Chemical/Nuclear Propulsion

Space System Design, MAE 342, Princeton University Robert Stengel

- Thermal rockets
- Performance parameters
- Propellants and propellant storage

NUCLEAR FUEL BIJECTION DUCT

NUCLEAR FUEL REGION HYDROGEN PROPELLANT REGION

NUCLEAR FUEL REGION HYDROGEN PROPELLANT REGION

Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html

1

Chemical (Thermal) Rockets

- Liquid/Gas Propellant
 - -Monopropellant
 - Catalytic ignition / chemical decomposition
 - · Cold gas

-Bipropellant

- Separate oxidizer and fuel
- Hypergolic (spontaneous) ignition
- External ignition
- Storage
 - Ambient temperature and pressure
 - Cryogenic
 - Pressurized tank
- -Throttlable
- -Start/stop cycling

- Solid Propellant
 - -Mixed oxidizer and fuel
 - -External ignition
 - -Burn to completion
- Hybrid Propellant
 - -Liquid oxidizer, solid fuel
 - -Throttlable
 - -Start/stop cycling

Cold Gas Thruster *(used with inert gas)*

3

Monopropellant Hydrazine Thruster

- Catalytic decomposition produces thrust
- Reliable
- Low performance
- Toxic

Bi-Propellant Rocket Motor

Thrust / Motor Weight ~ 70:1

5

Hypergolic, Storable Liquid-Propellant Thruster

- Reliable
- Corrosive, toxic

Pressure-Fed and Turbopump Engine Cycles

Gas-Generator Rocket Cycle, with Nozzle Cooling Fuel Pump Turbine Oxidizer Pump Exhaust Pre-Bumer Combustion Chamber Heat Exanger

7

Staged Combustion Engine Cycles

German V-2 Rocket Motor, Fuel Injectors, and Turbopump

Q

Combustion Chamber Injectors

H-1 ENGINE		VEHICLE EFFECTIVITY	
		SA-201 THRU SA-205	SA-206 & SUBSEQUENT
	THRUST (SEA LEVEL)	200,000 LB	
	THRUST DURATION SPECIFIC IMPULSE	155 SEC	155 SEC
	(LB-SEC/LB)	260.5 MIN	261.0 MIN
	ENGINE WT DRY		
	(INBD)	1,830 LB	2,100 LB
	(OUTBD)	2,100 LB	2,100 LB
FT	ENGINE WT BURNOUT		
	(INBD)	2,200 LB	2,200 LB
	(OUTBD)	2,200 LB	2,200 LB
	EXIT-TO-THROAT		
	AREA RATIO	8 TO1	8 TO 1
	PROPELLANTS	LOX & RP-1	LOX & RP-I
	MIXTURE RATIO	2.23±2%	Control of Control of the Control of
4.9 FT ———————————————————————————————————	CONTRACTOR: NAA VEHICLE APPLICATI SATURN IB/S-IB	/ROCKETD	(NE

VEHICLE EFFECTIVITY F-1 ENGINE 5A-501 THRU SA-503 THRUST (SEA LEVEL) 1,500,000 LB 1,522,000 LB 150 SEC 165 SEC THRUST DURATION SPECIFIC IMPULSE (LB-SEC/LB) 260 SEC MIN 263 MIN **ENGINE WEIGHT** 18.5 FT DRY 18,416 LB 18,500 LB **ENGINE WEIGHT** 20,096 LB 20,180 LB BURNOUT **EXIT-TO-THROAT** 16TO1 16 TO 1 AREA RATIO LOX & RP 1 LOX & RP 1 **PROPELLANTS** MIXTURE RATIO 2.27±2% 2.27±2% CONTRACTOR: NAA/ROCKETDYNE VEHICLE APPLICATION: SATURN V/S-IC STAGE (FIVE ENGINES) IND B1413D

Origins of the F-1

- Air Force legacy (1955)
 - Design undertaken before vehicle or mission were identified
- Big engine, big problems
 - 16:1 nozzle expansion
 - 6.67 MN thrust
- F-1 turbopumps
 - Oxygen: 24,811 gal/min
 - RP-1: 15,741 gal/min
- F-1 injector
- Combustion instability
 - Significant theoretical work by Luigi Crocco and David Harrje, Princeton

USSR RD-107/8 Rocket Motors

RD-107 4 combustion chambers, 2 verniers RD-108 4 combustion chambers, 4 verniers

