COMPUTATIONAL FINANCE: 422

The Capital Asset Pricing Model

Panos Parpas

(Slides courtesy of Daniel Kuhn)

p.parpas@imperial.ac.uk

Imperial College

London

This Lecture

- The two-fund theorem
- Inclusion of a risk-free asset and the one-fund theorem
- The market portfolio
- The capital market line
- The Capital Asset Pricing Model (CAPM)
 - The beta of an asset/portfolio
 - The security market line
 - Systematic and unsystematic risk
- CAPM as a pricing formula

Further reading:

D.G. Luenberger: Investment Science, Chapters 6 & 7

The Markowitz Model

Markowitz problem (with short selling allowed):

minimize
$$\frac{1}{2} m{w}^{ op} \Sigma m{w}$$
 subject to $m{w}^{ op} ar{m{r}} - ar{r}_{\mathrm{P}} = 0$ $m{w}^{ op} m{e} - 1 = 0$

Lagrangian function:

$$L(\boldsymbol{w}, \lambda, \mu) = \frac{1}{2} \boldsymbol{w}^{\top} \Sigma \boldsymbol{w} - \lambda \left(\boldsymbol{w}^{\top} \bar{\boldsymbol{r}} - \bar{r}_{P} \right) - \mu \left(\boldsymbol{w}^{\top} \boldsymbol{e} - 1 \right) ,$$

Optimality conditions:

$$\Sigma \boldsymbol{w} - \lambda \bar{\boldsymbol{r}} - \mu \boldsymbol{e} = \boldsymbol{0}, \quad \bar{\boldsymbol{r}}^{\top} \boldsymbol{w} = \bar{r}_{P}, \quad \boldsymbol{e}^{\top} \boldsymbol{w} = 1$$

Solution of The Markowitz Model

The portfolio weights and the Lagrange multipliers of the optimal portfolio with expected return $\bar{r}_{\rm P}$ are given by:

$$\begin{pmatrix} \boldsymbol{w} \\ \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} \Sigma & -\bar{\boldsymbol{r}} & -\boldsymbol{e} \\ -\bar{\boldsymbol{r}}^{\top} & 0 & 0 \\ -\boldsymbol{e}^{\top} & 0 & 0 \end{pmatrix}^{-1} \begin{pmatrix} \boldsymbol{0} \\ -\bar{r}_{\mathrm{P}} \\ -1 \end{pmatrix} = f(\bar{r}_{\mathrm{P}}).$$

 \Rightarrow f is an affine function (i.e., a linear function + a constant) of the return target parameter \bar{r}_{P} .

COMPUTATIONAL FINANCE (

The Two-Fund Theorem

Theorem 0.1. Let (w_1, λ_1, μ_1) and (w_2, λ_2, μ_2) be Markowitz solutions for \bar{r}_P^1 and \bar{r}_P^2 , respectively. Then, the Markowitz solution for

$$\bar{r}_{\mathrm{P}}^{3} = \alpha \bar{r}_{\mathrm{P}}^{1} + (1 - \alpha) \bar{r}_{\mathrm{P}}^{2}$$

is given by

$$(\boldsymbol{w}_3, \lambda_3, \mu_3) = \alpha(\boldsymbol{w}_1, \lambda_1, \mu_1) + (1 - \alpha)(\boldsymbol{w}_2, \lambda_2, \mu_2).$$

Proof.

$$(\mathbf{w}_{3}, \lambda_{3}, \mu_{3}) = f(\bar{r}_{P}^{3}) = f(\alpha \bar{r}_{P}^{1} + (1 - \alpha)\bar{r}_{P}^{2})$$

$$= \alpha f(\bar{r}_{P}^{1}) + (1 - \alpha)f(\bar{r}_{P}^{2})$$

$$= \alpha(\mathbf{w}_{1}, \lambda_{1}, \mu_{1}) + (1 - \alpha)(\mathbf{w}_{2}, \lambda_{2}, \mu_{2})$$

Importance of the Two-Fund Theorem

- Investors seeking efficient portfolios need only invest in combinations of two efficient funds.
- Under the assumptions of the mean-variance model, there is no need for anyone to buy individual stocks.

