How to evaluate theory-based hypotheses in a RI-CLPM using the GORICA

Rebecca M. Kuiper

11 February 2025

Contents

R packages]
Example 1: 'wave-independent' parameters model	2
Example 2: 'wave-specific' parameters model Input option 1: lavaan object	
Note on time-interval dependency	18

This is a tutorial for using GORICA for Random Intercept Cross-lagged Panel Models (RI-CLPMs). The GORICA is an information criterion that can be used to evaluate theory-driven hypotheses.

RI-CLPMs are a type of statistical models used in longitudinal data research to analyze the relations between variables measured at multiple time points.

Here, two examples are presented for the use of the goric function in the restriktor package to evaluate hypotheses about a RI-CLPM. These are based on the analysis in:

Sukpan, C., & Kuiper, R. M. (2024). How to Evaluate Causal Dominance Hypotheses in Lagged Effects Models. Structural Equation Modeling, 31(3), 404-419. https://doi.org/10.1080/10705511.2023.2265065 The corresponding R files can be found on 'https://github.com/rebeccakuiper/Tutorials/tree/main/GORIC A%20in%20RI-CLPM'.

Note: For (more) information regarding interpreting the GORIC(A) output, see 'Guidelines_output_GORIC' (https://github.com/rebeccakuiper/Tutorials).

R packages

First, install and call the lavaan library and the restriktor library (to load the goric function). If needed, it is possible to view the description of the function with the ? operator or the help command.

```
# To install restriktor in R:
#if (!require("restriktor")) install.packages("restriktor")

# To install restriktor from github:
# if (!require("devtools")) install.packages("devtools")
# library(devtools)
# install_github("LeonardV/restriktor")
library(restriktor)

# print docs in the help-tab to view arguments and explanations for the function
```

```
#?goric

# To install lavaan in R:
# if (!require("lavaan")) install.packages("lavaan")
library(lavaan)
```

Example 1: 'wave-independent' parameters model

Next, you find the R code to evaluate causal dominance in lagged-effects 'wave-independent' parameters model using the GORICA (using the goric function). This is an example using a bivariate RI-CLPM with 2 variables and 5 time points.

In this example, I will use the lavaan object with user-specified parameter labels.

```
# Load the data set into R: Traditional RI-CLPM
dat <- read.table("data/RICLPM.dat",</pre>
                  col.names = c(
                     "x1", "x2", "x3", "x4", "x5",
                     "y1", "y2", "y3", "y4", "y5")
)
# Standardize the data
dat <- scale(dat)</pre>
# Hypothesis w.r.t. cross-lagged effects (as specified in the model)
H1 \leftarrow "abs(b) < abs(c)"
# versus it complement, that is, versus all other possibilities
# (here: versus abs(b) > abs(c))
# default in case of one hypothesis
# Fitting a RI-CLPM; here, a bivariate RI-CLPM with wave-independent parameters:
RICLPM5 <- '
 # Create between components (random intercepts)
 RIx = 1*x1 + 1*x2 + 1*x3 + 1*x4 + 1*x5
 RIy = 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
  # Create within-person centered variables
  wx1 = ~1*x1
  wx2 = ~1*x2
  wx3 =~ 1*x3
  wx4 = ~1*x4
 wx5 = ~1*x5
  wy1 =~ 1*y1
  wy2 = ~1*y2
  wy3 =~ 1*y3
  wy4 =~ 1*y4
 wy5 = ~1*y5
  # Estimate lagged effects between within-person centered variables
  # (constrained)
  wx2 \sim a*wx1 + b*wy1
  wy2 \sim c*wx1 + d*wy1
  wx3 \sim a*wx2 + b*wy2
 wy3 \sim c*wx2 + d*wy2
```

```
wx4 \sim a*wx3 + b*wy3
  wy4 \sim c*wx3 + d*wy3
  wx5 \sim a*wx4 + b*wy4
  wy5 \sim c*wx4 + d*wy4
  # Estimate covariances between residuals of within-person centered variables
  # (i.e., innovations, constrained)
  wx2 ~~ cov*wy2
  wx3 ~~ cov*wy3
  wx4 ~~ cov*wy4
  wx5 ~~ cov*wy5
  # Estimate covariance between within-person centered variables at first wave
  wx1 ~~ wy1 # Covariance
  # Estimate variance and covariance of random intercepts
  RIx ~~ RIx
  RIy ~~ RIy
  RIx ~~ RIy
  # Estimate (residual) variance of within-person centered variables
  # (constrained)
  wx1 ~~ wx1 # Variance
  wy1 ~~ wy1
  wx2 ~~ vx*wx2 # Residual variance
  wy2 ~~ vy*wy2
  wx3 ~~ vx*wx3
  wy3 ~~ vy*wy3
  wx4 ~~ vx*wx4
  wy4 ~~ vy*wy4
  wx5 ~~ vx*wx5
 wy5 ~~ vy*wy5
  # Constrain grand means over time
 x1 + x2 + x3 + x4 + x5 \sim mx*1
 y1 + y2 + y3 + y4 + y5 \sim my*1
RICLPM5.fit <- lavaan(RICLPM5,</pre>
                      data = dat,
                      missing = 'ML',
                      meanstructure = T,
                      int.ov.free = T
)
summary(RICLPM5.fit, standardized = T)
```

lavaan 0.6-19 ended normally after 30 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	44
Number of equality constraints	29
Number of observations	1189
Number of missing patterns	1

Model Test User Model:

Test statistic	111.561
Degrees of freedom	50
P-value (Chi-square)	0.000

Parameter Estimates:

Standard errors	Standard
Information	Observed
Observed information based on	Hessian

