

CubeRover, Flight Software Design Specifications <Document number>

Rev.	Author	Description of changes	Date
Α	C.Corpa	Initial Release	TBD

Table of Contents

1	Scope							
2	References							
3	Definitions and acronyms 3							
4	Cub	eRov	er flight software design specifications	3				
	4.1	Soft	ware architecture overview	3				
	4.2	Defi	nition of operating modes	3				
	4.2.	1	Roving Mode	Error! Bookmark not defined.				
	4.2.	2	Imaging Mode	Error! Bookmark not defined.				
	4.2.	3	Stand-by Mode	Error! Bookmark not defined.				
	4.2.	4	General Operation Mode	Error! Bookmark not defined.				
	4.2.	5	Safe Mode	Error! Bookmark not defined.				
	4.2.	6	Modes state machine	14				
	4.2.	7	Hardware component status by Mode	Error! Bookmark not defined.				
	4.2.	8	Modes and mission phases	Error! Bookmark not defined.				
	4.3	Soft	ware elements design specifications	3				
	4.3.	1	Watchdog MCU	3				
	4	.3.1.1	Description	3				
	4	.3.1.2	Interfaces software to software	3				
	4	.3.1.3	Interfaces software to hardware	7				
	4	.3.1.4	State machine	3				
	4	.3.1.5	Error handling	10				
	4	.3.1.6	Boundary conditions	10				
	4	.3.1.7	Software maintenance and revision control	10				
	4.3.	2	Motor controller MCU	10				
	4	.3.2.1	Description	10				
	4	.3.2.2	Interfaces software to software	10				
	4	.3.2.3	Interfaces software to hardware	11				
	4	.3.2.4	State machine	10				
	4	.3.2.5	Error handling	13				
	4	.3.2.6	Boundary conditions	13				

4.3.2.7	Software maintenance and revision control	13
1.3.3	amera FPGA	14
4.3.3.1	Description	14
4.3.3.2	Interfaces software to software	14
4.3.3.3	Interfaces software to hardware	14
4.3.3.4	State machine	14
4.3.3.5	Error handling	14
4.3.3.6	Boundary conditions	14
4.3.3.7	Software maintenance and revision control	14
1.3.4 P	rimary Flight MCU	14
4.3.4.1	Description	14
4.3.4.2	Interfaces software to software	14
4.3.4.3	Interfaces software to hardware	20
4.3.4.4	State machine	Error! Bookmark not defined.
4.3.4.5	Error handling	20
4.3.4.6	Boundary conditions	21
4.3.4.7	Software maintenance and revision control	21

1 Scope

This document presents the software design specifications of the CubeRover flight software.

2 References

<TBD> CubeRover Requirements

3 Definitions and acronyms

4 CubeRover flight software design specifications

4.1 Software architecture overview

<insert architecture diagram, present high level>

4.2 Definition of operating modes

4.3 Software elements design specifications

4.3.1 Watchdog MCU

4.3.1.1 Description

The Watchdog MCU is responsible of sanity check of the CubeRover and is responsible of sending low-level telemetric data. The Watchdog MCU has the capacity to reset other MCU in case the latter don't respond in time to watchdog requirement.

4.3.1.2 State machine

Table 1 Watchdog MCU State Machine state definition

Mode	Description		
Stand-by Mode The Wachdog MCU hold in reset all other MCUs except Primary Flight MCU. The RS422 comm			
	interface to the lander is active but restricted to small data packets (<10 B/s) as heartbeat interval (1Hz).		
	Heater and temperature sensing are active. The Watchdog MCU can exit the Stand-by on Operator request.		
	On state entry, the Watchdog MCU enables the Primary Flight MCU and the watchdog monitoring for that		
Operation Mode	device. The SPI interface to the Primary Flight MCU is active. The RS422 communication interface may or		
Operation Mode	may not be active depending on mission progress. If it is enabled, the bandwidth is increased to 20KB/s.		
	Watchdog of MCUs are enabled as they get activated by Primary Flight MCU.		
Fault Mode	The Fault mode logs fault and do a power cycle of the Watchdog MCU and entire system.		

Table 2 Watchdog MCU State Machine transition definition

#	Name	Actions
1	Power-Up	After power is applied, the Watchdog performs a POST and transition to Stand-by Mode if no fault is
		detected.
2	Go To Operation	On Operator request the Watchdog MCU exits the Stand-by Mode and reaches the Operation Mode.
3	Go To Stand-by	On Operator request, the Watchdog MCU exits the Operation state and return to Stand-by Mode.
4	Go To Fault	When a system fault is detected, the Watchdog MCU updates the Fault register and transits
		automatically to Fault Mode.
5	Power Cycle	The Watchdog hold in reset all MCUs and perform a self-reset.
6	Go To Operation	After a fault is detected and CubeRover is not attached to Lander then the MCU watchdog places the
		CubeRover is Operation Mode automatically.

4.3.1.3 Interfaces software to software

The Watchdog MCU has two communication interfaces to the Lander and Primary Flight MCU. The communication interface to the Lander is wired and functional until release of CubeRover from the Lander. The interface to the Primary flight is always enabled during all phases of the mission.

Figure 1 Watchdog MCU relationship between sofware components

4.3.1.3.1 Interface to Lander

During the flight and mission preparation, the CubeRover communicates to Earth using a low bandwidth RS-422 wired serial interface to perform some basic telemetry of the CubeRover. The Lander RS-422 connection is interfaced with a transceiver that interface directly the Watchdog MCU. The RS-422 connection is full duplex and can support speed up to 500KB/s.

The serial interface uses a SLIP (Serial Line Internet Protocol¹). This interface is an encapsulation of the Internet Protocol design to work over serials ports.

¹ https://en.wikipedia.org/wiki/Serial_Line_Internet_Protocol

4.3.1.3.1.1 Heartbeat

Figure 2 Software interface to support heartbeat feature to wired interface

The heartbeat is a unidirectional data transfer initiated automatically by CubeRover and transferred to PMCC during cruise and Lunar orbit are restricted to 10B/s. The purpose of the command is to provide heartbeat signal and for basic system monitoring.

