데이터마이닝팀

4팀 김현우 김준서 서희나 김수빈 변석주

CONTENTS

1. 데이터마이닝

2. 모델링

3. 모델링 전략

1

데이터 마이닝

데이터 마이닝의 정의

데이터 마이닝의 어원

대량의 데이터로부터 유용한 정보와 패턴을 추출해내는 과정

1

데이터 마이닝

데이터 마이닝의 정의

데이터 마이닝의 일반적인 과정

- ① 데이터를 전처리
- ② 데이터로부터 패턴을 찾아냄
- ③ 패턴을 바탕으로 예측 진행
 - → **새로운 정보** 얻어냄

DIKW 구조에서 데이터를 **가공**하여 **현실 문제의 해결**을 위해 상황과 맥락에 맞추어 **적용**할 수 있는 **지혜**로 도달하는 과정과 동일 1

데이터 마이닝

데이터 마이닝의 정의

데이터 마이닝의 일반적인 과정

- ① 데이터를 전처리
- ② 데이터로부터 패턴을 찾아냄
- ③ 패턴을 바탕으로 예측 진행
 - → **새로운 정보** 얻어냄

DIKW 구조에서 데이터를 **가공**하여 **현실 문제의 해결**을 위해 상황과 맥락에 맞추어 **적용**할 수 있는 **지혜**로 도달하는 과정과 동일

데이터 마이닝의 정의

데이터 마이닝의 일반적인 과정

데이터마이닝이란?

- 주어진 데이터를 바탕으로 지혜를 얻어내기 위한 방법
- - - → 새로방식으로 얻어낼 수 있도록 도와줌

DIKW 구조에서 데이터를 가공하여 현실 문제의 해결 상황과 맥락에 맞추어 적용할 수 있는 지혜로 도달하는 괴

분류

클러스터링

YES답 머신러닝 3형제

데이터 마이닝의 간학문적 성격

- 데이터 마이닝은 인공지능, 머신러닝, 딥러닝 등 여러 학문의 교집합에 위치
 - 데이터 처리, 모델링 학습, 평가 → 여러 학문들의 경계 넘나듦
 (통계학, 수학, 컴퓨터 공학 등등..)

인공지능, 머신러닝, 딥러닝?

인공지능(AI ,Artificial Intelligent)

- 컴퓨팅을 이용한 학습 과정을 모두 포함하는 포괄적인 개념
 - 머신러닝과 딥러닝을 모두 포함하는 개념

알잘딱깔센 계산하겠다 기다려라 인간

인공지능, 머신러닝, 딥러닝?

기계학습(Machine Learning)

- 사람의 개입이 최소화된 학습 수행 방법
- 수행 목적(분류/회귀)에 적절한 모델 선정 → 컴퓨터 데이터 학습 후 결과 도출

인공지능, 머신러닝, 딥러닝?

딥러닝(Deep Learning)

• 사람의 신경망과 유사한 학습체계 구축해 목적 달성을 위한 과정 수행

데이터 마이닝의 목표

Feat. 통계야 도와줘~~

머신 러닝과 딥러닝이 <mark>"수행 과정"</mark>에 초점을 둔다면 데이터 마이닝은 이에 더해 <mark>"인사이트를 얻어내는 것"</mark>을 목표로!

모델 선택이 적절했는가?
그 모델이 목표를 얼마나 잘 달성했는가?
선택한 모델의 성능을 높이는 방법은 무엇인가?

질문의 해답은…

방법론 : CRISP_DM

Cross-Industry Standard Process for Data Mining

데이터마이닝의 대표적인 분석 방법론 크게 6개의 과정으로 이루어져 있음

CRISP_DM

Cross-Industry Standard Process for Data Mining

① 비즈니스 문제 이해

- 과제의 목적과 요구사항 이해
 - 도메인 지식을 활용
 - → 초기 프로젝트 계획 수립
 - 주어진 데이터에 대한

사전 지식을 통해 데이터를 이해

CRISP_DM

Cross-Industry Standard Process for Data Mining

② 데이터 이해 (EDA)