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
RIx =~							
x1		1.000				0.449	0.447
x2		1.000				0.449	0.450
x3		1.000				0.449	0.450
x4		1.000				0.449	0.450
x5		1.000				0.449	0.450
RIy =~							
y1		1.000				0.557	0.539
у2		1.000				0.557	0.560
у3		1.000				0.557	0.562
y4		1.000				0.557	0.563
у5		1.000				0.557	0.563
wx1 =~							
x1		1.000				0.899	0.894
wx2 =~							
x2		1.000				0.892	0.893
wx3 =~							
x3		1.000				0.891	0.893
wx4 =~							
x4		1.000				0.891	0.893
wx5 =~							
x5		1.000				0.891	0.893
wy1 =~							
y1		1.000				0.869	0.842
wy2 =~							
у2		1.000				0.823	0.828
wy3 =~							
у3		1.000				0.819	0.827
wy4 =~							
y4		1.000				0.818	0.827
wy5 =~							
у5		1.000				0.818	0.827
Regressions:							
5		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
wx2 ~							
wx1	(a)	0.282	0.022	13.049	0.000	0.284	0.284
wy1	(b)	0.007	0.020	0.367	0.713	0.007	0.007
wy2 ~							
•							

wx1	(c)	0.090	0.018	4.991	0.000	0.098	0.098
wy1	(d)	0.220	0.023	9.542	0.000	0.232	0.232
wx3 ~							
wx2	(a)	0.282	0.022	13.049	0.000	0.282	0.282
wy2	(b)	0.007	0.020	0.367	0.713	0.007	0.007
wy3 ~							
wx2	(c)	0.090	0.018	4.991	0.000	0.098	0.098
wy2	(d)	0.220	0.023	9.542	0.000	0.221	0.221
wx4 ~		0.000	0 000	10.010	0 000	0.000	0.000
wx3	(a)	0.282	0.022	13.049	0.000	0.282	0.282
wy3	(b)	0.007	0.020	0.367	0.713	0.007	0.007
wy4 ~	(-)	0 000	0.010	4 001	0 000	0 000	0 000
wx3	(c)	0.090	0.018	4.991	0.000	0.098	0.098
wy3 wx5 ~	(d)	0.220	0.023	9.542	0.000	0.220	0.220
wx5 ~ wx4	(a)	0.282	0.022	13.049	0.000	0.282	0.282
	(b)	0.282	0.022	0.367	0.713	0.202	0.202
wy4 wy5 ~	(6)	0.007	0.020	0.307	0.713	0.007	0.007
wy5 wx4	(c)	0.090	0.018	4.991	0.000	0.098	0.098
wy4	(d)	0.220	0.023	9.542	0.000	0.220	0.220
wyı	(4)	0.220	0.020	0.012	0.000	0.220	0.220
Covariances:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.wx2 ~~					- (1-1)		
.wy2	(cov)	0.146	0.013	11.594	0.000	0.217	0.217
.wx3 ~~							
.wy3	(cov)	0.146	0.013	11.594	0.000	0.217	0.217
.wx4 ~~							
.wy4	(cov)	0.146	0.013	11.594	0.000	0.217	0.217
.wx5 ~~							
.wy5	(cov)	0.146	0.013	11.594	0.000	0.217	0.217
wx1 ~~							
wy1		0.279	0.029	9.617	0.000	0.357	0.357
RIx ~~							
RIy		0.153	0.019	8.235	0.000	0.611	0.611
.							
Intercepts:			Q. 1 D	,	D(>)	0.1.7	Q. 1 77
4	()	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
. x1	(mx)	-0.000	0.019	-0.000	1.000	-0.000	-0.000
. x2	(mx)	0.000	0.019	0.000	1.000	0.000	0.000
. x3	(mx) (mx)	-0.000	0.019 0.019	-0.000 0.000	1.000	-0.000	-0.000 0.000
.x4 .x5	(mx)	0.000	0.019	0.000	1.000	0.000	0.000
. x5 . y1	(mx)	0.000	0.019	0.000	1.000	0.000	0.000
. y 2	(my)	0.000	0.021	0.000	1.000	0.000	0.000
. y2 . y3	(my)	-0.000	0.021	-0.000	1.000	-0.000	-0.000
. y4	(my)	0.000	0.021	0.000	1.000	0.000	0.000
. y 1 . y 5	(my)	-0.000	0.021	-0.000	1.000	-0.000	-0.000
. , ,	(1113)	0.000	0.021	0.000	1.000	0.000	0.000
Variances:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
RIx		0.202	0.023	8.738	0.000	1.000	1.000
RIy		0.310	0.025	12.530	0.000	1.000	1.000
wx1		0.807	0.040	20.170	0.000	1.000	1.000

```
0.755
                               0.037
                                        20.302
                                                   0.000
                                                             1.000
                                                                       1.000
wy1
                               0.018
.wx2
                     0.730
                                        40.589
                                                   0.000
                                                             0.918
                                                                       0.918
            (vx)
.wy2
            (vy)
                     0.624
                               0.017
                                        37.190
                                                   0.000
                                                             0.920
                                                                       0.920
                     0.730
                               0.018
                                        40.589
                                                   0.000
                                                             0.919
                                                                       0.919
.wx3
            (vx)
.wy3
            (vy)
                     0.624
                               0.017
                                        37.190
                                                   0.000
                                                             0.931
                                                                       0.931
                               0.018
                                                   0.000
            (xx)
                     0.730
                                        40.589
                                                             0.920
                                                                       0.920
.wx4
                               0.017
.wy4
            (vy)
                     0.624
                                        37.190
                                                   0.000
                                                             0.931
                                                                       0.931
.wx5
            (xx)
                     0.730
                               0.018
                                        40.589
                                                   0.000
                                                             0.920
                                                                       0.920
.wy5
            (vy)
                     0.624
                               0.017
                                        37.190
                                                   0.000
                                                             0.931
                                                                       0.931
.x1
                     0.000
                                                             0.000
                                                                       0.000
                     0.000
                                                             0.000
                                                                       0.000
.x2
                     0.000
.x3
                                                             0.000
                                                                       0.000
                     0.000
                                                             0.000
                                                                       0.000
.x4
.x5
                     0.000
                                                             0.000
                                                                       0.000
                                                                       0.000
                     0.000
.y1
                                                             0.000
.y2
                     0.000
                                                             0.000
                                                                       0.000
.уЗ
                     0.000
                                                             0.000
                                                                       0.000
.y4
                     0.000
                                                             0.000
                                                                       0.000
                     0.000
                                                             0.000
                                                                       0.000
.y5
```

restriktor (0.6-10): generalized order-restricted information criterion approximation:

