4/20/2016

# Jupyter Notebook showing analysis of tweets for the chosen dataset

- The below shows the graphs used to analyse the data set.

# **Contents:**

# **Structure**

- Shows the Pie Chart of the different types of tweets such as tweets, retweets and replies
- Mean of the different types
- Standard deviation of the different types

# - Timeline

- Shows the time line of the the tweets, retweets and replies during the period of the data set

# - Sources

- Shows the applications used to send tweets

# - Hashtags

- Shows the hashtag cloud of the data set

# - Interactions

- Network graph
- retweets, replies, mentions

The set of code below imports the necessary python libraries in order to produce the analysis of the data set

#### In [1]:

```
import pandas
from parse import parse_data
from analyse import analyse_types
from analyse import analyse_entities
from analyse import analyse_replies
from analyse import analyse_field
from analyse import analyse_retweets
from analyse import analyse_relations
from analyse import analyse_types_field
from analyse import analyse_types_field
from encode import encode_json
data = parse_data("../Data/digifest16.csv")
```

data.head(10) below shows the first 10 entries of the dateframe that is used in order to extract necessary information used to analyse the set.

In [2]:

## data.head(10)

## Out[2]:

|   | id_str             | from_user       | text                                                     | created_at                 | user_lang |
|---|--------------------|-----------------|----------------------------------------------------------|----------------------------|-----------|
| 0 | 705802747971543040 | laurajisc       | More power to<br>you' - @Jisc's<br>opening video<br>fro  | 2016-03-<br>04<br>17:11:02 | en        |
| 1 | 705802727276847104 | mark8n          | More power to<br>you' - @Jisc's<br>opening video<br>fro  | 2016-03-<br>04<br>17:10:58 | en        |
| 2 | 705800984661004289 | JournalArchives | RT @Jisc:<br>Timelapse action<br>from #digifest16.<br>S  | 2016-03-<br>04<br>17:04:02 | en        |
| 3 | 705800366370250753 | dr_mike_jones   | Presentations,<br>podcasts & amp;<br>resources from<br>@ | 2016-03-<br>04<br>17:01:35 | en        |
| 4 | 705800366328307712 | JiscLondon      | Presentations,<br>podcasts & amp;<br>resources from<br>@ | 2016-03-<br>04<br>17:01:35 | en        |
| 5 | 705800203752882176 | HistoricalTexts | RT @Jisc: Slides<br>and resources<br>from two very b     | 2016-03-<br>04<br>17:00:56 | en        |
| 6 | 705800083930005504 | wagjuer         | RT @coolcatteacher: Get #Digifest16 slides and           | 2016-03-<br>04<br>17:00:27 | en        |
| 7 | 705799329001422848 | MobileTechExp   | RT<br>@ResourceProds:<br>We have lots of<br>digital/cre  | 2016-03-<br>04<br>16:57:27 | en        |
| 8 | 705798453847322624 | g_fielding      | RT @Jisc: Here it is - our list of the UK's to           | 2016-03-<br>04<br>16:53:59 | en        |
|   |                    |                 | RT @Jisc: Slides                                         | 2016-03-                   |           |

| 9 7 | 05798322263556097 | hammel_rachel | and resources   | 04       | en |  |
|-----|-------------------|---------------|-----------------|----------|----|--|
|     |                   |               | from two very b | 16:53:27 |    |  |

The code snippet below sets up the displaying of the structure of the data set by getting the necessary information needed to create the pie chart. It also shows the first 10 entries in the dataframe types.

#### In [3]:

```
types = analyse_types(data)
types.head(10)
```

#### Out[3]:

|         | tweet | retweet | reply |
|---------|-------|---------|-------|
| 68963   | 1     | NaN     | NaN   |
| 284553  | NaN   | 2       | NaN   |
| 726453  | NaN   | 1       | NaN   |
| 740343  | NaN   | NaN     | 1     |
| 763418  | 1     | NaN     | NaN   |
| 769897  | NaN   | 1       | NaN   |
| 1147031 | 4     | NaN     | NaN   |
| 1168961 | 2     | 2       | 3     |
| 1186911 | 39    | 5       | 2     |
| 1210901 | NaN   | 1       | NaN   |

#### In [4]:

types.describe()

#### Out[4]:

|        | tweet | retweet | reply |
|--------|-------|---------|-------|
| count  | 811.0 | 1844.0  | 152.0 |
| unique | 58.0  | 48.0    | 14.0  |
| top    | 1.0   | 1.0     | 1.0   |
| freq   | 327.0 | 1152.0  | 97.0  |

#### In [5]:

```
types.mean()
```

#### Out[5]:

tweet 7.643650
retweet 3.204447
reply 2.572368

dtype: float64

#### In [6]:

```
types.std()
```

#### Out[6]:

tweet 18.879279 retweet 8.262117 reply 4.872686

dtype: float64

The code beneath calls the html file that loads the data that was refined in analyse\_types to a pie chart

#### In [7]:

%%html <iframe width="50%" height ="415" align = "left" src="Display/types\_pieChart.h



The pie chart above shows the structure of the tweets, retweets replies. From the graph you can see that out of the three types tweet was the most popular followed by retweet and finally reply.

