পল-বৃঙ্গি ব্যালেন্স সংক্রান্ত math এর ক্ষেত্রে [উল্লেখ্য, সর্বোচ্চ দাগ সংখ্যা মানে কিন্তু মোট দাগ সংখ্যা নয় বরং বীমের ওপর সর্বোচ্চ যে সংখ্যা দেখা যায়, তাই সর্বোচ্চ দাগ সংখ্যা]-

- (i) রাইডার ধ্রুবক = $\frac{2 \times রাইডারের ওজন}{$ মোট দাগ সংখ্যা
- (ii) মোট ভর = ভর ± (রাইডার ধ্রুবক × শূন্য দাগ হতে রাইডারের দূরত্ব)
 রাইডার শূন্য দাগের ডানে থাকলে '+' এবং রাইডার শূন্য দাগের বামে থাকলে '–' করতে হবে।

প্লাঙ্কের কোয়ান্টাম তত্ত্ব:

একটি ফোটনের শক্তি,
$$E=hf=h.\frac{c}{\lambda}$$
 এখানে, $h=$ প্লাঙ্কের ধ্রুবক $=6.626\times 10^{-34}$ Js $=6.626\times 10^{-27}$ erg. s $c=$ আলোর বেগ, $f=$ বিকিরণের কম্পাঙ্ক, $\lambda=$ তরঙ্গদৈর্ঘ্য।

- বোর কক্ষপথে e^- এর কৌণিক ভরবেগ, $mv_nr_n=n.\frac{h}{2\pi}(n=1,2,3,....)$
- ullet বোর কক্ষপথে e^- এর বেগ, $v_n=rac{\sqrt{z}\,e}{\sqrt{4\pi \varepsilon_o m r_n}}=rac{ze^2}{2nh \varepsilon_o}$
- বোর কক্ষপথের ব্যাসার্ধ, $r_n = \frac{n^2h^2 \in_o}{z_{\pi me^2}}$
- গতিশক্তি $=E_k=-E_n$; $E_p=$ বিভবশক্তি $=2E_n=-2E_k$ এবং বোর কক্ষপথের মোট শক্তি $E_n=\frac{-z^2me^4}{8n^2h^2\epsilon_0^2}$ যেহেতু আলো এক প্রকার তরঙ্গ, তাই আলোর বেগ $c=f\lambda$; f= কম্পাঙ্ক ; $\lambda=$ আলোর তরঙ্গদৈর্ঘ্য তরঙ্গসংখ্যা: একক দৈর্ঘ্যে কোনো তরঙ্গ দ্বারা সৃষ্ট পূর্ণ তরঙ্গের সংখ্যা হল ঐ তরঙ্গের তরঙ্গ সংখ্যা। তরঙ্গ সংখ্যা $\overline{\nu}=\frac{1}{\lambda}=\frac{\nu}{C}$; $\nu=$ কম্পাঙ্ক, c= আলোর বেগ।

বোর স্বীকার্য: নীলস বোরের পরমাণু মডেলের প্রস্তাবনা অনুযায়ী, কক্ষপথে ইলেকট্রনের কৌণিক ভরবেগ, $L=mvr=rac{nh}{2\pi}$;

h = প্লাঙ্কের ধ্রুবক।

বাহ্যিক শক্তি প্রযুক্ত হলে ঐ শক্তি শোষণ করে e^- নিমুতর শক্তিস্তর থেকে উচ্চতর শক্তিস্তরে উন্নীত হয়। নিমু শক্তিস্তরের শক্তি E_1 এবং উচ্চ শক্তিস্তরের শক্তি E_2 হলে e^- কর্তৃক শোষিত শক্তি, $\Delta E=E_2-E_1=h\nu$ ।

- (i) e^- এর কৌণিক ভরবেগ $mvr = \frac{nh}{2\pi}$ (n=1,2,3,....); [বোরের স্বীকার্য] এবং $mvr = \frac{h}{2\pi}\sqrt{l(l+1)}$
- (ii) বিকিরিত শক্তি, $\Delta E = E_2 E_1 = hf [h = প্লাঙ্কের ধ্রুবক = <math>6.626 \times 10^{-34} Js = 6.626 \times 10^{-27} erg.s]$
- (iii) ফোটনের শক্তি, $E = hf = \frac{hc}{\lambda}$
- (iv) আইনস্টাইনের ভর-শক্তি সমীকরণ, $E=mc^2$
- (v) ডি-ব্রগলীর তরঙ্গ সমীকরণ, $\lambda = \frac{h}{mv} = \frac{h}{p} \ [p = mv =$ আপেক্ষিক ভরবেগ]
- (vi) পারমাণবিক বর্ণালীর তরঙ্গসংখ্যা, $\vec{v}=\frac{1}{\lambda}=R_H\left(\frac{1}{n_L^2}-\frac{1}{n_H^2}\right)\times z^2$ [z= পারমাণবিক সংখ্যা] [$\lambda=$ তরঙ্গদৈর্ঘ্য, $R_H=$ রিডবার্গ ধ্রুবক = $109678 cm^{-1}$]
- (vii) একটি মৌলের তিনটি আইসোটোপের আপেক্ষিক প্রাচুর্য যথাক্রমে a%, b%, c% এবং পারমাণবিক ভর m_1, m_2, m_3 হলে, গর্গ পারমাণবিক ভর $=\frac{(am_1+bm_2+cm_3)}{100}$ amu
- (viii) বোর কক্ষপথে e^- এর বেগ, $v_n=\frac{e\sqrt{z}}{\sqrt{4\pi\varepsilon_0mr_n}}=\frac{ze^2}{2nh\varepsilon_0}$

- (ix) বোর কক্ষপথের ব্যাসার্ধ, $r_n=\frac{n^2h^2\varepsilon_o}{m\pi me^2}$ এবং বোর কক্ষপথের মোট শক্তি = $E_n=\frac{-z^2me^4}{8n^2h^2\varepsilon_o^2}$ বিভব শক্তি = $E_p=2E_n$; গতিশক্তি = $E_k=-E_n=-\frac{E_p}{2}$
- (x) আয়নিক গুণফল, Q = [েযে কোনো দ্রবণে ক্যাটায়ন $]^{$ ক্যাটায়ন সংখ্যা $} \times [$ েযে কোনো দ্রবণে অ্যানায়ন $]^{$ অ্যানায়ন সংখ্যা $} \times [$ েষে কোনো দ্রবণে অ্যানায়ন $]^{$ অ্যানায়ন সংখ্যা $} \times [$ সম্পৃক্ত দ্রবণে অ্যানায়ন $]^{$ অ্যানায়ন সংখ্যা $} \times [$ ক্যাটায়ন ও আ্যানায়নের ঘনমাত্রা অত্যন্ত সতর্কতার সাথে বের করতে হবে।)েযেমনঃ M_PA_q লবণের ক্ষেত্রে, সম্পৃক্ত দ্রবণে লবণের ঘনমাত্রা বা লবণের মোলার দ্রাব্যতা S mol/L এবং যে কোন দ্রবণে লবণের ঘনমাত্রা S_1 mol/L হলে-

$$M_pA_q \rightleftharpoons pM^{q+} + qA^{p-}$$
 $S \qquad pS \qquad qS \qquad (সম্পৃক্ত দ্রবণের ক্ষেত্রে)$
 $S_1 \qquad pS_1 \qquad qS_1 \qquad (যে কোনো দ্রবণের ক্ষেত্রে)$
 $\therefore \ Q = (pS_1)^p \times (qS_1)^q \qquad \qquad \therefore \ Q = p^p \times q^q \times S_1^{p+q}$
 $\therefore \ K_{sp} = (pS)^p \times (qS)^q \qquad \qquad \therefore \ K_{sp} = p^p \times q^q \times S^{p+q}$

আকরিক ও গুরুত্বপূর্ণ যৌগ

কিছু গুরুত্বপূর্ণ আকরিক:

(ক) সোডিয়ামের উৎস:

রকসল্ট ightarrow NaCl

ন্যাট্রোন → Na₂CO₃.H₂O

সোডা ফেলসপার \rightarrow Na₂O.Al₂O₃.6SiO₂

ট্রোনা / সাজিমাটি \rightarrow Na₂CO₃

বোরাক্স/ সোহাগা \rightarrow Na₂B₄O_{7,}10H₂O

চিলি সল্টপিটার \rightarrow NaNO $_3$

(খ) পটাসিয়ামের উৎস:

কার্নালাইট → KCl.MgCl₂.6H₂O

ক্যানাইট → KCl.MgSO₄.3H₂O

সিলভাইট বা (সিলভাইন) → KCI

অর্থোক্লেজ বা ফেলসপার → K2O.Al2O3.6SiO2

সল্টপিটার \rightarrow KNO₃

(গ) ম্যাগনেসিয়ামের উৎস:

ম্যাগনেসাইট \rightarrow MgCO $_3$

ডলোমাইট → MgCO₃.CaCO₃

ইপসম লবণ \rightarrow MgSO₄.7H₂O

ক্যানাইট → KCl.MgSO_{4.}3H₂O

কার্নালাইট

অ্যাসবেসটস

→ MgCl₂.KCl.6H₂O

কাসবেস্ট্রস কিসেরাইট
→ Mg₃Ca(SiO₃)₄

ইপসোমাইট \rightarrow MgSO₄. H₂O

 \rightarrow MgSO₄. 7H₂O

(ঘ) ক্যালসিয়ামের উৎস:

