Grau d'Estadística UB-UPC

Programació Lineal i Entera

Tema 4 : Programació Lineal Entera

F.-Javier Heredia
http://gnom.upc.edu/heredia

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

Tema 4 : Programació Lineal Entera

1. Conceptes bàsics:

- Definició de problemes de PLE i exemples.
- Relaxació lineal
- Formulacions ideals i fortes

2. Algorismes de programació lineal entera

- Classificació.
- Algorisme de ramificació i poda (Branch& Bound).
- Algorisme de plans de tall de Gomory.
- Algorisme de ramificació i tall (Branch & Cut)
- Resolució eficient dels subproblemes relaxats: símplex dual

Bibliografia:

Bertsimas i Tsitsiklis, Introduction to Linear Optimization. Cap 10, 11.

Definició de problema de PLE

 Quan una o diverses variables d'un problema de PL només pot adoptar valors enters, es té un problema de Programació Lineal Entera (PLE):

$$(PLE) \begin{cases} \min_{x \in \mathbb{R}^n} & c'x \\ s. a.: & Ax = b \\ & x \ge 0 \\ & x_i \in \mathbb{Z}, i \in \mathcal{I} \end{cases}$$

- Els problemes de PLE són habituals quan les solucions fraccionals no tenen sentit:
- Les variables enteres també ens ajuden a construir models més acurats per a un gran nombre de problemes de presa de decisions.
- Veurem alguns exemples de models de PLE:
 - Planificació de plantilles laborals.
 - Selecció de projectes/inversions.
 - Problemes de producció amb costos fixos.

Planificació de plantilles: Air-Express

Dades:

Treballadors necessaris
18
27
22
26
25
21
19

	Torn	Dies descans	Sou
orti.iifi	zeredin "1 ³	Dium+Dill	680€
E 'Yania'	2	Dill+Dima	elega, William Francisco
A. Pierce	3	Dima+Dime	705.0
c eduly	4	Dime+Dij	705€
	5	Dij+Div	
9)	6	Div+Diss	680€
Pag. 60	7	Diss+Dium	655€

Objectiu: obtenir quants treballadors contractar a cada torn de forma que es minimitzin els costos de personal tot satisfent les necessitats de treballadors de cada dia.

Planificació de plantilles: formulació genèrica

Paràmetres:

n: nombre de torns.

 c_i : salari torn i, i = 1, 2, ..., n

 \mathcal{D}_i : dies de descans torn i, i = 1, 2, ..., n

 b_i : nombre de treballadors necessaris dia j, j = 1, 2, ..., 7

Variables de decisió:

 x_i = nombre de treballadors assignats al torn i, i = 1, 2, ..., n

Formulació:

$$\text{(PE)} \begin{cases} \min_{x} & z = \sum_{i=1}^{n} c_{i}x_{i} \\ s. a.: & \sum_{i:j \notin \mathcal{D}_{i}} x_{i} \geq b_{j} \quad j = 1, 2, \ldots, 7 \\ x_{i} \geq 0, x_{i} \in \mathbb{Z} \quad i = 1, 2, \ldots, n \end{cases}$$
 Es minimitza el cost salarial

Planificació de plantilles: formulació específica

$$(\text{PE}) \begin{cases} \min_{x} & z = \sum_{i=1}^{n} c_{i} x_{i} \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 \end{cases} \overset{x_{1}}{\underset{x_{4}}{\sum}} \geq \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{6} \\ b_{7} \end{bmatrix}$$

$$x \geq 0, \quad x \in \mathbb{Z}^{n}$$

Selecció de projectes: CRT Technologies

Dades:

Projecte	Net Present Value	Inversió necessària (× 10³€)				
	4	Any 1	Any 2	Any 3	Any 4	Any 5
1 1	141	75	25	20	15	10
2	187	90	35	0	0	30
3	121	60	15	15	15	15
4	83	30	20	10	5	5
5	265	100	25	20	20	20
6	127	50	20	10	30	40

Objectiu: La companyia disposa de 250.000€ per a invertir en nous projectes el primer any. Ha pressupostat €75.000 pel finançament dels projectes a l'any 2 i €50.000 pels anys 3,4 i 5.

Selecció de projectes: variables de decisió i f.o.

Paràmetres:

n: nombre de projectes.

m: nombre de d'anys.

 c_i : benefici esperat del projecte i (NPV), i=1,2,...,n

 a_{ij} : capital necessari projecte i any j , $i=1,2,\ldots,n$, $j=1,2,\ldots,m$

 b_i : capital total disponible any j, j = 1, 2, ..., m

• Variables de decisió: $x_i = \begin{cases} 1, & \text{el projecte es selecciona} \\ 0, & \text{el projecte no es selecciona} \end{cases}$, i = 1, 2, ..., n

• Formulació:

$$(PE) \begin{cases} \max_{x} & z = \sum_{i=1}^{n} c_{i}x_{i} \\ s. a.: & \sum_{i=1}^{n} a_{ij}x_{i} \leq b_{j} \quad j = 1, 2, ..., m \end{cases}$$
 Es maximitza el NPV
$$x \in \{0,1\}^{n}$$
 Es maximitza el NPV sense superar el capital disponible
$$x \in \{0,1\}^{n}$$

Variables binàries i condicions lògiques

- Les variables binàries són útils per a modelitzar condicions lògiques. Per exemple, considereu que:
 - Entre els projectes 1, 4 i 5, no es poden seleccionar més d'un simultàniament:

$$x_1 + x_4 + x_5 \le 1$$

- Entre els projectes 4, 5 i 6, s'ha de seleccionar exàctament un:

$$x_4 + x_5 + x_6 = 1$$

 El projecte 4 no es pot seleccionar a no ser que es sel·leccioni també el projecte 3:

$$x_4 \le x_3$$

El problema de la motxilla (Knapsack problem)

El problema de *CRT Technologies* és una extensió del que es coneix com a Problema de la Motxilla (*knapsack problem*).

$$\begin{cases} \max_{x} z = & c'x \\ s. a.: & a'x \leq b \\ x \in \{0,1\}^n \end{cases}$$

on:

- c_i : "utilitat" de l'objecte i.
- a_i : pes de l'objecte i.
- b: pes total que es pot transportar.

Problema de càrrega fixa

- Moltes decisions depenen de costos fixos :
 - El cost d'inicialització d'una màquina o d'una línia de producció quan es comença la fabricació d'un nou producte.
 - El cost de construcció d'un nova línia o planta de producció.
 - El cost de contractar a personal addicional.