Special Shuttle Main Engine (RS-25)

SpaceX Merlin Family

Merlin 1A (ablative nozzle)

Roll control from turbine exhaust

Merlin 1C (vacuum nozzle)

Merlin 1D (throttlable)

Blue Origin BE-4

- LOX/Liquefied natural gas
- United Launch
 Alliance has chosen
 as motor for the
 Vulcan launch
 vehicle
- Thrust = 2.5 MN (550,000 lb)

19

RD-181 and RD-191

RD-181

to be used on Orbital-ATK Antares

RD-191

to be used on NPO Energomash Angara

Solid-Fuel Rocket Motor

Solid-Fuel Rocket Motor

Thrust is proportional to burning area
Rocket grain patterns affect thrust profile
Propellant chamber must sustain high pressure and temperature
Environmentally unfriendly exhaust gas

Hybrid-Fuel Rocket Motor

- SpaceShipOne motor
 - Nitrous oxide
 - Hydroxy-terminated polybutadiene (HTPB)
- Issues
 - Hard start
 - Blow back
 - Complete mixing of oxidizer and fuel toward completion of burn

Rocket Thrust

Thrust =
$$\dot{m}_{propellant}V_{exhaust} + A_{exit}(p_{exit} - p_{ambient}) \equiv \dot{m} c_{eff}$$

 $c_{eff} = \frac{\text{Thrust}}{\dot{m}} = \text{Effective exhaust velocity}$ $\dot{m} \equiv \text{Mass flow rate of on-board propellant}$

25

Specific Impulse

$$I_{sp} = \frac{\text{Thrust}}{\dot{m} g_o} = \frac{c_{eff}}{g_o}, \quad \text{Units} = \frac{m/s}{m/s^2} = \text{seconds}$$

 $g_o \equiv$ Gravitational acceleration at earth's surface

- g_o is a normalizing factor for the definition
- · Chemical rocket specific impulse (vacuum)
 - Solid propellants: < 295 s
 - Liquid propellants: < 510 s
 - Space Shuttle Specific Impulses
 - -Solid boosters: 242-269 s
 - -Main engines: 455 s
 - -OMS: 313 s
 - -RCS: 260-280 s

Specific Impulse

Specific impulse is a product of characteristic velocity, c^* , and rocket thrust coefficient, C_F

$$I_{sp} = \frac{\text{Thrust}}{\dot{m} g_o} = \frac{c_{eff}}{g_o}$$

$$= C_F c */g_o$$

$$= \frac{V_{exhaust}}{g_o} \quad \text{when } C_F = 1, p_e = p_{ambient}$$

- Characteristic velocity is related to
 - combustion chamber performance
 - propellant characteristics
- Thrust coefficient is related to
 - nozzle shape
 - exit/ambient pressure differential

27

The Rocket Equation

Ideal velocity increment of a rocket stage, ΔV_I (gravity and aerodynamic effects neglected)

$$\frac{dV}{dt} = \frac{\text{Thrust}}{m} = \frac{\dot{m} c_{eff}}{m} = -\frac{\frac{dm}{dt} I_{sp} g_o}{m}$$

$$\int_{V_{i}}^{V_{f}} dV = -I_{sp} g_{o} \int_{m_{i}}^{m_{f}} dm / m = -I_{sp} g_{o} \ln m \Big|_{m_{i}}^{m_{f}}$$

$$(V_f - V_i) \equiv \Delta V_I = I_{sp} g_o \ln \left(\frac{m_i}{m_f}\right) \equiv I_{sp} g_o \ln \mu$$

Volumetric Specific Impulse

Specific impulse

$$\begin{split} \Delta V_{I} &= I_{sp} g_{o} \ln \mu = I_{sp} g_{o} \ln \left(\frac{m_{final} + m_{propellant}}{m_{final}} \right) = I_{sp} g_{o} \ln \left(1 + \frac{m_{propellant}}{m_{final}} \right) \\ &= I_{sp} g_{o} \ln \left(1 + \frac{Density_{propellant} \bullet Volume_{propellant}}{m_{final}} \right) \\ &\approx g_{o} I_{sp} \left(\frac{\rho_{propellant} \bullet Vol_{propellant}}{m_{final}} \right) = g_{o} \left(I_{sp} \rho_{propellant} \right) \frac{Vol_{propellant}}{m_{final}} \end{split}$$