ক্যালসিয়াম কার্বনেট → ফোরস্পার CaF₂ CaCO₃ CaF2.3Ca3(PO4)2 ফোরঅ্যাপেটাইট ডলোমাইট CaCO₃.MgCO₃ \rightarrow ফসফোরাইট Ca₃(PO₄)₂ জিপসাম CaSO₄.2H₂O প্লাস্টার অব প্যারিস (CaSO₄)₂.H₂O অ্যানহাইড্রাইড \rightarrow CaSO₄

* CaO - কুইক লাইম / পাথুরে চুন; Ca(OH)₂ দ্রবণ – চুনের পানি।

শোভিয়াম সেস্কুইঅক্সাইড: Na2O3

গুরুত্বপূর্ণ আকরিক ও যৌগসমূহ:

	অ্যালুনাইট: বিশুদ্ধ খনিজ, Al ₂ O ₃ (কোরান্ডাম)	এমারি: Fe ₂ O ₃ মিশ্রিত Al ₂ O ₃
	অ্যানুনাচি: K ₂ SO ₄ .Al ₂ (SO ₄) ₃ স্পাইজেল: Al ₂ O ₃ .MgO রুবি/লাল চুনী পাথর: Cr ₂ O ₃ মিপ্রিত Al ₂ O ₃ সেফায়ার/নীলা/ নীলকান্তমনি: Fe ₂ O ₃ (1.5%),	টারকেইজ: Al (PO ₄). Al(OH) _{3.} H ₂ O ক্রাইসোবেরিল: Al ₂ O _{3.} BeO অ্যামোনাল: Al+NH ₄ NO ₃ অ্যামিটাল: NH ₄ NO ₃ +TNT
Al	েবিদায়ার/নালা/ নাল্কান্তমান: Fe ₂ O ₃ (1.5%), TiO ₂ (0.5%), Al ₂ O ₃ (98%) বক্সাইট: Al ₂ O ₃ 2H ₂ O কোরান্ডাম: Al ₂ O ₃ , জিবসাইট: Al ₂ O ₃ 3H ₂ O ক্রায়োলাইট: AlF ₃ .3NaF জিওলাইট: NaAlSiO ₄ .3H ₂ O	কেওলিন: Al ₂ O ₃ . 2SiO ₂ . 2H ₂ O অ্যালুনাইট: Al ₂ (SO ₄) ₃ . K ₂ SO ₄ . 4Al(OH) ₃ পটাস অ্যালাম: K ₂ SO ₄ . Al ₂ (SO ₄) ₃ . 24H ₂ O
В	বোরাক্স: Na ₂ B ₄ O ₇ .10H ₂ O কোলম্যানাইট: Ca ₂ B ₆ O ₁₁ .5H ₂ O	বোরাক্যালসাইট: CaB ₄ O ₇ .4H ₂ O বোরাসাইট: 2Mg ₃ B ₈ O ₁₅ . MgCl ₂
С	চুনাপাথর: CaCO ₃ , ম্যাগনেসাইট: MgCO ₃ ক্যালামাইন: ZnCO ₃ , সাইভেরাইট: FeCO ₃	ডলোমাইট: CaCO ₃ .MgCO ₃ ম্যালাকাইট: CuCO ₃ .Cu(OH) ₂
Pb	লিখার্জ: PbO, গ্যালেনা: PbS সেক্সনাইট: PbCO ₃ , স্যাটলোকাইট: PbCl ₂ . PbO	র্গিদুর/মিনিয়াম: Pb₃O₄ অ্যাংলেসাইট: PbCl₂.PbO

গুরুত্বপূর্ণ সংকেত:

AsH ₃	পাইরোলুসাইট	MnO ₂
CuFeS ₂	চিলি সল্টপিটার	NaNO ₃
HNO ₄	অ্যাজোড	N ₂
2C0+N ₂	শ্টিফেনাইট	5Ag ₂ S.Sb ₂ S ₃
FeSO ₄	জিপসাম	CaSO ₄ .2H ₂ O
CO+H ₂	ইপসম লবণ	MgSO ₄ .7H ₂ O
MgO	রিনম্যান গ্রীন	COZnO ₂
HgS	জিংক ব্লেড	ZnS
SO ₂ +N ₂ +O ₂	ফ্রিজিং মিকচার	বরফ+অম্প NaC
NH ₄ NO ₃ +T.N.T	পাইরোসালফিউরিক এসিড	H ₂ S ₂ O ₇
ZnSO ₄ . 7H ₂ O	হাইড্রোসালফিউরিক এসিড	H ₂ S
CuSO ₄ .5H ₂ O	গ্রীন ভিট্রিয়ল	FeSO ₄ .7H ₂ O
97.5%Al ₂ O ₃ +2.5% Cr ₂ O ₃	কোরান্ডাম	Al ₂ O ₃
	CuFeS ₂ HNO ₄ 2CO+N ₂ FeSO ₄ CO+H ₂ MgO HgS SO ₂ +N ₂ +O ₂ NH ₄ NO ₃ +T.N.T ZnSO ₄ . 7H ₂ O CuSO ₄ .5H ₂ O	CuFeS2 চিলি সল্টপিটার HNO4 অ্যাজ্যেভ 2C0+N2 শ্টিফেনাইট FeSO4 জিপসাম CO+H2 ইপসম লবণ MgO রিনম্যান গ্রীন HgS জিংক ব্লেভ SO2+N2+O2 ফ্রিজিং মিকচার NH4NO3+T.N.T পাইরোসালফিউরিক এসিভ ZnSO4. 7H2O হাইজ্রোসালফিউরিক এসিভ CuSO4.5H2O গ্রীন ভিট্রিয়ল

চায়না ক্লে	Al ₂ O _{3.} 2SiO ₂ .2H ₂ O	মিলনস আয়োডাইড	NH ₂ [Hg ₂]
চাইনিজ হোয়াইট	ZnO (জ্ঞানীর পশম)	জুয়েলার বর্জ্য	Fe ₂ O ₃
ব্ল্যাক অ্যাশ	Na ₂ CO ₃ +CaS		
অরপিমেন্ট	As ₂ S ₃	অয়েল অব ভিট্ৰিয়ল	H ₂ SO ₄
গান কটন	$C_6H_7O_2(NO_3)_3$	গ্রুবার লবণ	Na ₂ SO ₄
মিনিয়াম / সীসা সুন্দর	Pb ₃ O ₄	মেলিটিক এসিড	C ₆ (C00F
আর্জেনাইট	Ag ₂ S	ম্যাসিকট / লিথার্জ	PbO
নীলকান্ত মনি	98% Al ₂ O ₃ +1.5% Fe ₃ O ₄ +0.5% TiO ₂	হাইপোনাইট্রাস এসিড	H ₂ N ₂ O
সালফার সেসকুই অক্সাইড	S ₂ O ₃	ক্লোরো অরিক এসিড	HAuCl
থায়োসালফিউরিক এসিড	H ₂ S ₂ O ₃	<i>শ্টিবাইন</i>	SbH ₃

গুরুত্বপূর্ণ গাঠনিক সংকেত

(i)
$$NO_2$$
; $0 = \dot{N} \rightarrow 0$ \overrightarrow{a} , $0 \leftarrow \dot{N}$ \overrightarrow{a} , $O \leftarrow \dot{N}$ \overrightarrow{a} , $O \leftarrow \dot{N}$

(ii)
$$N_2O_4$$
; $O = N_1 - N_1 = 0$

(iii)
$$N_2O_5$$
; $O = N_1 - O - N_2 = O$

(iv)
$$SO_2$$
; $O = \ddot{S} = O$

(v)
$$SO_3$$
; $O = S\zeta_0^0$

(viii)
$$NO_2^-$$
; $\stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \stackrel{$

$$(x)$$
 SO_3^{2-} ; ${}^{\Theta}Q$ \longrightarrow S $($ পিরামিড আকৃতির $)$

- পর্যায় সারণিতে স্বাভাবিক অবস্থায় গ্যাসীয় মৌল → 11 ि।
- সবচেয়ে কম তড়িৎ ঋণাত্মক মৌল → Fr
- সবচেয়ে বেশি তড়িৎ ঋণাত্মক মৌল → F
- সবচেয়ে বেশি আয়নিকরণ বিভব বিশিষ্ট মৌল → He
- 05. সবচেয়ে কম আয়নিকরণ বিভব বিশিষ্ট মৌল →Cs [Fr তেজক্রিয় হওয়ায় একে হিসেবে ধরা হয় না]
- 06. সবচেয়ে বেশি গলনাংক ও স্ফুটনাংক বিশিষ্ট ধাতু ightarrow W (গলনাংক 3410° C, স্ফুটনাঙ্ক 5660° C)
- 07. সবচেয়ে কম গলনাংক ও স্ফুটনাংক বিশিষ্ট অধাতু → He (স্ফুটনাংক −268.9°C, গলনাংক < −272°C)

the special section in the last the section of the

District - Charge of Printer of

- 08. কয়েকটি তরল ধাতু: Hg, Ga, Cs, Fr [কক্ষ তাপমাত্রা বা 25°C এ]
- সবচেয়ে বিষাক্ত মৌল: Pu [প্লুটোনিয়াম]
- 10. তরল অধাতুর নাম হল: Br
- পৃথিবীতে যে মৌল বেশি পাওয়া যায়: → O, Si

