

Dual Matched High Performance Operational Amplifiers

OP-04/OP-14

FEATURES

- Excellent DC Input Specifications
- Matched Vos and CMRR
- OP-14 Fits Standard 1458/1558 Sockets
- Internally Compensated
- Low Noise
- Low Drift
- Low Cost
- 0°C/+70°C and -55°C/+125°C Models
- Silicon-Nitride Passivation
- Models with MIL-STD-883 Class B Processing Available From Stock
- Available in Die Form

ORDERING INFORMATION †

T. = +25°C		PA	CKAGE			OPERATING		
Ŷ _{os} MAX (mV)		TO-100	CERDIP 8-PIN	CERDIP 14-PIN	PLASTIC 8-PIN			
0.75	OP14AJ*	OP04AK*	OP14AZ*	OP14AY*		MIL		
0.75	OP14EJ		OP14EZ	OP04EY	OP14EP	COM		
2.0	OP14J	OP04K*	OP14Z*	OP04AY	_	MiL		
2.0	OP14CJ	OP04CK	OP14CZ	OP04CY	OP14CP	XIND		
2.0	_	-	_	-	OP14CS	XIND		
5.0	•••	OP04BK	_	-	-	MIL		
5.0	OP14DJ	_	-		OP14DP	XIND		

For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

GENERAL DESCRIPTION

The OP-04/OP-14 series of dual general-purpose operational amplifiers provides significant improvements over industry-standard 747 and 1458/1558 (OP-14) types while maintaining

pin-for-pin compatibility, ease of application, and low cost. Key specifications, such as V_{OS}, I_{OS}, I_B, CMRR, PSRR and A_{VO}, are guaranteed over the full operating temperature range. Precision Monolithics' exclusive Silicon-Nitride "Triple Passivation" process reduces "popcorn noise". A thermally-symmetrical input stage design provides low TCV_{OS}, TCI_{OS}, and insensitivity to output load conditions. This series is ideal for upgrading existing designs where accuracy improvements are desired. For more stringent requirements, refer to the OP-200, OP-207, OP-220, or OP-221 dual-matched operational amplifier data sheets.

PIN CONNECTIONS

SIMPLIFIED SCHEMATIC (Each Amplifier)

Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

OP-04/OP-14

ABSOLUTE MAXIMUM RATINGS (Note 1)

ADDOCOTE MAXIMUM HATMOD (1006	5 ł)
Supply Voltage	±22V
Differential Input Voltage	±30V
Input Voltage	
Output Short-Circuit Duration	
Storage Temperature Range	
J, K, Y, and Z Packages	-65°C to +150°C
P Package	-65°C to +125°C
Lead Temperature Range (Soldering, 60 sec	:) 300°C
Operating Temperature Range	
A, Plain, B-Suffix	-55°C to +125°C
E-Suffix	
C, D-Suffix	40°C to +85°C
Junction Temperature (T _i)	-65°C to +150°C
j ,	

PACKAGE TYPE	Θ _{IA} (Note 2)	e _{ic}	UNITS
TO-99 (J)	150	18	°C/W
TO-100 (K)	142	21	°C/W
8-Pin Hermetic DIP (Z)	148	16	°C/W
14-Pin Hermetic DIP (Y)	108	16	°C/W
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SO (S)	158	43	°C/W

NOTES:

- Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.
- O_{jA} is specified for worst case mounting conditions, i.e., O_{jA} is specified for device in socket for TO, CerDIP, and P-DIP packages; O_{jA} is specified for device soldered to printed circuit board for SO package.

MATCHING CHARACTERISTICS at $V_S = \pm\,15V$, $T_A = 25^{\circ}\,C$, unless otherwise noted.

