D. M. Agrégation Externe, le 16 octobre 2013

On rappelle le résultat suivant (formule des classes).

Soit (G, \cdot) un groupe multiplicatif fini que l'on fait opérer sur lui même par conjugaison $(g \cdot h = ghg^{-1})$, pour $(g,h) \in G \times G$. En notant $G \cdot h_1, \dots, G \cdot h_r$ toutes les orbites non réduites à un point et deux à deux distinctes, on a :

$$\operatorname{card}(G) = \operatorname{card}(Z(G)) + \sum_{i=1}^{r} \frac{\operatorname{card}(G)}{\operatorname{card}(G_{h_{i}})}$$

où $Z(G) = \{h \in G \mid \forall g \in G, gh = hg\}$ est le centre de G, $G \cdot h = \{ghg^{-1} \mid g \in G\}$ est l'orbite de h et $G_h = \{g \in G \mid ghg^{-1} = h\}$ le stabilisateur de h sous l'action de G.

Les anneaux considérés sont supposés unitaires et on notera respectivement $0_{\mathbb{A}}$, $1_{\mathbb{A}}$ (ou 0 et 1 quand l'anneau est fixé et qu'il n'y a pas d'ambiguïté) les éléments neutres pour l'addition et la multiplication d'un anneau $(\mathbb{A}, +, \cdot)$, avec $0_{\mathbb{A}} \neq 1_{\mathbb{A}}$ (les anneaux considérés ont au moins deux éléments).

On note $\mathbb{A}^* = \mathbb{A} \setminus \{0_{\mathbb{A}}\}$, \mathbb{A}^{\times} le groupe des éléments inversibles de \mathbb{A} et :

$$Z(\mathbb{A}) = \{a \in \mathbb{A} \mid \forall b \in \mathbb{A}, \ ab = ba\}$$

le centre de l'anneau A.

On rappelle qu'un morphisme d'anneaux de \mathbb{A} dans \mathbb{B} (deux anneaux unitaires) est une application $\varphi : \mathbb{A} \to \mathbb{B}$ telle que $\varphi (1_{\mathbb{A}}) = 1_{\mathbb{B}}$ et :

$$\forall \left(x,y\right) \in \mathbb{A}^{2},\ \varphi \left(x+y\right) =\varphi \left(x\right) +\varphi \left(y\right) ,\ \varphi \left(x\cdot y\right) =\varphi \left(x\right) \cdot \varphi \left(y\right)$$

Si \mathbb{A} est un anneau commutatif, on note $\mathbb{A}[X]$ l'anneau des polynômes à coefficients dans \mathbb{A} .

Soit $(\mathbb{K}, +, \cdot)$ un corps. Le sous-corps premier de \mathbb{K} est le sous-corps de \mathbb{K} engendré par $1_{\mathbb{K}}$, c'est-à-dire l'intersection de tous les sous-corps de \mathbb{K} (ou encore le plus petit sous-corps de \mathbb{K}).

Pour tout nombre premier $p \geq 2$, $\mathbb{Z}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$ désigne le corps commutatif des classes résiduelles modulo p.

- I - Généralités

- 1. Soit $(\mathbb{A}, +, \cdot)$ un anneau (unitaire). Montrer qu'il existe un unique morphisme d'anneaux $\varphi : \mathbb{Z} \to \mathbb{A}$.
- 2. Soit $(\mathbb{K}, +, \cdot)$ un corps. Montrer que les seuls idéaux à gauche [resp. à droite] de \mathbb{K} sont $\{0_{\mathbb{K}}\}$ et \mathbb{K} .
- 3. Soient $(\mathbb{K}, +, \cdot)$ et $(\mathbb{L}, +, \cdot)$ deux corps. Montrer qu'un morphisme de corps de \mathbb{K} dans \mathbb{L} est nécessairement injectif.
- 4. Montrer qu'un anneau unitaire intègre et fini est un corps.
- 5. Soit $(\mathbb{K}, +, \cdot)$ un corps. Montrer que son sous-corps premier est soit infini isomorphe à \mathbb{Q} , soit fini isomorphe à \mathbb{Z}_p , où $p \geq 2$ est un nombre premier.

