การถดถอยแบบกำลังสองน้อยสุด

Introduction

ข้อมูลที่ได้จากการทดลอง หากจะนำไปใช้ต่อไปจะต้องมีการนำมาหาค่า ความสัมพันธ์เสียก่อน ตัวอย่างเช่นการทดลองวัดความเร็วสมที่ความสูงของ

ในการสร้างฟังก์ชันหรือจะลากเป็นฟังก์ชันเส้นตรง

วิธีการ linear regression เป็นวิธีที่ ง่ายที่สุดในการประมาณฟังก์ชัน จากรูป เราจะมีข้อมูล $x_i, y_i, i=1, 2, 3, ..., n$

สมมติว่า g(x) ในรูปคือฟังก์ชันที่ได้ซึ่งจะมีความผิดพลาดจาก y_i เท่ากับ

 $d(x_i)$ ดังนั้นค่าความผิดพลาดทั้งหมดคือ

$$E = \sum_{i=1}^{n} \left[d\left(x_{i}\right) \right]^{2}$$
 [2

เรายกกำลังสอง $d(x_i)$ เนื่องจากต้องการกำจัดค่าลบ เราอาจเขียนในอีกรูป

คือ
$$E = \sum_{i=1}^{n} \left[y_i - g(x_i) \right]^2$$
 [3

เมื่อแทนค่าด้วย [1] ที่ตำแหน่ง
$$x=x_i$$
 จะได้

$$E = \sum_{i=1}^{n} \left[y_i - \left(a_0 + a_1 x_i \right) \right]^2$$

วิธีการ least square คือการหาความผิดพลาดต่ำสุดของตัวที่เกี่ยวข้อง

คือ
$$\frac{\partial E}{\partial a_0} = 0 \qquad \left[5.1 \right] \qquad \frac{\partial E}{\partial a_1} = 0 \qquad \left[5.2 \right]$$

$$\operatorname{ann}\left[5.1\right] \qquad \frac{\partial E}{\partial a_0} = 2\sum_{i=1}^n \left[y_i - \left(a_0 + a_1 x_i\right)\right] \left(-1\right) = 0$$

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} a_0 - \sum_{i=1}^{n} a_1 x_i = 0$$

$$na_0 + \left(\sum_{i=1}^n x_i\right) a_1 = \sum_{i=1}^n y_i$$
 [6.1]

ส่วน [5.2]
$$\frac{\partial E}{\partial a_1} = 2\sum_{i=1}^n \left[y_i - \left(a_0 + a_1 x_i \right) \right] \left(-x_1 \right) = 0$$

$$\sum_{i=1}^n x_i y_i - \sum_{i=1}^n a_0 x_i - \sum_{i=1}^n a_1 x_i^2 = 0$$

$$\left(\sum_{i=1}^n x_i \right) a_0 + \left(\sum_{i=1}^n x_i^2 \right) a_1 = \sum_{i=1}^n x_i y_i \qquad [6.2]$$
 จาก [6.1] และ [6.2] เจียนให้อยู่ในรูปเมตริกซ์

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} \end{bmatrix} \begin{Bmatrix} a_{0} \\ a_{1} \end{Bmatrix} = \begin{Bmatrix} \sum_{i=1}^{n} y_{i} \\ \sum_{i=1}^{n} x_{i} y_{i} \end{Bmatrix}$$

$$[6.3]$$

จาก [6.3] เราสามารถหา a_0 และ a_1 ได้ดังนี้

$$a_{0} = \frac{\left(\sum_{i=1}^{n} y_{i}\right) \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i} y_{i}\right) \left(\sum_{i=1}^{n} x_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$a_{1} = \frac{n \left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \left(\sum_{i=1}^{n} x_{i}^{2}\right) - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$
[6.4]

ค่า a_0 และ a_1 เมื่อนำกลับไปแทนใน [1] ก็จะได้สมการเชิงเส้นที่ประมาณค่าจุดทั้งหมด

ความสูงอาคาร, x (m) ความเร็วลม, y (m/sec 10 ตัวอย่าง 2.2 15 4.6 20 4.2 จากตารางจงคำนวณหาสมการเส้นตรงโดย 25 7.0

linear regression

32 302 Numerica

35

หา a_0 และ a_1 $a_0 = \frac{(33.8)(3,475) - (870)(135)}{6(3,475) - (135)^2} = \frac{5}{2,625} = 0.001904$ $a_1 = \frac{6(870) - (135)(33.8)}{6(3,475) - (135)^2} = \frac{657}{2,625} = 0.250286$ 100 225

