# **TD1:** Introduction to statistical models

#### Exercise 1

We aim to determine whether ENSAI students have any preference for cats or dogs. We assume that, a priori, they have no preference on average. We ask n students what their preferences are, and we let X be the number of "cat" answers.

- 1. Define  $H_0$  and  $H_1$ . Is it a one-sided (unilateral) or two-sided (bilateral) test?
- 2. We observe 10 students and X=8 "cat" answers. Compute the pvalue in this specific case.
- 3. Write the expression of the pvalue in terms of n and X and F, the cdf of Bin(n, 0.5).
- 4. Write a line of code to compute the pvalue in Julia, Python or R.
- 5. What is the pvalue if  $H_1$  is instead
  - a. "Students prefer cats" or
  - b. "Students prefer dogs"

#### Exercise 2

Let  $(X_1, X_2, ..., X_n)$  be a sample from an exponential distribution  $\mathcal{E}(\lambda)$ . We want to test:

$$H_0: \lambda = \frac{1}{2} \quad \text{vs.} \quad H_1: \lambda = 1.$$

- 1. Show that if  $X \sim E(\lambda)$  and  $Y \sim \Gamma(k,\lambda)$  with  $k \in \mathbb{N}^*$ , then  $X + Y \sim \Gamma(k+1,\lambda)$ . We recall that the density of  $\Gamma(\lambda,k)$  is given by  $p(x) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}$
- 2. Deduce that  $S_n = \sum_{i=1}^n X_i$  follows a Gamma distribution  $\Gamma(n,\lambda).$
- 3. For a sample of size n=10, What is the rejection region of  $S_n$  at the 0.05 significance level for the simple likelihood ratio test? We admit that a Gamma distribution  $\Gamma(n,\frac{1}{2})$  is a chi-squared distribution with 2n degrees of freedom,  $\chi^2(2n)$ . Bonus: Show this fact for n=1, using a polar change of variable.
- 4. The empirical mean is  $\bar{x}_{10} = 2.5$ . What can we conclude?

5. Recall what a cdf is, and read the p-value on the cdf of the  $\chi^2(20)$  distribution



6. Compare the p-value if we use a Gaussian approximation of  $\sum X_i$  with the TCL.

### Exercise 3

Let  $X_1, X_2, \dots, X_n$  be random variables drawn from a normal distribution  $N(\theta, 1)$ . To test  $H_0: \theta = 5$  against  $H_1: \theta > 5$ , we propose the following test:

$$T = \mathbf{1}\{\bar{x} > 5 + u\},\,$$

where  $\bar{x}$  is the empirical mean and u is to be fixed.

- 1. a. Derive the function  $t \to \mathbb{P}(Z \ge t) e^{-t^2/2}$ , where  $Z \sim \mathcal{N}(0,1)$  b. Deduce that  $\mathbb{P}(Z \ge t) \le e^{-t^2/2}$  for all t
- 2. Deduce a value of u such that the type I error of this test is smaller than a given  $\alpha$ . Rewrite the test T in function of  $\alpha$ .
- 3. Fix  $\alpha = 1/e$  (and  $u = \sqrt{2/n}$ ). Compute the power function.

## Exercise 4

Let the family of Pareto distributions with **known** parameter a and **unknown** parameter  $\theta$ :

$$f(x) = \begin{cases} \frac{\theta}{a} \left(\frac{a}{x}\right)^{\theta+1}, & \text{if } x \ge a, \\ 0, & \text{if } x < a. \end{cases}$$

- 1. Compute the mean and variance of X, if X follows a Pareto distribution of parameter a and  $\theta$ .
- 2. Rewrite the density in the form  $f(x) = a(x)b(\theta)e^{c(\theta)d(x)}$  and identify a,b,c and d.
- 3. Deduce the general form of the uniformly most powerful test  $UMP_{\alpha}$  for  $H_0:\theta\geq\theta_0$  vs.  $H_1:\theta<\theta_0$ .
- 4. For a=1, construct the test for the null hypothesis: the mean of the distribution is smaller than or equal to 2.
- 5. What is the density of  $d(X_1)$  ? d is defined in Q.2
- 6. Write a line of code in Julia, Python or R to compute the rejection region at level  $\alpha=0.05$ .