DISCRETE RANDOM PROCESSES WITH MEMORY: MODELS AND APPLICATIONS

Tomáš Kouřim, Petr Volf, Prague

Abstract. The contribution focuses on Bernoulli-like random walks where the past events affect significantly the walk's future development. The main concern of the paper is therefore the formulation of models describing the dependence of transition probabilities on the process history. Such an impact can be incorporated explicitly and transition probabilities modulated using a few parameters reflecting the current state of the walk as well as the information about the past path. The behavior of proposed random walks, as well as the task of their parameters estimation, are studied both theoretically and with the aid of simulations.

Keywords: Random walk, history dependent transition probabilities, non-Markov process, success punishing/rewarding walk

 $MSC\ 2010$: 60G50, 62F10

1. Introduction

One of the most common types of a discrete random process is a random walk, first introduced by K.Pearson in 1905 [7]. There exist many variations of a random walk with various applications to real life problems [9, 10]. Yet there are still new possibilities and options how to alter and improve the classical random walk and present yet another model representing different real life events. One of such modifications is the random walk with varying step size introduced in 2010 by Turban [10] which, together with the idea of self-exciting point processes [3] and the perspective of model applications in reliability analysis and also in sports statistics, served as an inspiration to the random walk with varying transition probabilities introduced by Kouřim [4, 5]. The definition of the walk falls into a rather broad class of processes

The research was supported by the grant No. 18-02739S of the Grant Agency of the Czech Republic.

described for instance in the paper of Davis and Liu [1]. However, other assumptions, e.g. the condition of contraction, are not fulfilled by the walk and thus the conclusions from [1] cannot be applied.

In the present paper, the theoretical properties of the model are described and further examined, numerical procedures of model parameters estimation are specified and the results are tested on generated data.

The rest of the paper is organized as follows. Sections 2 and 3 describe the properties of different versions of the model, section 4 provides results from simulated model evaluation and finally section 5 concludes the work.

2. RANDOM WALK WITH VARYING PROBABILITIES

The random walk with varying probabilities is based on a standard Bernoulli random walk [2] with some starting transition probability p_0 . This probability is then altered after each step of the walk using a coefficient λ so that the repetition of the same step becomes less probable. Formally, it can be defined as

Definition 2.1. Let $\{X_n\}_{n=1}^{\infty}$ and $\{P_n\}_{n=1}^{\infty}$ be sequences of discrete random variables, and $p_0 \in [0, 1]$ and $\lambda \in (0, 1)$ constant parameters, such that the first random variable X_1 is given by

$$P(X_1 = 1) = p_0, P(X_1 = -1) = 1 - p_0.$$

Further

(2.1)
$$P_1 = \lambda p_0 + \frac{1}{2}(1 - \lambda)(1 - X_1)$$

and for $i \geq 2$

$$P(X_i = 1 | P_{i-1} = p_{i-1}) = p_{i-1}, \ P(X_i = -1 | P_{i-1} = p_{i-1}) = 1 - p_{i-1},$$

(2.2)
$$P_i = \lambda P_{i-1} + \frac{1}{2}(1-\lambda)(1-X_i).$$

The sequence $\{S_n\}_{n=0}^{\infty}$, $S_N = S_0 + \sum_{i=1}^{N} X_i$ for $n \in \mathbb{N}$, with $S_0 \in \mathbb{R}$ some given starting position, is called a random walk with varying probabilities, with $\{X_n\}_{n=1}^{\infty}$ being the steps of the walker and $\{P_n\}_{n=1}^{\infty}$ transition probabilities.

2.1. **Properties.** The random walk with varying probabilities was first introduced in [4] and further elaborated in [5]. Following properties of the walk were described in these previous papers.

