

IMPLEMENTANDO A AHP COM R

Nome Completo do 1º Autor¹, Nome Completo do 2º Autor², Nome Completo do 3º Autor³ e

Nome Completo do 4º Autor⁴

Introdução

O processo de tomada de decisão sob incerteza tem mostrado importância em qualquer situação da vida pessoal ou profissional de um indivíduo, uma vez que o ser humano é levado a tomar decisões em grande parte do seu tempo de vida. Decisões uma vez tomadas, podem se revelar boas ou ruins a curto, médio e a longo prazo. Ao se tomar uma decisão de forma intuitiva nem sempre é possível prever se a alternativa escolhida é a mais viável considerando-se alguns critérios subjetivos. Tendo em vista esse pensamento, justifica-se estudar métodos matemáticos/estatísticos que possam auxiliar a tomada de decisão em situações práticas.

A tomada de decisão nas organizações tem sido objeto de constantes pesquisas e estudos comprovando a importância que este tema representa no desempenho dessas organizações. Segundo Gomes et al (2002), um sistema de apoio à decisão (SAD) é uma ferramenta computacional que envolve técnicas de sistemas de informação, inteligência artificial, métodos quantitativos, psicologia cognitiva e comportamental, sociologia das organizações, entre outros, e visam oferecer ao usuário condições favoráveis e acessíveis ao suporte, para de modo prático, melhor escolher uma entre diversas alternativas, minimizando assim a chance de erro na tomada de decisão.

Um SAD concilia os recursos intelectuais individuais com a capacidade do computador em melhorar a qualidade da decisão (MORTON E KEEN, 1978), assim, o apoio à decisão significa auxiliar a tomada de decisão na escolha de alternativas, gerando as estimativas dos pesos destas alternativas, a comparação e a escolha.

¹ Nome Completo da Instituição (e sigla), e-mail do 1º autor

² Nome Completo da Instituição (e sigla), e-mail do 2º autor

³ Nome Completo da Instituição (e sigla), e-mail do 3º autor

⁴ Nome Completo da Instituição (e sigla), e-mail do 4º autor

O processo *Analytic Hierarchy Process* (AHP), baseado em matemática e psicologia, foi desenvolvido na década de 1970 pelo professor Thomas Saaty. O AHP pode ser classificado como o mais conhecido e utilizado dos métodos de análise multicritério cuja modelagem se divide em três etapas: construção dos níveis hierárquicos, definição das prioridades através de julgamentos paritários dos critérios estabelecidos e avaliação da consistência lógica dos julgamentos paritários.

Neste trabalho apresenta-se a implementação do Método de AHP proposto por (SAATY, 1991), utilizando-se a linguagem computacional R para automatização do método e apresentação dos resultados de maneira intuitiva para melhorar a experiência do usuário.

Objetivos

Objetivo Geral: Implementar o método AHP utilizando a linguagem computacional R.

Objetivo Específico: Elaborar a estrutura do banco de dados para os valores de entrada à luz da compreensão do método AHP e suas etapas; implementar a estrutura de saída dos resultados; construir funções específicas para o desenvolvimento do método.

Material e Método

Os conceitos e etapas do método AHP foram baseados em Costa, H.G (2002) e Saaty, T. L. (1991). O método AHP segue 4 etapas: Construção de Hierarquia, aquisição de dados, síntese dos dados e a análise da consistência do julgamento.

Foi criado um pacote do R aplicando as principais funções do AHP. Para a implementação do pacote, foi criado um repositório no diretório *github*, contendo a estrutura do pacote do R, com as seguintes pastas:

- Documentação: arquivos em html para documentar o pacote;
- R: scripts com funções desenvolvidas em R;
- Data: arquivos de dados;
- Man: arquivos para documentos de ajuda para cada função do pacote;
- Vignettes: arquivos de ajuda do pacote

Em adição ao pacote, foi estruturado, a partir da construção hierárquica do problema, uma planilha de dados contendo as matrizes paritárias (ou de julgamento) de cada critério. Inicialmente considerou-se um único nível de critérios.

Implementou-se funções para facilitar ao usuário a aplicação do método. Para os cálculos envolvidos no método foram implementadas as funções com as seguintes etapas:

• Ler os dados (matrizes de julgamentos fornecida pelo usuário);

- Calcular os pesos e a consistência;
- Retornar tabela com os pesos finais de cada alternativa, informando o índice de consistência dos julgamentos de cada critério considerado no problema.

Resultados e Discussão

O programa espera que o usuário tenha um arquivo xlsx contendo várias planilhas, onde cada uma representa uma matriz de julgamento. A estrutura do arquivo pode ser vista na figura 1. Como os especialistas são humanos, Saaty (1992) afirma que o AHP prevê que pode haver inconsistência, então o processo permite que haja uma inconsistência de no máximo 10% para que os resultados possuam credibilidade. Desse modo, a função principal do pacote analisará se cada matriz de julgamento inserida no arquivo é consistente ou não.

Atualmente o código conta com 15 funções totalmente desenvolvidas com o software R. Está hospedado na plataforma github no endereço: https://github.com/NOMEDO AUTOR/AHP. A escolha da plataforma deveu-se ao fato de tornar o processo de colaboração acessível a todos os integrantes do projeto, além de permitir acesso, comentários e sugestões de não integrantes.

