

PREDICTION OF BIOCHEMICAL MINE OXYGEN DEMAND IN MEXICAN SURFACE WATERS USING MACHINE LEARNING

Maximiliano Guzmán-Fernández, Misael Zambrano-de la Torre, Claudia Sifuentes-Gallardo, Oscar Cruz-Dominguez, Carlos Bautista-Capetillo, Juan Badillo-de Loera, Efrén González-Ramírez, Héctor Durán-Muñoz

Maximiliano Guzmán-Fernández

Academic Unit of Electrical Engineering, Autonomous University of Zacatecas, Mexico

4 - 5 AUGUST 2021

CONTENTS

- 1 INTRODUCTION
- **OBJECTIVES**
- **3 LITERATURE REVIEW**
- 4 METHODOLOGY
- 5 RESULTS AND DISCUSSIONS
- 6 **CONCLUSIONS**

Introduction

Water Security - Water Quality

Figure 1: Uses of Water in Mexico.

M. E. Raynal Gutierrez. (2020). Water use and consumption: industrial and domestic in water resources of Mexico. Springer Nature.

doi: 10.1007/978-3-030-40686-8.

Figure 2: Methods for Determining Water Quality. Y. Guo, C. Liu, R. Ye, and Q. Duan. (2020). Advances on Water Quality Detection by UV-Vis Spectroscopy, Appl. Sci., 10(19), doi: 10.3390/app10196874.

Introduction

Biochemical Oxygen Demand

Figure 3: BOD5 levels at surface water monitoring stations in Mexico. CONAGUA (2020).

Figure 4: Required Analysis Duration to Estimate the BOD5. S. Jouanneau et al. (2014). Methods for assessing biochemical oxygen demand (BOD): A review, Water Res., 49(1), doi: 10.1016/j.watres.2013.10.066.

Objectives

- Identify water quality parameters that can be used to predict biochemical oxygen demand.
- 2. Form two groups of water quality parameters that satisfy the following:

A: If it is possible to transfer the sample to a laboratory, a group of parameters that are obtained quicker than determining biochemical oxygen demand.

- B: A group of parameters that can be measured in the study area.
- 3. Predict biochemical oxygen demand in surface waters using the two groups of parameters as input to machine learning algorithms (multiple linear regression, ridge regression, random forest and elastic net).

Literature Review

BOD Prediction

BOD =
$$f(Ca^{2+}, Na^+, Mg^{2+}, NO_2^-, NO_3^-, PO_4^{3-}, EC, pH, Turbidity)$$

Table 1: Statistical appraisal of proposed models at testing stage.

Model	R	RMSE	MAE	OI
LS-SVM-RBF	0.83	5.725	3.959	0.761
LS-SVM-Poly	0.85	5.463	4.508	0.778
MARS	0.79	6.719	5.399	0.688
ANN	0.74	6.946	5.940	0.671
ANFIS	0.81	6.118	4.727	0.733
MLR	0.78	15.775	14.52	-0.391
MNLR	0.59	20.871	15.40	-1.333

M. Najafzadeh and A. Ghaemi. (2019). Prediction of the fiveday biochemical oxygen demand and chemical oxygen demand in natural streams using machine learning methods," Environ. Monit. Assess., 191(6). doi: 10.1007/s10661-019-7446-8.

Table 2: Statistical appraisal of proposed models at testing stage.

Model	R	RMSE	MAPE	NSE
EPR	0.84	5.60	32.08	0.709
GEP	0.86	5.388	31.53	0.731
MT	0.76	6.803	40.76	0.571

M. Najafzadeh, A. Ghaemi, and S. Emamgholizadeh. (2019). Prediction of water quality parameters using evolutionary computing-based formulations. Int. J. Environ. Sci. Technol., 16(10). doi: 10.1007/s13762-018-2049-4.

Figure 5: Stages of the methodology: (1) Data preprocessing, (2) Data analysis for prediction of biochemical oxygen demand and (3) Validation.

Stage 1: Data preprocessing.

Figure 6: Steps of Stage 1: (A) Database description and exploration, (B) Outlier detection and (C) Z-Score normalization.

Stage 2: Data analysis for prediction of biochemical oxygen demand.

Figure 7: Steps of Stage 2: (A) Feature Selection, (B) Data Split and (C) Implementation of ML Algorithms.

Stage 3: Validation.

