Android Internals - A Confectioner's CookBook

Status (05/25/2022)

- Vol I: Done v2.1
- Vol II: Done
- Vol III: Still pretty far
- Vol IV: A bit closer

Volume I: The Power User's View

Major rewrite for Android 11/12 - 440 pages, complete (now with Config chapter, too)

Changes/additions with respect to 1st edition shown in yellow

The original (ISBN: 978-0-9910555-2-4) remains free on this website (Thank you, CIA).

The book underwent a complete rewrite (effectively, a 2nd edition). Updates to align with Android 11, and latest SD865, Exynos, MediaTek and Kirin devices

- 0. About this book
 - Overview and Reading Suggestion
 - o The AOSP
 - Experiments
 - o Tools
 - Conventions Used in this Book
 - The Companion WebSite
- 1. Introduction and evolution of the Android Architecture

A technical overview of the Android architecture, evolution of its features, and forked derivatives

- Android Versions From Cupcake to Marshmallow R (11.0)
- o The Android Architecture
- o Android vs. Linux: Notable differences
 - Not just another Linux distribution
 - And then came Android
 - Commonalities and Divergences from Linux
 - Obtaining and compiling Android
 - The sources of Android Code
 - AOSP
 - AOSP external
 - The Linux kernel
 - Platform/BSP (vendor)
 - ODM
 - Carrier
- o A high level view of the Android Architecture
 - Applications
 - The Android Frameworks
 - Dalvik/Android Runtime
 - JNI
 - Native Binaries
 - Native Libraries
 - Bionic
 - Omissions
 - Additions
 - Porting Challenges
 - The Hardware Abstraction Layer (HAL)
 - The Traditional HAL (2.2-8.0)

- TOC ChangeLog
 - HE LIHUX KEITIEI
 - Linux kernel featuresAndroidisms
 - Drivers and Modules
 - Generic Kernel Image (GKI)
- Android Derivatives
 - FireOS, FireTV
 - Android Wear
 - Android Auto & Automotive
 - Google Glass
 - Headless Android
- o Pondering the way ahead

2. Hardware

A new chapter providing a detailed introduction to the hardware of Android devices, with an emphasis on hardware abstraction and Project Treble compliance

- The ARM architecture
 - Aarch32 and Aarch64
 - ARM architecture revisions
- Devices
- System on Chip (SoC) overview
- SoC vendors
 - Qualcomm (Snapdragon)
 - Samsung (Exynos)
 - Huawei (Kirin)
 - MediaTek (MTK)
- o The Device Tree
- Firmware images

3. Partitions & Filesystems

Examining Android storage types and partitions, as well a detailed breakdown of directories and files in /system and /data.

- Partitioning scheme
 - The Need for Separate Partitions
 - Flash Storage Systems
 - GUID Partitioning (GPT)
 - A/B[/C] Slotted devices
 - Dynamic partitioning (super.img)
 - lpdumpd (Android 10+)
- Android Device Partitions
 - Mountable Partitions
 - System-as-root
 - Supported filesystem types
 - /vendor, /odm, /product Division of responsibility
 - Non-Mountable Partitions
 - boot, vendor_boot and recovery
 - dtbo
 - frp
 - misc
 - vbmeta
- Chipset-specific Partitions
 - Qualcomm
 - cdt
 - devinfo
 - splash
 - Samsung
 - Huawei
 - MediaTek
- o Linux Pseudo-Filesystems
 - bpf (/sys/fs/bpf)

- TOC ChangeLog
- debugfs
- functionfs (/dev/usb-ffs/adb)
- FUSE
- incrementalfs (11.0)
- overlayfs
- procfs (/proc)
- pstore (/sys/fs/pstore)
- sdcardfs/esdfs
- securityfs (/sys/fs/selinux)
- sysfs (/sys)
- tmpfs
- tracefs (/sys/kernel/debug/tracing))

4. Files & Directories

A detailed breakdown of directories and files Android, up to and including Android 11 (Spun off from first edition's discussion in Partitions & Filesystems chapter, and greatly expanded).

