Softwarepraktikum SS2025

3D-Punktwolkenregistrierung mit Festkomma-Arithmetik

Tom Fleischmann, Jonas Wiesner und Yannik Winzer (Betreuer: Prof. Dr. Andreas Nüchter)

JULIUS-MAXIMILIANS-UNIVERSITÄT WÜRZBURG

26.09.2025

Überblick

- 1 Situation und Aufgabenstellung
- 2 Umsetzung
- 3 Ergebnis
- 4 Ausblick und gewonnene Einsichten

Ausgangssituation

Das 3DTK

- Das 3DTK arbeitet mit Punktwolken (Scans), wobei alle Punkte Koordinaten der Form (x, y, z) besitzen
- Die Scans stammen aus Sensoren; i.d.R. gibt es mehrere Scans
- Die verschiedenen Scans sollen konsistent zusammengesetzt werden. Dafür soll der Basis-ICP-Algorithmus (ohne Parallelisierung etc.) in Festkomma-Arithmetik implementiert werden

Durch die Verwendung der Festkomma-Arithmetik wird es möglich, den Algorithmus auf Platinenebene einzusetzen. Die Zielgruppe des Projekts ist der Informatik-Lehrstuhl 17 (Robotics) der Universität Würzburg.

Anforderungen an den Algorithmus

Iterative Closest Point (ICP)-Algorithmus zur Ausrichtung der Scans:

ICP (Iterative Closest Point)

Eingabe: zwei Scans M (Model) und D (Data)

- \bullet bestimme für jeden Punkt von Dden nächstgelegenen Punkt aus M (Punktkorrespondenzen)
- 2 rechne Fehlerfunktion mit Rotation und Translation aus

Die Schritte 1 und 2 werden iteriert, bis die Änderung des Fehlers kleiner als ein vorher festgelegtes ε ist oder die spezifizierte maximale Anzahl an Iterationen erreicht ist

Resultat: errechnete Rotation und Translation (wird für jeden Scan in der entsprechenden .frames-Datei gespeichert)

3D-Punktwolkenregistrierung mit Festkomma-Arithmetik

• Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden
 - Festkomma-Arithmetik: SystemC-Library, d.h. feste Anzahl an Vorund Nachkommastellen

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden
 - \bullet Festkomma-Arithmetik: SystemC-Library,d.h. feste Anzahl an Vorund Nachkommastellen
 - \bullet Lösung des Minimal problems (Rotation und Translation): $Approximations\mbox{-}Methode$

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden
 - \bullet Festkomma-Arithmetik: SystemC-Library,d.h. feste Anzahl an Vorund Nachkommastellen
 - Lösung des Minimal problems (Rotation und Translation): Approximations-Methode
 - Punktkorrespondenzen: Brute Force-Methode (doppelter for-loop)

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden
 - \bullet Festkomma-Arithmetik: SystemC-Library,d.h. feste Anzahl an Vorund Nachkommastellen
 - Lösung des Minimal problems (Rotation und Translation): Approximations-Methode
 - \bullet Punktkorrespondenzen: Brute Force-Methode (doppelter for-loop)
- Entwicklerhandbuch
- Hilfe-Anweisungen

Vorbereitungen

- Einbinden der SystemC-Library
 - Definieren des Festkomma Datentyps: using f_float = sc_fixed<FIXED_WORD_LENGTH, FIXED_INT_WORD_LENGTH>;

Vorbereitungen

- Einbinden der SystemC-Library
 - Definieren des Festkomma Datentyps: using f_float = sc_fixed<FIXED_WORD_LENGTH, FIXED_INT_WORD_LENGTH>;
- Erstellung der benötigten Dateien

Vorbereitungen

- Einbinden der SystemC-Library
 - Definieren des Festkomma Datentyps: using f_float = sc_fixed<FIXED_WORD_LENGTH, FIXED_INT_WORD_LENGTH>;
- Erstellung der benötigten Dateien
- Modifikation der CMake-Lists, sodass ...
 - ... icpFixpoint nach dem Build-Vorgang als Executable bereitgestellt wird
 - ... alle Abhängigkeiten miteingebunden werden
 - ... Einstellungsmöglichkeiten der Präzision FIXED_INTEGER_WORD_LENGTH und FIXED_WORD_LENGTH in cmake möglich sind
 - ... HERON_ITERATIONS zur Berechnung von Quadratwurzeln (mittels Heron-Verfahren) mit Festkomma-Arithmetik einstellbar ist

Struktur der neuen Dateien

- Ordner src: enthält die eigentlichen Code-Dateien
 - Ordner sc_fixed
 - sc_fixed_converter.cc: Konvertieren von double-Arrays in f_float-Arrays und -Vektoren
 - sc_fixed_math.cc: enthält mathematische Funktionen in SystemC-Festkomma-Arithmetik
 - sc_ICP.cc: match-Methode (ICP)
 - sc_ICPapx.cc: Align-Methode (richtet gegebenen Data-Scan am Source-Scan aus)
 - Ordner slam6D: Datei icpFixpoint.cc: Hauptdatei des Projekts für den ICP-Algorithmus
- Ordner include/sc_fixed: zugehörige Header-Dateien