- পৃথিবীতে যে মৌল কম পাওয়া যায়:→At
- 13. কেরোসিনের নিচে রাখা হয়: Na, Al, K, I, Cs
- নোবেল ধাতু: Au, Pt [কারণ, এরা বিক্রিয়া করে না]
- সবচেয়ে শক্ত ধাতু: Os (ঘনত্ব 22.6kgm⁻³)
- সবচেয়ে ভারী মৌল: 92U²³⁸
- 17. সাতটি অপধাতু বিদ্যমান: B, Si, Ge, As, Se, Sb, Te।
- 18. Cu, Ag, Au, এদের মুদ্রা ধাতু বা Coin Metal বলে।
- 19. সমুদ্রের পানিতে NaCl এর পরিমাণ সর্বাধিক (2.56%)।
- 20. লেসাইন পরীক্ষায় Na ব্যবহার করা হয়।
- 21. K, Rb, Cs সুপার অক্সাইড গঠন করে।
- 22. গ্রাফাইট → কঠিন লুব্রিকেন্ট
- 23. ডাচ মেটাল → 20% Zn + 80% Cu
- প্রসিয়ান রু → Fe₄[Fe(CN)₆]₃, K. Fe [Fe(CN)₆]₃
- পাইরেক্স কাঁচের উপাদান → B₂O₃
- Pb যৌগগুলোর মধ্যে only PbNO₃ is soluble

প্রথম ক্রম বিক্রিয়াঃ

যে বিক্রিয়ার হার একটি মাত্র বিক্রিয়কের ঘনমাত্রার প্রথম ঘাতের সমানুপাতিক হয়, তাকে প্রথম ক্রম বিক্রিয়া বলে।

অর্থাৎ
$$\frac{-dC}{dt}=kC^1$$
 এখানে C হল একটি মাত্র বিক্রিয়কের মোলার ঘনমাত্রা।

প্রথম ক্রম বিক্রিয়ার হার ধ্রুবক, $k=\frac{1}{t}\ln\frac{C_0}{C}=\frac{1}{t}\ln\frac{a}{a-x}$

Co = a = প্রারম্ভিক ঘনমাত্রা

C = a - x = t সময় পর অবশিষ্ট বিক্রিয়কের ঘনমাত্রা

x = উৎপাদের ঘনমাত্রা

হার ধ্রুবকের একক: time-1

উল্লেখ্য, সাধারণ সমীকরণটি হল, $k=rac{1}{t_2-t_1} lnrac{a-x_1}{a-x_2}$

যখন, $(a-x_1)=t_1$ সময় পর অবশিষ্ট বিক্রিয়কের ঘনমাত্রা এবং $(a-x_2)=t_2$ সময় পর অবশিষ্ট বিক্রিয়কের ঘনমাত্রা। উদাহরণ: সকল তেজক্রিয় ভাঙন ১ম ক্রম বিক্রিয়া। এছাড়াও উপযুক্ত শর্তে-

- (i) হেক্সেন এর বিয়োজন
- (ii) সাইক্লোবিউটেন এর বিয়োজন
- (iii) N_2O_5 এর তাপীয় বিয়োজনঃ $N_2O_5(g) \rightleftharpoons 2NO_2(g) + \frac{1}{2}O_2(g)$
- (iv) সুক্রোজের অম্লীয় আর্দ্রবিশ্লেষণঃ $C_{12}H_{22}O_{11}(aq) + H_2O(l) \xrightarrow{H^+(aq)} C_6H_{12}O_6(aq) + C_6H_{12}O_6(aq)$ সুক্রোজ বা ইক্ষু চিনি

প্রথম ক্রম বিক্রিয়ার বৈশিষ্ট্যঃ

প্রথম ক্রম বিক্রিয়ার তিনটি উল্লেখযোগ্য বৈশিষ্ট্য আছে। যেমন-

- (i) প্রথম ক্রম বিক্রিয়া কখনো সম্পূর্ণভাবে শেষ হয় না।
- (ii) প্রথম ক্রম বিক্রিয়ার অর্ধায়ু বিক্রিয়কের প্রাথমিক ঘনমাত্রার উপর নির্ভর করে না।
- (iii) প্রথম ক্রম বিক্রিয়ার হার ধ্রুবকের একক বিক্রিয়কের ঘনমাত্রার এককের উপর নির্ভরশীল নয়।

ullet অর্ধায়ু গণনাঃ ১ম ক্রম বিক্রিয়ার ক্ষেত্রে যখন ${f t}={f t}_{rac{1}{2}}$

তখন
$$x = \frac{a}{2}$$
 $\therefore k = \frac{1}{t_{\frac{1}{2}}} ln \frac{a}{a - \frac{a}{2}} \Rightarrow \boxed{t_{\frac{1}{2}} = \frac{ln2}{k} = \frac{0.693}{k} =$

চিত্রে, প্রথম ক্রম বিক্রিয়াটির অর্ধায়ু $t_{\frac{1}{2}}=$ সর্বদাই $100\,\mathrm{sec}$ ।

দ্বিতীয় ক্রম বিক্রিয়া:

যে বিক্রিয়ার হার একটি মাত্র বিক্রিয়কের ঘনমাত্রার বর্গের বা দ্বিতীয় ঘাতের সমানুপাতিক হয় অথবা যে বিক্রিয়ার হার দুটি বিক্রিয়কের ঘনমাত্রার একক ঘাতের গুণফলের সমানুপাতিক হয়, তাকে দ্বিতীয় ক্রম বিক্রিয়া বলে।

অর্থাৎ এক্ষেত্রে,
$$-\frac{dC}{dt}=kC^2$$
 অথবা, $-\frac{dC}{dt}=kC_1C_2$ ।

২্য় ক্রম বিক্রিয়ার জন্য হার ধ্রুবকের রাশিমালা হল-

(i)
$$2A \rightarrow B$$
; $k = \frac{1}{t} \times \frac{x}{a(a-x)}$

যেখানে a = বিক্রিয়কের প্রারম্ভিক ঘনমাত্রা, x = বিয়োজিত ঘনমাত্রা।

$$(ii)$$
 $A+B\to C;$ $\left[k=rac{1}{t(a-b)}lnrac{b(a-x)}{a(b-x)}
ight]$; $a=A$ বিক্রিয়কের প্রারম্ভিক ঘনমাত্রা, $b=B$ বিক্রিয়কের প্রারম্ভিক ঘনমাত্রা

অবশ্যই মনে রাখবে, কোনো দ্বিতীয় ক্রম বিক্রিয়ার দুইটি বিক্রিয়কের প্রারম্ভিক ঘনমাত্রা সমান হয়ে গেলে তা এক বিক্রিয়কবি^{কি} দ্বিতীয় ক্রম বিক্রিয়ার সমীকরণ, $k=\frac{1}{t}\cdot\frac{x}{a(a-x)}$ অনুসরণ করে।

২্য় ক্রম বিক্রিয়ায় হার ধ্রুবক ${f k}$ এর একক ঘনমাত্রা $^{-1}$ সময় $^{-1}$, যেমনঃ ${f Lmol^{-1}s^{-1}}$

উদাহরণ (উপযুক্ত শর্তে এরা ২য় ক্রম বিক্রিয়া):

- ইথান্যালের তাপীয় বিয়োজনঃ $\mathrm{CH}_3\mathrm{CHO}(\mathrm{g}) \overset{\Delta}{ o} \mathrm{CH}_4(\mathrm{g}) + \mathrm{CO}(\mathrm{g})$
- (ii) অ্যালিফেটিক এস্টারের ক্ষারীয় আর্দ্রবিশ্লেষণঃ $CH_3COOCH_3(aq) + NaOH(aq) \rightarrow CH_3COONa(aq) + CH_3OH(aq)$
- (iii) NOCl এর বিয়োজনঃ 2NOCl → 2NO + Cl₂
- (iv) নাইট্রোজেন ডাইঅক্সাইডের তাপীয় বিয়োজনঃ $2NO_2 \stackrel{\Delta}{\to} 2NO + O_2$
- (v) হাইড্রোজেন আয়োডাইডের সংশ্লেষণঃ $H_2 + I_2 \Rightarrow 2HI$
- (vi) হাইড্রোজেন আয়োডাইডের তাপীয় বিয়োজনঃ $2HI \Rightarrow H_2 + I_2$ (কাঁচ পাত্রে)
- (vii) হাইড্রোজেন ও ইথিলিনের সংযোজনঃ ${
 m H_2} + {
 m C_2H_4} \,
 ightarrow {
 m C_2H_6}$
- (viii) অ্যামোনিয়াম সায়ানেটের ইউরিয়াতে রূপান্তরঃ $NH_4CNO \stackrel{\Delta}{\to} H_2N CO NH_2$

দ্বিতীয় ক্রম বিক্রিয়ার বৈশিষ্ট্য:

দ্বিতীয় ক্রম বিক্রিয়ার ক্ষেত্রে নিম্নোক্ত তিনটি বৈশিষ্ট্য আছে। যেমন,

(ক) ২য় ক্রমের বিক্রিয়ার অর্ধায় বিক্রিয়কের প্রাথমিক ঘনমাত্রার ব্যস্তানুপাতিক।

$$k = \frac{1}{t} \times \frac{x}{a(a-x)}$$
 বা, $t = \frac{1}{k} \times \frac{x}{a(a-x)}$ বা, $kt + \frac{1}{a} = \frac{x}{a(a-x)} + \frac{1}{a}$ $\therefore \frac{1}{a-x} = kt + \frac{1}{a}$

ধরি, $\mathbf{t_{1/2}}$ (বা অর্ধায়ু) নির্ণয় করতে হবে। অতএব, এ সময়ে $\mathbf{x} = \frac{\mathbf{a}}{2}$ হবে।

