

Grades

davidcorzo@ufm.edu (<u>Sign Out</u>)

Communication

Home My Assignments
Calendar

My eBooks

INSTRUCTOR

Christiaan Ketelaar

Universidad Francisco Marroquin

Problemas Práctica Examen Final (Homework)

DECEMBER 21 11:59 PM CST

Request Extension

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

1.

Your last submission is used for your score.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^1 \frac{x^3 + 3x}{x^4 + 6x^2 + 3} \, dx$$

2. **-/0 points** SCalcET8 7.4.002.

My Notes

Ask Your Teacher

Write out the form of the partial fraction decomposition of the function (as in this <u>example</u>). Do not determine the numerical values of the coefficients.

			//

(b)
$$\frac{x^2}{x^2 + x + 20}$$

	//

3. **-/0 points** SCalcET8 7.4.004.

Ask Your Teacher

Write out the form of the partial fraction decomposition of the function (as in this <u>example</u>). Do not determine the numerical values of the coefficients.

(a)
$$\frac{x^4 - 2x^3 + x^2 + 5x - 4}{x^2 - 2x + 1}$$

(b)
$$\frac{x^2 - 1}{x^3 + x^2 + x}$$

//

4. **-/0 points** SCalcET8 7.4.009.

My Notes

Ask Your Teacher

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$\int \frac{26x + 4}{(5x + 1)(x - 1)} \, dx$$

5. **-/0 points** SCalcET8 7.4.012.

Ask Your Teacher

Evaluate the integral.

$$\int_0^1 \frac{x - 6}{x^2 - 6x + 8} \, dx$$

6. **-/0 points** SCalcET8 7.4.014.

Ask Your Teacher

Evaluate the integral. (Assume $a \neq b$. Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$\int \frac{7}{(x+a)(x+b)} \, dx$$

7. **-/0 points** SCalcET8 7.4.017.

Ask Your Teacher

Evaluate the integral.

$$\int_{1}^{2} \frac{4y^{2} - 7y - 12}{y(y+2)(y-3)} \, dy$$

8. **-/0 points** SCalcET8 7.4.023.MI.

Ask Your Teacher

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$\int \frac{5}{(x-1)(x^2+4)} dx$$

9. **-/0 points** SCalcET8 7.4.024.

My Notes

Ask Your Teacher

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$\int \frac{x^2 - x + 12}{x^3 + 2x} \, dx$$

10. **-/0 points**

SCalcET8 7.4.023.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Evaluate the integral.

$$\int \frac{82}{(x-1)(x^2+81)} \, dx$$

11. **-/0 points** SCalcET8 5.4.011.

My Notes

Ask Your Teacher

Find the general indefinite integral. (Use *C* for the constant of integration. Remember to use absolute values where appropriate.)

$$\int \frac{9 + \sqrt{x} + x}{x} \, dx$$

12. **-/0 points** SCalcET8 5.4.016.

Ask Your Teacher

Find the general indefinite integral. (Use *C* for the constant of integration.)

$$\int \sec(t)(5\sec(t) + 4\tan(t)) dt$$

13. **-/0 points** SCalcET8 5.4.027.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^\pi (7e^x + 7\sin(x))dx$$

14. **-/0 points** SCalcET8 5.4.037.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^{\pi/4} \frac{6 + 7\cos^2(\theta)}{\cos^2(\theta)} d\theta$$

15. **-/0 points** SCalcET8 5.4.038.MI.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^{\pi/3} \frac{7 \sin(\theta) + 7 \sin(\theta) \tan^2(\theta)}{\sec^2(\theta)} d\theta$$

-/0 points 16.

SCalcET8 5.5.050.

- My Notes

Ask Your Teacher

Evaluate the indefinite integral. (Use *C* for the constant of integration.)

$$\int \tan^6(\theta) \sec^2(\theta) \ d\theta$$

Illustrate and check that your answer is reasonable by graphing both the function and its antiderivative (take C = 0).

