Oznake

- $\mathbb{N} = \{0, 1, ...\}$ množica naravnih števil
- $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ množica celih števil
- $[n] = \{1, ..., n\}$
- $Y^X = \{f: X \rightarrow Y\}$ množica vseh preslikav iz X v Y
- $2^X = P(X) = \{A \subseteq X\}$ množica vseh podmnožic množice X
- $\delta_{i j} = \begin{cases} 1; & j = i \\ 0; & j \neq i \end{cases}$ Kroneckerjeva delta

Lastnosti funkcji

 Injektivnost (različna elementa se vedno slikata v različno sliko)

$$\forall x, x' \in X : x \neq x' \Rightarrow f(x) \neq f(x')$$
$$f(x) = f(x') \Rightarrow x = x'$$
$$\exists f : X \to Y \text{ injekcija} \Rightarrow |X| \le |Y|$$

• Surjektivnost (vsak element Z_f je slika vsaj enega elementa D_f)

$$\forall y \in Y \ \exists x \in X : y = f(x)$$

$$\exists f : X \to Y \ \text{surjekcija} \Rightarrow |X| > |Y|$$

• Bijektivnost (injekcija in surjekcija)

$$\forall y \in Y \; \nexists x \in X : y = f(x)$$

$$\exists f : X \to Y \text{ bijekcija} \Rightarrow |X| = |Y|$$

Dirichletovo načelo

Če n kroglic razporedimo v k škatel in je n > k, bosta v vsaj eni škatli vsaj dve kroglici.

$$\exists f: X \to Y \text{ injekcija} \Rightarrow |X| \leq |Y|$$

$$|X| > |Y| \Rightarrow \nexists \text{injekcija} \ f: X \to Y$$

Posplošeno Dirichletovo načelo

Če n kroglic razporedimo v k škatel in je $n > r \cdot k$, bo v vsaj eni škatli vsaj r+1 kroglic.

Načelo vsote

$$A \cap B = \emptyset \Rightarrow |A \cup B| = |A| + |B|$$

Načelo produkta

$$|A \times B| = |A| \cdot |B|$$

Asimptotična enakost

$$a_n \sim b_n \Leftrightarrow \lim_{n \to \infty} \frac{a_n}{b_n} = 1$$

Eulerjeva funkcija

$$\begin{split} \varphi(n) &= |\{k \in [n] : D(n,k) = 1\}| \\ &= \text{ \sharpt. proti n tujih $\check{$}$ $\check{$}$ tevil, ki so $\le n$} \\ \varphi(p) &= p - 1 \qquad p \in \mathbb{P} \\ \varphi(p^k) &= p^k - p^{k-1} = p^k (1 - \frac{1}{p}) \\ \sum_{1 \le p} \varphi(d) &= n \end{split}$$

Funkcije in urejene izbire

N in Ksta množici, kjer je n=|N| in $k=|K|. \ K^N$ je množica vseh funkcij, ki slikajo iz NvK.

Variacije s ponavljanjem

Število poljubnih funkcij, ki slikajo iz $N \vee K$ je k^n .

Variacije brez ponavljanja

Število injektivnih funkcij, ki slikajo iz N v K je $n^{\underline{k}} = \frac{k!}{(k-n!)}$.

Padajoča potenca

$$k^{\underline{n}} = (k)_n = k \cdot (k-1) \cdot (k-2) \cdot \dots \cdot (k-n+1) = \frac{k!}{(k-n)!}$$

Naraščujoča potenca

$$k^{\overline{n}} = (k)^n = k \cdot (k+1) \cdot (k+2) \cdot \dots \cdot (k+n-1) = \frac{(k+n-1)!}{(k-1)!}$$

Stirlingova formula

$$n! \sim \sqrt{2\pi n} (\frac{n}{e})^n$$

Funkcija gama

Funkcija gama je posplošitev fakultete.

$$x > 0$$
 $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ $\Gamma(n+1) = n!$ $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

