STA 506 2.0 Linear Regression Analysis

Mid Evaluation Assignment

1 November 2020

Total marks: 40

Question

Any sound that is loud enough and lasts long enough can damage hearing and lead to hearing loss. A study was conducted to assess the effects of noise on hearing loss. The independent variable (X) was maximal noise level. Each individual was exposed regularly (5 hours a day, for a period of 5 years) to an environment with a specific noise level. The noise level is measured in units called decibels. The dependent variable was hearing loss. Hearing loss was measured as a percentage, compared with normal hearing. The data are given below.

```
hearing <- data.frame(NoiseLevel = c(62, 65, 70, 72, 81, 86, 90, 111, 123, 128, 142, 106, 100, 100, 112, 142),

Loss = c(12, 15, 10, 18, 16, 23, 20, 34, 38, 48, 50, 32, 35, 36, 30, 58))
hearing
```

	${\tt NoiseLevel}$	Loss
1	62	12
2	65	15
3	70	10
4	72	18
5	81	16
6	86	23
7	90	20
8	111	34
9	123	38
10	128	48
11	142	50
12	106	32
13	100	35
14	100	36
15	112	30
16	142	58

Q1 [4 marks]

Figure 1: Relationship between noise level and hearing loss

The Pearson's correlation coefficient between X and Y is

[1] 0.9584264

Comment on the results given above.

Q2 [5 marks]

Write the regression model that you would be fitted for the above variables. Define every term and state any assumptions regarding the model.

$\mathbf{Q3}$

A researcher fitted a simple linear regression model. The output is shown below

Call: lm(formula = Loss ~ NoiseLevel, data = hearing) Coefficients: (Intercept) NoiseLevel -22.8699 0.5289

Call:

lm(formula = Loss ~ NoiseLevel, data = hearing)

Residuals:

Min 1Q Median 3Q Max -6.3646 -4.0149 -0.4025 3.2532 5.9820

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.239 on 14 degrees of freedom Multiple R-squared: 0.9186, Adjusted R-squared: 0.9128 F-statistic: 158 on 1 and 14 DF, p-value: 5.155e-09

The results of residual analysis

Figure 2: Residuals vs Fitted Values

shapiro.test(hearing_fit_resid\$.resid)

 ${\tt Shapiro-Wilk\ normality\ test}$

data: hearing_fit_resid\$.resid
W = 0.92954, p-value = 0.2397

Figure 3: Normality test of residuals

Q3 - i [3 marks]

Write the fitted regression model.

Q3 - ii [5 marks]

Check the validity of the assumptions. You should clearly specify the reasons referring to suitable outputs.

Q3 - iii [5 marks]

Test the significance of the model. You should clearly write the hypothesis, decision and conclusions.

Q3 - iv [5 marks]

What proportion of the variation in the response is explained by the model fitted?

Q3 - v [4 marks]

Interpret the value $\hat{\beta}_1 = 0.5289$.

Q3 - vi [3 marks]

If an individual's environment noise level is 100, give a point estimate for its predicted hearing loss value.

Q4 [6 marks]

Another researcher fitted a regression model without an intercept. The results are given below. Which model would you conclude is superior (model with intercept or model without intercept)? Give reasons for your answer.

```
Call:
lm(formula = Loss ~ NoiseLevel - 1, data = hearing)
Coefficients:
NoiseLevel
    0.3126
Call:
lm(formula = Loss ~ NoiseLevel - 1, data = hearing)
Residuals:
    Min
             1Q Median
                             ЗQ
                                   Max
-11.884 -5.836 -2.512
                          3.987 13.607
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                18.05 1.38e-11 ***
NoiseLevel 0.31263
                      0.01732
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.101 on 15 degrees of freedom
Multiple R-squared: 0.956, Adjusted R-squared: 0.9531
F-statistic: 325.9 on 1 and 15 DF, p-value: 1.385e-11
The results of residual analysis
shapiro.test(hearing_fit_resid_nointercept$.resid)
    Shapiro-Wilk normality test
```

```
data: hearing_fit_resid_nointercept$.resid
W = 0.96337, p-value = 0.7231
```


Figure 4: Residuals vs Fitted Values (Model without intercept)

Figure 5: Normality test of residuals (Model without intercept)