QEE

1.

The equation whose roots are opposite in sign to those of the equation $x^2 - 3x - 4 = 0$ is

	given by (A) $4x^2 - 3x + 1 = 0$ (C) $x^2 + 3x + 4 = 0$	(B) $x^2 + 3x - 4 = 0$ (D) none of these
2.	Sum of the roots of the equation $x^5 - 5x^3 + x^5$ (A) 0 (C) - 1	x + 1 = 0 is given by (B) 5 (D) none of these
3.	If the roots of quadratic equation $ax^2 + bx$ sign then (A) $a = 0$ (C) $a = c$	+ c = 0 are equal in magnitude and opposite in (B) c = 0 (D) none of these
4.	One of the roots of the quadratic equation (A) $- 1$ (C) 1	$\sin^2 \theta$) $x^2 - x + \cos^2 \theta = 0$ is given by (B) 2 (D) none of these
5.	If α and β are the roots of $ax^2 + bx + c = 0$, then the equation whose roots are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ is
	given by (A) $ax^2 + cx + b = 0$ (C) $(ac - b^2) x^2 + bx + c = 0$	(B) $cx^2 + bx + a = 0$ (D) none of these
6.	If $\frac{1}{x-2} \ge \frac{1}{3}$; then x belongs to (A) $(-\infty, 5]$ (C) (2, 5]	(B) [2, 5] (D) none of these
7.	The number of real roots of the equation 2 ² (A) 0 (C) 2	
8.	The real roots of the equation $7^{\log_7\left(x^2-4x+5\right)}$ (A) 1 and 2 (C) 3 and 4	= (x - 1) are (B) 2 and 3 (D) 4 and 5
9.		= 0 are not real, then ax ² + 2bxy+ cy ² + dx+ ey+f=0
	represent (A) Ellipse (C) Parabola	(B) Circle (D) Hyperbola
10.	$3x^{10} - 5x^2 + 7 = 0$ is an (A) equation (C) identity	(B) expression (D) none of these
11.	Expression $x^2 + px + q$ will be a perfect square (A) $p^2 - 4q = 0$ (C) $q^2 = p^2$	are of linear expression if (B) $p^2 + 4q = 0$ (D) none of these
12.	If a, b, c are the roots of the equation $x^3 - y$	$cx^{2} + qx - r = 0$ then the value of $\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}}$ is

	(A) $\frac{q^2 + 2pr}{r}$	(B) $\frac{q^2 - 2pr}{r}$
	(A) $\frac{q^2 + 2pr}{r}$ (C) $\frac{q^2 + 2pr}{r^2}$	(D) $\frac{q^2 - 2pr}{r^2}$
13.	If a, b, $c \in R$, the roots of a equation $(x - a)(A)$ rational (C) imaginary	(x - b) + (x - b)(x - c) + (x - c)(x - a) = 0 are (B) irrational (D) real
14.	Root of equation $3^{x-1} + 3^{1-x} = 2$ is (A) 2 (C) 4	(B) 3 (D) none of these
15.	If $(1 + m)x^2 - 2(1 + 3m)x + (1 + 8m) = 0$ has (A) 0, 1 (C) 0, 3	equal roots, then m is equal to (B) 0, 2 (D) none of these
16.	If the roots of the equation $(a^2 + b^2) x^2 + 2x $	(ac + bd) + c^2 + d^2 = 0 are real, then (B) ab = cd (D) none of these
17.	If r be the ratio of the roots of the equation a	$ax^2 + bx + c = 0$, then $\frac{(r+1)^2}{r}$ is equal to
	(A) $\frac{a^2}{bc}$ (C) $\frac{c^2}{ab}$	(B) $\frac{b^2}{ac}$
	(C) $\frac{c^2}{ab}$	(D) none of these
18.	by the same quantity, then $p + q$ is equal to (A) -1 (C) -3	iffer from the roots of the equation $x^2 + qx + p = 0$ (B) -2 (D) -4
19.	The quadratic equation whose one of the ro	ots is $\frac{1}{2+\sqrt{5}}$ is
	(A) $x^2 + 4x - 1 = 0$ (C) $x^2 + 4x + 1 = 0$	(B) $x^2 + 3x - 1 = 0$ (D) none of these
20.	Let α , β be the roots of $x^2 - x + p = 0$ and γ in G.P., then the integral value of p and q re (A) -2, -32 (C) -6, 3	α , δ be the roots of x^2 – $4x$ + q = 0. If α , β , γ , δ are espectively are (B) –2, 3 (D) –6, –32
21.	If α , β are roots of x^2 – $p(x + 1)$ – c = 0 then (A) c (C) 1 – c	$(\alpha + 1) (\beta + 1)$ is equal to (B) c - 1 (D) none of these
22.	For $a \ne b$, if the equations $x^2 + ax + b = 0$ are value of $(a + b)$ is $(A) -1$ $(B) 1$	and $x^2 + bx + a = 0$ have a common root, then the (B) 0 (D) 2

