CS 461 Artificial Intelligence

Informed (Heuristic) Search Strategies

Best-First Search

- A node is selected for expansion based on an evaluation function, f(n).
 - the lowest evaluation is expanded first
- Best-first algorithms include as a component of f a heuristic function, denoted h(n).
- h(n) = estimated cost of the cheapest path
 - h(n) takes a *node* as **input**, but, unlike g(n), it depends only on the *state* at that node.

$$f(n) = h(n)$$

A* Search

- We can bias Uniform-cost search to find the shortest path to the goal.
- In fact, we are interested in by using a **heuristic** function h(n) which is an estimate of the distance from a state to the goal.
- It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost to get from the node to the goal:

$$f(n) = g(n) + h(n)$$

Heuristics

Admissible Heuristic

- An estimate that always underestimates the real path length to <u>the goal</u> is called admissible estimate (heuristic).
 - Straight line distance is an admissible estimate for path length in euclidian space.
- Uniform cost search is an instance of A*, If we set h(n) = 0.
 - Use of an admissible estimate gaurantee that Uniform-cost search will find the shortest path.

Uniform-cost search with admissible estimate (heuristic) is known as A* search.

Straight line Distance

Are all heuristics are admissible?

Given the heuristic values and lenghts in the Figure, are the heuristic values in the table addmissible?

A = OK

B = OK

C = OK

D = not OK, needs to be <= 2

S = not OK.

Heuristic Values

S=10 $\Delta = 2$

but the value of S would have no ill G=0effect

Values of h_{SLD} —straight-line distances to Bucharest

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

A* search for Bucharest: Nodes are labeled with f = g + h. The h values are the straight-line distances to Bucharest.

- You can think of A* as searching contours of distance from the start state + estimated distance to the goal.
- The estimated/heuristic distance term should skew the search in the direction of the goal.
- Heuristic doesn't mislead.
- How do you find a heuristic?
 - In the path-planning problem, it wasn't too hard to think of the shortest-line distance.

Map of Romania showing contours at f = 380, f = 400, and f = 420, with Arad as the start state.

Admissible Heuristic ...8-puzzle

- The goal is to arrange the pieces as in the goal state on the right.
- A move in this game is as sliding the "empty" space to one of its nearest vertical or horizontal neighbours.
- Move tiles to reach goal

Admissible Heuristic ...8-puzzle

- Each move can at best decrease by one, the "Manhattan distance" of a tile from its goal.
- Manhattan distance, the metric of the Euclidean plane, is defined as

$$m((x_1,y_1)(x_2,y_2)) = |x_1-x_2|+|y_1-y_2|$$

Admissible Heuristic ...8-puzzle

The alternative underestimates of "distance" (the number of moves) to goal:

- Number of misplaced tiles (7 in this case)
- Sum of manhattan distance, which is 17
 - tile 1 = 4, tile 2 = 0, tile 3 = 2, tile 4 = 3, tile 5 = 1, tile 6 = 3, tile 7 =
 1, tile 8 = 3

Admissible Heuristics ... Dominance

If $h_2(n) \ge h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

$$d=14$$
 IDS = 3,473,941 nodes $A^*(h_1)=539$ nodes $A^*(h_2)=113$ nodes $d=24$ IDS $\approx 54,000,000,000$ nodes $A^*(h_1)=39,135$ nodes $A^*(h_2)=1,641$ nodes

• Given admissible heuristics h_1 ... h_b ,

$$h(n) = max[h_1(n) \dots h_b(n)]$$

is also admissible and dominates the other heuristics.

Admissible Heuristics ... Dominance

 $h_2(n) \geq h_1(n)$

	Search Cost (nodes generated)			Effective Branching Factor		
d	IDS	$A^*(h_1)$	$A^{*}(h_{2})$	IDS	$A^*(h_1)$	$A^*(h_2)$
2	10	6	6	2.45	1.79	1.79
4	112	13	12	2.87	1.48	1.45
6	680	20	18	2.73	1.34	1.30
8	6384	39	25	2.80	1.33	1.24
10	47127	93	39	2.79	1.38	1.22
12	3644035	227	73	2.78	1.42	1.24
14	_	539	113	_	1.44	1.23
16	_	1301	211	_	1.45	1.25
18	_	3056	363	_	1.46	1.26
20	_	7276	676	_	1.47	1.27
22	_	18094	1219	_	1.48	1.28
24	_	39135	1641	_	1.48	1.26

Consistency

Consistency

To implement A* Search, heurstic h needs to be consistant (sometimes monotonicity):

▶ The goal states have a heuristic estimate of zero.

$$h(n_i) = 0$$
 if node n_i is the goal

The difference in the heuristic estimate between one state and its descendant must be less than or equal to the actual path cost.

$$h(n) \le c(n, a, n') + h(n')$$

 $h(n) - h(n') \le c(n, a, n')$
where n' is the successor of n.

 $h(n) - h(n') \le c(n, a, n')$ $h(n) \le c(n, a, n') + h(n')$

Consistency Violation

A simple example of violation of consistency is the **triangle inequality**: The triangle is formed by n, n' and the goal G_n closest to n.

$$h(n) - h(n') \le c(n, a, n')$$

$$100 - 10 \le 10$$

If goal is 100 units from n, then moving 10 units to n' should not bring to a distance of 10 units from the goal. These heuristic estimates are not consistent.

Consistency Lemma

If h(n) is consistent, then the values of f(n) along any path are nondecreasing.

$$f(n') \ge f(n)$$

 $h(n) - h(n') \le c(n, a, n')$ $h(n) \le c(n, a, n') + h(n')$

Proof:

Suppose n' is the successor of n

$$g(n') = g(n) + c(n, a, n')$$

$$f(n') = g(n') + h(n')$$

$$f(n') = g(n) + c(n, a, n') + h(n')$$

$$\geq g(n) + h(n)$$

$$f(n') \geq f(n)$$

Is there in this graph, all heuristics are admissible and consistent?

An estimate that always underestimates the real path length to <u>the goal</u> is called admissible (heuristic) estimate.

Admissibility:

$$\square$$
 (S): $7 \le 7$, $7 \le 8$

- □ (A): $1 \le 4$
- □ (B): $5 \le 5$

All heuristic values are admissible.

heurstic h is consistant, if

$$h(n) - h(n') \le c(n, a, n')$$

Consistency:

► S
$$\rightarrow$$
A: $7 - 1 \le 4$

► S
$$\rightarrow$$
 B: 7 - 5 \leq 2

▶ B
$$\rightarrow$$
A: 5 - 1 ≤ 1

▶ A
$$\rightarrow$$
G: $1 - 0 \le 4$

Not Consistent

Consistent

Not Consistent

Consistent

heurstic h is consistant, if

$$h(n) - h(n') \le c(n, a, n')$$

▶ To make them admissible and consistent, the heuristic value of *A* is changed to 4.

Consistency:

► S
$$\rightarrow$$
A: $7-4 \le 4$ Consistent

► S
$$\rightarrow$$
B: $7-5 \le 2$ Consistent

▶
$$B \rightarrow A$$
: $5 - 4 \le 1$ Consistent

$$A \rightarrow G: 4 - 0 \le 4$$
 Consistent

Dr. Hashim Yasin

31

Reading Material

- Artificial Intelligence, A Modern Approach
 Stuart J. Russell and Peter Norvig
 - Chapter 3.