November 20, 2017

Anchu A. Lee

- 1. This exercise concerns TM M_2 , whose description and state diagram appear in Example 3.7. In each of the parts, give the sequence of configurations that M_2 enters when started on the indicated input string.
 - (a) 0.

$$q_10$$
 q_2 q_{accept}

(b) 000.

```
q_1000_ _2q_200_ _2q_30_ _20q_4_ _20__q_{reject}
```

- 2. This exercise concerns TM M_1 , whose description and state diagram appear in Example 3.9. In each of the parts, give the sequence of configurations that M_1 enters when started on the indicated input string.
 - (a) 1#1.

```
q_11\#1 xq_3\#1 x\#q_51 xq_6\#x q_7x\#x xq_1\#x x\#q_8x x\#xq_8 x\#x_2q_{accept}
```

(b) 1##1.

```
q_11##1 xq_3##1 x#q_5#1 x##q_{reject}1
```

- 3. Describe a Turing machine, sequence of steps, that recognizes $\{w \mid w \text{ is an element of } \{a,b,c\}^* \text{ such that the number of } a$'s in w < the number of b's in w and the number of a's in w = the number of c's in w
 - (1) Place symbol at the left side of tape
 - (2) Scan right for a, if found: mark it, else: go to step 6
 - (3) Rewind
 - (4) Scan right for b, if found: mark it, else: Halt and Reject (a must be < b)
 - (5) Rewind and go to step 2.
 - (6) Rewind
 - (7) Scan right for a', if found: mark it, else: go to step 11
 - (8) Rewind
 - (9) Scan right for c, if found: mark it, else: Halt and Reject (a must be = c)
 - (10) go to step 6.
 - (11) Scan right for c, if found: Halt and Reject, else: Halt and Accept.
- 4. Show the equivalent transitions for a 2-PDA for the Turing machine transitions $(q_i, X) \to (q_j, A, L)$ and $(q_i, X) \to (q_j, A, R)$ (in state q_i read X, write A, and move left or right and transition to state q_j). The transitions for a 2-PDA are of the form $(q_i, X, S_1, S_2) \to (q_j, T_1, T_2)$ (in state q_i , read X, pop S_1 from stack 1, pop S_2 from stack 2, transition to state q_j , push T_1 onto stack 1 and push T_2 onto stack 2). You don't have to prove the transitions are equivalent, just tell me what they are.
- 5. Give implementation-level descriptions of Turing machines that decide the following languages over the alphabet $\{0,1\}$. $\{w \mid w \text{ does not contain twice as many 0's as 1's}\}$
 - (1) Place symbol at left side of tape
 - (2) Rewind
 - (3) Scan right for 1, if found: mark it, else: go to step 9
 - (4) Rewind
 - (5) Scan right for 0, if found: mark it, else: Halt and Accept
 - (6) Rewind
 - (7) Scan right for 0, if found: mark it, else: Halt and Accept
 - (8) Go to step 2.
 - (9) Rewind
 - (10) Scan right for 0', if found: Halt and Reject, else: Halt and Accept
- 6. Prove the class of Turing recognizable languages is closed under the union operation (construction and proof)

	Proof. Let M_1 and M_2 be two Turing machines that recognize languages L_1 and L_2 respectfully. Then let M_3 be a machine that will run input w alternately between machines M_1 and M_2 . If a machine accepts, M_3 accepts. If both machines reject then M_3 rejects. As $w \in L_1 \cup L_2$, the string can be $w \in L_1$, then the M_1 portions of M_3 will accept it. If the string is $w \notin L_2$, then the M_2 portions of M_3 will accept it. If the string is $w \notin L_1 \cup L_2$ then $w \notin L_1$ and $w \notin L_2$ and so M_3 will not accept w . Therefore M_3 recognizes $L_1 \cup L_2$.
7.	Prove the class of decidable languages is closed under concatenation (construction and proof)
	Proof. Let M_1 and M_2 be two Turing machines that recognize languages L_1 and L_2 respectfully. Then let M_3 be a machine that will run input w on M_1 and M_2 by splitting w into every possible two parts. If both machines accept then M_3 accepts. If not, then the M_3 continues to the next two substrings. That means every possible combination of two substrings of the string w will be run through M_1 and M_2 . When all substrings are tried and did not reach an accepting state, then reject w . That way the w must be $L_1 \circ L_2$ as the first substring is in M_1 and the second substring will be accepted by M_2 . Otherwise w will be rejected.
8.	Prove the class of decidable languages is closed under intersection (construction and proof)
	<i>Proof.</i> Let M_1 and M_2 be two Turing machines that recognize languages L_1 and L_2 respectfully. Then let M_3 be a machine that will run input w on M_1 then M_2 . If both machines reject, then w is not in the languages of $L_1 \cap L_2$. If one or more machines accepts then w is in the language.
9.	Prove the class of Turing recognizable languages is closed under the star operation (construction and proof)
	Proof. Let M_1 be a Turing machine that recognizes the language L_1 and w be a string of the form L_1^* . Then have M_2 be a machine that splits the input into individual cuts of the input. e.g. $s = s_1 s_2 s_3 s_n$ for n can be from 0 to the length of s . M_2 then runs each substring into M_1 . If it rejects then M_2 tries the next cuts of the string. If M_2 accepts for all cuts of a string, then the language is accepted. As M_2 tries every possible split for the input, it will eventually find the right match for L_1 and therefore recognizes L_1^* .
10.	Show that a language is decidable iff some enumerator enumerates the language in the standard string order.