Imie i nazwisko studenta grup	 data	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3		
W1	2	6	1		
W2	3	1	9		

W okresie planowania maszyny M1 są dostępne przez 50, M2 przez 25 i M3 przez 70 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 8 i *c*2 = 3 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt P1 odpowiadający rozwiązaniu optymalnemu. Odczytać współrzędne punktu P1 i obliczyć wartość funkcji celu Q1.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne P2 za pomocą AMPL. Otrzymane rozwiązanie P2 należy porównać z rozwiązaniem P1 otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 8 zł na 38 plan produkcji P2 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji P3 stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem P2.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 80 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 4 i c4 = 9 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	4	2	8
W4	6	1	2

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (50, 25 i 70 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imie i nazwisko studenta	grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	8	4	2
W2	1	2	7

W okresie planowania maszyny M1 są dostępne przez 40, M2 przez 55 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 7 i c2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 7 zł na 98 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 90 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 9 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	1	3	9
W4	5	3	7

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (40, 55 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	М3	
W1	5	9	3	
W2	2	1	9	

W okresie planowania maszyny M1 są dostępne przez 70, M2 przez 60 i M3 przez 90 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 6 i *c*2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 110 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 7 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W3	4	3	6	
W4	8	5	7	

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (70, 60 i 90 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	 ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	7	1	2
W2	1	9	3

W okresie planowania maszyny M1 są dostępne przez 50, M2 przez 50 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 5 i c2 = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 5 zł na 72 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 50 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 7 i c4 = 7 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	1	6	5
W4	2	4	9

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (50, 50 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta .	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	2	6	7
W2	8	5	2

W okresie planowania maszyny M1 są dostępne przez 35, M2 przez 65 i M3 przez 40 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 6 i *c*2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 44 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 30 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 7 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	9	6	3
W4	6	8	4

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (35, 65 i 40 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	1	7	3
W2	6	2	6

W okresie planowania maszyny M1 są dostępne przez 35, M2 przez 35 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 5 i c2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 5 zł na 44 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 8 i c4 = 6 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	6	2	6
W4	7	4	1

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (35, 35 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	1	3	6
W2	7	5	5

W okresie planowania maszyny M1 są dostępne przez 30, M2 przez 65 i M3 przez 80 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 4 i *c*2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 4 zł na 16 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 80 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 5 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	8	7	6
W4	5	6	1

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (30, 65 i 80 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W1	1	8	4	
W2	5	6	7	

W okresie planowania maszyny M1 są dostępne przez 30, M2 przez 70 i M3 przez 70 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 6 i c2 = 7 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 20 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 30 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 9 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	7	7	8
W4	9	6	1

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (30, 70 i 70 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis	prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	6	2	5
W2	1	7	5

W okresie planowania maszyny M1 są dostępne przez 25, M2 przez 55 i M3 przez 80 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 6 i *c*2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 74 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 40 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 7 i c4 = 7 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	3	8	7
W4	3	5	8

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (25, 55 i 80 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocen	a	podpis	prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	2	1	3
W2	3	6	2

W okresie planowania maszyny M1 są dostępne przez 65, M2 przez 60 i M3 przez 50 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 2 i *c*2 = 3 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 2 zł na 11 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 80 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 4 i c4 = 3 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	5	6	3
W4	1	3	2

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (65, 60 i 50 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	7	3	7
W2	2	6	6

W okresie planowania maszyny M1 są dostępne przez 25, M2 przez 30 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 7 i *c*2 = 7 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 7 zł na 51 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
 - 1) Obliczyć wartości c1_max i c1_min bezpośrednio z modelu i porównać z wartościami wyznaczonymi w p. D1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 60 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 9 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	rób/Maszyna M1 M2			
W3	2	8	7	
W4	4	7	8	

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (25, 30 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	1	4	2
W2	5	1	4

W okresie planowania maszyny M1 są dostępne przez 65, M2 przez 35 i M3 przez 90 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 6 i *c*2 = 2 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 18 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
 - 1) Obliczyć wartości c1_max i c1_min bezpośrednio z modelu i porównać z wartościami wyznaczonymi w p. D1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 3 i c4 = 6 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	7	1	6
W4	5	4	1

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (65, 35 i 90 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imie i nazwisko studenta		grupa	 data	ocena	podpis prow.
iiiig i iiazwisko stauciita	•	grupa	uata	occiia	poupis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	9	1	6
W2	1	5	3