Results:

```
model
               loglik penalty
                                  gorica loglik.weights
                                                           penalty.weights
                                                                            gorica.weights
1
               28.317
                         8.500
                                 -39.634
                                                   0.999
                                                                     0.500
                                                                                      0.999
               21.651
                         8.500
                                 -26.301
                                                   0.001
                                                                     0.500
                                                                                      0.001
   complement
```

Conclusion:

The order-restricted hypothesis 'H1' has 785.56 times more support than its complement.

```
#summary(GORICA.Result)
```

The order-restricted hypothesis H_1 has 786 times more support than its complement.

Note that the results hold for the chosen time interval. That is, the results are time-interval dependent. At the end, more information is given.

Example 2: 'wave-specific' parameters model

Next, you find the R code to evaluate causal dominance in lagged-effects 'wave-independent' parameters model using the GORICA (using the goric function). This is an example using a bivariate RI-CLPM with 2 variables and 5 time points.

Two types of input will be shown:

- the lavaan object with user-specified parameter labels;
- the extracted standardized estimates and their covariance matrix.

Input option 1: lavaan object

In this example, I will use the lavaan object with user-specified parameter labels.

```
# Load the data set into R: Traditional RI-CLPM
dat <- read.table("data/RICLPM.dat",</pre>
                  col.names = c(
                     "x1", "x2", "x3", "x4", "x5",
                    "y1", "y2", "y3", "y4", "y5")
)
# Hypothesis w.r.t. wave-specific cross-lagged effects (as specified in the model)
H1ws.l \leftarrow "abs(b2) < abs(c2); abs(b3) < abs(c3);
        abs(b4) < abs(c4); abs(b5) < abs(c5)"
# versus it complement, that is, versus all other possibilities
# default in case of one hypothesis
# Fitting a RI-CLPM; here, a bivariate RI-CLPM with wave-specific parameters:
RICLPM.1 <- '
 # Create between components (random intercepts)
 RIx = 1*x1 + 1*x2 + 1*x3 + 1*x4 + 1*x5
 RIy = 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
 # Create within-person centered variables
 wx1 = ~1*x1
 wx2 = ~1*x2
  wx3 =~ 1*x3
 wx4 = ~1*x4
 wx5 =~ 1*x5
  wy1 = ~1*y1
  wy2 =~ 1*y2
  wy3 =~ 1*y3
 wy4 =~ 1*y4
  wy5 =~ 1*y5
  # Estimate lagged effects between within-person centered variables
  wx2 \sim a2*wx1 + b2*wy1
  wy2 \sim c2*wx1 + d2*wy1
  wx3 \sim a3*wx2 + b3*wy2
  wy3 \sim c3*wx2 + d3*wy2
  wx4 \sim a4*wx3 + b4*wy3
  wy4 \sim c4*wx3 + d4*wy3
  wx5 \sim a5*wx4 + b5*wy4
  wy5 \sim c5*wx4 + d5*wy4
  # Estimate covariance between within-person centered variables at first wave
 wx1 ~~ wy1 # Covariance
  # Estimate covariances between residuals of within-person centered variables
  # (i.e., innovations)
 wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
```

```
# Estimate variance and covariance of random intercepts
 RIx ~~ RIx
 RIy ~~ RIy
 RIx ~~ RIy
  # Estimate (residual) variance of within-person centered variables
  wx1 ~~ wx1 # Variances
 wy1 ~~ wy1
  wx2 ~~ wx2 # Residual variances
 wy2 ~~ wy2
 wx3 ~~ wx3
 wy3 ~~ wy3
 wx4 ~~ wx4
 wy4 ~~ wy4
 wx5 ~~ wx5
 wy5 ~~ wy5
RICLPM.fit.1 <- lavaan(RICLPM.1,</pre>
                     data = dat,
                     missing = "ML",
                     meanstructure = T,
                     int.ov.free = T
)
summary(RICLPM.fit.1, standardized = T)
```

lavaan 0.6-19 ended normally after 116 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	44
Number of observations	1189
Number of missing patterns	1

Model Test User Model:

Test statistic	25.806
Degrees of freedom	21
P-value (Chi-square)	0.214

Parameter Estimates:

Standard errors	Standard
Information	Observed
Observed information based on	Hessian

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	${\tt Std.lv}$	Std.all
RIx =~						
x1	1.000				0.096	0.390
x2	1.000				0.096	0.473
x3	1.000				0.096	0.475
x4	1.000				0.096	0.461

