Recursive Lexicographical Search: Finding all Markov Perfect Equilibria in Directional Dynamic Games

Fedor Iskhakov, University of New South Wales John Rust, Georgetown University Bertel Schjerning, University of Copenhagen

> University College London January 18, 2018

Next: Formal definition of DDG

- Strategy specific partial order over D
- Anti-cycling condition to rule out loops
- Consistency of strategy specific partial orders
 - ⇒ Definition of DDG

- Let σ be a feasible Markovian strategy in the game, and let $\rho(d'|(d,x),\sigma(d,x))$ be the conditional hitting probability of the state $d' \in D$ starting from the state s = (d,x).
- **Definition** $d' \succ_{\sigma} d$ *iff* $\exists x \in X \quad \rho(d'|(d,x),\sigma(d,x)) > 0$ and $\forall x' \in X \quad \rho(d|(d',x'),\sigma(d',x')) = 0$.
- **Lemma** \succ_{σ} is a *strict partial order of D*, i.e. it is irreflexive, asymmetric, and transitive.

The No-Loop (Anti-Cycling) Condition

- The partial order ≻_σ defines a clear notion of directionality in the strategy-induced law of motion of the game G. (cycles) in any subset of comparable elements of D
- There are two ways (d', d) can be non-comparable w.r.t \succ_{σ} :
 a) there may be no communication between d' and d, b) there may be a *loop* (cycle) between d' and d.
- **Definition:** No Loop Condition $d' \not\succ_{\sigma} d$ and $d' \neq d$ iff and $\forall x' \in X \ \rho(d|(d',x'),\sigma(d',x')) = 0$.

Bargaining over a stochastically shrinking pie

Notice that d_2 and d_3 are not comparable under the induced partial order \succ_{σ} . However the no-loop condition is satisified.

Bargaining over a shrinking/growing pie

This game induces the same partial order on D, \succ_{σ} , but the no-loop condition fails due to the loop (cycle) between d_2 and d_3 .

Intro

Consistency in Induced Partial Orders and DDGs

• **Definition** If σ and σ' are two feasible, Markovian strategies of \mathcal{G} , we say the induced partial orders of D are *consistent* if

$$d' \succ_{\sigma} d \Longrightarrow d \not\succ_{\sigma'} d'$$

 Essentially, the two strategies should not induce contradicting partial orders

Definition of the Dynamic Directional Games

Definition (DDG)

A *Dynamic Directional Game* (DDG) is a finite state Markovian game \mathcal{G} that satisfies the following two conditions:

- ullet Every feasible, Markovian strategy σ satisifies the No-Loop Condition
- **2** Every pair of feasible, Markovian strategies σ and σ' induce consistent partial orderings, \succ_{σ} and $\succ_{\sigma'}$, respectively.

Next: Stages and stage games

- Strategy independent partial order over D
- DAG to represent the directionality of the game
- Recursion on the game DAG to form partition of totally ordered subsets of D
- Stages on the state space and induced subgames of DDG
- ⇒ Definition of the stage games of DDG

Strategy-Independent Partial Order for a DDG

- **Definition** Let \succ_{σ} and $\succ_{\sigma'}$ be two strategy-induced partial orders of D. We say that $\succ_{\sigma'}$ is a *refinement* of \succ_{σ} *iff* $\forall d, d' \in D$ we have $d' \succ_{\sigma} d \Longrightarrow d' \succ_{\sigma'} d$
- Definition Let {≻_σ | σ ∈ Σ(G)} be a set of partial orders of D induced by the set of all feasible Markovian strategies in the game G, Σ(G). Then let ≻_G be the join (or coarsest common refinement) of the set of partial orders {≻_σ | σ ∈ Σ(G)}.
- Theorem The join partial order $\succ_{\mathcal{G}}$ exists, is strategy-independent, and equals the transitive closure of the union of the partial orders in the set $\{\succ_{\sigma} | \sigma \in \Sigma(\mathcal{G})\}$.