

3D Reconstruction

CS 4391 Introduction to Computer Vision
Professor Yapeng Tian
Department of Computer Science

A lot of slides borrowed from Prof. Yu Xiang and Prof. Andreas Geiger

3D Reconstruction

How to obtain 3D models of objects or scenes?

- Stereo matching
- SfM and SLAM
- 3D scanning
- Multi-view stereo
- 3D from a single 2D

Triangulation-based 3D Scanner

Laser source

https://3dscanningservices.net/blog/need-know-3d-scanning/

Triangulation-based 3D Scanner

Digital Michelangelo Project (1990)

https://accademia.stanford.edu/mich/

Microsoft Kinect 1

Structured light infrared (IR)

IR stereo

infrared (IR) speckle pattern

Range Data Merging

Each scan/capture generates a depth image or a point cloud

How can we combine these data into a 3D model?

- Alignment/registration
 - E.g., iterative closest point (ICP) algorithm
- Merging

http://www.open3d.org/docs/latest/tutorial/Basic/icp_registration.html

A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH'96.

Signed Distance Function (SDF)

$$\phi \colon \Omega \subseteq \mathbb{R}^3 \to \mathbb{R}$$

Signed distance to the closest object boundary

Signed Distance Function (SDF)

Signed Distance Fields for Rigid and Deformable 3D Reconstruction. Miroslava Slavcheva.

A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH'96.

Image

Single scan

Merged scan

A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH'96.

Image-based 3D Reconstruction

A set of images

3D model

Multi-View Stereo: A Tutorial, Yasutaka Furukawa and Carlos Hernández

Image-based 3D Reconstruction Pipeline

Humans recognize 3D from a **single** 2D image

3D Reconstruction from a 2D Image

Input Images

Neural Network

3D Reconstruction

What is a good **output** 3D representation?

Voxels:

- Discretization of 3D space into grid
- Easy to process with neural networks
- Cubic memory $O(n^3) \Rightarrow limited resolution$

[Maturana et al., IROS 2015]

Points

- Discretization of surface into 3D points
- Does not model connectivity / topology
- Limited number of points
- Global shape description

[Fan et al., CVPR 2017]

Meshes

- Discretization into vertices and faces
- Limited number of vertices / granularity
- Requires class-specific template or –
- Leads to self-intersections

[Groueix et al., CVPR 2018]

Implicit 3D representation

- Implicit representation ⇒ No discretization
- Arbitrary topology & resolution
- Low memory footprint
- Not restricted to specific class

Occupancy Network for 3D Reconstruction

Key idea

- Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Network for 3D Reconstruction

Training

$$\mathcal{L}_{\mathcal{B}}(\theta) = \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \sum_{j=1}^{K} \mathcal{L}(f_{\theta}(p_{ij}, x_i), o_{ij})$$

$$\stackrel{\text{3D point j for image i image i}}{=} \stackrel{\text{Ground truth occupancy}}{=}$$

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Network for 3D Reconstruction

Continuous shape representation

Single image 3D reconstruction

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19

Occupancy Networks: Learning 3D Reconstruction in Function Space. Mescheder et al., CVPR'19 [video link]

Summary

- 3D scanning and Multiview stereo pipeline
- Explicit 3D representations
 - Voxels, points, meshes
- Implicit 3D representations
 - Learn a function to represent the 3D shape (occupancy, SDFs, radiance fields)

Further Reading

- Chapter 13, Computer Vision, Richard Szeliski
- A Volumetric Method for Building Complex Models from Range Images. Curless & Levoy. SIGGRAPH'96.
- Multi-View Stereo: A Tutorial. Yasutaka Furukawa and Carlos Hernández, 2015
- Occupancy Network https://arxiv.org/abs/1812.03828
- DeepSDF https://arxiv.org/abs/1901.05103

Project Presentation

Presentation (Slides)

- Introduction: Project title, group members, problem overview (1 min)
- Method: your approach (2 mins)
- Results: your data and experimental results to showcase your method (2 mins)
- QA (1 min)

Each group has 6 minutes for the presentation and questions

- Please use slides to present your work
- Show a demo of the project if you have one
- All group members should show up

Evaluation criteria

 The grading will be based on the overall quality of the presentation in terms of content, clarity, and question answering

Presentation Order and Submission

- The presentation order was randomly generated
 - Set 1 (Monday 12/02): 13, 6, 22, 3, 10, 26, 4, 17, 8, 1
 - Set 2 (Wednesday 12/04): 18, 21, 12, 7, 15, 24, 9, 5, 20
- Please submit the following items to eLearning. You can zip all the files. I will download your submission a day prior to your presentation. To save time and prevent potential technical issues, you will use my computer for the presentation
 - (Required) Presentation slides in pdf/pptx format
 - (Optional) A demo video in mp4 format if you have one