When Rationality Meets Intuition: A Research Agenda for Software Design Decision Making

Replication Package

Overview

This document describes the replication package of the paper titled "When Rationality Meets Intuition: A Research Agenda for Software Design Decision Making".

This study has been designed, developed, and reported by the following investigators:

Carianne Pretorius (Eindhoven University of Technology, The Netherlands) Maryam Razavian (Eindhoven University of Technology, The Netherlands) Katrin Eling (Eindhoven University of Technology, The Netherlands) Fred Langerak (Eindhoven University of Technology, The Netherlands)

To obtain further information, researchers who are interested may initiate contact by sending an email to any of the investigators listed above.

The replication package comprises multiple files that are structured and accessible in both .xlsx and .csv formats. Their descriptions and links can be found below.

- 1. Protocol
- 2. Databases and results Document *Databases* Table with queried databases and results
- 3. Codification Framework Document *Codification Framework* Describes the parameters of coding, their descriptions and possible values.
- 4. Primary Studies Document *PrimaryStudies* Complete table of the 26 primary studies included in the research.
- 5. Data Extract Documents *PrimaryStudiesDataCoded* and *PrimaryStudies-DataNonCoded* Extracted data for all primary studies.
- 6. Rationale Documents *Rationale < parametername >* Full rationale and classification tables for each parameter.

Abstract: Context. As society's reliance on software systems escalates over time, so too does the cost of failure of these systems. Meanwhile, the complexity of software systems, as well as their design, is also ever-increasing, influenced by the proliferation of new tools and technologies to address societal needs. The traditional response to this complexity in software engineering and software architecture has been to apply rational approaches to software design, through methods and tools for capturing design rationale and software architecture knowledge management. However, research from other fields demonstrates that intuition may also hold benefits for making complex design decisions. All humans, including software designers, make use of both intuition and rationality in varying combinations.

Objective. The aim of this article is to provide a comprehensive overview of what is known and unknown from existing research regarding the use and performance consequences of using intuition and rationality in software design decision- making.

Methods. To this end, a systematic literature review has been conducted, with an initial sample of 3909 unique publications.

Results. We propose (1) an overview of existing research, based on the literature concerning intuition and rationality use in software design decision-making; and (2) a research agenda with fourteen future research questions, that should encourage researchers to fill identified research gaps. The research agenda and corresponding research questions were developed by means of a narrative synthesis, by reflecting on the research gaps based on findings concerning the use of intuition and rationality in decision-making from other domains. Conclusions. This research agenda emphasizes what should be investigated to be able to develop support for the application of the two cognitive processes in software design decision-making.

Keywords: software design, decision-making, intuition, rationality, systematic literature review, research agenda

Codification Framework

This document describes the parameters of the codification framework related to the literature study. It first gives descriptions of parameters found in all Replication Package documents, after which all possible values of each parameter are listed.

Primary Studies Metadata

The Primary studies are described in Document "PrimaryStudies". Their parameters are described in Table 1.

Table 1: Parameters for primary studies.

Parameter Name	Type	Description
Study Code	Int	Unique study identifier given to each primary study identification
Link	String	Link to main publication page of the study
Title	String	Title of the study
Author	String	List of all authors of the study
Year	String	Year of publication of the study
Venue	String	Venue in which the study was published
Study keywords	String	Keywords of the study as published on main publication page
Rationale for Field	String	Describes the focus of the study in relation to the field

Data Extraction Parameters

Extracted parameter data from the literature study for all primary studies is described in Table 2 and Table 3. Extra tables are provided in Section giving each parameters' full set of the possible coding values. The data extracted from the primary studies can be found in Documents "PrimaryStudies-DataCoded" and "PrimaryStudiesDataNonCoded". The full rationale per parameter can be found in accompanying Documents "Rationale < parametername >".

Table 2: Parameters for Intuition and Rationality Clusters.

Parameter Name	Type	Description
Attributes of Intuition	Set, see Tables 5 and 6	Conceptualizations of Intuition and Ratio-
and Rationality		nality
Intuition Cluster	Set, see Table 4 or 5	Attributes of intuition addressed in the
		study
Rationality Cluster	Set, see Table 4 or 6	Attributes of rationality addressed in the
		study
Element Classification	Set, see Table 4	Final classification of the study

Table 3: Parameters for Decision types, Performance category, Level of Analysis, Antecedents and

Contextual Factors

Parameter Name	Type	Description
	Type	Description
Decision Types	Set, see Table 7	Identification of stages of software design
Performance Category	Set, see Table 8	Types of design decision making performance outcomes
Level of Analysis	Set, see Table 9	Individual or team focus of the study
Antecedents	Set, see Table 10	Factors inducing the use of intuition and rationality
Contextual Factors	Set, see Table 11	Factors for when the use of either approach is beneficial or detrimental

Parameter Values

Possible parameter values for Intuition and Rationality Clusters and Classification in Table 2 are presented in Table 4.

Table 4: Possible codes for Intuition and Rationality from Evans, 2008

Category	Cluster	Code	Description
Intuition		INT	Gut-feeling about a decision option or matching scenarios with past ones
	Consciousness	I-CON	Speed and spontaneity of intuition as defining factors
	Evolution	I-EVO	Intuition in terms of the personal experience of the software designer
	Functional characteristics	I-FUNC	The associative or heuristic nature of intuition
	Individual differences	I-IND	
Rationality		RAT	Evaluating options using rules and logic
	Consciousness	R-CON	Explicit and controlled nature of rationality
	Evolution	R-EVO	Rationality in terms of its reliance on language
	Functional characteristics	R-FUNC	Rule-based, logical, and sequential nature of rationality is emphasized
	Individual differences	R-IND	

Attribute parameter values for Intuition are given in Table 5 and for Rationality in Table 6 on the next pages.

