Chapter 4: The Enhanced ER Model and Business Rules

Modern Database Management
8th Edition

Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden

alternate Key

For example, in an employee table, empno is a primary key, empname is a alternate key that may not be unique but still helps in identifying a row of the table.

Objectives

- Definition of terms
- Use of supertype/subtype relationships
- Use of generalization and specialization techniques
- Specification of completeness and disjointness constraints
- Develop supertype/subtype hierarchies for realistic business situations
- Develop entity clusters
- Explain universal data model
- Name categories of business rules
- Define operational constraints graphically and in English

Supertypes and Subtypes

- **Subtype:** A subgrouping of the entities in an entity type that has attributes distinct from those in other subgroupings
- **Supertype:** A generic entity type that has a relationship with one or more subtypes
- Attribute Inheritance:
 - Subtype entities inherit values of all attributes of the supertype
 - An instance of a subtype is also an instance of the supertype

Figure 4-1 Basic notation for supertype/subtype

Figure 4-1 Basic notation for supertype/subtype (cont.)

Different modeling tools may have different notation for the same modeling constructs

Figure 4-2 Employee supertype with three subtypes

Relationships and Subtypes

- Relationships at the *supertype* level indicate that all subtypes will participate in the relationship
- The instances of a *subtype* may participate in a relationship unique to that subtype. In this situation, the relationship is shown at the subtype level

Figure 4-3 Supertype/subtype relationships in a hospital

Generalization and Specialization

- Generalization: The process of defining a more general entity type from a set of more specialized entity types. BOTTOM-UP
- **Specialization:** The process of defining one or more subtypes of the supertype and forming supertype/subtype relationships. TOP-DOWN

Figure 4-4 Example of generalization

a) Three entity types: CAR, TRUCK, and MOTORCYCLE

CAR

Vehicle_ID

Price

Engine_Displacement

Vehicle_Name

(Make, Model)

No_of_Passengers

TRUCK

Vehicle_ID

Price

Engine_Displacement

Vehicle_Name

(Make, Model)

Capacity

Cab_Type

MOTORCYCLE

Vehicle_ID

Price

Engine_Displacement

Vehicle_Name

(Make, Model)

All these types of vehicles have common attributes

Figure 4-4 Example of generalization (cont.)

b) Generalization to VEHICLE supertype

So we put the shared attributes in a supertype

Note: no subtype for motorcycle, since it has no unique attributes

Figure 4-5 Example of specialization

Figure 4-5 Example of specialization (cont.)

b) Specialization to MANUFACTURED PART and PURCHASED PART

Note: multivalued attribute was replaced by an associative entity relationship to another entity

Constraints in Supertype/ Completeness Constraint

Completeness Constraints:

Whether an instance of a supertype must also be a member of at least one subtype

- Total Specialization Rule: Yes (double line)
- Partial Specialization Rule: No (single line)

Figure 4-6 Examples of completeness constraints

a) Total specialization rule

Figure 4-6 Examples of completeness constraints (cont.)

b) Partial specialization rule

A vehicle could be a car, a truck, or neither

Constraints in Supertype/ Disjointness constraint

- Disjointness Constraints: Whether an instance of a supertype may simultaneously be a member of two (or more) subtypes
 - Disjoint Rule: An instance of the supertype can be only ONE of the subtypes
 - Overlap Rule: An instance of the supertype could be more than one of the subtypes

Figure 4-7 Examples of disjointness constraints

a) Disjoint rule

Figure 4-7 Examples of disjointness constraints (cont.)

Constraints in Supertype/ Subtype Discriminators

- **Subtype Discriminator**: An attribute of the supertype whose values determine the target subtype(s)
 - Disjoint a simple attribute with alternative values to indicate the possible subtypes
 - Overlapping a composite attribute whose subparts pertain to different subtypes. Each subpart contains a boolean value to indicate whether or not the instance belongs to the associated subtype

Figure 4-8 Introducing a subtype discriminator (disjoint rule)

Figure 4-9 Subtype discriminator (overlap rule)

Figure 4-10 Example of supertype/subtype hierarchy

Entity Clusters

- EER diagrams are difficult to read when there are too many entities and relationships
- Solution: Group entities and relationships into entity clusters
- Entity cluster: Set of one or more entity types and associated relationships grouped into a single abstract entity type

Figure 4-13a
Possible entity
clusters for Pine
Valley Furniture in
Microsoft Visio

Related groups of entities could become clusters

Figure 4-13b EER diagram of PVF entity clusters

Figure 4-14 Manufacturing entity cluster

Detail for a single cluster

Packaged data models provide generic models that can be customized for a particular organization's business rules

Business rules

- Statements that define or constrain some aspect of the business
- Classification of business rules:
 - Derivation—rule derived from other knowledge, often in the form of a formula using attribute values
 - Structural assertion—rule expressing static structure.
 Includes attributes, relationships, and definitions
 - Action assertion—rule expressing constraints/control of organizational actions

Figure 4-18
EER diagram
to describe
business
rules

Types of Action Assertions

- Result from assertion
 - Condition IF/THEN rule
 - Integrity constraint must always be true
 - Authorization privilege statement
- Form of the assertion
 - Enabler leads to creation of new object
 - Timer allows or disallows an action
 - Executive executes one or more actions (trigger)
- Rigor of the assertion
 - Controlling something must or must not happen
 - Influencing guideline for which a notification must occur

Stating an Action Assertion

- Anchor Object an object on which actions are limited
- Action creation, deletion, update, or read
- Corresponding Objects an object influencing the ability to perform an action on another business rule

Action assertions identify corresponding objects that constrain the ability to perform actions on anchor objects

Figure 4-19 Data model segment for class scheduling

Figure 4-20 Business Rule 1: For a faculty member to be assigned to teach a section of a course, the faculty member must be qualified to teach the course for which that section is scheduled

FACULTY QUALIFIED Faculty ID Date Qualified Faculty_Name Corresponding object In this case, the action assertion is a **R**estriction Action assertion STUDENT COURSE Student ID Course ID ASSIGNMENT Student Name Course Name Anchor object SECTION Section_ID REGISTRATION ls scheduled (Section No, Semester) Corresponding object

Figure 4-21 Business Rule 2: For a faculty member to be assigned to teach a section of a course, the faculty member must not be assigned to teach a total of more than three course sections

In this case, the action assertion is an

