

Chapter. 10

둘 사이에는 무슨 관계가 있을까: 가설 검정

영가설과 대립가설,

p-value

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

Ⅰ통계적 가설 검정 개요

- 갖고 있는 샘플을 가지고 모집단의 특성에 대한 가설에 대한 통계적 유의성을 검정하는 일련의 과정
 - 수집한 데이터는 매우 특별한 경우를 제외하고는 전부 샘플이며, 모집단은 정확히 알 수 없는 경우가 더 많음
 - 통계적 유의성: 어떤 실험 결과 (데이터)가 확률적으로 봐서 단순한 우연이 아니라고 판단될 정도로 의미가 있음
- 통계적 가설 검정 과정은 다음과 같이 5단계로 구성됨

Ⅰ영 가설과 대립 가설

• 영 가설 (null hypothesis)와 대립 가설(alternative hypothesis)로 구분하여, 가설을 수립해야 함

	영 가설	대립 가설	
정의	 특별한 증거가 없으면 참으로 추정되는 가설 우리의 관심 대상이 아닌 가설 (검정을 통해, 영 가설을 기각하고 싶어함) 	 특별한 증거가 없으면 거짓으로 추정되는 가설 우리의 관심 대상인 가설 	
표기	H_0	H_1 또는 H_a	
설정 방법	모집단에 대한 특성을 <mark>등호</mark> 로 표기	모집단에 대한 특성을 <mark>부등호</mark> 로 표기 (단측 검정, 양측 검정)	
예시	H_0 : 대한민국 성인 남성의 키의 평균은 $173 \mathrm{cm}$ 이다. H_1 : 대한민국 성인 남성의 키의 평균은 $173 \mathrm{cm}$ 과 같지 않다 (양측 검정)		
	H_0 : 성인 남성의 키는 성인 여성의 키와 같다. H_1 : 성인 남성의 키는 성인 여성의 키보다 크다 (단측 검정)		

1오류의 구분

• 가설 검정에서 발생하는 오류는 참을 거짓이라 하는 제 1종 오류 (type 1 Error)와 거짓을 참이라 하는 제 2종 오류로 구분됨

	영 가설 기각 X	영 가설 기각 O
영 가설 참	올바른 결정	제 1종 오류
영 가설 거짓	제 2종 오류	올바른 결정

I 유의 확률, p-value

• 유의 확률 p-value: 영 가설이 맞다고 가정할 때 얻은 결과와 다른 결과가 관측될 확률로, 그 값이 작을수록 영 가설을 기각할 근거가 됨

보통, p-value가 0.05 혹은 0.01 미만이면 영 가설을 기각함

I 유의 확률, p-value (예시 1)

- 영 가설: 대한민국 성인 남성의 키는 160cm일 것이다.
- 대립 가설: 대한민국 성인 남성의 키는 160cm 이상일 것이다.
- 관측한 대한민국 성인 남성의 키의 평균은 175cm, 표준편차는 1cm이다.

I 유의 확률, p-value (예시 2)

- 영 가설: 대한민국 성인 남성의 키는 여성의 키와 같을 것이다.
- 대립 가설: 대한민국 성인 남성의 키는 여성의 키보다 작다.

Chapter. 10

둘 사이에는 무슨 관계가 있을까: 가설 검정

단일 표본 t 검정과 독립 표본 t 검정

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

I 단일 표본 t-검정 개요

- 목적: 그룹의 평균이 기준 값과 차이가 있는지를 확인
- 영 가설과 대립 가설

$$H_0$$
: $\bar{x} = \mu (\bar{x}$: 표본 평균, μ : 기준 값)

$$H_1$$
: $\bar{x} > \mu$ or $\bar{x} < \mu$ or $\bar{x} \neq \mu$

 가설 수립 예시: 당신이 한 웹 사이트를 운영하고 있는데, 고객이 웹사이트에서 체류하는 평균 시간이 10분인지 아닌지를 알고 싶어 다음과 같이 가설을 수립하였다.

