	CONIC SECTIONS
7	Da 11000 (410
	DR MAGDA CARR
	TEL: 3715
	RM: 319
	EMAIL: Magda. carr
	OVERVIEW ITIME TABLE
	LI (MON) SMETCHELE COLLE SECTIONS
	SKETCHING CODIC SECTIONS
	bush la
1	- eg * of ellipse hyperbola parabola
-	for the soft
	PI (WED)
	Examples class based on LI
	62 (FRI) + L3 (WED)
	GEOMETRIC DEFT OF CONIC SECTIONS
	- parabola
	- ellipse
	- parabola - ellipse - hypebola
	ECCENTRICITY + DIRECTRICES
	P7 (FAI)
	Problems based on L2 + L3.
	T1: Pradice in Section conic sections - based on LI+PI,
	- based on LI+PI.
	T2: Pradice in geometric interpretular book on 12 + 13.
	bold on LZ + L3.

DECENERATE CONIC SECTIONS: THE POINT AND LINES OBTAINED BY PASSING A PLANE TUROUGH THE CONES VERTEX. POINT: PLANE THAN CONG VERTEX ON 67 STRAICUT LINE: PAIR OF INTERSECTINE PLANE TANGENT LINES TO CONE

Note that

(3) =>
$$y = \pm b / \frac{x^2}{a^2}$$

$$\begin{array}{c|c}
\bullet & \text{lfm} & \left[\begin{array}{ccc} +b & \sqrt{\frac{x^2}{a^2}} & -1 & +\frac{b}{a} & x \end{array} \right] = 0 \\
\times \rightarrow \infty & \left[\begin{array}{ccc} +b & \sqrt{\frac{x^2}{a^2}} & -1 & +\frac{b}{a} & x \end{array} \right] = 0$$

o IJ l'he -ve sign in 3 appears with the

$$\frac{-x^2}{a^2} + \frac{g^2}{b^2} = 1 \qquad (4)$$

then the asymptotes are still y = ± bx

a

but the hyperbola crosses the y axis

at ± b and it does not cross the x axis

(4) THE PARABOLA

· Equations of the form

$$\frac{(\chi - \lambda)^{2} - (y - k)^{2}}{a^{2}} = 1$$

$$= (\chi - \lambda)^{2} + (y - k)^{2} = 1$$

$$-\frac{(x-h)^{2}}{a^{2}} + \frac{(y-k)^{2}}{b^{2}} = 1$$

describe hyperbolas with centre (h, k).

To sketch (them draw the rectangle with centre (h, k) crossing at right angles the Z-axis at $z = \pm a$ and the $z = \pm a$ and the $z = \pm a$ and $z = \pm a$

Draw + extend the diagonals of the redargle + proceed at above.

1.4) TUE PARABOLA The curves $g = 4 \times^2$, $g = - \times^2$, $x = \frac{1}{4} g^2$, $x = -4 y^2$ are parabolas with vertices at the origin (1, 4) (1, -1) $y = 4x^2$ $y = -x^2$ $y = \frac{1}{4}y^2$ x = -4y2 The site of the co-off of the quadratic tem controls how just the parabola "opens" If the vertex of a parabola $y = cx^2$ (le = const) is moved to (h,k) the ega describing it is given by $y-k=c(x-L)^2$ Similarly x=y2 -> x-L=c(y-k)2] The sign of c determines the dir! in which the parabola "opens" and ICI controls how quickly it opens. Any polynomial egt in & and y that is quadratic in one of the variables + linear line the other describes a parabola.