Probabilités III

${\bf MINES\ ParisTech}$

2 décembre 2022 (#524f182)

Question 1 Soient $X \sim \mathcal{E}(\lambda)$, $\lambda > 0$, et $Y \sim \mathcal{B}(1/2)$ deux variables aléatoires réelles indépendantes, et $Z = XY + (1 - Y)\lambda$. La densité $f_{Z Y=1}$ est égale à
$\Box A: \frac{\lambda}{2} \exp(-\lambda z) 1_{\mathbb{R}_{+}^{*}}(z)$ $\Box B: \lambda \exp(-\lambda z) 1_{\mathbb{R}_{+}^{*}}(z)$ $\Box C: Z \text{ n'admet pas de densit\'e}$ $\Box D: Z = \lambda \text{ p.s.}$
Question 2 (réponses multiples) Avec les hypothèses précédentes, on a
$\Box A : \mathbb{E}(Z Y=1) = \frac{1}{\lambda}$ $\Box B : \mathbb{E}(Z Y=0) = \lambda$ $\Box C : \mathbb{E}(Z Y) = \frac{Y}{2\lambda} + \frac{1}{2}(1-Y)\lambda$ $\Box D : \mathbb{E}(Z Y) = \frac{Y}{\lambda} + (1-Y)\lambda$
Question 3 Soient X et Y deux variables aléatoires de densité jointe $f_{X,Y}(x,y) = \frac{1}{x} 1_{[0,x]}(y) \lambda \exp(-\lambda x), \ \lambda > 0$. Quelle est la densité de $Y X=x$?
$ \Box A : \exp(-y) \Box B : 1_{[0,x]}(y) \Box C : \frac{1}{x}1_{[0,x]}(y) \Box D : \lambda \exp(-\lambda x) $
Question 4 En déduire la valeur de $\mathbb{E}(Y)$:
$\begin{array}{l} \square \ \mathrm{A} : 1/2 \\ \square \ \mathrm{B} : x/2 \\ \square \ \mathrm{C} : \frac{1}{2\lambda} \\ \square \ \mathrm{D} : \lambda^2 \end{array}$
Question 5 Soit (X,Y) un vecteur gaussien d'espérance (μ_X,μ_Y) et de matrice de covariance $\begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, où $\rho > 0$. L'espérance conditionnelle de $X Y$ vaut :
\square A: μ_Y

- $\Box \ \text{B: } \mu_X \\ \Box \ \text{C: } \mu_Y + \rho(Y \mu_X) \\ \Box \ \text{D: } \mu_X + \rho(Y \mu_Y)$