Outline

UE StatComp

Rejet Loi uniforme

Introduction MC et estimation MC et tests

Méthodes de Monte Carlo

Master parcours SSD - UE Statistique Computationnelle

Septembre 2019

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Références

 Diverses définitions proposées pour caractériser une méthode de Monte Carlo.

- ▶ Nous prendrons celle donnée dans Rizzo (2007, §6.1) : "toute méthode d'inférence statistique ou d'analyse numérique s'appuyant sur des techniques de simulation [de variables aléatoires]".
- Nous nous intéresserons donc à ces deux types d'applications :
 - ▶ l'analyse numérique et la problème de l'intégration.
 - ▶ l'inférence statistique pour la caractérisation d'un estimateur ou des performances d'un test statistique.
- Mais avant cela, nous allons nous intéresser à la simulation de variables aléatoires

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Références

Simulation de variables aléatoires

Simulation de variables aléatoires

- Simuler des variables selon une loi uniforme est un problème bien connu.
- Le logiciel R permet de simuler selon les lois usuelles.
 - uniforme, normale, Poisson, χ^2 , binomiale, ...
- La simulation d'autres lois peut être plus complexe.
- Nous allons illustrer deux méthodes de simulation :
 - ▶ l'inversion de la fonction de répartition,
 - Inversion de la fonction de repartition
 - l'algorithme du rejet.

Outline

UE StatComp

Introduction

Simulation variables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Simulation de lois usuelles avec R.

- La base : la loi normale (centrée réduite)
 - ▶ dnorm: fonction densité (dnorm(0) = $1/\sqrt{2\pi}$)
 - pnorm : fonction de répartition (pnorm(0) = 0.5)
 - qnorm : quantiles (qnorm(0.5) = 0)
 - rnorm : génération de nombres aléatoires

Outline

UE StatComp

Introduction

Simulation o

Introduction

Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et tests

Conclusion

Outline

UE StatComp

Introduction

Simulation (variables

Introduction

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

- La base : la loi normale (centrée réduite)
 - ▶ dnorm: fonction densité (dnorm(0) = $1/\sqrt{2\pi}$)
 - pnorm : fonction de répartition (pnorm(0) = 0.5)
 - qnorm : quantiles (qnorm(0.5) = 0)
 - rnorm : génération de nombres aléatoires
- ▶ Pour les autres lois, remplacer norm par un autre suffixe
 - dunif, punif, qunif, runif pour la loi uniforme
 - ► dexp, pexp, qexp, rexp pour la loi exponentielle

Introduction

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

- La base : la loi normale (centrée réduite)
 - ▶ dnorm : fonction densité (dnorm(0) = $1/\sqrt{2\pi}$)
 - pnorm : fonction de répartition (pnorm(0) = 0.5)
 - qnorm : quantiles (qnorm(0.5) = 0)
 - rnorm : génération de nombres aléatoires
- ▶ Pour les autres lois, remplacer norm par un autre suffixe
 - ▶ dunif, punif, qunif, runif pour la loi uniforme
 - ▶ dexp, pexp, qexp, rexp pour la loi exponentielle
- ► Pour visualiser une distribution empirique
 - ▶ la fonction hist calcule et/ou affiche l'histogramme
 - ► la fonction density calcule la densité par la méthode des noyaux (plot.density pour la visualiser)

?distributions() : densités disponibles en R

R RDocumentation

arch for packages, functions, etc

The functions for the density/mass function, cumulative distribution function, quantile function and random variate generation are natural masses and masses respectively.

For the beta distribution see dbeta .

Details

For the binomial (including Bernoulli) distribution see dbinom

For the Cauchy distribution see deauchy .

For the chi-squared distribution see dchisq .

For the exponential distribution see dexp

For the F distribution see df .

For the gamma distribution see dgamma .

For the geometric distribution see dgeom . (This is also a special case of the negative binomial.)

For the hypergeometric distribution see dhyper.

For the log-normal distribution see dlnorm

For the multinomial distribution see dmultinom .

For the negative binomial distribution see | dnbinom |

For the normal distribution see doorn .

For the Poisson distribution see dpois .

For the Student's t distribution see $\ensuremath{\,\underline{dt}}$.

For the uniform distribution see $\frac{\text{dunif}}{\text{c}}$.

For the Weibull distribution see $[\underline{\text{dweibull}}]$.

For less common distributions of test statistics see pbirthday, dsignrank, ptukey and dwilcox (and see the 'See Also' section of

omp

10

us

ion

1C

ation

Simulation de lois usuelles avec R.

Exemple :

```
> n = 1000  # nombre d'échantillons
> x = rnorm(n)  # tirage selon la loi N(0,1)
> plot(density(x), main = "")
> title("loi normale & densité empirique"
> rug(x)
```

loi normale & densité empirique

Outline

UE StatComp

Introduction

Simulation de variables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

(Rappel: estimation par noyau - principe)

Principe:

- ▶ on positionne un "noyau" sur chaque observation
- on les moyenne pour estimer la densité

⇒ méthode de Parzen : Kernel Density Estimation

Outline

UE StatComp

Introduction

Simulation de

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

(Rappel : estimation par noyau - définition)

Formellement, à partir de l'échantillon $(x_1,...,x_n)$:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i), \quad \forall x \in \mathcal{X}$$

où K(.) est un noyau = une fonction :

- non-négative
- dont l'intégrale vaut 1
- qui est centrée sur zéro

Outline

UE StatComp

Introduction

Simulation d

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

(Rappel: estimation par noyau - définition)

Formellement, à partir de l'échantillon $(x_1,...,x_n)$:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i), \quad \forall x \in \mathcal{X}$$

où K(.) est un noyau = une fonction :

- non-négative
- dont l'intégrale vaut 1
- qui est centrée sur zéro

 \Rightarrow Intuitivement : une moyenne locale, avec une notion de proximité définie par K.

Outline

UE StatComp

Introduction

imulation d ariables

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

onclusion

(Rappel: estimation par noyau - définition)

Formellement, à partir de l'échantillon $(x_1,...,x_n)$:

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} K(x - x_i), \quad \forall x \in \mathcal{X}$$

où K(.) est un noyau = une fonction :

- ▶ non-négative
- dont l'intégrale vaut 1
- qui est centrée sur zéro

 \Rightarrow Intuitivement : une moyenne locale, avec une notion de proximité définie par K.

Noyau typique = Gaussien : $K(x) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{1}{2}x^2)$.

Outline

UE StatComp

Introduction

Simulation d

Introduction

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

onclusion

(Rappel: estimation par noyau - fonction noyau)

Noyaux classiques:

Figure: Noyaux disponibles dans Scikit-Learn (et R).

Outline

UE StatComp

Introduction

Simulation de variables

Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

(Rappel: estimation par noyau - fonction noyau)

Une question clé : le choix de la largeur de bande

$$\hat{f}(x) = \frac{1}{n} \sum_{i} K(x - x_i) \Rightarrow \hat{f}_h(x) = \frac{1}{nh} \sum_{i} K(\frac{x - x_i}{h})$$

Figure: réalité, h=2, h=0.05, h=0.337

Outline

UE StatComp

Introduction

imulation d ariables

Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Simulation de variables aléatoires par inversion

Principe:

- ightharpoonup S'appuyer sur la distribution cumulée F pour simuler selon f.
- ▶ En effet : $si U \rightarrow \mathcal{U}(0,1)$ alors $F^{-1}(U) \xrightarrow{} f$.

Outline

UE StatComp

Introduction

Simulation d variables

Introduction Inversion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Simulation de variables aléatoires par inversion

Principe:

- ▶ S'appuyer sur la distribution cumulée *F* pour simuler selon *f* .
- ▶ En effet : si $U \to \mathcal{U}(0,1)$ alors $F^{-1}(U) \to f$.

Illustration:

- ► En rouge = densité cible ; en bleu= distribution cumulée.
- ▶ 1) On tire *u* uniformément sur [0, 1].
- ▶ 2) On prend x^* tel que $F(x^*) = u$.

- \Rightarrow On tire *u* selon l'axe des ordonnées.
- \Rightarrow La probabilité de tirer x est faible dans les zones où F(x) est plate.

Outline

UE StatComp

Introduction

ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Simulation de variables aléatoires par inversion

Hypothèses de travail :

- on connait la forme analytique de f
- (on sait simuler selon $\mathcal{U}(0,1)$)

Outline

UE StatComp

Introduction

imulation de

léatoires Introduction

Inversion Rejet Loi uniforme

Méthodes Mi

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction

Introduction MC et estimation MC et tests

Conclusion

Références

Hypothèses de travail :

- on connait la forme analytique de f
- (on sait simuler selon $\mathcal{U}(0,1)$)

Procédure :

- 1. calculer la fonction de repartition F(x)
- 2. calculer sa fonction réciproque $F^{-1}(u)$
 - ▶ poser u = F(x)
 - résoudre l'équation en x pour trouver $x = F^{-1}(u)$
- 3. tirer $(u_1, ..., u_n)$ selon $\mathcal{U}(0, 1)$
- 4. calculer $x_i = F^{-1}(u_i)$, pour i = 1, ..., n.

Principe:

▶ On choisit 1) une densité auxiliaire g selon laquelle on sait simuler, et 2) $k \in \mathbb{R}$ tel que $f(x) \leq kg(x), \forall x$.

Outline

UE StatComp

Introduction

Simulation d

Introduction Inversion

Rejet Loi uniforme

Néthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Principe:

▶ On choisit 1) une densité auxiliaire g selon laquelle on sait simuler, et 2) $k \in \mathbb{R}$ tel que $f(x) \leq kg(x), \forall x$.

Illustration:

- ▶ En rouge = densité f; en bleu= "densité" majorante kg.
- ▶ 1) On tire x_0 selon g.
- ▶ 2) On tire u_0 uniformément dans $[0; kg(x_0)]$.
- ▶ 3) Si $u_0 \le f(x_0)$ on garde x_0 , sinon on le rejette.

Figure: Image tirée de Bishop (2006).

