Компактность

Рассматриваем метрическое пространство (X, ρ) .

Опр: 1. Пусть $\varepsilon > 0$ и A - подмножество метрического пространства (X, ρ) . Множество B называется ε -сетью для множества A, если:

$$\forall a \in A, \exists b \in B : \rho(a,b) < \varepsilon$$

Опр: 2. Если множество B из определения ε - сети конечное, то говорят, что A имеет конечную ε -сеть.

Утв. 1. Если у множества A есть конечная ε -сеть, то у A есть конечная 2ε -сеть из элементов A.

Rm: 1. Если у множества A есть конечная ε -сеть, то у всякого его подмножества, очевидно, тоже есть конечная ε -сеть.

Утв. 2. Если K - компакт, то у него $\forall \varepsilon > 0$ существует конечная ε -сеть.

Обобщение теоремы Больцано

Утв. 3. (обобщение теоремы Больцано) Пусть (X, ρ) - полное метрическое пространство. Множество $A \subset X$ для всякого $\varepsilon > 0$ имеет конечную ε -сеть \Leftrightarrow когда из любой последовательности элементов A можно выбрать сходящуюся подпоследовательность.

 \mathbf{Rm} : 2. Доказательство будет проходить аналогично случаю на числовой прямой, где аналогом деления отрезка пополам будет взятие ε -сетей.

(⇒) Возьмем $\varepsilon = 1$, по условию \exists 1-сеть, то есть:

$$A \subset B_1^1 \cup \ldots \cup B_1^{N_1}$$

где B_1^i - шары радиуса 1. Поскольку шаров конечное число, то хотя бы один из них содержит бесконечно много членов последовательности. Пусть B_1 - такой шар: $V_1 = A \cap B_1$, где бесконечно много членов $\{x_n\}$ принадлежат V_1 .

Возьмем $\varepsilon = \frac{1}{2}$, тогда найдется для A конечная $\frac{1}{2}$ -сеть \Rightarrow для любой части множества A найдется такая сеть (та же самая годится) \Rightarrow существует конечная $\frac{1}{2}$ -сеть множества V_1 :

$$V_1 \subset B_{\frac{1}{2}}^1 \cup \ldots \cup B_{\frac{1}{2}}^{N_2}$$

где $B_1\frac{1}{2}^i$ - шары радиуса $\frac{1}{2}$. Хотя бы один из этих шаров содержит бесконечно много членов последовательности $\{x_n\colon x_n\in V_1\}$. Пусть $B_{\frac{1}{2}}$ - такой шар. Следовательно $V_2=A\cap B_1\cap B_{\frac{1}{2}}$, где бесконечно много членов $\{x_n\}$ принадлежат V_2 . Далее, продолжаем процедуру.

В итоге, мы получаем набор вложенных множеств:

$$V_k = A \cap B_1 \cap B_{\frac{1}{2}} \cap \ldots \cap B_{\frac{1}{k}}$$
, бесконечно много членов $\{x_n\} \in V_k$

Просто по построению верно, что $V_{k+1} \subset V_k$. Теперь делаем ровно то, что делали в теореме Больцано:

$$\forall k, \, \exists \, n_k \colon n_1 < n_2 < \ldots \land x_{n_k} \in V_k$$

это возможно в силу того, что в каждом V_k есть что взять и каждый V_k содержит бесконечно много элементов последовательности \Rightarrow можно взять элемент со сколь угодно большим номером. Осталось понять, почему x_{n_k} сходится. Рассмотрим два элемента: x_{n_k} и x_{n_j} , если k,j>N, тогда:

$$x_{n_k}, x_{n_j} \in V_N \subset B_{\frac{1}{N}} \Rightarrow \rho(x_{n_k}, x_{n_j}) \le \frac{2}{N}$$

поскольку это расстояние от одной точки до центра и от центра до другой точки. Таким образом, выбором N делаем маленьким расстояние между любыми такими элементами, то есть $\{x_{n_k}\}$ - фундаментальная последовательность \Rightarrow в полном пространстве она сходится.

