Логическо програмиране

Лектор: Тинко Тинчев

Дефиниции

Дефиниция 1 (Съждение). Нещо, което може да отъждествим до вярно или невярно. Елементарните съждения имат предварително зададена стойност.

Дефиниция 2 (Отрицание). Отрицание на съждението A променя неговата стойност на противоположната, т.е "не A" и пишем $\neg A$.

- $H_{\neg}(T) = F$
- $H_{\neg}(F) = T$

Дефиниция 3 (Конюнкция). Конюнкция на съжденията A и B наричаме съждението "A и B" и numem (A&B).

- $H_{\&}(T,T)=T$
- $H_{\&}(T,F) = H_{\&}(F,T) = H_{\&}(F,F) = F$

Дефиниция 4 (Дизюнкция). Дизюнкция на съжденията A и B наричаме съждението "A или B" и пишем $(A \lor B)$.

- $H_{\vee}(T,T) = H_{\vee}(T,F) = H_{\vee}(F,T) = T$
- $H_{\vee}(F,F)=F$

Дефиниция 5 (Импликация). Импликация на съжденията A и B наричаме съждението "ако A, то B" и пишем $(A \Rightarrow B)$.

- $H_{\Rightarrow}(T,T) = H_{\Rightarrow}(F,T) = H_{\Rightarrow}(F,F) = T$
- $H_{\Rightarrow}(T,F)=F$

Дефиниция 6 (Еквивалентност). Еквивалентност на съжденията A и B наричаме съждението "A тогава и само тогава, когато B" и пишем ($A \Leftrightarrow B$).

- $H_{\Leftrightarrow}(T,T) = H_{\Leftrightarrow}(F,F) = T$
- $H_{\Leftrightarrow}(T,F) = H_{\Leftrightarrow}(F,T) = F$

Дефиниция 7 (Квантор за всеобщност). Квантор за всеобщност в даден свят за φ е съждението "за всяко x е в сила φ " и записваме ($\forall x \varphi$)

Пример. a_1, a_2, a_3, a_4, a_5 – светьт, в който работим.

Тогава, $\forall a \varphi$ е еквивалентно на $\varphi(a_1) \& \varphi(a_2) \& \varphi(a_3) \& \varphi(a_4) \& \varphi(a_5)$, тъй като светът е краен.

Дефиниция 8 (Квантор за съществуване). Квантор за съществуване в даден свят за φ е съждението "съществува x, за което е в сила φ " и записваме $(\exists x\varphi)$

Пример. a_1, a_2, a_3, a_4, a_5 – светът, в който работим.

Тогава, $\exists a \varphi$ е еквивалентно на $\varphi(a_1) \vee \varphi(a_2) \vee \varphi(a_3) \vee \varphi(a_4) \vee \varphi(a_5)$, тъй като светът е краен.

Дефиниция 9 (Език на съждителното смятане). *Езикът на съждителното смятане съдържа следните непразни множества от символи:*

- Съждителни променливи (може и безкраен брой): съвкупност от букви и символи, които могат да бъдат оценени до верни/неверни в света, замисълът е те да означават елементарни съждения (PVar);
- Логически връзки: \neg , &, \lor , \Rightarrow , \Leftrightarrow букви (символи) за съждителните връзки;
- Помощни символи: (,).

Дефиниция 10 (Съждителна формула). *Съждителната формула има следната структу-*ра:

- Съждителните променливи са съждителни формули;
- Ако φ е съждителна формула, то $\neg \varphi$ също е съждителна формула;
- Ако φ и ψ са съждителни формули, то $(\varphi \& \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi)$ са съждителни формули.

Формули са само нещата, които могат да се получат след краен брой прилагане на горните правила.

Дефиниция 11 (Индуктивен принцип за доказване на свойства на съждителни формули). Нека A е свойство u са e сила:

- всяка съждителна променлива има свойство А;
- ако φ е съждителна формула, която има свойството A, то $\neg \varphi$ също има свойството A:
- ако φ и ψ са съждителни формули, които имат свойството A, то $(\varphi \sigma \psi)$, където $\sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\}$, също има свойството A.

Тогава всяка съждителна формула има свойството А.

Дефиниция 12 (Еднозначен синтактичен анализ за формули). За всяка съждителна формула φ е в сила точно една от следните три възможности:

- ullet $\varphi=P$, където P е съждителна променлива
- $\varphi = \neg \varphi_1$, където φ_1 е еднозначно определена съждителна формула
- $\varphi = (\varphi_1 \sigma \varphi_2)$, където φ_1, φ_2 са еднозначно определени формули, а σ е еднозначно определена двувалентна логическа връзка измежду $\{\lor, \&, \Rightarrow, \Leftrightarrow\}$

Семантика на съждителните формули

Дефиниция 13 (Съждителна (булева) интерпретация). Съждителна интерпретация (оценка на съждителните променливи) е изображение (функция) I_0 от съвкупността на съждителните променливи PVar (propositional variables) в $\{T, F\}$, т.е. $I_0: PVar \longrightarrow \{T, F\}$.

$$I_0(P) \in \{T, F\}, P \in PVar$$

Дефиниция 14 (Вярност на формула. Булев модел за формула). *Казваме, че* **формулата** φ **е вярна** при булевата интерпретация I_0 , ако

$$I(\varphi) = T$$
,

където I е единственото разширение на I_0 (от твърдение 1).

Пишем още, $I \models \varphi$ и казваме също така "I е модел на φ ".

$$I_0: PVar \to \{T, F\}$$

$$I: For \rightarrow \{T, F\}$$

Ако I не е булев модел за φ , пишем $I\not\models \varphi$.

Дефиниция 15 (Изпълнимост). *Казваме*, че формулата φ е **изпълнима**, ако има булева интерпретация I, която е модел за φ , т.е. $I(\varphi) = T$.

Има формули, които не са изпълними. Такива формули се наричат **неизпълними** формули. φ е **неизпълнима**, т.е. няма булева интерпретация I_0 , за която $I(\varphi) = T$, т.е. за всяка булева интерпретация I_0 , $I(\varphi) = F$.

Дефиниция 16 (Булев модел за множество от формули). Нека Γ е множество от съждителни формули. Нека I е съждителна (булева) интерпретация.

Казваме, че I е модел на Γ , ако всеки път, когато $\varphi \in \Gamma$, то $I(\varphi) = T$.

Бележим:

- $I \models \Gamma, I$ е модел за Γ
- ullet $I \models \Gamma \longleftrightarrow I$ е модел за всяка формула от Γ
- $I \models \varphi \longleftrightarrow I \models \{\varphi\}$, т.е. φ и $\{\varphi\}$ имат едни и същи модели
- $I \models \{\varphi_1, \varphi_2, \dots, \varphi_n\} \leftrightarrow I(\varphi_1) = T, I(\varphi_2) = T, \dots, I(\varphi_n) = T \leftrightarrow I((\varphi_1 \& \varphi_2 \& \dots \& \varphi_n)) = T$

Забележка. Ако има формула $\varphi \in \Gamma$, такава че $I \not\models \varphi$, т.е. $I(\varphi) = F$, то I не е модел за Γ , т.е. $I \not\models \Gamma$.

Дефиниция 17 (Изпълнимост на множество от формули). Едно множество от формули Γ се нарича **изпълнимо**, ако Γ има модел. Ако кажем, че Γ е изпълнимо, то всяка формула от него също е изпълнима.

 Γ е **неизпълнимо**, ако Γ не е изпълнимо, т.е. Γ няма модел.

Дефиниция 18 (Съждителна тавтология). *Една формула се нарича съждителна тавтология*, ако е вярна при всяка булева интерпретация.

- ullet φ e съждителна тавтология ,точно тогава, когато $\neg \varphi$ e неизпълнима формула;
- ullet φ е неизпълнима точно тогава, когато $\neg \varphi$ е съждителна тавтология.

Дефиниция 19. Нека φ е съждителна формула. $C\ Var(\varphi)$ означаваме множеството на съждителните променливи, участващи във φ .

Булева еквивалентност на съждителни формули

Дефиниция 20 (Логическо следване от формула). Нека φ и ψ са съждителни формули. Казваме, че ψ логически следва от φ , ако всеки модел на φ е модел на ψ , т.е. всеки път, когато I_0 е булева интерпретация, ако $I(\varphi) = T$, то $I(\psi) = T$. Пишем $\varphi \models \psi$.

Забележка. $C \varphi \models \psi$ ще означаваме "във всички светове, в които φ е вярно, ψ е вярно".

Дефиниция 21 (Логическа еквивалентност на формули). *Нека* φ u ψ *са съждителни формули.* φ u ψ *са логически еквивалентни, ако:*

$$\varphi \models \psi \ u \ \psi \models \varphi \longleftrightarrow$$
 за всяка булева интерпретация $I_0, I(\varphi) = I(\psi)$

 $\Pi u u e M \varphi \models \psi.$

Забележка. φ и ψ имат едни и същи булеви модели, ако са логически еквивалентни.

