Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 19 a 23 resueltos

Actividades a desarrollar en Clases Teórico-Prácticas

- 19. El vector momento de una fuerza f se define como $m = OP \land f$, siendo OP el vector posición del punto de aplicación de la fuerza.
- a) Encuentre el vector momento de la fuerza f = (20, 40, 30) N, aplicada en el punto P (3, 1, 3) m.
- b) Verifique que el vector momento es perpendicular tanto al vector f como al vector OP.

Respuestas:

a) Calculamos el producto vectorial entre los vectores f y OP.

Un camino de resolución es:

$$m = OP \land f = (3\check{\imath} + \check{\jmath} + 3\check{k}) \land (20\check{\imath} + 40\check{\jmath} + 30\check{k})$$

$$m = 60 (\check{\imath} \land \check{\imath}) + 20 (\check{\jmath} \land \check{\imath}) + 60 (\check{k} \land \check{\imath}) + 120 (\check{\imath} \land \check{\jmath}) + 40 (\check{\jmath} \land \check{\jmath}) + 120 (\check{k} \land \check{\jmath}) + 90 (\check{\imath} \land \check{k})$$

$$+ 30 (\check{\jmath} \land \check{k}) + 90 (\check{k} \land \check{k}) =$$

$$m = 0 - 20\check{k} + 60\check{\jmath} + 120\check{k} + 0 - 120\check{\imath} - 90\check{\jmath} + 30\check{\imath} + 0$$

$$m = (-90, -30, 100)Nm$$

Otra manera de registrar el cálculo es:
$$\mathbf{m} = \mathbf{OP} \wedge \mathbf{f} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & 3 \\ 20 & 40 & 30 \end{vmatrix} = -90\mathbf{i} - 30\mathbf{j} + 100\mathbf{k} = (-90, -30, 100)Nm$$

Observación adicional: el producto vectorial \mathbf{m} , entre los vectores dados \mathbf{f} y \mathbf{OP} , siendo vectores no nulos, es un vector no nulo. Esto verifica que \mathbf{f} y \mathbf{OP} son vectores L.I. (no son paralelos) También podemos asegurar que $\{\mathbf{f},\mathbf{m}\}$, $\{\mathbf{OP},\mathbf{m}\}$ y $\{\mathbf{f},\mathbf{OP}\}$ son conjuntos L.I. pero ninguno de ellos constituye una base de \mathbb{R}^3 ; Podrías explicar por qué?

En cambio, $\{f, \mathbf{OP}, \mathbf{m}\}$ es una base de \mathbb{R}^3 ; Podrías explicar por qué?

b) Para verificar que dos vectores son perpendiculares, calculamos el producto escalar entre ellos:

$$m \cdot f = (90,30,-100) \cdot (20,40,30) = 1800 + 1200 - 3000 = 0$$

 $m \cdot OP = (90,30,-100) \cdot (3,1,3) = 270 + 30 - 300 = 0$

Como ambos resultados son nulos hemos verificado que el vector momento de una fuerza m, es perpendicular a f y OP.

- 20. Dados dos vectores cualesquiera \mathbf{u} y \mathbf{v} :
- a) Encuentre una expresión que permita calcular el área del paralelogramo que tiene a los vectores como lados. Justifique la respuesta.
- b) Dados los vértices P (1, -2, 3), Q (2, 2, 1) y R (0, 4, -1) del paralelogramo *PQRS*, determine coordenadas para el vértice S y calcule el área de dicho paralelogramo.

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 19 a 23 resueltos

Respuestas:

a) Consideremos que los vectores \mathbf{u} y \mathbf{v} son los lados no paralelos de un paralelogramo como el de la figura y que α es el ángulo convexo que forman \mathbf{u} y \mathbf{v} .

Al trazar una altura h del paralelogramo (segmento perpendicular al lado \mathbf{v} desde el extremo de \mathbf{u}) queda determinado un triángulo rectángulo en el que h es el cateto opuesto al ángulo $\propto \mathbf{y} \|\mathbf{u}\|$ es la longitud de la hipotenusa. Entonces: $\mathbf{h} = \|\mathbf{u}\| \mathbf{sen} \propto (\mathbf{I})$

El área A del paralelogramo que tiene por lados no paralelos a \mathbf{u} y \mathbf{v} , se obtiene $A = \|\mathbf{v}\| h$, teniendo en cuenta el resultado de (I), tenemos que :

$$A = ||v|| ||u|| sen \propto$$

Esta expresión corresponde al módulo del producto vectorial entre \mathbf{v} y \mathbf{u} , $\|\mathbf{v} \wedge \mathbf{u}\|$.

