Exercises on physical design

Rodrigo Arias Mallo

December 29, 2017

1 Exercise 5

1.1 Draw the initial network

1.2 Algebraic division

In order to perform the algebraic division f_x/f_y we will apply the algorithm WEAK_DIV described in the figure 10.9 of [1]. The functions are defined as

$$f_x = ad' + a'b' + a'd' + bc + bd' + ac$$
 $f_y = a + b$

With $F=f_x$ and $P=f_y$ we first compute V^a as the set of cubes of F that contain the literal a, with a removed, giving $V^a=\{d',c\}$. The same for b, giving $V^b=\{d',c\}$. Then we compute Q as the intersection and we get the same $Q=V^a\cap V^b=\{d',c\}=d'+c$. Finally with PQ=(a+b)(c+d')=ac+ad'+bc+bd' we compute the rest as R=F-PQ=a'b'+a'd'. So we can confirm that F=PQ+R. After substitution we have the following graph.

1.3 Kernels and co-kernels

After trying both algorithms R_KERNELS and KERNELS (8.3.3 and 8.3.4) in [2], I found it very complicated to work by hand. So I switched to the method of the cube insertion table, described in section 10.5.1 of [1]. For $f_z = a'c' + a'd' + b'c' + b'd' + e$, let n be the number of cubes, we first compute the co-kernels of level 0 by building the following table, placing the first n-1 cubes in columns, and the last n-1 cubes in columns.

	a'c'	a'd'	b'c'	b'd'
a'd'	a'			
b'c'	c'	0		
$ \begin{array}{c} a'd' \\ b'c' \\ b'd' \end{array} $	0	d'	b'	
e	0	0	0	0

Then, we compute the intersection of the cubes pairwise. Cells above the diagonal are not needed. As we didn't discover co-kernels with more than one literal, we know that there are no co-kernels in the next levels. So we finally get $C(f_z) = \{a', b', c', d', 1\}$. Now, to compute the kernels, we can iterate for each co-kernel, and divide f_z by each one, and the quotient would be the respective kernel. So we easily see that $K(f_z) = \{a' + b', c' + d', f_z\}$

For the function $f_u = a'c + a'd + b'd + e'$ we proceed in a similar way building the table.

And as before, we finish the procedure at level 0 as we didn't find co-kernels of more than one literal. We have $C(f_u) = \{a', d, 1\}$, and from there we build the associate kernels $K(f_u) = \{a' + b', c + d, f_u\}$

1.4 Multi-cube extraction

Once we have the kernels of both functions, we can extract a multi-cube common subexpression, in order to simplify the logic network. After factoring z and u we have

$$z = (a' + b')(c' + d') + e$$
 $u = d(a' + b') + a'c + e'$

Which is decomposed into w = a' + b', v = c' + d' and z = wv + e. And for u we have p = a' + b' and u = dp + a'c + e'. We see that w = p so we can replace p by w in u, giving u = dw + a'c + e'.

References

- [1] G. D. Hachtel and F. Somenzi, *Logic Synthesis and Verification Algorithms*. Springer US, 1 ed., 2002.
- [2] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill Science/Engineering/Math, 1 ed., 1994.