Inclusion of a Risk-Free Asset

- So far we have assumed that all assets are risky, i.e., they each have $\sigma > 0$.
- A risk-free asset has return r_f that is deterministic. It has $\sigma=0$ and satisfies $r_f=\mathrm{E}(r_f)$.
- Consider any risky asset whose return r has mean value \bar{r} and standard deviation $\sigma > 0$. The covariance of the risk-free return r_f with r must be zero:

$$cov(r, r_f) = E[(r - E[r])(r_f - E[r_f])] = 0.$$

• Form a portfolio using weight α for the risk-free asset and $1-\alpha$ for the risky asset.

$$\Rightarrow$$
 $\bar{r}_{\rm P} = \alpha r_f + (1 - \alpha)\bar{r}, \quad \sigma_{\rm P}^2 = (1 - \alpha)^2 \sigma^2.$

COMPLITATION AL FINIANIOS

Inclusion of a Risk-Free Asset

- For this portfolio we have:
 - mean = $\alpha r_f + (1 \alpha)\bar{r}$
 - standard deviation = $(1 \alpha)\sigma$
- As we vary α , this maps out a straight line.

Expanded Feasible Set

- If both borrowing and lending are allowed, an infinite triangular region is obtained.
- If only lending is allowed, the region will have a triangular front end, but will curve for larger σ .

The One-Fund Theorem

Theorem 0.2. When risk-free borrowing and lending are available, there is a single fund F of risky assets such that any efficient portfolio can be constructed as a combination of the fund F and the risk-free asset.

Markowitz problem with a risk-free asset:

Let w be the weights of the risky assets and w_0 the weight of the risk-free asset.

minimize
$$\frac{1}{2} m{w}^{ op} \Sigma m{w}$$
 subject to $w_0 r_f + m{w}^{ op} ar{m{r}} = ar{r}_{
m P}$ $w_0 + m{w}^{ op} m{e} = 1$

COMPUTATIONAL FINANCE 40

Market Portfolio

- Under the one fund theorem, every investor will buy a combination of the fund F and the risk-free asset.
 - ⇒ Everyone buys the same portfolio of risky assets.
- Equilibrium argument: F must be the market portfolio!
- The market portfolio is a portfolio of every stock in the market in proportion to its market capitalization.
- Asset i's weight in the market portfolio is
 - $w_i = \frac{\text{total value of all assets of type } i}{\text{total value of all assets in the market}}$.

Example: Market Portfolio

Security	Shares	Price per	Capitalization	Weight
	Outstanding	Share (£)		
Jazz	10'000.00	6	60'000.00	3/20
Classical	30'000.00	4	120'000.00	3/10
Rock	40'000.00	5.5	220'000.00	11/20
Total	80'000.00		400'000.00	1

The Capital Market Line

- In the presence of a risk-free asset, the efficient frontier is called capital market line (CML).
- Any asset on the CML satisfies

$$\bar{r} = r_f + \underbrace{\left(\frac{\bar{r}_M - r_f}{\sigma_M}\right)}_{\text{"price of risk"}} \sigma \, .$$

COMPUTATIONAL FINANCE 46

Example

- Given $r_f = 10\%$, $\bar{r}_M = 17\%$, $\sigma_M = 12\%$.
- You would like to earn 33% on average. What is the minimal risk (standard deviation) of your portfolio?
- For the risk to be minimal, your portfolio should lie on the capital market line. Thus

$$\bar{r} = r_f + \left(\frac{\bar{r}_M - r_f}{\sigma_M}\right) \sigma$$

$$\Rightarrow 0.33 = 0.10 + \frac{0.17 - 0.10}{0.12} \sigma.$$

The solution of this equation is $\sigma = 40\%$.

The Capital Asset Pricing Model

Theorem 0.3 (Capital Asset Pricing Model (CAPM)). Assume that

- all investors are Markowitz mean-variance investors;
- short selling is allowed;
- there is a risk-free asset;
- the investors share the same predictions of means, variances, and covariances.

