CSE 206 (Digital Logic Design Sessional)

Experiment No.: 04
Name of the Experiment:

Comparator, Adder/Sub tractor

Group No.:	06
Writers' Roll:	1805117 1805118
Section:	B2
Department:	CSE
Other Group Members:	1805116 1805119 1805120 1705107
Date of Performance:	31/03/2021
Date of Submission:	03/04/2021

Problem No. 01

Problem Specification:

Design using basic gates, a 2-bit comparator to compare 2-bit numbers P and Q. The circuit should provide 3 output lines to indicate P>Q, P=Q and P<Q.

Required Instruments:

No	Name	Model	Quantity
01	Logisim Software		
02	IC(Hex-Inverter)	74LS04	02
03	IC (Quad 2 input AND)	74LS08	02
04	IC (Quad 2 input OR)	74LS32	02
05	IC (Quad 2 input XOR)	74LS86	01
06	Input Pins		04
07	Output Pins		03
08	Wires		

Truth Table:

P ₁	P ₀	Q1	Q ₀	A(P>Q)	B(P=Q)	C(P <q)< th=""></q)<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

Required Equations:

K-map for A (P>Q):

P_1P_0 Q_1Q_0	00	01	11	10
00	0	0	0	0

01	1	0	0	0
11		1	0	1
10	1	1	0	0

$$A = f(P > Q)$$

$$= P_0Q_1'Q_0' + P_1P_0Q_0' + P_1Q_1'$$

$$= P_1Q_1' + P_0Q_0'(Q_1'+P_1)$$

K-map for B (P=Q):

Q_1Q_0	00	01	11	10
P_1P_0				
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

$$B = f(P = Q)$$

$$=P_{1}P_{0}Q_{1}Q_{0}+P_{1}'P_{0}'Q_{1}'Q_{0}'+P_{1}'P_{0}Q_{1}'Q_{0}+P_{1}P_{0}'Q_{1}Q_{0}'\\$$

=
$$P_1$$
' Q_1 ' (P_0 ' Q_0 '+ P_0 Q_0) + P_1 Q_1 (P_0 ' Q_0 '+ P_0 Q_0)

=
$$(P_0'Q_0'+P_0Q_0)(P_1'Q_1'+P_1Q_1)$$

$$= (P_0 \bigoplus Q_0)' (P_1 \bigoplus Q_1)'$$

K-map for C (P<Q):

Q_1Q_0	00	01	11	10
P_1P_0				

00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	0

$$C = f(P < Q)$$

$$\begin{split} &= P_1 \text{'}P_0 \text{'}Q_0 + P_1 \text{'}Q_1 + P_0 \text{'}Q_1 Q_0 \\ &= P_0 \text{'}Q_0 \left(P_1 \text{'}+Q_1 \right) + P_1 \text{'}Q_1 \end{split}$$

$$= P_0'Q_0(P_1'+Q_1) + P_1'Q_1$$

Circuit Diagram:

Observation:

- 1) We made a truth table and found out the output equations. We simplified the output equations and implemented the simplified form in our diagram.
- 2) We tried to make the circuit such a way that it was not too dense with wires
- 3) We used the documentations of the ICs to make sure the connections were given through the right pins.
- 4) We checked the output according to the truth table.
- 5) We can also take the NOR of (P>Q) and (P<Q) to implement the expression for (P=Q)

Problem No. 02

Problem Specification:

Design a 1-bit full sub tractor circuit using basic logic gates. Inputs are D, E and F denoting minuend, subtrahend and previous borrow respectively. The outputs are R and B representing the difference and output borrow.

Required Instruments:

No	Name	Model	Quantity
01	Logisim Software		
02	IC(Hex-Inverter)	74LS04	01
03	IC (Quad 2 input AND)	74LS08	01
04	IC (Quad 2 input OR)	74LS32	01
05	IC (Quad 2 input XOR)	74LS86	01
06	Input Pins		03

07	Output Pins	02
08	Wires	

Truth Table:

D	E	F	R	В
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

K-map for R:

EF D	00	01	11	10
0	0	1	0	1
1	1	0	1	0

R = D'E'F + D'EF' + DE'F' + DEF

= D'(E'F+EF') + D(E'F'+EF)

 $= D \bigoplus (E \bigoplus F)$

 $= D \bigoplus E \bigoplus F$

K-map for B:

EF D	00	01	11	10
0	0	1	1	1
1	0	0	1	0

B = D'F + D'E + EF

Circuit Diagram:

Observation:

- 1) We made a truth table and found out the output equations. We simplified the output equations and implemented the simplified form in our diagram.
- 2) We tried to make the circuit such a way that it was not too dense with wires

- 3) We used the documentations of the ICs to make sure the connections were given through the right pins.
- 4) We checked the output according to the truth table.
- 5) We use the K-map method to simplify the circuit equations rather than Boolean algebra which is more precise and comprehensive
- 6) We have implemented a full sub tractor which can also be implemented with two half-sub tractor circuits.