Optimización del Llenado Manual de Contenedores con Paquetes Heterogéneos

Máster Universitario en Estadística Computacional y Ciencia de Datos para la Toma de Decisiones

Jose Gustavo Quilca Vilcapoma Tutor: Javier Alcaraz Soria

Instituto Centro de Investigación Operativa Universidad Miguel Hernández

17 Junio 2024

- 1 Introducción
- 2 Problema
- 3 Algoritmo Genético
- 4 Estudio Computacional
- **5** Conclusiones y Trabajos Futuros

Gustavo Quilca

- 1 Introducción
- 2 Problema

Introducción

- 3 Algoritmo Genético
- 4 Estudio Computacional
- **5** Conclusiones y Trabajos Futuros

Gustavo Quilca

Introducción

Introducción

- El problema del llenado de contenedores (CLP) es un problema clásico en la optimización combinatoria.
- Consiste en encontrar la mejor manera de llenar un contenedor con paquetes de diferentes tamaños y pesos, optimizando la utilización del espacio.
- Este problema tiene aplicaciones en logística, transporte, almacenamiento, entre otros.

Restricciones

- Restricciones Básicas
 - No superposición de paquetes.
 - No superar el peso máximo del contenedor.
 - Colocación dentro de los límites del contenedor.
- Restricciones Prácticas
 - Estabilidad de los paquetes.
 - Centro de gravedad del contenedor.
 - Prioridad de carga.
 - Restricción de contigüidad de tipos.

Métodos de Solución

Introducción

Métodos exactos:

 Garantizan la solución óptima, pero son computacionalmente costosos.

Métodos heurísticos:

 Proporcionan soluciones de buena calidad en un tiempo razonable.

Métodos metaheurísticos:

 Estrategias flexibles de alto nivel para desarrollar algoritmos que resuelven problemas específicos.

- 2 Problema
- 3 Algoritmo Genético
- 4 Estudio Computaciona
- **5** Conclusiones y Trabajos Futuros

Contexto del Problema

- Empresa en el sector de envío de paquetes en contenedores marítimos.
- No tiene control sobre las medidas de los paquetes.
- Cuenta con una cantidad máxima de paquetes de cada tipo.
- Envía un solo contenedor a la vez.
- Usan procedimientos establecidos de llenado manual.

Definición del Problema

- Maximizar el beneficio de la carga en un contenedor, con los paquetes disponibles.
- Los paquetes apilados deben mantener su estabilidad durante la carga.
- Todos los paquetes del mismo tipo son cargados de forma contigua.
- Los paquetes del mismo tipo son rotados en una misma dirección.

Definición Formal

Optimizar la carga de un contenedor, determinando el **orden**, la **cantidad** y **rotación** de los tipos de paquetes, cumpliendo con las restricciones prácticas del **llenado manual**. El objetivo principal es maximizar el beneficio total de la carga.

- Algoritmo Genético

Gustavo Quilca

Algoritmo Genético

Es una técnica de optimización inspirada en la evolución natural:

- Generación y evaluación de una población inicial.
- 2 Selección de los mejores individuos.
- 3 Cruce de los individuos seleccionados.
- 4 Mutación de los individuos resultantes.
- **6** Evaluación y reemplazo de la nueva población.
- Repetir hasta cumplir un criterio de parada.

Algoritmo Genético

Diseño de la Codificación de las Soluciones:

- Uso de 3 listas para representar el orden de llenado.
- Ayuda a garantizar factibilidad.
- Es la forma en la que llegarían los paquetes al operario.

Tipo	2	1	4	3
Rotación	0	1	1	0
Cantidad	27	10	18	13

Ejemplo de codificación

Algoritmo Genético

Función de evaluación:

- Calcula el beneficio total de la carga.
- Verificar la factibilidad de la soluciones.
- Es necesario el desarrollo de un algoritmo que imite el procedimiento de llenado manual.

Algoritmo Genético: Función de evaluación

Algoritmo de llenado manual:

Basado en un método conocido como Deepest Bottom Left with Fill (DBLF).

