THÉORIE DES GRAPHES

Polytech Tours 2018-2019

Plan

V. Flots

- 1. Définitions et propriétés
- 2. Le lemme des arcs colorés
- 3. Le problème du flot maximum
- 4. Le problème du flot compatible
- 5. Le problème du flot à coût minimum

V.1 Définitions et propriétés

V.1 Définitions et propriétés

Soit G = [X, U] un graphe connexe orienté.

• Un flot dans G est un vecteur à M composantes

$$\varphi=(\varphi_1,\varphi_2,\ldots,\varphi_M)\in\mathbb{R}^M \text{ tel que}$$

$$\forall i\in X$$

$$\sum_{u\in\omega^+(i)}\varphi_u=\sum_{u\in\omega^-(i)}\varphi_u$$

Autrement dit, en tout sommet, la somme des flots qui entrent est égale à la somme des flots qui sortent (1 ère loi Kirchhoff).

• Pour un arc $u \in U$, la composante u du vecteur φ notée $\frac{\varphi_u}{q}$ est appelée la quantité de flot sur l'arc u.

J-C. BILLAUT Cours de théorie des graphes 2018-19

5

V.1 Définitions et propriétés

Exemple

V.1 Définitions et propriétés

Soit $A=(a_{i,j})$ la matrice d'incidence sommets-arcs du graphe G=[X,U].

- A chaque sommet $i \in X$ on a
 - $-\omega^+(i) = \{u \in U, a_{i,u} = +1\}$
 - $\omega^{-}(i) = \{u \in U, a_{i,u} = -1\}$
- La loi de conservation des flux aux nœuds peut s'écrire

$$A. \varphi = 0$$

Preuve V.1

V.2 Le lemme des arcs colorés

V.2 Le lemme des arcs colorés

Minty G.J., On the axiomatic foundations of the theories of directed linear graphs, electrical networks and network-programming, J. Math. and Mechanics 15 (1966), 485–520.

V.2 Le lemme des arcs colorés

- On considère un graphe G quelconque.
- On affecte une couleur arbitraire parmi {noir, rouge, vert} à chaque arc, certains pouvant rester incolores.

Supposons qu'il existe un arc **noir** u_0 .

- Alors, un et un seul des deux cas suivants est vrai:
 - a) par u_0 , il passe un **cycle** avec tous les arcs **noirs** dans le sens de u_0 , tous les arcs **verts** dans le sens opposé, les arcs **rouges** dans un sens quelconque, et sans arc **incolore**, ou
 - b) par u_0 , il passe un **cocycle** avec tous les arcs **noirs** dans le sens de u_0 , tous les arcs **verts** dans le sens opposé, les arcs **incolores** dans un sens quelconque, et sans arc **rouge**.

V.2 Le lemme des arcs colorés : illustration

V.2 Le lemme des arcs colorés : illustration

V.2 Le lemme des arcs colorés : illustration

V.2 Le lemme des arcs colorés: illustration

V.2 Le lemme des arcs colorés : preuve V.2

V.3 Le problème du flot maximum

V.3 Le problème du flot maximum

- Un flot peut être recherché dans un graphe quelconque.
- Soit $s \in X$ un sommet sans prédécesseur appelé source.
- Soit $t \in X$ un sommet sans successeur appelé **puits**.
- Soit $G^0 = [X, U^0]$ avec $U^0 = U \cup \{(t, s)\}$ où l'arc (t, s) est appelé <mark>l'arc de retour du flot</mark>. On lui attribue le numéro 0.

V.3 Le problème du flot maximum

• On dit que $\varphi = (\varphi_1, \varphi_2, ..., \varphi_M)$ est **un flot de s à t dans G** si et seulement si les lois de conservation aux nœuds sont vérifiées en tous les sommets de G, sauf aux sommets S et C où on a :

$$\sum_{u \in \omega^+(s)} \varphi_u = \sum_{u \in \omega^-(t)} \varphi_u = \varphi_0$$

• On appelle φ_0 la valeur du flot.

