COMPLEJIDAD COMPUTACIONAL (REPASO)

Tecnología Digital V: Diseño de Algoritmos

Universidad Torcuato Di Tella

Problema

En el contexto de la teoría de complejidad computacional, llamamos problema a la descripción de los datos de entrada y la respuesta a proporcionar para cada dato de entrada.

Instancia

Una instancia de un problema es un juego válido de datos de entrada.

- O Ejemplo:
 - 1. **Entrada:** Un número *n* entero no negativo.
 - 2. **Salida:** ¿El número *n* es primo?
- En este ejemplo, una instancia está dada por un número entero no negativo.

- O Suponemos una Máquina RAM (random access memory).
 - 1. La memoria está dada por una sucesión de celdas numeradas. Cada celda puede almacenar un valor de b bits.
 - Supondremos habitualmente que el tamaño b en bits de cada celda está fijo, y suponemos que todos los datos individuales que maneja el algoritmo se pueden almacenar con b bits.
 - 3. Se tiene un programa imperativo no almacenado en memoria, compuesto por asignaciones y las estructuras de control habituales.
 - Las asignaciones pueden acceder a celdas de memoria y realizar las operaciones estándar sobre los tipos de datos primitivos habituales.

- O Cada instrucción tiene un tiempo de ejecución asociado.
 - 1. El acceso a cualquier celda de memoria, tanto para lectura como para escritura, es *constante*.
 - Las asignaciones y el manejo de las estructuras de control se realiza en constante.
 - 3. Las operaciones entre valores lógicos son constantes.
- Las operaciones entre enteros/reales dependen de *b*:
 - 1. Las sumas y restas $trabajan \ bit \ a \ bit$ y requieren tiempo lineal en b.
 - Las multiplicaciones y divisiones requieren algoritmos más sofisticados (más detalles en las próximas slides!).

Repaso: Notación O

Definición

Dadas dos funciones f, g : $\mathbb{N} \to \mathbb{R}$, decimos que

- f(n) = O(g(n)) si existen $c \in \mathbb{R}_+$ y $n_0 \in \mathbb{N}$ tales que $f(n) \le c g(n)$ para todo $n \ge n_0$,
- $f(n) = \Omega(g(n))$ si existen $c \in \mathbb{R}_+$ y $n_0 \in \mathbb{N}$ tales que $f(n) \ge c$ g(n) para todo $n \ge n_0$,
- $\bigcirc \ f(n) = \Theta(g(n)) \ \text{si} \ f = O(g(n)) \ \text{y} \ f = \Omega(g(n)).$

Figure 2.3: Illustrating the big (a) O, (b) Ω , and (c) Θ notations

Tiempo de ejecución de un algoritmo A

 $T_A(I)$ = suma de los tiempos de ejecución de las instrucciones realizadas por el algoritmo con la instancia I.

Tamaño de una instancia

Dada una instancia I, definimos |I| como la cantidad de bits necesarios para almacenar los datos de entrada de I.

O Si b está fijo y la entrada ocupa n celdas de memoria, entonces |I| = bn = O(n).

Complejidad de un algoritmo A

$$f_A(n) = \max_{I:|I|=n} T_A(I).$$

Repaso: Notación O

- O Cada instrucción tiene un tiempo de ejecución asociado.
 - 1. El acceso a cualquier celda de memoria, tanto para lectura como para escritura, es O(1).
 - 2. Las asignaciones y el manejo de las estructuras de control se realiza en O(1).
 - 3. Las operaciones entre valores lógicos son O(1).
- Las operaciones entre enteros/reales dependen de *b*:
 - 1. Las sumas y restas son O(b).
 - 2. Las multiplicaciones y divisiones son $O(b \log b)^1$.
- \Rightarrow Si b está fijo, estas operaciones son O(1). En cambio, si no se puede suponer esto, entonces hay que contemplar que el costo de estas operaciones depende de b.

 $^{^1}$ David Harvey y Joris van der Hoeven, Integer multiplication in time $O(n\log n).$ Annals of Mathematics 193-2 (2021) 563–617.