$$H_0: \bar{x} = 10$$

$$H_1: \bar{x} \neq 10$$

I 단일 표본 t-검정의 선행 조건

- 단일 표본 t 검정은 해당 변수가 정규 분포를 따라야 수행할 수 있으므로, Kolmogorov-Smornov나 Shapiro-Wilk를 사용한 정규성 검정이 선행되어야 함
- 그렇지만 보통 샘플 수가 많을수록 정규성을 띌 가능성이 높아지므로, 샘플 수가 부족한 경우에만 정규성 검정을 수행한 뒤, 정규성을 띄지 않는다 라고 판단된다면 비모수적 방법인 부호 검정 (sign test)나 윌콕슨 부호 – 순위 검정을 수행해야 함

Ⅰ단일 표본 t-검정 통계량

$$t=rac{ar{x}-\mu}{s/\sqrt{n}}, \quad \checkmark \quad ar{x}$$
: 표본 평균 $\quad \checkmark \quad n$: 표본 수 $\quad \checkmark \quad \mu$: 기준 값 $\quad \checkmark \quad s$: 표본 표준편차

• 위에 제시된 통계량을 t분포 상에 위치시키는 방식으로 p-value를 계산

□정규성 검정: Kolmogorov-Smornov

- Kolmogorov-Smornov 검정 (이하 KS test)은 관측한 샘플들이 특정 분포를 따르는지 확인하기 위한 검정 방법임
- KS test는 특정 분포를 따른다면 나올 것이라 예상되는 값과 실제 값의 차이가 유의한지를 확인하는 방법으로, 해당 특정 분포를 정규 분포로 설정하여 정규성 검정에도 사용함

I 파이썬을 이용한 단일 표본 t – 검정

구분	코드	결과 해석	
정규성 검정	scipy.stats.kstest(x, 'norm')	• result = (statistics, pvalue)의 튜플 형태	
(KS test)	scipy.stats.kstest(x, norm)	• pvalue가 특정 수치 미만이면 정규성을 따른다고 판단	
		• result = (statistics, pvalue)의 튜플 형태	
단일 표본 t - 검정	scipy.stats.ttest_1samp (x, popmean)	• statistics가 양수면 x의 평균이 popmean보다 큰 것이며, 음수면 x의 평균이 popmean보다 작음을 의미	
		• pvalue가 특정 수치 미만이면 x는 popmean과 같지 않다고 판단	
윌콕슨 부호 –		• result = (statistics, pvalue)의 튜플 형태	
순위 검정	scipy.stats.wilcoxon(x)	 단일 표본 t-검정과 결과 해석이 같음 (단, popmean은 x의 중위수로 설정됨) 	

Ⅰ독립 표본 t-검정 개요

• 목적: 서로 다른 두 그룹의 데이터 평균 비교

• 영 가설과 대립 가설

 H_0 : $\mu_a = \mu_b \; (\mu_a$: 그룹 a의 표본 평균, μ_b : 그룹 b의 표본 평균)

 H_1 : $\mu_a > \mu_b$ or $\mu_a < \mu_b$ or $\mu_a \neq \mu_b$

 가설 수립 예시: 2020년 7월 한 달 간 지점 A의 일별 판매량과 지점 B의 일별 판매량이 아래와 같다면, 지점 A와 지점 B의 7월 판매량 간 유의미한 차이가 있는가?

일자	지점 A	지점 B
2020.07.01	160	170
2020.07.02	220	180
:	:	:
2020.07.31	190	150
평균	200	180

FAST CAMPUS ONLINE

Fast campus

Ⅰ독립 표본 t-검정 선행 조건

- 독립성: 두 그룹은 서로 독립적이어야 함
- 정규성: 데이터는 정규분포를 따라야 함
 - ➤ 정규성을 따르지 않으면 비모수 검정인 Mann-Whitney 검정을 수행해야 함
- 등분산성: 두 그룹의 데이터에 대한 분산이 같아야 함
 - ➤ Levene의 등분산 검정: p-value가 0.05 미만이면 분산이 다르다고 판단
 - ▶ 분산이 같은지 다른지에 따라 사용하는 통계량이 달라지므로, 설정만 달리해주면 됨

