Analyse I

David Wiedemann

Table des matières

1	Intr 1.1	oduction Buts du Cours	5 5		
2	Def : 2.1	Definir \mathbb{R} 2.1 Exemple d'utilisation			
3	Suites et limites 3.1 Convergence				
4		Limsup et liminf 4.1 Suites de Cauchy			
5	Seri	es 5.0.1 Un calcul naif (avec la série harmonique alternée)	23 29		
6	Fon 6.1	Fonctions 6.1 Continuité			
7	Suit	Suites de Fonctions			
8	Dérivation				
L	ist (of Theorems			
	1 2 3 4 5 6 7 1 8	Theorème (env400) Lemme (Lemme) Axiom (Nombres Reels) Lemme (Theorem name) Proposition (Annulation de l'element neutre) Corollaire (x fois moins 1 egale -x) Axiom (Nombres Reels II) Definition (valeur absolue)	5 5 6 7 7 8 8 8		
	O	Proposition (Inegalite du triangle)	U		

2	Definition (Bornes)	9
9	Axiom (Axiome de completude)	9
3	Definition (Supremum)	9
14	Proposition	10
15	Corollaire (Propriete archimedienne)	10
16	Theorème (La racine de deux existe)	10
18	Proposition (\mathbb{Q} est dense dans \mathbb{R})	11
19	Lemme	11
20	Proposition (Densite des irrationnels)	12
4	Definition (Suite)	13
5	Definition (Convergence de suites)	13
23	Lemme (Unicite de la limite)	13
6	Definition	14
25	Lemme	14
27	Proposition	14
28	Lemme	15
30	Proposition (Inversion d'une limite)	16
31	Corollaire	16
32	Lemme	16
34	Proposition	17
35	Proposition	17
37	Lemme (Deux gendarmes)	18
7	Definition (Limsup et liminf)	18
38	Theorème	19
39	Theorème (Premiere regle de d'Alembert)	19
8	Definition (Sous-suite)	20
44	Proposition	21
45	Theorème (Bolzano-Weierstrass)	21
9	Definition (Point d'accumulation)	21
10	Definition (Suites de Cauchy)	22
48	Lemme	22
49	Theorème (Convergence des suites de Caucjy)	22
50	Lemme	22
11	Definition (Serie)	23
53	Corollaire	24
54	Corollaire	24
55	Corollaire	25
56	Corollaire (Critere de Cauchy pour les séries)	25
58	Proposition	25
59	Proposition (Serie Geometrique)	26
60	Proposition (Série Harmonique)	26

61	Proposition (Critère de Comparaison)	27
63	Corollaire	27
12	Definition (Séries Alternées)	28
64	Theorème	28
13	Definition	29
68	Lemme	30
69	Theorème	30
71	Theorème	31
72	Theorème (Critere de d'Alembert 2)	32
78	Proposition	33
79	Theorème (Critere de la racine)	34
83	Lemme	35
14	Definition	35
15	Definition	36
85	Theorème	36
87	Corollaire	37
88	Corollaire	37
89	Corollaire	37
90	Corollaire	37
91	Lemme	37
92	Corollaire	38
93	Corollaire (Cauchy)	38
94	Lemme	38
95	Corollaire	39
97	Proposition	39
16	Definition	40
99	Proposition	40
101	Corollaire	40
102	Corollaire	40
104	Proposition	41
17	Definition (Terminologie Supplémentaire)	41
18	Definition	41
19	Definition	41
20	Definition	42
21	Definition (Notation)	42
22	Definition (Notation)	42
106	Theorème	42
107	Theorème	42
108	Proposition	43
23	Definition	43
113	Proposition	44

115	Theorème	44
117	Theorème (Théorème de la valeur intermédiaire (TVI))	45
118	Corollaire	45
119	Corollaire	46
120	Corollaire	46
121	Proposition (1er theoreme de la fonction implicite)	46
122	Lemme	46
123	Corollaire	47
24	Definition	47
25	Definition (Convergence uniforme de fonctions)	50
127	Proposition	50
128	Theorème	51
129	Theorème (Dini)	51
26	Definition	52
132	Proposition	52
133	Proposition	52
134	Corollaire	53
135	Proposition	53
137	Proposition	54
138	Theorème (Chain Rule)	54
139	Theorème	55

Lecture 1: Introduction

Mon 14 Sep

1 Introduction

1.1 Buts du Cours

Officiel:

Suites, series, fonctions, derivees, integrales, ...

Secrets:

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines (lettres par exemple)

Theorème 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que $x^2 = 2$.

Ca contredit pythagore nn?

On va demontrer le theoreme. ¹

Lemme 2 (Lemme)

Soit $n \in \mathbb{N}$ Alors n pair $\iff n^2$ pair.

Preuve

 \Rightarrow Si n pair \Rightarrow n^2 pair.

Hyp. $n = 2m(m \in \mathbb{N})$

Donc $n^2 = 4m^2$, pair.

Par l'absurde, n impair. $n=2k+1(k \in \mathbb{N})$.

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors n^2 est forcement impair. Absurde.

Preuve

Supposons par l'absurde $\exists x \ t.q. \ x^2 = 2 \ et \ x = \frac{a}{b}(a,b \in \mathbb{Z}, b \neq 0).$ On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2 = 2 \Rightarrow \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2 \Rightarrow a^2$$

^{1.} On demontre d'abord un lemme

pair.

Lemme : a pair, i.e. $a = 2n(n \in \mathbb{N})$.

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2$$
, i.e. b^2 pair.

Lemme: b pair.

Donc a et b sont les deux pairs, on a une contradiction.

4

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions (\mathbb{Q}) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles.

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels (\mathbb{R}) . L'interaction entre les fractions et les nombres reels.

2 Definir \mathbb{R}

On commence avec la definition axiomatique des nombres reels.

Axiom 3 (Nombres Reels)

 \mathbb{R} est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^2$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. $0 + x = x, x \in \mathbb{R}$.
- Distributivite x(yz) = (xy)z
- Il existe un element inverse, unique $-x \in \mathbb{R}$ t.q. x + (-x) = 0

Remarque : Il existe beaucoup d'autres corps que \mathbb{R} , par exemple $\mathbb{Q}, \mathbb{C}, \{0,1,2\}$ mod 3

Attention: $\{0, 1, 2, 3\} \mod 4$ n'est pas un corps! Presque tous marchent, ils satisfont 8 des 9 axiomes.

 $^{2. \} L'associativite \ n'est \ pas \ forcement \ vraie (octonions)$

^{3.} Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

Lemme 4 (Theorem name)

 $\forall x \exists ! y \text{ t.q. } x + y = 0.$

Preuve

Supposons x + y = 0 = x + y'A voir: y = y'.

$$y = y + 0 = y + (x + y') = (y + x) + y'$$
$$= (x + y) + y' = 0 + y' = y'$$

CQFD.

Exercice

Demontrer que 0 est unique.

Proposition 5 (Annulation de l'element neutre)

$$0 \cdot x = 0$$

Preuve

$$x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$$

 $0 = x + (-x) = x + (-x) + x \cdot 0$

 $\Rightarrow 0 = x \cdot 0$

Corollaire 6 (x fois moins 1 egale -x)

$$x + x \cdot (-1) = 0$$

Preuve

A voir : $x \cdot (-1)$ satisfait les proprietes de -x.

Or

$$x + x(-1) = x(1-1) = x \cdot 0 = 0.$$

Exercice

Montrer que $\forall x : -(-x) = x$ et que ceci implique (-a)(-b) = ab.

Rien de tout ca n'a quelque chose a voir avec \mathbb{R} .

Il nous faut plus d'axiomes!!

4.
$$a - b = a + (-b)$$

Axiom 7 (Nombres Reels II)

 \mathbb{R} est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

—
$$x \le y$$
 et $y \le z$ impliquent $x \le z$

$$-(x \le yety \le x) \Rightarrow x = y$$

— pour tout couple de nombres reels x et y: ou bien $x \leq y$ ou bien $x \geq y$.

Exemple de corps ordonnnes :

(1) \mathbb{R} , (2) \mathbb{Q} , (3) $\{0,1,2\} \mod 3$ n'est pas un corps ordonne.

Exercice

$$x \le y \iff -x \ge -y$$
 Exercice

$$x \le y$$
 et $z \ge 0 \Rightarrow xz \le yz$

$$x \le y \text{ et } z \le 0 \Rightarrow xz \ge yz.$$

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!

Lecture 2: Cours Mercredi

Wed 16 Sep

2.1 Exemple d'utilisation

Definition 1 (valeur absolue)

$$|x| = \begin{cases} x \sin x \ge 0 \\ -x \sin x < 0 \end{cases}$$

Proposition 8 (Inegalite du triangle)

Elle dit que

$$\forall x, y : |x + y| \le |x| + |y|$$

Preuve

 $Cas\ x,y \ge 0$: $alors\ x+y \ge 0$

$$\iff x + y \le x + y$$

Ce qui est toujours vrai.

Cas
$$x \ge 0$$
 et $y < 0$.

 $Si \ x + y \ge 0$, alors

$$\iff |x+y| \le x - y$$

$$\iff x + y \le x - y$$

$$y \le -y$$

c'est vrai car y < 0.

 $Si \ x + y < 0$, alors

$$\iff -x - y \le x - y$$

 $Donc - x \le x \ vrai \ car \ x \ge 0$.

Definition 2 (Bornes)

Terminologie : Soit $A \subseteq E$, E corps ordonne.

— Une borne superieure (majorant) pour A et un nombre b tq

$$a \leq b \forall a \in A.$$

— Une borne inferieure (minorant) pour A et un nombre b tq

$$a \ge b \forall a \in A$$
.

On dira que l'ensemble A est borne si il admet une borne.

Axiom 9 (Axiome de completude)

$$\forall A \subseteq \mathbb{R} \neq \emptyset$$

et majoree $\exists s \in \mathbb{R} \ t.q$

- 1. s est un majorant pour A.
- 2. \forall majorant b de A, $b \geq s$.

Cet axiome finis la partie axiomatique du cours.

Remarque

- 1. $\forall s' < s \exists a \in A : a > s'$.
- 2. s est unique.

Definition 3 (Supremum)

Ce s s'appelle le supremum de A, note sup(A).

Remarque

 \exists (pour A minore et \neq \emptyset) une borne inferieure plus grande que toutes les autres, notee inf(A) (infimum).

$$\inf(A) = -\sup(-A)$$

Remarque

 $Si \sup(A) \in A$, on l'appelle le maximum.

Remarque

 $Si\inf(A) \in A$, on l'appelle le minimum.

Proposition 14

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n \ge x.$

Preuve

Par l'absurde,

Alors

$$\exists x \in \mathbb{R} \forall n \in \mathbb{N} : n < x$$

 $\Rightarrow \mathbb{N} \text{ borne } et \neq \emptyset \Rightarrow \exists s = \sup(\mathbb{N})$

$$s - \frac{1}{2} < s \Rightarrow \exists n \in \mathbb{N} : n > s - \frac{1}{2}$$

 $n+1\in\mathbb{N}$ et $n+1>s-\frac{1}{2}+1=s+\frac{1}{2}$ donc n+1>s absurde.