4/20/2016 F

The below code fragment sets up the graph for the timeline of tweets, retweets and replies during the period of the event being looked at. The tweets, retweets and replies are grouped hourly. This is done inorder to get the most readable and accurate data possible to analyse effectively. It also shows what is contained in the dataframe tweet\_time.

#### In [8]:

```
tweet_time = analyse_types_field(data, "created_at", "h")
encode_json(tweet_time, "tweet_time.json")
tweet_time.head(10)
```

#### Out[8]:

|                  | tweet | retweet | reply |
|------------------|-------|---------|-------|
| 2016-02-22 10:00 | 3     | NaN     | NaN   |
| 2016-02-22 11:00 | 2     | 4       | NaN   |
| 2016-02-22 12:00 | NaN   | 6       | NaN   |
| 2016-02-22 13:00 | 1     | 5       | NaN   |
| 2016-02-22 14:00 | NaN   | 3       | NaN   |
| 2016-02-22 15:00 | 2     | 2       | NaN   |
| 2016-02-22 16:00 | 1     | 1       | NaN   |
| 2016-02-22 17:00 | NaN   | 3       | NaN   |
| 2016-02-22 18:00 | NaN   | 1       | NaN   |
| 2016-02-22 20:00 | 1     | 1       | NaN   |

#### In [9]:

```
tweet_time.describe()
```

#### Out[9]:

|        | tweet | retweet | reply |
|--------|-------|---------|-------|
| count  | 182.0 | 217.0   | 69    |
| unique | 47.0  | 56.0    | 17    |
| top    | 1.0   | 1.0     | 1     |
| freq   | 40.0  | 31.0    | 29    |

The below code snippet sets up the displaying of the timeline graph. Note: This graph is interactive. One can click on the tweet types label inorder to toggle to show the line or not too.

- The green line graph is that of the tweet
- The red line graph is that of the retweet
- · The orange line graph is that of the reply

In [10]:

%%html
<iframe width="100%" height ="600" src="Display/tweets\_per\_time.html"></iframe</pre>



The graph above shows the timeline of the tweets created during the time period of when the hashtag was used. It plots the data hourly. One can see that the weeks leading up to the event that many users were not active in sending tweets. It can be seen that there were fairly the same amount of both retweets and tweets sent during 22nd of Feb till the 29th of Feb. The retweets being sent slightly more than tweets. However during the 2nd of march you can see that more tweets were sent then retweets. One can observe from the graph that during the last few days of the event the activity of sending out different types of tweets have increased exponentially. This is especially apparent during March 01 and March 03. This could be due to the fact that the digifest16 event had reached it's main event and therefore the audience may have had more to say at the time. Another interesting observation that can be made in by looking at the graph is that between the 2nd of March and the 3rd there is a dip in activity. This could possibly be due to the fact that it was during the middle of the night and so very few

users would actually be tweeting. If one looked at the graph closely one could possibly see a pulse. Where there are intervals of activity followed by a lull. This could highly likely be due to the sleep patterns people have.

The python code below creates the data needed in order to make the bar graph possible for the frequency of applications used to send tweets. It also shows the first 10 entries in the data frame apps.

#### In [11]:

```
apps = analyse_field(data, 'source')
encode_json(apps, "Apps_count.json")
apps.head(10)
```

#### Out[11]:

|   | count | source                  |
|---|-------|-------------------------|
| 0 | 57    | Buffer                  |
| 1 | 60    | DoubleDutch             |
| 2 | 275   | GaggleAMP               |
| 3 | 774   | Hootsuite               |
| 4 | 67    | Mobile Web (M5)         |
| 5 | 101   | RoundTeam               |
| 6 | 51    | TweetCaster for Android |
| 7 | 1569  | TweetDeck               |
| 8 | 60    | Tweetbot for iOS        |
| 9 | 2726  | Twitter Web Client      |

#### In [12]:

```
apps.describe()
```

#### Out[12]:

|       | count      |
|-------|------------|
| count | 16.00000   |
| mean  | 781.18750  |
| std   | 947.99657  |
| min   | 51.00000   |
| 25%   | 65.25000   |
| 50%   | 319.50000  |
| 75%   | 1346.25000 |
| max   | 2726.00000 |

The code snippet below sets up the displaying of the timeline graph. Note: This graph is interactive as you can sort the values from most frequent to least frequent. Also hovering over will highlight the bar one is hovering over.

In [13]:

%%html
<iframe width="100%" height ="480" src="Display/appsToSendTweets.html"></ifram</pre>



The bar graph above shows the applications that were used the most to send tweets out into the world wide web. One can see that Twitter Web Client, Twitter for iPhone and Twitter for Android are the most popular devices to send tweets. This is hardly surprising as they are the most accessible ways of accessing the internet. When the graph is sorted, one can see that there are not many applications that are used at a frequency of 1000. There seems to be only five such sources that are very popular. From this graph one can also make an educated guess as to which application is most popular in the current market.

