Package 'Largevars'

October 31, 2024

```
Type Package
```

Title Testing Large VARs for the Presence of Cointegration

Version 1.0.2

Maintainer Eszter Kiss <ekiss2803@gmail.com>

Description Conducts a cointegration test for high-dimensional vector autoregressions (VARs) of order k based on the large N,T asymptotics of Bykhovskaya and Gorin, 2022 (<doi:10.48550/arXiv.2202.07150>). The implemented test is a modification of the Johansen likelihood ratio test. In the absence of cointegration the test converges to the partial sum of the Airy-1 point process. This package contains simulated quantiles of the first ten partial sums of the Airy-1 point process that are pre-

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports methods, graphics, stats, utils

cise up to the first three digits.

Suggests testthat (>= 3.0.0), tibble (>= 3.0.0), data.table (>= 1.14.0), readr (>= 2.1.0)

Config/testthat/edition 3

License MIT + file LICENSE

URL https://github.com/eszter-kiss/Largevars

NeedsCompilation no

Author Anna Bykhovskaya [aut], Vadim Gorin [aut], Eszter Kiss [cre, aut]

Repository CRAN

Date/Publication 2024-10-31 13:40:41 UTC

2 largevar

Contents

larg	evar	Coi	nteg	ra	tio	n t	tes	t fo	r.	set	tir	ıgs	i o	f l	ar	ge	N	ar	ıd	T						
Index																										6
	s_p100_price_adj .				•						•	•	•			٠					•		•	•		5
	sim_function																									
	quantile_tables																									
	percentiles																									3
	largevar																									2

Description

Runs the Bykhovskaya-Gorin test for cointegration. Paper can be found at: https://doi.org/10.48550/arXiv.2202.07150

Usage

```
largevar(
  data = NULL,
  k = 1,
  r = 1,
  fin_sample_corr = FALSE,
  plot_output = TRUE,
  significance_level = 0.05
)
```

Arguments

data	A numeric matrix where the columns contain individual time series that will be examined for the presence of cointegrating relationships.						
k	The number of lags that we wish to employ in the vector autoregression. The default value is $k = 1$.						
r	The number of largest eigenvalues used in the test. The default value is $r = 1$.						
fin_sample_corr							
	A boolean variable indicating whether we wish to employ finite sample correction on our test statistic. The default value is fin_sample_corr = FALSE.						
plot_output	A boolean variable indicating whether we wish to generate a plot of the empirical distribution of eigenvalues. The default value plot_output = TRUE.						
significance_level							
	Specify the significance level at which the decision about H0 should be made. The default value is significance_level = 0.05 .						

Value

A list that contains the test statistic, a table with theoretical quantiles presented for r=1 to r=10, and the decision about H0 at the significance level specified by the user.

percentiles 3

Examples

```
largevar(
  data = matrix(rnorm(60, mean = 0.05, sd = 0.01), 20, 3),
  k = 1,
  r = 1,
  fin_sample_corr = FALSE,
  plot_output = FALSE,
  significance_level = 0.05
)
```

percentiles

Quantiles for the limiting distribution of the test

Description

A data frame containing the simulated quantiles for the test statistic used in the largevar function. More details about how these simulations were conducted can be found in Section 4 of the vignette.

Format

A data frame with 99 rows and 11 variables:

Source

Calculated through own simulations (see details in Section 4 of vignette).

quantile_tables

Creates the quantile table output for largevar function

Description

Outputs the quantile tables from the package's corresponding vignette.

Usage

```
quantile_tables(r = 1)
```

Arguments

r

Which partial sum the quantile table should be returned for. (Only r \leq 10 is available.) Default is r=1.

Value

A numeric matrix.

Examples

```
quantile_tables(r=3)
```

4 sim_function

sim_function

Empirical p-value for cointegration test

Description

Runs a simulation on the H0 for the Bykhovskaya-Gorin test for cointegration and returns an empirical p-value. Paper can be found at: https://doi.org/10.48550/arXiv.2202.07150

Usage

```
sim_function(
  N = NULL,
  tau = NULL,
  stat_value = NULL,
  k = 1,
  r = 1,
  fin_sample_corr = FALSE,
  sim_num = 1000
)
```

Arguments

The number of time series used in simulations.

tau The length of the time series used in simulations.

stat_value The test statistic value for which the p-value is calculated.

k The number of lags that we wish to employ in the vector autoregression. The default value is k = 1.

The number of largest eigenvalues used in the test. The default value is r = 1.

fin_sample_corr

A boolean variable indicating whether we wish to employ finite sample correction on our test statistics. The default value is fin_sample_corr = FALSE.

sim_num The number of simulations that the function conducts for H0. The default value is sim_num = 1000.

Value

A list that contains the simulation values, the empirical percentage (realizations larger than the test statistic provided by the user) and a histogram.

Examples

```
sim_function(N=90, tau=501, stat_value=-0.27,k=1,r=1,sim_num=30)
```

s_p100_price_adj 5

s_p100_price_adj	Stock price data for example in vignette

Description

A data frame containing weekly S&P100 prices over ten years: 01.01.2010 - 01.01.2020, The S&P100 includes 101 leading U.S. stocks of which 92 were collected here.

Format

A data frame with 522 rows and 93 variables:

Source

Refer to the data source used in: A. Bykhovskaya and V. Gorin. Cointegration in large vars. Annals of Statistics, 2022.

Index

```
largevar, 2
percentiles, 3
quantile_tables, 3
s_p100_price_adj, 5
sim_function, 4
```