

Real-Time Traffic Monitoring and Analysis

CAI1_AIS4_S10d

Team Members:

Name	Task
Gamal Sayed Ahmed	Created database schema
	 Scripted post-Loading data-python (SQL Alchemy)
	 Scripted data-python (Analysis)
	 Machine Learning Modeling (Classification model)
	o Final report
Abdelrahman Adel Mohamed	 Loaded data into database (SSIS)
	Created data warehouse schema (SSMS)
	Azure services
	o Dashboard (power Bi)
Mahmoud Hamdy Mahmoud	o SQL queries (SSMS)
	Created data warehouse schema (SSMS)
	o Presentation
Omar Ahmed Ayad	o SQL queries (SSMS)
	 Loaded data from database into data warehouse (SSIS)
	Azure Services
Youssef Amr Said	Scripted pre-processing data-python (cleaning) (Python)
	o Presentation

1) Week 1: SQL Database and Data Collection

- ✓ Database Design:
 - Designed a SQL database schema for managing traffic data

✓ Data Collection:

➤ used real-time traffic data to populate the database from Kaggle [https://www.kaggle.com/datasets/silicon99/dft-accident-data/data]

A Accident_Index = index numbers	# Location_Easting = grid reference?	# Location_Northi =	△ Longitude =	△ Latitude =	# P 1 for			
1780653 unique values	65.0k 656k	10.3k 1.21m	-7.52 1.76	49.9 60.8				
200501BS00001	525680	178240	-0.191170	51.489096	1			
200501BS00002	524170	181650	-0.211708	51.520075	1			
200501BS00003	524520	182240	-0.206458	51.525301	1			
200501BS00004	526900	177530	-0.173862	51.482442	1			
200501BS00005	528060	179040	-0.156618	51.495752	1			
200501BS00006	524770	181160	-0.203238	51.515540	1			

used SSIS to load the data into the database

> SQL queries

```
Accident Hour;
 --- 4_Number of accidents by day of the week ---
                                                                                 --- 16. Average Number of Accidents on Weekends vs. Weekdays ---
≐SELECT
                                                                                SELECT
         WHEN Day_of_Week = 1 THEN 'Sunday'
                                                                                         WHEN DATEPART(WEEKDAY, Date) IN (1, 7) THEN 'Weekend'
         WHEN Day_of_Week = 2 THEN 'Monday'
                                                                                         ELSE 'Weekday'
         WHEN Day_of_Week = 3 THEN 'Tuesday'
                                                                                     END AS Day_Type,
         WHEN Day_of_Week = 4 THEN 'Wednesday'
                                                                                     COUNT(Accident_Index) AS Total_Accidents
         WHEN Day of Week = 5 THEN 'Thursday'
                                                                                 FROM
         WHEN Day_of_Week = 6 THEN 'Friday'
                                                                                     Accidents
         WHEN Day_of_Week = 7 THEN 'Saturday'
                                                                                 GROUP BY
     END AS Day_Name,
                                                                                     CASE
                                                                                         WHEN DATEPART(WEEKDAY, Date) IN (1, 7) THEN 'Weekend'
     COUNT(Accident_Index) AS Total_Accidents
                                                                                         ELSE 'Weekday'
 FROM Accidents
                                                                                     END:
 GROUP BY Day_of_Week
 ORDER BY Day_of_Week;
 ----5_average number of vehicles involved in accidents by road type,----
                                                                                 --- 17. Accidents Within a Specific Date Range ---
ĖSELECT
                                                                                SELECT
     R.Road_Type, AVG(A.Number_of_Vehicles) AS Average_Vehicles_Involved
                                                                                     COUNT(*) AS Total_Accidents
 FROM Accidents A JOIN Roads R
                                                                                 FROM
                                                                                     Accidents
     ON A.Road_ID = R.Road_ID
                                                                                 WHERE
 GROUP BY R.Road_Type
                                                                                     Date BETWEEN '2005-01-01' AND '2005-12-31';
 ORDER BY Average_Vehicles_Involved DESC;
```

