CS 481

Artificial Intelligence Language Understanding

February 23, 2023

Announcements / Reminders

- Please follow the Week 07 To Do List instructions
- PA #01 due on Monday (02/20/23) at 11:59 PM CST
 Thursday (02/23/23) at 11:59 PM CST
- Written Assignment #02 due on Thursday (03/02/23) at 11:59 PM CST

- Exam dates:
 - Midterm: 03/02/2023 during Thursday lecture time
 - Final: 04/27/2023 during Thursday lecture time

Plan for Today

Naïve Bayes classifier

Bag of Words: Document Vector

Pre-defined Vocabulary:								
Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	•••	Word N	

Document A Non-binary Vector [0-word absent >0-word count]:									
6	0	2	3	1	0	• • •	4		

Document B Non-binary Vector [0-word absent >0-word count]:								
4	2	0	0	5	0	• • •	1	

Document C Non-binary Vector [0-word absent >0-word count]:									
0	0	3	0	0	7	• • •	0		

Document vectors can be used to compare documents.

Bag of Words: Classification

category = h(

6
5
4
3
3
2
1
1
1
•••

Bayes' Rule

$$P(y \mid x) = \frac{P(x \mid y) * P(y)}{P(x)}$$

$$P(Category \mid Document) = \frac{P(Document \mid Category) * P(Category)}{P(Document)}$$

$$P(Category \mid Instance) = \frac{P(Instance \mid Category) * P(Category)}{P(Instance)}$$

$$P(Category \mid Sample) = \frac{P(Sample \mid Category) * P(Category)}{P(Sample)}$$

Classification: Conditional Probability

$$P(y \mid x) = \frac{P(x \mid y) * P(y)}{P(x)}$$

$$\mathbf{X} = x_1, x_2, \dots, x_N, \mathbf{SO}$$
: How to calculate?
$$P(y \mid x_1 \land x_2 \land \dots \land x_N) = \frac{P(x_1 \land x_2 \land \dots \land x_N \mid y) * P(y)}{P(x_1 \land x_2 \land \dots \land x_N)}$$
 constant

Naive Bayes Assumption

```
P(x_{1} \land x_{2} \land \dots \land x_{N} \land y) =
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \land \dots \land x_{N} \land y) =
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \mid x_{3} \land \dots \land x_{N} \land y) * P(x_{3} \land \dots \land x_{N} \land y) =
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \mid x_{3} \land \dots \land x_{N} \land y) * P(x_{3} \mid x_{4} \land \dots \land x_{N} \land y) * P(x_{3} \land \dots \land x_{N} \land y) =
\dots
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \mid x_{3} \land \dots \land x_{N} \land y) * \dots * P(x_{N} \mid y) * P(y)
```

Now let's assume that all events $x_1, x_2, ..., x_N$ are mutually independent (not true in reality) and conditionally independent given $y \rightarrow$ Naive Bayes assumption.

Under this assumption:

$$P(x_i \mid x_{i+1} \land ... \land x_N \land y) = P(x_i \mid y)$$

Naive Bayes Assumption

Under Naive Bayes assumption:

```
P(x_{1} \land x_{2} \land \dots \land x_{N} \land y) =
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \land \dots \land x_{N} \land y) =
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \mid x_{3} \land \dots \land x_{N} \land y) * P(x_{3} \land \dots \land x_{N} \land y) =
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \mid x_{3} \land \dots \land x_{N} \land y) * P(x_{3} \mid x_{4} \land \dots \land x_{N} \land y) * P(x_{3} \land \dots \land x_{N} \land y) =
\dots
P(x_{1} \mid x_{2} \land \dots \land x_{N} \land y) * P(x_{2} \mid x_{3} \land \dots \land x_{N} \land y) * \dots * P(x_{N} \mid y) * P(y)
```

becomes:

$$P(x_{1} \land x_{2} \land ... \land x_{N} \land y) =$$

$$P(x_{1} \mid y) * P(x_{2} \mid y) * P(x_{3} \mid y) * ... * P(x_{N-1} \mid y) * P(x_{N} \mid y) * P(y) =$$