Corollaire 15 (Propriete archimedienne)

1. $\forall x \forall y > 0 \exists n \in \mathbb{N} : ny > x$.

2. $\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$

Preuve

Pour 2, appliquer la proposition a $x=\frac{1}{\epsilon}\exists n\in\mathbb{N}: n>x=\frac{1}{\epsilon}$

Alors

$$\Rightarrow \epsilon > \frac{1}{n}$$

Pour montrer le 1.

Considerer $\frac{x}{y}$

On peut maintenant montrer que la racine de deux existe.

Theorème 16 (La racine de deux existe)

$$\exists x \in \mathbb{R} : x^2 = 2$$

Preuve

$$A := \{y | y^2 < 2\}$$

Clairement $A \neq \emptyset$ car $1 \in A$. De plus, A est majore : 2 est une borne. (si $y > 2, y^2 > 4 > 2 \Rightarrow y \notin A$).

 $Donc \exists x = \sup(A)$

Supposons (par l'absurde) que $x^2 < 2$

Soit $0 < \epsilon < 1, \frac{2-x^2}{4x}$.

Clairement, par hypothese $2-x^2>0$ et idem pour 4x car $x\geq 1$. Soit $y=x+\epsilon$, alors

$$y^2 = x^2 + 2\epsilon x + \epsilon^2 < x^2 + \frac{2 - x^2}{2} + \frac{2 - x^2}{2} = 2$$

 $\Rightarrow y \in A$ Mais $y = x + \epsilon > x$. Absurde car $x = \sup(A)$. Donc $x^2 \ge 2$. Deuxiemement, supposons (absurde) $x^2 > 2$.

Soit $0 < \epsilon < \frac{x^2 - 2}{2x} > 0$. Posons $b = x - \epsilon$.

$$b < x \Rightarrow \exists y \in A : y > b$$

$$\Rightarrow y^2 > b^2 = x^2 - 2\epsilon x + \epsilon^2 > x^2 - \underbrace{2\epsilon x}_{< x^2 - 2}$$

$$> x^2 - (x^2 - 2) = 2.$$

Conclusion: $y^2 > 2$ contredit $y \in a$.

$$Donc x^2 = 2.$$

Remarque

Preuve similaire:

$$\forall y > 0 \exists ! x > 0 : x^2 = y$$

Proposition 18 (\mathbb{Q} est dense dans \mathbb{R})

$$\forall x < y \in \mathbb{R} \exists z \in \mathbb{Q} : x < z < y$$

Lemme 19

$$\forall x \exists n \in \mathbb{Z} : |n - x| \le \frac{1}{2}$$

Ou encore:

$$\forall x \exists [x] \in \mathbb{Z} tq$$

$$\begin{cases} [x] \le x \\ [x] + 1 > x \end{cases}$$

Preuve

$$\exists n \in \mathbb{Z} : n > x(Archimede).$$

$$Soit [x] = \inf\{n \in \mathbb{Z} : n > x\} - 1$$

Preuve (Preuve de la densite)

Archimede: $\exists q \in \mathbb{N} : q > \frac{1}{y-x}$.

Donc

$$qy - qx > 1.$$

$$\Rightarrow \exists p \in \mathbb{Z} : qx$$

par exemple:

$$p = [qy]$$

 $si \ qy \notin \mathbb{Z}$ ou bien

$$p = qy - 1$$

 $si~qy\in\mathbb{Z}$

Lecture 3: Suites

Wed 23 Sep

0,999

0, 9

0.99

0.999

0.9999

:

Proposition 20 (Densite des irrationnels)

 $\mathbb{R} \setminus \mathbb{Q}$, les irrationnels sont dense dans \mathbb{R} .

Preuve

Soit x < y (dans \mathbb{R}).

Cherche $z \notin \mathbb{Q}$ tq x < z < y.

$$\exists \frac{p}{q} \in \mathbb{Q} tqx < \frac{p}{q} < y$$

Propr. archimedienne $\Rightarrow \exists n \in \mathbb{N}$:

$$\underbrace{\frac{p}{q} + \sqrt{2}\frac{\sqrt{2}}{n}}_{:=z} < y$$

car

$$\exists n: \frac{1}{n} < \underbrace{y - \frac{1}{q}}_{>0} / \sqrt{2}$$

Il reste a voir que : $z = \frac{p}{q} + \sqrt{2}/n \notin \mathbb{Q}$

$$\sqrt{2} = n(z - \frac{p}{q})$$

$$z \in \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{Q} \not\{ d$$

3 Suites et limites

Definition 4 (Suite)

Une suite $(x_n)_{n=1}^{\infty}$ *dans* \mathbb{R} *est une application* (= fonction) $\mathbb{N} \to \mathbb{R}$

Remarque

Suite $(x_n) \neq$ ensemble $\{x_n\}$ Il arrive qu'on indice x_n par une partie de \mathbb{N} . Mais suite = suite infinie

Exemple

$$x_n = \frac{1}{n}(n = 1, 2, ...)$$

 $x_n = (-1)^n; x_n = n!; F_n : 0, 1, 1, 2, 3, 5, 8, 13$
 $3, 3.1, 3.14, 3.141, 3.1415$

3.1 Convergence

Definition 5 (Convergence de suites)

L'expression $\lim_{n\to+\infty} x_n = l$ signifie :

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n > n_0 : |x_n - l| < \epsilon$$

On dit alors que (x_n) converge (vers l). Sinon, (x_n) diverge.

Lemme 23 (Unicite de la limite)

Si (x_n) converge, il existe un unique $l \in \mathbb{R}$ t $q \lim_{n \to +\infty} x_n = l$

Preuve

Supposons l, l' limites. Si $l \neq l'$, alors |l - l'| > 0 Donc $\exists n_0 \forall n > n_0 : |x_n - l| < \frac{|l - l'|}{2}$

De meme $\exists n_1 \forall n > n_1 : |x_n - l'| < \frac{|l - l'|}{2}$

Soit $n > n_0, n_1$ Alors:

$$|l - l'| = |l - x_n + x_n - l'| \le \underbrace{|l - x_n|}_{<|l - l'|/2} + \underbrace{|x_n - l'|}_{|x_n - l'|}$$

Donc

$$|l-l'|<2\cdot\frac{|l-l'|}{2}$$

₹ □

Exemple

1. Si (x_n) est constante $(\exists a \forall n : x_n = a)$ alors

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

2. $\lim_{n\to+\infty}\frac{1}{n}=0$ (Archimede)

Definition 6

Terminologie:

 (x_n) est bornee, majoree, minoree, rationnelle, ... etc si l'ensemble $\{x_n\}$ l'est. La suite (x_n) est croissante si $x_n \leq x_{n+1} \forall n$ Idem decroissante Dans les deux cas, on

dit que la suite (x_n) est monotone

Lemme 25

Toute suite convergente est bornee.

Preuve

Posons $\epsilon = 7$.

$$\exists N \in \mathbb{N} \forall n > N : |x_n - l| < 7$$

Soit $B_1 \ge |x_1|, |x_2|, \dots, |x_N|$

Posons $B = max(B_1, |l| + 7)$ Alors $|x_n| \le B \forall n$.

Attention la reciproque n'est pas vraie!!

Exemple

 $x_n = (-1)^n$ definit une suite bornee non convergente.

Preuve

Supposons $\lim_{n\to +\infty} (-1)^n = l$. Posons $\epsilon = \frac{1}{10}$ alors $\exists n_0 \forall n > n_0 : |(-1)^n - l| < \frac{1}{10}$ $n > n_0$ pair $\Rightarrow |1 - l| < \frac{1}{10}$ $n > n_0$ impair $\Rightarrow |-1 - l| < \frac{1}{10}$ ceci implique

$$\Rightarrow |1 - (-1)| \le |1 - l| + |-1 - l| < \frac{1}{10} + \frac{1}{10} = \frac{1}{5}$$

Proposition 27

Supposons $\lim_{n\to+\infty}x_n=l$ et $\lim_{n\to+\infty}x_n'=l'$ Alors 1. : $\lim_{n\to+\infty}(x_n+x_n')=l+l'$, et 2. : $\lim_{n\to+\infty}x_n\cdot x_n'=l\cdot l'$

Preuve

1 .

Soit $\epsilon>0$ Cherche n_0 tq $\forall n>n_0: |x_n+x_n'-(l+l')|<\epsilon$. Appliquons les deux hypothese a $\frac{\epsilon}{2}: \exists N \forall n>N: |x_n-l|<\frac{\epsilon}{2}$ et

 $\frac{\epsilon}{2}:\exists N'\forall n>N':|x_n'-l|<\frac{\epsilon}{2}\ \textit{Posons}\ n_0=\max(N,N')$ $\textit{Si}\ n>n_0,\textit{alors}$

$$|x_n + x'_n - (l + l')| \le |x_n - l| + |x'_n - l'| < \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

2:

Par le lemme, $\exists B \text{ tq. } |x_n|, |x_n'| < B \forall n.$ Soit $\epsilon > 0$. Appliquons les hypotheses a $\frac{\epsilon}{2B}$.

$$\exists N \forall n > N : |x_n - l| < \frac{\epsilon}{2R}$$

 $Si \ n > n_0 := \max(N, N') :$

$$|x_n x_n' - ll'| \le |x_n x_n' - x_n l'| + |x_n l' - ll'|$$

$$= \underbrace{|x_n|}_{$$

Lemme 28

On a utilise : lemme Si $x_n \leq B \forall n \text{ et } \lim_{n \to +\infty} x_n = l \text{ alors } l \leq B$

Preuve

Par l'absurde :

Si l > B, posons $\epsilon = l - B > 0$

$$\exists n_0 \forall n > n_0 : |x_n - l| < \epsilon$$
 en particulier $x_n > l - \epsilon = B \not\downarrow$

Lecture 4: lundi

Mon 28 Sep

Remarque

- $\lim_{n\to+\infty} |x_n| = |\lim_{n\to+\infty} x_n|$, ce qui est sous-entendu ici est que la limite existe.
- $(x_n)_{n=1}^{\infty}$ convergence et limite sont inchangees si on modifie un nombre fini de termes.

En particulier $(x_n)_{n=17}^{\infty}$, rien ne change.

