武汉大学 2015-2016 学年第一学期期末考试

线性代数 B(A卷答题卡)

								考	生	当	之 -	号				
	姓名		班级													
姓石		<u> </u>		[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
			[1]					[1]								
	错误填涂 특	注注	1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
			考号信息点。 ž 2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
填				[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]	[4]
涂			作解答题:字体工整、笔迹清楚。	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]	[5]
样		事	3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]	[6]
例		项	项 写的答题无效;在草稿纸、试题卷上答题无效。	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]	[7]
			4.保持卡面清洁,不要折叠、不要弄破。	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
				[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]	[9]

一、(8分)设A、P均为3阶矩阵,且 $P^{T}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,若 $P = (\sigma_{1}, \sigma_{2}, \sigma_{3}), Q = (\sigma_{1} + \sigma_{2}, \sigma_{2}, \sigma_{3}),$

求 Q^TAQ .

二、
$$(10 分)$$
 设 $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$,矩阵 X 满足 $AX + I = A^2 + X$, 其中 I 为三阶单位矩阵,求矩阵 X .

三、(10 分)若 3 阶方阵
$$A$$
 与对角矩阵 $B = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ 相似,计算矩阵 $C = (A - \lambda_1 E)(A - \lambda_2 E)(A - \lambda_3 E)$

四、
$$(8\,\%)$$
 设矩阵 $A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$ 相似于对角矩阵 Λ ,求 a .

五、(12 分) 求向量组 α_1 = (1,1,1,4), α_2 = (2,1,3,5), α_3 = (1,-1,3,-2), α_4 = (3,1,5,6) 的一个极大无关组,并把其余的向量用该极大无关组线性表出.

六、 $(10 分)$ 若 2 阶实矩阵 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 的两个特征值都是 λ_0 ,且 $b \neq 0$,证明	$: 矩 C = \begin{bmatrix} b & 0 \\ \lambda_0 - a & 1 \end{bmatrix} $ 满足
$C^{-1}AC = \begin{pmatrix} \lambda_0 & 1 \\ 0 & \lambda_0 \end{pmatrix}.$	

九、(16 分) 对线性方程组 $\begin{cases} x_1 + a_1 x_2 + a_1^2 x_3 = a_1^3, \\ x_1 + a_2 x_2 + a_2^2 x_3 = a_2^3, \\ x_1 + a_3 x_2 + a_3^2 x_3 = a_3^3, \\ x_1 + a_4 x_2 + a_4^2 x_3 = a_4^3. \end{cases}$ (1) 若 a_1 , a_2 , a_3 , a_4 两两不等,问方程组是否有解,为什

么?(2)若 $a_1 = a_3 = b$, $a_2 = a_4 = -b$ ($b \neq 0$),且已知方程的两个解 $\boldsymbol{\xi}_1 = (1,1,-1)^{\mathrm{T}}$, $\boldsymbol{\xi}_2 = (-1,1,1)^{\mathrm{T}}$,试给出方程组的通解.

七、(8分) 若二次型 $f(x_1, x_2, \dots, x_n) = X'AX$ (式中 $X = (x_1, x_2, \dots, x_n)'$), 适合 |A| < 0. 求证: 必存在向量 $\alpha = (a_1, a_2, \dots, a_n)'$,使 $f(a_1, a_2, \dots, a_n) = \alpha' A \alpha < 0$.

十、(10 分)设二次曲面的方程
$$axy + 2xz + 2byz = 1$$
) $a > 0$ 经正交变换 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{Q} \begin{bmatrix} \xi \\ \eta \\ \zeta \end{bmatrix}$, 化成

 $\left|\xi^2 + \eta^2 - 2\zeta^2 = 1, \ \text{求} a, b$ 的值及正交矩阵 \boldsymbol{Q} .

八、 $(8 \, \mathcal{G})$ 若 $n \times r$ 矩阵A的秩为r,其r个列向量为某一齐次线性方程组的一个基础解系,B为r阶可逆方阵,证明AB的r个列向量也是该齐次线性方程组一个基础解系.