2. Feladatlap

Relációk

1. Az ρ, σ, τ, ν homogén relációk az $M = \{2, 3, 4, 5, 6\}$ halmazon és a következő módon vannak meghatározva:

$$\begin{array}{cccc} x \, \rho \, y & \iff & x < y, \\ x \, \sigma \, y & \iff & x \, | \, y, \\ x \, \tau \, y & \iff & \operatorname{lnko}(x,y) = 1, \\ x \, \nu \, y & \iff & x \equiv y \pmod{3}. \end{array}$$

Írjuk fel a relációk grafikonját és vizsgáljuk minden esetben a reflexivitást, szimmetriát, antiszimmetriát és tranzitivitást.

Megoldás.

• A ρ reláció grafikonja:

$$\begin{split} R &= \{(x,y) \in M \times M \,:\, x < y\} \\ &= \{(2,3),\, (2,4),\, (2,5),\, (2,6),\, (3,4),\, (3,5),\, (3,6),\, (4,5),\, (4,6),\, (5,6)\}. \end{split}$$

- A reláció nem reflexív, mert például a (2,2) \notin R, vagyis a 2 elem nincs relációban önmagával.
- A reláció nem szimmetrikus, mert például a (2,3) ∈ R, de (3,2) ∉ R, vagyis van olyan pár a reláció grafikonjában, amelynek a szimmetrikusa nincs benne a grafikonban.
- A reláció antiszimmetrikus, mert minden $(a,b) \in R$, $a \neq b$ esetén $(b,a) \notin R$.
- A reláció tranzitív, mert ha x < y és y < z, akkor x < z.
- \bullet A σ reláció grafikonja:

$$S = \{(x, y) \in M \times M : x \mid y\}$$

= \{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (5, 5), (6, 6)\}.

- A reláció reflexív, mert minden $a \in M$ esetén $(a, a) \in S$ (a mi esetünkben (2, 2), $(3, 3), (4, 4), (5, 5), (6, 6) \in S$).
- A reláció nem szimmetrikus, mert például a $(2,4) \in S$, de $(4,2) \notin S$.
- A reláció antiszimmetrikus, mert minden $(a,b) \in S$, $a \neq b$ esetén $(b,a) \notin S$.
- A reláció tranzitív, mert ha $x \mid y$ és $y \mid z$, akkor $x \mid z$. Valóban, az $x \mid y$ azt jelenti, hogy létezik $k \in \mathbb{Z}$ úgy, hogy $y = k \cdot x$. Hasonlóan, az $y \mid z$ egyenértékű azzal, hogy létezik $\ell \in \mathbb{Z}$ úgy, hogy $z = \ell \cdot y$. Innen kapjuk, hogy $z = \ell \cdot y = \ell \cdot (k \cdot x) = (\ell \cdot k) \cdot x$, vagyis $x \mid z$.
- \bullet A τ reláció grafikonja:

$$T = \{(x, y) \in M \times M : lnko(x, y) = 1\}$$

= \{(2, 3), (2, 5), (3, 2), (3, 4), (3, 5), (4, 3), (4, 5), (5, 2), (5, 3), (5, 4), (5, 6), (6, 5)\}.

- A reláció nem reflexív, mert például $(2,2) \notin T$.
- A reláció szimmetrikus, mert lnko(a, b) = lnko(b, a) minden $a, b \in \mathbb{N}^*$ esetén.
- A reláció nem antiszimmetrikus, mert például $(2,3) \in T$ és $(3,2) \in T$, de $2 \neq 3$.
- A reláció nem tranzitív, mert például $(2,3) \in T$ és $(3,4) \in T$, de $(2,4) \notin T$.

• A ν reláció grafikonja:

$$V = \{(x,y) \in M \times M : x \equiv y \pmod{3}\}$$

= \{(2,2), (2,5), (3,3), (4,4), (5,2), (5,5), (6,6)\}.