18

V.3 Le problème du flot maximum

- On remarque que si $\varphi = (\varphi_1, \varphi_2, ..., \varphi_M)$ est un flot de s à t dans G, de valeur φ_0 , alors $\varphi' = (\varphi_0, \varphi_1, ..., \varphi_M)$ est un flot dans G^0 .
- On appelle **réseau de transpor**t, un graphe G = [X, U] où chaque arc $u \in U$ est muni d'un nombre $c_u \ge 0$, appelé la capacité de l'arc u (par la suite on la suppose entière).
- Un flot compatible est un flot $\varphi=(\varphi_1,\varphi_2,...,\varphi_M)$ vérifiant les contraintes de capacité

$$0 \le \varphi_u \le c_u$$
, $\forall u = 1, ..., M$

V.3 Le problème du flot maximum

• Le problème du flot maximum de s à t dans G, muni des capacités c_u revient à déterminer un flot $\varphi'=(\varphi_0,\varphi_1,...,\varphi_M)$ compatible dans G^0 , i.e. vérifiant les contraintes de capacité

$$0 \le \varphi_u \le c_u, \forall u = 1, ..., M$$

et tel que la composante φ_0 sur l'arc de retour soit maximale

V.3 Le problème du flot maximum

Exemple

V.3 Le problème du flot maximum

Définition

• On appelle coupe séparant s et t un ensemble d'arcs de la forme $\omega^+(A)$ où $A \subset X$ est un sous-ensemble de sommets tel que $s \in A$ et $t \notin A$.

• La capacité de la coupe $\omega^+(A)$ est la somme des capacités des arcs de la

coupe.

V.3 Le problème du flot maximum

Lemme

• La valeur maximale d'un flot de s à t dans G compatible avec les capacités n'excède jamais la capacité d'une coupe séparant s et t.

Preuve V.3

V.3 Le problème du flot maximum

Corollaire 1

• Si un flot φ et une coupe $\omega^+(A)$ sont tels que la valeur φ_0 du flot est égale à la capacité de la coupe, alors φ est un flot maximum de s à t et $\omega^+(A)$ est une coupe de capacité minimale séparant s et t.

Corollaire 2

 Une CNS pour que le problème du flot maximum de s à t dans G ait une solution de valeur finie, est qu'il n'existe pas de chemin de capacité infinie entre s et t.

V.3 Le problème du flot maximum

Théorème du flot maximum et de la coupe minimale

• La valeur maximale d'un flot φ de s à t dans G muni des capacités c_u est égale à la capacité d'une coupe de capacité minimale séparant s et t.

Preuve V.4

V.3 Le problème du flot maximum

Définition

- Soit $\varphi = (\varphi_1, \varphi_2, ..., \varphi_M)$ un flot de s à t dans G = [X, U] compatible avec les capacités c_u , i.e. $0 \le \varphi_u \le c_u$, $\forall u = 1, ..., M$.
- Le **graphe d'écart de** G associé à φ est le graphe $\bar{G}(\varphi) = [X, \bar{U}(\varphi)]$ ayant les mêmes sommets que G et dont l'ensemble des arcs $\bar{U}(\varphi)$ est constitué de la façon suivante :
 - Si $u=(i,j)\in U$ et si $\varphi_u< c_u$ Alors $u^+=(i,j)\in \overline{U}(\varphi)$ et $c_{u^+}=c_u-\varphi_u$
 - Si $u=(i,j)\in U$ et si $\varphi_u>0$ Alors $u^-=(j,i)\in \overline{U}(\varphi)$ et $c_{u^-}=\varphi_u$
- Les capacités c_{u^+} et c_{u^-} sont appelées les <mark>capacités résiduelles</mark>

V.3 Le problème du flot maximum

Exemple

V.3 Le problème du flot maximum

Théorème du flot maximum et de la coupe minimale

- Soit φ un flot de s à t compatible avec les capacités c_u .
- Soit $\bar{G}(\varphi)$ le graphe d'écart associé à φ .
- Une condition nécessaire et suffisante pour que le flot φ soit maximal est qu'il n'existe pas de chemin de s à t dans $\bar{G}(\varphi)$.

Preuve admise (simple)

V.3 Le problème du flot maximum

Ford et Fulkerson, 1956

Max flow

Lester Randolph Ford Jr. 1927 – 2017

Delbert Ray Fulkerson 1924 – 1976

Lester R. Ford et Delbert R. Fulkerson, « Maximal flow through a network », Canadian journal of Mathematics, vol. 8, no 3, 1956, p. 399-404.