Para problemas com um único nível de critérios, o programa retorna uma tabela completa de proporções para as alternativas, indicando a melhor alternativa a ser escolhida, isto é, aquela que tiver a maior proporção da linha "Objetivo", conjuntamente com a validação dos julgamentos que são classificados como consistente ou não para cada critério.

O exemplo do tutorial do pacote AHP baseou-se nos dados contidos em Costa (2002). O objetivo ou foco principal (FP) é a compra de um carro considerando-se 3 alternativas: A1, A2 e A3. Os critérios considerados nesta compra são AQ (custo de aquisição); CF (conforto); MA (custo de manutenção); PS (prestígio) e RV (preço de revenda). Com base nos dados fornecidos pelo decisor em formato xlsx (figura 1), o pacote efetua os cálculos necessários através da função tabela_ahp_xlsx() e retorna a tabela contendo os pesos (proporções) de cada critério e do objetivo final para cada alternativa, bem como a razão de consistência dos julgamentos, informando se o mesmo é consistente ou não (última coluna) (figura 2).

Para problemas com mais de um nível de critérios (tipo composto), a função tabela2_ahp_xlsx() retorna como padrão um conjunto de proporções para as alternativas estudadas.

O exemplo de saída para a base de dados de um problema do tipo composto (GOMEDE, 2012) pode ser visto na figura 3. O objetivo é a priorização de serviços com critérios considerados em dois níveis, no nível 1 tem-se critérios financeiros, estratégicos e tecnológicos e no nível 2 cada critério do nível 1 é sucedido por mais 3 subcritérios em cada. As alternativas são em número de 4: S1, S2, S3 e S4. Observa-se o peso de cada alternativa, sendo a alternativa S4 a melhor escolha com peso de 0.39.

Figura 1 – Estrutura do arquivo de dados xlsx contendo 6 planilhas referentes às matrizes de julgamento. Fonte: Elaborado pelos autores, 2019.

> tabela_ahp_xlsx("F://GitHub//AHP//Documentacão//BD_teste1.xlsx") [1] "A melhor escolha e a alternativa: A1" criterio Pesos A1 A2 A3 'Razao de consistencia de saaty' Consistente echrs echrs echrs 100% 35.57% 34.8% 29.63% 7.03% 1 FP Sim 44.75% 8.84% 21.95% 13.96% 4.62% Sim 2 AQ 9.23% 0.96% 2.53% 5.74% 9.96% Sim 3 CF 18.56% 11.75% 1.97% 4.83% 3.32% MA PS 6.12% 2.51% 2% 1.6% Sim 21.35% 11.5% 6.35% 3.5% 0.79% Sim

Figura 2 – Ilustração da tabela de saída do pacote AHP para o exemplo da compra de carro. Fonte: Elaborado pelos autores, 2019.

Figura 3 – Ilustração de um problema em dois níveis de critérios.

Fonte: Elaborado pelos autores, 2019.

Conclusão

A escolha da linguagem R para implementação do pacote se mostrou viável, consistente e segura. O pacote foi elaborado para facilitar a entrada de dados através de planilha estruturada de acordo com os critérios considerados na hierarquização do problema. A partir da leitura da planilha de dados as funções foram implementadas na linguagem R de forma a produzir uma tabela final com um resumo das probabilidades de cada critério.

A principal vantagem deste pacote é a facilidade que o usuário tem para realizar a entrada de dados que foi desenhada para ser feita por arquivo do tipo xlsx. As tabelas de saída são apresentadas de forma compacta para que o tomador de decisão possa atingir seu objetivo com rapidez e eficiência.

O pacote apresenta tutorial para que o usuário consiga utilizá-lo baseando-se num exemplo prático, tornando-se útil para gestores com conhecimentos básicos de linguagem de programação.

Como ações futuras será implementado generalizações nas funções já programadas para resolver problemas mais complexos com 3 ou mais níveis de critérios.

Este projeto está sendo desenvolvido na Universidade Federal Fluminense com apoio de bolsa do Programa de Iniciação Científica (PIBIC).

Referências

Costa, H. G. Introdução ao método de análise hierárquica: análise multicritério no auxílio à decisão. Niterói, RJ, 2002.

Costa, J.F.S., Gonçalves, G.C., Vaz, L.M.M et al. Uma abordagem multicritério da telefonia móvel no Estado do Rio de Janeiro através do Método de Análise Hierárquica (AHP). Cadernos do IME – Série Estatística, RJ, 2007.

Gomes, L. F., Gomes, C. F. S., Almeida, A. T. Tomada de Decisão Gerencial: Enfoque Multicritério. Ed Atlas, SP, 2002.

Keen, P.G.W, & Scott Morton, M.S. Decision support systems: an organization perspective. Addison-Wesley. Reading, Mass, 1978.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/, 2018.

Saaty, T. L. Método de Análise Hierárquica. Rio de Janeiro: Makrom Books, 2Ed, 1991.

Gomede, Everton,. Miranda, Rodolfo. Utilizando o Método Analytic Hierarchy Process (AHP) para Priorização de Serviços de TI: Um Estudo de Caso, 2012. URL: http://www.lbd.dcc.ufmg.br/colecoes/sbsi/2012/0041.pdf