CS441/CS241 **Automata Theory** and Formal Languages

ربيع 2024 د. عدنان محمود عبدالله الشريف adnan.sherif@uot.edu.ly

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

- ذكرنا سابقا ان اللغة هي مجموعة السلاسل المختارة من المجموعة $^*\Sigma_0$ المتكونة من الابجدية Σ ونرمز لها بالرمز Σ بحيث Σ و يتم وصف اللغة بتحديد شروط تكوين السلاسل التي تنتمي الى اللغة .
 - كما درسنا بعض العمليات على اللغات وهي:
- اتحاد لغتين (Union): اتحاد لغتين L_1 و L_2 ويمثل بـ L_2 هي اللغة التي تحتوي على السلاسل الموجودة في L_1 او كلاهما:

 $L_1 \cup L_2 = \{x | x \in L_1 \vee x \in L_2\}$

- و تعاقب لغتين (Concatenation): تعاقب لغتين L_1 و L_2 ويمثل بـ L_1 هي اللغة التي تحتوي (Concatenation): على السلاسل المشكلة من تعاقب السلاسل في L_1 بجميع السلاسل في L_2 $L_1 \cdot L_2 = \{x \cdot y | x \in L_1 \land y \in L_2\}$
- و إغلاق لغة (Closure): إغلاق اللغة L المعرفة على الابجدية Σ هي اللغة الناتجة عن تعاقب كل L^* سلاسل اللغة L ونرمز الإغلاق اللغة L ب $L^2 \cup L^3$... $L^* = L^0 \cup L^1 \cup L^2 \cup L^3$

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

- تعريف اللغة المنتظمة: يمكن تعريف اللغة المنتظمة على ابجدية ∑ بالتكر ار كالتالى:
 - {ع} هي لغة منتظمة على الأبجدية ∑.
- إذا كان a رمز من رموز الابجدية Σ عندئذ تكون $\{a\}$ لغة منتظمة على الابجدية Σ .
- إذا كانت L لغة منتظمة على الابجدية Σ فإن L^* و L^* لغات منتظمة على الابجدية Σ
- ا أيات منتظمة على المات منتظمة فإن $L_1 \cup L_2 \cup L_1 \cup L_2$ و $L_1 \cap L_2 \cup L_1 \cup L_2$ و المات منتظمة على المات منتظمة على
 - لا توجد لغات منتظمة أخرى.
- نلاحظ أن كل اللغات المنتظمة يمكن تكوين أو تومات منتهية لتمثيلها والتعرف على السلاسل التي تتبع اللغة التي تمثلها.

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

3

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

- التعابير المنتظمة هي طريقة جبرية للتعبير عن اللغات المنتظمة.
- التالى تعريف التعابير المنتظمة بقواعد جبرية حيث الدالة L ترجع اللغة التي تمثلها التعبير المنتظم:
 - Ø هو التعبير المنتظم الذي يحدد اللغة الفارغة
 - $L(\emptyset) = \emptyset = \{\}$
 - ع هو التعبير المنتظم الذي يحدد اللغة التي تحتّوي السلسلة الفارغة

 $L(\varepsilon) = \{\varepsilon\}$

- · لأي رمز a من الابجدية ∑ فإن a هو التعبير المنتظم الذي يحدد اللغة $L(a) = \{a\}$
 - إذا كان E و F تعابير منتظمة فإن كل من التالي تعابير منتظمة

$$L(E+F) = L(E) \cup L(F)$$

 $L(EF) = L(E) \cdot L(F)$

 $L(E^*) = (L(E))^*$

التعبير المنتظم التالى: $01^* + 1 \equiv (0(1)^*) + 1$

L((E)) = L(E)

27/05/2024 CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

مثال 1: اكتب التعبير المنتظم للغة التي تمثل الاعداد الثنائية بطول 3 تم بين فئة السلاسل التي تنتمى الى هذه اللغة.

الحل: من المعطيات نستنتج التالي:

 $\Sigma = \{0,1\}$ الأبجدية لتمثيل الأرقام الثنائية

2. اللغة التي تمثل الاعداد الثنائية بطول 3 هي $L = \{000,001,010,011,100,101,110,111\}$

اللغة المطلوب تكوين تعبير منتظم لها تتكون من سلاسل تحتوي على 3 خانات وكل خانة

يمكن ان تكون 0 او 1 وعليه التعبير المنتظم الذي يعبر عن هذه اللغة هو يمكن ان تكون 0+1

او

(0+1)(0+1)(0+1)

27/05/2024 CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الآلي - كلية العلوم -جامعة طرابلس

5

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

مثال 1(تابع): يمكن إيجاد الفئة المطلوبة بتطبيق الدالة L على التعبير المنتظم باستخدام القواعد الجبرية كالتالى:

 $L((0+1)(0+1)(0+1)) \equiv L((0+1)) \cdot L((0+1)(0+1)) \equiv L(0+1) \cdot L((0+1)(0+1)) \equiv L(0+1) \cdot L((0+1)(0+1)) \equiv (\{0\} \cup \{1\}) \cdot L((0+1)(0+1)) \equiv \{0,1\} \cdot L((0+1)(0+1)) \equiv \{0,1\} \cdot L((0+1)) \cdot L((0+1)) \equiv \{0,1\} \cdot \{0,1\} \cdot \{0,1\} \cdot \{0,1\} = \{0,1\} \cdot \{0,1\} \cdot \{0,1\} = \{0,1\} \cdot \{0,0,01,10,11\} \equiv \{0,0,0,001,010,011,100,101,110,111\} \#$

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم حجامعة طرابلس

6

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

مثال 2: اكتب التعبير المنتظم للغة على الابجدية $\Sigma = \{0,1\}$ بحيث كل سلسلة في اللغة عبارة عن 0 يتبعه 1 او العكس 1 يتبعه 0.

الحل: من المعطيات نستنتج التالي:

1. الابجدية $\Sigma = \{0,1\}$. 1 الابجدية $\Sigma = \{0,1\}$. 1 السلسلة التي تنتمي لهذه اللغة يمكن ان تبدأ 0 وتنتهي بـ 1 او 0 كما يمكن ان تبدأ بـ 1 وتنتهي بـ 0 .

يمكن ان نكون التعبير المنتظم للحالة الأساسية 01 او 10 كالتالي (01) + (10)

ثم يمكن إضافة معامل الاغلاق لتكرار السلسلة بحيث يصبح التعبير المنتظم $(01)^* + (10)^*$

لكن ممكن ان تبدأ بـ 0 وتنتهى بـ 0 او تبدأ بـ 1 وتنتهى بـ1 ويمكن تعديل التعبير المنتظم كالتالى $(01)^* + (10)^* + 1(01)^* + 0(10)^*$

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

```
مثال 2(تابع): يمكن إيجاد الفئة المطلوبة بتطبيق الدالة L على التعبير المنتظم باستخدام القواعد الجبرية كالتالي:
```

```
L((01)^* + (10)^* + 1(01)^* + 0(10)^*) \equiv
               L((01)^*) \cup L((10)^*) \cup L(1(01)^*) \cup L(0(10)^*) \equiv
             \{01\}^* \cup \{10\}^* \cup L(1) \cdot L((01)^*) \cup L(0) \cdot L((10)^*) \equiv
                     \{01\}^* \cup \{10\}^* \cup \{1\} \cdot \{01\}^* \cup \{0\} \cdot \{10\}^* \equiv
\{\varepsilon, 01,0101,010101, ...\} \cup \{\varepsilon, 10,1010,101010, ...\} \cup \{1\} \cdot \{01\}^* \cup \{0\}
\{10\}^* \equiv
      \{\varepsilon, 01,0101,010101, \dots\} \cup \{\varepsilon, 10,1010,101010, \dots\}
```

 $\cup \{1,101,10101,1010101...\} \cup \{0,010,01010,0101010...\} \equiv$ $\{\varepsilon, 0, 1, 01, 10, 101, 010, 0101, 1010, 10101, 01010 \dots\}$

27/05/2024

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

9

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

```
L مثال L تابع: (2) باستخدام الدالة L((0+1)^*(1+0)^*) \equiv L((0+1)^*) \cdot L((1+0)^*) \equiv L((0+1)^* \cdot L((1+0))^* \equiv (L(0+1))^* \cdot (L(1+0))^* \equiv (L(0) \cup L(1))^* \cdot (L(1) \cup L(0))^* \equiv (\{0\} \cup \{1\})^* \cdot (\{1\} \cup \{0\})^* \equiv (\{0,1\})^* \cdot (\{0,1\})^* \equiv \{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, ...\} \cdot \{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, ...\} \equiv \{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, ...\} \in \{\varepsilon, 0,1,00,01,10,11,000,001,010,011,100,101,110,111, ...\} \in \{\varepsilon, 0,1,00,01,10,110,000,001,010,011,100,101,110,111, ...\} \in \{\varepsilon, 0,1,00,01,10,110,010,011,100,101,110,111, ...\}
```