> 25 30

30

198

<u>322</u>

<u>870</u>

400

625

900

1,225

3,475

7.0

9.2

33.8

6.6

9.2

ตัวอย่าง

$$g(x) = 0.001904 + 0.250286x$$

การประยุกต์การถดถอยแบบเชิงเส้นกับข้อมูลไม่เชิงเส้น

ในบางครั้งลักษณะของชุดข้อมูลไม่เป็นเชิงเส้น เราจะประมาณได้ใน

ลักษณะของสมการกำลัง

$$\overline{y} = a\overline{x}^b$$

 $\lfloor 7 \rfloor$

รูปแบบของ [7] เราสามารถประยุกต์ให้เป็นสมการเส้นตรงได้เป็น

$$\log \overline{y} = \log a + b \log \overline{x}$$

[8.1]

ซึ่งสามารถปรับให้เป็นสมการเส้นตรง

แปลงข้อมูลให้อยู่ในรูปแบบ log และอื่น ๆ จะได้ตาราง

\overline{x}_i	$\overline{\mathcal{oldsymbol{y}}}_i$	$x_i = log \overline{x}_i$	$y_i = log \overline{y}_i$	x_i^2	$x_i y_i$
1	0.1	0.000	-1.000	0.000	0.000
2	0.7	0.301	-0.155	0.091	-0.047
3	0.9	0.477	-0.046	0.228	-0.022
4	1.7	0.602	0.230	0.362	0.138
5	2.1	<u>0.699</u>	<u>0.322</u>	<u>0.489</u>	0.225
01	\sum_{i}	2.079	-0.649	1.170	0.294
หา a_0 และ a_1 $a_0 = \frac{(-0.649)(1.170) - (0.294)(2.079)}{2} = \frac{-1.371}{2} = -0.897$					
$a_0 = \frac{1}{5(1.170) - (2.079)^2} = \frac{1.528}{1.528} = -0.897$					
5(0.294) - (2.079)(-0.649) 2.819					
$a_1 = \frac{1}{5(1.170) - (2.079)^2} = \frac{2.815}{1.528} = 1.845$					
199 %					

ตัวอย่าง

จากข้อมูลจะ ได้สมการ

$$y = -0.897 + 1.845x$$

คำนวณหาความสัมพันธ์กลับ

$$a_0 = \log a \rightarrow a = 0.127$$

$$a_1 = b = 1.845$$

สมการกำลังคือ

การประยุกต์การถดถอยแบบเชิงเส้นกับข้อมูลไม่เชิงเส้น เราประยุกต์ linear regression กับสมการ exponential ได้เช่น

กัน โดยที่ $\overline{y} = ae^{b\overline{x}}$

take $\log aun15$ $\ln \overline{y} = \ln a + b\overline{x} \ln e = \ln a + b\overline{x}$ [9.1]

รูปแบบของสมการเชิงเส้น

$$y = a_0 + a_1 x$$

[9.2]

การประยุกต์การถดถอยแบบเชิงเส้นกับข้อมูลไม่เชิงเส้น

สมการอีกรูปแบบหนึ่งที่สามารถนำมาประยุกต์ได้คือสมการอัตราการเพิ่มสู่

จุดอิ่มตัวมีรูปแบบเป็น
$$\overline{y} = a \frac{\overline{x}}{b + \overline{x}}$$
 [10] หรือ $\frac{1}{\overline{y}} = \frac{b + \overline{x}}{a\overline{x}} = \frac{1}{a} + \frac{b}{a} \frac{1}{\overline{x}}$ [10.1] สมการเชิงเส้น $y = a_0 + a_1 x$ [10.2]

การถดถอยแบบพหุนาม

วิธีการ polynomial regression เป็นวิธีใช้ประมาณฟังก์ชันที่ไม่ เป็นเชิงเส้นในรูปแบบของสมการพหุนาม ถ้าเรามีข้อมูล $m{n}$ ข้อมูล (เรา ทราบ $x_i, y_i, i=1,2,...,n$) เราจะสร้างสมการพหุนามอันดับ m $g(x) = a_0 + a_1 x + a_2 x^2 + ... + a_m x^m$

เราต้องหา $a_0, a_1, a_2, \ldots, a_m$ เพื่อให้ได้สมการที่มีความผิดพลาด Eน้อยที่สุด โดยที่เราหาจาก

$$E = \sum_{i=1}^{n} \left[d\left(x_{i}\right) \right]^{2} \qquad \left[12\right]$$

