Øvingsforelesning 2

TDT4120 - Algoritmer og datastrukturer

Øving 1

Oppgave 2: Hvilke utsagn om logaritmer stemmer?

Oppgave 2: Hvilke utsagn om logaritmer stemmer?

$$\log_a a^n = n$$

Oppgave 2: Hvilke utsagn om logaritmer stemmer?

$$\log_a a^n = n$$

Oppgave 3: Hva betyr $a \mod n = 1$?

Oppgave 2: Hvilke utsagn om logaritmer stemmer?

$$\log_a a^n = n$$

Oppgave 3: Hva betyr $a \mod n = 1$?

$$a = c \cdot n + 1$$

5

Kjøretidsklasser

Konstant	$\Theta(1)$
Eksponentiell	$\Theta(2^n)$
Kvadratisk	$\Theta(n^2)$
Linearitmisk	$\Theta(n \lg n)$
Faktoriell	$\Theta(n!)$
Kubisk	$\Theta(n^3)$
Logaritmisk	$\Theta(\lg n)$
Lineær	$\Theta(n)$

Kjøretidsklasser

Konstant	$\Theta(1)$
Eksponentiell	$\Theta(2^n)$
Kvadratisk	$\Theta(n^2)$
Linearitmisk	$\Theta(n \lg n)$
Faktoriell	$\Theta(n!)$
Kubisk	$\Theta(n^3)$
Logaritmisk	$\Theta(\lg n)$
Lineær	$\Theta(n)$

Konstant	Θ(1)
Logaritmisk	$\Theta(\lg n)$
Lineær	$\Theta(n)$
Linearitmisk	$\Theta(n \lg n)$
Kvadratisk	$\Theta(n^2)$
Kubisk	$\Theta(n^3)$
Eksponentiell	$\Theta(2^n)$
Faktoriell	$\Theta(n!)$

Merk: I lysarket brukt i videoen var det en feil her, hvor «Linearitmisk» var plassert feil.

Ønsker å finne sammenhengen mellom veksten til to funksjoner f(n) og g(n).

8

Oppgave 5: $f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$

Oppgave 5:
$$f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$$

 $f(n) = \lg(n^{\lg 5}) = \lg 5 \lg n = \lg(5^{\lg n}) = g(n)$

Oppgave 5:
$$f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$$

 $f(n) = \lg(n^{\lg 5}) = \lg 5 \lg n = \lg(5^{\lg n}) = g(n)$
 $f(n) = \Omega(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$

Oppgave 5:
$$f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$$

 $f(n) = \lg(n^{\lg 5}) = \lg 5 \lg n = \lg(5^{\lg n}) = g(n)$
 $f(n) = \Omega(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$
Oppgave 6: $f(n) = n^2 \lg n + n + n \lg n \text{ og } g(n) = n^2$

Oppgave 5:
$$f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$$

 $f(n) = \lg(n^{\lg 5}) = \lg 5 \lg n = \lg(5^{\lg n}) = g(n)$
 $f(n) = \Omega(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$
Oppgave 6: $f(n) = n^2 \lg n + n + n \lg n \text{ og } g(n) = n^2$
 $\log_x n > c \text{ når } n > x^c$

Ønsker å finne sammenhengen mellom veksten til to funksjoner f(n) og g(n).

Oppgave 5:
$$f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$$

 $f(n) = \lg(n^{\lg 5}) = \lg 5 \lg n = \lg(5^{\lg n}) = g(n)$
 $f(n) = \Omega(g(n)), f(n) = \Omega(g(n)), f(n) = \Theta(g(n))$
Oppgave 6: $f(n) = n^2 \lg n + n + n \lg n \text{ og } g(n) = n^2$
 $\log_x n > c \text{ når } n > x^c$
 $f(n) > c \cdot g(n) \text{ for større verdier av } n$