The value of a transition probability P_{t+k} at each step t+k, t, k>0 can be computed from the knowledge of transition probability P_t and the realization of the walk X_{t+1}, \ldots, X_{t+k} using formula

(2.3)
$$P_{t+k} = P_t \lambda^k + \frac{1}{2} (1 - \lambda) \sum_{i=t+1}^{t+k} \lambda^{t+k-i} (1 - X_i).$$

To compute the expected value of transition probability and position of the walker following formula can be used

(2.4)
$$EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

and

(2.5)
$$ES_t = S_0 + (2p_0 - 1)\frac{1 - (2\lambda - 1)^t}{2(1 - \lambda)}$$

for all $t \ge 1$. This further yields $EP_t \to \frac{1}{2}$ and $ES_t \to S_0 + \frac{2p_0 - 1}{2(1 - \lambda)}$ for $t \to +\infty$. Now to describe the walk in more detail, let us prove the following propositions.

Proposition 2.2. For all $t \geq 1$, it holds that

(2.6)
$$E(X_t) = (2\lambda - 1)^{t-1}(2p_0 - 1).$$

Proof. Using that $E(X_t) = 2P_{t-1} - 1$ the proposition can be proved directly using (2.4) as

$$E(X_t) = E(E(X_t)|X_{t-1}) = E(2P_{t-1} - 1) = 2E(P_{t-1}) - 1 =$$

$$=2((2\lambda-1)^{t-1}p_0+\frac{1-(2\lambda-1)^{t-1}}{2})-1=(2\lambda-1)^{t-1}(2p_0-1).$$

Corollary 2.3. The distribution of X_t converges to the Bernoulli (1, -1) distribution with $p = \frac{1}{2}$. This Bernoulli distribution is simultaneously the stationary distribution of the random sequence X_t .

Proof. As X_t are Bernoulli (1, -1), their distributions are fully characterized by their expectations EX_t , and it holds that $EX_t = 2 \cdot EP_{t-1} - 1$. Then the first statement of the Corollary follows from the fact that $EP_t \to \frac{1}{2}$.

Further, let $EP_{t-1} = \frac{1}{2}$ be the characteristics of X_t , i.e. $EX_t = 0$. As then $EP_t = EP_{t-1}\lambda + (1-\lambda)/2(1-EX_t) = \frac{1}{2}$, therefore $EX_{t+1} = 0$ again.

Remark 2.4. For $p_0 = \frac{1}{2}$ and $t \ge 1$ or $\lambda = \frac{1}{2}$ and $t \ge 2$ it hods that X_t is the stationary random sequence with the distribution given by Corollary 2.3.

Proposition 2.5. For all $t \geq 1$, it holds that

(2.7)
$$Var(P_t) = (3\lambda^2 - 2\lambda)^t p_0^2 + \sum_{i=1}^t K(i-1)(3\lambda^2 - 2\lambda)^{t-i} - k(t)^2,$$

where

$$k(t) = EP_t = (2\lambda - 1)^t p_0 + \frac{1 - (2\lambda - 1)^t}{2}$$

and

$$K(t) = k(t) \cdot (-3\lambda^2 + 4\lambda - 1) + (1 - \lambda)^2.$$

Proof. To prove the proposition several support formulas has to be derived first. From the definition of variance it follows

(2.8)
$$Var(P_t) = E(P_t^2) - E(P_t)^2.$$

 $E(P_t)$ is given by (2.4), therefore in order to prove the proposition it is sufficient to prove the following statement

(2.9)
$$E(P_t^2) = (3\lambda^2 - 2\lambda)^t p_0^2 + \sum_{i=1}^t K(i-1)(3\lambda^2 - 2\lambda)^{t-i}.$$

To do so, let us first express the relation between $E(P_t^2)$ and $E(P_{t-1}^2)$ and $E(P_{t-1})$. From the definition of the expected value and the definition of the walk (2.2) it follows

(2.10)
$$E(P_t^2) = E[E(P_t^2|P_{t-1})] = E[E(\lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1-X_t))^2|P_{t-1}].$$

Using that $E(X_t|P_{t-1})=2P_{t-1}-1$, $E(X_t^2)=1$ and further that

$$E[(1 - X_t)^2 | P_{t-1}] = E[(1 - 2X_t + X_t^2) | P_{t-1}] = E[(2 - 2X_t) | P_{t-1}] = 4(1 - P_{t-1}).$$

