Correlation and linear models

Overview

1. Correlation

- 2. Linear model
- 3. (Understanding predictors)
- 4. (Model selection)

Steps to determine correlation

1. Visual inspection

- Is there an association?
- Linear → regression line
- Positive or negative? → direction
- Strength?
- Calculate Pearson's correlation coefficient
 - Between -1 and 1 + p-value
 - sp.stats.pearsonr()

Interpreting the results:

Table 18. Correlation coefficients and their interpretation

Correlation	Labeling the	Kind of correlation
	1-4:	
coefficient	correlation	
$0.7 < r \le 1$	very high	positive correlation:
$0.5 < r \le 0.7$	high	the more/higher, the more/higher
$0.2 < r \le 0.5$	intermediate	the less/lower, the less/lower
$0 < r \le 0.2$	low	
$r \approx 0$	no statistical corre	elation (H ₀)
$0 > r \ge -0.2$	low	negative correlation:
$-0.2 > r \ge -0.5$	intermediate	the more/higher, the less/lower
$-0.5 > r \ge -0.7$	high	the less/lower, the more/higher
$-0.7 > r \ge -1$	very high	

Kendall's τ & Spearman's ρ (rank correlation)

- In case both variables are not normally distributed (⇔ discussion)
- Non-parametric alternatives: Kendall's τ or Spearman's ρ
 - Similar interpretation: between -1 and 1
 - sp.stats.kendalltau() and sp.stats.spearmanr()
- Time series with Kendall's T
 - Has variable become larger/smaller over time?
 - How consistent was the increase/decrease?
 - Time as second variable

When to use (rank) correlation?

- Rank in case of:
 - Dubious interval/ratio variables
 - Less susceptible to outliers
 - Really skewed distributions
 - Small sample sizes
 - Curvilinear distributions

Or

Dependent on level of measurement (always use the lowest!)

When to use (rank) correlation?

Level of measurement	Visual inspection	Test	Measure of effect		
Nominal	ominal Contingency table		Cramer's V		
Ordinal	Ordinal Contingency table/ scatterplot		Spearman's ρ Kendall's τ		
Interval/ratio	Scatterplot	Correlation	Pearson's r		

Everything is dependent on p-values of course!

Overview

- 1. Correlation
- 2. Linear model
- 3. (Understanding predictors)
- 4. (Model selection)

Bivariate linear regression

- Predictive/explanatory analysis of two (interval/ratio) variables
- What happens to y if *something* happens to x?
 - Causal association between independent variable x and dependent variable y ⇔ correlation
- Hypotheses:
 - H0: When independent variable x changes, dependent variable y does not change
 - H1: With an increase of 1 in the independent variable x, the dependent variable y increases or decreases
 - \circ = how x **predicts** y
- Example: years of education and income at 30

Other regressions (that we will talk about today...)

- Multiple linear regression
 - Multiple independent variables/predictors that are the same level of measurement
- Multivariate linear regression
 - Multiple independent variables/predictors that are **not** the same level of measurement

1. Visual inspection

- Scatterplot with regression line
- Assumption: distribution/dispersion of observations approximates a straight line

2. Calculate formula:

- y = mx + c + residuals
- m = slope (regression coefficient)
- c = intercept/constant

- 3. Calculate R-squared (coefficient of determination)
 - = squared Pearson's r
 - Between 0 and 1
 - Expresses how much of the total variation in the dependent variable (y) can be explained by variation in the independent variable (x) (= percentage of regression model that predicts dependent variable)
 - Example years of education and income at 30, $R^2 = 0.71$
 - 71% of the differences in income are explained by education, 29% by other things
 - ≠ significance!