Oppgaver 5 og 6

Oppgave 5:
$$f(n) = \lg(n^{\lg 5}) \text{ og } g(n) = \lg(5^{\lg n})$$

 $f(n) = \lg(n^{\lg 5}) = \lg 5 \lg n = \lg(5^{\lg n}) = g(n)$
 $f(n) = \Omega(g(n)), f(n) = O(g(n)), f(n) = \Theta(g(n))$
Oppgave 6: $f(n) = n^2 \lg n + n + n \lg n \text{ og } g(n) = n^2$
 $\log_x n > c \text{ når } n > x^c$
 $f(n) > c \cdot g(n) \text{ for større verdier av } n$
 $f(n) = \omega(g(n)), g(n) = O(f(n))$

Ønsker å forenkle uttrykk med asymptotisk notasjon uten tap av presisjon.

15

 $\ensuremath{\mathcal{O}}$ nsker å forenkle uttrykk med asymptotisk notasjon uten tap av presisjon.

16

Oppgave 7: Forenkle $O(n^2) + \Theta(n^3)$

Ønsker å forenkle uttrykk med asymptotisk notasjon uten tap av presisjon.

Oppgave 7: Forenkle
$$O(n^2) + \Theta(n^3)$$

$$O(n^2) + \Theta(n^3) = \Theta(n^3)$$

 \emptyset nsker å forenkle uttrykk med asymptotisk notasjon uten tap av presisjon.

Oppgave 7: Forenkle
$$O(n^2) + \Theta(n^3)$$

$$\mathrm{O}(\mathit{n}^2) + \Theta(\mathit{n}^3) = \Theta(\mathit{n}^3)$$

18

Oppgave 8: Forenkle
$$\Omega(n^2) + \Theta(n^3)$$

 \emptyset nsker å forenkle uttrykk med asymptotisk notasjon uten tap av presisjon.

Oppgave 7: Forenkle $O(n^2) + \Theta(n^3)$

$$O(n^2) + \Theta(n^3) = \Theta(n^3)$$

Oppgave 8: Forenkle $\Omega(n^2) + \Theta(n^3)$

$$\Omega(n^2) + \Theta(n^3) = \Omega(n^3)$$

Oppgave 9: Ønsker å finne uttrykk som passer på høyresiden av $\Theta(n^2) + O(n^4) + \Omega(\lg n) =$ ______.

Oppgave 9: Ønsker å finne uttrykk som passer på høyresiden av $\Theta(n^2) + O(n^4) + \Omega(\lg n) =$ ______.

Ekvivalens er asymmetrisk og høyresiden kan ikke være mer presis enn venstresiden.

Oppgave 9: Ønsker å finne uttrykk som passer på høyresiden av $\Theta(n^2) + O(n^4) + \Omega(\lg n) =$ ______.

Ekvivalens er asymmetrisk og høyresiden kan ikke være mer presis enn venstresiden.

Eksempler

Oppgave 9: Ønsker å finne uttrykk som passer på høyresiden av $\Theta(n^2) + O(n^4) + \Omega(\lg n) =$ ______.

Ekvivalens er asymmetrisk og høyresiden kan ikke være mer presis enn venstresiden.

Eksempler

$$\Theta(n^2) + O(n^4) + \Omega(\lg n) = \Omega(n^2) + O(n^4)$$

Oppgave 9: Ønsker å finne uttrykk som passer på høyresiden av $\Theta(n^2) + O(n^4) + \Omega(\lg n) =$ ______.

Ekvivalens er asymmetrisk og høyresiden kan ikke være mer presis enn venstresiden.

Eksempler

$$\Theta(n^2) + O(n^4) + \Omega(\lg n) = \Omega(n^2) + O(n^4)$$

$$\Theta(n^2) + O(n^4) + \Omega(\lg n) \neq \Theta(n^2)$$

24

Oppgave 10: Sammenhengen mellom den gjennomsnittlige kjøretiden og den generelle.

