

Introduction to R

Ali Zaidi, Machine Learning and Data Science Education Team May 17, 2016

Overview of the R Project

Lesson Plan

R U Ready?

- · What the R Language for Statistical Computing is
- · R's capabilities and it's limitations
- · What types of problems you might want to use R with
- · How to manage data with open source R
- · How to develop models and write functions in R

What is R?

Why should I care?

- · R is a successor of the S Language, originated at Bell Labs AT&T
- · Based on the Scheme interpreter
- · Originally designed by two University of Auckland Professors for their introduction to statistics course

R Philosophy

What R Thou?

R follows the Unix philosophy

Write programs that do one thing and do it well. Write programs to work together.

- R is extensible with more than 9,000 packages available at CRAN (http://crantastic.org/packages)
- · R, like it's inspiration, Scheme, is a functional programming language
- · R is lazy, and lazy evaluation can be used to interface to other languages
- R is a highly interpreted dynamically typed language, allowing you to mutate variables and analyze datasets quickly, but is significantly slower than low-level, statically typed languages like C or Java
- · R has a high memory footprint, and can easily lead to crashes if you aren't careful

Development Environments

Where to Write R Code

- The most popular integrated development environment for R is RStudio
- · The RStudio IDE is entirely html/javascript based, so completely cross-platform
- · RStudio Server for cloud instances
- · Developers of RStudio have also written a plethora of useful R packages
- For Windows machines, we have recently announced the general availability of R Tools for Visual Studio, RTVS
- · RTVS will support connectivity to Azure and SQL Server very soon
- · RTVS has great debugging support

Quick Tour of Your IDE

Strengths of R

Where R Succeeds

- Expressive
- · Open source
- Extendable nearly 1000 packages with functions to use
- · Focused on statistics and machine learning utilized by academics and practitioners
- Advanced data structures and graphical capabilities
- · Large user community, academics and industry
- · It is designed by statisticians

Weaknesses of R

Where R Falls Short

- It is designed by statisticians
- · Inefficient at element-by-element computations
- · May make large demands on system resources, namely memory
- · Data capacity limited by memory
- · Single-threaded

Some Essential Open Source Packages

- There are over 1,000 R packages to choose from, what do I start with?
- · Data Management: dplyr, tidyr, data.table
- Visualization: ggplot2, ggvis, htmlwidgets, shiny
- · Data Importing: haven, RODBC
- · Other favorites; magrittr, rmarkdown, caret

R Foundations

Command line prompts

Symbol	Meaning
>	ready for a new command
+	awaiting the completion of an existing command

I'm Lost!

Getting Help with R

- Stack Overflow
- · Cross Validated, R
- R Reference Card
- · RStudio Cheat Sheets
- · R help mailing list and archives
- CRAN Task Views
- Crantastic
- · Revolutions Blog
- R-Bloggers

Quick Tour of Things You Need to Know

Data Structures

· R's data structures can be described by their dimensionality, and their type.

	Homogeneous	Heterogeneous
1d	Atomic vector	List
2d	Matrix	Data frame
nd	Array	

Quick Tour of Things You Need to Know

Data Types

- · Atomic vectors come in one of four types
- · logical (boolean). Values: TRUE | FALSE
- · integer
- · double (often called numeric)
- · character
- · Rare types:
- · complex
- raw

Lab 1: R Data Types

Data Manipulation with the dplyr Package

Overview

At the end of this session, you will have learned:

- · How to manipulate data quickly with dplyr using a very intuitive 'grammar'
- · How to use dplyr to perform common exploratory and manipulation procedures
- · Apply your own custom functions to group manipulations dplyr with mutate(), summarise() and do()
- · Connect to remote databases to work with larger than memory datasets

Why use dplyr?

The Grammar of Data Manipulation

- · R comes with a plethora of base functions for data manipulation
- dplyr makes data manipulation easier by providing a few functions for the most common tasks and procedures
- · dplyr achieves remarkable speed-up gains by using a C++ backend
- dplyr has multiple backends for working with data stored in various sources: SQLite, MySQL, bigquery, and more
- dplyr was inspired to give data manipulation a simple, cohesive grammar (similar philosophy to ggplot grammar of graphics)
- the recent package dplyrXdf brings much of the same functionality of dplyr to XDF data

Manipulation verbs

filter

select rows based on matching criteria

slice

select rows by number

select

select columns by column names

arrange

reorder rows by column values

mutate

add new variables based on transformations of existing variables

transmute

transform and drop other variables

Aggregation verbs

group_by

identify grouping variables for calculating groupwise summary statistics

count

count the number of records per group

summarise

calculate one or more summary functions per group, returning one row of results per group (or one for the entire dataset)

