(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 30. Juni 2005 (30.06.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/058943 A1

(51) Internationale Patentklassifikation⁷: 5/10, 7/06, A61K 38/04, A61P 31/04

C07K 5/08,

(21) Internationales Aktenzeichen: PCT/EP2004/013688

(22) Internationales Anmeldedatum:

2. Dezember 2004 (02.12.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 10358824,8 16. Dezember 2003 (16.12.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER HEALTHCARE AG [DE/DE]; 51368 Leverkusen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ENDERMANN, Rainer [DB/DB]; In den Birken 152A, 42113 Wuppertal (DB). EHLERT, Kerstin [DB/DB]; Auf den Pöthen 51, 42553 Velbert (DB). RADDATZ, Siegfried [DB/DB]; Jakob-Böhme-Str. 21, 51065 Köln (DE). CANCHO GRANDE, Yolanda [ES/DE]; Linden Str. 28, 40723 Hilden (DB). MICHELS, Martin [DB/DB]; Nibelungenstr. 65, 42653 Solingen (DB). WEIGAND, Stefan [DB/DB]; Rückertweg 35, 42115 Wuppertal (DB). ADELT, Isabelle [FR/DB]; Am Botanischen Garten 5, 40225 Düsseldorf (DB). LAMPE, Thomas [DB/DE]; Karolingerstr. 93, 40223 Düsseldorf (DB).

(74) Gemeinsamer Vertreter: BAYER HEALTHCARE AG; Law and Patent, Patents and Licensing, 51368 Leverkusen (DE).

(81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: BIPHENYL-SUBSTITUTED ANTIBACTERIAL MACROCYCLES

(54) Bezeichnung: ANTIBAKTERIELLE MAKROZYKLEN MIT SUBSTITUIERTEM BIPHENYL

(57) Abstract: The invention relates to biphenyl-substituted antibacterial macrocycles, to methods for their production, to their use in the treatment and/or prophylaxis of diseases, in addition to their use for producing medicaments for the treatment and/or prophylaxis of diseases, in particular bacterial infections.

(57) Zusammenfassung: Die Erfindung betrifft antibakterielle Makrozyklen mit substituiertem Biphenyl und Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere von bakteriellen Infektionen.

05/058943

5

10

Antibakterielle Makrozyklen mit substituiertem Biphenyl

Die Erfindung betrifft antibakterielle Makrozyklen mit substituiertem Biphenyl und Verfahren zu ihrer Herstellung, ihre Verwendung zur Behandlung und/oder Prophylaxe von Krankheiten sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung und/oder Prophylaxe von Krankheiten, insbesondere von bakteriellen Infektionen.

In US 3,452,136, Dissertation R. U. Meyer, Universität Stuttgart, Deutschland 1991, Dissertation V. Leitenberger, Universität Stuttgart, Deutschland 1991, Synthesis (1992), (10), 1025-30, J. Chem. Soc., Perkin Trans. 1 (1992), (1), 123-30, J. Chem. Soc., Chem. Commun. (1991), (10), 744, Synthesis (1991), (5), 409-13, J. Chem. Soc., Chem. Commun. (1991), (5), 275-7, J. Antibiot. (1985), 38(11), 1462-8, J. Antibiot. (1985), 38(11), 1453-61, wird der Naturstoff Biphenomyein B als antibakteriell wirksam beschrieben. Teilschritte der Synthese von Biphenomyein B werden in Synlett (2003), 4, 522-526 beschrieben.

Chirality (1995), 7(4), 181-92, J. Antibiot. (1991), 44(6), 674-7, J. Am. Chem. Soc. (1989), 111(19), 7323-7, J. Am. Chem. Soc. (1989), 111(19), 7328-33, J. Org. Chem. (1987), 52(24), 5435-7, Anal. Biochem. (1987), 165(1), 108-13, J. Org. Chem. (1985), 50(8), 1341-2, J. Antibiot. (1993), 46(3), C-2, J. Antibiot. (1993), 46(1), 135-40, Synthesis (1992), (12), 1248-54, Appl. Environ. Microbiol. (1992), 58(12), 3879-8, J. Chem. Soc., Chem. Commun. (1992), (13), 951-3 beschreiben einen strukturell verwandten Naturstoff, Biphenomycin A, der am Makrozyklus eine weitere Substitution mit einer Hydroxygruppe aufweist.

Die Naturstoffe entsprechen hinsichtlich ihrer Eigenschaften nicht den Anforderungen, die an antibakterielle Arzneimittel gestellt werden. Auf dem Markt sind zwar strukturell andersartige antibakteriell wirkende Mittel vorhanden, es kann aber regelmäßig zu einer Resistenzentwicklung kommen. Neue Mittel für eine gute und wirksamere Therapie sind daher wünschenswert.

Eine Aufgabe der vorliegenden Erfindung ist es daher, neue und alternative Verbindungen mit gleicher oder verbesserter antibakterieller Wirkung zur Behandlung von bakteriellen Erkrankungen bei Menschen und Tieren zur Verfügung zu stellen.

Überraschenderweise wurde gefunden, dass bestimmte Derivate dieser Naturstoffe, worin die Carboxylgruppe des Naturstoffs gegen eine Amidgruppe ausgetauscht wird, die eine basische Gruppe enthält, gegen Biphenomycin resistente *S. aureus* Stämme (RN4220Bi^R und T17) antibakteriell wirksam sind.

Weiterin zeigen diese Derivate gegen S. aureus Wildtyp-Stämme und Biphenomycin resistente S. aureus Stämme eine verbesserte Spontanresistenz-Frequenz.

Gegenstand der Erfindung sind Verbindungen der Formel

$$R^5$$
 R^4
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_5
 R_4
 R_7
 R_7

worin

10

gleich Alkyl ist, wobei Alkyl substituiert ist mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, 5-bis 7-gliedriges Heterocyclyl, 5- bis 7-gliedriges Heteroaryl, (C₁-C₆)-Alkylaminocarbonyl, Guanidino und Amidino,

worin Heterocyclyl und Heteroaryl substituiert sein können mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino und (C_1-C_6) -Alkyl,

R² gleich Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₇)-Cycloalkyl ist,

R³ gleich Hydroxy oder -NR⁶R⁷ ist,

gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro,
Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₆)-Alkylamino,
Amino oder mono-(C₁-C₄)-Alkylamino substituiertes mono-(C₂-C₆)-Alkylaminocarbonyl
oder Amino oder mono-(C₁-C₄)-Alkylamino substituiertes (C₁-C₆)-Alkylcarbonylamino ist,

R⁵ gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₆)-Alkylamino, Amino oder mono-(C₁-C₄)-Alkylamino substituiertes mono-(C₂-C₆)-Alkylaminocarbonyl oder Amino oder mono-(C₁-C₄)-Alkylamino substituiertes (C₁-C₆)-Alkylcarbonylamino ist,

wobei R⁵ gleich Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₆)-Alkylamino, Amino oder mono-(C₁-C₄)-Alkylamino substituiertes mono-(C₂-C₆)-Alkylaminocarbonyl

5

10

15

20

25

oder Amino oder mono- (C_1-C_4) -Alkylamino substituiertes (C_1-C_6) -Alkylcarbonylamino ist, wenn R^4 gleich Hydroxy ist,

R⁶ gleich Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₇)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl, (C₆-C₁₀)-Aryl oder 5- bis 7-gliedriges Heteroaryl ist,

wobei Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Cyano, Trifluormethyl, Trifluormethoxy, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, (C₃-C₇)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl, (C₆-C₁₀)-Aryl, 5- bis 7-gliedriges Heteroaryl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylaminocarbonyl, (C₁-C₆)-Alkylsulfonylamino und (C₆-C₁₀)-Arylsulfonylamino,

worin Alkyl, Alkylamino, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkylaminocarbonyl, Alkylsulfonylamino und Arylsulfonylamino substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl und Hydroxycarbonyl,

R⁷ gleich Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₇)-Cycloalkyl ist,

wobei Alkyl substituiert sein kann mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy und (C₁-C₆)-Alkylamino,

oder

R⁶ und R⁷ zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein Piperidinyl, Morpholinyl, Piperazinyl oder Pyrrolidinyl bilden, wobei Piperidinyl, Morpholinyl, Piperazinyl und Pyrrolidinyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, gegebenenfalls Amino oder Hydroxy substituierten (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino und (C₁-C₆)-Alkoxycarbonyl,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Erfindungsgemäße Verbindungen sind die Verbindungen der Formel (I) und deren Salze, Solvate und Solvate der Salze, sowie die von Formel (I) umfassten, nachfolgend als Ausführungsbeispiel(e) genannten Verbindungen und deren Salze, Solvate und Solvate der Salze, soweit es sich

bei den von Formel (I) umfassten, nachfolgend genannten Verbindungen nicht bereits um Salze, Solvate und Solvate der Salze handelt.

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung betrifft deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich durch bekannte Verfahren wie Chromatographie an chiraler Phase oder Kristallisation mit chiralen Aminen oder chiralen Säuren die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.

Die Erfindung betrifft in Abhängigkeit von der Struktur der Verbindungen auch Tautomere der Verbindungen.

Als <u>Salze</u> sind im Rahmen der Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Furnarsäure, Maleinsäure, Trifluoressigsäure und Benzoesäure.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, Arginin, Lysin, Ethylendiamin und Methylpiperidin.

Als <u>Solvate</u> werden im Rahmen der Erfindung solche Formen der Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt.

Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:

30 Alkyl per se und "Alk" und "Alkyl" in Alkoxy, Alkylamino, Alkoxycarbonyl, Alkylaminocarbonyl und Alkylsulfonylamino stehen für einen linearen oder verzweigten Alkylrest mit in der Regel 1 bis 6

5

15

("C₁-C₆-Alkyl"), vorzugsweise 1 bis 4, besonders bevorzugt 1 bis 3 Kohlenstoffatomen, beispielhaft und vorzugsweise für Methyl, Ethyl, n-Propyl, Isopropyl, *tert*-Butyl, n-Pentyl und n-Hexyl.

<u>Alkoxy</u> steht beispielhaft und vorzugsweise für Methoxy, Ethoxy, n-Propoxy, Isopropoxy, *tert*-Butoxy, n-Pentoxy und n-Hexoxy.

Alkylamino steht für einen Alkylaminorest mit einem oder zwei (unabhängig voneinander gewählten) Alkylsubstituenten, beispielhaft und vorzugsweise für Methylamino, Ethylamino, n-Propylamino, Isopropylamino, tert-Butylamino, n-Pentylamino, n-Hexylamino, N.N-Dimethylamino, N.N-Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl-N-n-propylamino, N-t-Butyl-N-methylamino, N-Ethyl-N-n-pentylamino und N-n-Hexyl-N-methylamino.
C₁-C₃-Alkylamino steht beispielsweise für einen Monoalkylaminorest mit 1 bis 3 Kohlenstoffatomen oder für einen Dialkylaminorest mit jeweils 1 bis 3 Kohlenstoffatomen pro Alkylsubstituent.

<u>Alkoxycarbonyl</u> steht beispielhaft und vorzugsweise für Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl, *tert*-Butoxycarbonyl, n-Pentoxycarbonyl und n-Hexoxycarbonyl.

Alkylaminocarbonyl steht für einen Alkylaminocarbonylrest mit einem oder zwei (unabhängig voneinander gewählten) Alkylsubstituenten, beispielhaft und vorzugsweise für Methylaminocarbonyl, Ethylaminocarbonyl, n-Propylaminocarbonyl, Isopropylaminocarbonyl, tert-Butylaminocarbonyl, n-Pentylaminocarbonyl, n-Hexylaminocarbonyl, N.N-Diethylaminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-n-propylaminocarbonyl, N-Isopropyl-N-n-propylaminocarbonyl, N-tert-Butyl-N-methylaminocarbonyl, N-Ethyl-N-n-pentylaminocarbonyl und N-n-Hexyl-N-methylaminocarbonyl. C₁-C₃-Alkylaminocarbonyl steht beispielsweise für einen Monoalkylaminocarbonylrest mit 1 bis 3 Kohlenstoffatomen oder für einen Dialkylaminocarbonylrest mit jeweils 1 bis 3 Kohlenstoffatomen pro Alkylsubstituent.

Alkylsulfonylamino steht beispielhaft und vorzugsweise für Methylsulfonylamino, Ethylsulfonylamino, n-Propylsulfonylamino, Isopropylsulfonylamino, tert-Butylsulfonylamino, n-Pentylsulfonylamino und n-Hexylsulfonylamino.

<u>Cycloalkyl</u> steht für eine Cycloalkylgruppe mit in der Regel 3 bis 7, bevorzugt 5 bis 6 Kohlenstoffatomen, beispielhaft und vorzugsweise für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl und Cycloheptyl.

Aryl steht für einen mono- oder bicyclischen aromatischen, carbocyclischen Rest mit in der Regel 6 bis 10 Kohlenstoffatomen; beispielhaft und vorzugsweise für Phenyl und Naphthyl.

<u>Arylsulfonylamino</u> steht beispielhaft und vorzugsweise für Phenylsulfonylamino und Naphthylsulfonylamino.

5- bis 7-gliedriges Heterocyclyl steht im Rahmen der Erfindung für einen mono- oder bicyclischen, gesättigten oder partiell ungesättigten Heterocyclus mit bis zu drei Heteroatomen aus der Reihe N, O und/oder S, der über ein Ringkohlenstoffatom oder ein Stickstoffatom des Heterocyclus verknüpft ist. Beispielhaft und vorzugsweise seien genannt: Tetrahydrofuryl, Dihydrofuryl, Imidazolidinyl, Thiolanyl, Dioxolanyl, Pyrrolidinyl, Pyrrolinyl, Tetrahydropyranyl, Dihydropyranyl, Piperidinyl, Piperazinyl, Morpholinyl, Thiomorpholinyl und 1,4-Diazepanyl.

5- bis 7-gliedriges Heteroaryl steht im Rahmen der Erfindung im allgemeinen für einen aromatischen, mono- oder bicyclischen Rest mit 5 bis 7 Ringatomen und bis zu 4 Heteroatomen aus der Reihe S, O und/oder N. Bevorzugt sind 5- bis 6-gliedrige Heteroaryle mit bis zu 4 Heteroatomen. Der Heteroarylrest kann über ein Kohlenstoff- oder Heteroatom gebunden sein. Beispielsweise und vorzugsweise seien genannt: Thienyl, Furyl, Pyrrolyl, Thiazolyl, Oxazolyl, Imidazolyl, Pyridyl, Pyrimidyl, Pyridazinyl, Indolyl, Indazolyl, Benzofuranyl und Benzothiophenyl.

15 Halogen steht für Fluor, Chlor, Brom und Jod.

Ein Symbol # an einem Kohlenstoffatom bedeutet, dass die Verbindung hinsichtlich der Konfiguration an diesem Kohlenstoffatom in enantiomerenreiner Form vorliegt, worunter im Rahmen der vorliegenden Erfindung ein Enantiomerenüberschuss (enantiomeric excess) von mehr als 90 % verstanden wird (> 90 % ee).

In den Formeln der Gruppen, für die R⁶ stehen kann, steht der Endpunkt der Linie, neben der jeweils ein * steht, nicht für ein Kohlenstoffatom beziehungsweise eine CH₂-Gruppe sondern ist Bestandteil der Bindung zu dem Stickstoffatom, an das R⁶ gebunden ist. R⁶ ist also beispielsweise 2-Aminoethyl im Falle von k = 0, l = 1 und R⁹ = H, 3-Amino-2-hydroxypropyl im Falle von k = 1, R⁸ = OH, l = 1 und R⁹ = H, Piperidin-4-yl-methyl im Falle von q = 1 und r = 1 oder Piperidin-4-yl im Falle von q = 0 und r = 1.

Bevorzugt im Rahmen der vorliegenden Erfindung sind Verbindungen der Formel (I), worin

R¹ gleich Alkyl ist, wobei Alkyl substituiert ist mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, 5-bis 7-gliedriges Heterocyclyl, 5- bis 7-gliedriges Heteroaryl, (C₁-C₆)-Alkylaminocarbonyl, Guanidino und Amidino,

30

worin Heterocyclyl und Heteroaryl substituiert sein können mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino und (C_1-C_6) -Alkyl,

- R² gleich Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₇)-Cycloalkyl ist,
- 5 R³ gleich Hydroxy oder -NR⁶R⁷ ist,
 - R⁴ gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy oder (C₁-C₆)-Alkylamino ist,
- gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro,
 Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy oder (C₁-C₆)-Alkylamino ist,

wobei R⁵ gleich Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy oder (C₁-C₆)-Alkylamino ist, wenn R⁴ gleich Hydroxy ist.

15 R^6 gleich Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₇)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl, (C₆-C₁₀)-Aryl oder 5- bis 7-gliedriges Heteroaryl ist,

wobei Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Cyano, Trifluormethyl, Trifluormethoxy, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, (C₃-C₇)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl, (C₆-C₁₀)-Aryl, 5- bis 7-gliedriges Heteroaryl, (C₁-C₆)-Alkoxycarbonyl, (C₁-C₆)-Alkylaminocarbonyl, (C₁-C₆)-Alkylsulfonylamino und (C₆-C₁₀)-Arylsulfonylamino,

worin Alkyl, Alkylamino, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkylaminocarbonyl, Alkylsulfonylamino und Arylsulfonylamino substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl und Hydroxycarbonyl,

R⁷ gleich Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₇)-Cycloalkyl ist,

20

wobei Alkyl substituiert sein kann mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy und (C₁-C₆)-Alkylamino,

oder

15

R⁶ und R⁷ zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein Piperidinyl, Morpholinyl, Piperazinyl oder Pyrrolidinyl bilden, wobei Piperidinyl, Morpholinyl, Piperazinyl und Pyrrolidinyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, gegebenenfalls Amino oder Hydroxy substituierten (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino und (C₁-C₆)-Alkoxycarbonyl,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I), worin

- gleich Aminomethyl, 2-Aminoethyl, 3-Aminoprop-1-yl, 4-Aminobut-1-yl, Hydroxymethyl, 2-Hydroxy-ethyl, Aminocarbonylmethyl, 2-Aminocarbonylethyl, 2-Hydroxycarbonylethyl, 3-Guanidinoprop-1-yl, 3-Amino-2-hydroxyprop-1-yl oder 4-Amino-3-hydroxybut-1-yl ist,
- R² gleich Wasserstoff, Methyl, Ethyl oder Cyclopropyl ist,
- R³ gleich Hydroxy oder -NR⁶R⁷ ist,
- R⁴ gleich Wasserstoff, Halogen, Amino, Hydroxy, Hydroxycarbonyl, Aminocarbonyl, Nitro oder Methyl ist,
- 20 R⁵ gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro oder Methyl ist,
 - wobei R⁵ gleich Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro oder Methyl ist, wenn R⁴ gleich Hydroxy ist,
- R⁶ gleich Wasserstoff, (C₁-C₆)-Alkyl, (C₅-C₆)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl oder Phenyl ist,
 - wobei Alkyl, Cycloalkyl, Heterocyclyl und Phenyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, (C₁-C₄)-

Alkyl, (C₁-C₆)-Alkylamino, 5- bis 7-gliedriges Heterocyclyl, Phenyl, 5- oder 6-gliedriges Heteroaryl, (C₁-C₆)-Alkoxycarbonyl und (C₁-C₆)-Alkylaminocarbonyl,

worin Alkyl, Alkylamino, Heterocyclyl, Aryl, Heteroaryl und Alkylaminocarbonyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl und Hydroxycarbonyl,

R⁷ gleich Wasserstoff oder (C₁-C₄)-Alkyl ist,

wobei Alkyl substituiert sein kann mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy und (C₁-C₆)-Alkylamino,

oder

5

10

15

R⁶ und R⁷ zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein Piperazinyl bilden, wobei Piperazinyl substituiert sein kann mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, gegebenenfalls Amino substituiertem (C₁-C₆)-Alkyl, und (C₁-C₆)-Alkylamino,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I), worin

- R¹ gleich 2-Aminoethyl, 3-Aminoprop-1-yl, 4-Aminobut-1-yl oder 3-Amino-2-hydroxyprop-1-yl ist,
- 20 R² gleich Wasserstoff, Methyl oder Ethyl ist,
 - R³ gleich -NR⁶R⁷ ist,
 - R⁴ gleich Wasserstoff, Fluor, Chlor, Amino, Hydroxy oder Methyl ist,
 - R^5 gleich Wasserstoff, Fluor oder Hydroxy ist, wobei R^5 gleich Fluor ist, wenn R^4 gleich Hydroxy ist,
- 25 R⁶ gleich eine Gruppe der Formel

ist,

wobei

R⁸ gleich Wasserstoff oder Hydroxy ist,

5 R⁹ und R¹⁴ unabhängig voneinander Wasserstoff, Methyl oder eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R¹⁵ gleich Wasserstoff oder *-(CH₂)_f-NH₂ ist,

worin

f eine Zahl 1, 2 oder 3 ist,

d eine Zahl 0, 1, 2 oder 3 ist

und

5

10

e eine Zahl 1, 2 oder 3 ist,

R¹⁰ gleich Wasserstoff oder Aminoethyl ist,

oder

R⁹ und R¹⁰ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R¹² und R¹³ unabhängig voneinander eine Gruppe der Formel *-(CH₂)_{Z1}-OH oder *-(CH₂)_{Z2}-NH₂ sind,

worin

die Anknüpfstelle an das Stickstoffatom ist,

Z1 und Z2 unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

k und t unabhängig voneinander eine Zahl 0 oder 1 sind,

I, w und y unabhängig voneinander eine Zahl 1, 2, 3 oder 4 ist,

m, r, s und v unabhängig voneinander eine Zahl 1 oder 2 sind,

n, o, p und q unabhängig voneinander eine Zahl 0, 1 oder 2 sind,

15 u eine Zahl 0, 1, 2 oder 3 ist,

w oder y
unabhängig voneinander bei w oder y gleich 3 eine Hydroxy-Gruppe
am mittleren Kohlenstoffatom der Dreierkette tragen kann,

die Anknüpfstelle an das Stickstoffatom ist,

R⁷ gleich Wasserstoff ist,

20 und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I), worin

R¹ gleich 2-Aminoethyl, 3-Aminoprop-1-yl, 4-Aminobut-1-yl oder 3-Amino-2-hydroxyprop-1-yl ist,

R² gleich Wasserstoff, Methyl oder Ethyl ist,

R³ gleich -NR⁶R⁷ ist,

R⁴ gleich Wasserstoff, Fluor, Chlor, Amino, Hydroxy oder Methyl ist,

R⁵ gleich Wasserstoff, Fluor oder Hydroxy ist,

5 wobei R⁵ gleich Fluor ist, wenn R⁴ gleich Hydroxy ist,

R⁶ gleich eine Gruppe der Formel

ist,

wobei

10 R⁸ gleich Wasserstoff oder Hydroxy ist,

R⁹ gleich Wasserstoff oder Methyl ist,

R¹⁰ gleich Wasserstoff ist,

oder

R⁹ und R¹⁰ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring

k und t unabhängig voneinander eine Zahl 0 oder 1 sind,

I eine Zahl 1, 2, 3 oder 4 ist,

m, r, s und v unabhängig voneinander eine Zahl 1 oder 2 sind,

n, o, p und q unabhängig voneinander eine Zahl 0, 1 oder 2 sind,

- u eine Zahl 0, 1, 2 oder 3 ist,
- 5 * die Anknüpfstelle an das Stickstoffatom ist,
 - R⁷ gleich Wasserstoff ist,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Bevorzugt im Rahmen der vorliegenden Erfindung sind auch Verbindungen der Formel (I), bei denen

- 10 R¹ gleich 3-Aminoprop-1-yl oder 3-Amino-2-hydroxyprop-1-yl ist,
 - R² gleich Wasserstoff oder Methyl ist,
 - R³ gleich -NR⁶R⁷ ist,
 - R⁴ gleich Wasserstoff, Fluor, Chlor oder Methyl ist,
 - R⁵ gleich Wasserstoff ist,
- 15 R⁶ gleich eine Gruppe der Formel

ist,

wobei

- * gleich die Anknüpfstelle an das Stickstoffatom ist,
- 20 R⁷ gleich Wasserstoff ist,

und ihre Salze, ihre Solvate und die Solvate ihrer Salze.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung der Verbindungen der Formel (I) oder ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze, wobei nach Verfahren

[A] Verbindungen der Formel

$$R^{5}$$
 R^{4}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3

worin R¹, R², R⁴ und R⁵ die oben angegebene Bedeutung haben und boc gleich tert-Butoxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit Verbindungen der Formel

$$HNR^6R^7$$
 (III),

10 worin R⁶ und R⁷ die oben angegebene Bedeutung haben,

und anschließend mit einer Säure zu Verbindungen der Formel

$$R^5$$
 R^5
 R^7
 R^6
 R^6
 R^6
 R^6

worin R¹, R², R⁴ und R⁵ die oben angegebene Bedeutung haben,

oder

15 [B] Verbindungen der Formel

BnO
$$\mathbb{R}^5$$
 (IV),

worin R¹, R², R⁴ und R⁵ die oben angegebene Bedeutung haben und Z gleich Benzyloxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit Verbindungen der Formel (III) und anschließend mit einer Säure oder durch Hydrogenolyse zu Verbindungen der Formel (Ia),

oder

5

[C] Verbindungen der Formel (IV) mit einer Säure oder durch Hydrogenolyse zu Verbindungen der Formel

$$R^{5}$$
 R^{4}
 R^{2}
 R^{1}
 R^{2}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{6}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{3

10

worín \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^4 und \mathbb{R}^5 die oben angegebene Bedeutung haben,

ođer

[D] Verbindungen der Formel

BnO

$$R^{5}$$
 R^{5}
 R^{4}
 R^{1}
 R^{1}
 R^{1}
 R^{2}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}

worin R1, R2, R4 und R5 die oben angegebene Bedeutung haben, und

R¹¹ gleich Benzyl, Methyl oder Ethyl ist,

mit einer Säure oder durch Hydrogenolyse, gegebenenfalls durch anschließende Umsetzung mit einer Base zur Verseifung des Methyl- oder Ethylesters, zu Verbindungen der Formel (lb), umgesetzt werden.

Verbindungen der Formel (I) sind Verbindungen der Formeln (Ia) und (Ib).

Die freie Base der Salze kann zum Beispiel durch Chromatographie an einer Reversed Phase Säule mit einem Acetonitril-Wasser-Gradienten unter Zusatz einer Base erhalten werden, insbesondere durch Verwendung einer RP18 Phenomenex Luna C18(2) Säule und Diethylamin als Base.

Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Verbindungen der Formel (I) oder ihrer Solvate nach Anspruch 1, bei dem Salze der Verbindungen oder Solvate der Salze der Verbindungen durch Chromatographie unter Zusatz einer Base in die Verbindungen überführt werden.

Eine Hydroxygruppe im Rest R¹ ist gegebenenfalls während der Umsetzung mit Verbindungen der Formel (III) mit einer *tert*-Butyldimethylsilyl-Gruppe geschützt, die im zweiten Reaktionsschritt abgespalten wird.

Reaktive Funktionalitäten in den Resten R⁶ und R⁷ von Verbindungen der Formel (III) werden bereits geschützt mit in die Synthese eingebracht, bevorzugt sind säurelabile Schutzgruppen (z.B. boc).

Die Umsetzung der ersten Stufe der Verfahren [A] und [B] erfolgt im Allgemeinen in inerten Lösungsmitteln, gegebenenfalls in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

20

5

Als Dehydratisierungsreagenzien eignen sich hierbei beispielsweise Carbodiimide wie z.B. N,N'-Diethyl-, N,N'-Dipropyl-, N,N'-Diisopropyl-, N,N'-Dicyclohexylcarbodiimid, N-(3-Dimethylaminoisopropyl)-N'-ethylcarbodiimid-Hydrochlorid (EDC), N-Cyclohexylcarbodiimid-N'-propyloxymethyl-Polystyrol (PS-Carbodiimid) oder Carbonylverbindungen wie Carbonyldiimidazol, oder 1,2-Oxazoliumverbindungen wie 2-Ethyl-5-phenyl-1,2-oxazolium-3-sulfat oder 2-tert-Butyl-5methyl-isoxazolium-perchlorat, oder Acylaminoverbindungen wie 2-Ethoxy-1-ethoxycarbonyl-1,2dihydrochinolin, oder Propanphosphonsäureanhydrid, oder Isobutylchloroformat, oder Bis-(2-oxo-3-oxazolidinyl)-phosphorylchlorid oder Benzotriazolyloxy-tri(dimethylamino)phosphoniumhexafluorophosphat, oder O-(Benzotriazol-1-yl)-N,N,N',N'-tetra-methyluroniumhexafluorophosphat (HBTU), 2-(2-Oxo-1-(2H)-pyridyl)-1,1,3,3-tetramethyl-uroniumtetrafluoroborat (TPTU) oder O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyl-uroniumhexafluorophosphat (HATU), oder 1-Hydroxybenztriazol (HOBt), oder Benzotriazol-1-yloxytris(dimethylamino)-phosphoniumhexafluoro-phosphat (BOP), oder Mischungen aus diesen, oder Mischung aus diesen zusammen mit Basen.

Basen sind beispielsweise Alkalicarbonate, wie z.B. Natrium- oder Kaliumcarbonat, oder -hydrogencarbonat, oder organische Basen wie Trialkylamine z.B. Triethylamin, *N*-Methylmorpholin, *N*-Methylpiperidin, 4-Dimethylaminopyridin oder Diisopropylethylamin.

Vorzugsweise wird die Kondensation mit HATU in Gegenwart einer Base, insbesondere Diisopropylethylamin, durchgeführt.

20 Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Kohlenwasserstoff wie Benzol, oder Nitromethan, Dioxan, Dimethylformamid oder Acetonitril. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Besonders bevorzugt ist Dimethylformamid.

Die Umsetzung mit einer Säure in der zweiten Stufe der Verfahren [A] und [B] sowie die Umsetzung mit einer Säure in den Verfahren [C] und [D] erfolgt bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Als Säuren eignen sich hierbei Chlorwasserstoff in Dioxan, Bromwasserstoff in Essigsäure oder Trifluoressigsäure in Methylenchlorid.

Die Hydrogenolyse in der zweiten Stufe des Verfahrens [B] sowie die Hydrogenolyse in den Verfahren [C] und [D] erfolgt im Allgemeinen in einem Lösungsmittel in Gegenwart von Wasserstoff
und Palladium auf Aktivkohle, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

5

- 18 -

Lösungsmittel sind beispielsweise Alkohole wie Methanol, Ethanol, n-Propanol oder iso-Propanol, in einem Gemisch mit Wasser und Eisessig, bevorzugt ist ein Gemisch aus Ethanol, Wasser und Eisessig.

Die Verseifung in Verfahrem [D] kann zum Beispiel erfolgen, wie bei der Umsetzung von Verbin-5 dungen der Formel (V) zu Verbindungen der Formel (IV) beschrieben.

Die Verbindungen der Formel (III) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Verbindungen der Formel (II) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel (Ib) mit Di-(tert-butyl)-dicarbonat in Gegenwart einer Base umgesetzt werden.

Die Umsetzung erfolgt im Allgemeinen in einem Lösungsmittel, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Basen sind beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder andere Basen wie DBU, Triethylamin oder Diisopropylethylamin, bevorzugt ist Natriumhydroxid oder Natriumcarbonat.

Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid oder 1,2-Dichlorethan, Alkohole wie Methanol, Ethanol oder iso-Propanol, oder Wasser.

Vorzugsweise wird die Umsetzung mit Natriumhydroxid in Wasser oder Natriumcarbonat in Methanol durchgeführt.

Die Verbindungen der Formel (IV) sind bekannt oder können hergestellt werden, indem in Verbindungen der Formel (V) der Benzyl-, Methyl- oder Ethylester verseift wird.

Die Umsetzung erfolgt im Allgemeinen in einem Lösungsmitteln, in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Basen sind beispielsweise Alkalihydroxide wie Lithium-, Natrium- oder Kaliumhydroxid, bevorzugt ist Lithiumhydroxid.

Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan oder Trichlormethan, Ether wie Tetrahydrofuran oder Dioxan, oder Alkohole wie Methanol, Ethanol oder Isopropanol, oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösungsmittel oder Gemische der Lösungsmittel mit Wasser einzusetzen. Besonders bevorzugt sind Tetrahydrofuran oder ein Gemisch aus Methanol und Wasser.

Die Verbindungen der Formel (V) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

worin R¹, R², R⁴, R⁵ und R¹¹ die oben angegebene Bedeutung haben,

5 in der ersten Stufe mit Säuren, wie für die zweite Stufe der Verfahren [A] und [B] beschrieben, und in der zweiten Stufe mit Basen umgesetzt werden.

In der zweiten Stufe erfolgt die Umsetzung mit Basen im Allgemeinen in einem Lösungsmittel, bevorzugt in einem Temperaturbereich von 0°C bis 40°C bei Normaldruck.

