

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Вычислительная математика»

Студент	Морозов Александр К	Эрьевич		
Группа	РК6-54Б			
Тип задания	Лабораторная работа № 3			
Тема лабораторной работы	Модель биологического нейрона			
Студент		Морозов А.Ю		
	подпись, дата	фамилия, и.о.		
Преподаватель		_Соколов А. П		
	подпись, дата	фамилия, и.о.		

Москва, 2021 г. Оглавление

Задание на лабораторную работу	3	
Цель выполнения лабораторной работы		
Выполненные задачи		
1. Базовая часть		
2. Продвинутая часть		
Заключение	11	
Список использованных источников	12	

Задание на лабораторную работу

Численные методы решения задачи Коши для систем обыкновенных дифференциальных уравнений (ОДУ) 1-го порядка активно используются далеко за пределами стандартных инженерных задач. Примером области, где подобные численные методы крайне востребованы, является нейробиология, где открытые в XX веке модели биологических нейронов выражаются через дифференциальные уравнения 1-го порядка. Математическая формализация моделей биологических нейронов также привела к появлению наиболее реалистичных архитектур нейронных сетей, известных как спайковые нейронные сети (Spiking Neural Networks). В данной лабораторной работе мы исследуем одну из простейших моделей подобного типа: модель Ижикевича.

Дана система из двух ОДУ 1-го порядка:

$$\frac{dv}{dt} = 0.04v^2 + 5v + 140 - u + I \tag{1}$$

$$\frac{du}{dt} = a(bv - u)$$

и дополнительного условия, определяющего возникновение импульса в нейроне:

если
$$v \ge 30$$
, то $\begin{cases} v \leftarrow c \\ u \leftarrow u + d \end{cases}$ (2)

где v — потенциал мембраны (мВ), u — переменная восстановления мембраны (мВ), t — время (мс), I — внешний ток, приходящий через синапс в нейрон от всех нейронов, с которыми он связан. Данная система имеет параметры a (задает временной масштаб для восстановления мембраны; через больше a, тем быстрее происходитвосстановление после импульса), b (чувствительность переменной восстановления к флуктуациям разности потенциалов), c (значение потенциала мембраны сразу после импульса) и d (значение переменной восстановления мембраны сразу после импульса).

Таблица 1: Характерные режимы заданной динамической системы и соответствующие значения ее параметров

Режим	a	b	c	d
Tonic spiking (TS)	0.02	0.2	-65	6
Phasic spiking (PS)	0.02	0.25	-65	6
Chattering (C)	0.02	0.2	-50	2
Fast spiking (FS)	0.1	0.2	-65	2

Базовая часть

1. Написать следующие функции, каждая из которых возвращает дискретную траекторию системы ОДУ с правой частью, заданную функцией f, начальным условием x_0 , шагом по времени h и конечным временем t_n :

- $-euler(x_0, t_n, f, h)$, где дискретная траектория строится с помощью метода Эйлера;
- $-implicit_euler(x_0, t_n, f, h)$, где дискретная траектория строится с помощью неявного метода Эйлера;
- $-runge_kutta(x_0, t_n, f, h)$, где дискретная траектория строится с помощью метода Рунге-Кутта 4-го порядка;
- 2. Для каждого из реализованных методов численно найти траектории заданной динамической системы, используя шаг h=0.5 и характерные режимы, указанные в таблице 1. В качестве начальных условий можно использовать v(0)=c и u(0)=bv(0). Внешний ток принимается равным I=5.
- 3. Вывести полученные траектории на четырех отдельных графиках как зависимость потенциала мембраны от времени, где каждый график должен соответствовать своему характерному режиму работы нейрона.
- 4. По полученным графикам кратко описать особенности указанных режимов.