Sustituyendo: $A = ||v \wedge u||$

b) Comencemos por graficar los tres puntos P, Q y R. Existen varias formas de determinar un paralelogramo con esos tres puntos ya que el punto S(x, y, z) no es único.

Primera solución posible:

Consideremos los vectores $\mathbf{PQ} = (1.4, -2)$ y

QR = (-2,2,-2), lados no paralelos del paralelogramo.

Si S es el cuarto vértice del paralelogramo, se cumple:

PS = (x - 1, y + 2, z - 3), PQ y PR son coplanares, entonces el producto mixto entre ellos es nulo.

$$PS.(PQ \land PR) = \begin{vmatrix} x-1 & y+2 & z-3 \\ 1 & 4 & -2 \\ -1 & 6 & -4 \end{vmatrix} = -4(x-1) + 6(y+2) + 10(z-3) = 0$$

$$-4x + 6y + 10z = 14 \tag{1}$$

Si PS = (x - 1, y + 2, z - 3) es paralelo a QR = (-2, 2, -2), entonces el vector PS es combinación lineal de QR, y como tienen la misma longitud el escalar de la combinación lineal es 1. Por lo tanto:

$$(x-1, y+2, z-3) = (-2,2,-2)$$

$$\begin{cases} x-1 = -2 \\ y+2 = 2 \\ z-3 = -2 \end{cases}$$

Al resolver el sistema, obtenemos que las coordenadas del vértice son: S(-1,0,1) y verifica la ecuación (1). Segunda solución posible:

Universidad Nacional de Cuvo

Actividades para el Aprendizaje

Ejercicios 19 a 23 resueltos

Seleccionemos los vectores no paralelos del paralelogramo del siguiente modo: PR y RQ.

$$PR = (-1,6,-4) \text{ y } RQ = (2,-2,2)$$

Si S es el cuarto vértice del paralelogramo, se cumple:

PS = (x - 1, y + 2, z - 3), PQ y PR son coplanares, entonces el producto mixto entre ellos es nulo.

$$PS.(PQ \land PR) = \begin{vmatrix} x-1 & y+2 & z-3 \\ 1 & 4 & -2 \\ -1 & 6 & -4 \end{vmatrix} = -4(x-1) + 6(y+2) + 10(z-3) = 0$$

$$-4x + 6y + 10z = 14 \tag{1}$$

Si PS = (x - 1, y + 2, z - 3) es paralelo a RQ = (2, -2, 2), es combinación lineal de QR, y como tienen la misma longitud el escalar de la combinación lineal es 1. Por lo tanto:

$$(x-1,y+2,z-3) = (2,-2,2)$$

$$\begin{cases} x-1=2\\ y+2=-2\\ z-3=2 \end{cases}$$

Al resolver el sistema, obtenemos que las coordenadas del vértice son: S(3, -4,5) y verifica la ecuación (1). Observación: ¿Hay otras coordenadas que determinen el cuarto vértice S del paralelogramo? ¿Por qué?

c) Calcularemos el área del paralelogramo PQRS, como $A = \|PQ \land PR\|$. Determinamos el producto vectorial entre PQ y PR:

$$PQ \wedge PR = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 4 & -2 \\ -1 & 6 & -4 \end{vmatrix} = -4\mathbf{i} + 6\mathbf{j} + 10\mathbf{k}$$

Luego $A = \|PQ \land PR\| = \sqrt{16 + 36 + 100}$ por lo tanto el área del paralelogramo PQRS es:

$$A\approx 12{,}33[L]^2.$$

- 21. El producto vectorial entre dos vectores puede reiterarse multiplicando vectorialmente por otro vector. Esta operación se llama *doble producto vectorial*.
- a) Resuelva el siguiente producto doble vectorial y verifique que el vector que resulta es perpendicular al vector a y al vector $(b \land c)$:

$$d = a \wedge (b \wedge c)$$
, siendo $a = -2i + k$; $b = j - k$; $c = 2i + 3j$.

