# Esame di Ricerca Operativa - 31 luglio 2013 Facoltà di Scienze MM.FF.NN. - Verona - CORREZIONE -

# Problema 1 (3+2 punti):

La PhotoMegaLux, azienda leader nella produzione di materiali ad uso fotografico, sta studiando i tempi di reazione di un nuovo acido per lo sviluppo di fotografie professionali. Sperimentalmente sono stati calcolati i tempi di sviluppo di una fotografia in base alla quantità di acido impiegato. In tabella sono riportati i tempi di sviluppo t in funzione delle quantità q di acido, per come rilevati empiricamente su t0 campioni di un provino.

| campione | 1   | 2   | 3   | 4   | 5   |
|----------|-----|-----|-----|-----|-----|
| litri    | 0.3 | 0.5 | 0.6 | 0.7 | 0.9 |
| secondi  | 30  | 15  | 4.5 | 3.5 | 2.6 |

La colonna (i+1)-esima della tabella  $(1 \le i \le 5)$  dice che sul campione i, dove sono stati utilizzati  $q_i$  litri di acido, la reazione ha avuto luogo in  $t_i$  secondi.

Sulla base dei dati sperimentali si vuole trovare una legge del tipo  $t = Aq^2 + Bq + C$  che approssimi il più possibile l'andamento del tempo di reazione dell'acido. In particolare, si vorrebbe determinare una tripla di valori per i coefficienti  $A, B \in C$  in modo che lo scostamento massimo  $\max_{i=1}^5 |t_i - Aq_i^2 - Bq_i - C|$  sia il più contenuto possibile.

((3pt)) Fornire un modello di programmazione lineare per tale problema specifico.

((2pt)) Fornire un modello in forma astratta che si riferirisca ad un numero n arbitrario di campioni (una sequenza di n coppie  $(q_i, t_i)$ ).

## svolgimento.

Dobbiamo determinare il valore di tre variabili:  $A, B \in C$ . Oltre ad esse, consideriamo le n quantità  $\epsilon_i = |t_i - A q_i^2 - B q_i - C|$  (per i = 1, 2, ..., n), ed introduciamo la variabile  $\epsilon = \max_{i=1}^n \epsilon_i$ .

L'obiettivo é quello di minimizzare il massimo scostamento, ossia

 $\min \epsilon$ ,

dove, per  $i = 1, 2, \dots, n$ , sarà nostra cura riportare i seguenti vincoli:

$$\epsilon \ge t_i - A q_i^2 - B q_i - C$$
  
 $\epsilon \ge A q_i^2 + B q_i + C - t_i$ 

Si noti che sia la funzione obiettivo che i 2n vincoli sono lineari nelle 4 variabili A, B, C ed  $\epsilon$ . I coefficienti  $t_i$ ,  $q_i^2$  e  $q_i$  sono valori numerici ricavabili direttamente o per calcolo immediato dal database.

## Problema 2 (5 punti):

Si supponga di avere uno zaino di capacitá B e di voler trasportare un sottoinsieme dei seguenti n=19 oggetti a massima somma dei valori, soggetti al vincolo che la somma dei pesi non ecceda B.

| indice | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| peso   | 13 | 4  | 22 | 52 | 27 | 22 | 29 | 23 | 9  | 47 | 48 | 20 | 5  | 15 | 17 | 24 | 13 | 5  | 17 |
| valore | 26 | 10 | 42 | 60 | 40 | 42 | 32 | 40 | 22 | 99 | 64 | 20 | 8  | 24 | 40 | 44 | 24 | 12 | 32 |

In un classico approccio di programmazione dinamica, si introduce un problema DP[i][b] per ogni  $i=0,1,2,\ldots,n$  e per ogni  $b=0,1,2,\ldots,B$ .

- **2.1(1pt)** Come si inizializzano i B + 1 problemi DP[0][b] corrispondenti al caso base di nessun oggetto tra cui scegliere?
- **2.2 (1pt)** Quale è il significato del problema DP[i][b]?
- **2.3** (1pt) Quale ricorrenza esprime il valore di DP[i][b] in termini di problemi più piccoli?
- **2.4 (1pt)** Una volta riempita la tabella di programmazione dinamica, come posso ottenere il valore della soluzione ottima del problema originale?
- **2.5** (1pt) E come posso produrre una tale soluzione ottima? (Chiarezza e coincisione).

soluzione.