Продвинутая часть

- 1. Объяснить, в чем состоят принципиальные отличия реализованных методов? В чем они схожи?
- 2. Произвести интегрирование во времени до 1000мс нейронной сети с помощью метода Эйлера, используя следующую информацию:
 - (а) Динамика каждого нейрона в нейронной сети описывается заданной моделью Ижикевича. В нейронной сети имеется 800 возбуждающих нейронов и 200 тормозных. Возбуждающие нейроны имеют следующие значения параметров: a=0.02, b=0.2, $c=-65+15\alpha^2$, $d=8-6\beta^2$ и внешний ток в отсутствие токов от других нейронов равен $I=I_0=5\xi$, где α,β и ξ случайные числа от 0 до 1. Тормозные нейроны имеют следующие значения параметров: $a=0.02+0.08\gamma$, $b=0.25-0.05\delta$, c=-65, d=2 и внешний ток в отсутствие токов от других нейронов равен $I=I_0=2\varsigma$, где γ,δ и ς случайные числа от 0 до 1. В качестве начальных условий используются значения v(0)=-65 и u(0)=bv(0).
 - (b) Нейронная сети может быть смоделирована с помощью полного графа. Матрица смежности W этого графа описывает значения токов, передаваемых от нейрона к нейрону в случае возникновения импульса. То есть, при возникновении импульса нейрона j внешний

ток связанного с ним нейрон i единовременно увеличивается на величину W_{ij} и затем сразу же падает до нуля, что и моделирует передачу импульса по нейронной сети. Значение W_{ij} равно 0.5θ , если нейрон j является возбуждающим, и $-\tau$, если тормозным, где θ и τ – случайные числа от 0 до 1.

3. Вывести на экран импульсы всех нейронов как функцию времени и определить частоты характерных синхронных (или частично синхронных) колебаний нейронов в сети.

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — Рассмотреть такие алгоритмы численных методов как: метод Эйлера, неявный метод Эйлера, метод Рунге-Кутты 4-го порядка. Применить эти алгоритмы решения задачи Коши в рамках модели Ижикевича. Написать программу для проведения этого исследования и проинтерпретировать полученные в результате работы программы графики функций.

Выполненные задачи

Базовая часть

- 1. Разработка функций, возвращающих дискретную траекторию системы ОДУ, используя метод Эйлера, неявный метод Эйлера, метод Рунге-Кутта 4-го порядка.
- 2. Нахождение дискретной траектории данной системы ОДУ, используя функции написанные в прошлом пункте.
- 3. Вывод полученных траекторий на четырех отдельных графиках как зависимость потенциала мембраны от времени, где каждый график должен соответствовать своему характерному режиму работы нейрона. Режимы работы нейрона представлены в таблице 1.
- 4. Описание особенностей каждого режима работы нейрона, используя полученные графики.

Продвинутая часть

- 1. Анализ методов из пункта 1 базовой части.
- 2. Моделирование нейронной сети, состоящей из 1000 нейронов по заданным условиям

3. Вывод графика зависимости импульсов нейронов от времени. Нахождение частоты синхронных колебаний нейронов в сети.

1. Базовая часть

1.1.

Для разработки функции $euler(x_0, t_n, f, h)$ используется явный метод Эйлера. Формулировка метода Эйлера в многомерном случае имеет вид:

$$w_0 = \alpha,$$

$$w_{i+1} = w_i + hf(t_i, w_i), \quad i = 1, ..., m,$$

При этом ожидается, что $w_i \approx y(t_i)$.

Здесь α – многомерная точка дискретных данных, m – количество дискретных точек. $t_i = a + ih$, $t_i \in [a,b]$, $h = \frac{b-a}{m} = t_{i+1} - t_i$. $f(t_i, w_i)$ – правая часть нормального ОДУ.

```
def euler(t0, tn, f, h):
    m = int((tn-t0)/h)
    v = np.zeros(m+1)
    u = np.zeros(m+1)
    v[0] = c
    u[0] = b*v[0]
    for i in range(m):
        v[i+1] = v[i] + h * f[0](u[i], v[i])
        u[i+1] = u[i] + h * f[1](u[i], v[i])
        if v[i+1] >= 30:
            v[i+1] = c
            u[i+1] = u[i+1] + d
    return u,v
```

