

Şekil 11.4. Alın tornalamada oluşan örnek takım yolları

Alın tornalama işleminde kesici takımın konumlama noktaları yukarıda Şekil 11.4'de izah edilmiştir. Takım önce parça çapından büyük bir noktaya talaş kaldırma boyuna konumlanır. Daha sonra parçanın eksenine hatta bir miktar eksenin altına doğru talaş kaldırma hareketi yapar ve hızlıca 3 noktasına doğru parçadan uzaklaşır. Yukarıya doğru hızlı olarak tornalama yapacağı 4 nolu noktaya cıkar. Daha sonra verilecek koordinatlarla boyuna tornalama işlemi yapabilir.

ÖRNEK PROGRAM - 1

80 mm çaplı bir parçaya alın tornalaması yapmak için gerekli program parçasını yapalım.

0101	10;	Program numarası	
N2 G28 U0 W0; veya		X ve Z ekseninde referansa konumlama veya	
	G0 X250 Z300;	X ve Z eksenlerinde güvenli bir noktaya uzaklaşma	
N4	T0404;	Takım değiştirme 4 nolu takım 4 nolu ofset değeri ile alındı	
N6	G50 S1200;	Devir sınırlaması (maksimum devir 1200 dev/dk)	
N8	G96 S110 M3;	Sabit kesme hızı/değişken devir. Kesme hızı 110m/dk. Dönüş CW	
N10	G54;	Parça ucu referans noktasının seçimi	
N12	G0 X85 Z0 M8;	1 nolu noktaya hızlı konumlama	
N14	G1 X-1 F0.25;	2 nolu noktaya talaş kaldırma hareketi ilerleme: 0.25 mm/dev	
N16	G0 Z2;	3 nolu noktaya hızlı ilerleme	
N18	X 75;	4 nolu noktaya hızlı ilerleme	
N20	G1 ZF0,3	5 nolu noktaya konumlama	

Görüldüğü gibi kodlamada frezeden fazla bir farklılık görülmemektedir. Frezedeki gibi tornada da takım değiştirmek için mutlaka referans noktasına konumlanacak diye bir şart yoktur. Taretin dönerek parçaya, aynaya, veya karşılık puntasına çarpma ihtimalinin olmadığı uzak bir noktaya konumlanması da yeterlidir. Çünkü referans noktalarına erişmek uzun eksenli torna tezgahlarında büyük zaman almaktadır. Dolayısı ile parçadan boy ve çapta bir miktar uzaklaşarak takım değiştirmek işleme zamanını kısaltacaktır (N2) Görüldüğü gibi takım değiştirme için frezede ki gibi M06 komutunu kullanmaya gerek yoktur. Buradaki T0404 komutunda ilk yazılan 04 takım numarasını bundan sonraki 04 ise takım ofset bilgilerinin yazıldığı satır numarasıdır. Ayna devri verildikten sonra ilk G1 talaş kaldırma hareketine mutlaka bir F değeri verilmelidir. Burada ilerleme frezeden farklı olarak mm/dk olarak değil mm/dev olarak 0,25 mm/dev atanmıştır. Buradaki X'in -1 olması ise eksenin altına inerek tam eksende bir çıkıntının kalmaması içindir.

UYGULAMA 11-2

En büyük çapı 65 mm olan bir silindirik malzeme ucunda 4mm fazla talaş bulunmaktadır. İlk konumlamayı X70'e yaparak önce Z+2'den sonra Z0'dan alın tornalaması yapınız.

11.7. Boyuna Tornalama

Boyuna tornalama işlemi; Şekil 11.5'de görüldüğü gibi, takım belirli bir çapa konumlandıktan sonra verilecek boy koordinatı ile aynaya doğru talaş kaldırma şeklinde gerçekleşir. 1 ve ardından 2 nolu noktaya hızlı konumlanan takım, 3 nolu noktaya talaş kaldırma hareketi yapar, ardından yukarı doğru 4 nolu noktaya tekrar talaş kaldırma ve tekrar parça ucundaki 5 nolu noktaya hızlı konumlama yapılarak çap tornalanmış olur.

ÖRNEK PROGRAM - 2

Yanda Şekil 11.6'da Ø30 mm den Ø19,96 çapına Z-39,65 derinliğinde tornalama işlemi yapılacaktır. Önce Ø25mm çapından, sonra Ф19,96 çapından tornalama işlemi için gerekli programı yazalım.