Equation (2.10) further yields

$$E(P_t^2) = E[\lambda^2 P_{t-1}^2 + \lambda P_{t-1} (1 - \lambda) E(1 - X_t | P_{t-1}) + \frac{1}{4} (1 - \lambda)^2 E((1 - X_t)^2 | P_{t-1})] =$$

$$= E[\lambda^2 P_{t-1}^2 + 2\lambda P_{t-1} (1 - \lambda) (1 - P_{t-1}) + (1 - \lambda)^2 (1 - P_{t-1})]$$

and finally

(2.11)
$$E(P_t^2) = E(P_{t-1}^2)(3\lambda^2 - 2\lambda) + EP_{t-1}(-3\lambda^2 + 4\lambda - 1) + (1 - \lambda)^2.$$

Statement (2.9) can be proved using mathematical induction. Based on the trivial fact that $Ep_0 = p_0$ and $E(p_0)^2 = p_0^2$, for t = 1 we get

$$E(P_1^2) = (3\lambda^2 - 2\lambda)^1 p_0^2 + \sum_{i=1}^{1} K(i-1)(3\lambda^2 - 2\lambda)^{1-i} = (3\lambda^2 - 2\lambda)p_0^2 + K(0) = 0$$

$$= (3\lambda^2 - 2\lambda)p_0^2 + ((2\lambda - 1)^0 p_0 + \frac{1 - (2\lambda - 1)^0}{2}) \cdot (-3\lambda^2 + 4\lambda - 1) + (1 - \lambda)^2 =$$

$$= (3\lambda^2 - 2\lambda)p_0^2 + p_0(-3\lambda^2 + 4\lambda - 1) + (1 - \lambda)^2,$$

and from (2.11) it follows that (2.9) holds for t = 1. Now for the induction step $t \to t + 1$ we get by substituting (2.9) into (2.11)

$$\begin{split} E(P_{t+1}^2) &= E(P_t^2)(3\lambda^2 - 2\lambda) + EP_t(-3\lambda^2 + 4\lambda - 1) + (1 - \lambda)^2 = \\ &= ((3\lambda^2 - 2\lambda)^t p_0^2 + \sum_{i=1}^t K(i-1)(3\lambda^2 - 2\lambda)^{t-i}) \cdot (3\lambda^2 - 2\lambda) + K(t) = \\ &= (3\lambda^2 - 2\lambda)^{t+1} p_0^2 + \sum_{i=1}^t K(i-1)(3\lambda^2 - 2\lambda)^{t+1-i} + K(t) = \\ &= (3\lambda^2 - 2\lambda)^{t+1} p_0^2 + \sum_{i=1}^{t+1} K(i-1)(3\lambda^2 - 2\lambda)^{t+1-i} \end{split}$$

and the formula thus holds. Now substituting (2.4) and (2.9) into (2.8) yields (2.7) and proves the Proposition. \Box

From Proposition 2.5 the limit behavior of $Var(P_t)$ can be derived easily:

Corollary 2.6. For $t \to +\infty$,

(2.12)
$$\lim_{t \to +\infty} Var(P_t) = \frac{\frac{1}{2}(1-\lambda^2)}{1-3\lambda^2+2\lambda} - \frac{1}{4}.$$

Figure 1 shows the comparison of computed theoretical values of transition probability expected value and its variance and the actual observed values of average transition probability and variance for different starting probabilities p_0 and memory coefficients λ .

Proposition 2.7. For all $t \geq 1$, it holds that

(2.13)
$$Var(X_t) = 1 - (2\lambda - 1)^{2(t-1)}(2p_0 - 1)^2.$$

Proof. The fact that X_t are Bernoulli (1, -1) implies $E(X_t^2) = 1$. The statement then follows directly from the definition of variance and Proposition 2.2.

Corollary 2.8. For $t \to +\infty$,

(2.14)
$$\lim_{t \to +\infty} Var(X_t) = 1.$$

The variance of the position of the walker was studied with the help of computer simulations, presented in Figure 2. The simulations show that the variance grows to infinity with $t \to \infty$ depending on both p_0 and λ . The derivation of an exact formula will be subject of further studies.

