Introduction to Machine Learning

Dor Bank

Lecture: ML project & preprocessing

The learning diagram – ML course

(set of candidate formulas)

Today - CRISP DM

- CRoss Industry Standard Process for Data Mining
- Several other diagrams exists, but this is the most common
- Real data is not simply sampled from $P(y|\mathbf{x})$!
- Business context, missing values, etc...
- The key is "to tell the data story"

Business understanding

- What problem are we trying to solve?
- Decide on clear measures to assess the success of the project
- For our course project, this does not take much place, as it is already defined for you

Data Understanding / Exploration

- Usually known as EDA Exploratory data analysis
- Business perspective what is the meaning of each feature?
 How do we expect each feature to correlate with the others?
 With the labels? etc.
- Statistics & visualization:
 - How does the data distributes?
 - What can we learn from the data?
 - BIG room from visualizations!
 - Plot for purpose, not for plotting ©

Data Understanding / Exploration

Distribution examples:

Histogram

```
1 df['rating'].plot.hist()
2 plt.show()
```


Boxplots

Statistics

1 df.describe()

\$	year ≑	runtime \$	rating \$
count	1000.000000	1000.000000	1000.000000
mean	2012.783000	113.172000	6.723200
std	3.205962	18.810908	0.945429
min	2006.000000	66.000000	1.900000
25%	2010.000000	100.000000	6.200000
50%	2014.000000	111.000000	6.800000
75%	2016.000000	123.000000	7.400000
max	2016.000000	191.000000	9.000000

Data Understanding / Exploration

More examples:

Categorical Features Distributions

Features Correlation

Missing Values

```
df.isnull().sum()

title 0
genre 0
description 0
director 0
actors 0
year 0
```

Data Preparation / Preprocessing

- After we get a good understanding, we start to process the data a get it ready for the ML model
- It basically includes:
 - Outlier removal
 - Filling missing values
 - Dimensionality reduction
 - Data transformation / normalization
 - Feature engineering
 - etc.

Preprocessing - Outlier removal

- These are samples that do not represent the true distribution of the data, and we do not want our model to learn from them
- Various methods for doing so
- Example using boxplots (assuming the data distributes normally)
- TIP: Do not forget to plot the data!!
- Visualization usually helps

from scipy import stats

df = df[(np.abs(stats.zscore(df)) < 3).all(axis=1)]

Preprocessing – filling missing values

- How does a missing value look like?
- A sample/feature with many missing values remove it
- Fill missing values
 - By average \ median (numerical)
 - By most frequent \ new category (categorical)
 - Constant / zero
 - Serialized data (i.e with dates) use the previous and the next
 - KNN imputation use the nearest neighbors data

```
1 revenue_mean = revenue.mean()
2 revenue.fillna(revenue_mean, inplace=True)
3 revenue.isnull().sum()
```

1 revenue = df["revenue millions"]

```
        col1
        col2
        col3
        col4
        col5

        0
        2
        5.0
        3.0
        6
        NaN

        1
        9
        NaN
        9.0
        0
        7.0

        2
        19
        17.0
        NaN
        9
        NaN
```

Preprocessing – dimensionality reduction

- Why reduce the dimensionality?
 - Increases model variance
 - Exposure to more noise than signal
 - Curse of dimensionality the space is sparser

Feature selection types

- Filter method: Ranks features or feature subsets independently of the classifier
 - Low computational power
 - Independent of model type

- Wrapper method: Uses a predictive model (machine learning) to score feature
- Requires training a model for each feature set
- Commonly used AFTER filter methods

Lecture 4

 Embedded method: Performs variable selection (implicitly) in the course of model training (e.g. decision tree\Lasso)

Meet along the course

subsets

Feature selection – Filter methods

 Select subsets of variables as a pre-processing step, by ranking according to some scoring metric, independently of the learning model

- Relatively fast & not tuned by a given learner
- Very commonly used

Feature selection – Filter methods

- Examples:
 - Label association:
 - Example: Choose the top 10 features correlated with the label
 - Low variation (sparse) features:
 - Remove features with little variation in their value
 - Correlated features (redundancy):
 - Keep only one out of two highly correlated features

Feature selection – Filter methods: scoring functions

- Pearson correlation
 - Measures the linear relationship between two features [continuous not categorical]
 - Definition : $\rho_{X,Y} = \frac{Cov(X,Y)}{SD(X)*SD(Y)} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$
 - Sample Correlation definition:

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} * \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

- Range: [-1,1] (what does the -1,0,1 values mean?)
- No correlation is not necessarily independent. The opposite is true however.
- If r(X,Y) = 0.8, what does it means?

