3.1. Problem Statement				
	3.2. Major Objectives	9			
4.	Project Requirement				
	4.1. Pre-requisites				
	4.2. Dependencies	11			
	4.3. Dataset Used	13			
5.	Implementation				
	5.1. Architecture				
	5.2. Face Detection				
	5.2.1.1. Feature Based Method				
	Haar Classifier	16			
	 Local Binary Patterns (LBP) 	18			
	5.2.1.2. Appearance Based Method				
	Support Vector Machine	20			
	Neural Network	21			
	• Naïve Bayes	22			
	5.3. Feature Extraction	23			
	5.4. Classification Technique	26			

	5.4.1.1. SVM Classification	27
	5.4.1.2. Tuning Parameters	29
	5.5. Sampling Techniques	
	5.5.1.1. Hold-out Sub-Sampling	32
	5.5.1.2. Random Sub-Sampling	33
	5.5.1.3. K-Fold Cross Validation	34
	5.5.1.4. Stratified K-Fold Cross Validation	34
	5.6. Ensembling Technique	
	5.6.1.1. Bagging/Boosting	35
	5.6.1.2. Random Forest Methods	36
6.	Implementations of Application	
	6.1. News Categorization	38
	6.2. Genre Detection of Songs	39
7.	Conclusion	40
8.	Future Scope	42
9.	References	43

LIST OF FIGURES

SR.NO.	DESCRIPTION	PAGE
		NO.
1.1	The Concept of Feedback	3
2.1	Image captured via webcam	4
2.2	RGB_TO_GRAY Conversion	4
2.3	Face detection Methods	5
2.4	Feature point extraction	7
2.5	Facial expression classification	8
4.1	Dataset hierarchy	13
4.2	Training images	14
5.1	Project workflow	15
5.2	Haar-like features	16
5.3	Steps of haar classification	17
5.4	LBP operation	19
5.5	LBP histogram extraction	19

5.6	Neural Networks	21
5.7	Naïve Bayes classification	22
5.8	Feature Extraction	25
5.9	Classes of classification	27
5.10	Stages of automated expression recognition approach	28
5.11	Hyperplane separation by SVM	28
5.12	Regularization Parameters	30
5.13	Gamma Parameters	31
5.14	Marginal characteristics of SVM	31
5.15	Sampling Methodology	32
5.16	Ensembling using Bagging/Bootstrap Aggregation	35
5.17	Random Forest Ensembling	36
6.1	News Categorization Application Working	38
6.2	Genre Detection of Songs Application Working	39
8.1	Future Scope Applications	42