Table 5: Possible attribute values for Intuition parameter from Evans, 2008

	Table 5: Possible attribute value		,
Cluster	Attribute	\mathbf{Code}	Description
Consciousness		I-CON	Speed and spontaneity of intuition as defining factors
	Unconscious (preconscious)	UNC	
	Implicit	\mathbf{IMP}	
	Automatic	\mathbf{AUT}	
	Low effort	\mathbf{LEFF}	
	Rapid	\mathbf{RAP}	
	High capacity	HICA	
	Default process	\mathbf{DFP}	
	Holistic	HOL	
Evolution		I-EVO	Intuition in terms of the personal experience of the software
			designer
	Evolutionarily old	EOL	
	Evolutionary rationality	\mathbf{ERA}	
	Shared with animals	\mathbf{ANI}	
	Non-verbal	\mathbf{NOV}	
	Modular cognition	MOD	
Functional		I-FUNC	The associative or heuristic nature of intuition
characteristics			
	Associative	ASO	
	Domain specific	\mathbf{DOS}	
	Contextualized	\mathbf{CTX}	
	Pragmatic	\mathbf{PRA}	
	Parallel	\mathbf{PAR}	
	Stereotypical	\mathbf{STE}	
Individual dif- ferences		I-IND	
iei eiices	Universal	UNI	
	Independent of general intelligence	IGI	
	Independent of general intempence Independent of working memory	IWM	
	independent of working memory	T AA TAT	

Cluster	Attribute	\mathbf{Code}	Description
Consciousness		R-CON	Explicit and controlled nature of rationality
	Conscious	CON	
	Explicit	\mathbf{EXP}	
	Controlled	\mathbf{CTR}	
	High effort	HIEFF	
	Slow	SLO	
	Low capacity	\mathbf{LOC}	
	Inhibitory	INH	
	Analytic	\mathbf{ANA}	
Evolution		R-EVO	Rationality in terms of its reliance on language
	Evolutionarily recent	EVR	
	Individual rationality	IND	
	Uniquely human	HUM	
	linked to language	LANG	
	Fluid intelligence	\mathbf{FLU}	
Functional		R-FUNC	Rule-based, logical, and sequential nature of rationality is
characteristics			emphasized
	Rule based	$\overline{\mathrm{RUL}}$	
	Domain general	\mathbf{DOM}	
	Abstract	\mathbf{ABS}	
	Logical	\mathbf{LOG}	
	Sequential	\mathbf{SEQ}	
	Egalitarian	\mathbf{EGA}	
Individual dif-		R-IND	
ferences			
	Heritable	HER	
	Linked to general intelligence	LIN	
	Limited by working memory capacity	\mathbf{LIM}	

The parameters presented in Table 3 each have their own set of possible values.

Table 7: Possible parameter values for Decision Types

Category	Name	Code	Description
Performance	Design planning	DP	Decisions around scoping, and identifying key design issues
	Problem space	PS	Decisions linked to analysis of the design problem
	Solution space	SS	Decisions linked to the generation, evaluation, and selection of a design solution

Table 8: Possible parameter values for Performance

Category	Name	\mathbf{Code}	Description
Performance	Decision outcome	DO	Outcome of a particular decision
	Decision making process	DMP	Evaluation of decision process itself
	Project outcome	PO	Outcome of the project as a whole

Table 9: Possible parameter values for Level of Analysis

Category		Name	\mathbf{Code}	Description
Level Analysis	of	Individual decision making	IDM	The presence of a single decision maker in decision
		Team decision making	TDM	Multiple decision makers involved in decision

Table 10: Possible parameter values for Antecedents from Clarke and O'connor, 2012

Category	Name	Code	Description
Antecedents	Application	A-APP	Linked to the nature of the application being developed
	Business	A-BUS	Business and strategic considerations
	Management	A-MAN	Management involved in the software development project
	Operation	A-OPR	Considerations and constraints linked to operations
	Organization	A-ORG	Organizational issues pertinent to the software development project
	Personnel	A-PER	Personnel involved in the software development project
	Requirements	A-REQ	Requirements of the software being developed
	Technology	A-TEC	Technology used for the development project

Table 11: Possible parameter values for Contextual Factors from Clarke and O'connor, 2012

Category	Name	Code	Description
	Application	C-APP	Linked to the nature of the application being developed
	Business	C-BUS	Business and strategic considerations
	Management	C-MAN	Management involved in the software development project
	Operation	C-OPR	Considerations and constraints linked to operations
	Organisation	C-ORG	Organizational issues pertinent to the software development project
	Personnel	C-PER	Personnel involved in the software development project
	Requirements	C-REQ	Requirements of the software being developed
	Technology	C-TEC	Technology used for the development project

References

- Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. *Annu. Rev. Psychol.*, 59, 255–278.
- Clarke, P., & O'connor, R. V. (2012). The situational factors that affect the software development process: Towards a comprehensive reference framework. *Information and software technology*, 54(5), 433–447.