Queueing System with Potential for Recruiting Secondary Servers

Luca Lombardo

Seminario per Metodi Numerici per Catene di Markov

Struttura del seminario

- Introduzione
- Modello Matematico
- 3 Studio del modello di coda in stato stazionario
 - Generatore del QBD
 - Condizione di ergodicità
 - Calcolo della distribuzione stazionaria
- A Risultati Numerici
 - Primo esempio
 - Secondo esempio
 - Terzo esempio
- Conclusioni

Queueing Theory

I modelli di coda sono utilizzati per rappresentare sistemi di risorse che devono essere utilizzati da diversi utenti.

Code semplici

- Un solo server che attende un cliente alla volta
- Tempo discretizzato in intervalli di lunghezza fissa
- Numero casuale di clienti che si unisce al sistema durante un intervallo
- Il server rimuove un cliente dalla coda alla fine di ogni intervallo

Queueing Theory

Dato α_n il numero di nuovi arrivi durante l'intervallo [n-1,n) e X_n il numero di clienti nel sistema al tempo n, abbiamo:

$$X_{n+1} = \begin{cases} X_n + \alpha_{n+1} - 1 & \text{se } X_n + \alpha_{n+1} \ge 1\\ 0 & \text{se } X_n + \alpha_{n+1} = 0 \end{cases}$$

Se α_n è una collezione di variabili casuali indipendenti, allora X_{n+1} è condizionalmente indipendente da $X_0, ..., X_{n-1}$ se X_n è noto.

Queueing Theory

Lo spazio degli stati è N e la matrice di transizione è

$$P = \begin{pmatrix} q_0 + q_1 & q_2 & q_3 & q_4 & \dots \\ q_0 & q_1 & q_2 & q_3 & \ddots \\ \vdots & q_0 & q_1 & q_2 & \ddots \\ 0 & & \ddots & \ddots & \ddots \end{pmatrix}$$

- q_i è probabilità $P[\alpha = i]$ che i nuovi clienti che entrino in coda durante un intervallo di un'unità di tempo.
- α denota ognuna delle possibili distribuzioni di α_n identicamente distribuite.

Obiettivi del paper

Nuovo approccio per migliorare i modelli di coda utilizzando server secondari temporanei reclutati tra i clienti stessi.

- Server secondari disponibili solo temporaneamente e servono gruppi di diversa dimensione.
- Dopo aver servito un gruppo, i server secondari lasciano il sistema.

Obiettivi del paper

Due caratteristiche fondamentali

- I server secondari sono assegnati ad un gruppo e offrono i servizi uno alla volta.
- Un cliente servito da un server secondario può essere insoddisfatto.

Markovian arrival process (MAP)

- Un MAP è un processo stocastico che descrive il comportamento degli arrivi in un sistema di coda.
- È caratterizzato dalla sua distribuzione di probabilità di interarrivo e dalla sua distribuzione di probabilità di dimensione.
- Può essere definito come un processo di Markov a tempi continui.

Caratterizzazione del MAP

• Il generatore irriducibile del MAP è dato dalla somma delle matrici di parametro D_0 e D_1 di ordine m.

L'invariante di probabilità δ soddisfa l'equazione

$$\delta(D_0 + D_1) = \mathbf{0} \qquad \delta e = 1$$

- La matrice D_0 governa le transizioni del generatore sottostante che non producono arrivi.
- La matrice D_1 governa quelle transizioni corrispondenti agli arrivi nel sistema.

Proprietà del MAP

Rate medio di arrivi (λ)

$$\lambda = \delta D_1 e$$

Varianza dei tempi interni di arrivo (σ^2)

$$\sigma^2 = \frac{2}{\lambda}\delta(-D_0)^{-1}e - \frac{1}{\lambda^2}$$

Correlazione (ρ_c) tra due successivi tempi interni di arrivo

$$\rho_c = \frac{\lambda \delta(-D_0)^{-1} D_1 (-D_0)^{-1} e - 1}{2\lambda \delta(-D_0)^{-1} e - 1}$$

Modello di coda con server principale e secondario

Il sistema ha un singolo server che offre servizi in modo FCFS.