- 3. Calculate R-squared (coefficient of determination)
 - Also reported: adjusted R^2
 - Used for regressions with multiple variables
 - More is better but watch out for overfitting!
 - Preferred statistic for comparing fits across different models, same interpretation as r^.
 - In combination with AIC & BIC (the lower the better)

		ULS Regr	===	=====	======================================		
Dep. Variable	e:	leaf_heigh	t	R-sq	uared:		0.727
Model:		0L	S	Adj.	R-squared:		0.726
Method:		Least Square	S	F-st	atistic:		1064.
Date:		Thu, 14 Nov 202	4	Prob	(F-statistic)	:	9.09e-115
Time:		14:09:5	3	Log-	Likelihood:		-2094.4
No. Observati	ions:	40	2	AIC:			4193.
Df Residuals:		40	0	BIC:			4201.
Df Model:			1				
Covariance Ty	/pe:	nonrobus	t				
			===				
	coef	std err		t	P> t	[0.025	0.975]
Intercept	42.5137	7.303		5.822	0.000	28.157	56.870
leaf_width	1.1793	0.036	32	2.623	0.000	1.108	1.250
Omnibus:		203.35	 1	Durb	 in-Watson:		2.083
Prob(Omnibus): 0.000		0	Jarq	ue-Bera (JB):	4980.365		
Skew:		-1.59	5	Prob	(JB):	0.00	
Kurtosis:		19.94	6	Cond	. No.	666.	
===========			===				

OLS Regression Results

4. Look at model parameters

- Intercept
- Predictor/slope e.g. leaf_width
- Actual estimates & standard error of those estimates
- T-value & p-value: H0 is that actual intercept and coefficient are 0, H1 that they are 'real'
- Confidence interval for estimates

	coef	std err		t	P> t		[0.025	0.975]		
Intercept leaf_width	42.5137 1.1793	7.303 0.036		5.822 32.623	0.000 0.000		28.157 1.108	56.870 1.250		

5. Look at residuals

- Should be as minimal as possible
 - And squared so we can interpret them easily
- Should be normally distributed
 - Otherwise, standard error, confidence interval, p-values are not accurate
- Method: bottom Ordinary Least Squares (OLS)
 - Visualises prediction error (= how far the predicted point is from the actual point)

Ok, I can do a regression, now what?

Table 3. Occupational status over time

	1750–1	1760–1	1770–1	1780–1	1790–1	1800–1	1810–11	1820–1
No. of thefts	51	15	123	75	94	127	155	140
No. where occupational status known	23	7	45	31	52	73	101	69
% in each category:								
Titled	4	-	11	3	_	3	2	3
Professional	4	57	13	10	6	1	3	16
Paperwork	4	-	4	_	4	7	3	4
Non-food seller	39	14	24	10	23	21	35	10
Jeweller	-	14	7	7	4	8	9	9
Innkeeper	-	_	13	13	14	11	12	10
Food seller	9	14	4	7	4	10	10	10
Clothing maker	13	_	9	3	14	15	9	9
Trades	17	_	4	19	8	7	3	10
Army/servant	9	-	2	16	12	1	6	3
Casual	_	_	7	13	14	16	9	16
Mean status	50.2	70.0	58.1	38.9	42.9	45.1	50.9	46.7
% female occupations	4.3	14.3	13.3	9.7	11.5	6.8	5.9	8.6

Pearson's R Spearman's rank

Correlation coefficients:

Jeweller and above Innkeeper and below -0.063 (0.21 significance)

-0.063 (0.21 significance) -0.046 (0.36 significance)

Chi-squared:

 1750-81
 1790-1821

 50.9%
 43.7%

 49.1%
 56.3%

 (106)
 (265)

 χ^2 1.636 (0.20 significance)

(sample) χ^2 Regression: Status rank =

52.658 -0.782 time trend (14.15)* (-1.25)

Adjusted $R^2 = 0.001$, F = 1.567, n = 401

t-ratio in parentheses.

* Significant at 10% level or higher.

Source: As for tab. 1.

Horrel, Humphries and Sneath, 'Consumption conundrums unravelled', *The Economic History Review* 68:3 (2015), 830-857