#### INVERTIBLE KNOT CONCORDANCES AND PRIME KNOTS

#### SE-GOO KIM

### 1. Introduction

Kirby and Lickorish [1] showed that every knot in  $S^3$  is concordant to a prime knot, equivalently, every concordance class contains a prime knot. Generalizations appear in [3, 4, 5, 9]. Sumners [11] introduced the notion of invertible concordance. We prove here that the Kirby and Lickorish's result can be strengthened:

**Theorem 1.1.** Every knot in  $S^3$  is invertibly concordant to a prime knot.

Corresponding to invertible concordance there is a group, the *double concordance group*, studied in [2, 6, 10]. A consequence of our work is that every double concordance class contains a prime knot.

#### 2. Definitions and basic results

In all that follows manifolds and maps will be smooth and orientable. Let I denote the interval [0, 1].

A link of n components, L, is a smooth pair  $(S^3, l)$  where l is a smooth oriented submanifold of  $S^3$  diffeomorphic to n disjoint copies of  $S^1$ . A knot K is a link of one component. Two links,  $L_1$  and  $L_2$ , each of n components, are called concordant if there exists a proper smooth oriented submanifold w of  $S^3 \times I$ , with  $\partial w = (l_1 \times 0 \cup (-l_2) \times 1)$  and w diffeomorphic to n disjoint copies of  $S^1 \times I$ . Let  $(W; L_1, L_2)$  denote  $(S^3 \times I, w)$  the concordance between  $L_1$  and  $L_2$ . If  $(W_1; L_1, L_2)$  and  $(W_2; L_2, L_3)$  are two concordances with a common boundary component (oriented oppositely) we can then paste  $W_2$  to  $W_1$  along  $L_2$  to get  $(W_1 \cup W_2; L_1, L_3)$ .

A concordance  $(W; L_1, L_2)$  is said to be *invertible at*  $L_2$  if there is a concordance  $(W'; L_2, L_1)$  such that  $(W \cup W'; L_1, L_1)$  is diffeomorphic to  $(L_1 \times I; L_1, L_1)$ , the product concordance of  $L_1$ . Given the above situation, we say that  $L_1$  is invertibly concordant to  $L_2$ , and  $L_2$  splits  $L_1 \times I$ . In the same manner, concordance and invertible concordance can be defined for knots and links in the solid torus  $S^1 \times D^2$ .

A submanifold N with boundary is said to be *proper* in a manifold M if  $\partial N = N \cap \partial M$ . Let  $B^3$  denote the standard closed 3-ball  $\{x \in \mathbb{R}^3 \mid |x| \leq 1\}$ . An n-tangle T is a smooth pair  $(B^3, \lambda)$  where  $\lambda$  is a proper embedding of n disjoint copies of the interval I into  $B^3$ . Throughout this paper, an embedding means either the map or the image. Let  $U_n$  denote a trivial n-tangle, *i.e.*,  $U_n$  consists of n unlinked unknotted arcs. For example,  $U_1$  is the unknotted standard ball pair  $(B^3, I)$ . For n = 2, see Figure 1.

Concordances and invertible concordances between tangles can be defined in a similar way as for links. However, the boundary of the 3-ball  $B^3$  is required to be fixed at each stage of concordance. More precisely, let  $I_1, \ldots, I_n$ , denote n disjoint copies of the interval I. Two n-tangles,  $T_0 = (B^3, \lambda_0)$  and  $T_1 = (B^3, \lambda_1)$ , are

Date: March 5, 2000.

 $1991\ Mathematics\ Subject\ Classification.\ 57M25.$ 

concordant if there is a proper smooth embedding  $\tau$  of  $(\bigcup_{i=1}^n I_i) \times I$  into  $B^3 \times I$ , with  $\tau(\bigcup_{i=1}^n I_i \times \epsilon) = \lambda_{\epsilon}$  ( $\epsilon = 0, 1$ ) and  $\tau(\epsilon_i \times I) = \tau(\epsilon_i \times 0) \times I$  for each  $i = 1, \ldots, n$ , and  $\epsilon_i = 0, 1$  in  $I_i$ . Let  $(V; T_1, T_2)$  denote  $(B^3 \times I, \tau)$ , the concordance between  $T_1$  and  $T_2$ . If  $(V; T_1, T_2)$  and  $(V'; T_2, T_3)$  are two concordances, we can then paste V' to V along  $T_2$  to get a concordance  $(V \cup V'; T_1, T_3)$ . A concordance  $(V; T_1, T_2)$  is invertible at  $T_2$  if there is a concordance  $(V'; T_2, T_1)$  such that  $(V \cup V'; T_1, T_1)$  is diffeomorphic to  $(T_1 \times I; T_1, T_1)$  by a diffeomorphism  $\varphi$  with  $\varphi(\tau) = \lambda_1 \times I$ , where  $\tau$  is the embedding of n disjoint copies of  $I \times I$  into  $B^3 \times I$  defining the concordance  $(V \cup V'; T_1, T_1)$  and  $\lambda_1$  is the embedding of n disjoint copies of I into I0 defining the tangle I1.