The heartbeat packet data format is defined in section 12 Heartbeat Packet Format Definition.

4.3.1.3.1.2 *Command / reply*

The command/reply data transfers are used to perform some configuration and maintenance operation during the flight and mission preparation. Comparably to heartbeat the interface uses the RS-422 interface and SLIP Internet protocol to talk to the Lander.

The data format of a transmission (PMCC $\leftarrow \rightarrow$ Watchdog MCU) is as follow:

Name	Header	OpCode	Command	Parameter	R/W, Counter	Data size	Data MSB	Data n	Data LSB	CRC8
Size (B)	1	1	1	1	1	4	1	<mark>n</mark>	1	1

Header:

Command: 0001 0101b (0x15)Reply: 0010 0011b (0x23)

Opcode, Command and Parameter:

5 See section Header Definitions

The header indicates the provenance and destination of the packet and if the packet is a command/reply or a heartbeat message. The header is a bitwise register stored on 1 byte and is constructed as follow:

Lander Communication	Provenance	Destination	Hearbeat /
			Command
0b: wired	001b: PMCC	001b: PMCC	0b: heartbeat
1b: wireless	010b: Watchdog MCU	010b: Watchdog MCU	1b: command
	011b: Primary Flight MCU	011b: Primary Flight MCU	
	1xxb: reserved	1xxb: reserved	

Opcode, Command and Parameter Definitions for complete list of Opcode. The supported Opcodes by the Watchdog MCU are:

Supported OpCodes					
Telemetry Settings	0x04				
Fault Masking	0x05				
Fault Register	0x06				
State Machines	0x07				
Telemetry Data	0x08				
Lander Deployment	0x09				
CubeRover. Power Input Selection	0x0A				
System Reset	0x0B				

R/W and command counter:

It is a bitwise register that specifies if the command is a read or write. It also keeps track of message pairing through a command cyclic counter.

R/W, Counter					
Bit 7 1	Bit 0				
Command	Read (0b)				
counter	Write (1b)				

CRC8:

The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

5.1.1.1.1 Communication bridge between Lander and Primary Flight MCU

The interface to the Primary Flight MCU is done through a UART interface.

The data format of a transmission (PMCC $\leftarrow \rightarrow$ Primary Flight MCU) is as follow:

Name	Header	OpCode	Command	Parameter	R/W, Counter	Data size	Data MSB	Data n	Data LSB	CRC8
Size (B)	1	1	1	1	1	4	1	<mark>n</mark>	1	1

Header:

Command: 0001 0111b (0x13) Reply: 0011 0011b (0x33)

Opcode, Command and Parameter:

6 See section Header Definitions

The header indicates the provenance and destination of the packet and if the packet is a command/reply or a heartbeat message. The header is a bitwise register stored on 1 byte and is constructed as follow:

Lander Communication	Provenance	Destination	Hearbeat /
			Command
0b: wired	001b: PMCC	001b: PMCC	0b: heartbeat
1b: wireless	010b: Watchdog MCU	010b: Watchdog MCU	1b: command
	011b: Primary Flight MCU	011b: Primary Flight MCU	
	1xxb: reserved	1xxb: reserved	

Opcode, Command and Parameter Definitions for complete list of Opcode. The supported Opcodes by the Primary Flight MCU are:

Supported OpCodes				
Imaging	0x02			
IMU settings	0x03			
Driving	0x01			
State Machines	0x07			
IMU	0x03			
State Machines	0x07			
Motor Control Configuration	0x0C			
Radio Configuration	0x0D			

R/W and command counter:

It is a bitwise register that specifies if the command is a read or write. It also keeps track of message pairing through a command cyclic counter.

R/W, Counter		
Bit 7 1	Bit 0	
Command	Read (0b)	
counter	Write (1b)	

CRC8:

The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

6.1.1.1.1 Interface to Primary Flight MCU

The data format of a transmission (PMCC ←→ Primary Flight MCU) is as follow:

Name	Header	OpCode	Command	Parameter	R/W, Counter	Data size	Data MSB	Data n	Data LSB	CRC8
Size (B)	1	1	1	1	1	4	1	<mark>n</mark>	1	1

Header:

Command: 0011 0101b (0x35)

Reply: 0010 0111b (0x27)

Opcode, Command and Parameter:

7 See section Header Definitions

The header indicates the provenance and destination of the packet and if the packet is a command/reply or a heartbeat message. The header is a bitwise register stored on 1 byte and is constructed as follow:

Lander Communication	Provenance	Destination	Hearbeat /
			Command
0b: wired	001b: PMCC	001b: PMCC	0b: heartbeat
1b: wireless	010b: Watchdog MCU	010b: Watchdog MCU	1b: command
	011b: Primary Flight MCU	011b: Primary Flight MCU	
	1xxb: reserved	1xxb: reserved	

Opcode, Command and Parameter Definitions for complete list of Opcode. The supported Opcodes by the Watchdog MCU are:

Supported OpCodes	
Telemetry Settings	0x04
Fault Masking	0x05
Fault Register	0x06
State Machines	0x07
Telemetry Data	0x08
Lander Deployment	0x09
CubeRover. Power Input	0x0A
Selection	UXUA
System Reset	0x0B

R/W and command counter:

It is a bitwise register that specifies if the command is a read or write. It also keeps track of message pairing through a command cyclic counter.

R/W, Counter	
Bit 7 1	Bit 0
Command	Read (0b)
counter	Write (1b)

CRC8:

The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

7.1.1.1 Interfaces software to hardware

7.1.1.1.1 Internal and peripheral watchdogs

The Watchdog MCU verifies its own activity and other MCUs. It is capable of resetting devices that don't service the Watchdog MCU watchdog timer within a 5-second period. The service of the watchdog is done on falling or rising edge on the reserved GPIOs (see schematics for specific GPIOs). The list of monitored MCUs are the following:

Primary Flight MCU

- Camera FPGA
- Radio module

In case of peripheral watchdog timeout failure, the Watchdog MCU sets and logs the Fault register accordingly (see section Fault Register Definition) and transits to Fault Mode.

