

SRM Institute of Science and Technology Ramapuram campus

Department of Mathematics 18MAB101T - Calculus and Linear Algebra

Year/Sem: I/I

Part – A Branch: Common to ALL Branches

Unit – III Ordinary Differential Equations

1	The order and degree of $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{-2x}$ are		1 Mark	
1.	a)2, 1 b) 1, 2 c) 2, 2 d)1, 1	Ans (a)	(CLO-3 Remember)	
2.	The order and degree of $\frac{d^2y}{dx^2} + 3\left(\frac{dy}{dx}\right)^2 + 2y = \sin 3x$ are		1 Mark	
2.	a) 1, 2 b) 2, 1 c) 2, 2 d) 1, 1	Ans (b)	(CLO-3 Remember)	
3.	The order and degree of $\left(\frac{d^2y}{dx^2}\right)^2 + 2\frac{dy}{dx} + y = 5x$ are	1 Mark		
	a) 1, 2 b) 2, 1 c) 2, 2 d) 1, 1	Ans (c)	(CLO-3 Remember)	
4.	The order and degree of $\frac{dy}{dx} + 3y = 5x$ are		1 Mark	
	a) 1, 2 b) 2, 1 c) 2, 2 d) 1, 1	Ans (d)	(CLO-3 Remember)	
_	The number of arbitrary constants in the solution of a differential equation is equal to the of that differential equation.	1 Mark		
5.	a) degree b) number of variables c) order d) number of terms	Ans (b)	(CLO-3 Remember)	
6.	The number of arbitrary constants in the most general solution of n th order differential equation is	1 Mark		
0.	a) 1 b) n-1 c) n d) n+1	Ans (c)	(CLO-3 Remember)	
	The solution of $(D^3 - D^2 + D - 1)y = 0$ is	1 Mark		
7.	a) $y = Ae^{x} + B \cos x + C \sin x$ b) $y = Ae^{x} + B \cos x - C \sin x$ c) $y = Ae^{-x} + B \cos x + C \sin x$ d) $y = Ae^{x} + B \cosh x + C \sinh x$	Ans (a)	(CLO-3 Remember)	
8.	The complementary function of $(D^2 + D + 1)y = 0$ is	1 Mark		

	a) $e^{\frac{1}{2x}} \left(C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x \right)$ b) -1, 2 c) $e^{\frac{-1}{2x}} \left(C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x \right)$ d) $\cos x + i \sin x$	Ans (c)	(CLO-3 Remember)	
	The complementary function of $\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 15y = 0$		1 Mark	
9.	a) $C_1 e^{-5x} + C_2 e^{-3x}$ b) $C_1 e^{4x} + C_2 e^{4x}$ c) $C_1 e^{5x} + C_2 e^{3x}$ d) $C_1 e^{2x} + C_2 e^{6x}$	Ans (c)	(CLO-3 Remember)	
	The complementary function of $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 3e^{4x}$		1 Mark	
10.	a) $C_1 e^{-3x} + C_2 e^{-3x}$ b) $C_1 e^{3x} + C_2 e^{3x}$ c) $(C_1 + C_2 x)e^{-3x}$ d) $(C_1 + C_2 x)e^{3x}$	Ans (c)	(CLO-3 Remember)	
	The complementary function of $(D^2 + 4)y = x \sin x$ is		1 Mark	
11.	a) $C_1 e^{-3x} + C_2 e^{-3x}$ b) $C_1 e^{3x} + C_2 e^{3x}$ c) $(C_1 \cos 2x + C_2 \sin 2x)$ d) $(C_1 + C_2 x)e^{3x}$	Ans (c)	(CLO-3 Remember)	
	The particular integral of $(D^3 - D^2 + D - 1)y = 0$ is a) 0 b) $y = Ae^x + B\cos x - C\sin x$ c) $B\cos x + C\sin x$ d) $y = Ae^x + B\cosh x + C\sinh x$		1 Mark	
12.			(CLO-3 Remember)	
1.0	The particular integral of $(D^2 + 2D + 1)y = 5$ is		1 Mark	
13.	a) 0 b) 5 c) 2 d) 1	Ans (b)	(CLO-3 Remember)	
	The particular integral of $(D^2 + 9)y = e^{-2x}$ is		1 Mark	
14.	a) $\frac{e^{-2x}}{15}$ b) $\frac{e^{2x}}{15}$ c) $\frac{e^{-2x}}{13}$ d) $\frac{e^{-2x}}{14}$	Ans (c)	(CLO-3 Remember)	
	The particular integral of $(D^2 + 16)y = e^{-4x}$ is		1 Mark	
15.	a) $\frac{x}{32}e^{-4x}$ b) $\frac{1}{32}e^{-4x}$ c) $\frac{x}{16}e^{-4x}$ d) $\frac{1}{16}e^{-4x}$	Ans (a)	(CLO-3 Remember)	
	The particular integral of $(D - 1)^2 y = e^x$ is		1 Mark	
16.	a) $\frac{x}{32}e^{-4x}$ b) $\frac{x^2}{2}e^x$ c) $\frac{x}{16}e^{-4x}$ d) $\frac{1}{16}e^{-4x}$	Ans (b)	(CLO-3 Remember)	
17.	The particular integral of $(D^2 + a^2)y = \cos ax$ is	1	Mark	