Dans le cas où \mathbb{K} est fini, montrer qu'il existe un nombre premier $p \geq 2$ et un entier $n \geq 1$ tels que card $(\mathbb{K}) = p^n$. Dans le premier cas, on dit que \mathbb{K} est de caractéristique nulle et dans le second qu'il est de caractéristique p. Précisément, en désignant par $\varphi : \mathbb{Z} \to \mathbb{K}$ le morphisme d'anneaux défini par :

$$\forall n \in \mathbb{Z}, \ \varphi(n) = n \cdot 1_{\mathbb{K}}$$

on a ker $(\varphi) = p\mathbb{Z}$, où p est la caractéristique de \mathbb{K} .

- 6. Soient $\mathbb{K}\subset\mathbb{L}$ deux corps. Montrer qu'ils sont de même caractéristique.
- 7. Soient \mathbb{K} un corps de caractéristique $p \geq 2$ et \mathbb{A} une \mathbb{K} -algèbre. Montrer que pour tous a, b dans \mathbb{A} qui commutent, on a :

$$(a+b)^p = a^p + b^p$$

- 8. Soient $(\mathbb{K}, +, \cdot)$ un corps commutatif, $m \ge n$ deux entiers naturels non nuls et q, r le quotient et le reste dans la division euclidienne de m par n.
 - (a) Déterminer le quotient et le reste quand on effectue la division euclidienne de X^m-1 par X^n-1 dans $\mathbb{K}[X]$.
 - (b) Donner une condition nécessaire et suffisant pour que $X^n 1$ divise $X^m 1$ dans $\mathbb{K}[X]$.
 - (c) Soit $q \ge 2$ un entier. Montrer que $q^n 1$ divise $q^m 1$ dans \mathbb{Z} si, et seulement si, n divise m.
 - (d) Montrer que $(X^n 1) \wedge (X^m 1) = X^{n \wedge m} 1$ dans $\mathbb{K}[X]$.
- 9. Soient $\mathbb{K} \subset \mathbb{L}$ deux corps et P, Q dans $\mathbb{K}[X]$. Expliquer pourquoi les pgcd (unitaires) de P et Q dans $\mathbb{K}[X]$ et $\mathbb{L}[X]$ sont identiques.

10. Si $P(X) = \sum_{k=0}^{n} a_k X^k$ est un polynôme non nul à coefficients entiers relatifs, on définit son contenu par :

$$c(P) = \operatorname{pgcd}(a_0, a_1, \cdots, a_n).$$

On dit que $P \in \mathbb{Z}[X] \setminus \{0\}$ est primitif si son contenu vaut 1.

- (a) Montrer que le produit de deux polynômes primitifs dans $\mathbb{Z}[X]$ est primitif.
- (b) Montrer que si P et Q sont deux polynômes non nuls dans $\mathbb{Z}[X]$ alors c(PQ) = c(P)c(Q) (lemme de Gauss).
- 11. Montrer que si P est un polynôme unitaire de $\mathbb{Z}[X]$ tel que P = QR avec Q, R dans $\mathbb{Q}[X]$ et Q unitaire, alors Q et R sont dans $\mathbb{Z}[X]$.
- 12. Soit P un polynôme unitaire de $\mathbb{Z}[X]$. Montrer qu'il existe des polynômes P_1, \dots, P_r unitaires dans $\mathbb{Z}[X]$ et irréductibles dans $\mathbb{Q}[X]$ tels que $P = \prod_{k=1}^r P_k$.
- 13. Soit p un nombre premier. À tout polynôme $P\left(X\right)=\sum_{k=0}^{p}a_{k}X^{k}$ dans $\mathbb{Z}\left[X\right]$, on associe le polynôme $\overline{P}\left(X\right)=$

 $\sum_{k=0}^{p} \overline{a_k} X^k \text{ dans } \mathbb{Z}_p [X], \text{ où } \overline{a} \text{ désigne la classe de } a \in \mathbb{Z} \text{ dans } \mathbb{Z}_p \text{ (l'application } P \mapsto \overline{P} \text{ est un morphisme d'anneaux surjectif)}.$

Montrer que pour tout polynôme $Q \in \mathbb{Z}[X]$, on a $\overline{Q^p}(X) = \overline{Q}(X^p)$.