17. **-/0 points** SCalcET8 5.5.059.

My Notes

Ask Your Teacher

Evaluate the definite integral.

$$\int_{1}^{2} \frac{e^{1/x^{3}}}{x^{4}} dx$$

-/0 points SCalcET8 5.5.069. 18.

My Notes

Ask Your Teacher

Evaluate the definite integral.

$$\int_{e^{16}}^{e^{36}} \frac{dx}{x\sqrt{\ln(x)}}$$

SCalcET8 5.5.077. -/0 points 19.

My Notes Ask Your Teacher

Evaluate $\int_{-4}^{4} (x+2)\sqrt{16-x^2} dx$ by writing it as a sum of two integrals and interpreting one of those integrals in terms of an area.

-/0 points SCalcET8 5.4.041. 20.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^{\sqrt{2}/2} \frac{dr}{\sqrt{1 - r^2}}$$

21. **-/0 points** SCalcET8 5.4.049.

My Notes

Ask Your Teacher

The area of the region that lies to the right of the *y*-axis and to the left of the parabola $x = 8y - y^2$ (the shaded region in the figure) is given by the integral $\int_0^8 (8y - y^2) \, dy$. (Turn your head clockwise and think of the region as lying below the curve $x = 8y - y^2$ from y = 0 to y = 8.) Find the area of the region.

22. **-/0 points** SCalcET8 5.4.050.

My Notes

Ask Your Teacher

The boundaries of the shaded region are the *y*-axis, the line y = 10, and the curve $y = 10\sqrt[4]{x}$. Find the area of this region by writing *x* as a function of *y* and integrating with respect to *y*.

23. **-/0 points** SCalcET8 5.5.091.

My Notes

Ask Your Teacher

If a and b are positive numbers, show that

$$\int_0^1 x^a (1-x)^b dx = \int_0^1 x^b (1-x)^a dx$$

$$u = 1-x. \text{ Then } x =$$
Let and
$$du = ? \quad \blacksquare$$

Use this substitution to rewrite the integral in terms of u.

Then replacing u with x results in the integral

$$\int_{0}^{1} \frac{1}{(1-x)^{a}dx}$$

24. **-/0 points** SCalcET8 5.5.505.XP.MI.

My Notes

Ask Your Teacher

Evaluate the integral by making the given substitution. (Use C for the constant of integration.)

$$\int \frac{\sec^2(1/x^7)}{x^8} dx, \quad u = 1/x^7$$

	//

25. **-/0 points** SCalcET8 6.1.004.

My Notes

Ask Your Teacher

Find the area of the shaded region.

^{26.} **-/0 points** SCalcET8 6.1.009.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle.

$$y = 4/x$$
, $y = 4/x^2$, $x = 5$

Find the area of the region.

		//
		/.

27. **-/0 points** SCalcET8 6.1.012.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle.

$$6x + y^2 = 16$$
, $x = y$

Find the area of the region.

		//

^{28.} -/0 points SCalcET8 6.1.019.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves.

$$y = 6 \cos(\pi x), \quad y = 12x^2 - 3$$

Find its area.

29. **-/0 points** SCalcET8 6.1.024.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves.

$$y = 7\cos(6x), \quad y = 7 - 7\cos(6x), \quad 0 \le x \le \pi/6$$

Find its area.

/	//

30. **-/0 points** SCalcET8 6.1.027.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves.

$$y = 4/x$$
, $y = 16x$, $y = \frac{1}{4}x$, $x > 0$

Find its area.

L			

31. **-/0 points** SCalcET8 6.1.035.

My Notes

Ask Your Teacher

Evaluate the integral and interpret it as the area of a region.

$$\int_0^{\pi/2} |4 \sin(x) - 4 \cos(2x)| \ dx$$

Sketch the region.

