Homework 2

ALECK ZHAO

February 14, 2018

1. Give the state diagram of a DFA recognizing the following language. The alphabet is $\{0,1\}$.

 $\{w: w \text{ has length exactly } 3 \text{ and its last symbol is different from its first symbol}\}$

Solution. Let q_0 be the start state.

2. Give a DFA (both a state diagram and a formal description) recognizing the following language. The alphabet is $\{0,1\}$.

 $\{w: w \text{ has odd length or contains an even number of } 0s\}$

Solution. Let q_0 be the start state. Then let

 $q_1 :=$ odd length, even number of 0s $q_2 :=$ odd length, odd number of 0s $q_3 :=$ even length, even number of 0s $q_4 :=$ even length, odd number of 0s

Thus, states q_1,q_2,q_3 are accepting states. Then $M=(Q,\Sigma,\delta,q_0,F)$ where

$$Q = \{q_0, q_1, q_2, q_3, q_4\}$$
$$F = \{q_1, q_2, q_3\}$$

and the transition function is described as

δ	0	1
q_0	q_2	q_1
q_1	q_4	q_3
q_2	q_3	q_4
q_3	q_2	q_1
q_4	q_1	q_2

Thus, the state diagram is given by

3. Show that the following language is regular, where the alphabet is $\{0,1\}\,.$

 $\{w: w \text{ contains an equal number of occurrences of the substrings } 01 \text{ and } 10\}$

Solution. Let q_0 be the start state. The DFA represented by the following state diagram accepts this language, so it is regular, as desired.

4. For any string $w = w_1 w_2 \cdots w_n$, the reverse of w, written as $w^{\mathcal{R}}$, is the string w in reverse order $w_n \cdots w_2 w_1$. For any language A, let $A^{\mathcal{R}} = \{w^{\mathcal{R}} : w \in A\}$. Show that if A is regular, so is $A^{\mathcal{R}}$.

Proof. Since A is regular, it is accepted by some DFA $M=(Q,\Sigma,\delta,q_0,F)$. Construct the following NFA $N=(Q',\Sigma',\delta',q_0',F')$ where

$$Q' = Q \cup \{q\}$$

$$\Sigma' = \Sigma$$

$$\delta'(q_i, w_j) = \{q : \delta(q, w_j) = q_i\}, \forall q_i \in Q$$

$$\delta'(q, \varepsilon) = F$$

$$q'_0 = q$$

$$F' = q_0$$

In this NFA N, we have reversed the direction of every transition in M. We created a new dummy start state that transitions to each of the original accept states under ε , and the old start state became the new accept state.

By construction, N accepts $A^{\mathcal{R}}$ because if M accepts $w_1w_2\cdots w_n\in A$, then the series of transitions from q_0 ends up in F. Then in N, starting at q, we can go to any of the original accept states under ε , then all the transitions are done in reverse order, so we will end up at q_0 , which is the accept state in N. Since every NFA is equivalent to some DFA, it follows that a DFA accepts $A^{\mathcal{R}}$, so it is regular, as desired.