 (\Leftarrow) (От противного) Пусть для некоторого $\varepsilon > 0$ нет конечной ε -сети. Возьмем любую точку $x_1 \in A$. Поскольку нет конечной ε -сети, то поэтому не может оказаться так, что все точки A лежат на расстоянии меньше ε от x_1 , иначе была бы ε -сеть из одной точки x_1 , тогда:

$$\exists x_2 : \rho(x_1, x_2) \ge \varepsilon$$

Точки x_1, x_2 не образуют конечную ε -сеть, тогда:

$$\exists x_3 : \forall x \in \{x_1, x_2\}, \ \rho(x_3, x) \ge \varepsilon$$

и так далее. Таким образом, мы построим последовательность $\{x_n\}$ такую, что:

$$\{x_n\}: \forall n \neq m, \, \rho(x_n, x_m) \geq \varepsilon$$

это так называемая, расставленная последовательность. Очевидно, что из неё нельзя выбрать сходящейся подпоследовательности (и тем более фундаментальной), потому что для больших номеров должны встречатсья сколь угодно близкие элементы последовательности, а у нас ближе чем ε не бывает.

Опр: 3. Если $\forall \varepsilon > 0$ множество имеет конечную ε -сеть, то оно называется вполне ограниченным.

Таким образом, чтобы теорема Больцано осталась, необходимо ограниченность заменить вполне ограниченностью.

Rm: 3. Из вполне ограниченности следует просто ограниченность, поскольку множество помещаем в конечный набор шаров, но конечный набор шаров можно разместить в один большой шар, но обратное не верно (на примере равномерной сходимости).

Теорема 1. (критерий компактности Хаусдорфа) Пусть (X, ρ) - полное метрическое пространство. Множество $K \subset X$ - компакт $\Leftrightarrow K$ - замкнуто и вполне ограниченно.

 (\Rightarrow) Уже доказали, поскольку компакт это обязательно замкнутое множество и у компакта всегда существует конечная ε -сеть \Rightarrow компакт вполне ограничен.

 (\Leftarrow) (От противного) Пусть $\{\mathcal{U}_{\alpha}\}_{\alpha}$ - покрытие из которого нельзя выделить конечного подпокрытия.

Берем $\varepsilon=1$, мы знаем, что $K\subset B_1^1\cup\ldots\cup B_1^{N_1}$, где B_1^i - шары радиуса 1. Хотя бы одно из множеств $K\cap B_1^j$ не имеет конечного подпокрытия, иначе все бы имели (а тогда и K) конечное подпокрытие. Пусть B_1 - такой шар, то есть $V_1=K\cap B_1$ не имеет конечного подпокрытия.

Берем $\varepsilon=\frac{1}{2}$, мы знаем, что $K\subset B^1_{\frac{1}{2}}\cup\ldots\cup B^{N_2}_{\frac{1}{2}}$, где $B^i_{\frac{1}{2}}$ - шары радиуса $\frac{1}{2}$. Хотя бы одно из множеств $V_1\cap B^j_{\frac{1}{2}}$ не имеет конечного подпокрытия. Пусть $B_{\frac{1}{2}}$ - такой шар. Полагаем $V_2=K\cap B_1\cap B_{\frac{1}{2}}$ не имеет конечного подпокрытия. И так далее. Получаем:

$$\forall m \in \mathbb{N}, \ V_m = K \cap B_1 \cap B_{\frac{1}{2}} \cap \ldots \cap B_{\frac{1}{m}}$$

множества, которые не имеют конечного подпокрытия, где $V_1 \supset V_2 \dots$ по построению. Выберем в каждом таком множестве $x_m \in V_m \Rightarrow$ получится последовательность точек K. Но если множество $\forall \varepsilon > 0$ имеет конечную ε -сеть, то из любой последовательности его элементов, можно выбрать сходящуюся подпоследовательность (по обобщенной теореме Больцано):

$$\exists \{x_{m_i}\} \colon x_{m_i} \to x_0 \in K$$

где последнее следует из того, что K - замкнуто. Поскольку $x_0 \in K \Rightarrow$ оно накрывается каким-то \mathcal{U}_{α} , тогда $\exists \mathcal{U}_{\alpha} \colon x_0 \in \mathcal{U}_{\alpha}$. Но открытые множества содержат целую окрестность точки, поэтому:

$$\exists \delta > 0 \colon B(x_0, \delta) \subset \mathcal{U}_{\alpha}$$

Возьмем такое большое j, что будет выполнено $\rho(x_0,x_{m_j})<\frac{\delta}{10}$ и $\frac{1}{m_j}<\frac{\delta}{10}$, тогда вспоминая, что элементы $x_{m_j}\in V_{m_j}\subset B_{\frac{1}{m_j}}$, то: $B_{\frac{1}{m_j}}\subset B(x_0,\delta)$. Действительно, пусть $a\in B_{\frac{1}{m_j}}$, тогда:

$$\rho(a, x_0) \le \rho(a, x_{m_j}) + \rho(x_{m_j}, x_0) < \frac{2}{m_j} + \frac{\delta}{10} < \frac{\delta}{5} + \frac{\delta}{10} < \delta$$

значит $V_{m_j} \subset B_{\frac{1}{m_j}} \subset B(x_0, \delta) \Rightarrow V_{m_j} \subset \mathcal{U}_{\alpha}$, а это противоречит построению.