In case of internal watchdog failure, the Watchdog MCU sets and logs Fault register then performs a system reset of CubeRover.

7.1.1.1.2 Voltage monitoring

The Watchdog MCU monitors the status of the SBC power regulators by monitoring "power good" output signals. A falling edge of these signals (see schematics for specific GPIOs) corresponds to a voltage failure. On failure, the Watchdog MCU sets and logs the fault, disable the faulty supply rail (when possible) and transits to Fault Mode.

The "power good" signals are reported to telemetry as defined in section 12 Heartbeat Packet Format Definition.

7.1.1.1.3 Heater control, thermistors and temperature protection

The Watchdog MCU controls the Heater with two modes: thermostat and manual override. In thermostat mode, the heater is controlled by the Watchdog MCU with temperature controller algorithm to maintain a minimum temperature of -20C.

The temperature is collected from 16 thermistors that are connected to ADC module. The voltage level is converted to degree celsius from a look-up table that characterize the relationship between these two properties. The temperature is logged at a rate defined by the Telemetry Settings register defined in section Opcode, Command and Parameter Definitions.

The Watchdog MCU detect failure of the thermistor by checking for short circuit and open circuit conditions. On failure, the Watchdog MCU set the Fault register accordingly, logs the Fault and transits to Safe Mode.

If one of the measured temperature exceeds the maximum allowed threshold on a given thermistor then the Watchdog MCU sets the Fault register accordingly, logs the Fault and transits to Safe Mode. The maximum temperature level are set as follow:

ADC#	Thermistor	Temperature Threshold (Celsius)
0	Temperature Sensor Primary Flight MCU (Celsius)	TBD
1	Temperature Battery Pack (Celsius)	TBD TBD
2	Temperature Radio Module (Celsius)	TBD
3	Temperature Camera 0 (Celsius)	<mark>TBD</mark>
4	Temperature Camera 1 (Celsius)	<mark>TBD</mark>
5	Temperature Motor 0 (Celsius)	<mark>TBD</mark>
6	Temperature Motor 1 (Celsius)	<mark>TBD</mark>
7	Temperature Motor 2 (Celsius)	<mark>TBD</mark>
8	Temperature Motor 3 (Celsius)	<mark>TBD</mark>
9	Reserved	
10	Reserved	
11	Reserved	
12	Reserved	
13	Reserved	
14	Reserved	
15	Reserved	

7.1.1.4 Deployment control

The Watchdog MCU controls the release mechanism of CubeRover from the Lander. To perform that operation, the PMCC operator need to write to the "Lander Release" register with a password defined in the section Opcode, Command and Parameter Definitions. A release delay can be added to the release if necessary, via another register. The release mechanism is an active high signal.

7.1.1.2 Error handling

7.1.1.3 Boundary conditions

7.1.1.4 Software maintenance and revision control

7.1.2 Motor controller MCU

7.1.2.1 Description

The Motor Controller MCU is responsible to drive one DC brushless motor that drives one of the CubeRover wheel. The CubeRover SBC contains 4 Motor Controllers. They are connected to the Primary Flight MCU over a I2C interface. Each Motor Controller has a unique I2C address set by two resistors connected the MCU inputs.

7.1.2.2 State machine

State	Description
Disabled	In Disabled state the Motor Controller can configure the motor controller parameters (PID coefficients, etc.)
	and motor driver is not powered.
Enabled	In Enabled state the motor driver is powered and motor controller can take actuation commands.
Fault	In Fault state the motor driver is not powered. The motor controller remains in Fault state until the fault is cleared.

#	Name	Actions
1	Power-Up	At power-up the MCU performs a POST then transitions to disabled state automatically. If a fault is present during POST, the MCU transits to Fault. The Motor Controller MCU performs the following tasks: 1. POST (clock verification, memory integrity check, DRV8304 check), 2. DRV8304 current calibration.
2	Enable Motor Driver	On Operator request, the MCU transits to Enabled state and enable motor driver.
3	Disable Motor Driver	On Operator request, the MCU transits to Disabled state and disable motor driver.
4	Go To Fault State	Under fault condition, the MCU transits automatically to Fault state. The Fault register is set accordingly.
5	Clear Fault	On Operator request, the MCU transits to Disabled state after fault is cleared successfully. If fault cannot be cleared, the MCU remains in Fault state.

7.1.2.3 Motor controller topology

The motor controller topology consists of cascaded PID/PI controllers to perform position control of the motor. The Target Position input is conditioned with a target window that normalizes and sets the position beyond which the input reaches its saturated state. The PID position controller tacks that the difference between the target position and current position is zero. The PID speed controller tracks that the speed feedback tracks the target speed. The speed feedback is calculated by deriving the position over time. Finally, the PI current controller tracks torque demand to achieve desired speed. The current feedback is measured by a current sense measuring the total current from the H-bridge circuit.

7.1.2.4 Interfaces software to software

The Motor Controller MCU interfaces the Primary Flight MCU with an I2C interface. The details on the I2C protocol are in section 9.1.1.1.1 Interface to Motor Controllers.

7.1.2.5 Interfaces software to hardware

7.1.2.5.1 Internal Watchdog

The Motor Controller MCU monitors its own activity using an internal watchdog timer. The internal watchdog timer is set to 5 seconds. If the timer triggers, the Fault register is accordingly after the Motor Controller MCU performs a reset.

7.1.2.5.2 Definition of I2C registers for hardware configuration

The Motor Controller MCU has registers that are accessible from the I2C communication interface. These registers are used from telemetric and configuration purposes and are identified with a unique identifier.