Basen sind beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder andere Basen wie DBU,
Triethylamin oder Diisopropylethylamin, bevorzugt ist Triethylamin.

Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Chloroform, Methylenchlorid oder 1,2-Dichlorethan, oder Tetrahydrofuran, oder Gemische der Lösungsmittel, bevorzugt ist Methylenchlorid oder Tetrahydrofuran.

15 Die Verbindungen der Formel (VI) sind bekannt oder k\u00f6nnen hergestellt werden, indem Verbindungen der Formel

BnO
$$R^5$$
 R^5
 R^5
 R^4
 R^5
 R^6
 R^6

worin R1, R2, R4, R5 und R11 die oben angegebene Bedeutung haben,

mit Pentafluorphenol in Gegenwart von Dehydratisierungsreagenzien, wie für die erste Stufe der Verfahren [A] und [B] beschrieben, umgesetzt werden.

5 Die Umsetzung erfolgt bevorzugt mit DMAP und EDC in Dichlormethan in einem Temperaturbereich von -40°C bis 40°C bei Normaldruck.

Die Verbindungen der Formel (VII) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

worin R¹, R², R⁴, R⁵ und R¹¹ die oben angegebene Bedeutung haben,

mit Fluorid, insbesondere mit Tetrabutylammoniumfluorid, umgesetzt werden.

Die Umsetzung erfolgt im Allgemeinen in einem Lösungsmitteln, bevorzugt in einem Temperaturbereich von -10°C bis 30°C bei Normaldruck.

Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Dichlormethan, oder Kohlenwasserstoffe wie Benzol oder Toluol, oder Ether wie Tetrahydrofuran oder Dioxan, oder Dimethylformamid. Ebenso ist es möglich, Gemische der Lösemittel einzusetzen. Bevorzugte Lösungsmittel sind Tetrahydrofuran und Dimethylformamid.

Die Verbindungen der Formel (VIII) sind bekannt oder können hergestellt werden, indem Verbindungen der Formel

BnO
$$\mathbb{R}^5$$
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4

OTMSE \mathbb{R}^2

OTMSE

worin R2, R4, R5 und R11 die oben angegebene Bedeutung haben,

5 mit Verbindungen der Formel

$$boc$$
 H
 OH
 (X) ,

worin R¹ die oben angegebene Bedeutung hat,

in Gegenwart von Dehydratisierungsreagenzien, wie für die erste Stufe der Verfahren [A] und [B] beschrieben, umgesetzt werden.

Die Verbindungen der Formel (IX) sind bekannt oder können analog den im Beispielteil beschriebenen Verfahren hergestellt werden.

Die Verbindungen der Formel (X) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakologisches und pharmakokinetisches Wirkspektrum.

Sie eignen sich daher zur Verwendung als Arzneimittel zur Behandlung und/oder Prophylaxe von Krankheiten bei Menschen und Tieren.

Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Wirkstoffen zur Behandlung und/oder Prophylaxe von Infektionskrankheiten, insbesondere von bakteriellen Infektionen, eingesetzt werden.

Beispielsweise können lokale und/oder systemische Erkrankungen behandelt und/oder verhindert werden, die durch die folgenden Erreger oder durch Mischungen der folgenden Erreger verursacht werden:

Gram-positive Kokken, z.B. Staphylokokken (Staph. aureus, Staph. epidermidis) und Streptokokken (Strept. agalactiae, Strept. faecalis, Strept. pneumoniae, Strept. pyogenes); gram-negative Kokken (neisseria gonorrhoeae) sowie gram-negative Stäbchen wie Enterobakteriaceen, z.B. Escherichia coli, Hämophilus influenzae, Citrobacter (Citrob. freundii, Citrob. divernis), Salmonella und Shigella; ferner Klebsiellen (Klebs. pneumoniae, Klebs. oxytocy), Enterobacter (Ent. aerogenes, Ent. agglomerans), Hafnia, Serratia (Serr. marcescens), Proteus (Pr. mirabilis, Pr. rettgeri, Pr. vulgaris), Providencia, Yersinia, sowie die Gattung Acinetobacter. Darüber hinaus umfaßt das antibakterielle Spektrum die Gattung Pseudomonas (Ps. aeruginosa, Ps. maltophilia) sowie strikt anaerobe Bakterien wie z.B. Bacteroides fragilis, Vertreter der Gattung Peptococcus, Peptostreptococcus sowie die Gattung Clostridium; ferner Mykoplasmen (M. pneumoniae, M. hominis, M. urealyticum) sowie Mykobakterien, z.B. Mycobacterium tuberculosis.

Die obige Aufzählung von Erregern ist lediglich beispielhaft und keineswegs beschränkend aufzufassen. Als Krankheiten, die durch die genannten Erreger oder Mischinfektionen verursacht und durch die erfindungsgemäßen topisch anwendbaren Zubereitungen verhindert, gebessert oder geheilt werden können, seien beispielsweise genannt:

Infektionskrankheiten beim Menschen wie z. B. septische Infektionen, Knochen- und Gelenkinfektionen, Hautinfektionen, postoperative Wundinfektionen, Abszesse, Phlegmone, Wundinfektionen, infizierte Verbrennungen, Brandwunden, Infektionen im Mundbereich, Infektionen nach
Zahnoperationen, septische Arthritis, Mastitis, Tonsillitis, Genital-Infektionen und Augeninfektionen.

Außer beim Menschen können bakterielle Infektionen auch bei anderen Spezies behandelt werden. Beispielhaft seien genannt:

Schwein: Coli-diarrhoe, Enterotoxamie, Sepsis, Dysenterie, Salmonellose, Metritis-Mastitis-Agalaktiae-Syndrom, Mastitis;

Wiederkäuer (Rind, Schaf, Ziege): Diarrhoe, Sepsis, Bronchopneumonie, Salmonellose, Pasteurellose, Mykoplasmose, Genitalinfektionen;

Pferd: Bronchopneumonien, Fohlenlähme, puerperale und postpuerperale Infektionen, Salmonellose;

25

5

Hund und Katze: Bronchopneumonie, Diarrhoe, Dermatitis, Otitis, Harnwegsinfekte, Prostatitis;

Geflügel (Huhn, Pute, Wachtel, Taube, Ziervögel und andere): Mycoplasmose, E. coli-Infektionen, chronische Luftwegserkrankungen, Salmonellose, Pasteurellose, Psittakose.

Ebenso können bakterielle Erkrankungen bei der Aufzucht und Haltung von Nutz- und Zierfischen behandelt werden, wobei sich das antibakterielle Spektrum über die vorher genannten Erreger hinaus auf weitere Erreger wie z.B. Pasteurella, Brucella, Campylobacter, Listeria, Erysipelothris, Corynebakterien, Borellia, Treponema, Nocardia, Rikettsie, Yersinia, erweitert.

Weiterer Gegenstand der vorliegenden Erfindung ist der Einsatz der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prophylaxe von Erkrankungen, vorzugsweise von bakteriellen Krankheiten, insbesondere von bakteriellen Infektionen.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Verbindungen zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen.

Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung und/oder Prophylaxe von Erkrankungen, insbesondere der zuvor genannten Erkrankungen, unter Verwendung einer antibakteriell wirksamen Menge der erfindungsgemäßen Verbindungen.

Die erfindungsgemäßen Verbindungen können systemisch und/oder lokal wirken. Zu diesem Zweck können sie auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, dermal, transdermal, conjunctival, otisch oder als Implantat bzw. Stent.

Für diese Applikationswege können die erfindungsgemäßen Verbindungen in geeigneten Applikationsformen verabreicht werden.

Für die orale Applikation eignen sich nach dem Stand der Technik funktionierende schnell und/oder modifiziert die erfindungsgemäßen Verbindungen abgebende Applikationsformen, die die erfindungsgemäßen Verbindungen in kristalliner und/ oder amorphisierter und/oder gelöster Form enthalten, wie z.B. Tabletten (nichtüberzogene oder überzogene Tabletten, beispielsweise mit magensaftresistenten oder sich verzögert auflösenden oder unlöslichen Überzügen, die die Freisetzung der erfindungsgemäßen Verbindung kontrollieren), in der Mundhöhle schnell zerfal-

30

- 24 -

lende Tabletten oder Filme/Oblaten, Filme/Lyophylisate, Kapseln (beispielsweise Hart- oder Weichgelatinekapseln), Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Aerosole oder Lösungen.

Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (z.B. intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (z.B. intramuskulär, subcutan, intracutan, percutan oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten oder sterilen Pulvern.

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen, -lösungen, -sprays; lingual, sublingual oder buccal zu applizierende
Tabletten, Filme/Oblaten oder Kapseln, Suppositorien, Ohren- oder Augenpräparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben,
Cremes, transdermale therapeutische Systeme (wie beispielsweise Pflaster), Milch, Pasten,
Schäume, Streupuder, Implantate oder Stents.

Die erfindungsgemäßen Verbindungen können in die angeführten Applikationsformen überführt werden. Dies kann in an sich bekannter Weise durch Mischen mit inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen geschehen. Zu diesen Hilfsstoffen zählen u.a. Trägerstoffe (beispielsweise mikrokristalline Cellulose, Laktose, Mannitol), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren und Dispergier- oder Netzmittel (beispielsweise Natriumdodecylsulfat, Polyoxysorbitanoleat), Bindemittel (beispielsweise Polyvinylpyrrolidon), synthetische und natürliche Polymere (beispielsweise Albumin), Stabilisatoren (z.B. Antioxidantien wie beispielsweise Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie beispielsweise Eisenoxide) und Geschmacks- und / oder Geruchskorrigentien.

Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, üblicherweise zusammen mit einem oder mehreren inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 5 bis 250 mg/kg Körpergewicht je 24 h zur Erzielung wirksamer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 5 bis 100 mg/kg Körpergewicht je 24 h.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber

25

30

dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.

A. Beispiele

Verwendete Abkürzungen:

abs.

absolut

aq.

wässrig

Bn

Benzyl

Boc

tert-Butoxycarbonyl

CDCl₃

Deuterochloroform

CH

Cyclohexan

 \mathbf{D}

dublett (im ¹H-NMR)

Dđ

dublett von dublett (im ¹H-NMR)

DCC

dublen von dublen (im 11-141411)

Dicyclohexylcarbodiimid Diisopropylcarbodiimid

DIC

Diisopropylethylamin (Hünig-Base)

DIEA DMSO

Dimethylsulfoxid

DMAP

4-N,N-Dimethylaminopyridin

DMF

Dimethylformamid

d. Th.

der Theorie

EDC

N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid x HCl

EE

Ethylacetat (Essigsäureethylester)

ESI

Elektrospray-Ionisation (bei MS)

ges.

gesättigt

HATU

O-(7-Azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-hexafluoro-

phosphat

HBTU

O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-hexafluorophosphat

HOBt

1-Hydroxy-1H-benzotriazol x H₂O

H

Stunde(n)

HPLC

Hochdruck-, Hochleistungsflüssigehromatographie

LC-MS

Flüssigchromatographie-gekoppelte Massenspektroskopie

M

multiplett (im ¹H-NMR)

Min

Minute

MS

Massenspektroskopie

NMR

Kernresonanzspektroskopie

MTBE

Methyl-tert-butylether

Pd/C

Palladium/Kohle

Proz.

Prozent

Q	quartett (im ¹ H-NMR)	
R_f	Retentionsindex (bei DC)	
RP	Reverse Phase (bei HPLC)	
RT	Raumtemperatur	
R_t	Retentionszeit (bei HPLC)	
S	singulett (im ¹ H-NMR)	
T	triplett (im ¹ H-NMR)	
TBS	tert-Butyldimethylsilyl	
TFA	Trifluoressigsäure	
THF	Tetrahydrofuran	
TMSE	2-(Trimethylsilyl)-ethyl	
TPTU	2-(2-Oxo-1(2H)-pyridyl)-1,1,3,3-tetramethyluroniumtetrafluoroborat	
Z	Benzyloxycarbonyl	

LC-MS- und HPLC-Methoden:

Methode 1 (LC-MS): Instrument: Micromass Quattro LCZ mit HPLC Agilent Serie 1100; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A \Rightarrow 2.5 min 30%A \Rightarrow 3.0 min 5%A \Rightarrow 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 208- 400 nm.

Methode 2 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A \rightarrow 2.5 min 30%A \rightarrow 3.0 min 5%A \rightarrow 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 3 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Phenomenex Synergi 2μ Hydro-RP Mercury 20 mm x 4 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 90%A → 2.5 min 30%A → 3.0 min 5%A → 4.5 min 5%A; Fluss: 0.0 min 1 ml/min, 2.5 min/3.0 min/4.5 min. 2 ml/min; Ofen: 50°C; UV-Detektion: 210 nm.

Methode 4 (LC-MS): Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μm; Eluent A: 1 l Wasser + 1 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 1 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A → 0.2

20

10

5

10

15

20

25

min $100\%A \rightarrow 2.9 \text{ min } 30\%A \rightarrow 3.1 \text{ min } 10\%A \rightarrow 4.5 \text{ min } 10\%A$; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

Methode 5 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Merck Chromolith SpeedROD RP-18e 50 mm x 4.6mm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / l; Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / l; Gradient: 0.0 min 10%B→ 3.0 min 95%B→ 4.0 min 95%B; Ofen: 35°C; Fluss: 0.0 min 1.0 ml/min→ 3.0 min 3.0 ml/min→ 4.0 min 3.0 ml/min; UV-Detektion: 210 nm.

Methode 6 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Series; UV DAD; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / l, Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / l; Gradient: 0.0 min 70%B → 4.5 min 90%B; Ofen: 50°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 7 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / l, Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / l; Gradient: 0.0 min 70%B → 4.5 min 90%B; Ofen: 45°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 8 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: HP 1100 Scries; UV DAD; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / 1, Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / 1; Gradient: 0.0 min 0%B → 2.9 min 70%B → 3.1 min 90%B → 4.5 min 90%B; Ofen: 50 °C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 9 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μ m; Eluent A: Wasser + 500 μ l 50%ige Ameisensäure; Eluent B: Acetonitril + 500 μ l 50%ige Ameisensäure / l; Gradient: 0.0 min 5%B \rightarrow 2.0 min 40%B \rightarrow 4.5 min 90%B \rightarrow 5.5 min 90%B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min \rightarrow 4.5 min 0.75 ml/min \rightarrow 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.

Methode 10 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μm; Eluent A: Wasser + 500 μl 50%ige Ameisensäure / l, Eluent B: Acetonitril + 500 μl 50%ige Ameisensäure / l; Gradient: 0.0 min 90%B → 4.5 min 90%B; Ofen: 45°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 11 (HPLC): Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x
 2 mm, 3.5 μm; Eluent A: 5 ml HClO₄/I Wasser, Eluent B: Acetonitril; Gradient: 0 min 2%B, 0.5 min 2%B, 4.5 min 90%B, 6.5 min 90%B; Fluss: 0.75 ml/min; Ofen: 30°C; UV-Detektion: 210 nm.

Methode 12 (HPLC): Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x 2 mm, 3.5 μm; Eluent A: 5 ml HClO₄/l Wasser, Eluent B: Acetonitril; Gradient: 0 min 2%B, 0.5 min 2%B, 4.5 min 90%B, 15 min 90%B; Fluss: 0.75ml/min; Ofen: 30°C; UV-Detektion: 210 nm.

Methode 13 (HPLC): Instrument: HP 1100 mit DAD-Detektion; Säule: Kromasil RP-18, 60 mm x 2 mm, 3.5 μm; Eluent A: 5 ml HClO₄/l Wasser, Eluent B: Acetonitril; Gradient: 0 min 2%B, 0.5 min 2%B, 4.5 min 90%B, 9 min 90%B; Fluss: 0.75 ml/min; Ofen: 30°C; UV-Detektion: 210 nm.

Methode 14 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 mm x 2 mm, 3.0 μ m; Eluent A: Wasser + 500 μ l 50%ige Ameisensäure / I; Eluent B: Acetonitril + 500 μ l 50%ige Ameisensäure / I; Gradient: 0.0 min 0%B \rightarrow 0.2 min 0%B \rightarrow 2.9 min 70%B \rightarrow 3.1 min 90%B \rightarrow 4.5 min 90%B; Fluss: 0.8 ml/min; Ofen: 45°C; UV-Detektion: 210 nm.

Methode 15 (LC-MS): Instrument: Micromass Quattro LCZ, mit HPLC Agilent Serie 1100; Säule: Grom-SIL120 ODS-4 HE, 50 mm x 2.0 mm, 3 μ m; Eluent A: 1 l Wasser + 1 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 1 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A \rightarrow 0.2 min 100%A \rightarrow 2.9 min 30%A \rightarrow 3.1 min 10%A \rightarrow 4.5 min 10%A; Ofen: 55°C; Fluss: 0.8 ml/min; UV-Detektion: 208-400 nm.

Methode 16 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2795; Säule: Merck Chromolith SpeedROD RP-18e 50 mm x 4.6 mm; Eluent A: Wasser + 500 μ l 50%ige Ameisensäure / l, Eluent B: Acetonitril + 500 μ l 50%ige Ameisensäure / l; Gradient: 0.0 min 10%B \rightarrow 2.0 min 95%B \rightarrow 4.0 min 95%B; Ofen: 35°C; Fluss: 0.0 min 1.0 ml/min \rightarrow 2.0 min 3.0 ml/min \rightarrow 4.0 min 3.0 ml/min; UV-Detektion: 210 nm.

Methode 17 (LC-MS): Instrument: Micromass Platform LCZ mit HPLC Agilent Serie 1100; Säule: Thermo HyPURITY Aquastar 3μ 50 mm x 2.1 mm; Eluent A: 1 l Wasser + 0.5 ml 50%ige Ameisensäure, Eluent B: 1 l Acetonitril + 0.5 ml 50%ige Ameisensäure; Gradient: 0.0 min 100%A → 0.2 min 100%A → 2.9 min 30%A → 3.1 min 10%A → 5.5 min 10%A; Ofen: 50°C; Fluss: 0.8 ml/min; UV-Detektion: 210 nm.

Methode 18 (LC-MS): Gerätetyp MS: Micromass ZQ; Gerätetyp HPLC: Waters Alliance 2790; Säule: Grom-Sil 120 ODS-4 HE 50 x 2 mm, 3.0 μm; Eluent B: Acetonitril + 0.05% Ameisensäure, Eluent A: Wasser + 0.05% Ameisensäure; Gradient: 0.0 min 70%B → 4.5 min 90%B → 5.5 min 90%B; Ofen: 45°C; Fluss: 0.0 min 0.75 ml/min → 4.5 min 0.75 ml/min→ 5.5 min 1.25 ml/min; UV-Detektion: 210 nm.

5

10

15

20

25

5

Ausgangsverbindungen

Die Buchstabenbezeichnung in den Ausgangsverbindungen stehen für das Strukturelement des Kopfes der erfindungsgemäßen Verbindungen in Verbindung mit einem Rest R¹ (z.B. Ornithin (3-Aminoprop-1-yl)) oder Hydroxy-Ornithin (3-Amino-2-hydroxyprop-1-yl)), wie in der folgenden Tabelle beschrieben. Die Zahlen stehen für verschiedene Reaktionstypen.

Serie	Strukturelement	R ⁱ	R²
A	HO————————————————————————————————————	Ornithin	Н
В	но-{-}-Сі	Hydroxy-Ornithin	Methyl
С	но—Сі	Hydroxy-Ornithin	Н
D	но-	Hydroxy-Ornithin	Н
E	HO————————————————————————————————————	Ornithin	Н
I F	но-	Ornithin	Н
G	HO—CH ₃	Hydroxy-Ornithin	Н
н	но-Он	Hydroxy-Ornithin	Н

Serie	Strukturelement	R¹	R ²
I	HO————————————————————————————————————	Hydroxy-Ornithin	Н
J	но	Hydroxy-Ornithin	Н
ĸ	но	Ornithin	Н
L	HO————————————————————————————————————	Hydroxy-Ornithin	Н
M	но-СІ	Ornithin	Methyl
	NHR		
N	но	Hydroxy-Ornithin	Н
О	HO	Ornithin	Methyl
P	HO——————NH ₂	Ornithin	Н

Beispiel 1B

5

10

(5-Brom-2-chlorphenyl)methanol

10 g (42.5 mmol) 5-Brom-3-chlorbenzoesäure werden in 135 ml THF gelöst. Bei 0°C werden 4.2 g (55.2 mmol, 5.24 ml) Boran-Dimethylsulfid-Komplex zugetropft. Anschließend wird 25 min bei RT, dann 30 min unter Rückfluss nachgerührt. Unter Eiskühlung tropft man nacheinander 40 ml Wasser und 15 ml 2N Salzsäure zu und rührt für 45 min bei RT nach. Nach erneuter Zugabe von 15 ml 2N Salzsäure wird mehrmals mit Diethylether extrahiert. Die vereinigte organische Phase wird nacheinander mit 1N Salzsäure, Wasser, gesättigter Natriumhydrogencarbonat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Der Feststoff wird bis zur Gewichtskonstanz im Hochvakuum getrocknet.

Ausbeute: 9.1 g (97% d. Th.)

HPLC (Methode 11): $R_t = 4.22 \text{ min}$

MS (EI): $m/z = 220 (M)^{+}$

¹H-NMR (300 MHz, CDCl₃): δ = 1.90 (t, 1H), 4.75 (d, 2H), 7.20 (d, 1H), 7.35 (dd, 1H), 7.67 (d, 1H).

Beispiel 2B

5-Brom-2-chlorbenzaldehyd

20 18 ml (0.26 mol) DMSO werden in 64 ml Dichlormethan vorgelegt und bei -78°C mit 16.1 g (0.127 mol, 11.1 ml) Oxalylchlorid versetzt. Nach 30 min wird eine Lösung von 13.1 g (59 mmol) (5-Brom-2-chlorphenyl)methanol in 100 ml Chloroform zugetropft. Nach 20 min wird mit 40 ml

5

Triethylamin versetzt und die Reaktionsmischung wird langsam auf RT erwärmt. Nach Zugabe von 50 ml Wasser wird mehrmals mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden nacheinander mit 2N Salzsäure, Wasser, gesättigter Natriumhydrogencarbonat-Lösung und gesättigter Natriumchlorid-Lösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Der erhaltene Feststoff wird bis zur Gewichtskonstanz im Hochvakuum getrocknet.

Ausbeute: 12.7 g (94% d. Th.)

HPLC (Methode 11): $R_1 = 4.65 \text{ min}$

MS (EI): m/z = 218 (M)+

¹H-NMR (300 MHz, CDCl₃): $\delta = 7.32$ (d, 1H), 7.65 (dd, 1H), 8.03 (d, 1H), 10.4 (s, 1H).

Beispiel 3H

2-(Benzyloxy)-3-fluorbenzaldehyd

9.0 g (64 mmol) 3-Fluor-2-hydroxybenzaldehyd werden in 200 ml DMF gelöst, mit 10.7 g (77.1 mmol) Kaliumcarbonat und 8.4 ml (12 g, 71 mmol) Benzylbromid versetzt und 24 h bei 80°C gerührt. Man gießt auf 600 ml Wasser, extrahiert mehrfach mit Essigsäureethylester, trocknet die organische Phase über Natriumsulfat, engt im Vakuum ein und trocknet am Hochvakuum. Das Rohprodukt wird per Kieselgelchromatographie (Cyclohexan:Essigsäureethylester 2:1) gereinigt.

Ausbeute: 14.3 g (97% d.Th.)

20 HPLC (Methode 11): $R_1 = 4.82 \text{ min.}$

 $MS (DCI): m/z = 231 (M+H)^+$

¹H-NMR (300 MHz, CDCl₃): $\delta = 5.26$ (s, 2H), 7.10 (m_c, 1H), 7.31-7.43 (m, 6H), 7.58 (dd, 1H), 10.25 (s, 1H).

Beispiel 3J

3-(Benzyloxy)-5-hydroxybenzaldchyd

Die Herstellung erfolgt analog zu Beispiel 3H aus 5.0 g (36.2 mmol) 3,5-Dihydroxybenzaldehyd, 6.81 g (39.8 mmol) Benzylbromid und 11.8 g (36.2 mmol) Cäsiumcarbonat.

Ausbeute: 2.8 g (34% d. Th.)

LC-MS (Methode 8): $R_t = 3.31 \text{ min}$

MS (EI): $m/z = 227 (M+H)^{+}$

¹H-NMR (300 MHz, CDCl₃): $\delta = 5.10$ (s, 2H), 5.21 (s, 1H), 6.75 (s, 1H), 6.96 (s, 1H), 7.08 (s, 1H), 7.25-7.45 (m, 5H), 9.88 (s, 1H).

Beispiel 4A

Benzyl-(2Z)-3-(5-brom-2-fluorphenyl)-2-[(tert-butoxycarbonyl)amino]acrylat

6.0 g (30 mmol) 5-Brom-2-fluorbenzaldehyd und 12.7 g (34 mmol) Benzyl-[(tert-butoxycarbonyl)-amino]-(dimethoxyphosphoryl)acetat werden in 90 ml THF vorgelegt und unter Aceton/Trockeneis-Kühlung bei –78°C mit 3.91 g (34 mmol) 1,1,3,3-Tetramethylguanidin versetzt. Nach 4 h im Kältebad wird langsam auf RT erwärmt und für weitere 12 h bei RT gerührt. Das Lösungsmittel wird im Vakuum abdestilliert, das Rohprodukt mit Essigsäureethylester aufgenommen und je einmal mit gesättigter Natriumhydrogencarbonat- und gesättigter Natriumchlorid-Lösung gewaschen.

Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Das Rohprodukt wird chromatographisch (Kieselgel, Cyclohexan/Essigsäureethylester 2:1) gereinigt.

Ausbeute: 14 g (95% d.Th.)

5 HPLC (Methode 11): $R_t = 5.47 \text{ min.}$

 $MS (EI^+): m/z = 450 (M+H)^+$

¹H-NMR (300 MHz, CDCl₃): δ = 1.39 (s, 9H), 5.30 (s, 2H), 6.53 (br. s, 1H), 6.94 (m, 1H), 7.28-7.46 (m, 6H), 7.67 (m, 1H).

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 4B, 4C, 4E, 4H bis 4J und 4N und 4P aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
4B	Br—CI	4A aus Beispiel 2B und	
	H³C O O CH³	Methyl-[(tert- butoxycarbonyl)- amino]-(dimethoxy-	
		phosphoryl)acetat	
4C	Br—CI H ₃ C—CH ₃ H H ₃ C O	4A aus Beispiel 2B	LC-MS (Methode 2): R _t = 2.97 min. MS (ES): m/z = 466 (M+H) ⁺
Province of the second			¹ H-NMR (300 MHz, CDCl ₃): δ = 1.36 (s, 9H), 5.32 (s, 2H), 6.47 (br. s, 1H), 7.2-7.5 (m, 7H), 7.70 (d, 1H).

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
			X C A C C C C C A C C C C C C C C C C C
4E	Br—CH ₃	4A	LC-MS (Methode 4): $R_t = 3.38$
	CH ₃	aus 5-Brom-2-	min.
	H ₃ C — H ₂ C O — H ₃ C O	methylbenzaldehyd	MS (ES): $m/z = 446 (M+H)^+$
			'H-NMR (300 MHz, CDCl ₃): δ
			= 1.35 (s, 9H), 2.28 (s, 3H),
			5.30 (s, 2H), 6.21 (br. s, 1H),
j			7.04 (d, 1H), 7.21-7.46 (m,
			7H), 7.10 (d, 1H).
4H	F	4A	LCMS (Methode 13): $R_t = 5.52$
	OBn	ana Daismial 211	min.
	сн,	aus Beispiel 3H	MS (ESI): $m/z = 478 (M+H)^{+}$
	H ₃ C — N — Q		W3 (E31). III 2 - 478 (W111)
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		¹ H-NMR (300 MHz, CDCl ₃): δ
			= 1.36 (s, 9H), 5.05 (s, 2H),
			5.27 (s, 2H), 6.57 (br. s, 1H),
			7.03 (m _c , 1H), 7.12-7.43 (m,
			13H).
			I C MC (M. d - d - d) D = 4.27
41	HO-NO ₂	4A	LC-MS (Methode 4): R _t = 4.27
	CH3 1	aus 5-Hydroxy-2-	min.
	н,с	nitrobenzaldehyd	MS (ES): $m/z = 415 (M+H)^{+}$
	H ₃ C 0 ()		
			¹ H-NMR (300 MHz, CDCl ₃): δ
-			= 1.28 (s, 9H), 5.30 (s, 2H),
			6.29 (s, 1H), 6.63 (br. s, 1H),
			6.84 (dd, 1H), 6.96 (d, 1H), 7.3-
			7.45 (m, 4H), 7.65 (s, 1H), 8.12
			(d, 1H).

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
4J	BnO—CH ₃ H	4A aus Beispiel 11J	HPLC (Methode 12): R ₁ = 6.80 min. MS (ES): m/z = 590 (M+H) ⁺
4N	Br CH ₃ CH ₃ CH ₃ CO O O O	4A aus Beispiel 10N	HPLC (Methode 11): R ₁ = 5.51 min. MS (DCI): m/z = 507 (M+NH ₄) ⁺ ¹ H-NMR (400 MHz, CDCl ₃): δ = 1.4 (s, 9H), 3.9 (s, 3H), 5.29 (s, 2H), 6.57 (br. s, 1H), 7.23 (s, 1H), 7.31-7.45 (m, 5H), 7.81 (s, 1H), 8.04 (s, 1H), 8.07 (s, 1H).
4P	Br——NO ₂ CH ₃ H ₃ C O CH ₃	4A aus 5-Brom-2- nitrobenzaldehyd (Chem. Ber. 1905, 38, 2812)	LC-MS (Methode 3): R ₁ = 2.69 min. MS (ES): m/z = 402 (M+H) ⁺ ¹ H-NMR (300 MHz, DMSO-d ₆): δ = 1.3 (s, 9H), 3.75 (s, 3H), 7.47 (s, 1H), 7.64 (s, 1H), 7.72 (d, 1H), 8.10 (d, 1H), 8.72 (br. s, 1H).

Beispiel 40

Methyl-(2Z)-3-(5-brom-2-fluorphenyl)-2-[(tert-butoxycarbonyl)amino]acrylat

Zu einer auf -70°C gekühlten Lösung von 30 g (147.8 mmol) 5-Brom-2-fluorbenzaldehyd und 50.51 g (169.9 mmol) Methyl-[(tert-butoxycarbonyl)amino](dimethoxyphosphoryl)acetat in 450 ml wasserfreiem Tetrahydrofuran werden 21.32 ml (169.9 mmol) N,N,N,N-Tetramethylguanidin hinzugegeben. Nach 4 h Rühren bei -70°C wird das Reaktionsgemisch 15 h bei RT gerührt. Die Mischung wird mit 1000 ml Wasser und 1000 ml Essigsäureethylester versetzt. Die organische Phase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan:Essigsäureethylester 4:1) gereinigt.

Ausbeute: quant.

5

10

HPLC (Methode 11): $R_1 = 5.0$ min.

MS (DCI(NH₃)): $m/z = 391 (M+NH_4)^{+}$.

¹H-NMR (300 MHz, CDCl₃): $\delta = 1.40$ (s, 9H), 3.85 (s, 3H), 6.55 (br.s, 1H), 6.95 (dd, 1H), 7.26 (s, 1H), 7.35 (m, 1H), 7.58 (d, 1H).

Beispiel 5A

Benzyl-3-brom-N-(tert-butoxycarbonyl)-6-fluor-L-phenylalaninat

5

6.0 g (13.3 mmol) Benzyl-(2Z)-3-(5-brom-2-fluorphenyl)-2-[(tert-butoxycarbonyl)amino]acrylat werden in 100 ml Ethanol gelöst. Unter Argonatmosphäre gibt man 40 mg (0.055 mmol) (+)-1,2-Bis((2S,5S)-2,5-diethylphospholano)benzol(cyclooctadien)rhodium(I)trifluormethansulfonat hinzu und leitet 30 min Argon durch die Lösung. Anschließend wird für 4 Tage unter einem Wasserstoffdruck von 3 bar hydriert. Es wird über Kieselgel filtriert und sorgfältig mit Ethanol nachgewaschen. Das Filtrat wird im Vakuum eingeengt und das Rohprodukt am Hochvakuum getrocknet.

Ausbeute: 5.2 g (86% d.Th.)

HPLC (Methode 11): $R_t = 5.40$ min.

MS (DCI(NH₃)): $m/z = 469 (M+NH₄)^+$

¹H-NMR (300 MHz, CDCl₃): δ = 1.41 (s, 9H), 3.01 (m_c, 1H), 3.19 (m_c, 1H), 4.60 (m_c, 1H), 5.09 (br. m, 1H), 5.09 (m, 2H), 6.87 (m_c, 1H), 7.20-7.42 (m, 7H).