34.	If $x \in [2, 4]$ then for the expression $x^2 - 6x + (A)$ the least value = -4 (C) the least value = 3	(B) the greatest value = 4 (D) the greatest value = -3
35.	The value of x for which $\frac{(x-1)(x+2)^4}{(x+1)^3(x-3)^2} \le 0$	is
		(B) (-1, 1] (D) none of these
36.	If a and b are non-zero roots of the equ $x^2 + ax + b = 0$ is	uation $x^2 + ax + b = 0$ then the least value of
	(A) 0 (C) 9/4	(B) - 9/4 (D) none of these
37.	$(x-3)^2(x+2) \ge 0$ for all values of x belonging (A) [-2, ∞) (C) [-2, 3)	ng to interval (B) $(-\infty, -2]$ (D) none of these
38.	The roots of quadratic equation are always (A) D is a perfect square (B) D is a perfect square and coefficients ar (C) D is not a perfect square (D) D is not a perfect square and coefficient	e rational
39.	The graph of quadratic equation expression axis iff (A) D = 0	of $(x) = ax^2 + bx + c$ with $a > 0$ is always above x- (B) D > 0
	(C) $D < 0$	(D) none of these
40.	Quadratic equations $(a - b)x^2 + (b - c)x + (c)(2a - b - c)x^2 + (2b - c - a)x + (2c - a - b) = (A)$ a (C) b	c – a) = 0 and = 0 have a common root, given by (B) c (D) 1
41.	If one of the root of a quadratic equation we must be	ith rational coefficients is rational, then other root
	(A) imaginary (C) rational	(B) irrational (D) none of these
42.	If two roots of quadratic equation $ax^2 + bx$ equation $ax^2 - bx + c = 0$ are given by	+ c = 0 are α , β , then the roots of the quadratic
	(A) $\frac{1}{\alpha}$, $\frac{1}{\beta}$	(B) $-\alpha$, $-\beta$
	(C) $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$	(D) none of these
43.	In the quadratic equation $(2a - 3)x^2 + ax + a$ (A) 3/2 (C) 5	a-5=0, the value of a can never be (B) 0 (D) none of these
44.	The quadratic equation whose roots are -2 (A) $x^2 - 2x - 8 = 0$ (C) $x^2 + 2x + 8 = 0$	and 4 is given by (B) $x^2 - 2x + 8 = 0$ (D) none of these

(D) none of these

(C) $p(p^2 - 4q) (p^2 + q)$

- If p, q be two positive numbers, then the number of real roots of quadratic equation 45. $px^2 + q|x| + 5 = 0$ is
 - (A) 1

(B) 0

(C) 2

- (D) 4
- If p and q are roots of the quadratic equation $x^2 + mx + m^2 + a = 0$, then the value of 46. $p^2 + q^2 + pq$ is
 - (A) 0

(B) a

(C) -a

- $(D) \pm m^2$
- The number of real roots of the equation $|x|^2 3|x| + 2 = 0$ is 47.
 - (A) 4