Rm: 4. Доказательство в обратную сторону повторяет доказательство того, что отрезок является компактом (лемма Гейне-Лебега-Бореля) с заменой процедуры деления пополам на взятие конечной ε -сети.

Rm: 5. Вместе с критерием Хаусдорфа мы одновременно доказали и другой критерий, что множество в метрическом (не обязательно полном) пространстве компактно.

Следствие 1. K в метрическом пространстве компактно \Leftrightarrow из всякой последовательности его элементов можно выбрать сходящуюся подпоследовательность к элементу из K.

 $(\Rightarrow)~K$ - компакт \Rightarrow имеет конечную ε -сеть \Rightarrow применяем обобщение теоремы Больцано. Также доказывали аналогичное утверждение во втором семестре.

 (\Leftarrow) Достаточно доказать, что K - компакт в метрическом пространстве (K, ρ) (см. 2 семестр, лекцию 8, утв. 3). Заметим, что:

- 1) K замкнутое, просто по определению замкнутого множества (пространство всегда само по себе замкнуто, см. 2 семетр, лекцию 7, утв. 1);
- 2) K полное метрическое пространство. Действительно, пусть $\{x_n\}$ фундаментальная последовательность, по условию $\exists x_{n_k} \to x_0$, но тогда $x_n \to x_0$ (см. 1 семестр, лекция 10, утв. 3);
- 3) К вполне ограничнно по обобщению теоремы Больцано;

По критерию Хаусдорфа K - компакт.

Rm: 6. Заметим, что в критерии Хаусдорфа полнота очень важна. Легко можно придумать пример множества в неполном пространстве, которое будет замкнуто и вполне ограниченно, но тем не менее, не будет компактом. Например, обычный интервал с обычной метрикой, это замкнутое пространство (как само в себе), есть ε -сеть, но это не является компактом, можно придумать покрытие из которого нельзя будет выбрать конечное подпокрытие.

Критерий компактности в пространстве ограниченных функций

Рассматриваем пространства ограниченных функций:

$$\mathcal{B}(X) = \{ f \colon X \to \mathbb{R}, \, \sup_{X} |f| < \infty \}$$

это метрическое пространство с метрикой $\rho(f,g) = \sup_{v} |f-g|.$

Теорема 2. (критерий компактности в B(X)) Множество $K \subset B(X)$ - компакт \Leftrightarrow верно следующее:

1) K - замкнуто;

- 2) K ограниченно;
- 3) $\forall \varepsilon > 0$, \exists разбиение X на конечное число множеств X_1, \ldots, X_N $\left(X = \bigsqcup_{n=1}^N X_n\right)$ такое, что:

$$\forall f \in K, \ \forall i, \ \forall y, z \in X_i, \ |f(y) - f(z)| < \varepsilon$$

то есть на каждом из этих кусочков (X_i) все функции одинаково мало меняют свое значение;

 $(\Rightarrow)~K$ - компакт \Rightarrow оно замкнуто и ограниченно. Для доказательства последнего пункта, рассмотрим понятие ε -сети: $\forall \varepsilon > 0, \; \exists$ конечная ε -сеть, пусть она состоит из f_1, \ldots, f_M . Рассмотрим отображение:

$$F(y) = (f_1(y), \dots, f_M(y)), F: X \to \mathbb{R}^M$$

Каждая из функций f_1, \ldots, f_M ограниченна по условию (рассматриваем множество ограниченных функций), тогда X отображается внутрь некоторого куба.

Рис. 1: Отображение X в \mathbb{R}^n функцией F.

Разрежем этот кубик на маленькие кубики диаметром меньше ε и берем те из них, которые задевают множество F(X), причем берем эти кубики так, чтобы они попарно не пересекались, то есть грани распределяем между ними \Rightarrow получаем I_j - конечный набор попарно непересекающихся кубиков, диаметром меньше ε , которые задевают образ X при отображении F: $I_i \cap F(X) \neq \emptyset$. Тогда искомые множества:

$$\forall j, X_j = F^{-1}(\mathbf{I}_j)$$

то есть это прообразы конечного набора попарно непересекающихся кубиков (а следовательно также представляют из себя набор попарно непересекающихся множеств, см. 2 семестр, лекция 10, упр. 1).

