Trees

CS 225 Course Staff

2022-10-25

Contents

1	Dat	a Structures in C++	5
2	The pool of tears		7
3	A c	aucus-race and a long tale	9
4	Tre	es	11
	4.1	Basic tree terminology	11
	4.2	Tree Property: Height	12
	4.3	Tree Property: Binary	12
	4.4	Tree Property: Full	12
	4.5	Tree Property: Perfect	12
	4.6	Tree Property: Complete	13
	4.7	Tree Traversals	13
	4.8	Searching Trees	14
	4.0	Doloto and Incort	1.4

4 CONTENTS

Data Structures in C++

The pool of tears

std::cout<< "hello harsh" <<std::endl;</pre>

Figure 2.1: alt text or image title

A caucus-race and a long tale

Trees

You're either a botanist or computer scientist if you can talk about trees beyond the #savethetrees kind of narrative. Unlike trees in real life, Trees in computer science have a root node at the "top". So far we've talked about linear data structures. Linear data structures are ordered, meaning that there is a sequence with which our data is ordered and traversed. Trees are a non-linear data structure, meaning that the data isn't organized in a sequential manner. This means that you can visit all the elements on a tree in many different ways based on what type of problem you are trying to solve. For problems where we want to optimize for a certain outcome and don't care about order as much, trees are perfect.

If we take a very high level look at what trees and lists are composed of, it's just nodes and pointers, however, the difference with trees that they are **hierarchical** meaning that there is a top down organization. Trees are a hierarchical data structure with a certain set of properties that distinguish it from graphs. Trees are rooted, which means that there is a pointer to the root node and each child node can be reached via the root.

4.1 Basic tree terminology

(adapted from CS 173) * Vertex: "nodes"

• Path: sequence of edges

• Parents: Node b, d, x have Node a as their parent

• Children: b, d, x, are the children of a

• Siblings: b, d, x, are siblings of each other

- Ancestors: u has ancestors l, d, a
- Descendants: \mathbf{x} has \mathbf{s} , \mathbf{m} as its descendants
- Leaves: Vertices with no children

4.2 Tree Property: Height

- Computation of the tree height
 - The length of the longest path from the root to the leaf (count edges).
 - If we want to compute recursively:

height(T) = 1 + max(height(TL), height(TR)), where if height(null) = -1, which might be counter-intuitive but it follows the mathematical definition of tree height

4.3 Tree Property: Binary

- A binary tree is either
 - T = {TL, TR, r}, where TL, TR are binary trees T = {} = $\,\emptyset$

4.4 Tree Property: Full

- A binary tree is full if and only if
 - Either: $F = \{\}$
 - Or: $F = \{TL, TR, r\}$ where TL, TR both have either 0 or 2 children
- **Theorem**: A binary tree with n data items has n+1 null pointers.

4.5 Tree Property: Perfect

- A perfect tree Ph is defined by its height
 - Ph is a tree of height **h**, with
 - $* P-1 = \{\}$
 - * Ph = $\{r, Ph-1, Ph-1\}$ when h>=0

4.6 Tree Property: Complete

(as defined in data structures) * A complete tree is * A perfect tree except for the last level

- All leaves must be pushed to the left
- Or, recursively, a complete tree Ch of height h is

```
- C-1 = {} 

- Ch = {r, TL, TR} where 

* Either: TL = Ch-1 and TR = Ph-2 Or:TL = Ph-1 and TR = Ch-1
```

- Full does not imply perfect, so as complete does not imply perfect
- Not full implies not perfect, thus perfect implies full; perfect also implies complete too.

4.7 Tree Traversals

(practice them here: https://yongdanielliang.github.io/animation/web/BST. html) * Pre-Order: process the data first, then left child, then the right child * In-Order: left child, process the data, right child * Post-Order: left child, right child, process the data last

```
void BinaryTree<T>::preOrder(TreeNode * cur) {
    if (cur != NULL) {
        func(curr->data);
        preOrder(curr->left);
        preOrder(curr->right);
    }
}

void BinaryTree<T>::inOrder(TreeNode * cur) {
    if (cur != NULL) {
        preOrder(curr->left);
        func(curr->data);
        preOrder(curr->right);
    }
}

void BinaryTree<T>::inOrder(TreeNode * cur) {
    if (cur != NULL) {
```

```
preOrder(curr->left);
    preOrder(curr->right);
    func(curr->data);
}
```

4.8 Searching Trees

- BFS: breadth first search: visits nodes at each level (level-order traversal): use a queue
- DFS: depth first search: find the endpoint of the path quickly (in order, pre order or post order): use a stack
- Traversal vs Search: traverse visits every node vs search visits nodes until you find what you want

4.9 Delete and Insert