Definition 0.11. For any $T \in \mathcal{L}(V, W)$, set null $T = \{v \mid Tv = 0\}$ is called the **null space** of T.

This is also called the **kernal** of T in algebra.

Theorem 0.13. For any $T \in \mathcal{L}(V, W)$, null T is a subspace of V.

Proof.

- We have $0 \in \text{null } T$ since T0 = 0, which is the property of linear transformation.
- For any $a, b \in \text{null } T$, we have 0 = Ta + Tb = T(a + b), so $a + b \in \text{null } T$.
- For any $Ta \in \text{null } T$ and $\lambda \in F$, we have $\lambda Ta = T(\lambda a)$, so $\lambda a \in \text{null } T$.

Definition 0.15. For any $T \in \mathcal{L}(V, W)$, set range $T = T(V) = \{ Tv \mid v \in V \}$ is called the **range** of T.

This is also called the **image** of T in math.

Theorem 0.18. For any $T \in \mathcal{L}(V, W)$, range T is a subsapce of W.

Proof.

- We have $T(0) = 0 \in \operatorname{range} T$.
- For any $Ta, Tb \in \operatorname{range} T$, $Ta + Tb = T(a + b) \in \operatorname{range} T$.
- For any $Ta \in \operatorname{range} T$ and $\lambda \in F$, $\lambda Ta = T(\lambda a) \in \operatorname{range} T$.

Theorem 0.21. Suppose V is finite and $T \in \mathcal{L}(V, W)$, then range T is finite, and

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$

Proof. Consider the basis v_0, \dots, v_k of null T, and the basis v_0, \dots, v_n of V that expand from v_0, \dots, v_k . We will show that $T(v_{k+1}), \dots, T(v_n)$ is the basis of range T.

We first show that $T(v_{k+1}), \dots, T(v_n)$ is linear independent. If it is linear independent, then

1

$$\lambda_1 T(v_{k+1}) + \dots + \lambda_i T(v_{k+i})$$

$$= T(\lambda_1 v_{k+1} + \dots + \lambda_i T(v_{k+i}))$$

$$= 0$$

That means a linear combation of v_{k+i} is in null T, which is span (v_0, \dots, v_k) , therefore the basis v_0, \dots, v_n is linear dependent.

Then we show that $T(v_{k+1}), \dots, T(v_n)$ spans range T. For any $Tv \in \operatorname{range} T$, there must be $v \in V$ such that Tv = Tv, then v can be written in form of the linear combination of v_0, \dots, v_n , and then $Tv = T(\lambda_0 v_0 + \dots + \lambda_n v_n)$. We can drop all terms with v_i where $i \leq k$, since they are in null T, so Tv is now represent by a linear combination of $T(v_{k+i})$ for all $0 < i \leq n - k$, therefore, it is a basis of range T and dim range T is finite.

Finally,
$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T$$
.

Definition 3.16 (Notation: v + U). Let $v \in V$ and $U \subseteq V$, then $v + U = \{v + u \mid u \in U\}$.

Such sets also called *coset* in group theory.

Definition 3.97 (Translate). Let $v \in V$ and $U \subseteq V$, we say v + U is a translate of U.

Definition 3.98 (Quotient Space). Let $U \subseteq V$ a subspace, then the quotient space V/U is a set with translates of U, that is:

$$V/U = \{ v + U \mid v \in V \}$$

Theorem 3.101. Let $U \subseteq V$ a subspace and $v, w \in V$, then the following statements are equivalent.

1.
$$v - w \in U$$

2.
$$v + U = w + U$$

3.
$$(v+U)\cap(w+U)\neq\emptyset$$

Proof.

• If $v-w \in U$, for any $v+u \in v+U$, we have $v+u = v+(v-w)-(v-w)+u = v-w+w+u = w+(v-w)+u \in w+U$ since $v-w \in U$. Similarly, for any $w+u \in w+U$, we have $w+u = w+(v-w)-(v-w)+u = v-v+w+u = v-(v-w)+u = v+(-(v-w)+u) \in v+U$.

- If v+U=w+U, then v=w+u since $v\in v+U$, therefore $v-w=u\in U$.
- if v + U = w + U, then $(v + U) \cap (w + U) = v + U = w + U \neq \emptyset$
- If $(v+U)\cap(w+U) \neq \emptyset$, then for any $v+u_0 = w+u_1 \in (v+U)\cap(w+U)$, we have $(v-w) + (u_0 u_1) = 0$ and then $v-w = u_1 u_0 \in U$, so v+U = w+U.

Definition 3.102. Let $U \subseteq V$, then addition and scalar multiplication on V/U is defined by:

$$(v+U) + (w+U) = (v+w) + U$$
$$\lambda(v+U) = (\lambda v) + U$$

Theorem 3.103. Let $U \subseteq V$ a subspace, then V/U is a vector space with addition and scalar multiplication we defined in previous definition.

Proof. We must first show that the addition and the sclar multiplication we introduce are functions.

For any $a, b, c, d \in V$, we will show (a+b)+U=(c+d)+U if a+U=c+U and b+U=d+U. We can show $(a+b)-(c+d)\in U$ by $a-c\in U$ and $b-d\in U$.

For any $v, w \in V$ and $\lambda \in F$, we will show $(\lambda v) + U = (\lambda w) + U$ if v + U = w + U. We know $v - w \in U$, then $\lambda(v - w) = \lambda v - \lambda w \in U$, therefore $(\lambda v) + U = (\lambda w) + U$.

We have identity of addition 0 + U and inverse of addition (-v) + U for all $v \in V$.

Definition 3.104. Let $U \subseteq V$ a subspace, the quotient map $\pi : V \to V/U$ is a linear mapping defined by:

$$\pi(v) = v + U$$

Proof. We will show π is a linear mapping, $\pi(v+w)=(v+w)+U=v+U+w+U=\pi(v)+\pi(w)$ and $\lambda\pi(v)=\lambda(v+U)=(\lambda v)+U=\pi(\lambda v)$.

Theorem 3.105. Let V finite and $U \subseteq V$ a subspace, show that $\dim(V/U) = \dim V - \dim U$.

Proof. We can rewrite the equation as $\dim V = \dim(V/U) + \dim U$, and it is easy to see that range $\pi = \dim(V/U)$ and $\operatorname{null} \pi = \dim U$.

Definition 3.106. Let $T \in \mathcal{L}(V, W)$, define $\tilde{T} : V/(\text{null } T) \to W$ by $\tilde{T}(v + \text{null } T) = Tv$.

Theorem 3.107. Let $T \in \mathcal{L}(V, W)$, then:

- 1. $\tilde{T} \circ \pi = T$
- 2. \tilde{T} is injective
- 3. range $\tilde{T} = \operatorname{range} T$
- 4. $V/(\operatorname{null} T) \cong \operatorname{range} T$

Proof.