- 해당 데이터를 수집 및 이해
 - 주어진 데이터를 **직접**

확인하는 것으로 데이터를 이해

- 변수 분포, 추이, 상관관계 시각화
 - 이상치(outlier)와 결측치 확인

CRISP_DM

Cross-Industry Standard Process for Data Mining

③ 데이터 준비

- 데이터 전처리 과정
 ex) 파생변수 생성 등
- 전처리 진행에 따라
 모델 성능이 달라짐

CRISP_DM

Cross-Industry Standard Process for Data Mining

④ 분석 & 모델링

- 모델링 과정 수행& 파라미터 최적화
- 모델링 기법 선택
 모델 테스트 계획 / 설계
 모델 작성과 평가

CRISP_DM

Cross-Industry Standard Process for Data Mining

⑤ 분석 모델 평가

- 모델링 성과 **평가**
- → 과제 목적에 맞추어 설정
 - 분류모델

ex)Misclassification Rate

• 회귀모델

ex)RMSE, MAE

CRISP_DM

Cross-Industry Standard Process for Data Mining

⑥ 분석 결과 적용

- 분석 결과를 실제 서비스에 접목
 - 유의미한 결과를 도출함 ex) 머신러닝 기법을 적용한 스팸메일 필터링 서비스 런칭

2

모델링

Train Data & Test Data

ex) 집 데이터 독립변수 종속변수 Sales Price Bedroom Sq.feet Neighborhood 3 2000 Normaltown \$250,,000 800 Hipstertown \$300,000 850 Normaltown \$150,000 550 Normaltown \$78,000 4 2000 \$150,000 Hipstertown

> 독립변수와 종속변수로 이루어진 데이터를 바탕으로 학습 후 학습된 모델을 바탕으로 독립변수가 입력되면 종속변수를 예측

Train Data & Test Data

Definition of Train Data & Test Data

Train Data & Test Data

ex) 집 데이터

Bedroom	Sq.feet	Neighborhood	Sales Price
3	2000	Normaltown	\$250,,000
2	800	Hipstertown	\$300,000
2	850	Normaltown	\$150,000
1	550	Normaltown	\$78,000
4	2000	Hipstertown	\$150,000

[Train data]

Bedroom	Sq.feet	Neighborhood	Sales Price
3	2000	Hipstertown	???

[Test data]

Train data를 통해 모델 <mark>학습</mark>

Test Data의

종속변수 <mark>예측</mark>

머신러닝의 종류

머신러닝은 **학습 방식**에 따라 **지도학습**과 **비지도학습**, 지도학습은 목적에 따라 **분류**와 **회귀**로 나뉨

머신러닝의 종류

문제를 수행하고 이에 대한 답을 확인 가능

ex) Linear Regression, DecisionTree, Naive Bayes

Supervised Learning

지도 학습

$$Y = f(X) + \epsilon$$

수학적 모델은 실제 데이터의 관계를 완벽하게 설명 못함

→ 대신, 여러 모델의 **하이퍼파라미터**를 조절하여

실제 y값에 근접한 추정치를 예측하는 모델 사용!

Supervised Learning

지도 학습

하이퍼파라미터

모델의 성능을 결정하는 모델의 매개변수

→ **최적**의 하이퍼파라미터를 찾아

모델 성능을 비약적으로 높일 수 있음!

Supervised Learning

MSE Decomposition

MSE (Mean Squared Error)

MSE를 줄여 모델의 성능을 높일 수 있음 어떻게 줄일 수 있을까?→ MSE Decomposition **살**

Supervised Learning

MSE Decomposition

유도 과정:

$$\begin{split} &\mathbf{E}\left[(y-\hat{f})^2\right] = \mathbf{E}\left[(f+\varepsilon-\hat{f})^2\right] \\ &= \mathbf{E}\left[(f+\varepsilon-\hat{f})+\mathbf{E}[\hat{f}]-\mathbf{E}[\hat{f}])^2\right] \\ &= \mathbf{E}\left[(f-\mathbf{E}[\hat{f}])^2\right] + \mathbf{E}[\varepsilon^2] + \mathbf{E}\left[(\mathbf{E}[\hat{f}]-\hat{f})^2\right] + 2\,\mathbf{E}\left[(f-\mathbf{E}[\hat{f}])\varepsilon\right] + 2\,\mathbf{E}\left[\varepsilon(\mathbf{E}[\hat{f}]-\hat{f})\right] + 2\,\mathbf{E}\left[(\mathbf{E}[\hat{f}]-\hat{f})(f-\mathbf{E}[\hat{f}])\right] \\ &= (f-\mathbf{E}[\hat{f}])^2 + \mathbf{E}[\varepsilon^2] + \mathbf{E}\left[(\mathbf{E}[\hat{f}]-\hat{f})^2\right] + 2(f-\mathbf{E}[\hat{f}])\,\mathbf{E}[\varepsilon] + 2\,\mathbf{E}[\varepsilon]\,\mathbf{E}\left[\mathbf{E}[\hat{f}]-\hat{f}\right] + 2\,\mathbf{E}\left[\mathbf{E}[\hat{f}]-\hat{f}\right](f-\mathbf{E}[\hat{f}]) \\ &= (f-\mathbf{E}[\hat{f}])^2 + \mathbf{E}[\varepsilon^2] + \mathbf{E}\left[(\mathbf{E}[\hat{f}]-\hat{f})^2\right] \\ &= (f-\mathbf{E}[\hat{f}])^2 + \mathbf{Var}[\varepsilon] + \mathbf{Var}\left[\hat{f}\right] \\ &= \mathbf{Bias}[\hat{f}]^2 + \mathbf{Var}[\varepsilon] + \mathbf{Var}\left[\hat{f}\right] \\ &= \mathbf{Bias}[\hat{f}]^2 + \sigma^2 + \mathbf{Var}\left[\hat{f}\right]. \end{split}$$

