Machine Learning Bootcamp IDUG NA 2019: June 6, 2019

Mark Ryan mryan@ca.ibm.com Jason Shayer shayer@ca.ibm.com Steve Darling darling@ca.ibm.com Roger Sanders roger.sanders@us.ibm.com

What is Machine Learning?

Artificial Intelligence (AI)

Human intelligence exhibited by machines

- Reasoning
- · Natural Language Processing (NLP)
- Planning

Machine Learning (ML)

An approach to achieve Al

- Gradient Boosting Machine (GBM)
- Support Vector Machine (SVM)
- Logistic Regression
- · Factorization Machines (FM)
- Field-aware Factorization Machines (FFM)

Deep Learning (DL)

A technique for implementing ML

- Deep Neural Networks
- Deep Belief Networks
- Recurrent Neural Networks

Where are we in the lifecycle of Machine Learning?

1770's:

- Watt's stationary engine
- Capital-intensive oneoff applications

ML era: late 2000s

1829:

- Stephenson's Rocket
- Standardization and regular service

ML era: 2019

1941:

- Alleghany locomotive
- Apex of steam technology ML era: 5-10 years from now?

What is Machine Learning?

Classical Programming

Machine Learning

Customer churn: use case to illustrate machine learning

- **Customer churn**: when a customer ends their relationship with a business
- **PROBLEM**: You need to predict which of your customers are loyal and which are at risk of churning
- **SOLUTION**: Use data you have about clients to build a model that can predict whether a given client is going to churn

Customer Churn: the game plan

1

Solve the customer churn problem using <u>Modeler</u>

2

Solve the customer churn problem using Python

The model predicts that this client will churn

MonthlyCharges TotalCharges InternetService PaymentMethod OnlineSecurity Contract tenure

0 90.5 1791.5 Fiber optic Credit card (automatic) No Month-to-month 20.0

3

Define a <u>pipeline</u> in Python to predict if a client will churn

Customer churn: dataset

- CSV (comma separated values) file with ~7k records; 21 columns
- Numeric columns: tenure, MonthlyCharges, TotalCharges
- Categorical columns: gender, SeniorCitizen, Partner...
- Target / Label: Churn

customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBac	DevicePro	TechSup
7590-VHVEG	Female	0	Yes	No	1	No	No phone serv	DSL	No	Yes	No	No
5575-GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	No	Yes	No
3668-QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	Yes	No	No
7795-CFOCW	Male	0	No	No	45	No	No phone serv	DSL	Yes	No	Yes	Yes
9237-HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	No	No	No
9305-CDSKC	Female	0	No	No	8	Yes	Yes	Fiber optic	No	No	Yes	No
1452-KIOVK	Male	0	No	Yes	22	Yes	Yes	Fiber optic	No	Yes	No	No
6713-OKOMC	Female	0	No	No	10	No	No phone serv	DSL	Yes	No	No	No
7892-POOKP	Female	0	Yes	No	28	Yes	Yes	Fiber optic	No	No	Yes	Yes
6388-TABGU	Male	0	No	Yes	62	Yes	No	DSL	Yes	Yes	No	No
9763-GRSKD	Male	0	Yes	Yes	13	Yes	No	DSL	Yes	No	No	No

Customer churn: preparing the dataset for ML

Original dataset

Think 2019 / DOC ID / Month XX, 2019 / © 2019 IBM Corporation

Customer churn: preparing the dataset for ML

Original dataset

Pick the 8 columns used for the model:

- tenure
- InternetService
- OnlineSecurity
- Contract
- PaymentMethod
- MonthlyCharges
- TotalCharges
- Churn

Customer churn: the pipeline

Original dataset

customerID	gender	SeniorCitizen Partne	er Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBac	DevicePro	TechSup
7590-VHVEG	Female	0 Yes	No	1	No	No phone serv	DSL	No	Yes	No	No
5575-GNVDE	Male	0 No	No	34	Yes	No	DSL	Yes	No	Yes	No
3668-QPYBK	Male	0 No	No	2	Yes	No	DSL	Yes	Yes	No	No
7795-CFOCW	Male	0 No	No	45	No	No phone serv	DSL	Yes	No	Yes	Yes
9237-HQITU	Female	0 No	No	2	Yes	No	Fiber optic	No	No	No	No
9305-CDSKC	Female	0 No	No	8	Yes	Yes	Fiber optic	No	No	Yes	No
1452-KIOVK	Male	0 No	Yes	22	Yes	Yes	Fiber optic	No	Yes	No	No
6713-OKOMC	Female	0 No	No	10	No	No phone serv	DSL	Yes	No	No	No
7892-POOKP	Female	0 Yes	No	28	Yes	Yes	Fiber optic	No	No	Yes	Yes
6388-TABGU	Male	0 No	Yes	62	Yes	No	DSL	Yes	Yes	No	No
9763-GRSKD	Male	0 Yes	Yes	13	Yer	No	DSL	Yes	No	No	No

Split Dataset into Train & Test

Deal with missing values

Deal with outliers

Scale continuous values

Deal with string values

Logistic Regression model

Pipeline:

- Train the data preparation steps and the model in one operation
- Apply pipeline to get a churn / no churn prediction for a given client
 - Performs data prep on client's data
 - Applies model to get a prediction

Machine learning models: Logistic Regression

- Classification: churn / no churn
- Extension of linear regression
 - simplest algorithm; used to predict continuous values
 - e.g. predict house price from # of bedrooms, sq. ft, frontage
- Logistic regression is "geared" to output between 0 and 1
 - treat 0.5 as the boundary

Machine learning models: Logistic Regression

- Define function: $\hat{\mathbf{Y}} = \mathbf{h} = \mathbf{sigmoid}(\mathbf{X}\boldsymbol{\theta})$
 - $\hat{\mathbf{Y}}$ is the prediction (predicted churn values)
 - X is the input
 - θ is an array of weights

Sigmoid(z) =	1
Signiola(2) =	$\overline{1+e^{-z}}$

Not quite!