Volumetric specific impulse

$$I_{sp_{vol}} \triangleq VI_{sp} = I_{sp}\rho_{propellant}$$

29

Volumetric Specific Impulse

 For fixed volume and final mass, increasing volumetric specific impulse increases ideal velocity increment

	Density, g/ cc	Isp, s, SL	VIsp, s (g/cc), SL	lsp, s, vac	VIsp, s (g/cc), vac
LOX/Kerosene	1.3	265	345	304	395
LOX/LH2 (Saturn V)	0.28	360	101	424	119
LOX/LH2 (Shuttle)	0.28	390	109	455	127
Shuttle Solid Booster	1.35	242	327	262	354

- ·Saturn V Specific Impulses, vacuum (sea level)
 - -1st Stage, 5 F-1 LOX-Kerosene Engines: 304 s (265 s)
 - -2nd Stage, 5 J-2 LOX-LH2 Engines: 424 s (~360 s)
 - -3rd Stage, 1 J-2 LOX-LH2 Engine: 424 s (~360 s)

Typical Values of Chemical Rocket Specific Impulse

- Chamber pressure = 7 MPa (low by modern standards)
- Expansion to exit pressure = 0.1 MPa

SSME	

Liquid-Fuel Rockets			
			VIsp, kg-
Monopropellant		lsp, s	s/m^3 x 10^3
Hydrogen Peroxide		165	238
Hydrazine		199	201
Nitromethane		255	290
Bipropellant			
			VIsp, kg-
Fuel	Oxidizer	lsp, s	s/m^3 x 10^3
Kerosene	Oxygen	301	307
	Flourine	320	394
	Red Fuming		
	Nitric Acid	268	369
Hydrogen	Oxygen	390	109
	Flourine	410	189
	Nitrogen		
UDMH	Tetroxide	286	339

Solid-Propella	ant Rockets	
		VIsp, kg-
Double-Base	lsp, s	s/m^3 x 10^3
AFU	196	297
ATN	235	376
JPN	250	405
Composite		
JPL 540A	231	383
TRX-H609	245	431
PBAN (SSV)	260	461

Hybrid-Fuel Rocket			
Fuel	Oxidizer	lsp, s	
HTPB	N2O	250	

31

Exhaust Velocity vs. Thrust Acceleration

Rocket Characteristic Velocity, c*

$$c^* = \frac{1}{\Gamma} \sqrt{\frac{R_o T_c}{M}}, \text{ where } \Gamma = \sqrt{\gamma} \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma + 1}{2(\gamma - 1)}}$$

 R_o = universal gas constant = $8.3 \times 10^3 \,\mathrm{kg} \,\mathrm{m}^2/\mathrm{s}^2 \,\mathrm{^{\circ}K}$ T_c = chamber temperature, $\mathrm{^{\circ}K}$ M = exhaust gas mean molecular weight γ = ratio of specific heats ($\sim 1.2 - 1.4$)

33

Rocket Characteristic Velocity, c*

$$c^* = \frac{p_c A_t}{\dot{m}} = \text{exhaust velocity if } C_F = 1$$

Rocket Thrust Coefficient, C_F

$$C_{F} = \frac{\text{Thrust}}{p_{c} A_{t}} = \lambda \Gamma \sqrt{\left(\frac{2\gamma}{\gamma - 1}\right) \left[1 - \left(\frac{p_{e}}{p_{c}}\right)^{(\gamma - 1)/\gamma}\right]} + \left(\frac{p_{e} - p_{ambient}}{p_{c}}\right) \frac{A_{e}}{A_{t}}$$

Thrust =
$$\lambda \dot{m} v_e + A_e (p_e - p_{ambient})$$

 λ : reduction ratio (function of nozzle shape)

 C_F typically 0.5 - 2

35

Thrust Coefficient, C_F , vs. Nozzle Expansion Ratio

Mixture Ratio, r

$$r = \frac{\dot{m}_{oxidizer}}{\dot{m}_{fuel}}; \quad \dot{m}_{fuel} = \frac{\dot{m}_{total}}{1+r}; \quad \text{"leaner"} < r < \text{"richer"}$$

- Stoichiometric mixture: complete chemical reaction of propellants
- Specific impulse <u>maximized</u> with lean mixture ratio, *r* (i.e., below stoichiometric maximum)

