Petascale Enzo: Software Infrastructure Development and Community Engagement

Michael L. Norman¹ – James Bordner¹ – Tom Abel² – Greg Bryan³ – David Collins⁴ – Brian O'Shea⁵ – Daniel Reynolds⁶ – Matt Turk⁷ – John Wise⁸

 1 U.C. San Diego – 2 Stanford U. – 3 Columbia U. – 4 Florida State U. – 5 Michigan State U. – 6 Southern Methodist U. – 7 U. of Illinois – 8 Georgia Tech

Project Motivation

Enzo's struggles Enzo is a community-developed adaptive mesh refinement simulation code designed for rich multi-physics hydrodynamic astrophysical calculations. Unfortunately, Enzo's scalability is limited by its design and implementation. ► Memory usage ▷ AMR structure is not scalable ▶ permanent 3-layer ghost zones ▶ memory fragmentation **▶** Data locality ▷ disrupted by load balancing ► Mesh quality ≥ 2-to-1 refinement violated ► Parallel task scheduling **▶** Parallel task definition ▷ parallel within a level ▷ varying patch sizes

□ determined by AMR

Summary

> synchronization between levels

Cello Components

Parallelization

Project Development

Status Enzo-P / Cello is available under the BSD New Open Source license. Previous capabilities ▶ PPM dual-energy hydrodynamics ▶ PPML compressible ideal MHD ► Recent capabilities self-gravity (Krylov) particles (static AMR) Upcoming capabilities ⊳ self-gravity (MG, HG, P³M) particles (dynamic AMR)

chemistry (Grackle library)

Enzo-P Scaling

Enzo-P/Cello Classes

Cello Applications

1. Parameter file: heat.in

Writing scalable AMR applications with Cello is straightforward. For example, to use Cello to solve the heat equation with the Forward Euler method, two main steps are required: 1. Create an input parameter file 2. Add a new Method class Other minor modifications are also needed for reading method parameters, calling the method's constructor, and updating a Charm++ control file.

```
2a. Include file: MethodHeat.hpp
class MethodHeat : public Method {
  // Create a MethodHeat object
  MethodHeat ( double a ) :a_(a){};
  // Apply FE to the block
  virtual void compute(Block *);
  // Compute the CFL restriction
  virtual double timestep (Block *)
```


http://cello-project.org/ SI2-SSE-1440709 jobordner@ucsd.edu