Neuromorphic Computing with Novel Devices

Lecturer: Kezhou Yang

Microelectronics Trust

2024.11

Outline

- Motivation: The problems we met
- What neuromorphic computing is
 - Concept and history
- Why we need neuromorphic computing
 - The properties of neuromorphic computing
- How we do neuromorphic computing
 - Algorithm: Spiking neural networks (SNNs)
 - Hardware: Novel devices

The problems we met with current computing paradigms

MOTIVATIONS OF THE FIELD

Deep Learning Outperform Human Beings...

- AlphaGo versus Lee Sedol (李世乭)
 - Go: Complex
 - AlphaGo: Neural network + Monte Carlo tree search
 - Calculate several future moves
- AI works better than human in many tasks

At What Cost?

- AlphaGo
 - 1920 CPUs and 280 GPUs
 - Power consumption: $\sim 10^6 \text{W}$ (5 seconds for each move)
- Human
 - Human brain power consumption: ~20W
- Not feasible for power-constraint applications

Energy Distribution during Computing

 Significant energy is consumed in memory access and leakage

Von Neumann Bottleneck: Hardware-Software

Mismatch

- Von Neumann computer
 - Separate CPU and memory
- Energy consumption
 - Data transportation: ∼nJ
 - CPU computing: ~pJ
- Latency
 - Limited data bus throughput
 - CPU processing speed faster than memory
- Von Neumann bottleneck: Mismatch in architecture between algorithm and hardware

Moore's Law is Dying

- Moore's Law: Doubling of number of transistors on chip every 18 months.
- The problem
 - Physical limitation
 - Process size: Short channel effect
 - Cost
- We need to compute in a smart way: Neuromorphic computing

What is neuromorphic computing

NEUROMORPHIC COMPUTING: A NEW COMPUTING PARADIGM

Neuromorphic Computing: Algorithm model

- Algorithm: Spiking neural networks (SNNs)
- Three generation of neural networks
 - 1st Gen: Perceptron network (Binary output)
 - Hopfield network
 - 2nd Gen: Analog neural network (Continuous activation)
 - Sigmoid, ReLU, ...
 - Backpropagation
 - 3rd Gen: Spiking Neural work (Spikes)
 - Event-driven activation
 - Bio-plausible

Neuromorphic Computing: Hardware

- Graphical Processing Unit (GPU)
 - Many parallel simple computing cores: Parallel computing
 - Memory bandwidth
- Tensor Processing Unit (TPU)
 - High volume low precision calculation
 - More input/output operations per unit Joule

Neuromorphic Chip

- Near-memory computing
- Asynchronous address event representation (AER)
- Network-on-chip (NOC)

Nguyen, Duy-Anh, Xuan-Tu Tran, and Francesca Iacopi. 2021. "A Review of Algorithms and Hardware Implementations for Spiking Neural Networks" Journal of Low Power Electronics and Applications 11, no. 2: 23. https://doi.org/10.3390/jlpea11020023

Neuromorphic Chip Project

- TrueNorth (2014, IBM)
 - Digital
 - 4096 Neurosynaptic cores
 - 256 firing neurons, 256×265 synapses in each core
 - Inference for CNNs and RNNs
 - Demonstration: Gesture recognition
 - 10 gestures, 96.5% accuracy, 0.18W power consumption
- Neurogrid
 - Mixed digital-analog
 - 65536 neurons in 180 nm CMOS technology
 - Real-time biological brain simulation

Neuromorphic Chip Project

- Loihi (2018, Intel)
 - On-chip learning
 - 128 neurosynaptic cores, 3 Pentium processors
 - 1024 spiking neurons each core
 - Synaptic weight
 - 1 to 9 bits
 - Modifiable: Various learning rules (Supervised, non-supervised, reinforcing)
 - Applications
 - Recognition and segmentation of images; Processing data sequences; Proportional integral differential controller; Finding the shortest paths in a graph, ...
- Loihi 2 (2021, Intel)
 - 3D multi-chip scaling
 - Analog spikes: 32-bit precision

Neuromorphic Chip Project

- Tianjic 天机(2019, Tsinghua 清华)
 - Hybrid chip for both ANNs and SNNs
 - 3% additional area consumption (Circuit reuse)
 - 156 cores for 40,000 neurons and 10,000,000 synapses
 - Faster and energy efficient than GPU for SNN and ANN application
 - Demonstration application: Bicycle motion control
 - Many different networks in different type with one chip

Non-Volatile Devices: In-Memory Computing

- Non-volatile devices for synapses: Similarity in mechanisms
 - Synaptic features
 - Plasticity: Weight modulation based on learning rule
 - Efficacy: Output generation based on input spikes
 - Synaptic weight: Device resistance
- Device technologies
 - Resistive RAM (RRAM); Phase-change memory (PCM); Magnetic RAM (MRAM),...
- Crossbar array: Dot-product calculation
 - Kirchhoff's law: $I_j = \sum_i V_i \cdot G_{i,j}$
- Neuron applications

History and Development of Neuromorphic Hardware

Why we need neuromorphic computing

PROPERTIES OF NEUROMORPHIC COMPUTING

- Connectionism: The capability of learning by linking a large number of simple units
 - Learning: Finding the appropriate weight of synapses
- Parallelism
 - Massive number of 'weak' units work parallelly
- Asynchrony
 - Synchrony increases overhead, limiting the efficiency
 - Clock tree consumes 20~45% of power

