RECEIVED
CENTRAL FAX CENTER

NOV 1 9 2007

PATENT APPLN. NO. 10/809,842 RESPONSE UNDER 37 C.F.R. \$1.111

PATENT NON-FINAL

IN THE CLAIMS:

1. (previously presented) A nonaqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a carbon material as a negative electrode active material and a nonaqueous electrolyte including a solvent and a solute, wherein sulfolane is contained as a solvent in the nonaqueous electrolyte in an amount of 20 ~ 45 % by volume, on the basis of the total volume of the solvent, and vinyl ethylene carbonate and vinylene carbonate or a derivative of vinylene carbonate are added to the nonaqueous electrolyte.

(canceled)

3. (original) The nonaqueous electrolyte secondary battery according to claim 1, wherein the amount of vinyl ethylene carbonate added to the nonaqueous electrolyte is in a range of 0.1 ~ 5 parts by weight per 100 parts by weight of the nonaqueous electrolyte.

4. (canceled)

5. (original) The nonaqueous electrolyte secondary battery according to claim 1, wherein the amount of vinylene carbonate or a derivative thereof added to the nonaqueous electrolyte is in a range of 0.1 ~ 5 parts by weight per 100 parts by weight of the nonaqueous electrolyte.

6. (canceled)

7. (original) The nonaqueous electrolyte secondary battery according to claim 3, wherein the amount of vinylene carbonate or a derivative thereof added to the nonaqueous electrolyte is in a range of 0.1 ~ 5 parts by weight per 100 parts by weight of the nonaqueous electrolyte.

8-16. (canceled)

17. (original) The nonaqueous electrolyte secondary battery according to claim 1, wherein the carbon material has a ratio $(I_{\text{D}}/I_{\text{G}})$ of a Raman spectrum intensity (R) obtained by Raman spectroscopy of 0.2 or greater.

18. (canceled)

PATENT NON-FINAL

PATENT APPLN. NO. 10/809,842 RESPONSE UNDER 37 C.F.R. \$1.111

- 19. (original) The nonaqueous electrolyte secondary battery according to claim 3, wherein the carbon material has a ratio ($T_{\rm D}/I_{\rm G}$) of a Raman spectrum intensity (R) obtained by Raman spectroscopy of 0.2 or greater.
- 20. (original) The nonaqueous electrolyte secondary battery according to claim 5, wherein the carbon material has a ratio (I_p/I_c) of a Raman spectrum intensity (R) obtained by Raman spectroscopy of 0.2 or greater.