Методы статистической обработки информации - Задание 1

Ершов А. С., гр. 22.М04-мм

Задание: по реальным данным найти среднее, медиану, моду, дисперсию, рассеяние, ассиметрию, эксцесс.

Table: Распределения числа аномалий на ядре.

	in vitro						in vivo					
Доза,	число аномалий						число аномалий					
Гр	0	1	2	3	4	> 5	0	1	2	3	4	> 5
0	68	25	7				66	31	2	1		
5	74	19	5	2			50	35	13	2		
10	59	24	16	1			41	39	17	2	1	
15	48	33	11	3	2	3	27	39	29	3	1	1
20	59	31	5	4	1		22	22	32	15	6	3
25	37	31	22	6	2	2	33	39	18	8	1	1
30	35	37	17	5	3	3	21	29	21	14	10	5
35	26	36	19	10	5	4	17	24	32	11	10	6
40	19	33	25	11	7	5	15	17	29	18	11	10
45							13	14	24	24	12	13

Мой вариант: in vitro, 35 Гр.

Выполнено на языке R в R Notebook.

Создадим выборку по имеющимся данным.

```
data <- rep(c(0,1,2,3,4,5),times=c(26,36,19,10,5,4))
data</pre>
```

Рассчитаем заданные величины.

Среднее:

```
result.mean <- round(mean(data), 1)
print(result.mean)</pre>
```

[1] 1.4

Медиана:

```
result.median <- round(median(data), 1)</pre>
print(result.median)
## [1] 1
Мода:
result.mode <- unique(data)</pre>
result.mode <- result.mode[which.max(tabulate(match(data, result.mode)))]</pre>
print(result.mode)
## [1] 1
Наиболее часто встречающийся в выборке элемент - 1, по условию он встречается 36 раз.
Дисперсия:
result.var <- round(var(data), 1)</pre>
print(result.var)
## [1] 1.8
Асимметрия:
library(moments)
result.skewness <- round(skewness(data), 1)</pre>
print(result.skewness)
## [1] 1
Ассиметрия получилась больше 0, то есть "правый хвост" распределения длиннее левого, правосторонняя
асимметрия.
Эксцесс:
result.kurtosis <- round(kurtosis(data), 1)</pre>
print(result.kurtosis)
## [1] 3.4
Эксцесс получился больше 0, хвосты распределения "легче", а пик острее, чем у нормального распределения.
Рассеяние:
result.scattering <- round(result.var / result.mean, 1)</pre>
print(result.scattering)
```

[1] 1.3

Сведём результаты в таблицу:

```
result_df <- data.frame(result.mean, result.median, result.mode, result.var, result.skewness, result.kur colnames(result_df) <- c('Среднее', 'Медиана', 'Мода', 'Дисперсия', 'Асимметрия', 'Эксцесс', 'Рассеяние' print(result_df)
```

```
## Среднее Медиана Мода Дисперсия Асимметрия Эксцесс Рассеяние
## 1 1.4 1 1.8 1 3.4 1.3
```

Построим график функции эмпирического распределения:

```
ecdf_res <- ecdf(data)
plot(ecdf_res, xlim=c(-0.1, 5.1), pch = 17, main="", xlab="", ylab="", col="blue")</pre>
```


Построим график относительных частот.

График подтверждает вывод относительно эксцесса и ассиметрии.