- ullet Il server principale offre servizi esponenziali con parametro $\mu_1.$
- Con probabilità p, un cliente servito può essere reclutato per diventare un server secondario
- Il server secondario sarà assegnato a un gruppo di i clienti dove i = min{numero nella coda, L}

Attenzione!

Un cliente insoddisfatto dal servizio ricevuto dal server secondario potrebbe richiedere di essere servito di nuovo con probabilità v.

Modello di coda con server principale e secondario

- I tempi di servizio del server secondario sono esponenziali con parametro μ_2 .
- I clienti insoddisfatti sono reinseriti nel sistema.
- Quando il server secondario ha finito di servire tutti i clienti assegnati viene rilasciato dal sistema.

Edge case

Il caso in cui v=1 non è interessante poiché ogni cliente servito da un server secondario viene reinserito nel sistema

Struttura del sistema

Figure: Immagine da [1]

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Due approcci possibili

QBD

Primo processo che analizzeremo in questa sezione: un caso particolare delle catena di markov a tempo continuo (CTMC)

GI/M/1

Una GI/M/1-type Markov chain assume che il tempo tra gli arrivi e il tempo di servizio dei clienti seguano una distribuzione generica, mentre è presente un solo server.

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Introduzione al QBD

Un quasi-death-birth process (QBD) è un caso particolare di una catena di Markov a tempo continuo (CTMC). Ci sono due tipi di eventi che possono verificarsi: eventi di morte e eventi di nascita.

Introduzione al QBD

Imponendo le restrizioni di entrambi i tipi di code M/G/1 che delle G/M/1, si vietano transizioni di più di livello alla volta, ottenendo così un processo QBD.

La matrice di transizione di tale processo è definita come segue:

$$P = \begin{pmatrix} B_0 & B_1 & & & 0 \\ A_{-1} & A_0 & A_1 & & & \\ & A_{-1} & A_0 & A_1 & & \\ & & A_{-1} & A_0 & \ddots & \\ 0 & & & \ddots & \ddots \end{pmatrix}, \quad A_{-1}, A_0, A_1, \in \mathbb{R}^{m \times m}, \quad B_0, B_1 \in \mathbb{R}^{m \times m}$$

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Generatore infinitesimale del processo QBD

Il generatore infinitesimale di un processo QBD è una matrice tridiagonale a blocchi infinita Q che descrive la probabilità di transizione del sistema da uno stato i ad uno stato j, in un dato istante di tempo t, attraverso un evento infinitesimo

Generatore infinitesimale del processo QBD

Al tempo $t \ge 0$, indichiamo:

- $i_t \ge 0$ il numero di clienti nel sistema
- $n_t \in \{0,...,\min(i_t,L)\}$ il numero di clienti in servizio al server secondario
- $\xi_t = 1,...,m$ lo stato del processo sottostante del *MAP* che descrive gli arrivi dei clienti

Allora, il processo stocastico $\{\zeta_t = (i_t, n_t, \xi_t), t \ge 0\}$ che descrive il comportamento del modello in esame è un CTMC regolare e irriducibile.

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Generatore infinitesimale del processo QBD

Enumerando gli stati della CTMC, $\{\zeta_t, t \geq 0\}$, in ordine lessicografico e indicando con i il livello, per $i \geq 0$, definiamo l'insieme di stati come

$$\{(i,n,k): 0 \le n \le \min(i,L), 1 \le k \le m\}$$

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Generatore infinitesimale del processo QBD

Theorem

Il generatore infinitesimale Q del processo stocastico CTMC $\{\zeta_t, t \geq 0\}$ ha una struttura a blocchi tridiagonale come segue:

$$Q = \begin{pmatrix} Q_{0,0} & Q_{0,1} & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots \\ Q_{1,0} & Q_{1,1} & Q_{1,2} & 0 & \dots & 0 & 0 & 0 & 0 & \dots \\ 0 & Q_{2,1} & Q_{2,2} & Q_{2,3} & \dots & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & \dots & Q_{L,L-1} & Q_{L,L} & Q^+ & 0 & \ddots \\ 0 & 0 & 0 & 0 & \dots & 0 & Q^- & Q^0 & Q^+ & \dots \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & Q^- & Q^0 & Q^+ \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Generatore infinitesimale del processo QBD

