→ MDP에 대한 또 정보를 알 때 , 퇴정의 폴라시를 찾아나가는 방법.

Lecture 3: Planning by Dynamic Programming

) 世星

David Silver

Outline

- 1 Introduction
- Policy Evaluation policy 가 생태졌을 때, 이를 따라가면 어떤 결과를 얻는지 , value function 을 찾는 것 (policy 떨거나)
- 3 Policy Iteration Herafion 한 방법으로 취직의 필자를 킬走깃
- 4 Value Iteration
- 5 Extensions to Dynamic Programming
- 6 Contraction Mapping (X) silver 및 강의 안함

What is Dynamic Programming?

Dynamic sequential or temporal component to the problem Programming optimising a "program", i.e. a policy

- c.f. linear programming
- A method for solving complex problems
- 铅砂罗哈曼 出色
- By breaking them down into subproblems ইটুশাই ব্যা শ্রুখনে.
 - Solve the subproblems 크건 첫을 튄다.

Requirements for Dynamic Programming

Dynamic Programming is a very general solution method for problems which have two properties:

- Optimal substructure 회적의 해결적이 나눠 약 문제에 책이 화매한 한다
 - Principle of optimality applies
 - Optimal solution can be decomposed into subproblems
- Overlapping subproblems

 - Solutions can be cached and reused 다시 사용한수 있다. (다시 안내) 때문)
- Markov decision processes satisfy both properties MD7+9 4 property €
 - Bellman equation gives recursive decomposition (程本では、
 - Value function stores and reuses solutions

Planning by Dynamic Programming

```
> env 小部始岩 毀怨
```

- Dynamic programming assumes full knowledge of the MDP
- It is used for planning in an MDP
- For prediction: vf % %
 - Input: MDP $\langle S, A, P, R, \gamma \rangle$ and policy π

 - Output: value function v_{π}
- Or for control: Policy = 製品
 - Input: MDP $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$
 - Output: optimal value function v*
 - and: optimal policy π_*

Other Applications of Dynamic Programming

Dynamic programming is used to solve many other problems, e.g.

- Scheduling algorithms
- String algorithms (e.g. sequence alignment)
- Graph algorithms (e.g. shortest path algorithms)
- Graphical models (e.g. Viterbi algorithm)
- Bioinformatics (e.g. lattice models)

Policy Evaluation

LIterative Policy Evaluation

Iterative Policy Evaluation State British

- · o) policy 章 咖啡爱 叫 return을 얼件坚体 = policy Evalution = value function · prediction 色剂OTL
 - Problem: evaluate a given policy π
 - Solution: iterative application of Bellman expectation backup
 - $lackbox{v}_1
 ightarrow v_2
 ightarrow ...
 ightarrow v_\pi$ 諸学報

을 반복 실행 나 사람이는 것

- Using synchronous backups,
 - At each iteration k+1
 - For all states $s \in S$

- BE State 을 한 번씩 업데이트
- Update $V_{k+1}(s)$ from $V_k(s')$ 知故 $V_{k(s')}$ 皇 陽州 $V_{k+1}(s)$ 章 閉順
- where s' is a successor state of s
- We will discuss asynchronous backups later
- lacksquare Convergence to v_{π} will be proven at the end of the lecture

Iterative Policy Evaluation (2)

Bellman expectation equation

$$\mathbf{v}_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \mathbf{v}_k(s') \right)$$

 $\mathbf{v}^{k+1} = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}^k$

매 Herafive 마다 위식을 이용하여 또 S를 업데이트

Evaluating a Random Policy in the Small Gridworld

- Undiscounted episodic MDP ($\gamma=1$) $^{\bullet}$ SAPRとき다 まこえのしかし
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy 4씨ッッ에 각 0.5% % %

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation in Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

이 들게에서는 k=3 개시안해는 Optimal policy or 나는다

How to Improve a Policy

- \blacksquare Given a policy π
 - Evaluate the policy π Mure function 是 到此中.

