Combinatorial Species

Definition

Let

 $\Omega := \{ S \text{ is a Set} : |S| < \infty \}$

$$\Gamma := \{ \sigma : U \longrightarrow V | U, V \in \Omega, |U| = |V|, \forall x, y \in U, \sigma(x) = \sigma(y) \iff x = y \}$$

It's a rule F which:

 $\forall U \in \Omega \exists F[U] \in \Omega(\text{Set of F structures on U})$

 $\forall \sigma: U \longrightarrow V \in \Gamma \exists F[\sigma] \in \Gamma, F[\sigma]: F[U] \longrightarrow F[V]$ (Transport of F structure along σ)

 $\forall \sigma: U \longrightarrow V, \tau: V \longrightarrow W \in \Gamma, F[\sigma \circ \tau] = F[\sigma] \circ F[\tau], F[id_U] = id_{F[U]}$

Examples

- \mathcal{G} : The Species of simple Graphs
 - $\forall U \in \Omega, \mathcal{G}[U]$: A graph with vertex set U.
 - $\forall \sigma \in \Gamma, \mathcal{G}[\sigma]$: A graph transformation, where σ is applied to all values.
- \mathcal{S} : The Species of all Permutations
 - $\begin{array}{l} \ \mathcal{S}[U] = \{\sigma : U \longrightarrow U | \forall x,y \in U, x = y \iff \sigma(x) = \sigma(y)\} \\ \ \mathcal{S}[\sigma](\alpha)(\sigma(u)) = \sigma(\alpha(u)) \end{array}$

Figure: α

Figure: $\sigma(\alpha)$

Some Standard Species

- \mathcal{G} : Simple Graphs
- \mathcal{G}^0 : Connected Simple Graphs
- a: Trees
- \mathcal{A} : Rooted Trees
- \mathcal{D} : Directed Graphs
- $\mathcal{P}ar$: Set Partitions
- \mathcal{P} : Power-set construction
- $\mathcal{E}nd$: Endo-functions
- $\mathcal{I}nv$: Involutions
- S: Permutations
- \mathcal{C} : Species of Cycles
- \mathcal{L} : Species of Linear Orders
- $\forall U \in \Omega, E[U] := \{U\}$: Species of Sets
- $\forall U \in \Omega, E[U] := \{U\}$: Species of Sets $\forall U \in \Omega, \varepsilon[U] := U$: Species of set-elements $\forall U \in \Omega, X[U] := \begin{cases} \{U\} & \text{iff } |U| = 1 \\ \emptyset & \text{otherwise} \end{cases}$: Species of singleton sets $\forall U \in \Omega, 1[U] := \begin{cases} \{U\} & \text{iff } U = \emptyset \\ \emptyset & \text{otherwise} \end{cases}$ $\forall U \in \Omega, 0[U] := \emptyset$ $\forall U \in \Omega, E_k(U) := \begin{cases} \{U\} & \text{iff } |U| = k \\ \emptyset & \text{otherwise} \end{cases}$