

CIRCUITOS DIGITAIS MÁQUINA DE ESTADOS

Marco A. Zanata Alves

CIRCUITOS COMBINACIONAIS VS. CIRCUITOS SEQUENCIAIS

Circuitos Combinacionais: os valores das saídas S_i no instante t depende apenas da combinação dos valores das entradas e_i neste mesmo instante. Os estados anteriores não interessam.

Circuitos Sequenciais: os valores das saídas s_i no instante t não depende apenas dos valores das entradas e_i neste instante, mas também da sequência das entradas anteriores.

CIRCUITOS COMBINACIONAIS VS. SEQUENCIAIS

Nem todos os projetos em sistemas digitais conseguem ser resolvidos utilizando circuitos combinacionais.

Algumas vezes é necessário o conhecimento de um ou mais estados anteriores e também da sequência anterior para se calcular a saída do circuito.

Exemplo: Contadores

CIRCUITOS SEQUENCIAIS

Circuito Sequencial = Circuito Combinacional + Elemento de Memória

Existe uma realimentação (através da memória);

Dependem da "história" das entradas passadas.

COMPOSIÇÃO DO CIRCUITO SEQUENCIAL

Bloco de memória → armazena informações anteriores para definir o **estado atual**. Tem como entrada o **próximo estado**.

COMPOSIÇÃO DO CIRCUITO SEQUENCIAL

Bloco de memória → armazena informações anteriores para definir o estado atual. Tem como entrada o próximo estado.

Bloco combinacional → define o próximo estado e a saída externa. Tem como entradas o estado atual e as entradas externas.

COMPOSIÇÃO DO CIRCUITO SEQUENCIAL

MÁQUINA DE ESTADOS FINITOS

MÁQUINA DE ESTADOS FINITOS

Conhecido como autômato finito ou Finite State Machine (FSM).

Trata-se de uma máquina abstrata que deve estar em um de seus finitos estados e cada momento.

A máquina está em apenas um estado por vez, este estado é chamado de estado atual.

Indiretamente, um estado armazena informações sobre o passado.

Uma transição indica uma mudança de estado e é descrita por uma condição que precisa ocorrer para que a transação ocorra.

Uma ação ou saída, é a descrição de uma atividade que deve ser realizada num determinado momento.

ESTADOS

Cada estágio através do qual o circuito sequencial avança;

Em cada estado, o circuito armazena uma "recordação" de sua história passada, para saber o que fazer a seguir (instante t+1);

Nem toda informação anterior é relevante. Ou seja, nem todo estado precisa ser armazenado.

O próximo estado pode depender:

- Apenas do estado anterior;
- Apenas das entradas atuais;
- Uma combinação das entradas atuais com o estado anterior.

SAÍDAS

As saídas do circuito podem ser geradas de duas formas:

- Apenas o estado atual é utilizado para a geração das saídas;
- O estado atual mais as entradas atuais são utilizadas na geração das saídas;

Dependendo de qual maneira as saídas são geradas damos o nome de máquina de estados de Moore ou Mealy.

TIPOS DE MÁQUINAS DE ESTADOS

MÁQUINA DE MOORE

As entradas não interferem diretamente na saída, somente nos estados futuros;

As saídas dependem apenas do estado atual

MÁQUINA DE MEALY

As entradas interferem nos estados futuros e também na saída;

As saídas dependem da entrada e do estado atual

MOORE E MEALY

Máquinas de Moore:

- As saídas são função apenas do estado presente (não das entradas);
- As entradas só interferem no próximo estado;
- As saídas variam sincronamente;
- Resposta mais lenta ou inexistente à variações na entrada.

Máquinas de Mealy:

- As saídas são função do estado presente e das entradas atuais;
- As entradas interferem no próximo estado e também na saída;
- As saídas variam assincronamente com as entradas;
- Resposta mais rápida à variações na entrada.

DIAGRAMAS DE ESTADOS

18

DIAGRAMA DE ESTADOS

O Diagrama de Estado ou Diagrama de Fluxo de Estado é um grafo

- Cada nó (vértice) representa um estado
- Cada arco (aresta) representa uma transição de estados (fluxo);

A cada pulso de clock, o fluxo avança um estado;

Estado com borda dupla indica estado inicial, o estado inicial (estado de entrada) também pode ser indicado por uma flecha;

DIAGRAMA DE ESTADOS

O diagrama de estados tem formatos diferentes para cada um dos modelos:

- Máquina de Moore
- Máquina de Mealy

MÁQUINA DE MOORE

A saída depende exclusivamente do estado;

A entrada só interfere no próximo estado.

MÁQUINA DE MEALY

A saída depende do estado presente e da entrada;

A entrada interfere no próximo estado e na saída.

QUAL MÁQUINA É ESSA?

EXEMPLO DE MÁQUINAS

Quais os tipos?