$$P(y) * [P(x_{1} \mid y) * P(x_{2} \mid y) * P(x_{3} \mid y) * ... * P(x_{N-1} \mid y) * P(x_{N} \mid y)] =$$

$$P(y) * \prod_{i=1}^{N} P(x_{i} \mid y)$$

Under Naive Bayes assumption:

$$y_{MAP} \propto \underset{y \in Y}{argmax} (P(x_1 \land x_2 \land \dots \land x_N \mid y) * P(y))$$

becomes:

$$y_{MAP} \propto \underset{y \in Y}{argmax} \left(P(y) * \prod_{i=1}^{N} P(x_i \mid y) \right)$$

Under Naive Bayes assumption:

$$y_{MAP} \propto \underset{y \in Y}{argmax} \left(P(x_1 \land x_2 \land \dots \land x_N \mid y) * P(y) \right)$$
becomes:
$$y_{MAP} \propto \underset{y \in Y}{argmax} \left(P(y) * \prod_{i=1}^{N} P(x_i \mid y) \right)$$

Under Naive Bayes assumption:

$$y_{MAP} \propto \underset{y \in Y}{argmax} (P(x_1 \land x_2 \land \dots \land x_N \mid y) * P(y))$$

becomes:

 $y_{MAP} \propto \underset{y \in Y}{argmax} \left(P(y) * \prod_{i=1}^{N} P(x_i \mid y) \right)$

Text Classification: Supervised ML

Input:

- a document x
- a fixed set of classes $Y = \{y_1, y_2, ..., y_J\}$
- a training set of N hand-labeled documents $(x_1, y_1), ..., (x_N, y_N)$

Output:

■ a learned classifier $h:x \rightarrow y (y = h(x))$

Text Classification: Classifier

category/class =
$$\frac{h}{\sqrt{document}}$$

Text Classification: Classifier

$$y = h(x)$$

Text Classification: Supervised ML

Input:

- a document x
- a fixed set of classes $Y = \{y_1, y_2, ..., y_J\}$
- **a training set** of N hand-labeled documents $(x_1, y_1), \dots, (x_N, y_N)$

Output:

 \blacksquare a learned classifier $h:x \rightarrow y (y = h(x))$

Text Classification: the Idea

Corpus: Training / Validation / Test

Text Classification: Training Set

Text Classification: Training Set

Training set						
	fe	atures (b	ag of	word	ls)	
x ₁						label ₁
x ₂						label ₂
x ₃						label ₃
· ·						
x _{N-2}						label _{N-2}
x _{N-1}						label _{N-1}
$\mathbf{x_N}$						label _N

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**)

Text Classification: Training Set

Training	set					
			feature	es		
$\mathbf{x_1}$						y ₁
\mathbf{x}_{2}						У2
X ₃						y ₃
: :						
x _{N-2}						y _{N-2}
X _{N-1}						y _{N-1}
$\mathbf{x}_{\mathbf{N}}$						y_N

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Spam Detection: Training Set

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Text Classification: Bag of Words

Bag of words document representation (feature vector)

category/class = h(

6	
5	
4	
3	
3	
2	
1	
1	
1	
2	

Text Classification: Bag of Words

Bag of words binary document representation (feature vector)

$$category/class = h($$

	1	
\rightarrow	1	
	0	
	1	,
	0	
	0	
	1	
	1	
	1	
	0	

Text Classification: Bag of Words

Bag of words document representation (feature vector)

category/class =
$$\frac{h}{a}$$

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Training set Learning Vocabulary V **Naive Bayes Classifier:** word1 rolex replica word7 $y_1 = HAM$ $y_{MAP} \propto \underset{y \in Y}{argmax} \left(P(y) * \prod_{i=1}^{N} P(x_i \mid y) \right)$ \mathbf{X}_{1} $y_2 = HAM$ \mathbf{X}_{2} **Probability estimates (Maximium** Likelihood estimation): $y_3 = SPAM$ $\mathbf{X_3}$ $P(y = HAM) = \frac{N_{samples \ labeled \ HAM}}{N} = \frac{5}{7}$ $P(y = SPAM) = \frac{N_{samples \ labeled \ SPAM}}{N} = \frac{2}{7}$ $y_4 = HAM$ 1 $\mathbf{X_4}$ $P(x_i = rolex | y = SPAM) =$ $= \frac{count(x_i = rolex, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{2}{8}$ $y_5 = HAM$ X_5 and so on... $y_6 = SPAM$ \mathbf{X}_{6} $y_7 = HAM$ $\mathbf{X_7}$

