4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP
 - 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

4 Komplexitätstheorie

4 Komplexitätstheorie

4.1 Die Klassen P und NP

- 4.1.1 Die Klasse P
- 4.1.2 Die Klasse NP
- 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

4 Komplexitätstheorie

4 Komplexitätstheorie

4.1 Die Klassen P und NP

4.1.1 Die Klasse P

- 4.1.2 Die Klasse NP
- 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

Worst-Case Laufzeit $t_M(n)$ einer Turingmaschine M auf Eingaben der Länge n:

$$t_M(n) = \max_{w \in \Sigma^n} t_M(w).$$

Worst-Case Laufzeit $t_M(n)$ einer Turingmaschine M auf Eingaben der Länge n:

$$t_M(n) = \max_{w \in \Sigma^n} t_M(w).$$

Definition 4.1

Entscheidungsproblem L gehört zu der Komplexitätsklasse P, wenn es eine TM M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

Worst-Case Laufzeit $t_M(n)$ einer Turingmaschine M auf Eingaben der Länge n:

$$t_M(n) = \max_{w \in \Sigma^n} t_M(w).$$

Definition 4.1

Entscheidungsproblem L gehört zu der Komplexitätsklasse P, wenn es eine TM M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

Beobachtung: Die Klasse P ändert sich nicht, wenn Registermaschinen im logarithmischen Kostenmaß statt Turingmaschinen eingesetzt werden.

Worst-Case Laufzeit $t_M(n)$ einer Turingmaschine M auf Eingaben der Länge n:

$$t_M(n) = \max_{w \in \Sigma^n} t_M(w).$$

Definition 4.1

Entscheidungsproblem L gehört zu der Komplexitätsklasse P, wenn es eine TM M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

Beobachtung: Die Klasse P ändert sich nicht, wenn Registermaschinen im logarithmischen Kostenmaß statt Turingmaschinen eingesetzt werden.

Idee: P enthält die effizient lösbaren Probleme. Sinnvoll? $\Theta(n^{100})$ vs. $O(1,00000001^n)$

Clique in einem Graphen G = (V, E) ist

 $\mathit{V'} \subseteq \mathit{V} \; \mathsf{mit} \; \{\mathit{u}, \mathit{v}\} \in \mathit{E} \; \mathsf{für} \; \mathsf{alle} \; \mathit{u}, \mathit{v} \in \mathit{V'}$

Clique in einem Graphen G = (V, E) ist $V' \subseteq V$ mit $\{u, v\} \in E$ für alle $u, v \in V'$

Varianten des Cliquenproblems

Optimierungsvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne eine Clique von G mit maximaler Kardinalität.

Clique in einem Graphen G = (V, E) ist $V' \subseteq V$ mit $\{u, v\} \in E$ für alle $u, v \in V'$

Varianten des Cliquenproblems

Optimierungsvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne eine Clique von *G* mit maximaler Kardinalität.

Wertvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne das größte $k^* \in \mathbb{N}$, für das es eine k^* -Clique in G gibt.

Clique in einem Graphen G = (V, E) ist $V' \subseteq V$ mit $\{u, v\} \in E$ für alle $u, v \in V'$

Varianten des Cliquenproblems

Optimierungsvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne eine Clique von *G* mit maximaler Kardinalität.

Wertvariante

Eingabe: ungerichteter Graph G = (V, E)

Aufgabe: Berechne das größte $k^* \in \mathbb{N}$, für das es eine k^* -Clique in G gibt.

Entscheidungsvariante

Eingabe: ungerichteter Graph G = (V, E) und ein Wert $k \in \mathbb{N}$

Aufgabe: Entscheide, ob es in G eine Clique der Größe mindestens k gibt.

Theorem 4.2

Entweder gibt es für alle drei Varianten des Cliquenproblems polynomielle Algorithmen oder für gar keine.

Theorem 4.2

Entweder gibt es für alle drei Varianten des Cliquenproblems polynomielle Algorithmen oder für gar keine.

Beweis:

Optimierungsvariante polynomiell lösbar.

- \Rightarrow Wertvariante polynomiell lösbar.
- ⇒ Entscheidungsvariante polynomiell lösbar.