If the market portfolio M is efficient, the expected return \bar{r}_i of any asset i satisfies

$$\bar{r}_i - r_f = \beta_i (\bar{r}_M - r_f) \,,$$

where

$$\beta_i = \frac{\sigma_{iM}}{\sigma_M^2} \, .$$

Proof of the CAPM (I)

Consider a portfolio consisting of a portion α invested in asset i and a portion $1 - \alpha$ invested in the market portfolio.

This portfolio has

mean return: $\bar{r}_{\alpha} = \alpha \bar{r}_i + (1 - \alpha) \bar{r}_M$

standard deviation: $\sigma_{\alpha} = \sqrt{\alpha^2 \sigma_i^2 + 2\alpha(1-\alpha)\sigma_{iM} + (1-\alpha)^2 \sigma_M^2}$

As α varies, \bar{r}_{α} and σ_{α} trace out a curve in the \bar{r} - σ diagram.

COMPUTATIONAL FINANCE 40

Proof of the CAPM (II)

At $\alpha = 0$, the curve and the CML are tangent.

- ⇒ They must have the same slope!
- Slope of the CML: $\frac{\overline{r}_M r_f}{\sigma_M}$
- Slope of the curve at $\alpha = 0$:

$$\left. \frac{\mathsf{d} \bar{r}_{\alpha}}{\mathsf{d} \sigma_{\alpha}} \right|_{\alpha=0} = \left. \left(\frac{\mathsf{d} \bar{r}_{\alpha}}{\mathsf{d} \alpha} \right) \left(\frac{\mathsf{d} \sigma_{\alpha}}{\mathsf{d} \alpha} \right)^{-1} \right|_{\alpha=0}$$

COMPUTATION AL FINANCE A

Proof of the CAPM (III)

Necessary derivatives:

$$\Rightarrow$$
 slope of curve at $\alpha=0$: $\left.\frac{\mathrm{d}\bar{r}_{\alpha}}{\mathrm{d}\sigma_{\alpha}}\right|_{\alpha=0}=\frac{(\bar{r}_{i}-\bar{r}_{M})\sigma_{M}}{\sigma_{iM}-\sigma_{M}^{2}}$.

COMPLITATION AL FINANCE 40

Proof of the CAPM (IV)

Equality of the two slopes implies:

$$\frac{\bar{r}_M - r_f}{\sigma_M} = \frac{(\bar{r}_i - \bar{r}_M)\sigma_M}{\sigma_{iM} - \sigma_M^2}.$$

We now solve for \bar{r}_i to obtain the final result:

$$\bar{r}_i = r_f + \left(\frac{\bar{r}_M - r_f}{\sigma_M^2}\right)\sigma_{iM} = r_f + \beta_i(\bar{r}_M - r_f)$$

where

$$\beta_i = \frac{\sigma_{iM}}{\sigma_M^2} \, .$$

Example

- Given $r_f = 10\%$, $\bar{r}_M = 17\%$, $\sigma_M = 12\%$.
- What is the expected return of an asset whose covariance with the market is 0.0288?
- Solution: use CAPM!

Compute beta:
$$\beta_i = \frac{\sigma_{iM}}{\sigma_M^2} = \frac{0.0288}{(0.12)^2} = 2$$
.

Thus:

$$\bar{r}_i = r_f + \beta_i(\bar{r}_M - r_f) = 0.10 + 2(0.17 - 0.10) = 24\%$$
.

COMPLITATION AL FINANCE (

Beta of a Portfolio

It is easy to calculate the beta of a portfolio in terms of the betas of the assets in the portfolio:

$$\beta_{P} = \frac{\text{cov}(r_{P}, r_{M})}{\text{var}(r_{M})}$$

$$= \frac{\text{cov}(\sum_{i=1}^{n} w_{i} r_{i}, r_{M})}{\text{var}(r_{M})}$$

$$= \frac{\sum_{i=1}^{n} w_{i} \text{cov}(r_{i}, r_{M})}{\text{var}(r_{M})}$$

$$= \sum_{i=1}^{n} w_{i} \beta_{i}.$$

The Security Market Line

CAPM:
$$\bar{r}_i = r_f + \beta_i (\bar{r}_M - r_f)$$
, $\beta_i = \frac{\sigma_{iM}}{\sigma_M^2}$.