14. Soient $n \in \mathbb{N}^*$ et p un nombre premier qui ne divise pas n. Montrer que dans $\mathbb{Z}_p[X]$, le polynôme $X^n - \overline{1}$ est sans facteur carré (i. e. ne peut s'écrire Q^2R avec Q non constant).

- II - Polynômes cyclotomiques

Pour tout entier naturel non nul n, on note :

- \mathcal{D}_n l'ensemble des diviseurs positifs de n;
- $-\omega_n$ le nombre complexe $\exp\left(\frac{2i\pi}{n}\right)$;
- $-\Gamma_n$ le sous-groupe multiplicatif de \mathbb{C}^* formé de l'ensemble des racines n-ème de l'unité, soit :

$$\Gamma_n = \{ z \in \mathbb{C} \mid z^n = 1 \} = \{ \omega_n^k \mid 1 \le k \le n \}$$

 $-\mathcal{P}_n$ l'ensemble des générateurs du groupe multiplicatif Γ_n , soit $\mathcal{P}_1 = \Gamma_1$ et pour $n \geq 2$:

$$\mathcal{P}_n = \left\{ z \in \Gamma_n \mid z^n = 1 \text{ et } z^k \neq 1 \text{ pour } 1 \le k \le n - 1 \right\}$$
$$= \left\{ \omega_n^k \mid 1 \le k \le n \text{ et } k \land n = 1 \right\}$$

(les éléments de \mathcal{P}_n sont les racines primitives n-ème de l'unité);

 Φ_n le n-ème polynôme cyclotomique défini par :

$$\Phi_n(X) = \prod_{\omega \in \mathcal{P}_n} (X - \omega) = \prod_{\substack{k=1\\k \land n = 1}}^n (X - \omega_n^k)$$

On suppose connue la fonction indicatrice d'Euler :

$$\varphi: n \in \mathbb{N}^* \mapsto \varphi(n) = \operatorname{card}\left(\mathbb{Z}_n^{\times}\right) = \operatorname{card}\left\{k \in \{1, \dots, n\} \mid k \wedge n = 1\right\}$$

- 1. Quel est le degré de Φ_n pour $n \geq 1$.
- 2. Montrer que pour tout nombre premier $p \geq 2$, on a :

$$\Phi_p\left(X\right) = \sum_{k=0}^{p-1} X^k$$

3. Montrer que, pour tout $n \in \mathbb{N}^*$, on a la partition :

$$\Gamma_n = \bigcup_{d \in \mathcal{D}_n} \mathcal{P}_d$$

4. Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

$$X^{n} - 1 = \prod_{d \in \mathcal{D}_{n}} \Phi_{d}\left(X\right)$$

et en déduire la formule de Möbius :

$$\forall n \ge 1, \ n = \sum_{d \in \mathcal{D}_n} \varphi(d)$$

- 5. Montrer que pour tout $n \geq 1$, Φ_n est unitaire et dans $\mathbb{Z}[X]$ et calculer $\Phi_n(0)$.
- 6. On se propose de montrer que, pour tout $n \geq 2$, le polynôme Φ_n est irréductible dans $\mathbb{Q}[X]$ (pour n = 1, il est clair que $\Phi_1(X) = X 1$ est irréductible).