Qual o estado inicial?

$\begin{array}{c} \text{EXEMPLO} \\ \text{CONTADOR CRESCENTE O} \sim 3 \end{array}$

Pensar no diagrama de estados.

O que acontece quando atingimos o contador máximo?

Como podemos fazer uma tabela de transições?

Diagrama de Estados

Tabela de Transição de Estados

Estado atual	Saída Z_1Z_0	Próximo estado
Α	00	В
В	01	С
С	10	D
D	11	Α

Máquina de Moore

Saída depende apena do estado

Diagrama de Estados

Tabela de Transição de Estados

Estado atual	Saída Z_1Z_0	Próximo estado
Α	00	В
В	01	С
С	10	D
D	11	Α

Máquina de Mealy

Saída depende da transição

Diagrama de Estados

MOORE OU MEALY?

Em geral, a versão Mealy de um circuito sequencial será mais econômica de componentes físicos (hardware) do que a versão Moore;

Como a saída depende da entrada, valores incorretos na entrada durante o ciclo de "clock" podem afetar a saída;

Isso pode não ocorrer na versão Moore, pois alterações na saída e no estado só ocorrem na transição do "clock" (melhor sincronismo)

EXEMPLO DE PROJETO DE CIRCUITO SEQUENCIAL

EXEMPLO: PROBLEMA

Observar uma fileira de 3 lâmpadas;

As lâmpadas só acendem uma de cada vez;

Se as lâmpadas acenderem na sequência 1–2–3, deve-se soar um alarme.

EXEMPLO: PROBLEMA

A sequência deve ser analisada.

Se a condição 1-2-3 não for observada, despreza-se até a lâmpada 1 acender novamente;

Exemplo de sequência: 1 2 2 1 3 2 1 2 3 1 2 2 2 3 3

Quantas entradas?

Quantas saídas?

EXEMPLO: ANÁLISE

Quantas Entradas? 4

- 00 nenhuma lâmpada acendeu
- 01 lâmpada 1 acendeu
- 10 lâmpada 2 acendeu
- 11 lâmpada 3 acendeu

Quantas Saídas? 2

- 0 –alarme não toca
- 1 alarme toca

EXEMPLO: PROBLEMA

Uma fileira de 3 lâmpadas, que só acendem uma de cada vez;

Se as acenderem na sequência 1-2-3, deve-se soar um alarme.

Exemplo de sequência: 1 2 2 1 3 2 1 2 3 1 2 2 2 3 3

EXEMPLO: DIAGRAMA DE ESTADOS - MOORE

Saídas:

- 0 alarme desligado
- 1 alarme ligado

EXEMPLO: DIAGRAMA DE ESTADOS - MOORE

Entradas:

- 00 nenhuma lâmpada acende
- 01 lâmpada 1 acende
- 10 lâmpada 2 acende
- 11 lâmpada 3 acende

EXEMPLO: DIAGRAMA DE ESTADOS - MOORE

Estados:

- A = 00
- -B = 01
- C = 10
- D = 11

EXEMPLO: PROJETO DE CIRCUITO SEQUENCIAL - MOORE

 X_0 e X_1 são as entradas atuais

Z é a saída atual

W indica o próximo estado

Y indica o estado atual

A partir do diagrama de estados, escreve-se a Tabela de Transição de estados e a Tabela de Saída.

- A partir dessa Tabela, projeta-se o circuito sequencial escolhendo qual o tipo de FF que será utilizado (RS, JK, D ou T)
- Circuito combinatório: portas lógicas;
- Circuito de memória: Flip-Flops;

0,2,3

A/0

0,1

B/O

2

C/0

Entr	ada	Estado	Atual	Próx. Estado		Saída
x 1	x0	y1	у0	w1	w0	Z
0		Α				
1		Α				
2		Α				
3		Α				
0		В				
1		В				
2		В				
3		В				
0		C				
1		С				
2		C				
3		С				
0		D				
1		D				
2		D				
3		D				

0,1,2,3

D/1

3

0,2,3

A/0

0,1

B/O

1

2

C/0

Entr	ada	Estado	Atual	Próx.	Estado	Saída
x 1	x0	y1	y0	w1	w0	Z
0		Α		Α		0
1		Α		В		0
2		Α		Α		0
3		Α		Α		0
0		В		В		0
1		В		В		0
2		В		Α		0
3		В		Α		0
0		C		C		0
1		С		В		0
2		С		Α		0
3		С		D		0
0		D		D		1
1		D		D		1
2		D		D		1
3		D		D		1

