A falling stone takes 0.30 s to pass a window 2.4 m high. In other words, as the stone is falling, 0.30 seconds pass AS the stone falls past the window. From what height above the top of the window did the stone fall?

$$\begin{array}{c} X_{b} - b \\ X - h \\ V_{0} - 0 \\ V - -6.53 \text{m/s} \\ \alpha - -9.8 \text{m/s} \\ \lambda - t \\ U = U_{0} + 2\alpha(x - x_{0}) \end{array}$$

$$(-6.53)^{2} = 2(-9.8)(h)$$

 $42.64 = -19.6 h$
 $h = -2.18 m$

092613.notebook

A helicopter is ascending vertically with a speed of 8.00 m/s; at a height of 120 m above the earth, a package is dropped from a window. How much time does it take for the package to reach the ground?

$$X_{0} = 0$$
 $X_{0} = 126$
 $X_{0} = 126$
 $X_{0} = -8.5 \frac{m}{5}$
 $X_{0} = -8.5 \frac{m}{5}$

A falling stone takes 0.30 s to pass a window 2.4 m high. In other words, as the stone is falling, 0.30 seconds pass AS the stone falls past the window. From what height above the top of the window did the stone fall?

EXAMPLE 1: A bionic bunny bounces along a trail and travels 56 meters 18° west of due north. It spies a hawk, gets scared, and bolts in a direction that is 39° west of due south. Unfortunately, after going 35 meters he encounters a burly bear. For the bionic bouncing bunny to avoid the burly bear, the bouncing bunny darts away in a direction of 27° north of due east and runs for 98 meters. Where does the bunny end up relative to its starting point?

	1							