W okresie planowania maszyny M1 są dostępne przez 50, M2 przez 20 i M3 przez 70 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 6 i *c*2 = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 92 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 40 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 6 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	1	6	3
W4	3	8	9

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (50, 20 i 70 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	9	5	2
W2	1	3	9

W okresie planowania maszyny M1 są dostępne przez 40, M2 przez 70 i M3 przez 80 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 4 i *c*2 = 4 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 4 zł na 74 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 6 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	1	4	8
W4	6	3	8

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (40, 70 i 80 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

ſ	Wyrób/Maszyna	M1	M2	M3
ſ	W1	4	1	2
ſ	W2	3	8	6

W okresie planowania maszyny M1 są dostępne przez 35, M2 przez 40 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c1* = 4 i *c2* = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 4 zł na 15 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
 - 1) Obliczyć wartości c1_max i c1_min bezpośrednio z modelu i porównać z wartościami wyznaczonymi w p. D1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 70 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 5 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	3	8	6
W4	1	4	6

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (35, 40 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imie i nazwisko studenta		grupa	 data	ocena	podpis prow.
iiiig i iiazwisko stauciita	•	grupa	uata	occiia	poupis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	8	1	2
W2	2	9	6

W okresie planowania maszyny M1 są dostępne przez 45, M2 przez 45 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 4 i c2 = 4 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 4 zł na 34 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 5 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	2	9	8
W4	1	3	9

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (45, 45 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

				<u>-</u>
Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	3	2	4
W2	1	7	5

W okresie planowania maszyny M1 są dostępne przez 25, M2 przez 45 i M3 przez 80 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 7 i c2 = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 7 zł na 32 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 90 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 5 i c4 = 9 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W3	3	8	7	
W4	2	6	5	

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (25, 45 i 80 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imie i nazwisko studenta	grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	W1 5		4
W2	2	7	5

W okresie planowania maszyny M1 są dostępne przez 30, M2 przez 50 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 3 i *c*2 = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 3 zł na 27 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 6 i c4 = 4 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W3	4	7	7	
W4	3	4	7	

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (30, 50 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	oc	ena	р	odpis p	row.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

ſ	Wyrób/Maszyna	M1	M2	M3 6	
ſ	W1	3	1		
ſ	W2	5	8	5	

W okresie planowania maszyny M1 są dostępne przez 70, M2 przez 30 i M3 przez 90 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy c1 = 4 i c2 = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 4 zł na 14 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 80 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 7 i c4 = 5 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	7	8	5
W4	2	8	4

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (70, 30 i 90 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta .	grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W1	4	9	2	
W2	4	3	8	

W okresie planowania maszyny M1 są dostępne przez 65, M2 przez 60 i M3 przez 60 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 3 i *c*2 = 7 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 3 zł na 44 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązani dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 8 i c4 = 3 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W3	6	3	9	
W4	9	2	6	

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (65, 60 i 60 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	. grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu Wi na maszynie typu Mj jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	6	2	1
W2	2	2	2

W okresie planowania maszyny M1 są dostępne przez 55, M2 przez 45 i M3 przez 30 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 7 i *c*2 = 4 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - 1) Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 7 zł na 26 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 30 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 4 i c4 = 9 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	2	2	4
W4	3	2	6

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (55, 45 i 30 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W1	5	2	1	
W2	1	3	5	

W okresie planowania maszyny M1 są dostępne przez 35, M2 przez 50 i M3 przez 40 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 7 i *c*2 = 6 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 7 zł na 62 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 8 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	2	5	5
W4	4	3	6

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (35, 50 i 40 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	grupa	data	ocena	podpis prow.

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3	
W1	9	1	2	
W2	1	6	3	

W okresie planowania maszyny M1 są dostępne przez 60, M2 przez 45 i M3 przez 70 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 7 i *c*2 = 7 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 7 zł na 128 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 60 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 9 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	1	8	5
W4	2	4	6

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (60, 45 i 70 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.

Imię i nazwisko studenta	. grupa	data	ocena	podpis prow.	

Zakład produkcyjny wytwarza dwa wyroby: W1 i W2. Do ich produkcji są potrzebne maszyny trzech typów: M1, M2 i M3, przy czym każdy wyrób wymaga użycia (kolejno) wszystkich typów maszyn. Czas wytwarzania tysiąca sztuk wyrobu W*i* na maszynie typu M*j* jest podany w tabeli (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W1	2	7	1
W2	5	3	6

W okresie planowania maszyny M1 są dostępne przez 65, M2 przez 55 i M3 przez 40 godzin. Przewiduje się, że wyroby będą przynosiły zysk jednostkowy *c*1 = 6 i *c*2 = 5 (złotych za sztukę). Należy opracować plan produkcji wyrobów W1 i W2 zapewniający największy zysk (wielkość produkcji nie musi być całkowitą wielokrotnością tysięcy sztuk).

