Oversampling i Undersampling

Michał Głowacki Grzegorz Holewa Anna Romik

Problem klasyfikacji niezrównoważonych danych

- Niezrównoważone liczebnie klasy decyzyjne
- Słaba reprezentacja klasy mniejszczościowej
- Uczenie klasyfikatorów ukierunkowane w stronę klasy większościowej
- Duże znaczenie rozpoznawania klas mniejszczościowych

Zastosowanie

- medycyna
- detekcja awarii
- przewidywanie katastrof

Oversampling

- technika analizy danych wykorzystywana do regulacji podziału klas zbioru danych
- wybiera więcej próbek z klasy mniejszościowej (duplikuje dane)
- replikacja zwiększa wagę próbek populacji mniejszościowej
- nie zwiększa ilości informacji

Synthetic minority oversampling technique (SMOTE)

- tworzenie nowych przykładów pomiędzy istniejącymi obserwacjami mniejszościowymi położonymi blisko siebie
- nadlosowywanie do uzyskania odpowiedniego poziomu

SMOTE - schemat działania

- 1. Określenie globalnego poziomu nadlosowania j
- 2. Dla każdego przykładu z klasy mniejszościowej:
- a) znaleźć k najbliższych sąsiadów (z klasy mniejszościowej)
- b) spośród sąsiadów wylosować j z nich
- c) utworzyć j syntetycznych przykładów pomiędzy danym przykładem a wylosowanymi sąsiadami

Generowanie syntetycznych przykładów

- atrybuty ilościowe losowanie liczby z zakresu wartości danego przykładu i wylosowanego sąsiada
- atrybuty jakościowe wybranie wartości najczęściej występującej w klasie mniejszościowej

HVDM - Heterogeneous Value **Dierence Metric**

$$D_{HDM}(x,y) = \sqrt{\sum_{i=1}^{N} (dh_i(x_i, y_i))^2} \qquad Nvdm(x_i, y_i) = \sqrt{\sum_{j=1}^{C} \left(\frac{N_j(x_i)}{N(x_i)} - \frac{N_j(y_i)}{N(y_i)}\right)^2}$$

$$Nvdm(x_{i}, y_{i}) = \sqrt{\sum_{j=1}^{C} \left(\frac{N_{j}(x_{i})}{N(x_{i})} - \frac{N_{j}(y_{i})}{N(y_{i})}\right)^{2}}$$

$$dh_{i}(x_{i}, y_{i}) = \begin{cases} 1 & (1) \\ Nvdm(x_{i}, y_{i}) & (2) \\ Ndif(x_{i}, y_{i}) & (3) \end{cases}$$

$$Ndif(x_i, y_i) = \frac{|x_i - y_i|}{4\sigma_i}$$

Problemy

- Wzmacnianie klasy mniejszościowej w sposób losowy
- Nie uwzględnianie przykładów z klasy większościowej
- Niewielka odporność na szum
- Problem obliczania odległości dla atrybutów nominalnych

Undersampling

- technika analizy danych wykorzystywana do regulacji podziału klas zbioru danych
- odrzuca część próbek z klasy większościowej

Metody undersamplingu

- Random undersampling
- Tomek links
- Edited Nearest Neighbourhood
- Nearest Cleaning Rule

Tomek links

Usuwanie przykładów granicznych i szumu z klasy większościowej

Dla każdego przykładu z klasy większościowej i klasy mniejszościowej:

Para (Ei, Ej) nazywana jest "Tomek link", jeżeli nie istnieje przykład El, dla którego jest spełniona zależność:

$$d(Ei, El) < d(Ei, Ej) | lub d(Ej, El) < d(Ei, Ej)$$

Przykłady będące w "Tomek link" są usuwane ze zbioru

Edited nearest neighbourhood

Dla każdego przykładu z klasy większościowej znajdowanych jest trzech najbliższych sąsiadów.

Jeżeli klasy dwóch sąsiadów są różne od klasy przykładu to przykład jest usuwany.

Nearest Cleaning Rule

Dla każdego przykładu ze zbioru znajdowanych jest trzech najbliższych sąsiadów.

Jeżeli przykład należy do klasy większościowej i sąsiedzi klasyfikują go inaczej to jest usuwany.

Jeżeli przykład należy do klasy mniejszościowej i sąsiedzi klasyfikują go inaczej to usuwani są sąsiedzi z klasy większościowej

Problemy

- Usunięcie zbyt wielu przykładów klasy większościowej
- Doprowadzenie do gwałtownego pogorszenia rozpoznawania klas większościowych

Przykład

Przykład:

Mając zbiór 1000 osób w którym 66% to mężczyźni. Wiemy także, że ogólny rozkład populacji to 50% mężczyzn i 50% kobiet.

Oversampling w tym przypadku policzy każdą kobietę 2 razy. Wyprodukuje zbiór zbalansowany mający 1333 elementy i 50% populacji kobiet.

Undersampling losowo usunie część mężczyzn z tego zbioru tworząc zbiór 667 elementów, również z 50% kobiet.