Objective:

"Predict behavior to retain customers. You can analyze all relevant customer data and develop focused customer retention programs."

Step 1 : Import Library and Dataset

```
import pandas as pd
import numpy as np

# Read the data in
import pandas as pd
from google.colab import drive  # Importing data from google drive.
drive.mount("/gdrive")  # mount is used when you have added external device as SSD, Hard

%cd /gdrive/My Drive/Imarticus/Machine_Learning_with_Python/Decision_Tree
employee = pd.read_csv(r"churn.csv")

Mounted at /gdrive
/gdrive/My Drive/Imarticus/Machine_Learning_with_Python/Decision_Tree
```

employee.head(5)

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	Mult
0	7590- VHVEG	Female	No	Yes	No	1	No	
1	5575- GNVDE	Male	No	No	No	34	Yes	
2	3668- QPYBK	Male	No	No	No	2	Yes	
3	7795- CFOCW	Male	No	No	No	45	No	
4	9237- HQITU	Female	No	No	No	2	Yes	

5 rows × 21 columns

Step 2 : Data Pre-Processing

Univariate Analysis

```
employee.info()
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 7043 entries, 0 to 7042
      Data columns (total 21 columns):
```

#	Column	Non-Null Count	Dtype
0	customerID	7043 non-null	object
1	gender	7043 non-null	object
2	SeniorCitizen	7043 non-null	object
3	Partner	7043 non-null	object
4	Dependents	7043 non-null	object
5	tenure	7043 non-null	int64
6	PhoneService	7043 non-null	object
7	MultipleLines	7043 non-null	object
8	InternetService	7043 non-null	object
9	OnlineSecurity	7043 non-null	object
10	OnlineBackup	7043 non-null	object
11	DeviceProtection	7043 non-null	object
12	TechSupport	7043 non-null	object
13	StreamingTV	7043 non-null	object
14	StreamingMovies	7043 non-null	object
15	Contract	7043 non-null	object
16	PaperlessBilling	7043 non-null	object
17	PaymentMethod	7043 non-null	object
18	MonthlyCharges	7043 non-null	float64
19	TotalCharges	7043 non-null	object
20	Churn	7043 non-null	object
dtyp	es: float64(1), in	t64(1), object(1	9)
memo	ry usage: 1.1+ MB		

employee.describe()

	tenure	MonthlyCharges
count	7043.000000	7043.000000
mean	32.371149	64.761692
std	24.559481	30.090047
min	0.000000	18.250000
25%	9.000000	35.500000
50%	29.000000	70.350000
75%	55.000000	89.850000
max	72.000000	118.750000

Removing Irrelavent Variable

```
employee = employee.drop(['customerID'],axis=1)
employee.columns
    'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod',
            'MonthlyCharges', 'TotalCharges', 'Churn'],
          dtype='object')
#Replacing spaces with null values in total charges column
employee['TotalCharges'] =employee["TotalCharges"].replace(" ",np.nan).astype(float)
# string cannot be convert float direclty
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 20 columns):
# Column Non-Null Count Dtype
--- -----
                    -----
   gender 7043 non-null object
0
    SeniorCitizen 7043 non-null object
1
   Partner 7043 non-null object
tonure 7043 non-null int64
2
3
4
    PhoneService 7043 non-null object MultipleLines 7043 non-null object
5
    InternetService 7043 non-null object
8
    OnlineSecurity 7043 non-null object
9
    OnlineBackup
                     7043 non-null object
10 DeviceProtection 7043 non-null object
11 TechSupport 7043 non-null object
12 StreamingTV 7043 non-null object
13 StreamingMovies 7043 non-null object
14 Contract
                    7043 non-null object
15 PaperlessBilling 7043 non-null object
16 PaymentMethod 7043 non-null object
17 MonthlyCharges 7043 non-null
                                     float64
18 TotalCharges 7032 non-null
                                     float64
19 Churn
                     7043 non-null
                                     object
dtypes: float64(2), int64(1), object(17)
memory usage: 1.1+ MB
```