Şekil 11.6 Boyuna tornalama için örnek şekil

0100)2;	Program numarası
N2	G28 U0 W0; veya	X ve Z ekseninde makine sıfırına konumlama veya
	G0 X300 Z300;	Takım değiştirme için yeteri kadar uzaklaşma
N4	T0808;	Takım değiştirme, 8 nolu takım 8 nolu ofset değeri ile alındı
N6	G50 S1600;	Devir sınırlaması (maksimum devir 1600dev/dk)
N8	G96 S100 M3;	Sabit kesme hızı/değişken devir. Kesme hızı 100m/dk
N10	G54;	Parça ucu referans noktasının seçimi
N12	G0 X35 Z5 M8;	1 nolu noktaya hızlı konumlama
N14	X25 Z2;	2 nolu noktaya hızlı konumlama
N16	G1 Z-39,65 F0,3;	3 nolu noktaya talaş kaldırma (ilerleme 0.3 mm/dev)
N18	X32;	4 nolu noktaya talaş kaldırma
N20	G0 Z2;	5 nolu noktaya hızlı konumlama
N22	X19,96	6 nolu noktaya hizli konumlama
N24	G1 Z-39,65 F0,1;	7 nolu noktaya talaş kaldırma (son pasoda ilerleme 0.1'e azaltıldı)
N26	X32;	4 nolu noktaya talaş kaldırma
N28	G0 X250 Z300;	Parçadan uzaklaşma
N30	M30;	Program sonu

UYGULAMA 11-3

En büyük çapı 80mm olan bir silindirik malzemeyi Z-45mm derinliğine kadar X75, X70, X65 ve en son X64 mm çaplarından kaba ve finiş tornalama yapınız. (Maks. devir 1400, V=110 m/dk, f_{kaba}=0.25 mm/dev ve f_{bitirme}=0.06 mm/dev

11.8. Dikine Tornalama

Şekil 11.7. Dikine tornalamada oluşan takım yolları

Dikine tornalama işlemi özellikle büyük çaplı kısa boylu parçaların (flanş disk vb.) işlenmesi için uygun bir talaş kaldırma hareketidir. Bu tarz parçaların boyuna tornalama ile işlenmesi çok sayıda takım yolu oluşturur, programlama ve işleme süresini uzatır. Şekil 11.7'de görüldüğü gibi burada takım eksene doğru inerken talaş kaldırma hareketi yapar. Takım üst çap üzerinde bir noktaya (1) hızlı yaklaşma yapar ve eksene doğru talaş kaldırır (2). Talaş kaldırma hareketi biter bitmez alın ucuna doğru çapı tornalar (3). Tekrar yukarıya doğru (4) hızlı konumlama yaparak 2. paso için 5 nolu noktaya konumlama yapar ve 6 ve 3 yolunu takip ederek işlemini tamamlar.

ÖRNEK PROGRAM - 3

Yanda Şekil 11.8'de görülen Ø120 çapından Ø25 çapına 12mm derinliğinde dikine tornalama işlemi için uygun programı yazalım. Bunun için ilk paso Z-6 mm derinliğinde 2. paso ise Z-12 mm derinliğinde verilebilir.

Sekil 11.8 Dikine tornalama örnek şekli

0105	55	Program numarası			
N2	G28 U0 W0;	X ve Z ekseninde referans konumlama			
N4	T0101;	Takım değiştirme 1 nolu takım 1 nolu ofset değeri			
N6	G50 S1000;	Devir sınırlaması (maksimum devir 1000 dev/dk)			
N8	G96 S100 M3;	Sabit kesme hızı/değişken devir. Kesme hızı 100m/dk			
N10	G54;	Parça ucu referans noktasının seçimi			
N12		1 nolu noktaya hızlı konumlama			
N14		2 nolu noktaya talaş kaldırma			
N16		3 nolu noktaya talaş kaldırma			
N18	G0 X123;	4 nolu noktaya hızlı konumlama			
N20		5 nolu noktaya hızlı konumlama			
	G1 X25 F0,25;	6 nolu noktaya talaş kaldırma			
N24	Z2;	3 nolu noktaya talaş kaldırma			
N28		Parçadan uzaklaşma			
N30	M30;	Program sonu			

11.9. Puntalama - Delik Delme

Puntalama ve delik delme işlemelerinde takım önce X ekseninde sıfır noktasına inerek tam eksene konumlanmalıdır. Bu nokta 2 nolu nokta olup alın yüzeyine yakın bir noktadır. Daha sonra 3 nolu noktaya talaş kaldırılmalı ve tekrar 2 nolu noktaya hızlı olarak konumlanmalıdır. Puntalamada oluşan takım yolları aşağıda Şekil 11.9'da verilmiştir.

