Avnish Singh jaswal 00113207218 CSE- 1

MACHINE LEARNING LAB PROGRAM

EXPERIMENT-3

Problem Statement

Estimate the accuracy of decision tree classifier on breast cancer dataset using 5 fold cross validation

Algorithm

In a decision tree, for predicting the class of the given dataset, the algorithm starts from the root node of the tree.

Step-1: Begin the tree with the root node, says R, which contains the complete dataset.

This algorithm compares the values of root attribute with the record (real dataset) attribute and, based on the comparison, follows the branch and jumps to the next node.

Step-2: Find the best attribute in the dataset using Attribute Selection Measure (ASM).

For the next node, the algorithm again compares the attribute value with the other sub-nodes and move further.

Step-3: Divide the S into subsets that contains possible values for the best attributes.

Step-4: Generate the decision tree node, which contains the best attribute.

It continues the process until it reaches the leaf node of the tree.

Step-5: Recursively make new decision trees using the subsets of the dataset created in step - 3. Continue this process until a stage is reached where it cannot further classify the nodes and called the final node as a leaf node.

Program Code Snippet

LOADING DATA SET:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean
0	842302	M	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790
3	84348301	M	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520
4	84358402	M	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430
	***	1555	(202)	1000	8552	1000	1722	200	8552	100
564	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890
565	926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302
567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200
568	92751	В	7.76	24.54	47.92	181.0	0,05263	0.04362	0.00000	0.00000

PREPROCESSING:

In [5]: #to read the last end of data
df.tail()

Out[5]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	 te
564	926424	M	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	
565	926682	M	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	
566	926954	M	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	
567	927241	M	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	
568	92751	В	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	

5 rows × 33 columns

4

In [6]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns):

Data	cordinis (corar 32 cordinis		
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry se	569 non-null	float64
21	fractal_dimension_se	569 non-null	float64
22	radius worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst		float64
32	Unnamed: 32	0 non-null	float64
dtype	es: float64(31), int64(1)	, object(1)	

dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB

In [9]: df.corr()

Out[9]:

