Inhaltsverzeichnis

	e Zamen
$1.1 \ 7$	ahlenmengen
	Definition Abzählbarkeit
	Anordnung von Körpern
$1.2 \ 1$	igenschaften der reellen Zahlen
	Beschränktheit
	genschaften der reellen Zahlen
	$\mathbb R$ ist archimedisch
	Die rationalen Zahlen liegen dicht in $\mathbb R$
1.3	Tichtige Ungleichungen
	Dreiecksungleichung
	Cauchy-Schwarz Ungleichung
2. Folg	
2.0]	efinition
	Rechenregeln Grenzwerte:
2.1]	onvergenz
	Definition Konvergenz
	Definition Divergenz
	Asymptotische Äquivalenz
	Beschränktheit
	Einschließungsregel
2.2]	onotone Folgen
	Definition
	Hilfreiche Formeln
3. Reil	en .
	efinition
0.1	Definition
	Hilfreiche Reihen
3 2 1	onvergenzkriterien
J	Notwendige Bedingung
	Majorantenkriterium
	Minorantenkriterium
	Quotientenkriterium
	Leibnitz Kriterium (Alternierende Reihen)
3.3 1	echenregeln Reihen
3.3	Addition von Reihen
	Umordnungssatz
	Multiplikation von Reihen
3.4	genschaften der Exponentialfunktion
	•
4. Stet	
4.1	efinition
	Definition Stetigkeit
	Beispiel Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$
	Konvergenz von Folgen in \mathbb{R}^d

	Stetigkeit der Exponentialfunktion in \mathbb{C}											Ĝ
	Komposition stetiger Funktionen											9
4.2^{-7}	Zwischenwertsatz											10

1. Reelle Zahlen

1.1 Zahlenmengen

Definition Abzählbarkeit

A ist abzählbar, wenn es eine surjektive Abbildung von \mathbb{N} auf A gibt. $(f:\mathbb{N}\to A)$

- Mit anderen Worten: A kann durchnummeriert werden
- Beispiele:
 - $\mathbb Q$ ist abzählbar (Alle Brüche können "schlangenartig" durchnummeriert werden, siehe Diagonalargument)
 - $-\mathbb{R}$ ist nicht abzählbar (Widerspruchsbeweis)

Anordnung von Körpern

Der Körper \mathbb{R} ist angeordnet da:

- 1. $\forall a \in \mathbb{R}$ gilt entweder:
 - a = 0 oder
 - a > 0 oder
 - *a* < 0
- 2. $\forall a, b \in \mathbb{R} \text{ mit } a, b > 0 \text{ gilt:}$
 - a+b>0 und
 - $a \cdot b > 0$

Der Körper $\mathbb C$ kann nicht angeordnet werden da:

- Angenommen: Sei $a \in \mathbb{C}$ und $a \neq 0$ dann muss entweder:
 - -a > 0, und laut definition von Anordnung auch $a \cdot a > 0$ oder
 - -a > 0, und somit auch $(-a) \cdot (-a) = a^2 > 0$
- Somit gilt in jedem Fall $a^2 > 0$
 - Sei a = i dann gilt $a^2 = -1$
 - Das ist ein Widerspruch

1.2 Eigenschaften der reellen Zahlen

Beschränktheit

Eine Menge $M \subseteq \mathbb{R}$ ist nach oben beschränkt, falls sein $s_0 \in \mathbb{R}$ existiert, sodass $\forall s \in M$ gilt: $s \leq s_0$

- Die Zahl s_0 heißt obere Schranke von M

Supremumsaxiom in den reellen Zahlen

Jede nichtleere, nach oben beschränkte Menge von $\mathbb R$ hat eine kleinste obere Schranke, diese heißt sup $M\in\mathbb R$

Jede nichtleere, nach unten beschränkte Menge von $\mathbb R$ hat eine größte untere Schranke, diese heißt inf $M \in \mathbb R$

Falls das Supremum oder das Infimum einer Menge M auch selbst in M liegt, dann wird es auch als Maximum bzw. Minimum von M bezeichnet

