PROVINCIA DE BUENOS AIRES

DIRECCIÓN GENERAL DE CULTURA y EDUCACIÓN

EESTN°3 "NIKOLA TESLA"

REGIÓN 20 Nº75 NECOCHEA

NIVEL: SECUNDARIA SUPERIOR

ESPACIO CURRICULAR: Laboratorio de Redes Informáticas

DEPARTAMENTO: PROGRAMACIÓN

CICLO LECTIVO: TECPRO - 2025

CURSO: 5to año

TURNO: Mañana

DIRECTOR:

VICEDIRECTOR:

PROFESOR: Camaño, Dardo D.

MÓDULOS: Provisionales

FUNDAMENTACION

El abordaje de este contenido tiene una fundamentación sólida tanto desde el punto de vista profesional como laboral, ya que forma parte integral de la formación en tecnologías de la información y las comunicaciones, áreas que continúan experimentando un crecimiento acelerado y una alta demanda en el mercado. A continuación, se detallan los principales aspectos:

Relevancia en el Mercado Laboral

• Alta Demanda de Profesionales en Redes:

Las empresas de todos los sectores dependen cada vez más de una infraestructura de redes robusta y segura. Conocer y gestionar redes informáticas es esencial para roles como administrador de redes, ingeniero de sistemas, y especialista en ciberseguridad. La capacitación en temas como enrutamiento, configuración de VLANs y seguridad con herramientas como iptables es altamente valorada en el mercado laboral.

• Fomento del Trabajo en Equipo y Resolución de Problemas:

La metodología empleada (trabajo colaborativo, análisis de casos y proyectos integradores) no solo desarrolla competencias técnicas, sino también habilidades blandas esenciales como el trabajo en equipo, la comunicación efectiva y la capacidad de resolver problemas complejos, competencias muy valoradas en el ámbito profesional.

Conocimientos mínimos

Para abordar el curso se recomienda contar con conocimientos básicos en informática, pero no es necesario tener experiencia previa en redes. En términos profesionales y laborales, estos conocimientos mínimos permiten que los estudiantes se familiaricen con el entorno tecnológico y con herramientas básicas de manejo de computadoras, lo que facilita la asimilación de conceptos más avanzados en redes. Es decir, se espera que los alumnos tengan:

- Conocimiento básico del uso del computador (manejo de teclado, mouse y navegación en interfaces gráficas).
- Familiaridad con el uso de sistemas operativos, lo cual ayudará en la comprensión de comandos y configuraciones en Linux durante las prácticas.
- Nociones elementales de Internet y de la lógica de funcionamiento de dispositivos y sistemas informáticos.

Además, el curso está diseñado para iniciar desde fundamentos básicos y reforzar progresivamente estos conceptos, permitiendo que aquellos sin experiencia previa puedan ponerse al día y adquirir competencias técnicas relevantes para el mercado laboral en redes y ciberseguridad. Esta base mínima es fundamental para que los estudiantes se sientan seguros y motivados al enfrentarse a configuraciones y escenarios prácticos que simulan situaciones reales en el ámbito profesional.

PROPUESTA PEDAGÓGICA

Aprendizaje Activo y Significativo:

El curso se organiza en clases que combinan sesiones teóricas con actividades prácticas en un simulador de redes basado en Linux. Esto permite que los estudiantes construyan su propio

conocimiento a través de la resolución de problemas reales y casos de estudio, favoreciendo un aprendizaje profundo y significativo.

• Adaptación al Nivel del Estudiante:

Se utilizan recursos didácticos y ejemplos adaptados al contexto y a la edad de los alumnos (15 a 16 años), asegurando que el lenguaje y las actividades sean accesibles, dinámicas y motivadoras.

PROPÓSITOS DEL PROFESOR

- Promover espacios de autonomía en el pensamiento y comprensión de los conceptos abordados en los objetivos.
- Propiciar un análisis crítico de los diversos conceptos presentados.
- Estimular el desarrollo de una actitud crítica-interpretativa frente a situaciones planteadas de tal modo que les permita cuestionar los saberes presentados.
- Promover un espacio de debate y discusión referido a la constitución subjetiva.
- Ofrecer una propuesta de trabajo que refleje la articulación de la materia con otros campos del saber.
- Vincular los contenidos de este marco teórico con problemáticas concretas de la sociedad.

EXPECTATIVAS DE LOGRO

• Dominio de Conceptos y Herramientas de Redes:

Se espera que los estudiantes adquieran una comprensión sólida de los modelos OSI y TCP/IP, el direccionamiento IP, el subnetting, la configuración de dispositivos en Linux, así como la administración de servicios como DHCP y la configuración de seguridad básica.

Desarrollo de Habilidades Técnicas y Colaborativas:

Se busca que los estudiantes mejoren no solo sus competencias técnicas, sino también su capacidad para trabajar en equipo, comunicar sus ideas y resolver problemas de manera autónoma y colaborativa.