 $\textbf{Entscheidungs} \textbf{variante polynomiell l\"{o}sbar.} \Rightarrow \textbf{Wertvariante polynomiell l\"{o}sbar.}$

Eingabe für Wertvariante: Graph G mit N Knoten,

Codierungslänge $n = N^2$ als Adjazenzmatrix

Entscheidungsvariante polynomiell lösbar. ⇒ Wertvariante polynomiell lösbar.

Eingabe für Wertvariante: Graph G mit N Knoten,

Codierungslänge $n=N^2$ als Adjazenzmatrix

Annahme: Es gibt polynomiellen Algorithmus A für Entscheidungsvariante.

Sei $A(G, k) \in \{0, 1\}$ die Ausgabe von A bei Eingabe (G, k).

$\textbf{Entscheidungsvariante polynomiell l\"{o}sbar.} \Rightarrow \textbf{Wertvariante polynomiell l\"{o}sbar.}$

Eingabe für Wertvariante: Graph G mit N Knoten,

Codierungslänge $n = N^2$ als Adjazenzmatrix

Annahme: Es gibt polynomiellen Algorithmus A für Entscheidungsvariante.

Sei $A(G, k) \in \{0, 1\}$ die Ausgabe von A bei Eingabe (G, k).

Vorgehen: Löse Wertvariante mithilfe von maximal N Aufrufen des Algorithmus A:

$$k^* = \max\{k \in \{1, \dots, N\} \mid A(G, k) = 1\}.$$

$\textbf{Entscheidungsvariante polynomiell l\"{o}sbar.} \Rightarrow \textbf{Wertvariante polynomiell l\"{o}sbar.}$

Eingabe für Wertvariante: Graph G mit N Knoten,

Codierungslänge $n = N^2$ als Adjazenzmatrix

Annahme: Es gibt polynomiellen Algorithmus A für Entscheidungsvariante.

Sei $A(G, k) \in \{0, 1\}$ die Ausgabe von A bei Eingabe (G, k).

Vorgehen: Löse Wertvariante mithilfe von maximal N Aufrufen des Algorithmus A:

$$k^* = \max\{k \in \{1, \dots, N\} \mid A(G, k) = 1\}.$$

Laufzeit: Es gibt Konstante $\alpha \in \mathbb{N}$, sodass die Laufzeit durch $O(N \cdot (n')^{\alpha})$ beschränkt ist. Dabei ist $n' \leq N^2 + \lceil \log_2(N) \rceil = O(N^2)$ die Codierungslänge von (G, k).

Entscheidungsvariante polynomiell lösbar. ⇒ Wertvariante polynomiell lösbar.

Eingabe für Wertvariante: Graph G mit N Knoten,

Codierungslänge $n = N^2$ als Adjazenzmatrix

Annahme: Es gibt polynomiellen Algorithmus A für Entscheidungsvariante.

Sei $A(G, k) \in \{0, 1\}$ die Ausgabe von A bei Eingabe (G, k).

Vorgehen: Löse Wertvariante mithilfe von maximal N Aufrufen des Algorithmus A:

$$k^* = \max\{k \in \{1, \dots, N\} \mid A(G, k) = 1\}.$$

Laufzeit: Es gibt Konstante $\alpha \in \mathbb{N}$, sodass die Laufzeit durch $O(N \cdot (n')^{\alpha})$ beschränkt ist.

Dabei ist $n' \leq N^2 + \lceil \log_2(N) \rceil = O(N^2)$ die Codierungslänge von (G, k).

Insgesamt erhalten wir $O(N \cdot (N^2)^{\alpha}) = O(n^{\alpha+1})$.

Wertvariante polynomiell lösbar. ⇒ Optimierungsvariante polynomiell lösbar.

A sei polynomieller Algorithmus für die Wertvariante.

Wertvariante polynomiell lösbar. ⇒ Optimierungsvariante polynomiell lösbar.

A sei polynomieller Algorithmus für die Wertvariante.

```
\begin{array}{ll} \mathbf{A_{opt}}(\mathbf{G}) \\ 1 & k^* = A(G); \\ 2 & V' := V = \{v_1, \ldots, v_N\}; \\ 3 & \textbf{for } (i=1; i \leq N; i++) \\ 4 & G' \text{ sei induzierter Teilgraph von } G \text{ mit Knotenmenge } V' \setminus \{v_i\}. \\ 5 & \textbf{if } (A(G') == k^*) \ V' := V' \setminus \{v_i\}; \\ 6 & \textbf{return } V'; \end{array}
```

Wertvariante polynomiell lösbar. ⇒ Optimierungsvariante polynomiell lösbar.

