STAT 3100 Lecture Note

Week Eleven (Nov 22 & 24, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Nov/21 18:25:39

Asymptotic properties of MLE (con'd)

Consistency (or consistence, CB Sec 10.1.1)

• $T_n = T_n(X_1, \dots, X_n)$ is consistent for θ iff $T_n \stackrel{p}{\to} \theta$ as $n \to \infty$ - A sufficient condition for consistency: $\mathrm{E}(T_n \mid \theta) \to \theta$ and $\mathrm{var}(T_n \mid \theta) \to 0$ as $n \to \infty$

CB Example 5.5.3

• Suppose that iid $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$. Prove that $-S_n^2 = (n-1)^{-1} \sum_i (X_i - \bar{X}_n)^2 \text{ is consistent for } \sigma^2;$ $-\widehat{\sigma^2}_{\text{ML}} = n^{-1} \sum_i (X_i - \bar{X}_n)^2 \text{ is consistent for } \sigma^2 \text{ too.}$

Consistency of MLE (univariate case, CB Thm 10.1.6)

- $\hat{\theta}_{\text{ML}} \xrightarrow{p} \theta_0$, provided that $\hat{\theta}_{\text{ML}}$ is the MLE for θ_0 , under regularity conditions (CB Sec 10.6.2):
 - iid $X_1, \ldots, X_n \sim f(x \mid \theta_0);$
 - for $\theta_1, \theta_2 \in \Theta$, if $\theta_1 \neq \theta_2$, then $f_X(x \mid \theta_1) \neq f_X(x \mid \theta_2)$;
 - $f_X(x \mid \theta)$ has a common support for each $\theta \in \Theta$ and is differentiable with respect to θ ; * Violated by, e.g., Unif $(0, \theta)$;
 - θ_0 is an interior point of parameter space Θ .

Example of inconsistent MLE

There are independent $X_{i1}, X_{i2} \sim \mathcal{N}(\mu_i, \sigma^2), i = 1, \dots, n$. Then $\widehat{\sigma^2}_{ML}$ is NOT consistent for σ^2 .

Examples of consistent MLE with the regularity conditions violated

- iid $X_1, \ldots, X_n \sim \text{Ber}(1)$
- iid $X_1, \ldots, X_n \sim \text{Unif}(0, \theta)$

Efficiency

- (HMC Def 6.2.2, efficiency) For an estimator, say T_n , unbiased for $\tau(\theta)$, the efficiency of T_n is the ratio of CRLB to the actual variance of T_n , i.e., $[\{\tau'(\theta)\}^2/I_n(\theta)]/\text{var}(T_n \mid \theta)$.
 - The higher efficiency the better.
 - (HMC Def 6.2.1, efficient) If the efficiency of T_n is 1, then T_n is called an efficient estimator.

- (CB Def 10.1.11, asymptotically efficient) An estimator T_n for $\tau(\theta)$ is asymptotically efficient \iff $\sqrt{n}\{T_n \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta)\}^2/I(\theta))$, where
 - $I(\theta) = -\mathbb{E}\left\{\frac{\partial^2}{\partial \theta^2} \ln f(X_i \mid \theta) \mid \theta\right\} = -\mathbb{E}\{H(\theta; X_i) \mid \theta\} \text{ is the Fisher information of one single observation.}$
- (CB Def 10.1.16, asymptotic relative efficiency, ARE) Denote by T_n and W_n two estimators for $\tau(\theta)$. Suppose that $\sqrt{n}(T_n \tau(\theta)) \xrightarrow{d} N(0, \sigma_T^2)$ and $\sqrt{n}(W_n \tau(\theta)) \xrightarrow{d} N(0, \sigma_W^2)$. The asymptotic relative efficiency (ARE) of T_n with respect to W_n is defined as

$$ARE(T_n, W_n) = \sigma_W^2 / \sigma_T^2.$$

– ARE $(T_n, W_n) > 1 \iff T_n$ is asymptotically more efficient than W_n

Asymptotic efficiency of MLE (CB Thm 10.1.12 & Ex. 10.7)