Problema de Càrrega Fixa: Remington Manufacturing

Dades:

	Operació	Hores consumides			Hores	
	Operació	Prod. 1	Prod. 2	Prod. 3	disponibles	
	Mecanització	2	3	6	600	
10000	Pulverització	6	3	4	300	
Neg Services	Ensamblatge	5	6	2	400	
alone Ho	Benefici unitari	48€	55€	50€		
, S	Costos configuració	1000€	800€	900€	Hatelen Co. Her squille	

Objectiu: obtenir el programa de producció que maximitzi el benefici net (benefici menys costos) tot satisfent la disponibilitat de recursos.

Càrrega fixa: paràmetres I variables de decisió

Paràmetres:

n: nombre de productes.

m: nombre de processos.

 c_i : benefici unitari producte i, i = 1, 2, ..., n

 a_{ij} : hores consumides producte i procés j , $i=1,2,\ldots,n$, $j=1,2,\ldots,m$

 b_i : hores totals disponibles procés j, j = 1, 2, ..., m

 k_i : costos configuració producte i, i = 1, 2, ..., n.

Variables de decisió:

 x_i : quantitat producte i, i = 1, 2, ..., n

$$y_i = \begin{cases} 1, & x_i > 0 \\ 0, & x_i = 0 \end{cases}$$
, $i = 1, 2, ..., n$

Càrrega fixa: funció objectiu i constriccions

Formulació :

$$\left\{ \begin{aligned} \max_{x,y} & z = \sum_{i=1}^n (c_i x_i - k_i y_i) \\ s. a.: & \sum_{i=1}^n a_{ij} x_i \leq b_j \\ x_i \leq M_i y_i \end{aligned} \right. \quad j = 1,2,\ldots,m \quad \text{Disponibilitat de recursos}$$

$$\left\{ \begin{aligned} x \geq 0 \\ y \in \{0,1\}^n \end{aligned} \right.$$

Relaxació Lineal

PLE

max $z_{PLE} = 2x_1 + 3x_2$ s.a.: $x_1 + 3x_2 \le 8.25$ $2.5x_1 + x_2 \le 8.75$ $x_1, x_2 \ge 0$ x_1, x_2 enteres

Relaxació Lineal (RL)

max $z_{RL} = 2x_1 + 3x_2$ s.a.: $x_1 + 3x_2 \le 8.25$ $2.5x_1 + x_2 \le 8.75$ $x_1, x_2 \ge 0$

Relació f.o. PLE i RL

- $K_{PLE} \subseteq K_{RL} \Rightarrow$ la solució òptima de la relaxació lineal z^*_{RL} proporciona una fita del valor òptim de la funció objectiu del problema PLE z^*_{PLE} .
 - Per a problemes de maximització el valor òptim de la relaxació lineal és una fita superior del valor òptim de la f.o. del problema PLE:

$$\max z_{PLE} \leq \max z_{RL}$$

 Per a problemes de minimització el valor òptim de la relaxació lineal és una fita inferior del valor òptim de la f.o. del problema PLE:

Formulacións fortes de problemes PLE

- Sigui el $(PE) \min\{c'x \mid K_{PE} = \{(\mathbf{0}, \mathbf{0}), (\mathbf{0}, \mathbf{1}), (\mathbf{0}, \mathbf{2}), (\mathbf{1}, \mathbf{0}), (\mathbf{2}, \mathbf{0})\}\} (K_{PE} \text{ finit}).$
- Generalment hi ha més d'una forma de definir la regió factible de (PE) :

$$(\text{PE1}) \begin{cases} \min & z_{PE1} = c'x \\ \text{s.a.:} & x_1 + x_2 & \leq 2 \\ x \geq 0, \text{entera} \end{cases} \qquad (\text{PE2}) \begin{cases} \min & z_{PE2} = c'x \\ 3x_1 + 2x_2 & \leq 6 \\ 2x_1 + 3x_2 & \leq 6 \\ x \geq 0, \text{entera} \end{cases}$$

- **Def. desigualtat vàlida**: $a'_j x \le b_j$ és desigualtat vàlida per a K_{PE} si $a'_j x \le b_j$ per a tot $x \in K_{PE}$
- (PE1) i (PE2) són formulacions vàlides, doncs

$$K_{PE} = K_{PE1} = K_{PE2}$$
 (i $x_{PE}^* = x_{PE1}^* = x_{PE2}^*$).

Quina formulació és millor? Observem que:

$$K_{RL1} \subset K_{RL2} \Rightarrow z_{RL2}^* \leq z_{RL1}^* \leq z_{PE1}^* = z_{PE2}^*$$

Def: direm que la formulació PE1 és **més forta** que PE2 si $K_{RL1} \subset K_{RL2} \Rightarrow$ la relaxació lineal RL1 proporciona una fita millor (més forta) de z_{PE}^* .

Formulació ideal d'un problema PLE

La formulació més forta possible de (PE) s'anomena formulació ideal (PEI) : (PEI) formulació vàlida t.q. $K_{RLI} \subseteq K_{RL_i}$ per a tota formulació vàlida (PEj) de (PEI).

Analitzem la formulació (PE1) anterior:

$$(PE1) \begin{cases} \min & z_{PE1} = c'x \\ \text{s.a.:} & x_1 + x_2 \leq 2 \\ & x \geq 0, \text{entera} \end{cases}$$

- Observant el dibuix és evident que no hi ha cap altre formulació alternativa més forta que (PE1) : és la formulació ideal de (PE).
- Això és així perque K_{RL1} coincideix amb l'embolcall convex de K_{PE}, CH(K_{PE}) :

 $K_{RLI} \equiv K_{RL1} \subset K_{RL2} \subset K_{RL3}$

El problema (PE) $min\{c'x|x \in K_{PE}\}$ equival a $(P)min\{c'x|x \in CH(K_{PE})\}$.

Algorismes de PLE: classificació

Considerem el següent problema de PLE:

$$(PE) \begin{cases} \min & z_{PE} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \\ & x \ge 0, \text{ entera} \end{cases}$$

- Volem analitzar com es resoldria aquest problema amb tres algorismes:
 - Branch-and-Bound (ramifica i poda) : es basa en la identificació de x_{PE}^* després de visitar un conjunt "reduit" de solucions enteres del problema PE usant les fites z_{RL}^* .
 - <u>Cutting Planes (plans de tall)</u>: afegeix constriccions addicionals (talls) fins aconsseguir una formulació (PEj) t.q. $x_{RLi}^* \in K_{PEJ}$.
 - Branch-and-Cut (ramifica i talla): una combinació dels anteriors.