D'après **I.12.** il existe des polynômes P_1, \dots, P_r unitaires dans $\mathbb{Z}[X]$ et irréductibles dans $\mathbb{Q}[X]$ tels que $\Phi_n = \prod_{i=1}^r P_k$ (la question **II.5** nous dit que Φ_n est unitaire et dans $\mathbb{Z}[X]$).

k=1

- (a) Soient ζ une racine complexe de P_1 et $p \geq 2$ un nombre premier ne divisant pas n.
 - i. Montrer qu'il existe un indice k compris entre 1 et r tel que $P_k\left(\zeta^p\right)=0$.
 - ii. Montrer que k = 1.
- (b) Montrer que $P_1(\omega_n^k) = 0$ pour tout entier k premier avec n et conclure.
- 7. On dit qu'un nombre complexe α est algébrique s'il existe un polynôme non nul P dans $\mathbb{Q}[X]$ tel que $P(\alpha) = 0$. Soit α un nombre algébrique.
 - (a) Montrer qu'il existe un unique polynôme unitaire P_{α} dans $\mathbb{Q}[X]$ tel que :

$$\mathcal{I}_{\alpha} = \{ P \in \mathbb{Q} [X] \mid P(\alpha) = 0 \} = \mathbb{Q} [X] \cdot P_{\alpha}.$$

On dit que P_{α} est le polynôme minimal de α .

- (b) Montrer que le polynôme minimal de α est l'unique polynôme unitaire irréductible de $\mathbb{Q}[X]$ qui annule α .
- 8. Montrer que, pour $n \in \mathbb{N}^*$ et tout entier k compris entre 1 et n premier avec n, ω_n^k est algébrique et que son polynôme minimal est Φ_n .

- III - Un cas particulier du théorème de Dirichlet

On se propose de montrer le cas particulier suivant du théorème de Dirichlet : pour tout entier $n \ge 1$, il existe une infinité de nombres premiers de la forme 1 + kn où $k \in \mathbb{N}^*$.

- 1. Soient $n \in \mathbb{N}^*$, $a \in \mathbb{Z}$ et $p \ge 2$ un nombre premier. Montrer que si p divise $\Phi_n(a)$ et ne divise aucun des $\Phi_d(a)$ pour $d \in \mathcal{D}_n \setminus \{n\}$, alors p est congru à 1 modulo n.
- 2. Montrer que pour tout $n \ge 2$ et tout entier $a \ge 2$, on a $|\Phi_n(a)| > a 1$.
- 3. Soient $n \in \mathbb{N}^*$, $m \ge n+2$ un entier, a=m! et $p \ge 2$ un diviseur premier de $\Phi_n\left(a\right)$ (il en existe puisque $a \ge 3$ entraı̂ne $|\Phi_n\left(a\right)| > a-1 \ge 2$ pour $n \ge 2$ et $\Phi_1\left(a\right) = a-1 \ge 2$).
 - (a) Montrer que p > m.
 - (b) Montrer que p ne divise aucun des $\Phi_d(a)$ pour $d \in \mathcal{D}_n \setminus \{n\}$ et conclure.

- IV - Un théorème de Jacobson

Le but de cette partie est de montrer le résultat suivant.

Théorème 1 Si $(\mathbb{A}, +, \cdot)$ est un anneau unitaire tel que :

$$\forall a \in \mathbb{A}, \ \exists n \in \mathbb{N} \setminus \{0, 1\} \mid a^n = a \tag{1}$$

alors \mathbb{A} est commutatif.

On désigne par $(\mathbb{A}, +, \cdot)$ un anneau (unitaire).

On rappelle qu'un élément a de \mathbb{A} est dit :

- nilpotent s'il existe un entier $r \in \mathbb{N}^*$ tel que $a^r = 0_{\mathbb{A}}$;
- idempotent si $a^2 = a$.

1. On suppose que:

$$\forall a \in \mathbb{A}, \ a^2 = a$$

(on dit que $\mathbb A$ est un anneau de Boole). Montrer que $\mathbb A$ est commutatif de caractéristique égale à 2.

Dans ce qui suit, A est un anneau (unitaire) vérifiant la condition (1).