• Preparación para el Mercado Laboral:

La formación recibida debe situar a los alumnos en una posición ventajosa para continuar sus estudios en áreas tecnológicas o insertarse en el ámbito laboral, al haber desarrollado competencias alineadas con las demandas actuales del sector de las redes y la ciberseguridad.

CONTENIDOS

• Los contenidos trabajados pertenecen al Eje Temático del Diseño Curricular.

Módulo 1: Fundamentos de Redes Locales

Objetivo: Conocer los conceptos básicos de las redes locales, su configuración y administración en un entorno controlado (laboratorio y aula).

1. Tema 1 – Introducción a las Redes Locales

- Conceptos básicos de redes: definición, tipos (LAN vs. WAN), y su importancia en IoT.
- Actividad práctica: Identificar componentes y topologías simples en redes locales.

2. Tema 2 – Conexiones Cableadas e Inalámbricas

- Diferencias entre redes Ethernet y WiFi, ventajas y limitaciones.
- Laboratorio: Configuración básica de una red local en el aula (configuración de router, switch y puntos de acceso).

3. Tema 3 – Modelos de Referencia: OSI y TCP/IP

- Desglose de las 7 capas del modelo OSI y comparación con el modelo TCP/IP.
- Concepto de paquete de datos.
- Actividad práctica: Uso de diagramas interactivos para relacionar funciones de cada capa.

4. Tema 4 -- Direccionamiento IP y Subnetting Básico

- Introducción al direccionamiento IPv4, máscaras de subred y nociones de red y host.
- Ejercicios de cálculo de subredes en papel y en herramientas de simulación.

5. Tema 5 – Protocolos de Comunicación y Herramientas Básicas de Diagnóstico

- Principales protocolos (TCP, UDP, ICMP) y su rol en la transmisión de datos.
- Uso de comandos básicos (ping, tracert, nslookup) para la verificación de conexiones.

6. Tema 6 – Configuración Básica de Dispositivos de Red

- Fundamentos de configuración inicial de routers y switches.
- Ejercicios en simuladores o equipos reales, estableciendo configuraciones mínimas (interfaces, IPs).

7. Tema 7 – Diseño y Planificación de Redes Locales (LAN)

- Principios de segmentación, diseño de topologías y planificación de una red local.
- Elaboración de esquemas de red y simulación de escenarios básicos.

8. Tema 8 – Repaso y Evaluación de los contenidos del Módulo

• Realización de una actividad integradora (ejemplo: simulación de red) donde se apliquen todos los conocimientos vistos.

Módulo 2: Introducción a los Microcontroladores y Conectividad

Objetivo: Familiarizar a los estudiantes con los microcontroladores y su conexión a redes locales, preparando el terreno para la comunicación IoT.

9. Tema 9 – Introducción a los Microcontroladores

- Presentación de plataformas: Arduino, ESP8266/ESP32, Raspberry Pi (según disponibilidad).
- Conceptos básicos de hardware y arquitectura.

10. Tema 10 – Configuración del Entorno de Desarrollo

- Instalación y uso del Arduino IDE u otro entorno para programar microcontroladores.
- Primeros ejemplos de código: "Hola Mundo" en microcontroladores (encender un LED).

11. Tema 11 – Programación Básica en Microcontroladores

- Uso de entradas y salidas digitales, conexión de sensores simples (luz, temperatura).
- Laboratorio: Lectura de datos de un sensor y visualización en el monitor serial.

12. Tema 12 – Conectividad WiFi en Microcontroladores

- Configuración de módulos WiFi y conexión a redes locales.
- Ejercicio práctico: Conectar un microcontrolador a una red inalámbrica del aula.
- Protocolo DHCP

13. Tema 13 – Introducción a MQTT y Comunicación IoT

- Conceptos de comunicación publish/subscribe y beneficios de MQTT en entornos IoT.
- Discusión: Casos de uso en proyectos de integración física-digital.

14. Tema 14 – Instalación y Configuración de un Broker MQTT

- Uso de Mosquitto (u otro broker) en un entorno local.
- Laboratorio: Configuración del broker y pruebas de conexión básicas.

15. Tema 15 – Programación en Microcontroladores con MQTT I

- Ejemplo práctico: Programar un microcontrolador para enviar mensajes a través de MQTT.
- Actividad en dos bloques: explicación teórica y práctica en laboratorio.

16. Tema 16 – Programación en Microcontroladores con MQTT II

- Continuación del desarrollo: Recepción de mensajes y respuesta a eventos.
- Ejercicio integrador: Prueba de comunicación entre dos microcontroladores vía MQTT.

17. Tema 17 – Introducción a Node.js

- Fundamentos, instalación y configuración de un entorno Node.js.
- Presentación de ejemplos sencillos.