Register I2C ID	Register Name	Size (B)	Format
0x01	Motor controller I2C address	1	Uint8 (RO)

Register I2C ID	Register Name	Size (B)	Format
0x02	Relative Target Position	4	Int32 (ticks) (RW)
			Uint8 (RW)
0x03	Direction	1	Forward: 0
			Reverse: 1
0x04	Target Speed	1	Uint8 (0-100%) (RW)
0x05	Motor Current Position	4	Int32 (ticks) (RW)
0x06	Rotor motor position	4	Int32 (ticks) (RW)
0x07	Motor Current	2	Int16 (mA) (RO)
0x08	P Current	2	Linear Format (RW)
0x09	I Current	2	Linear Format (RW)
0x0A	P Velocity	2	Linear Format (RW)
0x0B	I Velocity	2	Linear Format (RW)
0x0C	D Velocity	2	Linear Format (RW)
0x0D	P Position	2	Linear Format (RW)
0X0E	I Position	2	Linear Format (RW)
0x0F	D Position	2	Linear Format (RW)
0x10	Acceleration	2	Uint16 (tick*s-2) (RW)
0x11	Deceleration	2	Uint16 (tick*s-2) (RW)
013	Francisco Communication	1	Uint8 (RW) – write command
0x12	Execute Command	1	executes new target position
0x13	Current Velocity	2	Uint16 (ticks*s-1)
0x14	5 11 5:	1	Uint8 (RW) – write command
UX14	Enable Driver	1	enables driver.
0x15	Disable Driver	1	Uint8 (RW) – write command
0X13	Disable Driver	1	disables driver.
0x16	Reset Controller	1	Uint8 (RW) – write command to
OXIO	Reset Controller	1	reset controller.
0x17	Fault Register	1	Uint16 bitwise register (RW)
0x18	Clear Fault	1	Uint8 (RW) – write command to
OYTO	Clear rauit	1	reset fault.
0x19	Status Register	1	Uint16 bitwise register (RW)
			Uint8 bitwise register (RO):
			Bit 0: hall sensor 1
0x1A	Position Sensor Current Combination	1	Bit 1: hall sensor 2
			Bit 2: hall sensor 3
			Bit 37: reserved

Motor Co	Motor Controller Fault Register	
Bit #	Description	
0	Driver fault/overcurrent	
1	Motor stall	
2	Bad position sensor	
3	I2C bad parameter	
4	Unexpected fault	
5	Watchdog	
67	Reserved	

Motor Controller Status Register		
Bit #	Description	
01	Current State:	
	00b: Disabled	
	01b: Enabled	
	10b: Fault	
2	Target position reached (0b: not reached, 1b reached)	
37	Reserved	

7.1.2.5.3 Interface to motor driver (DRV8304)

The Motor Controller MCU interfaces a H-bridge driver DRV8304. The driver has some built-in features to protect the H-bridge and help reduces the number of discrete components by integrating some current sense circuitry.

7.1.2.5.3.1 Current Calibration

The driver DRV8304 has 3 current sense amplifiers that are used to monitor the current of each motor phases. These current amplifiers can be calibrated to consider any deviation of the common mode voltage. The calibration is done through the CAL pin. The calibration of the current sense circuitry is done at power-up of the Motor Controller MCU before entering the Disabled state.

7.1.2.5.3.2 *PWM interface*

The driver is configured for 6x PWM mode. Each half-bridge supported three output states: low, high and high-impedance. In that configuration, the PWM signals control the MOSFET gates and sources of the H-Bridge as follow:

INLx	INHx	GLx	GHx	SHx
0	0	L	L	Hi-Z
0	1	L	Н	Н
1	0	Н	L	L
1	1	L	L	Hi-Z

7.1.2.5.3.3 DRV8304 fault output

The DRV8304 has a fault output (nFAULT) to notify the Motor Controller MCU of a general error (over-current, low voltage, etc). More details can be retrieved over SPI if necessary. The fault is cleared by pulsing the ENABLE to GND.

7.1.2.6 Error handling

In case of fault, the Motor Controller MCU state machine transits to Fault state. The Fault register is set accordingly and disables power output of the DRV8304. The state machine remains in Fault state until the error is cleared by the Primary Flight MCU over the I2C interface.

7.1.2.7 Boundary conditions

I2C parameters that are set by the master device are checked for boundary conditions. If a given parameter is outside acceptable range, the state machine transits to Fault state and Fault register is set accordingly.

7.1.2.8 Software maintenance and revision control

TBD

7.1.3 Camera FPGA

- 7.1.3.1 Description
- 7.1.3.2 State machine
- 7.1.3.3 Interfaces software to software
- 7.1.3.4 Interfaces software to hardware
- 7.1.3.5 Error handling
- 7.1.3.6 Boundary conditions
- 7.1.3.7 Software maintenance and revision control

7.1.4 Primary Flight MCU

7.1.4.1 Description

7.1.4.2 State machine

Figure 3 State machine diagram of Operational Modes

Mode	Description
Stand-by Mode	The Stand-by Mode is a mode that set all components to a low-power mode. The watchdog MCU verifies the Primary Flight MCU periodically. The Primary Flight MCU can be brought out of Stand-by Mode upon operator request.
General Op. Mode	The General Operation Mode is a mode that let the operator configures the CubeRover and retrieve some data (telemetric and payload)
Imaging Mode	The Imaging Mode is a mode that allows the CubeRover to control the camera of the CubeRover and perform imaging tasks such as take, retrieve, erase pictures from camera(s) and configure it.
Roving Mode	The Roving Mode is a mode that allows the CubeRover to actuate the motors to rove on the surface of a planet.
Safe Mode	The Safe Mode is a mode that is triggered by a CubeRover software or hardware event that requires operator intervention before returning to other modes. In Safe Mode, the operator can access all log data and fault registers.

Table 3 State machine transitions

#	Name	Actions
1	Power-Up	At power-up CubeRover performs a POST then transition to Stand-by Mode automatically. The transition turns off voltage rails that are not required to support that mode and put the Watchdog MCU and all other IC in a low power mode.
2	Go To Operational	On Operator request, the CubeRover transits to General Operation Mode. The transition enables all features required to support configuration.
3	Go To Stand-by	On Operator request, the CubeRover transits to Stand-by Mode. The transition turns off voltage rails that are not required to support that mode and put the Watchdog MCU and all other IC in a low power mode.
4	Start Imaging	On Operator request, the CubeRover transits to Imaging Mode and enable camera(s) modules to perform imaging tasks.
5	Stop Imaging	On Operator request, the CubeRover transits to Imaging Mode and disable camera(s) modules.
6	Start Roving	On Operator request, the CubeRover transits to Roving Mode and enable motor controller(s).
7	Stop Roving	On Operator request, the CubeRover transits to Roving Mode and disable motor controller(s).
8	Exit Safe Mode	On Operator request, the CubeRover exits the Safe Mode. The Operator can have the option to mask failures to not revert to Safe Mode automatically.
9	Go To Safe Mode	On failure or other event detection, the CubeRover enters Safe Mode and remain until Operator requests exit of that state.