Şekil 11.9. Delik delmede oluşan takım yolları

ÖRNEK PROGRAM - 4

Punta matkabı ile Z-8 mm derinliğinde punta deliği açılacaktır. Bunun için takım önce 2 noktasına (X=0) hızlı konumlanacak ardında talaş kaldırma hızı ile 3 noktasına kadar girecektir. Daha sonra 2 noktasına geri çıkıp parçadan uzaklaşacaktır.

0101	10	Program numarası		
N2	T1010;	Takım değiştirme		
N4	G97 S1400 M4;	Sabit devir. Devir sayısı 1400 dev/dk. Dönüş yönü CCW		
N6	G54;	Parça ucu referans noktasının seçimi.		
N8	G0 X0 Z5 M8;	2 nolu noktaya hızlı konumlama		
N10	G1 Z-8 F0,1;	3 nolu noktaya delik delerek talaş kaldırma		
N12	G0 Z10;	2 nolu noktaya hızlı konumlama		
		Parçadan uzaklaşma		
N16	M30;	Program sonu		

Burada G97 komutu ile sabit devir kullanılmıştır. Çünkü matkap çapı sabittir. Değişken devire ihtiyaç yoktur. Burada dikkat edilmesi gereken ayna dönüş yönünün M4 olmasıdır. Normalde frezede matkaplar için M3 komutuyla matkabın dönüş yönü saat yönü olarak verilmişti. Burada tarete bağlı olan punta matkabı sabit durmakta ayna dönmektedir. Dolayısı ile aynanın ters yönde (M4) dönmesi gerekmektedir. Diğer bir hususta delik delmek için mutlaka X ekseninde sıfır noktasına (fener mili eksenine) inilmesi gerekmektedir.

UYGULAMA 11-4,5

1-En büyük çapı 180mm olan flanş tipinde bir malzemeyi X=20mm çapına kadar Z-5, Z-9.5 ve Z-10mm derinliklerinde dikine kaba ve finiş tornalama yapınız. (Maksimum devir 1100, kesme hızı 120 m/dk, kaba ilerlemesi f=0.2 mm/dev ve Finiş ilerlemesi f=0.08 mm/dev)

2-12mm çaplı bir matkapla Z -50mm derinlikte delik delen programı yazınız.
3-18mm çaplı bir matkapla Z-120mm derinlikte delik delmek için; öncelikle Z-40 derinliğine delik deliniz, ardından Z+5'e geri çıkıp talaşı boşaltarak tekrar Z-80 mm derinliğe delik deliniz. Ardından tekrar Z+5'e geri çıkıp talaşı tekrar boşaltarak Z-120 mm derinliğe delik deliniz. Bu işlemde geri çıkmaları G0 komutu ile yapınız. Tekrar parçaya girerken en son delik delinen Z noktasına 1mm kalaya kadar hızlı yaklaşınız. Bu noktadan sonra G1 talaş kaldırma hareketine geçerek son noktaya talaş kaldırınız. (İlerleme f =0.05 mm/dev)

11.10. Konik Tornalama ve Pah Kırma

Konik tornalama yapmak için koniğin başlangıç ve bitiş noktalarının X ve Z koordinatlarının bilinmesi gerekir. Konik verirken tezgah hem X hem de Z ekseninde aynı anda hareket eder. Tornalarda pahların kırılmasında, başlangıç çap koordinatları belirlenirken pah miktarının iki katı belirtilen çaptan çıkarılarak elde edilir. Örneğin aşağıda Şekil 11.10'da verilen parçada, 20 mm'lik çapta bulunan 2x45'lik pahın en küçük çapı (nokta 1) X=20-(2x2)=16 mm dir. Yine 20 mm lik çapın diğer kısmında bulunan 2.5x45'lik pahın en büyük çapı (nokta 4) X=20+(2x2.5) = 25 mm'dir.

