EE 473/538 Linear IC Design

HW2 February 11, 2022

Kevin Egedy

12.1. Derive an expression for I_{out} in Fig. 12.42.

Figure 12.42

Given
$$M_3 = M_{ij}$$
, then $I_{ref} = I_{out}$
 $I_{reof} : Current Mirror$
 $I_{ref} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} V_{ij} \cdot V_{ik_{ij}}^{2}$
 $I_{out} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} V_{ij} \cdot V_{ik_{ij}}^{2}$
 $I_{out} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} V_{ij} \cdot V_{ik_{ij}}^{2}$
 $I_{out} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} V_{ij} \cdot V_{ij}^{2}$
 $I_{out} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} + V_{ij} \cdot V_{ij}^{2} \cdot V_{ij}^{2}$
 $I_{out} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} + V_{ij}^{2} \cdot V_{ij}^{2}$
 $I_{out} = \frac{1}{2} \mu_n Cox \left(\frac{W_{ij}}{L_{ij}}\right)^{i} \cdot V_{ij}^{2} \cdot V_{ij}^{2}$
 $I_{out} = \frac{1}{2} \frac{1}{2$

12.2. Explain how the start-up circuit shown in Fig. 12.43 operates. Derive a relationship that guarantees that $V_X < V_{TH}$ after the circuit turns on.

Figure 12.43

Figure: Sedra Smith Microelectronic Circuits

Define V_y at the point between R_a and R_b .

Initially, all channels are closed because $V_{DS} = V_{GS} < V_{th}$ and no current runs through R_a and R_b . V_{DS} increases such that $V_x = V_y = V_{GS} = V_{th}$.

The channel is no longer pinched and allows current.

Both M_5 and M_6 turn on and the drain current through M_5 turns on the remaining circuit.

Now the channel is induced and ${\cal V}_{DS}$ keeps increasing, allowing more drain current through ${\cal M}_6$.

The voltages at V_y and V_x are defined as

$$V_y = V_{DD} - I_{D6} R_a \text{ and } V_x = V_{DD} - I_{D6} \left(R_a + R_b \right) = V_y - I_{D6} R_b.$$

As I_{D6} continues to grow, V_y decreases and also V_x decreases.

It is guaranteed that ${\cal V}_x < {\cal V}_{th}$ when

$$V_{DD}-I_{D6}\left(R_a+R_b\right)< V_{th}$$
 where
$$I_{D6}=\mu_n C_{ox}\left(\frac{W}{L}\right)\left(V_{gs}-V_{th}\right)^2\ \bigg|_{V_{as}=V_{DD}-I_{D6}R_a}$$

12.5. In the circuit of Fig. 12.15, assume that Q_2 and Q_4 have a finite current gain β . Calculate the error in the output voltage.

Figure 12.15 Reference generator incorporating two series base-emitter voltages.

Figure 12.14 (a) Conversion of series diodes to a topology with grounded collectors; (b) circuit of part (a) biased by PMOS current sources.

5.
$$T_{c} = T_{s} e \qquad V_{ge} = V_{T} \left(n \left(\frac{T_{e}}{T_{s}} \right) \right)$$

$$T_{E} = \alpha T_{c} = \frac{\beta + i}{\beta} T_{c}$$

$$\Delta V_{BE} = 2V_{T} \ln \left(\frac{T_{o}}{T_{s}} \right) - 2V_{T} \ln \left(\frac{T_{o}}{nT_{s}} \right) \qquad \text{Assume all devices are same size}$$

$$\Delta V_{BE} = 2V_{T} \ln n$$

$$T_{cq} = \frac{\Delta V_{BE}}{R_{i}} \qquad 7 \qquad T_{Eq} = \left(\frac{\beta + i}{\beta} \right) \frac{\Delta V_{BE}}{R_{e1}}$$

$$V_{out} = V_{BEq} + V_{BE_{3}} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{\beta + i}{\beta} \right)$$

$$V_{out} = 2V_{BE} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{i + \frac{i}{\beta}}{\beta} \right)$$

$$V_{out} = 2V_{BE} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{i + \frac{i}{\beta}}{\beta} \right)$$

$$V_{out} = 2V_{BE} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{i + \frac{i}{\beta}}{\beta} \right)$$

$$V_{out} = 2V_{BE} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{i + \frac{i}{\beta}}{\beta} \right)$$

$$V_{out} = 2V_{BE} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{i + \frac{i}{\beta}}{\beta} \right)$$

$$V_{out} = 2V_{BE} + \left(R_{2} + R_{1} \right) \frac{2V_{T} \ln n}{R_{1}} \left(\frac{i + \frac{i}{\beta}}{\beta} \right)$$