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	cond points_m
id	1.000000	0.074626	0.099770	0.073159	0.096893	-0.012968	0.000096	0.050080	0.044
radius_mean	0.074828	1.000000	0.323782	0.997855	0.987357	0.170581	0.506124	0.676764	0.822
texture_mean	0.099770	0.323782	1.000000	0.329533	0.321086	-0.023389	0.236702	0.302418	0.293
perimeter_mean	0.073159	0.997855	0.329533	1.000000	0.986507	0.207278	0.556936	0.716136	0.850
area_mean	0.096893	0.987357	0.321086	0.986507	1.000000	0.177028	0.498502	0.685983	0.823
smoothness_mean	-0.012968	0.170581	-0.023389	0.207278	0.177028	1.000000	0.659123	0.521984	0.553
compactness_mean	0.000098	0.508124	0.236702	0.556936	0.498502	0.659123	1.000000	0.883121	0.83
concavity_mean	0.050080	0.676764	0.302418	0.716136	0.685983	0.521984	0.883121	1.000000	0.921
concave points_mean	0.044158	0.822529	0.293464	0.850977	0.823269	0.553695	0.831135	0.921391	1.000
symmetry_mean	-0.022114	0.147741	0.071401	0.183027	0.151293	0.557775	0.602641	0.500667	0.462
fractal_dimension_mean	-0.052511	-0.311631	-0.076437	-0.261477	-0.283110	0.584792	0.565369	0.336783	0.166
radius_se	0.143048	0.679090	0.275869	0.691765	0.732562	0.301467	0.497473	0.631925	0.698
texture_se	-0.007528	-0.097317	0.386358	-0.086761	-0.066280	0.068406	0.046205	0.076218	0.021
perimeter_se	0.137331	0.674172	0.281673	0.693135	0.726628	0.296092	0.548905	0.660391	0.710
area_se	0.177742	0.735864	0.259845	0.744983	0.800086	0.246552	0.455653	0.617427	0.690
smoothness_se	0.098781	-0.222600	0.008614	-0.202694	-0.168777	0.332375	0.135299	0.098564	0.027
compactness_se	0.033961	0.208000	0.191975	0.250744	0.212583	0.318943	0.738722	0.670279	0.490
concavity_se	0.055239	0.194204	0.143293	0.228082	0.207660	0.248396	0.570517	0.691270	0.438
concave points_se	0.078768	0.376169	0.163851	0.407217	0.372320	0.380676	0.642262	0.683260	0.615
symmetry_se	-0.017308	-0.104321	0.009127	-0.081629	-0.072497	0.200774	0.229977	0.178009	0.098
fractal_dimension_se	0.025725	-0.042641	0.054458	-0.005523	-0.019887	0.283607	0.507318	0.449301	0.257
radius_worst	0.082405	0.969539	0.352573	0.969476	0.962746	0.213120	0.535315	0.688236	0.830
texture_worst	0.064720	0.297008	0.912045	0.303038	0.287489	0.036072	0.248133	0.299879	0.292
perimeter_worst	0.079986	0.965137	0.358040	0.970387	0.959120	0.238853	0.590210	0.729565	0.858

```
In [10]: #check for the null value
df.isnull().sum()
Out[10]: id
                                             А
           diagnosis
                                             0
           radius_mean
                                             0
          texture_mean
perimeter_mean
area_mean
                                             0
                                             0
           smoothness mean
                                             0
           compactness_mean
                                             0
           concavity_mean
           concave points_mean symmetry_mean
                                             9
           fractal_dimension_mean
           radius_se
texture se
                                             0
           perimeter_se
           area_se
smoothness_se
                                             0
0
           compactness_se
           concavity_se
                                             0
           concave points_se
                                             0
           symmetry_se
           fractal_dimension_se
           radius_worst
texture_worst
                                             0
           perimeter_worst
area_worst
                                             0
           smoothness_worst
           compactness_worst
          concavity_worst
concave points_worst
                                             0
          symmetry_worst
fractal_dimension_worst
Unnamed: 32
                                             Ю
                                           569
           dtvpe: int64
      In [11]: for i in df.columns:
    print(i)
                      print(df[i].value_counts())
                                                      ,
----************')
                      print('---
                  id
                  883263
                  906564
89122
                  868682
                              1
                  874158
                  914062
918192
                  872113
                  875878
                 Name: id, Length: 569, dtype: int64
                  diagnosis
                  B 357
                       212
                  Name: diagnosis, dtype: int64
                  radius_mean
      In [12]: df['diagnosis'].value_counts()
      Out[12]: B 357
M 212
                  Name: diagnosis, dtype: int64
```

```
In [13]: df= df.drop(["id"], axis = 1)
Out[13]:
                  diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
                                                  10.38
                                                                 122.80
                                                                             1001.0
                                                                                                0.11840
                                                                                                                    0.27760
                                                                                                                                    0.30010
                                                                                                                                                  0.14710
                                   20.57
                                                  17.77
                                                                 132.90
                                                                              1328.0
                                                                                                0.08474
                                                                                                                    0.07864
                                                                                                                                    0.08690
                                                                                                                                                  0.07017
                                                                                                                                    0.19740
            2
                         М
                                    19.69
                                                  21.25
                                                                 130.00
                                                                              1203.0
                                                                                               0.10960
                                                                                                                    0.15990
                                                                                                                                                  0.12790
                                                                  77.58
                                                                                                                                                  0.10520
              3
                         М
                                    11.42
                                                  20.38
                                                                              386.1
                                                                                               0.14250
                                                                                                                    0.28390
                                                                                                                                    0.24140
            4
                         М
                                                                  135.10
                                                                              1297.0
                                                                                                                    0.13280
                                                                                                                                    0.19800
                                                                                                                                                  0.10430
                                   20.29
                                                  14.34
                                                                                               0.10030
                                   21.56
                                                  22.39
                                                                  142.00
                                                                                                                                    0.24390
                                                                                                                                                  0.13890
            565
                                   20.13
                                                  28.25
                                                                  131.20
                                                                              1261.0
                                                                                                0.09780
                                                                                                                    0.10340
                                                                                                                                     0.14400
                                                                                                                                                  0.09791
            566
                         М
                                    16.60
                                                  28.08
                                                                 108.30
                                                                              858.1
                                                                                                0.08455
                                                                                                                    0.10230
                                                                                                                                    0.09251
                                                                                                                                                  0.05302
            567
                         М
                                   20.60
                                                  29.33
                                                                  140.10
                                                                              1265.0
                                                                                                0.11780
                                                                                                                    0.27700
                                                                                                                                    0.35140
                                                                                                                                                  0.15200
                                                                                                                                                                    (
                         В
                                                                                                                                                                    ( =
            568
                                    7.76
                                                  24.54
                                                                  47.92
                                                                              181.0
                                                                                               0.05263
                                                                                                                    0.04362
                                                                                                                                    0.00000
                                                                                                                                                  0.00000
In [14]: df = df.drop(["Unnamed: 32"], axis = 1)
Out[14]:
                                         texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
              0
                                   17.99
                                                 10.38
                                                                122.80
                                                                                                                 0.27760
                                                                                                                                  0.30010
                                                                                                                                               0.14710
                                                                                                                                                                0.24
                                   20.57
                                                                132.90
                                                                            1326.0
                                                                                             0.08474
                                                                                                                 0.07864
                                                                                                                                  0.08690
                                                                                                                                               0.07017
              2
                        М
                                   19.69
                                                 21.25
                                                                130.00
                                                                            1203.0
                                                                                             0.10960
                                                                                                                 0.15990
                                                                                                                                  0.19740
                                                                                                                                               0.12790
                                                                                                                                                                0.20
                                                                 77.58
                                                                             386.1
                                                                                                                 0.28390
                                                                                                                                               0.10520
                                                                                                                                                                 0.25
                                   11.42
                                                 20.38
                                                                                             0.14250
                                                                                                                                  0.24140
                                   20.29
                                                 14.34
                                                                135.10
                                                                            1297.0
                                                                                             0.10030
                                                                                                                 0.13280
                                                                                                                                  0.19800
                                                                                                                                               0.10430
                                                                                                                                                                 0.18
            564
                        М
                                   21.56
                                                 22.39
                                                                142.00
                                                                            1479.0
                                                                                             0.11100
                                                                                                                 0.11590
                                                                                                                                  0.24390
                                                                                                                                               0.13890
                                                                                                                                                                0.17
            565
                        М
                                   20.13
                                                 28.25
                                                                131.20
                                                                            1261.0
                                                                                             0.09780
                                                                                                                 0.10340
                                                                                                                                  0.14400
                                                                                                                                               0.09791
                                                                                                                                                                 0.17
```

