Software Engineering Lab (KCS-651)				
Course Outcome (CO) Bloom's Knowledge L		Bloom's Knowledge Lev	evel (KL)	
At the end of course , the student will be able to				
CO 1	Identify ambiguities, inconsistencies and incompleteness from a requirements specification and state functional and non-functional requirement		K ₂ , K ₄	
CO 2	Identify different actors and use cases from a given problem statement and draw use case diagram to associate use cases with different types of relationship		K ₃ , K ₅	
CO 3	Draw a class diagram after identifying classes and association among them		K ₄ , K ₅	
CO 4	Graphically represent various UML diagrams , and associations among them and identify the logical sequence of activities undergoing in a system, and represent them pictorially		K ₄ , K ₅	
CO 5	Able to use modern engineering tools for specification, design, implementation and testing		K ₃ , K ₄	

DETAILED SYLLABUS

For any given case/ problem statement do the following;

- 1. Prepare a SRS document in line with the IEEE recommended standards.
- 2. Draw the use case diagram and specify the role of each of the actors. Also state the precondition, post condition and function of each use case.
- 3. Draw the activity diagram.
- 4. Identify the classes. Classify them as weak and strong classes and draw the class diagram.
- 5. Draw the sequence diagram for any two scenarios.
- 6. Draw the collaboration diagram.
- 7. Draw the state chart diagram.
- 8. Draw the component diagram.
- 9. Perform forward engineering in java. (Model to code conversion)
- 10. Perform reverse engineering in java. (Code to Model conversion) 11. Draw the deployment diagram.

Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner It is also suggested that open source tools should be preferred to conduct the lab (Open Office , Libra , Junit, Open Project , GanttProject , dotProject, AgroUML, StarUML etc.)

Software Engineering Lab (KCS-661): Mapping with Virtual Lab

Name of the Lab	Name of the Experiment
	Identifying the Requirements from Problem Statements
	Estimation of Project Metrics
	Modeling UML Use Case Diagrams and Capturing Use Case Scenarios
	E-R Modeling from the Problem Statements
Software Engineering Lab (KCS-661)	Identifying Domain Classes from the Problem Statements
Software Engineering Lab (NCS-001)	Statechart and Activity Modeling
	Modeling UML Class Diagrams and Sequence diagrams
	Modeling Data Flow Diagrams
	Estimation of Test Coverage Metrics and Structural Complexity
	Designing Test Suites