Заместване на съждителни променливи със съждителни формули

Дефиниция 22 (Едновременна замяна). Нека φ е съждителна формула и $Var(\varphi) \subseteq \{P_1, P_2, \ldots, P_n\}$, където P_1, P_2, \ldots, P_n са различни съждителни променливи. Нека $\varphi_1, \varphi_2, \ldots, \varphi_n$ са произволни съждителни формули.

Тогава за $\varphi[P_1, P_2, \dots, P_n]: Var(\varphi) \subseteq \{P_1, P_2, \dots, P_n\}, \ \varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ е резултатот от едновременната замяна на всички срещания на буквите P_1, P_2, \dots, P_n във φ със съответните $\varphi_1, \varphi_2, \dots, \varphi_n$.

Дефиниция 23. Ако имаме две булеви интерпретации I_0, J_0 , такива че $I_0 \upharpoonright Var(\varphi) = J_0 \upharpoonright Var(\varphi)$, то $I(\varphi) = J(\varphi)$.

Дефиниция 24 (Литерал). Съждителен литерал ще наричаме формула, която е или съждителна променлива, или отрицание на съждителна променлива.

Дефиниция 25 (Елементарна конюнкция). *Елементарна конюнкция наричаме формула от* вида $\varepsilon_1 P_1 \& \varepsilon_2 P_2 \& \ldots \& \varepsilon_n P_n$, където $\varepsilon_i \in \{\varepsilon, \neg\}$, а $P_1, P_2, \ldots, P_n \in PV$ ar.

Дефиниция 26 (Елементарна дизюнкция). Елементарна дизюнкция наричаме формула от вида $\varepsilon_1 P_1 \vee \varepsilon_2 P_2 \vee \ldots \vee \varepsilon_n P_n$, където $\varepsilon_i \in \{\varepsilon, \neg\}$, а $P_1, P_2, \ldots, P_n \in PV$ аг. Множество от вида $\{\varepsilon_1 P_1, \varepsilon_2 P_2, \ldots, \varepsilon_n P_n\}$ ще наричаме **дизюнкти**.

Индуктивна дефиниция:

- всеки литерал е елементарна дизюнкция;
- ако φ е елементарна дизюнкция и L е литерал, то формулата $(\varphi \lor L)$ е също елементарна дизюнкция.

Елементарните дизюнкции ще записваме без вътрешните скоби (заради асоциативността).

Дефиниция 27 (Конюнкция на елементарни дизюнкции). Индуктивна дефиниция:

- всяка елементарна дизюнкция е конюнкция на елементарни дизюнкции;
- ако K е конюнкция на елементарни дизюнкции, E е елементарна дизюнкция, то (K&E) е конюнкция на елементарни дизюнкции.

Дефиниция 28. Нека Γ е множество от съждителни формули и ψ е съждителна формула. Казваме, че **от** Γ **логически следва** ψ . $\Gamma \models \psi$, ако всеки модел на Γ е модел за ψ .

Ако има модел на Γ , който не е модел за ψ , то от Γ не следва логически ψ : $\Gamma \not\models \psi$. C други думи, има булева интерпретация I_0 , такава че $\varphi \in \Gamma \longrightarrow I(\varphi) = T$ & $I(\psi) = F$.

Предикатно смятане от първи ред

Дефиниция 29 (Език на предикатното смятане от първи ред). Език на предикатнот смятане е двойка от вида <логическа-част, нелогическа-част>. Логическата част ще е една и съща за всички езици на предикатното смятане от първи ред. Бележи се с $\mathcal L$ и съдържа:

- 1. Логическа част:
 - **индивидни променливи** (Var): съвкупност от букви за означаване на обекти. Индивидните променливи:
 - са номерирани с $\mathbb{N}: x_0, x_1, \ldots;$

- не са съждителни връзки.
- съждителни **логически връзки** (булеви операции): азбуката $\neg, \&, \lor, \Rightarrow, \Leftrightarrow$
- **квантори**: буквите ∀,∃
- помощни символи: ,()

Забележка. Азбуките на индивидните променливи, съждителните логически връзки и кванторите са винаги непразни.

2. Нелогическа част:

- $\mathbb{C}onst_{\mathcal{L}}$: индивидни константи за езика \mathcal{L} , т.е. съвкупност от букви за имена на обектите (или означение за конкретен обект, като указател към обект);
- $\mathbb{F}unc_{\mathcal{L}}$: функционални символи за езика \mathcal{L} , т.е. съвкупност от букви за означаване на функции: f, g, h, \ldots
 - За всеки функционален символ има определена арност (#): #[f] е брой на аргументите на f и представлява естествено число >0.
- $\mathbb{P}red_{\mathcal{L}}$: npedukamhu символи за езика \mathcal{L} , m.e. съвкупност от букви за означаване на първични свойства: p,q,r,\ldots

Всеки предикатен символ има арност.

Забележка. $\# : \mathbb{F}unc_{\mathcal{L}} \cup \mathbb{P}red_{\mathcal{L}} \longrightarrow \mathbb{N} \setminus \{0\}$

• \doteq : формално равенство. Може и да го няма.

Забележка. $\mathbb{C}onst_{\mathcal{L}}$, $\mathbb{F}unc_{\mathcal{L}}$ и $\mathbb{P}red_{\mathcal{L}}$ може да бъдат и празни азбуки.

Дефиниция 30 (Разширение). Нека \mathcal{L}_1 и \mathcal{L}_2 са езици на предикатното смятане от първи ред. Казваме, че \mathcal{L}_2 е разширение на \mathcal{L}_1 , ако $\mathbb{C}onst_{\mathcal{L}_1} \subseteq \mathbb{C}onst_{\mathcal{L}_2}$, $\mathbb{F}unc_{\mathcal{L}_1} \subseteq \mathbb{F}unc_{\mathcal{L}_2}$, $\#_{\mathcal{L}_1}$ и $\#_{\mathcal{L}_2}$ са едни и същи за функционални символи от \mathcal{L}_1 , ако \mathcal{L}_1 е с формално равенство, то и \mathcal{L}_2 е с формално равенство, $\mathbb{P}red_{\mathcal{L}_1} \subseteq \mathbb{P}red_{\mathcal{L}_2}$, $\#_{\mathcal{L}_1}$ и $\#_{\mathcal{L}_2}$ са едни и същи за предикатни символи от \mathcal{L}_1 .

Дефиниция 31. Нека \mathcal{L} е предикатен език от първи ред. Ще дефинираме две множествва от формални думи в обединението на азбуките от \mathcal{L} .

 $Tермове: T_{\mathcal{L}}$ – означават обекти;

 Φ ормули: $\mathbb{F}or_{\mathcal{L}}$ – означават свойства.

Дефиниция 32 (Термове). Термовете от езика \mathcal{L} са думи за означаване на обекти. Индуктивна дефиниция на $T_{\mathcal{L}}$:

- индивидните константи са термове;
- индивидните променливи са термове;
- ако $\tau_1, \tau_2, \dots, \tau_n$ са термове, $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n$, то думата $f(\tau_1, \tau_2, \dots, \tau_n)$ също е терм.

Дефиниция 33 (Атомарни формули от езика \mathcal{L}).

 $\mathbb{A}t\mathbb{F}_{\mathcal{L}}$ са думите от вида $p(\tau_1, \tau_2, \dots, \tau_n)$, където $p \in \mathbb{P}red_{\mathcal{L}}, \#[p] = n, \tau_1, \tau_2, \dots, \tau_n$ – произволни термове от езика \mathcal{L} .

Ако \mathcal{L} е език $c \doteq$, то има още един вид атомарни формули и това са думите от вида $(\tau_1 \doteq \tau_2)$.

Дефиниция 34 (Формули).

Индуктивна дефиниция на $\mathbb{F}or_{\mathcal{L}}$:

- атормарните формули от \mathcal{L} са формули от \mathcal{L} ;
- ако φ е формула от \mathcal{L} , то $\neg \varphi$ е също формула от \mathcal{L} ;
- aro φ u ψ ca формули om \mathcal{L} , mo $(\varphi \& \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi)$ ca също формули om \mathcal{L} :
- ако φ е формула от \mathcal{L} , x е индивидна променлива, то $\forall x \varphi$ и $\exists x \varphi$ са също формули от \mathcal{L} (отличително свойство на език от 1-ви ред).

Дефиниция 35 (Индуктивен принцип за доказване на свойства на термове).

Нека Р е свойство. Нека са в сила следните условия:

- всяка индивидна константа има свойството P;
- всяка индивидна променлива има свойството P;
- всеки път, когато $\tau_1, \tau_2, \dots, \tau_n$ са термове, които имат свойството P и $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n$, може да се твърди, че думата $f(\tau_1, \tau_2, \dots, \tau_n)$ също има свойството P.

Тогава всеки терм au от езика $\mathcal L$ има свойството P.

Означаваме: $\mathrm{T}_{\mathcal{L}}$ – множеството на термовете в езика $\mathcal{L}.$

Дефиниция 36 (Еднозначен синтактичен анализ за термове). Нека \mathcal{L} е език на $FOL(first-order\ logic)$. За всеки терм τ от \mathcal{L} е в сила точно една от следните възможности:

- τ е индивидна константа;
- \bullet au e индивидна променлива;
- τ е от вида $f(\tau_1, \tau_2, ..., \tau_n)$, където $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n, \tau_1, \tau_2, ..., \tau_n$ са еднозначно определени термове и f е еднозначно определен функционален символ.