 $\mathbf{x_1}, \, \mathbf{x_2}, \, \mathbf{x_3}, \, ..., \, \mathbf{x_{N-2}}, \, \mathbf{x_{N-1}}, \, \mathbf{x_N}$ - feature vectors (in **bold**) | $\mathbf{y_1}, \, \mathbf{y_2}, \, \mathbf{y_3}, \, ..., \, \mathbf{y_{N-2}}, \, \mathbf{y_{N-1}}, \, \mathbf{y_N}$ - labels

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Classifier

$$y_{MAP} = \underset{y \in Y}{argmax} (P(y \mid x)) = \underset{y \in Y}{argmax} \left(\frac{P(x \mid y) * P(y)}{P(x)} \right)$$

$${\bf x} = x_1, x_2, ..., x_N, {\bf so}$$
:

$$y_{MAP} = \underset{y \in Y}{argmax} \left(\frac{P(x_1 \land x_2 \land \dots \land x_N \mid y) * P(y)}{P(x_1 \land x_2 \land \dots \land x_N)} \right)$$

constant | we can drop

$$y_{MAP} \propto \underset{y \in Y}{argmax} (P(x_1 \land x_2 \land ... \land x_N \mid y) * P(y))$$

Naive Bayes Classifier: Assumptions

- All events (words) $x_1, x_2, ..., x_N$ are mutually independent
 - Bag-of-words representation: the order of the words in a document d makes no difference (repetitions do)
- All events (words) $x_1, x_2, ..., x_N$ are conditionally independent given y (category / class)
 - words appear independently of each other, given the document category / class y (e.g. if you see word "car", the word "drive" is no more likely to appear than if you saw "dog")

$$category/class = h(document)$$

Finding model / hypothesis $h \rightarrow$ Finding probabilities for y_{MAP}

$$y_{MAP} \propto \underset{y \in Y}{argmax} \left(P(y) * \prod_{i=1}^{N} P(x_i \mid y) \right)$$

Corpus: Training / Test

Corpus Training Set Test Set Typical training / test set split for a text corpora [I will ignore validation set for the sake of an example]

Supervised Learning with ML

Spam Detection: Training Set

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Spam Detection: Learning

$$P(x_{i} = I \mid y = HAM) = \frac{count(x_{i} = I, y = HAM)}{\sum_{x \in V} count(x, y = HAM)} = \frac{5}{15}$$

$$P(x_{i} = rolex \mid y = HAM) = \frac{count(x_{i} = rolex, y = HAM)}{\sum_{x \in V} count(x, y = HAM)} = \frac{1}{15}$$

$$P(x_{i} = own \mid y = HAM) = \frac{count(x_{i} = own, y = HAM)}{\sum_{x \in V} count(x, y = HAM)} = \frac{4}{15}$$

$$P(x_{i} = replica \mid y = HAM) = \frac{count(x_{i} = replica, y = HAM)}{\sum_{x \in V} count(x, y = HAM)} = \frac{1}{15}$$

$$P(x_{i} = watch \mid y = HAM) = \frac{count(x_{i} = watch, y = HAM)}{\sum_{x \in V} count(x_{i} = watch, y = HAM)} = \frac{3}{15}$$

 $P(x_i = buy | y = HAM) =$

 $= \frac{count(x_i = buy, y = HAM)}{\sum_{x \in V} count(x, y = HAM)} = \frac{0}{15}$

 $= \frac{P(\mathbf{x_i} = cheap \mid y = HAM)}{\sum_{x \in V} count(\mathbf{x}, y = HAM)} = \frac{1}{15}$

