CS 207: Discrete Structures

Instructor: S. Akshay

 ${\rm Aug~6,~2015}$ Lecture 09 – Basic mathematical structures: posets, chains, antichains and their applications

Recall: Partial Orders and Equivalence relations

- ▶ Reflexive: $\forall a \in S, aRa$.
- ▶ Symmetric: $\forall a, b \in S$, aRb implies bRa.
- ▶ Anti-symmetric: $\forall a, b \in S$, aRb, bRa implies a = b.
- ▶ Transitive: $\forall a, b, c \in S$, aRb, bRc implies aRc.

	Reflexive	Transitive	Symmetric	Anti-symmetric
Equivalence	✓	✓	✓	
Partial order	✓	\checkmark		\checkmark

A total order is a partial order \leq on S in which every pair of elements is comparable, i.e., $\forall a, b \in S$, either $a \leq b$ or $b \leq a$.

Definition (poset)

A set S together with a partial order \leq on S, is called a partially-ordered set or poset, denoted (S, \leq) . Examples: (\mathbb{Z}, \leq) , $(\mathcal{P}(S), \subseteq)$, $(\mathbb{Z}^+, |)$.

Recall: any relation on a set can be represented as a graph with

- nodes as elements of the set and
- ▶ directed edges between them indicating the ordered pairs that are related.

- ▶ Did these come from posets?
- ▶ Do graphs defined by posets have any "special" properties?

- ▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- ▶ How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

- ▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- ▶ How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

- ▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.
- ▶ How does the graph of $(\mathcal{P}(S), \subseteq)$ look like?

Figure: Graph of a poset and its Hasse diagram

▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

▶ What is "special" about these graphs?

▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- ▶ What is "special" about these graphs?
- ► Graphs of posets are "acyclic" (except for self-loops).
- ▶ Starting from a node and following the directed edges (except self-loops), one can't come back to the same node.

▶ Let $S = \{1, 2, 3\}$. Recall the poset $(\mathcal{P}(S), \subseteq)$.

Figure: Graph of a poset and its Hasse diagram

- ▶ What is "special" about these graphs?
- ► Graphs of posets are "acyclic" (except for self-loops).
- ▶ Starting from a node and following the directed edges (except self-loops), one can't come back to the same node.
- ► Given the Hasse diagram of a poset, its reflexive transitive closure gives back the graph of the poset.

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

▶ an anti-chain if no two distinct elements of A are related to each other under \leq .

Definition

Let (S, \preceq) be a poset. A subset $B \subseteq S$ is called

- ▶ a chain if every pair of elements in B is related by \leq .
- ▶ That is, $\forall a, b \in B$, we have $a \leq b$ or $b \leq a$ (or both).
- ▶ Thus, \leq is a total order on B.

Definition

Let (S, \preceq) be a poset. A subset $A \subseteq S$ is called

- ▶ an anti-chain if no two distinct elements of A are related to each other under \preceq .
- ▶ That is, $\forall a, b \in A, a \neq b$, we have neither $a \leq b$ nor $b \leq a$.

Chains and Anti-chains: examples

▶ Let $S = \{1, 2, 3\}$.

Figure : Graph of poset $(\mathcal{P}(S),\subseteq)$ and its Hasse diagram

▶ What are the chains in this poset?

Chains and Anti-chains: examples

▶ Let $S = \{1, 2, 3\}$.

Figure : Graph of poset $(\mathcal{P}(S),\subseteq)$ and its Hasse diagram

- ▶ What are the chains in this poset?
- ▶ What are the anti-chains in this poset?

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

► Clearly, this shows the dependencies.

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- ▶ Clearly, this shows the dependencies.
- ▶ But when you cook you need a total order, right?

Examples and applications

A task scheduling example

Let us represent a recipe for making Chicken Biriyani as a poset!

- ► Clearly, this shows the dependencies.
- ▶ But when you cook you need a total order, right?
- ▶ Further, this total order must be consistent with the po.
- ► This is called a linearization or a topological sorting.

Definition

A topological sort or a linearization of a poset (S, \leq) is a poset (S, \leq_t) with a total order \leq_t such that $x \leq y$ implies $x \leq_t y$.

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Proof: (H.W)

- ► First prove the following lemma:
 - ▶ Every finite non-empty poset has at least one minimal element $(x \text{ is minimal if } \not\exists y, y \leq x)$.

Definition

A topological sort or a linearization of a poset (S, \preceq) is a poset (S, \preceq_t) with a total order \preceq_t such that $x \preceq y$ implies $x \preceq_t y$.

Theorem

Every finite poset has a topological sort.

Proof: (H.W)

- ► First prove the following lemma:
 - Every finite non-empty poset has at least one minimal element $(x \text{ is minimal if } \not\exists y, y \leq x)$.

What about infinite posets?

▶ Then, construct the chain to complete the proof.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

▶ Assume that every task takes 1 time unit.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

- ▶ Assume that every task takes 1 time unit.
- ▶ Clearly, we still need at least 5 time units.

Coming back to our example,

- ▶ What if there are many cooks, i.e., parallel processors?
- ▶ How do we schedule the tasks to minimize time used?

- ▶ Assume that every task takes 1 time unit.
- ▶ Clearly, we still need at least 5 time units.
- ► That is, the length of the longest chain (length of chain = no. of elements in it).

Parallel task scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \preceq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Parallel task scheduling

For any poset, there is a legal parallel schedule that runs in t steps, where t is the length of the longest chain.

We will in fact prove:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Assuming this theorem,

- ▶ Observe that we can schedule all of S_i at time i (since we know that all previous tasks were done earlier!).
- ▶ Thus, each S_i is an anti-chain.
- ▶ This solves the parallel task scheduling problem.

Theorem

For a finite poset (S, \preceq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \preceq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a \text{ but } b \notin S_1 \cup \ldots \cup S_{i-1}$.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

- ▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a \text{ but } b \notin S_1 \cup \ldots \cup S_{i-1}$.
- ▶ By defin of S_i , \exists chain of length at least i ending at b.

Theorem

For a finite poset (S, \leq) with length of longest chain = t, we can partition S into t subsets S_1, \ldots, S_t such that $\forall i \in \{1, \ldots, t\}$, $\forall a \in S_i$, if $b \leq a, b \neq a$ then $b \in S_1 \cup \ldots \cup S_{i-1}$.

Proof: Put each $a \in S$ in S_i such that i is the length of the longest chain ending at a. Now proof by contradiction:

- ▶ Suppose $\exists i, a \in S_i, b \leq a, b \neq a \text{ but } b \notin S_1 \cup \ldots \cup S_{i-1}$.
- ▶ By defn of S_i , \exists chain of length at least i ending at b.
- ▶ But now, $b \leq a, b \neq a$ implies we can extend the chain to chain of length $\geq i + 1$, ending at a.
- ▶ But then a cannot be in S_i . Contradiction.

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

(H.W) Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1, 2, 3\}$. What does it imply for this poset?

Consequences for chains and anti-chains

Since each S_i was an anti-chain, a celebrated result follows...

Corollary (Mirsky's theorem, 1971)

If the longest chain in a poset (S, \leq) is of length t, then S can be partitioned into t anti-chains.

(H.W) Apply this on the poset $(\mathcal{P}(S), \subseteq)$, where $S = \{1, 2, 3\}$. What does it imply for this poset?

Another corollary (Dilworth's Lemma)

For all t > 0, any poset with n elements must have

- \triangleright either a chain of length greater than t
- ▶ or an antichain with at least $\frac{n}{t}$ elements.

(H.W): Prove it!