		На	rdware components stat	tus		
Mode	Watchdog MCU	Radio Module	Primary Flight MCU	Motor Controller	Payload- Camera / FPGA	
Stand-by Mode	I low Power		ON MCU: OFF Pre-Driver: OF		FPGA: OFF Camera: OFF	
General Op. Mode	Low Power	ON	ON	MCU: Low Power Pre-Driver: OFF	FPGA: OFF Camera: OFF	
Imaging Mode	Low Power	ON	ON	MCU: Low Power Pre-Driver: OFF	FPGA: ON Camera: ON	
Roving Mode	Low Power	ON	ON	MCU: ON Pre-Driver: ON	FPGA: OFF Camera: OFF	
Safe Mode	Low Power	If connected to Lander: OFF.	ON	MCU: Low Power	FPGA: OFF	
	Low Power –	If not connected to Lander: ON	ON	Pre-Driver: OFF	Camera: OFF	

Mission phases	Description	Supported CubeRover Modes
Service	CubeRover is integrated and tested with the Peregrine Lander	Stand-by Mode
		General Op. Mode
		Imaging Mode
		Roving Mode
Sleep	CubeRover remains power down.	Stand-by Mode
Transit Status Check	Powers on and performs status check.	General Op. Mode

Mission phases	Description	Supported CubeRover Modes
Heartbeat	Remain in a low power state, transmits heartbeat and maintains	Stand-by Mode
	temperature.	
Sleep (landing)	Remains power down.	Stand-by Mode
Mission Wired Status Check	Powers on and performs status check including Wi-fi and charge state.	Stand-by Mode
and charge state		General Op. Mode
		Imaging Mode
		Roving Mode
Deployment	Drops from Lander on signal from Astrobotic.	Stand-by Mode
		General Op. Mode
Mission Wireless Status	Performs system and mobility status check	Stand-by Mode
Check		General Op. Mode
Exploration	Awaits commands / perform mission tasks.	Stand-by Mode
		General Op. Mode
		Imaging Mode
		Roving Mode

7.1.4.3 Interfaces software to software

7.1.4.3.1 Interface to Watchdog MCU

Interface to Watchdog MCU is detailed in the section 6.1.1.1.1.

7.1.4.3.2 Interface using Radio Communication

7.1.4.3.2.1 Heartbeat

When the radio is enabled, the Primary Flight MCU transmits heartbeat at periodic interval. The periodic interval is defined by the minimum period set by the telemetric settings register. The data format of the heartbeat packet is defined in 12 Heartbeat Packet Format Definition.

7.1.4.3.2.2 *Command / reply*

The data format of a transmission (PMCC $\leftarrow \rightarrow$ Watchdog MCU) is as follow:

Name	Header	OpCode	Command	Parameter	R/W, Counter	Data size	Data MSB	Data n	Data LSB	CRC8
Size (B)	1	1	1	1	1	4	1	<mark>n</mark>	1	1

Header:

Command: 1001 0111 (0x97) Reply: 1011 0011 (0xB3)

Opcode, Command and Parameter:

8 See section Header Definitions

The header indicates the provenance and destination of the packet and if the packet is a command/reply or a heartbeat message. The header is a bitwise register stored on 1 byte and is constructed as follow:

Lander Communication	Provenance	Destination	Hearbeat /
			Command
0b: wired	001b: PMCC	001b: PMCC	0b: heartbeat
1b: wireless	010b: Watchdog MCU	010b: Watchdog MCU	1b: command
	011b: Primary Flight MCU	011b: Primary Flight MCU	
	1xxb: reserved	1xxb: reserved	

Opcode, Command and Parameter Definitions for complete list of Opcode. The supported Opcodes by the Primary Flight MCU are:

Supported OpCodes			
Imaging	0x02		
IMU settings	0x03		
Driving	0x01		
State Machines	0x07		
IMU	0x03		
State Machines	0x07		
Motor Control Configuration	0x0C		
Radio Configuration	0x0D		

R/W and command counter:

It is a bitwise register that specifies if the command is a read or write. It also keeps track of message pairing through a command cyclic counter.

R/W, Counter				
Bit 7 1	Bit 0			
Command	Read (0b)			
counter	Write (1b)			

CRC8:

The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

8.1.1.1.1 Communication bridge between Radio and Watchdog MCU

The data format of a transmission (PMCC ←→ Watchdog MCU) is as follow:

Name	Header	OpCode	Command	Parameter	R/W, Counter	Data size	Data MSB	Data n	Data LSB	CRC8
Size (B)	1	1	1	1	1	4	1	<mark>n</mark>	1	1

Header:

Command: 1001 0101 (0x95) Reply: 1010 0011 (0xA3)

Opcode, Command and Parameter:

9 See section Header Definitions

The header indicates the provenance and destination of the packet and if the packet is a command/reply or a heartbeat message. The header is a bitwise register stored on 1 byte and is constructed as follow:

Lander Communication	Provenance	Destination	Hearbeat /
			Command
0b: wired	001b: PMCC	001b: PMCC	0b: heartbeat
1b: wireless	010b: Watchdog MCU	010b: Watchdog MCU	1b: command
	011b: Primary Flight MCU	011b: Primary Flight MCU	

1xxb: reserved	1xxb: reserved	

Opcode, Command and Parameter Definitions for complete list of Opcode. The supported Opcodes by the Primary Flight MCU are:

Supported OpCodes					
Telemetry Settings	0x04				
Fault Masking	0x05				
Fault Register	0x06				
State Machines	0x07				
Telemetry Data	0x08				
Lander Deployment	0x09				
CubeRover. Power Input	0x0A				
Selection	UNUA				
System Reset	0x0B				

R/W and command counter:

It is a bitwise register that specifies if the command is a read or write. It also keeps track of message pairing through a command cyclic counter.

