Electronic Circuits

Prof. Nizamettin AYDIN naydin@yildiz.edu.tr http://www.yildiz.edu.tr/~naydin

> Dr. Gökhan Bilgin gokhanb@ce.yildiz.edu.tr

Common FET Biasing Circuits

JFET Biasing Circuits

- Fixed Bias Self-Bias Voltage-Divider Bias

D-Type MOSFET Biasing Circuits

- •Self-Bias •Voltage-Divider Bias

E-Type MOSFET Biasing Circuits

•Feedback Configuration •Voltage-Divider Bias

Basic Current Relationships

For all FETs:

 $\mathbf{I}_{\mathbf{G}} \cong \mathbf{0}\mathbf{A}$ $I_D = I_S$

For JFETS and D-Type MOSFETs:

$$I_{D} = I_{DSS} \left(1 - \frac{V_{GS}}{V_{D}} \right)^{2}$$

For E-Type MOSFETs:

 $I_{\rm D} = k(V_{\rm GS} - V_{\rm T})^2$

Fixed-Bias Configuration

$$\begin{split} V_{DS} &= V_{DD} - I_D R_D \\ V_S &= 0 V \\ V_C &= V_{DS} \\ V &= V_{GS} \\ V_{GS} &= - V_{GG} \end{split}$$

Self-Bias Configuration

Self-Bias Calculations

For the indicated loop, $V_{GS} = -I_D R_S$ To solve this equation:

- solve this equation:

 Select an $I_D < I_{DSS}$ and use the component value of R_S to calculate V_{CS} Plot the point identified by I_D and V_{CS} . Draw a line from the origin of the axis to this point.

 Plot the transfer curve using I_{DSS} and $V_P (V_P = V_{CSoff}$ in specification sheets) points such as $I_D = I_{DSS}/4$ and $I_D = I_{DS}$

The Q-point is located where the first line intersects the transfer curve. Use the value of I_D at the Q-point (I_{DQ}) to solve for the other voltages:

$$\begin{split} \mathbf{V}_{\mathrm{DS}} &= \mathbf{V}_{\mathrm{DD}} - \mathbf{I}_{\mathrm{D}} (\mathbf{R}_{\mathrm{S}} + \mathbf{R}_{\mathrm{D}}) \\ \mathbf{V}_{\mathrm{S}} &= \mathbf{I}_{\mathrm{D}} \mathbf{R}_{\mathrm{S}} \\ \mathbf{V}_{\mathrm{D}} &= \mathbf{V}_{\mathrm{DS}} + \mathbf{V}_{\mathrm{S}} = \mathbf{V}_{\mathrm{DD}} - \mathbf{V}_{\mathrm{RD}} \end{split}$$

p-Channel FETs

For p-channel FETs the same calculations and graphs are used, except that the voltage polarities and current directions are reversed.

The graphs are mirror images of the n-channel graphs.

Applications

Voltage-controlled resistor JFET voltmeter Timer network Fiber optic circuitry MOSFET relay driver

Copyright 2000 N. AYDIN. All rights reserved.