Learning

Spam Detection: Learning

Learning $P(x_i = I \mid y = SPAM) =$ $= \frac{count(x_i = I, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{0}{7}$ $P(x_i = rolex \mid y = SPAM) =$ $= \frac{count(x_i = rolex, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{2}{7}$ $P(x_i = own \mid y = SPAM) =$ $= \frac{count(x_i = own, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{0}{7}$ $P(x_i = replica \mid y = SPAM) =$ $count(x_i = replica, y = SPAM)$ 2 $\frac{\sum_{x \in V} count(x, y = SPAM)}{7}$ $P(x_i = watch \mid y = SPAM) =$ $= \frac{count(x_i = watch, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{0}{7}$ $P(x_i = buy | y = SPAM) =$ $= \frac{count(x_i = buy, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{1}{7}$ $P(x_i = cheap \mid y = SPAM) =$ $\frac{count(x_i = cheap, y = SPAM)}{\sum_{x \in V} count(x, y = SPAM)} = \frac{2}{7}$

Corpus: Training / Test

Corpus Training Set Test Set Typical training / test set split for a text corpora [I will ignore validation set for the sake of an example]

Supervised Learning with ML

Spam Detection: Test Set

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{1}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_8) \propto P(y = HAM) * \prod_{i=1}^{5} P(x_i \mid y = HAM)$$

$$P(y = SPAM \mid x_8) \propto P(y = SPAM) * \prod_{i=1}^{5} P(x_i \mid y = SPAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_8) \propto P(y = HAM) * \prod_{i=1}^{5} P(x_i \mid y = HAM) = P(y = HAM) * P(x_1 = buy \mid y = HAM) * P(x_2 = cheap \mid y = HAM) * P(x_3 = rolex \mid y = HAM) * P(x_4 = replica \mid y = HAM) * P(x_5 = rolex \mid y = HAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_8) \propto P(y = HAM) * \prod_{i=1}^{5} P(x_i \mid y = HAM) = \frac{5}{7} * \frac{0}{15} * \frac{1}{15} * \frac{1}{15} * \frac{1}{15} * \frac{1}{15} = 0$$

Learned h()

$$P(y = HAM) = P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{1}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = SPAM \mid x_8) \propto P(y = SPAM) * \prod_{i=1}^{5} P(x_i \mid y = SPAM) = P(y = SPAM) * P(x_1 = buy \mid y = SPAM) * P(x_2 = cheap \mid y = SPAM) * P(x_3 = rolex \mid y = SPAM) * P(x_4 = replica \mid y = SPAM) * P(x_5 = rolex \mid y = SPAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{2}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{2}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = SPAM \mid x_8) \propto P(y = SPAM) * \prod_{i=1}^{5} P(x_i \mid y = SPAM) = \frac{2}{7} * \frac{1}{7} * \frac{2}{7} * \frac{2}{7} * \frac{2}{7} * \frac{2}{7} * \frac{2}{7} \approx 0.00027$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{5}{15}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{1}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_8) = 0$$

$$P(y = SPAM \mid x_8) \approx 0.00027$$

For document $x_8 y = SPAM$ maximizes P(). Class = SPAM.

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \quad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_9) \propto P(y = HAM) * \prod_{i=1}^{1} P(x_i \mid y = HAM)$$

$$P(y = SPAM \mid x_9) \propto P(y = SPAM) * \prod_{i=1}^{1} P(x_i \mid y = SPAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_9) \propto P(y = HAM) * \prod_{i=1}^{5} P(x_i \mid y = HAM) = P(y = HAM) * P(x_1 = I \mid y = HAM) * P(x_2 = own \mid y = HAM) * P(x_3 = cheap \mid y = HAM) * P(x_4 = rolex \mid y = HAM) * P(x_5 = watch \mid y = HAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_9) \propto P(y = HAM) * \prod_{i=1}^{5} P(x_i \mid y = HAM) = \frac{5}{7} * \frac{5}{15} * \frac{4}{15} * \frac{1}{15} * \frac{1}{15} * \frac{1}{15} * \frac{3}{15} \approx 0.000056$$