Pour tout $a \in \mathbb{A}$, on désigne par n_a le plus petit entier de $\mathbb{N} \setminus \{0,1\}$ tel que $a^{n_a} = a$ et on note $\gamma_a = a^{n_a-1}$.

2.

(a) Montrer que:

$$\forall a \in \mathbb{A}, \ \forall n \in \mathbb{N}^*, \ a^n \in \{a, \cdots, a^{n_a-1}\}.$$

- (b) Déterminer les éléments nilpotents de A
- (c) Montrer que:

$$\forall (a,b) \in \mathbb{A}^2, (ab = 0_{\mathbb{A}} \Leftrightarrow ba = 0_{\mathbb{A}})$$

- (d) Montrer que tout élément idempotent de \mathbb{A} est dans le centre $Z(\mathbb{A})$.
- (e) Montrer que pour tout $a \in \mathbb{A}$, γ_a est idempotent et dans $Z(\mathbb{A})$.

À tout élément a de A, on associe l'entier :

$$m_a = (n_a - 1)(n_{2a} - 1) + 1$$

3. Montrer que, pour tout $a \in \mathbb{A}$, on a :

$$a^{m_a} = a$$
, $(2a)^{m_a} = 2a$, $(2^{m_a} - 2)a = 0$

4. On suppose, seulement pour cette question, que:

$$\forall a \in \mathbb{A}, \ a^3 = a$$

Montrer que \mathbb{A} est commutatif.

À tout $a \in \mathbb{A}^*$, on associe l'ensemble :

$$\mathbb{P}(a) = \{ y \in \mathbb{A} \mid \exists P \in \mathbb{Z} [X] \ tel \ que \ y = aP(a) \}$$

- 5. Soit $a \in \mathbb{A}^*$.
 - (a) Montrer que $\mathbb{P}(a)$ est un sous-anneau commutatif fini de \mathbb{A} et que :

$$\mathbb{P}(a) = \left\{ \sum_{k=1}^{n_a - 1} \alpha_k a^k \mid \alpha_k \in \{0, \dots, 2^{m_a} - 3\} \right\}$$

(b) Montrer que γ_a est l'élément neutre de $\mathbb{P}(a)$, c'est-à-dire que :

$$\forall y \in \mathbb{P}(a), \ \gamma_a \cdot y = y$$

et que a est inversible dans $\mathbb{P}(a)$.

- (c) Montrer que pour tout $x \in \mathbb{A}^*$ idempotent, l'application $\varphi_x : y \mapsto xy$ est un morphisme d'anneaux (unitaires) surjectif de $\mathbb{P}(a)$ sur $\mathbb{P}(xa)$.
- 6. On suppose que l'anneau \mathbb{A} est non commutatif et pour $a \in \mathbb{A}^*$, on désigne par $E_a = (\mathbb{P}(a))^* \setminus (\mathbb{P}(a))^*$ l'ensemble des éléments non inversibles de $(\mathbb{P}(a))^*$.

On se donne $a \in \mathbb{A} \setminus Z(\mathbb{A})$ et $b \in \mathbb{A}$ tel que $c = ba - ab \neq 0_{\mathbb{A}}$.

- (a) Montrer que $\gamma_c a \in \mathbb{A} \setminus Z(\mathbb{A})$.
- (b) On suppose que $\mathbb{P}(a)$ n'est pas un corps et on se donne $x \in E_a$. Montrer que si $\gamma_c x = 0_{\mathbb{A}}$, alors $\mathbb{P}(\gamma_c a)$ a strictement moins d'éléments non inversibles que $\mathbb{P}(a)$, sinon $\gamma_x a \in \mathbb{A} \setminus Z(\mathbb{A})$ et $\mathbb{P}(\gamma_x a)$ a strictement moins d'éléments non inversibles que $\mathbb{P}(a)$.
- (c) Montrer qu'il existe un élément $a\in\mathbb{A}\setminus Z\left(\mathbb{A}\right)$ tel que $\mathbb{P}\left(a\right)$ soit un corps.
- 7. Soit \mathbb{K} un corps fini (donc commutatif) de caractéristique $p \geq 2$ et de cardinal $q = p^n$ (avec $n \geq 1$) contenu dans \mathbb{A} . L'anneau \mathbb{A} peut alors être muni d'une structure de \mathbb{K} -espace vectoriel. À tout élément x de \mathbb{K} , on associe l'application :

