482/805 DWPI - (C) Derwent

AN - 1985-300422 [48]

XA - C1985-130085

XP - N1985-223609

TI - Mandrel alloy for drilling and expanding seamless steel pipe - comprises carbon, chromium, nickel, molybdenum and tungsten, cobalt, copper, titanium and/or zirconium, silicon and/or magnesium

DC - M27 P51 P52

PA - (SANY-) SANYO TOKUSHU SEIKO KK

- (HOKO-) SHIN HOKOKU SEITETSU KK

NP - 2

NC - 1

PN - JP60208458 A 19851021 DW1985-48 9p *

AP: 1984JP-0064475 19840331

- JP89007147 B 19890207 DW1989-09

PR - 1984JP-0064475 19840331

AB - JP60208458 A

Mandrel alloy consists (by wt.) of C 0.14-0.18%, Cr 1-3%, Ni 1-9%, Mo and/or W 0.3-3% in total, Co 1-2%, Cu 1-2%, Ti and/or Zr 0.2-0.5% in total, Ni/Cr=1-3, and Si below 1.5% and/or Mn below 1.5% as deoxidising agent, and balance Fe and incidental impurities.

- ADVANTAGE - Increased durability. (0/6)

⑩ 日本国特許庁(JP)

①特許出願公開

母公開特許公報(A) 昭60-208458

@Int_Cl.4	識別記号	庁内整理番号	€2	公開	昭和60年(198	5)10月21日
C 22 C 38, B 21 B 25, B 21 C 3, C 22 C 38,	700 702	7147-4K 7819-4E 6778-4E 7217-4K	審査請求 2	有	発明の数	1	(全9頁)

公発明の名称 維目なし鋼管の穿孔および拡管用芯金合金

②特 顧 昭59−64475

❷出 願 昭59(1984)3月31日

砂発明者 国 岡 三 郎 川越市仙波町1丁目3番13号砂発明者 川 ロ ー 男 埼玉県比企部小川町大字原川320番地の10

砂発明者 吉井 勝 姫路市飾唐区中島字一文字3007香地 山陽特殊製鋼株式会

社内

砂出 顋 人 新報園製鉄株式会社 川越市新宿町5丁目13番地1

①出 願 人 山陽特殊製鋼株式会社 旋路市飾磨区中島字一文字3007番地

00代 理 人 弁理士 鈴江 武彦 外2名

BE 201 WE

1. 発明の名称

継目なし頻智の穿孔⇒よび拡管用芯金合金 2.特許初求の範囲

2 さらに必要に応じて脱酸剤として BIが重 量で1.5 多以下、 Ma が1.5 多以下の何れかまた は両者を含有することを特徴とする特許請求の 範別制1 以配級の芯金合金。

3.発明の非細な設明

との発明は中央丸型側片から絨目なし側管を 製造する線に用いられる穿孔および拡管用芯金 形成のための合金材料に関するものであって、 株 顧 昭 5 9 - 1 1 8 9 9 号 (特 開 昭 60 -号) 発 明 K な る 合 金 を さ ら K 改 負 し た も の て あ る。

上記先出取引組書にも記載されているように、一般に能目なし側智穿孔用の芯金は、 傾斜圧能ロールによって回転かよび前進する、かよそ1200でに加熱された中央丸形倒片に 縦方向に圧入されて、 とれによって側管の動方向の穿孔が行われる。 またとのようにして穿孔された 側管は、 阿様に傾斜圧延ロールによって回転かよび前進する拡管用の別の芯金が、 かよそ1000でに加熱された側管の穿孔内に圧入されるととによって、その拡管が行われる。

その結果、非孔かよび鉱管用の芯金の装置に 高温かよび高圧力が作用して、芯金の製画には 早耗、芯金材の単性変動によるしわ、部分的な 溶融損傷、あるいは管材との焼付きによるかじ りや割れが発生し、これらによって起る芯金の 変形かよび損傷が進行して、比較的短便用回数 のうちに芯金の場合が鑑さてその使用が不可能 ¿ \$ 5.

学孔別(または拡製用) 芯金の表面に生する とれらの損傷を防止するために、芯金を形成す る合金に要求される特性は損傷の種類によって 次のように異なる。

(I) 以終わよびしわの発生防止のためには、 合金の高額及にかける根據的強度が高いことが 必要である。

(2) 制れ発生防止のためには、常盤における 合金の被補的強度と伸展性が高いことが必要で ある。

(3) 部分的な耐触扱例の発生防止のためには、 忍金合金の組成のうち、地金への溶解度の小さい合金元素の前加をできるだけ少なくして、候 関制新や粒界新出によってこれらの合金元素が 粒界に関析して、部分的な融点低下かよび粒界 酸化の生ずることを防止することが必要である。

(4) 紹付きによるかじりや割れの発生を防止 するためには、スケール付け処理によって、芯 金の表面に断熱性と負荷性とを有する歓響なス ケールが適度の厚さK形成されることが必要で ある。

既述の特職的59-11899号発明の目的 は、地金への存解度が少なく、粒界場折して配 分的な存解損傷の原因となるCと、スケール付 け処理の際に形成されるスケール財をあくする Crとをできるだけ少なくし、NI、Moシェびw の固溶体硬化により常温シェび高温度にシける 機械的強度を高めることによって、耐用度が従 来のものよりも特別に使れた穿孔用芯金を得る ことにもった。

との目的は、重量でCが 0.1 ないし 0.2 5 多、Cr が1ないし3 多、NI が1ないし9 多、Mo かよびWのいずれか 1 独もしくは 2 独合計で 0.3 ないし3 多、技部が Fo かよび不可塑的な 装置不純物からなり、且つ NI/Cr の度量比の値が 1 ないし3 の組成を有する合金を用いることによって達成された。

本発明の目的は、上記特顧昭 5 9 - 1 1 8 9 9 号発明の合金をさらに改良して、穿孔用芯金の

財用度をさらに向上させ得るような合金を得る とと<mark>にある。</mark>

この目的は、上配既発明にかける合金の成分 組成のものに、さらに重量で Co を l たいし 2 が、 Co を l たいし 2 が、かよび Ti かよび 2r のいずれ か 1 植もしくは 2 位の合計を Q 2 たいし Q 5 が の制合で追加数加するととによって達成された。

たか、前野民出版発明の場合と同様に、上記の本発明にかける合金組成のものに、必要に応じて通常の設度剤として 1.5 多以下の 6i、もしくは 1.5 多以下の Ma、あるいはこの両者をさらに追加額加し得るものとする。

次に、本発明になる合金にかける各成分の組成が出版定理由について、特別昭59 - 11899 号 明報数かよび四面にかける記述と一部重複させ ながら散明をする。

では、地金に固修し、あるいは固彦限以上の では熱処理によって様々な類様を示すことによって、合金の常数をよび高機での機械的強度を 向上させるので、合金の強度向上に最も有効な 元素である。しかしながら、Cがあまり多くなると、とくにCrと共存する場合には、Crの次化物が粒界に折出して粒界能化をひき起したり、またとの炭化物はMo 中Wを地金よりもよく脳器数収するので、Mo 中Wの感加による地金の固落強化効果を載するなどの逆効果をも併せて持つものである。

本発明になる志会用合金は、 芯金の部分的な特徴機像を防止する見地から、 従来の この機合金と異なり、常温かよび高温度にかける は彼的 強度を主として固存体硬化 とるだけ 低い ない ここの含有量はできるだけ 低いがい ここの こっかしたがらあまり C の含有量が いい Nist 有量を高める必要を生じ、 これでは がにいいる おきなる。また C 含有量があまりに 6 低い と おあの 成動性が減少し、 従って その 頻遠性が 悪化する。

