Dérivées importantes

Première S/ES

Fonctions usuelles:

Fonction $f(x)$	Intervalle de définition	Fonction dérivée $f'(x)$	Intervalle de dérivation
$oldsymbol{k}$ avec $k\in\mathbb{R}$	\mathbb{R}	0	\mathbb{R}
$ax + b$ avec $a, b \in \mathbb{R}$	\mathbb{R}	а	\mathbb{R}
x ²	\mathbb{R}	2 <i>x</i>	R
<i>x</i> ³	\mathbb{R}	$3x^2$	\mathbb{R}
x^n avec $n \in \mathbb{N}$ (formule également valable pour $n \in \mathbb{Z}$)	\mathbb{R}	nx^{n-1}	\mathbb{R}
$\frac{1}{x}$	R*	$-\frac{1}{x^2}$	\mathbb{R}^*
\sqrt{x}	IR+	$\frac{1}{2\sqrt{x}}$]0; +∞[

Opérations avec les dérivées :

Fonction $f(x)$ (avec u et v des fonctions de x)	Fonction dérivée $f'(x)$	Conditions d'utilisation:
u + v	u' + v'	-
$\lambda \cdot u$	$\lambda \cdot u'$	-
$u \cdot v$	$u' \cdot v + u \cdot v'$	-
$\frac{1}{u}$	$-\frac{u'}{u^2}$	u ne s'annule pas dans son intervalle de définition \mathcal{D}_f
u^2	$2 \cdot u \cdot u'$	-
$\frac{u}{v}$	$\frac{u' \cdot v - u \cdot v'}{v^2}$	v ne s'annule pas dans son intervalle de définition D_f

Terminale S/ES

Fonctions usuelles:

Fonction $f(x)$	Intervalle de définition	Fonction dérivée $f'(x)$	Intervalle de dérivation
e^x	\mathbb{R}	e^x	\mathbb{R}
ln(x)]0; +∞[$\frac{1}{x}$]0; +∞[

Uniquement Terminales S:

$\cos(x)$	\mathbb{R}	$-\sin(x)$	\mathbb{R}
sin(x)	\mathbb{R}	$\cos(x)$	\mathbb{R}

Opérations avec les dérivées :

Fonction $f(x)$ (avec u et v des fonctions de x)	Fonction dérivée $f'(x)$	Conditions d'utilisation:
e^u	$u' \cdot e^u$	-
ln(u)	$\frac{u'}{u}$	Les images de la fonction u doivent appartenir à $]0; +\infty[$ pour $x \in D_f$

Uniquement Terminales S

		Ī
\sqrt{u}	$\frac{u'}{2\sqrt{u}}$	u est dérivable et positive sur l'intervalle de définition D_f , alors l'intervalle de dérivation $D_{f'}$ est le même que l'intervalle de définition mais on exclut les valeurs de x pour lesquels u s'annule
u^n avec $n \in \mathbb{N}$ (formule également vala pour $n \in \mathbb{Z}$)	ble $n \cdot u' \cdot u^{n-1}$	-

Autres (pas important pour le bac) :

Fonction $f(x)$	Intervalle de définition	Fonction dérivée $f'(x)$	Intervalle de dérivation
$\tan(x) = \frac{\sin(x)}{\cos(x)}$	$x \neq k \cdot \frac{\pi}{2}$ $k \in \mathbb{Z}$	$\frac{1}{\cos^2(x)}$ $1 + \tan^2(x)$	$x \neq k \cdot \frac{\pi}{2}$ $k \in \mathbb{Z}$
arctan(x)	\mathbb{R}	$\frac{1}{x^2+1}$	\mathbb{R}

Fonction $f(x)$ (avec u et v des fonctions de x)	Fonction dérivée $f'(x)$	Commentaire:
$u(v(x))$ ou $u \circ v(x)$	$v'(x) \cdot u'(v(x))$	Pour dériver tout type de fonction