Chapter 2: Linear Time Series (TS) Models

Financial TS: collection of a financial measurement over time

Example: log return r_t

Data: $\{r_1, r_2, \cdots, r_T\}$ (T data points)

Purpose: What information contained in $\{r_t\}$?

Basic concepts

White noises:

Let $\{\varepsilon_t\}$ be a time series. If

$$E\varepsilon_t = 0 \ and \ \operatorname{cov}(\varepsilon_t, \varepsilon_s) = \begin{cases} \sigma^2, & t = s, \\ 0, & t \neq s, \end{cases}$$

for any $s, t \in \mathcal{T}$, then $\{\varepsilon_t\}$ is called a **white noise**, denoted by $\{\varepsilon_t\} \sim WN(0, \sigma^2)$.

A path of a white noise

Measure of dependence

Mean function:

$$\mu_t = E(r_t) = \int_{-\infty}^{\infty} y f_t(y) dy.$$

We introduce autocovariances to measure the linear dependence between two observations at any two time points.

Autocovariance function:

$$\gamma_{s,t} = Cov(r_s,r_t) = E[(r_s-\mu_s)(r_t-\mu_t)]$$
 for any s and $t.$

Note that $\gamma_{s,t} = \gamma_{t,s}$, and $\gamma_{t,t}$ is the variance of r_t .

Autocorrelation function:

$$\rho_{s,t} = corr(r_s, r_t) = \frac{\gamma_{s,t}}{\sqrt{\gamma_{s,s}\gamma_{t,t}}}.$$

Weak Stationarity: first 2 moments are time-invariant, i.e.,

(1) Mean (or expectation) of returns:

$$\mu = E(r_t);$$

(2) Variance (variability) of returns:

$$\sigma^2 = Var(r_t) = E[(r_t - \mu)^2];$$

(3). Lag-k autocovariance:

$$\gamma_k = Cov(r_t, r_{t-k}) = E[(r_t - \mu)(r_{t-k} - \mu)].$$

We say $\{r_t\}$ is (second order) weakly stationary.

Serial correlation or Autocorrelation function (ACF):

$$\rho_k = \frac{cov(r_t, r_{t-k})}{var(r_t)}.$$

Note: $\rho_0 = 1$ and $\rho_k = \rho_{-k}$ for $k \neq 0$. Why?

Existence of ACFs implies that the return is predictable, indicating market inefficiency.

What does weak stationarity mean in practice?

Past: time plot of $\{r_t\}$ varies around a fixed level within a finite range!

Future: the first 2 moments of future r_t are the same as those of the data so that meaningful inferences can be made.

Strict Stationarity:

Strict: distributions are time-invariant, i.e.,

$$P(r_{t_1} \le z_1, \dots, r_{t_n} \le z_n)$$

= $P(r_{t_1+k} \le z_1, \dots, r_{t_n+k} \le z_n),$

for $\forall t_1, \dots, t_n, k$ and (z_1, \dots, z_n) and n.

We say: $\{r_t\}$ is a **strictly stationary TS**.

Relations between weak stationarity and strict stationarity:

Example: (WS but not SS) $\{X_t\}$ with $X_{2t-1} = \varepsilon$ and $X_{2t} = \eta$, where $\varepsilon \sim \mathcal{N}(0,1)$, $\eta \sim \mathcal{U}(-\sqrt{3},\sqrt{3})$, and ε and η are independent. Then $\{X_t\}$ is WS, not SS.

Solution. Clearly, $EX_t = 0$, $EX_t^2 = 1 < \infty$, and

$$\gamma_{t,t+s} = \left\{ egin{array}{ll} \operatorname{cov}(X_t, X_t) = 1, & ext{if s is even,} \\ \operatorname{cov}(arepsilon, \eta) = 0, & ext{if s is odd.} \end{array}
ight.$$

Hence, $\gamma_{t,t+s}$ is independent of t and only depends on s. Thus, $\{X_t\}$ is WS. However, $\{X_t\}$ is not SS since ε and η do not have the same distribution functions.

Example: (SS but not WS) A TS $\{\varepsilon_t : t \in T\}$ is i.i.d. standard Cauchy distribution with density $f(x) = \frac{1}{\pi(1+x^2)}$. Then, $\{\varepsilon_t\}$ is SS, not WS in that $E\varepsilon_t^2 = \infty$.

Example: (WS & SS) A TS $\{y_t : t \in \mathcal{T}\}$ is i.i.d. with $y_t \sim \mathcal{N}(0,1)$. Then $\{y_t : t \in \mathcal{T}\}$ is both WS and SS.

Example: (neither SS nor WS) A TS $\{\varepsilon, \eta, \xi_3, \xi_4, ...\}$, where $\varepsilon \sim \mathcal{N}(0,1)$, $\eta \sim t_1$, and $\{\xi_j : j = 3,4,...\}$ is i.i.d. $\sim \mathcal{E}(1)$. All of them are independent. Then it is neither SS nor WS.

Summary:

- A strict stationary time series with finite second moments is weakly stationary;
- Weakly stationary does not imply strictly stationary.

From now on, the term "stationary" means "second-order weakly stationary".

Property of ACVF and ACF for a stationary process

For a WS time series $\{r_t: t \in \mathcal{T}\}$, γ_k and ρ_k have the following properties.

(1)
$$\gamma_0 = \text{var}(r_t); \quad \rho_0 = 1.$$

(2)
$$|\gamma_k| \le \gamma_0; \qquad |\rho_k| \le 1.$$

(3)
$$\gamma_k = \gamma_{-k}$$
; $\rho_k = \rho_{-k}$.