Podmnožice in načrti

Binomski koeficient

Za nožico N in število k je binomski koeficient množica vseh podmnožic množice N moči k:

$$\binom{N}{k} = \{ A \subseteq N : |A| = k \}$$

Za $n, k \in \mathbb{N}$ je binomski koeficient:

$$\binom{n}{k} = \left| \binom{[n]}{k} \right|$$

Za binomski koeficient veljajo naslednje enaksti:

$$\binom{n}{0} = 1 \qquad \qquad \binom{n}{1} = n \qquad \qquad \binom{n}{n} = 1$$

$$\binom{n}{k} = 0 \quad \text{za } k > n \qquad \qquad \binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k!} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n!}{k!(n-k)!}$$

Obstaja tudi rekurzivna zveza

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Binomski izrek

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Izbor

Imamo n optevilčenih kroglic. Na koliko načinov lahko izberemo k kroglic?

	s $ponavljanjem$	brez ponavljanja
variacije vrstni red je pomemben	n^k	$n^{\underline{k}}$
kombinacije vrstni red ni pomemben	$\binom{n+k-1}{k}$	$\binom{n}{k}$

Kompozicije

Kompozicija števila n je l-terica števil $\lambda_i,$ katerih vsota je n

$$\lambda = (\lambda_1, ..., \lambda_l); \qquad \lambda_i \in \mathbb{Z}, \ \lambda_i > 0$$

$$\begin{array}{ccccc} \lambda_1, \dots, \lambda_l & & \dots & & \text{\"eleni kompozicije} \\ l(\lambda) = l & & \dots & & \text{dol\~zina kompozicije} \\ |\lambda| = \lambda_1 + \dots + \lambda_l & \dots & & \text{velikost kompozicije} \end{array}$$

Število n ima 2^{n-1} kompozicij in $\binom{n-1}{k-1} = \binom{n-1}{n-k}$ kompozicij sk členi.

Šibke kompozicije

Šibke kompozicije se od navadnih razlikujejo po tem, da lahko vsebujejo tudi 0.

$$\lambda=(\lambda_1,...,\lambda_l); \qquad \lambda_i\in\mathbb{Z},\ \lambda_i\geq 0$$

Število n ima ∞ šibkih kompozicij in $\binom{n+k-1}{n}=\binom{n+k-1}{k-1}$ šibkih kompozicij sk členi.

Načelo vključitev in izključitev

$$|A \cup B| = |A| + |B| - |A \cap B|$$

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| -$$

$$- |B \cap C| + |A \cap B \cap C|$$

 $|A_1 \cup ... \cup A_n| =$

$$=\sum_{i=1}^n (-1)^{i-1} \sum_{1\leq j_1\leq \ldots \leq j_i \leq n} |A_{j_1}\cap A_{j_2}\cap \ldots \cap A_{j_i}|$$

$$\begin{split} \left| \bigcup_{i=1}^{n} A_i \right| &= \sum_{\emptyset \neq S \subseteq [n]} (-1)^{|S|-1} \left| A_S \right| \; ; \quad A_S = \bigcap_{i \in S} A_i \\ \left| \bigcap_{i=1}^{n} A_i^C \right| &= \sum_{S \subseteq [n]} (-1)^{|S|} \left| A_S \right| \end{split}$$

Načrt

 $\mathcal{B} = \{B_1, B_2, ..., B_b\}$ je načrt s parametri (v, k, λ) , če velja:

- $B_1, ..., B_b \subseteq X$
- |X| = v
- $|B_1| = \dots = |B_b| = k$
- Za $\forall i \in X$ je $i \in B_i$ za λ različnih j-jev

Načrt lahko prikažemo s tabelo kljukic v kateri stolpci predstavljajo bloke vrstice pa elemente množice X.

$$x \in X \qquad \begin{cases} B \in \mathcal{B} \\ \sqrt{x} ; x \in B \\ 0; x \notin B \end{cases}$$

V vsakem stolpcu je k kljukic. V vsaki vrstici je λ kljukic.

