Serii de numere reale

October 20, 2023

1 Noţiuni teoretice

Definiție 1 Pentru un șir de numere reale $(a_n)_{n\geq 1}$ expresia $\sum_{n=1}^{\infty} a_n$ se numește serie numerică cu termenul general a_n .

Şirul $(s_n)_{n\geq 1}$, definit prin $s_n=a_1+a_1+\cdots+a_n, n\geq 1$ se numeşte şirul sumelor parţiale ale seriei $\sum_{n=1}^{\infty}a_n$.

Dacă există limita $\lim_{n\to\infty} s_n = s$, $s\in\overline{\mathbb{R}}$, atunci s se numește **suma seriei** $\sum_{n=1}^{\infty} a_n$. Dacă $s\in\mathbb{R}$, seria $\sum_{n=1}^{\infty} a_n$ se numește **convergentă**. O serie care nu este convergentă se numește **divergentă**.

Dacă seria $\sum_{n=1}^{\infty} a_n$ este convergentă atunci $\lim_{n\to\infty} a_n = 0$. Rezultă de aici următorul criteriu de divergență:

Dacă $\lim_{n\to\infty} a_n \neq 0$, atunci seria $\sum_{n=1}^{\infty} a_n$ este divergentă.

1.1 Serii remarcabile

1) Seria geometrică $\sum_{n=0}^{\infty}q^n=1+q+q^2+\cdots,\,q\in\mathbb{R},$ este convergentă dacă și numai dacă $q\in(-1,1).$ Are loc relația

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \frac{1}{1-q}, & \text{dacă } q \in (-1,1) \\ +\infty, & \text{dacă } q \in [1,\infty) \end{cases}.$$

Dacă $q \leq -1$, atunci seria geometrică este divergentă.

2) Seria armonică generalizată $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}},\,\alpha\in\mathbb{R},$ este convergentă dacă și numai dacă $\alpha>1.$

Pentru $\alpha>1$ notăm $\zeta(\alpha)=\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}.$

Funcția $\zeta:(1,\infty)\to\mathbb{R}$ se numește funcția Zeta a lui Riemann. Au loc relațiile

$$\zeta(2) = \frac{\pi^2}{6}$$
 (Euler), $\zeta(4) = \frac{\pi^4}{90}$.

Seria $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ se numește **serie armonică** și avem $\sum\limits_{n=1}^{\infty}\frac{1}{n}=+\infty.$

3) O altă serie remarcabilă este $\sum_{n=0}^{\infty} \frac{1}{n!} = e$.

2 Exerciții și probleme

Ex. 1 Să se determine sumele seriilor:

- a) $\sum_{n=1}^{\infty} \frac{1}{(3n-2)(3n+1)}$;
- b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)};$
- c) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)...(n+p)}, p \in \mathbb{N}^*;$
- $d) \sum_{n=1}^{\infty} \frac{n}{1 \cdot 3 \cdot 5 \dots (2n+1)};$
- $e) \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n+2)!!};$
- $f) \sum_{n=1}^{\infty} \frac{n \cdot 2^n}{(n+2)!};$

$$g) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}(\sqrt{n+1}+\sqrt{n})};$$

$$h) \sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right);$$

$$i) \sum_{n=1}^{\infty} \operatorname{arctg} \frac{1}{2n^2};$$

$$j$$
) $\sum_{n=1}^{\infty} \operatorname{arctg} \frac{2}{n^2 + n + 4};$

$$k) \sum_{n=1}^{\infty} \arctan \frac{8n}{n^4 - 2n^2 + 5};$$

$$l) \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n};$$

$$m) \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+1)!};$$

$$n) \sum_{n=1}^{\infty} \frac{1}{n(2n-1)};$$

$$o) \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+3)};$$

$$p) \sum_{n=1}^{\infty} \frac{1}{1^2 + 2^2 + \dots + n^2};$$

$$q$$
) $\sum_{n=1}^{\infty} \frac{n^3}{n!}$;

$$r) \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+3)(n+4)};$$

$$s) \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+4)(n+5)};$$

$$t) \sum_{n=1}^{\infty} \arctan \frac{2}{n^2};$$

$$u) \sum_{n=1}^{\infty} \operatorname{arctg} \frac{2^n}{1+2^{2n+1}};$$

v)
$$1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots$$

3 Indicații și răspunsuri

Solutie Ex. 1 a) $\frac{1}{3}$; b) $\frac{1}{4}$; c) $\frac{1}{p \cdot p!}$; d) $\frac{1}{2}$; e) $\frac{1}{2}$; f) 1; g) 1; h) $\ln \frac{1}{2}$; i) Folosim identitatea

$$\operatorname{arctg} x - \operatorname{arctg} y = \operatorname{arctg} \frac{x - y}{1 + xy}, \quad \forall xy > -1.$$

Avem

$$a_n = \arctan \frac{1}{2n^2} = \arctan \frac{2}{4n^2} = \arctan \frac{2}{1+4n^2-1} = \arctan \frac{2}{1+(2n+1)(2n-1)}$$

= $\arctan \frac{(2n+1)-(2n-1)}{1+(2n+1)(2n-1)} = \arctan (2n+1) - \arctan (2n-1).$

 $\begin{array}{l} \textit{Suma seriei este} \ \frac{\pi}{4}; \ j) \ \operatorname{arctg} 2; \ k) \ 2 + \frac{\pi}{2}; \ l) \ \ln 2; \ m) \ 3 - e; \ n) \ 2 \ln 2; \\ 0) \ \frac{7}{36} \ p) \ 6(3 - 4 \ln 2); \ q) \ 5e; \ r) \ \frac{5}{144}; \ s) \ \frac{43}{1800}; \ t) \ \frac{3\pi}{4}; \ u) \ \frac{\pi}{4}; \ v) \ \textit{Suma este} \\ \frac{3}{2} \ln 2. \ \textit{Se calculeaza} \ s_{3n} = \gamma_{4n} - \frac{1}{2}\gamma_n - \frac{1}{2}\gamma_n + \ln \frac{4n}{\sqrt{2n^2}}. \ \lim_{n \to \infty} s_{3n} = \frac{3}{2} \ln 2. \end{array}$