A sei polynomieller Algorithmus für die Wertvariante.

```
\mathbf{A}_{\mathsf{opt}}(\mathbf{G})
1 k^* = A(G);
2 V' := V = \{v_1, \dots, v_N\};
3 for (i = 1; i \leq N; i++)
4 G' sei induzierter Teilgraph von G mit Knotenmenge V' \setminus \{v_i\}.
5 if (A(G') == k^*) \ V' := V' \setminus \{v_i\};
6 return V';
```

Invariante: V' enthält zu jedem Zeitpunkt eine k^* -Clique. Ein Knoten, der in Zeile 5 nicht aus der Menge V' entfernt wird, ist in jeder k^* -Clique $V^* \subseteq V'$ enthalten.

Wertvariante polynomiell lösbar. ⇒ Optimierungsvariante polynomiell lösbar.

A sei polynomieller Algorithmus für die Wertvariante.

```
\mathbf{A}_{\mathsf{opt}}(\mathbf{G})
1 k^* = A(G);
2 V' := V = \{v_1, \dots, v_N\};
3 \mathsf{for}\ (i = 1; i \leq N; i++)
4 G' sei induzierter Teilgraph von G mit Knotenmenge V' \setminus \{v_i\}.
5 \mathsf{if}\ (A(G') == k^*)\ V' := V' \setminus \{v_i\};
6 \mathsf{return}\ V';
```

Invariante: V' enthält zu jedem Zeitpunkt eine k^* -Clique. Ein Knoten, der in Zeile 5 nicht aus der Menge V' entfernt wird, ist in jeder k^* -Clique $V^* \subseteq V'$ enthalten.

Laufzeit von A_{opt} beträgt $O(N \cdot (N^2)^{\alpha})$, wenn die Laufzeit von A auf Graphen mit N Knoten durch $O((N^2)^{\alpha})$ nach oben beschränkt ist.

Beispiele:

Zusammenhangsproblem in ungerichteten Graphen:

Eingabe: ungerichteter Graph *G* mit *n* Knoten.

Codierungslänge n^2 als Adjazenzmatrix

Beispiele:

Zusammenhangsproblem in ungerichteten Graphen:

Eingabe: ungerichteter Graph *G* mit *n* Knoten.

Codierungslänge n^2 als Adjazenzmatrix

Lösung mittels Tiefensuche:

Laufzeit auf RAM im logarithmischen Kostenmaß $O(n^2 \log n) = O(n^3)$.

 \Rightarrow Das Zusammenhangsproblem gehört zu P.

Beispiele:

Zusammenhangsproblem in ungerichteten Graphen:

Eingabe: ungerichteter Graph *G* mit *n* Knoten.

Codierungslänge n² als Adjazenzmatrix

Lösung mittels Tiefensuche:

Laufzeit auf RAM im logarithmischen Kostenmaß $O(n^2 \log n) = O(n^3)$.

⇒ Das Zusammenhangsproblem gehört zu P.

Generell trifft dies auf alle Graphprobleme zu, die mit Algorithmen gelöst werden können, deren Laufzeit polynomiell in der Anzahl der Knoten und Kanten beschränkt ist.

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten

Gewichte $w: E \to \mathbb{N}$

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten

Gewichte $w: E \to \mathbb{N}$

Lösung mittels Algorithmus von Kruskal

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten

Gewichte $w: E \to \mathbb{N}$

Lösung mittels Algorithmus von Kruskal

Laufzeit für Sortieren der Kanten: $O(m \log(m) \cdot \log(W))$ für $W = \max_{e \in E} w(e)$

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten

Gewichte $w: E \to \mathbb{N}$

Lösung mittels Algorithmus von Kruskal

Laufzeit für Sortieren der Kanten: $O(m\log(m)\cdot\log(W))$ für $W=\max_{e\in E}w(e)$