(B)3

(C) 2

- (D) 1
- The diagram shows the graph of 48. $y = ax^2 + bx + c$, then

$$y = ax + 1$$

- (A) a > 0
- (B) b < 0
- (C) c > 0
- $(D) b^2 4ac = 0$

- 49. The equation whose roots are 1 and 0, is
 - (A) $x^2 2x + 1 = 0$
 - $(C) x^2 x = 0$

- (B) $x^2 1 = 0$
- (D) none of these
- One root of $px^2 14x + 8 = 0$ is six times the other then p is 50.
 - (A) 0

(B) 3

(C) 1/3

- (D) 1
- Roots of the equation $(x a)(x b) = h^2$ are 51.
 - (A) real and equal

(B) real and unequal

(C) imaginary

(D) none of these

- If $x^{1/2} + x^{1/4} = 12$, then x is 52.
 - (A) 16 or 81

(B) 81 or 256

(C) 81

- (D) 16 or 256
- One root of a quadratic equation is $2 + \sqrt{3}$, then product of roots will be 53.
 - (A)7

(B) 4

(C) 0

- (D) 1
- The expression $-x^2 + 3x + 9$ is always 54.
 - (A) positive

(B) negative

(C) 0

- (D) none of these
- If $3x^2 2mx 4 = 0$ and $x^2 4m + 2 = 0$ have a common root, then m is 55.
 - $(A) \pm \frac{1}{2}$

(B) $\pm \frac{1}{\sqrt{3}}$

 $(C)\pm\frac{1}{3}$

(D) $\pm \frac{1}{\sqrt{2}}$

	(A) -3	(B) -1/5	(C) -3/	' 5	(D) none of the	nese
81.	The solution set of (A) $(-\infty, -2) \cup (1, \infty)$ (C) $(-2, 1)$	the inequation log _{1/3} (x	² + x+1) (B) [–1 (D) (–∞	, 2]) is	
82.	Let α and β are the r is	roots of equation $x^2 + x^2$	x + 1 =	0, the	equation who	se roots are α^{19} , β^{17}
	(A) $x^2 - x - 1 = 0$	(B) $x^2 - x + 1 = 0$		(D) x ²	+ x - 1 = 0	(D) $x^2 + x + 1 = 0$
83.	If p and q are non equation $qx^2 + px + 7$ (A) α and $1/\beta$		equation		x + q = 0 ha α and $1/\beta$	
84.		$\frac{x^2 - 3x + 4}{x + 1} > 1, x \in \mathbb{R}, \text{ is}$ (B) (-1, 1) \cup (3, ∞)		(C) [-1	, 1] ∪[3, ∞)	(D) none
85.	If the quadratic equat (A) 2 $(\alpha - \beta) + (a - b)^2$ (B) 2 $(\alpha - \beta) + (a - b)^2$ (C) 2 $(\alpha - \beta) + (a - b)^2$ (D) none of these .	$+(b - c)^2 + (c - a)^2 < 0$	+ c² – at	o – bc –	· ca = 0 has im	naginary roots, then
87.	(A) 'a' is always an ir		t be an	intege		
88.	The value of 'p' for where $2x^2 - 2(p-2)x - p - 1 = (A) 1$	nich the sum of the squ 0 is least, is (B) 11/4	uare of t	he root	s of (D) -1	ı
89.	If $x^2 - 4x + \log_{\frac{1}{2}} a = 0$	does not have two dist	tinct rea	l roots,	then maximun	n value of a is
	(A) $\frac{1}{4}$		(B) $\frac{1}{16}$			
	(A) $\frac{1}{4}$ (C) $-\frac{1}{4}$		(D) nor	ne of th	ese	
90.	The largest negative (A) -4 (C) -1	integer which satisfies	$\frac{x^{2}-(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2)(x-2$	$\frac{-1}{(x-3)}$	> 0 is	
91.	The number of real so (A) 0 (C) 2	olutions of $x - \frac{1}{x^2 - 4} =$	$= 2 - \frac{1}{x^2}$ (B) 1 (D) infi	·		

