Statistical Inference and Multivariate Analysis (MA324)

Lecture 32

Regression: Influential observations, Variable selection, Multicolinearity

Indian Institute of Technology Guwahati

Jan-May 2023

The PRESS Statistic

- PRESS: PRrediction Error Sum of Squares
- Delete i^{th} observation. Fit the model on remaining (n-1) observations. Now, predict y_i . Let the corresponding prediction error be $e_{(i)}=y_i-\hat{y}_{(i)}$ (PRESS Residual).
- ullet $e_{(i)}=rac{e_i}{1-h_{ii}}.$ (Can be shown)
- Large values of $e_{(i)}$ implies potential influential observations.
- Large difference between e_i and $e_{(i)}$ indicates an observation where model fit is quite well but a model built without that predicts poorly.
- $Var(e_{(i)}) = \frac{\sigma^2}{1 h_{ii}}$.

• Standardized PRESS residual is $\frac{e_{(i)}}{\sqrt{Var(e_{(i)})}} = \frac{e_i}{\sqrt{\sigma^2(1-h_{ii})}}$, which is same as the Studentized residuals. It can be estimated by replacing σ^2 by MS_{Res} .

•
$$PRESS = \sum_{i=1}^{n} e_{(i)}^2 = \sum_{i=1}^{n} \left(\frac{e_i}{1 - h_{ii}}\right)^2$$
.

- PRESS is a measure of how well a regression model perform in predicting new observations.
- ullet R^2 for prediction :

 $R_{prediction}^2=1-\frac{PRESS}{SS_T}$: gives indication of the prediction capability of the regression model.

Using PRESS, we may compare model.

Variable Selection

- Criteria for Evaluating Subset Regression Models:
 - \bullet R^2
 - R_{Adj}^2
 - Residual Mean Square : $MS_{Res}(p) \equiv R^2_{Adj(p)}$.
 - PRESS Statistic
- Techniques:
 - All possible Regression.
 - Step-wise Type Procedures :
 - \bullet Forward Selection : $F = \frac{SS_R(x_2|x_1)}{MS_{Res}(x_1,x_2)}$
 - Backward elimination
 - Step-wise Regression

Multicollinearity

- Near linear relationship among regressor $(\sum_{j=1}^{p} t_j x_j \simeq 0)$
- Effect of Multicollinearity:
 - Consider scaled response and regressor (length unit).
 - Consider $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$.
 - $\hat{\beta}_1 = \frac{r_{1y} r_{12} r_{2y}}{1 r_{2z}^2}$, and $\hat{\beta}_2 = \frac{r_{2y} r_{12} r_{1y}}{1 r_{2z}^2}$; where r_{12} is the simple correlation between x_1 and x_2 , and r_{jy} is the simple correlation between x_j and y, j = 1, 2.
 - $Var(\hat{\beta}_j) = \frac{\sigma^2}{1-r^2}$, $Cov(\hat{\beta}_1, \hat{\beta}_2) = \frac{-r_{12}\sigma^2}{1-r^2}$.
 - Strong multicollinearity between x_1 and x_2 indicates the r_{12} will be large.
 - If $|r_{12}| \to 1$, $Var(\hat{\beta_i}) \to \infty$, and $|Cov(\hat{\beta_1}, \hat{\beta_2})| \to \infty$.
 - The above large variances and covariances means different sample taken at the same x level could lead to widely different estimates of the model parameters. 4□ > 4回 > 4 至 > 4 至 > 至 り Q C

Effect of Multicollinearity (contd.):

$$L_1^2 = (\hat{\beta} - \beta)^T (\hat{\beta} - \beta).$$

- $E(L_1^2)=\sum_{j=1}^p Var(\hat{\beta_j})=\sigma^2 Tr(X^{'}X)^{-1}=\sigma^2\sum_{j=1}^p \frac{1}{\lambda_j}$, where λ_j 's are eigenvalues of $(X^{'}X)$.
- If $(X^{'}X)$ is ill-conditioned then at least one λ_{j} will be small $\Rightarrow E(L_{1}^{2})$ is big.
- Therefore, we have $E(\hat{\boldsymbol{\beta}}^T\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}'\boldsymbol{\beta} + \sigma^2 Tr(\boldsymbol{X}'\boldsymbol{X})^{-1}$, implies magnitude of $\hat{\boldsymbol{\beta}}$ are large.

Multicollinearity Diagnostics

- Examination of correlation matrix $(X^{'}X)$:
 - If x_i and x_j are nearly linearly dependent, then $|r_{ij}|$ should be close to 1.
 - However, this procedure is helpful to detect near linear dependence between a pair of regressors only.
- Variance Inflation Factors (VIFs):
 - $Var(\hat{\beta}_j) = \sigma^2 c_{jj}, C = (X'X)^{-1}$. It can be shown that $c_{jj} = (1 R_j^2)^{-1} = \frac{1}{1 R_j^2}$, where R_j^2 is the coefficient of determination obtained when x_j is regressed on remaining (k-1) regressors.
 - $VIF_j=rac{1}{1-R_j^2}$: This measures the factor by which the variance of \hat{eta}_j inflated due to the near linear dependence.
 - \bullet Rule of thumb : If any of VIF>5, the associated coefficient is estimated poorly due to multicollinearity.

- Eigen system Analysis of (X'X):
 - The eigen values, $\lambda_1, \lambda_2, ..., \lambda_p$, can be used to see the extent of multicollinearity.
 - Small eigen values (one or more) ⇒ multicollinearity.
 - Condition number, $k = \frac{\lambda_{max}}{\lambda_{min}}$.
 - Rule of thumb :

 $k < 100 \rightarrow$ No serious problem with multicollinearity.

 $100 \leq k < 1000 \rightarrow$ moderate to strong multicollinearity.

 $k \ge 1000 \to \text{severe multicollinearity}.$

• Condition indices : $k_j = \frac{\lambda_{max}}{\lambda_j}, \ j=1,2,...,p$

The number of j's such that, $k_j \ge 1000 \rightarrow$ provide useful information on the number of near linear dependence.

Method for dealing with multicollinearity

- Source of multicollinearity:
 - Data collection method (ex: biased sample) → collecting more data.
 - Constraints in model or population (ex: family income (x₁) and household size (x₂)) → Model respecification
 - Model specification (ex: range of x is small, then adding x^2 in the model) \to Model respecification
 - An overdefined model (ex: adding more regressors) → Model respecification, and other method of estimate like Ridge regression.