## Notes in

# Field Theory

Ву

Jun Wei Tan

Julius-Maximilians-Universität Würzburg

# Contents

#### Introduction

### 1.1 The Path Integral

## 1.2 The Grassman Algebra

#### 1.2.1 Introduction

Because every operator can be written in the formalism of second quantisation as a product of creation and annihilation operators, coherent states turn these operators into scalars, which are then easier to deal with. We define a fermionic coherent state by the usual equation

$$a_k |\phi\rangle = \phi_k |\phi\rangle$$
.

Because annihilation operators for different k anticommute rather than commute, we must have

$$\phi_i \phi_i = -\phi_i \phi_i$$
.

Thus, the  $\phi_i$ s cannot be part of a field, because they must anticommute rather than commute! We define the Grassman algebra to be generated by n generators  $\xi_i$ , with the basis coming from all products  $\xi_i \xi_j$  etc. We will assume that there is an even number of generators, and to each generator  $\xi_i$  we assign an inversion  $(\xi_i)^* = \xi_j$  such that the inversion satisfies  $(\xi^*)^* = \xi$  and  $(\xi_i \xi_j)^* = \xi_j^* \xi_i^*$ .

Because of the anticommutativity, we have  $\xi^2 = -\xi^2 = 0$  for all Grassman numbers  $\xi$ . Explicitly, we can

Because of the anticommutativity, we have  $\xi^{\tilde{2}} = -\xi^{\tilde{2}} = 0$  for all Grassman numbers  $\xi$ . Explicitly, we can construct the Grassman algebra as the exterior algebra on some differential forms. Thus, all analytic functions can be expressed in terms of their Taylor series

$$f(\xi) = f_0 + f_1 \xi.$$

All operators are then bilinear:

$$A(\xi^*, \xi) = a_0 + a_1 \xi + a_2 \xi^* + a_{12} \xi^* \xi.$$

We define the derivatives to be equal to the integral

$$\frac{\partial}{\partial \xi} f(\xi) = f_1 = \int d\xi \, f(\xi).$$

Notably, we work in spirit analogously to the Wirtinger derivatives, and let  $\xi$  and  $\xi^*$  be independent. For reasons of anticommutativity, we require that the derivative be next to  $\xi$  in order to act on it, for example

$$\frac{\partial}{\partial \xi}(\xi^*\xi) = \frac{\partial}{\partial \xi}(-\xi\xi^*) = -\xi^*.$$

Next, we seek to deal with Gaussian integrals. We will see how they pop up later; for now, it suffices to say that the partition function is the integral of an exponential. After substituting in the fermionic coherent states, we will get something that looks like a Gaussian integral. The desired result is

#### Gaussian Integrals

$$\int \pi_{\alpha} d\xi_{\alpha}^* d\xi_{\alpha} \exp \left[ -\sum_{\alpha,\beta} \xi_{\alpha}^* M_{\alpha,\beta} \xi_{\alpha} + \sum_{\alpha} \left( J_{\alpha}^* \xi_{\alpha} + \xi_{\alpha}^* J_{\alpha} \right) \right] = \det(M) \exp \left( \sum_{\alpha,\beta} J_{\alpha}^* (M^{-1})_{\alpha,\beta} J_{\beta} \right)$$

where the Js are Grassman variables and M is Hermitian.

We show this by diagonalising  $\lambda = (\lambda_i)_{ii} = UMU^{\dagger}$ . Then,

$$\begin{split} -\xi^{\dagger}M\xi + J^{\dagger}\xi + \xi^{\dagger}J &= -\xi^{\dagger}U^{\dagger}\lambda U\xi + J^{\dagger}U^{\dagger}U\xi + \xi^{\dagger}U^{\dagger}UJ \\ &= \sum_{\alpha} (-\lambda_{\alpha}\eta_{\alpha}^{*}\eta_{\alpha} + \tilde{J}_{\alpha}^{\dagger} + \eta_{\alpha} + \eta_{\alpha}^{\dagger}\tilde{J}_{\alpha} \end{split}$$

and hence the integral simplifies to

$$\int \prod_{\alpha} d\eta_{\alpha}^{\dagger} d\eta_{\alpha} \exp \left[ \sum_{\alpha} -\lambda_{\alpha} \eta_{\alpha}^{\dagger} \eta_{\alpha} + \tilde{J}_{\alpha}^{*} \eta_{\alpha} + \eta_{\alpha}^{*} \tilde{J}_{\alpha} \right]$$

$$= \prod_{\alpha} \int d\eta_{\alpha}^{\dagger} d\eta_{\alpha} \exp \left[ -\lambda \eta_{\alpha}^{\dagger} \eta_{\alpha} \right] \exp \left[ J_{\alpha}^{*} \eta_{\alpha} + \eta_{\alpha}^{*} J_{\alpha} \right]$$

$$= \det(M) \exp(J^{\dagger} M^{-1} J)$$

#### 1.2.2 Wick's Theorem

Now, we are in a good position to prove Wick's theorem, the statement of which is

#### Wick's Theorem

$$\frac{\int \prod_{\alpha} d\psi_{\alpha}^* d\psi_{\alpha} e^{-\sum_{i,j} \psi_i^* M_{ij} \psi_j + \sum_i (J_i^* \psi_i + \psi_i^* J_i)}}{\int \prod_{\alpha} d\psi_{\alpha}^* d\psi_{\alpha} e^{-\sum_{i,j} \psi_i^* M_{ij} \psi_j}} = \sum_{P} \zeta^P M_{i_{P_n},j_n}^{-1} \dots M_{i_{P_1},j_1}^{-1}.$$

To do so, we consider the generating function

$$G(J^*, J) = \frac{\int \prod_{\alpha} d\psi_{\alpha}^* d\psi_{\alpha} e^{-\sum_{i,j} \psi_i^* M_{ij} \psi_j + \sum_i (J_i^* \psi_i + \psi_i^* J_i)}}{\int \prod_{\alpha} d\psi_{\alpha}^* d\psi_{\alpha} e^{-\sum_{i,j} \psi_i^* M_{ij} \psi_j}} = e^{\sum_{i,j} J_i^* (M^{-1})_{i,j} J_j}$$

(note that the action of dividing is to take away the  $\det M$ ). We differentiate the first line