Şekil 11.10. Konik tornalama ve pah kırma örnek şekli

			2	3	4	5	6
	Yaklaşma	1	4	00	25	32	37
V	50	16	20	20	20	0.0	42
^	P	0	2	-17.5	-20	-20	-43

03008	8:	Program numarasi
N2 ·	G0 X300 Z300;	Takım değiştirme öncesi güvenli noktaya hareket
	T1111;	Takım değiştirme 11 nolu takım 11 nolu ofset
N6	G50 S1850;	Devir sınırlaması Maksimum devir 1850 dev/dk
	G96 S140 M4;	Sabit kesme hızı, kesme hızı =140 m/dk
N7	G54;	Parça ucundaki referans noktasının seçimi
N8		Parçaya yaklaşma
N10	G0 X50 Z5 M8;	1 nolu noktaya yaklaşma
N12		1 nolu noktaya konumlama
N14	G1 Z0 F0.5;	1'den 2'ye pah kirma
N16	X20 Z-2 F0.22;	3 nolu noktaya konumlama
N18	Z-17.5;	3 holu noktaya konumana
N20	X25 Z-20; veya X25 W-2.5;	3'den 4'e pah kırma
N22	X32:	5 nolu noktaya konumlama
N24	X37 Z-43; veya X37 W-23;	5'den 6'ya konik tornalama
N26	G0 X40;	6 nolu noktadan uzaklaşma
N28		Parçadan ve karşılık puntasından uzakta güvenli bir noktaya
1420	00 /1000 =0-01	uzaklaşma
N30	M30;	Program sonu

Şekil 11.11. Çok takımlı örnek uygulama şekli ve işlem sırası

04301	;	Program numarası			
N2	T0404;	Takım değiştirme. Dış çap tornalama kateri			
N4	G50 S1500;	Devir sınırlaması, maksimum devir 1500 dev/dk			
N6	G96 S150 M4;	Sabit kesme hızı/ değişken devir. V=120 m/dk			
N8	G54 M8;	Referans noktası seçimi soğutma suyu açılması			
N10	G0 X55 Z0;	Alın tornalama başlangıcına hızlı konumlama			
N12	G1 X24 F0,25;	Alın tornalama. (Boru malzemede delik çapından 1mm aşağıya)			
N14	G0 Z1;	Parçadan uzaklaşma			
N16	G0 X35,7;	Konik başlangıç çapına hareket			
N18	G1 Z0 F0,15;	Konik başlangıç noktasına konumlama			
N20	X46 Z-6,5;	Uç noktadaki koniğin tornalanması			
N22	Z-53;	Boyuna tornalama			
N24	X55;	Parçadan uzaklaşma			
N26	G0 X300 Z300 M5;	Takım değiştirme için güvenli noktaya ilerleme. Ayna durdurma			
N28	T0606;	Dış kanal açma kateri alındı. Kalınlık 3 mm			
N30	G96 S100 M3;	Kesme hızı 100 m/dk			
N32	G54 M8;	Referans noktası seçimi			
N34	G0 X48 Z-16;	kanal başlangıcına konumlama. Z-13+takım genişliği			
N36	G1 X39,5 F0,05;	Kanalın dip çapına talaş kaldırma hareketi			
N38	G0 X48;	Kanaldan üst çapa hızlı konumlama			
N40	Z-24;	2. kanala konumlama. Z-(13+3+5+takım genişliği)			
N42	G1 X39,5;	Kanalın dip çapına talaş kaldırma hareketi			
N44	G0 X48;	Kanaldan üst çapa hızlı konumlama			
N46	Z-32;	3. kanala konumlama. Z-(24+5+takım genişliği)			
N48	G1 X 39,5;	Kanalın dip çapına talaş kaldırma hareketi			
N50	G0 X54;	Kanaldan dış çapa hızlı konumlama			
N50	Z-60;	Parçayı kesmek için Z ekseninde konumlama Z=-(57+3)			
N52	G1 X24;	Parçayı kesmek için delik çapına kadar inildİ.			
N54	G0 X55;	Parçanın kesilerek düşmeme ihtimaline karşı çapta uzaklaşma			
N56	G0 X300 Z300;	Güvenli noktaya uzaklaşma			
N58	M30;	Program sonu			

11.11. CNC Tornalarda Dairesel Hareket

CNC tornalarda dairesel hareket, frezede olduğu gibi G2 ve G3 komutlarıyla verilir. Burada format aynı kalmakla beraber X eksenine ait yardımcı eksen I ve Z eksenine ait yardımcı eksen ise K olarak kullanılır. Bilindiği gibi belli açıyı geçen dairesel hareketlerde daire merkez koordinatları takımın harekete bağlayacağı noktaya olan uzaklıkları yardımcı eksenlerle belirtilir. Aşağıda Şekil 11.12'de dairesel hareketin formatı gösterilmiştir.

Şekil 11.12. Dairesel hareket ve değişkenleri

Dairesel harekete başlamadan önce başlangıç noktasına konumlama yapılmalı ardından frezede olduğu gibi G2/G3 komutu seçildikten sonra bitiş koordinatları ve radyüs belirtilmelidir. 90 dereceyi geçen radyüslerde I ve K değişkenleri de komutlara eklenmelidir. 90 dereceyi geçen durumlarda I ve K 4 farklı şekilde oluşur ve bu alternatif durumlar aşağıda Şekil 11.13'de belirtilmiştir.

