10 Cuestiones de TEORIA (6 puntos) . Puntuación: BIEN:+0.6 puntos. MAL: -0.15 puntos, N.C: 0

- 1. Dado el circuito recortador de la figura, si en Ve se conecta una señal senoidal que varía entre -7V y 7V, ¿Cuál de las siguientes afirmaciones sobre Vs es **CORRECTA**? (Supóngase $V_{\gamma} = 0.7V$ para ambos diodos)
 - [A] Vs=3.7V cuando Ve > 3.7V
 - [B] Vs=3.7V cuando Ve > 2.3V
 - [C] Vs=-2.3V cuando Ve < -2.3V
 - [D] Vs=-3V cuando Ve < -3V

2. Para el circuito de la figura se han representado las curvas características del transistor y la recta de carga del circuito. Indique cuál de las siguientes afirmaciones es **FALSA**: (Datos: $R_B = 100k\Omega$; $V_{BE(ON)} = 0.7V$; $V_{CE(SAT)} = 0.2V$)

- [A] $V_{CC} = 8V$
- [B] $R_C = 4k\Omega$
- [C] $\beta = 500$
- [D] Para una V_{BB} de 3.7 V, se tiene V_{CE} = 2V
- 3. Para el circuito siguiente, Indique la respuesta FALSA:
 - [A] Si Ve < 2 V el diodo LED no conduce ni emite luz.
 - [B] Si Ve > 1V circula corriente por el diodo, pero no por el LED.
 - [C] Si Ve=22V el LED brilla de forma adecuada.
 - [D] Si ambas resistencias fuesen de 500 Ohm y la Ve = 12V, la corriente por los dos diodos sería exactamente de 10 mA.

- 4. Acerca de los transistores MOSFET, es FALSO afirmar que:
 - [A] Permiten una alta densidad de integración (VLSI).
 - [B] Los circuitos digitales basados en MOSFET presentan un bajo consumo.
 - [C] Tienen una muy alta impedancia de entrada.
 - [D] Son más lineales que los BJT.

- 5. Acerca del transistor MOSFET de canal N, señale la respuesta FALSA.
 - [A] En la zona de saturación, la corriente aumenta cuadráticamente en función de V_{GS}-V_T .
 - [B] En la zona óhmica, la R_{ON} equivalente es menor cuanto mayor es V_{GS} .
 - [C] El límite entre la zona óhmica y la de saturación viene dado por la ecuación: V_{DS}=V_{GS}-V_T.
 - [D] La saturación se produce cuando V_{DS}≤V_{GS}-V_T.
- 6. En el circuito de polarización de la figura, indique la afirmación **CORRECTA** acerca de la zona de funcionamiento del transistor MOSFET. (Parámetros del transistor: V_T = 2V, K = 2mA/V²)

- [B] El transistor está en la Zona Activa.
- [C] No es posible determinar la zona de funcionamiento. Los datos son insuficientes.
- [D] El transistor se encuentra en el límite entre zona Ohmica y Saturación.

7. Dado el siguiente circuito recortador a dos niveles. Indique el punto de trabajo de cada diodo sabiendo que Vi= -3.7V ; R=1 k Ω y V γ =0.7V para ambos diodos.

[A]
$$D1(V_{AK}=-8.7V,I_{AK}=0mA)$$
, $D2(V_{AK}=-3.7V,I_{AK}=0mA)$

[B]
$$D1(V_{AK}=5.7V,I_{AK}=2mA), D2(V_{AK}=-0.7V,I_{AK}=0mA)$$

[C]
$$D1(V_{AK}=-5.7V,I_{AK}=2mA), D2(V_{AK}=-3.7V,I_{AK}=0mA)$$

[D]
$$D1(V_{AK}=-5.7V,I_{AK}=0mA), D2(V_{AK}=0.7V,I_{AK}=3mA)$$

8. En el circuito con transistor de la figura, y para los datos que se indican, calcule la β del transistor.

Datos: V1=3.7V, Vcc=8V, V_{CE} =4V, R1=150k Ω , R2=0.4 k Ω , $V_{BE(ON)}$ =0.7V

[A]
$$\beta = 650$$

[B]
$$\beta = 500$$

[C]
$$\beta = 100$$

- 9. ¿En el circuito con BJT de la figura, ¿Cuál es la mínima resistencia R_C para que el transistor esté saturado?
 - [A] $R_{C} = 323\Omega$
 - [B] $R_{\rm C} = 223\Omega$
 - [C] $R_C = 123\Omega$
 - [D] $R_C = 183\Omega$

- 10. Indique los niveles de tensión mínima y máxima de la salida Vs en el inversor lógico de la figura si Vi es una onda cuadrada con valores mínimo y máximo de 0V y 5V. [Suponga que en la zona óhmica la $R_{DS(ON)}$ equivalente del MOSFET se puede aproximar por: $R_{DS(ON)} \approx 1/(2K(V_{GS}-V_T))$]
 - [A] 5V y 0.05V
 - [B] 5V y 0.2V
 - [C] 3V y 0.01V
- [D] 3V y 0.2V

PAGINA INTENCIONADAMENTE EN BLANCO

Apellidos: Nombre:

PROBLEMA (4 PUNTOS)

El circuito de la siguiente figura utiliza un transistor MOSFET cuyas curvas características y recta de carga del circuito se muestran en la gráfica de la derecha. Sabiendo que el valor de la V_T del transistor es de 1V, se pide:

A. (0.5puntos) Obtenga el valor de la transconductancia K del MOSFET. Justifique la respuesta.

B. (0.5puntos) ¿Cuál será el valor de la tensión de alimentación Vdd del circuito?. **Justifique la respuesta.**

C. (0.5puntos) Calcule el valor de la resistencia Rd. **Justifique la respuesta**.

D. (1punto) Si se aplican 3V a la entrada Ve del circuito, ¿Cuál será el Punto de Trabajo del MOSFET?. **Calcule** V_{GS} , V_{DS} e I_{DS} y **compruebe** la zona de funcionamiento del transistor.

E. (1punto) Si se desea utilizar el circuito anterior como una puerta lógica inversora y aplicamos a la entrada una tensión Ve=10V, ¿Cuál será el valor de la tensión de la salida correspondiente (V_{OL}) ?. Nota: puede utilizarse la ecuación de la zona óhmica simplificada: $R_{ON}=1/(2 \text{ K } (V_{GS}-V_T))$

F. (0.5puntos) Si añadimos dos transistores más al circuito tal como se indica en la figura siguiente, obtendremos una nueva puerta lógica con tres entradas A B y C. **Indique** cuál es la expresión lógica de esta función F(A,B,C) y **calcule** cuál será el valor de la tensión de salida Vs para la combinación de entradas A=10V, B=10V y C=10V.

DNI

	0	_0_	_ 0 _	_0_	_ 0_		_0
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4
5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9

1 - - - -

2 __ _ _ _ _

С

8 🗆 🗆 🗆 b c

9 __ _ _ _

10 ___ __ __

ETSINF - Tco

Examen Primer parcial - 05/04/2017

Apellidos

Marque así Así NO marque

NO BORRAR, corregir con Typex