R/W, Counter	
Bit 7 1	Bit 0
Command	Read (0b)
counter	Write (1b)

CRC8:

The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

9.1.1.1.1 Interface to Motor Controllers

The Primary Flight MCU interfaces the Motor Controllers over I2C interface. The Primary Flight MCU is configured as master device whereas the Motor Controllers are configured as slave devices.

9.1.1.1.1 I2C address definition

The last two digit of the I2C address are defined by a set of two resistors connected to the MCU. See SBC schematics for actual address. The address is: 0110 0xx where xx represents the address of the slave device.

9.1.1.1.2 *I2C packet format*

The I2C packets are constructed as follow:

Function	Fault & Register ID	Data Size	Data	CRC8
Size (B)	1	1	n	1

Fault & Register ID:

The register ID is a bitwise register is defined in section Motor controller MCU. They are used to access the Motor Controller MCU parameters required to perform motor control tasks and to check if the Motor Controller MCU is in a fault state. The register is defined as follow:

Function	Fault	Register ID
Bit #	7	60
	0b: no fault	
	1b: fault state	

Data Size:

The Data Size is 1-byte and describe the size of the Data to read or write.

Data:

The Data to read or write. For I2C Read, the data byte(s) is/are ignored by the MCU Motor Controller.

CRC8:

The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

9.1.1.2 Interfaces software to hardware

9.1.1.2.1 Current monitoring

The Primary Flight MCU monitors the current of the critical components with current monitor circuits. The current circuits are connected the ADC channels as follow:

ADC#	Current monitor
0	TBD
1	
2	
3	
4	
5	
6	
7	
8	

9.1.1.2.2 External FLASH memory and telemetric data storage

The Primary Flight MCU has an external FLASH memory (S25FL064L) to store telemetric data. The communication interface to that device use a SPI interface. The communication protocol to interface that device is defined in the datasheet².

² https://www.cypress.com/file/316661/download

Each telemetric data element is stored in FLASH memory in the following format:

Data	Telemetry ID	Telemetry Data	Timestamp	CRC8
Size (B)	1	2	3	1

9.1.1.3 Error handling

In case I2C communication failure the Primary Flight MCU behaves as follow:

- I2C timeout error (timeout = 1s); the MCU retries 3 times to initiate the same command. If all retries fails, the Primary Flight MCU goes to the Safe Mode and its Fault register is set accordingly.
- Checksum error; the MCU retries 3 times to initiate the same command. If all retries fails, the Primary Flight MCU goes to Safe Mode and its Fault register is set accordingly.

With each I2C reply, the Motor Controller MCU includes a fault bit (see "Fault & Register ID" register definition).

9.1.1.4 Boundary conditions

The parameters received are checked for boundary condition. If data read is out-of-range then the Primary Flight MCU goes to Safe Mode and its fault register is set accordingly.

9.1.1.5 Software maintenance and revision control

10Header Definitions

The header indicates the provenance and destination of the packet and if the packet is a command/reply or a heartbeat message. The header is a bitwise register stored on 1 byte and is constructed as follow:

Lander Communication	Provenance	Destination	Hearbeat /
			Command
0b: wired	001b: PMCC	001b: PMCC	0b: heartbeat
1b: wireless	010b: Watchdog MCU	010b: Watchdog MCU	1b: command
	011b: Primary Flight MCU	011b: Primary Flight MCU	
	1xxb: reserved	1xxb: reserved	

11Opcode, Command and Parameter Definitions

Name	Op. Code	Command	Command Name	Param	Parameter name	Data size (B)	Format / permission	Value range	
		0x00	Forward	0x00	Distance	1	uint8 (RW)	0-255 cm	
		0.000	Configuration	0x01	Speed	1	uint8 (RW)	0-100 % (100 = 4cm/s)	
		0x01	Reverse	0x00	Distance	1	uint8 (RW)	0-255 cm	
		0.01	Configuration	0x01	Speed	1	uint8 (RW)	0-100 % (100 = 4cm/s)	
		0x02	Left	0x00	Angle	1	uint8 (RW)	0-180 degree	
Driving	0x01	0x02	Configuration	0x01	Speed	1	uint8 (RW)	0-100% (4cm/s)	
Dilving	OXOI	0x03	Right	0x00	Angle	1	uint8 (RW)	0-180 degree	
		0.03	Configuration	0x01	Speed	1	uint8 (RW)	0-100% (4cm/s)	
		0x04	Execute driving	0x00	Direction	1	uint8 (RW)	0: FWD 1: REV 2: LFT 3: RGT	
		0x00	Image Compression (front)	0x01	Image Compression	1	uint8 (RW)	0: None 1: 20% 2: 50%	
		0x01	Image Sensor Configuration (front)	0x00 ~ 0xFF	See MT9P031 Reference Registers	2	Uint16 (see datasheet)	See MT9P031 Reference Registers	
		0x02	Image Compression (rear)	0x01	Image Compression	1	uint8 (RW)	0: None 1: 20% 2: 50%	
Imaging	0x02	0x02	0x03	Image Sensor Configuration (rear)	0x00 ~ 0xFF	Direct access- See MT9P031 Reference Registers	2	Uint16 (see datasheet)	Direct access- See MT9P031 Reference Registers
		0x04	0×04	Image Transfer	0x00	Image Transfer (front)	1	Uint8 (RW)	0: start transfer 1: abort transfer
			illiage Transfer	0x01	Transfer Image (back)	1	Uint8 (RW)	0: start transfer 1: abort transfer	
			0x05 I	0v05 Image Canture	Image Capture	0x00	Capture Image (front)	1	Uint8 (RW)
				0x01	Capture Image (back)	1	Uint8 (RW)	0: capture image	
		0x00	Gyrometer Direct Configuration	0x00 ~ 0xFF	Direct access – see L3GD20H datasheet	1	Uint8 (RW)	Direct access – see L3GD20H datasheet	
IMU	0x03	0x01	Accelerometer Direct Configuration	0x00 ~ 0xFF	Direct access – see ADXL312 datasheet	1	Uint8 (RW)	Direct access – see ADXL312 datasheet	
			Guramatar	0x00	X-axis	2	int16 (RO)	0-65535 (degree/s)	
		0x03	Gyrometer Data	0x01	Y-axis	2	int16 (RO)	0-65535 (degree/s)	
			Data	0x02	Z-axis	2	int16 (RO)	0-65535 (degree/s)	

