Operations Scheduling

Advanced Operations Management

Dr. Ron Tibben-Lembke

Ch 16: 539-544,

Scheduling opportunities

- Job shop scheduling
- Personnel scheduling
- Facilities scheduling
- Vehicle scheduling
- Vendor scheduling
- Project scheduling
- Dynamic vs. static scheduling

You are here

Example

Job	Processing	Time Due
1	6	18
2	2	6
3	3	9
4	4	11
5	5	8

What order should we do them in?

Example

Job Characteristics

- Arrival pattern: static or dynamic
- Number and variety of machines
 - We will assume they are all identical
- Number of workers
- Flow patterns of jobs:
 - all follow same, or many different
- Evaluation of alternative rules

Objectives

Many possible objectives:

- Meet due dates
- Minimize WIP
- Minimize average flow time through
- High worker/machine utilization
- Reduce setup times
- Minimize production and worker costs

Terminology

Flow shop: all jobs use M machines in same order

Job shop: jobs use different sequences

Parallel vs. sequential processing

Flow time: from start of first job until completion of job I

Makespan: start of first to finish of last

Tardiness: >= 0

Lateness: can be <0 or >0

Sequencing Rules

First-come, first-served (FCFS) order they entered the shop Shortest Processing Time (SPT) longest job done last Earliest Due Date (EDD) job with last due date goes last Critical Ratio (CR) - processing time / time until due, smallest ratio goes first

Other rules

- R Random
- LWR Least Work Remaining
- FOR Fewest Operations Remaining
- ST Slack Time
- ST/O-Slack Time per Operation
- NQ-Next Queue choose job that is going next to the machine with smallest queue
- LSU Least Setup

Performance

```
Quantities of interest L_i Lateness of i: can be +/- T_i Tardiness of i: always >= 0 E_i Earliness of i T_{max} Maximum tardiness
```

Example: FCFS

Job	Time	Done	Due	Tardy
1	6	6	18	0
2	2	8	6	2
3	3	11	9	2
4	4	15	11	4
5	5	<u> 20</u>	8	<u>12</u>
Total		50		20

```
Mean flow time = 50 / 5 = 10.0
Average tardiness = 20 / 5 = 4.0
Number of tardy jobs = 4
Max. Tardy
```

Example: SPT

Job	Time	Done	Due	Tardy
2	2	2	6	0
3	3	5	9	0
4	4	9	11	0
5	5	14	8	6
1	6	<u>20</u>	18	<u>2</u>
Total		50		8

```
Mean flow time = 50 / 5 = 10.0
Average tardiness = 8 / 5 = 1.6
Number tardy = 2
Max Tardy 6
```

Example: EDD

Job	Time	Done	Due	Tardy
2	2	2	6	0
5	5	7	8	0
3	3	10	9	1
4	4	14	11	3
1	6	<u>20</u>	18	<u>2</u>
Total		51		6

```
Mean flow time = 51 / 5 = 10.2
Average tardiness = 6 / 5 = 1.2
Number tardy = 3
Max Tardy = 3
```

Critical Ratio

Critical ratio:

- looks at time remaining between current time and due date
- considers processing time as a percentage of remaining time
- CR = 1.0 means just enough time
- CR > 1.0 more than enough time
- □ CR < 1.0 not enough time

Т	=	0	
<u>Jc</u>	<u>b</u>		
	1		
	2		
	3		
	4		
	5		

 Process

 Time
 Due

 6
 18

 2
 6

 3
 9

 4
 11

 5
 8

Critical Ratio 3.0 3.0 3.0 2.75 1.6

Job 5 is done first.

□ T = 5	Process	Due -	Critical
<u>Job</u>	<u>Time</u>	<u>Current</u>	<u>Ratio</u>
1	6	13	2.17
2	2	1	0.5
3	3	4	1.33
4	4	6	1.5

Job 2 is done second.

□ T = 7	Process	Due -	Critical
<u>Job</u>	<u>Time</u>	<u>Current</u>	<u>Ratio</u>
1	6	11	1.84
3	3	2	0.67
4	4	4	1.0

Job 3 is done third.

T = 10	Process	Due -	Critical
<u>Job</u>	<u>Time</u>	<u>Current</u>	<u>Ratio</u>
1	6	8	1.84
4	4	1	0.25

Job 4 is done fourth, and job 1 is last.

Critical Ratio Solution

<u>Job</u>	<u>Time</u>	<u>Done</u>	<u>Due</u>	<u>Tardy</u>
5	5	5	8	0
2	2	7	6	1
3	3	10	9	1
4	4	14	11	3
1	6	<u>20</u> 56	18	<u>2</u>
Total		56		7

```
Mean flow time = 56 / 5 = 11.2
Average tardiness = 7 / 5 = 1.4
Number tardy = 4
Max Tardy 3
```

Summary

Max		Averag	ge Num	ber
Method tardy	<u>Flow</u> Tardy	<u>Tardin</u>	<u>ess</u>	_
FCFS	10.0	4.0	4	12
SPT	10.0	1.6	2	6
EDD	10.0	1.2	3	3
CR	11.2	1.4	4	3

Minimizing Average Lateness

- Mean flow time minimized by SPT
- For single-machine scheduling, minimizing the following is equivalent:
 - Mean flow time
 - Mean waiting time
 - Mean lateness

Minimize Max Lateness

Earliest Due Date (EDD) minimizes maximum lateness

Minimizing Number of Tardy Jobs

Moore's Algorithm:

- 1. Start with EDD solution
- 2. Find first tardy job, i. None? Goto 4
- 3. Reject longest job in 1- i. Goto 2.
- 4. Form schedule by doing rejected jobs after scheduled jobs.
- Rejects can be in any order, because they will all be late.

