Recap...

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Recap...

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

Recap...

$$P(A|B) = \frac{P(A)P(B|A)}{P(B)}$$

$$0.6x0.42$$

$$0.6x4.2+0.4x0.75$$

Test	Positive	Negative
Disease	25 TP	35 FN
No Disease	30 FP	10 TN

Test	Positive	Negative
Disease	25 TP	35 FN
No Disease	30 FP	10 TN

Test	Positive	Negative
Disease	25 TP	35 FN
No Disease	30 FP	10 TN

Test	Positive	Negative
Disease	25 TP	35 FN
No Disease	30 FP	10 TN

TN

FP

Disease

Pos Neg Pos Neg
TP FN FP TN

Consider rocks with or without a rare mineral

Consider rocks with or without a rare mineral

Only 1% of the rocks have the mineral

Consider rocks with or without a rare mineral inside

Only 1% of the rocks have the mineral

Someone builds a mineral detector

The detector

Has 100% sensitivity:

- 100% of rocks containing the mineral are correctly determined (No false negatives)

The detector

Has 100% sensitivity (recall):

- 100% of rocks containing the mineral are correctly determined (No false negatives)

has 90% specificity

- 10% False positives (Rocks without mineral but labeled by the detector as if they had it)

The **owner** of the detector wants to sell you a rock. He examines the

rock in front of you with the detector:

The **owner** of the detector wants to sell you a rock. He examines the rock in front of you with the detector:

The **owner** of the detector wants to sell you a rock. He examines the rock in front of you with the detector:

Would you buy the rock?

(For a big price, but quite cheaper that the mineral standard price)

$$P(M|+) = \frac{P(M)P(+|M)}{P(+)}$$

100%

$$P(M|+) = \frac{P(M)P(+|M)}{P(+)}$$

$$= \frac{0.01 \times 1}{P(+)}$$

$$= \frac{0.00\%}{P(+)}$$

$$= \frac{0.00\%}{P(+)$$

$$P(M|+) = \frac{P(M)P(+|M)}{P(+)}$$

$$= \frac{0.01 \times 1}{P(+)}$$

$$= \frac{0.001 \times 1}{P(+)}$$

$$= \frac{0.001 \times 1}{P(+)}$$

$$= \frac{0.001 \times 1}{P(+)}$$

$$= \frac{0.001 \times 1}{P(+)}$$

$$= \frac{0.01 \times 1}{P(+)}$$

$$= \frac{0.0$$

$$P(M|+) = \frac{P(M)P(+|M)}{P(+)}$$

$$= \frac{0.01 \times 1}{P(+)}$$
Mineral (M) No Mineral
$$= \frac{0.01 \times 1}{0.01 \times 1 + 0.99 \times 0.1}$$
Positive(+) Negative Positive Negative

$$P(M|+) = \frac{P(M)P(+|M)}{P(+)}$$

$$= \frac{0.01 \times 1}{P(+)}$$

$$= \frac{0.01 \times 1}{0.01 \times 1 + 0.99 \times 0.1}$$

$$= 0.092 = 9.2\%$$
Mineral (M) No Mineral
0% 10% 90%
Positive(+) Negative Positive Negative

Base rate < False Positive rate

Base rate < False Positive rate

Base rate < False Positive rate

¿TENER ALTA SENSIBILIDAD IMPLICA UNA BUENA PREDICCIÓN?

El loro afirma que ganaremos el partido (siempre repite lo mismo, de hecho...)

Hurra, ¡ganaremos! Hurra, ¡ganaremos! Hurra, ¡ganaremos!

Verdaderos positivos

Verdaderos positivos + Falsos Negativos

SENSIBILIDAD = 100%