FIGURE 1

 ${\tt CCAATCGCCCGGTGCGGTGCAGGGTCTCGGGGCTAGTC} {\tt ATG} {\tt GCGTCCCGTCTCGGAGAC}$ TGCAGACTAAACCAGTCATTACTTGTTTCAAGAGCGTTCTGCTAATCTACACTTTTATTTTC TGGATCACTGGCGTTATCCTTCTTGCAGTTGGCATTTGGGGCAAGGTGAGCCTGGAGAATTA CTTTTCTCTTTTAAATGAGAAGGCCACCAATGTCCCCTTCGTGCTCATTGCTACTGGTACCG TCATTATTCTTTTGGGCACCTTTGGTTGTTTTGCTACCTGCCGAGCTTCTGCATGGATGCTA AAACTGTATGCAATGTTTCTGACTCTCGTTTTTTTTGGTCGAACTGGTCGCTGCCATCGTAGG ATTTGTTTTCAGACATGAGATTAAGAACAGCTTTAAGAATAATTATGAGAAGGCTTTGAAGC AGTATAACTCTACAGGAGATTATAGAAGCCATGCAGTAGACAAGATCCAAAATACGTTGCAT TGTTGTGGTGTCACCGATTATAGAGATTGGACAGATACTAATTATTACTCAGAAAAAGGATT TCCTAAGAGTTGCTGTAAACTTGAAGATTGTACTCCACAGAGAGATGCAGACAAAGTAAACA ATGAAGGTTGTTTTATAAAGGTGATGACCATTATAGAGTCAGAAATGGGAGTCGTTGCAGGA ATTTCCTTTGGAGTTGCTTCCAACTGATTGGAATCTTTCTCGCCTACTGCCWCTCTCG TGCCATAACAAATAACCAGTATGAGATAGTG**TAA**CCCAATGTATCTGTGGGCCTATTCCTCT CTACCTTTAAGGACATTTAGGGTCCCCCCTGTGAATTAGAAAGTTGCTTGGCTGGAGAACTG GTAGACCTAAAACTACACCAATAGGCTGATTCAATCAAGATCCGTGCTCGCAGTGGGCTGAT TCAATCAAGATGTATGTTTGCTATGTTCTAAGTCCACCTTCTATCCCATTCATGTTAGATCG TTGAAACCCTGTATCCCTCTGAAACACTGGAAGAGCTAGTAAATTGTAAATGAAGT

FIGURE 2

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA19902

><subunit 1 of 1, 245 aa, 1 stop, 1 unknown

><MW: -1, pI: 8.36, NX(S/T): 1

MASPSRRLQTKPVITCFKSVLLIYTFIFWITGVILLAVGIWGKVSLENYFSLLNEKATNVPF VLIATGTVIILLGTFGCFATCRASAWMLKLYAMFLTLVFLVELVAAIVGFVFRHEIKNSFKN NYEKALKQYNSTGDYRSHAVDKIQNTLHCCGVTDYRDWTDTNYYSEKGFPKSCCKLEDCTPQ RDADKVNNEGCFIKVMTIIESEMGVVAGISFGVACFQLIGIFLAYCXSRAITNNQYEIV

Important features of the protein:

Signal peptide:

amino acids 1-42

Transmembrane domains:

amino acids 19-42, 61-83, 92-114, 209-230,

N-glycosylation site.

amino acids 134-138

Tyrosine kinase phosphorylation site.

amino acids 160-168, 160-169

N-myristoylation site.

amino acids 75-81, 78-84, 210-216, 214-220, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 69-80, 211-222

FIGURE 3

CCCACGCGTCCGGCCCTTGCCTCCATCTTTGCCGTTCTCTCGGACCTGTCACAAA GGAGTCGCGCCGCCGCCGCCCCCTCCCTCCGTGGGCCCGGGAGGTAGAAAAGTCAGT TGGGGACGTCTGTGAGGGAGGGGAACAGCCGCTCGAGCCTGGGGCGGCCGGACCGGACTGGG GCCGGGGTAGGCTCTGGAAAGGGCCCGGGAGAGAGGTGGCGTTGGTCAGAACCTGAGAAACA GCCGAGAGGTTTTCCACCGAGGCCCGCGTTGAGGGATCTGAAGAGGTTCCTAGAAGAGGGT GTTCCCTCTTTCGGGGGTCCTCACCAGAAGAGGTTCTTGGGGGGTCGCCCTTCTGAGGAGGCT GCGGCTAACAGGGCCCAGAACTGCCATTGGATGTCCAGAATCCCCTGTAGTTGATAATGTTG GGAATAAGCTCTGCAACTTTCTTTGGCATTCAGTTGTTAAAAACAAATAGGATGCAAATTCC TCAACTCCAGGTTATGAAAACAGTACTTGGAAAACTGAAAACTACCTAA**ATG**ATCGTCTTTG GTTGGGCCGTGTTCTTAGCGAGCAGAAGCCTTGGCCAGGGTCTGTTGTTGACTCTCGAAGAG CACATAGCCCACTTCCTAGGGACTGGAGGTGCCGCTACTACCATGGGTAATTCCTGTATCTG CCGAGATGACAGTGGAACAGATGACAGTGTTGACACCCAACAGCAACAGGCCGAGAACAGTG CAGTACCCACTGCTGACACAAGGAGCCAACCACGGGACCCTGTTCGGCCACCAAGGAGGGGC CGAGGACCTCATGAGCCAAGGAGAAAGAAACAAAATGTGGATGGGCTAGTGTTGGACACACT GGCAGTAATACGGACTCTTGTAGATAAG**TAA**GTATCTGACTCACGGTCACCTCCAGTGGAAT GAAAAGTGTTCTGCCCGGAACCATGACTTTAGGACTCCTTCAGTTCCTTTAGGACATACTCG CCAAGCCTTGTGCTCACAGGGCAAAGGAGAATATTTTAATGCTCCGCTGATGGCAGAGTAAA TGATAAGATTTGATGTTTTTGCTTGCTGTCATCTACTTTGTCTGGAAATGTCTAAATGTTTC TGTAGCAGAAAACACGATAAAGCTATGATCTTTATTAGAG

FIGURE 4

MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNSCICRDDSGTDDSVDTQQQQ AENSAVPTADTRSQPRDPVRPPRRGRGPHEPRRKKQNVDGLVLDTLAVIRTLVDKO

Signal peptide:

amino acids 1-16

Casein kinase II phosphorylation site.

amino acids 22-26, 50-54, 113-117

N-myristoylation site.

amino acids 18-24, 32-38, 34-40, 35-41, 51-57

FIGURE 5

FIGURE 6

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56107
<subunit 1 of 1, 231 aa, 1 stop</pre>

<NX(S/T): 0

MEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVSGFLLFRSLPRHTFGLVQSKLFPFYFHISM GCAFINLCILASQHAWAQLTFWEASQLYLLFLSLTLATVNARWLEPRTTAAMWALQTVEKER GLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHGLSSLCNLGCVLSNGLCLAGLALEIRSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 86-103, 60-75

Casein kinase II phosphorylation site.

amino acids 82-86

Tyrosine kinase phosphorylation site.

amino acids 144-151

N-myristoylation site.

amino acids 4-10, 5-11, 47-53, 170-176, 176-182

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 54-65

G-protein coupled receptors proteins.

amino acids 44-85

FIGURE 7

AATTCAGATTTTAAGCCCATTCTGCAGTGGAATTTCATGAACTAGCAAGAGGACACCATCTT CTTGTATTATACAAGAAAGGAGTGTACCTATCACACACAGGGGGAAAA**ATG**CTCTTTTGGGT GCTAGGCCTCCTAATCCTCTGTGGTTTTCTGTGGACTCGTAAAGGAAAACTAAAGATTGAAG ACATCACTGATAAGTACATTTTTATCACTGGATGTGACTCGGGCTTTGGAAACTTGGCAGCC AGAATGTCAAGAGGACTGCCCAGTGGGTGAAGAACCAAGTTGGGGAGAAAGGTCTCTGGGGT CTACAGAGAACCTATTGAAGTGAACCTGTTTGGACTCATCAGTGTGACACTAAATATGCTTC CTTTGGTCAAGAAAGCTCAAGGGAGAGTTATTAATGTCTCCAGTGTTGGAGGTCGCCTTGCA ATCGTTGGAGGGGGCTATACTCCATCCAAATATGCAGTGGAAGGTTTCAATGACAGCTTAAG ACGGGACATGAAAGCTTTTGGTGTGCACGTCTCATGCATTGAACCAGGATTGTTCAAAACAA ACTTGGCAGATCCAGTAAAGGTAATTGAAAAAAAACTCGCCATTTGGGAGCAGCTGTCTCCA GACATCAAACAACAATATGGAGAAGGTTACATTGAAAAAAGTCTAGACAAACTGAAAGGCAA TAAATCCTATGTGAACATGGACCTCTCTCCGGTGGTAGAGTGCATGGACCACGCTCTAACAA GTCTCTTCCCTAAGACTCATTATGCCGCTGGAAAAGATGCCAAAATTTTCTGGATACCTCTG TCTCACATGCCAGCAGCTTTGCAAGACTTTTTATTGTTGAAACAGAAAGCAGAGCTGGCTAA TCCCAAGGCAGTG**TGA**CTCAGCTAACCACAAATGTCTCCTCCAGGCTATGAAATTGGCCGAT TTCAAGAACACATCTCCTTTTCAACCCCATTCCTTATCTGCTCCAACCTGGACTCATTTAGA TCGTGCTTATTTGGATTGCAAAAGGGAGTCCCACCATCGCTGGTGGTATCCCAGGGTCCCTG CTCAAGTTTTCTTTGAAAAGGAGGCTGGAATGGTACATCACATAGGCAAGTCCTGCCCTGT ATTTAGGCTTTGCCTGCTTGGTGTGATGTAAGGGAAATTGAAAGACTTGCCCATTCAAAATG ATCTTTACCGTGGCCTGCCCCATGCTTATGGTCCCCAGCATTTACAGTAACTTGTGAATGTT AAAAAAAAAAAAAAAA

FIGURE 8

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56406

><subunit 1 of 1, 319 aa, 1 stop

><MW: 35227, pI: 8.97, NX(S/T): 3

MLFWVLGLLILCGFLWTRKGKLKIEDITDKYIFITGCDSGFGNLAARTFDKKGFHVIAACLT ESGSTALKAETSERLRTVLLDVTDPENVKRTAQWVKNQVGEKGLWGLINNAGVPGVLAPTDW LTLEDYREPIEVNLFGLISVTLNMLPLVKKAQGRVINVSSVGGRLAIVGGGYTPSKYAVEGF NDSLRRDMKAFGVHVSCIEPGLFKTNLADPVKVIEKKLAIWEQLSPDIKQQYGEGYIEKSLD KLKGNKSYVNMDLSPVVECMDHALTSLFPKTHYAAGKDAKIFWIPLSHMPAALQDFLLLKQK AELANPKAV

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 136-152

N-glycosylation sites.

amino acids 161-163, 187-190 and 253-256

Glycosaminoglycan attachment site.

amino acids 39-42

N-myristoylation sites.

amino acids 36-41, 42-47, 108-113, 166-171, 198-203 and 207-212

FIGURE 9

GCGGGCTGTTGACGGCGCTGCGATGCCTGCGAGGGCAGGAGAAGCGGAGCTCTCGGTT CCTCTCAGTCGGACTTCCTGACGCCGCCAGTGGGCGGGGCCCCTTGGGCCGTCGCCACCACT GTAGTCATGTACCCACCGCCGCCGCCGCCTCATCGGGACTTCATCTCGGTGACGCTGAG CTTTGGCGAGAGCTATGACAACAGCAAGAGTTGGCGGCGCGCTCGTGCTGGAGGAAATGGA AGCAACTGTCGAGATTGCAGCGGAATATGATTCTCTTCCTCCTTGCCTTTCTGCTTTTCTGT GGACTCCTCTTCTACATCAACTTGGCTGACCATTGGAAAGCTCTGGCTTTCAGGCTAGAGGA AGAGCAGAAGATGAGGCCAGAAATTGCTGGGTTAAAACCAGCAAATCCACCCGTCTTACCAG CTCCTCAGAAGGCGGACACCGACCCTGAGAACTTACCTGAGATTTCGTCACAGAAGACACAA AGACACATCCAGCGGGGACCACCTCACCTGCAGATTAGACCCCCAAGCCAAGACCTGAAGGA CTCCCTTCAAGAAGAGCAGAAGTGCCCACCAAGCCTCCCCTGCCACCGGCCAGGACACAGGG AAGGATACCGCAAGTTTGCATGGGGCCATGACGAGCTGAAGCCTGTGTCCAGGTCCTTCAGT GAGTGGTTTGGCCTCGGTCTCACACTGATCGACGCGCTGGACACCATGTGGATCTTGGGTCT GAGGAAAGAATTTGAGGAAGCCAGGAAGTGGGTGTCGAAGAAGTTACACTTTGAAAAGGACG CTGTCTGGGGACAGCCTCTTCCTGAGGAAAGCTGAGGATTTTGGAAATCGGCTAATGCCTGC CTTCAGAACACCATCCAAGATTCCTTACTCGGATGTGAACATCGGTACTGGAGTTGCCCACC CGCCACGGTGGACCTCCGACAGCACTGTGGCCGAGGTGACCAGCATTCAGCTGGAGTTCCGG GAGCTCTCCCGTCTCACAGGGGATAAGAAGTTTCAGGAGGCCAGTGGAGAAGGTGACACAGCA CATCCACGGCCTGTCTGGGAAGAAGGATGGGCTGGTGCCCATGTTCATCAATACCCACAGTG GCCTCTTCACCCACCTGGGCGTATTCACGCTGGGCCCAGGGCCGACAGCTACTATGAGTAC CTGCTGAAGCAGTGGATCCAGGGGGGGAAGCAGGAGACACAGCTGCTGGAAGACTACGTGGA AGCCATCGAGGGTGTCAGAACGCACCTGCTGCGGCACTCCGAGCCCAGTAAGCTCACCTTTG TGGGGGAGCTTGCCCACGGCCGCTTCAGTGCCAAGATGGACCACCTGGTGTGCTTCCTGCCA GCTCATGGAGACTTGTTACCAGATGAACCGGCAGATGGAGACGGGGCTGAGTCCCGAGATCG TGCACTTCAACCTTTACCCCCAGCCGGGCCGTCGGGACGTGGAGGTCAAGCCAGCAGACAGG CACAACCTGCTGCGGCCAGAGACCGTGGAGAGCCTGTTCTACCTGTACCGCGTCACAGGGGA CCGCAAATACCAGGACTGGGGGCTGGGAGATTCTGCAGAGCTTCAGCCGATTCACACGGGTCC CCTCGGGTGGCTATTCTTCCATCAACAATGTCCAGGATCCTCAGAAGCCCGAGCCTAGGGAC AAGATGGAGAGCTTCTTCCTGGGGGAGACGCTCAAGTATCTGTTCTTGCTCTTCTCCGATGA CCCAAACCTGCTCAGCCTGGACGCCTACGTGTTCAACACCGAAGCCCACCCTCTGCCTATCT GGACCCCTGCCTAGGGTGGATGGCTGCTGGTGTGGGGACTTCGGGTGGGCAGAGGCACCTTG CTGGGTCTGTGGCATTTTCCAAGGGCCCACGTAGCACCGGCAACCGCCAAGTGGCCCAGGCT CTGAACTGGCTCTGGGCTCCTCGTCTCTGCTTTAATCAGGACACCGTGAGGACAAGTGA GGCCGTCAGTCTTGGTGTGATGCGGGGTGGGCTGGGCCGCTGGAGCCTCCGCCTGCTTCCTC CAGAAGACACGAATCATGACTCACGATTGCTGAAGCCTGAGCAGGTCTCTGTGGGCCGACCA GAGGGGGGCTTCGAGGTGGTCCCTGGTACTGGGGTGACCGAGTGGACAGCCCAGGGTGCAGC TCTGCCCGGGCTCGTGAAGCCTCAGATGTCCCCAATCCAAGGGTCTGGAGGGGCTGCCGTGA CTCCAGAGGCCTGAGGCTCCAGGGCTCTGGTGTTTACAAGCTGGACTCAGGGATCCTC CTGGCCGCCCGCAGGGGGCTTGGAGGGCTGGACGGCAAGTCCGTCTAGCTCACGGGCCCCT CCAGTGGAATGGGTCTTTTCGGTGGAGATAAAAGTTGATTTGCTCTAACCGCAA

FIGURE 10

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56529

><subunit 1 of 1, 699 aa, 1 stop

><MW: 79553, pI: 7.83, NX(S/T): 0

MAACEGRRSGALGSSQSDFLTPPVGGAPWAVATTVVMYPPPPPPPPHRDFISVTLSFGESYDN SKSWRRSCWRKWKQLSRLQRNMILFLLAFLLFCGLLFYINLADHWKALAFRLEEEQKMRPE IAGLKPANPPVLPAPQKADTDPENLPEISSQKTQRHIQRGPPHLQIRPPSQDLKDGTQEEAT KRQEAPVDPRPEGDPQRTVISWRGAVIEPEQGTELPSRRAEVPTKPPLPPARTQGTPVHLNY RQKGVIDVFLHAWKGYRKFAWGHDELKPVSRSFSEWFGLGLTLIDALDTMWILGLRKEFEEA RKWVSKKLHFEKDVDVNLFESTIRILGGLLSAYHLSGDSLFLRKAEDFGNRLMPAFRTPSKI PYSDVNIGTGVAHPPRWTSDSTVAEVTSIQLEFRELSRLTGDKKFQEAVEKVTQHIHGLSGK KDGLVPMFINTHSGLFTHLGVFTLGARADSYYEYLLKQWIQGGKQETQLLEDYVEAIEGVRT HLLRHSEPSKLTFVGELAHGRFSAKMDHLVCFLPGTLALGVYHGLPASHMELAQELMETCYQ MNRQMETGLSPEIVHFNLYPQPGRRDVEVKPADRHNLLRPETVESLFYLYRVTGDRKYQDWG WEILQSFSRFTRVPSGGYSSINNVQDPQKPEPRDKMESFFLGETLKYLFLLFSDDPNLLSLD AYVFNTEAHPLPIWTPA

Important features of the protein:

Transmembrane domain:

amino acids 21-40 and 84-105 (type II)

FIGURE 11

GGCGCCGCGTAGGCCCGGGAGGCCGGGCCGGGCTGCGAGCGCCTGCCCCATGCGCCGC CGCCTCTCCGCACG<u>ATG</u>TTCCCCTCGCGGAGGAAAGCGGCGCAGCTGCCCTGGGAGGACGGC AGGTCCGGGTTGCTCCCGGCGCCCTCCCTCGGAAGTGTTCCGTCTTCCACCTGTTCGTGGC CTGCCTCTCGCTGGGCTTCTTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGGACGTGG CCGCCCCTGAGCACTGGGAAGAAGACGCATCCTGGGGGCCCCCACCGCCTGGCAGTGCTGGT GCCCTTCCGCGAACGCTTCGAGGAGCTCCTGGTCTTCGTGCCCCACATGCGCCGCTTCCTGA GCAGGAAGAAGATCCGGCACCACATCTACGTGCTCAACCAGGTGGACCACTTCAGGTTCAAC CGGGCAGCGCTCATCAACGTGGGGCTTCCTGGAGAGCAGCAACAGCACGGACTACATTGCCAT GCACGACGTTGACCTGCTCCTCAACGAGGAGCTGGACTATGGCTTTCCTGAGGCTGGGC CCTTCCACGTGGCCTCCCGGAGCTCCACCCTCTCTACCACTACAAGACCTATGTCGGCGGC ATCCTGCTGCTCCAAGCAGCACTACCGGCTGTGCAATGGGATGTCCAACCGCTTCTGGGG CTGGGGCCGCGAGGACGAGTTCTACCGGCGCATTAAGGGAGCTGGGCTCCAGCTTTTCC GCCCCTCGGGAATCACAACTGGGTACAAGACATTTCGCCACCTGCATGACCCAGCCTGGCGG CCTGCACTGTCCTCAACATCATGTTGGACTGTGACAAGACCGCCACACCCTGGTGCACATTC $\mathtt{AGC}\overline{\mathbf{TGA}}\mathtt{GCTGGATGGACAGTGAGGAAGCCTGTACCTACAGGCCATATTGCTCAGGCTCAGGA}$ CAAGGCCTCAGGTCGTGGGCCCAGCTCTGACAGGATGTGGAGTGGCCAGGACCAAGACAGCA AGCTACGCAATTGCAGCCACCCGGCCGCCAAGGCAGGCTTGGGCTGGGCCAGGACACGTGGG GGACCCCCCTGCCTTCCTGCTCACCCTACTCTGACCTCCTTCACGTGCCCAGGCCTGTGGG TAGTGGGGAGGGCTGAACAGGACAACCTCTCATCACCCTACTCTGACCTCCTTCACGTGCCC

FIGURE 12

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531

><subunit 1 of 1, 327 aa, 1 stop

><MW: 37406, pI: 9.30, NX(S/T): 1

MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHLFVACLSLGFFSLLWLQLSCSGDVARAVR GQGQETSGPPRACPPEPPPEHWEEDASWGPHRLAVLVPFRERFEELLVFVPHMRRFLSRKKI RHHIYVLNQVDHFRFNRAALINVGFLESSNSTDYIAMHDVDLLPLNEELDYGFPEAGPFHVA SPELHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDEFYRRIKGAGLQLFRPSGI TTGYKTFRHLHDPAWRKRDQKRIAAQKQEQFKVDREGGLNTVKYHVASRTALSVGGAPCTVL NIMLDCDKTATPWCTFS

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 29-49 (type II)

N-glycosylation site.

amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 27-31

Tyrosine kinase phosphorylation site.

amino acids 226-233

N-myristoylation site.

amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

FIGURE 13

FIGURE 14

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56862</pre>

<subunit 1 of 1, 73 aa, 1 stop

<MW: 7879, pI: 7.21, NX(S/T): 0

MLLLTLLLLLLKGSCLEWGLVGAQKVSSATDAPIRDWAFFPPSFLCLLPHRPAMTCSQAQ PRGEGEKVGDG

Important features:

Signal peptide:

amino acids 1-15

Growth factor and cytokines receptors family:

amino acids 3-18

FIGURE 15

GGGACCCATGCGGCCGTGACCCCCGGCTCCCTAGAGGCCCAGCGCAGCCGCAGCGGACAAAG GAGCATGTCCGCCCGGGGAAGGCCCGTCCTCCGGCCGCCATAAGGCTCCGGTCGCCGCTGG GCCCGCGCCCCGCCCGGGCTCCGGGGCCCGCTAGGCCAGTGCGCCGCCG GCCGCCGCTGTTGCCGCCTCTCGCTGTTAGCGCTGCTCGCGCTGCTGGGAGGCGGCGCG GCGGCGCCGCCGCCGCCGCCGCCGCCGAGGGCCCCCGAGGGGCCCCGAGGGGCCTGGC AGGGCGGCGGCGCCGAGGGCAAGGTGGTGCAGCAGCCTGGAACTCGCGCAGGTCCT GCCCCCAGATACTCTGCCCAACCGCACGGTCACCCTGATTCTGAGTAACAATAAGATATCCG AGCTGAAGAATGGCTCATTTTCTGGGTTAAGTCTCCTTGAAAGATTGGACCTCCGAAACAAT CTTATTAGTAGTATAGATCCAGGTGCCTTCTGGGGACTGTCATCTCTAAAAAGATTGGATCT GACAAACAATCGAATAGGATGTCTGAATGCAGACATATTTCGAGGACTCACCAATCTGGTTC GGCTAAACCTTTCGGGGAATTTGTTTTCTTCATTATCTCAAGGAACTTTTGATTATCTTGCG TCATTACGGTCTTTGGAATTCCAGACTGAGTATCTTTTGTGTGACTGTAACATACTGTGGAT GCATCGCTGGGTAAAGGAGAAGAACATCACGGTACGGGATACCAGGTGTGTTTATCCTAAGT CACTGCAGGCCCAACCAGTCACAGGCGTGAAGCAGGAGCTGTTGACATGCGACCCTCCGCTT GAATTGCCGTCTTTCTACATGACTCCATCTCATCGCCAAGTTGTGTTTGAAGGAGACAGCCT TCCTTTCCAGTGCATGGCTTCATATATTGATCAGGACATGCAAGTGTTGTGGTATCAGGATG GGAGAATAGTTGAAACCGATGAATCGCAAGGTATTTTTGTTGAAAAGAACATGATTCACAAC TGCTCCTTGATTGCAAGTGCCCTAACCATTTCTAATATTCAGGCTGGATCTACTGGAAATTG GGGCTGTCATGTCCAGACCAAACGTGGGAATAATACGAGGACTGTGGATATTGTGGTATTAG AGAGTTCTGCACAGTACTGTCCTCCAGAGAGGGTGGTAAACAACAAAGGTGACTTCAGATGG CCCAGAACATTGGCAGCATTACTGCATATCTGCAGTGTACGCGGAACACCCATGGCAGTGG GATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTTGGCGCAGATGTGATAGAGGTGGCT TTTGGGCAGATGATGATTATTCTCGCTGTCAGTATGCAAATGATGTCACTAGAGTTCTTTAT ATGTTTAATCAGATGCCCCTCAATCTTACCAATGCCGTGGCAACAGCTCGACAGTTACTGGC TTACACTGTGGAAGCAGCCAACTTTTCTGACAAAATGGATGTTATATTTGTGGCAGAAATGA TTGAAAAATTTGGAAGATTTACCAAGGAGGAAAAATCAAAAGAGCTAGGTGACGTGATGGTT GAGCTCACGTTTATTCAACATATTCACCCAATATTGCTCTGGAAGCTTATGTCATCAAGTCT ACTGGCTTCACGGGGATGACCTGTACCGTGTTCCAGAAAGTGGCAGCCTCTGATCGTACAGG ACTTTCGGATTATGGGAGGCGGGATCCAGAGGGAAACCTGGATAAGCAGCTGAGCTTTAAGT GCAATGTTTCAAATACATTTTCGAGTCTGGCACTAAAGGTATGTTACATTCTGCAATCATTT $\mathtt{AAGACTATTTACAGT}$ \mathtt{TAAA} $\mathtt{ATTAGAATGCTCCAAATGTTCTGCTTCGCAAAATAACCTTATTA$ AAAGATTTTTTTTGCAGGAAGATAGGTATTATTGCTTTTTGCTACTGTTTTAAAGAAAACTA ACCAGGAAGAACTGCATTACGACTTTCAAGGGCCCTAGGCATTTTTGCCTTTGATTCCCTTT CTTCACATAAAAATATCAGAAATTACATTTTATAACTGCAGTGGTATAAATGCAAATATACT GATTTTAAGACAATAAGATGTTTTCATGGGCCCCTAAAAGTATCATGAGCCTTTGGCACTGC ATCAAAATTTTTGGCAGAAAACACAAATATGTCATATATCTTTTTTTAAAAAAAGTATTTCA TTGAAGCAAGCAAAATGAAAGCATTTTTACTGATTTTTAAAAATTGGTGCTTTAGATATATTT GACTACACTGTATTGAAGCAAATAGAGGAGGCACAACTCCAGCACCCTAATGGAACCACATT ${\tt TTTTTCACTTAGCTTTCTGTGGGCATGTGTAATTGTATTCTCTGCGGTTTTTAATCTCACAG}$ TTGAATGAATGAACGAAAAAAAAAAAAAAAA

FIGURE 16

MEPPGRRRGRAQPPLLLPLSLLALLALLGGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGK
VVCSSLELAQVLPPDTLPNRTVTLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGA
FWGLSSLKRLDLTNNRIGCLNADIFRGLTNLVRLNLSGNLFSSLSQGTFDYLASLRSLEFQT
EYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLQAQPVTGVKQELLTCDPPLELPSFYMTP
SHRQVVFEGDSLPFQCMASYIDQDMQVLWYQDGRIVETDESQGIFVEKNMIHNCSLIASALT
ISNIQAGSTGNWGCHVQTKRGNNTRTVDIVVLESSAQYCPPERVVNNKGDFRWPRTLAGITA
YLQCTRNTHGSGIYPGNPQDERKAWRRCDRGGFWADDDYSRCQYANDVTRVLYMFNQMPLNL
TNAVATARQLLAYTVEAANFSDKMDVIFVAEMIEKFGRFTKEEKSKELGDVMVDIASNIMLA
DERVLWLAQREAKACSRIVQCLQRIATYRLAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCT
VFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSLALKVCYILQSFKTIYS

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 13-40 (type II)

N-glycosylation site.

amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437, 453-457, 592-596

N-myristoylation site.

amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105, 123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

FIGURE 17

FIGURE 18

MSRSSKVVLGLSVLLTAATVAGVHVKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILT EQLEAEREKMLLAKGSQKS

Signal peptide:

amino acids 1-21

FIGURE 19

 $\tt CTGTCGTCTTTGCTTCAGCCGCAGTCGCCACTGGCTGCCTGAGGTGCTCTTACAGCCTGTTC$ CAAGTGTGGCTTAATCCGTCTCCACCACCAGATCTTTCTCCGTGGATTCCTCTGCTAAGACC ${\tt GCTGCC} \underline{\textbf{ATG}} {\tt CCAGTGACGGTAACCCGCACCACCATCACAACCACCACGACGTCATCTTCGGG}$ CCTGGGGTCCCCATGATCGTGGGGTCCCCTCGGGCCCTGACACACCCCCTGGGTCTCCTTCGC CTGCTGCAGCTGGTGTCTACCTGCGTGGCCTTCTCGCTGGTGGCCTAGCGTGGGCCCTGGAC GGGGTCCATGGCCAACTGGTCCATGTTCACCTGGTGCTTCTCCCGTGACCCTGATCA TCCTCATCGTGGAGCTGTGCGGGCTCCAGGCCCGCTTCCCCCTGTCTTGGCGCAACTTCCCC ATCACCTTCGCCTGTTTTCTGCCTCTCGGCCTCCATCATCTACCCCACCAC CTATGTCCAGTTCCTGTCCCACGGCCGTTCGCGGGACCACGCCATCGCCGCCACCTTCTTCT ATCACTGGCTATATGGCCACCGTACCCGGGCTGCTGAAGGTGCTGGAGACCTTCGTTGCCTG CATCATCTTCGCGTTCATCAGCGACCCCAACCTGTACCAGCACCAGCCGGCCCTGGAGTGGT GCGTGGCGGTGTACGCCATCTGCTTCATCCTAGCGGCCATCGCCATCCTGCTGAACCTGGGG GAGTGCACCAACGTGCTACCCATCCCCTTCCCCAGCTTCCTGTCGGGGCTTGCCTGTC TGTCCTCCTCTATGCCACCGCCCTTGTTCTCTGGCCCCTCTACCAGTTCGATGAGAAGTATG GCGGCCAGCCTCGGCGCTCGAGAGATGTAAGCTGCAGCCGCAGCCATGCCTACTACGTGTGT GCCTGGGACCGCCGACTGGCCTGTGGCCATCCTGACGGCCATCAACCTACTGGCGTATGTGGC ${\tt TGACCTGGTGCACTTGCCCACCTGGTTTTTGTCAAGGTC} {\tt TAA}{\tt GACTCTCCCAAGAGGCTCC}$ CGTTCCCTCTCCAACCTCTTTGTTCTTCTTGCCCGAGTTTTCTTTATGGAGTACTTCTTTCC CAATTCCTTGCACTCTAACCAGTTCTTGGATGCATCTTCTTCCTTTCCTTTCCTTTGCTGT TTCCTTCCTGTGTTTTTGTTGCCCACATCCTGTTTTCACCCCTGAGCTGTTTCTCTTTTT CTTTTCTTTCTTTTTTTTTTTTTTTAAGACGGATTCTCACTCTGTGGCCCAGGCTGGAG TGCAGTGGTGCGATCTCAGCTCACTGCAACCCCCGCCTCCTGGGTTCAAGCGATTCTCCTCC CCCAGCCTCCCAAGTAGCTGGGAGGACAGGTGTGAGCTGCCGCACCCAGCCTGTTTCTCTTT $\tt TTCCACTCTTTTTTCTCATCTCTTTTTCTGGGTTGCCTGTCGGCTTTCTTATCTGCCTGT$ CCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTTGCAGCCGTCCATGCCACAGCCCC CCAAGGGGCCCCATTGCCAAAGCATGCCTGCCCACCCTCGCTGTGCCTTAGTCAGTGTGTAC GTGTGTGTGTGTGTGTTTGGGGGGGTGGGGGTAGCTGGGGATTGGGCCCTCTTTCT ATTTGGAGGTCAGTAATTTCCAATGGGCGGAGGCATTAAGCACCGACCCTGGGTCCCTAGG $\tt CCCCGCCTGGCACTCAGCCTTGCCAGAGATTGGCTCCAGAATTTTTGCCAGGCTTACAGAACAC$ CCACTGCCTAGAGGCCATCTTAAAGGAAGCAGGGGCTGGATGCCTTTCATCCCAACTATTCT CTGTGGTATGAAAAG

FIGURE 20

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727</pre>

<subunit 1 of 1, 322 aa, 1 stop

<MW: 35274, pI: 8.57, NX(S/T): 1

MPVTVTRTTITTTTSSSGLGSPMIVGSPRALTQPLGLLRLLQLVSTCVAFSLVASVGAWTG
SMGNWSMFTWCFCFSVTLIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIIYPTTY
VQFLSHGRSRDHAIAATFFSCIACVAYATEVAWTRARPGEITGYMATVPGLLKVLETFVACI
IFAFISDPNLYQHQPALEWCVAVYAICFILAAIAILLNLGECTNVLPIPFPSFLSGLALLSV
LLYATALVLWPLYQFDEKYGGQPRRSRDVSCSRSHAYYVCAWDRRLAVAILTAINLLAYVAD
LVHSAHLVFVKV

Important features:

Transmembrane domains:

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

FIGURE 21

GAACGTGCCACCATGCCCAGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTC TTGAACTCGTGACCTCATGATCCGCTCACCTCGGCCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACTGACGC $\tt CTGGCCAGCCTATGCATTTTAAGAAATTATTCTGTATTAGGTGCTGTGCTAAACATTGGGCACTACAGTGACCA$ AAACAGACTGAATTCCCCAAGAGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAAGAGACCA TTATTACTCACTATGACTAAGGGTCACAAATGGGGTACGTTGATGGAGAGTGATTTGTTAAGAGACTACAGAGGG AGGACAGACTACCAAGAGGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTTCAGCCCAAACTGGAAGAATGA AATAGCATGGGATTGGAGGGGGGGGGGAACACCACTTCTGCCGACCTGGGCAGGAGGCATTGAGGGCTTGAGA AAGGGCAATGGCAGTAGCAGTAGAAAGGACAGGGTAGGAGCAGGGACTTTGCAGGTGGAATCATTAGGTCTTATC AACAGATATGGGCAAGCAAAGCCAGGGGAGAATTGATGGTAATGCTGAGGTTTGGAGCCAGGCTAGATGGGACAG TGGTGGGTGATGCAAAGGAAAGAGGTCAGGAAGCAGGGCCAGACGTGGGGAGAAGGTGTGGGGGTTTGGTTTCCA TCTTGCCGAGTCTGCCGGAATGTGGATGGGAAGACCAAGAGGAGGAGCAAGGGGCAGAGGGAATCTTAA AGAAGTCCTGGATGCCACACTCTTCTTCCTTCCTCCTCTCCTCAGAGGTCTCACTCGTGGTTCTTCAT TTCCTGCCCTGCCTCCATCTCCTCTGGGTGCTGGGAAAGTGGAGGATTAGCTGAAGTTTTGCTTCTCGGGGCCTG TCTGAATCTCCATTGCTTTCTGGGAGGACATAATTCACCTGTCCTAGCTTCTTATCATCTTACATTTCCCTGTAG CCACTGGGACATATGTGGTGTTCCTTCCTAGCTCCTGTCTCCTCATGCCTTTGCTGGGTATGGGCATGTTAG ${\tt GGGGAAGGTCATTGCTGAGAGGGGCACTGACTTTCTAATGGTGTTACCCAAGGTGAATGTTGGAGACACAGTC}$ GCGATGCTGCCCAAGTCCCGGCGAGCCCTAACTATCCAGGAGATCGCTGCGCTGGCCAGGTCCTCCCTGCATGGT ${\tt ATGCAGCCCCTCCC} \underline{{\tt ATG}} {\tt TTTCTGGCCACTTTGTCCTTTCTCCTCCCGTTTGCACATCCCTTTGGAACTGTTTCCT}$ ACATGGATCCTAACTACTGCCACCCTTCCACCTCCCTGCACCTGTGCTCCTTGGCCTGGTCCTTTACCAGGCTTC TCCACCCTCCCCTATCTCCAGGTATTTCCCAGGTGGTGAAGGACCACGTGACCAAGCCTACCGCCATGGCCCAGG ${\tt GCCGAGTGGCTCACCTCATTGAGTGGAAGGGCTGGAGCCAAGCCGAGTGACTCACCTGCCCTGGAATCAGCCT}$ TCGCGGAAGCCAAGCTCCGAGCATGGTCTTCGGTGGATGGCGAGGACTCCACTGATGACTCCTATGATGAGGACT $\tt TTGCTGGGGGAATGGACAGACATGGCTGGGCAGCTGCCCCTGGGGCCGCACCTCCAGGACCTGTTCACCGGCC$ ACCGGTTCTCCCGGCCTGTGCGCCAGGGCTCCGTGGAGCCTGAGAGCGACTGCTCACAGACCGTGTCCCCAGACA CCCTGTGCTCTAGTCTGCAGCCTGGAGGATGGGTTGTTGGGCTCCCGGCCCGGCTGGCCTCCCAGCTGCTGG GCGATGAGCTGCTTCTCGCCAAACTGCCCCCAGCCGGGAAAGTGCCTTCCGCAGCCTGGGCCCACTGGAGGCCC ACTGCCAGCCACTCTGCCCACCACTAACGGGCAGCTGGGAACGGCAGCGCAAGCCTCTGACCTGGCCTCTTCTG ${\tt GGGTGGTGTCCTTAGATGAGGATGAGGCAGAGCCAGAGGAACAG{\tt TGA}{\tt CCCACATCATGCCTGGCAGTGGCATGCA}}$ ${ t TCCCCGGCTGCTGCCAGGGGCAGAGCCTCTGTGCCCAAGTGTGGGCTCAAGGCTCCAGCAGAGCTCCACAGCC}$ TAGAGGGCTCCTGGGAGCGCTCGCTTCTCCGTTGTGTTTTTGCATGAAAGTGTTTGGAGAGGAGGAGGCAGGGGCTG GGCTGGGGGCCATGTCCTGCCCCACTCCCGGGGGCTTGCCGGGGGTTGCCCGGGGCCTCTGGGGCATGGCTACA TCTTCTCTGCTTTTCTCACTTCCGAGTCCATGTGCAGTGCTTGATAGAATCACCCCCACCTGGAGGGGCTGG $\tt CTCCTGCCCTCCCGGAGCCTATGGGTTGAGCCGTCCCTCAAGGGCCCCTGCCCAGCTGGGCTCGTGCTTC$ ATTCACCTCTCCATCGTCTCTAAATCTTCCTCTTTTTTCCTAAAGACAGAAGGTTTTTGGTCTGTTTTTTCAGTC GGATCTTCTCTCTGGGAGGCTTTGGAATGATGAAAGCATGTACCCTCCACCCTTTTCCTGGCCCCCTAATGG ATTCACGCAGAGCTCTCTGAGCGGGAGGTGGAAGAAGGATGGCTCTGGTTGCCACAGAGCTGGGACTTCATGTT CTTCTAGAGAGGGCCACAGAGGGCCACAGGGGTGGCCGGGAGTTGTCAGCTGATGCCTGCTGAGAGGCAGGAAT GGCTCATTAGGTGTTTATTTTGTTCTATTTAAGAATTTGTTTTATTAAAATTAATATAAAAATCTTTGTAAATCTC TAAAA

FIGURE 22

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSPFSHPKVHMDPNYCHPSTSLHLCS LAWSFTRLLHPPLSPGISQVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSY SDLSEGEQEARFAAGVAEQFAIAEAKLRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLG PHLQDLFTGHRFSRPVRQGSVEPESDCSQTVSPDTLCSSLCSLEDGLLGSPARLASQLLGDE LLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAEEEPAPCKDCQPLCPPLTGSWER QRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289, 324-328

Tyrosine kinase phosphorylation site.

amino acids 44-52

N-myristoylation site.

amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 11-22

FIGURE 23

GGCACCCTCCTGCTCAGTGCGACATTGTCACACTTAACCCATCTGTTTTCTCTAATGCACGA CAGATTCCTTTCAGACAGGACAACTGTGATATTTCAGTTCCTGATTGTAAATACCTCCTAAG CCTGAAGCTTCTGTTACTAGCCATTGTGAGCTTCAGTTTCTTCATCTGCAAAATGGGCATAA AAGCCTACA**ATG**TTGGCCTTAGCCAAAATTCTGTTGATTTCAACGTTGTTTTATTCACTTCT ATCGGGGAGCCATGGAAAAGAAAATCAAGACATAAACACAACACAGAACATTGCAGAAGTTT TTAAAACAATGGAAAATAAACCTATTTCTTTGGAAAGTGAAGCAAACTTAAACTCAGATAAA GAAAATATAACCACCTCAAATCTCAAGGCGAGTCATTCCCCTCCTTTGAATCTACCCAACAA CAGCCACGGAATAACAGATTTCTCCAGTAACTCATCAGCAGAGCATTCTTTGGGCAGTCTAA AACCCACATCTACCATTTCCACAAGCCCTCCCTTGATCCATAGCTTTGTTTCTAAAGTGCCT TGGAATGCACCTATAGCAGATGAAGATCTTTTGCCCATCTCAGCACATCCCAATGCTACACC TGCTCTGTCTTCAGAAAACTTCACTTGGTCTTTGGTCAATGACACCGTGAAAACTCCTGATA ACAGTTCCATTACAGTTAGCATCCTCTCTTCAGAACCAACTTCTCCATCTGTGACCCCCTTG ATAGTGGAACCAAGTGGATGGCTTACCACAAACAGTGATAGCTTCACTGGGTTTACCCCTTA TCAAGAAAAACAACTCTACAGCCTACCTTAAAATTCACCAATAATTCAAAACTCTTTCCAA ATACGTCAGATCCCCAAAAAGAAATAGAAATACAGGAATAGTATTCGGGGCCATTTTAGGT GCTATTCTGGGTGTCTCATTGCTTACTCTTGTGGGCTACTTGTTGTGTGGAAAAAGGAAAAC GGATTCATTTTCCCATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACA ATGCACCGGAACCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAAT GATTCAGCCATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACC TCCACTTCGTACTTCTGTA**TAG**AACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTA CATCCTAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTGGAT TTTGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAATT TGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTGTGGAATCAGATAAAACTAAAAGATT TCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAATTCTAAA ACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAAGATTGCAT TTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAGCTAAAAAGAG GACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGACAGACCTGTATTC TAGTACGTTATAATTTTCTAGATCAGCACACACATGATCAGCCCACTGAGTTATGAAGCTGA CAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACCCAGGAAAGTAATAGCT TCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTCTTAATATATCTTAGGCTTCAA TTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGT

FIGURE 24

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732

><subunit 1 of 1, 334 aa, 1 stop

><MW: 36294, pI: 4.98, NX(S/T): 13

MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENI TTSNLKASHSPPLNLPNNSHGITDFSSNSSAEHSLGSLKPTSTISTSPPLIHSFVSKVPWNA PIADEDLLPISAHPNATPALSSENFTWSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVE PSGWLTTNSDSFTGFTPYQEKTTLQPTLKFTNNSKLFPNTSDPQKENRNTGIVFGAILGAIL GVSLLTLVGYLLCGKRKTDSFSHRRLYDDRNEPVLRLDNAPEPYDVSFGNSSYYNPTLNDSA MPESEENARDGIPMDDIPPLRTSV

Signal peptide:

amino acids 1-23

Transmembrane domain:

amino acids 235-262

N-glycosylation site.

amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222, 225-229, 298-302, 307-311

FIGURE 25

AACAGGATCTCCTCTTGCAGTCTGCAGCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGC AGCCCGAAGATTCACT**ATG**GTGAAAATCGCCTTCAATACCCCTACCGCCGTGCAAAAGGAGG AGGCGCGCAAGACGTGGAGGCCCTCCTGAGCCGCACGGTCAGAACTCAGATACTGACCGGC AAGGAGCTCCGAGTTGCCACCCAGGAAAAAGAGGGCTCCTCTGGGAGATGTATGCTTACTCT CTTAGGCCTTTCATCTTGGCAGGACTTATTGTTGGTGGAGCCTGCATTTACAAGTACT TCATGCCCAAGAGCACCATTTACCGTGGAGAGATGTGCTTTTTTTGATTCTGAGGATCCTGCA AATTCCCTTCGTGGAGGAGAGCCTAACTTCCTGCCTGTGACTGAGGAGGCTGACATTCGTGA GGATGACAACATTGCAATCATTGATGTGCCTGTCCCCAGTTTCTCTGATAGTGACCCTGCAG CAATTATTCATGACTTTGAAAAGGGAATGACTGCTTACCTGGACTTGTTGCTGGGGAACTGC TATCTGATGCCCCTCAATACTTCTATTGTTATGCCTCCAAAAAATCTGGTAGAGCTCTTTGG CAAACTGGCGAGTGGCAGATATCTGCCTCAAACTTATGTGGTTCGAGAAGACCTAGTTGCTG AAGTCCTTCCGCCTTCGTCGCAGAGACCTCTTGCTGGGTTTCAACAAACGTGCCATTGATAA ${\tt ATGCTGGAAGATTAGACACTTCCCCAACGAATTTATTGTTGAGACCAAGATCTGTCAAGAG{\bf T}$ **AA**GAGGCAACAGATAGAGTGTCCTTGGTAATAAGAAGTCAGAGATTTACAATATGACTTTAA CATTAAGGTTTATGGGATACTCAAGATATTTACTCATGCATTTACTCTATTGCTTATGCTTT AAAAAAAGGAAAAAAAAAAAACTACTAACCACTGCAAGCTCTTGTCAAATTTTAGTTTAAT GGTTTAGATTTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAATTCCATCC GTGGAGCAATTTTAAAATTTTAAATTTTTAAATTGTTTTTGAACTTTTTGTGTAAAATATA TCAGATCTCAACATTGTTGGTTTCTTTTGTTTTCATTTTGTACAACTTTCTTGAATTTAGA AATTACATCTTTGCAGTTCTGTTAGGTGCTCTGTAATTAACCTGACTTATATGTGAACAATT AATGCACAAAATTGTGTAGGTGCTGAATGCTGTAAGGAGTTTAGGTTGTATGAATTCTACAA

FIGURE 26

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828</pre>

<subunit 1 of 1, 263 aa, 1 stop

<MW: 29741, pI: 5.74, NX(S/T): 1

MVKIAFNTPTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSF ILAGLIVGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIA IIDVPVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASG RYLPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR HFPNEFIVETKICQE

Type II transmembrane domain:

amino acids 53-75

N-glycosylation site.

amino acids 166-170

Casein kinase II phosphorylation site.

amino acids 35-39, 132-136, 134-138

N-myristoylation site.

amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 63-74

FIGURE 27

GGAGGAGGGGGGGCAGCCCAGCCCAGAGCACCCGGGCACCAGCACGACTCTCT CTTCCAGCCCAGGTGCCCCCACTCTCGCTCCATTCGGCGGGAGCACCCAGTCCTGTACGCC AAGGAACTGGTCCTGGGGGCACCATGTTTCGGCGGCAGCCCCCAGCCTCCTCATCCTTCTG TTGCTGCTGGGGGTCTGTGCCTGCTACCGACGCCCGCTCTGTGCCCCTGAAGGCCACGTT CCTGGAGGATGTGGCGGTAGTGGGGAGGCCGAGGCCTCGTCGGCCTCCCCGAGCCTCC CGCCACCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCCACAACCCTGGGG GGCCCATCACCCCCCACCAACTTCCTGGATGGGATAGTGGACTTCTTCCGCCAGTACGTGAT GCTGATTGCTGTGGGGCTCCCTGGCCTTTCTGCTGATGTTCATCGTCTGTGCCGCGGTCA TCACCCGGCAGAAGCAGAAGGCCTCGGCCTATTACCCATCGTCCTTCCCCAAGAAGAAGTAC GTGGACCAGAGTGACCGGGCCGGGGCCCCCGGGCCTTCAGTGAGGTCCCCGACAGAGCCCC CGACAGCAGGCCCGAGGAAGCCCTGGATTCCTCCCGGCAGCTCCAGGCCGACATCTTGGCCG CCACCCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGGCGGTGGGGACGGAGCCAGGATG GGGACATGGGGTCCCAGTGGAGACACCAGAGGCGCAGGAGGAGCCGTGCTCAGGGGTCCTTG AGGGGGCTGTGGTGGCCGGTGAGGGCCAAGGGGAGCTGGAAGGGTCTCTCTTGTTAGCCCAG GAAGCCCAGGGACCAGTGGGTCCCCCCGAAAGCCCCTGTGCTTGCAGCAGTGTCCACCCCAG TGTCTAACAGTCCTCCCGGGCTGCCAGCCCTGACTGTCGGGCCCCCAAGTGGTCACCTCCCC TGCCAATCCCAGCATGTGCTGATTCTACAGCAGGCAGAAATGCTGGTCCCCGGTGCCCCGGA GGAATCTTACCAAGTGCCATCATCCTTCACCTCAGCAGCCCCAAAGGGCTACATCCTACAGC ACAGCTCCCCTGACAAAGTGAGGGAGGGCACGTGTCCCTGTGACAGCCAGGATAAAACATCC CCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGTGCCCGGCCCAAACTACTTTTTAAAACA GCTACAGGGTAAAATCCTGCAGCACCCACTCTGGAAAATACTGCTCTTAATTTTCCTGAAGG TGGCCCCCTGTTTCTAGTTGGTCCAGGATTAGGGATGTGGGGTATAGGGCATTTAAATCCTC TCAAGCGCTCTCCAAGCACCCCCGGCCTGGGGGGTGAGTTTCTCATCCCGCTACTGCTGG GATCAGGTTGAATGAATGGAACTCTTCCTGTCTGGCCTCCAAAGCAGCCTAGAAGCTGAGGG GCTGTGTTTGAGGGGACCTCCACCCTGGGGAAGTCCGAGGGGCTGGGGAAGGGTTTCTGACG CCCAGCCTGGAGCAGGGGGCCCTGGCCACCCCCTGTTGCTCACACATTGTCTGGCAGCCTG TGTCCACAATATTCGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCCTGCTTTAGGGAGGCT CTGGCAGGAGGTCCTCCCCCATCCCTCCATCTGGGGCTCCCCCAACCTCTGCACAGCTCT

FIGURE 28

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852

><subunit 1 of 1, 283 aa, 1 stop

><MW: 29191, pI: 4.52, NX(S/T): 0

MVSAAAPSLLILLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSLPPPWTPAL SPTSMGPQPTTLGGPSPPTNFLDGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKQKA SAYYPSSFPKKKYVDQSDRAGGPRAFSEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSP TRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVQGHGVPVETPEAQEEPCSGVLEGAVVAGE GQGELEGSLLLAQEAQGPVGPPESPCACSSVHPSV

Signal peptide:

amino acids 1-25

Transmembrane domain:

amino acids 94-118

N-myristoylation site.

amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244, 242-248

FIGURE 29

AAGTTCCAGGGGCCCCTGCCTGCCTGCTGCCTGCCTGGGCAGTGGGGAGGCTGG CCCCCTGCAGAGCGAGAGGAAAGCACTGGGACAAATATTGGGGAGGCCCTTGGACATGGCC TGGGAGACGCCCTGAGCGAAGGGGTGGGAAAGGCCCATTGGCAAAGAGGCCGGAGGGGCAGCT GGCTCTAAAGTCAGTGAGGCCCTTGGCCAAGGGACCAGAGAAGCAGTTGGCACTGGAGTCAG GCAGGTTCCAGGCTTTGGCGCAGCAGATGCTTTGGGCAACAGGGTCGGGGAAGCAGCCCATG CTCTGGGAAACACTGGGCACGAGATTGGCAGACAGGCAGAAGATGTCATTCGACACGGAGCA GATGCTGTCCGCGGCTCCTGGCAGGGGGTGCCTGGCCACAGTGGTGCTTGGGAAACTTCTGG AGGCCATGGCATCTTTGGCTCTCAAGGTGGCCTTGGAGGCCAGGGCCAGGGCAATCCTGGAG CCTCAGGGAGCTCCCTGGGGTCAAGGAGGCCAATGGAGGGCCACCAAACTTTGGGACCAACAC TCAGGGAGCTGTGGCCCAGCCTGGCTATGGTTCAGTGAGAGCCAGCAACCAGAATGAAGGGT GCACGAATCCCCCACCATCTGGCTCAGGTGGAGGCTCCAGCAACTCTGGGGGAGGCAGCGGC TCACAGTCGGGCAGCAGTGGCAGCAATGGTGACAACAATGGCAGCAGCAGTGG GTGGCAGCAGTGGCAACAGTGGTGGCAGCAGAGGTGACAGCGGCAGTGAGTCCTCCTGGGGA TCCAGCACCGGCTCCTCCTCCGGCAACCACGGTGGGAGCGGGGGGGAAATGGACATAAACC CGGGTGTGAAAAGCCAGGGAATGAAGCCCGCGGGAGCGGGAATCTGGGATTCAGGGCTTCA GAGGACAGGGAGTTTCCAGCAACATGAGGGAAATAAGCAAAGAGGGCAATCGCCTCCTTGGA GGCTCTGGAGACAATTATCGGGGGCAAGGGTCGAGCTGGGGCAGTGGAGGAGGTGACGCTGT TGGTGGAGTCAATACTGTGAACTCTGAGACGTCTCCTGGGATGTTTAACTTTGACACTTTCT GGAAGAATTTTAAATCCAAGCTGGGTTTCATCAACTGGGATGCCATAAACAAGGACCAGAGA ${\tt AGCTCTCGCATCCCG}{\color{red}{\bf TGA}}{\tt CCTCCAGACAAGGAGCCACAGATTGGATGGGAGCCCCCACACT}$ CCCTCCTTAAAACACCACCCTCTCATCACTAATCTCAGCCCTTGCCCCTTGAAATAAACCTTA

FIGURE 30

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212

><subunit 1 of 1, 440 aa, 1 stop

><MW: 42208, pI: 6.36, NX(S/T): 1

Signal peptide:

amino acids 1-21

N-glycosylation site.

amino acids 265-269

Glycosaminoglycan attachment site.

amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392 Casein kinase II phosphorylation site.

amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.

amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96, 96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169, 178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245, 240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276, 271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297, 292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328, 323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389, 387-393, 389-395, 395-401

Cell attachment sequence.

amino acids 301-304

FIGURE 31

TGCCCTGGCTGGAGTTTCTCTCTTTGCTGACCATGTTGTTCCCTTGCTGGAATATTACCGGGACATCTTCA $\tt CTCTCCTGCTGCGCCTGCACCGGAGCTTGGTGTTGTCGCAGGAGAGTGAGGGGGAAG{\color{red} ATC}{\color{blue} TGTTTCCTGAACAAGC}$ GTCCCTCATATGCCTTTGAGGTGGACACAGTAGCCCCAGAGCATGGCTTGGACAATGCGCCTGTGGTGGACCAGC AGCTGCTCTACACCTGCTGCCCCTACATCGGAGAGCTCCGGAAACTGCTCGCTTCGTGGGTGTCAGGCAGTAGTG GACGGAGTGGGGGCTTCATGAGGAAAATCACCCCCACCACTACCACCAGCCTGGGAGCCCAGCCTTCCCAGACCA GCCAGGGGCTGCAGGCACAGCTCGCCCAGGCCTTTTTCCACAACCAGCCGCCCTCCTTGCGCCGGACCGTAGAGT TCGTGGCAGAAAGAATTGGATCAAACTGTGTCAAACATATCAAGGCTACACTGGTGGCAGATCTGGTGCGCCAGG TGTGTTCCCAGCTGTGCCCTCACGGGGCCCAGGCATTGGCCCTGGGGCGGGAGTTCTGTCAAAGGAAGAGCCCTG GGGCTGTGCGGGCGCTGCTTCCAGAGGAGACCCCGGCAGCCGTTCTGAGCAGTGCAGAGAACATTGCTGTGGGGC GTGCTCTCCTTGGCCGTGGGGCCCACGGGACCCTGACGAGGGAGTCTCCCCAGAGCATCTGGAACAGCTCCTAGGC $\tt CTGCTGAGCCCAAGAATGTGGGGCTTCTGGCAGACACAAGGCCAAGGGAGTGGGACTTGCTGCTATTCTTGCTA$ TGGCCAGGGGACTTTGCTGAAGAATTAGCAACACTGTCTAATCTGTTTCTAGCCGAGCCCCACCTGCCAGAACCC CAGCTAAGAGCCTGTGAGTTGGTGCAGCCAAACCGGGGCACTGTGCTGGCCCAGAGCTAGGGCTGAGAAGTGGCC CTGCCTTGGGCATTGCACCAGAACCCTGGACCCCCGCCTCACGAGGGGCCCAAGTGCCCAATGCAGACCCTCAC TGGTTGGGGTGTAGCTGGGTCTACAGTCAGACTTCCTGCTCTAAGGGTGTCACTGCCTGGCATCCCACCACGCGA ATCCTAGAGGAAGGAGTTGGCCTGATTTGGGATTATGGCAGAAAAGTCCAGAGATGCCAGTCCTGGAGTAGAA CATTTGCTATCCCAGCATCTCTTAAAACTTTGTAGTCTTGGAATTCATGACAGAGGCAAATGACTCCTGCTTAAC ${\tt TTATGAAGAAGTTAAAACATGAATCTTGGGAGTCTACATTTTCTTATCACCAGGAGCTGGACTGCCATCTCCTT}$ ATAAATGCCTAACACAGGCCGGGTCTGGTGGCTCATGCCTGTAATCCCAGCACTTTGAGAGGCCTGAGGTCGGCG GACTGCCTGAGGTCAGGAATTCAAGACCAGCCTGGCCAACATGGCAAAACCCCCATCTCTACTAAAAATAAAAAAA TTATTAGCTGGGCATGGTGTGTGTGCCTGTAATCCCAGCTACTCAGGAGGATGAGGCAGGAGACCTGCTTGAAC AAAAAGCCTAACAAACAGATAAGGTAGGACTCAACCAACTGAAACCTGACTTTCCCCCTGTACCTTCAGCCCCTG TGCAGGTAGTAACCTCTTGAGACCTCTCCCTGACCAGGGACCAAGCACAGGGCATTTAGAGCTTTTTAGAATAAA TTTTTTTTTTTTTAAAAAGGGCTTTTATTAAAATTCTCCCCACACGATGGCTCCTGCAATCTGCCACAGCTC TGGGGCGTGTCCTGTAGGGAAAGGCCCTGTTTTCCCTGAGGCGGGGCTGGGCTTGTCCATGGGTCCGCGGAGCTG GCCGTGCTTGGCGCCCTGGCGTGTCTAGCTGCTTCTTGCCGGGCACAGAGCTGCGGGGTCTGGGGGCACCGGG AGCTAAGAGCAGGCTCTGGTGCAGGGGTGGAGGCCTGTCTCTTAACCGACACCCTGAGGTGCTCCTGAGATGCTG GGTCCACCCTGAGTGGCACGGGGAGCAGCTGTGGCCGGTGCTCCTTCYTAGGCCAGTCCTGGGGAAACTAAGCTC GGGCCCTTCTTTGCAAAGACCGAGGATGGGGTGGGGTGTGGGGGACTCATGGGGAATGGCCTGAGGAGCTACGTGT GAAGAGGCCCCGGTTTGTTGGCTGCAGCGCCCTGGAGCGCCTCTCTCCTGAGCCTCAGTTTCCCTTTCCGTCTA ${\tt ATGAAGAACATGCCGTCTCGGTGTCTCAGGGCTATTAGGACTTGCCCTCAGGAAGTGGCCTTGGACGAGCGTCAT}$ $\tt GTTATTTCACAACTGTCCTGCGACGTTGGCCTGGGCACGTCATGGAATGGCCCATGTCCCTCTGCTGCGTGGAC$ GTCGCGGTCGGGAGTGCGCAGCCAGAGGCGGGGCCAGACGTGCGCCTGGGGGTGAGGGGAGGCCCCCGGGAGGG GGCCGGTAGACAAAGTGGAAGTCGCGCTTGGGCTCGCTGCGCAGCAGCTAGCCCTTGATGCAGTGCGGCAGCGCG TCGTCCGCCAGCTGGAAGCAGCGCCCGTCCACCAGCACGAACAGCCGGTGCGCCT

FIGURE 32

MCFLNKLLLAVLGWLFQIPTVPEDLFFLEEGPSYAFEVDTVAPEHGLDNAPVVDQQLLYTC CPYIGELRKLLASWVSGSSGRSGGFMRKITPTTTTSLGAQPSQTSQGLQAQLAQAFFHNQPP SLRRTVEFVAERIGSNCVKHIKATLVADLVRQAESLLQEQLVTQGEEGGDPAQLLEILCSQL CPHGAQALALGREFCQRKSPGAVRALLPEETPAAVLSSAENIAVGLATEKACAWLSANITAL IRREVKAAVSRTLRAQGPEPAARGERRGCSRA

Signal peptide:

amino acids 1-18

N-glycosylation site.

amino acids 244-248

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 89-93

Casein kinase II phosphorylation site.

amino acids 21-25, 167-171, 223-227

N-myristoylation site.

amino acids 100-106, 172-178, 207-213

Microbodies C-terminal targeting signal.

