Elementary Matrices and Row Equivalence

Michael Brodskiy

Professor: Lynn Knight

February 10, 2021

- To interchange R_1 and R_2 , one could use the matrix $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. This is called an elementary matrix, which is obtained with exactly one operation on **I**
- To multiply R_1 by 2, one could use the matrix $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- To make R_2 equal to $R_2 2R_1$, one could use the matrix $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- The inverse of an elementary matrix reverses its operation (for example, if \mathbf{E}_1 subtracts R_2 from R_1 , then \mathbf{E}_1^{-1} adds R_2 to R_1)
- Fundamental Theorem for Matrices:
 - 1. If **A** is a square matrix of order n, then all of the following conditions are equivalent:
 - (a) A is invertible
 - (b) $\mathbf{A}x = \mathbf{B}$ has a unique solution for any n by one column matrix \mathbf{B}
 - (c) Only solution of $\mathbf{A}x = 0$ is the trivial solution x = 0
 - (d) $\mathbf{A}\widetilde{R}\mathbf{I}$
 - (e) A can be written as the product of elementary matrices