

CURSO: Engenharias

DISCIPLINA: Tópicos Especiais em Programação **SEMESTRE/ANO:** 01/2021

CARGA HORÁRIA: 60 horas CRÉDITOS: 04

PROFESSOR: Edson Alves da Costa Júnior

PLANO DE ENSINO

1 Objetivos da Disciplina

A disciplina Tópicos Especiais em Programação tem como objetivo preparar os alunos do curso de Engenharia de Software da FGA para competições de programação, como a Maratona de Programação. Estes eventos ampliam o horizonte dos alunos e os estimulam a se aprofundarem nos tópicos de programação em geral. Além disso, a disciplina também constitui mais uma oportunidade para estudo e aprimoramento dos alunos em programação, tornando-os engenheiros mais preparados e capazes de atuar com competência no mercado de trabalho.

2 Ementa do Programa

- I. Introdução
 - i. Programação Competitiva
 - ii. Maratonas de Programação
 - iii. Juízes Eletrônicos
 - iv. Dicas para estudo e treinamento
 - v. Como começar
- II. Grafos

- i. Introdução
- ii. Travessias
- iii. Árvore Geradora Mínima
- iv. Caminhos Mínimos
- v. Fluxo de Rede
- vi. Grafos Especiais

3 Horário das aulas e atendimento

AULAS: sextas, das 14:00 hrs às 18:00 hrs.

ATENDIMENTO: segundas e quartas, das 16:00 às 17:00 hrs.

4 Metodologia

Cada aula será dividida em duas etapas. A primeira etapa consistirá em encontros síncronos na plataforma Teams da Microsoft, com início às 14 horas. Nestes encontros serão debatidos os conceitos teóricos e práticos da disciplina. Caso a plataforma Teams não esteja acessível durante a aula, a reunião será feita na plataforma RNP: https://conferenciaweb.rnp.br/webconf/edson-alves-da-costa-junior. Estes encontros serão gravados e disponibilizados posteriormente na plataforma Youtube.

A segunda etapa será uma competição simulada com uma hora e cinquenta minutos de duração, na plataforma vJudge¹ ou na plataforma Codeforces², com início às 16:00 hrs.

O Plano de Ensino, as notas e os rankings serão disponibilizados nas plataformas Moodle e Teams.

5 Critérios de Avaliação

A avaliação do curso se dará por meio de uma única prova, individual, cuja data está prevista no cronograma. Duas atividades extras podem alterar a menção final do aluno: o *ranking* do curso e o *contest* Menção++. A forma e os critérios destas atividades, assim como a prova, serão descritos a seguir.

5.1 Prova

A prova P será composta por 9 ou 10 problemas, a serem resolvidos individualmente. É permitida a consulta a materias impressos e é vedada a consulta aos colegas ou a recursos online.

A solução proposta para um problema será corrigida de acordo com os seguintes critérios: após ser compilada de forma bem sucedida, uma série de testes unitários automatizados alimentarão o programa resultante com entradas válidas e comparará os resultados obtidos com as saídas corretas. Uma solução será considerada aceita se obtiver sucesso em todos os testes unitários.

A menção final do curso será dada em função número N de problemas cujas soluções foram aceitas, de acordo com a tabela abaixo.

N	Menção	Descrição
0	SR	Sem rendimento
1	II	Inferior
2 ou 3	MI	Médio inferior
4 ou 5	MM	Médio
6 ou 7	MS	Médio superior
8 ou mais	SS	Superior

https://vjudge.net
http://codeforces.com

5.2 Critérios de aprovação

Obterá aprovação no curso o aluno que cumprir as duas exigências abaixo:

- 1. Ter presença em 75% ou mais das aulas;
- 2. Obter menção igual ou superior a MM.

5.3 Ranking do curso

Ao longo do curso será mantido um ranking dos alunos do curso, em ordem decrescente de score. O score S é composto por 4 variáveis: auto-avaliação (A), ranking do Codeforces (R), listas de exercícios (L), contests em sala de aula (C):

$$S = 100A + 200L + 300R + 400C$$

Em caso de empate, serão considerados os valores de C, R, L e A, nesta ordem. Persistindo o empate, será utilizada a ordem lexicográfica do nome completo do estudante. Farão parte do ranking apenas os estudantes que satisfizerem os seguintes critérios:

- 1. R > 0
- 2. C > 0
- 3. $L \ge 0.4$

Ao final do semestre, após a última aula que antecede a prova, posições finais do *ranking* corresponderão às menções conquistadas, de acordo com a tabela abaixo.

Posição	Menção	Descrição
[1, 4]	SS	Superior
[5, 11]	MS	Médio superior
[12, 20]	MM	Médio inferior

O aluno que conquistar uma menção de acordo com os critérios anteriores poderá tentar uma melhor menção na prova.