Supervised Learning

MSE Decomposition

$$E[(y - \hat{f})^{2}] = E[(f + \varepsilon - \hat{f})^{2}]$$

$$= Bias[(\hat{f})]^{2} + Var[\varepsilon] + Var[\hat{f}]$$

$$= Bias[(\hat{f})]^{2} + Var[\hat{f}] + \sigma^{2}$$

Reducible Error

Irreducible Error

Supervised Learning

MSE Decomposition

Bias

추정한 모델이 실제 모델을 얼마나 잘 설명하는지와 관련된 지표

Variance

사용한 모델로 다른 데이터셋을 학습했을 때 모델이 얼마나 달라지는지와 관련된 지표

좋은 모델일수록 Error가 낮음

Reducible Error인 Bias와 variance를 동시에 줄이면 되지 않을까?

Reducible Error

Irreducible Error

Supervised Learning

MSE Decomposition

Bias(편차)와 Variance(분산)을
$$E[(y - f)] = E[(f + \varepsilon - f)]$$
 동시에 줄이는 것은 어려움!

$$= Bias[\widehat{f}]^{2} + Var[\varepsilon] + Var[\widehat{f}]$$
$$= Bias[\widehat{f}]^{2} + Var[\widehat{f}] + \sigma^{2}$$

Variance-Bias Trade-off

Reducible Error Irreducible Error

Supervised Learning

Variance-Bias Trade-off

모델이 복잡해질수록 <mark>편차</mark>가 감소하지만 <mark>분산</mark>은 증가하고 있고, 전체 오차가 점점 감소하다가 일정 부분 지나면 다시 증가하는 추세

Supervised Learning

Variance-Bias Trade-off

Supervised Learning

Variance-Bias Trade-off

- ① Bias는 높게, Variance는 낮게 나타나고 있음
- ② Bias와 Variance가 균형을 이루고 오차가 제일 적게 나타나고 있음
 - ③ Bias는 낮게, Variance는 높게 나타나고 있음

Supervised Learning

Variance-Bias Trade-off

- ① Bias는 높게, Variance는 낮게 나타나고 있음
- ② Bias와 Variance가 균형을 이루고 오차가 제일 적게 나타나고 있음
 - ③ Bias는 낮게, Variance는 높게 나타나고 있음

Supervised Learning

Variance-Bias Trade-off

모델의 Bias는 낮게, Variance는 높게 나타날 때

→ 데이터에 따라 모델이 크게 변하게 됨

- ① Bias는 높게, Variance는 낮게 나타나고 있음
- ② Bias와 Variance가 균형을 이루고 오차가 제일 낮게 나타나고 있음
 - ③ Bias는 낮게, Variance는 높게 나타나고 있음

Supervised Learning

Variance-Bias Trade-off

Optimum Model Complexity Bias와 Variance가 균형을 이루고 오차가 제일 낮게 나타나고 있음

- - Bias는 작게, Variance는 높게 나타나고 있음

판별 모델 vs. 생성 모델

대부분의 분류 모델은 분류를 위해

$$P(y = j|X) = E(I(y = j)|X)$$
를 계산

판별 모델 vs. 생성 모델

P(y = j|X) = E(I(y = j)|X)를 구하는 방식에 따라 **판별 모델**과 **생성 모델**로 구별 가능

Various Types of Models

판별 모델 vs. 생성 모델

Discriminative Modeling

Class의 차이에 주목하여 데이터 X가 주어졌을 때 y가 j일 확률,

즉 P(y = j|X)를 **직접 학습**하여 분류를 진행함

판별 모델 vs. 생성 모델

Generative Modeling

Class의 분포에 주목하여 P(y = j|X)를 P(y = j)와 P(X|y = j)를 통해 간접적으로 구함

판별 모델 vs. 생성 모델

Generative Modeling

어떻게 P(y = j)와 P(X|y = j)를 통해 간접적으로 P(y = j|X)를 계산할까?

