Intuition Behind Bayesian Structural Time-Series Models

Ivan Marevic

October 27, 2020

Contents

- Why Time-Series?
- Unobserved Components Models
 - UCM General Model Definition
 - State-Space Notation
- Kalman Filter and Smoother
- Spike-and-Slab Prior
- Bayesian Structural Time-Series Model (BSTM)
 - State-Space Definition
 - Graphical Model / Plate Notation
 - Inference and Posterior-Predictive Simulation
 - Impact Evaluation
- 6 Causal Impact in BSTM
- 7 References

What are Time-Series?

- A time-series is a sequence of observations taken sequentially in time
- Goals of time-series modelling:
 - Understand stochastic mechanisms that give rise to the time-series
 - Predict future trajectory of time-series
- Time-series can be univariate or multivariate:

Date	Revenue
03.05.2020	845€
04.05.2020	756€
05.05.2020	545€
06.05.2020	834€
07.05.2020	957€

Date	Revenue	Weather
03.05.2020	845€	sunny
04.05.2020	756€	cloudy
05.05.2020	545€	rainy
06.05.2020	834€	rainy
07.05.2020	957€	sunny

Shampoo Sales Time-Series

Retail Revenue Time-Series

Friends TV Series Votes Time-Series

Temperature Time-Series

Unobserved Components Models

- ullet Time Series = Regression Effects + Trend + Cycles + Seasons + Irregularity-Term
- Each component captures some important feature of the time-series
- Components can have own probabilistic models (but can be modeled deterministically)
- More components are possible depending on the use case
- Traditional time-series model:

$$y_t = T_t + S_t + C_t + I_t$$

T = Trend; S = Seasonal Component; C = Cyclical Component; I = Irregular Component

Unobserved Components Models

Fully specified UC Model:

$$y_t = \mu_t + \gamma_t + \psi_t + r_t + \sum_{i=1}^p \phi_i y_{t-i} + \sum_{j=1}^m \beta_j x_{jt} + \varepsilon_t$$

- y_t : time-series to be modeled
- μ_t : time varying mean (trend component)
- γ_t : seasonal component
- ψ_t : cyclical component
- r_t: autoregressive component
- $\sum_{i=1}^{p} \phi_i y_{t-i}$: momentum of time-series with respect to past timepoints
- $\sum_{i=1}^{m} \beta_i x_{jt}$: additional predictors
- ε_t : irregular component (error term)

UCM Deterministic Example

Considering a traditional UC time-series, we can construct a deterministic example:

$$y_{t} = T_{t} + C_{t} + S_{t} + I_{t}$$

$$= 100 + 4t$$

$$+ 50 * cos(\pi t/10)$$

$$- 50jan - 25feb + 25mar - 25apr - 50may + 50jun$$

$$+ 75jul + 50aug + 5sep - 25oct - 50nov + 20dec$$

$$+ \varepsilon_{t}$$

- jan, feb, ..., dec \Rightarrow 1 if t in respective month, else 0
- $\varepsilon_t \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 0$; $\sigma^2 = 10$

UCM Deterministic Example - Trend

Modeling linear trend (T):

$$T_t = 100 + 4t$$

UCM Deterministic Example - Cyclical Component

Modeling cyclicality (*C*):

$$C_t = 50 * cos(\pi t/10)$$
Cycle (C)

time

UCM Deterministic Example - Seasonal Component

Modeling seasonality (S):

$$S_t = -50$$
jan -25 feb $+25$ mar -25 apr -50 may $+50$ jun $+75$ jul $+50$ aug $+5$ sep -25 oct -50 nov $+20$ dec

Seasonal (S)

UCM Deterministic Example - Irregular Component

Modeling irregularity (1):

$$I_t = \varepsilon_t \sim \mathcal{N}(\mu, \sigma^2); \mu = 0; \sigma^2 = 10$$

UCM Deterministic Example: T + C

$$y_t = T_t + C_t$$

Trend (T) + Cycle (C)

UCM Deterministic Example: T + C + S

$$y_t = T_t + C_t + S_t$$

Trend (T) + Cycle (C) + Seasonality (S)

UCM Deterministic Example: T + C + S + I

$$y_t = T_t + C_t + S_t + I_t$$

 $\label{eq:Trend} \textit{Trend} \; (T) \; + \; \textit{Cycle} \; (C) \; + \; \textit{Seasonality} \; (S) \; + \; \textit{Irregularity} \; (I)$

Local Linear Trend (LLT)

Trend can also be modeled stochastically as a local linear trend (LLT)

$$\mu_t = \mu_{t-1} + \eta_{t-1} + \nu_t$$
 level equation $\eta_t = \eta_{t-1} + \xi_t$ slope equation

- ullet disturbances in the level equation modeled as $u_t \sim \mathcal{N}(0,\,\sigma_
 u^2)$
- ullet disturbances in the slope equation modeled as $\xi_t \sim \mathcal{N}(0,\,\sigma_{arepsilon}^2)$
- ullet μ_t and η_t can be initialized as unknown or random vectors

