Indian Institute of Information Technology Allahabad Probability and Statistics Problem Set 09

1. Check weather the following functions are distribution functions of 2-dim random vector or not.

(a)
$$F(x, y) = \begin{cases} 1 & \text{if } x + 2y \ge 1 \\ 0 & \text{if } x + 2y < 1. \end{cases}$$

(b) $F(x, y) = \begin{cases} 0 & \text{if } x < 0 \text{ or } x + y < 1 \text{ or } y < 0 \\ 1 & \text{otherwise.} \end{cases}$

- 2. Let $F(\cdot, \cdot)$ be the distribution functions of a two-dimensional random vector (X, Y), and let $F_1(\cdot)$ and $F_2(\cdot)$, respectively, be the marginal d.f.s of X and Y. Define $U(x, y) = \min\{F_1(x), F_2(y)\}$ and $L(x, y) = \max\{F_1(x) + F_2(y) 1, 0\}$. Prove the followings.
 - (a) $L(x, y) \le F(x, y) \le U(x, y)$.
 - (b) L(x, y) and U(x, y) are distribution functions of 2-dimensional random vector.
 - (c) The marginal distributions of $L(\cdot,\cdot)$ and $U(\cdot,\cdot)$ are same as that of $F(\cdot,\cdot)$.
- 3. Let the random variable X have distribution function $F_1(\cdot)$ and let Y = g(X) have distribution function $F_2(\cdot)$, where $g(\cdot)$ is some function. Prove that
 - (a) If $g(\cdot)$ is increasing, $F_{X,Y}(x, y) = \min\{F_1(x), F_2(y)\}.$
 - (b) If $g(\cdot)$ is decreasing, $F_{X,Y}(x, y) = \max\{F_1(x) + F_2(y) 1, 0\}$.
- 4. Consider the following joint p.m.f. of the random vector (X, Y).

y	1	2	3	4
4	0.08	0.11	0.09	0.03
5	0.04	0.12	0.21	0.05
6	0.09	0.11 0.12 0.06	0.08	0.04

- (a) Find the conditional p.m.f. of X given Y = 5.
- (b) Find the probabilities P(X + Y < 8), P(X + Y > 7), $P(XY \le 14)$.
- (c) Find the Corr(X, Y)
- 5. For the bivariate negative binomial distribution, the p.m.f. is given by

$$f_{X,Y}(x, y) = \begin{cases} \frac{(x+y+k-1)!}{x!y!(k-1)!} \theta_1^x \theta_2^y (1-\theta_1-\theta_2)^k & \text{if } x \in \{0, 1, 2, \ldots\}, y \in \{0, 1, 2, \ldots\} \\ 0 & \text{otherwise,} \end{cases}$$

k is a positive integer, $0 < \theta_1 < 1$, $0 < \theta_2 < 1$, and $0 < \theta_1 + \theta_2 < 1$. Find both the marginal distributions and both the conditional distributions.

1

- 6. Suppose that the number, X, of eggs raid by a bird has the Poisson(λ) distribution with $\lambda > 0$, the probability that an egg would finally develop is $p \in (0, 1)$. Under the assumption of independence of development of eggs, show here that the number, Y, of eggs surviving has the Poisson(λp) distribution. Find the conditional distribution of X given Y = y.
- 7. Three balls are randomly placed in three empty boxes B_1 , B_2 , and B_3 . Let N denote the total number of boxes which are occupied and let X_i denote the number of balls in the box B_i , i = 1, 2, 3.
 - (a) Find the joint p.m.f. of (N, X_1) .
 - (b) Find the joint p.m.f. of (X_1, X_2) .
 - (c) Find the marginal distributions of N and X_2 .
 - (d) Find the marginal p.m.f. of X_1 from the joint p.m.f. of (X_1, X_2) .
- 8. Five cards are drawn at random without replacement from a deck of 52 cards. Let the random variables X_1 , X_2 , and X_3 , respectively, denote the number of spades, the number of hearts, and the number of diamonds among the five drawn cards.
 - (a) Find the joint p.m.f. of (X_1, X_2, X_3) .
 - (b) Are random variables X_1 , X_2 , and X_3 are independent?
- 9. Suppose that the lifetime of electric bulbs manufactured by a manufacturer follows exponential distribution with mean of 50 hours. Eight such bulbs are chosen at random.
 - (a) Find the probability that, among eight chosen bulbs, 2 will last less than 40 hours, 3 will last anywhere between 40 and 60 hours, 2 will last anywhere between 60 and 80 hours and 1 will last for more than 80 hours.
 - (b) Find the expected number of bulbs in the lot of chosen B bulbs with lifetime between 60 and 80 hours.
 - (c) Find the expected number of bulbs in the lot of 8 chosen bulbs with lifetime between 60 and 80 hours, given that the number of bulbs in the lot with lifetime anywhere between 40 and 60 hours is 2.
- 10. Suppose that $\underline{X} = (X_1, X_2, X_3, X_4) \sim \text{Mult}(30, \theta_1, \theta_2, \theta_3, \theta_4)$. Find the conditional probability mass function of (X_1, X_2, X_3, X_4) given that $X_5 = 2$, where $X_5 = 30 \sum_{i=1}^4 X_i$.
- 11. Suppose that X_1, \ldots, X_n are independent and identically distributed random variables such that $P(X_i = 0) = 1 p = 1 P(X_i = 1), i = 1, \ldots, n$, for some $p \in (0, 1)$. Let X be the number of X_1, \ldots, X_n that are as large as X_1 . Find the p.m.f. of X.
- 12. For the bivariate beta random vector (X, Y) having p.d.f.