Листинг 1. Функция $euler(x_0, t_n, f, h)$

Для разработки функции $implicit_euler(x_0, t_n, f, h)$ используется неявный метод Эйлера. Его можно записать как:

$$w_0 = \alpha,$$

$$w_{i+1} - w_i - hf(t_{i+1}, w_{i+1}) = 0, \quad i = 1, \dots, m,$$

Для решения нелинейных уравнений воспользуемся функцией root из пакета scipy.optimize.

```
def implicit_euler(t0, tn, f, h):
   m = int((tn-t0)/h)
   v = np.zeros(m+1)
   u = np.zeros(m+1)
   v[0] = c
    u[0] = b*v[0]
    def phiV(v1, u0, v0):
        return v1 - h*f[0](u0, v1) - v0
    def phiU(u1, u0, v0):
        return u1 - h*f[1](u1, v0) - u0
    for i in range(0, m):
        v[i+1] = optimize.root(phiV, v[i], args=(u[i], v[i])).x
        u[i+1] = optimize.root(phiU, u[i], args=(u[i], v[i])).x
        if v[i+1] >= 30:
            v[i+1] = c
            u[i+1] = u[i+1] + d
    return u,v
```

Листинг 2. Функция $implicit_euler(x_0, t_n, f, h)$

Для разработки функции $runge_kutta(x_0, t_n, f, h)$ используется метод Рунге-Кутта 4 порядка. Его формулировка выглядит следующим образом:

$$w_0 = \alpha,$$

$$k_1 = hf(t_i, w_i)$$

$$k_2 = hf(t_i + \frac{h}{2}, w_i + \frac{k_1}{2})$$

$$k_3 = hf(t_i + \frac{h}{2}, w_i + \frac{k_2}{2})$$

$$k_4 = hf(t_i + h, w_i + k_3)$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4), \qquad i = 0, 1, \dots, m-1$$

```
def runge_kutta(t0, tn, f, h):
    m = int((tn-t0)/h)
    v = np.zeros(m+1)
    u = np.zeros(m+1)
    v[0] = c
    u[0] = b*v[0]
    for i in range(m):
        kv1 = h*f[0](u[i], v[i])
        ku1 = h*f[1](u[i], v[i])
        kv2 = h*f[0](u[i] + h/2, v[i] + kv1/2)
        ku2 = h*f[1](u[i] + ku1/2, v[i] + h/2)
        kv3 = h*f[0](u[i] + h/2, v[i] + kv2/2)
        ku3 = h*f[1](u[i] + ku2/2, v[i] + h/2)
        kv4 = h*f[0](u[i] + h, v[i] + kv3)
        ku4 = h*f[1](u[i] + ku3, v[i] + h)
        v[i+1] = v[i] + (kv1 + 2*kv2 + 2*kv3 + kv4)/6
        u[i+1] = u[i] + (ku1 + 2*ku2 + 2*ku3 + ku4)/6
        if \vee[i+1] >= 30:
            v[i+1] = c
            u[i+1] += d
    return u, v
```

1.2.

Для каждого режима работы нейрона из таблицы 1 найдена траектория системы 1 с учётом условия 2, определяющего возникновение импульса в нейроне. Для этого использовался каждый из рассмотренных выше методов.

Заданы начальные условия: h = 0.5, I = 5, v(0) = c, u(0) = bv(0). Однако пришлось уменьшить начальный шаг h, т.к. Неявный метод Эйлера давал некорректный результат при шаге h = 0.5.

1.3.

Для каждого режима динамической системы из таблицы 1 построены графики. На каждом графике изображены 3 траектории системы 1, каждая из них найдена при помощи одного из методов, рассмотренных в пункте 1.

Рис. 1. Режим работы Tonic spiking

Рис. 2. Режим работы Phasic spiking

Рис. 3. Режим работы Chattering

Рис. 4. Режим работы Fast spiking

1.4

Проанализируем полученные графики. В режиме работы Tonic spiking (Рис. 1) порождение нейронных импульсов происходит достаточно периодично, но при этом довольно редко. В режиме работы Phasic spiking (Рис. 2) порождение нейронных импульсов происходит чаще, чем в режиме Tonic spiking. Однако в этом режиме отрезок времени между первым и вторым импульсом меньше, чем отрезки времени между другими соседними импульсами. Поэтому его нельзя считать полностью периодичным. В режиме работы Chattering (Рис. 3) порождается сразу несколько импульсов подряд, после этого долгое время нет никаких импульсов. Это напоминает процесс разрядки и зарядки. Функция в этом режиме выглядит относительно периодичной. В режиме работы Fast spiking (Рис. 4) наблюдается график подобный тому, что был получен в режиме работы Tonic spiking. Отличие состоит в том, что частота порождения импульсов намного выше в режиме работы Fast spiking.

