

Folha 3

Considere a função $\,f:\;\mathbb{R}\;\longrightarrow\;\mathbb{R}$. Esboce o gráfico da função $\,g$

definida por:

a)
$$g(x) = f(x) + 2, x \in \mathbb{R};$$

d)
$$g(x) = f(2x), x \in \mathbb{R};$$

b)
$$g(x) = f(x+2), x \in \mathbb{R};$$

e)
$$g(x) = \max\{f(x), 2\}, x \in \mathbb{R};$$

c)
$$g(x) = 2f(x), x \in \mathbb{R};$$

f)
$$g(x) = \min\{f(x), 1\}, x \in \mathbb{R}.$$

Exercício 3.2 Calcule os limites que se seguem:

1)
$$\lim_{x \to 0^-} \frac{1}{x}$$
;

$$10) \quad \lim_{x \to 0} \frac{\sqrt{1 - \cos^2 x}}{|\operatorname{sen} x|};$$

19)
$$\lim_{x\to 0} (\sin 2x + x^2 \cos 5x);$$

2)
$$\lim_{x \to -2^+} \frac{3}{x+2}$$
;

11)
$$\lim_{x \to 0} \frac{\operatorname{tg} 4x}{\operatorname{sen} 3x};$$

20)
$$\lim_{x \to +\infty} \frac{7x^4 - 2x + 1}{-3x + 1};$$
21)
$$\lim_{x \to -\infty} \frac{-3x + 10}{x^4 - 2x + 4};$$

3)
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$
;

12)
$$\lim_{x \to 0} x^2 \sin \frac{1}{x^2}$$
;

21)
$$\lim_{x \to -\infty} \frac{-3x + 10}{x^4 - 2x + 4}$$
;

4)
$$\lim_{x\to 0^-} \frac{\sqrt{x^2}}{x}$$
;

13)
$$\lim_{x \to 1} \frac{x^3 + x^2 + x - 3}{x - 1}$$
;

22)
$$\lim_{x \to -\infty} e^{\cos x}$$
;

5)
$$\lim_{x \to -3^+} \frac{|x+3|}{x+3}$$
;

$$14) \quad \lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x};$$

23)
$$\lim_{x \to +\infty} e^x \cos x ;$$

$$6) \quad \lim_{x \to 0^-} \frac{|x|}{x};$$

15)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - x^2}}{x^2};$$

24)
$$\lim_{x \to -\infty} e^x \cos x ;$$

7)
$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3};$$

16)
$$\lim_{x \to 0} \pi x \cos\left(\frac{1}{3\pi x}\right);$$

25)
$$\lim_{x\to 0} \frac{1}{1+e^{1/x}}$$
;

8)
$$\lim_{x \to +\infty} \frac{\operatorname{sen} x}{x}$$
;

$$17) \quad \lim_{x \to +\infty} (x^2 + x \cos x);$$

26)
$$\lim_{x \to +\infty} \frac{1}{1 + e^{1/x}}$$
;

9)
$$\lim_{x \to \pi/4} \frac{\mathsf{tg} x}{1 - \cos x};$$

$$18) \quad \lim_{x \to +\infty} \frac{5x+3}{2x-7}$$

27)
$$\lim_{x\to 0} e^{-1/x^4}$$
;

Exercício 3.3 Dado $A\subseteq\mathbb{R}$, chama-se função característica de A à função

$$\chi_{\scriptscriptstyle A}: \mathbb{R} \longrightarrow \mathbb{R} \quad \text{ definida por } \quad \chi_{\scriptscriptstyle A}(x) = \left\{ egin{array}{ll} 1 & ext{se} & x \in A; \\ 0 & ext{se} & x
otin A. \end{array}
ight.$$

Indique os pontos de descontinuidade de χ_A para:

a)
$$A=\mathbb{Z}$$
;

b)
$$A = [0, 2[;$$

c)
$$A=\mathbb{Q}$$
.

Exercício 3.4 Seja $f:\mathbb{R}\longrightarrow\mathbb{R}$ a função definida por

$$f(x) = \begin{cases} e^{x-1} + a & \text{se } x \le 1\\ 1 - ax & \text{se } x > 1 \end{cases}.$$

Determine o valor de a de modo que f seja contínua em 1.