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 5B, 5C, 5E, 5H bis 5J und 5N und 5P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
5B	Br—CI	5A aus Beispiel 4B	LC-MS (Methode 2): $R_t = 2.59 \text{ min.}$ MS (EI): $m/z = 392 \text{ (M+H)}^+$
	н₃с о Сн₃		¹ H-NMR (400 MHz, DMSO-d ₆): δ = 1.30 (s, 9H), 2.89 (m _c , 1H), 3.22 (m _c , 1H), 3.65 (s, 3H), 4.30 (m _c , 1H), 7.3-7.5 (m, 2H), 7.57 (m, 1H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
5C	Br—CI	5A	LC-MS (Methode 1): $R_t = 3.07 \text{ min.}$
		aus Beispiel 4C	MS (EI): $m/z = 468 (M+H)^+$
	H ₃ C(CH ₃ H(CH ₃)		
	H ₃ C O-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		'H-NMR (300 MHz, DMSO-d ₆): $\delta =$
	`` o` o`		1.30 (s, 9H), 2.95 (m _e , 1H), 3.23
			(m _c , 1H), 4.33 (m _c , 1H), 5.13 (s,
			2H), 7.27-7.52 (m, 7H), 7.57 (m,
			1H).
5E	BrCH ₃	5A	LC-MS (Methode 8): $R_t = 3.81 \text{ min.}$
	CH.	aus Beispiel 4E	MS (ES): $m/z = 448 (M+H)^{+}$
	H ₃ C		
	H,3C 0————————————————————————————————————		¹ H-NMR (300 MHz, CDCl ₃): $\delta =$
			1.39 (s, 9H), 2.24 (s, 3H), 2.83-3.15
			(m, 2H), 4.57 (m _e , 1H), 5.00 (br. s,
			1H), 5.09 (dd, 2H), 6.97 (d, 1H),
			7.14-7.48 (m, 7H).
	E	<u> </u>	TAY A TAY OF THE CONTROL OF
5H		5A	¹ H-NMR (200 MHz, CDCl ₃): $\delta =$
Poderovoma	OBn	aus Beispiel 4H	1.38 (s, 9H), 3.00 (m, 2H), 4.51 (m _c ,
	H C—CH3 H—		1H), 5.03 (s, 2H), 5.10 (s, 2H), über-
	H ₃ C O N O		lagert zum Teil 5.18 (m, 1H), 6.78-
			7.15 (m, 3H), 7.17-7.44 (m, 10H).
			ANALON AND AND AND AND AND AND AND AND AND AN
1]		1

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
		5.4	A COMO CANALLA CON DE LA 2 10
51	TBSO-√NO₂	5A	LCMS (Methode 5): $R_t = 3.19 \text{ min.}$
Trivel and the	CH3 H	aus Beispiel	MS (ES): $m/z = 531 (M+H)^{+}$
:	H,C 0-(N-0)	111	
	` `` o'		¹ H-NMR (300 MHz, DMSO-d ₆): δ =
		·	0.25 (m, 6H), 0.95 (s, 9H), 1.28 (s,
			9H), 2.97 (m _c , 1H), 3.53 (m _c , 1H),
			4.42 (m _c , 1H), 5.14 (s, 2H), 6.87-7.0
			(m, 2H), 7.27-7.41 (m, 5H), 7.98 (d,
			1H).
5J	OTBS	5A	LCMS (Methode 7): R ₁ = 2.88 min.
	BnO-		
	CH.	aus Beispiel 4J	MS (ES): $m/z = 592 (M+H)^+$
	н,с		'H-NMR (300 MHz, CDCl ₃): δ =
	· · · · · · · · · · · · · · · · · · ·		0.0 (m, 6H), 0.82 (s, 9H), 1.28 (s,
			9H), 3.36 (m _c , 2H), 4.45 (m _c , 1H),
			4.47 (s, 2H), 4.85 (br. m, 1H), 4.96
			(s, 2H), 6.09 (m, 1H), 6.18 (m, 2H),
			7.15-7.35 (m, 10H).
5N	9	5A	HPLC (Methode 11): R _t = 5.37 min.
	CH ₃	711	20 (Machiodo 11), 1(" 5.57 Hill.
	Br————————————————————————————————————	aus Beispiel 4N	MS (DCI): $m/z = 509 (M+NH_4)^+$
	CH ₃ H		¹ H-NMR (300 MHz, CDCl ₃): $\delta =$
	H ₃ C		1.43 (s, 9H), 2.95-3.25 (m, 2H), 3.9
	" " "		(s, 3H), 4.60 (m _c , 1H), 5.05 (m _c ,
			1H), 5.15 (s, 2H), 7.23-7.42 (m,
	,		5H), 7.44 (s, 1H), 7.75 (s, 1H), 8.06
			(s, 1H).
			· · · · · ·

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
5P	Br—NO ₂	5A	LC-MS (Methode 3): $R_t = 2.69 \text{ min.}$
	H ₃ C O O CH ₃	aus Beispiel 4P	MS (ES): m/z = 402 (M+H) ⁺ ¹ H-NMR (300 MHz, DMSO-d ₆): δ = 1.28 (s, 9H), 2.95 (m _c , 1H), 3.48 (m _c , 1H), 3.65 (s, 3H), 4.42 (m _c , 1H), 7.31 (br. d, 1H), 7.7-7.8 (m, 2H), 7.95 (m, 1H).

Beispiel 50

Methyl-3-brom-N-(tert-butoxycarbonyl)-6-fluor-L-phenylalaninat

5 20 g (53.45 mmol) Methyl-(2Z)-3-(5-brom-2-fluorphenyl)-2-[(tert-butoxycarbonyl)amino]acrylat (Beispiel 4O) werden in 300 ml Ethanol/Dioxan (3:1) gelöst. Unter Argonatmosphäre gibt man 200 mg (+)-1,2-Bis((2S,5S)-2,5-diethylphospolano)benzol(cyclooctadien)rodhium(I)trifluoromethansulfonat hinzu und leitet 30 min Argon durch die Lösung. Anschließend wird für 3 Tage unter einem Wasserstoffdruck von 3.5 bar hydriert. Das Lösungsmittel wird einrotiert und das Rohprodukt wird säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan: Essigsäureethylester 2:2) gereinigt.

Ausbeute: quant.

HPLC (Methode 11): $R_t = 4.9 \text{ min.}$

MS (DCI(NH₃)): $m/z = 393 (M+NH_4)^{+}$.

¹H-NMR (400 MHz, CDCl₃): δ = 1.40 (s, 9H), 2.98 (dd, 1H), 3.20 (dd, 1H), 3.73 (s, 3H), 4.57 (m, 1H), 5.05 (m, 1H), 6,80 (dd, 1H), 7.25-7.40 (m, 2H).

Beispiel 6H

Benzyl-2-(benzyloxy)-N-(tert-butoxycarbonyl)-3-fluor-5-iod-L-phenylalaninat

$$H_3C$$
 CH_3
 H_3C
 O
 O
 O

5

10

12.5 g (26.1 mmol) Benzyl-2-(benzyloxy)-N-(tert-butoxycarbonyl)-3-fluor-L-phenylalaninat werden in 200 ml Dichlormethan vorgelegt und mit 8.76 g (104 mmol) Natriumhydrogencarbonat versetzt. 8.46 g (52.4 mmol) Iodmonochlorid in 10 ml Dichlormethan werden langsam zugetropft. Nach 72 h versetzt man mit 300 ml einer 5%-igen Natriumbisulfit-Lösung. Die Phasen werden getrennt und die organische Phase wird mit Wasser extrahiert. Die organische Phase wird eingeengt und der Rückstand über Kieselgel (Cyclohexan:Essigsäureethylester 6:1) gereinigt.

Ausbeute: 7.0 g (35% d.Th.)

HPLC (Methode 11): $R_t = 6.06 \text{ min.}$

15 MS (ESI): $m/z = 606 [M+H]^+$

¹H-NMR (200 MHz, CDCl₃): $\delta = 1.38$ (s, 9H), 2.70-3.11 (m, 2H), 4.52 (m_e, 1H), 5.04 (m_e, 4H) überlagert 5.05 (m, 1H), 6.78-7.09 (m, 2H), 7.15-7.48 (m, 10H).

Beispiel 7D

Diethyl-[(tert-butoxycarbonyl)amino](3-iodbenzyl)malonat

Zu einer Lösung von 24.3 g (88.4 mmol) Diethyl-[(tert-butoxycarbonyl)amino]malonat und 3.7 g (92.6 mmol) Natriumhydrid in 300 ml DMF werden unter Eiskühlung 25 g (84.2 mmol) 3-Iodbenzylbromid hinzugegeben. Nach 4 h Rühren bei RT wird unter Eiskühlung vorsichtig mit 5 ml Wasser versetzt. Es wird mehrmals mit Essigsäureethylester extrahiert, die vereinigten organischen Phasen werden mit gesättigter Natriumchlorid-Lösung und Wasser gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wird im Hochvakuum getrocknet.

Ausbeute: 43g (99% d. Th.)

10 HPLC (Methode 11): $R_1 = 5.60 \text{ min.}$

1H-NMR (300 MHz, DMSO-d₆): $\delta = 1.18$ (t, 6 H), 1.44 (s, 9H), 3.40 (s, 2H), 4.05-4.25 (m, 2H), 6.4 (br. s, 1H), 7.02 (d, 1H), 7.10 (t, 1H), 7.35 (s, 1H), 7.61(d, 1H).

Beispiel 8D

N-(tert-Butoxycarbonyl)-3-iodphenylalanin

$$H_3C$$
 CH_3
 H_3C
 O
 O
 O

15

5

Zu einer Suspension von 30.3 g (62 mmol) Diethyl-[(tert-butoxycarbonyl)amino](3-iodbenzyl)malonat (Beispiel 7D) in 440 ml eines Gemisches von Ethanol und Wasser (3:1) werden 240 ml 1N Natronlauge hinzugegeben. Nach 3 h unter Rückfluss wird der pH-Wert der Reaktionsmischung nach Abkühlung auf RT mit konzentrierter Salzsäure auf ca. pH 2 eingestellt. Die

Reaktionsmischung wird im Vakuum eingeengt. Der Rückstand wird in MTBE und Wasser aufgenommen. Die wässrige Phase wird dreimal mit MTBE extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und eingeengt. Der Rückstand wird durch RP-HPLC (Acetonitril/Wasser Gradient) gereinigt.

5 Ausbeute: 16.2 g (67% d. Th.)

HPLC (Methode 11): $R_t = 4.53$ min.

¹H-NMR (400 MHz, DMSO-d₆): $\delta = 1.42$ (s, 9H), 3.02 (m_c, 1H), 3.18 (m_c, 1H), 4.57 (br. m_c, 1H), 4.94 (br. m_c, 1H), 7.05 (t, 1H), 7.17 (d, 1H), 7.55 (s, 1H), 7.60 (d, 1H).

Beispiel 9D

10 N-(tert-Butoxycarbonyl)-3-iod-L-phenylalanin

Das Racemat aus Beispiel 8D wird an einer chiralen stationären Kieselgelphase, basierend auf dem Selektor aus Poly(N-methacryloyl-L-leucin-dicyclopropylmethylamid), mit einem Gemisch aus i-Hexan/Essigsäureethylester als Elutionsmittel getrennt. Nach chromatographischem Vergleich entspricht das zuerst eluierte Enantiomer dem (R)-Enantiomer (97% ee), das zweite, rechtsdrehende ([α]_D²⁰: +18.8°, c = 0.57, Dichlormethan) Enantiomer dem (S)-Enantiomer (97% ee).

Beispiel 10D

15

Benzyl-N-(tert-butoxycarbonyl)-3-iod-L-phenylalaninat

20 Unter Argon werden 5.33 g (13.6 mmol) N-(tert-Butoxycarbonyl)-3-iod-L-phenylalanin (aus Beispiel 9D) in 110 ml Acetonitril gelöst. Dazu werden 166 mg (1.36 mmol) 4-Dimethylaminopyridin und 2.82 ml (27.2 mmol) Benzylalkohol hinzugefügt. Die Mischung wird auf -10°C abgekühlt und mit 3.13 g (16.35 mmol) EDC versetzt. Man lässt alles langsam auf RT kommen und rührt über

- 46 -

Nacht. Nach ca. 16 h wird das Gemisch im Vakuum einrotiert und der Rückstand chromatographisch an RP-HPLC (Laufmittel: Acetonitril/Wasser Gradient) gereinigt.

Ausbeute: 4.78 g (73% d. Th.).

LC-MS (Methode 8): $R_t = 3.77 \text{ min.}$

5 MS (EI): $m/z = 482 (M+H)^{+}$.

Beispiel 111

Benzyl-(2Z)-2-[(tert-butoxycarbonyl)amino]-3-(5-{[tert-butyl(dimethyl)silyl]oxy}-2-nitrophenyl)acrylat

Eine Lösung von 6.76 g (9.8 mmol) Benzyl-(2Z)-2-[(tert-butoxycarbonyl)amino]-3-(5-hydroxy}-2-nitrophenyl)acrylat (Beispiel 4I) in 100 ml Dichlormethan wird unter Eiskühlung mit 1.67 g (24.5 mol) Imidazol und 1.77 g (11.7 mmol) tert-Butyldimethylsilylchlorid versetzt. Es wird auf RT erwärmt und 18 h gerührt. Die organische Phase wird mehrfach mit Wasser gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt mittels RP-HPLC (Laufmittel: Acetonitril/Wasser Gradient) gereinigt.

Ausbeute: 2.82 g (55% d. Th.)

LC-MS (Methode 8): $R_i = 4.19$ min.

MS (EI⁺): $m/z = 529 (M+H)^+$

¹H-NMR (400 MHz, CDCl₃): δ = 0.24 (s, 6H), 0.97 (s, 9H), 1.30 (s, 9H), 5.30 (s, 2H), 6.25 (br. s, 20 1H), 6.82 (dd, 1H), 6.93 (d, 1H), 7.30-7.46 (m, 5H), 7.60 (s, 1H), 8.12 (d, 1H).

Beispiel 11J

3-(Benzyloxy)-5-{[tert-butyl(dimethyl)silyl]oxy}benzaldehyd

Die Herstellung erfolgt analog zu Beispiel 11I aus 2.8 g (12.3 mmol) 3-(Benzyloxy)-5-hydroxybenzaldehyd (Beispiel 3J), 1.67 g (24.5 mmol) Imidazol und 3.57 g (13.5 mmol) Trifluor-methansulfonsäure-*tert*-butyl-dimethylsilylester.

Ausbeute: 4.0 g (95% d. Th.)

LC-MS (Methode 18): $R_t = 2.05 \text{ min}$

 $MS (EI): m/z = 343 (M+H)^{+}$

¹H-NMR (400 MHz, CDCl₃): δ = 0.21 (s, 6H), 0.97 (s, 9H), 5.10 (s, 2H), 6.72 (s, 1H), 6.95 (s, 1H), 7.10 (s, 1H), 7.28-7.48 (m, 5H).

Beispiel 10N

5

Methyl-3-brom-5-formylbenzoat

Unter Argon werden 6.2 g (27.1 mmol) 3-Brom-5-formylbenzoesäure (*J. Org. Chem.*, 2002, 67, 3548-3554) in 110 ml Acetonitril gelöst. Dazu werden 330 mg (2.7 mmol) 4-Dimethylaminopyridin und 1.73 ml (54.2 mmol) Methanol hinzugefügt. Die Mischung wird auf -10°C abgekühlt und mit 6.23 g (32.5 mmol) EDC versetzt. Man lässt alles langsam auf RT kommen und rührt 20 h nach. Anschließend wird das Lösungsmittel im Vakuum eingedampft und der Rückstand chromatographisch an Kieselgel (Laufmittel: Cyclohexan/Essigsäureethylester (6:1)) gereinigt.

Ausbeute: 5.1 g (77% d. Th.).

HPLC (Methode 11): $R_t = 4.41$ min.

¹H-NMR (200 MHz, CDCl₃): $\delta = 3.95$ (s, 3H), 8.20 (m, 1H), 8.43 (m, 1H), 8.47 (m, 1H), 10.03 (s, 1H).

Beispiel 12I

5 Benzyl-N-(tert-butoxycarbonyl)-3-hydroxy-6-nitro-L-phenylalaninat

Eine Lösung von 2.77 g (5.22 mmol) Benzyl-N-(tert-butoxycarbonyl)-3-{[tert-butyl(dimethyl)silyl]oxy}-6-nitro-L-phenylalaninat (Beispiel 5I) in 50 ml THF wird mit 10.4 ml (10.4 mmol) einer 1N Tetrabutylammoniumfluorid-Lösung in THF versetzt und 30 min bei RT gerührt. Anschließend gießt man die Lösung auf Eiswasser und extrahiert mehrmals mit Essigsäureethylester. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wird im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 2.1 g (97% d. Th.)

LC-MS (Methode 8): $R_t = 3.23$ min.

15 MS (EI⁺): $m/z = 417 (M+H)^+$

Beispiel 12J

Benzyl-3-(benzyloxy)-N-(tert-butoxycarbonyl)-5-hydroxy-L-phenylalaninat

Die Herstellung erfolgt analog zu Beispiel 12I aus 1.30 g (2.2 mmol) Benzyl-3-(benzyloxy)-*N*-(*tert*-butoxycarbonyl)-5-{[*tert*-butyl(dimethyl)silyl]oxy}-*L*-phenylalaninat (Beispiel 5J) und 4.4 ml (4.39 mmol) einer 1N Tetrabutylammoniumfluorid-Lösung in THF.

5 Ausbeute: 1.15 g (95% d. Th.)

LC-MS (Methode 14): $R_t = 3.82 \text{ min}$

 $MS (EI): m/z = 478 (M+H)^+$

Beispiel 13I

Benzyl-N-(tert-butoxycarbonyl)-2-nitro-5-{[(trifluormethyl)sulfonyl]oxy}-L-phenylalaninat

10

15

Eine Lösung von 2.27 g (5.46 mmol) Benzyl-N-(tert-butoxycarbonyl)-3-hydroxy-6-nitro-L-phenylalaninat (Beispiel 12I) und 1.52 ml (10.9 mmol) Triethylamin in 150 ml Diehlormethan wird bei –15°C (Aceton/Trockeneis Bad) tropfenweise mit 1.0 ml (6.01 mmol) Trifluormethansulfonsäureanhydrid versetzt. Nach 15 min wird auf RT erwärmt und mit Wasser versetzt. Die organische Phase wird getrennt, mehrmals mit Wasser gewaschen, über Magnesiumsulfat getrocknet und im Vakuum eingeengt. Das Rohprodukt wird mittels RP-HPLC (Laufmittel: Acetonitril/Wasser Gradient) gereinigt.

Ausbeute: 1.88 g (63% d. Th.)

HPLC (Methode 13): $R_t = 5.35$ min.

MS (DCI): $m/z = 566 (M+NH_4)^{\dagger}$

¹H-NMR (200 MHz, DMSO-d₆): δ = 1.29 (s, 9H), 3.08 (m_c, 1H), 3.50 (m_c, 1H), 4.46 (m_c, 1H), 5.15 (s, 2H), 7.25-7.50 (m, 5H), 7.65-7.80 (m, 2H), 8.20 (m_c, 1H).

Beispiel 13J

5

Benzyl-3-(benzyloxy)-N-(tert-butoxycarbonyl)-5-{[(trifluormethyl)sulfonyl]oxy-L-phenylalaninat

Die Herstellung erfolgt analog zu Beispiel 13I aus 1.15 g (2.41 mmol) Benzyl-3-(benzyloxy)-N-10 (tert-butoxycarbonyl)-5-hydroxy-L-phenylalaninat (Beispiel 12J), 0.67 ml (4.82 mmol) Triethylamin und 0.45 ml (2.65 mmol) Trifluormethansulfonsäureanhydrid.

Ausbeute: 1.4 g (95% d. Th.)

LC-MS (Methode 14): $R_1 = 4.24 \text{ min}$

MS (EI): $m/z = 610 (M+H)^{+}$

15 Beispiel 14B

Methyl-3-brom-N-(tert-butoxycarbonyl)-6-chlor-N-methyl-L-phenylalaninat

5

10

$$H_3C$$
 H_3C
 CH_3
 CH_3

100 mg (0.25 mmol) der Verbindung aus Beispiel 5B werden unter Argon in 5 ml THF gelöst und bei RT mit 30 mg (0.76 mmol) Natriumhydrid (60%ige Dispersion in Mineralöl) versetzt. Nach Zugabe von 290 mg (130 μl, 2.04 mmol) Methyliodid wird für 12 h bei RT gerührt. Anschließend gibt man je 20 ml Essigsäureethylester und Wasser hinzu und stellt durch Zugabe von 0.1N Salzsäure einen pH-Wert von 3 ein. Es wird mehrmals mit Essigsäureethylester extrahiert, die organische Phase wird getrennt, über Magnesiumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Das Rohprodukt wird in 10 ml Methanol gelöst und unter Argon bei 0°C (Eisbadkühlung) mit 50 mg (0.25 mmol) EDC und 8 mg (0.057 mmol) HOBt versetzt. Es wird 36 h bei RT gerührt. Methanol wird im Vakuum abgedampft und der Rohansatz wird mit Wasser versetzt und mehrmals mit Essigsäureethylester extrahiert. Die organische Phase wird über Magnesiumsulfat getrocknet, im Vakuum zur Trockne eingeengt und durch RP-HPLC (Laufmittel: Acetonitril/Wasser Gradient) gereinigt.

Ausbeute: 0.06 g (59% d. Th.)

15 LC-MS (Methode 3): $R_1 = 2.96 \text{ min.}$

 $MS (EI): m/z = 306 (M-boc+H)^+$

¹H-NMR (400 MHz, DMSO-d₆): RT-Spektrum zeigt Rotamere: $\delta = 1.25$ (s_c, 9H), 2.65 (s_c, 3H), 3.18 (m_c, 1H), 3.38 (m_c, 1H), 3.70 (s_c, 3H), 4.83 (m_c, 1H), 7.35-7.60 (m, 3H).

Beispiel 140

20 Methyl-3-brom-N-(tert-butoxycarbonyl)-6-fluor-N-methyl-L-phenylalaninat

Zu einer Lösung von 16.5 g (43.86 mmol) Methyl-3-brom-N-(tert-butoxycarbonyl)-6-fluor-L-phenylalaninat (Beispiel 5O) in 220 ml wasserfreiem Tetrahydrofuran werden 49.8 g (350.86 mmol) Iodmethan und 2.28 g (57.01 mmol) Natriumhydrid hinzugegeben. Die Reaktionsmischung wird bei RT über Nacht gerührt. Die Mischung wird mit 1000 ml Wasser und 1000 ml Essigsäure-ethylester versetzt. Die organische Phase wird nacheinander mit Wasser und gesättigter Natrium-chlorid-lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan:Essigsäureethylester 3:1) gereinigt.

Ausbeute: quant.

5

10 HPLC (Methode 11): $R_t = 5.1 \text{ min.}$

MS (DCI(NH₃)): $m/z = 390 (M+H)^{+}$.

¹H-NMR (400 MHz, CDCl₃): $\delta = 1.48$ (d, 9H), 2.23 (d, 3H), 3.09 (dd, 1H), 3.30 (dd, 1H), 3.75 (s, 3H), 4.70 (ddd, 1H), 6.92 (dd, 1H), 7.30 (m, 2H).

Beispiel 15E

5

10

5-Brom-2-methylbenzaldehyd

77.7 g (583 mmol) Aluminiumtrichlorid werden in 200 ml Dichlormethan suspendiert und auf 0°C gekühlt. 40.0 g (333 mmol) 2-Methylbenzaldehyd werden innerhalb von 30 min zugetropft. Anschließend gibt man 53.2 g (333 mmol) Brom innerhalb von 6 h bei 0°C zu, lässt auf RT erwärmen und rührt 12 h nach. Die Reaktionslösung wird auf 500 ml Eiswasser gegeben. Die wässrige Phase wird mehrfach mit Dichlormethan extrahiert. Die vereinigten organischen Phasen werden nacheinander mit 2N Salzsäure, gesättigter wässriger Natriumhydrogencarbonat-Lösung und gesättigter wässriger Natriumchlorid-Lösung gewaschen. Die organische Phase wird über Natriumsulfat getrocknet und im Vakuum eingeengt. Man reinigt per Kieselgelchromatographie und anschließend über Kristallisation aus Cyclohexan. Das ausgefallene Produkt wird abfiltriert.

Ausbeute: 3.2 g (5% d.Th.)

LC-MS (Methode 9): $R_t = 3.26 \text{ min}$

15 MS (EI): $m/z = 199 (M+H)^+$

Beispiel 16A

2-(Trimethylsilyl)ethyl-2-(benzyloxy)-N-[(benzyloxy)carbonyl]-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-L-phenylalaninat

20 Zu einer Lösung von 2.00 g (3.17 mmol) 2(S)-Benzyloxycarbonylamino-3-(2-benzyloxy-5-iod-phenyl)-propionsäure-(2-trimethylsilyl)-ethylester in 30 ml DMSO werden 0.932 g (9.50 mmol)

5

Kaliumacetat zugegeben. Die Mischung wird deoxygeniert, indem durch die kräftig gerührte Lösung 15 min lang Argon durchgeleitet wird. Dann werden 0.924 g (3.64 mmol) 4,4,4',4',5,5,5',5'-Octamethyl-2,2'-bi-1,3,2-dioxaborolan und 0.116 g (0.160 mmol, 0.05 Äquivalente) Bis-(diphenylphosphino)ferrocenpalladium(II)chlorid zugegeben. Unter leichtem Argonstrom wird auf 80°C erhitzt und nach 6 h wieder abgekühlt. Die Mischung wird über Silicagel (Laufmittel: Dichlormethan) filtriert. Der Rückstand wird säulenchromatographisch an Silicagel (Laufmittel: Cyclohexan:Essigsäureethylester 4:1) gereinigt.

LC-MS (Methode 22): $R_t = 4.50 \text{ min}$

MS (EI): $m/z = 632 (M+H)^{+}$

¹H-NMR (200 MHz, CDCl₃): δ = 0.92 (dd, 2H), 1.31 (s, 12H), 2.95-3.95 (m, 2H), 4.11 (m_c, 2H), 4.55 (11 (m_c, 1H), 4.99 (s, 2H), 5.08 (s, 2H), 5.53 (d, 1H), 6.90 (d, 1H), 7.15-7.47 (m, 10 H), 7.58 (d, 1H), 7.67 (dd, 1H).

Beispiel 17A

2-(Trimethylsilyl)ethyl-(2S)-3-(3'-{(2S)-3-(benzyloxy)-2-[(tert-butoxycarbonyl)amino]-3-oxopropyl}-4'-fluor-4-hydroxybiphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}propanoat

Man löst 358 mg (0.79 mmol) Benzyl-3-brom-*N*-(*tert*-butoxycarbonyl)-6-fluor-*L*-phenylalaninat (Beispiel 5A) in 3 ml abs. DMF, entgast die Lösung 5 min im Vakuum, belüftet mit Argon und führt die nachfolgende Reaktion auch unter Argondurchfluss durch. Zu dieser Lösung gibt man unter Rühren 58 mg (0.08 mmol) Bis(diphenylphosphino)ferrocen-palladium(II)-chlorid und 516 mg (1.58 mmol) Cäsiumcarbonat. Parallel dazu löst man 500 mg (0.79 mmol) 2-(Trimethylsilyl)ethyl-2-[(benzyloxy)carbonyl]-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-*L*-phenylalaninat (Beispiel 16A) in 3 ml abs. DMF, entgast 5 min. im Vakuum und leitet anschlie-

5

ßend 15 min. Argon durch die Lösung. Die so hergestellte Lösung gibt man unter Argonatmosphäre zu der ersten Lösung, erwärmt auf 40°C und lässt unter Rühren über Nacht reagieren. Man engt im Vakuum zur Trockne ein, nimmt den Rückstand in 10 ml Essigsäureethylester auf, filtriert vom Ungelösten und extrahiert die organische Phase dreimal mit 3 ml Wasser. Die organische Phase wird getrocknet (Natriumsulfat), im Vakuum eingeengt und der Rückstand säulenchromatographisch getrennt (Kieselgel 60, Laufmittel: Cyclohexan / Essigsäure-ethylester = 4/1). Die Hauptfraktion liefert 389 mg Produkt (47% Ausbeute); aus der Mischfraktion werden mittels HPLC (Acetonitril / Wasser) weitere 72 mg (10% Ausbeute) gewonnen.

Gesamtausbeute: 57% d.Th.

10 LC-MS (Methode 4): $R_t = 5.0 \text{ min.}$

 $MS (EI): m/z = 876 [M+H]^{+}$

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 17B bis 17E, 17H bis 17J, 17N und 17P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
17B	O H,C H,C CH,	17A aus Beispiel	LC-MS (Methode 3): $R_t = 3.55$ min. MS (ES): $m/z = 853$ (M+Na) ⁺
17C	H,C-G-CH, H,C-CH, CH,	14B und 16A 17A	HPLC (Methode 12): R _t = 7.20 min.
	HIN COH,	aus Beispiel 5C und 16A	MS (ES): m/z = 893 (M+H) ⁺ H-NMR (200 MHz, DMSO-d ₆): δ =
			0.0 (s, 9H), 0.83 (m _c , 2H), 1.30 (s, 9H), 2.75-3.15 (m, 2H), 3.30 (m _c , 2H), 3.88 (s, 3H), 4.09 (m _c , 2H),
			4.44 (m _c , 2H), 4.97 (m _c , 2H), 5.10-5.30 (m, 4H), 7.1-7.9 (m, 21H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
17D		17A	LC-MS (Methode 9): $R_t = 5.35 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 859 (M+H)^{+}$
		10D und 16A	
	CH, CH, CH, CH,		
17E		17A	LC-MS (Methode 18): $R_t = 4.01$
1,2	Carl Carl		min.
		aus Beispiel 5E	
	H ₃ C SI-CH ₃ H ₃ C CH ₃	und 16A	MS (ES): $m/z = 873 (M+H)^{+}$
	ĊH, OK,		
17H		17A	LC-MS (Methode 18): $R_t = 3.79$
		aus Daismial GII	min.
		aus Beispiel 6H und 16A	MS (ES): $m/z = 983 (M+H)^{+}$
	н,с-s-сн, н,с сн, " сн,	und POA	Wis (155). 111/2 – 965 (W111)
171		17A	LC-MS (Methode 7): $R_t = 2.93$ min.
		aus Beispiel	MS (ES): $m/z = 904 (M+H)^{+}$
	H,C-\$-CH, LCH,	13I und 16A	
	сн,		
17J		17A	LC-MS (Methode 7): R ₁ = 3.73 min.
		aus Beispiel	MS (ES): $m/z = 965 (M+H)^+$
	MO-SI-CH, MC CH,	13J und 16A	
	- 9		
17N	, CH,	17A	LC-MS (Methode 5): $R_1 = 3.36$ min.
		ans Beispiel 5N	MS (ES): $m/z = 917 (M+H)^{+}$
	OBn HN OBn	und 16A	
	н,с-`şı-сн, н,с сн,		
		<u> </u>	L

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
17P	H ₃ C-Si-CH ₃ H ₃ C CH ₃	17A aus Beispiel 5P und 16A	LC-MS (Methode 1): $R_t = 3.40 \text{ min.}$ MS (ES): $m/z = 828 \text{ (M+H)}^+$

Beispiel 17O

Methyl-(2S)-3-(4'-(benzyloxy)-3'-{(2S)-2-{[(benzyloxy)carbonyl]amino}-3-oxo-3-[2-(trimethyl-silyl)ethoxy]propyl}-4-fluorbiphenyl-3-yl)-2-[(tert-butoxycarbonyl)(methyl)amino]propanoat

5

10

15

Eine Lösung von 1.68 g (4.09 mmol) Methyl-3-brom-N-(tert-butoxycarbonyl)-6-fluor-N-methyl-L-phenylalaninat (Beispiel 14O) in 8 ml 1-Methyl-2-pyrrolidon wird inertisiert und mit Argon gesättigt (ca. 30 min Argon durchleiten). Anschließend gibt man 334 mg (0.41 mmol) Bis(diphenyl-phosphino)ferrocen-palladium(II)chlorid (PdCl₂(dppf)) dazu, und die Mischung wird 10 min bei RT gerührt. Danach werden 3.45 g (4.92 mmol) 2-(Trimethylsilyl)ethyl-2-(benzyloxy)-N-[(benzyloxy)-N-[(benzyloxy)carbonyl]-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-L-phenylalaninat (Beispiel 16A) in 8 ml 1-Methyl-2-pyrrolidon und 2.67 g (8.19 mmol) Cäsiumcarbonat hinzugegeben. Das Reaktionsgemisch wird mit Argon leicht überströmt und für 20 h bei 50°C gerührt. Die Mischung wird abgekühlt, in Dichlormethan aufgenommen und mit Wasser gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und das Lösungsmittel wird im Vakuum eingeengt. Der Rückstand wird säulenchromatographisch an Kieselgel gereinigt (Cyclohexan:Essigsäureethylester 7:3).

