SQL

A gentle introduction

Structured Query Language is a standard database language used to create, manage and query data from relational databases.

(Don't worry. We'll get there.)

Why learning SQL?

 Manipulate large amounts of data efficiently.

 SQL is a highly demanded skill in the job market!

Database

- A database is an organized collection of data from which you can access and/or modify information.
- They are designed to ensure speed, efficiency, integrity, and consistency.
- There are two main types:
 - Relational
 - Non-relational

Database

(Tip: You can think of a **database** as a fancy electronic files cabinet)

Database Management Systems (DBMS)

To **interact with DB** we use specific pieces of software called **DBMS**. In this bootcamp you will learn two of the most popular ones:

- Relational Database Management System (RDBMS):
 - MySQLMuSQL
- Non-Relational Database Management System (NRDBMS)
 - MongoDB

Database Management Systems (DBMS)

Which database is right for your business?		
	MySQL	MongoDB
Use case	Legacy applications or applications that require multi-row transactions (i.e. accounting systems)	Real-time analytics, content management, internet of things, mobile apps
Data structure	Structured data with clear schema	No schema definition required
Risk	Risk of SQL injection attacks	Less risk of attack due to design
Analysis	A great choice if you have structured data and need a traditional relational database.	A great choice if you have unstructured and/or structured data with the potential for rapid growth.

Relational vs Non-Relational Databases

- Relational databases:
 - Are based on <u>relational algebra</u>.
 - Store information in tabular form
 - Use SQL
- Non-Relational Databases
 - Store data in non-tabular form ("documents")
 - NoSQL

Key	Document	
1001	{ "CustomerID": 99, "orderItems": [{ "ProductID": 2010, "Quantity": 2, "Cost": 520 } { "ProductID": 4365, "Quantity": 1, "Cost": 18 }], "OrderDate": "04/01/2017" }	
1002	{ "CustomerID": 220, "OrderItems": [

Relational vs Non-Relational Databases

- According to the relational model, data is stored in "relations", which are perceived by the users as tables.
- Each "relation" is composed of tuples (or records or rows) and attributes (or fields or columns)

Relational vs Non-Relational Databases

This <u>link</u> seems incredible... but it is true!

Query

- "query" ("consulta") is a piece of code to ask the computer for some data.
- Since SQL is a <u>declarative</u> programming language, you must only focus on <u>what</u> you want, rather than the details on <u>how</u> to do it.
 For example: How many products are there in my DB?:

SELECT COUNT (product_id) FROM products;

Time to get your hands dirty!

- Type mysql -u root -p (mac) or winpty mysql -u root -p (Windows) in the terminal to test your MySQL installation.
- Open Sequel Pro (or MySQL Workbench) and check that you are connected to your localhost MySQL server.
- Prework review: Code along!!
- The police needs you!

SQL is a database language used to query and manipulate the data in the database.

MySQL/Language/Definitions

- Data Definition Language(DDL)
- Data Manipulation Language(DML)
- Data Control Language(DCL)
- Data Query Language(DQL)
- Data Transfer Language(DTL)

SQL Cheat Sheet

Querying from a Table

- SELECT a, b FROM T: (Querying Data in Columns a, b from Table T)
- SELECT * FROM T: (Querying all rows and columns from a table)
- SELECT a, b FROM T WHERE Condition; (Query data and filter rows with a condition)
- SELECT DISTINCT a FROM T WHERE condition: (Query distinct rows from a table)
- SELECT a, b FROM T ORDER BY ASCIDESC; (Sort the result set in ascending or descending order)
- SELECT a, b FROM T ORDER BY a LIMIT n OFFSET Offset; (Skip Offset of rows and return the next n rows)
- SELECT a, aggregate(b) FROM T GROUP BY A; (Group rows using an aggregate function)
- SELECT a, aggregate(b) FROM T GROUP BY A HAVING condition: (Filter groups using HAVING Clause)