Exercise 6

 $\{x_1, \dots, x_n\}$ is the generating set of K, Assume CharK = 0 so K is finitely generated over \mathbb{Z} (sums of products of x_i and inject \mathbb{Z}), and hence \mathbb{Q} .

(7.9) says that K is finite algebraic over Q, (7.8) says that Q is finite Z-Algebra, which Q cannot be.

So assuming charK = 0 leads to a contradiction.

Assume charK not 0, charK = p, so a $\mathbb{Z}/p\mathbb{Z}$ -Algebra, (7.9) says K is finite extension over $\mathbb{Z}/p\mathbb{Z}$

[K:Z/pZ] = n, [K(a):Z/pZ] < n and multiply to n so K is finite field.

Exercise 8

A[x] contains A. Infinite chain in A would mean an infinite chain in A[x] $\varphi : A \to A[x], a \mapsto a$ is an injection.

Exercise 9

Exercise 10

M[x] becomes an A[x]-Module in the natural way. $M[x] \cong A[x] \bigotimes_A M$.

Exercise 11

 A_p is noetherian for all p, primes(max ideals are also prime). Hence all maximals, all ideals are contained in a maximal ideal, $\{A_i\}_i \leq 0$ be an infinite chain in A, will be contained in some max (but never reach it) Localize A at this max, this chain will be infinite in the local ring, a contradiction to having an infinite chain in A.