Onvolkomen spanningswater ofwel semi-spanningswater De derde case betreft de situatie van een watervoerende laag onder een slecht waterdoorlatende (dek)laag en op een ondoorlatende basis.

Figuur 4.7: Onvolkomen spanningswater ofwel semi-spanningswater

In de niet-stationaire toestand wordt voor deze situatie vaak de formule van Hantush-Jacob toegepast:

$$\Delta h_w = \frac{Q_o}{4\pi \cdot k \cdot D} \cdot W\left(u, \frac{r}{\lambda}\right) \quad (Formule \ 4.10)$$

met:

$$u = \frac{S \cdot r^2}{4k \cdot D \cdot t} \ (Formule \ 4.10a)$$

In de stationaire toestand wordt voor deze situatie vaak de formule van De Glee toegepast:

$$\Delta h_w(r) = \frac{Q_o}{2\pi \cdot k \cdot D} \cdot K_o\left(\frac{r}{\lambda}\right) \quad (Formule \ 4.11)$$

waarin.

VV CLULL			
Δh_w	=	verlaging op afstand r	[m]
Q_o	=	onttrekkingsdebiet	[m³/dag]

k		=	gemiddelde horizontale doorlaatfactor	[m/dag]	
D		=	dikte van het watervoerend pakket	[m]	
W	$(u,\frac{r}{\lambda})$	=	logaritmische integraal	[-]	
S		=	elastische bergingscoëfficiënt	[-]	
r		=	afstand tot aan de bemaling	[m]	
t		=	tijd	[dagen]	
K_{α}	$(\frac{r}{\lambda})$	=	gemodificeerde Bessel-functie van de nulde orde	[-]	
λ		=	karakteristieke lengte, leklengte	[m]	
			of spreidingslengte = \sqrt{kDc}	[m]	
С		=	gemiddelde verticale	[dag/m]	
			stromingsweerstand		
ok)	=	(in figuur) ondoorlatende basis	[-]	
sh	ı	=	(in figuur) stijghoogte	[m]	

De verticale stromingscomponent is verwaarloosbaar klein wanneer λ groter is dan drie maal de dikte van de beschouwde doorstroomde watervoerende laag. Wanneer de waarde voor c 'oneindig groot' wordt gekozen, benadert deze situatie de 'volkomen spanningswater' situatie.

De
$$W(u, \frac{r}{\lambda})$$
 en $K_0(\frac{r}{\lambda})$ zijn in [21] weergegeven

in tabellen, maar zitten ook als standaardfunctie in Microsoft Excel. Een rekenvoorbeeld voor de berekening van het debiet en de verlagingen is voor deze case uitgewerkt in Appendix 2.