- A reláció reflexív, mert minden $a \in M$ esetén $a \equiv a \pmod{3}$. (Úgy is belátható, hogy reflexív, hogy $(2,2), (3,3), (4,4), (5,5), (6,6) \in V$).
- A reláció szimmetrikus, mert $x \equiv y \pmod 3 \iff y \equiv x \pmod 3$ minden $x,y \in \mathbb{Z}$ esetén.
- A reláció nem antiszimmetrikus, mert például $(2,5) \in V$ és $(5,2) \in V$, de $2 \neq 5$.
- A reláció tranzitív, mert ha $x \equiv y \pmod{3}$ és $y \equiv z \pmod{3}$, akkor $x \equiv z \pmod{3}$.
- **2.** Tekintsük az A és B halmazokat, ahol $|A|=n,\,|B|=m\;(n,m\in\mathbb{N}^*).$ Határozzuk meg:
 - (a) az összes lehetséges $\rho = (A, B, R)$ reláció számát;

Megoldás. A $\rho=(A,B,R)$ relációt meghatározza a grafikonja, ezért elég megszámolni, hogy hányféle grafikon lehetséges. Az R grafikon az $A\times B$ halmaz egy részhalmaza, így meg kell számolni az $A\times B$ részhalmazainak számát:

$$|\mathcal{P}(A \times B)| = 2^{|A \times B|} = 2^{|A| \cdot |B|} = 2^{n \cdot m}.$$

Tehát a $\rho = (A, B, R)$ relációk száma $2^{n \cdot m}$, ahol |A| = n és |B| = m.

(b) az összes lehetséges $\rho = (A, A, R)$ homogén reláció számát.

Megoldás. A homogén $\rho = (A, A, R)$ relációk esetén A = B, így az előző alpont szerint $2^{|A|\cdot|A|} = 2^{n^2}$ van belőlük, ha |A| = n.

3. Legyen $A = \{1, 2, 3, 4\}, \ \rho = (A, A, R), \ \sigma = (A, A, S)$ és $\tau = (A, A, T)$, ahol

$$R = \{(1,2), (1,4), (2,3), (4,4), (4,3)\},$$

$$S = \{(2,4), (3,4), (1,1), (4,2)\},$$

$$T = \{(4,4), (1,4)\}.$$

Határozzuk meg a következő relációkat:

(a) $\frac{-1}{\sigma}$:

 $Megold\acute{a}s$. A $\overset{-1}{\sigma}$ inverz reláció grafikonja $\overset{-1}{S} = \{(4,2), (4,3), (1,1), (2,4)\}$ (az S grafikonbeli párokat meg kell fordítani).

(b) $(\rho \circ \sigma) \circ \tau$;

Megoldás. Először felírjuk a $\rho \circ \sigma$ grafikonját, amelyet $R \circ S$ -sel fogunk jelölni. Emlékeztetünk, hogy

$$x(\rho \circ \sigma)y \Leftrightarrow \exists z \text{ ú.h. } x\sigma z \text{ és } z\rho y,$$

tehát $(x,u) \in S$ és $(v,y) \in R$ párokat keresünk, ahol u=v(=z), és amelyekből kapunk egy $(x,y) \in R \circ S$ párt.

- $(2,4) \in S$ és $(4,4) \in R$, tehát $(2,4) \in R \circ S$,
- $(2,4) \in S$ és $(4,3) \in R$, tehát $(2,3) \in R \circ S$,
- $(3,4) \in S$ és $(4,4) \in R$, tehát $(3,4) \in R \circ S$,
- $(3,4) \in S$ és $(4,3) \in R$, tehát $(3,3) \in R \circ S$,
- $(1,1) \in S$ és $(1,2) \in R$, tehát $(1,2) \in R \circ S$,
- $(1,1) \in S$ és $(1,4) \in R$, tehát $(1,4) \in R \circ S$,
- $(4,2) \in S$ és $(2,3) \in R$, tehát $(4,3) \in R \circ S$.