- 1. For all $v \in V$, $\tilde{T}(\pi(v)) = \tilde{T}(v + \text{null } T) = Tv$
- 2. If $\tilde{T}(v + \text{null } T) = \tilde{T}(w + \text{null } T)$, then T(v w) = 0, which means $v w \in \text{null } T$, therefore v + null T = w + null T.
- 3. For any $Tv \in \operatorname{range} T$, we have $\tilde{T}(v + \operatorname{null} T) \in \operatorname{range} \tilde{T}$. For any $\tilde{T}(v + \operatorname{null} T) = Tv \in \operatorname{range} \tilde{T}$, we have $Tv \in \operatorname{range} T$.
- 4. Restrict the range of \tilde{T} on range T, say $\varphi(v + \text{null } T) = \tilde{T}(v + \text{null } T)$: $V/(\text{null } T) \to \text{range } T$, then φ is injective since (2) and surjective since (3), therefore φ is an isomorphism, thus $V/(\text{null } T) \simeq \text{range } T$.

Definition 3.110 (Dual Space). Let V a vector space, then we denote V' the dual space of V, where

$$V' = \mathcal{L}(V, F)$$

Theorem 3.111. Let V a finite vector space, then $\dim V' = \dim V$

Proof. dim
$$V' = \dim \mathcal{L}(V, F) = (\dim V)(\dim F) = \dim V$$

Definition 3.112 (Dual Basis). Let v_0, \dots, v_{m-1} a basis of V, then the dual basis of v_0, \dots, v_{m-1} is $\varphi_0, \dots, \varphi_{m-1}$ such that:

$$arphi_i(v_j) = egin{cases} 1 & & \textit{if } i = j \ 0 & & \textit{otherwise} \end{cases}$$

holes for any $0 \le i, j < m$.

We can see that the basis the dual basis extracts the coefficients of any vector in V.

Theorem 3.113. Let v_0, \dots, v_{m-1} a basis of V, and dual basis $\varphi_0, \dots, \varphi_{m-1}$ of which. Then for any $v \in V$,

$$v = \varphi_0(v)v_0 + \dots + \varphi_{m-1}(v)v_{m-1}$$

Proof. For any
$$i$$
, $\varphi_i(v) = \varphi_i(\lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}) = \varphi_i(\lambda_i v_i) = \lambda_i \varphi_i(v_i) = \lambda_i \times 1$.

Theorem 3.116. Let V a finite space, then the dual basis of basis of V is a basis of V'.

Proof. Let v_0, \dots, v_{m-1} a basis of V, then its dual basis has the same length, therefore we only need to show its dual basis is linear independent.

Suppose $\lambda_0 \varphi_0 + \cdots + \lambda_{m-1} \varphi_{m-1} = 0$, then for any $0 \le i < m$, $(\lambda_0 \varphi_0 + \cdots + \lambda_{m-1} \varphi_{m-1})(v_i) = \lambda_i = 0$, therefore the dual basis is linear independent. \square

Definition 3.118 (Dual Map). Let $T \in \mathcal{L}(V, W)$. A dual map of T is a linear map $T' \in \mathcal{L}(W', V')$, such that for any $\varphi \in W'$:

$$T'(\varphi) = \varphi \circ T$$

Theorem 3.128. Let V, W are finite spaces and $T \in \mathcal{L}(V, W)$. Show that:

- 1. $\operatorname{null} T' = (\operatorname{range} T)^0$
- 2. $\dim \operatorname{null} T' = \dim \operatorname{null} T + \dim W \dim V$

Proof.

- null T' is a space $\{ \varphi \in \mathcal{L}(W, F) \mid \varphi \circ T = 0 \}$, which means range $T \subseteq \text{null } \varphi$. (range T)⁰ is a space $\{ \varphi \in \mathcal{L}(W, F) \mid \varphi(\text{range } T) = \{0\} \}$, which means range $T \subseteq \text{null } \varphi$. Therefore null $T' = (\text{range } T)^0$
- $\dim(\operatorname{range} T)^0 = \dim W \dim\operatorname{range} T = \dim W (\dim V \dim\operatorname{null} T)$

Theorem 3.129. Let V, W are finite spaces and $T \in \mathcal{L}(V, W)$. Show that

T is surjective $\iff T'$ is injective

Proof.

- Suppose T is surjective, then for any $T'(\varphi) = T'(\psi)$, we have $\varphi \circ T = \psi \circ T$. Since T is surjective, then T is an epimorphism (we proved this in E2B), therefore $\varphi = \psi$.
- Suppose T' is injective, then for any $\varphi, \psi \in \mathcal{L}(W, F)$ such that $\varphi \circ T = \psi \circ T$, we have $\varphi = \psi$ since T' is injective. Therefore T is epimorphism, thus surjective.

The last theorem is obviously true in category theory, but we haven't show that T' is a morphism in Vect' where Vect' \simeq Vect^{op}.

Theorem 3.130. Let V, W are finite and $T \in \mathcal{L}(V, W)$, show that:

- 1. $\dim \operatorname{range} T' = \dim \operatorname{range} T$
- 2. range $T' = (\text{null } T)^0$

Proof.

- $\dim \operatorname{range} T' = \dim W' \dim \operatorname{null} T' = \dim W' (\dim \operatorname{null} T + \dim W \dim V) = \dim V \dim \operatorname{null} T = \dim \operatorname{range} T$
- For any $\varphi \circ T \in \operatorname{range} T'$, $(\varphi \circ T)(\operatorname{null} T) = \varphi(\{0\}) = \{0\}$, therefore range $T' \subseteq (\operatorname{null} T)^0$. Since $\dim(\operatorname{null} T)^0 = \dim V \dim \operatorname{null} T = \dim \operatorname{range} T \dim \operatorname{range} T'$, therefore $\operatorname{range} T' = (\operatorname{null} T)^0$ since both of them are finite and $\operatorname{range} T' \subseteq (\operatorname{null} T)^0$.

Theorem 3.131. Let V, W are finite spaces and $T \in \mathcal{L}(V, W)$. Show

T is injective \iff T' is surjective

Proof.

- $\dim \operatorname{range} T' = \dim \operatorname{range} T = \dim V = \dim V'$ since T is injective, therefore T' is surjective.
- $\dim \operatorname{range} T = \dim \operatorname{range} T' = \dim V' = \dim V$ therefore T is injective.

Exercise 3.1. Suppose V is a finite vector space, Show that the only two ideal of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$. A subspace \mathcal{E} of $\mathcal{L}(V)$ is called an ideal, if $TE \in \mathcal{E}$ and $ET \in \mathcal{E}$ for any $T \in \mathcal{L}(V)$ and $E \in \mathcal{E}$.

Proof. We will use the concept Matrix. Suppose $\lambda_0 v_0 + \cdots + \lambda_n v_v$ the basis of V. We want to construct T_i that $T(\lambda_0 v_0 + \cdots + \lambda_n v_n) = \lambda_i v_i$ for all $0 \le i < n$, which is a matrix with all zero but 1 at i, i.

