Classification of MS patients into disability levels using deep learning approaches based solely on routinely-acquired MRI

Coll, Ll.¹; Carbonell-Mirabent, P.¹; Cobo-Calvo, Á.¹; Arrambide, G.¹; Vidal-Jordana, À.¹; Comabella, M.¹; Castilló, J.¹; Rodríguez-Acevedo, B.¹; Zabalza, A.¹; Galán, I.¹; Midaglia, L.¹; Nos, C.¹; Salerno, A.²; Auger, C.²; Alberich, M.²; Río, J.¹; Sastre-Garriga, J.¹; Oliver, A.³; Montalban, X.¹; Rovira, À.¹; Tintoré, M.¹; Pareto, D.²; Lladó, X.³; Tur, C.¹

¹ Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain

² Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain

³ Research institute of Computer Vision and Robotics, University of Girona, Girona, Spain

Objectives

 Study the potential of Deep Learning (DL) based models to stratify MS patients based on their EDSS evaluation at any time using a single MRI time-point

DL approaches analysed:

Global

Regional

 Compare the performance with a traditional ML algorithm: a Logistic Regression (LR) based on brain volumetric measurements

Methods: Dataset

	Full cohort N = 385	No-disability N = 217	Disability N = 168	<i>p</i> -value
Female, n(%)	252 (65)	149 (69)	103 (61)	0.16
Age at CIS, yrs (mean[range])	31.8 [14-50]	32.4 [14-49]	30.1 [14-50]	0.1
Disease duration, yrs (mean[range])	10.4 [0-25]	7.6 [0-22]	14 [0-25]	<0.001
EDSS, median [range]	2.0 [0.0-9.0]	1.5 [0.0-2.5]	4.0 [3.0-9.0]	<0.001

MRI

- 5 different Siemens scanners
- T1-w + FLAIR images

Preprocessing

- Bias correction
- Skull-stripping
- Registration to MNI space
- Min-max intensity normalization

Majority voting

Results: quantitative

				Accuracy	Sensitivity	Specificity		
3	ier	Whole brain		0.79 ± 0.04	0.76	0.81		
		WM		0.78 ± 0.06	0.74	0.82		
	assif	GM		0.81 ± 0.04	0.79	0.81		
	CNN-Classifier	Ventricles		0.76 ± 0.06	0.76	0.76		
		BSC		0.76 ± 0.06	0.68	0.84		
		Majority voting		0.80 ± 0.04	0.76	0.84		
+ lesion \								
load	•	LR-Classifier		0.77 ± 0.07	0.68	0.87		

Results: qualitative

No-Disability status (EDSS 0.0)

Disability status (EDSS 6.0)

Conclusions

Our DL-based models:

- Successfully stratified MS patients based on their EDSS evaluation solely with a single time-point multimodal MRI scan
- Were able to provide information about the physiopathological mechanisms responsible for the accumulation of disability in MS
- Provide superior accuracy and sensitivity than a (traditional) machine learning LR-model based on volumetric measurements

 Clinically, these DL-based models may be useful to plan therapeutic or preventive interventions at a hospital level

Classification of MS patients into disability levels using deep learning approaches based solely on routinely-acquired MRI

Coll, Ll.¹; Carbonell-Mirabent, P.¹; Cobo-Calvo, Á.¹; Arrambide, G.¹; Vidal-Jordana, À.¹; Comabella, M.¹; Castilló, J.¹; Rodríguez-Acevedo, B.¹; Zabalza, A.¹; Galán, I.¹; Midaglia, L.¹; Nos, C.¹; Salerno, A.²; Auger, C.²; Alberich, M.²; Río, J.¹; Sastre-Garriga, J.¹; Oliver, A.³; Montalban, X.¹; Rovira, À.¹; Tintoré, M.¹; Pareto, D.²; Lladó, X.³; Tur, C.¹

¹ Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain

² Section of Neuroradiology, Department of Radiology (IDI), Vall d'Hebron University Hospital, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain

³ Research institute of Computer Vision and Robotics, University of Girona, Girona, Spain