Checking Missing Value

```
# Do we have NA's in data
employee.isna().sum() ## is = check & as = convert
                       0
    SeniorCitizen
                      0
    Partner
    Dependents
    tenure
    PhoneService
    MultipleLines
    InternetService
    OnlineSecurity
                      0
    OnlineBackup
    DeviceProtection
                      0
    TechSupport
                       0
    StreamingTV
    StreamingMovies
                      0
                       0
    Contract
    PaperlessBilling
                       0
                       a
    PaymentMethod
    MonthlyCharges
                       a
    TotalCharges
                      11
    Churn
    dtype: int64
```

employee.TotalCharges.fillna(employee.TotalCharges.mean(),inplace=True) # one column at a time bb
Do we have NA's in data
employee.isna().sum()

gender	0
SeniorCitizen	0
Partner	0
Dependents	0
tenure	0
PhoneService	0
MultipleLines	0
InternetService	0
OnlineSecurity	0
OnlineBackup	0
DeviceProtection	0
TechSupport	0
StreamingTV	0
StreamingMovies	0
Contract	0
PaperlessBilling	0
PaymentMethod	0
MonthlyCharges	0
TotalCharges	0
Churn	0
dtype: int64	

employee.describe() # describe works for number by default

	tenure	MonthlyCharges	TotalCharges
count	7043.000000	7043.000000	7043.000000
mean	32.371149	64.761692	2283.300441
std	24.559481	30.090047	2265.000258
min	0.000000	18.250000	18.800000
25%	9.000000	35.500000	402.225000
50%	29.000000	70.350000	1400.550000
75%	55.000000	89.850000	3786.600000
max	72.000000	118.750000	8684.800000

employee.head()

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	1
0	Female	No	Yes	No	1	No	No phone service	
1	Male	No	No	No	34	Yes	No	
2	Male	No	No	No	2	Yes	No	
3	Male	No	No	No	45	No	No phone service	
4	Female	No	No	No	2	Yes	No	

employee.OnlineSecurity.value_counts(ascending=False)

No	3498
Yes	2019

```
No internet service
                            1526
     Name: OnlineSecurity, dtype: int64
3498+1526
     5024
employee.OnlineSecurity=employee.OnlineSecurity.replace({'No internet service' : 'No'})
employee.OnlineSecurity.value_counts()
     No
            5024
     Yes
            2019
     Name: OnlineSecurity, dtype: int64
employee.OnlineBackup=employee.OnlineBackup.replace({'No internet service' : 'No'})
employee.DeviceProtection=employee.DeviceProtection.replace({'No internet service' : 'No'})
employee.TechSupport=employee.TechSupport.replace({'No internet service' : 'No'})
employee.StreamingTV=employee.StreamingTV.replace({'No internet service' : 'No'})
```

employee.StreamingMovies=employee.StreamingMovies.replace({'No internet service' : 'No'})

employee.MultipleLines=employee.MultipleLines.replace({'No phone service' : 'No'})

Outlier

import seaborn as sns
sns.boxplot(data=employee)

<matplotlib.axes._subplots.AxesSubplot at 0x7f15af57a7c0>

Churn Rate Analysis

```
employee.Churn.value_counts()

No 5174
Yes 1869
Name: Churn, dtype: int64

(1869/7043)*100
26.536987079369588
```


Trend Analysis

```
employee.Churn.value_counts()

No 5174
Yes 1869
Name: Churn, dtype: int64

(1869/7043)*100
26.536987079369588

Churn_Customer= employee[employee["Churn"] == "Yes"]
Churn_Customer
```