Oppgave 10: Sammenhengen mellom den gjennomsnittlige kjøretiden og den generelle.

Den gjennomsnittlige ligger innenfor grensene til den generelle.

Oppgave 10: Sammenhengen mellom den gjennomsnittlige kjøretiden og den generelle.

Den gjennomsnittlige ligger innenfor grensene til den generelle.

$$O(\Omega(g(n))), \Omega(O(g(n)))$$

Oppgave 10: Sammenhengen mellom den gjennomsnittlige kjøretiden og den generelle.

Den gjennomsnittlige ligger innenfor grensene til den generelle.

$$O(\Omega(g(n))), \Omega(O(g(n)))$$

Oppgave 11: Kjøretiden til en algoritme er beskrevet av $\Omega(n) + \Theta(n^2 \lg n) + O(n^3)$, hva vet vi om kjøretiden i beste og verste tilfellet?

Oppgave 10: Sammenhengen mellom den gjennomsnittlige kjøretiden og den generelle.

Den gjennomsnittlige ligger innenfor grensene til den generelle.

$$O(\Omega(g(n))), \Omega(O(g(n)))$$

Oppgave 11: Kjøretiden til en algoritme er beskrevet av $\Omega(n) + \Theta(n^2 \lg n) + O(n^3)$, hva vet vi om kjøretiden i beste og verste tilfellet?

$$\Omega(n) + \Theta(n^2 \lg n) + O(n^3) = \Omega(n^2 \lg n)$$

Oppgave 10: Sammenhengen mellom den gjennomsnittlige kjøretiden og den generelle.

Den gjennomsnittlige ligger innenfor grensene til den generelle.

$$O(\Omega(g(n))), \Omega(O(g(n)))$$

Oppgave 11: Kjøretiden til en algoritme er beskrevet av $\Omega(n) + \Theta(n^2 \lg n) + O(n^3)$, hva vet vi om kjøretiden i beste og verste tilfellet?

$$\Omega(n) + \Theta(n^2 \lg n) + O(n^3) = \Omega(n^2 \lg n)$$

Kjenner kun en nedre grense.

INSERTION-SORT

 $\label{eq:oppgave 12: Hva stemmer om kjøretiden til Insertion-Sort?}$

INSERTION-SORT

Oppgave 12: Hva stemmer om kjøretiden til INSERTION-SORT?

Verste tilfelle kjøretid $\Theta(n^2)$ Beste tilfelle kjøretid $\Theta(n)$

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Antall	Trekke	lgjen	Vinne
1	1	0	Nei
2	1	1	Ja
3	2	1	Ja
4	3	1	Ja
5	4	1	Ja
6	5	1	Ja
7	6	1	Ja
8	7	1	Ja
9	?	?	?

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Antall	Trekke	lgjen	Vinne
9	1	8	Nei
9	2	7	Nei
9	3	6	Nei
9	4	5	Nei
9	5	4	Nei
9	6	3	Nei
9	7	2	Nei

Umulig å garantert vinne når det er 9 fyrstikker igjen.

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Antall	Trekke	lgjen	Vinne
10	1	9	Ja
11	2	9	Ja
12	3	9	Ja
13	4	9	Ja
14	5	9	Ja
15	6	9	Ja
16	7	9	Ja

Kan garantert vinne når det er mellom 10 og 16 fyrstikker igjen.

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Kan vinne når $n \neq c \cdot 8 + 1 \Rightarrow n \mod 8 \neq 1$.

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

 $\text{Kan vinne når } n \neq c \cdot 8 + 1 \Rightarrow n \bmod 8 \neq 1.$

Hvordan beviser vi dette?

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Kan vinne når $n \neq c \cdot 8 + 1 \Rightarrow n \mod 8 \neq 1$.

Hvordan beviser vi dette?

Allerede bevist for n < 17. Kan anta at det gjelder for alle n < k når $17 \le k$ (induksjon). Må vise at det gjelder for n = k.