Dove i blocchi $Q_{i,i}$ sono definiti come segue:

$$Q_{0,0} = D_0$$

$$Q_{i,i} = I_{i+1} \otimes \nu \mu_2 E_i^- \otimes I_m - \left(\mu_1 \widehat{I_i} + \mu_2 \left(I_{i+1} - \overline{I_i}\right)\right) \otimes I_m \qquad 1 \leq i \leq L$$

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Generatore infinitesimale del processo QBD

$$Q_{i,i} = I_{i+1} \otimes \nu \mu_2 E_i^- \otimes I_m - \left(\mu_1 \widehat{I_i} + \mu_2 \left(I_{i+1} - \overline{I_i}\right)\right) \otimes I_m \qquad 1 \le i \le L$$

Dove:

- indica il prodotto di Kronecker per matrici
- E_l^- è una matrice quadrata di dimensioni l+1 con $(E_l^-)_{k,k-1}=1$ per $1 \le k \le l$ e tutte le altre componenti nulle.
 - \widehat{I}_l è una matrice quadrata di dimensioni l+1 con $(\widehat{I}_l)_{k,k}=1$ per $0 \le k \le l-1$ e tutte le altre componenti nulle.
 - $\overline{I_l}$ è una matrice quadrata di dimensioni l+1 con $(\overline{I_l})_{0,0}=1$ e tutte le altre componenti nulle.

Generatore infinitesimale del processo QBD

Mentre abbiamo

$$Q_{i,i+1} = E_i^+ \otimes D_1 \qquad 0 \le i \le L - 1$$

$$Q_{1,0} = (1-\nu)\mu_2 \widetilde{E}_1^- \otimes I_m + \mu_1 I_1^- \otimes I_m \qquad 1 \le i \le L$$

$$Q_{i,i-1} = (1-\nu)\mu_2\widetilde{E}_i^-\otimes I_m + q\mu_1I_i^-\otimes I_m + (1-q)\mu_1I_i^+\otimes I_m \qquad 1\leq i\leq L$$

Generatore infinitesimale del processo QBD

Dove

- E_l^+ è una matrice di dimensioni $(l+1) \times (l+2)$ con $(E_l^+)_{k,k} = 1$ per $0 \le k \le l$ e tutte le altre componenti nulle.
- $\widetilde{\mathcal{E}}_l^-$ è una matrice di dimensioni $(l+1) \times l$ con $(\widetilde{\mathcal{E}}_l^-)_{k,k-1} = 1$ per $1 \le k \le l$ e tutte le altre componenti nulle.
 - I_l^- è una matrice di dimensioni $(l+1) \times l$ con $(I_l^-)_{k,k} = 1$ per $0 \le k \le l-1$ e tutte le altre componenti nulle.
- I_l^+ è una matrice di dimensioni $(l+1)\times l$ con $(I_l^+)_{0,l-1}=1, (I_l^+)_{k,k}=1$ per $1\leq k\leq l-1$ e tutte le altre componenti nulle.

Condizione di ergodicità

In un processo ergodico la sua distribuzione di probabilità si stabilisce su un valore costante a lungo termine, indipendentemente dalle condizioni iniziali.