Ausbeute: 3.6 g (86% d. Th.).

- 58 -

LC-MS (Methode 1): $R_t = 2.49 \text{ min}$

MS (EI): $m/z = 1140 (M+H)^{+}$.

Beispiel 18A

Benzyl-(2S)-2-amino-3-(4'-(benzyloxy)-3'-{(2S)-2-{[(benzyloxy)carbonyl]amino}-3-oxo-3-[2-(trimethylsilyl)ethoxy]propyl}-4-fluorbiphenyl-3-yl)propanoat-Hydrochlorid

405 mg (0.46 mmol) der Verbindung aus Beispiel 17A werden in 2 ml abs. Dioxan suspendiert, auf 0°C gekühlt und unter Rühren mit 12 ml 4N Dioxan / Chlorwasserstoff-Lösung versetzt. Nach 3 h dampft man alles im Vakuum zur Trockne ein und trocknet im Hochvakuum bis zur Gewichtskonstanz.

Ausbeute: 395 mg (88% d.Th.)

LC-MS (Methode 5): $R_t = 2.45 \text{ min.}$

 $MS (EI): m/z = 776 [M+H]^+$

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 18B bis 18E, 18H bis 18J und 18N und 18P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt	Analytische Daten
		spiel-Nr.	
18B		18A	LC-MS (Methode 1): $R_t = 2.69 \text{ min.}$
	H,C SI-CH, CH CH CH CH CH CH CH CH CH	aus Beispiel 17B	MS (ES): $m/z = 731 (M-HCl+H)^+$
18C		18A	LC-MS (Methode 5): R ₁ = 2.50 min.
	HA CH	aus Beispiel 17C	MS (ES): $m/z = 793 (M-HCl+H)^+$
18D		18A	LC-MS (Methode 5): $R_t = 2.36$ min.
	H,C SI-CH, CH	aus Beispiel 17D	MS (ES): m/z = 759 (M-HCl+H) ⁺
18E	O-O-O-1,	18A	LC-MS (Methode 8): R ₁ = 3.10 min.
	H,C-S-CH, CH	aus Beispiel 17E	MS (ES): m/z = 773 (M-HCl+H) ⁺
18H		18A	LC-MS (Methode 18): $R_1 = 1.28 \text{ min.}$
	H,c-SI-CH, CH	aus Beispiel 17H	MS (ES): m/z = 883 (M-HCl+H) ⁺
181	○	18A	LC-MS (Methode 14): R _t = 3.45 min.
	H,c-si-cit,	aus Beispiel 17I	MS (ES): $m/z = 804 (M-HCl+H)^{+}$

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
	0.75		
18J		18A	LC-MS (Methode 14): $R_t = 3.61$ min.
		aus Beispiel	MS (ES): $m/z = 865 (M-HCl+H)^+$
	" ° CH ° C	17J	any over the state of the state
	Сы,		
18N	OCH,	18A	LC-MS (Methode 5): $R_t = 2.42 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 817 (M-HCl+H)^+$
	H,C-9-CM,	17N	
	сн,		n-demonstrate
18P	NO ₂	18A	LC-MS (Methode 1): $R_t = 2.39 \text{ min.}$
	NO HAN O'CH,	aus Beispiel	MS (ES): $m/z = 728 (M-HCl+H)^{+}$
	×HCI ST	17P	
	ӊс~s;-сң сн,		

Beispiel 180

 $2-(Trimethylsilyl)ethyl-(2S)-2-\{[(benzyloxy)carbonyl]amino\}-3-\{4-(benzyloxy)-4'-fluor-3'-[(2S)-3-methoxy-2-(methylamino)propyl]biphenyl-3-yl\}propanoat-Hydrochlorid$

5

Zu einer auf 0°C gekühlten Lösung von 1.2 g (1.47 mmol) Methyl-(2S)-3-(4'-(benzyloxy)-3'-{(2S)-2-{[(benzyloxy)carbonyl]amino}-3-oxo-3-[2-(trimethylsilyl)ethoxy]propyl}-4-fluorbiphenyl-3-yl)-

2-[(tert-butoxycarbonyl)(methyl)amino]propanoat (Beispiel 17O) in 6 ml wasserfreiem Dioxan werden 23 ml einer 4M Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 3 h Rühren wird das Lösungsmittel im Vakuum eingedampft, mehrmals mit Dichlormethan coevaporiert und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

5 Ausbeute: quant.

LC-MS (Methode 2): $R_t = 2.62 \text{ min.}$

MS (EI): $m/z = 715 (M+H)^{+}$.

Beispiel 19A

2-(Trimethylsilyl)ethyl-(2S)-3-{3'-[(2S)-3-(benzyloxy)-2-({(2S)-5-{[(benzyloxy)carbonyl]amino}-10 2-[(tert-butoxycarbonyl)amino]pentanoyl}amino)-3-oxopropyl]-4'-fluor-4-hydroxybiphenyl-3-y}-2-{[(benzyloxy)carbonyl]amino}propanoat

90 mg (0.12 mmol) der Verbindung aus Beispiel 18A und 42.4 mg (0.12 mmol) N^5 -[(Benzyloxy)carbonyl]- N^2 -(tert-butoxycarbonyl)-L-ornithin werden in 3 ml abs. DMF gelöst, auf 0°C gekühlt, mit 44 mg (0.12 mmol) HATU und 16.2 mg (0.13 mmol) Hünig-Base versetzt. Man rührt 30 min. bei dieser Temperatur, versetzt dann mit weiteren 32.4 mg (0.26 mmol) Hünig-Base und lässt die Temperatur auf RT ansteigen. Nach Reaktion über Nacht dampft man alles im Vakuum zur Trockne ein und reinigt den Rückstand säulenchromatographisch (Kieselgel 60, Laufmittel: Dichlormethan / Methanol = 100/5).

20 Ausbeute: 98 mg (75% d.Th.)

WO 2005/058943 PCT/EP2θ04/013688 - 62 -

LC-MS (Methode 6): $R_t = 3.84 \text{ min.}$

MS (EI): $m/z = 1124 (M+H)^{+}$

Beispiel 19B

5

2-(Trimethylsilyl)ethyl-(2S)-3-(4-(benzyloxy)-3'-{(2S)-2-[((2S,4R)-5-{[(benzyloxy)carbonyl]-amino}-2-[(tert-butoxycarbonyl)amino]-4-{[tert-butyl(dimethyl)silyl]oxy}pentanoyl)(methyl)-amino]-3-methoxy-3-oxopropyl}-4'-chlorbiphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}-propanoat

320 mg (0.43 mmol) der Verbindung aus Beispiel 18B und 320 mg (0.52 mmol) (2S,4R)-5-{[(Benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]-4-{[tert-butyl(dimethyl)silyl]-oxy}pentansäure werden in 6 ml abs. DMF gelöst, auf 0°C gekühlt, mit 20 mg (0.52 mmol) HATU und 19.2 mg (1.51 mmol) Hünig-Base versetzt. Man rührt 30 min. bei dieser Temperatur, versetzt dann mit weiteren 3.2 mg (0.06 mmol) Hünig-Base und lässt die Temperatur auf RT ansteigen. Nach Reaktion über Nacht engt man alles im Vakuum zur Trockne ein und reinigt das Rohprodukt über die HLPC (Laufmittel: Acetonitril / Methanol Gradient).

Ausbeute: 303 mg (58% d.Th.)

LC-MS (Methode 3): $R_t = 3.81 \text{ min.}$

MS (EI): $m/z = 1209 (M+H)^{+}$

10

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 19C bis 19N und 19P aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
19C		19B	LCMS (Methode 2): $R_t = 3.69 \text{ min.}$
		ana Daisnial	MC (EC) / 1001 (M) YDT
	M.CGI-CHI, MH	aus Beispiel 18C	MS (ES): $m/z = 1271 (M+H)^+$
		100	
19D		19B	LCMS (Methode 2): R _t = 3.64 min.
		ous Poissisl	MC (ES),/o - 1227 (M/II) [†]
	H,C-S-CH, MH	aus Beispiel 18D	MS (ES): $m/z = 1237 (M+H)^{+}$
f	, J.O		
19E	О	19A	LCMS (Methode 3): R _t = 3.54 min.
		aus Beispiel	MC (EC), m/a = 1121 (M/HY) ⁺
	M,C-N-CK, NH	18E	MS (ES): $m/z = 1121 (M+H)^+$
	H'C CH' O'LOU		
19F		19A	LCMS (Methode 9): R _t = 5.35 min.
		ove Doissist	MC (EC),/ 1107 (M III) [†]
	" 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aus Beispiel 18D	MS (ES): $m/z = 1107 (M+H)^+$
	., .,		
19G	О-,-(-)-си,	19B	LCMS (Methode 5): R _t = 3.89 min.
		ana Dalamia!	
	H,C-91-CH, NH	aus Beispiel 18E	MS (ES): $m/z = 1252 (M+H)^+$
	736	.01	
	77.7		
LJ		····	<u> </u>

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
19H		19B	LCMS (Methode 10): $R_t = 1.34 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1362 (M+H)^+$
	H,C-F-CH, /HI	18H	(20), 1125 1002 (112 12)
	(24, box 109,0 HH	1011	
19I	NO _z	19B	LCMS (Methode 10): $R_t = 1.04 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1282 (M+H)^{+}$
	H,c-0-01, MH	18I	(100)
	TNS OF O	101	
19J		19B	LCMS (Methode 10): $R_t = 1.38 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1343 (M+H)^+$
	H,C~SI~CH, MH	18Ј	
	TBS TBS		
1075	9		10010 (14 1 1 7) 2 2 60
19K		19A	LCMS (Methode 7): $R_t = 3.58 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1213 (M+H)^+$
	H ₂ C-Q-CH, MH	18J	
107		19B	LCMS (Methode 3): R _t = 3.87 min.
19L		198	LCMS (Meniode 3): Ki = 3.67 Hill.
		aus Beispiel	MS (ES): $m/z = 1255 (M+H)^+$
	H,C B-CH, HH CH, box 1830 NH	18A	

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
19M		19A	LC-MS (Methode 2): $R_t = 3.38 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1079 (M+H)^{+}$
	H.C. J.	18B	11.5 (1.5), 11.2
		100	
19N	0 0 cm,	19B	LC-MS (Methode 16): $R_t = 2.88$
		ana Daianial	min.
		aus Beispiel	NG (75) / 1005 (25:XX)†
	H,C-91-CH, MR HH	18N	MS (ES): $m/z = 1295 (M+H)^{+}$
	.,,,		
19P		19A	LC-MS (Methode 2): R _t = 3.23 min.
	NO,		
	C) CH CH	aus Beispiel	MS (ES): $m/z = 1076 (M+H)^{+}$
	H,C CH, boc MH	18P	
	0,00		
		······································	

Beispiel 19O

 $2-(Trimethylsilyl)ethyl-(2S)-3-(4-(benzyloxy)-3'-\{(2S)-2-[\{(2R)-5-\{[(benzyloxy)carbonyl]amino\}-2-[(tert-butoxycarbonyl)amino]pentanoyl\}(methyl)amino]-3-methoxy-3-oxopropyl\}-4'-fluorbi-phenyl-3-yl)-2-\{[(benzyloxy)carbonyl]amino\}propanoat$

WO 2005/058943 PCT/EP2004/013688

Zu einer auf 0°C gekühlten Lösung von 1.05 g (Rohprodukt, ca. 1.47 mmol) 2- (Trimethylsilyl)ethyl-(2S)-2-{[(benzyloxy)carbonyl]amino}-3-{4-(benzyloxy)-4'-fluor-3'-[(2S)-3-methoxy-2-(methylamino)propyl]biphenyl-3-yl}propanoat-Hydrochlorid (Beispiel 18O) und 0.64 g (1.77 mmol) N^5 -[(Benzyloxy)carbonyl]- N^2 -(tert-butoxycarbonyl)-L-ornithin in 20 ml wasserfreiem DMF werden 0.73 g (1.91 mmol) HATU und 0.22 g (1.72 mmol) N_i -Diisopropylethylamin hinzugegeben. Nach 30 min Rühren bei 0°C werden zusätzliche 0.44 g (3.45 mmol) N_i -Diisopropylethylamin hinzugegeben. Das Reaktionsgemisch wird 15 h bei RT gerührt. Das Lösungsmittel wird dann eingedampft und der Rückstand in Dichlormethan aufgenommen. Die organische Phase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch präparative HPLC gereinigt.

Ausbeute 0.89 g (57% d. Th.)

LC-MS (Methode 3): $R_t = 3.45 \text{ min.}$

MS (EI): $m/z = 1064 (M+H)^{+}$.

15 Beispiel 20B

5

10

(2S)-3-(4-(Benzyloxy)-3'-{(2S)-2-[{(2S,4R)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]-4-hydroxypentanoyl}(methyl)amino]-3-methoxy-3-oxopropyl}-4'-chlorbiphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}propansäure

282.3 mg (0.23 mmol) 2-(Trimethylsilyl)ethyl-(2S)-3-(4-benyzloxy)-3'- $\{(2S)-2-[((2S,4R)-5-\{(benzyloxy)carbonyl]amino\}-2-[(tert-butoxycarbonyl)amino]-4-{[tert-butyl(dimethyl)silyl]oxy}-pentanoyl)(methyl)amino]-3-methoxy-3-oxopropyl}-4'-chlorbiphenyl-3-yl)-2-{[benzyloxy}-$

carbonyl]amino}propanoat (Beispiel 19B) werden in 20 ml abs. DMF vorgelegt, unter Rühren mit 0.7 ml (183 mg, 0.7 mmol) Tetra-n-butylammoniumfluorid-Lösung versetzt und 20 min bei RT gerührt. Man kühlt auf 0°C und versetzt mit 60 ml Wasser und 0.5 ml 1N Salzsäure. Es fällt ein Niederschlag aus. Man rührt noch 60 min., filtriert den Niederschlag ab, wäscht mit wenig Wasser nach und trocknet den Niederschlag im Vakuum bis zur Gewichtskonstanz.

10 Ausbeute: 236 mg (98% d.Th.)

LC-MS (Methode 1): $R_1 = 3.07 \text{ min.}$

MS (EI): $m/z = 994 [M+H]^+$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 20A, 20C bis 20N und 20P aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
20A		20B	LC-MS (Methode 7): $R_t = 0.91$ min.
		nua Baismial	MS (EI): $m/z = 1024 (M+H)^+$
		aus Beispiel	MS (E1): HV2 = 1024 (W+H)
		19A	
	<u></u>	200	I C MC (Mathada S), D = 2.02 min
20C		20B	LC-MS (Methode 5): $R_t = 2.93$ min.
		aus Beispiel	MS (ES): $m/z = 1057 (M+H)^{+}$
	HIS ON NOG	19C	
	.7.~		
20D		20B	LC-MS (Methode 15): $R_t = 4.59 \text{ min.}$
	Land I	aus Beispiel	MS (ES): $m/z = 1023 (M+H)^{+}$
	OH OH OH	19D	W3 (E3), 1102 - 1023 (W1-11)
	0 NO NOT	1917	
20E	⟨\rightarrow \rightarrow \rig	20B	LC-MS (Methode 8): $R_t = 3.90 \text{ min.}$
			100 (00)
		aus Beispiel	MS (ES): $m/z = 1021 (M+H)^{+}$
		19E	
	H,C CH,		
20F		20B	LC-MS (Methode 8): R _t = 4.23 min.
		aus Beispiel	MS (ES): $m/z = 1007 (M+H)^+$
	boc hin hin	19F	
	0,0,0		
L		<u></u>	<u> </u>

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
_		-	
20G	О ~ См,	20B	LC-MS (Methode 8): $R_t = 3.84 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1037 (M+H)^+$
	OH OSES	19G	MS (ES): M/Z = 1037 (M+H)
	H,C CH, O CO	190	
	,		1 E
20H		20B	
		aus Beispiel	
	H.C + CN.	19H	
	, cH, ,		
			×-
201	0-_\NO,	20B	LC-MS (Methode 14): $R_t = 4.07 \text{ min.}$
		ava Daianial	MS (ES), male on 1069 (M/131)†
	" OH OEST O	aus Beispiel	MS (ES): $m/z = 1068 (M+H)^{+}$
		191	
	0-		
20Ј		20B	LC-MS (Methode 14): R ₁ = 4.16 min.
		aus Beispiel	MS (ES): $m/z = 1129 (M+H)^{+}$
	NH boc HO NHs	19Ј	(,
	.4.0		
201/	<u> </u>	202	TCMC (Malada 10) D. doi:
20K		20B	LC-MS (Methode 14): $R_t = 4.21 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1113 (M+H)^+$
	мн Д	19K	
	• • • • • • • • • • • • • • • • • • • •		
			THE PROPERTY OF THE PROPERTY O

Beispiel- Nr.	Struktur	Hergestellt analog Bei-	Analytische Daten
INT.		spiel-Nr.	
20L		20B	LC-MS (Methode 14): $R_t = 4.08 \text{ min.}$
	W.C.Y.C.O. HAND ON THE COOK	aus Beispiel 19L	MS (EI): m/z = 1041 (M+H) ⁺
20M		20B	LC-MS (Methode 2): R _t = 3.04 min.
	M. 1, C, T, C, H,	aus Beispiel 19M	MS (ES): m/z = 979 (M+H) ⁺
20N	> -0	20B	LC-MS (Methode 5): R _t = 2.82 min.
		aus Beispiel 19N	MS (ES): m/z = 1081 (M+H) ⁺
20P		20B	LC-MS (Methode 3): R ₄ = 3.03 min.
	OL MOS	aus Beispiel 19P	MS (ES): m/z = 976 (M+H) ⁺

Beispiel 20O

 $(2S)-3-(4-(Benzyloxy)-3'-\{(2S)-2-[\{(2R)-5-\{[(benzyloxy)carbonyl]amino\}-2-[(tert-butoxy-carbonyl)amino]pentanoyl\}(methyl)amino]-3-methoxy-3-oxopropyl\}-4'-fluorbiphenyl-3-yl)-2-\{[(benzyloxy)carbonyl]amino\}propionsäure$

Zu einer Lösung von 980 mg (0.922 mmol) 2-(Trimethylsilyl)ethyl-(2S)-3-(4-(benzyloxy)-3'-{(2S)-2-[(2R)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]pentanoyl} (methyl)-amino]-3-methoxy-3-oxopropyl}-4'-fluorbiphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}propanoat (Beispiel 19O) in 20 ml absolutem DMF werden tropfenweise 1.9 ml 1N Tetrabutylammonium-fluorid in THF hinzugegeben. Nach 60 min bei RT wird auf 0°C abgekühlt und mit Eiswasser versetzt. Es wird sofort mit Dichlormethan extrahiert. Die organische Phase wird über Magnesiumsulfat getrocknet, im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

10 Ausbeute: quant.

5

LC-MS (Methode 2): $R_t = 2.91 \text{ min.}$

MS (EI): $m/z = 964 (M+H)^{+}$.

Beispiel 21B

Pentafluorphenyl-(2S)-3-(4-(benzyloxy)-3'-{(2S)-2-[2-[{(2S,4S)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]-4-hydroxypentanoyl}(methyl)amino]-3-methoxy-3-oxopropyl-4'chlorbiphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}propanoat

235 mg (0.24 mmol) der Verbindung aus Beispiel 20B werden in 10 ml abs. Dichlormethan gelöst, auf -20°C abgekühlt und unter Rühren mit 217 mg (1.18 mmol) Pentafluorphenyl, 2.9 mg (0.02 mmol) DMAP und 49.8 mg (0.26 mmol) EDC versetzt. Man lässt die Temperatur langsam auf RT ansteigen und rührt über Nacht nach. Es wird im Vakuum eingeengt und das Rohprodukt im Hochvakuum bis zur Gewichtskonstanz getrocknet.

Ausbeute: 219 mg (57% d.Th.)

LC-MS (Methode 2): $R_t = 3.25$ min.

 $MS (EI): m/z = 1160 [M+H]^+$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 21A, 21C bis 21N und 21P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
21A		21B aus Beispiel 20B	LC-MS (Methode 2): R _t = 3.27 min. MS (EI): m/z = 1190 (M+H) ⁺

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
		•	
21C		21B	LC-MS (Methode 5): R _t = 3.28 min.
		aus Beispiel	MS (ES): $m/z = 1223 (M+H)^{+}$
	F 1 10 1mm	20C	
			- -
21D	AAA	21B	LC-MS (Methode 8): $R_t = 4.72$ min.
		aus Beispiel	MS (ES): $m/z = 1189 (M+H)^{+}$
	P NH NH	20D	
:	. 0		
21E	A 5 5	21B	LC-MS (Methode 5): $R_t = 3.32 \text{ min.}$
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2012	De 1415 (Mediade 5). 1(4 5.52 mm.
		aus Beispiel	MS (ES): $m/z = 1187 (M+H)^{+}$
	r Fr Part	20E	
	M,C CH, O O		
21F		21B	I C MS (Mathodo C), P = 2.50
211		216	LC-MS (Methode 6): $R_t = 3.59 \text{ min.}$
		aus Beispiel	MS (ES): $m/z = 1173 (M+H)^+$
	F Soc MH NH	20F	·
	- 3		
21G	Сто-Сть Д	21B	
		aus Beispiel	
	HI HOOM HI	20G	
	" M,C + CM, O - CM		

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
21H		21B	
		aus Beispiel	
	H,CC CH, O O	20H	
211		21B	LC-MS (Methode 14): R _t = 4.39 min.
		aus Beispiel 20I	MS (ES): $m/z = 1234 (M+H)^{+}$
		201	
21Ј		21B	
***************************************		aus Beispiel	·
Account Accounts on the country of t	F F box MH July	20J	
21K		21B	
		aus Beispiel	
		20K	
21L	0-0-0-	21B	LC-MS (Methode 1): $R_t = 3.42 \text{ min.}$
		aus Beispiel	MS (EI): $m/z = 1207 (M+H)^{+}$
	To be and the second	20L	

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
		2.5	
21M		21B	LC-MS (Methode 3): $R_t = 3.45$ min.
	Color of the second	aus Beispiel	MS (ES): $m/z = 1145 (M+H)^{+}$
	F box had	20M	
21N	O CH3	21B	LC-MS (Methode 4): R _t = 4.01 min.
		ana Daismial	NAC (EC), / 1047 (NA: 13) ⁺
		aus Beispiel	MS (ES): $m/z = 1247 (M+H)^+$
	NH CHAN	20N	
217		A12	TOMO OKALLON NO COM
21P	No,	21B	LC-MS (Methode 3): $R_4 = 3.37$ min.
		aus Beispiel	MS (ES): $m/z = 1142 (M+H)^{+}$
	F boor Nite MH	20P	
	0000		

Beispiel 21O

Pentafluorphenyl-(2S)-3-(4-(benzyloxy)-3'- $\{(2S)$ -2- $[\{(2R)$ -5 $\{[(benzyloxy)carbonyl]amino\}$ -2-[(tert-butoxycarbonyl)amino]pentanoyl $\}$ (methyl)amino]-3-methoxy-3-oxopropyl $\}$ -4'-fluorbi-phenyl-3-yl)-2- $\{[(benzyloxy)carbonyl]amino\}$ propanoat

- 76 -

0.89 g (Rohprodukt, ca. 0.922 mmol) (2*S*)-3-(4-(Benzyloxy)-3'-{(2*S*)-2-[{(2*R*)-5-{[(benzyloxy)-carbonyl]amino}-2-[(*tert*-butoxycarbonyl)amino]pentanoyl}(methyl)amino]-3-methoxy-3-oxo-propyl}-4'-fluorbiphenyl-3-yl)-2-{[(benzyloxy)carbonyl]amino}propionsäure (Beispiel 20O) werden in 50 ml Dichlormethan vorgelegt. Bei -25°C werden 0.85 g (4.61 mmol) Pentafluorphenol, 0.21 g (1.11 mmol) EDC und 45 mg (0.37 mmol) DMAP unter Argon hinzugefügt. Die Mischung erwärmt sich über Nacht langsam auf RT. Die Reaktionsmischung wird im Vakuum eingeengt und im Hochvakuum kurz getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5

10 LC-MS (Methode 3): $R_t = 3.41 \text{ min.}$

MS (EI): $m/z = 1130 (M+H)^{+}$.

Beispiel 22B

Methyl-(2S)-2-[{(2S,4S)-2-amino-5-{[(benzyloxy)carbonyl]amino}-4-hydroxypentanoyl}(methyl)-amino]-3-{4'-(benzyloxy)-3'-[(2S)-2-{[(benzyloxy)carbonyl]amino}-3-oxo-3-(pentafluor-phenoxy)propyl]-4-chlorbiphenyl-3-yl}propanoat-Hydrochlorid

219 mg (0.14 mmol) der Verbindung aus Beispiel 21B werden in 2.3 ml Dioxan gelöst und unter Rühren bei 0°C mit 6 ml einer 4N Chlorwasserstoff-Dioxan-Lösung versetzt. Man rührt 30 min bei dieser Temperatur, lässt die Temperatur auf RT ansteigen, rührt eine weitere Stunde und dampft dann alles im Vakuum zur Trockne ein. Nach Trocknen im Hochvakuum bis zur Gewichtskonstanz erhält man das Produkt.

Ausbeute: 207 mg (quantitativ)

LC-MS (Methode 2): $R_t = 3.25$ min.

 $MS (EI): m/z = 1060 (M-HCl+H)^{+}$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 22A, 22C bis 22N und 22P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Bei-	Analytische Daten
		spiel-Nr.	
22A		22B aus Beispiel 21A	LC-MS (Methode 6): R _t = 0.35 min. MS (EI): m/z = 1090 (M-HCl+H) ⁺

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
		_	
22C	\$\frac{1}{2} \cdot \alpha \al	22B	LC-MS (Methode 5): R _t = 2.54 min.
			A CONTRACTOR AND A CONT
		aus Beispiel	MS (ES): $m/z = 1123 (M-HCl+H)^+$
	The mo him	21C	

22D	MAA	22B	LC-MS (Methode 14): R _t = 3.45 min.
		aus Beispiel	MS (ES): $m/z = 1189 (M-HCl+H)^+$
	F HO NIK	21D	
	xHG 05 05 U		
22E		22B	LC-MS (Methode 5): $R_t = 3.32 \text{ min.}$
1219			
		aus Beispiel	MS (ES): $m/z = 1087 (M-HCl+H)^+$
		21E	TRANSPORTATION
	хна обо		
22F		22B	LC-MS (Methode 5): R _t = 2.51 min.
221		2213	Le-MB (Mellode 5). Iq = 2.51 mm.
		aus Beispiel	MS (ES): $m/z = 1073 (M-HCl+H)^+$
	F Jan	21 F	
	хна обоб		
20.5		220	I CMS (Mathodo S): D = 2.60 min
22G		22B	LCMS (Methode 5): R _t = 2.60 min.
		aus Beispiel	MS (ES): $m/z = 1104 (M-HCl+H)^{+}$
	FTF HM	21G	
	× HCI of o		a de la companya de l
	·		
L			

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
2222			
22H		22B	
		aus Beispiel	
	F HO PM	21H	
	* *Ha olono		
221		22B	LC-MS (Methode 14): R ₁ = 3.46 min.
221	N,	220	120-1413 (Methode 14), R ₁ = 3.40 min.
		aus Beispiel	MS (ES): $m/z = 1134 (M-HCl+H)^+$
	F HIS NH	211	
	×Ha of o		
22J		22B	
		aus Beispiel	
	F box MI NH	21Ј	
	x HCl		
22K		22B	
		aus Beispiel	
	F box MI	21K	
22L		22B	LC-MS (Methode 2): $R_t = 2.40 \text{ min.}$
		oue Reionial	MS (EI): $m/z = 1107 (M-HCl+H)^+$
	F FLM NHO	aus Beispiel 21L	WG (EI). HDZ - 1107 (W-NCITA)
	F HO HANGO	با ا با ا	
	li o		
[

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
22M		22B	LC-MS (Methode 3): $R_t = 2.99 \text{ min.}$
	HIS OF SHIP	aus Beispiel 21M	MS (ES): $m/z = 1045 (M-HCl+H)^+$
	<u></u>	228	LC MC (Methodo 5); P. vr 2 52 min
22N		22B aus Beispiel 21N	LC-MS (Methode 5): R ₁ = 2.53 min. MS (ES): m/z = 1147 (M-HCl+H) ⁺
22P	()	22B	LC-MS (Methode 3): $R_t = 2.77 \text{ min.}$
	IN TOCK,	aus Beispiel 21P	MS (ES): $m/z = 1042 (M-HCl+H)^{+}$

Beispiel 22O

5 fluorbiphenyl-3-yl}propanoat-Hydrochlorid

Zu einer Lösung von 1.038 g (Rohprodukt, ca. 0.92 mmol) Pentafluorphenyl-(2S)-3-(4-(benzyloxy)-3'-{(2S)-2-[{(2R)-5-{[(benzyloxy)carbonyl]amino}-2-[(tert-butoxycarbonyl)amino]-pentanoyl}(methyl)amino]-3-methoxy-3-oxopropyl}-4'-fluorbiphenyl-3-yl)-2-{[(benzyloxy)-carbonyl]amino}propanoat (Beispiel 21O) in 19 ml wasserfreiem Dioxan werden bei 0°C 37 ml einer 4M Chlorwasserstoff-Dioxan-Lösung hinzugegeben. Nach 1 h bei 0°C wird die Reaktionslösung im Vakuum eingeengt, mehrmals mit Dichlormethan coevaporiert und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

5

10 LC-MS (Methode 2): $R_1 = 2.54$ min.

MS (EI): $m/z = 1029 (M+H)^{+}$.

Beispiel 23B

Methyl-(8S,11S,14S)-17-(benzyloxy)-14-{[(benzyloxy)carbonyl]amino}-11-((2R)-3-{[(benzyloxy)carbonyl]amino}-2-hydroxypropyl)-5-chlor-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20,2(21),3,5,16,18-hexaen-8-carboxylat

207 mg (0.18 mmol) der Verbindung aus Beispiel 22B werden in 250 ml abs. Chloroform gelöst und unter kräftigem Rühren tropfenweise in 20 min mit 1.8 ml (1.3 g, 12.9 mmol) Triethylamin in 30 ml Chloroform versetzt. Man lässt über Nacht weiterrühren und dampft alles im Vakuum ein (Badtemperatur \leq 40°C). Der Rückstand wird über präparative HPLC getrennt (Acetonitril / Wasser).

Ausbeute: 77 mg (46% d.Th.)

LC-MS (Methode 2): $R_t = 2.96$ min.

