Construction and Verification of Unfoldings for Petri Nets with Read Arcs

César Rodríguez joint work with Stefan Schwoon, Paolo Baldan

> Laboratorire Spécification et Vérification (LSV) ENS Cachan & CNRS, France

> MOVEP, Marseille, 6 December 2012

Introduction

The problem

Verification of concurrent systems by means of the unfolding technique, when the system is modelled as a Petri net with read arcs.

- Unfolding up to exponentially more compact
- Unfolding algorithm more involved, but has better efficiency
- Reachability and deadlock-checking

Contextual Petri nets

- Contextual nets are Petri nets + read arcs
- ▶ Natural representation of notion *checking without consuming*

- ▶ A c-net is a tuple $\langle P, T, F, C, m_0 \rangle$
- x for preset, x• for postset
- ▶ $t = \{p \in P \mid (t, p) \in C\}$ for context

Example

$$\underline{\underline{p}} = \{t, t'\}$$

$$\underline{\underline{t}} = \{p\}$$

Contextual net unfoldings

Remarks

- ▶ Labeling $f: \mathcal{U}_N \to N$
- $\triangleright \mathcal{U}_N$ is marking-complete

Contextual unfoldings exploit concurrent read access

В

Asynchronous circuits

Asynchronous circuits

The problem

Given \mathcal{P}_N and t, decide if we can extend \mathcal{P}_N with e where f(e)=t (NP-complete)

The problem

Given \mathcal{P}_N and t, decide if we can extend \mathcal{P}_N with e where f(e)=t (NP-complete)

- ► Enumerate sets of conditions S s.t. $f(S) = {}^{\bullet}t \cup \underline{t}$ (exponential)
- ► If *S* is coverable, return YES; otherwise continue (linear)

The problem

Given \mathcal{P}_N and t, decide if we can extend \mathcal{P}_N with e where f(e)=t (NP-complete)

- ▶ Enumerate sets of conditions S s.t. $f(S) = {}^{\bullet}t \cup \underline{t}$ (exponential)
- ► If S is coverable, return YES; otherwise continue (linear)

How this is done for Petri nets?

Definition

Conditions c, c' are concurrent, $c \parallel c'$, iff some run marks them both

The problem

Given \mathcal{P}_N and t, decide if we can extend \mathcal{P}_N with e where f(e)=t (NP-complete)

- ▶ Enumerate sets of conditions S s.t. $f(S) = {}^{\bullet}t \cup \underline{t}$ (exponential)
- ▶ If S is coverable, return YES; otherwise continue (linear)

How this is done for Petri nets?

Definition

Conditions c,c' are concurrent, $c\parallel c'$, iff some run marks them both

Proposition

Conditions c_1, \ldots, c_n are coverable iff $c_i \parallel c_j$ holds for all $i, j \in \{1, \ldots, n\}$

However, for contextual unfolding...

... the same approach doesn't work:

We have $c_4 \parallel c_5$, and $c_4 \parallel c_6$ and $c_5 \parallel c_6$ but $\{c_4, c_5, c_6\}$ is not coverable.

Histories for events and conditions

Definition

A history of e is a set of events H such that:

- 1. $e \in H$,
- 2. Events in H can be arranged to form a run,
- 3. Any run of the events of H fires e last.

Histories for events and conditions

Definition

A history of e is a set of events H such that:

- 1. $e \in H$,
- 2. Events in H can be arranged to form a run,
- 3. Any run of the events of H fires e last.

Remarks

- Enriched prefix: events and conditions annotated with histories
- ► A pair (c, H) is called enriched condition
- ▶ This is the working data structure

A concurrency relation for contextual nets

Definition

Two enriched conditions $\rho = (c, H)$ and $\rho' = (c', H')$ are concurrent, written $\rho \parallel \rho'$, iff:

$$\neg (H \# H')$$
 and $c, c' \in (H \cup H')^{\bullet}$

A concurrency relation for contextual nets

Definition

Two enriched conditions $\rho=(c,H)$ and $\rho'=(c',H')$ are concurrent, written $\rho\parallel\rho'$, iff:

$$\neg (H \# H')$$
 and $c, c' \in (H \cup H')^{\bullet}$

Proposition

Conditions c_1, \ldots, c_n coverable iff there exist histories H_1, \ldots, H_n verifying

$$(c_i, H_i) \parallel (c_j, H_j)$$
 for all $i, j \in \{1, \dots, n\}$

A concurrency relation for contextual nets

Definition

Two enriched conditions $\rho = (c, H)$ and $\rho' = (c', H')$ are concurrent, written $\rho \parallel \rho'$, iff:

$$\neg (H \# H')$$
 and $c, c' \in (H \cup H')^{\bullet}$

Proposition

Conditions c_1, \ldots, c_n coverable iff there exist histories H_1, \ldots, H_n verifying

$$(c_i, H_i) \parallel (c_j, H_j) \text{ for all } i, j \in \{1, \dots, n\}$$

Proposition

Let $\rho = (c, H)$ and e be the last enriched condition and event appended to the prefix, let $\rho' = (c', H')$ be an arbitrary enriched condition. Then,

$$\rho \parallel \rho' \iff (c' \in e^{\bullet} \land H = H') \lor \left(c' \notin {}^{\bullet}e \land \bigwedge_{i=1}^{n} (\rho_i \parallel \rho') \land \underline{\bullet}\underline{e} \cap H' \subseteq H\right)$$

