Homework 5

21-260 Differential Equations

Name: Shashank Singh

Email: sss1@andrew.cmu.edu Due: Thursday, July 19, 2012

Section 7.5, Problem 4

(a) If A is the matrix of constant coefficients of the given system, then, if λ is an eigenvalue of A, then,

$$0 = (1 - \lambda)(-2 - \lambda) - 4 = (\lambda + 3)(\lambda - 2),$$

so that $\lambda \in \{-3, 2\}$. Thus, the eigenvectors of A associated with eigenvalues $\lambda = -3$ and $\lambda = 2$ are, respectively,

$$\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \quad \boldsymbol{\xi}^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Thus, solutions to the system of differential equations are of the form

$$\mathbf{x} = c_1 \boldsymbol{\xi}^{(1)} e^{-3t} + c_2 \boldsymbol{\xi}^{(2)} e^{2t}.$$

Since the eigenvalues of A have different signs, the solution will approach multiples a basis vector of the general solution (in particular, $\boldsymbol{\xi}^{(2)}$) as $t \to \infty$.

(b) Figure 1 below shows a direction field as well as some sample trajectories for \mathbf{x} .

Section 7.6, Problem 6

(a) If A is the matrix of constant coefficients of the given system of differential equations, then, if λ is an eigenvalue of A, then $\lambda = \pm 3i$. Thus, the eigenvectors of A associated with eigenvalues $\lambda = 3i$ and $\lambda = -3i$, respectively, are

$$\boldsymbol{\xi}^{(1)} = \overline{\begin{bmatrix} 2 \\ -1+3i \end{bmatrix}}, \quad \boldsymbol{\xi}^{(2)} = \overline{\begin{bmatrix} 2 \\ -1-3i \end{bmatrix}}.$$

For
$$\mathbf{a} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$, since $\boldsymbol{\xi} = \mathbf{a} + i\mathbf{b}$, for

$$\mathbf{x}^{(1)} = e^{0 \cdot t} (\mathbf{a} \cos(3t) - \mathbf{b} \sin(3t)) = \mathbf{a} \cos(3t) - \mathbf{b} \sin(3t)$$

$$\mathbf{x}^{(2)} = e^{0 \cdot t} (\mathbf{a} \sin(3t) + \mathbf{b} \cos(3t)) = \mathbf{a} \sin(3t) + \mathbf{b} \cos(3t),$$

 $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}\}\$ is a fundamental set of real-valued solutions, so that solutions to the given system of differential equations are of the form

$$\mathbf{x} = c_1 \mathbf{x}^{(1)} + c_2 \mathbf{x}^{(2)},$$

for some $c_1, c_2 \in \mathbb{R}$.

(b) Since the eigenvalues of A have no real part, motion of \mathbf{x} over time is purely elliptical and there is no limit in \mathbf{x} as $t \to \infty$. Figure 2 below shows a direction field as well as some sample trajectories for \mathbf{x} .

Section 7.8, Problem 4

(a) Figure 3 below shows a direction field as well as some sample trajectories for \mathbf{x} .

- (b) If A is the matrix of constant coefficients of the given system of differential equations, then, since (as shown in part (c)), the only eigenvalue of A is negative, all solutions to the system of differential equations approach $\mathbf{0}$ as $t \to \infty$.
- (c) If λ is an eigenvalue of A, then

$$0 = (-3 - \lambda)(2 - \lambda) + 25/4 = \left(\lambda + \frac{1}{2}\right)^2,$$

so that $\lambda = -\frac{1}{2}$. The only eigenvector of A is

$$\boldsymbol{\xi} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

Thus,

$$\mathbf{x}^{(1)} = \boldsymbol{\xi} e^{-\frac{1}{2}t}$$

is one solution to the system of differential equations. For η satisfying $(A + \frac{1}{2}I)\eta = \xi$, another linearly independent solution to the system of differential equations is

$$\mathbf{x}^{(2)} = \boldsymbol{\xi} t e^{-\frac{1}{2}t} + \boldsymbol{\eta} e^{-\frac{1}{2}t}.$$

One such value for η is $\begin{bmatrix} 2/5 \\ 0 \end{bmatrix}$.

Thus, solutions to the given system of differential equations are of the form

$$\mathbf{x} = \begin{bmatrix} c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-\frac{1}{2}t} + c_2 \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} t e^{-\frac{1}{2}t} + \begin{bmatrix} 2/5 \\ 0 \end{bmatrix} e^{-\frac{1}{2}t} \right).$$

Section 9.1, Problem 8

(a) If A is the matrix of constant coefficients of the given system of differential equations, then, if λ is an eigenvalue of A, then

$$0 = (-1 - \lambda)(-0.25 - \lambda)$$

so that $\lambda \in \{-1, -0.25\}$. Thus, the eigenvectors of A associated with eigenvalues $\lambda = -3$ and $\lambda = 2$, respectively, are

$$\boldsymbol{\xi}^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \boldsymbol{\xi}^{(2)} = \begin{bmatrix} -0.75 \\ 1 \end{bmatrix}.$$

- (b) Since both eigenvalues of A are negative, the origin is an asymptotically stable equilibrium point.
- (c) Figure 4 below shows several sample trajectories of \mathbf{x} , as well as some typical graphs of x_1 versus t.

Section 9.1, Problem 10

(a) As found in the solution to part (a) of Problem 6 in chapter 7.6, if A is the matrix of constant coefficients of the given system of differential equations, then, if λ is an eigenvalue of A, then $\lambda = \pm 3i$, and the eigenvectors of A associated with eigenvalues $\lambda = 3i$ and $\lambda = -3i$, respectively, are

$$\boldsymbol{\xi}^{(1)} = \boxed{\begin{bmatrix} 2 \\ -1+3i \end{bmatrix}}, \quad \boldsymbol{\xi}^{(2)} = \boxed{\begin{bmatrix} 2 \\ -1-3i \end{bmatrix}}.$$

- (b) As explained in the solution to part (a) of Problem 6 in chapter 7.6, all solutions to the given system of differential equations are elliptical, so that the origin is a stable (but not asymptotically stable) equilibrium point.
- (c) Figure 5 below shows several sample trajectories of \mathbf{x} , as well as some typical graphs of x_1 versus t.