32. **-/0 points**

SCalcET8 6.1.507.XP.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves.

$$y = \sqrt{x}, \quad y = \frac{1}{2}x, \quad x = 9$$

1		
-ınd	ITC	area

33. **-/0 points** SCalcET8 6.1.508.XP.

My Notes

Ask Your Teacher

Sketch the region enclosed by the given curves.

$$y = |4x|, \quad y = x^2 - 5$$

Find its area.

34. **-/0 points** SCalcET8 6.2.001.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = x + 1$$
, $y = 0$, $x = 0$, $x = 2$; about the x-axis

Sketch the region.

Sketch the solid, and a typical disk or washer.

35. **-/0 points** SCalcET8 6.2.006.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$3x = y^2$$
, $x = 0$, $y = 6$; about the y-axis

<i>V</i> =		
		//

SCalcET8 6.2.011.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = x^2$$
, $x = y^2$; about $y = 1$

37. **-/0 points** SCalcET8 6.2.014.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = 6 \sin(x), y = 6 \cos(x), 0 \le x \le \pi/4;$$
 about $y = -1$

V =

SCalcET8 6.2.015.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = 8x^3$$
, $y = 0$, $x = 1$; about $x = 2$

SCalcET8 6.2.018.

My Notes

Ask Your Teacher

Find the volume *V* of the solid obtained by rotating the region bounded by the given curves about the specified line.

$$y = x$$
, $y = 0$, $x = 2$, $x = 7$; about $x = 1$

V =

40. **-/0 points** SCalcET8 6.2.023.

My Notes

Ask Your Teacher

Refer to the figure and find the volume generated by rotating the given region about the specified line.

41. **-/0 points** SCalcET8 6.2.049.

My Notes

Ask Your Teacher

Find the volume *V* of the described solid *S*.

A cap of a sphere with radius r and height h

SCalcET8 6.3.002.

My Notes

Ask Your Teacher

Let S be the solid obtained by rotating the region shown in the figure about the y-axis. (Assume a = 9 and b = 3.)

Sketch a typical approximating shell.

Find its circumference c and height h.

$$c(x) =$$

$$h(x) =$$

Use shells to find the volume *V* of *S*.

/ =		
		//

43. **-/0 points** SCalcE

SCalcET8 6.3.003.

Ask Your Teacher

Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis.

$$y = 2\sqrt[3]{x}, \quad y = 0, \quad x = 1$$

-/0 points 44.

SCalcET8 6.3.005.MI.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$y = 13e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

V =

Sketch the region and a typical shell.

45. **-/0 points** SCalcET8 6.3.005.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the y-axis.

$$y = 10e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

Sketch the region and a typical shell.

SCalcET8 6.3.008.

My Notes

Ask Your Teacher

Let V be the volume of the solid obtained by rotating about the y-axis the region bounded $y = \sqrt{9x}$ and $y = \frac{x^2}{9}$. Find V by slicing.

V =

Draw a diagram to explain your method.

Find V by cylindrical shells.

Draw a diagram to explain your method.

47. **-/0 points** SCalcET8 6.3.012.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the x-axis.

$$x = -3y^2 + 9y - 6$$
, $x = 0$

<i>V</i> =		
		//
		/.

SCalcET8 6.3.013.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume V of the solid obtained by rotating the region bounded by the given curves about the x-axis.

$$x = 3 + (y - 7)^2$$
, $x = 19$

V =

Sketch the region and a typical shell.

49. **-/0 points** SCalcET8 6.3.029.

My Notes

Ask Your Teacher

The integral represents the volume of a solid. Describe the solid.

$$\int_0^3 2\pi x^5 dx$$

- The solid is obtained by rotating the region $0 \le y \le x^4$, $0 \le x \le 3$ about the y-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le x^5$, $0 \le x \le 3$ about the y-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le x^5$, $0 \le x \le 3$ about the x-axis using cylindrical shells.
- O The solid is obtained by rotating the region $0 \le y \le x^4$, $0 \le x \le 3$ about the x-axis using cylindrical shells.
- The solid is obtained by rotating the region $0 \le y \le 2\pi$, $0 \le x^5 \le 3$ about the y-axis using cylindrical shells.

