PreDP revision questions Answers for Section B of the exam

Unit 3 and 4: Forces and Pressure + Forces and Energy

(a)	(i)	P = F/A in any form, letters, words or numbers 1.4 × 10 ⁶ Pa accept N/m ²	C1 A1	
	(ii)	84 N OR 84.0 N	В1	
	(iii)	same force over (much) smaller area (much) bigger pressure	B1 B1	
(b)	(i)	$P = hdg$ in any form, letters, words or numbers 3×10^4 Pa OR 30 000 Pa OR 30 kPa accept N/m ²	C1 A1	
	(ii)	his (i)	В1	[8]
(a)	5 p	oints correctly plotted ±½ small square –1 e.e.o.o. (ignore 0,0)		B2
(b)	3 N	l one, however identified OR 3 rd value OR 4 th value		B1
(c)	go	od straight line through origin and candidate's remaining points		B1
(d)		aight line / constant gradient es obey Hooke's Law		M1 A1
		ecial case: obeys Hooke's law because force ∞ extension or wtte		B1

(a) Mark (i) and (ii) together. Note both M1s required to score the A1 mark (i) B M1 (ii) idea of greater / different (NOT less) increase in length for each additional load accept load not proportional to extension or reverse argument М1 at 4^{th} or 5^{th} reading / value between 2.0 - 2.5 N / 11.6 - 12.6 cmΑ1 **(b) (i)** 1.0 cm В1 (ii) 5.7 cm В1 C1 (c) 2.5 (cm) OR 1.25 (N) OR 5.0(cm) ignore 2.5N e.c.f. from (b) if clear e.c.f. from (b) if clear 8.2 cm Α1 e.g. 10.7/2 (= 5.35) scores 0/2 [7] (a) all four = 40 N OR all four add up to 160 N В1 upwards В1 C1 **(b) (i)** $W \times 0.17/0.20/0.23 = 160 \times 0.72/0.75/0.78$ $W \times 0.17 = 160 \times 0.78$ or 600 N C1 730/734 N Α1 (ii) force by P = 160 + answer to (i) correctly evaluated В1 all others = 0 В1

(a)	(i)	(P =) F/A in any form OR 1000/0.01 100 000 Pa accept N/m²		C1 A1
	(ii)	multiplication of either force or area by 4 0.08 × his (i) OR 0.02 × his (i) 8000 N e.c.f. from (i) (2000 N gets C0, C1, A1)		C1 C1 A1
(b)		(ii) – 2000 correctly evaluated kg e.c.f.		C1 A1
(a)	(i)	120 Ncm OR 1.2 Nm		B1
	(ii)	60 Ncm OR 0.6 Nm		B1
	(iii)	idea of CW moments = ACW moments 60 + 20F = 120 OR 0.6 + 0.2F = 1.2 e.c.f. 3.0 N OR 3 N e.c.f.		C1 C1 A1
(b)	(d =	× 20 = 2.0 × d OR 1.2 × 0.2 = 2.0 × d =) 12 OR 0.12 c.a.o. OR special case (30 – his 12) correctly evaluated B1		C1 C1 A1
(a)		in symbols, words or numbers Pa or N/m²	C1 A1	[2]
(b)		<u>of</u> F = pA 7N ecf from (a)	C1 A1	[2]
(c)	use	.9 – 14.7 =)16.2 N OR evidence of calculation of resultant of a = F/m 4 m/s ²	C1 C1 A1	[3]