Şekil 11.13. Dairesel harekette yardımcı eksenler ve örnek kullanımı

ÖRNEK PROGRAM - 6

Şekil 11.14. Dairesel hareket için örnek uygulama

Yukarıda Şekil 11.14'de verilen parçada tüm yüzeylerde tek pasoda alınabilecek kadar talaş varmış gibi bir finiş operasyonu tarzında 1'den 8'e doğru talaş kaldırılacaktır.

14-6	1	2	3	4	5	6	7	8
X	20	32	32	62	70	90	90	100+3
Z	0	-6	-11,3	-24,4	-24,4	-34,4	-39,8	-39,8

0100)1;	Program numarası		
N2	T0404;	Takım değiştirme		
N4	G50 S1000;	Devir sınırlaması		
N6	G96 S120 M4;	Sabit kesme hızı / değişken devir. V=120 m/dk		
N8	G54 M8;	Referans noktası seçimi		
N10	G0 X20 Z5;	1 noktasına yaklaşma		
N12	G1 Z0 F0,25;	1 noktasına konumlama		
N14	G3 X32 Z-6 R6;	2 noktasına dairesel hareket		
N16	G1 Z-11,3;	3 noktasına talaş kaldırma		
N18	X62 Z-24,4;	4 noktasına talaş kaldırma		
N20	X70;	5 noktasına talaş kaldırma		
N22	G3 X90 Z-34,4 R10	6 noktasına dairesel hareket		
N24	G1 Z-39,8;	7 noktasına talaş kaldırma		
N26	X103;	8 noktasına talaş kaldırma		
N28	G0 X300 Z300;	Parçadan uzaklaşma		
N30	M30;	Program sonu		

UYGULAMA 11-6

Daha önce Uygulama 11-1 de koordinatlarını çıkardığınız şekillerin koordinat sırasına göre programlarını yazınız. Bu programları yazarken takım hareketlerini çizgisel olarak düşününüz. Takım açılarını, takımın o profillere girip giremeyeceğini göz ardı ediniz.

ÖRNEK PROGRAM - 7

Şekil 11.15. Dairesel hareket için örnek uygulama

	0	1	2	3
X	0	43,9	43,31	63,31
Z	0	-37,36	-89.09	-99.09

0674	2;	Program numarası
N2	T0404;	Takım değiştirme
N4	G50 S1500;	Devir sınırlaması
N6	G96 S120 M4;	Sabit kesme hızı/ değişken devir. V=120 m/dk
N8	G54 M8;	Referans noktası seçimi
N10	G0 X0 Z5;	0 noktasına yaklaşma
N12	G1 Z0 F0,25;	0 noktasına konumlama
N14	G3 X43,9 Z-37,36 R25; veya G3 X43,9 Z-37,36 I0 K-25;	1 noktasına saatin tersi yönünde dairesel hareket
N16	G2 X43,3 Z-89 R56,3;	2 noktasına saat yönünde dairesel hareket
N18	G2 X63,3 Z-99 R10;	3 noktasına saat yönünde dairesel hareket
N20	G1 X70;	3 noktasından uzaklaşma
N22	G0 X250 Z250;	Parçadan uzaklaşma
N24	M30;	Program sonu

11.13. Çevrimler (Cycles)

Frezede olduğu gibi CNC torna tezgahlarının programlanmasında, çevrimler programlamayı oldukça kısaltmakta ve kolaylaştırmaktadır. Tornalama işlemlerine özel bu çevrimler, çok karmaşık ve çok sayıda takım yolu yazılması gereken profillerin çok kısa program satırlarıyla işlenmesini mümkün kılar. Böylelikle programlama zamanı ve hata yapma riski minimuma indirilmiş olur. Çünkü bazı profillerde takımın konumlanacağı ara noktalar ekstra matematiksel işlemler ile veya bilgisayarlı çizim programlarıyla hesap edilmesi gerekir. Parça yüzeyinde bir miktar temizleme talaşı bırakılması istenirse bu işlemler daha da karmaşık hale gelir. Aşağıda Şekil 11.19'da buna benzer bir örnek yer almaktadır.