For any matrix, we can always select a non-zero value at a, b and place it at i, b, this can be done by left multiply a matrix with 1 at i, a (this produce a vector at line i with values from line a), then right multiply a matrix with 1 at i, b (this produce a vector at column b with values from line i).

Also, we can always select a non-zero value at a, b and place it at a, i, this can be done by right multiply a matrix with 1 at b, i, then left multiply a matrix with 1 at a, i.

By combining these two operations, we calselect a non-zero value at a, b and place it at i, i. Now, consider any non-zero $E \in \mathcal{E}$, we can construct a matrix with non-zero value at i, i for every $0 \le i < \dim V$. These matrix are in \mathcal{E} since \mathcal{E} is an ideal, then we can multiply an appropriate scalar to them so that they are matrices with 1 at i, i. By adds up these matrices, we get I, we know $I \in \mathcal{E}$ since \mathcal{E} is a vector space, and now all $T \in \mathcal{L}(V)$ is also in \mathcal{E} since \mathcal{E} is an ideal, then $\mathcal{E} = \mathcal{L}(V)$.

The only exception is $\mathcal{E} = \{0\}$, in this case we can't pick any non-zero element.

Another solution, hope this one is more simple.

Suppose \mathcal{E} an ideal of $\mathcal{L}(V)$ and non-zero, non-surjective $E \in \mathcal{E}$. Let v_0, \dots, v_{k-1} a basis of null E and v_k, \dots, v_{k+n} such that Tv_{k+i} is a basis of range E, then we have $n \neq 0$ and $k \neq 0$.

Define A a linear transformation which maps v_i to v_{k+i} for $0 \le i < \min\{k, n\}$ and maps others to 0, then dim range $EA = \min\{k, n\}$.

Expand the basis $w_i = Ev_{k+i}$ of range E to a basis of V, say w_0, \dots, w_{m-1} , define B maps Ev_{k+i} to $w_{\min\{k,n\}+i}$, we always have enough $w_{\min\{k,n\}+i}$ since $m-1 = \dim V = \dim \operatorname{null} E + \dim \operatorname{range} E$ while $\min k, n \leq \dim \operatorname{null} E$, then $\dim \operatorname{range} BE = \operatorname{range} E$ since we just re-map the range E.

Now consider S = EA + BE, we have $Sv_i = EAv_i = Ev_{k+i} = w_i \in \text{range } E$ for all $0 \le i < \min\{k, n\}$ and $Sv_{\min\{k, n\} + i} = BEv_{\min\{k, n\} + i} = w_{\min\{k, n\} + i} \in \text{range } BE$ for all $0 \le i < \dim \text{range } E$. We can see range $EA \cap \text{range } BE = \{0\}$ and $\dim \text{range}(EA + BE) = \text{range } E + \min\{k, n\}$, where k = null E and

 $n = \operatorname{range} E$, the range of EA + BE gets larger and $EA + BE \in \mathcal{E}$ since $EA, BE \in \mathcal{E}$, if k > n (this is the only case that EA + BE is not surjective), then we continue this process with E = EA + BE, the procedure will finally terminate since $\mathcal{L}(V)$ is finite (cause V is finite).

Now we show that any \mathcal{E} with non-zero, non-surjective $E \in \mathcal{E}$ implies a surjective (thus injective and invertible) $T \in \mathcal{E}$.

For any ideal with an invertible element $E \in \mathcal{E}$, we have $E^{-1}E = I \in \mathcal{E}$, which causes $\mathcal{E} = \mathcal{L}(V)$ since IT = T for all $T \in \mathcal{L}(V)$.

Therefore, only $\{0\}$ and $\mathcal{L}(V)$ are ideals of $\mathcal{L}(V)$.

Exercise 3.7. Suppose vector space V and W are finite $(2 \le \dim V \le \dim W)$, show that $\{T \in \mathcal{L}(V, W) \mid T \text{ is not injective }\}$ is not a subspace.

Proof. Consider the basis $v_0 + \cdots + v_{(\dim V - 1)} \in V$, and $T(v_0 + \cdots + v_{(\dim V - 1)}) = (0 + 1_0 + \cdots + 1_{(\dim V - 1)})$ and $T'(v_0 + \cdots + v_{(\dim V - 1)}) = (v_0 + 0 + \cdots + v_{(\dim V - 1)})$. Then $(T + T')(\lambda_0 v_0 + \lambda_1 v_1 + \cdots + \lambda_{(\dim V - 1)} v_{(\dim V - 1)}) = \lambda_0 v_0 + \lambda_1 v_1 + \cdots + 2\lambda_{(\dim V - 1)} v_{(\dim V - 1)}$, which is obviously injective.

Exercise 3.11. Suppose V is finite and $T \in \mathcal{L}(V, W)$, show that there is a subspace $U \subset V$ such that:

$$U \cap \text{null } T = \{0\} \quad and \quad \text{range } T = \{ Tu \mid u \in U \}$$

Proof. This is similar to the *isomorphism theorems* about groups! This can be done by the similar way we used in proving dim $V = \dim \operatorname{null} T + \dim \operatorname{range} T$.

The next two exercises remind me the categorical injective and surjective, let try them first!

Exercise. For any $F \in \mathcal{L}(V, W)$, F is injective \iff for any $S, T \in \mathcal{L}(U, V)$, FS = FT implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(V, W)$ that FS = FT, then for any $u \in U$, we have F(Su) = F(Tu), since F is injective, we know Su = Tu, so S = T.
- (\Leftarrow) For any $v, w \in V$ such that Fv = Fw. Consider

$$S(\lambda) = \lambda v$$

$$T(\lambda) = \lambda w$$

in $\mathcal{L}(\mathbb{R}, V)$. Then for any $\lambda \in \mathbb{R}$, we have $FS\lambda = \lambda FS1 = \lambda Fv = \lambda Fw = \lambda FT1 = FT\lambda$. so FS = FT then S = T, which means v = S1 = T1 = w.

Exercise. Suppose W is finite, then for any $F \in \mathcal{L}(V, W)$, F is surjective \iff for any $S, T \in \mathcal{L}(W, U)$, SF = TF implies S = T.

Proof.

- (\Rightarrow) For any $S, T \in \mathcal{L}(W, U)$ such that SF = TF. For any $w \in W$, there is $v \in V$ such that Fv = w since F is surjective. Then we have SFv = TFv so Sw = S(Fv) = T(Fv) = Tw then S = T.
- (\Leftarrow) Consider

$$S = I$$
 and $T(\lambda_0 w_0 + \cdots + \lambda_n w_n) = \lambda_0 w_0 + \cdots + \lambda_k w_k$

where w_0, \dots, w_k is the basis of range F and w_0, \dots, w_n is the basis of W that expand from w_0, \dots, w_k .