V.3 Le pr

Ford et Fulkerson, 1956

- $k \leftarrow 0$, Fin \leftarrow Faux
- Partir d'un flot initial $\varphi^{(0)}$ compatible avec les contraintes de capacité (par exemple $\varphi^{(0)}=(0,0,...,0)$)
- Répéter
 - Soit $\varphi^{(k)}$ le flot courant, rechercher un chemin $\pi^{(k)}$ de s à t dans $\bar{G}(\varphi^{(k)})$
 - Si un tel chemin n'existe pas Alors Fin \leftarrow Vrai
 - Sinon
 - Soit $\varepsilon^{(k)}$ la capacité résiduelle du chemin $\pi^{(k)}$ (minimum des capacités résiduelles du chemin)
 - On définit $\varphi^{(k+1)}$ de la façon suivante

•
$$\varphi_u^{(k+1)} \leftarrow \varphi_u^{(k)} \text{ si } u \notin \pi^{(k)}$$

•
$$\varphi_u^{(k+1)} \leftarrow \varphi_u^{(k)} + \varepsilon^{(k)}$$
 si $u \in \pi^{(k)}$ est un arc u^+

•
$$\varphi_u^{(k+1)} \leftarrow \varphi_u^{(k)} - \varepsilon^{(k)}$$
 si $u \in \pi^{(k)}$ est un arc u^-

- Finsi
- $k \leftarrow k + 1$
- <u>Jusqu'à</u> Fin = Vrai

30

V.3 Le problème du flot maximum

Exemple

V.3 Le problème du flot maximum

- On considère maintenant un graphe G = [X, U] où chaque arc $u \in U$ est muni de deux nombres $b_u \ge 0$ et $c_u \ge 0$, où b_u est appelée la borne inférieure de capacité de l'arc u, c_u restant la borne supérieure de capacité de l'arc u.
- Un flot φ est compatible s'il vérifie

$$b_u \le \varphi_u \le c_u$$
, $\forall u = 1, ..., M$

- L'algorithme de Ford et Fulkerson reste valable, à condition de modifier la définition du graphe d'écart. L'ensemble des arcs $\overline{U}(\varphi)$ est constitué de la façon suivante :
 - Si $u=(i,j)\in U$ et si $\varphi_u< c_u$ Alors $u^+=(i,j)\in \overline{U}(\varphi)$ et $c_{u^+}=c_u-\varphi_u$
 - Si $u=(i,j)\in U$ et si $\varphi_u>b_u$ Alors $u^-=(j,i)\in \overline{U}(\varphi)$ et $c_{u^-}=\varphi_u-b_u$

V.3 Le problème du flot maximum

Remarque:

- Cette généralisation suppose que l'on connaisse un flot initial compatible avec les contraintes de capacité.
- Le flot nul n'est pas nécessairement compatible.

V.3 Le problème du flot maximum

Remarque:

- Cette généralisation suppose que l'on connaisse un flot initial compatible avec les contraintes de capacité.
- Le flot nul n'est pas nécessairement compatible.

Un flot compatible n'existe pas toujours!

V.4 Le problème du flot compatible

V.4 Le problème du flot compatible

- Soit G = [X, U] un graphe connexe orienté.
- On associe à chaque arc $u \in U$ deux nombres b_u et c_u tels que $b_u \le c_u$.
- Le problème du flot compatible consiste à trouver un flot φ dans G compatible avec les contraintes de capacité :

$$b_u \le \varphi_u \le c_u$$
, $\forall u = 1, ..., M$

<u>Proposition</u>

• L'existence d'un flot compatible n'est pas toujours assurée

$$\exists \varphi \text{ compatible} \Rightarrow \forall A \subset X, \sum_{u \in \omega^+(A)} c_u - \sum_{u \in \omega^-(A)} b_u \geq 0$$

Autrement dit:

$$\exists A \subset X$$
, $\sum_{u \in \omega^+(A)} c_u - \sum_{u \in \omega^-(A)} b_u < 0 \Rightarrow \forall \varphi$, φ non compatible

V.4 Le problème du flot compatible

• Preuve V.5

V.4 Le problème du flot compatible

Jean-Claude Herz

Herz JC (1967). Cours de théorie des graphes. Faculté des Sciences de Lille

V.4 Le problème du flot compatible

- Soit φ un flot quelconque dans G.
- ullet On appelle **distance de arphi_u à l'intervalle [oldsymbol{b_u}, oldsymbol{c_u}] le nombre d_u(arphi_u) défini par**
 - $-d_u(\varphi_u)=0$ si $\varphi_u\in[b_u,c_u]$
 - $-d_u(\varphi_u) = b_u \varphi_u \text{ si } \varphi_u < b_u$
 - $d_u(\varphi_u) = \varphi_u c_u \text{ si } \varphi_u > c_u$

- L'idée est de chercher à minimiser la quantité $d(\varphi) = \sum_{u \in U} d_u(\varphi_u)$.
- Si on trouve un flot φ tel que $d(\varphi)=0$, alors un flot compatible est trouvé et la procédure s'arrête.