5.3.1 Auto-avaliação

Ao final do semestre, antes da prova, será disponibilizado um questionário para que o estudante possa fazer sua auto-avaliação. A nota A associada a este critério será computada a partir das respostas do estudante.

5.3.2 Ranking do Codeforces

A nota R do estudante será dada em função do melhor $rating R_{\rm max}$ obtido pelo aluno na plataforma Codeforces³ ao longo do semestre. O valor de R será dado por

$$R = \frac{\min(2200, \max(800, R_{\max})) - 800}{1400},$$

se o estudante participou de 3 ou mais eventos no Codeforces ao longo do semestre, ou R=0, caso contrário.

5.3.3 Listas de exercícios

A cada aula será proposta uma lista de exercícios na plataforma vJudge. Estas listas terão duração de 15 dias e são individuais. Cada lista terá N_i exercícios a serem resolvidos e, após seu encerramento, as novas soluções não serão contabilizadas para o *ranking*.

É vedada a colaboração entre os estudantes da disciplina e a consulta a soluções de outras pessoas. A verificação de algum indício de fraude ou cola em qualquer um dos exercícios da lista resultará na exclusão imediata do aluno do *ranking*.

O valor de L é dado por

$$L = \frac{\sum_{i} AC_{i}}{\sum_{i} N_{i}},$$

onde AC_i é o número de exercícios com veredito AC na lista i.

5.3.4 *Contests* semanais

Na segunda parte de cada aula acontecerá um *contest* individual, a ser feitos na plataforma Codeforces ou na plataforma vJudge⁴. Cada *contest* terá N_i exercícios a serem resolvidos, com início às 16:00 hrs e término às 17:50 hrs.

É vedada a colaboração entre os estudantes e a consulta à soluções de outras pessoas ou materiais digitais. É permitida a consulta a material impresso. A verificação de algum indício de fraude ou cola em qualquer um dos *contests* resultará na exclusão imediata do aluno do *ranking* da disciplina.

O valor de C é dado por

$$C = \frac{1}{N} \sum_{i=1}^{N} \frac{D_i - P_i + 1}{D_i}$$

onde D_i é o número de estudantes que participaram do *contest* i e P_i é a posição final do estudante no *contest* i.

³codeforces.com

⁴vjudge.net

5.4 Contest Menção++

Após a prova P, os alunos que tiverem nota $L \geq 0.25$ terão uma oportunidade de melhorar sua menção por meio do contest Menção++.

Este contest seguirá o mesmo formato e condições da prova P, com a diferença que a menção só poderá ser incrementada uma única vez, conforme mostra a tabela abaixo.

Menção anterior	N	Nova menção
II	2 ou mais	MI
MI	4 ou mais	MM
MM	6 ou mais	MS
MS	8 ou mais	SS

6 Cronograma

Semana	Aula	Data	Conteúdo
01	1	23/07	Apresentação do curso. Introdução à Programação Competitiva.
02	2	30/07	Conceitos elementares. Representação de grafos
03	3	06/08	DFS e BFS
04	4	13/08	Componentes conectados. Detecção de ciclos
05	5	20/08	Grafos bipartidos. Pontes e pontos de articulação
06	6	27/08	Caminhos mínimos com fonte única
07	7	03/09	Caminhos mínimos entre todos os pares
08	8	10/09	Árvores: travessia e diâmetro
09	9	17/09	Árvores geradoras mínimas
10	10	24/09	Ordenação topológica. Programação dinâmica em DAGs
11	-	01/10	Semana de Extensão Universitária
12	11	08/10	Componentes fortemente conectados
13	12	15/10	Fluxo e cortes
14	13	22/10	Queries em árvores
15	-	29/10	Prova
16	-	05/11	Contest Menção++. Menção Final.

7 Bibliografia

LIVRO TEXTO

HALIM, Steven S. and HALIM, Felix. Competitive Programming, 1^a ed, Lulu, 2010. (Open Access)

CORMEN, Thomas H. **LEISERSON** and Charles E. and **RIVEST**, Ronald L. and **STEIN**, Clifford. *Algoritmos: Teoria e Prática*, Editora Campus, 2ª ed, 2002.

DROZDEK, Adam. Estruturas de Dados e Algoritmos em C++, Thomsom, 2001.

LITERATURA COMPLEMENTAR

KERNIGHAN, Brian and **RITCHIE**, Dennis M. *The C Programming Language*, Prentice Hall, 1988.

JOSUTTIS, Nicolai M. *The C++ Standard Library*, Addison-Wesley, 1999.

SOLTYS-KULINICZ, Michael. *Introduction to the Analysis of Algorithms*, World Scientific Publishing Co, 2012. (*eBrary*)

STEPHENS, Rod. Essential Algorithms: A Practical Approach to Computer Algorithms, John Wiley & Sons, 2013. (eBrary)

BALDWIN, Douglas; **SCRAGG,** Gregg. *Algorithms and Data Structures: The Science of Computing*, Charles River Media, 2004. (*eBrary*)