- o The Root Filesystem
- o /svstem
 - /system/bin
 - /system/lib[64]
 - Core Libraries
 - Other system libraries
 - Framework support libraries
 - External native libraries
 - /system/etc
- /vendor
 - /vendor/bin
 - Qualcomm specific binaries
 - Huawei specific binaries
 - Samsung specific binaries
 - MediaTek specific binaries
- /data (Excerpt)
 - /data/data
 - /data/misc
 - /data/misc_ce and /data/misc_de
 - /data/system
 - /data/system_ce and /data/system_de
 - /data/vendor
- o /cache

5. Storage Management

Refactoring vold and OBB/ASEC, as well as adding new content on Storage* and APEX

- Mounting
 - Mount options
 - Loop mounting
 - Bind mounting
 - Mount namespaces
 - fs_mgr
 - The fstab files
 - External Storage
 - Portable Storage
 - Adoptable Storage
 - Scoped Storage (Android 10)
 - Incremental FS (Android 11)
- Daemons
 - vold
 - StorageManager
 - storaged
 - storagestats

Android Internals::A Confectioner's Cookbook

TOC ChangeLog

- Protected mesystems
 - Obb Opaque Binary BlobsASec Android Secure Storage
- o APEX Android Pony Express (Android 10)
 - apexd
 - Execution Flow
 - Additional Command Line Arguments
 - The AIDL interface
 - APEX and the linker configuration
 - Android 11.0 modifications
- Android System Images & Updates Split from the older Chapter III, and greatly expanded
 - Factory Images and OTA updates
 - Factory Images
 - OTA packages
 - Samsung OTA

0

- o Standardized Payload Formats
 - Android Sparse Images
 - super[_empty].img
 - Block Based Updates (transfer.[dat|list])
 - Mounting Filesystem Images
- Android boot.img
- Vendor boot.img (11.0, GKI)
- Updates
 - Fastboot
 - Samsung: ODIN
 - Updates via recovery
 - The update_binary
 - Updates on slotted (A/B) devices
 - update_engine
- Generic System Images (Android 9+)
 - gsid (Android 10+
 - Dynamic System Update (DSU)
 - The dynamic_system service
- 7. The Android boot process

Generalizing the Android Boot process amongst vendors, and then focusing on vendor specifics

- The Boot ROM/PBL
- Second Stage/eXtensible Boot Loader
 - Qualcomm (SD835+) UEFI Loader
 - Samsung S-BOOT
 - MediaTek Preloader
- The Android Boot Loader
 - Little Kernel (32-bit, ARMv7 and ARMv8 non Qualcomm UEFI)
 - (Generalized) LK execution flow
 - LinuxLoader (Qualcomm UEFI)
- Boot loader locking
- The Linux Kernel
 - Kernel Boot
- The RAM Disk (initramfs)
- o The Boot Control HAL
- 8. User mode startup init and Zygote
 - o Init
 - as watchdogd

- TOC ChangeLog
 - Accessing properties
 - Special namespace prefixes
 - Property files
 - PropertyInit()
 - The property store
 - The property_service
 - The rc files
 - Triggers, actions, and services
 - init.rc syntax and command set (updated for 11.0)
 - Command syntax
 - Service option syntax
 - Keychords
 - Putting it all together
- Zygote
 - Design Rationale
 - Zygote32, Zygote64 and webview_zygote
 - UnSpecialized Application Processes (USAPS, Android 10)
- Android Daemons, at a glance

The Android Runtime services: Native Services chapter (formerly Chapter 5), has been removed, as now *all* daemons are covered, but each within its context

- 9. The Android Service Architecture
 - o The Service call pattern
 - Binder (an overview)
 - A little history
 - So what, exactly, is Binder?
 - Using Binder
 - 8.0+: The vndbinder and hwbinder
 - Tracing Binder (bindump, etc)
 - o Service Manager, revisited
 - The system_server architecture
 - Handling services
 - Startup and Flow
 - o A bird's eye view of Android's services

10. Configuration & Management

New chapter dealing with users, settings and more

- User Management
 - The user service
- Account Management
 - The accounts database
 - The account service
- Configuration Settings
 - config.xml and other files
 - Overlays
 - The device_config service
 - Server Configurable Flags (10.0)
 - The settings service
 - The etc/sysconfig directories
 - The system_config service (11.0)
- o Mobile Device Management Moved to Volume III
 - Work profiles
 - The device_policy service
 - The restrictions service
- Android Applications through Linux Lens
 Monitoring and viewing Applications through the Linux command line
 - Application during runtime (with /proc/task/..)

