Przegląd gradientowych metod optymalizacji

Przemysław Pobrotyn

Sigmoidal

Koło Uczenia Maszynowego MIM UW, 22.11.2017

Plan prezentacji

Multi Layer Perceptron - przypomnienie

Batch/ mini-batch/ stochastic gradient descent

Wykładnicza średnia ważona (EWMA)

Popularne metody optymalizacji gradientowej

Notacja

- Superskrypty: (i) oznacza i-ty przykład treningowy, [l] oznacza l-tą warstwę sieci
- ▶ m: liczność zbioru treningowego
- \triangleright n_{\times} : liczba cech zbioru treningowego
- n_y: liczba klas do predykcji
- $> n_h^{[I]}$: liczba neuronów (*hidden units*) w *I-tej* warstwie
- L: liczba warstw ukrytych w sieci
- ▶ $X \in \mathbb{R}^{n_x \times m}$: macierz danych, zbiór treningowy
- ▶ $Y \in \mathbb{R}^{n_y \times m}$: macierz etykiet
- $igwedge W^{[l]} \in \mathbb{R}^{n_h^{[l]} imes n_h^{[l-1]}}$: macierz wag $\emph{l-tej}$ warstwy
- $ullet b^{[l]} \in \mathbb{R}^{n_h^{[l]}}$: bias vector l-tej warstwy

Rysunek: deeplearning.ai

$$A^{[0]} = X$$

Rysunek: deeplearning.ai

- $A^{[0]} = X$
- $ightharpoonup A^{[I]} = g^{[I]}(W^{[I]}A^{[I-1]} + b^{[I]}) dla I od 1 do L 1$

Rysunek: deeplearning.ai

- ► $A^{[0]} = X$ ► $A^{[I]} = g^{[I]}(W^{[I]}A^{[I-1]} + b^{[I]})$ dla I od 1 do L - 1
- $A^{(1)} = g^{(1)}(W^{(1)}A^{(1-1)} + b^{(1)}) \text{ dia } I \text{ od } 1 \text{ do } L 1$ $\hat{Y} = g^{[L]}(W^{[L]}A^{[L-1]} + b^{[L]})$

Rysunek: deeplearning.ai

- $A^{[0]} = X$
- $igwedge A^{[l]} = g^{[l]}(W^{[l]}A^{[l-1]} + b^{[l]})$ dla l od 1 do L-1
- $\hat{Y} = g^{[L]}(W^{[L]}A^{[L-1]} + b^{[L]})$
- ▶ Gradienty $dW^{[l]}$ i $db^{[l]}$ obliczamy korzystając z backprop

Rysunek: deeplearning.ai

- $A^{[0]} = X$
- $A^{[l]} = g^{[l]}(W^{[l]}A^{[l-1]} + b^{[l]})$ dla l od 1 do l-1
- $\hat{Y} = g^{[L]}(W^{[L]}A^{[L-1]} + b^{[L]})$
- ▶ Gradienty $dW^{[I]}$ i $db^{[I]}$ obliczamy korzystając z backprop
- Akutalizacja parametrów:

$$W^{[I]} = W^{[I]} - \alpha dW^{[I]}.$$

 $b^{[I]} = b^{[I]} - \alpha db^{[I]}.$

Batch/ mini-batch/ stochastic gradient descent

Trzy warianty spadku gradientu, w zależności od ilości danych wykorzystywanych przy jednej iteracji propagacji w przód.

Batch gradient descent

W jednej iteracji wykorzystujemy cały zbiór treningowy X.

Mini-batch gradient descent

W jednej iteracji wykorzystujemy n elementowy podzbiór zbioru treningowego X.

Stochastic gradient descent

W jednej iteracji wykorzystujemy jeden element $x \in X$.

Epoka (epoch)

Jedno 'przejście' przez cały zbiór treningowy.

Gradient Descent

Stochastic Gradient Descent

Mini-Batch Gradient Descent

Rysunek: deeplearning.ai

Wybór właściwego learning rate jest trudny

- Wybór właściwego learning rate jest trudny
- Wybór schedule zmian learning rate jest trudny

- Wybór właściwego learning rate jest trudny
- Wybór schedule zmian learning rate jest trudny
- Używamy jednego learning do wszystkich parametrów cechy mogą mieć rożne częstotliwości występowania

- Wybór właściwego learning rate jest trudny
- Wybór schedule zmian learning rate jest trudny
- Używamy jednego learning do wszystkich parametrów cechy mogą mieć rożne częstotliwości występowania
- Chcemy uniknąć minimów lokalnych i plateau's

- Wybór właściwego learning rate jest trudny
- Wybór schedule zmian learning rate jest trudny
- Używamy jednego learning do wszystkich parametrów cechy mogą mieć rożne częstotliwości występowania
- ► Chcemy uniknąć minimów lokalnych i plateau's

Zaprezentujemy metody optymalizacyjne adresujące te problemy.

Wykładnicza średnia ważona (EWMA)

Dane są obserwacje $\theta_1, \theta_2, \dots, \theta_n$.