	a) $\frac{-x}{2a}\sin ax$ b) $\frac{-x}{2a}\cos ax$ c) $\frac{x}{2a}\cos ax$ d) $\frac{x}{2a}\sin ax$	Ans (d)	(CLO-3 Remember)	
	The particular integral of $(D^2 + 4)y = \sin 2x$ is	1 Mark		
18.	a) $\frac{x}{2}\sin x$ b) $\frac{-x}{2}\sin x$ c) $\frac{-x}{4}\cos 2x$ d) $\frac{x}{4}\cos 2x$	Ans (c)	(CLO-3 Remember)	
	The particular integral of $(D^2 + 2)y = x^2$ is		1 Mark	
19.	a) $\frac{1}{2}x^2$ b) $\frac{1}{2}(x^2-1)$ c) $\frac{1}{2}(x^2+1)$ d) $\frac{-1}{2}x^2$	Ans (b)	(CLO-3 Remember)	
20.	The method of variation of parameters is used to find the particular integral of a second order differential equation whose is known.	1 Mark		
20.	a) Complementary functionb) constantc) variabled) degree	Ans (a)	(CLO-3 Remember)	
21.	The order and degree of $\left(\frac{d^2y}{dx^2}\right)^2 + 3\frac{dy}{dx} + 2y = e^x$ are		1 Mark	
	a) 2, 1 b) 1, 2 c) 2, 2 d) 1, 1	Ans (c)	(CLO-3 Remember)	
22.	The order and degree of $\left(\frac{d^2y}{dx^2}\right)^2 + 3\left(\frac{dy}{dx}\right)^4 + 2y = Sin2x$ are		1 Mark	
22.	a) 2, 1 b) 1, 2 c) 2, 2 d) 1, 1	Ans (c)	(CLO-3 Remember)	
	The particular integral of $(D^3 - D^2 + D - 1)y = 0$ is		1 Mark	
23.	a) 0 b) Ae ^x + Bcosh x c) Acos x + Bsin x d) Ae ^x + Bcosh x + Csinh x	Ans (a)	(CLO-3 Remember)	
	The particular integral of $(D^2 + 2D + 1)y = 1$ is		1 Mark	
24.	a) 0 b) 5 c) 2 d) 1	Ans (d)	(CLO-3 Remember)	
25	The particular integral of $(D^2 + 2)y = x$ is	1	Mark	
25.	a) $\frac{1}{2}x$ b) $\frac{1}{2}(x^2-1)$ c) $\frac{1}{2}(x^2+1)$ d) $\frac{-1}{2}x^2$	Ans (a)	(CLO-3 Remember)	
26.	The particular integral of $(D^2 + 4)y = \cos 2x$ is	1	Mark	