amino acids 278-282

FIGURE 33

TCCCTTGACAGGTCTGGTGGCTGGTTCGGGGGTCTACTGAAGGCTGTCTTGATCAGGAAACTG AAGACTCTCTGCTTTTGCCACAGCAGTTCCTGCAGCTTCCTTGAGGTGTGAACCCACATCCC TGCCCCCAGGGCCACCTGCAGGACGCCGACACCTACCCCTCAGCAGACGCCGGAGAGAAATG AGTAGCAACAAAGAGCAGCGGTCAGCAGTGTTCGTGATCCTCTTTGCCCTCATCACCATCCT CATCCTCTACAGCTCCAACAGTGCCAATGAGGTCTTCCATTACGGCTCCCTGCGGGGCCGTA GCCGCCGACCTGTCAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCCCATTCTCGGC AACAAGACACTGCCTCTCGGTGCCACCAGTGTGTGATTGTCAGCAGCTCCAGCCACCTGCT CCACCACTGGCTACTCAGCTGATGTGGGCCAACAAGACCACCTACCGCGTCGTGGCCCATTCC AGTGTGTTCCGCGTGCTGAGGAGGCCCCAGGAGTTTGTCAACCGGACCCCTGAAACCGTGTT AGCGAGCGGGCCTGGTGTTCCCCAACATGGAAGCATATGCCGTCTCTCCCGGCCGCATGCGG CAATTTGACGACCTCTTCCGGGGTGAGACGGGCAAGGACAGGGAGAAGTCTCATTCGTGGTT GAGCACAGGCTGGTTTACCATGGTGATCGCGGTGGAGTTGTGTGACCACGTGCATGTCTATG GCATGGTCCCCCCAACTACTGCAGCCAGCGGCCCCGCCTCCAGCGCATGCCCTACCACTAC TACGAGCCCAAGGGCCCGGACGAATGTGTCACCTACATCCAGAATGAGCACAGTCGCAAGGG CAACCACCACCGCTTCATCACCGAGAAAAGGGTCTTCTCATCGTGGGCCCAGCTGTATGGCA ${\tt TCACCTTCTCCCACCCTCTGGACC} \underline{{\tt TAG}} {\tt GCCACCCAGCCTGTGGGACCTCAGGAGGGTCAG}$ AGGAGAAGCAGCCTCCGCCCAGCCGCTAGGCCAGGGACCATCTTCTGGCCAATCAAGGCTTG CTGGAGTGTCTCCCAGCCAATCAGGGCCTTGAGGAGGATGTATCCTCCAGCCAATCAGGGCC TGGGGAATCTGTTGGCGAATCAGGGATTTTGGGAGTCTATGTGGTTAATCAGGGGTGTCTTTC TTGTGCAGTCAGGGTCTGCGCACAGTCAATCAGGGTAGAGGGGGTATTTCTGAGTCAATCTG AGGCTAAGGACATGTCCTTTCCCATGAGGCCTTGGTTCAGAGCCCCAGGAATGGACCCCCCA ATCACTCCCCACTCTGCTGGGATAATGGGGTCCTGTCCCAAGGAGCTGGGAACTTGGTGTTG CCCCCTCAATTTCCAGCACCAGAAAGAGAGATTGTGTGGGGGGTAGAAGCTGTCTGGAGGCCC GGCTGGCATCCAGGTCTTGGCCTCTGCCCTGAGACCTTGGACAAACCCTTCCCCCTCTCTGGG CACCCTTCTGCCCACACCAGTTTCCAGTGCGGAGTCTGAGACCCTTTCCACCTCCCCTACAA GTGCCCTCGGGTCTGCCCCGTCTGGACCCTCCCAGCCACTATCCCTTGCTGGAAGGCT CAGCTCTTTGGGGGGTCTGGGGTGACCTCCCCACCTCCTGGAAAACTTTAGGGTATTTTTGC GCAAACTCCTTCAGGGTTGGGGGACTCTGAAGGAAACGGGACAAAACCTTAAGCTGTTTTCT TAGCCCCTCAGCCAGCTGCCATTAGCTTGGCTCTTAAAGGGCCAGGCCTCCTTTTCTGCCCT CTAGCAGGGAGGTTTTCCAACTGTTGGAGGCGCCTTTGGGGGCTGCCCCTTTGTCTGGAGTCA CTGGGGGCTTCCGAGGGTCTCCCTCGACCCTCTGTCGTCCTGGGATGGCTGTCGGGAGCTGT ATCACCTGGGTTCTGTCCCCTGGCTCTGTATCAGGCACTTTATTAAAGCTGGGCCTCAGTGG GGTGTGTTTGTCTCCTGCTCTTCTGGAGCCTGGAAGGAAAGGGCTTCAGGAGGAGGCTGTGA GGCTGGAGGACCAGATGGAGGAGGCCAGCAGCTAGCCATTGCACACTGGGGTGATGGGTGG GGGCGGTGACTGCCCCAGACTTGGTTTTGTAATGATTTGTACAGGAATAAACACACCTACGC

FIGURE 34

MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSLRGRSRRPVNLKKWSITDGYVPIL GNKTLPSRCHQCVIVSSSSHLLGTKLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAH SSVFRVLRRPQEFVNRTPETVFIFWGPPSKMQKPQGSLVRVIQRAGLVFPNMEAYAVSPGRM RQFDDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHVHVYGMVPPNYCSQRPRLQRMPYH YYEPKGPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 9-31 (type II)

N-glycosylation site.

amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 50-54

Casein kinase II phosphorylation site.

amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.

amino acids 253-262

N-myristoylation site.

amino acids 37-43, 114-120, 290-294

FIGURE 35

GTTTCTCATAGTTGGCGTCTTCTAAAGGAAAAACACTAAAATGAGGAACTCAGCGGACCGGGAGCGACGCAGCTT GAGGGAAGCATCCCTAGCTGTTGGCGCAGAGGGGCGAGGCTGAAGCCGAGTGGCCCGAGGTGTCTGAGGGGCTGG GGCAAAGGTGAAAGAGTTTCAGAACAAGCTTCCTGGAACCCATGACCCATGAAGTCTTGTCGACATTTATACCGT CTGAGGGTAGCAGCTCGAAACTAGAAGAAGTGGAGTGTTGCCAGGGACGGCAGTATCTCTTTGTGTGACCCTGGC GGCCTATGGGACGTTGGCTTCAGACCTTTGTGATACACC<u>ATG</u>CTGCGTGGGACGATGACGGCGTGGAGAGGAATG AGGCCTGAGGTCACACTGGCTTGCCTCCTCAGCCACAGCTGCTTTGCTGACTTGAACGAGGTCCCTCAG GTCACCGTCCAGCCTGCGTCCACCGTCCAGAAGCCCGGAGGCACTGTGATCTTGGGCTGCGTGGTGGAACCTCCA AGGATGAATGTAACCTGGCGCCTGAATGGAAAGGAGCTGAATGGCTCGGATGATGCTCTGGGTGTCCTCATCACC CACGGGACCCTCGTCATCACTGCCCTTAACAACCACACTGTGGGACGGTACCAGTGTGTGGCCCGGATGCCTGCG GGGGCTGTGGCCAGCCACCTGTGACACTAGCCAATCTCCAGGACTTCAAGTTAGATGTGCAGCACGTG TACAGCGTCAAACAAGAGTGGCTGGAGGCCTCCAGAGGTAACTACCTGATCATGCCCTCAGGGAACCTCCAGATT GTGAATGCCAGCCAGGAGGACGAGGGCATGTACAAGTGTGCAGCCTACAACCCAGTGACCCAGGAAGTGAAAACC TCCGGCTCCAGCGACAGGCTACGTGTGCGCCGCTCCACCGCTGAGGCTGCCCGCATCATCTACCCCCCAGAGGCC CAAACCATCATCGTCACCAAAGGCCAGAGTCTCATTCTGGAGTGTGTGGCCAGTGGAATCCCACCCCCACGGGTC ACCTGGGCCAAGGATGGGTCCAGTGTCACCGGCTACAACAAGACGCGCTTCCTGCTGAGCAACCTCCTCATCGAC ACCACCAGCGAGGAGGACTCAGGCACCTACCGCTGCATGGCCGACAATGGGGTTGGGCAGCCCGGGGCAGCGGTC ATCCTCTACAATGTCCAGGTGTTTGAACCCCCTGAGGTCACCATGGAGCTATCCCAGCTGGTCATCCCCTGGGGC GTCTACCAGTGCATGGCCGAGAACGAGGTTGGGAGCGCCCATGCCGTAGTCCAGCTGCGGACCTCCAGGCCAAGC ATAACCCCAAGGCTATGGCAGGATGCTGAGCTGGCTACTGGCACACCTCCTGTATCACCCTCCAAACTCGGCAAC CCTGAGCAGATGCTGAGGGGGCAACCGGCGCTCCCCAGACCCCCAACGTCAGTGGGGCCTGCTTCCCCGAAGTGT TCATATGAACTGGTGTGGCGGCCTCGGCATGAGGGCAGTGGCCGGGCGCCAATCCTCTACTATGTGGTGAAACAC CGCAAGCAGGTCACAAATTCCTCTGACGATTGGACCATCTCTGGCATTCCAGCCAACCAGCACCGCCTGACCCTC ACCAGACTTGACCCCGGGAGCTTGTATGAAGTGGAGATGGCAGCTTACAACTGTGCGGGAGAGGGCCAGACAGCC ATGGTCACCTTCCGAACTGGACGGCGCCCAAACCCGAGATCATGGCCAGCAAAGAGCAGCAGATCCAGAGAGAC GACCCTGGAGCCAGTCCCCAGAGCAGCCAGCCAGACCACGCCGCCTCTCCCCCCAGAAGCTCCCGACAGG CCCACCATCTCCACGGCCTCCGAGACCTCAGTGTACGTGACCTGGATTCCCCGTGGGAATGGTGGGTTCCCAATC CAGTCCTTCCGTGTGGAGTACAAGAAGCTAAAGAAAGTGGGAGACTGGATTCTGGCCACCAGCGCCATCCCCCA TCGCGGCTGTCCGTGGAGATCACGGGCCTAGAGAAAGGCACCTCCTACAAGTTTCGAGTCCGGGCTCTGAACATG CCCGTGGCAGGTCCTTATATCACCTTCACGGATGCGGTCAATGAGACCACCATCATGCTCAAGTGGATGTACATC GACTACAAGAAGGATATGGTGGAAGGGGACAAGTACTGGCACTCCATCAGCCACCTGCAGCCAGAGACCTCCTAC GACATTAAGATGCAGTGCTTCAATGAAGGAGGGGAGAGCGAGTTCAGCAACGTGATGATCTGTGAGACCAAAGCT CGGAAGTCTTCTGGCCAGCCTGGTCGACTGCCACCCCAACTCTGGCCCCACCACAGCCGCCCCTTCCTGAAACC ATAGAGCGGCCGGTGGGCACTGGGGCCATGGTGGCTCCAGCGACCTGCCCTATCTGATTGTCGGGGTCGTC CTGGGCTCCATCGTCATCATCGTCACCTTCATCCCCTTCTGCTTGTGGAGGGCCTGGTCTAAGCAAAAACAT ACAACAGACCTGGGTTTTCCTCGAAGTGCCCTTCCACCCTCCTGCCCGTATACTATGGTGCCATTGGGAGGACTC CCAGGCCACCAGGCCAGTGGACAGCCCTACCTCAGTGGCATCAGTGGACGGCCTGTGCTAATGGGATCCACATG AATAGGGGCTGCCCTCGGCTGCAGTGGGCTACCCGGGCATGAAGCCCCAGCAGCACTGCCCAGGCGAGCTTCAG CAGCAGAGTGACACCAGCAGCCTGCTGAGGCAGACCCATCTTGGCAATGGATATGACCCCCAAAGTCACCAGATC CTGCAGCCCCATCACGACTGCTGCCAACGCCAGGAGCAGCCTGCTGCTGCTGGGCCAGTCAGGGGTGAGGAGAGCC $\tt CCCGACAGTCCTGGGAAGCAGTGTGGGACCCTCCATTTCACTCAGGGCCCCCATGCTGCTTGGGCCTTGTG$ GCCTACGTAGGACAGGAACCTGGAATGCAGCTCTCCCCGGGGCCACTGGTGCGTGTGTCTTTTGAAACACCACCT TATGTTTTATAATTCTGGAGAGACATAAGGAGTCCTACCCGTTGAGGTTGGAGAGGGAAAATAAAGAAGCTGCCA $\verb|CCTAACAGGAGTCACCCAGGAAAGCACCGCACAGGCTGGCGCGGGACAGACTCCTAACCTGGGGCCTCTGCAGTG|\\$ TGAGGGAACAGCAAGGGGCACGGTATCACAGCCTGGAGACACCCACAGATGGCTGGATCCGGTGCTACGGGAA ACATTTTCCTAAGATGCCCATGAGAACAGACCAAGATGTGTACAGCACTATGAGCATTAAAAAACCTTCCAGAAT

FIGURE 36

MLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQPASTVQKPGGTVILGCVVEPP RMNVTWRLNGKELNGSDDALGVLITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTL ANLQDFKLDVQHVIEVDEGNTAVIACHLPESHPKAQVRYSVKQEWLEASRGNYLIMPSGNLO IVNASQEDEGMYKCAAYNPVTQEVKTSGSSDRLRVRRSTAEAARIIYPPEAQTIIVTKGQSL ILECVASGIPPPRVTWAKDGSSVTGYNKTRFLLSNLLIDTTSEEDSGTYRCMADNGVGQPGA AVILYNVQVFEPPEVTMELSQLVIPWGQSAKLTCEVRGNPPPSVLWLRNAVPLISSQRLRLS RRALRVLSMGPEDEGVYQCMAENEVGSAHAVVQLRTSRPSITPRLWQDAELATGTPPVSPSK LGNPEQMLRGQPALPRPPTSVGPASPKCPGEKGQGAPAEAPIILSSPRTSKTDSYELVWRPR HEGSGRAPILYYVVKHRKQVTNSSDDWTISGIPANQHRLTLTRLDPGSLYEVEMAAYNCAGE GQTAMVTFRTGRRPKPEIMASKEQQIQRDDPGASPQSSSQPDHGRLSPPEAPDRPTISTASE TSVYVTWIPRGNGGFPIQSFRVEYKKLKKVGDWILATSAIPPSRLSVEITGLEKGTSYKFRV RALNMLGESEPSAPSRPYVVSGYSGRVYERPVAGPYITFTDAVNETTIMLKWMYIPASNNNT PIHGFYIYYRPTDSDNDSDYKKDMVEGDKYWHSISHLQPETSYDIKMQCFNEGGESEFSNVM ICETKARKSSGQPGRLPPPTLAPPQPPLPETIERPVGTGAMVARSSDLPYLIVGVVLGSIVL IIVTFIPFCLWRAWSKQKHTTDLGFPRSALPPSCPYTMVPLGGLPGHQASGQPYLSGISGRA CANGIHMNRGCPSAAVGYPGMKPQQHCPGELQQQSDTSSLLRQTHLGNGYDPQSHQITRGPK SSPDEGSFLYTLPDDSTHQLLQPHHDCCQRQEQPAAVGQSGVRRAPDSPVLEAVWDPPFHSG PPCCLGLVPVEEVDSPDSCQVSGGDWCPQHPVGAYVGQEPGMQLSPGPLVRVSFETPPLTI

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 16-30 (type II), 854-879

FIGURE 37

CGGGAGGCTGGTCATGATCCGGACCCCATTGTCGGCCTCTGCCCATCGCCTGCTCCTC CCAGGCTCCCGCGCCGACCCCCGCGCAACATGCAGCCCACGGGCCGCGAGGGTTCCCGCGC GCTCAGCCGGCGTATCTGCGGCGTCTGCTGCTGCTACTGCTGCTGCTGCTGCGGCAGC CCGTAACCCGCGGGGGAGACCACGCCGGGGCGCCCCCAGAGCCCTCTCCACGCTGGGCTCCCCC AGCCTCTTCACCACGCCGGGTGTCCCCAGCGCCCTCACTACCCCAGGCCTCACTACGCCAGG TGGACGGCCACAATGACCTGCCCCAGGTCCTGAGACAGCGTTACAAGAATGTGCTTCAGGAT GTTAACCTGCGAAATTTCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGGCCTCGT GGGTGCCCAGTTCTGGTCAGCCTCCGTCTCATGCCAGTCCCAGGACCAGACTGCCGTGCGCC TCGCCCTGGAGCAGATTGACCTCATTCACCGCATGTGTGCCTCCTACTCTGAACTCGAGCTT TGGTCACTCACTGGACAGCAGCCTCTCTGTGCTGCGCAGTTTCTATGTGCTGGGGGTGCGCT ACCTGACACTTACCTTCACCTGCAGTACACCATGGGCAGAGAGTTCCACCAAGTTCAGACAC CACATGTACACCAACGTCAGCGGATTGACAAGCTTTGGTGAGAAAGTAGTAGAGGAGTTGAA CCGCCTGGGCATGATGATAGATTTGTCCTATGCATCGGACACCTTGATAAGAAGGGTCCTGG TTGAATGTTCCCGATGATATCCTGCAGCTTCTGAAGAACGGTGGCATCGTGATGGTGACACT GTCCATGGGGGTGCTGCAACCTGCTTGCTAACGTGTCCACTGTGGCAGATCACTTTG ACCACATCAGGGCAGTCATTGGATCTGAGTTCATCGGGATTGGTGGAAATTATGACGGGACT GGCCGGTTCCCTCAGGGGCTGGAGGATGTTCCACATACCCAGTCCTGATAGAGGAGTTGCT GAGTCGTASCTGGAGCGAGGAAGAGCTTCAAGGTGTCCTTCGTGGAAACCTGCTGCGGGTCT TCAGACAAGTGGAAAAGGTGAGAGAGGAGAGCAGGGCGCAGAGCCCCGTGGAGGCTGAGTTT CCATATGGGCAACTGAGCACATCCTGCCACTCCCACCTCGTGCCTCAGAATGGACACCAGGC TACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCCTGGAGGTCCTCAAATGCCT CCCCATACCTTGTTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTC TGCTGACAGTCGGTCCCCGCAGAGGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCTCCT AGTTCATTCACAAGCATATGCTGAGAATAAACATGTTACACATGGAAAA

FIGURE 38

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817

><subunit 1 of 1, 487 aa, 1 stop, 2 unknown

><MW: 53569.32, pI: 7.68, NX(S/T): 5

MQPTGREGSRALSRRYLRRLLLLLLLLLLLRQPVTRAETTPGAPRALSTLGSPSLFTTPGVPS
ALTTPGLTTPGTPKTLDLRGRAQALMRSFPLVDGHNDLPQVLRQRYKNVLQDVNLRNFSHGQ
TSLDRLRDGLVGAQFWSASVSCQSQDQTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSS
QKLACLIGVXGGHSLDSSLSVLRSFYVLGVRYLTLTFTCSTPWAESSTKFRHHMYTNVSGLT
SFGEKVVEELNRLGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNLLNVPDDILQL
LKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDV
STYPVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVREESRAQSPVEAEFPYGQLSTSCH
SHLVPQNGHQATHLEVTKQPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLC

Important features of the protein:

Signal peptide:

amino acids 1-36

Transmembrane domain:

amino acids 313-331

N-glycosylation sites.

amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.

amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359, 357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 136-146

FIGURE 39

TGCTAGGCTCTGTCCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGA TCCCTCTATGACTGCAATGTGAGGTGTCCGGCTTTGCTGGCCCAGCAAGCCTGATAAGCATG AAGCTCTTATCTTTGGTGGCTGTGGTCGGGTGTTTGCTGGTGCCCCCAGCTGAAGCCAACAA GAGTTCTGAAGATATCCGGTGCAAATGCATCTGTCCACCTTATAGAAACATCAGTGGGCACA GTGCCTGGCCATGACGTGGAGGCCTACTGCCTGTGCGAGTGCAGGTACGAGGAGCGCAG ACATGGCCTTCCTGATGCTGGTGGACCCTCTGATCCGAAAGCCGGATGCATACACTGAGCAA CTGCACAATGAGGAGGAGGATGCTCGCTCTATGGCAGCAGCTGCTGCATCCCTCGG GGGACCCCGAGCAAACACAGTCCTGGAGCGTGTGGAAGGTGCCCAGCAGCGGTGGAAGCTGC ${\tt AGGTGCAGGAGCAGCGGAAGACAGTCTTCGATCGGCACAAGATGCTCAGC{\tt TAG}{\tt ATGGGCTGG}}$ TGTGGTTGGGTCAAGGCCCCAACACCATGGCTGCCAGCTTCCAGGCTGGACAAAGCAGGGGG CTACTTCTCCCTTCGGTTCCAGTCTTCCCTTTAAAAGCCTGTGGCATTTTTCCTCCTT CTCCCTAACTTTAGAAATGTTGTACTTGGCTATTTTGATTAGGGAAGAGGGATGTGGTCTCT ATGGAGACATTCGAGGCGCCTCAGGAGTGGATGCGATCTGTCTCTCCTGGCTCCACTCTTG CCGCCTTCCAGCTCTGAGTCTTGGGAATGTTGTTACCCTTGGAAGATAAAGCTGGGTCTTCA GGAACTCAGTGTCTGGGAGGAAAGCATGGCCCAGCATTCAGCATGTTCCTTTCTGCAGTG GTTCTTATCACCACCTCCCAGCCCCGGCGCCCTCAGCCCCAGCCCCAGCTCCAGCCCTG AGGACAGCTCTGATGGGAGAGCTGGGCCCCCTGAGCCCACTGGGTCTTCAGGGTGCACTGGA AGCTGGTGTTCGCCTGTGCACTTCTCGCACTGGGGCATGGAGTGCCCATGCATACT CTGCTGCCGGTCCCCTCACCTGCACTTGAGGGGTCTGGGCAGTCCCTCTCCCCAGTGTC CACAGTCACTGAGCCAGACGGTCGGTTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGAA CACCACAGCCCCTGTACTTGGGTTGCCTCTTGTCCCTGAACTTCGTTGTACCAGTGCATGGA GAGAAAATTTTGTCCTCTTGTCTTAGAGTTGTGTGTAAATCAAGGAAGCCATCATTAAATTG TTTTATTTCTCTCA

FIGURE 40

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278</pre>

<subunit 1 of 1, 183 aa, 1 stop

<MW: 20574, pI: 6.60, NX(S/T): 3

MKLLSLVAVVGCLLVPPAEANKSSEDIRCKCICPPYRNISGHIYNQNVSQKDCNCLHVVEPM PVPGHDVEAYCLLCECRYEERSTTTIKVIIVIYLSVVGALLLYMAFLMLVDPLIRKPDAYTE QLHNEEENEDARSMAAAAASLGGPRANTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 90-112

N-glycosylation sites.

amino acids 21-24, 38-41 and 47-50

FIGURE 41

AGCGGGTCTCGCTTGGGTTCCGCTAATTTCTGTCCTGAGGCGTGAGACTGAGTTCATAGGGTCCTGGGTCCCCGA ACCAGGAAGGGTTGAGGGAACACAATCTGCAAGCCCCCGCGACCCAAGTGAGGGGCCCCGTGTTGGGGTCCTCCC TCGCGGGCCAAACTCAACTCCATCAAGTCCTCTCTGGGCGGGGAGACGCCTGGTCAGGCCGCCAATCGATCTGCG GGCATGTACCAAGGACTGGCATTCGGCGGCAGTAAGAAGGGCAAAAAACCTGGGGCAGGCCTACCCTTGTAGCAGT GATAAGGAGTGTGAAGTTGGGAGGTATTGCCACAGTCCCCACCAAGGATCATCGGCCTGCATGGTGTCGGAGA AAAAAGAAGCGCTGCCACCGAGATGGCATGTGCTGCCCCAGTACCCGCTGCAATAATGGCATCTGTATCCCAGTT ACTGAAAGCATCTTAACCCCTCACATCCCGGCTCTGGATGGTACTCGGCACAGAGATCGAAACCACGGTCATTAC TCAAACCATGACTTGGGATGGCAGAATCTAGGAAGACCACACACTAAGATGTCACATATAAAAGGGCATGAAGGA GACCCCTGCCTACGATCATCAGACTGCATTGAAGGGTTTTGCTGTGCTCGTCATTTCTGGACCAAAATCTGCAAA CCAGTGCTCCATCAGGGGGAAGTCTGTACCAAACACGCAAGAAGGGTTCTCATGGGCTGGAAATTTTCCAGCGT TGCGACTGTGCGAAGGGCCTGTCTTGCAAAGTATGGAAAGATGCCACCTACTCCTCCAAAGCCAGACTCCATGTG ${\tt TGTCAGAAAATT} \underline{{\tt TGA}} {\tt TCACCATTGAGGAACATCATCAATTGCAGACTGTGAAGTTGTGTATTTAATGCATTATAG$ CATGGTGGAAAATAAGGTTCAGATGCAGAAGAATGGCTAAAATAAGAAACGTGATAAGAATATAGATGATCACAA AAAGGGAGAAAGAAACATGAACTGAATAGATTAGAATGGGTGACAAATGCAGTGCAGCCAGTGTTTCCATTATG CAACTTGTCTATGTAAATAATGTACACATTTGTGGAAAATGCTATTATTAAGAGAACAAGCACACAGTGGAAATT ACTGATGAGTAGCATGTGACTTTCCAAGAGTTTAGGTTGTGCTGGAGGAGGGTTTCCTTCAGATTGCTGATTGC TTATACAAATAACCTACATGCCAGATTTCTATTCAACGTTAGAGTTTAACAAAATACTCCTAGAATAACTTGTTA TACAATAGGTTCTAAAAATTAAAATTGCTAAACAAGAAATGAAAACATGGAGCATTGTTAATTTACAACAGAAAAT TTCAGATTCTACGGAATGACAGTATATCTCTCTTTATCCTATGTGATTCCTGCTCTGAATGCATTATATTTTCCA AACTATACCCATAAATTGTGACTAGTAAAATACTTACACAGAGCAGAATTTTCACAGATGGCAAAAAAATTTAAA GATGTCCAATATATGTGGGAAAAGAGCTAACAGAGAGATCATTATTTCTTAAAGATTGGCCATAACCTATATTTT GATAGAATTAGATTGGTAAATACATGTATTCATACATACTCTGTGGTAATAGAGACTTAAGCTGGATCTGTACTG CACTGGAGTAAGCAAGAAATTGGGAAAACTTTTTCGTTTGTTCAGGTTTTTGGCAACACATAGATCATATGTCTG ${\tt AGGCACAAGTTGGCTGTTCATCTTTGAAACCAGGGGATGCACAGTCTAAATGAATATCTGCATGGGATTTGCTAT}$ TGCTGAGATCCTCAAATAATCTCAATTTCAGGAGGTTTCACAAAATGTACTCCTGAAGTAGACAGAGTAGTGAGG TTTCATTGCCCTCTATAAGCTTCTGACTAGCCAATGGCATCATCCAATTTTCTTCCCAAACCTCTGCAGCATCTG $\tt CTTTATTGCCAAAGGGCTAGTTTCGGTTTTCTGCAGCCATTGCGGTTAAAAAATATAAGTAGGATAACTTGTAAA$ ACCTGCATATTGCTAATCTATAGACACCACAGTTTCTAAATTCTTTGAAACCACTTTACTACTTTTTTAAACTT AACTCAGTTCTAAATACTTTGTCTGGAGCACAAAACAATAAAAGGTTATCTTATAGTCGTGACTTTAAACTTTTG TAGACCACAATTCACTTTTTAGTTTTTTTTTTTACTTAAATCCCATCTGCAGTCTCAAATTTAAGTTCTCCCAGTAG AGATTGAGTTTGAGCCTGTATATCTATTAAAAATTTCAACTTCCCACATATATTTACTAAGATGATTAAGACTTA TTAATGAGATGTATTTCTTATAGAGATATTTCTTACAGAAAGCTTTGTAGCAGAATATATTTGCAGCTATTGAC AAAAAAAAAAAAAAAA

FIGURE 42

MAALMRSKDSSCCLLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLA FGGSKKGKNLGQAYPCSSDKECEVGRYCHSPHQGSSACMVCRRKKKRCHRDGMCCPSTRCNN GICIPVTESILTPHIPALDGTRHRDRNHGHYSNHDLGWQNLGRPHTKMSHIKGHEGDPCLRS SDCIEGFCCARHFWTKICKPVLHQGEVCTKQRKKGSHGLEIFQRCDCAKGLSCKVWKDATYS SKARLHVCQKI

Signal peptide:

amino acids 1-25

FIGURE 43

GTGTTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCAACATCACGTTTTTAAAAATTGATT TAGCTGCATTTATTTAGTCAGTTTTCATTGCATAGTAATATTTTCATGTAGTATTTTCTAAG TTATATTTTAGTAATTCATATGTTTTAGATTATAGGTTTTAACATACTTGTGAAAATACTTG **ATG**TGTTTTAAAGCCTTGGGCAGAAATTCTGTATTGTTGAGGATTTGTTCTTTTATCCCCCT TTTAAAGTCATCCGTCCTTGGCTCAGGATTTGGAGAGCTTGCACCACCAAAAATGGCAAACA TCACCAGCTCCCAGATTTTGGACCAGTTGAAAGCTCCGAGTTTGGGCCAGTTTACCACCACC CCAAGTACACAGCAGAATAGTACAAGTCACCCTACAACTACTTCTTGGGACCTCAAGCC CCCAACATCCCAGTCCTCAGTCATCTTGACTTCAAATCTCAACCTGAGCCATCCC CAGTTCTTAGCCAGTTGAGCCAGCGACAACAGCACCAGAGCCAGGCAGTCACTGTTCCTCCT CCTGGTTTGGAGTCCTTTCCTTCCCAGGCAAAACTTCGAGAATCAACACCTGGAGACAGTCC CTCCACTGTGAACAAGCTTTTGCAGCTTCCCAGCACGACCATTGAAAATATCTCTGTGTCTG TCCACCAGCCACAGCCCAAACATCAAACTTGCTAAGCGGCGGATACCCCCAGCTTCTAAG ATCCCAGCTTCTGCAGTGGAAATGCCTGGTTCAGCAGATGTCACAGGATTAAATGTGCAGTT TGGGGCTCTGGAATTTGGGTCAGAACCTTCTCTCTCTGAATTTGGATCAGCTCCAAGCAGTG AAAATAGTAATCAGATTCCCATCAGCTTGTATTCGAAGTCTTTAAGTGAGCCTTTGAATACA TCTTTATCAATGACCAGTGCAGTACAGAACTCCACATATACAACTTCCGTCATTACCTCCTG CAGTCTGACAAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTTCCTCTTATGACC AGAGTTCTGTGCATAACAGGATCCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCA CAGCAAGCTACTCTTGTCATGGCTGGTGCCAACCAAACAGAGGAAGAGGATAGCTCACGTGA TGTGGAAAACACCAGTTGGTCAATGGCTCATTCGT**TAA**AAAGCAGCCCTTTTGCTTTTTGT TTTTGGACCAGGTGTTGGCTGTGTTATTAGAAATGTCTTAACCACAGCAAGAAGGAGGT GGTGGTCTCATATTCTTCTGCCCTAATCAGACTGCACCACAAGTGCAGCATACAGTATGCAT TTTAAAGATGCTTGGGCCAGGCGGGGTGGCTGATGCCCATAATCCCAGTGCTTTGGGGGGCC AAGGCAGGCAGATTGCCCAAGCTCAGGAGTTTGAGACCACCCTGGGCAACATGGTGAAACTC TGTCTCTACTAAAATACGAAAAACTAGCCGGGTGTGGTGGCGGCGCGTGCCTGTAATCCCAG CTACTTGGGAGGCTGAGGCACAAGAATCGCTTGAGCCAGCTTGGGCTACAAAGTGAGACTCC GTCTGAAAAGA

FIGURE 44

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGELAPPKMANITSSQILDQLKAPSLGQFTTT
PSTQQNSTSHPTTTTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPP
PGLESFPSQAKLRESTPGDSPSTVNKLLQLPSTTIENISVSVHQPQPKHIKLAKRRIPPASK
IPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAPSSENSNQIPISLYSKSLSEPLNT
SLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQSPVSSSESAP
GTIMNGHGGGRSQQTLDSKYSSKLLLSWLVPTKQRKRIAHVMWKTPVGQWLIR

Signal peptide:

amino acids 1-24

FIGURE 45

GCCGAGTGGGACAAAGCCTGGGGCTGGGCGGGGGCCATCCCGAATCCTGCT TTGGAAACTTGTGCTTCTGCAGAGCTCTGCTGTTCTCCTGCACTCAGCGGTGGAGGAGACGG ACGCGGGGCTGTACACCTGCAACCTGCACCATCACTACTGCCACCTCTACGAGAGCCTGGCC GTCCGCCTGGAGGTCACCGACGGCCCCCCGGCCACCCCCCCTACTGGGACGGCGAGAAGGA GGTGCTGGCGTGGCGCGCGCGCACCCGCGCTTCTGACCTGCGTGAACCGCGGGCACGTGT GGACCGACCGCCGCGGGGGCTCAACAGGTGGTGCACTGGGACCGGCAGCCGCCCGGG GTCCCGCACGACCGCGGGACCGCCTGCTGGACCTCTACGCGTCGGGCGAGCGCCGCGCCTA CGGGCCCCTTTTTCTGCGCGACCGCGTGGCTGTGGGCGCGGATGCCTTTGAGCGCGGTGACT TCTCACTGCGTATCGAGCCGCTGGAGGTCGCCGACGAGGGCACCTACTCCTGCCACCTGCAC CACCATTACTGTGGCCTGCACGAACGCCGCGTCTTCCACCTGACGGTCGCCGAACCCCACGC GGAGCCGCCCCCGGGGCTCTCCGGGCAACGGCTCCAGCCACAGCGGCGCCCCAGGCCCAG ACCCCACACTGGCGCGCGCCACAACGTCATCAATGTCATCGTCCCCGAGAGCCGAGCCCAC TTCTTCCAGCAGCTGGGCTACGTGCTGCCACGCTGCTCTTCATCCTGCTACTGGTCAC TGTCCTCCTGGCCGCCGCAGGCGCCGCGGAGGCTACGAATACTCGGACCAGAAGTCGGGAA AGTCAAAGGGGAAGGATGTTAACTTGGCGGAGTTCGCTGTGGCTGCAGGGGACCAGATGCTT TACAGGAGTGAGGACATCCAGCTAGATTACAAAAACAACATCCTGAAGGAGAGGGCGGAGCT GGCCCACAGCCCCTGCCTGCCAAGTACATCGACCTAGACAAAGGGTTCCGGAAGGAGAACT CTCGGGGCATCTCCTGATGCTCCGGGGCTCACCCCCCTTCCAGCGGCTGGTCCCGCTTTCCT GGAATTTGGCCTGGGCGTATGCAGAGGCCGCCTCCACACCCCTCCCCCAGGGGCTTGGTGGC AGCATAGCCCCCACCCTGCGGCCTTTGCTCACGGGTGGCCCTGCCCACCCCTGGCACAACC AAAATCCCACTGATGCCCATCATGCCCTCAGACCCTTCTGGGCTCTGCCCGCTGGGGGCCTG AAGACATTCCTGGAGGACACTCCCATCAGAACCTGGCAGCCCCAAAACTGGGGTCAGCCTCA GGGCAGGAGTCCCACTCCTCCAGGGCTCTGCTCGTCCGGGGGCTGGGAGATGTTCCTGGAGGA GGACACTCCCATCAGAACTTGGCAGCCTTGAAGTTGGGGTCAGCCTCGGCAGGAGTCCCACT CCTCCTGGGGTGCTGCCACCAAGAGCTCCCCCACCTGTACCACCATGTGGGACTCCAG GCACCATCTGTTCTCCCCAGGGACCTGCTGACTTGAATGCCAGCCCTTGCTCCTCTGTTTG CTTTGGGCCACCTGGGGCTGCACCCCTTCCTCTCTCTCCCCATCCCTACCCTAGCCTTG GGACTCTGCCTGGGCTGGAGTCTAGGGCTGGGGCTACATTTGGCTTCTGTACTGGCTGAGGA CAGGGGAGGGAGTTGGTTTGGGGTGGCCTGTGTTGCCACTCTCAGCACCCCACATTT AAAA

FIGURE 46

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60618</pre>

<subunit 1 of 1, 341 aa, 1 stop

<MW: 38070, pI: 6.88, NX(S/T): 1

MALPSRILLWKLVLLQSSAVLLHSAVEETDAGLYTCNLHHHYCHLYESLAVRLEVTDGPPAT
PAYWDGEKEVLAVARGAPALLTCVNRGHVWTDRHVEEAQQVVHWDRQPPGVPHDRADRLLDL
YASGERRAYGPLFLRDRVAVGADAFERGDFSLRIEPLEVADEGTYSCHLHHHYCGLHERRVF
HLTVAEPHAEPPPRGSPGNGSSHSGAPGPDPTLARGHNVINVIVPESRAHFFQQLGYVLATL
LLFILLLVTVLLAARRRRGGYEYSDQKSGKSKGKDVNLAEFAVAAGDQMLYRSEDIQLDYKN
NILKERAELAHSPLPAKYIDLDKGFRKENCK

Important features:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 237-262

N-glycosylation site.

amino acids 205-208

Cell attachment sequence.

amino acids 151-154

Coproporphyrinogen III oxidase proteins.

amino acids 115-140

FIGURE 47

CGCCGGAGGCAGCGCGTGGCGCAGCGCGACATGGCCGTTGTCTCAGAGGACGACTTT CAGCACAGTTCAAACTCCACCTACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGC ACTGCTTGAGAAGCTGCTGGACCGCCCCCCTGGCCTGCAGAGGCCCGAGGACCGCTTCT GTGGCACATACATCTTCTTCAGCCTGGGCATTGGCAGTCTACTGCCATGGAACTTCTTT ATCACTGCCAAGGAGTACTGGATGTTCAAACTCCGCAACTCCTCCAGCCCAGCCACCGGGGA GGACCCTGAGGGCTCAGACATCCTGAACTACTTTGAGAGCTACCTTGCCGTTGCCTCCACCG TGCCCTCCATGCTGTGCCTGGTGGCCAACTTCCTGCTTGTCAACAGGGTTGCAGTCCACATC CGTGTCCTGGCCTCACTGACGGTCATCCTGGCCATCTTCATGGTGATAACTGCACTGGTGAA GGTGGACACTTCCTCCTGGACCCGTGGTTTTTTTTGCGGTCACCATTGTCTGCATGGTGATCC TCAGCGGTGCCTCCACTGTCTTCAGCAGCAGCATCTACGGCATGACCGGCTCCTTTCCTATG AGGAACTCCCAAGCACTGATATCAGGAGGAGCCATGGGCGGGACGGTCAGCGCCGTGGCCTC ATTGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGGCCTTCTTCCTGACGG CCACCATCTTCCTCGTGCTCTGCATGGGACTCTACCTGCTGCTGTCCAGGCTGGAGTATGCC AGGTACTACATGAGGCCTGTTCTTGCGGCCCATGTGTTTTCTGGTGAAGAGGAGCTTCCCCA GGACTCCCTCAGTGCCCCTTCGGTGGCCTCCAGATTCATTGATTCCCACACACCCCCTCTCC GCCCCATCCTGAAGAAGACGCCCAGCCTGGGCTTCTGTGTCACCTACGTCTTCTTCATCACC AGCCTCATCTACCCCGCCGTCTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCTCACT GTGGACCACCAAGTTTTTCATCCCCCTCACTACCTTCCTCCTGTACAACTTTGCTGACCTAT GTGGCCGGCAGCTCACCGCCTGGATCCAGGTGCCAGGGCCCAACAGCAAGGCGCTCCCAGGG TTCGTGCTCCTCGGACCTGCCTCATCCCCCTCTTCGTGCTCTGTAACTACCAGCCCCGCGT CCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGTACCCCGCACTCCTCAGCTCCCTGCTGG GGCTCAGCAACGGCTACCTCAGCACCCTGGCCCTCCTCTACGGGCCTAAGATTGTGCCCAGG GAGCTGGCTGAGGCCACGGGAGTGGTGATGTCCTTTTATGTGTGCTTGGGCTTAACACTGGG ${\tt CTCAGCCTGCTCCTGGTGCACCTCATC} {\color{red}{\textbf{TAG}}} {\tt AAGGGAGGACACAAGGACATTGGTG}$ CTTCAGÄGCCTTTGAAGATGAGAAGAGTGCAGGAGGGCTGGGGGCCATGGAGGAAAGGCC GTGAGCCACGTCCATGCCCATTCCGTGCAAGGCAGATATTCCAGTCATATTAACAGAACACT CCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGGTACTCCCTTCACAGCTGATGGTTA ACATTCCACCTTCTTTCTAGCCCTTCAAAGATGCTGCCAGTGTTCGCCCTAGAGTTATTACA AAGCCAGTGCCAAAACCCAGCCATGGGCTCTTTGCAACCTCCCAGCTGCGCTCATTCCAGCT GACAGCGAGATGCAAGCAAATGCTCAGCTCTCCTTACCCTGAAGGGGTCTCCCTGGAATGGA AGTCCCCTGGCATGGTCAGTCCTCAGGCCCAAGACTCAAGTGTGCACAGACCCCTGTGTTCT GCGGGTGAACAACTGCCCACTAACCAGACTGGAAAACCCAGAAAGATGGGCCTTCCATGAAT GCTTCATTCCAGAGGGACCAGAGGGCCTCCCTGTGCAAGGGATCAAGCATGTCTGGCCTGGG TTTTCAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGGTCAAGATGAGGGTC GTATTCAAAAA

FIGURE 48

MAVVSEDDFQHSSNSTYGTTSSSLRADQEALLEKLLDRPPPGLQRPEDRFCGTYIIFFSLGI
GSLLPWNFFITAKEYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFL
LVNRVAVHIRVLASLTVILAIFMVITALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSI
YGMTGSFPMRNSQALISGGAMGGTVSAVASLVDLAASSDVRNSALAFFLTATIFLVLCMGLY
LLLSRLEYARYYMRPVLAAHVFSGEEELPQDSLSAPSVASRFIDSHTPPLRPILKKTASLGF
CVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKFFIPLTTFLLYNFADLCGRQLTAWIQVP
GPNSKALPGFVLLRTCLIPLFVLCNYQPRVHLKTVVFQSDVYPALLSSLLGLSNGYLSTLAL
LYGPKIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330, 448-472

FIGURE 49

GACAGTGGAGGGCAGTGGAGAGCCGCGCTGTCCTGCTGTCACCAAGAGCTGGAGACACCA $\texttt{TCTCCCACCGAGAGTC} \underline{\textbf{ATG}} \texttt{GCCCCATTGGCCCTGCACCTCCTCGTCCTCGTCCCCATCCTCC}$ TCAGCCTGGTGGCCTCCCAGGACTGGAAGGCTGAACGCAGCCAAGACCCCTTCGAGAAATGC ATGCAGGATCCTGACTATGAGCAGCTGCTCAAGGTGGTGACCTGGGGGGCTCAATCGGACCCT GAAGCCCCAGAGGGTGATTGTGGTTGGCGCTGGTGGCCGGGCTGGTGGCCGCCAAGGTGC TCAGCGATGCTGGACACAAGGTCACCATCCTGGAGGCAGATAACAGGATCGGGGGCCGCATC TTCACCTACCGGGACCAGAACACGGGCTGGATTGGGGAGCTGGGAGCCATGCCCAG CTCTCACAGGATCCTCCACAAGCTCTGCCAGGGCCTGGGGCTCAACCTGACCAAGTTCACCC AGTACGACAAGAACACGTGGACGGAGGTGCACGAAGTGAAGCTGCGCAACTATGTGGTGGAG AAGGTGCCCGAGAAGCTGGGCTACGCCTTGCGTCCCCAGGAAAAGGGCCACTCGCCCGAAGA CATCTACCAGATGGCTCTCAACCAGGCCCTCAAAGACCTCAAGGCACTGGGCTGCAGAAAGG CGATGAAGAAGTTTGAAAGGCACACGCTCTTGGAATATCTTCTCGGGGAGGGGAACCTGAGC CGGCCGGCCGTGCAGCTTCTGGGAGACGTGATGTCCGAGGATGGCTTCTTCTATCTCAGCTT CGCCGAGGCCCTCCGGGCCCACAGCTGCCTCAGCGACAGACTCCAGTACAGCCGCATCGTGG GTGGCTGGGACCTGCTGCCGCGCGCGCTGCTGAGCTCGCTGTCCGGGCTTGTGCTGTTGAAC GCGCCCGTGGTGGCGATGACCCAGGGACCGCACGATGTGCACGTGCAGATCGAGACCTCTCC CCCGGCGCGGAATCTGAAGGTGCTGAAGGCCGACGTGGTGCTGACGGCGAGCGGACCGG CGGTGAAGCGCATCACCTTCTCGCCGCCGCCGCCACATGCAGGAGGCGCTGCGGAGG CTGCACTACGTGCCGGCCACCAAGGTGTTCCTAAGCTTCCGCAGGCCCTTCTGGCGCGAGGA GCACATTGAAGGCGGCCACTCAAACACCGATCGCCCGTCGCGCATGATTTTCTACCCGCCGC CGCGCGAGGGCGCGCTGCTGGCCTCGTACACGTGGTCGGACGCGGCGGCAGCGTTCGCC GGCTTGAGCCGGGAAGAGGCGTTGCGCTTGGCGCTCGACGACGTGGCGCATTGCACGGGCC TGTCGTGCGCCAGCTCTGGGACGGCACCGGCGTCGTCAAGCGTTGGGCGGAGGACCAGCACA GCCAGGGTGGCTTTGTGGTACAGCCGCCGCCGCCTCTGGCAAACCGAAAAGGATGACTGGACG GTCCCTTATGGCCGCATCTACTTTGCCGGCGAGCACCCCCTACCCGCACGGCTGGGTGGA GACGGCGGTCAAGTCGGCGCTGCGCCCCCCCATCAAGATCAACAGCCGGAAGGGGCCTGCAT CGGACACGGCCAGCCCCGAGGGGCACGCATCTGACATGGAGGGGCAGGGGCATGTGCATGGG CCAGTTATCTCTCCAAAACACGACCCACACGAGGACCTCGCAT**TAA**AGTATTTTCGGAAAAA

FIGURE 50

MAPLALHLLVLVPILLSLVASQDWKAERSQDPFEKCMQDPDYEQLLKVVTWGLNRTLKPQRV
IVVGAGVAGLVAAKVLSDAGHKVTILEADNRIGGRIFTYRDQNTGWIGELGAMRMPSSHRIL
HKLCQGLGLNLTKFTQYDKNTWTEVHEVKLRNYVVEKVPEKLGYALRPQEKGHSPEDIYQMA
LNQALKDLKALGCRKAMKKFERHTLLEYLLGEGNLSRPAVQLLGDVMSEDGFFYLSFAEALR
AHSCLSDRLQYSRIVGGWDLLPRALLSSLSGLVLLNAPVVAMTQGPHDVHVQIETSPPARNL
KVLKADVVLLTASGPAVKRITFSPPLPRHMQEALRRLHYVPATKVFLSFRRPFWREEHIEGG
HSNTDRPSRMIFYPPPREGALLLASYTWSDAAAAFAGLSREEALRLALDDVAALHGPVVRQL
WDGTGVVKRWAEDQHSQGGFVVQPPALWQTEKDDWTVPYGRIYFAGEHTAYPHGWVETAVKS
ALRAAIKINSRKGPASDTASPEGHASDMEGQGHVHGVASSPSHDLAKEEGSHPPVQGQLSLQ
NTTHTRTSH

Signal peptide:

amino acids 1-21

FIGURE 51

GAACTCAGAGCCGGGAAGCCCCCATTCACTAGAAGCACTGAGAGTGCGGCCCCCTCGCAGGGTCTGAATTTCCT GCTGCTGTTCACAAAGATGCTTTTTATCTTTAACTTTTTGTTTTCCCCACTTCCGACCCCGGCGTTGATCTGCAT $\verb|CCTGACATTTGGAGCTGCCATCTTCTTGTGGCTGATCACCAGACCTCAACCCGTCTTACCTCTTGTGACCTGAA| \\$ CAATCAGTCTGTGGGAATTGAGGGAGGAGCACGGAAGGGGGTTTCCCAGAAGAACAATGACCTAACAAGTTGCTG CTTCTCAGATGCCAAGACTATGTATGAGGTTTTCCAAAGAGGACTCGCTGTGTCTGACAATGGGCCCTGCTTGGG ATATAGAAAACCAAACCAGCCCTACAGATGGCTATCTTACAAACAGGTGTCTGATAGAGCAGAGTACCTGGGTTC CTGTCTCTTGCATAAAGGTTATAAATCATCACCAGACCAGTTTGTCGGCATCTTTGCTCAGAATAGGCCAGAGTG GATCATCTCCGAATTGGCTTGTTACACGTACTCTATGGTAGCTGTACCTCTGTATGACACCTTGGGACCAGAAGC CATCGTACATATTGTCAACAAGGCTGATATCGCCATGGTGATCTGTGACACACCCCAAAAGGCATTGGTGCTGAT AGGGAATGTAGAGAAAGGCTTCACCCCGAGCCTGAAGGTGATCATCCTTATGGACCCCTTTGATGATGACCTGAA GCAAAGAGGGGAGAAGAGTGGAATTGAGATCTTATCCCTATATGATGCTGAGAACCTAGGCAAAGAGCACTTCAG AAAACCTGTGCCTCCTAGCCCAGAAGACCTGAGCGTCATCTGCTTCACCAGTGGGACCACAGGTGACCCCAAAGG AGCCATGATAACCCATCAAAATATTGTTTCAAATGCTGCTGCCTTTCTCAAATGTGTGGAGCATGCTTATGAGCC CACTCCTGATGATGTGGCCATATCCTACCTCCCTCTGGCTCATATGTTTGAGAGGATTGTACAGGCTGTTGTGTA ${\tt CACATTGTTTCCCGCGGTGCCTCGACTCCTTAACAGGATCTACGATAAGGTACAAAATGAGGCCAAGACACCCTT}$ GAAGAAGTTCTTGTTGAAGCTGGCTGTTTCCAGTAAATTCAAAAGAGCTTCAAAAGGGTATCATCAGGCATGATAG TTTCTGGGACAAGCTCATCTTTGCAAAGATCCAGGACAGCCTGGGCGGAAGGGTTCGTGTAATTGTCACTGGAGC TGCCCCCATGTCCACTTCAGTCATGACATTCTTCCGGGCAGCAATGGGATGTCAGGTGTATGAAGCTTATGGTCA AACAGAATGCACAGGTGGCTGTACATTACATTACCTGGGGACTGGACATCAGGTCACGTTGGGGTGCCCCTGGC TTGCAATTACGTGAAGCTGGAAGATGTGGCTGACATGAACTACTTTACAGTGAATAATGAAGGAGAGGTCTGCAT CAAGGGTACAAACGTGTTCAAAGGATACCTGAAGGACCCTGAGAAGACACAGGAAGCCCTGGACAGTGATGGCTG GCTTCACACAGGAGACATTGGTCGCTGGCTCCCGAATGGAACTCTGAAGATCATCGACCGTAAAAAGAACATTTT CAAGCTGGCCCAAGGAGAATACATTGCACCAGAGAAGATAGAAAATATCTACAACAGGAGTCAACCAGTGTTACA AATTTTTGTACACGGGGAGAGCTTACGGTCATCCTTAGTAGGAGTGGTGGTTCCTGACACAGATGTACTTCCCTC ATTTGCAGCCAAGCTTGGGGTGAAGGGCTCCTTTGAGGAACTGTGCCAAAACCAAGTTGTAAGGGAAGCCATTTT AGAAGACTTGCAGAAAATTGGGAAAGAAAGTGGCCTTAAAACTTTTGAACAGGTCAAAGCCATTTTTCTTCATCC AGAGCCATTTTCCATTGAAAATGGGCTCTTGACACCAACATTGAAAGCAAAGCGAGGAGAGCTTTCCAAATACTT ${ t TCGGACCCAAATTGACAGCCTGTATGAGCACATCCAGGAT{ t TAG}{ t GATAAGGTACTTAAGTACCTGCCGGCCCACTG}$ ${\tt TGCACTGCTTGTGAGAAAATGGATTAAAAACTATTCTTAC} \overline{{\tt ATTTGTTTTGCCTTTCCTCCTATTTTTTTAACC}$ ATCCTGTCTTTCCCATCTTCGATGTTGCTAATATTAAGGCTTCAGGGCTACTTTTATCAACATGCCTGTCTTCAA GATCCCAGTTTATGTTCTGTGTCCTTCATGATTTCCAACCTTAATACTATTAGTAACCACAAGTTCAAGGGT CAAAGGGACCCTCTGTGCCTTCTTTGTTTTGTGATAAACATAACTTGCCAACAGTCTCTATGCTTATTTACA TCTTCTACTGTTCAAACTAAGAGATTTTTAAATTCTGAAAAACTGCTTACAATTCATGTTTTCTAGCCACTCCAC AAACCACTAAAATTTTAGTTTTAGCCTATCACTCATGTCAATCATATCTATGAGACAAATGTCTCCGATGCTCTT CTGCGTAAATTAAATTGTGTACTGAAGGGAAAAGTTTGATCATACCAAACATTTCCTAAACTCTCTAGTTAGATA TCTGACTTGGGAGTATTAAAAATTGGGTCTATGACATACTGTCCAAAAGGAATGCTGTTCTTAAAGCATTATTTA CAGTAGGAACTGGGGGGGTAAATCTGTTCCCTACAGTTTGCTGCTGAGCTGGAAGCTGTGGGGGAAGGAGTTGACA GGTGGGCCCAGTGAACTTTTCCAGTAAATGAAGCAAGCACTGAATAAAAACCTCCTGAACTGGGAACAAAGATCT ACAGGCAAGCAAGATGCCCACACAACAGGCTTATTTTCTGTGAAGGAACCAACTGATCTCCCCCACCCTTGGATT AGAGTTCCTGCTCTACCTTACCCACAGATAACACATGTTGTTTCTACTTGTAAATGTAAAGTCTTTAAAATAAAC TATTACAGATAAAAA

FIGURE 52

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60775</pre>

<subunit 1 of 1, 739 aa, 1 stop</pre>

<MW: 82263, pI: 7.55, NX(S/T): 3

MDALKPPCLWRNHERGKKDRDSCGRKNSEPGSPHSLEALRDAAPSQGLNFLLLFTKMLFIFN
FLFSPLPTPALICILTFGAAIFLWLITRPQPVLPLLDLNNQSVGIEGGARKGVSQKNNDLTS
CCFSDAKTMYEVFQRGLAVSDNGPCLGYRKPNQPYRWLSYKQVSDRAEYLGSCLLHKGYKSS
PDQFVGIFAQNRPEWIISELACYTYSMVAVPLYDTLGPEAIVHIVNKADIAMVICDTPQKAL
VLIGNVEKGFTPSLKVIILMDPFDDDLKQRGEKSGIEILSLYDAENLGKEHFRKPVPPSPED
LSVICFTSGTTGDPKGAMITHQNIVSNAAAFLKCVEHAYEPTPDDVAISYLPLAHMFERIVQ
AVVYSCGARVGFFQGDIRLLADDMKTLKPTLFPAVPRLLNRIYDKVQNEAKTPLKKFLLKLA
VSSKFKELQKGIIRHDSFWDKLIFAKIQDSLGGRVRVIVTGAAPMSTSVMTFFRAAMGCQVY
EAYGQTECTGGCTFTLPGDWTSGHVGVPLACNYVKLEDVADMNYFTVNNEGEVCIKGTNVFK
GYLKDPEKTQEALDSDGWLHTGDIGRWLPNGTLKIIDRKKNIFKLAQGEYIAPEKIENIYNR
SQPVLQIFVHGESLRSSLVGVVVPDTDVLPSFAAKLGVKGSFEELCQNQVVREAILEDLQKI
GKESGLKTFEQVKAIFLHPEPFSIENGLLTPTLKAKRGELSKYFRTQIDSLYEHIQD

Important features:

Type II transmembrane domain:

amino acids 61-80

Putative AMP-binding domain signature.

amino acids 314-325

N-glycosylation site.

amino acids 102-105, 588-591 and 619-622

FIGURE 53

GGAGGCGGAGCCGCGGGCCGGGCCGAGCAGTGAGGGCCCTAGCGGGGCCCGAGCGGG CCCGGGGCCCCTAAGCCATTCCTGAAGTCATGGGCTGGCCAGGACATTGGTGACCCGCCAAT CCGGT**ATG**GACGACTGGAAGCCCAGCCCCTCATCAAGCCCTTTGGGGCTCGGAAGAAGCGG AGCTGGTACCTTACCTGGAAGTATAAACTGACAAACCAGCGGGCCCTGCGGAGATTCTGTCA GACAGGGGCCGTGCTTTTCCTGCTGGTGACTGTCATTGTCAATATCAAGTTGATCCTGGACA CTCGGCGAGCCATCAGTGAAGCCAATGAAGACCCAGAGCCAGAGCAAGACTATGATGAGGCC CTAGGCCGCCTGGAGCCCCCACGGCGCAGAGGCAGTGGTCCCCGGCGGGTCCTGGACGTAGA GGTGTATTCAAGTCGCAGCAAAGTATATGTGGCAGTGGATGGCACCACGGTGCTGGAGGATG AGGCCCGGGAGCAGGCCGGGCCATCCATGTCATTGTCCTCAACCAGGCCACGGGCCACGTG ATGGCAAAACGTGTTTTGACACGTACTCACCTCATGAGGATGAGGCCATGGTGCTATTCCT CAACATGGTAGCGCCCGGCCGAGTGCTCATCTGCACTGTCAAGGATGAGGGCTCCTTCCACC TCAAGGACACAGCCAAGGCTCTGCTGAGGAGCCTGGGCAGCCAGGCTGGCCCTGCGCC TGGAGGGACACATGGGCCTTCGTGGGACGAAAAGGAGGTCCTGTCTTCGGGGAGAAACATTC TAAGTCACCTGCCCTCTCTTCCTGGGGGGACCCAGTCCTGCTGAAGACAGATGTGCCATTGA GCTCAGCAGAAGAGGCAGAGTGCCACTGGGCAGACACAGAGCTGAACCGTCGCCGCCGCCG TTCTGCAGCAAAGTTGAGGGCTATGGAAGTGTATGCAGCTGCAAGGACCCCACACCCATCGA GTTCAGCCCTGACCCACTCCCAGACAACAAGGTCCTCAATGTGCCTGTGGCTGTCATTGCAG GGAACCGACCCAATTACCTGTACAGGATGCTGCGCTCTCTGCTTTCAGCCCAGGGGGTGTCT CCTCAGATGATAACAGTTTTCATTGACGGCTACTATGAGGAACCCATGGATGTGGTGGCACT GTTTGGTCTGAGGGGCATCCAGCATACTCCCATCAGCATCAAGAATGCCCGCGTGTCTCAGC ACTACAAGGCCAGCCTCACTGCCACTTTCAACCTGTTTCCGGAGGCCAAGTTTGCTGTGGTT ACTGGAGGAGGATGACAGCCTGTACTGCATCTCTGCCTGGAATGACCAGGGGTATGAACACA CGGCTGAGGACCCAGCACTACTGTACCGTGTGGAGACCATGCCTGGGCTGGGTGCTC AGGAGGTCCTTGTACAAGGAGGAGCTTGAGCCCAAGTGGCCTACACCGGAAAAGCTCTGGGA TTGGGACATGTGGATGCCTGAACAACGCCGGGGCCGAGAGTGCATCATCCCTGACG TTTCCCGATCCTACCACTTTGGCATCGTCGGCCTCAACATGAATGGCTACTTTCACGAGGCC TACTTCAAGAAGCACAAGTTCAACACGGTTCCAGGTGTCCAGGCTCAGGAATGTGGACAGTCT GAAGAAAGAAGCTTATGAAGTGGAAGTTCACAGGCTGCTCAGTGAGGCTGAGGTTCTGGACC ACAGCAAGAACCCTTGTGAAGACTCTTTCCTGCCAGACACAGAGGGCCACACCTACGTGGCC TTTATTCGAATGGAGAAAGATGATTCACCACCTGGACCCAGCTTGCCAAGTGCCTCCA TATCTGGGACCTGGATGTGCGTGGCAACCATCGGGGCCTGTGGAGATTGTTTCGGAAGAAGA ACCACTTCCTGGTGGTGGGGGTCCCGGCTTCCCCCTACTCAGTGAAGAAGCCACCCTCAGTC TCCCTCCATCCTGTAGGATTTTGTAGATGCTGGTAGGGGCTGGGGCTACCTTGTTTTTAACA TGAGACTTAATTACTAACTCCAAGGGGAGGGTTCCCCTGCTCCAACACCCCGTTCCTGAGTT AAAAGTCTATTTATTTACTTCCTTGTTGGAGAAGGGCAGGAGTACCTGGGAATCATTACG ATCCCTAGCAGCTCATCCTGCCCTTTGAATACCCTCACTTTCCAGGCCTGGCTCAGAATCTA ACCTATTTATTGACTGTCCTGAGGGCCTTGAAAACAGGCCGAACCTGGAGGGCCTGGATTTC TTTTTGGGCTGGAATGCTGCCCTGAGGGTGGGGCTGGCTCTTACTCAGGAAACTGCTGTGCC GACACTGGACCAGGCCTCCTCAGCCTTCTCTTTTGTCCAGATTTCCAAAGCTGGATAAGTT