 \Rightarrow La probabilité de tirer x dépend de l'écart entre f(x) et kg(x).

⇒ Le taux de rejet augmente en fonction de l'aire grise. Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion

Rejet Loi uniforme

Loi unitorme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

onclusion

Références

4/71

Hypothèses de travail :

- on connait la forme analytique de f
- ▶ on connait k et g tels que $f(x) \le kg(x), \forall x$
- on sait simuler selon g (et selon $\mathcal{U}(0,1)$)

Outline

UE StatComp

Introduction

Simulation de variables

Introduction Inversion Rejet

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Hypothèses de travail :

- on connait la forme analytique de f
- ▶ on connait k et g tels que $f(x) \le kg(x), \forall x$
- on sait simuler selon g (et selon $\mathcal{U}(0,1)$)

Procédure :

- 1. tirer x_i selon g, pour i = 1, ..., n
- 2. tirer u_i selon $\mathcal{U}(0, kg(x_i))$
- 3. conserver x_i si $u_i \leq f(x_i)$

Outline

UE StatComp

Introduction

imulation d ariables éatoires ntroduction nversion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Hypothèses de travail :

- on connait la forme analytique de f
- ▶ on connait k et g tels que $f(x) \le kg(x), \forall x$
- on sait simuler selon g (et selon $\mathcal{U}(0,1)$)

Procédure :

- 1. tirer x_i selon g, pour i = 1, ..., n
- 2. tirer u_i selon $\mathcal{U}(0, kg(x_i))$
- 3. conserver x_i si $u_i \leq f(x_i)$

En pratique :

- on applique cette procédure jusqu'à obtenir le nombre de tirages voulu (e.g., avec une boucle "tant que").
- ▶ le taux de rejet quantifie l'efficacité de la procédure.

Outline

UE StatComp

Introduction

eriables éatoires entroduction enversion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Remarques

Simulation par inversion:

► + : simple

- : on ne sait pas toujours calculer F^{-1}

Simulation par rejet :

► + : plus générique

- : difficile de choisir la densité majorante

⇒ extension : méthode du rejet adaptatif

 \Rightarrow les tirages rejetés servent à définir une enveloppe autour de f.

Outline

UE StatComp

Introduction

variables aléatoires Introduction

Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Références

Figure: Image tirée de Bishop (2006).

6/71

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Outline

UE StatComp

Introduction

Simulation de variables

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation

Conclusion

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

 \Rightarrow génère une suite de nombres aléatoires x_i .

Outline

UE StatComp

Introduction

omulation de variables aléatoires Introduction

Rejet

_oi unitorme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Références

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- \Rightarrow génère une suite de nombres aléatoires x_i .
- \Rightarrow à (a, b, m) fixés, la suite est determinée par z_0 .
 - ► z₀ est la **graine** (seed) du générateur.

La loi uniforme est à la base de nombreux simulateurs.

via les méthodes d'inversion et de rejet en particulier

Un problème bien connu...mais pas si trivial.

Méthode classique = générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- \Rightarrow génère une suite de nombres aléatoires x_i .
- \Rightarrow à (a, b, m) fixés, la suite est determinée par z_0 .
 - ► z₀ est la **graine** (seed) du générateur.
- ⇒ c'est en réalité une suite de nombres pseudo-aléatoires.
 - on peut donc la répéter en fixant la graine.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Simulation de la loi Uniforme

Méthode du générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

⇒ génère une suite de nombres pseudo-aléatoires

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Méthode du générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- ⇒ génère une suite de nombres pseudo-aléatoires
 - $ightharpoonup z_0 = \text{graine (fixée)}; x_n : n\text{-ième valeur obtenue}.$
 - $ightharpoonup z = y \pmod{m}$: le reste de $y/m \rightarrow \in [0, ..., m-1]$
 - x = z/m: ramène z entre 0 et 1.
 - $ightharpoonup m \sim$ le nombre de valeurs distinctes possibles.
 - \triangleright à prendre le + grand possible (e.g., $2^{31} 1$, 10^8).
 - a, b : à choisir avec soin pour avoir une bonne suite!

UE StatComp

Rejet

Loi uniforme

Introduction MC et estimation MC et tests

Simulation de la loi Uniforme

Méthode du générateur congruentiel :

$$x_n = \frac{z_n}{m}$$
, avec $z_n = (az_{n-1} + b) \pmod{m}$

- ⇒ génère une suite de nombres pseudo-aléatoires
 - $ightharpoonup z_0 = \text{graine (fixée)}; x_n : n\text{-ième valeur obtenue}.$
 - ▶ $z = y \pmod{m}$: le reste de $y/m \rightarrow [0, ..., m-1]$
 - $\rightarrow x = z/m$: ramène z entre 0 et 1.
 - ▶ $m \sim$ le nombre de valeurs distinctes possibles.
 - à prendre le + grand possible (e.g., $2^{31} 1$, 10^8).
 - ▶ a, b : à choisir avec soin pour avoir une bonne suite!
- \Rightarrow voir ?RNG pour la mise en oeuvre R.
- \Rightarrow en pratique, utiliser set.seed() pour fixer la graine.
 - et donc garantir que le script est reproductible.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

oi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Références

Méthodes Monte-Carlo pour l'intégration

Conclusion

- ► La question de l'intégration est au cœur de nombreux domaines : physique, finance, biologie...et statistiques.
 - voir 2ème partie du cours sur les approches Bayésiennes
- ► Parfois complexe à résoudre :
 - nombreuses variables couplées par des modèles complexes
 - primitives difficiles à déterminer
 - primitives trop longues à résoudre par des techniques d'analyse numérique
- ► L'approche MC s'appuie sur des méthodes de simulation de variables aléatoires pour approximer une intégrale.

Conclusion

Références

► La question de l'intégration est au cœur de nombreux domaines : physique, finance, biologie...et statistiques.

voir 2ème partie du cours sur les approches Bayésiennes

- ► Parfois complexe à résoudre :
 - nombreuses variables couplées par des modèles complexes
 - primitives difficiles à déterminer
 - primitives trop longues à résoudre par des techniques d'analyse numérique
- ► L'approche MC s'appuie sur des méthodes de simulation de variables aléatoires pour approximer une intégrale.
- \Rightarrow une approche stochastique pour un problème déterministe.
- ⇒ approximation = réponse statistique du type "la valeur recherchée se trouve très probablement dans cet intervalle".

Exemples introductifs ¹

Approximation de la superficie d'un lac :

- une armée tire X boulets de canon sur un terrain de taille S.
- ► On compte ensuite le nombre *N* de boulets restés sur le terrain.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Exemples introductifs ¹

Approximation de la superficie d'un lac :

- une armée tire X boulets de canon sur un terrain de taille S.
- ► On compte ensuite le nombre *N* de boulets restés sur le terrain.

 \Rightarrow l'aire du lac peut être approximée comme $S \times \frac{X-N}{X}$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Exemples introductifs ¹

Approximation de la superficie d'un lac :

- une armée tire X boulets de canon sur un terrain de taille S.
- ➤ On compte ensuite le nombre N de boulets restés sur le terrain.

- \Rightarrow l'aire du lac peut être approximée comme $S \times \frac{X-N}{X}$.
- \Rightarrow sous quelle(s) hypothèse(s) est-ce valide?

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

> Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Exemples introductifs²

Approximation de π :

- on tire aléatoirement (et <u>uniformément</u>) des points (x, y) dans $[0, 1] \times [0, 1]$.
- ▶ La proportion de points tels que $x^2 + y^2 \le 1$ est une approximation de $\pi/4$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

$$I=\int_0^1 g(x)dx.$$

▶ Principe Monte-Carlo : écrire / comme une espérance.

imulation o

variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

$$I=\int_0^1 g(x)dx.$$

- ▶ Principe Monte-Carlo : écrire / comme une espérance.
- ► Rappellons que si *X* est une variable aléatoire de densité *f* , alors par définition :

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx.$$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Description de la méthode

► On cherche à calculer

$$I=\int_0^1 g(x)dx.$$

- ► Principe Monte-Carlo : écrire / comme une espérance.
- ► Rappellons que si *X* est une variable aléatoire de densité *f* , alors par définition :

$$E[X] = \int_{-\infty}^{+\infty} x f(x) dx.$$

▶ Par ailleurs, pour toute fonction $g : \mathbb{R} \to \mathbb{R}$, g(X) est une variable aléatoire d'espérance :

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

Outline

UE StatComp

Introduction

ariables léatoires ntroduction nversion

Rejet

Loi uniforme

Méthodes MC
pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Description de la méthode

► On cherche donc à calculer

$$I=\int_0^1 g(x)dx,$$

en l'écrivant comme

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx,$$

où f est une densité de probabilité.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Dáfárancas

► On cherche donc à calculer

$$I=\int_0^1 g(x)dx,$$

en l'écrivant comme

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx,$$

où f est une densité de probabilité.

▶ Il suffit de considérer que X suit une loi uniforme sur [0, 1], sa densité étant définie comme :

$$f(x) = \begin{cases} 1 & \text{si} \quad 0 \le x \le 1 \\ 0 & \text{sinon.} \end{cases}$$

Description de la méthode

► On cherche donc à calculer

$$I = \int_0^1 g(x) dx$$

▶ On l'écrit comme I = E[g(X)] : l'espérance de la variable aléatoire g(X), où $X \mapsto \mathcal{U}(0,1)$.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Conclusion

Références

On cherche donc à calculer

$$I = \int_0^1 g(x) dx$$

- ▶ On l'écrit comme I = E[g(X)] : l'espérance de la variable aléatoire g(X), où $X \mapsto \mathcal{U}(0,1)$.
- ▶ Par conséquent, si on dispose d'un n-échantillon $(X_1,...,X_n)$ iid de loi $\mathcal{U}(0,1)$, on peut approximer I par l'estimateur de la moyenne empirique :

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$

Description de la méthode

► On cherche donc à calculer

$$I = \int_0^1 g(x) dx$$

- ▶ On l'écrit comme I = E[g(X)] : l'espérance de la variable aléatoire g(X), où $X \mapsto \mathcal{U}(0,1)$.
- Par conséquent, si on dispose d'un n-échantillon $(X_1,...,X_n)$ iid de loi $\mathcal{U}(0,1)$, on peut approximer I par l'estimateur de la moyenne empirique :

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$

 \Rightarrow il suffit de savoir tirer des nombres aléatoires uniformément sur [0,1], i.e., simuler une v.a. uniforme.