- 92. If the roots of $4x^2 + 5k = (5k + 1) x$ differ by unity then the negative value of k is
 - (A) -3

(B) $-\frac{1}{5}$

(C) $-\frac{3}{5}$

- (D) none of these
- 93. If the absolute value of the difference of roots of the equation $x^2 + px + 1 = 0$ exceeds $\sqrt{3} p$ then
 - (A) p < -1 or p > 4

(B) p > 4

(C) -1

- (D) $0 \le p < 4$
- 94. If a, b, c, d are positive reals such that a + b + c + d = 2 and m = (a + b) (c + d), then
 - (A) $0 \le m \le 1$

(B) $1 \le m \le 2$

(C) $2 \le m \le 3$

- (D) $3 \le m \le 4$
- 95. If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ be the geometric mean between two distinct positive reals a and b, then the value of n is
 - (A) 0

(B) 1/2

(C) -1/2

- (D) 1
- 96. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is 3/4, then
 - (A) a = 7/4, r = 3/7

(B) a = 2, r = 3/8

(C) a = 3/2, r = 1/2

- (D) a = 3, r = 1/4
- 97. If a + b + c = 0 then $x^{a^2/bc}$. $x^{b^2/ca}$. $x^{c^2/ab}$ is equal to
- 99. If a, b, c are positive real numbers, then the number of real roots of the equation $ax^2 + b|x| + c = 0$ is
- 100. The solution set of $\frac{x^2 3x + 4}{x + 1} > 1$, $x \in R$, is
 - (A) (3, ∞)

(B) (−1, 1) ∪(3, ∞)

(C) $[-1, 1] \cup [3, \infty)$

(D) none of these

LEVEL-II

(A) $x^2 - 2x + 2 = 0$ (C) $x^2 - 4x + 4 = 0$

1.

A quadratic equation whose roots are $\sec^2 \alpha$ and $\csc^2 \alpha$ can be;

(B) $x^2 - 3x + 3 = 0$ (D) none of these

	(A) $\frac{4}{9}$	(B) 4	
	(A) $\frac{4}{9}$ (C) $\frac{9}{4}$	(D) $\frac{1}{2}$	
47.	The set of values of a for which 1 lies between (A) $(-\infty, -6)$ (C) $(-\infty, -6) \cup (2, \infty)$	een the roots of $x^2 - ax$ (B) $(-\infty, +6)$ (D) $(2, \infty)$	a - a + 3 = 0 is
48.	Maximum value of $5 + 4x - x^2$, is (A) 5 (C) 9	(B) 6 (D) 1	
49.	The equation $(ax^2 + bx + c)(ax^2 - dx - c) = 0$ (A) four real roots (C) at most two real roots	0, x ≠ 0, has (B) at least two real re (D) no real roots	oots
50.	If the equation $x^2 + 5bx + 8c = 0$, does not of $5b + 8c$ is (A) 1 (C) -2	have two distinct real (B) 2 (D) -1	roots, then minimum value
51.	If $a + b + c = 0$, then one root of the equation (A) -1 (C) 1	on $ax^2 + bx + c = 0$ is (a) (B) 2 (D) 3	1 ≠ 0)
52.	If the bigger root of $x^2 + 2ax - 6 + 5a = 0$ is r (A) $a \in (6/5, 2] \cup [3, \infty)$ (C) $[2, \infty)$	negative then exhausti (B) a∈(6/5 , 3] (D) none of these	ve set of values of a is;
53.	If f (x) = $ax^2 + bx + 8$ does not have distinct (A) -4 (B) -8	real roots, then the lea	ast value of 4a – b is (D) –2
54.	If the roots of the equation $x^2 - 2ax + a^2 + a$ (A) $a < 2$ (B) $2 \le a \le 3$	-3 = 0 are less than 3	then (C) $3 < a \le 4$ (D) $a > 4$
55.	If roots of the equation $x^2 - (a + 3)x + 3a - 1$ (A) 3 (B) 2	= 0 are integral, then t (C) 1	he value of a is (D) -2
56.	If $ax^2 + bx + c = 0$ has non real roots and c (A) $a - 2b + 4c < 0$ (C) $a - 2b + 4c = 0$	∈ R ⁺ , then (B) a − 2b + 4c > 0 (D) none of these	
57.	If $x^3 + ax + b = 0$, $(a, b \in R)$ has a repeated (A) 'a' has to be necessarily a positive real (B) 'a' has to be necessarily a negative real (C) 'a' can be any real number. (D) None of these	number.	
58.	If $x^2 - 3ax + 2 < 0 \forall \ x \in [1, 3]$ then exhaud (A) $a \in (1, \infty)$ (C) $a \in (11/9, \infty)$	stive set of values of 'a (B) a ∈(1, 11/9) (D) none of these	a' is
59.	If $\frac{x^3}{3} + x^2 - 3x + c = 0$ is of the form $(x - \alpha)^2$	$(x - \beta)$ then $c =$	