Şekil 11.19. Çok pasolu boşaltmalarda oluşan takım yolları

Yukarıda ki parçanın işlenmesi tek pasoda gerçekleşemeyeceği düşünülürse, uygun talaş derinliğinde oluşan takım konumlama noktalarının tek tek hesap edilmesi gerekir. Yukarıda soru işareti ile gösterilen ve hesap edilmesi hiç de pratik olmayan bu koordinatlar programlama yapılırken vakit kaybına ve çeşitli hatalara sebep olabilir. Bu tarz çoklu takım yolu oluşturma işlemleri çevrimler kullanarak pratik şekilde programlanabilir. Bu çevrimlerin diğer avantajları ise kaba ve bitirme (finiş) işlemleri için ayrı ayrı program yazmayı gerektirmemeleri ve talaş derinliği, bitirme talaşı için bırakılacak miktar gibi operasyon süresince değiştirilmesi muhtemel değişiklikleri tek parametre ile değiştirerek oldukça kolaylık sağlamaları sayılabilir. Örnek verilecek olursa her hangi bir profil belli talaş derinliğinde, çevrim kullanmadan yani koordinatlar tek tek hesap edilerek yazılmış olsun. Verilen bu talaş derinliğinin bu parça veya tezgah için uygun olmaması durumunda, verilecek yeni talaş derinliğine göre koordinatların yeniden tek tek hesap edilmesi programın yeniden gözden geçirilmesini gerektirir. Programın bu revizyonu seri üretimin aksamasına ve yeni hataların yapılmasına sebep olabilir. Oysaki çevrimlerde talaş derinliğinin artırılıp azaltılması, tek bir parametrenin değiştirilmesi ile birkaç saniyede ve hatasız olarak yapılabilmektedir. Yapılan bu değişikliğe göre takım yolları yeni verilen bu talaş derinliğine göre otomatik olarak, seri üretim süreci aksamadan oluşturulmuş olur.

Tornalama işlemlerinde kullanılan çevrimler şunlardır.

- 1- G70 Bitirme talaşı çevrimi (Finishing cycle)
- 2- G71 Boyuna kaba tornalama çevrimi (Stock removal in turning)
- 3- G72 Dikine kaba tornalama çevrimi (Stock removal in facing)
- 4- G73 Profil tekrarlı kaba tornalama çevrimi (Pattern repeating)
- 5- G74 Delik delme ve alın yüzeyine kanal açma çevrimi (Drilling and face grooving)
- 6- G75 Çap yüzeyine kanal açma çevrimi (X direction grooving)
- 7- G76 Diş açma çevrimi (Thread cutting cycle)

Bu çevrimlerin yanında, sabit döngü (fixed cycles) diye adlandırılan ve kullanımı yukarıda sayılan çevrimlerden biraz daha basit olan döngüler ise şunlardır.

- 1- G90 Çap tornalama çevrimi (Turning cycles)
- 2- G94 Alın tornalama çevrimi (Face turning)
- 3- G92 Tek pasolu diş açma çevrimi (Single threading)

11.13.1. Bitirme talaşı çevrimi - G70 (Finishing Cycle)

Bu çevrim G71-72-73 çevrimleriyle işlenen bir profilin yüzeyinde bırakılan temizleme talaşının alınması için kullanılan bir bitirme çevrimidir. Temizleme talaşının boyuna veya dikine alınacağı kaba tornalama çevriminde tanımlanan geometri tanımlamasına bağlıdır. Yani boyuna tornalama çevrimi ile kabası işlenen profil üzerine temizleme talaşı çevrimi kullanılırsa takım yolları yine boyuna tornalama ile gerçekleşir. Bu temizleme işlemi kaba tornalama işleminde kullanılan takımla yapılabileceği gibi farklı bir takımla da yapılabilir. Bu çevrimin kullanım formatı aşağıdaki gibidir.

N., G70 P., Q.,;

Yukarıdaki program satırında N satır numarası, G70 bitirme çevrimi komutu, P kaba tornalama çevriminde geometriyi tanımlayan satırların başlangıç numarası, Q ise kaba tornalamada geometriyi tanımlayan son satırın numarası olarak tanımlanmalıdır. Bu çevrimin örneği diğer kaba tornalama çevrimleri ile beraber verilmiştir.