50. **-/0 points** SCalcET8 6.3.039.

Ask Your Teacher

The region bounded by the given curves is rotated about the specified axis. Find the volume of the resulting solid by any method.

$$y^2 - x^2 = 4$$
, $y = 3$; about the *x*-axis

51. **-/0 points** SCalcET8 6.5.001.

Ask Your Teacher

Find the average value f_{ave} of the function f on the given interval.

$$f(x) = 3x^2 + 6x$$
, $[-1, 3]$

-/0 points SCalcET8 6.5.004.

My Notes

Ask Your Teacher

Find the average value g_{ave} of the function g on the given interval.

$$g(t) = \frac{t}{\sqrt{7 + t^2}}, [3, 7]$$

53.

-/0 points SCalcET8 6.5.005.

Ask Your Teacher

Find the average value f_{ave} of the function f on the given interval.

$$f(t) = e^{\sin(t)} \cos(t), \quad [0, \pi/2]$$

54. **-/0 points** So

SCalcET8 6.5.006.

Ask Your Teacher

Find the average value f_{ave} of the function f on the given interval.

$$f(x) = x^2/(x^3 + 14)^2$$
, [-2, 2]

55. **-/0 points** SCalcET8 6.5.007.

My Notes

Ask Your Teacher

Find the average value h_{ave} of the function h on the given interval.

$$h(x) = 9 \cos^4(x) \sin(x), [0, \pi]$$

56. **-/0 points** SCalcET8 6.5.008.

Ask Your Teacher

Find the average value h_{ave} of the function h on the given interval.

$$h(u) = (\ln(u))/u, [1, 5]$$

-/0 points SCalcET8 6.5.502.XP.

My Notes

Ask Your Teacher

Find the average value f_{ave} of the function f on the given interval.

$$f(x) = 2 \sin(2x), [-\pi, \pi]$$

$$f_{\text{ave}} =$$

-/0 points 58.

SCalcET8 7.1.003.MI.

My Notes

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int x \cos(8x) dx$$

-/0 points 59.

SCalcET8 7.1.006.

Ask Your Teacher

Evaluate the integral. (Use C for the constant of integration.)

$$\int (x - 9)\sin(\pi x) dx$$

60.

-/0 points

SCalcET8 7.1.007.

Ask Your Teacher

$$\int (x^2 + 2x) \cos(x) dx$$

61. **-/0 points** SCalcET8 7.1.010.

My Notes

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int \ln(\sqrt{x}) \ dx$$

62. **-/0 points**

SCalcET8 7.1.011.

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int t^8 \ln(t) dt$$

	1
//	1
	,
/	/

63. **-/0 points**

SCalcET8 7.1.015.

My Notes

Ask Your Teacher

$$\int (\ln(x))^2 dx$$

64. **-/0 points** SCalcET8 7.1.017.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Evaluate the integral.

$$\int e^{5\theta} \sin(6\theta) d\theta$$

65. **-/0 points**

SCalcET8 7.1.019.

My Notes

Ask Your Teacher

$$\int 5z^3 e^z dz$$

66. **-/0 points** SCalcET8 7.1.021.

My Notes

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int \frac{17xe^{2x}}{(1+2x)^2} \, dx$$

67. **-/0 points** SCalcET8 7.1.030.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_{1}^{\sqrt{3}} 7 \arctan\left(\frac{1}{x}\right) dx$$

-/0 points SCalcET8 7.1.034.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^1 \frac{r^3}{\sqrt{16 + r^2}} \, dr$$

-/0 points SCalcET8 7.1.039. 69.