Algorisme de Branch&Bound

 Volem resoldre el següent (PE) amb l'algorisme de B&B:

$$(PE) \begin{cases} \min & z_{PE} = -3x_1 - 5x_2 \\ s.a.; & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \\ & x \ge 0, \text{ entera} \end{cases}$$

Algorisme genèric de Branch and Bound (B&B)(1)

```
Inicialització: L = \{PE1\}; z^* = +\infty (incumbent, z_{PE1}^* \le z^*); \underline{z}_{PE1}^* = -\infty.
Mentre L \neq \emptyset fer
       Es selecciona un problema PEj \in L ( Selecció )
       Es resol la relaxació lineal RLj: x_{RLj}^* ; \underline{z}_{PEj}^* \leftarrow z_{RLj}^* ( Relaxació
       Si K_{RLj}=\emptyset ó z_{RLj}^{*}\geq z^{*} ó x_{RLj}^{*}\equiv x_{PEj}^{*} fer (Eliminació)
                  L \leftarrow L \setminus \{PEi\}
                  Si x_{RLi}^* \equiv x_{PEi}^* fer
                     Si z_{RLi}^* \leq z^*: x^* \leftarrow x_{RLi}^*, z^* \leftarrow z_{RLi}^*
                     Si z^* = \underline{z}_{PEi}^* per a algun PEi: L \leftarrow L \setminus \{PEl\} \ \forall (PEl) descendent de PEi
                  Fi Si
       Altrament (Separació de PEj):
              Es separa PEj en els subproblemes PE(j + 1), PE(j + 2) t.q:
                             K_{PEj} = K_{PE(j+1)} \cup K_{PE(j+2)}; K_{j+1} \cap K_{PE(j+2)} = \emptyset
                           z_{PEj} = z_{PE(j+1)} = z_{PE(j+2)}
              Es substitueix PEj pels seus descendents :
                             L \leftarrow L \setminus \{PEj\} \cup \{PE(j+1)\} \cup \{PE(j+2)\}
```

Fi Si

Fi Mentre (Optim: $x_{PE1}^* \equiv x^*$; $z_{PE1}^* \equiv z^*$)

(1): A. H. Land and A. G. Doig (1960). "An automatic method of solving discrete programming problems". *Econometrica* 28 (3): pp. 497–520. doi:10.2307/1910129

Exemple Branch&Bound: tractament de (PE1)

B&B, Iteració 1: L={(PE1)}, $\underline{z}^*_{PE1} = +\infty \le z^*_{PE1} \le z^* = +\infty$

- Selecció: (PE1)
- Relaxació: resolució de (RL1):

$$\begin{cases} \min & z_{PE1} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \\ & x \ge 0 \text{, entera} \end{cases} \tag{1}$$

$$\underline{z}^*_{PE1} \leftarrow \lceil -17.5 \rceil = -17$$

• Separació:
$$x_2^* = 7/2 \leftarrow \begin{cases} (\text{PE1}) \land x_2 \le \left\lfloor \frac{7}{2} \right\rfloor = 3 \rightarrow (\text{PE2}) \\ (\text{PE1}) \land x_2 \ge \left\lceil \frac{7}{2} \right\rceil = 4 \rightarrow (\text{PE3}) \end{cases}$$

Arbre d'exploració

Exemple Branch&Bound: tractament de (PE2)

B&B, Iteració 2: L={(PE2),(PE3)}, $\underline{z}^*_{PE1} = -17 \le z^*_{PE1} \le z^* = +\infty$

- Selecció: (PE2)
- Relaxació: resolució de (RL2):

$$\begin{cases} \min & z_{PE2} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \end{cases} \tag{1}$$

$$7x_1 + 10x_2 \le 35 \qquad (2)$$

$$x_2 \le 3 \qquad (3)$$

$$x \ge 0 \text{, entera}$$

$$\underline{z} *_{PE2} \leftarrow \begin{bmatrix} -17.14 \end{bmatrix} = -17$$

• Separació:
$$x_1^* = 5/7 \leftarrow \{ (PE2) \land x_1 \le 0 \rightarrow (PE4) \\ (PE2) \land x_1 \ge 1 \rightarrow (PE5) \}$$

Exemple Branch&Bound: tractament de (PE4)

B&B, Iteració 3: L={(PE4),(PE5),(PE3)}, $\underline{z}^*_{PE1} = -17 \le z^*_{PE1} \le z^* = +\infty$

- Selecció: (PE4)
- Relaxació: resolució de (RL4):

$$\begin{cases} \min & z_{PE4} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \end{cases} \tag{1}$$

$$7x_1 + 10x_2 \le 35 \qquad (2)$$

$$x_2 \le 3 \qquad (3)$$

$$x_1 \le 0 \qquad (4)$$

$$x \ge 0 \text{ , entera}$$

- Eliminació: $x^*_{RL4} \equiv x^*_{PE4}$
 - S'elimina (PE4): $L \leftarrow L \setminus \{(PE4)\} = \{(PE5), (PE3)\}$
 - $z^*_{PE4} < z^* \Rightarrow$ s'actualitza la incumbent: $x^* \leftarrow x^*_{PE4} = [0, 3]$ ', $z^* \leftarrow z^*_{PE4} = -15$
 - $-z^* > \underline{z}^*_{PE1}, \underline{z}^*_{PE2}$

Exemple Branch&Bound: tractament de (PE5)

B&B, Iteració 4: L={(PE5),(PE3)}, \underline{z}^*_{PE1} = -17 $\leq z^*_{PE1} \leq z^*$ = -15, x^* =[0,3]'

• Selecció: (PE5)

(PE5)

• Relaxació: resolució de (RL5):

min
$$z_{PE5} = -3x_1 - 5x_2$$

s.a.: $x_1 + x_2 \ge 2$ (1)
 $7x_1 + 10x_2 \le 35$ (2)

$$x_2 \le 3$$
 (3)
 $x_1 \ge 1$ (4)
 $x \ge 0$, entera

$$\underline{z}^*_{PE5} \leftarrow -17$$

• **Separació:**
$$x_2^* = 2.8 \leftarrow \{ (PE5) \land x_2 \le 2 \rightarrow (PE6) \\ (PE5) \land x_2 \ge 3 \rightarrow (PE7) \}, L \rightarrow \{ (PE6), (PE7), (PE3) \} \}$$

Exemple Branch&Bound: tractament de (PE6)

B&B, Iteració 5: L={(PE6), (PE7),(PE3)}, $\underline{z}^*_{PE1} = -17 \le z^*_{PE1} \le z^* = -15$, $x^* = [0,3]$

- Selecció: (PE6)
- Relaxació: resolució de (RL6):

$$\begin{cases} \min & z_{PE6} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \end{cases} \tag{1}$$

$$7x_1 + 10x_2 \le 35 \tag{2}$$

$$x_2 \le 3 \tag{3}$$

$$x_1 \ge 1 \tag{4}$$

$$x_2 \le 2 \tag{5}$$

$$x \ge 0 \text{, entera}$$

$$\underline{z}^*_{PE6} \leftarrow \lceil -16.43 \rceil = -16$$

• **Separació:** $x_1^* = 15/7 \leftarrow \{ (PE6) \land x_1 \le 2 \rightarrow (PE8) \\ (PE6) \land x_1 \ge 3 \rightarrow (PE9) \}$, $L \rightarrow \{ (PE8), (PE9), (PE7), (PE3) \}$

