Assignment 3

Silvan Robert Adrian - zlp432

December 10, 2018

Contents

1	The	e Role of Independence
2	To	Split or Not To Split? (And How to Split.)
	2.1	Question 1
	2.2	Question 2
	2.3	Question 3
	2.4	Question 4
3	Occ	eam's Razor
	3.1	Question 1
	3.2	Question 2
		Question 3
4	Ker	rnels
	4.1	Sum of kernels
	4.2	Rank of Gram matrix

1 The Role of Independence

2 To Split or Not To Split? (And How to Split.)

2.1 Question 1

The hypothesis space $\mathcal{H} = \{h_1, ..., h_M\}$ is finite in this question, which means $|\mathcal{H}| = M$ for which we can use **Theorem 3.2** from which we conclude with probability $1 - \delta$ for all $h \in \mathcal{H}$

$$L(\hat{h}^*) \le \hat{L}(\hat{h}^*, S_{val}) + \sqrt{\frac{\ln \frac{M}{\delta}}{2n}}$$
(1)

where n is equal to $|S_{val}|$, when we insert that we end up in the following:

$$L(\hat{h}^*) \le \hat{L}(\hat{h}^*, S_{val}) + \sqrt{\frac{\ln \frac{M}{\delta}}{2|s_{val}|}}$$
(2)

2.2 Question 2

So first let S_{val}^* be the validation set with which we are testing the hypothesis \hat{h}^* on which we pick. According to our fellow student we test a single hypothesis \hat{h}^* on S_{val}^* and the splitting of the validation set described as $|S_{val}^*| = \frac{n}{M}$. So we can use **Theorem 3.1** to conclude with probability $1 - \delta$ for all $h \in \mathcal{H}$

$$L(\hat{h}^*) \le \hat{L}(\hat{h}^*, S_{val}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2\frac{n}{M}}} = \hat{L}(\hat{h}^*, S_{val}) + \sqrt{\frac{M \ln \frac{1}{\delta}}{2n}}$$
 (3)

No it wasn't a good idea, since the bound is growing linear with M instead of logarithmically.

2.3 Question 3

a) Again we only test a single hypothesis, namely \hat{h}^* , on S_{val}^2 . This time we have that $|S_{val}^2| = \frac{n}{2}$. Therefore, we can use **Theorem 3.1** to conclude that with probability $1 - \delta$ for all $h \in \mathcal{H}$

$$L(\hat{h}^*) \le \hat{L}(\hat{h}^*, S_{val}) + \sqrt{\frac{\ln \frac{1}{\delta}}{2\frac{n}{2}}} = \hat{L}(\hat{h}^*, S_{val}) + \sqrt{\frac{\ln \frac{1}{\delta}}{n}}$$
 (4)

b)

rewrite Assume that my fellow student followed this procedure, and I followed the procedure in question 1. Let \hat{h}^* be the hypothesis that I end up choosing, and let \tilde{h}^* be the hypothesis my fellow student chooses. Where I am using the full S_{val} to choose \hat{h}^* , my fellow student is only using S^1_{val} to choose \tilde{h}^* . Therefore, we cannot not be sure that $\hat{h}^* = \tilde{h}^*$. Apart from not knowing whether we choose the same hypothesis, we also do not test our chosen hypothesis on the same set. Where I am using S_{val} , my fellow student is using S^2_{val} . All in all, it is therefore not very easy to tell know how close my empirical error $\hat{L}(\hat{h}^*, S_{val})$ is to the empirical error $\hat{L}(\tilde{h}^*, S_{val}^2)$ of my fellow student. However, we can say that I have a higher probability of choosing the hypothesis h_i in \mathcal{H} with the lowest expected loss $L(h_i)$, since I am using a bigger validation set to inform my decision.

If we assume that $\hat{L}(\hat{h}^*, S_{val}) = \hat{L}(\tilde{h}^*, S_{val}^2)$, then we know that my bound is tighter than my fellow student's, if and only if

$$\sqrt{\frac{\ln\frac{M}{\delta}}{2n}} < \sqrt{\frac{\ln\frac{1}{\delta}}{n}} \tag{5}$$

This is equivalent to

$$\ln \frac{M}{\delta} < 2 \ln \frac{1}{\delta} \tag{6}$$

which is equivalent to

$$\frac{M}{\delta} < \left(\frac{1}{\delta}\right)^2 \tag{7}$$

which is equivalent to

$$M\delta < 1$$
 (8)

This means that under the assumption that $\hat{L}(\hat{h}^*, S_{val}) = \hat{L}(\tilde{h}^*, S_{val}^2)$, then if we for instance wanted a certainty $1 - \delta = 0.95$, then my procedure would have a tighter bound, if and only if M < 20.