Ⅰ독립 표본 t-검정 통계량

• 두 그룹의 분산이 같은 경우

$$t=rac{ar{x}_a-ar{x}_b}{s}$$
, \checkmark $ar{x}_a$: 그룹 a의 표본 평균 \checkmark n_a : 그룹 a의 샘플 수 \checkmark s : 통합 분산 \checkmark $\sqrt{rac{1}{n_a}+rac{1}{n_b}}$ \checkmark $ar{x}_b$: 그룹 b의 표본 평균 \checkmark n_b : 그룹 b의 샘플 수

$$S = \sqrt{\frac{(n_a-1)\times s_a^2 + (n_b-1)s_b^2}{n_a+n_b-2}}, \quad \checkmark \quad s_a$$
: 그룹 a의 표준편차 $\checkmark \quad s_b$: 그룹 b의 표준편차

• 두 그룹의 분산이 다른 경우

$$S = \sqrt{\frac{s_a^2}{n_a} + \frac{s_b^2}{n_b}}, \ \checkmark \ n_a$$
: 그룹 a의 샘플 수 $\ \checkmark \ s_a$: 그룹 a의 표준편차 $\ n_b$: 그룹 b의 샘플 수 $\ \checkmark \ s_b$: 그룹 b의 표준편차

। 파이썬을 이용한 독립 표본 t-검정

구분	코드	결	과 해석
정규성 검정 (KS test)	scipy.stats.kstest(x, 'norm')	•	pvalue가 <mark>특정 수치 미만이면 정규성</mark> 을 따른다고 판단
등분산성 검정 (Levene test)	scipy.stats.levene(s1, s2, s3, …) # s1, s2, …: 샘플 (배열)	•	pvalue가 특정 수치 미만이면 샘플 간 분산이 같지 않다고 판단
독립 표본	scipy.stats.ttest_ind (a, b, equal_var)	•	statistics가 양수면 a의 평균이 더 크다고 판단
t - 검정	# a, b: 두 그룹의 데이터 (배열) # equal_var: 등분산성을 만족하는지 여부	•	pvalue가 특정 수치 미만이면 a와 b의 평균이 같지 않다고 판단
Mann –	scipy.stats.mannwhitneyu(a, b)	•	result = (statistics, pvalue)의 튜플 형태
Whitneyu 검정			pvalue가 특정 수치 미만이면 a와 b의 평균이 같지 않다고 판단

Chapter 10

둘 사이에는 무슨 관계가 있을까: 가설 검정

|쌍체 표본 t검정

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

l 쌍체 표본 t-검정 개요

• 목적: 특정 실험 및 조치 등의 효과가 유의한지를 확인

I 쌍체 표본 t-검정의 선행 조건

- 실험 전과 후의 측정 값 (즉, X와 Y)은 정규 분포를 따르지 않아도 무방함
- 그러나 측정 값의 차이인 d는 정규성을 갖고 있어야 함

Ⅰ 쌍체 표본 t-검정의 통계량

$$t=rac{ar{d}}{s_d/\sqrt{n}}, \checkmark ar{d}$$
: d 의 평균 s_d : d 의 표준편차

I 파이썬을 이용한 쌍체 표본 t-검정

구분 코드		결과 해석	
정규성 검정 (KS test)	scipy.stats.kstest(x, 'norm')	• pvalue가 특정 수치 미만이면 정규성을 따른다고 판단	
쌍체 표본 t 검정	scipy.stats.ttest_rel(a, b) # a, b: 실험 전 후 결과 (주의: 반드시 길이가 같아야 함)	 pvalue가 특정 수치 미만이면 그룹 a와 그룹 b간 차이가 존재한다고 판단 (즉, 특정 실험의 효과가 존재) statistics가 양수면 양의 효과 (d > 0)가 있다고 판단하며, 음수면 음의 효과 (d < 0)가 있다고 판단 	

