Homework 8

Calculus I

- 1. Find the equation of the tangent line and normal line to
 - (a) $y^2 + \tan x^2 y = x$ at (1,0).
 - (b) $x^2 + (y \sqrt{|x|})^2 = 3$ at $(1, 1 \sqrt{2})$.
- 2.
 - (a) If $y = A \sin(\ln x) + B \cos(\ln x)$, where A and B are constants, show that

$$x^2y'' + xy' + y = 0.$$

(b) Find the first and second derivative of

$$f(x) = \tan(\ln x^2).$$

- 3.
 - (a) Find the first and second derivatives of $ln(y^2) + sin(x+1) = e^x$.
 - (b) Find the first derivative of $y^x = \tan x$ Hint: Notice $y^x = e^{x \ln y}$.

Be sure to substitute for y' when appropriate.

- 4. Show the definitions of the following derivatives are correct
 - (a) $\frac{d}{dx} \left[\cos^{-1} x\right] = -\frac{1}{\sqrt{1-x^2}}$ by using **Theorem 4** in the book. Hint: Let $f^{-1}(x) = \cos^{-1} x$.
 - (b) $\frac{d}{dx}[a^x] = \ln a \cdot a^x$, where a is a constant.
 - (i) By using **Theorem 4** in the book. Hint: Let $f^{-1}(x) = a^x$.
 - (ii) By using Logarithmic Differentiation.