(If we can use another way to construct T, then W is not need to be finite, for example, $W = \text{range } T \oplus W_0$).

It is easy to show that T is a linear transformation. Then for any $v \in V$, we have TFv = Fv (since T acts like identity transformation on range F) and SFv = Fv, so S = T by the property of F. Since range S = W, so is range T, that means w_0, \dots, w_k spans W, so k = n, which means range F = W, therefore F is surjective.

Exercise 3.19. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is injective \iff there is $S \in \mathcal{L}(W, V)$ such that ST = I.

Proof.

• (\Rightarrow) Consider the basis v_0, \dots, v_n of V, then Tv_0, \dots, Tv_n is a basis of range T since T is injective. We denote Tv_i as w_i and w_0, \dots, w_m as the basis of W which expand from w_0, \dots, w_n . Define $S(\lambda_0 w_0 + \dots + \lambda_m w_m) = \lambda_0 w_0 + \dots + \lambda_n w_n$, and then for any $v \in V$, $ST(\lambda_0 v_0 + \dots + \lambda_n v_n) = S(\lambda_0 w_0 + \dots + \lambda_n w_n) = \lambda_0 v_0 + \dots + \lambda_n v_n$, so ST = I.

• (\Leftarrow) Suppose $A, B \in \mathcal{L}(U, V)$, such that TA = TB, we will show that A = B. STA = IA = A and STB = IB = B and STA = STB since TA = TB. Then we know T is a monomorphism, and then T is injective.

Exercise 3.20. Suppose W is finite, then for any $T \in \mathcal{L}(V, W)$, show that T is surjective \iff there is $S \in \mathcal{L}(W, V)$ such that TS = I.

Exercise 3.21. Suppose V is finite, $T \in \mathcal{L}(V, W)$, $U \subseteq W$ a subspace. Show that the inverse image of U: { $v \in V \mid Tv \in U$ } is a subspace of V, and

$$\dim \{\ v \in V \mid Tv \in U\ \} = \dim \operatorname{null} T + \dim(U \cap \operatorname{range} T)$$

Proof. The second part is quite easy, we can restrict the domain of T to $\{v \in V \mid Tv \in U\}$, say $T' \in \mathcal{L}(\{v \in V \mid Tv \in U\}, W)$, so that it is in form $\dim\{v \in V \mid Tv \in U\} = \dim \operatorname{null} T' + \dim \operatorname{range} T'$. Obviously range $T' = U \cap \operatorname{range} T$ and $\operatorname{null} T' = \operatorname{null} T$.

We will now show that $\{v \in V \mid Tv \in U\}$ is a subspace of V.

- $T0 \in U$.
- For any $v, w \in V$ such that $Tv, Tw \in U$, we have $T(v+w) = Tv + Tw \in U$.
- For any $v \in V$ such that $Tv \in U$ and $\lambda \in F$, we have $T(\lambda v) = \lambda Tv \in U$.

Therefore it is a subspace.

Exercise 3.22. Suppose U and V are finite, $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$, show that

$$\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T$$

Proof. Consider the inverse image of null S on T: $K = \{ v \in V \mid Tv \in \text{null } S \}$, which dimension: $\dim K = \dim \text{null } T + \dim(\text{null } S \cap \text{range } T)$, where $\dim(\text{null } S \cap \text{range } T)$ caps at $\dim \text{null } S$.

We know show that $\operatorname{null} ST = \operatorname{null} K$. For any STv = 0, we know S(Tv) = 0, so $Tv \in K$, therefore $\operatorname{null} ST \subseteq \operatorname{null} K$; For any $Tv \in \operatorname{null} S$, that means S(Tv) = 0, therefore $v \in \operatorname{null} ST$, therefore $\operatorname{null} ST \supseteq \operatorname{null} K$, and $\operatorname{null} ST = \operatorname{null} K$.

Exercise 3.25. Suppose V is finite, $S, T \in \mathcal{L}(V, W)$. Show that $\text{null } S \subseteq \text{null } T \iff \text{there is } E \in \mathcal{L}(W) \text{ such that } T = ES$.

Proof. We define E(S(v)) = Tv for any $v \in V$, so that $E \in \mathcal{L}(\text{range } S, W)$. We first show that E is a mapping, and also a linear transformation.

Suppose $Sv, Sw \in W$ such that Sv = Sw, we need to show that E(Sv) = E(Sw), or normalized Tv = Tw. We know $v - w \in \text{null } S$ since Sv = Sw, so $v - w \in \text{null } T$ since $\text{null } S \subseteq \text{null } T$, therefore T(v - w) = 0, and then Tv = Tw, so E is a mapping.

Now we show that E is a linear transformation.

- For any $Sv, Sw \in \text{range } S$, E(Sv) + E(Sw) = Tv + Tw = T(v + w) = E(S(v + w)) = E(Sv + Sw).
- For any $Sv \in \text{range } S$ and $\lambda \in F$, $\lambda E(Sv) = \lambda Tv = T(\lambda v) = E(S(\lambda v) = E(\lambda Sv))$.

therefore E is a linear transformation.

Now we can expand the domain of E to W such that E'v = Ev for any $v \in \text{range } S$ (this is proven in previous exercise). For any $v \in V$, we have ESv = E(Sv) = Tv, there fore T = ES.

For another direction, for any $v \in \text{null } S$, we have ESv = E0 = 0 = Tv, so $v \in \text{null } T$.

Exercise 3.26. Suppose V is finite, $S, T \in \mathcal{L}(V, W)$. Show that range $S \subseteq \text{range } T \iff \text{there is } E \in \mathcal{L}(V) \text{ such that } S = TE$.

Proof. Consider the inverse image of range S with basis w_0, \dots, w_n , say v_0, \dots, v_n , it is easy to show v_0, \dots, v_n is linear independent. Then $E(v) = \lambda_0 v_0 + \dots + \lambda_n v_n$ where $Sv = \lambda_0 w_0 + \dots + \lambda_n w_n$.

Exercise 3.27. Suppose $P \in \mathcal{L}(V)$ and $P^2 = P$, show that $V = \text{null } P \oplus \text{range } P$.

Proof. Such element is called *idempotent* in algebra.

We will show null $P \oplus \text{range } P$ by showing null $P \cap \text{range } P = \{0\}$. For any $v \in \text{null } P \cap \text{range } P$, we know there is $w \in V$ such that Pw = v since $v \in rangevP$, then $P^2(v) = P(Pv) = P0 = 0$ since $v \in \text{null } P$ and $P^2(v) = P(Pv) = Pw$, so Pw = 0 while Pw = v therefore v = 0.

Then we have dim $V = \dim \operatorname{null} P + \dim \operatorname{range} P$ and dim(null $P \oplus \operatorname{range} P$) = dim null $P + \dim \operatorname{range} P - \dim\{0\}$, so $V = \operatorname{null} P \oplus \operatorname{range} P$.