Chapter. 10

물사이에는 무슨 관계가 있을까: 가설 검정

일원분산분석

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

1일원분산분석 개요

- 목적: 셋 이상의 그룹 간 차이가 존재하는지를 확인하기 위한 가설 검정 방법임
- 영 가설과 대립 가설

 H_0 : $\mu_a = \mu_b = \mu_c$ (μ_a : 그룹 a의 표본 평균, μ_b : 그룹 b의 표본 평균, μ_c : 그룹 c의 표본 평균)

 H_1 : 최소한 한 개 그룹에는 차이를 보인다

가설 수립 예시: 2020년 7월 한 달 간 지점 A, B, C의 일별 판매량이 아래와 같다면, 지점별 7월 판매량 간유의미한 차이가 있는가? 또한, 어느 지점 간에는 유의미한 판매량 차이가 존재하지 않는가?

일자	지점 A	지점 B	지점 C
2020.07.01 160		170	180
2020.07.02	220	180	185
:	:	:	:
2020.07.31	190	150	140
평균	200	190	180

□독립 표본 t검정을 사용하면 안 되는 이유

• 일원분산분석은 독립 표본 t검정을 여러 번 사용한 것과 같은 결과를 낼 것 처럼 보임

일원분산분석

독립 표본 t 검정

 H_0 : $\mu_a = \mu_b = \mu_c$

 H_1 : 최소한 한 개 그룹에는 차이를 보인다

$$H_0: \mu_a = \mu_b$$

$$H_1: \mu_a \neq \mu_b$$

$$H_0$$
: $\mu_b = \mu_c$
 H_1 : $\mu_b \neq \mu_c$

$$H_0$$
: $\mu_c = \mu_a$
 H_1 : $\mu_c \neq \mu_a$

- 독립 표본 t 검정에서 하나 이상의 영 가설이 기각되면, 자연스레 일원분산분석의 영가설 역시 기각되므로, 기각된 원인까지 알 수 있으므로 일원분산분석이 필요하지 않아 보일 수 있음
- 그러나 독립 표본 t 검정을 여러 번 했을 때, 아무리 높은 p-value가 나오더라도 그 신뢰성에 문제가 생길수 있어, 일원분산분석이 필요함
 - ightharpoonup 각 가설의 p-value가 0.95이고, 그룹의 개수가 k일 때 모든 영가설이 참일 확률: $(0.95)^k$
 - → 그룹의 개수가 3개만 되어도 그 확률이 0.857로 크게 감소하며, 그룹의 개수가 14개가 되면 그 확률이 0.5 미만으로 떨어짐

I 일원분산분석의 선행 조건

FAST CAMPUS

ONLINE

안길승 강사.

- 독립성: 모든 그룹은 서로 독립적이어야 함
- 정규성: 모든 그룹의 데이터는 정규분포를 따라야 함
 - 그렇지 않으면 비모수적인 방법인 Kruskal-Wallis H Test를 수행해야 함
- 등분산성: 모든 그룹에 데이터에 대한 분산이 같아야 함
 - 그렇지 않으면 비모수적인 방법인 Kruskal-Wallis H Test를 수행해야 함

Fast campus

I 일원분산분석의 통계량

$$F = rac{ \ \ \, \mathrm{ Tr} \,$$

집단 내 분산 =
$$\frac{\sum_{g=1}^{G} \left(s_g \times (n_g - 1) \right)}{n - G}$$

√ n: 샘플 개수

 \checkmark s_q : 그룹 g에 속한 샘플의 표준편차

1사후분석: Tukey HSD test

• Tukey HSD (honestly significant difference) test는 일원분산분석에서 두 그룹 a와 b간 차이가 유의한 지 파악하는 사후 분석 방법임

$$\mathrm{H}SD_{a,b} = \ rac{\max(\mu_a,\mu_b) - \min(\mu_a,\mu_b)}{\mathrm{SE}} \qquad \checkmark \ \mu_a$$
: 그룹 a의 평균 $\ \checkmark \ \mathrm{SE}$: 그룹 a와 b의 표준 오차 $\ \checkmark \ \mu_b$: 그룹 b의 평균