চিত্র: বিক্রিয়কের ঘনমাত্রা বনাম সময় লেখচিত্র

প্রথম ক্রম ও দিতীয় ক্রম বিক্রিয়ার তুলনা:

বিষয়বস্তু	প্রথম ক্রম বিক্রয়া	দ্বিতীয় ক্রম বিক্রিয়া
(i) বিক্রিয়ার হার ধ্রুবক, k:	(i) $k = \frac{1}{t} \ln \frac{a}{(a-x)} = \frac{2.303}{t} \times \log \frac{a}{(a-x)}$	(i) $k = \frac{1}{t} \cdot \frac{x}{a \times (a - x)}$ $\exists t$, $\frac{1}{(a - x)} = kt + \frac{1}{a}$
(ii) বিক্রিয়ার হার ধ্রুবকের একক:	(ii) সময় ⁻¹ যেমন, s ⁻¹ , min ⁻¹	(ii) ঘনমাত্রা¹ সময়⁻¹ যেমন, L mol⁻¹ s⁻¹
(iii) অর্ধায়ু, t <u>i</u> :	(iii) ঘনমাত্রার প্রাথমিক মানের উপর নির্ভর করে না। $t_{\frac{1}{2}} = \frac{0.693}{k}$	(iii) ঘনমাত্রার প্রাথমিক মানের ব্যস্তানুপাতিক। $t_{\frac{1}{2}} = \frac{1}{k} \times \frac{1}{a}$
(iv) সময়ের সাথে ঘনমাত্রা পরিবর্তন:	(iv) t এর সাথে $\log \frac{a}{(a-x)}$ সরল রৈখিকভাবে হ্রাস পায়।	(iv) t এর সাথে <u>1</u> সরল রৈখিকভাবে বৃদ্ধি পায়।

অ্যারহেনিয়াস ফ্যাক্টর এবং অ্যারহেনিয়াস সমীকরণটি নিমুরূপ হয়-

 $k=Ae^{-E_a/RT}$ এখানে, $E_a=$ বিক্রিয়কের সক্রিয়ন শক্তি। R= সার্বজনীন গ্যাস ধ্রুবক, T= কেলভিন তাপমাত্রা

অ্যারহেনিয়াস সমীকরণ থেকে দেখা যায় যে, তাপমাত্রা (T) বৃদ্ধি পেলে বেগ ধ্রুবক k-এর মান বৃদ্ধি পায়। সমীকরণটি থেকে আরও স্পষ্ট যে, সক্রিয়ন শক্তির মান (Ea) হ্রাস পেলেও বেগ ধ্রুবক k বৃদ্ধি পায়। আবার বেগ ধ্রুবক k যেহেতু বিক্রিয়া হারের সমানুপাতিক সুতরাং তাপমাত্রার বৃদ্ধি বা সক্রিয়ন শক্তির হ্রাস বিক্রিয়ার হারকে বৃদ্ধি করে।

সারণি: বিভিন্ন শিল্পে ব্যবহৃত কতিপয় অবস্থান্তর ধাতু বা তাদের যৌগসহ অন্যান্য অনুঘটক

Plan	বিক্রিয়া	অনুঘটক
(i) অ্যামোনিয়া উৎপাদন	$N_2 + 3H_2 \rightleftharpoons 2NH_3$	Fe (অনুঘটক সহায়ক, Mo)
(ii) H₂SO₄ উৎপাদন	$2SO_2 + O_2 \rightleftharpoons 2SO_3$	Pt 41 V205
(iii) অসওয়ান্ড পদ্ধতিতে HNO ₃ উৎপাদন	$4NH_3 + 5O_2 \implies 4NO + 6H_2O$	Pt — Rh
(iv) অসম্পৃক্ত তেলের হাইড্রোজিনেশন ঘারা ডালডা উৎপাদন	$C = C' + H_2 \rightarrow HC - CH$	Ni
(v) মিথানঙ্গ উৎপাদন	$CO + 2H_2 \rightarrow CH_3OH$	$ZnO + Cr_2O_3$
(vi) তরল জ্বালানি উৎপাদন	$CO + H_2 \rightarrow C_n H_{2n+2} + H_2 O$ (অসমতাকৃত)	Co – Fe – Ni
(vii) পেট্রোলিয়াম ক্র্যাকিং শিল্প	$C_nH_{2n+2} \rightarrow CH_3 - C_{CH_3} - (CH_2) - CH_3$	Pt + ক্লে + বক্সাইট
(viii) ভিনেগার উৎপাদন	$CH_3 - CH_2 - OH + O_2 \rightarrow CH_3 - COOH + H_2O$	মাইকোডারমা অ্যাসিটি
(ix) ইথান ল উৎপাদন	$C_6H_{12}O_6 \rightarrow 2CH_3 - CH_2 - OH + 2CO_2$	(এনজাইম) জাইমেজ
(x) শ্টিম অ্যালকেন রিফরমিং পদ্ধতিতে H ₂ সংশ্লেষণ	$CH_4 + H_2O \rightarrow CO + 3H_2$	Ni

এনজাইম প্রভাবনঃ

এনজাইম হচ্ছে জীবন্ত উদ্ভিদকোষ ও প্রাণিকোষ থেকে উৎপন্ন, উচ্চ আণবিক ভরবিশিষ্ট নাইট্রোজেনযুক্ত বর্তুলাকার প্রোটিন ধর্মী জটিল জৈব পদার্থ।

(i)
$$2(C_6H_{10}O_5)_n + nH_2O \xrightarrow{\text{ভায়াপ্টেস}} nC_{12}H_{22}O_{11}$$
মন্টোর্ছ চিনি

(ii)
$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\text{ম্যাপ্টেজ}} 2C_6H_{12}O_6$$
 খুকোজ

(iii)
$$C_6H_{12}O_6 \xrightarrow{\mbox{milking}} 2C_2H_5OH + 2CO_2$$
 আলকেছেল

(iv)
$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\frac{1}{2} + 0} C_6H_{12}O_6 + C_6H_{12}O_6$$
 ਪ੍ਰਾਵਨੀਕ

(v)
$$C_6H_{12}O_6 \xrightarrow{\text{জাইমেজ}} 2H_3C - \frac{CH_2}{\text{ইখানল}} - OH + 2CO_2$$
 ੀ

মুক্ত শক্তির পরিবর্তন

কোনো উভমুখী বিক্রিয়ার ক্ষেত্রে T কেলভিন তাপমাত্রায় প্রমাণ মুক্ত শক্তির পরিবর্তন যদি ΔG হয় এবং এ তাপমাত্রায় বিক্রিয় সাম্যধ্রুবকের মান k হয়, তাহলে, ΔG = −RT lnk।

মুক্ত শক্তির পরিবর্তন ΔG, বিক্রিয়ার এনথালপির পরিবর্তন ΔH, তাপমাত্রা T(K), এনট্রপির পরিবর্তন ΔS এর মধ্যে সম্পর্কটি হচ্ছে, $\Delta G = \Delta H - T\Delta S$; সবক্ষেত্রেই, বিক্রিয়ার স্বতঃস্ফূর্ততার শর্ত, $\Delta G < 0$ তাহলে,

- (i) যখন, ΔH < 0, ΔS > 0; সকল তাপমাত্রাতেই বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে।
- (ii) যখন, ΔH < 0, ΔS < 0; নিম্ন তাপমাত্রায় (T < ΔH/ΔS হলে) বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে।
- (iii) যখন, ΔH > 0, ΔS > 0; উচ্চ তাপমাত্রায় (T > ΔH/ΔS হলে) বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে।
- (iv) যখন, $\Delta H > 0$, $\Delta S < 0$; কোনো তাপমাত্রাতেই বিক্রিয়াটি স্বতঃস্ফূর্তভাবে ঘটবে না, তবে এর বিপরীত বিক্রিয়াটি সকল তাপমাত্রাতেই স্বতঃস্ফূর্তভাবে ঘটবে।
- (v) যখন, $\Delta H=-ve$, $\Delta S=-ve$ এবং $T=\Delta H/\Delta S$; অথবা, $\Delta H=+ve$, $\Delta S=+ve$ এবং $T=\Delta H/\Delta S$; $\Delta G=0$ অর্থাৎ, উভমুখী বিক্রিয়াটি সাম্যাবস্থায় অবস্থান করবে।

ভরক্রিয়া সূত্র

ভরক্রিয়া সূত্রঃ

নির্দিষ্ট তাপমাত্রায় একটি বিক্রিয়ার গতিবেগ বিক্রিয়ায় অংশগ্রহণকারী প্রতিটি বিক্রিয়কের সক্রিয় ভরের সমানুপাতিক। দ্রবন্ধে ক্ষেত্রে সাধারণত মোলার ঘনমাত্রা এবং গ্যাসের ক্ষেত্রে আংশিক চাপকে সক্রিয় ভর ধরা হয়। যেমন-ধরা যাক, বিক্রিয়াটি হচ্ছে- aA(g) + bB(g) ⇌ cC(g) + dD(g) (i)