$$f_{X,Y}(x, y) = \begin{cases} \frac{\Gamma(\theta_1 + \theta_2 + \theta_3)}{\Gamma(\theta_1)\Gamma(\theta_2)\Gamma(\theta_3)} x^{\theta_1 - 1} y^{\theta_2 - 1} (1 - x - y)^{\theta_3 - 1} & \text{if } x > 0, y > 0, x + y < 1\\ 0 & \text{otherwise,} \end{cases}$$

where $\theta_i > 0$, i = 1, 2, 3. Find both the marginal p.d.f.s and conditional p.d.f.s.

13. The joint p.d.f. of (X, Y) is given by

$$f_{X,Y}(x, y) = \begin{cases} 4xy & \text{if } 0 < x < 1, \ 0 < y < 1 \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the marginal p.d.f.s of X and Y.
- (b) Verify whether X and Y are independent.
- (c) Find $P(\{0 < X < 0.5, 0.25 < Y < 1\})$ and $P(\{X + Y < 1\})$.
- 14. Let (X, Y) be a random vector such that the p.d.f. of X is given by

$$f_X(x) = \begin{cases} 4x(1-x^2) & \text{if } 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

For fixed $x \in (0, 1)$, the conditional p.d.f. of Y given X = x is

$$f_{Y|X}(y|x) = \begin{cases} \frac{2y}{1-x^2} & \text{if } x < y < 1\\ 0 & \text{otherwise.} \end{cases}$$

- (a) Find the conditional p.d.f. of X given Y = y for appropriate values of y.
- (b) Find E(X|Y = 0.5) and E(Y|X = 0.5).
- (c) Find $P({0 < Y < 1/3})$ and $P({1/3 < Y < 2/3} | {X = 0.5})$.
- 15. Let $X = (X_1, X_2, X_3)$ be a random vector with joint p.d.f.

$$f_{X_1, X_2, X_3}(x_1, x_2, x_3) = \frac{1}{(2\pi)^{\frac{3}{2}}} e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)} \left(1 + x_1 x_2 x_3 e^{-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)} \right) \quad \text{if } (x_1, x_2, x_3) \in \mathbb{R}^3$$

- (a) Are X_1 , X_2 , and X_3 independent?
- (b) Are X_1 , X_2 , and X_3 pairwise independent?
- (c) Find the marginal p.d.f.s of (X_1, X_2) , (X_1, X_3) and (X_2, X_3) .
- 16. With the help of a counter example, show that if the random variables X_1 and X_2 are uncorrelated, then this does not, in general, imply that X_1 and X_2 are independent.
- 17. Let (X_1, X_2) be a 2-dimensional absolutely continuous random vector with joint p.d.f. $f_{X_1, X_2}(\cdot, \cdot)$. Show that X_1 and X_2 are independent if and only if, for some functions $g_1(\cdot)$ and $g_2(\cdot)$,

$$f_{X_1, X_2}(x_1, x_2) = g_1(x_1)g_2(x_2).$$

- 18. Let X and Y be independent random variables. Show that $h_1(X)$ and $h_2(Y)$ are also independent random variables, for Borel functions $h_1(\cdot)$ and $h_2(\cdot)$.
- 19. Let (X, Y) be a random vector with p.d.f.

$$f_{X,Y}(x, y) = \begin{cases} 15e^{-(2x+3y)} & \text{if } 0 < x < y < \infty \\ 0 & \text{otherwise.} \end{cases}$$

Find $P(\{X \le x\} | \{4.999 < Y \le 5.001\})$.

20. Let us choose at random a point from the interval (0,1) and let the random variable X_1 be equal to the number which corresponds to that point. Then choose a point at random from the interval $(0, X_1)$ and let X_2 be equal to the number which corresponds to this point. Compute $P(X_1 + X_2 \ge 1)$ and find the conclitional mean $E(X_1 | X_2 = x_2)$ for $x_2 \in (0, 1)$.