$\mathsf{Theorem}$

Il processo stocastico CTMC $\{\zeta_t,,t\geq 0\}$ è ergodico se e solo se vale la seguente disuguaglianza:

$$\lambda < \mu_1 + \mu_2 (1 - v) \frac{L(1 - q)\mu_1}{L(1 - q)\mu_1 + \mu_2}$$

Dimostrazione del teorema

Dimostrazione

Il criterio per l'ergodicità del QBD con il generatore di forma data come nel teorema precedente soddisfa l'ineguaglianza:

$$yQ^-e > yQ^+e$$

dove il vettore y è l'unica soluzione del sistema

$$y(Q^- + Q^0 + Q^+) = \mathbf{0}, \quad ye = 1$$

con

$$Q^{+} = I_{L+1} \otimes D_{1}, \qquad i \ge L$$

$$Q^{-} = (1 - v)\mu_{2}E_{L}^{-} \otimes I_{m} + q\mu_{1}I_{(L+1)m} + (1 - q)\mu_{1}I^{+} \otimes I_{m} \qquad i > L$$

$$Q^{0} = I_{L+1} \otimes D_{0} + v\mu_{2}E_{L}^{-} \otimes I_{m} - (\mu_{1}I_{L+1} + \mu_{2}(I_{L+1} - \overline{I}_{L})) \otimes I_{m} \qquad i > L$$

Dimostrazione

Si può inoltre verificare che

$$Q^{-} + Q^{0} + Q^{+} = I_{L+1} \otimes (D_{0} + D_{1}) + S \otimes I_{m}$$

dove

$$S = \begin{pmatrix} -\mu_1(1-q) & 0 & 0 & \dots & 0\mu_1(1-q) \\ \mu_2 & -\mu_2 & 0 & \dots & 0 & 0 \\ 0 & \mu_2 & -\mu_2 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & \mu_2 & -\mu_2 \end{pmatrix}$$

Dimostrazione

dove usando le regole del mixed product per il prodotto di Kronecker, e ricordando che

$$\delta(D_0 + D_1) = 0, \qquad \delta e = 1$$

si verifica che

$$y = x \otimes \delta$$

dove x è soluzione del sistema

$$xS = 0$$
, $xe = 1$

Dimostrazione

per sostituzione diretta, verifichiamo che le componenti del vettore $x = (x_0, x_1, ..., x_L)$, corrispondenti alle uniche soluzioni del sistema visto prima, sono date da

$$x_0 = \frac{\mu_2}{L(1-q)\mu_1 + \mu_2}, \qquad x_i = \frac{\mu_1(1-q)}{L(1-q)\mu_1 + \mu_2}, \qquad i = 1, ..., L$$

La tesi segue delle equazioni viste in precedenza assieme alla definizione di λ .

Osservazioni sulla dimostrazione

Osservazione 1

- La condizione di ergodicità richiede che il tasso di arrivo dei clienti per unità di tempo debba essere inferiore al tasso di servizio che i clienti ricevono per unità di tempo quando il sistema è sovraccarico.
- Il tasso di servizio medio totale nel modello di coda è dato dalla somma del tasso di servizio fornito dal server principale e del tasso di servizio fornito dal server secondario.

Possiamo esprimere il tasso di servizio medio totale come segue:

$$\mu = \mu_1 + \mu_2 (1 - v) \frac{L(1 - q)\mu_1}{L(1 - q)\mu_1 + \mu_2}$$

Osservazioni sulla dimostrazione

Osservazione 2

Calcoliamo la probabilità x_0 che il secondo server non sia presente nel sistema in un qualsiasi momento in cui il sistema è sovraccarico.

• Quando il sistema attiva un server secondario la durata media del server secondario continuamente presente nel sistema è data da $\frac{L}{\mu_2}$. Pertanto, abbiamo:

$$x_0 = \frac{\frac{1}{\mu_1(1-q)}}{\frac{1}{\mu_1(1-q)} + \frac{L}{\mu_2}} = \frac{\mu_2}{L(1-q)\mu_1 + \mu_2}$$

Distribuzione stazionaria

Lo stato stazionario di CTMC è un punto di equilibrio a lungo termine, in cui la distribuzione di probabilità della catena non cambia nel tempo.

In generale, per un processo QBD con n stati, la distribuzione stazionaria è un vettore di probabilità

$$\pi = (\pi_1, \pi_2, ..., \pi_n)$$

dove ogni π_i rappresenta la probabilità di trovare il sistema nello stato i.