A knot is called doubly null concordant if it is the slice of some unknotted 2-sphere in  $S^4$ . Two knots  $K_1$  and  $K_2$  are said to be doubly concordant if  $K_1 \# J_1$  is isotopic to  $K_2 \# J_2$  for some doubly null concordant knots  $J_1$  and  $J_2$ .

The following theorem is due to Zeeman.

## **Theorem 2.1.** [12] Every 1-twist-spun knot is unknotted.

Let -K denote the knot obtained by taking the image of K, with reversed orientation, under a reflection of  $S^3$ . The following fact was first proved by Stallings and now follows readily from 2.1. (One cross-section of the 1-twist-spin of K yields K#(-K). For details, see [11].)

Corollary 2.2. K#(-K) is doubly null concordant for every knot K.

**Corollary 2.3.** If  $K_1\#(-K_2)$  is doubly null concordant then  $K_1$  and  $K_2$  are doubly concordant.

*Proof.* Take  $J_1 = K_2 \# (-K_2)$  and  $J_2 = K_1 \# (-K_2)$  in the definition of double concordance.

**Remark 2.4.** An easy exercise shows that knots  $K_1$  and  $K_2$  are concordant if and only if  $K_1\#(-K_2)$  is *slice*, *i.e.*, concordant to the unknot. This defines an equivalence relation. However, a definition of double concordance more along the lines of concordance is as of yet inaccessible. The difficulty is that it is unknown whether the following is true: If knots K and K#J are doubly null concordant, then J is doubly null concordant.

There is a relation between invertible concordance and double concordance.

**Proposition 2.5.** If  $K_1$  is invertibly concordant to  $K_2$  then  $K_1\#(-K_2)$  is doubly null concordant.

*Proof.* There is a copy of  $S^3 \times I$  in  $S^4$  intersecting the 1-twist-spin of  $K_1$  in  $K_1\#(-K_1)\times I$ . Since  $K_2$  splits  $K_1\times I$ , there is an invertible concordance from  $K_1\#(-K_1)$  to  $K_1\#(-K_2)$ . Hence  $K_1\#(-K_1)\times I$  is split by  $K_1\#(-K_2)$  and the result follows.

#### 3. Invertible concordances and prime knots

Kirby and Lickorish [1] proved that any knot in  $S^3$  is concordant to a prime knot. Livingston [3] gave a different proof of this result using satellite knots. In this section, we modify Livingston's approach to prove Theorem 1.1.

Before proving this, we will set up some notation. By a splitting- $S^2$ , S, for a knot K (in  $S^3$  or  $S^1 \times D^2$ ) we denote an embedded 2-sphere, S, intersecting K in



FIGURE 2.

exactly 2 points. A knot in either  $S^3$  or  $S^1 \times D^2$  is prime if for every splitting- $S^2$ , S, S bounds some 3-ball, B, with  $(B, B \cap K)$  a trivial pair. The winding number of a knot K in  $S^1 \times D^2$  is that element z of  $\mathbb{Z} \cong H_1(S^1 \times D^2; \mathbb{Z})$  with  $z \geq 0$  and K representing z. The wrapping number of K is the minimum number of intersections of K with a disk D in  $S^1 \times D^2$  with  $\partial D =$  meridian. If  $K_1$  is a knot in  $S^1 \times D^2$  and  $K_2$  is a knot in  $S^3$ , the  $K_1$  satellite of  $K_2$  is the knot in  $S^3$  formed by mapping  $S^1 \times D^2$  into the regular neighborhood of  $K_2$ ,  $N(K_2)$ , and considering the image of  $K_1$  under this map. The only restriction on the map of  $S^1 \times D^2$  into  $N(K_2)$  is that it maps a meridian to a meridian. In what follows we will consider  $S^1 \times D^2$  embedded in  $S^3$  in a standard way. Hence any knot K in  $S^1 \times D^2$  gives rise to a knot  $K^*$  in  $S^3$ .

The following theorem is due to Livingston.

**Theorem 3.1.** [3] Let  $K_1$  be a knot in  $S^1 \times D^2$  such that  $K_1^*$  is the unknot in  $S^3$ . Then  $K_1$  is prime in  $S^1 \times D^2$ . Moreover, if  $K_1$  has wrapping number > 1 and  $K_2$  is any nontrivial knot in  $S^3$ , then the  $K_1$  satellite of  $K_2$  is prime in  $S^3$ .