Ask Your Teacher

First make a substitution and then use integration by parts to evaluate the integral.

$$\int_{\sqrt{\pi/2}}^{\sqrt{\pi}} 3\theta^3 \cos(\theta^2) \ d\theta$$

70. **-/0 points** SCalcET8 7.1.061.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the curves about the given axis.

$$y = \cos(\pi x/4)$$
, $y = 0$, $0 \le x \le 2$; about the y-axis

71. **-/0 points** SCalcET8 7.1.062.

My Notes

Ask Your Teacher

Use the method of cylindrical shells to find the volume *V* generated by rotating the region bounded by the curves about the given axis.

$$y = 4e^{x}$$
, $y = 4e^{-x}$, $x = 1$; about the y-axis

SCalcET8 7.2.052.

My Notes

Ask Your Teacher

Evaluate the indefinite integral. (Use *C* for the constant of integration.)

$$\int 5 \sin^5(x) \cos^3(x) dx$$

//

Illustrate, and check that your answer is reasonable, by graphing both the integrand f and its antiderivative F (taking C = 0).

SCalcET8 7.2.054.

My Notes

Ask Your Teacher

Evaluate the indefinite integral. (Use *C* for the constant of integration.)

$$\int \sec^4 \left(\frac{1}{2}x\right) dx$$

Illustrate, and check that your answer is reasonable, by graphing both the integrand f and its antiderivative F (taking C = 0).

-20

74. **-/0 points** SCalcET8 7.2.056.

- My Notes
- **Ask Your Teacher**

Evaluate $\lim_{x \to \infty} \int \sin(x) \cos(x) dx$ by four methods.

(a) the substitution $u = \cos(x)$

$$\int_{4}^{11} -\cos(2x) + C$$

- $\int \frac{11}{2} \sin^2(x) + C$
- $\bigcirc \frac{11}{2} \cos^2(x) + C$
- $\int_{4^{-}}^{11} \sin(x) \cos(x) + C$
- $\int_{4}^{11} -\sin(2x) + C$
- (b) the substitution $u = \sin(x)$

$$\bigcirc \frac{11}{4} - \sin(2x) + C$$

$$\int_{4}^{11} -\cos(2x) + C$$

$$\int_{4}^{11} -\sin(x)\cos(x) + C$$

$$\int_{2}^{11} -\cos^2(x) + C$$

$$\int_{2}^{11} -\sin^{2}(x) + C$$

(c) the identity sin(2x) = 2 sin(x) cos(x)

$$\bigcirc \frac{11}{4} - \cos(2x) + C$$

$$\int_{2}^{11} -\cos^2(x) + C$$

$$\bigcirc \frac{11}{4} - \sin(x) \cos(x) + C$$

$$\int_{4}^{11} -\sin(2x) + C$$

$$\bigcirc \frac{11}{2} - \sin^2(x) + C$$

(d) integration by parts

$$\bigcirc \frac{11}{4} - \sin(2x) + C$$

$$\int_{4}^{11} -\cos(2x) + C$$

$$\int_{2}^{11} -\sin^{2}(x) + C$$

$$\bigcirc \frac{11}{4} - \sin(x) \cos(x) + C$$

$$\int_{2}^{11} -\cos^{2}(x) + C$$

75. **-/0 points** SCalcET8 7.2.061.

My Notes

Ask Your Teacher

Find the volume *V* obtained by rotating the region bounded by the curves about the given axis.

$$y = \sin(x), y = 0, \pi/2 \le x \le \pi$$
; about the x-axis

-/0 points SCalcET8 7.2.064. 76.

My Notes Ask Your Teacher

Find the volume *V* obtained by rotating the region bounded by the curves about the given axis.

$$y = 7 \sec(x), y = 7 \cos(x), 0 \le x \le \pi/3;$$
 about $y = -7$

-/0 points SCalcET8 7.2.502.XP. 77.

My Notes Ask Your Teacher

$$\int \frac{8 \sin^3(\sqrt{x})}{\sqrt{x}} dx$$

79. **–/0 points** S

SCalcET8 7.2.509.XP.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^{\pi/4} 2 \sec^4(\theta) \tan^4(\theta) d\theta$$

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int \csc^4(x) \cot^6(x) dx$$

81. **-/0 points**

SCalcET8 7.2.514.XP.

