CSE 392/CS 395T/M 397C: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025 Lecture 9: Countsketch; sketch and solve

Outline

Countsketch

2 Sketch and solve

Types of sketching matrices

Gaussian sketching matrix:

- Performs well. Small sketch size.
- $S \in \mathbb{R}^{m \times n}$ requires generating $m \cdot n$ random i.i.d entries.
- Computing SA takes O(mnd) time.

SHRT: Subsampled Randomized Hadamard Transform

- $S = PHD \in \mathbb{R}^{m \times n}$, fewer random bits.
- Faster to apply. SA in $O(mn \log(d))$ time.
- Sketch size needed is larger.
- A should be dense.
- Issues with parallel and distributed computing.

Faster Embeddings: Countsketch

- Sparse Embeddings: Adaptation of CountSketch from streaming algorithms.
- \bullet **S** is of the form:

$$\begin{bmatrix} 0 & -1 & 0 & 0 & \cdots & 0 \\ +1 & 0 & 0 & +1 & \cdots & 0 \\ 0 & 0 & -1 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & \cdots & -1 \end{bmatrix}$$

- One random ± 1 per column.
- Row A_{i*} of A contributes $\pm A_{i*}$ to one of the rows of SA.

Sparse Embeddings

• Sparse sketching matrix: For $i \in [n]$, pick uniformly and independently: $h_i \in [m]$, $s_i \in \{-1, +1\}$, and define $\mathbf{S} \in \mathbb{R}^{m \times n}$ as:

$$S_{h_i,i} \to s_i \text{ for } i \in [n],$$

and $S_{i,i} \to 0$ otherwise.

ullet s is a sign (Radamacher) vector. The vector $m{h}$ hashes to m "hash buckets". That is,

$$\boldsymbol{S}_{j*} = \sum_{i:h_i = j} s_i \boldsymbol{e}_i^\top,$$

and so

$$[SA]_{j*} = \sum_{i:h_i=j} s_i e_i^{\top} A = \sum_{i:h_i=j} s_i A_{i*}.$$

• Fast sketching: Can compute SA in O(nnz(A)) time.

- If s is a sign (Radamacher) vector, then $\mathbb{E}[(s^{\top}y)^2] = ||y||_2^2$.
- For y = Ax, each row of S:
 (a) collects a subset of entries y_i 's; (b) applies the signs, and (c) adds
- $\mathbb{E}[\|Sy\|_2^2] = \|y\|_2^2$.

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let z = Sy. We have $\mathbb{E}[||z||_2^2] =$

$$Var[\|z\|_{2}^{2}] =$$

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let z = Sy. We have $\mathbb{E}[||z||_2^2] =$

$$\mathrm{Var}[\|\boldsymbol{z}\|_2^2] =$$

$$\mathbb{E}[\|\boldsymbol{z}\|_2^4] =$$

Variance of Countsketch

For $S \in \mathbb{R}^{m \times n}$ a sparse sketching distribution, and $y \in \mathbb{R}^n$ a unit vector,

$$\operatorname{Var}[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \le \frac{3}{m}.$$

Proof: Let z = Sy. We have $\mathbb{E}[||z||_2^2] =$

$$\operatorname{Var}[\|\boldsymbol{z}\|_2^2] =$$

$$\mathbb{E}[\|oldsymbol{z}\|_2^4] =$$

$$\mathbb{E}_{s,h}[z_j^4] =$$

Countsketch Embedding

Countsketch - subspace embedding

For $S \in \mathbb{R}^{m \times n}$ a countsketch matrix and $A \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$\|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2.$$

Countsketch Embedding

Countsketch - subspace embedding

For $\mathbf{S} \in \mathbb{R}^{m \times n}$ a countsketch matrix and $\mathbf{A} \in \mathbb{R}^{n \times d}$, if $m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$, then with probability at least $1 - \delta$:

$$||\mathbf{S}\mathbf{A}\mathbf{x}||_2 = (1 \pm \epsilon)||\mathbf{A}\mathbf{x}||_2.$$

We use the AMM and JL moment result.

We have $Var[\|\boldsymbol{S}\boldsymbol{y}\|_2^2] \leq \frac{K}{m}$.

If $\frac{K}{m} \leq \epsilon^2 \delta$, we know **S** is ϵd -embedding with probability at least $1 - \delta$.

Types of sketching matrices

Sketching matrix	Sketch size m	Cost to sketch SA
JL - i.i.d subGaussians	$m = O\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$	O(mnd)
Fast JL -SRHT	$m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right)$	$O(mn\log(d))$
Countsketch	$m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$	$O(nnz(m{A})$

We have other sparse embeddings where nnz per column is > 1, e..g, OSNAPs, sparse graphs.

 $\text{Can improve } m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right) \text{ with } s = \Theta(\log(1/\delta)) \text{ nonzero entries per column.}$

Further Reading

Countsketch was first introduced by:

• Clarkson, Kenneth L., and David P. Woodruff. "Low-rank approximation and regression in input sparsity time." Journal of the ACM (JACM) 63.6 (2017): 1-45

Above analysis is from:

• Nelson, Jelani, and Huy L. Nguyen. "OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings." 2013 ieee 54th annual symposium on foundations of computer science. IEEE, 2013.

Sketch and solve - least squares regression

Least squares linear regression

Given a data matrix $\mathbf{A} \in \mathbb{R}^{n \times d}$ with n samples $\{\mathbf{a}_i\}_{i=1}^n \in \mathbb{R}^d$ of d-dimensional features, and a column vector $\mathbf{b} \in \mathbb{R}^n$ (targets):

• In the least-squares regression problem, assuming d < n, we solve:

$$oldsymbol{x}^* = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|_2^2.$$

- A linear function and Euclidean- (ℓ_2) norm (squared) loss function.
- The observed targets, $b_i = \boldsymbol{a}^{\top} \boldsymbol{x} + \varepsilon_i$, for i = 1, ..., n and ε_i is noise...