- A. Sformułować zadanie programowania liniowego ZPL1, którego rozwiązaniem jest szukany plan produkcji.
- B. Rozwiązać zadanie ZPL1:
 - Narysować obszar rozwiązań dopuszczalnych i zaznaczyć jego punkty wierzchołkowe i krawędzie. Narysować dwie lub trzy proste stałej wartości funkcji celu dla różnych wartości tej funkcji, zaznaczyć kierunek wzrostu wartości funkcji celu i wskazać na tej podstawie punkt Q1g odpowiadający rozwiązaniu optymalnemu. Obliczyć współrzędne tego punktu i wartość funkcji celu.
 - 2) Zadanie programowania liniowego ZPL1 zapisać w pliku (tekstowym), a następnie wyznaczyć jego rozwiązanie optymalne za pomocą AMPL. Otrzymane rozwiązanie Q1 należy porównać z rozwiązaniem Q1g otrzymanym w p. B1.
- C. Sprawdzić, czy w przypadku zmiany zysku jednostkowego c1 z 6 zł na 25 plan produkcji Q1 wyznaczony w p. B pozostanie nadal rozwiązaniem optymalnym. W przypadku odpowiedzi negatywnej należy podać, jaki plan produkcji Q1C stałby się optymalnym przy danych wartościach c1 i c2 i o ile większy zysk by zapewniał w porównaniu z planem Q1.
- D. Dla każdego typu maszyn i wyznaczyć eksperymentalnie dodatkowy zysk Δ_i (w stosunku do osiąganego przy planie Q1), jaki można by uzyskać za dodatkową godzinę pracy maszyn typu i. Zwiększyć o 100 godzin dostępność maszyny zapewniającej największy dodatkowy zysk, wyznaczyć rozwiązanie optymalne w tym przypadku, na wykresie zakreskować obszar rozwiązań dopuszczalnych oraz zaznaczyć znalezione rozwiązanie optymalne. Jak zmienił się maksymalny zysk w porównaniu do zysku dla planu Q1.

Problem 2

Problem 2 jest podobny do Problemu 1, z tym że dotyczy produkowania czterech różnych wyrobów. Doszła możliwość produkowania na tych samych maszynach przy tym samym czasie ich pracy dodatkowych wyrobów W3 i W4 (obok wyrobów W1 i W2); wyroby W3 i W4 będą przynosiły zysk jednostkowy c3 = 7 i c4 = 8 (złotych za sztukę). Czas wytwarzania partii tysiąca sztuk wyrobów W3 i W4 jest następujący (w godzinach):

Wyrób/Maszyna	M1	M2	M3
W3	6	3	6
W4	9	3	4

Należy opracować plan produkcji Q2 czterech wyrobów W1, W2, W3 i W4 zapewniający największy zysk, posługując się modelem utworzonym w AMPL. Wyznaczony plan Q2 i odpowiadającą mu wartość funkcji celu porównać z planem optymalnym Q1 dla Problemu 1 sprawdzając, czy zysk całkowity zmniejszył się czy zwiększył, czy wyroby W3 i W4 zostały włączone do planu produkcji Q2 i czy charakter zmian zysku jest logicznie uzasadniony.

Problem 3

Sformułować zadanie programowania matematycznego (ZPL3) dla Problemu różniącego się od Problemu 1 w następujący sposób: 1) maszyny nie "są dostępne" lecz "muszą być obciążone" produkcją wyrobów *W1* i *W2* przynajmniej przez podany czas (65, 55 i 40 godzin); 2) współczynniki c1 i c2 wyrażają nie zysk jednostkowy, lecz koszt jednostkowy; 3) trzeba znaleźć plan produkcji o najniższym koszcie całkowitym. Na rysunku wykonanym w p. B 1 zaznaczyć obszar rozwiązań dopuszczalnych zadania 3 i w oparciu o wyznaczony kierunek spadku wartości funkcji celu wskazać punkt Q3g będący rozwiązaniem optymalnym zadania 3. Rozwiązać zadanie ZPL3 posługując się modelem utworzonym w AMPL i porównać otrzymane rozwiązanie optymalne Q3 z rozwiązaniem Q3g.