Application of the Rogers-Ramanujan continued fraction to partition functions

Dr. Nilufar Mana Begum Debraj Roy College, Golaghat

Online Seminar of Assamese Mathematicians

21.08.2020

Contents

- Introduction
- 2 Generating functions and congruences for partitions into distinct parts
- **3** Generating functions and congruences for some partition functions using relations involving R(q), $R(q^3)$ and $R(q^4)$
- 4 References

Partitions

A partition $\pi = (\pi_0, \pi_1, \dots, \pi_{k-1})$ of a nonnegative integer n is a finite sequence of non-increasing positive integers (called *parts*) $\pi_0, \pi_1, \dots, \pi_{k-1}$ such that $\pi_0 + \pi_1 + \dots + \pi_{k-1} = n$. The partition function p(n) is defined as the number of partitions

of p(5)=7, since there are seven partitions of 5, namely,

$$(5), (4,1), (3,2), (3,1,1), (2,2,1), (2,1,1,1,1), \text{ and } (1,1,1,1,1).$$

By convention, p(0) = 1.

The generating function for p(n), due to Euler, is given by

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{1}{(q;q)_{\infty}},$$

where, for any complex number a and |q| < 1, we define

$$(a;q)_0 := 1,$$
 $(a;q)_n := \prod_{k=0}^{n-1} (1-aq^k), \quad n \ge 1,$

and

$$(a;q)_{\infty} := \lim_{n\to\infty} (a;q)_n.$$

Introduction

In the sequel, for any positive integer j, we use

$$E_j:=(q^j;q^j)_\infty$$

Ramanujan's partition congruences

In 1919, Ramanujan [*Proc. Camb. Philos. Soc.* **19** (1919) 207–210] found nice congruence properties for p(n) modulo 5, 7, and 11, namely, for any nonnegative integer n,

$$p(5n+4) \equiv 0 \pmod{5},$$
 (1.1)

$$p(7n+5) \equiv 0 \pmod{7}, \tag{1.2}$$

$$p(11n+6) \equiv 0 \pmod{11}$$
.

He also found the exact generating functions of p(5n + 4) and p(7n + 5) as given below:

$$\sum_{n=0}^{\infty} p(5n+4)q^n = 5 \frac{E_5^5}{E_1^6}, \tag{1.3}$$

and

$$\sum_{n=0}^{\infty} p(7n+5)q^n = 7 \frac{E_7^3}{E_1^4} + 49q \frac{E_7^7}{E_1^8}, \tag{1.4}$$

which immediately implies (1.1) and (1.2) respectively. It can also be shown from the above generating functions that

$$p(25n + 24) \equiv 0 \pmod{25}$$
 and $p(49n + 47) \equiv 0 \pmod{49}$.

In 1939, Zuckerman [Duke Math. J. **5(1)** (1939) 88–110] found the generating functions of p(25n + 24), p(49n + 47) and p(13n + 6) analogous to (1.3) and (1.4). In particular, he showed that

$$\sum_{n=0}^{\infty} p(25n + 24)q^n = 63 \times 5^2 \frac{E_5^6}{E_1^7} + 52 \times 5^5 q \frac{E_5^{12}}{E_1^{13}} + 63 \times 5^7 q^2 \frac{E_5^{18}}{E_1^{19}} + 6 \times 5^{10} q^3 \frac{E_5^{24}}{E_1^{25}} + 5^{12} q^4 \frac{E_5^{30}}{E_1^{31}}.$$

Ramanujan [*Proc. Camb. Philos. Soc.* **19** (1919) 207–210] also offered a more general conjecture for congruences of p(n) modulo arbitrary powers of 5, 7 and 11. In particular, if $\alpha \geq 1$ and if δ_{α} is the reciprocal modulo 5^{α} of 24, then

$$p(5^{\alpha}n + \delta_{\alpha}) \equiv 0 \pmod{5^{\alpha}}.$$

In his unpublished manuscript [The Lost Notebook and Other Unpublished Papers], [Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary], Ramanujan gave a proof of the above. Hirschhorn and Hunt [J. Reine Angew. Math., **326** (1981) 1–17] gave the elementary proof of the above by finding the generating function of $p(5^{\alpha}n + \delta_{\alpha})$.