- Konventionen:
 - $-\sup M = \infty$ falls M nicht nach oben beschränkt ist
 - $-\inf M = -\infty$ falls Mnicht nach unten beschränkt ist
 - $-\sup\emptyset = -\infty$

\mathbb{R} ist archimedisch

 $\forall a \in \mathbb{R}$ existiert $n \in \mathbb{N}$ mit a < n

Die rationalen Zahlen liegen dicht in \mathbb{R}

 $\forall a, b \in \mathbb{R} \text{ mit } a < b \text{ existiert } r \in \mathbb{N} \text{ mit } a < r < b$

1.3 Wichtige Ungleichungen

Dreiecksungleichung

 $\forall x, y \in \mathbb{R} \text{ gilt:}$

- $\begin{array}{ll} \bullet & |x+y| \leq |x| + |y| \\ \bullet & |x+y| \geq ||x| |y|| \end{array}$

Cauchy-Schwarz Ungleichung

 $\forall x, y \in \mathbb{R} \text{ gilt:}$

- $|\langle x, y \rangle| \le ||x|| \cdot ||y||$
- "Der Betrag vom Skalarprodukt ist kleiner oder gleich dem Produkt der Beträge der Vektoren"

2. Folgen

2.0 Definition

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist eine Abbildung $\mathbb{N}\to\mathbb{R}$ mit $n\mapsto a_n$

Rechenregeln Grenzwerte:

Falls $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ dann gilt:

- $\lim_{n\to\infty} (a_n + b_n) = a + b$
- $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- $\lim_{n\to\infty} (c \cdot a_n) = c \cdot a$ $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$ falls $b \neq 0$

2.1 Konvergenz

Definition Konvergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert nach $a\in\mathbb{C}$ falls:

•
$$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 |a_n - a| < \varepsilon$$

Kurzschreibweisen:

- $\lim_{\substack{n \to \infty \\ n \to \infty}} a_n = a$ $a_n \stackrel{n \to \infty}{\longrightarrow} a$

Definition Divergenz

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert falls:

•
$$\forall a \in \mathbb{R} \exists \varepsilon > 0 \forall n_0 \in \mathbb{N} \exists n > n_0 |a_n - a| \ge \varepsilon$$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen ∞ / konvergiert uneigentlich falls:

•
$$\forall K > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 a_n \ge K$$

Eine Folge $(a_n)_{n\in\mathbb{N}}$ divergiert gegen $-\infty$ / konvergiert uneigentlich falls:

•
$$\forall K > 0 \exists n_0 \in \mathbb{N} \forall n \ge n_0 a_n \le -K$$

Asymptotische Äquivalenz

Falls $a_n \xrightarrow{n \to \infty} a$ und $b_n \xrightarrow{n \to \infty} b$ mit $a, b \neq 0$ dann gilt:

•
$$a_n \simeq b_n$$
 falls $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$ bzw. $\lim_{n\to\infty} \frac{b_n}{a_n} = 1$

Außerdem: Falls $a_n \simeq b_n$ dann gilt:

- Es sind entweder beide Folgen konvergent oder beide divergent
- $\lim_{n\to\infty} (b_n a_n) = 0$ gilt nur für konvergente, asymptotisch gleiche Folgen.

Beschränktheit

Eine Folge $(a_n)_{n\in\mathbb{N}}$ ist beschränkt falls $\exists K\in\mathbb{R}\forall n\in\mathbb{N}|a_n|\leq K$

• Insbesondere ist eine Folge beschränkt falls sie konvergiert

Einschließungsregel

Falls $a_n \leq b_n \leq c_n$ für alle bis auf endlich viele n dann gilt:

• Falls $a \in \mathbb{R}$ mit $\lim_{n \to \infty} a_n = a = \lim_{n \to \infty} c_n$ dann gilt $\lim_{n \to \infty} b_n = a$

2.2 Monotone Folgen

Definition

Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend falls $a_n \leq a_{n+1}$ für alle $n \in \mathbb{N}$ Eine folge $(a_n)_{n\in\mathbb{N}}$ ist monoton fallend falls $a_n \geq a_{n+1}$ für alle $n \in \mathbb{N}$