x5		1.000				0.096	0.465
RIy =~							
y1		1.000				0.178	0.569
y2		1.000				0.178	0.558
у3		1.000				0.178	0.535
y4		1.000				0.178	0.525
-							
y5		1.000				0.178	0.533
wx1 =~							
x1		1.000				0.227	0.921
wx2 =~							
x2		1.000				0.179	0.881
wx3 =~							
x3		1.000				0.178	0.880
wx4 =~		1.000				0.176	0.000
x4		1.000				0.185	0.887
wx5 =~							
x5		1.000				0.183	0.885
wy1 =~							
у <u>-</u> у1		1.000				0.257	0.822
-		1.000				0.201	0.022
wy2 =~							
у2		1.000				0.265	0.830
wy3 =~							
у3		1.000				0.281	0.845
wy4 =~							
y4		1.000				0.288	0.851
-		1.000				0.200	0.001
wy5 =~		4 000				0.000	0.040
у5		1.000				0.282	0.846
Regressions:							
		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
wx2 ~							
wx1	(a2)	0.232	0.028	8.314	0.000	0.294	0.294
	(b2)		0.026	0.329		0.012	
wy1	(02)	0.009	0.026	0.329	0.742	0.012	0.012
wy2 ~							
wx1	(c2)	0.174	0.045	3.888	0.000	0.149	0.149
wy1	(d2)	0.004	0.046	0.092	0.927	0.004	0.004
wx3 ~							
wx2	(a3)	0.241	0.037	6.509	0.000	0.242	0.242
wy2	(b3)	0.026	0.024	1.082	0.279	0.039	0.039
-	(03)	0.020	0.024	1.002	0.219	0.039	0.039
wy3 ~	>						
wx2	(c3)	0.156	0.054	2.871	0.004	0.099	0.099
wy2	(d3)	0.262	0.039	6.747	0.000	0.247	0.247
wx4 ~							
wx3							
wy3	(a4)	0.279	0.038	7.267	0.000	0.269	0.269
-	(a4) (b4)	0.279	0.038	7.267	0.000	0.269	0.269
	(a4) (b4)	0.279 0.010	0.038 0.023	7.267 0.431	0.000 0.666	0.269 0.015	0.269 0.015
wy4 ~	(b4)	0.010	0.023	0.431	0.666	0.015	0.015
wx3	(b4) (c4)	0.010	0.023	0.431 3.367	0.666	0.015	0.015
•	(b4)	0.010	0.023	0.431	0.666	0.015	0.015
wx3	(b4) (c4)	0.010	0.023	0.431 3.367	0.666	0.015	0.015
wx3 wy3 wx5 ~	(b4) (c4) (d4)	0.010 0.185 0.296	0.023 0.055 0.035	0.431 3.367 8.362	0.666 0.001 0.000	0.015 0.114 0.288	0.015 0.114 0.288
wx3 wy3 wx5 ~ wx4	(b4) (c4) (d4) (a5)	0.010 0.185 0.296 0.290	0.023 0.055 0.035 0.035	0.431 3.367 8.362 8.244	0.666 0.001 0.000 0.000	0.015 0.114 0.288 0.293	0.015 0.114 0.288 0.293
wx3 wy3 wx5 ~ wx4 wy4	(b4) (c4) (d4)	0.010 0.185 0.296	0.023 0.055 0.035	0.431 3.367 8.362	0.666 0.001 0.000	0.015 0.114 0.288	0.015 0.114 0.288
wx3 wy3 wx5 ~ wx4 wy4 wy5 ~	(b4) (c4) (d4) (a5) (b5)	0.010 0.185 0.296 0.290 -0.004	0.023 0.055 0.035 0.035 0.022	0.431 3.367 8.362 8.244 -0.186	0.666 0.001 0.000 0.000 0.852	0.015 0.114 0.288 0.293 -0.006	0.015 0.114 0.288 0.293 -0.006
wx3 wy3 wx5 ~ wx4 wy4 wy5 ~ wx4	(b4) (c4) (d4) (a5) (b5) (c5)	0.010 0.185 0.296 0.290 -0.004 0.124	0.023 0.055 0.035 0.035 0.022	0.431 3.367 8.362 8.244 -0.186 2.612	0.666 0.001 0.000 0.000 0.852 0.009	0.015 0.114 0.288 0.293 -0.006 0.082	0.015 0.114 0.288 0.293 -0.006 0.082
wx3 wy3 wx5 ~ wx4 wy4 wy5 ~	(b4) (c4) (d4) (a5) (b5)	0.010 0.185 0.296 0.290 -0.004	0.023 0.055 0.035 0.035 0.022	0.431 3.367 8.362 8.244 -0.186	0.666 0.001 0.000 0.000 0.852	0.015 0.114 0.288 0.293 -0.006	0.015 0.114 0.288 0.293 -0.006

Covariances:						
covariances.	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
wx1 ~~	LBOIMGOC	Dod.HII	Z varac	1 (7 2 7	Dou.iv	Doular
wy1	0.021	0.002	9.372	0.000	0.364	0.364
.wx2 ~~	0.021	0.002	0.0.2	0.000	0.001	0.001
.wy2	0.009	0.002	5.168	0.000	0.196	0.196
.wx3 ~~						
.wy3	0.013	0.002	7.837	0.000	0.274	0.274
.wx4 ~~						
.wy4	0.013	0.002	8.177	0.000	0.277	0.277
.wx5 ~~						
.wy5	0.007	0.001	4.916	0.000	0.160	0.160
RIx ~~						
RIy	0.010	0.001	7.992	0.000	0.587	0.587
Intercepts:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	
.x1	0.241	0.007	33.687	0.000	0.241	0.977
.x2	0.173	0.006	29.331	0.000	0.173	0.851
.x3	0.186	0.006	31.646	0.000	0.186	0.918
.x4	0.117	0.006	19.288	0.000	0.117	0.559
.x5	0.111	0.006	18.427	0.000	0.111	0.534
.y1	0.336	0.009	37.099	0.000	0.336	1.076
.y2	0.348	0.009	37.686	0.000	0.348	1.093
. y3	0.319	0.010	33.098	0.000	0.319	0.960
. y4	0.384	0.010	39.097	0.000	0.384	1.134
. y5	0.388	0.010	40.056	0.000	0.388	1.162
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
RIx	0.009	0.001	8.722	0.000	1.000	1.000
RIy	0.032	0.003	12.351	0.000	1.000	1.000
wx1	0.052	0.002	21.067	0.000	1.000	1.000
wy1	0.066	0.004	17.985	0.000	1.000	1.000
.wx2	0.029	0.001	20.793	0.000	0.911	0.911
.wy2	0.068	0.004	17.503	0.000	0.977	0.977
.wx3	0.030	0.001	20.467	0.000	0.935	0.935
.wy3	0.072	0.003	21.324	0.000	0.918	0.918
.wx4	0.032	0.001	21.445	0.000	0.925	0.925
.wy4	0.074	0.003	21.876	0.000	0.884	0.884
.wx5	0.031	0.001	21.680	0.000	0.915	0.915
.wy5	0.065	0.001	22.446	0.000	0.813	0.813
.wyo	0.000	0.003	22.440	0.000	0.000	0.000
.x2	0.000				0.000	0.000
. x3	0.000				0.000	0.000
. x4	0.000				0.000	0.000
. x5	0.000				0.000	0.000
.y1	0.000				0.000	0.000
. y2	0.000				0.000	0.000
. y3	0.000				0.000	0.000
.y4	0.000				0.000	0.000
.y5	0.000				0.000	0.000