FIGURE 54

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA61185

><subunit 1 of 1, 660 aa, 1 stop

><MW: 75220, pI: 6.76, NX(S/T): 0

MDDWKPSPLIKPFGARKKRSWYLTWKYKLTNQRALRRFCQTGAVLFLLVTVIVNIKLILDTR
RAISEANEDPEPEQDYDEALGRLEPPRRRGSGPRRVLDVEVYSSRSKVYVAVDGTTVLEDEA
REQGRGIHVIVLNQATGHVMAKRVFDTYSPHEDEAMVLFLNMVAPGRVLICTVKDEGSFHLK
DTAKALLRSLGSQAGPALGWRDTWAFVGRKGGPVFGEKHSKSPALSSWGDPVLLKTDVPLSS
AEEAECHWADTELNRRRRFCSKVEGYGSVCSCKDPTPIEFSPDPLPDNKVLNVPVAVIAGN
RPNYLYRMLRSLLSAQGVSPQMITVFIDGYYEEPMDVVALFGLRGIQHTPISIKNARVSQHY
KASLTATFNLFPEAKFAVVLEEDLDIAVDFFSFLSQSIHLLEEDDSLYCISAWNDQGYEHTA
EDPALLYRVETMPGLGWVLRRSLYKEELEPKWPTPEKLWDWDMWMRMPEQRRGRECIIPDVS
RSYHFGIVGLNMNGYFHEAYFKKHKFNTVPGVQLRNVDSLKKEAYEVEVHRLLSEAEVLDHS
KNPCEDSFLPDTEGHTYVAFIRMEKDDDFTTWTQLAKCLHIWDLDVRGNHRGLWRLFRKKNH
FLVVGVPASPYSVKKPPSVTPIFLEPPPKEEGAPGAPEOT

Important features of the protein:

Transmembrane domain:

amino acids 38-55

Homologous region to Mouse GNT1

amino acids 229-660

FIGURE 55

CGGACGCGTGGGCTGCTGGGAAGGCCTAAAGAACTGGAAAGCCCACTCTCTTGGAACCACCACAC CTGTTTAAAGAACCTAAGCACCATTTAAAGCCACTGGAAATTTGTTGTCTAGTGGTTGTGGGTGAATA ${\tt AAGGAGGCCAGA} \underline{\textbf{ATG}} \texttt{GATGATTTCATCTCCATTAGCCTGCTGTCTCTGGCTATGTTGGTGGGATGTTA}$ CGTGGCCGGAATCATTCCCTTGGCTGTTAATTTCTCAGAGGAACGACTGAAGCTGGTGACTGTTTTGG GTGCTGGCCTTCTCTGTGGAACTGCTCTGGCAGTCATCGTGCCTGAAGGAGTACATGCCCTTTATGAA GATATTCTTGAGGGAAAACACCACCAAGCAAGTGAAACACATAATGTGATTGCATCAGACAAAGCAGC AGAAAAATCAGTTGTCCATGAACATGAGCACAGCCACGACCACACAGCTGCATGCCTATATTGGTG TTTCCCTCGTTCTGGGCTTCGTTTTCATGTTGCTGGTGGACCAGATTGGTAACTCCCATGTGCATTCT ACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCCAAAATCACCACCACGCTGGGTCTGGTTGTCCA TGCTGCAGCTGATGGTGTTGCTTTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTCCAGTTAATTG GGCTTAGAGCGGAATCGAATCAGAAAGCACTTGCTGGTCTTTGCATTGGCAGCACCAGTTATGTCCAT GGTGACATACTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTTCAGAGGTGAACGCCACGGGAGTGG CCATGCTTTTCTCTGCCGGGACATTTCTTTATGTTGCCACAGTACATGTCCTCCCTGAGGTGGGCGGA GGTTCTGGGTTGCCTCATCCCTCTCATCCTGTCAGTAGGACACCAGCAT**TAA**ATGTTCAAGGTCCAGC TCTTGTCTCACCTTGCGCATCTCTACATGTATTCCTAGAGTCCAGAGGGGAGGTGAGGTTAAAACCTG AGTAATGGAAAAGCTTTTAGAGTAGAAACACATTTACGTTGCAGTTAGCTATAGACATCCCATTGTGT TATCTTTTAAAAGGCCCTTGACATTTTGCGTTTTAATATTTCTCTTAACCCTATTCTCAGGGAAGATG GAATTTAGTTTTAAGGAAAAGAGGAGAACTTCATACTCACAATGAAATAGTGATTATGAAAATACAGT GTTCTGTAATTAAGCTATGTCTTTCTTTCTTAGTTTAGAGGCTCTGCTACTTTATCCATTGATTTTT AACATGGTTCCCACCATGTAAGACTGGTGCTTTAGCATCTATGCCACATGCGTTGATGGAAGGTCATA GCACCCACTCACTTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAGGAAAATGATAGC AAGACACATTGAAAGCTCTCTTTATACTCAAAAGAGATATCCATTGAAAAGGGATGTCTAGAGGGATT TAAACAGCTCCTTTGGCACGTGCCTCTCTGAATCCAGCCTGCCATTCCATCAAATGGAGCAGGAGAGG TGGGAGGAGCTTCTAAAGAGGTGACTGGTATTTTGTAGCATTCCTTGTCAAGTTCTCCTTTGCAGAAT ACCTGTCTCCACATTCCTAGAGAGGGCCCAAGTTCTAGTAGTTTCAGTTCTAGGCTTTCCTTCAAGAA TTTTTTTTAATTATTTCTCTTAGCAGATCAGCAATCCCTCTAGGGACCTAAATACTAGGTCAGCTTT GGCGACACTGTGTCTCTCACATAACCACCTGTAGCAAGATGGATCATAAATGAGAAGTGTTTGCCTA TTGATTTAAAGCTTATTGGAATCATGTCTCTTGTCTTCTTCGTCTTTTCTTTGCTTTTCTTAACTTT TCCCTCTAGCCTCTCCTCGCCACAATTTGCTGCTTACTGCTGGTGTTAATATTTGTGTGGGATGAATT CTTATCAGGACAACCACTTCTCGAACTGTAATAATGAAGATAATAATATCTTTATTCTTTATCCCCTT CAAAGAAATTACCTTTGTGTCAAATGCCGCTTTGTTGAGCCCTTAAAATACCACCTCCTCATGTGTAA ATTGACACAATCACTAATCTGGTAATTTAAACAATTGAGATAGCAAAAGTGTTTAACAGACTAGGATA ATTTTTTTTTCATATTTGCCAAAATTTTTGTAAACCCTGTCTTGTCAAATAAGTGTATAATATTGTAT TATTAATTTATTTTTACTTTCTATACCATTTCAAAACACATTACACTAAGGGGGAACCAAGACTAGTT TCTTCAGGGCAGTGGACGTAGTTTGTAAAAACGTTTTCTATGACGCATAAGCTAGCATGCCTATG ATTTATTTCCTTCATGAATTTGTCACTGGATCAGCAGCTGTGGAAATAAAGCTTGTGAGCCCTCTGCT ATTTTACTACCAAGAGAAGGTATAGTATGGAAAGTCCAAATGACTTCCTTGATTGGATGTTAACAGCT GACTGGTGTGAGACTTGAGGTTTCATCTAGTCCTTCAAAACTATATGGTTGCCTAGATTCTCTCTGGA AACTGACTTTGTCAAATAAATAGCAGATTGTAGTGTCAAAAAAA

FIGURE 56

MDDFISISLLSLAMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHAL YEDILEGKHHQASETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVDQ IGNSHVHSTDDPEAARSSNSKITTTLGLVVHAAADGVALGAAASTSQTSVQLIVFVAIMLHK APAAFGLVSFLMHAGLERNRIRKHLLVFALAAPVMSMVTYLGLSKSSKEALSEVNATGVAML FSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLILSVGHQH

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 37-56, 106-122, 211-230, 240-260, 288-304

FIGURE 57

GCTCGAGGCCGGCGGCGGGAGAGCGACCCGGGCGGCCTCGTAGCGGGCCCCGGATCCC CGAGTGGCGGCCGGAGCCTCGAAAAGAGATTCTCAGCGCTGATTTTGAGATGATGGGCTTGG GAAACGGGCGTCGCAGCATGAAGTCGCCGCCCCTCGTGCTGGCCGCCCTGGTGGCCTGCATC ATCGTCTTGGGCTTCAACTACTGGATTGCGAGCTCCCGGAGCGTGGACCTCCAGACACGGAT AGAACGAGTTCCAGGGAGAGCTGGAGAAGCAGCGGGAGCAGCTTGACAAAATCCAGTCCAGC CACAACTTCCAGCTGGAGAGCGTCAACAAGCTGTACCAGGACGAAAAGGCGGTTTTGGTGAA TAACATCACCACAGGTGAGAGGCTCATCCGAGTGCTGCAAGACCAGTTAAAGACCCTGCAGA GGAATTACGGCAGGCTGCAGCAGGATGTCCTCCAGTTTCAGAAGAACCAGACCAACCTGGAG AGGAAGTTCTCCTACGACCTGAGCCAGTGCATCAATCAGATGAAGGAGGTGAAGGAACAGTG TGAGGAGCGAATAGAAGAGGTCACCAAAAAGGGGAATGAAGCTGTAGCTTCCAGAGACCTGA GTGAAAACAACGACCAGAGACAGCTCCAAGCCCTCAGTGAGCCTCAGCCCAGGCTGCAG GCAGCAGGCCTGCCACACAGAGGTGCCACAAGGGAAAGGGAAACGTGCTTGGTAACAGCAA GTCCCAGACACCAGCCCCCAGTTCCGAAGTGGTTTTGGATTCAAAGAGACAAGTTGAGAAAG AGGAAACCAATGAGATCCAGGTGGTGAATGAGGAGCCTCAGAGGGACAGGCTGCCGCAGGAG CCAGGCCGGGAGCAGGTGGAAGACAGACCTGTAGGTGGAAGAGGCTTCGGGGGAGCCGG AGAACTGGGCCAGACCCCACAGGTGCAGGCTGCCCTGTCAGTGAGCCAGGAAAATCCAGAGA TGGAGGCCCTGAGCGAGACCAGCTTGTCATCCCCGACGGACAGGAGGAGGAGCAGGAAGCT GCCGGGGAAGGGAAACCAGCAGAAACTGAGAGGAGAAGATGACTACAACATGGATGAAAA TGAAGCAGAATCTGAGACAGCAAGCAAGCCAGCCCTGGCAGGGAATGACAGAAACATAGATG TTTTTAATGTTGAAGATCAGAAAAGAGACACCATAAATTTACTTGATCAGCGTGAAAAGCGG AATCATACACTC**TGA**ATTGAACTGGAATCACATATTTCACAACAGGGCCGAAGAGATGACTA

FIGURE 58

MMGLGNGRRSMKSPPLVLAALVACIIVLGFNYWIASSRSVDLQTRIMELEGRVRRAAAERGA VELKKNEFQGELEKQREQLDKIQSSHNFQLESVNKLYQDEKAVLVNNITTGERLIRVLQDQL KTLQRNYGRLQQDVLQFQKNQTNLERKFSYDLSQCINQMKEVKEQCEERIEEVTKKGNEAVA SRDLSENNDQRQQLQALSEPQPRLQAAGLPHTEVPQGKGNVLGNSKSQTPAPSSEVVLDSKR QVEKEETNEIQVVNEEPQRDRLPQEPGREQVVEDRPVGGRGFGGAGELGQTPQVQAALSVSQ ENPEMEGPERDQLVIPDGQEEEQEAAGEGRNQQKLRGEDDYNMDENEAESETDKQAALAGND RNIDVFNVEDQKRDTINLLDQREKRNHTL

Signal peptide:

amino acids 1-29

FIGURE 59

 ${\tt GG} \underline{\textbf{ATG}} {\tt CAGAAAGCCTCAGTGTTGCTCTTCCTGGCCTGGGTCTGCTTCTTCTACGCTGGCATTGCCCTCTTCA}$ TGCCATGGGGGAGCCAAGGGAAACCTGGGGCCTGCTGGATGGCTTCCCGATTTTCGCGGGTTGTTGGTGCTGA TAGATGCTCTGCGATTTGACTTCGCCCAGCCCCAGCATTCACACGTGCCTAGAGAGCCTCCTGTCTCCCTACCCT TCCTGGGCAAACTAAGCTCCTTGCAGAGGATCCTGGAGATTCAGCCCCACCATGCCCGGCTCTACCGATCTCAGG GTAGTAACTTCGCCAGCCACGCCATAGTGGAAGACAATCTCATTAAGCAGCTCACCAGTGCAGGAAGGCGTGTAG TCTTCATGGGAGATGATACCTGGAAAGACCTTTTCCCTGGTGCTTTCTCCAAAGCTTTCTTCTTCCCATCCTTCA ATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGGAACACCTCTACCCCACCATGGACAGTGGTGAATGGG ACGTGCTGATTGCTCACTTCCTGGGTGTGGACCACTGTGGCCACAAGCATGGCCCTCACCACCCTGAAATGGCCA AGAAACTTAGCCAGATGGACCAGGTGATCCAGGGACTTGTGGAGCGTCTGGAGAATGACACACTGCTGGTAGTGG $\tt CTGGGGACCATGGGAGCCACAAATGGAGACCATGGAGGGGACAGTGAGCTGGAGGTCTCAGCTGCTCTTTC$ TGTATAGCCCCACAGCAGTCTTCCCCAGCACCCCACCAGAGGAGCCAGAGGTGATTCCTCAAGTTAGCCTTGTGC CCACGCTGGCCCTGCTGGGCCTGCCCATCCCATTTGGGAATATCGGGGAAGTGATGGCTGAGCTATTCTCAG GGGGTGAGGACTCCCAGCCCCACTCCTCTGCTTTAGCCCAAGCCTCAGCTCTCCATCTCAATGCTCAGCAGGTGT ${\tt CCCGATTTCTTCATACCTACTCAGCTGCTACTCAGGACCTTCAAGCTAAGGAGCTTCATCAGCTGCAGAACCTCT}$ TCTCCAAGGCCTCTGCTGACTACCAGTGGCTTCTCCAGAGCCCCAAGGGGGCTGAGGCGACACTGCCGACTGTGA $\tt TTGCTGAGCTGCAGCAGTTCCTGCGGGGAGCTCGGGCCATGTGCATCGAGTCTTGGGCTCGTTTCTCTTGGTCC$ ${\tt CAGGCTTTCCATTCTGCCCTCTACTCCTGACACCTGTGGCCTGGGGCCTGGTTGGGGCCATAGCGTATGCTGGAC}$ TCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGCTTCTAGGGGCTGTGGCTGCAGTGAGCTCATTCCTCCCTT TTCTGTGGAAAGCCTGGGCTGGGGGGTCCAAGAGGCCCCTGGCAACCCTGTTTCCCATCCCTGGGCCCGTCC TGTTACTCCTGCTGTTTCGCTTGGCTGTTCTTCTCTGATAGTTTTGTTGTAGCTGAGGCCAGGGCCACCCCCT TCCTTTTGGGCTCATTCATCCTGCTCCTGGTTGTCCAGCTTCACTGGGAGGGCCAGCTGCTTCCACCTAAGCTAC TCACAATGCCCCGCCTTGGCACTTCAGCCACAACAAACCCCCCACGGCACAATGGTGCATATGCCCTGAGGCTTG GAATTGGGTTGCCTTTTATGTACAAGGCTAGCTGGGCTTTTTCATCGTTGCCCTGAAGAGACACCTGTTTGCCACT CGGCGCTGGTGGCCCTGTTAGCTGCCGTGCGCTTTGTGGCTTCGCCGCTATGGTAATCTCAAGAGCCCCGAGCCAC CCATGCTCTTTGTGCGCTGGGGACTGCCCCTAATGGCATTGGGTACTGCCTACTGGGCATTGGCGTCGGGGG CAGATGAGGCTCCCCCCCCTCTCCGGGTCCTGGTCTCTGGGGCATCCATGGTGCTGCCTCGGGCTGTAGCAGGGC GGACCAGGACTGTCCTCACTCCCTTCTCAGGCCCCCCACTTCTCAAGCTGACTTGGATTATGTGGTCCCTCAAA TCTACCGACACATGCAGGAGGAGTTCCGGGGCCGGTTAGAGAGGACCAAATCTCAGGGTCCCCTGACTGTGGCTG CTTATCAGTTGGGGAGTGTCTACTCAGCTGCTATGGTCACAGCCCTCACCCTGTTGGCCTTCCCACTTCTGCTGT CCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCCGAGGAGGAGGAGGAGGCCACTGATGGAGATGCGGCTCCGGG ATGCGCCTCAGCACTTCTATGCAGCACTGCTGCAGCTGGGCCTCAAGTACCTCTTTATCCTTGGTATTCAGATTC TGGCCTGTGCCTTGGCAGCCTCCATCCTTCGCAGGCATCTCATGGTCTGGAAAGTGTTTGCCCCTAAGTTCATAT TTGAGGCTGTGGGCTTCATTGTGAGCAGCGTGGGACTTCTCCTGGGCATAGCTTTGGTGATGAGAGTGGATGGTG $\tt CTGTGAGCTCCTGGTTCAGGCAGCTATTTCTGGCCCAGCAGAGG{\color{red}{\textbf{TAG}}} CCTAGTCTGTGATTACTGGCACTTGGCT$ TCTTACTATCATGCAGCCAGGGGCCGCTGACATCTAGGACTTCATTATTCTATAATTCAGGACCACAGTGGAGTA GCGTGGTGACTTGCACCTATAATCCCAGCACTTTGGGAGGCAGAGGTGGGAGGATTGCTTGGTCCCAGGAGTTCA

FIGURE 60

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809</pre>

<subunit 1 of 1, 1089 aa, 1 stop

<MW: 118699, pI: 8.49, NX(S/T): 2

MQKASVLLFLAWVCFLFYAGIALFTSGFLLTRLELTNHSSCQEPPGPGSLPWGSQGKPGACW MASRFSRVVLVLIDALRFDFAQPQHSHVPREPPVSLPFLGKLSSLQRILEIQPHHARLYRSO VDPPTTTMQRLKALTTGSLPTFIDAGSNFASHAIVEDNLIKQLTSAGRRVVFMGDDTWKDLF PGAFSKAFFFPSFNVRDLDTVDNGILEHLYPTMDSGEWDVLIAHFLGVDHCGHKHGPHHPEM AKKLSQMDQVIQGLVERLENDTLLVVAGDHGMTTNGDHGGDSELEVSAALFLYSPTAVFPST PPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQASALHLNAQ QVSRFLHTYSAATQDLQAKELHQLQNLFSKASADYQWLLQSPKGAEATLPTVIAELQQFLRG ARAMCIESWARFSLVRMAGGTALLAASCFICLLASOWAISPGFPFCPLLLTPVAWGLVGAIA YAGLLGTIELKLDLVLLGAVAAVSSFLPFLWKAWAGWGSKRPLATLFPIPGPVLLLLLFRLA VFFSDSFVVAEARATPFLLGSFILLLVVQLHWEGQLLPPKLLTMPRLGTSATTNPPRHNGAY ALRLGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGGRAKNLWYGACVAALVALLA AVRLWLRRYGNLKSPEPPMLFVRWGLPLMALGTAAYWALASGADEAPPRLRVLVSGASMVLP RAVAGLAASGLALLLWKPVTVLVKAGAGAPRTRTVLTPFSGPPTSQADLDYVVPQIYRHMQE EFRGRLERTKSQGPLTVAAYQLGSVYSAAMVTALTLLAFPLLLLHAERISLVFLLLFLOSFL LLHLLAAGIPVTTPGPFTVPWQAVSAWALMATQTFYSTGHQPVFPAIHWHAAFVGFPEGHGS CTWLPALLVGANTFASHLLFAVGCPLLLLWPFLCESQGLRKRQQPPGNEADARVRPEEEEEP LMEMRLRDAPQHFYAALLQLGLKYLFILGIQILACALAASILRRHLMVWKVFAPKFIFEAVG FIVSSVGLLLGIALVMRVDGAVSSWFROLFLAOOR

Important features:

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034, 1052-1070

Leucine zipper pattern.

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

FIGURE 61

TGCCGCTGCCGCCGCTGTTGCTCCTGGCGGCGCCTTTGGGGACGGGCAGTTCCCTGT ${\tt GTCTCTGGTGGTTTGCCTAAACCTGCAAACATCACCTTCTTATCCATCAACATGAAGA} {\color{red} {\bf ATG}} {\tt T}$ TCATCACAAATTGGCCCACCAGAGGTGGCACTGACTACAGATGAGAAGTCCATTTCTGTTGT CCTGACAGCTCCAGAGAAGTGGAAGAGAAATCCAGAAGACCTTCCTGTTTCCATGCAACAAA TATACTCCAATCTGAAGTATAACGTGTCTGTGTTGAATACTAAATCAAACAGAACGTGGTCC CAGTGTGTGACCAACCACGCTGGTGCTCACCTGGCTGGAGCCGAACACTCTTTACTGCGT ACACGTGGAGTCCTTCGTCCCAGGGCCCCCTCGCCGTGCTCAGCCTTCTGAGAAGCAGTGTG CCAGGACTTTGAAAGATCAATCATCAGAGTTCAAGGCTAAAATCATCTTCTGGTATGTTTTG CCCATATCTATTACCGTGTTTTTTTTTTTTTGTGATGGGCTATTCCATCTACCGATATATCCA CGTTGGCAAAGAGAAACACCCAGCAAATTTGATTTTGATTTATGGAAATGAATTTGACAAAA GATTCTTTGTGCCTGAAAAAAATCGTGATTAACTTTATCACCCTCAATATCTCGGATGAT TCTAAAATTTCTCATCAGGATATGAGTTTACTGGGAAAAAGCAGTGATGTATCCAGCCTTAA TGATCCTCAGCCCAGCGGGAACCTGAGGCCCCCTCAGGAGGAAGAGAGGAGGTGAAACATTTAG GGTATGCTTCGCATTTGATGGAAATTTTTTGTGACTCTGAAGAAAACACGGAAGGTACTTCT CTCACCCAGCAAGAGTCCCTCAGCAGAACAATACCCCCGGATAAAACAGTCATTGAATATGA ATATGATGTCAGAACCACTGACATTTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTTGCAGG CAAACGTTACAGTACTCATACACCCCTCAGCTCCAAGACTTAGACCCCCTGGCGCAGGAGCA CACAGACTCGGAGGAGGGCCGGAGGAAGAGCCATCGACGACCCTGGTCGACTGGGATCCCC AAACTGGCAGGCTGTTCTTCGCTGTCCAGCTTCGACCAGGATTCAGAGGGCTGCGAG TCCAGACAGGCCACCAGGAGAAAATGAAACCTATCTCATGCAATTCATGGAGGAATGGGGGT $\texttt{TATATGTGCAGATGGAAAAC} \\ \underline{\textbf{TGA}} \\ \texttt{TGCCAACACTTCCTTTTGCCTTTTGTTTCCTGTGCAAAC} \\$ AAGTGAGTCACCCCTTTGATCCCAGCCATAAAGTACCTGGGATGAAAGAAGTTTTTTCCAGT TTGTCAGTGTCTGTGAGAATTACTTATTTCTTTTTCTCTATTCTCATAGCACGTGTGTGATTG GTTCATGCATGTAGGTCTCTTAACAATGATGGTGGGCCTCTGGAGTCCAGGGGCTGGCCGGT TGTTCTATGCAGAGAAAGCAGTCAATAAATGTTTGCCAGACTGGGTGCAGAATTTATTCAGG TGGGTGT

FIGURE 62

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62815</pre>

<subunit 1 of 1, 442 aa, 1 stop

<MW: 49932, pI: 4.55, NX(S/T): 5

MSYNGLHQRVFKELKLLTLCSISSQIGPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQ
QIYSNLKYNVSVLNTKSNRTWSQCVTNHTLVLTWLEPNTLYCVHVESFVPGPPRRAQPSEKQ
CARTLKDQSSEFKAKIIFWYVLPISITVFLFSVMGYSIYRYIHVGKEKHPANLILIYGNEFD
KRFFVPAEKIVINFITLNISDDSKISHQDMSLLGKSSDVSSLNDPQPSGNLRPPQEEEEVKH
LGYASHLMEIFCDSEENTEGTSLTQQESLSRTIPPDKTVIEYEYDVRTTDICAGPEEQELSL
QEEVSTQGTLLESQAALAVLGPQTLQYSYTPQLQDLDPLAQEHTDSEEGPEEEPSTTLVDWD
PQTGRLCIPSLSSFDQDSEGCEPSEGDGLGEEGLLSRLYEEPAPDRPPGENETYLMQFMEEW
GLYVQMEN

Important features:

Signal peptide:

amino acids 1-28

Transmembrane domain:

amino acids 140-163

N-glycosylation sites.

amino acids 71-74, 80-83, 89-92, 204-207, 423-426

FIGURE 63

CGGACGCGTGGGCGGACGCGTGGGTCTCTGCGGGGAGACGCCAGCCTGCG \mathtt{TCTGCC} $\underline{\mathtt{ATG}}$ $\mathtt{GGGCTCGGGGTTGAGGGGGCTGGGGACGTCCTCTGCTGACTGTGGCCACCGCCCT$ GATGCTGCCCGTGAAGCCCCCCGCAGGCTCCTGGGGGGCCCAGATCATCGGGGGCCACGAGG TGACCCCCCACTCCAGGCCCTACATGGCATCCGTGCGCTTCGGGGGCCCAACATCACTGCGGA GGCTTCCTGCTGCGAGCCCGCTGGGTGGTCTCGGCCGCCCACTGCTTCAGCCACAGAGACCT TGTTTGGCATCGATGCTCTCACCACGCACCCCGACTACCACCCCATGACCCACGCCAACGAC ATCTGCCTGCGGCTGAACGGCTCTGCTGTCCTGGGCCCTGCAGTGGGGCTGCTGAGGCT TCGTGTCTGACTTTGAGGAGCTGCCGCCTGGACTGATGGAGGCCAAGGTCCGAGTGCTGGAC CCGGACGTCTGCAACAGCTCCTGGAAGGGCCACCTGACACTTACCATGCTCTGCACCCGCAG TGGGGACAGCCACAGACGGGGCTTCTGCTCGGCCGACTCCGGAGGGCCCCTGGTGTGCAGGA ACCGGGCTCACGGCCTCGTTTCCTTCTCGGGCCTCTGGTGCGGCGACCCCAAGACCCCCGAC GTGTACACGCAGGTGTCCGCCTTTGTGGCCTGGATCTGGGACGTGGTTCGGCGGAGCAGTCC ${\tt CCAGCCCGGCCCCTGCCTGGGACCACCAGGCCCCCAGGAGAAGCCGCC}{{\tt TGA}{\tt GCCACAACCT}}$ TGCGGCATGCAAATGAGATGGCCGCTCCAGGCCTGGAATGTTCCGTGGCTGGGCCCCACGGG AAGCCTGATGTTCAGGGTTGGGGTGGGACGGGCAGCGGTGGGGCACACCCATTCCACATGCA

FIGURE 64

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845

><subunit 1 of 1, 283 aa, 1 stop

><MW: 30350, pI: 9.66, NX(S/T): 2

MGLGLRGWGRPLLTVATALMLPVKPPAGSWGAQIIGGHEVTPHSRPYMASVRFGGQHHCGGF LLRARWVVSAAHCFSHRDLRTGLVVLGAHVLSTAEPTQQVFGIDALTTHPDYHPMTHANDIC LLRLNGSAVLGPAVGLLRLPGRRARPPTAGTRCRVAGWGFVSDFEELPPGLMEAKVRVLDPD VCNSSWKGHLTLTMLCTRSGDSHRRGFCSADSGGPLVCRNRAHGLVSFSGLWCGDPKTPDVY TQVSAFVAWIWDVVRRSSPQPGPLPGTTRPPGEAA

Signal peptide:

amino acids 1-30

FIGURE 65

GAGCTACCCAGGCGGTGTGTGCAGCAAGCTCCGCGCCGACTCCGGACGCCTGACGCCTGA CAGGCGCCGCCGTGCTCAAGGACTATGTCACCGGTGGGGCTTGCCCCAGCAAGGCCACC ATCCCTGGGAAGACGGTCATCGTGACGGGCGCCCAACACAGGCATCGGGAAGCAGACCGCCTT GGAACTGGCCAGGAGAGGGGCAACATCATCCTGGCCTGCCGAGACATGGAGAAGTGTGAGG CGGCAGCAAAGGACATCCGCGGGGAGACCCTCAATCACCATGTCAACGCCCGGCACCTGGAC TTGGCTTCCCTCAAGTCTATCCGAGAGTTTGCAGCAAAGATCATTGAAGAGGAGGAGCGAGT GGACATTCTAATCAACAACGCGGGTGTGATGCGGTGCCCCCACTGGACCACCGAGGACGGCT TCGAGATGCAGTTTGGCGTTAACCACCTGGGTCACTTTCTCTTGACAAACTTGCTGGAC AAGCTGAAAGCCTCAGCCCCTTCGCGGATCATCAACCTCTCGTCCCTGGCCCATGTTGCTGG GCACATAGACTTGACGACTTGAACTGGCAGACGAGGAAGTATAACACCAAAGCCGCCTACT GCCAGAGCAAGCTCGCCATCGTCCTCTTCACCAAGGAGCTGAGCCGGCGGCTGCAAGGCTCT GGTGTGACTGTCAACGCCCTGCACCCCGGCGTGGCCAGGACAGAGCTGGGCAGACACACGGG GCCCCGAGCTGGCCGCCCAGCCCAGCACATACCTGGCCGTGGCGGAGGAACTGGCGGATGTT TCCGGAAAGTACTTCGATGGACTCAAACAGAAGGCCCCGGCCCCCGAGGCTGAGGATGAGGA GGTGGCCCGGAGGCTTTGGGCTGAAAGTGCCCGCCTGGTGGGCTTAGAGGCTCCCTCTGTGA ${\tt GGGAGCAGCCCTCCCCAGA} {\color{red}{\bf TAA}} {\tt CCTCTGGAGCAGATTTGAAAGCCAGGATGGCGCCTCCAG}$ ACCGAGGACAGCTGTCCGCCATGCCCGCAGCTTCCTGGCACTACCTGAGCCGGGAGACCCAG GACTGGCGGCCCATGCCCGCAGTAGGTTCTAGGGGGGCGGTGCTGGCCGCAGTGGACTGGC CTGCAGGTGAGCACTGCCCGGGCTCTGGCTGGTTCCGTCTGCTGCTGCCAGCAGGGGAG AGGGGCCATCTGATGCTTCCCCTGGGAATCTAAACTGGGAATGGCCGAGGAGGAAGGGGCTC TGTGCACTTGCAGGCCACGTCAGGAGAGCCAGCGGTGCCTGTCGGGGAGGGTTCCAAGGTGC TCCGTGAAGAGCATGGGCAAGTTGTCTGACACTTGGTGGATTCTTGGGTCCCTGTGGGACCT TGTGCATGCATGGTCCTCTGAGCCTTGGTTTCTTCAGCAGTGAGATGCTCAGAATAACTG CTGTCTCCCATGATGGTGTGGTACAGCGAGCTGTTGTCTGGCTATGGCATGGCTGTGCCGGG GGTGTTTGCTGAGGGCTTCCTGTGCCAGAGCCCAGCCAGAGAGCAGGTGCAGGTGTCATCCC GAGTTCAGGCTCTGCACGGCATGGAGTGGGAACCCCACCAGCTGCTGCTACAGGACCTGGGA TTGCCTGGGACTCCCACCTTCCTATCAATTCTCATGGTAGTCCAAACTGCAGACTCTCAAAC TTGCTCATTT

FIGURE 66

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64842</pre>

><subunit 1 of 1, 331 aa, 1 stop

><MW: 35932, pI: 8.45, NX(S/T): 1

MSRYLLPLSALGTVAGAAVLLKDYVTGGACPSKATIPGKTVIVTGANTGIGKQTALELARRG GNIILACRDMEKCEAAAKDIRGETLNHHVNARHLDLASLKSIREFAAKIIEEEERVDILINN AGVMRCPHWTTEDGFEMQFGVNHLGHFLLTNLLLDKLKASAPSRIINLSSLAHVAGHIDFDD LNWQTRKYNTKAAYCQSKLAIVLFTKELSRRLQGSGVTVNALHPGVARTELGRHTGIHGSTF SSTTLGPIFWLLVKSPELAAQPSTYLAVAEELADVSGKYFDGLKQKAPAPEAEDEEVARRLW AESARLVGLEAPSVREQPLPR

Signal peptide:

amino acids 1-17

FIGURE 67

GAAGTTCGCGAGCGCTGGCATGTCGTGGTCCTGGGGGGCGCTGCTGCTGCTGCTG GCGCTCGGGACAGGAGACCCAGAAAGGGCTGCGGCTCGGGGCGACACGTTCTCGGCGCTGAC CAGCGTGGCGCCCCTGGCGCCCGAGCGCCGGCTGCTGGGGCTGCTGAGGCGGTACCTGC GAGGATTCAACAACCCCTGTGGCTAACCCTCTGCTTGCATTTACTCTCATCAAACGCCTGCA GTCTGACTGGAGGAATGTGGTACATAGTCTGGAGGCCAGTGAGAACATCCGAGCTCTGAAGG ATGGCTATGAGAAGGTGGAGCAAGACCTTCCAGCCTTTGAGGACCTTGAGGGAGCAGCAAGG GCCCTGATGCGGCTGCAGGACGTGTACATGCTCAATGTGAAAGGCCTGGCCCGAGGTGTCTT TCAGAGAGTCACTGGCCTCTGCCATCACTGACCTGTACAGCCCCAAACGGCTCTTTTCTCTCA CAGGGGATGACTGCCTACCAAGTTGGCAAGGTGGCCTATGACATGGGGGATTATTACCATGCC ATTCCATGGCTGGAGGAGGCTGTCAGTCTCTTCCGAGGATCTTACGGAGAGTGGAAGACAGA GGATGAGGCAAGTCTAGAAGATGCCTTGGATCACTTGGCCTTTGCTTATTTCCGGGCAGGAA ATGTTTCGTGTGCCCTCAGCCTCTCTCGGGAGTTTCTTCTCTACAGCCCAGATAATAAGAGG ATGGCCAGGAATGTCTTGAAATATGAAAGGCTCTTGGCAGAGAGCCCCAACCACGTGGTAGC TGAGGCTGTCATCCAGAGGCCCAATATACCCCACCTGCAGACCAGAGACACCTACGAGGGGC TATGTCAGACCCTGGGTTCCCAGCCCACTCTCTACCAGATCCCTAGCCTCTACTGTTCCTAT GAGACCAATTCCAACGCCTACCTGCTGCTCCAGCCCATCCGGAAGGAGGTCATCCACCTGGA GCCCTACATTGCTCTCTCCATGACTTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAAC TTGCAGAACCATGGCTACAGAGGTCAGTGGTGGCATCAGGGGAGAAGCAGTTACAAGTGGAG TACCGCATCAGCAAAAGTGCCTGGCTGAAGGACACTGTTGACCCAAAACTGGTGACCCTCAA CCACCGCATTGCTGCCCTCACAGGCCTTGATGTCCGGCCTCCCTATGCAGAGTATCTGCAGG TGGTGAACTATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATGCTACGTCACCAAGC GGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTGGTTAGGA ATGCAGCACTGTTTTGGTGGAACCTGCACAGGAGTGGTGAAGGGGGACAGTGACACTTCAT GCTGGCTGTCCTGGTGGGAGATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGG ${ t ACAGGAATTCCGCAGACCCTGCAGCCCTGAAGAC}{ t TGA}{ t ACTGTTGGCAGAGAGAGC}$ TGGTGGAGTCCTGTGGCTTTCCAGAGAAGCCAGGAGCCAAAAGCTGGGGTAGGAGAGAAA AGCAGAGCAGCCTCCTGGAAGAAGGCCTTGTCAGCTTTGTCTGTGCCTCGCAAATCAGAGGC AAGGGAGAGGTTGTTACCAGGGGACACTGAGAATGTACATTTGATCTGCCCCAGCCACGGAA AGTTCAGATACTCTCTGTTGGGAACAGGACATCTCAACAGTCTCAGGTTCGATCAGTGGGTC TTTTGGCACTTGACCTTGACCACAGGGACCAAGAAGTGGCAATGAGGACACCTGCAGGAG GGGCTAGCCTGACTCCCAGAACTTTAAGACTTTCTCCCCACTGCCTTCTGCTGCAGCCCAAG CAGGGAGTGTCCCCCCCCAGAAGCATATCCCAGATGAGTGGTACATTATATAAGGATTTTT TTTAAGTTGAAAACAACTTTCTTTTCTTTTTGTATGATGGTTTTTTAACACAGTCATTAAAA ATGTTTATAAATCAAAA

FIGURE 68

MGPGARLAALLAVLALGTGDPERAAARGDTFSALTSVARALAPERRLLGLLRRYLRGEEARL RDLTRFYDKVLSLHEDSTTPVANPLLAFTLIKRLQSDWRNVVHSLEASENIRALKDGYEKVE QDLPAFEDLEGAARALMRLQDVYMLNVKGLARGVFQRVTGSAITDLYSPKRLFSLTGDDCFQ VGKVAYDMGDYYHAIPWLEEAVSLFRGSYGEWKTEDEASLEDALDHLAFAYFRAGNVSCALS LSREFLLYSPDNKRMARNVLKYERLLAESPNHVVAEAVIQRPNIPHLQTRDTYEGLCQTLGS QPTLYQIPSLYCSYETNSNAYLLLQPIRKEVIHLEPYIALYHDFVSDSEAQKIRELAEPWLQ RSVVASGEKQLQVEYRISKSAWLKDTVDPKLVTLNHRIAALTGLDVRPPYAEYLQVVNYGIG GHYEPHFDHATSPSSPLYRMKSGNRVATFMIYLSSVEAGGATAFIYANLSVPVVRNAALFWW NLHRSGEGDSDTLHAGCPVLVGDKWVANKWIHEYGQEFRRPCSSSPED

Signal peptide:

amino acids 1-19

FIGURE 69

GAGATAGGGAGTCTGGGTTTAAGTTCCTGCTCCATCTCAGGAGCCCCTGCTCCCACCCCTAG GAAGCCACCAGACTCCACGGTGTGGGGCCCAATCAGGTGGAATCGGCCCTGGCAGGTGGGGCC ACGAGCGCTGGCTGAGGGACCGGAGCCCCGGAGCCCCCGTAACCCGCGGGGAG TGGCTCAAGTTTTCACTTATCATCTATTCCACCGTGTTCTGGCTGATTGGGGCCCTGGTCCT GTCTGTGGGCATCTATGCAGAGGTTGAGCGGCAGAAATATAAAACCCTTGAAAGTGCCTTCC TGGCTCCAGCCATCATCCTCATCCTCGGGCGTCGTCATGTTCATGGTCTCCTTCATTGGT GTGCTGGCGTCCCTCCGTGACAACCTGTACCTTCTCCAAGCATTCATGTACATCCTTGGGAT CTGCCTCATCATGGAGCTCATTGGTGGCGTGGTGGCCTTGACCTTCCGGAACCAGACCATTG ACTTCCTGAACGACAACATTCGAAGAGGAATTGAGAACTACTATGATGATCTGGACTTCAAA AACATCATGGACTTTGTTCAGAAAAAGTTCAAGTGCTGTGGCGGGGAGGACTACCGAGATTG GAGCAAGAATCAGTACCACGACTGCAGTGCCCCTGGACCCCTGGCCTGTGGGGTGCCCTACA CCTGCTGCATCAGGAACACGACAGAAGTTGTCAACACCATGTGTGGCTACAAAACTATCGAC AAGGAGCGTTTCAGTGTGCAGGATGTCATCTACGTGCGGGGCTGCACCAACGCCGTGATCAT CTGGTTCATGGACAACTACACCATCATGGCGTGCATCCTCCTGGGCATCCTGCTTCCCCAGT TCCTGGGGGTGCTGCTGACGCTGTACATCACCCGGGTGGAGGACATCATCATGGAGCAC ATGCTGCTTGTGCTACCCCAAT**TAG**GGCCCAGCCTGCCATGGCAGCTCCAACAAGGACCGTC TGGGATAGCACCTCTCAGTCAACATCGTGGGGGCTGGACAGGGCTGCGGCCCCTCTGCCCACA CCCAGGGAGCAGAGCCTGGGCCTCCCCTAAGAGGCTTTCCCCGAGGCAGCTCTGGAATCTGT GAGCCTGAGGCTCTCAGGGCCCATTTCATCTCTGGCAGTGCCTTGGCGGTGGTATTCAA GGCAGTTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTCGGGGCAGGAGGGAAGG GCATCTGGGGAAGGGCAGGGAAGAGCTGTCCATGCAGCCACGCCCATGGCCAGGTTGGC CTCTTCTCAGCCTCCCAGGTGCCTTGAGCCCTCTTGCAAGGGCGGCTGCTTCCTTGAGCCTA TAATCAAAGCTGGTATTTCCCCGCATGTCTTATTCTTGCCCCTTCCCCCAACCAGTTTGTTAA

FIGURE 70

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863

><subunit 1 of 1, 294 aa, 1 stop

><MW: 33211, pI: 5.35, NX(S/T): 3

MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIYAEVERQKYKTLESAFLAP
AIILILLGVVMFMVSFIGVLASLRDNLYLLQAFMYILGICLIMELIGGVVALTFRNQTIDFL
NDNIRRGIENYYDDLDFKNIMDFVQKKFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCC
IRNTTEVVNTMCGYKTIDKERFSVQDVIYVRGCTNAVIIWFMDNYTIMACILLGILLPQFLG
VLLTLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCCLCYPN

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 22-42, 57-85, 93-116, 230-257

FIGURE 71

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCAGGTCTGGCATCCTGCACTTGCTGCCCTCTGA CACCTGGGAAGATGGCCGGCCCGTGGACCTTCACCCTTCTCTGTGGTTTGCTGGCAGCCACC TTGATCCAAGCCACCCTCAGTCCCACTGCAGTTCTCATCCTCGGCCCAAAAGTCATCAAAGA AAAGCTGACACAGGAGCTGAAGGACCACAACGCCACCAGCATCCTGCAGCAGCTGCCGCTGC TCAGTGCCATGCGGGAAAAGCCAGCCGGAGGCATCCCTGTGCTGGGCAGCCTGGTGAACACC GTCCTGAAGCACATCATCTGGCTGAAGGTCATCACAGCTAACATCCTCCAGCTGCAGGTGAA GCCCTCGGCCAATGACCAGGAGCTGCTAGTCAAGATCCCCCTGGACATGGTGGCTGGATTCA ACACGCCCTGGTCAAGACCATCGTGGAGTTCCACATGACGACTGAGGCCCAAGCCACCATC CGCATGGACACCAGTGCAAGTGGCCCCACCCGCCTGGTCCTCAGTGACTGTGCCACCAGCCA AGGTCATGAACCTCCTAGTGCCATCCCTGCCCAATCTAGTGAAAAACCAGCTGTGTCCCGTG ATCGAGGCTTCCTTCAATGGCATGTATGCAGACCTCCTGCAGCTGGTGAAGGTGCCCATTTC CCTCAGCATTGACCGTCTGGAGTTTGACCTTCTGTATCCTGCCATCAAGGGTGACACCATTC AGCTCTACCTGGGGGCCAAGTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTTCAATAAC TCTGCAGCTTCCCTGACAATGCCCACCCTGGACAACATCCCGTTCAGCCTCATCGTGAGTCA GGACGTGGTGAAAGCTGCAGTGGCTGCTGTGCTCTCCCAGAAGAATTCATGGTCCTGTTGG ACTCTGTGCTTCCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGAAAAG GCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTT TTTTATAGACCAAGGCCATGCCAAGGTGGCCCAACTGATCGTGCTGGAAGTGTTTCCCTCCA GTGAAGCCCTCCGCCCTTTGTTCACCCTGGGCATCGAAGCCAGCTCGGAAGCTCAGTTTTAC ACCAAAGGTGACCAACTTATACTCAACTTGAATAACATCAGCTCTGATCGGATCCAGCTGAT GAACTCTGGGATTGGCTGGTTCCAACCTGATGTTCTGAAAAACATCATCACTGAGATCATCC ACTCCATCCTGCTGCCGAACCAGAATGGCAAATTAAGATCTGGGGTCCCAGTGTCATTGGTG AAGGCCTTGGGATTCGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGTGCTTACTCC AGCCTCCTTGTGGAAACCCAGCTCTCCTGTCTCCCAGTGAAGACTTGGATGGCAGCCATCAG GGAAGGCTGGGTCCCAGCTGGGAGTATGGGTGTGAGCTCTATAGACCATCCCTCTCTGCAAT CAATAAACACTTGCCTGTGAAAAA

FIGURE 72

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881

><subunit 1 of 1, 484 aa, 1 stop

><MW: 52468, pI: 7.14, NX(S/T): 3

MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPKVIKEKLTQELKDHNATSILQQLPLLSAM REKPAGGIPVLGSLVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPL VKTIVEFHMTTEAQATIRMDTSASGPTRLVLSDCATSHGSLRIQLLYKLSFLVNALAKQVMN LLVPSLPNLVKNQLCPVIEASFNGMYADLLQLVKVPISLSIDRLEFDLLYPAIKGDTIQLYL GAKLLDSQGKVTKWFNNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPEEFMVLLDSVL PESAHRLKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSSEAL RPLFTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIIHSIL LPNQNGKLRSGVPVSLVKALGFEAAESSLTKDALVLTPASLWKPSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

FIGURE 73

GAGCGAAC**ATG**GCAGCGCGTTGGCGGTTTTGGTGTCTCTGTGACCATGGTGGTGGCGCTG CTCATCGTTTGCGACGTTCCCTCAGCCTCTGCCCAAAGAAGAAGAAGAAGATGGTGTTATCTGA AGTTCCGTCGCCTTGTGAAAGCCCCACCGAGAAATTACTCCGTTATCGTCATGTTCACTGCT CTCCAACTGCATAGACAGTGTCGTTTGCAAGCAAGCTGATGAAGAATTCCAGATCCTGGC AAACTCCTGGCGATACTCCAGTGCATTCACCAACAGGATATTTTTTTGCCATGGTGGATTTTT ATGAAGGCTCTGATGTATTTCAGATGCTAAACATGAATTCAGCTCCAACTTTCATCAACTTT CCTGCAAAAGGGAAACCCAAACGGGGTGATACATATGAGTTACAGGTGCGGGGTTTTTCAGC TGAGCAGATTGCCCGGTGGATCGCCGACAGAACTGATGTCAATATTAGAGTGATTAGACCCC CAAATTATGCTGGTCCCCTTATGTTGGGATTGCTTTTTGGCTGTTATTGGTGGACTTGTGTAT CTTCGAAGAAGTAATATGGAATTTCTCTTTAATAAAACTGGATGGGCTTTTGCAGCTTTGTG TTTTGTGCTTGCTATGACATCTGGTCAAATGTGGAACCATATAAGAGGACCACCATATGCCC ATAAGAATCCCCACACGGGACATGTGAATTATATCCATGGAAGCAGTCAAGCCCAGTTTGTA GCTGAAACACACATTGTTCTTCTGTTTAATGGTGGAGTTACCTTAGGAATGGTGCTTTTATG GACTTGTTGTATTATTCTTCAGTTGGATGCTCTCTATTTTTAGATCTAAATATCATGGCTAC CCATACAGCTTTCTGATGAGT**TAA**AAAGGTCCCAGAGATATATAGACACTGGAGTACTGGAA ATTGAAAAACGAAAATCGTGTGTTTTGAAAAGAAGAATGCAACTTGTATATTTTGTATTAC CTCTTTTTTCAAGTGATTTAAATAGTTAATCATTTAACCAAAGAAGATGTGTAGTGCCTTA ACAAGCAATCCTCTGTCAAAATCTGAGGTATTTGAAAATAATTATCCTCTTAACCTTCTCTT CCCAGTGAACTTTATGGAACATTTAATTTAGTACAATTAAGTATATTATAAAAATTGTAAAA CTACTACTTTGTTTTAGTTAGAACAAAGCTCAAAACTACTTTAGTTAACTTGGTCATCTGAT TTTATATTGCCTTATCCAAAGATGGGGAAAGTAAGTCCTGACCAGGTGTTCCCACATATGCC TGTTACAGATAACTACATTAGGAATTCATTCTTAGCTTCTTCATCTTTGTGTGGATGTGTAT ACTTTACGCATCTTTCCTTTTGAGTAGAGAAATTATGTGTGTCATGTGGTCTTCTGAAAATG GAACACCATTCTTCAGAGCACACGTCTAGCCCTCAGCAAGACAGTTGTTTCTCCTCCTCCTT TCTCTAAATACAGGATTATAATTTCTGCTTGAGTATGGTGTTAACTACCTTGTATTTAGAAA GATTTCAGATTCATTCCATCTCCTTAGTTTTCTTTTAAGGTGACCCATCTGTGATAAAAATA TAGCTTAGTGCTAAAATCAGTGTAACTTATACATGGCCTAAAATGTTTCTACAAATTAGAGT TTGTCACTTATTCCATTTGTACCTAAGAGAAAATAGGCTCAGTTAGAAAAGGACTCCCTGG GAGGTCAGGAGTTCGAGACCATCCTGGCCAACATGGTGAAACCCCCGTCTCTACTAAAAATAT AAAAATTAGCTGGGTGTGGCAGGAGCCTGTAATCCCAGCTACACAGGAGGCTGAGGCAC GAGAATCACTTGAACTCAGGAGATGGAGGTTTCAGTGAGCCGAGATCACGCCACTGCACTCC

FIGURE 74

MAARWRFWCVSVTMVVALLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDKFR RLVKAPPRNYSVIVMFTALQLHRQCVVCKQADEEFQILANSWRYSSAFTNRIFFAMVDFDEG SDVFQMLNMNSAPTFINFPAKGKPKRGDTYELQVRGFSAEQIARWIADRTDVNIRVIRPPNY AGPLMLGLLLAVIGGLVYLRRSNMEFLFNKTGWAFAALCFVLAMTSGQMWNHIRGPPYAHKN PHTGHVNYIHGSSQAQFVAETHIVLLFNGGVTLGMVLLCEAATSDMDIGKRKIMCVAGIGLV VLFFSWMLSIFRSKYHGYPYSFLMS

Signal peptide:

amino acids 1-29

Transmembrane domains:

amino acids 183-205, 217-237, 217-287, 301-321

FIGURE 75

AAGCAACCAAACTGCAAGCTTTGGGAGTTGTTCGCTGTCCCTGCCCTGCTCTGCTAGGGAGA GAACGCCAGAGGGAGGCGGCTGGCCCGGCGGCAGGCTCTCAGAACCGCTACCGGCGATGCTA CTGCTGTGGGTGTCGCAGCCTTGGCGCTGCGGTACTGGCCCCCGGAGCAGGGGA GCAGAGGCGGAGAGCAGCCAAAGCGCCCAATGTGGTGCTGGTCGTGAGCGACTCCTTCGATG GAAGGTTAACATTTCATCCAGGAAGTCAGGTAGTGAAACTTCCTTTTATCAACTTTATGAAG ACACGTGGGACTTCCTTTCTGAATGCCTACACAAACTCTCCAATTTGTTGCCCATCACGCGC AGCAATGTGGAGTGGCCTCTTCACTCACTTAACAGAATCTTGGAATAATTTTAAGGGTCTAG ATCCAAATTATACAACATGGATGGATGTCATGGAGAGGCATGGCTACCGAACACAGAAATTT GGGAAACTGGACTATACTTCAGGACATCACTCCATTAGTAATCGTGTGGAAGCGTGGACAAG AGATGTTGCTTTACTCAGACAAGAAGGCAGGCCCATGGTTAATCTTATCCGTAACAGGA CTAAAGTCAGAGTGATGGAAAGGGATTGGCAGAATACAGACAAAGCAGTAAACTGGTTAAGA AAGGAAGCAATTAATTACACTGAACCATTTGTTATTTACTTGGGATTAAATTTACCACACCC TTACCCTTCACCATCTTCTGGAGAAAATTTTGGATCTTCAACATTTCACACATCTCTTTATT GGCTTGAAAAAGTGTCTCATGATGCCATCAAAATCCCAAAGTGGTCACCTTTGTCAGAAATG AATTAAGAATATTAGAGCATTTTATTATGCTATGTGTGCTGAGACAGATGCCATGCTTGGTG AAATTATTTTGGCCCTTCATCAATTAGATCTTCTTCAGAAAACTATTGTCATATACTCCTCA GACCATGGAGAGCTGGCCATGGAACATCGACAGTTTTATAAAATGAGCATGTACGAGGCTAG TGCACATGTTCCGCTTTTGATGATGGGACCAGGAATTAAAGCCGGCCTACAAGTATCAAATG TGGTTTCTCTTGTGGATATTTACCCTACCATGCTTGATATTGCTGGAATTCCTCTGCCTCAG AACCTGAGTGGATACTCTTTGTTGCCGTTATCATCAGAAACATTTAAGAATGAACATAAAGT CAAAAACCTGCATCCACCCTGGATTCTGAGTGAATTCCATGGATGTAATGTGAATGCCTCCA CCTACATGCTTCGAACTAACCACTGGAAATATATAGCCTATTCGGATGGTGCATCAATATTG CCTCAACTCTTTGATCTTTCCTCGGATCCAGATGAATTAACAAATGTTGCTGTAAAATTTCC AGAAATTACTTATTCTTTGGATCAGAAGCTTCATTCCATTATAAACTACCCTAAAGTTTCTG CTTCTGTCCACCAGTATAATAAAGAGCAGTTTATCAAGTGGAAACAAAGTATAGGACAGAAT TATTCAAACGTTATAGCAAATCTTAGGTGGCACCAAGACTGGCAGAAGGAACCAAGGAAGTA $\mathsf{TGAAAA\mathsf{TGCAATTGATCAGTGGCTTAAAACCCATATGAATCCAAGAGCAGTT\mathbf{\underline{TGA}}$ $\mathsf{ACAAAAA}$ GTTTAAAAATAGTGTTCTAGAGATACATATAAATATATTACAAGATCATAATTATGTATTTT AAATGAAACAGTTTTAATAATTACCAAGTTTTGGCCGGGCACAGTGGCTCACACCTGTAATC CCAGGACTTTGGGAGGGTGAGGAAAGCAGATCACAAGGTCAAGAGATTGAGACCATCCTGGC CAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCTGGGCGCGGTGGTGCACA CCTATAGTCTCAGCTACTCAGAGGCTGAGGCAGGAGGATCGCTTGAACCCGGGAGGCAGCAG TTGCAGTGAGCTGAGATTGCGCCACTGTACTCCAGCCTGGCAACAGAGTGAGACTGTGTCGC TATTTTAAGATAAAATGCCAATGATTATAAAATCACATATTTTCAAAAATGGTTATTATTTA GGCCTTTGTACAATTTCTAACAATTTAGTGGAAGTATCAAAAGGATTGAAGCAAATACTGTA ACAGTTATGTTCCTTTAAATAATAGAGAATATAAAATATTGTAATAATATGTATCATAAAAT

FIGURE 76

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64885</pre>

<subunit 1 of 1, 536 aa, 1 stop

<MW: 61450, pI: 9.17, NX(S/T): 7

MLLLWVSVVAALALAVLAPGAGEQRRRAAKAPNVVLVVSDSFDGRLTFHPGSQVVKLPFINF
MKTRGTSFLNAYTNSPICCPSRAAMWSGLFTHLTESWNNFKGLDPNYTTWMDVMERHGYRTQ
KFGKLDYTSGHHSISNRVEAWTRDVAFLLRQEGRPMVNLIRNRTKVRVMERDWQNTDKAVNW
LRKEAINYTEPFVIYLGLNLPHPYPSPSSGENFGSSTFHTSLYWLEKVSHDAIKIPKWSPLS
EMHPVDYYSSYTKNCTGRFTKKEIKNIRAFYYAMCAETDAMLGEIILALHQLDLLQKTIVIY
SSDHGELAMEHRQFYKMSMYEASAHVPLLMMGPGIKAGLQVSNVVSLVDIYPTMLDIAGIPL
PQNLSGYSLLPLSSETFKNEHKVKNLHPPWILSEFHGCNVNASTYMLRTNHWKYIAYSDGAS
ILPQLFDLSSDPDELTNVAVKFPEITYSLDQKLHSIINYPKVSASVHQYNKEQFIKWKQSIG
QNYSNVIANLRWHQDWQKEPRKYENAIDQWLKTHMNPRAV

Important features:

Signal peptide:

amino acids 1-15

N-glycosylation sites.

amino acids 108-111, 166-169, 193-196, 262-265, 375-378, 413-416, 498-501

Sulfatases proteins:

amino acids 286-315, 359-369, 78-97

FIGURE 77

GAGAGAAGTCAGCCTGGCAGAGAGACTCTGAAATGAGGGATTAGAGGTGTTCAAGGAGCAAG AGCTTCAGCCTGAAGACAAGGGAGCAGTCCCTGAAGACGCTTCTACTGAGAGGTCTGCCATG GCCTCTCTTGGCCTCCAACTTGTGGGCTACATCCTAGGCCTTCTGGGGCTTTTTGGGCACACT GGTTGCCATGCTCCCCAGCTGGAAAACAAGTTCTTATGTCGGTGCCAGCATTGTGACAG TGTGACATCTATAGCACCCTTCTGGGCCTGCCCGCTGACATCCAGGCTGCCCAGGCCATGAT GGTGACATCCAGTGCAATCTCCTCCCTGGCCTGCATTATCTCTGTGGTGGGCATGAGATGCA CAGTCTTCTGCCAGGAATCCCGAGCCAAAGACAGAGTGGCGGTAGCAGGTGGAGTCTTTTTC ATCCTTGGAGGCCTCCTGGGATTCATTCCTGTTGCCTGGAATCTTCATGGGATCCTACGGGA CTTCTACTCACCACTGGTGCCTGACAGCATGAAATTTGAGATTGGAGAGGCTCTTTACTTGG GCATTATTTCTTCCCTGTTCTCCCTGATAGCTGGAATCATCCTCTGCTTTTCCTGCTCATCC CAGAGAAATCGCTCCAACTACTACGATGCCTACCAAGCCCAACCTCTTGCCACAAGGAGCTC TCCAAGGCCTGGTCAACCTCCCAAAGTCAAGAGTGAGTTCAATTCCTACAGCCTGACAGGGT ATGTG**TGA**AGAACCAGGGGCCAGAGCTGGGGGGTGGCTGGGTCTGTGAAAAACAGTGGACAG CACCCGAGGGCCACAGGTGAGGGACACTACCACTGGATCGTGTCAGAAGGTGCTGCTGAGG ATAGACTGACTTTGGCCATTGGATTGAGCAAAGGCAGAAATGGGGGGCTAGTGTAACAGCATG CAGGTTGAATTGCCAAGGATGCTCGCCATGCCAGCCTTTCTGTTTTCCTCACCTTGCTGCTC CCCTGCCCTAAGTCCCCAACCTCAACTTGAAACCCCATTCCCTTAAGCCAGGACTCAGAGG ATCCCTTTGCCCTCTGGTTTACCTGGGACTCCATCCCCAAACCCACTAATCACATCCCACTG ACTGACCCTCTGTGATCAAAGACCCTCTCTCTGGCTGAGGTTGGCTCTTAGCTCATTGCTGG GGATGGGAAGGAGAAGCAGTGGCTTTTGTGGGCATTGCTCTAACCTACTTCTCAAGCTTCCC TCCAAAGAAACTGATTGGCCCTGGAACCTCCATCCCACTCTTGTTATGACTCCACAGTGTCC AGACTAATTTGTGCATGAACTGAAATAAAACCATCCTACGGTATCCAGGGAACAGAAAGCAG GATGCAGGATGGGAGGACAGGAAGGCAGCCTGGGACATTTAAAAAAATA

FIGURE 78

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64886</pre>

><subunit 1 of 1, 230 aa, 1 stop

><MW: 24549, pI: 8.56, NX(S/T): 1

MASLGLQLVGYILGLLGTLVAMLLPSWKTSSYVGASIVTAVGFSKGLWMECATHSTGIT QCDIYSTLLGLPADIQAAQAMMVTSSAISSLACIISVVGMRCTVFCQESRAKDRVAVAGGVF FILGGLLGFIPVAWNLHGILRDFYSPLVPDSMKFEIGEALYLGIISSLFSLIAGIILCFSCS SQRNRSNYYDAYQAQPLATRSSPRPGQPPKVKSEFNSYSLTGYV

Important features of the protein:

Signal peptide:

amino acids 1-24

Transmembrane domains:

amino acids 82-102, 117-140, 163-182

N-glycosylation site.

amino acids 190-193

PMP-22 / EMP / MP20 family proteins.

amino acids 46-59

FIGURE 79

GCACTGCTGCTCCCATCAGCTGCTCTGAAGCTCCATGGTGCCCAGAATCTTCGCTCCTGC
TTATGTGTCAGTCTGTCTCCTCCTCTTGTGTCCAAGGGAAGTCATCGCTCCCGCTGGCTCAG
AACCATGGCTGTGCCAGCCGGCACCCAGGTGTGGAGACCAGATCTACAACCCCTTGGAGCAG
TGCTGTTACAATGACGCCATCGTGTCCCTGAGCGAGACCCGCCAATGTGGTCCCCCCTGCAC
CTTCTGGCCCTGCTTTGAGCTCTGCTGTCTTGATTCCTTTGGCCTCACAAACGATTTTGTTG
TGAAGCTGAAGGTTCAGGGTGTGAATTCCCAGTGCCACTCATCTCCCATCTCCAGTAAATGT
GAAAGCAGAAGACGTTTTCCCTGAGAAAGAAAAATCAACTTTCACTAAGGCATC
TCAGAAACATAGGCTAAGGTAATATGTGTACCAGTAGAAAGCCTGAGGAATTTACAAAATG
ATGCAGCTCCAAGCCATTGTATGGCCCCATGTGGGAGACTGATGGAGAATGACAGT
AGATTATCAGGAAATAAATAAAGTGGTTTTTCCAATGTACACCCTGTAAAA

FIGURE 80

MVPRIFAPAYVSVCLLLLCPREVIAPAGSEPWLCQPAPRCGDKIYNPLEQCCYNDAIVSLSE TRQCGPPCTFWPCFELCCLDSFGLTNDFVVKLKVQGVNSQCHSSPISSKCESRRRFP

Signal peptide:

FIGURE 81

FIGURE 82

MAPRGCIVAVFAIFCISRLLCSHGAPVAPMTPYLMLCQPHKRCGDKFYDPLQHCCYDDAVVP LARTQTCGNCTFRVCFEQCCPWTFMVKLINQNCDSARTSDDRLCRSVS

Signal peptide:

FIGURE 83

TCGCGGGAGGCTTCCCCGCCCGGCCGCCCGCCCCCCCCGGCACCAGAAGTTCCTCT GCGCGTCCGACGGCGACATGGGCGTCCCCACGGCCCTGGAGGCCGGCAGCTGGCGCTGGGGGA TCCCTGCTCTTCGCTCTCCTGGCTGCGTCCCTAGGTCCGGTGGCAGCCTTCAAGGTCGC CACGCCGTATTCCCTGTATGTCTGTCCCGAGGGGCAGAACGTCACCTCACCTGCAGGCTCT TGGGCCCTGTGGACAAAGGGCACGATGTGACCTTCTACAAGACGTGGTACCGCAGCTCGAGG GGCGAGGTGCAGACCTCAGAGCGCCGGCCCATCCGCAACCTCACGTTCCAGGACCTTCA CCTGCACCATGGAGGCCACCAGGCTGCCAACACCAGCCACGACCTGGCTCAGCGCCACGGGC TGGAGTCGGCCTCCGACCACCATGGCAACTTCTCCATCACCATGCGCAACCTGACCCTGCTG GATAGCGGCCTCTACTGCTGCTGGTGGTGGAGATCAGGCACCACCACTCGGAGCACAGGGT ACCCATCCTCCCAGGATAGTGAAAACATCACGGCTGCAGCCCTGGCTACGGGTGCCTGC CTCCAACCGCCGTGCCCAGGAGCTGGTGCGGATGGACAGCAACATTCAAGGGATTGAAAACC CCGGCTTTGAAGCCTCACCACCTGCCCAGGGGATACCCGAGGCCAAAGTCAGGCACCCCCTG TCCTATGTGGCCCAGCGCAGCCTTCTGAGTCTGGGCGGCATCTGCTTTCGGAGCCCAGCAC CCCCTGTCTCCTCCAGGCCCCGGAGACGTCTTCTTCCCATCCCTGGACCCTGTCCCTGACT $\tt CTCCAAACTTTGAGGTCATC {\color{red} TAG} CCCAGCTGGGGGACAGTGGGCTGTTGTGGCTGGGTCTGG$ GGCAGGTGCATTTGAGCCAGGGCTGGCTCTGTGAGTGGCCTCCTTGGCCTCGGCCCTGGTTC CCTCCCTCCTGGGCTCAGATACTGTGACATCCCAGAAGCCCAGCCCCTCAACCCCTC TGGATGCTACATGGGGATGCTGGACGCCTCAGCCCCTGTTCCAAGGATTTTGGGGTGCTGAG ATTCTCCCCTAGAGACCTGAAATTCACCAGCTACAGATGCCAAATGACTTACATCTTAAGAA GTCTCAGAACGTCCAGCCCTTCAGCAGCTCTCGTTCTGAGACATGAGCCTTGGGATGTGGCA GCATCAGTGGGACAAGATGGACACTGGGCCACCCTCCCAGGCACCAGACACAGGGCACGGTG GAGAGACTTCTCCCCCGTGGCCGCCTTGGCTCCCCCGTTTTGCCCGAGGCTGCTCTTCTGTC AGACTTCCTCTTTGTACCACAGTGGCTCTGGGGCCAGGCCTGCCCACTGGCCATCGCC ACCTTCCCCAGCTGCCTCCTACCAGCAGTTTCTCTGAAGATCTGTCAACAGGTTAAGTCAAT CTGGGGCTTCCACTGCCTGCATTCCAGTCCCCAGAGCTTGGTGGTCCCGAAACGGGAAGTAC ATATTGGGGCATGGTGGCCTCCGTGAGCAAATGGTGTCTTGGGCCAATCTGAGGCCAGGACAG GTGGAGAGGGGCACCTGCCCCCGCCCTCCCCATCCCCTACTCCCACTGCTCAGCGCGGGCC ATTGCAAGGGTGCCACACAATGTCTTGTCCACCCTGGGACACTTCTGAGTATGAAGCGGGAT

FIGURE 84

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64897

><subunit 1 of 1, 311 aa, 1 stop

><MW: 33908, pI: 6.87, NX(S/T): 6

MGVPTALEAGSWRWGSLLFALFLAASLGPVAAFKVATPYSLYVCPEGQNVTLTCRLLGPVDK GHDVTFYKTWYRSSRGEVQTCSERRPIRNLTFQDLHLHHGGHQAANTSHDLAQRHGLESASD HHGNFSITMRNLTLLDSGLYCCLVVEIRHHHSEHRVHGAMELQVQTGKDAPSNCVVYPSSSQ DSENITAAALATGACIVGILCLPLILLLVYKQRQAASNRRAQELVRMDSNIQGIENPGFEAS PPAQGIPEAKVRHPLSYVAQRQPSESGRHLLSEPSTPLSPPGPGDVFFPSLDPVPDSPNFEVI

Signal peptide:

amino acids 1-28

Transmembrane domain:

FIGURE 85

TTCCCCGCGTTCTCTTCCCACCTTTCTCTTCTCCCACCTTAGACCTCCCTTCCTGCCCTCC TTTCCTGCCCACCGCTGCTTCCTGGCCCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCTGG GGTCTGTGGGTTGATCTGTGGCCCCTGTGCCTCCGTGTCCTTTTCGTCTCCCCTTCCCCGA $\tt CTCCGCTCCCGGACCAGCGGCCTGACCCTGGGGAAAGG{\color{red} ATG} GTTCCCGAGGTGAGGGTCCTC$ AGACATGTTCTGCCTTTTCCATGGGAAGAGATACTCCCCCGGCGAGAGCTGGCACCCCTACT TGGAGCCACAAGGCCTGATGTACTGCCTGCGCTGTACCTGCTCAGAGGGCGCCCCATGTGAGT TGTTACCGCCTCCACTGTCCGCCTGTCCACTGCCCCCAGCCTGTGACGGAGCCACAGCAATG CTGTCCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCGGGCCCCACCAAAGTCCTGCC AGCACAACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCATGAGCTGTTCCCCTCC CGCCTGCCCAACCAGTGTGTCCTCTGCAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCAC AACCTGCCCGAACCAGGCTGCCCAGCACCCCTCCCACTGCCAGACTCCTGCCAAGCCT GCAAAGATGAGCCAATCGGATGAAGAGGACAGTGTGCAGTCGCTCCATGGGGTG AGACATCCTCAGGATCCATGTTCCAGTGATGCTGGGAGAAAGAGAGGCCCGGGCACCCCAGC CCCCACTGGCCTCAGCGCCCTCTGAGCTTCATCCCTCGCCACTTCAGACCCAAGGGAGCAG GCAGCACAACTGTCAAGATCGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTGCATGGCGGG AAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCCTTCGGCCCCTTGCCCTG CATCCTATGCACCTGTGAGGATGGCCGCCAGGACTGCCAGCGTGTGACCTGTCCCACCGAGT ACCCCTGCCGTCACCCCGAGAAAGTGGCTGGGAAGTGCTGCAAGATTTGCCCAGAGGACAAA GCAGACCCTGGCCACAGTGAGATCAGTTCTACCAGGTGTCCCAAGGCACCGGGCCGGGTCCT CGTCCACACATCGGTATCCCCAAGCCCAGACAACCTGCGTCGCTTTGCCCTGGAACACGAGG CCTCGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCAG AGAGGTGAAGTACCTGGCCCAAGGCCACACAGCCAGAATCTTCCACTTGACTCAGATCAAGA AAGTCAGGAAGCAAGACTTCCAGAAAGAGGCACAGCACTTCCGACTGCTCGCTGGCCCCCAC GAAGGTCACTGGAACGTCTTCCTAGCCCAGACCCTGGAGCTGAAGGTCACGGCCAGTCCAGA ${\tt CAAAGTGACCAAGACATAACAAAGACC}{{\tt TAA}}{\tt CAGTTGCAGATATGAGCTGTATAATTGTTGTT}$

FIGURE 86

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902</pre>

><subunit 1 of 1, 451 aa, 1 stop

><MW: 49675, pI: 7.15, NX(S/T): 1

MVPEVRVLSSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCT CSEGAHVSCYRLHCPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIF SAHELFPSRLPNQCVLCSCTEGQIYCGLTTCPEPGCPAPLPLPDSCCQACKDEASEQSDEED SVQSLHGVRHPQDPCSSDAGRKRGPGTPAPTGLSAPLSFIPRHFRPKGAGSTTVKIVLKEKH KKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPCRHPEKVAGKC CKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLV KDEETEAQRGEVPGPRPHSQNLPLDSDQESQEARLPERGTALPTARWPPRRSLERLPSPDPG AEGHGQSRQSDQDITKT

Signal peptide:

FIGURE 87

FIGURE 88

Signal peptide:

FIGURE 89

CAGGAGAGAAGGCACCGCCCCACCCCGCCTCCAAAGCTAACCCTCGGGCTTGAGGGGAAGA GGCTGACTGTACGTTCCTACTCTGGCACCACTCTCCAGGCTGCCATGGGGGCCCAGCACC CCTCTCCTCATCTTGTTCCTTTTGTCATGGTCGGGACCCCTCCAAGGACAGCAGCACCACCT TGTGGAGTACATGGAACGCCGACTAGCTGCTTTAGAGGAACGGCTGGCCCAGTGCCAGGACC AGAGTAGTCGGCATGCTGAGCTGCGGGACTTCAAGAACAAGATGCTGCCACTGCTGGAG GTGGCAGAGAGGGGGGGGGGCCTCAGAACTGAGGCCGACACCATCTCCGGGAGAGTGGA TCGTCTGGAGCGGGAGGTAGACTATCTGGAGACCCAGAACCCAGCTCTGCCCTGTGTAGAGT TTGATGAGAAGGTGACTGGAGCCCTGGGACCAAAGGCAAGGGAAGAAGGAATGAGAAGTAC GATATGGTGACAGACTGTGGCTACACAATCTCTCAAGTGAGATCAATGAAGATTCTGAAGCG ATTTGGTGGCCCAGCTGGTCTATGGACCAAGGATCCACTGGGGCAAACAGAGAAGATCTACG TGTTAGATGGGACACAGAATGACACAGCCTTTGTCTTCCCAAGGCTGCGTGACTTCACCCTT GCCATGGCTGCCCGGAAAGCTTCCCGAGTCCGGGTGCCCTTCCCCTGGGTAGGCACAGGGCA GCTGGTATATGGTGGCTTTCTTTATTTTGCTCGGAGGCCTCCTGGAAGACCTGGTGGAGGTG GTGAGATGGAGAACACTTTGCAGCTAATCAAATTCCACCTGGCAAACCGAACAGTGGTGGAC AGCTCAGTATTCCCAGCAGAGGGGCTGATCCCCCCCTACGGCTTGACAGCAGACACCTACAT CGACCTGGTAGCTGATGAGGAAGGTCTTTTGGGCTGTCTATGCCACCCGGGAGGATGACAGGC ACTTGTGTCTGGCCAAGTTAGATCCACAGACACTGGACACAGAGCAGCAGTGGGACACACCA TGTCCCAGAGAGAATGCTGAGGCTGCCTTTGTCATCTGTGGGACCCTCTATGTCGTCTATAA CACCCGTCCTGCCAGTCGGGCCCGCATCCAGTGCTCCTTTGATGCCAGCGGCACCCTGACCC CTGAACGGGCAGCACTCCCTTATTTTCCCCGCAGATATGGTGCCCATGCCAGCCTCCGCTAT AACCCCCGAGAACGCCAGCTCTATGCCTGGGATGATGGCTACCAGATTGTCTATAAGCTGGA GATGAGGAAGAAGAGGAGGAGGTT**TGA**GGAGCTAGCCTTGTTTTTTGCATCTTTCTCACTC CCATACATTTATATTATCCCCACTAAATTTCTTGTTCCTCATTCTTCAAATGTGGGCCAG TTGTGGCTCAAATCCTCTATATTTTTAGCCAATGGCAATCAAATTCTTTCAGCTCCTTTGTT TCATACGGAACTCCAGATCCTGAGTAATCCTTTTAGAGCCCGAAGAGTCAAAACCCTCAATG TTCCCTCCTGCTCCTGCCCCATGTCAACAAATTTCAGGCTAAGGATGCCCCAGACCCAGG GCTCTAACCTTGTATGCGGGCAGGCCCAGGGAGCAGCAGTGTTCTTCCCCTCAGAGTG TCAGTGTCCTGAGGAACAGGACTTTCTCCACATTGTTTTGTATTGCAACATTTTGCATTAAA AAAAAAAAAAAAAAAAA

FIGURE 90

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64905</pre>

<subunit 1 of 1, 406 aa, 1 stop

<MW: 46038, pI: 6.50, NX(S/T): 2

MGPSTPLLILFLLSWSGPLQGQQHHLVEYMERRLAALEERLAQCQDQSSRHAAELRDFKNKM LPLLEVAEKEREALRTEADTISGRVDRLEREVDYLETQNPALPCVEFDEKVTGGPGTKGKGR RNEKYDMVTDCGYTISQVRSMKILKRFGGPAGLWTKDPLGQTEKIYVLDGTQNDTAFVFPRL RDFTLAMAARKASRVRVPFPWVGTGQLVYGGFLYFARRPPGRPGGGEMENTLQLIKFHLAN RTVVDSSVFPAEGLIPPYGLTADTYIDLVADEEGLWAVYATREDDRHLCLAKLDPQTLDTEQ QWDTPCPRENAEAAFVICGTLYVVYNTRPASRARIQCSFDASGTLTPERAALPYFPRRYGAH ASLRYNPRERQLYAWDDGYQIVYKLEMRKKEEEV

Important features:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 177-180, 248-251

FIGURE 91

GACAGCTGTGTCTCGATGGAGTAGACTCTCAGAACAGCGCAGTTTGCCCTCCGCTCACGCAG AGCCTCTCCGTGGCTTCCGCACCTTGAGCATTAGGCCAGTTCTCCTCTTCTCTCTAATCCAT CCGTCACCTCTCCTGTCATCCGTTTCCATGCCGTGAGGTCCATTCACAGAACACATCC**ATG**G CTCTCATGCTCAGTTTGGTTCTGAGTCTCCTCAAGCTGGGATCAGGGCAGTGGCAGGTGTTT GGGCCAGACAAGCCTGTCCAGGCCTTGGTGGGGGGAGGACGCAGCATTCTCCTGTTC TCCTAAGACCAATGCAGAGGCCATGGAAGTGCGGTTCTTCAGGGGCCAGTTCTCTAGCGTGG TCCACCTCTACAGGGACGGGAAGGACCAGCCATTTATGCAGATGCCACAGTATCAAGGCAGG ACAAAACTGGTGAAGGATTCTATTGCGGAGGGGGGCGCATCTCTCTGAGGCTGGAAAACATTAC TGTGTTGGATGCTGGCCTCTATGGGTGCAGGATTAGTTCCCAGTCTTACTACCAGAAGGCCA TCTGGGAGCTACAGGTGTCAGCACTGGGCTCAGTTCCTCTCATTTCCATCACGGGATATGTT GATAGAGACATCCAGCTACTCTGTCAGTCCTCGGGCTGGTTCCCCCGGCCCACAGCGAAGTG TGTTTGATGTGGAGATCTCTCTGACCGTCCAAGAGAACGCCGGGAGCATATCCTGTTCCATG CGGCATGCTCATCTGAGCCGAGAGGTGGAATCCAGGGTACAGATAGGAGATACCTTTTTCGA GCCTATATCGTGGCACCTGGCTACCAAAGTACTGGGAATACTCTGCTGTGGCCTATTTTTTG GCATTGTTGGACTGAAGATTTCTTCTCCAAATTCCAGTGGAAAATCCAGGCGGAACTGGAC TGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACGCAGTGGAGGTGAC TCTGGATCCAGAGACGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAAACTGTAACCCATA GAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAAGAGTGTGGTGGCT TCTCAGAGTTTCCAAGCAGGGAAACATTACTGGGAGGTGGACGGAGGACACAATAAAAGGTG ATCATGGGTACTGGGTCCTCAGACTGAATGGAGAACATTTGTATTTCACATTAAATCCCCGT TTTATCAGCGTCTTCCCCAGGACCCCACCTACAAAAATAGGGGTCTTCCTGGACTATGAGTG TTGAAGGCTTATTGAGGCCCTACATTGAGTATCCGTCCTATAATGAGCAAAATGGAACTCCC ATAGTCATCTGCCCAGTCACCCAGGAATCAGAGAAAGAGGCCTCTTGGCAAAGGGCCTCTGC AATCCCAGAGACAACAGTGAGTCCTCCTCACAGGCAACCACGCCCTTCCTCCCCAGGG GTGAAATG**TAG**GATGAATCACATCCCACATTCTTCTTTAGGGATATTAAGGTCTCTCCCA GATCCAAAGTCCCGCAGCCGGCCAAGGTGGCTTCCAGATGAAGGGGGACTGGCCTGTCC AGTTTGCTCTCACTCCATCTGGCTAAGTGATCTTGAAATACCACCTCTCAGGTGAAGAACCG TCAGGAATTCCCATCTCACAGGCTGTGGTGTAGATTAAGTAGACAAGGAATGTGAATAATGC TTAGATCTTATTGATGACAGAGTGTATCCTAATGGTTTGTTCATTATATTACACTTTCAGTA AAAAA

FIGURE 92

MALMLSLVLSLLKLGSGQWQVFGPDKPVQALVGEDAAFSCFLSPKTNAEAMEVRFFRGQFSS
VVHLYRDGKDQPFMQMPQYQGRTKLVKDSIAEGRISLRLENITVLDAGLYGCRISSQSYYQK
AIWELQVSALGSVPLISITGYVDRDIQLLCQSSGWFPRPTAKWKGPQGQDLSTDSRTNRDMH
GLFDVEISLTVQENAGSISCSMRHAHLSREVESRVQIGDTFFEPISWHLATKVLGILCCGLF
FGIVGLKIFFSKFQWKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQSFQAGKHYWEVDGGHNKRWRVGVCRDDVDRRKEYVTLS
PDHGYWVLRLNGEHLYFTLNPRFISVFPRTPPTKIGVFLDYECGTISFFNINDQSLIYTLTC
RFEGLLRPYIEYPSYNEQNGTPIVICPVTQESEKEASWQRASAIPETSNSESSSQATTPFLP
RGEM

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 239-255

FIGURE 93

GCGATGGTGCCCCGGTGGCGGTGGCGGCGGCGGTTGCGGAGGCTTCCTTGGTCGGATTGCA CCGTCGCCTCAGCCGCCGCGGGGGAATGTCACCGGTGGCGGGGGGCCGCGGGGCAGGTG GACGCGTCGCCGGGCCCCGGGTTGCGGGGCGAGCCCAGCCACCCCTTCCCTAGGGCGACGGC TCCCACGCCCAGGCCCCGAGGACCGGGCCCCCGCGCGCCACCGTCCACCGACCCCTGGCTG CGACTTCTCCAGCCCAGTCCCCGGAGACCACCCCTCTTTGGGCGACTGCTGGACCCTCTTCC ACCACCTTTCAGGCGCCGCTCGGCCCCTCGCCGACCCCTCCGGCGGCGGAACGCACTTC GACCACCTCTCAGGCGCCGACCAGACCCGCGCCGACCACCCTTTCGACGACCACTGGCCCGG CGCCGACCACCCTGTAGCGACCACCGTACCGGCGCCCACGACTCCCCGGACCCCCC TTCGCCTCCAGAGTATGTAACTGCTCTGTGGTTGGAAGCCTGAATGTGAATCGCT GCAACCAGACCACAGGGCAGTGTGAGTGTCGGCCAGGTTATCAGGGGCCTTCACTGTGAAACC TGCAAAGAGGGCTTTTACCTAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCC ACATGGAGCTCTCAGCATACCGTGCAACAGG**TAA**GCAACAGAGGGTGGAACTGAAGTTTATT TTATTTTAGCAAGGGAAAAAAAAGGCTGCTACTCTCAAGGACCATACTGGTTTAAACAAAG GAGGATGAGGTCATAGATTTACAAAATATTTTATATACTTTTATTCTCTTACTTTATATGT TATATTTAATGTCAGGATTTAAAAACATCTAATTTACTGATTTAGTTCTTCAAAAGCACTAG AGTCGCCAATTTTCTCTGGGATAATTTCTGTAAATTTCATGGGAAAAAATTATTGAAGAAT AAATCTGCTTTCTGGAAGGGCTTTCAGGCATGAAACCTGCTAGGAGGTTTAGAAATGTTCTT ATGTTTATTAATATACCATTGGAGTTTGAGGAAATTTGTTGTTTGGTTTATTTTTCTCTCTA ATCAAAATTCTACATTTGTTTCTTTGGACATCTAAAGCTTAACCTGGGGGGTACCCTAATTTA TTTAACTAGTGGTAAGTAGACTGGTTTTACTCTATTTACCAGTACATTTTTTGAGACCAAAAG TAGATTAAGCAGGAATTATCTTTAAACTATTATGTTATTTTGGAGGTAATTTAATCTAGTGGA ATAATGTACTGTTATCTAAGCATTTGCCTTGTACTGCACTGAAAGTAATTATTCTTTGACCT TATGTGAGGCACTTGGCTTTTTGTGGACCCCAAGTCAAAAAACTGAAGAGACAGTATTAAAT AATGAAAAAATAATGACAGGTTATACTCAGTGTAACCTGGGTATAACCCAAGATCTGCTGC CACTTACGAGCTGTGTTCCTTGGGCAAGTAATTTCCTTTCACTGAGCTTGTTTCTTCTCAAG GTTGTTGTGAAGATTAAATGAGTTGATATATATAAAATGCCTAGCACATGTCACTCAATAAA TTCTGGTTTGTTTTAATTTCAAAGGAATATTATGGACTGAAATGAGAGAACATGTTTTAAGA ACTTTTAGCTCCTTGACAAAGAAGTGCTTTATACTTTAGCACTAAATATTTTAAATGCTTTA TAAATGATATTATACTGTTATGGAATATTGTATCATATTGTAGTTTATTAAAAATGTAGAAG AGGCTGGGCGCGGTGGCTCACGCCTGTAATCCTAGCACTTTGGGAGGCCAAGGCGGGTGGAT CACTTGAGGCCAGGAGTTCTAGATGAGCCTGGCCAGCAGTGAAACCCCGTCTCTACTAAA AATACAAACAAATTAGCTGGGCGTGGTGGCACACCCTGTAGTCCCAGCTACTCGGGAGGCT GAGGCAGGAGATCGGTTGAACCCGGGAGGTGGAGGTTGCAGTGAGCTGAGATCGCGCCACT

FIGURE 94

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952</pre>

><subunit 1 of 1, 258 aa, 1 stop

><MW: 25716, pI: 8.13, NX(S/T): 5

MRSLPSLGGLALLCCAAAAAAVASAASAGNVTGGGGAAGQVDASPGPGLRGEPSHPFPRATA
PTAQAPRTGPPRATVHRPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAAERTS
TTSQAPTRPAPTTLSTTTGPAPTTPVATTVPAPTTPRTPTPDLPSSSNSSVLPTPPATEAPS
SPPPEYVCNCSVVGSLNVNRCNQTTGQCECRPGYQGLHCETCKEGFYLNYTSGLCQPCDCSP
HGALSIPCNR

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

FIGURE 95

FIGURE 96

MGGLLLAAFLALVSVPRAQAVWLGRLDPEQLLGPWYVLAVASREKGFAMEKDMKNVVGVVVT LTPENNLRTLSSQHGLGGCDQSVMDLIKRNSGWVFENPSIGVLELWVLATNFRDYAIIFTQL EFGDEPFNTVELYSLTETASQEAMGLFTKWSRSLGFLSQ

Signal peptide:

FIGURE 97

CCTGCTCTGGGGGAGGGGGGGGGGAGGACAGACAAGTAAACTGCTGACGATGCAGAGTT CCGTGACGGTGCAGGAAGGCCTGTGTGTCCATGTGCCCTGCTCCTTCTCCTACCCCTCGCAT GGCTGGATTTACCCTGGCCCAGTAGTTCATGGCTACTGGTTCCGGGAAGGGGCCAATACAGA CCAGGATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGGAGGAGACTCGGGACC GATTCCACCTCCTTGGGGACCCACATACCAAGAATTGCACCCTGAGCATCAGAGATGCCAGA AGAAGTGATGCGGGGAGATACTTCTTTCGTATGGAGAAAGGAAGTATAAAATGGAATTATAA ACATCACCGGCTCTCTGTGAATGTGACAGCCTTGACCCACAGGCCCAACATCCTCATCCCAG GCACCCTGGAGTCCGGCTGCCCCCAGAATCTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAG GGGACACCCCTATGATCTCCTGGATAGGGACCTCCGTGTCCCCCCTGGACCCCTCCACCAC CCGCTCCTCGGTGCTCACCCTCATCCCACAGCCCCAGGACCATGGCACCAGCCTCACCTGTC AGGTGACCTTCCCTGGGGCCAGCGTGACCACGAACAAGACCGTCCATCTCAACGTGTCCTAC CCGCCTCAGAACTTGACCATGACTGTCTTCCAAGGAGACGGCACAGTATCCACAGTCTTGGG AAATGGCTCATCTCTGTCACTCCCAGAGGGCCAGTCTCTGCGCCTGGTCTGTGCAGTTGATG CAGTTGACAGCAATCCCCCTGCCAGGCTGAGCCTGAGCCTGAGCCTGTGCCCC TCACAGCCCTCAAACCCGGGGGTGCTGGAGCTGCCTTGGGTGCACCTGAGGGATGCAGCTGA ATTCACCTGCAGAGCTCAGAACCCTCTCGGCTCTCAGCAGGTCTACCTGAACGTCTCCCTGC AGAGCAAAGCCACATCAGGAGTGACTCAGGGGGGTGGTCGGGGGGAGCTGGAGCCACAGCCCTG GTCTTCCTGTCCTTCTGCGTCATCTTCGTTGTAGTGAGGTCCTGCAGGAAGAAATCGGCAAG GCCAGCAGCGGGCGTGGGAGATACGGGCATAGAGGATGCAAACGCTGTCAGGGGTTCAGCCT CTCAGGGGCCCCTGACTGAACCTTGGGCAGAAGACAGTCCCCCAGACCAGCCTCCCCCAGCT TCTGCCCGCTCCTCAGTGGGGGAAGGAGCTCCAGTATGCATCCCTCAGCTTCCAGATGGT GAAGCCTTGGGACTCGCGGGGACAGGAGGCCACTGACACCGAGTACTCGGAGATCAAGATCC ACAGA<u>TGA</u>GAAACTGCAGAGACTCACCCTGATTGAGGGATCACAGCCCCTCCAGGCAAGGGA GAAGTCAGAGGCTGATTCTTGTAGAATTAACAGCCCTCAACGTGATGAGCTATGATAACACT ATGAATTATGTGCAGAGTGAAAAGCACACAGGCTTTAGAGTCAAAGTATCTCAAACCTGAAT

FIGURE 98

MLLLLPLLWGRERAEGQTSKLLTMQSSVTVQEGLCVHVPCSFSYPSHGWIYPGPVVHGYWF
REGANTDQDAPVATNNPARAVWEETRDRFHLLGDPHTKNCTLSIRDARRSDAGRYFFRMEKG
SIKWNYKHHRLSVNVTALTHRPNILIPGTLESGCPQNLTCSVPWACEQGTPPMISWIGTSVS
PLDPSTTRSSVLTLIPQPQDHGTSLTCQVTFPGASVTTNKTVHLNVSYPPQNLTMTVFQGDG
TVSTVLGNGSSLSLPEGQSLRLVCAVDAVDSNPPARLSLSWRGLTLCPSQPSNPGVLELPWV
HLRDAAEFTCRAQNPLGSQQVYLNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRS
CRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPPASARSSVGEGELQYA
SLSFQMVKPWDSRGQEATDTEYSEIKIHR

Signal peptide:

amino acids 1-15

Transmembrane domain:

FIGURE 99

FIGURE 100

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65404</pre>

<subunit 1 of 1, 170 aa, 1 stop

<MW: 19457, pI: 9.10, NX(S/T): 0

MKTLFLGVTLGLAAALSFTLEEEDITGTWYVKAMVVDKDFPEDRRPRKVSPVKVTALGGGKL EATFTFMREDRCIQKKILMRKTEEPGKYSAYGGRKLMYLQELPRRDHYIFYCKDQHHGGLLH MGKLVGRNSDTNREALEEFKKLVQRKGLSEEDIFTPLQTGSCVPEH

Important features:

Signal peptide:

FIGURE 101

GTTCCGCAGATGCAGAGGTTGAGGTGGCTGCGGGACTGGAAGTCATCGGGCAGAGGTCTCAC AGCAGCCAAGGAACCTGGGGCCCGCTCCTCCCCCCTCCAGGCCATTGAGGATTCTGCAGTTAA TCCTGCTTGCTCTGGCAACAGGGCTTGTAGGGGGAGAGACCAGGATCATCAAGGGGTTCGAG TGCAAGCCTCACTCCCAGCCCTGGCAGGCAGCCCTGTTCGAGAAGACGCGGCTACTCTGTGG GGCGACGCTCATCGCCCCCAGATGGCTCCTGACAGCCCCACTGCCTCAAGCCCCGCTACA TAGTTCACCTGGGGCAGCACCTCCAGAAGGAGGGGGGCTGTGAGCAGACCCGGACAGCC ACTGAGTCCTTCCCCCACCCCGGCTTCAACAACAGCCTCCCCAACAAGACCACCGCAATGA CATCATGCTGGTGAAGATGGCATCGCCAGTCTCCATCACCTGGGCTGTGCGACCCCTCACCC TCTCCTCACGCTGTCACTGCTGGCACCAGCTGCCTCATTTCCGGCTGGGGCAGCACGTCC AGCCCCCAGTTACGCCTGCCTCACACCTTGCGATGCGCCAACATCACCATCATTGAGCACCA GAAGTGTGAGAACGCCTACCCCGGCAACATCACAGACACCATGGTGTGTGCCAGCGTGCAGG AAGGGGCCAAGGACTCCTGCCAGGGTGACTCCGGGGGCCCTCTGGTCTGTAACCAGTCTCTT CAAGGCATTATCTCCTGGGGCCAGGATCCGTGTGCGATCACCCGAAAGCCTGGTGTCTACAC ${\tt GAAAGTCTGCAAATATGTGGACTGGATCCAGGAGACGATGAAGAACAAT} {\color{red}{\bf TAG}} {\tt ACTGGACCCA}$ CCCACCACAGCCCATCACCCTCCATTTCCACTTGGTGTTTTGGTTCCTGTTCACTCTGTTAAT AAGAAACCCTAAGCCAAGACCCTCTACGAACATTCTTTGGGCCTCCTGGACTACAGGAGATG CTGTCACTTAATAATCAACCTGGGGTTCGAAATCAGTGAGACCTGGATTCAAATTCTGCCTT GAAATATTGTGACTCTGGGAATGACAACACCTGGTTTGTTCTCTGTTGTATCCCCAGCCCCA AAAAAAAAAAAAAAAAAAAAAA

FIGURE 102

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65405</pre>

<subunit 1 of 1, 250 aa, 1 stop

<MW: 27466, pI: 8.87, NX(S/T): 4

MRILQLILLALATGLVGGETRIIKGFECKPHSQPWQAALFEKTRLLCGATLIAPRWLLTAAH CLKPRYIVHLGQHNLQKEEGCEQTRTATESFPHPGFNNSLPNKDHRNDIMLVKMASPVSITW AVRPLTLSSRCVTAGTSCLISGWGSTSSPQLRLPHTLRCANITIIEHQKCENAYPGNITDTM VCASVQEGGKDSCQGDSGGPLVCNQSLQGIISWGQDPCAITRKPGVYTKVCKYVDWIQETMKNN

Important features:

Signal peptide:

amino acids 1-18

Serine proteases, trypsin family, histidine active site.

amino acids 58-63

N-glycosylation sites.

amino acids 99-102, 165-168, 181-184, 210-213

Glycosaminoglycan attachment site.

amino acids 145-148

Kringle domain proteins.

amino acids 197-209, 47-64

Serine proteases, trypsin family, histidine protein

amino acids 199-209, 47-63, 220-243

Apple domain proteins

amino acids 222-249, 189-222

FIGURE 103

FIGURE 104

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65406</pre>

<subunit 1 of 1, 222 aa, 1 stop</pre>

<MW: 25794, pI: 6.24, NX(S/T): 1

MPKTMHFLFRFIVFFYLWGLFTAQRQKKEESTEEVKIEVLHRPENCSKTSKKGDLLNAHYDG YLAKDGSKFYCSRTQNEGHPKWFVLGVGQVIKGLDIAMTDMCPGEKRKVVIPPSFAYGKEGY AEGKIPPDATLIFEIELYAVTKGPRSIETFKQIDMDNDRQLSKAEINLYLQREFEKDEKPRD KSYQDAVLEDIFKKNDHDGDGFISPKEYNVYQHDEL

Important features:

Endoplasmic reticulum targeting sequence.

amino acids 219-222

N-glycosylation site.

amino acids 45-48

FKBP-type peptidyl-prolyl cis-trans isomerase

amino acids 87-223, 129-142

EF-hand calcium-binding domain proteins

amino acids 202-214, 195-214

FIGURE 105

CAGAAATGCAGGGACCATTGCTTCTTCCAGGCCTCTGCTTTCTGCTGAGCCTCTTTGGAGCT
GTGACTCAGAAAACCAAAACTTCCTGTGCTAAGTGCCCCCCAAATGCTTCCTGTGTCAATAA
CACTCACTGCACCTGCAACCATGGATATACTTCTGGATCTGGGCAGAAACTATTCACATTCC
CCTTGGAGACATGTAACGCCAGGCATGGTGGCTCGCGCCTGTAATCCCAGTTCTTTGGGAAG
CCAAGGCAGGTGGATCACCTGAGGTCAGGAGTTTGAGACCAGCCTGGCCAACATAGTGAAAC
CCCGTGTCTACTAAAAATACAAAAATCAGCCGGGCGTGGTGGTGCATGCCTGCAATCCCAGT
TACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACTCAGGAGGCAGAAGTTGCAGTGAACCC
AGATCCTGCCATTGCACTCCAGCATGGATGACAGAGCAAGACTCCGTCTCAAAAAAGAAAAGA
TAGTTTCTTGTTTCATTTCGCGACTGCCCTCTCAGTGTTTCCTGGGATCCCCTCCCAAATAA
AGTACTTATATTCTC

FIGURE 106

 ${\tt MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPL}\\ {\tt ETCNARHGGSRL}$

Signal peptide:

FIGURE 107

AGGGAAAGGGTGACCTCTGAGATTCCCCTTTTCCCCCAGACTTTGGAAGTGACCCACC**ATG**G GGCTCAGCATCTTTTTGCTCCTGTGTGTTCTTGGGCTCAGCCAGGCAGCCACCCGAAGATT TTCAATGGCACTGAGTGTGGGCGTAACTCACAGCCGTGGCAGGTGGGGCTGTTTGAGGGCAC CAGCCTGCGCTGCGGGGTGTCCTTATTGACCACAGGTGGGTCCTCACAGCGGCTCACTGCA CAGATCCGGCACAGCGGCTTCTCTGTGACCCATCCCGGCTACCTGGGAGCCTCGACGAGCCA CGAGCACGACCTCCGGCTGCCGGCTGCCCGTCCGCGTAACCAGCAGCGTTCAAC CCCTGCCCTGCCCAATGACTGTGCAACCGCTGGCACCGAGTGCCACGTCTCAGGCTGGGGC ATCACCAACCACCACGGAACCCATTCCCGGATCTGCTCCAGTGCCTCAACCTCTCCATCGT CTCCCATGCCACCTGCCATGGTGTATCCCGGGAGAATCACGAGCAACATGGTGTGCAG GCGGCGTCCCGGGGCAGGATGCCTGCCAGGGTGATTCTGGGGGGCCCCCTGGTGTGTGGGGGA GTCCTTCAAGGTCTGGTGTCCTGGGGGTCTGTGGGGCCCTGTGGACAAGATGGCATCCCTGG AGTCTACACCTATATTTGCAAGTATGTGGACTGGATCCGGATGATCATGAGGAACAAC<u>TGA</u>C CTGTTTCCTCCACCTCCACCCCACCCCTTAACTTGGGTACCCCTCTGGCCCTCAGAGCACC AATATCTCCTCCATCACTTCCCCTAGCTCCACTCTTGTTGGCCTGGGAACTTCTTGGAACTT TAACTCCTGCCAGCCCTTCTAAGACCCACGAGCGGGGTGAGAGAGTGTGCAATAGTCTGGA ATAAATATAAATGAAGGAGGGCAAAAAAAAAAAAA

FIGURE 108

MGLSIFLLLCVLGLSQAATPKIFNGTECGRNSQPWQVGLFEGTSLRCGGVLIDHRWVLTAAH CSGSRYWVRLGEHSLSQLDWTEQIRHSGFSVTHPGYLGASTSHEHDLRLLRLRLPVRVTSSV QPLPLPNDCATAGTECHVSGWGITNHPRNPFPDLLQCLNLSIVSHATCHGVYPGRITSNMVC AGGVPGQDACQGDSGGPLVCGGVLQGLVSWGSVGPCGQDGIPGVYTYICKYVDWIRMIMRNN

Signal peptide:

FIGURE 109

GCGCCACACGCAGCTAGCCGGAGCCGGACCAGGCGCCTGTGCCTCCTCCTCGTCCCTCGC ${\tt CGCGTCCGCGAAGCCTGGAGCCGGGGAGCCCCGCGCTCGCC} {\color{red} {\bf ATG} {\tt TCGGGCGAGCTCAGCA} }$ ACAGGTTCCAAGGAGGGAAGGCGTTCGGCTTGCTCAAAGCCCGGCAGGAGAGGAGGGCTGGCC GAGATCAACCGGGAGTTTCTGTGTGACCAGAAGTACAGTGATGAAGAGAACCTTCCAGAAAA GCTCACAGCCTTCAAAGAGAAGTACATGGAGTTTGACCTGAACAATGAAGGCGAGATTGACC TGATGTCTTTAAAGAGGATGATGGAGAAGCTTGGTGTCCCCAAGACCCACCTGGAGATGAAG AAGATGATCTCAGAGGTGACAGGAGGGGTCAGTGACACTATATCCTACCGAGACTTTGTGAA CATGATGCTGGGGAAACGGTCGGCTGTCCTCAAGTTAGTCATGATGTTTGAAGGAAAAGCCA GGACCCCGCCTGGACTCCCAGCCTTCCCACCCCATACCTCCCGATCTTGCTGCCCTT TCATCAATGTCTTTGTAAAGCACAAATTATCTGCCTTAAAGGGGCTCTGGGTCGGGGAATCC TGAGCCTTGGGTCCCCTCCTCTTCTTCCCTCCTTCCCCGCTCCCTGTGCAGAAGGGCTG ATATCAAACCAAAAACTAGAGGGGGCAGGGCCAGGGCAGGGAGGCTTCCAGCCTGTGTTCCC CTCACTTGGAGGAACCAGCACTCTCCATCCTTTCAGAAAGTCTCCAAGCCAAGTTCAGGCTC ACTGACCTGGCTCTGACGAGGACCCCAGGCCACTCTGAGAAGACCTTGGAGTAGGGACAAGG ${\tt CTGCAGGGCCTCTTTCGGGTTTCCTTGGACAGTGCCATGGTTCCAGTGCTCTGGTGTCACCC}$ AGGACACAGCCACTCGGGGCCCCGCTGCCCCAGCTGATCCCCACTCATTCCACACCTCTTCT CATCCTCAGTGATGTGAAGGTGGGAAGGAAGGAGCCTTGGCATTGGGAGCCCTTCAAGAAGG CGTGCAGCCCTACTGTCCCTTACTGGGGCAGCAGAGGGCTTCGGAGGCAGAAGTGAGGCCTG GGGTTTGGGGGGAAAGGTCAGCTCAGTGCTGTTCCACCTTTTAGGGAGGATACTGAGGGGAC CAGGATGGGAGAATGAGGAGTAAAATGCTCACGGCAAAGTCAGCAGCACTGGTAAGCCAAGA

FIGURE 110

MSGELSNRFQGGKAFGLLKARQERRLAEINREFLCDQKYSDEENLPEKLTAFKEKYMEFDLN NEGEIDLMSLKRMMEKLGVPKTHLEMKKMISEVTGGVSDTISYRDFVNMMLGKRSAVLKLVM MFEGKANESSPKPVGPPPERDIASLP

FIGURE 111A

CGCGCTCCCGCGCGCCTCCTCGGGCTCCACGCGTCTTGCCCCGCAGAGGCAGCCTCCTCCA GGAGCGGGGCCCTGCACACC<u>ATG</u>GCCCCCGGGTGGGCAGGGGTCGGCGCCGCCGTGCGCCC CGCCTGGCGCTGGCGCTGGCGAGCGTCCTGAGTGGGCCTCCAGCCGTCGCCTGCCC CACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCACGGGCTTGGGCCTCCGCGCGGTTC CTCGGGGCATCCCCGCAACGCTGAGCGCCTTGACCTGGACAGAAATAATATCACCAGGATC ACCAAGATGGACTTCGCTGGGCTCAAGAACCTCCGAGTCTTGCATCTGGAAGACAACCAGGT CAGCGTCATCGAGAGGCGCCTTCCAGGACCTGAAGCAGCTAGAGCGACTGCGCCTGAACA AGAATAAGCTGCAAGTCCTTCCAGAATTGCTTTTCCAGAGCACGCCGAAGCTCACCAGACTA GATTTGAGTGAAAACCAGATCCAGGGGATCCCGAGGAAGGCGTTCCGCGGCATCACCGATGT GAAGAACCTGCAACTGGACAACCACCTCAGCTGCATTGAAGATGGAGCCTTCCGAGCGC TGCGCGATTTGGAGATCCTTACCCTCAACAACAACAACATCAGTCGCATCCTGGTCACCAGC TTCAACCACATGCCGAAGATCCGAACTCTGCGCCTCCACTCCAACCACCTCTACTGCGACTG CCACCTGGCCTGGCTCTCGGATTGGCTGCGACAGCGACGGACAGTTGGCCAGTTCACACTCT GCATGGCTCCTGTGCATTTGAGGGGCTTCAACGTGGCGGATGTGCAGAAGAAGAAGGAGTACGTG TGCCCAGCCCCCACTCGGAGCCCCCATCCTGCAATGCCAACTCCATCTCCTGCCCTTCGCC CTGCACGTGCAGCAATAACATCGTGGACTGTCGAGGAAAGGGCTTGATGGAGATTCCTGCCA ACTTGCCGGAGGGCATCGTCGAAATACGCCTAGAACAGAACTCCATCAAAGCCATCCCTGCA GGAGCCTTCACCCAGTACAAGAAACTGAAGCGAATAGACATCAGCAAGAATCAGATATCGGA TATTGCTCCAGATGCCTTCCAGGGCCTGAAATCACTCACATCGCTGGTCCTGTATGGGAACA AGATCACCGAGATTGCCAAGGGACTGTTTGATGGGCTGGTGTCCCTACAGCTGCTCCTC AATGCCAACAAGATCAACTGCCTGCGGGTGAACACGTTTCAGGACCTGCAGAACCTCAACTT GCTCTCCCTGTATGACAACAAGCTGCAGACCATCAGCAAGGGGCTCTTCGCCCCTCTGCAGT CCATCCAGACACTCCACTTAGCCCAAAACCCATTTGTGTGCGACTGCCACTTGAAGTGGCTG GCCGACTACCTCCAGGACAACCCCATCGAGACAAGCGGGGCCCGCTGCAGCAGCCCGCGCCG ACTCGCCAACAAGCGCATCAGCCAGATCAAGAGCAAGAAGTTCCGCTGCTCAGGCTCCGAGG ATTACCGCAGCAGGTTCAGCAGCGAGTGCTTCATGGACCTCGTGTGCCCCGAGAAGTGTCGC TGTGAGGGCACGATTGTGGACTGCTCCAACCAGAAGCTGGTCCGCATCCCAAGCCACCTCCC TGAATATGTCACCGACCTGCGACTGAATGACAATGAGGTATCTGTTCTGGAGGCCACTGGCA TCTTCAAGAAGTTGCCCAACCTGCGGAAAATAAATCTGAGTAACAATAAGATCAAGGAGGTG CGAGAGGGAGCTTTCGATGGAGCAGCCAGCGTGCAGGAGCTGATGCTGACAGGGAACCAGCT GGAGACCGTGCACGGGCGCGTGTTCCGTGGCCTCAGTGGCCTCAAAACCTTGATGCTGAGGA GTAACTTGATCAGCTGTGAGTAATGACACCTTTGCCGGCCTGAGTTCGGTGAGACTGCTG TCCCTCTATGACAATCGGATCACCACCATCACCCCTGGGGCCTTCACCACGCTTGTCTCCCT GTCCACCATAAACCTCCTGTCCAACCCCTTCAACTGCAACTGCCACCTGGCCTGGCTCGGCA AGTGGTTGAGGAAGAGGCGGATCGTCAGTGGGAACCCTAGGTGCCAGAAGCCATTTTTCCTC AAGGAGATTCCCATCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGA TAGCTGCCAGCTGAGCCCGCGCTGCCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCGAT GCAGCAACAAGGGCTCCGCGCCCTCCCCAGAGGCATGCCCAAGGATGTGACCGAGCTGTAC CTGGAAGGAAACCACCTAACAGCCGTGCCCAGAGAGCTGTCCGCCCTCCGACACCTGACGCT TATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCAGTAACATGTCTC ${ t ACCTCTCCACTCTGATCCTGAGCTACAACCGGCTGAGGTGCATCCCCGTCCACGCCTTCAAC }$ GGGCTGCGGTCCCTGCGAGTGCTAACCCTCCATGGCAATGACATTTCCAGCGTTCCTGAAGG ${ t ACTGCAGTCTTCGGTGGCTGTGGGTGAAGGCGGGGTACAAGGAGCCTGGCATCGCC}$ CGCTGCAGTAGCCCTGAGCCCATGGCTGACAGGCTCCTGCTCACCACCCCAACCCACCGCTT CCAGTGCAAAGGGCCAGTGGACATCAACATTGTGGCCAAATGCCATGCCTCCCAGCC

FIGURE 111B

TACAGCTACAAGGGCAAGGACTGCACTGTGCCCATCAACACCTGCATCCAGAACCCCTGTCA GCATGGAGGCACCTGCCACCTGAGTGACAGCCACAAGGATGGGTTCAGCTGCTCCTGCCCTC TGGGCTTTGAGGGGCAGCGGTGTGAGATCAACCCAGATGACTGTGAGGACAACGACTGCGAA AACAATGCCACCTGCGTGGACGGGATCAACAACTACGTGTGTATCTGTCCGCCTAACTACAC AGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTGCCTGAGCTGAACCTCTGTCAGCATG AGGCCAAGTGCATCCCCCTGGACAAAGGATTCAGCTGCGAGTGTGTCCCTGGCTACAGCGGG AAGCTCTGTGAGACAGACAATGATGACTGTGTGGCCCACAAGTGCCGCCACGGGGCCCAGTG CGTGGACACAATCAATGGCTACACATGCACCTGCCCCCAGGGCTTCAGTGGACCCTTCTGTG AACACCCCCACCCATGGTCCTACTGCAGACCAGCCCATGCGACCAGTACGAGTGCCAGAAC GGGGCCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGCTGCCCACCAGGCTTCGCCGG CCCCAGATGCGAGAAGCTCATCACTGTCAACTTCGTGGGCAAAGACTCCTACGTGGAACTGG CCTCCGCCAAGGTCCGACCCCAGGCCAACATCTCCCTGCAGGTGGCCACTGACAAGGACAAC GGCATCCTTCTCTACAAAGGAGACAATGACCCCCTGGCACTGGAGCTGTACCAGGGCCACGT GCGGCTGGTCTATGACAGCCTGAGTTCCCCTCCAACCACAGTGTACAGTGTGGAGACAGTGA ATGATGGCAGTTTCACAGTGTGGAGCTGGTGACGCTAAACCAGACCCTGAACCTAGTAGTG CCCCTCTACCTTGGAGGCATCCCCACCTCCACCGGCCTCTCCGCCTTGCGCCAGGGCACGG ACCGGCCTCTAGGCGGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAACGAGCTGCAG GACTTCAAGGCCCTCCCACCACAGTCCCTGGGGGTGTCACCAGGCTGCAAGTCCTGCACCGT GTGCAAGCACGGCCTGTGCCGCTCCGTGGAGAAGGACAGCGTGGTGCGAGTGCCGCCCAG GCTGGACCGGCCCACTCTGCGACCAGGAGGCCCGGGACCCCTGCCTCGGCCACAGATGCCAC CATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCCGAGGGCTATGGAGG GGACTTGTGTGACAACAAGAATGACTCTGCCAATGCCTGCTCAGCCTTCAAGTGTCACCATG GGCAGTGCCACATCTCAGACCAAGGGGAGCCCTACTGCCTGTGCCAGCCCGGCTTTAGCGGC GAGCACTGCCAACAAGAGAATCCGTGCCTGGGACAAGTAGTCCGAGAGGTGATCCGCCGCCA GAAAGGTTATGCATCATGTGCCACAGCCTCCAAGGTGCCCATCATGGAATGTCGTGGGGGCCT GTGGGCCCCAGTGCTGCCAGCCCACCCGCAGCAAGCGGCGGAAATACGTCTTCCAGTGCACG GACGGCTCCTCGTTTGTAGAAGAGGTGGAGAGACACTTAGAGTGCGGCTGCCTCGCGTGTTC CTAAGCCCCTGCCCGCCTGCCACCTCTCGGACTCCAGCTTGATGGAGTTGGGACAGCC ATGTGGGACCCCCTGGTGATTCAGCATGAAGGAAATGAAGCTGGAGAGGAAGGTAAAGAAGA AAAAA

FIGURE 112

MAPGWAGVGAAVRARLALALALASVLSGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRN AERLDLDRNNITRITKMDFAGLKNLRVLHLEDNQVSVIERGAFQDLKQLERLRLNKNKLQVL PELLFOSTPKLTRLDLSENOIOGIPRKAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEIL TLNNNNISRILVTSFNHMPKIRTLRLHSNHLYCDCHLAWLSDWLRQRRTVGQFTLCMAPVHL RGFNVADVOKKEYVCPAPHSEPPSCNANSISCPSPCTCSNNIVDCRGKGLMEIPANLPEGIV EIRLEQNSIKAIPAGAFTQYKKLKRIDISKNQISDIAPDAFQGLKSLTSLVLYGNKITEIAK GLFDGLVSLQLLLLNANKINCLRVNTFQDLQNLNLLSLYDNKLQTISKGLFAPLQSIQTLHL AQNPFVCDCHLKWLADYLQDNPIETSGARCSSPRRLANKRISQIKSKKFRCSGSEDYRSRFS SECFMDLVCPEKCRCEGTIVDCSNQKLVRIPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPN LRKINLSNNKIKEVREGAFDGAASVOELMLTGNOLETVHGRVFRGLSGLKTLMLRSNLISCV SNDTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLGKWLRKRR IVSGNPRCQKPFFLKEIPIQDVAIQDFTCDGNEESSCQLSPRCPEQCTCMETVVRCSNKGLR ALPRGMPKDVTELYLEGNHLTAVPRELSALRHLTLIDLSNNSISMLTNYTFSNMSHLSTLIL SYNRLRCIPVHAFNGLRSLRVLTLHGNDISSVPEGSFNDLTSLSHLALGTNPLHCDCSLRWL SEWVKAGYKEPGIARCSSPEPMADRLLLTTPTHRFQCKGPVDINIVAKCNACLSSPCKNNGT CTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDSHKDGFSCSCPLGFEGQR CEINPDDCEDNDCENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAKCIPL DKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAQCVDTINGYTCTCPQGFSGPFCEHPPPMV LLOTSPCDOYECONGAOCIVVOOEPTCRCPPGFAGPRCEKLITVNFVGKDSYVELASAKVRP QANISLQVATDKDNGILLYKGDNDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHS VELVTLNQTLNLVVDKGTPKSLGKLQKQPAVGINSPLYLGGIPTSTGLSALRQGTDRPLGGF HGCIHEVRINNELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDSVVCECRPGWTGPLC DOEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHISD OGEPYCLCOPGFSGEHCOOENPCLGOVVREVIRRQKGYASCATASKVPIMECRGGCGPQCCQ PTRSKRRKYVFQCTDGSSFVEEVERHLECGCLACS

Signal peptide:

amino acids 1-27

FIGURE 113

FIGURE 114

MKAAGILTLIGCLVTGAESKIYTRCKLAKIFSRAGLDNYWGFSLGNWICMAYYESGYNTTAP TVLDDGSIDYGIFQINSFAWCRRGKLKENNHCHVACSALITDDLTDAIICARKIVKETQGMN YWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:

amino acids 1-19

FIGURE 115

CAGGCCATTTGCATCCCACTGTCCTTGTGTTCGGAGCCAGGCCACACCGTCCTCAGCAGTGT CATGTGTTAAAAACGCCAAGCTGAATATATC**ATG**CCCCTATTAAAACTTGTACATGGCTCCC CATTGGTTTTTGGAGAAAAGTTCAAGCTTTTTACCTTGGTGTCTGCCTGTATCCCAGTGTTC AGGCTGGCTAGACGGCGGAAGAAGATCCTATTTTACTGTCACTTCCCAGATCTGCTTCTCAC CAAGAGAGATTCTTTTCTTAAACGACTATACAGGGCCCCAATTGACTGGATAGAGGAATACA CCACAGGCATGCATCTTAGTCAACAGCCAGTTCACAGCTGCTGTTTTTAAGGAA ACATTCAAGTCCCTGTCTCACATAGACCCTGATGTCCTCTATCCATCTCTAAATGTCACCAG CTTTGACTCAGTTGTTCCTGAAAAGCTGGATGACCTAGTCCCCAAGGGGAAAAAATTCCTGC TGCTCTCCATCAACAGATACGAAAGGAAGAAAAATCTGACTTTGGCACTGGAAGCCCTAGTA CAGCTGCGTGGAAGATTGACATCCCAAGATTGGGAGAGGGTTCATCTGATCGTGGCAGGTGG TTATGACGAGAGTCCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATGGTCCAAC AGTCCGACCTTGGCCAGTATGTGACCTTCTTGAGGTCTTTCTCAGACAAACAGAAAATCTCC CTCCTCCACAGCTGCACGTGTGTGCTTTACACACCAAGCAATGAGCACTTTGGCATTGTCCC TCTGGAAGCCATGTACATGCAGTGCCCAGTCATTGCTGTTAATTCGGGTGGACCCTTGGAGT CCATTGACCACAGTGTCACAGGGTTTCTGTGTGAGCCTGACCCGGTGCACTTCTCAGAAGCA AGTGAAGGAAAAATTTTCCCCTGAAGCATTTACAGAACAGCTCTACCGATATGTTACCAAAC TGCTGGTA**TAA**TCAGATTGTTTTTAAGATCTCCATTAATGTCATTTTTATGGATTGTAGACC CAGTTTTGAAACCAAAAAAGAAACCTAGAATCTAATGCAGAAGAGATCTTTTAAAAAATAAA CTTGAGTCTTGAATGTGAGCCACTTTCCTATATACCACACCTCCCTGTCCACTTTTCAGAAA AACCATGTCTTTTATGCTATAATCATTCCAAATTTTGCCAGTGTTAAGTTACAAATGTGGTG TCATTCCATGTTCAGCAGAGTATTTTAATTATTTTTCTCGGGATTATTGCTCTTCTGTCTA TAAATTTTGAATGATACTGTGCCTTAATTGGTTTTCATAGTTTAAGTGTGTATCATTATCAA AGTTGATTAATTTGGCTTCATAGTATAATGAGAGCAGGGCTATTGTAGTTCCCAGATTCAAT CATAGCGAGAGTGCTCTGTATTTTTTTAAGATAATTTGTATTTTTTGCACACTGAGATATAA TAAAAGGTGTTTATCATAAAAAAAAAAAAAAAAAAAA

FIGURE 116

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLARRRKKILFYCHFPDLLLTKRDSFLKRLY
RAPIDWIEEYTTGMADCILVNSQFTAAVFKETFKSLSHIDPDVLYPSLNVTSFDSVVPEKLD
DLVPKGKKFLLLSINRYERKKNLTLALEALVQLRGRLTSQDWERVHLIVAGGYDERVLENVE
HYQELKKMVQQSDLGQYVTFLRSFSDKQKISLLHSCTCVLYTPSNEHFGIVPLEAMYMQCPV
IAVNSGGPLESIDHSVTGFLCEPDPVHFSEAIEKFIREPSLKATMGLAGRARVKEKFSPEAF
TEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

FIGURE 117

GACTACGCCGATCCGAGACGTGGCTCCCTGGGCGGCAGAACCATGTTGGACTTCGCGATCTT CGCCGTTACCTTCTTGCTGGCGTTGGTGGGAGCCGTGCTCTACCTCTATCCGGCTTCCAGAC AAGCTGCAGGAATTCCAGGGATTACTCCAACTGAAGAAAAGATGGTAATCTTCCAGATATT GTGAATAGTGGAAGTTTGCATGAGTTCCTGGTTAATTTGCATGAGAGATATGGGCCTGTGGT CTCCTTCTGGTTTGGCAGGCGCCTCGTGGTTAGTTTGGGCACTGTTGATGTACTGAAGCAGC ATATCAATCCCAATAAGACATCGGACCCTTTTGAAACCATGCTGAAGTCATTATTAAGGTAT CAATCTGGTGGTGGCAGTGTGAGTGAAAACCACATGAGGAAAAATTGTATGAAAATGGTGT GACTGATTCTCTGAAGAGTAACTTTGCCCTCCTCCTAAAGCTTTCAGAAGAATTATTAGATA ATGAAGTCTGTTACACAGATGGTAATGGGTAGTACATTTGAAGATGATCAGGAAGTCATTCG CTTCCAGAAGAATCATGGCACAGTTTGGTCTGAGATTGGAAAAGGCTTTCTAGATGGGTCAC TTGATAAAAACATGACTCGGAAAAAACAATATGAAGATGCCCTCATGCAACTGGAGTCTGTT TTAAGGAACATCATAAAAGAACGAAAAGGAAGGAACTTCAGTCAACATATTTTCATTGACTC CTTAGTACAAGGGAACCTTAATGACCAACAGATCCTAGAAGACAGTATGATATTTTCTCTGG CCAGTTGCATAATAACTGCAAAATTGTGTACCTGGGCAATCTGTTTTTTAACCACCTCTGAA GAAGTTCAAAAAAATTATATGAAGAGATAAACCAAGTTTTTGGAAATGGTCCTGTTACTCC AGAGAAAATTGAGCAGCTCAGATATTGTCAGCATGTGCTTTGTGAAACTGTTCGAACTGCCA AACTGACTCCAGTTTCTGCCCAGCTTCAAGATATTGAAGGAAAAATTGACCGATTTATTATT CCTAGAGAGACCCTCGTCCTTTATGCCCTTGGTGTGTGTACTTCAGGATCCTAATACTTGGCC ATCTCCACACAAGTTTGATCCAGATCGGTTTGATGATGAATTAGTAATGAAAACTTTTTCCT CACTTGGATTCTCAGGCACACAGGAGTGTCCAGAGTTGAGGTTTGCATATATGGTGACCACA GTACTTCTTAGTGTATTGGTGAAGAGACTGCACCTACTTTCTGTGGAGGGACAGGTTATTGA AACAAAGTATGAACTGGTAACATCATCAAGGGAAGAAGCTTGGATCACTGTCTCAAAGAGAT AT**TAA**AATTTTATACATTTAAAATCATTGTTAAATTGATTGAGGAAAACAACCATTTAAAAA AAATCTATGTTGAATCCTTTTATAAACCAGTATCACTTTGTAATATAAACACCTATTTGTAC TTAA

FIGURE 118

MLDFAIFAVTFLLALVGAVLYLYPASRQAAGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLH
ERYGPVVSFWFGRRLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRK
KLYENGVTDSLKSNFALLLKLSEELLDKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFE
DDQEVIRFQKNHGTVWSEIGKGFLDGSLDKNMTRKKQYEDALMQLESVLRNIIKERKGRNFS
QHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQKKLYEEINQVF
GNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVL
QDPNTWPSPHKFDPDRFDDELVMKTFSSLGFSGTQECPELRFAYMVTTVLLSVLVKRLHLLS
VEGQVIETKYELVTSSREEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

FIGURE 119

FIGURE 120

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLG LFAVELAGFLSGVSMFNSTQSLISIGAHCSASVALSFFIFERWECTTYWYIFVFCSALPAVT EMALFVTVFGLKKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

FIGURE 121

FIGURE 122

MSRRSMLLAWALPSLLRLGAAQETEDPACCSPIVPRNEWKALASECAQHLSLPLRYVVVSHT AGSSCNTPASCQQQARNVQHYHMKTLGWCDVGYNFLIGEDGLVYEGRGWNFTGAHSGHLWNP MSIGISFMGNYMDRVPTPQAIRAAQGLLACGVAQGALRSNYVLKGHRDVQRTLSPGNQLYHL IQNWPHYRSP