- TOC ChangeLog
- Oser mode memory management
- o USS, PSS, RSS, VSS, etc
- o procrank, librank, and /proc/../smaps
- Native binaries, libraries and ELF Tools
- Optimizations in Android native and Dalvik apps

12. Logging, Statistics & Monitoring

- Android Logging
 - logd
- Statistics
 - statsd
 - statscompanion
 - The IStats HIDL
 - Lesser Statistics Services
- Incident Reporting
- Vendor Diagnostics
 - Qualcomm's Diag (/dev/diag)
- Debugging
- Monitoring
 - inotify
 - ptrace(2)-based tools
 - strace
 - jtrace
 - Using eBPF for tracing

13. Power Management

- Native APIs
- The PowerManagerService and Friends
- Battery Monitoring
- Low-level CPU Control
 - MultiCore
 - Interrupt Affinity
 - Governors
 - Heterogeneous Multi-Processing (HMP) Scheduling
 - Energy Aware Scheduling (EAS)
- Thermal Monitoring
 - Linux kernel support
 - Android support
 - hardware_properties service
 - thermalservice
 - The thermal HAL
 - Vendor thermal support
 - Qualcomm
 - Samsung
 - Huawei
 - MediaTek
 - Case study: Google Pixel
- o The Power HAL interface
- Power Management Statistics

Volume II: The Developer View - Available! 360 pages

- 1. Building Android from the source
 - o The AOSP

- TOC ChangeLog
- A WITHITWITH LOUI OF AHUTOID PROJECT
- The NDK
 - Android.mk and Android.bp (soong)
 - Cross compiling with custom Makefiles
- 2. Android at a Native Level
 - o Bionic, in depth
 - Native Level debugging, core dumps and tombstones
- 3. Package Maintenance
 - o APK Components
 - AndroidManifest.xml
 - classes.dex
 - resources.arsc
 - Digital signatures on apps
 - o Runtime Resource Overlay (RRO)
 - o Package Installation
 - Behind the scenes
 - installd
 - The package database
 - Monitoring Packages
 - Package statistics
 - The PackageManagerService
 - APK snapshots & rollback
- 4. Anatomy of an an Android Application
 - Break down and detail of APK and application components
 - Application Components
 - Activities
 - Services
 - Broadcast Receivers
 - Content Providers
 - JNI
 - The need for native code
 - Compiling JNI code
 - Houdini Briding the ARM/Intel divide
 - Decompiling applications
 - Application Internals
 - Break down and detail the nooks of crannies of starting an app, and maintaining its lifecycle
 - Runtime Primitives
 - Looper
 - Handler
 - MessageQueue
 - Zygote explained
 - Accessing services from native code
 - Activity Manager in depth
 - Behind the scenes of the application lifecycle
- Application Services
- 6. Dalvik Internals
 - The inner workings of Android's Virtual Machine and bytecode format
 - o Dalvik vs. Java
 - o DEX, demystified
 - Running DEX apps
 - o Dalvik's JNI implementation

TOC ChangeLog

- 7. Android RunTime Internals
 - o ART An alternative to Dalvik
 - ART Components (The com.android.art APEX)
 - o The files: OAT, ART, CDEX, VDEX, etc
 - The runtime
 - Setup and initialization
 - Support threads
 - Compilation
 - o JIT
 - Profiling/Tracing
 - o Memory allocators and Garbage Collection
- 8. Binder, in depth
 - o A Brief Overview of Binder
 - o The App Developer's Perspective AIDL
 - AIDL Syntax
 - AIDL code generation
 - The Parcel object
 - The Parcel wire format
 - o The Framework Perspective and roid.os.Binder
 - Binder.java
 - References
 - Default Transactions
 - 11.0: Extensions
 - Death Notifications
 - The JNI Layer
 - The native code Perspective libbinder.so
 - RefBase: Strong and Weak Pointers
 - The BpBinder and BBinder
 - The native proxy and stub interfaces
 - ProcessState and IPCThreadState
 - Detailed case study: A Binder service in native code
 - The Binder kernel interface
 - The Binder character devices
 - 11.0; BinderFS
 - The ioctl(2) command set
 - The BINDER_WRITE_READ ioctl(2) code
 - Transactions
 - Flattened Objects
 - o Binder Driver Internals
 - Module initialization
 - Device open
 - Transactions in-kernel processing
 - Kernel Driver State
 - Thread Management
 - Death Notifications
 - Tracing & Debugging

Volume III: The [Hacker/Security Analyst]'s View

This was chapter 8 in the 1st edition - but that was a long time ago, before TrustZone, Titan, AVB ... and a host of Android exploits & APTs..

