Matematyka Ubezpieczeń Majątkowych i Osobowych

Część I: Obliczanie rozkładów portfeli i ich parametrów Piotr Bocian

Spis treści

1	Wprowadzenie
2	Rozkłady portfeli
	2.1 Metoda funkcji tworzących
	2.1.1 Portfel S_N
	2.1.2 Portfel S_M
	2.1.3 Portfel S_K
	2.2 Wykresy rozkładów
	2.3 Parametry rozkładów portfeli
3	Histogramy
4	Przybliżanie rozkładem normalnym
	4.1 Obliczanie parametrów
	4.2 Wykresy
5	Przybliżanie rozkładem gamma
	5.1 Obliczanie parametrów
	5.2 Wykresy

1 Wprowadzenie

Niniejszy dokument jest pierwszą częścią projektu realizowanego na przedmiot Matematyka Ubezpieczeń Majątkowych i Osobowych. Zostały w nim przedstawione zagadnienia dotyczące obliczenia rozkładów portfeli złożonych.

Niech X_i , $i \ge 1$ będą szkodami o rozkładzie Poissona Poi(5). Definiujemy portfele

$$S_N = X_1 + \ldots + X_N,$$

$$S_M = X_1 + \ldots + X_M,$$

$$S_K = X_1 + \ldots + X_K,$$

gdzie $N \sim b(k, n, p), M \sim Poi(\lambda), K \sim Geo(p)$. Dodatkowo N, M, K mają wartość średnią równą 30. Dla poszczególnych rozkładów mamy:

$$\mathbb{E}N = np,$$

$$\mathbb{E}M = \lambda,$$

$$\mathbb{E}K = \frac{1}{p-1}.$$

Możemy więc przyjąć, że $N \sim b(k,60,1/2)$ oraz $M \sim Poi(30)$ i $K \sim Geo(1/31)$

2 Rozkłady portfeli

2.1 Metoda funkcji tworzących

Funkcja tworząca rozkładu Poissona z parametrem λ ma postać

$$P_X(t) = \sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} t^k$$

Z tego, że $X_i \sim Poi(5)$ uzyskujemy

$$P_{X_i}(t) = \sum_{k=0}^{\infty} \frac{e^{-5}5^k}{k!} t^k = e^{-5(1-t)}$$

2.1.1 Portfel S_N

Zmienna N ma rozkład binomialny b(k,60,1/2). Stąd funkcja tworząca jest dana jako

$$P_N(t) = \sum_{k=0}^{60} {60 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{60-k} t^k = \left(\frac{1}{2} + \frac{1}{2}t\right)^{60}$$

2.1.2 Portfel S_M

Zmienna M ma rozkład Poissona Poi(30). Wynika z tego, że funkcja tworząca M jest postaci

$$P_M(t) = \sum_{k=0}^{\infty} \frac{e^{-30}30^k}{k!} t^k$$

Stąd funkcja tworząca S_2 jest dana jako

$$P_{S_2}(t) = \sum_{k=0}^{\infty} \frac{e^{-3030^k}}{k!} (P_{X_i}(t))^k$$

2.1.3 Portfel S_K

Zmienna K ma rozkład geometryczny Geo(1/31). Funkcja tworząca jest dana jako:

$$P_K(t) = \sum_{k=0}^{\infty} \left(\frac{30}{31}\right)^k \frac{1}{31} t^k = \frac{1/31}{1 - \frac{30}{31} t}$$

2.2 Wykresy rozkładów

Rysunek 1: Wykresy rozkładów portfeli wyliczonych za pomocą metody momentów.

2.3 Parametry rozkładów portfeli

W tej części przyjrzymy się trzem parametrom rozkładów portfeli S_N, S_M, S_K . Przypomnijmy, że wariancja rozkładu S_i jest określona jako

$$VarS_i = \mathbb{E}S_i^2 - (\mathbb{E}S_i)^2$$

Do wyliczenia wartości oczekiwanej będzie nam potrzebna funkcja tworząca momenty

$$M_{S_i}(t) = P_{S_i}(e^t)$$

Wtedy wartości oczekiwane poszczególnych momentów są dane przez

$$\mathbb{E}S_i = M'_{S_i}(0), \ \mathbb{E}S_i^2 = M''_{S_i}(0)$$

Wartości powyższych parametrów rozkładów portfeli S_N, S_M, S_K zostały zawarte w poniższej tabeli

	Portfel		
Parametr	S_N	S_M	S_K
$\mathbb{E}S_i$	150	150	150
$\mathbb{E}S_i^2$	23025	23400	45900
$VarS_i$	525	900	23400

Jak widać zachodzi nierówność

$$VarS_N < VarS_M < VarS_K$$
.

3 Histogramy

Z rozkładów portfeli wygenerowano próby wielkości 50. Poniżej znajdują się histogramy prób wraz z wykresem gestości.

W przypadku obu wykresów widzimy, że histogram 50 wartości daje słabo widoczne przybliżenie rozkładu.

4 Przybliżanie rozkładem normalnym

4.1 Obliczanie parametrów

Funkcja gęstości rozkładu normalnego jest dana przez

$$\Phi(\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

W celu przybliżenia rozkładu S_i rozkładem normalnym obliczamy parametry

$$\mu = \mathbb{E}S_i, \ \sigma = \sqrt{VarS_i}$$

	Portfel			
Parametr	S_N	S_M	S_K	
μ	150	150	150	
σ	22.91288	30	152.9706	

4.2 Wykresy

Poniższe wykresy przedstawiają wykresy rozkładów portfeli wraz z ich przybliżeniami rozkładem normalnym.

5 Przybliżanie rozkładem gamma

5.1 Obliczanie parametrów

Funkcja gęstości rozkładu gamma jest dana przez

$$g(x, \alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

W celu przybliżenia rozkładu S_i rozkładem gamma obliczamy parametry α,β określone jako

 $\mathbb{E}[S_i] = \frac{\alpha}{\beta}, \ Var[S_i] = \frac{\alpha}{\beta^2}$

	Portfel		
Parametr	S_N	S_M	S_K
α	300/7	25	25/26
β	2/7	1/6	1/156

5.2 Wykresy

Poniższe wykresy przedstawiają wykresy rozkładów portfeli wraz z ich przybliżeniami rozkładem gamma.