Exemple Branch&Bound: tractament de (PE8)

B&B, Iteració 6: L={(PE8), (PE9), (PE7), (PE3)}, $\underline{z}^*_{PE1} = -17 \le z^*_{PE1} \le z^* = -15$

- Selecció: (PE8)
- Relaxació: resolució de (RL8):

$$\begin{cases} \min & z_{PE8} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \end{cases} \qquad (1)$$

$$\begin{cases} x_2 \le 3 \\ x_1 \ge 1 \\ x_2 \le 2 \\ x_1 \le 2 \\ x \ge 0 \text{, entera} \end{cases} \qquad (6)$$

- Eliminació: $x^*_{RL8} \equiv x^*_{PE8}$
 - S'elimina (PE8): $L \leftarrow L \setminus \{(PE8)\} = \{(PE9), (PE7), (PE3)\}$
 - $-z^*_{PE8} < z^* \Rightarrow$ s'actualitza la incumbent: $x^* \leftarrow x^*_{PE8} = [2, 2]$ ', $z^* \leftarrow z^*_{PE8} = -16$
 - $-z^* < \underline{z^*}_{PE6} \Rightarrow$ s'eliminen descendents de (PE6): $L \leftarrow L \setminus \{(PE9)\} = \{(PE7), (PE3)\}$

Exemple Branch&Bound: tractament de (PE7)

B&B, Iteració 7: L={(PE7),(PE3)}, \underline{z}^*_{PE1} = -17 $\leq z^*_{PE1} \leq z^*$ = -16, x^* =[2,2]'

- Selecció: (PE7)
- Relaxació: resolució de (RL7):

$$\begin{cases} \min & z_{PE7} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \end{cases}$$
 (1)

$$7x_1 + 10x_2 \le 35 \tag{2}$$

$$(PE7) \left\{ x_2 \le 3 \qquad (3) \right\}$$

$$x_1 \ge 1 \tag{4}$$

$$x_2 \ge 3 \tag{5}$$

 $x \ge 0$, entera

- Eliminació: $K_{\text{RL7}} \equiv K_{\text{PE7}} = \emptyset$
 - S'elimina (PE7): $L \leftarrow L \setminus \{(PE7)\} = \{(PE3)\}$

Exemple Branch&Bound: tractament de (PE3)

B&B, Iteració 8: L={(PE3)}, \underline{z}^*_{PE1} = -17 $\leq z^*_{PE1} \leq z^*$ = -16, x^* =[2,2]'

• Selecció: (PE3)

(PE3)

• Relaxació: resolució de (RL1):

$$\begin{cases} \min & z_{PE3} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \end{cases}$$
 (1)

$$x_2 \ge 4 \tag{3}$$

 $x \ge 0$, entera

- Eliminació: $K_{\text{RL3}} \equiv K_{\text{PE3}} = \emptyset$
 - S'elimina (PE3): $L \leftarrow L \setminus \{(PE3)\} = \emptyset$

B&B, Iteració 9: L= $\varnothing \Rightarrow z^*_{PE1} = z^* = -16$, $x^*_{PE1} = x^* = [2,2]$

Exemple Branch&Bound: arbre d'exploració

Arbre d'exploració B&B:

Talls de Gomory: definició (1/3)

 Els talls de Gomory proporcionen un mètode sistemàtic de generació de desigualtats vàlides de problemes PLE. Considereu el problema PLE i la seva relaxació lineal.

$$(PE) \begin{cases} \min & c'x \\ s.t.: & Ax = b \\ x \ge 0, x \in \mathbb{Z} \end{cases}, (RL) \begin{cases} \min & c'x \\ s.t.: & Ax = b \\ x \ge 0 \end{cases}$$

- **Def.:** designaltat vàlida de (PE): la inequació $a_j x \le b_j$ és una designaltat vàlida de (PE) sii $a_j x \le b_j$ és satisfeta per totes les solucions enteres de (PE).
- **Def.: tall de** (PE) **sobre** x_{RL}^* : la inequació $a_j x \le b_j$ és un tall de (PE) sobre x_{RL}^* sii:
 - i. $a_j x \le b_j$ és una desigualtat vàlida.
 - ii. $a_j x \leq b_j$ és violada per x_{RL}^* .

Talls de Gomory: definició (2/3)

• Els talls de Gomory proporcionen un mètode sistemàtic de generació de desigualtats vàlides de problemes PLE. Considereu el problema PLE i la seva relaxació lineal.

$$(PE)\begin{cases} \min & c'x \\ \text{s.a.:} & Ax = b \\ x \ge 0, \text{ entera} \end{cases}, \quad (RL)\begin{cases} \min & c'x \\ \text{s.a.:} & Ax = b \\ x \ge 0 \end{cases}$$

• Considereu que hem resolt (RL) amb l'algorisme del símplex obtenint la solució x_{RL}^* . Usant teoria de programació lineal podem "re-escriure" el sistema Ax = b de la següent forma:

$$Ax = Bx_{B} + A_{N}x_{N} = b \to B^{-1}(Bx_{B} + A_{N}x_{N}) = B^{-1}b = x_{B}^{*}$$

$$\to x_{B} + \underbrace{(B^{-1}A_{N})}_{V}x_{N} = x_{B}^{*} \to x_{B(i)} + \sum_{j \in \mathcal{N}} v_{ij}x_{j} = x_{B(i)}^{*}$$

Usarem aquesta relació per a generar plans de tall.

Talls de Gomory: definició (3/3)

• Considerem la relació (1) associada a una componen de x^*_{RI} no entera:

$$x_{B(i)} + \sum_{j \in \mathcal{N}} v_{ij} x_j = x_{B(i)}^* \text{ no entera} \quad (1)$$

- Totes les solucions factibles de (PE) ($x_{PE} \in K_{PE}$) han de satisfer (1), doncs son també factibles de (RL).
- Transformarem (1) en una desigualtat vàlida usant la informació que tenim sobre x_{PF} , és a dir, que x_{PF} és ≥ 0 (transf. 1) i entera (transf. 2).
- Transformació 1: atés que $x_{PE} \ge 0$ es satisfà, per tot $x_{PE} \in K_{PE}$

$$x_{B(i)} + \sum_{j \in \mathcal{N}} v_{ij} x_j = x_{B(i)}^* \xrightarrow{X_N \ge 0} x_{B(i)} + \sum_{j \in \mathcal{N}} \lfloor v_{ij} \rfloor x_j \le x_{B(i)}^*$$

Transformació 2: atés que x_{PF} és enter es satisfà, per tot $x_{PF} \in K_{PF}$:

$$x_{B(i)} + \sum_{j \in \mathcal{N}} \left[v_{ij} \right] x_j \le x_{B(i)}^* \xrightarrow{\mathcal{X} \text{ enter}} x_{B(i)} + \sum_{j \in \mathcal{N}} \left[v_{ij} \right] x_j \le \left[x_{B(i)}^* \right]$$

Tall de Gomory

Algorisme de plans secants de Gomory⁽¹⁾

• El tall de Gomory $x_{B(i)} + \sum_{j \in \mathcal{N}} \left[v_{ij} \right] x_j \le \left[x_{B(i)}^* \right]$ (2)

és una constricció de desigualtat amb les següents propietats:

- 1. Tota solució factible (PE), $x_{PE} \in K_{PE}$, satisfà (2) (per construcció).
- 2. La solució x^*_{RL} viola (2), doncs $x^*_{B(i)} > \lfloor x^*_{B(i)} \rfloor$.