$$\begin{array}{cccc}
\delta_x & \mathbb{A} & \to & \mathbb{A} \\
 & u & \mapsto & ux - xu
\end{array}$$

- (a) Montrer que, pour tout x dans \mathbb{K} , l'application δ_x est linéaire.
- (b) Montrer que, pour tout x dans \mathbb{K} et tout entier $m \geq 1$, on a :

$$\forall y \in \mathbb{A}, \ \delta_x^m(y) = \sum_{k=0}^m (-1)^k C_m^k x^k y x^{m-k}$$

où
$$\delta_x^m = \underbrace{\delta_x \circ \cdots \circ \delta_x}_{m \text{ fois}}.$$

- (c) Montrer que, pour tout x dans \mathbb{K} et tout entier $r \geq 1$, on a $\delta_x^{p^r} = \delta_{x^{p^r}}$, puis que $\delta_x^q = \delta_x$.
- (d) Montrer que, pour tout x dans \mathbb{K} , on a :

$$\mathbb{A} = \bigoplus_{\lambda \in \mathbb{K}} \ker \left(\delta_x - \lambda I d_{\mathbb{A}} \right)$$

- (e) Montrer que si $x \in \mathbb{K}$ et $x \notin Z(\mathbb{A})$, il existe alors $\lambda \in \mathbb{K}$ et $y \in \mathbb{A}$ tels que $\delta_x(y) = \lambda y \neq 0_{\mathbb{A}}$.
- 8. On suppose que l'anneau \mathbb{A} est non commutatif et on se donne $a \in \mathbb{A} \setminus Z(\mathbb{A})$ tel que $\mathbb{P}(a)$ soit un corps (question $\mathbf{V.6c}$). Il existe alors $\lambda \in \mathbb{P}(a)$ et $b \in \mathbb{A}^*$ tel que $\lambda b = \delta_a(b) \neq 0_{\mathbb{A}}$, ce qui peut aussi s'écrire $ba = \mu b \neq ab$ avec $\mu = \lambda + a \in \mathbb{P}(a)$. On associe alors à ces éléments a, b l'ensemble :

$$\mathbb{P}(a,b) = \left\{ \sum_{\substack{1 \le k \le n \\ 1 \le j \le m}} \alpha_{k,j} a^k b^j \mid (n,m) \in \mathbb{N}^* \text{ et } \alpha_{k,j} \in \mathbb{Z} \right\}$$

- (a) Montrer que pour tout $j \in \mathbb{N}^*$ et tout $y \in \mathbb{P}(a)$, il existe un élément $z \in \mathbb{P}(a)$ tel que $b^j y = zb^j$.
- (b) Montrer que:

$$\mathbb{P}(a,b) = \left\{ \sum_{\substack{1 \le k \le n_a - 1 \\ 1 \le j \le n_b - 1}} \alpha_{k,j} a^k b^j \mid \alpha_{k,j} \in \{0, \cdots, 2^{m_a} - 3\} \right\}$$

et que $\mathbb{P}(a,b)$ est un sous-anneau fini non commutatif de \mathbb{A} d'élément neutre $\gamma_a \gamma_b$.

- (c) Montrer qu'il existe $a \in \mathbb{A} \setminus Z(\mathbb{A})$, $b \in \mathbb{A}^*$ et $\mu \in \mathbb{P}(a)$ tels que $ba = \mu b \neq ab$ et $\mathbb{P}(a, b)$ soit un corps.
- (d) En déduire le théorème de Jacobson.