Operações sobre Linguagens

Além das operações básicas sobre conjuntos que vimos anteriormente, podemos definir outras operações sobre linguagens para construir outras linguagens.

- \bigstar A **concatenação** de duas linguagens L_1 e L_2 é a linguagem $L_1L_2=\{xy \mid x\in L_1 \ e \ y\in L_2\}$.
- Exemplo: Considere as linguagens $L_1 = \{w \in \{0, 1\}^* \mid |w| = 5\}$ e $L_2 = \{0y \mid y \in \{0, 1\}^*\}, 0, 1 \notin \{ |w| = 10 \}$ 1. $L_1L_1 = \{ w \in \{0, 1\}^*\}, 0, 1 \notin \{ |w| = 10 \}$ 2. $L_1L_2 = \{ w \in \{0, 1\}^*\}, |w| = \{ |w| = 10 \}$ 3. $L_2L_1 = \{ w \in \{0, 1\}^*\}, |w| = \{ |w| = 10 \}$ 4. $L_1 \emptyset = \{ |w| = 10 \}$ 5. $L_1\{\lambda\} = \{ |w| = \{0, 1\}^*\}, |$

Usaremos a notação L^n para denotar a concatenação de L consigo mesma n vezes. A definição recursiva a seguir expõe melhor esse conceito:

A.
$$L^0 = \{\lambda\}$$

B. $L^n = L^{n-1}L$ para $n \ge 1$

- Outra operação importante é a de **fecho de Kleene**. Intuitivamente, o fecho de Kleene de uma linguagem L, denotado por L^* , é a linguagem formada por $L^0 \cup L^1 \cup L^2 \cup ...$. Formalmente, o fecho de Kleene de uma linguagem pode ser definido por:
 - 1. $\lambda \in L^*$
 - 2. Se $x \in L^*$ e $y \in L$, então $xy \in L^*$.

Note que λ pertence ao fecho de Kleene de qualquer linguagem. Logo, $\emptyset^* = \{\lambda\}$.

1 of 2

O **fecho positivo de Kleene** 'exclui' a palavra vazia dessa definição. Ou seja, o fecho positivo de Kleene de uma linguagem L é $L^+ = \bigcup_{n \in \mathbb{N} - \{0\}} L^n$.

Exemplo:

•
$$\left\{\lambda\right\}^* = \left\{\lambda\right\}^+ = \left\{\lambda\right\}$$

•
$${\{0,1\}}^*0{\{01\}}{\{11\}}^* =$$

2 of 2