

zhangcuicui@mail.xjtu.edu.cn

6 计数器设计与应用

日录 ONTENTS

忠恕任事

01 计数器和分频器原理

02 实验内容

03 实验报告要求

Part 01

计数器和分频器原理

1.1 异步计数器

时序图 (加1计数)

1.1 异步计数器

时序图 (减1计数)

1.2

同步计数器

现态 (Q[3:0])	次态(Qn+1[3:0])
0000	0001
0001	0010
0010	0011
0011	0100
0100	0101
0101	0110
0110	0111
0111	1000
1000	1001
1001	1010
1010	1011
1011	1100
1100	1101
1101	1110
1110	1111
1111	0000

1.3 Verilog实现计数器和分频器

art 02

实验内容

- 新建工程lab61, 一步一步完成设计
- 分配管脚、下载验证

实验内容: 计数器在数码管上显示 (3)

◆第一步:设计模16的计数器

- 1. 新建工程lab6
- 2. 新建Verilog HDL文件,完成模16计数器的设计
- 3. 将该文件设为顶层实体后全编译,进行功能仿真和时序仿真
- 4. 为该分频器创建符号文件

实验内容:模16计数器

◆ 第二步: 设计24M分频器,产生1Hz时钟信号

- 1. 新建Verilog文件,设计完成24M的分频器
- 2. 将该文件设为顶层实体后编译
- 3. 为该分频器创建符号文件

```
Comp
          人时钟为24MHz,要求输出时钟为1Hz,即实现24M的分频
    ⊟module lab53(
          input
                            clk_in,
          //output reg [25:0] count,
          output req
                            clk_out
     reg [25:0] count;
    ⊟always @(posedge clk in) begin

⊟ if(count == 26'd12000000) begin
11
              count \leq 26'd0;
12
          end
13
          else begin
              count <= count + 26'd1.
15
16
     end
                                      这个数值是不是还
17
    ⊟always @(posedge clk_in) beg
⊟ if(count == 26'd0) begin
                                     可以再精确一些?
19
20
              clk_out <= ~clk_out:
21
          end
22
          else begin
23
              clk_out <= clk_out;
24
          end
25
     end
26
     endmodule
```


◆ 第三步: 设计7段数码管并仿真

- 1. 新建Verilog HDL文件,完成7端数码管的设计
- 2. 保存.v文件的名称与module的名称一致
- 3. 将7段数码管的.v文件设为顶层实体,对工程进行全编译
- 4. 为7段数码管创建符号文件

◆ 第四步: 自底向上、模块整合

- 1. 新建bdf文件,命名为top.bdf,添加分 频器、计数器、7段数码管并完成连线
- 2. 将top.bdf设为顶层实体,全编译
- 3. 对设计进行管脚分配,全编译
- 4. 下载程序到实验箱上,连线验证 时钟引脚分配到pin7上

24MHz的晶振输出24MHz时钟信号,接到了PIN7引脚

矢量和标量的连接一通过线网命名

◆ BDF中总线和节点的连接问题

矢量和标量的连接一通过线网命名

矢量和标量的连接一通过线网命名

◆ BDF中总线和节点的连接问题

Dart 03

实验报告要求

3.1 实验报告要求

电子技术实验 2 实验报告

学号: 班级: 姓名: 编号:

6 计数器设计与应用

一 实验内容

模 16 计数器的实现

二 实验原理

- 1. 异步计数器的电路分析
- 2. 同步计数器的电路设计
- 3. 计数器实现分频器的原理分析

三 实验步骤

包括创建工程, 计数器设计实现、分频器设计实现 自底向上构建完整工程设计 管脚分配 下载验证

四 实验结果

主要是仿真结果、实验箱验证结果

五 总结和思考题

- 1. D 触发器为基础的异步计数器的优点是什么? 缺点是什么?
- 2. 为克服 1 中的缺点, D 触发器为基础的同步计数器的优点是什么? 又带来了什么样
- 3. 总结对比自顶向下和自底向上的数字电路设计方法