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines
2	Male	No	No	No	2	Yes	Nc
4	Female	No	No	No	2	Yes	No
5	Female	No	No	No	8	Yes	Yes
8	Female	No	Yes	No	28	Yes	Yes
13	Male	No	No	No	49	Yes	Yes
7021	Male	No	No	No	12	Yes	No
7026	Female	No	No	No	9	Yes	No
7032	Male	Yes	No	No	1	Yes	Yes
7034	Female	No	No	No	67	Yes	Yes
7041	Male	Yes	Yes	No	4	Yes	Yes

1869 rows × 20 columns

Conclusion: - Customer Trend Analysis

- · Customer who leave the service are
- Citizen = Youth, Internet = Fiber Optic & Month-to-Month & Payment = Electronic Check

Taking subset data of Number

employee_num.head(3)

```
employee.select_dtypes(include=[np.number]).columns.tolist()
    ['tenure', 'MonthlyCharges', 'TotalCharges']

# #Employee Numeric columns
employee_num = employee[employee.select_dtypes(include=[np.number]).columns.tolist()]
```

	tenure	MonthlyCharges	TotalCharges
0	1	29.85	29.85
1	34	56.95	1889.50
2	2	53.85	108.15

Taking subset data of Category

employee_dummies = employee[employee.select_dtypes(include=['object']).columns.tolist()]
employee_dummies.head(3)

	gender	SeniorCitizen	Partner	Dependents	PhoneService	MultipleLines	Internets
0	Female	No	Yes	No	No	No	
1	Male	No	No	No	Yes	No	
2	Male	No	No	No	Yes	No	

Converting Quality Variable to Number

from sklearn.preprocessing import LabelEncoder
employee_dummies=employee_dummies.apply(LabelEncoder().fit_transform)
employee_dummies.head(3)
label in ascending order

enaer	SeniorCitizen	Partner	Dependents	PhoneService	MultipleLines	Internets
0	0	1	0	0	0	
1	0	0	0	1	0	
1	0	0	0	1	0	
	0	0 0 1 0	0 0 1 1 0 0	0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 1 0 0 0 1	1 0 0 0 1 0

→ Combine to Dataset

employee_combined = pd.concat([employee_num, employee_dummies],axis=1)
employee_combined.head()

	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	Dependents
0	1	29.85	29.85	0	0	1	0
1	34	56.95	1889.50	1	0	0	0
2	2	53.85	108.15	1	0	0	0
3	45	42.30	1840.75	1	0	0	0
4	2	70.70	151.65	0	0	0	0

Step 3: Data Partition

```
#Dividing data into train and test dataset
from sklearn.model_selection import train_test_split
#from random import seed

#seed(20)
x = employee_combined.drop(['Churn'],axis=1)
y = employee_combined[['Churn']]

# Train test split

X train, X test, y train, y test =train test split(x,y,test size=0.3,random state=231)
```

Step 4: Model Building

```
#Import Tree Classifier model
from sklearn import tree

dt = tree.DecisionTreeClassifier() # by default it use Gini index for split
#Train the model using the training sets
dt.fit(X_train,y_train) # Model = dt
    DecisionTreeClassifier()
```

Step 5: Plotting the Tree

Ploting Tree

import graphviz from six import StringIO

from sklearn.externals.six import StringIO

```
from IPython.display import Image
from sklearn.tree import
export_graphviz
import pydotplus
import pydot

train=pd.concat([y_train,X_train],axis=1)
train.head()
```

	Churn	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	De
1583	0	6	48.95	273.25	0	0	1	
6791	1	19	39.65	733.35	1	0	0	
4812	1	9	66.25	620.55	0	0	0	
6282	0	4	19.55	68.80	1	0	1	
2479	0	56	75.85	4261.20	1	0	1	

```
independent_variable = list(train.columns[1:])
independent_variable
     ['tenure',
      'MonthlyCharges',
      'TotalCharges',
      'gender',
      'SeniorCitizen',
      'Partner',
      'Dependents',
      'PhoneService',
      'MultipleLines',
      'InternetService',
      'OnlineSecurity',
      'OnlineBackup',
      'DeviceProtection',
      'TechSupport',
      'StreamingTV',
      'StreamingMovies',
      'Contract',
      'PaperlessBilling',
      'PaymentMethod']
from sklearn import tree
import matplotlib.pyplot as plt
churn=['No', 'Yes'] # array
fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (5,4), dpi=300)
tree.plot_tree(dt, # Model
               feature_names = independent_variable, # column name
               class_names=churn, # Yes , No
               filled = True, # colour
              node_ids=True, # node number
              fontsize=2); #
#fig.savefig('imagename.png')
```