 \therefore মোলার সাম্যধ্রুবক, $K_C = \frac{[C]^c[D]^d}{[A]^a[B]^b} \Rightarrow K_C = \frac{\text{সাম্যাবস্থায় উৎপাদসমূহের মোলার ঘনমাত্রার উপযুক্ত ঘাতসহ গুণফল }{\text{সাম্যাবস্থায় বিক্রিয়কসমূহের মোলার ঘনমাত্রার উপযুক্ত ঘাতসহ গুণফল }$ আবার, A ও B এর আংশিক চাপ যথাক্রমে P_A ও P_B এবং উৎপাদ C ও D এর আংশিক চাপ যথাক্রমে P_C ও P_D হলে আংশিক চাপের উপযুক্ত ঘাতসহ গুণফল চাপে সাম্যধ্রুবক, $K_P = \frac{P_C^c.P_D^d}{P_A^a.P_D^b} \Rightarrow K_P = \frac{\text{সাম্যাবস্থায় উৎপাদসমূহের আংশিক চাপের উপযুক্ত ঘাতসহ গুণফল}}{\text{সাম্যাবস্থার বিক্রিয়কসমূহের আংশিক চাপের উপযুক্ত ঘাতসহ গুণফল}}$

বিক্রিয়া অনুপাত:

যে কোনো সময় একটি বিক্রিয়ার উৎপাদসমূহের সক্রিয় ভরের উপযুক্ত ঘাতসহ গুণফল এবং বিক্রিয়কসমূহের সক্রিয় ভরের উপযুক্ত ঘাতসহ গুণফলের অনুপাতকে বিক্রিয়া অনুপাত বলে। একে Q দ্বারা প্রকাশ করা হয়। একটি বিক্রিয়াaA + bB ⇌ cC + dD হলে,

 $Q_C=rac{ ext{ iny Constraint}}{ ext{ iny Constraint}} rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}} rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Constraint}}{ ext{ iny Constraint}}
angle Q_C = rac{ ext{ iny Con$

 $Q_P=rac{ ext{CU}}{ ext{CU}}$ কোন সময় উৎপাদসমূহের আংশিক চাপের উপযুক্ত ঘাতসহ গুণফল ; $Q_P=rac{ ext{PC}^c imes ext{PD}^d}{ ext{PA}^a imes ext{PB}^b}$

পক্ষান্তরে, সাম্যধ্রুবক (K_c ও K_p) ব্যবহৃত হয় কেবল সাম্যাবস্থায়। এভাবে বলা যায়, সাম্যাবস্থায় Q_c -ই হল K_c , Q_p -ই হল K_p . তাহলে, উভমুখী বিক্রিয়ার যেকোনো সময়ে যদি দেখা যায় যে-

- (i) $Q_c < K_c$ বা $Q_p < K_p$ হলে বিক্রিয়া ঐ অবস্থা হতে সামনের দিকে অগ্রসর হবে।
- (ii) $Q_c > K_c$ বা $Q_p > K_p$ হলে বিক্রিয়া ঐ অবস্থা হতে পিছনের দিকে অগ্রসর হবে।
- (iii) $Q_c = K_c$ বা $Q_p = K_p$ হলে বিক্রিয়াটি সাম্যাবস্থায় আছে, কোনো দিকেই যাবে না। সম্মুখ ও পশ্চাৎ দিকে সমান হারে চলতে থাকবে।

আবার যদি, $K_C < 1$ হয় তাহলে $\frac{[P]}{[R]} < 1$ হবে অর্থাৎ [P] < [R] । তাহলে সাম্যাবস্থায় উৎপাদ অপেক্ষা বিক্রিয়কের পরিমাণ অধিক হবে। এ ধরনের বিক্রিয়াকে স্বল্প ব্যাপ্তি বিক্রিয়া বলা হয়।

যদি, $K_C=1$ তাহলে [P]=[R] হবে। অর্থাৎ, সাম্যাবস্থায় সমান পরিমাণ বিক্রিয়ক ও উৎপাদ বিদ্যমান।

'** তিন ধরণের K_C এর মানের উদাহরণেই সাম্যাবস্থায় সমাুখ ও পশ্চাৎ বিক্রিয়ার বেগ সমান থাকে। কিন্তু, বিক্রিয়ক ও উৎপাদের বনমাত্রা সমান থাকা আবশ্যক নয়।

একত্রে সব গুরুত্বপূর্ণ সূত্র

01.
$$aA(g) + bB(g) \leftrightharpoons cC(g) + dD(g)$$
; $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$; $K_P = \frac{P_C^c \times P_D^d}{P_A^a \times P_B^b}$

- 02. $K_p = K_c(RT)^{\Delta n}$; K_p, K_c সাম্যধ্রুবক
- 03. $Q_p = Q_c(RT)^{\Delta n}$; Q_p, Q_c বিক্রিয়াধ্রুবক
- 04. $K_c = \frac{1}{\kappa_c^*}$; K_c সমাুখ বিক্রিয়ার সাম্যাংক; K_c^* পশ্চাৎ বিক্রিয়ার সাম্যাংক
- 05. $lnK_p = \frac{-\Delta H}{R} \frac{1}{T} + constant$ (ভ্যান্ট-হফের সমীকরণ)
- $06.~~\Delta n = n_p n_r\;;~~n_p =$ উৎপাদের গ্যাসীয় মোল সংখ্যাগুলোর যোগফল; $n_r =$ বিক্রিয়কের গ্যাসীয় মোল সংখ্যাগুলোর যোগফল
- $07.~~X_A=rac{n_A}{n_{total}}~~;~~n_A=A$ এর মোল সংখ্যা; $n_{total}=$ মিশ্রণে মোট মোল সংখ্যা; $X_A=A$ এর মোল ভগ্নাংশ
- 08. $P_A = P_{total} X_A$; $P_A = A$ এর আংশিক চাপ; $X_A = A$ এর মোল ভগ্নাংশ
- 09. $\alpha=\frac{x}{a}$; $\alpha=$ বিয়োজন মাত্রা; x=বিয়োজিত মোল সংখ্যা; a= যার α দেয়া আছে তার আদিমোল সংখ্যা (অনেক ক্ষেত্রে এটি শতকরা আকারে প্রকাশিত থাকে)
- 10. $n = \frac{w}{M}$; w = প্রদত্ত ভর; M = আণবিক ভর; n = মোল সংখ্যা
- 11. ঘনমাত্রা = $\frac{n}{v}$; n = মোল সংখ্যা; V = আয়তন

01.
$$aA(g) + bB(g) = cC(g) + dD(g)$$
; $K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}$; $K_P = \frac{P_C^c \times P_D^d}{P_A^a \times P_B^b}$

- 02. $K_p = K_c(RT)^{\Delta n}$; K_p , K_c সাম্যধ্রুবক
- 03. $Q_p = Q_c(RT)^{\Delta n}$; Q_p, Q_c বিক্রিয়াধ্রুবক
- 04. $K_c = \frac{1}{K_c^*}$; K_c সমাুখ বিক্রিয়ার সাম্যাংক; K_c^* পশ্চাৎ বিক্রিয়ার সাম্যাংক
- 05. $\ln K_p = \frac{-\Delta H}{R} \frac{1}{T} + \text{constant (ভ্যান্ট-হফের সমীকরণ)}$
- 06. $\Delta n = n_p n_r$; $n_p =$ উৎপাদের গ্যাসীয় মোল সংখ্যাগুলোর যোগফল; $n_r =$ বিক্রিয়কের গ্যাসীয় মোল সংখ্যাগুলোর যোগফল
- 07. $X_A=rac{n_A}{n_{total}}$; $n_A=A$ এর মোল সংখ্যা; $n_{total}=$ মিশ্রণে মোট মোল সংখ্যা; $X_A=A$ এর মোল ভগ্নাংশ
- 08. $P_A = P_{total} X_A$; $P_A = A$ এর আংশিক চাপ; $X_A = A$ এর মোল ভগ্নাংশ
- 09. α = x/a; α = বিয়োজন মাত্রা; x =িবয়োজিত মোল সংখ্যা; a = যার α দেয়া আছে তার আদিমোল সংখ্যা (অনেক ক্ষেত্রে এটি শতকরা আকারে প্রকাশিত থাকে)
- 10. $n=\frac{w}{M}$; w= প্রদত্ত ভর; M= আণবিক ভর; n= মোল সংখ্যা
- 11. ঘনমাত্রা = $\frac{n}{V}$; n = মোল সংখ্যা; V = আয়তন

```
01. যে কোনো দ্রবণের জন্য, [H^+][OH^-] = K_w (পানির আয়নিক গুণফল), 25^\circC তাপমাত্রায় [H^+][OH^-] = 10^{-14} \cong K_w অম্নীয় দ্রবণের জন্য [H^+] > [OH^-] মানে pH < pOH ক্ষারীয় দ্রবণের জন্য [H^+] < [OH^-] মানে pH > pOH
```

- 02. যে কোনো দ্রবণের জন্য, $pH + pOH = pK_w$, $25^{\circ}C$ তাপমাত্রায় $pH + pOH = 14 = pK_w$
- 03. $pH = -\log[H^+]$ $\therefore [H^+] = 10^{-pH}$ $pOH = -\log[OH^-]$ $\therefore [OH^-] = 10^{-pOH}$ $pK_a = -\log K_a$; $pK_b = -\log K_b$
- 04. মৃদু অম্লের জন্য, $K_a=\frac{\alpha^2C}{1-\alpha}\Longrightarrow K_a=\alpha^2C$ [কারণ, মৃদু অম্লের জন্য α খুব ক্ষুদ্র] মৃদু ক্ষারকের জন্য, $K_b=\frac{\alpha^2C}{1-\alpha}\Longrightarrow K_b=\alpha^2C$ [কারণ, মৃদু ক্ষারকের জন্য α খুব ক্ষুদ্র]

