Lab 1 - Ecology

 $1 + n + (n\lambda 2)/2 + (n\lambda 3)/6$

2 + 2

```
## [1] 4
a = 2 + 2
a = 3 * (4 + 5)
x = 5
y = 2
z1 = x * y
z2 = x/y
z3 = x \wedge y
## [1] 2.5
z3
## [1] 25
z3 = 2 * x \wedge y
C = (A + 2 * sqrt(A))/(A + 5 * sqrt(A))
## [1] 0.5544
C = A + 2 * sqrt(A)/A + 5 * sqrt(A)
Exercise 2.1
## [1] "equal"
if (num.1 != num.2) "different"
Ex.2
n < -0.2
1 + n
## [1] 1.2
1 + n + (n^2)/2
## [1] 1.22
```

setwd("C:/Users/Alexandre/Documents/Ale/Dr/PHD/Courses/EEB1320 Ecology/Labs/01_Lab")

```
## [1] 1.221
 1 + n + (n^2)/2 + (n^3)/6 + (n^4)/8
## [1] 1.222
1 + n + (n^2)/2 + (n^3)/6 + (n^4)/8 + (n^5)/10
## [1] 1.222
 exp(1)^n
## [1] 1.221
What is the point of this exercise?
To better understand the exp() funcion in R
Ex. 3
bell(1)
## [1] 0.242
bel1(2)
 ## [1] 0.05399
 if (bell(1) == dnorm(1)) "correct"
## [1] "correct"
if (bell(1) != dnorm(1)) "incorrect"
 if (bell(2) == dnorm(2)) "correct"
 ## [1] "correct"
if (bell(2) != dnorm(2)) "incorrect"
Exercise 3.1
apropos("sin")
         ".__C__missing"
"asin"
     [1]
                                 "as.single"
                                                        "as.single.default"
    [4]
[7]
[10]
[13]
                                 "asinh"
                                                        "deviceIsInteractive"
 ##
                                 "isIncomplete"
"sin"
                                                        "missing'
"single"
 ##
         "is.single"
        "missingArg"
"sinh"
##
                                 "sink"
                                                        "sink.number"
```

help.search("sin")

```
## starting httpd help server ... done
```

```
help("sin")
`?`(sin)

Light = c(20, 20, 20, 20, 21, 24, 44, 60, 90, 94, 101)

rmax = c(1.73, 1.65, 2.02, 1.89, 2.61, 1.36, 2.37, 2.08, 2.69, 2.32, 3.67)

plot(Light, rmax)

fit = lm(rmax ~ Light)

summary(fit)
```

```
##
## Call:
##
   lm(formula = rmax \sim Light)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
## -0.548 -0.261 -0.117 0.178
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
                                                 0.00012 ***
## (Intercept)
                  1.58095
                               0.24452
                                           6.47
## Light
                                                  0.01165 *
                  0.01362
                               0.00432
                                            3.15
## --
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.458 on 9 degrees of freedom
## Multiple R-squared: 0.525, Adjusted R-squared: 0.472
## F-statistic: 9.95 on 1 and 9 DF, p-value: 0.0117
```

abline(fit)

coef(fit)

```
## (Intercept) Light
## 1.58095 0.01362
```

```
names(fit) #or
```

[1] "coefficients" "residuals" "effects" "rank"

```
attributes(fit)
## $names
## [1] "coefficients" "residuals"
## [5] "fitted.values" "assign"
## [9] "xlevels" "call"
                                                                            "effects"
"qr"
"terms"
                                                                                                           "rank"
"df.residual"
"model"
 ##
 ## $class
## [1] "lm"
 fit$coefficients
 ## (Intercept)
## 1.58095
                                     Light 0.01362
 plot(fit$residuals)
                                                                                     o
     9.0
     0.4
     0.2
fit$residuals
                           0
                                  0
     0.0
                                                                       0
     -0.2
     -0.4
                                                                              0
                    2
                                  4
                                                 6
                                                                8
                                                                             10
                                               Index
 plot(fit$fitted.values)
                                                                       0
     2.6
fit$fitted.values
     2.4
```

"qr"

"terms"

"df.residual" "model"

[5] [9]

