UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

Specimen for 2007

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY PRACTICAL

www.studyguide.pk

Page 2	Mark Scheme	Syllabus		
	GCE A LEVEL - 2007	9701	4	

Section A

1 (a) (i) $2 \times 80g$ of Br_2 produce 24 dm³ of CO_2 (1)

Thus 3.2 g of Br₂ will produce
$$\frac{3.2 \times 24}{2 \times 80} = 0.48 \text{ dm}^3$$
 (1)

(ii) Colorimetrically: withdraw samples periodically (1)

measure absorbance (1)

plot absorbance against time (1)

OR

titrating with thiosulphate (1)

(Allow titration of H⁺ or evolution of CO₂ if some mention of solubility.)

[5]

- (b) (i) Reaction has a constant half-life evidence from graph that t(1/2) is constant (1)
 - (ii) Rate = $[Br_2]$ (1)
 - (iii) At least two measurements of half-life from first graph
 Calculation of mean (say 200 secs) (1)

[5]

Total:10

- (a) The standard enthalpy change of formation of a compound is the enthalpy change when one mole of a compound is formed (under standard conditions) (1) from its elements in their standard states.
 (1) [2]
 - (b) Suitable cycle clearly labelled showing all three values [2]
 - (c) (i) 298 kJ mol⁻¹ (1)
 - (ii) In Data Booklet Si-C*l* bond energy is 210 kJ mol⁻¹. SiC*l*₄ is not a gas under standard conditions (1)

[2]

- (d) (i) $SiCl_3H + H_2 \longrightarrow Si + 3HCl$ (1)
 - (ii) From the Data Booklet, $E_{Si-Cl} = 359$, $E_{H-Cl} = 431$, $E_{H-Br} = 366$ kJ mol⁻¹ Per Si-hal bond, for SiC l_3 H, Δ H = 359 431 = -72, for SiB l_3 H, Δ H = 298 366 = -68 (1) therefore the reaction with SiB l_3 H will be less exothermic i.e. overall reaction would be more endothermic (1)

OR $\Delta H_{\text{reaction}}$: for SiC l_3H , $\Delta H_{\text{reaction}} = +96$, and for SiBr₃H, $\Delta H_{\text{reaction}} = +108$ (1) therefore overall reaction is more endothermic (1)

(iii) Manufacture of semiconductors (or equivalent) (1)

[4]

ok.

Page 3				Mark Scheme	Syllabus	yguide.;
				GCE A LEVEL – 2007	9701	4
3	(a)	CaC	CO ₃ —	→ CaO + CO ₂	(1)	
		CaC) + H ₂ ($D \longrightarrow Ca(OH)_2$	(1)	[2]
	(b)			acid soils	(1)	
		To i	mprove s	oil 'quality' by precipitating clays (or equivalent)	(1)	[2]
	(c)		•	ture increases	(1)	
			•	up is descended, the cation increases in size y of the cation to polarise the anion decreases, increasing	(1)	
		the	stability o	f the carbonate.	(1)	[3]
	(d)	(i)	CaMg(C	$O_3)_2 + 4HCl \longrightarrow CaCl_2 + MgCl_2 + 2CO_2 + 2H_2O$	(1)	
		(ii)	$M_{\rm r}$ of dol	omite is 40 + 24 + (2 x 60) = 184	(1)	
			184 g of	dolomite should produce 2 x 44 g of CO ₂		
			Hence 1	g of dolomite should give $\frac{88}{184}$ g of $CO_2 = 0.478$ g		
			% purity	of the dolomite is $\frac{0.450 \times 100}{0.478} = 94.1\%$	(1)	
				0.478		[3]
ı	, ,	<i>(</i> 1)	ra 10 110	. 1		Total : 10
	(a)		[Ar] 3d ¹⁰	45		
		(ii)	[Ar] 3d ¹⁰			
		(iii)	[Ar] 3d ⁹			[2]
	(b)	Any •	colour du	ne following points: ue to absorption of certain visible frequencies s are split into two groups by presence of ligands		

- d-orbitals are split into two groups by presence of ligands
- light absorbed when e moves from lower to higher orbital
- this needs a gap in the higher orbital, so d^{10} in Cu(I) is not coloured if $CuCl_2$ is blue, then photons absorbed must be red ones

(c) (i) $[Cu(H_2O)_6]^{2+} + 2OH^- \longrightarrow [Cu(H_2O)_4(OH)_2] + 2H_2O$ (2)

(ii) These are ligand exchange reactions. H₂O is exchanged for OH⁻, and H₂O and OH⁻ are exchanged for NH₃. (2) [4]