Llavors, el tall de Gomory (2) és una desigualtat vàlida.

Algorisme de plans secants de Gomory:

- 1. Es resol (RL) : x^*_{RL}
- 2. Si x^*_{RL} és entera, **STOP**: $x^*_{RL} \equiv x^*_{PE}$
- 3. Si x^*_{RL} no és entera: seleccionar una component de x^*_{RL} fraccional i afegir a (PE) el tall de Gomory (2) associat.
- 4. Anada a 1

(1) Ralph E. Gomory. "Outline of an algorithm for integer solutions to linear programs". Bull. Amer. Math. Soc. 64 (1958), 275-278. http://dx.doi.org/10.1090/S0002-9904-1958-10224-4

Alg. de plans de tall de Gomory

 Resoleu el següent problema amb l'algorisme de plans de tall (plans secants) secants de Gomory

$$\begin{cases} \min & z_{PE} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \\ & x \ge 0 \text{ , entera} \end{cases}$$

Alg. de plans secants de Gomory: exemple (1/5)

Alg. de plans secants de Gomory: Iteració 1

1. Resolució de (RL1):

$$\begin{cases} \min & z_{PE1} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 - x_3 = 2 \\ & 7x_1 + 10x_2 + x_4 = 35 \end{cases} \tag{1}$$

$$x \ge 0 \text{, entera}$$

2. x^*_{RL1} no és entera: es defineix el tall de Gomory

$$x_{B} = \begin{bmatrix} x_{2} & x_{3} \end{bmatrix}' = \begin{bmatrix} 3.5 & 1.5 \end{bmatrix}', V = B^{-1}A_{N} = \begin{bmatrix} 0 & 0.1 \\ -1 & 0.1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 7 & 1 \end{bmatrix} = \begin{bmatrix} 0.7 & 0.1 \\ -0.3 & 0.1 \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \end{bmatrix}$$

$$x_{B(1)} + \sum_{i \in \mathcal{N}} \left[v_{1j} \right] x_j \le \left[x_2^* \right] \longrightarrow x_2 + \left[0.7 \right] x_1 + \left[0.1 \right] x_4 \le \left[3.5 \right] \longrightarrow x_2 \le 3$$

• Alg. de plans secants de Gomory: Iteració 2

1. Resolució de (RL2):

$$\begin{cases} \min & z_{PE2} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 - x_3 = 2 \end{cases} \qquad \text{(1)} \\ & 7x_1 + 10x_2 + x_4 = 35 \quad \text{(2)} \\ & x_2 + x_5 = 3 \qquad \text{(3) nou tall} \\ & x \ge 0 \text{, entera} \end{cases}$$

2. x^*_{RL2} no és entera: es defineix el tall de Gomory

$$x_{B} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix}, V = B^{-1}A_{N} = \begin{bmatrix} 0 & 1/7 & -10/7 \\ 0 & 0 & 1 \\ -1 & 1/7 & -3/7 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/7 & -10/7 \\ 0 & 1 \\ 1/7 & -3/7 \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

$$x_{B(1)} + \sum_{i \in \mathcal{N}} \left[v_{1j} \right] x_j \le \left[x_1^* \right] \longrightarrow x_1 + \left[\frac{1}{7} \right] x_4 + \left[-\frac{10}{7} \right] x_5 \le \left[\frac{5}{7} \right] \longrightarrow x_1 - 2x_5 \le 0 \xrightarrow{(3)} x_1 + 2x_2 \le 6$$

Alg. de plans secants de Gomory: Iteració 3

1. Resolució de (RL2):

$$\begin{cases} \min & z_{PE3} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 - x_3 = 2 \end{cases} \qquad \text{(1)} \\ 7x_1 + 10x_2 + x_4 = 35 \qquad \text{(2)} \\ x_2 + x_5 = 3 \qquad \text{(3) redundant} \\ x_1 + 2x_2 + x_6 = 6 \qquad \text{(4) nou tall} \\ x \ge 0 \text{, entera} \end{cases}$$

2. x^*_{RL2} no és entera: es defineix el tall de Gomory

$$x_{B} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix}, V = B^{-1}A_{N} = \begin{bmatrix} 0 & 1/2 & -5/2 \\ 0 & -1/4 & 7/4 \\ -1 & 1/4 & -3/4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -5/2 \\ -1/4 & 7/4 \\ 1/4 & -3/4 \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

$$x_{B(2)} + \sum_{i=2k} \left[v_{2j} \right] x_j \le \left[x_2^* \right] \quad \rightarrow \quad x_2 + \left[-0.25 \right] x_4 + \left[1.75 \right] x_6 \le \left[1.75 \right] \quad \rightarrow \quad x_2 - x_4 + x_6 \le 1$$

• Per tal de poder continuar resolent el problema (RL) gràficament, expressem el darrer tall de Gomory en termes de les variables x_1 i x_2 usant les constriccions (2) i (4) de (PE3):

$$\begin{cases} \min & z_{PE3} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 - x_3 = 2 \end{cases} \qquad \text{(1)} \\ & 7x_1 + 10x_2 + x_4 = 35 \quad \text{(2)} \quad \rightarrow \quad x_4 = 35 - 7x_1 - 10x_2 \\ & x_1 + 2x_2 + x_6 = 6 \qquad \text{(4)} \quad \frac{\rightarrow}{-x_4 + x_6} = 6x_1 + 8x_2 - 29 \\ & x \geq 0 \text{ , entera} \end{cases}$$

$$x_2 - x_4 + x_6 \le 1 \rightarrow 6x_1 + 9x_2 \le 30 \rightarrow 2x_1 + 3x_2 \le 10$$

