

VLSI FOR MACHINE LEARNING

PEDRO JULIAN, DIEGO GIGENA, NICOLÁS RODRÍGUEZ

CAE 2023, Córdoba

What is a Neuron

Deep Neural Networks

Activation Functions

Convolutional Neural Networks

THE PERCEPTRON

- ≡ Simple model of a Neuron
- ≡ Components:

 - Adder with Bias
- How does it work?
 - Adition of weighted values
 - Decision using AF

EXAMPLE

How's the weather like? → Should I wear a jacket?

EXAMPLE

How's the weather like? → Should I wear a jacket?

Silicon Austria Labs GmbH

WHY ARTIFICIAL NEURONS

- Relatively simple models of a real neuron
- Group of neurons as universal approximator
- Can solve complex tasks
- And most importantly...

They can learn!!!

ARTIFICIAL NEURAL NETWORK

- Group of neurons to solve more complex tasks
- Groups with shared inputs, between input and output, compose a "Hidden Layer"
- When all inputs are shared:
 - ≡ Fully-Connected Layer
 - Dense Layer
- A single Hidden Layer is enough to be called ANN

EXPANDED EXAMPLE

How's the weather like? → What should I wear?

EXPANDED EXAMPLE

How's the weather like? → What should I wear?

WHAT IS DEEP

"Non-deep" feedforward neural network

hidden layer output layer output layer

Deep neural network

Umbrella, Jacket and/or Hat

Winter waterproof Jacket

Silicon Austria Labs GmbH 12

WHAT IS DEEP

Silicon Austria Labs GmbH

LINEAR REGIONS

hidden layer 1 hidden layer 2 hidden layer 3

ADDING LAYERS

Single Neuron

Multiple Neurons/Layers

ADDING LAYERS

Single Hidden Layer, 10 neurons

4 Hidden Layers, 10 neurons each

8 Hidden Layers, 10 neurons each

Silicon Austria Labs GmbH 16

BACKPROPAGATION

Forward Pass

BACKPROPAGATION

Loss Computation

BACKPROPAGATION

TYPE OF ACTIVATIONS

- AF makes the neuron's decision
- Types of AF:
 - ∃ Binary Step

$$f(x) = x$$

$$f(x) = \frac{1}{1 + e^{-x}}$$

RELU

- Most popular Activation Function
- Rectified Linear Unit
- Advantages:
 - Make NN efficient as only activates some neurons
 - Accelerates Training due to its linear, non-saturating property
- Disadvantage:
 - Dying ReLU problem

$$f(x) = \max(0, x)$$

RELU

 ■ Variants to solve Dying ReLU while keep linear and non-saturation property

Leaky ReLU

Parametric ReLU

ELU

WHY USE A CNN

- Problem too complex
- DNN requires many neurons
- **CNN Layers:**

 - Normalization
 - Down-sample
 - Fully-Connected

Many parameters and operations

Feature Extraction

Silicon Austria Labs GmbH 25

 \equiv Input tensor (I_h, I_w, I_{ch})

 $\equiv N \times \text{Kernels}(K_h, K_w, K_{ch})$

1	0	1
0	1	0
1	0	1

 \equiv Input tensor (I_h, I_w, I_{ch})

 \equiv N x Kernels (K_h, K_w, K_{ch})

Kernel

1	0	1
0	1	0
1	0	1

 \equiv Input tensor (I_h, I_w, I_{ch})

 \equiv N x Kernels (K_h, K_w, K_{ch})

Kernel

1	0	1
0	1	0
1	0	1

 \equiv Input tensor (I_h, I_w, I_{ch})

 \equiv N x Kernels (K_h, K_w, K_{ch})

Kernel

1	0	1
0	1	0
1	0	1

30

 \equiv Input tensor (I_h, I_w, I_{ch})

 \equiv N x Kernels (K_h, K_w, K_{ch})

Kernel

1	0	1
0	1	0
1	0	1

 \equiv Input tensor (I_h, I_w, I_{ch})

 \equiv N x Kernels (K_h, K_w, K_{ch})

Kernel

1	0	1
0	1	0
1	0	1

$$O_{h/w} = I_{h/w} - \left(K_{h/w} - 1\right)$$

$$\equiv$$
 Input tensor (I_h, I_w, I_{ch})

$$\equiv$$
 N x Kernels (K_h, K_w, K_{ch})

$$\equiv K_{ch} = I_{ch}$$

$$\equiv N = O_{ch}$$

1/_		_
K \square	rn	Δ
1 1 1		V .