Laufzeit für restliche Schritte: $O(m \log(m) \cdot \log(n))$

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten Gewichte $w : E \to \mathbb{N}$

Lösung mittels Algorithmus von Kruskal

Laufzeit für Sortieren der Kanten: $O(m \log(m) \cdot \log(W))$ für $W = \max_{e \in E} w(e)$ Laufzeit für restliche Schritte: $O(m \log(m) \cdot \log(n))$

Insgesamt: $O(m \log m \cdot \max\{\log(W), \log(n)\})$

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten Gewichte $w : E \to \mathbb{N}$

Lösung mittels Algorithmus von Kruskal

Laufzeit für Sortieren der Kanten: $O(m \log(m) \cdot \log(W))$ für $W = \max_{e \in E} w(e)$

Laufzeit für restliche Schritte: $O(m \log(m) \cdot \log(n))$

Insgesamt: $O(m \log m \cdot \max\{\log(W), \log(n)\})$

Eingabelänge als Adjazenzliste: $\Omega(m \log(n) + \log(W))$

Spannbaumproblem

Eingabe: ungerichteter Graph G = (V, E) mit n Knoten und $m \ge n - 1$ Kanten

Gewichte $w: E \to \mathbb{N}$

Lösung mittels Algorithmus von Kruskal

Laufzeit für Sortieren der Kanten: $O(m \log(m) \cdot \log(W))$ für $W = \max_{e \in E} w(e)$

Laufzeit für restliche Schritte: $O(m \log(m) \cdot \log(n))$

Insgesamt: $O(m \log m \cdot \max\{\log(W), \log(n)\})$

Eingabelänge als Adjazenzliste: $\Omega(m \log(n) + \log(W))$

Es gilt

$$m \log m \cdot \max\{\log(W), \log(n)\} = O((m \log(n) + \log(W))^2)$$

⇒ Das Spannbaumproblem gehört zu P.

Cliquenproblem

Eingabe: G = (V, E) mit n = |V| und $k \in \mathbb{N}$

Cliquenproblem

Eingabe: G = (V, E) mit n = |V| und $k \in \mathbb{N}$

Algorithmus: Teste alle Teilmengen von V der Größe k darauf, ob sie eine Clique bilden.

Cliquenproblem

Eingabe: G = (V, E) mit n = |V| und $k \in \mathbb{N}$

Algorithmus: Teste alle Teilmengen von V der Größe k darauf, ob sie eine Clique bilden.

Laufzeit:
$$\Theta\left(\mathsf{poly}(n)\cdot\binom{n}{k}\right) = \Theta\left(\mathsf{poly}(n)\cdot\left(\frac{n}{k}\right)^k\right)$$

Cliquenproblem

Eingabe: G = (V, E) mit n = |V| und $k \in \mathbb{N}$

Algorithmus: Teste alle Teilmengen von V der Größe k darauf, ob sie eine Clique bilden.

Laufzeit:
$$\Theta\left(\mathsf{poly}(n)\cdot\binom{n}{k}\right) = \Theta\left(\mathsf{poly}(n)\cdot\left(\frac{n}{k}\right)^k\right)$$

Eingabelänge: $O(n^2 + \log k)$

Cliquenproblem

Eingabe: G = (V, E) mit n = |V| und $k \in \mathbb{N}$

Algorithmus: Teste alle Teilmengen von *V* der Größe *k* darauf, ob sie eine Clique bilden.

Laufzeit:
$$\Theta\left(\operatorname{poly}(n)\cdot\binom{n}{k}\right)=\Theta\left(\operatorname{poly}(n)\cdot\left(\frac{n}{k}\right)^k\right)$$

Eingabelänge: $O(n^2 + \log k)$

Laufzeit nur polynomiell, wenn *k* eine Konstante ist.

Rucksackproblem

Eingabe: Nutzenwerte $p_1, \ldots, p_N \in \mathbb{N}$, Gewichte $w_1, \ldots, w_N \in \mathbb{N}$, Kapazität $t \in \mathbb{N}$, Schranke $z \in \mathbb{N}$.

Frage: Gibt es Teilmenge $I \subseteq \{1, \dots, N\}$ der Objekte mit $\sum_{i \in I} w_i \le t$ und $\sum_{i \in I} p_i \ge z$.

