1. (2 valores) Calcule e resolva

$$\sqrt{1+i}$$
 e $e^{-z} = -1$.

respetivamente.

$$\sqrt[4]{2} e^{i(\pi/8 + k\pi)}, \ k = 0, 1,$$
 e $z = -i\pi + 2\pi i \mathbb{Z}.$

2. (2 valores) Verifique se a função

$$f(z) = 1/z,$$

definida em $\mathbb{C}\setminus\{0\}$, é holomorfa.

É holomorfa, pois $\partial f/\partial y = -i/z^2 = i \,\partial f/\partial x$.

3. (2 valores) Determine o disco de convergência da seguinte série de potências, e, se possível, uma expressão compacta para a função holomorfa que define:

$$\sum_{n=0}^{\infty} (-1)^n (z-1)^n$$

$$\sum_{n>0} (-1)^n (z-1)^n = \frac{1}{z} \quad \text{no disco } |z-1| < 1.$$

4. (2 valores) Calcule o segunte integral, ao longo do contorno $\gamma = \{z(t) = 1 + t + it^2 : t \in [0, 1]\},$

$$\int_{\gamma} \frac{1}{z^2} \, dz \, .$$

$$\int_{\gamma} \frac{1}{z^2} \, dz = \frac{3+i}{5} \, .$$

5. (2 valores) Calcule o integral

$$\oint_{|z|=2} \frac{\cos(z)}{z} \, dz \, .$$

$$\oint_{|z|=1} \frac{\cos(z)}{z} \, dz = 2\pi i \,.$$

6. (2 valores) Determine a série de Taylor em torno de p=1, e o seu disco de convergência, da função

$$f(z) = \frac{z}{2-z}$$

$$f(z) = z \frac{1}{1 - (z - 1)} = (1 + (z - 1)) \cdot \sum_{n=0}^{\infty} (z - 1)^n = 1 + 2 \cdot \sum_{n=1}^{\infty} (z - 1)^n. \quad \text{no disco } |z - 1| < 1.$$

7. (2 valores) Determine a série de Laurent no anel
 2<|z|<3 da função

$$f(z) = \frac{1}{(z-2)(z-3)}.$$

$$f(z) = \frac{1}{z-3} - \frac{1}{z-2} = -\frac{1/z}{1-2/z} - \frac{1/3}{1-z/3} = -\frac{1}{z} \left(\sum_{n=0}^{\infty} (2/z)^n \right) - \frac{1}{3} \left(\sum_{n=0}^{\infty} (z/3)^n \right)$$
$$= \dots - \frac{8}{z^4} - \frac{4}{z^3} - \frac{2}{z^2} - \frac{1}{z} - \frac{1}{3} - \frac{z}{9} - \frac{z^2}{27} - \frac{z^3}{81} - \dots$$

8. $(2\ valores)$ Determine e classifique as singularidade isoladas da função

$$f(z) = \frac{e^{1/z}}{z^2 + 2z + 1}.$$

A função f(z) tem uma singularidade essencial em p=0 e um pólo duplo em p=-1.

9. (2 valores) Calcule o integral

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2} \, dx \, .$$

$$\int_{-\infty}^{\infty} \frac{x^2}{(x^2+1)^2} = \frac{\pi}{2} \,.$$

10. (2 valores) Calcule o integral

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta)} \, .$$

$$\int_0^{2\pi} \frac{d\theta}{2 + \cos(\theta)} = \frac{2\pi}{\sqrt{3}}.$$

$^{9/1/2018}_{^{2^{\circ}} \text{ teste}}$ Análise Complexa

1. $(2 \ valores)$ Determine a solução estacionária (ou seja, independente do tempo t) da equação de calor

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

no intervalo $x \in [0,\pi]$, com condições de fronteira u(0,t)=0 e $u(\pi,t)=1$ para todo tempo $t \geq 0$.