Under the equilibrium conditions assumed by the CAPM, any asset should fall on the security market line (SML).

COMPUTATIONAL FINANCE 40

Importance of the CAPM

• The correlation with the market (β) determines the expected excess rate of return of an asset (w.r.t. r_f):

•
$$\beta = 0 \Rightarrow \bar{r}_i = r_f + 0(\bar{r}_M - r_f) = r_f$$
: risk-free rate

•
$$\beta = 1 \Rightarrow \bar{r}_i = r_f + 1(\bar{r}_M - r_f) = \bar{r}_M$$
: market return

$$\beta = 2 \Rightarrow \bar{r}_i = r_f + 2(\bar{r}_M - r_f) = 2\bar{r}_M - r_f$$

Note that

- the CML relates the expected rate of return of an efficient portfolio to its standard deviation/risk;
- the SML relates the expected rate of return of an individual asset to its beta/systematic risk.

Risk and CAPM

- Expected return: $\bar{r}_i = r_f + \beta_i(\bar{r}_M r_f)$
- Therefore, we can write

$$r_i = r_f + \beta_i (r_M - r_f) + \varepsilon_i , \qquad (*)$$

where the random var. ε_i is chosen to make (*) true.

- CAPM implies that $E(\varepsilon_i) = 0$.
- CAPM also implies that $cov(\varepsilon_i, r_M) = 0$:

$$cov(r_i, r_M) = cov(r_f + \beta_i(r_M - r_f) + \varepsilon_i, r_M)
= cov(r_f, r_M) + \beta_i cov(r_M, r_M) - \beta_i cov(r_f, r_M) + cov(\varepsilon_i, r_M)
= \beta_i cov(r_M, r_M) + cov(\varepsilon_i, r_M) = cov(r_i, r_M) + cov(\varepsilon_i, r_M)$$

 $\Rightarrow \text{cov}(\varepsilon_i, r_M) = 0$, i.e., ε_i is uncorrelated with the market!

COMPUTATIONAL FINANCE 40

Google Inc. (GOOG): $\beta = 0.74$

We have

$$r_i = r_f + \beta_i (r_M - r_f) + \varepsilon_i ,$$

where ε_i has zero mean and is uncorrelated with r_M .

 \bullet β_i determines the expected movement with the market!

Systematic Risk (I)

The variance of an asset is commonly viewed as its risk:

$$\sigma_i^2 = \text{cov}(r_i, r_i)
= \text{cov}(r_f + \beta_i(r_M - r_f) + \varepsilon_i, r_f + \beta_i(r_M - r_f) + \varepsilon_i)
= \beta_i^2 \sigma_M^2 + \text{var}(\varepsilon_i).$$

- The risk in r_i is the sum of two terms:
 - $eta_i^2 \sigma_M^2 = {
 m systematic\ risk}$
 - * associated with the market as a whole
 - * can not be diversified
 - $var(\varepsilon_i)$ =: nonsystematic, idiosyncratic, specific risk
 - * uncorrelated with the market
 - * can be reduced by diversification

COMPUTATIONAL FINANCE (

Systematic Risk (II)

- If $\varepsilon_i = 0$, then this asset has only systematic risk \Rightarrow it lies on the CML.
- If $\varepsilon_i \neq 0$, then this asset has also nonsystematic risk \Rightarrow it falls to the right of the CML.

Summary of CAPM (I)

Returns:

$$r_i = r_f + \beta_i (r_M - r_f) + \varepsilon_i \,,$$

where ε_i has zero mean and is uncorrelated with r_M .

Expected returns:

$$\bar{r}_i = r_f + \beta_i (\bar{r}_M - r_f)$$

Variances:

$$\sigma_i^2 = \beta_i^2 \sigma_M^2 + \operatorname{var}(\varepsilon_i)$$

The expected return of an asset/portfolio is not determined by its variance, but only by its beta, which measures the amount of risk from the market portfolio.

Summary of CAPM (II)

- You are only rewarded (expected return) for risk that you cannot diversify away.
- \blacksquare Risk is measured by β , not the variance of your asset.
- The return of an asset i is determined by how it fits into the market portfolio, not by its characteristics alone.