Ako
$$\tau = f(\tau_1, \tau_2, \dots, \tau_n)$$
 u $\tau = g(\varkappa_1, \varkappa_2, \dots, \varkappa_k)$, moraba $f = g, n = k, \tau_1 = \varkappa_1, \tau_2 = \varkappa_2, \dots, \tau_n = \varkappa_k$.

Никое собствено начало на терм не е собствен край на терм.

Алтернативна дефиниция: Нека τ е терм, а е буква и $\tau = \alpha a \beta$. Ако а е функционален символ с арност n, то има еднозначно определени термове $\tau_1, \tau_2, \ldots, \tau_n$, такива че $\beta = (\tau_1, \ldots, \tau_n)\beta_1$. С всеки терм можем да свържем едно синтактично наредено дърво.

Дефиниция 37. Ако τ е терм, то $Var(\tau) = \{x, y, z, \ldots\}$ означаваме множеството на индивидните променливи, които участват в τ .

Индуктивно можем да дефинираме променливите на терм, $\tau(Var(\tau))$:

- $\tau = c \longrightarrow Var(\tau) = \varnothing;$
- $\tau = x \longrightarrow Var(\tau) = \{x\};$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n) \longrightarrow Var(\tau) = Var(\tau_1) \cup Var(\tau_2) \cup \dots \cup Var(\tau_n)$.

Забележка. Удобно е да използваме следния запис: $\tau[x_1, x_2, \dots, x_n] : \tau$ – терм, x_1, x_2, \dots, x_n – различни индивидни променливи участващи в τ и $Var(\tau) = \{x_1, x_2, \dots, x_n\}$.

Дефиниция 38 (Затворен терм). Много важна роля ще играят термовете, в които няма индивидни променливи, т.е. термовете τ , такива че $Var(\tau) = \varnothing$. Наричаме такива термове затворени (основни, базисни, **ground term**). При дървовидно построение има само индивидни константи по листата. Означваме: $\mathbf{T}^{cl}_{\mathcal{L}}$ – множеството на затворените термове в езика \mathcal{L} и $\mathbf{T}^{cl}_{\mathcal{L}} = \varnothing \longleftrightarrow \mathbb{C}onst_{\mathcal{L}} = \varnothing$.

Дефиниция 39 (Индуктивна дефиниция на T_L^{cl}).

- индивидните константи са затворени термове;
- ако $\tau_1, \tau_2, ..., \tau_n$ са затворени термове, $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n$, то $f(\tau_1, \tau_2, ..., \tau_n)$ е затворен терм от езика \mathcal{L} .

Дефиниция 40 (Подтерм). Казваме, че термът τ е подтерм на терма \varkappa , ако $\varkappa = \alpha \tau \beta$, където α и β са думи.

```
Ако \varkappa = f(\varkappa_1, \varkappa_2, \dots, \varkappa_k), то \tau е подтерм на някой от термовете \varkappa_1, \varkappa_2, \dots, \varkappa_k.

Ако \varkappa = f(\varkappa_1, \varkappa_2, \dots, \varkappa_k) и \tau е подтерм на \varkappa, \varkappa = \alpha \tau \beta, то за някое i, 1 \leq i \leq k, \varkappa = f(\varkappa_1, \varkappa_2, \dots, \varkappa_{i-1}, \alpha' \tau \beta', \varkappa_{i+1}, \dots, \varkappa_k), \alpha = f(\varkappa_1, \varkappa_2, \dots, \varkappa_{i-1}, \alpha', \beta = \beta', \varkappa_{i+1}, \dots, \varkappa_k).

Пишем Subt(\tau).
```

Дефиниция 41 (Индуктивна дефиниция на $Subt(\tau)$). C индукция относно построението на τ дефинираме $Subt(\tau)$ по следния начин:

- $\tau = c \longrightarrow Subt(\tau) = \{c\};$
- $\tau = x \longrightarrow Subt(\tau) = \{x\};$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n) \longrightarrow Subt(\tau) = \{\tau\} \cup Subt(\tau_1) \cup Subt(\tau_2) \cup \dots \cup Subt(\tau_n).$

Дефиниция 42 (Заместване на индивидни променливи с термове в термове). *Нека* x_1, x_2, \ldots, x_n *са различни индивидни променливи, а* $\tau_1, \tau_2, \ldots, \tau_n$ *са произволни термове от езика* \mathcal{L} .

 $C \tau[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n]$ ще означаваме думата, която се получава от τ при едновременната замяна на x_1, x_2, \dots, x_n съответно с $\tau_1, \tau_2, \dots, \tau_n$.

Дефиниция 43 (Индуктивна дефиниция на заместването). *Нека* x_1, x_2, \ldots, x_n *са различни* индивидни променливи и $\tau_1, \tau_2, \ldots, \tau_n$ – произволни термове.

- $c[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n] = c;$
- x:

$$- x = x_i, 1 \le i \le n \longrightarrow x[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n] = \tau_i; - x \notin \{x_1, x_2, \dots, x_n\} \longrightarrow x[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n] = x.$$
 (ih)

• $f(\varkappa_1, \varkappa_2, \ldots, \varkappa_n)[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n] = f(\varkappa_1[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n], \varkappa_2[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n], \ldots, \varkappa_n[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n]) \ u \ usnows as ame (ih) <math>\exists a \ \varkappa_1, \varkappa_2, \ldots, \varkappa_n.$

Така $\tau[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n]$ е терм от езика \mathcal{L} .

Семантика на език от първи ред

Дефиниция 44 (Структура за език от първи ред). Нека \mathcal{L} е език от първи ред. Структура за \mathcal{L} ще наричаме наредена двойка от вида $< A, \mathbb{I}>$, където:

- $A \neq \varnothing, A$ универсиум на структурата;
- \mathbb{I} е интерпретация на \mathcal{L} в A;

- $\mathbb{I}(c) \in A$ за всяка индивидна константа $c \in \mathbb{C}onst_{\mathcal{L}}$, може $c_1 \neq c_2$, но $c_1^{\mathcal{A}} = c_2^{\mathcal{A}}$;
- $\mathbb{I}(f):A^{\#[f]}\longrightarrow A$ за всеки функционален символ $f\in\mathbb{F}unc_{\mathcal{L}},\ Dom(f)=A^{\#[f]}$ тотална;
- $\mathbb{I}(p) \subseteq A^{\#[p]}$ множество от n-торки, където $n = \#[p], p \in \mathbb{P}red_{\mathcal{L}}$, може $p^{\mathcal{A}} = \varnothing$ или $p^{\mathcal{A}} = A^{\#[p]}$.

Означение: $\mathcal{A} = \langle A, I \rangle, |\mathcal{A}| = A$

Забележка. Вместо $\mathbb{I}(c)$ ще пишем $c^{\mathcal{A}}$, вместо $\mathbb{I}(f)-f^{\mathcal{A}}$ и вместо $\mathbb{I}(p)-p^{\mathcal{A}}$: интерпретации в структурата \mathcal{A} .

Забележка. За да може да кажем какво означава един терм, трябва да кажем какво означават променливите в него.

Дефиниция 45 (Оценка). Нека \mathcal{A} е структура за езика \mathcal{L} . Нека универсумът на \mathcal{A} е A. Оценката на индивидните променливи наричаме изображение $\nu: Var \longrightarrow A$.

Дефиниция 46 (Модифицирана оценка). Нека $x \in Var, a \in A$. Тогава модифицирана оценка в точка x с a ще наричаме $v_a^x(y) = \begin{cases} a, & y = x \\ \nu(y), y \neq x \end{cases}$.

Дефиниция 47 (Оценка в структура \mathcal{A} (Тарски)).

Нека $\mathcal{A} = < A, \mathbb{I} > e$ структура за $FOL\ \mathcal{L}$. Нека ν е оценка на индивидните променливи в \mathcal{A} . Индуктивно дефинираме за всеки терм $\tau \in T_{\mathcal{L}}$ стойност на τ в \mathcal{A} при оценка ν ($\tau^{\mathcal{A}}[\nu]$).

- $\tau = c, c \in \mathbb{C}onst_{\mathcal{L}} \longrightarrow c^{\mathcal{A}}[\nu] \leftrightharpoons c^{\mathcal{A}};$
- $\tau = x, x \in Var \longrightarrow x^{\mathcal{A}}[\nu] \leftrightharpoons \nu(x);$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n), \#[f] = n, f \in \mathbb{F}unc_{\mathcal{L}} \longrightarrow \tau^{\mathcal{A}}[\nu] \leftrightharpoons f^{\mathcal{A}}(\tau_1^{\mathcal{A}}[\nu], \tau_2^{\mathcal{A}}[\nu], \dots, \tau_n^{\mathcal{A}}[\nu]).$

Забележка. Означаваме: $\tau^{A}[\nu]$ или $\|\tau\|^{A}[\nu]$.