Проверим, что это искомые множества (для 3ε): возьмем произвольную $f \in K$ и произвольные $y, z \in X_j$, где X_j - фиксированно. Все функции f_1, \ldots, f_m на прообразе этих кубов меняются мало (меньше, чем на ε) по построению. Рассмотрим следующую разность: |f(y) - f(z)|, поскольку у нас была конечная ε -сеть, то $\exists f_k \colon \sup_{X_i} |f - f_k| < \varepsilon$, то есть который мало отличается от f, тогда:

$$|f(y) - f(z)| = |f(y) - f_k(y) + f_k(y) - f(z)| \le |f(y) - f_k(y)| + |f_k(y) - f(z)| \le$$

$$\le |f(y) - f_k(y)| + |f_k(y) - f_k(z)| + |f_k(z) - f(z)| < 2\varepsilon + |f_k(y) - f_k(z)|$$

где последнее неравенство верно, поскольку f_k принадлежит ε -сети. Так как $y,z\in X_j$, то значения функции f_k это k-ая координата при отображении в кубик I_j :

$$F(X_i) = (f_1, \dots, f_k, \dots, f_M)(X_i) \subset I_i$$

диаметр этого кубика меньше ε , значит каждая координата отображения F может изменяться не больше, чем на ε на нем, тогда:

$$|f_k(y) - f_k(z)| < \varepsilon \Rightarrow |f(y) - f(z)| < 3\varepsilon$$

 (\Leftarrow) Множество K - замкнуто и ограниченно, следовательно необходимо построить ε -сеть. Пусть мы разбили всё X на N частей:

$$X = \bigsqcup_{n=1}^{N} X_n$$

и на каждой из них функции из нашего семейства меняются мало. Поскольку это множество ограниченно, то все значения функций из K лежат в некотором фиксированном отрезке [-c,c]. Разделим этот отрезок с шагом ε и в качестве 2ε -сети возьмем всевозможные следующие функции:

$$\forall j = \overline{1, N}, \, \forall x \in X_j, \, g \colon g(x) \equiv c_j$$

число таких функций - конечное, поскольку у нас конечное число частей $X\Rightarrow$ это конечный набор. Таким образом, получили кусочно-постоянную функцию на X. Почему такой набор образует 2ε -сеть? Возьмем произвольную функцию f и выберем g, которая нам потребуется так, чтобы было верно:

$$|f(\omega) - g(\omega)| < 2\varepsilon$$

Пусть $\omega_j \in X_j \Rightarrow f(\omega_j) \in]c_s, c_{s+1}[$ - какой-то промежуток. Пусть тогда $g(x) \equiv c_s$ на X_j , пройдемся так по всем $X_j \Rightarrow$ это кусочно-постоянная функция, тогда по условию 3):

$$\forall \omega \in X_j, |f(\omega) - g(\omega)| = |f(\omega) - c_s| \le |f(\omega) - f(\omega_j)| + |f(\omega_j) - c_s| < \varepsilon + \varepsilon = 2\varepsilon$$

Таким образом, мы построили 2ε -сеть и по критерию Хаусдорфа множество K - компакт.

Rm: 7. Для наглядности доказательства пункта (\Rightarrow), рассмотрим график одной функции f(x), который лежит в интервале [-1, 1]. Разделим область значений с шагом меньше ε , возьмем промежутки попарно непересекающиеся (например, полуинтервалы) и обозначим их I_j . Если возьмем прообраз этого полуинтервала, то мы получим X_j :

Рис. 2: Упрощение доказательства критерия компактности.

Если мы возьмем какие-то две точки y и z в этом X_j , то значения в этих точках будут различаться меньше, чем на ε :

$$\forall y, z \in X_j, |f(y) - f(z)| < \varepsilon$$

Когда мы разобьем всю прямую на прообразы этих промежутков, то каждый из этих промежутков будет обладать таким свойством, что значения на них друг от друга отличаются меньше, чем на ε . В теореме было сделано то же самое, но там была не одна функция, а M штук.

Rm: 8. Этот критерий компактности можно воспринимать, как критерий вполне ограниченности, если выкинуть из него замкнутость того множества, которое у нас есть.

Следующая теорема по сути - есть следствие из только что доказанного критерия Компактности.

Теорема 3. (Арцела-Асколи) Множество $K\subset C[a,b]$ компактно \Leftrightarrow

- 1) K замкнуто;
- 2) K равномерно ограниченно, то есть:

$$\exists C > 0 : \forall f \in K, ||f|| < C$$

3) K - равностепенно непрерывно, то есть:

$$\forall \varepsilon > 0, \ \exists \ \delta > 0 \colon \forall f \in K, \ \forall x, y \in [a, b], \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$