- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie.

Automatele finite: aplicatii

- procesarea vorbirii,
- recunoasterea optica a caracterelor,
- recunoasterea formelor,
- modele matematice pentru calculatoarele cu memorie finita (incorporate in aparatele electrocasnice, comutatoare/bariere electrice etc.).

Automat

V

Automat

Informal: cel mai simplu automat este un dispozitiv care

- ✓ dispune de:
 - o unitate de calcul şi de control (decizie),
 - o banda FINITA, utilizata ca dispozitiv de memorare,
 - un cap de citire care se poate deplasa pe banda numai de la stanga la dreapta şi
 - care poate numai citi simbolul curent de pe banda;
- ✓ şi care calculeaza astfel:
 - incepe calculul aflat în starea initiala şi cu capul de citire postat pe prima celula din stanga,
 - la fiecare pas de calcul, inclusiv primul, în functie de starea curenta şi de simbolul citit, trece în alta stare/ ramane în starea curenta şi comanda deplasarea capului de citire o celula la dreapta.

LFA: C3 — LIMBA Acest comutator este un calculator cu 1! bit

Acest comutator este un calculator cu 1! bit de memorie, suficient pt a memora in care dintre cele 2 stari se afla comutatorul

Exemple 1:

AF pt un comutator electric

Ascensoare, termostate, masini de spalat etc.

Exemplu 2:

AF pt o usa automata pentru acces auto:

3 descrieri posibile

- Descrierea in limbajul natural;
- ii. Descrierea formala;
- iii. Descrierea cu ajutorul diagramei de stare.

LFA: C3 – Limbaje regulate

Aceasta usa automata dispune de un calculator cu 1! bit de memorie, suficient pt a memora in care dintre cele 2 stari se afla usa

(i) Descrierea in limbajul natural: usa

(ii) Descrierea cu ajutorul diagramei de stare

	Pe suportul frontal	Pe suportul final	Pe ambele suporturi	Pe niciun suport
Inchis	Deschis	Inchis	Inchis	Inchis
Deschis	Deschis	Inchis	Inchis	Inchis

Observatie 3: Principiul de lucru

- ✓ Automatul finit (determinist) este un mecanism => e caracterizat de stari şi tranzitii intre stari
- ✓ date de intrare şi rezultate

Date de intrare:

 o secventa FINITA de simboluri din alfabet, care sunt "citite" <u>unul cate</u> <u>unul;</u>

In ce consta calculul/prelucrarea?

- ✓ aflat in starea initiala, automatul citeste un simbol din secventa primita
 ca intrare
- ✓ trece din starea curenta in alta stare (unic determinata)
- ✓ procedeaza in continuare la fel, pana la epuizarea secventei
- in acel moment (FINAL), accepta/respinge secventa in functie de tipul de stare in care se gaseste.

Observatie 3 (cont.)

Ce determina trecerea intr-o (anumita) alta stare (calculul/prelucrarea)?

- ✓ starea curenta
- ✓ simbolul curent "citit"

Cand se termina calculul?

cand au fost citite toate simbolurile din secventa de intrare

Cum se termina calculul (ce produce automatul)?

- ✓ la "terminarea" secventei, automatul ajunge intr-una dintre starile "finale", deci automatul accepta secventa,
- ✓ la "terminarea" secventei, automatul ajunge intr-una dintre starile "nefinale", deci automatul nu accepta secventa;


```
√
 b, ab, bb, abab, ababaa, abaab, .....

⊗ a, ba, ababa, .....

(q_1,b) \rightarrow q_2; \quad (q_1,a) \rightarrow (q_1,b) \rightarrow q_2; \quad (q_1,a) \rightarrow (q_1,b) \rightarrow (q_2,a) \rightarrow (q_3,b) \rightarrow q_2;

(q_1,a) \rightarrow (q_1,b) \rightarrow (q_2,a) \rightarrow (q_3,b) \rightarrow (q_2,a) \rightarrow (q_3,a) \rightarrow q_2; \text{ etc}

(q_1,a) \rightarrow q_1; \quad (q_1,b) \rightarrow (q_2,a) \rightarrow q_3; \quad (q_1,a) \rightarrow (q_1,b) \rightarrow (q_2,a) \rightarrow (q_3,b) \rightarrow (q_2,a) \rightarrow q_3;

=>

L(A_1) = L_1 = \{ w \in \{a,b\}^* \mid w = \alpha b(aa)^n, \alpha \in \{a,b\}^* \}
```

 $L(A_2) = L_1 \cup \{ \epsilon \} \cup \{ (aa)^n \mid n \in \mathbb{N} \}$

=> e necesara o definitie formala a AFD

Definitie 5: Automat finit determinist

```
AFD = (Q, \Sigma, \delta, s, F), unde:
```

Q = multime finita, nevida (stari),

 Σ = multime finita, nevida, numita <u>alfabet de intrare</u> (<u>simboluri</u>),

 $\delta: Q \times \Sigma \rightarrow Q$, numita <u>functia</u> de tranzitie,

s ∈Q, numita starea initiala,

F⊆Q numita multimea starilor finale (de acceptare);

Notatie 6

 $\mathcal{A} = \{ A \mid A \text{ este un automat finit determinist } \}$

Observatie 7

Pentru a descrie calculul efectuat de un AFD extindem functia 5 printr-o definitie inductiva astfel:

$$δ : Q x Σ* → Q : δ (s, ε) = s$$

$$δ (s, wa) = δ (δ(s, w), a), ∀ w∈Σ*, a∈Σ .$$

Exemplu 8

A₁:
$$Q = \{q_1, q_2, q_3\};$$

 $\Sigma = \{a,b\};$
 $s = q_1;$
 $F = \{q_2\}$
 δ :

	a	a b		
q_1	q ₁	q ₂		
q ₂	q_3	q ₂		
q_3	q ₂	q_2		

$$\delta(\delta(q_1,aba),a) =$$

 $\delta(q_1, abaa) =$

$$\delta(\delta(\delta(q_1,ab),a),a) =$$

$$\delta(\delta(\delta(\delta(q_1,a),b),a),a) =$$

$$\delta(\delta(\delta(q_1,b),a),a) =$$

$$\delta(\delta(\mathbf{q}_2,\mathbf{a}),\mathbf{a}) =$$

$$\delta(q_3, a) = q_2.$$

Exemplu 8

A₁:
$$Q = \{A,B,C,D,E,F,G\};$$

 $\Sigma = \{a,b\};$
 $s = A;$
 $F = \{C,E\}$
 δ :

	a b
Α	B D
В	в с
С	D E
D	D E
E	в с
F	C G
G	FE


```
¥ √ abab, .....

⊗ abba, .....
```

Definitie 9

L(A) = limbajul recunoscut de AFD A

- $= \{ w \in \Sigma^* | \delta(s, w) = q \in F \}$
- = multimea secventelor peste Σ care aduc A intr-o stare finala

Observatie 10: acceptare vs. recunoastere

Fie AFD $A_3 = (Q, \Sigma, \delta, s, \emptyset)$

$$\Rightarrow$$
 L(A₃) = \varnothing

i.e.: automatul nu accepta nicio secventa peste alfabetul sau de intrare – pentru ca nu are nicio stare finala $F = \emptyset \subseteq Q$

dar recunoaste totusi un limbaj, și anume limbajul vid!!.

