1 Definitions

1.1 Deep learning

1.2 Todo

TODO:

1.3 Formal description

We denote by I_f the domain of definition of a function f ("I" for "input") and by $O_f = f(I_f)$ its image ("O" for "output"), and we represent it as $I_f \xrightarrow{f} O_f$. Vector spaces considered in this thesis are always assumed to be finite-dimensional. We define a tensor space of rank r as a cartesian product of r vector spaces, equipped with the coordinate-wise sum and a mono-linear outer product. An entry of a tensor t is denoted $t[i_1, i_2, \ldots, i_r]$. An activation function h defined from a n-d vector space to itself is a 1-d function applied dimension-wise and we use the functional notation $h(v) = (h(v[1]), h(v[2]), \ldots, h(v[n]))$.

Definition 1.1. Neural network

Let F be a function such that I_f and O_f are vector or tensor spaces.

F is a mathematical formulation of a neural network if there are a series of linear functions $(g_k)_{k=1,2,..,L}$ and a series of non-linear derivable activation functions $(h_k)_{k=1,2,..,L}$ such that:

$$\begin{cases}
\forall k \in \{1, 2, ..., L\}, f_k = h_k \circ g_k, \\
I_F = I_{f_1} \xrightarrow{f_1} O_{f_1} \cong I_{f_2} \xrightarrow{f_2} ... \xrightarrow{f_L} O_{f_L} = O_F, \\
F = f_L \circ ... \circ f_2 \circ f_1
\end{cases} \tag{1}$$

The couple (g_k, h_k) is called the k-th layer of the neural network. For $x \in I_f$, we denote by $x_k = f_k \circ ... \circ f_2 \circ f_1(x)$ the activations of the k-th layer.

Remark 1. Connectivity matrix

Any linear function g is characterized by a set of parameters Θ_g , that we order arbitrarily in the dimensions of a vector θ_g . Without loss of generality, let's suppose I_g and O_g are vector spaces¹. Then there exists a connectivity matrix W, with entries denoted W[i,j] for which:

$$\begin{cases} \forall x \in I_g, g(x) = Wx \\ \forall (i,j), W[i,j] \in \Theta_g \text{ or } W[i,j] = 0 \end{cases}$$
 (2)

Remark 2. Biological inspiration

A (computational) neuron is a computational unit that is biologically inspired. Each neuron should be capable of:

1. receiving modulated signals from other neurons and aggregate them,

¹for instance if they are tensor spaces, they can be reshaped to vector spaces

- 2. applying to the result a derivable activation,
- 3. passing the signal to other neurons.

That is to say, each domain $\{I_{f_k}\}$, O_F can be interpreted as a layer of neurons, with one neuron for each dimension. The connectivity matrices $\{W_k\}$ describe the connexions between each successive layers. A neuron is illustrated on Figure 1.

Figure 1: A neuron (placeholder)

Definition 1.2. Weights

The weights of the k-th layer of a neural network, denoted Θ_k , are defined as the set of parameters of its linear part. A weight that appear multiple times in W_k is said to be shared. Two parameters of W_k that share a weight are said to be tied.

Remark 3. Training

Usually, a loss function \mathcal{L} penalizes the output $x_L = F(x)$. Its gradient w.r.t. θ_k , denoted ∇_{θ_k} , is used to update the weights via an optimization algorithm based on gradient descent and a learning rate α , that is:

$$\theta_k^{\text{new}} = \theta_k^{\text{old}} - \alpha \cdot \vec{\nabla}_{\theta_k} \tag{3}$$

where α depends on training variables and can be a scalar or a vector, and so \cdot denotes here outer or pointwise product. TODO: Give some ref of optimization algorithms

Remark 4. Linear complexity

Thanks to the chain rule, ∇_{θ_k} can be computed using gradients that are w.r.t. x_k , denoted ∇_{x_k} , which in turn can be computed using gradients w.r.t. outputs of the next layer k+1, up to the gradients given on the output layer.

That is:

$$\vec{\nabla}_{\theta_k} = J(x_k)_{\theta_k} \vec{\nabla}_{x_k}$$

$$\vec{\nabla}_{x_k} = J(x_{k+1})_{x_k} \vec{\nabla}_{x_{k+1}}$$

$$(4)$$

$$\vec{\nabla}_{x_{k+1}} = J(x_{k+2})_{x_{k+1}} \vec{\nabla}_{x_{k+2}}$$
(5)

$$\vec{\bigtriangledown}_{x_{L-1}} = J(x_L)_{x_{L-1}} \vec{\bigtriangledown}_{x_L}$$

Obtaining,

$$\vec{\nabla}_{\theta_k} = J(x_k)_{\theta_k} (\prod_{p=k}^{L-1} J(x_{p+1})_{x_p}) \vec{\nabla}_{x_L}$$
(6)

where $J(.)_{\text{wrt}}$ are the respective jacobians which can be determined with the layer's expressions and the $\{x_k\}$.

This allows to compute the gradients with a complexity that is linear with the number of weights, instead of being quadratic if it were done with the difference quotient expression of the derivatives.

Remark 5. Neural interpretation

We can remark that (5) rewrites as

$$\vec{\nabla}_{x_k} = J(x_{k+1})_{x_k} \vec{\nabla}_{x_{k+1}}$$

$$= J(h(x_k'))_{x_k'} J(W_k x_k)_{x_k} \vec{\nabla}_{x_{k+1}}$$
(7)

where $x'_k = W_k x_k$, and these jacobians can be expressed as:

$$J(h(x'_k))_{x'_k}[i,j] = \delta_i^j h'(x'_k[i]) J(h(x'_k))_{x'_k} = Ih'(x'_k)$$
(8)

$$J(W_k x_k)_{x_k} = W_k^T \tag{9}$$

That means that we can write $\overrightarrow{\nabla}_{x_k} = (\widetilde{h}_k \circ \widetilde{g}_k)(\overrightarrow{\nabla}_{x_{k+1}})$ such that the connectivity matrix \widetilde{W}_k is obtained by transposition. This can be interpreted as gradient calculation being a *back-propagation* on the same neural network, in opposition of the *forward-propagation* done to compute the output.

