UNIVERSIDADE DE SÃO PAULO

Escola de Engenharia de São Carlos

SEL0621 - Projetos de Circuitos Integrados Digitais I Prof. Dr. João Pereira do Carmo

Projeto 9

Davi Diório Mendes 7546989

Nivaldo Henrique Bondança 7143909

13 de outubro de 2014

Lista de Figuras

1	Prescaler 32/33	p. 5
2	Esquemático do circuito <i>prescaler</i> 32/33	p. 6
3	Layout do circuito prescaler 32/33	p. 7
4	Circuito utilizando o <i>prescaler</i>	p. 7
5	Layout do circuito utilizando prescaler 32/33	p. 8
6	Circuito utilizando Prescalers e transistor	p. 9
7	Layout do circuito utilizando prescaler 32/33	p. 10
8	Relação entre frequência de <i>clock</i> e de saída. Típico, SM = "1", esquemático.	p. 11
9	Relação entre frequência de <i>clock</i> e de saída. Típico, SM = "0", esquemático.	p. 11
10	Relação entre frequência de <i>clock</i> e de saída. <i>Worstspeed</i> , SM = "1", esque-	11
	mático	p. 11
11	Relação entre frequência de <i>clock</i> e de saída. <i>Worstspeed</i> , SM = "0", esquemático	p. 12
12	Relação entre frequência de <i>clock</i> e de saída. Típico, SM = "1", C + CC	p. 12
13	Relação entre frequência de $clock$ e de saída. Típico, $SM = "0", C + CC.$	p. 12
14	Relação entre frequência de <i>clock</i> e de saída. <i>Worstspeed</i> , SM = "1", C + CC.	p. 13
15	Relação entre frequência de <i>clock</i> e de saída. <i>Worstspeed</i> , SM = "0", C + CC.	p. 13

Lista de Tabelas

Máximas frequência de operação.		5. 14
---------------------------------	--	--------------

Códigos Fontes

Resumo

Neste projeto iremos repetir algumas etapas feitas anteriormente e será mostrado como fazer, de forma automática, o *floor planning* e o *placement* das células. Ainda sendo considerados e analisados os valores máximos de frequência de operação.

Questões

1. Considere o circuito da Figura 1 (circuito prescaler).

Figura 1: Prescaler 32/33

Desenhe o circuito completo do esquemático da **Figura 1** utilizando as células DF1, NAND23, NOR23 e NAND40. Como sinais de entrada ele deve ter o *clock* e *SM*; como sinal de saída, *saida32_33* (divide o *clock* por 32 ou 33).

O esquemático do circuito *prescaler* está representado na **Figura 2**.

- **2.** Gere o símbolo para a célula e faça a verificação do esquemático e do símbolo. Certifique- se de que não haja erros ou mesmo *warnings*.
- **3.** Gere o *layout* do circuito a partir do *SDL* (utilize o *designviewpoint* e não o *schematic*) Para isto:
 - a. Coloque as células no layout;
 - b. Realize o autofloorplan (Place & Route Autofp);

Figura 2: Esquemático do circuito prescaler 32/33

- c. Recoloque as células dentro das linhas de floorplan (Place & Route AutoPlace Std-Cel);
- d. Apague as linhas que serviriam de guia para os *PADs* (as linhas mais externas);
- e. Selecione todo o esquemático para garantir que todas as ligações no *layout* apareçam. Caso não isto seja feito, no momento do *routing*, várias ligações deixam de ser realizadas;
- f. Para o *rounting*, desabilite a utilização de polisilício (não deixe de fazer isto, pois, caso contrário, o poli será incorretamente usado);
- g. Use o comando *routing* automático para fazer as ligações. Tome cuidado para que as linhas de *VDD* e *VSS* tenham 1,8µm de largura (use a opção *Route ARoutre NEt Classe*);
- h. Para as ligações que não foram feitas, utilize o comando *Route Aroute Region RIP* (neste caso algumas ligações são desfeitas e nova tentativa é realizada);
- i. Verifique que todas as ligação foram realizadas através do comando Route Routing Results - SOvrf.
- **4.** Verifique se as ligações foram bem feitas (principalmente dos sinais de *VDD* e *VSS*). Refaça aquelas que não estiverem boas. Coloque os *ports* no *layout*, conecte-os e coloque os *labels*.
 - **5.** Passe o *DRC* no circuito não deixando nenhum erro.

6. Faça o *LVS* entre o *layout* e o esquemático. Só devem ocorrer *warnings*. Inclua no relatório o *layout* feito e corrigido.

O layout do circuito está representado na Figura 3.

Figura 3: Layout do circuito prescaler 32/33

7. Considere o circuito da **Figura 4** (não tem função alguma, servindo apenas para ilustração). Desenhe o esquemático desse circuito utilizando a célula NAND23 e o prescaler anterior (faça as devidas checagens).

Figura 4: Circuito utilizando o prescaler.

- **8.** Gere o *layout* a partir do esquemático. Para isto não se esqueça de acrescentar ao símbolo do *prescaler* a propriedade *phy_comp* e como seu valor a localização do *layout*.
- **9.** Termine as conexões, adicione *ports*, faça o *DRC* e o *LVS*. Inclua no relatório o *layout* feito.

O layout do circuito está representado na Figura 5.