This theorem suggests that, to prove our main theorem 1.1, we only need to find a knot  $K_1$  in  $S^1 \times D^2$  with  $K_1^*$  the unknot in  $S^3$  and an invertible concordance between the core C and the knot  $K_1$  in  $S^1 \times D^2$ . To do this, we observe that there is an invertible concordance between the tangles  $U_2$  and T in Figure 1. We remark here that Ruberman in [7] has used the tangle T to prove that any closed orientable 3-manifold is invertibly homology cobordant to a hyperbolic 3-manifold.

**Lemma 3.2.** The 2-tangle T in Figure 1(b) splits  $U_2 \times I$ .

*Proof.* Let  $I_1$  be a copy of the non-straight arc of T in the 3-ball  $B^3$  and let  $J_1$  be a copy of the non-straight arc of  $U_2$  in  $B^3$  as shown in Figure 1(c). The closed

curve  $J_1 \cup I_1$  bounds an obvious punctured torus F that is the shaded region in Figure 1(c). Consider F as the plumbing of two  $S^1 \times I$ . Let  $c_i$ , i = 1, 2, be the cores of the two  $S^1 \times I$  of F and let  $\bar{c}_i$ , i = 1, 2, be disjoint proper line segments in F intersecting with  $c_i$  exactly once, respectively. See Figure 1(c).

To construct an invertible concordance, we will construct two concordances and then paste them together. First, note that pinching  $I_1$  along  $\bar{c}_1$  transforms T into the tangle  $U_2$  with an unlinked unknotted circle inside which is isotopic to the circle  $c_2$ . Now capping off this circle we have a concordance  $(V_1'; T, U_2)$ . The tangle  $B^3 \times \frac{1}{4}$  in Figure 2 represents a slice of this concordance before capping off the circle. In the similar way, pinching  $I_1$  along  $\bar{c}_2$  and capping off the unknot gives us another concordance  $(V_2; T, U_2)$ . Let  $(V_1; U_2, T)$  denote the concordance  $(V_1'; T, U_2)$  with reversed orientation. We can then paste  $V_1$  to  $V_2$  along T to get a concordance  $(V_1 \cup V_2; U_2, U_2)$ , which will be proved to be isotopic to the product concordance  $U_2 \times I$ . A few cross-sections of concordance  $V_1 \cup V_2$  are drawn in Figure 2.

Let  $\tau$  denote the embedding of two disjoint copies of  $I \times I$  into  $V_1 \cup V_2$  as in the definition of concordance in Section 2. It is obvious from Figure 2 that there is a 3-manifold M (the union of shaded regions) in  $V_1 \cup V_2$  bounded by  $\tau$  and  $J_1 \times I$ , whose intersection with  $U_2$  at each end of the concordance is the arc  $J_1$ and whose cross-section in the middle is the punctured torus F. This 3-manifold M can be considered as the union of three submanifolds: the product  $F \times I$  and two 3-dimensional 2-handles  $D^2 \times I$ . One  $D^2 \times I$  is glued to  $F \times I$  along a regular neighborhood of  $c_2$ , which corresponds to capping off the circle isotopic to  $c_2$  as we constructed the concordance  $V'_1$ . The other  $D^2 \times I$  is glued along a regular neighborhood of  $c_1$ , which corresponds to capping off the circle isotopic to  $c_1$  as we constructed the concordance  $V_2$ . Since  $F \times I$  is a 3-dimensional handlebody with 2 handles with cores  $c_1$  and  $c_2$ , M is the manifold that results by adding two 2-handles to a genus 2 solid handlebody along the cores of the 1-handles, in this case yielding  $B^3$ . Moreover, M does not intersect the other straight arc of T at any stage. Using this 3-ball M, we can isotop  $\tau$  to  $J_1 \times I$  in a regular neighborhood of M not disturbing the other arc and  $\partial B^3$ . This completes the proof. 

**Proposition 3.3.** The knot  $K_1$  in Figure 3(b) splits  $C \times I$ , where C is the core in  $S^1 \times D^2$ .

*Proof.* Consider  $S^1 \times D^2$  as the complement of the unknot m in  $S^3$ . The knot  $K_1$  in Figure 3(b) is isotopic to  $K_1$  in Figure 3(a). It is obvious from Figure 3(a) that  $K_1 \cup m$  is the link in  $S^3$  formed by replacing a trivial 2-tangle in Hopf link with T (dotted circle in Figure 3(a)). The proposition now follows from Lemma 3.2.

Now we are ready to prove our main theorem 1.1.