Viewing Data

- dplyr includes a wrapper called tbl_df makes df into a 'local df' that improves the printing of dataframes in the console
- \cdot if you want to see more of the data you can still coerce to ${\tt data.frame}$

```
## Source: local data frame [45,211 x 17]
##
                  job marital education default balance housing loan
##
     age
      58 management married tertiary
## 1
                                                   2143
                                                            yes
                                                                 no
## 2
      44 technician single secondary
                                             no
                                                            yes
                                                                 no
      33 entrepreneur married secondary
## 3
                                             no
                                                            yes
                                                                yes
      47 blue-collar married
                                unknown
## 4
                                             no
                                                   1506
                                                            yes
                                                                 no
## 5
      33
              unknown single
                                unknown
                                                   1
                                                            no
                                                                 no
      35 management married tertiary
## 6
                                                    231
                                             no
                                                            yes
                                                                 no
           management single tertiary
## 7
                                            no
                                                    447
                                                            yes
                                                                yes
## 8
      42 entrepreneur divorced tertiary
                                            yes
                                                            yes
                                                                 no
## 9
              retired married
                                primary
                                                    121
                                                            yes
                                                                 no
## 10 43
          technician
                        single secondary
                                                    593
                                             no
                                                            yes
                                                                 no
                  . . .
                           . . .
## Variables not shown: contact (chr), day (int), month (chr), duration
    (int), campaign (int), pdays (int), previous (int), poutcome (chr), y
    (chr)
##
```


Filtering and Reordering Data

Subsetting Data

- dplyr makes subsetting by rows very easy
- · The filter verb takes conditions for filtering rows based on conditions

```
## Source: local data frame [351 x 17]
##
                  job marital education default balance housing loan
##
      age
      42 entrepreneur divorced tertiary
                                            yes
                                                            yes
                                                                  no
## 2
             services divorced secondary
                                            yes
                                                            yes
                                                                  no
## 3
      51
               admin.
                        single secondary
                                                     -2
                                            yes
                                                                  no
      33 technician married secondary
## 4
                                                   72
                                            yes
                                                            yes
                                                                  no
## 5
      33 blue-collar single secondary
                                                    -60
                                            ves
                                                            no
                                                                  no
              retired married secondary
## 6
                                            yes
                                                   15
                                                             no
                                                                  no
      35 entrepreneur married secondary
                                                    204
                                            yes
                                                            yes
                                                                  no
      41 blue-collar single primary
## 8
                                            yes
                                                   -137
                                                            yes
                                                                 yes
             services married secondary
                                            yes
                                                            yes
                                                                  no
## 10 52 blue-collar divorced
                                            yes
                                                   -183
                                                            yes
                                                                  no
## Variables not shown: contact (chr), day (int), month (chr), duration
    (int), campaign (int), pdays (int), previous (int), poutcome (chr), y
##
    (chr)
```


Exercise

Your turn:

- · How many defaults in the dataset?
- · How many of the entrepeneurs that defaulted were also divorced?

Solution

Select a set of columns

- · You can use the select() verb to specify which columns of a dataset you want
- · This is similar to the keep option in SAS's data step.
- · Use a colon: to select all the columns between two variables (inclusive)
- Use contains to take any columns containing a certain word/phrase/character

Select Example 1

select(bankData, age, job, default, balance, housing)

```
## Source: local data frame [45,211 x 5]
##
                  job default balance housing
##
      age
      58
           management
                                 2143
## 1
                           no
                                          yes
## 2
           technician
                                   29
                                          yes
                           no
      33 entrepreneur
## 3
                                          yes
                           no
      47 blue-collar
                                 1506
## 4
                           no
                                          yes
## 5
              unknown
                                  1
      33
                           no
                                          no
## 6
      35
           management
                                  231
                           no
                                          yes
           management
## 7
      28
                                  447
                                          yes
      42 entrepreneur
## 8
                          yes
                                          yes
## 9
      58
              retired
                                  121
                           no
                                          yes
          technician
## 10 43
                                  593
                                          yes
                         no
## .. ...
```


Select: Other Options

starts_with(x, ignore.case = FALSE)
name starts with x

ends_with(x, ignore.case = FALSE)
name ends with x

matches(x, ignore.case = FALSE)
selects all variables whose name matches the regular expression x

num_range("V", 1:5, width = 1)
selects all variables (numerically) from V1 to V5.

You can also use a - to drop variables.

