

## Final Demo

IFS4205 Team 02 AY19/20



# Agenda

1. System Summary

2. System Demo

3. Security Claims and Security Mechanisms

4. Questions and Answers

# -System Summary-



# System Architecture

- 1x Web Server
  - IIS configured for TLS1.3
  - ModSecurity (WAF)
- 2x Database Server
  - Accessible from Web Server only (TLS1.2)
- 1x File Server
  - Authentication via AD (SMB 3.1.1)
  - File Server Resource Manager (FSRM) is enabled





# Components for Users



NFC Tag



Mobile App



Web App



## Authentication

- Web Application
  - Use of Form Authentication to hold authenticated sessions.
  - ASP.NET Membership is used to authorize roles to specific directories.

- Android Application
  - Use of NRIC + password + mobile device + NFC tag to authenticate
  - JSON Web Token (JWT)



### Account Roles

### **Account Roles**

- Patient
- Therapist
- Researcher
- Administrator (Clerk, Nurse, etc)

Accounts are able to possess multiple roles at the same time, but user can only log in as one role each time.



# Permission System

Controls Patient Information and Records.

- Record Types
  - Therapists requests for and Patients approves. (whitelisting)
- Fine-Grain Record Permissions
  - To blacklist specific therapists from certain records. (blacklisting)
- Global Record Permissions
  - To "delete" records.

Patient information can be viewed by only approved therapists.



# K-Anonymisation

- Datafly algorithm
- Quasi-identifiers: Age, Sex, Gender, Marital Status, Postal Code
- K: 3

Suppression threshold: 10%

# -System Demo-

# -Security Claims-



# Server and Infrastructure Security Claims (Items 1 - 2)

#### S1-TLS

- It is not possible to perform sniffing and man-in-the-middle attacks on the following connections due to TLS implementations.
  - Between NUS SOC reverse proxy and end users using the Web App and or Mobile
    App
  - Between web server (server 1) and main database (server 2); and logging database (server 5)
  - Between web server (server 1) and file server (server 4)

#### S2-ACCESS

- It is not possible to access any systems or services that are not intended to be accessible.
- Mechanisms: Server configuration on all servers that whitelists access



# Server and Infrastructure Security Claims (Items 3)

### S3-MOBILESTORAGE

- It is not possible to retrieve the device ID or JWT from the shared preferences of NUSMed's mobile app via another application installed on the mobile device.
- Mechanisms: Encrypted shared preferences (via the androidx.security.crypto library)



## Web Application Security Claims (Items 1 - 3)

- W1-SQLINJECT: It is not possible to perform SQL injection attacks throughout the entire system.
  - Mechanisms: ModSecurity WAF, ASP.NET page validation, Parameterization
- W2-XSS: It is not possible to perform cross site scripting attacks throughout the entire system.
  - Mechanisms: ModSecurity WAF, ASP.NET page validation, HttpOnly Cookie
- W3-CSRF: It is not possible to perform cross site request forgery attacks throughout the entire system.
  - Mechanisms: Anti CSRF tokens



## Web Application Security Claims (Items 4)

- W4-SESSION: It is not possible for any single user to initiate 2 concurrent sessions at any time; in that an account is able to be logged in more than once to achieve 2 concurrent sessions.
  - Mechanism: Server-side caching



## Functional Claims, Access Control (Items 1 - 3)

- F1-JWT
  - It is not possible for attackers to craft or modify a JWT that enables him/her to authenticate and login.
  - Mechanisms: JWT Digital Signature
- F2-FORMAUTH: It is not possible for attackers to craft their own Form Authentication Cookie that enables him/her to authenticate and login into the web application.
  - Mechanisms: Cookie encryption, Server-side GUID caching
- F3-MFA: It is not possible for an attacker to perform unauthorized access without all three secrets: password, Device ID, Token ID.



## Functional Claims, Access Control (Items 4 - 6)

- F4-KANON: It is not possible to identify a patient from the quasi-identifiers.
  - Mechanisms: Quasi-identifiers are generalised till number of records to be suppressed falls below the threshold

- F5-ACCESSCONTROL: It is not possible for therapist, patients or admins to perform any action outside of their given roles and permissions as according to functional specifications.
- F6-PASS: It is not possible to obtain any user account password via cracking, guessing or other means.
  - Mechanisms: Account lockout



## Functional Claims, Access Control (Items 7 - 8)

• F7-RECORD: It is not possible to modify any record that had been previously uploaded; be it owned by him/herself and or others.

- F8-FILE: It is not possible for an attacker to upload file types or file sizes that is not specified to be allowed by the system.
  - This extends to exploiting the file upload to perform remote code execution, remote file inclusion and other related attacks.
  - Mechanisms: ModSecurity WAF, File Resource Server Management (FRSM)

# -Resources for Pen-Testing-



### Source Code and Documentation

Web Application & Documents Repo:

https://github.com/seanieyap/IFS4205-AY1920-S1-Team02-NUSMed-WebApp

Mobile Application Repo:

https://github.com/seanieyap/IFS4205-AY1920-S1-Team02-NUSMed-AndroidApp



# Items to be Provided for Testing

- Team 01 will receive...
  - 2 x Patient Account, 1 x Therapist/Researcher Account (1 token each, 3 tokens total)
- CS3235 team (Wei Lin and Ahn Tae Gyu) will receive...
  1 x Patient Account, 1 x Therapist/Researcher Account (1 token each, 2 tokens total)
- Each user will require an Android phone (NFC capable) to install the Mobile Application.
- Subset of K-anon database

# -End-

Thank you for everyone's time and attention!

# -Questions & Answers-



# Registration

#### Admin assigns token



- Token ID is a 128-bit UUID generated by java.util.UUID library
- Admin manually assigns a token to a user via admin console

### User authenticates with registered credentials and issued token





- User downloads app which automatically generates a 128-bit device ID via the java.util.UUID library upon launch
- The device ID would be tagged to the user thus scanning the token from another phone would not work

#### User selects role



- User is able to select only the roles he has
- App is assigned a JWT which expires after 15 mins of inactivity



# Web Login

User logs in on web app



• User has 30 seconds to scan his issued NFC token via the mobile application

User selects web login on the mobile application





• App would send the device ID, token ID and the JWT to the server to be validated



# Record Upload from Device

- > Two security checks from mobile application side
  - One check happens whenever user keys in a value / selects a file from local storage
  - The other overall check happens when user clicks "Upload" button
- One security check from web server side
  - Device ID + JWT
  - User inputs (i.e. medical type, record content)

#### Patient Upload





# Record Upload from Device

#### Therapist Upload



Only the medical types permitted by the patient are shown in the selection field.

#### Therapist Upload (for emergency patient)





- Therapist assigned to the emergency patient can scan patient's NFC to authenticated himself and to confirm the association.
- Therapist can upload any type of records for the emergency patient afterwards.
- After the patient becomes conscious again, he can reset the therapist's permission, and deny the ownership of records uploaded by the therapist when he was unconscious.