• Alg. de plans secants de Gomory: Iteració 4

Resolució de (RL2):

$$\begin{cases} \min & z_{PE4} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 - x_3 = 2 \end{cases} \qquad \text{(1)} \\ 7x_1 + 10x_2 + x_4 = 35 \qquad \text{(2) redundant} \\ x_2 + x_5 = 3 \qquad \text{(3) redundant} \\ x_1 + 2x_2 + x_6 = 6 \qquad \text{(4)} \\ 2x_1 + 3x_2 + x_7 = 10 \qquad \text{(5) nou tall} \\ x \ge 0 \text{, entera} \end{cases}$$

 $x^*_{\rm RL2}$ entera: solució òptima

$$x_{PE}^* \equiv x_{RL4}^* = \begin{vmatrix} 2 \\ 2 \end{vmatrix}$$
 , $z_{PE}^* \equiv z_{RL4}^* = -16$

Comentaris:

Les formulacions de (PE) a cada iteració son cada vegada més fortes:

$$z_{RL1}^* = -17.5 \le z_{RL2}^* = -17.25 \le z_{RL3}^* = -16.25 \le z_{RL4}^* = -16 \equiv z_{PE}^*$$

En aquest exemple, (PE4) és la formulació ideal: (PE4) = (PEI) = $CH(K_{PE})$

Algorisme de Branch&Cut

Es resoldrà ara amb l'algorisme de B&C

$$\begin{cases} \min & z_{PE} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 \ge 2 \\ & 7x_1 + 10x_2 \le 35 \end{cases}$$

$$x \ge 0 \text{ , entera}$$

Algorisme genèric de Branch and Cut (B&C)

```
Inicialització: L=\{PE1\}; \underline{z}^*_{PE1} = -\infty; z^* = +\infty
Mentre L \neq \emptyset fer
       Selecció: es selecciona un problema PEj \in L
       Relaxació: es resol la relaxació lineal RLj
              d'una formulació de PE_j reforçada amb desigualtats vàlides. \underline{z}^*_{PEi} \leftarrow z^*_{RLi}
       Si K_{RLi} = \emptyset ó z^*_{RLi} \ge z^* ó x^*_{RLi} \equiv x^*_{PEi} fer
              Eliminació:
              L \leftarrow L \setminus \{\mathsf{PE}j\}
               Si x^*_{RLi} \equiv x^*_{PEi} fer
                      Si z^*_{RLi} < z^*: x^* \leftarrow x^*_{RLi}, z^* \leftarrow z^*_{RLi}
                                                                                       \forall (PEl) descendent de (PEi)
                      Si z^* = \underline{z}^*_{PEi} per a algun (PEi) : L \leftarrow L \setminus \{PEI\}
              Fi Si
       altrament
               Separació: L \leftarrow L \setminus \{PE_j\} \cup \{PE(j+1)\} \cup \{PE(j+2)\}
       Fi Si
Fi Mentre
Optim: x^*_{PE1} \equiv x^*; z^*_{PE1} \equiv z^*.
                                                                             Diferència entre B&B i B&C
```


Exemple Branch&Cut: tractament (PE1)

B&C: Iteració 1: L={(PE1)}, $\underline{z}^*_{PE1} = +\infty \le z^*_{PE} \le z^* = +\infty$

Selecció: (PE1)

Relaxació: resolució de la (RL) de (PE) amb dos talls de Gomory

$$\begin{cases} \min & z_{PE1} = -3x_1 - 5x_2 \\ \text{s.a.:} & x_1 + x_2 - x_3 = 2 \end{cases} \tag{1}$$

$$7x_1 + 10x_2 + x_4 = 35 \tag{2}$$

$$x_2 + x_5 = 3 \tag{3} \text{ 1er tall G. (PE1)}$$

 $x_1 + 2x_2 + x_6 = 6$ (4) 2on tall G. (PE1)

 $x \ge 0$, entera

Actualització : $\underline{z}_{PE1}^* \leftarrow \lceil -16.25 \rceil = -16$

Separació: $x_1^* = 2.5 \rightarrow \{ (PE1) + x_1 \le 2 \rightarrow (PE2) \}$ $\{ (PE1) + x_1 \ge 3 \rightarrow (PE3) \}$

Exemple Branch&Cut: tractament (PE2)

B&C, Iteració 2: L={(PE2), (PE3)}, \underline{z}^*_{PE1} = -16 $\leq z^*_{PE} \leq z^*$ = + ∞

- Selecció: (PE2)
- Relaxació: resolució de la (RL) de (PE2):

$$\begin{cases} \min & z_{PE2} = -3x_1 - 5x_2 \\ \text{s.a.} \colon & x_1 + x_2 - x_3 = 2 \end{cases} \qquad \text{(1)} \\ & 7x_1 + 10x_2 + x_4 = 35 \qquad \text{(2)} \\ & x_2 + x_5 = 3 \qquad \qquad \text{(3) 1er tall G. (PE1)} \\ & x_1 + 2x_2 + x_6 = 6 \qquad \qquad \text{(4) 2on tall G. (PE1)} \\ & x_1 + x_7 = 2 \qquad \qquad \text{(5) sep. B & B (PE2)} \end{cases}$$

 $x \ge 0$, entera

- Eliminació: $x^*_{RL2} \equiv x^*_{PE2}$
 - S'elimina (PE2): $L \leftarrow L \setminus \{(PE2)\} = \{(PE3)\}$
 - $-z^*_{PE2} < z^* \Rightarrow x^* \leftarrow x^*_{PE2,0} = [2, 2]', z^* \leftarrow z^*_{PE2,0} = -16$
 - $-z^* = \underline{z}^*_{PE1} \Rightarrow \text{eliminem (PE3) L} \leftarrow \text{L} \setminus \{(PE3)\} = \emptyset$

Exercici: repetiu la segona iteració del B&C seleccionant (PE3) (dos talls de Gomory)

Exemple Branch&Cut: arbre d'exploració

B&C, Iteració 3: L=
$$\varnothing \Rightarrow x^*_{PE1} = x^* = [2,2]$$
', $z^*_{PE1} = z^* = -16$

Arbre d'exploració amb Branch and Cut

Arbre d'exploració amb Branch and Bound

Reoptimització dels problemes relaxats: símplex dual

Considereu el següent problema de PLE:

$$(PE) \begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \end{cases} \rightarrow (PE) \begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 + x_3 = 9 \\ x_1 + x_2 + x_4 = 4 \end{cases}$$

$$x \ge 0 \text{, entera}$$

- El resoldrem amb l'algorisme de plans secant de Gomory:
 - Resolent les relaxacions lineals gràficament.
 - Resolent les relaxacions lineals reoptimitzant amb el símplex dual.
- Aquesta reoptimització també és vàlida per a B&B i B&C.