Exercise 3.28. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbb{R}))$ such that for any non-constant polynomial $p \in \mathcal{P}(\mathbb{R})$, $\deg(Dp) = \deg p - 1$. Show that D is surjective.

Proof. We induction on n, starts from 1, to show that $D(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_{n-1}(\mathbb{R})$.

- Base: for any $p \in \mathcal{P}(\mathbb{R})$ where $\deg p = 1$, we know $\deg Dp = 0$, so $D(\mathcal{P}_1(\mathbb{R}))$ is a non-zero subspace of $\mathcal{P}_0(\mathbb{R})$, which is $\mathcal{P}_0(\mathbb{R})$.
- Induction: We have induction hypothesis: For any $i \leq n$, we have $D(\mathcal{P}_i(\mathbb{R})) = \mathcal{P}_{i-1}(\mathbb{R})$. We want to show that $D(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$. For any $p \in \mathcal{P}(\mathbb{R})$ with deg p = n+1, we can write p in form of $p = \lambda x^{n+1} + r$ where deg p = n+1 where $p = D(\lambda x^{n+1} + r) = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 and deg p = n+1. So $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 and deg p = n+1. So $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 and deg p = n+1 and deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 and deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg $p = D(\lambda x^{n+1}) + Dr$ where deg $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg p = n+1 for $p = D(\lambda x^{n+1}) + Dr$ where deg $p = D(\lambda x^{n+1}) + Dr$ for $p = D(\lambda x$

Exercise 3.29. For any $p \in \mathcal{P}(\mathbb{R})$, show that there is $q \in \mathcal{P}(\mathbb{R})$ such that 5q'' + 3q' = p.

Proof. We can rewrite the goal as 5DDq + 3Dq = p where D(p) = p', then 5DDq + 3Dq = D(5Dq) + D(3q) = D(5Dq + 3q) = p. We know D is surjective by the previous exercise, the goal is now showing that 5Dq + 3q = r where Dr = p. Then we continue rewrite the goal 5Dq + 3q = (5D)q + (3I)q = (5D + 3I)q = r, we will show that 5D + 3I is surjective, we use the same method in previous exercise.

We denote 5D+3I by F, and induction on $n \in \mathbb{N}$ to show that $F(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$.

- Base: We should show that $F(\mathcal{P}_0(\mathbb{R})) = \mathcal{P}_0(\mathbb{R})$, for any $p \in \mathcal{P}_0(\mathbb{R})$, we have Fp = 5Dp + 3p, where Dp = 0 since $\deg p = 0$, so Fp = 3p, which means we have $1 \in F(\mathcal{P}_0(\mathbb{R}))$ since p is literally a number and $\frac{1}{3p}Fp = 1$.
- Induction: We have induction hypothesis: $F(\mathcal{P}_n(\mathbb{R})) = \mathcal{P}_n(\mathbb{R})$, and we want to show $F(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_{n+1}(\mathbb{R})$.

For any $p \in \mathcal{P}_{n+1}(\mathbb{R})$, we have Fp = 5Dp + 3p where $\deg 5Dp = n$ and $\deg 3p = n + 1$, then we can eliminate 5Dp and every term in p with degree less then n + 1 since $\mathcal{P}_n(\mathbb{R}) \subseteq \operatorname{range} F$, then we get z^{n+1} , thus $F(\mathcal{P}_{n+1}(\mathbb{R})) = \mathcal{P}_{n+1}(\mathbb{R})$.

Therefore there is q such that (5D+3I)q=r since 5D+3I is surjective. Another solution from internet: Define Tq=5q''+3q', we can see for any $q \in \mathcal{P}(\mathbb{R})$ we have $\deg Tq=\deg q-1$, so T is surjective. Then there is q such that Tq=5q''+3q'=p.

Exercise 3.30. Suppose $\varphi \in \mathcal{L}(V, F)$ not zero, and $u \in V$ that $u \notin \text{null } \varphi$, show that $V = \text{null } \varphi \oplus \{ au \mid a \in F \}$.

Proof. We can see φ is surjective since $\varphi u \neq 0$, then for any $i \in F$, we have $(i(\varphi u)^{-1})\varphi u = i$.

For any $v \in V$, since φ is surjective (in a particular way), so we have $a\varphi u$ such that $a\varphi u = \varphi v$, then $\varphi(au - v) = 0$ so $au - v \in \text{null } \varphi$. That means (-1)(au - v) + au = v where $(-1)(au - v) \in \text{null } \varphi$ and $au \in \{au \mid a \in F\}$, so $V = \text{null } \varphi + \{au \mid a \in F\}$.

Then $\operatorname{null} \varphi \oplus \{ au \mid a \in F \} \text{ since } u \notin \operatorname{null} \varphi.$

Exercise 3.31. Suppose V is finite (dim V > 1), show that if $\varphi : \mathcal{L}(V) \to F$ is a linear mapping with property $\varphi(ST) = \varphi(S)\varphi(T)$ for any $S, T \in \mathcal{L}(V)$, show that $\varphi = 0$.

Proof. Consider null φ , since dim V > 1 while dim F = 1, so φ cannot be injective, therefore null $\varphi \neq \{0\}$.

For any non-zero $S \in \text{null } \varphi$ and $T \in \mathcal{L}(V)$, we have $\varphi(ST) = \varphi(S)\varphi(T) = 0 = \varphi(T)\varphi(S) = \varphi(TS)$ since $S \in \text{null } \varphi$, thus $ST \in \text{null } \varphi$. We show that null φ is an ideal of $\mathcal{L}(V)$, recall that the property of $\mathcal{L}(V)$, the only ideal of $\mathcal{L}(V)$ is $\{0\}$ and LT(V), so null $\varphi = \mathcal{L}(V)$, which means $\varphi = 0$.

Exercise 3.32. Let V, W are vector spaces and $T \in \mathcal{L}(V, W)$, define $T_C : V_C \to W_C$:

$$T_C(u+iv) = Tu + iTv$$

for any $u, v \in V$.

- 1. Show that T_C is a (complex) linear mapping from V_C to W_C .
- 2. Show that T_C is injective \iff T is injective.
- 3. Show that range $T_C = W_C \iff \text{range } T = W$.

Proof.

1. For any $u, v, s, t \in V \ \lambda \in \mathbb{C}$, we have

$$T((u+iv) + (s+it))$$
= $T(u+s+i(v+t))$
= $T(u+s) + iT(v+t)$
= $Tu+Ts+iTv+iTt$
= $T(u+iv) + T(s+it)$

and

$$\lambda T(u+iv)$$

$$=\lambda (Tu+iTv)$$

$$=\lambda Tu+\lambda iTv$$

$$=T(\lambda u)+iT(\lambda v)$$

$$=T(\lambda u+i(\lambda v))$$

$$=T(\lambda u+i\lambda v)$$

$$=T(\lambda (u+iv))$$

I believe these are trivial, so the future me should be able to prove these without any effort. \Box

Exercise 3.4. Suppose $D(p) = p' : \mathcal{L}(\mathcal{P}_3(\mathbb{R})) \to \mathcal{L}(\mathcal{P}_2(\mathbb{R}))$. Find a basis of $\mathcal{L}(\mathcal{P}_3(\mathbb{R}))$ and a basis of $\mathcal{L}(\mathcal{P}_2(\mathbb{R}))$, such that $\mathcal{M}(D)$ about these basis is:

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

Proof. Consider $x, x^2, x^3, 1$ the basis of $\mathcal{P}_3(\mathbb{R})$ and $1, x, 2x^2$.

