

# Applied Machine Learning in Engineering

Lecture 00 summer term 2025

Prof. Merten Stender

Cyber-Physical Systems in Mechanical Engineering, Technische Universität Berlin

www.tu.berlin/cpsme merten.stender@tu-berlin.de

# Introduction



01/2023: Professor (W1)

Chair of Cyber-Physical Systems in Mechanical Engineering

Technische Universität Berlin

10/2020: PhD from Hamburg University of Technology

Supervisor: Prof. Norbert Hoffmann

PhD Thesis: Data-Driven Techniques for the Nonlinear

Dynamics of Mechanical Structures

Imperial College London
University of Technology Sydney
Sandia Laboratories Albuquerque/USA
AUDI AG Ingolstadt



Imperial College London







## Team CPSME



#### Chair of Cyber-Physical Systems in Mechanical Engineering (CPSME)

Homepage: www.tu.berlin/cpsme

Teaching: <a href="https://www.tu.berlin/en/cpsme/study-and-teaching">https://www.tu.berlin/en/cpsme/study-and-teaching</a>

#### • Questions:

- 1st contact point: ISIS forum <a href="https://isis.tu-berlin.de/mod/forum/view.php?id=1987844">https://isis.tu-berlin.de/mod/forum/view.php?id=1987844</a>
- 2nd contact point: email to Prof. Stender

#### Student thesis projects:

- 1. Read <a href="https://www.tu.berlin/en/cpsme/study-and-teaching/final-theses">https://www.tu.berlin/en/cpsme/study-and-teaching/final-theses</a>
- 2. STROD platform (https://www.theses.tu-berlin.de/de/theses) provides some projects
- 3. You are invited to bring your own ideas and then get in touch

# Teaching





Applied Machine Learning in Engineering



Applied Deep Learning in Engineering



Cyber-Physical Systems



Hybrid Simulation Approaches

# Research Focus









# Research Profile



#### Nonlinear complex dynamics

- Data-driven methods (machine & deep learning)
  - Hybrid simulation approaches
  - Physics-based simulations (bottom-up)
  - Data-driven simulations (top-down)

# 32 32 32 16 16 16 18 1 1

#### Applications

- Ocean wave prediction
- Automotive disk brake systems
- (Offshore) wind energy systems
- ...



# Organizational Details



- Lecture:
  - Wednesday 10am-12pm CT, 90min, room EB 107
  - In-person, no video recording available
- Exercise:
  - Tuesday 12pm-02pm CT, 90min, room EB 202
  - Hands-on coding exercises
  - Please bring your own computer
- ISIS (LINK):
  - Slides, lecture notes and exercise sheets will be published ahead in time
  - Poll on active course participation: your choice until April 30<sup>th</sup> (otherwise: unsubscription)
- Exam:
  - Written digital exam at TU Berlin. Dates: 21.07.2025 (08:00am); 09.10.2025 (10:00am)
  - Exam registration: ONLY through Moses

## Literature



- Introduction to Data Mining by Tan, Steinbach
  - ISMB-10: 1292026154
- The 100-page Machine Learning Book by Andriy Burkov
  - https://themlbook.com/
  - Wiki http://themlbook.com/wiki/doku.php (read first, buy later)
  - GitHub Repo https://github.com/aburkov/theMLbook
  - ISBN-10 1999579518
- Neural Networks and Deep Learning by Michael Nielsen
  - Free access http://neuralnetworksanddeeplearning.com/
  - (only basic neural network part)
- Several online ressources (YouTube channels of Andrew Ng and others), online classes and lecturing materials by other universities





# Online Programing Ressources



- Khuyen Tran: Efficient Python Tricks and Tools for Data Scientists (<u>Link</u>)
- Arjan Codes: Software design principles and Python programming (<u>Link</u>)
- DataCamp Classroom: coming soon (giving access to DataCamp classes)

## Exercise sessions



- Practical implementation of lecture concepts and methods
  - Using Python
  - Please bring your own laptop (or collaborate with a peer) and ensure it is fully charged
- No prior Python experience required
  - However, regular and consistent practice is essential
  - 1.5 hours per week is not sufficient to develop the necessary skills
- Approach programming like learning a musical instrument:
   Progress requires frequent, hands-on practice
- The exam will include programming tasks