Figura 5: Layout do circuito utilizando prescaler 32/33

10. Modifique o circuito adicionando um transistor na saída como indicado na Figura 6.
Novamente gere o *layout*, adicione *ports*, faça o *DRC* e o *LVS*. Quais são os valores da saída quando o gate do transistor está "Alto" e quando está "Baixo". Inclua no relatório o *layout* feito.

O novo *layout* do circuito está representado na **Figura 7**.

Figura 6: Circuito utilizando Prescalers e transistor.

11. Voltando ao circuito da **Figura 1**, extrair a partir do esquemático o *netlist* e determinar a máxima velocidade para os modelos típico e *worstspeed* (o circuito deve dividir o *clock* por 32, para SM = "0", ou por 33, para SM = "1"). Use o comando *measure*, compare as freqüências obtidas nos dois modelos e comente os resultados.

Analisando os resultados representados na **Tabela 1** e nos gráficos em **Figura 8**, **Figura 9**, **Figura 10** e **Figura 11**, percebe-se que existe um limiar na frequência onde o circuito passa a se comportar de maneira indesejada. Sem contar que no modelo *worstspeed* o circuito tem uma grande diminuição em sua fequência máxima de operação, como esperado.

12. A partir do *layout* do circuito da **Figura 1**, extrair o circuito para simulação com apenas capacitores. Determinar a máxima velocidade do circuito para o modelo típico e para o modelo *worstspeed*.

Os resultados estão representados na **Tabela 1**, obtidos nos gráficos da **Figura 12**, **Figura 13**, **Figura 14** e **Figura 15**.

13. Extrair agora o circuito para simulação com capacitores e resistores. Determinar a máxima velocidade do circuito para o modelo típico e para o modelo *worstspeed*.

Os resultados estão representados na **Tabela 1**, obtidos nos gráficos da **Figura ??**, **Figura ??** e **Figura ??**.

14. A partir do *datasheet* dos blocos que compõe o *prescaler* estime o máximo *clock* que o circuito poderia suportar.

Ao analisar o circuito do *prescaler*, é possível notar que existem dois possíveis caminhos críticos, considerando apenas as partes que dependem do *clock*, que são os representados pelas seguintes equações:

$$t_{min_1} = t_{set-up} + t_{NAND} + t_{FF} \tag{1}$$

$$t_{min_2} = t_{set-up} + t_{NOR} + t_{FF} \tag{2}$$

Figura 7: Layout do circuito utilizando prescaler 32/33

Por analisar as configurações dos componentes, sabe-se que a capacitância de carga dos elementos são $C_{NAND} = 20 fF$, $C_{NOR} = 21 fF$ e $C_{FF} = 5 fF$. Utilizando aproximação linear, em conjunção as informações fornecidas pelo documento que contém informações sobre as células,

Figura 8: Relação entre frequência de *clock* e de saída. Típico, SM = "1", esquemático.

Figura 9: Relação entre frequência de *clock* e de saída. Típico, SM = "0", esquemático.

Figura 10: Relação entre frequência de *clock* e de saída. *Worstspeed*, SM = "1", esquemático.

pode-se definir $t_{set-up} = 0ns$, $t_{FF} = 0,706ns$, $t_{NOR} = 0,073ns$ e $t_{NAND} = 0,043ns$.

$$\frac{2,14-0,50}{320-1} = \frac{t_{FF}-0,50}{41-1} \tag{3}$$

$$\frac{1,60-0,07}{960-3} = \frac{t_{NOR} - 0,07}{5-3} \tag{4}$$

Figura 11: Relação entre frequência de *clock* e de saída. *Worstspeed*, SM = "0", esquemático.

Figura 12: Relação entre frequência de *clock* e de saída. Típico, SM = "1", C + CC.

Figura 13: Relação entre frequência de *clock* e de saída. Típico, SM = "0", C + CC.

$$\frac{1,67-0,04}{960-3} = \frac{t_{NAND}-0,04}{5-3} \tag{5}$$

$$t_{min} = max(t_{min_1}, t_{min_2}) (6)$$

Assim sendo, $t_{min} = 0,779ns$ o que implica uma frequência máxima de clock de 1,28GHz.

15. Monte uma tabela com os resultados obtidos nos exercícios 11, 12, 13 e 14. Compare e

Figura 14: Relação entre frequência de *clock* e de saída. *Worstspeed*, SM = "1", C + CC.

Figura 15: Relação entre frequência de *clock* e de saída. *Worstspeed*, SM = "0", C + CC.

comente os resultados.

Os resultados dos exercícios 11, 12, 13 e 14 estão representados na **Tabela 1**.

Após uma análise dos dados, percebe-se que há uma grande diferença entre os valores calculados no modelo típico e os calculados no modelo *worstspeed*, o que é bastante esperado. Nos modelos mais complexos a frequência de operação diminui. Isto ocorre devido a serem consideredas as cargas parasitas do circuito (C+CC e R+C+CC).

Obs. Endereço com informações sobre células /local/tools/dkit/ams_3.70_mgc/www/index.html (Standar Cell DataSheet - C35 - Core Cells).

Tabela 1: Máximas frequência de operação.

Modelo	Frequência (MHz) - Típico	Frequência (MHz) - worstspeed
datasheet	1.280	_
Esquemático (SM = "1")	1.100	740
Esquemático (SM = "0")	1.200	790
C + CC (SM = "1")	840	570
C + CC (SM = "0")	890	600
R + C + CC (SM = "1")	XXX	XXX
R + C + CC (SM = "0")	XXX	XXX