60.	If $a_1, a_2,, a_n \in R$	then $\sum_{i=1}^{n} (x - a_i)^2$ is t	the least if x is equal	to
	(A) $a_1 + a_2 + \dots + a_n$ (C) $n(a_1 + a_2 + \dots + a_n)$)	(B) $2(a_1 + a_2 + + a_n)$ (D) none of these)
61.	The number of real ro (A) 3 (C) 1	oots of the equation	$(x-1)^2 + (x-2)^2 + (x-1)^2$ (B) 2 (D) 0	$-3)^2 = 0$ is
62.	If p and q are the ro (A) $p=1$ (C) $p=-2$	oots of the equation	$x^{2} + px + q = 0$ then (B) p = 1 or 0 (D) p = -2 or 0	
63.	Then the roots of the ed	quation $\alpha(x - \beta)^2 + \beta(x)$		real and of opposite sign.
64.	If the inequality $\frac{mx^2 + x^2}{x^2 + x^2}$	$\frac{3x+4}{2x+2} < 5 \text{ is satisfied}$	ed for all $x \in R$, then	
	(A) 1 < m < 5	B) -1 < m < 5	(C) 1< m < 6	(D) $m < \frac{71}{24}$.
65.				bx + c = 0, β is a root of 0 has a root γ that always
	(A) $\gamma = \frac{\alpha + \beta}{2}$,	(B) $\gamma = \alpha + \frac{\beta}{2}$	(C) $\gamma = \alpha$,	(D) $\alpha < \gamma < \beta$
66.	The equation ax ² + bx - must be equal to	$+ a = 0, x^3 - 2x^2 + 2x$	x - 1 = 0 have two roo	ots in common. Then a + b
	(A) 1 (C) 0		(B) −1 (D) none of these	
67.	If a, b, c are in G.P. to common root if $\frac{d}{a}$, $\frac{e}{b}$, $\frac{f}{c}$		$x^2 + 2bx + c = 0$ and	$dx^2 + 2ex + f = 0$ have a
	(A) A.P. (C) H.P.	;	(B) G.P. (D) none of these	
68.	If c > 0 and 4a + c < 2b (A) (0, 2) (C) (0, 1)	, then $ax^2 - bx + c = 0$	O has a root in the inter (B) (2, 4) (D) (-2, 0)	val
69.	The number of real solution (A) 0 (C) 2	utions of the equatior	ns e ^x = x is (B) 1 (D) infinite	
70.	The number of real solu	utions of the equation	$3^{\frac{x}{2}} + \left(\sqrt{2} + 1\right)^{x} = \left(6 + 2\right)^{x}$	$\sqrt{2}$ is

