

Types of Mobile App

NATIVE APPS

-Designed for ios and android -utilizes swift or objective-C for ios -java and kotlin

-java and kotlin for android -offers full access to device

PROGRESSIVE WEB APPS

-Designed for use across different platforms
-Limited access to device features

HYBRID APPS

-Developed using web technologies (html, css, javascript) -cross platform compatability -limited acces to device features

Java/Kotlin:

Used for Android app development. Kotlin is now the preferred language by Google for Android development due to its modern features and interoperability with Java.

Swift/Objective-C:

Used for iOS app development. Swift is the newer and preferred language by Apple for iOS development due to its safety features and performance improvements over Objective-C.

Mobile app programming languages

JavaScript/TypeScript:

Commonly used for hybrid app development using frameworks like React Native or Ionic.

Dart:

Used for developing mobile apps with the Flutter framework, which allows for building apps for both iOS and Android from a single codebase.

Mobile App Development Frameworks

React Native:

Language: JavaScript/TypeScript

Flutter:

Language: Dart

Xamarin:

Language: C# with .NET framework

Nativescript:

Javascript/Typescript

Ionic:

Language: HTML, CSS, JavaScript/TypeScript

4.1 MOBILE APPLICATION ARCHITECTURE

DEFINITION

 Mobile App Arch it's a structural design and organization of a mobile app arch that show how the component and module are interconnected and work together to achive a specific goal by in consideration the sustainability, manageability, reusability, security and performance of the mobile app

KEY COMPONENTS

- User Interface (UI)
- App Logic Layer
- Data Layer

EXAMPLE OF MODEL OF MOBILE ARCHITECTURE

1. Monolitic Architecture

Advantage: Simple to develop, test and deploy

Consequence: Lacks flexibility and scalability for complex apps

2. Client-Server Architecture

Advantage: Promotes modularity, parallel workflows

Consequence: Complex to implement for more superficial apps

4. Microservice Architecture

Advantage: Highly scalable. Enables continuous delivery

 Consequence: Complex to create, orchestrate, test and monitor

A. MOBILE APP ARCHITECTURE DIAGRAM: THE MOST COMMON

B. FACTORS TO CONSIDER DURING THE MOBILE APP DESIGN

- Device Characteristic
- Development Framework
- User Interface / User Experience Design (UI/UX Design)
- Navigation
- ...etc

REQUIREMENT

ENGINEERING

Identify stakeholders

Gather initial information

User Personas

Document functional requirements

Document non-functional requirements

Use cases and user stories

Prototyping and mockups

Prioritize Requirements

Review and validation

Traceability and management

Iterative process

Estimating mobile App Development Cost

Define the scope Dev appro ach

Divide app features

Estimate Dev time

Identify resourc es

Dev cost

Design cost

Testing

Mainten ance and support

Continge ncy

Total Cost

Review and Refine