Ramanujan's theta function

Ramanujan's general theta function f(a, b) is defined by

$$f(a,b) := \sum_{k=-\infty}^{\infty} a^{k(k+1)/2} b^{k(k-1)/2}, \quad |ab| < 1.$$

We have the following two useful cases:

$$\varphi(-q) := f(-q, -q) = \sum_{j=-\infty}^{\infty} (-1)^j q^{j^2} = (q; q^2)_{\infty}^2 (q^2; q^2)_{\infty} = \frac{E_1^2}{E_2},$$

and

$$\psi(q) := f(q, q^3) = \sum_{i=0}^{\infty} q^{i(j+1)/2} = \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} = \frac{E_2^2}{E_1}.$$

- Introduction

The product representations of the special cases arise from Jacobi's famous triple product identity [Number Theory in the Spirit of Ramanujan, p. 35, Entry 19]

$$f(a,b) = (-a;ab)_{\infty}(-b;ab)_{\infty}(ab;ab)_{\infty}.$$

We refer to Berndt's books Ramanujan's Notebooks, Part III or Number Theory in the Spirit of Ramanujan, for various properties satisfied by f(a, b).

Rogers-Ramanujan continued fraction

For |q| < 1, the famous Rogers-Ramanujan continued fraction $\mathcal{R}(q)$, is defined by

$$\mathcal{R}(q) := \frac{q^{1/5}}{1} + \frac{q}{1} + \frac{q^2}{1} + \frac{q^3}{1} + \dots = q^{1/5} \frac{(q;q^5)_{\infty}(q^4;q^5)_{\infty}}{(q^2;q^5)_{\infty}(q^3;q^5)_{\infty}}.$$

We refer to Andrews and Berndt's book Ramanujan's Lost Notebook, Part I, for many diversified results on $\mathcal{R}(q)$.

t-dissection

If P(q) denotes a power series in q, then a t-dissection of P(q) is given by

$$[P(q)]_{t- ext{dissection}} = \sum_{k=0}^{t-1} q^k P_k(q^t),$$

where P_k 's are power series in q^t .

For example, if $R(q)=q^{1/5}/\mathcal{R}(q)$, then the 5-dissections of E_1 and $1/E_1$ are given by

$$E_1 = E_{25} \left(R(q^5) - q - \frac{q^2}{R(q^5)} \right)$$

and

$$\frac{1}{E_1} = \frac{E_{25}^5}{E_5^6} \left(R(q^5)^4 + qR(q^5)^3 + 2q^2R(q^5)^2 + 3q^3R(q^5) + 5q^4 - \frac{3q^5}{R(q^5)} + \frac{2q^6}{R(q^5)^2} - \frac{q^7}{R(q^5)^3} + \frac{q^8}{R(q^5)^4} \right).$$

For a proof of the above, we refer to Berndt's books Ramanujan's Notebooks, Part III or Number Theory in the Spirit of Ramanujan.

Partitions into distinct parts

Let Q(n) denote the number of partitions of n into distinct parts. For example, Q(5)=3 since there are three partitions of 5 into distinct parts, namely, (5),(4,1), and (3,2). One of Euler's famous results on partitions is that the number of partitions of n into distinct parts is equinumerous to the number of partitions of n into odd parts. Note that there are also three

number of partitions of 5 into odd parts, namely,

(5), (3, 1, 1), and (1, 1, 1, 1, 1).

The generating function of Q(n) is given by

$$\sum_{n=0}^{\infty} Q(n)q^n = (-q;q)_{\infty}.$$

Equivalently, by Euler's result,

$$\sum_{n=0}^{\infty} Q(n)q^n = \frac{1}{(q;q^2)_{\infty}}.$$

Partition with distinct parts

In our work, we find the exact generating functions of Q(5n+1), Q(25n+1) and Q(125n+26) that are analogous to (1.3) and (1.4), and some new congruences for Q(n), the number of partitions of n into distinct parts.