- 3. RANDOM WALK WITH VARYING TRANSITION PROBABILITY ALTERNATIVES
- 3.1. Success rewarding model. The basic definition of the random walk (Definition 2.1) presents a *success punishing* model, meaning that the probability of an event is decreased every time that event occurs. Opposite situation can be considered, where the probability of an event is increased with each event's occurrence. Formally, such a random walk is defined in a following manner [5]:

Definition 3.1. Let $\{X_n\}_{n=1}^{\infty}$, p_0 and λ be as in Definition 2.1. Further let $\{P_n\}_{n=1}^{\infty}$ be a sequence of discrete random variables given by

(3.1)
$$P_1 = \lambda p_0 + \frac{1}{2}(1 - \lambda)(1 + X_1),$$

(3.2)
$$P_i = \lambda P_{i-1} + \frac{1}{2}(1-\lambda)(1+X_i) \ \forall i \ge 2.$$

The sequence $\{S_n\}_{n=0}^{\infty}$, given as in Definition 2.1, is a random walk with varying probabilities - success rewarding.

In this section, all variables (P, X, S) are related to the *success rewarding* model. This version of the model behaves differently than the *success punishing* version, which can be observed with the help of the following propositions.

FIGURE 1. The observed average transition probability (dotted, upper part of the figure) of a *success punishing* version of the random walk and its observed variance (dot-dashed lines, lower part of the figure) compared to the theoretical values computed using (2.4) and Proposition 2.5 (same colors, solid lines). The values were computed from 1000 simulated realizations of each parameter combination.

Proposition 3.2. For all $t \geq 2$,

(3.3)
$$P_t = p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 + X_i).$$

Proof. The Proposition is proved using mathematical induction. For t=2 using (3.1) and (3.2) it holds that

$$P_2 = \lambda P_1 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda(\lambda p_0 + \frac{1}{2}(1 - \lambda)(1 + X_1)) + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_1 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_1 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + X_2) = \lambda P_2 + \frac{1}{2}(1 - \lambda)(1 + \lambda)(1$$

$$= p_0 \lambda^2 + \frac{1}{2} (1 - \lambda) \sum_{i=1}^{2} \lambda^{2-i} (1 + X_i),$$

which is in accordance with (3.3). Now for the induction step $t \to t+1$ we obtain from (3.2) and the induction assumption

$$P_{t+1} = \lambda P_t + \frac{1}{2}(1 - \lambda)(1 + X_{t+1}) =$$

FIGURE 2. The observed average position of the walker (dotted, "thicker") of a *success punishing* version of the random walk and its variance (dot-dashed lines, "thinner"). The values were computed from 1000 simulated realizations of each parameter combination.

$$= \lambda (p_0 \lambda^t + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i} (1 + X_i)) + \frac{1}{2} (1 - \lambda) (1 + X_{t+1}) =$$

$$= p_0 \lambda^{t+1} + \frac{1}{2} (1 - \lambda) \sum_{i=1}^t \lambda^{t-i+1} (1 + X_i) + \frac{1}{2} (1 - \lambda) (1 + X_{t+1}) =$$

$$= p_0 \lambda^{t+1} + \frac{1}{2} (1 - \lambda) \sum_{i=1}^{t+1} \lambda^{t+1-i} (1 + X_i).$$

Proposition 3.3. For all $t \ge 1$, $E(P_t) = p_0$.

Proof. Using $E(X_t|P_{t-1}) = 2P_{t-1} - 1$ and (3.2) we obtain

$$EP_t = E[E(P_t|P_{t-1})] = E[E(\lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1+X_t)|P_{t-1})] =$$

$$= E[\lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1+2P_{t-1}-1)] = E[\lambda P_{t-1} + (1-\lambda)P_{t-1}) = E(P_{t-1}).$$
Recursively we get

(3.4)
$$E(P_t) = E(p_0) = p_0.$$

Proposition 3.4. The sequence X_t is a stationary sequence of Bernoulli random variables with values 1, -1 and with $P(X_t = 1) = p_0$.