18. Tema 18 – Creación de un Servidor Node.js Básico

- Configuración de un servidor básico y revisión de conceptos de programación asíncrona.
- Práctica: Primer servidor local en Node.js.
- Acceso remoto vía SSH.

19. Tema 19 – Integración de Node.js con MQTT I

- Instalación de librerías (como mqtt.js) para conectar Node.js al broker MQTT.
- Laboratorio: Suscribirse a un tópico y recibir mensajes.

20. Tema 20 – Integración de Node.js con MQTT II

- Desarrollo de scripts para procesar y reenviar mensajes recibidos.
- Ejercicio práctico: Enviar datos desde un microcontrolador a Node.js.

Objetivo: Consolidar los conocimientos integrando la red local, los microcontroladores y el servidor Node.js en un proyecto que interactúe con respuestas en dispositivos físicos dentro de una red local.

- Estructura Secuencial: Cada clase está constituida de forma correlativa.
- **Estructura Modular:** Cada clase está dividida en dos bloques de 40 minutos, combinando teoría y práctica para reforzar el aprendizaje y permitir una aplicación inmediata de conceptos.
- **Enfoque Práctico:** Se priorizan actividades de laboratorio y proyectos integradores que permitan al estudiante experimentar con la configuración de redes locales, el uso de microcontroladores y la integración con aplicaciones web.

ESTRATEGIAS DIDÁCTICAS

- Organización de clases enmarcada desde un encuadre teórico- práctico, posibilitando el diálogo como forma de construir los conocimientos en un intercambio entre pares y docente.
- Proposición de instancias de reflexión grupal e individual sobre los temas tratados.
- Favorecer diversas oportunidades a lo largo de todo el año en las que el abordaje de temas resulten significativos
- Realización de proyecto práctico integrador para el desarrollo de los conocimientos y las aptitudes requeridas a nivel práctico.
- Implementación de los conocimientos adquiridos con máquinas físicas y hardware de redes en el laboratorio

RECURSOS

- Filminas
- Laboratorio
- Notebooks
- Televisor
- Conectividad a Internet
- Cables UTP
- Fichas RJ45
- Kit de Herramientas de Red
- Switch configurable
- Router configurable
- Componentes de hardware y software
- Microcontroladores Arduino + Shield Ethernet ESP32 Raspberry PI

DISTRIBUCIÓN DEL TIEMPO

FECHAS	MÓDULO	CONTENIDOS	ESTRATEGIA METODOLÓGICA
ABRIL	Módulo 1	Fundamentos de Redes Locales	Clase expositiva + debate grupal + prácticos en máquina
MAYO	Módulo 1	Fundamentos de Redes Locales	Clase expositiva + debate grupal + prácticos en máquina

FECHAS	MÓDULO	CONTENIDOS	ESTRATEGIA METODOLÓGICA
JUNIO	Módulo 1	Fundamentos de Redes Locales	Clase expositiva + debate grupal + prácticos en máquina
JULIO	Módulo 2	Integración con Node.js y Desarrollo del Servidor IoT	Clase expositiva + debate grupal + prácticos en máquina
AGOSTO	Módulo 2	Integración con Node.js y Desarrollo del Servidor IoT	Clase expositiva + debate grupal + prácticos en máquina
SEPTIEMBRE	Módulo 2	Integración con Node.js y Desarrollo del Servidor IoT	Clase expositiva + debate grupal + prácticos en máquina
OCTUBRE	Módulo 3	Proyecto Integrador – Expo técnica	Clase expositiva + debate grupal + prácticos en máquina
NOVIEMBRE	Módulo 3	Proyecto Integrador – Expo técnica	Clase expositiva + debate grupal + prácticos en máquina

BIBLIOGRAFÍA

- "Redes de computadoras 4ta Edición" Autor: Andrew S. Tanenbaum
- "Linux Manual de Referencia" Autor: Richard Petersen
- "Redes CISCO" Autor: Daniel Pérez Torres

EVALUACIÓN

Instrumentos de evaluación

- Registro de las observaciones en clases
- Presentación del trabajo práctico propuesto. Panel de discusión.
- Evaluación escrita módulo I

Criterios

- Participación e intervención oportuna en las clases.
- Conceptos y vocabulario preciso en la expresión oral.
- Análisis, argumentación, crítica y reflexión sobre los saberes abordados.

Criterios a evaluar en el trabajo práctico propuesto

- Redacción y coherencia.
- Interpretación de consignas. Análisis, argumentación, crítica y reflexión sobre los saberes abordados.
- Conceptos y vocabulario preciso en la expresión escrita.
- Calidad de los saberes aprendidos por sobre la cantidad o amplio volumen de contenidos

VERSIÓN

• Esta planificación se encuentra sujeta a modificación.