本発明になる芯金用合金においては、C含有量の下限値は、上記の経済性と約遺性との観点 ・

特恩昭60-208458(3)

からとれず 0.1 多とし、上限値は穿孔用芯金の 部分的解拟防止の観点からとれる 0.2 5 多とした。

SI は、一般の脱散剤として、合金の脱散調整用化少数化応じて合金に添加されるが、 SI が 多過ぎると合金の智性が低下するとともれ、穿孔用 32 金の表面に断熱性と胸帯性を有する数密なスケールを付着させるために施される一般のスケール付け処理時に、スケール中にファイヤライト(FaU·SIO₂)を生成してスケールを影響にする。

よって 81 含有量の上限値を 1.5 % 化定めた。 下限については別に制限はない。

Ma も一般の脱酸剤 として、合金の脱酸調整用 に必要に応じて合金に協加される。そして Ma が多消ると B1 の場合と同様にスケールを腕割に する。

よって Ma 含有量の上限 仮を 1.5 % と足めた。 下限については別に制限はない。

Cr および NI の成分範囲限定理由については、

両成分の比算が度要であるので、両者をまとめ て似明をする。

Cr は塩金に固常し、あるいはこと結合して以れ物を形成して、常見あるいは高温度にかける機械的強度を高めるとともに、合金の耐酸化性を向上させるのに有効な元素である。然しながらCr 含有量が高させる。との表面に断熱性と調情性とでするスケールを付着させる一般のスケール間のできない。生成するスケール形が変化生ずる損傷のうち、質対との純付きによるかじかが多発する。またCr 含有量が低くすぎると、常温かよび高温度にかける合金の機械的強度が低下し、お金に独良する。

NI はCと使化物を形成することなく地変に全部固帯して、固溶体硬化によって常温かよび高温度における機械的強度を高めるのに有効な元素である。然しながら、NI は Cr に比べて高値であるので、NI だけで常温かよび高温度にかける

合金の機械的效成を高めるとコスト高となり、 また Cr と共存する場合ほどには高い機械的強度 は初られない。また、NI の転加は、 Cr 添加の場 合に比べて、スケール付け処理による付着スケ ール版が再くなる条準ははるかに少ない。

及って、芯金合金に十分な常編および高級度における機械的強度、および適度な厚さのスケール側を与え、さらに合金に経済性を特たせるために、スケール層を輝くすることなく機械的独立を高めることのできるNIを主体とし、これに許なし初る範囲のCrを参加して、常品および高温度における機械的強度を構定するとともに、NI WM がかまな様数することにした。

上記の見地から、スケール層の取るを修くしないためにCr 含有制の上限を3 多とし、下限は設体的発送を補充するためにこれを1 多とした。またNi は収録的発展を高めるために、その含量をCr 含有減の1 倍から3 倍、すなわちNi/Cr の取出比の値を1 ないし3 と定めた。

NI/Cr 比の無を1ないし3と足めた模拠を指

1 図かよび類 2 図の 1 組の曲線図、 ならびに創 3 図かよび第 4 図の 1 組の曲線図を用いて設明 する。 第 1 図は Cr 含有量が 1.4 % の場合の常温 にかける合金の機械的強度に及ぼす NI/Cr 比の 影響を示す曲線図、第 2 図は同温度 9 0 0 ℃に かける何様の影響曲線図、第 3 図は Cr 含有量が 2.8 % の場合の常温にかける同様の影響曲線図、 第 4 図は同温度 9 0 0 ℃にかける同様の影響曲線図、 総 6 図は同温度 9 0 0 ℃にかける同様の影響曲線図、

これらの曲線図から判るように、穿孔用芯金の耐用度の低下をもたらす損傷の一つである割れを防止するのに必要な常識の引張強さかも5ないし5.0 kg/m² であって放底不足であり、Ni/Cr 比が3以上では伸び率が著しく低下して割れの 助止には不適当である。また損傷の他の一つである芯金表面の摩託かよびしわを防止するため に必要な高温度にかける引張強さは、Ni/Cr 比が3以上では5.2 ないし5.3 kg/m² となっていて強度不足であるとともに、伸び率が著しく低 下するのが刊る。

以上の結果から刊前して、本発明になる芯金合金中のNI/Cr 比の値を1 ないし3 の範囲で選ぶことに定めた。

Me かよびW社合金地金に関密し、あるいはでと紹合して現化物を形成して、とくに合金の高出版にかける機械的製度を高めるのに有効な元素である。反面、Me かよびW含有量の増加はスケール付け処理により芯金投面に生成付着するスケール対を総解にする。本発明になる芯金合金の高出版機械的性質に及ぼす Me かよびW 影加の影響の例が能 5 図に示されている。この曲線図は Cr 含有量が 2 8 多、Ni/Cr 比が 2 0 の場合、鉄線組度が 9 0 0 での場合。W・または Me とWの台計量の変化が、合金の引張り強さかよび伸び率に及ぼす影響を示するのである。

との無線図によると、Mo シェびWの何れか1 はもしくは2 独合計の統加量が 0.2 ぎまでは高 悪引後り強さの向上に効果がない。しかしなが ち、この統加針が 0.3 ぎから 1.5 ぎまでは総加 量の増加とともに引張り強さは緩やかに増加し、 該加量が 1.5 から 2 0 ぎまででは引張り強さは 転加量の増加とともに象徴に増加する。そして 2 0 ぎ以上の転加では引張り強さは内び緩やか な増加に転ずるのを見ることができる。

本発明合金によって製作された恋金によって1200で近傍に加熱された中実丸形倒片を穿孔する場合に、穿孔される側片の材質が単なる段景側であるならば、MoかよびWのいずれか1位もしくは2位合計の窓加量が1.5 が以下の本発明合金による穿孔用芯金で十分に従来の芯金の耐用度を上超るととができる。しかしながら、穿孔される側片の材質が1.3 がタロム側もしくは24がタロム側片の材質が1.3 がタロム側もしくは2位合計の影加量は1.5 がから3.0 がまでであるととが必要である。

従って、本発明になる合金における Mo および W のいずれか 1 種もしくは 2 種合計の添加量は、 これを 0.3 ないし 3 がと定めた。

Co は一般の炭素鋼、もしくは本発明になる芯金合金のような低合金側に添加される元素のうちで、側の競入性を低下させる唯一の元素である。

穿孔用芯金は、1200℃近傍に加熱された中央丸形領片中に圧入されるので、穿孔道板の穿孔用芯金の表面温度は1200℃から1300℃近傍に、表面から約5m内部では800℃近傍に、 そしてさらに内部では700℃以下の温度となる。

とのような状態に加熱された忠金は、穿孔底 徒に樹水によって常葉にまで冷却されたのち、 再び新たな側片中に圧入され、とうして加熱を よび冷却が繰返される。との繰返しによってか 金の表面に翻かい亀甲状の削れが生じて、たれ が被穿孔パイプの内面に圧延抜を発生させるも のである。との亀甲状の削れは主として加熱冷 却の維起しによって生ずる熱応力に基因する。

一般に携入性が低く、 焼入変態のない場合の 網体の熱応力は、 網体の表面では圧縮応力が、 網体の中心部では引銀応力が発生する。 とれに 対して、焼入性が高く、焼入変態が生する場合の側体の熱応力は、その表面では引援応力が、その中心部では圧縮応力が発生する。すなわち両者の場合に熱応力の分布が逆転するのである。そして、一般に表面が圧縮応力となる焼入変勢のない加熱冷却の繰返しの方が亀甲割れの発生が少ない。

施入性の大小は、丸御側片を水焼入れしたのち、その断面硬度を測定し、硬度がロックウェルでスケール 4 0 以上になる硬化層の厚さ d と丸棒の半径 r との比率 d/rを以てこれを扱わすことができる。 すなわち d/r値が小さくなる程焼入性が低下することを表わす。

