motifs temporels dans les réseaux de Petri temporels

Camille Coquand

4 Décembre 2023

Directrice: Audine Subias Co-encadrant · Yannick Pencolé

Outline

- Réseau de Petri Temporel (RdPT)
- Motifs temporels : extension des motifs de supervision, événements contraints temporellement entre eux
- Vérification de propriétés de diagnostic :
 - → Diagnosticabilité
 - \rightarrow Diagnosticabilisation

- Introduction
- 2 Abstraction Chemins
- 3 Diagnosticabilité Motifs temporels
- 4 Diagnosticabilisation
- 6 Conclusion

- Introduction
- Abstraction Chemins
- 3 Diagnosticabilité Motifs temporels
- 4 Diagnosticabilisation
- 6 Conclusion

Diagnosticabilité et Diagnosticabilisation

 $\mathsf{Diagnostic} \to \mathsf{Identifier} \ \mathsf{I'occurrence} \ \mathsf{d'une} \ \mathsf{faute}$

Pour une séquence d'observations :

- ullet certain o il est certain que la faute a eu lieu
- sauf ightarrow il est certain que la faute n'a pas eu lieu
- ambigu → il n'est pas possible de conclure

Diagnosticabilité → propriété d'un système pour une faute donnée de pouvoir, avec suffisament d'observations, différencier les trajectoires fautives des trajectoires nominales

Diagnosticabilisation → rendre un système diagnosticable pour une faute donnée en modifiant le système étudié

[0, 1] b [1, 2] 0 [0, 4] f2 [5, 6] **f1** [0, 2] c [1, 2] o' p_{10} [1, 2] **b** [3, 5][1, 2] p_{11} [2, 5]f1 [0, 1] **b** [1, 2]c [0, 1] **p**₉ [0, 1]

Réseau de Petri temporel

Formalisation des trajectoires d'un RdP temporel

Formalisation des trajectoires d'un RdP temporel

Exécution : $0t_0.2t_5.5t_6.2t_7.1t_7$

Formalisation des trajectoires d'un RdP temporel

Introduction

Exécution : $0t_0.2t_5.5t_6.2t_7.1t_7 \rightarrow \text{Trace} : 0b.2f_2.5f_1.2o.1o$

Formalisation des trajectoires d'un RdP temporel

Exécution : $0t_0.2t_5.5t_6.2t_7.1t_7 \rightarrow \text{Trace} : 0b.2f_2.5f_1.2o.1o$

Projection observable: 90.10

Hypothèses

Introduction

00000000000

- **A0** Intervalles statiques fermés bornés $\forall t \in T^{\Theta}$, $I_s^{\Theta}(t) = [a, b]$, où $(a, b) \in \mathbb{Q}_+ \times (\mathbb{Q}_+^* \setminus \{+\infty\})$ avec a < b
- A1 Pas de boucle non observable, pas de marquage bloquant
- A2 Pas d'exécution zenon

Motif de faute temporel

Introduction

Acyclique

- Acyclique
- Non observable

- Acyclique
- Non observable
- Intervalles fermés bornés \rightarrow excution en temps borné

- Acyclique
- Non observable
- Intervalles fermés bornés \rightarrow excution en temps borné
- Ensemble de marquages finaux

- Acyclique
- Non observable
- Intervalles fermés bornés \rightarrow excution en temps borné
- Ensemble de marquages finaux

- Acyclique
- Non observable
- Intervalles fermés bornés ightarrow excution en temps borné
- Ensemble de marquages finaux
- Marquage initial n'est pas un marquage final

Paire critique [PCC02]

Étudier la diagnosticabilité \rightarrow Étude de l'intersection des langages observables fautifs et non fautifs

Paire critique : paire d'exécutions fautive/non fautive infinies présentant la même trace observable

Système diagnosticable $\Leftrightarrow \mathcal{P}_c = \emptyset$

Diagnosticabilité : méthodes basées graphe

Atemporel :

- Recherche de cycles indéterminés (Diagnostiqueur)
- Recherche de paires critiques (Twin-plant, Verifier)

RdPT:

- Recherche de cycles indéterminés (Diagnostiqueur)
- Recherche de paires critiques (Twin-plant)

Atemporel + Motifs :

 Recherche de paires critiques (produit synchrone → Twin-plant)

RdPT + Motifs temporels:

Pas de produit synchrone

RdPT Produit

Introduction

Matching: le motif a t-il eu lieu?