Signal peptide:

amino acids 1-20

FIGURE 123

GACTCGCTGCTGCTGTTCCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGGCCAGG ATGATGGTCCTCCCGGCTCAGAGGACCCTGAGCGTGATGACCACGAGGGCCAGCCCCGGCCC CGGGTGCCTCGGAAGCGGGCCACATCTCACCTAAGTCCCGCCCCATGGCCAATTCCACTCT CCTAGGGCTGCTGGCCCCGCCTGGGGAGGCTTGGGGCATTCTTGGGCAGCCCCCAACCGCC CGAACCACACCCCCACCCTCAGCCAAGGTGAAGAAATCTTTGGCTGGGGCGACTTCTAC TCCAACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAGATTGTGGACCATGGCAA TGGGACCTTCAGCGTCCACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCC TCGTGCCCCCAGTAAAGCTGTAGAGTTCCACCAGGAACAGCAGATCTTCATCGAAGCCAAG GCCTCCAAAATCTTCAACTGCCGGATGGAGTGGGAGAAGGTAGAACGGGGCCGCCGGACCTC GCTTTGCACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCAGCCACCT GGAGCTGCTCCCAGCCCTTCAAAGTCGTCTGTGTCTACATCGCCTTCTACAGCACGGACTAT CGGCTGGTCCAGAAGGTGTGCCCAGATTACAACTACCATAGTGATACCCCCTACTACCCATC TGGG<u>TGA</u>CCCGGGGCAGGCCACAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCTGCCCATGC ACGAGGAGATGCCAAGTGGGGCCAAGTCTCAAGTGGCAGAGAAAGGGTCCCAAGTG CTGGTCCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTGGGCT CTCTGTGCAGCCTCACAGGGCTTTGCCACGGAGCCACAGAGAGATGCTGGGTCCCCGAGGCC TGTGGGCAGGCCGATCAGTGTGGCCCCAGATCAAGTCATGGGAGGAAGCTAAGCCCTTGGTT CTTGCCATCCTGAGGAAAGATAGCAACAGGGAGGGGGGGAGATTTCATCAGTGTGGACAGCCTG TCAACTTAGGATGGATGGCTGAGAGGGCTTCCTAGGAGCCAGTCAGCAGGGTGGGGTGGGGC CAGAGGAGCTCTCCAGCCCTGCCTAGTGGGCCCCTTGAGCCCCTTGTCGTGTGCTGAGCATG GCATGAGGCTGAAGTGGCAACCCTGGGGTCTTTGATGTCTTGACAGATTGACCATCTGTCTC CAGCCAGGCCACCCTTTCCAAAATTCCCTCTTCTGCCAGTACTCCCCCTGTACCACCCATT GCTGATGGCACCCATCCTTAAGCTAAGACAGGACGATTGTGGTCCTCCCACACTAAGGCC ACAGCCCATCCGCGTGTGTGTCCCTCTTCCACCCCAACCCCTGCTGGCTCCTCTGGGAG CATCCATGTCCCGGAGAGGGGTCCCTCAACAGTCAGCCTCACCTGTCAGACCGGGGTTCTCC CGGATCTGGATGGCGCCCCCCTCTCAGCAGCGGGCACGGGTGGGGCCGGGCCGCCAGA GAAACCGCTGATTGCTGACTTTTGTGTGAAGAATCGTGTTCTTGGAGCAGGAAATAAAGCTT GCCCCGGGGCA

FIGURE 124

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521

><subunit 1 of 1, 252 aa, 1 stop

><MW: 28127, pI: 8.91, NX(S/T): 5

MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMAN STLLGLLAPPGEAWGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVD HGNGTFSVHFQHNATGQGNISISLVPPSKAVEFHQEQQIFIEAKASKIFNCRMEWEKVERGR RTSLCTHDPAKICSRDHAQSSATWSCSQPFKVVCVYIAFYSTDYRLVQKVCPDYNYHSDTPY YPSG

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

FIGURE 125

GTGAATGTGAGGGTTTGATGACTTTCAGATGTCTAGGAACCAGAGTGGGTGCAGGGGCCCCA GGCAGGGCTGATTCTTGGGCGGAGGAGAGTAGGGTAAAGGGTTCTGCATGAGCTCCTTAAAG GACAAAGGTAACAGAGCCAGCGAGAGAGCTCGAGGGGAGACTTTGACTTCAAGCCACAGAAT TGGTGGAAGTGTGCGCCGCCGCCGCCGTCGCTCCTGCAGCGCTGTCGACCTAGCCGCTAG ${\tt GGCTGCGGCTGCCCACACGGCTCACC} \underline{\textbf{ATG}} {\tt GGCTCCGGGGCGCGGGCGCTGTCCGCGGTGCCG}$ GCCGTGCTGGTCCTCACGCTGCCGGGGCTGCCCGTCTGGGCACAGAACGACACGGAGCC CATCGTGCTGGAGGGCAAGTGTCTGGTGGTGTGCGACTCGAACCCGGCCACGGACTCCAAGG GCTCCTCTCCCCCGCTGGGGATATCGGTCCGGGCGGCCAACTCCAAGGTCGCCTTCTCG GCGGTGCGGAGCACCAACCACGAGCCATCCGAGATGAGCAACAAGACGCGCATCATTTACTT GAAAAGGAATTTACAGTTTCAGTTTTCACGTGATTAAAGTCTACCAGAGCCAAACTATCCAG GTTAACTTGATGTTAAATGGAAAACCAGTAATATCTGCCTTTGCGGGGGACAAAGATGTTAC TCGTGAAGCTGCCACGAATGGTGTCCTGCTCTACCTAGATAAAGAGGATAAGGTTTACCTAA AACTGGAGAAAGGTAATTTGGTTGGAGGCTGGCAGTATTCCACGTTTTCTGGCTT TTCCCCCTA TAGGATTCAATTTCTCCATGATGTTCATCCAGGTGAGGGATGACCCACTCCTG GATATGGATTCTAAGGATTCTAGCCTGTCTGAACCAATACAAAATTTCACAGATTATTTGTG TGTGTCTGTTTCAGTATATTTGGATTGGGACTCTAAGCAGATAATACCTATGCTTAAATGTA ACAGTCAAAAGCTGTCTGCAAGACTTATTCTGAATTTCATTTCCTGGGATTACTGAATTAGT TACAGATGTGGAATTTTATTTGTTTAGTTTTAAAAGACTGGCAACCAGGTCTAAGGATTAGA AAACTCTAAAGTTCTGACTTCAATCAACGGTTAGTGTGATACTGCCAAAGAACTGTATACTG AAAACTTGGATTTTTTTTTTCAGTAACTGGTATTATGTTTTCTCTTAAAATAAGGTAATGAA GAATGCTTCATAGTTGTATTTTAATTGTATATGTGAAAGAGTCATATTTTCCAAGTTATATT TTCTAAGAAGAAGAATAGATCATAAATCTGACAAGGAAAAAGTTGCTTACCCAAAATCTAAG TGCTCAATCCCTGAGCCTCAGCAAAACAGCTCCCCTCCGAGGGAAATCTTATACTTTATTGC TCCGTAGACATGACCACTTTATTAACTGGTGGTGGGATGCTGTTGTTTCTAATTATACCTAT TTTTCAAGGCTTCTGTTGTATTTGAAGTATCATCTGGTTTTTGCCTTAACTCTTTAAATTGTA TATATTTATCTGTTTAGCTAATATTAAATTCAAATATCCCATATCTAAATTTAGTGCAATAT TTAATATATGTTAAAAAA

FIGURE 126

MGSGRRALSAVPAVLLVLTLPGLPVWAQNDTEPIVLEGKCLVVCDSNPATDSKGSSSSPLGI SVRAANSKVAFSAVRSTNHEPSEMSNKTRIIYFDQILVNVGNFFTLESVFVAPRKGIYSFSF HVIKVYQSQTIQVNLMLNGKPVISAFAGDKDVTREAATNGVLLYLDKEDKVYLKLEKGNLVG GWQYSTFSGFLVFPL

Signal peptide:

amino acids 1-27

FIGURE 127

FIGURE 128

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658

><subunit 1 of 1, 257 aa, 1 stop

><MW: 28472, pI: 9.33, NX(S/T): 0

MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSLLISSLVWFMARVIIDN KDGPTQKYLLIFGAFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGF GIMSGVFSFVNTLSDSLGPGTVGIHGDSPQFFLYSAFMTLVIILLHVFWGIVFFDGCEKKKW GILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGTWAFLAAGGSCRSLKLCLLCQDKN FLLYNQRSR

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

FIGURE 129

AGTTTGAGCGCACCTACGTGGACGAGGTCAACAGCGAGCTGGTCAACATCTACACCTTCAACCATACTGTGACCC GCAACAGGACAGAGGGCGTGCGTGTCTGTGAACGTCCTGAACAAGCAGAAGGGGGGCGCCGTTGCTGTTTGTGG TCCGCCAGAAGGAGGCTGTGGTGTCCTTCCAGGTGCCCCTAATCCTGCGAGGGATGTTTCAGCGCAAGTACCTCT ACCAAAAAGTGGAACGAACCCTGTGTCAGCCCCCCCCCACCAAGAATGAGTCGGAGATTCAGTTCTTCTACGTGGATG TGTCCACCCTGTCACCAGTCAACACCACATACCAGCTCCGGGTCAGCCGCATGGACGATTTTGTGCTCAGGACTG GGGAGCAGTTCAGCTTCAATACCACAGCAGCACAGCCCCAGTACTTCAAGTATGAGTTCCCTGAAGGCGTGGACT CGGTAATTGTCAAGGTGACCTCCAACAAGGCCTTCCCCTGCTCAGTCATCTCCATTCAGGATGTGCTGTCCTG TCTATGACCTGGACAACAACGTAGCCTTCATCGGCATGTACCAGACGATGACCAAGAAGGCGGCCATCACCGTAC AGCGCAAAGACTTCCCCAGCAACAGCTTTTATGTGGTGGTGGTGGTGAAGACCGAAGACCAAGCCTGCGGGGGCT $\verb|CCCTGCCTTTCTACCCCTTCGCAGAAGATGAACCGGTCGATCAAGGGCACCGCCAGAAAACCCTGTCAGTGCTGG|\\$ TGTCTCAAGCAGTCACGTCTGAGGCATACGTCAGTGGGATGCTCTTTTGCCTGGGTATATTTCTCTCCTTTTACC TGCTGACCGTCCTCCTGGCCTGCTGGGAGAACTGGAGGCAGAAGAAGAACCCTGCTGGTGGCCATTGACCGAG CCTGCCCAGAAAGCGGTCACCCTCGAGTCCTGGCTGATTCTTTTCCTGGCAGTTCCCCTTATGAGGGTTACAACT ATGGCTCCTTTGAGAATGTTTCTGGATCTACCGATGGTCTGGTTGACAGCGCTGGCACTGGGGACCTCTCTTACG GTTACCAGGGCCGCTCCTTTGAACCTGTAGGTACTCGGCCCCGAGTGGACTCCATGAGCTCTGTGGAGGAGGATG ACTACGACACTGACCGACATCGATTCCGACAAGAATGTCATTCGCACCAAGCAATACCTCTATGTGGCTGACC TGGCACGGAAGGACAAGCGTGTTCTGCGGAAAAAGTACCAGATCTACTTCTGGAACATTGCCACCATTGCTGTCT TCTATGCCCTTCCTGTGGTGCAGCTGGTGATCACCTACCAGACGGTGGTGAATGTCACAGGGAATCAGGACATCT GCTACTACAACTTCCTCTGCGCCCACCCACTGGGCAATCTCAGCGCCCTTCAACAACATCCTCAGCAACCTGGGGT ACATCCTGCTGGGGCTGCTTTTCCTGCTCATCCTGCAACGGGAGATCAACCACAACCGGGCCCTGCTGCGCA ATGACCTCTGTGCCCTGGAATGTGGGATCCCCAAACACTTTGGGCTTTTCTACGCCATGGGCACAGCCCTGATGA TGGAGGGGCTGCTCAGTGCTATCATGTGTGCCCCAACTATACCAATTTCCAGTTTGACACATCGTTCATGT ACATGATCGCCGGACTCTGCATGCTGAAGCTCTACCAGAAGCGGCACCCGGACATCAACGCCAGCGCCTACAGTG ${\tt CCTACGCCTGCCTGGCCATTGTCATCTTCTCTGTGCTGGGCGTGGTCTTTGGCAAAGGGAACACGGCGTTCT}$ GGATCGTCTTCTCCATCATCACCATCATCGCCACCCTGCTCCTCAGCACGCAGCTCTATTACATGGGCCGGTGGA AACTGGACTCGGGGATCTTCCGCCGCATCCTCCACGTGCTCTACACAGACTGCATCCGGCAGTGCAGCGGGCCGC TGCGCCCCAATGATTTCGCTTCCTACTTGTTGGCCATTGGCATCTGCAACCTGCTCCTTTACTTCGCCTTCTACA TCATCATGAAGCTCCGGAGTGGGGAGAGGATCAAGCTCATCCCCCTGCTCTGCATCGTTTGCACCTCCGTGGTCT GGGGCTTCGCGCTCTTCTTCTTCCAGGGACTCAGCACCTGGCAGAAAACCCCTGCAGAGTCGAGGGAGCACA ACCGGGACTGCATCCTCCACCATCTTTGACGACCACGACATCTGGCACTTCCTCCTCCATCGCCATGTTCG GGTCCTTCCTGGTGTTGCTGACACTGGATGACGACCTGGATACTGTGCAGCGGGACAAGATCTATGTCTTC**TAG**C AGGAGCTGGGCCCTTCGCTTCACCTCAAGGGGCCCTGAGCTCCTTTGTGTCATAGACCGGTCACTCTGTCGTGCT GTGGGGATGAGTCCCAGCACCGCTGCCCAGCACTGGATGGCAGCAGGACAGCCAGGTCTAGCTTAGGCTTGGCCT ${\tt AGATGTTGGCCAAATTGCTGCTTTCTCAGTGTTGGGGCCCTTCCATTGGGCCCCTGTCCTTTGGCTCTCCATTT}$ GTCCCTTTGCAAGAGGAAGGATGGAAGGGACACCCTCCCCATTTCATGCCTTGCATTTTGCCCGTCCTCCCCC ACAATGCCCCAGCCTGGGACCTAAGGCCTCTTTTTCCTCCCATACTCCCACTCCAGGGCCTAGTCTGGGGCCTGA ATCTCTGTCCTGTATCAGGGCCCCAGTTCTCTTTGGGCTGTCCCTGGCTGCCATCACTGCCCATTCCAGTCAGCC AGGATGGATGGGGGTATGAGATTTTGGGGGGTTGGCCAGCTGGTGCCAGACTTTTGGTGCTAAGGCCTGCAAGGGG TGAGAACCGCCTTCTGATTCAAGAGGCTGAATTCAGAGGTCACCTCTTCATCCCATCAGCTCCCAGACTGATGCC AGCACCAGGACTGGAGGGAGAAGCGCCTCACCCCTTCCCTTCTTTCCAGGCCCTTAGTCTTGCCAAACCCC AGCTGGTGGCCTTTCAGTGCCATTGACACTGCCCAAGAATGTCCAGGGGCAAAGGAGGGGTGATACAGAGTTCAG $\verb|CCCGTTCTGCCTCCACAGCTGTGGGCACCCCAGTGCCTACCTTAGAAAGGGGGCTTCAGGAAGGGATGTGCTGTTT| \\$ AGTTCTGTGTTAGTCATGCACACACATACCTATGAAACCTTGGAGTTTACAAAGAATTGCCCCAGCTCTGGGCAC $\tt CGGGGCCTCTGCTTTGGGGATGGGATGTGTTTTTCTCCCAAACTTGTTTTTATAGCTCTGCTTGAAGGGCTGGG$

FIGURE 130

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66659</pre>

><subunit 1 of 1, 832 aa, 1 stop

><MW: 94454, pI: 6.94, NX(S/T): 12

MFALGLPFLVLLVASVESHLGVLGPKNVSQKDAEFERTYVDEVNSELVNIYTFNHTVTRNRT
EGVRVSVNVLNKQKGAPLLFVVRQKEAVVSFQVPLILRGMFQRKYLYQKVERTLCQPPTKNE
SEIQFFYVDVSTLSPVNTTYQLRVSRMDDFVLRTGEQFSFNTTAAQPQYFKYEFPEGVDSVI
VKVTSNKAFPCSVISIQDVLCPVYDLDNNVAFIGMYQTMTKKAAITVQRKDFPSNSFYVVVV
VKTEDQACGGSLPFYPFAEDEPVDQGHRQKTLSVLVSQAVTSEAYVSGMLFCLGIFLSFYLL
TVLLACWENWRQKKKTLLVAIDRACPESGHPRVLADSFPGSSPYEGYNYGSFENVSGSTDGL
VDSAGTGDLSYGYQGRSFEPVGTRPRVDSMSSVEEDDYDTLTDIDSDKNVIRTKQYLYVADL
ARKDKRVLRKKYQIYFWNIATIAVFYALPVVQLVITYQTVVNVTGNQDICYYNFLCAHPLGN
LSAFNNILSNLGYILLGLLFLLIILQREINHNRALLRNDLCALECGIPKHFGLFYAMGTALM
MEGLLSACYHVCPNYTNFQFDTSFMYMIAGLCMLKLYQKRHPDINASAYSAYACLAIVIFFS
VLGVVFGKGNTAFWIVFSIIHIIATLLLSTQLYYMGRWKLDSGIFRRILHVLYTDCIRQCSG
PLYVDRMVLLVMGNVINWSLAAYGLIMRPNDFASYLLAIGICNLLLYFAFYIIMKLRSGERI
KLIPLLCIVCTSVVWGFALFFFFQGLSTWQKTPAESREHNRDCILLDFFDDHDIWHFLSSIA

Important features of the protein:

Signal peptide:

amino acids 1-18

Transmembrane domains:

amino acids 292-317, 451-470, 501-520, 607-627, 751-770

Leucine zipper pattern.

amino acids 497-518

N-glycosylation sites.

amino acids 27-30, 54-57, 60-63, 123-126, 141-144, 165-168, 364-367, 476-479, 496-499, 572-575, 603-606, 699-702

FIGURE 131

GCTCAAGTGCCCTGCCTTGCCCCACCCAGCCCAGCCTGGCCAGAGCCCCCTGGAGAAGGAGC TCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGGGCCTGTCCTG \mathtt{ACC} $\overline{\mathtt{ATG}}$ $\mathtt{GTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCAGGCTCTCCCCAAGGC$ CCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAATTTCCCTTTATACC TGACCAAGTTGCCGCTGCCCCGTGAGGGGGGCTGAAGGCCAGATCGTGCTGTCAGGGGACTCA GGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGGCTTCCTGCTGGTGACCAG GGCCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGTCACCCTGGAGATGCAGGATG GACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGTGAAGGATGAGAATGACCAGGTG CCCCATTTCTCTCAAGCCATCTACAGAGCTCGGCTGAGCCGGGGTACCAGGCCTGGCATCCC CTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCCAGGCAACCTCGGATCTTCGAT TCCACATCCTGAGCCAGGCTCCAGCCTTCCCCAGACATGTTCCAGCTGGAGCCTCGG CTGGGGGCTCTGGCCCCCAAGGGGAGCACCAGCCTTGACCACGCCCTGGAGAGGAC CTACCAGCTGTTGGTACAGGTCAAGGACATGGGTGACCAGGCCTCAGGCCACCAGGCCACTG CCACCGTGGAAGTCTCCATCATAGAGAGCACCTGGGTGTCCCTAGAGCCTATCCACCTGGCA GAGAATCTCAAAGTCCTATACCCGCACCACATGGCCCAGGTACACTGGAGTGGGGGTGATGT GCACTATCACCTGGAGAGCCATCCCCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCT ACGTGACCAGAGAGCTGGACAGAGAAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAG TGACAACGTGCCTATCTGCCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCAC CAGGTACTGAAGTGACTAGACTGTCAGCAGAGGATGCCAGATGCCCCCGGCTCCCCCAATTCC CACGTTGTGTATCAGCTCCTGAGCCCTGAGCCTGAGGGTAGAGGGGAGAGCCTTCCA GGTGGACCCCACTTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACA TCCTGCTTCTGGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGT GAAGTCGAAGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGAT TGGGCCTATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCA TTGATGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACA GAAGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGCGA AGCTGGTGGGCCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGAGAGA GTGATGCCACCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAGTGCCCC AGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCTCAGGTTCT CCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGAGGTGCACACC GCCCAGTCCCTGCAGGGCCCCAGCCTGGGGACACCTACACGGTGCTTGTGGAGGCCCAGGA TACAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTGCACACCCCGCCAAGACCATG GCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGCCAGTGGGCACGGTCCCTACAGC TTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTGGCGCCTCCAGACTCTCAATGGTTC CCATGCCTACCTTGGCCCTGCATTGGGTGGAGCCACGTGAACACATAATCCCCGTGG TGGTCAGCCACAATGCCCAGATGTGGCAGCTCCTGGTTCGAGTGATCGTGTGTCGCTGCAAC GTGGAGGGCAGTGCATGCGCAAGGTGGGCCGCATGAAGGGCATGCCCACGAAGCTGTCGGC AGTGGGCATCCTTGTAGGCACCCTGGTAGCAATAGGAATCTTCCTCATCCTCATTTTCACCC ACTGGACCATGTCAAGGAAGAAGGACCCGGATCAACCAGCAGACAGCGTGCCCCTGAAGGCG ${ t ACTGTC}{ t TGA}{ t ATGGCCCAGGCAGCTCTAGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCC}$ CTGCCCTGGGGTGGAGGCACCATCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAAC TTTATGGACTGCCCATGGGAGTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCA

FIGURE 132

MVPAWLWLLCVSVPQALPKAQPAELSVEVPENYGGNFPLYLTKLPLPREGAEGQIVLSGDSG

KATEGPFAMDPDSGFLLVTRALDREEQAEYQLQVTLEMQDGHVLWGPQPVLVHVKDENDQVP

HFSQAIYRARLSRGTRPGIPFLFLEASDRDEPGTANSDLRFHILSQAPAQPSPDMFQLEPRL

GALALSPKGSTSLDHALERTYQLLVQVKDMGDQASGHQATATVEVSIIESTWVSLEPIHLAE

NLKVLYPHHMAQVHWSGGDVHYHLESHPPGPFEVNAEGNLYVTRELDREAQAEYLLQVRAQN

SHGEDYAAPLELHVLVMDENDNVPICPPRDPTVSIPELSPPGTEVTRLSAEDADAPGSPNSH

VVYQLLSPEPEDGVEGRAFQVDPTSGSVTLGVLPLRAGQNILLLVLAMDLAGAEGGFSSTCE

VEVAVTDINDHAPEFITSQIGPISLPEDVEPGTLVAMLTAIDADLEPAFRLMDFAIERGDTE

GTFGLDWEPDSGHVRLRLCKNLSYEAAPSHEVVVVVQSVAKLVGPGPGPGATATVTVLVERV

MPPPKLDQESYEASVPISAPAGSFLLTIQPSDPISRTLRFSLVNDSEGWLCIEKFSGEVHTA

QSLQGAQPGDTYTVLVEAQDTALTLAPVPSQYLCTPRQDHGLIVSGPSKDPDLASGHGPYSF

TLGPNPTVQRDWRLQTLNGSHAYLTLALHWVEPREHIIPVVVSHNAQMWQLLVRVIVCRCNV

EGQCMRKVGRMKGMPTKLSAVGILVGTLVAIGIFLILIFTHWTMSRKKDPDQPADSVPLKATV

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 762-784

FIGURE 133

 $\verb|CCGGGGAC| \textbf{ATG} | \texttt{AGGTGGATACTGTTCATTGGGGCCCTTATTGGGTCCAGCATCTGTGGCCAA| \\$ GAAAAATTTTTTGGGGACCAAGTTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAA AGATCCCAGGGCTTAGAGTACGCAGTGACAATTGAGGACCTGCAGGCCCTTTTAGACAATGA AGATGATGAAATGCAACACAATGAAGGGCAAGAACGGAGCAGTAATAACTTCAACTACGGGG CTTACCATTCCCTGGAAGCTATTTACCACGAGATGGACAACATTGCCGCAGACTTTCCTGAC CAGCACTGGGAAAGGCGTGAGGCGGCCGGCCGTTTGGCTGAATGCAGGCATCCATTCCCGAG AGTGGATCTCCCAGGCCACTGCAATCTGGACGGCAAGGAAGATTGTATCTGATTACCAGAGG GATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTTTCTTGTTGCCTGTGGCCAATCC TGATGGATATGTGTATACTCAAACTCAAAACCGATTATGGAGGAAGACGCGGTCCCGAAATC CTGGAAGCTCCTGCATTGGTGCTGACCCAAATAGAAACTGGAACGCTAGTTTTGCAGGAAAG GGAGCCAGCGACAACCCTTGCTCCGAAGTGTACCATGGACCCCACGCCAATTCGGAAGTGGA GGTGAAATCAGTGGTAGATTTCATCCAAAAACATGGGAATTTCAAGGGCTTCATCGACCTGC ACAGCTACTCGCAGCTGCTGATGTATCCATATGGGTACTCAGTCAAAAAGGCCCCAGATGCC GAGGAACTCGACAAGGTGGCGAGGCTTGCGGCCAAAGCTCTGGCTTCTGTGTCGGGCACTGA GTACCAAGTGGGTCCCACCTGCACCACTGTCTATCCAGCTAGCGGGAGCAGCATCGACTGGG CGTATGACAACGGCATCAAATTTGCATTCACATTTGAGTTGAGAGATACCGGGACCTATGGC TTCCTCCTGCCAGCTAACCAGATCATCCCCACTGCAGAGGAGACGTGGCTGGGGCTGAAGAC ${\tt CATCATGGAGCATGTGCGGGACAACCTCTAC} {\color{red}{\textbf{TAG}}} {\tt GCGATGGCTCTGCTCTACATTTAT}$ TTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTCTTTCCTACCTGTGTGAG CGTGTGTCCTGGCGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTTTGGTCCTG AGCATCACCCCTTCCTGGGTGGCATGTCTCTCTCTACCTCATTTTTAGAACCAAAGAACATC TGAGATGATTCTCTACCCTCATCCACATCTAGCCAAGCCAGTGACCTTGCTCTGGTGGCACT GTGGGAGACACCACTTGTCTTTAGGTGGGTCTCAAAGATGATGTAGAATTTCCTTTAATTTC TCGCAGTCTTCCTGGAAAATATTTTCCTTTGAGCAGCAAATCTTGTAGGGATATCAGTGAAG GTCTCTCCCTCCTCTCTGTTTTTTTTTTTTTTTGAGACAGAGTTTTGCTCTTGTTGCC CAGGCTGGAGTGTGATGGCTCGATCTTGGCTCACCACAACCTCTGCCTCCTGGGTTCAAGCA ATTCTCCTGCCTCAGCCTCTTGAGTAGCTTGGTTTATAGGCGCATGCCACCATGCCTGGCTA ATTTTGTGTTTTTAGTAGAGACAGGGTTTCTCCATGTTGGTCAGGCTGGTCTCAAACTCCCA ACCTCAGGTGATCTGCCCTCCTTGGCCTCCCAGAGTGCTGGGATTACAGGTGTGAGCCACTG TGCCGGGCCCGTCCCTTTTTTTAGGCCTGAATACAAAGTAGAAGATCACTTTCCTTCAC TGTGCTGAGAATTTCTAGATACTACAGTTCTTACTCCTCTCTCCCTTTGTTATTCAGTGTG ACCAGGATGGCGGAGGGATCTGTGTCACTGTAGGTACTGTGCCCAGGAAGGCTGGGTGAA GTGACCATCTAAATTGCAGGATGGTGAAATTATCCCCATCTGTCCTAATGGGCTTACCTCCT CTTTGCCTTTTGAACTCACTTCAAAGATCTAGGCCTCATCTTACAGGTCCTAAATCACTCAT CTGGCCTGGATAATCTCACTGCCCTGGCACATTCCCATTTGTGCTGTGTGTATCCTGTGTT TCTGTCTATTTTGTATCCTGGACCACAAGTTCCTAAGTAGAGCAAGAATTCATCAACCAGCT TTGTTTTTTTGCTTTTACCAAACATGTCTGTAAATCTTAACCTCCTGCCTAGGATTTGTACA

FIGURE 134

MRWILFIGALIGSSICGQEKFFGDQVLRINVRNGDEISKLSQLVNSNNLKLNFWKSPSSFNR
PVDVLVPSVSLQAFKSFLRSQGLEYAVTIEDLQALLDNEDDEMQHNEGQERSSNNFNYGAYH
SLEAIYHEMDNIAADFPDLARRVKIGHSFENRPMYVLKFSTGKGVRRPAVWLNAGIHSREWI
SQATAIWTARKIVSDYQRDPAITSILEKMDIFLLPVANPDGYVYTQTQNRLWRKTRSRNPGS
SCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDFIQKHGNFKGFIDLHSY
SQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVSGTEYQVGPTCTTVYPASGSSIDWAYD
NGIKFAFTFELRDTGTYGFLLPANQIIPTAEETWLGLKTIMEHVRDNLY

Signal peptide:

amino acids 1-16

FIGURE 135

CAACCATGCAAGGACAGGGCAGGAGAAGAGAACCTGCAAAGACATATTTTGTTCCAAA**ATG** GCATCTTACCTTTATGGAGTACTCTTTGCTGTTGGCCTCTGTGCTCCAATCTACTGTGTGTC CCCGGCCAATGCCCCAGTGCATACCCCCGCCCTTCCTCCACAAAGAGCACCCCTGCCTCAC AGGTGTATTCCCTCAACACCGACTTTGCCTTCCGCCTATACCGCAGGCTGGTTTTGGAGACC CCGAGTCAGAACATCTTCTCCCCTGTGAGTGTCTCCACTTCCCTGGCCATGCTCTCCCT AAAGACCTGACCTTGAAGATGGGAAGTGCCCTCTTCGTCAAGAAGGAGCTGCAGCTGCAGGC AAATTTCTTGGGCAATGTCAAGAGGCTGTATGAAGCAGAAGTCTTTTCTACAGATTTCTCCA ACCCCTCCATTGCCCAGGCGAGGATCAACAGCCATGTGAAAAAGAAGACCCAAGGGAAGGTT GTAGACATAATCCAAGGCCTTGACCTTCTGACGGCCATGGTTCTGGTGAATCACATTTTCTT TGGGCGAGCAGGTCACTGTGCAAGTCCCCATGATGCACCAGAAAGAGCAGTTCGCTTTTGGG GTGGATACAGAGCTGAACTGCTTTGTGCTGCAGATGGATTACAAGGGAGATGCCGTGGCCTT CTTTGTCCTCCCTAGCAAGGGCAAGATGAGGCCAACTGGAACAGGCCTTGTCAGCCAGAACAC TGATAAAGTGGAGCCACTCACTCCAGAAAAGGTGGATAGAGGTGTTCATCCCCAGATTTTCC ATTTCTGCCTCCTACAATCTGGAAACCATCCTCCCGAAGATGGGCATCCAAAATGCCTTTGA CAAAAATGCTGATTTTTCTGGAATTGCAAAGAGAGACTCCCTGCAGGTTTCTAAAGCAACCC ACAAGGCTGTGCTGGATGTCAGTGAAGAGGGCACTGAGGCCACAGCAGCCACCAAG TTCATAGTCCGATCGAAGGATGGTCCCTCTTACTTCACTGTCTCCTTCAATAGGACCTTCCT GATGATGATTACAAATAAAGCCACAGACGGTATTCTCTTTCTAGGGAAAGTGGAAAATCCCA CTAAATCC**TAG**GTGGGAAATGGCCTGTTAACTGATGGCACATTGCTAATGCACAAGAAATAA CAAACCACATCCCTCTTTCTGTTCTGAGGGTGCATTTGACCCCAGTGGAGCTGGATTCGCTG GCAGGGATGCCACTTCCAAGGCTCAATCACCAAACCATCAACAGGGACCCCAGTCACAAGCC AACACCCATTAACCCCAGTCAGTGCCCTTTTCCACAAATTCTCCCAGGTAACTAGCTTCATG GGATGTTGCTGGGTTACCATATTTCCATTCCTTGGGGCTCCCAGGAATGGAAATACGCCAAC CCAGGTTAGGCACCTCTATTGCAGAATTACAATAACACATTCAATAAAACTAAAATATGAAT AAAAAA

FIGURE 136

MASYLYGVLFAVGLCAPIYCVSPANAPSAYPRPSSTKSTPASQVYSLNTDFAFRLYRRLVLE
TPSQNIFFSPVSVSTSLAMLSLGAHSVTKTQILQGLGFNLTHTPESAIHQGFQHLVHSLTVP
SKDLTLKMGSALFVKKELQLQANFLGNVKRLYEAEVFSTDFSNPSIAQARINSHVKKKTQGK
VVDIIQGLDLLTAMVLVNHIFFKAKWEKPFHLEYTRKNFPFLVGEQVTVQVPMMHQKEQFAF
GVDTELNCFVLQMDYKGDAVAFFVLPSKGKMRQLEQALSARTLIKWSHSLQKRWIEVFIPRF
SISASYNLETILPKMGIQNAFDKNADFSGIAKRDSLQVSKATHKAVLDVSEEGTEATAATTT
KFIVRSKDGPSYFTVSFNRTFLMMITNKATDGILFLGKVENPTKS

Signal peptide:

amino acids 1-20

FIGURE 137

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCCACGC CTGAGTCCAAGATTCTTCCCAGGAACACAAACGTAGGAGACCCACGCTCCTGGAAGCACCAG CCTTTATCTCTCACCTTCAAGTCCCCTTTCTCAAGAATCCTCTGTTCTTTGCCCTCTAAAG TCTTGGTACATCTAGGACCCAGGCATCTTGCTTTCCAGCCACAAAGAGACAGATGAAGATGC AGAAAGGAAATGTTCTCCTTATGTTTGGTCTACTATTGCATTTAGAAGCTGCAACAAATTCC AATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCCAGTGGAGCCAGCACAGC CACCAACTCTGGGTCCAGTGTGACCTCCAGTGGGGTCAGCACCACCATCTCAGGGTCCA GCGTGACCTCCAATGGGGTCAGCATAGTCACCAACTCTGAGTTCCATACAACCTCCAGTGGG ATCAGCACAGCCACCAACTCTGAGTTCAGCACAGCGTCCAGTGGGATCAGCATAGCCACCAA CTCTGAGTCCAGCACACCTCCAGTGGGGCCAGCACCACCAACTCTGAGTCCAGCACAC CCTCCAGTGGGGCCAGCACACTCTGGGTCCAGTGTGACCTCCAGTGGAGCCAGC ACTGCCACCAACTCTGAGTCCAGCACTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGA GTCTAGCACACTCTCCAGTGGGGCCAGCACACCCAACTCTGACTCCAGCACAACCTCCA GTGGGGCTAGCACCACCCAACTCTGAGTCCAGCACAACCTCCAGTGGGGCCAGCACAGCC ACCAACTCTGAGTCCAGCACAGTGTCCAGTAGGGCCAGCACTGCCACCAACTCTGAGTCCAG CACAACCTCCAGTGGGGCCAGCACCACCCAACTCTGAGTCCAGAACGACCTCCAATGGGG CTGGCACACCCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCCAGCACACCCAAC TCTGACTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGCACGAC CTCCAGTGGGGCCACCACCCAACTCTGAGTCCAGCACGACCTCCAGTGGGGCTAGCA CAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGGGGCCGGCACAGCCAACTCTGAG TCCAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACACCCTCCAG TGGGGCCAACACACCCAACTCTGAGTCCAGTACGACCTCCAGTGGGGCCCAACACACCCA CCAACTCTGAGTCCAGCACAGTGTCCAGTGGGGCCAGCACTGCCACCAACTCTGAGTCCAGC ACAACCTCCAGTGGGGTCAGCACAGCCACCAACTCTGAGTCCAGCACAACCTCCAGTGGGGC TAGCACAGCCACCAACTCTGACTCCAGCACAACCTCCAGTGAGGCCAGCACAGCCACCAACT CTGAGTCTAGCACAGTGTCCAGTGGGATCAGCACAGTCACCAATTCTGAGTCCAGCACAACC TCCAGTGGGGCCAACACACCCAACTCTGGGTCCAGTGTGACCTCTGCAGGCTCTGGAAC AGCCTGGTGGGTCCCTGGTGCCGTGGGAAATCTTCCTCATCACCCTGGTCTCGGTTGTGGCG GCCGTGGGGCTCTTTGCTGTGTGTGAGAAACAGCCTGTCCCTGAGAAACAC CTTTAACACAGCTGTCTACCACCCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAG GGAATCATGGAGCCCCCCACAGGCCCAGGTGGAGTCCTAACTGGTTCTGGAGGAGACCAGTA ${\tt TCATCGATAGCCATGGAGATGAGCGGGAGGAACAGCGGGCCC} \underline{{\tt TGA}}{\tt GCAGCCCCGGAAGCAAG}$ CCAGGAGACCCCTCCCAGCTTTGTTTGAGATCCTGAAAATCTTGAAGAAGGTATTCCTCACC TTTCTTGCCTTTACCAGACACTGGAAAGAGAATACTATATTGCTCATTTAGCTAAGAAATAA CTCTGAGATGAACTCAGTTATAGGAGAAAACCTCCATGCTGGACTCCATCTGGCATTCAAAA AAAAAAAAAAAAA

FIGURE 138

MKMQKGNVLLMFGLLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATI
SGSSVTSNGVSIVTNSEFHTTSSGISTATNSEFSTASSGISIATNSESSTTSSGASTATNSE
SSTPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSS
TTSSGASTATNSESSTTSSGASTATNSESSTVSSRASTATNSESSTTSSGASTATNSESRTT
SNGAGTATNSESSTTSSGASTATNSDSSTVSSGASTATNSESSTTSSGASTATNSESSTTSS
GASTATNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTTSSGA
NTATNSESSTVSSGASTATNSESSTTSSGVSTATNSESSTTSSGASTATNSDSSTTSSEAST
ATNSESSTVSSGISTVTNSESSTTSSGANTATNSGSSVTSAGSGTAALTGMHTTSHSASTAV
SEAKPGGSLVPWEIFLITLVSVVAAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGP
GPGGNHGAPHRPRWSPNWFWRRPVSSIAMEMSGRNSGP

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 510-532

FIGURE 139

GGGAGAGAGATAAATAGCAGCGTGGCTTCCCTGGCTCCTCTCTGCATCCTTCCCGACCTTC $\tt CCAGCAAT {\color{red} {\bf ATG}} CATCTTGCACGTCTGGTCGGCTCCTGCTCCTTCTGCTACTGGGGGCCC$ CTGTCTGGATGGCCGCCAGCGATGACCCCATTGAGAAGGTCATTGAAGGGATCAACCGAGG GCTGAGCAATGCAGAGAGAGAGGCCAAGGCCCTGGATGGCATCAACAGTGGAATCACGC ATGCCGGAAGGGAAGTTTTCAACGGACTTAGCAACATGGGGAGCCACACCGGC AAGGAGTTGGACAAAGGCGTCCAGGGGCTCAACCACGGCATGGACAAGGTTGCCCATGAGAT CAACCATGGTATTGGACAAGCAGGAAAGGAAGCAGAGAAGCTTGGCCATGGGGTCAACAACG CTGCTGGACAGGCCGGGAAGGAAGCAGACAAAGCGGTCCAAGGGTTCCACACTGGGGTCCAC CAGGCTGGGAAGGAAGCAGAAACTTGGCCAAGGGGTCAACCATGCTGACCAGGCTGG AAAGGAAGTGGAGAAGCTTGGCCAAGGTGCCCACCATGCTGGCCAGGCCGGGAAGGAGC TGCAGAATGCTCATAATGGGGTCAACCAAGCCAGCAAGGAGGCCAACCAGCTGCTGAATGGC AACCATCAAAGCGGATCTTCCAGCCATCAAGGAGGGGCCACAACCACGCCGTTAGCCTCTGG GGCCTCAGTCAACACGCCTTTCATCAACCTTCCCGCCCTGTGGAGGAGCGTCGCCAACATCA TGCCC<u>TAA</u>ACTGGCATCCGGCCTTGCTGGGAGAATAATGTCGCCGTTGTCACATCAGCTGAC ATGACCTGGAGGGGTTGGGGGGGGCACAGGTTTCTGAAATCCCTGAAGGGGGTTGTACTG GGATTTGTGAATAAACTTGATACACCA

FIGURE 140

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66675

><subunit 1 of 1, 247 aa, 1 stop

><MW: 25335, pI: 7.00, NX(S/T): 0

MHLARLVGSCSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALDGINSGITHAG REVEKVFNGLSNMGSHTGKELDKGVQGLNHGMDKVAHEINHGIGQAGKEAEKLGHGVNNAAG QAGKEADKAVQGFHTGVHQAGKEAEKLGQGVNHAADQAGKEVEKLGQGAHHAAGQAGKELQN AHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLASGASVNTPFINLPALWRSVANIMP

Important features of the protein:

Signal peptide:

amino acids 1-25

Homologous region to circumsporozoite (CS) repeats:

amino acids 35-225

FIGURE 141

CTCCGGGTCCCCAGGGGCTGCCCGGGCCTGGCAAGGGGGACGAGTCAGTGGACACTCCAGGAAGAGCGGC CCCGCGGGGGGCGATGACCGTGCGCTGACTCACTCCAGGTCCGGAGGCGGGGGCCCCCGGGGCGACTCG GGGGCGGACCGCGGGGCGGGCCCGTGAGTCCGGCCGAGCCACCTGAGCCCGAGCCGCGGGACACCGTC GCTCCTGCTCTCCGA<u>ATG</u>CTGCGCACCGCGATGGGCCTGAGGAGCTGGCTCGCCGCCCCATGGGGCGCGCTGCCG CCTCGGCCACCGCTGCTGCTGCTGCTGCTGCTGCTGCAGCCGCCCTCCGACCTGGGCGCTCAGC CCCCGGATCAGCCTGCCTCTGGGCTCTGAAGAGCGGCCATTCCTCAGATTCGAAGCTGAACACATCTCCAACTAC ACAGCCCTTCTGCTGAGCAGGATGCCAGGACCCTGTACGTGGGTGCTCGAGAGGCCCTCTTTGCACTCAGTAGC AACCTCAGCTTCCTGCCAGGCGGGGGGTACCAGGAGCTGCTTTGGGGTGCAGACGCAGAGAAACAGCAGTGC AGCTTCAAGGGCAAGGACCCACAGCGCGACTGTCAAAACTACATCAAGATCCTCCTGCCGCTCAGCGGCAGTCAC CTGTTCACCTGTGGCACAGCCTTCAGCCCCATGTGTACCTACATCAACATGGAGAACTTCACCCTGGCAAGG GACGAGAAGGGGAATGTCCTCCTGGAAGATGGCAAGGGCCGTTGTCCCTTCGACCCGAATTTCAAGTCCACTGCC CTGGTGGTTGATGGCGAGCTCTACACTGGAACAGTCAGCAGCTTCCAAGGGAATGACCCGGCCATCTCGCGGAGC CAAAGCCTTCGCCCCACAAGACCGAGAGCTCCCTCAACTGGCTGCAAGACCCAGCTTTTGTGGCCTCAGCCTAC ATTCCTGAGAGCCTGGGCAGCTTGCAAGGCGATGATGACAAGATCTACTTTTTCTTCAGCGAGACTGGCCAGGAA $\tt CTACAGCAGCGCTGGACCTCCTTCCTCAAGGCCCAGCTGCTGTGCTCACGGCCCGACGATGGCTTCCCCTTCAAC$ GTGCTGCAGGATGTCTTCACGCTGAGCCCCCAGGACTGGCGTGACACCCTTTTCTATGGGGTCTTCACT TCCCAGTGGCACAGGGGAACTACAGAAGGCTCTGCCGTCTGTGTCTTCACAATGAAGGATGTGCAGAGAGTCTTC CCTGGAGCGTGCATCACCAACAGTGCCCGGGAAAGGAAGATCAACTCATCCCTGCAGCTCCCAGACCGCGTGCTG AACTTCCTCAAGGACCACTTCCTGATGGACGGGCAGGTCCGAAGCCGCATGCTGCTGCTGCAGCCCCAGGCTCGC TACCAGCGCGTGGCTGTACACCGCGTCCCTGGCCTGCACCACCTACGATGTCCTCTTCCTGGGCACTGGTGAC GGCCGGCTCCACAAGGCAGTGAGCGTGGGCCCCCGGGTGCACATCATTGAGGAGCTGCAGATCTTCTCATCGGGA ${\tt CAGCCCGTGCAGAATCTGCTCCTGGACACCCACAGGGGGGCTGCTGTATGCGGCCTCACACTCGGGCGTAGTCCAG}$ GTGCCCATGGCCAACTGCAGCCTGTACCGGAGCTGTGGGGACTCCTCCTCGCCCGGGACCCCTACTGTGCTTGG AGCGGCTCCAGCTGCAAGCACGTCAGCCTCTACCAGCCTCAGCTGGCCACCAGGCCGTGGATCCAGGACATCGAG GGAGCCAGCGCCAAGGACCTTTGCAGCGCGTCTTCGGTTGTGTCCCCGTCTTTTGTACCAACAGGGGAGAAGCCA TGTGAGCAAGTCCAGTCCAACCACACACAGTGAACACTTTGGCCTGCCCGCTCCTCTCCAACCTGGCGACCCGA CTCTGGCTACGCAACGGGGCCCCCGTCAATGCCTCGGCCTCCTGCCACGTGCTACCCACTGGGGACCTGCTGCTG GTGGGCACCCAACAGCTGGGGGAGTTCCAGTGCTGGTCACTAGAGGAGGGCTTCCAGCAGCTGGTAGCCAGCTAC TGCCCAGAGGTGGTGGAGGACGGGTGGCAGACCAAACAGATGAGGGTGGCAGTGTACCCGTCATTATCAGCACA TCGCGTGTGAGTGCACCAGCTGGTGGCAAGGCCAGCTGGGGTGCAGACAGGTCCTACTGGAAGGAGTTCCTGGTG ATGTGCACGCTCTTTGTGCTGCCGGCACCGGAACAGCATGAAA GTCTTCCTGAAGCAGGGGGAATGTGCCAGCGTGCACCCCAAGACCTGCCCTGTGGTGCTGCCCCCTGAGACCCGC CCACTCAACGGCCTAGGGCCCCCTAGCACCCCGCTCGATCACCGAGGGTACCAGTCCCTGTCAGACAGCCCCCG GGGGCCCGAGTCTTCACTGAGTCAGAGAAGAGGCCACTCAGCATCCAAGACAGCTTCGTGGAGGTATCCCCAGTG $\tt TGCCCCGGCCCCGGGTCCGCCTTGGCTCGGAGATCCGTGACTCTGTGGTG\underline{\textbf{TGA}}\textbf{GAGCTGACTTCCAGAGGACGCC}$ TGCCCTGGCTTCAGGGGCTGTGAATGCTCGGAGAGGGTCAACTGGACCTCCCCTCCGCTCTGCTCTTCGTGGAAC CAGTGCTCCTTATGTAAACTGAGCCCTTTGTTTAAAAAAACAATTCCAAATGTGAAACTAGAATGAGAGGGAAGAG ATAGCATGCATGCACACACGCTGCTCCAGTTCATGGCCTCCCAGGGGTGCTGGGGATGCATCCAAAGTGG TTGTCTGAGACAGAGTTGGAAACCCTCACCAACTGGCCTCTTCACCTTCCACATTATCCCGCTGCCACCGGCTGC ${\tt CCTGTCTCACTGCAGATTCAGGACCAGCTTGGGCTGCGTTGCCTTGCCAGTCAGCCGAGGATGTAGTTG}$ TTGCTGCCGTCGTCCCACCACCTCAGGGACCAGAGGGCTAGGTTGGCACTGCGGCCCTCACCAGGTCCTGGGCTC GGACCCAACTCCTGGACCTTTCCAGCCTGTATCAGGCTGTGGCCACACGAGAGGACAGCGCGGGGCTCAGGAGAGA CTGGTCCTCTCCCCAGTCCCCAGTTCACCCTCCATCCTTCACCTTCCACTCTAAGGGATATCAACACTGCCC AGCACAGGGGCCCTGAATTTATGTGGTTTTTATACATTTTTTAATAAGATGCACTTTATGTCATTTTTTAATAAA GTCTGAAGAATTACTGTTTAAAAAAAAAAAA

FIGURE 142

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA67962

><subunit 1 of 1, 837 aa, 1 stop

><MW: 92750, pI: 7.04, NX(S/T): 6

MLRTAMGLRSWLAAPWGALPPRPPLLLLLLLLLLLQPPPPTWALSPRISLPLGSEERPFLRF
EAEHISNYTALLLSRDGRTLYVGAREALFALSSNLSFLPGGEYQELLWGADAEKKQQCSFKG
KDPQRDCQNYIKILLPLSGSHLFTCGTAAFSPMCTYINMENFTLARDEKGNVLLEDGKGRCP
FDPNFKSTALVVDGELYTGTVSSFQGNDPAISRSQSLRPTKTESSLNWLQDPAFVASAYIPE
SLGSLQGDDDKIYFFFSETGQEFEFFENTIVSRIARICKGDEGGERVLQQRWTSFLKAQLLC
SRPDDGFPFNVLQDVFTLSPSPQDWRDTLFYGVFTSQWHRGTTEGSAVCVFTMKDVQRVFSG
LYKEVNRETQQWYTVTHPVPTPRPGACITNSARERKINSSLQLPDRVLNFLKDHFLMDGQVR
SRMLLLQPQARYQRVAVHRVPGLHHTYDVLFLGTGDGRLHKAVSVGPRVHIIEELQIFSSGQ
PVQNLLLDTHRGLLYAASHSGVVQVPMANCSLYRSCGDCLLARDPYCAWSGSSCKHVSLYQP
QLATRPWIQDIEGASAKDLCSASSVVSPSFVPTGEKPCEQVQFQPNTVNTLACPLLSNLATR
LWLRNGAPVNASASCHVLPTGDLLLVGTQQLGEFQCWSLEEGFQQLVASYCPEVVEDGVADQ
TDEGGSVPVIISTSRVSAPAGGKASWGADRSYWKEFLVMCTLFVLAVLLPVLFLLYRHRNSM
KVFLKQGECASVHPKTCPVVLPPETRPLNGLGPPSTPLDHRGYQSLSDSPPGARVFTESEKR
PLSIQDSFVEVSPVCPRPRVRLGSEIRDSVV

Transmembrane domains:

amino acids 23-46 (type II), 718-738

FIGURE 143A

CTAAGCCGGAGGATGTGCAGCTGCGGCGCGCCGCCGCTACGAAGAGGACGGGGACAGGCGCCGTGCGAACCGA GCCCAGCCAGCCGGAGGACGCGGGCAGGGGGGACGGGACTCGTCTGCCGCCGTCGTCGCCGTCG CCTGCGGGCGGCGCGGGGCGGGGCGGGGCGGGGCGGGGCGGGCGGGCCGGGCCTCG ${\tt GCGATGCGCGGGGGCGCAGCTCTGGCCGCCCGGGCTCGGACCCAGATGGCGGCCCGCGCGCACAGGAACTTTCTCT}$ TCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCCGTGGCCGCCTACAGAACATGGTCCAAGACAA TTCCTGGGAAAGTTCAGTTCTCTCAAGTGAGGGTTCTGACACATCTGTACCAATTCCAGTAGTGCCACTACGGG GTGTGGACGACTCCTACCCGCCCCAGAAGAAGTCCTTCATGATGCTCAAGTACATGCACGACCACTACTTGGACA AGTATGAATGGTTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAACTTCCTGAGGAGTT TGAACAGCAGCGAGCCCTCTTTCTTGGGCAGACAGGCCTGGGCACCACGGAAGAATGGGAAAACTGGCCCTGG AGCCTGGTGAGAACTTCTGCATGGGGGGGCCTGGCGTGATCATGAGCCGGGAGGTGCTTCGGAGAATGGTGCCGC ACATTGGCAAGTGTCTCCGGGAGATGTACACCACCCATGAGGACGTGGAGGTGGGAAGGTGTCCCGGAGGTTTG CAGGGGTGCAGTGTCTGGTCTTATGAGATGCGGCAGCTTTTTTTATGAGAATTACGAGCAGAACAAAAAGGGGT ACAGGCTCCACAGCTACATGCTGAGCCGCAAGATATCCGAGCTCCGCCATCGCACAATACAGCTGCACCGCGAAA TGAGGTTTCAGCCCCGCCAGCGAGAGGAGATTCTGGAATGGGAGTTTCTGACTGGAAAATACTTGTATTCGGCAG TTGACGGCCAGCCCCTCGAAGAGGAATGGACTCCGCCCAGAGGGAAGCCTTGGACGACATTGTCATGCAGGTCA TGGAGATGATCAATGCCAACGCCAAGACCAGAGGGGCGCATCATTGACTTCAAAGAGATCCAGTACGGCTACCGCC GGGTGAACCCCATGTATGGGGCTGAGTACATCCTGGACCTGCTGCTTCTGTACAAAAAGCACAAAAGGGAAGAAAA TGACGGTCCCTGTGAGGAGGCACGCGTATTTACAGCAGACTTTCAGCAAAATCCAGTTTGTGGAGCATGAGGAGC TGGATGCACAAGAGTTGGCCAAGAGAATCAATCAGGAATCTGGATCCTTGTCCTTTCTCTCAAACTCCCTGAAGA AGCTCGTCCCCTTTCAGCTCCCTGGGTCGAAGAGTGAGCACAAAGAACCCAAAGATAAAAAGATAAACATACTGA TTCCTTTGTCTGGGCGTTTCGACATGTTTGTGAGATTTATGGGAAACTTTGAGAAGACGTGTCTTATCCCCAATC AGAACGTCAAGCTCGTGGTTCTGCTTTTCAATTCTGACTCCAACCCTGACAAGGCCCAAACAAGTTGAACTGATGA GAGATTACCGCATTAAGTACCCTAAAGCCGACATGCAGATTTTGCCTGTGTCTGGAGAGTTTTCAAGAGCCCTGG $\tt CCCTGGAAGTAGGATCCTCCCAGTTTAACAATGAATCTTTGCTCTTCTTCTGCGACGTCGACCTCGTGTTTACTA$ CAGAATTCCTTCAGCGATGTCGAGCAAATACAGTTCTGGGCCAACAAATATATTTTCCAATCATCTTCAGCCAGT ATGACCCAAAGATTGTTTATAGTGGGAAAGTTCCCAGTGACAACCATTTTGCCTTTACTCAGAAAACTGGCTTCT AGGAAGTAGGAGTAGTCCACCATCCTGTCTTTTGTGATCCCAATCTTGACCCCAAACAGTACAAAATGT ${\tt GTTACAGTAAAAGCAGCAATAATAATGGCTCAGTGAGGACAGCC} {\tt TAA} {\tt TGTCCAGCTTTGCTGGAAAAGACGTTTT}$ ${\tt TAATTATCTAATTTTTTCAAAAATTTTTTGTATGATCAGTTTTTGAAGTCCGTATACAAGGATATATTTTAC}$ AAGTGGTTTTCTTACATAGGACTCCTTTAAGATTGAGCTTTCTGAACAAGAAGGTGATCAGTGTTTGCCTTTGAA CACATCTTCTTGCTGAACATTATGTAGCAGACCTGCTTAACTTTGACTTGAAATGTACCTGATGAACAAAACTTT TTTAAAAAAATGTTTTCTTTTGAGACCCTTTGCTCCAGTCCTATGGCAGAAAACGTGAACATTCCTGCAAAGTAT TATTGTAACAAAACACTGTAACTCTGGTAAATGTTCTGTTGTGATTGTTAACATTCCACAGATTCTACCTTTTGT GTTTTGTTTTTTTTTTTACAATTGTTTTAAAGCCATTTCATGTTCCAGTTGTAAGATAAGGAAATGTGATAATA GCTGTTTCATCATTGTCTTCAGGAGAGCTTTCCAGAGTTGATCATTTCCTCTCATGGTACTCTGCTCAGCATGGC CACGTAGGTTTTTTTTTTTTTTTTTTTTTTTGAGACGGAGTCTCACTCTGTTACCCAGGCTGGAATG CAGTGGCGCAATCTTGGCTCACTTTAACCTCCACTTCCCTGGTTCAAGCAATTCCCCTGCCTTTGCCTCCCGAGT GCAAGCCCAGCTGGCCACGTAGGTTTTAAAGCAAGGGGCGTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTCG TGGTAGTTCATTCGGCCTAAATAGACCTGGCATTAAATTTCAAGAAGGATTTGGCATTTTCTCTTCTTGACCCTT CTCTTTAAAGGGTAAAATATTAATGTTTAGAATGACAAAGATGAATTATTACAATAAATCTGATGTACACAGACT GAAACATACACACATACACCCTAATCAAAACGTTGGGGAAAAATGTATTTGGTTTTGTTCCTTTCATCCTGTCTG GAGTGTGTTTAGTCTGTTTTATTTGCAGTAAACCGATCTCCAAAGATTTCCTTTTGGAAACGCTTTTTCCCCTCC

FIGURE 143B

TTAATTTTATATTCCTTACTGTTTTACTAAATATTAAGTGTTCTTTGACAATTTTGGTGCTCATGTGTTTTTGGGGACAAAAGTGAAATGAATCTGTCATTATACCAGAAAGTTAAATTCTCAGATCAAATGTGCCTTAATAAATTTGTTTCATTTAGATTTCAAACAGTGATAGACTTGCCATTTTAATACACGTCATTGGAGGGCTGCGTATTTGTAAATAGCCTGATGCTCATTTGGAACAATATTTTTTCTATTGTACTTTTCGAACCATTTTGTCTCATTATTCCTGTTTTTAGCTGAAGAATTGTATTACATTTTGGAGAGATAAAAACCTTAAACACGAAAAAA

FIGURE 144

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836

><subunit 1 of 1, 802 aa, 1 stop

><MW: 91812, pI: 9.52, NX(S/T): 3

MAARGRRAWLSVLLGLVLGFVLASRLVLPRASELKRAGPRRRASPEGCRSGQAAASQAGGAR
GDARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEG
SDTSVPIPVVPLRGVDDSYPPQKKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLR
SLNSSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYT
THEDVEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPP
YQYRLHSYMLSRKISELRHRTIQLHREIVLMSKYSNTEIHKEDLQLGIPPSFMRFQPRQREE
ILEWEFLTGKYLYSAVDGQPPRRGMDSAQREALDDIVMQVMEMINANAKTRGRIIDFKEIQY
GYRRVNPMYGAEYILDLLLLYKKHKGKKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKR
INQESGSLSFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPLSGRFDMFVRFMGNFEKTC
LIPNQNVKLVVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQ
FNNESLLFFCDVDLVFTTEFLQRCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFT
QKTGFWRNYGFGITCIYKGDLVRVGGFDVSIQGWGLEDVDLFNKVVQAGLKTFRSQEVGVVH
VHHPVFCDPNLDPKQYKMCLGSKASTYGSTQQLAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:

amino acids 1-23

FIGURE 145

GGACAACCGTTGCTGGGTGTCCCAGGGCCTGAGGCAGGACGGTACTCCGCTGACACCTTCCC TTTCGGCCTTGAGGTTCCCAGCCTGGTGGCCCCAGGACGTTCCGGTCGCATGGCAGAGTGCT ACGGACGACGCCTATGAGCCCTTAGTCCTTCTAGTTGCGCTTTTGCTATGGCCTTCGTCTG TGCCGGCTTATCCGAGCATAACTGTGACACCTGATGAAGAGCAAAACTTGAATCATTATATA CAAGTTTTAGAGAACCTAGTACGAAGTGTTCCCTCTGGGGAGCCAGGTCGTGAGAAAAATC TAACTCTCCAAAACATGTTTATTCTATAGCATCAAAGGGATCAAAATTTAAGGAGCTAGTTA CACATGGAGACGCTTCAACTGAGAATGATGTTTTAACCAATCCTATCAGTGAAGAAACTACA TTGCCAGTTGTTACTGAATCATCTACAAGTCCATATGTTACCTCATACAAGTCACCTGTCAC CACTTTAGATAAGAGCACTGGCATTGAGATCTCTACAGAATCAGAAGATGTTCCTCAGCTCT CAGGTGAAACTGCGATAGAAAAACCCGAAGAGTTTGGAAAGCACCCAGAGAGTTGGAATAAT GATGACATTTTGAAAAAATTTTAGATATTAATTCACAAGTGCAACAGGCACTTCTTAGTGA CACCAGCAACCCAGCATATAGAGAAGATATTGAAGCCTCTAAAGATCACCTAAAACGAAGCC TTGCTCTAGCAGCAGCAGCAGAACATAAATTAAAAACAATGTATAAGTCCCAGTTATTGCCA GTAGGACGAACAAGTAATAAAATTGATGACATCGAAACTGTTATTAACATGCTGTGTAATTC TAGATCTAAACTCTATGAATATTTAGATATTAAATGTGTTCCACCAGAGATGAGAGAAAAAG CTGCTACAGTATTCAATACATTAAAAAATATGTGTAGATCAAGGAGAGTCACAGCCTTATTA AAAGTTTAT**TAA**ACAATAATATAAAAATTTTAAACCTACTTGATATTCCATAACAAAGCTGA TTTAAGCAAACTGCATTTTTCACAGGAGAAATAATCATATTCGTAATTTCAAAAGTTGTAT AAAAATATTTTCTATTGTAGTTCAAATGTGCCAACATCTTTATGTGTCATGTGTTATGAACA ATTTTCATATGCACTAAAAACCTAATTTAAAATAAAATTTTGGTTCAGGAAAAAA

FIGURE 146

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68864

><subunit 1 of 1, 350 aa, 1 stop

><MW: 39003, pI: 5.59, NX(S/T): 1

MKPLVLLVALLLWPSSVPAYPSITVTPDEEQNLNHYIQVLENLVRSVPSGEPGREKKSNSPK
HVYSIASKGSKFKELVTHGDASTENDVLTNPISEETTTFPTGGFTPEIGKKKHTESTPFWSI
KPNNVSIVLHAEEPYIENEEPEPEPEPAAKQTEAPRMLPVVTESSTSPYVTSYKSPVTTLDK
STGIEISTESEDVPQLSGETAIEKPEEFGKHPESWNNDDILKKILDINSQVQQALLSDTSNP
AYREDIEASKDHLKRSLALAAAAEHKLKTMYKSQLLPVGRTSNKIDDIETVINMLCNSRSKL
YEYLDIKCVPPEMREKAATVFNTLKNMCRSRRVTALLKVY

