5

5

5

Bachelor of Science (Information Technology) (I.T.) Semester—VI Examination

OPERATION RESEARCH

Paper—6

Time: Three Hours] [Maximum Marks: 50

- **N.B.**:— (1) **ALL** questions are compulsory and carry equal marks.
 - (2) Draw neat and labelled diagram wherever necessary.

EITHER

- 1. (A) Explain operation research models with example.
 - (B) Solve the following linear programming problem using graphical method :

Maximize
$$Z = 6x_1 + 8x_2$$

Subject to $5x_1 + 10x_2 \le 60$
 $4x_1 + 4x_2 \le 40$
 x_1 and $x_2 \ge 0$

OR

- (C) What do you mean by linear programming problem? What are its major limitations?
- (D) Solve the following linear programming problem by using simplex method :

Z (max) =
$$3x_1 + 5x_2 + 4x_3$$

Subject to $2x_1 + 3x_2 \le 8$, $2x_2 + 5x_3 \le 10$
 $3x_1 + 2x_2 + 4x_3 \le 15$ and $x_1, x_2, x_3 \ge 0$.

EITHER

- 2. (A) Explain least cost method with example.
 - (B) Find the feasible solution of the following transportation problem using north west corner method:

	$\mathbf{W}_{_1}$	$\mathbf{W}_{_2}$	$\mathbf{W}_{_3}$	$\mathbf{W}_{_4}$	Supply	
F_{1}	14	25	45	5	5	
F_2	65	25	35	55	12	
F_3	35	3	65	15	13	
Demand	10	3	9	8		

OR

(C) Determine an initial basic feasible solution to the following transportation problem using Vogel's Approximation Method (VAM):

٠.					
	D_1	D_2	D_3	D_4	
	1	2	1	4	8
	3	3	2	1	9
	4	2	5	9	20
	5	3	6	10	24
	13	10	14	24	

5

(D) Explain in detail transportation model.

5

EITHER

- 3. (A) Distinguish between CPM and PERT.(B) Explain characteristics of dynamic programming.5
 - OR
 - (C) Write notes on:
 - (a) Forward Recursion
 - (b) Backward Recursion. 5
 - (D) Draw the Network diagram for the following activities :

$$C < G$$
; B, $G < H$;

EITHER

- 4. (A) Discuss the mathematical model of assignment problem. Explain in detail Hungarian method of solving assignment problem.
 - (B) Determine the minimum cost assignment of subcontractor to bidder. Assuming that each bidder can receive only one contract.

Bad Amount (in thousand Rs.)

	I	II	III	IV	V
1	41	72	39	52	25
2	22	29	49	65	81
3	27	39	60	51	40
4	45	50	48	52	37
5	29	40	45	26	30

5

5

OR

- (C) Explain Branch and Bound technique for solving assignment problem with example. 5
- (D) What is zero-one programming model? Explain.
- 5. Attempt **ALL**:
 - (A) Define artificial variable. 2½
 - (B) Write the steps of assignment problem. 2½
 - (C) Differentiate between Bound algorithm and Cutting Plan algorithm. 2½
 - (D) Explain the steps of Hungarian method. 2½