Learned h()

$$P(y = HAM) = P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{0}{7}$$

$$P(x_i = I \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{1}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = SPAM \mid x_9) \propto P(y = SPAM) * \prod_{i=1}^{5} P(x_i \mid y = SPAM) = P(y = SPAM) * P(x_1 = I \mid y = SPAM) * P(x_2 = own \mid y = SPAM) * P(x_3 = cheap \mid y = SPAM) * P(x_4 = rolex \mid y = SPAM) * P(x_5 = watch \mid y = SPAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \quad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = SPAM \mid x_9) \propto P(y = SPAM) * \prod_{i=1}^{5} P(x_i \mid y = SPAM) = \frac{2}{7} * \frac{0}{7} * \frac{0}{7} * \frac{2}{7} * \frac{2}{7} * \frac{0}{7} = 0$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{5}{15}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = vatch \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{1}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_9) \approx 0.000056$$

$$P(y = SPAM \mid x_9) = 0$$

For document $x_8 y = HAM$ maximizes P(). Class = HAM.

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{0}{7}$$

$$P(x_i = I \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = vatch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{1}{7}$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_{10}) \propto P(y = HAM) * \prod_{i=1}^{1} P(x_i \mid y = HAM)$$

$$P(y = SPAM \mid x_{10}) \propto P(y = SPAM) * \prod_{i=1}^{1} P(x_i \mid y = SPAM)$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_{10}) \propto P(y = HAM) * \prod_{i=1}^{1} P(x_i \mid y = HAM) = P(y = HAM) * P(x_1 = replica \mid y = HAM) = \frac{5}{7} * \frac{1}{15} \approx 0.048$$

Learned h()

$$P(y = HAM) = \frac{1}{1}$$

$$P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = SPAM \mid x_{10}) \propto P(y = SPAM) * \prod_{i=1}^{1} P(x_i \mid y = SPAM) = P(y = SPAM) * P(x_1 = replica \mid y = SPAM) = \frac{2}{7} * \frac{2}{7} \approx 0.082$$

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{5}{15}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = vatch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_{10}) \approx 0.048$$

$$P(y = SPAM \mid x_{10}) \approx 0.082$$

For document $x_{10} y = SPAM$ maximizes P(). Class = SPAM.

Learned h()

$$P(y = HAM) = \frac{5}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

Classifier Evaluation: Confusion Matrix

		Predicted class		
		Positive	Negative	
Actual class	Positive	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity (Recall) $\frac{TP}{TP+FN}$
	Negative	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{TN+FP}$
		Precision TP TP+FP	Negative Predictive Value $\frac{TN}{TN+FN}$	Accuracy $\frac{TP+TN}{TP+TN+FP+FN}$

Classifier Evaluation: Confusion Matrix

		Predicted class		
		SPAM	HAM	
Actual class	SPAM	True Positive (TP)	False Negative (FN) Type II Error	Sensitivity (Recall) $\frac{TP}{TP+FN}$
	HAM	False Positive (FP) Type I Error	True Negative (TN)	Specificity $\frac{TN}{TN+FP}$
		Precision TP TP+FP	Negative Predictive Value $\frac{TN}{TN+FN}$	$\frac{Accuracy}{TP+TN}$ $\frac{TP+TN+FP+FN}{TP+TN+FP+FN}$

Spam Detection: Evaluating Classifier

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Classifier Evaluation: Confusion Matrix

		Predicted class		
		SPAM	HAM	
Actual class	SPAM	TP = 1 (x ₈)	FN = 0	Sensitivity (Recall) $\frac{1}{1+0} = 1.0$
	HAM	FP = 1 (x ₁₀)	$TN = 1 (x_9)$	Specificity $\frac{1}{1+1} = 0.5$
		Precision $\frac{1}{1+1} = 0.5$	Negative Predictive Value $\frac{1}{1+0} = 1.0$	Accuracy $\frac{1+1}{1+1+1+0} = \frac{2}{3}$