Cum proiectam un AFD?

Ideea metodica a proiectarii unui AFD: "proiectantul devine un AFD"

Sa pp. ca primim un limbaj L si vrem sa proiectam AFD A care sa il recunoasca

Metoda de mai sus presupune ca proiectantul primeste o fraza f si i se cere sa spuna daca $f \in L$ sau $f \notin L$

Ca un AFD, proiectantul "vede" simbolurile din fraza unul cate unul si – dupa citirea fiecarui smb – trebuie sa fie in stare sa spuna daca fraza citita pana in acel moment ∈L sau ∉L

i.e.: proiectantul – la fel ca un AFD –

- ✓ are o memorie limitata
- ✓ nu stie cand ajunge la "capatul" frazei si
- ✓ trebuie sa aiba mereu un raspuns pregatit. ->

Cum proiectam un AFD? (cont.)

Elementul esential in aceasta strategie:

CE INFORMATIE DESPRE FRAZA CITITA TREBUIE MEMORATA DE AFD?

De ce nu memoram toata fraza citita?

- limbajul: infinit :
 automatul: numar finit de stari, deci memorie finita
- nu este necesar :

e suficient sa memoram "informatia cruciala"

CARE ESTE INSA INFORMATIA CRUCIALA ?!?

aceasta depinde de limbajul respectiv => stabilirea ei: elementul dificil si creativ in proiectarea unui AFD.

Exemplu 11

Fie $\Sigma = \{0,1\}$ si $L = \{w \in \{0,1\}^+ \mid \#_1(w) = 2k+1, k \in \mathbb{N}\}$

Fie secventa de intrare

Pas 1: stabilim informatia de memorat:

- nr de smb 1 citite pana la momentul crt este sau nu impar?
- la citirea unui nou smb:
 - daca acesta este 0 -> raspunsul trebuie lasat neschimbat;
 - daca acesta este 1 -> raspunsul trebuie comutat

Pas 2: reprezentam informatia de memorat ca o lista finita de posibilitati:

- numar par de simboluri 1, pana acum;
- numar impar de simboluri 1, pana acum. ->

Pas 3: asignam fiecarei posibilitati cate o stare:

- q_{par}
- q_{impar} . ->

Pas 4: definim tranzitiile, examinand modul in care se trece de la o posibilitate la alta la citirea fiecarui tip de simbol din Σ :

q_{impar}

- la citirea unui simbol 1 se trece din orice stare in cealalta stare,
- la citirea unui simbol 0 se ramane in aceeasi stare,

Pas 5: stabilirea starii initiale si a multimii starilor finale, examinand modul in care se intra/se paraseste fiecare posibilitate:

initial se citesc 0 simboluri -> AFD porneste din starea q_{par}.

starea finala trebuie sa fie cea in care acceptam secventa de intrare =>

starea finala este q_{impar}.

20

Definitie 12: Calculul efectuat de un AFD

Fie A = $(Q, \Sigma, \delta, s, F)$ un AFD

$$W = W_1 W_2 \dots W_n : \forall 1 \le i \le n : W_i \in \Sigma$$

Atunci, A accepta w ddaca $\exists r_0, r_1, ..., r_n \in Q$ astfel încât:

- 1. $r_0 = s$,
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 \le i \le n-1,$
- 3. $r_n \in F$;

Exemplu 13

Fie automatul de mai sus;

el accepta secventa 010100 pentru ca exista secventa de stari

 q_1 , q_2 , q_3 , q_2 , q_3 , q_2 , care indeplineste toate cele 3 conditii:

$$\delta(q_1, 0) = q_1, \delta(q_1, 1) = q_2, \delta(q_2, 0) = q_3, \delta(q_3, 1) = q_2, \delta(q_2, 0) = q_3, \delta(q_3, 0) = q_2$$

Definitie 14

Exemple 15

1. $L_1 = \{w \in \{0,1\}^* \mid w = w_1 w_2 ... w_k 1, k \in \mathbb{N}\}$

Putem verifica pentru:

√ 10101, 0001,

⊗ 0000, 1010, =>

=> $A_1 = (\{q_1, q_2\}, \{0,1\}, \delta, q_1, \{q_2\}),$

δ	0	1
q_1	q_1	q_2
q_2	q_1	q_2

Fie acum:

√ 0000, 1010,

⊗ 10101, 0001, =>

2. $L_2 = \{w \in \{0,1\}^* \mid w = w_1 w_2 ... w_k 0, k \in \mathbb{N}\}$

δ	0	1
q_1	q_1	q_2
q_2	q_1	q_2

3. Fie A₃:

Observam simetria => simulam un calcul (pentru ramura stanga): aa...abb...baa...abb...baa...a.... => a^n , $a^nb^ma^k$, $a^nb^ma^kb^ua^v => a^{n1}b^{m1}a^{k1}a^{n2}b^{m2}a^{k2}...a^{nx}b^{mx}a^{kx}$ => L_3 = { $w \in \{a,b\}^*$ | w incepe şi se termina cu a} \cup \cup { $w \in \{a,b\}^*$ | w incepe şi se termina cu b}.

4. Vrem sa construim un AFD care sa recunoasca toate cuvintele binare care contin subcuvantul 001:

$$L_4 = \{w \in \{0,1\}^* \mid \exists x,y \in \{0,1\}^* \text{ a.i. } w = x001y\}$$

- => trecem peste prefixele formate numai din 1 (pastram starea initiala, s)
 - cand gasim un 0 semnalam cu o noua stare q
 - daca intalnim 0 din nou semnalam cu o noua stare, q₀₀
 - 1 reluam cautarea intorcandu-ne in s

 - daca intalnim 1 semnalam cu o noua stare q₀₀₁ și o declaram finala (nu conteaza cate simboluri 0 sau 1 mai intalnim in continuare, acceptam pt ca am gasit deja subcuvantul cautat)
 - O ramanem pe loc in asteptarea unui 1 (daca il gasim trecem in starea finala, daca nu, AFD nu accepta secv.).

