# Condensation and Evaporation of Hexane in Nanoporous Alumina Membranes

Hermann Böttcher<sup>1</sup> Victor Doebele<sup>2</sup> Pierre-Etienne Wolf<sup>2</sup> Panayotis Sphatis<sup>2</sup> Fabien Souris<sup>2</sup>

<sup>1</sup>University of Constance

<sup>2</sup>Institut Néel, Centre national de la recherche scientifique

02/10/2018



### Overview

- 1 Context
- 2 Goals of the internship
- 3 Theoretical background
- 4 Experimental setup
- 5 Conclusions

### Context

#### Grand scheme

Condensation and evaporation of fluids in confinement

### Context

#### Grand scheme

- Condensation and evaporation of fluids in confinement
- Dependency on
  - pore diameter
  - temperature (relative to the critical temperature)

### Context

#### Grand scheme

- Condensation and evaporation of fluids in confinement
- Dependency on
  - pore diameter
  - temperature (relative to the critical temperature)

#### Plan

- Anodized alumina membranes (AAM)
- Test setup using Hexane → working at room temperature permits much faster executable experiments
- Transfer to **helium** experiment

- Improving and systemizing the evaluation of the recorded isotherm data
- Performing isotherm measurements on many membranes for statistics

- Improving and systemizing the evaluation of the recorded isotherm data
- Performing isotherm measurements on many membranes for statistics
- Comparing the pore diameters extracted from the volumetric measurements those from scanning electron microscopy (SEM) images

- Improving and systemizing the evaluation of the recorded isotherm data
- Performing isotherm measurements on many membranes for statistics
- Comparing the pore diameters extracted from the volumetric measurements those from scanning electron microscopy (SEM) images
- Improving the fabrication process to reduce the dispersion

- Improving and systemizing the evaluation of the recorded isotherm data
- Performing isotherm measurements on many membranes for statistics
- Comparing the pore diameters extracted from the volumetric measurements those from scanning electron microscopy (SEM) images
- Improving the fabrication process to reduce the dispersion
- Testing the efficiency of the ALD process as a means to reduce the pore diameters

# Condensation in a cylindrical open pore



# Evaporation in a cylindrical open pore



### Condensation and evaporation in a cylindrical open pore



### Open cylindrical pore

Condensation at spinodal pressure and evaporation at equilibrium pressure yield a **hysteresis**.



### Condensation and evaporation in a cylindrical open pore



### Closed cylindrical pore

Condensation at equilibrium pressure and evaporation at equilibrium pressure leads to disappearance of the hysteresis.



## Membrane production













### Alumina membranes - funnellization



### Alumina membranes - funnellization





### Alumina membranes - funnellization



## Alumina membranes - pore size distribution



#### Pore size distribution

SEM analysis shows pore size distribution on a given membrane.

# Alumina membranes - corrugations



### Alumina membranes - corrugations



### Corrugations

The appearance of the hysteresis is assumed to be due to **intra pore corrugations**.



### Alumina membrane defects

#### Isotherms are affected by

- Pore size distribution
- Funnellization
- Corrugations

#### Alumina membrane defects

#### Isotherms are affected by

- Pore size distribution
- Funnellization
- Corrugations

#### **Problem**

No simple ways to characterize these defects! SEM images only give an impression of the surfaces of the membrane (factor between pore diameter and pore length is 1000!).

→ Need of monodisperse membranes



## Experimental setup



### Experimental setup



#### Volumetric and optical measurements

Volumetric and optical setups work independently.



### Data evaluation

## Inverse funnelling

## Atomic layer deposition

## SEM image analysis

 $um_A l_2 6.tif.png$