Забележка. Тази дефиниция е коректна заради еднозначния синтактичен анализ на термове.

Дефиниция 48 (Стойност на предикатна формула в структура при дадена оценка). *Нека* φ е формула, \mathcal{A} е структура, ν е оценка в структурата \mathcal{A} . \mathcal{C} индукция по построение на формулите дефинираме $\|\varphi\|^{\mathcal{A}}[\nu] \in \{T, F\}$. (Трябва ни и еднозначен синтактичен анализ):

- \bullet φ е атомарна:
 - $\varphi = p(\tau_1, \tau_2, \dots, \tau_n):$ $\|\varphi\|^{\mathcal{A}}[\nu] = \|p(\tau_1, \tau_2, \dots, \tau_n)\|^{\mathcal{A}}[\nu] = T \iff \tau_1^{\mathcal{A}}[\nu], \tau_2^{\mathcal{A}}[\nu], \dots, \tau_n^{\mathcal{A}}[\nu] > \in p^{\mathcal{A}}.$

Елементите на универсума означени с $\tau_1, \tau_2, \dots, \tau_n$ имат свойството означено с p.

- $\varphi = (\tau_1 \doteq \tau_2):$ $\|\varphi\|^{\mathcal{A}}[\nu] = \|(\tau_1 \doteq \tau_2)\|^{\mathcal{A}}[\nu] = T \leftrightarrows \tau_1^{\mathcal{A}}[\nu] = \tau_2^{\mathcal{A}}[\nu]$
- $\varphi = \neg \varphi_1 : \|\varphi\|^{\mathcal{A}}[\nu] = H_{\neg}(\|\varphi_1\|^{\mathcal{A}}[\nu])$
- $\varphi = (\varphi_1 \sigma \varphi_2), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\} : \|\varphi\|^A[\nu] = H_\sigma(\|\varphi_1\|^A[\nu], \|\varphi_2\|^A[\nu])$

- $\varphi = \forall x \psi : \|\varphi\|^{\mathcal{A}}[\nu] = \|\forall x \psi\|^{\mathcal{A}}[\nu] = T \Longrightarrow \forall a \in A, \|\psi\|^{\mathcal{A}}[\nu_a^x] = T,$ $\kappa \sigma \partial emo\ v_a^x[y] = \begin{cases} a, & y = x \\ \nu(y), & y \neq x \end{cases}$
- $\varphi = \exists x \psi : \|\varphi\|^{\mathcal{A}}[\nu] = \|\exists x \psi\|^{\mathcal{A}}[\nu] = T \leftrightharpoons \exists a \in A, \|\psi\|^{\mathcal{A}}[\nu_a^x] = T,$ където $v_a^x[y] = \begin{cases} a, & y = x \\ \nu(y), y \neq x \end{cases}$

Забележка. Ако $\|\varphi\|^{\mathcal{A}}[\nu] = T$, то пишем $\mathcal{A} \models_{\nu} \varphi$ и четем "в \mathcal{A} , при оценката ν , е вярна формулата φ " и за $\|\varphi\|^{\mathcal{A}}[\nu] = F$ ще пишем $\mathcal{A} \not\models_{\nu} \varphi$ и казваме "в \mathcal{A} , при оценката ν , е невярна формулата φ ".

Дефиниция 49. $He \kappa a \varphi - \phi o p M y \Lambda a u Var^{free}(\varphi) \subseteq \{x_1, x_2, \dots x_n\}.$

Тогава ще пишем $\varphi[x_1, x_2, \dots, x_n]$, където наредбата x_1, x_2, \dots, x_n е фиксирана. Вместо да пишем $\|\varphi\|^A[\nu]$, където $\nu(x_1) = a_1, \nu(x_2) = a_2, \dots \nu(x_n) = a_n$, ще пишем $\varphi[a_1, a_2, \dots a_n]$, където $a_1, a_2, \dots a_n$ е фиксирана наредба от n от света.

Вместо $\|\varphi\|^{\mathcal{A}}[\nu] = T$ имаме $\mathcal{A} \models_{\nu} \varphi$, т.е. $\mathcal{A} \models \varphi[a_1, a_2, \dots a_n]$.

Така всяка формула $\varphi[x_1, x_2, \dots x_n]$ определя множеството от тези n-торки $\{< a_1, a_2, \dots a_n > | a_1, a_2, \dots, a_n \in A, A \models \varphi[a_1, a_2, \dots a_n]\} = \mathcal{D}^{\mathcal{A}}_{\varphi[x_1, x_2, \dots, x_n]}$. Всички множества в една структура, които са от този вид, са определими.

3а множеството \mathcal{D}_{φ} ще казваме, че е определимо с φ в \mathcal{A} .

 $C \subseteq A^n$ е определимо в A, ако $C = \mathcal{D}_{\varphi}$ за някои φ .

Дефиниция 50 (Вярна формула). Нека \mathcal{A} е структура, φ е формула. Казваме, че $\mathcal{A} \models \varphi$ ("в \mathcal{A} е вярна φ "), ако за всяка оценка ν в \mathcal{A}, φ е вярна: $\|\varphi\|^{\mathcal{A}}[\nu] = T$, и записваме $\mathcal{A} \models_{\nu} \varphi$.

Забележка. Има структури, формули и оценки $\nu_1, \nu_2,$ такива че: $\mathcal{A} \models_{\nu_1} \varphi, \, \mathcal{A} \not\models_{\nu_2} \varphi \Rightarrow \mathcal{A} \models_{\nu_2} \neg \varphi$

Забележка. Ако $\mathcal{A}\not\models\varphi$ има оценка ν_1 в \mathcal{A} , за която $\mathcal{A}\not\models_{\nu_1}\varphi\Rightarrow\mathcal{A}\models_{\nu_1}\neg\varphi$.

Забележка. $\mathcal{A} \models \varphi$ или $\mathcal{A} \models \neg \varphi$, ако φ е затворена, но за произволна формула φ от $\mathcal{A} \models \varphi$ или $\mathcal{A} \not\models \varphi$ не следва $\mathcal{A} \models \neg \varphi$, защото може и за $\neg \varphi$ да съществува оценка ν_1 , за която $\mathcal{A} \not\models_{\nu_1} \neg \varphi$.

Дефиниция 51 (Валидна формула). *Казваме, че* φ *е валидна (общовалидна) формула в структурата* \mathcal{A} , ако $\mathcal{A} \models \varphi$.

Дефиниция 52 (Затворена формула). Една формула φ се нарича затворена, ако няма свободни променливи, т.е. $Var^{free}(\varphi) = \varnothing$ (говори за света).

Забележка. Ако φ е затворена, то е вярно $\mathcal{A} \models \varphi$ или $\mathcal{A} \models \neg \varphi$.

Дефиниция 53 (Изпълнима формула). Формулата φ е изпълнима, ако съществува структура \mathcal{A} и оценка ν , такива че $\|\varphi\|^{\mathcal{A}}[\nu] = T$, тогава $\mathcal{A} \models_{\nu} \varphi$.

Забележка. Няма задължение различните индивидни константи да бъдат интерпретирани в структурата като различни обекти, могат да съвпадат, $c^A \in A$.

Дефиниция 54 (Изпълнимо множество от формули). Едно множество от предикатни формули Γ е изпълнимо, ако съществува структура \mathcal{A} и оценка ν , такива че за всяка формула $\varphi \in \Gamma, \mathcal{A} \models_{\nu} \varphi$.

Казваме, че Γ е неизпълнимо, ако Γ не е изпълнимо.

Забележка. Ø е изпълнимо за всяка структура и всяка оценка.

Забележка. Множеството от всички формули не е изпълнимо, тъй като в такова множество за някоя формула φ , $\neg \varphi$ също е от множеството.

Дефиниция 55 (Предикатна тавтология). *Казваме, че* φ *е предикатна тавтология (общовалидна), ако за всяка структура* $\mathcal{A}, \mathcal{A} \models \varphi$. Означаваме със $\models \varphi$.

Дефиниция 56 (Подформула). Казваме, че φ е подформула на ψ , ако има думи α и β , такива че $\psi = \alpha \varphi \beta$. Всяка такава двойка α, β определя едно конкретно участие на φ в ψ .

Дефиниция 57 (Индуктивна дефиниция на подформула). Нека φ е формула. Със $SubFor(\varphi)$ ще означаваме множеството от всички подформули на φ .

- ако φ е атомарна, то $SubFor(\varphi) = \{\varphi\};$
- $SubFor(\neg \varphi) = {\neg \varphi} \cup SubFor(\varphi);$
- $SubFor((\varphi \sigma \psi)) = \{(\varphi \sigma \psi)\} \cup SubFor(\varphi) \cup SubFor(\psi), \sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\};$
- $SubFor(Qx\varphi) = \{Qx\varphi\} \cup SubFor(\varphi), Q \in \{\forall, \exists\}.$

Дефиниция 58. Нека φ е предикатна формула, а е съждителна връзка или квантор, $\varphi = \alpha a \beta$.