$$b \cdot k = v \cdot \lambda \Rightarrow k \mid v \cdot \lambda$$

$$b \le \binom{v}{k} \qquad \frac{v \cdot \lambda}{k} \le \binom{v}{k}$$

$$\lambda \le \frac{k}{v} \frac{v!}{k!(v-k)!} = \frac{(v-1)!}{(k-1)!(v-k)!} = \binom{v-1}{k-1}$$

Načrt s pareametri (v,K,λ) obstaja «

$$k \mid v \cdot \lambda$$
, $\lambda \leq \binom{v-1}{b-1}$

t-načrti

 \mathcal{B} je t-načrt s parametri (v, k, λ_t) , če

- $B_i \subseteq X$
- \bullet |X| = v
- $|B_i| = k$
- $\forall S \subseteq X, |S| = t$ velja $S \subseteq B_i$ za natanko λ_t indeksov i.

Če je $\mathcal B$ t-načrt s parametri $(v,k,\lambda_t),$ je tudi (t-1)-načrt s parametri (v,k,λ_{t-1}) kjer je

$$\lambda_{t-1} = \lambda_t \cdot \frac{v-t+1}{t-t+1}$$

Če je $\mathcal B$ t-načrt s parametri (v,K,λ_t) , potem je $\mathcal B$ tudi s-načrt s parametri (v,K,λ_s) kjre je $1\leq s\leq t$ in

$$\lambda_s = \lambda_t \cdot \frac{v - t + 1}{k - t + 1} \cdot \frac{v - t + 2}{k - t + 2} \cdot \dots \cdot \frac{v - s}{k - s}$$

Permutacije, razdelitve in razčlenitve

Stirlingova števila 1. vrste

Permutacijo lahko zapišemo kot produkt disjunktnih ciklov

c(n, k) . . . število premutacij v S_n s k cikli

$$c(n,n) = 1$$
 $c(n,n-1) = \binom{n}{2}$ $c(n,1) = (n-1)!$ $c(n,0) = \delta_n$

Za Stirlingova števila 1. vrste ni enostavne formule imamo pa rekurzivno zvezo:

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k)$$

Vseh premutacij v S_n je

$$\sum_{k} c(n, k) = n!$$

Izrek:

$$\sum_{n} c(n,k)x^{k} = x^{\overline{n}}$$

Stirlingova števila 2. vrste

 $\mathcal{B}=B_1,...,B_k$ je razdelitev (razbitje, praticija) množice X,če velja:

- $B_i \neq \emptyset$
- $B_i \cap B_i = \emptyset$
- $\bullet \mid \bigcup_{i=1}^{k} B_i = X$

S(n,k) ... število razdelitev [n] s k bloki.

$$S(n,n) = 1$$
 $S(n,n-1) = \binom{n}{2}$ $S(n,1) = 1$ $S(n,0) = \delta_{n,0}$

$$S(n,k) = 0$$
 za $k > n$ ali $k < 0$

Število surjekcij iz [n] v [k] je enako k!S(n,k). Po načelu vključitev in izključitev je število surjekcij iz [n] v [k]

$$\sum_{k=0}^{k} (-1)^{k-j} \binom{k}{j} j^n$$

Torej je

$$S(n,k) = \frac{\sum_{j=0}^{n} (-1)^{k-j} \binom{k}{j} j^n}{n!}$$

Za Stirlingova števila 2. vrste velja tudi rekurzivna zveza:

$$S(n,k) = S(n-1,k-1) + k S(n-1,k)$$

Izrek:

$$\sum_{i} S(n,k) x^{\underline{k}} = x^n$$

S(n,k)je enako številu ekvivalenčnih relacij zkekvivalenčnimi razredi na $\lceil n \rceil$

Bellova števila

B(n) . . . število vseh razdelitve [n]

$$B(n) = \sum_{i} S(n, k)$$

Rekurzivna zveza:

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$$

B(n) je enako številu ekvivalenčnih relacij na [n]