Distribuzione stazionaria

Sotto l'assunzione che la condizione di ergodicità sia valida, esistono le seguenti probabilità stazionarie degli stati del CTMC $\{\zeta_t, t \ge 0\}$:

$$\pi(i, n, \xi) = \lim_{t \to \infty} P\{i_t = i, n_t = n, \xi_t = \xi\}, i \ge 0$$

Consideriamo i vettori riga delle probabilità di stato stazionario π_i come segue

$$\pi_i = (\pi(i,0),...,\pi(i,\min\{i,L\})), i \ge 0$$

dove

$$\pi(i, n) = (\pi(i, n, 1), ..., \pi(i, n, m))$$

Distribuzione stazionaria

Sappiamo che i vettori di probabilità stazionari π_i , $i \ge 0$, soddisfano il sistema di equazioni algebriche lineari:

Equazioni di equilibrio

$$(\pi_0, \pi_1, \pi_2, \dots) Q = 0$$
 $(\pi_0, \pi_1, \pi_2, \dots) e = 1$

dove Q è la matrice di transizione del CTMC $\{\zeta_t, t \ge 0\}$ ed \mathbf{e} è il vettore colonna di tutti gli elementi 1

Generatore del QBD Condizione di ergodicità Calcolo della distribuzione stazionaria

Algoritmo per risolvere il sistema di equazioni di equilibrio

Goal

Vediamo un algoritmo che sfrutta la struttura tridiagonale a blocchi del generatore, ma dipendente dal livello, per risolvere più efficientemente il sistema di equazioni lineari algebriche quando il numero di livelli di confine è elevato.

Algoritmo per risolvere il sistema di equazioni di equilibrio

Theorem

I vettori π_i , $i \ge 0$, sono trovati come soluzione del sistema di equazioni algebriche lineari:

$$\pi_i = \alpha_i \left(\sum_{l=0}^{\infty} \alpha_l e\right)^{-1}, \qquad i \ge 0$$

dove il vettore α_0 è calcolato come l'unica soluzione del sistema di equazioni

$$\alpha_0(Q_{0,0} + Q_{0,1}G_0) = 0,$$
 $\alpha_0e = 1$

ed i vettori α_i , $i \ge 1$, sono definiti come

$$\alpha_i = \alpha_0 \prod_{l=1}^i R_l, \qquad i \ge 1$$

Algoritmo per risolvere il sistema di equazioni di equilibrio

Theorem

Altrimenti tramite la formula ricorsiva

$$\alpha_i = \alpha_{i-1} R_i, \qquad i \ge 1$$

dove

$$R = \begin{cases} -Q_{i-1,i} (Q_{i,i} + Q_{i,i+1} G_i)^{-1} Q & 1 \le i \le L-1 \\ -Q_{L-1,L} (Q_{L,L} + Q^+ G)^{-1} & i = L \\ -Q^+ (Q^0 + Q^+ G)^{-1} = R & i > L \end{cases}$$

Algoritmo per risolvere il sistema di equazioni di equilibrio

Theorem

Le matrici stocastiche G_i sono calcolate utilizzando la seguente formula ricorsiva all'indietro:

$$G_{L} = G$$

$$G_{L-1} = -(Q_{L,L} + Q^{+}G_{L})^{-1}Q_{L,L-1}$$

$$G_{i} = -(Q_{i+1,i+1} + Q_{i+1,i+2}G_{i+1})^{-1}Q_{i+1,i}, \qquad i = L-2, L-3, ..., 0$$

dove la matrice G è la minima soluzione non negativa dell'equazione quadratica matriciale

$$Q^+ G^2 + Q^0 G + Q^- = 0$$

Algoritmo per risolvere il sistema di equazioni di equilibrio

Osservazioni

- L'algoritmo proposto è una modifica dell'algoritmo per il calcolo della distribuzione stazionaria di una CTMC asintotica quasi-Toeplitz.
- L'esistenza delle inverse delle matrici che appaiono nell'algoritmo segue immediatamente dal teorema di O. Tausska
- Le inverse delle matrici utilizzate nell'algoritmo sono sub-generatori irriducibili e semi-stabili (e quindi le inverse dei negativi di queste matrici sono non negative), il che rende stabile l'implementazione numerica dell'algoritmo.