Proof. As the distribution of X_t is fully given by $E(P_{t-1})$, the statement follows directly from Proposition 3.3.

Proposition 3.5. Bernoulli (0, 1) distribution with parameter q is a stationary distribution of the random sequence $\{P_t\}_{t=1}^{\infty}$.

Proof. Let $P_{t-1} = 1$ with probability q, then $X_t = 1$, or $P_{t-1} = 0$ with 1 - q, then $X_t = -1$. From (3.2) it follows that with probability q $P_t = \lambda \cdot 1 + (1 - \lambda) \cdot 2/2 = 1$, while with probability 1 - q $P_t = \lambda \cdot 0 + (1 - \lambda) \cdot 0/2 = 0$. It means that P_t has the same Bernoulli distribution as P_{t-1} .

Now to calculate the expected position of the walker at a given step $t \geq 1$, the definition of the walk can be used to prove that $E(X_t|S_{t-1}) = E(X_t|P_{t-1}) = 2P_{t-1} - 1$ and thus $E(S_t|S_{t-1}) = S_{t-1} + 2P_{t-1} - 1$. From this, we can prove the following statement about the expected position of the walker after step t just from the knowledge of the input parameters.

Proposition 3.6. For all $t \geq 1$,

$$E(S_t) = S_0 + t(2p_0 - 1).$$

Proof. Using the result of Proposition 3.3 we get

$$E(S_{t+1}) = E[E(S_{t+1}|S_t)] = E[S_t + (2P_t - 1)] = ES_t + (2p_0 - 1)$$

which then recursively proves the statement.

Corollary 3.7. For $t \to +\infty$,

$$\lim_{t \to +\infty} E(S_t) = \begin{cases} +\infty & p_0 > \frac{1}{2} \\ 0 & p_0 = \frac{1}{2} \\ -\infty & p_0 < \frac{1}{2} \end{cases}$$

Proposition 3.8. For all $t \geq 1$,

(3.5)
$$Var(P_t) = (2\lambda - \lambda^2)^t p_0^2 + p_0(1-\lambda)^2 \sum_{i=1}^t (2\lambda - \lambda^2)^{t-i} - p_0^2.$$

Proof. The proof will be done in several steps similar as in Proposition 2.5. It is based on the definition of variance (2.8). From Proposition 3.3 it follows $E(P_t) = p_0$ and it is thus sufficient to prove that

(3.6)
$$E(P_t^2) = (2\lambda - \lambda^2)^t p_0^2 + p_0(1-\lambda)^2 \sum_{i=1}^t (2\lambda - \lambda^2)^{t-i}.$$

The proof will be done using mathematical induction again. First observe that

$$E(P_t^2) = E[E(P_t^2|P_{t-1})] = E[E(\lambda P_{t-1} + \frac{1}{2}(1-\lambda)(1+X_t))^2|P_{t-1}] =$$

$$(3.7) = EP_{t-1}^2(2\lambda - \lambda^2) + p_0(1-\lambda)^2,$$

where the facts that $E[(1+X_t)^2|P_{t-1}]=4P_{t-1}$, $E[(1+X_t)|P_{t-1}]=2P_{t-1}$ and Proposition 3.3 were used. Now for t=1 we get

$$EP_1 = p_0^2(2\lambda - \lambda^2) + p_0(1-\lambda)^2 = (2\lambda - \lambda^2)^2 p_0^2 + p_0(1-\lambda)^2 \sum_{i=1}^{1} (2\lambda - \lambda^2)^{1-i}$$

and thus (3.6) holds for t=1. For the induction step $t \to t+1$ we get from the induction assumption and (3.7)

$$E(P_{t+1}^2) = EP_t^2(2\lambda - \lambda^2) + p_0(1 - \lambda)^2 =$$

$$= ((2\lambda - \lambda^2)^t p_0^2 + p_0(1 - \lambda)^2 \sum_{i=1}^t (2\lambda - \lambda^2)^{t-i}) \cdot (2\lambda - \lambda^2) + p_0(1 - \lambda)^2 =$$

$$= (2\lambda - \lambda^2)^{t+1} p_0^2 + p_0(1 - \lambda)^2 \sum_{i=1}^t (2\lambda - \lambda^2)^{t-i+1} + p_0(1 - \lambda)^2 =$$

$$= (2\lambda - \lambda^2)^{t+1} p_0^2 + p_0(1 - \lambda)^2 \sum_{i=1}^{t+1} (2\lambda - \lambda^2)^{t+1-i}.$$

The Proposition is then proved by substituting (3.4) and (3.6) into (2.8).