 $\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$

Introduction 0000000000

Matching: le motif a t-il eu lieu?

$$\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$$

Introduction

Matching: le motif a t-il eu lieu?

$$\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$$

 $\rho_O = 2a.0b.0c$

Matching: le motif a t-il eu lieu?

$$\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$$

 $\rho_O = 2a.0b.0c$

Matching: le motif a t-il eu lieu?

$$\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$$

 $\rho_O = 2a.0b.0c$

$$\rho' = 1f_1.1a.0.1b.0c.3f_2.2o'.1o'$$

Matching : le motif a t-il eu lieu?

$$\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$$

 $\rho_{\Omega} = 2a.0b.0c$

$$\rho' = 1f_1.1a.0.1b.0c.3f_2.2o'.1o'$$

 $\rho'' = 1f_1.1a.0.11b.0c.3f_2.2o'.1o'$

Matching : le motif a t-il eu lieu?

$$\rho = 1f_1.1a.0b.0c.3f_2.2o'.1o'$$
 $\rho_{\Omega} = 2a.0b.0c$

$$\rho' = 1f_1.1a.0.1b.0c.3f_2.2o'.1o'$$

$$\rho'' = 1f_1.1a.0.11b.0c.3f_2.2o'.1o'$$

$$\rho''' = 1f_1.1a.0.111b.0c.3f_2.2o'.1o'$$

Graphe des Classes [BM83]

Abstraction d'un réseau de Petri temporel sous forme d'un Système de Transitions Labellisé (STL)

Avantages:

Introduction

- STL → séquences de transitions du système
- Abstrait le temps de manière finie sous forme de polvèdres

Inconvénient :

• Accessibilité \rightarrow le langage accepté est un sur-ensemble du langage du système

Besoin d'une autre abstraction

Contributions

Introduction

00000000000

3 contributions développées durant cette thèse :

- 1 Abstraction des préfixes du langage d'un réseau de Petri temporel \rightarrow **chemin**
- **Diagnosticabilité** de motifs temporels \rightarrow **condition** nécessaire et suffisante
- 3 **Diagnosticabilisation**: rendre un système diagnosticable \rightarrow condition suffisante basée sur une paramétrisation du système étudié

- Introduction
- 2 Abstraction Chemins
- 3 Diagnosticabilité Motifs temporels
- 4 Diagnosticabilisation
- Conclusion

Propriétés de l'abstraction

- PO Abstraire de manière finie l'ensemble des préfixes du langage d'un RdP temporel
- P1 Ne pas sur-approximer le langage du RdP temporel

Abstraction des trajectoires sous forme de polyèdres

Chemin: $\pi = (\sigma, \Pi)$ paire support/enveloppe temporelle

Support étudié : $\sigma = t_0.t_1.t_2.t_3$

Support étudié : $\sigma = t_0.t_1.t_2.t_3 \to \{y_0, y_1, y_2, y_3\}$

Support étudié : $\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$

$$\Pi = \left\{ \begin{array}{l} \\ \end{array} \right.$$

Support étudié :
$$\sigma = t_0.t_1.t_2.t_3 \to \{y_0, y_1, y_2, y_3\}$$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ \end{cases}$$

Support étudié : $\sigma = t_0.t_1.t_2.t_3 \to \{y_0, y_1, y_2, y_3\}$

$$\mathsf{T} = \begin{cases}
0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\
0 \leqslant y_0 \leqslant 1
\end{cases}$$

Support étudié :
$$\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \end{cases}$$

Support étudié : $\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \end{cases}$$

Support étudié : $\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \end{cases}$$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \\ 1 \leqslant y_2 - y_1 \leqslant 3 \\ y_2 - y_1 \leqslant 2 \end{cases}$$

Support étudié :
$$\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \\ 1 \leqslant y_2 - y_1 \leqslant 3 \\ y_2 - y_1 \leqslant 2 \end{cases}$$

Support étudié :
$$\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \\ 1 \leqslant y_2 - y_1 \leqslant 3 \\ y_2 - y_1 \leqslant 2 \\ 1 \leqslant y_3 - y_1 \leqslant 2 \end{cases}$$