CAPM as a Pricing Formula

- CAPM is a pricing formula.
- The standard CAPM formula only contains expected rates of return.
- Suppose an asset is bought at a (fixed) price P and later sold at a (random) price Q. The rate of return is

$$r = \frac{Q - P}{P} \,.$$

The CAPM formula yields:

$$\frac{\bar{Q} - P}{P} = r_f + \beta(\bar{r}_M - r_f) \implies P = \frac{\bar{Q}}{1 + r_f + \beta(\bar{r}_M - r_f)}.$$

COMPLITATIONAL FINANCE (

Example

- Consider an oil well with an expected payoff of £1,000. The standard deviation of this payoff is 0.40.
- The β of the oil well is 0.6, the risk-free rate is 10%, and the return on the market is 17%.
- According to CAPM, what is the price of the oil well?
- Answer:

$$P = \frac{\bar{Q}}{1 + r_f + \beta(\bar{r}_M - r_f)} = \frac{\pounds 1,000}{1 + 0.1 + 0.6(0.17 - 0.1)} = \pounds 867.$$

(Note that the standard deviation of 0.40 was not needed in the calculation)

Certainty Equivalent Form

The formula

$$P = \frac{\bar{Q}}{1 + r_f + \beta(\bar{r}_M - r_f)} \tag{*}$$

looks like a we discount the expected payoff \bar{Q} at a risk-adjusted interest rate $r_f + \beta(\bar{r}_M - r_f)$.

■ The formula (*) is equivalent to

$$P = \frac{1}{1+r_f} \left(\bar{Q} - \frac{\operatorname{cov}(Q, r_M)}{\sigma_M^2} (\bar{r}_M - r_f) \right) .$$

This looks like we discount the risk-adjusted payoff,

$$\left(\bar{Q} - \frac{\operatorname{cov}(Q, r_M)}{\sigma_M^2} (\bar{r}_M - r_f)\right)$$
,

at the risk-free rate r_f .

COMPUTATIONAL FINANCE 46

Proof of Certainty Equivalent Formula

We start from the formula

$$P = \frac{\bar{Q}}{1 + r_f + \beta(\bar{r}_M - r_f)}. \tag{*}$$

Using the fact that r = Q/P - 1, the value of beta becomes

$$\beta = \frac{\operatorname{cov}(Q/P - 1, r_M)}{\sigma_M^2} = \frac{\operatorname{cov}(Q/P, r_M)}{\sigma_M^2} = \frac{\operatorname{cov}(Q, r_M)}{P\sigma_M^2}.$$

Substituting this into (*) gives

$$P = \frac{\bar{Q}}{1 + r_f + \frac{\text{cov}(Q, r_M)}{P\sigma_M^2}(\bar{r}_M - r_f)}.$$

OOMBUTATIONAL FINANCE 46

Proof of Certainty Equivalent Formula

Multiplying this formula with the denominator of the rhs,

$$P(1+r_f) + \frac{\text{cov}(Q, r_M)}{\sigma_M^2} (\bar{r}_M - r_f) = \bar{Q},$$

and solving for P yields the desired result

$$P = \frac{1}{1 + r_f} \left(\bar{Q} - \frac{\operatorname{cov}(Q, r_M)}{\sigma_M^2} (\bar{r}_M - r_f) \right),$$

which is linear in Q. The risk-adjusted payoff

$$\left(\bar{Q} - \frac{\operatorname{cov}(Q, r_M)}{\sigma_M^2} (\bar{r}_M - r_f)\right)$$

is the certainty equivalent for the random payoff Q.

NPV Using CAPM

- A firm can use the CAPM to decide which projects it should carry out.
- It is natural to define the NPV of a project that costs P and generates a random payoff Q as

NPV =
$$-P + \frac{1}{1 + r_f} \left(\bar{Q} - \frac{\text{cov}(Q, r_M)}{\sigma_M^2} (\bar{r}_M - r_f) \right)$$
.

It is appropriate for the firm to select the group of projects that maximize NPV.