restriktor (0.6-10): generalized order-restricted information criterion approximation:

Results:

```
        model
        loglik
        penalty
        gorica
        loglik.weights
        penalty.weights
        gorica.weights

        1
        H1ws.l
        39.996
        13.966
        -52.061
        0.684
        0.858
        0.929

        2
        complement
        39.222
        15.767
        -46.910
        0.316
        0.142
        0.071
```

Conclusion:

The order-restricted hypothesis 'H1ws.1' has 13.14 times more support than its complement.

```
#summary(GORICA.Result.ws.l)
```

The order-restricted hypothesis H1ws.l has 13 times more support than its complement.

Note that the results hold for the chosen time interval. That is, the results are time-interval dependent. At the end, more information is given.

Input option 2: extracted standardized estimates and their covariance matrix

In this example, I will use the extracted standardized estimates and their covariance matrix as input.

```
# Hypothesis w.r.t. wave-specific cross-lagged effects
H1ws <- "abs(beta2) < abs(gamma2); abs(beta3) < abs(gamma3);</pre>
         abs(beta4) < abs(gamma4); abs(beta5) < abs(gamma5)"
# versus it complement, that is, versus all other possibilities
# default in case of one hypothesis
# Fitting a RI-CLPM; here, a bivariate RI-CLPM with wave-specific parameters:
RICLPM <- '
  # Create between components (random intercepts)
 RIx = 1*x1 + 1*x2 + 1*x3 + 1*x4 + 1*x5
 RIy =~ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
 # Create within-person centered variables
  wx1 = ~1*x1
  wx2 = ~1*x2
  wx3 =~ 1*x3
  wx4 = ~1*x4
  wx5 = ~1*x5
  wy1 = ~1*y1
  wy2 = ~1*y2
  wy3 =~ 1*y3
  wy4 =~ 1*y4
  wy5 =~ 1*y5
```

```
# Estimate lagged effects between within-person centered variables
  wx2 + wy2 \sim wx1 + wy1
  wx3 + wy3 \sim wx2 + wy2
  wx4 + wy4 \sim wx3 + wy3
  wx5 + wy5 \sim wx4 + wy4
  # Estimate covariance between within-person centered variables at first wave
  wx1 ~~ wy1 # Covariance
  # Estimate covariances between residuals of within-person centered variables
  # (i.e., innovations)
  wx2 ~~ wy2
  wx3 ~~ wy3
  wx4 ~~ wy4
  wx5 ~~ wy5
  # Estimate variance and covariance of random intercepts
  RIx ~~ RIx
 RIy ~~ RIy
  RIx ~~ RIy
  # Estimate (residual) variance of within-person centered variables
  wx1 ~~ wx1 # Variances
  wy1 ~~ wy1
  wx2 ~~ wx2 # Residual variances
  wy2 ~~ wy2
  wx3 ~~ wx3
  wy3 ~~ wy3
  wx4 ~~ wx4
 wy4 ~~ wy4
  wx5 ~~ wx5
  wy5 ~~ wy5
RICLPM.fit <- lavaan(RICLPM,</pre>
                     data = dat,
                     missing = "ML",
                     meanstructure = T,
                     int.ov.free = T
)
summary(RICLPM.fit, standardized = T)
```

lavaan 0.6-19 ended normally after 116 iterations

Test statistic

Estimator	ML
Optimization method	NLMINB
Number of model parameters	44
Number of observations	1189
Number of missing patterns	1
Model Test User Model:	

25.806

Degrees	of freedom	21
P-value	(Chi-square)	0.214

Parameter Estimates:

Standard errors Standard Information Observed Observed information based on Hessian

Latent Variables:

Lavoiro variabrob.	Estimate	Std Err	z-walue	P(> z)	Std.lv	Std.all
RIx =~	протшене	Dodini	Z varuo	1 (7 121)	Doaliv	Dou.uii
x1	1.000				0.096	0.390
x2	1.000				0.096	0.473
x3	1.000				0.096	0.475
x4	1.000				0.096	0.461
x 5	1.000				0.096	0.465
RIy =~						
y1	1.000				0.178	0.569
y2	1.000				0.178	0.558
у3	1.000				0.178	0.535
y4	1.000				0.178	0.525
y5	1.000				0.178	0.533
wx1 =~						
x1	1.000				0.227	0.921
wx2 =~						
x2	1.000				0.179	0.881
wx3 =~						
x3	1.000				0.178	0.880
wx4 =~						
x4	1.000				0.185	0.887
wx5 =~						
x5	1.000				0.183	0.885
wy1 =~						
y1	1.000				0.257	0.822
wy2 =~						
у2	1.000				0.265	0.830
wy3 =~						
у3	1.000				0.281	0.845
wy4 =~						
y4	1.000				0.288	0.851
wy5 =~						
у5	1.000				0.282	0.846
Regressions:		a	_	56.1.13	~	a
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
wx2 ~						
wx1	0.232	0.028	8.314	0.000	0.294	0.294
wy1	0.009	0.026	0.329	0.742	0.012	0.012
wy2 ~	0.474	0.045	0.000	0 000	0.440	0.440
wx1	0.174	0.045	3.888	0.000	0.149	0.149
wy1	0.004	0.046	0.092	0.927	0.004	0.004
wx3 ~	0 044	0 007	6 500	0 000	0.040	0.040
wx2	0.241	0.037	6.509	0.000	0.242	0.242