Rödseth [Arbok Univ. Bergen Mat.-Natur. Ser. 13 (1969) 13–27] found the following infinite family of congruences modulo powers of 5 for Q(n), the number of partitions of n into distinct parts:

If
$$\gamma_j = \frac{25^{[(j+1)/2]} - 1}{24}$$
, then for any nonnegative integer n ,

$$Q(5^{2j+1}n + \gamma_{2j+1}) \equiv 0 \pmod{5^j}.$$
 (2.5)

By using the theory of modular forms and Hecke operators, Lovejoy ([Adv. Math. 158 (2001) 253-263], [Bull. Lond. Math. Soc. 35 (2003) 41-46]) found some more infinite families of congruences modulo powers of 5 for Q(n). In particular, we recall that, for r = 1, 3, 4, and for all nonnegative integers n,

$$Q\left(5^{2j+1}n + \gamma_{2j} + r5^{2j}\right) \equiv 0 \pmod{5^j}.$$

This is (2.5) when r = 1.

Generating functions and congruences for partitions into distinct parts

We find the following generating function representations of Q(5n+1), Q(25n+1) and Q(125n+26).

Theorem

For any nonnegative integer n, we have

$$\sum_{n=0}^{\infty} Q(5n+1)q^n = \frac{E_2^2 E_5^3}{E_1^4 E_{10}},$$

$$\sum_{n=0}^{\infty} Q(25n+1)q^{n} = \frac{E_{2}^{3}E_{5}^{4}}{E_{1}^{5}E_{10}^{2}} + 160q \frac{E_{2}^{4}E_{10}E_{5}^{3}}{E_{1}^{8}} + 2800q^{2}\frac{E_{2}^{5}E_{5}^{2}E_{10}^{4}}{E_{1}^{11}} + 16000q^{3}\frac{E_{2}^{6}E_{5}E_{10}^{7}}{E_{1}^{14}} + 32000q^{4}\frac{E_{2}^{7}E_{10}^{10}}{E_{1}^{17}},$$

$$\sum_{n=0}^{\infty} Q(125n + 26)q^{n}$$

$$= 33 \times 5 \frac{E_{2}^{2}E_{5}^{3}}{E_{1}^{4}E_{10}} + 1039573 \times 2^{2} \times 5 \ q \ \frac{E_{2}^{3}E_{5}^{2}E_{10}^{2}}{E_{1}^{7}}$$

$$+ 84358511 \times 2^{4} \times 5^{2}q^{2} \frac{E_{2}^{4}E_{5}E_{10}^{5}}{E_{1}^{10}} + 1519417629 \times 2^{6} \times 5^{3}q^{3} \frac{E_{2}^{5}E_{10}^{8}}{E_{1}^{13}}$$

$$+ 57468885219 \times 2^{8} \times 5^{3}q^{4} \frac{E_{2}^{6}E_{10}^{11}}{E_{1}^{16}E_{5}}$$

$$+ 239126250621 \times 2^{10} \times 5^{4}q^{5} \frac{E_{2}^{7}E_{10}^{14}}{E_{1}^{19}E_{5}^{2}} + 493702983 \times 2^{20} \times 5^{6}q^{6} \frac{E_{2}^{8}E_{10}^{17}}{E_{1}^{22}E_{5}^{3}}$$

$$+ 57851635449 \times 2^{16} \times 5^{7}q^{7} \frac{E_{2}^{9}E_{10}^{20}}{E_{1}^{25}E_{5}^{4}}$$

$$\begin{split} &+ 155363323153 \times 2^{17} \times 5^8 q^8 \frac{E_2^{10} E_{10}^{23}}{E_1^{28} E_5^5} \\ &+ 99443868167 \times 2^{22} \times 5^8 q^9 \frac{E_2^{11} E_{10}^{26}}{E_1^{31} E_5^6} \\ &+ 1277863945093 \times 2^{20} \times 5^9 q^{10} \frac{E_2^{12} E_{10}^{29}}{E_1^{34} E_5^7} \\ &+ 82117001559 \times 2^{23} \times 5^{11} q^{11} \frac{E_2^{13} E_{10}^{32}}{E_1^{37} E_5^8} \\ &+ 85675198911 \times 2^{24} \times 5^{12} q^{12} \frac{E_2^{14} E_{10}^{35}}{E_1^{40} E_9^5} \\ &+ 916288433 \times 2^{29} \times 5^{14} q^{13} \frac{E_2^{15} E_{10}^{38}}{E_1^{43} E_5^{10}} \end{split}$$

