UUV Major electronic design decisions

September:

Main design outlined:

- Flashlights
 - o Lights
 - Deconstructed OTS flashlights
 - Already designed for this purpose
 - Usually run on 4.5v
 - Come with reflective cone
 - Batteries
 - 2x 18650
 - Already owned
 - Common standard
 - 5v converter
 - Microcontroller and LEDs can use a similar voltage
 - Microcontroller
 - Rpi pico W
 - Cheap, wireless microcontroller
 - Easy to work with
- RFID starting system
 - Outline goals
 - Use RFID tags to run different programs/commands without breaching the seal
 - RFID reader
 - Standard consumer kit
 - Easy to work with
 - Cheap
 - common
 - Microcontroller
 - Trinket m0
 - Small
 - Low power
 - Lots of pins
 - Will also control emergency systems
- Auxiliary power system
 - Batteries
 - 18650s
 - Already owned
 - Common standard
 - Voltage regulation

- 5v and 3.3v converters
 - Microcontroller runs at 5v, rfid at 3.3v
- Ultrasonic sensors
 - Single sensor for bottom detection
 - Expensive
 - Not needed with webcam view
- Custom pcb
 - Outlined basic functions
 - Voltage regulation (3.3v,5v,12v)
 - Allows complete control over system power
 - Easy to fix any issues with power delivery
 - Easy upgradability
 - Connect GPIO/ data pins
 - Clear labeling
 - Easy upgradability
- Batteries
 - 4S Lipos
 - Easy to acquire
 - High capacity
 - Voltage only needs to be stepped down
 - Bus Bars
 - Can handle the current load of the vehicle
 - Diodes
 - Needed to prevent back charging
- Heat dissipation
 - Exterior heat sink + heat pipes
 - Seawater is excellent thermal mass
 - Simple design to extract heat from inside to outside the hull
- Leak detection
 - Thin metal strips
 - Simple
 - Cheap

October:

Created:

- BMS boards
 - Monitor battery voltage
 - Test pcb manufacturing capabilities

Updated:

- Battery charging
 - Swap to an off the shelf charger instead of trying to build our own
 - Cheaper
 - Safer

- More reliable
- Heat dissipation
 - Dump heat into a copper plate pressed against the hull
 - Exterior fins will corrode
 - Cheap
 - No breaches to pressure vessel

April:

Updated:

- PCB Design
 - Rj45 jacks to go between PCB and endcap
 - Easy to source
 - POE spec can handle enough power over all 8 strands
 - Easy to remove from endcap

May:

Updated:

- PCB Design
 - o Implemented schematics for Previous PCB design choices
 - Moved Voltage regulators to standalone units off of main PCB
 - Simplify design for time constraints
 - Standalone voltage regulators already owned for testing purposes
- Heat dissipation
 - Use water cooling
 - Concerns about plastic heat conductivity
 - Will allow for higher thermal headroom
 - Seawater loop is isolated, should not cause issues
- Auxiliary power
 - Lipoly pack
 - Easier to source than 18650s
 - Easier to charge
 - One cable