22	09	2020
11	0 1	Roas

Euler's method:

For dy/dx = f(x) with initial condition

y(x0) = 20.

formula:

Mn+1 = 4n + b (21n, yn).

1) Using Ruler's method find an cyppropriate value of yeorresponding to 2=1 given that dy/dz = 21 ty, y (0) = I taking step size h = I.

dy = x +y , y (0) = 1

and h-0.1. Let us take n=10 & h=0;

(sufficiently small)

Suithe			
			N
			0
	n (0.1) = 1.0928		
1.0 935	0,8323	0.6	
1.0924	1.0158 0. 8615		Fact posts
1.0155	1.0577 0.8926	2.81 3.71. 2.81€0.1(3.71)-3.18 3.18 4.18 3.18 + 0.1(4.18)-3.53	0.9
1.0534	0,9258	2.89. 2.19+0.1(2.89 3.989 2.48+0.1(2.39	0.7
465 1.0394	1.02 1.02+0.2 0.96	. 32 9, 22. . 94 . 2.54	9.0
(1) (0.00 + 1	7-0-1	1.53+0.1(1.93)=1.33	0.3
me) 4 + hos - home		1.22 + 0.1 (1.2) = 1.32 1.22 + 0.1 (1.42) = 1.36	0,9
method that 4 for	Euly's	T 1 = (1) 1:0 + 1 T	2
5	1 to 1 - th co.	dy dy yn = 4,7 b (2,34) a) da dy yn = 4,7 b (2,34) a)	2
PAGE			

Such as 5 - 198	
5 + 5 (0.6021+ log, (20.2))	
1 = 2/0 + 5 (+ (no 40) +) (s	
6	
HOC1.9 -	
0.0	1 = 10 t
(0)	1
5 ((x0) 40) + (2,144) (6)) Euler's formula:	1 4
the values of	Man improve
(20) (20) (20) (20) (20)	n
redict the value of	1_
y (20) = 5	- T5in is a
2	Modified &
PACE	

Sulchie	
: 1.0552	
(£50.1 50.0) = (0,0K)	
0	
70=0,05, No=1.0527, h=0.05	(Mr.) - (01)
ال ا	0.05
= 1 + 0.05 [1 + (0.05) ² + (.0526)]	30.00 Ho=1. h=0.005
(1) \\ \frac{1}{5} = \frac{1}{5} \\	Given: dy x y
y, = 1.0526.	up to two approximation is each see
$\frac{(1)}{2} \left(\frac{1}{2} + \frac$	h= 0.05 considering the accuracy
7 7 7 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	o p o mandan
4(1) = 4, + 5 [[]	a) 1) se modified failur's method to
Modified Kuler's method	
y, /= 1.065	8 b 11 · S · (c·o) w · ·
(·) + 0.05 (·)	N(3) = 5.11.98
	(2) = 5 1 0.2 [0.6021 1 log 10 (5.1198)]
PAGE:	

Bollie wind fuller's modified method to obtain a solution of the equ dylar-a+1/4.

The range of x 5.4 is steps of per 0.3

The dy a 1 fty! 28 09 2020

4, 00 t p (20, 40) method : 1 0553

Modified Kuler's method :

y" = yo 1 1 (xonyo) + (x, y, (0))

1.1061

y(2) = 1.106 n = 40 + 1 ((** 40) + (x, y, y)

M(0.05) - 1.106.

5.0.2

30.0 your 7 = 301 b 2 0 1 0 . 3

N. 00. V.

1 (20 4 40) - 1 (0 1) = 0 + J

By Kuler's method y + b (30, y0) P C 1 4 (a)

3, 7 y. + 6/2 [] (x, y), [(x, y, o)] \$ + 0.2/2 [# + (0.2+ [VI.2])]

4, = 1. 2295

Swiedshill Swiedshill		
$= 0.1 \left(0.1 + (1 + 0.1)^{2} \right) = 0.1152$		
((0+=====)) + (1+=====))	n n) = 1 < 253	
K3 = h (20-1/2h, y0+1/2k.)	y(2) = 1. 5253	
k, 20.10	· 10 10 0 10 10 10 10 10 10 10 10 10 10 1	(6)
· ·	[(1, 1/2) = (2)]] = 1/2 to to to (2)	
	y"; 1.5246	3 3
(CXXX) 3 - 1 - 1 - 21 - 20 - 0, yo = 1	Ar Joy Jest Con Jest Jest Jest Jest Jest Jest Jest Jest	
3-6	By modified Euler's method	1
and m - I when x = 0 &	M. 1. 492+	T
1) Use R-K method to find approximate	51.5309 + 0.2 (0.24 N1.30J)	3
1	7(0) , n + 5 (30, y	3
b (2°, + b, 4	Ry Euler's method	1
(30 1 /2h do 1/2k)	スース0+5=0.0+0.0 = 0.H.	Ť
٢٠٥٤) [٦٠٠٧	70-0.2. no-1.2309	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
25 25 26 27	27	\(\frac{\chi}{1}\)
4, = 40 + /6 (k, + 2k2+ 2k)	m (0.2) = (.2308	3
Formula:	لا الله	
1 1	1 - 10.0/2	
Runge - Kutla method.	(1) = 40 + 6/2 [(20,4) + (2,+4)]	
Nacy .		

The state of the s			(XXX - 5 X -	k, = 0.1500 0010 = 3	1 (2) 77 (1) 1 1055	0,1346	= 0.1 (0.171.1165).	P()	-	y = 1.1165 b=0.1		(CKOF) 21 = 20.75	J. C. W. T. V. D. T.	S.	· 4 = .4 0 + /6 (k, 42k2 + 2k3 + ky).		5		k3 = 0.1168		(c/cx +0/ , c/cx) / y = 1	
(Sal-kki)	2. K = 0.24	1.2	70.2	k2 = h (20+ h/2, 20+ 4/2)		200	10,0 (10 L 0) 10 L 7 (10 L 10	- Laboratoria de la companya de la c	-1 7:0 30 do du , 7:44 5:0.2	* (V	ر محب	2). Using &- K method to find on approximat		(1) = 12 (0.0) = 1.0 +36 (7) (1) NO.		15	* 0 2008	Ku (3) (6, 1823, 0, 0) (6, 0, 0	k = b (a, 1b, M11ka)	= 0.19	ところして みしょうしい よっこう	PAGE:

kg -oh (20+ b/2, yo+ k2/2) = 6.244 ku = h | (xoth , yotks) | = 0.2 (0.2 + 1.244) ky = 0.2888 usted ct p'ct (12/3) all top = all By R-K method, 'y (20+1) = yot /6 (k,+2k2+2k3+ku) $\frac{2111}{6}\left(0.2+2(0.24)+2(0.244)\right)$ di aserir do es moder 15 + 0.288) y (0.2) = 1,2428. 1 1 = 1 10 = NL 3) Use R-K method to find an approximate value of y when x = 0.1given that y = 1.2 when x = 1.5dy = $3x + y^2$. (2/13 to 10 10 (0 to 10)) d = cx