"fitted.values" "assign" "xlevels" "call"

fit\$model

```
rmax Light
##
##
                       20
20
20
20
21
21
##
##
    2
3
          1.65
          2.02
##
          1.89
##
          2.61
##
    7
8
9
10
##
                       44
          2.08
                       60
         2.69
2.32
3.67
##
                       90
                       94
##
                     101
##
```

getwd()

[1] "C:/Users/Alexandre/Documents/Ale/Dr/PHD/Courses/EEB1320 Ecology/Labs/01_Lab"

 $\tt setwd("C:/Users/Alexandre/Documents/Ale/Dr/PHD/Courses/EEB1320 Ecology/Labs/01_Lab") source("Intro1.R")$


```
X = read.table("ChlorellaGrowth.txt", header = TRUE, sep = ",")
X
```

```
## light.level Chlorella.maximum.growth.rate
## 1 20 1.73
## 2 20 1.65
## 3 20 2.02
```

##	4	20	1.89
##	5	21	2.61
##	6	24	1.36
##	7	44	2.37
##	8	60	2.08
##		90	2.69
##		94	2.32
##		101	2.32 3.67
""			3.07

source("Intro2.R")

Data from Fussmann et al. (2000) system

Answer Exercise 5.1

source("Intro3.R")

Data from Fussmann et al. (2000) system

source("Intro2.R")

Data from Fussmann et al. (2000) system

plot(fit)

Im(rmax ~ Light)

####Create a plot of growth rate versus light intensity with the x-axis running ####from 0 to 120 and the y-axis running from 1 to 4.

$$plot(Light, rmax, xlim = c(0, 120), ylim = c(1, 4))$$

Exercise 5.4

```
# Intro2.R with a different name
source("Intro4.R")
```

Data from Fussmann et al. (2000) sysData from Fussmann et al. (2000) sys

Exercise 5.5

```
`?`(par)
x <- 3:8
x
```

[1] 3 4 5 6 7 8

$$y = 5 * x + 3$$

[1] 18 23 28 33 38 43

$$plot(x, y, type = "l", lty = 1, col = "red")$$

$$plot(x, y, type = "l", lty = 2, col = "blue")$$

$$plot(x, y, type = "l", lty = 3, col = "brown")$$

$$plot(x, y, type = "l", lty = 4, col = "black")$$


```
png("Fig_ex.png", bg = "white")
par(mfcol = c(2, 2))
plot(x, y, col = "blue")
abline(h = 30, col = "green")
abline(v = 5, col = "purple")
title("points blue with abline h=30, v=5")
plot(x, y, type = "n")
title("plot n")
plot(x, y, type = "b", col = c("red", "blue"))
title("type b = both points and lines with two colors")
plot(x, y, type = "p", col = "blue")
lines(x, y, col = "red")
title("points in blue with lines in red")
dev.off()
## pdf
##
install.packages("plotrix")
```

```
## Installing package into 'C:/Users/Alexandre/Documents/R/win-library/3.0'
## (as 'lib' is unspecified)
```

```
## Error: trying to use CRAN without setting a mirror
```

```
install.packages(c("ellipse", "plotrix"))
```

```
## Installing packages into 'C:/Users/Alexandre/Documents/R/win-library/3.0' ## (as 'lib' is unspecified)
```

```
## Error: trying to use CRAN without setting a mirror
```

```
install.packages("plotrix", repos = NULL)
```

```
## Installing package into 'C:/Users/Alexandre/Documents/R/win-library/3.0'
## (as 'lib' is unspecified)
```

```
## Error: zip file 'plotrix' not found
```

```
install.packages("emdbook")
```

```
## Installing package into 'C:/Users/Alexandre/Documents/R/win-library/3.0' ## (as 'lib' is unspecified)
```

```
## Error: trying to use CRAN without setting a mirror
 library(emdbook)
 ## Loading required package: MASS
 ## Loading required package: lattice
 ## Loading required package: plyr
 get.emdbook.packages()
 ## Warning: The adapt package is no longer available. You can work through ## 99% of the material in _Ecological Models and Data_ without it; for more
 ## information see http://emdbolker.wikidot.com/r
 initialsize = c(1, 3, 5, 7, 9, 11)
(finalsize = initialsize + 1)
 ## [1] 2 4 6 8 10 12
 (newsize = sqrt(initialsize))
 ## [1] 1.000 1.732 2.236 2.646 3.000 3.317
 initialsize^2
 ## [1]
           1
                9 25 49 81 121
 1:8
 ## [1] 1 2 3 4 5 6 7 8
Exercise 8.1
 (v1 \leftarrow seq(1, 13, by = 4))
 ## [1] 1 5 9 13
 (v2 \leftarrow seq(1, 5, by = 0.2))
     [1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
 ## [18] 4.4 4.6 4.8 5.0
 rep(3, 5)
 ## [1] 3 3 3 3 3
 rep(1:3, 3)
 ## [1] 1 2 3 1 2 3 1 2 3
 rep(1:3, each = 3)
 ## [1] 1 1 1 2 2 2 3 3 3
```

```
## [1] 3 3 4 4 4 4 4
z = c(1, 3, 5, 7, 9, 11)
z[3]
## [1] 5
z.1 \leftarrow seq(1, 11, by = 2)
## [1] 1 3 5 7 9 11
z[2:5]
## [1] 3 5 7 9
 v = z[seq(1, 5, 2)]
## [1] 1 5 9
z[c(1, 2, 5)]
## [1] 1 3 9
z[1] = 12
## [1] 12 3 5 7 9 11
z[c(1, 3, 5)] = c(22, 33, 44)
z[1, 3, 5] = c(22, 33, 44)
## Error: incorrect number of subscripts
# z is a vector, and thus their are no 3 col, just one.
Exercise 8.2
z[c(2, 1, 3)]
## [1] 3 22 33
Exercise 8.3
x <- 1:10
y <- ((x - 1)/(x + 1))
y
## [1] 0.0000 0.3333 0.5000 0.6000 0.6667 0.7143 0.7500 0.7778 0.8000 0.8182
```