Lahova števila

L(n,k) ... število razdelitev [n] na k med seboj linearno urejenih blokov Rekurzivna zveza:

$$L(n,k) = L(n-1,k-1) + (n-1+k)L(n-1,k)$$

Izrek

$$\sum_{k} L(n,k) x^{\underline{k}} = x^{\overline{n}}$$

Formula za Lahova števila:

$$L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}$$

Multinomski koeficient

$$\binom{n}{n_1, \dots, n_k} = \frac{n!}{n_1! \cdot \dots \cdot n_k!}$$

Multinomski izrek

$$(x_1 + \ldots + x_k)^n = \underbrace{\sum_{\substack{(n_1, \ldots, n_k) \\ \text{š. komp. } n}} \binom{n}{n_1, \ldots, n_k} x_1^{n_1} \ldots x_k^{n_k}$$

Razčlenitev

 $\lambda = (\lambda_1, ..., \lambda_l), \ \lambda_1 \geq ... \geq \lambda_l > 0, \ \lambda_i \in \mathbb{N}$ je razčlenitev števila $n = \lambda_1 + ... \lambda_l$

- $\lambda_1, ... m \lambda_l$ so členi
- $\lambda_1 + ... + \lambda_l = |\lambda|$ je velikost λ
- $l = l(\lambda)$ dolžina

Razčlenitev lahko grafično predstavimo z Ferrersovim diagramom: v i. vrstico narišemo λ_i pikic.

Konjugirano razčlenitev λ' ali λ^C dobimo tako, da diagram transponiramo.

Naprimer 433111' = 6331

$$\lambda_i' = |\{j : \lambda_i > i\}| = \max\{j : \lambda_i > i\}$$

$$|\lambda'| = |\lambda|$$
 $l(\lambda') = \lambda_1$ $\lambda'_1 = l(\lambda)$ $\lambda'' = \lambda$

p(n) . . . število razčlenitev n

 $p_k(n)$... število razčlenitev $n \le k$ členi

 $\overline{p_k}(n)$. . . število razčlenitev n z največ k členi

Rekurzivne zveze:

$$p_k(n) = \overline{p_n}(n-k)$$

$$p_k(n) = p_{n-1}(n-1) + p_k(n-k)$$

$$\overline{p_k}(n) = p_k(n) + \overline{p_{k-1}}(n) = \overline{p_{k-1}}(n) + \overline{p_k}(n-k)$$

Euleriev petkotniški izrek

$$p(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \left(p\left(n - \frac{k(3k-1)}{2}\right) + p\left(n - \frac{k(3k+1)}{2}\right) \right)$$

Dvanajstera pot

Imamo n kroglic in k škatel. Na koliko načinov lahko damo kroglice v škatle. To je analogija za preslikave.

•	Ш	vse	injekcije	surjekcije
L	L	k^n	k <u>n</u>	k! S(n, k)
N	L	$\binom{n+k-1}{k-1}$	$\binom{k}{n}$	$\binom{n-1}{k-1}$
L	N	$\sum_{i=0}^k S(n,i)$	$\begin{cases} 1; & k \ge n \\ 0; & k < n \end{cases}$	S(n,k)
N	N	$\overline{p_k}(n)$	$\begin{cases} 1; & k \ge n \\ 0; & k < n \end{cases}$	$p_k(n)$

Rodovne funkcije

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q} \qquad \sum_{n=0}^{b} q^n = \frac{1-q^{b+1}}{1-q}$$

$$\sum_{n=a}^{\infty} q^n = \frac{q^a}{1-q} \qquad \sum_{n=a}^{b} q^n = \frac{q^a - q^{b+1}}{1-q}$$

 $a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$ $\frac{a_0 + \dots + a_{k-1} x^{k-1}}{1 - x^k} = a_0 + \dots + a_{k-1} x^{k-1} + a_0^k + \dots + a_{k-1} x^{2k-1} + \dots$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^{n} \binom{n+k-1}{k} x^k$$

$$B_{\lambda}(x) = \sum_{n} {\lambda \choose n} x^{n} = (1+x)^{\lambda}; \qquad {\lambda \choose n} = \frac{\lambda^{\underline{n}}}{n!}$$

