Reduction from 3 SAT to Subset Sum

CS 4820—March 2015

Eva Tardos

Problem subset sum. Given a set of integers w_1, \ldots, w_n and a target sum W. The problem asks to decide if these is a subset $S \subset \{1, ..., n\}$ such that $\sum_{i \in S} w_i = W$. Please also read the discussion in Section 8.8 in the book about the role of large numbers in computation.

Theorem. Subset sum is NP-complete.

First we note that SUBSET SUM is in NP. Given a set S, it takes up to n additions to check that the sum $\sum_{i \in S} w_i$ is indeed equal to W, and addition can be done in polynomial time. The total time is $\sum_i O(\log w_i)$.

To prove that Subset Sum is NP-complete we will show that it is at least as hard as 3-SAT. Claim. 3-SAT \leq_P SUBSET SUM.

Proof. Consider a 3-sat formula with n variables x_1, \ldots, x_n and m clauses c_1, \ldots, c_m . We need to define numbers w_i and a target sum W that is equivalent to this 3-sat problem. We will start by having two numbers a_i and b_i associated with each variable x_i where including a_i will correspond to setting x_i true, and including b_i will correspond to setting x_i false. To do this, let

$$a_i = 10^{m+i} + \sum_{j:c_j \text{contains } x_i} 10^j$$

$$b_i = 10^{m+i} + \sum_{j:c_j \text{contains } \bar{x}_i} 10^j$$

$$b_i = 10^{m+i} + \sum_{j:c_j \text{contains } \bar{x_i}} 10^j$$

Now consider a satisfying assignment, and the corresponding subset of the numbers so far, containing a_i when $x_i = 1$ and containing b_i when $x_i = 0$.

Claim. The resulting sum has the following form

- has a 1 in the leaning *n* digits, corresponding to 10^{m+i} for i = 1, ..., n as we included one of a_i or b_i for each i.
- 1, 2, or 3 in the next m digits, the digit of 10^{j} is exactly the number of true literals in clause j, and that is nonzero if the assignment satisfies the 3-sat formula.
- 0 in the final digit.

To turn this into a subset sum problem, we add a few more numbers. Let W = $\sum_{i=1}^{n} 10^{m+i} + 3\sum_{j=1}^{m} 10^{j}$, and add $c_j = d_j = 10^{j}$ for j = 1, ..., m to the numbers a_i and b_i defined above. We claim that this subset sum is solvable if and only if the 3-sat is satisfiable.

• If 3-sat satisfiable, select the number a_i if $x_i = 1$ in the satisfying assignment, and b_i if $x_i = 0$ in the satisfying assignment. By the claim above this gets the leading n digits of W correct. To make the remaining digits we may need to add c_i or both c_i and d_i depending if the digit of 10^{j} is 3, 2, or 1.

• Finally, we need to prove that any solution to the subset sum problem corresponds to a solution to the 3-sat problem. First note that for any digit 10^k there are at most 5 numbers with a 1 in that digits, the three literals corresponding to the clause k (if $k \le m$), and c_k and d_k (and at most 2 if k > m). With only 5 ones in any positions, so subset S of these numbers will cause any carries in addition, so we can only get the total of W by including the right number of 1s in any digit. To do this one needs to include exactly one of a_i or b_i , and the corresponding truth assignment needs to satisfy the formula, so each position $1 \le j \le m$ we get at least one digit 10^j . We can then add c_i and d_i to increase the digit to 3, as required by W.