Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Katedra Automatyki

LABORATORIUM Elektronika z techniką mikroprocesorową

Ćwiczenie nr 8 – TI Zestaw 4		
Wydział EAIIB Kierunek AiR rok II	Laboratorium 5	Czwartek 15:30
LP.	lmię i nazwisko	Data wykonania ćwiczenia 28.05.2015
1.	Łukasz Radzio	
2.	Dawid Legutki	
3.	Bartłomiej Czapla	

1.1) Wstęp

Ćwiczenie składa się z dwóch części. Pierwsza polega na zbadaniu charakterystyk logarytmicznych modułu i fazy dla czterech filtrów: dolno-przepustowego, górno-przepustowego, pasmowo-przepustowego oraz pasmowo-zaporowego. Druga część z kolei miała na celu przefiltrowanie sygnału prostokątnego w taki sposób aby na wyjściu układu otrzymać podstawową harmonikę fali wejściowej.

1.2) Schemat

Punkty pomiarowe:

- U1 filtr pasmowo przepustowy (Band Pass Filter)
- U2 filtr dolno-przepustowy (Low Pass Filter)
- U3 filtr górno-przepustowy (High Pass Filter)
- U4 filtr pasmowo-zaporowy (Band Stop Filter)

2.1) Filtr pasmowo-zaporowy

2.2) Filtr górno-przepustowy

2.3) Filtr dolno-przepustowy

2.4) Filtr pasmowo-przepustowy

2.5) Wnioski

- Punkty pomiarowe pokrywają się z wynikami symulacji. Lekkie odstępstwa można wytłumaczyć błędami pomiarowymi.
- Pasmo przepuszczania dla każdego filtra ma wzmocnienie -6,85 dB, czyli $\frac{1}{2,2} \approx 0,455$
- Powyższa własność jest wynikiem tego, że rezystor na wejściu ma wartość 2,2kOm, a pozostałe 1kOm, podstawiając te wartości do wzorów na transmitancje poszczególnych filtrów otrzymuje się zmierzone wzmocnienie.