• 만약, $HSD_{a,b}$ 가 유의 수준보다 크면 두 차이가 유의하다고 간주

l 파이썬을 이용한 일원분산분석

구분	코드	결과 해석
정규성 검정 (KS test)	scipy.stats.kstest(x, 'norm')	• pvalue가 특정 수치 미만이면 정규성을 따른다고 판단
일원분산분석	scipy.stats.f_oneway(sample1, sample2, sample3, …)	• pvalue가 특정 수치 미만이면 최소 하나의 그룹은 다른 그룹 의 평균과 다르다고 판단 (즉, 특정 실험의 효과가 존재)
사후분석	statsmodels.stats.multicomp. pairwise_tukeyhsd(Data, Group)	• 각 그룹 간 reject 결과 확인. Reject 컬럼이 True면 두 그룹 간 차이가 유의하다고 할 수 있음

Chapter 10

둘 사이에는 무슨 관계가 있을까: 가설 검정

상관분석과 카이제곱검정

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

Ⅰ 상관분석 개요

- 목적: 두 연속형 변수 간에 어떠한 선형 관계를 가지는지 파악
- 영 가설과 대립 가설

 H_0 : 두 변수 간에는 유의미한 상관성이 존재하지 않는다

 H_1 : 두 변수 간에는 유의미한 상관성이 존재한다

시각화 방법 : 산점도 (scatter plot)

I 피어슨 상관 계수

• 두 변수 모두 연속형 변수일 때 사용하는 상관 계수로 x와 y에 대한 상관 계수 $\rho_{x,y}$ 는 다음과 같이 정의됨

$$\rho_{x,y} = \frac{cov(x,y)}{\sqrt{var(x) \times var(y)}} \quad \checkmark \quad cov(x,y) : x 와 y 의 공분산, \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - y)}{n-1}$$

$$\checkmark \quad var(x) : x 의 분산$$

 상관 계수가 1에 가까울수록 양의 상관관계가 강하다고 하며, -1에 가까울수록 음의 상관관계가 강하다고 함. 또한, 0에 가까울수록 상관관계가 약하다고 함

I 피어슨 상관 계수

Ⅰ스피어만 상관 계수

• 두 변수의 순위 사이의 단조 관련성을 측정하는 상관 계수로 x와 y에 대한 스피어만 상관 계수 $S_{x,y}$ 는 다음과 같이 정의됨

$$S_{x,y} = \rho_{r(x),r(y)}$$
 $\checkmark r(x): x$ 의 요소의 개별 순위

x	у	r(x)	r(y)
0	1.0	1	1
1	1.1	2	2
2	1.2	3	3
3	1.3	4	4
4	3.0	5	5

•
$$\rho_{x,y} = 0.795$$

$$S_{x,v} = 1.000$$

l 파이썬을 이용한 상관분석

구분	코드	결과 해석
피어슨 상관계수 계산	scipy.stats.pearsonr(x, y)	 result = (statistics, pvalue) statistics: 피어슨 상관계수 pvalue: 0.05미만이면 유의한 상관성이 있다고 봄
스피어만 상관계수 계산	scipy.stats.spearmanr(x, y)	 result = (statistics, pvalue) statistics: 스피어만 상관계수 pvalue: 0.05미만이면 유의한 상관성이 있다고 봄
상관 행렬	DataFrame.corr(method) # method: pearson, spearman	• 컬럼 간 상관계수를 나타내는 행렬

