Inverse Kinematics for Articulated Robots

So far...

 We learned about planning algorithms that generalize across many types of robots

- But many robots are articulated linkages
 - Arms, humanoids, etc.
- Often need to move the end-effector (i.e. robot hand) to a goal pose
 - How do we compute the configuration that places the end-effector there?

Outline

- Computing the Manipulator Jacobian
- Using the Manipulator Jacobian for inverse kinematics
- Using the null space to satisfy secondary tasks

Definitions

- C-space is sometimes called joint space for articulated robots
 - Let *N* be the number of joints (i.e. the dimension of C-space)
- The end-effector space is called task space
 - In 2D: Task space is SE(2) = R² X S¹
 - In 3D: Task space is SE(3) = R³ X RP³
 - Let M be the number of DOF in task space
- A point in task space x is called a pose of the endeffector

*some people call this the Tool Center Point (TCP)

Forward Kinematics

 The Forward Kinematics function, given a configuration q, computes the pose of the end-effector x:

$$x = FK(q)$$

• If *N* (number of joints) is greater than *M* (number of task space DOF), the robot is called **redundant**

Redundancy

If N > M, FK maps a continuum of configurations to one end-effector pose:

• If N = M, FK maps a *finite number* of configurations to one end-effector pose:

If N < M, you're in trouble (may not be able to reach a target pose)

C-space and Task Space

 For manipulation, we often don't care about the configuration of the arm (as long as it's feasible), we care about what the end-effector is doing

- Controlling an articulated robot is all about computing a C-space motion that does the right thing in task space
- Inverse Kinematics (IK) is the problem of computing a configuration that places the end-effector at a given point in task space
 - Analytical solutions exist for some robots if N=M
 - No analytical solution if N > M, Why?
 - For N > M, we can do Iterative Inverse Kinematics using the Manipulator Jacobian

The Manipulator Jacobian

- The Manipulator Jacobian converts a velocity in C-space (dq/dt) to a velocity in task space (dx/dt)
- Start with Forward Kinematics function

$$x = FK(q)$$

Take the derivative with respect to time:

$$\frac{dx}{dt} = \frac{d[FK(q)]}{dt} = \frac{dFK(q)}{dq} \frac{dq}{dt}$$

Now we get the standard Jacobian equation:

$$\frac{dx}{dt} = J(q)\frac{dq}{dt}$$

$$\frac{dFK(q)}{dq} = J(q)$$

Computing the Jacobian

 The Jacobian is a matrix where each column represents the effect of a unit motion of a joint on the end-effector

$$\mathbf{M} = \left[\frac{dx}{dq_1} \frac{dx}{dq_2} \cdots \right] = J(q)$$

Here x is all the end-effector DOF (position and orientation)

- For low-DOF (i.e. up to 3 or 4 joints), you can write the FK function analytically and take its derivative to compute J(q)
- For higher-DOF robots, it's faster and simpler to compute J(q) numerically

The Manipulator Jacobian

$$\dot{x} = J(q)\dot{q}$$

$$J(q) = \begin{bmatrix} \frac{\partial x(q)}{\partial q_1} & \frac{\partial x(q)}{\partial q_2} & \cdots & \frac{\partial x(q)}{\partial q_n} \\ \xi_1 z_1(q_1) & \xi_2 z_2(q_2) & \cdots & \xi_n z_n(q_n) \end{bmatrix} \text{ orientation}$$

$$\xi_k = \begin{cases} 0 & \text{Prismatic Joint k} \\ 1 & \text{Revolute Joint k} \end{cases}$$

Computing the Manipulator Jacobian: Translation

You can compute the translation part of J(q) numerically:

$$J(q) = \begin{bmatrix} \frac{\partial x(q)}{\partial q_1} & \frac{\partial x(q)}{\partial q_2} & \cdots & \frac{\partial x(q)}{\partial q_n} \\ \xi_1 z_1(q_1) & \xi_2 z_2(q_2) & \cdots & \xi_n z_n(q_n) \end{bmatrix}$$

- Place the robot in configuration q (i.e. do FK)
- For a translation (prismatic) joint:

 $\frac{dx}{dq_i} = v_i$

Joint axis (z axis here)

For a rotation (revolute) joint:

$$\frac{dx}{dq_i} = v_i \times p_i$$

Computing the Manipulator Jacobian: Rotation

Represent rotation components with angular velocities

$$J(q) = \begin{bmatrix} \frac{\partial x(q)}{\partial q_1} & \frac{\partial x(q)}{\partial q_2} & \dots & \frac{\partial x(q)}{\partial q_n} \\ \xi_1 z_1(q_1) & \xi_2 z_2(q_2) & \dots & \xi_n z_n(q_n) \end{bmatrix}$$

- Place the robot in configuration q (i.e. do FK)
- Get joint axis in world frame $z_i(q_i) = v_i$ 2.

$$z_i(q_i) = v_i$$

Using the Manipulator Jacobian for Inverse Kinematics (IK)

Process: Starting at some configuration, iteratively move closer to x_{target}

We need to invert the Jacobian to get the joint velocity dq/dt

$$\frac{dq}{dt} = J(q)^{-1} \frac{dx}{dt}$$
 Is it always possible to compute the inverse?

