THEORY AND APPLICATION OF INTAKE-BALANCE ASSESSMENTS USING CRITERION AND SURROGATE MEASURES

Justin Jackson, MS (on behalf of Paul R. Hibbing, PhD) University of Illinois Chicago

GENERAL PLAN

- Didactic overview of the intake-balance method [Break]
- Interactive tutorial

DIDACTIC OVERVIEW OF THE INTAKE-BALANCE METHOD

WHAT IS THE INTAKE-BALANCE METHOD?

activehealth.sg

ksimg.com

Water-180 ≥ 98atom% 180 10g

deutramed.com

BODY COMPOSITION ASSESSMENT WITH DXA

BODY COMPOSITION ASSESSMENT WITH DXA

Strengths

- Accuracy (DOI 10.1136/jim-2018-000722)
- Ease of use

Limitations

- Involves radiation (very small dose < 10 μSv)
- Requires certification in some locations
- Cost
- Not portable
- Requires subject to lay motionless for several minutes

ENERGY EXPENDITURE ASSESSMENT WITH DLW

ENERGY EXPENDITURE ASSESSMENT WITH DLW

- Strengths
 - Accuracy (DOI 10.1093/jn/118.11.1278)
 - · Ability to assess in free-living
- Limitations
 - Cost
 - Time-, labor- and resource-intensive
 - Sensitive to many sources of error (DOI 10.1038/s41430-019-0492-z)
 - Lack of granularity

WHAT DOES ALL OF THIS MEAN FOR THE **INTAKE-BALANCE METHOD?**

$EI = \Delta ES + EE$

ksimg.com

Water-180 ≥ 98atom% 180 10g

deutramed.com

A KEY OBJECTION TO ENERGY BALANCE ITSELF

ksimg.com

Water-180 ≥ 98atom% 180 10g

deutramed.com

ksimg.com

ksimg.com

CONSUMER-GRADE TECHNOLOGY

CONSUMER-GRADE TECHNOLOGY

OTHER POSSIBILITIES: BODY COMPOSITION

DOI: 10.1016/j.ajcnut.2023.02.003

OTHER POSSIBILITIES: ENERGY EXPENDITURE

Describe your physical activity at work or school:

Please select work activity...

Describe your physical activity at leisure time:

Please select leisure activity...

Cancel Save

https://www.niddk.nih.gov/bwp

DOI: 10.1186/1550-2783-11-7

PRECISION OF MEASUREMENT

Calculated
$$EI = 1020 \frac{\Delta FFM}{\Delta t} + 9500 \frac{\Delta FM}{\Delta t} + EE$$

DOI 10.1093/jn/nxx029

PRECISION OF MEASUREMENT

DOI 10.1093/jn/nxx029

Table 1. Participant characteristics and sample descriptives. Accelerometer-derived variables are grand averages across participants										
		Contr	ol (<i>n</i> 8)*	TRE (n 11)†						
	Pr	Pre		Post		Pre		Post		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD		
Body mass (kg)	103-6	26.8	102.7	25.8	94.0	21.6	90.9	21.3		
Fat mass (kg)	48.8	19.7	48⋅1	19.4	41.1	16.8	39.4	16.4		
Fat-free mass (kg)	54.9	9.3	54.6	8.4	52.9	10.3	51⋅5	10.3		

DOI 10.1017/S0007114522003312

PRECISION: VARIOUS METHODS

TABLE 2 Absolute and relative test-retest reliability of the three body composition measurement devices								
	Absolute reliability	Absolute reliability						
Measurement device	%BF Mean differences (Trial 1-Trial 2) [95% CI]	p-value ^a	SEM (%BF)	MD (%BF)	ICC _{2,1} [95% CI]			
Skinfold callipers	0.54 [0.22, 0.87]	<0.001	0.63	1.74	0.991 [0.979, 0.995]			
Ultrasound	0.17 [-0.25, 0.58]	0.43	0.78	2.16	0.988 [0.979, 0.993]			
3DPS	-0.01 [-0.43, 0.40]	0.96	0.67	1.84	0.983 [0.968, 0.991]			

DOI 10.1111/cpf.12716

PRECISION: BIOELECTRICAL IMPEDANCE ANALYSIS

TABLE 3 Test-retest reliability and variability of key bioelectrical impedance analysis (BIA) measurements.								
Variability between								
Measurement Mean SD Participan				Day	Test	Range	ICC	
Body fat (% body mass)	17.6	7.4	7.3	0.6	0.3	1.9 ± 0.9	0.998	

DOI 10.3389/fnut.2024.1491931

PRECISION: AIR DISPLACEMENT PLETHYSMOGRAPHY

Table 4. Statistical measures of test–retest reliability of %BF and FFM measurements.

