Security and Privacy for Cloud-Based IoT: Challenges, Countermeasures, and Future Directions

Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Athanasios V. Vasilakos

Emre Özdil - 150120138 Güneş Yurdakul - 150140141 Gamze Akyol - 150140142

IOT

- ➤composed of physical objects embedded with:
 - Electronics
 - Software
 - Sensors
- ➤ sensed and controlled remotely across network
- ➤ now everywhere
- ➤ required:
 - Huge Volumes of Data Storage
 - Processing Power

ABOUT PAPER

- ➤ Due to the resource constraints of IoT devices > resorts to the cloud for outsourced storage and computation
 - security
 - privacy threats
- ➤ In this article:
 - architecture
 - security and privacy requirements

for the next generation mobile technologies on cloud-based IoT

MOTIVATION

- ➤ Cloud-based IoT can be categorized
 - Static
 - Mobile more challenging in protocol design
- ➤ 5G

- Secure Packet Forwarding to avoid security gaps during routing
 - layer removing/adding attack

MOTIVATION

periodically collecting and broadcasting certain kinds of passing service

- ➤ high computational complexity
- > privacy-preserving lightweight authentication
 - avoid duplicate packet transmission
 - reduce both the computational and communication cost

NETWORK ARCHITECTURE OF CLOUD BASED IOT

Figure 1. Network architecture of cloud-based IoT.

NETWORK ARCHITECTURE OF CLOUD BASED IOT

- Resource Constraints
- ➤ Mobility
- Self Organization
- Short-Range
 Communication

Items	Internet of Things	Traditional networks
Node energy	Constrained	Abundant
Node mobility	High mobility	Static
Architecture	Self-organized	Hierachical
Communication range	Short	Long
Routing	Intermittent and dynamically constituted	Continuous end-to-end connection
Packet delivery mode	Cooperative, DTN type, and need incentive mechanism to stimulate	Guaranteed delivery

Table 1. Characteristic comparison between cloud-based IoT and traditional networks.

Security threats	Countermeasure
Identity privacy	Pseudonym [4, 5, 9], group signature [5], connection anonymization [7, 13]
Location privacy	Pseudonym [4, 5, 9], one-way trapdoor permutation [6, 10]
Node compromise attack	Secret sharing [8, 10, 14], game theory [7], population dynamic model [10]
Layer removing/adding attack	Packet transmitting witness [9, 10, 13], aggregated transmission evidence [10]
Forward and backward security	Cryptographic one-way hash chain [4, 5]
Semi-trusted/malicious cloud security	(Fully) homomorphic encryption [11], zero knowledge proof [15]

Table 2. A taxonomy of main security threats in cloud-based IoT.

SECURITY AND PRIVACY REQUIREMENTS FOR CLOUD-BASED IOT

➤ Identity Privacy

➤ Location Privacy

➤ Node Compromise Attack

SECURITY AND PRIVACY REQUIREMENTS FOR CLOUD-BASED IOT

➤ Layer Removing/Adding Attack

➤ Forward and Backward Security

➤ Semi Trusted and/or Malicious Cloud Security

SECURE PACKET FORWARDING IN CLOUD-BASED IOT

The mechanisms which prevent packet forwarding from attacks:

SMART

- Secure credit-based incentive scheme
- ➤ Pi does not consider the outsider threats.
- ➤ Layer adding collision cannot be solved in both SMART and Pi.

TCBI

- ➤ Threshold credit-based incentive mechanism
- ➤ Node compromise attacks are blocked effectively
- ➤ Equality between IoT users is provided
- ➤ Optimize IoT users' utility

COMPARISON OF SMART AND TCBI

Figure 2. Efficiency comparison between SMART [9] and TCBI: a) computational cost; b) communication cost.

PRIVACY-PRESERVING AUTHENTICATION

➤ Identity/location privacy protection

➤ Lightweight authentication

➤ Pseudonym technique is proposed instead of Public Key Infrastructure (PKI).

SAVE

- •An efficient privacy preserving authentication scheme
- •It filters location based service contents.
- Prevents duplicate elements
- •Physically dynamic tracing attack is prevented

Figure 3. LBS content filtering mechanism with dynamic social group formulation in cloud-based IoT.

EFFICIENCY OF LBS CONTENT FILTERING MECHANISM IN SAVE

Figure 4. Efficiency of LBS content filtering mechanism in SAVE: a) communication cost; b) computational cost.

CONCLUSION AND OPEN RESEARCH ISSUES

- > 5 challenging open research issues:
- 1. Fine-grained cipher- text access control in cloud-based IoT
 - proposed solution: designing a lightweight attribute-based encryption
- 2. Protection of location privacy and query privacy of cloud-based IoT users,
 - proposed solution: designing policy-hidden ABE exploiting the technique of a non-interactive proof system for bilinear groups

CONCLUSION AND OPEN RESEARCH ISSUES

- 3. Already proposed efficient privacy preserving technique
 - was only exploited for secure data collection from single user
 - -> extend it

4. Privacy preserving outsourced data mining in cloud-based IoT

- 5. Extend the proposed efficient privacy preserving data aggregation method
 - without public key homomorphic encryption