Notice that the last sum in (3.5), after re-indexing by j = t - i, yields

$$\sum_{j=0}^{t-1} (2\lambda - \lambda^2)^j = \frac{1 - (2\lambda - \lambda^2)^t}{1 - 2\lambda + \lambda^2}.$$

Hence the limit follows immediately:

Corollary 3.9. For $t \to +\infty$,

$$\lim_{t \to +\infty} Var(P_t) = p_0(1 - p_0).$$

Proposition 3.10. For all $t \geq 1$, it holds that

$$Var(X_t) = 4p_0(1 - p_0).$$

Proof. As $E(X_t) = 2p_0 - 1$ and $E(X_t^2) = 1$ the proof follows similarly as in Proposition 2.7 directly from the definition of variance.

3.2. **Two-parameter models.** Another level of complexity can be added by using separate λ parameters for each direction of the walk. Again, two ways of handling success are available.

Definition 3.11. Let $\{X_n\}_{n=1}^{\infty}$ and p_0 be as in Definition 2.1. Further let λ_0 , $\lambda_1 \in (0, 1)$ be constant coefficients and $\{P_n\}_{n=1}^{\infty}$ be a sequence of discrete random variables given by

(3.8)
$$P_1 = \frac{1}{2} [(1+X_1)\lambda_0 p_0 + (1-X_1)(1-\lambda_1(1-p_0))]$$

(3.9)
$$P_i = \frac{1}{2} [(1+X_i)\lambda_0 P_{i-1} + (1-X_i)(1-\lambda_1(1-P_{i-1}))] \quad \forall i \ge 2.$$

The sequence $\{S_n\}_{n=0}^{\infty}$, given as in Definition 2.1, is a random walk with varying probabilities - two-parameter success punishing.

Definition 3.12. Let $\{X_n\}_{n=1}^{\infty}$ and p_0 be as in Definition 2.1, λ_0 , λ_1 as in Definition 3.11 and $\{P_n\}_{n=1}^{\infty}$ be a sequence of discrete random variables given by

$$P_1 = \frac{1}{2} [(1 - X_1)\lambda_0 p_0 + (1 + X_1)(1 - \lambda_1 (1 - p_0))]$$

$$P_i = \frac{1}{2}[(1 - X_i)\lambda_0 P_{i-1} + (1 + X_i)(1 - \lambda_1(1 - P_{i-1}))] \quad \forall i \ge 2.$$

The sequence $\{S_n\}_{n=0}^{\infty}$, given as in Definition 2.1, is a random walk with varying probabilities - two-parameter success rewarding.

Derivation of model properties is not so straightforward. The development of transition probability and its variance for different starting probabilities p_0 and memory coefficients pairs $[\lambda_0, \lambda_1] = \bar{\lambda}$ for the two-parameter success punishing version of the model is shown on Figure 3. Similarly as in the single λ version of the model, the variance seems to depend on the $\bar{\lambda}$ pair only. The expected transition probability seems to converge to a constant value independently on both the starting probability p_0 and memory coefficients $\bar{\lambda}$. This interesting property of the walk will be subject of a further study.

FIGURE 3. The development of the observed average transition probability (dotted, upper part of the figure) of a two-parameter success punishing version of the random walk and its variance (dot-dashed lines, lower part of the figure). The values were computed from 1000 simulated realizations of each parameter combination.