本発明合金による半径 2.5 mの丸御を水焼入れした場合の d/r値に及ぼす Co 放分含有量の影響の一例が訊 6 図の曲額図に示されている。 Co の曲級図から、 Co が 1.7 5 % までは焼入性の低下が顕著であるが、 Co が 1.7 5 % を越えるとその効果が少ないととが判る。

よって本発明合金の Co 数加量の下肢は、能入

14億時60-208458(6)

性低下の効果の見地から1多とし、上限は、経 咳的ドコスト高となる前には焼入性低下の効果 があまり得られない見地からとれを2多とした。

Cu は地金中に勧細に折出して、常温の引張強さを高めるのに有効な元素である。また既述した断熱性と調用性とを有するスケール付けの処理の際に、スケール直下の地金中に富化されて、スケールの地金への密着性を改善するのにも有効な元素である。しかしながら、低加量が1 が以下では常温の引張強さの向上は少なく、低加量が多過ぎると、スケール直下に富化されたCuが高温度で地金の結晶粒界に及調して、芯金の表情限を能力にする。

よって本発明合金における Cu の葯加量下限を 1 %とし、上限を 2 % とした。

TI および Zr は Cr よりも優先して C と結合して 次化物を形成する。そして TI および Zr の以化物は Cr の現化物とはちがって、 地会中に 均一に分散するとと、 および 高温度における 地会中への 所解 京が Cr の 次化物に 比べて 紙 めて 小さい

ととから、粒界の部分的な融点低下かよび粒界の能化を経験するとともK、高温度Kかける引張強さを高めるのK有効な元素である。さらK、Cr よりも優先して炭化物を形成するのでCrの炭化物量が減少する結果、Cr 炭化物中K吸収されるCr, Wかよび Me が減少し、従ってこれらの元素の地金中の濃度が高くなって、固溶体硬化Kよって合金の高温度Kかける引張強さが向上する。しかしながら、Ti かよび Zr の設加量が多過ぎると、合金を大気中で溶解する場合K、零しく溶器の旋動性が減ずられ、芯金製作の際K

よって本発明合金におけるTI および Za²の 1 ほあるいは 2 独合計の新加量の上限を 0.5 %、 下限を 0.2 % と定めた。

以上、離日なし側督の穿孔用芯金合金ドついて述べたが、阿拡智用芯金合金ドついても全く 穿孔用芯金合金と同様であるからその説明を省略する。

次に実施例について説明をする。

本発明になる穿孔用を金合金の実施制例の組成を約1表に示す。約1表には先発明である特額的59-11899号発明になる合金、シよび従来公知のとの復合金の組成をも併配してある。

別1 接に示された組成の各合金を業材として、JIS - Z - 2201 の規定による1 0 号常温引張試験片、JIS-G-0567 号の規定による高温度引張試験片、および直程が6 9 m/m、7 2 m/m、および直程が6 9 m/m、7 2 m/m、および直程が6 9 m/m、7 2 m/m、および7 5 m/mのアツセルミル用導孔芯金をそれぞれ製作した。高温度引張りは験は温度9 0 0 でで包分5 多の重速度でおこなわれた。これらのおこなを用いて、実際にJIS の BUJ 2 速(C 的 1 多、Cr 約 1.5)のペアリング傾材(いわゆる高次案クロム軸受け解材)をアツセルミルを用いて深入に対している。これらの耐用度は穿孔用芯金1 数当りの半均穿孔本数で扱わされている。

記る数に見られるように、本発明になる合金の水型をよび高温度にかける接触的強度は、従

来公知のこの様合金の1.5倍ないし3倍、特別 配59-1.1899号発明合金のそれらとはほ 使同等もしくは長らか大きいことが判る。そし て、本発明合金で製作された芯金の前用度は、 公知の合金のものの2ないし5倍、特別配59 -11899号発明合金のものの1.5ないし2 倍となっているのを見る。との本発明合金に1 る芯金の耐用度が増大しているのは、合金のCo 能加による芯金表面の亀甲割れの減少、Cu 版加 によるスケールの告景、TI シュび Zr の版加に よる以化物の粒界偏析防止の錯効果によるもの である。

加 1 款 合金の組成表 (重复多)

	 .			C	81	Ma	Cr	NI	M•	w	P	8	C.	Ca	TI	Zr	NLE,	7.
		Æ	• 1	0.1 8	0.68	0.6 2	1.58	3.0 6	0.4 2	-	0.0 2 6	0.0 1 8	1.0 2	1.14	0.24	-	1.9 4	费部
			▶ 2	0.1 8	0.6 2	0.6 4	1.58	3.1 0	0.48	-	0.0 2 7	0.0 2 0	1.1 8	1.10	0.2 6	0.2 2	1.9 6	
			• 3	0.16	0.7 1	0.7 1	1.5 2	3.1 0	0.4 4	•	0.024	0.018	1.1 2	1.84	-	0.28	2.04	,
lis			• 4	0.17	0.6 4	0.68	1.54	3.0 B	0.43	-	0.0 2 4	0.0 2 2	1.0 8	1.87	0.18	026	2.00	,
Ħ			• 5	0.1 7	0.6 2	0.59	254	5.9 B	0.5 0	0.73	0.0 2 6	0.0 1 6	1.5 6	1.0 6	0.32	-	2.3 5	•
8			• 6	0.1 5	0.6 2	0.5 7	249	5.9 6	0.48	0.76	0.0 2 4	0.016	1.68	1.0 6	•	0.29	2.39	•
			.*.7	0.1 8	0.6 6	0.60	252	5.9 5	0.4 6	0.7 6	0.0 2 6	0.0 2 0	1.70	1.5 4	0.2 5	0.1 8	2.3 6	
			. 8	0.1 6	0.5 8	0.5 6	252	5.9 6	0.4 8	0.7 4	0.0 2 5	0.0 1 8	1.48	1.46	0.1 7	0.1 8	2.3 7	•
		.	<u> </u>	0.24	0.6 9	0.7 2	2.5 1	5.9 4	0.5 2	0.7 5	0.0 2 6	0.0 1 9	1.5 2	1.9 4	0.23	0.20	237	,
		:	K 1	0.17	0.6 2	0.68	134	3.90	0.4 2	-	0.0 3 0	0.024	-	-	-	-	2.9 1	,
2	u	_	2	0.1 7	0.5 8	0.6 2	2.56	6.2 3	0.48	-	0.0 2 8	0.018	-	-	-	-	2.4 3	•
13	١.		3	0.1 4	0.60	0.5 4	2.85	5.8 3	0.4 2	-	0.028	0.018	-	_	-		20 4	•
¢ -	-		4	0.1 6	0.50	0.5 2	2.5 2	3.8 7	0.40		0.0 2 6	0.0 2 0	-	-	-	-	1.4 8	,
1/3	t I		5	0.1 7	0.6 8	0.5 4	1.39	1.4 6	0.43	-	0.0 2 6	0.0 1 8	-		-		1.0 5	,
1	9		6	0.1 8	0.7 0	0.6 8	2.58	6.2 1	0.4 0	0.3 2	0.0 24	0.016	-	-	•	-	2.3 2	•
	n		7	0.1 5	0.5 7	0.6 2	1.7 5	2.84	0.5 0	0.7 3	0.0 2 6	0.020	-		-	-	1.6 2	•
			8	0.1 5	0.5 6	0.64	1.55	2.7 5	0.4 7	1.6 2	0.0 2 8	0.0 2 2	-	-	-	-	1.77	,
1			9 7-1N1	0.2 5	0.6 4	0.6 6	1.55	2.6 8	0.60	2.0 2	0.024	0.016		-	-	-	1.73	•
1	n l	. 4		0.32	0.7 4	0.6 2	3.0 5	1.02	-	-	0.0 2 6	0.0 2 0	-	-	-	-	0.3 3	,
1	2	1.5C	r-0.75Ni	0.23	0.6 1	0.6 8	1.6 4	0.6 8	0.1 2	-	0.0 2 8	0.0 1 6	1.2 6	1.0 8	-	Į.	0.4 1	,