Name	Op. Code	Command	Command Name	Param	Parameter name	Data size (B)	Format / permission	Value range
	5545			0x00	X-axis	2	int16 (RO)	0-65535 (m.s-2)
		0x04	Accelerometer	0x01	Y-axis	2	int16 (RO)	0-65535 (m.s-2)
			Data	0x02	Z-axis	2	int16 (RO)	0-65535 (m.s-2)
			Gyro Telemetry	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x00	Frequency	0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0.04	Accelerometer	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x01	Telemetry Frequency	0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x02	Thermistors Telemetry	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
		UXUZ	Frequency	0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x03	Motors Current Telemetry	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
		OXO3	Frequency	0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x04	Motors Velocity Telemetry	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
			Frequency	0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x05	Rails Voltages Telemetry Frequency	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
Telemetry Settings	0x04			0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x06	Rails Currents Telemetry Frequency	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
				0x01	Stand-by Frequency	1	Uint8 (RW)	0-255 (Hz)
		0x07	Radio Telemetry	0x00	Active Frequency	1	Uint8 (RW)	0-255 (Hz)
			Frequency	0x01	Stand-by Frequency Active	1	Uint8 (RW)	0-255 (Hz)
		0x08	Heater Activity Telemetry	0x00	Frequency Stand-by	1	Uint8 (RW)	0-255 (Hz)
			Frequency	0x01	Frequency Active	1	Uint8 (RW)	0-255 (Hz)
		0x09	Thermistors Telemetry	0x00	Frequency Stand-by	1	Uint8 (RW)	0-255 (Hz)
			Frequency	0x01	Frequency Active	1	Uint8 (RW)	0-255 (Hz)
		0x0A	Motors Position Telemetry	0x00	Frequency Stand-by	1	Uint8 (RW)	0-255 (Hz)
		Over	Frequency Reset	0x01	Frequency	1	Uint8 (RW)	0-255 (Hz)
		0xFF	parameters		-	-	-	-
Fault Masking	0x05	0x00	Fault Mask	0x00	Fault Mask	2	Uint16 (RW)	Bitwise masking. See Fault Table. 0: fault not masked. 1: fault masked
Fault	0x06	0x00	Fault	0x00	Fault Status	2	Uint16 (RO)	Bitwise register. See Fault Table.
Register	5,00	0.00		0x01	Clear Fault	2	Uint16 (RW)	Bitwise register. See Fault Table.
State Machines	0x07	0x00	Watchdog MCU state machine	0x00	State	1	Uint8 (RW)	0: Stand-by 1: Operation

Name	Op. Code	Command	Command Name	Param	Parameter name	Data size (B)	Format / permission	Value range
		0x01	Primary Flight MCU state machine	0x00	State	1	Uint8 (RW)	0: Stand-by 1: Gen Operation Mode 2: Imaging Mode 3: Roving Mode 4: Safe Mode
Telemetry Data	0x08	0x00	Data	Data ID 0~255	See Telemetry Table	5	RO	Telemetry Data Encoded in linear format. See Telemetry Table. Date Appended to each data.
Lander Release	0x09	0x00	Release	0x00	Trigger Release	2	Uint16 (RW)	Must be equal to: 0xA5A5 to initiate detachment.
Hereuse				0x01	Deployment Delay	1	Uint8 (RW)	0-255 (s)
CubeRov. Power Input Selection	0x0A	0x00	CubeRover Power Selection	0x00	Power Selection	1	Uint8 (RW)	0: Battery 1: Lander
System Reset	0x0B	0x00	Reset Selection	0x00	Reset Selection	1	Uint8 (RW)	O: release from reset. 1: hold in reset. Bitwise register: Bit 0: Watchdog MCU Bit 1: Pri. Flight MCU Bit 2: Radio Module Bit 3: FPGA Bit 4: Motor Ctr MCU 0 Bit 5: Motor Ctr MCU 1 Bit 6: Motor Ctr MCU 2 Bit 7: Motor Ctr MCU 3
				0x00	P Current	2	Uint16(RW)	0~65535
				0x01	I Current	2	Uint16(RW)	0 ~ 65535
				0x02	P Speed	2	Uint16(RW)	0 ~ 65535
			Motor Control	0x03	I Speed	2	Uint16(RW)	0 ~ 65535
		0x00	Parameters	0x03	D Speed	2	Uint16(RW)	0 ~ 65535
		1	rarameters	0x04	P Speed	2	Uint16 (RW)	0 ~ 65535
Motor				0x05	P Position	2	Uint16 (RW)	0 ~ 65535
Control	0x0C			0x06	I Position	2	Uint16 (RW)	0 ~ 65535
Configura tion				0x07	D Position	2	Uint16 (RW)	0 ~ 65535
tion		0x01	Acceleration /Deceleration	0x00 0x01	Acceleration Deceleration	2	Uint16 (RW) Uint16 (RW)	0 ~ 65535 cm/s2 0 ~ 65535 cm/s2
		0x02	profile Stall Detection	0x00	Disable / Enable	1	Uint8 (RW)	0: Stall detect. disabled 1: Stall detect. Enabled
		0x03	Position Counter	0x00	Reset Counter Position to 0.	1	Uint8 (RW)	Writing reset to 0.
Radio Configura tion	0x0D	0x00 ~ 0xFF	See WF-121 Datasheet for message class	0x00 ~ 0xFF	See WF-121 Datasheet for message ID	See WF- 121 Datash eet for data length ³	See WF-121 Datasheet for message ID	See WF-121 Datasheet for message ID
Heater	0.05	004	Temperature	0x00	Temperature Heater ON	1	Int8	-128 ~ +127 (Celsius)
Configura tion	0x0E	0x01	Control	0x01	Temperature Heater OFF	1	Int8	-128 ~ +127 (Celsius)

