0.1 Injective, bijective and surjective functions

0.1.1 Injective functions

$$f(a) = f(b) \to a = b$$

0.1.2 Surjective functions

All points in codomain have at least one matching point in domain Mapping info, details

0.1.3 Bijective

Both injective and surjective

0.1.4 Other

Identity function	
The identity function maps a ter	m to itself.
Idempotent	

An idempotent function is a function which does not change the term if the function is used more than once. An example is multiplying by 0.

0.1.5 Inverse functions

An inverse function of a function is one which maps back onto the original value. g(x) is an inverse function of f(x) if g(f(x)) = x

0.1.6 Properties of binary functions

Binary functions can be written as:

$$f(a,b) = a \oplus b$$

A function is commutative if:

$$x \oplus y = y \oplus x$$

A function is associative if:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$

A function \otimes is left distributive over \oplus if:

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$$

Alternatively, function \otimes is right distributive over \oplus if:

$$(x \oplus y) \otimes z = (x \otimes z) \oplus (y \oplus z)$$

A function is distributive over another function if it both left and right distributive over it.