Proof of Theorem 1.1. Let K be a knot in  $S^3$ . If K is trivial it is prime itself. Suppose now that K is nontrivial. Let K' be  $K_1$  satellite of K where  $K_1$  is the knot in  $S^1 \times D^2$  in Figure 3(b). By Proposition 3.3, K' splits  $K \times I$ . We now only need to show K' is prime. Since  $K_1^*$  is the unknot in  $S^3$ ,  $K_1$  is prime by Theorem 3.1 and to complete proof it remains to show its wrapping number > 1. Its winding number is 1, hence its wrapping number is at least one. It is easy to see that the only prime knot in  $S^1 \times D^2$  with wrapping number 1 is the core. So, if  $K_1$  had wrapping number 1, then it is isotopic to the core of  $S^1 \times D^2$ . The -1 surgery on the meridian curve m in  $S^3$  should make  $K_1^*$  unchanged, *i.e.*, unknotted.



FIGURE 3.

However, the knot in Figure 3(e), the result of  $K_1^*$  after -1 surgery along m, is  $9_{46}$  and hence knotted. Therefore the wrapping number is > 1.

**Corollary 3.4.** Any knot is doubly concordant to a prime knot.

**Remark 3.5.** The  $K_1$  satellite of K has the same Alexander polynomial as that of K. Seifert [8] proved that the Alexander polynomial of the  $K_1$  satellite of K is  $\Delta_{K_1^*}(t)\Delta_K(t^w)$  if w is the winding number of  $K_1$  in  $S^1 \times D^2$ . In our case, w is 1 and  $K_1^*$  is the unknot.

In [3], Livingston also proved that every 3-manifold is homology cobordant to an irreducible 3-manifold. Two 3-manifolds,  $M_1$  and  $M_2$ , are homology cobordant if there is a 4-manifold W, with  $\partial W = M_1 \cup M_2$  and the map of  $H_*(M_i; \mathbb{Z}) \to H_*(W; \mathbb{Z})$  an isomorphism. Invertible homology cobordisms can be defined in the same way as in the knot concordance case. A 3-manifold M is irreducible if every embedded  $S^2$  in M bounds an embedded  $S^3$ .

**Remark 3.6.** In spirit of [3], we have a simple proof that every 3-manifold is invertibly homology cobordant to an irreducible 3-manifold. To prove this, we only need to slightly modify the proof of Theorem 3.2 in [3] by using  $K_1$  in Figure 3(b). The -1 surgery on  $K_1$  makes the meridian m the knot  $9_{46}$ .

This remark is also a corollary of Ruberman's Theorem 2.6 in [7] that reads: for every closed orientable 3-manifold N, there is a hyperbolic 3-manifold M, and an invertible homology cobordism from M to N. The remark follows since a hyperbolic 3-manifold is irreducible.

# References

- R. C. Kirby and W. B. R. Lickorish, Prime knots and concordance, Math. Proc. Cambridge Philos. Soc. 86 (1979), 437–441.
- [2] J. Levine, Doubly sliced knots and doubled disk knots, Michigan Math. J. 30 (1983), no. 2, 249–256.
- [3] C. Livingston, Homology cobordisms of 3-manifolds, knot concordances, and prime knots, Pacific J. Math. 94 (1981), no. 1, 193–206.
- [4] R. Myers, Homology cobordisms, link concordances, and hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 278 (1983), no. 1, 271–288.
- [5] R. Myers, Excellent 1-manifolds in compact 3-manifolds, Topology Appl. 49 (1993), no. 2, 115–127.
- [6] D. Ruberman, Doubly slice knots and the Casson-Gordon invariants, Trans. Amer. Math. Soc. 279 (1983), no. 2, 569–588.
- [7] D. Ruberman, Seifert surfaces of knots in S<sup>4</sup>, Pacific J. Math. 145 (1990), no. 1, 97–116.
- [8] H. Seifert, On the homology invariants of knots, Quart. J. Math. Oxford Ser. (2) 1 (1950), 23–32.
- [9] T. Soma, Hyperbolic, fibred links and fibre-concordances, Math. Proc. Cambridge Philos. Soc. 96 (1984), no. 2, 283–294.
- [10] N. W. Stoltzfus, Algebraic computations of the integral concordance and double null concordance group of knots, Knot theory (Proc. Sem., Plans-sur-Bex, 1977), pp.274–290, Lecture Notes in Math. 685, (J.C. Hausmann, ed.), Springer-Verlag, Berlin, 1978.
- [11] D. W. Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46 (1971), 240-256.
- [12] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495.

Department of Mathematics, Indiana University, Bloomington, Indiana 47405  $E\text{-}mail\ address:}$  sekim@indiana.edu