Online Admission Control and Embedding of Service Chains

Tamás Lukovszki¹ and Stefan Schmid²

1 Eötvös Loránd University, Budapest, Hungary lukovszki@inf.elte.hu

2 TU Berlin & Telekom Innovation Laboratories, Berlin, Germany

stefan.schmid@tu-berlin.de

The Internet?

The Internet!

Middleboxes

The Internet contains many middleboxes

- Middlebox: aka "a bump in the wire"
- Firewalls, NATs, proxies, caches, WAN optimizer, encryption...
- Studies show: number of middleboxes in the order of the number of routers!

Middleboxes

The Internet contains many middleboxes

- Middlebox: aka "a bump in the wire"
- Firewalls, NATs, proxies, caches, WAN optimizer, encryption...
- Studies show: number of middleboxes in the order of the number of routers!

Problem: Middleboxes are expensive, cumbersome to deploy and manage...

Trend: NFV = Flexible Allocation

- Interesting trend: Network Function Virtualization (NFV)
- Virtualize the middlebox:
 - Running in software, e.g., running in a VM
 - Many middlebox templates run on a "universal node"
- Benefit:
 - Flexible and fast deployment!
 - Can even program / reprogram it

VM1 VM2

Universal node (Server)

NFV + SDN

Software-Defined Networking

- Outsources control over switches to software
- Renders networking more flexible
- For example traffic engineering: guide flows through Virtual Network Functions

Service Chains

- Service chain = sequence of to be traversed network functions between A and B
- E.g., first go via proxy cache, then through NAT and then WAN optimizer

Our Problem

Model

Network of n nodes

– L NF types: F₁,..., F_L

– Instances of F_i : $f_i^{(1)}$, $f_i^{(2)}$,...

- One node can host one ore more Nfs
- Requests: $\sigma = (\sigma_1, ..., \sigma_k)$, $\sigma_i = (s_i, t_i)$
- For each σ_i , s_i and t_i needs to be connected via a service chain $c_i = (f_1^{(x_1)}, f_2^{(x_2)}, ..., f_L^{(x_L)})$

Problem

Maximum service chain embedding problem (SCEP)

Given:

- Network G=(V,E), |V|=n
- NFs
- Requests: $\sigma = (\sigma_1, ..., \sigma_k), \sigma_i = (s_i, t_i)$

Constraints:

- $\kappa(v)$ is the maximum number of requests, for which node v in V can apply an NF
- path length (# hopps) for each chain must be at most R

Goal:

 Admit and embed a maximum number of service chains without violating constraints

Results

On-line SCEP:

- O(log L)-competetive on-line algorithm
- $\Omega(\log L)$ lower bound on the competetive ratio of each on-line algorithm

Offline SCEP:

- APX-hard for unit capacities and constant $L \ge 3$
- Poly-APX-hard, when there is no bound on L
- Exact optimal solution via 0-1-ILP
- NP-completeness for constant L

On-line SCEP

- Requests arrive one by one
- On arrival of a request is to decide: admit or reject
 - Admission: assign and embed the service chain
- Admitted requests can not be canceled or rerouted
- Permanent chains

On-line Algorithm: ACE

Admission Control and Chain Embedding Algorithm

Idea: cost for hosting NF for a chain: exponential in the relative load of the node

relative load at node v before the j-th request:

$$\lambda_v(j) = \frac{\text{\# admitted chains through } v}{\kappa(v)}$$

cost of v before processing the j-th request:

$$w_v(j) = \kappa(v)(\mu^{\lambda_v(j)} - 1),$$

where $\mu = 2L + 2$

On-line Algorithm: ACE

Algorithm ACE:

- When request σ_j arrives, check if there exists a chain c_i , s.t.
 - 1. σ_j can be routed through c_j on a path of length at most R and

$$2. \sum_{v \in c_j} \frac{w_v(j)}{\kappa(v)} \le L$$

• If such c_j exists, then admit σ_j and assign it to c_j . Otherwise, reject σ_i .

On-line Algorithm: ACE

Theorem: Assume, $\min_{v}(\kappa(v)) \ge \log \mu$. Then ACE

- never violates capacity and length constraints and
- is O(log L) competitive.