			• • • •	OP-04A OP-04E OP-14A OP-14E			OP-04 OP-04C OP-14 OP-14C			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Input Offset Voltage Match	ΔV _{OS}	R _S ≤20kΩ	Halles	0.3	1		1	2	mV	
Common-Mode Rejection Ratio Metch	∆CMRR	V _{CM} = ± 10V, R _S ≤ 100∩	94	106		94	106	<u> </u>	dB	

MATCHING CHARACTERISTICS at $V_S = \pm 15 \text{V}$, $-55^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$ for OP-04A, OP-14A, OP-04 and OP-14, $0^{\circ}\text{C} \le T_A \le +70^{\circ}\text{C}$ for OP-04E, OP-14E, $-40^{\circ}\text{C} \le T_A \le +85^{\circ}\text{C}$ for OP-04C and OP-14C, unless otherwise noted.

		-		P-04E P-14E	OP-				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage Match	ΔV _{OS}	R _S ≤20kΩ		0.5	1.5	_	1.5	3	mV
Common-Mode Rejection Ratio Match	∆CMRR	$V_{CM} = \pm 10V, R_S \le 100\Omega$	90	100	_	90	100		dB

ELECTRICAL CHARACTERISTICS (Each Amplifier) at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C, unless otherwise noted.

			OP-	04A/OF	-14A	OP	-04/OP	-14	()P-04	}	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	V _{QS}	R _S ≤20kΩ	_	0.3	0.75		1	2		3	5	m۷
Input Offset Current	los		_	0.5	5	_	1	5		5	25	nA
Input Bias Current	l _B			18	50	_	20	75	******	30	100	nA
Input Resistance — Differential-Mode	R _{IN}	(Note 3)	2.0	7.5	_	1.35	7		1	5	Park.	МΩ
Input Voltage Range	IVR		±10	±13	_	±10	±13		±10	±13		v
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±10V R _S ≤ 20kΩ	85	100	*****	80	95	10/04	70	85	_	dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V$ to $\pm 20V$ $R_S \le 20k\Omega$	_	10	60		30	100		100	150	μV/V
Output Voltage Swing	V _O	R _L ≥2kΩ	±12	±13	-	±12	±13	_	±12	±13	_	V

ELECTRICAL CHARACTERISTICS (Each Amplifler) at $V_S = \pm 15V$, $T_A = 25^{\circ}$ C, unless otherwise noted. (Continued)

			OP-	04A/OF	P-14A	OP	-04/OP	-14	OP-04B			
PARAMETER	SYMBOL	COMDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Large-Signal Voltage Gain	Avo	R _L ≥2kΩ V _O =±10V	100	250	_	50	200		25	200	_	V/mV
Power Consumption (Note 2)	P _d	V _O = 0V	***	50	90	_	50	90	_	50	90	mW
Input Noise Voltage	e _{np-p}	0.1Hz to 10Hz		0.65	_	-	0.65	_		0.65		μV _{p-p}
Input Noise Voltage Density	en	f _O = 10Hz f _O = 100Hz f _O = 1000Hz	_	25 22 21			25 22 21			25 22 21	<u>-</u>	nV/√Hz
Input Noise Current	I _{np-p}	0.1Hz to 10Hz		12.8		_	12.8	_	_	12.8		рА _{р-р}
Input Noise Current Density	ì _n	$f_O = 10Hz$ $f_O = 100Hz$ $f_O = 1000Hz$	-	1.4 0.7 0.4	<u> </u>		1.4 0.7 0.4			1.4 0.7 0.4	_	pA√√Hz
Channel Separation	cs		100			100			80		*****	₫B
Slew Rate (Note 1)	SR	$R_{\perp} = 2k\Omega$, $C_{L} = 100pF$	0.25	0.5		0.25	0.5	18-18-1	0.25	0.5		V/µs
Large-Signal Bandwidth (Notes 1, 5)		V _O = 20V _{p-p}	4	8	_	4	8		4	8		kHz
Closed-Loop Bandwidth (Note 4)	BW	A _{VCL} = +1.0	1.0	1.3	_	1.0	1.3		1.0	1.3		MHz
Risetime (Note 1)	t _r	$A_V = +1$, $V_{1N} = 50 \text{mV}_{p-p}$ $R_L = 2k\Omega$, $C_L = 50 \text{pF}$	_	260	350	_	260	350	_	260	350	ns
Overshoot (Note 1)	os	$A_V = +1, V_{ N} = 50 \text{mV}_{p-p}$ $R_1 = 2 \text{k}\Omega, C_1 = 50 \text{pF}$	_	5	10		5	10	_	5	10	%