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie

Definitie 16

Fie A, B $\subseteq \Sigma^*$; definim urmatoarele operatii:

- ✓ reuniunea : $A \cup B = \{ \omega \in \Sigma^* \mid \omega \in A \text{ sau } \omega \in B \},$
- ✓ concatenarea : $A_0B = \{\omega v \in \Sigma^* \mid \omega \in A \text{ si } v \in B\},$
- ✓ operatia star : $A^* = \{\omega_1 \omega_2 ... \omega_n \in \Sigma^* \mid \omega_k \in A, \forall 1 \le k \le n, n \in \mathcal{N}\};$

Observatii 17

- ☐ Cele 3 operatii: operatii regulate
 - ✓ specifice clasei limbajelor formale,
 - utilizate pentru a studia proprietatile limbajelor (regulate);
- Operatia star
 - este singura unara,
 - \checkmark ∀ A \subseteq Σ*: A* contine ε (n>0 sau n=0!);

Exemplu 18

```
Fie \Sigma = {a,b, c,...,z}, A = {telefon, mobil, fax}, B = {fix, mobil}
=> A \cup B = {telefon, mobil, fax, fix}
A \circ B = {telefonfix,telefonmobil, mobilfix,mobilmobil, faxfix, faxmobil}
```

 $B^* = \{\epsilon, \text{ fix, mobil, fixfix, fixmobil, mobilfix, mobilmobil, fixfixfix, fixmobil, fixfixfix, fixmobilmobil, fixfixfixfix,}.$

Teorema 19

 \mathcal{L}_3 este inchisa la reuniune (ie.: L_1 , $L_2 \in \mathcal{L}_3$ => $L = L_1 \cup L_2 \in \mathcal{L}_3$)

Demonstratie (constructiva)

Ideea dem.:

```
ip.: L_1, L_2 \in L_3 => \exists A_i = (Q_i, \Sigma_i, \delta_i, s_i, F_i), \in \mathcal{A} a. i. L_i = L(A_i), i=1,2 cum L = L_1 \cup L_2 ->
```

trebuie sa construim un AFD A care sa accepte oridecateori A1, respectiv A2 accepta

- -> A trebuie sa se bazeze pe A₁, A₂: simuleaza intai A₁ şi, daca el nu accepta, simuleaza A₂
- -> eroare: daca A l-a simulat intai pe A₁ şi el nu a acceptat, A nu poate relua secventa pt A₂
- -> alta strategie: A simuleaza **simultan**, pe fiecare simbol din secventa de intrare, pe A₁ şi A₂
- -> **dificultate**: trebuie sa memoram starile prin care trece A in timpul celor 2 simulari; se poate face cu memoria finita a unor AFD?!?

DA, pt ca avem de memorat tot un numar finit de perechi de stari: |Q₁|x|Q₂| !!

=> aceste perechi de stari vor constitui multimea de stari ale lui A
starile finale de acceptare ale A sunt acele perechi de stari din A₁ respectiv A₂, care
contin cel putin o stare finala de acceptare (pentru A₁, respectiv A₂).
28

Demonstratie formala:

```
Construim A = (Q, \Sigma, \delta, s, F), care recunoaste L = L_1 \cup L_2 = L(A_1) \cup L(A_2),
      unde A_1 = (Q_1, \Sigma_1, \delta_1, S_1, F_1), A_2 = (Q_2, \Sigma_2, \delta_2, S_2, F_2), astfel:
Q = \{(q_1, q_2) \mid q_1 \in Q_1 \text{ si } q_2 \in Q_2\} = Q_1 \times Q_2
\Sigma = \Sigma_1 \cup \Sigma_2
\delta: Q \times \Sigma \rightarrow Q, \quad \delta((q_1,q_2), a) = (\delta_1(q_1,a), \delta_2(q_2,a))
S = (S_1, S_2)
F = \{(q_1,q_2) \mid q_1 \in F_1 \text{ sau } q_2 \in F_2\} = (F_1 \times Q_2) \cup (Q_1 \times F_2);
      Mai trebuie: L(A_1) \cup L(A_2) \subseteq L(A) şi L(A) \subseteq L(A_1) \cup L(A_2).
```

```
Demonstratie formala (cont.):
L(A_1) \cup L(A_2) \subseteq L(A): evident, cf Def. 12: calculul efectuat de un AFD:
                                     Fie A = (Q, \Sigma, \delta, s, F) un AFD şi w = w_1w_2 \dots w_n: \forall 1 \le i \le n: w_i \in \Sigma
                                    Atunci, A accepta w ddaca \exists r_0, r_1, ..., r_n \in \mathbb{Q} astfel incat:
                                     (1.) r_0 = s, (2.) \delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 \le i \le n-1, (3.) r_n \in F;
Fie W = W_1 W_2 ... W_n \in L(A_1) =>
     \exists r_0, r_1, ..., r_n \in Q_1 \text{ a.i. } r_0 = s_1, \delta(r_i, w_{i+1}) = r_{i+1}, \forall 0 \le i \le n-1, r_n \in F_1 = s_1
oricare ar fi starile de pe pozitia a 2a din perechile (r, q), r \in Q_1 şi q \in Q_2, ajungem in starea finala
     (r_n, q_n) \in (F_1 \times Q_2) \subseteq (F_1 \times Q_2) \cup (Q_1 \times F_2) = F \implies w \in L(A);
Fie w = w_1 w_2 \dots w_n \in L(A_2): analog;
Reciproc: fie w = w_1 w_2 ... w_n \in L(A) =>
     \exists (r_1, q_1), (r_2, q_2), ..., (r_n, q_n) \in Q = Q_1 \times Q_2 a.i.
     (r_1, q_1) = (s_1, s_2),
     \delta((r_i,q_i), w_{i+1}) = (\delta_1(r_i, w_{i+1}), \delta_2(q_i, w_{i+1})) = (r_{i+1}, q_{i+1}), \forall 0 \le i \le n-1,
     (r_n, q_n) \in F;
Dar F = (F_1 \times Q_2) \cup (Q_1 \times F_2) => distingem cazurile:
     (r_n, q_n) \in (F_1 \times Q_2) \Longrightarrow r_n \in F_1 \Longrightarrow W \in L(A_1),
     (r_n, q_n) \in (Q_1 \times F_2) \Longrightarrow q_n \in F_2 \Longrightarrow W \in L(A_2),
     (r_n, q_n) \in (F_1 \times Q_2) \cap (Q_1 \times F_2) = (r_n, q_n) \in (F_1 \times F_2) = r_n \in F_1, q_n \in F_2 = w \in L(A_1) \cap L(A_2)
```

30

=> $w \in L(A_1) \cup L(A_2)$ q.e.d.