Exercise 3.5. Suppose V and W are finite and $T \in \mathcal{L}(V, W)$. Show that there are basis of V and W respectively, such that $\mathcal{M}(T, \text{those basis})$ is all zero except 1 at k, k $(1 \le k \le \dim \operatorname{range} T)$.

Proof. Consider the basis w_0, \dots, w_{k-1} of range T and the basis w_0, \dots, w_{m-1} of W which expands from w_0, \dots, w_{k-1} . Then there must be v_0, \dots, v_{k-1} such that $Tv_i = w_i$ for all $0 \le i < k$, we know v_0, \dots, v_{k-1} is linear independent since w_0, \dots, w_{k-1} is linear independent, so we can expand it to a basis of V, say v_0, \dots, v_{n-1} .

We claim that $\mathcal{M}(T, v_0, \dots, v_{n-1}, w_0, \dots, w_{m-1})$ is a matrix with all zero but 1 at k, k $(1 \leq k < \operatorname{range} T)$. For any $\lambda_0 v_0 + \dots + \lambda_{n-1} v_{n-1} \in V$, we have $T(\lambda_0 v_0 + \dots + \lambda_{n-1} v_{n-1}) = \lambda_0 w_0 + \dots + \lambda_{k-1} w_{k-1}$, note that all v_i where $i \geq k$ disappear, since they maps to 0. Therefore $\mathcal{M}(T)$ is all zero but 1 at k, k (since $\lambda_i w_i$ in the last equation).

Exercise 3.6. Show that $-^T: F^{m,n} \to F^{n,m}$ is a linear mapping.

Exercise 3.7. Show that $(AB)^T = B^T A^T$.

Proof. Suppose A is a $m \times n$ matrix and B is a $n \times p$ matrix, then for any $i \in [1, m]$ and $j \in [1, p]$, we have $(AB)_{i,j}^T = (AB)_{j,i} = \sum_{r=1}^n A_{j,r} B_{r,i} = \sum_{r=1}^n B_{i,r}^T A_{r,j}^T = (B^T A^T)_{i,j}$.

Exercise 3.8. Let A a $m \times n$ matrix, show that the rank of A is $1 \iff$ there is $c_0, \dots, c_{m-1} \in F^m$ and $d_0, \dots, d_{n-1} \in F^n$ such that $A_{j,k} = c_j d_k$ for all $j = 0, \dots, m-1$ and $k = 0, \dots, n-1$.

Proof. The right hand side is actually the external product of vectors, that is vw^T .

- (\Rightarrow) is easy since we can use the theorem that any $m \times n$ matrix A can be expressed by CR where C is a $m \times r$ matrix, R is a $r \times n$ matrix, r is the rank of A. In this case, r = 1, so C and R are just vectors.
- (\Leftarrow) is also easy since other column is a scalar multiple of the first column, therefore the rank of A is 1.

Exercise 3.9. Let $T \in \mathcal{L}(V)$, u_0, \dots, u_{n-1} and v_0, \dots, v_{n-1} are the bases of V, show that the following statements are equivalent:

- 1. T is injective
- 2. The columns of $\mathcal{M}(T)$ is linear independent
- 3. The columns of $\mathcal{M}(T)$ spans $F^{n,1}$
- 4. The lines of $\mathcal{M}(T)$ is linear independent
- 5. The lines of $\mathcal{M}(T)$ spans $F^{1,n}$

Proof. (2), (3) are obviously equivalent and (4), (5) too. Although I want to make an arrow loop, but the arrow between (1) and (4), (5) is too hard, so I will show that (1) \iff (2), (3) and (2), (3) \iff (4), (5).

- (\Rightarrow) Let $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1} = [0, \dots, 0]$, then $T(\lambda_0 u_0 + \cdots + \lambda_{n-1} u_{n-1}) = 0$, so λ_i are 0 since T is injective, which means null $T = \{0\}$. (\Leftarrow) For any $T(\lambda_0 u_0 + \cdots + \lambda_{n-1} u_{n-1}) = 0$, we have the linear combination of v_i is 0 where the coefficients come from $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1}$ (w_i are the columns of $\mathcal{M}(T)$), therefore the coefficients are all 0 since v_i is linear independent, thus $\lambda_0 w_0 + \cdots + \lambda_{n-1} w_{n-1} = 0$, which means λ_i are all 0 since w_i is linear independent.
- For any matrix, its line rank is equal to its column rank, so columns independent \iff lines independent.

Exercise 3.4. Let V a finite vector space with $\dim V > 1$, show that $S = \{ T \text{ is singular } | T \in \mathcal{L}(V) \} \text{ is } NOT \text{ a subspace of } \mathcal{L}(V).$

Proof. If S is a subspace of $\mathcal{L}(V)$, then it is an ideal of $\mathcal{L}(V)$ since for any $A \in S$ and $B \in \mathcal{L}(V)$, AB and BA are singular, therefore $AB, BA \in S$. However, we know the only two ideals of $\mathcal{L}(V)$ is $\{0\}$ and $\mathcal{L}(V)$, none of them is S.

Exercise 3.11. Let V finite vector space, and $S, T \in \mathcal{L}(V)$, show that

ST is invertible \iff S and T are invertible

Proof.

- (\Rightarrow) Suppose STW = WST = I, then S(TW) = (TW)S = I since $\dim V = \dim V$, therefore $S^{-1} = TW$, also (WS)T = T(WS) = I since $\dim V = \dim V$, therefore $T^{-1} = WS$.
- (⇐) Trivial.

Exercise 3.12. Let V finite vector space, and $S, T, U \in \mathcal{L}(V)$ such that STU = I, Show that $T^{-1} = US$.

Proof. Since STU = I we know U is invertible (since STU is invertible), then $ST = U^{-1}$. Since U^{-1} is invertible, we know S and T are invertible therefore $T = S^{-1}U^{-1}$ and $T^{-1} = US$.

Exercise 3.13. Show that the conclusion of previous exercise can be false if V is not finite.

Proof. Let $S(x_0, x_1, ...) = (x_1, ...)$ the backward-shift mapping and $U(x_0, x_1, ...) = (0, x_0, x_1, ...)$ the forward-shift mapping and T = I the identity mapping.

We have SU = I and $US \neq I$, T is clearly invertible with $T^{-1} = I$, but we know $US \neq I$, so $T^{-1} = US \neq I$.