As I had already said, then even if we had a big M, my fellow student would still be less certain than me of picking the best hypothesis in \mathcal{H} , which is a drawback of his method.

2.4 Question 4

As I have already explained in question 3, then choosing a large α - and thereby a large validation set S^1_{val} - means having a better chance of choosing the hypothesis in \mathcal{H} , which actually has the lowest expected loss, as \hat{h}^* . This also means that we should expect a lower empirical loss $L(\hat{h}^*, S^2_{val})$ on the test set S^2_{val} than if we had used a smaller validation set to choose \hat{h}^* . However, a large α also means a small test set. Therefore, we also get more uncertain how well the empirical loss $L(\hat{h}^*, S^2_{val})$ on the test set reflects the true expected loss $L(\hat{h}^*)$. This can be seen by the fact that the term

$$\sqrt{\frac{\ln\frac{1}{\delta}}{2(1-\alpha)n}}\tag{9}$$

in our bound

$$L(\hat{h}^*) \le = \hat{L}(\hat{h}^*, S_{val}^2) + \sqrt{\frac{\ln \frac{1}{\delta}}{2(1-\alpha)n}}$$
 (10)

grows when α becomes larger. All in all, it therefore not clear whether a larger α will make us choose \hat{h}^* , such that the resulting bound on $L(\hat{h}^*)$ becomes larger or smaller. In general, the larger M becomes, the larger I would also choose α , since a large hypothesis space also means a large probability of accidentally choosing a bad hypothesis as \hat{h}^* , if the validation set is too small.

3 Occam's Razor

3.1 Question 1

Let $d \in \mathbb{N}_0$ and let Σ_d and \mathcal{H}_d be defined as in the assignment text. Σ_d consists of all strings of length d, which can be constructed using letters from the alfabet Σ . Therefore, the size of Σ_d is the number of ways to choose d elements from Σ with replacement. This means that

$$|\Sigma_d| = |\Sigma|^d = 27^d \tag{11}$$

 \mathcal{H}_d consists of all functions $f: \Sigma_d \to \{0,1\}$. There is a one-to-one correspondance between such functions and the subsets of Σ_d . To show this, we can just map any such function f to the subset $A_f = \{s \in \Sigma_d | f(s) = 1\}$, and map any subset A of Σ_d to the function $f_A: \Sigma_d \to \{0,1\}$, where $f_A(s) = 1$, if and only if $s \in A$. Because there is a one-to-one correspondance between the elements of \mathcal{H}_d and the power set $\mathcal{P}(\Sigma_d)$ of Σ_d , then

$$|\mathcal{H}_d| = |\mathcal{P}(\Sigma_d)| = 2^{|\Sigma_d|} = 2^{27^d}$$
 (12)

Since \mathcal{H}_d is finite, we can use **Theorem 3.2** to conclude that with probability $1 - \delta$ for all $h \in \mathcal{H}_d$

$$L(h) \le \hat{L}(h,S) + \sqrt{\frac{\ln\frac{|\mathcal{H}_d|}{\delta}}{2n}} = \hat{L}(h,S) + \sqrt{\frac{\ln\frac{2^{27^d}}{\delta}}{2n}}$$
(13)

where S is some labeled sample of strings from Σ_d , and |S| = n.

Since we have insisted to use a very complex hypothesis space, the size of \mathcal{H}_d grows double exponentially as a function of d. This means that the term

$$\sqrt{\frac{\ln\frac{2^{27^d}}{\delta}}{2n}}\tag{14}$$

grows exponentially as a function of d. Therefore, we would have to choose d quite small or have a very large sample size n in order to get a useful bound in practice.