فقرة 3 من المثال تمرين في المحاضرة لديكم 7 دقائق

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

اعداد د. عدنان محمود الشريف ، قسم الحاسب الألي - كلية العلوم -جامعة طرابلس

10

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

• قواعد جبرية للتعابير المنتظمة حيث R,P و Q تعابير منتظمة

القاعدة	رقم	القاعدة	رقم
R(P+Q) = RP + RQ	9	$\emptyset + R = R$	1
(R+P)Q = RQ + PQ	10	$\emptyset R = R\emptyset = \emptyset$	2
$R^*R^* = R^*$	11	$\varepsilon R = R\varepsilon = R$	3
$R^*R = RR^* = R^+$ $R^* = (\varepsilon + R^+)$ حیث	12	$\varepsilon^* = \varepsilon = \emptyset^*$	4
$(R^*)^* = R^*$	13	R + R = R	5
$\varepsilon + R^* = R^*$	14	R + Q = Q + R	6
$(RP)^*R = R(PR)^*$	15	R + (P + Q) = (R + P) + Q	7
$(R+P)^* = (R^*P^*)^* = (R^*+P^*)^*$	16	R(PQ) = (RP)Q	8

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

11

11

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

```
• نظرية اردن (Ardins Theorem) : في حال ان P و Q تعابير منتظمة على نفس الابجدية \Sigma بحيث P لا تحتوي على السلسلة الفارغة \Sigma فإن التعبير المنتظم على الصورة
                                                             R = Q + RP
```

يمكن استبداله بالتعبير المنتظم

$$R=QP^*$$
 الاثبات: من المعادلة الاصلية والتعويض عن R في الطرف الأيمن نجد ان $R=Q+RP$

$$R = Q + (Q + RP)P = Q + QP + RP^{2}$$

$$R = Q + QP + (Q + RP)P^{2} = Q + QP + QP^{2} + RP^{3}$$

$$R = Q + QP + (Q + RP)P^2 = Q + QP + QP^2 + RP^3$$
 بعد التعويض n من المرات نحصل على $R = Q + QP + QP^2 + QP^3 + \dots + QP^n + RP^{n+1}$ نلاحظ ان هذه المتوالية تستمر الى ما لانهاية بنفس الشكل و عليه بأخذ Q عامل مشترك نحصل على $R = Q(\varepsilon + P + P^2 + P^3 + \dots + P^n + P^{n+1} + \dots)$

 $R = OP^* #$

27/05/2024 CS441/CS241 Automata Theory and Formal Languages

12

التعابير المنتظمة واللغات المنتظمة Regular Expressions and Languages

• مثال 4: استخدم القواعد الجبرية لاختصار التعابير المنتظمة في المثال رقم 3 الحل:

القاعدة المستخدمة	التعبير المنتظم	رقم
باستخدام القاعدة رقم 16	$(0+10)^*1^*$	1
	(0*(10)*)*1*	
باستخدام القاعدة رقم 6	$(0+1)^*(1+0)^*$	2
باستخدام القاعدة رقم 11	$(0+1)^*(0+1)^*$	
	(0 + 1)*	
باستخدام القاعدة رقم 16	$(0^*1^*)^*000(0+1)^*$	3
	$(0+1)^*000(0+1)^*$	

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

13

13

الأوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

• كل لغة يمكن وصفها باستخدام احدى الاوتومات المنتهية يمكن تكوين تعبير منتظم لها. وكل تعبير منتظم له اوتومات يمثله.

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

14

- خطوات إيجاد التعبير المنتظم لاوتوماتا منتهية حتمية (DFA) :
 - 1. قم بإنشاء معادلة لكل حالة بالشروط التالية:
 - 1. حالة البداية يتم إضافة ع
- 2. لكل سهم داخل الى الحالة يتم إضافة رمز الحالة القادم منها السهم تم الرمز (الحرف) على السهم مثال

$$q_0 = \varepsilon + q_0 a$$

$$q_1 = q_0 b + q_1 a + q_1 b$$

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

15

15

الأوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

• خطوات إيجاد التعبير المنتظم لاوتومات منتهية حتمية (DFA) تابع: 2. يتم اختصار المعادلات باستخدام القواعد الجبرية حتى نتحصل على معادلات لكل حالة بدون رموز الحالات في الطرف الأيمن

$$q_{0} = \varepsilon + q_{0}a$$

$$= \varepsilon a^{*}$$

$$= a^{*}$$

$$q_{1} = q_{0}b + q_{1}a + q_{1}b$$

$$= a^{*}b + q_{1}a + q_{1}b$$

$$= a^{*}b + q_{1}(a + b)$$

$$= a^{*}b (a + b)^{*}$$

 التعبير المنتظم في حالة النهاية هو التعبير المنتظم المكافئ للاوتومات. في حال وجود أكثر من حالة نهاية يتم الدمج بينهم باستخدام +

$$a^*b (a + b)^*$$

CS441/CS241 Automata Theory and Formal Languages

27/05/2024

16

• مثال 5: اوجد التعبير المنتظم للاوتومات المنتهية الحتمية التالية:

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

17

17

الاوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

```
• مثال 5: الحل:
```

