

AI ASIC: Design and Practice (ADaP) Fall 2023 Memory Technologies

燕博南

Introduction

- Memory Types
- Memory Organization
- ROM design
- RAM design
- PLA design

Read-Writ	te Memory	Non-Volatile Read-Write Memory	Read-Only Memory				
Random Access	Non-Random Access	EPROM E ² PROM	Mask-Programmed Programmable (PROM)				
SRAM DRAM	FIFO LIFO Shift Register CAM	FLASH RRAM MRAM PCM					

Memory Spatial Abstraction

Too many select signals: N words == N select signals

Intuitive architecture for N x M memory Decoder reduces the number of select signals $K = log_2 N$

Memory Timing Behavior

Memory Timing Behavior

Memory Timing Behavior / Compute-In-Memory

- Add additional (compute mode) inputs
- Perhaps additional address bits

Memory Architecture

How it can achieve large capacity?

Jain, Pulkit, et al. "13.2 A 3.6 Mb 10.1 Mb/mm 2 embedded non-volatile ReRAM macro in 22nm FinFET technology with adaptive forming/set/reset schemes yielding down to 0.5 V with sensing time of 5ns at 0.7 V." 2019 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2019.

Memory Address

Each memory I/O bit width is 128bit

For 1Mb memory, what is the range of memory address?

1Mb/128b = $(2^{20} \text{ bit})/(2^7 \text{ bit})$ = 2^{13}

13-wire address is necessary

Memory Architecture (inside a memory block)

Assume 1Mb is one subarray

Configuration:

- Memory I/O bit width is 128b
- 1Mb/subarray
- Address width: 13b

How get 4Mb memory?

Hierarchical Memory Architecture

Advantages:

- Shorter wires within blocks
 Block address activates only 1 block => power savings

- Read-Only-Memory (ROM)
- Random-Access-Memory (RAM): Read/Write Memory
 - SRAM
 - DRAM

Before we introduce them, think first: what are good memories?

Density, R/W Speed, Endurance, Retention, Nonvolatility, ...

- Read-Only-Memory (ROM)
- Random-Access-Memory (RAM): Read/Write Memory
 - SRAM
 - DRAM

ROM Cells

MOS ROM Example

- 4-word x 6-bit ROM
 - Represented with dot diagram
 - Dots indicate 1's in ROM

Looks like 6 4-input pseudo-nMOS NORs

Word 0: 010101

Word 1: 011001

Word 2: 100101

Word 3: 101010

Decreasing Word Line Delay

(a) Driving the word line from both sides

(b) Using a metal bypass

- Read-Only-Memory (ROM)
- Random-Access-Memory (RAM): Read/Write Memory
 - SRAM
 - DRAM

☐ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

□ DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

☐ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

□ DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

SRAM 6T Cell

Push Rule: special design rule for SRAM Transistors

♦ IBM

◆ Intel

SRAM is the first component for foundry to develop

5.6

SRAM Bitcell Array

- Advantage: reduce read disturbance
- Disadvantage: Too large
- Read disturbance:
 - Unexpectedly change bitcell data when read

☐ STATIC (SRAM)

Data stored as long as supply is applied Large (6 transistors/cell)

Fast

Differential

□ DYNAMIC (DRAM)

Periodic refresh required Small (1-3 transistors/cell) Slower Single Ended

DRAM Cell 3T

No constraints on device ratios Reads are non-destructive Value stored at node X when writing a "1" = V_{WWL} - V_{Tn}

Destructive read: after reading, the data bit changes with 100% probabilities

1T DRAM Cell

Write: C_S is charged or discharged by asserting WL and BL.

Read: Charge redistribution takes places between bit line and storage capacitance

$$\Delta V = V_{BL} - V_{PRE} = V_{BIT} - V_{PRE} \frac{C_S}{C_S + C_{BL}}$$

Voltage swing is small; typically around 250 mV.

1T DRAM Cell

- Often offer 10~20 times higher density than SRAM
- Trench capacitor is often in specialized process

Better Density - 3D Integration

Lee, Dong Uk, et al. "22.3 A 128Gb 8-high 512GB/s HBM2E DRAM with a pseudo quarter bank structure, power dispersion and an instruction-based at-speed PMBIST." 2020 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2020.

- eDRAM: embedded DRAM
- DRAM special process (thick oxide/high threshold) is too slow as logic platform
- eDRAM process incorporates compact-size of capacitors to be compatible with processes for logic (regular threshold transistors)

A Practical DRAM Product

Figure 3: 1 Gig x 8 Functional Block Diagram

Source: Micron

CPUs can also use registers, caches and scratchpad memory

Register Files & Cache

Register file: an array of registers

Cache: "transparent memory" to avoid excessive access to DRAM

Registers and Caches are often made of SRAM

registers
cache
main
memory

- If registers are enough, they are all in registers
- If registers are not enough, they need to enter main memory (with an address)
- If "cache hit" happens, they will not go off-chip (large latency/low access bandwidth)


```
module picorv32_regs (
       input clk, wen,
       input [5:0] waddr,
       input [5:0] raddr1,
       input [5:0] raddr2,
       input [31:0] wdata,
       output [31:0] rdata1,
       output [31:0] rdata2
);
       reg [31:0] regs [0:30];
       always @(posedge clk)
               if (wen) regs[~waddr[4:0]] <= wdata;</pre>
       assign rdata1 = regs[~raddr1[4:0]];
       assign rdata2 = regs[~raddr2[4:0]];
endmodule
```

- Is this synthesizable? Yes!
- Do we use synthesis flow to generate memory? Yes!
 - Sometimes we use this, often we use full-custom flow to design register files

Made from SRAM? Requirement: Multiport Read/Write

- How to use this cell to build large array of registers and even a register file?
- ww1, ww2, ww3 control need to be one-hot

Multiport SRAM cell

CPU keeps asking if the data is in the cache:

- If yes, it is a cache hit
- If no, it is a cache miss

Tag: higher 2b address as the tag

To clarify whether the requested word in memory is in the cache

Content-addressable memory (CAM) / associate memory

Direct-associativity & Set-associativity

direct-associative

n-way set-associative

Example of direct- and set-associativity

One-way set associative (direct mapped)

Block	Tag	Data
0		
1		
2		
3		
4		
5		
6		
7		

Two-way set associative

Set	Tag	Data	Tag	Data
0				
1				
2				
3				

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														

Set: increase the cache hit probability

Assumption/Logic behind: Cache miss leads to very long time of data movement

Challenges for Cache Design

Definition: Scratchpad Memory is just embedded "memory".

Embedded memory: memories that are on the chip, i.e. "integrated memory".

- Complex mechanism
- Large area overhead
- Stochastic characteristics
 - Cache miss penalty is too large!

Scratchpad Memory vs. Cache

Definition: Scratchpad Memory is just embedded "memory".

Review for Memory

- Memories
 - Operations: Read, Write
 - Basic circuits: bitcell array, column/row decoders, sense amplifiers (SA)
 - Hierarchy:
 - registers, cache, scratchpad memory, main memory
 - Memory technologies:
 - Transistor-based ROMs, SRAM, DRAM, eNVM (embedded nonvolatile memory)
 - Other concepts:
 - cache miss, cache hit, address space