Übung zur Vorlesung "Computerlinguistik II / Sprachtechnologie"

Sommersemester 2018, Prof. Dr. Udo Hahn, Tobias Kolditz Übungsblatt 7 vom 20.06.2018 Abgabe bis 27.06.2018 per E-Mail (PDF-Datei) an tobias.kolditz@uni-jena.de

Aufgabe 1: Inter-Annotator Agreement

7 pt

Das inter-annotator agreement beschreibt die Ähnlichkeit mehrerer unterschiedlicher Annotationen auf dem gleichen Text. Ein solches Agreement-Maß für kategoriale Urteile von zwei Annotatoren ist Cohen's Kappa. Sei U eine $u \times u$ Urteilsmatrix, die insgesamt N Urteile enthält, so berechnet sich Cohen's Kappa κ wie folgt:

(1)
$$\kappa = \frac{p_a - p_e}{1 - p_e}$$

Wobei p_a die beobachtete Übereinstimmung zwischen beiden Annotatoren darstellt:

$$p_a = \frac{\sum_{i=1}^u U_{ii}}{N}$$

Und p_e , die zufällig erwartete Übereinstimmung, wie folgt berechnet wird:

(3)
$$p_e = \frac{1}{N^2} \sum_{i=1}^u \left(\sum_{j=1}^u U_{ji} \cdot \sum_{j=1}^u U_{ij} \right)$$

Betrachten Sie folgende Statistik für zwei Annotationen von NP-Chunks im IO Format:

$$\begin{array}{c|cccc} A_1/A_2 & {\rm I} & {\rm O} \\ \hline {\rm I} & 40 & 10 \\ {\rm O} & 20 & 30 \\ \end{array}$$

a) Berechnung von Cohen's Kappa

3 pt

Berechnen Sie Cohen's Kappa für die obige Statistik. Geben Sie Ihren Lösungsweg an!

b) Ergebnisdiskussion

2 pt

Weist das Ergebnis auf eine hohe oder niedrige Übereinstimmung der Tag-Vergabe hin? Deckt sich das Ergebnis mit dem, was Sie anhand der Tabelle erwartet hätten? Begründen Sie Ihre Antwort.

c) Probleme mit Cohen's Kappa

2 pt

Berechnen Sie Cohen's Kappa für die Urteilsmatrizen in Abbildung 1, adaptiert aus Byrt et al. (1993). Vergleichen Sie die Ergebnisse für (a) mit (b) sowie (c) mit (d). Wie beeinflussen die verschiedenen Datenverteilungen den Kappa-Wert?

Aufgabe 2 : Brat Stand-off Format

3 pt

Informieren Sie sich auf http://brat.nlplab.org/standoff.html über das von Brat genutzte Standoff-Format und wandeln Sie folgendes XML-Beispiel (im Inline-Format) in dieses Format um.

¹In dieser ,abstrakten Annotationsaufgabe' musste jeder Annotator jeweils 100 Ja-/Nein-Urteile abgeben.

A_1/A_2	Yes	No	Total	A_1/A_2	Yes	No	Total
Yes	40	20	60	Yes	40	35	75
No	20	20	40	No	5	20	25
Total	60	40	100	Total	45	55	100

(a) Gleiche Randverteilung bei beiden Annotatoren (60% Yes)

(b) Unterschiedliche Randverteilungen (45% vs 75% Yes)

A_1/A_2	Yes	No	Total	A_1/A_1	A_2 Yes	No	Total
Yes	40	10	50	Ye	es 70	10	80
No	10	40	50	Ne	o 10	10	20
Total	50	50	100	Tot	al 80	20	100

(c) Gesamtverteilung über Kategorien ist uniform

(d) Prävalenz einer Klasse (Yes) deutlich höher

Abbildung 1: Urteilsmatrizen für Aufgabe 1c

Literatur

Byrt, T., Bishop, J., & Carlin, J. B. (1993). Bias, prevalence and kappa. *Journal of Clinical Epidemiology*, 46(5), 423-429.