 $MS (EI): m/z = 876 (M+H)^+$

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 23A, 23C bis 23N und 23P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
23A		23B	LC-MS (Methode 8): $R_t = 4.35$ min.
		aus Beispiel 22A	MS (EI): $m/z = 906 (M+H)^+$

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	J LAUVARU AZORUAR
]	
		spiel-Nr.	
23C		23B	LC-MS (Methode 8): $R_t = 4.03$ min.
		,	
1		aus Beispiel	MS (EI): $m/z = 939 (M+H)^+$
		22C	
23D		23B	LC-MS (Methode 8): $R_t = 3.85$ min.
		aus Beispiel	MS (EI): $m/z = 905 (M+H)^{+}$
	HO- 1	22D	MS (E1): MVZ = 903 (WI+H)
	, <u>, , , , , , , , , , , , , , , , , , </u>	221	
227		2025	
23E	CH,	23B	LC-MS (Methode 1): $R_t = 3.23$ min.
		aus Beispiel	MS (EI): m/z = 903 (M+H)*
		22E	
	~		
23F		23B	LC-MS (Methode 6): R _t = 1.51 min.
		ous Paisnis	MS (ED),/ 200 (M411).+
		aus Beispiel	MS (EI): $m/z = 889 (M+H)^+$
	*	22F	3
		•	
23G	СМ,	23B	LC-MS (Methode 5): $R_t = 2.96$ min.
		aus Beispiel	MS (EI): m/z = 919 (M+H) ⁺
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	22G	
	~		
23H		23B	LC-MS (Methode 6): R _t = 2.80 min.
		D.:	MG (FD 1000 (2.1.17) †
		aus Beispiel	MS (EI): $m/z = 1029 (M+H)^+$
		22H	

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
231		23B	LC-MS (Methode 7): $R_1 = 0.99$ min.
		aus Beispiel	MS (EI): $m/z = 950 (M+H)^{+}$
		22I	110 (22): 112 300 (112 22)
	" 💛	221	
23Ј		23B	LC-MS (Methode 14); R _t = 4.18 min.
		aus Beispiel	MS (EI): $m/z = 1011 (M+H)^+$
		22J	
23K		23B	LC-MS (Methode 14): R _t = 4.22 min.
		aus Beispiel	MS (EI): $m/z = 995 (M+H)^{+}$
		22K	(131). Hb2 = 353 (M. 11)
		22K	
23L		23B	LC-MS (Methode 2): R _t = 3.05 min.
231,		2017	Le Ma (Memode 2): M
		aus Beispiel	MS (EI): $m/z = 923 (M+H)^{+}$
	No. C.	22L	
	<u> </u>		
23M		23B	LC-MS (Methode 3): R _t = 3.26 min.
	BnO—CI		
		aus Beispiel	MS (ES): $m/z = 861 (M+H)^{+}$
	HN CH ₃	22M	
-	2 5 500		
	NH z		
	1		

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
23N	о_о	23B	LC-MS (Methode 5): R ₁ = 2.86 min.
	BnO	aus Beispiel	MS (ES): $m/z = 963 (M+H)^+$
		22N	
	NH 1 2		
23P	BnO-NO ₂	23B	LC-MS (Methode 2): R _t = 2.84 min.
	(н п	aus Beispiel	MS (ES): $m/z = 858 (M+H)^{+}$
	HN N O CH ₃	22P	
	NH z		
	-		

Beispiel 23O

 $Methyl-(8S,11S,14S)-17-(benzyloxy)-14-\{[(benzyloxy)carbonyl]amino\}-11-(3-\{[(benzyloxy)carbonyl]amino\}-11-(3-\{[(benzyloxy)carbonyl]amino\}propyl)-5-fluor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat$

777 mg (Rohprodukt, ca. 0.92 mmol) Methyl-(2S)-2-[((2R)-2-amino-5-{[(benzyloxy)carbonyl]-amino}pentanoyl)(methyl)amino]-3-{4'-(benzyloxy)-3'-[(2S)-2-{[(benzyloxy)carbonyl]amino}-3-

oxo-3-(pentafluorphenoxy)propyl]-4-fluorbiphenyl-3-yl}propanoat-Hydrochlorid (Beispiel 22O) werden in 1.4 l Dichlormethan gelöst und tropfenweise mit 14 ml Triethylamin versetzt. Es wird über Nacht bei RT gerührt. Zur Aufarbeitung wird das Gemisch schonend im Vakuum einrotiert und in Dichlormethan aufgenommen. Es wird mit Wasser versetzt, und durch Zugabe von 0.1N Natronlauge wird auf pH 10 gestellt. Die organische Phase wird mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Das Rohprodukt wird durch präparative HPLC gereinigt.

Ausbeute: 450 mg (57 % d. Th., über vier Stufen ausgehend von Beispiel 19O).

LC-MS (Methode 3): $R_1 = 3.15 \text{ min.}$

MS (EI): $m/z = 845 (M+H)^{+}$.

10 Beispiel 24B

5

Methyl-(8S,11S,14S)-14-amino-11-[(2R)-3-amino-2-hydroxypropyl]-5-chlor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat-Dihydrobromid

15 73 mg (0.08 mmol) der Verbindung aus Beispiel 23B werden 15 min bei RT mit 2 ml Eisessig / Bromwasserstoff (33%ig) gerührt. Anschließend dampft man alles vorsichtig (Badtemperatur max. 40°C) zur Trockne ein, nimmt mit 3 ml Toluol auf, dampft zur Trockne ein und wiederholt diese Prozedur noch einmal. Man trocknet im Hochvakuum bis zur Gewichtskonstanz.

Ausbeute: 69 mg eines Gemisches aus 58% Produkt und 19% des O-Acetyl-Produktes

20 LC-MS (Methode 1): R₁ = 1.36 min. (Produkt) bzw. 1.44 min. (O-Acetyl-Produkt)

MS (EI): $m/z = 518 (M-2HBr+H)^{+} bzw. 560 (MOAc-2HBr+H)^{+}$

Beispiel 24M

Methyl-(8*S*,11*S*,14*S*)-14-amino-11-(3-aminopropyl)-5-chlor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat-Dihydrobromid

HBr
$$\times$$
 H₂N $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{CH}_3}$

5 200 mg (0.23 mmol) der Verbindung aus Beispiel 23M werden 45 min bei RT mit 2 ml Eisessig / Bromwasserstoff (33%ig) gerührt. Anschließend dampft man alles vorsichtig (Badtemperatur max. 40°C) zur Trockne ein und trocknet den Rückstand im Hochvakuum bis zur Gewichtskonstanz.

Ausbeute: quant.

LC-MS (Methode 17): $R_t = 2.76 \text{ min}$

10 MS (EI): $m/z = 503 (M-2HBr+H)^+$

Beispiel 25C

Benzyl-(8S,11S,14S)-17-(benzyloxy)-14- $\{[(benzyloxy)carbonyl]amino\}$ -11-((2R)-3- $\{[(benzyloxy)carbonyl]amino\}$ -2- $\{[tert$ -butyl(dimethyl)silyl]oxy $\}$ propyl)-5-chlor-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2.6}]$ henicosa-[(20),2(21),3,5,16,18-hexaen-8-carboxylat

- 88 -

200 mg (0.21 mmol) der Verbindung aus Beispiel 23C werden in 27 ml absolutem DMF gelöst und bei 0°C mit 230 mg (0.85 mmol) Trifluormethansulfonsäure-tert-butyldimethylsilylester, 0.12 ml (0.85 mmol) Triethylamin und 30 mg (0.21 mmol) DMAP versetzt. Es wird 1 Tag bei RT gerührt. Im Vakuum wird vorsichtig auf ein Volumen von 1 ml eingeengt. Nach Zugabe von 20 ml Methylenchlorid wäscht man die organische Phase vorsichtig mit 10 ml gesättigter Natriumhydrogencarbonat-Lösung und 10 ml Wasser. Die organische Phase wird zur Trockne eingeengt und der Rückstand im Hochvakuum getrocknet.

Ausbeute: 220 mg (99% d. Th.)

LC-MS (Methode 1): $R_t = 3.55$ min. 10

MS (EI): $m/z = 1053 (M+H)^{+}$

Beispiel 26C1

5

(8S,11S,14S)-17-(Benzyloxy)-14-{[(benzyloxy)carbonyl]amino}-11-((2R)-3-{[(benzyloxy)carbonyl]amino}-2-{[tert-butyl(dimethyl)silyl]oxy}propyl)-5-chlor-10,13-dioxo-9,12-

diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure 15

220 mg (0.21 mmol) der Verbindung aus Beispiel 25C werden in 11 ml THF gelöst und mit je 3 ml Wasser und Methanol versetzt. Nach Zugabe von 10.2 mg (0.43 mmol) Lithiumhydroxid wird 24 h bei RT gerührt. Anschließend wird die Reaktionslösung im Vakuum eingeengt und das Rohprodukt im Hochvakuum getrocknet.

Ausbeute: 200 mg (99% d. Th.)

LC-MS (Methode 2): $R_t = 3.18 \text{ min.}$

 $MS (EI): m/z = 963 (M+H)^+$

Beispiel 26C2

5

10 $(8S,11S,14S)-17-(Benzyloxy)-14-\{[(benzyloxy)carbonyl]amino\}-11-\{(2R)-3-\{[(benzyloxy)-carbonyl]amino\}-2-hydroxypropyl\}-5-chlor-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure$

Die Herstellung folgt analog zu Beispiel 26C1 aus 169 mg (0.18 mmol) der Verbindung aus Beispiel 23C und 7.7 mg (0.32 mmol) Lithiumhydroxid in 12 ml THF:Methanol:Wasser 4:1:1.

Ausbeute: 135 mg (99% d. Th.)

5 LC-MS (Methode 1): $R_t = 2.85$ min.

 $MS (EI): m/z = 849 (M+H)^+$

Beispiel 26E

 $(8S,11S,14S)-17-(Benzyloxy)-14-\{[(benzyloxy)carbonyl]amino\}-11-(3-\{[(benzyloxy)carbonyl]-amino\}propyl)-5-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-$

10 1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

5

0.21 g (0.23 mmol) der Verbindung aus Beispiel 23E werden bei RT in einer Mischung aus THF:Methanol:Wasser (28 ml, 4:1:2) suspendiert und mit 11.0 mg (0.47 mmol) Lithiumhydroxid versetzt. Nach 12 h bei Raumtemperatur wird im Vakuum eingeengt und der Rückstand in 100 ml Wasser suspendiert. Man stellt mit 1N Salzsäure auf pH = 3 ein, wodurch das Produkt in kristalliner Form ausfällt. Das Produkt wird abfiltriert und im Vakuum getrocknet.

Ausbeute: 179 mg (94% d. Th.)

LC-MS (Methode 2): $R_t = 2.70 \text{ min.}$

 $MS (EI): m/z = 813 [M+H]^+$

Beispiel 26F1

10 (8S,11S,14S)-17-(Benzyloxy)-14-{[(benzyloxy)carbonyl]amino}-11-(3-{[(benzyloxy)carbonyl]-amino}propyl)-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

Die Herstellung folgt analog zu Beispiel 26E aus 250 mg (0.28 mmol) der Verbindung aus Beispiel 23F und 13.5 mg (0.56 mmol) Lithiumhydroxid in THF:Methanol:Wasser.

Ausbeute: 194 mg (86% d. Th.)

LC-MS (Methode 5): $R_t = 2.61$ min.

MS (EI): $m/z = 799 (M+H)^+$

Beispiel 26F2

O-Benzyl-N- $\{[(8S,11S,14S)-17-(benzyloxy)-14-\{[(benzyloxy)carbonyl]amino\}-11-(3-\{[(benzyloxy)carbonyl]amino\}propyl)-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}-L-tyrosin$

5

Die Herstellung folgt analog zu Beispiel 26F1 aus 58 mg (0.05 mmol) der Verbindung aus Beispiel 27F3 und 2.4 mg (0.1 mmol) Lithiumhydroxid in 12 ml THF:Methanol:Wasser 4:1:1.

Ausbeute: 53 mg (99% d. Th.)

LC-MS (Methode 5): $R_t = 2.86$ min.

10 MS (EI): $m/z = 1052 (M+H)^+$

Beispiel 260

(8*S*,11*S*,14*S*)-17-(Benzyloxy)-14-{[(benzyloxy)carbonyl]amino}-11-(3-{[(benzyloxy)carbonyl]-amino}propyl)-5-fluor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18- hexaen-8-carbonsäure

Zu einer Suspension aus 280 mg (0.331 mmol) Methyl-(8S,11S,14S)-17-(benzyloxy)-14{[(benzyloxy)carbonyl]amino}-11-(3-{[(benzyloxy)carbonyl]amino}propyl)-5-fluor-9-methyl10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2.6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat

[Beispiel 23O) in 125 ml Dioxan/Wasser (4:1) wird 6.6 ml (0.66 mmol) einer 0.1N wässrigen Lithiumhydroxidlösung bei 0 °C hinzugegeben. Es wird 12 h bei RT gerührt. Durch Zugabe von 0.1N

Salzsäure wird auf pH 2 gestellt. Die Reaktionsmischung wird im Vakuum eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

LC-MS (Methode 2): $R_1 = 2.75$ min.

10 MS (EI): $m/z = 831 (M+H)^{+}$.

Beispiel 27E

Benzyl- $\{3-[(8S,11S,14S)-17-(benzyloxy)-14-\{[(benzyloxy)carbonyl]amino\}-8-\{[(2-\{[(benzyloxy)carbonyl]amino\}-8-\{[(a-(benzyloxy$

25 mg (0.030 mmol) der Verbindung aus Beispiel 26E werden bei RT unter Argon in DMF (2.0 ml) suspendiert und mit 18.0 mg (0.090 mmol) Benzyl-(2-aminoethyl)carbamat, 8 mg (0.06 mmol) N,N-Diisopropylethylamin und 23 mg (0.060 mmol) HATU versetzt. Nach 12 h bei Raumtemperatur wird erneut mit 18.0 mg (0.090 mmol) Benzyl-(2-aminoethyl)carbamat, 8 mg (0.06 mmol) N,N-Diisopropylethylamin und 23 mg (0.060 mmol) HATU versetzt und 4 h bei RT gerührt. Man versetzt mit 50 ml Wasser, wodurch das Produkt in kristalliner Form ausfällt. Das Produkt wird abfiltriert, mit Wasser gewaschen und in 50 ml Acetonitril:Methanol ausgerührt. Man trocknet im Vakuum bis zur Gewichtskonstanz.

10 Ausbeute: 19 mg (62% d. Th.)

LC-MS (Methode 2): $R_t = 2.90 \text{ min.}$

 $MS (EI): m/z = 989 [M+H]^+$

Analog zu obiger Vorschrift werden die in der folgenden Tabelle aufgeführten Beispiele 27C1 bis 27C10 und 27F1 bis 27F4 aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Beispiel-Nr.	Analytische Daten
27C1		27E aus Beispiel 26C1	LC-MS (Methode 16): R _t = 2.21 min.
	Tes	und Glycinamid	MS (EI): $m/z = 1019 (M+H)^+$

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
27C2		27E	LC-MS (Methode 2): $R_t = 3.28$
2/02		276	min.
		aus Beispiel 26C1	******
	193	und Methyl-3-[(tert-	MS (EI): $m/z = 1163 (M+H)^+$
		butoxycarbonyl)-	
		amino]-L-alaninat	
-			
27C3		27E	LC-MS (Methode 2): $R_i = 3.01$
		aus Beispiel 26C1	min.
	Tae L	und Glycyl- L -	MS (EI): $m/z = 1090 (M+H)^+$
		alaninamid	
27C4	□ - □ - c	27E	LC-MS (Methode 2): $R_1 = 2.97$
The state of the s		aus Beispiel 26C1	min.
Manager and a second	таз Д	und Glycylglycina-	MS (EI): $m/z = 1076 (M+H)^+$
		mid	
27C5		27E	LC-MS (Methode 2): R ₁ = 3.12
			min.
		aus Beispiel 26C1	
	#^	und N¹-	MS (EI): $m/z = 1033 (M+H)^{+}$
		Methylglycinamide	
25.00		277	YONG (M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
27C6	8 8 8 Fft	27E	LC-MS (Methode 3): $R_t = 3.35$ min.
		aus Beispiel 26C1	111111
	resi Honor NH,	und tert-Butyl-L-	MS (EI): $m/z = 1133 (M+H)^+$
		asparaginat	
<u>[</u>			

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
			Y CO Y CO CO LO
27C7		27E	LC-MS (Methode 3): $R_t = 2.94$
		aus Beispiel 26C1	min.
	185 CH C CH	und Methyl-L-	MS (EI): $m/z = 1114 (M+H)^+$
		histidinat	
27C8		27E	LC-MS (Methode 2): R _t = 3.28
		aus Beispiel 26C1	min.
	184° [] L	und Benzyl-L-	MS (EI): $m/z = 1140 (M+H)^+$
		serinat	
27C9		27E	LC-MS (Methode 1): R _t = 2.61
2109		2715	min.
		aus Beispiel 26C2	
	7,000	und L-Aspartamid	MS (EI): $m/z = 962 (M+H)^{+}$
27C10		27E	LC-MS (Methode 1): R _t = 2.89
2/010	8	2/C	min, $(Methode 1)$: $R_1 = 2.89$
was a second		aus Beispiel 26C2	
	***•	und Methyl-D-	MS (EI): $m/z = 1005 (M+H)^+$
		alanyl-d-alanylat	
27C11	○	27E	LC-MS (Methode 1): $R_t = 3.43$
		our Deigniel 26Cl	min.
	105 Дом	aus Beispiel 26Cl und tertButyl-(2-	MS (EI): $m/z = 1105 (M+H)^+$
	"	aminoethyl)-	(M. 11)
		carbamat	
27F1		27E	LC-MS (Methode 5): R _t = 2.55
£/F1		<i>ند (ان</i>	min. $R_1 = 2.53$
		aus Beispiel 26F	
		und Ammoniak	MS (EI): $m/z = 798 (M+H)^+$

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
27F2		. 27E	LC-MS (Methode 5): $R_t = 2.47$
		aus Beispiel 26F	min.
		und Glycinamid	MS (EI): $m/z = 855 (M+H)^+$
27F3		27E	LC MS (Mathada 5), D = 2.14
2/F3		aus Beispiel 26F1 und Benzyl-O- benzyl-L-tyrosinat	LC-MS (Methode 5): $R_t = 3.14$ min. MS (EI): $m/z = 1142 (M+H)^+$
27F4		27E aus Beispiel 26F2 und Glycinamid	LC-MS (Methode 3): R ₁ = 3.00 min. MS (EI): m/z = 1109 (M+H) ⁺

Beispiel 28A

(8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-5-fluor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

$$HO$$
 HO
 F
 CO_2H
 $(H_3C)_3C-O$
 H

5

10

15

20

33 mg (0.06 mmol) der Verbindung aus Beispiel 1 werden in 0.28 ml 0.1N Natronlauge gelöst, unter Rühren mit 40.7 mg (0.19 mmol) Di-*tert*-butyldicarbonat versetzt und über Nacht gerührt. Mit 0.1N Salzsäure stellt man pH 4 ein und schüttelt zweimal mit Essigsäureethylester aus. Die organischen Phasen werden vereinigt, mit Natriumsulfat getrocknet und im Vakuum zur Trockne eingedampft.

Ausbeute: 33 mg (77% d. Th.)

LC-MS (Methode 3): $R_t = 2.24 \text{ min.}$

 $MS (EI): m/z = 658 (M+H)^{+}$

Es ist ein Produktgemisch aus Zielverbindung und den entsprechenden Phenylcarbonaten (m/z = 757 bzw m/z = 857) entstanden, welches ohne weitere Auftrennung für Folgeumsetzungen verwendet wird.

Beispiel 28J

(8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{(2R)-3-[(tert-butoxycarbonyl)amino]-2-hydroxypropyl}-4,17-dihydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

$$H_3$$
C CH_3 OH CO_2H H_3 C CH_3 CH_3

17 mg (0.03 mmol) der Verbindung aus Beispiel 34 werden in 1.0 ml Methanol:Wasser (9:1) vorgelegt, mit 1.0 ml einer gesättigter wässriger Natriumhydrogencarbonat-Lösung und anschließend mit 27.5 mg (0.12 mmol) Di-tert-butylcarbonat in 0.15 ml Methanol:Wasser (9:1) versetzt und 12 h bei RT gerührt. Die Reaktionslösung wird im Vakuum eingeengt, mit Wasser versetzt und mit Essigsäureethylester extrahiert. Nach Phasentrennung wird die wässrige Phase durch Zugabe von 0.1N Salzsäure auf pH = 4 gestellt und mehrfach mit Essigsäureethylester extrahiert. Die vereinten organischen Phasen werden über Natriumsulfat getrocknet und im Vakuum zur Trockne eingedampft.

10 Ausbeute: 21 mg (quantitativ),

LC-MS (Methode 15): $R_1 = 2.44$ min.

MS (EI): $m/z = 673 (M+H)^{+}$

Es ist ein Produktgemisch aus Zielverbindung und den entsprechenden Phenylcarbonaten (m/z = 772 bzw m/z = 872) entstanden, welches ohne weitere Auftrennung für Folgeumsetzungen verwendet wird.

Analog zu den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 28B, 28D und 28K bis 28N aus den entsprechenden Edukten hergestellt:

15

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	-
		spiel-Nr.	
28B	HQ	28A	LC-MS (Methode 2): $R_t = 2.08 \text{ min.}$
	H ₃ C CH ₃	aus Beispiel 4	MS (EI): m/z = 704 (M+H) ⁺
28D	HO-	28J	
	H,C, CH, HO HO CH,	aus Beispiel 25	
28F		28A	LC-MS (Methode 1): R ₁ = 2.19 min.
	H,C CH, O CH, CH, CCO, H	aus Beispiel 35	MS (EI): m/z = 640 (M+H) ⁺
28K	H ₃ C ₂ CH ₃	28J	LC-MS (Methode 15): R _t = 3.33 min.
	H,C CH, H,C CO,H	aus Beispiel 2	MS (EI): $m/z = 857 (M+H)^{+}$
	Bis-phenylcarbonat als Hauptverbindung		

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
28L	HO	28A	LC-MS (Methode 17): $R_t = 3.20 \text{ min.}$
	LL CH, 8	aus Beispiel 3	MS (EI): $m/z = 675 (M+H)^{+}$
	H ² CO ² H	aus Beispiel 3	MS (E1): M/Z = 0/3 (M+H)
	но	77 88	
	HN CH.ch,		
	OF OF CH3		
28M	но	28O	LC-MS (Methode 1): $R_t = 2.39 \text{ min}$.
	J. J. J. OH	aus Beispiel	MS (ES): $m/z = 689 (M+H)^{+}$
	HN CH ₃ O	24M	
	L		
	poc NH		
28N	° }—он	28O	LC-MS (Methode 3): $R_t = 1.89 \text{ min.}$
	но—	M.:!.1	MG (EG) . / GOLGALIDT
		aus Beispiel	MS (ES): $m/z = 701 (M+H)^+$
	boc N OH	31N	
	H H H H		
	ЙН		
	boc		

Beispiel 28O

 $(8S,11S,14S)-14-[(\textit{tert}-Butoxycarbonyl)amino]-11-\{3-[(\textit{tert}-butoxycarbonyl)amino]propyl\}-5-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-fluor-17-hydroxy-9-methyl-10,13-dioxo-9-methyl-10,13-$

5 1(20),2(21),3,5,16,18- hexaen-8-carbonsäure

180 mg (0.330 mmol) (8S,11S,14S)-14-Amino-11-(3-aminopropyl)-5-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Dihydrochlorid (Beispiel 40) werden in 1.6 ml (1.6 mmol) 1N Natronlauge und 2 ml Wasser gelöst und bei Raumtemperatur unter Rühren mit 216 mg (0.99 mmol) Di-tert-butyldicarbonat, gelöst in 1 ml Methanol, versetzt. Die Mischung wird über Nacht bei RT gerührt. Durch Zutropfen von 0.1N Salzsäure wird auf pH = 3 gestellt. Man extrahiert die wässrige Phase mit Essigsäureethylester, trocknet die organische Phase über Magnesiumsulfat und dampft im Vakuum bis zur Gewichtskonstanz ein. Das Produkt wird ohne weitere Reinigung umgesetzt.

10 LC-MS (Methode 2): $R_t = 2.11 \text{ min.}$

MS (EI): $m/z = 673 (M+H)^{+}$.

Beispiel 28P1

5

(8*S*,11*S*,14*S*)-5,14-Bis[(*tert*-butoxycarbonyl)amino]-11-{3-[(*tert*-butoxycarbonyl)amino]propyl}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

5

10

170 mg (0.26 mmol) der Verbindung aus Beispiel 31P werden in 1.29 ml (1.29 mmol) 1N Natron-lauge und 0.85 ml Wasser gelöst und bei Raumtemperatur unter Rühren mit 170 mg (0.78 mmol) Di-tert-butyldicarbonat, gelöst in 0.3 ml Methanol, versetzt. Die Mischung wird 1 h bei RT gerührt, danach nochmals mit 170 mg (0.78 mmol) Di-tert-butyldicarbonat und 1.29 ml (1.29 mmol) 1N Natronlauge versetzt und weitere 2 h bei RT gerührt. Durch Zutropfen von 0.1N Salzsäure wird auf pH = 3 gestellt, wobei ein Niederschlag entsteht. Man extrahiert zunächst mit Essigsäureethylester, und trennt die organische Phase ab. Man trocknet die organische Phase über Magnesiumsulfat und dampft im Vakuum bis zur Gewichtskonstanz ein. Das Produkt wird ohne weitere Reinigung umgesetzt. Die verbleibende wässrige Phase wird filtriert und der Rückstand im Vakuum bis zur Gewichtskonstanz getrocknet (siehe Beispiel 28P2).

Ausbeute: 140 mg (70% d. Th.)

LC-MS (Methode 2): $R_t = 2.32 \text{ min.}$

MS (ES): $m/z = 756 (M+H)^{+}$

Beispiel 28P2

15 (8S,11S,14S)-5-Amino-14-[(tert-butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]-propyl}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Hydrochlorid

Beispiel 28P2 entsteht als Nebenprodukt bei der Darstellung von Beispiel 28P1.

20 Ausbeute: 20 mg (12% d. Th.)

LC-MS (Methode 2): $R_t = 1.67 \text{ min.}$

MS (ES): $m/z = 656 (M-HCl+H)^{+}$

Beispiel 29A1

tert-Butyl- $\{3-[(8S,11S,14S)-14-[(tert$ -butoxycarbonyl)amino]- $8-[(\{2-[(tert$ -butoxycarbonyl)-amino]ethyl $\}$ amino)carbonyl]-5-fluor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2,6}]$ -henicosa-1(20),2(21),3,5,16,18-hexaen-11-yl]propyl $\}$ carbamat

5

.10

15 mg (0.02 mmol) der Verbindung aus Beispiel 28A und 4.38 mg (0.03 mmol) tert-Butyl-(2-aminoethyl)-carbamat werden in 1 ml abs. DMF gelöst, auf 0°C abgekühlt und mit 10.4 mg (0.03 mmol) HATU und 3.4 mg (0.03 mmol) Hünig-Base versetzt. Man rührt 30 min bei 0°C, lässt die Temperatur dann auf RT ansteigen, versetzt mit weiteren 6.8 mg (0.05 mmol) Hünig-Base und lässt über Nacht nachreagieren. Es wird alles im Vakuum zur Trockne eindampft und der Rückstand mittels präparativer HPLC (Acetonitril / Wasser) getrennt.

Ausbeute: 6.5 mg (36% d.Th.)

LC-MS (Methode 3): $R_t \approx 2.48$ min.

MS (EI): $m/z = 800 (M+H)^{+}$

Analog den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 29A2, 29B1, 29B2, 29D, 29F1, 29F2, 29J, 29K, 29L, 29F4, 29M1, 29M2, 29N, 29O1, 29P1 und 29P2 aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
29A2		29A1	I C MC (Mathodo 2), B = 2.20
29A2	HO— F	29A1	LC-MS (Methode 3): R _t = 2.39
	H'C THE	aus Beispiel 28A	min.
	Ho Ly Ho CH	und tert-Butyl-(3-	MS (EI): $m/z = 830 (M+H)^+$
		amino-2-	
		hydroxypropyl)-	
		carbamat	
29B1	но-{}-а	29A1	LC-MS (Methode 2): R _t = 2.41
	H,C P ¹⁵ L L L L L L L L L L L L L L L L L L L	mail 1100m	min.
	L CH, PHO	aus Beispiel 28B	MC (T)/ 046 (TM + 11)*
	H'c CH'CH'	und tert-Butyl-(2- aminoethyl)-	MS (EI): $m/z = 846 ([M+H]^{+})$
		carbamat	
		Carbamat	
29B2	HQ	29A1	LC-MS (Methode 2): $R_t = 2.30$
	",c, 5",		min.
	H,C ON HN CH, O HN O	aus Beispiel 28B	
	H'c CH'	und tert-Butyl-(3-	MS (EI): $m/z = 876 [M+H]^{+}$
	1	amino-2-	
		hydroxypropyl)-	
		carbamat	
29D	HO	29A1	LC-MS (Methode 8): R _t = 2.65
very manual manu	H,C CH, I I I NH,	aus Beispiel 28D	min.
	Hack Prompt	und Ammoniak	MS (EI): $m/z = 656 (M+H)^{+}$
P. C.	H,C O A	and Ammoniak	MO (E1). HVZ – 030 (M+H)

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
29F1	HO-\$\frac{1}{2} \q	29A1	LC-MS (Methode 1): $R_t = 2.63$
		aus Beispiel 28F	min.
	H,C T S H C T CH.	und di-tert-Butyl-	MS (EI): $m/z = 912 (M+H)^{+}$
	74A,C 77	(2-aminopropan-1,3-	
		diyl)-biscarbamat	
		Darstellung siehe	
		Tetrahedron, 1995,	
		51, 2875-94.	
29F2	но-{``}	29A1	LC-MS (Methode 2): R _t = 2.17
			min.
	HO A A A HO O	aus Beispiel 28F	
	H,C CH,	und tert-Butyl-(3-	MS (EI): $m/z = 813 (M+H)^{+}$
		amino-2-	
		hydroxypropyl)-	
		carbamat	
29J	ОН	29A1	LC-MS (Methode 8): R _t = 2.40
	но		min.
	H,C CH, I NH,	aus Beispiel 28J und	
	H,C O H J H	Ammoniak	MS (EI): $m/z = 672 (M+H)^+$
	HN CH.bh.		
	о сн,		
29K	н,с сн,	29A1	LC-MS (Methode 8): $R_1 = 3.58$
	н,с сн,		min.
	,	aus Beispiel 28K	
		und Ammoniak	MS (EI): $m/z = 856 (M+H)^{+}$
	H,C NH,		
	LIM CH		
	o Tith,		

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
29L	но{}	29A1	LC-MS (Methode 2): $R_t = 2.23$
	mc 24 1 THI THE		min.
	H'C O H A H A L	aus Beispiel 28L	
	H,C CH, CH,	und tert-Butyl-(2-	MS (EI): $m/z = 817 (M+H)^{+}$
		aminoethyl)-	\$
		carbamat	
29F4	но—()	29F3	LC-MS (Methode 3): R ₁ = 2.37
			min.
	HÀ N NOH	aus Beispiel 28F	
	b∞ 8	und Beispiel Z5	MS (EI): $m/z = 841 (M+H)^+$
	/NH HÅ		
	boc boc		
29M1		29F3	LC-MS (Methode 2): R _t = 2.33
	HO CI	2713	min.
		aus Beispiel 28M	, mm.
	HN CH, OH	und Beispiel Z11	MS (EI): $m/z = 861 (M+H)^{+}$
	ЙН		
	boc		
29M2		2052	LCMC (Mall 1 2) D 201
291412	HOCI	29F3	LC-MS (Methode 3): R ₁ = 2.91
	HN boc	aus Beispiel 28M	min.
	hn CH, O	und Beispiel Z9	MS (EI): $m/z = 988 (M+H)^{+}$
	NH poc_NH	•	
	boc		
2027	n	2022	X 6 2 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
29N		29F3	LC-MS (Methode 3): $R_1 = 2.35$
	но— Д-ьос	aus Beispiel 28N	min.
	box N N	und 2 eq tert-Butyl-	MS (ES): $m/z = 985 (M+H)^+$
	H H H H	(2-aminoethyl)-	()
	NH poc	carbamat	
	boc	vai vaiitat	

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
2901	HO F OH OH OH OH OH OH OH OH	29F3 aus Beispiel 28O und Beispiel Z3	LC-MS (Methode 3): R ₁ = 2.49 min. MS (EI): m/z = 887 (M+H) ⁺
29P1	HO BOC CH ₃	29F3 aus Beispiel 28P und tert-Butyl-N ⁶ -(tert-butoxycarbonyl)-L- lysinat	LC-MS (Methode 2): R _t = 2.91 min. MS (EI): m/z = 1040 (M+H) ⁺
29P2	HO HO DOC ON THE BOOK ON THE B	29F3 aus Beispiel 28P und L-Alaninamid	LC-MS (Methode 2): R ₁ = 2.49 min. MS (EI): m/z = 826 (M+H) ⁺

Beispiel 29F3

 $tert\text{-Butyl-} \{3-[(8S,11S,14S)-14-[(tert\text{-butoxycarbonyl})amino]-8-[(\{2-[(tert\text{-butoxycarbo$

Unter Argon werden 24 mg (0.037 mmol) der Verbindung aus Beispiel 28F und 7.8 mg (0.048 mmol) tert-Butyl-(2-aminoethyl)carbamat in 1 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 9.2 mg (0.048 mmol) EDC und 1.5 mg (0.011 mmol) HOBt zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand wird mit Wasser verrührt. Der verbleibende Feststoff wird abgesaugt und im Hochvakuum getrocknet.

Ausbeute: 18 mg (63% d. Th.)

LC-MS (Methode 17): $R_t = 2.41 \text{ min.}$

10 MS (EI): $m/z = 783 (M+H)^+$

Beispiel 29P3

5

(8S,11S,14S)-14-[(tert-Butoxycarbonyl)amino]-11-{3-[(tert-butoxycarbonyl)amino]propyl}-5-{[N-(tert-butoxycarbonyl)glycyl]amino}-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]-henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

Unter Argon werden 4.4 mg (0.025 mmol) N-(tert-Butoxycarbonyl)glycin in 1.7 ml Dimethylformamid gelöst. Bei 0°C (Eisbad) werden dann 5.3 mg (0.027 mmol) EDC und 1.0 mg (0.007 mmol) HOBt zugegeben. Anschließend werden 20 mg (0.032 mmol) der Verbindung aus Beispiel 28P2 zugegeben. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Die Lösung wird im Vakuum eingeengt und der Rückstand chromatographisch an Sephadex-LH20 gereinigt (Laufmittel: Methanol / Essigsäure (0.25%)).

Ausbeute: 8.8 mg (44% d. Th.)

LC-MS (Methode 1): $R_1 = 2.17$ min.