- $x_n \to l \ (n \to \infty)$, equivalent a $\lim_{n \to +\infty} x_n = l$
- On dit que (x_n) converge vers $+\infty$ et on note $\lim_{n\to+\infty} x_n = +\infty$, si (x_n) diverge de la facon suivante :

$$\forall R \in \mathbb{R}, \exists n_0 \forall n > n_0 : x_n > R$$

La definition est la meme si x_n converge vers $-\infty$

Proposition 30 (Inversion d'une limite)

Supposons que (x_n) converge vers $l \neq 0$, alors $\lim_{n \to +\infty} \frac{1}{x_n} = \frac{1}{l}$

Corollaire 31

 $Si(x_n)$ converge vers l et

 $Si(y_n)$ converge vers $m \neq 0$ alors

$$\lim_{n \to +\infty} \frac{x_n}{y_n} = \frac{l}{m}$$

$$\operatorname{Car} \tfrac{x_n}{y_n} = x_n \cdot \tfrac{1}{y_n}$$

Lemme 32

Sous les hypotheses de la proposition,

$$\exists n_0 \forall n \ge n_0 : x_n \ne 0$$

Preuve

Appliquons la convergence a $\epsilon = \frac{|l|}{2}$ (car $l \neq 0$)

$$|x_n - l| < \epsilon \Rightarrow x_n \neq 0$$

Preuve

Preuve de la proposition

Soit $\epsilon > 0$.

On veut estimer

$$\left|\frac{1}{x_n} - \frac{1}{l}\right| = \underbrace{\frac{|l - x_n|}{|x_n - l|}_{\geq \frac{|l|}{2}|l|}}_{\leq 2\epsilon} < ?\epsilon$$

pour n comme dans le lemme. On veut donc

$$|l - x_n| < \epsilon \frac{|l|^2}{2}$$

Donc $\exists n_1 \forall n \geq n_1$, on a bien $|l - x_n| < \epsilon$

Exemple

On peut a present calculer

$$\lim_{n \to +\infty} \frac{a_0 + a_1 n + a_2 n^2 + \ldots + a_d n^d}{b_0 + \ldots + b_f n^f}$$

$$a_d \neq 0, b_f \neq 0$$

 $Si \ d > f \ alors \ lim = \pm \infty$

 $Si\ d < f\ alors\ lim = 0$

Si
$$d = f$$
, alors $\lim = \frac{a_d}{b_f}$

Justification

La suite peut s'ecrire

$$\frac{a_d + a^{d-1} \frac{1}{n} + \ldots + a_0 \frac{1}{n^{d-1}}}{b_0 \frac{1}{n^d + \ldots + b_f n^{f-d}}}$$

Si
$$f = d$$
, $\rightarrow \frac{a_d}{b_f}$

Si
$$f > d, \rightarrow 0$$

Si $f < d,
ightarrow \pm \infty$, selon signe de $rac{a_d}{b_f}$

Proposition 34

Soit $a \in \mathbb{R}$ *avec* |a| < 1, *alors*

$$\lim_{n \to +\infty} a^n = 0$$

Proposition 35

 $Si(x_n)$ est monotone et bornee, alors elle converge.

Preuve

Soit (x_n) croissante. Affirmation, $x_n \to s := \sup \{x_n : n \in \mathbb{N}\}$

Soit $\epsilon > 0$, $\exists n : x_n > s - \epsilon$ (def. de sup)

 $\forall n \ge n_0 : s - \epsilon < x_{n_0} \le x_n \le s \Rightarrow |x_n - s| < \epsilon$

Idem, si elle etait decroissante.

Preuve

Remarque: $(x_n) \to 0 \iff (|x_n| \to 0).$

$$\dots |x_n - 0| < \epsilon$$

Donc on va traiter le cas a > 0, alors $(a^n)_{n=1}^{\infty}$ est decroissante.

Bornee (par zero et 1) \Rightarrow elle admet une limite l.

$$Or \lim_{n \to +\infty} a^n = \underbrace{\lim_{n \to +\infty} a^{n+1}}_{a \cdot \lim_{n \to +\infty} a^n} Donc \ l = al. \ Si \ l \neq 0, \ 1 = a \ absurde, \ donc \ l \ nul. \ \Box$$

Exemple

Def (x_n) en posant $x_{n+1} = 2 + \frac{1}{x_n}$

Observons que $x_n \ge 2 > 0 \forall n$

 $Si(x_n)$ converge, alors

$$l = \lim_{n \to +\infty} x_n = \lim_{n \to +\infty} \left(2 + \frac{1}{x_n}\right) = 2 + \frac{1}{l}$$

Donc

$$l^2 - 2l - 1 = 0 \Rightarrow 1 + \sqrt{1+1} = l$$

Or $l \ge 2 \Rightarrow l = 1 + \sqrt{2}$ si l existe.

A present, estimons $|x_n - l|$:

$$\left| x_n - 1 - \sqrt{2} \right| = \left| 2 + \frac{1}{x_{n-1}} = \left(2 + \frac{1}{l} \right) \right| = \frac{|l - x_{n-1}|}{x_{n-1}l} \le \frac{|x_{n-1} - l|}{4}$$
$$\le \dots \le \frac{|x_{n-2} - l|}{4^2} \le \frac{|2 - l|}{4^n} \to 0$$

 $car \frac{1}{4^n} \to 0$

Lemme 37 (Deux gendarmes)

Soit $(x_n), (y_n), (z_n)$ trois suites avec

$$\lim_{n \to +\infty} x_n = l = \lim_{n \to +\infty} z_n$$

 $si \ x_n \leq y_n \leq z_n \forall n, alors$

$$\lim_{n \to +\infty} y_n = l$$

Preuve

repose sur le fait que

$$|x_n - l|, |z_n - l| < \epsilon \Rightarrow l - \epsilon < x_n \le y_n \le z_n < l + \epsilon$$

montre $|y_n - l| < \epsilon$

4 Limsup et liminf

Definition 7 (Limsup et liminf)

Soit (x_n) une suite quelconque.

On definit la limite superieure par :

$$\limsup_{n \to \infty} x_n := \inf_n \sup \{x_k, k \ge n\}$$

Attention: Ici on convient que

$$\sup(A) = +\infty$$

si A non majore

$$\inf(A) = -\infty$$

si A non minore

On definit la limite superieure par :

$$\liminf_{n \to \infty} x_n := \sup_n \inf \{x_k, k \ge n\}$$

 $Notez: z_n := \sup \{x_k : k \ge n\}$

Cela definit une suite decroissante et donc (z_n) converge vers son inf.

Conclusion : $\limsup_{n\to\infty} x_n = \lim_{n\to+\infty} z + n = \lim_{n\to+\infty} \sup_{k\geq n} x_k$

Lecture 5: mercredi 30

Wed 30 Sep

Theorème 38

 (x_n) converge $\iff \limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$ Dans ce cas, la limite prend cette meme valeur.

Preuve

(= :

Soit $z_n = \sup \{x_p : p \ge n\}$,

$$y_n = \inf \{x_p : p \ge n\}$$

Rappel: $(z_n) \to LS$ et $(y_n) \to LI$

Or, $y_n \le x_n \le z_n$. *Donc par les 2 gendamrmes*

$$\Rightarrow (x_n) \to LS = LI$$

 \Rightarrow :

Hypothese : $\lim_{n\to+\infty} x_n = l$.

 $A \ voir: LS = LI = l.$

Montrons par exemple que

$$\lim_{n \to +\infty} z_n = l$$

(*i.e.* LS = l)

Soit $\epsilon > 0$.

$$\exists N \forall n \geq N : |x_n - l| < \frac{\epsilon}{2}$$
 et $\forall n \geq N : |z_n - LS| < \frac{\epsilon}{4}$

Def. de $z_N \Rightarrow \exists p \geq N : |x_p| > z_N - \frac{\epsilon}{4}$

A present

$$|LS - l| \le \underbrace{|LS - z_N|}_{< \frac{\epsilon}{4}} + \underbrace{|z_n - x_p|}_{< \frac{\epsilon}{4}} + \underbrace{|x_p - l|}_{< \frac{\epsilon}{2}}$$

avec $p \ge N$ et $N \ge N$ Donc $\forall \epsilon > 0$:

$$|LS - l| < \epsilon$$

 $Donc\ LS = l$

Theorème 39 (Premiere regle de d'Alembert)

Supposons $x_n \neq 0 \forall n$

Supposons que $\rho = \lim_{n \to +\infty} \left| \frac{x_{n+1}}{x_n} \right|$ existe

 $Si \ \rho < 1$, alors $\lim_{n \to +\infty} x_n = 0$

Si $\rho > 1$, alors (x_n) diverge.

Remarque

 $Si \rho = 1$, on ne peut rien concluer

Exemple

—
$$x_n=n$$
 diverge, mais $\lim_{n\to+\infty}\frac{n+1}{n}=1$
— $x_n=\frac{1}{n}$ converge mais $\lim_{n\to+\infty}\frac{\frac{1}{n+1}}{\frac{1}{n}}=1$

Preuve

Supposons $\rho < 1$.

A voir: $x_n \to 0$.

Soit $\rho < r < 1$. Convergence pour $\epsilon = r - \rho$: $\left| \left| \frac{x_{n+1}}{x_n} \right| - \rho \right| < r - \rho$

$$\exists n_0 \forall n \geq n_0 : \left| \frac{x_{n+1}}{x_n} \right| < r$$

i.e. $|x_{n+1}| < r |x_n|$ de meme $|x_{n+2}| < r |x_{n+1}| < r^2 |x_n|$

Conclusion $\forall m \geq n_0 : |x_m| < r^{m-n_0} |x_{n_0}|$

Donc

$$\forall m \geq n_0 : |x_m| < r^m |x_{n_0}| r^{-n_0}$$

Onn sait que $\lim_{m\to+\infty} r^m = 0$ donc

$$0 \le |x_m| \le r^m c$$

avec c constante Cas $\rho > 1$.

On va montrer que $|x_n|$ est non bornee.

Soit $1 < r < \rho$.

$$\exists n_0 \forall n \geq n_0 : |x_{n+1}/x_n| > r$$

Donc

$$|x_{n+1}| > r |x_n|$$

comme avant:

$$x_m > r^{m-n_0} |x_{n_0}| \qquad \qquad \Box$$

Remarque

Si r > 1, alors $\lim_{n \to +\infty} r^n = +\infty$ r^n est croissante donc il suffit de montrer que la suite est non bornee.

Si elle etait bornee, soit $l = \lim_{n \to +\infty} r^n \in \mathbb{R}$

Mais $l = \lim_{n \to +\infty} r^{n+1} = rl$

Donc $l \neq 0 \Rightarrow 1 = r$ absurde.

Definition 8 (Sous-suite)

Soit $(x_n)_{n=1}^{\infty}$ une suite.

Une sous-suite de (x_n) est une suite de la forme $(x_{n_k})_{k=1}^{\infty}$, ou $(n_k)_{k=1}^{\infty}$ est une suite strictement croissante de N.

Exemple

 $Si(x_n)$ est une suite, considerer :

$$x_2, x_3, x_5, x_7, x_{11}, x_{13}, \dots$$

Ici, $n_k = 2, 3, 5, 7, 11, \dots$

Proposition 44

Si x_n converge, alors toute sous-suite converge vers la meme limite.