Rekurzivne enačbe

$$c + bx + ax^{2} = c(1 - y_{1}x)(1 - y_{2}x)$$

$$y_{1,2} = \frac{1}{x_{1,2}} = \frac{2a}{-b \pm \sqrt{b^2 - 4ac}} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$$

Metoda prekrivanja

$$\frac{q(x)}{(x-a_1)...(x-a_k)} = \frac{A_1}{x-a_1}...\frac{A_k}{x-a_k}$$

pomnožimo z $(x - a_i)$ in vstavimo $x \leftarrow a_i$

Hornerjev algoritem

$$a_n x^n + \ldots + a_0 = 0$$

- možne cele ničle: ±delitelii ao
- možne racionalne ničle: $\pm \frac{\text{delitelji } a_0}{\text{delitelji } a_n} = k$

Reševanje rekurzivne enačbe

$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_0 a_{n-d} = q(n) \lambda^n$$

• Rešimo homogeni del $(q(n)\lambda^n = 0)$

$$c_d \lambda^d + c_{d-1} \lambda^{d-1} + \dots + c_0 \quad \dots \; karakteristični \; pl.$$

$$\lambda_1, ..., \lambda_k$$
 ... ničle polinoma

$$\alpha_1, ..., \alpha_k$$
 ... večkratnosti ničel k

$$a_n^{\text{homo}} = \sum_{i=1}^k p_i(n) \lambda_i^n$$

 $p_i(n)$... polinom z neznanimi koeficienti $deg(p_i) < \alpha_i$

Izračunamo partikularni del

(če je enačba homogena to točko izpustimo)

$$a_n^{\text{part}} = r(n)n^a \lambda^n$$

r(n) ... polinom z neznanimi koeficienti

$$a = \begin{cases} 0; & \lambda \text{ ni ničla karakterističnega pl.} \\ \text{večkratnost } \lambda; & \lambda \text{ je ničla} \end{cases}$$

 a_{-}^{part} vstavimo v originalno enačbo namesto a_n , združimo po n in izračunamo neznane keoficiente polinoma r(n)

• Združimo homogeni in partikularni del

$$a_n = a_n^{\text{homo}} + a_n^{\text{part}}$$

 a_n enačimo z podanimi začetnimi členi $a_0,...,a_{d-1}$ in izračunamo neznane koeficiente polinomov $p_i(n)$.

Catalanova števila

Catalanova števila štejejo:

- št. postavitev oklepajev v izrazu $x \circ x \circ ... \circ x$ z $n \circ ...$
- št. binarnih dreves
- \bullet triangulacije pravilnega n+2 kotnika

$$C_n = \frac{1}{n+1} \binom{2n}{n}; \qquad n \ge 0$$

$$C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5$$

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k}$$

$$C_n = \sum_{k=0}^{n-1} C_k C_{n-k-1}$$

Polveva teorija

Orbita elementa x

$$Gx = \{gx : g \in G\}$$

 $x \in X$, X je množica elementov. G je grupa (permutacij) ki deluje na X.

Stabilizator elementa x

$$G_x = \{g \in G: gx = x\}$$

Izrek o orbiti in stabilizatorju

$$|G| = |G_x| \cdot |Gx|$$

Ciklični indeks grupe

 $g \in G$: α_i ... št. ciklov dolžine i

$$Z_G(t_1, ..., t_n) = \frac{1}{|G|} \sum_{g \in G} t_1^{\alpha_1(g)} \cdot ... \cdot t_n^{\alpha_n(g)}$$

Burnsidova lema

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X_g|$$

 $X_{q} = \{x \in X : gx = x\} \dots$ množica negibnih točk

Naj bo X množica točk (npr. v grafu), G grupa (permutacij) ki deljue na X.

Naj bo K množica barvanj točk iz X z k barvami. Število različnih barvanj je:

$$|K/G| = \frac{1}{|G|} \sum_{g \in G} |K_g|$$

 $|K_a|$... št. negibnih točk (barvanj, ki jih g ne spremeni) Če ni drugih pogojev, je $|K_q| = k^{\alpha(g)}$, kjer je $\alpha(q)$ št. ciklov v q.