Overdetermined problems

$$oldsymbol{x}^* = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A}oldsymbol{x} - oldsymbol{b}\|_2^2.$$

- We are interested in over-constrained least-squares problems, $n \gg d$.
- Typically, there is no x^* such that $Ax^* = b$.
- Want to find the "best: x^* such that $Ax^* \approx b$.

Exact solution and ϵ -approximation

- The solution is given by the psuedo-inverse $\boldsymbol{x}^* = \boldsymbol{A}^\dagger \boldsymbol{b} = (\boldsymbol{A}^\top \boldsymbol{A})^{-1} \boldsymbol{A}^\top \boldsymbol{b}$.
- In terms of SVD, we have $\boldsymbol{A}^{\dagger} = \boldsymbol{V} \Sigma^{-1} \boldsymbol{U}^{\top}$, and
- QR factorization, we have $\mathbf{A}^{\dagger} = \mathbf{R}^{-1} \mathbf{Q}^{\top}$.

Complexity is $O(nd^2)$, but constant factors differ.

Exact solution and ϵ -approximation

- The solution is given by the psuedo-inverse $x^* = A^{\dagger}b = (A^{\top}A)^{-1}A^{\top}b$.
- In terms of SVD, we have $\boldsymbol{A}^{\dagger} = \boldsymbol{V} \Sigma^{-1} \boldsymbol{U}^{\top}$, and
- QR factorization, we have $\mathbf{A}^{\dagger} = \mathbf{R}^{-1} \mathbf{Q}^{\top}$.

Complexity is $O(nd^2)$, but constant factors differ.

ϵ -approximation

For an error parameter ϵ , compute $\tilde{\boldsymbol{x}}$ such that

$$\|A\tilde{x} - b\|_2 \le (1 + \epsilon) \|Ax^* - b\|_2$$

Sketch and solve

Use Sketching:

- Generate a sketching matrix $S \in \mathbb{R}^{m \times n}$.
- \bullet Compute sketches SA and Sb.
- Solve:

$$ilde{oldsymbol{x}} = \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{S} oldsymbol{A} oldsymbol{x} - oldsymbol{S} oldsymbol{b}\|_2^2.$$

• Typically, $m = \text{poly}(d/\epsilon)$.

Recall: subspace embedding

Subspace embedding

For $\mathbf{A} \in \mathbb{R}^{n \times d}$, a matrix $\mathbf{S} \in \mathbb{R}^{m \times n}$ is a subspace ϵ -embedding for \mathbf{A} if \mathbf{S} is an ϵ -embedding for $span(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^d\}$. I.e., for all $\mathbf{x} \in \mathbb{R}^d$,

$$\|\mathbf{S}\mathbf{A}\mathbf{x}\|_2 = (1 \pm \epsilon)\|\mathbf{A}\mathbf{x}\|_2.$$

Sketching matrix	Sketch size m	Cost to sketch SA
JL - i.i.d subGaussians	$m = O\left(\frac{d\log(1/\delta)}{\epsilon^2}\right)$	O(mnd)
Fast JL -SRHT	$m = O\left(\frac{d\log(d)\log(1/\delta)}{\epsilon^2}\right)$	$O(mn\log(d))$
Countsketch	$m = O\left(\frac{d^2}{\delta \epsilon^2}\right)$	$O(nnz(m{A}))$

Subspace embedding for sketch and solve

Sketch and solve

Suppose $\mathbf{S} \in \mathbb{R}^{m \times n}$ is a subspace ϵ -embedding for $span([\mathbf{A}\ b])$. Let,

$$egin{aligned} oldsymbol{x}^* &= \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{A} oldsymbol{x} - oldsymbol{b}\|_2 \ & ilde{oldsymbol{x}} &= \min_{oldsymbol{x} \in \mathbb{R}^d} \|oldsymbol{S} (oldsymbol{A} oldsymbol{x} - oldsymbol{b})\|_2, \end{aligned}$$

for $\epsilon \leq 1/3$, we have

$$\|A\tilde{x} - b\|_2 \le (1 + 3\epsilon) \|Ax^* - b\|_2$$

Proof:

For
$$oldsymbol{y} = \left[egin{array}{c} oldsymbol{x} \\ -1 \end{array}
ight], oldsymbol{x} \in \mathbb{R}^d,$$

$$\|S(Ax - b)\|_2 =$$

Proof:

For
$$oldsymbol{y} = \left[egin{array}{c} oldsymbol{x} \\ -1 \end{array}
ight], oldsymbol{x} \in \mathbb{R}^d,$$

$$\|S(Ax - b)\|_2 =$$

$$\|\boldsymbol{A}\tilde{\boldsymbol{x}}-\boldsymbol{b}\|_2 \leq$$

Proof:

For
$$\boldsymbol{y} = \begin{bmatrix} \boldsymbol{x} \\ -1 \end{bmatrix}, \boldsymbol{x} \in \mathbb{R}^d$$
,

$$\|S(Ax - b)\|_2 =$$

$$\|\boldsymbol{A}\tilde{\boldsymbol{x}}-\boldsymbol{b}\|_2 \leq$$

and so for
$$\epsilon \le 1/3$$
, $\|A\tilde{x} - b\|_2 \le (1 + 3\epsilon)\|Ax^* - b\|_2$.

Computational cost:

Matlab demo