

Encryp	otion and	Ta Decryption of	ble 4.1 on Tables f Figure 4.2	or Substi	tution Ciphe
	Plaintext	Ciphertext		Ciphertext	Plaintext
	0000	1110		0000	1110
	0001	0100		0001	0011
	0010	1101		0010	0100
	0011	0001		0011	1000
	0100	0010		0100	0001
	0101	1111		0101	1100
	0110	1011		0110	1010
	0111	1000		0111	1111
	1000	0011		1000	0111
	1001	1010		1001	1101
	1010	0110		1010	1001
	1011	1100		1011	0110
	1100	0101		1100	1011
	1101	1001		1101	0010
	1110	0000		1110	0000
	1111	0111		1111	0101

Ideal Block Cipher

- The scheme on the previous slides is described as an ideal block cipher
 - Because it allows the maximum number of possible encryptions
- For a block cipher with n-bit block
 - A single key will require 2ⁿ mappings to be stored
 - 2n! possible keys are possible
- The size of the key can be very large for large values of n, and this makes the ideal block cipher impractical for real world use

2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

7

Product Cipher

- For this reason, most modern block ciphers are product ciphers (a cipher that repeats itself)
- The product cipher combines a sequence of simple transformations to complete an encryption
- Each transformation is weak, but the repeated application of simple transformations in the sequence leads to strong encryption

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

8

Feistel Cipher

 Feistel proposed the use of a cipher that alternates substitutions and permutations

Substitutions

Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

Permutation

 No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed

- Is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions
- Is the structure used by many significant symmetric block ciphers currently in use

0 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Diffusion and Confusion Terms introduced by Claude Shannon to capture the two basic building blocks for any cryptographic system Shannon's concern was to thwart cryptanalysis based on statistical analysis Diffusion The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext. This is achieved by having each plaintext digit affect the value of many ciphertext digits. Confusion Seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible. Even if the attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce the key

10

Prom a cryptanalysis point of view, we can define diffusion and confusion as follows: Diffusion Prevent the prediction of the key by analyzing the relationship between the plaintext and the cipher text Confusion Prevent the prediction of the key by analyzing the relationship between the ciphertext and the key A good product cipher should therefore contain transformations that enhance both confusion and diffusion

11

Feistel Cipher In a Feistel Cipher, substitutions provide confusion, and permutations provide diffusion Substitutions Confusion Permutation Diffusion

Peistel Cipher Design Features Block size Larger block sizes mean greater secdirity but reduced encryption/decryption speed for a given algorithm Rey size Larger key size means greater security but may decrease encryption/decryption speeds Number of rounds Number of rounds The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security Subkey generation algorithm Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis Ease of analysis Ease of analysis Ease of analysis Ease of analysis If the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalysis on therefore develop a higher level of assurance as to its strength

Data Encryption Standard (DES)

- Issued in 1977 by the National Bureau of Standards (now NIST) as Federal Information Processing Standard 46
- Was the most widely used encryption scheme until the introduction of the Advanced Encryption Standard (AES) in 2001
- Algorithm itself is referred to as the Data Encryption Algorithm (DEA) $\,$
- Data are encrypted in 64-bit blocks using a 56-bit key
 The algorithm transforms 64-bit input in a series of steps into a 64-bit output
- The same steps, with the same key, are used to reverse the encryption

16

17

	Round	Ki	Li	Ri
	IP		5a005a00	3cf03c0f
Table	1	1e030f03080d2930	3cf03c0f	bad22845
	2	0a31293432242318	bad22845	99e9b723
	3	23072318201d0c1d	99e9b723	0bae3b9e
4.2	4	05261d3824311a20	0bae3b9e	42415649
	5	3325340136002c25	42415649	18b3fa41
	6	123a2d0d04262a1c	18b3fa41	9616fe23
	7	021f120b1c130611	9616fe23	67117cf2
	8	1c10372a2832002b	67117cf2	c11bfc09
	9	04292a380c341f03	c11bfc09	887fbc6c
DES	10	2703212607280403	887fbc6c	600f7e8b
- 1	11	2826390c31261504	600f7e8b	f596506e
	12	12071c241a0a0f08	f596506e	738538b8
Example	13	300935393c0d100b	738538b8	c6a62c4e
(Table can be found on page 106 in the textbook)	14	311e09231321182a	c6a62c4e	56b0bd75
TOO III IIIO (GALLOUK)	15	283d3e0227072528	56b0bd75	75e8fd8f
	16	2921080b13143025	75e8fd8f	25896490
	IP-1		da02ce3a	89ecac3b

Round		δ	Round		δ
	02468aceeca86420	1	9	c11bfc09887fbc6c	32
	12468aceeca86420			99f911532eed7d94	
1	3cf03c0fbad22845	1	10	887fbc6c600f7e8b	34
	3cf03c0fbad32845			2eed7d94d0f23094	
2	bad2284599e9b723	5	11	600f7e8bf596506e	37
	bad3284539a9b7a3	1		d0f23094455da9c4	
3	99e9b7230bae3b9e	18	12	f596506e738538b8	31
	39a9b7a3171cb8b3			455da9c47f6e3cf3	
4	0bae3b9e42415649	34	13	738538b8c6a62c4e	29
	171cb8b3ccaca55e			7f6e3cf34bc1a8d9	
5	4241564918b3fa41	37	14	c6a62c4e56b0bd75	33
	ccaca55ed16c3653			4bc1a8d91e07d409	
6	18b3fa419616fe23	33	15	56b0bd7575e8fd8f	31
	d16c3653cf402c68			1e07d4091ce2e6dc	
7	9616fe2367117cf2	32	16	75e8fd8f25896490	32
	cf402c682b2cefbc			1ce2e6dc365e5f59	
8	67117cf2c11bfc09	33	IP-1	da02ce3a89ecac3b	32
	2b2cefbc99f91153			057cde97d7683f2a	