rep(c(3, 4), c(2, 5))

plot(y, x, type = "b")

Exercise 8.4

```
n.1 <- 1:10
r.1 <- 0.5
G.1 <- r.1^n.1
G.1
```

```
## [1] 0.5000000 0.2500000 0.1250000 0.0625000 0.0312500 0.0156250 0.0078125
## [8] 0.0039062 0.0019531 0.0009766
```

```
sum(G.1)
```

```
## [1] 0.999
```

```
1/(1 - r.1)
```

```
## [1] 2
```

```
n.2 <- 1:50
r.2 <- 0.5
G.2 <- r.2^n.2
G.2
```

```
5.000e-01 2.500e-01 1.250e-01 6.250e-02 3.125e-02 1.562e-02 7.812e-03
    [8]
[15]
          3.906e-03 1.953e-03 9.766e-04 4.883e-04 2.441e-04 1.221e-04 6.104e-05 3.052e-05 1.526e-05 7.629e-06 3.815e-06 1.907e-06 9.537e-07 4.768e-07 2.384e-07 1.192e-07 5.960e-08 2.980e-08 1.490e-08 7.451e-09 3.725e-09
##
##
    [22]
##
##
    [29]
          1.863e-09 9.313e-10 4.657e-10 2.328e-10 1.164e-10 5.821e-11 2.910e-11
          1.455e-11 7.276e-12 3.638e-12 1.819e-12 9.095e-13 4.547e-13 2.274e-13
##
    [36]
          1.137e-13 5.684e-14 2.842e-14 1.421e-14 7.105e-15 3.553e-15 1.776e-15
##
    [43]
    [50] 8.882e-16
##
```

```
sum(G.2)
```

```
## [1] 1
x = 1.999999
## [1] 2
x - 2
## [1] -1e-06
x = 2
Х
## [1] 2
x - 2
## [1] 0
section 8.3 Logical Operators
a = 1
b = 3
c = a < b

d = (a > b)
## [1] TRUE
d
## [1] FALSE
x = 1:5
(b = (x <= 3))
## [1] TRUE TRUE TRUE FALSE FALSE
a = 1:3
b = 2:4
## [1] 1 2 3
b
## [1] 2 3 4
a == b
## [1] FALSE FALSE FALSE
a = b
a == b
```

```
## [1] TRUE TRUE TRUE
a = c(1, 2, 3, 4)

b = c(1, 1, 5, 5)
## [1] 1 2 3 4
## [1] 1 1 5 5
 (a < b) & (a > 3)
## [1] FALSE FALSE TRUE
 a < b
## [1] FALSE FALSE TRUE TRUE
 (a < b) | (a > 3)
## [1] FALSE FALSE TRUE TRUE
 X = read.table("ChlorellaGrowth.txt", header = TRUE, sep = ",")
Light = X[, 1]
rmax = X[, 2]
lowLight = Light[Light < 50]</pre>
 lowLightrmax = rmax[Light < 50]</pre>
 lowLight
## [1] 20 20 20 20 21 24 44
lowLightrmax
## [1] 1.73 1.65 2.02 1.89 2.61 1.36 2.37
Exercise 8.5
 Light2 <- Light
 rmax2 = rmax
Light2 = Light2[Light2 < 50]
 Light2
## [1] 20 20 20 20 21 24 44
 rmax2 = rmax2[Light2 < 50]
That will be wrong because you are subsetting a different object.
 rmax2
```