2.1(1pt) Li si pone tutti a zero. Espressa in pseudocodice:

```
for(int b = 0; b \le B; B++) DP[0][b] = 0;
```

- **2.2 (1pt)** DP[i][b] vuole essere il massimo valore complessivo di un sottoinsieme dei primi i oggetti a peso complessivo non eccedente b:
- **2.3 (1pt)** Si il peso dell'oggetto *i*-esimo eccede *b* allora DP[i][b] = DP[i-1][b], poichè l'oggetto *i*-esimo non può essere utilizzato. In caso contrario, dobbiamo contemplare le due ipotesi (includerlo oppure no) e pertanto  $DP[i][b] = \max\{DP[i-1][b], valore[i] + DP[i-1][b-peso(i)]\}.$

```
for(int i = 1; i <= n; i++)
  for(int b = 0; b <= B; B++)
   if( peso[i] > b ) DP[i][b] = DP[i-1][b];
   else DP[i][b] = max( DP[i-1][b], valore[i] + DP[i-1][b-peso[i]] );
```

**2.4 (1pt)** Il valore della soluzione ottima del problema originario è contenuto nella cella DB[n][B];

2.5(1pt)

```
int promessa = DB[n][B]; i = n;
while (promessa > 0) {
  while ( DB[i-1][B] == promessa )    i = i-1;
  prendi l'oggetto i;
  B = B - peso[i];
  promessa = promessa - valore[i];
}
```

# Problema 3 (4 punti):

Nel seguente array di interi, trovare un sottointervallo di interi consecutivi la somma dei cui valori sia massima.

|  |  |  |  |  |  |  |  |  |  |  |  |  | -19 |  |
|--|--|--|--|--|--|--|--|--|--|--|--|--|-----|--|
|  |  |  |  |  |  |  |  |  |  |  |  |  |     |  |

- **3.1(1pt)** quale è il massimo valore di somma di un sottointervallo? Quale sottointervallo devo prendere?
- **3.2** (1pt) e nel caso sia richiesto di partire dal primo elemento?
- **3.3 (1pt)** e nel caso sia richiesto di includere il 18-esimo elemento?
- **3.4 (1pt)** e nel caso sia richiesto di includere sia il 14-esimo che il 16-esimo elemento?

svolgimento. Dapprima compilo la seguente tabella di programmazione dinamica.

| 1             | 2             | 3             | 4             | 5             | 6             | 7             | 8             | 9             | 10            | 11            | 12            | 13            | 14            | 15            | 16            | 17            | 18            | 19            | 20            | 21       | 22            | 23            | 24            | 25            | 26            | 27            |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------|---------------|---------------|---------------|---------------|---------------|---------------|
| ←             | <b>←</b>      | <b></b>       | <b>←</b>      | <b></b>       | <b></b>       | <b>←</b>      | <b>←</b>      | <b></b>       | <b>=</b>      | <b>=</b>      | <b>←</b>      | <b>←</b>      | <b>←</b>      | <b></b>       | <b>←</b>      | <b>(</b>      | <b>←</b>      | <b></b>       | <b>←</b>      | <b>←</b> | <b>←</b>      | <b></b>       | <b>←</b>      | <b></b>       | <b>←</b>      | ←             |
| 5             | 4             | 8             | 3             | 10            | 0             | 31            | 11            | 34            | 3             | 19            | 0             | 5             | 0             | 30            | 8             | 14            | 6             | 27            | 2             | 15       | 0             | 21            | 8             | 32            | 13            | 38            |
| 5             | -1            | 4             | -5            | 27            | -8            | 33            | -20           | 23            | -31           | 16            | -32           | 4             | -15           | 39            | -22           | 6             | -8            | 21            | -34           | 11       | -55           | 21            | -13           | 24            | -19           | 25            |
| 26            | 21            | 22            | 18            | 23            | 16            | 34            | 3             | 23            | 0             | 16            | 0             | 20            | 15            | 30            | 0             | 19            | 13            | 21            | 0             | 13       | 0             | 38            | 17            | 30            | 6             | 25            |
| $\Rightarrow$ | <b>†</b> | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ |

Possiamo ora fornire le seguenti risposte.

| tipo intervallo             | max sum | parte da pos. | arriva a pos. | parte da val. | arriva a val. |
|-----------------------------|---------|---------------|---------------|---------------|---------------|
| qualsiasi                   | 38      | 23            | 27            | 21            | 25            |
| include primo               | 26      | 1             | 9             | 5             | 23            |
| include 18-esimo            | 27      | 15            | 19            | 30            | 21            |
| include 14-esimo e 16-esimo | 17      | 13            | 19            | 5             | 21            |