	a) $\frac{x}{2}\sin x$ b) $\frac{-x}{2}\sin x$ c) $\frac{-x}{4}\cos 2x$ d) $\frac{x}{4}\sin 2x$	Ans (d) (CLO-3 Remember)	
	The particular integral of $(D^2 + 1)y = \cos 2x$ is	1 Mark	
27.	a) $\frac{x}{2}\sin x$ b) $\frac{-x}{3}\cos 2x$ c) $\frac{-x}{4}\cos 2x$ d) $\frac{x}{4}\sin 2x$	Ans (b) (CLO-3 Remember)	
	The complementary function of $\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 15y = 0$	1 Mark	
28.	a) $C_1 e^{-5x} + C_2 e^{-3x}$ b) $C_1 e^{4x} + C_2 e^{4x}$ c) $C_1 e^{5x} + C_2 e^{3x}$ d) $C_1 e^{2x} + C_2 e^{6x}$	Ans (a) (CLO-3 Remember)	
	The complementary function of $(D^2 + 4)y = \sin x$ is	1 Mark	
29.	a) $C_1 e^{-3x} + C_2 e^{-3x}$ b) $C_1 e^{3x} + C_2 e^{3x}$ c) $(C_1 \cos 2x + C_2 \sin 2x)$ d) $(C_1 + C_2 x)e^{3x}$	Ans (c) (CLO-3 Remember)	
	The complementary function of $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = e^{4x}$	1 Mark	
30.	a) $C_1 e^{-3x} + C_2 e^{-3x}$ b) $C_1 e^{3x} + C_2 e^{3x}$ c) $(C_1 + C_2 x)e^{-3x}$ d) $(C_1 + C_2 x)e^{3x}$	Ans (d) (CLO-3 Remember)	
	The particular integral of $(D - 1)^2 y = e^{-x}$ is	1 Mark	
31.	a) $\frac{x}{32}e^{-4x}$ b) $\frac{x^2}{2}e^x$ c) $\frac{x}{16}e^{-4x}$ d) $\frac{1}{4}e^{-x}$	Ans (d) (CLO-3 Remember)	
	The complementary function of $(D - 1)^2y = e^{-x}$ is	1 Mark	
32.	a) $C_1 e^{-x} + C_2 e^{-x}$ b) $C_1 e^x + C_2 e^x$ c) $(C_1 + C_2 x)e^x$ d) $(C_1 + C_2 x)e^{-x}$	Ans (c) (CLO-3 Remember)	
	The complementary function of $(D - 1)^2y = e^{-5x}$ is	1 Mark	
33.	a) $C_1 e^{-x} + C_2 e^{-x}$ b) $C_1 e^x + C_2 e^x$ c) $(C_1 + C_2 x)e^x$ d) $(C_1 + C_2 x)e^{-x}$	Ans (c) (CLO-3 Remember)	
	The particular integral of $(D + 1)^2 y = e^{-5x}$ is	1 Mark	
34.	a) $\frac{1}{36}e^{-5x}$ b) $\frac{x^2}{2}e^x$ c) $\frac{x}{36}e^{-5x}$ d) $\frac{1}{4}e^{-x}$	Ans (a) (CLO-3 Remember)	
35.	The particular integral of $(D^2 + 1)y = \cos x$ is	1 Mark	

	a) $\frac{x}{2}\sin x$	b) $\frac{-x}{3}\cos 2x$	c) $\frac{-x}{4}\cos 2x$	d) $\frac{x}{4}\sin 2x$	Ans (a)	(CLO-3 Remember)
	The particular integral of $(D^2 + 9)y = \sin 3x$ is			1 Mark		
36.	a) $\frac{x}{2}\sin x$	b) $\frac{-x}{6}\cos 3x$	c) $\frac{-x}{4}\cos 2x$	d) $\frac{x}{4}\sin 2x$	Ans (b)	(CLO-3 Remember)