VISUALIZATION:

566

568

М

В

569 rows × 31 columns

16.60

20.60

7.76

28.08

108.30

140.10

47.92

858.1

1265.0

181.0

0.08455

0.11780

0.05263

```
In [15]: import matplotlib.pyplot as plt
import seaborn as sns

In [16]: benign, malignant=df['diagnosis'].value_counts()
    print("No of Benign cell", benign)
    print("No of malignant cell", malignant)

No of Benign cell 357
    No of malignant cell 212
```

0.10230

0.27700

0.04362

0.09251

0.35140

0.00000

0.05302

0.15200

0.00000

0.15

0.23

0.15

```
In [19]: plt.figure(figsize=(10,10))
    sns.countplot(df['diagnosis'])
    plt.show()
```

C:\Users\Is_dhillon\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyw ord arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explic it keyword will result in an error or misinterpretation. warnings.warn(


```
In [18]: print("% of Benign cell is ", benign*100/len(df))
print("% of Malignant cell is ", malignant*100/len(df))
```

% of Benign cell is 62.74165202108963 % of Malignant cell is 37.25834797891037

Pairplot helps to plot among the most useful feature

```
Out[20]: <seaborn.axisgrid.PairGrid at 0x276b14608b0>
```

<Figure size 720x720 with 0 Axes>

In [23]: import numpy as np

```
In [24]: #generate the corelation matrix
         #mask for the upper triangle
mask=np.zeros_like(corr, dtype=np.bool)
         mask[np.triu_indices_from(mask)]
         # Set figure size
f, ax = plt.subplots(figsize=(20, 20))
         #define custom colormap
cmap=sns.diverging_palette(220,10, as_cmap=True)
         plt.tight_layout()
```


