

MODELO DE PREDICCIÓN DE VENTA A BORDO

Reto: Viva Aerobus

OBJETIVO

Crear un modelo predictivo (machine learning) para optimizar el abastecimiento de los productos de venta a bordo durante el vuelo con el fin de evitar la pérdida de ventas por poco inventario y disminuir las pérdidas de productos en excedente.

- 1.1 Modelo predictivo de pasajeros por vuelo
- 1.2 Modelo predictivo de cantidad de productos por vuelo

1 - 4 Semanas de pronóstico

BASES DE DATOS

Filghts TEC_Valid.CSV

Flight_ID

Aeronave

DepartureStation

ArrivalStation

Destination_Type

Origin_Type

STD

STA

Capacity

Passengers

Bookings

Sales TEC_Valid.CSV

Flight_ID
ProductType
ProductName
Quantity
TotalSales

PROPUESTA DE VARIABLES

Variables de predicción

Pasajeros

Capacity
Day_of_Week
Hour_of_Day
Month
Destination_Type
DepartureStation
ArrivalStation
Aeronave

Producto

Capacity
Month Day_of_Week
Hour of Day
Duration
Destination_Type
DepartureStation
ArrivalStation
Aeronave
Ocupancia

Nuevos indicadores

```
Occupancy =
Passengers/Capacity

Duration = STD - STA

Month = [1, ..., 12]

Day_of_Week = [0, ..., 6]

Hour of Day = [1, ..., 24]
```

METODOLOGÍA

PREPARACIÓN DATA

MODELACIÓN 1

MODELACIÓN 2

VALIDACIÓN 1

VALIDACIÓN 2

LIMPIEZA:

- VALORES NULL
- SOBREVENTA
- OUTLIERS

PREPARACIÓN DATA:

- NUEVOS INDICADORES
- SEGMENTACIÓN DE LA INFORMACIÓN

MODELOS:

- 1. PASAJEROS
- 2. PRODUCTOS

```
Variables:
['Capacity',
'Day_of_Week',
'Hour_of_Day',
'Month',
'Destination_Type',
'DepartureStation',
'ArrivalStation',
'Aeronave']
```

Raíz del error cuadrático medio (RMS): 20 pasajeros

MODELACIÓN DE CLIENTES

RANDOM FOREST

Parametros:

• n_estimators=100

Modelo:

RandomForestRegress

MODELACIÓN CANTIDAD DE PRODUCTOS

RANDOM FOREST

Modelo:

- MultiOutputRegressor
- RandomForestRegressor

Parametros:

- n_estimators=1
- n_jobs=-1

Variables:

['Capacity', 'Month',
'Day_of_Week', 'Hour of
Day', 'Duration',
'Destination_Type',
'DepartureStation',
'ArrivalStation',
'Aeronave', 'Ocupancia']

IMPACTO ()

- OPTIMIZACIÓN DE LA DEMANDA DE PRODUCTOS A BORDO.
- MEJORA DE LA OCUPACIÓN DE ASIENTOS MEDIANTE PREDICCIONES PRECISAS.
- INCREMENTO DE LA RENTABILIDAD Y LA SATISFACCIÓN DEL CLIENTE A TRAVÉS DE DECISIONES ESTRATÉGICAS BASADAS EN DATOS.