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Description de la méthode

► En pratique, on s'intéresse souvent à

$$I=\int g(x)f(x)dx,$$

où f est une densité de probabilité quelconque.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Conclusion

Références

► En pratique, on s'intéresse souvent à

$$I = \int g(x)f(x)dx,$$

où f est une densité de probabilité quelconque.

► On conserve la forme générale de l'espérance et on interprète *I* comme

$$I = E[g(X)],$$

où X est distribuée selon f.

Conclusion

Références

► En pratique, on s'intéresse souvent à

$$I = \int g(x)f(x)dx,$$

où f est une densité de probabilité quelconque.

► On conserve la forme générale de l'espérance et on interprète *I* comme

$$I = E[g(X)],$$

où X est distribuée selon f.

► On applique le même principe en simulant une variable aléatoire de loi *f* .

Justification de la méthode (1/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

Outline

UE StatComp

Introduction

Simulation o

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

1. La loi forte des grands nombres qui nous dit que X_n converge vers E(X):

$$E(X) = \lim_{n \to +\infty} \bar{X}_n = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=1}^n X_i.$$

- ce résultat nous dit donc que l'approximation est valide.
- ▶ (NB : il faut néanmoins que E(|X|) soit intégrable.)

Outline

UE StatComp

Rejet Loi uniforme

Méthodes MC pour l'intégration

Introduction MC et estimation MC et tests

Justification de la méthode (2/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

2. Le Théorème de la Limite Centrale qui nous dit que

$$\frac{\sqrt{n}}{\sigma}\epsilon_n \to \mathcal{N}(0,1),$$

où $\epsilon_n = E(X) - \bar{X}_n$ est l'erreur d'approximation, et $\sigma^2 = var(X)$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Justification de la méthode (2/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

2. Le Théorème de la Limite Centrale qui nous dit que

$$\frac{\sqrt{n}}{\sigma}\epsilon_n \to \mathcal{N}(0,1),$$

où $\epsilon_n = E(X) - \bar{X}_n$ est l'erreur d'approximation, et $\sigma^2 = var(X)$.

► ce résultat quantifie la vitesse de convergence de notre estimateur :

$$\epsilon_n \to \mathcal{N}(0, \sigma/\sqrt{n}).$$

▶ "il converge en racine de n" : il faut 4 fois plus de réalisations pour réduire l'erreur de moitié.

Outline

UE StatComp

Introduction

olmulation de variables Iléatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Justification de la méthode (2/2)

Deux théorèmes bien connus permettent de justifier la validité de cette méthode :

2. Le Théorème de la Limite Centrale qui nous dit que

$$\frac{\sqrt{n}}{\sigma}\epsilon_n \to \mathcal{N}(0,1),$$

où
$$\epsilon_n = E(X) - \bar{X}_n$$
 est l'erreur d'approximation, et $\sigma^2 = var(X)$.

► ce résultat quantifie la vitesse de convergence de notre estimateur :

$$\epsilon_n \to \mathcal{N}(0, \sigma/\sqrt{n}).$$

- ▶ "il converge en racine de n" : il faut 4 fois plus de réalisations pour réduire l'erreur de moitié.
- ▶ par contre il ne permet pas de borner l'erreur...

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

onclusion

Références

28/71

Utilisation pratique

- le TLC ne nous permet pas de borner l'erreur, mais il nous permet de donner un intervalle de confiance :
 - ▶ Si $N \to \mathcal{N}(0,1)$ alors $p(|N| \le 1.96) = 0.95.$ ³
 - On a donc $p(|\epsilon_n| < 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95$.

Outline

UE StatComp

Introduction

Simulation o variables aléatoires

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

^{3.} plus généralement : $p(|N| \le t_{\alpha/2}) = 1 - \alpha$, où $t_{\alpha/2}$ est le quantile d'ordre $1 - \alpha/2$ de la loi $\mathcal{N}(0,1)$.

Introduction Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

de variance

Méthodes MC

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Références

le TLC ne nous permet pas de borner l'erreur, mais il nous permet de donner un intervalle de confiance :

- ▶ Si $N \to \mathcal{N}(0,1)$ alors $p(|N| \le 1.96) = 0.95.^3$
- On a donc $p(|\epsilon_n| < 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95$.
- \Rightarrow l'intervalle de confiance à 95% de E(X) est donc :

$$\left[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}; \ \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

^{3.} plus généralement : $p(|N| \le t_{\alpha/2}) = 1 - \alpha$, où $t_{\alpha/2}$ est le quantile d'ordre $1 - \alpha/2$ de la loi $\mathcal{N}(0,1)$.

Références

▶ le TLC ne nous permet pas de borner l'erreur, mais il nous permet de donner un intervalle de confiance :

- ▶ Si $N \to \mathcal{N}(0,1)$ alors $p(|N| \le 1.96) = 0.95.$ ³
- On a donc $p(|\epsilon_n| < 1.96 \frac{\sigma}{\sqrt{n}}) = 0.95$.
- \Rightarrow l'intervalle de confiance à 95% de E(X) est donc :

$$\left[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}} \; ; \; \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}\right]$$

► En pratique, on ne connaît pas la variance théorique σ^2 et on l'estime par la variance empirique :

$$\bar{\sigma}_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

^{3.} plus généralement : $p(|N| \le t_{\alpha/2}) = 1 - \alpha$, où $t_{\alpha/2}$ est le quantile d'ordre $1 - \alpha/2$ de la loi $\mathcal{N}(0, 1)$.

En résumé

On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :

Outline

UE StatComp

Introduction

Simulation d

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Methodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

En résumé

On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :

1. On simule un n-échantillon (X_1, \ldots, X_n) selon la loi f.

Outline

UE StatComp

Introduction

mulation de riables éatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

- 1. On simule un n-échantillon (X_1, \ldots, X_n) selon la loi f.
- 2. On calcule:

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$
 et $V_n = \frac{1}{n-1} \sum_{i=1}^n (g(X_i) - S_n)^2$.

UE StatComp

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Introduction MC et estimation MC et tests

En résumé

On cherche à calculer $I = \int g(x)f(x)dx$, où f est une densité de probabilité :

- 1. On simule un n-échantillon (X_1, \ldots, X_n) selon la loi f.
- 2. On calcule:

$$S_n = \frac{1}{n} \sum_{i=1}^n g(X_i)$$
 et $V_n = \frac{1}{n-1} \sum_{i=1}^n (g(X_i) - S_n)^2$.

3. On donne un intervalle de confiance sur *I* défini comme :

$$\Big[S_n - t_{\alpha/2} \sqrt{V_n/n} \; ; \; S_n + t_{\alpha/2} \sqrt{V_n/n}\Big],$$

où $t_{\alpha/2}$ est le quantile d'ordre $(1-\alpha/2)$ de la loi $\mathcal{N}(0,1)$, pour un intervalle de confiance à $1-\alpha$.

• (en général on prend $\alpha = 0.05$ et $t_{\alpha/2} = 1.96$ pour un intervalle de confiance à 95%).

Outline

UE StatComp

Introduction

iriables éatoires itroduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Conclusion

0/71

Remarques

- ► Cette méthode est simple à mettre en œuvre.
 - Le seul pré-requis est de savoir simuler des variables aléatoires selon une loi d'intérêt.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Introduction MC et estimation MC et tests

- Cette méthode est simple à mettre en œuvre.
 - Le seul pré-requis est de savoir simuler des variables aléatoires selon une loi d'intérêt.
- Sa précision augmente (i.e., la largeur de l'intervalle de confiance décroit) en fonction de \sqrt{n} , quelle que soit la dimension du problème.
 - ▶ faible dimension : relativement lent par rapport aux méthodes déterministes.
 - ▶ haute dimension : parfois la seule approche donnant une solution dans un temps raisonnable.

Rejet Loi uniforme

pour l'intégration

Introduction MC et estimation MC et tests

Cette méthode est simple à mettre en œuvre.

- Le seul pré-requis est de savoir simuler des variables aléatoires selon une loi d'intérêt.
- ► Sa précision augmente (i.e., la largeur de l'intervalle de confiance décroit) en fonction de \sqrt{n} , quelle que soit la dimension du problème.
 - faible dimension : relativement lent par rapport aux méthodes déterministes.
 - ▶ haute dimension : parfois la seule approche donnant une solution dans un temps raisonnable.
- ▶ En pratique, elle peut être gourmande en temps de calcul à cause (1) de sa faible vitesse de convergence et (2) du coût calculatoire de g qui peut être élevé.
 - les méthodes de réduction de variance permettent d'accélérer la vitesse de convergence de l'algorithme.

Exemple 1

- ▶ On veut calculer $I = \int_0^1 e^{-x} dx$.
- ► La solution est $I = 1 e^{-1} = 0.6321$.

Outline

UE StatComp

Introduction

Simulation d

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Methodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Exemple 1

- ▶ On veut calculer $I = \int_0^1 e^{-x} dx$.
- ► La solution est $I = 1 e^{-1} = 0.6321$.
- ▶ On peut l'approximer en R par :

```
> n = 1000  # nombre de tirages
> x = runif(n)  # tirage selon la loi uniforme
> gx = exp(-x)
> I.hat = mean(gx)
```

ce qui donne 4 0.6307344.

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

^{4.} en bloquant la graine du générateur de nombres aléatoires à 202/71

- ▶ On veut calculer $I = \int_0^1 e^{-x} dx$.
- ▶ La solution est $I = 1 e^{-1} = 0.6321$.
- On peut l'approximer en R par :

```
> n = 1000  # nombre de tirages
> x = runif(n) # tirage selon la loi uniforme
> gx = exp(-x)
> I.hat = mean(gx)
```

ce qui donne 4 0.6307344.