3.3. Other alternatives. The presented model of a random walk can be further developed and more versions can be derived and described. These variants include, but are not limited to, a multidimensional walk (with either one or multiple λ parameters, success rewarding or success punishing), a walk with the transition probability explicitly dependent on more than the last step, i.e. $P_t(k) \sim P_t(X_t, X_{t-1}, \dots, X_{t-(k-1)})$, or a walk with λ parameter not constant, but a function of the time t, i.e. $P_t(\lambda(t))$. Detailed properties of such walks together with their possible applications on real life problems will by subject of a further study.

4. Simulations

Testing dataset was generated in order to validate the quality of the model and its ability to be fitted on a real life problem. The data generation was performed using the Python programming language and its package NumPy. Following values of input parameters were chosen. The memory coefficient values varied in $\lambda \in \{0.5, 0.8, 0.9, 0.99\}$ and similarly the pair of memory coefficients $[\lambda_0, \lambda_1] \in$

 $\{[0.5, 0.8], [0.1, 0.5], [0.5, 0.99], [0.99, 0.9]\}$, further denoted as $\tilde{\lambda}$. The starting transition probability p_0 was chosen from the set $P_0 = \{0.5, 0.8, 0.9, 0.99\}$ and the length of the walk varied in $length \in \{5, 10, 50, 100\}$. All four described models of the random walk were tested. For each permutation of the parameters and the model type 100 walks were generated and considered as 1 evaluation set. Further, 100 such evaluation sets were generated, which then formed a dataset consisting of $100 \cdot 100 \cdot 4^4 = 2560\,000$ random walks.

Four different fitting tasks were performed on each of the 100 evaluation sets, generating 100 different estimates for each walk configuration. The tasks were:

- find $\tilde{\lambda}$ with known p_0 and model type,
- find p_0 with known $\tilde{\lambda}$ and model type,
- find p_0 and λ with known model type,
- find model type without any prior knowledge.

The first three tasks consist of estimation of parameters and were based on the maximum likelihood estimate (MLE) [8]. The evaluation of the likelihood function for given parameters is easy, however the computation of the log-likelihood derivatives is hardly tractable. The ML estimates were therefore obtained using numerical methods with the help of the Python programming language and its scientific package SciPy. The Akaike Information Criterion $AIC = 2k - 2ln(\hat{L})$, where k is the number of model parameters and \hat{L} is the maximal likelihood, was then used for the last task.

To evaluate the quality of the parameter fitting results four different evaluation criteria were tested. First, the standard $(1-\alpha)$ two-sided confidence interval around the mean was constructed and the test was positive if the true parameter value was in that interval. Second, the $\frac{100\alpha}{2} - th$ and $100(1-\frac{\alpha}{2}) - th$ percentile were chosen as a lower and upper bounds of a "percentile" interval and again the test was positive if the true parameter value fell within the interval. For the last two criteria, a "proximity" interval was constructed based on the true parameter value ω as $[\omega - \frac{\alpha}{2}\omega, \omega + \frac{\alpha}{2}\omega]$ and it was tested whether the mean fitted parameter value and the median fitted parameter value fell into that interval. To evaluate the quality of model type estimation simply the proportion of correctly predicted model types for the given walk configuration was computed.

Together there were 1024 different fitting setups. The overall performance of the fitting is rather satisfying with average success rate of the tests at about 80% (for $\alpha = 0.1$). As expected, the less parameters there were to estimate the better the results. Longer walks show better results when finding the coefficients $\tilde{\lambda}$ while the performance in finding correct p_0 seems independent on the walk's length. This is not surprising as the parameter p_0 affects mostly the first few steps of the walk, while $\tilde{\lambda}$ play their role thorough the entire course of the walk. An example of the results of

TABLE 1. The table shows an example of evaluation results. The first four rows show the results of fitting λ or λ_0 with true value 0.5 (and corresponding $\lambda_1 = 0.8$), known $p_0 = 0.5$ and walk length 5, the last four rows the results of the same parameter combination but with walk length 100. The mean value and its standard deviation and the median and the corresponding "percentile" interval of the 100 evaluation sets are presented. SP stands for success punishing, SR for success rewarding, the number 2 denotes the model with two λ parameters.