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + ... | S_t = s]$$

• Improve the policy by acting greedily with respect to v_{π} 疑 V元町 대版 が完 ひだいト. $\pi'={\sf greedy}(v_\pi)$

$$\pi' = \operatorname{greedy}(v_{\pi})$$

방금 예계는 너무 간단해서 지'가 바로 지*이 됐다. 보듬는 여러 번 해야 지* 이 5달

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π *

Policy Iteration

Policy evaluation Estimate v_π Iterative policy evaluation Policy improvement Generate $\pi' \geq \pi$ Greedy policy improvement

Policy Iteration

Example: Jack's Car Rental

Jack's Car Rental 视频性 Loc 2개.

- States: Two locations, <mark>maximum of 20 cars</mark> at each

 ন সাধ ব্যক্তিয়াও য়হ, ক্ষাৰ্থন হালা কালা ইনাইণ মান
- Actions: Move up to 5 cars between locations overnight
- Reward: \$10 for each car rented (must be available)
- Transitions: Cars returned and requested randomly
 - Poisson distribution, n returns/requests with prob $\frac{\lambda^n}{n!}e^{-\lambda}$ 1st location: average requests = 3, average returns = 3

 - 2nd location: average requests = 4, average returns = 2

Example: Jack's Car Rental

Policy Iteration in Jack's Car Rental

Policy Improvement

Policy Improvement

다기서 충명하고차 하는 것 : 정말 policy improfessort 대호 커턴 더 나는 policy 가 되는가? 결모 : 환자!

- Consider a deterministic policy, a = π(s) 에 너 state 에 면 캠핑 action을 하는 제 ッ
- We can *improve* the policy by acting greedily এলা অঞ্স গুল্লু প্রসা প্রস্থা

$$\pi'(s) = \operatorname*{argmax} q_\pi(s,a)$$
 কি গোলন জেন জ্লেটি কি গোলন জেন জেন্টি কি গোলন জেন্টি কি গোলন

This improves the value from any state s over one step,

(one step of action value duality
$$q_{\pi}(s, \pi'(s)) \stackrel{\text{gendy printy }}{=} \max_{a \in \mathcal{A}} q_{\pi}(s, a) \stackrel{\text{action value dualities}}{=} q_{\pi}(s, \pi(s)) = V_{\pi}(s)$$

$$q_{\pi}(s, \pi'(s)) \stackrel{\text{gendy printy }}{=} \max_{a \in \mathcal{A}} q_{\pi}(s, a) \stackrel{\text{gendy printy }}{=} q_{\pi}(s, \pi(s)) = V_{\pi}(s)$$

$$q_{\pi}(s, a) \stackrel{\text{gendy printy }}{=} \min_{a \in \mathcal{A}} \sum_{x \in \mathcal{A}} q_{\pi}(s, a) \stackrel{\text{gendy printy }}{=} q_{\pi}(s, a) \stackrel{\text{gendy printy }$$

It therefore improves the value function, $v_{\pi'}(s) \geq v_{\pi}(s)$ $v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s] \quad \text{where } s \in \mathbb{F}_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$

Policy Improvement (2) 예 나이시면 수정 보인트는 아니께서 이다.

If improvements stop,

$$q_\pi(s,\pi'(s)) = \max_{a\in\mathcal{A}} q_\pi(s,a) = q_\pi(s,\pi(s)) = v_\pi(s)$$

■ Then the Bellman optimality equation has been satisfied

논리 : 위세 만환원 아래에 네이지다
$$u_\pi(s) = \max_{a \in \mathcal{A}} q_\pi(s,a)$$

- lacksquare Therefore $v_\pi(s)=v_*(s)$ for all $s\in\mathcal{S}$
- lacksquare so π is an optimal policy

Modified Policy Iteration

■ Does policy evaluation need to converge to vπ? ১৯৭৪ই আন্ম রাণ্ডাদ

OR

- Or should we introduce a stopping condition 學 學和科
 - lacksquare e.g. ϵ -convergence of value function
- For example, in the small gridworld k=3 was sufficient to achieve optimal policy k收納 幾年.
- Why not update policy every iteration? i.e. stop after k = 1
 - This is equivalent to value iteration (next section) ঝহছেন

Generalised Policy Iteration

Policy evaluation Estimate v_{π} Any policy evaluation algorithm

Policy improvement Generate $\pi' \geq \pi$ Any policy improvement algorithm

Principle of Optimality

प्परियुत गमिना देश PASS!