# Course contents



Bits and Bytes: basics of data, data types, data processing and programming

#### Exploratory data analysis

- Statistical characterization
- Correlation analysis
- Visualization
- Outlier detection
- Dimensionality reduction

### Unsupervised learning

- Clustering algorithms
- Cluster validity metrics
- Engineering applications for clustering



# Course contents



#### Supervised learning

- Classification and regression scenarios
- Simple (linear) regression
- Decision trees
- Feed-forward neural networks

#### Quality and evaluation metrics

- Critical model assessment
- K-fold cross validation

#### Feature engineering

- Treating imbalanced data sets
- Time series analysis



+ Hands-on **Python programming** (weeky exercises)

# Terms We Will Cover (selection)



Generalization Gradient Bias-Variance Tradeoff Descent Loss function **Data Cleaning** Feature Engineering Latent Representation Supervised Learning Batch size Overfitting K-fold cross validation Feature Extraction Binary One-Hot Encoding crossentroy Random Forest Clustering **Decision Tree** 



# Questions?

# Agenda Lecture 00



- Terms: Artificial intelligence, machine learning and deep learning
- Paradigms for using data-driven methods in engineering
- Various application scenarios in engineering disciplines

# Learning outcomes Lecture 00



#### Learn to ...

- differentiate structured and unstructured data.
- recognize supervised and unsupervised learning tasks.
- be data-aware and recognize the hidden value in data.

#### Know about ...

- the terminology of machine learning and deep learning.
- basic and underlying ideas of models with trainable parameters.
- common use cases of machine learning in engineering disciplines.



# Machine Learning



"All models are wrong, but some are useful."

George Box (1919-2013)

1976: "Science and statistics" Journal of the American Statistical Association, 71

wikipedia:

"statistical models always fall short of the complexities of reality but can still be useful nonetheless"



# Overview







# **Machine Learning**

# maximizing similarities or dissimilarities through optimization

# Supervised and Unsupervised Learning



# supervised learning (predictive task)



model training = reduce prediction error

data (tabular)



# unsupervised learning (descriptive task)



finding clusters, groups and anomalies

# **Engineering Examples**



- Supervised Learning:
  - Remaining useful lifetime prediction (RUL)
  - End-of-line quality checks (computer vision)

- Unsupervised Learning:
  - Grouping customer behavior
  - Outlier detection



# Learning Methods in a Nutshell





# Supervised Learning



• Statistical methods  $\mathcal{M}$  for approximating an unknown input (X) – output (y) function based on observations (data samples)

$$\mathcal{M} \colon \mathbf{X} \mapsto \mathbf{y}$$

- Theoretical basis: Universal Approximation Theorem
- Classic example: <u>Boston house price prediction</u> (regression task)

**CRIM** (per capita crime rate)

**NOX** (nitric oxides concentration)

**DIS** (distance to Boston center)

**PRRATIO** (pupil-teacher ratio)

 $\mathcal{M}$ 

**\$ Median value of home** 

. . .

# Structured Data



- Also denoted as tabular data
- **Features** (attributes): quantities that describe measurements or characteristic properties of an individual data sample (record). Example: ambient temperature at specific point in time.



- High-dimensional data sets: n very large
- Big data: N very large (and n potentially, too)

## **Unstructured Data**



- Also denoted as non-tabular data
- Examples:
  - Text
  - Audio
  - Video
  - Images ...





- Special about unstructured data:
  - Additional latent dimension(s)
  - Order matters (latent dim.)

audio can be stored in an array but is not structured!







Order of features not interchangeable!

# Feature Engineering



Machine learning: structured data

Deep learning: structured + unstructured data

How to process unstructured engineering data (here: time series data) with ML?





# **Example: Signal Classification**



- Classify vibration data: a) harmonic signal and b) random (Gaussian) process
- Obvious to the human eye how to teach the computer?
- Without feature engineering → deep learning required
- With feature engineering → simple decision tree





# Machine Learning in Engineering

# **Data-Driven Models**



When to use data-driven models (a selection of motives)

- There is no analytical description available for the problem
  - Language translation, e.g. English → German
  - ...



- Climate variability, e.g. El Nino
- •
- Searching for patterns in huge data sets
  - Pedestrian detection for autonomous driving



You may also like ...