如 2 表 籍 特 性

			常温の機	被的性質	9000	秋秋的性質	~ ~ ~ ~	
			引張強さ (ロ/ゴ)	伸び率	引製強さ	伸び事	穿孔着材 の 材 貴	耐用度 (穿孔本数/1個)
	 I	% • 1	125.6	5.6				
	·				7.8	1 2.4	ペアリング領	20~ 70
×		. 2	1 2 5.0	5.8	7.8	1 0.8		20~ 70
	_	s 3	1 2 6.0	5.6	7.4	1 4.6	,	20~ 70
~		» 4	1 2 6.8	5.4	7.6	1 1.8	•	20~ 70
PI		. 5	1 2 8.4	4.8	8.2	8.6	,	50~120
8		• 6	1 2 7.8	4.6	8.2	8.4	,	50~120
_		• 7	1 2 8.6	4.6	8.G	7.8	,	50~120
ê			1 2 9.0	4.2	8.7	7.2	,	50~120
		. 9	1 2 8.0	4.2	8.4	7.8	,	50~1 20
	4)	K 1	1 0 1.0	2 0.0	7.9	3 1.2	,	20~ 50
tt 1	RS .	. 2	1252	5.4	7.3	1 2.0	•	20~ 50
- 1	孔	3	1 2 1.6	7.0	7.8	9.2	,	20~ 50
K	<u>-</u>	4	1 2 4.2	7. 2	7.2	1 1.4	,	20∼ 50
71	Ÿ	5	6 0.2	2 9.5	7.0	5 8.0	,	20~ 80
8	九九	6	1369	4.8	8.0	8.5	,	30~ 50
	号站	7	1 1 7.0	1 0.2	8.5	7.5	, .	30~ 60
≆	射合	8	110.4	1 0.9	1 5.0	7.0	,	30~ 60
	4	9	1 2 3.0	6.8	1 6.0	6.0	,	30~ 60
	公知	3Cr-INI	6 3.0	1 6.0	5.2	4 8.2	,	10~ 30
	合金	1.5 Cr - 0.7 5N I	6 1.8	2 1.6	5.8	5 2.6	,	13~ 35

4. 図面の簡単な説明

約1 関は本発明有金のCr 含有量が1.4 多の場合の常島砂城的性質に及はす NI/Cr 風量比の影響を示す助船図。

第2図は本発明合金のCr含有量が1.4多の場合の製取900でにおける破滅的性質に及ぼす N1/Cr 収量比の影響を示す自動図。

和3間は本発明を全のCr含有量が28多の場合の溶解は限的性質に及ぼすNI/Cr直は比の影響を示する場合。

at 4 以は本外別合金のCr 含有量が2 8 多の場合の監修9 0 0 じにおける機械的性質に及ぼす NI/Cr 収析比の影響を示す曲顧問。

助 5 図は本発明合金の Cr 含有量が2 8 多で NI/Cr 机抗比が 2 0 の場合の 減度 9 0 0 ℃ に かける 機械的 作列 に 及及す Mo かよび W 終加 の影響 を示す 曲 製 図

的6回は本発明合金の婦人性に及ぼす Co数加の影響を示すの副関である。

#回転60-208458(B)

手統補正資

m கடங்கில் விரும்

特許庁長官 忠 賀 学 殿

1. 事件の表示

■ # 5 9 - 6.4 4 7 5 ₩

2. 经财の名称

難日なし個質の製化がよび位置用心金合金

3. 箱正をする者 事件との関係 特許出版人 新報路更数株式会社 (Eか1名)

4. 代 理, 人

5. 自药粘正

60 2 13

6. 相信の対象

831 **AS**1

補産の門等
 (1) 特許減次の製門。別都管全交を別載の通り訂正する。

- 四 明題者中、下記の訂正を行います。
 - 4 以下から9行、「Cが0.1ないし0.253、 Jを「Cが0.14ないし0.18%、」と
 T正、
 - の 6 頁象下行、「製点」を「製験的見地」と 訂正。
 - △ 7月1行。「0.1%」を「0.14%」と訂正。

 - お 図页3行。「た。」の次に「(後掲実施例参数)」を挿入。
 - ~ 19月シェび20月のそれぞれ第1表シェ び都2表を別紙のとかり訂正。

新 1 水 合分の組成表 (倉盤%)

		С	81	Mn	Cı	NI	Mo	₩	P	8	Co	Cu	TI	Zr	NUCE	P
	A + 1	0.18	0.68	0.62	1.58	3.0 6	0.42		0.026	0.018	1.02	1.1 4	0.24	-	1.94	機
	• 2	0.18	0.62	0.6 6	1.58	3.10	0.48	-	0.0 2 7	0.0 2 0	1.1 8	1.10	0.26	0.22	1.96	١.
	a 3	0.1,6	0.71	0.7 1	1. 5 2	3.10	0.4 4	•	0.0 2 4	0.018	I. 1 2	1.84		0.28	2.04	٦.
	• 4	0.17	0.64	0.6 8	1.54	3.08	0.4 3	-	0.024	0.022	1.08	1.87	0.18	0.26	200	1
	a 5	0.17	0.62	0.5 9	2.54	5.98	0.50	0.73	0.0 2 6	0.016	1.56	1.06	0. 3 2	-	2.3 5	۱,
	a 6	0. 1 5	0.62	0.57	2.4 9	5.96	0.48	0.76	0.0 2 4	0.016	1.68	1.06		0.2 9	2.39	
	• 7	0.18	0.66	0.60	2. 5 2	5. v 5	0.4 6	0.76	0.026	0.0 2 0	1.70	1. 5 4	0.25	0.1 8	2.3 6	١.
	• 8	0.16	0.58	0. 5 6	2.52	5.96	0.48	0.74	0.0 2 5	0.018	1.48	1.4 6	0.17	0.18	237	
to Ma	4 1	0.17	0.62	0.68	1.34	3.90	0.42	-	0.0 3 0	0.024	-		-	-	2.91	Ī
心	2	0.17	0.58	0.62	2. 5 6	6. 2 3	0.4 8	-	0.0 2 8	0.018	-		-	-	2.4 3	
7.	3	0.14	0.60	0.54	2.85	5.83	0.42		0.0 2 8	0.018	- "	-		-	204	
1	4	0.16	0.60	0.52	2.52	3.8 7	0.4 0	•	0.0 2 6	0.0 2 0	-	-	-	-	1.48	l
允	5	0.1 7	0.68	0.5 4	1.3 9	1.4 6	0.43	-	0.026	0.018		-	-	-	1.05	
ę R	6	0.1 8	0.70	0.68	2.68	6. 2 1	0.4 0	0.32	0.0 2 4	0.016	-	-		<u> </u>	2.32	۱
해	7	0.15	0.57	0.6 2	1.75	2.8 4	0.50	0.73	0.026	0.0 2 0		-		-	1.62	
ê	8	0.15	0.5 6	0.64	1.55	2.75	0.47	1.62	0.0 2 8	0.0 2 2		-	-		1.77	ľ
公知	3 Cr - 1 NI	0. 3 2	0.74	0.6 2	3.05	1.02		-	0.026	0.0 2 0	-	-	-		0.33	
404	1.5 Cr = 0.7 5 Ni	0. 2 3	0.61	0.68	1.64	0.68	0.1 2		0.0 2 8	0.016	1.2 6	1.08	-	-	0.41	1