$$+32357578059 \times 2^{29} \times 5^{13}q^{14} \frac{E_{2}^{10}E_{10}^{41}}{E_{1}^{46}E_{5}^{11}} \\ +2366343709 \times 2^{33} \times 5^{14}q^{15} \frac{E_{2}^{17}E_{10}^{44}}{E_{1}^{49}E_{5}^{12}} \\ +57370733 \times 2^{36} \times 5^{16}q^{16} \frac{E_{2}^{18}E_{10}^{47}}{E_{1}^{52}E_{5}^{13}} +22998577 \times 2^{37} \times 5^{17}q^{17} \frac{E_{2}^{19}E_{10}^{50}}{E_{1}^{55}E_{5}^{14}} \\ +30309607 \times 2^{36} \times 5^{18}q^{18} \frac{E_{2}^{20}E_{10}^{53}}{E_{1}^{58}E_{5}^{15}} +20313321 \times 2^{38} \times 5^{18}q^{19} \frac{E_{2}^{21}E_{10}^{56}}{E_{1}^{61}E_{5}^{16}} \\ +2181069 \times 2^{40} \times 5^{19}q^{20} \frac{E_{2}^{22}E_{10}^{59}}{E_{1}^{64}E_{5}^{17}} +18319 \times 2^{43} \times 5^{21}q^{21} \frac{E_{2}^{23}E_{10}^{62}}{E_{1}^{67}E_{5}^{18}} \\ +29 \times 2^{48} \times 5^{23}q^{22} \frac{E_{2}^{24}E_{10}^{65}}{E_{1}^{70}E_{5}^{19}} +521 \times 2^{46} \times 5^{22}q^{23} \frac{E_{2}^{25}E_{10}^{68}}{E_{1}^{73}E_{5}^{20}} \\ +37 \times 2^{49} \times 5^{22}q^{24} \frac{E_{2}^{26}E_{10}^{71}}{E_{7}^{76}E_{21}^{11}} +2^{50} \times 5^{23}q^{25} \frac{E_{2}^{27}E_{10}^{74}}{E_{7}^{79}E_{22}} +18818 \times 10^{28} \times 1$$

With the aid of the Theorem, we deduce the cases j = 1 and j = 2 of Rödseth's congruence and the following congruences:

$$Q(125n + 76) \equiv 0 \pmod{5},$$

 $Q(125n + 101) \equiv 0 \pmod{5},$
 $Q(625n + 276) \equiv 0 \pmod{25},$
 $Q(625n + 401) \equiv 0 \pmod{25}.$

Brief outline of the proof

Employing the 5-dissections of E_2 and $\frac{1}{E_1}$ in

$$\sum_{n=0}^{\infty} Q(n)q^{n} = \frac{1}{(q;q^{2})_{\infty}} = \frac{E_{2}}{E_{1}},$$

and extracting the terms involving q^{5n+1} , dividing both sides of the resulting identity by q, and then replacing q^5 by q, we find that

$$\sum_{n=0}^{\infty} Q(5n+1)q^n = \frac{E_5^5 E_{10}}{E_1^6} \left(\left(R(q)^3 R(q^2) + \frac{q^2}{R(q)^3 R(q^2)} \right) + q \left(-5 - 2 \left(\frac{R(q)^2}{R(q^2)} - \frac{R(q^2)}{R(q)^2} \right) \right) \right). \tag{2.6}$$

Now using certain modular relations between R(q) and $R(q^2)$, we can find some useful relations. For example, we have the following lemma.

Lemma

We have

$$\frac{R(q)^2}{R(q^2)} - \frac{R(q^2)}{R(q)^2} = 4q \frac{E_1 E_{10}^5}{E_2 E_5^5},$$

and

$$R(q)^3R(q^2) + \frac{q^2}{R(q)^3R(q^2)} = \frac{E_2E_5^5}{E_1E_{10}^5} + 4q^2\frac{E_1E_{10}^5}{E_2E_5^5} + 2q.$$

Using the above lemma in (2.6) and then employing the identities

$$\frac{E_5^5}{E_1^4 E_{10}^3} = \frac{E_5}{E_2^2 E_{10}} + 4q \frac{E_{10}^2}{E_1^3 E_2}$$

and

$$\frac{E_2^3 E_5^2}{E_1^2 E_{10}^2} = \frac{E_5^5}{E_1 E_{10}^3} + q \frac{E_{10}^2}{E_2},$$

we arrive at the generating function of Q(5n+1).