Preuve

Soit $l = \lim_{n \to +\infty} x_n$. Soit $(x_{n_k})_{k=1}^{\infty}$ une sous-suite et $\epsilon > 0$.

 $A \ voir: \exists k_0 \forall k > k_0: |x_{n_k} - l| < \epsilon$

 $Or \, \exists n_0 \forall n > n_0 : |x_n - l| < \epsilon.$

Donc il suffit de choisir k_0 tq $n_{k_0} \ge n_0$.

(puisque la suite (n_k) est croissante.)

Theorème 45 (Bolzano-Weierstrass)

Toute suite bornee admet une sous-suite convergente

Preuve

On va construire une sous-suite qui converge vers $s := \limsup_{n \to \infty} x_n$ Ici, (x_n) est la suite en question et on pose

$$z_n = \sup \{x_p : p \ge n\}$$

Par recurrence, n_1 quelconque.

Supposons n_{k-1} construit et construisons n_k :

$$\exists N \forall n \ge N : |z_n - s| < \frac{1}{k}$$

Choisissons un $n \geq N$, $n_{k-1} + 1$

$$\exists p \geq n \text{ t.q. } x_p > z_n - \frac{1}{k}$$

$$\begin{array}{l} \textit{On definit } n_k = p \; (\; n_k > n_{k-1}) \\ \textit{Or, } \underbrace{|x_{n_k} - s|}_{<\frac{1}{k}} \leq \underbrace{|x_{n_k} - z_n|}_{<\frac{1}{k}} + \underbrace{|z_n - s|}_{<\frac{1}{k}} \\ \textit{Donc } (x_{n_k} \rightarrow s(k \rightarrow \infty)) \end{array}$$

Definition 9 (Point d'accumulation)

x est un point d'accumulation de la suite x_n s'il existe une sous-suite qui converge vers x.

Exemple

$$x = \limsup_{n \to \infty} x_n$$

$$x = \liminf_{n \to \infty} x_n$$

4.1 Suites de Cauchy

Definition 10 (Suites de Cauchy)

La suite (x_n) est dire de Cauchy si

$$\forall \epsilon > 0 \exists N \forall n, n' \ge N : |x_n - x_{n'}| < \epsilon$$

Attention:

Il ne suffit pas de comparer x_n et x_{n+k} pour k fixe.

Exemple

$$x_n = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$$

Cauchy
$$\iff \forall \epsilon > 0 \exists N \forall n \geq N \forall k \in \mathbb{N} : |x_n - x_{n+k}| < \epsilon$$

Lemme 48

 $Si(x_n)$ converge, elle est de Cauchy.

Preuve

Soit $\epsilon > 0$, *soit* l *la limite*.

Hypothese:

avec
$$\frac{\epsilon}{2}$$
 : $\exists N \forall n \geq N : |x_n - l| < \frac{\epsilon}{2}$

 $\mathit{Si}\; n, n' \geq N$

$$|x_n - x_{n'}| \le |x_n - l| + |x_{n'} - l| < \epsilon$$

Theorème 49 (Convergence des suites de Caucjy)

Toute suite de Cauchy converge

Preuve

Soit (x_n) de Cauchy.

Lemme 50

 (x_n) est bornee.

Preuve

Soit $\epsilon = 10$

$$\forall N \forall n, n' \ge N : |x_n - x_{n'}| < 10$$

Donc $|(x_n)|$ est bornee par

$$\max(|x_N| + 10, |x_1|, |x_2|, \dots, |x_{N-1}|)$$

Appliquer Bolzano-Weierstrass

 \exists sous-suite (x_{n_k})

qui converge, soit l sa limite. A voir (x_n) converge vers l. soit $\epsilon>0 \exists k_0 \forall k \geq k_0 \, |x_{n_k}-l|<\frac{\epsilon}{2}$

$$\exists N \forall n, n' \ge N : |x_n - x_{n'}| < \frac{\epsilon}{2}$$

Si $n \geq N, n_{k_0}$ alors

$$|x_n - l| \le |x_n - x_{n_k}| + |x_{n_k} - l| < \epsilon$$

Lecture 6: lundi

Remarque

Mon 05 Oct

Ecriture decimale: 3.1415... ou encore 0.333... veut dire

$$3 + \frac{1}{10} + \frac{4}{100} + \frac{1}{1000} + \frac{5}{10000} + \dots$$

une somme infinie de fractions. La difference entre le n ieme terme et le n^\prime ieme terme :

$$\leq 10^{-n} \rightarrow 0 \Rightarrow Cauchy$$

Cette limite est une "somme infinie".

5 Series

But: definir les "sommes infinies".

$$\rightarrow \left\{ \begin{array}{l} \text{Existe?} \\ \text{Valeur?} \end{array} \right.$$

Exemple

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \dots$$

ou encore

$$\exp(x) = \frac{1}{0!}x^0 + \frac{1}{1!}x^1 + \frac{1}{2!}x^2 + \dots$$

ои

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots$$

Definition 11 (Serie)

Le symbole $\sum_{n=0}^{\infty} x_n$ représente

$$x_0 + x_1 + x_2 + \dots$$
 et est défini par

$$\sum_{n=0}^{\infty} x_n = \lim_{n \to +\infty} \sum_{k=0}^{\infty} x_k$$

On appelle

$$\sum_{n=0}^{\infty} x_n$$

une série et on dit qu'elle converge/diverge lorsque la suite $s_n := x_0 + \ldots + x_n$ le fait.

Corollaire 53

 $Si \sum_{n=0}^{\infty} x_n \ et \sum_{n=0}^{\infty} y_n \ existent, \ alors$

$$\sum_{n=0}^{\infty} (x_n + y_n) = \sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n$$

Preuve

$$\sum_{n=0}^{\infty} x_n = \lim_{n \to +\infty} s_n, s_n = \sum_{k=0}^{n} x_k$$

$$\sum_{n=0}^{\infty} y_n = \lim_{n \to +\infty} t_n, t_n = \sum_{k=0}^{n} y_k$$

Alors

$$\sum_{n=0}^{\infty} (x_n + y_n) = \lim_{n \to +\infty} u_n, \text{ où }$$

$$u_n = (x_0 + y_0) + \ldots + (x_n + y_n) = s_n + t_n$$

Donc la limite

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (s_n + t_n) = \sum_{n=0}^{\infty} x_n + \sum_{n=0}^{\infty} y_n$$

Corollaire 54

Pour $a \in \mathbb{R}, \sum_{n=0}^{\infty} ax_n = a \sum_{n=0}^{\infty} x_n$, si

$$\sum_{n=0}^{\infty} x_n$$

existe.

Sans preuve.

Corollaire 55

$$\sum_{n=n_0}^{ify} x_n \text{ existe si } \sum_{n=0}^{\infty} x_n$$

existe et vaut

$$\sum_{n=0}^{\infty} x_n - (x_0 + x_1 + \ldots + x_{n_0-1})$$

n

Corollaire 56 (Critere de Cauchy pour les séries)

$$\sum_{n=0}^{\infty} x_n converge \iff \forall \epsilon > 0 \exists N \forall n > N : \left| \sum_{p=N}^{n} x_p \right| < \epsilon$$

(Dans ce cas,
$$\left|\sum_{n=N}^{\infty} x_n\right| \le \epsilon$$
)

Preuve

Appliquer Cauchy à la suite s_n :

$$\exists n_0 \forall n, n' > n_0 : |s_n - s_{n'}| < \epsilon$$

Alors

$$\left| \sum_{p=n'+1}^{n} x_p \right| < \epsilon$$

Exemple

Ecriture decimale,

Proposition 58

Si

$$\sum_{n=0}^{\infty} x_n$$

converge, alors

$$\lim_{n \to +\infty} x_n = 0$$

Preuve

Appliquer Cauchy à $\underbrace{s_n - s_{n-1}}_{=x_n}$

Attention, la réciproque est FAUSSE.

2 Exemples

Proposition 59 (Serie Geometrique)

Soit $r \in \mathbb{R}$ avec |r| < 1, alors

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$$

Preuve

Soit

$$s_n = r^0 + r^1 + \ldots + r^n = \frac{1 - r^{n+1}}{1 - r^n}$$

Or

$$\lim_{n \to +\infty} r^{n+1} = 0$$

Donc $s_n \to \frac{1}{1-r}$.

$$\frac{1}{2} + \frac{1}{4} + \dots = \sum_{n=1}^{\infty} \frac{1}{2}^n = \frac{1}{1 - \frac{1}{2}} - 1 = 1$$

Proposition 60 (Série Harmonique)

$$\sum_{n=1}^{\infty} \frac{1}{n} diverge (vers + \infty)$$

Preuve

Considérons

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{2^n} + \underbrace{\frac{1}{2^n + 1} + \ldots + \frac{1}{2^{n+1}}}_{2^{n+1} - 2^n = 2^n \text{ termes.}} + \ldots$$

Tous ces termes sont $\geq \frac{1}{2^{n+1}}$

Cette somme est:

$$s_{2^{n+1}} - s_{2^n} \ge 2^n \frac{1}{2^{n+1}} = \frac{1}{2}$$

Contredit Cauchy pour $\epsilon = \frac{1}{2}$.

Astuce utile:

$$\sum_{n=1}^{\infty} \frac{1}{n-1} - \frac{1}{n} = 1$$

Preuve

$$s_n = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n-1} - \frac{1}{n} = 1 - \frac{1}{n}$$

Donc ca converge.

C'est une série téléscopique

Proposition 61 (Critère de Comparaison)

Supposons $0 \le x_n \le y_n$.

Si

$$\sum_{n=0}^{\infty} y_n \ \text{converge, alors} \ \sum_{n=0}^{\infty} x_n \ \text{aussi} \ .$$

Preuve

$$s_n = x_0 + \ldots + x_n$$

est croissante. Donc converge \iff (s_n) bornée.

Mais $y_0 + \ldots + y_n$ converge \Rightarrow bornée et $s_n \leq y_0 + \ldots + y_n \Rightarrow (s_n)$ bornée

Remarque

De plus,

$$\sum_{n=0}^{\infty} x_n \le \sum_{n=0}^{\infty} y_n$$

Si, par contre,

$$\sum_{n=0}^{\infty} x_n \text{ diverge } \Rightarrow \sum_{n=0}^{\infty} y_n \text{ diverge}$$

Corollaire 63

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

converge.

Preuve

$$\forall n \ge 2 : \frac{1}{n^2} \le \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

Οr

$$\sum_{n=2}^{\infty} \frac{1}{n-1} - \frac{1}{n}$$
 converge.

Donc, par comparaison, $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converge

$$\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converge }.$$

Wed 07 Oct

Lecture 7: mercredi

Definition 12 (Séries Alternées)

 (x_n) est alternée si $x_n \cdot x_{n+1} \le 0 \forall n$

Theorème 64

Soit (x_n) alternée, $|x_n|$ décroissante, et

$$\lim_{n \to +\infty} x_n = 0$$

Alors

$$\sum_{n=0}^{\infty} x_n \text{ converge.}$$

Exemple

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converge. (série harmonique alternée) ⁵

Preuve

On utilise cauchy.

