

Grundzüge der Informatik 1

Vorlesung 5 - flipped classroom

Schleifeninvariante

- A(n) ist eine Aussage über den Zustand des Algorithmus vor dem n-ten Durchlauf einer Schleife
- Eine Schleifeninvariante ist korrekt, wenn Sie zu Beginn jedes Schleifendurchlaufs erfüllt ist.
- A(1) wird auch als Initialisierung bezeichnet.

Korrektheitsbeweis für Invarianten

- Induktionsanfang: Die Aussage A(1) gilt
- Induktionsschluss: Gilt A(n) und ist die Eintrittsbedingung der Schleife erfüllt so gilt auch A(n+1)

- Schleifeninvarianten

Aufgabe 1

 Schreiben Sie einen Algorithmus, der n! mit Hilfe einer for-Schleife berechnet

Fakultät(n)

- 1. x=1
- 2. **for** i=2 **to** n **do**
- 3. x = x * i
- 4. return x

- Schleifeninvarianten

Aufgabe 2

Formulieren Sie eine Schleifeninvariante für die for-Schleife

- Schleifeninvarianten

Fakultät(n)

- 1. x=1
- 2. **for** i=2 **to** n **do**
- 3. x = x * i
- 4. return x

Schleifeninvariante

Die Variable x enthält zu Beginn der Schleife den Wert (i-1)!

Aufgabe 3

- Zeigen Sie die Korrektheit der Schleifeninvariante mit Hilfe von Induktion
 - Was ist der Induktionsanfang?
 - Was ist die Induktionsannahme?
 - Was ist der Induktionsschritt?

Schleifeninvariante

Die Variable x enthält zu Beginn der Schleife den Wert (i-1)!

Beweis

 Induktionsanfang: Vor Beginn des ersten Schleifendurchlaufs gilt x=1 und i=2, d.h. x=1=1! = (i-1)!

Schleifeninvariante

Die Variable x enthält zu Beginn der Schleife den Wert (i-1)!

Beweis

- Induktionsanfang: Vor Beginn des ersten Schleifendurchlaufs gilt x=1 und i=2, d.h. x=1=1! = (i-1)!
- Induktionsannahme: Vor Beginn des Schleifendurchlaufs gilt die Invariante

Schleifeninvariante

Die Variable x enthält zu Beginn der Schleife den Wert (i-1)!

Beweis

- Induktionsanfang: Vor Beginn des ersten Schleifendurchlaufs gilt x=1 und i=2, d.h. x=1=1! = (i-1)!
- Induktionsannahme: Vor Beginn des Schleifendurchlaufs gilt die Invariante
- Induktionsschluss: Sei i≤.n Zu Beginn des Schleifendurchlauf mit i gilt x=(i-1)! aufgrund der I.A.
- In der Schleife wird x=x*i gesetzt. Somit gilt x=i!
- Am Ende der Schleife wird i um eins erhöht. Somit gilt zu Beginn des nächsten Schleifendurchlaufs dass x = (i-1)! ist

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. **return** F[n]

Aufgabe 4

- Wir wollen die Korrektheit des Algorithmus zur Berechnung der Fibonacci Zahlen aus der ersten Vorlesung zeigen
- Formulieren Sie dazu zunächst eine geeignete Schleifeninvariante

- Schleifeninvarianten

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. **return** F[n]

Schleifeninvariante

 F[1...i-1] enthält die ersten i-1 Fibonaccizahlen

- Schleifeninvarianten

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. return F[n]

Schleifeninvariante

F[1...i-1] enthält die ersten i-1
 Fibonaccizahlen

Aufgabe 5

 Zeigen Sie die Korrektheit der Invariante mit Hilfe von Induktion

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. **return** F[n]

Schleifeninvariante

 F[1...i-1] enthält die ersten i-1 Fibonaccizahlen

Beweis

- Induktionsanfang:
- Vor Beginn der Schleife werden F[1] und F[2] auf 1 gesetzt und somit gilt F[1] = Fib(1) und F[2] = Fib(2). Damit gilt die Invariante vor dem ersten Schleifendurchlauf (i=3).

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. return F[n]

Schleifeninvariante

 F[1...i-1] enthält die ersten i-1 Fibonaccizahlen

Beweis

Ind. Ann.: Die Invariante gilt vor dem Schleifen-durchlauf für ein i≤n

Induktionsschluss:

- In der Schleife wird F[i]=F[i-1]+F[i-2] gesetzt
- Aufgrund der Induktionsannahme gilt somit
 F[i] = Fib(i-1) + Fib(i-2) = Fib(i)
- Am Ende der Schleife wird i um eins erhöht
- Somit gilt die Invariante vor dem nächsten Durchlauf

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. **return** F[n]

Aufgabe 6

 Zeigen Sie nun mit Hilfe der Invariante die Korrektheit von Algorithmus Fib1

Fib1(n)

- 1. F = new array[1...n]
- 2. F[1] = 1
- 3. F[2] = 1
- 4. **for** i=3 to n **do**
- 5. F[i] = F[i-1] + F[i-2]
- 6. return F[n]

Behauptung

 Algorithmus Fib1(n) berechnet die n-te Fibonaccizahl

Korrektheitsbeweis

- In Zeile 1 wird der Speicher für das Feld F reserviert
- In den Zeilen 2 und 3 wird F[1] bzw. F[2] auf den Wert der entsprechenden Fibonaccizahl gesetzt
- Aufgrund der Schleifeninvariante gilt am Ende der Schleife mit i=n+1, dass F[1...n] die ersten n Fibonaccizahlen enthält

Universitä

 In Zeile 6 wird somit F[n] = Fib(n) zurückgegeben