การถดถอยแบบพหุนาม

จะได้
$$E = \sum_{i=1}^n \left[y_i - g(x_i) \right]^2 \qquad \qquad \left[12.1 \right]$$

$$E = \sum_{i=1}^{n+1} \left[y_i - \left(a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m \right) \right]^2 \left[12.2 \right]$$
 เพื่อที่จะหาค่าของ $a_0, a_1, a_2, \ldots, a_m$ จำนวน $m+1$ ตัว จะหาจาก

การถคถอยแบบพหุนาม

ตัวอย่างเช่น [12.3] สมการแรกจะได้ว่า

$$\frac{\partial E}{\partial a_0} = 2\sum_{i=1}^n \left[y_i - \left(a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m \right) \right] (-1) = 0$$

$$\sum_{i=1}^n y_i - \sum_{i=1}^n a_0 - \sum_{i=1}^n a_1 x_i - \sum_{i=1}^n a_2 x_i^2 - \ldots - \sum_{i=1}^n a_m x_i^m = 0$$

$$na_0 + \left(\sum_{i=1}^n x_i \right) a_1 + \left(\sum_{i=1}^n x_i^2 \right) a_2 + \ldots + \left(\sum_{i=1}^n x_i^m \right) a_m = \sum_{i=1}^n y_i \qquad [12.4]$$

$$\frac{\partial E}{\partial a_1} = 2\sum_{i=1}^n \left[y_i - \left(a_0 + a_1 x + a_2 x^2 + \ldots + a_m x^m \right) \right] (-x_i) = 0$$

$$\sum_{i=1}^n x_i y_i - \sum_{i=1}^n a_0 x_i - \sum_{i=1}^n a_1 x_i^2 - \sum_{i=1}^n a_2 x_i^3 - \ldots - \sum_{i=1}^n a_m x_i^{m+1} = 0$$

$$\left(\sum_{i=1}^n x_i \right) a_0 + \left(\sum_{i=1}^n x_i^2 \right) a_1 + \left(\sum_{i=1}^n x_i^3 \right) a_2 + \ldots + \left(\sum_{i=1}^n x_i^{m+1} \right) a_m = \sum_{i=1}^n x_i y_i \quad [12.5]$$

การถดถอยแบบพหุนาม

สมการอื่นก็จะให้ผลคล้ายกัน ดังนั้นจึงตั้งเป็นระบบสมการได้ว่า

$$\begin{bmatrix} n & \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \cdots & \sum_{i=1}^{n} x_{i}^{m} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \cdots & \sum_{i=1}^{n} x_{i}^{m+1} \\ \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i}^{3} & \sum_{i=1}^{n} x_{i}^{4} & \cdots & \sum_{i=1}^{n} x_{i}^{m+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{i}^{m} & \sum_{i=1}^{n} x_{i}^{m+1} & \sum_{i=1}^{n} x_{i}^{m+2} & \cdots & \sum_{i=1}^{n} x_{i}^{2m} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} x_{i} y_{i} \\ \sum_{i=1}^{n} x_{i}^{2} y_{i} \\ \vdots \\ \sum_{i=1}^{n} x_{i}^{m} y_{i} \end{bmatrix}$$

$$\begin{bmatrix} 12.6 \end{bmatrix}$$

โดยที่ [12.6] เป็นระบบสมการที่เราเคยเรียนในบทที่ 3

อันดับ
$$3$$
• จากข้อมูลในตารางสามารถหาค่าได้เป็น $\frac{35}{40}$ $\frac{0.99818}{0.99828}$ $\frac{90}{95}$ $\frac{1.0046}{1.00586}$
• จากข้อมูลในตารางสามารถหาค่าได้เป็น $\frac{45}{50}$ $\frac{0.99849}{0.99878}$ $\frac{100}{1.0072}$
 $\sum_{i=1}^{21} x_i = 1,050$ $\sum_{i=1}^{21} x_i^2 = 71,750$ $\sum_{i=1}^{21} x_i^3 = 5,512,500$ $\sum_{i=1}^{21} x_i^4 = 451,666,200$ $\sum_{i=1}^{21} x_i^5 = 38,541,560,000$ $\sum_{i=1}^{21} y_i = 21.02805$

 $\sum_{i=1}^{21} x_i^6 = 3,382,122,000,000 \quad \sum_{i=1}^{21} x_i y_i = 1,051.999$