- $\sqrt{n}\{\tau(\hat{\theta}_{ML}) \tau(\theta_0)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta_0)\}^2/I_1(\theta_0))$, provided that $\hat{\theta}_{ML}$ is the MLE for θ_0 , τ is differentiable and we have the previous four regularity conditions (for the consistency of MLE) plus the following two more (CB Sec 10.6.2):
 - For each $x \in \text{supp}(X)$, $f(x \mid \theta)$ is three time continuously differentiable with respect to θ ; and $\int f(x \mid \theta) dx$ can be differentiated three times under the integral sign;
 - for each $\theta \in \Theta$, there exists $c(\theta) > 0$ and $M(x, \theta)$ such that $\left| \frac{\partial^3}{\partial \theta^3} \ln f_X(x \mid \theta) \right| \leq M(x, \theta)$ for all $x \in \text{supp}(X)$ and $\theta \in (\theta c(\theta), \theta + c(\theta))$.
- In practice,
 - $nI_1(\theta_0) = I_n(\theta_0) \approx I_n(\hat{\theta}_{\mathrm{ML}}) \approx \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$
 - * (Expected) Fisher information (number) $I_n(\theta_0) = -\mathbb{E}\{H(\theta_0; \mathbf{X})\}$
 - * Observed Fisher information (number) $\hat{I}_n(\hat{\theta}_{\mathrm{ML}}) = -\frac{\partial^2}{\partial \theta^2} \ln L(\theta; \boldsymbol{x}) \big|_{\theta = \hat{\theta}_{\mathrm{ML}}} = -H(\hat{\theta}_{\mathrm{ML}}; \boldsymbol{x})$
 - Hence $\operatorname{var}(\tau(\hat{\theta}_{\mathrm{ML}})) \approx \{\tau'(\theta_0)\}^2 / I_n(\theta_0) \approx \{\tau'(\hat{\theta}_{\mathrm{ML}})\}^2 / I_n(\hat{\theta}_{\mathrm{ML}}) \approx \{\tau'(\hat{\theta}_{\mathrm{ML}})\}^2 / \hat{I}_n(\hat{\theta}_{\mathrm{ML}})$

CB Example 10.1.17 & Ex. 10.9

- iid $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$. To estimate $\Pr(X_i = 0) = \exp(-\lambda)$.
 - a. Consider $T_n = n^{-1} \sum_i \mathbf{1}_{\{0\}}(X_i)$ and MLE $W_n = \exp(-\bar{X}_n)$. Compute ARE (T_n, W_n) , the ARE of T_n with respect to W_n .
 - b. Find the UMVUE for $Pr(X_i = 0)$, say U_n , and then calculate $ARE(U_n, W_n)$.

Approximation to variances

Delta method

• (CB Thm 5.5.24, delta method) If $\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ and $\tau'(\theta) \neq 0$, then

$$\sqrt{n}\{\tau(\hat{\theta}_n) - \tau(\theta)\} \xrightarrow{d} \mathcal{N}(0, \{\tau'(\theta)\}^2 \sigma^2).$$

- Hence $\operatorname{var}\{\tau(\hat{\theta}_n)\} \approx \{\tau'(\hat{\theta}_n)\}^2 \sigma^2/n \text{ if } \tau'(\theta) \neq 0$
- (CB Thm 5.5.26, second-order delta method): If $\sqrt{n}(\hat{\theta}_n \theta) \xrightarrow{d} \mathcal{N}(0, \sigma^2)$, $\tau'(\theta) = 0$, and $\tau''(\theta) \neq 0$, then

$$n\{\tau(\hat{\theta}_n) - \tau(\theta)\} \xrightarrow{d} \frac{\tau''(\theta)\sigma^2}{2}\chi^2(1).$$

– Hence $\text{var}\{\tau(\hat{\theta}_n)\}\approx \{\tau''(\hat{\theta}_n)\}^2\sigma^4/(2n^2)$ if $\tau'(\theta)=0$ but $\tau''(\theta)\neq 0$

CB Example 10.1.15

• Holding iid $X_i \sim \text{Bernoulli}(p)$, the variance of Bernoulli(p) is $\tau(p) = p(1-p)$ whose MLE is $\tau(\hat{p}_{\text{mle}}) = \bar{X}_n(1-\bar{X}_n)$. Approximate $\text{var}\{\tau(\hat{p}_{\text{mle}})\}$ by the delta method.

Bootstraping the variance of $\hat{\theta} = \hat{\theta}(X)$ (CB Sec. 10.1.4)

- Nonparametric bootstrap:
 - 1. For j in 1:B, do steps a-b.
 - a. Draw the jth resample x_j^* of size n from the original sample $x = \{x_1, \dots, x_n\}$, with replacement.
 - b. Let $\hat{\theta}_j^* = \hat{\theta}(\boldsymbol{x}_j^*)$.
 - 2. Update j with j+1.
 - 3. $\operatorname{var}\{\hat{\theta}(\mathbf{X})\} \approx \text{the sample variance of } \{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}.$
- Parametric bootstrap:
 - 1. For j in 1:B, do steps a-b.
 - a. Draw the jth resample x_i^* of size n from a fitted model $f(x \mid \hat{\theta})$.
 - b. Let $\hat{\theta}_j^* = \hat{\theta}(\boldsymbol{x}_j^*)$.
 - 2. Update j with j + 1.
 - 3. $\operatorname{var}\{\hat{\theta}(\mathbf{X})\} \approx \text{ the sample variance of } \{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}.$

CB Example 10.1.15

• Holding iid $X_i \sim \text{Bernoulli}(p)$, the variance of Bernoulli(p) is $\tau(p) = p(1-p)$ for which the MLE is $\tau(\hat{p}_{\text{mle}}) = \bar{X}_n(1-\bar{X}_n)$. Approximate $\text{var}\{\tau(\hat{p}_{\text{mle}})\}$ by the bootstrap.

Take-home exercises (NOT to be submitted; to be potentially covered in labs)

• CB Ex. 10.3, 10.17(a-c)