Communication Systems

Module 2
Analog to Digital Conversion

- Analog-to-digital conversion is (basically) a 2 step process:
 - Sampling
 - Convert from continuous-time analog signal $x_a(t)$ to discrete-time continuous value signal x(n)
 - Is obtained by taking the "samples" of $x_a(t)$ at discrete-time intervals, T_s

Quantization

 Convert from discrete-time continuous valued signal to discrete time discrete valued signal

Sampling

- **Sampling** is the processes of converting continuous-time analog signal, $x_a(t)$, into a discrete-time signal by taking the "samples" at discrete-time intervals
 - Sampling analog signals makes them discrete in time but still continuous valued
 - If done properly (*Nyquist theorem* is satisfied), sampling does not introduce distortion

Sampled values:

The value of the function at the sampling points

Sampling interval:

- The time that separates sampling points (interval b/w samples), T_s
- If the signal is slowly varying, then fewer samples per second will be required than if the waveform is rapidly varying
- So, the optimum sampling rate depends on the maximum
 frequency component present in the signal

Sampling

• Sampling Rate (or sampling frequency f_s):

- The rate at which the signal is sampled, expressed as the number of samples per second (reciprocal of the sampling interval), $1/T_s = f_s$

Nyquist Sampling Theorem (or Nyquist Criterion):

- If the sampling is performed at a proper rate, no info is lost about the original signal and it can be properly reconstructed later on
- Statement:

"If a signal is sampled at a rate greater than or equal to twice the max frequency component of the message signal, then the signal can be exactly reconstructed from the samples without any distortion"

Sampling Theorem - Example

Figure 1: Spectrum of bandlimited signal g(t)

The maximum frequency component of g(t) is fm. To recover the signal g(t) exactly from its samples it has to be sampled at a rate fs 2fm.

The minimum required sampling rate fs = 2fm is called Nyquist rate.

Figure 2: (a) Original signal g(t) (b) Spectrum $G(\omega)$

May Figure 4: (a) sampled signal $g_s(t)$ (b) Spectrum $G_s(\omega)$

Figure 5: Recovery of signal by filtering with a filter of width $2\omega_m$

May 2016 Parul Puri 7

Aliasing

- Aliasing is a phenomenon where the high frequency components of the sampled signal interfere with each other because of inadequate sampling $\omega_s < 2\omega_m$.

May 20 Figure 6: Aliasing due to rinadequate sampling

Oversampling

– In practice signal are oversampled, where f_s is significantly higher than Nyquist rate to avoid aliasing.

Figure 7: Oversampled signal-avoids aliasing

Quantization

- Sampling results in a series of pulses of varying amplitude values ranging between two limits: a min and a max.
- The amplitude values are infinite between the two limits.
- We need to map the *infinite* amplitude values onto a finite set of known values.
- This is achieved by dividing the distance between min and max into L levels, each of height Δ .

$$\Delta = (\text{max - min})/L$$

Input Signal: Sinusoidal Signal

Sampled Signal: 8 samples/sec

Quantization with 4 Levels

