CMSC 473/673 Natural Language Processing

Instructor: Lara J. Martin (she/they)

TA: Duong Ta (he)

Learning Objectives

Analyze code of a RNN language model

Distinguish between a plain RNN and a sequence-to-sequence RNN

Review: Neural Language Models

given some context...

create/use
"distributed
representations"...

combine these representations...

compute beliefs about what is likely...

predict the next word

Review: A Neural N-Gram Model (N=3)

The fluffy gray cat meowed very loudly

Critical issue: the amount of information flow is fundamentally restricted!!!

Review:

A Recurrent Neural Language Model

The fluffy gray cat meowed very loudly

Critical issue: the amount of information flow is fundamentally restricted!!!

Allowing signal to flow from one hidden state to another could help solve this!

Review: A Classic View of Recurrent Neural Language Modeling

Review: A *Simple* Recurrent Neural Network Cell

Review: A *Simple* Recurrent Neural Network Cell

Review: A *Simple* Recurrent Neural Network Cell

Review: A Multi-Layer Simple Recurrent Neural Network Cell

Review: Gradient Descent: Backpropagate the Error

Initialize model

Set t = 0

Pick a starting value θ_t

Until converged:

for example(s) sentence i:

- 1. Compute loss I on $x_i \leftarrow I = model(x_i)$
- 2. Get gradient $g_t = l'(x_i)$
- 3. Get scaling factor ρ_{t}
- 4. Set $\theta_{t+1} = \theta_t \rho_t * g_t$
- 5. Set t += 1

Core idea: Train the model to predict what the next word is via maximum likelihood (equivalently, minimizing crossentropy loss).

This **loss** is the sum of the pertoken cross-entropy loss

11

Review: Recurrent NN Loss

(then negate, average)

 $\log .2 + \log .12 + \log .2 + \log .19 + \log .3 + \log .2 + \log .2 + \log .2$

word	prob.	word	prob.	word	prob.	word	prob.	word	prob	word	prob.	word	prob	word	prob.
The	.2	black	.2	black	.2	dog	.2	meowed	.3	very	.2	loudly	.2	EOS	.3
gray	.01	wet	.12	gray	.01	cat	.19	purred	.2	lots	.1	softly	.01	and	.1
blue	.001	blue	.001	blue	.001	blue	.001	hissed	.1	softly	. 1	quiet	.001	blue	.001
fluffy	.0005	fluffy	.0005	bald	.0005	fluffy	.0005	fluffy	.001	fluffy	.0005	fluffy	.001	fluffy	.0005
wet	.0005	gray	.0005	wet	.0005	wet	.0005	wet	.001	wet	.0005	wet	.001	wet	.0005

12

Review: Gradient Descent: Backpropagate the Error

PyTorch RNN LMs

Pick Your Toolkit

PyTorch Keras

Deeplearning4j MxNet

TensorFlow Gluon

DyNet CNTK

Caffe

Comparisons:

https://en.wikipedia.org/wiki/Comparison of deep learning software

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

rnn = RNN(n_letters, n_hidden, n_categories)

```
import torch.nn as nn
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, input, hidden):
                                                                                   W_{i+1}
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n hidden = 128
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

rnn = RNN(n_letters, n_hidden, n_categories)

```
import torch.nn as nn
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, input, hidden):
                                                                          W;
                                                                                    W_{i+1}
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n hidden = 128
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

rnn = RNN(n_letters, n_hidden, n_categories)

```
import torch.nn as nn
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
    def forward(self, input, hidden):
                                                                                    W_{i+1}
                                                                          W;
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.h2o(hidden)
        output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n hidden = 128
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
import torch.nn as nn
class RNN(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
         super(RNN, self).__init__()
         self.hidden_size = hidden_size
         self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
         self.h2o = nn.Linear(hidden_size, output_size)
         self.softmax = nn.LogSoftmax(dim=1)
    def forward(selSOFTMAX
         combined =
         hidden = se
                        CLASS torch.nn.Softmax(dim=None) [SOURCE]
         output = se
         output = se
                              Applies the Softmax function to an n-dimensional input Tensor rescaling them so that the elements of the n-dimensional output
         return outp
                              Tensor lie in the range [0,1] and sum to 1.
                              Softmax is defined as:
    def initHidden(
         return torc
                                                               Softmax(x_i) = \frac{exp(x_i)}{\sum_i exp(x_i)}
n_hidden = 128
rnn = RNN(n_letters
                              When the input Tensor is a sparse tensor then the unspecified values are treated as -inf.
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
import torch.nn as nn
class RNN(nn.Module):
   def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
   def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
                                                                 encode
        hidden = self.i2h(combined)
       output = self.h2o(hidden)
        output = self.softmax(output)
       return output, hidden
   def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n hidden = 128
```

