Simulating DataCenter Network Topologies

Agenda

- Data Center Networks (DCN)
- Project Proposal (Our Work)
- Network Topologies & Properties
- Simulation using NS-3
- Conclusion and Future Work

Data Center Networks(DCN)

- A pool of interconnected resources that serve the internet.
- Recent years have seen huge growth in data transfer especially due to multimedia, big-data and high speed internet.
- Projected growth is ~23% per year
- Managing data is inevitable and extremely challenging.

A Google Data Center Courtesy: http://www.cse.wustl.edu/~jain/cse570-13/ftp/m_03dct.pdf

Cisco Global Cloud Index, 2013-2018 3

DCN – Overview & Challenges

- Usually consists of three layers – core, aggregation and access
- Nodes are connected using a interconnection network topology like FatTree, Flattened Butterfly or DCell
- Topology is an important factor responsible for the challenges

Project Proposal (Our Work)

- Study and evaluate existing data center topologies (FatTree, Flattened Butterfly, BCube, Dcell, FiConn and HyScale).
- Simulate on ns-3 tool under various traffic scenarios.
- Design and simulation of a new-topology.

Important Topologies

■ FatTree

■ Flattened ButterFly

HyScale

Topologies – Important Properties

Topology	Servers	Diameter
FatTree	$n^{3}/4$	k+1
	(n= number of	
	groups/pods)	
BCube	n^{k+1} (n = number of	4
	servers connected in	
	basic unit,	
	k= recursion depth)	
HyScale	aT^{k+1} (a = number of	4k+2
	servers connected at	
	each node, k=	
	recursion depth, T =	
	number of nodes in	
	base model)	

Topologies – A Comparision

Average disjoint paths

■ Average Hop Count

Ns-3: Network Simulator

- Simulation tool that supports scripts in C++ or python.
- Uses Netanim as a visualizer, but other tools can be used as well
- Direct support for pcap trace files, xml outputs and plotting (gnuplot)
- Conceptual design still the same as ns-2, but capability less that ns-2

Ns-3: Architecture and an Example

DCN Simulation Setup

Simulation	Fat-Tree	BCube	HyScale
Parameters			,
Simulation Time	100sec	100sec	100sec
PacketSize	1024bytes	1024bytes	1024bytes
DataRates	1Mbps	1Mbps	1Mbps
between switches			
DataRates	1000Mbps	1000Mbps	1000Mbps
between switches			
and hosts			
Communication	Random selection	Random selection of	Random selection of
Pattern	of two hosts and	two hosts and	two hosts and
	sending data		_
	between them	between them	between them
Traffic Flow	Exponential	Exponential	Exponential Random
Pattern	Random	Random	
Routing Protocol	Nix-vector(ns-3)	Nix-vector(ns-3)	Nix-vector(ns-3)
Animator	NetAnim	NetAnim	NetAnim
Variable	n varied (2-12)	k=2, n varied(2-12)	a=2, T=8, k varied
parameter(refer			from (1-3)
to Slide 7)			

DCN Simulation: Results

Observed Average Throughput and Average Delay with exponential random traffic pattern.

Observed Packet loss with exponential random traffic pattern.

DCN Simulation: Observations

- Simulated Fat-Tree and BCube topologies based on existing implementations.
- Analysis and interpretation of results are still in progress.
- Using ns-3 tool seemed complex since it's architecture has been designed to support simulation of new topologies and protocols.

Future Work

- Complete simulations for other topologies (DCell, HyScale II and FiConn) and compare them.
- Simulate topologies for other parameters (other types of traffic, fault-tolerance and bisectionbandwidth)
- Extend ns-3 capabilities to support optical networks

References

- [1] Cisco Global Cloud Index: Forecast and Methodology, 2013-2018. Retrieved from
- https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
- [2] Bilal, Kashif, et al. "Quantitative comparisons of the state-of-the-art data center architectures." Concurrency and Computation: Practice and Experience 25.12 (2013): 1771-1783.
- [3] Bilal, Kashif, Samee Ullah Khan, and Albert Y. Zomaya. "Green Data Center Networks: Challenges and Opportunities." Frontiers of Information Technology (FIT), 2013 11th International Conference on. IEEE, 2013
- [4] Saha, S., Deogun, J. S., & Xu, L. (2012, June). Hyscale: A hybrid optical network based scalable, switch-centric architecture for data centers. InCommunications (ICC), 2012 IEEE International Conference on (pp. 2934-2938). IEEE.

References

- [5] D. Wong, K.T. Seow, C.H. Foh and R. Kanagavelu, "Towards Reproducible Performance Studies of Datacenter Network Architectures Using An Open-Source Simulation Approach", Proceedings of the IEEE Global Communications Conference (GLOBECOM'13), December 2013, Atlanta, GA, USA.
- [6] NS3-manual. At https://www.nsnam.org/docs/release/3.11/manual/ns-3-manual.pdf
- [7] NS3-Tutorial. At https://www.nsnam.org/docs/release/3.22/tutorial/singlehtml/
- [8] NTU-DSI-DCN Project. At http://ntu-dsi-dcn.github.io/ntu-dsi-dcn/
- [9] Poor man's tool to support Computer Networking. At www.netkit.org

Questions?