Reordering Data

· You can reorder your dataset based on conditions using the arrange() verb

arrange(bankData, balance, default)

```
## Source: local data frame [45,211 x 17]
##
                   job marital education default balance housing loan
     age
          blue-collar
                        single secondary
                                                  -8019
## 1
     26
                                            yes
                                                            no yes
      49 management married tertiary
                                                  -6847
## 2
                                            ves
                                                            no yes
## 3
      60
           management divorced tertiary
                                                  -4057
                                            no
                                                           yes
                                                                no
      43
            management married tertiary
                                                  -3372
## 4
                                            yes
                                                           yes
      57 self-employed married tertiary
## 5
                                            yes
                                                  -3313
                                                           yes yes
      39 self-employed married tertiary
## 6
                                                  -3058
                                                           yes
                                                                yes
## 7
      40
            technician married tertiary
                                            yes
                                                 -2827
                                                           yes yes
## 8
      52 management married tertiary
                                                  -2712
                                           no
                                                           yes yes
## 9
      49 blue-collar
                       single
                               primary
                                                  -2604
                                            yes
                                                           yes
                                                                no
           management divorced tertiary
## 10 51
                                                  -2282
                                                           yes yes
## Variables not shown: contact (chr), day (int), month (chr), duration
    (int), campaign (int), pdays (int), previous (int), poutcome (chr), y
    (chr)
```


Exercise

Use arrange() to sort on the basis of y, marital, job (in descending order), and balance

Solution

arrange(bankData, y, marital, desc(job), balance)

```
## Source: local data frame [45,211 x 17]
##
              job marital education default balance housing loan
##
                                                                    contact
       26 unknown divorced secondary
                                                                   cellular
## 1
                                          no
                                                -295
                                                         yes
                                                               no
       47 unknown divorced
                                                                  cellular
## 2
                             primary
                                                          no
                                                               no
       82 unknown divorced
                                                               no telephone
## 3
                            unknown
                                                   0
                                          no
                                                          no
       59 unknown divorced
## 4
                            unknown
                                                  27
                                                                    unknown
                                          no
                                                          no
       31 unknown divorced tertiary
## 5
                                          no
                                                 137
                                                          no
                                                               no
                                                                  cellular
## 6
       56 unknown divorced
                                                                    unknown
                             primary
                                                 558
                                          no
                                                          no
                                                               no
      51 unknown divorced
## 7
                            unknown
                                                1649
                                                                    unknown
                                          no
                                                          no
                                                               no
## 8
      66 unknown divorced
                            unknown
                                                1993
                                                                   cellular
                                          no
                                                         yes
                                                               no
## 9
      56 unknown divorced
                            unknown
                                                2152
                                                                    unknown
                                                          no
## 10 53 unknown divorced tertiary
                                          no
                                                2272
                                                         yes
                                                               no
                                                                    unknown
## Variables not shown: day (int), month (chr), duration (int), campaign
    (int), pdays (int), previous (int), poutcome (chr), y (chr)
```


Summary

filter

Extract subsets of rows. See also slice()

select

Extract subsets of columns. See also rename()

arrange

Sort your data

Transformations

· The mutate() verb can be used to make new columns

```
## Source: local data frame [45,211 x 18]
##
                  job marital education default balance housing loan
##
      age
## 1
      58
           management married tertiary
                                              no
                                                    2143
                                                             yes
                                                                   no
                       single secondary
## 2
      44
           technician
                                                      29
                                                             yes
                                                                   no
## 3
       33 entrepreneur married secondary
                                                      2
                                              no
                                                             yes
                                                                 yes
      47 blue-collar married
                                 unknown
                                                    1506
## 4
                                              no
                                                             yes
                                                                   no
## 5
      33
              unknown
                       single
                                 unknown
                                              no
                                                              no
                                                                   no
## 6
      35
           management married tertiary
                                                     231
                                              no
                                                             yes
                                                                   no
           management
                        single tertiary
## 7
                                                     447
                                                                 yes
                                              no
                                                             yes
      42 entrepreneur divorced tertiary
## 8
                                             yes
                                                             yes
                                                                   no
                                primary
## 9
              retired married
      58
                                                     121
                                                                   no
                        single secondary
           technician
                                              no
                                                     593
                                                             yes
                                                                   no
## Variables not shown: contact (chr), day (int), month (chr), duration
    (int), campaign (int), pdays (int), previous (int), poutcome (chr), y
    (chr), DefaultFlag (dbl)
```


Summarise Data by Groups

- The group_by verb creates a grouping by a categorical variable
- Functions can be placed inside summarise to create summary functions

```
summarise(group_by(bankData, default), Num = n())
```

```
## Source: local data frame [2 x 2]
##
## default Num
## 1 no 44396
## 2 yes 815
```


Example group_by 2

```
summarise(group_by(bankData, default), ave_balance = mean(balance))
```

```
## Source: local data frame [2 x 2]
##
## default ave_balance
## 1 no 1389.8064
## 2 yes -137.6245
```


Example group_by 3

Chaining/Piping

- · A dplyr installation includes the magrittr package as a dependency
- The magrittr package includes a pipe operator that allows you to pass the current dataset to another function
- · This makes interpreting a nested sequence of operations much easier to understand