Goodness- of-Fit Statistics

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - y_{i}')^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
(3)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - y_i')^2}$$
 (4)

$$MAE = \frac{1}{n} \| y_i - y_i' \|$$
 (5)

where y_i are the actual values, y_i' are the predictions, \overline{y} represents the mean of the values and n the number of total values in the sample.

Figure 8: Evaluation of Machine Learning Algorithms.

Outlier Detection.

Table 3: Basic statistics of the parameters.

Table 3. Basic statistics of the parameters.							
Parameter (Units)	Min	Mean		Parameter (Units)	Min	Mean	Max
Fecal Coliform (NMP/100mL)	1	55772	24196000	Total Suspended Solids (mg/L)	0.1	105	20812
Escherichia Coli (NMP/100mL)	1	46459	24196000	Turbidity (UNT)	0.01	75	21500
Biochemical Oxygen Demand (mg/L)	0.1	23.2	7667	Arsenic (mg/L)	0.0001	0.006	1
Chemical Oxygen Demand (mg/L)	0.9	77.7	14489	Cadmium (mg/L)	0.00002	0.0002	0.1
Phosphorus (mg/L)	0.001	1.3	95.2	Chromium (mg/L)	0.0002	0.01	76.5
Organic Nitrogen (mg/L)	0	2.5	827.8	Mercury (mg/L)	0.00001	0.0003	0.5
True Color (U Pt/Co)	2.5	55.2	8000	Nickel (mg/L)	0	0.005	7.3
UV Absorbance (U Abs/cm)	0.002	0.17	17	Lead (mg/L)	0.001	0.003	1.8
Total Dissolved Solids (mg/L)	2.4	354.5	159520	Hardness (mg/L)	3.8	295.2	37965
Electrical Conductivity(uS/cm)	3.8	1056	1	Temperature (°C)	-6	27.6	51
PH (UpH)	2.9	7.8	11.8	Water Temperature (°C)	4	24.9	62
% Dissolved Oxygen(% Saturation)	0.6	73.2		Total Organic Carbon (mg/L)	0.06	12.8	2490
Dissolved Oxygen (mg/L)	0.05	5.7	762	Nitrogen (mg/L)	0.008	7.4	1244.1
Ammoniacal Nitrogen (mg/L)	0.003	3.7	1 49/	Kjeldahl Nitrogen (mg/L)	0.003	6.34	1239.8
Nitrogen Dioxide (mg/L)	0.0005	0.1	21.84	Orto-Phosphate (mg/L)	0.0005	0.87	144.4
Nitrate Nitrogen (mg/L)	0.0004	1	336.2				

Table 4: Basic statistics of the parameters after assigning a limit value.

Parameter (Units)	Min	Mea	Max	Parameter (Units)	Min	Mean	Max
		n					
Biochemical Oxygen Demand (mg/L)	0.1	14.7	120	Total Suspended Solids (mg/L)	0.1	66.8	400
Chemical Oxygen Demand (mg/L)	0.9	55.2	250	Phosphorus (mg/L)	0.001	1.2	20
Dissolved Oxygen (mg/L)	0.05	5.7	40	Temperature (°C)	-6	27.6	51
True Color (U Pt/Co)	2.5	45.1	200	Turbidity (UNT)	0.01	49.2	500
UV Absorbance (U Abs/cm)	0.002	0.17	2	Water Temperature (°C)	4	24.9	62
Ammoniacal Nitrogen (mg/L)	0.003	3.7	200	Kjeldahl Nitrogen (mg/L)	0.003	6.3	400
Electrical Conductivity(uS/cm)	3.8	900	5000	Total Dissolved Solids (mg/L)	2.4	455.4	1000
Total Organic Carbon (mg/L)	0.06	12.5	1000				

Feature Selection.

Figure 9: Heat map of Pearson's correlation for the 31 parameters in the dataset.

Results and Discussions

Feature Selection.

Table 5:
Identification
of individual
parameters
with the
highest
coefficient of
determination
when applying
Forward
Selection.