ELECTRICAL CHARACTERISTICS (Each Amplifier) at $V_S = \pm 15 V$, $-55^{\circ} C \le T_A \le +125^{\circ} C$, unless otherwise noted.

			OP-	D4A/OF	P-14A	OP	-04/OF	-14		OP-041	3	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	R _S ≤ 20kΩ		0.4	1.5		1.2	3		3	6	mV
Average Input Offset Voltage Drift (Note 1)	TCV _{OS}	R _S = 50Ω	_	2	8	_	4	10	******	8	20	μV/° C
Input Offset Current	os		_	1	10		2	10		10	50	пA
Average Input Offset Current Drift (Note 1)	TCIOS		_	7.5	120		15	250	_	70	500	pA/°C
Input Bias Current	l _B			30	60	-	40	100	_	50	200	nA
Input Voltage Range	IVR		±10	±13	*****	± 10	±13		± 10	±13		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10V$ $R_S \le 20k\Omega$	80	100	_	80	95		70	85		dB
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V$ to $\pm 20V$ $R_S \le 20k\Omega$		10	60		30	100		100	150	μV/V
Large-Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _O = ±10V	50	100		25	60		25	60	_	V/mV
Output Voltage Swing	v _o	R _L ≥ 2kΩ	±12	±13	_	±12	±13		± 10	±13	****	V

NOTES:

- Sample tested.
- 2. Power dissipation per amplifier.
- 3. Guaranteed by input bias current.
- 4. Guaranteed by maximum risetime.
- 5. Guaranteed by minimum siew rate.

OP-04/OP-14 **ELECTRICAL CHARACTERISTICS (Each Amplifier)** at $V_S = \pm 15 V$, $T_A = 25 ^{\circ} C$, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-	04E/OI TYP	P-14E MAX	OP-(O4C/OF	-14C MAX	MIN	OP-14	D MAX	UNITS
Input Offset Voltage	V _{OS}	R _S ≤20kΩ		0.3	0.75		1	2	_	3	5	mV
Input Offset Current	los		*****	0.5	5	www	1	5		5	25	nA
Input Bias Current	l _B	. De la constitue de la consti		18	50	_	20	75		30	100	nA
Input Resistance — Differential*Mode	RIN	(Note 3)	2.0	7.5		1.35	7	_	1	5		MΩ
Input Voltage Range	IVR		±10	± 13		±10	±13	_	± 10	±13		٧
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10V$ $R_S \le 20k\Omega$. 85	100		80	95		70	85	_	dB
Power Supply Rejection Ratio	PSRR	V _S = ±5V to ±20V R _S ≤ 20kΩ	_	10	60		30	100		100	150	μ۷/۷
Output Voltage Swing	Vo	Fi _L ≥ 2kΩ	±12	±13		±12	±13	_	±12	±13	_	٧
Large-Signal Voltage Gain	Avo	R _L ≥ 2kΩ V _O = ±10V	100	250	_	50	200	_	25	150	_	V/mV
Power Consumption (Note 2)	Pd	V _O = 0V		50	90		50	90		50	90	mW
Input Noise Voltage	ө _{пр-р}	0.1Hz to 10Hz		0.65		_	0.65			0.85	_	μV _{p-p}
Input Noise Voltage Density	e _n	f _O = 10Hz f _O = 100Hz f _O = 1000Hz		25 22 21			25 22 21		=	25 22 21	_	nV/√Hz
Input Noise Current	i _{np-p}	0.1Hz to 10Hz	_	12.8			12.8			12.8		pA _{p-p}
Input Noise Current Density	in	f _O = 10Hz f _O = 100Hz f _O = 1000Hz		1.4 0.7 0.4		******	1.4 0.7 0.4	<u>-</u>		1.4 0.7 0.4	_	pA/√Hz
Channel Separation	cs		100		-	100	_	*****	80		_	₫B
Siew Rate (Note 1)	SR	R _L = 2kΩ, C _L = 100pF	0.25	0.5		0.25	0.5		0.25	0.5	_	V/μs
Large-Signal Bandwidth (Notes 1, 5)		V _O = 20V _{p-p}	4	8		4	8		4	8	•	kHz
Closed-Loop Bandwidth (Note 4)	BW	Avc. = +1	0.8	1.3	-	8,0	1,3	_	0.8	1.3		MHz
Risetime (Note 1)	t _r	$A_V = +1$, $V_{IN} = 50mV$ $R_L = 2k\Omega$, $C_L = 50pF$	_	260	350		260	350		260	350	វាទ
Overshoot (Note 1)	os	$A_V = +1$, $V_{PN} = 50 \text{mV}$ $R_L = 2k\Omega$, $C_L = 50 \text{pF}$	_	5	10	_	5	10		5	10	%
NUTES.	~~~											