SRM Institute of Science and Technology **Ramapuram Campus Department of Mathematics** 18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit – III

ORDINARY DIFFERENTIAL EQUATIONS

Part - B

1. Solve
$$(D^2 - 7D + 12)y = 0$$
.

$$(a)y = Ae^{3x} + Be^{4x}$$

$$(b)y = Ae^{-3x} + Be^{4x}$$

$$(c)y = Ae^{3x} + Be^{-4x}$$

$$(d)y = Ae^{-3x} + Be^{-4x}$$

$$m^{2}-7m+12=0$$

 $(m-3)(m-4)=0$
 $m=3,4$
 $y = Ae^{3x} + Be^{4x}$ (Option (a))

2. Find the particular integral of $(D^2 - 9)y = e^{-2x}$.

$$(a)PI = \frac{1}{13}e^{-2x} (b)PI = -\frac{1}{5}e^{-2x}$$

$$(b)PI = -\frac{1}{5}e^{-2x}$$

$$(c)PI = \frac{x}{5}e^{-2x}$$

$$(c)PI = \frac{x}{5}e^{-2x} \qquad (d)PI = \frac{1}{5}e^{-2x}$$

SRM IST, Ramapuram.

$$PI = \frac{1}{D^2 - 9} e^{-2x}$$

$$= \frac{1}{4 - 9} e^{-2x}$$

$$= -\frac{1}{5} e^{-2x} (\text{Option (b)})$$

3. Find the particular integral of $(D^2 + 3D + 2)y = e^{-2x}$.

$$(a)PI = -xe^{-2x}$$

$$(b)PI = xe^{-2x}$$

$$(c)PI = \frac{e^{-2x}}{12}$$

$$(c)PI = \frac{e^{-2x}}{12} \qquad (d)PI = \frac{xe^{-2x}}{12}$$

$$PI = \frac{1}{D^2 + 3D + 2} e^{-2x}$$

$$= \frac{1}{4 - 6 + 2} e^{-2x}$$

$$= x \cdot \frac{1}{2D + 3} e^{-2x}$$

$$PI = -xe^{-2x} \text{ (Option (a))}$$

4. Find the particular integral of $(D^2 + 4)y = \sin 2x$.

$$(a)PI = -\frac{x\cos 2x}{4}$$

$$(b)PI = -\frac{\sin 2x}{8}$$

$$(c)PI = \frac{x\sin 2x}{4}$$

$$(d)PI = \frac{\sin 2x}{8}$$

$$PI = \frac{1}{D^2 + 4} \sin 2x$$

$$= x \cdot \frac{1}{2D} \sin 2x$$

$$= -x \cdot \frac{\cos 2x}{4} \text{ (Option (a))}$$

5. Find the particular integral of $(D^2 + D + 1)y = 3x - 1$.

$$(a)PI = 3x - 4$$

$$(b)PI = 3x$$

$$(c)PI = 3x - 1 (d)PI = 3x^{2} - 4$$

$$PI = \frac{1}{D^{2} + D + 1} (3x - 1)$$

$$= [1 + (D + D^{2})]^{-1} (3x - 1)$$

$$= (3x - 1) - D(3x - 1)$$

$$PI = 3x - 4 (Option (a))$$

6. Find the particular integral of $(D^2 + D + 1)y = x$

$$(a)PI = 3x - 4 (b)PI = 3x$$

$$(b)PI = 3x$$

$$(c)PI - r - 1$$

$$(c)PI = x-1$$
 $(d)PI = 3x^2 - 4$

$$PI = \frac{1}{D^2 + D + 1}(x)$$

$$= [1 + (D + D^2)]^{-1}(x)$$

$$= [1 - (D + D^2)](x)$$

$$= (x - D(x)) = x - 1$$

$$PI = x - 1$$

(Option C)