b) Indique, justificando su respuesta, si cada uno de los siguientes conjuntos es LD o LI:

b.i)
$$\{a,b,c\}$$
; b.ii) $\{b,c,b\land c\}$; b.iii) $\{b,c,a\land (b\land c)\}$

Respuestas

a) Primero calculamos el producto vectorial entre **b** y **c**:

b)

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 19 a 23 resueltos

$$\mathbf{b} \wedge \mathbf{c} = (\check{\mathbf{j}} - \check{\mathbf{k}}) \wedge (2\check{\mathbf{i}} + 3\check{\mathbf{j}}) = -2\check{\mathbf{k}} - 2\check{\mathbf{j}} + 3\check{\mathbf{i}} = (3, -2, -2)$$

Ahora calculamos el doble producto vectorial:

$$\mathbf{d} = \mathbf{a} \wedge (\mathbf{b} \wedge \mathbf{c}) = (-2\mathbf{i} + \mathbf{k}) \wedge (3\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}) = 4\mathbf{k} - 4\mathbf{j} + 3\mathbf{j} + 2\mathbf{i}$$
$$\mathbf{d} = (2, -1, 4)$$

Verificamos que d es perpendicular a los *vectores* a y $(b \land c)$ calculando el producto escalar entre ellos:

$$\mathbf{d} \cdot \mathbf{a} = (2, -1, 4) \cdot (-2, 0, 1) = 0$$

 $\mathbf{d} \cdot (\mathbf{b} \wedge \mathbf{c}) = (2, -1, 4) \cdot (3, -2, -2) = 0$

b.i) {a,b,c} es LI porque la única combinación lineal posible para (0,0,0) es la de escalares nulos. Verificamos:

$$(0,0,0) = k_1(-2,0,1) + k_2(0,1,-1) + k_3(2,3,0)$$

$$\begin{cases} 0 = -2k_1 + 2k_3 \\ 0 = k_2 + 3k_3 \\ 0 = k_1 - k_2 \end{cases}$$

De la primer ecuación tenemos que $k_1=k_3$, de la tercera $k_1=k_2$ sustituyendo en la segunda ecuación $k_1=0$ y por lo tanto $k_1=k_2=k_3=0$.

b.ii) $\{b, c, b \land c\}$ es LI porque ya probamos que b y c son LI y $b \land c$ es perpendicular al plano que ellos determinan.

b. iii) $\{b, c, a \land (b \land c)\}$ es LD porque $a \land (b \land c)$ es perpendicular a $(b \land c)$ y $(b \land c)$ es perpendicular a b y perpendicular a c, entonces a es *combinación lineal* de $b \lor c$.

La representación gráfica ayuda a analizar la dependencia o independencia lineal de los vectores.

22. Dados tres vectores cualesquiera u, v, w

- a) Demuestre la forma de calcular el volumen del paralelepípedo que tiene a los tres vectores como aristas concurrentes.
- b) Dados los puntos A(0, 1, 1), B(-2, 1, 1), C(4, 1, 0) y D(3, 5, 2), calcule el volumen del prisma de base triangular de aristas *AB*, *AC* y *AD*.

Respuestas

a) Consideremos el paralelepípedo determinado por los vectores u, v y w. El área de la base que determinan u y v se puede calcular como $||u \wedge v||$.

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 19 a 23 resueltos

La altura del paralelepípedo es la longitud de un segmento perpendicular a la base y que tiene por extremo al punto asociado al vector \boldsymbol{w} .

Esa altura se puede determinar estudiando un triángulo rectángulo que tiene como cateto adyacente: $h = |||\boldsymbol{w}|| \cos \alpha|$ siendo α el ángulo que forma \boldsymbol{w} con el vector $\boldsymbol{u} \wedge \boldsymbol{v}$, coincidente (por ser ángulos alternos internos entre paralelas) con el ángulo que forma \boldsymbol{w} y la altura h.