1.00

0.50

0.25

0.00

-0.25

-0.50

-0.75

radius_mean ·

```
In [26]: M = df[df.diagnosis == "M"]
Out[26]:
                                                                                                                                                            concave points_mean
                  diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
                                     17.99
                                                      10.38
                                                                       122.80
                                                                                                         0.11840
                                                                                                                               0.27760
                                                                                                                                                   0.3001
                                                                                                                                                                  0.14710
                                                                                                                                                                                      0.2419
              0
                          М
                                                                                     1001.0
                          М
                                      20.57
                                                      17.77
                                                                       132.90
                                                                                     1328.0
                                                                                                         0.08474
                                                                                                                               0.07864
                                                                                                                                                    0.0869
                                                                                                                                                                  0.07017
                                                                                                                                                                                      0.1812
                          М
                                      19.69
                                                                                     1203.0
                                                                                                                                                                                      0.2069
              2
                                                      21.25
                                                                       130.00
                                                                                                         0.10960
                                                                                                                               0.15990
                                                                                                                                                    0.1974
                                                                                                                                                                  0.12790
                          М
                                      11.42
                                                                                      386.1
                                                                                                                               0.28390
                                                                                                                                                                  0.10520
                                                                                                                                                                                      0.2597
              3
                                                      20.38
                                                                         77.58
                                                                                                         0.14250
                                                                                                                                                    0.2414
                          М
                                      20.29
                                                      14.34
                                                                       135.10
                                                                                     1297.0
                                                                                                         0.10030
                                                                                                                               0.13280
                                                                                                                                                    0.1980
                                                                                                                                                                  0.10430
                                                                                                                                                                                      0.1809
             5 rows × 31 columns
            4
In [27]: B = df[df.diagnosis == "B"]
B.head()
Out[27]:
                                                                                                                                                             concave
points_mean
                   diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean
             19
                                     13.540
                                                       14.36
                                                                         87.46
                                                                                       566.3
                                                                                                          0.09779
                                                                                                                                 0.08129
                                                                                                                                                    0.06664
                                                                                                                                                                  0.047810
                                                                                                                                                                                       0.188
              20
                                      13.080
                                                       15.71
                                                                         85.63
                                                                                       520.0
                                                                                                          0.10750
                                                                                                                                 0.12700
                                                                                                                                                    0.04568
                                                                                                                                                                  0.031100
                                                                                                                                                                                       0.196
              21
                           В
                                      9.504
                                                       12.44
                                                                         60.34
                                                                                       273.9
                                                                                                          0.10240
                                                                                                                                 0.06492
                                                                                                                                                    0.02956
                                                                                                                                                                  0.020760
                                                                                                                                                                                       0.181
              27
                           В
                                      13.030
                                                       18.42
                                                                         82.61
                                                                                       523.8
                                                                                                          0.08983
                                                                                                                                 0.03788
                                                                                                                                                    0.02582
                                                                                                                                                                  0.029230
                                                                                                                                                                                       0.146
              46
                           В
                                                                                                                                                                  0.005917
                                      8.196
                                                       16.84
                                                                         51.71
                                                                                       201.9
                                                                                                          0.08800
                                                                                                                                 0.05943
                                                                                                                                                    0.01588
                                                                                                                                                                                       0.176
             5 rows × 31 columns
In [28]: plt.title("Malignant vs Benign Tumor")
  plt.xlabel("Radius Mean")
  plt.ylabel("Texture Mean")
  plt.scatter(M.radius_mean, M.texture_mean, color = "red", label = "Malignant", alpha = 0.3)
  plt.scatter(B.radius_mean, B.texture_mean, color = "lime", label = "Benign", alpha = 0.3)
             plt.legend()
             plt.show()
```