 $^3\ https://www.silabs.com/documents/public/reference-manuals/Bluegiga-WiFi-Software-3.0-API-RM.pdf$

Name	Op. Code	Command	Command Name	Param	Parameter name	Data size (B)	Format / permission	Value range
				0x02	Manual /Thermostat Selection	1	Uint8	0x00: manual control 0x01: thermostat control
				0x03	Manual Control	1	Uint8	0x00: Heater OFF 0x01: Heater ON
System Log	0x0F							

12 Heartbeat Packet Format Definition

The data format is as follow:

Name	Header	Fault Reg.	Data ID	Telemetry Data + Time	CRC8
Size (B)	1	4	1	5	1

Header:

Wired heartbeat from watchdog MCU: 0010 0010b (0x22)

Wireless heartbeat from primary Flight MCU: 1011 0010b (0xB2)

Fault register: The Fault register is stored in the Watchdog MCU. It is a bitwise register informing of fault of CubeRover (see section Fault Register Definition).

Data ID: identifier that specify what data is being returned. Data ID is incremented for each communication cycle then circle back to ID #0 when it reaches max data ID.

Telemetry Data + Time: The Time of the telemetric data collection is appended to the data in 3 bytes format. It is encoded in the following format: hhmmss in a decimal format.

Telemetry ID	Telemetry Data	Data Size (B)	Time	Time size (B)
0	Temperature Sensor Primary MCU (Celsius)	0.20 (2)		0.20 (2)
	Temperature Battery Pack (Celsius)			
	Temperature Radio Module (Celsius)			
	Temperature Camera 0 (Celsius)			
	Temperature Camera 1 (Celsius)			
	Temperature Motor 0 (Celsius)			
	Temperature Motor 1 (Celsius)			
	Temperature Motor 2 (Celsius)	1		
	Temperature Motor 3 (Celsius)			
	Temperature FPGA (Celsius)			
	Temperature Watchdog MCU (Celsius)	2	hhmmss	3
	Bitwise register:	1		
	Bit 0: Power Good 5V0			
	Bit 1: Power Good 3V3			
	Bit 2: Power Good 2V8			
	Bit 3: Power Good 2V5			
	Bit 4: Power Good 1V8			
	Bit 5: Power Good 1V2			
	Bit 615: reserved			
	Battery Remaining Level (percentage)			
	Heater Status (bool)			
Telemetry p	arameter below only available over wi-fi (released from lander)	or through co	ommand/rep	ly
	Current 5V0 (mA)			
	Current 3V3 (mA)			
	Current 2V8 (mA)			
	Current 2V5 (mA)			
	Current 1V8 (mA)			
	Current 1V2 (mA)			
	Revolution Rotor Counter Motor 0 (wheel rev.)	1		
	Revolution Rotor Counter Motor 1 (wheel rev.)	1		
	Revolution Rotor Counter Motor 2 (wheel rev.)	1		

Telemetry ID	Telemetry Data	Data Size (B)	Time	Time size (B)
	Revolution Rotor Counter Motor 3 (wheel rev.)			
	Velocity Rotor Counter Motor 0 (RPM)			
	Velocity Rotor Counter Motor 1 (RPM)			
	Velocity Rotor Counter Motor 2 (RPM)			
	Velocity Rotor Counter Motor 3 (RPM)			

The data is encoded with two bytes in a linear data format with:

- An 11 bit, two's complement mantissa and,
- A 5 bit, two's complement exponent (scaling factor)

The format of the two data bytes is illustrated below:

The relation between Y, N and the real world value is = $X = Y2^N$ where X is the real world value; Y is an 11 bit, two's complement integer; and N is a 5 bit, two's complement integer.

CRC8: The message is terminated by a checksum byte calculated with a 0xD5 polynomial. It includes every bytes of the message.

13 Fault Register Definition

The Fault register is stored in the Watchdog MCU. It is a bitwise register informing of fault of CubeRover.

Bit#	Fault
03	Temperature Sensor Failure:
	0000b: no error
	0001b: Primary MCU
	0010b: Battery
	0011b: Radio
	0100b: Camera 0
	0101b: Camera 1
	0110b: Motor 0
	0111b: Motor 1
	1000b: Motor 2
	1001b: Motor 3
	1010b: FPGA
	1011b: Watchdog MCU
	1100b: reserved
	1101b: reserved
	1110b: reserved
	1111b: reserved

Bit#	Fault
47	Watchdog Timeout:
	0000b: no error
	0001b: Motor Controller 0
	0010b: Motor Controller 1
	0011b: Motor Controller 2
	0100b: Motor Controller 3
	0101b: Primary Flight MCU
	0110b: FPGA
	0111b: Watchdog MCU
	1000b: Radio Module
811	Temperature Out-Of-Range:
	0000b: no error
	0001b: Primary MCU
	0010b: Battery
	0011b: Radio
	0100b: Camera 0
	0101b: Camera 1
	0110b: Motor 0
	0111b: Motor 1
	1000b: Motor 2
	1001b: Motor 3
	1010b: FPGA
	1011b: Watchdog MCU
	1100b: reserved
	1101b: reserved
	1110b: reserved
	1111b: reserved
1214	Voltage failure:
	000b: no error
	001b: 5V0
	010b: 3V3
	011b: 2V8
	100b: 2V5
	101b: 1V8
	110b: 1V2
	111b: reserved
1517	Current failure:
	000b: no error
	001b: 5V0
	010b: 3V3
	011b: 2V8
	100b: 2V5
	101b: 1V8
	110b: 1V2
	111b: reserved
18	Motor 0 stall
19	Motor 1 stall
20	Motor 2 stall
21	Motor 3 stall
22	Prohibited Op Code
23	Motor Controller I2C communication error
2431	Reserved