Ⅰ카이제곱 검정 개요

- 목적: 두 범주형 변수가 서로 독립적인지 검정
- 영 가설과 대립 가설

 H_0 : 두 변수가 서로 독립이다

 H_1 : 두 변수가 서로 종속된다

• 시각화 방법: 교차 테이블

1교차 테이블과 기대값

- 교차 테이블(contingency table)은 두 변수가 취할 수 있는 값의 조합의 출현 빈도를 나타냄
- 예시: 성별에 따른 강의 만족도 (카테고리 수 = 2 × 3 = 6)

	만족	보통	불만족	합계
남성	50 (45)	40 (35)	10 (20)	100
여성	40 (45)	(35)	30 (20)	100
합계	90	70	40	200

• 여성이면서 강의에 보통이라고 응답한 사람이 30명

• 남성이면서 강의에 불만족을 느낀 사람 수에 대한 기대값이 20명

- 카테고리 $C_{i,j}$ 에 대한 기대값 = $\frac{N_i \times N_j}{N}$ (N: 전체 샘플 수, N_i : 값 i를 갖는 샘플 수, N_j : 값 j를 갖는 샘플 수)
- 예시) 성별 = 남성, 강의 = 만족에 대한 기대 값: $\frac{100 \times 90}{200} = 45$

Fast campus

Ⅰ카이제곱 통계량

• 카이제곱 검정에 사용하는 카이제곱 통계량은 기대값과 실제값의 차이를 바탕으로 정의됨

$$\chi^2 = \sum_{j=1}^{c} \frac{(o_j - E_j)^2}{E_j}$$

- \checkmark c: 카테고리 개수 (두 변수의 상태 공간의 곱)
- \checkmark O_j : 카테고리 j의 실제 값 (관측 값)
- ✓ E_i : 카테고리 j의 기대 값

 기대값과 실제값의 차이가 클수록 통계량이 커지며, 통계량이 커질수록 영 가설이 기각될 가능성이 높아짐 (즉, p-value가 감소함)

l 파이썬을 이용한 카이제곱 검정

구분	코드	결과 해석
교차 테이블 생성	pandas.crosstab (S1, S2)	• Series S1과 S2로 구성된 교차 테이블을 생성
		• 교차 테이블의 실제값에 대한 기대값 계산
카이제곱 검정	scipy.stats.chi2_contingency(obs) # obs: 실제값	• 보통 pandas.crosstable의 결과에 대한 values를 입력으로 투입
		• result = (chi2, pvalue, dof, expected)

Chapter. 10

둘 사이에는 무슨 관계가 있을까: 가설 검정

I머신러닝에서의 가설검정

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승

Ⅰ특징 정의 및 추출

• 예측 및 분류에 효과적인 특징을 정의하고 추출하는 과정은 다음과 같음

• (예시) 아이스크림 판매량 예측

안길승 강사.

I 특징 선택

- 특징 선택이란 예측 및 분류에 효과적인 특징을 선택하여 차원을 축소하는 기법임
- 특징의 효과성(클래스 관련성)을 측정하기 위해 가설 검정에서 사용하는 <mark>통계량</mark>을 사용함

특징
x_1
x_2
x_3
x_4
x_5
x_6
x_7

클래스 관련성
$R(x_1) = 1.2$
$R(x_2) = 1.4$
$R(x_3) = 0.6$
$R(x_4) = 0.9$
$R(x_5) = 2.3$
$R(x_6) = 4.1$
$R(x_7) = 3.3$

선택된 특징
x_6
x_7
x_5
x_2

Ⅰ특징 선택

• 클래스 관련성 척도는 특징과 라벨의 유형에 따라 선택함

통계량	특징 유형	라벨 유형
카이제곱 통계량	이진형	이진형 (분류)
상호 정보량	이진형	이지형 (브르)
	연속형	이진형 (분류)
	이진형	여소성 (에츠)
	연속형	연속형 (예측)
F – 통계량	연속형	이진형 (분류)
	연속형	연속형 (예측)

Chapter.

둘 사이에는 무슨 관계가 있을까: 가설 검정

감사합니다

FAST CAMPUS ONLINE 데이터 탐색과 전처리 I

강사. 안길승