Soit $n, m \in \mathbb{N}$.

$$\underbrace{x_n + x_{n+1}}_{\geq 0} + x_{n+2} + \dots + x_{n+m-1} + x_{n+m}$$

Cas $x_n \geq 0$:

Cas où n pair

$$0 \le \sum_{p=n}^{n_m} x_p \le x_n$$

 $Si\ m\ impair:$

idem

Que n soit pair ou impair

$$\left| \sum_{p=n}^{n+m} x_p \right| \le |x_n|$$

^{5.} En fait la série converge vers $-\log 2$

Or, soit $\epsilon > 0$

$$\lim_{n \to +\infty} x_n = 0 \Rightarrow$$

 $\exists N \forall n > N | |x_n| \le \epsilon.$

 $Donc \ \forall n > N, m$

$$|x_n + \ldots + x_{n+m}| < \epsilon$$

5.0.1 Un calcul naif (avec la série harmonique alternée)

Soit $S = \sum_{n=1}^{\infty} \frac{(-1)^n}{n}$, existe par le théorème. Note : S < 0.

$$s_n = \underbrace{-1 + \frac{1}{2}}_{=-\frac{1}{2}} \underbrace{-\frac{1}{3} + \frac{1}{4}}_{<0} - \dots + \frac{(-1)^n}{n}$$

 $s_n < -\frac{1}{n}, \forall n \text{ pair } \Rightarrow S \leq -\frac{1}{2}$

$$-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \dots$$

à chaque terme x_n , on associe x_{2n}

$$= -\frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \frac{1}{8} - \frac{1}{10} + \dots$$
$$= \frac{1}{2}(-1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \dots) = \frac{1}{2}S$$

Donc $S = \frac{1}{2}S \Rightarrow S = 0$ Faux!

Conclusion:

On ne peut pas permuter (en général) les termes d'une série convergente (somme infinie)

Definition 13

On dit que la somme de

$$\sum_{n=0}^{\infty} x_n$$

converge absolument si

$$\sum_{n=0}^{\infty} |x_n|$$

converge.

Note: la valeur

$$\sum_{n=0}^{\infty} |x_n|$$

ne nous intéresse pas

Remarque

Si $x_n \ge 0 \forall n$, aucune différence entre "convergence" et "convergence absolue".

Exemple

— La série harmonique alternée converge, mais pas absolument.

Lemme 68

Convergence absolue implique la convergence.

Preuve

$$\forall n: 0 \le x_n + |x_n| \le 2|x_n|$$

Donc convergence absolue \Rightarrow

$$\sum (x_n + |x_n|)$$

converge.

$$Or - \sum_{n=0}^{\infty} |x_n|$$
 converge .

Somme des deux sommes ci-dessus, implique que

$$\sum_{n=0}^{\infty} x_n$$

Theorème 69

Si

$$\sum_{n=0}^{\infty} x_n$$

converge absolument, alors toute permutation converge vers la même somme.

Exemple

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}, \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Clarification:

Soit σ *une permutation de* \mathbb{N} *, i.e. bijection.*

La nouvelle série sera

$$\sum_{n=0}^{\infty} y_n \ pour \ y_n = x_{\sigma(n)}$$

Notons $s_n = x_0 + \ldots + x_n$ et

$$t_n = y_0 + \ldots + y_n = x_{\sigma(0)} + \ldots + x_{\sigma(n)}$$

Le théorème dit : si $\sum_{n=0}^{\infty} |x_n|$ existe, alors $\lim s_n = \lim t_n$.

Preuve

1er cas "facile".

Supposons $x_n \geq 0 \forall n$.

Alors
$$\sum_{n=0}^{\infty} x_n = \sup \{s_n | n \in \mathbb{N}\}$$

On va montrer que $\sup_{n} s_n \ge \sup_{n} t_n$ et que $\sup_{n} s_n \le \sup_{n} t_n$

$$\underbrace{n}_{=:s}$$
 $\underbrace{n}_{=:t}$

Pour $s \geq t$:

Soit $\epsilon > 0$. Or , par déf, $\exists nt_n > t - \epsilon$

ie

$$y_0 + \ldots + y_n > t - \epsilon$$

ie

$$x_{\sigma(0)} + \ldots + x_{\sigma(n)} > t - \epsilon$$

Soit $m = \max_{i=0,...,n} \sigma(i)$, alors

$$s_m \ge t - \epsilon$$

donc

$$s = \sup s_n > t - \epsilon$$

 $\mathit{vrai} \ \forall \epsilon > 0 \Rightarrow s \geq t$

En considérant σ^{-1} , on obtient de même $t \geq s \Rightarrow s = t$, donc le théorème vrai SI $x_n \ge 0$.

 $2\grave{e}me\ cas: x_n \leq 0 \forall n, idem$

Cas général:

Posons $x_n=x_n'+x_n''$, ou $x_n'=\max(x_n,0)$ et $x_n''=\min(x_n,0)$, alors

$$x_{\sigma(n)} = x'_{\sigma(n)} + x''_{\sigma(n)}$$

On conclut en appliquant le cas (1) a x_n' et (2) ou x_n''

Theorème 71

Supposons que

$$\sum_{n=0}^{\infty} x_n$$

converge, mais pas absolument.

 $\forall l \in \mathbb{R} \exists permutation \ \sigma \ t.q.$

$$\sum_{n=0}^{\infty} x_{\sigma(n)} = l.$$

Lecture 8: Series fin

Mon 12 Oct

Theorème 72 (Critere de d'Alembert 2)

Supposons que $\lim_{n\to+\infty} |\frac{x_{n+1}}{x_n}| = \rho$ existe. Si $\rho < 1$ alors

$$\sum_{n=1}^{\infty} x_n$$

converge absolument.

Si $\rho > 1$, alors elle diverge.

Preuve

Si $\rho > 1$, x_n diverge donc ne converge pas vers 0, donc $\sum x_n$ diverge.

Supposons $\rho < 1$. $\exists n_0 \forall n \geq n_0 : \frac{x_{n+1}}{x_n} < \frac{\rho+1}{2}$.

On déduit que

$$|x_n| \le \left(\frac{\rho+1}{2}\right)^{n-n_0} |x_{n_0}|$$

Donc

$$\sum_{n=n_0}^{\infty} |x_n|$$

peut etre comparee à

$$|x_{n_0}| \sum_{n=n_0}^{\infty} \left(\frac{\rho+1}{2}\right)^{n-n_0}$$

Or la série ci-dessus est une série géometrique avec $\frac{\rho+1}{2}<1$, donc elle converge. Donc

$$\sum_{n=n_0}^{\infty} |x_n|$$

converge car la série géometrique converge, il suit que

$$\sum_{n=0}^{\infty} x_n$$

converge absolument.

Exemple

Soit $x \in \mathbb{R}$. Alors $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converge absolument.

Preuve

$$x_n = \frac{x^n}{n!}$$
, alors

$$\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{x}{n+1}\right| \to 0$$

Exemple

$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$

$$x_n = \frac{(-1)^{2n+1}x^{2n+1}}{(2n+1)!}$$

Alors

$$\left|\frac{x_{n+1}}{x_n}\right| = \left|\frac{x^2}{(2n+3)(2n+2)}\right| \to 0$$

Remarque

Si $\rho = 1$ on ne peut rien conclure.

Exemple

$$\sum rac{1}{n}$$
 diverge, or $rac{x_{n+1}}{x_n} = rac{n}{n+1}
ightarrow 1$

Idem pour

$$\sum n$$

Exemple

$$\sum \frac{1}{n^2}$$

converge, or

$$\frac{x_{n+1}}{x_n} = \frac{n^2}{(n+1)^2}$$

Proposition 78

On admet que

$$\forall x \ge 0 \exists ! x^{\frac{1}{n}} : (x^{\frac{1}{n}})^n = x$$

Alors

$$\lim_{n\to +\infty} n^{\frac{1}{n}} = 1$$

Preuve

Posons $\epsilon_n = n^{\frac{1}{n}} - 1$, (a voir : $\epsilon_n \to 0$).

$$n = ((1 + \epsilon_n)^{\frac{1}{n}})^n = 1 + n\epsilon_n + \frac{n(n-1)}{2}\epsilon^2 \underbrace{\dots}_{\geq 0}$$

$$\geq 1 + \frac{n(n-1)}{2}\epsilon_n^2$$

$$\Rightarrow \epsilon_n \leq \left(\frac{2}{n}\right)^{\frac{1}{2}}$$

Theorème 79 (Critere de la racine)

Soit $L = \limsup_{n \to \infty} (|x_n|)^{\frac{1}{n}}$.

 $Si \ L < 1$, alors $\sum x_n$ converge absolument

Si L > 1, alors $\sum x_n$ diverge.

Exemple

Soit

$$x_n = \begin{cases} \frac{1}{n!} si \ n \ pair \\ 0 \ si \ n \ impair \end{cases}$$

Exemple

1.

$$\sum \frac{x_n}{n!}$$
, alors

$$|x_n|^{\frac{1}{n}} = \frac{1}{n!}^{\frac{1}{n}} donc |x_n| \to 0 (exo)$$

2.

$$\sum n \ diverge \ , n^{rac{1}{n}}
ightarrow 1$$

3.

$$\sum \frac{1}{n^2}$$

converge, or

$$\frac{1}{n^2}^{\frac{1}{n}} = \frac{1}{n^{\frac{2}{n}}} \to 1$$

Preuve

Si L > 1,

alors $\lim_{n\to+\infty}\sup\Big\{|x_k|^{\frac{1}{k}}:k\geq n\Big\}$. Donc $\exists n_0\forall n>n_0:z_n>1$, i.e.

$$\exists k \ge n : |x_k| > 1^k = 1$$

 x_n ne converge pas vers zero \implies la série ne converge pas.

Si L < 1,

 $\exists n_0 \forall n > n_0: z_n; rac{1+L}{2}$, or

$$|x_n| \le z_n^n < \left(\frac{1+L}{2}\right)^n$$

On conclut par converge avec la série géometrique.

Exemple

Posons $x_0 = 0$, et $x_{n+1} = \frac{1+nx_n}{2^{n+1}}$ Notons (exo par récurrence)

$$\forall n \leq 2^n$$

Donc

$$0 \le x_n \le 1$$

On a

$$x_n^{\frac{1}{n}} = \frac{(n+1)^{\frac{1}{n}}}{2 \cdot 2^{\frac{1}{n}}} \to \frac{1}{2}$$

Le critère s'applique : L < 1.

Lemme 83

$$\lim_{n \to +\infty} \sqrt[n]{\frac{1}{n!}} = 0$$

Preuve

A voir: $(\sqrt[n]{n!})^2 \to +\infty$.