অর্থাৎ, উভয় ক্ষেত্রেই, $\alpha = \sqrt{\frac{\overline{K_{a \, or \, b}}}{C}} \dots \dots$ (i) [এই সূত্র α খুব ছোট হলেই কেবল কাছাকাছি মান দিবে, অন্যথায় ভুল উত্তর দিবে]

 \therefore মৃদু এসিড দ্রবণে $[H^+]=\alpha C=\sqrt{K_a\times C}$, মৃদু ক্ষার দ্রবণে $[OH^-]=\alpha C=\sqrt{K_b\times C}$ অর্থাৎ, (i) নং হতে পাই, $\alpha\propto\sqrt{K_{a\,or\,b}}$ [একটি নির্দিষ্ট ঘনমাত্রায়]

তাহলে, একই ঘনমাত্রাবিশিষ্ট দুটি Acid এর ক্ষেত্রে আপেক্ষিক তীব্রতা = $\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}}$

- 05. হেন্ডারসন-হ্যাসেলবাখ সমীকরণঃ অম্লীয় বাফার দ্রবণের জন্য, $pH = pK_a + log \frac{n_{A^-}}{n_{Acid}}$ ক্ষারীয় বাফার দ্রবণের জন্য, $pOH = pK_b + log \frac{n_{B^+}}{n_{Base}}$
- 06. অনুবন্ধী অম্ল-ক্ষারক যুগলের জন্যঃ $K_a \times K_b = K_w = 10^{-14} (25^{\circ}\text{C তাপমাত্রায়})$ $pK_a + pK_b = pK_w = 14 \ (25^{\circ}\text{C তাপমাত্রায়})$
- 07. HA এসিডের জন্য, $K_a = \frac{[H^+][A^-]}{[HA]}$; MOH ক্ষারকের জন্য, $K_b = \frac{[M^+][OH^-]}{[MOH]}$

স্থির চাপে বিক্রিয়া তাপঃ

মনে করি, কোনো গ্যাসে একটি স্থির চাপে Q_p পরিমাণ তাপ প্রয়োগ করা হলো। তাপগতির প্রথম সূত্র থেকে আমরা লিখতে পারি-প্রয়োগকৃত তাপ = অভ্যন্তরীণ শক্তি বৃদ্ধি + আয়তন বৃদ্ধিজনিত কাজ-

$$\therefore Q_{p} = \Delta E + P\Delta V = E_{2} - E_{1} + P(V_{2} - V_{1}) = E_{2} - E_{1} + PV_{2} - PV_{1}$$

$$= (E_2 + PV_2) - (E_1 + PV_1) = H_2 - H_1 \text{ of } Q_p = \Delta H$$

স্থির চাপে বিক্রিয়া তাপ এনথালপির পরিবর্তনের সমান।

- স্থির আয়তনে বিক্রিয়া তাপঃ Q_ν = ΔΕ (∵ ΔV = 0)
 - অভ্যন্তরীণ শক্তির পার্থক্যই স্থির আয়তনে বিক্রিয়া তাপ।
- স্থির চাপ ও স্থির আয়তনে বিক্রিয়া তাপের মধ্যে সম্পর্কঃ

$$\Delta H = \Delta E + P\Delta V = \Delta E + P(V_2 - V_1) = \Delta E + PV_2 - PV_1$$

- $\Rightarrow \Delta E + n_2 RT n_1 RT \quad (\because PV = nRT)$
- $= \Delta E + RT(n_2 n_1) = \Delta E + \Delta nRT : \Delta H = \Delta E + \Delta nRT$
- ∴ স্থির চাপ ও স্থির আয়তনে বিক্রিয়া তাপের সম্পর্ক $Q_p = Q_v + \Delta nRT$

যেখানে ∆n হল (গ্যাসীয় উৎপাদের মোলসংখ্যা — গ্যাসীয় বিক্রিয়কের মোলসংখ্যা)

এখানে, $P\Delta V = \Delta nRT$

- ullet বিক্রিয়ক ও উৎপাদ কঠিন বা তরল হলে আয়তনের পরিবর্তন নগণ্য হয়। সেক্ষেত্রে $\Delta V=0$, সূতরাং $Q_p=Q_v$ বা $\Delta H=\Delta E$ ।
- ullet গ্যাসীয় বিক্রিয়ায় বিক্রিয়ক ও উৎপাদের মোলসংখ্যা সমান হলে $\Delta n=0$ হয়। সেক্ষেত্রে $\Delta V=0$ এবং $Q_p=Q_v$ বা $\Delta H=\Delta E$ ।
- Δn ধনাত্মক হলে ΔH > ΔE বা Q_p > Q_v । এক্ষেত্রে উৎপাদের গ্যাসীয় মোলসংখ্যা বিক্রিয়কের চেয়ে বেশি হয় এবং ΔV ধনাত্মক হয়।
- Δn ঋণাত্মক হলে ΔH < ΔE বা Qp < Qv । এক্ষেত্রে উৎপাদের গ্যাসীয় মোলসংখ্যা বিক্রিয়কের চেয়ে কম হয় এবং ΔV ঋণাত্মক হয়।

হেসের সূত্রের ধারণাটি এরকম:

এক্ষেত্রে A হতে C তৈরির পথ দুইটি সরাসরি $A \to C$ অথবা $A \to B \to C$ ।

হেসের সূত্রানুসারে, $\Delta H_1 = \Delta H_2 + \Delta H_3$ । অর্থাৎ বিক্রিয়াটি যেভাবেই সম্পন্ন হোক তাপের পরিবর্তন একই হবে, যা শক্তির নিত্যতারই একটি বিশেষ রূপ। হেসের সূত্রের মাধ্যমে আমরা তাপ রাসায়নিক সমীকরণকে সুবিধামত যোগ, বিয়োগ, গুণ করে সহজে তাপের পরিবর্তন বের করতে পারি।

খাদ্য সংরক্ষণ কৌশল:

কৌশল	কী করা হয়	কীভাবে কাজ করে	উদাহরণ
১। কৌটাজাতকরণ (Canning)	খাদ্য সিদ্ধ করে কৌটায় বন্ধ করে রাখা হয়।	সিদ্ধ করলে তাপে অণুজীব নষ্ট হয়ে যায়। কৌটা air-tight বন্ধ হলে আর অণুজীব প্রবেশ করতে বা জন্মাতে পারে না।	সব ধরনের কৌটাজাত খাদ্য যেমন মাংস, সবজি, স্যুপ, ফল
২। ওক্ষকরণ (Drying)	সূর্যের তাপে বা ওডেনে খাদ্য ভকানো হয়।	খাদ্য থেকে পানি দূর হয় যাতে অণুঞ্জীব পানির অভাবে জন্মাতে না পারে।	শুক্ষ খাবার যেমন: শুক্ষ মাছ, ফল।
৩। হিমায়িতকরণ (Freezing)	খাদ্যকে নিমু তাপমাত্রায় দ্রুত হিমায়িতকরণ	ওক্ষ অবস্থায় পানি থাকে না। তাছাড়া তাপমাত্রা নিম্ন হওয়ায় আর অণুজীব জন্মাতে পারে না।	হিমায়িত মাছ, মাংস, মটরতটি, বিভিন্ন জুস।
৪। পিকলিং: তেলে (আচারজাতকরণ) পিকলিং: ভিনেগারে	খাদ্য সিদ্ধ করে মশলাযুক্ত করে তেলে নিমজ্জিত করা হয়। খাদ্যকে নিবীজ করে	সিদ্ধ করলে তাপে অণুজীব ধ্বংস হয়। তেল মশলায় অণুজীব জন্মাতে পারে না। অম্লীয় মাধ্যমের বৈরি পরিবেশে	আমের আচার, মিশ্র সবজির আচার যেমন বাণিজ্যিক Piccalilli রসুনের আচার। মরিচের
৫। সল্টিং (Salting)	ভিনেগারসহ বোতলজাত করা হয়। গাঢ় লবণের দ্রবণে খাদ্য ডুবিয়ে রাখা হয়।	অণুজীব বাঁচতে পারে না। আর্দ্র খাদ্য থেকে লবণ অসমোসিস প্রক্রিয়ায় জলীয় বাষ্প টেনে নেয়। ফলে অণুজীব বংশবৃদ্ধি করতে পারে না।	আচার। লবনাক্ত মাছ।
৬। সুগারিং (Sugaring)	বেশ গাঢ় চিনির দ্রবণে খাদ্য নিমজ্জিত করা হয়।	চিনির গাঢ় দ্রবণে অণুজীব ভালভাবে বৃদ্ধি পায় না।	আপেল, পিয়ারা, পিচ, অ্যাপ্রিকট এর জ্যাম বা জেলি।
৭। বিকিরণ (Irradiation)	খাদ্যে নিয়ন্ত্রিতভাবে গামা রশ্মি চালনা করা হয়।	বিকিরণ অণুজীবকে ধ্বংস করে। ফলের অতিরিক্ত পাকা রোধ করে পচন বন্ধ করে।	ফল, শাকসবজি, মশলা।
৮। ধূমায়ন (smoking)	কাঠ পুড়িয়ে সৃষ্ট ধোঁয়া খাদ্যে চালনা করা হয়।	তপ্ত ধোঁয়া অণুজীব ধ্বংস করে।	মাছ, মাংস ধোঁয়া দ্বারা উত্তপ্ত করে সংরক্ষণ করা হয়।
৯। রাসায়নিক প্রিজারভেটিভ	খাদ্যের সঙ্গে বিভিন্ন রাসায়নিক দ্রব্য যোগ করা হয়।	অণুজীব এর বৃদ্ধি নষ্ট করে খাদ্যের পচন/বিনষ্ট হওয়া রোধ করে।	ক্যালসিয়াম প্রপানয়েট, NaNO ₃ , NaNO ₂ , SO ₂ , NaHSO ₃ , KHSO ₃ , ফরমালিন, ইথানল, ভাই সোভিয়াম EDTA
১০। খাদ্য সংযোজনী (Food additive)	বিভিন্ন অতিরিক্ত রাসায়নিক দ্রব্য যোগ করে খাদ্যের স্বাদ, বর্ণ ও সৌন্দর্য বৃদ্ধি করা হয়।	যেমন অ্যান্টিঅক্সিডেন্ট খাদ্য উপাদানের জারণ রোধ করে বর্ণ ঠিক রাখে।	BHA, BHT
১১। জেলীকরণ (Jellying)	জেল গঠন করে এমন পদার্থ (মেইজ ময়দা, অ্যারারুট আগার) সহ খাদ্য সিদ্ধ করে কৌটাজাত করা হয়।	কঠিন জেলি অণুজীব বিস্তার রোধ করে।	কৌটাজাত চিংড়ি, মুরগি ইত্যাদি।