(B) 9 (D) 0

(A) -5/3 (C) -9

	(A) 1	(B) 2				
	(C) 4	(D) infinite				
71.	The number of real solutions of the equation	ns e ^{l xl} = l x l is				
	(A) 0 (B) 1	(C) 2	(D) 4			
72.	The number of numbers between n and n^2 (A) n (C) n -2	which are divisible by r (B) n –1 (D) none of these	n is (n ∈ I)			
73.	If the ratio of the roots of the equation x^2	$x^2 + px + q = 0$ be equal	al to the ratio of the roots			
	of $x^2 + lx + m = 0$, then (A) $p^2 m = q^2 l$	(B) $pm^2 = a^2 I$				
	(C) $p^2 I = q^2 m$	(B) $pm^2 = q^2 I$ (D) $p^2 m = I^2 q$				
74.	The number of solutions of the equation $5^x + 5^{-x} = log_{10}25$, $x \in R$ is					
75.	If $a + b + c = 0$, then the quadratic equation (A) at least one root in (0, 1) (C) imaginary root	$3ax^2 + 2bx + c = 0$ ha (B) one root in (2, 3) (D) none of these				

LEVEL -III

1.	If the r (A) 0 (C) 2	coots of $x^2 - bx + c = 0$	are the two cor	(B) 1	e integ		· 4c is	
2.	If a ² + (A) (C)	$b^2 + c^2 + d^2 = 1$, then the zero Two	ne maximum va	alue of a	(B)	+ cd +da is One ne of these		
3.		umber of real solutions +sin ³ x=1 in the interval 2 3	•	(B) (D)	1 Infinite			
4.) = ax ³ + bx ² + x +d ha he equation f(x) = 0 has 3 distinct real roo has only one real roo has only one real root has 3 equal real roots	ts t, which is posit t, which is nega	tive if a	$f(\alpha) < 0$		<i>α</i> . β < 0,	$f(\alpha), f(\beta) > 0;$
5.	If sinα (A) (C)	, $\sin \beta$ and $\cos \alpha$ are in equal imaginary	GP, then roots	of x^2 +	2xcotβ (B) (D)	+ 1 = 0 are a real greater than	•	
6.	Let a, (A) (C)	b,c, ∈ R such that 2a + at least one root in (0 both roots in (1,2)		hen the	(B) at I	atic equation east one root aginary roots		
7.		+ bx + 1=0 does n					value	of 2a- b is
8.	If x is	real, then least value	e of expression	$\frac{x^2-6x}{x^2+2x}$	$\frac{x+5}{x+1}$ is	;		
	(A) -1		(B) $-1/2$		(C) -1	/3	(D) no	one of these
9.	(A) tw	c are real and a + b + ro real roots e real root only	c = 0, then q	uadratio	(B) two	on 4ax ² + 3by imaginary rone of these	x +2c = (oots) has;
10.	If x is	real, then expression	$\frac{(x-a)(x-b)}{x-c} v$	<i>i</i> ill assu	me all	real values	provided	i
	(A) a> (C) a	> b> c > c > b		(B) a< (D) b :				
11.	(A) at	$2bx + c = 0$ and $x^2 + 2a$ least one has real root th have imaginary root	S	(B) bot	h have	quation then real roots e has imagin	ary root.	
12.	If the r (A) < (C) > 0), lies between	1 and 2 (B) = 0 (D) car)	9a² + 6ab + 4	1ac is	