▶ On peut également donner un intervalle de confiance :

```
> alpha = 0.05
> a = gnorm(1-(alpha/2))
> I1 = I.hat - a*sqrt(var(gx)/n)
> I2 = I.hat + a*sqrt(var(gx)/n)
```

ce qui donne [0.6193152; 0.6421535].

4. en bloquant la graine du générateur de nombres aléatoires à 202/71

UE StatComp

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Introduction MC et estimation MC et tests

Exemple 2 : on veut calculer $I = \int_a^b e^{-x} dx$

Outline

UE StatComp

Introductio

Simulation (variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Exemple 2 : on veut calculer $I = \int_a^b e^{-x} dx$

 \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$

Outline

UE StatComp

Introduction

Simulation de variables

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Exemple 2 : on veut calculer $I = \int_a^b e^{-x} dx$

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - lacktriangle Problème : il faut ramener les limites de l'intégrale à [0,1]

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - lacktriangle Problème : il faut ramener les limites de l'intégrale à [0,1]
 - ► Solution = changement de variable :

prendre
$$y = \frac{x-a}{b-a}$$
 soit
$$\begin{cases} x = (b-a)y + a \\ dx = (b-a)dy \end{cases}$$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - ightharpoonup Problème : il faut ramener les limites de l'intégrale à $\left[0,1\right]$
 - ► Solution = changement de variable :

prendre
$$y = \frac{x-a}{b-a}$$
 soit
$$\begin{cases} x = (b-a)y + a \\ dx = (b-a)dy \end{cases}$$

On a donc :

$$I = (b-a) \int_0^1 \exp\left((a-b)y - a\right) dy$$

Outline

UE StatComp

Introduction

imulation de ariables

Inversion Rejet

Loi uniforme

Méthodes MC
pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

- \Rightarrow Première approche : se baser sur $\mathcal{U}(0,1)$
 - ▶ Problème : il faut ramener les limites de l'intégrale à [0,1]
 - ► Solution = changement de variable :

prendre
$$y = \frac{x-a}{b-a}$$
 soit
$$\begin{cases} x = (b-a)y + a \\ dx = (b-a)dy \end{cases}$$

On a donc :

$$I = (b-a) \int_0^1 \exp((a-b)y - a) dy$$

Exemple :

ce qui donne 0.1187561 (au lieu de 0.1170196).

Outline

UE StatComp

Introduction

imulation d

aléatoires Introduction Inversion

Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

 \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$

Outline

UE StatComp

Introduction

Simulation de variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité

Outline

UE StatComp

Introduction

Simulation de variables

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité
 - ▶ la densité de la loi $\mathcal{U}(a,b)$ est $f(x) = \frac{1}{b-a}\mathbf{1}(x \in [a,b])$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ► Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité
 - ▶ la densité de la loi $\mathcal{U}(a,b)$ est $f(x) = \frac{1}{b-a} \mathbf{1}(x \in [a,b])$
 - ▶ Solution = faire apparaître la densité $\mathcal{U}(a, b)$:

$$I = \int_{a}^{b} e^{-x} dx$$
$$= (b - a) \int_{a}^{b} e^{-x} \frac{1}{b - a} dx$$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

- \Rightarrow Deuxième approche : tirer dans $\mathcal{U}(a,b)$
 - ▶ Problème :
 - ▶ la fonction $f(x) = \mathbf{1}(x \in [a, b])$ n'est pas une densité
 - ▶ la densité de la loi $\mathcal{U}(a,b)$ est $f(x) = \frac{1}{b-a}\mathbf{1}(x \in [a,b])$
 - ► Solution = faire apparaître la densité $\mathcal{U}(a,b)$:

$$I = \int_{a}^{b} e^{-x} dx$$
$$= (b - a) \int_{a}^{b} e^{-x} \frac{1}{b - a} dx$$

Exemple:

ce qui donne 0.1147875.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Loi uniforme Méthodes MC

pour l'intégration

Introduction MC et estimation MC et tests

Revenons à notre exemple introductif :

- on tire aléatoirement des points (x, y) dans $[0, 1] \times [0, 1]$.
- \triangleright on approxime $\pi/4$ par la proportion de points tels que $x^2 + v^2 < 1$.

Comment peut-on l'écrire formellement sous la forme d'un problème Monte-Carlo?

Revenons à notre exemple introductif :

- on tire aléatoirement des points (x, y) dans $[0, 1] \times [0, 1]$.
- \triangleright on approxime $\pi/4$ par la proportion de points tels que $x^2 + v^2 < 1$.

Comment peut-on l'écrire formellement sous la forme d'un problème Monte-Carlo?

$$\Rightarrow$$
 celui d'approximer $I = \int_0^1 \int_0^1 \mathbf{1}(x^2 + y^2 \le 1) dx dy$.

Remarques & conclusions

- ► Simulation de variables aléatoires :
 - méthodes par inversion et par rejet
 - place centrale de la loi $\mathcal{U}(0,1)$
 - pour aller plus loin : rejet adaptatif et échantillonnage préférentiel.

Outline

UE StatComp

Introduction

Simulation o

Inversion Rejet

Loi uniforme Méthodes MC

pour l'intégration Pour aller plus

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Remarques & conclusions

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

- Simulation de variables aléatoires :
 - méthodes par inversion et par rejet
 - place centrale de la loi $\mathcal{U}(0,1)$
 - pour aller plus loin : rejet adaptatif et échantillonnage préférentiel.
- ► Méthodes MC pour l'intégration :
 - ► approche stochastique à un problème déterministe
 - ▶ solution = estimation + intervalle de confiance
 - parfois la seule solution envisageable
 - e.g., en physique et en finance.
 - attention aux domaines de définition de l'intégrale et de la densité à simuler.
 - changement de variable, normalisation de la densité
 - ▶ pour aller plus loin : méthodes de réduction de variance.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Références

Pour aller plus loin... méthodes de réduction de variance

Méthodes de réduction de variance

Objectif:

- Améliorer la vitesse de convergence de l'estimateur d'intégrale / d'espérance.
- L'estimateur MC standard fait une erreur $\epsilon \to N(0, \frac{\sigma}{\sqrt{n}})$: on cherche donc à diminuer sa variance $(\underline{\grave{a}} \ n \ \text{fix} \underline{\acute{e}})$.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Méthodes de réduction de variance

Objectif:

- Améliorer la vitesse de convergence de l'estimateur d'intégrale / d'espérance.
- L'estimateur MC standard fait une erreur $\epsilon \to N(0, \frac{\sigma}{\sqrt{n}})$: on cherche donc à diminuer sa variance (à n fixé).

Principe:

▶ trouver des moyens de ré-écrire I = E[g(X)] comme I = E[h(Y)], tels que $var(h(Y)) \le var(g(X))$.

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Méthodes de réduction de variance

Objectif:

- Améliorer la vitesse de convergence de l'estimateur d'intégrale / d'espérance.
- L'estimateur MC standard fait une erreur $\epsilon \to N(0, \frac{\sigma}{\sqrt{n}})$: on cherche donc à diminuer sa variance $(\underline{\grave{a}} \ n \ \text{fix} \underline{\acute{e}})$.

Principe:

▶ trouver des moyens de ré-écrire I = E[g(X)] comme I = E[h(Y)], tels que $var(h(Y)) \le var(g(X))$.

Plusieurs approches :

- échantillonnage préférentiel ("importance sampling"),
- utilisation de variables antithétiques,
- utilisation de variables de contrôle,
- (stratification).

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Echantillonnage préférentiel

Principe:

ightharpoonup Introduire une nouvelle densité \widetilde{f} , et ré-écrire l'intégrale :

$$I = \int g(x)f(x)dx = \int \frac{g(x)f(x)}{\tilde{f}(x)}\tilde{f}(x)dx.$$

Outline

UE StatComp

Introduction

imulation de ariables

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

▶ Introduire une nouvelle densité \tilde{f} , et ré-écrire l'intégrale :

$$I = \int g(x)f(x)dx = \int \frac{g(x)f(x)}{\tilde{f}(x)}\tilde{f}(x)dx.$$

- ▶ On a donc $E[g(X)] = E[\frac{g(Y)f(Y)}{\tilde{f}(Y)}]$, où X est distribuée selon f et Y est distribuée selon \tilde{f} .
- \Rightarrow Nouveau schéma avantageux si $\mathit{var}(\frac{g(Y)f(Y)}{\tilde{f}(Y)}) < \mathit{var}(g(X)).$

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Echantillonnage préférentiel

Principe:

▶ Introduire une nouvelle densité \tilde{f} , et ré-écrire l'intégrale :

$$I = \int g(x)f(x)dx = \int \frac{g(x)f(x)}{\tilde{f}(x)}\tilde{f}(x)dx.$$

- ▶ On a donc $E[g(X)] = E[\frac{g(Y)f(Y)}{\tilde{f}(Y)}]$, où X est distribuée selon f et Y est distribuée selon \tilde{f} .
- \Rightarrow Nouveau schéma avantageux si $var(\frac{g(Y)f(Y)}{\tilde{f}(Y)}) < var(g(X))$.

En pratique:

- ▶ Il faut choisir une densité \tilde{f} proche de $|g \times f|$.
- ▶ Il faut savoir selon simuler selon \tilde{f} .
- $ightharpoonup \tilde{f}$ s'appelle la fonction d'importance.

Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Réduction de variance par variables antithétiques

Principe:

▶ Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.

Outline

UE StatComp

Introduction

Simulation o

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Réduction de variance par variables antithétiques

Principe:

- ▶ Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.
- ▶ On peut donc estimer I = E[g(U)] à n fixé par :

$$\frac{1}{n}\sum_{i=1}^n g(X_i)$$
 ou $\frac{1}{n}\sum_{i=1}^{n/2} (g(X_i) + g(1-X_i)).$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

D/f/

Principe:

- Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.
- ▶ On peut donc estimer I = E[g(U)] à n fixé par :

$$\frac{1}{n}\sum_{i=1}^n g(X_i)$$
 ou $\frac{1}{n}\sum_{i=1}^{n/2} \Big(g(X_i)+g(1-X_i)\Big).$

 \Rightarrow Nouveau schéma toujours plus efficace si g est monotone, car g(U) et g(1-U) sont alors anti-corrélées.