কৌশল	কী করা হয়	কীভাবে কাজ করে	উদাহরণ
১২। জগ ভর্তিকরণ (Jugging)	বায়ুরোধী আবদ্ধ মাটির পাত্রে ব্রাইন মিশিরে মাংস প্রক্রিয়াজাত করা হয়।	বায়ুশূন্যতা ও ব্রাইন অণুঞ্জীব বিস্তার রোধ করে।	माश्म
১৩। সংশোধিত বায়ুমণ্ডল (Modified atmosphere)	কোন প্রিজারভেটিভ যোগ না করে তথু খাদ্যের চারপাশে অক্সিজেনের ঘনমাত্রা হ্রাস করে এবং CO ₂ এর ঘনমাত্রা বৃদ্ধি করে পরিবেশ গড়ে তোলা হয়। পাত্রের নিচে শুক্ষ বরফ রেখে বা অক্সিজেন সরিয়ে CO ₂ বা N ₂ ঘারা ক্যান ভর্তি করে প্রব্য রাখা হয় ও সীল করে দেয়া হয়।	CO2 হাইপার কার্বিয়ার সাহায্যে জারণ রোধ করে অণুজীব ধ্বংস করে দেয়। ফলে পচন ঘটে না।	খাদ্য শস্য এ প্রক্রিয়ায় ৫ বছর পর্যন্ত সংরক্ষণ করা যায়।
১৪। ইলেকট্রোপোরেশন (Electroporation)	বিদ্যুৎক্ষেত্র যুক্ত পাত্রে খাদ্যবস্তু রেখে বিদ্যুৎপাল্স প্রয়োগ করা হয়।	নিম্ন তাপমাত্রায় বিকল্প পাস্তরাইজেশন দ্বারা Sterilize করা হয়। ফলে অণুজীব টেকে না।	ফলের জুস সংরক্ষণ।
১৫। উচ্চ চাপ প্রক্রিয়া (Pascalization)	উচ্চ চাপে প্রায় 480 MPa চাপে খাদ্য সংরক্ষণ করা হয়।	উচ্চ চাপে অণুজীব সৃষ্টি হতে পারে না।	খাদ্যের চেহারা, গন্ধ পুটি পুরো অক্ট্রর থাকে। ভূস ও মাংস।
১৬। বায়ো সংরক্ষণ (Bio preservation)	প্রাকৃতিক বা নিয়ন্ত্রিত মাইক্রো বায়োটা থেমন ল্যাকটিক এসিড ব্যাকটেরিয়া (LAB) দ্বারা খাদ্য সংরক্ষণ করা হয়।	এটি থেকে উপকারী অণুজীব বের হয় যা খাদ্যের প্যাথোজেন ধ্বংস করে।	বিভিন্ন খাদ্য
১৭। প্রতিরোধ প্রকৌশল (Hurdle technology)	খাদ্য সংরক্ষণের একাধিক পদ্ধতির সমন্বয় দ্বারা সংরক্ষণ নিশ্চিত করা হয়। যেমন নিম্ন তাপমাত্রা, উচ্চ এসিডিটি ও সঙ্গে বায়োপ্রিজারভেটিভ প্রয়োগ।	একটির পর একটি বাধা সৃষ্টি করে অণুজীবের (Pathogens) টিকে থাকার পথ রুদ্ধ করে দেয়া হয়।	যে কোন ধরনের খাদ্য।

পাস্তরাইজেশনের প্রবাহচিত্র:

দুধ থেকে মাখন প্রস্তৃতি:

মাখন সম্পূর্ণ তরল দুধের চর্বি থেকে তৈরি। চর্বি দানাগুলো যান্ত্রিকভাবে একত্রিত করা হয়। এটি অর্থকঠিন পদার্থ যেখানে 80-85% চর্বি এবং প্রায় 16% পর্যন্ত পানি আছে।

মাখন দুটি উৎস থেকে তৈরি হতে পারে- টক দুধ এবং ক্রিম বা ননী। তবে টক দুধ থেকে মাখন তৈরি করা সুবিধাজনক।

→ লবণ প্রয়োগ → চূড়ান্ত মাখন

মাখন সংরক্ষণ করা কঠিন কারণ উচ্চ আবহাওয়ায় দ্রুত জারিত হয়ে গন্ধ সৃষ্টি করে। এজন্য একে ঘি-তে রূপান্তরিত করে সহজে সংরক্ষণ করা হয়। প্রকৃত পক্ষে ঘি হল পরিশোধিত মাখন। যাতে 1% ময়েশ্চার থাকে।

[মাখন থেকে ঘি প্রস্তুতি মূল বই থেকে পড়তে হবে।]

ভিনেগার:

অ্যাসিটিক এসিড (CH3COOH) এর 6-10% জলীয় দ্রবণ হলো ভিনেগার। এর pH মান 4.74 থাকে। তাই pH 4.74 অস্লীয় মাধ্যমে ব্যাকটেরিয়া জন্মাতে পারে না।

প্রস্তুতি: ভিনেগার প্রস্তুতিতে দুটি রাসায়নিক ধাপ বিদ্যমান।

- (a) ফলের চিনি জাতীয় দ্রব্যের অ্যালকোহলে রূপান্তর।
- (b) উৎপল্ল অ্যালকোহলের মাইকোডার্মা অ্যাসেটি ব্যাকটেরিয়ার উপস্থিতিতে ভিনেগার রূপান্তর।

$$\text{(i)} \ \ C_{\substack{12 \\ \text{fishe}}} H_{22} O_{11} + H_2 O \overset{\text{Sp-Sp}}{\longrightarrow} C_6 H_{12} O_6 + C_6 H_{12} O_6 \\ \text{gravies}$$

(ii)
$$C_6H_{12}O_6 \xrightarrow{\frac{c_6-c_6}{2}} 2C_2H_5OH + 3CO_2$$

हैवाईन च्यानरकार्ग

(iii)
$$2C_2H_5OH + O_2 \xrightarrow{\text{system}} CH_3COOH + H_2O$$

মল্ট ভিনেগার পদ্ধতিতে ভিনেগার প্রস্তুতি:

$$C_{12}H_{22}O_{11} + H_2O \xrightarrow{\frac{1}{37^{\circ}C}} C_6H_{12}O_6 + C_6H_{12}O_6$$
 (গুকোজ+মুন্টোজ=ইনভার্ট চিনি)

$$2C_6H_{12}O_6 + H_2O \xrightarrow[20^{\circ}-24^{\circ}C]{} 4CH_3 - CH_2 - OH + 4CO_2$$
 इंग्लिक हिन

ভিনেগারের খাদ্যদ্রব্য সংরক্ষণ কৌশল:

অ্যাসিটিক এসিডের জীবাণু ধ্বংসকরণ প্রক্রিয়া এ অম্লীয় পরিবেশের ওপর নির্ভর করে। তাই প্রিজারভেটিভরূপে মাত্র 3% অ্যাসিটিক এসিড ও 4% অ্যাসিটিক এসিডের লবণের মিশ্রণে মাইক্রো অর্গানিজম মরে যায় অথবা এদের বৃদ্ধি বাধাপ্রাপ্ত হয়।

কসমেটিক রসায়ন

কসমেটিক রসায়ন:

যে শিপে টয়লেট্রিজ ও সুগন্ধি পদার্থসমূহ উৎপাদন করা হয় এবং তার সাথে সংশ্লিষ্ট রসায়নের জ্ঞান ব্যবহার করে কিভাবে উন্নতমানের টয়লেট্রিজ উৎপাদন করা যায়, তা রসায়নের যে শাখায় আলোচনা করা হয় তাকে কসমেটিক রসায়ন বলে। হরেক রকম রাসায়নিক দ্রব্যের মধ্যে কিছু সংখ্যক দ্রব্য নিয়ে আলোচনা করব।

গোলাপ জল:

গোলাপ জল হল গোলাপ ফুলের পাপড়ি ও পানির মিশ্রণের পাতন করার পর পাতিত তরলের নির্যাস অংশ। গোলাপ তেল উৎপাদনের সময় উপজাত হিসেবেও গোলাপ জল পাওয়া যায়।

হেয়ার অয়েল:

হেয়ার ওয়েল একটি নিরপেক্ষ, অপোলার রাসায়নিক পদার্থ। এটি একটি পিচ্ছিল সান্দ্রতা ধর্মবিশিষ্ট তরল পদার্থ। পানির সাথে মিশে না, কিন্তু অ্যালকোহলে দ্রবীভূত হয়।

নারিকেলের দুধ হতে হেয়ার অয়েল উৎপাদন:

হেয়ার অয়েলের উপাদান:

- (i) নারিকেল তেল
- (ii) রেড়ির তেল
- (iii) লোশন অয়েল
- (iv) অলিভ অয়েল
- (v) পিপার মিন্ট অয়েল
- (vi) বাদাম তেল

ট্যালকম পাউডার:

ট্যালকম পাউডার হলো হাইছেটেড ম্যাগনেসিয়াম সিলিকেট যার সংকেত $H_2Mg_3(SiO_3)_4$ বা, $Mg_3Si_4O_{10}$ (OH) $_2$ বা, $3MgO.4SiO_2.H_2O$ । একে সংক্ষেপে ট্যান্ড (tale) বলে।

উপাদানঃ

সিলিকা (SIO ₂)	অ্যালুমিনিয়াম অক্সাইড (Al ₂ O ₃)
ম্যাগনেসিয়াম অক্সাইড (MgO)	জিংক অক্সাইড (ZnO)
ক্যালসিয়াম অক্সাইড (CaO)	ক্যাণসিয়াম কার্বনেট (CaCO ₃)
ফেরিক অক্সাইড (Fe ₂ O ₃)	বেনজোইন
ম্যাগনেসিয়াম কার্বনেট (MgCO ₃)	মেনথল (সুগন্ধি)

অতিরিক্ত পিচ্ছিলতার জন্য জিংক শ্টিয়ারেট ব্যবহার করা হয়। এটা কোমল এন্টিসেপটিক। অনেক সময় বোরিক এসিডকে এন্টিসেপটিক হিসেবে ব্যবহার করা হয়। পাউভারকে ফাঁপানোর জন্য ক্যালসিয়াম বা ম্যাগনেসিয়াম কার্বনেট ব্যবহার করা হয়।

• রো (Snow):

তৃকের বিভিন্ন ধরনের ক্রিম প্রস্তুতিতে ১৮৭৩ সাল থেকেই শ্টিয়ারেট নামক যৌগ বাবদ্ধত হয়ে আসছে। উপাদানঃ

পানি	শ্টিয়ারিক এসিড	
গ্নিসারিন	বিউটাইল মিথক্সিডাইবেনজয়িল মিথেন	
ভাইমেথিকোন	পটাসিয়াম হাইড্রোক্সাইড	
মিথাইল প্যারাবেন	হ্যাজেল মূলের নির্যাস	
টেট্রাসোডিয়াম EDTA	গ্রোপাইল প্যারাবেন	

কোন্ড ক্রিম:

এ প্রসাধনীটি চর্বিতে পানির ইমালশন। শীতকালে যখন বায়ুতে আর্দ্রতা খুবই কম থাকে সে অবস্থায় অর্থাৎ তক্ষ বায়ুতে মুখ-হাতের চামড়ায় বেশ টান টান অনুভূতি লাগে। অতিরিক্ত টানে অনেক সময় চামড়া ফেঁটে যায়, এমনকি ক্ষত সৃষ্টি হয়ে জ্বলে। এ অবস্থা থেকে রেহাই পাওয়ার জনাই আর্দ্রতা সমৃদ্ধকারী এবং ঠান্ডা ও আরাম অনুভূতি সৃষ্টিকারী এ ক্রিম বাবহার করা হয়। ঠান্ডা অনুভূতিদায়ক বলেই এর নাম কোন্ড ক্রিম। গ্রীক চিকিৎসক গ্যালেন গ্রীজ পানি মিশিয়ে সর্বপ্রথম এ ধরনের কোন্ড ক্রিম তৈরি করেন। এর আধুনিক সংযুক্তি হলো-

খনিজ তেল (পেট্রোলিয়াম জেলি)	অ্যালকোহল
গ্নিসারিন	বোরাস্থ (Na ₂ B ₄ O ₇ . 10H ₂ O)
প্রোপাইল প্যারাবেন (গ্রিজারভেটিভস)	সুগদ্ধি দ্রব্য

ভ্যানিশিং ক্রিম:

উপাদান:

স্টিয়ারিক এসিড	গ্লিসারিন	
প্টাশিয়াম হাইডুক্সাইড	পানি	

লিপশ্টিক:

উপাদান:

• (क्रिक्स मानन	পিগমেন্ট, TiO₂ আ্যান্টিঅক্সিডেন্ট ভিটামিন -E তেল-অলিভ অয়েল, খনিজ তেল, রেভির তেল মোম-মৌমাছি মোম আালকোহল
-----------------	---

মোম তিন ধরনের হতে পারে। মৌমাছির মোম, ক্যান্ডেলিয়া মোম এবং কমোবা মোম। তেল বলতে খনিজ তেল বুঝায়। কিন্তু ব্যবহারের সুবিধার্থে ক্যান্টর তেল, ল্যানোলিন তেল অথবা ডেজিটেবল তেল এর থেকোনটিই ব্যবহার করা যায়।

আফটার সেভ লোশন:

উপাদান:

অ্যালকোহল (ডিন্যাচার্ড ইথানল)	পাতিত পানি	
হেমামেলিস উদ্ভিদের নির্যাস	প্যাকটিক এসিড	
ক্যামোমিলের টিংচার	গ্নিসারিন	

মেহেদি:

মেহেদি গাছের পাতা লসোন (Lawsone) বা 2-হাইড্রক্সি-।, 4-ন্যাপথাকুইনোন নামক রাসায়নিক পদার্থ ধারণ করে, যা একটি রঞ্জক পদার্থ। এই কারণে মেহেদি পাতার রস আমাদের তৃকে সুন্দর আকর্ষণীয় বর্ণ তৈরি করে।

মিশ্রণ

- মিশ্রণ প্রধানত দুই প্রকার-
 - (ক) সমসন্ত্রীয় মিশ্রণ বা স্বচ্ছ মিশ্রণ বা দ্রবণ: যেমন NaCl এর পানিতে দ্রবণ।
 - (খ) অসমসত্ত্বীয় মিশ্রণ বা অস্বচ্ছ ঘোলাটে মিশ্রণ:

বালি ও পানি এবং Al(OH)3 ও পানির মিশ্রণ। অসমসন্ত্রীয় মিশ্রণকে নিয়মতে শ্রেণিবদ্ধ করা যায়। যেমন,

কলয়েভ:

কলয়েড বিভিন্ন প্রকার হতে পারে। যেমন-সল, ইমালশন ও জেল।

ভৌত অবস্থা অনুসারে বিভিন্ন ধরনের কলয়েড

ভিসপার্স ফেজ	ডিসপার্সন মাধ্যম (বিস্তার মাধ্যম)	কলয়েড সিস্টেম	উদাহরণ
কঠিন	বায়ু (গ্যাস) পানি (তরল) অ্যালকোহল (তরল) কঠিন	অ্যারোসল হাইড্রোসল অ্যালকোসল সলিডসল	ধোঁয়া, পানিতে As ₂ S ₃ , সল ইথানলে NaOH, রঙিন কাঁচ
তরল	বায়ু (গ্যাস) তরল কঠিন	অ্যারোসল ইমালশান জেল	মেঘ, কুয়াশা, দুধ, ননী, দধি, পনির, বিভিন্ন ফলের জেলি।
গ্যাস	তরল	ফেনা	পানিতে সাবানের ফেনা

- গ্যাস- গ্যাস সিস্টেম সর্বদাই একটি দ্রবণ, কারণ একাধিক গ্যাস সবসময়ই একটি সমসত্ মিশ্রণ তৈরি করে।
- সল: যদি কোন বস্তু কণা অন্য ফেজ (বিস্তার মাধ্যম) এ বন্টিত হয়ে কলয়েড গঠন করে তবে তার নাম 'সল' (sol)। বিস্তার মাধ্যমের নামানুসারে সল এর বিভিন্ন নাম হয়।
- জেল: জেল এক ধরনের বিশেষ অবস্থা প্রাপ্ত সল। অর্থাৎ সব 'জেল'ই সল তবে সব 'সল' জেল নাও হতে পারে। যদি একটি তরল মাধ্যমে কোনো কঠিন বস্তুর সলকে গাঢ় করা হলে সল কণাগুলো বিন্যস্ত হয়ে 'bridged' বা 'cross-linked' কাঠামো লাভ করে এবং এর ফলে সিপ্টেমের স্থায়িত্ব বেড়ে যায় তবে তাকে জেল বলে। সূতরাং সল এবং জেল এর মূল পার্থক্য হলো মল-এ কণাগুলো অনিয়মিতভাবে ঘুরে বেড়ালেও 'জেল'-এ Crosslinked কাঠামোর ভেতর তরল কণা অবরুদ্ধ (entrapped) হয়ে নিশ্চল (immobilized) অবস্থায় থাকে। ফলে পাত্র উপুড় করলেও জেল পড়ে না। অনেক জেলকে সজোরে ঝাঁকালে তার কাঠামো ভেঙ্গে যায় এবং অবরুদ্ধ তরল বেরিয়ে আসে এবং তা প্রবাহমান হয়। যেমন দধি, পনির এবং বিভিন্ন ফলের জেলি।

