Data Preprocessing

CSC 535/635

Data Representation

Features (aka attributes)

Samples

	Sex	Race	Height	Income	Marital Status	Years of Educ.	Liberal- ness
R1001	M	1	70	50	1	12	1.73
R1002	M	2	72	100	2	20	4.53
R1003	F	1	55	250	1	16	2.99
R1004	M	2	65	20	2	16	1.13
R1005	F	1	60	10	3	12	3.81
R1006	M	1	68	30	1	9	4.76
R1007	F	5	66	25	2	21	2.01
R1008	F	4	61	43	1	18	1.27
R1009	M	1	69	67	1	12	3.25

Types of Variables/Attributes/Data

- Two most common types are:
- Numeric
 - real-value variables or integers variables
 - Ex: age, speed, or length
 - values of a numeric attribute have two important properties:
 - an order relation (2 < 5 and 5 < 7)
 - a distance relation (d [2.3,4.2] = 1.9)
- Categorical
 - have neither order nor distance relation
 - Ex: eye color, gender, or country of citizenship
 - only support an equality relation (Blue = Blue, or Brown ≠ Black)

Types of Variables - Another classification

Continuous variables

- aka quantitative or metric variables
- values are measured using either an interval scale or a ratio scale

Discrete variables

- aka qualitative variables
- values are measured using one of two kinds of nonmetric scales — nominal or ordinal

Interval Scaled vs. Ratio Scaled Variables

Interval Scale

- The ratio relation does not hold true
- The 0 point is placed arbitrarily, and thus it does not indicate the absence of value
- Ex: temperature F/C
 - 0 F does not mean absence of temperature.
 - 80 F ≠ twice 40 F

Ratio Scale

- The ratio relation holds true
- Ratio scale has an absolute 0 point
- Ex: height, length, salary
 - 6 feet = twice 3 feet

Nominal Scaled vs. Ordinal Scaled Variables

Nominal Scale

- Order-less scale
- May use different symbols, characters, or numbers to represent the different states/values of the variable
- Ex: color, gender, id, customer_type

Ordinal Scale

- Values have an order relation but not a distance relation
- Ex: student_class, military rank, grade

Encoding Numerical Data as Ordinal

- An ordinal variable can be used to encode a numeric variable with a smaller set of values
- Ex: age (with values young, middle aged, and old)
- Ex: income (with values low, middle-class, upper-middle-class, and rich)
- Ex: height (with values short, medium, tall)

Binary Variables

- Has one of two states: 0, 1
- Examples: smoker, owns-house
- Can be considered a special case of nominal variables

Why Data Preprocessing?

- Data in the real world is dirty
 - incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., occupation=""
 - noisy: containing errors or outliers
 - e.g., Salary="-10"
 - inconsistent: containing discrepancies in codes or names
 - e.g., Age="42" Birthday="03/07/1997"
 - e.g., Was rating "1,2,3", now rating "A, B, C"
 - e.g., discrepancy between duplicate records

Why is Data Preprocessing Important?

- No quality data, no quality mining results!
- Minimize GIGO (Garbage In Garbage Out)
- Data preparation, cleaning, and transformation comprises the majority of the work in a data mining application

Measures for Data Quality

- Accuracy
- Completeness: not recorded, unavailable
- Consistency: some modified but some not
- Timeliness: timely updates
- Believability
- Interpretability

Major Tasks in Data Preprocessing

Data cleaning

 Fill in missing values, smooth noisy data, identify or remove outliers and noisy data, and resolve inconsistencies

Data integration

Integration of multiple databases, or files

Data transformation

Normalization and aggregation

Data reduction

 Obtains reduced representation in volume but produces the same or similar analytical results

Data discretization

Data Cleaning

- Importance
 - "Data cleaning is the number one problem in data warehousing"
- Data cleaning tasks
 - Fill in missing values
 - Identify outliers and smooth out noisy data
 - Correct inconsistent data
 - Resolve redundancy caused by data integration

Missing Data

Name	Age	Sex	Income	Class
Mike	40	Male	150k	Big spender
Jenny	20	Female	?	Regular

- Missing data may be due to
 - equipment malfunction
 - inconsistent with other recorded data and thus deleted
 - data not entered due to misunderstanding
 - certain data may not be considered important at the time of entry
- Missing data may need to be inferred

How to Handle Missing Data?