11.13.2. Boyuna kaba tornalama çevrimi - G71 (Stock Removal in Turning)

Bu çevrim, fener miline paralel doğrultuda, boyuna hareketlerle talaş kaldırdığından bu ismi almıştır. Takım öncelikle kaba tornalama işleminin başlayacağı kütük malzeme çapının birkaç milimetre uzağına konumlandıktan sonra çevrim yazılmalıdır. Burada takım hangi noktaya konumlandıysa o noktadan itibaren talaş kaldırmaya başlanır. Bu çevrimde takım talaş derinliğine hızlı indikten sonra aynaya doğru, belirlenen geometrinin yüzeyinde bitirme talaşı kalacak kadar ilerleyerek talaş kaldırır. Bu noktadan 45° açı yaparak belirli bir yüksekliğe çıkar ve alın yüzeyine doğru hızla uzaklaşır. Tekrar yeni bir talaş derinliğine inerek boyuna tornalama işlemi yapar ve geometriyi kaba olarak işledikten sonra tanımlanan profil üzerinde bitirme talaşı kalacak şekilde 1 kez dolanır ve temiz bir yüzey oluşturur. Bu işlemden sonra takım çevrim öncesi ilk konumlandığı noktaya geri gelir. Böylelikle boyuna hareketlerle kaba tornalanmış olur. Ardından *G70* bitirme talaşı çevrimi kullanılabilir. Bu çevrimde oluşan takım yolları ve değişkenler aşağıda Şekil 11.20'de izah edilmiştir.

"U" her pasoda verilen talaş derinliğidir. Verilen bu talaş derinliğine göre kontrol ünitesi otomatik olarak takım yollarını oluşturur. Bu değer yarı çapta kaldırılan talaş miktarını belirtir.

Örnek: Ø100 mm çaplı bir parçada U=5 verilir ise ilk pasodan sonra parça çapı yarıçapta 5 toplam çapta 10 mm küçülerek Ø90 mm olur. Bu şekilde her pasoda çap 10 mm küçülerek parçayı işler.

"R" geri kaçma mesafesi şekilde de görüldü gibi talaş kaldırıldıktan sonra parçadan kaçma miktarıdır. Takım konumlandıktan sonra yapılan ve profili tanımlayan ilk hareketin satır numarası "P" profil başlangıç numarası olarak yazılmalıdır. Bu satır numarası keyfi olarak programcı tarafından da belirlenebilir. Yine aynı şekilde profili tanımlayan ve en son talaş kaldırma hareketi olan satırın numarası da "Q" olarak atanmalıdır.

"U+" değişkeni çapta bırakılan talaş miktarıdır. Bu kalan talaş bitirme çevrimi ile alınacak miktardır. Burada yazılan değer çapta bırakılan değerdir.

Örnek; Ø50 mm çapı işlenirken U+ değeri 2 olarak yazılırsa Ø50 çapı Ø52 olarak kaba işlenir. Yani yarıçapta 1 mm toplam çapta 2 mm olarak kalan bu talaş, bitirme çevrimiyle alınır.

"W+" ise alın yüzeylerinde bırakılan talaş miktarını belirtir.

"F" kaba tornalama yaparken kullanılacak ilerleme hızıdır. Bitirme çevriminde kullanılacak ilerleme hızı ise profilin tanımlanmasında kullanılan ilk talaş kaldırma hareketinde verilmelidir.

Boyuna kaba tornalama çevrimi hem dış hem de delik içi profillerinin işlenmesi için kullanılabilir. Delik içinde geri kaçma R miktarı işlenen çaptan aşağı doğru, dış çap tornalamada ise işlenen çaptan yukarı doğru olur. Fakat R mesafesi iç ve dış çap tornalamada her zaman pozitif değer alır. Burada kontrol ünitesi iç çap tornalama mı, yoksa dış çap tornalamamı yapacağına, ilk geometri tanımlama satırında belirtilen harekete göre karar verir. Verilen ilk hareket yani P satırında tanımlanan ilk komut, takımın konumlandığı noktadan aşağı doğruysa dış çap tornalama, verilen bu hareket yukarı doğru bir hareketse iç çap tornalama olarak yorumlanmaktadır. Bu iki durum aşağıdaki şekillerde izah edilmiştir. Her zaman dış çap tornalamada takım kütük malzeme çapından 1 kaç mm yukarıda ve sağda, delik içinde ise; delik çapından 1 kaç mm aşağıda ve sağda konumlanmalıdır.

Dış çap tornalama için yazılan çevrimde takım ilk önce A' noktasına konumlanmalı ve profili tanımlayan ilk hareket yani P satırında verilen ilk hareket mutlaka A' noktasından A noktasına yani büyük çaptan küçük çapa doğru olmalıdır. Profili tanımlayan son satır (Q satırı) ise eksenden yukarı doğru B noktasına doğru olmalıdır.

