Pauta Test N°4 Cálculo III (521227)

Sea $f: \mathbb{R}^2 \to \mathbb{R}$ definida por $f(x,y) = x^2 - 4xy + y^2 + 20x + 20y$. Justificar por qué f posee extremos absolutos sobre el conjunto compacto

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 + xy \le 12\}$$

y luego hallar dichos valores.

Solución:

Dado que f es continua y D es compacto, entonces por el Teorema de los valores extremos, está asegurada la existencia del máximo y mínimo absolutos. (10 puntos)

En int(D) no hay puntos críticos. (10 puntos)

En Fr(D), utilizando multiplicadores de Lagrange, al considerar $g(x,y) = x^2 + y^2 + xy - 12$, se tiene el sistema determinado por $\nabla f(x,y) = \nabla g(x,y)$ y g(x,y) = 0 (10 puntos), esto es,

$$2x - 4y + 20 = \lambda(2x + y) \tag{1}$$

$$2y - 4x + 20 = \lambda(x + 2y) \tag{2}$$

$$x^2 + xy + y^2 = 12 (3)$$

De (1) y (2), restando, se tiene que $(x-y)(6-\lambda)=0$, de donde y=x o $\lambda=6$.

Si y = x, de (3) se tiene que $x = \pm 2$ y se obtienen dos puntos $P_1 = (2, 2) = -P_2$.

Si $\lambda = 6$, de (1) se tiene que y = 2 - x; luego, de (3) se tiene que x = -2 o x = 4 y se obtienen dos puntos más, $P_3 = (-2, 4)$ y $P_4 = (4, -2)$. (20 puntos)

Como $f(P_1) = 72$, $f(P_2) = -88$, $f(P_3) = 92$ y $f(P_4) = 92$, se tiene que el mínimo absoluto es -88 y máximo absoluto es 92. (10 puntos)

GAJ/EBC/EGG/egg 3 de Noviembre de 2016