

II edycja XII Konferencji "Młodzi w Energetyce" Wydział Mechaniczno-Energetyczny Politechnika Wrocławska 9-11 grudnia 2020

TYTUŁ REFERATU W JĘZYKU POLSKIM

TYTUŁ REFERATU W JĘZYKU ANGIELSKIM

Imię Nazwisko¹, Imię Nazwisko¹, Imię Nazwisko²

¹ Afiliacja autorów 1 oraz 2

² Afiliacja autora 3

Streszczenie

Streszczenie referatu może obejmować maksymalnie dwie strony. Prosimy o przygotowanie streszczenia bez dokonywania podziału na rozdziały. Rozpocząć należy od podania tytułu wystąpienia – w języku polskim ("Tytuł referatu w języku polskim") i angielskim ("Tytuł referatu w języku angielskim"), danych personalnych prelegenta ("Imię i nazwisko prelegenta") i afiliowanej jednostki naukowej ("Afiliowana jednostka naukowa").

Streszczenie referatu powinno być przygotowane za pomocą niniejszego szablonu. Pliki *.tex oraz *.sty bądź *.docx wraz z zamieszczonymi w streszczeniach rysunkami (w formacie *.jpg lub *.png, każdy maksymalnie 1 MB) należy przesłać na adres **kme@pwr.edu.pl** do dnia **01.11.2020**.

W niniejszym przykładzie zamieszczono typowe, struktury (równania, tabele, rysunki, wyliczanie, literaturę) dokumentu LaTex. Należy je wypełnić swoją treścią. Niepotrzebne, struktury można zawiesić stawiając na początku linii znak % lub wymazać.

Rysunki wstawiamy w formacje *.jpg lub *.png w dobrej jakości (150dpi). Wszystkie wykożystane rysunki należy załączyć przy wysyłaniu streszczenia.

Pozycje literaturowe podawać zgodnie ze wzorcem. Cytujemy używając np. \cite{Aref1} co utworzy [1]. Pierwszy raz kompilujemy dwukrotnie aby zostały wypełnione odwołania do literatury. W streszczeniu należy ograniczyć liczbę cytowanych publikacji do najważniejszych 3.

Przykład wyliczenia (zamiast itemize można użyć enumerate, aby pozycje były numerowane).

- górny: 2,0 cm,dolny: 2,0 cm
- lewy: 3,5 cm
- prawy: 2,0 cm

Przykład fragment tekstu z **równaniami** zamieszczono poniżej. Równania ruchu lepkiego i nieściśliwego płynu mają postać (równanie 1 oraz 2 - odniesienie do równania zapisujemy jako np. \ref{eom}, natomiast równanie ma dodany \label{eom}, który tworzy podstawę odniesienia) [2, 1]:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho}\nabla p + \nu \Delta \mathbf{u},\tag{1}$$

$$\nabla \cdot \mathbf{u} = 0, \tag{2}$$

gdzie ${\bf u}=(u,v,w)$ jest wektorem prędkości, ρ – gęstością płynu, p – ciśnieniem a ν – kinematycznym współczynnikiem lepkości.

W dalszej części przedstawiono przykłady zamieszczania **wykresów, obrazków oraz tabel.** Pojedynczy wykres lub zdjęcie (Rys. 1 - odniesienie do obrazu tworzymy analogicznie do przykładu z równaniem):

Rys. 1: Jeden obrazek z podpisem

W celu zwiększenia czytelności zezwala się na wykorzystanie \newpage

II edycja XII Konferencji "Młodzi w Energetyce" Wydział Mechaniczno-Energetyczny Politechnika Wrocławska 9-11 grudnia 2020

Dwa wykresy lub zdjęcia obok siebie z dwoma niezależnymi popisami (Rys 2 oraz Rys. 3):

Rys. 2: Dwa obrazki obok siebie z dwoma podpisami (lewy)

Rys. 3: Dwa obrazki obok siebie z dwoma podpisami (prawy)

Przykład tworzenia tabeli (Tab. 1 oraz Tab. 2).

Tabela 1: Przyspieszenie osiągane dla metody Jacobiego.

Liczba węzłów	tsl	tx	nc	frm nc
32x32x32	4.05	6.61	6.94	12.32
64x64x64	17.71	26.32	31.26	52.82
128x128x128	24.78	29.95	43.67	58.89

Dodatkowy przykład tworzenia tabeli.

Tabela 2: Cryogenic coolers

Cryooler	Capacity range		
Turbo-Brayton	18 - 250 kW at 120 K		
Stirling	2 - 8 kW at 120 K		
Gifford-McMahon	14 - 600 W at 80 K		
2-stage Pulse Tube	up to 1.2 kW at 120 K		
Single-stage Pulse Tube	12 - 90 W at 80 K		
Miniature Pulse Tube	3 - 10 W at 80 K		
Joule-Thomson	100 W at 120 K		
Cryogenic cascade	up to few kW at 120 K		

Literatura

- [1] Aref H. Motion of three vortices, Phys. Fluids 22 (3), 393-400, 1997
- [2] Kochin N. E., Kibel I. A., Roze N. V. Theoretical hydromechanics, Interscience Publishers, New York 1965
- [3] Synge J. L. On the motion of three vortices, Can. J. Math., 1, 257-270, 1949