3.2 Question 2

Let \mathcal{H} be defined as in the assignment text. Since \mathcal{H}_d is finite for all $d \in \mathbb{N}_0$, then \mathcal{H}_d is countable for all $d \in \mathbb{N}_0$. Therefore, \mathcal{H} is a countable union of countable sets, which means that \mathcal{H} is also countable. Therefore, we can use **Theorem 3.3** to conclude that with probability $1 - \delta$ for all $h \in \mathcal{H}$

$$L(h) \le \hat{L}(h, S) + \sqrt{\frac{\ln \frac{1}{p(h)\delta}}{2n}}$$
(15)

where $p: \mathcal{H} \to (0,1)$ is some function defined independently of S with $\sum_{h \in \mathcal{H}} p(h) \leq 1$. What set is S in the context of this question? Any specific hypothis $h \in \mathcal{H}$ belongs to \mathcal{H}_d for some specific $d \in \mathbb{N}_0$. In other words, any $h \in \mathcal{H}$ is only defined for strings of a specific length d. We therefore have a many-to-one mapping $d: \mathcal{H} \to \mathbb{N}_0$, where d(h) is the length of strings that h is defined for. With this frasing of the problem we can say that for each $h \in \mathcal{H}$, S must be a labeled sample of strings from $\Sigma_{d(h)}$. We can also use the function $d: \mathcal{H} \to \mathbb{N}_0$ to define a function $p: \mathcal{H} \to (0,1)$ by

$$p(h) = \frac{1}{2^{d(h)+1}} \frac{1}{2^{27^{d(h)}}} \tag{16}$$

Since $\sum_{d=0}^{\infty} \frac{1}{2^{d+1}} = 1$, then $\sum_{d=0}^{\infty} p(h) \leq 1$. Therefore, we can substitute p(h) in on line (14), by which we get that with probability $1 - \delta$ for all $h \in \mathcal{H}$

$$L(h) \le \hat{L}(h, S) + \sqrt{\frac{\ln \frac{2^{d(h)+1}2^{27^{d(h)}}}{\delta}}{2n}}$$
 (17)

3.3 Question 3

The term

$$\sqrt{\frac{\ln\frac{2^{d(h)+1}2^{27^{d(h)}}}{\delta}}{2n}}\tag{18}$$

grows exponentially as a function of d(h). However, we should also expect the term

$$\hat{L}(h,S) \tag{19}$$

to decrease as a function of d(h), since a h with a higher d(h) uses more information - that is, longer strings - to make its predictions. In terms of picking a h that optimizes the bound, the question is if this decrease outweighs the growth in the other term, also caused by having h defined on longer string lengths.

4 Kernels

Let k be a kernel on input space \mathcal{X} defining the RKHS \mathcal{H} , and let $\Phi : \mathcal{X} \to \mathcal{H}$ be the corresponding feature map. Let $\langle \cdot \rangle$ be the inner product on \mathcal{H} , which has been defined as part of the construction of \mathcal{H} as the RKHS of k.

Let $x, z \in \mathcal{X}$. By definition of the canonical norm on a Hilbert space, we know that

$$||\Phi(x) - \Phi(z)||^2 = \langle \Phi(x) - \Phi(z), \Phi(x) - \Phi(z) \rangle \tag{20}$$

Since any inner product on a Hilbert space must be linear in both arguments, we get that

$$\langle \Phi(x) - \Phi(z), \Phi(x) - \Phi(z) \rangle = \langle \Phi(x), \Phi(x) \rangle + \langle \Phi(z), \Phi(z) \rangle - 2\langle \Phi(x), \Phi(z) \rangle$$
(21)

By line (19-20) we know get that

$$||\Phi(x) - \Phi(z)|| = \sqrt{\langle \Phi(x), \Phi(x) \rangle + \langle \Phi(z), \Phi(z) \rangle - 2\langle \Phi(x), \Phi(z) \rangle}$$
 (22)

By construction of the RKHS of k, we know that for all $x_1, x_2 \in \mathcal{X}$

$$k(x_1, x_2) = \langle \Phi(x_1), \Phi(x_2) \rangle \tag{23}$$

By line (21-22) we know have that

$$||\Phi(x) - \Phi(z)|| = \sqrt{k(x,z) + k(z,z) - 2k(x,z)}$$
(24)

which is what I was asked to show.

4.1 Sum of kernels

Let $k_1, k_2 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be kernels¹. Let $x_1, ..., x_m \in \mathcal{X}$, and let A and B be the Gram matrix of k_1 and k_2 , respectively, with respect to $x_1, ..., x_m$. Since k_1 and k_2 are kernels, A and B are positive definit matrices, which means

$$\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j}^m c_i c_j A_{ij} \ge 0$$

$$\tag{25}$$

and

$$\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j}^m c_i c_j B_{ij} \ge 0$$

$$(26)$$

Consider now the function $k_3: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined by

$$k_3(x,y) = k_1(x,y) + k_2(x,y)$$
(27)

Let C be the Gram matrix of k_3 with respect to $x_1, ..., x_m$. By definition of C and k_3 we have that

$$C_{ij} = k_3(x_i, x_j) = k_1(x_i, x_j) + k_2(x_i, x_j) = A_{ij} + B_{ij}$$
(28)

¹I omit to say positive definit kernels, since it is a part of the definition of a kernel that it is positive definit.

