

## **United International University**

## School of Science and Engineering

CT-05 Trimester: Fall-2020 Section: B Course Title: Probability and Statistics

Course Code: Stat 205 Marks: 20 Time: 30 Mins

## (Answer all the questions)

- In a certain pollution awareness campaign, one advisor has a survey taken at random among 550 people with 70% of them provided their opinion about the awareness. If the survey secured 265 positive opinions. Find an approximate 85% confidence interval for the fraction p of the people who support the advisor.
- 2. Let  $Y_1 < Y_2 < Y_3 < Y_4$  be the order statistics of four independent observations  $X_1$ ,  $X_2$ ,  $X_3 \& X_4$  each from the distribution with  $pdf f(x) = 3x^2$ ; 0 < x < 1. [8]
  - (i) Find the **pdf** of  $Y_3$ .
  - (ii) Evaluate  $P(Y_3 \ge \frac{2}{3})$ .

where,

$$G_r(y) = \sum_{r=0}^{n} {n \choose r} [F(y)]^r [1 - F(y)]^{n-r}, \quad G_r(y) = \frac{n!}{(n-r)!(r-1)!} [F(y)]^{r-1} [1 - F(y)]^{n-r} f(y)$$

- 3. A company produces mechanical tools whose average lifetime is 25 years and an average variation of 9 years. It is claimed that, in a new process the mean life time [7] can be increased.
  - (i) Design a decision rule for the process at the **0.03** significance level to test **35** tools.
  - (ii) If the estimated average life time for **27** samples is **30**. **5** years, find the **p**-value of the claim of the producer.
  - (iii) If the new process has increased the mean life time to 31.25 years. Find  $\alpha$  and  $\beta$  for the estimated mean 28.75 years for 30 samples.

