Solar Power Rechargeable LED LAMP **TQ Systems** By: Ta'Ziyah Wright **Quinton Driggs** 

## Overview

- o The Problem
- Initial Designs
- Proposed Designs
- Issue Faced
- o Costs
- O Summary

#### Problem:

- Small remote village with limited electricity
- Objective is to develop cleaner, safer portable lighting for the villagers
- Must be efficient, use rechargeable batteries, and low cost

## Initial Designs (Trade Studies)

- Op-amp into MOSFET (trade #1)
- Voltage divider into npn transistor (trade #2)
- Traditional desk lamp packaging

Trade #1



Trade #2



Lighting Enclosure



#### Difficulties

- Designing the circuit
- Making the circuit efficient
- Assembling the prototype

# Proposal Design: Packaging



### Proposed Design Electrical



## LEDs and Batteries

- Cool White LED BA9s 1.2 W
- Batteries are 18650, 3.7 V, 9900mAh

## Costs:

# Total: \$27.05

| LEDs              | 1 | \$3.99 | \$3.99  |
|-------------------|---|--------|---------|
| Battery           | 2 | \$5.50 | \$11.00 |
| Light Bulb Socket | 1 | \$1.80 | \$1.80  |
| SWITCH ROCKER     | 1 | \$1.72 | \$1.72  |
| 2x2 Protoboard    | 1 | \$2.59 | \$2.59  |
| Box for Base      | 1 | \$1.99 | \$1.99  |
| LDR 30-50k Ohm    | 1 | \$2.78 | \$2.78  |
| 3-D Printed Base  | 1 | \$3.00 | \$3.00  |

## Prices for 1000 parts

- \$2.80 for full plastic mold each
- \$3.62 each for batteries
- \$22.98 total for each
- \$22,980 for 1000

#### Summary:

- Lasts up to 60 hours
- 96% efficient
- Safe and easy to use