Giảng viên tổng hợp đề: Ngày ra đề 10/05/2022	Người phê duyệt:	Ngày duyệt để:
(Chữ ký và Họ tên)	(Chữ ký, Chức vụ và Họ tên)	
	Trưởng khoa/ hộ môn:	

(phần phía trên cần che đi khi in sao đề thi)

RK	
TPHCM	Ī
TRƯỜNG ĐH BÁCH KHOA – ĐHQG-HCM KHOA KHOA HỌC ỨNG DỤNG	1

		Học k	Học kỳ/năm học		2021-2022	
		Ngày	thi	13/05/2022		
Môn học	XÁC SUẤT THỐNG KÊ					
Mã môn học	MT2001					
Thời lượng	100 phút	Mã đề	DT			

Ghi - Được sử dụng 02 tờ tài liệu A4 do sinh viên tự soạn (không sử dụng tài liệu được viết tay). chú:

- Được sử dụng các bảng tra số và máy tính bỏ túi.

- Các số gần đúng lấy tròn 4 chữ số phần thập phân.

- Nộp lại đề thi cùng với bài làm

Câu hỏi 1 (L.O.2.1): (2 điểm)

Giả thiết rằng số lỗi X trên mỗi trang sách của một xưởng in là biến ngẫu nhiên tuân theo phân phối Poisson. Có 70% các trang sách không chứa một lỗi nào, và 30% các trang sách chứa ít nhất một lỗi.

- a) Tìm số lỗi trung bình trên một trang sách của xưởng in đó.
- b) Tìm tỉ lê trang sách của xưởng in có từ 3 lỗi trở lên.
- c) Giả sử trong 1 quý, xưởng in đã hoàn thành 12000 trang sách in. Tìm xác suất của biến cố có ít nhất 9000 trang trong đó không có lỗi nào.

Câu hỏi 2 (L.O.2.1): (4 điểm)

Có một mẫu áo sơ-mi được gia công tại phân xưởng A và phân xưởng B của một nhà máy. Thời gian mỗi cái áo được hoàn thành ở từng phân xưởng là biến ngẫu nhiên tuân theo phân phối chuẩn.

Ở phân xưởng A, người ta chọn ngẫu nhiên 6 cái áo và ghi nhận được thời gian hoàn thành của mỗi áo như sau:

23 22 21 (đơn vị: phút) 19 21

- a) Hãy tìm khoảng ước lương cho thời gian gia công trung bình một cái áo ở phân xưởng A, với đô tin cây 95%.
- b) Ở phân xưởng B, người ta lấy ngẫu nhiên 10 áo và tính được thời gian hoàn thành trung bình của chúng là 21.8 (phút) và phương sai mẫu 2.4 (phút²). Với mức ý nghĩa 5%, có thể xem như phân xưởng A gia công mẫu áo này nhanh hơn so với phân xưởng B hay không?
- c) Tỉ lệ sản phẩm có lỗi ở nhà máy thông thường là 8%. Sau khi cải tiến kỹ thuật, người ta khảo sát ngẫu nhiên 90 sản phẩm thì thấy chỉ có 4 sản phẩm lỗi. Với mức ý nghĩa 5%, có thể nói rằng việc cải tiến là hiệu quả hay không?

Câu hỏi 3 (L.O.2.1): (2 điểm)

Khi đo một số cây thông ba lá trong rừng thông ở Lâm đồng, người ta ghi nhận lại số liệu trong bảng dưới đây. Gọi X(cm) là đường kính thân cây và Y(m) là chiều cao tương ứng.

X(cm)	6.5	8.5	10.5	12	13.5	15.5	17
Y(m)	3.5	7.5	8.5	9	10.5	11	11.5

Tìm hệ số tương quan mẫu, phương trình hồi quy tuyến tính mẫu Y theo X, và khoảng tin cậy 95% cho hệ số góc của đường hồi quy tuyến tính.

Câu hỏi 4) (L.O.2.1): (2 điểm)

Khi thống kê số ngày nghỉ phép quá quy định trong một năm (X) của 150 công nhân ở nhà máy A., người ta ghi nhận được số liệu trong bảng dưới đây. Với mức ý nghĩa 1%, hãy kiểm tra xem số liệu mẫu có phù hợp với phân phối Poisson hay không?

X	0	1	2	3	4
Số công nhân tương ứng	110	20	11	6	3

Câu hỏi 1 (L.O.2.1): (2 điểm)

a)
$$P(X=0) = e^{-\lambda} = 0.7 \Rightarrow \lambda = -\ln(0.7) = 0.3567$$

b)
$$1 - P(0 \le X \le 2) = 1 - \sum_{x=0}^{2} \frac{e^{\ln(0.7)} \times (-\ln 0.7)^{x}}{X!} = 0.0058$$

c) Cách 1:
$$1 - \Phi \left(\frac{9000 - 0.5 - 8400}{\sqrt{2520}} \right) \approx 0$$

$$\Phi\left(\frac{12000+0.5-8400}{\sqrt{2520}}\right) - \Phi\left(\frac{9000-0.5-8400}{\sqrt{2520}}\right) \approx 0$$
 Cách 2:

Câu hỏi 2 (L.O.2.1): (4 điểm)

a) Hãy tìm khoảng ước lượng cho thời gian gia công trung bình một cái áo ở phân xưởng A, với độ tin cậy 95%.