1	0	1
0	1	0
1	0	1

1	2	1	0	2
2	0	0	1	0
1	0	2	1	0
0	1	0	2	1
0	2	1	0	2

Output tensor

 \equiv Padding (P_h, P_w)

Kernel

1	0	1
0	1	0
1	0	1

$$O_{h/w} = I_{h/w} - (K_{h/w} - 1) + 2 * P_{h/w}$$

 \equiv Padding (P_h, P_w)

Kernel

1	0	1
0	1	0
1	0	1

0	0	0	0	0	0	0
0	1	2	1	0	2	0
0	2	0	0	1	0	0
0	1	0	2	1	0	0
0	0	1	0	2	1	0
0	0	2	1	0	2	0
0	0	0	0	0	0	0

3

3

 \equiv Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

Kernel

1	0	1
0	1	0
1	0	1

 \equiv Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

Kernel

1	0	1
0	1	0
1	0	1

0	0	0	0	0	0	0
0	1	2	1	0	2	0
0	2	0	0	1	0	0
0	1	0	2	1	0	0
0	0	1	0	2	1	0
0	0	2	1	0	2	0
0	0	0	0	0	0	0

Input tensor

Output tensor

 \equiv Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

Kernel

1	0	1
0	1	0
1	0	1

0	0	0	0	0	0	0
0	1	2	1	0	2	0
0	2	0	0	1	0	0
0	1	0	2	1	0	0
0	0	1	0	2	1	0
0	0	2	1	0	2	0
0	0	0	0	0	0	0

Output tensor

 \equiv Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

Kernel

1	0	1
0	1	0
1	0	1

$$\equiv$$
 Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

Kernel

1	0	1
0	1	0
1	0	1

0	0	0	0	0	0	0
0	1	2	1	0	2	0
0	2	0	0	1	0	0
0	1	0	2	1	0	0
0	0	1	0	2	1	0
0	0	2	1	0	2	0
0	0	0	0	0	0	0

1	2	3
2	6	3
4	4	4

 $O_{h/w} = \left\lfloor \frac{I_{h/w} - (K_{h/w} - 1) + 2 * P_{h/w} - 1}{S_{h/w}} + 1 \right\rfloor$

Output tensor

 \equiv Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

 \equiv Dilation (D_h, D_w)

Kernel

1	0	1
0	1	0
1	0	1

Input tensor

Output tensor

 \equiv Padding (P_h, P_w)

 \equiv Stride (S_h, S_w)

 \equiv Dilation (D_h, D_w)

Kernel

1	0	1
0	1	0
1	0	1

0	0	0	0	0	0	0
0	1	2	1	0	2	0
0	2	0	0	1	0	0
0	1	0	2	1	0	0
0	0	1	0	2	1	0
0	0	2	1	0	2	0
0	0	0	0	0	0	0

2 2 2 2

Output tensor

$$\equiv$$
 Padding (P_h, P_w)

$$\equiv$$
 Stride (S_h, S_w)

$$\equiv$$
 Dilation (D_h, D_w)

		_
$\mathbf{V} \sim$	rn	\sim
NE	rn	el

1	0	1
0	1	0
1	0	1

0 -	$\left I_{h/w} - D_{h/w} * (K_{h/w} - 1) + 2 * P_{h/w} - 1 \right $	
$O_{h/w} =$	$S_{h/w}$	

0	0	0	0	0	0	0
0	1	2	1	0	2	0
0	2	0	0	1	0	0
0	1	0	2	1	0	0
0	0	1	0	2	1	0
0	0	2	1	0	2	0
0	0	0	0	0	0	0

2	2
2	2

Output tensor

POOL LAYERS

- Used for down-sampling
- \equiv Generally used with stride as kernel size: $S_{h/w} = K_{h/w}$
- ≡ Common Types:

 - AvgPool

Average Pooling 2 x 2 pool size

BATCH NORM

- Range of layer's output differs from sample to sample
 - Original input data has samples with different distribution/range
- Scales each layer's output features
 - \equiv Running feature mean: E(x)
 - \equiv Running feature variance: Var(x)
 - \equiv Trainable feature weight: γ
 - \equiv Trainable feature bias: β
- Stabilizes and speeds-up training

$$y = \frac{x - E(x)}{\sqrt{Var(x) + \varepsilon}} * \gamma + \beta$$

BATCH NORM FUSION

$$y = b + \sum w \times x -$$

BatchNorm
$$z = \frac{y - \mu}{\sqrt{\sigma^2 + \varepsilon}} * \gamma + \beta$$

$$z = \left[\gamma \times \frac{b - \mu}{\sqrt{\sigma^2 + \varepsilon}} + \beta\right] + \sum_{\widehat{\phi}} \left[\frac{\gamma}{\sqrt{\sigma^2 + \varepsilon}} \times w\right] \times x$$

Constant after training

$$E(y) \longrightarrow \mu$$

$$Var(y) \longrightarrow \sigma^2$$

$$z = \hat{b} + \sum \widehat{w} \times x$$