[1] 1.73 1.65 2.02 1.89 2.61 1.36 2.37 2.08 2.69 2.32 3.67

```
rmax2[rmax2 < 2 \mid rmax > 3]
 ## [1] 1.73 1.65 1.89 1.36 3.67
 Light[Light < 50 \& rmax <= 2]
 ## [1] 20 20 20 24
 rmax[Light < 50 & rmax <= 2]</pre>
 ## [1] 1.73 1.65 1.89 1.36
Exercise 8.6
 set.seed(273)
 ns <- runif(20)
 mean(ns)
## [1] 0.4395
 ns[ns < mean(ns)]</pre>
 ## [1] 0.31074 0.19282 0.13099 0.37142 0.27957 0.11891 0.23134 0.15845 0.02412
 ns
     [1] 0.31074 0.44191 0.19282 0.68469 0.92439 0.13099 0.73142 0.59988 [9] 0.37142 0.27957 0.63563 0.51794 0.11891 0.72757 0.23134 0.15845
 ## [17] 0.55481 0.02412 0.54338 0.60947
Exercise 8.7
which(ns < mean(ns))</pre>
 ## [1] 1 3 6 9 10 13 15 16 18
 x = c(first = 7, second = 5, third = 2)
 names(x)
 ## [1] "first" "second" "third"
 x["first"]
 ## first
 ##
x[c("third", "first")]
 ## third first
```

Evercise 8 8

```
nn <- runif(20)
```

First option

```
ss <- seq(1, length(nn), 2)
nn</pre>
```

```
## [1] 0.73967 0.33955 0.35879 0.70938 0.07618 0.67201 0.50598 0.14217
## [9] 0.03021 0.03351 0.28509 0.07408 0.36258 0.25599 0.24189 0.01919
## [17] 0.24005 0.54557 0.95218 0.39064
```

```
nn[ss]
```

```
## [1] 0.73967 0.35879 0.07618 0.50598 0.03021 0.28509 0.36258 0.24189
## [9] 0.24005 0.95218
```

Second option

```
r <- rep(c("odd", "even"), length(nn)/2)
names(nn) <- r
nn[which(names(nn) == "odd")]</pre>
```

Section 9.1 Creating matrices

```
(x = matrix(1:6, nrow = 2, ncol = 3))
```

```
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
```

```
(A = matrix(1:9, nrow = 3, ncol = 3, byrow = TRUE))
```

```
## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
## [3,] 7 8 9
```

```
matrix(1, nrow = 10, ncol = 10)
```

```
[,2]
                                                                   [,9]
1
            [,1]
1
                          [,3]
1
                                 [,4] [,5]
                                              [,6]
1
                                                            [,8]
1
      [1,]
[2,]
##
1
                       1
                                     1
                                                   1
                                                                       1
                1
1
                       1
                       1
                                                                1
                1
                       1
                              1
                                            1
                                                                1
                                                                               1
                                                                       1
                       1
                                                                       1
                       1
                                                   1
                                                                1
                                                                       1
                       1
                                            1
1
                                                   1
                                                                1
                                                                       1
                                                                               1
                                                                               1
```