Introduzione ai risultati numerici

Vedremo 3 esempi illustrativi utilizzando 5 processi di arrivo. In particolare i 5 *MAP* considerati sono:

1. ERL

Erlang di ordine 5 con parametro 2.5 in ciascuno dei 5 stati. Prendiamo poi $\lambda=0.5, \sigma=0.899427$ e $\rho_c=0$.

2. EXP

Un esponenziale con una frequenza di 0.5. Prendiamo poi $\lambda=0.5, \sigma=2$ e $\rho_c=0$.

Primo esempio Secondo esempio Terzo esempio

3. HEX

Distribuzione iper-esponenziale con una probabilità di mixing data da (0.5, 0.3, 0.15, 0.04, 0.01) con i corrispondenti tassi della distribuzione esponenziale pari a (1.09, 0.545, 0.2725, 0.13625, 0.068125). Qui abbiamo $\lambda=0.5, \sigma=3.3942$ e $\rho_{c}=0$.

4. NCR

MAP negativamente correlato, con matrici di rappresentazione:

$$D_0 = \begin{pmatrix} -1.125 & 0.125 & 0 & 0 & 0 \\ 0 & -1.125 & 0.125 & 0 & 0 \\ 0 & 0 & -1.125 & 0.125 & 0 \\ 0 & 0 & 0 & -0.125 & 0 \\ 0 & 0 & 0 & 0 & -2.25 \end{pmatrix}$$

dove abbiamo $\lambda = 0.5, \sigma = 2.02454$ e $\rho_c = -0.57855$

5. PCR

MAP positivamente correlato, con matrici di rappresentazione:

$$D_0 = \begin{pmatrix} -1.125 & 0.125 & 0 & 0 & 0 \\ 0 & -1.125 & 0.125 & 0 & 0 \\ 0 & 0 & -1.125 & 0.125 & 0 \\ 0 & 0 & 0 & -0.125 & 0 \\ 0 & 0 & 0 & 0 & -2.25 \end{pmatrix}$$

dove abbiamo $\lambda = 0.5, \sigma = 2.02454$ e $\rho_c = 0.57855$

Primo esempio Secondo esempio Terzo esempio

Introduzione ai risultati numerici

Osservazioni

- Le cinque *MAP* sopra riportate sono qualitativamente diverse.
- Il processo di arrivo PCR è ideale per situazioni di arrivi altamente irregolari con periodi di alta e bassa attività.

Obiettivo

Discutiamo l'impatto del parametro L su alcune misure di performance del sistema per tutti e 5 i MAPs

Fissiamo $\mu_1 = 1$, $\mu_2 = 0.5$, q = 0.5, e v = 0.4, e variamo L da 1 a 30.

Lsec

Definiamo L_{sec} come il numero medio di clienti nel sistema con server secondari ad un momento arbitrario come:

$$L_{\text{sec}} = \sum_{i=1}^{\infty} \sum_{n=1}^{\min\{i,L\}} n\pi(i,n)e$$

L_{system}

Definiamo L_{system} come il numero medio di clienti nell'intero sistema come:

$$L_{\text{syste}} = \sum_{i=1}^{\infty} i \pi_i e$$

Figure: Impatto di L sul numero medio di clienti nel sistema L_{system} per diversi MAPs

Figure: Dipendenza del numero medio di clienti con il server secondario $L_{\rm sec}$ al variare di L per diversi MAPs

$P_{\text{idle-system}}$

Definiamo la probabilità che il sistema sia in equilibrio ad un momento arbitrario come:

$$P_{\text{idle-system}} = \pi_0 e$$

Figure: Dipendenza della probabilità $P_{\rm idle-system}$ rispetto ad L che il sistema sia in idle ad un momento arbitrario, per diversi MAPs

