Ansys

Ansys Fluent Simulation Report

Analyst	Athena
Date	3/17/2022 08:14 PM

Table of Contents

1 System Information

2 Geometry and Mesh

2.1 Mesh Size

2.2 Mesh Quality

2.3 Orthogonal Quality

3 Simulation Setup

3.1 Physics

3.1.1 Models

3.1.2 Material Properties

3.1.3 Cell Zone Conditions

3.1.4 Boundary Conditions

3.1.5 Reference Values

3.2 Solver Settings

4 Run Information

5 Solution Status

6 Report Definitions

7 Plots

8 Contours

System Information

Application	Fluent	
Settings	3d, double precision, pressure-based, standard k-epsilon	
Version	21.2.0-10201	
Source Revision	fcb749f05e	
Build Time	May 28 2021 13:54:12 EDT	
CPU	Intel(R) Core(TM) i7-10710U	
os	Windows	

Geometry and Mesh

Mesh Size

Cells	Faces	Nodes
353154	715650	63325

Mesh Quality

Name	Туре	Min Orthogonal Quality	Max Aspect Ratio
solid	Mixed Cell	0.056052865	42.162583

Orthogonal Quality

Simulation Setup

Physics

Models

Model	Settings
Space	3D
Time	Steady
Viscous	Standard k-epsilon turbulence model
Wall Treatment	Standard Wall Functions
Heat Transfer	Enabled

Material Properties

- Fluid	
— air	
Density	1.225 kg/m^3
Cp (Specific Heat)	1006.43 J/(kg K)
Thermal Conductivity	0.0242 W/(m K)
Viscosity	1.7894e-05 kg/(m s)
Molecular Weight	28.966 kg/kmol
Thermal Expansion Coefficient	0
Speed of Sound	none
- Solid	
aluminum	
Density	2719 kg/m^3
Cp (Specific Heat)	871 J/(kg K)
Thermal Conductivity	202.4 W/(m K)

Cell Zone Conditions

- Fluid	
- solid	
Material Name	air
Specify source terms?	no
Specify fixed values?	
Frame Motion?	no
Laminar zone?	no
Porous zone?	no
3D Fan Zone?	no

Boundary Conditions

- Inlet	
- inlet	
— Illiet	
Velocity Specification Method	Magnitude, Normal to Boundary
Reference Frame	Absolute
Velocity Magnitude [m/s]	15
Supersonic/Initial Gauge Pressure [Pa]	0
Temperature [K]	300
Turbulent Specification Method	Intensity and Viscosity Ratio
Turbulent Intensity [%]	5
Turbulent Viscosity Ratio	10
- Outlet	
outlet	
Backflow Reference Frame	Absolute
Gauge Pressure [Pa]	0
Pressure Profile Multiplier	1
Backflow Total Temperature [K]	300
Backflow Total Temperature [K]	300

D 16 D: 0 O 15 0 M 11	5
Backflow Direction Specification Method	Normal to Boundary
Turbulent Specification Method	Intensity and Viscosity Ratio
Backflow Turbulent Intensity [%]	5
Backflow Turbulent Viscosity Ratio	10
Backflow Pressure Specification	Total Pressure
Build artificial walls to prevent reverse flow?	no
Radial Equilibrium Pressure Distribution	no
Average Pressure Specification?	no
Specify targeted mass flow rate	no
- Wall	
— wall-20	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
— wall-19	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
— wall-17	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
— wall-16	
Wall Thickness [m]	0

Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
wall_left	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- wall_up	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
─ wall right	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
Convective / tagmentation r actor	<u>'</u>

- wall_down	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- aircraft	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Heat Flux
Heat Flux [W/m^2]	0
Enable shell conduction?	no
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Roughness Height [m]	0
Wall Roughness Constant	0.5
Convective Augmentation Factor	1

Reference Values

Area	1 m^2
Density	1.225 kg/m^3
Enthalpy	0 J/kg
Length	1 m
Pressure	0 Pa
Temperature	288.16 K
Velocity	1 m/s
Viscosity	1.7894e-05 kg/(m s)
Ratio of Specific Heats	1.4
Yplus for Heat Tran. Coef.	300
Reference Zone	solid

Solver Settings

Equations	
Flow	True
Turbulence	True
Energy	True

Numerics	
Absolute Velocity Formulation	True
Pseudo Transient Explicit Relaxation Factors	
Density	1
Body Forces	1
Turbulent Kinetic Energy	0.75
Turbulent Dissipation Rate	0.75
Turbulent Viscosity	1
Energy	0.75
Explicit Momentum	0.5
Explicit Pressure	0.5
 Pressure-Velocity Coupling 	
Туре	Coupled
Pseudo Transient	True
 Discretization Scheme 	
Pressure	Second Order
Momentum	Second Order Upwind
Turbulent Kinetic Energy	First Order Upwind
Turbulent Dissipation Rate	First Order Upwind
Energy	Second Order Upwind
- Solution Limits	
Minimum Absolute Pressure [Pa]	1
Maximum Absolute Pressure [Pa]	5e+10
Minimum Temperature [K]	1
Maximum Temperature [K]	5000
Minimum Turb. Kinetic Energy [m^2/s^2]	1e-14
Minimum Turb. Dissipation Rate [m^2/s^3]	1e-20
Maximum Turb. Viscosity Ratio	100000

Run Information

Number of Machines	1
Number of Cores	2
Case Read	5.091 seconds
Iteration	890.504 seconds
AMG	639.201 seconds
Virtual Current Memory	1.29497 GB
Virtual Peak Memory	1.51986 GB
Memory Per M Cell	3.23296

Solution Status

Iterations: 348

	Value	Absolute Criteria	Convergence Status
continuity	0.0009854945	0.001	Converged
x-velocity	1.822456e-08	0.001	Converged
y-velocity	1.781807e-08	0.001	Converged
z-velocity	7.021692e-08	0.001	Converged
energy	1.563709e-16	1e-06	Converged
k	4.372469e-07	0.001	Converged
epsilon	1.196478e-06	0.001	Converged

Report Definitions

lift-force	17.08113 N
lift-co	27.88756
drag-force	0.02086061 N
drag-co	0.03405814

Plots

Residuals

lift-force-rplot

lift-force-rplot

lift-co-rplot

lift-co-rplot

drag-force-rplot

drag-force-rplot

drag-co-rplot

duna on unlat