Repaso: Notación O

- \bigcirc Si un algoritmo es O(n), se dice lineal.
- \bigcirc Si un algoritmo es $O(n^2)$, se dice cuadrático.
- Si un algoritmo es $O(n^3)$, se dice cúbico.
- Si un algoritmo es $O(n^k)$, $k \in \mathbb{N}$, se dice polinomial.
- \bigcirc Si un algoritmo es $O(\log n)$, se dice logarítmico.
- Si un algoritmo es $O(d^n)$, $d \in \mathbb{R}_+$, se dice exponencial.
- Cualquier función exponencial es *peor* que cualquier función polinomial: Si $k, d \in \mathbb{N}$ entonces k^n no es $O(n^d)$.
- \bigcirc La función logarítmica es *mejor* que la función lineal (no importa la base), es decir log n es O(n) pero no a la inversa.

Repaso: Trabajando con la notación O

Suma de funciones.

$$O(f(n)) + O(g(n)) \longrightarrow O(f(n) + g(n))$$

 \bigcirc Multiplicación de funciones. Sea $c \in \mathbb{R}$,

$$\begin{array}{ccc} c * O(f(n)) & \longrightarrow & O(f(n)) \\ O(f(n)) \times O(g(n)) & \longrightarrow & O(f(n) \times g(n)) \end{array}$$

Ejercicio 1

Dados dos algoritmos

- $\bigcirc A \in O(n)$
- \bigcirc $B \in O(n^2)$

¿Cuál es la complejidad ejecutar *B* inmediatamente después de *A*?

Ejercicio 2

Demostrar que las relaciones *O* son transitivas. Si

$$Of(n) = O(g(n)), y$$

$$\bigcirc g(n) = O(h(n)),$$

entonces f(n) = O(h(n)).

Problemas bien resueltos

Definición

Decimos que un problema está bien resuelto si existe un algoritmo de complejidad polinomial que lo resuelve (en forma exacta).

	n = 10	n = 20	n = 30	n = 40	n = 50
O(n)	0.01 ms	0.02 ms	0.03 ms	0.04 ms	0.05 ms
$O(n \log n)$	0.01 ms	0.03 ms	0.04 ms	0.06 ms	0.08 ms
$O(n^2)$	0.10 ms	0.40 ms	0.90 ms	1.60 ms	2.50 ms
$O(n^3)$	1.00 ms	8.00 ms	27.00 ms	64.00 ms	0.12 sg
$O(2^n)$	1.02 ms	1.04 sg	17.90 min	12 días	35 años
$O(3^{n})$	0.59 sg	58 min	6 años	3855 siglos	2×10^8 siglos!

Problemas bien resueltos

Instancia más grande que se puede resolver en 1 minuto en función de la velocidad de la computadora disponible:

	92 kIPS	2.66 MIPS	9.7 MIPS	177 MIPS	
	IBM 4004 (1971)	Intel 286 (1982)	Pentium IV (2000)	Intel Core i7 (2011)	
O(n)	5520	$1.5 10^5$	5.810^5	$1.06 \ 10^7$	(1923X)
$O(n \log n)$	4141	1.010^5	$2.7 10^5$	$6.19 10^6$	(1495x)
$O(n^{2})$	74	399	762	3258	(43x)
$O(n^3)$	17	54	83	219	(12X)
$O(2^n)$	12	17	19	23	(1.88x)
$O(3^{n})$	7	10	12	14	(1.88x)

Problemas bien resueltos

Convención

Los algoritmos polinomiales se consideran satisfactorios (cuanto menor sea el grado, mejor), y los algoritmos supra-polinomiales se consideran no satisfactorios.

No obstante ...

- Si los tamaños de instancia son pequeños, ¿es tan malo un algoritmo exponencial?
- \bigcirc ¿Cómo se comparan $O(n^{85})$ con $O(1.001^n)$?
- ¿Puede pasar que un algoritmo de peor caso exponencial sea eficiente en la práctica?
- O ¿Puede pasar que en la práctica sea el mejor?
- ¿Qué pasa si no encuentro un algoritmo polinomial?