• Alg. de plans secants de Gomory: Iteració 1

1. Resolució de (RL1):

(PE1)
$$\begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 + x_3 = 9 \quad (1) \\ & x_1 + x_2 + x_4 = 4 \\ & x \ge 0 \text{, entera} \end{cases}$$

2. x^*_{RL1} no és entera: es defineix el tall de Gomory

 $z_{RL1}^* = -3.5 \le z_{PE}^*$

 $x_{RL1}^* = \begin{bmatrix} 1.5 & 2.5 & 0 & 0 \end{bmatrix}'$

$$x_B = \begin{bmatrix} x_1 & x_2 \end{bmatrix}' = \begin{bmatrix} 1.5 & 2.5 \end{bmatrix}', V = B^{-1}A_N = B^{-1} = \begin{bmatrix} -0.1 & 0.6 \\ 0.1 & 0.4 \end{bmatrix} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$x_{B(2)} + \sum_{j \in \mathcal{N}} \left[v_{2j} \right] x_j \le \left[x_2^* \right] \longrightarrow x_2 + \left[0.1 \right] x_3 + \left[0.4 \right] x_4 \le \left[2.5 \right] \longrightarrow x_2 \le 2$$

• Alg. de plans secants de Gomory: Iteració 2

1. Resolució de (RL2):

$$\begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 + x_3 = 9 \\ & x_1 + x_2 + x_4 = 4 \end{cases}$$
 (2)
$$x_2 + x_5 = 2$$
 (3)
$$x \ge 0 \text{, entera}$$

2. x^*_{RL2} no és entera: es defineix el tall de Gomory

$$x_{B} = \begin{bmatrix} x_{1} & x_{2} & x_{4} \end{bmatrix}' = \begin{bmatrix} 0.75 & 2 & 1.25 \end{bmatrix}', V = B^{-1}A_{N} = \begin{bmatrix} -0.25 & 1.5 \\ 0 & 1 \\ 0.25 & -2.5 \end{bmatrix} = \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

$$x_{B(1)} + \sum_{i \in \mathcal{N}} \left[v_{1j} \right] x_j \le \left[x_1^* \right] \to x_1 + \left[-0.25 \right] x_3 + \left[1.5 \right] x_5 \le \left[0.75 \right] \to x_1 - x_3 + x_5 \le 0$$

 Per tal de poder continuar ressolent el problema (RL) gràficament, expressem el darrer tall de Gomory en termes de les variables x₁ i x₂ usant les constriccions de (PE2):

$$\begin{cases}
\min & x_1 - 2x_2 \\
\text{s.a.:} & -4x_1 + 6x_2 + x_3 = 9 \\
& x_1 + x_2 + x_4 = 4
\end{cases}$$

$$x_1 + x_2 + x_4 = 4$$

$$x_2 + x_5 = 2$$

$$x \ge 0 \text{, enteres}$$
(1)

$$x_1 - x_3 + x_5 \le 0 \xrightarrow{(1)} -3x_1 + 6x_2 + x_5 \le 9 \xrightarrow{(2)} -3x_1 + 5x_2 \le 7$$

• Alg. de plans secants de Gomory: Iteració 3

1. Resolució de (RL3):

$$\begin{cases}
\min & x_1 - 2x_2 \\
s.a.: & -4x_1 + 6x_2 + x_3 = 9 \quad (1) \text{ redundant} \\
x_1 + x_2 + x_4 = 4 \quad (2) \\
x_2 + x_5 = 2 \quad (3) \\
-3x_1 + 5x_2 + x_6 = 7 \quad (4) \\
x \ge 0, \text{ entera}
\end{cases}$$

2. $x*_{RL3}$ és entera: STOP

(PE)
$$\begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \end{cases} \qquad \begin{aligned} x_{PE}^* &\equiv x_{RL3}^* = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ x_2 &= -3 \\ x \ge 0 \text{, entera} \end{aligned}$$

$$(PE) \equiv (PE3) \begin{cases} \min & x_1 - 2x_2 \\ s.a. : & -4x_1 + 6x_2 \le 9 \\ x_1 + x_2 \le 4 \end{cases}$$
 (2)
$$x_2 \le 2$$
 (3)
$$-3x_1 + 5x_2 \le 7$$
 (4)
$$x \ge 0, \text{ entera}$$

Algorismes de plans secant i formulacions fortes.

Las formulacions (PE1), (PE2) i (PE3)
 són equivalents al problema (PE) : χ

$$(PE) \min \left\{ z = c'x : x \in K_{PE} = \begin{cases} (0,0) & (0,1) & (0,2) \\ (0,3) & (0,4) & (1,0) \\ (1,1) & (1,2) & (1,3) \\ (2,1) & (2,2) \end{cases} \right\}$$

 A mida que afegim talls, les formulacions son cada vegada més fortes:

$$K_{RL1} \supseteq K_{RL2} \supseteq K_{RL3} \Rightarrow$$

 $\Rightarrow z_{RL1}^* = -3.5 \le z_{RL2}^* = -3.25 \le z_{RL3}^* = -3 \equiv z_{PE}^*$

 L'última formulació, (PE3), tot i ser la més forta i proporcionar l'òptim del problema, no és la ideal:

$$\begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & x_1 + x_2 \le 4 \\ & x_2 \le 2 \end{cases}$$
 (2)
$$(\text{PEI}) \begin{cases} x_2 \le 2 \\ -x_1 + x_2 \le 1 \end{cases}$$
 (5)
$$x \ge 0 \text{, entera}$$

Reoptimització dels problemes relaxats: símplex dual

 Considereu el següent problema de PLE que hem resolt amb l'algorisme de plans secants de Gomory. :

$$\begin{cases} \mathsf{min} & x_1 - 2x_2 \\ \mathsf{s.a.:} & -4x_1 + 6x_2 \le 9 \\ & x_1 + x_2 \le 4 \\ & x \ge 0 \text{ , entera} \end{cases}$$

 Veurem ara com s'usa en la pràctica la reoptimització amb l'algorisme del símplex dual per a resoldre eficientment les relaxacions lineals (RLj) que apareixen en l'aplicació de l'algorisme de plans secants de Gomory.