Összegezve $R \circ S = \{(2,4), (2,3), (3,4), (3,3), (1,2), (1,4), (4,3)\}.$

Hasonlóan számoljuk ki a $(\rho \circ \sigma) \circ \tau$ reláció $(R \circ S) \circ T$ grafikonját is:

- $(4,4) \in T$ és $(4,3) \in R \circ S$, tehát $(4,3) \in (R \circ S) \circ T$,
- $(1,4) \in T$ és $(4,3) \in R \circ S$, tehát $(1,3) \in (R \circ S) \circ T$,

tehát

$$(R \circ S) \circ T = \{(1,3), (4,3)\}.$$

(c) $\rho \circ (\sigma \circ \tau)$;

Megoldás. Először felírjuk a $\sigma \circ \tau$ reláció grafikonját, amelyet $S \circ T$ -vel fogunk jelölni: $S \circ T = \{(4,2), (1,2)\}$. Végül felírjuk a $\rho \circ (\sigma \circ \tau)$ reláció grafikonját, amelyet $R \circ (S \circ T)$ -vel fogunk jelölni:

$$R \circ (S \circ T) = \{(4,3), (1,3)\}.$$

(Megjegyezzük, hogy ugyanazt az eredményt kapjuk, mint az előző alpont esetén, ami elvárható a relációk összetételének asszociativitása miatt.) $\hfill\Box$

(d) $\sigma \cup \tau$;

Megoldás. A $\sigma \cup \tau$ reláció grafikonja

$$S \cup T = \{(2,4), (3,4), (1,1), (4,2)\} \cup \{(4,4), (1,4)\}$$
$$= \{(2,4), (3,4), (1,1), (4,2), (4,4), (1,4)\}.$$

(e) $\sigma \cap \tau$;

Megoldás. A $\sigma \cap \tau$ reláció grafikonja

$$S \cap T = \{(2,4), (3,4), (1,1), (4,2)\} \cap \{(4,4), (1,4)\} = \emptyset.$$

(f) $(\overset{-1}{\sigma} \cup \tau) \circ \rho$:

Megoldás. Először kiszámoljuk a $(\stackrel{-1}{\sigma} \cup \tau)$ reláció grafikonját:

$$\overset{-1}{S} \cup T = \{(4,2), (4,3), (1,1), (2,4)\} \cup \{(4,4), (1,4)\}
= \{(4,2), (4,3), (1,1), (2,4), (4,4), (1,4)\}.$$

Végül a $(\overset{-1}{\sigma} \cup \tau) \circ \rho$ reláció grafikonja

$$(\overset{-1}{S} \cup T) \circ R = \{ (4,2), \ (4,3), \ (1,1), \ (2,4), \ (4,4), \ (1,4) \} \circ \{ (1,2), \ (1,4), \ (2,3), \ (4,4), \ (4,3) \}$$

$$= \{ (1,4), \ (1,2), \ (1,3), \ (1,4), \ (4,2), \ (4,3), \ (4,4) \}.$$

(g) $(\sigma \cap \tau) \circ \rho$;

Megoldás. Először kiszámoljuk a $\sigma \cap \tau$ reláció grafikonját:

$$S \cap T = \{(2,4), (3,4), (1,1), (4,2)\} \cap \{(4,4), (1,4)\} = \emptyset.$$

Végül a $(\sigma \cap \tau) \circ \rho$ reláció grafikonja:

$$(S \cap T) \circ R = \emptyset \circ R = \emptyset.$$

(h) $(\sigma \circ \rho) \cap (\tau \circ \rho)$;

Megoldás. Először kiszámoljuk a $\sigma \circ \rho$ reláció grafikonját

$$S \circ R = \{(2,4), (3,4), (1,1), (4,2)\} \circ \{(1,2), (1,4), (2,3), (4,4), (4,3)\}$$

= $\{(1,4), (1,2), (2,4), (4,2), (4,4)\},$

majd a $\tau \circ \rho$ reláció grafikonját:

$$T \circ R = \{(4,4), (1,4)\} \circ \{(1,2), (1,4), (2,3), (4,4), (4,3)\}$$

= $\{(1,4), (4,4)\}.$

Végül a $(\sigma \circ \rho) \cap (\tau \circ \rho)$ reláció grafikonja:

$$(S \circ R) \cap (T \circ R) = \{(1,4), (1,2), (2,4), (4,2), (4,4)\} \circ \{(1,4), (4,4)\}$$

= $\{(1,4), (4,4)\}.$

(i) $\rho \circ (\sigma \cap \tau)$;

Megoldás. Először kiszámoljuk a $\sigma \cap \tau$ reláció grafikonját:

$$S \cap T = \{(2,4), (3,4), (1,1), (4,2)\} \cap \{(4,4), (1,4)\} = \emptyset,$$

végül az $\rho \circ (\sigma \cap \tau)$ reláció grafikonját:

$$R \circ (S \cap T) = \{(1, 2), (1, 4), (2, 3), (4, 4), (4, 3)\} \circ \emptyset = \emptyset.$$

(j) $(\rho \circ \sigma) \cap (\rho \circ \tau)$.