Support étudié : $\sigma = t_0.t_1.t_2.t_3 \rightarrow \{y_0, y_1, y_2, y_3\}$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 1 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \\ 1 \leqslant y_2 - y_1 \leqslant 3 \\ y_2 - y_1 \leqslant 2 \\ 1 \leqslant y_3 - y_1 \leqslant 2 \end{cases}$$

$$\Pi = \begin{cases} 0 \leqslant y_0 \leqslant y_1 \leqslant y_2 \leqslant y_3 \\ 0 \leqslant y_0 \leqslant 2 \\ 0 \leqslant y_1 - y_0 \leqslant 2 \\ 1 \leqslant y_2 - y_1 \leqslant 3 \\ y_2 - y_1 \leqslant 2 \\ 1 \leqslant y_3 - y_1 \leqslant 2 \end{cases}$$

Projection sur $\{t_0, t_2\}$:

$$\rightarrow \Pi' = \begin{cases} 0 \leqslant y_0 \leqslant 1 \\ 1 \leqslant y_2 - y_0 \leqslant 4 \end{cases}$$

Chemins $\{\pi = (\sigma, \Pi)\}$:

- Abstraction finie des exécutions s'appuyant sur un support donné
- Pour une taille de support, nombre fini de chemins
- Polyèdre \rightarrow Projection + Intersection

- Introduction
- Abstraction Chemins
- 3 Diagnosticabilité Motifs temporels
- 4 Diagnosticabilisation
- 6 Conclusion

Étude de diagnosticabilité

Introduction

- I Synchronisation du système avec le motif
- Abstraction finie des exécutions fautives à l'aide de chemins \rightarrow chemins fautifs
- III Identification pour un chemin fautif de ses exécutions fautives → partition de l'enveloppe temporelle observable
- IV Synthèse du Graphe d'Ambiguïtés Temporel (GAT) pour mettre en évidence l'existence de paires critiques

Introduction

- I Synchronisation du système avec le motif
 - calcul des chemins du motif $\mathcal{C}_{O} = \{\pi_{O} = (\sigma_{O}, \Pi_{O})\}\$
 - identification du matching en explorant le graphe des classes du système
- Abstraction finie des exécutions fautives à l'aide de chemins
 - \rightarrow chemins fautifs
 - support fini terminant sur une transition observable (transitions observables inévitables)
 - enveloppe temporelle abstrait les exécutions fautives du support
 - il existe a priori des exécutions non fautives parmi les exécutions d'un chemin fautif

Introduction

Étude de diagnosticabilité : Étape III

- III Identification pour un chemin fautif de ses exécutions fautives → partition de l'enveloppe temporelle observable
 - 1 pour le chemin du motif $\pi_O = (\sigma_O, \Pi_O)$ associé au chemin fautif π_f étudié, identifier pour chaque contrainte $c \in \Pi_O$ quelles exécutions de π_f satisfont c
 - 2 pour une contrainte $c: \alpha_c \leq y_i y_{i-i} \leq \beta_c$ concernant les transitions t_i et t_{i-1} (non observables), reporter c sur des transitions observables bien choisies (report en deux étapes) $c = c^c \oplus c^s \oplus c^a$
 - 3 généralisation du raisonnement à l'ensemble des contraintes de $\Pi_{\Omega} \rightarrow \text{partition de } \Pi_{\epsilon}^{o}$

Zoom sur l'étape III.2

Ingrédients :

- chemin fautif $\pi_f = (\sigma_f, \Pi_f)$
- support $\sigma_f = t_0 \dots t_{o_{i-j-1}} \dots t_{i-j} \dots t_i \dots t_{o_i} \dots t_n$
- contrainte du motif $c: \alpha_c \leqslant y_i y_{i-j} \leqslant \beta_c$
- $\prod_f \to \alpha_i \leqslant y_i y_{i-j} \leqslant \beta_i$, $\alpha_{o_i} \leqslant y_{o_i} y_i \leqslant \beta_{o_i}$, $\alpha_{o_{i-j-1}} \leqslant y_{i-j} y_{o_{i-j-1}} \leqslant \beta_{o_{i-j-1}}$
- **1** Report de la contrainte sur $t_{o_i} \rightarrow$ report de y_i vers y_{o_i}
- **2** Report de la contrainte sur $t_{o_{i-j-1}} o$ report de y_{i-j} vers $y_{o_{i-j-1}}$