[Total : 10]

[4]

www.studyguide.pk

					GCE	E A LEVEL –	2007		9701	4	
5	(a)	(a) Van der Waals forces increase with the number of electrons present Since this allows larger dipoles and hence stronger attractive forces									[2]
	(b)	(i) Description of Ct, Br, and I with conc sulphuric acid Use of E ^e									
		(ii)	Descripti Use of E	on of HC <i>l</i> , ŀ •	HBr and HI				3 x (1) (1)		[8]
										Total :	10
6	(a)	a)									
	(,		element	t	%	Ar	% / A _r	ratio			
	C 40.0 12 3.33 1										
	H 6.65 1 6.65 2										
			0								
											[1]
	(b)	(i)	It contain	ns an asymr	netric carb	on atom			(1)		

Mark Scheme

CCE A LEVEL

Page 4

(ii) It contains a carboxylic acid group (1) (iii) It contains a CH₃CH(OH)- or CH₃CO- group (1) [3] (c) Displayed formula of 2-hydroxypropanoic acid [1] (d) Displayed formula of the ketone of the above [1] (e) Displayed formula of the cyclic di-ester (1) Ester (1) [2] (f) Displayed formula of 3-hydroxypropanoic acid (1) Compound C is CH=CHCO₂H (1)[2]

www.studyguide.pk
| Syllabus | Paper |

			_				Panar	٦.٢
	P	age	o	Mark Scheme	Syllabus	Paper		
				GCE A LEVEL – 2007		9701	4	
7	(a)	(i)	1. amine	2. carboxylic acid				
			3. amide	4. ester		(2)		
		(ii)	1. amine Both can proton fro	2. carboxylic acid form ions (both polar groups) by gain or loss of a		(1)		
				ydrogen bonds with water		(1)	[4	4]
	(b)	(i)	Allow cor	nc. HC <i>l</i> <u>and</u> heat or conc. NaOH <u>and</u> heat		2 x (1)		
		(ii)	Diagram	s of aspartic acid, phenylalanine and methanol		3 x (1)	[{	5]
	(c)	It co	ould be de	composed/hydrolysed during cooking			[1	1]
							Total :1	0
				Section B				
8	(a)	6 p	oints from	the following:				
			mRmRmRtRNami	rands of DNA separate NA reads the 'code'/base sequence on the DNA NA moves out of the nucleus NA binds to the ribosome IA binds to amino acids no acids are transferred to ribosome and joined to g	growin	g chain	[6	6]
	(b)	Eac	ch amino a	acid needs 3 bases to code for it		(1)		
		3 x	129 = 387	, which leaves 3 bases to code for Start and 3 for S	Stop	(1)	[2	2]
	(c)	(i)	sicklthallcysti	of answers possible e.g. e cell disease assemia c fibrosis nophilia etc.		(1)		
		(ii)	DefoRes	e symptom e.g. ormed red blood cells tricts production of haemoglobin				
				ous lining of lungs thickens r clotting of blood/bleeding under the skin		(1)	[2	2]
							Total · 1	^

k

Page 6		Page 6		Mark	Syllabus	yguide.p		
r age o				GCE A L	9701	4		
9	(a)	%	%/A _r	Ratio				
		C 78.7 H 8.2 O 13.1	6.56 8.2 0.82	8 10 1)) (1))	Empirical formula $C_8 H_{10}O$	a (1)	
			ence this molecu ormula is C ₈ H ₁₀ C				(1)	[3]
	(b)	1.2δ - CH	H_3				(1)	
		2.5δ - CH	H_2				(1)	
		5.5δ - OH	4				(1)	
		6.8δ aryl h	ydrogens x 4				(1)	
		Hence struc	cture is	CH₃CH	2	-ОН	(1)	
		(or ethyl ph	enol isomers)					[5]
	(c)	Peak at 5.5	δ would disappe	ear			(1)	
		Due to rapi	d exchange with	D⁺ which do	oes not ab	osorb here	(1)	[2]
	7-11							

Two sensible suggestions (2) [3]

Total: 12

10 (a) Can be used as a fuel (for generating electricity) (1) Can be hydrolysed (using acid or enzymes) and the sugars fermented

[2] (1)

[1] (b) Carbon dioxide

(c)
$$(C_6H_{10}O_5)_n + nH_2O \rightarrow nC_6H_{12}O_6$$
 [1]

(d) Ethanol has an –OH group and so can be washed away Gasoline is a hydrocarbon and is not soluble in water Gasoline requires detergent which can add to the pollution Ethanol is biodegradable

(any 3) [3]

