Model

Computation of daily ET-deficit, soil moisture anad infiltration at a point feature:

Inputs: soil cover layer, LULC, slope, daily rainfall, K c, ET 0

- 1. PET = K c * ET 0
- 2. Set up values by lookup and/or derivation so that they are used in daily results computation:
 - 1. Slope layer:
 - 1. slope
 - 2. Soil cover layer:
 - 1. texture
 - 1. Hydrologic Soil Group (HSG)
 - 2. Percentages of sand, clay and gravel
 - 3. Bulk density
 - 1. Sat = (1 Bulk Density) / 2.65
 - 4. Wilting Point (WP) = 0.4 * Bulk Density * Clay fraction(i.e. percentage/100)
 - 5. Available Water Capacity (AWC)
 - 6. Field Capacity(FC) = WP + AWC
 - 7. Ksat

1.
$$Ksat_day = Ksat * 24$$

- 2. depth type
 - 1. depth

3. Sat depth = Sat * depth * 1000

$$WP_depth = WP * depth * 1000$$

FC depth = FC * depth *
$$1000$$

(1000 because converting to metres to mm?)

- 3. LULC layer:
 - 1. + HSG -> Curve Number(CN)

4.

1.
$$CN3 = \frac{(23 \times CN)}{(10 + 0.13 \times CN)}$$

2.
$$CN_S = CN$$
 if slope < 5 otherwise
$$= \left(\frac{CN3 - CN}{3}\right) \times \left(1 - 2 \cdot \exp(-13.86 \times 0.01 \times slope)\right) + CN$$
3. $CNI_S = CN_S - \frac{20 \times (100 - CN_S)}{(100 - CN_S + \exp(2.533 - 0.0636 \times (100 - CN_S)))}$

3.
$$CNI_S = CN_S - \frac{20 \times (100 - CN_S)}{(100 - CN_S + \exp(2.533 - 0.0636 \times (100 - CN_S)))}$$

4.
$$CN3_S = CN_S \times \exp(0.00673 \times (100 - CN_S))$$

5.
$$Smax = \frac{25.4 \times 1000}{CNI S} - 10$$

6.
$$S3 = \frac{25.4 \times 1000}{CN3_S} - 10$$

2.

8.

9.

$$= \left(\frac{SM1_fraction \times SM1 + \frac{infiltration - AET - R_to_second_layer}{1000} - WP \right) \times 0.1 \times 1000}{SM1}$$

$$if \frac{SM1_fraction \times SM1 + \frac{infiltration - AET - R_to_second_layer}{1000} > Sa$$

$$= 0 \quad \text{otherwise}$$

$$12. \quad SM1_fraction = min \left(\frac{SM1_before \times SM1 \times 1000 - R_to_second_layer}{SM1} , Sat \right)$$

$$\frac{layer2_moisture \times SM2 \times 1000 + R_to_second_layer}{1000}$$

$$13. \quad SM2_before = \frac{SM2}{1000}$$

$$14. \quad perc_to_GW = max((SM2_before - FC) \times SM2 \times daily_perc_factor \times 1000, 0)$$

$$15. \quad layer2_moisture = min \left(\frac{SM2_before \times SM2 \times 1000 - perc_to_GW}{SM2} - Sat \right)$$