ML ALGORITHM IMPLEMENTATION:

```
In [29]: feature_cols = ['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mi
   In [30]: x = df[feature_cols]
            y = df.diagnosis.values
   In [31]: x.head()
   Out[31]:
              radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concavity_mean symmetry_mean fractal_di
            0 17.99 10.38 122.80 1001.0
                                                         0.11840
                                                                              0.27760
                                                                                      0.3001 0.14710
                                                                                                                  0.2419
                   20.57
                              17.77
                                         132.90
                                                  1326.0
                                                               0.08474
                                                                              0.07864
                                                                                           0.0869
                                                                                                     0.07017
                                                                                                                  0.1812
            2
                19.69
                              21.25
                                        130.00 1203.0
                                                                                           0.1974
                                                                                                    0.12790
                                                                                                                  0.2069
                                                               0.10960
                                                                              0.15990
                              20.38
                                          77.58
                                                   386.1
                                                               0.14250
                                                                              0.28390
                                                                                                     0.10520
                                                                                                                  0.2597
                    11.42
                                                                                           0.2414
                20.29
                              14.34
                                     135.10 1297.0
                                                               0.10030
                                                                              0.13280
                                                                                           0.1980
                                                                                                    0.10430
                                                                                                                  0.1809
   In [32]: # Normalization:
            x = (x - np.min(x)) / (np.max(x) - np.min(x))
   Out[32]:
               radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean concavity_mean concavity_mean symmetry_mean fractal_
              0 0.521037 0.022658 0.545989 0.363733 0.593753
                  0.643144
                             0.272574
                                         0.615783 0.501591
                                                                0.289880
                                                                               0.181768
                                                                                           0.203608
                                                                                                      0.348757
                                                                                                                  0.379798
           2 0.801496 0.390280 0.595743 0.449417
                                                             0.514309
                                                                              0.431017
                                                                                          0.482512 0.835888
                                                                                                                  0.509596
                  0.210090
                             0.380839
             3
                                         0.233501 0.102906
                                                                0.811321
                                                                               0.811361
                                                                                           0.585804
                                                                                                     0.522883
                                                                                                                  0.778283
           4 0.629893 0.156578 0.630986 0.489290
                                                               0.430351
                                                                              0.347893
                                                                                          0.463918 0.518390
                                                                                                                 0.378283
            564 0.690000
                            0.428813
                                         0.678668 0.566490
                                                                0.526948
                                                                               0.296055
                                                                                           0.571482
                                                                                                     0.690358
                                                                                                                  0.336364
                                                  0.474019
                                                                0.407782
            565
                  0.622320
                             0.626987
                                         0.604036
                                                                               0.257714
                                                                                            0.337395
                                                                                                      0.486630
                                                                                                                  0.349495
            566 0.455251 0.621238
                                         0.445788 0.303118
                                                                0.288165
                                                                               0.254340
                                                                                           0.216753
                                                                                                     0.263519
                                                                                                                  0.267677
            567
                  0.644564
                             0.883510
                                         0.665538
                                                  0.475718
                                                                0.588338
                                                                               0.790197
                                                                                            0.823338
                                                                                                      0.755487
                                                                                                                  0.675253
            568 0.038889 0.501522
                                       0.028540 0.015907
                                                                               0.074351
                                                                                                     0.000000
                                                                0.000000
                                                                                           0.000000
                                                                                                                  0.266162
           569 rows × 10 columns
           4
In [30]: ## Splitting the Dataset
             from sklearn.model selection import train test split
In [31]: x train, x test, y train, y test = train test_split(x, y, test_size = 0.3)
In [32]: x_train.shape, x_test.shape, y_train.shape, y_test.shape
Out[32]: ((398, 30), (171, 30), (398,), (171,))
In [34]: from sklearn.tree import DecisionTreeClassifier
             from sklearn.model_selection import cross_val_score
In [35]: model1 = DecisionTreeClassifier()
In [36]: model1.fit(x train,y train)
Out[36]: DecisionTreeClassifier()
```

```
In [37]: model1.predict(x_test)
                                     'M',
                                               'B',
                                                          'B',
                                          'B',
                                                                    'B',
                                                                         'B',
                                                    'B',
                           'B', 'M',
Out[37]: array(['B', 'M',
                                                                'B',
                                     'B', 'B',
                                                               'M',
                 'M', 'M', 'B', 'M',
'B', 'B', 'B', 'B',
                                               'M', 'M',
                                                          'B',
                                                                         'M',
                                                                    'B'
                                                                               'B'
                                                                'M',
                                     'B', 'B',
                                               'M', 'M',
                                                          'B',
                                                                    'M',
                                                                          'B'
                                                                               'B'
                     'B',
                                                     'B',
                                                'B',
                                                          'B',
                                                                    'B',
                                'B',
                           'B',
                                      'M', 'M',
                                                                'B'
                                                                          'B'
                                                'B',
                      'B',
                                      'B',
                                'M',
                                                     'M',
                                                                'B',
                           'M',
                                           'B',
                                                          'B',
                                                                    'M',
                                                                          'B'
                      'M',
                           'M',
                                     'B',
                                                'M',
                                                          'M',
                                                               'M',
                                                                     'B',
                                'B',
                                           'M',
                                                     'M',
                                                                          'M',
                                                'B',
                      'M',
                                          'B',
                                                          'B',
                                'B',
                                     'M',
                                                                     'B',
                           'M',
                                                     'B',
                                                                'B',
                      'B',
                           'B',
                                     'B',
                                          'B',
                                'M',
                                                     'B',
                                                          'M',
                                                                    'M',
                                                'B'
                                                     'B',
                                          'B',
                                                                         'B',
                           'B', 'M',
                 'B', 'B',
                                                'B'
                                                               'M',
                                     'B'
                                                          "M"
                                                                     'M'
                                                    'B',
                     'M', 'M', 'B',
                                     'B', 'M',
                                                               'M',
                                               'B'
                                                                          'B'
                                                          'B'
                                                                    'B'
                                                               'B',
                 'M', 'B', 'M', 'M', 'B', 'M', 'B', 'B',
                                                                         'M',
                                                          'B',
                                                                    'B'
                                                                               'B'
                     'M',
                 'B', 'B'], dtype=object)
```

FINAL RESULT:

```
In [39]: cross_val_score(model1, x, y, cv=5)
Out[39]: array([0.9122807 , 0.9122807 , 0.92105263, 0.94736842, 0.90265487])
In [ ]:
```

Github Link

https://github.com/avnish9898/MI-Experiment/blob/main/exp3.ipynb