	D . 1		%BI	F (%)		FFM (kg)			
	Protocol	TEM ¹	SEM	MDC	ICC(2,1) ²	TEM	SEM	MDC	ICC(2,1)
	Single	1.00	1.00	2.77	0.9914	0.675	0.673	1.867	0.9974
A 11	Collins	0.69	0.69	1.91	0.9960	0.507	0.506	1.403	0.9985
All	Tucker	0.70	0.70	1.93	0.9959	0.515	0.513	1.422	0.9985
	Median	0.62	0.62	1.72	0.9967	0.457	0.456	1.264	0.9988
	Single	0.88	0.88	2.44	0.9898	0.683	0.679	1.883	0.9934
3.4	Collins	0.66	0.66	1.82	0.9944	0.552	0.549	1.522	0.9957
Men	Tucker	0.69	0.69	1.91	0.9938	0.576	0.573	1.588	0.9953
	Median	0.60	0.60	1.67	0.9953	0.510	0.508	1.407	0.9963
	Single	1.11	1.10	3.05	0.9866	0.668	0.664	1.840	0.9885
Women	Collins	0.72	0.71	1.98	0.9944	0.457	0.455	1.261	0.9948
	Tucker	0.71	0.71	1.96	0.9945	0.444	0.442	1.225	0.9951
	Median	0.64	0.63	1.76	0.9956	0.397	0.395	1.095	0.9961

DOI 10.3390/ijerph182010693

PRECISION: DXA

Measurement site	ВМС		Lean		Fat		
	g	% CV	g	% CV	g	% CV	
Month 0							
Arms	254 ± 80	1.7 ± 0.7	$3,837 \pm 605$	3.7 ± 1.7	$2,421 \pm 1,040$	6.7 ± 1.7	
Legs	783 ± 197	1.1 ± 0.5	$13,675 \pm 2,313$	1.5 ± 0.6	$8,460 \pm 1,689$	2.5 ± 1.2	
Trunk	624 ± 202	2.4 ± 0.9	$18,451 \pm 2,380$	1.3 ± 0.4	$7,423 \pm 2,603$	4.1 ± 1.1	
Total body	$2,132 \pm 522$	0.8 ± 0.4	$38,372 \pm 5,213$	1.1 ± 0.5	$19,723 \pm 5,497$	2.7 ± 0.8	
Month 9							
Arms	265 ± 85	2.0 ± 0.8	$3,862 \pm 721$	2.9 ± 1.3	$2,570 \pm 1,010$	4.3 ± 1.0	
Legs	799 ± 193	1.2 ± 0.7	$12,977 \pm 2,249$	1.7 ± 0.6	$8,322 \pm 1,217$	2.4 ± 1.0	
Trunk	653 ± 203	2.8 ± 1.2	$17,380 \pm 2,627$	1.4 ± 0.2	$7,634 \pm 2,014$	2.8 ± 0.0	
Total body	2.184 ± 520	1.2 ± 0.6	$36,570 \pm 5,593$	1.0 ± 0.5	19.981 ± 4.394	1.7 ± 0.1	

DOI: 10.1007/BF02556113

PRECISION: DXA

Table 2 Total Body and Regional Body Precision Acquired by Lunar iDXA						
Region	Variables	Mean (range)	RMS-SD	CV (%)	LSC	
Total body	BMC (g)	2622 (1595–3766)	12.2	0.5	33.9	
•	Fat mass (kg)	17.3 (7.9–36.7)	0.18	1.0	0.49	
	Lean mass (kg)	45.92 (32.60-72.70)	0.22	0.5	0.61	
	Region % fat	27.2 (13.1–45.3)	0.25	_	0.68	
	Tissue % fat	28.3 (13.7–46.6)	0.26	_	0.72	

DOI: 10.1016/j.jocd.2012.02.009

PRECISION: ENERGY EXPENDITURE

- DLW generally ~6% (± ~2%), based on mean absolute errors from DOI 10.1038/s41430-019-0492-z
- For accelerometer-based measures, depends on the specific method, monitor, and population
 - Values of 10% to ≥30% are common (e.g., DOIs 10.1038/s41598-021-97299-z and 10.1016/j.jsams.2014.10.002)
 - Repeatability is not an issue; given the same data, the algorithms will produce the same output

RECAP: THINGS WE'VE COVERED

- What is the intake-balance method?
- How does it work, and when does it apply?
- How has it been implemented?
- What are some of the limitations and nuances of the method?

QUESTIONS/BREAK

https://paulhibbing.com/icdam2025