 $\sum_{i=1}^{21} x_i^2 y_i = 71,951.41 \qquad \sum_{i=1}^{21} x_i^3 y_i = 5,531,869$

132 302 Numerical Methods

จากข้อมูลในตารางจงประยุกต์ polynomial

regression เพื่อประมาณเป็นสมการพหุนาม

ตัวอย่าง

0.99828 95 1.0058 0.99849 100 1.0072 **0.99878** 21

 \boldsymbol{T}

55

60

65

70

75

80

85

90

0.9991

0.9996

1.0002

1.0009

1.0016

1.0025

1.0035

1.0046

 \boldsymbol{c}_{p}

1.00762

1.00392

1.00153

1.00000

0.99907

0.99852

0.99826

0.99818

0

5

10

15

20

25

30

ตัวอย่าง

จากข้อมูลนำมาตั้งเป็นระบบสมการใค้เป็น

$$\begin{bmatrix} 0.2100000E+02 & 0.1050000E+04 & 0.7175000E+05 & 0.5512500E+07 \\ 0.1050000E+04 & 0.7175000E+05 & 0.5512500E+07 & 0.4516662E+09 \\ 0.7175000E+05 & 0.5512500E+07 & 0.4516662E+09 & 0.3854156E+11 \\ 0.5512500E+07 & 0.4516662E+09 & 0.3854156E+11 & 0.3382122E+13 \\ \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix}$$

$$= \begin{cases} 0.2102805E+02 \\ 0.1051999E+04 \\ 0.7195141E+05 \\ 0.5531869E+07 \end{cases}$$

เมื่อแก้สมการจะได้

$$a_0 = 1.006448$$
 $a_1 = -4.988565 \times 10^{-4}$
 $a_2 = 8.460584 \times 10^{-6}$ $a_3 = -3.457691 \times 10^{-5}$

ตัวอย่าง

ดังนั้นสมการพหุนามคือ

$$c_p = 1.006448 - 4.988565 \times 10^{-4} T + 8.460584 \times 10^{-6} T^2 - 3.457691 \times 10^{-5} T^3$$

เมื่อนำสมการมาพล๊อตกราฟจะได้เป็น

การถดถอยแบบหลายเชิง

ในกรณีที่ค่าของฟังก์ชันเกิดจากตัวแปรหลายตัว ดังนั้นเราสามารถเขียน ความสัมพันธ์ได้เป็น

$$y = y(x_1, x_2, x_3, ..., x_k)$$
 [13]

การทำ regression สำหรับฟังก์ชันหลายตัวแปรก็จะคล้ายกันกับการหา ฟังก์ชันตัแปรเดียว คือสามารถทำเป็นฟังก์ชันแบบ

- เชิงเส้น
- พหุนาม

การถคถอยแบบหลายเชิง — เชิงเส้น

• การถดถอยแบบหลายเชิง - เชิงเส้น

ในกรณีนี้เราจะประมาณข้อมูลเป็นรูปแบบสมการเชิงเส้นหลายตัวแปร

$$g = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k$$
 [14]

ดังนั้นตัวไม่รู้ค่าคือ $a_j, j=0,1,2,...,k$ จำนวน k+1 ตัวที่ต้องหาค่า โดยวิธี least square สมการความผิดพลาดจะเท่ากับ

$$E = \sum_{i=1}^{n} \left[y_i - \left(a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k \right) \right]^2$$
 [14.1]

เมื่อเราหาอนุพันธ์ของ E เทียบกับตัวไม่รู้ค่า a_j ก็จะทำให้เกิดสมการ จำนวน $k\!+\!1$ สมการ

การถคถอยแบบหลายเชิง — เชิงเส้น

• การถดถอยแบบหลายเชิง - เชิงเส้น

ในกรณีนี้เราจะประมาณข้อมูลเป็นรูปแบบสมการเชิงเส้นหลายตัวแปร

$$g = a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k$$
 [14]

ดังนั้นตัวไม่รู้ค่าคือ $a_j, j=0,1,2,...,k$ จำนวน k+1 ตัวที่ต้องหาค่า โดยวิธี least square สมการความผิดพลาดจะเท่ากับ

$$E = \sum_{i=1}^{n} \left[y_i - \left(a_0 + a_1 x_1 + a_2 x_2 + \dots + a_k x_k \right) \right]^2$$
 [14.1]

เมื่อเราหาอนุพันธ์ของ E เทียบกับตัวไม่รู้ค่า a_j ก็จะทำให้เกิดสมการ จำนวน $k\!+\!1$ สมการ