Struktur der neuen Dateien

- Ordner src: enthält die eigentlichen Code-Dateien
 - Ordner sc_fixed
 - sc_fixed_converter.cc: Konvertieren von double-Arrays in f_float-Arrays und -Vektoren
 - sc_fixed_math.cc: enthält mathematische Funktionen in SystemC-Festkomma-Arithmetik
 - sc_ICP.cc: match-Methode (ICP)
 - sc_ICPapx.cc: Align-Methode (richtet gegebenen Data-Scan am Source-Scan aus)
 - Ordner slam6D: Datei icpFixpoint.cc: Hauptdatei des Projekts für den ICP-Algorithmus
- Ordner include/sc_fixed: zugehörige Header-Dateien
- Ordner bin: Executable icpFixpoint
- Ordner doc: Pflichtenheft und Entwicklerhandbuch

Aufruf und Ausgaben des Algorithmus

Ein möglicher Aufruf ist bin/icpFixpoint -s 0 -e 2 dat (mittels Kommandozeile), was beispielhaft zu folgendem Ergebnis in der zweiten .frames-Datei führt:

```
0.999756 -0.00854492 0.0078125 0 0.00830078 0.999756 0.0192871 0 -0.00830078 -0.0195312 0.999756 0 -7.99854 -15.353 337.973 1 0 0.999756 -0.00854092 0.0078125 0 0.00830078 0.999756 0.0192871 0 -0.00830078 -0.0195312 0.999756 0 -7.99854 -15.353 337.973 1 0 0.999756 0.00854092 0.0078125 0 0.00830078 0.999756 0.0192871 0 -0.00830078 0 -0.0195312 0.999756 0 -7.99854 -15.353 337.973 1 0 0.999756 0.00854092 0.0078125 0 0.00830078 0.999756 0.0192871 0 -0.00830078 0 -0.0195312 0.999756 0 0 0.7.99854 -15.353 337.973 1 0 0.999756 0 0.00854092 0.0078125 0 0.00830078 0.999756 0.00830078 0.0195312 0.999756 0 0 0.7.99854 -15.353 337.973 1 0 0.999756 0.00854092 0.0078125 0 0.00830078 0.999750 0.00830078 0.0195312 0.999750 0 0 0.00830078 0.00830078 0.00195312 0.999750 0 0.00830078 0.00195312 0.999750 0 0.00830078 0.00195312 0.0095312 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00830078 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.994520 0 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00140403 0.00
```

- Initialwerte werden für die Darstellung (bin/show) des vorherigen Scans kopiert
- Berechnung der Rotationsmatrix (Ergebnis in der letzten Zeile)
- Berechnung der Translationswerte (Ergebnis in der letzten Zeile)
- Zahl für die Darstellung mit bin/show

3D-Punktwolkenregistrierung mit Festkomma-Arithmetik

 \bullet Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden \checkmark

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden ✓
 - Festkomma-Arithmetik: SystemC-Library, d.h. feste Anzahl an Vorund Nachkommastellen \checkmark

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden ✓
 - \bullet Festkomma-Arithmetik: SystemC-Library,d.h. feste Anzahl an Vorund Nachkommastellen \checkmark

- Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden √
 - \bullet Festkomma-Arithmetik: SystemC-Library,d.h. feste Anzahl an Vorund Nachkommastellen \checkmark

 - \bullet Punktkorrespondenzen: Brute Force-Methode (doppelter for-loop) \checkmark

- \bullet Der ICP-Algorithmus soll als möglichst kleines, übersichtliches Programm in Festkomma-Arithmetik implementiert werden \checkmark
 - \bullet Festkomma-Arithmetik: SystemC-Library,d.h. feste Anzahl an Vorund Nachkommastellen \checkmark

 - \bullet Punktkorrespondenzen: Brute Force-Methode (doppelter for-loop) \checkmark
- Entwicklerhandbuch ✓
- Hilfe-Anweisungen √

Ausblick

• Erweiterung des ICP-Algorithmus mit anderen Berechnungsmethoden (falls möglich)

Ausblick

- Erweiterung des ICP-Algorithmus mit anderen Berechnungsmethoden (falls möglich)
- Intensive Validierung des Algorithmus mit größeren Datensätzen

Gewonnene Einsichten

- Programmieren in C++ (verzeiht wenig)
- Verwenden von CMake (einarbeitungsintensiv)
- Kollaboratives Arbeiten mit Git(Hub) (praktisch)
- ... auf Linux

Gewonnene Einsichten

- Programmieren in C++ (verzeiht wenig)
- Verwenden von CMake (einarbeitungsintensiv)
- Kollaboratives Arbeiten mit Git(Hub) (praktisch)
- ... auf Linux
- Umgang mit Festkomma-Datentypen (Rundung, oft ungenau)

Gewonnene Einsichten

- Programmieren in C++ (verzeiht wenig)
- Verwenden von CMake (einarbeitungsintensiv)
- Kollaboratives Arbeiten mit Git(Hub) (praktisch)
- ... auf Linux
- Umgang mit Festkomma-Datentypen (Rundung, oft ungenau)
- Gemeinsames Arbeiten an einem Softwareprojekt (Teamarbeit)

Vielen Dank! merci beaucoup!

Zeit für eure Fragen und tiefere Einblicke in den Code ...