Report de *y_i* sur *y_{o_i*}

Report de y_i sur y_{o_i}

Report de y_i sur y_{o_i}

Report de y_{i-j} sur $y_{o_{i-j-1}}$

Partition de l'enveloppe temporelle : Étape III.3

$$c = c^c \oplus c^s \oplus c^a$$

Généralisation du raisonnement à l'ensemble des contraintes de Π_{Ω} :

$$c = c^c \oplus c^s \oplus c^a$$

Généralisation du raisonnement à l'ensemble des contraintes de Π_Ω :

$$\Pi_f^c = \bigwedge_{c \in \Pi_{\Omega}[Sub]} (\Pi_f^o \wedge c^c)$$

Partition de l'enveloppe temporelle : Étape III.3

$$c = c^c \oplus c^s \oplus c^a$$

Généralisation du raisonnement à l'ensemble des contraintes de Π_Ω :

$$\Pi_f^{c} = \bigwedge_{c \in \Pi_{\Omega}[Sub]} (\Pi_f^{o} \wedge c^{c})$$

$$\Pi_f^{s} = \bigvee_{c \in \Pi_{\Omega}[Sub]} (\Pi_f^{o} \wedge c^{s})$$

$$c = c^c \oplus c^s \oplus c^a$$

Généralisation du raisonnement à l'ensemble des contraintes de Π_{O} :

$$\Pi_{f}^{c} = \bigwedge_{c \in \Pi_{\Omega}[Sub]} (\Pi_{f}^{o} \wedge c^{c})$$

$$\Pi_{f}^{s} = \bigvee_{c \in \Pi_{\Omega}[Sub]} (\Pi_{f}^{o} \wedge c^{s})$$

$$\Pi_{f}^{a} = \Pi_{f}^{o} \wedge (\bigvee_{c \in \Pi_{\Omega}[Sub]} (c^{a} \wedge \bigwedge_{c' \neq c \in \Pi_{\Omega}[Sub]} \neg c'^{s}))$$

Partition de l'enveloppe temporelle : Étape III.3

• Pour un chemin fautif $\pi_f = (\sigma_f, \Pi_f)$, l'enveloppe temporelle Π_f peut être partitionnée de la manière suivante :

Diagnosticabilité - Motifs temporels

$$\Pi_f^o = \Pi_f^c \oplus \Pi_f^s \oplus \Pi_f^a$$

• Pour un chemin **non fautif** $\pi_{\overline{f}} = (\sigma_{\overline{f}}, \Pi_{\overline{f}})$, l'enveloppe temporelle observable se partitionne ainsi :

$$\Pi_{\overline{f}}^o = \Pi_{\overline{f}}^s$$

Étude de diagnosticabilité : Étape IV

- IV Synthèse du Graphe d'Ambiguïtés Temporel (GAT) pour mettre en évidence l'existence de paires critiques
 - calcul de paires de chemins partageant la même trace observable : mêmes événements et intersection d'enveloppes temporelles observables non-vide
 - condition d'arrêt pour éviter un problème infini → GAT Réduit (inspiré de la méthode du Twin-plant)

 (π_f, π_f)

$\Pi^{c} \cap \Pi^{s} \neq \emptyset$ t_{o_1} t_{o_4} t_{o_1} t_{o_4} (π_f, π) σ_{o_1} $\Pi^c \cap \Pi^s \neq \emptyset$ $\Pi^c \cap \Pi^s \neq \emptyset$ $\Pi^c \cap \Pi^s \neq \emptyset$ $\Pi^c \cap \Pi^s = \emptyset$ Init σ_{o_2} t_{o_2} t_{07} (π_f,π) σ_{o_3} $\Pi^a \neq \emptyset$ Па Па t_{o_3} t_{o_6}

Absence de paires critiques ⇔ Absence de boucles dans le **GATR**

- Abstraction Chemins
- 3 Diagnosticabilité Motifs temporels
- 4 Diagnosticabilisation
- 6 Conclusion

Diagnosticabilisation

Que faire dans le cas où un système n'est pas diagnosticable?

Diagnosticabilisation

Que faire dans le cas où un système n'est pas diagnosticable?

1 ajouter ou supprimer des observations \rightarrow coûteux

Diagnosticabilisation

Que faire dans le cas où un système n'est pas diagnosticable?

- $oldsymbol{0}$ ajouter ou supprimer des observations ightarrow coûteux
- ② modifier la programmation du système en modifiant les intervalles statiques → moins coûteux

Introduction

Que faire dans le cas où un système n'est pas diagnosticable?