Step 6 : Predictions on Train Dataset

train.head()

	Churn	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	De
1583	0	6	48.95	273.25	0	0	1	
6791	1	19	39.65	733.35	1	0	0	
4812	1	9	66.25	620.55	0	0	0	
6282	0	4	19.55	68.80	1	0	1	
2479	0	56	75.85	4261.20	1	0	1	

train['Predicted']=dt.predict(X_train) # MODEL = dt
train.head()

	Churn	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	De
1583	0	6	48.95	273.25	0	0	1	
6791	1	19	39.65	733.35	1	0	0	
4812	1	9	66.25	620.55	0	0	0	
6282	0	4	19.55	68.80	1	0	1	
2479	0	56	75.85	4261.20	1	0	1	
5 rows × 21 columns								

Step 7 : Model Performance Metrics

Final accuracy of Model Before Pruning

```
Accuracy_Train=((3616+1306)/(4930)*100)
print(Accuracy_Train) # overfit or High accuracy

99.83772819472617

from sklearn.metrics import classification_report
print(classification_report(train['Churn'], train['Predicted']))

precision recall f1-score support
```

	precision	recall	f1-score	support
0	1.00	1.00	1.00	3617
	1.00	0.99	1.00	1313
accuracy	1.00	0.33	1.00	4930
macro avg	1.00	1.00	1.00	4930
weighted avg	1.00	1.00	1.00	4930

Model Improvement by Pruning Method (Cut Tree)

DecisionTreeClassifier(max_depth=6, min_samples_leaf=200, min_samples_split=50)

Strategy & Prediction

Contract = Month-to-Month & Monthly Charges > 68 & Tenure <= 15.5

```
train['Predicted']=dt.predict(X_train) # MODEL = dt
train.head()
```

	Churn	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	De
1583	0	6	48.95	273.25	0	0	1	
6791	1	19	39.65	733.35	1	0	0	
4812	1	9	66.25	620.55	0	0	0	
6282	0	4	19.55	68.80	1	0	1	
2479	0	56	75.85	4261.20	1	0	1	
5 rows × 21 columns								

Final accuracy of Model after Pruning

	precision	recall	f1-score	support
0	0.81 0.68	0.93 0.39	0.87 0.49	3617 1313
accuracy macro avg weighted avg	0.74 0.77	0.66 0.79	0.79 0.68 0.77	4930 4930 4930

Step 8 : Predictions on Test Dataset

```
test=pd.concat([X_test,y_test],axis=1)
test.head()
```

test['Predicted']=dt.predict(X_test)
test.head()

	tenure	MonthlyCharges	TotalCharges	gender	SeniorCitizen	Partner	Dependent 1
1358	10	70.15	735.50	1	0	0	
5471	29	74.20	1993.25	0	0	0	
2693	72	19.30	1414.80	1	0	0	
1077	41	114.50	4527.45	0	0	0	
6663	1	54.65	54.65	0	0	0	
5 rows × 21 columns							

Step 9: Model Performance Metrics on Test data

Sensitivity & Specificity

✓ Train

from sklearn.metrics import classification_report
print(classification_report(train['Churn'], train['Predicted']))

	precision	recall	f1-score	support
0	0.81	0.93	0.87	3617
1	0.68	0.39	0.49	1313
20011201			0 70	4020