(a)	mass = $(1.5 \times 10 \times 12)/(30 \times 10)$ OR = $(1.5 \times 12)/30$ OR any correct moment equation with force or mass but not mixture = $0.6(0)$ kg	C1 A1	[2]
(b)	21 N ecf from (a)	B1	[1]
(c)	(i) stays in position	B1	
	 (ii) any two from: clockwise moment = anticlockwise moment centre of mass at pivot no (resultant) moment/turning force acting on sculpture balanced/in equilibrium 	B1 B1	
	relative distances from pivot unchanged		[3]
(a)	(p =) F/A OR in words OR 90/4.8 OR 90 / 0.00048 = 18.75 N/cm ² OR 1.875 × 10 ⁵ Pa OR 187500 Pa		C1
	OR 187.5kPa OR 0.1875MPa at least 2 s.f.		A1
(b)	Area of Y bigger (than area of X so force greater)		В1
(c)	Volume of oil moved at Y = volume of oil moved at X Area of Y × distance moved by Y = Area of X × distance moved by X (so distance		B1
	move by Y smaller)		В1
	OR Work done by piston X = work done on piston Y		(B1)
	Work = force \times distance and F_2 is greater than F_1 so distance moved by Y smaller (than distance moved by X)		(B1)
(d)	Air bubbles compress when pressure applied More movement of piston X required for same movement of piston Y OR Y moves less (for same movement of X) OR Driver must push the brake pedal further / do more work OR Pressure reduced / force on Y reduced		M1
	OR System is less efficient		A1

(a) (i)	A – distance A		1
(ii)	D – force D		1
(b) (i)	Force (C) in N; or Force in newtons;	Allow: Reading from newton-meter in N	1
(ii)	20 40 60 80	To nearest ½ square, penalise errors up to two marks Suited to candidate's plotting (allow a smooth curve) no double lines judge LoBF by balance of points about the line	3
(iii)	Reading from graph to ± 1 cm; e.g. 46	To nearest ½ small square	1

(c)	weight of ruler;	Accept other valid reasons allow force for weight ignore 'it's got a force acting' 'because of gravity'	1
		Total	8

(a)	(i)	force is rate of change of momentum	B1
	(ii)	force on body A is equal in magnitude to force on body B (from A)	A 1
(b)	(i)	1 F _A = -F _B	B1 B1
	(ii)	$\Delta p = F_A t_A = -F_B t_B \dots$	B1
(c)	fina	ph: momentum change occurs at same times for both spheres	B1 M1

- (a) force = rate of change of momentum (allow symbols if defined)
- **(b) (i)** $\Delta \rho = 140 \times 10^{-3} \times (5.5 + 4.0)$ = 1.33 kg m s⁻¹

(c) (i) taking moments about B $(33 \times 75) + (0.45 \times g \times 25) = F_A \times 20$ $F_A = 129 \text{ N}$

(ii)
$$F_B = 33 + 129 + 0.45g$$

= 166 N

- (a) <u>point</u> at which (whole) weight (of body) (allow mass for weight) appears / seems to act ... (for mass need 'appears to be concentrated')
- (b) (i) point C shown at centre of rectangle ± 5 mm
 - (ii) arrow vertically downwards, from C with arrow starting from the same margin of error as in (b)(i)
- (c) (i) reaction / upwards / supporting / normal reaction force friction force(s) at the rod
 - (ii) comes to rest with (line of action of) weight acting through rod allow C vertically below the rod so that weight does not have a moment about the pivot / rod
- (a) pressure = force / area

 B1
- (b) molecules collide with object / surface and rebound
 molecules have change in momentum hence force acts
 fewer molecules per unit volume on top of mountain / temperature is less
 hence lower speed of molecules
 hence less pressure

 B1
 A0
- (c) (i) $\rho = m / V$ C1 $W = V \rho g = 0.25 \times 0.45 \times 9.81 \times 13600$ C1 = 15000 (15009) N A1
 - (ii) p = W/A (or using $p = \rho gh$) = 15009 / 0.45 = 3.3 × 10⁴ Pa
 - (iii) pressure will be greater due to the air pressure (acting on the surface of the liquid)