Ask Your Teacher

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$\int 7 \frac{\cos(x) + \sin(x)}{\sin(2x)} dx$$

82.

-/0 points S0

SCalcET8 7.2.515.XP.

Ask Your Teacher

$$\int 2 \sin^6(x) \cos^3(x) dx$$

83. **-/0 points** SCalcET8 7.2.519.XP.

My Notes

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int 5 \sec^6(t) dt$$

84. **-/0 points** SCalcET8 7.2.520.XP.

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int 5 \tan^3(2x) \sec^5(2x) dx$$

85. **-/0 points** SCalcET8 7.2.525.XP.

My Notes

Ask Your Teacher

$$\int \sin^3(3x) \ dx$$

86. **-/0 points** SCalcET8 7.2.530.XP.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^{\pi} 7 \sin^4(3t) dt$$

SCalcET8 7.2.AE.002.

My Notes

Ask Your Teacher

This figure shows the graphs of the integrand $\sin^5(7x)\cos^2(7x)$ and its indefinite integral (with C=0). Which is which?

Video Example

EXAMPLE 2 Find
$$\int \sin^5(7x) \cos^2(7x) dx$$
.

SOLUTION We could convert $\cos^2(7x)$ to $1 - \sin^2(7x)$, but we would be left with an expression in terms of $\sin(7x)$ with no extra $\cos(7x)$ factor. Instead, we separate a single sine factor and rewrite the remaining $\sin^4(7x)$ factor in terms of $\cos(7x)$:

$$\sin^{5}(7x)\cos^{2}(7x) = (\sin^{2}(7x))^{2}\cos^{2}(7x)\sin(7x)$$
$$= (1 - \cos^{2}(7x))^{2}\cos^{2}(7x)\sin(7x).$$

Substituting $u = \cos(7x)$, we have dx

and so

$$\int \sin^5(7x) \cos^2(7x) dx = \int (\sin^2(7x))^2 \cos^2(7x) \sin(7x) dx$$

$$= \int (1 - \cos^2(7x))^2 \cos^2(7x) \sin(7x) dx$$

$$= \int (1 - u^2)^2 u^2 \left(\frac{du}{du} \right)$$

.013	WCDA33IgII	
	$-\frac{1}{7}\int \left(u^2-\right)$	
		//
		//
	$+ u^6$) du	
	$-\frac{1}{7}\left(\frac{u^3}{3}\right)$	
=		//
	$+\frac{u^7}{7}+C$	
	$-\frac{\cos^3(7x)}{21} +$	
=		//
	$-\frac{\cos^7(7x)}{49}+C.$	

88. **-/0 points**

SCalcET8 7.3.002.

Ask Your Teacher

Evaluate the integral using the indicated trigonometric substitution. (Use *C* for the constant of integration.)

$$\int \frac{x^3}{\sqrt{x^2 + 16}} \, dx, \qquad x = 4 \tan(\theta)$$

Sketch and label the associated right triangle.

89. **-/0 points**

SCalcET8 7.3.003.

Ask Your Teacher

Evaluate the integral using the indicated trigonometric substitution. (Use *C* for the constant of integration.)

$$\int \frac{\sqrt{x^2 - 4}}{x} \, dx, \qquad x = 2 \sec(\theta)$$

Sketch and label the associated right triangle.

-/0 points SCalcET8 7.3.004.

My Notes

Ask Your Teacher

Evaluate the integral. (Use *C* for the constant of integration.)

$$\int \frac{x^2}{\sqrt{9-x^2}} \, dx$$

-/0 points 91.

SCalcET8 7.3.007.