Signal peptide:

amino acids 1-19

FIGURE 147

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCCTGCGCCTGAGACAGCTGGCCTG ACCTCCAAATCATCCATCCACCCCTGCTGTCATCTGTTTTCATAGTGTGAGATCAACCCACA GGAATATCCATTTTGTGCTCATTTTTGGTTCTCAGTTTCTACGAGCTGGTGTCAGGACA GTGGCAAGTCACTGGACCGGGCAAGTTTGTCCAGGCCTTGGTGGGGGGAGGACGCCGTGTTCT CCTGCTCCTCTTTCCTGAGACCAGTGCAGAGGCTATGGAAGTGCGGTTCTTCAGGAATCAG TTCCATGCTGTGGTCCACCTCTACAGAGATGGGGAAGACTGGGAATCTAAGCAGATGCCACA TAAAAAACATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTTCCCAGATTTAC GATGAGGAGCCACCTGGGAGCTGCGGGTGGCAGCACTGGGCTCACTTCCTCATTTCCAT CGTGGGATATGTTGACGGAGGTATCCAGTTACTCTGCCTGTCCTCAGGCTGGTTCCCCCAGC CCACAGCCAAGTGGAAAGGTCCACAAGGACAGGATTTGTCTTCAGACTCCAGAGCAAATGCA GATGGGTACAGCCTGTATGATGTGGAGATCTCCATTATAGTCCAGGAAAATGCTGGGAGCAT ATTGTGTTCCATCCACCTTGCTGAGCAGAGTCATGAGGTGGAATCCAAGGTATTGATAGGAG AGACGTTTTTCCAGCCCTCACCTTGGCGCCTGGCTTCTATTTTACTCGGGTTACTCTGTGGT GCCCTGTGTGTGTTGTCATGGGGATGATAATTGTTTTCTTCAAATCCAAAGGGAAAATCCA GGCGGAACTGGACTGGAGAAGAAGCACGGACAGGCAGAATTGAGAGACGCCCGGAAACACG CAGTGGAGGTGACTCTGGATCCAGAGACGGCTCACCCGAAGCTCTGCGTTTCTGATCTGAAA ACTGTAACCCATAGAAAAGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTTACAAGGAA GAGTGTGGTGGCTTCTCAGGGTTTCCAAGCAGGAGACATTACTGGGAGGTGGACGTGGGAC AAAATGTAGGGTGTATGTGGGAGTGTCGGGATGACGTAGACAGGGGGGAAGAACAATGTG ACTTTGTCTCCCAACAATGGGTATTGGGTCCTCAGACTGACAACAGAACATTTGTATTTCAC ATTCAATCCCCATTTTATCAGCCTCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTTCC CTGCTGACATGTCAGTTTGAAGGCTTGTTGAGACCCTATATCCAGCATGCGATGTATGACGA ${\tt GGAAAAGGGGACTCCCATATTCATATGTCCAGTGTCCTGGGGA} {\tt TGA} {\tt GACAGAGAGACCCTG}$ CTTAAAGGGCCCCACACCACAGACCCAGACACAGGCAAGGGAGAGTGCTCCCGACAGGTGGC CCCAGCTTCCTCCGGAGCCTGCGCACAGAGAGTCACGCCCCCCACTCTCCTTTAGGGAGC TGAGGTTCTTCTGCCCTGAGCCCTGCAGCAGCGGCAGTCACAGCTTCCAGATGAGGGGGGAT TGGCCTGACCCTGTGGGAGTCAGAAGCCATGGCTGCCCTGAAGTGGGGACGGAATAGACTCA CATTAGGTTTAGTTTGTGAAAACTCCATCCAGCTAAGCGATCTTGAACAAGTCACAACCTCC CAGGCTCCTCATTTGCTAGTCACGGACAGTGATTCCTGCCTCACAGGTGAAGATTAAAGAGA CAACGAATGTGAATCATGCTTGCAGGTTTTGAGGGCACAGTGTTTTGCTAATGATGTTTTTTA TATTATACATTTTCCCACCATAAACTCTGTTTGCTTATTCCACATTAATTTACTTTTCTCTA TACCAAATCACCCATGGAATAGTTATTGAACACCTGCTTTGTGAGGCTCAAAGAATAAAGAG GAGGTAGGATTTTTCACTGATTCTATAAGCCCAGCATTACCTGATACCAAAACCAGGCAAAG AAAACAGAAGAAGAAGGAAAACTACAGGTCCATATCCCTCATTAACACAGACACAAAAA TTCTAAATAAATTTTAACAAATTAAACTAAACAATATATTTAAAGATGATATATAACTACT CAGTGTGGTTTGTCCCACAATGCAGAGTTGGTTTAATATTTAAATATCAACCAGTGTAATT

FIGURE 148

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866</pre>

><subunit 1 of 1, 466 aa, 1 stop

><MW: 52279, pI: 6.16, NX(S/T): 2

MAFVLILVLSFYELVSGQWQVTGPGKFVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHA
VVHLYRDGEDWESKQMPQYRGRTEFVKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEE
ATWELRVAALGSLPLISIVGYVDGGIQLLCLSSGWFPQPTAKWKGPQGQDLSSDSRANADGY
SLYDVEISIIVQENAGSILCSIHLAEQSHEVESKVLIGETFFQPSPWRLASILLGLLCGALC
GVVMGMIIVFFKSKGKIQAELDWRRKHGQAELRDARKHAVEVTLDPETAHPKLCVSDLKTVT
HRKAPQEVPHSEKRFTRKSVVASQGFQAGRHYWEVDVGQNVGWYVGVCRDDVDRGKNNVTLS
PNNGYWVLRLTTEHLYFTFNPHFISLPPSTPPTRVGVFLDYEGGTISFFNTNDQSLIYTLLT
CQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 131-150, 235-259

FIGURE 149

 $\verb|CCTTCACAGGACTCTTCATTGCTGGTTGGCAATGATGTATCGGCCAGATGTGGTGAGGGCTA| \\$ GGAAAAGAGTTTGTTGGGAACCCTGGGTTATCGGCCTCGTCATCTTCATATCCCTGATTGTC CTGGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAAGAAGACCTACAA TTACTATAGCACATTGTCATTTACAACTGACAAACTATATGCTGAGTTTGGCAGAGAGGCTT CTAACAATTTTACAGAAATGAGCCAGAGACTTGAATCAATGGTGAAAAATGCATTTTATAAA TCTCCATTAAGGGAAGAATTTGTCAAGTCTCAGGTTATCAAGTTCAGTCAACAGAAGCATGG AGTGTTGGCTCATATGCTGTTGATTTGTAGATTTCACTCTACTGAGGATCCTGAAACTGTAG ATAAAATTGTTCAACTTGTTTTACATGAAAAGCTGCAAGATGCTGTAGGACCCCCTAAAGTA TTGCTGCGGAACACGAAGAAGTAAAACTCTAGGTCAGAGTCTCAGGATCGTTGGTGGGACAG ·AAGTAGAAGAGGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGATGGGAGTCATCGCTGT GGAGCAACCTTAATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTTACAACATATAA GAACCCTGCCAGATGGACTGCTTCCTTTGGAGTAACAATAAAACCTTCGAAAATGAAACGGG GTCTCCGGAGAATAATTGTCCATGAAAAATACAAACACCCATCACATGACTATGATATTTCT CTTGCAGAGCTTTCTAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTTGTCTCCCTGA TGCATCCTATGAGTTTCAACCAGGTGATGTGATGTTTGTGACAGGATTTGGAGCACTGAAAA ATGATGGTTACAGTCAAAATCATCTTCGACAAGCACAGGTGACTCTCATAGACGCTACAACT TGCAATGAACCTCAAGCTTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTT AGAAGGAAAAACAGATGCCAGGGTGACTCTGGAGGACCACTGGTTAGTTCAGATGCTA GAGATATCTGGTACCTTGCTGGAATAGTGAGCTGGGGAGATGAATGTGCGAAACCCAACAAG ${\tt CCTGGTGTTTATACTAGAGTTACGGCCTTGCGGGACTGGATTACTTCAAAAACTGGTATC \\ \underline{\textbf{TA}}$ TTTAGAGATACAGAATTGGAGAAGACTTGCAAAACAGCTAGATTTGACTGATCTCAATAAAC TGTTTGCTTGATGCATGTATTTTCTTCCCAGCTCTGTTCCGCACGTAAGCATCCTGCTTCTG CCAGATCAACTCTGTCATCTGTGAGCAATAGTTGAAACTTTATGTACATAGAGAAATAGATA ATACAATATTACATTACAGCCTGTATTCATTTGTTCTCTAGAAGTTTTTGTCAGAATTTTTGAC TTGTTGACATAAATTTGTAATGCATATATACAATTTGAAGCACTCCTTTTCTTCAGTTCCTC TAAGAAGAAAAATCCCCTACATTTTATTGGCACAGAAAAGTATTAGGTGTTTTTCTTAGT GGAATATTAGAAATGATCATATTCATTATGAAAGGTCAAGCAAAGACAGCAGAATACCAATC TCCTTATTTTCATTTCCAAACAACTACTATGATAAATGTGAAGAAGATTCTGTTTTTTTGTG ACCTATAATAATTATACAAACTTCATGCAATGTACTTGTTCTAAGCAAATTAAAGCAAATAT TTATTTAACATTGTTACTGAGGATGTCAACATATAACAATAAAATATAAATCACCCA

FIGURE 150

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871

><subunit 1 of 1, 423 aa, 1 stop

><MW: 47696, pI: 8.96, NX(S/T): 3

MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTYNYYSTLSFTTD KLYAEFGREASNNFTEMSQRLESMVKNAFYKSPLREEFVKSQVIKFSQQKHGVLAHMLLICR FHSTEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTL GQSLRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFG VTIKPSKMKRGLRRIIVHEKYKHPSHDYDISLAELSSPVPYTNAVHRVCLPDASYEFQPGDV MFVTGFGALKNDGYSQNHLRQAQVTLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGD SGGPLVSSDARDIWYLAGIVSWGDECAKPNKPGVYTRVTALRDWITSKTGI

Transmembrane domain:

amino acids 21-40 (type II)

FIGURE 151

GTCGAAGGTTATAAAAGCTTCCAGCCAAACGGCATTGAAGTTGAAGATACAACCTGACAGCA CAGCCTGAGATCTTGGGGATCCCTCAGCCTAACACCCCACAGACGTCAGCTGGTGGATTCCCG $\tt CTGCATCAAGGCCTACCCACTGTCTCCC{\color{blue} \textbf{ATG}} CTGGGCTCTCCCTGCCTTCTGTGGCTCCTGGC$ CGTGACCTTCTTGGTTCCCAGAGCTCAGCCCTTGGCCCCTCAAGACTTTGAAGAAGAGGAGG CAGATGAGACTGAGACGGCGTGGCCGCCTTTGCCGGCTGTCCCCTGCGACTACGACCACTGC AGGACTCTCCAGCCCGCCCAGCCGCCCGACCCGCCGCGCATGGGAGAAGTGCGCATTGCGG CCGAAGAGGGCCGCAGTGGTCCACTGGTGTGCCCCCTTCTCCCCGGTCCTCCACTACTGG CTGCTGCTTTGGGACGCAGCGAGGCTGCGCAGAAGGGGCCCCCGCTGAACGCTACGGTCCG CAGAGCCGAACTGAAGGGGCTGAAGCCAGGGGGCATTTATGTCGTTTGCGTAGTGGCCGCTA ACGAGGCCGGGGCAAGCCGCGTGCCCCAGGCTGGAGGAGAGGGCCTCGAGGGGGCCGACATC CCTGCCTTCGGGCCTTGCGGCCCCTTGCGGTGCCGCCCAACCCCCGCACTCTGGTCCACGC GGCCGTCGGGGTGGGCACGGCCCTGGCCCTGCTAAGCTGTGCCGCCCTGGTGTGGCACTTCT AAGGGCCTGGGGCATCTCGGGCACAGACAGCCCCACCTGGGCCGCTCAGCCTGGCCCCCG GCTCCAGGGCCACGGCGGAGTCATGGTTCTCAGGACTGAGCGCTTGTTTAGGTCCGGTACTT

FIGURE 152

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68874

><subunit 1 of 1, 238 aa, 1 stop

><MW: 25262, pI: 6.44, NX(S/T): 1

MLGSPCLLWLLAVTFLVPRAQPLAPQDFEEEEADETETAWPPLPAVPCDYDHCRHLQVPCKE LQRVGPAACLCPGLSSPAQPPDPPRMGEVRIAAEEGRAVVHWCAPFSPVLHYWLLLWDGSEA AQKGPPLNATVRRAELKGLKPGGIYVVCVVAANEAGASRVPQAGGEGLEGADIPAFGPCSRL AVPPNPRTLVHAAVGVGTALALLSCAALVWHFCLRDRWGCPRRAAARAAGAL

Important features of the protein:

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 194-220

N-glycosylation site.

amino acids 132-135

FIGURE 153

AGAGAAAGAAGCGTCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCGCGAAGAAGTTCC CCCAGCGCCGACGATCGCTGCCGTTTTGCCCTTGGGAGTAGGATGTGGTGAAAGGATGGGGC CTACGCCCTCAATCTGCTCTTTTGGTTAATGTCCATCAGTGTGTTGGCAGTTTCTGCTTGGA TGAGGGACTACCTAAATAATGTTCTCACTTTAACTGCAGAAACGAGGGTAGAGGAAGCAGTC ATTTTGACTTACTTTCCTGTGGTTCATCCGGTCATGATTGCTGTTTGCTGTTTCCTTATCAT TGTGGGGATGTTAGGATATTGTGGAACGGTGAAAAGAAATCTGTTGCTTCTTGCATGGTACT TTGGAAGTTTGCTTGTCATTTTCTGTGTAGAACTGGCTTTGTGGCGTTTGGACATATGAACAG GAACTTATGGTTCCAGTACAATGGTCAGATATGGTCACTTTGAAAGCCAGGATGACAAATTA GCTGTGGAGTAGTATTTTCACTGACTGGTTGGAAATGACAGAGATGGACTGGCCCCCAGAT TCCTGCTGTGTTAGAGAATTCCCAGGATGTTCCAAACAGGCCCACCAGGAAGATCTCAGTGA CCTTTATCAAGAGGGTTGTGGGAAGAAATGTATTCCTTTTTGAGAGGAACCAAACAACTGC AGGTGCTGAGGTTTCTGGGAATCTCCATTGGGGTGACACAAATCCTGGCCATGATTCTCACC ATTACTCTGCTCTGGGCTCTGTATTATGATAGAAGGGAGCCTGGGACAGACCAAATGATGTC CTTGAAGAATGACAACTCTCAGCACCTGTCATGTCCCTCAGTAGAACTGTTGAAACCAAGCC TGTCAAGAATCTTTGAACACACATCCATGGCAAACAGCTTTAATACACACTTTGAGATGGAG GAGTTA<u>TAA</u>AAAGAAATGTCACAGAAGAAAACCACAAACTTGTTTTATTGGACTTGTGAATT TTTGAGTACATACTATGTGTTTCAGAAATATGTAGAAATAAAAATGTTGCCATAAAATAACA CCTAAGCATATACTATTCTATGCTTTAAAATGAGGATGGAAAAGTTTCATGTCATAAGTCAC CACCTGGACAATAATTGATGCCCTTAAAATGCTGAAGACAGATGTCATACCCACTGTGTAGC CTGTGTATGACTTTACTGAACACAGTTATGTTTTGAGGCAGCATGGTTTGATTAGCATTTC CGCATCCATGCAAACGAGTCACATATGGTGGGACTGGAGCCATAGTAAAGGTTGATTTACTT CTACCAACTAGTATAAAGTACTAATTAAATGCTAACATAGGAAGTTAGAAAATACTAATA AATATTGGTGACTACCTAAATGTGATTTTTGCTGGTTACTAAAATATTCTTACCACTTAAAA GAGCAAGCTAACACATTGTCTTAAGCTGATCAGGGATTTTTTTGTATATAAGTCTGTGTTAAA TCTGTATAATTCAGTCGATTTCAGTTCTGATAATGTTAAGAATAACCATTATGAAAAGGAAA ATTTGTCCTGTATAGCATCATTATTTTTAGCCTTTCCTGTTAATAAAGCTTTACTATTCTGT CCTGGGCTTATATTACACATATAACTGTTATTTAAATACTTAACCACTAATTTTGAAAATTA CCAGTGTGATACATAGGAATCATTATTCAGAATGTAGTCTGGTCTTTAGGAAGTATTAATAA GAAAATTTGCACATAACTTAGTTGATTCAGAAAGGACTTGTATGCTGTTTTTCTCCCAAATG AAGACTCTTTTTGACACTAAACACTTTTTTAAAAAGCTTATCTTTGCCTTCTCCAAACAAGAA GCAATAGTCTCCAAGTCAATATAAATTCTACAGAAAATAGTGTTCTTTTTCTCCAGAAAAAT GCTTGTGAGAATCATTAAAACATGTGACAATTTAGAGATTCTTTGTTTTATTTCACTGATTA GAAATGGGAAAAGTGCATTTTACTGTATTTTGTGTATTTTGTTTATTTCTCAGAATATGGAA AGAAAATTAAAATGTGTCAATAAATATTTTCTAGAGAGTAA

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880

><subunit 1 of 1, 305 aa, 1 stop

><MW: 35383, pI: 5.99, NX(S/T): 0

MAREDSVKCLRCLLYALNLLFWLMSISVLAVSAWMRDYLNNVLTLTAETRVEEAVILTYFPV VHPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQ WSDMVTLKARMTNYGLPRYRWLTHAWNFFQREFKCCGVVYFTDWLEMTEMDWPPDSCCVREF PGCSKQAHQEDLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWAL YYDRREPGTDQMMSLKNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

FIGURE 155

GAGAGAGCAGCAGCTTGCTCAGCGGACAAGGATGCTGGGCGTGAGGGACCAAGGCCTGCCC CCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGGTGACAATCTCAGCTCCAGGCTACAGGGAG ACCGGGAGGATCACAGAGCCAGCATGTTACAGGATCCTGACAGTGATCAACCTCTGAACAGC CTCGATGTCAAACCCCTGCGCAAACCCCGTATCCCCATGGAGACCTTCAGAAAGGTGGGGAT CCCCATCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTGGTTGTCCTCATCAAGG TGATTCTGGATAAATACTACTTCCTCTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAG CTGTGTGACGGAGACTGTCCCTTGGGGGAGGACGAGGACCACTGTGTCAAGAGCTT CCCCGAAGGGCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGG ACTCGGCCACAGGGAACTGGTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAG ACAGCCTGTAGGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTGTC TCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCTGAAGACCCCCCGT GTGGTGGGTGGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCAGTACGA CAAACAGCACGTCTGTGGAGGGAGCCACTGGACCCCCACTGGGTCCTCACGGCAGCCCACT GCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGGC AGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCCCATGTACCCCAA CCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCCACTCTGGATCATTGGA TGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACTGCTGCAGGCGTCAGTCCA GGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCAGGGGGAAGTCACCGAGAAGA TGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTGCCAGGGTGACAGTGGTGGGCCC CTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCATCGTTAGCTGGGGCTATGGCTGCGG GGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATG CCCTGCCCACCTGGGGATCCCCCAAAGTCAGACACAGAGCAAGAGTCCCCTTGGGTACACCC CTCTGCCCACAGCCTCAGCATTTCTTGGAGCAGCAAAGGGCCTCAATTCCTGTAAGAGACCC TCGCAGCCCAGAGGCCCCAGAGGAAGTCAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCC AGCATCCCAGGGAGAGACACAGCCCACTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAA GGAACTTTCCCACACTACTGAATGGAAGCAGGCTGTCTTGTAAAAGCCCAGATCACTGTGGG CTGGAGAGGAAAGGGTCTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTA CTAGAGCAAGAAACCAGTTGTAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTT ACCTACTGTTGTCATTGTTATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCT CTGGCAAAAAAAAAAAA

FIGURE 156

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885</pre>

><subunit 1 of 1, 432 aa, 1 stop

><MW: 47644, pI: 5.18, NX(S/T): 2

MLQDPDSDQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIIVVVLIKVILDKYYF
LCGQPLHFIPRKQLCDGELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWF
SACFDNFTEALAETACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSL
HCLACGKSLKTPRVVGGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFRKHTDV
FNWKVRAGSDKLGSFPSLAVAKIIIIEFNPMYPKDNDIALMKLQFPLTFSGTVRPICLPFFD
EELTPATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPE
GGVDTCQGDSGGPLMYQSDQWHVVGIVSWGYGCGGPSTPGVYTKVSAYLNWIYNVWKAEL

Transmembrane domain:

amino acids 32-53 (typeII)

FIGURE 157

 ${\tt AGCTCCCTGGTGACAGTCTGTGGCTGAGC}$ GGGTCAGATACTATGCAGGGGATGAACGTAGGGCACTTAGCTTCTTCCACCAGAAGGGCCTCCAGGATTTTGACA CTCTGCTCCTGAGTGGTGATGGAAATACTCTCTACGTGGGGGCTCGAGAAGCCATTCTGGCCTTGGATATCCAGG AGAAGAAGAGCAATGAGACACAGTGTTTCAACTTCATCCGTGTCCTGGTTTCTTACAATGTCACCCATCTCTACA ${\tt CCTGCGGCACCTTCGCCTTGTACCTTGTACCTTCATGAACTTCAAGATTCCTACCTGTTGCCCATCTCGG}$ AGGACAAGGTCATGGAGGGAAAAGGCCCAAAGCCCCTTTGACCCCGCTCACAAGCATACGGCTGTCTTGGTGGATG GGATGCTCTATTCTGGTACTATGAACAACTTCCTGGGCAGTGAGCCCATCCTGATGCGCACACTGGGATCCCAGC AGGTCGTCTACTTCTTCGAGGAGACAGCCAGCGAGTTTGACTTCTTTGAGAGGCTCCACACATCGCGGGTGG $\tt CTAGAGTCTGCAAGAATGACGTGGGCGGCGAAAAGCTGCTGCAGAAGAAGTGGACCACCTTCCTGAAGGCCCAGC$ TGCTCTGCACCCAGCCGGGCAGCTGCCCTTCAACGTCATCCGCCACGCGGTCCTGCTCCCCGCCGATTCTCCCA ${\tt CAGCTCCCACATCTACGCAGTCTTCACCTCCCAGTGGCAGGTTGGCGGGACCAGGAGCTCTGCGGTTTGTGCCT}$ TCTCTCTCTGGACATTGAACGTGTCTTTAAGGGGAAATACAAAGAGTTGAACAAAGAAACTTCACGCTGGACTA CTTATAGGGGCCCTGAGACCAACCCCGGCCAGGCAGTTGCTCAGTGGGCCCCTCCTCTGATAAGGCCCTGACCT TCATGAAGGACCATTTCCTGATGGATGAGCAAGTGGTGGGGGACGCCCCTGCTGGTGAAATCTGGCGTGGAGTATA CACGGCTTGCAGTGGAGACAGCCCAGGGCCTTGATGGGCACAGCCATCTTGTCATGTACCTGGGAACCACCACAG GGTCGCTCCACAAGGCTGTGGTAAGTGGGGACAGCAGTGCTCATCTGGTGGAAGAGATTCAGCTGTTCCCTGACC CTGAACCTGTTCGCAACCTGCAGCTGGCCCCCACCCAGGGTGCAGTGTTTGTAGGCTTCTCAGGAGGTGTCTGGA GGGTGCCCCGAGCCAACTGTAGTGTCTATGAGAGCTGTGTGGACTGTGTCCTTGCCCGGGACCCCCACTGTGCCT GGGACCCTGAGTCCCGAACCTGTTGCCTCTGTCTGCCCCCAACCTGAACTCCTGGAAGCAGGACATGGAGCGG AAGAAGTCCTGGCTGTCCCCAACTCCATCCTGGAGCTCCCCTGCCCCACCTGTCAGCCTTGGCCTCTTATTATT GGAGTCATGGCCCAGCAGCAGTCCCAGAAGCCTCTTCCACTGTCTACAATGGCTCCCTCTTGCTGATAGTGCAGG ATGGAGTTGGGGGTCTCTACCAGTGCTGGGCAACTGAGAATGGCTTTTCATACCCTGTGATCTCCTACTGGGTGG ACAGCCAGGACCAGGCCCTGGATCCTGAACTGGCAGGCATCCCCCGGGAGCATGTGAAGGTCCCGTTGA ${\tt CCAGGGTCAGTGGGGGGCCGCCCTGGCTGCCCAGCAGTCCTACTGGCCCCACTTTGTCACTGTCACTGTCCTCT}$ TTGCCTTAGTGCTTTCAGGAGCCCTCATCATCCTCGTGGCCTCCCCATTGAGAGCACTCCGGGCTCGGGGCAAGG ${\tt AATGCAGGACCTCTGCCAGTGATGTGGACGCTGACAACAACTGCCTAGGCACTGAGGTAGCT} {\color{red} {\bf TAA}} {\tt ACTCTAGGCA}$ CAGCACAAAAGACCACCTTTCTCCCCTGAGAGGAGCTTCTGCTACTCTGCATCACTGATGACACTCAGCAGGGTG ATGCACAGCAGTCTGCCTCCCCTATGGGACTCCCTTCTACCAAGCACATGAGCTCTCTAACAGGGTGGGGGCTAC $\tt CCCCAGACCTGCTACACTGATATTGAAGAACCTGGAGAGGATCCTTCAGTTCTGGCCATTCCAGGGACCCTC$ TAAACAATCATATGCTAACATGCCACTCCTGGAAACTCCACTCTGAAGCTGCCGCTTTGGACACCAACACTCCCT TCTCCCAGGGTCATGCAGGGATCTGCTCCCTGCTTCCCTTACCAGTCGTGCACCGCTGACTCCCAGGAAGTC TTTCCTGAAGTCTGACCACCTTTCTTCTTGCTTCAGTTGGGGCAGACTCTGATCCCTTCTGCCCTGGCAGAATGG ${\tt CAGGGGTAATCTGAGCCTTCACTCTTTACCCTAGCTGACCCCTTCACCTCTCCCCTTTTCCTTTGT}$

FIGURE 158

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71166

><subunit 1 of 1, 761 aa, 1 stop

><MW: 83574, pI: 6.78, NX(S/T): 4

MALPALGLDPWSLLGLFLFQLLQLLLPTTTAGGGGQGPMPRVRYYAGDERRALSFFHQKGLQ
DFDTLLLSGDGNTLYVGAREAILALDIQDPGVPRLKNMIPWPASDRKKSECAFKKKSNETQC
FNFIRVLVSYNVTHLYTCGTFAFSPACTFIELQDSYLLPISEDKVMEGKGQSPFDPAHKHTA
VLVDGMLYSGTMNNFLGSEPILMRTLGSQPVLKTDNFLRWLHHDASFVAAIPSTQVVYFFFE
ETASEFDFFERLHTSRVARVCKNDVGGEKLLQKKWTTFLKAQLLCTQPGQLPFNVIRHAVLL
PADSPTAPHIYAVFTSQWQVGGTRSSAVCAFSLLDIERVFKGKYKELNKETSRWTTYRGPET
NPRPGSCSVGPSSDKALTFMKDHFLMDEQVVGTPLLVKSGVEYTRLAVETAQGLDGHSHLVM
YLGTTTGSLHKAVVSGDSSAHLVEEIQLFPDPEPVRNLQLAPTQGAVFVGFSGGVWRVPRAN
CSVYESCVDCVLARDPHCAWDPESRTCCLLSAPNLNSWKQDMERGNPEWACASGPMSRSLRP
QSRPQIIKEVLAVPNSILELPCPHLSALASYYWSHGPAAVPEASSTVYNGSLLLIVQDGVGG
LYQCWATENGFSYPVISYWVDSQDQTLALDPELAGIPREHVKVPLTRVSGGAALAAQQSYWP
HFVTVTVLFALVLSGALIILVASPLRALRARGKVQGCETLRPGEKAPLSREQHLQSPKECRT
SASDVDADNNCLGTEVA

Signal peptide:

amino acids 1-30

Transmembrane domains:

amino acids 136-156, 222-247, 474-490, 685-704

FIGURE 159

AGGGTCCCTTAGCCGGGCGCAGGCGCAGCCCAGGCTGAGATCCGCGGCTTCCGTAGAAG ${\tt TGAGC}$ TCAGAGGCTGCCAAAATCCTGACAATATCTACAGTAGGTGGAAGCCATTATCTACTGATGGA CCGGGTTTCTCAGATTCTTCAAGATCACGGTCATAATGTCACCATGCTTAACCACAAAAGAG GTCCTTTTATGCCAGATTTTAAAAAGGAAGAAAATCATATCAAGTTATCAGTTGGCTTGCA TGGCAGAGGAAAATTTGAAAACTTATTAAATGTTCTAGAATACTTGGCGTTGCAGTGCAGTC ATTTTTTAAATAGAAAGGATATCATGGATTCCTTAAAGAATGAGAACTTCGACATGGTGATA GTTGAAACTTTTGACTACTGTCCTTTCCTGATTGCTGAGAAGCTTGGGGAAGCCATTTGTGGC CATTCTTTCCACTTCATTCGGCTCTTTTGGAATTTGGGCTACCAATCCCCTTGTCTTATGTTC CAGTATTCCGTTCCTTGCTGACTGATCACATGGACTTCTGGGGGCCGAGTGAAGAATTTTCTG ATGTTCTTTAGTTTCTGCAGGAGGCAACAGCACATGCAGTCTACATTTGACAACACCATCAA GGAACATTTCACAGAAGGCTCTAGGCCAGTTTTGTCTCATCTTCTACTGAAAGCAGAGTTGT GGTTCATTAACTCTGACTTTGCCTTTGATTTTGCTCGACCTCTGCTTCCCAACACTGTTTAT GTTGGAGGCTTGATGGAAAAACCTATTAAACCAGTACCACAAGACTTGGAGAACTTCATTGC CAAGTTTGGGGACTCTGGTTTTGTCCTTGTGACCTTGGGCTCCATGGTGAACACCTGTCAGA ATCCGGAAATCTTCAAGGAGATGAACAATGCCTTTGCTCACCTACCCCAAGGGGTGATATGG AAGTGTCAGTGTTCTCATTGGCCCAAAGATGTCCACCTGGCTGCAAATGTGAAAATTGTGGA CTGGCTTCCTCAGAGTGACCTCCTGGCTCACCCAAGCATCCGTCTGTTTGTCACCCACGGCG GGCAGAATAGCATAATGGAGGCCATCCAGCATGGTGTGCCCATGGTGGGGGATCCCTCTTT GGAGACCAGCCTGAAAACATGGTCCGAGTAGAAGCCAAAAAGTTTGGTGTTTCTATTCAGTT AAAGAAGCTCAAGGCAGAGACATTGGCTCTTAAGATGAAACAAATCATGGAAGACAAGAGAT ACAAGTCCGCGGCAGTGCCCAGTGTCATCCTGCGCTCCACCCGCTCAGCCCCACACAG TGTCTTTCAGCAGCCCTGGCATGAGCAGTACCTGTTCGACGTTTTTGTGTTTTCTGCTGGGGC TCACTCTGGGGACTCTATGGCTTTGTGGGAAGCTGCTGGGCATGGCTGTCTGGTGGCTGCGT ${\tt GGGGCCAGAAAGGTGAAGGAGACA} {\color{red} {\bf TAA} {\bf GGCCAGGTGCAGCCTTGGCGGGGTCTGTTTGGTGG} \\$ GCGATGTCACCATTTCTAGGGAGCTTCCCACTAGTTCTGGCAGCCCCATTCTCTAGTCCTTC TAGTTATCTCCTGTTTTCTTGAAGAACAGGAAAAATGGCCAAAAATCATCCTTTCCACTTGC CTTGTCCTCCTTTGTTTGCCATCAGCAAGGGCTATGCTGTGATTCTGTCTCTGAGTGACTTG TCACACCCTGACTCTTCCAGCCTCCATGTCCAGACCTAGTCAGCCTCTCTCACTCCTGCCCC TACTATCTATCATGGAATAACATCCAAGAAAGACACCTTGCATATTCTTTCAGTTTCTGTTT TGTTCTCCCACATATTCTCTTCAATGCTCAGGAAGCCTGCCCTGTGCTTGAGAGTTCAGGGC CGGACACAGGCTCACAGTCTCCACATTGGGTCCCTGTCTCTGGTGCCCACAGTGAGCTCCT TCTTGGCTGAGCAGGCATGGAGACTGTAGGTTTCCAGATTTCCTGAAAAATAAAAGTTTACA GCGTTATCTCTCCCCAACCTCACTAA

FIGURE 160

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71169

><subunit 1 of 1, 523 aa, 1 stop

><MW: 59581, pI: 8.68, NX(S/T): 1

MAGQRVLLLVGFLLPGVLLSEAAKILTISTVGGSHYLLMDRVSQILQDHGHNVTMLNHKRGP FMPDFKKEEKSYQVISWLAPEDHQREFKKSFDFFLEETLGGRGKFENLLNVLEYLALQCSHF LNRKDIMDSLKNENFDMVIVETFDYCPFLIAEKLGKPFVAILSTSFGSLEFGLPIPLSYVPV FRSLLTDHMDFWGRVKNFLMFFSFCRRQQHMQSTFDNTIKEHFTEGSRPVLSHLLLKAELWF INSDFAFDFARPLLPNTVYVGGLMEKPIKPVPQDLENFIAKFGDSGFVLVTLGSMVNTCQNP EIFKEMNNAFAHLPQGVIWKCQCSHWPKDVHLAANVKIVDWLPQSDLLAHPSIRLFVTHGGQ NSIMEAIQHGVPMVGIPLFGDQPENMVRVEAKKFGVSIQLKKLKAETLALKMKQIMEDKRYK SAAVAASVILRSHPLSPTQRLVGWIDHVLQTGGATHLKPYVFQQPWHEQYLFDVFVFLLGLT LGTLWLCGKLLGMAVWWLRGARKVKET

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 483-504

FIGURE 161

CTCCATCCCCCAGGTCCAGCCCTCAGTGCTGTCCCATCCAGCAGGGCTACCCTGAAGCTCT GGCTGCAGCCCTCCCGTCCAGTGGGCAGGCGGCTTCATCCCTCCTTTCTCTCCCAAAGCCCA ACTGCTGTCACTGCCATGCCCAAGGAGGAGGGAACTGCAGTGACAGCAGGAGTAAGAGT GGGAGGCAGGACAGACTGGGACACAGGTATGGAGAGGGGGTTCAGCGAGCCTAGAGAGGGC AGACCGGGGCACTTGTGGGTTGCAGAGCCCCTCAGCCATGTTTGGGAGCCAAGCCACACTGGC TACCAGGTCCCCTACACAGTCCCGGGCTGCCCTTGGTTCTGGTGCTTCTGGCCCTGGGGGCC GGGTGGGCCCAGGAGGGGTCAGAGCCCGTCCTGCTGGAGGGGGGAGTGCCTGGTGGTCTGTGA GCCTGGCCGAGCTGCTGCAGGGGGGCCCCGGGGGAGCACCCCTGGGC GAGTGGCATTTGCTGCGGTCCGAAGCCACCATGAGCCAGCAGGGGAAACCGGCAATGGC ACCAGTGGGGCCATCTACTTCGACCAGGTCCTGGTGAACGAGGGCGGTGGCTTTGACCGGGC $\tt CTCTGGCTCCTTCGTAGCCCCTGTCCGGGTGTCTACAGCTTCCGGTTCCATGTGGTGAAGG$ TGTACAACCGCCAAACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCCTGTCATCTCAGCC TTTGCCAATGATCCTGACGTGACCCGGGAGGCAGCCACCAGCTCTGTGCTACTGCCCTTGGA CCCTGGGGACCGAGTGTCTCTGCGCCTGCGTCGGGGGGAATCTACTGGGTGGTTGGAAATACT CAAGTTTCTCTGGCTTCCTCATCTTCCCTCTCTGAGGACCCAAGTCTTTCAAGCACAAGAAT CCAGCCCTGACAACTTTCTTCTGCCCTCTCTTGCCCCAGAAACAGCAGAGGCAGGAGAGAG ACTCCCTCTGGCTCCTATCCCACCTCTTTGCATGGGACCCTGTGCCAAACACCCCAAGTTTAA CTCCCAGCCACCTGCATCTGTTCCTGCCTGCAGCCCTAGGATCAGGGCAAGGTTTGGCA AGAAGGAAGATCTGCACTACTTTGCGGCCTCTGCTCCTCCGGTTCCCCACCCCAGCTTCCT GCTCAATGCTGATCAGGGACAGGTGGCGCAGGTGAGCCTGACAGGCCCCCACAGGAGCCCAG ATGGACAAGCCTCAGCGTACCCTGCAGGCTTCTTCCTGTGAGGAAAGCCAGCATCACGGATC TCAGCCAGCACCGTCAGAAGCTGAGCCAGCACCGTATGGGCTAGGGTGGGAGGCTCAGCCAC GGCTGTCCTTCTATGCTGGATCCCAGATGGACTCTGGCCCTTACCTCCCCACCTGAGATTAG GGTGAGTGTTTTGCTCTGGCTGAGAGCAGAGCTGAGAGCAGGTATACAGAGCTGGAAGTGG ACCATGGAAAACATCGATAACCATGCATCCTCTTGCTTGGCCACCTCCTGAAACTGCTCCAC TCACTGAGTTATCTTCACTGTACCTGTTCCAGCATATCCCCACTATCTCTCTTTCTCCTGAT CAGACCCTCTCCTGCCAGTATGCTAAACCCTCCCTCTCTTTTCTTATCCCGCTGTCCCATT GGCCCAGCCTGGATGAATCTATCAATAAAACAACTAGAGAATGGTGGTCAGTGAGACACTAT AGAATTACTAAGGAGAAGATGCCTCTGGAGTTTGGATCGGGTGTTACAGGTACAAGTAGGTA TGTTGCAGAGGAAAATAAATATCAAACTGTATACTAAAATTAAAAA

FIGURE 162

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180

><subunit 1 of 1, 205 aa, 1 stop

><MW: 21521, pI: 7.07, NX(S/T): 1

MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGGA ALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVY SFRFHVVKVYNRQTVQVSLMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRG NLLGGWKYSSFSGFLIFPL

Signal peptide:

amino acids 1-32

FIGURE 163

GCTGTTTCTCTCGCGCCACCACTGGCCGCCGGCCGCCGAGCTCCAGGTGTCCTAGCCGCCCAGC CTCGACGCCGTCCCGGGACCCCTGTGCTCTGCGCGAAGCCCTGGCCCCGGGGGCCGGGGCAT GGAGCCAGCGCTCTCACGGAGGACCTGCGCTGTCGCGCGAGGGGTCTGGGAGATGGGGCACT GGATCCAGCATCCTCCCGCCCTCCAGGACCTCTTCTCTGTCACCTGGCTCAATAGGTCCAA GGTGGAAAAGCAGCTACAGGTCATCTCAGTGCTCCAGTGGGTCCTGTCCTTGTACTGG GAGTGGCCTGCAGTGCCATCCTCATGTACATATTCTGCACTGATTGCTGGCTCATCGCTGTG CTCTACTTCACTTGGCTGGTGTTTGACTGGAACACCCCAAGAAAGGTGGCAGGAGGTCACA GTGGGTCCGAAACTGGGCTGTGTGGCGCTACTTTCGAGACTACTTTCCCATCCAGCTGGTGA AGACACACACCTGCTGACCACCAGGAACTATATCTTTGGATACCACCCCCATGGTATCATG GGCCTGGGTGCCTTCTGCAACTTCAGCACAGAGGCCACAGAAGTGAGCAAGAAGTTCCCAGG CATACGGCCTTACCTGGCTACACTGGCAGGCAACTTCCGAATGCCTGTGTTGAGGGAGTACC TGATGTCTGGAGGTATCTGCCCTGTCAGCCGGGACACCATAGACTATTTGCTTTCAAAGAAT GGGAGTGGCAATGCTATCATCATCGTGGTCGGGGGTGCGGCTGAGTCTCTGAGCTCCATGCC TGGCAAGAATGCAGTCACCCTGCGGAACCGCAAGGGCTTTGTGAAACTGGCCCTGCGTCATG GAGCTGACCTGGTTCCCATCTACTCCTTTGGAGAGAATGAAGTGTACAAGCAGGTGATCTTC GAGGAGGCTCCTGGGGCCGATGGGTCCAGAAGATCCAGAAATACATTGGTTTCGCCCC ATGCATCTTCCATGGTCGAGGCCTCTTCTCCTCCGACACCTGGGGGGCTGGTGCCCTACTCCA AGCCCATCACCACTGTTGTGGGAGAGCCCATCACCATCCCCAAGCTGGAGCACCCAACCCAG CAAGACATCGACCTGTACCACCATGTACATGGAGGCCCTGGTGAAGCTCTTCGACAAGCA ${\tt CAAGACCAAGTTCGGCCTCCCGGAGACTGAGGTCCTGGAGGTGAAC} {\bf \underline{TGA}} {\tt GCCAGCCTTCGGG}$ GCCAATTCCCTGGAGGAACCAGCTGCAAATCACTTTTTTGCTCTGTAAATTTGGAAGTGTCA AAAAAAAAAAAAAAA

FIGURE 164

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184

><subunit 1 of 1, 388 aa, 1 stop .

><MW: 43831, pI: 9.64, NX(S/T): 3

MKTLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWGTGSSILSALQDLFSVTWLNRS
KVEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVFDWNTPKKGGRRS
QWVRNWAVWRYFRDYFPIQLVKTHNLLTTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFP
GIRPYLATLAGNFRMPVLREYLMSGGICPVSRDTIDYLLSKNGSGNAIIIVVGGAAESLSSM
PGKNAVTLRNRKGFVKLALRHGADLVPIYSFGENEVYKQVIFEEGSWGRWVQKKFQKYIGFA
PCIFHGRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDK
HKTKFGLPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-245, 318-323, 378-383

FIGURE 165

GGGCGGCGGATGGGGGCCGGGGGGGCGCCGCCCCTCGCTGAGGCCCCGACGCAGGGCCGGGCCGGGCCCA GCGGCTGCAGGCTTGTCCAGCCGGAAGCCCTGAGGGCAGCTGTTCCCACTGGCTCTGACCTTGTGCCTTGGA ${\tt CGGCTGTCCTCAGCGAGGGGCCGTGCACCCGCTCCTGAGCAGCGCC} \underline{{\tt ATG}} {\tt GGCCTGCTGGCCTTCCTGAAGACCCA}$ GTTCGTGCTGCACCTGCTGGTCGGCTTTGTCTTCGTGGTGAGTGGTCTGGTCATCAACTTCGTCCAGCTGTGCAC ACTGGTCATGCTGCAGGGTGGTCCTGCACGGAGTGTACACTGTTCACGGACCAGGCCACGGTAGAGCGCTT GCGCTTCGGAGTGCTGGGGAGCTCCAAGGTCCTCGCTAAGAAGGAGCTGCTCTACGTGCCCCTCATCGGCTGGAC GCGCCTGTCGGACTACCCCGAGTACATGTGGTTTCTCCTGTACTGCGAGGGGGACGCGCTTCACGGAGACCAAGCA CCGCGTTAGCATGGAGGTGCCGCGCTGCTAAGGGGCTTCCTGTCCTCAAGTACCACCTGCTGCCGCGGACCAAGGG $\verb|CTTCACCACCGCAGTCAAGTGCCTCCGGGGGACAGTCGCAGCTGTCTATGATGTAACCCTGAACTTCAGAGGAAA| \\$ CAAGAACCCGTCCTGCTGGGGATCCTCTACGGGAAGAAGTACGAGGCGGACATGTGCGTGAGGAGATTTCCTCT GGAAGACATCCCGCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAGGAGAAGGACGCGCTCCA GGAGATATATAATCAGAAGGGCATGTTTCCAGGGGAGCAGTTTAAGCCTGCCCGGAGGCCGTGGACCCTCCTGAA $\tt CTTCCTGTCCTGGGCCACCATTCTCCTGTCTCCCCTCTTCAGTTTTGTCTTGGGCGTCTTTGCCAGCGGATCACC$ TCTCCTGATCCTGACTTTCTTGGGGTTTGTGGGAGCAGCTTCCTTTGGAGTTCGCAGACTGATAGGAGAATCGCT TGAACCTGGGAGGTGGAGATTGCAGTGAGCTGAGATGGCATCACTGTACTCCAGCCTAGGCAACAGAGCAAGACT CAGTCTCAAAAAAAAAAAAAAAAAAAAAACCCCAGAAATTCTGGAGTTGAACTGTGTAGTTACTGACATGAAAA ATTCACTAGAGGCTGAACAGCAGATTTGAGCAGGCAGAAAAAAATCAGCAAGCTTGAAGATGGTACCTTGAGATT TTTCAGGCTAATGAAAAAAGAATGAAGGAAAATTAACAGCCTCAGAGACCCATGGTGCACCGTCACACAAATCAA GTAACCTACCCACTCAGGAAGCTCAGTGAACTCCAATGAGGATGAATATCAGAGATCCACACCTAGATATTTCAT AATCAAAGTGTCAAATGACAAAGAATCTTGAAAGCAGCAAGAGATGAGCAACTTATCTTGTTCAAAGGATCTTTG ATCAGATTAACAGCTCATTTCTCCTCAGAAATCATGGGAGCCAGGAGATAGTGGGATGAACACTGTTGAAGGCAA AACCTTCAACTGTAATTATTGGACTTTTGAGTCTTAGATGGTCCTGACCTCTTTGTCTTCAGGGACAGTTTTTCA ATTTAATCCCTAATAACAATTAGTCAAGCTTCCTTGACCTGTAGGAAGGCCTGTCTTTAGGCCGGGCACAGTGGC TTACACCTGTAATCCCAGCACTTTGGGAGGCCCAGACGGGTGGATCATTTGGGGTCAGGCTGATCTCAAACTCCT GAGTTCAGGTGATCTGCCCGCCTCAGCCTCCCAAAGTGTTGTGATTGCAGGCGTGAGCCACTGCGCCTGGCCGGA ATTTCTTTTTAAGGCTGAATGATGGGGGCCAGGCACGATGGCTCACGCCTGTGATCCCAAGTAGCTTGGATTGTA AACATGCACCACCATGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGTGTTAGCCAGGCTGGTCTCGATCTCCT GACCTCAAGTGACCACCTGCCTCAGCCTCCCAAAGTACTGGGATTACAGGCGTGAGCCACTGTGCCTGGCCTTGA GCATCTTGTGATGTGCTTATTGGCCATTTGTATATCTTCTATCTTCTTTGGGGAAATGTCTGTTCAAGTCCTTTG $\verb|CCTTTTTAAATTTTATTTATTTATTTATTTTTTTGAGACAGGGTCTTGTTCTGTTGCCCAGGCTGGAGTA| \\$ CAGTGGCACAGTCTTGGCTCACTGCAGCCTCGACCTCCTGGGCTGCAGTGATCCTCCCACCTCAGCCTCCCTTGT GAGGGGCCGGGTGTGGCCCCAACTACCAGGGAGACTGAAGTGGGAGGATCGCTTGGGCATGAGAAGTCGAGGCTG CAGTGAGTCGAGGTTGTGCGACTGCATTCCAGCCTGGACAACAGAGTGAGACCCTGTCTC

FIGURE 166

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213

><subunit 1 of 1, 368 aa, 1 stop

><MW: 42550, pI: 9.11, NX(S/T): 1

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHR
VSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKK
YEADMCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWTLLN
FLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

FIGURE 167

GATATTCTTTATTTTAAGAATCTGAAGTACT**ATG**CATCACTCCCTCCAATGTCCTGGGGCA GATAGCTGGGGTCTGAGACCTGCTTCCTCAGTAAAATTCCTGGGATCTGCCTATACCTTCTT TTCTCTAACCTGGCATACCCTGCTTAAAGCCTCTCAGGGCTTCTCTCTGTTCTTAGGATCAA AGTATTTAGAGCTACAAGAGCCCTCATGGTCTGGCCCCTGCCCCCTGGCCAGCTTCATTGT ACATGTGGTGTTCTTGTCGTTCCTG**TAA**TGTGGTATGCCATGGGGTCTTTGCACAAGCCT TTCCTCTTTGGCTGGACACTGTTCCCTGCCCCCCCATACTCTTCCTACTTAATATGTAGTC ATCCTGCAGATTTCAATTCTAACATCATTTTCTCCAGGGATCCTGGCCTGACAGAATCTCAT CTTGTTTAATGCTCTCATAAGACCACTTGTTTCCCTTTTTGCAGCACTTGCCACTCAGTTGTA TCTTTATGTGCGTTTGTGGTTGTATGGGTTGTGTCTGTTCCCCAGAATGCCCAGCTCTGAGC CATGTTTTAGAGACTAAATGGAGGAGGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCA GATGGTGTAGGGCCCAGCATTGTAAATTCACACGTTGACTGTGCTTGTGAATTATCTGGGGA TGCAGGTCCTGATTCAGTAGGCCCAGGTTGGGCATCTCTAACAAACTCCCACGTGATGCTGA TGCTGGTCCTATGAACTATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGGCATGGTGGC TCAAGACTAGCCTGGCCAACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTG GGCATGGTGGCACATGCCTGTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTTG AACCTGGGAGGCGGAGGTTGCAGTGAGCCGAGATCAGGCCACTGTATTCCAACCAGGGTGAC AGAGTGAGACTCTATGTCCAAAAAAAAAAAAA

FIGURE 168

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234

><subunit 1 of 1, 143 aa, 1 stop

><MW: 15624, pI: 9.58, NX(S/T): 0

MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSCGVGGRQAGLRLIRPWVRR EGKINFYTNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPSWS GPCPPGQLHCTCGVLLSFL

Important features of the protein:

Signal peptide:

amino acids 1-28

FIGURE 169

GGCTGGACTGGAACTCCTGGTCCCAAGTGATCCACCCGCCTCAGCCTCCCAAGGTGCTGTGA TTATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACTTTTTCAGCAACTAAAAAAGCCAC ATTAAAATCTGTTTTTTGTTCTCTTGTAACTAGCCTTTACCTTCCTAACACAGAGGATCTGT CACTGTGGCTCTGGCCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTTCTACCCAC ACCGTCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTCGCTGGAGCAGTGCCCTC ACCAACTGTCTCACGTCTGGAGGCACTGACTCGGGCAGTGCAGGTAGCTGAGCCTCTTGGTA ${\tt GCTGCGGCTTTCAAGGTGGGCCTTGCCCTGGCCGTAGAAGGGAT} {\color{red}{\bf TGA}} {\tt CAAGCCCGAAGATTT}$ CATAGGCGATGGCTCCCACTGCCCAGGCATCAGCCTTGCTGTAGTCAATCACTGCCCTGGGG CTAACCTTTTCATGTCCTGCACATCACCTGATCCATGGGCTAATCTGAACTCTGTCCCAAGG AACCCAGAGCTTGAGTGAGCTGTGGCTCAGACCCAGAAGGGGTCTGCTTAGACCACCTGGTT TATGTGACAGGACTTGCATTCTCCTGGAACATGAGGGAACGCCGGAGGAAAGCAAAGTGGCA GGGAAGGAACTTGTGCCAAATTATGGGTCAGAAAAGATGGAGGTGTTGGGTTATCACAAGGC ATCGAGTCTCCTGCATTCAGTGGACATGTGGGGGGAAGGGCTGCCGATGGCGCATGACACACT CGGGACTCACCTCTGGGGCCATCAGACAGCCGTTTCCGCCCCGATCCACGTACCAGCTGCTG AAGGGCAACTGCAGGCCGATGCTCTCATCAGCCAGGCAGCCAAAATCTGCGATCACCAG TGAGAGGCCCTCCTATGTCCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGGCTAATG GCTCAGTGTTGGCCCAGGAGGTCAGCAAGGCCTGAGAGGCTGATCAGAAGGGCCTGCTGTGCG AACACGGAAATGCCTCCAGTAAGCACAGGCTGCAAAATCCCCAGGCAAAGGACTGTGTGGCT CAATTTAAATCATGTTCTAGTAATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGT TCAAATGATCTCCAAGGGCCCTTATACCCCAGGAGACTTTGATTTGAATTTGAAACCCCAAA TCCAAACCTAAGAACCAGGTGCATTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATG CCAACATTTTGGGAGGCCGAGGCGGTAGATCACCTGAGGTCAGGAGTTCAAGACCAGCCTG GCCAACATGGTGAAACCCCTGTCTCTACTAAAAATACAAAAAAACTAGCCAGGCATGGTGGT GTGTGCCTGTATCCCAGCTACTCGGGAGGCTGAGACAGGAGAATTACTTGAACCTGGGAGGT GAAGGAGGCTGAGACAGGAGAATCACTTCAGCCTGAGCAACACAGCGAGACTCTGTCTCAGA AAAAATAAAAAAAGAATTATGGTTATTTGTAA

FIGURE 170

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277

><subunit 1 of 1, 109 aa, 1 stop

><MW: 11822, pI: 8.63, NX(S/T): 0

MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTA SPCWPLAGAVPSPTVSRLEALTRAVQVAEPLGSCGFQGGPCPGRRRD

Signal peptide:

amino acids 1-15

FIGURE 171

GCGGGCCCGCGAGTCCGAGACCTGTCCCAGGAGCTCCAGCTCACGTGACCTGTCACTGCCTC $\mathsf{CCGCCGCCTCCTGCCCGCGCCC}$ GGCCCTGGGCTCAGCCGCACTGGGCGCCCCTTCGCCACTGGCCTCTTCCTGGGGAGGCGGT GCCCCCATGGCGAGGCCGGCGAGAGCAGTGCCTGCTTCCCCCCGAGGACAGCCGCCTGTGG CAGTATCTTCTGAGCCGCTCCATGCGGGAGCACCCGGCGCTGCGAAGCCTGAGGCTGCTGAC CCTGGAGCAGCCGCAGGGGGATTCTATGATGACCTGCGAGCAGGCCCAGCTCTTGGCCAACC TGGCGCGCTCATCCAGGCCAAGAAGGCGCTGGACCTGGGCACCTTCACGGGCTACTCCGCC CTGGCCCTGGCCCTGCCCGCGGACGGCGCGTGGTGACCTGCGAGGTGGACGCGCA GCCCCGGAGCTGGGACGCCCTGTGGAGGCAGGCCGAGGCGGAGCACAAGATCGACCTCC GCTGCTGCGACCCGGAGGCATCCTCGCCGTCCTCAGAGTCCTGTGGCGCGGGAAGGTGCTGC GACGTCAGGGTCTACATCAGCCTCCTGCCCCTGGGCGATGGACTCACCTTGGCCTTCAAGAT CTAGGGCTGGCCCCTAGTGAGTGGGCTCGAGGGAGGGTTGCCTGGGAACCCCAGGAATTGAC

FIGURE 172

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71282

><subunit 1 of 1, 262 aa, 1 stop

><MW: 28809, pI: 8.80, NX(S/T): 1

MTQPVPRLSVPAALALGSAALGAAFATGLFLGRRCPPWRGRREQCLLPPEDSRLWQYLLSRS
MREHPALRSLRLLTLEQPQGDSMMTCEQAQLLANLARLIQAKKALDLGTFTGYSALALALAL
PADGRVVTCEVDAQPPELGRPLWRQAEAEHKIDLRLKPALETLDELLAAGEAGTFDVAVVDA
DKENCSAYYERCLQLLRPGGILAVLRVLWRGKVLQPPKGDVAAECVRNLNERIRRDVRVYIS
LLPLGDGLTLAFKI

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 8-30, 109-130

N-glycosylation site.

amino acids 190-193

Tyrosine kinase phosphorylation site.

amino acids 238-246

N-myristoylation sites.

amino acids 22-27, 28-33, 110-115, 205-210, 255-260

Amidation sites.

amino acids 31-34, 39-42

FIGURE 173

CCGCCGCCGCCGCTACCGCCGCTGCAGCCGCTTTCCGCCGGCCTGGGCCTCTCGCCGTCA $\mathsf{GC} \overline{\mathbf{ATG}} \mathsf{CCACACGCCTTCAAGCCCGGGGACTTGGTGTTCGCTAAGATGAAGGGCTACCCTCAC$ CATCTTTTTCTTTGGCACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCCTACG ACAAATGTAAAGACAAGTACGGGAAGCCCAACAAGAGGAAAGGCTTCAATGAAGGGCTGTGG GAGATCCAGAACAACCCCCACGCCAGCTACAGCGCCCCTCCGCCAGTGAGCTCCTCCGACAG CGAGGCCCCGAGGCCAACCCCGCCGACGCCAGTGACGCTGACGAGGACGATGAGGACCGGG GGGTCATGGCCGTCACAGCGGTAACCGCCACAGCTGCCAGCGACAGGATGGAGAGCGACTCA GACTCAGACAAGAGTAGCGACAACAGTGGCCTGAAGAGGGAAGACGCCTGCGCTAAAGATGTC GGTCTCGAAACGAGCCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCG AAGAGGAGAACTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCT GGCGCCGTCAGCCTCCGACTCCAAGGCCGATTCGGACGGGGCCAAGCCTGAGCCGG TCTGTGAAGAAGCCTCCGAGGGGCAGGAAGCCAGCGGAGAAGCCTCTCCCGAAGCCGCGAGG GCGGAAACCGAAGCCTGAACGGCCTCCGTCCAGCTCCAGCAGTGACAGTGACAGCGACGAGG TGGACCGCATCAGTGAGTGGAAGCGGCGGGACGAGGCGCGGAGGCCGGGGCCCGG ACGAGCTCAGGGAGGACGATGAGCCCGTCAAGAAGCGGGGACGCAAGGGCCCGGGGCCGGGGT GAAGAAGCCGCAGTCCTCAAGCACAGAGCCCGCCAGGAAACCTGGCCAGAAGGAGAAGAGAGA TGCGGCCCGAGGAGAAGCAAGCCAAGCCCGTGAAGGTGGAGCGGACCCGGAAGCGGTCC GAGGGCTTCTCGATGGACAGGAAGGTAGAGAAGAAGAAGAGCCCTCCGTGGAGGAGAAGCT GCAGAAGCTGCACAGTGAGATCAAGTTTGCCCTAAAGGTCGACAGCCCGGACGTGAAGAGGT GCCTGAATGCCCTAGAGGAGCTGGGAACCCTGCAGGTGACCTCTCAGATCCTCCAGAAGAAC ACAGACGTGGTGGCCACCTTGAAGAAGATTCGCCGTTACAAAGCGAACAAGGACGTAATGGA GAAGGCAGCAGAAGTCTATACCCGGCTCAAGTCGCGGGTCCTCGGCCCAAAGATCGAGGCGG TGCAGAAAGTGAACAAGGCTGGGATGGAGAAGGAGAAGGCCGAGGAGAAGCTGGCCGGGGAG GAGCTGGCCGGGAGGAGGCCCCCCAGGAGAAGGCGGAGGACAAGCCCAGCACCGATCTCTC AGCCCCAGTGAATGGCGAGGCCACATCACAGAAGGGGGGAGAGCGCAGAGGACAAGGAGCACG AGGAGGGTCGGGACTCGGAGGGGGCCAAGGTGTGGCTCCTCTGAAGACCTGCACGACAGC GTACGGGAGGGTCCCGACCTGGACAGGCCTGGGAGCGACCGGCAGGAGGGCACG $\mathsf{GGGGGACTCGGAGGCCCTGGACGAGGAGAGCC}$ CCGAGCTCAGGCTGCCCCTCTCCTTCCCCGGCTCGCAGGAGAGCAGAGCAGAGAACTGTGGG TCCAACCAACATGAAATGACTATAAACGGTTTTTTAATGA

FIGURE 174

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286

><subunit 1 of 1, 671 aa, 1 stop

><MW: 74317, pI: 7.61, NX(S/T): 0

MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPPNKYPIFFFGTHETAFLGPKDLFPYD KCKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPPVSSSDSEAPEANPADGSDADEDDEDRG VMAVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSDLDQASVSPSE EENSESSSESEKTSDQDFTPEKKAAVRAPRRGPLGGRKKKKAPSASDSDSKADSDGAKPEPV AMARSASSSSSSSSSDSDVSVKKPPRGRKPAEKPLPKPRGRKPKPERPPSSSSSDSDSDEV DRISEWKRRDEARRRELEARRRREQEEELRRLREQEKEEKERRRERADRGEAERGSGGSSGD ELREDDEPVKKRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTEPARKPGQKEKRV RPEEKQQAKPVKVERTRKRSEGFSMDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRC LNALEELGTLQVTSQILQKNTDVVATLKKIRRYKANKDVMEKAAEVYTRLKSRVLGPKIEAV QKVNKAGMEKEKAEEKLAGEELAGEEAPQEKAEDKPSTDLSAPVNGEATSQKGESAEDKEHE EGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQERERARGDSEALDEES

Signal peptide:

amino acids 1-13

FIGURE 175

GTTGGTTCTCCTGGATCTTCACCTTACCAACTGCAGATCTTGGGACTCATCAGCCTCAATAATTATTAAATTA ${\tt ACACCATTTGAAAGACATTGTTTTCATC} \underline{\textbf{ATG}} {\tt AATGCTAATAAAGATGAAAGACTTAAAGCCAGAAGCCAAGA}$ AAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTTCAAATAGCTGTATTCCCTTTTTGGGTTCATC $\tt CTTTCTACTCAGTCTGGTTGACTTAAACAAAATTTTAAGAAGATTTATTGGCCTGCAAAGGAACGGGTGGA$ ATTATGTAAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCTATAACAA AACTCACATATATGTGTGTGGGAACTGGAGCATTTCATCCAATATGTGGGGTATATTGATCTTGGAGTCTACAAGGA GGATATTATATTCAAACTAGACACACATAATTTGGAGTCTGGCAGACTGAAATGTCCTTTCGATCCTCAGCAGCC TTTTGCTTCAGTAATGACAGATGAGTACCTCTACTCTGGAACAGCTTCTGATTTCCTTGGCAAAGATACTGCATT CACTCGATCCCTTGGGCCTACTCATGACCACCACTACATCAGAACTGACATTTCAGAGCACTACTGGCTCAATGG AGCAAAATTTATTGGAACTTTCTTCATACCAGACACCTACAATCCAGATGATGATAAAATATATTTCTTCTTTCG TGAATCATCTCAAGAAGGCAGTACCTCCGATAAAACCATCCTTTCTCGAGTTGGAAGAGTTTGTAAGAATGATGT AGGAGGACAACGCAGCCTGATAAACAAGTGGACGACTTTTCTTAAGGCCAGACTGATTTGCTCAATTCCTGGAAG ${ t AGTATATGGAGTCTTTACTACAACCAGCTCCATCTTCAAAGGCTCTGCTGTTTGTGTGTATAGCATGGCTGACAT$ ${\tt CAGAGCAGTTTTTAATGGTCCATATGCTCATAAGGAAAGTGCAGACCATCGTTGGGTGCAGTATGATGGGAGAAT}$ TCCTTATCCACGGCCTGGTACATGTCCAAGCAAAACCTATGACCCACTGATTAAGTCCACCCGAGATTTTCCAGA TGATGTCATCAGTTTCATAAAGCGGCACTCTGTGATGTATAAGTCCGTATACCCAGTTGCAGGAGGACCAACGTT CAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGTGGATCATGTCATTGCAGAAGATGGCCAGTACGA TGTAATGTTTCTTGGAACAGACATTGGAACTGTCCTCAAAGTTGTCAGCATTTCAAAGGAAAAGTGGAATATGGA GCAACAATTGTACATTGGTTCCCGAGATGGATTAGTTCAGCTCTCCTTGCACAGATGCGACACTTATGGGAAAGC TTCTAAAAGGAGAGCTAGACGCCAAGATGTAAAATATGGCGACCCAATCACCCAGTGCTGGGACATCGAAGACAG CATTAGTCATGAAACTGCTGATGAAAAGGTGATTTTTGGCATTGAATTTAACTCAACCTTTCTGGAATGTATACC TAAATCCCAACAAGCAACTATTAAATGGTATATCCAGAGGTCAGGGGGATGAGCATCGAGAGGAGTTGAAGCCCGA TGAAAGAATCATCAAAACGGAATATGGGCTACTGATTCGAAGTTTGCAGAAGAAGGATTCTGGGATGTATTACTG CAAAGCCCAGGAGCACACTTTCATCCACACCATAGTGAAGCTGACTTTGAATGTCATTGAGAATGAACAGATGGA AAATACCCAGAGGGCAGAGCATGAGGAGGGGCAGGTCAAGGATCTATTGGCTGAGTCACGGTTGAGATACAAAGA CTACATCCAAATCCTTAGCAGCCCAAACTTCAGCCTCGACCAGTACTGCGAACAGATGTGGCACAGGGAGAAGCG GAGACAGAGAACAAGGGGGGCCCAAAGTGGAAGCACATGCAGGAAATGAAGAAAACGAAATCGAAGACATCA $\texttt{CAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCACG} \underline{\textbf{TAG}} \texttt{TTTTCTACTTAATTTAAAGAAAAGAATTCCTTACC}$ TATAAAAACATTGCCTTCTGTTTTGTATATCCCTTATAGTAATTCATAAATGCTTCCCATGGAGTTTTGCTAAGG CACAAGACAATAATCTGAATAAGACAATATGTGATGAATATAAGAAAGGGCAAAAAATTCATTTGAACCAGTTTT CCAAGAACAAATCTTGCACAAGCAAAGTATAAGAATTATCCTAAAAATAGGGGGGTTTACAGTTGTAAATGTTTTA TGTTTTGAGTTTTGGAATTTATTGTCATGTAAATAGTTGAGCCTAAGCCAAGCCCCGAATTTGATAGTGTATAAGGT GCTTTATTCCCTCGAATGTCCATTAAGCATGGAATTTACCATGCAGTTGTGCTATGTTCTTATGAACAGATATAT CATTCCTATTGAGAACCAGCTACCTTGTGGTAGGGAATAAGAGGTCAGACACAAATTAAGACAACTCCCATTATC TGGCCACTGGGGTTAAATTTAGTGTACTACAACATTGATTTACTGAAGGGCACTAATGTTTCCCCCAGGATTTCT ATTGACTAGTCAGGAGTAACAGGTTCACAGAGAGAGTTGGTGCTTAGTTATGTGTTTTTTAGAGTATATACTAA GCTCTACAGGGACAGAATGCTTAATAAATACTTTAATAAGATATGGGAAAATATTTTAATAAAACAAGGAAAACA TAATGATGTATAATGCATCCTGATGGGAAGGCATGCAGATGGGATTTGTTAGAAGACAGAAGGAAAGACAGCCAT AAATTCTGGCTTTGGGGAAAACTCATATCCCCATGAAAAGGAAGAACAATCACAAATAAAGTGAGAGTAATGTAA AACTGCTAGCAAAATCTGAGGAAACATAAATTCTTCTGAAGAATCATAGGAAGAGTAGACATTTTATTATAACC $\tt CTTTATTCTCTCTGTATATTGGATTTTGTGATTATTTTGAGTGAATAGGAGAAAACAATATTATAACACAGAGA$ ${\tt AACGGAAAGGGTTAAATTAACTCTTTGACATCTTCACTCAACCTTTTCTCATTGCTGAGTTAATCTGTTGTAATT}$ GTAGTATTGTTTTTGTAATTTAACAATAAATAAGCCTGCTACATGT

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883

><subunit 1 of 1, 777 aa, 1 stop

><MW: 89651, pI: 7.97, NX(S/T): 3

MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVTGTLKQNIPRLKLTYKDLLLSNSCIPFL
GSSEGLDFQTLLLDEERGRLLLGAKDHIFLLSLVDLNKNFKKIYWPAAKERVELCKLAGKDA
NTECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFD
PQQPFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDHHYIRTDISEHYWLNGAKFIGTFF
IPDTYNPDDDDKIYFFFRESSQEGSTSDKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC
SIPGSDGADTYFDELQDIYLLPTRDERNPVVYGVFTTTSSIFKGSAVCVYSMADIRAVFNGP
YAHKESADHRWVQYDGRIPYPRPGTCPSKTYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPV
AGGPTFKRINVDYRLTQIVVDHVIAEDGQYDVMFLGTDIGTVLKVVSISKEKWNMEEVVLEE
LQIFKHSSIILNMELSLKQQQLYIGSRDGLVQLSLHRCDTYGKACADCCLARDPYCAWDGNA
CSRYAPTSKRRARRQDVKYGDPITQCWDIEDSISHETADEKVIFGIEFNSTFLECIPKSQQA
TIKWYIQRSGDEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLN
VIENEQMENTQRAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRN
KGGPKWKHMQEMKKKRNRRHHRDLDELPRAVAT

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

FIGURE 177

CCCTGACCTCCCTGAGCCACACTGAGCTGGAAGCCGCAGAGGTCATCCTGGAGCATGCCCACCGCGGGGAGCAGA GTGGCCTGGAGAAAGAGGTTCAGCGCTTGACCAGCCGAGCTGCCCGTGACTACAAGATCCAGAACCATGGGCATC GGGTGAGGTGGGGGGGCACAGGTGTCATGTGCACCTTCTTGTCTCAGCAAGAAGAGCTGAGAGAGGGGGATCTTGG AGCCATTGAGGGTGTCATGGAGCTACAGAGGGGAGGGAAAGGTATTTTAAGGTAACAGTGTGGCACAATAGTTAA GAGCACAGTTTTTGGAGCTAGACCGACATAGGTTCAAATTCTCTTCTTGTTGCTTCCTAGTTCTGTAGCCCCAGGT $\mathtt{AGGGAAGATTAAATGACATAATGTATGTG}$ CAACTAGCAAAGTACCAGTCCCATAGTAAGTCATGCCCCACAG TATTTCCACCCACCCTGTTCTCTGCCTTCCCAACCAGGTACTGCAACGACTGGAGCAGAGGCGGCAGCAGCTT CAGAGCGGGAGGCTCCAAGCATAGAACAGAGGTTACAGGAAGTGCGAGAGAGCATCCGCCGGGCACAGGTGAGCC CAACCGCTGAGGATGCTGAGCTTTCTGACTTTGAGGAATGTGAGGAGACGGGAGAGCTCTTTGAGGAGCCTGCCC AAGACAGTGACAATCCCTGCGGGGCAGAGCCCACAGCATTCCTGGCACAGGCCCTGTACAGCTACACCGGACAGA GTGCAGAGGGGCCTGAGGTGGGGGGCACTCATCCGTCTGCTGCCCCGGGCCCAAGATGGAGTAGATGACG GCTTCTGGAGGGGAGAATTTGGGGGCCGTGTTGGGGTCTTCCCCTCCTGCTGGTGGAAGAGCTGCTTGGCCCCC CAGGGCCACCTGAACTCTCTGACCCTGAACAGATGCTGCCGTCCCCTTCTCCCCAGCTTCTCCCCACCTGCAC ${\tt CAGATCCCCTCACC} \underline{{\tt TGA}} {\tt AGGCCAGGGAAGCCTTGACCCCCAGTGATGCTGCCCTATCTTCAAGCTGTCAGA$ CCACACCATCAATGATCCAGAGCAACACACCCAAAAGCTGGAATCGCCCTTATTTCCACCCTCACCTCCAAGGGT GGAAACTTGCCCCTTCCCATTTCTAGAGCTGGAACCCACTCCTTTTTTTCCCATTGTTCTATCATCTCTAGGACC GGAACTACTACCTTCTCTCTGTCATGACCCTATCTAGGGTGGTGAAATGCCTGAAATCTCTGGGGCTGGAAACC CCAGGGTCACTGGGGTTGGGGTGGGGAGAGGAACAGGCCTTGGGAATCAGGAGCTGGAGCCAGGATGCGAAGCAG $\tt CTGTAATGGTCTGAGCGGATTTATTGACAATGAATAAAGGGCACGAAGGCCAGGGCCTGGGCCTCTTGTG$ TGAGGGGCTGTGACCTCTCCTGAGGCCCCAGCCTGAGACTGTGCAACTCCAGGTGGAAGTAGAGCTGGTCCCTC AGCTGGGGGGCAGTGCTGTCCAGTGGAGGGGGGGGCTTTCACGCCCACCCCCCTGGCCCTGCCAGCTGGTAG TCCATCAGCACAATGAAGGAGACTTGGAGAAGAAGAAGAATAACACTGTTGCTTCCTGTTCAAGCTGTGTCCAGC TTTTCCCCTGGGGCTCCAGGACCTTCCCTACCTCCACCACCAAACCAAGGGATTTATAGCAAAGGCTAAGCCTGC AGTTTACTCTGGGGGGTTCAGGGAGCCGAAAGGCTTAAATAGTTTAAGTAGGTGATGGGAAGATGAGATTACCTCA TTTAGGGCTCAGGCAGACTCACCTCACATACTCCCTGCTCCCTGTGGTAGAGACACCTGAGAGAAAGGGGAGGGG TCAACAATGAGAGACCAGGAGTAGGTCCTATCAGTGCCCCCAGAGTAGAGAGCAATAAGAGCCCAGCCCAGTGC AGTCCCGGCTGTGTTTTCCTACCTGGTGATCAGAAGTGTCTGGTTTGCTTGGCTGCCCATTTGCCTCTTGAGTGG GCAGCCCTGGGCCTTGGGCCCTCCGGCCCTCAGTGTTGGCTCTGCAGAAGCTCTGGGGTTCCCTTCAAGTG TCTCAGGGGGCAGCCTCTCCATGGCAGGCATCCCTGCCTTGGGCTGCCCTCCCCCAGACCCCTGACCACCCCCTG GGTCCTGTCCCCCACCAGAGCCCCAGCTCCTGTCTGTGGGGGAGCCATCACGGTGTTCGTGCAGTCCATAGCGCT TCTCAATGTGTGTCACCCGGAACCTGGGAGGGGAGGGAACACTGGGGTTTAGGACCACAACTCAGAGGCTGCTTG GCCCTCCCCTCTGACCAGGGACATCCTGAGTTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGGAGGCCTTCTC AGATTGTGGGGCACATTGTGTAGCCTGACTTCTGCTGGAGCTCCCAGTCCAGGAGAAAAGAGCCCAAGGCCCACTT TTGGGATCAGGTGCCTGATCACTGGGCCCCCTACCTCAGCCCCCCTTTCCCTGGAGCACCTGCCCACCTGCCCA GCCTCTTGCTGCGGCTGCAATGGATGCAAGGGGCTCCAGGGTGCACTGTGTGATGATGGGAGGGGGCTC ${\tt TCATGTTTGTTTCTTACGTTCTTTCAGCATGCTCCTTAAAAACCCCAGAAGCCCCAATTTCCCCAAGCCCCATTT}$ TTTCTTGTCTTTATCTAATAAACTCAATATTAAG

FIGURE 178

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401

><subunit 1 of 1, 370 aa, 1 stop

><MW: 40685, pI: 4.53, NX(S/T): 0

MQLAKYQSHSKSCPTVFPPTPVLCLPNQVLQRLEQRRQQASEREAPSIEQRLQEVRESIRRA
QVSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAELS
DFEECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTITEGEWLEVIEEGDADEW
VKARNQHGEVGFVPERYLNFPDLSLPESSQDSDNPCGAEPTAFLAQALYSYTGQSAEELSFP
EGALIRLLPRAQDGVDDGFWRGEFGGRVGVFPSLLVEELLGPPGPPELSDPEQMLPSPSPPS
FSPPAPTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPPPAKAPDPGHPDPLT

FIGURE 179A

 ${\tt GCACCTCTCCCAAGCCCAAGGACTAAGTTTTCTCCATTTCCTTTAACGGTCCTCAGCCCTTCTGAAAACTTTGCC}$ ${\tt TCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGAGGAGCTTTCCAAAGCTAGGGTGTGGAGGACTTGGT}$ $\texttt{GCCCTAGACGGCCTCAGTCCCAGCTGCAGTACCAGTGCC} \underline{\textbf{ATG}} \texttt{TCCCAGACAGGCTCGCATCCCGGGAGGGG}$ GCTGCTTCTGCTGCCTCTCCCCCGGGAGGAGGAGAGAT CGTGTTTCCAGAGAAGCTCAACGGCAGCGTCCTGCCTGGCTCGGGCGCCCCTGCCAGGCTGTTGTGCCGCTTGCA GGCCTTTGGGGAGACGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCAGGTCGAGGGGCTGACAGTGCAGTA GGAGTCGGTGGCATCTCTGCACTGGGATGGGGGAGCCCTGTTAGGCGTGTTACAATATCGGGGGGGCTGAACTCCA CCTCCAGCCCTGGAGGGAGCCCCTAACTCTGCTGGGGGACCTGGGGCTCACATCCTACGCCGGAAGAGTCC TGCCAGCGGTCAAGGTCCCATGTGCAACGTCAAGGCTCCTCTTGGAAGCCCCAGGCCCCAGACCCCGAAGAGCCCAA GCGCTTTGCTTCACTGAGTAGATTTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGCCGCATTCCACGGTGC GGGGCTAAAGCGCTACCTGCTAACAGTGATGGCAGCAGCCAAGGCCTTCAAGCACCCAAGCATCCGCAATCC CCAGACCCTGCGCAGCTTCTGTGCCTGGCAGCGGGCCTCAACACCCCTGAGGACTCGGGCCCTGACCACTTTGA CACAGCCATTCTGTTTACCCGTCAGGACCTGTGTGGAGTCTCCACTTGCGACACGCTGGGTATGGCTGATGTGGG CACCGTCTGTGACCCGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGGCTCCAGTCAGCCTTCACTGCTGCTCA TGAACTGGGTCATGTCTTCAACATGCTCCATGACAACTCCAAGCCATGCATCAGTTTGAATGGGCCTTTGAGCAC CTCTCGCCATGTCATGGCCCCTGTGATGGCTCATGTGGATCCTGAGGAGCCCTGGTCCCCCTGCAGTGCCCGCTT CATCACTGACTTCCTGGACAATGGCTATGGGCACTGTCTCTTAGACAAACCAGAGGCTCCATTGCATCTGCCTGT GACTTTCCCTGGCAAGGACTATGATGCTGACCGCCAGTGCCAGCTGACCTTCGGGCCCGACTCACGCCATTGTCC ACAGCTGCCGCCCTGTGCTGCCCTCTGGTGCTCTGGCCACCTCAATGGCCATGCCATGTGCCAGACCAAACA CTCGCCCTGGGCCGATGGCACACCCTGCGGGCCCGCACAGGCCTGCATGGGTGGTCGCTGCCTCCACATGGACCA GCTCCAGGACTTCAATATTCCACAGGCTGGTGGCTGGGGTCCTTGGGGACCATGGGGTGACTGCTCTCGGACCTG $\tt TGGGGGTGTTCCCAGTTCTCCCCGAGACTGCACGAGGCCTGTCCCCCGGAATGGTGGCAAGTACTGTGAGGG$ $\tt CCGCCGTACCCGCTTCCGCCAACACTGAGGACTGCCCAACTGGCTCAGCCCTGACCTTCCGCGAGGAGCA$ GTGTGCTGCCTACAACCACCGCACCGACCTCTTCAAGAGCTTCCCAGGGCCCATGGACTGGGTTCCTCGCTACAC ACGGGTGGTAGATGGGACCCCCTGTTCCCCGGACAGCTCCTCGGTCTGTGTCCAGGGCCGATGCATCCATGCTGG CTGTGATCGCATCATTGGCTCCAAGAAGAAGTTTGACAAGTGCATGGTGTGCGGAGGGGACGGTTCTGGTTGCAG CAAGCAGTCAGGCTCCTTCAGGAAATTCAGGTACGGATACAACAATGTGGTCACTATCCCCGCGGGGGCCACCCA CATTCTTGTCCGGCAGCAGGGAAACCCTGGCCACCGGAGCATCTACTTGGCCCTGAAGCTGCCAGATGGCTCCTA TGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCCACAGATGTGGTACTGCCTGGGGCAGTCAGCTTGCGCTA CAGCGGGGCCACTGCAGCCTCAGAGACACTGTCAGGCCATGGGCCCAGCCTTTGACACTGCAAGTCCT AGTGGCTGGCAACCCCCAGGACACACGCCTCCGATACAGCTTCTTCGTGCCCCGGCCGACCCCTTCAACGCCACG CCCCACTCCCCAGGACTGCCTGCACCGAAGAGCACAGATTCTGGAGATCCTTCGGCGGCGCCCCTGGGCGGCAG CCTGACCCCTGACCCCTCATAGCCCTCACCCTGGGGCTAGGAAATCCAGGGTGGTGGTGATAGGTATAAGTGGTG TTTTTTTTTTTTTTTTTTTTTTTTTTGAGACAGAATCTCGCTCTGTCGCCCAGGCTGGAGTGCAATG GCACAATCTCGGCTCACTGCATCCTCCGCCTCCCGGGTTCAAGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTG GGATTACAGGCTCCTGCCACCACGCCCAGCTAATTTTTGTTTTGTTTTGTTTTGGAGACAGAGTCTCGCTATTGTC ACCAGGGCTGGAATGATTTCAGCTCACTGCAACCTTCGCCACCTGGGTTCCAGCAATTCTCCTGCCTCAGCCTCC CGAGTAGCTGAGATTATAGGCACCTACCACCCCCGGCTAATTTTTGTATTTTAGTAGAGACGGGGTTTCAC CATGTTGGCCAGGCTGGTCTCGAACTCCTGACCTTAGGTGATCCACTCGCCTTCATCTCCCAAAGTGCTGGGATT ACAGGCGTGAGCCACCGTGCCTGGCCACCCCAACTAATTTTTGTATTTTTAGTAGAGACAGGGTTTCACCATGT TGGCCAGGCTGCTCTGAACTCCTGACCTCAGGTAATCGACCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGG TGTGAGCCACCACGCCCGGTACATATTTTTAAATTGAATTCTACTATTTATGTGATCCTTTTGGAGTCAGACAG

FIGURE 179B

FIGURE 180

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492</pre>

><subunit 1 of 1, 837 aa, 1 stop

><MW: 90167, pI: 8.39, NX(S/T): 1

MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLASLLPSARLASPLPREEEIV FPEKLNGSVLPGSGAPARLLCRLQAFGETLLLELEQDSGVQVEGLTVQYLGQAPELLGGAEP GTYLTGTINGDPESVASLHWDGGALLGVLQYRGAELHLQPLEGGTPNSAGGPGAHILRRKSP ASGQGPMCNVKAPLGSPSPRPRRAKRFASLSRFVETLVVADDKMAAFHGAGLKRYLLTVMAA AAKAFKHPSIRNPVSLVVTRLVILGSGEEGPQVGPSAAQTLRSFCAWQRGLNTPEDSGPDHF DTAILFTRQDLCGVSTCDTLGMADVGTVCDPARSCAIVEDDGLQSAFTAAHELGHVFNMLHD NSKPCISLNGPLSTSRHVMAPVMAHVDPEEPWSPCSARFITDFLDNGYGHCLLDKPEÄPLHL PVTFPGKDYDADRQCQLTFGPDSRHCPQLPPPCAALWCSGHLNGHAMCQTKHSPWADGTPCG PAQACMGGRCLHMDQLQDFNIPQAGGWGPWGPWGDCSRTCGGGVQFSSRDCTRPVPRNGGKY CEGRRTRFRSCNTEDCPTGSALTFREEQCAAYNHRTDLFKSFPGPMDWVPRYTGVAPQDQCK LTCQARALGYYYVLEPRVVDGTPCSPDSSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDG SGCSKQSGSFRKFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTL MPSPTDVVLPGAVSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPT PSTPRPTPQDWLHRRAQILEILRRRPWAGRK

Important features of the protein:

Signal peptide:

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

FIGURE 181

CAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAAGCTTTTAAATCC AAGAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTTGGTATCCTGGCCCTAACTCT AATTGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCCAAAAAAGCCTATGACA TGGAGCACACTTTCTACAGCAATGGAGAGAAGAAGAAGATTTACATGGAAATTGATCCTGTG ACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAAACATTGGAAGTGCACGACTT TAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAAAAATGTTTTATCAAAACTCAGA TTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGAAATAGATGAGAATGAAGAAATTACC ACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCAGCAGAAAAGCCTATTGAAAACCGAGA TTTTCTTAAAAATTCCAAAATTCTGGAGATTTGTGATAACGTGACCATGTATTGGATCAATC CCACTCTAATATCAGTTTCTGAGTTACAAGACTTTGAGGAGGAGGAGGAGAAGATCTTCACTTT AGAGAAGACCCGTCACGCCAGACAAGCAAGTGAGGAAGAACTTCCAATAAATGACTATACTG AAAATGGAATAGAATTTGATCCCATGCTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGT CGAGGCAACCGCTATTGCCGCCGCGTCTGTGAACCTTTACTAGGCTACTACCCATATCCATA ${\tt GCATGCTGGGGAGGGTC} \underline{{\tt TAA}} {\tt TAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATAT}$ AATAAATGCATGCTATTCAATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCT CTCCAGAATTACTTGTAGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCACC AAAAAAAAAAAAAA

FIGURE 182

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73727

><subunit 1 of 1, 317 aa, 1 stop

><MW: 37130, pI: 5.18, NX(S/T): 3

MAKNPPENCEDCHILNAEAFKSKKICKSLKICGLVFGILALTLIVLFWGSKHFWPEVPKKAY
DMEHTFYSNGEKKKIYMEIDPVTRTEIFRSGNGTDETLEVHDFKNGYTGIYFVGLQKCFIKT
QIKVIPEFSEPEEEIDENEEITTTFFEQSVIWVPAEKPIENRDFLKNSKILEICDNVTMYWI
NPTLISVSELQDFEEEGEDLHFPANEKKGIEQNEQWVVPQVKVEKTRHARQASEEELPINDY
TENGIEFDPMLDERGYCCIYCRRGNRYCRRVCEPLLGYYPYPYCYQGGRVICRVIMPCNWWV
ARMLGRV

Important features of the protein:

Signal peptide:

amino acids 1-40

Transmembrane domain:

amino acids 25-47 (type II)

N-glycosylation sites.

amino acids 94-97, 180-183

Glycosaminoglycan attachment sites.

amino acids 92-95, 70-73, 85-88, 133-136, 148-151, 192-195, 239-242

N-myristoylation sites.

amino acids 33-38, 95-100, 116-121, 215-220, 272-277

Microbodies C-terminal targeting signal.

amino acids 315-317

Cytochrome c family heme-binding site signature.

amino acids 9-14

FIGURE 183

GCGGAACTGGCTCCGGCTGGCACCTGAGGAGCGGCGTGACCCCGAGGGCCCCAGGGAGCTGCC $\texttt{CGGCTGGCCTAGGCAGCCGCACC} \underline{\textbf{ATG}} \texttt{GCCAGCACGGCCGTGCAGCTTCTGGGCTTCCT}$ GCTCAGCTTCCTGGGCATGGTGGGCACGTTGATCACCACCATCCTGCCGCACTGGCGGAGGA TGTGTGTGGCACAGCACAGGCATCTACCAGTGCCAGATCTACCGATCCCTGCTGGCGCTGCC GCGCCTGCGCCGTCATCGGGATGAAGTGCACGCGCTGCGCCAAGGGCCACCCCGCCAAGACC CTCCTGGACCACCAACGACGTGGTGCAGAACTTCTACAACCCGCTGCTGCCCAGCGGCATGA AGTTTGAGATTGGCCAGGCCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGT GGCACCCTGCTTTGCCTGCCAGGACGAGGCACCCTACAGGCCCTACCAGGCCCCGCC CAGGGCCACCACGACCTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAG ACAATCGGGCCCCCTCAGTGACCTCGGCCACGCACAGCGGGTACAGGCTGAACGACTACGTG AATGGAGGCAGGGGTTCCAGCACAAAGTTTACTTCTGGGCAATTTTTGTATCCAAGGAAATA ATGTGAATGCGAGGAAATGTCTTTAGAGCACAGGGGACAGAGGGGGGAAATAAGAGGAGGAGAA TTATGTGGGTGATTTGATAACAAGTTTAATATAAAGTGACTTGGGAGTTTGGTCAGTGGGGT

FIGURE 184

MASTAVQLLGFLLSFLGMVGTLITTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIY QCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTL FILAGLLCMVAVSWTTNDVVQNFYNPLLPSGMKFEIGQALYLGFISSSLSLIGGTLLCLSCQ DEAPYRPYQAPPRATTTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

FIGURE 185

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTTCGGCAGCAGGAGGGCGGCAGCTTCTCG CAGGCGGCAGGGCGGCCAGGATC<u>ATG</u>TCCACCACCACATGCCAAGTGGTGGCGTTCCT CCTGTCCATCCTGGGGCTGGCCGGCTGCATCGCGGCCACCGGGATGGACATGTGGAGCACCC AGGACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGC GTGAGGCAGAGTTCAGGCTTCACCGAATGCAGGCCCTATTTCACCATCCTGGGACTTCCAGC CATGCTGCAGGCAGTGCGAGCCCTGATGATCGTAGGCATCGTCCTGGGTGCCATTGGCCTCC TGGTATCCATCTTTGCCCTGAAATGCATCCGCATTGGCAGCATGGAGGACTCTGCCAAAGCC AACATGACACTGACCTCCGGGATCATGTTCATTGTCTCAGGTCTTTGTGCAATTGCTGGAGT GTCTGTGTTTGCCAACATGCTGGTGACTAACTTCTGGATGTCCACAGCTAACATGTACACCG GCATGGGTGGGATGGTGCAGACTGTTCAGACCAGGTACACATTTGGTGCGGCTCTGTTCGTG GGCTGGGTCGCTGGAGGCCTCACACTAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGG CCTGGCACCAGAAAACCAACTACAAAGCCGTTTCTTATCATGCCTCAGGCCACAGTGTTG CCTACAAGCCTGGAGGCTTCAAGGCCAGCACTGGCTTTGGGTCCAACACCAAAAACAAGAAG ATATACGATGGAGGTGCCCGCACAGAGGACGAGGTACAATCTTATCCTTCCAAGCACGACTA TGTGTAATGCTCTAAGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTCACCCAAAA AACAAGGAGATCCCATCTAGATTTCTTCTTGCTTTTGACTCACAGCTGGAAGTTAGAAAAGC CTCGATTTCATCTTTGGAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCC ACCATAAAACAGCTGAGTTATTTATGAATTAGAGGCTATAGCTCACATTTTCAATCCTCTAT ATTTTGATGATTAGACAGACTCCCCCTCTTCCTCCTAGTCAATAAACCCATTGATGATCTA CTGCTGTTTGAATTTTGTCTCCCCACCCCAACTTGGCTAGTAATAAACACTTACTGAAGAA GAAGCAATAAGAGAAAGATATTTGTAATCTCTCCAGCCCATGATCTCGGTTTTCTTACACTG TGATCTTAAAAGTTACCAAACCAAAGTCATTTTCAGTTTGAGGCAACCAAACCTTTCTACTG CTGTTGACATCTTCTTATTACAGCAACACCATTCTAGGAGTTTCCTGAGCTCTCCACTGGAG TTAAGTCCTAAATATAGTTAAAATAAATAATGTTTTAGTAAAATGATACACTATCTCTGTGA AATAGCCTCACCCCTACATGTGGATAGAAGGAAATGAAAAAATAATTGCTTTGACATTGTCT ATATGGTACTTTGTAAAGTCATGCTTAAGTACAAATTCCATGAAAAGCTCACACCTGTAATC CTAGCACTTTGGGAGGCTGAGGAGGAAGGATCACTTGAGCCCAGAAGTTCGAGACTAGCCTG GGCAACATGGAGAAGCCCTGTCTCTACAAAATACAGAGAGAAAAAATCAGCCAGTCATGGTG GCATACACCTGTAGTCCCAGCATTCCGGGAGGCTGAGGTGGGAGGATCACTTGAGCCCAGGG TCCTGTCTAAAAAAATAAAAATAAATAATGGAACACAGCAAGTCCTAGGAAGTAGGTTAAA ACTAATTCTTTAA

FIGURE 186

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734

><subunit 1 of 1, 261 aa, 1 stop

><MW: 27856, pI: 8.50, NX(S/T): 1

MSTTTCQVVAFLLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTE CRPYFTILGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIM FIVSGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTL IGGVMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTE DEVQSYPSKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

FIGURE 187

GGAAAAACTGTTCTCTTCTGTGGCACAGAGAACCCTGCTTCAAAGCAGAAGTAGCAGTTCCG GAGTCCAGCTGGCTAAAACTCATCCCAGAGGATAATGCCAACCCATGCCTTAGAAATCGCTG GGCTGTTTCTTGGTGGTGTTGGAATGGTGGCCACAGTGGCTGTCACTGTCATGCCTCAGTGG AGAGTGTCGGCCTTCATTGAAAACAACATCGTGGTTTTTTGAAAACTTCTGGGAAGGACTGTG GATGAATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGCAAAATCTATGATTCCCTGCTGG CTCTTTCTCCGGACCTACAGGCAGCCAGAGGACTGATGTGTGCTGCTTCCGTGATGTCCTTC TTGGCTTTCATGATGGCCATCCTTGGCATGAAATGCACCAGGTGCACGGGGGACAATGAGAA GGTGAAGGCTCACATTCTGCTGACGGCTGGAATCATCTTCATCACCGGGCATGGTGGTGC TCATCCCTGTGAGCTGGGTTGCCAATGCCATCATCAGAGATTTCTATAACTCAATAGTGAAT GTTGCCCAAAAACGTGAGCTTGGAGAAGCTCTCTACTTAGGATGGACCACGGCACTGGTGCT GATTGTTGGAGGAGCTCTGTTCTGCTGCGTTTTTTGTTGCAACGAAAAGAGCAGTAGCTACA GATACTCGATACCTTCCCATCGCACAACCCAAAAAAGTTATCACACCGGAAAGAAGTCACCG CATGCAAATGACAAAAATCTATATTACTTTCTCAAAATGGACCCCAAAGAAACTTTGATTTA CTGTTCTTAACTGCCTAATCTTAATTACAGGAACTGTGCATCAGCTATTTATGATTCTATAA GCTATTTCAGCAGAATGAGATATTAAACCCAATGCTTTGATTGTTCTAGAAAGTATAGTAAT TTGTTTTCTAAGGTGGTTCAAGCATCTACTCTTTTTATCATTTACTTCAAAATGACATTGCT AAAGACTGCATTATTTTACTACTGTAATTTCTCCACGACATAGCATTATGTACATAGATGAG TCCATTACACTGAATAAATAGAACTCAACTATTGCTTTTCAGGGAAATCATGGATAGGGTTG AAGAAGGTTACTATTAATTGTTTAAAAACAGCTTAGGGATTAATGTCCTCCATTTATAATGA AGATTAAAATGAAGGCTTTAATCAGCATTGTAAAGGAAATTGAATGGCTTTCTGATATGCTG TTTTTTAGCCTAGGAGTTAGAAATCCTAACTTCTTTATCCTCTTCTCCCAGAGGCTTTTTTT TTCTTGTGTATTAAATTAACATTTTTAAAACGCAGATATTTTGTCAAGGGGCTTTGCATTCA AACTGCTTTTCCAGGGCTATACTCAGAAGAAAAGTTAAAAGTGTGATCTAAGAAAAAGTGATG GAAATCATATGTATGGATATATTTTAATAAGTATTTGAGTACAGACTTTGAGGTTTCATC ACAAAAAAGTTGTCCTTTGAGAACTTCACCTGCTCCTATGTGGGTACCTGAGTCAAAATTG TCATTTTTGTTCTGTGAAAAATAAATTTCCTTCTTGTACCATTTCTGTTTAGTTTTACTAAA ATCTGTAAATACTGTATTTTCTGTTTATTCCAAATTTGATGAAACTGACAATCCAATTTGA AAGTTTGTCGACGTCTGTCTAGCTTAAATGAATGTGTTCTATTTGCTTTATACATTTATA TTAATAAATTGTACATTTTTCTAATT

FIGURE 188

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735</pre>

><subunit 1 of 1, 225 aa, 1 stop

><MW: 24845, pI: 9.07, NX(S/T): 0

MATHALEIAGLFLGGVGMVGTVAVTVMPQWRVSAFIENNIVVFENFWEGLWMNCVRQANIRM QCKIYDSLLALSPDLQAARGLMCAASVMSFLAFMMAILGMKCTRCTGDNEKVKAHILLTAGI IFIITGMVVLIPVSWVANAIIRDFYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVF CCNEKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

FIGURE 189

TCGCCATGGCCTGCCGGAATGCAGATCCTGGGAGTCGTCCTGACACTGCTGGGCTGGGTG AATGGCCTGGTCTCCTGTGCCCATGTGGAAGGTGACCGCTTTCATCGGCAACAGCAT CGTGGTGGCCCAGGTGTGGGAGGGCCTGTGGATGTCCTGCGTGGTGCAGAGCACCGGCC AGATGCAGTGCAAGGTGTACGACTCACTGCTGGCGCTGCCACAGGACCTGCAGGCTGCACGT GCCCTCTGTGTCATCGCCCTCCTTGTGGCCCTGTTCGGCTTGCTGGTCTACCTTGCTGGGGC CAAGTGTACCACCTGTGGGAGGAGAAGGATTCCAAGGCCCGCCTGGTGCTCACCTCTGGGA TTGTCTTTGTCATCTCAGGGGTCCTGACGCTAATCCCCGTGTGCTGGACGCCGCATGCCATC ATCCGGGACTTCTATAACCCCCTGGTGGCTGAGGCCCAAAAGCGGGAGCTGGGGGCCTCCCT GCCCCTCGGGGGGGTCCCAGGCCCAGCCATTACATGGCCCGCTACTCAACATCTGCCCCT ${\tt GCCATCTCTGGGGGGCCCTCTGAGTACCCTACCAAGAATTACGTC} {\tt TGA} {\tt CGTGGAGGGGAATG}$ GGGGCTCCGCTGGCGCTAGAGCCATCCAGAAGTGGCAGTGCCCAACAGCTTTGGGATGGGTT CGTACCTTTTGTTTCTGCCTCCTGCTATTTTTTCTTTTGACTGAGGATATTTAAAATTCATTT GAAAACTGAGCCAAGGTGTTGACTCAGACTCTCACTTAGGCTCTGCTGTTTCTCACCCTTGG ATGATGGAGCCAAAGAGGGGATGCTTTGAGATTCTGGATCTTGACATGCCCATCTTAGAAGC TGTCCCCAAGAGTTCCTGCTGCTGGGGGGCTGGGCTTCCCTAGATGTCACTGGACAGCTG CCCCCCATCCTACTCAGGTCTCTGGAGCTCCTCTCTTCACCCCTGGAAAAACAAATCATCTG TTAACAAAGGACTGCCCACCTCCGGAACTTCTGACCTCTGTTTCCTCCGTCCTGATAAGACG TCCACCCCCAGGGCCAGGTCCCAGCTATGTAGACCCCCGCCCCCACCTCCAACACTGCACC CTTCTGCCCTGCCCCCTCGTCTCACCCCCTTTACACTCACATTTTTATCAAATAAAGCATG TTTTGTTAGTGCA

FIGURE 190

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73736</pre>

><subunit 1 of 1, 220 aa, 1 stop

><MW: 23292, pI: 8.43, NX(S/T): 0

MASAGMQILGVVLTLLGWVNGLVSCALPMWKVTAFIGNSIVVAQVVWEGLWMSCVVQSTGQM QCKVYDSLLALPQDLQAARALCVIALLVALFGLLVYLAGAKCTTCVEEKDSKARLVLTSGIV FVISGVLTLIPVCWTAHAIIRDFYNPLVAEAQKRELGASLYLGWAASGLLLLGGGLLCCTCP SGGSQGPSHYMARYSTSAPAISRGPSEYPTKNYV

Transmembrane domains:

amino acids 8-30 (type II), 82-102, 121-140, 166-186

FIGURE 191

GCCAAGGAGAACATCATCAAAGACTTCTCTAGACTCAAAAGGCTTCCACGTTCTACATCTTG AGCATCTTCTACCACTCCGAATTGAACCAGTCTTCAAAGTAAAGGCAATGGCATTTTATCCC TTGCAAATTGCTGGGCTGGTTCTTGGGTTCCTTGGCATGGTGGGGACTCTTGCCACAACCCT TCTGCCTCAGTGGTGGAGTATCAGCTTTTGTTGGCAGCAACATTATTGTCTTTGAGAGGCTC TTGCTCTCTCTTGATCGCCCTGCTTATTGGCATCTGTGGCATGAAGCAGGTCCAGTGCACA GGCTCTAACGAGAGGGCCAAAGCATACCTTCTGGGAACTTCAGGAGTCCTCTTCATCCTGAC GGGTATCTTCGTTCTGATTCCGGTGAGCTGGACAGCCAATATAATCATCAGAGATTTCTACA ACCCAGCCATCCACATAGGTCAGAAACGAGAGCTGGGAGCAGCACTTTTCCTTGGCTGGGCA AGCGCTGCTGTCCTTCATTGGAGGGGGTCTGCTTTGTGGATTTTGCTGCTGCAACAGAAA ${\tt ATACGACAATGCTTAGTAAGACCTCCACCAGTTATGTC} {\color{red}{\textbf{TAA}}} {\tt TGCCTCCTTTTGGCTCCAAGT}$ ATGGACTATGGTCAATGTTTTTTATAAAGTCCTGCTAGAAACTGTAAGTATGTGAGGCAGGA GAACTTGCTTTATGTCTAGATTTACATTGATACGAAAGTTTCAATTTGTTACTGGTGGTAGG AATGAAAATGACTTACTTGGACATTCTGACTTCAGGTGTATTAAATGCATTGACTATTGTTG GACCCAATCGCTGCTCCAATTTTCATATTCTAAATTCAAGTATACCCATAATCATTAGCAAG TGTACAATGATGGACTACTTATTACTTTTTGACCATCATGTATTATCTGATAAGAATCTAAA GTTGAAATTGATATTCTATAACAATAAAACATATACCTATTCTA

FIGURE 192

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73737

><subunit 1 of 1, 173 aa, 1 stop

><MW: 18938, pI: 9.99, NX(S/T): 1

MNCIRQARVRLQCKFYSSLLALPPALETARALMCVAVALSLIALLIGICGMKQVQCTGSNER AKAYLLGTSGVLFILTGIFVLIPVSWTANIIIRDFYNPAIHIGQKRELGAALFLGWASAAVL FIGGGLLCGFCCCNRKKQGYRYPVPGYRVPHTDKRRNTTMLSKTSTSYV

Important features of the protein:

Transmembrane domains:

amino acids 31-51, 71-90, 112-133

N-glycosylation site.

amino acids 161-164

FIGURE 193

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73739

><subunit 1 of 1, 85 aa, 1 stop

><MW: 9232, pI: 7.94, NX(S/T): 0

 ${\tt MKITGGLLLLCTVVYFCSSSEAASLSPKKVDCSIYKKYPVVAIPCPITYLPVCGSDYITYGN}$

ECHLCTESLKSNGRVQFLHDGSC

Signal peptide:

amino acids 1-19

FIGURE 195

FIGURE 196

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742

><subunit 1 of 1, 148 aa, 1 stop

><MW: 17183, pI: 8.77, NX(S/T): 0

MAASPARPAVLALTGLALLLLLCWGPGGISGNKLKLMLQKREAPVPTKTKVAVDENKAKEFL GSLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEYYGDYYQRHYD EDSAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

FIGURE 197

CGGCTCGAGCCCGGGAAGTGCCCGAGGGGCCGCGATGGAGCTGGGGGAGCCGGGCGCTC ${\tt GGTAGCGCGGGCAAGGCAGGCGCCC} \underline{\textbf{ATG}} {\tt ACCCTGATTGAAGGGGTGATGAGGTGAC}$ CGTCCTTTTCTCGGTGCTTGCCTGCCTTCTGGTGCTGGCCCTTGCCTGGGTCTCAACGCACA CCGCTGAGGGCGGGGACCCACTGCCCCAGCCGTCAGGGACCCCAACGCCATCCCAGCCCAGC GCAGCCATGGCAGCTACCGACAGCATGAGAGGGGGAGGGCCCCAGGGGGCAGAGACCCCCAGCCT GAGACACAGAGGTCAAGCTGCACAGCCAGAGCCCAGCACGGGGTTCACAGCAACACCGCCAG CCCCGGACTCCCCGCAGGAGCCCCTCGTGCTACGGCTGAAATTCCTCAATGATTCAGAGCAG GTGGCCAGGGCCCACGACACCATTGGCTCCTTGAAAAGGACCCAGTTTCCCGGCCG GGAACAGCAGGTGCGACTCATCTACCAAGGGCAGCTGCTAGGCGACGACACCCAGACCCTGG GCAGCCTTCACCTCCCAACTGCGTTCTCCACTGCCACGTGTCCACGAGAGTCGGTCCC CCAAATCCCCCTGCCCGGGGTCCGAGCCCGGCCCCTCCGGGCTGGAAATCGGCAGCCT GCTGCTGCCCCTGCTGCTGCTGCTGCTGCTCTGGTACTGCCAGATCCAGTACCGGC CCTTCTTTCCCCTGACCGCCACTCTGGGCCTGGCCGGCTTCACCCTGCTCCTCAGTCTCCTG $\mathsf{GCCTTTGCCATGTACCGCCCG}$ $\mathsf{\underline{TAG}}$ $\mathsf{TGCCTCCGCGGGCGCTTGGCAGCGTCGCCGGCCCTCC}$ GGACCTTGCTCCCGCGCGCGGGGGGGGGCTGCTGCCCAGGCCCGCCTCTCCGGCCTG CCTCTTCCCGCTGCCCTGGAGCCCAGCCCTGCGCGCAGAGGACTCCCGGGACTGGCGGAGG CCCCGCCTGCGACCGCGGGGCTCGGGGCCACCTCCCGGGGCTGCTGAACCTCAGCCCGCA GGCCGCCCGGGGGCCCGTCTTAGTGTTCTGCCGGAGGACCCAGCCGCCTCCAATCCCTGAC AGCTCCTTGGGCTGAGTTGGGGACGCCAGGTCGGTGGAGGCTGGTGAAGGGGAGCGGGGAG AAAAAAA

FIGURE 198

MTLIEGVGDEVTVLFSVLACLLVLALAWVSTHTAEGGDPLPQPSGTPTPSQPSAAMAATDSM RGEAPGAETPSLRHRGQAAQPEPSTGFTATPPAPDSPQEPLVLRLKFLNDSEQVARAWPHDT IGSLKRTQFPGREQQVRLIYQGQLLGDDTQTLGSLHLPPNCVLHCHVSTRVGPPNPPCPPGS EPGPSGLEIGSLLLPLLLLLLLLWYCQIQYRPFFPLTATLGLAGFTLLLSLLAFAMYRP

Signal peptide:

amino acids 1-31

Transmembrane domain:

amino acids 195-217

FIGURE 199

FIGURE 200

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746

><subunit 1 of 1, 148 aa, 1 stop

><MW: 16896, pI: 6.05, NX(S/T): 1

MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKI NENADGSFDYGLFQINSHYWCNDYKSYSENLCHVDCQDLLNPNLLAGIHCAKRIVSGARGMN NWVEWRLHCSGRPLSYWLTGCRLR

Signal peptide:

amino acids 1-18

FIGURE 201

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGGCTGTCAGCCCTGCTTGACTGAGAACCCA CCAGCTCATCCCAGACACCTCATAGCAACCTATTTATACAAAGGGGGAAAGAACACCTGAG AATTTGAAGTCCCTGTGAATGGGCTTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGAC TTGGGGTGAAACTTGGGTCCTGTGGTTTTCTGATTGTAAGTGGAAGCAGGTCTTGCACACGC TGTTGGCAAATGTCAGGACCAGGTTAAGTGACTGGCAGAAAAACTTCCAGGTGGAACAAGCA ACCCATGTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTAACTTGAACATGAC CTGTTGCATTTGGCAAGTTCTAGCAAC**ATG**CTCCTAAGGAAGCGATACAGGCACAGACCATG CAGACTCCAGTTCCTCCTGCTCCTGATGCTGGGATGCGTCCTGATGATGGTGGCGATGT GAAGCCAGGTACCGCCTGGACTTTGGGGAATCCCAGGATTGGGTACTGGAAGCTGAGGATGA GGGTGAAGAGTACAGCCCTCTGGAGGGCCTGCCACCCTTTATCTCACTGCGGGAGGATCAGC TGCTGGTGGCCGTGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGCAGGAGAGGTGGG AGCTACCGCCTCATCAAGCAGCCAAGGAGGGGGATAAGGAAGCCCCAAAGAGGGGACTGGGG GGCTGATGAGGACGGGGGGGTGTCTGAAGAAGAGGGGTTTGACCCCGTTCAGCCTGGACCCAC GTGGCCTCCAGGAGGCACTCAGTGCCCGCATCCCCCTCCAGAGGGCTCTGCCCGAGGTGCGG TTTCCATGATGAGGCCTGGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGC TCTGCTCTCAGCGAATATGTGGCCAGGCTGGAGGGGGGTGAAGTTACTCAGGAGCAACAAGAG GCTGGGTGCCATCAGGGCCCGGATGCTGGGGGGCCACCAGAGCCACCGGGGATGTGCTCGTCT TCATGGATGCCCACTGCGAGTGCCACCCAGGCTGGCTGGAGCCCCTCCTCAGCAGAATAGCT GGTGACAGGAGCCGAGTGGTATCTCCGGTGATAGATGTGATTGACTGGAAGACTTTCCAGTA TTACCCCTCAAAGGACCTGCAGCGTGGGGTGTTGGACTGGAAGCTGGATTTCCACTGGGAAC CTTTGCCAGAGCATGTGAGGAAGGCCCTCCAGTCCCCCATAAGCCCCATCAGGAGCCCTGTG GTGCCCGGAGAGGTGGTGGCCATGGACAGACATTACTTCCAAAACACTGGAGCGTATGACTC TCTTATGTCGCTGCGAGGTGGTGAAAACCTCGAACTGTCTTTCAAGGCCTGGCTCTGTGGTG GCTCTGTTGAAATCCTTCCCTGCTCTCGGGTAGGACACATCTACCAAAATCAGGATTCCCAT GTCATTCAAAGAAACCTTCTACAAGCATAGCCCAGAGGCCTTCTCCTTGAGCAAGGCTGAGA AGCCAGACTGCATGGAACGCTTGCAGCTGCAAAGGAGACTGGGTTGTCGGACATTCCACTGG TTTCTGGCTAATGTCTACCCTGAGCTGTACCCATCTGAACCCAGGCCCAGTTTCTCTGGAAA GCTCCACAACACTGGACTTGGGCTCTGTGCAGACTGCCAGGCAGAAGGGGACATCCTGGGCT GTCCCATGGTGTTGGCTCCTTGCAGTGACAGCCGGCAGCAACAGTACCTGCAGCACCAGC GATTCTTCAGAACTGCACGGAGGAAGGCCTGGCCATCCACCAGCAGCACTGGGACTTCCAGG AGAATGGGATGATTGTCCACATTCTTTCTGGGAAATGCATGGAAGCTGTGGTGCAAGAAAAC AATAAAGATTTGTACCTGCGTCCGTGTGATGGAAAAGCCCGCCAGCAGTGGCGATTTGACCA GATAAATGCTGTGGATGAACGA**TGA**ATGTCAATGTCAGAAGGAAAAGAGAATTTTGGCCATC AAAATCCAGCTCCAAGTGAACGTAAAGAGCTTATATATTTCATGAAGCTGATCCTTTTGTGT GTGTGCTCCTTGTGTTAGGAGAGAAAAAAGCTCTATGAAAGAATATAGGAAGTTTCTCCTTT TCACACCTTATTTCATTGACTGCTGGCTGCTTA

FIGURE 202

></usr/seqdb2/sst/DNA/Dnasegs.min/ss.DNA73760

><subunit 1 of 1, 639 aa, 1 stop

><MW: 73063, pI: 6.84, NX(S/T): 2

MLLRKRYRHRPCRLQFLLLLMLGCVLMMVAMLHPPHHTLHQTVTAQASKHSPEARYRLDFG
ESQDWVLEAEDEGEEYSPLEGLPPFISLREDQLLVAVALPQARRNQSQGRRGGSYRLIKQPR
RQDKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHP
QDSLPTASVILCFHDEAWSTLLRTVHSILDTVPRAFLKEIILVDDLSQQGQLKSALSEYVAR
LEGVKLLRSNKRLGAIRARMLGATRATGDVLVFMDAHCECHPGWLEPLLSRIAGDRSRVVSP
VIDVIDWKTFQYYPSKDLQRGVLDWKLDFHWEPLPEHVRKALQSPISPIRSPVVPGEVVAMD
RHYFQNTGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATL
RNRVRIAETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRLGCRTFHWFLANVYPEL
YPSEPRPSFSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSP
QHLCFAVRQEQVILQNCTEEGLAIHQQHWDFQENGMIVHILSGKCMEAVVQENNKDLYLRPC
DGKARQQWRFDQINAVDER

Signal peptide:

amino acids 1-28

FIGURE 203

CGCCAAGCATGCAGTAAAGGCTGAAAATCTGGGTCACAGCTGAGGAAGACCTCAGAC<u>ATG</u>GA TGCCCCTCCCACCGCCTCAGGGCTCTTCATCCTCCCCTCGAACCCCACCAGCCCCAGCC CACCCCAGCCACCCCATCAGGCTTTGAGGAGGGGCCGCCCTCATCCCAATACCCCTGGGCT ATCGTGTGGGGTCCCACCGTGTCTCGAGAGGGTGGAGGGGACCCCAACTCTGCCAATCCCGG ATTTCTGGACTATGGTTTTGCAGCCCCTCATGGGCTCGCAACCCCACACCCCAACTCAGACT CCATGCGAGGTGATGGAGATGGGCTTATCCTTGGAGAGGCACCTGCCACCCTGCGGCCATTC CTGTTCGGGGGCCGTGGGGAAGGTGTGGACCCCCAGCTCTATGTCACAATTACCATCTCCAT CATCATTGTTCTCGTGGCCACTGGCATCATCTTCAAGTTCTGCTGGGACCGCAGCCAGAAGC GACGCAGACCCTCAGGGCAGCAAGGTGCCCTGAGGCAGGAGGAGGAGCCAGCAGCACTGACA GACCTGTCCCCGGCTGGAGTCACTGTGCTGGGGGCCTTCGGGGGACTCACCTACCCCCACCC TGACCATGAGGAGCCCCGAGGGGGACCCCGGCCTGGGATGCCCCACCCCAAGGGGGCTCCAG CCTTCCAGTTGAACCGG**TGA**GGGCAGGGGCAATGGGATGGGAGGCAAGAGGGAAGGCAAC CTCCCACAGCCCCTGGCCCTCCCAAGGGGGCTGGACCAGCTCCTCTCTGGGAGGCACCCTTC CTTCTCCCAGTCTCTCAGGATCTGTGTCCTATTCTCTGCTGCCCATAACTCCAACTCTGCCC TCTTTGGTTTTTCTCATGCCACCTTGTCTAAGACAACTCTGCCCTCTTAACCTTGATTCCC CCTCTTTGTCTTGAACTTCCCCTTCTATTCTGGCCTACCCCTTGGTTCCTGACTGTGCCCTT TCCCTCTCCTCTCAGGATTCCCCTGGTGAATCTGTGATGCCCCCAATGTTGGGGTGCAGCC AAGCAGGAGGCCAAGGGCCGCACAGCCCCCATCCCACTGAGGGTGGGGCAGCTGTGGGGA GCTGGGGCCACAGGGGCTCCTGGCTCCTGCCCCTTGCACACCCCGGAACACTCCCCAGCC CCACGGGCAATCCTATCTGCTCGCCCTCCTGCAGGTGGGGGCCTCACATATCTGTGACTTCG GGTCCCTGTCCCCACCTTGTGCACTCACATGAAAGCCTTGCACACTCACCTCCACCTTCAC AGGCCATTTGCACACGCTCCTGCACCCTCTCCCCGTCCATACCGCTCCGCTCAGCTGACTCT TGGTCAGCGTTTCCTGCACACTTTACCTCTCATGTGCGTTTCCCGGCCTGATGTTGTGGTGG GTGCTGCTCCAGAGGTGGGTGGGAGGTGAGCTGGGGGCTCCTTGGGCCCTCATCGGTCATGG TCTCGTCCCATTCCACACCATTTGTTTCTCTGTCTCCCCATCCTACTCCAAGGATGCCGGCA TCACCCTGAGGGCTCCCCCTTGGGAATGGGGTAGTGAGGCCCCAGACTTCACCCCCAGCCCA CTGCTAAAATCTGTTTTCTGACAGATGGGTTTTTGGGGAGTCGCCTGCTGCACTACATGAGAA TCTGTGTGTGTGCCATTCTCTGGACTTCAGAGCCCCCTGAGCCAGTCCTCCCAGCCT CCCTTTGGGCCTCCCTAACTCCACCTAGGCTGCCAGGGACCGGAGTCAGCTGGTTCAAGGCC GTGATATATTTTTGTATTATCTCTTTCTTCTTCTTGTGGTGATCATCTTGAATTACTGTG - GGATGTAAGTTTCAAAATTTTCAAATAAAGCCTTTGCAAGATAA

FIGURE 204

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393</pre>

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

FIGURE 205

FIGURE 206

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398

><subunit 1 of 1, 121 aa, 1 stop

><MW: 12073, pI: 4.11, NX(S/T): 0

MASCLALRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTG PPAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 116-119

N-myristoylation site.

amino acids 91-96

FIGURE 207

CGGCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACCATGTGA ACTTCAAGTCCTGGTGGGTGGGCGACATCCCCGTGTCAGGGGGCGCTGCTCACCGACTGGAGC GACGACACGATGAAGGAGCTGCACCTGGCCATCCCCGCCAAGATCACCCGGGAGAAGCTGGA CCAAGTGGCGACAGCAGTGTACCAGATGATGATCAGCTGTACCAGGGGAAGATGTACTTCC CCGGGTATTTCCCCAACGAGCTGCGAAACATCTTCCGGGAGCAGGTGCACCTCATCCAGAAC ACCCAGCCTAGCACCTGAAGGATCAATGCCATCACCCCGCGGGGACCTCCCC**TAA**GTAGCCC CCAGAGGCGCTGGGAGTGTTGCCACCGCCCTCCCCTGAAGTTTGCTCCATCTCACGCTGGGG CGACTGTCAGCACCGCTGTGGCATCTTCCAGTACGAGACCATCTCCTGCAACAACTGCACAG GCCAGGGCCCTACTGTCCCTGGGGTCCCAGGCTCTCCTTGGAGGGGGGCTCCCCGCCTTCCAC CTGGCTGTCATCGGGTAGGGCGGGGCCGTGGGTTCAGGGGCGCACCACTTCCAAGCCTGTGT GGTGAGTATGTGTGGGGCACAGGCTGGCTCCCTCAGCTCCCACGTCCTAGAGGGGCTCCCGA GGAGGTGGAACCTCAACCCAGCTCTGCGCAGGAGGCGGCTGCAGTCCTTTTCTCCCTCAAAG GTCTCCGACCCTCAGCTGGAGGCGGCATCTTTCCTAAAGGGTCCCCATAGGGTCTGGTTCC ACCCCATCCCAGGTCTGTGGTCAGAGCCTGGGAGGGTTCCCTACGATGGTTAGGGGTGCCCC ATGGAGGGGCTGACTGCCCCACATTGCCTTTCAGACAGGACACGAGCATGAGGTAAGGCCGC AGATCAGTGGGGGCACTGCAGGTGGGGCTCTCCCTATACCTGGGACACCTGCTGGATGTCAC CTCTGCAACCACCCATGTGGTGGTTTCATGAACAGACCACGCTCCTCTGCCTTCTCCTGG CCTGGGACACACAGAGCCACCCCGGCCTTGTGAGTGACCCAGAGAAGGGAGGCCTCGGGAGA AGGGGTGCTCGTAAGCCAACACCAGCGTGCCGGCCTGCACACCCTTCGGACATCCCAGGC ACGAGGGTGTCGTGGATGTGGCCACACATAGGACCACACGTCCCAGCTGGGAGGAGGCCT GGGGCCCCCAGGGAGGGAGGCAGGGGGGGGGGCATGGAGGCTGAGGCAGCCTCGTCTCC CCGCAGCCTGGTATCGCCAGCCTTAAGGTGTCTGGAGCCCCCACACTTGGCCAACCTGACCT TGGAAGATGCTGAGTGTCTCAAGCAGCACTGACAGCAGCTGGGCCTGCCCCAGGGCAAC GTGGGGGGGAGACTCAGCTGGACAGCCCCTGCCTGTCACTCTGGAGCTGGGCTGCTGCTGC CTCAGGACCCCTCTCCGACCCGGACAGAGCTGAGCTGGCCAGGGCCAGGAGGCGGGAGG GAGGGAATGGGGGTGGGCTGTGCGCAGCATCAGCGCCTGGGCAGGTCCGCAGAGCTGCGGGA TGTGATTAAAGTCCCTGATGTTTCTC

FIGURE 208

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399

><subunit 1 of 1, 157 aa, 1 stop

><MW: 17681, pI: 7.65, NX(S/T): 1

MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDIPVSGALLTDWSDDTMK ELHLAIPAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNIFREQVHLIQNAIIER HLAPGSWGGGQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:

amino acids 1-15

FIGURE 209

AGCAGGAGCAGGAGAGGACAATGGAAGCTGCCCCGTCCAGGTTCATGTTCCTCTTATTTCT CCTCACGTGTGAGCTGCCAGAAGTTGCTGCAGAAGTTGAGAAATCCTCAGATGGTCCTG GTGCTGCCCAGGAACCCACGTGGCTCACAGATGTCCCAGCTGCCATGGAATTCATTGCTGCC ACTGAGGTGGCTGTCATAGGCTTCTTCCAGGATTTAGAAATACCAGCAGTGCCCATACTCCA TAGCATGGTGCAAAAATTCCCAGGCGTGTCATTTGGGATCAGCACTGATTCTGAGGTTCTGA CACACTACAACATCACTGGGAACACCATCTGCCTCTTTCGCCTGGTAGACAATGAACAACTG AATTTAGAGGACGAAGACATTGAAAGCATTGATGCCACCAAATTGAGCCGTTTCATTGAGAT CAACAGCCTCCACATGGTGACAGAGTACAACCCTGTGACTGTGATTGGGTTATTCAACAGCG TAATTCAGATTCATCTCCTCCTGATAATGAACAAGGCCTCCCCAGAGTATGAAGAGAACATG CACAGATACCAGAAGGCAGCCAAGCTCTTCCAGGGGAAGATTCTCTTTATTCTGGTGGACAG TGGTATGAAAGAAATGGGAAGGTGATATCATTTTTCAAACTAAAGGAGTCTCAACTGCCAG CTTTGGCAATTTACCAGACTCTAGATGACGAGTGGGATACACTGCCCACAGCAGAAGTTTCC ${\tt TGAATCAGAAGGAAGACTCCAAAGGTGGAACTC} {\tt TGA} {\tt CTTCTCCTTGGAACTACATATGGCC}$ AAGTATCTACTTTATGCAAAGTAAAAAGGCACAACTCAAATCTCAGAGACACTAAACAACAG ACACACGCGCACACACACACACAGAGCTTCATTTCCTGTCTTAAAATCTCGTTTTCTC CATACTCTGTAAGCCCATCTGTAACACACCTAGATCAAGGCTTTAAGAGACTCACTGTGATG CCTCTATGAAAGAGGCATTCCTAGAGAAAGATTGTTCCAATTTGTCATTTAATATCAAGT TTGTATACTGCACATGACTTACACACACATAGTTCCTGCTCTTTTAAGGTTACCTAAGGGT TGAAACTCTACCTTCTTTCATAAGCACATGTCCGTCTCTGACTCAGGATCAAAAACCAAAGG ATGGTTTTAAACACCTTTGTGAAATTGTCTTTTTGCCAGAAGTTAAAGGCTGTCTCCAAGTC CCTGAACTCAGCAGAAATAGACCATGTGAAAACTCCATGCTTGGTTAGCATCTCCAACTCCC TATGTAAATCAACAACCTGCATAATAAATAAAAGGCAATCATGTTATA