Or
$$n! = 1 \cdot 2 \cdot 3 \cdot \dots n \ge \frac{n}{2} \left(\frac{n}{2} + 1\right) \cdot \dots n$$

Si n pair.

$$\frac{n}{2}(\frac{n}{2}+1)\cdot\dots n$$

$$\geq (\frac{n}{2})^{\frac{n}{2}}$$

Donc
$$\sqrt[n]{(n!)^2} \ge \sqrt[n]{(\frac{n}{2}^n)} = \frac{n}{2} \to \infty$$

6 Fonctions

En général, fonctions = applications = map.

En analyse I, fonction = fonction de $\mathbb R$ vers $\mathbb R$ ou sur une partie $A\subseteq \mathbb R$. En analyse II, on ira de $\mathbb R^n\to\mathbb R^n$.

Lecture 9: mercredi

Definition 14

Wed 14 Oct

On dit qu'une fonction f est définie au voisinage de $x \in \mathbb{R}$, si $\exists \epsilon > 0$: f définie sur

$$|x - \epsilon, x[et]x, x + \epsilon[$$

Exemple

 $f(x_0) = \frac{1}{x_0}$ défini au voisinage de 0.

Definition 15

Soit f définie au voisinage de x_0 .

$$\lim_{x \to x_0} f(x) = l$$

signifie

$$\forall \epsilon > 0 \exists \delta > 0 \forall x$$

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon$$

Theorème 85

Soit f définie au voisinage de x_0

$$\lim_{x \to x_0} f(x) = l \iff \forall \, suite \, (a_n)_{n=1}^{\infty}$$

qui converge vers x_0 et $a_n \neq x_0, \forall n$, on a

$$\lim_{n\to\infty} f(a_n) = l$$

Remarque

A priori, f n'est pas définie en a_n , mais $\exists n_0, \forall n > n_0 : a_n \in domaine de définition car <math>f$ définie au voisinage de x_0

Preuve

 \Rightarrow

Soit $a_n \neq x_0$, une suite convergent vers x_0 . A voir : Soit $\epsilon > 0$, cherche $n_0 \forall n > n_0 : |f(a_n) - l| < \epsilon$.

Par hypothese, $\exists \delta > 0 \forall x$

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon \quad (1)$$

Appliquer $\lim a_n = x_0 \ \hat{a} \ \delta$:

$$\exists n_0, \forall n > n_0 : |a_n - x_0| < \delta$$

Appliquer à présent 1 à $x = a_n$

 \Leftarrow

Soit $\epsilon > 0$, *on cherche* $\delta > 0$

Supposons par l'absurde qu'aucun δ satisfait la définition.

En particulier, $\delta = \frac{1}{n}$

$$\exists x_n : 0 < |x_n - x_0| < \frac{1}{n} et |f(x_n) - l| \ge \epsilon$$

Or

$$x_n \neq x_0 \ et \ (x_n) \rightarrow x_0$$

Par hypothèse

$$\lim_{n \to \infty} f(x_n) = l$$

En particulier, pour ϵ ,

$$\exists n_0 \forall n > n_0 : |f(x_n) - l| < \epsilon$$

Corollaire 87

 $Si \lim_{x \to x_0} l \ et \lim_{x \to x_0} f'(x) = l'$, alors

$$\lim_{x \to x_0} f(x) + f'(x) = l + l'$$

Idem pour produit.

Corollaire 88

 $Si\ f(x) \ge a, \quad \forall x \ au \ voisinage \ de \ x_0 \ et$

$$\lim_{x \to x_0} f(x) = l, \text{ alors } l \ge a$$

Corollaire 89

Si

$$\lim_{x \to x_0} f(x) = l$$

Alors

$$\lim_{x \to x_0} |f(x)| = |l|$$

Corollaire 90

Pour

$$\lim \frac{g(x)}{f(x)}$$

il suffit de traiter $\lim \frac{1}{f(x)}$.

Lemme 91

 $Si \lim_{x \to x_0} f(x) = l \neq 0$, alors

$$\exists \epsilon > 0 \forall x \in]x_0 - \epsilon, x_0[\cup]x_0, x_0 + \epsilon[$$

tel que $f(x) \neq 0$

Preuve

$$|f(x) - l| < \frac{|l|}{2}$$

dans un voisingae de x_0 , alors $f(x) \neq 0$

Corollaire 92

 $Si \lim f(x) = l = \lim g(x) et$

$$f(x) \le h(x) \le g(x) \forall x$$
 au voisinage de x_0

Alors

$$\lim_{x \to x_0} h(x) = l$$

Corollaire 93 (Cauchy)

Soit f définie au voisinage de x_0 , alors

$$\lim_{x \to x_0} f(x) \text{ existe } \iff \forall \epsilon > 0 \exists \delta > 0 \forall x_1, x_2 \text{ avec}$$

$$0 < |x_i - x_0| < \delta \quad (i = 1, 2)$$

on a

$$|f(x_i) - f(x_2)| < \epsilon$$

Lemme 94

 $Si \lim f(a_n)$ existe \forall suite $(a_n \neq x_0)$ convergeant vers x_0 , alors

$$\lim_{x \to x_0} f(x)$$

existe

Preuve

Il suffit de montrer que toutes ces limites $f(a_n)$ ont la même valeur.

En effet, on peut alors appliquer le théorème et $\lim_{x\to x_0}f(x)=l$

Sinon, $\lim_{n\to+\infty} f(a_n) = l \neq l' = \lim_{n\to+\infty} f(a'_n)$ pour deux telles suites a_n et a'_n . A présent

$$b_n = \begin{cases} a_n \text{ si a pair} \\ a'_n \text{ si a impair} \end{cases}$$

or $f(b_n)$ converge absurde car elle admet deux sous-suites avec limites distinctes l, l'.

Preuve

Preuve du corollaire ci-dessus.

Grace au lemme, il suffit de montrerr que \forall suite $a_n \to x_0$, la suite $f(a_n)$ est de Cauchy. Par hypothèse, $\exists \delta > 0 \forall x_1, x_2 : 0 < |x_i - x_0| < \delta$ implique

$$|f(x_1) - f(x_2)| < \epsilon$$

Or, $\exists n_0 \forall n > n_0 : |a_n - x_0| < \delta$.

Applique $a_n = x_1$ et $a_m = x_2$ donne que $f(a_n)$ est de cauchy.

Corollaire 95

$$Si \lim_{x \to x_0} f(x) = l \ et \lim_{x \to x_0} f(x) = l', \ alors \ l = l'.$$

Remarque

On a implicitement utilisé les concept de $+,\cdot,\leq$ sur les fonctions.

Ce n'est pourtant pas un corps.

Par exemple, $\forall x, y \in corps$

$$xy = 0 \Rightarrow x = 0$$
 ou $y = 0$

Les fonctions ont une opération supplémentaire

$$f \circ g$$

est définie par

$$f \circ g(x) = f(g(x))$$

Soit $g:A\to B$ des parties de \mathbb{R} , et $f:B\to\mathbb{R}$ avec g défini au voisinage de x_0 et f au voisinage de g_0 .

Proposition 97

Supposons $g(x) \neq g_0 \forall x$ au voisinage de x_0

 $Si \lim_{x \to x_0} g(x) = y_0 \ et \lim_{y \to y_0} f(y) = l$, alors

$$\lim_{x\to x_0}f\circ g(x)=l$$

Preuve

Soit $\epsilon > 0$, à voir $\exists \delta > 0 \forall x$:

$$0 < |x - x_0| < \delta \Rightarrow |f(g(x)) - l| < \epsilon$$

2eme hup nous dit

$$\exists \eta > 0 \forall y : |y - y_0| < \eta \Rightarrow |f(y) - l| < \epsilon$$

Idee : appliquer la premiere hypothèse à η et poser y = g(x).

Ca marche, tant que $y \neq y_0$.

Exemple

Exemple délicat :

Soit

$$g(x) = \begin{cases} x \sin\frac{1}{x} si \ x \neq 0 \\ 0 si \ x = 0 \end{cases}$$

Clairement $\lim_{x\to 0} = 0$.

On pose que

$$f(x) = \begin{cases} 0 \text{ si } x \neq 0\\ 1 \text{ si } x = 0 \end{cases}$$

On voit que $\lim_{y\to 0} f(y) = 0$.

Or

$$\lim_{x \to 0} f(g(x))$$

n'existe pas.

Lecture 10: fonctions

Mon 19 Oct

6.1 Continuité

Definition 16

Soit f définie au voisinage de x_0 . Alors f est dite continue en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Donc f continue (en x_0) si on peut "sortir f de la limite" (en x_0)

Proposition 99

f continue en $x_0 \iff$ toute suite a_n tendant vers x_0 , on a

$$\lim_{n \to +\infty} f(a_n) = f(x_0)$$

Preuve

Théorème de traduction pour $l = f(x_0)$

Remarque

Pour parler de continuité en x_0 , il faut que f soit définie en x_0 et au voisinage de x_0

Corollaire 101

Si f et g sont continues en x_0 , alors f + g et $f \cdot g$ aussi.

Preuve

Idem que avant

Corollaire 102

Si de plus $g(x_0) \neq 0$, alors $\frac{f}{g}$ est cont. en x_0 .

Remarque

On a montré que alors dans ce cas il existe un voisinage de x_0 où $g(x) \neq 0$

Proposition 104

Soit g continue en x_0 et f continue en $g(x_0)$, alors $f \circ g$ est continue en x_0 .

Preuve

Ecrivons la définition de g continue en x_0 :

$$\forall \epsilon > 0 \exists \delta > 0 \forall x : |x - x_0| < \delta \Rightarrow |g(x) - g(x_0)| < \epsilon$$

Soit $\epsilon > 0$. *Cherche* $\eta > 0$ *tq* $\forall x$:

$$|x - x_0| < \eta \Rightarrow |f(\underline{g(x)}) - f(g(x_0))| < \epsilon$$

Continuité de f en $g(x_0)$ appliquée à ϵ donne $\theta > 0$ tq $\forall y$

$$|y - g(x_0)| \Rightarrow |f(y) - f(g(x_0))| < \epsilon$$

continuité de g en x_0 appliquée à θ

$$\exists \eta > 0 \forall x \quad |x - x_0| < \eta \Rightarrow |g(x) - g(x_0)| < \theta$$

Pour y = g(x) on a montré ce qu'il fallait.

Definition 17 (Terminologie Supplémentaire)

f est définie au voisinage à gauche de x_0 si $\exists \epsilon > 0$ tq f est définie sur $]x_0 - \epsilon, x_0[$. De même à droite : $]x_0, x_0 + \epsilon[$

Definition 18

Soit f définie au voisinage à droite de x_0

$$\lim_{x \to x_0 >} = l$$

signifie

$$\forall \epsilon > 0 \exists \delta > 0 \forall x > x_0 : |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon$$

La limite à gauche est définie de la même manière.