- ако $a = \neg \longrightarrow$ има единствена формула φ_1 , такава че $\beta = \varphi_1\beta_1$;
- aro $a \in \{\&, \lor, \Rightarrow, \Leftrightarrow\} \longrightarrow u$ ма единствени формули φ_1, φ_2 , такива че $\alpha = \alpha_1(\varphi_1, \beta = \varphi_2)\beta_1$;
- ако $a \in \{\forall, \exists\}$ има единствена индивидна променлива x и единствена формула φ_1 , такива че $\beta = x\varphi_1\beta_1$.

Дефиниция 59 (Област на действие на квантор). Нека φ е предикатна формула, Q е квантор, т.е. $Q \in \{\forall, \exists\}$, и $\varphi = \alpha Q \beta$ е конкретно участие на Q във φ .

Тогава първата буква на β е индивидна променлива и казваме, че това участие на Q във φ е **квантор по тази променлива**. Тогава има единствена индивидна променлива x и предикатна формула ψ , такива че $\beta = x\psi\beta'$, т.е. $\varphi = \alpha Qx\psi\beta'$.

Участието на $x\psi$ във φ се нарича **област на действие** на участието на Q във φ .

Дефиниция 60 (Свободно и свързано участие на индивидна променлива в предикатна формула).

Едно участие на променлива в предикатна формула се нарича свободно участие в тази формула, ако то не е в област на действие на квантор по тази променлива.

Едно участие на променлива в предикатна формула се нарича свързано участие в тази формула, ако то е в област на действи на квантор по тази променлива.

Забележка. Свързаните участия на индивидните променливи са в някакъв смисъл "анонимни" участия., т.е. името на променливата има значение само от синтактична гледна точка.

Дефиниция 61 (Свободни и свързани индивидни променливи в предникатна формула).

Една индивидна променлива се нарича свързана променлива на формула φ , ако тя има поне едно участие във φ , което е свързано: $Var^{bd}(\varphi)$.

Една индивидна променлива се нарича свободна променлива за формула φ , ако тя има поне едно участие във φ , което е свободно: $V^{free}(\varphi)$.

Забележка. Една променлива може да бъде, както свободна, така и свързана за φ .

Забележка. Свободните променливи са важни, с φ определяме свойство на свободните променливи, дали дадена n-торка има свойството φ .

Дефиниция 62. Индуктивна дефиниция на $Var^{bd}(\varphi)$ и $Var^{free}(\varphi)$:

- $Var^{bd}(p(\tau_1, \tau_2, \dots, \tau_n)) = \varnothing; Var^{free}(p(\tau_1, \tau_2, \dots, \tau_n)) = Var(\tau_1) \cup Var(\tau_2) \cup \dots Var(\tau_n)$ $Var^{bd}((\tau_1 \doteq \tau_2)) = \varnothing; Var^{free}((\tau_1 \doteq \tau_2)) = Var(\tau_1) \cup Var(\tau_2)$
- $Var^{bd}(\neg \varphi) = Var^{bd}(\varphi); Var^{free}(\neg \varphi) = Var^{free}(\varphi)$ $Var^{bd}((\varphi \sigma \psi)) = Var^{bd}(\varphi) \cup Var^{bd}(\psi); Var^{free}((\varphi \sigma \psi)) = Var^{free}(\varphi) \cup Var^{free}(\psi),$ $\sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}$
- $\bullet \ Var^{bd}(Qx\varphi) = Var^{bd}(\varphi) \cup \{x\}; Var^{free}(Qx\varphi) = Var^{free}(\varphi) \setminus \{x\}, Q \in \{\forall, \exists\}$

Дефиниция 63 (Безкванторна формула). Една формула φ се нарича безкванторна, ако в нея няма срещане на \forall , \exists .

Безкванторните формули може да ги дефинираме индуктивно така:

- атомарните формули са безкванторни
- ullet ако arphi е безкванторна, то $\neg arphi$ също е безкванторна
- ако φ и ψ са безкванторни, то $(\varphi \sigma \psi), \sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\}$

Дефиниция 64. Нека x_1, x_2, \ldots, x_n са различни индивидни променливи, $Var^{free}(\varphi) \subseteq \{x_1, x_2, \ldots, x_n\}$. Тогава ще пишем $\varphi[x_1, x_2, \ldots, x_n]$.

Нека $a_1, a_2, \ldots, a_n \in A$. Ако ν_1 и ν_2 са оценки в \mathcal{A} , и $\nu_j(x_i) = a_i, i = 1, \ldots, n, j = 1, 2,$ и $\|\varphi\|^{\mathcal{A}}[\nu_1] = \|\varphi\|^{\mathcal{A}}[\nu_2], \mathcal{A} \models_{\nu_1} \varphi \longleftrightarrow \mathcal{A} \models_{\nu_2} \varphi$. Тогава вместо $\mathcal{A} \models_{\nu} \varphi$ и $\nu(x_i) = a_i, i = 1, \ldots, n$ ще пишем $\mathcal{A} \models \varphi \llbracket a_1, a_2, \ldots, a_n \rrbracket$.

Дефиниция 65. $Def^{\mathcal{A}}(\varphi) \leftrightharpoons \{ \langle a_1, a_2, \dots, a_n \rangle | \mathcal{A} \models \varphi [\![a_1, a_2, \dots, a_n]\!] \}$ е определимо множество в \mathcal{A} с φ .

Дефиниция 66 (Определимо множество с формула). Нека \mathcal{L} е предикатен език и \mathcal{A} е структура на \mathcal{L} . Нека $B \subseteq A^n$ за някое n. Казваме, че B е определимо в \mathcal{A} с формула от \mathcal{L} , ако $\exists \varphi$ от $\mathcal{L}, \varphi[x_1, x_2, \ldots, x_n]$, такава че $\mathcal{A} \models \varphi[a_1, a_2, \ldots, a_n] \longleftrightarrow \langle a_1, a_2, \ldots, a_n \rangle \in B$, за произволни $a_1, a_2, \ldots, a_n \in A$.

Хомоморфизми и изоморфизми.

Дефиниция 67 (Хомоморфизъм). Нека \mathcal{A} и \mathcal{B} са структури за езика \mathcal{L} . Нека $h:A\longrightarrow B$. Казваме, че h е хомоморфизъм от \mathcal{A} към \mathcal{B} , ако са в сила:

- $h(c^{A}) = c^{B}$ за всяка индивидна константа c:
- $h(f^{\mathcal{A}}(a_1, a_2, \dots, a_n)) = f^{\mathcal{B}}(h(a_1), h(a_2), \dots, h(a_n)), \#(f) = n, f \in \mathbb{F}unc_{\mathcal{L}}, a_1, a_2, \dots, a_n \in A$:
- $\langle a_1, a_2, \dots, a_n \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle h(a_1), h(a_2), \dots, h(a_n) \rangle \in p^{\mathcal{B}}, \#(p) = n, p \in \mathbb{P}red_{\mathcal{L}},$ $a_1, a_2, \dots, a_n \in A.$

Казваме, че \mathcal{B} е хомоморфен образ на \mathcal{A} при h, ако h[A] = B.

Дефиниция 68 (Изоморфно влагане). Нека \mathcal{L} е език на предикатното смятане. \mathcal{A} и \mathcal{B} са структури за \mathcal{L} и $h:A\longrightarrow B$. Казваме, че h е изоморфно влагане на \mathcal{A} в \mathcal{B} , ако h е хомоморфизъм на \mathcal{A} в \mathcal{B} и h е инективна функция, т.е. имаме на лице следните условия:

- 1. h е инекция $(a \neq b \longrightarrow h(a) \neq h(b))$
- 2. $h(c^{\mathcal{A}}) = c^{\mathcal{B}}, \forall c \in \mathbb{C}onst_{\mathcal{C}}$
- 3. $h(f^{\mathcal{A}}(a_1, a_2, \dots, a_n)) = f^{\mathcal{B}}(h(a_1), h(a_2), \dots, h(a_n)),$ където $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n,$ произволни $a_1, a_2, \ldots, a_n \in A$
- $4. < a_1, a_2, \ldots, a_n > \in p^{\mathcal{A}} \longleftrightarrow < h(a_1), h(a_2), \ldots, h(a_n) > \in p^{\mathcal{B}}, \ \kappa \mathrm{odemo} \ p \in \mathbb{P}red_{\mathcal{L}}, \#[p] = n.$ произволни $a_1, a_2, \ldots, a_n \in A$

Дефиниция 69 (Изоморфизъм). **Изоморфизъм на** \mathcal{A} върху \mathcal{B} ще наричаме изоморфио влагане h на \mathcal{A} в \mathcal{B} , такова че \mathcal{B} е хомоморфен образ на \mathcal{A} (h[A]=B), т.е. h е хомоморфизъм на A върху B и е биекция. Ако има изоморфизъм на A върху B, ще казваме, че A и B ca**изоморфни** и пишем $A \cong \mathcal{B}$.