$$u(x,t) = x/\pi$$

2. (2 valores) Determine as soluções separáveis da equação de calor

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

no intervalo $x\in [0,\pi]$ com condições de fronteira $u(0,t)=u(\pi,t)=0$ para todo tempo $t\geq 0$. São proporcionais a

$$u_n(x,t) = e^{-n^2 t} \sin(nx)$$
 com $n = 1, 2, 3, ...$

3. (2 valores) Calcule a série de Fourier de senos $\sum_{n=1}^{\infty} b_n \sin(nx)$ da função definida, no intervalo $[0, \pi]$, por

$$\varphi(x) = \left\{ \begin{array}{ll} \lambda & \text{se } |x-\alpha| \leq \varepsilon \\ 0 & \text{se } |x-\alpha| > \varepsilon \end{array} \right.,$$

com $\alpha \in (0, \pi)$ e $\varepsilon > 0$ suficientemente pequeno.

$$\varphi(x) \sim \sum_{n=1}^{\infty} \frac{4\lambda}{\pi n} \sin(n\alpha) \sin(n\varepsilon) \sin(nx)$$
.

4. (2 valores) Determine a solução formal da equação de calor

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

no intervalo $x \in [0,\pi]$ com condições de fronteira nulas, ou seja, $u(0,t) = u(\pi,t) = 0$ para todo tempo $t \ge 0$, e condição inicial $u(x,0) = \varphi(x)$ (definida no exercício 3).

$$u(x,t) \, \sim \, \sum_{n=1}^{\infty} \frac{4\lambda}{\pi n} \, \sin(n\alpha) \, \sin(n\varepsilon) \, e^{-n^2 t} \, \, \sin(nx) \, .$$

 $5.\ (2\ valores)$ Determine as soluções separáveis e limitadas (com valores complexos) da equação de Schrödinger

$$i\frac{\partial\psi}{\partial t} = \frac{\partial^2\psi}{\partial x^2}$$

na reta real $x \in \mathbb{R}$.

São proporcionais a

$$\psi(x,t) = e^{ip^2t}e^{ipx} \qquad \text{com } p \in \mathbb{R}.$$

6. (2 valores) Calcule a transformada de Fourier $F(\xi)=\int_{-\infty}^{\infty}f(x)e^{-2\pi i\xi x}dx$ da função

$$f(x) = \begin{cases} 1 & \text{se } 0 \le x \le 1 \\ 0 & \text{caso contrário} \end{cases}.$$

$$F(\xi) = e^{-i\pi\xi} \frac{\sin(\pi\xi)}{\pi\xi} .$$

7. (2 valores) Calcule o integral

$$||F||_2^2 = \int_{-\infty}^{\infty} |F(\xi)|^2 d\xi$$

onde $F(\xi)$ é a transformada de Fourier calculada no exercício 6.

$$||F||_2^2 = ||f||_2^2 = 1$$
.

8. (2 valores) Calcule a transformada de Fourier inversa $g(x) = \int_{\mathbb{R}} e^{2\pi i \xi x} G(\xi) d\xi$ da gaussiana

$$G(\xi) = e^{-4\pi^2 \xi^2 k}$$

com k > 0.

$$g_k(x) = \frac{1}{\sqrt{4\pi k}} e^{-x^2/4k}$$
.

9. $(2\ valores)$ Use a transformada de Fourier para determinar a solução formal da equação de calor com dissipação

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} - u$$

na reta real $x \in \mathbb{R}$, com condição inicial $u(x,0) = \phi(x)$ no espaço de Schwartz.

Se $u(x,t)=\int_{\mathbb{R}}e^{2\pi i\xi t}U(\xi,t)\,d\xi,$ então

$$\frac{\partial}{\partial t}U(\xi,t) = -(4\pi^2\xi^2 + 1)U(\xi,t)$$

e portanto

$$U(\xi, t) = U(\xi, 0) e^{-(4\pi^2 \xi^2 + 1)t}$$

Mas $e^{-(4\pi^2\xi^2+1)t}$ é a transformada de Fourier de $e^{-t}g_t(x),$ portanto

$$u(x,t) = e^{-t} (\phi * g_t)(x) = e^{-t} \int_{\mathbb{R}} \phi(y) g_t(x-y) dy.$$

10. (2 valores) Calcule o limite pontual $\lim_{t\to\infty}u(x,t)$ da solução do exercício 9 quando a condição inicial é a gaussiana

$$u(x,0) = \frac{1}{\sqrt{4\pi}}e^{-x^2/4}$$
.

$$\lim_{t \to \infty} u(x,t) = \lim_{t \to \infty} e^{-t} g_{t+1}(x) = 0$$