Propozitie 20

 \mathcal{L}_3 este inchisa la intersectie, diferenta şi complementara (ie.: L_1 , $L_2 \in \mathcal{L}_3 = (L_1 \cap L_2)$, $(L_1 - L_2)$, $(\Sigma - L_1) \in \mathcal{L}_3$)

Demonstratie

Acelasi rationament (constructie), dar:

AFD care recunoaste $L = L_1 \cap L_2$ are ca multime de stari finale, multimea:

$$F = \{(q_1,q_2) \mid q_1 \in F_1 \text{ si } q_2 \in F_2\} = F_1 \times F_2$$

AFD care recunoaste $L = L_1 - L_2$ are ca multime de stari finale, multimea:

$$F = \{(q_1,q_2) \mid q_1 \in F_1 \text{ si } q_2 \notin F_2\} = F_1 \times (Q_2 - F_2)$$

AFD care recunoaste Σ - L₁ are ca multime de stari finale, multimea:

$$F = \{ q_1 \mid q_1 \in (Q_1 - F_1) \}$$
 q.e.d.

Observatii 21

- ✓ Intersectia, diferenta și complementara NU sunt operatii regulate!
- ✓ AFD care recunosc $L_1 \cup L_2$, respectiv $L_1 \cap L_2$ au $|Q_1| \times |Q_2|$ stari.

Propozitie 22

Fie $L_1 \in \mathcal{L}_3$ și $L_2 \subseteq \Sigma^*$ oarecare

=> catul la dreapta $L_1 / L_2 = \{w \in \Sigma * | \exists y \in L_2 : wy \in L_1\} \in \mathcal{L}_3$ Demonstratie

Fie A=(Q, Σ , δ , s, F) a.i. L(A)=L₁; definim A'=(Q, Σ , δ , s, F') astfel: F'= {q ∈ Q | \exists y∈L₂: δ (q,y)∈F} => δ (s,w) ∈ F' ddaca \exists y∈L₂: wy∈L₁.

```
\begin{array}{lll} \mathbf{s}: \Sigma \to \mathscr{P}(\Psi^*) & \text{fie } \mathbf{s}: \{a,b\} \to \mathscr{P}(\{0,1,x\}^*) & \mathbf{s}(a) = \{0x\}, & \mathbf{s}(b) = \{x11\} \\ \mathbf{s}(\varepsilon) = \{\varepsilon\}, & \text{daca } \mathsf{L} = \{a,b, aa, ab, ba, bb\} & => \\ \mathbf{s}(a\beta) = \mathbf{s}(a)\mathbf{s}(\beta), & \forall a \in \Sigma, & \forall \beta \in \Sigma^* & \mathbf{s}(\mathsf{L}) = \{0x, x11, 0x0x, 0xx11, x110x, x11x11\}. \\ \mathbf{card} \ (\mathbf{s}(a)) = 1, & \forall a \in \Sigma & => \mathbf{[omo]morfism}: \\ \text{Fie un limbaj } \mathsf{L} \subseteq \Sigma^* \ ; \ \text{atunci definim prin: } \ \mathbf{s}(L) = \mathsf{U} \quad \mathbf{s}(\alpha) \\ \text{limbajul obtinut din L prin substitutie canonica} & \alpha \in L \\ \end{array}
```

Propozitie 23

Fie L \in \mathcal{L}_3 si h: $\mathcal{L}^* \rightarrow \mathcal{V}^*$ un morfism => h⁻¹(L) \in \mathcal{L}_3

Demonstratie

Fie A=(Q, Σ , δ , s, F) a.i. L(A)=L \subseteq Σ^* definim A'=(Q, Ψ , δ ', s, F) astfel: δ '(q,a)= δ (q,h(a)); se dem. prin inductie asupra $w \in L$ ca δ '(s,w) = δ (s,h(w)) (i.e. A' accepta w ddaca A accepta h(w)).

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie

Observatie 24

- Incercam sa folosim pentru demonstrarea inchiderii \mathcal{L}_3 la concatenare (şi operatia star) aceeasi tehnica utilizata pentru reuniune (şi intersectie),
- -> dificultate: AFD A care trebuie sa recunoasca A₁·A₂ (decise sa accepte o secventa de tipul w=w₁w₂) trebuie sa accepte numai cand A₁, respectiv A₂ accepta w₁, respectiv w₂ simultan,
 - ori, A nu stie unde trebuie sa "sparga" w pentru a obtine w₁ şi w₂ şi a incepe simularea!
- => trebuie introdusa o noua tehnica: nedeterminismul!

Conceptual, diferentele dintre un AFD si un AFN sunt:

1) $\forall q \in \mathbb{Q}$: $\forall a \in \Sigma$:

in AFD pleaca o singura sageata pentru fiecare simbol de intrare,

in AFN pleaca

0 sau

mai multe sageti, etichetate cu diferite smb. de intrare;

2) Sagetile sunt etichetate:

in AFD: cu simboluri din Σ , cu simboluri din Σ , in AFN: cu simboluri din Σ si/sau cu simbolul vid, ϵ .

3) Modul de calcul ->

Conceptual, diferentele dintre un AFD si un AFN sunt (cont.):

- 3) Modul de calcul
- \Re Pp. ca AFN se afla in starea $q_i \in Q$ si citeste simbolul a $\in \Sigma \Rightarrow$

AFN SE MULTIPLICA intr-un numar de exemplare **n**, egal cu numarul de stari q_{i1},q_{i2},...q_{in} in care poate trece si CONTINUA CALCULUL IN PARALEL, pentru fiecare dintre posibilitati,

 \mathbb{Z} Daca, in continuare, dintr-una dintre starile in care a trecut, fie ea $q_{ik} \in \mathbb{Q}$, AFN poate trece in mai multe stari $q_{ik1}, q_{ik2}, \dots q_{ikm} \Rightarrow$

acel exemplar se multiplica la randul lui in m exemplare etc.,

lpha Daca insa noul simbol citit cand AFN se afla in starea q_i nu apare pe niciuna dintre sagetile care ies din starea q_{ik} \Rightarrow

acel exemplar "moare", impreuna cu toata ramura de calcul respectiva;

Hentru ca secventa de intrare sa fie recunoscuta de AFN este suficient ca o singura ramura de calcul (un singur exemplar din AFN) sa ajunga intr-o stare finala;

lpha Daca din starea $q_i \in Q$ pleaca o sageata etichetata cu simbolul $\epsilon \Rightarrow$

AFN se multiplica de asemenea intr-un numar de exemplare egal cu numarul de sageti etichetate cu ϵ , daca exista mai multe astfel de sageti, plus un exemplar care "ramane pe loc" in aceeasi stare $q_i \in Q$. Apoi se continua ca mai sus.