		常息の概	级的性界	900 0	维域的性質	ev 11 mm ka	84 65 m
		引強強さ	仲び単	引强强力	伸び率	穿孔管切の対象	射 用 皮 (穿孔本数/1 斜
i		(Kg / 🚅)		(Kp/ml)	N		
2	. 	1 2 5.6	5. 6	7.8	124	ペアリング間	20~ 70
1.	a 2	1 2 5,0	5. 8	7.8	1 0. 8	•	20~ 70
	± 3	1 2 6. 0	5. 6	7.4	1 4.6		20~ 70
	. 4	1 2 6.8	5. 4	7.6	1 1.8		20~ 70
•	a 5	1 2 8.4	4.8	8. 2	8. 6		50-120
,] -	* 6	1 2 7.8	4.6	8. 2	8.4	•	50~120
	a 7	1 2 8.6	4. 6	8. 6	7. 8	*	50~120
: "	a 8	1 2 9.0	4. 2	8. 7	7. 2	-	50~120
**	A 1	101.0	2 0.0	7. 9	3 1. 2		20~ 50
配五九	2	1 2 5. 2	5. 4	7.3	120	-	20~ 50
	3	1 2 1. 5	7. 0	7. 8	9. 2		20~ 50
	4	1 2 4.2	7. 2	7. 2	1 1.4	•	20~ 50
二公	5	6 0.2	2 9. 5	7.0	5 8.0	•	20~ 50
	6	1 3 6. 9	4.8	8.0	8. 5	*	30~ 50
á	7	1 1 7.0	1 0. 2	8. 5	7. 5	•	30~ 60
化学的企业	8	1 1 0. 4	1 0.9	1 5. 0	7. 0	*	30~ 60
公知	3Cr-1Ni Bi Mi	6 3.0	1 6.0	5. 2	4 8.2	•	10~ 30
6	1.5 Cr - 0.7 5 N I	6 1.8	2 1.6	5. 8	5 2.6	*	13~ 35

2. 特許請求の範囲

1. 度引ででが 0.1 4 ないし 0.1 8 %、Cr が 1 ないし 3 %、Ni が 1 ないし 9 %、Moかよび W のいずれか 1 極または 2 組合計で 0.3 ないし 3 %、Coが 1 ないし 2 %。Cuが 1 ないし 2 %。Ti かよび2rのいずれか 1 減もしくは 2 組合計が 0.2 ないし 0.5 %。 段即Peかよび不可避的な 数世不純物からなり。且つ Ni/Cr の重量比の値が 1 から 3 である雑目なし創售の穿孔かよび拡管用分企。

2. さらに必要に応じて脱酸剤としてSIが取 別で 1.5 %以下、Nnが 1.5 %以下の何れかまた は調者を含有することを特徴とする特許請求の 観閲覧 1 項配載の芯金合金。

(19) Japan Patent Office (JP)

(11) Japanese Unexamined Patent Application Publication S60-208458 (12) Japanese Unexamined Patent Application Publication (A)

		Classification In	nternal Office	
(51) Int C220		Symbols: R	egistration Nos.: 7147-4K	(43) Disclosure Date: 21 October 1985
B21E			7819-4E	
B210			6778-4E	
C220			7217-4K	·
		or Examination: Submi	tted Numbe	er of Claims/Inventions: 1 (Total of 9 pages)
(54)	Title of the	Invention: Core Metal	Alloy for Piercin	g or Expanding Seamless Steel Pipe
` ,	(21			
	(22) Filing Date: 31 M	larch 1984	
(72)	Inventor:	Saburo Kunioka		1-3-13 Sembamachi, Kawagoe City
(72)	Inventor:	Kazuo Kawaguch	i	320 banchi-10 Harakawa Oaza,
, ,				Ogawamachi, Hikigun, Saitama Prefecture
(72)	Inventor:	Katsu Yoshii		c/o Sanyo Special Steel Co., Ltd., 3007-
				banchi Nakashima-aza Ichimoji, Shikama-
				ku, Himeji City
(71)	Applicant:	Shinhokoku Steel	Co., Ltd.	5-13-1 Arajuku-machi, Kawagoe City
(71)	Applicant:	Sanyo Special Ste	el Co., Ltd.	3007-banchi Nakashima-aza Ichimoji,
				Shikama-ku, Himeji City
(74)	Agent:	Takehiko Suzue,	Patent Attorney	(and two others)

SPECIFICATIONS

1. Title of the Invention

Core Metal Alloy for Piercing or Expanding Seamless Steel Pipe

2. Scope of Patent Claims

- 1. A core metal alloy for piercing or expanding [insertion] a [end insertion] seamless steel pipe made from, by weight, 0.1 to 0.25% C, 1 to 3% Cr, 1 to 9% Ni, 0.3 to 3% of a total of one or two types of Mo and W, 1 to 2% of Co, 1 to 2% of Cu, 0.2 to 0.5% of a total of one or two types of Ti and Zr, and the balance Fe with inevitable trace quantities of impurities, and a weight ratio value for Ni/Cr of between 1 and 3.
- 2. A core metal alloy recited in Claim 1 characterized by the fact of further containing, by weight, according to need 1.5% or less of Si and/or 1.5% or less of Mn and as a deoxidizer.

3. Detailed Description of the Invention

The present invention relates to an alloy material for forming a core metal for piercing or expansion when manufacturing seamless steel pipes from solid round billets, and further improves the alloy in the Patent Application S59-11899 [i.e., 1984-11899] (Unexamined Patent Application Gazette Number S60 [i.e., 1985]) invention.

As recited in the Specification of the aforementioned antedated application, generally, a core metal for piercing a seamless metal pipe is pressed lengthwise by a solid round steel billet heated to approximately 1200°C that advances and rotates due to an oblique rolling roll, and piercing is thereby made in the axial direction of the steel pipe. A pierced steel pipe pierced in this manner can be expanded

by a separate core metal for expansion that advances and rotates similarly due to an oblique rolling roll being pressed in the pierce hole of the steel pipe heated to approximately 1000°C.

As a result, high temperature and a high stress act on the surface of the core metal for piercing or expansion, abrasion on the surface of the core metal, wrinkling due to plastic flow of the core metal material, partial melting damage, or galling or cracks due to seizures with the pipe material occur, deformation or damage to the core metal occurring thereby proceed, the life with the number of uses of the core metal is comparatively shortened, and the use becomes impossible.

The properties demanded of an alloy to form a core metal in order to prevent such damage that occurs on the surface of core metal for piercing (or expansion) differ as follows according to the type of damage.

- (1) In order to prevent the occurrence of abrasion or wrinkling, the mechanical strength of the alloy needs to be high at high temperatures.
- (2) In order to prevent the occurrence of cracks, the mechanical strength and extensibility of the alloy need to be high at ordinary temperatures.
- (3) In order to prevent the occurrence of partial melting damage, it is necessary to prevent partial lowering of the melting point and grain boundary embrittlement from occurring by adding as few alloy elements with a low melting point to the bare metal as possible in the composition of the core metal alloy, and segregating these alloy elements by grain boundary using solidification segregation and grain boundary separation.
- (4) In order to prevent the occurrence of galling and cracks due to seizures, a fine scale needs to be formed with an appropriate thickness having thermal insulation and lubrication on the surface of the core metal due to scale attachment.

The object of the Patent Application Number S59-11899 [i.e., 1984-11899] invention described above was to obtain a core metal for piercing markedly superior in duration compared to conventional core metals by increasing the mechanical strength and ordinary and high temperatures using solid solution hardening of Ni, Mo and W, grain boundary segregating and decreasing as much as possible the quantity of C which is a cause of partial solution damage and the quantity of Cr which thins the scale layer formed during scale attachment, and decreasing the solubility in the bare metal.