wy2	0.026	0.024	1.082	0.279	0.039	0.039
wy3 ~						
wx2	0.156	0.054	2.871	0.004	0.099	0.099
wy2	0.262	0.039	6.747	0.000	0.247	0.247
wx4 ~						
wx3	0.279	0.038	7.267	0.000	0.269	0.269
wy3	0.010	0.023	0.431	0.666	0.015	0.015
wy4 ~						
wx3	0.185	0.055	3.367	0.001	0.114	0.114
wy3	0.296	0.035	8.362	0.000	0.288	0.288
wx5 ~						
wx4	0.290	0.035	8.244	0.000	0.293	0.293
wy4	-0.004	0.022	-0.186	0.852	-0.006	-0.006
wy5 ~						
wx4	0.124	0.048	2.612	0.009	0.082	0.082
wy4	0.392	0.031	12.644	0.000	0.400	0.400
Covariances:	Estimate	C+ -1 E	1	D(>1-1)	C+ 3 7	C+3 -11
1	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
wx1 ~~	0.001	0 000	0.070	0.000	0.004	0 004
wy1	0.021	0.002	9.372	0.000	0.364	0.364
.wx2 ~~	0.000	0 000	F 460	0.000	0.400	0.400
.wy2	0.009	0.002	5.168	0.000	0.196	0.196
.wx3 ~~	0.040	0 000	7 007	0 000	0.074	0 074
.wy3	0.013	0.002	7.837	0.000	0.274	0.274
.wx4 ~~						
.wy4	0.013	0.002	8.177	0.000	0.277	0.277
.wx5 ~~						
.wy5	0.007	0.001	4.916	0.000	0.160	0.160
RIx ~~						
RIy	0.010	0.001	7.992	0.000	0.587	0.587
Intercepts:						
1 1 1 1	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x1	0.241	0.007	33.687	0.000	0.241	0.977
.x2	0.173	0.006	29.331	0.000	0.173	0.851
.x3	0.186	0.006	31.646	0.000	0.186	0.918
. x4	0.117	0.006	19.288	0.000	0.117	0.559
.x5	0.111	0.006	18.427	0.000	0.111	0.534
. y1	0.336	0.009	37.099	0.000	0.336	1.076
. y2	0.348	0.009	37.686	0.000	0.348	1.070
	0.319	0.009	33.098	0.000	0.348	0.960
. y3					0.319	
. y4	0.384	0.010	39.097	0.000		1.134
. y5	0.388	0.010	40.056	0.000	0.388	1.162
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
RIx	0.009	0.001	8.722	0.000	1.000	1.000
RIy	0.032	0.003	12.351	0.000	1.000	1.000
wx1	0.052	0.002	21.067	0.000	1.000	1.000
wy1	0.066	0.004	17.985	0.000	1.000	1.000
.wx2	0.029	0.001	20.793	0.000	0.911	0.911
.wy2	0.068	0.004	17.503	0.000	0.977	0.977
.wx3	0.030	0.001	20.467	0.000	0.935	0.935
	0.000	0.001	20.101	0.000	0.000	0.000

```
.wv3
                      0.072
                                0.003
                                        21.324
                                                  0.000
                                                           0.918
                                                                     0.918
                      0.032
                               0.001
                                        21.445
                                                  0.000
                                                           0.925
                                                                     0.925
   .wx4
                               0.003 21.876
   .wy4
                      0.074
                                                  0.000
                                                           0.884
                                                                     0.884
                      0.031
                                                  0.000
   .wx5
                               0.001
                                        21.680
                                                           0.915
                                                                     0.915
   .wy5
                      0.065
                               0.003
                                        22.446
                                                  0.000
                                                           0.813
                                                                     0.813
                      0.000
                                                           0.000
   .x1
                                                                     0.000
                      0.000
                                                           0.000
   .x2
                                                                     0.000
   .x3
                      0.000
                                                           0.000
                                                                     0.000
   .x4
                      0.000
                                                            0.000
                                                                     0.000
   .x5
                      0.000
                                                           0.000
                                                                     0.000
   .y1
                      0.000
                                                            0.000
                                                                     0.000
                      0.000
                                                            0.000
                                                                     0.000
   .y2
   .уЗ
                      0.000
                                                            0.000
                                                                     0.000
                      0.000
                                                            0.000
                                                                     0.000
   .y4
                      0.000
                                                            0.000
                                                                     0.000
   .y5
# One could label the parameters, similarly to example with constrained parameters,
# but then using unique names.
# Alternatively, one can extract the standardized cross-lagged estimates
# and their covariance matrix:
# Standardize parameter estimates and there covariance matrix
StdEst <- standardizedsolution(RICLPM.fit, type = "std.nox")</pre>
```

```
lhs op rhs est.std
                              z pvalue ci.lower ci.upper
                       se
             0.390 0.022 17.562 0.000
                                         0.347
1 RIx = x1
                                                  0.434
2 RIx = x2
             0.473 0.026 18.155 0.000
                                         0.422
                                                  0.524
3 RIx =~ x3 0.475 0.027 17.625 0.000
                                         0.422
                                                  0.528
4 RIx =~ x4 0.461 0.026 17.931
                                 0.000
                                         0.411
                                                  0.511
5 RIx =~ x5 0.465 0.025 18.299
                                 0.000
                                       0.415
                                                  0.515
6 RIy =~ y1 0.569 0.021 27.060 0.000
                                         0.528
                                                  0.611
             0.558 0.022 25.123 0.000
7 \text{ RIy} = \text{~y2}
                                         0.515
                                                  0.602
8 RIy =~ y3 0.535 0.021 25.795 0.000
                                       0.495
                                                  0.576
9 RIy =~ y4 0.525 0.020 26.393 0.000
                                       0.486
                                                  0.564
10 RIy =~ y5 0.533 0.019 27.588 0.000
                                         0.495
                                                  0.571
11 wx1 =~ x1 0.921 0.009 97.752
                                 0.000
                                         0.902
                                                  0.939
12 wx2 =~ x2 0.881 0.014 62.978 0.000
                                         0.854
                                                  0.908
13 wx3 =~ x3  0.880 0.015 60.555 0.000
                                         0.852
                                                  0.909
14 wx4 =~ x4 0.887 0.013 66.480 0.000
                                         0.861
                                                  0.914
15 wx5 =~ x5 0.885 0.013 66.330 0.000
                                         0.859
                                                  0.911
16 wy1 =~ y1 0.822 0.015 56.430 0.000
                                                  0.851
                                         0.794
17 wy2 =~ y2 0.830 0.015 55.545 0.000
                                         0.801
                                                  0.859
18 wy3 =~ y3
             0.845 0.013 64.256
                                 0.000
                                         0.819
                                                  0.870
19 wy4 = ~ y4
             0.851 0.012 69.350
                                 0.000
                                         0.827
                                                  0.875
20 wy5 =~ y5
             0.846 0.012 69.509
                                 0.000
                                         0.822
                                                  0.870
21 wx2 ~ wx1
             0.294 0.034 8.661
                                 0.000
                                         0.227
                                                  0.360
22 wx2 ~ wy1
             0.012 0.038 0.329
                                 0.742
                                         -0.061
                                                  0.086
23 wy2 ~ wx1
             0.149 0.039 3.865 0.000
                                         0.073
                                                  0.225
24 wy2 ~ wy1 0.004 0.045 0.092 0.927
                                         -0.084
                                                  0.092
25 wx3 ~ wx2 0.242 0.036 6.710 0.000
                                         0.172
                                                  0.313
26 wx3 ~ wy2 0.039 0.036 1.081 0.280
                                         -0.031
                                                  0.108
```