In fact, this also disprove the infinite version of 3.11 since SU is invertible but neither S nor U is invertible.

Exercise 3.17. Let V a finite vector space, $S \in \mathcal{L}(V)$, define $A \in \mathcal{L}(\mathcal{L}(V))$ by A(T) = ST, show that:

- 1. dim null $\mathcal{A} = (\dim V)(\dim \operatorname{null} S)$
- 2. dim range $\mathcal{A} = (\dim V)(\dim \operatorname{range} S)$

Proof. Since $A \in \mathcal{L}(\mathcal{L}(V))$, we know dim $\mathcal{L}(V) = \dim \text{null } A + \dim \text{range } A$, also, dim $\mathcal{L}(V) = (\dim V)^2$ and dim $V = \dim \text{null } S + \dim \text{range } S$. Therefore we have dim null $A + \dim \text{range } A = (\dim V)(\dim \text{null } S + \dim \text{range } S)$, which means we only need to prove one of (1) and (2).

We will show that $\dim \operatorname{null} \mathcal{A} = (\dim V)(\dim \operatorname{null} S)$. We found that $\dim \mathcal{L}(V, \operatorname{null} S) = (\dim V)(\dim \operatorname{null} S)$, so it would be nice if $\operatorname{null} \mathcal{A} = \mathcal{L}(V, \operatorname{null} S)$. For any $T \in \operatorname{null} \mathcal{A}$, we have ST = 0, which means range $T \subseteq \operatorname{null} S$, therefore $T \in \mathcal{L}(V, \operatorname{null} S)$. For any $T \in \mathcal{L}(V, \operatorname{null} S)$, we have ST = 0 since range $T \subseteq \operatorname{null} S$, so $T \in \operatorname{null} \mathcal{A}$, therefore $\operatorname{null} \mathcal{A} = \mathcal{L}(V, \operatorname{null} S)$, thus $\dim \operatorname{null} A = (\dim V)(\dim \operatorname{null} S)$.

Exercise 3.18. Show that V and $\mathcal{L}(F, V)$ are isomorphic.

Proof. This can be proven by dim $V = \dim \mathcal{L}(F, V) = 1(\dim V)$, but we can find $\varphi(v) = x \mapsto xv$ an isomorphism. For any $T \in \mathcal{L}(F, V)$, T is determined by T(1).

Exercise 3.1. Let $T: V \to W$, the graph of T is a subset of $V \times W$ such that graph of $T = \{ (v, Tv) \mid v \in V \}$

Show that T is a linear mapping \iff the graph of T is a subspace.

Proof.

- $(0,T0) \in \text{graph of } T.$ (v,Tv) + (w+Tw) = (v+w,Tv+Tw) = (v+w,T(v+w)). $\lambda(v,Tv) = (\lambda v,\lambda Tv) = (\lambda v,T(\lambda v))$
- (v, Tv) + (w + Tw) = (v + w, T(v + w)) since the graph of T is a subspace, therefore Tv + Tw = T(v + w). Similarly, $\lambda Tv = T(\lambda v)$.

Exercise 3.3. Let V_i are vector spaces, show that $\mathcal{L}(V_0 \times \cdots \times V_{m-1}, W) \simeq \mathcal{L}(V_0, W) \times \cdots \times \mathcal{L}(V_{m-1}, W)$.

Proof. This can be proven by $A \times B$ is a categorical product, so we will show that for any A, B are vector spaces, $A \times B$ is a product.

In order to show that $A \times B$ is a product, or more specificly, $A \times B$ equipped with linear mappings

$$\pi_0(a,b) = a$$

$$\pi_1(a,b) = b$$

is a product, we have to show that for any C, $s \in \mathcal{L}(C, A)$ and $t \in \mathcal{L}(C, B)$, there is a unique $u \in \mathcal{L}(C, A \times B)$ such that $s = \pi_0 \circ u$ and $t = \pi_1 \circ u$.

Define $u(c) = (sc, tc) : C \to A \times B$, we will show that u is a linear mapping.

- For all $v, w \in C$, u(v) + u(w) = (sv, tv) + (sw, tw) = (sv + sw, tv + tw) = (s(v + w), t(v + w)) = u(v + w)
- For all $c \in C$ and $\lambda \in F$, $\lambda u(c) = \lambda(sc, tc) = (\lambda sc, \lambda tc) = (s(\lambda c), t(\lambda c)) = u(\lambda c)$.

Then we can see $\pi_0(u(c)) = \pi_0(sc, tc) = sc$ and $\pi_1(u(c)) = \pi_1(sc, tc) = tc$. Now we have to show that u is unique (which is trivial, I don't want to prove this, sorry).

Exercise 3.5. Let m a positive number, define $V^m = \underbrace{V \times \cdots \times V}_m$, show that $V^m \simeq \mathcal{L}(F^m, V)$.

Proof. Define $\varphi(v_0, \dots, v_{m-1}) = i_0, \dots, i_{m-1} \mapsto i_0 v_0 + \dots + i_{m-1} v_{m-1}$ which accept a list of vector and a list of coefficients then produce a linear combination.

For any $T \in \mathcal{L}(F^m, V)$, T is completely determined by $T(1, \dots, 1) = v_0 + \dots + v_{m-1}$, therefore $\varphi(v_0, \dots, v_{m-1}) = T$ and thus φ is surjective.

For any $(v_0, \dots, v_{m-1}), (w_0, \dots, w_{m-1}) \in V^m$ such that $\varphi(v_0, \dots, v_{m-1}) = \varphi(w_0, \dots, w_{m-1})$, then $w_0 = \varphi(v_0, \dots, v_{m-1})(1, 0, \dots, 0) = \varphi(v_0, \dots, v_{m-1})(1, 0, \dots, 0) = v_0$, same for other v_i and w_i , so $(v_0, \dots, v_{m-1}) = (w_0, \dots, w_{m-1})$, therefore φ is injective.

Exercise 3.6. Let $v, x \in V$ and $U, W \subseteq V$ are subspaces such that v + U = x + W. Show that U = W.

Proof. We know $v = x + w_0$ for some $w_0 \in W$ since v + U = x + W and $v \in v + U$, then for any $u \in U$, we have v + u = x + w for some $w \in W$, then $(x + w_0) + u = x + w$ therefore $u = x + w - x - w_0 = w - w_0 \in W$ thus $U \subseteq W$. Similarly $W \subseteq U$.

Exercise 3.7. Let $U = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + 5z = 0 \}$ and $A \subseteq \mathbb{R}^3$. Show that A is a translate of U (that is A = a + U) \iff there is c such that $A = \{ (x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + 5z = c \}$.

Proof.