This object was achieved using an alloy having, by weight, {A}¹ 0.1 to 0.25% C, 1 to 3% Cr, 1 to 9% Ni, 0.3 to 3% of a total of one or two types of Mo and W, and the balance Fe with inevitable trace quantities of impurities, and a composition with a weight ratio value for Ni/Cr of between 1 and 3.

The object of the present invention is to further improve the alloy in the aforementioned Patent Application Number S59-11899 [i.e., 1984-11899] invention, and obtain an alloy for piercing whose durability is further improved.

This object was achieved by adding to the component composition of the alloy of the aforementioned invention additives in a ratio of, by weight, 1 to 2% Co, 1 to 2% Cu, and 0.2 to 0.5% of a total of one or two types of Ti and Zr.

Similar to the aforementioned antedated application invention, the additives of either 1.5% or less of Si and 1.5% or less or Mn or both may be added as ordinary deoxidizers according to need to the alloy composition of the present invention mentioned above.

Next is a description, which duplicates some of the above description, of the Specification and Drawings of Patent Application Number S59-11899 [i.e., 1984-11899] for the range limitations of the composition of each component in an alloy of the present invention.

C is an effective element for improving the strength of an alloy because it increases the mechanical strength of alloys at ordinary and high temperatures by exhibiting various aspects when C is melted in bare metal or undergoes heat treatment above the solution point. However, if there is too much C, and particularly when co-existing with Cr, the Cr carbide separates at the grain boundary, causing

¹ [Translator's note: Braces indicate sections subject to the amendment following the patent added by the translator for ease of reference.]

grain boundary embrittlement, and the carbide dissolves and absorbs more Mo and W than the bare metal, so the reverse effects such as solution strengthening effects of the bare metal due to adding Mo and W are caused.

An alloy for a core metal according to the present invention differs from this sort of conventional alloys from a perspective of preventing partial melting damage to the core metal, and solid solution hardening is mainly used for mechanical strength at ordinary and high temperatures, so it is desirable to have as little contained C as possible. Nevertheless, when the quantity of contained C is too little, a need arises to increase the quantity of the contained Ni to maintain the required mechanical strength, and this is economically costly. Also, if the quantity of contained C is too little, the liquid fluidity decreases, and the castability thereby worsens.

For an alloy for core metal according to the present invention, the lower limit value of the quantity of contained C was set to {C} 0.1% from the aforementioned {B} perspective of economy and castability, and the upper limit value was set to {D} 0.25% from the {D} perspective of preventing partial melting damage to the core metal for piercing. {E}

Si is added as a general deoxidizer to alloys according to need to adjust the deoxidation of the alloy, but if there is too much Si, the toughness of the alloy decreases, and fayalite (FeO·SiO₂) is generated in the scale, embrittling it during general scale attachment performed to cause a fine scale having heat insulation and lubrication to attach to the surface of the core metal for piercing.

Thus, the upper limit value for the quantity of contained Si was fixed at 1.5%. There is no particular limitation on the lower limit.

Mn is also added to alloys as a general deoxidizer according to need to adjust the deoxidation of the alloy. When there is too much Mn, the scale is embrittled as with the case of Si.

Thus, the upper limit value for the quantity of contained Mn was fixed at 1.5%. There is no particular limitation on the lower limit.

The comparative rhythm [sic]² of Cr and Ni is important, so the reason for the range limitation of the Cr and Ni components is given together.

Cr is an effective element for increasing the mechanical strength at ordinary and high temperatures as well as increasing the resistance to oxidation of an alloy when it is melted in the bare metal or combined with C to form a carbide. Nevertheless, when the quantity of contained Cr is too high, the thickness of the scale layer generated during general scale attachment to cause a scale having heat insulation and lubrication to attach to the surface of the core metal become thinner due to an increase in the oxidation resistance, and, of the damage described above which is caused to the core metal, galling due to seizure of the pipe material occurs frequently. Further, if the quantity of contained Cr is too low, the mechanical strength of the alloy at ordinary and high temperatures is decreased, and abrasion, wrinkles and cracks occur due to insufficient strength in the core metal.

Ni is a useful element for dissolving entirely in the bare metal without forming a carbide with C, and increasing the mechanical strength at ordinary and high temperatures due to solid solution hardening. However, the price of Ni is high compared to Cr, so increasing the mechanical strength of the alloy at ordinary and high temperatures with only Ni is costly, and a mechanical strength cannot be obtained that is as high as when coexisting with Cr. The adverse effects of the attachment scale layer becoming thinner due to scale attachment are far less with adding Ni than with adding Cr.

Accordingly, adequate mechanical strength at ordinary and high temperatures as well as a scale layer with an appropriate thickness was given to the core metal alloy, and in order to maintain economy for the alloy, the mechanical strength at ordinary and high temperatures was supplemented and the quantity of added Ni was reduced by making Ni which can increase the mechanical strength without thinning the scale layer the main component and adding thereto Cr within the tolerable limit.

From the aforementioned perspective, the upper limit of the quantity of contained Cr was set to 3% so as to not thin the thickness of the scale layer, and the lower limit was set to 1% to supplement the

² [Translator's note: "comparative rhythm" is a typographical error for "proportion" in the Japanese source.]

mechanical strength. The quantity of contained Ni was fixed at three times the quantity of Cr, or in other words, the value of the ratio of Ni/Cr was 1 to 3, in order to increase the mechanical strength.

The basis for fixing the Ni/Cr ratio value of 1 to 3 is next described using the set of curved line drawings Fig. 1 and Fig. 2 and the set of drawings Fig. 3 and Fig. 4. Fig. 1 is a curved line drawing indicating the effects of the Ni/Cr ratio on the mechanical strength of an alloy at ordinary temperature when the quantity of contained Cr is 1.4%; Fig. 2 is a curved line drawing similarly with the effects at the same temperature of 900° C; Fig. 3 is a curved line diagram similarly with the effects at ordinary temperature when the quantity of contained Cr is 2.8%; and Fig. 4 is a curved line diagram similarly with the effects at the same temperature of 900°C.

As can be seen from these curved line diagrams, the pulling strength and elongation percentage at the ordinary temperature needed to prevent cracking, one of the damages causing lowering of the duration of core metal for piercing, is ill-suited for preventing cracks when the Ni/Cr ratio is less than 1 as the pulling strength is inadequate at 45 to 50 kg/mm², and when the Ni/Cr ratio is more than 3 as the elongation percentage is lowered markedly. Also, it can be seen that the pulling strength at high temperatures necessary for preventing abrasion and wrinkles on the surface of the core metal, another type of damage, is inadequate at 5.2 or 5.3 kg/mm² when the Ni/Cr ratio is more than 3, and the elongation percentage is markedly decreased.

A determination was made from the above results to fix the selection of the value of the Ni/Cr ratio in a core metal alloy according to the present invention to a range of 1 to 3.

Mo and W are effective elements for increasing the mechanical strength of alloys particularly at high temperatures by being dissolved in an alloy bare metal or being combined with C to form a carbide. On the other hand, increasing the quantity of contained Mo and W makes the scale layer generated so as to be attached to the surface of the core metal through scale attachment fragile. An example of the effects of adding Mo and W on the high temperature mechanical properties of a core metal alloy according to the present invention is shown in Fig. 5. This curved line drawing indicates the effect on the pulling strength and elongation percentage of the alloy caused by a change in the total quantity of Mo, W or both at a testing temperature of 900°C with a Ni/Cr ratio of 2.0 and a CR volume of 2.8%.

According to this curved line diagram, there is no effect of increasing the high temperature pulling strength until the total additive quantity of either one or two of Mo and W is 0.2%. However, with an additive quantity of 0.3% to 1.5%, the pulling strength gradually increases with the increase in the additive quantity, and with an additive quantity of 1.5 to 2.0%, the pulling strength increases rapidly with the increase in the additive quantity. At more than 2.0%, it can be seen that the pulling strength once again changes to a gradual increase.