Standard Code

Code is executed inside-out.

```
arrange(filter(select(bankData, age, job, education, default), default == 'yes'), job, education, age)
```

```
## Source: local data frame [815 x 4]
            job education default
##
     age
      25 admin. secondary
                             yes
      26 admin. secondary
                            yes
      26 admin. secondary
                            yes
      26 admin. secondary
## 4
                            yes
      26 admin. secondary
                            yes
     27 admin. secondary
## 6
                            yes
     27 admin. secondary
                            yes
      27 admin. secondary
## 8
                            yes
## 9 28 admin. secondary
                            yes
## 10 29 admin. secondary
                            yes
## .. ...
```


Reformatted

```
arrange(
 filter(
   select(bankData, age, job, education, default),
   default == 'yes'),
 job, education, age)
## Source: local data frame [815 x 4]
            job education default
      age
## 1 25 admin. secondary
      26 admin. secondary
                              yes
      26 admin. secondary
## 3
                              yes
      26 admin. secondary
                              yes
      26 admin. secondary
## 5
                              yes
     27 admin. secondary
## 6
                              yes
      27 admin. secondary
## 7
                              yes
      27 admin. secondary
## 8
                              yes
## 9 28 admin. secondary
                              yes
## 10 29 admin. secondary
                              yes
## .. ...
```


With Piping

```
bankData %>%
 select(age, job, education, default) %>%
 filter(default == 'yes') %>%
 arrange(job, education, age)
## Source: local data frame [815 x 4]
##
            job education default
##
      age
     25 admin. secondary
                              yes
      26 admin. secondary
## 2
                              yes
      26 admin. secondary
## 3
                              yes
      26 admin. secondary
## 4
                              yes
      26 admin. secondary
## 5
                              yes
      27 admin. secondary
## 6
                              yes
      27 admin. secondary
## 7
                              yes
      27 admin. secondary
## 8
                              yes
      28 admin. secondary
                              yes
## 10 29 admin. secondary
                              yes
## .. ...
```


Pipe + group_by()

The pipe operator is very helpful for group by summaries

```
bankData %>%
 group by(job) %>%
 summarise(num = n(),
           ave_balance = mean(balance),
           num defaults = sum(default == 'yes'),
           default_rate = num_defaults/num)
## Source: local data frame [12 x 5]
##
               job num ave_balance num_defaults default_rate
##
            admin. 5171
                         1135.8389
## 1
                                             74 0.014310578
       blue-collar 9732 1078.8267
## 2
                                            201 0.020653514
## 3
      entrepreneur 1487
                        1521.4701
                                             55 0.036987223
         housemaid 1240
## 4
                        1392.3952
                                             22 0.017741935
## 5
        management 9458
                        1763.6168
                                            164 0.017339818
## 6
           retired 2264
                         1984.2151
                                             26 0.011484099
## 7 self-employed 1579 1647.9709
                                             33 0.020899303
## 8
          services 4154
                         997.0881
                                             75 0.018054887
           student 938
                        1388.0608
## 9
                                              3 0.003198294
## 10
        technician 7597 1252.6321
                                            130 0.017112018
        unemployed 1303
                          1521.7460
                                             30 0.023023791
## 11
```

1772.3576

2 0.006944444

12

unknown 288

Pipe and Plot

As a reminder, piping can also be used for non-dplyr functions.

Exercise

Your turn:

- · Use the pipe operator to group by job and housing status
- \cdot Calculate the counts of observations, and the average and median balance

Solution

```
bankData %>%
  group by(job, housing) %>%
  summarise(Counts = n(),
            average_balance = mean(as.numeric(balance)),
            median balance = median(as.numeric(balance)))
## Source: local data frame [24 x 5]
## Groups: job
##
               job housing Counts average_balance median_balance
##
## 1
            admin.
                        no
                             1989
                                        1378.7677
                                                           445.0
            admin.
## 2
                       yes
                             3182
                                         983.9893
                                                           387.0
       blue-collar
                                                           421.5
## 3
                             2684
                                        1341.3308
                       no
## 4
       blue-collar
                       yes
                             7048
                                         978.8605
                                                           373.0
     entrepreneur
                                        1862.7023
                                                           390.0
## 5
                              618
                       no
## 6
      entrepreneur
                              869
                                        1278.7986
                                                           339.0
                       yes
## 7
         housemaid
                                        1491.1876
                                                           465.5
                       no
                              842
## 8
        housemaid
                              398
                                        1183.3920
                                                           314.5
                       yes
## 9
       management
                             4780
                                        1913.7525
                                                           600.5
                       no
       management
                                                           547.0
## 10
                             4678
                                        1610.2076
                       yes
## ..
```


Summary

mutate

Create transformations

summarise

Aggregate

group_by

Group your dataset by levels

distinct

Extract unique values (frequently used with arrange())

Chaining with the %>% operator can result in more readable code.

Thanks for Attending!

- · Any questions?
- · alizaidi@microsoft.com

