MACHINE LEARNING FOUNDATION JAN 2022

CAPSTONE PROJECT REPORT

Machine learning model to predict insurance claims for motor vehicles

INTRODUCTION

Business problem:

Customers are moving to lower cost "3rd party only" insurance schemes, moving away from traditional "full cover" insurance policies due to economic pressure. The most vulnerable segment to this transition are customers who feel they have a lower risk of insurance claims. Insurance companies have a need to effectively identify and offer higher discounts or lower more attractive insurance packages to vehicle owners who have a lower risk of initiating insurance claims.

Objective of machine learning model:

Purpose of the machine learning model is to classify existing and new customers based on the likelihood of applying for an insurance claim within a target period, using customer's socioeconomic details such as KYC information and other data sources such as police reports available to insurance companies

DATASET

Car insurance dataset - Owner: Sagnik Roy - https://www.kaggle.com/datasets/sagnik1511/car-insurance-data?resource=download

FIELD	DESCRIPTION		
ID	Unique identification number		
AGE	Age in brackets of 16-25 years, 25–39 years, 40-64 years, 65+ years		
GENDER	Equal distribution of Male and female		
RACE	90% from majority and 10% from minority races		
DRIVING_EXPERIENCE	Provided in brackets of 0-9y, 10-19y, 20-29y and 30y+		
EDUCATION	Provided in brackets of None, High school and University		
INCOME	Provided in brackets of Poverty, Working, middle and upper class		
CREDIT_SCORE	Numerical score between 0 and 1		
VEHICLE_OWNERSHIP	E_OWNERSHIP Boolean 1 or 0		
VEHICLE_YEAR	Provided as before 2015 and after 2015		
MARRIED	Boolean 1 or 0		
CHILDREN	Boolean 1 or 0		
POSTAL_CODE	Code corresponding to address location		
ANNUAL_MILEAGE	Numerical value		
VEHICLE_TYPE	Classified and Sedan or sports car		
SPEEDING_VIOLATIONS	No of occurrences		
DUIS	No of occurrences		
PAST_ACCIDENTS	No of occurrences		
OUTCOME	Boolean 1 or 0 based on request for insurance claim		

METHODOLOGY

- Solution approach:
 - ✓ Binary classification model
 - ✓ Outcome of 1 if a claim is made and 0 if a claim is not made as the y variable
 - √ 17 features in data set that can be used
- ☐ Target models
 - ✓ Logistic regression model
 - ✓ Decision Tree Classifier
 - ✓ RandomForest Classifier
 - ✓ SVM model
- ☐ Tools
 - Python
 - Google Colab
 - github

Drop rows with outliers

Drop rows with missing data

Encode categorical data using label encoding

DATA PRE-PROCESSING

	AGE	AGE_NU	INCOME	INCOME_NU
7245	65+	4	upper class	4
507	26-39	2	poverty	1
7237	26-39	2	middle class	3
2006	16-25	1	poverty	1
9392	65+	4	upper class	4

MODEL TUNNING

- □ All the features selected show similar correlations to OUTCOME and are used in model tunning
- ☐ A train test split of 70:30 is used.
- ☐ The same training and test data are used for training and testing all 4 models
- Backward elimination is used to optimize the feature set

RESULTS

☐ Iteration A - Using 9 features

	Model	accuracy	precision	f1_score
0	LRG	0.839286	0.801439	0.836952
1	DTC	0.804464	0.761103	0.799903
2	RFC	0.822768	0.776812	0.820018
3	SVM	0.834375	0.771277	0.833673

Features:

- AGE NU
- GENDER NU
- DRIVING EXPERIENCE NU
- INCOME NU
- CREDIT SCORE
- VEHICLE OWNERSHIP
- VEHICLE YEAR NU
- DUIS
- PAST ACCIDENTS

☐ Iteration B – Using 13 features

	Model	accuracy	precision	f1_score
0	LRG	0.770982	0.737500	0.760238
1	DTC	0.810268	0.760294	0.806940
2	RFC	0.843304	0.811047	0.840810

Features:

- AGE NU
- GENDER NU
- DRIVING EXPERIENCE NU
- INCOME NU
- CREDIT-SCORE
- VEHICLE OWNERSHIP
- VEHICLE YEAR NU
- DUIS
- PAST ACCIDENTS
- MARRIED
- CHILDREN
- POSTAL CODE NU
- ANNUAL MILEAGE

Iteration B with 13 features on RandomForest classifier provides the highest Accuracy, Precision and f1 score

CONCLUSION

□ The final model has an accuracy of 84% and a precision of 81%

		Predicted	
		0	1
Actual	0	1331	130
	1	221	558

- ☐ The false negative rate is 14.2%, which ensures only 14 out of 100 people selected as low risk are likely to initiate insurance claims
- ☐ Therefore, the developed ML model can be used effectively to identify low risk users
- Based on feature importance driving experience has the highest importance of features

	features	feature_importances
2	DRIVING_EXPERIENCE_NU	0.195561
5	VEHICLE_OWNERSHIP	0.131478
4	CREDIT_SCORE	0.130716
0	AGE_NU	0.108008
10	ANNUAL_MILEAGE	0.072634
9	POSTAL_CODE_NU	0.071528
6	VEHICLE_YEAR_NU	0.071450
12	PAST_ACCIDENTS	0.070630
3	INCOME_NU	0.061928
1	GENDER_NU	0.035319
8	CHILDREN	0.019874
7	MARRIED	0.018466
11	DUIS	0.012410