Remark 6. Bias

In TODO:

Definition 1.3. Dense layer

A dense layer (g,h) is a layer such that there is a weight matrix W for which

$$\left\{ \begin{array}{l} I_g \text{ and } O_g \text{ are vector spaces} \\ \forall x \in I_g, g(x) = Wx \end{array} \right.$$

Definition 1.4. Partially connected layer

A partially connected layer is a dense layer such that $\exists (i, j), W_{i,j} = 0$.

Definition 1.5. Convolutional layer

A n-dimensional convolutional layer (g,h) is a layer such that there is a weight tensor W of rank n+2 for which

$$\left\{ \begin{array}{l} I_g \text{ and } O_g \text{ are tensor spaces of rank } n+1 \\ \forall x \in I_g, g(x) = (g(x)_q = \sum\limits_p W_{pq} *_n x_p)_{\forall q} \end{array} \right.$$

where p and q index the last ranks and $*_n$ denotes the n-d convolution. The tensor slices indexed by p and q are typically called *feature maps*.

Note that a n-dimensional convolutional layer that has its domain and image reshaped to vector spaces is a partially connected layer for which the weight matrix W is a Toeplitz matrix.

Definition 1.6. Pooling

A layer with pooling (g, h) is such that $g = g_1 \circ g_2$, where (g_1, h) is a layer and g_2 is a pooling operation.

Definition 1.7. Reshaping

A layer with dropout (g,h) is such that $h=h_1\circ h_2$, where (g,h_2) is a layer and h_1 is a dropout operation [?]. When dropout is used, a certain number of neurons are randomly set to zero during the training phase, compensated at test time by scaling down the whole layer. This is done to prevent overfitting. TODO: neuron interpretation

A multilayer perceptron (MLP) [?] is a neural network composed of only dense layers. A convolutional neural network (CNN) [?] is a neural network composed of convolutional layers.

Neural networks are commonly used for machine learning tasks. For example, to perform supervised classification, we usually add a dense output layer $s = (g_{L+1}, h_{L+1})$ with as many neurons as classes. We measure the error between an output and its expected output with a discriminative loss function \mathcal{L} . During the training phase, the weights of the network are adapted for the classification task based on the errors that are back-propagated [?] via the chain rule and according to a chosen optimization algorithm (e.g. [?]).

1.4 Graphs

A graph G is defined as a couple (V, E) where V represents the set of nodes and $E \subseteq \binom{V}{2}$ is the set of edges connecting these nodes.

TODO: Example of figure

We encounter the notion of graphs several times in deep learning:

- Connections between two layers of a deep learning model can be represented as a bipartite graph, coined *connectivity graph*. It encodes how the information is propagated through a layer to another. See section 1.4.1.
- A computation graph is used by deep learning frameworks to keep track of the dependencies between layers of a deep learning models, in order to compute forward and back-propagation. See section 1.4.2.
- A graph can represent the underlying structure of an object (often a vector), whose nodes represent its features. See section 1.4.3.
- Datasets can also be graph-structured, where the nodes represent the objects of the dataset. See section 1.4.4.

1.4.1 Connectivity graph

A Connectivity graph is a graphical representation of the linear part of the mathematical model implemented by a layer of neurons. Formally, given a linear part of a layer, let \mathbf{x} and \mathbf{y} be the input and output signals, n the size of the set of input neurons $N = \{u_1, u_2, \dots, u_n\}$, and m the size of the set of output neurons $M = \{v_1, v_2, \dots, v_m\}$. This layer implements the equation $y = \Theta x$ where Θ is a $n \times m$ matrix.

Definition 1.8. The connectivity graph G = (V, E) is defined such that $V = N \cup M$ and $E = \{(u_i, v_j) \in N \times M, \Theta_{ij} \neq 0\}.$

I.e. the connectivity graph is obtained by drawing an edge between neurons for which $\Theta_{ij} \neq 0$. For instance, in the special case of a complete bipartite graph, we would obtain a dense layer. Connectivity graphs are especially useful to represent partially connected layers, for which most of the Θ_{ij} are 0. For example, in the case of layers characterized by a small local receptive field, the connectivity graph would be sparse, and output neurons would be connected to a set of input neurons that corresponds to features that are close together in the input space. Figure 2 depicts some examples.

Figure 2: Examples

TODO: Figure 2. It's just a placeholder right now

Connectivity graphs also allow to graphically modelize how weights are tied in a neural layer. Let's suppose the $\Theta_i j$ are taking their values only into the finite set $K = \{w_1, w_2, \dots, w_\kappa\}$ of size κ , which we will refer to as the kernel of weights. Then we can define a labelling of the edges $s: E \to K$. s is called the weight sharing scheme of the layer. This layer can then be formulated as $\forall v \in M, y_v = \sum_{u \in N, (u,v) \in E} w_{s(u,v)} x_u$. Figure 3 depicts the connectivity graph of

a 1-d convolution layer and its weight sharing scheme.

Figure 3: Depiction of a 1D-convolutional layer and its weight sharing scheme.

TODO: Add weight sharing scheme in Figure 3

- 1.4.2 Computation graph
- 1.4.3 Underlying graph structure
- 1.4.4 Graph-structured dataset

transductive vs inductive

- 1.5 Geometric grids
- 1.6 Grid graphs
- 1.7 Spatial graphs
- 1.8 Projections of spatial graphs