By line (24-25) and (27) we now get that

$$\forall c_1, ..., c_m \in \mathbb{R} : \sum_{i,j}^m c_i c_j C_{ij} = \sum_{i,j}^m c_i c_j (A_{ij} + B_{ij})$$
 (29)

$$= \sum_{i,j}^{m} c_i c_j A_{ij} + \sum_{i,j}^{m} c_i c_j B_{ij} \ge 0$$
 (30)

This means that C is positive definit.

Since $x_1, ..., x_m$ was arbitrary we now have that for all $m \in \mathbb{N}$ and for all $x_1, ..., x_m$, then the Gram matrix of the function k_3 with respect to $x_1, ..., x_m$ is positive definit. This means that k_3 is a kernel function.

All in all, I have now shown that if k_1 and k_2 are kernels on input space \mathcal{X} , then the function $k_3 = k_1 + k_2$ is also a kernel on \mathcal{X} .

4.2 Rank of Gram matrix

Let me start by proving a general theorem in linear algegra, namely that for all matrices X with elements in the real numbers, we have that

$$N(X^T X) = N(X) \tag{31}$$

where N is the null space of a matrix.

Let X be a matrix with real elements. Let $x \in N(X)$. By definition of the null space, this means that

$$Xx = \overline{0} \tag{32}$$

By the standard properties of matrices, it hereby follows that

$$(X^T X)x = (X^T)(Xx) = X^T \overline{0} = \overline{0}$$
 (33)

which means that

$$x \in N(X^T X) \tag{34}$$

We have now shown that

$$N(X^T X) \subset N(X) \tag{35}$$

Now assume that $x \in N(X^TX)$. By definition of the null space, this means that

$$(X^T X)x = \overline{0} \tag{36}$$

By the standard properties of matrices with real elements, it hereby follows that

$$||Xx||^2 = (Xx)^T (Xx) = (x^T X^T)(Xx) = x^T ((X^T X)x) = x^T \overline{0} = 0$$
 (37)

which implies that

$$||Xx|| = 0 (38)$$

which implies that

$$Xx = \overline{0} \tag{39}$$

which means that

$$x \in N(X) \tag{40}$$

We have now shown that

$$N(X) \subset N(X^T X) \tag{41}$$

Line (34) and (40) together implies that the theorem stated on line (30) is true. The rank-nullity theorem of linear algebra tells us that if X is some matrix with n columns, then

$$rank(X) + dim(N(X)) = n (42)$$

By the theorem I have just proven, it follows that for all matrices X with real elements

$$dim(N(X)) = dim(N(X^T X))$$
(43)

By this and the rank-nullity theorem we get that for all matrices X with real elements

$$rank(X) = rank(X^T X) \tag{44}$$

Let me now use this general result to prove a bound on the rank of Gram Matrices arising from a linear kernel, $k(x,z) = x^T z$ for $x,z \in \mathbb{R}^d$, on the input space \mathbb{R}^d .

Let $x_1, ..., x_m \in \mathbb{R}^d$. Construct the matrix X by letting the vector x_i by the i^{th} column of X. By the definition of matrix multiplication, this means that for all $i, j \in {1, ..., m}$

$$(X^T X)_{ij} = x_i^T x_j = k(x_i, x_j)$$
 (45)

By the definition of the Gram matrix of k with respect to $x_1,...,x_m,$ this means that for all $i,j\in 1,...,m$

$$(X^T X)_{ij} = G_{ij} (46)$$

which means that

$$X^T X = G (47)$$

By line (43), this gives us that

$$rank(G) = rank(X^{T}X) = rank(X)$$
(48)

Since X has d rows and m columns, then

$$rank(X) \le \min(d, m) \tag{49}$$

It hereby follows that

$$rank(G) \le \min(d, m) \tag{50}$$

We have now proven that, if we define the kernel k as above on the input space \mathbb{R}^d , then for all training points $x_1, ..., x_m \in \mathbb{R}^d$, the rank of the Gram matrix G of k with respect to these training points is bounded by

$$rank(G) \le \min(d, m) \tag{51}$$

In any practical learning problem, we hopefully have that the number m of training points is larger than the number d of features. In that case, we will have that

$$rank(G) \le d \tag{52}$$

In that case, G will not have full rank, since G is an $m \times m$ matrix.