• et var(A + B) = var(A) + var(B) + 2cov(A, B)

Réduction de variance par variables antithétiques

Principe:

- ▶ Pour approximer $I = \int_0^1 g(x) dx$ utiliser le fait que si $U \to \mathcal{U}(0,1)$, alors $(1-U) \to \mathcal{U}(0,1)$.
- ▶ On peut donc estimer I = E[g(U)] à n fixé par :

$$\frac{1}{n}\sum_{i=1}^{n}g(X_{i})$$
 ou $\frac{1}{n}\sum_{i=1}^{n/2}\Big(g(X_{i})+g(1-X_{i})\Big).$

 \Rightarrow Nouveau schéma toujours plus efficace si g est monotone, car g(U) et g(1-U) sont alors anti-corrélées.

• et
$$var(A + B) = var(A) + var(B) + 2cov(A, B)$$

En pratique:

- ▶ n'est valable que si g est continue et monotone.
- ▶ U et (1 U) sont dites antithétiques.

Outline

UE StatComp

Introduction

imulation di ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Réduction de variance par variables de contrôle

Principe:

- Pour approximer $I = \int g(x)dx$, introduire une fonction h proche de g qui soit facilement intégrable.
- ► On peut alors écrire :

$$I = E[g(X)] = E[g(X) - h(X)] + E[h(X)]$$

 \Rightarrow Nouveau schéma avantageux si var(g(X) - h(X)) < var(g(X))

Outline

UE StatComp

Introduction

imulation de ariables Jéatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Réduction de variance par variables de contrôle

Principe:

- Pour approximer $I = \int g(x)dx$, introduire une fonction h proche de g qui soit facilement intégrable.
- ► On peut alors écrire :

$$I = E[g(X)] = E[g(X) - h(X)] + E[h(X)]$$

 \Rightarrow Nouveau schéma avantageux si var(g(X) - h(X)) < var(g(X))

En pratique:

- ► Il faut donc trouver h qui soit proche de g et que l'on sache intégrer (i.e., que l'on sache calculer E[h(X)]).
- Le fait que h et g soient corrélées devrait garantir que var(g(X) h(X)) soit faible.
- ▶ h(X) est la variable de contrôle de g(X).

Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests
Conclusion

Références

Méthodes Monte-Carlo pour l'inférence statistique

Introduction

Inférence statistique :

- Induire les caractéristiques d'une population à partir d'un échantillon (issu de cette population).
- ▶ Deux grandes questions : fournir des estimations de ces caractéristiques et faire des tests d'hypothèses.

Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion Rejet

Loi uniforme
Méthodes MC

Pour aller plus loin : réduction

Méthodes MC

Introduction MC et estimation

MC et tests

Conclusion

Introduction

Inférence statistique :

- Induire les caractéristiques d'une population à partir d'un échantillon (issu de cette population).
- ▶ Deux grandes questions : fournir des estimations de ces caractéristiques et faire des tests d'hypothèses.

Méthodes Monte-Carlo pour l'inférence :

- ► Tirer des échantillons à partir d'un modèle probabiliste de la population.
- ► Evaluer empiriquement l'incertitude de l'estimation.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion Rejet

Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC

Introduction

MC et tests

onclusion

Introduction

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence

Introduction MC et estimation

MC et tests

Conclusion

Références

204.

Inférence statistique :

- Induire les caractéristiques d'une population à partir d'un échantillon (issu de cette population).
- Deux grandes questions : fournir des estimations de ces caractéristiques et faire des tests d'hypothèses.

Méthodes Monte-Carlo pour l'inférence :

- ► Tirer des échantillons à partir d'un modèle probabiliste de la population.
- ► Evaluer empiriquement l'incertitude de l'estimation.

\Rightarrow Applications :

- ► étudier la distribution d'échantillonnage d'un estimateur
- estimer les propriétés d'un test statistique

Estimateur / Estimation

Soit $(X_1,...,X_n)$ un *n*-échantillon distribué selon la loi de X.

▶ Un estimateur $\hat{\theta}$ d'un paramètre θ est une fonction de l'échantillon :

$$\hat{\theta} = \hat{\theta}(X_1,...,X_n)$$

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion Rejet

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence

Introduction MC et estimation

MC et tests

Conclusion

Soit $(X_1,...,X_n)$ un *n*-échantillon distribué selon la loi de X.

• Un estimateur $\hat{\theta}$ d'un paramètre θ est une fonction de l'échantillon :

$$\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$$

- C'est lui même une variable aléatoire qui possède sa propre distribution.
- On parle de distribution d'échantillonnage (sampling distribution).

Soit $(X_1,...,X_n)$ un *n*-échantillon distribué selon la loi de X.

▶ Un estimateur $\hat{\theta}$ d'un paramètre θ est une fonction de l'échantillon :

$$\hat{\theta} = \hat{\theta}(X_1, ..., X_n)$$

- C'est lui même une variable aléatoire qui possède sa propre distribution.
- ► On parle de distribution d'échantillonnage (sampling distribution).
- ▶ Une estimation est la valeur de l'estimateur pour une réalisation $(x_1, ..., x_n)$ de l'échantillon.

Outline

UE StatComp

Introduction

variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

> léthodes MC our l'inférence

Introduction
MC et estimation

MC et tests

onclusion

Références

Méthodes MC & inférence - caractérisation d'un estimateur et intervalles de confiance

Méthodes MC pour l'estimation

- L'approche MC (couverte ici) vise à caractériser les propriétés d'un estimateur d'une grandeur que l'on connaît (et donc qu'on peut contrôler / fixer).
- ► Typiquement : le paramètre d'une loi de probabilité
 - ► (on parle parfois de bootstrap paramétrique)

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Loi unitorme Méthodes MC

Pour aller plus loin : réduction

Méthodes MC

Introduction
MC et estimation

C et tests

Conclusion

MC et estimation

Conclusion

- L'approche MC (couverte ici) vise à caractériser les propriétés d'un estimateur d'une grandeur que l'on connaît (et donc qu'on peut contrôler / fixer).
- ► Typiquement : le paramètre d'une loi de probabilité
 - ► (on parle parfois de bootstrap paramétrique)
- ► Elle consiste à :
 - 1. tirer m n-échantillons $(X_1^{(j)},...,X_n^{(j)})_{j=1,...,m}$, en fixant le paramètre θ à estimer.
 - 2. calculer les m estimations $\hat{\theta}^{(j)}$, j=1,...,m.
 - 3. étudier la distribution d'échantillonnage de $\hat{\theta}$ à partir de ces m réalisations.

Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

pour l'inférence Introduction MC et estimation

MC et tests

Conclusion

Références

▶ On fait l'hypothèse que la taille des étudiants est distribuée normalement selon $\mathcal{N}(\mu = 170, \sigma = 20)$.

▶ Illustration de la distribution d'échantillonnage de l'estimateur "moyenne empirique" de μ : variabilité attendue sur 1000 échantillons de n=25 élèves.


```
> m = 1000; n = 25
> mu = 170; sigma = 20
> mu.hat = replicate(m,
expr = {x=rnorm(n,mu,sigma); mean(x)});
> hist(mu.hat)
> abline(v=mu, lty=2, lwd=2, col=2)
```

Motivations : à quoi ça sert?

- Les paramètres des lois usuelles sont bien connus.
 - on dispose d'estimateurs performants (e.g., non biaisés et de variance minimale).
 - ▶ on connait leur distribution d'échantillonnage : on peut leur associer des intervalles de confiance.

Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion Rejet Loi uniforme

Méthodes MC oour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Conclusion

Motivations : à quoi ça sert ?

- Les paramètres des lois usuelles sont bien connus.
 - on dispose d'estimateurs performants (e.g., non biaisés et de variance minimale).
 - ▶ on connait leur distribution d'échantillonnage : on peut leur associer des intervalles de confiance.
- ► Leurs propriétés sont souvent basées sur des hypothèses (e.g., de normalité) et/ou des résulats asymptotiques.

Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

onclusion

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Conclusion

- Les paramètres des lois usuelles sont bien connus.
 - on dispose d'estimateurs performants (e.g., non biaisés et de variance minimale).
 - ▶ on connait leur distribution d'échantillonnage : on peut leur associer des intervalles de confiance.
- Leurs propriétés sont souvent basées sur des hypothèses (e.g., de normalité) et/ou des résulats asymptotiques.
- Dans les applications réelles, ces hypothèses ne sont pas toujours vérifiées
 - pas toujours tout à fait normal, peu d'observations.

Introduction MC et estimation MC et tests

- Les paramètres des lois usuelles sont bien connus.
 - on dispose d'estimateurs performants (e.g., non biaisés et de variance minimale).
 - on connait leur distribution d'échantillonnage : on peut leur associer des intervalles de confiance.
- Leurs propriétés sont souvent basées sur des hypothèses (e.g., de normalité) et/ou des résulats asymptotiques.
- ▶ Dans les applications réelles, ces hypothèses ne sont pas toujours vérifiées
 - pas toujours tout à fait normal, peu d'observations.

⇒ l'approche MC permet (entre autres) de quantifier l'impact d'hypothèses non vérifiées sur les propriétés de l'estimateur.

Introduction Inversion Rejet

Loi uniforme Méthodes MC

Pour aller plus loin : réduction

de variance Méthodes MC

pour l'inférence Introduction MC et estimation

MC et tests

onclusion

Références

Pour caractériser un estimateur $\hat{\theta}$, on peut s'intéresser :

- à son biais : Biais $(\hat{\theta}) = E[\hat{\theta}] \theta$
- à son erreur quadratique moyenne : $MSE(\hat{\theta}) = E[(\hat{\theta} \theta)^2]$
- ▶ à son erreur type $se(\hat{\theta})$, définie comme l'écart type de sa distribution d'échantillonnage.