Ask Your Teacher

Evaluate the integral.

$$2\int_0^a \frac{dx}{(a^2 + x^2)^{3/2}}, \quad a > 0$$

SCalcET8 7.3.012.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_0^7 \frac{dt}{\sqrt{49 + t^2}}$$

93. **-/0 points**

SCalcET8 7.3.013.

Ask Your Teacher

$$\int \frac{\sqrt{x^2 - 9}}{x^3} \, dx$$

SCalcET8 7.3.016.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_{\sqrt{2}/2}^{1} \frac{dx}{x^5 \sqrt{4x^2 - 1}}$$

95. **-/0 points** SCalcET8 7.3.019.

Ask Your Teacher

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

$$\int \frac{\sqrt{36 + x^2}}{x} \, dx$$

SCalcET8 7.3.022.

My Notes

Ask Your Teacher

Evaluate the integral.

$$\int_{0}^{5} \sqrt{x^2 + 25} \ dx$$

97. **-/0 points** SCalcET8 7.3.030.

Ask Your Teacher

Evaluate the integral.

$$\int_0^{\pi/2} \frac{\cos(t)}{\sqrt{1+\sin^2(t)}} dt$$

SCalcET8 7.3.033.

Ask Your Teacher

Find the average value of $f(x) = \frac{\sqrt{x^2 - 1}}{x}$, $1 \le x \le 10$.

SCalcET8 7.3.501.XP.

Ask Your Teacher

Evaluate the integral.

$$16 \int_0^1 x^3 \sqrt{1 - x^2} \ dx$$

SCalcET8 7.8.001. -/0 points 100.

My Notes Ask Your Teacher

Explain why each of the following integrals is improper.

(a)
$$\int_9^{10} \frac{x}{x-9} \, dx$$

- Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
- Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
- The integral is a proper integral.

(b)
$$\int_0^\infty \frac{1}{1+x^3} \, dx$$

- Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
- Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
- The integral is a proper integral.

(c)
$$\int_{-\infty}^{\infty} x^2 e^{-x^2} dx$$

- Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
- Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
- The integral is a proper integral.

(d)
$$\int_0^{\pi/4} \cot(x) \ dx$$

- Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
- Since the integral has an infinite discontinuity, it is a Type 2 improper integral.

The integral is a proper integral.

101.

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_0^\infty \frac{1}{\sqrt[6]{1+x}} dx$$

- convergent
- divergent

-/0 points SCalcET8 7.8.011.

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_0^\infty \frac{x^2}{\sqrt{9+x^3}} \, dx$$

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

103.

-/0 points

SCalcET8 7.8.014.

S

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_{7}^{\infty} \frac{e^{-1/x}}{x^2} dx$$

- convergent
- divergent

-/0 points SCalcET8 7.8.017.

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_{4}^{\infty} \frac{1}{x^2 + x} \, dx$$

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

105.

-/0 points SCalcET8 7.8.028.

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_0^{11} \frac{1}{\sqrt[3]{11-x}} \, dx$$

- convergent
- divergent

-/0 points SCalcET8 7.8.041.

My Notes

Ask Your Teacher

Sketch the region.

$$S = \left\{ (x, y) \mid x \ge 1, \ 0 \le y \le e^{-x} \right\}$$

Find its area (if the area is finite). (If the area is not finite, enter ∞ .)

SCalcET8 7.8.055.

My Notes

Ask Your Teacher

The integral

$$\int_0^\infty \frac{2}{\sqrt{x}(1+x)} \, dx$$

is improper for two reasons: The interval $[0, \infty)$ is infinite and the integrand has an infinite discontinuity at 0. Evaluate it by expressing it as a sum of improper integrals of $\underline{\text{Type 2}}$ and $\underline{\text{Type 1}}$ as follows.

$$\int_0^\infty \frac{2}{\sqrt{x}(1+x)} \, dx = \int_0^1 \frac{2}{\sqrt{x}(1+x)} \, dx + \int_1^\infty \frac{2}{\sqrt{x}(1+x)} \, dx$$

108. **-/0 points**

SCalcET8 7.8.503.XP.MI.SA.