Next, we use identities involving R(q), $R(q^3)$ and $R(q^4)$ to find generating functions and congruences modulo 5 for some partition functions.

2-color partitions

Let $p_3(n)$ denote the number of 2-color partitions of n where one of the colors appears only in parts that are multiples of 3. For example, $p_3(6) = 16$, where the relevant partitions are (6), (6'), (5,1), (4,2), (4,1,1), (3,3), (3,3'), (3',3'), (3,2,1), (3',2,1), (3,1,1,1), (3',1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), and (1,1,1,1,1). Clearly, the generating function for $p_3(n)$ is given by

$$\sum_{n=0}^{\infty} p_3(n)q^n = \frac{1}{E_1 E_3}.$$

Ahmed, Baruah and Dastidar [*J. Number Theory*, **157** (2015) 184–198] proved that

$$p_3(25n+21) \equiv 0 \pmod{5}$$
.

We find the following exact generating function for $p_3(5n+1)$.

Theorem

For any nonnegative integer n, we have

$$\sum_{n=0}^{\infty} p_3(5n+1)q^n = \frac{E_5^5}{E_1^6 E_{15}} + 10q \frac{E_5^{10}}{E_1^7 E_3^5} + q^2 \frac{E_{15}^5}{E_3^6 E_5} + 45q^3 \frac{E_5^5 E_{15}^5}{E_1^6 E_3^6} - 90q^5 \frac{E_{15}^{10}}{E_1^5 E_3^7}.$$

We also deduce the congruences

$$p_3(25n+21) \equiv 0 \pmod{5},$$

$$\sum_{n=0}^{\infty} p_3(25n+21)q^n \equiv 10 \left(\frac{E_{25}}{E_1^2 E_3} + q^2 \frac{E_{75}}{E_1 E_3^2}\right) \pmod{25}.$$

t-core partitions

The Ferrers-Young diagram of a partition $\pi = (\pi_1, \pi_2, \dots, \pi_k)$ of n is an array of left-aligned nodes with π_i nodes in the i^{th} row. Let π'_j denote the number of nodes in column j in the Ferrers-Young diagram of π . The hook number of the (i,j) node in the Ferrers-Young diagram of π is denoted by $H(i,j) := \pi_i + \pi'_i - i - j + 1$.

A partition of n is called a t-core partition (or simply a t-core) if none of the hook numbers is a multiple of t.

For example, the Ferrers-Young diagram of the partition $\pi = (5, 2, 1)$ is given by:

The nodes (1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2) and (3,1) have hook numbers 7,5,3,2,1,3,1 and 1 respectively. Therefore π is a 4-core. Obviously, it is a t-core for $t \geq 8$.

If $a_t(n)$ denotes the number of partitions of n that are t-cores, then the generating function for $a_t(n)$ is given by

$$\sum_{n=0}^{\infty} a_t(n)q^n = \frac{E_t^t}{E_1}.$$

In particular, if $a_4(n)$ denotes the number 4-core partitions of n, then

$$\sum_{n=0}^{\infty} a_4(n) q^n = \frac{E_4^4}{E_1}.$$

By employing relations involving R(q) and $R(q^4)$, we find the following generating function involving $a_4(n)$.

Theorem

$$\begin{split} &\sum_{n=0}^{\infty} a_4(5n)q^n \\ &= \frac{E_4^4 E_{10}^{40}}{E_1^2 E_2^8 E_5^{15} E_{20}^{16}} - 3q \frac{E_4^2 E_{10}^{15}}{E_1^5 E_2^3 E_{20}^6} + 4q \frac{E_4^3 E_{10}^{30}}{E_1^3 E_2^6 E_5^{10} E_{20}^{11}} - 20q^2 \frac{E_4 E_5^5 E_{10}^5}{E_1^6 E_2 E_{20}} \\ &- 12q^2 \frac{E_4^2 E_{10}^{20}}{E_1^4 E_2^4 E_5^5 E_{20}^6} + 24q^2 \frac{E_4^3 E_{10}^{35}}{E_1^2 E_2^7 E_5^{15} E_{20}^{11}} - 27q^3 \frac{E_2 E_5^{10} E_{20}^4}{E_1^7} \\ &- 60q^3 \frac{E_4 E_{10}^{10}}{E_1^5 E_2^2 E_{20}} + 196q^3 \frac{E_4^2 E_{10}^{25}}{E_1^3 E_2^5 E_5^{10} E_{20}^6} - 83q^4 \frac{E_5^5 E_{20}^4}{E_1^6} \\ &+ 456q^4 \frac{E_4 E_{10}^{15}}{E_1^4 E_2^3 E_5^5 E_{20}} + 296q^5 \frac{E_{10}^5 E_{20}^4}{E_1^5 E_2} + 96q^5 \frac{E_4 E_{10}^{20}}{E_1^3 E_2^4 E_{10}^{10} E_{20}} \\ &+ 128q^6 \frac{E_2 E_5^5 E_{20}^9}{E_1^6 E_4 E_{10}^5} + 592q^6 \frac{E_{10}^{10} E_{20}^4}{E_1^4 E_2^2 E_5^5} + 512q^7 \frac{E_{20}^9}{E_1^5 E_4}. \end{split}$$

