66.70 Estructura del Computador

Punto Flotante

Coma o punto flotante

En muchos cálculos el intervalo de números que se usan es muy grande:

- la masa del electrón, 9 x 10⁻²⁸ gramos
- la masa del Sol, 2 x 10³³ gramos

Representación en punto fijo

Masa del electrón = 9×10^{-28} gramos = M_e Masa del sol = 2×10^{33} gramos = M_s

Punto flotante

número representado = M x base exp

De un total de N bits:

- > 1 bit para el signo de la mantisa
- > x bits para mantisa
- > y bits para el exponente (magnitud y signo)

-> Analizar posibilidades de asignación siguiendo este esquema (conclusiones?)

- Ampliamente adoptado. Se utiliza en prácticamente todos los procesadores y coprocesadores aritméticos actuales
- Ventajas de una estandarización:
 - ✓ Portabilidad entre distintos sistemas
 - ✓ Alienta el desarrollo de programas numéricos sofisticados.

Definiendo la Norma IEEE 754

Algunas cuestiones a establecer:

Qué <u>base</u> utilizar?

> Con qué formato guardar el exponente? (entero con signo)

"Normalizar" ¿porqué?

Valores "especiales"

Definiendo la Norma IEEE 754 ¿Porqué normalizar?

- ✓ La representación binaria es única para un número dado
- ✓ Todos los bits de la mantisa son significativos
- ✓ Es más fácil comparar dos números:
 - 1º) Comparo exponentes 2º) Comparo mantisas

Definiendo la Norma IEEE 754

Representación del exponente

- El exp. es un número entero con signo
- Sistema para su representación
 - Magnitud y Signo?
 - Complemento a 1 ?
 - Complemento a 2 ?
 - "Exceso-N"?

Representación "exceso 7"

Decimal	Two's Complement	Ones' Complement	Signed Magnitude	Exceso 7
-8	1000		/ · · · · · · · · · · · · · · · · · · ·	
-7	1001	1000	1111	0 0 0 0
-6	1010	1001	1110	0 0 0 1
-5	1011	1010	1101	0 0 1 0
-4	1100	1011	1100	0 0 1 1
-3	1101	1100	1011	0 1 0 0
-2	1110	1101	1010	0 1 0 1
-1	1111	1110	1001	0 1 1 0
0	0000	1111 or 0000	1000 or 0000	0 1 1 1
1	0001	0001	0001	1 0 0 0
2	0010	0010	0010	1 0 0 1
3	0011	0011	0011	1 0 1 0
4	0100	0100	0100	1 0 1 1
5	0101	0101	0101	1 1 0 0
6	0110	0110	0110	1 1 0 1
7	0111	0111	0111	1 1 1 0
				1 1 1 1

Representación "exceso 7"

	Exceso 7	Signed Magnitude	Ones' Complement	Two's Complement	Decimal
Valor reservado		/·*_**		1000	-8
en IEEE 754	0 0 0 0	1111	1000	1001	-7
- 6	0 0 0 1	1110	1001	1010	-6
	0 0 1 0	1101	1010	1011	-5
- 4	0 0 1 1	1100	1011	1100	-4
•	0 1 0 0	1011	1100	1101	-3
	0 1 0 1	1010	1101	1110	-2
	0 1 1 0	1001	1110	1111	-1
→ 0	0 1 1 1	1000 or 0000	1111 or 0000	0000	0
	1 0 0 0	0001	0001	0001	1
	1 0 0 1	0010	0010	0010	2
	1 0 1 0	0011	0011	0011	3
	1 0 1 1	0100	0100	0100	4
+5	1 1 0 0	0101	0101	0101	5
	1 1 0 1	0110	0110	0110	6
+7	1 1 1 0	0111	0111	0111	7

en IEEE 754

Definiendo la Norma IEEE 754

... "El exponente se representa en EXCESO-N"

Porqué se eligió este sistema? ...porqué no complemento a 2 u otro ?

Cuál debería ser el valor de N ?

Rango representable en simple precisión

Rango del exponente

8 bits, exceso 127

No admite Exp=0000..0000 ni Exp=1111..1111

Máximo exponente representable (valor positivo): 1111 1110 -> 127 *Mínimo* exponente representable (valor negativo): 0000 0001 -> -126

Rango de la mantisa

23 bits

normalizar => bit implícito => 24 bits => Mantisa = 1.0 + Mantisa guardada => 1 ≤ Mantisa < 2

1 bi	t 8 bits	23 bits	
S	exponente	mantisa	

Rango representable en doble precisión

Rango del exponente

11 bits, exceso 1023

No admite Exp=0000..0000 ni Exp=1111..1111

Máximo exponente representable (valor positivo): 1111 1110 -> 1024 *Mínimo* exponente representable (valor negativo): 0000 0001 -> -1022

Rango de la mantisa

52 bits

normalizar => bit implícito => 53 bits => Mantisa = 1.0 + Mantisa guardada => 1 ≤ Mantisa < 2

1 b	it	11 bits	52 bits	
S		exponente	mantisa	

Rango representable

$$M_{min}$$
 . base $exp_{min} \leq Núm. \leq M_{max}$. base exp_{max}

Resolución de los números en punto flotante

Dada una cadena de 32/64 bits

- Cuántos números diferentes puedo representar?
- En qué rango de valores?
- Cuál es la distancia entre dos valores sucesivos?
- Esa distancia es uniforme?

Números reales vs. Números en punto flotante

Punto fijo vs. Punto Flotante

Valores de referencia en IEEE-754

	Simple precisión	Doble precisión
Bits del signo	1	1
Bits del exponente	8	11
Bits de la mantisa	23	52
Total de bits	32	64
Sistema de exponente	Exceso en 127	Exceso en 1023
Intervalo del exponente	-126 a +127	-1022 a +1023
Número normalizado más pequeño	2-126	2-1022
Número normalizado más grande	aprox. 2 ¹²⁸	aprox. 2 ¹⁰²⁴
Intervalo decimal	aprox. 10 ⁻³⁸ a 10 ³⁸	aprox. 10 ⁻³⁰⁸ a 10 ³⁰⁸

Valores especiales

Cero

Todos los bits en cero. Signo.

Infinito

Exp=todos 1's , Mantisa = todos 0's . Signo.

NaN ("Not a number")

• E=todos 1's , Mantisa <> 0, Signo = no importa

Sumar dos números en punto flotante

- 1) Calcular la diferencia entre los exponentes d=|Exp1 Exp2| => determino cuál es el número mayor y cuál el menor
- 2) Correr <u>d</u> posiciones a la derecha la coma del número menor
- 3) Encolumnar y sumar las mantisas
- 4) El exponente del resultado es el exponente del número mayor
- 5) Normalizar la mantisa del resultado ajustando el exponente si fuese necesario

Punto fijo VS. Punto flotante

- Precisión
- Rango dinámico
- Implementación de operaciones aritméticas
- Velocidad
- Requerimientos de hardware

Bibliografía

Sistemas numéricos-aritmética binaria-punto flotante

- GINZBURG M "Introducción a las Técnicas Digitales con Circuitos Integrados". 8va Ed Bibl. Téc.Sup.1998
- HILL F, PETERSON G. "Teoría de Conmutación y Diseño Lógico", Limusa.1992
- JOHN F. WAKERLY, "Diseño digital: Principios y prácticas", Pearson Educación, 2001
- MURDOCCA M.J., HEURING V. P."Principios de Arquitectura de Computadoras", Prentice Hall, 2002