My Notes

Ask Your Teacher

This question has several parts that must be completed sequentially. If you skip a part of the question, you will not receive any points for the skipped part, and you will not be able to come back to the skipped part.

Tutorial Exercise

Determine whether the integral is convergent or divergent. If it is convergent, evaluate it.

$$\int_{-\infty}^{\infty} x^{9} e^{-x^{10}} dx$$

-/0 points SCalcET8 7.8.506.XP.

My Notes

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_{e}^{\infty} \frac{79}{x(\ln(x))^3} \, dx$$

- convergent
- divergent

If it is convergent, evaluate it. (If the quantity diverges, enter DIVERGES.)

110.

-/0 points

SCalcET8 7.8.525.XP.

My Notes

Ask Your Teacher

Determine whether the integral is convergent or divergent.

$$\int_0^{13} \frac{dx}{x\sqrt{x}}$$

- convergent
- divergent

SCalcET8 7.8.536.XP.

My Notes

Ask Your Teacher

Sketch the region.

$$S = \left\{ (x, y) | 0 \le y \le \frac{34}{x^2 + 9} \right\}$$

Find its area.					
	//				
	/				

112. **-/0 points** SCalcET8 8.1.AE.001.

My Notes

Ask Your Teacher

As a check on our answer to this example, notice from the figure that the arc length ought to be slightly larger than the distance from (1, 1) to (16, 64), which is

$$\sqrt{4194} \approx 64.761099$$

According to our calculation in the example, we have

$$L = \frac{8}{27} \left(37^{3/2} - (13/4)^{3/2} \right) \approx 64.949094$$

Sure enough, this is a bit greater than the length of the line segment.

EXAMPLE 1 Find the length of the arc of the semicubical parabola $y^2 = x^3$ between the points (1, 1) and (16, 64). (See the figure.)

SOLUTION For the top half of the curve we have

$$y = x^{3/2} \qquad \frac{dy}{dx} =$$

and so the arc length formula gives

$$L = \int_{1}^{16} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{1}^{16} \sqrt$$

If we substitute, then x = 1, $u = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$; when x = 16, $u = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$

then dx. When = 16, $u = \boxed{}$. Therefore,

$$L = \frac{4}{9} \int_{13/4}^{37} \sqrt{u} \ du$$

]³⁷
_{13/4}

=

	//

SCalcET8 8.1.502.XP. -/0 points 113.

My Notes

Ask Your Teacher

Set up, but do not evaluate, an integral for the length of the curve.

$$x = y + y^5$$
, $2 \le y \le 3$

$$\sqrt{\frac{3}{4}}y^{5}dy$$

$$\sqrt[246]{(1+5x^4)^2} \ dx$$

$$0 \int_{2}^{3} \sqrt{1 + (1 + 5y^{4})^{2}} \, dy$$

$$\sqrt[3]{(1+5y^4)^2} dy$$

$$\int_{2}^{3} \frac{1}{1+(1+5y^{4})^{2}} dy$$

$$\int_{34}^{246} \frac{1}{1+(1+5x^{4})^{2}} dx$$

-/0 points 114.

SCalcET8 8.1.503.XP.

My Notes

Ask Your Teacher

Find the exact length of the curve.

$$y=e^{X},\quad 0\leq x\leq 9$$

-/0 points SCalcET8 8.1.504.XP. 115.

Ask Your Teacher

Find the exact length of the curve.

$$y = \ln\left(\frac{e^X + 1}{e^X - 1}\right), \quad a \le x \le b, \quad a > 0$$

SCalcET8 8.1.037. -/0 points 116.

My Notes

Ask Your Teacher

Find the arc length function for the curve $y = \sin^{-1}(x) + \sqrt{1 - x^2}$ with starting point (0, 1).

Submit Assignment

Save Assignment Progress

Home My Assignments E

Copyright 2019 Cengage Learning, Inc. All Rights Reserved