베이즈 정리(Bayes' Theorem)을 사용!

Class의 분포에 주목하여 P(y = j|X)를

P(y = j)와 P(X|y = j)를 통해 <mark>간접적으로</mark> 구함

판별 모델 vs. 생성 모델

$$P(B_{J} | A) = \frac{P(A | B_{J})P(B_{J})}{\sum_{i=1}^{n} P(A | B_{i})P(B_{i})}$$

베이즈 정리를 사용하면 P(y = j|X)를 P(y = j)와 P(X|y = j)를 통해 간접적으로 구할 수 있음 이를 위해 y, X|y의 **분포를 가정해줘야 함**

Various Types of Models

판별 모델 vs. 생성 모델

장점 ①

실제 데이터의 분포가 모델에서 가정한 분포와 **일치**할 때 **좋은 성능**을 보임

이 경우에는 **적은 데이터**를 학습하더라도 판별 모델에 비해 훨씬 좋은 성능을 보임

장점②

P(y = j|X)를 **간접적**으로 구하는 방식의 모델임

데이터 셋에서 종속 변수 Y가 주어지지 않더라도 모델이 P(y = j|X)를 간접적으로 구할 수 있음 지도학습 외에도 비지도학습에도 사용 가능!

Various Types of Models

판별 모델 VS. 생성 모델

이런 생성 모델은 **머신러닝**과 **딥러닝** 분야에서 활발하게 사용되고 있음

Various types of models

모수적인 모델 vs. 비모수적인 모델

모수적인 모델

파라미터를 가지고 있고, 모델의 학습 과정에서 해당 파라미터를 **추정**하는 모델

비모수적인 모델

알고리즘을 통해 바로 예측 값을 출력하는 모델 예) KNN(K-Nearest Neighbor)모델

Various types of models

모수적인 모델 vs. 비모수적인 모델

KNN(K-Nearest Neighbor) 모델

KNN Classifier

k의 개수 따라

decision boundary가 달라짐

k: "Hyperparameter"

비슷한 데이터는 비슷한 결과값을 가진다

Various types of models

모수적인 모델 vs. 비모수적인 모델

KNN(K-Nearest Neighbor) 모델

Decision boundaries created by the nearest neighbors model for different values of n_neighbor

k 개수가 많아질수록 모델의 decision boundary 크게 바뀌지 않음

Various types of models

모수적인 모델 vs. 비모수적인 모델

KNN(K-Nearest Neighbor) 모델

KNN Regression

회귀문제에도 적용 가능

→ 타겟 데이터의 Y값을 타겟 데이터와 가까이 있는

k개 데이터의 Y값의 평균을 예측 값으로 사용!

3

모델링 전략

교차 검증 (Cross Validation)

교차 검증 (Cross Validation)이란?

분석 과정에서 주어진 train data를

다시 Train set와 Validation set로 나누어

모델의 적절성을 평가하는 방법

Why CV?

- ① 과대적합 방지
- ② 모델의 성능 정확하게 판단

교차 검증 (Cross Validation)

Hold-out: Train-Test Split

Train Set

Validation set이 제외된 train data로만 모델의 학습 진행

교차 검증 (Cross Validation)

Hold-out: Train-Test Split

Validation Set

모델을 학습하는데 이용하지 않은 새로운 데이터로 모델의 성능 측정을 위한 데이터 셋

교차 검증 (Cross Validation)

Hold-out: Train-Test Split

Test data는 y값이 존재하지 않기 때문에!

모델을 학습하는데 이용하지 않은 새로운 데이터로 모델의 성능 측정을 위한 데이터 셋

아니 없어요 그냥

교차 검증 (Cross Validation): Hold-out

Train-Test Split을 통해 단일한 검증 데이터셋 생성

- ① 새로운 train, validation set 만들어냄
- ② Validation set이 제외된 train data로만 모델 학습
 - ③ Validation data 이용하여 성능 예측

교차 검증 (Cross Validation): Hold-out

Train-Test Split

단점

- Validation set이 전체 데이터의
 경향성 포함한다는 보장 없음
- 이상치들의 집합으로 구성될 가능성
 - 작은 데이터 셋의 한계

LOOCV, k-fold CV

교차 검증 (Cross Validation)

LOOCV(Leave-one-out CV)

n개의 전체 데이터에서 한 개의 데이터를 검증 데이터로,

나머지 n-1개의 데이터를 학습데이터로 사용하여 n번의 검증을 시행하는 방식

교차 검증 (Cross Validation)