Zdefiniujmy wykładniczą średnią ważoną (*exponentially weighted moving average*) jak następuje:

- $\nu_0 = 0$
- \triangleright $v_t = \beta v_{t-1} + (1-\beta)\theta_t$ dla $t \in 1 \dots n$.
- ▶ $\beta \in (0,1)$

Bias correction

$$v_{t} = \beta v_{t-1} + (1 - \beta)\theta_{t} =$$

$$= \beta(\beta v_{t-2} + (1 - \beta)\theta_{t-1}) + (1 - \beta)\theta_{t} =$$

$$= \beta^{2}v_{t-2} + (1 - \beta)\beta\theta_{t-1} + (1 - \beta)\theta_{t} = \dots =$$

$$= (1 - \beta)(\beta^{t}\theta_{0} + \beta^{t-1}\theta_{1} + \dots + \beta\theta_{t-1} + \theta_{t})$$

Zauważmy, że suma wag wynosi $1-\beta^t$ Wprowadźmy zatem *bias correction*:

$$v_{corrected} := v_t/(1-\beta^t), t \neq 0$$

Wtedy wagi sumują się do 1.

Bias correction

Prosty przykład: niech $\theta_1=10, \theta_2=10$ Wtedy EWMA ($\beta=0.5$) bez bias correction wynosi ($v_0=0$), $v_1=5, v_2=7.5$. Dodając bias correction dostajemy ($v_0=0$), $v_1=10, v_2=10$

Interpretacja β

$$\lim_{\epsilon \to 0} (1 - \epsilon)^{\frac{1}{\epsilon}} = \frac{1}{e}$$

Niech $1 - \epsilon = \beta$, wtedy

$$\beta^{\frac{1}{1-\beta}} \approx \frac{1}{e} \approx 0.37$$

Kolejne wagi β^t dla $t>\frac{1}{1-\beta}$ są mniejsze niż 0.37 i maleją wykładniczo.

- Możemy zatem zinterpretować β jak współczynnik mówiący nam ile obserwacji bierzemy pod uwagę obliczając średnią kroczącą.
- lacktriangle Dla eta= 0.9, średnia bierze pod uwagę ostatnie 10 obserwacji
- ▶ Dla $\beta = 0.999$, średnia bierze pod uwagę ostatnie 1000 obserwacji

Momentum

Dla *i*-tej iteracji:

Oblicz pochodną $d\theta$ funkcji kosztu na obecnym batchu;

$$v_{\theta} = \beta v_{\theta} + (1 - \beta)d\theta$$

 $\theta = \theta - \alpha v_{\theta}$

 α i β to hiperparametry, dobrą domyślną wartością dla β jest 0.9.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms

Nestorov accelerated gradient

$$v_{\theta} = \beta v_{\theta} + \alpha \frac{\partial J(\theta - \beta v_{\theta})}{\partial \theta}$$
$$\theta = \theta - v_{\theta}$$

Podobnie jak w *momentum*, dobrą domyślną wartością dla β jest 0.9.

Rysunek: G.Hinton, Neural Networks for Machine Learning, wykład 6c

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2).

Adagrad

Dotychczas używaliśmy identycznego *learning rate* dla wszystkich parametrów. Metody adaptacyjne dostosowują *learning rate* dla każdego parametru.

Dla k-tej iteracji:

Dla *i*-tego parametru:

$$\theta_i = \theta_i - \frac{\alpha}{\sqrt{G_{i,i}} + \epsilon} d\theta_i$$

gdzie G to macierz diagonalna gdzie element (i,i) to suma kwadratów gradientów $d\theta_i$ obliczonych w iteracjach od 1 do k.

Problem: Gdy $k \to \infty$, $\frac{\alpha}{\sqrt{G_{i,i}} + \epsilon} \to 0$ ponieważ kwadraty gradientów są nieujemne.

Duchi, J., Hazan, E., Singer, Y. (2011). Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization.

RMSprop

Dla *i*-tej iteracji:

Oblicz pochodną $d\theta$ funkcji kosztu na obecnym batchu;

$$s_{\theta} = \beta s_{\theta} + (1 - \beta)(d\theta)^{2}$$

$$d\theta$$

$$\theta = \theta - \alpha \frac{d\theta}{\sqrt{s_{\theta}} + \epsilon}$$

 α i β to hiperparametry, dobrą domyślną wartością dla β jest 0.9. ϵ jest dodany dla stabilności numerycznej i zwykle wynosi 10^{-8} .

G.Hinton, Neural Networks for Machine Learning, wykład 6e

Adam

$$egin{aligned} v_{ heta} &= eta_1 v_{ heta} + (1 - eta_1) d heta \ v_{corrected} &= rac{v_{ heta}}{1 - (eta_1)^t} \ s_{ heta} &= eta_2 s_{ heta} + (1 - eta_2) (d heta)^2 \ s_{corrected} &= rac{s_{ heta}}{1 - (eta_1)^t} \ heta &= heta - lpha rac{v_{corrected}}{\sqrt{s_{corrected}} + \epsilon} \end{aligned}$$

Domyślne wartości: $\beta_1 = 0.9, \ \beta_2 = 0.999, \ \epsilon = 10^{-8}.$

Kingma, D. P., Ba, J. L. (2015). Adam: a Method for Stochastic Optimization

Źródła

- http://ruder.io/optimizing-gradient-descent/
- Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization, Coursera course by deeplearning.ai
- http://cs231n.github.io/neural-networks-3/
- http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6.pdf

Dziękuję za uwagę!

