HOMEWORK 10

SAI SIVAKUMAR

This homework consists of two problems.

- (A) Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable. Show, if there is an M such that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, then f is uniformly continuous.
- (B) A point $p \in \mathbb{R}$ is a fixed point of a function $g : \mathbb{R} \to \mathbb{R}$ if g(p) = p. Show, if g is differentiable and |g'(x)| < 1 for all $x \in \mathbb{R}$, then g has at most one fixed point.

Proof (A). Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function as given and suppose that there exists $M \geq 0$ such that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$.

Let $x, y \in \mathbb{R}$ with x < y. By the mean value theorem, there exists $c \in (x, y)$ such that f(x) - f(y) = f'(c)(x - y). By taking the absolute value, we have that

$$|f(x) - f(y)| = |f'(c)(x - y)|$$
$$= |f'(c)||x - y|$$
$$\leq M|x - y|.$$

Given $\varepsilon > 0$, choose $\delta = \varepsilon/M$. When $|x - y| < \delta$, we have that $|f(x) - f(y)| < M\delta = \varepsilon$. Hence f is uniformly continuous.

Proof (B). Let g be a differentiable function as given with |g'(x)| < 1 for all $x \in \mathbb{R}$.

Suppose by way of contradiction that g has more than one fixed point; that is, there exist $p, q \in \mathbb{R}$ with p < q such that g(p) = p and g(q) = q.

Then by the mean value theorem, there exists $c \in (p, q)$ such that

$$|q - p| = |g(q) - g(p)| = |g'(c)(q - p)|$$

= $|g'(c)||q - p|$
 $< |q - p|$

which is a contradiction. Hence g has at most one fixed point.