In python: scipy.stats.pearsonr

Feature selection – Filter methods: scoring functions

- Mutual information
 - Measures the amount of uncertainty in X which is removed by knowing Y
 - Discrete random variables X and Y:

$$I(X,Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

Continuous random variables X and Y

$$I(X,Y) = \int_{X} \int_{Y} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right) dy dx$$

- Non negative (equal 0 if X, Y are independent)
- Isn't restricted to linear dependency
- Works for both discrete and continuous variables

In python: Sklearn.metrics.mutual_info_score

Preprocessing – Data transformation

- Normalization: 10 years is not like 10,000\$....
 - <u>0-1</u>: make all features between 0 and 1 by reducing the minimal value and dividing by the max
 - Bounded, but sensitive to outliers

- Bounded, less sensitive, almost linear at the center, but squeezes the edges
- Standardize: make all features to have 0 mean and 1 variance be reducing the mean and dividing by the variance.
 - Highly intuitive, but not bounded

Preprocessing – Data transformation

• Box & Cox: used to reduce the skewness

$$x^* = \begin{cases} \frac{x^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ \log(x) & \text{if } \lambda = 0 \end{cases}$$

$$(\lambda = 0.5) \ (\lambda = -1) \ (\lambda = 2)$$
 Square root Inverse Square transformation transformation transformation

OneHotEncoding / Dummy variables – turning categorical features to numerical

Product Usage	Original	<u>Dummy Variable Code</u>					
Category	Variable	04	0.2	0.2			
	Code	D1	D2	D3			
Nonusers	1	1	0	0			
Light Users	2	0	1	0			
Medium Users	3	0	0	1			
Heavy Users	4	0	0	0			
$\widehat{Y}_{i} = a + b_{1}D_{1} + b_{2}D_{2} + b_{3}D_{3}$							

- <u>Discretization</u> turning numerical features to categorical
 - x' = 0 if x > 10.12.2005 else 1

Preprocessing – Data transformation

- In practice we usually use sklearn transformers
- Instead of 'fit' and 'predict', we have 'fit' and 'transform'
 - The 'fit' learns needed parameters (like mean/variance for StandardScaler, or categories for OneHotEncoder)
- DO NOT USE 'fit' ON THE TEST DATA!
- To be extra careful, do not even fit on the validation in model selection

Standardization

(or Z-score normalization)

$$\hat{x}_{ik} = \frac{x_{ik} - \bar{x}_k}{\bar{\sigma}_k}$$

MinMax Scaling

$$\hat{x}_{ik} = \frac{x_{ik} - \min(x_k)}{\max(x_k) - \min(x_k)}$$

from sklearn.preprocessing import StandardScaler

We initialize our scaler

standard_scaler = StandardScaler()

We fit our scaler

standard_scaler.fit(X)

We transform our X using the scaler we have just fit.

scaled_X = standard_scaler.transform(X)

from sklearn.preprocessing import MinMaxScaler

We initialize our scaler

min_max_scaler = MinMaxScaler()

We fit our scaler

min_max_scaler_scaler.fit(X)

We transform our X using the scaler we have just fit.

scaled_X = min_max_scaler.transform(X)

Preprocessing – Feature engineering

- Create new features for the existing ones (instead / on top)
- PCA is an example for both dimensionality reduction & feature engineering
- Others maybe used with business understanding / domain knowledge

Examples

- Dates -> day of week
- Weight & Height -> BMI
- Grade1, grade2, grade3 -> grade average
- Etc.
- Word of caution correlation does not imply causation

Data Preparation / Preprocessing

- We have covered some examples
- Feel free to use other methods which make sense
- A lot of room for creativity
- Key to success!

Modeling

- Try out different models
- Did our preprocessing match the model?
 - Example: using mutual information and using linear model
- Make sure to "exploit" the full capacity of each model
 - Hyper parameter tuning
 - Regularization
 - etc.

Evaluation

- Check the performance of the model
- Validation, Cross Validation
- Notice the difference between the loss function and the business metric
 - For example, minimizing the cross entropy VS maximizing AUC

Deployment

- After we are sure about our results we "go to production"
- In practice, Not that simple!
- In our project, it simply means to submit predictions for the test set

Important notes

- The CRISP-DM is cyclic, with the ability to go back!
- A DS is an iterative process
- Tip: get as fast and naively through the first iteration
 - Get a first benchmark for evaluation
 - Get past technical difficulties
 - Get initial insight on the data
 - This holds for our project and in general!

Important notes

- For our project, a great project is one where the notebook is almost not needed
- The report (and the results) tell complete story

Good Luck!

Machine learning students at the beginning of a project

VS.

Machine learning students at the end of a project