V.4 Le problème d

- A chaque itération on cherche un cycle Noir-Rouge-Vert.
- Si un tel cycle existe, on modifie le flot, le nouveaux flot a une distance inférieure au précédent.
- Si un tel cycle n'existe pas, alors il n'existe pas de flot compatible.
- Preuve V.6

Herz, 1967

- $k \leftarrow 0$, Fin \leftarrow Faux
- Partir d'un flot initial $\varphi^{(0)}$ (par exemple $\varphi^{(0)} = (0,0,...,0)$)
- Répéter
 - Sélectionner un arc u_0 tel que $\varphi_{u_0} < b_{u_0}$
 - Colorer les arêtes en Noir, Rouge, Vert, selon la valeur du flot et l'intervalle:
 - u_0 est Noir
 - Si $\varphi_u \leq b_u$ Alors u est Noir
 - Si $\varphi_u \ge c_u$ Alors u est Vert
 - Si $b_u < \varphi_u < c_u$ Alors u est Rouge
 - Chercher un cycle Noir-Rouge-Vert passant par u_0
 - Si un tel cycle n'existe pas Alors Fin \leftarrow Vrai
 - Sinon
 - Soit $\vec{\mu}$ le vecteur associé au cycle avec $\mu_{u_0} = +1$
 - On calcule $\varepsilon = \min(\varepsilon_1, \varepsilon_2)$ avec $\varepsilon_1 = \min_{u \in \mu^+} (c_u \varphi_u)$ et $\varepsilon_2 = \min_{u \in \mu^-} (\varphi_u b_u)$
 - On met à jour le flot : $\vec{\varphi} \leftarrow \vec{\varphi} + \varepsilon \vec{\mu}$
 - Finsi
- <u>Jusqu'à</u> Fin = Vrai

V.4 Le problème du flot compatible

Théorème (Hoffman, 1960)

Soit G = [X, U] un graphe connexe orienté.

On associe à chaque arc $u \in U$ deux nombres b_u et c_u tels que $b_u \leq c_u$.

- Une condition nécessaire et suffisante pour qu'il existe un flot compatible est que

$$\sum_{u \in \omega^+(A)} c_u - \sum_{u \in \omega^-(A)} b_u \ge 0$$

pour tout cocycle $\omega(A) = \omega^{+}(A) \cup \omega^{-}(A)$

Preuve V.7

V.4 Le problème du flot compatible

Berge et Ghouila-Houri, 1962 Flot compatible

Claude Berge 1926 – 2002

C. Berge, H. Ghouila-Houri (1962). Programmes, jeux et réseaux de transport, Dunod, Paris

V.4 Le problème du flot compatible

Soit G = [X, U] un graphe connexe orienté.

On associe à chaque arc $u \in U$ deux nombres b_u et c_u tels que $0 \le b_u \le c_u$.

- On va ramener la recherche d'un flot compatible dans G à la recherche d'un flot maximum de G à G dans un graphe G construit à partir de G.
- Définition de G' = [X', U']
 - $X' = X \cup \{s, t\}$
 - Si $u = (i, j) \in U$ et $b_u \ge 0$:
 - $u = (i, j) \in U' \text{ et } c'_u = c_u b_u$
 - $v = (i, t) \in U' \text{ et } c'_v = b_u$
 - $w = (s,j) \in U' \text{ et } c'_w = b_u$

V.4 Le problème du flot compatible

Proposition

 Le problème du flot compatible dans G admet une solution si et seulement si le graphe G' admet un flot maximum de s à t saturant tous les arcs entrants

et sortants

Preuve V.8

V.5 Le problème du flot à coût minimum

V.5 Le problème du flot à coût minimum

- On considère G = [X, U] un graphe connexe. On associe à chaque arc u un intervalle réel $[b_u, c_u]$ et un nombre γ_u représentant **le coût de passage** d'une unité de flot sur l'arc u.
- Etant donné un flot φ dans G, le coût total associé est

$$\gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$$

• Le problème du flot à coût minimum est de trouver un flot φ compatible avec les contraintes de capacité, et tel que le coût total soit minimal.