$$n = 6$$

$$x_tb = 21.3333$$
 $s = 1.3663$ $s^2 = 1.8667$

$$s = 1.3663$$

$$s^2 = 1.8667$$

$$t_{0.025}(5) = 2.571$$

$$\varepsilon = ($$
ghi công thức $) = 1.4340$

KUL cần tìm: (ghi công thức) = (19.8993; 22.7674)

b)
$$n_1 = 6$$

b)
$$\underline{n}_1 = 6$$
 $x_1_tb = 21.3333$ $s_1^2 = 1.8667$ $n_2 = 10$ $x_2_tb = 21.8$ $s_2^2 = 2.4$

$$s_1^2 = 1.8667$$

$$n_2 = 10$$

$$x_2_{tb} = 21.8$$

$$s_2^2 = 2.4$$

Đây là bài toán kđ so sánh trung bình 2 mẫu độc lập, các tổng thể tuân theo phân phối chuẩn, phương sai tổng thể chưa biết nhưng được giả định bằng nhau

$$(\text{do } \text{s}_1^2/\text{s}_2^2 = 0.7778 \in [0.5; 2])$$

Phương sai mẫu gộp là $s_p^2 \equiv s^2 = ...$ (ghi ct).. = 2.2095

Goi µ₁ là thời gian trung bình để gia công 1 chiếc áo ở phân xưởng 1.

μ₂ là thời gian trung bình để gia công 1 chiếc áo ở phân xưởng 2.

$$\mu_1 = \mu_2$$

Gt không
$$H_0$$
: $\mu_1 = \mu_2$ (hay $\mu_1 \ge \mu_2$; hay $\mu_1 - \mu_2 \ge 0$)

Gt đối H₁:

$$\mu_1 < \mu_2$$

Miền bác bỏ RR =
$$(-\infty; -t_{0.05}(14)) = (-\infty; -1.761)$$

Tính giá trị thống kê kiểm định: $t_{qs} = \frac{x_1 - x_2}{\sqrt{\frac{s_p^2 + s_p^2}{n_s}}} = -1.2809$

Do $t_{qs} \notin RR$ nên chưa đủ cơ sở để bác bỏ H_0

Gọi $\,$ p là tỉ lệ sản phẩm có lỗi sau khi cải tiến. $n=90;\; f=4/90$ c)

Gt không H₀:

$$p = 8\%$$

(hay
$$p \ge 8\%$$
)

Gt đối H₁:

Miền bác bỏ RR =
$$(-\infty; -z_{0.05}) = (-\infty; -1.645)$$

Tính giá trị thống kê kiểm định: $z_{qs} = \frac{f - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} = -1.2433$

Do $z_{qs} \not\in RR$ nên chưa đủ cơ sở để bác bỏ $H_0...$

Câu hỏi 3 (L.O.2.1): (2 điểm)

• Các giá trị đặc trưng mẫu (Các giá trị nào không dùng để tính đáp số thì không cần ghi)

$$n=7$$
 $\bar{x} = 11.9286$ $\sigma_x = 3.4685$ $s_x = 3.7464$

$$\sigma_{\rm x} = 3.4685$$

$$s_x = 3.7464$$

$$\overline{y} = 8.7857$$

$$\sigma_{\rm v} = 2.5334$$

$$s_v = 2.7364$$

$$\overline{y} = 8.7857$$
 $\sigma_y = 2.5334$ $s_y = 2.7364$ $\Sigma xy = 791.5...$

 $S_{xx} = (ghi ct tính đơn giản) = 84.2123$

$$S_{xx} = \sum_{i=1}^{7} (x_i - \bar{x})^2 = 84.2123$$

$$S_{xx} = \sum_{i=1}^{7} (x_i - \bar{x})^2 = 84.2123$$
 hoặc $S_{xx} = (n-1)* s_x^2 = 84.2123$)

 $S_{xy} = (ghi \text{ ct tính đơn giản hoặc ghi các biểu thức số}) = 57.8929$

$$S_{yy} = (ghi \ ct \ tinh) = 44.9286$$

$$SSR = (ghi ct tinh) = 39.7983$$

$$SSE = (ghi ct tính) = 5.1303$$

Đáp số: $r_{xy} = (ghi ct tinh) = 0.9412$.

a= (ghi ct tính)=
$$0.5854$$
 (còn kí hiệu là β_0)
b= (ghi ct tính)= 0.6874 (còn kí hiệu là β_1)

$$\Rightarrow$$
 pthqtt: $y^{*} = 0.5854 + 0.6874x$

Khoảng ước lượng 95% cho hệ số góc (ghi ct tính đơn giản và các giá trị trung gian)...

Câu hỏi 4) (L.O.2.1): (2 điểm)

Số ngày nghỉ phép quá quy định tuân theo phân phối Poisson $P(\lambda)$ Ho:

Số ngày nghỉ phép quá quy định không tuân theo phân phối Poisson $P(\lambda)$ H1:

Mbb RR

$$= (11.34 ; +\infty)$$

Xi	Oi	pi	Ei = n.pi	(Oi-Ei)^2
	(ni)	(ghi công thức)		Ei
0	110	0.6188	92.818	3.1808
1	20	0.2970	44.552	13.5306
2	11	0.0713	10.693	0.0088
3	6	0.0114	1.711	10.7534
4	3	0.0014	0.205	38.0441

$$Xqs = \Sigma... = 65.5178$$

Do $\mathsf{Xqs} \in \mathsf{RR} \Rightarrow$ Bác bỏ giả thiết Ho.