#### Problema 4 (4 punti):

Si consideri la seguente sequenza di numeri naturali.

| 15   23   25   30   22   33   44   50   21   41   67   26   47   35   60   62   24   27   19   42   61   29   45   54 |
|-----------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------|

- **4.1(1pt)** trovare una sottosequenza crescente che sia la più lunga possibile. Specificare quanto è lunga e fornirla.
- **4.2(2pt)** una sequenza è detta una N-sequenza, o sequenza crescente con un possibile ripensamento, se esiste un indice *i* tale cha ciascuno degli elementi della sequenza esclusi al più il primo e l'*i*-esimo sono strettamente maggiori dell'elemento che immediatamente li precede nella sequenza. Trovare la più lunga N-sequenza che sia una sottosequenza della sequenza data. Specificare quanto è lunga e fornirla.
- **4.3(1pt)** trovare la più lunga sottosequenza crescente che includa l'elemento di valore 21. Specificare quanto è lunga e fornirla.

svolgimento. Dapprima compilo la seguente tabella di programmazione dinamica.

| (             | Cres          | SCEN          | $^{\mathrm{TE}}$ |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |               |
|---------------|---------------|---------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$    | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ | $\Rightarrow$ |
| 9             | 8             | 7             | 6                | 6             | 5             | 4             | 3             | 6             | 4             | 1             | 5             | 3             | 4             | 2             | 1             | 5             | 4             | 4             | 3             | 1             | 3             | 2             | 1             | 1             |
| 15            | 23            | 25            | 30               | 22            | 33            | 44            | 50            | 21            | 41            | 67            | 26            | 47            | 35            | 60            | 62            | 24            | 27            | 19            | 42            | 61            | 29            | 45            | 54            | 28            |
| 1             | 2             | 3             | 4                | 2             | 5             | 6             | 7             | 2             | 6             | 8             | 4             | 7             | 6             | 8             | 9             | 3             | 5             | 2             | 7             | 9             | 6             | 8             | 9             | 8             |
|               | _             | _             | _                | _             | _             |               | _             | _             |               | _             | _             | _             | _             | _             | _             | _             | _             | _             | _             | _             | _             | _             | _             |               |

Crescente

Possiamo ora fornire le seguenti risposte.

| tipo sottosequenza | max lung | sottosequenza ottima                                   |
|--------------------|----------|--------------------------------------------------------|
| crescente          | 9        | 15, 23, 25, 30, 33, 44, 50, 60, 62                     |
| N-sequenza         | 14       | 15, 23, 25, 30, 33, 44, 50, 60, 62, 24, 27, 42, 45, 54 |
| crescente con 21   | 7        | 15, 21, 26, 35, 42, 45, 54                             |

Ma come avrei dovuto organizzare invece i conteggi se mi fosse stato chiesto di individuare la più lunga V-sequenza?

# Problema 5 (15 punti):

Si consideri il grafo G, con pesi sugli archi, riportato in figura.



- 5.1.(2pt) Dire, certificandolo, (1) se il grafo G è planare oppure no; (2) se il grafo G' ottenuto da G rimpiazzando l'arco go con l'arco gh è planare oppure no.
- 5.2.(2pt) Fornendo i certificati del caso, dire quale sia il minimo numero di archi la cui rimozione renda bipartito: (1) il grafo G; (1) il grafo G'.
- 5.3.(1pt) Trovare un albero ricoprente di G di peso minimo.
- 5.4.(3pt) Per ciascuno dei seguenti archi dire, certificandolo, se esso appartenga a (tutte / a nessuna / a qualcuna ma non a tutte) le soluzioni ottime: fg, wx, ln.
- 5.5.(1pt) Trovare tutti gli alberi ricoprenti di peso minimo. (Dire quanti sono e specificare con precisione come generarli).

- 5.6.(1pt) Trovare un albero dei cammini minimi da s e determinare le distanze di tutti i nodi da s.
- 5.7.(1pt) Trovare tutti gli alberi dei cammini minimi da s. (Dire quanti sono e specificare con precisione come generarli).
- 5.8.(2pt) Trovare un massimo flusso dal nodo s al nodo t.
- 5.9.(2pt) Certificare l'ottimalità del flusso massimo dal nodo s al nodo t.

## risposte.

Il fatto che G sia planare può essere messo in evidenza esibendo il planar embedding in figura.



Nello svolgimento dei successivi punti converrà riferirsi al planar drawing fornito sopra.