 W_{i+1}

 W_{i-1}

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
import torch.nn as nn
class RNN(nn.Module):
   def __init__(self, input_size, hidden_size, output_size):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.h2o = nn.Linear(hidden_size, output_size)
        self.softmax = nn.LogSoftmax(dim=1)
   def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
       output = self.h2o(hidden)
                                                                 decode
       output = self.softmax(output)
       return output, hidden
   def initHidden(self):
        return torch.zeros(1, self.hidden_size)
n hidden = 128
```

 W_{i+1}

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

Negative loglikelihood

(we'll talk about this)

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
    rnn.zero grad()
    for i in range(line tensor.size()[0]):
        output, hidden = rnn(line tensor[i], hidden)
    loss = criterion(output, category tensor)
    loss.backward()
    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

 W_{i+1}

h_{i-2}

 h_{i-1}

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low,
def train(category tensor, line tensor):
   hidden = rnn.initHidden()
    rnn.zero grad()
   for i in range(line tensor.size()[0]):
                                                         get predictions
        output, hidden = rnn(line tensor[i], hidden)
    loss = criterion(output, category tensor)
    loss.backward()
    # Add parameters' gradients to their values, multiplied by learning rate
    for p in rnn.parameters():
        p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
    rnn.zero grad()
                                                                                                         Set t = 0
    for i in range(line tensor.size()[0]):
                                                                  get predictions
                                                                                                         Pick a starting value \theta.
         output, hidden = rnn(line tensor[i], hidden)
                                                                                                         Until converged:
                                                                                                          for example(s) sentence i:
                                                                  eval predictions
    loss = criterion(output, category tensor)
                                                                                                           1. Compute loss I on x<sub>i</sub>
    loss.backward()
                                                                                                            2. Get gradient g_+ = I'(x_i)
                                                                                                            3. Get scaling factor ρ.
    # Add parameters' gradients to their values, multiplied by learning rate
                                                                                                            4. Set \theta_{t+1} = \theta_t - \rho_t * g_t
    for p in rnn.parameters():
                                                                                                            5. Set t += 1
         p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
    rnn.zero grad()
                                                                                                       Set t = 0
    for i in range(line tensor.size()[0]):
                                                                 get predictions
                                                                                                       Pick a starting value \theta.
         output, hidden = rnn(line tensor[i], hidden)
                                                                                                       Until converged:
                                                                                                         for example(s) sentence i:
                                                                eval predictions
    loss = criterion(output, category tensor)
                                                                                                         1. Compute loss I on x
    loss.backward()
                                                                compute gradient
                                                                                                         2. Get gradient g_+ = I'(x_i)
                                                                                                          3. Get scaling factor ρ,
    # Add parameters' gradients to their values, multiplied by learning rate
                                                                                                          4. Set \theta_{t+1} = \theta_t - \rho_t * g_t
    for p in rnn.parameters():
                                                                                                          5. Set t += 1
         p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

http://pytorch.org/tutorials/intermediate/char rnn classification tutorial.html

