形式化方法例题讲解

Mobyw

版本:1.0 更新:2023年12月5日

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

本文档为形式化方法各章节的例题,由于部分答案为个人编撰,难免会出现错误,请保证使用 GitHub仓库 所发布的最新版本. 如遇问题可在 GitHub 上发布 Issue.

1 命题逻辑

本章考点:

- 1. 将自然语言描述转换为命题逻辑公式.
- 2. 命题逻辑矢列的有效性判断.
- 3. 语法分析树的构造与子式的提取.
- 4. 使用指派法判断矢列的有效性.
- 5. 使用真值表实现到 CNF 的转换.

Exercise 1

Prove the validity of:

- (1) $(p \land q) \land r, s \land t \vdash q \land s$.
- $(2) p \vdash (p \rightarrow q) \rightarrow q.$
- $(3) \neg p \rightarrow \neg q \vdash q \rightarrow p.$

Solution 1

(1)

1	$(p \wedge q) \wedge r$	premise
2	$s \wedge t$	premise
3	$p \wedge q$	$\wedge e_1 1$
4	q	$\wedge e_2 3$
5	S	$\wedge e_1 2$
6	$q \wedge s$	∧i4, 5

(2)

(3)

1	$\neg p \rightarrow \neg q$	premise
2	q	assumption
3	$\neg \neg q$	$\neg \neg i2$
4	$\neg \neg p$	MT 1, 3
5	p	$\neg \neg e4$
6	$q \rightarrow p$	\rightarrow i2 – 5

2 谓词逻辑

本章考点:

- 1. 将自然语言描述转换为谓词逻辑公式.
- 2. 谓词逻辑矢列的有效性判断.
- 3. 语法分析树的构造.
- 4. 使用指派法判断矢列的有效性.

Exercise 2

利用谓词规范:

- 1. *B*(*x*, *y*): *x* 击败 *y*
- 2. F(x): x 是一个足球队

- **3.** *Q*(*x*, *y*): *x* 是 *y* 的四分卫
- 4. L(x, y): x 输给 y

和常值符号

- 1. c: 野猫
- 2. j: 掠夺者

把下列句子翻译成谓词逻辑语句:

- 1. 每个球队都有一名四分卫。
- 2. 若掠夺者队击败野猫队,则掠夺者队没有输给每支足球队。
- 3. 野猫队击败了一支击败过掠夺者队的球队。

Solution 2

- 1. $\forall t \ (F(t) \to \exists m \ Q(m,t))$
- 2. $B(j,c) \rightarrow \forall t \ (F(t) \rightarrow \neg L(j,t))$
- 3. $\exists t \ (F(t) \land B(t,j) \land B(c,t))$

Exercise 3

证明下面的谓词逻辑公式是有效的: $\exists y((\forall x P(x)) \rightarrow P(y))$.

Solution 3

使用推理规则来推导:

- 1. 假设 ∀*xP*(*x*) 为真.
- 2. 根据 1,有 P(y) 为真,其中 y 是存在的.
- 3. 由于第一步的假设是任意的,因此可以推断 $\forall x P(x) \rightarrow P(y)$ 为真.
- 4. 由于存在一个 y 使得 $\forall x P(x) \rightarrow P(y)$ 为真,因此 $\exists y (\forall x P(x) \rightarrow P(y))$ 为真.

因此,我们证明了 $\exists y((\forall x P(x)) \to P(y))$ 是有效的。简而言之,这个公式表明"如果对于所有 x, P(x) 都为真,那么存在一个 y 使得 P(y) 也为真"。这是一个显然的真实际情况,因为只需选择任意一个 y, 使得 P(y) 为真即可。

Exercise 4

Prove the walidity of $\forall x P(x) \rightarrow S \vdash \exists x (P(x) \rightarrow S)$.

Solution 4

为了证明 $\forall x P(x) \rightarrow S \vdash \exists x (P(x) \rightarrow S)$ 的有效性,我们可以采用反证法。

假设 $\forall x P(x) \to S$ 是真的,但 $\exists x (P(x) \to S)$ 是假的。这意味着不存在 x 使得 $P(x) \to S$ 成立。

使用 $\exists x (P(x) \rightarrow S)$ 的否定,我们可以写成:

$$\forall x \neg (P(x) \rightarrow S)$$

使用条件语句的逆否命题,我们可以将 $\neg(P(x) \to S)$ 重写为 $P(x) \land \neg S$:

$$\forall x (P(x) \land \neg S)$$

现在,使用全称实例化规则,我们可以用一个特定的常量替换任何x,比如a,得到:

$$P(a) \wedge \neg S$$

然而,这与我们的假设 $\forall x P(x) \to S$ 是矛盾的。由于 $\forall x P(x) \to S$ 是真的,因此对于任何常量 $a, P(a) \to S$ 都是成立的。因此, $\exists x (P(x) \to S)$ 必须是真的。

我们已经证明了如果 $\forall x P(x) \to S$ 是真的,那么 $\exists x (P(x) \to S)$ 也必须是真的。因此,原命题 $\forall x P(x) \to S \vdash \exists x (P(x) \to S)$ 是有效的。

3 时态逻辑

本章考点:

- 1. CTL 公式的语法分析树的构造.
- 2. 给定模型下,LTL 公式路径的选取.
- 3. 给定模型下, CTL 公式有效性的判断.

4 模型检测

本章考点:

- 1. LTL 公式等价性的证明.
- 2. 合式公式
- 3. 标记算法

5 程序验证

本章考点:

- 1. 证明公式的部分正确性.
- 2. 含有 if 和 while 的代码的部分正确性证明.
- 3. 证明公式的完全正确性.