División del espacio restante en el contenedor luego de colocar un paquete

Algoritmo Genético: Función de evaluación

Adaptación del Algoritmo DBI F:

- Unión de subespacios
- Eliminación de subespacios inaccesibles
- Eliminación de subespacios profundos

Algoritmo Genético: Función de evaluación

Algoritmos adaptados

Algoritmo 2 Algoritmo de unión de subespacios

```
    Subespacios ← lista de subespacios disponibles

2: i \leftarrow \text{longitud de } Subespacios - 1
 3: while i > 0 do
       if Subespacios[i].esSimilar(Subespacios[i-1]) then
          Subespacios[i-1].unir(Subespacios[i])
          Subespacios.remove(Subespacios[i])
       end if
       i \leftarrow i - 1
9. end while
10: return Subespacios
```

Algoritmo 3 Algoritmo de eliminación de subespacios inaccesibles

```
    Subespacios ← lista de subespacios disponibles

2: i ← longitud de Subespacios − 1
3: while i > 0 do
      if Subespacios[i].esInaccesibleParcialmente() then
          Subespacios[i].recortar()
      else if Subespacios[i].esInaccesibleTotalmente() then
          Subespacios.remove(Subespacios[i])
      end if
      i \leftarrow i - 1
10: end while
```

Algoritmo 4 Algoritmo de eliminación de subespacios profundos

```
    Subespacios ← lista de subespacios disponibles

2: PosicionCajaMasCercana \leftarrow posición de la caja más cercana a la puerta

 PosicionMaxima ← posición máxima que un operador puede alcanzar

4: i ← longitud de Subespacios − 1
5: while i > 0 do
      if Subespacios [i].esProfundoParcialmente(PosicionMaxima) then
          Subespacios[i].recortar()
      else if Subespacios[i].esProfundoTotalmente(PosicionMaxima) then
          Subespacios.remove(Subespacios[i])
      end if
10:
      i \leftarrow i - 1
12: end while
```

11: return Subespacios

Gustavo Quilca CIO - UMH

13: return Subespacios

Ejemplo de Llenado Manual

Algoritmo Genético: Pasos

- 1 Generación aleatoria de la población inicial
- Método de torneo binario para la selección

Algoritmo Genético: Cruce

3 Adaptación del operador de cruce de un punto

Método de cruce adaptado para permutaciones que evita generar soluciones no factibles

Algoritmo Genético: Mutación

4 Adaptación del operador de mutación de tres tipos

Métodos de mutación para el **orden**, la **rotación** y la **cantidad** por tipo

Procedimiento de mejora de las soluciones

- Ayuda a completar espacios vacíos si aún hay paquetes disponibles.
- Aplicarla durante el llenado podría empeorar una solución.
- Aplicarla luego del llenado garantiza que la solución no sea peor.
- Agregan tiempo adicional de cómputo.

- 1 Introducción
- 2 Problema
- 3 Algoritmo Genético
- 4 Estudio Computacional
- **6** Conclusiones y Trabajos Futuros

Gustavo Quilca

Generación de Datos de Prueba

- Un contenedor con dimensiones fijas $12010 \times 2330 \times 2380$ mm.
- Instancias con 5, 10, 20, 30, 40 y 50 tipos de paquetes.
- Tamaños de paquetes aleatorios entre 250 y 750mm
- Asignación de beneficios aleatorios a cada paquete entre 10 y 100

Estudio Computacional

Configuración del Algoritmo

- Algoritmos implementados en Python 3.10.
- Población inicial de 100 individuos.
- $P_{cross} = 0.8$.
- $P_{mut} = 0.05$.

Estudio Computacional

Variantes del algoritmo

Comparar las distintas configuraciones del algoritmo

- M0: Sin mejora del algoritmo en el llenado.
- M1: Llenado adicional durante a toda la población.
- M2: Llenado adicional al final a toda la población.
- M3: De tipo M2 pero aplicado al 50% de la población.
- M4: De tipo M2, pero aplicado al mejor individuo de la población.

Estudio Computacional

Configuración del Experimento

- 25 problemas para cada tipo de instancia (5T, 10T, 20T, 30T, 40T y 50T), total 150 problemas.
- Tiempo fijo de 5 minutos para cada problema.
- Tiempo de ejecución total de 62.5 horas (2.6 días).
- Todas las variantes comienzan con la misma población inicial, para hacer una comparación justa.

Beneficio aportado por las soluciones

Tiempo promedio para encontrar la mejor solución de cada variante

Tiempo promedio por generación

Rendimiento por variante de mejora

Progreso de las soluciones de la mejor variante elegida: M1

- **6** Conclusiones y Trabajos Futuros

Conclusiones

Introducción

- El algoritmo ha demostrado ser un método eficiente para determinar la disposición de los paquetes en el contenedor.
- Los métodos de mejoras consiguen reducir el tiempo necesario para encontrar la mejor solución.
- También consiguen mejorar la calidad de las soluciones.
- Elevado número de tipos de paquetes necesitan más tiempo para converger.

Trabajos Futuros

- Diseñar otros tipos de operadores de cruce y mutación.
- Considerar otras restricciones prácticas.
- Probar el algoritmo con datos reales.
- Incluir e algoritmo en un DSS utilizado en tiempo real.

Gracias