Signal Processing Fourier Transformation Refresher Course Andreas Maier, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

The Fourier Transformation and Its Properties

Fourier Transform Sampling Theorem Convolution Theorem Symmetry Property Other Properties

Further Readings

Fourier Transform

Definition

The discrete *Fourier transform* of a 1-D signal $f: \{0,...,N-1\} \longrightarrow \mathbb{C}$ is defined by:

$$F(\xi) = \sum_{n=0}^{N-1} f(n) e^{\frac{-2\pi i n \xi}{N}}.$$

Sampling Theorem

Theorem

Given a continuous function $f : \mathbb{R} \longrightarrow \mathbb{R}$ with a limited bandwidth $B \in \mathbb{R}$, i. e., the Fourier transform F of f satisfies

$$F(\xi) = 0$$
 for $\xi > B$.

The interpolation using discrete sampling points allows the exact reconstruction of f if the function is sampled with a sampling rate that is larger than twice the bandwidth B, i. e.,

$$f_{sampling} > 2B$$
.

Convolution Theorem

Theorem

Convolution theorem: The convolution of two signals f, h in the time domain corresponds to a multiplication of the respective Fourier transforms F, H in the frequency domain:

$$g(n) = \sum_{k=0}^{N-1} f(k)h(n-k) = (f*h)(n),$$

$$G(\xi) = F(\xi)H(\xi),$$

where G = FT(g).

Convolution Theorem

$$FT(f*h)(\xi) = \sum_{n=0}^{N-1} (f*h)(n)e^{\frac{-2\pi i n\xi}{N}} = \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} f(k)h(n-k)e^{\frac{-2\pi i n\xi}{N}}$$

$$= \sum_{k=0}^{N-1} f(k) \sum_{n=0}^{N-1} h(n-k)e^{\frac{-2\pi i n\xi}{N}}$$

$$= \sum_{k=0}^{N-1} f(k) \sum_{n'=0}^{N-1} h(n')e^{\frac{-2\pi i (n'+k)\xi}{N}} \qquad (n' \to n-k, h \text{ periodic})$$

$$= \sum_{k=0}^{N-1} f(k)e^{\frac{-2\pi i k\xi}{N}} \sum_{n'=0}^{N-1} h(n')e^{\frac{-2\pi i n'\xi}{N}}$$

$$= F(\xi)H(\xi) = G(\xi)$$

Symmetry Property for Real Valued Signals

Theorem

If f(n) is a real valued discrete signal of length N, its discrete Fourier transform $F(\xi)$ fulfills the following symmetry property:

$$F(\xi) = \overline{F}(N - \xi),$$

where \overline{F} denotes the complex conjugate of F.

Symmetry Property for Real Valued Signals

Using the property that for real numbers $a \in \mathbb{R} \subset \mathbb{C}$ they are identical with their complex conjugate $a = \overline{a}$, we have $f(n) = \overline{f}(n)$ for all sampling points n, and thus:

$$\overline{F}(N-\xi) = \sum_{k=0}^{N-1} f(k) e^{\frac{-2\pi i k(N-\xi)}{N}} = \sum_{k=0}^{N-1} \overline{f}(k) e^{\frac{2\pi i k(N-\xi)}{N}} = \sum_{k=0}^{N-1} f(k) e^{\frac{-2\pi i k(\xi-N)}{N}}.$$

The N-th unit roots further fulfill

$$e^{\frac{2\pi i k \xi}{N}} = e^{\frac{2\pi i k (\xi + mN)}{N}},$$

where $m \in \mathbb{Z}$, so we finally get:

$$\overline{F}(N-\xi)=F(\xi).$$

Some Useful Properties of the Fourier Transform

	spatial domain	frequency domain
scaling	f(at)	$\frac{1}{ a }F\left(\frac{\xi}{a}\right)$
shifting	$f(t-t_0)$	$e^{-i\xi t_0}F(\xi)$
symmetry	$-\frac{1}{2\pi}F(t)$	$f(-\xi)$
differentiation	$\frac{\mathrm{d}^n}{\mathrm{d}t^n}f(t)$	$(i\xi)^n F(\xi)$

Table 1: Summary of important properties of the Fourier transform

Topics

The Fourier Transformation and Its Properties

Fourier Transform Sampling Theorem Convolution Theorem Symmetry Property Other Properties

Further Readings

Further Readings

This topic is so important and well-known that further information can easily be found searching on the internet, or in certain calculus textbooks.

A concise mathematical overview is given in the rather old book:

 R. D. Stuart. An Introduction to Fourier Analysis. Methuen's Monographs on Physical Subjects. London: Methuen & Co Ltd., 1961
 It can be found online here (November 2016).