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Kan vinne når $n \neq c \cdot 8 + 1 \Rightarrow n \mod 8 \neq 1$.

Hvordan beviser vi dette?

Allerede bevist for n < 17. Kan anta at det gjelder for alle n < k når $17 \le k$ (induksjon). Må vise at det gjelder for n = k.

Hvis $k \mod 8 = 1$ får vi uansett hvor mange fyrstikker vi trekker, i, at $(k - i) \mod 8 \neq 1$.

Trekker 1, 2, 3, 4, 5, 6 eller 7 fyrstikker på tur, taper ved å trekke siste fyrstikk.

Når og hvordan kan vi garantere å vinne?

Kan vinne når $n \neq c \cdot 8 + 1 \Rightarrow n \mod 8 \neq 1$.

Hvordan beviser vi dette?

Allerede bevist for n < 17. Kan anta at det gjelder for alle n < k når $17 \le k$ (induksjon). Må vise at det gjelder for n = k.

Hvis $k \mod 8 = 1$ får vi uansett hvor mange fyrstikker vi trekker, i, at $(k - i) \mod 8 \neq 1$.

Hvis $k \mod 8 \neq 1$ kan vi trekke $(k-1) \mod 8$ fyrstikker, og ende opp med $(k-i) \mod 8 = 1$.

```
K-Largest(A, k)
   let B[1..k] be a new array
 2 for i = 1 to k
        B[i] = 0
 4 for i = 1 to A.length
        if A[i] > B[1]
           B[1] = A[i]
            i=2
 8
             while j \leq B.length and B[j-1] > B[j]
                 exchange B[j-1] with B[j]
10
                 i = i + 1
   sum = 0
12 for i = 1 to k
13
        sum = sum + B[i]
   return sum
```

```
K-Largest(A, k)
   let B[1..k] be a new array
 2 for i = 1 to k
        B[i] = 0
 4 for i = 1 to A.length
        if A[i] > B[1]
           B[1] = A[i]
            i=2
 8
             while j \leq B.length and B[j-1] > B[j]
                 exchange B[i-1] with B[i]
10
                 i = i + 1
   sum = 0
12 for i = 1 to k
13
        sum = sum + B[i]
   return sum
```

Beste tilfelle $\Theta(n + k^2)$

```
K-Largest(A, k)
   let B[1..k] be a new array
 2 for i = 1 to k
        B[i] = 0
 4 for i = 1 to A.length
        if A[i] > B[1]
           B[1] = A[i]
            i=2
 8
             while j \leq B.length and B[j-1] > B[j]
                 exchange B[i-1] with B[i]
10
                 i = i + 1
   sum = 0
   for i = 1 to k
13
        sum = sum + B[i]
   return sum
```

Beste tilfelle $\Theta(n + k^2)$, verste tilfelle $\Theta(nk)$

Hvordan beviser vi at K-LARGEST stemmer?

Hvordan beviser vi at K-Largest stemmer?

Anvender induksjon

Hvordan beviser vi at K-LARGEST stemmer?

Anvender induksjon

Løkkeinvariant: Etter iterasjon *i* gjelder følgende:

Hvordan beviser vi at K-LARGEST stemmer?

Anvender induksjon

Løkkeinvariant: Etter iterasjon *i* gjelder følgende:

• B består av de min(k, i) største tallene i A[1..i], samt max(k - i, 0) nuller.

Hvordan beviser vi at K-LARGEST stemmer?

Anvender induksjon

Løkkeinvariant: Etter iterasjon *i* gjelder følgende:

- B består av de min(k, i) største tallene i A[1..i], samt max(k i, 0) nuller.
- B er sortert i stigende rekkefølge.

Hvilke alternativer har vi til K-Largest?

Hvilke alternativer har vi til K-LARGEST?