- $oldsymbol{0}$ ajouter ou supprimer des observations ightarrow coûteux
- ② modifier la programmation du système en modifiant les intervalles statiques → moins coûteux
- paramétrisation d'un sous-ensemble des bornes des intervalles statiques du système
- pas de modification de la structure logique du système
- préservation du langage atemporel du système

Diagnosticabilisation : méthode de vérification

Pour un système Θ , un motif temporel Ω , un ensemble de paramètres Λ , existe t-il une valuation ν des paramètres de Λ pour laquelle le système engendré Θ_{Λ}^{ν} est diagnosticable pour Ω ?

- I Préserver la connaissance de l'analyse de diagnosticabilité
 - Préservation de la structure du graphe des classes
 - Préservation des chemins fautifs et non fautifs
- II Interdire les ambiguités intrinsèques aux chemins fautifs \to $\Pi^a=\emptyset$
- III Interdire les ambiguïtés du type $\Pi^c \cap \Pi^s \neq \emptyset$

I Préserver la structure du graphe des classes

- Pas de connaissance a priori de l'espace d'état du système paramétré
- On souhaite étudier des solutions pour lesquelles le graphe des classes engendré G^{γ}_{Λ} est isomorphe à celui du système initial

Synthèse de contraintes qui préservent les transitions tirables depuis une classe $\to \Pi_{\Lambda}^{struct}$

- $\textbf{ 0} \ \ \text{même langage atemporel} \ \to \ \text{mêmes séquences de transitions}$ tirables
- 2 mêmes supports de chemins, mais enveloppes temporelles a priori différentes

I Préserver les chemins fautifs et non fautifs

Ne pas changer le fonctionnement global (structure logique) \rightarrow préserver les séguences de transitions fautives et non fautives

- 1 Support d'un chemin fautif dans $\Theta \Rightarrow$ support de chemin fautif dans $\Theta^{\gamma}_{\Lambda} \to \Pi^{f}_{\Lambda}$
- **2** Support d'un chemin non fautif dans $\Theta \Rightarrow$ support de chemin non fautif dans $\Theta^{\gamma}_{\Lambda} \to \Pi^{\neg f}_{\Lambda}$

II Assurer l'absence d'ambiguïté dans π_f

II Assurer l'absence d'ambiguïté dans π_f

Introduction

II Assurer l'absence d'ambiguïté dans π_f

Pour tout chemin fautif, et pour tout chemin du motif π_{O} associé, nous imposons :

$$\forall c \in \Pi_{\Omega}, (\alpha_c \leqslant \alpha_i(\nu)) \land (\beta_i(\nu) \leqslant \beta_c)$$

L'ensemble de ces contraintes pour tous les chemins fautifs est noté

$$\Pi_{\Lambda}^{\neg a}$$

Conséquence : Un tel choix impose qu'une valuation des paramètres rend toute exécution d'un chemin fautif fautive.

Diagnosticabilisation

On note ces contraintes Π_{Λ}^{-Cp}

On note ces contraintes Π_{A}^{Cp}

Théorème

Si une valuation ν satisfait $\Pi_{\Lambda}^{struct} \wedge \Pi_{\Lambda}^{-f} \wedge \Pi_{\Lambda}^{-a} \wedge \Pi_{\Lambda}^{-Cp}$, alors le système engendré par cette valuation est diagnosticable pour le motif temporel étudié.

- Introduction
- Abstraction Chemins
- 3 Diagnosticabilité Motifs temporels
- 4 Diagnosticabilisation
- G Conclusion

Conclusion

Contributions:

- Extension des motifs de supervision avec du temps \rightarrow **Motifs** temporels
- Abstraction finie des préfixes du langage d'un RdPT \to Chemins permet une étude de paires de trajectoires
- Condition nécessaire et suffisante de diagnosticabilité \to GATR, méthode de vérification associée
- Condition suffisante pour la diagnosticabilisation o Garanties de propriétés du système engendré

<u>Limites :</u>

- Motifs temporels s'exécutent en temps fini
- Complexité de la méthode
- Diagnosticabilisation \rightarrow force des trajectoires à n'être que fautives

Perspectives

Introduction

- Implémentation complète des deux méthodes proposées
- Étude de K-diagnosticabilité et Δ -diagnosticabilité
- Chercher les ensembles minimaux de paramètres pour pouvoir rendre un système diagnosticable
- Étendre la modélisation des motifs
- Synthèse d'un diagnostiqueur (chroniques)