# Data-Driven Models in Engineering





### First principles and governing equations

Mathematics Ax = b

Mechanics  $F = m \cdot \ddot{x}$ 

Fluid dynamics  $p + \frac{1}{2}\rho v^2 + \rho g h = \text{const}$ 

Thermodynamics  $\Delta U = \Delta Q + \Delta W$ 

Electrical engineering  $P = U \cdot I$ 

We can compute / simulate everything?

# First Principles and Governing Equations



- Centuries of research have resulted in
  - First principles and governing equations, e.g. conservation of energy
  - System description in terms of ordinary/partial differential equations  $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t)$
  - Numerical discretization schemes, e.g. Finite Element Methods
  - High-performance computing and parallel algorithms





# Data-Driven Methods: Use Cases



#### Uncertain model parameters

- Structural damping of metals, ...
- Nonlinear behavior (elastomers stiffness, ...)

#### Inherent modeling assumptions and limitations

- Simplified constitutive models, ...
- Idealized assumptions on homogeneity, ...

## Speed and energy-efficiency

- Homogenization of materials
- Low-order yet fast surrogate models







#### Wind turbines

- Gear box defects
- Rolling bearing faults
- Crack propagation in blade roots
- Blade icing
- Optimal control and energy yield

#### Railways and infrastructure

- Fiber optic sensing (<u>newspaper article</u>)
- Supervision of by-passing trains with video and audio recordings
- Digital services for operation "<u>Digitale Schiene</u>"





pixabay



#### **End-of-line-tests (EOL) for product quality**

- 1. Object recognition: what kind of product?
  - Computer vision
  - Image classification
  - Object detection
  - Pose estimation (angles, position)

#### 2. Failure detection

Cracks, specific failure modes

### 3. Factory-level data analysis

- Pattern recognition
- Predictive maintenance





### **Autonomous Driving at different levels**

#### Perception

- Detection of traffic signs, lanes, obstacles, other traffic participants
- "looking through walls" by observing other cars and humans
- Prediction of future actions by pedestrians and other cars
- ...

#### Behavior & decision making

- Route planning
- Steering, braking, accelerating
- ...





**Predictive maintenance (PdM)**, Health Condition Monitoring, Structural Health Monitoring, Remaining Life Time Estimation

Example: rolling bearings





How to estimate the state of the bearing from measurements during operation (variable speed, ambient vibrations, measurement noise)?

SKF® Bearing damage and failure analysis

Cerrada et al. (2018): A review on data-driven fault severity assessment in rolling bearings, Mechanical Systems and Signal Processing 99, 169-196



- Reinforcement learning (vacuum cleaner robots)
- Precision farming
- Smart building heating/cooling
- Heartbeat signal analysis
- Infrastructure monitoring

• ...







# 7 perspectives on Machine Learning



- (1) Supervised Machine learning is about building prediction models.
- (2) Machine learning is about learning patterns from data.
- (3) Machine learning is automated decision-making at scale.
- (4) Machine Learning is optimization.
- (5) Machine learning is soft computing.
- (6) Machine learning is compression.
- (7) Machine learning is about algorithms producing algorithms.

by Christoph Molnar



... and many many more!

The overarching principle is: data-driven methods are particularly promising and powerful when a handcrafted algorithm is not existent or extremely difficult to formulate.

# How To Study Machine Learning Methods



- 1. Books
- 2. Online resources (blogs, videos, ...)
- 3. Online classes and mini-degrees: coursera, udacity, udemy, ...



- Basic understanding of algorithms and their limitations
- Application cases in (mechanical) engineering







mathematics & statistics



tools & programming

computer science & hardware

# Routes to successful ML



How to achieve great ML results?

- 1. Brute force (unleash the power of statistics)
  - Large data
  - Large deep learning models
  - Large computers

## 2. Domain expertise

- Feature engineering based on domain expertise
- Careful model selection and optimization
- Critical assessment of ML results



missing data

 $CO_2$  emissions



engineering students



ML knowledge

programming skills



# Exercise 00

# Exercise 00



### Basic Python:

- Functions
- Type hints
- Loops
- Conditional statements

#### Matplotlib

- Plots
- Axis properties



# Questions?