Beispiel 1 (Gleichverteilung)

Wir haben die folgenden 10 unabhängigen Realisationen einer Gleichverteilung auf dem Intervall $[0,\theta]$ gegeben:

 $0.6 \ 5.5 \ 0.9 \ 4.5 \ 6.6 \ 2.0 \ 3.3 \ 5.0 \ 3.5 \ 3.1$

Schätze mit Hilfe der Momentenmethode den Wert von θ .

• Gegeben seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen.

- Gegeben seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen.
- Wir kennen die Verteilung, aber ein oder mehrere Parameter sind unbekannt. Diese wollen wir schätzen.

- Gegeben seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen.
- Wir kennen die Verteilung, aber ein oder mehrere Parameter sind unbekannt. Diese wollen wir schätzen.
- **3** Wir bestimmen die ersten k theoretischen Momente $\mathbb{E}(X^k)$ der Verteilung und ermitteln einen Zusammenhang zu den gesuchten Parametern.

- Gegeben seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen.
- Wir kennen die Verteilung, aber ein oder mehrere Parameter sind unbekannt. Diese wollen wir schätzen.
- Wir bestimmen die ersten k theoretischen Momente $\mathbb{E}(X^k)$ der Verteilung und ermitteln einen Zusammenhang zu den gesuchten Parametern.
- Wir ersetzen die theoretischen Momente $\mathbb{E}(X^k)$ durch die empirischen Momente $\frac{1}{n}\sum_{i=1}^n X_i^k$ und lösen nach den gesuchten Parametern auf.

- Gegeben seien X_1, \ldots, X_n unabhängig und identisch verteilte Zufallsvariablen.
- Wir kennen die Verteilung, aber ein oder mehrere Parameter sind unbekannt. Diese wollen wir schätzen.
- Wir bestimmen die ersten k theoretischen Momente $\mathbb{E}(X^k)$ der Verteilung und ermitteln einen Zusammenhang zu den gesuchten Parametern.
- Wir ersetzen die theoretischen Momente $\mathbb{E}(X^k)$ durch die empirischen Momente $\frac{1}{n}\sum_{i=1}^{n}X_i^k$ und lösen nach den gesuchten Parametern auf.
- Wir erhalten einen Ausdruck, der die gesuchten Parameter durch die empirischen Momente erklärt. Diesen nennen wir Momentenschätzer.

1 X_1, \ldots, X_n *iid* gleichverteilt auf dem Intervall $[0, \theta]$

- X_1, \ldots, X_n *iid* gleichverteilt auf dem Intervall $[0, \theta]$
- ② wir wollen θ schätzen

- X_1, \ldots, X_n *iid* gleichverteilt auf dem Intervall $[0, \theta]$
- \bigcirc wir wollen θ schätzen
- \odot erstes theoretisches Moment (k = 1):

$$\mathbb{E}(X) = \frac{\theta}{2}$$

$$\iff \theta = 2 \cdot \mathbb{E}(X)$$

- $\{0, X_1, \dots, X_n \text{ iid gleichverteilt auf dem Intervall } [0, \theta]$
- \bigcirc wir wollen θ schätzen
- \odot erstes theoretisches Moment (k = 1):

$$\mathbb{E}(X) = \frac{\theta}{2}$$

$$\iff \theta = 2 \cdot \mathbb{E}(X)$$

• erstes empirisches Moment (k = 1):

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

- **1** X_1, \ldots, X_n iid gleichverteilt auf dem Intervall $[0, \theta]$
- \bigcirc wir wollen θ schätzen
- \odot erstes theoretisches Moment (k = 1):

$$\mathbb{E}(X) = \frac{\theta}{2}$$

$$\iff \theta = 2 \cdot \mathbb{E}(X)$$

• erstes empirisches Moment (k = 1):

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}$$

1 theoretisches durch empirisches Moment ersetzen:

$$\hat{\theta}_{MM} = 2 \cdot \frac{1}{n} \sum_{i=1}^{n} X_i = 2 \cdot \bar{X}$$

Beispiel 1 (Gleichverteilung)

Wir haben die folgenden 10 unabhängigen Realisationen einer Gleichverteilung auf dem Intervall $[0,\theta]$ gegeben:

 $0.6 \ 5.5 \ 0.9 \ 4.5 \ 6.6 \ 2.0 \ 3.3 \ 5.0 \ 3.5 \ 3.1$

Schätze mit Hilfe der Momentenmethode den Wert von θ .

Beispiel 1 (Gleichverteilung)

Wir haben die folgenden 10 unabhängigen Realisationen einer Gleichverteilung auf dem Intervall $[0,\theta]$ gegeben:

$$0.6 \ 5.5 \ 0.9 \ 4.5 \ 6.6 \ 2.0 \ 3.3 \ 5.0 \ 3.5 \ 3.1$$

Schätze mit Hilfe der Momentenmethode den Wert von θ .

$$\hat{\theta}_{MM} = 2 \cdot \frac{1}{n} \sum_{i=1}^{n} X_i = 2 \cdot 3.5 = 7$$

Gegeben seien $X_1, \ldots, X_n \stackrel{iid}{\sim} Poi(\lambda)$. Bestimme den Momentenschätzer $\hat{\lambda}_{MM}$ für den Parameter λ .