Any optimal policy can be subdivided into two components:

- An optimal first action A_{*}
- $lue{}$ Followed by an optimal policy from successor state S'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s, $v_{\pi}(s) = v_{*}(s)$, if and only if

- For any state s' reachable from s
- lacktriangledown π achieves the optimal value from state s', $v_\pi(s')=v_*(s')$

Deterministic Value Iteration

* 맞나다는 정: policy 가 없다.

- If we know the solution to subproblems $v_*(s')$
- Then solution $v_*(s)$ can be found by one-step lookahead াই বিশ্বাস

$$v_*(s) \leftarrow \max_{s \in \mathcal{A}} \mathcal{R}_s^s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^s v_*(s')$$

- The idea of value iteration is to apply these updates iteratively
- Intuition: start with final rewards and work backwards স্পাংকাশের্ঘস্থ
- Still works with loopy, stochastic MDPs স্থাইপথ্ৰ কৃপনিৰ আণিক্ষ

Example: Shortest Path policy of the!

Value Iteration

- Problem: find optimal policy π
- Solution: iterative application of Bellman optimality backup
- $ightharpoonup v_1
 ightarrow v_2
 ightarrow ...
 ightarrow v_*$
- Using synchronous backups マルト とこと wolnte
 - At each iteration k+1
 - lacksquare For all states $s \in \mathcal{S}$
 - Update $v_{k+1}(s)$ from $v_k(s')$
- Convergence to v_* will be proven later
- Unlike policy iteration, there is no explicit policy

Value Iteration (2)

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k & \leftarrow \mathcal{B}ellman \end{aligned}$$

└Value Iteration in MDPs

Example of Value Iteration in Practice

 $http://www.cs.ubc.ca/{\sim}poole/demos/mdp/vi.html$

Summary of DP Algorithms

計 time on 距 state update

Synchronous Dynamic Programming Algorithms

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative
		Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$ Complexity $O(mn^2)$ per iteration, for m actions and n states
- Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
- Complexity $O(m^2n^2)$ per iteration

Asynchronous Dynamic Programming

- DP methods described so far used synchronous backups
- i.e. all states are backed up in parallel
- Asynchronous DP backs up states individually, in any order இத் ship and the selected state, apply the appropriate backup
- Can significantly reduce computation
- Guaranteed to converge if all states continue to be selected

이게 날았되어야 할

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

- In-place dynamic programming
- Prioritised sweeping
- Real-time dynamic programming

In-Place Dynamic Programming

Synchronous value iteration stores two copies of value function

$$\begin{aligned} &\text{for all s in \mathcal{S}} & \text{finite} & \text{for all s in \mathcal{S}} \\ & \text{vid Prime} \\ & \textit{v}_{\textit{new}}(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{\textit{ss'}}^a \textit{v}_{\textit{old}}(s') \right) \end{aligned}$$

 $V_{old} \leftarrow V_{new}$

In-place value iteration only stores one copy of value function for all s in S

— 四班 短时 题中

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v(s') \right)$$

Prioritised Sweeping

Use magnitude of Bellman error to guide state selection, e.g.

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v(s') \right) - v(s) \right|$$

- Backup the state with the largest remaining Bellman error
- Update Bellman error of affected states after each backup
- Requires knowledge of reverse dynamics (predecessor states)
- Can be implemented efficiently by maintaining a priority queue

Asynchronous Dynamic Programming

Real-Time Dynamic Programming STREALLY agent IT I MAY OF MAY DE MAY DE SE MA

- Idea: only states that are relevant to agent
- Use agent's experience to guide the selection of states
- After each time-step S_t, A_t, R_{t+1}
- Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{S_t s'}^a v(s') \right)$$

Full-Width Backups 어때의 한것

- DP uses full-width backups
- For each backup (sync or async)
 - Every successor state and action is considered
 - Using knowledge of the MDP transitions and reward function
- DP is effective for medium-sized problems (millions of states)
- For large problems DP suffers Bellman's curse of dimensionality きぬい みにいけんしょ
 - Number of states n = |S| grows curse of Timensional Hy exponentially with number of state variables
- Even one backup can be too expensive

Sample Backups

어디진 5락착지 불라도, Backup 이 가능한게 광정!