Exercise 9.1

```
v \leftarrow rep(c(1, 2), 4)
(X = matrix(v, nrow = 2, ncol = 4))
            [,1] [,2] [,3] [,4]

1 1 1 1

2 2 2 2
     [1,]
[2,]
 ##
Exercise 9.2
 set.seed(273)
 n < -rnorm(35, 1, 2)
 (W = matrix(n, nrow = 5, ncol = 7))
                          [,2]
1.6936
                                     [,3]
2.2846
0.2766
                                                           [,5]
-0.1483
                                                                      [,6]
-5.0065
             [,1]
0.01249
                                               [,4]
-0.1356
                                                                                   [,7]
1.4362
     [1,]
[2,]
[3,]
[4,]
[5,]
 ##
                                                0.2969
                                                                      2.4682
            -0.73510
                                                            1.1784
                                                                                  -1.2505
                         -1.3610
             3.87044
2.23422
                                                                                   0.3639
0.2761
                                               -0.4005
                         -0.4689
                                    -1.8625
                                                            1.3951 -2.0472
 ##
                          1.2756
                                     1.0300 -0.4123
                                                          -1.1139 -2.2713
                                                            2.2078 -0.6704
                                    -2.7554
             0.34383
                          1.2179
                                                4.3327
                                                                                   3.6695
 diag(1, 5)
            [,1]
                   [,2]
                          [,3] [,4]
                                        [,5]
     [1,]
[2,]
[3,]
[4,]
[5,]
 ##
                1
                        0
                               0
                                      0
 ##
                0
                        1
                               0
                                      0
                                             0
 ##
                0
                        0
                               1
                                      0
                                             0
 ##
                               0
                        0
                0
                                      1
                                             0
 diag(1:5, 5)
```

```
[,1]
                       [,2]
                                [,3]
                                         [,4]
     [1,]
[2,]
[3,]
[4,]
[5,]
##
##
                            0
2
                                     Ō
                                              Ō
                   0
                                     0
                                              0
                                                       0
##
                   0
                            0
                                     3
                                              0
                                                       0
##
                   0
                            0
                                     0
                   0
                            0
```

```
diag(1:2, 5)
```

```
[,2]
0
              [,1]
1
                               [,3]
                                        [,4]
    [1,]
[2,]
[3,]
[4,]
[5,]
##
##
                   0
                            2
                                     0
                                                      0
                                             0
##
                   0
                            0
                                     1
##
                            0
                                     0
                   0
                                                      0
##
                                                      1
```

```
# Didn't produce a warning for me, but I believe that since 5 is an odd
# number, and 1:2 is an even number, it will not fit until the diagonal
A = matrix(0, nrow = 3, ncol = 4)
data.entry(A)
A
```

```
## var1 var2 var3 var4
## [1,] 0 0 0 0
## [2,] 0 0 0 0
## [3,] 0 0 0 0
```

9.2 Section

```
(C = cbind(1:3, 4:6, 5:7))
```

```
[,1] [,2] [,3]
1 4 5
2 5 6
3 6 7
 ## [1,]
## [2,]
## [3,]
 (D = rbind(1:3, 4:6))
 ## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6
Exercise 9.3
 rbind(C, D)
             [,1] [,2] [,3]

1 4 5

2 5 6

3 6 7

1 2 3

4 5 6
 ## [1,]
## [2,]
## [3,]
## [4,]
## [5,]
 cbind(C, C)
        [,1] [,2] [,3] [,4] [,5] [,6]
1,] 1 4 5 1 4 5
2,] 2 5 6 2 5 6
3,] 3 6 7 3 6 7
 cbind(C, D)
 ## Error: number of rows of matrices must match (see arg 2)
The number of rows don't match
9.3 Section
```

```
A[2, 2:3]
## var2 var3
## 0 0
(B = A[2:3, 1:2])
       var1 var2
## [1,]
## [2,]
         0 0
(first.row = A[1, ])
```

```
## var1 var2 var3 var4 ## 0 0 0 0
```

```
(second.column = A[, 2])
```

```
## [1] 0 0 0
###(What does A[,] do?) ###A[,] # select all columns and rows, the same of A[]
 (A[1, 1] = 12)
## [1] 12
 (A[1, ] = c(2, 4, 5, 6))
## [1] 2 4 5 6
which(A == 6, arr.ind = TRUE)
          row col
## [1,]
10.1 Section
 L = list(A = x, B = y, C = c("a", "b", "c"))
## $A
## first second third
## 7 5 2
 ##
 ## $B
## [1] 0.0000 0.3333 0.5000 0.6000 0.6667 0.7143 0.7500 0.7778 0.8000 0.8182
## $C
## [1] "a" "b" "c"
 L$A
 ## first second third
## 7 5 2
```

L[["A"]]

L[[1]]

first second third 7 5 2

first second third