NOTES:

- 1. Sample tested.
- 2. Power dissipation per amplifier.
- Guaranteed by input bias current.
 Guaranteed by maximum risetime.
- 5. Guaranteed by minimum siew rate.

ELECTRICAL CHARACTERISTICS (Each Amplifier) at $V_S = \pm 15 V$, $0^{\circ}C \le T_A \le +70^{\circ}C$ for E, $-40^{\circ}C$ to $+85^{\circ}$ for C and D, unless otherwise noted.

			OP-	04E/OF)-14E	OP-0	OP-04C/OP-14C			OP-140)	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	v os	$R_S \le 20k\Omega$		0.4	1.5	_	1.2	3		3	6	mV
Average Input Offset Voltage Drift (Note 1)	TCV _{OS}	R _S = 50Ω	*****	2	8		4	10		8	20	μV/°C
Input Offset Current	los		_	1	10	_	2	10	*******	10	50	nA
Average Input Offset Current Drift (Note 1)	TCIOS	4	_	7.5	120	-	15	250	_	70	500	pA/°C
Input Bias Current	i _B			30	60	_	40	100		50	200	nA
Input Voltage Range	IVR		±10	±13		± 10	±13		± 10	±13	_	٧
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 10V$ $R_S \le 20k\Omega$	80	100		80	95	****	70	85	*****	₫B
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5V \text{ to } \pm 20V$ $R_S \le 20k\Omega$	_	10	60		30	100	_	100	150	μV/V
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$ $V_Q = \pm 10V$	50	100	_	25	60	_	15	25	When	V/mV
Output Voltage Swing	ν _o	R _€ ≥ 2kΩ	±12	±13	-	±12	±13	*******	±10	±13		٧

NOTES:

1. Sample tested.

BURN-IN CIRCUIT (1/2 of OP-04, OP-14)

OFFSET ADJUST CIRCUIT

OP-04/OP-14

DICE CHARACTERISTICS

OP-14

OP-04

DIE SIZE 0.080×0.050 Inch, 4000 sq. mils (2.03 × 1.27 mm, 2.58 sq. mm)

- 1. INVERTING INPUT (A) 2. NONINVERTING INPUT (A)
- 3. BALANCE (A)

- 5. BALANCE (B) 8. NOMINVERTING INPUT (B)
- 10. OUTPUT (B) 11. V+ 12. OUTPUT (A)
- 13. V+ 14. BALANCE (A)

S. BALANCE (B)

7. INVERTING INPUT (B)

NOTE: 9, 11 and 13 are internally connected.