- Zusammenhang mit Supremum und Infimum
 - Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton wachsende Folge ist dann gilt:

 $* \lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$

– Falls $(a_n)_{n\in\mathbb{N}}$ eine monoton fallende Folge ist dann gilt:

 $* \lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$

Hilfreiche Formeln

Bernoulli-Ungleichung

•
$$(1+x)^n \ge 1 + nx$$
 für $x > -1$ und $n \in \mathbb{N}$

${\bf Binomial koeffizient en}$

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Endliche Geometrische Summe

•
$$\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$$

3. Reihen

3.1 Definition

Definition

Eine Reihe $(s_n)_{n\in\mathbb{N}}$ ist eine Reihe für die Folge $(a_n)_{n\in\mathbb{N}}$ mit

- $s_n = \sum_{k=0}^n a_k$ Hierbei ist s_n die n-te Partialsumme der Reihe.

Falls s_n konvergiert, dann heißt die Reihe konvergent. Der Grenzwert heißt dann der Wert der Reihe.

Falls die Reihe der Absolutbeträge einer Folge konvergiert, dann heißt die ursprüngliche Reihe absolut konvergent

Hilfreiche Reihen

Harmonische Reihe

- $s_n = \sum_{k=1}^n \frac{1}{k}$ s_n divergiert nach ∞

Geometrische Reihe

- $s_n=\sum_{k=0}^n q^k$ s_n divergiert nach ∞ falls $|q|\geq 1$ und konvergiert nach $\frac{1}{1-q}$ falls |q|<1

Teleskopreihe

- $s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} \frac{1}{k+1})$ s_n konvergiert gegen 1

3.2 Konvergenzkriterien

Notwendige Bedingung

Damit s_n konvergieren kann muss $\lim_{n\to\infty} a_n = 0$ gelten.

Majorantenkriterium

Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und $\lim_{n \to \infty} b_n = b$, dann ist a_n konvergent.

Beispiel:

- $s_n = \sum_{k=1}^n \frac{k}{k^3+k}$ $a_k = \frac{k}{k^3+k} \le \frac{k}{k^3} = \frac{1}{k^2}$ Da $\sum_{k=1}^n \frac{1}{k^2}$ konvergiert, ist auch s_n konvergent.

Minorantenkriterium

Falls $|a_n| \leq b_n$ für alle $n \in \mathbb{N}$, und a_n divergiert, dann ist auch b_n divergent.

Beispiel:

- $s_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ $a_k = \frac{1}{\sqrt{k}} \ge \frac{1}{k}$
- Da $\sum_{k=1}^{n} \frac{1}{k}$ divergiert, ist auch s_n divergent.

Quotientenkriterium

Sei $q = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$.

- Falls q < 1, dann ist konvergiert die Summe $\sum_{n=1}^{\infty} a_n$.
- Für q > 1 divergiert diese.
- Ansonsten ist keine Aussage möglich.

Beispiel:

- $s_n = \sum_{k=1}^n \frac{1}{n!}$
- $q=\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|=\lim_{n\to\infty}|\frac{\frac{1}{(n+1)!}}{\frac{1}{n!}}|=\lim_{n\to\infty}\frac{1}{n+1}=0$ Da q<1, ist s_n konvergent.

Leibnitz Kriterium (Alternierende Reihen)

Sei $(a_n)_{n\in\mathbb{N}_{\neq}}$ monoton fallend mit $\lim_{n\to\infty}a_n=0$

• Dann konvergiert die alternierende Reihe $s = \sum_{k=0}^{\infty} (-1)^k a_k$

Beispiel:

- $s_n = \sum_{k=0}^n (-1)^k \frac{1}{2^k}$ Da $a_k = \frac{1}{2^k}$ monoton fallend ist, und gegen 0 konvergiert, ist s_n konvergent.

3.3 Rechenregeln Reihen

Addition von Reihen

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergente Reihen. Dann konvergiert auch die Summe der Reihen mit: $\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} b_k$.