The python code below creates the data needed in order to make the hashtag cloud possible for the frequency of each Hashtag being tagged. It also shows the first 10 entries in the data frame hashtags.

4/20/2016

#### In [14]:

```
hashtags = analyse_entities(data, 'hashtags', 'text')
encode_json(hashtags, "displayData.json")
hashtags.head(10)
```

P2

#### Out[14]:

|   | count | hashtags           |
|---|-------|--------------------|
| 0 | 1     | 14JCID             |
| 1 | 10    | 3dprinting         |
| 2 | 2     | 4life              |
| 3 | 1     | Al                 |
| 4 | 2     | AIDAthatsnotmyname |
| 5 | 4     | AR                 |
| 6 | 2     | ARUWomensNetwork   |
| 7 | 4     | Aberdeen           |
| 8 | 2     | Adele              |
| 9 | 3     | Africa             |

#### In [15]:

```
hashtags.describe()
```

#### Out[15]:

|       | count        |
|-------|--------------|
| count | 849.000000   |
| mean  | 19.680801    |
| std   | 411.060772   |
| min   | 1.000000     |
| 25%   | 1.000000     |
| 50%   | 2.000000     |
| 75%   | 4.000000     |
| max   | 11965.000000 |

The code snippet below sets up the displaying of the hashtag cloud. Note: This graph is interactive as you can hover the clouds and this will highlight the relevant data needed to be shown.

In [17]:

%%html
<iframe width="100%" height ="700" src="Display/tweetBubble.html"></iframe>



The hashtag "digifest16" is the largest cloud. This is due to the fact this hashtag was used inorder to pull the data. one thing to keep in mind is that this cloud could have been a lot larger then it is if during the analysis the one were to ignore upper cases. This graph is quite useful for telling the most popular trends at the time.

The below function call would have been used to calculate the interactions each user had with each other. However there was not enough time to finish the graph for it

```
In [18]:
```

```
analyse_interactions(data)
```

The python code below creates the data needed in order to make the hashtag cloud possible for the frequency of each user being mentioned. It also shows the first 10 entries in the data frame mentions.

#### In [19]:

```
mentions = analyse_entities(data, 'user_mentions', 'id_str')
encode_json(mentions, "mentions.json")
mentions.head(10)
```

#### Out[19]:

|   | count | user_mentions |
|---|-------|---------------|
| 0 | 4     | 100029807     |
| 1 | 3     | 1002679603    |
| 2 | 4     | 1019043228    |
| 3 | 4     | 102077957     |
| 4 | 15    | 1022476932    |
| 5 | 1     | 10228272      |
| 6 | 4     | 102646736     |
| 7 | 5     | 102654014     |
| 8 | 2     | 102685431     |
| 9 | 1     | 102951812     |

The code snippet below sets up the displaying of the mentions cloud. Note: This graph is interactive as you can hover the clouds and this will highlight the relevant data needed to be shown.

In [20]:

%%html
<iframe width="100%" height ="700" src="Display/popularMentions.html"></iframe</pre>



The above cloud shows the most popular user. This is shown by the number of times the user was mentioned.

The python code below creates the data needed in order to make the replies cloud possible for the frequency of each user being replying. It also shows the first 10 entries in the data frame replies.

#### In [21]:

```
replies = analyse_replies(data)
encode_json(replies, "replies_per_user.json")
replies.head(10)
```

#### Out[21]:

```
6.897321e+17
                 1
6.917383e+17
                 3
6.977457e+17
                 1
7.022103e+17
                 1
7.024451e+17
                 1
7.025329e+17
                 2
7.025612e+17
                 1
7.025711e+17
                 1
7.026297e+17
                 1
7.027760e+17
                 1
dtype: int64
```

In [22]:

%%html

<iframe width="100%" height ="700" src="Display/replyBubble.html"></iframe>



The above cloud shows the user that replied the most. This is shown by the number of times the user replied.

The python code below creates the data needed in order to make the retweet cloud possible for the frequency of each user being replying. It also shows the first 10 entries in the data frame retweets.

#### In [23]:

```
retweetsBubble = analyse_retweets(data)
encode_json(retweetsBubble, "retweets_per_user.json")
retweetsBubble.head(10)
```

#### Out[23]:

|         | retweet |
|---------|---------|
| 68963   | NaN     |
| 284553  | 2       |
| 726453  | 1       |
| 740343  | NaN     |
| 763418  | NaN     |
| 769897  | 1       |
| 1147031 | NaN     |
| 1168961 | 2       |
| 1186911 | 5       |
| 1210901 | 1       |

In [24]:

%%html
<iframe width="100%" height ="700" src="Display/retweetsBubble.html"></iframe>



The above cloud shows the user who was retweeted the most. This is shown by the number of times the was retweeted.