Introduction

MC et estimation MC et tests

Pour caractériser un estimateur $\hat{\theta}$, on peut s'intéresser :

- ightharpoonup à son biais : Biais $(\hat{\theta}) = E[\hat{\theta}] \theta$
- ▶ à son erreur quadratique moyenne : $MSE(\hat{\theta}) = E[(\hat{\theta} \theta)^2]$
- \triangleright à son erreur type se($\hat{\theta}$), définie comme l'écart type de sa distribution d'échantillonnage.

Ces critères permettent notamment :

- de caractériser la précision d'un estimateur en fonction de la taille n de l'échantillon
- de comparer la performance de différents estimateurs

Illustration : estimer la moyenne d'une loi normale

On souhaite estimer la moyenne d'une loi normale à partir d'un échantillon de taille n=20.

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence

MC et estimation
MC et tests

onclusion

Inversion Rejet Loi uniforme

Loi unitorme Méthodes MC

Pour aller plus loin : réduction

> Méthodes MC our l'inférence

Introduction
MC et estimation

MC et tests

D/ 6/

Références

On souhaite estimer la moyenne d'une loi normale à partir d'un échantillon de taille n = 20.

Estimateur naturel : moyenne empirique : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

- On sait qu'il est sans biais (loi des grands nombres)
- ▶ On connait son erreur-type : $se(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$.
 - $ightharpoonup var(X_1 + ... + X_n) = n\sigma^2$, donc $var(\bar{X}_n) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence

Introduction
MC et estimation
MC et tests

Conclusion

Références

On souhaite estimer la moyenne d'une loi normale à partir d'un échantillon de taille n = 20.

Estimateur naturel : moyenne empirique : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

- On sait qu'il est sans biais (loi des grands nombres)
- ▶ On connait son erreur-type : $se(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$.

$$ightharpoonup var(X_1 + ... + X_n) = n\sigma^2$$
, donc $var(\bar{X}_n) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$

▶ En pratique, on ne connait pas σ^2 et on utilise la variance empirique comme estimateur de la variance :

$$\hat{se}(\bar{x_n}) = \frac{1}{\sqrt{n}} \left(\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 \right)^{1/2}.$$

Méthodes MC

Pour aller plus loin : réduction

> Méthodes MC pour l'inférence

Introduction
MC et estimation
MC et tests

Dáfárancac

On souhaite estimer la moyenne d'une loi normale à partir d'un échantillon de taille n = 20.

Estimateur naturel : moyenne empirique : $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

- On sait qu'il est sans biais (loi des grands nombres)
- ▶ On connait son erreur-type : $se(\bar{X}_n) = \frac{\sigma}{\sqrt{n}}$.

$$ightharpoonup var(X_1 + ... + X_n) = n\sigma^2$$
, donc $var(\bar{X}_n) = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$

► En pratique, on ne connait pas σ^2 et on utilise la variance empirique comme estimateur de la variance :

$$\hat{se}(\bar{x_n}) = \frac{1}{\sqrt{n}} \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \right)^{1/2}.$$

⇒ pourquoi aller chercher plus loin?

Illustration : estimer la moyenne d'une loi normale

Et si nos observations n'étaient pas tout à fait normales mais "contaminées" par 1% d'"outliers" :

$$X \rightarrow 0.99 \mathcal{N}(0,1) + 0.01 \mathcal{N}(0,10)$$

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus oin : réduction de variance

Méthodes MC pour l'inférence

MC et estimation

Conclusion

Illustration : estimer la moyenne d'une loi normale

Et si nos observations n'étaient pas tout à fait normales mais "contaminées" par 1% d'"outliers" :

$$X \rightarrow 0.99 \mathcal{N}(0,1) + 0.01 \mathcal{N}(0,10)$$

D'autres estimateurs pourraient être plus robustes :

Outline

UE StatComp

Introduction

imulation de ariables léatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction

MC et tests

Conclusion

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

éthodes MC our l'inférence

Introduction MC et estimation

MC et tests

Conclusion

Références

Et si nos observations n'étaient pas tout à fait normales mais "contaminées" par 1% d'"outliers" :

$$X \rightarrow 0.99 \mathcal{N}(0,1) + 0.01 \mathcal{N}(0,10)$$

D'autres estimateurs pourraient être plus robustes :

▶ la médiane,

Inversion Rejet Loi uniforme

pour l'intégration Pour aller plus

Pour aller plus loin : réduction de variance

pour l'inférence
Introduction
MC et estimation

MC et tests

N/ 6/

Et si nos observations n'étaient pas tout à fait normales mais "contaminées" par 1% d'"outliers" :

$$X \rightarrow 0.99 \mathcal{N}(0,1) + 0.01 \mathcal{N}(0,10)$$

D'autres estimateurs pourraient être plus robustes :

- ► la médiane.
- la moyenne empirique "trimmée" (trimmed) où on élimine la plus grande et la plus petite observation,

MC et estimation
MC et tests

Conclusion

Dáfárancac

Et si nos observations n'étaient pas tout à fait normales mais "contaminées" par 1% d'"outliers" :

$$X \rightarrow 0.99 \mathcal{N}(0,1) + 0.01 \mathcal{N}(0,10)$$

D'autres estimateurs pourraient être plus robustes :

- ► la médiane.
- ► la moyenne empirique "trimmée" (trimmed) où on élimine la plus grande et la plus petite observation,
- ▶ la moyenne empirique "trimée" d'ordre *k* où on supprime les *k* plus petites et *k* plus grandes observations.

Et si nos observations n'étaient pas tout à fait normales mais "contaminées" par 1% d'"outliers" :

$$X \rightarrow 0.99 \mathcal{N}(0,1) + 0.01 \mathcal{N}(0,10)$$

D'autres estimateurs pourraient être plus robustes :

- ▶ la médiane.
- ▶ la moyenne empirique "trimmée" (trimmed) où on élimine la plus grande et la plus petite observation,
- ► la moyenne empirique "trimée" d'ordre k où on supprime les k plus petites et k plus grandes observations.
- ⇒ Problème : on ne connaît pas leurs propriétés.

Illustration : estimer la moyenne d'une loi normale

Stratégie MC : simuler des échantillons et caractériser empiriquement ces estimateurs :

Outline

UE StatComp

Introduction

imulation d

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence

MC et estimation

onclusion

Illustration : estimer la moyenne d'une loi normale

Stratégie MC : simuler des échantillons et caractériser empiriquement ces estimateurs :

1. tirer m n-échantillons $(X_1^{(j)},...,X_n^{(j)})_{j=1,...,m}$, en fixant le paramètre θ à estimer.

Outline

UE StatComp

Introduction

imulation de ariables éatoires ntroduction

Inversion Rejet Loi uniforme

Méthodes MC oour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction

MC et tests

Conclusion

Diffinance

Méthodes MC pour l'inférence Introduction

MC et estimation

onclusion

Références

Stratégie MC : simuler des échantillons et caractériser empiriquement ces estimateurs :

- 1. tirer m n-échantillons $(X_1^{(j)},...,X_n^{(j)})_{j=1,...,m}$, en fixant le paramètre θ à estimer.
- 2. calculer les m estimations $\hat{\theta}^{(j)}$, j = 1, ..., m.

Illustration : estimer la moyenne d'une loi normale

Stratégie MC : simuler des échantillons et caractériser empiriquement ces estimateurs :

- 1. tirer m n-échantillons $(X_1^{(j)},...,X_n^{(j)})_{j=1,...,m}$, en fixant le paramètre θ à estimer.
- 2. calculer les m estimations $\hat{\theta}^{(j)}$, j = 1, ..., m.
- 3. étudier la distribution d'échantillonnage des $\hat{\theta}^{(j)}$:

$$\mathsf{Biais}(\hat{\theta}) : \frac{1}{m} \sum_{j=1}^{m} \hat{\theta}^{(j)} - \theta = \overline{\hat{\theta}} - \theta$$

$$\mathsf{MSE}(\hat{\theta}): \frac{1}{m} \sum_{i=1}^{m} (\hat{\theta}^{(i)} - \theta)^2$$

Erreur type -
$$\operatorname{se}(\hat{\theta})$$
 : $\left(\frac{1}{m-1}\sum_{i=1}^m\left(\hat{\theta}^{(j)}-\bar{\hat{\theta}}\right)^2\right)^{1/2}$

Outline

UE StatComp

Introduction

riables éatoires etroduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence

MC et estimation

Conclusion

Références

(NB : ça n'a en général pas d'importance d'utiliser la version biaisée ou non de

l'écart type car on simule en général de nombreux échantillons)

52/71

- procédure R

```
> n = 20; m = 1000; k = 5
> e = matrix(0, m, 4)
> for(i in 1:m){
x = sort(rnorm(n))
e[i,1] = mean(x)
e[i,2] = mean(x[2:(n-1)])
e[i,3] = mean(x[(k+1):(n-k)])
e[i.4] = median(x)
> mse = apply(e, 2, function(x){mean(x^2)})
> se = apply(e, 2, function(x){sqrt(sum((x - mean(x))^2)/m)})
> mse
[1] 0.05165281 0.05317642 0.06306673 0.07978597
> se
[1] 0.2272608 0.2305817 0.2511308 0.2824580
```

Outline

UE StatComp

Introduction

Simulation de variables

Inversion Reiet

Loi uniforme Méthodes MC

Pour aller plus oin : réduction

Méthodes MC pour l'inférence

MC et estimation MC et tests

Conclusion

Estimation d'un niveau de confiance - motivation

► En pratique, une estimation s'accompagne souvent d'un niveau de confiance, formalisé comme un intervalle de

confiance.