Rucksackproblem

Eingabe: Nutzenwerte $p_1, \ldots, p_N \in \mathbb{N}$, Gewichte $w_1, \ldots, w_N \in \mathbb{N}$, Kapazität $t \in \mathbb{N}$, Schranke $z \in \mathbb{N}$.

Frage: Gibt es Teilmenge $I \subseteq \{1, \dots, N\}$ der Objekte mit $\sum_{i \in I} w_i \le t$ und $\sum_{i \in I} p_i \ge z$.

Algorithmus: Dynamische Programmierung mit Laufzeit $O(N^2 W \log P)$ für $W = \max_i w_i$ und $P = \sum_i p_i$.

Rucksackproblem

Eingabe: Nutzenwerte $p_1, \ldots, p_N \in \mathbb{N}$, Gewichte $w_1, \ldots, w_N \in \mathbb{N}$, Kapazität $t \in \mathbb{N}$, Schranke $z \in \mathbb{N}$.

Frage: Gibt es Teilmenge $I \subseteq \{1, \dots, N\}$ der Objekte mit $\sum_{i \in I} w_i \le t$ und $\sum_{i \in I} p_i \ge z$.

Algorithmus: Dynamische Programmierung mit Laufzeit $O(N^2 W \log P)$ für $W = \max_i w_i$ und $P = \sum_i p_i$.

Dies ist i. A. nicht polynomiell, da die Eingabegröße mit $\log W$ wächst und nicht mit W.

4 Komplexitätstheorie

4 Komplexitätstheorie

- 4.1 Die Klassen P und NP
 - 4.1.1 Die Klasse P
 - 4.1.2 Die Klasse NP
 - 4.1.3 P versus NP
- 4.2 NP-Vollständigkeit
- 4.3 NP-vollständige Probleme

Definition 2.1

Eine Turingmaschine (TM) M ist ein 7-Tupel $(Q, \Sigma, \Gamma, \square, q_0, \bar{q}, \delta)$, das aus den folgenden Komponenten besteht.

- *Q*, die **Zustandsmenge**, ist eine endliche Menge von **Zuständen**.
- $\Sigma \supseteq \{0,1\}$, das Eingabealphabet, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \(\bar{q}\) ist der Endzustand.
- $\delta: (Q \setminus \{\bar{q}\}) \times \Gamma \to Q \times \Gamma \times \{L, N, R\}$ ist die **Zustandsüberführungsfunktion**.

Definition 4.3

Eine nichtdeterministische Turingmaschine (NTM) M ist ein

7-Tupel $(Q, \Sigma, \Gamma, \Box, q_0, \bar{q}, \delta)$, das aus den folgenden Komponenten besteht.

- *Q*, die **Zustandsmenge**, ist eine endliche Menge von **Zuständen**.
- $\Sigma \supseteq \{0,1\}$, das **Eingabealphabet**, ist eine endliche Menge von Zeichen.
- $\Gamma \supseteq \Sigma$, das Bandalphabet, ist eine endliche Menge von Zeichen.
- $\square \in \Gamma \setminus \Sigma$ ist das Leerzeichen.
- $q_0 \in Q$ ist der Startzustand.
- \bar{q} ist der Endzustand.
- $\delta \subseteq ((Q \setminus \{\bar{q}\}) \times \Gamma) \times (Q \times \Gamma \times \{L, N, R\})$ ist die **Zustandsüberführungsrelation**.

Rechenbaum einer Turingmaschine:

Konfiguration = Zustand, Bandinhalt, Kopfposition

Wurzel

= Startkonfiguration

Kante

= erlaubter Übergang

Blatt

= Konfiguration ohne erlaubten Übergang in δ

Rechenweg = Weg von der Wurzel zu einem Blatt

Definition 4.4

Eine NTM M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn es Rechenweg von M gibt, der bei Eingabe w zu einer akzeptierenden Endkonfiguration führt.

Eingabe wird akzeptiert

Definition 4.4

Eine NTM M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn es Rechenweg von M gibt, der bei Eingabe w zu einer akzeptierenden Endkonfiguration führt.

Eingabe wird nicht akzeptiert

Definition 4.4

Eine NTM M akzeptiert eine Eingabe $w \in \Sigma^*$, wenn es Rechenweg von M gibt, der bei Eingabe w zu einer akzeptierenden Endkonfiguration führt.