0,1,2,3

D/1

3

00,10,11

00/0

00,01

01/0

10

01

Entr	ada	Estado	Atual	Próx. Estado		Saída
x 1	x0	y1	y0	w1	w0	Z
0	0	0	0	0	0	0
0	1	0	0	0	1	0
1	0	0	0	0	0	0
1	1	0	0	0	0	0
0	0	0	1	0	1	0
0	1	0	1	0	1	0
1	0	0	1	1	0	0
1	1	0	1	0	0	0
0	0	1	0	1	0	0
0	1	1	0	0	1	0
1	0	1	0	0	0	0
1	1	1	0	1	1	0
0	0	1	1	1	1	1
0	1	1	1	1	1	1
1	0	1	1	1	1	1
Ĩ	ī	1	ī	1	1	1

00

10/0

10

01

00,10,11,01

11/1

11

EXEMPLO: DIVISÃO DA TABELA

Para simplificar a análise, podemos dividir a tabela de estados em duas

- 1. Tabela de Transição de estados
- 2. Tabela de Saída
- Máquina de moore: Contém apenas o estado atual para gerar a saída
- Máquina de mealy: Contém os estados atuais e as entradas para gerar a saída

EXEMPLO: TABELA DE TRANSIÇÃO DE ESTADOS

Entr	ada	Estado	Estado Atual		Próx. Estado	
x 1	x0	y1	у0	w1	w0	d1d0
0	0	0	0	0	0	00
0	1	0	0	0	1	01
1	0	0	0	0	0	00
1	1	0	0	0	0	00
0	0	0	1	0	1	01
0	1	0	1	0	1	01
1	0	0	1	1	0	10
1	1	0	1	0	0	00
0	0	1	0	1	0	10
0	1	1	0	0	1	01
1	0	1	0	0	0	00
1	1	1	0	1	1	11
0	0	1	1	1	1	11
0	1	1	1	1	1	11
1	0	1	1	1	1	11
1	1	1	1	1	1	11

Podemos usar outros tipos de FF, basta pensar no que devemos colocar como entrada para que ele escreva o que queremos

EXEMPLO: SIMPLIFICANDO COM MAPAS DE KARNAUGH

$$D_1 = Y_1 Y_0 + X'_1 X'_0 Y_1 + X_1 X_0 Y_1 + X_1 X'_0 Y_0$$

$$D_0 = Y_1 Y_0 + X'_1 X_0 + X_1 X_0 Y_1 + X'_1 X'_0 Y_0$$

EXEMPLO: TABELA DE SAÍDA

A Saída nunca depende do próximo estado

Máquina de Moore:

- A saída não depende da entrada
- A Saída só depende do estado atual

EXEMPLO: TABELA DE SAÍDA

Estado	Atual	Saída
y1	y0	Z
0	0	0
0	0	0
0	0	0
0	0	0
0	1	0
0	1	0
0	1	0
0	1	0
1	0	0
1	0	0
1	0	0
1	0	0
1	1	1
1	1	1
1	1	1
1	1	1

Estado	Saída	
y1	y0	Z
0	0	0
0	1	0
1	0	0
1	1	1

$$Z = Y_1 Y_0$$

EXEMPLO: CIRCUITO FINAL

Entr	ada	Estado Atual		Próx. Estado		
x 1	x0	y1	y0	w1	w0	

$$W_1 = Y_1 Y_0 + X'_1 X'_0 Y_1 + X_1 X_0 Y_1 + X_1 X'_0 Y_0$$

$$W_0 = Y_1 Y_0 + X_1' X_0 + X_1 X_0 Y_1 + X_1' X_0' Y_0$$

← Mem. 1

← Mem. 0

EXEMPLO: CIRCUITO FINAL

Entr	ada	Estado Atual		Próx.	Estado
x 1	x0	y1	y0	w1	w0

$$W_1 = Y_1 Y_0 + X'_1 X'_0 Y_1 + X_1 X_0 Y_1 + X_1 X'_0 Y_0$$

$$W_0 = Y_1 Y_0 + X_1' X_0 + X_1 X_0 Y_1 + X_1' X_0' Y_0$$

$$Z = Y_1 Y_0$$

EXEMPLO: CIRCUITO FINAL

Entr	ada	Estado Atual		Próx.	Estado
x 1	x0	y1	y0	w1	w0

$$W_1 = Y_1 Y_0 + X'_1 X'_0 Y_1 + X_1 X_0 Y_1 + X_1 X'_0 Y_0$$

$$W_0 = Y_1 Y_0 + X_1' X_0 + X_1 X_0 Y_1 + X_1' X_0' Y_0$$

$$Z = Y_1 Y_0$$

EXEMPLO: *10 *00 CIRCUITO FINAL

EXEMPLO: x10 x00 CIRCUITO FINAL

ALGORITMO PARA MÁQUINA DE ESTADOS

- 1. Modelar o diagrama de boletas
- Codificar os estados
- 3. Criar a tabela de transições
- Para cada saída (saída externa / próximo estado) obter a equação booleana simplificada.
- 5. Fazer o circuito final com memórias para cada bit de estado atual