V.5 Le problème du flot à coût minimum

$$MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$$
$$s.t. \ A. \ \varphi = 0$$
$$\varphi \ge b$$
$$\varphi \le c$$

avec A la matrice d'incidence sommets-arcs de G.

V.5 Le problème du flot à coût minimum

Fulkerson, 1961

Flot à coût minimum The out-of-kilter method

Delbert Ray Fulkerson 1924 – 1976

Delbert R. Fulkerson, « An out-of-kilter method for minimal-cost flow problem », Journal of the Society for Industrial and Applied Mathematics, Vol. 9, No. 1 (Mar., 1961), pp. 18-27

V.5 Le problème du flot à coût minimum

$MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$ s.t. $A. \varphi = 0$ $b \le \varphi \le c$

Méthode des arcs non conformes

- A chaque sommet i ∈ X, on associe un nombre π_i appelé potentiel du sommet i.
- On définit le coût réduit d'un arc u = (i, j) par:

$$\overline{\gamma_u} = \gamma_u + \pi_i - \pi_j$$

Autrement dit

$$\bar{\gamma} = \gamma + \pi . A = \gamma - \theta$$

• Avec $\pi = (\pi_i)_{i \in X}$ et $\theta = -\pi$. $A = (\theta_u)_{u \in U}$ la **tension** associée au potentiel π .

Exemple

V.5 Le problème du flot à coût minimum

$MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$ s.t. $A. \varphi = 0$ $b \le \varphi \le c$

Condition suffisante d'optimalité

• Si φ est un flot vérifiant $A. \varphi = 0$ et $b \le \varphi \le c$ et s'il existe une tension $\theta = -\pi.A$ telle que

• (C)
$$\begin{cases} \gamma_u < \theta_u \Rightarrow \varphi_u = c_u \\ \gamma_u > \theta_u \Rightarrow \varphi_u = b_u \\ \gamma_u = \theta_u \Rightarrow b_u \le \varphi_u \le c_u \end{cases}$$

• alors φ est un flot de coût minimum.

Preuve V.9

V.5 Le problème du flot à coût minimum

 $MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$ s.t. $A. \varphi = 0$ $b \le \varphi \le c$

- Pour chaque arc $u \in U$ on trace dans le plan $(0, \varphi_u, \theta_u)$ l'ensemble des points vérifiant les conditions (C).
- Le diagramme C_u est appelé diagramme de conformité de l'arc u.

V.5 Le problème du flot à coût minimum

• Suivant la position du point de coordonnées (φ_u, θ_u) dans le diagramme, on distingue plusieurs types d'arcs

- Type 1 :
$$\theta_u < \gamma_u, \varphi_u = b_u$$

- Type 2 :
$$\theta_u = \gamma_u$$
, $\varphi_u = c_u$

- Type 3 :
$$\theta_u > \gamma_u$$
, $\varphi_u = c_u$

- Type 4 :
$$\theta_u = \gamma_u$$
, $\varphi_u = b_u$

- Type 5 :
$$\theta_u = \gamma_u$$
, $\varphi_u = c_u$

- Type 6 : $\theta_u < \gamma_u$, $\varphi_u < c_u$

- Type 7 : $\theta_u > \gamma_u$, $\varphi_u > b_u$

Arcs conformes

Arcs non conformes

 $MIN \gamma \varphi = \sum \gamma_u \varphi_u$

52

s.t. $A. \varphi = 0$

 $b \le \varphi \le c$

V.5 Le problème du flot à coût minimum

- Si tous les arcs sont conformes, le flot φ est optimum.
- Soit φ un flot compatible et θ une tension.
- L'indice de conformité d'un arc u est défini par:
 - $-(\gamma_u \theta_u)(\varphi_u b_u)$ si u est tel que $\theta_u < \gamma_u$
 - $-(\theta_u \gamma_u)(c_u \varphi_u)$ si u est tel que $\theta_u > \gamma_u$
 - 0 si u est tel que $\theta_u = \gamma_u$
- Lorsque tous les indices de conformité sont nuls, le flot est optimum.