 B1

(a) (i)	change of shape / size / length / dimensionwhen (deforming) force is removed, returns to original	
(ii)	L = ke	
	k(allow e.c.f. from extension)	
1/26	e and 2k	
$\frac{3}{2}$	e(allow e.c.f. from extension in part 2)	
_	k(allow e.c.f. from extension)	
eithe or	k = average force ×distance moved (in direction of the force) er work = ½ × F × x work is area under F/x graph which is ½Fx	B′
so v	vork / energy = ½kx²	A0
(c) (i)	spring constant = $\frac{3.8}{2.1}$	M′
	= 1.8 N cm ⁻¹	
		A0
(ii)	$1 \Delta E_{P} = mg\Delta h or W\Delta h$ $= 3.8 \times 1.5 \times 10^{-2}$	A0
(ii)	= 3.8 × 1.5 × 10 ⁻² = 0.057 J	
(ii)	$= 3.8 \times 1.5 \times 10^{-2}$ $= 0.057 \text{ J}$ $2 \Delta E_{S} = \frac{1}{2} \times 1.8 \times 10^{-2} (0.036^{2} - 0.021^{2})$	A(
(ii)	= $3.8 \times 1.5 \times 10^{-2}$ = 0.057 J 2 $\Delta E_8 = \frac{1}{2} \times 1.8 \times 10^{-2} (0.036^2 - 0.021^2)$ = 0.077 J 3 work done = $0.077 - 0.057$	A(A(A(A(
(ii)	= $3.8 \times 1.5 \times 10^{-2}$ = 0.057 J 2 $\Delta E_S = \frac{1}{2} \times 1.8 \times 10^{-2} (0.036^2 - 0.021^2)$ = 0.077 J	A(A(A(A(

	or	er energy (stored)/work done represented by area under graph energy = average force × extension		
(b)	(i)	either momentum before release is zero so sum of momenta (of trolleys) after release is zero or force = rate of change of momentum (M1) force on trolleys equal and opposite (A1) or impulse = change in momentum (M1) impulse on each equal and opposite (A1)		
		1 $M_1V_1 = M_2V_2$ 2 $\underline{E} = \frac{1}{2} M_1V_1^2 + \frac{1}{2} M_2V_2^2$		
(iii)	1 $E_K = \frac{1}{2}mv^2$ and $p = mv$ combined to give $E_K = \frac{p^2}{2m}$		
		2 <i>m</i> smaller, E_K is larger because <i>p</i> is the same/constant so trolley B		
(a)	(i)	$\Delta E_{p} = mg\Delta h$ $= 0.602 \times 9.8 \times 0.086$	C1	
		= 0.51 J (do not allow g = 10, m = 0.600 or answer 0.50 J)	A1	[2]
	(ii)	$v^2 = (2gh =) 2 \times 9.8 \times 0.086 \text{ or } (2 \times 0.51)/0.602$ $v = 1.3 \text{ (m s}^{-1)}$	M1 A0	[1]
(b)		$2 \times V = 602 \times 1.3$ (allow 600) $V = 390 \text{ m s}^{-1}$	C1 A1	[2]
(c)	(i)	$E_{k} = \frac{1}{2}mv^{2}$ $= \frac{1}{2} \times 0.002 \times 390^{2}$	C1	
		= 152 J or 153 J or 150 J	A1	[2]
	(ii)	E_k not the same/changes or E_k before impact> E_k after/ E_p after so must be inelastic collision (allow 1 mark for 'bullet embeds itself in block' etc.)	M1 A1	[2]

(a)	(i)	equal	B1	
	(ii)	density of ice is less	B1	[2]
(b)		mass of ice becomes equal mass of water (allow weight)	M1	[3]
(a)		force = upthrust – weight of polystyrene in air $25 = V \times (1000 - 15) \times 9.8$ $V = 2.6 \times 10^{-3} \text{ m}^3$	C1 C1 A1	[3]
(b)		boat will tend to right itself/float higher in the water if at positions B	M1 A1	[2] [5]
(a)	fo	erce (on body) acting upwards	B1	[1]
(b)	(F	ressure below object is different from pressure above	B1 B1	[2]
(c)	Ol in ri	othrust depends on $\Delta p = \rho g \Delta h$ R upthrust = weight of fluid displaced compressible fluid OR ρ constant gid object (so volume not change) irst mark may be awarded for any detail anywhere)	B1 B1 B1	[3]

