Boston University CS 506 - Lance Galletti

Sum ~ N(nµ, nG2)

Average
$$\sim N(n, \frac{G^2}{n})$$

K-means - Lloyd's Algorithm

Q1: Will this algorithm always converge?

Proof (by contradiction): Suppose it does not converge. Then, either:

- 1. The minimum of the cost function is only reached in the limit (i.e. after an infinite number of iterations).
 - Impossible because we are iterating over a finite set of partitions and a finite set of points, can't have an infusive sequence of costs.
- 1. The algorithm gets stuck in a cycle / loop: perfectly equivalent points —) variance / cost remains unchanged itself and we know:
 - If old ≠ new clustering then the cost has improved
 - If old = new clustering then the cost is unchanged

reauce Tor help cost equal so its impossible to have a loop

Conclusion: Lloyd's Algorithm always converges!

goar:

sum of the variances created by the clubbering algorithm

does this augorumn aways converge?

K-means - Lloyd's Algorithm

Q2: Will this always converge to the optimal solution?

What's the problem?

Jurthest first traverseu

finst traversal

· choosing points that are fer from evenement

Farthest First Traversal

But...

Random would have been better

Initialize with a combination of the two methods:

- 1. Start with a random center
- 2. Let D(x) be the distance between x and the closest of the centers picked so far. Choose the next center with probability proportional to $D(x)^2$

No reason to use k-means over k-means++

$$D(x)^2 = 3^2 = 9$$

 $D(y)^2 = 2^2 = 4$
 $D(z)^2 = 1^2 = 1$

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

Suppose we are given a black box that will generate a uniform random number between 0 and any N. How can we use this black box to select points with probability proportional to $D(x)^2$?

$$D(x)^{2} = 3^{2} = 9$$

$$D(y)^{2} = 2^{2} = 4$$

$$D(z)^{2} = 1^{2} = 1$$

0

N
=
$$D(x)^2 + D(y)^2$$

+ $D(z)^2 = 14$

Suppose we are given a black box that will generate a uniform random number between 0 and any \mathbf{N} . How can we use this black box to select points with probability proportional to $\mathbf{D}(\mathbf{x})^2$?

0

Q3: the black box returns "12" as the random number generated. Which point do we choose for the next center (x, y, or z)?

14

Q4: the black box returns "4" as the random number generated. Which point do we choose for the next center (x, y, or z)?

o picning points w/ IP proportion to austence squercal

What happens if the black box can only generate numbers between 0 and 1?

Kmeans Quizz (take 2)

pich centers

How to choose the right k?

1. Iterate through different values of k (elbow method)

How to choose the right k?

- 1. Iterate through different values of k (elbow method)
- 2. Use empirical / domain-specific knowledge Example: Is there a known approximate distribution of the data? (K-means is good for spherical gaussians)
- 3. Metric for evaluating a clustering output

Evaluation

Recall our goal: Find a clustering such that

- Similar data points are in the same cluster
- Dissimilar data points are in different clusters

Evaluation

Recall our goal: Find a clustering such that

- Similar data points are in the same cluster **V**
- **Dissimilar** data points are in **different clusters**

Evaluation

K-means cost function tells us the within-cluster distances between points will be small overall.

But what about the intra-cluster distance? Are the clusters we created far? How far? Relative to what?

Discuss - 5min

Define a metric that evaluates how spread out the clusters are from one another.

a: average within-cluster distance

b: average intra-cluster distance

a: average within-cluster distance

b: average intra-cluster distance

What does it mean for (b - a) to be 0?

a: average within-cluster distanceb: average intra-cluster distance

What does it mean for (b - a) to be large?

The value of (b-a) doesn't mean much by itself. Can we compare it to something so that the ratio becomes a value between 0 and 1?

(b - a) / max(a, b)

What does it mean for (b - a) / max(a, b) to be close to 1?

What does it mean for (b - a) / max(a, b) to be close to 0?

For each data point i: a_i: mean distance from point i to every other point in its cluster

For each data point i:

a_i: mean distance from point i to every other point in its cluster

b_i: smallest mean distance from point i to every point in another cluster

For each data point i:

a_i: mean distance from point i to every other point in its cluster
b_i: smallest mean distance from point i

to every point in another cluster

$$s_{i} = (b_{i} - a_{i}) / max(a_{i}, b_{i})$$

$$s_{i} = (b_{i} - a_{i}) / max(a_{i}, b_{i})$$

Silhouette score plot

OR return the mean s_i over the entire dataset as a measure of goodness of fit

K-means Variations

- 1. K-medians (uses the L₁ norm / manhattan distance)
- 2. K-medoids (any distance function + the centers must be in the dataset)
- 3. Weighted K-means (each point has a different weight when computing the mean)