Particle spectrograph

Wave operator and propagator

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^{ ext{-}}lpha}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{3k^2r_3}{2}$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_1^{\#1}_{+\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_1^{\#_1} +^\alpha$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$

${\mathfrak r}_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{2}{3k^2r_3}$	0	0	0
$\tau_{1}^{\#1}_{+}{}_{\alpha\beta}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_1^{\#2}{}_+\alpha\beta$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#_2} + \alpha^{\beta}$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} \dagger^{\alpha}$	$\tau_1^{\#1} +^\alpha$	$\tau_1^{\#2} + ^{\alpha}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\sharp 1} \dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2^{+}}^{\sharp 1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\sigma_{0^{+}}^{\#1} == 0$	1				
$\tau_1^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1\alpha} == 0$	3				
$\sigma_1^{\#2\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#1\alpha\beta} == 0$	3				
$\sigma_{1+}^{\#1\alpha\beta} == \sigma_{1+}^{\#2\alpha\beta}$	3				
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5				
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5				
Total constraints:	28				

_			
$\sigma_{2^{+}\alpha\beta}^{\#1}$ $\tau_{2^{+}\alpha\beta}^{\#1}$ $\sigma_{2^{-}\alpha\beta\chi}^{\#1}$	0	0	0
$\tau_{2}^{\#1}_{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
	$\sigma_2^{\#1} + ^{lphaeta}$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} + ^{lphaeta\chi}$

_	$\sigma_{0^{+}}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
#1 0+ †	0	0	0	0
#1 0+ †	0	0	0	0
#2 0+ †	0	0	0	0
# ₁ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive and massless spectra

Ê	
O	
อี	
massless	
e	
SS	
<u>a</u>	
particles	
<u>C</u>	
Se	
$\overline{}$	

Unitarity conditions