Experiments with CUNF

	Contextual		Ordinary		Ratios	
Net	Events	t_C	Events	t_P	t_C/t_P	t_C/t_R
bds_1.sync byzagr4_1b ftp_1.sync	1866 8044 50928	0.14 2.90 34.21	12900 14724 83889	0.51 3.40 76.74	0.27 0.85 0.45	0.54 0.55 0.30
key_4.fsa rw_1w3r q_1.sync dpd_7.sync	95335 4754 14490 10722 10457	18.34 6.33 0.45 1.13 0.91	146606 67954 15401 10722 10457	2.21 0.38 1.21 0.88	2.86 1.18 0.93 1.03	0.42 1.47 0.65 0.52 0.92
elevator_4 rw_12.sync rw_2w1r	16856 98361 9241	1.26 3.10 0.40	16856 98361 9241	2.01 3.95 0.30	0.63 0.78 1.33	>0.01 0.41 0.04

- ► Contextual unfolding smaller or equal than ordinary unfolding
- And in general faster than unfolding the plain encoding

Encoding deadlock and reachability into SAT

From a marking-complete unfolding prefix \mathcal{P} , we construct

- lacksquare $\phi_{\mathcal{P}}^{\mathsf{dead}}$, satisfiable iff N contains a deadlock
- $ightharpoonup \phi_{\mathcal{P}}^{\text{reach, M}}$, satisfiable iff places M are coverable in N

Encoding deadlock and reachability into SAT

From a marking-complete unfolding prefix \mathcal{P} , we construct

- lacksquare $\phi_{\mathcal{P}}^{\mathsf{dead}}$, satisfiable iff N contains a deadlock
- $ightharpoonup \phi_{\mathcal{P}}^{\mathsf{reach}, \mathsf{M}}$, satisfiable iff places M are coverable in N

Both formulas characterize configurations and reachable markings:

$$\begin{array}{cccc} \phi^{\mathsf{dead}}_{\mathcal{P}} & := & \phi^{\mathsf{conf}}_{\mathcal{P}} \ \land \ \phi^{\mathsf{disable}}_{\mathcal{P}} \\ \\ \phi^{\mathsf{reach}, \ \mathsf{M}}_{\mathcal{P}} & := & \phi^{\mathsf{conf}}_{\mathcal{P}} \ \land \ \phi^{\mathsf{mark}, \ \mathsf{M}}_{\mathcal{P}} \end{array}$$

where $\phi_{\mathcal{P}}^{\mathsf{conf}}$ is defined as

$$\phi_{\mathcal{P}}^{\mathsf{causal}} \wedge \phi_{\mathcal{P}}^{\mathsf{sym}} \wedge \phi_{\mathcal{P}}^{\mathsf{asym}}$$

▶ Implementation runs twice faster than the best tool we found

Summary

- Contextual unfoldings are up to exponentially more compact
- In our benchmark, verification based on contextual unfoldings performs better than existing methods
- Unfolder and unfolding-based analysis tool available at:

```
www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
```

Current and future work

- Contextual merged processes
- Application in diagnosis
- ▶ We are searching for concurrent systems to evaluate our algorithms !!

Summary

- Contextual unfoldings are up to exponentially more compact
- ► In our benchmark, verification based on contextual unfoldings performs better than existing methods
- Unfolder and unfolding-based analysis tool available at:

```
www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/
```

Current and future work

- Contextual merged processes
- Application in diagnosis
- ▶ We are searching for concurrent systems to evaluate our algorithms !!

Thank you for your attention

References

Paolo Baldan, Andrea Corradini, Barbara König, and Stefan Schwoon.

McMillan's complete prefix for contextual nets.

ToPNoC, 1:199-220, 2008.

César Rodríguez.

Cunf.

http://www.lsv.ens-cachan.fr/~rodriguez/tools/cunf/.

César Rodríguez and Stefan Schwoon.

Verification of Petri Nets with Read Arcs.

In Proc. of CONCUR'12, volume 7454 of LNCS, September 2012.

César Rodríguez, Stefan Schwoon, and Paolo Baldan.

Efficient contextual unfolding.

In Proc. of CONCUR'11, volume 6901 of LNCS, pages 342-357, September 2011.

Net

Unfolding

Net Unfolding

Net Unfolding

$$(c, J) \parallel (c', K)$$

$$(c, J) \parallel (c', K)$$

$$(c, J) \parallel (c', K) \qquad \rightsquigarrow H_1 = J \cup K$$

$$(c, J) \parallel (c', K) \qquad \rightsquigarrow H_1 = J \cup K$$

$$(c, L_i) \parallel (c', K) \qquad \rightsquigarrow H_2 = L_i \cup K$$

$$(c, L_{i_1} \cup \ldots \cup L_{i_m}) \parallel (c', K)$$

Contextual unfolding — inductive definition

For a 1-safe contextual net $N = \langle P, T, F, C, m_0 \rangle$, the full unfolding $\mathcal{U}_N = \langle P', T', F', C', m_0' \rangle$ is the 1-safe acyclic contextual net defined by the next inductive rules:

Mapping $f: \mathcal{U}_N \to N$ labels every event $\langle A, B, t \rangle$ with t and every condition $\langle e, p \rangle$ with p.