(a)	M shown near base of stem	B1	[1]
(b)(i)	density = mass/volume volume submerged in liquid of density 1.0 g cm ⁻³ = 165 cm ³ volume submerged in liquid of density 1.1 g cm ⁻³ = 150 cm ³ change in volume = 15 cm ³	C1 C1 C1 A1	
(ii)	distance (= 15/0.75) = 20 cm	A1	[5]
(a)	centre of buoyancy is above the centre of mass (if displaced sideways) weight and upthrust provide couple to keep tube upright (do not allow argument in terms of metacentre)	B1 B1	[2]
(b)	either force on base = $L\rho g \times A$ or weight of liquid displaced = ρLAg this equals weight Mg hence $L = M/A\rho$ hence $L = M/A\rho$	M1 A1 A0	[2]
(c)	$M/A = L\rho$ = constant new length = 12.1 × (0.99/1.11) = 10.8 cm change in length = 1.3 cm	C1 C1 A1	[3]

(a) (i)
$$v^2 = u^2 + 2as$$

= $(8.4)^2 + 2 \times 9.81 \times 5$
= 12.99 m s^{-1} (allow 13 to 2 s.f. but not 12.9)

(ii)
$$t = (v - u) / a$$
 or $s = ut + \frac{1}{2}at^2$
= $(12.99 - 8.4) / 9.81$ or $5 = 8.4t + \frac{1}{2} \times 9.81t^2$
 $t = 0.468 \, \text{s}$

- (b) reasonable shape suitable scale correctly plotted 1st and last points at (0,8.4) and (0.88 – 0.96,0) with non-vertical line at 0.47 s
- (c) (i) 1. kinetic energy at end is zero so $\Delta KE = \frac{1}{2} mv^2$ or $\Delta KE = \frac{1}{2} mu^2 \frac{1}{2} mv^2$ = $\frac{1}{2} \times 0.05 \times (8.4)^2$ = (-) 1.8 J
 - 2. final maximum height = $(4.2)^2 / (2 \times 9.8) = (0.9 \text{ (m)})$ change in PE = $mgh_2 - mgh_1$ = $0.05 \times 9.8 \times (0.9 - 5)$ = (-) 2.0 J
 - (ii) change is 3.8 (J) energy lost to ground (on impact) / energy of deformation of the ball / thermal energy in ball

(a) (i) change in kinetic energy = $\frac{1}{2}mv^2$

=
$$0.5 \times 25 \times (0.64)^2 = 5.1(2) J$$

- (ii) zero
- (iii) (-)5.1(2)J

(b) (i) PE =
$$mgh$$

= $350 \times 0.64 \times 25$
= 5600 J

(If full length used allow 1/3)

(ii) P = Fv or gain in PE/t, E_P/t or work done/t, W/t

$$= 350 \times 0.64 \text{ or } 5600 / 25$$

= 220 (224) W

(a) (i) k = F/x or 1/gradient

$$(k = 4.4/(5.4 \times 10^{-2}) =) 81 (81.48) \,\mathrm{N\,m^{-1}}$$

(ii) work done = area under line or $\frac{1}{2}Fx$ or $\frac{1}{2}kx^2$

$$(= 0.5 \times 4.4 \times 5.4 \times 10^{-2} =) 0.12 (0.119) J$$

(b) (i) kinetic energy/ E_k of trolley/T (and block) changes to EPE/strain energy/elastic energy of spring

EPE changes to KE of trolley/T and KE of block or to give lower KE to trolley

(ii) change in momentum = m(v + u)

$$= 0.25 (0.75 + 1.2) = 0.49 (0.488) Ns$$