Week 3.1 Classification and Representation

Classification

Classification:
$$y = 0$$
 or 1

$$h_{\theta}(x) \text{ can be } \ge 1 \text{ or } \le 0$$

Logistic Regression:
$$0 \le h_{\theta}(x) \le 1$$

• Linear Regression is not a good idea

Hypothesis Representation

Sigmoid Function

- we want $1 \leq h_{ heta}(x) \leq 1$
- $g(\theta^T x)$
- where $g(z)=rac{1}{1+e^{-z}}$ (Sigmoid function/Logistic function)

• Our goal: fit parameters θ of our data

Interpretation

• $h_{ heta}(x)$: estimated probability that y=1 on input x

Interpretation of Hypothesis Output

 $h_{\theta}(x)$ = estimated probability that y = 1 on input $x \le 1$

Example: If
$$\underline{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \leftarrow \\ \text{tumorSize} \end{bmatrix} \leftarrow \underline{h_{\theta}(x)} = \underline{0.7}$$

Tell patient that 70% chance of tumor being malignant

$$h_{\Theta}(x) = P(y=1|x; \Theta)$$
 "probability that $y = 1$, given x , parameterized by θ "
$$\Rightarrow P(y=0|x; \theta) + P(y=1|x; \theta) = 1$$

$$P(y=0|x; \theta) = 1 - P(y=1|x; \theta)$$

Decision Boundary

- predict y = 1 when z > 0
- predict y = 0 when z < 0
- Decision Boundary: the separate line

Nonlinear Decision Boundary

Non-linear decision boundaries

Predict "
$$y = 1$$
" if $-1 + x_1^2 + x_2^2 \ge 0$

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_1^2 x_2 + \theta_5 x_1^2 x_2^2 + \theta_6 x_1^3 x_2 + \dots)$$