Addició d'una nova constricció: anàlisi

• S'introdueix una nova constricció definida per:

$$a'_{m+1}x \le b_{m+1} \to a'_{m+1}x + x_{n+1} = b_{m+1}$$

$$\tilde{A}_N = \begin{bmatrix} A_N \\ a'_{m+1} \end{bmatrix}, \tilde{B} = \begin{bmatrix} B & 0 \\ a'_{B,m+1} & 1 \end{bmatrix}, \tilde{B}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ -a'_{B,m+1}B^{-1} & 1 \end{bmatrix}$$

- Analitzem com afecta el canvi a les condicions d'optimalitat :
 - Factibilitat primal: $x_B = B^{-1}b \ge 0$

$$\widetilde{x}_{B} = \begin{bmatrix} x_{B} \\ x_{n+1} \end{bmatrix} = \begin{bmatrix} B^{-1} & 0 \\ -a'_{B,m+1}B^{-1} & 1 \end{bmatrix} \begin{bmatrix} b \\ b_{m+1} \end{bmatrix}$$

$$= \begin{bmatrix} \widetilde{x}_{B} \\ b_{m+1} - a'_{B,m+1}x_{B} \end{bmatrix} \stackrel{?}{\leq} 0$$

La fact. primal es conserva $\Leftrightarrow x_{n+1} = b_{m+1} - a'_{B,m+1}x_B \ge 0$

Addició d'una nova constricció: anàlisi

Recordem que hem introduït una nova constricció:

$$a'_{m+1} \le b_{m+1} \to a'_{m+1}x + x_{n+1} = b_{m+1}$$

$$\tilde{A}_N = \begin{bmatrix} A_N \\ a'_{m+1} \end{bmatrix}$$
, $\tilde{B} = \begin{bmatrix} B & 0 \\ a'_{B,m+1} & 1 \end{bmatrix}$, $\tilde{B}^{-1} = \begin{bmatrix} B^{-1} & 0 \\ -a'_{B,m+1}B^{-1} & 1 \end{bmatrix}$

Analitzem com afecta això a les condicions d'optimalitat :

- Factibilitat dual:
$$r' = c'_N - \lambda' A_N \ge 0$$

$$\tilde{\lambda}' = \begin{bmatrix} c_B' & 0 \end{bmatrix} \begin{bmatrix} B^{-1} & 0 \\ -a_{B,m+1}' B^{-1} & 1 \end{bmatrix} = \begin{bmatrix} \lambda' & 0 \end{bmatrix}$$

$$\tilde{r}' = c_N' - \tilde{\lambda}' \tilde{A}_N = c_N' - [\lambda' \quad 0] \begin{bmatrix} A_N \\ a_{N,m+1}' \end{bmatrix} = \overbrace{c_N' - \lambda' A_N}^{r'} \ge 0$$

 \Rightarrow la factibilitat dual es conserva: si $x_{n+1} = b_{m+1}$ $a'_{B,m+1}x_B < 0 \Rightarrow$ reoptimització amb l'ASD

Reoptimització amb el símplex dual i PLE

Alg. de plans secants de Gomory: Iteració 1

Resolució de (RL1):

(PE1)
$$\begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 + x_3 = 9 \quad (1) \\ & x_1 + x_2 + x_4 = 4 \quad (2) \\ & x \ge 0 \text{, entera} \end{cases}$$

Solució òptima de (RL1):

$$\mathcal{B} = \{1,2\}, B = \begin{bmatrix} -4 & 6 \\ 1 & 1 \end{bmatrix}, B^{-1} = \begin{bmatrix} -1/10 & 3/5 \\ 1/10 & 2/5 \end{bmatrix}, x_B = B^{-1}b = \begin{bmatrix} 1.5 \\ 2.5 \end{bmatrix}$$

$$\mathcal{N} = \{3,4\}, r' = c'_{N} - c'_{B} B^{-1} A_{N} = \begin{bmatrix} 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -2 \end{bmatrix} \begin{bmatrix} -1/10 & 3/5 \\ 1/10 & 2/5 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.3 & 0.2 \end{bmatrix}$$

 $x_{RL1}^* = \begin{bmatrix} 1.5 & 2.5 & 0 & 0 \end{bmatrix}'$

Reoptimització amb el símplex dual

Alg. de plans secants de Gomory: Iteració 2

Resolució de (RL2): reoptimització per addició de la constricció (3)

$$\text{(RL2)} \begin{cases} \min & x_1 - 2x_2 \\ \text{s.a.:} & -4x_1 + 6x_2 + x_3 \\ x_1 + x_2 \\ x_2 \\ x \ge 0 \end{cases} = 9 \quad (1) \qquad a'_{m+1}x + x_{n+1} = b_{m+1}, x_2 + x_5 = 2$$

$$(RL2) \begin{cases} x_1 + x_2 \\ x_2 \\ x \ge 0 \end{cases} + x_5 = 2 \quad (3) \qquad A_N \leftarrow \begin{bmatrix} \frac{A_N}{a'_{N,m+1}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B \leftarrow \begin{bmatrix} \frac{B}{a'_{B,m+1}} & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 6 & 0 \\ \frac{1}{0} & 1 & 1 \end{bmatrix}, B^{-1} \leftarrow \begin{bmatrix} \frac{B^{-1}}{-a'_{B,m+1}B^{-1}} & 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1/10 & 3/5 & 0 \\ \frac{1/10 & 2/5}{0} & 0 \\ -1/10 & -2/5 & 1 \end{bmatrix}$$

$$x_B \leftarrow \begin{bmatrix} \frac{x_B}{x_{n+1}} \end{bmatrix} = \begin{bmatrix} 1.5 \\ 2.5 \\ -0.5 \end{bmatrix} \not \ge 0 \Rightarrow \text{ infactible (P)}$$

$$\Rightarrow \text{ reoptimització amb el símplex (D)}$$

$$r' \leftarrow r' = \begin{bmatrix} 0.3 & 0.2 \end{bmatrix} \ge 0 \Rightarrow \text{ factible (D)}$$

Reoptimització amb el símplex dual

- **1**^a iteració: $\mathcal{B} = \{1,2,5\}, \mathcal{N} = \{3,4\}$
- Identificació de s.b.f. òptima i selecció de la v.b. sortint B(p):

$$x_B = [1.5 \ 2.5 \ -0.5]' \ge 0 \Rightarrow p = 3, B(3) = 5 \text{ v.b. sortint.}$$

Identificació de problema (D) il·limitat :

$$d_{r_N} = (\beta_p A_N)' = (\beta_3 A_N)' = \begin{bmatrix} -1 & -2 \\ 10 & 5 \end{bmatrix} 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 10 & 5 \end{bmatrix} \not \ge 0$$

Selecció de la v.n.b. entrant q:

$$\theta_D^* = \min_{\left\{j \in \mathcal{N} \middle| d_{r_{N_j}} < 0\right\}} \left\{ -r_j / d_{r_{N_j}} \right\} = \min \left\{ \frac{-0.3}{-1/10}, \frac{-0.2}{-2/5} \right\} = \frac{1}{2} \Rightarrow q = 4$$

Canvi de base i actualitzacions:

Intenteu fer la 2a iteració de Gomory amb simplex dual

$$\mathcal{B} = \{1, 2, 4\}, B = \begin{bmatrix} -4 & 6 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} -1/4 & 0 & 3/2 \\ 0 & 0 & 1 \\ 1/4 & 1 & -5/2 \end{bmatrix}, x_B = B^{-1}b = \begin{bmatrix} 3/4 \\ 2 \\ 5/4 \end{bmatrix} \ge 0$$

$$x_B \ge 0 \Rightarrow$$
 òptima

