sconce v0.99

Feature Support

- Auto Sensitivity Scan for Pruning -> Finds Best Sparsity Ratio for Pruning [Least Performance Degradation and Max Performance]
- Supports CWP, GMP Pruning. Room for WANDA, GPTQ, etc...
- QAT
- Auto-Layer Fusion

sconce v1.1

Altruism is all you need !!! Don't just be self attentive

A SIMPLE AND EFFECTIVE PRUNING APPROACH FOR LARGE LANGUAGE MODELS

Mingjie Sun¹* Zhuang Liu²* Anna Bair¹ J. Zico Kolter^{1,3}

¹Carnegie Mellon University ²Meta AI Research ³Bosch Center for AI

 $\begin{array}{c} AWQ: \underline{A}ctivation\text{-}aware \ \underline{W}eight \ \underline{Q}uantization \\ for \ LLM \ Compression \ and \ Acceleration \end{array}$

https://github.com/mit-han-lab/llm-awq

(a) RTN quantization (PPL 43.2)

(b) Keep 1% salient weights in FP16 (PPL 13.0)

(c) Scale the weights before quantization (PPL 13.0

- WANDA: https://github.com/locuslab/wanda
- AWQ: https://github.com/mit-han-lab/llm-awq

Make Kernels Aware of the Future Kernel Spaces

Code: https://github.com/satabios/sconce/blob/main/tutorials/Pruning.ipynb Citations:

- EIE: https://arxiv.org/abs/1602.01528
- Multi-scale channel importance sorting and spatial attention mechanism for retinal vessels segmentation
- EACP: An effective automatic channel pruning for neural networks

Channel-Based Activation Aware Pruning

But Channel	l Wise!!
--------------------	----------

Method	Weight Update	Calibration Data	Pruning Metric \mathbf{S}_{ij}	Complexity
Magnitude	X	X	$ \mathbf{W}_{ij} $	O(1)
SparseGPT	✓	✓	$\left[\mathbf{W} ^2 / \operatorname{diag} \left[(\mathbf{X} \dot{\mathbf{X}}^T + \lambda \mathbf{I})^{-1} \right] \right]_{ij}$	$O(d_{\mathtt{hidden}}^3)$
Wanda	X	✓	$\ \mathbf{W}_{ij}\ \cdot\ \mathbf{X}_j\ _2$	$O(d^2_{\mathtt{hidden}})$

			LLaMA			LLaMA-2			
Method	Weight Update	Sparsity	7B	13B	30B	65B	7B	13B	70B
Dense	-	0%	59.99	62.59	65.38	66.97	59.71	63.03	67.08
Magnitude	×	50%	46.94	47.61	53.83	62.74	51.14	52.85	60.93
SparseGPT	✓	50%	54.94	58.61	63.09	66.30	56.24	60.72	67.28
Wanda	×	50%	54.21	59.33	63.60	66.67	56.24	60.83	67.03
Magnitude	×	4:8	46.03	50.53	53.53	62.17	50.64	52.81	60.28
SparseGPT	✓	4:8	52.80	55.99	60.79	64.87	53.80	59.15	65.84
Wanda	×	4:8	52.76	56.09	61.00	64.97	52.49	58.75	66.06
Magnitude	×	2:4	44.73	48.00	53.16	61.28	45.58	49.89	59.95
SparseGPT	✓	2:4	50.60	53.22	58.91	62.57	50.94	54.86	63.89
Wanda	×	2:4	48.53	52.30	59.21	62.84	48.75	55.03	64.14

- Register hooks to fetch O/P Feature Maps
- Run through a Calibration Dataset
- Prune Channels(Kernel Weights)
 Based on Activations

Activation Aware - QAT

- (a) RTN quantization (PPL 43.2)
- (b) Keep 1% salient weights in FP16 (PPL 13.0) (c) Scale the weights before quantization (PPL 13.0)

$$\mathbf{s}^* = \arg\min \mathcal{L}(\mathbf{s}), \quad \mathcal{L}(\mathbf{s}) = \|Q(\mathbf{W} \cdot \mathbf{s})(\mathbf{s}^{-1} \cdot \mathbf{X}) - \mathbf{W}\mathbf{X}\|$$
 (3)

But Channel Wise!!

- Apply Scaling on Feature Maps based on Activation Saliency
- QAT

	W					
	+1.2 -0.2 -2.4 -3.4	× 1				
	-2.5 -3.5 $+1.9$ $+1.4$	× 2				
	-0.9 + 1.6 - 2.5 - 1.9	×1				
O(-3.5 +1.5 +0.5 -0.1	×1)				
71	+1.8 -1.6 -3.2 -3.4	×1 ,				
	+2.4 -3.5 -2.8 -3.9	×1				
	+0.1 -3.8 +2.4 +3.4	×1				
	+0.9 +3.3 -1.9 -2.3	$\times 1$ fuse to previous op				
$\mathbf{W}\mathbf{X} \longrightarrow Q(\mathbf{W} \cdot \mathbf{s})(\mathbf{s}^{-1} \cdot \mathbf{X})$						

PPL↓			Llama-2			LLaMA			
-		7B	13B	70B	7B	13B	30B	65B	
FP16	-	5.47	4.88	3.32	5.68	5.09	4.10	3.53	
INT3 g128	RTN	6.66	5.52	3.98	7.01	5.88	4.88	4.24	
	GPTQ	6.43	5.48	3.88	8.81	5.66	4.88	4.17	
	GPTQ-R	6.42	5.41	3.86	6.53	5.64	4.74	4.21	
	AWQ	6.24	5.32	3.74	6.35	5.52	4.61	3.95	
INT4 g128	RTN	5.73	4.98	3.46	5.96	5.25	4.23	3.67	
	GPTQ	5.69	4.98	3.42	6.22	5.23	4.24	3.66	
	GPTQ-R	5.63	4.99	3.43	5.83	5.20	4.22	3.66	
	AWQ	5.60	4.97	3.41	5.78	5.19	4.21	3.62	

Complete Flow

- Sort Channels Based on Successive Channels
- Activation Aware Pruning (WANDA-like)
- Activation Aware Quantization (AWQ- like)

Possible Additions

- Layer-Wise Neural Network Compression via Layer Fusion: https://proceedings.mlr.press/v157/o-neill21a/o-neill21a.pdf
- Layer-Selective Rank Reduction: https://github.com/pratyushasharma/laser