Gegeben seien $X_1, \ldots, X_n \stackrel{iid}{\sim} Poi(\lambda)$. Bestimme den Momentenschätzer $\hat{\lambda}_{MM}$ für den Parameter λ .

Wir wissen bereits:

$$\hat{\lambda}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$

Gegeben seien $X_1, \ldots, X_n \stackrel{iid}{\sim} Poi(\lambda)$. Bestimme den Momentenschätzer $\hat{\lambda}_{MM}$ für den Parameter λ .

Wir wissen bereits:

$$\hat{\lambda}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$

Aber was ist mit $\hat{\lambda}_{MM}$?

- $oldsymbol{2}$ wir wollen λ schätzen

- $oldsymbol{2}$ wir wollen λ schätzen
- **3** erstes theoretisches Moment (k = 1):

- $oldsymbol{2}$ wir wollen λ schätzen
- \odot erstes theoretisches Moment (k = 1):
 - $\mathbb{E}(X) = \lambda$

- $oldsymbol{\circ}$ wir wollen λ schätzen
- **3** erstes theoretisches Moment (k = 1):
 - $\mathbb{E}(X) = \lambda$
- erstes empirisches Moment (k = 1):

- $oldsymbol{2}$ wir wollen λ schätzen
- **3** erstes theoretisches Moment (k = 1):
 - $\mathbb{E}(X) = \lambda$
- erstes empirisches Moment (k = 1):
 - $\frac{1}{n}\sum_{i=1}^n X_i$

- $oldsymbol{2}$ wir wollen λ schätzen
- **3** erstes theoretisches Moment (k = 1):
 - $\mathbb{E}(X) = \lambda$
- \bullet erstes empirisches Moment (k = 1):
 - $\frac{1}{n}\sum_{i=1}^n X_i$
- **5** theoretisches durch empirisches Moment ersetzen:

$$\hat{\lambda}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Gegeben seien $X_1, \ldots, X_n \stackrel{iid}{\sim} Poi(\lambda)$. Bestimme den Momentenschätzer $\hat{\lambda}_{MM}$ für den Parameter λ .

$$\hat{\lambda}_{ML} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$

$$\hat{\lambda}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$$

Beispiel 3 (Normalverteilung)

Seien $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$. Bestimme die Momentenschätzer $\hat{\mu}_{MM}$ und $\hat{\sigma}_{MM}^2$.

- $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ wir wollen μ und σ^2 schätzen

- ② wir wollen μ und σ^2 schätzen
- \odot erstes und zweites theoretisches Moment (k = 1 und k = 2):

- \bullet erstes und zweites theoretisches Moment (k = 1 und k = 2):
 - $\mathbb{E}(X) = \mu$

- 2 wir wollen μ und σ^2 schätzen
- \bullet erstes und zweites theoretisches Moment (k = 1 und k = 2):
 - $\mathbb{E}(X) = \mu$
 - $\mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$

- 2 wir wollen μ und σ^2 schätzen
- \bullet erstes und zweites theoretisches Moment (k = 1 und k = 2):
 - $\mathbb{E}(X) = \mu$
 - $\mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$

$$\iff \mathbb{E}(X^2) = \mathbb{V}(X) + \mathbb{E}(X)^2 = \sigma^2 + \mu^2$$

- \bullet erstes und zweites theoretisches Moment (k = 1 und k = 2):
 - $\mathbb{E}(X) = \mu$
 - $\mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$ $\iff \mathbb{E}(X^2) = \mathbb{V}(X) + \mathbb{E}(X)^2 = \sigma^2 + \mu^2$
- erstes und zweites empirisches Moment (k = 1 und k = 2):

- 2 wir wollen μ und σ^2 schätzen
- \bullet erstes und zweites theoretisches Moment (k = 1 und k = 2):
 - $\mathbb{E}(X) = \mu$
 - $\mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$ $\iff \mathbb{E}(X^2) = \mathbb{V}(X) + \mathbb{E}(X)^2 = \sigma^2 + \mu^2$
- erstes und zweites empirisches Moment (k = 1 und k = 2):
 - k = 1: $\frac{1}{n} \sum_{i=1}^{n} X_i$, k = 2: $\frac{1}{n} \sum_{i=1}^{n} X_i^2$

- \bullet erstes und zweites theoretisches Moment (k = 1 und k = 2):
 - $\mathbb{E}(X) = \mu$
 - $\mathbb{V}(X) = \mathbb{E}(X^2) \mathbb{E}(X)^2$ $\iff \mathbb{E}(X^2) = \mathbb{V}(X) + \mathbb{E}(X)^2 = \sigma^2 + \mu^2$
- erstes und zweites empirisches Moment (k = 1 und k = 2):
 - k = 1: $\frac{1}{n} \sum_{i=1}^{n} X_i$, k = 2: $\frac{1}{n} \sum_{i=1}^{n} X_i^2$
- theoretisches durch empirisches Moment ersetzen:

$$\hat{\mu}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\hat{\sigma}^2_{MM} = \frac{1}{n} \sum_{i=1}^n X_i^2 - \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2$$

Beispiel 3 (Normalverteilung)

Seien $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$. Bestimme die Momentenschätzer $\hat{\mu}_{MM}$ und $\hat{\sigma}_{MM}^2$.

$$\hat{\mu}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

$$\hat{\sigma}^{2}_{MM} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)^{2}$$