Confusion Matrix Explained

- Accuracy (TP+TN)/(TP+TN+FP+FN):
 - Overall, how often is the classifier correct?
- Misclassification rate [Error Rate] (FP+FN)/(TP+TN+FP+FN):
 - Overall, how often is the classifier incorrect?
- Sensitivity [Recall | True Positive Rate] (TP)/(TP+FN):
 - When it's actually yes, how often does it predict yes?
- Specificity [True Negative Rate] (TN)/(TN+FP)
 - When it's actually no, how often does it predict no?
- Precision (TP)/(TP+FP)
 - When it predicts yes, how often is it correct?
- Negative Predictive Value (TN)/(TN+FN)
 - When it predicts no, how often is it correct?

Supervised Learning with ML

Spam Detection: Prediction

Prediction

Which probability is higher? Which y maximizes P()?

$$P(y = HAM \mid x_{?}) \propto P(y = HAM) * \prod_{i=1}^{n} P(x_{i} \mid y = HAM) = P(y = HAM) * P(x_{1} = buy \mid y = HAM) * P(x_{2} = rolex \mid y = HAM) = \frac{5}{10} * \frac{0}{15} * \frac{1}{15} = 0$$

$$P(y = SPAM \mid x_{?}) \propto P(y = SPAM) * \prod_{i=1}^{n} P(x_{i} \mid y = SPAM) = P(y = SPAM) * P(x_{1} = buy \mid y = SPAM) * P(x_{2} = rolex \mid y = SPAM) = \frac{2}{10} * \frac{1}{10} * \frac{2}{10} \approx 0.012$$

For document $x_2 y = SPAM$ maximizes P(). Class = SPAM

Learned h()

$$P(y = HAM) = \frac{1}{7} \qquad P(y = SPAM) = \frac{2}{7}$$

$$P(x_i = I \mid y = HAM) = \frac{5}{15}$$

$$P(x_i = rolex \mid y = HAM) = \frac{4}{15}$$

$$P(x_i = own \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = replica \mid y = HAM) = \frac{3}{15}$$

$$P(x_i = watch \mid y = HAM) = \frac{0}{15}$$

$$P(x_i = buy \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{1}{15}$$

$$P(x_i = cheap \mid y = HAM) = \frac{0}{7}$$

$$P(x_i = I \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = rolex \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = own \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = watch \mid y = SPAM) = \frac{0}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = buy \mid y = SPAM) = \frac{1}{7}$$

$$P(x_i = cheap \mid y = SPAM) = \frac{2}{7}$$

 $x_1, x_2, x_3, ..., x_{N-2}, x_{N-1}, x_N$ - feature vectors (in **bold**) | $y_1, y_2, y_3, ..., y_{N-2}, y_{N-1}, y_N$ - labels

Classifier Problems: Zero Counts

$$P(x_i = word \mid y = CLASS) = \frac{count(x_i = word, y = CLASS)}{\sum_{x \in V} count(x, y = CLASS)}$$

- Unseen words:
 - $count(x_i = word, y = CLASS)$ can be zero
- Words NOT present in samples for one class (see: example):
 - $count(x_i = word, y = CLASS)$ can be zero
- Solution: smoothing (e.g. Laplace smoothing)

$$P(\mathbf{x_i} = word \mid y = CLASS) = \frac{count(\mathbf{x_i} = word, y = CLASS) + \alpha}{\sum_{\mathbf{x} \in V} count(\mathbf{x}, y = CLASS) + \alpha * |V|}$$

where: α - pseudo-occurrence (typically "add 1"), |V| - vocabulary size

Classifier Problems: Underflow

$$P(y \mid x) \propto P(y) * \prod_{i=1}^{N} P(x_i \mid y)$$

- N can be large (100 and more):
 - long, "wordy", documents
- some $P(x_i \mid y)$ can be very small (< 0.1)
 - the product $\prod_{i=1}^{N} P(x_i \mid y)$ may lead to <u>underflow</u>
- Solution: use logarithms

$$log(P(y \mid x)) \propto log(P(y)) + \sum_{i=1}^{N} log(P(x_i \mid y))$$

Naive Bayes Classifier

category/class = h(document)

Finding model / hypothesis $h \rightarrow$ Finding probabilities for y_{MAP}

$$y_{MAP} \propto \underset{y \in Y}{argmax} \left(log(P(y)) + \sum_{i=1}^{N} log(P(x_i \mid y)) \right)$$

MAP: Maximum a posteriori (corresponds to the most likely class).