- Spiking nature of information processing
 - Spiking neural network model
 - Spike times and delay convey information
 - Advantages
 - Data can be transferred asynchronously
 - Good for dynamic data processing
 - Non-linearity
 - Energy efficient
 - Challenge: Training and topology
- On-device learning

- Local learning: Update weight without global information
 - Training in non-spiking neural networks: Backpropagation
 - Weight transport problem
 - Update locking problem
 - Local learning method: Synaptic weight updated by connected neuron activity
 - Spike timing dependent plasticity (STDP)
- Sparsity: Very few neurons activate simultaneously
 - Spikes generated only due to dramatic changes in signal: Temporal sparsity
 - Event-based cameras
 - Spike generated only when membrane potential exceeds threshold: Spatial sparsity
 - ReLU in non-spiking networks
 - Sparsity in connection: Structural sparsity

- Analog computing
 - Less computational elements
 - Purposes to be analog
 - Neuron dynamic
 - Faster and more energy efficient with analog system
 - One-one correspondence
 - Disadvantage: Difficult to configure and debug
 - Synaptic operations
 - Ohm's and Kirchhoff's law
- In-memory computing
 - Neuron: Memory + computation
 - Free of von Neumann bottleneck
 - Hybrid approach: Near-memory computing

How to do neuromorphic computing

MORE DETAILS IN ALGORITHMS AND HARDWARE

Neuron Models

- Key problems
 - How spikes are generated
 - How information is encoded
- Neuron model: Spike generation
 - Leaky Integrate and Fire (LIF) model
 - Can be derived from Hodgin-Huxley model
 - Neuron state: Membrane potential
 - Lifted by input spikes
 - Leak when no input arrives
 - Spike generation: Membrane potential exceeds threshold
 - Stochastic neuron model
 - Probability of firing follows a non-linear function

Input Encoding Framework

- Encoding framework: How analog values are encoded in spike trains
 - Quantization error
- Rate encoding: Mean firing rate
 - Poisson encoding
 - Discretization error determined by number of timesteps

Timesteps

High latency for high accuracy

Input Encoding Framework

Temporal-Switch-Coding

- Temporal encoding: Time instances for encoding
 - Logarithmic Temporal Coding
 - Example: $5 = 0000101_2$
 - Rank Order Coding: Firing order of neurons
 - Time-to-First-Spike: Each neuron fires once
 - Temporal Switch Coding: Time difference between spikes
 - Good energy-efficiency
 - Challenge: Lack of training algorithm
- Encoding layer: Train the encoding process
 - Encoding function: Neural network to convert analog values to spike trains

Input Encoding Framework

- Standard cameras
 - No internal time information
 - Low, fixed sampling rate: Motion blur
 - Bad for low light, high dynamic range environment
- Event-based sensors
 - Log-intensity changes at each pixel
 - Fires a spike when change exceeds threshold
 - Idle when no change detected
 - High temporal resolution, high dynamic change, low power consumption
 - Real-time human-machine interface systems, robotics, wearable electronics, vision-based edge-devices,...
 - Object detection and tracking, gesture recognition, ego motion estimation,...

Unsupervised Learning of SNNs: STDP

- Spike Timing Dependent Plasticity (STDP)
 - Weight update according to difference in spike timing of the connected neurons
 - Each synapse updated independently
 - Stability problem
- Limitation
 - Not working for high-level features: Shallow networks

Supervised Learning: ANN-to-SNN Conversion

- ANN-to-SNN conversion procedure
 - Train ANN with ReLU neurons
 - Restrictions: No bias, average pooling, no batch normalization
 - Iso-architecture SNN initialized with the trained weight
 - ReLU can be mapped to IF neuron with small loss
 - Threshold balancing
- Major draw back: Time information is not utilized.

Hardware: Phase Change Memory

- Phase-Change Memory (PCM)
 - Structure: Metal electrodes/chalcogenide/resistive electrode/metal electrode
 - State
 - Amorphous: High resistance
 - Crystalline: Low resistance
- Integrate-and-Fire neuron function
 - Set: Apply medium voltage pulse
 - Reset: Apply high voltage short pulse
- Advantage: No need of erasing

Hardware: Phase Change Memory

- Synaptic function
 - Intermediate states: Proportion of amorphous and crystalline region
 - STDP: Pre- and post-synaptic pulses applied at top and bottom electrodes
- Challenge
 - Reliability
 - Resistance drift over time
 - Intermediate state in small PCM
 - Endurance

Hardware: Spintronic Devices

- Magnetic tunnel junction (MTJ) structure
 - Pinned Layer/ Oxide Layer/ Free Layer
- Device States
 - Parallel state Low resistance
 - Anti-parallel state High resistance
 - Difference in Resistance allows informatio encoding
- Manipulation
 - Magnetic field
 - Current: Spin injection

Angle between Free Layer and Pinned Layer

Hardware: Spintronic Devices

- Large MTJs: High barrier height
 - Multiple programmable states: Synapse device

Hardware: Spintronic Devices

- Mono-domain Single bit
- Low barrier height
 - Stochastic switching
 - Telegraphic switching

THANK YOU