$P_{\text{idle-busy}}$

Definiamo la probabilità che il main server sia in idle quando il server secondario è occupato come:

$$P_{\text{idle-busy}} = \sum_{n=1}^{L} \pi(n, n)e$$

$P_{\text{busy-idle}}$

Definiamo la probabilità che il main server sia occupato quando il server secondario è in idle come:

$$P_{\text{busy-idle}} = \sum_{i=0}^{\infty} \pi(i,0)e$$

Figure: Dipendenza della probabilità $P_{\rm idle-busy}$ rispetto ad L che il main server sia in idle quando il server secondario è in occupato, per diversi MAPs

Figure: Dipendenza della probabilità $P_{\text{busy-idle}}$ rispetto ad L che il main server sia occupato quando il server secondario è in idle, per diversi MAPs

Obiettivi

L'obiettivo è valutare l'impatto dei parametri q e ν sulla prestazione del sistema. Dove

- q è la probabilità che un cliente servito si rifiuti di agire come server secondario
- $m{\cdot}$ ν è la probabilità che un cliente servito da un server secondario non sia soddisfatto e venga mandato indietro al server primario

Fissiamo il valore di L a 10 e i tassi di servizio μ_1 e μ_2 a 1 e 0.5. Si variano i valori di q e v da 0 a 1 con passo 0.05 e si analizza l'impatto sulle misure di prestazione del sistema.

Figure: Dipendenza del numero medio di clienti nel sistema $L_{
m system}$ rispetto a q e v

Modifichiamo i parametri

- Si aumenta λ del 50% a 0.75 per testare l'importo della riduzione del numero medio di clienti nel sistema.
- Mantenendo gli altri parametri costanti, si ottiene una riduzione superiore al 52,8%.
- Ciò suggerisce che con l'aggiunta di un server secondario, il sistema beneficia notevolmente l'aumento del carico del sistema (anche con un tasso di insoddisfazione del cliente del 50%).

Figure: Dipendenza del numero medio di clienti nel sistema $L_{\rm sec}$ rispetto a q e v con $\lambda = 0.75$

Figure: Dipendenza della probabilità $P_{\text{idle-system}}$ che il sistema sia in idle ad un momento arbitrario rispetto a $q \in v$.

Obiettivo

Analizzare l'impatto della variazione dei tassi di servizio μ_1 e μ_2 quando tutti gli altri parametri sono fissati.

- I parametri fissati sono L=10, q=0.5, v=0.4, e $\lambda=0.5$.
- I tassi μ_1 e μ_2 vengono variati da 0.25 a 2.0 con incrementi di 0.05, ma per soddisfare la condizione di ergodicità, il valore di μ_2 viene limitato quando μ_1 è piccolo.
- Solo per $\mu_1 \ge 0.4$, il valore di μ_2 può essere variato da 0.25, come originariamente indicato

Figure: Dipendenza del numero medio di clienti nel sistema $L_{\rm system}$ rispetto a μ_1 e μ_2

Figure: Dipendenza del numero medio di clienti nel sistema $L_{\rm system}$ rispetto a μ_1 e μ_2 (zoomed-in)

Figure: Dipendenza del numero medio di clienti con server secondario $L_{\rm sec}$ rispetto a μ_1 e μ_2

Generalizzazione del modello

- Si può rilassare l'ipotesi di avere solo un server secondario e vedere l'impatto dell'aumento a 2.
- Introdurre l'ipotesi di impazienza dei clienti
- Incorporare la possibilità di reclutare molti server secondari con due tipi di clienti, in modo che solo un tipo possa qualificarsi per agire come server secondario.

Approfondimento - GI/M/1 type Markov Chains

Una coda di tipo GI/M/1 è un processo stocastico che modella il comportamento di un sistema di code con un singolo server

- GI General inter-arrival time distribution distribuzione del tempo tra gli arrivi dei clienti alla coda.
- M Markovian service time distribution: si riferisce alla distribuzione dei tempi di servizio per ciascun cliente, che viene assunta essere un processo di Markov.
 - 1 *One server*: un solo server nel sistema, e che solo un cliente alla volta può essere servito.