Inverting the Jacobian

- If N=M, Jacobian is square, so can use the standard matrix inverse
- If N > M, use the Moore-Penrose Right Pseudo-Inverse

$$J(q)^{+} = J(q)^{T} (J(q)J(q)^{T})^{-1}$$

This is the least-squares solution to computing dq/dt

Singularities

• $(J(q)J(q)^T)^{-1}$ is square, but what if $(J(q)J(q)^T)^{-1}$ is singular, i.e. we have lost a degree of freedom?

A singular configuration: no way to move in x!

Inverting the Jacobian

• We can add a small constant along the diagonal of $J(q)J(q)^T$ to make it invertible when it is singular

$$J(q)^{+} \approx J(q)^{T} (J(q)J(q)^{T} + \lambda^{2} \mathbf{I})^{-1}$$

- This is called "damped least-squares"
- The matrix will be invertible but this technique introduces a small inaccuracy

Iterative Jacobian Pseudo-Inverse Inverse Kinematics

```
While true x_{current} = FK(q_{current})
\dot{x} = (x_{target} - x_{current})
error = ||\dot{x}||
If error < threshold
return \ q_{current}
\dot{q} = J(q)^+ \ \dot{x}
If(||\dot{q}|| > \alpha)
\dot{q} = \alpha(\dot{q} \ / ||\dot{q}||)
q_{current} = q_{current} + \dot{q}
end
```


- This is a local method, it will get stuck in local minima (i.e. joint limits)!!!
- α is the step size
- Numerical error handling not shown
- A correction matrix has to be applied to the angular velocity components to map them into the target frame (not shown)

Break

Secondary Tasks

 So far, we only considered how to get the end-effector to a given pose

- What if we also want to avoid
 - Joint limits
 - Obstacles

 How do we account for these secondary tasks when doing Jacobian-based Iterative IK?

The Left Null-space

- We can try to satisfy secondary tasks in the null-space of the Jacobian pseudo-inverse
- In linear algebra, the left null-space of a matrix A is the set of vectors V:

$$V = \{ v \in \mathbb{R}^m | A^T v = 0 \}, \quad A \in \mathbb{R}^{m \times n}$$

You can prove that V is orthogonal to the range of A

Left Null-space of the Jacobian Pseudo-inverse

- For our purposes, this means that the secondary task will not disturb the primary task
- The left null-space projection matrix for the Jacobian pseudo-inverse is:

$$N(q) = (I - J(q)^+ J(q))$$

To project a vector into the left null-space, just multiply it by the above matrix

Why does this work?

First, decompose v into two orthogonal parts:

Why does this work?

Use this relationship to get r:

$$\hat{v} = (A^T A)^{-1} A^T v$$

$$r = A \hat{v}$$

$$r = A (A^T A)^{-1} A^T v$$

$$r = A A^+ v$$

Now we can find n, the part of v that is in the left null-space of A

$$n = v - AA^+v = (I - AA^+)v$$

This is the left null-space projection matrix

range of A

Why does this work?

Now we plug in the Jacobian pseudo-inverse

Combining tasks using the null-space

• Combining the primary task dx_1/dt and the secondary task dq_2/dt :

Motion for Primary Task Motion for Secondary Task
$$\frac{dq}{dt} = J(q)^{+} \frac{dx_{1}}{dt} + \beta (I - J(q)^{+} J(q)) \frac{dq_{2}}{dt}$$

- This guarantees that the projection of q_2 is orthogonal to $J(q)^+(dx_1/dt)$
 - Assuming the system is linear

Using the Null-space

- The null-space is often used to "push" IK solvers away from
 - Joint limits
 - Obstacles

 How do we define the secondary task for the two constraints above?

$$\frac{dq}{dt} = J(q)^{+} \frac{dx_{1}}{dt} + \beta (I - J(q)^{+} J(q)) \frac{dq_{2}}{dt}$$
???

$$\frac{dq}{dt} = J(q)^{+} \frac{dx_1}{dt} + \beta (I - J(q)^{+} J(q)) \frac{dq_2}{dt}$$

Joint limits

???

 $q_{max,i}$ is upper limit for joint i $q_{min,i}$ is lower limit for joint i

$$\frac{dq_2}{dt} =$$

Obstacles

Using the Null-space

$$\frac{dq}{dt} = J(q)^{+} \frac{dx_{1}}{dt} + \beta (I - J(q)^{+} J(q)) \frac{dq_{2}}{dt}$$
Why do we need this scalar?

- What guarantees do we have about accomplishing the secondary task?
- Let's say you have a 6 DOF arm reaching for a 3D pose (6 DOF). Assume the arm is not at a singularity. What will $(I J(q)^+J(q))$ be?

Summary

We saw how to compute the Jacobian numerically

- The Jacobian can be used to solve IK problems, but we have to be careful about numerical issues
 - It is a local method, not a substitute for path planning

- The null-space of the Jacobian pseudo-inverse can be used to accomplish secondary tasks but we lose degrees of freedom in the null-space projection
 - Really only useful when you have a redundant robot

Homework

Read <u>Grasping Foundations</u>