Definition 19

f est continue à droite en x_0 si

$$\lim_{x \to x_0 > f(x) = f(x_0)$$

Idem à gauche.

Exercice 105

 $\lim_{x\to x_0} f(x) \ existe \iff \ les \ limites \ \grave{a} \ gauche \ et \ \grave{a} \ droite \ existent \ et \ coincident.$

Definition 20

f est continue sur [a,b] si elle est continue sur]a,b[et continue à droite en a, à gauche en b.

Definition 21 (Notation)

$$\lim_{x \to x_0} f(x) = +\infty$$

si

$$\forall R \exists \delta > 0 \forall x : 0 < |x - x_0| < \delta \Rightarrow f(x) > R$$

Idem pour $-\infty$

Definition 22 (Notation)

$$\lim_{x \to +\infty} f(x) = l$$

signifie

$$\forall \epsilon > 0 \exists n_0 \forall x > n_0 : |f(x) - l| < \epsilon$$

On note C([a,b]) ou parfois $C^0([a,b])$ l'ensemble des fonctions continues sur [a,b]

Theorème 106

Toute fonction continue sur [a, b] est bornée.

Preuve

Supposons par l'absurde f non-bornée (disons sans perte de généralité non majorée). Donc $\forall n \in \mathbb{N} \exists x_n : f(x_n) > n$.

On a une suite $(x_n)_{n=1}^{\infty}$ de [a,b]

Par Bolzano-Weierstrass implique qu'on a une sous-suite x_{n_k} qui converge vers $x \in [a,b]$

$$f$$
 continue en $x \iff f(x) = \lim_{k \to +\infty} f(x_{n_k})$

Theorème 107

Toute fonction $f : [a, b] \to \mathbb{R}$ *continue atteint son* sup *donc max.*

Preuve

On sait déjà que f est bornée, soit donc $s:=\sup\{f(x)|x\in[a,b]\}$ Si par l'absurde $f(x)\neq s \forall x\in[a,b]$ posons

$$g(x) = \frac{1}{f(x) - s}$$

g est continue et donc g est bornée, disons par B.

Absurde car implique $|f(x) - s| > \frac{1}{B}$.

Proposition 108

Soient f, g deux fonctions continues sur un intervalle I. Soit $A \subseteq I$ une partie dense. Si

$$f|_A = g|_A$$

Alors f = g sur tout I

Preuve

Soit $x \in I$. Par densité,

$$\exists (a_n)$$

suite de A avec $\lim_{n\to+\infty} a_n = x$.

Continuité
$$f(x) = \lim_{n \to +\infty} f(a_n) = \lim_{n \to +\infty} g(a_n) = g(x)$$

Lecture 11: limites de fonctions

Wed 21 Oct

Comment définir 3^{π} ?

Exemple

Supposons que f soit définie et continue sur $I \setminus \{x_0\}$, où I est un intervalle ouvert et $x_0 \in I$.

 $Si \lim_{x \to x_0} f(x)$ existe, on obtient une fonction continue sur I en définissant $f(x_0) := \lim_{x \to x_0} f(x)$.

Ca s'appelle le "prolongement par continuité".

Un exemple de preuve de continuité :

$$f(x) = \sqrt{x} \operatorname{sur} \left[0, +\infty\right[$$

Soit $\epsilon > 0$, cherche δ

$$\begin{array}{l} \mathrm{Veut}: \forall x: |x-x_0| < \delta \Rightarrow |\sqrt{x} - \sqrt{x_0}| < \epsilon. \\ \mathrm{Or,} \ |\sqrt{x} - \sqrt{x_0}| = \frac{x-x_0}{\sqrt{x} + \sqrt{x_0}} < \epsilon \ \mathrm{si} \ \delta = \sqrt{x_0} \epsilon > 0 \end{array}$$

Remarque

Ce δ montre la continuité en $y \forall y \geq x_0$

Definition 23

f est dite uniformément continue sur I (où I est un intervalle ou plus généralement $I\subseteq\mathbb{R}$) $si\ \forall\epsilon>0\exists\delta>0\forall x,x_0\in I$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Comparer à f continue sur I:

$$\forall x_0 \in I \forall \epsilon > 0 \exists \delta > 0 \forall x :$$

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \epsilon$$

Le point clé est que le delta dépend que de ϵ et pas de x_0 .

Exemple

 $f(x)=\sqrt{x}$ est uniformément continue sur $[1,+\infty[$ Et aussi sur $[\frac{1}{100},+\infty[$.

Exemple

 $f(x) = x^2$ non uniformément continu sur $[0, +\infty[$. Considérons

$$|f(x) - f(x_0)| = |x - x_0|(x + x_0)$$

Proposition 113

Si f et g sont uniformément continues sur I, alors f+g aussi.kéw Attention : Faux pour f.g et pour $\frac{1}{f}$.

Exercice 114

Supposons f uniformément continue sur [a,b] et [b,c], alors f uniformément continue sur [a,c]

Theorème 115

Soit $f:[a,b]\to\mathbb{R}$ continue, alors f est uniformément continue sur [a,b]

Remarque

Donc $f(x) = \sqrt{x}$ est uniformément continue sur [0, 1].

Prenve

Si, par l'absurde, f n'est pas uniformément continue, alors :

$$\exists \epsilon > 0 \forall \delta > 0 \exists x, x_0$$
:

$$|x - x_0| < \delta$$
 mais $|f(x) - f(x_0)| \ge \epsilon$

Pour $n \in \mathbb{N}^*$, on applique ca à $\delta = \frac{1}{n}$, alors

$$\Rightarrow \exists y_n, z_n : |y_n - z_n| < \frac{1}{n}; |f(y_n) - f(z_n)| \ge \epsilon$$

Car y_n suite de [a,b], par Bolzano-Weierstrass $\Rightarrow \exists$ sous-suite y_{n_k} convergente.

Alors
$$\lim_{k\to+\infty} z_{n_k} = y \operatorname{car} |z_{n_k} - y_{n_k}| < \frac{1}{n_k}$$
.

Le théorème de traduction implique

$$\lim_{k \to +\infty} f(y_{n_k}) = f(y) = \lim_{k \to +\infty} f(z_{n_k})$$

$$\begin{aligned} & \textit{Mais} \; |f(y_{n_k} - f(z_{n_k})) \geq \epsilon. \\ & \not f \end{aligned}$$

Theorème 117 (Théorème de la valeur intermédiaire (TVI))

Soit $f:[a,b]\to\mathbb{R}$ continue.

 $\forall c \ entre \ f(a) \ et \ f(b), \exists x \in [a,b] : f(x) = c.$

Preuve

Sans perte de géneralité, f(a) < c < f(b); et c = 0 (sinon remplacer f par f - c).

Supposons par l'absurde f(a) < 0 < f(b) mais $f(x) \neq 0 \forall x$.

Alors $\frac{1}{f}$ est continue. Donc bornée. Donc $\exists \alpha > 0$ tq $|f(x)| \ge \alpha \forall x$.

On sait que f est uniformément continue sur [a, b].

Appliquer à α .

Donc, $\exists \delta > 0 \forall y, z : |y - z| < \delta \Rightarrow |f(y) - f(z)| < \alpha$.

Prenons $n \in \mathbb{N}$ avec $\frac{b-a}{n} < \delta$ (Archimède)

Posons $a_i = a + i \frac{b-a}{n} (i = 0, 1, \dots, n).$

 $Domc \ \forall i \forall y, z \in [a_i, a_{i+1}]$

$$|f(y) - f(z)| < \alpha$$

Donc $\forall i$, soit f est $\leq -\alpha$ sur tout $[x_i, x_{i+1}]$ soit $\geq \alpha$ pour tout $[x_i, x_{i+1}]$.

$$Or f(a) < 0 \ donc \le -\alpha \ Donc \ f \le -\alpha \ sur [a_0, a_1]$$

Or f(a) < 0 donc $\leq -\alpha$ Donc $f \leq -\alpha$ sur $[a_1, a_2]$, etc.

Lecture 12: Fonctions

Mon 26 Oct

Corollaire 118

 $\forall n \in \mathbb{N}^* \forall x \geq 0: \exists y \geq 0: y^n = x$

Comme ce y est unique (axiome de <) on peut donc définir $\sqrt[n]{x} = y$

Preuve

Considérons la fonction $f: \mathbb{R}^+ \to \mathbb{R}^+$, $f(y) = y^n$.

f est continu, f(0) = 0, $\lim_{x \to +\infty} f(x) = +\infty$.

Rappel: i.e.

$$\exists y_0 \forall y \ge y_0 : f(y) \ge x$$

TVI pour [0, y]: $\exists z \ tq \ f(z) = x$.

Rappel

- ax + b = 0 adment une solution (en x) si $a \neq 0$
- $ax^2 + bx + c$ admet parfois une solution
- $ax^3 + bx^2 + cx + d = 0$ admet une solution ($a \neq 0$)
- degré 4 admet parfois une solution
- degré 5 : pas de formule avec "juste" des racines.

Corollaire 119

Tout polynôme de degré impair admet des racines.

Preuve

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 = 0$$

n impair, $a_n \neq 0$

$$Or \lim_{x\to +\infty} f(x) = +\infty \ (si \ a_n > 0 - \infty \ si \ a_n < 0)$$

En effet

$$a_n x^n (1 + \frac{a_{n-1}}{a_n} x^{-1} + \ldots)$$

Donc $\exists x_1 : f(x_1) > 0 \ (resp. < 0).$

De même, $\lim_{x\to-\infty} f(x) = -\infty$ (resp $+\infty$).

Donc

$$\exists x_2 : f(x_2) < 0 \qquad \Box$$

 $TVI \, sur \, [x_2, x_1] \Rightarrow \exists x : f(x) = 0$

Corollaire 120

Soit $f:[a,b] \to \mathbb{R}$ continue.

$$f([a,b]) = [m,M] \text{ où } m = \min_{x \in [a,b]} f(x) \text{et } M = \max_{x \in [a,b]} f(x)$$

Proposition 121 (1er theoreme de la fonction implicite)

Soit $f:[a,b] \to \mathbb{R}$ *continue, strictement monotone.*

Donc (corrolaire précédent), f est bijective

$$f:[a,b]\to[m,M]$$

i.e. $\exists f^{-1} : [m, M] \to [a, b]$

Alors f^{-1} est continue

Preuve

Sans perte de géneralité, f strictement croissante.

Lemme 122

Soit $g:[m,M] \rightarrow [a,b]$ surjective et strictement croissante.

Alors g est continue

Preuve

 $En x_0$

Soit $\epsilon > 0$: $\exists x_1 : g(x_1) > g(x_0) - \epsilon$

De même, $\exists x_2 : g(x_2) < g(x_0) + \epsilon$.

Donc sur $[x_1, x_2]$ f prend des valeurs entre $g(x_0) - \epsilon$ et $g(x_0) + \epsilon$

Appliquer à $g = f^{-1}$.