vcov_StdEst <- lavInspect(RICLPM.fit, "vcov.std.nox")</pre>

StdEst

Check which are the indices for the parameters of interest:

	wy3		wx2		0.035	2.873	0.004	0.032	0.167
28	ѡуЗ	~	wy2		0.036	6.817			
	wx4		wx3			7.388		0.197	
30	wx4	~	wy3	0.015	0.035	0.431	0.666	-0.053	0.083
31	wy4	~	8xw	0.114	0.034	3.366	0.001	0.048	0.181
32	wy4	~	wy3	0.288	0.033	8.593	0.000	0.222	0.353
33	wx5	~	wx4	0.293	0.035	8.466	0.000	0.225	0.361
34	wx5	~	wy4	-0.006	0.034	-0.187	0.852	-0.073	0.060
35	wy5	~	wx4	0.082	0.031	2.609	0.009	0.020	0.143
36	wy5	~	wy4	0.400	0.030	13.486	0.000	0.342	0.459
37	wx1	~~	wy1	0.364	0.031	11.655	0.000	0.303	0.425
38	wx2	~ ~	wy2	0.196	0.035	5.577	0.000	0.127	0.265
39	8xw	~ ~	wy3	0.274	0.031	8.816	0.000	0.213	0.335
40	wx4	~ ~	wy4	0.277	0.030	9.240	0.000	0.218	0.336
41	wx5	~~	wy5	0.160	0.031	5.146	0.000	0.099	0.220
42	RIx	~ ~	RIx	1.000	0.000	NA	NA	1.000	1.000
43	RIy	~ ~	RIy	1.000	0.000	NA	NA	1.000	1.000
	RIx		•	0.587	0.050	11.802	0.000	0.490	0.685
	wx1		•		0.000	NA	NA	1.000	1.000
	wy1				0.000	NA	NA	1.000	1.000
	wx2		-			48.081	0.000	0.874	
	wy2					90.944		0.956	
	wx3		-			50.856		0.899	
	wy3					44.242	0.000	0.877	
	wx4		-			48.074		0.887	0.963
	wy4					40.250	0.000	0.841	0.927
	wx5		-			47.242	0.000	0.877	0.953
	wy5					33.316	0.000	0.765	0.861
55	-	~~	-		0.000	NA	NA	0.000	0.000
56		~ ~	x2		0.000		NA	0.000	0.000
57	x3		x3		0.000	NA	NA		0.000
58	x4		x4		0.000	NA NA	NA		0.000
59	x5		x5		0.000	NA	NA		0.000
60					0.000	NA NA	NA NA		0.000
61		~~	y1		0.000	NA NA	NA NA		0.000
62	y2		y2			NA NA			
63	y3		y3		0.000	NA NA	NA NA		0.000
	y4		y4			NA NA	NA NA	0.000	
64 65	y5		у5		0.000	27.987	0.000	0.000	0.000
	x1							0.909	1.045
66 67	x2					25.215	0.000	0.784 0.850	0.917
67	x3					26.726	0.000		0.985
68	x4					17.974	0.000	0.498	0.620
69	x5					17.274	0.000	0.474	0.595
70	у1					29.812	0.000	1.005	1.147
71	у2					30.327	0.000	1.022	1.164
72	у3					27.811	0.000	0.892	1.028
73	у4					30.973	0.000	1.062	1.206
74	y5					31.268	0.000	1.089	1.234
	RIx				0.000	NA	NA	0.000	0.000
	RIy				0.000	NA	NA	0.000	0.000
77	wx1				0.000	NA	NA	0.000	0.000
	wx2				0.000	NA	NA	0.000	0.000
	wx3				0.000	NA	NA	0.000	0.000
80	wx4	~1		0.000	0.000	NA	NA	0.000	0.000

```
0.000 0.000
81 wx5 ~1
                                 NA
                                         NA
                                               0.000
                                                        0.000
82 wy1 ~1
                0.000 0.000
                                               0.000
                                                        0.000
                                 NA
                                         NA
                                               0.000
                                                         0.000
83 wy2 ~1
                0.000 0.000
                                 NA
                                         NA
                                                         0.000
84 wy3 ~1
                0.000 0.000
                                         NA
                                               0.000
                                 NA
85 wy4 ~1
                0.000 0.000
                                 NA
                                         NA
                                               0.000
                                                         0.000
86 wy5 ~1
                0.000 0.000
                                         NA
                                               0.000
                                                         0.000
                                 NA
index_StdEst <- c(22,23, 26,27, 30,31, 34,35)
# CHECK: StdEst[index StdEst, ]
# and what the indices for the corresponding covariance matrix:
vcov_StdEst
```