10 MS (EI): $m/z = 813 (M+H)^+$

Beispiel 30M1

5

 $Benzyl-\{3-[(8S,11S,14S)-17-(benzyloxy)-14-\{[(benzyloxy)carbonyl]amino\}-8-[(\{2-[bis(2-amino-ethyl)amino]ethyl\}amino)carbonyl]-5-chlor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]-henicosa-1(20),2(21),3,5,16,18-hexaen-11-yl]propyl\}carbamat$

Zu einer Lösung aus 100 mg (0.036 mmol) der Verbindung aus Beispiel 23M in 0.25 ml N,N-Bis(2-aminoethyl)ethan-1,2-diamin werden 0.76 mg (0.012 mmol) Kaliumcyanid hinzugegeben. Es wird 16 h bei RT gerührt. Die Mischung wird mit Wasser versetzt. Der ausgefallene Feststoff wird abfiltriert und im Hochvakuum getrocknet.

Ausbeute: 102 mg (87 % d. Th.)

LC-MS (Methode 3): $R_t = 2.03 \text{ min.}$

MS (EI): $m/z = 975 (M+H)^{+}$.

Beispiel 300

5

Benzyl-{3-[(8S,11S,14S)-8-{[(2-aminoethyl)amino]carbonyl}-17-(benzyloxy)-14-{[(benzyloxy)-carbonyl]amino}-5-fluor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-11-yl]propyl}carbamat

Zu einer Lösung aus 30 mg (0.036 mmol) Methyl-(8S,11S,14S)-17-(benzyloxy)-14-{[(benzyloxy)-15 carbonyl]amino}-11-(3-{[(benzyloxy)carbonyl]amino}-5-fluor-9-methyl-10,13-dioxo-9,12-

diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat (Beispiel 23O) in 0.6 ml 1,2-Diaminoethan werden 0.46 mg (0.007 mmol) Kaliumcyanid hinzugegeben. Es wird 16 h bei RT gerührt. Die Mischung wird mit Wasser versetzt. Der ausgefallene Feststoff wird abfiltriert und im Hochvakuum getrocknet.

5 Ausbeute: 28 mg (89% d. Th.)

LC-MS (Methode 2): $R_t = 2.13$ min.

MS (EI): $m/z = 873 (M+H)^{+}$.

Analog den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 30M2 und 30P aus den entsprechenden Edukten hergestellt:

Beispiel- Nr.	Struktur	Hergestellt analog Bei- spiel-Nr.	Analytische Daten
30M2	BnO—CI	30O	LC-MS (Methode 1): $R_t = 2.51$ min.
	H CH ₃ O NH ₂	aus Beispiel 23M	MS (ES): $m/z = 889 (M+H)^{+}$
30P	BnO-NO ₂ HN H N H O NH ₂	30O aus Beispiel 23P	LC-MS (Methode 1): R _t = 2.30 min. MS (ES): m/z = 886 (M+H) ⁺

10

Beispiel 31N

(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-4-(methoxycarbonyl)-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2.6}]$ henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Di(hydrotrifluoracetat)

Die Herstellung erfolgt in Analogie zu Beispiel 39 aus Beispiel 23N.

LC-MS (Methode 3): $R_1 = 1.08 \text{ min.}$

 $MS (ES): m/z = 515 (M-2TFA+H)^{+}$

¹H-NMR (400 MHz, D₂O): δ = 1.8 (m_c, 1H), 1.96 (m_c, 1H), 2.75-3.2 (m, 5H), 3.48 (m_c, 1H), 3.84 (s, 3H), 3.86 (m_c, 1H), 4.38 (m_c, 1H), 4.57 (m_c, 1H), 4.80 (m_c, 1H), 6.83 (s, 1H), 6.88 (d, 1H), 7.37 (d, 1H), 7.40 (s, 1H), 7.65 (s, 1H), 7.84 (s, 1H).

Beispiel 310

Methyl-(8S,11S,14S)-14-amino-11-(3-aminopropyl)-5-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat

Eine Lösung von 50 mg (0.059 mmol) Methyl-(8S,11S,14S)-17-(benzyloxy)-14-{[(benzyloxy)-carbonyl]amino}-11-(3-{[(benzyloxy)carbonyl]amino}propyl)-5-fluor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat (Beispiel 23O) in Ethanol wird nach Zugabe von 5 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normal-

druck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt.

Ausbeute: quant.

LC-MS (Methode 3): $R_t = 1.34$ min.

5 MS (EI): $m/z = 487 (M+H)^{+}$.

Beispiel 31P

Methyl-(8S,11S,14S)-5,14-diamino-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}|henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxylat-Trihydroacetat

10 Es werden 150 mg der Verbindung aus Beispiel 23P in ein Gemisch aus 17 ml Essigsäure/Wasser/Ethanol (4:1:1) gegeben. Dazu gibt man 30 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 72 h bei RT und Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen und das Filtrat im Vakuum einrotiert. Der zurückgebliebene Feststoff wird im Hochvakuum getrocknet.

15 Ausbeute: 100 mg (88% d. Th.)

LC-MS (Methode 17): $R_1 = 2.16$ min.

MS (EI): $m/z = 470 (M-3HOAc+H)^{+}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.6-1.9$ (m, 4H), 2.85-3.25 (m, 5H), 3.48 (m_e, 1H), 3.75 (s, 3H), 4.37 (m_e, 1H), 4.6-4.7 (m, 1H, unter D_2O), 4.92 (m_e, 1H), 6.75-6.95 (m, 3H), 7.09 (s, 1H), 7.32 (d, 1H), 7.42 (d, 1H).

(3S)-3-{[(Benzyloxy)carbonyl]amino}-6-[(tert-butoxycarbonyl)amino]hexanoyl-methylcarbonat

Unter Argon werden 2 g (5.26 mmol) (3S)-3-{[(Benzyloxy)carbonyl]amino}-6-[(tert-butoxy-carbonyl)amino]hexansäure und 0.56 g (5.73 mmol) Triethylamin in 30 ml THF gelöst und auf 0°C abgekühlt. Dazu gibt man 0.59 g (5.73 mmol) Chlorameisensäureethylester und lässt 3 Stunden bei 0°C nachrühren. Die Reaktionsmischung wird über Kieselgur filtriert und das Filtrat wird direkt umgesetzt.

Beispiel Z2

10 Benzyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(2-hydroxyethyl)butyl]carbamat

Das Filtrat von (3S)-3-{[(Benzyloxy)carbonyl]amino}-6-[(tert-butoxycarbonyl)amino]hexanoyl-methylcarbonat (Beispiel ZI) wird zu einer Suspension von 0.49 g (13.14 mmol) Natriumborhydrid in 0.6 ml Wasser bei 0°C tropfenweise hinzugegeben. Die Mischung erwärmt sich langsam auf RT und wird über Nacht gerührt. Die Reaktionslösung wird eingeengt, und der Rückstand wird mit Essigsäureethylester und Wasser versetzt. Die organische Phase wird über Magnesiumsulfat getrocknet, eingeengt und im Hochvakuum getrocknet. Das Rohprodukt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 570 mg (30 % d.Th., über zwei Stufen)

20 LC-MS (Methode 1): $R_t = 2.09 \text{ min.}$

MS (EI): $m/z = 367 (M+H)^{+}$

Beispiel Z3

tert-Butyl-[(4S)-4-amino-6-hydroxyhexyl]carbamat

620 mg (1.69 mmol) Benzyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(2-hydroxyethyl)butyl]-carbamat (Beispiel Z2) werden in 60 ml Ethanol gelöst. Dazu gibt man 100 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 15 h bei RT und Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen, und das Filtrat wird einrotiert. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: quant.

¹H-NMR (400 MHz, D₂O): δ = 1.2-1.6 (m, 6H), 1.4 (s, 9H), 2.6-3.0 (m, 1H), 3.0-3.2 (m, 2H), 3.7-3.9 (m, 2H), 4.6 (br.s, 1H)

10 Beispiel Z4

5

Benzyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(hydroxymethyl)butyl]carbamat

Eine Lösung von 570 mg (1.56 mmol) N^2 -[(Benzyloxy)carbonyl]- N^5 -(tert-butoxycarbonyl)-Lornithin in 10 ml Tetrahydrofuran wird bei -10°C mit 157 mg (1.56 mmol) 4-Methylmorpholin und 169 mg (1.56 mmol) Chlorameisensäureethylester versetzt und 30 min gerührt. Bei dieser Temperatur werden 3.11 ml (3.11 mmol) einer 1M Lösung von Lithiumaluminiumhydrid in Tetrahydrofuran langsam zugetropft. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Unter Eiskühlung gibt man vorsichtig 0.2 ml Wasser und 0.3 ml 4.5%ige Natriumhydroxid-Lösung hinzu und rührt weitere 3 h bei RT. Der Ansatz wird filtriert und das Filtrat wird im Vakuum eingeengt. Der Rückstand wird in Essigsäureethylester gelöst, mit Wasser gewaschen, über Magnesiumsulfat getrocknet und erneut im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 170 mg (31% d. Th.)

LC-MS (Methode 2): $R_t = 1.88 \text{ min.}$

25 MS (EI): $m/z = 353 (M+H)^{+}$.

15

5

tert-Butyl-[(4S)-4-amino-5-hydroxypentyl]carbamat

Eine Lösung von 169 mg (0.48 mmol) Benzyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(hydroxymethyl)butyl]carbamat (Beispiel Z4) in 50 ml Ethanol wird nach Zugabe von 17 mg Palladium auf Aktivkohle (10%ig) 4 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 104 mg (99% d. Th.)

10 MS (DCI): $m/z = 219 (M+H)^+$

Beispiel Z6

tert-Butyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(hydroxymethyl)butyl]carbamat

Eine Lösung von 300 mg (0.90 mmol) N², N⁵-Bis(tert-butoxycarbonyl)-L-ornithin in 10 ml Tetrahydrofuran wird bei -10°C mit 91 mg (0.90 mmol) 4-Methylmorpholin und 98 mg (0.90 mmol)
Chlorameisensäureethylester versetzt und 30 min gerührt. Bei dieser Temperatur werden 1.81 ml
(1.81 mmol) einer 1M Lösung von Lithiumaluminiumhydrid in Tetrahydrofuran langsam zugetropft. Es wird langsam auf RT erwärmt und für 12 h bei RT gerührt. Unter Eiskühlung gibt man
vorsichtig 0.1 ml Wasser und 0.15 ml 4.5%ige Natriumhydroxid-Lösung hinzu und rührt weitere 3
h bei RT. Der Ansatz wird filtriert und das Filtrat wird im Vakuum eingeengt. Der Rückstand wird
in Essigsäureethylester gelöst, mit Wasser gewaschen, über Magnesiumsulfat getrocknet und erneut im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 239 mg (83% d. Th.)

MS (ESI): $m/z = 319 (M+H)^{+}$; 341 (M+Na)+.

(2S)-2,5-Bis[(tert-butoxycarbonyl)amino]pentyl-methansulfonat

Eine Lösung von 240 mg (0.75 mmol) tert-Butyl-[(1S)-4-[(tert-butoxycarbonyl)amino]-1-(hydroxymethyl)butyl]carbamat (Beispiel Z6) in 20 ml Dichlormethan wird mit 103 mg (0.90 mmol) Methansulfonsäurechlorid und 0.21 ml (1.5 mmol) Triethylamin versetzt und für 16 h bei RT gerührt. Es wird mit Dichlormethan verdünnt und zweimal mit 0.1N Salzsäure gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum bis zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

10 Ausbeute: 218 mg (73% d. Th.)

MS (ESI): $m/z = 419 (M+Na)^{+}$.

Beispiel Z8

5

tert-Butyl-{(4S)-5-azido-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat

15 Eine Lösung von 218 mg (0.55 mmol) (2S)-2,5-Bis[(tert-butoxycarbonyl)amino]pentyl-methansulfonat (Beispiel Z7) in 15 ml Dimethylformamid wird mit 36 mg (0.55 mmol) Natriuma-zid versetzt und 12 h bei 70°C gerührt. Ein Großteil des Lösungsmittel wird im Vakuum abdestilliert und der Rückstand wird mit Essigsäureethylester verdünnt. Es wird mehrmals mit gesättigter Natriumhydrogencarbonat-Lösung gewaschen, über Magnesiumsulfat getrocknet und im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 188 mg (99% d. Th.)

MS (ESI): $m/z = 344 (M+H)^{+}$.

tert-Butyl-{(4S)-5-amino-4-[(tert-butoxycarbonyl)amino]pentyl}carbamat

Eine Lösung von 188 mg (0.55 mmol) tert-Butyl-{(4S)-5-azido-4-[(tert-butoxycarbonyl)amino]-5 pentyl}carbamat (Beispiel Z8) in Ethanol wird nach Zugabe von 20 mg Palladium auf Aktivkohle (10%ig) 12 h bei RT und Normaldruck hydriert. Es wird über Kieselgur filtriert und der Rückstand mit Ethanol gewaschen. Das Filtrat wird im Vakuum zur Trockne eingeengt. Das Produkt wird ohne weitere Reinigung umgesetzt.

Ausbeute: 102 mg (59% d. Th.)

10 MS (ESI): $m/z = 318 (M+H)^{+}$; 340 $(M+Na)^{+}$.

Analog den angegebenen Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele Z10 und Z11 aus den entsprechenden Edukten hergestellt:

Bsp	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
Z10	HO HO Z	Z4 aus 3-{[(Benzyl- oxy)-carbonyl]- amino}-N-(tert- butoxy-carbonyl)-L- alanin	LC-MS (Methode 12): R _t = 1.79 min. MS (EI): m/z = 325 (M+H) ⁺
Z11	HO NH ₂	Z5 aus Beispiel Z10	MS (DCI): $m/z = 191 (M+H)^+$

Ausführungsbeispiele

Beispiel 1

 $(8S,11S,14S)-14-Amino-11-(3-aminopropyl)-5-fluor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo \\ [14.3.1.1^{2.6}] henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Dihydrochlorid \\ [14.3.1.1^{2.6}] henicosa-1(20),2(21),3$

5

30 mg (0.03 mmol) der Verbindung aus Beispiel 23A werden in 30 ml Eisessig / Wasser / Ethanol = 4/1/1 suspendiert, mit 15 mg Pd/C-Katalysator (10%ig) versetzt und 24 h bei RT hydriert. Der Katalysator wird abfiltriert, das Filtrat mit 5 ml 0.1N Salzsäure versetzt und im Vakuum eingedampft und im Hochvakuum getrocknet.

10 Ausbeute: 18 mg (quantitativ)

LC-MS (Methode 14): $R_i = 1.78 \text{ min.}$

 $MS (EI): m/z = 458 (M-2HCl+H)^+$

Beispiel 2

(8S,11S,14S)-14-Amino-11-(3-aminopropyl)-4,17-dihydroxy-10,13-dioxo-9,12-

diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Dihydrochlorid

Die Herstellung erfolgt analog zu Beispiel 1 aus 22 mg (0.02 mmol) der Verbindung aus Beispiel 23K in 4 ml Eisessig / Wasser / Ethanol = 4/1/1 mit 8 mg Pd/C-Katalysator (10%ig).

Ausbeute: 11 mg (97% d. Th.)

5 LC-MS (Methode 15): $R_t = 1.24 \text{ min.}$

MS (EI): $m/z = 457 (M-2HCl+H)^{+}$

Beispiel 3

 $(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-5-fluor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo [14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-10,13-dioxo-10,13-diox$

10 Dihydrochlorid

Die Herstellung erfolgt analog zu Beispiel 1 aus 55 mg (0.06 mmol) der Verbindung aus Beispiel 23L in 55 ml Eisessig / Wasser / Ethanol = 4/1/1 mit 34 mg Pd/C-Katalysator (10%ig).

Ausbeute: 33 mg (quantitativ)

LC-MS (Methode 2): $R_i = 1.37 \text{ min.}$

MS (EI): $m/z = 475 (M-2HCl+H)^{+}$

Beispiel 4

(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-5-chlor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2.6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure

69 mg (ca. 0.077 mmol) des Gemisches aus Beispiel 24B werden in 2 ml THF / Methanol (1/1) suspendiert und unter Rühren mit 4.85 mg (0.2 mmol) Lithiumhydroxid versetzt. Es entsteht eine Lösung. Man rührt noch eine weitere halbe Stunde, versetzt mit 0.22 ml 0.1N Salzsäure und dampft dann alles im Vakuum zur Trockne ein.

Ausbeute: 80 mg eines Gemisches aus 44% Produkt und 18% des O-Acetyl-Produktes

LC-MS (Methode 3): R₁ = 1.33 min. (Produkt) bzw. 1.51 min. (O-Acetyl-Produkt)

MS (EI): $m/z = 504 (M-2HCl+H)^{+}$ bzw. 546 (MOAc-2HCl+H)⁺

Beispiel 5

10

15 (8S,11S,14S)-14-Amino-N-(2-aminoethyl)-11-(3-aminopropyl)-5-fluor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Trihydrochlorid

6.5 mg (0.01 mmol) der Verbindung aus Beispiel 29A1 werden bei RT mit 1 ml 4N Dioxan / Chlorwasserstoff-Lösung übergossen und 2 h gerührt. Man dampft alles im Vakuum zur Trockne ein und trocknet im Hochvakuum bis zur Gewichtskonstanz.

5 Ausbeute: 5 mg (quantitativ)

LC-MS (Methode 3): $R_t = 0.27 \text{ min.}$

MS (EI): $m/z = 500 (M-3HCl+H)^{+}$

Beispiel 6

(8*S*,11*S*,14*S*)-14-Amino-11-[(2*R*)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Di(hydrotrifluoracetat)

Die Herstellung erfolgt analog zu Beispiel 5 aus 16.1 mg (0.025 mmol) der Verbindung aus Beispiel 29D mit 0.4 ml 4N Dioxan / Chlorwasserstoff-Lösung. Das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2% wässrige TFA 1:3) gereinigt.

Ausbeute: 1 mg (5% d. Th.)

LC-MS (Methode 5): $R_t = 1.14 \text{ min.}$

MS (EI): $m/z = 456 (M-2TFA+H)^{+}$

¹H-NMR (400 MHz, D₂O): $\delta = 1.83$ (m_c, 1H), 1.95 (m_c, 1H), 2.85 (m_c, 1H), 2.9-3.2 (m, 4H), 3.54 (m_c, 1H), 3.80 (m_c, 1H), 4.38 (m_c, 1H), 4.6 (m, 1H, unter D₂O-Signal), 4.84 (m_c, 1H), 6.85-7.0 (m, 2H), 7.14 (d, 1H), 7.24-7.48 (m, 4H).

Analog zu den oben aufgeführten Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 7 bis 12 aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
7	,,o	5	LC-MS (Methode 3): $R_t = 0.25$ min.
	HCI X H,N	aus Beispiel	MS (EI): $m/z = 530 (M-3HCl+H)^{+}$
-	нахни	29A2	
waarunna a		Ausbeute:	
		99% d. Th.	
8	но-{-}-а	5	LC-MS (Methode 2): $R_t = 0.48 \text{ min.}$
	HCI x H,N	aus Beispiel	MS (EI): $m/z = 546 (M-3HCl+H)^+$
	HO HO	29B1 Ausbeu-	
	HCI x H ₃ N	te: 99% d. Th.	
9	HO-(-)-(-)	5	LC-MS (Methode 3): $R_t = 0.29 \text{ min.}$
	HCI X H,N CH, O X HCI	aus Beispiel	MS (EI): $m/z = 576 (M-3HCl+H)^+$
	HO:	29B2	
	Her v. A.	Ausbeute:	
		97% d. Th.	

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
10	OH ✓	6	LC-MS (Methode 5): $R_t = 0.77 \text{ min.}$
	но	aus Beispiel	MS (EI): $m/z = 470 (M-2TFA-H)^{-1}$
	(N L) NH ₂		(E). III = 470 (W-21174-11)
	TFA x H ₂ N N N N N N N N N N N N N N N N N N N	293	
	HO	Ausbeute:	
	TFA × H ₂ N	38% d. Th.	
11	ÓН	6	LC-MS (Methode 8): $R_t = 1.41 \text{ min.}$
	HO-(-)-(-)	Ŭ	Downs (Methodo b), R(= 1.41 han.
		aus Beispiel	MS (EI): $m/z = 456 (M-2TFA+H)^+$
	NH ₂	29K	
	TFA x H ₂ N		
		Ausbeute:	
	TFA x H ₂ N	45% d. Th.	
12	но-{-}	5	LC-MS (Methode 17): R ₁ = 2.20 min.
	HCIX H,N	aus Beispiel	MS (EI): $m/z = 517 (M-3HCI+H)^+$
ļ	но	29L	
A PARTICIPATION AND A PART	HCI x H ₂ N	Auchautar	
		Ausbeute:	
		99% d. Th.	

Beispiel 13

(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-N-(2-amino-2-oxoethyl)-5-chlor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Di(hydrotrifluoracetat)

41 mg (0.04 mmol) der Verbindung aus Beispiel 27C1 werden in 0.5 ml einer 33%igen Bromwasserstoff-Lösung in Essigsäure gelöst und 45 min bei RT gerührt. Anschließend dampft man alles vorsichtig (Badtemperatur max. 40°C) zur Trockne ein und nimmt das Rohprodukt in 7 ml THF / Methanol / Wasser (4:2:1) auf. Man versetzt mit 2 mg (0.08 mmol) Lithiumhydroxid und rührt für 12 h bei RT nach. Der Ansatz wird im Vakuum eingeengt, in 3 ml 0.1N Salzsäure aufgenommen und 15 min bei RT gerührt. Das Lösungsmittel wird im Vakuum eingedampft und das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2%ige wässrige TFA, Gradient) gereinigt.

10 Ausbeute: 8.25 mg (29% d. Th.)

LC-MS (Methode 1): $R_1 = 1.15$ min

MS (EI): $m/z = 547 (M-2TFA+H)^+$

¹H-NMR (400 MHz, D₂O): $\delta = 1.83$ (m_c, 1H), 1.97 (m_c, 1H), 2.84 (m_c, 1H), 2.93-3.08 (m, 3H), 3.40 (m_c, 1H), 3.53 (m_c, 1H), 3.75-4.0 (m, 3H), 4.38 (m_c, 1H), 4.78 (m_c, 1H), 4.85 (m_c, 1H), 6.90 (d, 1H), 6.97 (s, 1H), 7.30 (s, 1H), 7.33-7.50 (m, 3H).

Beispiel 14

5

15

51 mg (0.044 mmol) der Verbindung aus Beispiel 27C2 werden in 1 ml einer 33%igen Bromwasserstoff-Lösung in Essigsäure gelöst und 45 min bei RT gerührt. Anschließend wird im Vakuum eingeengt, das Rohprodukt in 2 ml DMF gelöst und mit 2 mg Lithiumhydroxid versetzt. Es wird 12 h bei RT gerührt. Das Lösungsmittel wird im Vakuum eingedampft und das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2%ige wässrige TFA, Gradient) gereinigt.

Ausbeute: 17.8 mg (43% d. Th.)

LC-MS (Methode 3): $R_t = 0.57 \text{ min}$

10 MS (EI): $m/z = 591 (M-3TFA+H)^+$

¹H-NMR (400 MHz, D_2O): $\delta = 1.85$ (m_c, 1H), 1.97 (m_c, 1H), 2.84 (m_c, 1H), 2.95-3.12 (m, 3H), 3.30 (m_c, 1H), 3.4-3.6 (m, 4H), 3.75 (s, 3H), 3.85 (m_c, 1H), 4.38 (m_c, 1H), 4.78 (m_c, 1H), 4.87 (m_c, 1H), 6.90 (d, 1H), 7.0 (s, 1H), 7.34 (s, 1H), 7.37-7.55 (m, 3H).

Beispiel 15

5

3-Amino-N-{[(8S,11S,14S)-14-amino-11-[(2R)-3-amino-2-hydroxypropyl]-5-chlor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}-L-alanin-Tri(hydrotrifluoracetat)

Beispiel 15 entsteht als Nebenprodukt der Umsetzung zu Beispiel 14 und wird ebenfalls durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2% ige wässrige TFA, Gradient) isoliert.

Ausbeute: 3.8 mg (8% d. Th.)

WO 2005/058943

5 LC-MS (Methode 3): $R_t = 0.76 \text{ min}$

MS (EI): $m/z = 577 (M-3TFA+H)^{+}$

 1 H-NMR (400 MHz, D_{2} O): $\delta = 1.85$ (m_c, 1H), 1.96 (m_c, 1H), 2.86 (m_e, 1H), 2.95-3.14 (m, 3H), 3.23 (m_e, 1H), 3.27-3.6 (m, 4H), 3.85 (m_e, 1H), 4.38 (m_e, 1H), 4.78 (m_e, 1H), 4.87 (m_e, 1H), 6.90 (d, 1H), 6.98 (s, 1H), 7.28 (s, 1H), 7.33-7.53 (m, 3H).

10 Beispiel 16

N-{[(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-5-chlor-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-yl]carbonyl}-L-serin-Di(hydrotrifluoracetat)

51 mg (0.044 mmol) der Verbindung aus Beispiel 27C8 werden in 1 ml einer 33%igen Bromwasserstoff-Lösung in Essigsäure gelöst und 45 min bei RT gerührt. Anschließend wird im Vakuum eingeengt, das Rohprodukt in 2 ml DMF gelöst und mit 2 mg Lithiumhydroxid versetzt. Es wird 12 h bei 60°C gerührt. Das Lösungsmittel wird im Vakuum eingedampft und das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2%ige wässrige TFA, Gradient) gereinigt.

- 129 -

Ausbeute: 3.86 mg (11% d. Th.)

LC-MS (Methode 2): $R_t = 0.91 \text{ min}$

 $MS (EI): m/z = 578 (M-2TFA+H)^{+}$

¹H-NMR (400 MHz, D₂O): δ = 1.84 (m_c, 1H), 1.97 (m_c, 1H), 2.68-3.10 (m, 3H), 3.37 (m_c, 1H), 3.53 (m_c, 1H), 3.85 (m_c, 1H), 4.38 (m_c, 1H), 4.47 (m_c, 1H), 4.76 (m_c, 1H), 4.96 (m_c, 1H), 6.86 (d, 1H), 6.94 (s, 1H), 7.27 (s, 1H), 7.3-7.5 (m, 3H).

Analog zu den oben aufgeführten Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 17 bis 24 aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
17	ноСІ	13	LC-MS (Methode 2): R _t = 0.92 min.
	TFAX HAN SHE THE SHE NE.	aus Beispiel	MS (EI): $m/z = 618 (M-2TFA+H)^+$
	YFA x H _i N	27C3	H-NMR (400 MHz, D_2O): δ = 1.33 (d,
		Ausbeute:	3H), 1.83 (m _c , 1H), 1.98 (m _c , 1H), 2.85
		25% d. Th.	(m _c , 1H), 2.95-3.1 (m, 3H), 3.4 (m _c ,
			1H), 3.53 (m _e , 1H), 3.83 (m _e , 1H), 3.95
			(m _c , 2H), 4.22 (q, 1H), 4.38 (m _c , 1H),
			4.77 (m _e , 1H), 4.84 (m _e , 1H), 6.90 (d,
			1H), 6.96 (s, 1H), 7.3 (s, 1H), 7.35-7.5
			(m, 3H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
18	×0-√ CI	14	LC-MS (Methode 3): $R_t = 1.13$ min.
	TFAX H,N THE HOUSE	aus Beispiel	MS (EI): $m/z = 604 (M-2TFA+H)^+$
	TFA x H,N	27C4 Aus-	H-NMR (400 MHz, D_2O): $\delta = 1.83$
		beute: 59%	(m _c , 1H), 1.98 (m _c , 1H), 2.83 (m _c , 1H),
	·	d. Th.	2.92-3.08 (m, 3H), 3.37 (m _c , 1H), 3.52
		4	(m _c , 1H), 3.75-4.05 (m, 5H), 4.38 (m _c ,
			1H), 4.77 (m _c , 1H), 4.84 (m _c , 1H), 6.87
*			(d, 1H), 6.95 (s, 1H), 7.27 (s, 1H), 7.3-
			7.5 (m, 3H).
19	но-С	14	LC-MS (Methode 3): R _t = 1.19 min.
[]	TFAX H,N THAN H, CH,	aus Beispiel	MS (EI): $m/z = 561 (M-2TFA+H)^+$
	но	27C5	NATION (400 MILE TO CO), S = 1.92
	TFA X H ₂ N		¹ H-NMR (400 MHz, D_2O): $\delta = 1.83$
		Ausbeute:	(m _c , 1H), 1.98 (m _c , 1H), 2.66 (s, 3H),
		59% d. Th.	2.85 (m _e , 1H), 2.92-3.08 (m, 3H), 3.4
			(m _c , 1H), 3.52 (m _c , 1H), 3.75-3.95 (m,
			3H), 4.37 (m _e , 1H), 4.76 (m _e , 1H), 4.84
			(m _e , 1H), 6.88 (d, 1H), 6.95 (s, 1H),
			7.29 (s, 1H), 7.35-7.5 (m, 3H).
20	HO-CI	14	LC-MS (Methode 2): R _t = 0.91 min.
	TFAX H,N OH	aus Beispiel	MS (EI): $m/z = 605 (M-2TFA+H)^{+}$
	HO	27C6 Aus- beute: 40%	¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.83$
		d. Th.	(m _c , 1H), 1.98 (m _c , 1H), 2.66-3.08 (m,
		J. 111.	6H), 3.32 (m _c , 1H), 3.53 (m _c , 1H), 3.82
			(m _e , 1H), 4.37 (m _c , 1H), 4.56 (m _c , 1H),
			4.76 (m _c , 1H), 4.84 (m _c , 1H), 6.8-6.95
			(m, 2H), 7.21 (s, 1H), 7.3-7.45 (m, 3H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
21	но————сі	14	MS (EI): $m/z = 628 (M-3TFA+H)^+$
1	TFAX H,N H OH	aus Beispiel	¹ H-NMR (400 MHz, D_2O): $\delta = 1.80$
	HO	27C7	(m _c , 1H), 1.95 (m _c , 1H), 2.75-3.2 (m,
	TFAX H,N X TFA		6H), 3.27 (m _c , 1H), 3.50 (m _c , 1H), 3.81
		Ausbeute:	(m _c , 1H), 4.37 (m _c , 1H), 4.48 (m _c , 1H),
		21% d. Th.	4.68 (m _c , 1H), 4.75 (m _c , 1H), 6.83-6.97
			(m, 2H), 7.21 (s, 1H), 7.26 (s, 1H), 7.3-
			7.5 (m, 3H), 8.57 (s, 1H).
22	но	14	LC-MS (Methode 8): $R_t = 1.67$ min.
	THE LON	aus Beispiel	MS (EI): $m/z = 491 (M-2TFA+H)^{+}$
	TFAX H,N N N N N N N N N N N N N N N N N N N	23C	(M-211 K-11)
	TFA × H ₃ N	250	¹ H-NMR (400 MHz, D_2O): $\delta = 1.81$
0		Ausbeute:	(m _c , 1H), 1.97 (m _c , 1H), 2.83 (m _c , 2H),
		25% d, Th.	2.96 (m _e , 1H), 3.05 (m _e , 1H), 3.48 (m _e ,
			2H), 3.88 (m _c , 1H), 4.35 (m _c , 1H), 4.57
			$(m_e, 1H), 4.75 (m_e, 1H), 6.8-6.93 (m,$
			2H), 7.20 (s, 1H), 7.25-7.45 (m, 3H).
23		1.1	LC MS (Mothodo 2): D = 0.02 min
43	HO-CI	14	LC-MS (Methode 2): $R_t = 0.92 \text{ min.}$
	TFAX H ₂ N NH ₂	aus Beispiel	MS (EI): $m/z = 605 (M-2TFA+H)^+$
	но он	27C9	
	TFA x H ₂ N	A 9	¹ H-NMR (400 MHz, D_2O): $\delta = 1.83$
		Ausbeute:	(m _c , 1H), 1.98 (m _c , 1H), 2.66-3.1 (m,
		9% d. Th.	6H), 3.28 (m _c , 1H), 3.54 (m _c , 1H), 3.82
			(m _c , 1H), 4.40 (m _c , 1H), 4.7-4.8 (m, 2H,
			unter D ₂ O-Signal), 4.85 (m _c , 1H), 6.8-
			6.93 (m, 2H), 7.20 (s, 1H), 7.25-7.47
and the second			(m, 3H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
24	но-С	14	LC-MS (Methode 3): $R_t = 0.32 \text{ min.}$
	TFAX HAN THE STATE OF	aus Beispiel	MS (EI): $m/z = 633 (M-2TFA+H)^+$
	TFA X M,N	27C10	¹ H-NMR (400 MHz, D ₂ O): δ = 1.28 (d,
		Ausbeute:	3H), 1.35 (d, 3H), 1.80 (m _e , 1H), 1.98
		18% d. Th.	(m _c , 1H), 2.84 (m _c , 1H), 2.93-3.1 (m,
			3H), 3.35 (m _c , 1H), 3.53 (m _c , 1H), 3.77
			(m _c , 1H), 4.06 (q, 1H), 4.24 (q, 1H),
			4.37 (m _c , 1H), 4.67-4.85 (m, 2H, unter
			D ₂ O-Signal), 6.90 (d, 1H), 7.0 (s, 1H),
			7.31 (s, 1H), 7.35-7.52 (m, 3H).