Proof sketch:

- Set of requests admitted by ACE respects constraints.
- W: sum of node costs,
 |A|: # requests admitted by ACE.
 At any moment, W ≤ |A| · O(L · log μ).
- $|A^*|$: # requests admitted by the optimal offline algorithm but rejected by ACE. Then $|A^*| \le W / L$.
- $|OPT| \le |A| + |A^*| \le |A| + |W| / L$ $\le |A| + |A| \cdot O(L \cdot \log \mu) / L$ $= |A| O(\log \mu).$

Lower bound on the Competetive Ratio

Theorem: Assume, $\kappa \geq \log \mu$. Any on-line algorithm for SCEP must have a competitive ratio of at least $\Omega(\log L)$.

Proof sketch:

- $C = (V_1, ..., V_L)$
- Different chains overlap at c.
- Requests in log L + 1 phases
- Phase i: 2[†] κ requests
- Adversary stops sending requests after a phase j, if the on-line algorith admitted V_1 or V_L at most 2^{j+1} κ / log L requests until phase j. Such j must exist.
- Phase log L

 Phase log L

 Phase 1

 Phase 1

 Phase 0

 Phase 0

 Phase 0

 Such i must exist.
- Optimal offline algorithm rejects all requests except the 2^j κ requests of phase j.

Offline SCEP

Theorem: Let $L \ge 3$ be a constant and $\kappa(v) = 1$, for all v. Then the offline SCEP is APX-hard.

Proof idea:

- Reduction of Maximum L-Set Packing Problem (LSP) to SCEP
- Approximation preserving reduction
- LSP is APX-complete

Offline SCEP: Inapproximability Result

Theorem: Let $L \ge 3$ be a constant and $\kappa(v) = 1$, for all v. Then the offline SCEP is APX-hard and not approximable within L^{ϵ} for some $\epsilon > 0$. Without a bound on the chain length the SCEP with $\kappa(v) = 1$, for all nodes v, is Poly-APX-hard.

Proof idea:

- Reduction of Maximum Independent Set Problem (MIS) to SCEP
- Approximation preserving reduction
- MIS is APX-complete and cannot be approximated within L^{ϵ} for some $\epsilon > 0$.
- For graphs without degree bound, the MIS is Poly-APXcomplete.

0-1 Linear Program – NP-completeness

Exact optimal solution via 0-1-ILP

$$\underset{\sigma_i \in \sigma}{\text{maximize}} \qquad \sum_{\sigma_i \in \sigma} x_i \tag{1}$$

s.t.
$$x_i - \sum_{c \in \mathcal{C}} x_{c,i} = 0 \quad \forall \sigma_i \in \sigma$$
 (2)

$$\sum_{c \in \mathcal{C}: \sigma_i \notin S_c} x_{c,i} = 0 \qquad \forall \ \sigma_i \in \sigma$$
 (3)

$$x_c \le x_v \qquad \forall \ v \in V, \forall \ c \in \mathcal{C} : v \in c$$
 (4)

$$\sum_{c \in \mathcal{C}: v \in c} x_c \ge x_v \qquad \forall \ v \in V \tag{5}$$

$$\sum_{\sigma_i \in \sigma} \sum_{c \in \mathcal{C}: v \in c} x_{c,i} \le \kappa(v) \cdot x_v \qquad \forall \ v \in V$$
 (6)

$$x_i, x_v, x_c, x_{c,i} \in \{0, 1\} \qquad \forall v \in V, \forall c \in \mathcal{C}, \forall \sigma_i \in \sigma$$
 (7)

Summary

- Trend: Network Function Virtualization
- First step towards a better understanding of the algorithmic problem underlying the embedding of service chains
- Main contributions:
 - O(log L)-competetive on-line algorithm
 - $\Omega(\log L)$ lower bound on the competetive ratio of each on-line algorithm
 - Offline SCEP:
 - APX-hard for unit capacities and constant L ≥ 3
 - Poly-APX-hard, when there is no bound on L
 - Exact optimal solution via 0-1-ILP
 - NP-completeness for constant L

Thank you!