wx2~wx1 wx2~wy1 wy2~wx1 wy2~wy1 wx3~wx2 wx3~wy2 wy3~wx2 wy3~wy2 wx4~wx3 wx4~wy3 wy4~wx3 wy4~wy. 0.001 wx2~wx1 0.000 0.001 wx2~wy1 0.000 0.000 0.001 wy2~wx1 -0.001 0.002 wy2~wy1 0.000 0.000 0.001 wx3~wx2 0.000 0.000 0.000 0.000 wx3~wy2 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.001 wy3~wx2 wy3~wy2 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 wx4~wx3 wx4~wy3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 wy4~wx3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wy4~wy3 0.000 0.000 0.000 0.000 0.000 0.000 wx5~wx4 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wx5~wy4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wy5~wx4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 wy5~wy4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 wx1~~wy1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 wx2~~wy2 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wx3~~wy3 wx4~~wy4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wx5~~wy5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 RIx~~RIx 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 RIy~~RIy 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 RIx~~RIy 0.000 0.000 0.00 wx1~~wx1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 wy1~~wy1 0.000 0.000 0.000 0.00 wx2~~wx2 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wy2~~wy2 wx3~~wx3 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wy3~~wy3 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 0.00 wx4~~wx4 wy4~~wy4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 wx5~~wx5 0.000 wy5~~wy5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 x1~10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 x2~1 x3~1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.00 x4~1 0.000 0.00 x5~1 y1~1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 y2~1

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.00

y3~1

0.000

0.000

0.000

0.000

```
v4~1
           0.000
                    0.000
                            0.000
                                     0.000
                                             0.000
                                                      0.000
                                                              0.000
                                                                       0.000
                                                                                0.000
                                                                                        0.000
                                                                                                 0.000
           0.000
                    0.000
                            0.000
                                             0.000
                                                      0.000
                                                                                                 0.000
y5~1
                                     0.000
                                                              0.000
                                                                       0.000
                                                                                0.000
                                                                                        0.000
index_vcov \leftarrow c(2,3, 6,7, 10,11, 14,15)
# CHECK: vcov_StdEst[index_vcov, index_vcov]
est <- StdEst[index_StdEst, 4] # Standardize parameter estimates</pre>
# label estimates, and these labels should be used in the hypothesis/-es:
names(est) <- c("beta2", "gamma2", "beta3", "gamma3", "beta4", "gamma4", "beta5", "gamma5")</pre>
vcov <- vcov_StdEst[index_vcov, index_vcov] # Covariance matrix of standardize parameter estimates</pre>
# Note: make sure to change the numbers
        such that they correspond to the correct estimates.
# Compute GORICA values and weights
set.seed(123)
GORICA.Result.ws <- goric(est, VCOV = vcov,</pre>
                           hypotheses = list(H1ws = H1ws))
# Defaults: comparison = "complement"
#
             type = "qorica"
#
GORICA.Result.ws
```

0.00

0.00

restriktor (0.6-10): generalized order-restricted information criterion approximation:

Results:

```
model loglik penalty
                                         loglik.weights
                                                         penalty.weights
                                                                           gorica.weights
                                 gorica
                                                  0.684
                                                                    0.858
1
         H1ws
               19.591
                         5.966
                                -27.250
                               -22.099
                                                  0.316
                                                                                    0.071
   complement 18.817
                         7.767
                                                                    0.142
```

Conclusion:

The order-restricted hypothesis 'H1ws' has 13.14 times more support than its complement.

```
#summary(GORICA.Result.ws)
```

This of course gives the same results as when using the lavaan object, that is:

The order-restricted hypothesis H1ws has 13 times more support than its complement.

Note that the results hold for the chosen time interval. That is, the results are time-interval dependent. Next, more information is given.

Note on time-interval dependency

The parameter estimates in a (RI-)CLPM are time-interval dependent, and thus the GORICA results as well. By using the CTmeta package:

```
# Install and load packages
#
#library(devtools)
#if (!require("CTmeta")) install_github("rebeccakuiper/CTmeta") ##install_github("rebeccakuiper/CTmeta"
library(CTmeta)
#?PhiPlot
```

one can plot the lagged-effects parameter estimates for different choices of time intervals. Based on this plot (and/or on other information), one can evaluate the hypotheses using the GORICA for different choices of time intervals.

Note that this function is developed for CLPM estimates. It is not clear yet whether this can also be used for the RI-CLPM estimates. Nevertheless, one needs to bear in mind that also RI-CLPM estimates are time-interval dependent.