- 1. INVERTING INPUT (A) 2. NONINVERTING INPÚT (A)
- 3. BALANCE (A)
- 4. V-
- 5. BALANCE (B) 6. NONINVERTING INPUT (B) 7. INVERTING INPUT (B)
- 9. V+ (8)
- 10. OUTPUT (B)
 11. NO CONNECTIONS
- 12. OUTPUT (A)
- 13. V+ (A)
- 14. BALANCE (A)

WAFER TEST LIMITS at $V_S = \pm 15V$, $T_A = +25$ °C, unless otherwise noted.

SYMBÓL	CONDITIONS	OP-04N OP-14N LIMIT	OP-14G LIMIT	UNITS
Vos	R _S ≤ 20kΩ	0.75	2	mV MAX
۵۷ _{os}	R _S ≤ 20kΩ	1	2	mV MAX
los		5	5	nA MAX
l _B		50	75	nA MAX
IVR		±10	±10	V MIN
CMRR	V _{CM} =±10V R _S ≤20kΩ	85	80	da Min
∆CMRR	V _{CM} =±10V R _S ≤100Ω	94	94	dB MIN
PSRR	$V_S = \pm 5V$ to $\pm 20V$ $R_S \le 20k\Omega$	60	100	μV/V MAX
V	R ₁ ≥ 10kΩ	±12	±12	V MIN
U	R _L ≥ 2kΩ	±12	±12	
A _{vo}	$R_L \ge 2k\Omega$ $V_O = \pm 10V$	100	50	V/mV MIN
P _d	V ₀ = 0	170	170	mW MAX
CS		100	100	dB MiN
	V _{OS} ΔV _{OS} los l _B IVR CMRR ΔCMRR PSRR V _O A _{VO} P _d	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

NOTE:

Electrical tests are performed at water probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualifications through sample lot assembly and testing,

TYPICAL ELECTRICAL CHARACTERISTICS at V_s = ±15V, T_A = +25°C, unless otherwise noted.

PARAMETER	SYMBOL	CONDITIONS	OP-04N OP-14N LIMIT	OP-04G OP-14G LIMIT	UNITS
Aisetime	1,	$A_V = +1, V_{+N} = 50 \text{mV},$ $R_L = 2k\Omega, C_L = 50 \text{pF}$	200	200	ns
Overshoot	os	$A_V = +1, V_{1N} = 50 \text{mV},$ $R_L = 2k\Omega, C_L = 50 \text{pF}$	5	5	%
Slew Rate	SR	$R_L = 2k\Omega$, $C_L = 100pF$	0.25	0.25	V/µs

TYPICAL PERFORMANCE CHARACTERISTICS (Each Ampillier)

OPEN-LOOP GAIN vs TEMPERATURE

OPEN-LOOP
FREQUENCY RESPONSE

CLOSED-LOOP RESPONSE
FOR VARIOUS
GAIN CONFIGURATIONS

MAXIMUM UNDISTORTED
OUTPUT vs FREQUENCY

OUTPUT VOLTAGE VS LOAD RESISTANCE

INPUT RESISTANCE VS TEMPERATURE

POWER CONSUMPTION VS POWER SUPPLY

POWER CONSUMPTION vs TEMPERATURE

OUTPUT SHORT-CIRCUIT
CURRENT vs TIME

OP-04/OP-14

TYPICAL PERFORMANCE CHARACTERISTICS (Each Ampilifier)

UNTRIMMED OFFSET VOLTAGE vs TEMPERATURE

INPUT OFFSET CURRENT vs TEMPERATURE

INPUT BIAS CURRENT VS TEMPERATURE

OPEN-LOOP GAIN VS
POWER SUPPLY VOLTAGE

PSRR VS FREQUENCY

CMRR vs FREQUENCY

INPUT SPOT NOISE
VOLTAGE VS FREQUENCY

INPUT SPOT NOISE
CURRENT VS FREQUENCY

INPUT WIDEBAND NOISE vs BANDWIDTH (0.1Hz TO FREQUENCY INDICATED)