Tools used for week 1:

```
Microsoft SQL Server
SQL Management Studio
```

2) Week 2: Data Warehouse and Python Integration

- ✓ Data Warehouse:
 - > Implemented Data warehouse using Star Shema

> Time dimension table:

```
CREATE TABLE Dim_Time (
    Time_ID INT PRIMARY KEY IDENTITY(1,1),
    Date DATE,
    Day_of_Week INT,
    Time TIME,
    Year INT
);
```

Measures functions:

- ✓ Data Loading:
 - Using SSIS:
 - > Fact table data loading

Other Tables data loading:

- ✓ Python Scripting:
 - Pre-processing loading into database

```
Accidents.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 16 columns):
                                               Non-Null Count Dtype
# Column
    Accident_Index
                                               0 non-null
   Location Easting OSGR
                                               49987 non-null float64
   Location_Northing_OSGR
                                               50000 non-null int64
    Longitude
                                               49987 non-null float64
   Latitude
                                               50000 non-null float64
    Police Force
                                               50000 non-null int64
    Accident_Severity
                                               50000 non-null int64
    Number_of_Vehicles
                                               50000 non-null int64
    Number_of_Casualties
                                               50000 non-null
                                               50000 non-null object
 10 Day_of_Week
                                               50000 non-null int64
 11 Time
                                               49999 non-null object
 12 Did_Police_Officer_Attend_Scene_of_Accident 50000 non-null object
 14 Road ID
                                               0 non-null
                                                               float64
15 Conditions_ID
                                               0 non-null
                                                               float64
dtypes: float64(6), int64(7), object(3)
memory usage: 6.1+ MB
   Accidents.isna().sum()
```

Pos-processing loading from database into python

```
Importing the needed lib and packages

import pandas as pd
from sqlalchemy import create_engine
import pysdls

Define the connection string for SQLAlchemy

connection_string = 'mssql+pyodbc://DESKTOP-TAKINTS\SQLEXPRESS/Trafficuk?driver=SQL+Server'

# Create an SQLAlchemy engine
engine = create_engine(connection_string)

# Function to fetch data from a table and convert it to a Pandas DataFrame
def fetch_data(query, table_name):
    print(f*Fetching data from (table_name)...")
    return pd.read_sql(query, engine)
```

```
# Fetch and preprocess data from each table
accidents_df = fetch_data(queries['Accidents'], 'Accidents')
roads_df = fetch_data(queries['Roads'], 'Roads')
conditions_df = fetch_data(queries['Conditions'], 'Conditions')
authorities_df = fetch_data(queries['Authorities'], 'Authorities')
auth_acc_df = fetch_data(queries['Accident_Authority'], 'Accident_Authority')

Fetching data from Accidents...
Fetching data from Roads...
Fetching data from Authorities...
Fetching data from Authorities...
Fetching data from Accident_Authority...
```

Tools used for week 2:

SSIS (visual studio for loading the data in the data warehouse)
SSMS (for implementing data warehouse)

Jupyter notebook (python: SQL Alchemy, pandas, NumPy)

3) Week 3: Traffic Analysis and Azure Services

> Accident distribution across UK:

✓ Model Development:

➤ Used random forest classification and logistic regression classification for classifying accidents severity with accuracy 87% each:

```
Classification Report:
               precision
                            recall f1-score
                                               support
           0
                   0.50
                            0.01
                                       0.02
                                                   99
                   0.33
                            0.03
                                       0.06
                             0.99
                   0.87
                                       0.93
                                                 8686
                                                 9998
                                       0.87
   accuracy
                   0.57
                             0.35
                                       0.34
                                                 9998
   macro avg
weighted avg
                   0.80
                             0.87
                                       0.81
                                                 9998
Confusion Matrix:
              92]
    0 42 1171]
        79 8606]]
Count of Each Accident Severity Type:
      127
     9869
dtype: int64
```


✓ Azure Services:

Home > Recent > trafficuk | File shares >

New file share

Tools used for week 3:

Azure different services

Machine learning algorithms

4) Week 4: and Deployment

✓ Deployment: Dashboard

Tools used for week 4:

Power bi for displaying the dashboard