- In subsequent lectures we will consider sample backups
- Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
- $lue{}$ Instead of reward function ${\cal R}$ and transition dynamics ${\cal P}$
- Advantages: → 智 때 Model-based 双대 Aree는 a 和 叫初结
 - Model-free: no advance knowledge of MDP required
 - Breaks the curse of dimensionality through sampling
 - Cost of backup is constant, independent of n = |S|

silver V atolony theal stiguet!

Approximate Dynamic Programming

- Approximate the value function
- Using a function approximator $\hat{v}(s, \mathbf{w})$
- Apply dynamic programming to $\hat{v}(\cdot, \mathbf{w})$
- \blacksquare e.g. Fitted Value Iteration repeats at each iteration k,
 - \blacksquare Sample states $\tilde{\mathcal{S}}\subseteq\mathcal{S}$
 - For each state $s \in \tilde{\mathcal{S}}$, estimate target value using Bellman optimality equation,

$$ilde{v}_k(s) = \max_{a \in \mathcal{A}} \ \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a \hat{v}(s', \mathbf{w_k}) \right)$$

■ Train next value function $\hat{v}(\cdot, \mathbf{w_{k+1}})$ using targets $\{\langle s, \tilde{v}_k(s) \rangle\}$

Some Technical Questions

- How do we know that value iteration converges to v_* ?
- Or that iterative policy evaluation converges to v_{π} ?
- And therefore that policy iteration converges to v_* ?
- Is the solution unique?
- How fast do these algorithms converge?
- These questions are resolved by contraction mapping theorem

Value Function Space

- lacksquare Consider the vector space ${\mathcal V}$ over value functions
- There are |S| dimensions
- **Each** point in this space fully specifies a value function v(s)
- What does a Bellman backup do to points in this space?
- We will show that it brings value functions *closer*
- And therefore the backups must converge on a unique solution

Value Function ∞-Norm

- We will measure distance between state-value functions u and v by the ∞ -norm
- i.e. the largest difference between state values,

$$||u-v||_{\infty} = \max_{s \in \mathcal{S}} |u(s)-v(s)|$$

Bellman Expectation Backup is a Contraction

■ Define the Bellman expectation backup operator T^{π} ,

$$T^{\pi}(\mathbf{v}) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} \mathbf{v}$$

■ This operator is a γ -contraction, i.e. it makes value functions closer by at least γ ,

$$||T^{\pi}(u) - T^{\pi}(v)||_{\infty} = ||(\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} u) - (\mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v)||_{\infty}$$

$$= ||\gamma \mathcal{P}^{\pi}(u - v)||_{\infty}$$

$$\leq ||\gamma \mathcal{P}^{\pi}||u - v||_{\infty}||_{\infty}$$

$$\leq \gamma ||u - v||_{\infty}$$

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an operator T(v), where T is a γ -contraction,

- T converges to a unique fixed point
- At a linear convergence rate of γ

Convergence of Iter. Policy Evaluation and Policy Iteration

- The Bellman expectation operator T^{π} has a unique fixed point
- v_{π} is a fixed point of T^{π} (by Bellman expectation equation)
- By contraction mapping theorem
- Iterative policy evaluation converges on v_{π}
- Policy iteration converges on *v*_{*}

Bellman Optimality Backup is a Contraction

■ Define the Bellman optimality backup operator T*,

$$T^*(v) = \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a v$$

■ This operator is a γ -contraction, i.e. it makes value functions closer by at least γ (similar to previous proof)

$$||T^*(u) - T^*(v)||_{\infty} \le \gamma ||u - v||_{\infty}$$

Convergence of Value Iteration

- The Bellman optimality operator T* has a unique fixed point
- $lackbox{v}_*$ is a fixed point of \mathcal{T}^* (by Bellman optimality equation)
- By contraction mapping theorem
- Value iteration converges on v_*