Definitie 25: Automat finit nedeterminist

```
AFN = (Q, \Sigma, \delta, s, F), unde:
Q = multime finita, nevida (stari),
\Sigma = \text{multime finita, nevida, numita alfabet de intrare (simboluri),}
\delta : Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \mathcal{P}(Q), \text{ numita functia de tranzitie,}
s \in Q, \text{ numita starea initiala,}
F \subseteq Q \text{ numita multimea starilor finale (de acceptare);}
```

Notatii 26

```
\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\},
\mathcal{AN} = \{ N \mid N \text{ este un automat finit nedeterminist } \}
```

Observatie 27

Pentru a descrie calculul efectuat de un AFN extindem functia δ printr-o definitie inductiva astfel:

$$\delta: Q \times (\Sigma \cup \{\epsilon\})^* \to \mathcal{P}(Q): \quad \delta (s, \epsilon) = \{s\}$$

$$\delta (s, wa) = \bigcup_{q \in \delta(s, w)} \delta(q, a), \ \forall \ w \in \Sigma^*, \ a \in \Sigma.$$

Definitie 28: Calculul efectuat de un AFN

```
Fie AN = (Q, \Sigma, \delta, s, F) un AFN  w = w_1w_2 ... w_n \colon \forall \ 1 \le i \le n \colon w_i \in \Sigma_\epsilon  Atunci, AN accepta w ddaca \exists \ r_o, \ r_1, ..., \ r_n \in Q astfel incat:  1. \ r_o = s,   2. \ r_{i+1} \in \delta(r_i, w_{i+1}), \ \forall \ 0 \le i \le n-1,   3. \ r_n \in F
```

Definitie 29

```
L(N) = limbajul recunoscut de AFN N
= \{ \mathbf{w} \in \Sigma^* | \delta(\mathbf{s}, \mathbf{w}) \cap \mathbf{F} \neq \emptyset \}
= multimea secventelor peste \Sigma care aduc N intr-o stare finala.
```

Exemplu 30

AFN care recunoaste limbajul:

δ	ε	0	1
q ₁	Ф	{q ₁ }	${q_1,q_2}$
q_2	{q ₃ }	{q ₃ }	Φ
q_3	Φ	Φ	{q ₄ }
q ₄	Ф	$\{q_4\}$	{q ₄ }

Symbol read

Start

 (q_3)

Teorema 31

AFN ⇔ AFD

Demonstratie "←"

Evident: orice AFD se converteste intr-un AFN in care fiecare multime de stari in care poate trece automatul consta dintr-o singura stare;

Fie AN=(Q, Σ , δ , q₀, F) $\in \mathcal{AN}$; el se poate converti intr-un AFD, A=(Q', Σ ', δ ', q'₀, F') $\in \mathcal{A}$, astfel: Q' = \mathcal{P} (Q), Σ ' = Σ , q₀'={q₀},

 $F' = \{ R \in Q' = \mathcal{P}(Q) \mid R \text{ contine cel putin o stare finala a lui AFN } \}$

 $\forall \mathsf{R} \in \mathsf{Q'} = \mathscr{P}(\mathsf{Q}) \text{ si } \forall \mathsf{a} \in \Sigma' = \Sigma : \quad \delta'(\mathsf{R}, \mathsf{a}) = \{\mathsf{q} \in \mathsf{Q} \mid \exists \mathsf{r} \in \mathsf{R} : \mathsf{q} \in \delta(\mathsf{r}, \mathsf{a})\} = \bigcup_{\mathsf{r} \in \mathsf{R}} \delta(\mathsf{r}, \mathsf{a})$

Daca ∃ tranzitii etichetate cu ε, mai definim

Vid(R) = R \cup {q \in Q | q poate fi atinsa din R cu ajutorul a 1 sau mai multe tranzitii etichetate cu ϵ } \Rightarrow pentru a include starile in care se trece cu tranzitii etichetate cu ϵ redefinim:

 $\delta'(R,a) = \{q \in Q \mid \exists r \in R: \ q \in Vid(\delta(r,a))\} = \bigcup_{r \in R} Vid(\delta(r,a))\}$ $q_0'=Vid(\{q_0\}) \ q.e.d.$

Corolar 32: $\forall L \subseteq \Sigma^*$: $L \in \mathcal{L}_3$: $\Leftrightarrow \exists AN \in \mathcal{AN}$: L(AN) = L.

Fie AFN=(Q, Σ , δ , s, F) -> AFD=(Q', Σ ', δ ', s', F') astfel:

 $Q' = \mathcal{P}(Q), \qquad \Sigma' = \Sigma, \qquad q_0' = \{q_0\},$ $E' = \{Q \in \mathcal{P}(Q) \mid P \text{ continuous puting external puting externa$

 $F' = \{ R \in Q' = \mathcal{P}(Q) \mid R \text{ contine cel putin o stare finala a lui AFN } \}$

 $\forall \mathsf{R} \in \mathsf{Q'} \text{ si } \mathsf{a} \in \Sigma' : \delta'(\mathsf{R}, \mathsf{a}) = \{ \mathsf{q} \in \mathsf{Q} \mid \exists \mathsf{r} \in \mathsf{R} : \mathsf{q} \in \delta(\mathsf{r}, \mathsf{a}) \} = \bigcup_{\mathsf{r} \in \mathsf{R}} \delta(\mathsf{r}, \mathsf{a}).$

Daca ∃ tranzitii etichetate cu ε, mai definim

Vid(R) = R \cup {q \in Q | q poate fi atinsa din R cu ajutorul a 1 sau m. multe tranzitii etichet. cu ε} \Rightarrow δ'(R,a) = {q \in Q | \exists r \in R: q \in Vid(δ (r,a))}= $\cup_{r \in R}$ Vid(δ (r,a))