TOC ChangeLog

- 1. Software-implemented security
 - Linux Native Permissions
 - AID ranges
 - Treble and the return of passwd/group files
 - SELinux
 - o SECCOMP-BPF
 - o Android Runtime permissions
 - o Appops

2. Hardware-backed security

- TrustZone
 - Theory & Design
 - Vendor Implementations:
 - Qualcomm: QSEE/QHEE
 - MTK/Older Samsung: Mobicore
 - Samsung: TEEGRIS
 - Google: Trusty
- o Beyond Trustzone: Hardware Security Modules
 - Titan M/M2
 - Qualcomm SPU
- 3. Authentication subsystems
 - The Lock Screen (lock_settings service)
 - The auth service
 - ∘ The biometric service
 - Face authentication (The face service)
- 4. Encryption facilities
 - o DM-Crypt
 - Ext4Crypt
 - Keystore
 - Linux keyrings
 - Gatekeeper
- 5. Integrity & Attestation
 - o Android Verified Boot
 - AVB 1.0
 - AVB 2.0
 - AVBMeta tool
 - o DM-verity
 - o 11: App Integrity, File Interity (fs-verity)
 - Samsung TIMA & Knox
 - o Google SafetyNet
- 6. Introduction/Threat Modeling Android

Lorem ipsum

- Threat Modeling
- Attack classes
 - II ...
 - · ...
- o Android Security Model
- 7. Rooting

Rooting Android using boot-to-root methods

Android Internals::A Confectioner's Cookbook

- TOC ChangeLog
- Android IUEIVIUNIOCK INTERFACE
- ...
- Case Study: Magisk
- o Malware Case Study: Intellexa's "Alien"

8. Vulnerability/Exploit case studies:

(Jury's still out on which of those I'll use - comments/suggestions welcome)

- Linux Kernel: CVE-2021-1048 (epoll) or CVE-2022-0847 (Dirty Pipe)
- AOSP Linux Kernel: Bad Binder (CVE-2019-2215) and/or num_not_so_valid CVE-2020-0041
- o Vendor: Pixel 6 Samsung's MFC
- o TrustZone: likely Trusty
- AOSP. (still looking for something nice here)
- Vendor. MTK-su and/or Boot chain vulnerability?
- o Baseband: Samsung Exynos (Shannon) VoLTE/SIP vulns

9. Appendices:

- Android App Hardening Guide
- Android System Hardening Guide

Volume IV: The Implementer's View

1. HAL & Treble

- The Hardware Abstraction Layer (pre-Treble)
- hwservicemanager
- HIDL and Binderized HAL
- o sensors/CHRE
 - Oslo/Soli as a case study
- o GPS
- Implementing a custom HAL module

2. The Android Input Architecture

- The Linux Kernel Layer
- The Native Layer
 - InputManager
 - EventHub
 - InputReader
 - InputDispatcher
- The Dalvik Layer
 - The Input Pipeline
 - Getting tot the user callback

3. Android Media

- o The Audio Architecture
 - Audio at the Linux Kernel level
 - The Audio HAL
 - Audio modules
 - Audio policy modules
 - Audio Effects
 - AudioFlinger
 - Media Player
 - The Dalvik APIs
- Video
- o Digital Rights Management

- TOC ChangeLog
- o Android Graphics Architecture
- o Graphics at the Linux Kernel Level
- o Graphics at the Native Level
 - SKIA
 - OpenGLES
 - RenderScript
 - MinUI
- o SurfaceFlinger
- StageFright

5. Connectivity

- o BlueTooth
- o Android Beam & NFC
- o Wi-Fi & Wi-Fi Direct
 - wpa_supplicant
 - WifiMonitor
 - WifiNative
 - WifiConfigStore
 - WifiStateMachine
- VPN (Racoon and MTPd)
- o Tethering and Mobile Access Point
 - Kernel Layer: NetFilter
 - User Mode support
 - hostapd
 - dnsmasq
- Detecting Network State
- Monitoring Data Usage

6. Telephony

- Radio interface layer (phone)
- 7. Location
- 8. Android and USB
 - Android as a USB Target
 - Framework USB Target Support
 - The Linux Gadget Driver
 - ADB
 - Authenticated ADB
 - MTP/PTP
 - Mass Storage Device
 - RNDIS (USB Tethering)
 - Android as a USB host
 - Framework USB Host Support