Б	Coefficient of Determination [0-1]				
Parameter	Training	Testing			
Fecal Coliform	0.09	0.08			
Escherichia Coli	0.11	0.09			
Biochemical Oxygen Demand	1	1			
Chemical Oxygen Demand	0.66	0.66			
Total Suspended Solids	0.07	0.06			
Total Dissolved Solids	0.1	0.1			
Phosphorus	0.36	0.32			
True Color	0.22	0.21			
UV Absorbance	0.31	0.3			
Electrical Conductivity	0.04	0.04			
PH	0.008	0.008			
% Dissolved Oxygen	0.22	0.23			
Dissolved Oxygen	0.21	0.22			
Turbidity	0.04	0.04			
Arsenic	0.00001	0.00003			
Cadmium	0.001	0.002			
Chromium	0.016	0.019			
Mercury	0.01	0.009			
Nickel	0.013	0.025			
Lead	0.004	0.001			
Hardness	0.01	0.01			
Temperature	0.04	0.04			
Water Temperature	0.04	0.04			
Total Organic Carbon	0.3	0.2			
Ammoniacal Nitrogen	0.3	0.29			
Nitrogen Dioxide	0.001	0.003			
Nitrate Nitrogen	0.001	0.001			
Organic Nitrogen	0.24	0.19			
Nitrogen	0.37	0.33			
Kjeldahl Nitrogen	0.39	0.34			
Orto-Phosphate	0.17	0.17			

Table 6: Coefficient of determination when combining the parameters by Forward Selection into two sets.

Sets of parameters used as input to multiple linear regression algorithm	Coefficient of Determination [0-1]		
sous of parameters used as input to manapie mean regression angerman	Training	Testing	
Chemical Oxygen Demand, Ammoniacal Nitrogen	0.69	0.69	
(Set 1) Chemical Oxygen Demand, Ammoniacal Nitrogen, Kjeldahl Nitrogen, Phosphorus.	0.70	0.70	
Total Organic Carbon, True Color, UV Absorbance, Total Dissolved Solids, Electrical Conductivity.	0.48	0.46	
(Set 2) Total Organic Carbon, True Color, UV Absorbance, Total Dissolved Solids, Electrical Conductivity, Total Suspended Solids, Turbidity, Dissolved Oxygen, Temperature, Water Temperature.		0.51	

13

Results and Discussions

Feature Selection.

Figure 10: Groups of water quality parameters selected for BOD prediction.

Validation of Machine Learning Algorithms.

Table 7: Results in the testing stage of the algorithms using group 1 as input.

		Goodness of fit Statistics			
Parameter (Units)	Algorithm	Root Mean Square Error	Coefficient of Determination	Mean Absolute Error	
Chemical Oxygen Demand (mg/L)	Multiple Linear Regression	0.53	0.7	0.30	
Ammoniacal Nitrogen (mg/L)	Ridge Regression	0.53	0.7	0.30	
Kjeldahl Nitrogen (mg/L)	Random Forest	0.48	0.76	0.23	
Phosphorus (mg/L)	Elastic Net	0.53	0.7	0.30	

Table 8: Results in the testing stage of the algorithms using group 2 as input.

Parameter (Units)	Algorithm	Goodness of fit Statistics			
	Aigoriumi	Root Mean Square Error	Coefficient of Determination	Mean Absolute Error	
Total Organic Carbon (mg/L) True Color (U Pt/Co) UV Absorbance (U Abs/cm)	Multiple Linear Regression	0.67	0.52	0.42	
Total Dissolved Solids (mg/L) Electrical Conductivity(uS/cm)	Ridge Regression	0.67	0.52	0.42	
Total Suspended Solids (mg/L) Turbidity (UNT) Dissolved Oxygen (mg/L)	Random Forest	0.48	0.75	0.24	
Temperature (°C) Water Temperature (°C)	Elastic Net	0.67	0.52	0.42	

Conclusions

Water quality is essential for the human life development. Through the present work it was possible to identify the best algorithm that can predict the biochemical oxygen demand in surface waters of Mexico. Also, the parameters that have the most influence. Random forest showed flexibility when implemented in the prediction of biochemical oxygen demand by obtaining 0.48 RMSE, 0.76 R^2 and 0.23 MAE using the parameters Chemical Oxygen Demand, Ammoniacal Nitrogen, Kjeldahl Nitrogen and Phosphorus. In addition, 0.48 RMSE, 0.75 R^2 and 0.24 MAE were obtained using the parameters Total Organic Carbon, True Color, UV Absorption, Total Dissolved Solids, Electrical Conductivity, Total Suspended Solids, Turbidity, Dissolved Oxygen, Water Temperature and Temperature. This indicates that based on the local conditions and the study area, the biochemical oxygen demand can be obtained in a similar way and diagnose water contamination in Mexico in a relatively short time. As a future work, it is proposed to design and develop a real-time electronic monitoring device to measure the parameters of group 2 obtained in this work.

THANK YOU

INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND STATISTICS