Round		δ	Round		δ
	02468aceeca86420	0	9	c11bfc09887fbc6c	34
	02468aceeca86420			548f1de471f64dfd	
1	3cf03c0fbad22845	3	10	887fbc6c600f7e8b	36
	3cf03c0f9ad628c5			71f64dfd4279876c	
2	bad2284599e9b723	11	11	600f7e8bf596506e	32
	9ad628c59939136b		8	4279876c399fdc0d	
3	99e9b7230bae3b9e	25	12	f596506e738538b8	28
	9939136b768067b7		3	399fdc0d6d208dbb	
4	0bae3b9e42415649	29	13	738538b8c6a62c4e	33
	768067b75a8807c5			6d208dbbb9bdeeaa	
5	4241564918b3fa41	26	14	c6a62c4e56b0bd75	30
	5a8807c5488dbe94		§	b9bdeeaad2c3a56f	
6	18b3fa419616fe23	26	15	56b0bd7575e8fd8f	33
	488dbe94aba7fe53			d2c3a56f2765c1fb	
7	9616fe2367117cf2	27	16	75e8fd8f25896490	30
	aba7fe53177d21e4		3	2765c1fb01263dc4	
8	67117cf2c11bfc09	32	IP-1	da02ce3a89ecac3b	30
	177d21e4548f1de4		3	ee92b50606b62b0b	

20

Table 4.5 Average Time Required for Exhaustive Key Search # of Alternative Keys | Time | (10° | decryptions/sec) | 2½° s = | 7.2 * 10½° | 1.125 years | 2½° s = | 2½ Key Size (Bits) Time (10¹³ decryptions/sec) 56 DES 1 hour 128 AES 5.3 * 10¹⁷ years 168 Triple DES 5.8 * 10²⁹ years $2^{192} \approx 6.3 * 10^{57}$ $2^{256} \approx 1.2 * 10^{77}$ 2¹⁹¹ ≈ 9.8 * 10⁴⁰ years 2²⁵⁵ ns ≈ 1.8 * 10⁶⁰ years 2 * 10²⁶ ns ≈ 6.3 * 10⁹ years AES 9.8 * 10³⁶ years 192 256 AES 1.8 * 10⁵⁶ years 26 Characters (Permutation) 26! = 4 * 10²⁶ 6.3 * 10⁶ years Monoalphabetic (Table can be found on page 109 in the textbo

Strength of DES

- Timing attacks
 - One in which information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertexts
 - Exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs
 - So far it appears unlikely that this technique will ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES

Pearson Education, Inc., Hoboken, NJ. All rights reserved.

22

Block Cipher Design Principles: Number of Rounds In general, the criterion should be that the number of rounds, the more difficult it is to perform cryptanalysis require greater effort than a simple brute-force key search attack 1 If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search attack

23

Block Cipher Design Principles: Design of Function F The heart of a Feistel block cipher is the function F The more nonlinear F, the more difficult any type of cryptanalysis will be The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function States that any output bit j of an S-box should change with probability 1/2 when any single input bit is inverted for all i, j and k States that any output bit j of an S-box should change with probability 1/2 when any single input bit is inverted for all i, j and k

Block Cipher Design Principles: Key Schedule Algorithm

- With any Feistel block cipher, the key is used to generate one subkey for each round
- In general, we would like to select subkeys to maximize the difficulty of deducing individual subkeys and the difficulty of working back to the main key
- It is suggested that, at a minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion

arson Education, Inc., Hoboken, NJ, All rights reserved.

25

NEXT COUPLE OF SLIDES ARE FOR YOU TO BETTER UNDERSTAND HOW DES WORKS, WHAT IS S-BOX, P-BOX, FUNCTION, etc.

AT EACH ROUND ONLY THE KEY AND THE INPUT CHANGES

S-BOX IN DES ARE IRREVERSABLE (I: 48 bits O:32 bits)

© 2020 Pearson Education Inc. Hoboken N.I. All rights reserved.

26

11110001111111111111111111111111111111								
	Į	The	Initia	l Pei	mut	ation	ı: IP	
IP (Initial Permutation)			- 10	0.4	00	- 10		_
	58	50	42	34	26	18	10	2
	60 62	52 54	44 46	36 38	28 30	20 22	12 14	6
	64	56	48	30 40		24	16	•
	57	49	41	33	25	17	9	,
FP (Final Permutation)	59		43	35	27	19	11	3
Tr (rmai reimidation)	61	53	45	37			13	į
					20	41	10	•

32

Summary

- Understand the distinction between stream ciphers and block ciphers
- Present an overview of the Feistel cipher and explain how decryption is the inverse of encryption
- Present an overview of Data Encryption Standard (DES)
- Explain the concept of the avalanche effect
 - Discuss the cryptographic strength of DES
 - Summarize the principal block cipher design principles