Heinrich-Heine-Universität Düsseldorf

Marcus Zibrowius Jan Hennig 17.12.2024

Topologie I Blatt 9

So fern nicht weiter spezifiziert arbeiten wir in der Kategorie der lokal kompakt erzeugten, schwach Hausdorff Räume und bezeichnen diese Kategorie mit **Top**, bzw. der punktierten Version **Top**_{*}.

1 | Stegreiffragen:

Alle Fragen sollten lediglich eine kurze Antwort benötigen:

- (a) Wie sehen die Homotopiegruppen des Torus T aus (also $\pi_n(T)$)?
- (b) Was ist $\pi_1(D^1, S^0, 0)$?

2 | Homotopiegruppen von Wedgesummen

Seien (X, x_0) , (Y, y_0) punktierte Räume.

- (a) Zeigen Sie $\pi_n(X \vee Y, (x_0, y_0)) \cong \pi_n(X, x_0) \oplus \pi_n(Y, y_0) \oplus \pi_{n+1}(X \times Y, X \vee Y, (x_0, y_0))$ für $n \geq 2$. (Hinweis: Betrachten Sie eine geeignete lange exakte Sequenz und zeigen Sie, dass diese spaltet. Warum benötigt dies $n \geq 2$?)
- (b) Finden Sie ein Beispiel im Fall n=1, sodass die obige Aussage falsch ist.

3 | Es gibt im allgemeinen keine Gruppenstruktur auf relativen Homotopiegruppen

Betrachten Sie das Paar $(S^1 \vee S^1, S^1)$, wobei $S^1 \subseteq S^1 \vee S^1$ die Inklusion eines Summanden ist.

(a) Zeigen Sie, dass es keine Gruppenstruktur auf $\pi_1(S^1 \vee S^1, S^1, *)$ gibt, sodass

$$\pi_1(S^1 \times S^1, *) \to \pi_1(S^1 \vee S^1, S^1, *)$$

ein Gruppenhomomorphismus ist.

4 | "Das sind nicht die Homotopiegruppen, die ihr sucht"

Betrachten Sie das Paar $(S^1 \vee S^1, S^1)$, wobei $S^1 \subseteq S^1 \vee S^1$ die Inklusion eines Summanden ist.

- (a) Berechnen Sie $\pi_n(D^2, S^1)$ für alle n.
- (b) Zeigen Sie, dass $\pi_n(D^2, S^1) \ncong \pi_n(D^2/S^1)$ für ein n.
- (c) Berechnen Sie $\pi_n(\mathbb{RP}^n, \mathbb{RP}^{n-1})$ für $n \geq 3$.
- (d) Folgern Sie, $\pi_n(\mathbb{RP}^n, \mathbb{RP}^{n-1}) \ncong \pi_n(\mathbb{RP}^n/\mathbb{RP}^{n-1})$. (Hinweis: Es gilt $\mathbb{RP}^i/\mathbb{RP}^{i-1} \simeq S^i$)