Moore's Example

Start with EDD schedule

Job	<u>T</u> ime	Done	Due	Tardy
2	2	2	6	0
5	5	7	8	0 -
3	3	10	9	1
4	4	14	11	3
1	6,	20	18	2

Job 3 is first late job.
Job 2 is longest of jobs 2,5,3.

Moore's Example

Job	Time	Done	Due	Tardy
2	2	2	6	0
3	3	5	9	0
4	4	9	11	0
1	6	15	18	0
5	5	20	8	12

```
Average Flow = 51 / 5 = 10.2
Average tardiness = 12 / 5 = 2.4
Number tardy = 1
Max. Tardy = 12
```

Summary 2

Average	e Num	ber
<u>Tardine</u>	<u>SS</u>	_
4.0	4	12
1.6	2	6
1.2	3	3
1.4	4	3
2.4	1	12
	Tardine 4.0 1.6 1.2 1.4	1.621.231.44

Multiple Machines

- N jobs on M machines:
- □ (N!)^Mpossible sequences.
- For 5 jobs and 5 machines = 25 billion
- Complete enumeration is not the way

Multiple Machines

2 jobs, 2 machines.

```
Job M1 M2
I 4 1
J 1 4
```

Four possible sequences:

Multiple Machines

2 jobs, 2 machines.

```
      Job
      M1
      M2
      M1
      M2

      I
      4
      1
      I
      J
      I
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
      J
```

Four possible sequences:

Two Machines

Two Machines

- Permutation schedules: IJ IJ, JI JI
 - Jobs processed same sequence on both
- For N jobs on two machines, there will always be an <u>optimal</u> permutation schedule.

2 Machines, N Jobs (Johnson's Algorithm)

- A_i = processing time of job I on machine A
- B_i = processing time of job I on machine B
- 1. List A_i and B_i in two columns
- 2. Find smallest in two columns. If it is in A, schedule it next, if it's in B, then last.
- 3. Continue until all jobs scheduled.

Johnson Example

<u>Job</u>	<u>A</u>	<u>B</u>
1	5	2
2	1	6
3	9	7
4	3	8
5	10	4

1. Job 2 is smallest, so it goes first.

```
Seq: 2, , , ,
```

Johnson Example

```
    Job
    A
    B

    1
    5
    2

    2
    1
    6

    3
    9
    7

    4
    3
    8

    5
    10
    4
```

- 1. Job 2 goes first.
- 2. Job 1 is next smallest, in B, so goes last.

```
Seq: 2, , , , 1
```

Johnson Example

- 1. Job 2 goes first.
- 2. Job 1 goes last.
- 3. Job 4 is smallest, in A column, so it goes next.

Seq: 2, 4, , , 1

Johnson Example

- 1. Job 2 goes first.
- 2. Job 1 goes last.
- 3. Job 4 goes next.
- 4. Job 5 smallest in B, comes next to last.

Seq: 2, 4, , 5, 1

Johnson Example

Seq: 2, 4, 3, 5, 1

- 1. Job 2 goes first.
- 2. Job 1 goes last.
- 3. Job 4 goes next.
- 4. Job 5 next to last.
- 5. Job 3 comes next.

Conclusions

- Single machine scheduling:
 - FCFS, SPT, EDD, CR, Moore's Algorithm
- Two machines:
 - Johnson's Algorithm
- Performance:
 - Avg Lateness, Max Tardy, Avg Tardy, Number of jobs Tardy

Scheduling Days Off

- Compute no. people needed each day.
- 2. Find the smallest two consecutive days
 - Highest number in the pair is <= highest number in any other pair
 - Those two days will be the first worker's days off
- Subtract one from the days the first worker wasn't scheduled
- 2. Repeat

Example - Workers needed each day

M T W Th F Sa Su 4 3 4 2 3 1 2

Example

	M	Τ	W	Th	F	Sa	Su
#1	4	3	4	2	3	1	2
#2	3	2	3	1	2	1	2
#3	2	1	2	0	_1	1	2
#4	1	0	1	0	1	0	1
#5	0	0	0	0	1	0	0

Example - Retry

	M	Т	W	Th	F	Sa	Su
#1	4	3	4	2	3	1	2
#2	3	2	3	1 (2	1	2
#3	2	1	2	0	2		1
#4	1	0	1	0	1	1	1
#5	0	0	1	0	0	0	0

Example - 4 days

	M	Т	W	Th	F	Sa	Su
#1	4	3	4	2	3	1	2
#2	3	2	3	1	2	1	2
#3	2	1	2	0	1	1	2
#4	1	0	1	0	1	0	1

Do you want to work the #4 schedule?

Scheduling Daily Work Times

Different # people needed in different areas at different times

Scheduling Hourly Times

- When should people start shifts?
- "First Hour" principle:
 - For first hour, assign # people needed that hour
 - Each additional hour, add more if needed
 - When shift ends, add more, only if needed

Hourly Work Times

Production vs. Transfer batch sizes

Lot Sizes all 1,000

p. 552

Production Lot Size = 1,000

Transfer Batch Size = 100

Production Lot Size = 200

Transfer Batch Size = 100

Production Lot Size = 500

HW, p. 567 - Due 12/9

□ DQ: 4

Problems: 1,2,3,4,5