MonthlyCharges	TotalCharges	InternetService	PaymentMethod	OnlineSecurity	Contract	tenure
29.85	29.85	DSL	Electronic check	No	Month-to-month	1
56.95	1889.50	DSL	Mailed check	Yes	One year	34
53.85	108.15	DSL	Mailed check	Yes	Month-to-month	2
42.30	1840.75	DSL	Bank transfer (automatic)	Yes	One year	45
70.70	151.65	Fiber optic	Electronic check	No	Month-to-month	2

Chu	rn
١	No
١	10
Y	es
١	10
Y	es

Machine learning models: the secret sauce

• Define a **loss function** (delta between predictions $\hat{\mathbf{Y}}$ and actual values \mathbf{Y}):

$$h = g(X\theta)$$

$$J(\theta) = \frac{1}{m} \cdot \left(-y^T \log(h) - (1 - y)^T \log(1 - h) \right)$$

- Repeatedly update **0** (weights):
 - 1. Calculate the *partial derivative* of the loss function with respect to the weights = $\mathbf{X}(\mathbf{\hat{Y}} \mathbf{Y})$
 - 2. Update the weights by subtracting the partial derivative
- What does making updates to the weights based on "the slope" of the loss function do?
- With these repeated updates to the weights, the loss function gets minimized and the accuracy of the model gets maximized

Machine learning models: all values must be numeric!

Y

					•
Contract	OnlineSecurity	PaymentMethod	InternetService	TotalCharges	MonthlyCharges
Month-to-month	No	Electronic check	DSL	29.85	29.85
One year	Yes	Mailed check	DSL	1889.50	56.95
Month-to-month	Yes	Mailed check	DSL	108.15	53.85
One year	Yes	Bank transfer (automatic)	DSL	1840.75	42.30
Month-to-month	No	Electronic check	Fiber optic	151.65	70.70
	Month-to-month One year Month-to-month One year	No Month-to-month Yes One year Yes Month-to-month Yes One year	Electronic check No Month-to-month Mailed check Yes One year Mailed check Yes Month-to-month Bank transfer (automatic) Yes One year	DSL Electronic check No Month-to-month DSL Mailed check Yes One year DSL Mailed check Yes Month-to-month DSL Bank transfer (automatic) Yes One year	29.85 DSL Electronic check No Month-to-month 1889.50 DSL Mailed check Yes One year 108.15 DSL Mailed check Yes Month-to-month 1840.75 DSL Bank transfer (automatic) Yes One year

data preparation

MonthlyCharges	TotalCharges	InternetService	PaymentMethod	OnlineSecurity	Contract	tenure
-1.160323	-0.992611	0	2	0	0	-1.277445
-0.259629	-0.172165	0	3	2	1	0.066327
-0.362660	-0.958066	0	3	2	0	-1.236724
-0.746535	-0.193672	0	0	2	1	0.514251
0.197365	-0.938874	1	2	0	0	-1.236724

Chu	ırn
	0
	0
	1
	0
	1

Machine learning models: Logistic Regression

- Define function: $\hat{\mathbf{Y}} = \mathbf{h} = \mathbf{sigmoid}(\mathbf{X}\boldsymbol{\theta})$
 - $\hat{\mathbf{Y}}$ is the prediction (predicted churn values)
 - X is the input
 - θ is an array of weights

Sigmoid(z) =	1
Sigmolu(2) –	$\overline{1+e^{-z}}$

yes!

MonthlyCharges	TotalCharges	InternetService	PaymentMethod	OnlineSecurity	Contract	tenure
-1.160323	-0.992611	0	2	0	0	-1.277445
-0.259629	-0.172165	0	3	2	1	0.066327
-0.362660	-0.958066	0	3	2	0	-1.236724
-0.746535	-0.193672	0	0	2	1	0.514251
0.197365	-0.938874	1	2	0	0	-1.236724

Ch	urn
	0
	0
	1
	0
	1

Customer churn: exercising the model

- <u>churn match modeler-scoring.ipynb</u> to exercise the model in a notebook
- <u>full-blown Python</u> project to deploy and <u>exercise the model</u>:

Machine learning: more background

- Overall:
 - Andrew Ng machine learning intro course:
 https://www.coursera.org/learn/machine-learning
 - Fast.ai deep learning course: https://course.fast.ai/
- Details:
 - Sklearn pipelines: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
 - Logistic Regression math & implementation in Python: https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html
 - Articles on a variety of machine learning topics: https://medium.com/@markryan 69718