2. Продвинутая часть

2.1.

Проанализируем методы, реализованные в пункте 1 базовой части.

Метод Эйлера - самый простой с точки зрения понимания и реализации. Он работает быстрее других методов. Его локальная погрешность имеет порядок точности $O(h^2)$, а глобальная соответственно O(h). Этот метод имеет самый низкий порядок точности среди остальных рассматриваемых методов.

Неявный метод Эйлера схож с явным методом Эйлера. Только в его реализации необходимо решать систему нелинейных уравнений, что усложняет процесс вычислений и пагубно влияет на скорость метода. Кроме того, неявный метод Эйлера является абсолютно устойчивым.

Метод Рунге-Кутты 4-го порядка имеет порядок точности больший, чем остальные методы. Его локальная погрешность имеет порядок точности $O(h^5)$, а глобальная соответственно $O(h^4)$. При этом следует учитывать, что этот алгоритм на каждой итерации вычисляет каждую функцию системы ОДУ 4 раза, что понижает скорость алгоритма.

2.2.

Нейронная сеть может быть смоделирована при помощи полного графа. Матрица смежности W этого графа описывает значения токов, передаваемых от нейрона к нейрону, когда возникает импульс. То есть, при возникновении импульса нейрона j внешний ток связанного с ним нейрона i единовременно увеличится на величину W_{ij} , а затем сразу же падает до нуля, что и моделирует передачу импульса по нейронной сети. Значение W_{ij} равно 0.5θ , если нейрон j является возбуждающим, и $-\tau$, если тормозным. Где θ и τ – случайные числа от 0 до 1.

Динамика каждого нейрона в сети описывается заданной моделью Ижикевича. В нейронной сети имеется 800 возбуждающих нейронов и 200 тормозных. Возбуждающие нейроны имеют следующие значения параметров: $a=0.02, b=0.2, c=-65+15\alpha^2, d=8-6\beta^2$ и внешний ток в отсутствие токов от других нейронов равен $I=I_0=5\xi$, где α,β,ξ — случайные числа от 0 до 1. Тормозные нейроны имеют следующие значения параметров: $a=0.02+0.08\gamma$, $b=0.25-0.05\delta, c=-65, d=2$ и внешний ток в отсутствие токов от других нейронов равен $I=I_0=2\varsigma$, где γ,δ и ς — случайные числа от 0 до 1. В качестве начальных условий используются значения v(0)=-65 и u(0)=bv(0).

Была написана программа, строящая модель нейронной сети по описанным выше условиям. Для каждого нейрона была рассчитана дискретная траектория при помощи метода Эйлера.

Импульсы нейронов фиксировались в определённые моменты времени, что позволяет построить график.

2.3.

Рис. 5. Импульсы нейронной сети возникающие в течение 1000мс По Рис. 5 можно примерно определить период синхронных колебаний: T=0.17с.

Следовательно, частота синхронных колебаний равна: $\nu = \frac{1}{T} = \frac{1}{0.17c} = 5.88 \Gamma$ ц

Заключение

В ходе выполнения лабораторной работы:

1. Были рассмотрены численные методы решения задачи Коши для ОДУ 1-го порядка, а именно: метод Эйлера, неявный метод Эйлера, метод Рунге-Кутта 4-го порядка.

- 2. Для каждого из методов были написаны функции на языке программирования python, возвращающие дискретную траекторию системы ОДУ.
- 3. Построены графики зависимости мембраны от времени в таких режимах работы нейрона как: TS, PS, C, FS.
- 4. По построенным графикам определены особенности каждого режима работы.
- 5. Проведён анализ численных методов решения задачи Коши.
- 6. Проведено моделирование нейронной сети, состоящей из 1000 нейронов. Определена частота синхронных колебаний нейронов в сети.

Список использованных источников

- **1.** Першин А.Ю. Лекции по курсу «Вычислительная математика». Москва, 2018-2021.
- **2.** Першин А.Ю., Соколов А.П. Вычислительная математика, лабораторные работы (учебное пособие), МГТУ им. Баумана, Москва, 2018-2021.