El volumen V del paralelepípedo se calcula:

V =área de la base . altura

 $V = \|\boldsymbol{u} \wedge \boldsymbol{v}\|.h$

 $V = ||\mathbf{u} \wedge \mathbf{v}|| \, ||\mathbf{w}|| \cos \alpha|$

Esta expresión coincide con el valor absoluto del producto mixto entre w, u y v, podemos concluir:

$$V = |\mathbf{w} \cdot (\mathbf{u} \wedge \mathbf{v})|$$

b) Determinamos los vectores concurrentes en el vértice A:

$$AB = (-2,0,0)$$
; $AC = (4,0,-1)$; $AD = (3,4,1)$

A partir del resultado del inciso a), sabemos que el volumen del paralelepípedo cuyas aristas recurrentes son AB, AC y AD se puede calcular como :

$$V = |AB \cdot (AC \wedge AD)|$$

En el caso particular de un *prisma de base triangular* con aristas *AB*, *AC* y *AD*, su volumen será la <u>mitad</u> de *V*.

Calculamos el producto vectorial entre AC y AD:

$$\mathbf{AC} \wedge \mathbf{AD} = \begin{vmatrix} \mathbf{\check{i}} & \mathbf{\check{j}} & \mathbf{\check{k}} \\ 4 & 0 & -1 \\ 3 & 4 & 1 \end{vmatrix} = 4\mathbf{\check{i}} - 7\mathbf{\check{j}} + 16\mathbf{\check{k}}$$

Ahora evaluamos del producto mixto:

$$AB \cdot (AC \wedge AD) = (-2,0,0) \cdot (4,-7,16) = -8$$

También podemos calcular el producto mixto como el determinante de una matriz de orden 3:

$$AB.(AC \land AD) = \begin{vmatrix} -2 & 0 & 0 \\ 4 & 0 & -1 \\ 3 & 4 & 1 \end{vmatrix} = -2(0+4) + 0 + 0 = -8$$

Luego el volumen es: $V_{prisma} = \frac{1}{2} |AB \cdot (AC \wedge AD)| = \frac{1}{2} \cdot 8$

$$V_{prisma} = 4[L]^3$$

<u>Observaciones</u>: si el producto mixto entre tres vectores de R^3 es no nulo, es decir, determinan un volumen (no nulo) en el espacio, dichos vectores son LI. Por ser 3 vectores de LI de R^3 , generan a R^3 . Por lo tanto, forman una base de R^3 .

- 23. Se quiere realizar una excavación en el área definida por los puntos A (0,2,1), B (0,8,0), C (3,6,0) y D (3,0,1), de 4 metros de profundidad medidos desde el punto B (o C).
- a) Represente gráficamente y determine las coordenadas de los puntos que definen la zona de excavación.

_

Universidad Nacional de Cuyo

Actividades para el Aprendizaje

Ejercicios 19 a 23 resueltos

b) Evalúe el volumen de tierra a extraer.

c)

Respuestas

a) Interpretando gráficamente los datos del enunciado podemos determinar las coordenadas de los puntos que definen la zona de excavación (además de A, B,C y D):

$$E(0,8,-4)$$

 $F(3,6,-4)$
 $G(3,0,-4)$
 $H(0,2,-4)$

b) Definimos los puntos I(3,0,0) y J(0,2,0) porque para calcular el volumen total (V_T) de tierra a extraer tenemos que determinar el volumen del paralelepípedo $(V_{papalelepípedo})$ de aristas IG, IC e IJ; y además el volumen del prima de base triangular (V_{prisma}) de aristas ID, IC e IJ, ya que:

$$V_T = V_{papalelepípedo} + V_{prisma}$$

Sabiendo que
$$IG = (0,0,-4)$$
, $IC = (0,6,0)$ e $IJ = (-3,2,0)$, calculamos:

$$V_{\text{papalelepípedo}} = |IG(IC \land IJ)|$$

$$V_{\text{papalelepípedo}} = \begin{vmatrix} 0 & 0 & -4 \\ 0 & 6 & 0 \\ -3 & 2 & 0 \end{vmatrix} = 72 \text{m}^3$$

Luego sabiendo que ID = (0,0,1), IC = (0,6,0) e IJ = (-3,2,0), calculamos:

$$V_{pisma} = \frac{1}{2} |ID (IC \wedge IJ)|$$

$$V_{\text{pisma}} = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 0 & 6 & 0 \\ -3 & 2 & 0 \end{vmatrix} = \frac{1}{2}. |18| = 9\text{m}^3$$

Ahora podemos determinar el volumen de tierra para excavar: $V_T = 72m^3 + 9m^3 \ V_T = 81[L]^3$.