13.	equal to	one of the root is square of the other, then p is
	(A) $\frac{1}{3}$	(B) 1
	(C) 3	(D) $\frac{2}{3}$
14.	If the equation $ax^2 - bx + 5 = 0$ doesn't hat of $a + b$ is	ve two distinct real roots then the minimum value
	(A) -5 (C) 0	(B) 5 (D) none of these
15.	If $a > 1$, roots of the equation $(1 - a)x^2 + 3ax$ (A) one positive (C) both positive	x – 1 = 0, are (B) both negative (D) both complex roots
16.	If $f(x) = ax^2 + bx + c$, $g(x) = -ax^2 + bx + c$ (A) at least three real roots (B) at least two real roots	where $ac \neq 0$ then $f(x)$. $g(x) = 0$ has (B) no real roots (D) exactly two real roots
17.	The number of real solutions of the equation (A) 1 (C) 3	$3^{x} + x^{2} = 5$ is (B) 2 (D) 0
18.	The number of real solutions of the equation	$ \operatorname{on}\left(\frac{9}{10}\right)^{x} = -3 + x - x^{2} \text{ is} $
	(A) 0 (C) 2	(B) 1 (D) none of these
19.	The equation $\sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x+1}}$	
	(A) no solution(C) only two solutions	(B) only one solution(D) more than two solutions
20.	Let $a > 0$, $b > 0$, $c > 0$. Then both the roots of (A) are real and negative (C) are rational numbers	of the equation ax ² +bx+c=0 (B) have negative real parts (D) none of these
21.	x^4 - $4x$ - $1 = 0$ has (A) exactly one positive real root (C) exactly two real roots	(B) exactly one negative real root (D) All the above.
22.	Let a, b, c be non-zero real numbers, suc	
		$(x^2 + bx + c)dx$. Then the quadratic equation
	$ax^2 +bx+c =0$ has (A) no root in (0, 2) (C) two roots in (0, 2)	(B) at least one root in (1, 2)(D) two imaginary roots.
23.	If the two roots of the equation (λ -1) (x^2 distinct, then λ lies in the interval $\lambda < -2$,	$(+ x + 1)^2 - (\lambda + 1) (x^4 + x^2 + 1) = 0$ are real and $\lambda > 2$.

13.

ANSWERS

LE

.EVEL -I							
1. 5. 9. 13. 17. 21. 25. 29. 33. 37. 41. 45. 49. 53. 57. 61. 65. 69. 73. 77. 81. 85. 89. 93.	BBADBCCACBCBCDBADACACABB1	2. 6. 10. 14. 18. 22. 26. 30. 34. 38. 42. 46. 50. 54. 58. 62. 66. 70. 74. 78. 82. 87. 90. 94. 98.	A C A D D A B B C B B C B B A B D A B B D D D A 3	3. 7. 11. 15. 19. 23. 27. 31. 35. 39. 47. 51. 55. 59. 63. 67. 71. 75. 79. 83. 88. 91. 95.	DCACADABBCAABOABDCACCBABO	4. 8. 12. 16. 20. 24. 28. 32. 36. 40. 44. 48. 52. 56. 60. 64. 68. 72. 76. 80. 84.	CBBAAADABDACCBCBAAABB BDB
.EVEL -II							
1. 5. 9. 13. 17. 21.	C B B D (-2, ∞) A B	2. 6. 10. 14. 18. 22.	A B A D A C B	3. 7. 11. 15. 19. 23.	A C B A A, C D	4. 8. 12. 16. 20. 24.	D A A D B

LE

1.	С	2.	Α	3.	Α	4.	D
5.	В	6.	В	7.	С	8.	D
9.	В	10.	Α	11.	В	12.	Α
13.	D	14.	D	15.	Α	16.	Α
17.	(−2, ∞)	18.	Α	19.	A, C	20.	D
21.	À	22.	С	23.	D	24.	В
25.	В	26.	В	27.	С	28.	В
29.	В	30.	В	31.	С	32.	В
33.	С	34.	В	35.	D	36.	D
37.	Α	38.	С	39.	Α	40.	В
41.	(−3, −2]∪(−	-1, 2]		42.	С	43.	D
44.	С	45.	D	46.	D	47.	D
48.	С	49.	В	50.	D	51.	С
52.	Α	53.	D	54.	Α	55.	Α
55.	В	57.	В	58.	С	59.	С
60.	D	61.	D	62.	В	63.	С
64.	D	65.	D	66.	С	67.	Α
68.	Α	69.	Α	70.	Α	71.	Α
72.	C	73.	D	74	0	75	С

LEVEL -III

1.	В	2.	В	3.	С	4.	B, C
5.	В	6.	Α	7.	-1/2	8.	С

9. 13. 17. 21. 23. A 10. C 14. A 18. D 22. λ ∈ (-∞, -2) ∪ (2, ∞)11. A 15. C 19. D 12. 16. 20. A C B С A A B