1. نكون المعادلات لكل حالة

$$q_0=arepsilon+q_0 b$$
 $q_1=q_0 a+q_1 a$ $q_2=q_1 b+q_2 a+q_2 b$ $q_1=q_0 a+q_1 a$ $q_2=q_1 b+q_2 a+q_2 b$ أيمن الطرف الأيمن .2 $q_0=arepsilon+q_0 b=arepsilon b^*=b^*$ $q_1=q_0 a+q_1 a=b^* a+q_1 a=b^* a a^*$ $q_2=q_1 b+q_2 a+q_2 b=b^* a a^* b+q_2 a+q_2 b=b^* a a^* b+q_2 (a+b)=b^* a a^* b (a+b)^*$.3 $a a^* b (a+b)^*$

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

18

• مثال 6: اوجد التعبير المنتظم للاوتومات المنتهية الحتمية التالية:

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

19

19

الاوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

```
• مثال 6: الحل:
```

```
q_0 = \varepsilon + q_0 \mathbf{b} + q_1 \mathbf{b} + q_2 \mathbf{b} نكون المعادلات لكل حالة .1. q_1 = q_0 a q_2 = q_1 a + q_2 a يالطرف الأيمن .2 q_0, q_1 من الطرف الأيمن .2. q_1 = q_0 a q_2 = q_1 a + q_2 a = q_0 a a + q_2 a = q_0 a a a^* q_2 = q_1 a + q_2 a = q_0 a a + q_2 a = q_0 a a a^* q_0 = \varepsilon + q_0 \mathbf{b} + q_1 \mathbf{b} + q_2 \mathbf{b} q_0 = \varepsilon + q_0 \mathbf{b} + q_0 a \mathbf{b} + q_0 a a a^* \mathbf{b} q_0 = \varepsilon + q_0 (\mathbf{b} + a \mathbf{b} + a a a^* \mathbf{b}) q_0 = \varepsilon (\mathbf{b} + a \mathbf{b} + a a a^* \mathbf{b})^* = (\mathbf{b} + a \mathbf{b} + a a a^* \mathbf{b})^* q_2 = q_0 a a a^* = (\mathbf{b} + a \mathbf{b} + a a a^* \mathbf{b})^* a a a^* يالتعويض في q_0 = \varepsilon \mathbf{b} + a \mathbf{b} + a a a^* \mathbf{b}
```

20

27/05/2024

• مثال 7: اوجد التعبير المنتظم للاوتومات المنتهية الحتمية التالية:

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

21

21

الأوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

```
• مثال 7: الحل:
```

$$q_0 = \varepsilon$$

$$q_1 = q_0 a$$

$$q_2 = q_1b + q_2a + q_2b$$

ي الطرف الأيمن q_2 و q_0,q_1 من الطرف الأيمن .2 $q_0=\varepsilon$

$$q_1 = q_0 a = \varepsilon a = a$$

 $q_2 = q_1b + q_2a + q_2b = ab + q_2a + q_2b = ab + q_2(a+b) = ab(a+b)^*$

3. حالة النهاية هي q_2 عليه التعبير المنتظم الممثل لهذه الاوتوماتا هو

 $ab(a+b)^*$

ملاحظة : عدم استخدام حالة الموت او الرفض q_3 . لما لم يتم استخدامها؟

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

22

• قواعد الحصول على الاوتومات المنتهية اللاحتمية بحركة ع من تعبير منتظم للوصول الى هذه الغاية يتم تكوين اوتوماتا لكل من القواعد الجبرية التي تم تعريفها للتعابير المنتظمة كالتالي

- 1. السلسلة الفارغة a يتم تكوين اوتوماتا به حركة واحدة a من حالة البداية الى حالة النهاية
- وهذا يمثل اللغة الفارغة أي لا تحوي على سلاسل ويمكن تمثيلها بحالة البداية والنهاية فقط بدون حركة
- a وهذا يمتل اللغة التي بها كلمة واحدة هي الرمز a ويمكن تمثيلها باوتوماتا به حركة واحدة من حالة البداية الى حالة النهاية بـa

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

23

23

الأوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

• قواعد الحصول على الاوتومات المنتهية اللاحتمية بحركة ع من تعبير منتظم (تابع)

• قواعد الحصول على الاوتومات المنتهية اللاحتمية بحركة ع من تعبير منتظم (تابع)

CS441/CS241 Automata Theory and Formal Languages

27/05/2024

25

الأوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

• مثال 8: كون الاوتومات المنتهية اللاحتمية بحركة ع للتعابير منتظم التالية:

$$(0+1)^*1(0+1)$$
 .1

 $(01)^*1$.2

 $(0^* + 1^*)^*$.3

27/05/2024

CS441/CS241 Automata Theory and Formal Languages

26

• مثال 8 (1) الحل:

27

الأوتومات المنتهية والتعابير المنتظمة Finite Automata and Regular expressions

• مثال 8 (2) الحل:

