Модель распространения рекламы

Любимов Дмитрий Андреевич НФИбд $01-20^1$ 24 марта, 2023, Москва, Россия

 $^{^1 \}mbox{Российский Университет Дружбы Народов}$

Цели и задачи работы

Цель лабораторной работы

Рассмотреть модель эффективности рекламы

Задание к лабораторной работе

- 1. Рассмотреть модель эффективности рекламы
- 2. Построить графики распространения рекламы в заданных случаях с помощью Julia и OpenModelica
- 3. Определить для случая 2 момент времени, в который скорость распространения рекламы будет максимальной

Процесс выполнения лабораторной

работы

 $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить,

t - время, прошедшее с начала рекламной кампании,

N - общее число потенциальных платежеспособных покупателей,

n(t) - число уже информированных клиентов.

Величина n(t) пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании. Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем. Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса, решение которой имеет вид

Рис. 1: График решения уравнения модели Мальтуса

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой

Рис. 2: График логистической кривой

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

- 1. $\frac{dn}{dt} = (0.88 + 0.000066n(t))(N n(t))$
- 2. $\frac{dn}{dt} = (0.000055 + 0.44n(t))(N n(t))$
- 3. $\frac{dn}{dt} = (0.52\cos t + 0.37\sin ttn(t))(N n(t))$

При этом объем аудитории N=1656, в начальный момент о товаре знает 17 человек.

Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

График в первом случае

Рис. 3: График для случая 1

График во втором случае

Рис. 4: График для случая 2

максимальная скорость распространения при t=0

График в третьем случае

Рис. 5: График для случая 3

Выводы по проделанной работе

Вывод

В ходе выполнения лабораторной работы я рассмотрел модель эффективности рекламы и построил графики.