Il fatto che G sia bipartito può essere messo in evidenza esibendo la 2-colorazione in figura.



Il numero di archi la cui rimozione rende il grafo bipartito è pertanto 0.

Il grafo G' ottenuto da G rimpiazzando l'arco go con l'arco gh non é bipartito, come messo in evidenza dal circuito dispari ghpqb. Poiché  $G' \setminus go$  è un sottografo di G, la rimozione di questo arco basta a rendere il grafo bipartito, ed ogni certificato (bipartizione) di G (come ad esempio quella fornita sopra) sarà anche un certificato (bipartizione) di  $G' \setminus go$ .

La seguente figura esprime la famiglia degli alberi ricoprenti di peso minimo. Ci sono  $2 \cdot 3 \cdot 4 \cdot 4 = 96$  alberi ricoprenti di perso minimo e ciascuno di essi include i 14 archi in linea spessa, più uno qualsiasi dei 2 archi di peso 5 incidenti al nodo a (i 2 archi in linea sfumata

spessa presenti nella zona a sinistra), più uno qualsiasi dei 3 archi di peso 7 in linea sfumata spessa presenti nella zona centrale (gli archi on, ml, ih), più uno qualsiasi dei 4 archi di peso 7 in linea sfumata spessa presenti nella zona a destra (infatti, se nel grafo G contraiamo tutti gli archi di peso inferiore a 7 e rimuoviamo tutti gli archi di peso superiore a 7 ci ritroviamo con 2 soli nodi connessi da questi 4 archi disposti in parallelo), più 3 qualsiasi dei 4 archi di peso 5 in linea sfumata spessa presenti nella zona a destra (infatti, se nel grafo G contraiamo tutti gli archi di peso inferiore a 5 e rimuoviamo tutti gli archi di peso superiore a 5 ci ritroviamo con una componente connessa che è un quadrato di questi 4 archi. (La componente connessa di 2 nodi connessi da 2 archi paralleli evidenzia l'intercambiabilità dei 2 archi di peso 5 incidenti al nodo a di cui si era detto più sopra).

fg in tutte le soluzioni ottime in quanto unico arco di peso minimo nel taglio che separa i nodi s, e, a, c, f, d da tutti gli altri nodi;

wx in qualche soluzione ottima in quanto arco di peso minimo nel taglio che separa i nodi w, v, z, t da tutti gli altri nodi (primo certificato) ma non in tutte le soluzioni ottime in quanto arco di peso massimo nel ciclo lnph;

ln in nessuna soluzione ottima in quanto unico arco di peso massimo nel ciclo wxrv.



La seguente figura esprime la famiglia degli alberi dei cammini minimi dal nodo s. Ci sono  $2^5=32$  alberi dei cammini minimi dal nodo s e ciascuno di essi include i 17 archi in linea spessa, più uno qualsiasi dei 2 archi tratteggiati entranti nel nodo a, uno qualsiasi dei 2 archi tratteggiati entranti nel nodo b, uno qualsiasi dei 2 archi tratteggiati entranti nel nodo b, uno qualsiasi dei 2 archi tratteggiati entranti nel nodo b e uno qualsiasi dei 2 archi tratteggiati entranti nel nodo b.



La seguente figura esibisce un flusso massimo (non esibisco tutti i passaggi che ho dovuto compiere per ottenerlo) ed un taglio (minimo) che ne dimostra l'ottimalità.



Il flusso ha valore 16 e satura l'insieme degli archi che attraversano la curva tratteggiata portandosi dal lato di s al lato di t. Questi 6 archi costituiscono pertanto un minimo s, t-taglio, anch'esso di valore 16 e che certifica pertanto l'ottimalità del flusso proposto.

## Problema 6 (8 punti):

$$\max 11x_1 - 5x_2 - 3x_3 \begin{cases} 10x_1 - x_2 + 2x_3 \le 8 \\ 10x_1 - 5x_2 + x_3 \le -10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- **6.1(1pt)** Impostare il problema ausiliario.
- **6.2(2pt)** Risolvere il problema ausiliario per ottenere una soluzione ammissibile di base al problema originario.
- 6.3(2pt) Risolvere il problema originario all'ottimo.
- **6.4(1pt)** Quanto si sarebbe disposti a pagare per ogni unità di incremento per l'availability nei due vincoli? (Per piccole variazioni.)