 ${f Забележка.}\,\,{\cal A}$ ефиницията е коректна, защото ако h е изоморфизъм на ${\cal A}\,$ върху ${\cal B},$ то $h^{-1}\,$ е изоморфизъм на $\mathcal B$ върху $\mathcal A$ и h^{-1} е биекция на B върху $A, h^{-1}(c^{\mathcal B}) = c^{\mathcal A}, h^{-1}(f^{\mathcal B}(b_1,b_2,\ldots,b_n)) =$ $f^{\mathcal{A}}(h^{-1}(b_1), h^{-1}(b_2), \dots, h^{-1}(b_n)).$ Значи, ако $h: A \xrightarrow{\cong} B$, то $h^{-1}: B \xrightarrow{\cong} A$.

Ако две структури \mathcal{A} и \mathcal{B} са изоморфни, ще пишем $\mathcal{A} \cong \mathcal{B}$.

Дефиниция 70 (Автоморфизьм). Изоморфизмите на А върху А образуват група относно $Id_{\mathcal{A}},^{-1}, \circ u$ се наричат автоморфизми, $Aut(\mathcal{A})$ – група на автоморфизмите:

- $Id_{\mathcal{A}}$ е автоморфизъм в \mathcal{A} ;
- Ако h е автоморфизъм в A, то h^{-1} е автоморфизъм в A;
- Ако h_1 и h_2 са автоморфизми в \mathcal{A} , то $h_1 \circ h_2 e$ също автоморфизъм в \mathcal{A} .

Забележка. Тези структури, за които Aut(*) съдържа само един елемент – неутралния, m.e. имат единствен автоморфизъм относно $Id_{\mathcal{A}}$ – ce наричат твърди.

Пример. $<\mathbb{N}, \le> e$ твърда структура, но $<\mathbb{Z}, \le>$ не e, тъй като за всяко $a\in\mathbb{Z}$ изображението $h_a(m) = m + a$ е автоморфизъм $\epsilon < \mathbb{Z}, <>$.

Дефиниция 71 (Универсална формула). Формулите от вида $\forall y_1 \forall y_2 \dots \forall y_n \psi$ е безкванторна, се наричат универсални формули.

 $\exists a \ \varphi = \forall y_1 \forall y_2 \dots \forall y_n \psi, \ \kappa$ ъдето $\psi \ e \ б$ езкванторна, $e \ в$ ярно, че $\mathcal{B} \models \varphi \llbracket h(a_1), h(a_2), \dots, h(a_n)
brace \longrightarrow$ $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!].$

Дефиниция 72 (Екзистенциална формула). Формулите от вида $\exists y_1 \exists y_2 \dots \exists y_n \psi$ е безкванторна, се наричат универсални формули.

 $\exists a \ \varphi = \exists y_1 \exists y_2 \ldots \exists y_n \psi, \ \kappa \sigma \partial e mo \ \psi \ e \ \delta e s \kappa s a n mopha, \ e \ в s p n o, \ ue \ \mathcal{A} \models \varphi \llbracket a_1, a_2, \ldots, a_n \rrbracket \longrightarrow$ $\mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!].$

Логически еквивалентни формули

Дефиниция 73 (Логически еквивалентни формули). *Казваме*, че φ и ψ са логически еквивалентни $(\varphi \bowtie \psi)$, ако всеки път, когато A е структура и ν е оценква в A, имаме $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\nu} \psi$. Или записано по друг начин: $\|\varphi\|^{\mathcal{A}}[\nu] = \|\psi\|^{\mathcal{A}}[\nu]$.

Заместване на подформули с формули

Дефиниция 74. Нека \mathcal{A} е структура. Казваме, че предикатните формули от езика \mathcal{L} φ и ψ са еквивалентни в $\mathcal{A}, \varphi \stackrel{\mathcal{A}}{\models} \psi$, ако за всяка оценка ν в \mathcal{A} е изпълнено $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\nu} \psi$. $\varphi \stackrel{\mathcal{A}}{\models} \psi \longleftrightarrow \mathcal{A} \models \varphi \Leftrightarrow \psi.$

Заместване на индивидни променливи с термове

Дефиниция 75 (Допустима замяна). Нека φ е предикатна формула, x е индивидна променлива, τ е терм. Резултатът от едновременната замяна на всички свободни участия на x във φ с τ ще означаваме с $\varphi^{[x/\tau]}$.

Казваме, че едновременната замяна на свободните участия на x във $\varphi, \varphi[x/\tau]$, е допустима замяна, ако никое свободно участие на x във φ не е в област на действие на квантор по променлива участваща в τ .

Забележка. Ако $x\not\in Var^{free}(\varphi)$, то за всеки терм $\tau\varphi[x/\tau]$ е допустима.

Забележка. Ако τ е затворен терм, то за всяко φ и всяко $x\varphi^{[x/\tau]}$ е допустима замяна.

Преименуване на свързани променливи

Дефиниция 76 (Вариант). *Казваме*, че $Qy\varphi[x/y]$ е вариант на $Qx\varphi$, ако:

- $\varphi[x/y]$ е допустима (т.е. свободните участия на x във φ не са в област на действие на квантор по y);
- $y \in Var^{free}[\varphi]$.

Пренексна нормална форма

Дефиниция 77. Казваме, че φ е в **пренексна нормална форма** ($\Pi H \Phi$), ако $\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Theta$, където x_1, x_2, \dots, x_n са различни индивидни променливи $Q_1, Q_2, \dots Q_n$ са квантори, Θ е безкванторна формула, $n \geq 0$.

```
Думата Q_1x_1Q_2x_2...Q_nx_n се нарича кванторен префикс на \varphi, а \Theta – матрица на \varphi. Ако всичките Q_1,Q_2,...,Q_n са \forall, то казваме, че \varphi е универсална. Ако всичките Q_1,Q_2,...,Q_n са \exists, то казваме, че \varphi е екзистенциална.
```

Логическо следване

Дефиниция 78 (Секвенциално следване). Нека $\Gamma \cup \{\psi\}$ е множество от предикатни формули. Казваме, че от Γ логически следва $\psi(\Gamma \models \psi)$, ако всеки път, когато \mathcal{A} е структура и ν е оценка в \mathcal{A} от $\mathcal{A} \models_{\nu} \varphi$ за всяко $\varphi \in \Gamma$ следва, че $\mathcal{A} \models_{\nu} \psi$.

Дефиниция 79 (Глобално следване). Казваме, че от Γ глобално (моделно) следва ψ ($\Gamma \models^g \psi$), ако всеки път, когато \mathcal{A} е структура, ако за всяка $\varphi \in \Gamma, \mathcal{A} \models \varphi$, то $\mathcal{A} \models \psi$.

Скулемизация

Дефиниция 80 (Скулемизация). Алгоритъм, който по дадено множество от затворени формули Γ дава множество от затворени формули Γ^S , такова че Γ е изпълнимо тогава и само тогава, когато Γ^S е изпълнимо и Γ е неизпълнимо тогава и само тогава, когато Γ^S е неизпълнимо.

```
Това преобразувание е поточково, т.е. \Gamma^S = \{\varphi^S \mid \varphi \in \Gamma\}. \Gamma \models \psi \longleftrightarrow \Gamma \cup \{\neg \psi\} е неизпълнимо \longleftrightarrow \Gamma^S \cup \{(\neg \psi)^S\} е неизпълнимо.
```

Дефиниция 81 (Скулемова нормална форма). Ако φ е затворена u е в пренексна нормална форма, то φ^S е затворена u универсална, но в разсширение на езика. φ^S ще наричаме Скулемова нормална форма на φ .

Дефиниция 82 (Алгоритъм за скулемизация). Ще дефинираме едностъпкова скулемизация (от φ ще получаваме φ^S):

- φ^S е затворена;
- φ^S е в пренексна нормална форма;
- φ^S ще има един квантор за \exists по-малко от φ (ако във φ има \exists).

Нека $\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Theta$ – затворена формула, x_1, x_2, \dots, x_n са различни индивидни променливи, Q_1, Q_2, \dots, Q_n са квантори. Тогава φ_S :

- 1. Ako $Q_1 = Q_2 = \ldots = Q_n = \forall$, mo $\varphi_S \models \varphi$;
- 2. Ако $Q_1 = \exists$, т.е. $\varphi = \exists x \psi \ (\psi \leftrightharpoons Q_2 x_2 \dots Q_n x_n \Theta)$, то $\varphi^S \leftrightharpoons \psi[x/c_{\varphi}]$, където c_{φ} е нова индивидна променлива.
- 3. Ако $Q_1 = Q_2 = \ldots = Q_k = \forall, Q_{k+1} = \exists, m.e. \varphi = \forall x_1 \forall x_2 \ldots \forall x_k \exists x_{k+1} \ldots \Theta, mo$ $\varphi_S \leftrightharpoons \forall x_1 \forall x_2 \ldots \forall x_k (Q_{k+2} x_{k+2} \ldots Q_n x_n)[x_{k+1}/f_{\varphi}(x_1, x_2, \ldots, x_k)],$ където f_{φ} е нов за езика функционален символ с арност k.

Ако в кванторния префикс има точно m>0 квантора \exists , то $\varphi^S=\underbrace{\varphi_{SSS...}}_{m,n,m,n}$

Затворени универсални формули

Дефиниция 83 (Затворен частен случай). Нека \mathcal{L} е език, в който има поне една индивидна константа. Нека $\forall x_1 \forall x_2 \dots \forall x_n \Theta$ е затворена формула, Θ е безкванторна формула и x_1, x_2, \dots, x_n са различни индивидни променливи.