Exercício 3.5 Defina funções $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ nas condições indicadas:

- a) f contínua, g descontínua, $g \circ f$ contínua;
- b) f descontínua, g contínua, $g \circ f$ contínua;
- c) f e g descontínuas, $g\circ f$ e $f\circ g$ contínuas.

Haverá alguma contradição com o teorema sobre a continuidade da função composta? Justifique.

Exercício 3.6 Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$g(x) = \begin{cases} 2 & \text{se} \quad x \neq 1 \\ 0 & \text{se} \quad x = 1 \end{cases}$$

e f(x) = x + 1, para todo o $x \in \mathbb{R}$. Verifique que $\lim_{x \to 0} (g \circ f)(x) \neq (g \circ f)(0)$.

Haverá alguma contradição com o teorema sobre a continuidade da função composta? Justifique.

Exercício 3.7 Mostre que as seguintes equações têm soluções nos intervalos indicados:

- a) $x^3 x + 3 = 0$, $x \in]-2, -1[$;
- b) $x = \cos x$, $x \in [0, \pi/2]$;
- c) $x = -\ln x$, $x \in [0, 1]$;
- d) $2+x=e^x$, $x \in \mathbb{R}$.

Exercício 3.8 Dê exemplo ou mostre porque não existe uma função:

- a) $f:D\subseteq\mathbb{R}\longrightarrow\mathbb{R}$ contínua que nunca se anula e que toma valores negativos e positivos;
- b) $f: \mathbb{R} \longrightarrow \mathbb{R}$ positiva e descontínua tal que f^2 e f^3 sejam contínuas;
- c) $f: \mathbb{R} \longrightarrow \mathbb{R}$ descontínua tal que a função $g(x) = f(x) + \operatorname{sen} x$ é contínua;
- d) $f: D \longrightarrow B$, bijectiva, contínua, tal que $f^{-1}: B \longrightarrow D$ não seja contínua.

Exercício 3.9 Considere a função $g:]-1,1[\longrightarrow \mathbb{R}$ definida por g(x)=|x|. Verifique que g possui um mínimo mas não possui máximo. Confronte o resultado com o teorema de Weierstrass.

2

Exercício 3.10 Diga, justificando, se cada uma das seguintes proposições é verdadeira ou falsa:

- a) se $f:\mathbb{R}\longrightarrow\mathbb{R}$ é contínua e $g:\mathbb{R}\longrightarrow\mathbb{R}$ não é contínua então $g\circ f$ não é contínua;
- b) se $f:[0,1] \longrightarrow \mathbb{R}$ é contínua então f é limitada;
- c) existe $x \in [1, e[$ tal que $\ln(x^3) = x;$
- $\mathrm{d})$ uma função $f:[0,2[\longrightarrow\mathbb{R}$ contínua e limitada possui máximo;
- e) se $f:\mathbb{R}\longrightarrow\mathbb{R}$ é tal que |f| é contínua num ponto a, então f também é contínua em a.

Exercício 3.11 Em cada uma das alíneas esboce o gráfico, se possível, de uma função f definida em [0,1] e satisfazendo as condições dadas:

- a) f contínua em [0,1] com valor mínimo 0 e valor máximo 1;
- b) f contínua em [0,1[com valor mínimo 0 e sem valor máximo;
- c) f contínua em]0,1[assume os valores 0 e 1 mas não assume o valor $\frac{1}{2}$;
- d) f contínua em [0,1], não constante, não assume valores inteiros;
- e) f contínua em [0,1] não assume valores racionais;
- f) f contínua em [0,1] assume apenas dois valores distintos;
- g) f não contínua em [0,1[tem por imagem um intervalo aberto e limitado;
- h) f não contínua em]0,1[tem por imagem um intervalo fechado e limitado;
- i) f contínua em]0,1[tem por imagem um intervalo não limitado;
- j) f contínua em [0,1] tem por imagem um intervalo não limitado;
- k) f não contínua em [0,1] tem por imagem o intervalo $[0,+\infty[$;
- 1) f não contínua em [0,1[tem por imagem um intervalo fechado e limitado.