FIGURE 210

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76401

><subunit 1 of 1, 273 aa, 1 stop

><MW: 30480, pI: 4.60, NX(S/T): 1

MEAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAQEPTWLTDVPAAMEFIAATEVAVIG FFQDLEIPAVPILHSMVQKFPGVSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDI ESIDATKLSRFIEINSLHMVTEYNPVTVIGLFNSVIQIHLLLIMNKASPEYEENMHRYQKAA KLFQGKILFILVDSGMKENGKVISFFKLKESQLPALAIYQTLDDEWDTLPTAEVSVEHVQNF CDGFLSGKLLKENRESEGKTPKVEL

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 143-162

FIGURE 211

GCGGAGAGATCAGAAGCCTCTTCCCCAAGCCGAGCCAACCTCAGCGGGGACCCGGGCTCAGG GACGCGGCGGCGGCGGCGACTGCAGTGGCTGGACGATGCCAGCGTCCGCCGGAGCCGGG GCGGTGATTGCAGCCCCAGACAGCCGGCGCTGGCTGGTGGTGGTGGTGGCGGCGCGCTTGG GCTCTTGACAGCTGGAGTATCAGCCTTGGAAGTATATACGCCAAAAGAAATCTTCGTGGCAA ATGGTACACAAGGGAAGCTGACCTGCAAGTTCAAGTCTACTAGTACGACTGGCGGGTTGACC TCAGTCTCCTGGAGCTTCCAGCCAGAGGGGGCCGACACTACTGTGTCGTTTTTCCACTACTC CCAAGGGCAAGTGTACCTTGGGAATTATCCACCATTTAAAGACAGAATCAGCTGGGCTGGAG ACCTTGACAAGAAGATGCATCAATCAACATAGAAAATATGCAGTTTATACACAATGGCACC TATATCTGTGATGTCAAAAACCCTCCTGACATCGTTGTCCAGCCTGGACACATTAGGCTCTA TGTCGTAGAAAAAGAGAATTTGCCTGTGTTTCCAGTTTGGGTAGTGGTGGGCATAGTTACTG CTGTGGTCCTAGGTCTCACTCTGCTCATCAGCATGATTCTGGCTGTCCTCTATAGAAGGAAA AACTCTAAACGGGATTACACTGGCTGCAGTACATCAGAGAGTTTGTCACCAGTTAAGCAGGC TCCTCGGAAGTCCCCCTCCGACACTGAGGGTCTTGTAAAGAGTCTGCCTTCTGGATCTCACC AGGGCCCAGTCATATATGCACAGTTAGACCACTCCGGCGGACATCACAGTGACAAGATTAAC AAGTCAGAGTCTGTGGTGTATGCGGATATCCGAAAGAAT**TAA**GAGAATACCTAGAACATATC CTCAGCAAGAAACCAAACTGGACTCTCGTGCAGAAAATGTAGCCCATTACCACATGT AGCCTTGGAGACCCAGGCAAGGACAAGTACACGTGTACTCACAGAGGGAGAGAAAGATGTGT ACAAAGGATATGTATAAATATTCTATTTAGTCATCCTGATATGAGGAGCCAGTGTTGCATGA TGAAAAGATGGTATGATTCTACATATGTACCCATTGTCTTGCTGTTTTTTGTACTTTTTTC AGGTCATTTACAATTGGGAGATTTCAGAAACATTCCTTTCACCATCATTTAGAAATGGTTTG CCTTAATGGAGACAATAGCAGATCCTGTAGTATTTCCAGTAGACATGGCCTTTTAATCTAAG GGCTTAAGACTGATTAGTCTTAGCATTTACTGTAGTTGGAGGATGGAGATGCTATGATGGAA AAATGTGTCATATCAATTTCTGGATTCATAATAGCAAGATTAGCAAAGGATAAATGCCGAAG GTCACTTCATTCTGGACACAGTTGGATCAATACTGATTAAGTAGAAAATCCAAGCTTTGCTT GAGAACTTTTGTAACGTGGAGAGTAAAAAGTATCGGTTTTA

FIGURE 212

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76510

><subunit 1 of 1, 269 aa, 1 stop

><MW: 29082, pI: 9.02, NX(S/T): 3

MAASAGAGAVIAAPDSRRWLWSVLAAALGLLTAGVSALEVYTPKEIFVANGTQGKLTCKFKS
TSTTGGLTSVSWSFQPEGADTTVSFFHYSQGQVYLGNYPPFKDRISWAGDLDKKDASINIEN
MQFIHNGTYICDVKNPPDIVVQPGHIRLYVVEKENLPVFPVWVVVGIVTAVVLGLTLLISMI
LAVLYRRKNSKRDYTGCSTSESLSPVKQAPRKSPSDTEGLVKSLPSGSHQGPVIYAQLDHSG
GHHSDKINKSESVVYADIRKN

Signal peptide:

amino acids 1-37

Transmembrane domain:

amino acids 161-183

FIGURE 213

CCCGGGGGCTTGGCCTCAAGCTGCGGACGACGCGGGGTCCATCAGCGCGCCGGGCTGCCGCC TCTCGGCCACGGCTGGGGGCCTCGGGGCTGGGGCTGGGGCTGAAGC TGGCAGGTGGGCTGAGGGGCGCGGCCCCGGCGCCCCGACCCTGAGGCG TCGCCTCTGGCCGAGCCGCCACAGGAGCAGTCCCTCGCCCGTGGTCTCCGCAGACCCCGGC GCCGCCCTGCTCCAGGTGCTTCGCCAGAGCCATCGAGAGCCGCGCGACCTGCTGCACAGGA TCAAGGATGAGGTGGCCCCCGGGCATAGTGGTTGGAGTTTCTGTAGATGGAAAAGAAGTC TGGTCAGAAGGTTTAGGTTATGCTGATGTTGAGAACCGTGTACCATGTAAACCAGAGACAGT TATGCGAATTGCTAGCATCAGCAAAAGTCTCACCATGGTTGCTCTTGCCAAATTGTGGGAAG CAGGGAAACTGGATCTTGATATTCCAGTACAACATTATGTTCCCGAATTCCCAGAAAAAGAA TATGAAGGTGAAAAGGTTTCTGTCACAACAAGATTACTGATTTCCCATTTAAGTGGAATTCG TCATTATGAAAAGGACATAAAAAAGGTGAAAGAAGAAAGCTTATAAAGCCTTGAAGATGA ${\tt TGAAAGAAATGTTGCATTTGAGCAAGAAAAAGAAAGAAGGCAAAAGTAATGAAAAGAATGATTTT}$ ACTAAATTTAAAACAGAGCAGGAGAATGAAGCCAAATGCCGGAATTCAAAACCTGGCAAGAA AAAGAATGATTTTGAACAAGGCGAATTATATTTGAGAGAAAAGTTTGAAAATTCAATTGAAT CCCTAAGATTATTTAAAAATGATCCTTTGTTCTTCAAACCTGGTAGTCAGTTTTTGTATTCA CTATATGCAGAAAATATTCCATGACTTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGC ${\tt CAGTGATTACAATAGAGCAAGG} \underline{{\tt TAA}} {\tt ATGAATACCTTCTGCTGTGTCTAGCTATATCGCATC}$ TTAACACTATTTTATTAATTAAAAGTCAAATTTTCTTTGTTTCCATTCCAAAATCAACCTGC TGTTTATAAAGTAAAAAA

FIGURE 214

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522

><subunit 1 of 1, 373 aa, 1 stop

><MW: 41221, pI: 8.54, NX(S/T): 0

MYRLLSAVTARAAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLGLALGVKLAGGLRG
AAPAQSPAAPDPEASPLAEPPQEQSLAPWSPQTPAPPCSRCFARAIESSRDLLHRIKDEVGA
PGIVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLTMVALAKLWEAGKLDLD
IPVQHYVPEFPEKEYEGEKVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAF
EQEKEGKSNEKNDFTKFKTEQENEAKCRNSKPGKKKNDFEQGELYLREKFENSIESLRLFKN
DPLFFKPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTVQEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

FIGURE 215

AGGCTGGTGGGAAGAAGCCGAG<mark>ATG</mark>GCGGCAGCCAGCGCTGGGGCAACCCGGCTGCTCCTGC TCTTGCTGATGGCGGTAGCAGCCCCAGTCGAGCCCGGGGCAGCGGCTGCCGGGCCGGGACT GGTGCGCGAGGGCTGGGGCGGAAGGTCGAGAGGGCCTGTGGCACGGTGGGGCTGCT GCTGGAGCACTCATTTGAGATCGATGACAGTGCCAACTTCCGGAAGCGGGGCTCACTGCTCT GGAACCAGCAGGATGGTACCTTGTCCCTGTCACAGCGGCGCTCAGCGAGGAGGAGCGGGGC CGACTCCGGGATGTGGCAGCCCTGAATGGCCTGTACCGGGTCCGGATCCCAAGGCGACCCGG GGCCCTGGATGGCCTGGAAGCTGGTGGCTATGTCTCCTCCTTTGTCCCTGCGTGCTCCCTGG TGGAGTCGCACCTGTCGGACCAGCTGACCCTGCACGTGGATGTGGCCGGCAACGTGGTGGGC GTGTCGGTGGTGACCCCCGGGGGCTGCCGGGGCCATGAGGTGGAGGACGTGGACCTGGA GCTGTTCAACACCTCGGTGCAGCTGCAGCCGCCCACCACCAGGCCCTGAGACGGCGG CCTTCATTGAGCGCCTGGAGATGGAACAGGCCCAGAAGGCCAAGAACCCCCAGGAGCAGAAG TCCTTCTTCGCCAAATACTGGATGTACATCATTCCCGTCGTCCTGTTCCTCATGATGTCAGG AGCGCCAGACACCGGGGGCCAGGGTGGGGGGTGGGGGGTGGTGGGGGGTAGTGGCC TTTGCTGTGTGCCACCCTCCCTG**TAA**GTCTATTTAAAAACATCGACGATACATTGAAATGTG TGAACGTTTTGAAAAGCTACAGCTTCCAGCAGCCAAAAGCAACTGTTGTTTTGGCAAGACGG TCCTGATGTACAAGCTTGATTGAAATTCACTGCTCACTTGATACGTTATTCAGAAACCCAAG TAAACTGTCCCCCAGATCGACACGCAAAAAAAA

FIGURE 216

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76529</pre>

><subunit 1 of 1, 269 aa, 1 stop

><MW: 28004, pI: 5.80, NX(S/T): 1

MAAASAGATRLLLLLLMAVAAPSRARGSGCRAGTGARGAGAEGREGEACGTVGLLLEHSFEI DDSANFRKRGSLLWNQQDGTLSLSQRQLSEEERGRLRDVAALNGLYRVRIPRRPGALDGLEA GGYVSSFVPACSLVESHLSDQLTLHVDVAGNVVGVSVVTHPGGCRGHEVEDVDLELFNTSVQ LQPPTTAPGPETAAFIERLEMEQAQKAKNPQEQKSFFAKYWMYIIPVVLFLMMSGAPDTGGQ GGGGGGGGGGGGGGCCCVPPSL

Signal peptide:

amino acids 1-24

Transmembrane domain:

amino acids 226-243

FIGURE 217

GGAGCGCTGCTGGAACCCGAGCCGGAGCCACAGCGGGGAGGGTGGCCTGGCGGCCT GGAGCCGGACGTGTCCGGGGGCGTCCCCGCAGACCGGGGCCAGCAGGTCGTCCGGGGGCCCACC AACTGGACTTCTATCAGGTCTACTTCCTGGCCCTGGCAGCTGATTGGCTTCAGGCCCCCTAC CTCTATAAACTCTACCAGCATTACTACTTCCTGGAAGGTCAAATTGCCATCCTCTATGTCTG TGGCCTTGCCTCTACAGTCCTCTTTGGCCTAGTGGCCTCCTCCCTTGTGGATTGGCTGGGTC GCAAGAATTCTTGTGTCCTCTTCTCCCTGACTTACTCACTATGCTGCTTAACCAAACTCTCT CAAGACTACTTTGTGCTGCTAGTGGGGCGAGCACTTGGTGGGCTGTCCACAGCCCTGCTCTT CTCAGCCTTCGAGGCCTGGTATATCCATGAGCACGTGGAACGGCATGACTTCCCTGCTGAGT GTGGCAGCTGAGGCTGTAGCCAGCTGGATAGGGCTGGGGCCTGTAGCGCCCTTTGTGGCTGC CATCCCTCTCCTGGCTCTGGCAGGGGCCTTGGCCCTTCGAAACTGGGGGGAGAACTATGACC GGCAGCGTGCCTTCTCAAGGACCTGTGCTGGAGGCCTGCGCTGCCTCCTGTCGGACCGCCGC GTGCTGCTGCGCACCATACAAGCTCTATTTGAGAGTGTCATCTTCATCTTTGTCTTCCT CTGGACACCTGTGCTGGACCCACACGGGGCCCCTCTGGGCATTATCTTCTCCAGCTTCATGG CAGCCAGCCTGCTTGGCTCTTCCCTGTACCGTATCGCCACCTCCAAGAGGTACCACCTTCAG CTCTACCAGCCCAGGCCAGGAGAGTCCGGTGGAGTCCTTCATAGCCTTTCTACTTATTGAGT TGGCTTGTGGATTATACTTTCCCAGCATGAGCTTCCTACGGAGAAAGGTGATCCCTGAGACA CCTTGTCCTCCATGACAGTGATCGAAAAACAGGCACTCGGAATATGTTCAGCATTTGCTCTG CTGTCATGGTGATGGCTCTGCTGGCAGTGGTGGGACTCTTCACCGTGGTAAGGCATGATGCT GAGCTGCGGGTACCTTCACCTACTGAGGAGCCCTATGCCCCTGAGCTGTAACCCCACTCCAG GACAAGATAGCTGGGACAGACTCTTGAATTCCAGCTATCCGGGATTGTACAGATCTCTCTGT GACTGACTTTGTGACTGTCCTGTGGTTTCTCCTGCCATTGCTTTTGTGTTTTGGGAGGACATGA TGGGGGTGATGGACTGGAAAGAAGGTGCCAAAAGTTCCCTCTGTGTTACTCCCATTTAGAAA ATAAACACTTTTAAATGATCAAAAAAAAAAAA

FIGURE 218

MLVTAYLAFVGLLASCLGLELSRCRAKPPGRACSNPSFLRFQLDFYQVYFLALAADWLQAPY
LYKLYQHYYFLEGQIAILYVCGLASTVLFGLVASSLVDWLGRKNSCVLFSLTYSLCCLTKLS
QDYFVLLVGRALGGLSTALLFSAFEAWYIHEHVERHDFPAEWIPATFARAAFWNHVLAVVAG
VAAEAVASWIGLGPVAPFVAAIPLLALAGALALRNWGENYDRQRAFSRTCAGGLRCLLSDRR
VLLLGTIQALFESVIFIFVFLWTPVLDPHGAPLGIIFSSFMAASLLGSSLYRIATSKRYHLQ
PMHLLSLAVLIVVFSLFMLTFSTSPGQESPVESFIAFLLIELACGLYFPSMSFLRRKVIPET
EQAGVLNWFRVPLHSLACLGLLVLHDSDRKTGTRNMFSICSAVMVMALLAVVGLFTVVRHDA
ELRVPSPTEEPYAPEL

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 41-55, 75-94, 127-143, 191-213, 249-270, 278-299, 314-330, 343-359, 379-394, 410-430

FIGURE 219

GCGACGCGGCGGGGCGCGAGAGGAAACGCGGCCCGGGCCGGGCCCTGGAGATG GTCCCGGCGCGCGGGCTGGTGTTGTCTCGTGCTCTGGCTCCCGCGTGCGTCGCGGCCCA CGGCTTCCGTATCCATGATTATTTGTACTTTCAAGTGCTGAGTCCTGGGGACATTCGATACA TCTTCACAGCCACACCTGCCAAGGACTTTGGTGGTATCTTTCACACAAGGTATGAGCAGATT CACCTTGTCCCCGCTGAACCTCCAGAGGCCTGCGGGGAACTCAGCAACGGTTTCTTCATCCA AGGAGCACGGCGGGCGGTGATCATCTCTGACAACGCAGTTGACAATGACAGCTTCTAC GTGGAGATGATCCAGGACAGTACCCAGCGCACAGCTGACATCCCCGCCCTCTTCCTGCTCGG CCGAGACGGCTACATGATCCGCCGCTCTCTGGAACAGCATGGGCTGCCATGGGCCATCATTT CCATCCCAGTCAATGTCACCAGCATCCCCACCTTTGAGCTGCTGCAACCGCCCTGGACCTTC TGGTAGAAGAGTTTGTCCCACATTCCAGCCATAAGTGACTCTGAGCTGGGAAGGGGAAACCC AGGAATTTTGCTACTTGGAATTTGGAGATAGCATCTGGGGACAAGTGGAGCCAGGTAGAGGA AAAGGGTTTGGGCGTTGCTAGGCTGAAAGGGAAGCCACCACTGGCCTTCCCCTTCCCCAGG GCCCCAAGGGTGTCTCATGCTACAAGAAGAGGCCAAGAGACAGGCCCCAGGGCTTCTGGCTA GAACCCGAAACAAAAGGAGCTGAAGGCAGGTGGCCTGAGAGCCATCTGTGACCTGTCACACT CACCTGGCTCCAGCCTCCCCTACCCAGGGTCTCTGCACAGTGACCTTCACAGCAGTTGTTGG AGTGGTTTAAAGAGCTGGTGTTTGGGGACTCAATAAACCCTCACTGACTTTTTAGCAATAAA

FIGURE 220

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76532</pre>

><subunit 1 of 1, 188 aa, 1 stop

><MW: 21042, pI: 5.36, NX(S/T): 2

MVPGAAGWCCLVLWLPACVAAHGFRIHDYLYFQVLSPGDIRYIFTATPAKDFGGIFHTRYEQ IHLVPAEPPEACGELSNGFFIQDQIALVERGGCSFLSKTRVVQEHGGRAVIISDNAVDNDSF YVEMIQDSTQRTADIPALFLLGRDGYMIRRSLEQHGLPWAIISIPVNVTSIPTFELLQPPWTFW

Signal peptide:

amino acids 1-20

FIGURE 221

FIGURE 222

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76538

><subunit 1 of 1, 116 aa, 1 stop

><MW: 12910, pI: 6.41, NX(S/T): 1

MELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPILSYWPYGCHCGLGGRGQPKDATDW CCQTHDCCYDHLKTQGCGIYKDNNKSSIHCMDLSQRYCLMAVFNVIYLENEDSE

Important features of the protein:

Signal peptide:

amino acids 1-17

Transmembrane domain:

amino acids 1-24

N-glycosylation site.

amino acids 86-89

N-myristoylation sites.

amino acids 20-25, 45-50

Phospholipase A2 histidine active site.

amino acids 63-70

FIGURE 223

CTCGCTTCTTCCTGGATGGGGGCCCAGGGGGCCCAGGAGAGTATAAAGGCGATGTGGAG
GGTGCCCGGCACAACCAGACGCCCAGTCACAGGCGAGAGCCCTGGGATGCACCAGGCCAGAGG
CCATGCTGCTGCTCACGCTTGCCCTCCTGGGGGGGCCCCACCTGGGCAGGGAAGATGTAT
GGCCCTGGAGGAGGCAAGTATTTCAGCACCACTGAAGACTACGACCATGAAATCACAGGGCT
GCGGGTGTCTGTAGGTCTTCTCCTGGTGAAAAGTGTCCAGGTGAAACTTGGAGACTCCTGGG
ACGTGAAACTGGGAGCCTTAGGTGGGAATACCCAGGAAGTCACCCTGCAGCCAGGCGAATAC
ATCACAAAAGTCTTTGTCGCCTTCCAAGCTTTCCTCCGGGGTATGGTCATGTACACCAGCAA
GGACCGCTATTTCTATTTTGGGAAGCTTGATGGCCAGATCTCCTCTGCCTACCCCAGCCAAG
AGGGGCAGGTGCTGGTGGGCATCTATGGCCAGTATCAACTCCTTGGCATCAAGAGCATTGGC
TTTGAATGGAATTATCCACTAGAGGAGCCGACCACTGAGCCACCAGTTAATCTCACATACTC
AGCAAACTCACCCGTGGGTCGCTAGGGTGGGGTATGGGGCCATCCGAGCTGAGCCACCAATA
AATAAAGCTTCTGCAGAAAA

FIGURE 224

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76541

><subunit 1 of 1, 178 aa, 1 stop

><MW: 19600, pI: 5.89, NX(S/T): 1

MHRPEAMLLLTLALLGGPTWAGKMYGPGGGKYFSTTEDYDHEITGLRVSVGLLLVKSVQVK LGDSWDVKLGALGGNTQEVTLQPGEYITKVFVAFQAFLRGMVMYTSKDRYFYFGKLDGQISS AYPSQEGQVLVGIYGQYQLLGIKSIGFEWNYPLEEPTTEPPVNLTYSANSPVGR

Signal peptide:

amino acids 1-22

FIGURE 225

GCTGAGCGTGTGCGCGGTACGGGGCTCTCCTGCCTTCTGGGCTCCAACGCAGCTCTGTGGCT GAACTGGGTGCTCATCACGGGAACTGCTGGGCTATGGAATACAGATGTGGCAGCTCAGGTAG CCCCAAATTGCCTGGAAGAATACATCATGTTTTTCGATAAGAAGAAATTGTAGGATCCAGTT TTTTTTTTAACCGCCCCCCCCCCCCCCAAAAAAACTGTAAAGATGCAAAAACGTAATAT CCATGAAGATCCTATTACCTAGGAAGATTTTGATGTTTTGCTGCGAATGCGGTGTTGGGATT TATTTGTTCTTGGAGTGTTCTGCGTGGCTGGCAAAGAATAATGTTCCAAAATCGGTCCATCT CCCAAGGGGTCCAATTTTTCTTCCTGGGTGTCAGCGAGCCCTGACTCACTACAGTGCAGCTG ACAGGGGCTGTCATGCAACTGGCCCCTAAGCCAAAGCAAAAGACCTAAGGACGACCTTTGAA CAATACAAAGG**ATG**GGTTTCAATGTAATTAGGCTACTGAGCGGATCAGCTGTAGCACTGGTT ATAGCCCCCACTGTCTTACTGACAATGCTTTCTTCTGCCGAACGAGGATGCCCTAAGGGCTG TAGGTGTGAAGGCAAAATGGTATATTGTGAATCTCAGAAATTACAGGAGATACCCTCAAGTA TATCTGCTGGTTGCTTAGGTTTGTCCCTTCGCTATAACAGCCTTCAAAAACTTAAGTATAAT CAATTTAAAGGGCTCAACCAGCTCACCTGGCTATACCTTGACCATAACCATATCAGCAATAT TGACGAAAATGCTTTTAATGGAATACGCAGACTCAAAGAGCTGATTCTTAGTTCCAATAGAA TCTCCTATTTTCTTAACAATACCTTCAGACCTGTGACAAATTTACGGAACTTGGATCTGTCC TATAATCAGCTGCATTCTCTGGGATCTGAACAGTTTCGGGGGCTTGCGGAAGCTGCTGAGTTT ACATTTACGGTCTAACTCCCTGAGAACCATCCCTGTGCGAATATTCCAAGACTGCCGCAACC TGGAACTTTTGGACCTGGGATATAACCGGATCCGAAGTTTAGCCAGGAATGTCTTTGCTGGC TTTTCCAAGGTTGGTCAGCCTTCAGAACCTTTACTTGCAGTGGAATAAAATCAGTGTCATAG GACAGACCATGTCCTGGACCTGGAGCTCCTTACAAAGGCTTGATTTATCAGGCAATGAGATC GAAGCTTTCAGTGGACCCAGTGTTTTCCAGTGTGTCCCGAATCTGCAGCGCCTCAACCTGGA TTCCAACAAGCTCACATTTATTGGTCAAGAGATTTTTGGATTCTTGGATATCCCTCAATGACA TCAGTCTTGCTGGGAATATATGGGAATGCAGCAGAAATATTTGCTCCCTTGTAAACTGGCTG AAAAGTTTTAAAGGTCTAAGGGAGAATACAATTATCTGTGCCAGTCCCAAAGAGCTGCAAGG AGTAAATGTGATCGATGCAGTGAAGAACTACAGCATCTGTGGCAAAAGTACTACAGAGAGGT TTGATCTGGCCAGGGCTCTCCCAAAGCCGACGTTTAAGCCCAAGCTCCCCAGGCCGAAGCAT GAGAGCAAACCCCCTTTGCCCCCGACGGTGGGAGCCACAGAGCCCGGCCCAGAGACCGATGC TGACGCCGAGCACATCTCTTTCCATAAAATCATCGCGGGCAGCGTGGCGCTTTTCCTGTCCG TGCTCGTCATCCTGCTGGTTATCTACGTGTCATGGAAGCGGTACCCTGCGAGCATGAAGCAG CTGCAGCAGCGCTCCCTCATGCGAAGGCACAGGAAAAAGAAAAGACAGTCCCTAAAGCAAAT GACTCCCAGCACCCAGGAATTTTATGTAGATTATAAACCCACCAACACGGAGACCAGCGAGA TGCTGCTGAATGGGACGGGACCCTGCACCTATAACAAATCGGGCTCCAGGGAGTGTGAGGTA **TGA**ACCATTGTGATAAAAAGAGCTCTTAAAAGCTGGGAAATAAGTGGTGCTTTATTGAACTC TGGTGACTATCAAGGGAACGCGATGCCCCCCCCCCCTCCCCTCTCCCTCTCACTTTGGTGG ATCAACCCATTGAAATTTAAATACCACAATCAATGTGAAGCTTGAACTCCGGTTTAATATAA TACCTATTGTATAAGACCCTTTACTGATTCCATTAATGTCGCATTTGTTTTAAGATAAAACT TCTTTCATAGGTAAAAAAAAAAA

FIGURE 226

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77301

><subunit 1 of 1, 513 aa, 1 stop .

><MW: 58266, pI: 9.84, NX(S/T): 4

MGFNVIRLLSGSAVALVIAPTVLLTMLSSAERGCPKGCRCEGKMVYCESQKLQEIPSSISAG
CLGLSLRYNSLQKLKYNQFKGLNQLTWLYLDHNHISNIDENAFNGIRRLKELILSSNRISYF
LNNTFRPVTNLRNLDLSYNQLHSLGSEQFRGLRKLLSLHLRSNSLRTIPVRIFQDCRNLELL
DLGYNRIRSLARNVFAGMIRLKELHLEHNQFSKLNLALFPRLVSLQNLYLQWNKISVIGQTM
SWTWSSLQRLDLSGNEIEAFSGPSVFQCVPNLQRLNLDSNKLTFIGQEILDSWISLNDISLA
GNIWECSRNICSLVNWLKSFKGLRENTIICASPKELQGVNVIDAVKNYSICGKSTTERFDLA
RALPKPTFKPKLPRPKHESKPPLPPTVGATEPGPETDADAEHISFHKIIAGSVALFLSVLVI
LLVIYVSWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTNTETSEMLLN
GTGPCTYNKSGSRECEV

Important features of the protein:

Signal peptide:

amino acids 1-33

Transmembrane domain:

amino acids 420-442

N-glycosylation sites.

amino acids 126-129, 357-360, 496-499, 504-507

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 465-468

Tyrosine kinase phosphorylation site.

amino acids 136-142

N-myristoylation sites.

amino acids 11-16, 33-38, 245-250, 332-337, 497-502, 507-512

FIGURE 227

AGTTCTGAGAAAGAAGGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCTT TAAATATGTCAAGATCCAGACTTTTCAGTGTCACCTCAGCGATCTCAACGATAGGGATCTTG TGTTTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCATGCGAAGAAGATGAAATGTGTGT AAATTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTTGG ATTGATTCTCACAGGCGCACCATGGCAGTTTTTGCTGTTGGAGACTTGGACTCTATTTATGG GACAGAAGCAGCTGTGAGTCCAACTGTTGGAATTCACCTTCAAACTCAAACCCCTGACCTAT ATCCTGTTCCTGCTCCATGTTTTGGCCCTTTAGGCTCCCCACCTCCATATGAAGAAATTGTA AAAACAACC**TGA**TTTTAGGTGTGGATTATCAATTTAAAGTATTAACGACATCTGTAATTCCA AAACATCAAATTTAGGAATAGTTATTTCAGTTGTTGGAAATGTCCAGAGATCTATTCATATA GTCTGAGGAAGGACAATTCGACAAAAGAATGGATGTTGGAAAAAATTTTTGGTCATGGAGATG TTTAAATAGTAAAGTAGCAGGCTTTTGATGTGTCACTGCTGTATCATACTTTTATGCTACAC AACCAAATTAATGCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTT TCCATCACATTTAGGACTCCACTGCAGTATACAGCACCATTTTCTGCTTTAAACTCTTTC CTAGCATGGGGTCCATAAAAATTATTATAATTTAACAATAGCCCAAGCCGAGAATCCAACAT GTCCAGAACCAGAACCAGAAAGATAGTATTTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAA GAAAAGTTTGGAGTTGAAGGGTAAAGGATAAATGAAGAGGAAAAGGAAAAGATTACAAGTCT AGGAGATTGCTGAAGATATAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTTCCC CTTTTACAGTAATGAATGTGGCCTCCATAGTCCATAGTGTTTCTCTGGAGCCTCAGGGCTTG GCATTTATTGCAGCATCATGCTAAGAACCTTCGGCATAGGTATCTGTTCCCATGAGGACTGC AGAAGTAGCAATGAGACATCTTCAAGTGGCATTTTTGGCAGTGGCCATCAGCAGGGGGACAGA CAAAAACATCCATCACAGATGACATATGATCTTCAGCTGACAAATTTGTTGAACAAAACAAT AAACATCAATAGATATCTAAAAA

FIGURE 228

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303

><subunit 1 of 1, 146 aa, 1 stop

><MW: 16116, pI: 4.99, NX(S/T): 0

MSRSRLFSVTSAISTIGILCLPLFQLVLSDLPCEEDEMCVNYNDQHPNGWYIWILLLLVLVA ALLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPTVGIHLQTQTPDLYP VPAPCFGPLGSPPPYEEIVKTT

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

FIGURE 229

TTCTCCAGCTCGATCTGGAGGCTGCTTCGCCAGTGTGGGACGCAGCTGACGCCCGCTTATTA GCTCTCGCTGCGCCCCGGCTCAGAAGCTCCGTGGCGGCGGCGACCGTGACGAGAAGCCC ACGGCCAGCTCAGTTCTCTTCTACTTTGGGAGAGAGAGAAAGTCAGATGCCCCTTTTAAACT CCCTCTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATACAACCTTGCTGAAG CAATCTCAAGAAAAATATGTCCCAGAAATTGAGTTTACTGTTGCTTGTATTTGGACTCATT TGGGGATTGATGTTACTGCACTATACTTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTT ACGTGAGCAAATACTAGACTTAAGCAAAAGATATGTTAAAGCTCTAGCAGAGGAAAATAAGA ACACAGTGGATGTCGAGAACGGTGCTTCTATGGCAGGATATGCGGATCTGAAAAGAACAATT GCTGTCCTTCTGGATGACATTTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATAT TGTTGTGAATGGCTCAGCAGCCAACACCCACCAATGGTACTAGTGGGAATTTGGTGCCAGTAA CCACAAATAAAAGAACGAATGTCTCGGGCAGTATCAGA**TAG**CAGTTGAAAATCACCTTGTGC TGCTCCATCCACTGTGGATTATATCCTATGGCAGAAAAGCTTTATAATTGCTGGCTTAGGAC AGAGCAATACTTTACAATAAAAGCTCTACACATTTTCAAGGAGTATGCTGGATTCATGGAAC TCTAATTCTGTACATAAAATTTTAAAGTTATTTGTTTGCTTTCAGGCAAGTCTGTTCAATG CTGTACTATGTCCTTAAAGAGAATTTGGTAACTTGGTTGATGTGGTAAGCAGATAGGTGAGT TTTGTATAAATCTTTTGTGTTTGAGATCAAGCTGAAATGAAAACACTGAAAAACATGGATTC ATTTCTATAACACATTTATTTAAGTATATAACACGTTTTTTTGGACAAGTGAAGAATGTTTAA TCATTCTGTCATTTGTTCTCAATAGATGTAACTGTTAGACTACGGCTATTTGAAAAAATGTG CTTATTGTACTATTTTGTTATTCCAATTATGAGCAGAGAAAGGAAATATAATGTTGAAAA TAATGTTTTGAAATCATGACCCAAAGAATGTATTGATTTGCACTATCCTTCAGAATAACTGA AGGTTAATTATTGTATATTTTTAAAAATTACACTTATAAGAGTATAATCTTGAAATGGGTAG CAGCCACTGTCCATTACCTATCGTAAACATTGGGGCAATTTAATAACAGCATTAAAATAGTT GTAAACTCTAATCTTATTGAAGAATAAAAGATATTTTTTATGATGAGAGTAACAATA AAGTATTCATGATTTTCACATACATGAATGTTCATTTAAAAGTTTAATCCTTTGAGTGTCT ATGCTATCAGGAAAGCACATTATTTCCATATTTGGGTTAATTTTGCTTTTATTATTATTGGTC TAGGAGGAAGGGACTTTGGAGAATGGAACTCTTGAGGACTTTAGCCAGGTGTATATAATAAA CTTTATGAAATTTTGAATTTGTATAACAGATGCATTAGATATTCATTTTATATAATGGCCAC TTAAAATAAGAACATTTAAAATATAAACTATGAAGATTGACTATCTTTTCAGGAAAAAAGCT GTATATAGCACAGGGAACCCTAATCTTGGGTAATTCTAGTATAAAACAAATTATACTTTTAT CTCTATAGTAACTGCTTAAGTGCAGCTAGCTTCTAGATTTAGACTATATAGAATTTAGATAT TGTATTGTTCGTCATTATAATATGCTACCACATGTAGCAATAATTACAATATTTTATTAAAA TAAATATGTGAAATATTGTTTCATGAAAGACAGATTTCCAAATCTCTCTTCTCTCTGTA CTGTCTACCTTTATGTGAAGAAATTAATTATATGCCATTGCCAGGT

FIGURE 230

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648
><subunit 1 of 1, 140 aa, 1 stop
><MW: 15668, pI: 10.14, NX(S/T): 5
MFFTISRKNMSQKLSLLLLVFGLIWGLMLLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE
ENKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNL

Important features of the protein: Signal peptide:

amino acids 1-26

VPVTTNKRTNVSGSIR

FIGURE 231

CGCGGCCGGGCCGGGGTGAGCGTGCCGAGGCTGTGGCGCAGGCTTCCAGCCCCCAC C $\overline{\mathbf{ATG}}$ CCGTGGCCCTGCTGCTGCTGCTGGCCGTGAGTGGGGCCCAGACAACCCGGCCATGCTTCCCCGGGTGCCAATGCGAGGTGGAGACCTTCGGCCTTTTCGACAGCTTCAGCCTGACTCGG GTGGATTGTAGCGGCCTGGGCCCCCACATCATGCCGGTGCCCATCCCTCTGGACACAGCCCA CTTGGACCTGTCCTCCAACCGGCTGGAGATGGTGAATGAGTCGGTGTTGGCGGGGCCGGGCT ACACGACGTTGGCTGGCCTGGATCTCAGCCACAACCTGCTCACCAGCATCTCACCCACTGCC TTCTCCCGCCTTCGCTACCTGGAGTCGCTTGACCTCAGCCACAATGGCCTGACAGCCCTGCC AGCCGAGAGCTTCACCAGCTCACCCCTGAGCGACGTGAACCTTAGCCACAACCAGCTCCGGG AGGTCTCAGTGTCTCACGACGCACAGTCAGGGCCGGGCACTACACGTGGACCTCTCC TCAGAGCCTGAACCTGGCCTGGAACCGGCTCCATGCCGTGCCCAACCTCCGAGACTTGCCCC TGCGCTACCTGAGCCTGGATGGGAACCCTCTAGCTGTCATTGGTCCGGGGTGCCTTCGCGGGG CTGGGAGGCCTTACACACCTGTCTCTGGCCAGCCTGCAGAGGCTCCCTGAGCTGGCGCCCAG TGGCTTCCGTGAGCTACCGGGCCTGCAGGTCCTGGACCTGTCGGGCAACCCCAAGCTTAACT GGGCAGGAGCTGAGGTGTTTTCAGGCCTGAGCTCCCTGCAGGAGCTGGACCTTTCGGGCACC AACCTGGTGCCCTGAGGCGCTGCTCCTCCACCTCCCGGCACTGCAGAGCGTCAGCGT GGGCCAGGATGTGCGGCGCGCCTGGTGCGGGAGGCCACCTACCCCCGGAGGCCTGGCT CCAGCCCAAGGTGCCCTGCACTGCGTAGACACCCGGGAATCTGCTGCCAGGGGCCCCACC ${\tt ATCTTG} \underline{\textbf{TGA}} {\tt CAAATGGTGTGGCCCAGGGCCACATAACAGACTGCTGTCCTGGGCTGCCTCAG}$ GTCCCGAGTAACTTATGTTCAATGTGCCAACACCAGTGGGGAGCCCGCAGGCCTATGTGGCA GCGTCACCACAGGAGTTGTGGGCCTAGGAGAGCCTTTGGACCTGGGAGCCACACCTAGGAGC AAAGTCTCACCCCTTTGTCTACGTTGCTTCCCCAAACCATGAGCAGAGGGACTTCGATGCCA AACCAGACTCGGGTCCCCTCCTGCTTCCCCTTCCCCACTTATCCCCCAAGTGCCTTCCCTCAT GTTCAGGTCCACTGGGCTGAGTGTCCCCTTGGGCCCATGGCCCAGTCACTCAGGGGCGAGTT TCTTTTCTAACATAGCCCTTTCTTTGCCATGAGGCCATGAGGCCCGCTTCATCCTTTTCTAT TTCCCTAGAACCTTAATGGTAGAAGGAATTGCAAAGAATCAAGTCCACCCTTCTCATGTGAC AGATGGGGAAACTGAGGCCTTGAGAAGGAAAAAGGCTAATCTAAGTTCCTGCGGGCAGTGGC ATGACTGGAGCACAGCCTCCTGCCTCCCAGCCCGGACCCAATGCACTTTCTTGTCTCCTCTA ATAAGCCCCACCCTCCCCGCCTGGGCTCCCCTTGCTGCCCTTGCCTGTTCCCCATTAGCACA GGAGTAGCAGCAGGACAGGCAAGAGCCTCACAAGTGGGACTCTGGGCCTCTGACCAGCT GTGCGGCATGGGCTAAGTCACTCTGCCCTTCGGAGCCTCTGGAAGCTTAGGGCACATTGGTT CCAGCCTAGCCAGTTTCTCACCCTGGGTTGGGGTCCCCCAGCATCCAGACTGGAAACCTACC CATTTTCCCCTGAGCATCCTCTAGATGCTGCCCCAAGGAGTTGCTGCAGTTCTGGAGCCTCA TCTGGCTGGGATCTCCAAGGGGCCTCCTGGATTCAGTCCCCACTGGCCCTGAGCACGACAGC CCTTCTTACCCTCCCAGGAATGCCGTGAAAGGAGACAAGGTCTGCCCGACCCATGTCTATGC TCTACCCCCAGGGCAGCATCTCAGCTTCCGAACCCTGGGCTGTTTCCTTAGTCTTCATTTTA TAAAAGTTGTTGCCTTTTTAACGGAGTGTCACTTTCAACCGGCCTCCCCTACCCCTGCTGGC CGGGGATGGAGACATGTCATTTGTAAAAGCAGAAAAAGGTTGCATTTGTTCACTTTTGTAAT ATTGTCCTGGGCCTGTGTTGGGGTGTTGGGGGAAGCTGGGCATCAGTGGCCACATGGGCATC AGGGGCTGGCCCACAGAGACCCCACAGGGCAGTGAGCTCTGTCTTCCCCCACCTGCCTAGC

FIGURE 232

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77652

><subunit 1 of 1, 353 aa, 1 stop

><MW: 37847, pI: 6.80, NX(S/T): 2

MPWPLLLLAVSGAQTTRPCFPGCQCEVETFGLFDSFSLTRVDCSGLGPHIMPVPIPLDTAH
LDLSSNRLEMVNESVLAGPGYTTLAGLDLSHNLLTSISPTAFSRLRYLESLDLSHNGLTALP
AESFTSSPLSDVNLSHNQLREVSVSAFTTHSQGRALHVDLSHNLIHRLVPHPTRAGLPAPTI
QSLNLAWNRLHAVPNLRDLPLRYLSLDGNPLAVIGPGAFAGLGGLTHLSLASLQRLPELAPS
GFRELPGLQVLDLSGNPKLNWAGAEVFSGLSSLQELDLSGTNLVPLPEALLLHLPALQSVSV
GQDVRCRRLVREGTYPRRPGSSPKVPLHCVDTRESAARGPTIL

Signal peptide:

amino acids 1-16

Transmembrane domains:

amino acids 215-232, 287-304

FIGURE 233

GATGGCGCAGCCACAGCTTCTGTGAGATTCGATTTCTCCCCAGTTCCCCTGTGGGTCTGAGG GGACCAGAAGGGTGAGCTACGTTGGCTTTCTGGAAGGGGAGGCTATATCCCCA GTTCCAGGCCTTACCTGCTGGGCACTAACGGCGGAGCCAGGATGGGGACAGAATAAAGGAGC CACGACCTGTGCCACCAACTCGCACTCAGACTCTGAACTCAGACCTGAAATCTTCTCTTCAC GGGAGGCTTGGCAGTTTTCTTACTCCTGTGGTCTCCAGATTTCAGGCCTAAGATGAAAGCC TCTAGTCTTGCCTTCAGCCTTCTCTCTGCTGCGTTTTATCTCCTATGGACTCCTTCCACTGG ACTGAAGACACTCAATTTGGGAAGCTGTGTGATCGCCACAAACCTTCAGGAAATACGAAATG GATTTTCTGAGATACGGGGCAGTGTGCAAGCCAAAGATGGAAACATTGACATCAGAATCTTA AGGAGGACTGAGTCTTTGCAAGACACAAAGCCTGCGAATCGATGCTGCCTCCTGCGCCATTT GCTAAGACTCTATCTGGACAGGGTATTTAAAAACTACCAGACCCCTGACCATTATACTCTCC GGAAGATCAGCAGCCTCGCCAATTCCTTTCTTACCATCAAGAAGGACCTCCGGCTCTCTCAT GCCCACATGACATGCCATTGTGGGGAGGAAGCAATGAAGAAATACAGCCAGATTCTGAGTCA CTTTGAAAAGCTGGAACCTCAGGCAGCAGTTGTGAAGGCTTTGGGGGGAACTAGACATTCTTC TGCAATGGATGGAGGAGACAGAA**TAG**GAGGAAAGTGATGCTGCTGCTAAGAATATTCGAGGT CAAGAGCTCCAGTCTTCAATACCTGCAGAGGAGGCATGACCCCAAACCACCATCTCTTTACT GTACTAGTCTTGTGCTGGTCACAGTGTATCTTATTTATGCATTACTTGCTTCCTTGCATGAT TGTCTTTATGCATCCCCAATCTTAATTGAGACCATACTTGTATAAGATTTTTGTAATATCTT ATTTTTTTACTTGGACATGAAACTTTAAAAAAATTCACAGATTATATTTATAACCTGACTAG AGCAGGTGATGTATTTTATACAGTAAAAAAAAAAAACCTTGTAAATTCTAGAAGAGTGGCT AGGGGGGTTATTCATTTGTATTCAACTAAGGACATATTTACTCATGCTGATGCTCTGTGAGA TATTTGAAATTGAACCAATGACTACTTAGGATGGGTTGTGGAATAAGTTTTGATGTGGAATT GCACATCTACCATACTGACCATCCCCAGTAGACTCCCCAGTCCCATAATTGTGTAT CTTCCAGCCAGGAATCCTACACGGCCAGCATGTATTTCTACAAATAAAGTTTTCTTTGCATA CCAAAAAAAAAAAAAAA

FIGURE 234

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83500

><subunit 1 of 1, 261 aa, 1 stop

><MW: 29667, pI: 8.76, NX(S/T): 0

MRQFPKTSFDISPEMSFSIYSLQVPAVPGLTCWALTAEPGWGQNKGATTCATNSHSDSELRP EIFSSREAWQFFLLLWSPDFRPKMKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATNL QEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPANRCCLLRHLLRLYLDRVFKNYQTP DHYTLRKISSLANSFLTIKKDLRLSHAHMTCHCGEEAMKKYSQILSHFEKLEPQAAVVKALG ELDILLQWMEETE

Important features of the protein:

Signal peptide:

amino acids 1-42

cAMP- and cGMP-dependent protein kinase phosphorylation sites. amino acids 192-195, 225-228

N-myristoylation sites.

amino acids 42-47, 46-51, 136-141

FIGURE 235

CCGTTATCGTCTTGCGCTGCTGA**ATG**TCCGTCCCGGAGGAGGAGGAGGGCTTTTGCCG CTGACCCAGAGATGGCCCCGAGCGAGCAAATTCCTACTGTCCGGCTGCGCGGCTACCGTGGC CGAGCTAGCAACCTTTCCCCTGGATCTCACAAAAACTCGACTCCAAATGCAAGGAGAAGCAG CTCTTGCTCGGTTGGGAGACGGTGCAAGAGAATCTGCCCCCTATAGGGGAATGGTGCGCACA GCCCTAGGGATCATTGAAGAGGAAGGCTTTCTAAAGCTTTGGCAAGGAGTGACACCCGCCAT TTACAGACACGTAGTGTATTCTGGAGGTCGAATGGTCACATATGAACATCTCCGAGAGGTTG TGTTTGGCAAAAGTGAAGATGAGCATTATCCCCTTTGGAAATCAGTCATTGGAGGGATGATG GCTGGTGTTATTGGCCAGTTTTTAGCCAATCCAACTGACCTAGTGAAGGTTCAGATGCAAAT GGAAGGAAAAGGAAACTGGAAGGAAAACCATTGCGATTTCGTGGTGTACATCATGCATTTG CAAAAATCTTAGCTGAAGGAGGAATACGAGGGCTTTGGGCAGGCTGGGTACCCAATATACAA AGAGCAGCACTGGTGAATATGGGAGATTTAACCACTTATGATACAGTGAAACACTACTTGGT ATTGAATACACCACTTGAGGACAATATCATGACTCACGGTTTATCAAGTTTATGTTCTGGAC TGGTAGCTTCTATTCTGGGAACACCAGCCGATGTCATCAAAAGCAGAATAATGAATCAACCA TCAAGGTGAAGGATTCATGAGTCTATATAAAGGCTTTTTTACCATCTTGGCTGAGAATGACCC TTT**TAA**

FIGURE 236

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77568

><subunit 1 of 1, 323 aa, 1 stop

><MW: 36064, pI: 9.33, NX(S/T): 1

MSVPEEERLLPLTQRWPRASKFLLSGCAATVAELATFPLDLTKTRLQMQGEAALARLGDGA RESAPYRGMVRTALGIIEEEGFLKLWQGVTPAIYRHVVYSGGRMVTYEHLREVVFGKSEDEH YPLWKSVIGGMMAGVIGQFLANPTDLVKVQMQMEGKRKLEGKPLRFRGVHHAFAKILAEGGI RGLWAGWVPNIQRAALVNMGDLTTYDTVKHYLVLNTPLEDNIMTHGLSSLCSGLVASILGTP ADVIKSRIMNQPRDKQGRGLLYKSSTDCLIQAVQGEGFMSLYKGFLPSWLRMTPWSMVFWLT YEKIREMSGVSPF

Transmembrane domains:

amino acids 25-38, 130-147, 233-248

FIGURE 237

GCCTGAAGTCGGCGTGGGCGTTTGAGGAAGCTGGGATACAGCATTTAATGAAAAATTTATGC TTAAGAAGTAAAAAATGGCAGGCTTCCTAGATAATTTTCGTTGGCCAGAATGTGAATGTATTG ACTGGAGTGAGAGAAATGCTGTGGCATCTGTTGTCGCAGGTATATTGTTTTTTACAGGC TGGTGGATAATGATTGATGCAGCTGTGGTGTATCCTAAGCCAGAACAGTTGAACCATGCCTT TCACACATGTGGTGTATTTTCCACATTGGCTTTCTTCATGATAAATGCTGTATCCAATGCTC AGGTGAGAGGTGATAGCTATGAAAGCGGCTGTTTAGGAAGAACAGGTGCTCGAGTTTGGCTT TTCATTGGTTTCATGTTGATGTTTGGGTCACTTATTGCTTCCATGTGGATTCTTTTTGGTGC ATATGTTACCCAAAATACTGATGTTTATCCGGGACTAGCTGTGTTTTTTCAAAATGCACTTA ${\tt TATTTTTAGCACTCTGATCTACAAATTTGGAAGAACCGAAGAGCTATGGACC} {\tt TGA}{\tt GATCAC}$ TTCTTAAGTCACATTTTCCTTTTGTTATATTCTGTTTGTAGATAGGTTTTTTTATCTCTCAGT ACACATTGCCAAATGGAGTAGATTGTACATTAAATGTTTTGTTTCTTTACATTTTTATGTTC TGAGTTTTGAAATAGTTTTATGAAATTTCTTTATTTTTCATTGCATAGACTGTTAATATGTA TATAATACAAGACTATATGAATTGGATAATGAGTATCAGTTTTTTATTCCTGAGATTTAGAA CTTGATCTACTCCCTGAGCCAGGGTTACATCATCTTGTCATTTTAGAAGTAACCACTCTTGT CTCTCTGGCTGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG CCGATTGCTTGAGGTCAAGTGTTTGAGACCAGCCTGGCCAACATGGCGAAACCCCATCTACT AAAAATACAAAAATTAGCCAGGCATGGTGGTGGTGCCTGTAATCCCAGCTACCTGGGAGGC TGAGGCAGGAGAATCGCTTGAACCCGGGGGGCAGAGGTTGCAGTGAGCTGAGTTTGCGCCAC TCTGATTTCTGAAGATGTACAAAAAAATATAGCTTCATATATCTGGAATGAGCACTGAGCCA AAAAATATTTGTTCTTATGTATTGAAGAAGTGTACTTTTATATAATGATTTTTTAAATGCCC AAAGGACTAGTTTGAAAAGCTTCTTTTAAAAAGAATTCCTCTAATATGACTTTATGTGAGAA

FIGURE 238

MAGFLDNFRWPECECIDWSERRNAVASVVAGILFFTGWWIMIDAAVVYPKPEQLNHAFHTCG VFSTLAFFMINAVSNAQVRGDSYESGCLGRTGARVWLFIGFMLMFGSLIASMWILFGAYVTQ NTDVYPGLAVFFQNALIFFSTLIYKFGRTEELWT

Important features:

Signal peptide:

amino acids 1-44

Transmembrane domains:

amino acids 23-42 (type II), 60-80, 97-117, 128-148

FIGURE 239

GTTGATGGCAAACTTCCTCAAAGGAGGGGCAGAGCCTGCGCAGGGCAGGAGCAGCTGGCCCA CTGGCGGCCCGCAACACTCCGTCTCACCCTCTGGGCCCACTGCATCTAGAGGAGGGCCGTCT GTGAGGCCACTACCCCTCCAGCAACTGGGAGGTGGGACTGTCAGAAGCTGGCCCAGGGTGGT GGTCAGCTGGGTCAGGGACCTACGGCACCTGCTGGACCACCTCGCCTTCTCCATCGAAGCAG GGAAGTGGGAGCCTCGAGCCCTCGGGTGGAAGCTGACCCCAAGCCACCCTTCACCTGGACAG GATGAGAGTGTCAGGTGTGCTTCGCCTCCTGGCCCTCATCTTTGCCATAGTCACGACATGGA GCCTCGCCCACCAAGGAGATCCAGGTTAAAAAGTACAAGTGTGGCCTCATCAAGCCCTGCCC AGCCAACTACTTTGCGTTTAAAATCTGCAGTGGGGCCGCCAACGTCGTGGGCCCTACTATGT GCTTTGAAGACCGCATGATCATGAGTCCTGTGAAAAACAATGTGGGCAGAGGCCTAAACATC GCCCTGGTGAATGGAACCACGGGAGCTGTGCTGGGACAGAAGGCATTTGACATGTACTCTGG AGATGTTATGCACCTAGTGAAATTCCTTAAAGAAATTCCGGGGGGGTGCACTGGTGGTGG CCTCCTACGACGATCCAGGGACCAAAATGAACGATGAAAGCAGGAAACTCTTCTCTGACTTG GGGAGTTCCTACGCAAAACAACTGGGCTTCCGGGACAGCTGGGTCTTCATAGGAGCCAAAGA AGGGATGGCCAGAGCTGCTGGAGATGGAGGGCTGCATGCCCCCGAAGCCATTT**TAG**GGTGGC TGTGTCGCGCCTCTCCTCGGAAACAGAACCCTCCCACAGCACATCCTACCCGGAAGACC AGCCTCAGAGGGTCCTTCTGGAACCAGCTGTCTGTGGAGAGAATGGGGTGCTTTCGTCAGGG ACTGCTGACGGCTGGTCCTGAGGAAGGACAAACTGCCCAGACTTGAGCCCAATTAAATTTTA TTTTTGCTGGTTTTGAAAAAAAAAAAAAAAAAAAAAA

FIGURE 240

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59814</pre>

<subunit 1 of 1, 224 aa, 1 stop

<MW: 24963, pI: 9.64, NX(S/T): 1

MRVSGVLRLLALIFAIVTTWMFIRSYMSFSMKTIRLPRWLAASPTKEIQVKKYKCGLIKPCP ANYFAFKICSGAANVVGPTMCFEDRMIMSPVKNNVGRGLNIALVNGTTGAVLGQKAFDMYSG DVMHLVKFLKEIPGGALVLVASYDDPGTKMNDESRKLFSDLGSSYAKQLGFRDSWVFIGAKD LRGKSPFEQFLKNSPDTNKYEGWPELLEMEGCMPPKPF

Important features:

Signal peptide:

amino acids 1-15

ATP/GTP-binding site motif A (P-loop).

amino acids 184-191

N-glycosylation site.

amino acids 107-110

FIGURE 241

GAGACTGCAGAGGGAGATAAAGAGAGGGCAAAGAGACATTTGTCCTGGGGAT CCAGAAACCCATGATACCCTACTGAACACCGAATCCCCTGGAAGCCCACAGAGACAGAGACA TCACTCCTCCCTCTCTCTCTCTCTCTCTGCCTAGTCCTCTAGTCCTCAAATTCCCAGTCCC CTGCACCCCTTCCTGGGACACT**ATG**TTGTTCTCCGCCCTCCTGCTGGAGGTGATTTGGATCC TGGCTGCAGATGGGGGTCAACACTGGACGTATGAGGGCCCACATGGTCAGGACCATTGGCCA GACATTTGACCCTGATTTGCCTGCTCTGCAGCCCCACGGATATGACCAGCCTGGCACCGAGC GGTGGACTTCCCCGAAAATATGTAGCTGCCCAGCTCCACCTGCACTGGGGTCAGAAAGGATC CCCAGGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTTGCAGAGCTCCACATTGTAC ATTATGACTCTGATTCCTATGACAGCTTGAGTGAGGCTTGAGAGGCCTCAGGGCCTGGCT GTCCTGGGCATCCTAATTGAGGTGGGTGAGACTAAGAATATAGCTTATGAACACATTCTGAG TCACTTGCATGAAGTCAGGCATAAAGATCAGAAGACCTCAGTGCCTCCCTTCAACCTAAGAG TGCTACCAGAGTGTGCTCTGGACAGTTTTTTATAGAAGGTCCCAGATTTCAATGGAACAGCT GGAAAAGCTTCAGGGGACATTGTTCTCCACAGAAGAGGAGCCCTCTAAGCTTCTGGTACAGA ACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGTCTTTGCTTCTTTCATCCAAGCAGGA CCTTCTCCTGGCTGTTTATTTCATTGCTAGAAAGATTCGGAAGAAGAGGCTGGAAAACCGAA AGAGTGTGGTCTTCACCTCAGCACAAGCCACGACTGAGGCA**TAA**ATTCCTTCTCAGATACCA TGGATGTGGATGACTTCCCTTCATGCCTATCAGGAAGCCTCTAAAATGGGGTGTAGGATCTG GCCAGAAACACTGTAGGAGTAGTAAGCAGATGTCCTCCTTCCCCTGGACATCTCTTAGAGAG GAATGGACCCAGGCTGTCATTCCAGGAAGAACTGCAGAGCCTTCAGCCTCTCCAAACATGTA GGAGGAAATGAGGAAATCGCTGTTGTTAATGCAGAGANCAAACTCTGTTTAGTTGCAGGG GAAGTTTGGGATATACCCCAAAGTCCTCTACCCCCTCACTTTTATGGCCCTTTCCCTAGATA TACTGCGGGATCTCTCCTTAGGATAAAGAGTTGCTGTTGAAGTTGTATATTTTTGATCAATA TATTTGGAAATTAAAGTTTCTGACTTT

FIGURE 242

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812</pre>

><subunit 1 of 1, 337 aa, 1 stop

><MW: 37668, pI: 6.27, NX(S/T): 1

MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPDLP ALQPHGYDQPGTEPLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQ INSEATFAELHIVHYDSDSYDSLSEAAERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRH KDQKTSVPPFNLRELLPKQLGQYFRYNGSLTTPPCYQSVLWTVFYRRSQISMEQLEKLQGTL FSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTTGEMLSLGVGILVGCLCLLLAVYF IARKIRKKRLENRKSVVFTSAQATTEA

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

FIGURE 243

AATTTTTCACCAGAGTAAACTTGAGAAACCAACTGGACCTTGAGTATTGTACATTTTGCCTC GTGGACCCAAAGGTAGCAATCTGAAAC**ATG**AGGAGTACGATTCTACTGTTTTGTCTTCTAGG CGGATCAGGGAACACTACCAAACCAACAGCAGTCAAATCAGGTCTTTCCTTTTAAGTCTG ATACCATTAACACAGATGCTCACACTGGGGCCAGATCTGCATCTGTTAAATCCTGCTGCAGG AATGACACCTGGTACCCAGACCCACTGACCCTGGGAGGGTTGAATGTACAACAGCAAC TGCACCCACATGTGTTACCAATTTTTGTCACACAACTTGGAGCCCAGGGCACTATCCTAAGC TCAGAGGAATTGCCACAAATCTTCACGAGCCTCATCATCCATTCCTTGTTCCCGGGAGGCAT CCTGCCCACCAGTCAGGCAGGGGCTAATCCAGATGTCCAGGATGGAAGCCTTCCAGCAGGAG GAGCAGGTGTAAATCCTGCCACCCAGGGAACCCCAGCAGGCCGCCTCCCAACTCCCAGTGGC ACAGATGACGACTTTGCAGTGACCACCCCTGCAGGCATCCAAAGGAGCACACATGCCATCGA $\mathsf{GGAAGCCACCACAGAATCAGCAAATGGAATTCAG} \mathbf{\underline{TAA}} \mathsf{GCTGTTTCAAATTTTTTCAACTAAG}$ CTGCCTCGAATTTGGTGATACATGTGAATCTTTATCATTGATTATATTATGGAATAGATTGA GACACATTGGATAGTCTTAGAAGAAATTAATTCTTAATTTACCTGAAAATATTCTTGAAATT TCAGAAAATATGTTCTATGTAGAGAATCCCAACTTTTAAAAACAATAATTCAATGGATAAAT CTGTCTTTGAAATATAACATTATGCTGCCTGGATGATATGCATATTAAAACATATTTGGAAA AAAAAAAAAAAAAAA

FIGURE 244

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSLSLIPLTQM LTLGPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE LPQIFTSLIIHSLFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG TDDDFAVTTPAGIQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

FIGURE 245

GGAGAGAGGCGCGGGTGAAAGGCGCATTGATGCAGCCTGCGCGCCCTCGGAGCGCGCG GAGCCAGACGCTGACCACGTTCCTCTCCTCGGTCTCCTCCGCCCTCCAGCTCCGCGCTGCCCG TGCTGCTCCTGCTGCAGCTGCCCGCCCGTCGAGCGCCTCTGAGATCCCCAAGGGGAAG CAAAAGGCGCAGCTCCGGCAGAGGGAGGTGGTGGACCTGTATAATGGAATGTGCTTACAAGG GCCAGCAGGAGTGCCTGGTCGAGACGGGAGCCCTGGGGCCAATGTTATTCCGGGTACACCTG GGATCCCAGGTCGGGATGGATTCAAAGGAGAAAAGGGGGAATGTCTGAGGGAAAGCTTTGAG GAGTCCTGGACACCCAACTACAAGCAGTGTTCATGGAGTTCATTGAATTATGGCATAGATCT TGGGAAAATTGCGGAGTGTACATTTACAAAGATGCGTTCAAATAGTGCTCTAAGAGTTTTGT TCAGTGGCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTC CCCTGAAATGAATTCAACAATTAATATTCATCGCACTTCTTCTGTGGAAGGACTTTGTGAAG GAATTGGTGCTGGATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAA GGAGATGCTTCTACTGGATGGAATTCAGTTTCTCGCATCATTATTGAAGAACTACCAAAATA **A**ATGCTTTAATTTTCATTTGCTACCTCTTTTTTTATTATGCCTTGGAATGGTTCACTTAAAT GACATTTTAAATAAGTTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTTACAGA GGTTTCAATATTTTTTTTTAGTTGGTTAGAATACTTTCTTCATAGTCACATTCTCTCAACCTA TAATTTGGAATATTGTTGTGTCTTTTTTTTTTCTCTTTAGTATAGCATTTTTAAAAAAATA AAAAATTATTTCCAACA

FIGURE 246

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393

><subunit 1 of 1, 243 aa, 1 stop

><MW: 26266, pI: 8.43, NX(S/T): 1

MRPQGPAASPQRLRGLLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGV PGRDGSPGANVIPGTPGIPGRDGFKGEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIA ECTFTKMRSNSALRVLFSGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIIYLDQGSPEMN STINIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIEELPK

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217