7. Solve $(D^3 - 6D^2 + 11D - 6)y = 0$

$$(a) y = Ae^{x} + Be^{2x} + Ce^{3x}$$

$$(a) y = Ae^{x} + Be^{2x} + Ce^{3x}$$

$$(b) y = Ae^{x} + Be^{-2x} + Ce^{3x}$$

$$(c) y = Ae^x + Be^{2x} + Ce^{-3x}$$

$$(c)y = Ae^{x} + Be^{2x} + Ce^{-3x}$$

$$(d)y = Ae^{x} + Be^{-2x} + Ce^{-3x}$$

$$m^{3} - 6m^{2} + 11m - 6 = 0$$

$$(m-1)(m-2)(m-3) = 0$$

$$m = 1,2,3$$

$$C.F = Ae^{x} + Be^{2x} + Ce^{3x}$$

$$Hence$$

$$y = Ae^{x} + Be^{2x} + Ce^{3x}$$

(Option A)

8. Find the particular integral of $(D^2 + D - 2)y = Sinx$

$$(a) PI = \frac{-1}{10} (\cos x + 3\sin x)$$

$$(b) PI = \frac{1}{10} (\cos x + 3\sin x)$$

$$(b) PI = \frac{1}{10} (\cos x + 3\sin x)$$

$$(c) PI = \frac{-1}{10} (\sin x + 3\cos x) \qquad (d) PI = \frac{-1}{10} (\sin x - 3\cos x)$$

$$(d) PI = \frac{-1}{10} (\sin x - 3\cos x)$$

P.I =
$$\frac{1}{D-3}\sin x = \frac{D+3}{D^2-9}\sin x$$
, Rationalizing the denominator
= $\frac{(D+3)\sin x}{-10}$, Putting $D^2 = -1$
 \therefore P.I. = $\frac{-1}{10}$ ($D\sin x + 3\sin x$)
= $\frac{-1}{10}$ ($\cos x + 3\sin x$)

(Option A)

9. Find the complementary function of $(D^2 + 1)y = \cos ec x$.

$$(a)CF = (A + Bx)e^{x}$$

$$(b)CF = (A + Bx)e^x$$

$$(c)CF = A\cos x + B\sin x$$

$$(c)CF = A\cos x + B\sin x \qquad (d)CF = (A\cos x + B\sin x)e^{x}$$

$$m^2 + 1 = 0 \Rightarrow m = \pm i$$

 $CF = A\cos x + B\sin x$ (Option (c))

10. Solve $(D^2 + 4D + 4)y = 0$.

$$(a)y = Ae^{-2z} + Be^{-2z}$$

$$(b) y = (A + Bx) e^{-2x}$$

$$(c)y = \frac{A}{x} + \frac{B}{x^2}$$

$$(d)y = Ax + Bx^2$$

$$(a) y = Ae^{-2z} + Be^{-2z}$$

$$(b) y = (A + Bx)e^{-2x}$$

$$(c) y = \frac{A}{x} + \frac{B}{x^2}$$

$$(d) y = Ax + Bx^2$$

$$m^2 + 4m + 4 = 0$$

$$m = -2, -2$$

$$y = (A + Bx)e^{-2x}$$
 (Option (B))

SRM Institute of Science and Technology Ramapuram Campus Department of Mathematics 18MAB101T - Calculus And Linear Algebra

Year/Sem: I/I

Branch: Common to ALL B.Tech. except B.Tech. (Business Systems)

Unit – III

ORDINARY DIFFERENTIAL EQUATIONS

Part - C

1. Find the particular integral of $(D^2 + 3D + 2)y = e^{-x}$

Ans:

$$PI = \frac{1}{D^2 + 3D + 2}e^{-x}$$

$$= \frac{1}{1 - 3 + 2}e^{-x}$$

$$= x \cdot \frac{1}{2D + 3}e^{-x}$$

$$= x \cdot \frac{1}{1}e^{-x}$$

$$PI = xe^{-x}$$

2. Solve
$$x^2 \frac{d^2 y}{dx^2} - 7x \frac{dy}{dx} + 12y = 0$$

Let
$$x = e^z \Rightarrow z = \log x$$

substitute $xD = D'; x^2D^2 = D'(D'-1)$
 $(D'^2 - 8D' + 12)y = 0$
 $m^2 - 8m + 12 = 0 \Rightarrow m = 2,6$
 $C.F = Ae^{2z} + Be^{6z}$
 $y = Ax^2 + Bx^6$

