وَمَا أُوتِيتُمْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Analog IC Design

Lecture 08 Frequency Response (1)

Dr. Hesham A. Omran

Integrated Circuits Lab (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

MOSFET in Saturation

The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

Regions of Operation Summary

Low-Frequency Small-Signal Model

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_{D}} = \frac{2I_{D}}{V_{ov}}$$

$$g_{mb} = \eta g_{m}, \qquad \eta \approx 0.1 - 0.25$$

$$r_{o} = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}}} = \frac{1}{\lambda I_{D}}, \qquad \lambda \propto \frac{1}{L}$$

$$g_{mv_{gs}} \longrightarrow g_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow p_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow p_{mb} v_{bs} \longrightarrow r_{o} \longrightarrow p_{mb} v_{bs} \longrightarrow p_{mb} v_$$

Rin/out Shortcuts Summary

Active Load (Source OFF)

Diode Connected (Source Absorption)

- ☐ Always in saturation
- \square Bulk effect: $g_m \rightarrow g_m + g_{mb}$

Why GmRout?

$$R_{out} = \frac{v_x}{i_x} @ v_{in} = 0$$
 $G_m = \frac{i_{out,sc}}{v_{in}}$
 $A_v = G_m R_{out}$
 $A_i = G_m R_{in}$

- Divide and conquer
 - Rout simplified: vin=0
 - Gm simplified: vout=0
 - We already need Rin/out
 - We can quickly and easily get
 Rin/out from the shortcuts

Summary of Basic Topologies

	CS	CG	CD (SF)
	R _D V _{out} V _{out} V _{out,sc} V _x R _s iout,sc	R _D , V _{out} j _{out,sc} v _{in}	V _{in} V _x V _{out} V _{out} Sout,sc
	Voltage & current amplifier	Current buffer	Voltage buffer
Rin	∞	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞
Rout	$R_D / / r_o [1 + (g_m + g_{mb})R_S]$	$R_D//r_o$	$R_S//\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$

Frequency Response

Poles and Zeros

☐ Transfer function

$$H(s) = \frac{N(s)}{D(s)}$$

- \square Zeros: roots of numerator => N(s)
- \square Poles: roots of denominator => D(s)
- \square Frequency response: $s \Rightarrow j\omega$

$$H(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)} = |H(j\omega)|e^{j\phi}$$

- \Box Magnitude $(a+jb)=\sqrt{a^2+b^2}$
- \Box Phase $(a+jb)=\tan^{-1}\frac{b}{a}$

1st Order LPF

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{1/sC}{R + 1/sC} = \frac{1}{1 + sRC} = \frac{1}{1 + s\tau}$$

$$H(j\omega) = \frac{v_{out}}{v_{in}} = \frac{1/j\omega C}{R + 1/j\omega C} = \frac{1}{1 + j\omega RC} = \frac{1}{1 + \frac{j\omega}{\omega_c}}$$

- \Box $\tau = RC$: time constant
- \square $\omega_c = \frac{1}{\tau} = \frac{1}{RC}$: cutoff/corner frequency
- \Box Poles: $s_p = -\frac{1}{\tau} = -\omega_c$
- ☐ Zeros:?
- $|H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega c}\right)^2}}$
- $\Box P(H(j\omega)) = -\tan^{-1}\frac{\omega}{\omega_c}$

1st Order LPF

1st Order HPF

$$H(s) = \frac{v_{out}}{v_{in}} = \frac{R}{R + 1/sC} = \frac{sRC}{1 + sRC} = \frac{s\tau}{1 + s\tau}$$

$$H(j\omega) = \frac{v_{out}}{v_{in}} = \frac{R}{R + 1/j\omega C} = \frac{j\omega RC}{1 + j\omega RC} = \frac{\frac{j\omega}{\omega_c}}{1 + \frac{j\omega}{\omega_c}}$$

- \square Zeros: $s_z = 0$
- $\Box |H(j\omega)| = \frac{\frac{\omega}{\omega_c}}{\sqrt{1 + \left(\frac{\omega}{\omega_c}\right)^2}}$

1st Order HPF

Bode Plot Rules

	Pole	Zero
Magnitude	-20 dB/decade Actual Mag @ pole: -3 dB	+20 dB/decade Actual Mag @ zero: +3 dB
Phase	-90° Actual Phase @ pole: -45°	LHP zero: +90° Actual Phase @ zero: +45°
		RHP zero: -90° Actual Phase @ zero: -45°

Where are the Capacitors?

Frequency Response

SCTC and OCTC Techniques

- Low-frequency range (LFR) => Not common in IC design
 - Only consider one cap at a time
 - Assume other caps are s.c.
 - s.c. time constant (SCTC) technique
 - $-\omega_L \approx \omega_{L1} + \omega_{L2} + \cdots$
 - Highest pole dominates (L.I.N. dominates)
- ☐ High-frequency range (HFR) => More important in IC design
 - Only consider one cap at a time
 - Assume other caps are o.c.
 - o.c. time constant (OCTC) technique
 - $\omega_H \approx \omega_{H1}//\omega_{H2}//\cdots$
 - Lowest pole dominates (H.I.N. dominates)
- Both provide good approx if one pole is dominant (and poles are real)

Effect of Bypass Capacitor

 \square Does C_S act as a LPF or a HPF?

Calculating Zeros by Inspection

Find the value $s = s_z$ that makes $H(s) = 0 \Rightarrow v_{out} = 0$

□ Ex1:
$$C_{c1}$$
: $v_o = 0$ if $Z_{C_1} = \infty$

$$- Z_{C_1} = \frac{1}{sC_1}$$

$$- \Rightarrow s_{z1} = 0$$

$$-Z_{C_1} = \frac{1}{sC_1}$$

$$- \Rightarrow s_{Z1} = 0$$

$$V_{DD}$$

$$\Box \text{ Ex2: } C_S \text{: } v_o = 0 \text{ if } Z_S = \infty$$

$$- Z_S = \frac{R_S}{1 + sR_SC_S}$$

$$- \Rightarrow s_{Z2} = -\frac{1}{R_SC_S}$$

Calculating Poles by Inspection

- 1. Set $v_{in} = 0$
- 2. Calculate the venin resistance $(R_{th,i})$ seen by each cap (C_i)

3.
$$s_{p,i} = -\frac{1}{R_{th,i}C_i}$$

□ Ex1:
$$C_{c1}$$
: $R_{th} = R_{sig} + R_{G}$

$$- \Rightarrow s_{p1} = -\frac{1}{(R_{sig} + R_{G})C_{c1}}$$

$$\Box \text{ Ex2: } C_S : R_{th} \approx R_S / / \frac{1}{g_m}$$

$$- \Rightarrow s_{p2} = -\frac{1}{\left(R_S / / \frac{1}{g_m}\right)C_S} \quad V_{\text{sig}} \stackrel{+}{\leftarrow}$$

Calculating Poles by Inspection

- 1. Set $v_{in} = 0$
- 2. Calculate the venin resistance $(R_{th,i})$ seen by each cap (C_i)
- 3. $s_{p,i} = -\frac{1}{R_{th,i}C_i}$
- ☐ Examples:
 - Each node is associated with a pole
 - H.I.N. dominates

$$\frac{V_{out}}{V_{in}}(s) = \frac{A_1}{1 + R_S C_{in} s} \cdot \frac{A_2}{1 + R_1 C_N s} \cdot \frac{1}{1 + R_2 C_P s}$$

Thank you!