 $MIN \gamma \varphi =$

s.t. $A. \varphi = 0$

V.5 Le problème du flot à coût minimum

$MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$ s.t. $A. \varphi = 0$ $b \le \varphi \le c$

Méthode des arcs non conformes

- La méthode consiste à construire un flot φ et une tension θ tels que pour tout arc u, $(\varphi_u, \theta_u) \in \mathcal{C}_u$
- On part d'un flot initial compatible et d'un ensemble de potentiels, puis on modifie itérativement soit le flot, soit la tension, de façon à n'augmenter aucun indice de conformité et à en diminuer au moins un.
- On associe aux arcs la coloration suivante.

V.5 Le probl

- A chaque itération on cherche un cycle Noir-Rouge-Vert.
- Si un tel cycle existe, on modifie le flot.
- Sinon, on modifie la tension.
- A la nouvelle itération, au moins un indice de conformité a diminué.
- La procédure s'arrête quand tous les arcs sont conformes.

Fulkerson, 1961

- $k \leftarrow 0$, Fin \leftarrow Faux
- Partir d'un flot initial compatible $\varphi^{(0)}$ et d'une tension initiale (par exemple $\theta^{(0)}=(0,0,...,0)$)
- Répéter
 - Sélectionner un arc u_0 de type 6, i.e. tel que $\varphi_{u_0} < c_{u_0}$ et $\theta_{u_0} < \gamma_{u_0}$
 - Si un tel arc n'existe pas, sélectionner un arc de type 5. Si un tel arc n'existe pas non plus, End ←Vrai
 - Colorer les arêtes en Noir, Rouge, Vert, selon la valeur du flot et de la tension
 - Chercher un cycle Noir-Rouge-Vert passant par u_0
 - Si un tel cycle existe Alors
 - Soit $\vec{\mu}$ le vecteur associé au cycle avec $\mu_{u_0} = +1$
 - On calcule $\varepsilon \leftarrow \min(\varepsilon_1, \varepsilon_2)$ avec $\varepsilon_1 \leftarrow \min_{u \in \mu^+} (c_u \varphi_u)$ et $\varepsilon_2 \leftarrow \min_{u \in \mu^-} (\varphi_u b_u)$
 - On met à jour le flot : $\vec{\varphi} \leftarrow \vec{\varphi} + \varepsilon \vec{\mu}$
 - Sinon
 - Soit $\overrightarrow{\omega(A)}$ le vecteur associé au cocycle contenant u_0
 - On calcule $\varepsilon \leftarrow \min(\varepsilon_1, \varepsilon_2)$ avec $\varepsilon_1 \leftarrow \min_{u \in \omega^-(A)} (\theta_u \gamma_u)$ et $\varepsilon_2 \leftarrow \min_{u \in \omega^+(A)} (\gamma_u \theta_u)$
 - On met à jour la tension : $\vec{\theta} \leftarrow \vec{\theta} + \varepsilon \overrightarrow{\omega(A)}$
 - Finsi
- <u>Jusqu'à</u> Fin = Vrai

V.5 Le problème du flot à coût minimum

• Exemple

$$MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$$
 s.t. $A. \varphi = 0$
$$b \leq \varphi \leq c$$

V.5 Le problème du flot à coût minimum

Klein, 1967
Flot à coût minimum

Morton Klein 1926 – 2001

Morton Klein (1967). "A primal method for minimal cost flows with applications to the assignment and transportation problems". Management Science. 14: 205–220

V.5 Le problèr

Klein, 1967

- $k \leftarrow 0$, Fin ← Faux
- Partir d'un flot initial compatible $\varphi^{(0)}$
- Répéter
 - Soit $\varphi^{(k)}$ le flot courant. On construit $\bar{G}(\varphi^{(k)})$ le graphe d'écart relativement à $\varphi^{(k)}$
 - On attribue aux arcs les coûts $\bar{\gamma}$ et les capacités \bar{c} suivantes
 - Si $u = (i, j) \in U$ et si $b_u \le \varphi_u < c_u$ Alors $u^+ = (i, j) \in \overline{U}(\varphi), \overline{\gamma_{u^+}} \leftarrow \gamma_u$ et $\overline{c_{u^+}} \leftarrow c_u \varphi_u$
 - Si $u = (i, j) \in U$ et si $b_u < \varphi_u \le c_u$ Alors $u^- = (j, i) \in \overline{U}(\varphi)$, $\overline{\gamma_{u^-}} \leftarrow -\gamma_u$ et $\overline{c_{u^-}} \leftarrow \varphi_u b_u$
 - Rechercher dans $\bar{G}(\varphi^{(k)})$ un circuit μ de coût négatif relativement aux $\bar{\gamma}$.
 - <u>Si</u> un tel circuit existe <u>Alors</u>
 - Soit $\vec{\mu}$ le vecteur associé au cycle avec $\mu_{u_0} = +1$
 - On calcule $\varepsilon = \min(\overline{c_{i,j}})$ la capacité résiduelle du circuit μ
 - On met à jour le flot : $\overrightarrow{\varphi^{(k+1)}} \leftarrow \overrightarrow{\varphi^{(k)}} + \varepsilon \overrightarrow{\mu}$
 - Sinon Fin ← Vrai
 - Finsi
 - $k \leftarrow k + 1$
- <u>Jusqu'à</u> Fin = Vrai