Outline

UE StatComp

Introduction

Simulation d

Inversion Rejet

Loi uniforme

pour l'intégratio

Pour aller plus oin : réduction de variance

Méthodes MC pour l'inférence Introduction

MC et estimation

Conclusion

Estimation d'un niveau de confiance - motivation

- ► En pratique, une estimation s'accompagne souvent d'un niveau de confiance, formalisé comme un intervalle de confiance.
- Ces intervalles sont souvent obtenus sous des hypothèses de normalité de la population.
 - qui peuvent être justifiée si (on pense que) la loi est effectivement normale.
 - qui sont sinon liées à des approximations asymptotiques (e.g., théorème central limite).

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

oour l'inférence Introduction MC et estimation

MC et tests

Conclusion

Méthodes MC

Pour aller plus loin : réduction de variance

oour l'inférence Introduction MC et estimation

onclusion

Diffman

- En pratique, une estimation s'accompagne souvent d'un niveau de confiance, formalisé comme un intervalle de confiance.
- Ces intervalles sont souvent obtenus sous des hypothèses de normalité de la population.
 - qui peuvent être justifiée si (on pense que) la loi est effectivement normale.
 - qui sont sinon liées à des approximations asymptotiques (e.g., théorème central limite).
- On peut appliquer le même type d'approche pour estimer le vrai niveau de confiance d'une procédure d'estimation quand on s'éloigne des hypothèses de normalité.

Rejet Loi uniforme

Introduction MC et estimation MC et tests

Soit X la variable aléatoire étudiée et θ le paramètre à estimer (à partir d'un échantillon de taille n).

On va s'appuyer sur une procédure de Monte Carlo suivante :

- ▶ Pour chaque répétition j = 1, ..., m:
 - générer le jème *n*-échantillon $(X_1^{(j)},...,X_n^{(j)})$.
 - ► calculer l'intervalle de confiance *C_i* correspondant.
 - vérifier si $\theta \in C_i$.

Le niveau de confiance empirique est égal à la proportion d'intervalles de confiance contenant θ .

Estimation d'un niveau de confiance - illustration

▶ On cherche à estimer la variance σ^2 d'une variable aléatoire X.

Outline

UE StatComp

Introduction

imulation de ariables

Inversion Rejet

Loi uniforme

Pour aller plus loin : réduction

Méthodes MC pour l'inférence

MC et estimation

Conclusion

Estimation d'un niveau de confiance - illustration

- ▶ On cherche à estimer la variance σ^2 d'une variable aléatoire X.
- Si elle est normalement distribuée, et qu'on dispose d'un n-échantillon $(X_1,...,X_n)$, alors

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1),$$

où S_n^2 est la variance empirique.

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et estimatio

Conclusion

Estimation d'un niveau de confiance - illustration

- ▶ On cherche à estimer la variance σ^2 d'une variable aléatoire X.
- ▶ Si elle est normalement distribuée, et qu'on dispose d'un *n*-échantillon $(X_1,...,X_n)$, alors

$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi^2(n-1),$$

où S_n^2 est la variance empirique.

▶ Un intervalle de confiance à $100(1-\alpha)\%$ pour σ^2 est donné par :

$$\Big[(n-1) S_n^2/\chi_{1-\alpha/2}^2 \; ; \; (n-1) S_n^2/\chi_{\alpha/2}^2 \Big],$$

où χ^2_{α} est le quantile d'ordre α de la distribution $\chi^{2}(n-1)$.

Outline

UE StatComp

Rejet Loi uniforme

Introduction MC et estimation MC et tests

Outline

UE StatComp

Reiet

Loi uniforme

Introduction

MC et estimation

MC et tests

 On peut vérifier la définition de cet intervalle de confiance en simulant une loi normale :

```
> m = 1000; n = 20; sigma = 2; alpha = 0.05
> I1 = numeric(m); I2 = numeric(m)
> for(i in 1:1000){
x = rnorm(n, mean = 0, sd = sigma)
I1[i] = (n-1)*var(x)/qchisq(1-alpha/2, df = n-1)
I2[i] = (n-1)*var(x)/qchisq(alpha/2, df = n-1)
> print( mean(sigma^2 > I1 & sigma^2 < I2) )</pre>
```

Introduction Inversion Rejet

Loi uniforme
Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence

Introduction

MC et estimation

MC et tests

Conclusion

Références

 On peut vérifier la définition de cet intervalle de confiance en simulant une loi normale :

```
> m = 1000; n = 20; sigma = 2; alpha = 0.05
> I1 = numeric(m); I2 = numeric(m)
> for(i in 1:1000){
x = rnorm(n, mean = 0, sd = sigma)
I1[i] = (n-1)*var(x)/qchisq(1-alpha/2, df = n-1)
I2[i] = (n-1)*var(x)/qchisq(alpha/2, df = n-1)}
> print( mean(sigma^2 > I1 & sigma^2 < I2) )</pre>
```

- Cette procédure nous donne comme attendu approximativement 95%.
- ► On sait néanmoins que cette définition d'intervalle de confiance est assez sensible aux écarts à la normalité...
- ⇒ TP : évaluer la robustesse de cette procédure.

Méthodes MC et estimation - résumé

En s'appuyant sur des techniques de simulation, l'approche MC permet de caractériser empiriquement la précision d'un estimateur en fonction de la taille de l'échantillon.

Outline

UE StatComp

Introduction

Simulation o variables aléatoires

Inversion Rejet

Loi uniforme Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence

MC et estimation
MC et tests

onclusion

Méthodes MC et estimation - résumé

En s'appuyant sur des techniques de simulation, l'approche MC permet de caractériser empiriquement la précision d'un estimateur en fonction de la taille de l'échantillon.

C'est une approche souvent plus simple à mettre en oeuvre que des développements mathématiques visant à affiner les approximations asymptotiques.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Inversion

Rejet Loi uniforme Méthodes MC

oour l'intégration Pour aller plus

Pour aller plus loin : réduction de variance

pour l'inférence
Introduction
MC et estimation

.......

Conclusion

Introduction MC et estimation MC et tests

En s'appuyant sur des techniques de simulation, l'approche MC permet de caractériser empiriquement la précision d'un estimateur en fonction de la taille de l'échantillon.

C'est une approche souvent plus simple à mettre en oeuvre que des développements mathématiques visant à affiner les approximations asymptotiques.

Elle permet notamment de comparer la performance de plusieurs estimateurs et d'évaluer empiriquement les niveaux de confiance associés quand on s'éloigne de leurs hypothèses de validité.

▶ taille d'échantillon et/ou loi de la variable aléatoire.

Outline

UE StatComp

Inversion Rejet Loi uniforme

Introduction

MC et estimation MC et tests

Méthodes MC & inférence - tests statistiques

Méthodes MC et tests statistiques - introduction

Test d'hypothèse : évaluer la validité d'une hypothèse statistique en fonction d'un échantillon.

lacktriangle valeur théorique vs estimation et fluctuation d'échantillonnage.

Outline

UE StatComp

Introduction

Simulation d

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Conclusion

Test d'hypothèse : évaluer la validité d'une hypothèse statistique en fonction d'un échantillon.

▶ valeur théorique vs estimation et fluctuation d'échantillonnage.

Faire un choix entre deux hypothèses statistiques :

- ► l'hypothèse nulle notée H₀
- ▶ une hypothèse alternative notée *H*₁

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Test d'hypothèse : évaluer la validité d'une hypothèse statistique en fonction d'un échantillon.

▶ valeur théorique vs estimation et fluctuation d'échantillonnage.

Faire un choix entre deux hypothèses statistiques :

- ▶ l'hypothèse nulle notée H₀
- ▶ une hypothèse alternative notée *H*₁

Démarche générale :

- 1. Définir une statistique de test et sa distribution sous H_0 .
- 2. Choisir un seuil de significativité, et en déduire la zone de rejet de H_0 .
- 3. Evaluer la statistique de test sur un échantillon et prendre la décision : rejeter ou accepter H_0 .

Outline

UE StatComp

Introduction

Simulation de variables aléatoires Introduction Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Exemple : on veut tester l'hypothèse $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$ pour une v.a. X de loi $\mathcal{N}(\mu, \sigma)$, de variance σ^2 connue, à partir d'un échantillon de taille n.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet

Loi uniforme Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

onclusion

Exemple : on veut tester l'hypothèse $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$ pour une v.a. X de loi $\mathcal{N}(\mu, \sigma)$, de variance σ^2 connue, à partir d'un échantillon de taille n.

Procédure:

1. On va se baser sur la moyenne empirique pour estimer μ .

Outline

UE StatComp

Introduction

imulation de rariables léatoires Introduction

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

onclusion

Inversion Rejet Loi uniforme

pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Références

61/71

Exemple : on veut tester l'hypothèse $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$ pour une v.a. X de loi $\mathcal{N}(\mu, \sigma)$, de variance σ^2 connue, à partir d'un échantillon de taille n.

Procédure :

- 1. On va se baser sur la moyenne empirique pour estimer μ .
- 2. Sous H_0 , on sait que $\bar{X}_n \to \mathcal{N}(\mu_0, \frac{\sigma}{\sqrt{n}})$.

Exemple : on veut tester l'hypothèse $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$ pour une v.a. X de loi $\mathcal{N}(\mu, \sigma)$, de variance σ^2 connue, à partir d'un échantillon de taille n.

Procédure :

- 1. On va se baser sur la moyenne empirique pour estimer μ .
- 2. Sous H_0 , on sait que $\bar{X}_n \to \mathcal{N}(\mu_0, \frac{\sigma}{\sqrt{n}})$.
- 3. On déduit notre région de rejet au seuil de significativité $\alpha: T = \mu_0 + t_{1-\alpha} \times \sigma/\sqrt{n}$.

Exemple : on veut tester l'hypothèse $H_0: \mu = \mu_0$ vs $H_1: \mu > \mu_0$ pour une v.a. X de loi $\mathcal{N}(\mu, \sigma)$, de variance σ^2 connue, à partir d'un échantillon de taille n.

Procédure :

- 1. On va se baser sur la moyenne empirique pour estimer μ .
- 2. Sous H_0 , on sait que $\bar{X}_n \to \mathcal{N}(\mu_0, \frac{\sigma}{\sqrt{n}})$.
- 3. On déduit notre région de rejet au seuil de significativité $\alpha: T = \mu_0 + t_{1-\alpha} \times \sigma/\sqrt{n}$.
- 4. Si la réalisation $\bar{x_n}$ est supérieure à T, on rejette H_0 .