LLT in vector recursion form:

$$\begin{pmatrix} \mu_t \\ \eta_t \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mu_{t-1} \\ \eta_{t-1} \end{pmatrix} + \begin{pmatrix} \nu_t \\ \xi_t \end{pmatrix}$$

LLT - Special Cases

- Special cases of LLT can be constructed via elimination of specific parts
- Deterministic examples are special cases of LLT

model	description
$\mu_t = \mu_{t-1} + \nu_t$	initial slope and its disturbance $=0$
$\mu_t = \mu_{t-1} + \eta_1 + \nu_t$	slope disturbance $= 0$
$\mu_t = \mu_{t-1} + \eta_{t-1}; \ \eta_t = \eta_{t-1} + \xi_t$	level disturbance $= 0$
$\mu_t = \mu_1 + t\eta_1$	deterministic time trend
$\mu = \mu_1$	degenerate time invariant

Cycles

- Stochastic cycle can be modeled using recursion
- For t=1,2,3,..., and $0<\omega<\pi$; $\psi_t=\gamma\cos(\omega t-\phi),\ \gamma=\sqrt{a^2+b^2},\ \phi=\arctan(b/a)$; and $0\leq\rho\leq 1; \nu_t\sim\mathcal{N}(0,\sigma_\nu^2)$ and $\nu_t^*\sim\mathcal{N}(0,\sigma_\nu^2)$

$$\begin{pmatrix} \psi_t \\ \psi_t^* \end{pmatrix} = \rho \begin{pmatrix} \cos(\omega) & \sin(\omega) \\ -\sin(\omega) & \cos(\omega) \end{pmatrix} \begin{pmatrix} \psi_{t-1} \\ \psi_{t-1}^* \end{pmatrix} + \begin{pmatrix} \nu_t \\ \nu_t^* \end{pmatrix}$$

 \bullet resulting sequence ψ_t is pseudo-cyclical with time-varying amplitude, phase, and period

Seasons

- Seasons are corrections to general trend of the time-series
- Seasonal effects sum to 0 over one full season cycle
- Two popular representations of seasonal patterns:

Stochastic Dummy Type	Stochastic Trigonometric Type
$\sum_{i=0}^{s-1} \gamma_{t-i} = \nu_t, \nu_t \sim \mathcal{N}(0, \sigma_{\nu}^2)$	$\gamma_t = \sum_{j=1}^{[s/2]} \psi_{j,t}; \psi_{j,t}$ has period s/j
list of s numbers that sum to 0	sum of $s/2$ deterministic cycles (harmonics) $\rightarrow s, s/2, s/3,$
variance σ^2 controls disturbance	all cycles have common disturbance variance σ^2
if $\sigma^2=0$, then deterministic sea-	if all $\sigma^2=0$ then deterministic
sonal	seasonal

UCM as State-Space Models

- UCM models can be written in state-space form
- Y_t evolves over time in Markovian fashion
- state space formulation enables the use of the Kalman filter (KF) for computation of predictions:

$$Y_t = Z_t \alpha_t + D_t + \varepsilon_t$$
 observation equation $\alpha_{t+1} = T_t \alpha_t + C_t + R_t \eta_t$ state transition equation

 Z_t is an $N \times m$ design matrix for α_t ; D_t is an $N \times 1$ vector ε_t is an $N \times 1$ error vector with $\varepsilon_t \sim \mathcal{N}(0, H_t)$ T_t is an $m \times m$ transition matrix; C_t is an $m \times 1$ vector R_t is a $m \times g$ matrix; η_t is a $g \times 1$ error vector with $\eta_t \sim \mathcal{N}(0, Q_t)$ system matrices: $Z_t, D_t, H_t, T_t, C_t, R_t$, and Q_t initial state $\to \alpha_0 \sim \mathcal{N}(a_0, P_0)$

UCM as State-Space Models - Simple Example

Example: Autoregressive model (AR) with lag of two (AR(2))

$$y_t = \alpha + \phi_t y_{t-1} + \phi_t y_{t-2} + \eta_t; \eta_t \sim \mathcal{N}(0, \sigma^2)$$

One possible state space transition equation of AR(2):

We define $\alpha_t = (y_t, y_{t-1})'$

$$\begin{pmatrix} y_t \\ y_{t-1} \end{pmatrix} = \begin{pmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y_{t-1} \\ y_{t-2} \end{pmatrix} + \begin{pmatrix} \alpha \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \eta_t$$

Observation equation of AR(2):

$$y_t = (1,0)\alpha_t$$

$$\Rightarrow$$
 system matrices: $T = \begin{pmatrix} \phi_1 & \phi_2 \\ 1 & 0 \end{pmatrix}$; $R = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $C = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$; $Q = \sigma^2$ $Z_t = (1,0)$; $D_t = 0$; $\varepsilon_t = 0$; $H_t = 0$

Kalman Filter

Kalman Smoother

Kalman Filter/Smoother Algorithm

Spike-and-Slab Prior

BSTM: State-Space Definition

BSTM: Plate Notation

BSTM: Graphical Model

BSTM: Inference

BSTM: Impact Evaluation

Causal Impact in BSTM

References

- Beamer Paket http://latex-beamer.sourceforge.net/
- User's Guide to the Beamer
- DANTE e.V. http://www.dante.de