With a core metal manufactured according to an alloy of the present invention, when piercing a solid round steel billet heated to approximately 1200°C, if the billet material being pierced is simply carbon steel, a core metal for piercing according to an alloy of the present invention having an additive quantity of less than 1.5% of a total of one or two of Mo and W adequately exceeds the durability of a conventional core metal. However, for a special steel such as when the material of the steel billet to be pierced is 13% chrome steel or 24% chrome steel, an additive quantity of a total of one or two of Mo and W of 1.5% to 3.0% is required.

Accordingly, the additive quantity of a total of one or two of Mo and W in an alloy according to the present invention was fixed at 0.3 to 3%.

Co is an element added to low alloy steels such as a core metal alloy according to the invention or a general carbon steel which is unique for lowering the hardenability of steel.

A core metal for piercing is pressed in a solid round billet heated to approximately 1200°C, so the surface temperature of the core metal for piercing immediately after piercing becomes approximately 1200°C to 1300°C, from the surface to approximately 5 mm inside becomes approximately 800°C, and the inside becomes less than 700°C.

A core metal heated to such a state is cooled to ordinary temperature with water immediately after piercing, and is then pressed again in a new billet; such heating and cooling is repeated in this manner. Through such repetitions, thin tortoise shell type cracks occur in the surface of the core metal, and this causes rolling marks to occur on the inside surface of the pierced pipe. Such tortoise shell type cracks originate in heat stress caused mainly due to the repeated heating and cooling.

In general, the heat stress of a steel body with a low hardenability and no quenching abnormalities causes compression stress at the surface of the steel body and pulling stress at the center of the steel body. In contrast to this, the heat stress of a steel body with a high hardenability and with quenching abnormalities causes pulling stress in the surface and compression stress at the center. In other words, the distribution of the heat stress switches. In general, repeatedly heating and cooling without compression stress becoming quenching abnormalities in the surface leads to less tortoise shell cracks.

The cross-section hardness of a round bar steel billet is measured after it is quenched in water, and the size of the hardenability can be expressed as the ratio d/r where d is the thickness of the hardened layer whose hardness is 40 or higher on the Rockwell C scale and r is the radius of the round bar. In other words, the smaller the d/r value, the lower the hardenability.

An example of the effect the quantity of the contained Co component has on the d/r value when a round bar with a radius of 25 mm according to an alloy of the present invention is quenched in water is shown in a curved line diagram of Fig. 6. From this curved line diagram, it can be seen that the lowering of the hardenability is remarkable until Co reaches 1.75%, and that the effects decrease when Co exceeds 1.75%.

Thus, the lower limit of the additive quantity of Co in an alloy of the present invention was set at 1% from the viewpoint of the effects of hardenability lowering, and the upper limit was set to 2% from a perspective that little hardening lowering effects are obtained for the economic increase in cost.

Cu is an effective element for being minutely separated in bare metal and increasing the pulling strength at ordinary temperatures. It is also an effective element for improving the adhesion to bare metal for the scale, enriched by the bare metal directly under the scale during attachment of a scale having heat insulation and lubrication as described above. If the additive quantity is below 1%, however, the improvement of the pulling strength at ordinary temperatures is low, and if the additive quantity is too high, the Cu enriched directly under the scale permeates into the crystal grain boundary of the bare metal at high temperatures, making the surface layer of the core metal fragile.

Thus, the lower limit of the additive quantity of Cu for an alloy of the present invention was set to 1%, and the upper limit was set to 2%.

With a preference over Cr, Ti and Zr are combined with C to form a carbide. Unlike a Cr carbide, a Ti and Zr carbide has a uniform distribution in the bare metal, and the solubility in bare metal at high temperatures is extremely low compared to a Cr carbide, so Ti and Zr are effective elements for lowering the partial melting point of the grain boundary and reducing the embrittlement of the grain boundary as well as increasing the pulling strength at high temperatures. Further, as a result of the decrease in the quantity of Cr carbide because precedence is made for Ti and Zr over Cr in forming the carbide, the Cr, W and Mo absorbed in the Cr carbide is decreased, the concentrations of these elements in the bare metal are accordingly increased, and the pulling strength of the alloy at high temperatures due to solid solution hardening improves. Nevertheless, if the additive quantity of Ti and Zr is too large, the liquid fluidity is markedly decreased when dissolving the alloy in air, and the castability when manufacturing the core metal is impaired.

Thus, the upper limit of the additive quantity of a total of either one or two types of Ti and Zn [illegible, r?] for an alloy of the present invention was fixed at 0.5% and the upper limit at 0.2%.

A core metal alloy for piercing a seamless pipe was described above; because a description for a core metal alloy for such expansion is exactly the same as that for a core metal alloy for piercing, it has been omitted.

Next, an embodiment is described.

The compositions of embodiments of core metal alloys for piercing according to the prevent invention are indicated in Table 1. The compositions of alloys according to the antecedent Patent Application Number S59-11899 [i.e., 1984-11899] invention as well as conventionally known types of alloys are also given alongside.

A number 10 ordinary temperature pulling test piece according to specification number JIS-Z-2201, a high temperature pulling test piece according to specification number JIS-G-0567, as well as piercing core metals for an Assel mill with diameters of 69 m/m, 72 m/m and 75 m/m were manufactured as raw materials for the alloys of the compositions indicated in Table 1. High temperature pulling tests were performed with a 5% strain rate every minute at a temperature of 900°C. Using these core metals, piercing tests of two types (C approximately 1% and Cr approximately 1.5%) of actual JIS SUJ bearing steel material (so-called high carbon chrome bearing steel material) were performed using the Assel mill. The results of these tests are indicated in Table 2. The durability of the core metal is indicated with the average number of piercing holes per core metal for piercing.

As seen in Table 2, the mechanical strength at ordinary and high temperatures of alloys according to the present invention is between 1.5 and 3 times that of conventionally known types of alloys, and it can be seen that it is equivalent or somewhat higher than that of the alloys in the Patent Application Number S59-11899 [i.e., 1984-11899] invention. The durability of a core metal manufactured with the alloy of the present invention is sent to be between 2 and 5 times that of a known alloy and from between 1.5 and 2 times that of the alloys of the Patent Application Number S59-11899 [i.e., 1984-11899] invention. The increase in the durability of the core metals according to alloys of the present invention is due to the effects of the tortoise shell cracks in the surface of the core metal decreasing due to the addition of Co to the alloy, the adhesion of a scale due to the addition of Cu, and the prevention of grain boundary separation of the carbide due to the addition of Ti and Zr.

