Chapter 7 Compressible Flow: Some Preliminary Aspects

2019年12月20日 星期五

Chapter 7 可压缩流动:一些预备知识

7.1 引言P516

Figure 7.1 Road map for Chapter 7.

7.2 热力学的简单回顾P518

7.2.1 完全气体P518

7.2.2 内能和焓P518

7.2.2 执 士 兴 笠 C / sh
7.2.3 热力学第一定律P523
7.2.4 熵和热力学第二定律P524
7.2.4 炯 仰然 刀子 第一足律P524
7.2.5 等熵关系式P526
7.2.3 守焖大分入P326
7.3 压缩性的定义P530
7.4 无粘可压缩流动的控制方程P531
> - 1 - 4 \max lil \n \n \n \n \n \n \n \n \n \n \n \n \n \n

7.5 总(滞止)状态的定义P533

Figure 7.4 Comparisons between (a) nonadiabatic, (b) adiabatic, (c) nonisentropic, and (d) isentropic flows.

7.6 超声速流的一些知识:激波P540

7.7 总结P544

Thermodynamic relations:

Equation of state:

$$p = \rho RT$$

(7.1)

For a calorically perfect gas,

$$e = c_v T$$
 and $h = c_p T$

(7.6*a* and *b*)

$$c_p = \frac{\gamma R}{\gamma - 1}$$

(7.9)

$$c_v = \frac{R}{\nu - 1} \tag{7.10}$$

Forms of the first law:

$$\delta q + \delta w = de \tag{7.11}$$

$$T ds = de + p dv (7.18)$$

$$T ds = dh - v dp (7.20)$$

$$T ds = de + p dv (/.18)$$

$$T ds = dh - v dp (7.20)$$

Definition of entropy:

$$ds = \frac{\delta q_{\text{rev}}}{T} \tag{7.13}$$

Also

$$ds = \frac{\delta q}{T} + ds_{\text{irrev}} \tag{7.14}$$

The second law:

$$ds \ge \frac{\delta q}{T} \tag{7.16}$$

or, for an adiabatic process,

$$ds \ge 0 \tag{7.17}$$

Entropy changes can be calculated from (for a calorically perfect gas)

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$
 (7.25)

and

$$s_2 - s_1 = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$$
 (7.26)

For an isentropic flow,

$$\frac{p_2}{p_1} = \left(\frac{\rho_2}{\rho_1}\right)^{\gamma} = \left(\frac{T_2}{T_1}\right)^{\gamma/(\gamma-1)} \tag{7.32}$$

General definition of compressibility:

$$\tau = -\frac{1}{v} \frac{dv}{dp} \tag{7.33}$$

For an isothermal process,

$$\tau_T = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T \tag{7.34}$$

For an isentropic process,

$$\tau_s = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_s \tag{7.35}$$

The governing equations for inviscid, compressible flow are *Continuity:*

$$\frac{\partial}{\partial t} \iiint_{\mathcal{V}} \rho \, d\mathcal{V} + \iiint_{\mathcal{S}} \rho \mathbf{V} \cdot \mathbf{dS} = 0 \tag{7.39}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{V} = 0 \tag{7.40}$$

Momentum:

a ccc cc cc

Momentum:

$$\frac{\partial}{\partial t} \iiint_{\mathcal{V}} \rho \mathbf{V} \, d\mathcal{V} + \iiint_{\mathcal{S}} (\rho \mathbf{V} \cdot \mathbf{dS}) \mathbf{V} = - \iiint_{\mathcal{S}} p \, \mathbf{dS} + \iiint_{\mathcal{V}} \rho \mathbf{f} \, d\mathcal{V} \quad (7.41)$$

$$\rho \frac{Du}{Dt} = -\frac{\partial p}{\partial x} + \rho f_x \tag{7.42a}$$

$$\rho \frac{Dv}{Dt} = -\frac{\partial p}{\partial y} + \rho f_y \tag{7.42b}$$

$$\rho \frac{Dw}{Dt} = -\frac{\partial p}{\partial z} + \rho f_z \tag{7.42c}$$

Energy:

$$\frac{\partial}{\partial t} \iiint_{\mathcal{V}} \rho\left(e + \frac{V^2}{2}\right) d\mathcal{V} + \iiint_{\mathcal{S}} \rho\left(e + \frac{V^2}{2}\right) \mathbf{V} \cdot \mathbf{dS}$$
(continued)

$$= \iiint_{\mathcal{V}} \dot{q} \rho \, d\mathcal{V} - \iiint_{\mathcal{S}} p \mathbf{V} \cdot \mathbf{dS} + \iiint_{\mathcal{V}} \rho(\mathbf{f} \cdot \mathbf{V}) \, d\mathcal{V} \tag{7.43}$$

$$\rho \frac{D(e + V^2/2)}{Dt} = \rho \dot{q} - \nabla \cdot p \mathbf{V} + \rho (\mathbf{f} \cdot \mathbf{V})$$
 (7.44)

If the flow is steady and adiabatic, Equations (7.43) and (7.44) can be replaced by

$$h_0 = h + \frac{V^2}{2} = \text{const}$$

Equation of state (perfect gas):

$$p = \rho RT \tag{7.1}$$

Internal energy (calorically perfect gas):

$$e = c_v T (7.6a)$$

Total temperature T_0 and total enthalpy h_0 are defined as the properties that would exist if (in our imagination) we slowed the fluid element at a point in the flow to zero velocity adiabatically. Similarly, total pressure p_0 and total density ρ_0 are defined as the properties that would exist if (in our imagination) we slowed the fluid element at a point in the flow to zero velocity isentropically. If a general flow field is adiabatic, h_0 is constant throughout the flow; in contrast, if the flow field is isentropic, p_0 and p_0 are constant throughout the flow; in contrast, if the flow field is nonisentropic, p_0 and p_0 vary from one point to another.

Shock waves are very thin regions in a supersonic flow across which the pressure, density, temperature, and entropy increase; the Mach number, flow velocity, and total pressure decrease; and the total enthalpy stays the same.

and the latest		
.8 作业题P547		