Willkommen in der guten Stube :D

Aufgabe

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Für a > 0 zeige man die Gültigkeit der Abschätzung:

$$a^{x} \geq 1 + \ln(a) \cdot x$$
.

Bernoulli-Ungleichung

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt die Abschätzung:

$$(1+x)^n \ge 1 + n \cdot x.$$

Bernoulli-Ungleichung

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt die Abschätzung:

$$(1+x)^n \ge 1 + n \cdot x.$$

Weiter gilt für alle $x \in \mathbb{R}$ die folgende Grenzwert-Darstellung der Exponentialfunktion:

Bernoulli-Ungleichung

Für alle $x \in \mathbb{R}$ mit $x \ge -1$ und alle $n \in \mathbb{N}_0$ gilt die Abschätzung:

$$(1+x)^n \ge 1 + n \cdot x.$$

Weiter gilt für alle $x \in \mathbb{R}$ die folgende Grenzwert-Darstellung der Exponentialfunktion:

$$e^{X} = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^{n}.$$

Seien $x \in \mathbb{R}$ und a > 0 reelle Zahlen.

Seien $x \in \mathbb{R}$ und a > 0 reelle Zahlen. Es gilt:

$$\lim_{n\to\infty}\frac{\ln(a)\cdot x}{n}=0.$$

Seien $x \in \mathbb{R}$ und a > 0 reelle Zahlen. Es gilt:

$$\lim_{n\to\infty}\frac{\ln(a)\cdot x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{\ln(a)\cdot x}{n}\geq -1.$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{\ln(a)\cdot x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{\ln(a)\cdot x}{n}\geq -1.$$

Für jedes solche *n* gilt zusammen mit der Bernoulli-Ungleichung:

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{\ln(a)\cdot x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{\ln(a)\cdot x}{n}\geq -1.$$

Für jedes solche n gilt zusammen mit der Bernoulli-Ungleichung:

$$\left(1+\frac{\ln(a)\cdot x}{n}\right)^n$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{\ln(a)\cdot x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{\ln(a)\cdot x}{n}\geq -1.$$

Für jedes solche n gilt zusammen mit der Bernoulli-Ungleichung:

$$\left(1+\frac{\ln(a)\cdot x}{n}\right)^n\geq 1+n\cdot\frac{\ln(a)\cdot x}{n}$$

Sei $x \in \mathbb{R}$ eine beliebige reelle Zahl. Es gilt:

$$\lim_{n\to\infty}\frac{\ln(a)\cdot x}{n}=0.$$

Hieraus folgt die Existenz einer natürlichen Zahl $n_0(x) \in \mathbb{N}$, so dass für jedes $n \in \mathbb{N}$ mit $n \ge n_0(x)$ gilt:

$$\frac{\ln(a)\cdot x}{n}\geq -1.$$

Für jedes solche n gilt zusammen mit der Bernoulli-Abschätzung:

$$\left(1 + \frac{\ln(a) \cdot x}{n}\right)^n \ge 1 + n \cdot \frac{\ln(a) \cdot x}{n}$$
$$= 1 + \ln(a) \cdot x.$$

$$a^{x} = e^{\ln(a) \cdot x}$$

$$a^{x} = e^{\ln(a) \cdot x}$$
$$= \lim_{n \to \infty} \left(1 + \frac{\ln(a) \cdot x}{n} \right)^{n}$$

$$a^{x} = e^{\ln(a) \cdot x}$$

$$= \lim_{n \to \infty} \left(1 + \frac{\ln(a) \cdot x}{n} \right)^{n}$$

$$\geq \lim_{n \to \infty} \left(1 + \ln(a) \cdot x \right)$$

$$a^{x} = e^{\ln(a) \cdot x}$$

$$= \lim_{n \to \infty} \left(1 + \frac{\ln(a) \cdot x}{n} \right)^{n}$$

$$\geq \lim_{n \to \infty} \left(1 + \ln(a) \cdot x \right)$$

$$= 1 + \ln(a) \cdot x.$$