Megoldás. Először kiszámoljuk a $\rho \circ \sigma$ reláció grafikonját:

$$R \circ S = \{(1,2), (1,4), (2,3), (4,4), (4,3)\} \circ \{(2,4), (3,4), (1,1), (4,2)\}$$

= $\{(2,4), (2,3), (3,4), (3,3), (1,2), (1,4), (4,3)\},$

majd a $\rho \circ \tau$ reláció grafikonját:

$$R \circ T = \{(1,2), (1,4), (2,3), (4,4), (4,3)\} \circ \{(4,4), (1,4)\}$$

= $\{(4,4), (4,3), (1,4), (1,3)\},$

végül az $(\rho \circ \sigma) \cap (\rho \circ \tau)$ reláció grafikonját:

$$(R \circ S) \cap (R \circ T) = \{(2,4), (2,3), (3,4), (3,3) (1,2), (1,4), (4,3)\} \cap \{(4,4), (4,3), (1,4), (1,3)\}$$

= $\{(1,4), (4,3)\}.$

Megjegyzés. Az (g) és (h), illetve (i) és (j) alpontok alapján az vehető észre, hogy

$$(\sigma \cap \tau) \circ \rho \neq (\sigma \circ \rho) \cap (\tau \circ \rho)$$
, illetve $\rho \circ (\sigma \cap \tau) \neq (\rho \circ \sigma) \cap (\rho \circ \tau)$,

vagyis a relációk összetétele nem disztributív a metszetre nézve egyik oldalról sem.)

4. Függvények-e a 3. feladatban szereplő $\rho, \, \sigma$ és τ relációk?

Megoldás. Egy f=(A,B,F) reláció függvény az A-ról a B-re, ha minden $a\in A$ esetén létezik egyetlen $b\in B$ úgy, hogy afb. Ekkor az afb helyett használjuk az f(a)=b jelölést is. Ez azt jelenti, hogy az f reláció grafikonjában minden $a\in A$ esetén kell létezzen egyetlen olyan pár, ami a-val kezdődik.

A $\rho = (A, A, R)$ reláció, amelynek grafikonja $R = \{(1, 2), (1, 4), (2, 3), (4, 4), (4, 3)\}$ nem függvény, mert az $1 \in A = \{1, 2, 3, 4\}$ esetén két pár is létezik az R grafikonban, amelyek 1-gyel kezdődnek, éspedig (1, 2) és (1, 4). (Emiatt nem tudnánk egyértelműen értelmezni a $\rho(1)$ -et.)

A $\sigma = (A, A, S)$ reláció, amelynek grafikonja $S = \{(2, 4), (3, 4), (1, 1), (4, 2)\}$ függvény, mert minden $a \in A = \{1, 2, 3, 4\}$ létezik egyetlen egy pár az S grafikonban, amely a-val kezdődik, így tudjuk értelmezni a $\sigma : A \to A$ függvényt úgy, hogy $\sigma(1) = 1$, $\sigma(2) = 4$, $\sigma(3) = 4$ és $\sigma(4) = 2$.

A $\tau=(A,A,T)$ reláció, amelynek grafikonja $T=\{(4,4),\,(1,4)\}$ nem függvény, mert az $2\in A=\{1,2,3,4\}$ esetén nem létezik olyan pár a T grafikonban, amelyek 2-vel kezdődne. (Emiatt nem tudjuk hogyan értelmezni a $\tau(2)$ -t.)