Vi kan sortere A med en sorteringsalgoritme. INSERTION-SORT har

- $\Theta(n)$ i beste tilfelle
- $\Theta(n^2)$ i gjennomsnitt
- $\Theta(n^2)$ i verste tilfelle

Hvilke alternativer har vi til K-LARGEST?

Vi kan sortere A med en sorteringsalgoritme. INSERTION-SORT har

- $\Theta(n)$ i beste tilfelle
- $\Theta(n^2)$ i gjennomsnitt
- $\Theta(n^2)$ i verste tilfelle

Kan anvende $\operatorname{RANDOMIZED-SELECT}$ fra forelesning 4.

- $\Theta(n)$ i beste tilfelle
- $\Theta(n)$ i gjennomsnitt
- $\Theta(n^2)$ i verste tilfelle

Hvilke alternativer har vi til K-LARGEST?

Vi kan sortere A med en sorteringsalgoritme. INSERTION-SORT har

- $\Theta(n)$ i beste tilfelle
- $\Theta(n^2)$ i gjennomsnitt
- $\Theta(n^2)$ i verste tilfelle

Kan anvende RANDOMIZED-SELECT fra forelesning 4.

- $\Theta(n)$ i beste tilfelle
- $\Theta(n)$ i gjennomsnitt
- $\Theta(n^2)$ i verste tilfelle

Kan anvende Select fra forelesning 4.

- $\Theta(n)$ i beste tilfelle
- $\Theta(n)$ i gjennomsnitt
- $\Theta(n)$ i verste tilfelle

Hva er kjøretiden til $\operatorname{Dual-Sort}$?

Hva er kjøretiden til DUAL-SORT?

Hva er kjøretiden til Dual-Sort?

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i)$$

Hva er kjøretiden til Dual-Sort?

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \lfloor \frac{n}{2} \rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i$$

Hva er kjøretiden til Dual-Sort?

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \lfloor \frac{n}{2} \rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i \approx \frac{n^2}{2} - \frac{n^2}{4} - \frac{n}{2}$$

Hva er kjøretiden til Dual-Sort?

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \lfloor \frac{n}{2} \rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i \approx \frac{n^2}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{n^2}{4} - \frac{n}{2}$$

Hva er kjøretiden til Dual-Sort?

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \lfloor \frac{n}{2} \rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i \approx \frac{n^2}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{n^2}{4} - \frac{n}{2} = \Theta(n^2)$$

Hva er kjøretiden til Dual-Sort?

 $\lfloor \frac{n}{2} \rfloor$ iterasjoner hvor det utføres n-2i operasjoner i iterasjon i.

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \lfloor \frac{n}{2} \rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i \approx \frac{n^2}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{n^2}{4} - \frac{n}{2} = \Theta(n^2)$$

Hvordan beviser vi at DUAL-SORT stemmer?

Hva er kjøretiden til DUAL-SORT?

 $\lfloor \frac{n}{2} \rfloor$ iterasjoner hvor det utføres n-2i operasjoner i iterasjon i.

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \left\lfloor \frac{n}{2} \right\rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i \approx \frac{n^2}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{n^2}{4} - \frac{n}{2} = \Theta(n^2)$$

Hvordan beviser vi at DUAL-SORT stemmer?

Bruker induksjon

Hva er kjøretiden til Dual-Sort?

 $\lfloor \frac{n}{2} \rfloor$ iterasjoner hvor det utføres n-2i operasjoner i iterasjon i.

$$\sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} (n-2i) = \lfloor \frac{n}{2} \rfloor n - \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} 2i \approx \frac{n^2}{2} - \frac{n^2}{4} - \frac{n}{2} = \frac{n^2}{4} - \frac{n}{2} = \Theta(n^2)$$

Hvordan beviser vi at DUAL-SORT stemmer?

Bruker induksjon

Løkkeinvariant: Etter iterasjon i består A[1..i] av de i minste tallene i A og A[A.length-i+1..A.length] av de i største tallene i A. Begge er sortert i stigende rekkefølge.