```
criterion = nn.NLLLoss()
learning rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
def train(category tensor, line tensor):
    hidden = rnn.initHidden()
    rnn.zero grad()
                                                                                                        Set t = 0
    for i in range(line tensor.size()[0]):
                                                                  get predictions
                                                                                                        Pick a starting value \theta.
         output, hidden = rnn(line tensor[i], hidden)
                                                                                                        Until converged:
                                                                                                          for example(s) sentence i:
                                                                 eval predictions
    loss = criterion(output, category tensor)
                                                                                                           1. Compute loss I on x<sub>i</sub>
    loss.backward()
                                                                compute gradient
                                                                                                           2. Get gradient g_+ = l'(x_i)
                                                                                                           3. Get scaling factor ρ.
    # Add parameters' gradients to their values.
                                                        multiplied by learning rat
                                                                                                           4. Set \theta_{t+1} = \theta_t - \rho_t * g_t
    for p in rnn.parameters():
                                                                   perform SGD
                                                                                                           5. Set t += 1
         p.data.add (-learning rate, p.grad.data)
    return output, loss.data[0]
```

Suggested Implementation Changes

```
import torch.nn as nn
from torch.autograd import Variable
class RNN(pn.Module):
    def init (self, input size, hidden size, output size):
                                                                                           current Pytorch refers
        super(RNN, self). init ()
                                                                                           to this a "cell"
        self.hidden size = hidden size
        self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
        self.i2o = nn.Linear(input size + hidden size, output size)
        self.softmax = nn.LogSoftmax()
    def forward(self, input, hidden):
        combined = torch.cat((input, hidden), 1)
        hidden = self.i2h(combined)
        output = self.i2o(combined)
      output = self.softmax(output)
        return output, hidden
    def initHidden(self):
        return Variable(torch.zeros
                                                                nn.CrossEntropyLoss()
                                     criterion = nn.NLLLoss(
n \text{ hidden} = 128
rnn = RNN(n_letters, n_hidden, n_ca learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learning_rate
                                     def train(category tensor, line tensor):
                                        hidden = rnn.initHidden()
                                        rnn.zero grad()
                                        for i in range(line tensor.size()[0]):
                                            output, hidden = rnn(line tensor[i], hidden)
                                        loss = criterion(output, category_tensor)
                                        loss.backward()
                                        # Add parameters' gradients to their values, multiplied by learning rate
                                        for p in rnn.parameters():
                                            p.data.add (-learning rate, p.grad.data)
                                        return output, loss.data[0]
```

Another Solution: LSTMs/GRUs

Sequence-to-Sequence

Note that this still has hidden layers!

https://jeddy92.github.io/JEddy92.github.io/ts_seq2seq_intro,

I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to Sequence Learning with Neural Networks," in *Conference on Advances in Neural Information Processing Systems (NeurIPS)*, Montréal, Canada, 2014, pp. 3104–3112. https://proceedings.neurips.cc/paper files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html

Seq2Seq Tutorial

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Encoder


```
class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size, dropout_p=0.1):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size

        self.embedding = nn.Embedding(input_size, hidden_size)
        self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.dropout = nn.Dropout(dropout_p)

def forward(self, input):
    embedded = self.dropout(self.embedding(input))
    output, hidden = self.gru(embedded)
    return output, hidden
```

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

Decoder

https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

```
class DecoderRNN(nn.Module):
   def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.embedding = nn.Embedding(output_size, hidden_size)
       self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
        self.out = nn.Linear(hidden_size, output_size)
   def forward(self, encoder_outputs, encoder_hidden, target_tensor=None):
        batch_size = encoder_outputs.size(0)
        decoder_input = torch.empty(batch_size, 1, dtype=torch.long,
device=device).fill_(SOS_token)
        decoder_hidden = encoder_hidden
        decoder_outputs = []
       for i in range(MAX_LENGTH):
            decoder_output, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
            decoder_outputs.append(decoder_output)
           if target_tensor is not None:
                # Teacher forcing: Feed the target as the next input
               decoder_input = target_tensor[:, i].unsqueeze(1) # Teacher forcing
            else:
                # Without teacher forcing: use its own predictions as the next input
               _, topi = decoder_output.topk(1)
               decoder_input = topi.squeeze(-1).detach() # detach from history as input
        decoder_outputs = torch.cat(decoder_outputs, dim=1)
       decoder_outputs = F.log_softmax(decoder_outputs, dim=-1)
        return decoder_outputs, decoder_hidden, None # We return 'None' for consistency in the
training loop
   def forward_step(self, input, hidden):
        output = self.embedding(input)
       output = F.relu(output)
       output, hidden = self.gru(output, hidden)
       output = self.out(output)
       return output, hidden
```