Lemma

If
$$x = R(q)$$
 and $y = R(q^2)$, then
$$xy^2 - \frac{q^2}{xy^2} = K,$$

$$\frac{x^2}{y} - \frac{y}{x^2} = \frac{4q}{K},$$

$$\frac{y^3}{x} + q^2 \frac{x}{y^3} = K + \frac{4q^2}{K} - 2q,$$

$$x^3y + \frac{q^2}{x^3y} = K + \frac{4q^2}{K} + 2q,$$

where $K = (E_2 E_5^5)/(E_1 E_{10}^5)$.

Some relations among R(q), $R(q^3)$, and E_n are stated in the following lemma.

Lemma

We have

$$\frac{R(q)^3}{R(q^3)} + \frac{R(q^3)}{R(q)^3} = 2 + 9q^2 \frac{E_1 E_{15}^5}{E_3 E_5^5},$$

$$R(q)R(q^3)^3 + \frac{q^4}{R(q)R(q^3)^3} = \frac{E_3 E_5^5}{E_1 E_{15}^5} - 2q^2$$

and

$$R(q)^2 R(q^3) - \frac{R(q^3)^2}{R(q)} + q^2 \frac{R(q)}{R(q^3)^2} - \frac{q^2}{R(q)^2 R(q^3)} = 3q.$$

A relation among R(q), $R(q^4)$, and E_n .

Lemma

We have

$$R(q)R(q^4) + \frac{q^2}{R(q)R(q^4)} = 2q + \frac{E_1E_4E_{10}^{10}}{E_2^2E_5^5E_{20}^5}.$$

A relation among R(q), $R(q^2)$, $R(q^4)$, and E_n .

Lemma

We have

$$\frac{R(q)^2R(q^2)}{R(q^4)} + \frac{R(q^4)}{R(q)^2R(q^2)} = 2 + 4q^2 \frac{E_2 E_{20}^5}{E_4 E_{10}^5}.$$

References I

- Andrews, G. E. and Berndt, B. C. Ramanujan's Lost Notebook, Part I. Springer, New York, 2005.
- 2 Andrews, G. E. and Berndt, B. C. *Ramanujan's Lost Notebook, Part V.* Springer, New York, 2018.
- Baruah, N. D. and Begum, N. M. Exact generating functions for the number of partitions into distinct parts. *International Journal of Number Theory*, 14:1995–2011, 2018.
- Berndt, B. C. Ramanujan's Notebooks, Part III. Springer, New York, 1991.
- Mathematical Society, Providence, RI, 2006.

References II

- 6 Chern, S. and Hirschhorn, M. D. Partitions into distinct parts modulo powers of 5. Annals of Combinatorics, Special volume in honor of George E. Andrews, to appear.
- 7 Chern, S. and Tang, D. Elementary proofs of congruences modulo 25 for broken *k*-diamond partitions. http://arxiv.org/abs/1807.01890v1 [math.CO] 5 Jul 2018.
- Gugg, C. Two modular equations for squares of the Rogers-Ramanujan functions with applications, *The Ramanujan Journal*, 18(2):183–207, 2009.
- **9** Ramanujan, S. Some properties of p(n), the number of partitions of n. Proceedings of the Cambridge Philosophical Society, 19:207–210, 1919.
- The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi, 1988. 18.5.8:10 pp., 2018.

THANK YOU