 $q_0'=Vid(\{q_0\})$

Aplicatie 33

Fie AFN de mai sus (care accepta secvente de forma ε , a, baba, baa etc. (şi nu accepta b, bb, babba etc.) => NA = ({1,2,3}, {a,b}, δ , 1, {1});

construim AFD A, echivalent, cf. Teoremei 23:

$$Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}; \quad \Sigma' = \{a,b\}$$

$$s' = \{1\} \cup Vid(\{1\}) = \{1\} \cup \{3\} = \{1, 3\}$$

F' = submultimile lui Q care contin cel putin o stare de acceptare =

$$= \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$$

$$\delta'$$
: $\delta'(\emptyset,a) = \emptyset$, $\delta'(\emptyset,b) = \emptyset$

$$\delta'(\{1\},a)=\emptyset$$
, $\delta'(\{1\},b)=\{2\}$, $\delta'(\{2\},a)=\{2,3\}$, $\delta'(\{2\},b)=\{3\}$, $\delta'(\{3\},a)=\{1,3\}$,

$$\delta'(\{3\},b)=\emptyset$$
,

43

Teorema 34

 \mathcal{L}_3 e inchisa la reuniune

Demonstratie

Fie $N_1=(Q_1, \Sigma_1, \delta_1, s_1, F_1), L(N_1) = L_1$ şi $N_2=(Q_2, \Sigma_2, \delta_2, s_2, F_2), L(N_2) = L_2$

Construim N care recunoaste L₁∪L₂ folosind aceeasi idee ca in dem. ant. dar cu AFN:

Avantaj: noul AFN, N, poate ghici care dintre N₁ sau N₂ poate accepta cuvantul de intrare astfel:

N are o noua stare initiala din care ajunge in s₁ sau s₂ cu ajutorul unor tranzitii etichetate cu ε.

Formal:

Construim N = (Q, Σ , δ , s, F) care va recunoaste L₁ \cup L₂ astfel:

$$Q = \{s\} \cup Q_1 \cup Q_2$$

$$S = S$$

 $F = F_1 \cup F_2$ (pt ca N accepta cand fie N_1 accepta, fie N_2 accepta, fie ambele)

$$\delta(q, a) = \begin{cases} \delta_1(q, a), & q \in Q_1 \\ \delta_2(q, a), & q \in Q_2 \\ \{s_1, s_2\}, & q = s, a = \varepsilon \\ \Theta, & q = s, a \neq \varepsilon \end{cases}$$

Teorema 35

\mathcal{L}_3 e inchisa la concatenare

Demonstratie

Fie
$$N_1=(Q_1, \Sigma_1, \delta_1, s_1, F_1), L(N_1)=L_1$$

şi
$$N_2 = (Q_2, \Sigma_2, \delta_2, S_2, F_2), L(N_2) = L_2$$

Construim N care recunoaste L₁oL₂ folosind aceeasi idee ca in dem. ant.

Diferenta: noul AFN, N, poate ghici unde se termina primul cuvant şi poate trece din orice stare finala a lui N_1 in starea initiala a lui N_2 printr-o tranzitie etichetata cu ϵ .

Starile finale ale lui N sunt numai starile finale ale lui N₂.

Formal:

Construim N = (Q, Σ , δ , s, F) care va recunoaste L₁oL₂ astfel:

$$Q = Q_1 \cup Q_2$$

$$S = S_1$$

 $F = F_2$ (pt ca N accepta doar cand N_2 accepta dupa ce N_1 a aceptat la randul sau)

$$\delta(q,a) = \begin{cases} \delta_1(q,a), & q \in Q_1 \setminus F_1 \\ \delta_1(q,a), & q \in F_1, a \neq \varepsilon \\ \delta_1(q,a) \bigcup \{s_2\}, & q \in F_1, a = \varepsilon \\ \delta_2(q,a), & q \in Q_2 \end{cases}$$

Teorema 36

 \mathcal{L}_3 e inchisa la operatia star

Demonstratie

- Fie $N_1=(Q_1, \Sigma_1, \delta_1, s_1, F_1)$, $L(N_1)=L_1$ construim $N=(Q, \Sigma, \delta, s, F)$, $L(N)=L^*$;
- Folosim aceeasi idee ca in cazul reuniunii şi concatenarii:
- N va recunoaste secventa de intrare doar cand o va putea descompune in mai multe subsecvente (identice) pe care N_1 le va recunoaste (pe fiecare in parte)
- N are aceleasi elemente ca N₁ dar contine in plus tranzitii etichetate cu ε care ii permit sa se intoarca din orice stare finala in starea initiala =>
- cand N incheie calculul pentru o subsecventa pe care N_1 o accepta, N are optiunea de a reveni la starea initiala pentru a citi o noua subsecventa acceptabila de catre N_1 ;
- Dificultate specifica: N trebuie sa accepte ε (L* contine intotdeauna ε):
 - adaugam o noua stare intiala, s, pentru N
 - o defininim şi ca stare finala
 - etichetam tranzitia dintre s şi s₁ cu ε (pentru a nu introduce secv. noi in L(N))₄₉

Formal:

Construim N = $(Q, \Sigma, \delta, s, F)$ care va recunoaste L* astfel:

$$Q = Q_1 \cup \{s\}$$

$$S = S_1$$

 $F = F_1 \cup \{s\}$ (pt ca N "continua" sa accepte subcuvinte doar dupa ce N_1 a aceptat la randul sau subcuvantul)

$$\delta_{1}(q,a), \ q \in Q_{1} \setminus F_{1}$$

$$\delta_{1}(q,a), \ q \in F_{1}, a \neq \varepsilon$$

$$\delta_{1}(q,a) \bigcup \{s_{1}\}, \ q \in F_{1}, a = \varepsilon$$

$$\{s_{1}\}, \ q = s, a = \varepsilon$$

$$\Theta, \ q = s, a \neq \varepsilon$$

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie

Definitie 37

Expresie regulata peste un alfabet $\Sigma = \mathbf{R} =$

= o secventa $R \in \Sigma^*$ care satisface una dintre urmatoarele conditii:

- 1. $R=a, \forall a \in \Sigma (R \text{ reprezinta lb. } \{a\}\subseteq\Sigma^*);$
- 2. $R=\varepsilon$ (R reprezinta lb. $\{\varepsilon\} \subseteq \Sigma^*$);
- R=∅ (R reprezinta limbajul vid);
- daca R₁ si R₂ sunt expresii regulate ⇒
 - \square ($R_1 \cup R_2$) este o expresie regulata,
 - (R₁oR₂) este o expresie regulata,
 - (R₁*) este o expresie regulata;

Notatii 38

```
L(R) = limbajul generat de expresia regulata R; \Re = { R | R este o expresie regulata }.
```

Observatii 39

Fie $R \in \mathbb{R}$: o expresie regulata; atunci:

- R ∪ Ø = R
 (i.e. adaugarea limbajului vid altui limbaj nu il modifica pe acesta);
- 2. R ο ε = R
 (i.e. concatenarea cuvantului vid la oricare cuvant cu nu il modifica pe acesta);
- 3. $R \cup \varepsilon \neq R$ (fie R=0 => L(R)={0} dar L(R $\cup \varepsilon$)={ ε ,0});
- 4. Ro \varnothing \neq R (fie R=0 => L(R)={0} iar L(Ro \varnothing) = \varnothing);
- 5. Precedenta operatorilor regulati * > ° > ∪

Exemple 40: Expresii regulate peste alfabetul $\Sigma = \{a,b\}$

- 1. ab∪ba = {ab,ba}
- 2. $a \cup \varepsilon = \{\varepsilon, a\}$
- 3. $(a \cup \varepsilon) (b \cup \varepsilon) = \{\varepsilon, a, b, ab\}$
- 4. $(a \cup \varepsilon)b^* = ab^* \cup b^*$
- 5. $b^*\varnothing = \varnothing$
- 6. $\emptyset^* = \{\varepsilon\}$
- 7. $a*ba* = { w | \#/w|_b=1 }$
- 8. $\Sigma^* b \Sigma^* = \{ w \mid \#/w|_b \ge 1 \}$
- 9. $(a \cup b)a^* = \{w \mid w \text{ consta numai din smb. a, precedate eventual de 1! b}\}$
- 10. Σ^* aab $\Sigma^* = \{ w \mid w \text{ contine subcuvantul } aab \}$
- 11. $(ab^+)^* = \{ w \mid \text{ fiecare smb. } a \text{ din } w \text{ este urmat de cel putin un smb. } b \}$
- 12. $a\Sigma^*a \cup b\Sigma^*b \cup a \cup b = \{ w \mid w \text{ incepe şi se termina cu acelasi simbol} \}$
- 13. $(\Sigma\Sigma)^* = \{ w \mid |w| = 2k, k \in \mathcal{N} \}$
- 14. $(\Sigma\Sigma\Sigma)^* = \{ w \mid |w| = 3k, k \in \mathcal{N} \}$.

Observatie 41: Aplicatii ale expresiilor regulate

- 1. descrierea pattern-urilor:
 - utilitare: AWK sau GREP din UNIX;
 - limbaje de programare moderne: PERL;
 - editoarele de texte

ofera mecanisme de descriere a patternurilor folosind expresii regulate pentru cautari de secvente care satisfac anumite conditii;

2. proiectarea analizoarelor lexicale (parte a compilatoarelor pentru limbajele de programe; efectueaza analiza lexicala a programului-sursa ca prima faza a traducerii acestuia in program-obiect):

expresiile regulate permit descrierea sintaxei identificatorilor (nume de variabile, constante etc.) ca in ex.:

o constanta numerica, formata dintr-o parte intreaga și eventual dintro parte fractionara și/sau un semn, poate fi descrisa ca un cuvant din limbajul

 $(+ \cup - \cup ε)$ (C⁺ \cup C⁺ \cdot C^{*} \cdot C⁺) peste alfabetul C = { 0,1,2,...,9 }.

Definitie 42

<u>Automat finit nedeterminist generalizat = AFNG = </u>

 $(Q, \Sigma, \delta, q_{start}, q_{accept})$, unde:

Q = multime finita, nevida, ale carei elemente se numesc stari;

 Σ = multime finita, nevida, numita <u>alfabet de intrare</u>, ale carei elemente se numesc <u>simboluri</u>;

q_{start} ∈Q, numita <u>starea initiala</u>;

q_{accept} ∈Q, numita <u>starea finala</u>;

 $\delta: (Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\}) \rightarrow \mathcal{R}$, numita <u>functia de tranzitie</u>.

Teorema 43

 \forall L \subseteq Σ^* , L \in \mathcal{L}_3 : \Leftrightarrow \exists o expresie regulata R peste Σ care descrie L.

Demonstratie

"⇒" (informal)

Fie $L\subseteq\Sigma^*$ un limbaj regulat $\Rightarrow \exists A \in \mathcal{A}$ a.i. L=L(A)

Exista un algoritm de convertire a unui AFD intr-o expresie regulata:

- 1. se converteste AFD intr-un AFNG,
- 2. se converteste AFNG intr-o expresie regulata;

"←" (formal)

Fie $L\subseteq\Sigma^*$ un limbaj si fie R o expresie regulata peste Σ a.i. L(R)=L;

E suficient sa demonstram cum se transforma o expresie regulata intr-un AFN (examinand pe rand cele 6 cazuri din Definitia 37) şi sa aplicam Corolarul 32) ->

Fie R $\in \mathbb{R} => \exists$ AN $\in \mathcal{AN}$ care o recunoaste, unde AN este:

1. daca R=a, $\forall a \in \Sigma$ => L(R)={a} şi AN care recunoaste L(R) este:

Formal: AN=($\{s,q\}, \Sigma, \delta, s, \{q\}$) unde: $\delta(s,a)=\{q\}, \delta(r,x)=\emptyset$ daca $r\neq s$ sau $x\neq a$;

2. daca $R=\varepsilon \Rightarrow L(R)=\{\varepsilon\}$ şi AN care recunoaste L(R) este:

Formal: AN=($\{s\}$, Σ , δ , s, $\{s\}$) unde: $\delta(r,x)=\emptyset \ \forall r \ \text{\emptyset} \ \forall x \in \Sigma$;

3. daca $R = \emptyset \implies L(R) = \emptyset$ şi AN care recunoaste L(R) este:

Formal: AN=($\{s\}$, Σ , δ , s, \varnothing) unde: $\delta(r,x)=\varnothing \ \forall r \not s i \ \forall x \in \Sigma$.

Fie R $\in \mathbb{R} => \exists$ AN $\in \mathcal{AN}$ care o recunoaste, unde AN este:

- 4. daca $R=R_1 \cup R_2$ unde $L(R_i)$ este recunoscut de $N_i \in \mathcal{AN}$, i=1,2; atunci AN care recunoaste L(R) se construieste din N_1 şi N_2 ca in Teorema 26 de inchidere a \mathcal{L}_3 la \cup ;
- 5. daca $R=R_1\circ R_2$ unde $L(R_i)$ este recunoscut de $N_i\in\mathcal{AN}$, i=1,2; atunci AN care recunoaste L(R) se construieste din N_1 şi N_2 ca in Teorema 27 de inchidere a \mathcal{L}_3 la o;
- 6. daca R=R₁* unde L(R₁) este recunoscut de N₁ ∈ AN; atunci AN care recunoaste L(R) se construieste din N₁ ca in Teorema 28 de inchidere a L₃ la * q.e.d.