Naive Bayes Classifier

$$category/class = h(document)$$

Finding model / hypothesis $h \rightarrow$ Finding probabilities for y_{MAP}

$$y_{MAP} \propto \underset{y \in Y}{argmax} \left(log(P(y)) + \sum_{i=1}^{N} log(P(x_i \mid y)) \right)$$

- Taking log doesn't change the ranking of classes!
 - The class with highest probability also has highest log probability!
- It's a linear model:
 - Just a max of a sum of weights: a linear function of the inputs
 - So Naive Bayes is a linear classifier

Naive Bayes: Training/Testing

function TRAIN NAIVE BAYES(D, C) **returns** log P(c) and log P(w|c)**for each** class $c \in C$ # Calculate P(c) terms N_{doc} = number of documents in D N_c = number of documents from D in class c $logprior[c] \leftarrow log \frac{N_c}{N_{doc}}$ $V \leftarrow$ vocabulary of D $bigdoc[c] \leftarrow \mathbf{append}(d)$ for $d \in D$ with class c**for each** word w in V # Calculate P(w|c) terms $count(w,c) \leftarrow \#$ of occurrences of w in bigdoc[c] $loglikelihood[w,c] \leftarrow log \frac{count(w,c) + 1}{\sum_{w' \ in \ V} (count \ (w',c) \ + \ 1)}$ return logprior, loglikelihood, **function** TEST NAIVE BAYES(testdoc, logprior, loglikelihood, C, V) **returns** best c for each class $c \in C$ $sum[c] \leftarrow logprior[c]$ **for each** position *i* in *testdoc* $word \leftarrow testdoc[i]$ if $word \in V$ $sum[c] \leftarrow sum[c] + loglikelihood[word,c]$ **return** argmax_c sum[c]

Naive Bayes: Summary

Pros:

- Very fast and easy-to-implement
- Well-understood formally & experimentally
 - see "Naive (Bayes) at Forty", Lewis, ECML98

Cons:

- Seldom gives the very best performance (baseline)
- "Probabilities" $P(y \mid x)$ are not accurate
- Probabilities tend to be close to zero or one

Naive Bayes: Stop Words

- Some systems ignore stop words
 - Stop words: very frequent words like the and a.
 - Sort the vocabulary by word frequency in training set
 - Call the top 10 or 50 words the stopword list.
 - Remove all stop words from both training and test sets
 - As if they were never there!

- But removing stop words doesn't usually help
 - So in practice most NB algorithms use all words and don't use stopword lists

Naive Bayes: Unknown Words

- What about unknown words
 - that appear in our test data
 - but not in our training data or vocabulary?
- We ignore them
 - Remove them from the test document!
 - Pretend they weren't there!
 - Don't include any probability for them at all!
- Why don't we build an unknown word model?
 - It doesn't help: knowing which class has more unknown words is not generally helpful!

Naive Bayes: More Than Two Classes

- Dealing with any-of or multivalue classification
 - A document can belong to 0, 1, or more than 1 classes.

- For each class c∈C
 - Build a classifier h_c to distinguish c from all other classes c'∈C
- Given test document d,
 - Evaluate it for membership in each class using each h_c
 - d belongs to any class for which h returns true

Naive Bayes: More Than Two Classes

- Dealing with one-of or multinomial classification
 - Classes are mutually exclusive: each document in exactly one class

- For each class c∈C
 - Build a classifier h_c to distinguish c from all other classes c'∈C
- Given test document d,
 - Evaluate it for membership in each class using each h_c
 - d belongs to the one class with maximum score