Privacy-Preserving Twitter Browsing through Obfuscation

Panagiotis Papadopoulos

Master Thesis Presentation

University of Crete
School of Sciences and Engineering
Computer Science Department

Microblogging Services

A popular way for information sharing and communication. Users are able to have timely access to all information available from various providers.

Publish-Subscribe Model

- Information providers (channels)
 - ✓ politicians
 - ✓ news agencies or news reporters
 - √ hospitals or doctors
 - ✓ activists
 - ✓ artists
 - √ religious organizations
 - √other communities
- Users subscribe to (or follow) channels
 - > In this way they receive **interesting** information in a timely manner

Publish-Subscribe Model (example)

channel subscription process

Channel 1

Channel 2

Publish-Subscribe Model (example)

information delivery process

User's following

User's timeline

What about users' privacy?

- The microblogging service knows a user's interests based on the user's channel subscriptions
 - Political preferences (e.g., Barack Obama)
 - Health issues (e.g., cancer)
- Detailed user profiling
 - Privacy-sensitive channels
 - Can be used for many purposes
 - Beyond the control of the users

Threat Model

- An "honest but curious" microblogging service
 - > capable of passively gain knowledge about users' interests by monitoring the channels they follow.
 - > knowledge that can be given/sold to third parties e.g. advertisers
- Users that need access to timely information and they are able to follow individual channels.
- A channel can be the account of a physical person, a corporation, a politician's office, and so on.

HOW CAN WE PROTECT USERS' PRIVACY?

Existing approaches:

1. No login

- limited information available to non-logged in users.
- Correlation of served content + IP address.

2. Pseudonym or fake account

➤ IP address, third-party tracking cookies, browser fingerprints can reveal user's identity

3. Anonymization service (e.g., Tor)

>Logging into the service, possibility of Tor nodes blocking

4. Tor + Fake account

Cookies and fingerprints gathered through anonymous and eponymous browsing sessions

5. Fake account + Tor + VM per browsing session

> Too complex for ordinary users and mobile devices

But...

How can we hide users' interests in a world where it will be practically impossible to hide one's real identity?

Our thesis is:

users' interests can be protected using obfuscation

k-subscription

For each *privacy-sensitive* channel C_1 a user *really* wants to follow with k-subscription, the user will also *randomly* follow k - 1 additional sensitive channels acting as *noise*:

 $C_1, C_2, C_3, ..., C_k$ (where $C_2, C_3, ..., C_k$ are noise channels)

This way:

- The service cannot identify a user's actual choices
- Hide the choices of other users as well
 - √The service cannot identify the users that are actually interested in C₁

<u>Note:</u> All channels C_1 , C_2 , C_3 , ..., C_k belong to the <u>same</u> set **S** of privacy-sensitive channels

k-subscription in action

Obfuscation algorithms

1. Uniform sampling

Randomly select every channel in S as noise with same probability

2. Proportional sampling

Randomly select every channel in S as noise with probability proportional to its popularity

Multiple channels

Following a set of semantically-related channels. Can be easily identified by the service

>Just choose proper **k** so that there are *other* users that select the *same* set as noise

Implementation

- Browser extension for Google Chrome browser
- Using Twitter as case study

Remove the effect of noise (1/2)

What the microblogging service sees:

What the user sees:

Only real channels

Remove the effect of noise (2/2)

What the microblogging service sees:

What the user sees:

Disclosure Probability P_C

The probability that a user following channel **C** is actually interested in **C**

Depends on

- channel's popularity p_c
 - > (e.g number of followers)
- size of set S (|S|)
 - Publicly released
- obfuscation level k
 - Can be inferred => a user follows k channels in short period

The k parameter

Fine-tune the **k** parameter to control the preferable *privacy* level and network overhead

WHAT IS THE RIGHT K VALUE?

Choosing a value for k

 Analysis and simulation for disclosure probability as a function of k

 Experimental evaluation for network overhead as a function of k

ANALYTICAL EVALUATION

Uniform Sampling

Proportional Sampling

Following Multiple Channels

 $S=1000, p_C=0.01$

SIMULATION-BASED EVALUATION

Sensitive Channels Popularity Distribution

Number of sensitive channels users follow

Simulation-Based Study

EXPERIMENTAL EVALUATION

Bandwidth Consumption Over Time

Bandwidth Consumption: Initialization Stage

Bandwidth consumption: Idle stage

Browsing Latency

- Our tool is available as a Google Chrome browser extension
- This work has been published in the 29th Annual Computer Security Applications Conference (ACSAC '13) on Dec 2013 at New Orleans, USA

Conclusions

- k-subscription: an obfuscation-based approach for privacypreserving Twitter browsing
 - Hide user's subscriptions within selected noise
 - Hide user's subscriptions within noise of other users
 - Add noise from a common set with sensitive channels
- Fine tuning the k parameter
 - Disclosure probability
 - Network overhead
- In a future where user's identity cannot be hidden privacy could be achieved by:
- obfuscation and
- >mutual collaboration between users.