C'est surjectif, par définition du domaine de f^{-1} , i.e. l'image de f.

Corollaire 123

Soit $f:[a,b] \rightarrow [a,b]$ continue.

Alors $\exists x \in [a,b] : f(x) = x$.

Preuve

Considérer g

$$g:[a,b]\to\mathbb{R}$$

avec

$$g(x) = x - f(x)$$

Donc

$$g(a) = a - f(a) \le 0$$

$$g(b) = b - f(b) \ge 0$$

$$TVI \Rightarrow \exists x : g(x) = 0 \text{ i.e. } f(x) = x$$

7 Suites de Fonctions

But: donner un sens à

" f_n converge vers une fonction f"

Definition 24

 (f_n) converge ponctuellement vers f si

$$\forall x: \quad \lim_{n \to +\infty} f_n(x) = f(x)$$

Figure 1 – fonction1

Exemple

__

Figure 2 – fonction2

— Ponctuellement, $f_n \to f$ où

$$f(x) = \begin{cases} 0 \sin x < 1 \\ 1 \sin x = 1 \end{cases}$$

Remarque

$$\lim_{x \to 1} f_n(x) = 1$$

On pourrait donc prendre

$$\lim_{n \to +\infty} \lim_{x \to 1} f_n(x) = 1$$

Par contre

$$\underset{x \to +\infty}{\underbrace{\lim}} \lim_{n \to +\infty} f_n(x) = 0$$

Donc, attention à la continuité!

Figure 3 – fonction3

— f_n est continue pour tout n,

$$\max f_n = 1$$

Or $f_n \to 0$ ponctuellement.

Figure 4 – fonction4

— Or, à nouveau,
$$f_n \to f = 0$$

Definition 25 (Convergence uniforme de fonctions)

Une suite $(f_n)_{n=1}^{\infty}$ converge uniformément sur $A \subseteq \mathbb{R}$ sur f si :

$$\forall \epsilon > 0 \exists n_0 \forall n \ge n_0 \forall x |f_n(x) - f(x)| < \epsilon$$

Lecture 13: Suites de Fonctions 2

Remarque

La convergence uniforme implique la convergence ponctuelle

Wed 28 Oct

Proposition 127

Soit (f_n) une suite de fonctions qui converge uniformément.

Supposons que

$$\lim_{n \to +\infty} \underbrace{\lim_{x \to x_0} f_n(x)}_{=l_n}$$

existe.

Alors

$$\lim_{x \to x_0} \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x)$$

Preuve

Soit f la limite de (f_n) .

 $Hyp: \forall n: l_n = \lim_{x \to x_0} f_n(x)$ existe et $l = \lim_{n \to +\infty} l_n$.

 $But: \lim_{x \to x_0} f(x) = l.$

Soit donc $\epsilon > 0$, alors

$$\exists n_0 \forall n \ge n_0 : |l_n - l| < \frac{\epsilon}{3}$$

De plus, par convergence uniformee

$$\exists n_0 \forall n \ge n_0 \begin{cases} |l_n - l| < \frac{\epsilon}{3} \\ \forall x : |f_n(x) - f(x)| < \frac{\epsilon}{3} \end{cases}$$

Donc

$$\exists \delta > 0 \forall x : 0 < |x - x_0| < \delta \Rightarrow |f_{n_0}(x) - l_{n_0}| < \frac{\epsilon}{3}$$

Soit $0 < |x - x_0| < \delta$, on veut

$$|f(x) - l| < \epsilon$$

Or

$$|f(x) - l| \le |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - l_{n_0}| + |l_{n_0} - l| < \epsilon$$

Theorème 128

Toute limite uniforme de fonctions continues est continue.

Preuve

Soit f la limite uniforme de (f_n) , f_n est continue $\forall n$.

Soit x_0 avec f_n définie au voisinage de x_0 .

A voir : f continue en x_0 , i.e.

$$f(x_0) = \lim_{x \to x_0} f(x) = \lim_{x \to x_0} \lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \lim_{x \to x_0} f_n(x) = f(x_0)$$

Theorème 129 (Dini)

Soit (f_n) une suite décroissante de fonctions continues.

 $Si(f_n)$ converge ponctuellement vers f continue, alors f_n converge uniformément vers f sur [a,b].

Exercice 130

Trouver un contre exemple sans l'hypothèse décroissante.

Preuve

Par l'absurde,

$$\exists \epsilon > 0 \forall n_0 \exists n \ge n_0 \exists x_n : |f_n(x_n) - f(x_n)| \ge \epsilon$$

 $Par\ Bolzano-Weierstrass \Rightarrow$

$$(x_{n_k})$$
 qui converge vers x

et tel que

$$|f_{n_k}(x_{n_k}) - f(x_{n_k})| \ge \epsilon$$

Convergence de $f_n(x)$ implique

$$\exists k: |f_{n_k}(x) - f(x)| < \frac{\epsilon}{3}$$

Continuité de f_{n_k} et de f en x

$$\exists \delta > 0 \forall y : |x - y| < \delta \Rightarrow \begin{cases} |f(y) - f(x)| < \frac{\epsilon}{3} \\ |f_{n_k}(y) - f_{n_k}(x)| < \frac{\epsilon}{3} \end{cases}$$

Choisir un k' tel que $|x_{n'_k} - x| < \delta$

Comme

$$-|f(x) - f(x_{n_k})| < \frac{\epsilon}{3} -|f_{n_k}(x) - f_{n_k}(x_{n'_k})| < \frac{\epsilon}{3} -|f \le f_{n'_k} \le f_{n_k}$$

Donc

$$|f_{n'_k}(x_{n'_k}) - f(x_{n'_k})| < \epsilon \qquad \Box$$

Absurde.

8 Dérivation

Definition 26

Soit f définie au voisinage de x_0 . On dit que f est dérivable en x_0 si

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existe.

Alors cette limite s'appelle la dérivée de f en x_0 , notée $f'(x_0)$.

Remarque

Si f est dérivable partout, alors on obtient une fonction f'.

On définit de même la dérivée gauche et droite.

Proposition 132

Si f et g sont dérivables en x_0 , alors f + g aussi et

$$(f+g)' = f' + g'$$

Preuve

$$\lim_{x \to x_0} \frac{f(x) + g(x) - f(x_0) + g(x_0)}{x - x_0} = f'(x_0) + g'(x_0)$$

Proposition 133

Soit f définie au voisinage de x_0 . Alors

f dérivable en $x_0 \iff \exists a \in \mathbb{R} \exists$ fonction r au voisinage de x_0 tel que

1.
$$f(x) = f(x_0) + a(x - x_0) + r(x)$$

2.
$$\lim_{x \to x_0} \frac{r(x)}{x - x_0} = 0$$

Dans ce cas, $a = f'(x_0)$

Lecture 14: Derivees

Mon 02 Nov

Corollaire 134

f dérivable en x_0 implique f continue en x_0 .

Preuve

$$f(x) = \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{continue pour tout } x} + \underbrace{r(x)}_{\text{continue en } x_0}$$

Proposition 135

Soient f, g dérivables en x_0

- f + g est dérivable en x_0 et (f + g)' = f' + g'
- fg est dérivable en x_0 et

$$(fg)' = f'g + fg'$$
 (règle de Leibnitz)

— Si $g(x_0) \neq 0$, alors $\frac{f}{g}$ est dérivable en x_0 et

$$(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

Preuve

- Somme est déja faite
- Produit:

$$\frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} \\
= \frac{f(x)g(x) - f(x_0)g(x)}{x - x_0} + \frac{f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} \\
= \underbrace{\frac{f(x) - f(x_0)}{x - x_0}}_{\rightarrow f'(x_0)} \underbrace{\frac{g(x)}{y - g(x_0)}}_{\rightarrow g'(x_0)} + f(x_0) \underbrace{\frac{g(x) - g(x_0)}{x - x_0}}_{\rightarrow g'(x_0)}$$

— Quotient:

Il suffit d'appliquer Leibnitz à f et $\frac{1}{g}$

$$\left(\frac{f}{g}\right)' = \left(f\frac{1}{g}\right)' = f'\frac{1}{g} + f\left(\frac{1}{g}\right)'$$

Il suffit de montrer que

$$\left(\frac{1}{g}\right) = -\frac{g'}{g^2}$$

Soit donc $g(x_0) \neq 0$.

$$\frac{\frac{1}{g(x) - \frac{1}{g(x_0)}}}{x - x_0} = \frac{1}{g(x)g(x_0)} \frac{g(x_0) - g(x)}{x - x_0}$$

Exemple

Soit $n \in \mathbb{Z}$, n < 0, $f(x) = x^n = \frac{1}{x^{\lfloor n \rfloor}}$ Donc

$$(x^{|n|})' = |n|x^{|n|-1}$$

Donc, par la proposition

$$f'(x) = \frac{-|n|x^{|n|-1}}{x^{2|n|}}$$

Or |n| = -n, alors

$$f'(x) = nx^{-n-1+2n} = nx^{n-1}$$

Proposition 137

Donc, on trouve

$$\forall n \in \mathbb{Z}, f(x) = x^n \Rightarrow f'(x) = nx^{n-1}$$

Attention, ne pas écrire $(x^n)'$

Theorème 138 (Chain Rule)

$$(f \circ g)' = (f' \circ g).g'$$

Soit g dérivable en x_0 et f en $g(x_0)$, alors $f \circ g$ esst dérivable en x_0 avec la formule ci-dessus.

Preuve

Definissons h par

$$h(y) = \begin{cases} \frac{f(y) - f(g(x_0))}{y - g(x_0)} \text{ si } y \neq g(x_0) \\ f'(g(x_0)) \text{ si } y = g(x_0) \end{cases}$$

Alors h est continue en $g(x_0)$ (par définition de f dérivable en $g(x_0)$).

On a alors

$$\lim_{x \to x_0} \frac{f(g(x)) - f(g(x_0))}{x - x_0}$$

$$= \lim_{x \to x_0} h(g(x)) \frac{g(x) - g(x_0)}{x - x_0}$$

$$= f'(g(x_0)) \cdot g'(x_0)$$

Theorème 139

Soit $f:]a,b[\rightarrow]c,d[$ bijective, continue.

Si f est dérivable en x_0 et $f'(x_0) \neq 0$, alors f^{-1} est dérivable en $y_0 = f(x_0)$ et

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

Preuve

$$L = \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$
$$= \left(\frac{f(f^{-1}(y)) - f(f^{-1}(y_0))}{f^{-1}(y) - x_0}\right)^{-1}$$

En posant $x = f^{-1}(y)$, on obtient

$$\left(\frac{f(x) - f(x_0)}{x - x_0}\right)^{-1}$$

Or, f^{-1} est continue, donc quand $y \to y_0$, on a que $x \to x_0$. Donc, la limite pour $y \to y_0$ de L est

$$\lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)^{-1} = \frac{1}{f'(x_0)}$$