How to decide absorption

Alexandr Kazda (joint work with Libor Barto)

> Department of Mathematics Vanderbilt University

October 5th 2013

What is absorption?

Definition (Libor Barto, Marcin Kozik)

Let $\mathbf{B} \leq \mathbf{A}$ be algebras. We say that \mathbf{B} absorbs \mathbf{A} if there exists a term t in \mathbf{A} such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, \dots, a) = a$$
 $t(a, b_2, b_3, \dots, b_{n-1}, b_n) \in B$
 $t(b_1, a, b_3, \dots, b_{n-1}, b_n) \in B$
 \vdots
 $t(b_1, b_2, b_3, \dots, b_{n-1}, a) \in B$

Ok, but what is absorption?

- If 0 is the minimal element of a finite semilattice (L, \wedge) , then $\{0\}$ absorbs L; absorption term is $t(x_1, x_2) = x_1 \wedge x_2$.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- If **A** is any algebra, then always $\mathbf{A} \subseteq \mathbf{A}$.
- If **A** is an abelian group, then **A** has no proper absorbing subalgebra.

Deciding absorption

- Let A be an idempotent finite algebra. Then A has an NU term iff every singleton {a} absorbs A.
- Miklós Maróti, Libor Barto, Dmitriy Zhuk: We can decide whether a finite algebra A has an NU term.
- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if A is finitely related.
- What about if **A** is given by a finitely many operations instead?

Blockers

- Let $\mathbf{B} \subseteq \mathbf{A}$ with absorption term t.
- We call (C, D) a blocker for **B** if
 - $\emptyset \neq D \subset C$,
 - $C \cap B \neq \emptyset$,
 - $D \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in C^n: \exists i,\, x_i\in D\}\leq A^n \text{ for every } n\in\mathbb{N}.$
- If $\mathbf{B} \subseteq \mathbf{A}$, then there is no blocker for \mathbf{B} .

No blockers \Rightarrow absorption?

- Given idempotent A with finitely many operations, we can test if there are no blockers for B.
- However, we can have no blockers and no absorption: Consider $\mathbf{A} = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

Jónsson absorption

- Weaker notion of absorption inspired by terms for congruence distributivity.
- Let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq J \mathbf{A}$ if there exist idempotent terms d_0, d_1, \dots, d_n such that:

$$\forall i=0,\ldots,n,\ d_i(B,A,B)\subset B$$

$$d_0(x,y,z)=x$$

$$d_i(x,y,y)=d_{i+1}(x,y,y)\ \text{for }i\ \text{even}$$

$$d_i(x,x,y)=d_{i+1}(x,x,y)\ \text{for }i\ \text{odd}$$

$$d_n(x,y,z)=z.$$

Putting it all together

Theorem

Let **A** be a finite idempotent algebra, $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \unlhd \mathbf{A}$ iff there is no blocker for **B** and $\mathbf{B} \unlhd_J \mathbf{A}$.

Corollary

We can decide $\mathbf{B} \unlhd \mathbf{A}$ algorithmically for idempotent algebras.

Nonidempotent algebras

- If **A** is not idempotent, we would also like to decide to absorption.
- Problem with taking the idempotent reduct: We might lose the generators of the clone of **A**.
- Imitating some of Dmitriy Zhuk's ideas should give us an algorithm anyway...

Thank you for your attention.