"Time Perturbation" Studies of Somitogenesis Microarray Time Series

Earl F. Glynn

Scientific Programmer
Bioinformatics
Stowers Institute for Medical Research

5 Dec 2007

"Time Perturbation" Studies of Somitogenesis Microarray Time Series

- Purpose
- Background Concepts
- Microarray Analysis Overview
- Numerical Experiments
- Somitogenesis Experiments
- Summary

Purpose

- Find "best" periodic genes from microarrary time series experiments exploring somitogenesis in mouse, chick and zebrafish.
- Develop general methodology that can be applied across all species.

Background Concepts

- Periodic Time Series in Biology
- Lomb-Scargle Analysis
- Hypothesis Testing with Lomb-Scargle
- Boxplots and "Notches"
- Rank Order and Rank Product

Background

Periodic Time Series in Biology

Electrocardiogram (ECG): QRS Complex

Time

Source: http://www.merck.com/mmpe/print/sec07/ch070/ch070e.html

Continuous: x(t + T) = x(t)

Discrete: x[n + N] = x[n]

"Periodic" Time Series in Biology

Segmentation is Established During Somitogenesis

Mouse Chick Zebrafish

"Periodic" Time Series in Biology

Somitogenesis

Lomb-Scargle Periodogram Mathematical Details

$$h_i \equiv h(t_i), i = 1, \dots, N.$$

$$\overline{h} \equiv \frac{1}{N} \sum_{i=1}^{N} h_i \qquad \sigma^2 \equiv \frac{1}{N-1} \sum_{i=1}^{N} (h_i - \overline{h})^2$$
(13.8.3)

Now, the Lomb normalized periodogram (spectral power as a function of angular frequency $\omega \equiv 2\pi f > 0$) is defined by

$$P_N(\omega) \equiv \frac{1}{2\sigma^2} \left\{ \frac{\left[\sum_j (h_j - \overline{h}) \cos \omega (t_j - \tau)\right]^2}{\sum_j \cos^2 \omega (t_j - \tau)} + \frac{\left[\sum_j (h_j - \overline{h}) \sin \omega (t_j - \tau)\right]^2}{\sum_j \sin^2 \omega (t_j - \tau)} \right\}$$
(13.8.4)

Here τ is defined by the relation

$$\tan(2\omega\tau) = \frac{\sum_{j} \sin 2\omega t_{j}}{\sum_{j} \cos 2\omega t_{j}}$$
 (13.8.5)

$$P(>z) \equiv 1 - (1 - e^{-z})^{M} \tag{13.8.7}$$

is the false-alarm probability of the null hypothesis, that is, the *significance level* of any peak in $P_N(\omega)$ that we do see.

$P_N(\omega)$ has an exponential probability distribution with unit mean.

Lomb-Scargle Analysis: "Ideal Gene"

Lomb-Scargle Analysis:

"Ideal Gene" with one "bad" time point

p =0.00127 for "perfect"

Lomb-Scargle Analysis: "Ideal Gene" with three "bad" time points

p =0.00127 for "perfect"

Lomb-Scargle Analysis Hypothesis Testing

SIGNIFICANCE TESTING OF PERIODOGRAM ORDINATES

CHRIS KOEN

Institute of Physics and Astronomy, National Central University, Republic of China

THE ASTROPHYSICAL JOURNAL, 348:700-702, 1990 January 10

III. HYPOTHESIS TESTING

The theory developed above can now be used to test hypotheses. Two hypotheses are relevant:

 H_1 : the observations do not constitute noise

 H_2 : the data contain a specific periodicity.

In this paper only a special case of H_2 will be considered, namely,

 H_2 : the largest periodogram ordinate is significant.

Koen suggests Lomb-Scargle evaluates H₁, while a Fisher test is needed for H₂, but ...

Box Plots and Notches

Means

a = 0.0

b = 0.0

c = 0.5

d = 1.0

e = 1.5

f = 2.0

S.D. = 1.0

IQR: Inter Quartile Range

Significant difference at 5% level when notches do not overlap

Box Plots and Notches

Means

a = 0.0

b = 0.0

c = 0.5

d = 1.0

e = 1.5

f = 2.0

S.D. = 1.0

Background

Box Plots

Means

a = 0.0

b = 0.0

c = 0.5

d = 1.0

e = 1.5

f = 2.0

S.D. = 1.0

Most boxplots on slides to follow have N=10,000. Notches, "whiskers," outliers will usually not be shown.

Rank Order and Rank Product

Gene	Trial 1 Rank	Trial 2 Rank		Rank Product	
gene 1	1	2	1	2	1
gene 2	2	3	3	18	3
gene 3	3	1	2	6	2

"Time Perturbation" Studies of Somitogenesis Microarray Time Series

- Purpose
- Background Concepts
- Microarray Analysis Overview
- Numerical Experiments
- Somitogenesis Experiments
- Summary

Microarray Analysis Overview

Somitogenesis Datasets: Mouse, Chick, Zebrafish

Time series from in situ hybridization images

- Time
- What time values should be used in time series?
- What biological constraints define groups?

Time Perturbations

Time Perturbations

Each row of dots represents one time ordering.

Microarray Overview

Somitogenesis Datasets

Time Perturbations

Affymetrix Chips

Mouse

N=22,690 or 45,101

Chick

N = 38,535

Zebrafish

N=15,618

Microarray Overview

Somitogenesis Datasets

Time Perturbations

- Perform Lomb-Scargle analysis on each of 10,000 perturbations for each gene.
 [Cluster problem]
- gene1
- 10,000 Perturbations

- For given perturbation, rank order genes based on Lomb-Scargle p-value.
- 3. Form rank product for each gene for overall ranking.

geneN

Form rank product for gene

Microarray Overview

Somitogenesis Datasets

Lomb-Scargle p-values

Ordered by
"Overall Rank"
(i.e., Rank product
of 10,000 ranks
from Lomb-Scargle
p-values.)

Looks "good" but need to know how to interpret results.

Somitogenesis Datasets

Lomb-Scargle Periods

Mouse somite period is assumed to be 120 minutes

"Time Perturbation" Studies of Somitogenesis Microarray Time Series

- Purpose
- Background Concepts
- Microarray Analysis Overview
- Numerical Experiments
- Somitogenesis Experiments
- Summary

Numerical Experiments

"Controlled Experiments"

- Gaussian Noise vs. Gaussian Noise
- 2.5% "perfect" periodic genes
- 20 genes with signal-to-noise gradient
- 16 genes, half good, half not so good

Gaussian Noise vs. Gaussian Noise

Assume GeneChip experiments once normalized are roughly Gaussian.

Compare signal rank with "noise" rank.

2.5% "perfect" periodic genes

What if many strong periodic genes are involved in somitogenesis?

482 synthetic genes out of 20,000 were defined as sinusoids with various phase shifts

Numerical Experiment (mouse)

2.5% "perfect" periodic genes

What if many strong periodic genes are involved in somitogenesis?

2.5% "perfect" periodic genes

Are all periods this same?

Mouse somite period is assumed to be 120 minutes

2.5% "perfect" periodic genes

Are all time shifts "equal"?

Numerical Experiment (mouse)

2.5% "perfect" periodic genes

Can time series time points be estimated?

Maybe. Quite time consuming to explore alternatives?

20 genes with signal-to-noise gradient

Expression = w * Cosine + (1-w) * Gaussian

w = 0.00 to 1.00 by 0.05

Numerical Experiment (zebrafish)

20 genes with signal-to-noise gradient

Numerical Experiment (zebrafish)

20 genes with signal-to-noise gradient

16 genes, half good, half not so good

16 genes, half good, half not so good

Rank	w	shift[min]
1	0.90	26.25
2	0.90	22.5
3	0.75	7.5
4	0.90	7.5
5	0.90	22.5
6	0.90	11.25
7	0.90	4
8	0.90	22.5
9	0.75	18.75
10	0.90	0
11	0.90	18.75
12	0.75	0
13	0.75	11.25
14	0.75	22.5
16	0.75	0
19	0.75	26.25

Zebrafish somite period is assumed to be 30 minutes

But is Gaussian noise the appropriate comparison for real experiments?

"Time Perturbation" Studies of Somitogenesis Microarray Time Series

- Purpose
- Background Concepts
- Microarray Analysis Overview
- Numerical Experiments
- Somitogenesis Experiments
- Summary

Time Perturbation Somitogenesis Studies

Time Perturbation Somitogenesis Studies

- Zebrafish
- Mouse
- Chick

Zebrafish

Is Gaussian assumption valid? Is Gaussian "too" random?

Zebrafish

Gaussian Noise

Permuted GeneChip Noise

Is Gaussian assumption valid? Is Gaussian "too" random?

Zebrafish

Resampled GeneChip Noise

Permuted GeneChip Noise

Resampled GeneChips seem to be best "noise" reference

Zebrafish

Actual Experiment

Interquartile Range Log10(p) Variability by Overall Ranking Experiment (red) vs. Resampled Profiles (black) 0.0 log 10(p)

Overall Ranking

160

140

180

200

Simulated Experiment (16)

Zebrafish

Zebrafish somite period is assumed to be 30 minutes

Mouse (17 points)

Gaussian Noise

Resampled GeneChip Noise

Mouse (17 points)

Mouse somite period is assumed to be 120 minutes

Chick

Gaussian Noise

Resampled GeneChip Noise

Summary

- Common "time perturbation" methodolgy seems to working for all species
- Simulated experiments can give insight into actual experiments
- Additional simulated experiments needed to understand mouse and chick results

Acknowledgements

Pourquié Lab

Olivier Pourquié
Mary-Lee Dequéant (Mouse)
Aurelie Krol (Chick)
Daniela Röllig (Zebrafish)
[Max Planck Institute]

•

Bioinformatics
Arcady Mushegian
Jie Chen

[University of Missouri, Kansas City]