- **6.5(1pt)** Fornire una soluzione primale, parametrizzata negli incrementi, che evidenzi la nostra disponibilità a pagare tale prezzo.
- **6.6(1pt)** Fino a dove si sarebbe disposti a pagare tale prezzo?

# svolgimento.

Il problema ausiliario è sempre ammissibile ed è ottenuto introducendo una variabile "di colla"  $x_0$ . Del problema originario ci interessa solamente investigare l'ammissibilità, e quindi viene gettata a mare la funzione obiettivo originaria e ci si prefigge invece di minimizzare la quantità di colla necessaria all'ottenimento dell'ammissibilità.

$$\max -x_0 
\begin{cases}
10x_1 - x_2 + 2x_3 - x_0 \le 8 \\
10x_1 - 5x_2 + x_3 - x_0 \le -10 \\
x_0, x_1, x_3, x_2 \ge 0
\end{cases}$$

Si ha che il problema originario era ammissibile se e solo se il problema ausiliario ammette una soluzione ammissibile con  $x_0 = 0$ .

Introduciamo le variabili di slack come segue.

$$\max -x_0 
\begin{cases}
w_1 = 8 - 10x_1 + x_2 - 2x_3 + x_0 \\
w_2 = -10 - 10x_1 + 5x_2 - x_3 + x_0 \\
x_0, x_1, x_2, x_3, w_1, w_2 \ge 0
\end{cases}$$

Tecnicamente, anche il problema ausiliario non è ad origine ammissibile, ma riusciamo facilmente a procurarci una soluzione di base ammissibile in un singolo pivot: facciamo entrare  $x_0$  in base settandone il valore a 10 (si guarda al vincolo con termine noto più negativo) e facciamo uscire di base la variabile di slack per quel vincolo.

$$\max -10 - 10x_1 + 5x_2 - x_3 - w_2 
\begin{cases}
w_1 = 18 - 4x_2 - x_3 + w_2 
x_0 = 10 + 10x_1 - 5x_2 + x_3 + w_2 
x_0, x_1, x_2, x_3, w_1, w_2 \ge 0
\end{cases}$$

La soluzione di base attuale non è ancora ottima: il coefficiente della  $x_2$  nella funzione obiettivo vale 5 > 0, quindi portiamo la  $x_2$  in base. A farle posto è la  $x_0$  che si annulla, quindi il problema originario era ammissibile (basta zero colla). Effettuiamo questo ultimo pivot per il problema ausiliario avendo cura di portare la  $x_0$  fuori base non appena essa si annulla (in caso di dizionario degenere potrei anche decidere di portare fuori base un'altra variabile, ma non sarebbe una buona idea ...).

$$\begin{cases}
 w_1 = 10 - 8x_1 - \frac{9}{5}x_3 + \frac{1}{5}w_2 + \frac{4}{5}x_0 \\
 x_2 = 2 + 2x_1 + \frac{1}{5}x_3 + \frac{1}{5}w_2 - \frac{1}{5}x_0 \\
 x_0, x_1, x_2, x_3, w_1, w_2 \ge 0
\end{cases}$$

Ora che  $x_0$  è fuori base ci basta rimuovere la colonna relativa alla  $x_0$  per ottenere un primo dizionario con soluzione di base associata ammissibile per il problema originario. In

tale dizionario, la scrittura per la funzione obiettivo è stata ottenuta partendo dalla funzione obiettivo originaria ed utilizzando le equazioni del dizionario per svendere fuori le variabili di base in termini delle variabili non di base.

$$\max 11x_1 - 5x_2 - 3x_3 = -10 + x_1 - 4x_3 - w_2$$

$$\begin{cases} w_1 = 10 - 8x_1 - \frac{9}{5}x_3 + \frac{1}{5}w_2 \\ x_2 = 2 + 2x_1 + \frac{1}{5}x_3 + \frac{1}{5}w_2 \\ x_1, x_2, x_3, w_1, w_2 \ge 0 \end{cases}$$

La soluzione di base associata a questo dizionario non è ancora ottima visto che il coefficiente della  $x_1$  nella funzione obiettivo è positivo. Portano in base  $x_1$  esce  $w_1$  ed otteniamo il seguente dizionario.

$$\max -\frac{35}{4} - \frac{1}{8}w_1 - \frac{169}{40}x_3 - \frac{39}{40}w_2$$

$$\begin{cases} x_1 &= \frac{5}{4} - \frac{1}{8}w_1 - \frac{9}{40}x_3 + \frac{1}{40}w_2 \\ x_2 &= \frac{9}{2} - \frac{2}{8}w_1 - \frac{1}{4}x_3 + \frac{1}{4}w_2 \\ x_1, x_2, x_3, w_1, w_2 \ge 0 \end{cases}$$

Si noti come la soluzione di base associata al dizionario ottenuto sia ora ottima (tutti i coefficienti della funzione obiettivo sono non-positivi) e quindi in questo caso non sono necessari ulteriori passi di pivot.