LOOCV(Leave-one-out CV)

그러나 데이터셋이 매우 작은 경우에는

모든 교차검증 방법 중에서는 <mark>가장 효과적</mark>으로 모델의 성능을 평가

나머지 n-1개의 데이터를 학습데이터로 사용하여 n번의 검증을 시행하는 방식

교차 검증 (Cross Validation)

K-Fold 교차검증(K-Fold CV)

전체 데이터를 **K 개의 집합**(set, fold)으로 분할, **하나**의 집합을 **검증 데이터셋**으로, 나머지 **K-1**개의 집합을 **학습 데이터**로 사용하여 **총 K번의 검증**을 시행하는 방식

교차 검증 (Cross Validation)

K-Fold 교차검증(K-Fold CV)

• LOOCV보다

컴퓨팅 파워를 잡아먹지 않음

단순 Train-Test Split과 달리
 교차검증 과정에서
 전체 데이터를 전부 활용 가능

교차 검증 (Cross Validation)

층화 K-Fold 교차 검증(Stratified K-Fold CV)

K- Fold CV를 통해 더욱 정확하게 모델의 성능을 측정할 수 있지만 여전히 검증 데이터셋이 전체 데이터의 경향을 반영하지 못함

교차 검증 (Cross Validation 층화 K-Fold 교차 검증(Stratified K-Fold CV) 데이터를 분할할 때, 전체 데이터의 <mark>분포를 고려</mark>하여 분배!! Stratified K-Fold CV"

K- Fold CV를 통해출확 생활동에 오필차 성검을 측정할 수 있지만 여전히 검증 데이터셋이 전체 데이터의 경향을 반영하지 못함

교차 검증 (Cross Validation)

층화 K-Fold 교차 검증(Stratified K-Fold CV)

- 전체 데이터의 분포를 고려하여 학습 데이터셋과 검증 데이터셋을 분배
 - 불균형한 데이터를 사용하는 모델 성능을 측정하는데 용이

차원의 저주(Curse of Dimensionality)

과적합이 발생하는 이유??

독립 변수가 많아 모델에서 고려하는 변수가 많은 경우, 데이터의 차원이 높은 경우에 과적합이 발생

차원의 저주(Curse of Dimensionality)

차원의 저주란??

- 차원이 너무 많아서, 알고리즘 성능이 저하되는 현상
- 데이터셋이 고차원 공간을 갖고 있다면 **데이터 간 거리가 멀어져** 비슷한 특징을 가진 **패턴을 찾기 어려움**

차원의 저주(Curse of Dimericanality) 차원의 저주란?? 데이터가 너무 고차원이라 훈련 데이터셋이 충분히 전체 공간을 나타내지 못함 ➡ 학습 모델이 특정부분만 학습 → 특정 부분에 대해서 과적합이 발생 → 예측력 감소 Made by: ta-daa '차원이 너무 많아서, 알고리즘 성능이 저하되는 현상

데이터셋이 고차원 공간을 갖고 있다면 데이터 간 거리가 멀어져 비슷한 특징을 가진 패턴을 찾기 어려움

차원의 저주(Curse of Dimensionality)

KNN의 예시: Iris Dataset

차원이 커지면 근접한 이웃(데이터)의 거리가 점점 멀어짐 →차원이 매우 커질 경우, 데이터 간의 거리는 상당히 증가

차원축소

Feature Selection과 Feature Extraction

변수선택

Feature Selection

데이터의 특성을

가장 잘 설명하는

변수를 추가하거나

제거해가며 모델을 적합시킴

변수추출

Feature Extraction

데이터의 차원을

고차원에서 저차원으로

변환함으로써

모델을 적합시킴

- Feedforward Selection
- Backward Elimination
 - Stepwise Selection

- PCA(Principal Component Analysis)
 - LDA(Linear Discriminant Analysis)
- SVD(Singular Value Decomposition)

차원축소

Feature Selection과 Feature Extraction

변수선택

Feature Selection

데이터의 특성을

가장 잘 설명하는

변수를 추가하거나

제거해가며 모델을 적합시킴

변수추출

Feature Extraction

데이터의 차원을

고차원에서 저차원으로

변환함으로써

모델을 적합시킴

Feedforward Selection

자세한 내용은 클린업 기간동안

회귀분석팀, 선형대수학팀에서 자세히 다룰 예정!

학습 관점에서의 해결책

Early Stopping: 학습 조기 종료

학습을 진행할 때 소요되는 시간에 제한, 혹은 모델의 성능이 일정 수준에 도달하게 되면 학습을 조기에 종료

THANK YOU