P-Q satırlarının belirlenmesi

İç çap tornalama için yazılan çevrimde takım ilk önce A' noktasına konumlanmalı ve profili tanımlayan ilk hareket yani P satırında verilen ilk hareket mutlaka A' noktasından A noktasına yani küçük çaptan büyük çapa doğru olmalıdır. Profili tanımlayan son satır (Q satırı) ise parçadan eksene doğru B noktasına doğru olmalıdır.

Bu cevrimde verilen talaş derinliğine göre oluşan paso sayısı şu şekilde hesap edilebilir.

Kütük malzemeye ilk konumlama çapı - profilin en küçük çapı + çapta bırakılan talaş miktarı (U+)

Paso sayısı=

ÖRNEK PROGRAM - 9

Yanda Şekil 11.22'de verilen parça 1 nolu takımla kaba tornalama çevrimi ile işlendikten sonra 2 nolu takımla finiş tornalama çevrimi kullanarak işlenecektir. Kaba malzeme çapı Ø110 mm dir. Öncelikle 1 nolu takımla alın tornalaması yapıldıktan sonra takım çevrim başlangıcı için Ø112 ve Z2 noktasına konumlanması uygundur.

Sekil 11.22. G71 çevrimi için örnek şekil

0100	1:	Program numarası
N2	T0101; M6	Takım değiştirme. 1 nolu takım
N4	G50 S1400;	Devir sınırlaması maksimum 1400 dev/dk
N6	G96 S120 M3;	Sabit kesme hızı/ değişken devir. V=120 m/dk
N8	G54 M8;	Referans noktası seçimi ve soğutma suyu açılması
N10	G0 X112 Z0;	Alın tornalaması için konumlama
N12	G1 X-0.5 F0,25;	Alın tornalama
N14	G0 Z2;	Parçadan uzaklaşma
N16	X112;	Çevrim başlangıcına konumlama
N18	G71 U4 R1;	Çevrim. Talaş derinliği 4mm. Kaçma mesafesi 1 mm
N20	G71 P22 Q40 U1 W0,5	Çevrim. 22 ve 40 nolu satırlar profili tanımlar. Çapta 1mm alında
	F0,25	0,5 mm bitirme talaşı kalır. Kaba talaş ilerlemesi 0,25
N22	G0 X56;	2x45 pahın alt çapına hızlı konumlama
		Profili tanımlayan ilk satır
N24	G1G42 Z0 F0,15;	Pahın başlangıç noktasına konumlama. Burada yazılan ilerleme
		hızı bitirme (G70) çevriminde kullanılacak ilerleme hızıdır
N26	X60 Z-2	2x45 pah
N28	Z-38;	Diğer pahın başlangıç noktasına konumlama
N30	X64 Z-40;	2x45 pah
N32	X70;	Ø70 çapına konumlama
N34	X78 Z-50;	Konik tornalama
N36	Z-62;	R12 dairesel hareketin başlangıç noktasına konumlama
N38	G2 X102 Z-74 R12;	R12 dairesel hareket
N40	G1 X112;	Profili tanımlayan son satır X112 çapına tornalama
N42	G0 X250 Z300 M5;	Parçadan uzaklaşma, aynayı durdurma
N44	T0202;	2 nolu takımın alınması
N46	G96 S140 M4;	Sabit kesme hızı V=140 mt/dk
N48	G0 X112 Z2;	Çevrim başlangıç noktasına hızlı konumlama
N50	G70 P22 Q40;	Bitirme talaşı çevrimi. Profil 22-40 satırları arasında tanımlı
N52	G0 X250 Z300;	Parçadan uzaklaşma
N54	M30;	Program sonu

Görüldüğü gibi takım ham malzeme çapından bir miktar yukarıda ve sağda konumlandıktan sonra 22 ve 40 satırları arasında profil tanımlanarak çevrim yazılmıştır. Çevrimde verilen talaş derinliğine göre kontrol ünitesi tanımlanan profili gerekli şekilde talaş derinliğine bölerek takım yollarını oluşturur. Bu örnekte bitirme talaşı için ince radyüslü bir takımla, daha yüksek kesme hızında ve daha düşük bir ilerleme hızında bitirme işlemi yapılmıştır. Aynı takımla hem kaba hem bitirme işlemi yapılacak olsaydı; hiç takım değiştirmeden N40 satırından sonra G70 P22 Q40 satırını yazmak yeterli olacaktı. Bu parçada oluşan paso sayısı ise; N=(112-60+1)/4x2= 6,3 olur. Sistem bu sayıyı 7 paso şeklinde, 6 sı tam derinlikte 7. pasoda ise kalan talaş miktar kadar talaş kaldıracak şekilde düzenler.