Solving Ordinary Differential equations (ODEs): Mest the Runge-kutta family! $\frac{dy}{dt} = f(t,y)$ 9(t) = \(\int \(f(t, 4) \) dt y(t) -> 3(ti) = 9i 9i4 = 9i + S f(t,y) dt - Rectangular rule t_{i+1} $f(t_{i})dt = St f(t_{i+1}k_{i}, y_{i+1}k_{i})$ t_{i} +0(2t3) 15 f(topat, gité) st

Runge-
$$kaTTe 4 = Pk 4$$

 $Simpson's Rule$
 $ti+1$
 $f(t,g)dt = \frac{St}{6} \left[f(ti,gi) \right]$
 ti
 $+ 4f(ti+1k, 9i+1k) +$
 $f(ti+1, 9i+1) \right]$
 $+ O(St^{5})$
 $4i+1 = 9i' + \frac{St}{6} \left[f(ti', 9i) \right]$
 $+ 2f(ti+1k, 9i'+1k)$
 $+ 2f(ti+1k, 9i+1k)$
 $+ f(ti+1, 9i'+1)$
 $4i+1k = 9i' + \frac{St}{2} f(ti', 9i)$
 $5i+1k = 9i' + \frac{St}{2} f(ti', 9i)$
 $5i+1k = 5i' + \frac{St}{2} f(ti', 9i)$
 $5i' + 1k = 5i' + \frac{St}{2} f(ti', 9i)$