- (\Rightarrow) For any $(a_0, a_1, a_2) + (x, y, z) \in a + U$, we have $2(a_0 + x) + 3(a_1 + y) + 5(a_2 + z) = 2a_0 + 3a_1 + 5a_2$, therefore $c = 2a_0 + 3a_1 + 5a_2$.
- (\Leftarrow) We can see 2, 3 and 5 are coprime to each other, therefore there is $2a_0 + 3a_1 + 5a_2 = 1$ (I am not sure if this is true in generalized case, I just extends the theorem " $as+bt=1 \iff$ a coprime to b" to three elements case without checking), in this case we have 2(1) + 3(-2) + 5(1) = 1, then for any 2x + 3y + 5z = c, we have $2x + 3y + 5z = 2(ca_0) + 3(ca_1) + 5(ca_2)$, then $2(x ca_0) + 3(y ca_1) + 5(z ca_2) = 0$, therefore $A = ((-c)(a_0, a_1, a_2)) + U$.

Exercise 3.8. Let $T \in \mathcal{L}(V, W)$ and $c \in W$, show that $\{v \in V \mid Tv = c\}$ is an empty set or a translate of null T. Then explain why the solutions of a system of linear equations is either an empty set or a translate of some subspace of F^n .

Proof. Let Ta = c for some $a \in V$, if no such a, then $\{v \in V \mid Tv = c\} = \emptyset$. We claim $\{v \in V \mid Tv = c\} = a + \text{null } T$. For any $v \in V$ such that Tv = c,

then v = a + v - a and T(v - a) = Tv - Ta = c - c = 0, therefore $v - a \in \text{null } T$, thus $v \in a + \text{null } T$. In another direction, for any $a + v \in a + \text{null } T$, we have T(a + v) = Ta + Tv = c + 0 = c.

Exercise 3.9. Let $A \subseteq V$ a non-empty subset. Show that A is a translate of some subspace of $V \iff \lambda v + (1 - \lambda)w \in A$ for any $v, w \in A$ and $\lambda \in F$.

Proof.

- (\Rightarrow) Suppose A = a + U for some subspace $U \subseteq V$.
- (\Leftarrow) Let $w \in A$, we will show that (-w) + A is a subspace of V.

For any $a-w, b-w \in (-w)+A$, we need to show that $a-w+b-w=(a+b-w)-w \in (-w)+A$ or equivalently $a+b-w \in A$. We found that the property $\lambda v+(1-\lambda)w \in A$ gives us the ability to construct something like v-w. Since 2v+(1-2)w=2v-w, we just let w=v+a then 2v-(v+a)=v-a. Therefore, we let $\lambda=2, v=a+b$ and w=a+b+w, and now $2(a+b)-(a+b+w)=a+b-w \in A$, so $a+b-w-w \in (-w)+A$.

For any $a - w \in (-w) + A$ and $\lambda \in F$, we need to show that $\lambda(a - w) \in (-w) + A$. $\lambda(a - w) = \lambda a - \lambda w = \lambda a - (\lambda - 1)w - w$. We let $\lambda = (-1)(\lambda - 1) = (1 - \lambda)$, v = w and w = a in $\lambda v + (1 - \lambda w) \in A$, then $(1 - \lambda)w + (1 - (1 - \lambda))a = (-1)(\lambda - 1)w + \lambda a = \lambda a - (\lambda - 1)w \in A$, therefore $\lambda a - (\lambda - 1)w - w = \lambda a - \lambda w \in (-w) + A$.

Therefore (-w) + A is a subapce of V and w + (-w) + A is a translate.

Exercise 3.10. Let A = a + U and B = b + W where $a, b \in V$, $U, W \subseteq V$ are subspaces. Show that $A \cap B$ is either a translate of some subspace of V or an empty space.

Proof. Suppose $A \cap B \neq \emptyset$, we claim that $A \cap B$ is a translate of $U \cap W$, more specificly, for any $a+u_0 = b+w_0 \in A \cap B$, we claim that $A \cap B = (a+u_0)+U \cap W$.

For any $u = w \in U \cap W$, we have $(a + u_0) + u = a + (u_0 + u) \in a + U$, similarly, we have $(b + w_0) + w = b + (w_0 + w) \in b + W$, therefore $(a + u_0) + (U \cap W)$ subseteq $A \cap B$.

For any $a + u = b + w \in A \cap B$, we have $a + u - (a + u_0) = u - u_0 \in U$ and $b + w - (b + w_0) = w - w_0 \in W$, therefore $A \cap B \subseteq (a + u_0) + (U \cap W)$. \square

Exercise 3.12. Let $v_0, \dots, v_{m-1} \in V$ and

$$A = \{ \lambda_0 v_0 + \dots + \lambda_{m-1} v_{m-1} \mid \lambda_i \in F \text{ and } \lambda_0 + \dots + \lambda_i = 1 \}$$

- 1. Show that A is a translate of a subspace of V.
- 2. If B a translate of a subspace of V such that $v_0, \dots, v_{m-1} \in B$, show that $A \subseteq B$.
- 3. Base on (1), show that the dimension of such subspace is less then m.

Proof.

• If A is a translate of a subspace of V, say B, then for any $a \in A$, we have A = a + B. Therefore B = (-a) + A, we may pick $a = v_0$, we find that for any $b \in B$, it is in form $(-1)(v_0) + \lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1}$ where $\lambda_0 + \cdots + \lambda_{m-1} = 1$, which implies $(-1) + \lambda_0 + \cdots + \lambda_{m-1} = 0$. Then we claim $B = \{ \lambda_0 v_0 + \cdots + \lambda_{m-1} v_{m-1} \mid \lambda_0 + \cdots + \lambda_{m-1} = 0 \}$ is a subspace and $A = v_0 s + B$.

•

Exercise 3.16. Let $\varphi \in \mathcal{L}(V, F)$ where $\varphi \neq 0$, show that $\dim(V/(\operatorname{null} \varphi)) = 1$.

Proof. For any non-zero $v + \text{null } \varphi, w + \text{null } \varphi \in V/(\text{null } \varphi)$ (existence is guaranteed since $\varphi \neq 0$), since $\varphi(w) \in F$, then there is some λ such that $\lambda \varphi(w) = \varphi(v)$ cause $\varphi(v)$ and $\varphi(w)$ are non-zero, then $\varphi(\lambda w) = \varphi(v)$, which means $v + \text{null } T = (\lambda w) + \text{null } T$, therefore $\dim(V/\text{null } \varphi)$ cause any two (non-zero) vectors are linear dependent.

Exercise 3.17. Let $U \subseteq V$ a subspace such that $\dim(V/U) = 1$. Show that there is $\varphi \in \mathcal{L}(V, F)$ such that $\operatorname{null} \varphi = U$.

Proof. We know there is an isomorphism $i \in \mathcal{L}(V/U, F)$ since $\dim(V/U) = \dim F = 1$, then $\varphi = i \circ \pi$ where $\pi \in \mathcal{L}(V, V/U)$. Since i is injective, null $\varphi = \text{null } \pi = U$.

123