Code di tipo GI/M/1

Definiamo come prima cosa lo spazio degli stati Ω del CTMC come:

$$\Omega = \{ (i, j, k) : i \ge 0, 0 \le j \le K, 1 \le k \le m \}$$

Definiamo il livello i come:

$$\mathbf{i} = \{(i, j, k) : 0 \le j \le L, 1 \le k \le m\} = \{(i, 0), \dots, (i, L)\}, i \ge 0$$

Code di tipo GI/M/1

Osservazione

- il livello (i,j) indica che il server principale è occupato, ci sono i-1 clienti in attesa nella coda principale; il server secondario è occupato e il processo di arrivo si trova in varie fasi
- Il livello (0,0) corrisponde al sistema inattivo con il processo MAP in una delle m fasi.

Il generatore del CTMC

Il generatore \widetilde{Q} della CTMC che governa il sistema in studio è:

Il generatore del CTMC

Dove abbiamo:

$$B_{0} = \begin{pmatrix} D_{0} \\ \widetilde{\nu}\mu_{2}I & D_{0} - \mu_{2}I \\ & \widetilde{\nu}\mu_{2}I & D_{0} - \mu_{2}I \\ & & \ddots & \ddots \\ & & & \widetilde{\nu}\mu_{2}I & D_{0} - \mu_{2}I \end{pmatrix}$$

Il generatore del CTMC

Dove abbiamo:

$$A_{0} = \begin{pmatrix} D_{1} & & & \\ v\mu_{2}I & D_{1} & & & \\ & v\mu_{2}I & D_{1} & & \\ & & \ddots & \ddots & \\ & & v\mu_{2}I & D_{1} \end{pmatrix}$$

$$A_{1} = B_{0} - \mu_{1}I$$

$$A_{2} = \mu_{1}\Delta(q, 1, \dots, 1)$$

$$B_{1} = \mu_{1}I$$

$$B_{r} = \rho\mu_{1}(e_{r}^{T} \otimes e(L+1)) \qquad 2 \leq r \leq L+1$$

$$A_{L+2} = B_{L+1}$$

Utilizzando i risultati per le code di tipo G1/M/1 in tempo continuo, si verificano le seguenti proprietà:

Proprietà 1

Sia

$$\widetilde{y} = \left(\widetilde{y_0}, \dots, \widetilde{y_L}\right)$$

il vettore invariante di $A = \sum_{i=0}^{L+2} A_i$. Allora:

$$\widetilde{y_0} = \delta(\mu_2 I - D_0 - D_1)[\mu_2 U + L\rho \mu_1 I - D_0 - D_1]^{-1}$$

$$\widetilde{y_r} = \rho \mu_1 \pi_0 (\mu_2 I - D_0 - D_1)^{-1}, \qquad 1 \le r \le L$$

Proprietà 2

La condizione di stabilità

$$\widetilde{y}A_0e < \widetilde{y}\sum_{i=1}^{L+2}(i-1)A_ie$$

si riduce alla disuguaglianza vista prima:

$$\lambda < \mu_1 + \mu_2 (1 - \nu) \frac{L(1 - q)\mu_1}{L(1 - q)\mu_1 + \mu_2}$$

Proprietà 3

Data R la matrice di rate, soddisfa l'equazione matriciale non lineare data da:

$$R^{L+2}A_{L+2} + R^2A_2 + RA_1 + A_0 = 0$$

Proprietà 4

Indicando con $\tilde{\pi}$ il vettore di probabilità stazionario del generatore \tilde{Q} come visto prima, otteniamo qui la soluzione matriciale geometrica classica:

$$\widetilde{\pi}_i = \widetilde{\pi}_0 R^i, \qquad i \ge 1$$

dove $\widetilde{\pi}_0$ è ottenuto risolvendo il seguente sistema di equazioni lineari:

$$\widetilde{\pi}_0 \left[\sum_{i=0}^{L+1} R^i B_i \right] = 0, \qquad \widetilde{\pi}_0 e = 1$$