| z          | 0.00             | 0.01             | 0.02             | 0.03             | 0.04             | 0.05             | 0.06             | 0.07             | 0.08             | 0.09             |
|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 0.0        | 0.5000           | 0.5040           | 0.5080           | 0.5120           | 0.5160           | 0.5199           | 0.5239           | 0.5279           | 0.5319           | 0.5359           |
| 0.1        | 0.5398           | 0.5438           | 0.5478           | 0.5517           | 0.5557           | 0.5596           | 0.5636           | 0.5675           | 0.5714           | 0.5753           |
| 0.2        | 0.5793           | 0.5832           | 0.5871           | 0.5910           | 0.5948           | 0.5987           | 0.6026           | 0.6064           | 0.6103           | 0.6141           |
| 0.3        | 0.6179           | 0.6217           | 0.6255           | 0.6293           | 0.6331           | 0.6368           | 0.6406           | 0.6443           | 0.6480           | 0.6517           |
| 0.4        | 0.6554           | 0.6591           | 0.6628           | 0.6664           | 0.6700           | 0.6736           | 0.6772           | 0.6808           | 0.6844           | 0.6879           |
| 0.5        | 0.6915           | 0.6950           | 0.6985           | 0.7019           | 0.7054           | 0.7088           | 0.7123           | 0.7157           | 0.7190           | 0.7224           |
| 0.6        | 0.7257           | 0.7291           | 0.7324           | 0.7357           | 0.7389           | 0.7422           | 0.7454           | 0.7486           | 0.7517           | 0.7549           |
| 0.7        | 0.7580           | 0.7611           | 0.7642           | 0.7673           | 0.7703           | 0.7734           | 0.7764           | 0.7794           | 0.7823           | 0.7852           |
| 0.8        | 0.7881           | 0.7910           | 0.7939           | 0.7967           | 0.7995           | 0.8023           | 0.8051           | 0.8078           | 0.8106           | 0.8133           |
| 0.9        | 0.8159           | 0.8186           | 0.8212           | 0.8238           | 0.8264           | 0.8289           | 0.8315           | 0.8340           | 0.8365           | 0.8389           |
| 1.0        | 0.8413           | 0.8438           | 0.8461           | 0.8485           | 0.8508           | 0.8531           | 0.8554           | 0.8577           | 0.8599           | 0.8621           |
| 1.1        | 0.8643           | 0.8665           | 0.8686           | 0.8708           | 0.8729           | 0.8749           | 0.8770           | 0.8790           | 0.8810           | 0.8830           |
| 1.2        | 0.8849           | 0.8869           | 0.8888           | 0.8907           | 0.8925           | 0.8944           | 0.8962           | 0.8980           | 0.8997           | 0.9015           |
| 1.3        | 0.9032           | 0.9049           | 0.9066           | 0.9082           | 0.9099           | 0.9115           | 0.9131           | 0.9147           | 0.9162           | 0.9177           |
| 1.4        | 0.9192           | 0.9207           | 0.9222           | 0.9236           | 0.9251           | 0.9265           | 0.9279           | 0.9292           | 0.9306           | 0.9319           |
| 1.5        | 0.9332           | 0.9345           | 0.9357           | 0.9370           | 0.9382           | 0.9394           | 0.9406           | 0.9418           | 0.9429           | 0.9441           |
| 1.6        | 0.9452           | 0.9463           | 0.9474           | 0.9484           | 0.9495           | 0.9505           | 0.9515           | 0.9525           | 0.9535           | 0.9545           |
| 1.7        | 0.9554           | 0.9564           | 0.9573           | 0.9582           | 0.9591           | 0.9599           | 0.9608           | 0.9616           | 0.9625           | 0.9633           |
| 1.8<br>1.9 | 0.9641<br>0.9713 | 0.9649<br>0.9719 | 0.9656<br>0.9726 | 0.9664<br>0.9732 | 0.9671<br>0.9738 | 0.9678<br>0.9744 | 0.9686<br>0.9750 | 0.9693<br>0.9756 | 0.9699<br>0.9761 | 0.9706<br>0.9767 |
|            |                  |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| 2.0        | 0.9772           | 0.9778           | 0.9783           | 0.9788           | 0.9793           | 0.9798           | 0.9803           | 0.9808           | 0.9812           | 0.9817           |
| 2.1        | 0.9821<br>0.9861 | 0.9826<br>0.9864 | 0.9830<br>0.9868 | 0.9834<br>0.9871 | 0.9838<br>0.9875 | 0.9842<br>0.9878 | 0.9846<br>0.9881 | 0.9850<br>0.9884 | 0.9854<br>0.9887 | 0.9857<br>0.9890 |
| 2.3        | 0.9893           | 0.9896           | 0.9898           | 0.9901           | 0.9873           | 0.9906           | 0.9661           | 0.9864           | 0.9967           | 0.9890           |
| 2.4        | 0.9918           | 0.9920           | 0.9922           | 0.9925           | 0.9927           | 0.9929           | 0.9931           | 0.9932           | 0.9934           | 0.9936           |
| 2.5        | 0.9938           | 0.9940           | 0.9941           | 0.9943           | 0.9945           | 0.9946           | 0.9948           | 0.9949           | 0.9951           | 0.9952           |
| 2.6        | 0.9958           | 0.9940           | 0.9941           | 0.9943           | 0.9943           | 0.9940           | 0.9948           | 0.9949           | 0.9951           | 0.9952           |
| 2.7        | 0.9955           | 0.9966           | 0.9967           | 0.9968           | 0.9959           | 0.9970           | 0.9901           | 0.9902           | 0.9973           | 0.9974           |
| 2.8        | 0.9974           | 0.9975           | 0.9976           | 0.9977           | 0.9977           | 0.9978           | 0.9979           | 0.9979           | 0.9980           | 0.9981           |
| 2.9        | 0.9981           | 0.9982           | 0.9982           | 0.9983           | 0.9984           | 0.9984           | 0.9985           | 0.9985           | 0.9986           | 0.9986           |
| 3.0        | 0.9987           | 0.9987           | 0.9987           | 0.9988           | 0.9988           | 0.9989           | 0.9989           | 0.9989           | 0.9990           | 0.9990           |