II SEM - Engg. Mathematics II MAT -1251 (II sessional)

Time: 1 Hr. Date: 23.03.2019 Time: 12.00PM-1.00PM Max. Marks: 15

Answer **ALL** the questions

Note: Questions 1 to 10 are of 0.5 mark and 11 to 15 are of 2 marks each

1. The value of L {	$(\frac{1-e^t}{t})$ is		
$a)\log(\frac{s-1}{s})$	$b) \log(\frac{s}{s})$	5 -1)	
c) $\log(\frac{s-1}{s+1})$	$d)\log(\frac{s+1}{s-1})$		
2. The area betwe	en the curves $y = x$	x and $y = x^2$ is	
a) $\frac{1}{2}$	b) $\frac{3}{4}$	c) $^{1}/_{4}$	$d)^{1}/_{6}$
3. The value of \int_{0}^{∞}	$x = \frac{x^{12}}{(1+x)^{15}} dx = $		
a) $\beta(13,2)$		b) $\beta(12,1)$	15)
c) $\beta(3,12)$)	$d) \beta(11, 2)$	2)
4. For spherical po	olar coordinates the	value of $J\left(\frac{x,y,z}{r,\theta,\varphi}\right)$ is	
a) $rsin \theta$	b) $rcos \theta$	c) $r^2 \sin \theta$	d) $r^2 \cos \theta$
5. The value of $L($	$(2^{3t}) = \underline{\hspace{1cm}}$		
a) $\frac{1}{s-3}$		$b) \; \frac{1}{s - ln8}$	
$c) \frac{1}{s-ln6}$		$d) \; \frac{1}{s - ln^9}$	
	_	ea of the region insiduces $r = 1$ is	
$a)-\pi$ to π		b) 0 to π	
c) 0 to 2π		d) $-\pi/2$ to $\pi/2$	2
7. If $u = s \cos t$	and $v = s \sin t$ then	$\frac{\partial(s,t)}{\partial(u,v)} = \underline{\qquad}.$	
a) s	$b)^{\frac{1}{-}}$	c) t	$d)^{\frac{1}{4}}$

8. Write the given integral in polar form: $\iint_R \sqrt{x^2 + y^2} \ dx \ dy$, where R is the region bounded by $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ where a < b.

a) $\int_0^{\pi} \int_a^b r^2 dr d\theta$

b) $\int_0^{2\pi} \int_a^b r^2 dr d\theta$

c) $\int_0^{\pi} \int_a^b r \, dr \, d\theta$

d) $\int_0^{2\pi} \int_a^b r \, dr \, d\theta$

9. The value of $\Gamma\left(\frac{1}{3}\right)\Gamma\left(\frac{2}{3}\right)$ is _____.

a) $\frac{2\pi}{\sqrt{3}}$

b) 2π c) $\frac{\sqrt{3}\pi}{2}$

10. The limit of y in the projection of the tetrahedron $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ on XOY plane while finding the volume is __

1 to $b(1 - \frac{x}{a})$

b) 0 to $a\left(1-\frac{x}{a}\right)$

c)0 to 1 d) 0 to $b\left(1-\frac{x}{a}\right)$

- 11. Calculate the volume of a solid whose base is in a xy-plane and is bounded by the parabola $y = 4 - x^2$ and the straight line y = 3x, while the top of the solid is in the plane z = x + 4.
- Evaluate $\int_{-1}^{1} (1+x)^6 (1-x)^7 dx$. 12.
- Find the Laplace transform of $t^2e^{-3t}sin2t$. 13.
- Find the volume of the portion of the sphere $x^2 + y^2 + z^2 = a^2$ 14. inside the cylinder $x^2 + y^2 = ay$.
- Evaluate $\int_0^a \int_{\gamma}^a \frac{x}{x^2+\gamma^2} dxdy$ by changing to polar coordinates. 15.