Exemplificari 44

Exemplificari 44

Exemplificari 44

2) ? AFN pentru R=(a ∪ b)*aba (cont.)

 $(a \cup b)*aba$

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie

Lema de pompare

- Fie $L\subseteq\Sigma^*$, $L\in\mathcal{L}_3\Rightarrow\exists\ \mathbf{p}\in\mathcal{N}$ (numita lungimea sau ct.de pompare) a.i.
- ∀ w∈L: |w|≥p atunci ∃ x,y,z∈Σ* cu proprietatea ca w=xyz si:
- (1) $\forall i \geq 0$: $xy^iz \in L$;
- (2) |y| > 0;
- (3) $|xy| \le p$.

Observatii 33

- cond (2) evita solutiile triviale;
- ✓ cond. (3): $x=\varepsilon \lor z=\varepsilon$ dar nu ambele;
- cond. (3): f. utila in unele demonstratii de neapartenenta;
- daca $\forall w \in L$: |w| < p (pt. $p \in \mathcal{N}$ ales) => (\exists) $w \in L$: $|w| \ge p$ si atunci cele 3 conditii sunt trivial verificate, lema nemaiavand obiect!!.

35

Ideea demonstratiei

Luam
$$p=|Q|$$

 $si n=|w|, n \ge p \Rightarrow$

 $n+1 > p=|Q| \Rightarrow \exists cel putin 1 repetitie: q_0...q_i...q_k...q_qq_{r+1}...q_r...q_t...q_f$

Verificam conditiile:

- fie w=xyyz; analog pt w=xyⁱz, \forall i \geq 2 >0 şi pt w=xz \Rightarrow (1);
- obs. ca subsecv. y aduce M din q_r inapoi in $q_r \Rightarrow (2)$;
- q_r este prima stare care se repeta iar n+1>p ⇒
 repetitia apare in una dintre primele p+1 stari din secv. ⇒ (3)

Demonstratie

Fie
$$A = (Q, \Sigma, \delta, s, F) \in \mathcal{A}, L(A) = L$$

şi $p = |Q|$

Fie
$$w = w_1 w_2 ... w_n \in L, |w| = n, n \ge p$$

şi $r_0, r_1, ..., r_n \in \mathbb{Q}$ starile parcurse de A pentru prelucrarea secventei w

=>
$$r_o = s$$
; $r_{i+1} = \delta(r_i, w_{i+1}), ∀ 0 \le i \le n-1$; $r_n \in F$

Obs. ca numarul de stari este $n+1 \ge p+1$ (am pp. $n \ge p$) =>

cf. principiului cutiei: intre primele p+1 stari exista o stare care se repeta 👄

$$\Leftrightarrow$$
 \exists doua stari r_j şi r_k , $1 \le j < k \le p+1$: $r_j = r_k$

=>
$$k \le p+1$$
 => $∃ x,y,z ∈ Σ^*: x = w_1w_2...w_{j-1},$

$$y = w_j w_{j+1} \dots w_{k-1},$$

$$Z = W_k W_{k+1} ... W_n$$
. ->

Demonstratie (cont.)

Cum secventa x duce A din starea ro in starea ro

iar z duce A din starea r_k in starea r_n , unde $r_n \in F =>$

=> A accepta toate secvenetele xyⁱz, $\forall i \geq 0$ (=> cond(i));

Cum $1 \le j < k \le p+1 => j \ne k |y| > 0 (=> cond(ii)),$

 $=> |xy| \le p (=> cond(iii)); q.e.d.$

Aplicatie 34

Lema de pompare: demonstrarea L∉ L₃: —

ppa $L \in \mathcal{L}_3$ => putem aplica Lema:

⇒ exista $p \in \mathcal{N}$ a.i. \forall w ∈ L, $|w| \ge p$, poate fi "pompat"

cautam un contraexmplu i.e.

cautam un $w \in L$, $|w| \ge p$, care, oricum ar fi descompus in $x,y,z \in \Sigma^*$:

contrazice cel putin una dintre conditiile (i)-(iii),

(cel mai des: $\exists i \in \mathcal{N}(i=0 \text{ sau } i>0) \text{ a.i. } xy^iz \notin L);$

De obicei, alegem acel w care evidentiaza esenta caracterului neregulat al L.

Exemplu

$$L_1 = \{ a^n b^n \mid n \in \mathcal{N} \} \notin \mathcal{L}_3$$

fie w=a^pb^p, p=ct de pompare => |w|=2p>p≥1; exista 3 descompuneri posibile w=xyz:

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie

Teorema 36

Problema apartenentei, a limbajului vid, a limbajului infinit şi a echivalentei sunt decidabile pentru \mathcal{L}_3

Demonstratie

(i) Problema apartenentei:

fie $w \in \Sigma^*$ şi $A \in \mathcal{A}$ oarecare;

 $|w| < \infty = >$ "rulam" A pe w şi, dupa un nr **finit** de pasi, A ajunge in starea q daca q \in F atunci $w \in L(A)$, altfel $w \notin L(A)$ q.e.d.

(ii) Problema limbajului vid:

- fie $A \in \mathcal{A}$ oarecare şi fie arborele de derivare care descrie toate derivările posibile executate de A pornind de la starea iniţială; procedam astfel:
- P1. marcăm starea inițială a lui A;
- P2. executam P3 până când nu se mai pot marca noi stari:
 - P3. marcăm orice stare în care intră o săgeată (o tranziţie) care pleacă dintr-o stare deja marcată.
- P4. dacă nici una dintre stările finale nu este marcată, atunci A nu acceptă niciun cuvant $w \in \Sigma^*$, deci $L(A) = \emptyset$ q.e.d.

(iii) Problema limbajului infinit:

evidenta prin Lema de pompare q.e.d.

(iv) Problema echivalentei:

Fie A,B $\in \mathcal{A}$; construim C $\in \mathcal{A}$ a.i C accepta numai acele cuvinte w $\in \Sigma^*$ care sunt acceptate fie de A fie de B dar nu de ambele, i.e.:

$$L(C)=(L(A)\cap \overline{L(B)})\cup (\overline{L(A)}\cap L(B))$$

Intrucat \mathcal{L}_3 este inchisa la reuniune, intersectie si complementara =>L(C) $\in \mathcal{L}_3$ dar L(A)=L(B) \Leftrightarrow L(C)= \varnothing

cum problema limbajului vid este decidabila => problema echivalentei este decidabila

q.e.d.

- 1. Automate finite deterministe
- 2. Operatii de inchidere
- 3. Automate finite nedeterministe
- 4. Expresii regulate
- 5. Lema de pompare
- 6. Probleme de decizie.