Нека $\tau_1, \tau_2, \ldots, \tau_n$ са произволни затворени термове от \mathcal{L} . Формулата $\Theta[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n]$ ще наричаме затворен частен случай на $\forall x_1 \forall x_2 \ldots \forall x_n \Theta$. Множеството на всички затворени частни случаи на универсална затворена формула φ ще означаваме със $CSI(\varphi)$, Closed substitution instances, m.e. $CSI(\varphi) \leftrightharpoons \{\Theta[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n] : \tau_1, \tau_2, \ldots, \tau_n \in T_c^c\}$.

Дефиниция 84. Нека Δ е множество от безкванторни формули от \mathcal{L} . Можем да разгледаме формулите от Δ като съждителни формули над множеството от съждителни променливи $\mathbb{A}t_{\mathcal{L}}$.

Нека \mathcal{A} е структура, ν оценка в \mathcal{A} . За всяка формула $\chi \in \mathbb{A}t_{\mathcal{L}}$ дефинираме $I_{\mathcal{A},\nu}(\chi) = \|\chi\|^{\mathcal{A}}[\nu]$. Тогава за всяка безкванторна формула φ е изпълнено $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow I_{\mathcal{A},\nu}(\varphi) = T$. Тогава $\mathcal{A} \models_{\nu} \Delta \longrightarrow I_{\mathcal{A},\nu} \models \Delta$.

Ербранови структури

Дефиниция 85 (Ербранова структура). Нека \mathcal{L} е предикатен език. Една структура \mathcal{H} за езика \mathcal{L} се нарича ербранова структура, ако:

- $\mathcal{H} = \mathcal{T}_{\mathcal{L}}^{cl}$ универсумът е множеството от затворените термове от езика \mathcal{L} ;
- $c^{\mathcal{H}} = c$ за всяка индивидна константа от \mathcal{L} ;
- $f^{\mathcal{H}}(\tau_1, \tau_2, \dots, \tau_n) = f(\tau_1^{\mathcal{H}}, \tau_2^{\mathcal{H}}, \dots, \tau_n^{\mathcal{H}})$ за всеки функционален символ f, #[f] = n, за произволни $\tau_1, \tau_2, \dots, \tau_n \in \mathbf{T}_{\mathcal{L}}^{\mathcal{L}}$

Забележка. \mathcal{L} има поне една ербранова структура $\longleftrightarrow \mathcal{T}^{cl}_{\mathcal{L}} \neq \varnothing \longleftrightarrow \mathcal{L}$ има поне една индивидна константа.

Забележка. Едно множество от безкванторни формули е изпълнено \longleftrightarrow то е изпълнено в ербранова структура.

Свободни ербранови структури

Дефиниция 86 (Свободна ербранова структура). Една структура \mathcal{H} се нарича свободна ербранова структура за езика \mathcal{L} , ако:

- ullet $\mathcal{H}=\mathcal{T}_{\mathcal{L}}$ универсумът е множеството от всички термове от \mathcal{L}
- $c^{\mathcal{H}} \leftrightharpoons c$, за всяка индивидна константа $c \in \mathbb{C}onst_{\mathcal{L}}$
- $f^{\mathcal{H}}(\tau_1, \tau_2, \dots, \tau_n) = f(\tau_1, \tau_2, \dots, \tau_n)$, за всеки n-арен функционален символ f и за всеки n терма.

Съждителна резолюция

Дефиниция 87. Нека φ е съждителна формула и $\varphi = \psi_1 \& \psi_2 \& \dots \& \psi_n$, където ψ_i са елементарни дизюнкции, тъй като $\Theta \lor \Theta \models \Theta$, на всяка елементарна дизюнкция ψ ще съпоставим крайното множество от литералите (т.е. P или $\neg P$), които участват във формулата ψ .

 $\psi \longrightarrow \mathbb{D}_{\psi}$ – крайно множество от литерали.

 $L_1 \lor L_2 \lor \ldots \lor L_k$ – дизюнкция от литерали.

 $I \models L_1 \lor L_2 \lor \ldots \lor L_k \longleftrightarrow \exists i, 1 \le i \le k, I \models L_i.$

Следователно за едно крайно множество от литерали от $\mathbb{D}_{\psi}, I \models \mathbb{D}_{\psi} \longleftrightarrow$ има литерал $L \in \mathbb{D}_{\psi}, I \models L$. Така $I \models \psi \longleftrightarrow I \models \mathbb{D}_{\psi}$.

Дефиниция 88 (Дизюнкт). Дизюнкт \mathbb{D} ще наричаме крайно множество от литерали, I е булева интерпретация. Казваме, че $I \models \mathbb{D}$, ако съществува $L \in \mathbb{D}, I \models L$.

 ψ е елементарна дизюнкция, следователно \mathbb{D}_{ψ} е дизюнкт, $I \models \psi \longleftrightarrow I \models \mathbb{D}_{\psi}$. Ако $\mathbb{D} \neq \emptyset$ и \mathbb{D} е дизюнкт, то има формула ψ , такава че $\mathbb{D} = \mathbb{D}_{\psi}$.

Забележка. Има само един дизюнкт, който не е от вида \mathbb{D}_{ψ} за някоя елементарна дизюнкция ψ . Това е празното множество от литерали. Този дизюнкт ще наричаме "празен дизюнкт" и ще го означаваме с \blacksquare .

Забележка. Нека I е булева интерпретация. ■ не е верен за всяка булева интерпретация. ■ е неизпълним – няма модел. Всеки дизюнкт, различен от ■ има поне един модел.

Дефиниция 89 (Тавтология). Нека казваме за един дизюнкт \mathbb{D} , че е тавтология, ако всеки път, когато I е булева интерпретация, $I \models \mathbb{D}$.

 \mathbb{D} е тавтология \longleftrightarrow има променлива $P:P\in\mathbb{D}$ и $\neg P\in\mathbb{D}$.

Дефиниция 90 (Дуален литерал). Нека L е литерал. Дуален на L литерал ще наричаме $L^{\partial} = \begin{cases} P, & a\kappa o \ L = P \\ \neg P, a\kappa o \ L = \neg P \end{cases}$

Дефиниция 91 (Модел). Казваме, че I е модел за S, където S е множество от дизюнкти, ако за всеки дизюнкт $\mathbb{D} \in S, I \models \mathbb{D}$. Така, $I \models \varphi \longleftrightarrow I \models S_{\varphi}$. За всяка булева интерпретация $I, I \models \varnothing$. S може u да е безкрайно.

Нека Δ е множество от съждителни формули, I е булева интерпретация, $I \models \Delta \longleftrightarrow \forall \varphi \in \Delta, I \models \varphi$. За всяка булева интерпретация $I, I \models \Delta \longleftrightarrow \bigcup_{\varphi \in \Delta} S_{\varphi}$.

Забележка. Δ е изпълнимо $\longleftrightarrow S_{\Delta}$ е изпълнимо. Ако $\blacksquare \in S$, то S е неизпълнимо.

Правило на съждителната резолюция

Дефиниция 92. Нека \mathbb{D}_1 и \mathbb{D}_2 са дизюнкти, а L е литерал.

Казваме, че правилото за съждителната резолюция е приложимо към двойката $\mathbb{D}_1, \mathbb{D}_2$ относно L, ако $L \in \mathbb{D}_1$ и $L^{\partial} \in \mathbb{D}$.

Бележим ! $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

Забележка. Ако \mathbb{D}_1 и \mathbb{D}_2 са дизюнкти и L е литерал, то алгоритмично разпознаваемо е дали ! $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

Резултат от прилагането на правилото за резолюцията към \mathbb{D}_1 и \mathbb{D}_2 относно L имаме само когато правилото е приложимо и този резултат е $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2) \leftrightharpoons \{\mathbb{D}_1 \setminus \{L\} \cup \{\mathbb{D}_2 \setminus \{L^{\partial}\}\}$.

Дефиниция 93 (Резолвента). \mathbb{D} е резолвента на \mathbb{D}_1 и \mathbb{D}_2 , ако има литерал $L: \mathbb{D} = \mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

Дефиниция 94 (Резолютивен извод). Нека S е множество от дизюнкти. Резолютивен извод от S наричаме крайна редица от дизюнкти $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_n$: всеки неин член е или от S, или е резолвента на два предходни члена.

Дефиниция 95. Нека S е множество от дизюнкти u \mathbb{D} е дизюнкт. Казваме, че \mathbb{D} е резолютивно изводим от S, ако има резолютивен извод от S, чийто последен член е \mathbb{D} , m.e. има крайна редица $\mathbb{D}_1, \mathbb{D}_2, \ldots, \mathbb{D}_n$, такава че тя е резолютивен извод u $\mathbb{D}_n = \mathbb{D}$.

 $\Pi u u e M S \vdash D.$

Забележка. Нека S е множество от дизюнкти, I е булева интерпретация и $S \stackrel{r}{\vdash} D$. Тогава, ако $I \models S$, то $I \models \mathbb{D}$.

