

INSTRUCTION DIVISION

SECOND SEMESTER 2017 -2018 Revised Course Handout (Part-II)

Date: 8/01/2018

In addition to part I (General handout for all courses appended to the timetable) this portion gives further details regardingthe course.

Course Number: PHY F111

Course Title: Mechanics Oscillations and Waves Instructor-in-Charge: Debashis Bandyopadhyay

Team of Instructors: Debashis Bandyopadhyay, Kusum Lata, Niladri Sarkar, Rakesh Choubisa, Rishikesh Vaidya, Srijata Dey, Tapomoy Guha Sarkar and V.

Manjula Devi

<u>Scope & Objective</u>: Mechanics Oscillations and Waves is a foundation course in Physics that is mandatory for all the first degree students.

<u>Course Description</u>: The first half of the course deals with the applications of Newton's laws to the systems of particles and the study of linear and rotational motion using polar coordinates and physics of non-inertial reference frames. The second half deals with oscillatory motion, coupled oscillations and waves. There will be three lecture hours and one tutorial hour per week. Whereas the lectures would mostly focus on concepts and illustrative examples tutorial hour will be used to discuss representative problems from the chapters. Tutorial will follow the lectures as closely as possible.

Text Book:

- 1. An introduction to mechanics, by Kleppner and Kolenkow, Tata McGraw-Hill Indian edition 1999.
- 2. Vibrations and waves, by A.P. French, CBS Publishers and Distributors, Inc., first Indian edition 1987.

Reference Book:

R1: Physics, Vol.1, by Halliday, Resnick, & Krane, 5th Edition, John Wiley & Sons, Inc., 2002

R2: The Physics of Waves and Oscillations by N K Bajaj, Tata McGraw-Hill 1984.

Please Consider Your Environmental Responsibilities

Do Not Print Unless Necessary

Course Plan:

Topics from Text Book 1 (T1: Kleppner and Kolenkow)					
Module Number	Lecture session/Tutorial Session.	Reference	Learning Outcome		
1. Foundations of Newtonian Mechanics and polar coordinates.	L1: Critical overview of Newton's laws L.2 Introduction to motion in plane polar coordinates L.3 Illustrative examples on polar coordinates	T1Section 1.9in Chapter 1; Chapter 2 and problems related to polar coordinates in chapter 2.	 1.Critical appreciation of Newton's laws 2. Given a motion of a body involving circular geometry identify the radial and tangential components of forces and draw a free body diagram. 3. Solve second order linear differential equation with constant coefficients through simple guess work. 		
2.Momentum	L4: Extended systems and motion of center of mass L5: Conservation of momentum its applications and impulse L6: Mass varying systems and their applications	T1 Chapter 3	1. Description of an extended system (discrete or continuous) in terms of motion of center of mass. 2. Formulating momentum conservation (when applicable) with appropriate velocity components referring to inertial systems. 3. Formulating and solving the equation of motion of a mass varying system.		
3. Work and Energy	L7: Work energy theorem and concept of potential energy L8: Conservative and non-conservative forces. L9: Physics from energy diagrams L10: Oscillatory systems and stability analysis	T1 Chapter 4 (except section 4.14 and problems related to section 4.14)	 Application of work energy theorem for conservative systems. Calculation of power for non-conservative system Constructing energy diagrams and extracting physical insights. Stability analysis and finding frequency of small oscillations. 		
4. Angular Momentum and Fixed Axis Rotation	L11: Angular Momentum and Torque in a fixed axis rotation L12: Momentum of inertia and dynamics of pure rotation. L13: Dynamics of Rotation and translation L14: Conservation of	T1 Chapter 6	 Finding angular momentum and torque about various choices of fixed axis. Examining and exploiting conservation of angular momentum to find quantity of interest. Solving problems involving rotational and 		