(voir schéma...)

Deux types d'erreurs :

Outline

UE StatComp

Introduction

imulation d

Introduction Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Deux types d'erreurs :

- ▶ rejeter H_0 à tort = le risque de première espèce.
 - \triangleright on le note α .
 - il est défini a priori : c'est le seuil de significativité choisi.

Outline

UE StatComp

Introduction

Simulation d variables aléatoires

Inversion Rejet Loi uniforme

> léthodes MC our l'intégration

Pour aller plus oin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

onclusion

Deux types d'erreurs :

- ▶ rejeter H_0 à tort = le risque de première espèce.
 - \triangleright on le note α .
 - il est défini a priori : c'est le seuil de significativité choisi.
- ightharpoonup accepter H_0 à tort = le risque de seconde espèce
 - \triangleright on le note β .
 - il est propre à une hypothèse alternative spécifique.

Outline

UE StatComp

Introduction

Simulation de variables Iléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation

onclusion

Deux types d'erreurs :

- ▶ rejeter H_0 à tort = le risque de première espèce.
 - \triangleright on le note α .
 - il est défini a priori : c'est le seuil de significativité choisi.
- ightharpoonup accepter H_0 à tort = le risque de seconde espèce
 - \triangleright on le note β .
 - ▶ il est propre à une hypothèse alternative spécifique.

		Décision	
		H_0 vraie	H_0 fausse
Réalité	H_0 vraie	$1-\alpha$	α
	H_0 fausse	eta	$1-\beta$

(voir schéma...)

Outline

UE StatComp

Introduction

variables aléatoires Introduction Inversion Rejet

Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Deux notions importantes :

Outline

UE StatComp

Introduction

imulation d

Introduction Inversion Rejet

Loi uniforme

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

D. C.

Deux notions importantes :

- ▶ la puissance du test = la probabilité de rejeter H₀ à raison (~ la probabilité de détecter l'hypothèse alternative).
 - elle vaut par définition 1β .

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

.....

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Références

Deux notions importantes :

- ▶ la puissance du test = la probabilité de rejeter H₀ à raison (~ la probabilité de détecter l'hypothèse alternative).
 - elle vaut par définition 1β .
- ▶ la p-valeur du test = la probabilité d'observer sous H₀ une valeur plus élevée de la statistique de test que celle observée sur l'échantillon.
 - le plus faible α auquel on aurait pu rejeter l'hypothèse nulle compte tenu de notre observation.

(voir schéma...)

Méthodes MC et tests statistiques

L'approche MC peut être déclinée pour étudier les performances d'un test statistique en terme :

- de risque de première espèce : le risque (empirique) de rejeter à tort l'hypothèse nulle est-il conforme à celui attendu?
- de puissance : estimer empiriquement la probabilité de rejeter l'hypothèse nulle pour une hypothèse alternative donnée.

Outline

UE StatComp

Introduction

Simulation de variables aléatoires

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

onclusion

Loi uniforme

Introduction MC et estimation MC et tests

L'approche MC peut être déclinée pour étudier les performances d'un test statistique en terme :

- ▶ de risque de première espèce : le risque (empirique) de rejeter à tort l'hypothèse nulle est-il conforme à celui attendu?
- ▶ de puissance : estimer empiriquement la probabilité de rejeter l'hypothèse nulle pour une hypothèse alternative donnée.

Cette approche peut notamment être utile pour évaluer la performance d'un test quand le nombre d'observations est limité, ou pour comparer la puissance de différents tests.

▶ dimensionnement du "sample size" de l'étude

Méthodes MC et tests statistiques

Procédure pour mesurer empiriquement le risque de 1ère espèce d'un test :

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

onelucion

Inversion Rejet

Loi uniforme

Pour aller plus

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation

onclusion

Références

Procédure pour mesurer empiriquement le risque de 1ère espèce d'un test :

- ▶ Pour j = 1, ..., m
 - ▶ générer le j-ème n-échantillon $(X_1^{(j)},...,X_n^{(j)})$ selon l'hypothèse nulle
 - ▶ calculer la statistique de test T_i
 - vérifier si l'hypothèse nulle est rejetée ou non (au seuil de significativité voulu)

Loi uniforme Méthodes MC

Pour aller plus loin : réduction

loin : réduction de variance

pour l'inférence
Introduction
MC et estimation

onclusion

Références

References

Procédure pour mesurer empiriquement le risque de 1ère espèce d'un test :

- ▶ Pour j = 1, ..., m
 - ▶ générer le j-ème n-échantillon $(X_1^{(j)},...,X_n^{(j)})$ selon l'hypothèse nulle
 - ▶ calculer la statistique de test T_i
 - vérifier si l'hypothèse nulle est rejetée ou non (au seuil de significativité voulu)
- ► Le risque de 1ère espèce empirique est égal à la proportion de tests rejetés.
 - ► NB : on les rejette à tort.

Méthodes MC et tests statistiques

Procédure pour mesurer empiriquement la puissance d'un test :

Outline

UE StatComp

Introduction

Simulation d variables

Inversion Rejet

Loi uniforme

Pour aller plus oin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests

Conclusion

Inversion Rejet

Loi uniforme Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence

Introduction
MC et estimation

onclusion

Références

Procédure pour mesurer empiriquement la puissance d'un test :

- ▶ Pour j = 1, ..., m
 - ▶ générer le *j*-ème *n*-échantillon $(X_1^{(j)}, ..., X_n^{(j)})$ selon l'hypothèse alternative à évaluer
 - \triangleright calculer la statistique de test T_i
 - vérifier si l'hypothèse nulle est rejetée ou non (au seuil de significativité voulu)

onclusion

Références

66/71

Procédure pour mesurer empiriquement la puissance d'un test :

- ▶ Pour j = 1, ..., m
 - ▶ générer le *j*-ème *n*-échantillon $(X_1^{(j)}, ..., X_n^{(j)})$ selon l'hypothèse alternative à évaluer
 - ▶ calculer la statistique de test T_i
 - vérifier si l'hypothèse nulle est rejetée ou non (au seuil de significativité voulu)
- ► La puissance empirique est égale à la proportion de tests rejetés.
 - ▶ NB : on les rejette à raison.

Outline

UE StatComp

Introduction

Simulation of variables aléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Références

Remarques et conclusion

Monte-Carlo pour l'inférence :

- ▶ simuler des échantillons à partir d'un modèle probabiliste
- évaluer empiriquement l'incertitude de l'estimation

Outline

UE StatComp

Introduction

Simulation d variables Iléatoires

Inversion Rejet

Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus oin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation
MC et tests

Conclusion

Outline

UE StatComp

Introduction

simulation d

Inversion Rejet

Loi uniforme Méthodes MC

Pour aller plus loin : réduction

loin : réduction de variance

Méthodes MC
pour l'inférence
Introduction
MC et estimation

Conclusion

Références

Monte-Carlo pour l'inférence :

- ▶ simuler des échantillons à partir d'un modèle probabiliste
- évaluer empiriquement l'incertitude de l'estimation

4 "recettes" génériques :

- 1. caractérisation d'un estimateur
- 2. etimation d'un niveau de confiance
- 3. estimation du risque de 1ère espèce d'un test
- 4. estimation de la puissance d'un test

Outline

UE StatComp

Introduction

Simulation d variables Jéatoires

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation

MC et tests Conclusion

Références

Monte-Carlo pour l'inférence :

- ▶ simuler des échantillons à partir d'un modèle probabiliste
- évaluer empiriquement l'incertitude de l'estimation

4 "recettes" génériques :

- 1. caractérisation d'un estimateur
- 2. etimation d'un niveau de confiance
- 3. estimation du risque de 1ère espèce d'un test
- 4. estimation de la puissance d'un test
- ⇒ Simple à mettre en oeuvre.

Outline

UE StatComp

Introduction

amulation de ariables léatoires I**ntroduction**

Inversion Rejet Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Références

Monte-Carlo pour l'inférence :

- ▶ simuler des échantillons à partir d'un modèle probabiliste
- ► évaluer empiriquement l'incertitude de l'estimation

4 "recettes" génériques :

- 1. caractérisation d'un estimateur
- 2. etimation d'un niveau de confiance
- 3. estimation du risque de 1ère espèce d'un test
- 4. estimation de la puissance d'un test
- \Rightarrow Simple à mettre en oeuvre.
- \Rightarrow Utile pour dimensionner un problème et/ou quantifier l'impact de l'écart aux hypothèses.

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation

Conclusion

Références

▶ Méthode Monte Carlo : toute méthode d'inférence statistique ou d'analyse numérique s'appuyant sur des techniques de simulation [de variables aléatoires] (Rizzo, 2007, §6.1).

- ► Une autre application importante non couverte = simulation à large échelle d'un système pour étudier sa sensibilité aux fluctuations de ses entrées.
 - "sensitivity analysis" et/ou "uncertainty analysis"
- ▶ L'approche générale décrite dans la section "inférence" est parfois appellée bootstrap paramétrique. Le prochain cours s'intéressera au bootstrap "classique".
 - ré-échantillonnage à partir de l'échantillon.

Inversion Rejet Loi uniforme

Méthodes MC

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion

Références

Avec les approches MC, on fait beaucoup de boucles...

La fonction replicate permet de les faire pour vous :

Utilisation:

- ▶ 1er argument : nombre de réplications à faire
- ▶ 2ème argument : calcul à faire
- en sortie : un vecteur contenant les *m* valeurs obtenues

Références

Christopher M. Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.

Maria L. Rizzo. *Statistical Computing with R.* CRC Press, 2007.

Outline

UE StatComp

Introduction

variables
aléatoires
Introduction
Inversion
Rejet
Loi uniforme

Méthodes MC pour l'intégration

Pour aller plus loin : réduction de variance

Méthodes MC pour l'inférence Introduction MC et estimation MC et tests

Conclusion