Beispiel 25

(8S,11S,14S)-14-Amino-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[$14.3.1.1^{2,6}$]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Di(hydrotrifluoracetat)

5

30 mg (0.03 mmol) der Verbindung aus Beispiel 23D werden in 50 ml Eisessig:Wasser:THF = 4:1:1 suspendiert, mit 10 mg Pd/C (10%-ig) Katalysator versetzt und für 1 Tag bei RT unter Normaldruck hydriert. Das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2%ige wässrige TFA 1:3) gereinigt.

10 Ausbeute: 25 mg (95% d. Th.)

LC-MS (Methode 14): $R_t = 1.69 \text{ min}$

 $MS (EI): m/z = 457 (M-2TFA+H)^{+}$

¹H-NMR (400 MHz, D₂O): $\delta = 1.83$ (m_c, 1H), 1.95 (m_c, 1H), 2.83 (m_c, 1H), 2.9-3.1 (m, 3H), 3.16 (m_c, 1H), 3.52 (m_c, 1H), 3.88 (m_c, 1H), 4.38 (m_c, 1H), 4.52 (m_c, 1H), 4.72 (m_c, 1H), 6.85-7.0 (m, 2H), 7.14 (d, 1H), 7.24-7.48 (m, 4H).

Beispiel 26

5

(8S,11S,14S)-14-Amino-N-(2-aminoethyl)-11-(3-aminopropyl)-17-hydroxy-5-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Trihydrochlorid

10

15

19 mg (0.020 mmol) der Verbindung aus Beispiel 27E werden in 12 ml Eisessig:Wasser :Ethanol = 4:1:1 suspendiert, mit 10 mg Pd/C (10%-ig) Katalysator versetzt und 2 Tage bei Raumtemperatur unter Normaldruck hydriert. Der Katalysator wird abfiltriert, das Filtrat mit 0.5 ml 0.1N Salzsäure versetzt, im Vakuum eingedampft und im Hochvakuum getrocknet. Man rührt mit 2.5 ml Dioxan:Methanol (4:1) aus und filtriert das Produkt ab.

Ausbeute: 2.9 mg (5% d. Th.)

LC-MS (Methode 2): $R_t = 0.31$ min.

MS (EI): $m/z = 497 (M-3HCl+H)^{+}$

Analog zu den oben aufgeführten Vorschriften werden die in der folgenden Tabelle aufgeführten 20 Beispiele 27 bis 34 aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
27	но———————сн,	26	LC-MS (Methode 5): $R_t = 1.23$ min.
		Aus Beispiel	MS (EI): $m/z = 455 (M-2HCl+H)^{+}$
	HCI X H ₂ N OH	23E	,
	HCIX H ₂ N H		
	HCI x H₂N	Ausbeute:	
		72% d. Th.	
		0.5	NG (TD) / 440 (N4 2TEA LYD*
28	но-{-}-{-}	25	MS (EI): $m/z = 440 (M-2TFA+H)^{+}$
		Aus Beispiel	1 H-NMR (400 MHz, D ₂ O): $\delta = 1.5$ -
	TFA × H ₂ N NH ₂	27F1	1.8 (m, 4H), 2.8-3.2 (m, 5H), 3.54
			(m _c , 1H), 4.42 (m _c , 1H), 4.65-4.8 (m,
	TFA × H ₂ N	Ausbeute:	2H, unter D ₂ O-Signal), 6.85-7.0 (m,
		15% d. Th.	2H), 7.13 (d, 1H), 7.25-7.48 (m, 4H).
29	но—	25	MS (EI): $m/z = 497 (M-2TFA+H)^+$
	TFAX H ₂ N NH ₂	aus Beispiel	1 H-NMR (400 MHz, D ₂ O): $\delta = 1.5$ -
	TFA x H,N	27F2	1.9 (m, 4H), 2.85-3.15 (m, 5H), 3.54
		Ausbeute:	(m _c , 1H), 3.88 (m _c , 2H), 4.42 (m _c ,
		68% d. Th.	1H), 4.7 (m, 1H, unter D ₂ O-Signal),
			4.78 (m _c , 1H), 6.85-7.0 (m, 2H), 7.13
			(d, 1H), 7.25-7.48 (m, 4H).
]			

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
		-	
30	но-{\(\)	25	MS (EI): $m/z = 660 (M-2TFA+H)^{+}$
	THAK HAN CHANGE	aus Beispiel	1 H-NMR (400 MHz, D ₂ O): $\delta = 1.4$ -
	TFAX H.N	27F4	1.7 (m, 4H), 2.75-3.1 (m, 7H), 3.54
	TPAX HJN		(m _c , 1H), 3.80 (m _c , 2H), 4.42 (m _c ,
		Ausbeute:	1H), 4.53 (m _c , 1H), 4.58 (m _c , 1H), 4.7
		21% d. Th.	(m, 1H, unter D ₂ O-Signal), 6.73 (d,
			2H), 6.85-7.0 (m, 2H), 7.03-7,13 (m,
			3H), 7.22 (s, 1H), 7.28 (t, 1H), 7.33-
			7.46 (m, 2H).
			(4.4) = -3/
31	но—(—)—сн ₃	26	LC-MS (Methode 5): $R_t = 1.24 \text{ min.}$
;		aus Beispiel	MS (EI): $m/z = 471 (M-2HCl+H)^{+}$
	HCI X H₂N N N N N N N N N N N N N N N N N N N	23G	(M-21101-111)
	HOIX H ₂ N]		
	HCI x H₂N	Ausbeute:	
	•	57% d. Th.	
32	F	26	LC-MS (Methode 5): $R_t = 0.98$ min.
	HO—————OH		
		aus Beispiel	MS (EI): $m/z = 491 [M+H]^+$
	HCI x H ₂ N OH	23H	
	Ö	Ausbeute:	
	HCI x H₂N	76% d. Th.	

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
33	HO-NH _z	25	MS (EI): $m/z = 472 (M-3TFA+H)^+$
	x TFA	aus Beispiel	¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.83$
	TFA × H ₂ N	23I Ausbeute: 49% d. Th.	(m _c , 1H), 1.96 (m _c , 1H), 2.75-3.1 (m, 4H), 3.22 (m _c , 1H), 3.54 (m _c , 1H), 3.85 (m _c , 1H), 4.38 (m _c , 1H), 4.53 (m _c , 1H), 4.78 (m _c , 1H), 6.90 (d, 1H),
			6.97 (s, 1H), 7.29 (d, 1H), 7.38-7.53 (m, 3H).
34	но—	26	LC-MS (Methode 8): $R_t = 1.42 \text{ min.}$
	HCI x H ₂ N OH	aus Beispiel 23J	MS (EI): $m/z = 473 (M-2HCl+H)^+$
	HO	Ausbeute:	
	HCl×H₂N .	98% d. Th.	

Beispiel 35

(8*S*,11*S*,14*S*)-14-Amino-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Dihydrochlorid

Die Herstellung erfolgt analog zu Beispiel 1 aus 140 mg (0.16 mmol) der Verbindung aus Beispiel 23F in 150 ml Eisessig / Wasser / Ethanol = 4/1/1 mit 50 mg Pd/C-Katalysator (10%ig).

Ausbeute: 80 mg (95% d. Th.)

LC-MS (Methode 14): $R_1 = 1.53$ min.

 $MS (EI): m/z = 441 (M-2HCI+H)^{+}$

¹H-NMR (400 MHz, D₂O): δ = 1.79 (m_c, 3H), 1.94 (m_c, 1H), 2.8-3.3 (m, 5H), 3.63 (m_c, 1H), 4.51 (m_c, 1H), 4.65-4.85 (m, 2H), 7.0 (d, 1H), 7.05 (s, 1H), 7.25 (d, 1H), 7.35-7.54 (m, 4H).

Beispiel 36

(8S,11S,14S)-14-Amino-N-(2-aminoethyl)-11-[(2R)-3-amino-2-hydroxypropyl]-17-hydroxy-10,13-dioxo-9,12-diazatricyclo $[14.3.1.1^{2,6}]$ henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Tri(hydrotrifluoracetat)

10

15

43 mg (0.04 mmol) der Verbindung aus Beipiel 27C11 werden in 23 ml Eisessig / Wasser / Ethanol (4/1/1) suspendiert, mit 8 mg Pd/C-Katalysator (10%ig) versetzt und 24 h bei RT unter Normaldruck hydriert. Der Katalysator wird über einen Membranfilter abgetrennt und das Filtrat wird im Vakuum eingeengt. Das Rohprodukt wird in 0.1 ml 4N Dioxan / Chlorwasserstoff-Lösung aufgenommen und für 2 h bei RT gerührt. Das Lösungsmittel wird im Vakuum eingedampft und das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril / 0.2%ige wässrige TFA, Gradient) gereinigt.

Ausbeute: 6.1 mg (29% d. Th.)

LC-MS (Methode 17): $R_t = 2.19 \text{ min}$

20 MS (EI): $m/z = 499 (M-3TFA+H)^{+}$

 1 H-NMR (400 MHz, D₂O): δ = 1.87 (m_c, 1H), 1.97 (m_c, 1H), 2.86 (m_c, 1H), 3.0-3.15 (m, 6H), 3.50 (m_c, 2H), 3.55 (m_c, 1H), 3.85 (m_c, 1H), 4.42 (m_c, 1H), 4.73 (m_c, 1H), 4.85 (m_c, 1H), 6.94 (d, 1H), 6.98 (s, 1H), 7.13 (s, 1H), 7.25-7.37 (m, 2H), 7.4-7.48 (m, 2H).

Analog zu den oben aufgeführten Vorschriften werden die in der folgenden Tabelle aufgeführten Beispiele 37 und 38 aus den entsprechenden Edukten hergestellt:

Beispiel-	Struktur	Hergestellt analog	Analytische Daten
Nr.		Beispiel-Nr.	
37	HCI X H ₂ N HCI X NH ₂ HCI X NH ₂ HCI X	5 aus Beispiel 29F1	LC-MS (Methode 2): R _t = 0.24 min. MS (EI): m/z = 512 (M-4HCI+H) ⁺
38	x HCI H,N X HCI NH,	5 aus Beispiel 29F2	I.C-MS (Methode 17): $R_t = 2.32 \text{ min.}$ MS (EI): $m/z = 513 \text{ (M-3HCl+H)}^{+}$

Beispiel 39

(8*S*,11*S*,14*S*)-14-Amino-*N*-(2-aminoethyl)-11-(3-aminopropyl)-5-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Tri(hydrotrifluoracetat)

5

10

Es werden 25 mg (0.029 mmol) Benzyl-{3-[(8S,11S,14S)-8-{[(2-aminoethyl)amino]carbonyl}-17-(benzyloxy)-14-{[(benzyloxy)carbonyl]amino}-5-fluor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-11-yl]propyl}carbamat (Beispiel 30O) in ein Gemisch aus 5 ml Essigsäure/Wasser/Ethanol (4:1:1) gegeben. Dazu gibt man 10 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 15 h bei RT und Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen und das Filtrat im Vakuum einrotiert. Der Rückstand wird mit 0.1N Salzsäure versetzt und im Vakuum eingeengt. Der zurückgebliebene Feststoff wird im Hochvakuum getrocknet. Das Trihydrochlorid wird durch präparative HPLC (Kromasil 100C18, Laufmittel Acetonitril/0.2% wässrige Trifluoressigsäure 5:95 → 95:5) in das Tri(hydrotrifluoracetat) überführt.

Ausbeute: 11 mg (45% d. Th.)

LC-MS (Methode 17): $R_t = 2.18 \text{ min.}$

MS (EI): $m/z = 515 (M-3CF_3CO_2H+H)^{+}$.

¹H-NMR (400 MHz, D₂O): δ = 1.56-1.94 (m, 8H), 2.85-3.60 (m, 9H), 2.92 (s, 3H), 5.70 (m, 1H), 6.90 (d, 1H), 6.96 (s, 1H), 7.10-7.20 (m, 2H), 7.40-7.60 (m, 2H).

Beispiel 40

(8S,11S,14S)-14-Amino-11-(3-aminopropyl)-5-fluor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure-Dihydrochlorid

$$H_2N$$
 O
 CH_3
 O
 $2 \times HCI$

Es werden 275 mg (0.331 mmol) (8S,11S,14S)-17-(Benzyloxy)-14-{[(benzyloxy)carbonyl]-amino}-11-(3-{[(benzyloxy)carbonyl]amino}propyl)-5-fluor-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carbonsäure (Beispiel 26O) in ein Gemisch aus 90 ml Essigsäure/Wasser/Ethanol (4:1:1) gegeben. Dazu gibt man 300 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 15 h bei RT und Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen und das Filtrat im Vakuum einrotiert. Der Rückstand wird mit 0.1N Salzsäure versetzt und eingeengt. Der zurückgebliebene Feststoff wird im Hochvakuum getrocknet.

10 Ausbeute: quant.

5

15

LC-MS (Methode 17): $R_t = 2.47 \text{ min.}$

MS (EI): $m/z = 473 (M-2HCl+H)^{+}$.

Beispiel 41

(8S,11S,14S)-14-Amino-11-(3-aminopropyl)-5-chlor-N-[(2S)-2,5-diaminopentyl]-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Tetrahydrochlorid

WO 2005/058943 PCT/EP2004/013688 - 141 -

11.4 mg (0.012 mmol) der Verbindung aus Beispiel 29M2 werden bei RT in 0.05 ml Dioxan gelöst und mit 0.175 ml 4N Chlorwasserstoff-Dioxan-Lösung versetzt und 2 h gerührt. Man dampft alles im Vakuum zur Trockne ein und trocknet im Hochvakuum bis zur Gewichtskonstanz.

Ausbeute: 7.9 mg (93% d. Th.)

5 MS (ESI): $m/z = 588 (M-4HCl+H)^{+}$

¹H-NMR (400 MHz, D_2O): $\delta = 1.55$ -1.95 (m, 8H), 2.85 (s, 3H), 2.9-3.1 (m, 6H), 3.25-3.75 (m, 7H), 4.45 (m_c, 1H), 4.78 (m_c, 1H), 5.70 (m_c, 1H), 6.92 (d, 1H), 7.0 (s, 1H), 7.15 (s, 1H), 7.45 (d, 1H), 7.51 (d, 1H), 7.57 (d, 1H).

Beispiel 42

10 (8*S*,11*S*,14*S*)-14-Amino-11-(3-aminopropyl)-*N*-{2-[bis(2-aminoethyl)amino]ethyl}-5-chlor-17-hydroxy-9-methyl-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Penta(hydrotrifluoracetat)

110 mg (0.113 mmol) der Verbindung aus Beispiel 30M1 werden in 2 ml einer 33%igen Bromwasserstoff-Lösung in Essigsäure gelöst und 45 min bei RT gerührt. Anschließend wird im Vakuum eingeengt und das Rohprodukt wird durch HPLC (Kromasil 100C18, Laufmittel Acetonitril/0.2%ige wässrige Trifluoressigsäure, Gradient) gereinigt.

Ausbeute: 64.1 mg (53% d. Th.)

MS (ESI): $m/z = 617 (M-5TFA+H)^{+}$

¹H-NMR (400 MHz, D₂O): $\delta = 1.57-1.74$ (m, 3H), 1.78-1.91 (m, 1H), 2.68 (t, 2H), 2.79 (m_c, 4H), 2.88 (s, 3H), 2.92 (m_c, 2H), 3.0-3.1 (m, 5H), 3.15-3.5 (m, 4H), 3.57 (m_c, 1H), 4.44 (m_c, 1H), 4.80

- 142 -

 $(m_e, 1H)$, 5.63 $(m_e, 1H)$, 6.91 (d, 1H), 6.98 (s, 1H), 7.13 (s, 1H), 7.43 (d, 1H), 7.50 (d, 1H), 7.56 (d, 1H).

Beispiel 43

(8*S*,11*S*,14*S*)-5,14-Diamino-*N*-(2-aminoethyl)-11-(3-aminopropyl)-17-hydroxy-10,13-dioxo-9,12-diazatricyclo[14.3.1.1^{2,6}]henicosa-1(20),2(21),3,5,16,18-hexaen-8-carboxamid-Tetrahydrochlorid

Es werden 30 mg der Verbindung aus Beispiel 30P in ein Gemisch aus 28 ml Essigsäure/Wasser/Ethanol (4:1:1) gegeben. Dazu gibt man 16 mg Palladium auf Aktivkohle (10%ig) und hydriert anschließend 48 h bei RT und Normaldruck. Das Reaktionsgemisch wird über vorgewaschenem Kieselgur filtriert, mit Ethanol gewaschen und das Filtrat im Vakuum einrotiert. Der Rückstand wird mit 1.2 ml 0.1N Salzsäure versetzt und erneut im Vakuum eingeengt. Der zurückgebliebene Feststoff wird im Hochvakuum getrocknet.

Ausbeute: 21 mg (96% d. Th.)

LC-MS (Methode 17): $R_t = 0.73$ min.

15 MS (EI): $m/z = 498 (M-4HCl+H)^{\dagger}$.

¹H-NMR (400 MHz, D_2O): $\delta = 1.5-1.9$ (m, 4H), 2.85-3.2 (m, 7H), 3.3-3.6 (m, 3H), 4.42 (m_c, 1H), 4.6-4.7 (m, 1H, unter D_2O), 4.87 (m_c, 1H), 6.90 (d, 1H), 7.01 (s, 1H), 7.23 (d, 1H), 7.45-7.55 (m, 2H).

Das Trihydrochlorid wird durch präparative HPLC (Kromasil 100C18, Laufmittel Acetonitril/
20 0.2%ige wässrige Trifluoressigsäure 5:95 → 95:5) in das Tri(hydrotrifluoracetat) überführt.

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
44	₹ H	5	LC-MS (Methode 17): R _t = 1.88 min.
	HO NH ₂	aus Beispiel	MS (ES): $m/z = 585 (M-4HCl+H)^*$
	H,N T N T N T N T N T N T N T N T N T N T	29N	¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.8-2.0$
	OH NH ₂		(m, 2H), 2.75 (m _c , 1H), 2.95-3.23 (m,
	4 x HCl NH ₂		6H), 3.4-3.75 (m, 6H), 3.86 (m _c , 1H),
			4.40 (m _c , 1H), 4.7 (m, 1H, unter D ₂ O),
			4.83 (m _c , 1H), 6.9-7.0 (m, 2H), 7.4-7.55
			(m, 3H), 7.78 (s, 1H).
45	HO	39	LC-MS (Methode 17): R _t = 2.18 min.
	H,N OH	aus Beispiel	MS (EI): $m/z = 587 (M-3 TFA+H)^+$
	CH, C	29O1	1 H-NMR (400 MHz, D ₂ O): $\delta = 1.53$ -
17	3 x TFA NH ₂ NH ₂		1.87 (m, 10H), 2.64-3.62 (m, 12H),
			4.53 (m, 1H), 4.92-4.97 (m, 1H), 5.66
			(dd, 1H), 6.94 (d, 1H), 6.99 (s, 1H),
			7.11-7.19 (m, 2H), 7.48-7.58 (m, 2H).
46	но—()	5	LC-MS (Methode 17): R _t = 2.04 min.
		aus Beispiel	MS (EI): $m/z = 486 (M-3HCl+H)^+$
	NH ₂	29F3	¹ H-NMR (400 MHz, D_2O): $\delta = 1.55-1.9$
	3 × HCI NH ₂	;	(m, 4H), 2.93 (m _c , 2H), 2.97-3.17 (m,
			5H), 3.45-3.6 (m, 3H), 4.41 (m _c , 1H),
			4.6-4.8 (m, 2H unter D ₂ O), 6.85-6.97
			(m, 2H), 7.12 (m _c , 1H), 7.24-7.36 (m,
			2H), 7.37-7.48 (m, 2H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
4.5		39	LC-MS (Methode 17): R _t = 1.85 min.
47	но	39	LC-IVIS (Methode 17): Kt = 1.65 mm.
		aus Beispiel	MS (EI): $m/z = 541 (M-3TFA+H)^+$
	H'Y A A A A A A A A A A A A A A A A A A A	29F4	
	3 x TFA NH ₂ NH ₂		¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.5-1.9$
			(m, 8H), 2.85-3.15 (m, 7H), 3.45-3.9
			(m, 4H), 4.41 (m _c , 1H), 4.6-4.8 (m, 2H
			unter D_2O), 6.85-6.97 (m, 2H), 7.12
			(m _c , 1H), 7.22-7.48 (m, 4H).
48		45	LC-MS (Methode 17): $R_i = 2.30$ min.
	но—Сі		·
	H,N H, NH,	aus Beispiel	MS (EI): $m/z = 531 (M-3TFA+H)^+$
	H ₂ N 1 NH ₂ CH ₃ O	30M2	¹ H-NMR (400 MHz, D ₂ O): δ = 1.5-1.9
	3 x TFA NH ₂		(m, 4H), 2.87 (s, 3H), 2.95 (m _c , 2H),
****			3.03-3.15 (m, 3H), 3.26 (m _e , 1H), 3.38-
			3.6 (m, 4H), 4.43 (m _c , 1H), 4.88 (m _c ,
			1H), 5.66 (m _c , 1H), 6.87 (d, 1H), 6.98
			(s, 1H), 7.12 (s, 1H), 7.38-7.6 (m, 3H).
			(4,), , (-,), (,)
49	HO-CI	39	LC-MS (Methode 17): $R_t = 2.40 \text{ min.}$
	H B J OH	ava Dáispial	MS (EI): $m/z = 561 (M-3TFA+H)^{+}$
	H ₂ N NH ₂	29M1	(N-511-A-11)
		29W1	1 H-NMR (400 MHz, D ₂ O); $\delta = 1.58$ -
	3 x TFA NH,		1.75 (m, 3H), 1.78-1.92 (m, 1H), 2.85
-			(s, 3H), 2.94 (m _c , 2H), 3.05 (m _c , 1H),
			3.28 (m _c , 1H), 3.38-3.68 (m, 7H), 3.75
			(m _c , 1H), 4.44 (m _c , 1H), 4.80 (m _c , 1H),
			5.70 (m _c , 1H), 6.90 (d, 1H), 7.0 (s, 1H),
			7.15 (s, 1H), 7.43 (d, 1H), 7.50 (d, 1H),
			7.56 (d, 1H).

Beispiel-	Struktur	Hergestellt	Analytische Daten
Nr.		analog Bei-	
		spiel-Nr.	
50	HO—NH,	5	MS (ESI): $m/z = 584 (M-4HCl+H)^+$
	HAN THE NOTICE OF THE PARTY OF	aus Beispiel	¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.5$ -1.9
-		29P1	(m, 4H), 2.6-3.1 (m, 8H), 3.15-3.35 (m,
	4 x HCI NH ₂ NH ₃		3H), 3.45-3.75 (m, 3H), 3.9 (m _c , 1H),
	•		4.40 (m _c , 1H), 4.6-4.7 (m, 1H, unter
1			D ₂ O), 4.78 (m _c , 1H), 6.85-6.93 (m, 2H),
			6.96 (s, 1H), 7.25 (s, 1H), 7.33 (d, 1H),
			7.40 (d, 1H)
51		39	LC-MS (Methode 17): $R_t = 1.90$ min.
	HO—NH ₂	33	De Me (Memode 17). R
		aus Beispiel	MS (EI): $m/z = 526 (M-3TFA+H)^+$
	H'N J L H J CH' NH'	29P2	
	3 x TFA NH ₂		
	•		
52	Q,	39	LC-MS (Methode 17): R ₁ = 1.37 min.
	HO-NH,		Se ins (insulate iv), iq insv iniii.
	H2	aus Beispiel	MS (EI): $m/z = 513 (M-3TFA+H)^{+}$
	H ₂ N OH	28P2	HI NIMD (400 MILE D. O), S 1 (2)
	H ³ N,		¹ H-NMR (400 MHz, D ₂ O): $\delta = 1.63$ -
	3 x TFA NH ₂		1.95 (m, 4H), 2.85 (m _c , 1H), 2.98 (m _c ,
	-		2H), 3.10 (m _e , 1H), 3.25 (m _e , 1H), 3.58
			(m _c , 1H), 4.04 (s, 2H), 4.45 (m _c , 1H),
			4.57 (m _c , 1H), 4.6-4.8 (m, 1H, unter
			D ₂ O), 6.96 (d, 1H), 7.07 (s, 1H), 7.30
			(d, 1H), 7.4-7.6 (m, 3H).
	<u></u>		

B. Bewertung der physiologischen Wirksamkeit

Verwendete Abkürzungen:

AMP Adenosinmonophosphat

ATP Adenosintriphosphat

BHI Medium Brain heart infusion medium

CoA Coenzym A

DMSO Dimethylsulfoxid

DTT Dithiothreitol

EDTA Ethylendiamintetraessigsäure

KCl Kaliumchlorid

KH₂PO₄ Kaliumdihydrogenphosphat

MgSO₄ Magnesiumsulfat

MHK Minimale Hemmkonzentration

MTP Mikrotiterplatte
NaCl Natriumchlorid

Na₂HPO₄ Dinatriumhydrogenphosphat

NH₄Cl Ammoniumchlorid NTP Nukleotidtriphosphat

PBS Phosphat Buffered Saline

PCR Polymerase Chain Reaction

PEG Polyethylenglykol
PEP Phosphoenolpyruvat

Tris Tris[hydroxymethyl]aminomethan

Die in vitro-Wirkung der erfindungsgemäßen Verbindungen kann in folgenden Assays gezeigt werden:

In vitro Transkription-Translation mit E. coli Extrakten

Zur Herstellung eines S30-Extraktes werden logarithmisch wachsende *Escherichia coli* MRE 600 (M. Müller; University Freiburg) geerntet, gewaschen und wie beschrieben für den *in vitro* Transkriptions-Translations-Test eingesetzt (Müller, M. and Blobel, G. Proc Natl Acad Sci U S A (1984) 81, pp.7421-7425).

Dem Reaktionsmix des *in vitro* Transkriptions-Translations-Tests werden zusätzlich 1 μl cAMP (11.25 mg/ml) je 50 μl Reaktionsmix zugegeben. Der Testansatz beträgt 105 μl, wobei 5 μl der zu testenden Substanz in 5%igem DMSO vorgelegt werden. Als Transkriptionsmatrize werden 1 μg/100μl Ansatz des Plasmides pBESTLuc (Promega, Deutschland) verwendet. Nach Inkubation für 60 min bei 30°C werden 50 μl Luziferinlösung (20 mM Tricine, 2.67 mM MgSO₄, 0.1 mM EDTA, 33.3 mM DTT pH 7.8, 270 μM CoA, 470 μM Luziferin, 530 μM ATP) zugegeben und die entstehende Biolumineszenz für 1 Minute in einem Luminometer gemessen. Als IC₅₀ wird die Konzentration eines Inhibitors angegeben, die zu einer 50%igen Inhibition der Translation von Firefly Luziferase führt.

10 In vitro Transkription-Translation mit S. aureus Extrakten

Konstruktion eines S. aureus Luziferase Reporterplasmids

Zur Konstruktion eines Reporterplasmids, welches in einem in vitro Transkriptions-Translations-Assay aus S. aureus verwendet werden kann, wird das Plasmid pBESTluc (Promega Corporation, USA) verwendet. Der in diesem Plasmid vor der Firefly Luziferase vorhandene E. coli tac Promoter wird gegen den capA1 Promoter mit entsprechender Shine-Dalgarno Sequence aus S. aureus werden **CAPFor** ausgetauscht. Dazu die Primer 5'-CGGCC-AAGAAAGGAAAATAGGAGGTTTATATGGAAGACGCCA-3' und **CAPRev** 5'-GTCATCGTCGGGAAGACCTG-3' verwendet. Der Primer CAPFor enthält den capA1 Promotor, die Ribosomenbindestelle und die 5'-Region des Luziferase Gens. Nach PCR unter Verwendung von pBESTluc als Template kann ein PCR-Produkt isoliert werden, welches das Firefly Luziferase Gen mit dem fusionierten capAI Promotor enthält. Dieses wird nach einer Restriktion mit ClaI und HindIII in den ebenfalls mit ClaI und HindIII verdauten Vektor pBESTluc ligiert. Das entstandene Plasmid pla kann in E. coli repliziert werden und als Template im S. aureus in vitro Transkriptions-Translations-Test verwendet werden.

Herstellung von S30 Extrakten aus S. aureus

Sechs Liter BHI Medium werden mit einer 250 ml Übernachtkultur eines S. aureus Stammes inokuliert und bei 37°C bis zu einer OD600nm von 2-4 wachsen gelassen. Die Zellen werden durch Zentrifugation geerntet und in 500 ml kaltem Puffer A (10 mM Tris-acetat, pH 8.0, 14 mM Magnesiumacetat, 1 mM DTT, 1M KCl) gewaschen. Nach erneutem Abzentrifugieren werden die Zellen in 250 ml kaltem Puffer A mit 50 mM KCl gewaschen und die erhaltenen Pellets bei --20°C für 60 min eingefroren. Die Pellets werden in 30 bis 60 min auf Eis aufgetaut und bis zu einem Gesamtvolumen von 99 ml in Puffer B (10 mM Tris-acetat, pH 8.0, 20 mM Magnesiumacetat, 1 mM

15

20

25

DTT, 50 mM KCl) aufgenommen. Je 1.5 ml Lysostaphin (0.8 mg/ml) in Puffer B werden in 3 vorgekühlte Zentrifugenbecher vorgelegt und mit je 33 ml der Zellsuspension vermischt. Die Proben werden für 45 bis 60 min bei 37°C unter gelegentlichem Schütteln inkubiert, bevor 150 µl einer 0.5M DTT Lösung zugesetzt werden. Die lysierten Zellen werden bei 30.000 x g 30 min bei 4°C abzentrifugiert. Das Zellpellet wird nach Aufnahme in Puffer B unter den gleichen Bedingungen nochmals zentrifugiert und die gesammelten Überstände werden vereinigt. Die Überstände werden nochmals unter gleichen Bedingungen zentrifugiert und zu den oberen 2/3 des Überstandes werden 0.25 Volumen Puffer C (670 mM Tris-acetat, pH 8.0, 20 mM Magnesiumacetat, 7 mM Na₃-Phosphoenolpyruvat, 7 mM DTT, 5.5 mM ATP, 70 µM Aminosäuren (complete von Promega), 75 μg Pyruvatkinase (Sigma, Deutschland))/ml gegeben. Die Proben werden für 30 min bei 37°C inkubiert. Die Überstände werden über Nacht bei 4°C gegen 21 Dialysepuffer (10 mM Tris-acetat, pH 8.0, 14 mM Magnesiumacetat, 1 mM DTT, 60 mM Kaliumacetat) mit einem Pufferwechsel in einem Dialyseschlauch mit 3500 Da Ausschluss dialysiert. Das Dialysat wird auf eine Proteinkonzentration von etwa 10 mg/ml konzentriert, indem der Dialyseschlauch mit kaltem PEG 8000 Pulver (Sigma, Deutschland) bei 4°C bedeckt wird. Die S30 Extrakte können aliquotiert bei -70°C gelagert werden.

Bestimmung der IC₅₀ im S. aureus in vitro Transcriptions-Translations-Assay

Die Inhibition der Proteinbiosynthese der Verbindungen kann in einem in vitro Transkriptions-Translations-Assay gezeigt werden. Der Assay beruht auf der zellfreien Transkription und Translation von Firefly Luziferase unter Verwendung des Reporterplasmids pla als Template und aus S. aureus gewonnenen zellfreien S30 Extrakten. Die Aktivität der entstandenen Luziferase kann durch Lumineszenzmessung nachgewiesen werden.

Die Menge an einzusetzenden S30 Extrakt bzw. Plasmid p1a muss für jede Präparation erneut ausgetestet werden, um eine optimale Konzentration im Test zu gewährleisten. 3 μl der zu testenden Substanz gelöst in 5 % DMSO werden in eine MTP vorgelegt. Anschließend werden 10 μl einer geeignet konzentrierten Plasmidlösung p1a zugegeben. Anschließend werden 46 μl eines Gemisches aus 23 μl Premix (500 mM Kaliumacetat, 87.5 mM Tris-acetat, pH 8.0, 67.5 mM Ammoniumacetat, 5 mM DTT, 50 μg Folsäure/ml, 87.5 mg PEG 8000/ml, 5 mM ATP, 1.25 mM je NTP, 20 μM je Aminosäure, 50 mM PEP (Na₃-Salz), 2.5 mM cAMP, 250 μg je *E. coli* tRNA/ml) und 23 μl einer geeigneten Menge *S. aureus* S30 Extrakt zugegeben und vermischt. Nach Inkubation für 60 min bei 30°C werden 50 μl Luziferinlösung (20 mM Tricine, 2.67 mM MgSO₄, 0.1 mM EDTA, 33.3 mM DTT pH 7.8, 270 μM CoA, 470 μM Luziferin, 530 μM ATP) und die entstehende Biolumineszenz für 1 min in einem Luminometer gemessen. Als IC₅₀ wird die Konzentration eines

5

10

15

20

25

- 149 -

Inhibitors angegeben, die zu einer 50 %igen Inhibition der Translation von Firefly Luziferase führt.