V.5 Le problème du flot à coût minimum

- Preuve
- Exemple

$$MIN \ \gamma \varphi = \sum_{u \in U} \gamma_u \varphi_u$$
 s.t. $A. \varphi = 0$
$$b \le \varphi \le c$$

V.5 Le problème du flot à coût minimum de s à t avec bornes inférieures nulles

- On considère G = [X, U] un graphe connexe. On associe à chaque arc u une borne supérieure de capacité notée c_u et un nombre γ_u représentant le coût de passage d'une unité de flot sur l'arc u.
- On considère que G possède un sommet source S et un sommet puits t.
- Le **problème du flot de s à t dans G de coût minimum** est de trouver un flot φ de s à t dans G, de valeur $\varphi_0 = v$ donnée, compatible avec les contraintes de capacité, et tel que le coût total soit minimal.

V.5 Le problème du flot à coût minimum de s à t avec bornes inférieures nulles

Busacker & Gowen, 1961

Flot à coût minimum

Robert G. Busacker ??? – ???

Paul J. Gowen ??? –

Busacker RG, Gowen PJ (1960). "A procedure for determining a family of minimal cost network flow patterns", ORO technical report 15, Johns Hopkins University.

V.5 Le problèm : inférieures nulle

• L'intérêt de cet algorithme est qu'il permet de déterminer la famille de tous les flots de coût minimum, de s à t, et de valeurs φ_0 allant de 0 jusqu'au flot maximum.

Busacker et Gowen, 1961

- $k \leftarrow 0, \varphi^{(0)} \leftarrow (0, ..., 0), \text{ Fin } \leftarrow \text{Faux}$
- Répéter
 - Soit $\varphi^{(k)}$ le flot courant de valeur $\varphi^{(k)}_0$ et de coût minimum. On construit $\bar{G}(\varphi^{(k)})$ le graphe d'écart relativement à $\varphi^{(k)}$
 - On attribue aux arcs les coûts $\bar{\gamma}$ et les capacités \bar{c} suivantes
 - Si $u = (i, j) \in U$ et si $0 \le \varphi_u < c_u$ Alors $u^+ = (i, j) \in \overline{U}(\varphi), \overline{\gamma_{u^+}} \leftarrow \gamma_u$ et $\overline{c_{u^+}} \leftarrow c_u \varphi_u$
 - Si $u = (i,j) \in U$ et si $0 < \varphi_u \le c_u$ Alors $u^- = (j,i) \in \overline{U}(\varphi), \overline{\gamma_{u^-}} \leftarrow -\gamma_u$ et $\overline{c_{u^-}} \leftarrow \varphi_u b_u$
 - Rechercher dans $\bar{G}(\varphi^{(k)})$ un chemin μ de s à t de coût minimum relativement aux $\bar{\gamma}$.
 - <u>Si</u> un tel chemin existe <u>Alors</u>
 - On calcule $\varepsilon = \min(\overline{c_{i,i}})$ la capacité résiduelle du chemin
 - On met à jour le flot pour les arcs du chemin
 - $\varphi_{u+}^{(k+1)} \leftarrow \varphi_{u+}^{(k)} + \varepsilon$ pour les arcs u^+ du chemin μ
 - $\varphi_{u-}^{(k+1)} \leftarrow \varphi_{u-}^{(k)} \varepsilon$ pour les arcs u^- du chemin μ
 - Sinon Fin ← Vrai
 - Finsi
 - *k* ← *k* + 1
- <u>Jusqu'à</u> Fin = Vrai

V.5 Le problème du flot à coût minimum de s à t avec bornes

inférieures nulles

• Exemple