Table 1. Alloy Composition Table (Weight Percent) [see original for figures]

								riginal									
		<u> </u>	C	Si	Mn	Cr	Ni	Mo	W	P	S	Co	Cu	Ti	Zr	Ni/Cr	Fe
	No. a	11			l	<u> </u>											74
8	a2																Same
읔	a3																Same
nt a	a4																Same
Embodiment alloys	a5																Same
jg	a6																Same
ă Ž	a7																Same
ជា	a8																Same
	a9																Same
	95.	No. 1															Same
ιn.	Sign	2															Same
<u> </u>	Application S59- invention alloys	3															Same
e	ica	4														-	Same
ive	E S	5															Same
E	r Α γ	6															Same
r K	Patent ,	7															Same
Comparative alloys	Pa																Same
		9															Same
i	-															_	Same
ل		wn allo															Same

^{[*1} Well-known alloys]
[*2 3 Cr-1 Ni cast copper]
[*3 1.5 Cr-0.75 Ni cast copper]
[*4 Remainder]

Table 2. Properties [see original for figures]

			Mechanical ordinary ten	properties at	Mechanical 900° C	properties at	Material for piercing	Durability (number of
			Pulling strength (kg/mm²)	Elongation percentage (%)	Pulling strength (kg/mm²)	Elongation percentage (%)	tube	pierces per)
	No. al						Bearing copper	
5	a2						Same	
Embodiment alloys	a3						Same	
- ut	a4						Same	
ĿĔ	a5		1				Same	
ğ	a6						Same	
E	a7						Same	
ш ш	a8						Same	
	a9						Same	
	÷ 50	No. 1					Same	
	555	2					Same	
15	all a	3					Same	
⊜	atic	4					Same	
ု မ	Application S59- invention alloys	5					Same	
É	d i	6					Same	
Comparative alloys	Patent Application S59-11899 invention alloys	7					Same	
Į įį	ate 189	8					Same	
ပိ	– يه	9					Same	
		•2					Same	
	•	-3					Same	

Well-known alloys

4. Brief Description of the Figures

Fig. 1 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at ordinary temperatures when the quantity of Cr contained in an alloy of the present invention is 1.4%.

Fig. 2 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at a temperature of 900°C when the quantity of Cr contained in an alloy of the present invention is 1.4%.

Fig. 3 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at ordinary temperatures when the quantity of Cr contained in an alloy of the present invention is 2.8%.

Fig. 4 is a curved line diagram indicating effects of a Ni/Cr weight ratio on mechanical properties at a temperature of 900°C when the quantity of Cr contained in an alloy of the present invention is 2.8%.

Fig. 5 is a curved line diagram indicating effects of adding Mo and W on mechanical properties at a temperature of 900°C when the quantity of Cr contained in an alloy of the present invention is 2.8% and the Ni/Cr weight ratio is 2.0.

^{[&}lt;sup>2</sup> 3 Cr-1 Ni cast copper]

^{[*3 1.5} Cr-0.75 Ni cast copper]

Fig. 6 is a curved line diagram indicating effects of adding Co on the hardenability of an alloy of the present invention.

Fig. 1 Pulling strength (kg/mm²) Elongation percentage (%) [upper label] Pulling strength [lower label] Elongation percentage

Fig. 2 Pulling strength (kg/mm²) Elongation percentage (%) [upper label] Elongation percentage [lower label] Pulling strength

Fig. 3 Pulling strength (kg/mm²) Elongation percentage (%) [upper label] Pulling strength [lower label] Elongation percentage

Fig. 4 Pulling strength (kg/mm²) Elongation percentage (%) [upper label] Pulling strength [lower label] Elongation percentage

Fig. 5
Pulling strength (kg/mm²)
Elongation percentage (%)
[upper label] Pulling strength
[lower label] Elongation percentage

Fig. 6
Co additive quantity (%)

Procedural Amendment

13 February 1985

To Director-General Manabu Shiga of the Patent Office

1. Case identification

Patent Application Number S59-64475 [i.e., 1984-64475]

2. Title of the Invention

Core Metal Alloy for Piercing or Expanding Seamless Steel Pipe

3. Party amending

Relation to the case Patent applicant Shinhokoku Steel Co., Ltd.

(and one other)

4. Agent

Address

Number 17 Building, 1-chome 26-5, Tora-no-mon, Minato-ku, Tokyo 105 Tel.

03 (502) 3181 [impression of a seal]

Name

(5847) Takehiko Suzue, Patent Attorney

5. Voluntary amendment

[impression of a seal, mostly illegible] 2 [= Feb?] 1985

6. Object of the amendment

Specification

- 7. Details of the amendment
 - (1) Correct the entire specification of the Scope of Claims as follows.
 - (2) Make the below corrections in the Specification.
 - A. 9 lines from the bottom of page 4, correct "0.1 to 0.25% C" to "0.14 to 0.18% C".
 - B. The last line on page 6, correct "perspectives" to "experimental perspectives".
 - C. Page 7 line 1, correct "0.1%" to "0.14%".
 - D. Same page line 2, correct "perspective" to "experimental perspective." Correct "0.25%" in that same line to "0.18%".
 - E. Same page line 3, insert "(refer to the embodiments given below)" after "piercing."
 - F. Correct Table 1 and Table 2 on pages 19 and 20 as in the attached pages.

Table 1. Alloy Composition Table (Weight Percent)

[see original for figures]

			С	Si	Mn	Cr	Ni	Мо	W	P	S	Co	Cu	Ti	Zr	Ni/Cr	Fe
	No. a	al															74
Sys	a2																Same
음	a3																Same
Ħ	a4				L												Same
Embodiment alloys	a5																Same
Ġ	a6	<u></u> .															Same
웉	a7																Same
田	a8																Same
	a9																Same
, c	Patent polication S59-	No.															Same
Comparative alloys	int	2															Same
mparat alloys	Patent ication	3															Same
Į į	. F	4															Same
	Ap																Same
		6]							Same

	7								Same
	8								Same
	9								Same
_	2								Same
•	*3								Same.

"Well-known alloys]
"2 3 Cr-1 Ni cast copper]
"3 1.5 Cr-0.75 Ni cast copper]

[*4 Remainder]

Table 2. Properties [see original for figures]

	•		Mechanical	properties at	Mechanical	properties at	Material for	Durability
			ordinary ten		900° C	proportios at	piercing	(number of
			Pulling	Elongation	Pulling	Elongation	tube	pierces
			strength	percentage	strength	percentage		per)
			(kg/mm ²)	(%)	(kg/mm²)	(%)		
	No. a1						Bearing	
0					<u></u>		copper	
Embodiment alloys	a2						Same	
व	a3		L				Same	
E	· a4						Same	
:	a5						Same	
Ř	a6						Same	
E	a7						Same	
_	a8						Same	
	a9						Same	
	9 8	No. 1					Same	
	SS	2					Same	
\$	on 1 a	3					Same	-
≅	Application S59- invention alloys	4					Same	
9	plic en	5					Same	
ati	Ap	6					Same	
Comparative alloys	Patent Application S59- 11899 invention alloys	7					Same	
E	ate 18	8					Same	
Ö	4	9					Same	
	-						Same	
L		*3					Same	

2. Claims

1. A core metal alloy for piercing or expanding [insertion] a [end insertion] seamless steel pipe made from, by weight, 0.14 to 0.18% C, 1 to 3% Cr, 1 to 9% Ni, 0.3 to 3% of a total of one or two types of Mo and W, 1 to 2% of Co, 1 to 2% of Cu, 0.2 to 0.5% of a total of one or two types of Ti and Zr, and the balance Fe with inevitable trace quantities of impurities, and a weight ratio value for Ni/Cr of between 1 and 3.

^{[&}quot;Well-known alloys]
["3 Cr-1 Ni cast copper]
["3 1.5 Cr-0.75 Ni cast copper]

2. A core metal alloy recited in Claim 1 characterized by the fact of further containing, by weight, according to need 1.5% or less of Si and/or 1.5% or less of Mn and as a deoxidizer.

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Japanese to English:

2000-162192

102875

ATLANTA BOSTON

BRUSSELS CHICAGO

DALLAS DETROIT FRANKFURT **HOUSTON**

JONDON

MIAM MINNEAPOLIS

PARIS PHILADELPHIA SAN DIEGO SAN FRANCISCO SE ATTLE

LOS ANGELES

NEW YORK

WASHINGTON, DC

60-208458

2000-94068

2000-107870

Kim Stewart

TransPerfect Translations, Inc.

3600 One Houston Center

1221 McKinney

Houston, TX 77010

Sworn to before me this 23rd day of January 2002.

Signature, Notary Public

MARIA POBLIC

Stamp, Notary Public Harris County

Houston, TX

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.