Bestimmung der Minimalen Hemmkonzentration (MHK)

Die minimale Hemmkonzentration (MHK) ist die minimale Konzentration eines Antibiotikums, mit der ein Testkeim in seinem Wachstum über 18-24 h inhibiert wird. Die Hemmstoffkonzentration kann dabei nach mikrobiologischen Standardverfahren bestimmt werden (siehe z.B. The National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-fifth edition. NCCLS document M7-A5 [ISBN 1-56238-394-9], NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2000). Die MHK der erfindungsgemäßen Verbindungen wird im Flüssigdilutionstest im 96er-Mikrotiter-Platten-Maßstab bestimmt. Die Bakterienkeime werden in einem Minimalmedium (18.5 mM Na₂HPO₄, 5.7 mM KH₂PO₄, 9.3 mM NH₄Cl, 2.8 mM MgSO₄, 17.1 mM NaCl, 0.033 µg/ml Thiaminhydrochlorid, 1.2 µg/ml Nicotinsäure, 0.003 µg/ml Biotin, 1% Glucose, 25 µg/ml von jeder proteinogenen Aminosäure mit Ausnahme von Phenylalanin; [H.-P. Kroll; unveröffentlicht]) unter Zusatz von 0.4 % BH-Bouillon kultiviert (Testmedium). Im Fall von Enterococcus faecium L4001 wird dem Testmedium hitzeinaktiviertes fötales Kälberserum (FCS; GibcoBRL, Deutschland) in einer Endkonzentration von 10% zugesetzt. Übernachtkulturen der Testkeime werden auf eine OD₅₇₈ von 0.001 (im Falle der Enterokokken auf 0.01) in frisches Testmedium verdünnt und 1:1 mit Verdünnungen der Testsubstanzen (Verdünnungsstufen 1:2) in Testmedium inkubiert (200 µl Endvolumen). Die Kulturen werden bei 37°C für 18-24 Stunden inkubiert; Enterokokken in Gegenwart von 5 % CO₂.

Die jeweils niedrigste Substanzkonzentration, bei der kein sichtbares Bakterienwachstum mehr auftrat, wird als MHK definiert. Die MHK-Werte in µM einiger erfindungsgemäßer Verbindungen gegenüber einer Reihe von Testkeimen sind in der nachstehenden Tabelle beispielhaft aufgeführt. Die Verbindungen zeigen eine abgestufte antibakterielle Wirkung gegen die meisten der Testkeime.

5

10

15

20

Tabelle A (mit Vergleichsbeispiel Biphenomycin B)

Beispiele Ni 1	MHK 5 Scaineus 193	MHK F	MHK Exfrecium E4000	IC ₅₀ S. aureus 189 Translation
9	0.35	0.7	11	0.3
12	0.16	0.6	20	0.8
36	0.4	0.8	>25	0.36
Biphenomycin B	0.1	>25	>25	1.5

Alle Konzentrationsangaben in µM.

Alternative Bestimmungsmethode der Minimalen Hemmkonzentration (MHK)

Die minimale Hemmkonzentration (MHK) ist die minimale Konzentration eines Antibiotikums, mit der ein Testkeim in seinem Wachstum über 18-24 h inhibiert wird. Die Hemmstoff-konzentration kann dabei nach mikrobiologischen Standardverfahren mit modifiziertem Medium im Rahmen eines Agardilutionstests bestimmt werden (siehe z.B. The National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-fifth edition. NCCLS document M7-A5 [ISBN 1-56238-394-9]. NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898 USA, 2000). Die Bakterienkeime werden auf 1.5%igen Agarplatten kultiviert, die 20% defibriniertes Pferdeblut enthalten. Die Testkeime, die über Nacht auf Columbia-Blutagarplatten (Becton-Dickinson) inkubiert werden, werden in PBS verdünnt, auf eine Keimzahl von ca. 5x10⁵ Keime/ml eingestellt und auf Testplatten getropft (1-3 μl). Die Testsubstanzen enthalten unterschiedliche Verdünnungen der Testsubstanzen (Verdünnungsstufen 1:2). Die Kulturen werden bei 37°C für 18-24 Stunden in Gegenwart von 5% CO2 inkubiert.

Die jeweils niedrigste Substanzkonzentration, bei der kein sichtbares Bakterienwachstum mehr auftritt, wird als MHK definiert und in µg/ml angegeben.

5

10

Tabelle B (mit Vergleichsbeispiel Biphenomycin B)

BSP_ENT_LE	MHK Stairens 133		MHK E-faecium 124001	IC ₅₀ = Seamens 183 Translation
9	2	4	16	0.3
12	1	1	16	0.8
36	1	2	8	0.36
42	2	2	32	0.08
43	2	4	>32	0.9
Biphenomycin B	<0.03	>32	0.5	1.5

Konzentrationsangaben: MHK in μg/ml; IC₅₀ in μM.

Systemische Infektion mit S. aureus 133

Die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von bakteriellen Infektionen kann in verschiedenen Tiermodellen gezeigt werden. Dazu werden die Tiere im allgemeinen mit einem geeigneten virulenten Keim infiziert und anschließend mit der zu testenden Verbindung, die in einer an das jeweilige Therapiemodell angepassten Formulierung vorliegt, behandelt. Speziell kann die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von bakteriellen Infektionen in einem Sepsismodell an Mäusen nach Infektion mit S. aureus demonstriert werden.

Dazu werden S. aureus 133 Zellen über Nacht in BH-Bouillon (Oxoid, Deutschland) angezüchtet. Die Übernachtkultur wurde 1:100 in frische BH-Bouillon verdünnt und für 3 Stunden hochgedreht. Die in der logarithmischen Wachstumsphase befindlichen Bakterien werden abzentrifugiert und zweimal mit gepufferter, physiologischer Kochsalzlösung gewaschen. Danach wird am Photometer (Dr. Lange LP 2W) eine Zellsuspension in Kochsalzlösung mit einer Extinktion von 50 Einheiten eingestellt. Nach einem Verdünnungsschritt (1:15) wird diese Suspension 1:1 mit einer 10 %-igen Mucinsuspension gemischt. Von dieser Infektionslösung wird 0.2 ml/20 g Maus i.p. appliziert. Dies entspricht einer Zellzahl von etwa 1-2 x 10⁶ Keimen/Maus. Die i.v.-Therapie erfolgt 30 Minuten nach der Infektion. Für den Infektionsversuch werden weibliche CFW1-Mäuse verwendet. Das Überleben der Tiere wird über 6 Tage protokolliert. Das Tiermodell ist so eingestellt, dass unbehandelte Tiere innerhalb von 24 h nach der Infektion versterben.

PCT/EP2004/013688

Bestimmung der Spontanresistenzfrequenzen gegen S. aureus

Die Spontanresistenzraten der erfindungsgemäßen Verbindungen werden wie folgt bestimmt: die Bakterienkeime werden in 30 ml eines Minimalmediums (18.5 mM Na₂HPO₄, 5.7 mM KH₂PO₄, 9.3 mM NH₄Cl, 2.8 mM MgSO₄, 17.1 mM NaCl, 0.033 μg/ml Thiaminhydrochlorid, 1.2 μg/ml Nicotinsäure, 0.003 μg/ml Biotin, 1 % Glucose, 25 μg/ml von jeder proteinogenen Aminosäure unter Zusatz von 0,4% BH Bouillon) bei 37°C über Nacht kultiviert, 10 min bei 6.000xg abzentrifugiert und in 2 ml phosphat-gepufferter physiologischer Natriumchlorid-Lösung resuspendiert (ca. 2 x 10° Keime/ml). 100 μl dieser Zellsuspension bzw. 1:10 und 1:100 Verdünnungen werden auf vorgetrockneten Agarplatten (1.5 % Agar, 20 % defibriniertes Pferdeblut bzw. 1.5 % Agar, 20 % Rinderserum in 1/10 Müller-Hinton-Medium verdünnt mit PBS), welche die zu testende erfindungsgemäße Verbindung in einer Konzentration entsprechend 5xMHK bzw. 10xMHK enthalten, ausplattiert und 48 h bei 37°C bebrütet. Die entstehenden Kolonien (cfu) werden ausgezählt.

Tabelle C

5

10

15

20

25

BspNr. (Konzentration)	12 (5 x MHK)	A 22 - \$6 3.	Bipehnomycin B
S. aureus 133	1.3 x 10 ⁻¹⁰	5.3 x 10 ⁻¹⁰	1.7 x 10 ⁻⁶

Die Spontanresistenzrate für Beispiel 42 wird zusätzlich wie folgt bestimmt: die Bakterienkeime werden auf Columbia-Blut-Agarplatten bei 37°C mikroaerophil über Nacht kultiviert und in phosphat-gepufferter physiologischer NaCl-Lösung resuspendiert (ca. 1.5 x 10¹⁰ Keime/ml). 50 μl dieser Zellsuspension werden auf vorgetrockneten Agarplatten (1.5% Agar, 20% defibriniertes Pferdeblut), welche die zu testende erfindungsgemäße Verbindung in einer Konzentration entsprechend 10xMHK enthält, ausplattiert und 48 h bei 37°C bebrütet. Die entstehenden Kolonien (cfu) werden ausgezählt. Für Beispiel 42 wurde eine Spontanresistenzrate von 6.7 x 10⁻¹¹ für *S. aureus* 133 ermittelt.

Isolierung der Biphenomycin-resistenten S. aureus Stämme RN4220BiR und T17

Der S. aureus Stamm RN4220Bi^R wird in vitro isoliert. Dazu werden jeweils 100 μl einer S. aureus RN4220 Zellsuspension (ca. 1.2x10⁸ cfu/ml) auf einer antibiotikafreien Agarplatte (18.5 mM Na₂HPO₄, 5.7 mM KH₂PO₄, 9.3 mM NH₄Cl, 2.8 mM MgSO₄, 17.1 mM NaCl, 0.033 μg/ml Thiaminhydrochlorid, 1.2 μg/ml Nicotinsäure, 0.003 μg/ml Biotin, 1 % Glucose, 25 μg/ml von jeder proteinogenen Aminosäure unter Zusatz von 0.4 % BH-Bouillon und 1% Agarose) und einer A-

garplatte, die 2 μg/ml Biphenomycin B (10xMHK) enthält, ausplattiert und über Nacht bei 37°C bebrütet. Während auf der antibiotikafreien Platte ca. 1x10⁷ Zellen wachsen, wachsen auf der antibiotikahaltigen Platte ca. 100 Kolonien, entsprechend einer Resistenzfrequenz von 1x10⁻⁵. Einige der auf der antibiotikahaltigen Platte gewachsenen Kolonien werden auf MHK gegen Biphenomycin B getestet. Eine Kolonie mit einer MHK > 50 μM wird zur weiteren Verwendung ausgewählt und der Stamm mit RN4220Bi^R bezeichnet.

Der S. aureus Stamm T17 wird in vivo isoliert. CFW1-Mäuse werden mit 4x10⁷ S. aureus 133 - Zellen pro Maus intraperitoneal infiziert. 0.5 Std. nach der Infektion werden die Tiere mit 50 mg/kg Biphenomycin B intravenös behandelt. Den überlebenden Tieren werden am Tag 3 nach der Infektion die Nieren entnommen. Nach dem Homogenisieren der Organe werden die Homogenate, wie bei RN4220Bi^R beschrieben, auf antibiotikafreien und antibiotikahaltigen Agarplatten, ausplattiert und über Nacht bei 37°C bebrütet. Etwa die Hälfte der aus der Niere isolierten Kolonien zeigen ein Wachstum auf den antibiotikahaltigen Platten (2.2x10⁶ Kolonien), was die Anreicherung von Biphenomycin B resistenten S. aureus Zellen in der Niere der behandelten Tiere belegt. Ca. 20 dieser Kolonien werden auf MHK gegen Biphenomycin B getestet und eine Kolonie mit einer MHK > 50 μM wird zur Weiterkultivierung ausgewählt und der Stamm mit T17 bezeichnet.

5

10

C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

Intravenös applizierbare Lösung:

5 Zusammensetzung:

1 mg der Verbindung von Beispiel 1, 15 g Polyethylenglykol 400 und 250 g Wasser für Injektionszwecke.

Herstellung:

Die erfindungsgemäße Verbindung wird zusammen mit Polyethylenglykol 400 in dem Wasser unter Rühren gelöst. Die Lösung wird sterilfiltriert (Porendurchmesser 0,22 μm) und unter aseptischen Bedingungen in hitzesterilisierte Infusionsflaschen abgefüllt. Diese werden mit Infusionsstopfen und Bördelkappen verschlossen.

<u>Patentansprüche</u>

1. Verbindung der Formel

HO

$$R^5$$
 R^4
 R^3
 R^3
 R^3
 R^3
 R^3
 R^3

worin

R¹ gleich Alkyl ist, wobei Alkyl substituiert ist mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, 5- bis 7-gliedriges Heterocyclyl, 5- bis 7-gliedriges Heteroaryl, (C₁-C₆)-Alkylaminocarbonyl, Guanidino und Amidino,

10

5

worin Heterocyclyl und Heteroaryl substituiert sein können mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino und (C₁-C₆)-Alkyl,

- R² gleich Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₇)-Cycloalkyl ist,
- R³ gleich Hydroxy oder -NR⁶R⁷ ist,

15 R⁴

gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₆)-Alkylamino, Amino oder mono-(C₁-C₄)-Alkylamino substituiertes mono-(C₂-C₆)-Alkylaminocarbonyl oder Amino oder mono-(C₁-C₄)-Alkylamino substituiertes (C₁-C₆)-Alkylcarbonylamino ist,

20

R⁵ gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₆)-Alkylamino, Amino oder mono-(C₁-C₄)-Alkylamino substituiertes mono-(C₂-C₆)-Alkylaminocarbonyl oder Amino oder mono-(C₁-C₄)-Alkylamino substituiertes (C₁-C₆)-Alkylcarbonylamino ist,

5

10

15

20

wobei R⁵ gleich Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Trifluormethyl, Trifluormethoxy, (C₁-C₄)-Alkyl, (C₁-C₄)-Alkoxy, (C₁-C₆)-Alkylamino, Amino oder mono-(C₁-C₄)-Alkylamino substituiertes mono-(C₂-C₆)-Alkylaminocarbonyl oder Amino oder mono-(C₁-C₄)-Alkylamino substituiertes (C₁-C₆)-Alkylamino ist, wenn R⁴ gleich Hydroxy ist,

R⁶ gleich Wasserstoff, (C₁-C₆)-Alkyl, (C₃-C₇)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl, (C₆-C₁₀)-Aryl oder 5- bis 7-gliedriges Heteroaryl ist,

wobei Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro, Cyano, Trifluormethyl, Trifluormethoxy, (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino, (C₃-C₇)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl, (C₆-C₁₀)-Aryl, 5- bis 7-gliedriges Heteroaryl, (C₁-C₆)-Alkylaminocarbonyl, (C₁-C₆)-Alkylsulfonylamino und (C₆-C₁₀)-Arylsulfonylamino,

worin Alkyl, Alkylamino, Cycloalkyl, Heterocyclyl, Aryl, Heteroaryl, Alkylaminocarbonyl, Alkylsulfonylamino und Arylsulfonylamino substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl und Hydroxycarbonyl,

R⁷ gleich Wasserstoff, (C₁-C₆)-Alkyl oder (C₃-C₇)-Cycloalkyl ist,

wobei Alkyl substituiert sein kann mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy und (C₁-C₆)-Alkylamino,

25 oder

R⁶ und R⁷ zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein Piperidinyl, Morpholinyl, Piperazinyl oder Pyrrolidinyl bilden, wobei Piperidinyl, Morpholinyl, Piperazinyl und Pyrrolidinyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, gegebenenfalls Amino oder Hydroxy substituierten (C₁-C₆)-Alkyl, (C₁-C₆)-Alkoxy, (C₁-C₆)-Alkylamino und (C₁-C₆)-Alkoxycarbonyl,

5

oder eines ihrer Salze, ihrer Solvate oder der Solvate ihrer Salze.

- 2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, dass
 - R¹ gleich Aminomethyl, 2-Aminoethyl, 3-Aminoprop-1-yl, 4-Aminobut-1-yl, Hydroxymethyl, 2-Hydroxy-ethyl, Aminocarbonylmethyl, 2-Aminocarbonylethyl, 2-Hydroxycarbonylethyl, 3-Guanidinoprop-1-yl, 3-Amino-2-hydroxyprop-1-yl oder 4-Amino-3-hydroxybut-1-yl ist,
 - R² gleich Wasserstoff, Methyl, Ethyl oder Cyclopropyl ist,
 - R³ gleich Hydroxy oder -NR⁶R⁷ ist,
- R⁴ gleich Wasserstoff, Halogen, Amino, Hydroxy, Hydroxycarbonyl, Aminocarbonyl,
 Nitro oder Methyl ist,
 - R⁵ gleich Wasserstoff, Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl,
 Nitro oder Methyl ist,

wobei R⁵ gleich Halogen, Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, Nitro oder Methyl ist, wenn R⁴ gleich Hydroxy ist,

15 R⁶ gleich Wasserstoff, (C₁-C₆)-Alkyl, (C₅-C₆)-Cycloalkyl, 5- bis 7-gliedriges Heterocyclyl oder Phenyl ist,

wobei Alkyl, Cycloalkyl, Heterocyclyl und Phenyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl, Hydroxycarbonyl, (C₁-C₄)-Alkyl, (C₁-C₆)-Alkylamino, 5- bis 7-gliedriges Heterocyclyl, Phenyl, 5- oder 6-gliedriges Heteroaryl, (C₁-C₆)-Alkoxycarbonyl und (C₁-C₆)-Alkylaminocarbonyl,

worin Alkyl, Alkylamino, Heterocyclyl, Aryl, Heteroaryl und Alkylaminocarbonyl substituiert sein können mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, Aminocarbonyl und Hydroxycarbonyl,

R⁷ gleich Wasserstoff oder (C₁-C₄)-Alkyl ist,

25

wobei Alkyl substituiert sein kann mit 1 bis 2 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy und (C_1-C_6) -Alkylamino,

oder

- R⁶ und R⁷ zusammen mit dem Stickstoffatom, an das sie gebunden sind, ein Piperazinyl bilden, wobei Piperazinyl substituiert sein kann mit 1 bis 3 Substituenten, wobei die Substituenten unabhängig voneinander ausgewählt werden aus der Gruppe, bestehend aus Amino, Hydroxy, gegebenenfalls Amino substituiertem (C₁-C₆)-Alkyl, und (C₁-C₆)-Alkylamino.
- 10 3. Verbindung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
 - R¹ gleich 2-Aminoethyl, 3-Aminoprop-1-yl, 4-Aminobut-1-yl oder 3-Amino-2hydroxyprop-1-yl ist,
 - R² gleich Wasserstoff, Methyl oder Ethyl ist,
 - R³ gleich -NR⁶R⁷ ist,
- 15 R⁴ gleich Wasserstoff, Fluor, Chlor, Amino, Hydroxy oder Methyl ist,
 - R⁵ gleich Wasserstoff, Fluor oder Hydroxy ist,
 wobei R⁵ gleich Fluor ist, wenn R⁴ gleich Hydroxy ist,
 - R⁶ gleich eine Gruppe der Formel

ist,

wobei

R⁸ gleich Wasserstoff oder Hydroxy ist,

R⁹ und R¹⁴ unabhängig voneinander Wasserstoff, Methyl oder eine Gruppe der Formel

sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

R¹⁵ gleich Wasserstoff oder *-(CH₂)_fNH₂ ist,

worin

f eine Zahl 1, 2 oder 3 ist,

d eine Zahl 0, 1, 2 oder 3 ist

15 und

5

5

10

15

e eine Zahl 1, 2 oder 3 ist,

R¹⁰ gleich Wasserstoff oder Aminoethyl ist,

oder

R⁹ und R¹⁰ bilden zusammen mit dem Stickstoffatom an das sie gebunden sind einen Piperazin-Ring,

R¹² und R¹³ unabhängig voneinander eine Gruppe der Formel *-(CH₂)_{Z1}-OH oder *-(CH₂)_{Z2}-NH₂ sind,

worin

* die Anknüpfstelle an das Stickstoffatom ist,

Z1 und Z2 unabhängig voneinander eine Zahl 1, 2, 3 oder 4 sind,

k und t unabhängig voneinander eine Zahl 0 oder 1 sind,

1, w und y unabhängig voneinander eine Zahl 1, 2, 3 oder 4 ist,

m, r, s und v unabhängig voneinander eine Zahl 1 oder 2 sind,

n, o, p und q unabhängig voneinander eine Zahl 0, 1 oder 2 sind,

u eine Zahl 0, 1, 2 oder 3 ist,

w oder y
unabhängig voneinander bei w oder y gleich 3 eine HydroxyGruppe am mittleren Kohlenstoffatom der Dreierkette tragen kann,

* die Anknüpfstelle an das Stickstoffatom ist,

R⁷ gleich Wasserstoff ist.

20 4. Verbindung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass

R¹ gleich 3-Aminoprop-1-yl oder 3-Amino-2-hydroxyprop-1-yl ist,

R² gleich Wasserstoff oder Methyl ist,

R³ gleich -NR⁶R⁷ ist,

R⁴ gleich Wasserstoff, Fluor, Chlor oder Methyl ist,

R⁵ gleich Wasserstoff ist,

R⁶ gleich eine Gruppe der Formel

5 ist,

wobei

- * gleich die Anknüpfstelle an das Stickstoffatom ist,
- R⁷ gleich Wasserstoff ist.
- Verfahren zur Herstellung einer Verbindung der Formel (I) nach Anspruch 1, wobei eine
 Verbindung der Formel (I) eine Verbindung der Formel (Ia) oder (Ib) ist, oder eines ihrer
 Salze, ihrer Solvate oder der Solvate ihrer Salze, dadurch gekennzeichnet, dass

[A] eine Verbindung der Formel

$$R^{5}$$
 R^{4}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{6}
 R^{7}
 R^{7

worin R¹, R², R⁴ und R⁵ die in Anspruch 1 angegebene Bedeutung haben und boc gleich tert-Butoxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit einer Verbindung der Formel

$$HNR^6R^7$$
 (III),

worin R⁶ und R⁷ die oben angegebene Bedeutung haben,

und anschließend mit einer Säure zu einer Verbindung der Formel

$$R^{5}$$
 R^{7}
 R^{6}
 R^{1}
 R^{1}
 R^{2}
 R^{6}
 R^{6}
 R^{6}

worin R1, R2, R4 und R5 die oben angegebene Bedeutung haben,

ođer

5

[B] eine Verbindung der Formel

BnO
$$\mathbb{R}^5$$
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5

worin R¹, R², R⁴ und R⁵ die in Anspruch 1 angegebene Bedeutung haben und Z gleich Benzyloxycarbonyl ist,

in einem zweistufigen Verfahren zunächst in Gegenwart von einem oder mehreren Dehydratisierungsreagenzien mit Verbindungen der Formel (III) und anschließend mit einer Säure oder durch Hydrogenolyse zu einer Verbindung der Formel (Ia),

oder

[C] eine Verbindung der Formel (IV) mit einer Säure oder durch Hydrogenolyse zu einer Verbindung der Formel

$$R^{5}$$
 R^{4}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5

worin R1, R2, R4 und R5 die in Anspruch 1 angegebene Bedeutung haben,

oder

[D] eine Verbindung der Formel

BnO
$$\mathbb{R}^5$$
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^4
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5
 \mathbb{R}^5

worin R^1 , R^2 , R^4 und R^5 die in Anspruch 1 angegebene Bedeutung haben, und

R¹¹ gleich Benzyl, Methyl oder Ethyl ist,

mit einer Säure oder durch Hydrogenolyse, gegebenenfalls durch anschließende Umsetzung mit einer Base zur Verseifung des Methyl- oder Ethylesters, zu einer Verbindung der Formel (Ib), umgesetzt wird.

- 6. Verfahren zur Herstellung einer Verbindung der Formel (I) nach Anspruch 1 oder eines ihrer Solvate, dadurch gekennzeichnet, dass ein Salz der Verbindung oder ein Solvat eines Salzes der Verbindung durch Chromatographie unter Zusatz einer Base in die Verbindung überführt wird.
- Verbindung nach einem der Ansprüche 1 bis 4 zur Behandlung und/oder Prophylaxe von Krankheiten.

BNSDOCID: <WO _____2005058943A1_f >

5

- 8. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 4 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Krankheiten.
- 9. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 4 zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von bakteriellen Erkrankungen.
- 5 10. Arzneimittel enthaltend mindestens eine Verbindung nach einem der Ansprüche 1 bis 4 in Kombination mit mindestens einem inerten, nichttoxischen, pharmazeutisch geeigneten Hilfsstoff.
 - 11. Arzneimittel nach Anspruch 10 zur Behandlung und/oder Prophylaxe von bakteriellen Infektionen.
- 10 12. Verfahren zur Bekämpfung von bakteriellen Infektionen in Menschen und Tieren durch Verabreichung einer antibakteriell wirksamen Menge mindestens einer Verbindung nach einem der Ansprüche 1 bis 4 oder eines Arzneimittels nach Anspruch 10 oder 11.

T/EP2004/013688

a. classification of subject matter IPC 7 CO7K5/08 CO7K C07K5/10 C07K7/06 A61K38/04 A61P31/04 According to International Patent Classification (3PC) or to both national classification and 4PC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K A61K A61P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS, WPI Data, EMBASE, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ^e Relevant to claim No. χ "Amino acids and SCHMIDT U ET AL: 1,2,7-12 peptides. 84. Synthesis of biologically active cyclopeptides. 24. Total synthesis of the biphenomycins. III. Synthesis of biphenomycin B" SYNTHESIS, GEORG THIEME VERLAG. STUTTGART, DE, no. 10, October 1992 (1992-10), pages 1025-1030, XP001155274 ISSN: 0039-7881 cited in the application page 1025, left-hand column, line 1 - line 11; compound 1B Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention *E* earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to "L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-*O* document reterring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 14 January 2005 21/01/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL ~ 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Döpfer, K-P Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (January 2004)

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category °	Cilation of document, with indication, where appropriate, of the relevant passages	Helevani to claim No.
A	KRENITSKY P J ET AL: "Synthesis of the (S,S,S)-diastereomer of the 15-membered biaryl ring system of RP 66453" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 44, no. 21, 19 May 2003 (2003-05-19), pages 4019-4022, XP004423025 ISSN: 0040-4039 Seite 4021, Reaktionsschema 3 compound 1	1-12
Х	Seite 4019, rechte Spalte: Verbindung Biphenomycin C	1,2
Ρ,Χ	WO 03/106480 A (BAYER HEALTHCARE AG; CANCHO-GRANDE YOLANDA (DE); RADDATZ SIEGFRIED (D) 24 December 2003 (2003-12-24) the whole document	1,2,4-12
A	SCHMIDT U ET AL: "Amino acids and peptides. 88. Synthesis of biologically active cyclopeptides. 26. Total synthesis of the biphenomycins. V. Synthesis of biphenomycin A" SYNTHESIS, GEORG THIEME VERLAG. STUTTGART, DE, no. 12, December 1992 (1992-12), pages 1248-1254, XP001155271 ISSN: 0039-7881 cited in the application the whole document	1-12
A	CHANG C C ET AL: "LL-AF283 antibiotics, cyclic biphenyl peptides" JOURNAL OF ANTIBIOTICS, JAPAN ANTIBIOTICS RESEARCH ASSOCIATION. TOKYO, JP, vol. 44, no. 6, June 1991 (1991-06), pages 674-677, XP009018534 ISSN: 0021-8820 the whole document	1-12

International application No. PCT/EP2004/013688

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	-
This inte	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
	Although claim 12 relates to a method for treatment of the human or animal body, the search was carried out and was based on the stated effects of the compound or composition.	
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3.	Claims Nos.:	
	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This Inte	mational Searching Authority found multiple inventions in this international application, as follows:	***************************************

1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
		-
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
		-
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Information on patent family members

International Application No PT/EP2004/013688

WO 03106480 A	24-12-2003	DE WO	10226921 A1 03106480 A1	24-12-2003 24-12-2003
wo 03106480 A	24-12-2003	MO DF	03106480 A1	24-12-2003
			ست ۱۹۵۰ افغار جب عبد سور مدد مدد. مدد مدد بنیم عاده مدد مدد سور منید پ	

Form PCT/ISA/210 (patent family annex) (January 2004)

a. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C07K5/08 C07K5/10 C07K7/06 A61K38/04 A61P31/04 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07K A61K A61P Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evit, verwendete Suchbegriffe) EPO-Internal, BIOSIS, WPI Data, EMBASE, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategorie* Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Х SCHMIDT U ET AL: "Amino acids and 1,2,7-12peptides. 84. Synthesis of biologically active cyclopeptides. 24. Total synthesis of the biphenomycins. III. Synthesis of biphenomycin B" SYNTHESIS, GEORG THIEME VERLAG. STUTTGART, DE, Nr. 10, Oktober 1992 (1992-10), Seiten 1025-1030, XP001155274 ISSN: 0039-7881 in der Anmeldung erwähnt Seite 1025, linke Spalte, Zeile 1 - Zeile 11; Verbindung 1B Χ Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen Besondere Kategorien von angegebenen Veröffentlichungen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist *E* ätteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf *L* Veröffentlichung, die geeignet ist, einen Priorilätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden erfinderischer Tätigkeit bezuhend betrachtet werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erlindung soll oder die aus einem anderen besonderen Grund angegeben ist (wie kann nicht als auf erlinderischer Tätigkeit berühend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen ausgeführt) ausgeumn)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationaten Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 14. Januar 2005 21/01/2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NI. - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Döpfer, K-P Fax: (+31-70) 340-3016

Formblatt PCT//SA/210 (Blatt 2) (Januar 2004)

Kalegorie*	Bezeichnung der Verötfentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A X	KRENITSKY P J ET AL: "Synthesis of the (S,S,S)-diastereomer of the 15-membered biaryl ring system of RP 66453" TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, Bd. 44, Nr. 21, 19. Mai 2003 (2003-05-19), Seiten 4019-4022, XP004423025 ISSN: 0040-4039 Seite 4021, Reaktionsschema 3 Verbindung 1 Seite 4019, rechte Spalte: Verbindung Biphenomycin C	1-12
Ρ,Χ	WO 03/106480 A (BAYER HEALTHCARE AG; CANCHO-GRANDE YOLANDA (DE); RADDATZ SIEGFRIED (D) 24. Dezember 2003 (2003-12-24) das ganze Dokument	1,2,4-12
A	SCHMIDT U ET AL: "Amino acids and peptides. 88. Synthesis of biologically active cyclopeptides. 26. Total synthesis of the biphenomycins. V. Synthesis of biphenomycin A" SYNTHESIS, GEORG THIEME VERLAG. STUTTGART, DE, Nr. 12, Dezember 1992 (1992-12), Seiten 1248-1254, XP001155271 ISSN: 0039-7881 in der Anmeldung erwähnt das ganze Dokument	1-12
A	CHANG C C ET AL: "LL-AF283 antibiotics, cyclic biphenyl peptides" JOURNAL OF ANTIBIOTICS, JAPAN ANTIBIOTICS RESEARCH ASSOCIATION. TOKYO, JP, Bd. 44, Nr. 6, Juni 1991 (1991-06), Seiten 674-677, XP009018534 ISSN: 0021-8820 das ganze Dokument	1-12

nternationales Aktenzeichen PCT/EP2004/013688

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:
1. X Ansprüche Nr. weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl der Anspruch 12 sich auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers beziehen, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr. weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
3. Ansprüche Nr. well es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.
Feld III Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)
Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:
·
Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.
;
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recher-chenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
Bemerkungen hinsichtlich eines Widerspruchs Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

Formblatt PCT/ISA/210 (Fortsetzung von Blatt 1 (2)) (Januar 2004)

themationales Aktenzeichen

T/EP2004/013688

			T/EP2004/013688	
lm Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) d Patentfamili	êr e	Datum der Veröffentlichung
WO 03106480	A 24-12-2003	DE 102269 WO 031064	30 A1	24-12-2003 24-12-2003
				and 1775 5776 1976 1976 1976 1976 1976 1976 1976 1
				·

Formblatt PCT/ISA/210 (Anhang Patentlamilie) (Januar 2004)

	•	•
		:
		•