BACKUP SLIDES

Posting Messages

k-subscription protects microblogging browsing:

- Does not aim to hide users' interests when users want to post about a sensitive issue
- Does not aim to hide users' interests when users want to retweet a post of a sensitive channel

For protecting user posts there are alternative solutions:

Hummingbird, #h00t, etc. (using post encryption)

Short URLs

Short URL services usually cooperate with microblogging services. So these URL shortening services can be used to infer user's interests based on user clicks on short URLs

k-subscription, when a user clicks on a short URL, resolves, transparently, on the background all short URLs in tweets from noise and real channels.

Formulas for Disclosure Probability P_C

Uniform Sampling:

$$P_C < \max(1/k, \frac{p_C}{p_C + (1 - p_C) \times (1 - (1 - 1/|S|)^{k-1})})$$

Proportional Sampling:

$$P_C > \max(1/k, \frac{p_C}{p_C + (1 - p_C) \times (1 - (1 - p_C)^{k-1})})$$

Following multiple channels N:

$$P_{C_1,...,C_N} = \frac{p_{C_1,...,C_N}}{p_{C_1,...,C_N} + (1 - p_{C_1,...,C_N}) \times \binom{|S| - N}{(k-1)N - N} / \binom{|S|}{(k-1)N}}$$

Sensitive channels S

Maintained by a privacy-related organization

- Users may request, through k-subscription, new sensitive channels to be added in this set
- The set S must be shielded against malicious users that tries to insert a large number of fake channels in order to increase disclosure probability
 - CAPTCHAs to avoid computer bots that inserts batches of fake channels
 - Use of Yahoo Term Extraction API in order to evaluate the channel's sensitivity
 - > Channel's activity and channel's audience validation
 - Channel's audience evaluation: amount of followers to the amount of following ratio, number posts coming from API, duplicate or spam posts, posts with unrelated links.

Size of Sensitive Channels Set (1/2)

Disclosure Probability P_C - p_C =0.01

Channel popularity: 1%

Disclosure probabilities: 0.2, 0.1 and 0.05

Size of Sensitive Channels Set (2/2)

- in order to keep the disclosure probability constant:
 - if we double |S| -> we must double k value
- for a constant obfuscation level k:
- very small |S| would easily give away a user's true interests+limit the users' choice for channels
 - > if S contains n members, the microblogging service will be able to conclude with probability at least 1/n that the user is interested in the channel she follows.
- |S| must be enough so 1/|S| < Uc/U

Why not N-tuples?

Whenever a user is interested in N related channels:

the (k – 1) × N noise channels that will follow will be selected in N-tuple groups, so that each N-tuple consists of N related noise channels.

<u>However</u>: the microblogging service may use different similarity metrics to identify related channels.

Time to follow a sensitive channel

CPU load ~ Initialization stage

What about giving the wrong impressions?

User following illness-related channels or bankruptcy-related channels => worrying friends + family

- dummy account protects against worrying family
 - > (but NOT against microblogging service, that can use IP tracking or cookies)
- followings can be organized in separate private lists (Twitter provides this option).
 - > That option also, does not offer protection against Twitter

What about disappearing channels?

People close or delete their accounts:

- If users stop following channel D and it's noise => correlate D's disappearance with the users' change of following patterns => users were interested in channel D.
- If users noise channels start disappearing => service will be in a better position to find the exact channel they are really interested in.
 - > add other noise? => NO, the service will figure out the noise channels
- ✓ users interested in D + users who not interested in D but have included D as noise => should do nothing! => the service will not be able to differentiate which users are interested in D and which are not.

k-subscription-UNIF

- when 10% of the users are interested in channel C:
- it would take a significant percentage of the rest 90% to include channel C among their noise channels,

- when popularity is around 1%:
- >then it is much easier to obfuscate it.
- \triangleright for k = 100 the disclosure probability is as low as 0.1