

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

Cálculo Diferencial e Integral II — Lista 8 Prof. Adriano Barbosa

(1) Calcule, caso exista, $\lim_{n \to \infty} x_n$, com x_n igual a: (a) $\frac{n^3 + 3n + 1}{4n^3 + 2}$ (b) $\sqrt{n+1} - \sqrt{n}$ (c) $\sin \frac{1}{n}$ (d) $\int_1^n \frac{1}{x} dx$

(a)
$$\frac{n^3 + 3n + 1}{4n^3 + 2}$$

(b)
$$\sqrt{n+1} - \sqrt{n}$$

(c) sen
$$\frac{1}{n}$$

(d)
$$\int_{1}^{n} \frac{1}{x} dx$$

(e)
$$\left(1 + \frac{2}{n}\right)^n$$
 (f) $\sum_{k=0}^n \frac{1}{2^k}$ (g) $\frac{\sin n}{n}$

(f)
$$\sum_{k=0}^{n} \frac{1}{2^k}$$

(g)
$$\frac{\sin n}{n}$$

(2) Calcule, se possível, a soma das séries:

(a)
$$\sum_{k=1}^{\infty} \frac{n^2}{5n^2 + 4}$$

(a)
$$\sum_{k=1}^{\infty} \frac{n^2}{5n^2 + 4}$$
 (b) $\sum_{k=0}^{\infty} e^{-k}$ (c) $1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \dots + \frac{1}{\sqrt[3]{n}} + \dots$

- (d) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ [Dica: escreva a fração como soma de frações parciais.]
- (e) $\sum_{k=0}^{\infty} \frac{1}{(4k+1)(4k+5)}$ [Dica: escreva a fração como soma de frações parciais.]
- (3) Determine se as séries geométricas são convergentes ou divergentes. Calcule a soma das séries convergentes.

(a)
$$4+3+\frac{9}{4}+\frac{27}{16}+\cdots$$

(b)
$$2+0.5+0.125+0.03125+\cdots$$

- (4) Escreva $0, \overline{9900} = 0,99009900...$ como uma fração.
- (5) Calcule a soma das séries

(a)
$$\left(\frac{1}{2} + \frac{1}{4}\right) + \left(\frac{1}{2^2} + \frac{1}{4^2}\right) + \left(\frac{1}{2^3} + \frac{1}{4^3}\right) + \cdots$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{1}{5^k} - \frac{1}{k(k+1)} \right)$$