

Recherche d'asymptote

Fiche méthode 3

situation rencontrée.

▶ Pour chacun des exercices 49 à 53. on note & la courbe représentative de la fonction f dans un repère orthogonal. Dans chaque cas, on illustrera par un graphique la

 $f(x) = x - 2 - \frac{1}{x}$. **1.** Étudier $\lim_{x\to 0} f(x)$. En déduire l'existence d'une asymptote à \mathscr{C} .

49 C f est définie sur]0; $+ \infty[$ par :

- **2. a)** Montrer que la droite *D* d'équation y = x 2est asymptote à \mathscr{C} . **b)** Étudier la position de \mathscr{C} par rapport à D.
- 50 f est définie sur]1; + ∞[par : $f(x) = \frac{x^2}{x - 1}.$ **1.** Étudier $\lim f(x)$. En déduire l'existence d'une
- asymptote à \mathscr{C} . **2. a)** Vérifier que, pour x > 1, $f(x) = x + 1 + \frac{1}{x - 1}$.
- En déduire que la droite D d'équation y = x + 1est asymptote à \mathscr{C} . **b)** Étudier la position de \mathscr{C} par rapport à D.

51 f est définie sur]0 ; + ∞[par :

d'une asymptote à \mathscr{C} .

1. Étudier $\lim_{x \to a} f(x)$.

- $f(x) = x + 2 \frac{\ln x}{x}.$ **1.** Déterminer $\lim_{x \to 0} f(x)$. En déduire l'existence
 - **2. a)** Prouver que la droite D d'équation y = x est asymptote à \mathscr{C} .
 - **b)** Étudier la position relative de \mathscr{C} et de D. **52** R f est définie sur \mathbb{R} par $f(x) = x + e^{2x}$.
 - **1.** Étudier $\lim_{x \to -\infty} f(x)$. **2.** Montrer que la droite D d'équation y = x est
 - asymptote à \mathscr{C} .
- Étudier la position relative de \mathscr{C} et de D. 53 f est définie sur [0; + ∞[par :

 $f(x) = x + 2 + xe^{-2x}$.