3. Find the particular integral of $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = e^x$.

Ans:

P.I.
$$=\frac{1}{f(D)} F(x) = \frac{1}{f(D)} e^{x}$$
, putting $D = 1$, $f(1) = 0$

$$\therefore P.I = x \frac{1}{f'(D)} e^{x} \qquad \therefore P.I. = x \frac{1}{f'(a)} e^{ax} \text{ if } f(a) = 0$$

$$\Rightarrow P.I. = x \frac{1}{2D+1} e^{x} = \frac{1}{f'(1)} e^{x}, f'(1) \neq 0$$

$$\Rightarrow P.I. = \frac{xe^{x}}{3}$$

4. Find the particular integral of $(D^2 + 4)y = Cos2x$

$$PI = \frac{1}{D^2 + 4} \cos 2x$$

$$= \frac{1}{-4 + 4} \cos 2x$$

$$= x \cdot \frac{1}{2D} \cos 2x$$

$$= \frac{x}{4} \sin 2x$$

$$PI = \frac{x}{4} \sin 2x$$

5. Find the particular integral of $(D^2 + 9)y = x \cos x$

Ans:

P.I.
$$= \frac{1}{f(D)} F(x) = \frac{1}{D^2 + 9} x \cos x$$

 $= x \frac{1}{D^2 + 9} \cos x + \frac{-2D}{(D^2 + 9)^2} \cos x$
 $= x \frac{1}{-1 + 9} \cos x + \frac{-2D}{(-1 + 9)^2} \cos x$, Putting $D^2 = -1$
 $= \frac{x \cos x}{8} - \frac{2D \cos x}{64}$
 $= \frac{x \cos x}{8} - \frac{2D \cos x}{64}$
 $\therefore \text{P.I.} = \frac{x \cos x}{8} + \frac{\sin x}{32}$

6. Find the particular integral of $\frac{d^2y}{dx^2} - y = 5x - 2$.

P.I. =
$$\frac{1}{f(D)} F(x) = \frac{1}{D^2 - 1} (5x - 2)$$

= $\frac{1}{-(1 - D^2)} (5x - 2)$
= $-(1 - D^2)^{-1} (5x - 2)$
= $-[1 + D^2 + \cdots] (5x - 2)$
= $-(5x - 2)$

7. Solve
$$x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = 0$$

Ans:

Let
$$x = e^z \Rightarrow z = \log x$$

substitute $xD = D'$; $x^2D^2 = D'(D'-1)$
 $(D'^2 - 5D' + 6)y = 0$
 $m^2 - 5m + 6 = 0 \Rightarrow m = -2, -3$
 $C.F = Ae^{-2z} + Be^{-3z}$
 $y = \frac{A}{x^2} + \frac{A}{x^3}$

8. Solve
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = 0$$
.

Ans:

$$(D'^{2} - 2D' + 1)y = 0$$

$$m^{2} - 2m + 1 = 0 \Rightarrow m = 1,1$$

$$C.F = (A + Bz)e^{z}$$

$$y = (A + B \log x)x$$

9. Solve
$$x \frac{dy}{dx} + 2y = 0$$

$$(D' + 2)y = 0$$

$$m + 2 = 0 \Rightarrow m = -2$$

$$y = \frac{A}{x^2}$$

10. Find the particular integral of $(x^2D^2 + xD - 1)y = \sin(\log x)$.

Ans

$$PI = \frac{1}{D'^2 - 1} \sin z$$

$$= \frac{\sin z}{-2}$$

$$= -\frac{\sin(\log x)}{2}$$

* * * * *