Umordnungssatz

$$\sum_{k=1}^{\infty} a_k$$
 konvergiert absolut $\iff \sum_{k=1}^{\infty} a_{\sigma(k)} = \sum_{k=1}^{\infty} a_k$

Jede Umordnung von Reihenelementen muss gegen denselben Grenzwert konvergieren.

Multiplikation von Reihen

Sind $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ absolut konvergent, dann ist auch $\sum_{k=0}^{\infty} c_k$ mit $c_k = \sum_{l=0}^{\infty} a_l b_{k-l}$ (Cauchy-Produkt) absolut konvergent.

3.4 Eigenschaften der Exponentialfunktion

$$\exp(z) = \sum_{k=1}^{\infty} \frac{z^k}{k!}$$

- $\exp(w+z) = \exp(w) + \exp(z)$
- $\exp(0) = 1 \ \forall z \in \mathbb{C}$ $\exp(-z) = \frac{1}{\exp(z)} \ \forall z \in \mathbb{C}$
- $\exp(x) > 0 \ \forall x \in \mathbb{R}$
- $\exp: \mathbb{R} \to \mathbb{R}$ ist streng monoton wachsend
- $|\exp(z)| \le \exp(|z|) \ \forall z \in \mathbb{C}$

4. Stetigkeit

4.1 Definition

Definition Stetigkeit

Eine Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}^q$ mit Definitionsbereich \mathbb{D} ist stetig im Punkt x falls:

• Für alle Folgen $(x_n)_{n\in\mathbb{N}}$ in \mathbb{D} mit $\lim_{n\to\infty}x_n=x$ gilt:

$$-\lim_{n\to\infty} f(x_n) = f(x)$$

• Man schreibt auch:

$$-\lim_{x\to x_0} f(x) = f(x_0)$$

Ist eine Funktion in allen Punkten $x \in \mathbb{D}$ stetig, nennt man sie auch stetig.

Beispiel Stetigkeit einer Funktion $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}$

Um die Stetigkeit einer Funktion $f: \mathbb{D} \subset \mathbb{R}^d \to \mathbb{R}$ zu prüfen zeige, dass:

•
$$\lim_{x\to x_0} |f(x) - f(x_0)| = 0$$

Beispiel: f(x) = |x|

•
$$|f(x) - f(x_0)| = ||x| - |x_0|| \le |x_n - x_0|$$

- Für $x_n \to x_0$ gilt $|x_n - x_0| \to 0$
- $\Longrightarrow f$ ist stetig

Konvergenz von Folgen in \mathbb{R}^d

Eine Folge $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R}^d konvergiert gegen einen Punkt $x\in\mathbb{R}^d$, falls alle Komponten der Folge gegen die entsprechenden Komponenten von x konvergieren.

Beispiel:

- $x_n = (1 + \frac{1}{n}, \frac{1}{n^2})$
- Die Folge konvergiert gegen den Punkt (1,0) da die Komponenten gegen 1 bzw. 0 konvergieren

Stetigkeit der Exponentialfunktion in \mathbb{C}

Die Exponentialfunktion e^x ist in \mathbb{C} stetig.

Komposition stetiger Funktionen

Seien $f: \mathbb{D} \subseteq \mathbb{R}^d \to \mathbb{R}^q$ und $g: \mathbb{R}^q \to \mathbb{R}^{\times}$ stetige Funktionen. Dann ist auch $g \circ f$ stetig.

Beispiele für stetige Funktionen:

- f(x) = c
- f(x) = x
- f(x,y) = x + y
- $f(x,y) = x \cdot y$
- $f(x,y) = \frac{x}{y}$ mit $\mathbb{D} = \mathbb{R} \times (\mathbb{R} \setminus \{0\})$

Damit sind auch Summen und Produkte stetiger Funktionen stetig.

- Somit sind insbesondere auch Polynome stetig Rationalen Funktionen mit $f(z)=\frac{p(z)}{q(z)}$ mit p und q Polynomen sind auf ihrem Definitionsbereich stetig

4.2 Zwischenwertsatz