Type	mean	st. dev.	median	percentile
SP	0.505	0.043	0.504	[0.439; 0.576]
SR	0.502	0.033	0.503	[0.451; 0.549]
SP2	0.505	0.060	0.501	[0.399; 0.606]
SR2	0.491	0.047	0.490	[0.415; 0.564]
SP	0.499	0.008	0.499	[0.484; 0.511]
SR	-	-	-	-
SP2	0.502	0.012	0.502	[0.478; 0.521]
SR2	0.498	0.026	0.501	[0.452; 0.535]

TABLE 2. The table shows the success rate of model estimation. Model with the lowest value of AIC was selected.

True model	$ ilde{\lambda}$	p_0	steps	succ. rate
SR	0.5	0.5	50	0.85
SP	0.5	0.8	5	0.88
SR2	[0.5, 0.8]	0.9	5	0.96
SP2	[0.99, 0.9]	0.99	50	0.99

parameters estimation (tasks 1–3) can be seen in Table 1. Some results of the model type identification using the AIC (task 4) can be observed in Table 2.

For the success rewarding version of the model the fitting results were sometimes unsatisfactory and the optimization algorithm often provided a very bad estimate or did not converge at all. The reason for such behavior can be explained be the difference between the theoretical model (where $0 < P_t < 1$, for all t) and its representation in computer simulation, where the limited precision handles values very close to 1 or 0 as equal to them. This is especially true for walks with more steps. Handling of such unwanted behavior will be subject of further research.

Full results of all evaluation setups as well as several values of parameter α can be found in the GitHub repository (see the last paragraph of the paper).

5. Conclusion

This work follows up on the recent results on random walks with varying probabilities. It describes and proves certain properties of such a walk, other properties have been studied with the help of numerical methods. The study also shows the results of the maximum likelihood and AIC based estimations of model parameters and types using optimization procedures. The method has been successfully tested on a set of randomly generated data. The presented model has also many possible uses in real life applications. Such a type of random walk describes especially well processes where either a single or just a small number of events can significantly affect the future development of the process. Such processes can be found in reliability analysis, medical as well as econometric studies, and very often in sports modeling. The authors recently published a study where the success rewarding model was applied to predict the in-play development of a Grand Slam tennis matches with compelling results when used for live betting against a bookmaker [6].

The source code containing all functionality mentioned in this article is freely available as open source at GitHub (https://github.com/tomaskourim/amistat2019).

References

- [1] Richard A Davis and Heng Liu. Theory and inference for a class of observation-driven models with application to time series of counts. *Statistica Sinica*, 26:1673–1707, 2016.
- [2] William Feller. An introduction to probability theory and its applications. 1957.
- [3] Alan G Hawkes. Spectra of some self-exciting and mutually exciting point processes. Biometrika, 58(1):83–90, 1971.
- [4] Tomáš Kouřim. Random walks with varying transition probabilities. Doktorandské dny FJFI, 2017. Available at http://kmwww.fjfi.cvut.cz/ddny/historie/17-sbornik.pdf.
- [5] Tomáš Kouřim. Statistical analysis, modeling and applications of random processes with memory. PhD Thesis Study, ČVUT FJFI, 2019.
- [6] Tomáš Kouřim and Petr Volf. Tennis match as random walk with memory: Application to grand slam matches modelling. Submitted to IMA Journal of Management Mathematics, 2019.
- [7] Karl Pearson. The problem of the random walk. Nature, 72(1865):294, 1905.
- [8] Richard J Rossi. Mathematical Statistics: An Introduction to Likelihood Based Inference. John Wiley & Sons, 2018.
- [9] Gunter M Schütz and Steffen Trimper. Elephants can always remember: Exact long-range memory effects in a non-markovian random walk. *Physical Review E*, 70(4):045101, 2004.
- [10] Loïc Turban. On a random walk with memory and its relation with markovian processes. Journal of Physics A: Mathematical and Theoretical, 43(28):285006, 2010.

Authors' addresses: Tomáš Kouřím, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Czech Republic e-mail: kourim@outlook.com. Petr Volf, Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Prague e-mail: volf@utia.cas.cz.