CS325 - Project 1

Alexander Merrill

October 2014

Proof of Claim 1

Claim 1: y_i is not visible iff $\exists j, k$ such that j < i < k and $y* > m_i x* + b_i$ where (x*, y*) is the intersection of y_j and j_k .

 $A \equiv y_i$ is not visible

 $B \equiv \exists j, k \text{ such that } j < i < k \text{ and } y* < m_i x* + b_i \text{ where } (x*, y*) \text{ is the intersection of } y_j \text{ and } y_k.$ $A \Leftrightarrow B$

First Prove $A \Rightarrow B$

Direct Proof:

Let y_i be a line that is not visible.

Then l < i < n because y_i and y_n are always visible.

Let k be the smallest index greater than i such that y_k is visible.

e.g. $y_1, y_2, ..., y_k, y_{k+1}, ..., y_{n-1}, y_n$

Let (x*, y*) be the left most point on y_k that is visible.

Let j be the greatest index such that y_i intersects y_k at (x*, y*) is visible.

Because y_i through y_{k-1} are not visible (by definition of k_i) j < i < k.

Since x*, y* is visible and y_i is not visible, $m_i x + b_i < y*$.

Prove $B \Rightarrow A$

Direct Proof:

Since $m_i < m_k$, the intersection point of y_i and y_k is left of x*.

Since $m_i < m_k$, $m_i x + b_i < m_k x + b_k \ \forall x > \bar{x}$.

Likewise since $m_i > m_j$, y_i and y_j intersect at (\bar{x}, \bar{y}) right of $x*(\bar{x} > x*)$.

 $\therefore m_i x + b_i < m_j x + b_j; \, \forall x < \bar{\bar{x}}.$

 $\therefore y_i$ is not visible.

 $y_k + y_j$ intersect at $m_k x + b_k = m_j x + b_j$

$$x = \frac{(b_j - b_k)}{(m_k - m_i)}$$

$$x = \frac{(b_j - b_k)}{(m_k - m_j)}$$
Is $m_j \left(\frac{b_j - b_k}{m_k - m_j}\right) + b_j > m_i \left(\frac{b_j - b_k}{m_k - m_j}\right) + b_i$
If $m_k > m_j$ then instead compare $m_j(b_j - b_k) + b_j(m_k - m_j) > m_i(b_j + b_k)$

Proof of Claim 2

Claim 2: If $\{y_1, y_2, ..., y_{j_t}\}$ is the visible subset of $\{y_1, y_2, ..., y_{i-1}\}$ $(t \le i-1)$ then $\{y_1, y_2, ..., y_{j_k}, y_i\}$ is the visible subset of $\{y_1, y_2, ..., y_i\}$ where y_{j_k} is the last line such that $y_{j_k}(x*) > y_i(x*)$ where $(x*, y_{j_k}(x*))$ is the point of intersection of lines y_{j_k} and $y_{j_{k-1}}$.

Proof by Inductions:

Known:

The lines with the greatest and least slope magnitudes are always visible.

The array is sorted from least to greatest slope magnitude.

Base Case:

If $i \leq 2$ then all lines are visible.

Inductive Hypothesis:

Let $\{y_1, y_2, ..., y_{j_m}\}$ be the visible subset of $\{y_1, y_2, ..., y_{o-1}\}$ $(t \le o-1)$ then $\{y_1, y_2, ..., y_{j_n}, y_i\}$ is the visible subset of $\{y_1, y_2, ..., y_i\}$ where y_{j_n} is the last line such that $y_{j_n}(x*) > y_o(x*)$ where $(x*, y_{j_n}(x*))$ is the point of intersection of lines y_{j_n} and $y_{j_{n-1}}$.

If $y_o(x^*) > y_o(x^*)$ then $y_{i_n}(x^*) < y_o(x^*)$ then

Assume that any array of length $n \mid i$ is correctly flagged visible. Apply the Axiom of Induction: A is an array of length o.

```
If y_o(x*) > y_o(x*) then
If y_{j_n}(x*) < y_{o+1}(x*) then remove y_{j_n}(x*) from the visibility array and recurse.
If y_{j_n}(x*) \ge y_{o+1}(x*)
```

If i = 3 then let $A_v\{y_1, y_2\}$ be the visible subset of set $A\{y_1, y_2\}$.

Let the new set B be $\{y_1, y_2, y_3\}$.

Let the new initial visible set of B, B_{v_0} , be $A_v + y_3$, that is $\{y_1, y_2, y_3\}$.

It's initial visible subset will be A_v .

 $Let(\mathbf{x}^*, \mathbf{y}_2(\mathbf{x}^*))$ be the point of intersection of y_2 and $y_{2-1} = y_1$.

Then let $y_{2+1}(x*) = y_3(x*)$.

Then let y_3 be y coordinate at point $(x*, y_3(x*))$, above the intersection of y_2 and $y_{2-1} = y_1$.

If $y_3(x^*) > y_2(x^*)$ then remove y_2 from B_{v_0} and

Otherwise add y_3 to B_{v_0}

Group Proof of Claim 2

Claim 2: If $\{y_1,y_2,...,y_{j_t}\}$ is the visible subset of $\{y_1,y_2,...,y_{i-1}\}(t\leq i-1)$ then $\{y_1,y_2,...,y_{j_k},y_i\}$ is the visible subset of $\{y_1,y_2,...,y_i\}$ where y_{j_k} is the last line such that $y_{j_k}(x*)>y_i(x*)$ where $(x*,y_{j_k}(x*))$ is the point of intersection of lines y_{j_k} and $y_{j_{k-1}}$.

Proof by Induction:

```
Let A be \{y_1, y_2, ..., y_{i-1}\} and A^+ be \{y_1, y_2, ..., y_i\}.
Let V be \{y_{j_1}, y_{j_2}, ..., y_{j_t}\} and V^+ be \{y_{j_1}, y_{j_2}, ..., y_{j_k}, y_i\}.
```

Base Case:

If size(A) < 2, V^+ trivially contains V and y_i because none of the line's slopes are the same and one or two lines with different slopes cannot cover one another.

Inductive Hypothesis:

The claim is true when A (and V) have at least two lines.

Apply the Axiom of Induction:

Pick off smallest with $size(A) = size(V) \ge 2$. There are two possibilities:

- 1. y_i does not cover a line in VSo, $V = \{y_1, ..., y_{z-1}, y_z\}$ and $y_z(x^*) \ge y_i$ where x^* is the intersection of y_{z-1} and y_z So, y_z is not covered. $V^+ = V \cup y_i$.
- 2. y_i covers a line in VSo $V = \{y_1, ..., y_{z-1}, y_z\}$ and $y_z(x*) < y_i(x*)$ So y_z is covered.

To determine visibility, recurse with same y_i and A but remove y_z from V.