In termini delle variabili di decisione originarie la soluzione ottima è data da  $x_1 = \frac{5}{4}$ ,  $x_2 = \frac{9}{2}$ ,  $x_3 = 0$  cui corrisponde un valore di  $-\frac{35}{4}$  per la funzione obiettivo.

Per ogni unità di incremento del termine noto del primo vincolo saremmo disposti a pagare  $\frac{1}{8}$  (almeno per piccoli incrementi). Per ogni unità di incremento del termine noto del secondo vincolo saremmo disposti a pagare  $\frac{39}{40}$  (almeno per piccoli incrementi).

Lo studio di cosa succede a seguito di variazioni nei termini noti dei vincoli porta a considerare la seguente generalizzazione del problema originale:

$$\max 11x_1 - 5x_2 - 3x_3$$

$$\begin{cases}
10x_1 - x_2 + 2x_3 \leq 8 + t_1 \\
10x_1 - 5x_2 + x_3 \leq -10 + t_2 \\
x_1, x_2, x_3 \geq 0
\end{cases}$$

Il tableau per la soluzione di base di questo problema caratterizzata dalla medesima partizione (in base/fuori base) delle variabili che nella soluzione ottima riscontrata per il problema originario differirà dal tableau di detta soluzione del problema originario solo per la colonna dei termini noti, la quale può essere facilmente ricostruita avvalendosi della prova del nove per il tableau. Poichè  $(x_1, x_2, x_3, w_1, w_2, z) = (0, 0, 0, 8 + t_1, -10 + t_2, 0)$  soddisfaceva al primissimo tableau (dizionario) essa dovrá soddisfare anche all'ultimo, e queste 3 condizioni ci consentono di ricostruire le 3 entries nella colonna dei termini noti. Con i conseguenti conteggi otteniamo il seguente tableau:

$$\max -\frac{35}{4} + \frac{1}{8}t_1 + \frac{39}{40}t_2 - \frac{1}{8}w_1 - \frac{169}{40}x_3 - \frac{39}{40}w_2$$

$$\begin{cases} x_1 &= \frac{5}{4} + \frac{1}{8}t_1 - \frac{1}{40}t_2 - \frac{1}{8}w_1 - \frac{9}{40}x_3 + \frac{1}{40}w_2 \\ x_2 &= \frac{9}{2} + \frac{1}{4}t_1 - \frac{1}{4}t_2 - \frac{1}{4}w_1 - \frac{1}{4}x_3 + \frac{1}{4}w_2 \\ x_1, x_2, x_3, w_1, w_2 \ge 0 \end{cases}$$

Si noti come questo dizionario generalizzi effettivamente il dizionario da cui è stato ottenuto (riscontrabile per  $t_1 = t_2 = 0$ ). Verificando inoltre che il nuovo dizionario supera la prova

del nove (ossia è soddisfatto dalla soluzione  $(x_1, x_2, x_3, w_1, w_2, z) = (0, 0, 0, 8+t_1, -10+t_2, 0)$ ), ne deriva definitivamente la sua correttezza. La soluzione di base associata a questo dizionario, ossia  $(x_1, x_2, x_3, w_1, w_2, z) = (\frac{5}{4} + \frac{1}{8}t_1 - \frac{1}{40}t_2, \frac{9}{2} + \frac{1}{4}t_1 - \frac{1}{4}t_2, 0, 0, 0, -\frac{35}{4} + \frac{1}{8}t_1 + \frac{39}{40}t_2)$  evidenzia la nostra disponibilità a pagare i prezzi ombra, come appaiono nell'espressione della coordinata z (valore di funzione obiettivo). Tale soluzione rimane indefinitivamente ammissibile al crescere di  $t_1$ , e pertanto non vi è limite alla nostra propensione a pagare quel prezzo sul primo vincolo. La non-negatività della  $x_2$  suggerisce però che il prezzo ombra per la  $x_2$  perda il suo significato per  $t_2 > 18$ . Quando  $t_2 = 18$  la soluzione ottima è degenere e per  $t_2 > 18$  dobbiamo rivedere le nostre strategie.