

FIG. 1

(PRIOR ART)

```
module MOD1 (CK1,IN1,IN2,OUT);
    input [width-1:0] CK1;
    input [width-1:0] IN1,IN2;
    output [width-1:0] OUT
    wire [width-1:0]S1,S2,S3,S4,S5
    Reg[width-1:0] R1,R2,R3,R4,R5,R6;
    always @posedge(CK1)
        R1 = S1;
        S1 = R2 & R3;
        R2 = S2;
        S2 = R4 & S5;
        R3 = S3;
        S3 = R1| R5;
        R4 = S5;
        S4 = IN1 & R6;
        S5 = IN1 | IN2;
        R5 = S4;
        R6 = IN2;
        assign OUT = R1;
endmodule
```

FIG. 2
(PRIOR ART)

FIG. 3
(PRIOR ART)

2/9

FIG. 4
(PRIOR ART)

FIG. 5

FIG. 13

FIG. 14

FIG. 15

FIG. 16


```

module innet_R2(S2, R4,R5);
  input [width-1:0] R4,R5;
  wire [width-1:0]S2
  S2 = R4 & R5;
endmodule

```

FIG. 19

FIG. 20

R1: R3
R2: R1
R3: R1
R4: R2
R5: R2, R3
R6: R5

FIG. 17

FIG. 18

FIG. 21

FIG. 22

FIG. 23