Трансверзали за фамилии от множества

Дефиниция 96 (Трансверзала). Нека A е множество, чиито елементи са множества. A е фамилия от множества. Казваме, че едно множество Y е трансверзала за A, ако за всеки елемент $x \in A, Y \cap x = \varnothing$.

Дефиниция 97 (Минимална трансверсала). *Нека А е фамилия от множества. За едно множество Y казваме, че е минимална трансверзала за A, ако:*

- Y е трансверзала за А;
- Ако $Y' \subseteq Y$ и Y' е трансверзала, то Y' = Y.

Хорнови дизюнкти

Дефиниция 98 (Хорнов дизюнкт). Един съждителен дизюнкт \mathbb{D} се нарича хорнов, ако съдържа най-много един позитивен литерал.

Дефиниция 99 (Факт). $\{P\}$, където P е позитивен литерал, т.е. съждителна променлива или атомарна формула. Дизюнкти от този вид се наричат факти.

Дефиниция 100 (Правило).
$$\{P, \neg Q_1, \dots, \neg Q_n\}, n \geq 1$$
 – правило. $P: -Q_1, Q_2, \dots, Q_n$. $P \vee \neg Q_1 \vee \dots \vee \neg Q_n \models \neg (Q_1 \& Q_2 \& \dots Q_n) \vee P \models Q_1 \& Q_n \& \dots \& Q_n \Rightarrow P$.

Дефиниция 101 (Цели). $\{\neg Q_1, \neg Q_2 \dots, \neg Q_n\}, n \geq 1.$

Дефиниция 102 (Хорнова програма). *Хорнова програма е крайно множество от правила и факти*.

Дефиниция 103. $Hexa\ I: PVar \longrightarrow \{T, F\}$. $Hexa\ conocmasum\ A_I = \{P\mid I(P) = T\} \subseteq PVar$.

Oбратно, ако A е множество от съждителни променливи, то на A съпоставяме харак-

теристичната ѝ функция
$$I(P) = \begin{cases} T, P \in A \\ F, P \not\in A \end{cases}$$

теристичната ѝ функция $I(P)=\begin{cases} T,P\in A\\ F,P\not\in A \end{cases}$. Ако на A съпоставим I_A и на I_A съпоставим A_{I_A} , ще получим $A=A_{I_A}$. Аналогично, $I=I_{A_I}$.

В множеството на всички булеви интерпретации дефинираме частична наредба:

$$I \preccurlyeq J \leftrightharpoons A_I \subseteq A_J$$

Изоморфии влагания. Хомоморфизми и изоморфизми.

Дефиниция 104. Нека $A_0 \subseteq A^n$ и нека A_0 е определимо. Нека h е автоморфизъм в струкmypama A.

Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено

$$< a_1, a_2, \dots, a_n > \in A_0 \Leftrightarrow < h(a_1), h(a_2), \dots, h(a_n) > \in A_0$$

Дефиниция 105. Нека h е изоморфизъм на A върху \mathcal{B} и φ – формула.

Ако $\mathcal{A} \models \varphi\llbracket a_1, a_2, \dots, a_n \rrbracket \longleftrightarrow \mathcal{B} \models \varphi\llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$ и φ е затворена, то $\mathcal{A} \models$ $\varphi \longleftrightarrow \mathcal{B} \models \varphi$.

Дефиниция 106. Нека $A_0 \subseteq A^n$ и h e автоморфизъм в структурата A.

 $A \text{ ko } \exists < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0 \in A_0, \text{ no} < h(a_1), h(a_2), \ldots, h(a_n) > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1,$ $A_0 \not\in A_0$, то A_0 не е определимо множество.

 Π ример: $< \mathbb{N}, \le >$.

Дефиниция 107 (Подструктура). Нека \mathcal{A} и \mathcal{B} са структури за \mathcal{L} , казваме че \mathcal{A} е подструктура на \mathcal{B} , ако Id_A е изоморфно влагане на \mathcal{A} в \mathcal{B} , m.е.:

- $A \subseteq B$
- $c^{\mathcal{A}} = c^{\mathcal{B}}$
- $f^{\mathcal{A}}(a_1, a_2, \dots, a_n) = f^{\mathcal{B}}(a_1, a_2, \dots, a_n)$, такива че на a_1, a_2, \dots, a_n действа изоморфно влагане $a_1, a_2, \ldots, a_n \in A$
- $\langle a_1, a_2, \dots, a_n \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle a_1, a_2, \dots, a_n \rangle \in p^{\mathcal{B}}, \ \text{sa} \ a_1, a_2, \dots, a_n \in A$

 Π ример: $\langle \mathbb{Q}, \langle \rangle$ за $\langle \mathbb{R}, \langle \rangle$

Дефиниция 108. Нека \mathcal{L} е език без формално равенство, $\mathbb{C}onst_{\mathcal{L}} \neq \emptyset$, \mathcal{H} е ербранова структура за \mathcal{L} , а \mathcal{H}^{free} – свободна ербранова структура.

- 1. За ${\cal H}$ ербранова структура, тогава $\exists H^{free}$ свободна ербранова структура, за която \mathcal{H} e nodcmpykmypa.
- 2. За $\forall H^{free}$ свободни ербранови структури $\exists \mathcal{H}$ ербранова структура , такава че \mathcal{H} e подструктура на \mathcal{H}^{free}

Дефиниция 109. *Нека* A *е подструктура на* B:

- 1. Нека $\varphi[x_1,x_2,\ldots,x_n]$ и φ е безкванторна, тогава за произволни $a_1,a_2,\ldots,a_n\in A$, $\mathcal{A}\models$ $\varphi[a_1, a_2, \dots, a_n] \longleftrightarrow \mathcal{B} \models \varphi[a_1, a_2, \dots, a_n]$
- 2. Нека $\varphi[x_1, x_2, \dots, x_n]$ и φ е универсална формула, тогава $\mathcal{B} \models \varphi[a_1, a_2, \dots, a_n] \longrightarrow \mathcal{A} \models$ $\varphi[a_1, a_2, \dots, a_n]$ sa $a_1, a_2, \dots, a_n \in A$

3. Нека $\varphi[x_1, x_2, \dots, x_n]$ и φ е екзистенциална формула, тогава $\mathcal{A} \models \varphi[a_1, a_2, \dots, a_n] \longrightarrow \mathcal{B} \models \varphi[a_1, a_2, \dots, a_n]$ за $a_1, a_2, \dots, a_n \in A$

Дефиниция 110 (Логическа еквивалентност на формули). *Нека* φ u ψ ca npedukamhu $\phi op-мули$.

Казваме, че φ и ψ са логически еквивалентни и записваме $\varphi \models \psi$, ако за всяка структура \mathcal{A} и за всяка оценка ν имаме, че $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\nu} \psi$.

 $\varphi \models \psi \longleftrightarrow$ във всяка структура φ и ψ определят едни и същи множества, φ и ψ имат свободни променливи между $\{x_1, x_2, \dots, x_n\}$.

$$\varphi \models \psi \longleftrightarrow \models (\varphi \Leftrightarrow \psi)$$

Дефиниция 111 (Предикатна тавтология). Една предикатна формула φ се нарича предикатна тавтология, ако за $\forall \mathcal{A}$ – структура и за $\forall \nu$ – оценка в \mathcal{A} , $\mathcal{A} \models_{\nu} \varphi$, т.е. $\|\varphi\|^{\mathcal{A}} = T$. $H_{\Leftrightarrow}(l_1, l_2) = T \longleftrightarrow l_1 = l_2$

Дефиниция 112. Нека \mathcal{A} е структура, φ и ψ са предикатни формули. Казваме, че φ и ψ са логически еквивалентни в \mathcal{A} , $\varphi \models_{\mathcal{A}} \psi$, ако за $\forall \nu$ – оценка в \mathcal{A} е в сила $\|\varphi\|^{\mathcal{A}}[\nu] = \|\psi\|^{\mathcal{A}}[\nu]$.

Дефиниция 113 (Заместване на индивидни променливи и предикатни формули). Нека x е индивидна променлива, τ е терм. C $\varphi[^x/\tau]$ ще означаваме резултата от едновременната замяна на всички свободни участия на x във φ с τ .

Казваме, че замяната е **допустима**, ако свободните участия на x във φ не са в област на действие на квантор по променлива от τ .

Забележка. Нека φ е безкванторна. Тогава за всяко x и всеки терм $\tau \varphi[x/\tau]$ е допустима.

Забележка. Ако τ е затворен терм, то за всяка формула φ и всяко $x \varphi[x/\tau]$ е допустима.

Дефиниция 114 (Преименуване на свързани променливи). *Нека* φ *е предикатна формула*, $x \neq z, Q \in \{\forall, \exists\}.$

Казваме, че формулта $Qz[\varphi[^x/z]]$ е получена от $Qx\varphi$ с преименуване, ако са изпълнени условията:

- $\varphi[^x/z]$ е допустима замяна (свободните участия на x във φ не са в област на действие на Q no z)
- $z \in Var^{free}[\varphi]$