Vsi elementi v ciklu morejo biti iste barve.

Ciklični indeks in barvanje

Število barvanj (s \boldsymbol{k} barvami) množice \boldsymbol{X} na katero deluje grupa G je

$$Z_G(k,...,k)$$

Če imamo določeno število posamezne barve m_1, \dots, m_k je število barvanj koeficient pri:

 $[u_1^{m_1}...u_k^{m_k}]Z_G(u_1+...+u_k,u_1^2+...+u_k^2,...,u_1^n+...+u_k^n)$ Naj bo G dvodelene graf, $V=X\cup Y$

Teorija delno urejenih množic

(P, <) je delno urejena množica če velja:

- refleksivnost: x < x
- antisimetričnost: $x \le y \land y \le x \Rightarrow x = y$
- tranzitivnost: $x \le y \land y \le z \Rightarrow x \le z$
- $x < y \Leftrightarrow x \le y \land x \ne y$
- $x \lessdot y \Leftrightarrow x \lessdot y \land \nexists z : x \lessdot z \lessdot y$
- xje največji element $\Leftrightarrow \forall y \in P: y \leq x$
- x je maksimalen element $\Leftrightarrow \forall y \in P : x \not< y$

Hasseiev diagram (P, <)

$$graf(V, E), V = P$$

$$x \sim y \Leftrightarrow x \lessdot y$$
ali $y \lessdot x$

Ponavadi večje elemente pišemo višje

Izomorfnost delno urejenih množic

Delno urejeni množici P in Q sta izomorfni (oznaka: \approx), če obstaja preslikava $\varphi: P \to Q$ za katero velja:

- bijektivnost
- $x \leq_P y \Leftrightarrow \varphi(x) \leq_O \varphi(y)$

Kartezični produkt

$$\begin{array}{l} P\times Q = \{(x,y): x\in P, y\in Q\} \\ (x,y)\leq (x',y') \Leftrightarrow x\leq_P x'\wedge y\leq_Q y' \\ (P\times Q,\leq) \text{ je delno urejena množica} \end{array}$$

Veriga v DUM (P, \leq) je množica $C \subseteq P$ za katero velja:

$$\forall x, y \in C : x \leq y \lor y \leq x$$

Vsaka dva elemanta iz C sta primerljiva Višina DUM je dolžina najdaljše verige.

Antiveriga

Antiveriga v DUM (P, \leq) je množica $A \subseteq P$ za katero

$$\forall x, y \in A : (x \nleq y \land y \nleq x) \lor x = y$$

Vsaka dva elemanta iz A sta neprimerljiva Širina DUM je dolžina najdaljše antiverige.

Minskyjev izrek

dolžina najdaljše verige = najmanjše št. antiverig, s katerimi lahko pokrijemo P

Dilworhow izrek

dolžina najdaljiše antiverige = najmanjše št. verig s katerim lahko pokrijemo P

Sperneriev izrek

Širina
$$B_n$$
 je $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$

 $B_n = (2^{[n]}, \subset)$ Hassejev diagram B_n je hiperkocka Q_n

Hallov izrek

G = (V, E) graf

- $M \subseteq E$ je **prirejanje**, če velja $\forall e, f \in M : e \cap f = \emptyset$ (Če povezave M pobarvamo rdeče, nobeno vozljišče nima več kot eno rdečo povezavo)
- M je popolno prirejanje, če

 $\forall v \in V \exists e \in M : v \in e$ (Vsako vozlišče ima natanko eno rdečo povezavo)

- \bullet M je popolno prirejanje iz X v Y, če je prirejanje in $\forall x \in X : \exists e \in M : x \in e$
- če obstaja popolno prirejanje iz $X \vee Y$, je |X| < |Y|

Popolno prirejanje iz X v Y obstaja \Leftrightarrow

$$\forall A \subset X : |A| < |N(A)|$$

Če je G biregularen graf, obstaja popolno prirejanje iz Xv Y ali pa iz Y v X.