When $\rho_k = 0$ for all $k \neq 0$, $\{r_t\}$ is a sequence of white noises.

Sample mean and sample variance are used to estimate the mean and variance of returns:

$$\bar{r} = \frac{1}{T} \sum_{t=1}^{T} r_t \text{ and } \hat{\sigma}_r^2 = \frac{1}{T-1} \sum_{t=1}^{T} (r_t - \bar{r})^2.$$

Test $H_0: \mu = 0$ vs $H_a: \mu \neq 0$. Compute

$$t = \frac{\sqrt{T}\overline{r}}{\widehat{\sigma}_r}.$$

Compare t ratio with N(0,1) dist.

Decision rule: Reject H_0 of zero mean if $|t|>Z_{\alpha/2}$ or p-value is less than α

Sample autocorrelation function (ACF)

$$\hat{\rho}_k = \frac{\sum_{t=1}^{T-k} (r_t - \bar{r})(r_{t+k} - \bar{r})}{\sum_{t=1}^{T} (r_t - \bar{r})^2},$$

where \bar{r} is the sample mean and T is the sample size.

Test zero serial correlations (market efficiency)

Individual test: for example,

$$H_0: \rho_1=0$$
 vs $H_a: \rho_1\neq 0$
$$t=\frac{\widehat{\rho}_1}{\sqrt{1/T}}=\sqrt{T}\widehat{\rho}_1\sim N(0,1).$$

Decision rule: Reject H_0 if $|t| > Z_{\alpha}/2$ or p-value less than

White noise series and the sample autocorrelation function

Joint test (Ljung-Box statistics):

 $H_0: \rho_1 = \cdots = \rho_m = 0 \ vs \ H_a: \rho_i \neq 0 \ \text{for some} \ i.$

$$Q(m) = T(T+2) \sum_{k=1}^{m} \frac{\hat{\rho}_k^2}{T-k} \sim \chi_m^2.$$

Asym. χ^2 dist with m degrees of freedom.

Decision rule: Reject H_0 if $Q(m) > \chi_m^2(\alpha)$ or p-value is less than α .

Sources of serial correlations in financial TS

Bid-ask bounce (ch. 5)

Risk premium, etc. (ch. 3)

Thus, significant sample ACF does not necessarily imply market inefficiency.

Example: ...

Back-shift (lag) operator: A useful notation in TS analysis.

Definition: $Br_t = r_{t-1}$ or $Lr_t = r_{t-1}$.

$$B^2r_t = B(Br_t) = Br_{t-1} = r_{t-2}.$$

B (or L) means time shift! Br_t is the value of the series at time t-1.

Question: What is B2?

What are the important statistics in practice?

Conditional quantities, not unconditional ones.

Available data: $\{r_1, r_2, \dots, r_{t-1}\} \equiv F_{t-1}$.

The return is decomposed into two parts as

 r_t = predictiable part + not predic. part

= function of elements of $F_{t-1} + a_t$

 $\equiv \mu_t + a_t$.

Assume that

$$E(a_t|F_{t-1}) = 0$$

since we do not have the information on the t-day.

$$E(r_t|F_{t-1}) = \mu_t + E(a_t|F_{t-1}) = \mu_t,$$

and hence

$$r_t = \mu_t + a_t.$$

 μ_t is the best predictor of r_t in mean square error, i.e. for any $g_t \in F_{t-1}$, we have

$$E(r_t - g_t)^2 > E(r_t - \mu_t)^2 \text{ if } g_t \neq \mu_t.$$

Math proof:

$$E(r_t - g_t)^2 = E[r_t - \mu_t - (g_t - \mu_t)]^2$$

$$= E(r_t - \mu_t)^2 + E(\mu_t - g_t)^2$$

$$-2E[(r_t - \mu_t)(g_t - \mu_t)]$$

$$= E(r_t - \mu_t)^2 + E(\mu_t - g_t)^2$$

$$> E(r_t - \mu_t)^2 \text{ if } g_t \neq \mu_t.$$

 $\{a_t\}$ is a white noise series, but may not be i.i.d.

Denote
$$\sigma_t^2 = Var(r_t|F_{t-1})$$
.

$$\sigma_t^2 = E[(r_t - \mu_t)^2|F_{t-1}] = E[a_t^2|F_{t-1}].$$

Denote $\epsilon_t = a_t/\sigma_t$. Then $\{\epsilon_t\}$ is an uncorrelated sequence with mean zero and variance 1.

 r_t can be decomposed as

$$r_t = \mu_t + \sigma_t \epsilon_t.$$

 σ_t : conditional standard deviation (commonly called volatility in finance)

Univariate TS analysis serves two purposes:

- 1. a model for μ_t
- 2. understanding models for σ_t^2 : properties, forecasting, etc.

Linear time series: r_t is linear if r_t can be written as

$$r_t = \mu + \sum_{i=0}^{\infty} \psi_i a_{t-i},$$

where μ is a constant, $\psi_0=1$ and $\{a_t\}$ is a sequence of white noises

White noise is a uncorrelated time series with zero mean and finite variance. It is not predictable.

Univariate linear time series models

- 1. autoregressive (AR) models
- 2. moving-average (MA) models
- 3. mixed ARMA models
- 4. seasonal models
- 5. regression models with time series errors
- 6. fractionally differenced models (long-memory)