Sei $L(M) \subseteq \Sigma^*$ die Menge der von M akzeptierten Eingaben. M entscheidet die Sprache L(M), wenn sie für jede Eingabe auf jedem Rechenweg hält.

Eingabe wird nicht akzeptiert

Definition 4.5

Die Laufzeit $t_M(w)$ einer nichtdeterministischen Turingmaschine M auf einer Eingabe $w \in \Sigma^*$ ist definiert als die Länge des längsten Rechenweges von M bei Eingabe w.

Laufzeit = 5

Definition 4.5

Die Laufzeit $t_M(w)$ einer nichtdeterministischen Turingmaschine M auf einer Eingabe $w \in \Sigma^*$ ist definiert als die Länge des längsten Rechenweges von M bei Eingabe w.

Gibt es bei Eingabe w einen Rechenweg, auf dem M nicht terminiert, so ist die Laufzeit unendlich.

Laufzeit = 5

Definition 4.5

Die Laufzeit $t_M(w)$ einer nichtdeterministischen Turingmaschine M auf einer Eingabe $w \in \Sigma^*$ ist definiert als die Länge des längsten Rechenweges von M bei Eingabe w.

Gibt es bei Eingabe w einen Rechenweg, auf dem M nicht terminiert, so ist die Laufzeit unendlich.

Sei $t_M(n) = \max_{w \in \Sigma^n} t_M(w)$ die Worst-Case-Laufzeit für Eingaben der Länge $n \in \mathbb{N}$.

Laufzeit = 5

Definition 4.6

Ein Entscheidungsproblem L gehört genau dann zu der Komplexitätsklasse NP, wenn es eine nichtdeterministische Turingmaschine M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

Definition 4.6

Ein Entscheidungsproblem L gehört genau dann zu der Komplexitätsklasse NP, wenn es eine nichtdeterministische Turingmaschine M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

NP wurde nicht mit dem Ziel definiert, ein physikalisch realisierbares Rechnermodell zu finden, sondern als theoretisches Hilfsmittel.

Definition 4.6

Ein Entscheidungsproblem L gehört genau dann zu der Komplexitätsklasse NP, wenn es eine nichtdeterministische Turingmaschine M gibt, die L entscheidet, und eine Konstante $k \in \mathbb{N}$, für die $t_M(n) = O(n^k)$ gilt.

NP wurde nicht mit dem Ziel definiert, ein physikalisch realisierbares Rechnermodell zu finden, sondern als theoretisches Hilfsmittel.

Theorem 4.7

Die Entscheidungsvarianten des Cliquenproblems und des Rucksackproblems gehören zu NP.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0,1\}^n$ nichtdeterministisch schreiben. Interpretiere x als Knotenauswahl $V' \subseteq V$.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0,1\}^n$ nichtdeterministisch schreiben.

Interpretiere x als Knotenauswahl $V' \subseteq V$.

Phase 2: Akzeptiere genau dann, wenn V' die Größe k besitzt und eine Clique in G ist.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0,1\}^n$ nichtdeterministisch schreiben.

Interpretiere x als Knotenauswahl $V' \subseteq V$.

Phase 2: Akzeptiere genau dann, wenn V' die Größe k besitzt und eine Clique in G ist.

Laufzeit ist polynomiell.

Beweis: Wir starten mit dem Cliquenproblem.

Eingabe: ungerichteter Graph G = (V, E), Zahl $k \in \mathbb{N}$

Frage: Existiert in *G* eine *k*-Clique?

Konstruiere polynomielle NTM M, die CLIQUE entscheidet.

Phase 1: Schreibe n = |V| Rauten, bewege Kopf auf erste Raute, wechsel in Zustand q.

NTM kann jede Zeichenkette aus $x \in \{0, 1\}^n$ nichtdeterministisch schreiben.

Interpretiere x als Knotenauswahl $V' \subseteq V$.

Phase 2: Akzeptiere genau dann, wenn V' die Größe k besitzt und eine Clique in G ist.

Laufzeit ist polynomiell.

Es gibt k-Clique in G. \iff Es gibt akzeptierenden Rechenweg von M.