Effect of Pressure Ratio on Mass Flow

In choked flow, mass flow rate is maximized

$$\dot{m} = \frac{\Gamma p_c A_t}{\sqrt{R_o T_c / M}}$$

Choked flow occurs when

$$\frac{p_e}{p_c} \le \left(\frac{2}{\gamma + 1}\right)^{\gamma/\gamma - 1} \approx 0.53$$

Combustion Instability

Shock Diamonds

When $p_e \neq p_a$, exhaust flow is over- or underexpanded Effective exhaust velocity < maximum value

Wiking

https://www.youtube.com/watch?v=qiMSko4HBe8

41

Rocket Nozzles

Rocket Nozzles

- Expansion ratio, A_e/A_t,
 chosen to match exhaust pressure to average ambient pressure
 - Ariane rockets: Viking V for sea level, Viking IV for high altitude
- Rocket nozzle types
 - DeLaval nozzle
 - Isentropic expansion nozzle
 - Spike/plug nozzles
 - Expansion-deflection nozzle

43

Rocket Nozzles

Linear Spike/Plug Nozzles

45

Throttling, Start/Stop Cycling

Reaction Control Thrusters

- Direct control of angular rate
- Unloading momentum wheels or control-moment gyros
- Reaction control thrusters are typically on-off devices using
 - Cold gas
 - Hypergolic propellants
 - Catalytic propellant
 - lon/plasma rockets

- Specific impulse
- Propellant mass
- Expendability
- Thrusters commanded in pairs to cancel velocity change

Apollo Lunar Module RCS

Space Shuttle RCS

RCS Thruster

47

Divert and Attitude Control Thrusters

https://www.youtube.com/watch?v=W8efpDBvTDE

https://www.youtube.com/watch?v=71qgl6bddM8

https://www.youtube.com/watch?v=KBMU6I6GsdM

https://www.youtube.com/watch?v=JURQYH669_g

Nuclear Propulsion

$$c^* = \frac{1}{\Gamma} \sqrt{\frac{R_o T_c}{M}}$$

- Nuclear reaction produces thermal energy to heat inert working fluid
 - Solid core
 - Liquid core
 - Gaseous core
- High propellant temperature leads to high specific impulse
- Working fluid chosen for low molecular weight and storability

49

Solid-Core Nuclear Rocket

- Operating temperature limited by
 - melting point of reactor materials
 - cracking of core coating
 - matching coefficients of expansion
- Possible propellants: hydrogen, helium, liquid oxygen, water, ammonia
- $I_{sp} = 850 1,000 \text{ sec}$
- T/W~7:1

Project Rover, 1955-1972

Liquid/Particle-Core Nuclear Rocket

- · Nuclear fuel mixed with working fluid
- In principle, could operate above melting point of nuclear fuel
- $I_{sp} \sim 1,300 1,500 \text{ sec}$
- Conceptual
- Massive radioactive waste

53

Open-Cycle Gas Core Nuclear Rocket

- Toroidal circulation of working fluid confines nuclear fuel to center
- Fuel does not touch the wall
- Conceptual
- Massive radioactive waste
- $I_{sp} \sim 3,000 5,000 \text{ sec}$

Closed-Cycle Gas Core Nuclear Rocket

- "Nuclear light bulb"
- Nuclear fuel contained in quartz container
- $I_{sp} \sim 1,500 2,000 \text{ sec}$
- Conceptual

55

Nuclear-Pulse ("Explosion") Rocket - Project Orion

"Physics packages" ejected behind the pusher plate

Next Time: Launch Vehicles

57

SUPPLEMENTAL MATERIAL

Propellant Tanks

Propellant must be kept near the exit duct without bubbles during thrusting

59

Ion/Plasma Thrusters

Engine	Propellant	Required power	Thrust	
		kW	S	mN
NSTAR	Xenon	2.3	3,300 to 1,700	92 max
NEXT[Xenon	6.9	4,300	236 max
HiPEP	Xenon	20-50	6,000-9,000	460-670
Hall effect	Xenon	25	3,250	950
FEEP	Liquid Cesium	6×10-5-0.06	6,000-10,000	0.001-1
VASIMR	Argon	200	3,000-12,000	~5,000
DS4G	Xenon	250	19,300	2,500 max

Variable Specific Impulse Magnetoplasma Rocket (VASIMR)

 Propellant
 Required power impulse kW s mN

 Argon
 200
 3,000-12,000
 ~5,000

61

DAWN Spacecraft