- **5.** Legyen $\rho = (A, B, R)$ és $\sigma = (C, D, S)$ relációk. Bizonyítsuk be, hogy
 - (a) $\stackrel{-1}{\stackrel{-1}{\rho}} = \rho;$

Megoldás. Tetszőleges $x \in A$ és $y \in B$ esetén

$$x \stackrel{-1}{\stackrel{-1}{\rho}} y \iff y \stackrel{-1}{\stackrel{\rho}{\rho}} x \iff x \rho y,$$

ahonnan következik, hogy $\stackrel{-1}{\rho}$ és ρ relációk megegyeznek.

(b)
$$\overline{\rho \cup \sigma} = \overline{\rho}^{-1} \cup \overline{\sigma}^{-1};$$

 $Megold \acute{as}.$ Tetszőleges $x \in B \cup D$ és $y \in A \cup C$ elemek esetén

$$x \overline{\rho \cup \sigma} y \iff y(\rho \cup \sigma)x \iff y\rho x \text{ vagy } y\sigma x \iff x \overline{\rho} y \text{ vagy } x \overline{\sigma} y \iff x(\overline{\rho} \cup \overline{\sigma})y,$$

$$\text{ahonnan } \overline{\rho \cup \sigma} = \overline{\rho} \cup \overline{\sigma}.$$

(c)
$$\frac{-1}{\rho \cap \sigma} = \frac{-1}{\rho} \cap \frac{-1}{\sigma};$$

Megoldás. Tetszőleges $x \in B \cup D$ és $y \in A \cup C$ elemek esetén

$$x \overline{\rho \cap \sigma} y \iff y(\rho \cap \sigma)x \iff y\rho x \text{ és } y\sigma x \iff x \overline{\rho} y \text{ és } x \overline{\sigma} y \iff x(\overline{\rho} \cap \overline{\sigma})y,$$

$$\text{ahonnan } \overline{\rho \cap \sigma} = \overline{\rho} \cap \overline{\sigma}.$$

(d) $\rho \subseteq \sigma \iff \rho^{-1} \subseteq \sigma^{-1}$.

Megoldás.

- Feltételezzük, hogy $\rho \subseteq \sigma$, vagyis ha $x\rho y$, akkor $x\sigma y$. Ekkor, ha $y\stackrel{-1}{\rho} x$, vagyis $x\rho y$, akkor a feltevés szerint $x\sigma y$, tehát az inverzreláció értelmezése szerint $y\stackrel{-1}{\sigma} x$. Ezzel beláttuk, hogy $\stackrel{-1}{\rho} \subseteq \stackrel{-1}{\sigma}$.
- $\stackrel{-1}{\Rightarrow}$ Mivel $\rho = \stackrel{-1}{\rho}$ és $\sigma = \stackrel{-1}{\sigma}$, ezért az ρ , illetve a σ reláció helyett az $\stackrel{-1}{\rho}$, illetve $\stackrel{-1}{\sigma}$ relációkat használva az előző irányú implikáció alapján következik, hogy ha $\stackrel{-1}{\rho} \subseteq \stackrel{-1}{\sigma}$, akkor $\rho \subseteq \sigma$.

6. Legyen r a következő homogén reláció az M = [-1, 1] halmazon: $xry \iff x^2 + y^2 = 1$. Függvény-e ez a reláció? Vizsgáljuk az r reláció esetén a reflexivitást, szimmetriát, antiszimmetriát és tranzitivitást!

Megoldás.

• Az r reláció nem függvény, mert például $0,1\in[-1,1]$, de 0r1 és 0r-1, mivel $0^2+1^2=0^2+(-1)^2=1$.

- Az r reláció nem reflexív, mert például $0 \in [-1,1]$, de $0 \not r 0$, mivel $0^2 + 0^2 = 0 \neq 1$.
- \bullet Az rreláció szimmetrikus, mert tetszőleges $x,y\in [-1,1],$ ha xry,akkor $x^2+y^2=1,$ ahonnan $y^2+x^2=1,$ tehát yrx.
- Az r reláció nem tranzitív, mert $0,1\in[-1,1],$ $1\,r\,0$ és $0\,r\,1,$ de $1\not r\,1,$ mivel $1^2+1^2=2\neq 1.$
- \bullet Az rreláció nem antiszimmetrikus, mert $1\,r\,0$ és $0\,r\,1,$ de $0\neq 1.$