	1		
	Angular Momentum		translational motion about
	L15: Angular		fixed axis.
	Oscillations and		4. Finding frequency of
	stability analysis		small angular oscillations.
5. Non-inertial	L16: Galilean	T1 Chapter 8	1. Learning to formulate
frames	transformations,		and solve a problem from
	uniformly accelerated		both inertial and non-
	frames and pseudo		inertial reference frames.
	forces		2. Understanding the
	L17: Principle of		relevance of non-inertial
	equivalence		frames, principle of
	L18: Physics of tides		equivalence and their
	L19: Physics in		connection to physics of
	rotating coordinate		tides.
	system		
	L20: Illustrative		
	problems		
	L21: Illustrative		
	problems		
	Topics from Text l	Book 2 (T2: A.P. Fren	nch)
6. The free	L22: Simple harmonic	T2 Chapter 3	1. Finding angular
vibrations of	motion (SHM) for		frequency of different
physical system.	different physical		oscillating systems.
	systems		2. Solving SHM equation
	L23: SHM equation		using complex exponential.
	L24: The decay of free		3. How the free vibrations
	vibrations		get modified by including
	L25: Effect of very large		the dissipative effects.
	damping		4. Calculating the quality
			and amplitude of damped
			systems.
7. Forced	L26: Undamped	T2 Chapter 4	1. Distinguish between
oscillator and	oscillator with		natural and driving
resonance	harmonic forcing		frequencies.
	L27: Forced oscillator		2. Finding the amplitude of
	with damping		a forced oscillator as a
	L28: Effect of varying		function of driving
	the resistive term		frequency.
	L29: Power absorbed		3. Finding average and
	by a driven oscillator		maximum power input to
	L30: Velocity and		maintain the oscillations.
	power resonance		
8. Coupled	L31: Two coupled	T2 Chapter 5	1. Finding equation of
Oscillators and	pendulums		motion of coupled free
normal modes	L32: Normal		systems.
	coordinates, Normal		2. Calculation of normal
	modes, normal		mode frequencies.
	frequencies.		3. Finding equation of
	L33: Illustrative		motion of coupled forced
	problems		systems
	L34: Forced		4. Determining normal
	oscillations of two		modes and their
	coupled oscillators		frequencies for N coupled
	L35: Many coupled		oscillators.
	oscillators		

9. Normal modes	L36: The free	T2 Chapter 6	1.Calculating linear		
of continuous	oscillations of stretched	12 chapter o	density of a uniform sting		
systems	strings		2. Finding the permitted		
systems					
	L37: Normal modes of		frequencies for the free		
	a stretched string,		vibrations in strings.		
	forced oscillations of a		3. Finding the driving		
	stretched string		frequency for the		
			amplitude resonance of		
			vibrating string.		
10. Progressive	L38: Progressive waves	T2 Chapter 7	1. Identifying different types		
waves	in one dimension		of waves.		
	L39: Superposition,		2. Distinguish particle		
	motion of wave pulses		phase and group velocities		
	of constant shape		in wave motion.		
	L40: Phase and group		3. Applying the relationship		
	velocity		between phase velocity and		
	L41: Energy and its		group velocity. Finding the		
	transportation by a		energy transported by a		
			1 0		
	wave		wave.		

Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Marks	Date, Time	Nature of
No.	Component (EC)		(%)	(300)	& Venue	Component
1	Tutorial Tests	20 mins.	20	60	**	Closed Book
2	Midterm Test	90 mins.	25	75	7/3 11:00 -	Open Book
					12:30 PM	
3	Quiz	90 mins.	20	60		Closed Book
3	Comp. Exam.	3 hrs.	35	105	5/5 AN	Closed Book

^{**} To be announced in tutorial class

<u>Chamber Consultation Hour:</u> To be announced in the tutorial class.

<u>Notices</u>: Notices and solutions will be displayed only on **Nalanda site**. If required sometime on **PHYSICS or FDIII** notice board.

<u>Make-up Policy</u>:Very strict: Make up for tests will be given only to genuine cases. No makeup for tutorials/quiz.

Instructor-in-Charge (PHY F111)