- Ignore the tuple
- Fill in missing values manually: tedious & infeasible
- Fill in it automatically with
 - a global constant : e.g., "unknown"
 - may confuse DM algorithm
 - the attribute mean or median
 - the attribute mean for all samples belonging to the same class
 - the most probable value: using inference-based tools such as
 Bayesian formula or decision tree induction

Measuring the Central Tendency

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Mean:
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Weighted arithmetic mean: $\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$

Trimmed mean: chopping extreme values

Median:

- Middle value if odd number of values, or average of the middle two values otherwise
- Mode
 - Value that occurs most frequently in the data
 - Unimodal, bimodal, trimodal, multimodal
 - Empirical formula: $mean - mode \approx 3 \times (mean - median)$

Symmetric vs. Skewed Data

 Median, mean and mode of symmetric, positively and negatively skewed data

Noisy Data

- Noise: random error or variance in a measured variable
- Incorrect attribute values may due to
 - faulty data collection instruments
 - data entry problems
 - data transmission problems
 - etc
- Other data problems which requires data cleaning
 - duplicate records, incomplete data, inconsistent data

How to Handle Noisy Data?

- Binning method
 - first sort data and partition into (equal-depth) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Clustering
 - detect and remove outliers

How to Handle Noisy Data? (cont.)

- Regression
 - smooth by fitting the data into regression functions

- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
- Partition into (equal-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
- Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29
- Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Outlier Removal

- Data points inconsistent with the majority of data
- Different outliers
 - Valid: CEO's salary,
 - Noisy: One's age = 200, widely deviated points
- Removal methods
 - Clustering
 - Curve-fitting

Data Integration

- Data integration:
 - combines data from multiple sources
- Schema integration
 - integrate metadata from different sources
- Detecting and resolving data value conflicts
 - for the same real world entity, attribute values from different sources can be different, e.g., different scales, metric vs. British units
- Removing duplicates and redundant data

Data Transformation

- Transforming the data into a form appropriate for mining.
- Methods:
 - Smoothing: remove noise from data
 - Aggregation: summarization
 - Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
 - Attribute/feature construction
 - New attributes constructed from the given ones

Data Transformation: Normalization

- Given numeric attribute A with values v₁, v₂, ..., v_N
- min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

z-score normalization

$$v' = \frac{v - mean_A}{stand_dev_A}$$

decimal scaling normalization

$$v' = \frac{v}{10^j}$$
 Where j is the number of digits in the data value with the largest absolute value

Min-Max Normalization – Example

- Let income range from \$12,000 and \$98,000.
- Normalize to the range [0.0, 1.0].
- Using min-max normalization, an income value of \$73,600 is transformed to

$$\frac{73,600 - 12,000}{98,000 - 12,000} (1.0 - 0.0) = 0.716$$

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

Z-Score Normalization – Example

- Given mean = \$54,000 and standard deviation = \$16,000
- Using z-score normalization, an income value of \$73,600 is transformed to

$$\frac{73,600 - 54,000}{16,000} = 1.225$$

$$v' = \frac{v - mean_A}{stand_dev_A}$$

Decimal Scaling Normalization – Example

- Suppose values of A range from -4986 to 7845
- To normalize by decimal scaling, divide by _____
- -4986 normalizes to -0.4986
- 7845 normalizes to 0.7845

$$v' = \frac{v}{10^j}$$
 Where j is the number of digits in the data value with the largest absolute value

Variation of Z-Score Normalization

• Z-score normalization
$$v' = \frac{v - mean_A}{stand_dev_A}$$

- stand_dev = $\sqrt{\frac{\sum (x_i \bar{x})^2}{N}}$
- stand dev is sensitive to outliers
- A variation of z-score normalization that is more robust to outliers replaces $(x_i - \bar{x})^2$ by $|x_i - \bar{x}|$
- Mean absolute deviation

$$M.A.D. = \frac{\sum_{i=1}^{n} \left| x_i - \overline{x} \right|}{n}$$

Z-score using MAD

$$v' = \frac{v - mean_A}{M.A.D.}$$

Data Reduction

- Data may be too big to work with
- Data reduction
 - Obtain a reduced representation of the data set that is smaller in volume but yet produce the same (or almost the same) analytical results
- Data reduction strategies
 - Dimensionality reduction: e.g., remove unimportant attributes
 - Reducing the number of attribute values
 - Reducing the number of tuples

Dimensionality Reduction

- Feature selection (i.e., attribute subset selection)
 - Select a minimum set of attributes (features) that is sufficient for the data mining task
- Heuristic methods (due to exponential # of choices)
 - step-wise forward selection
 - step-wise backward elimination
 - combining forward selection and backward elimination

Dimensionality Reduction

- Other techniques include
- Principle component analysis
- Wavelet transforms

Reducing the Number of Attribute Values

- Some algorithms such as decision trees compare different attribute's values
- Approaches
 - Binning: replace with bin means, medians, boundaries
 - Discretization: discretize a numeric attribute (income) into a small number of intervals, then map each interval to a discrete symbol (low, middle-income, high)

Reducing The Number of Tuples – Sampling

- Sampling: obtaining a small sample s to represent the whole dataset N
- Simple random sampling may have poor performance if the dataset is skewed
- Choose a representative subset of the data
 - Stratified sampling: approximate the percentage of each class (or subpopulation of interest) in the overall database
 - Used in conjunction with skewed data

Stratified Sampling

Raw Data

Stratified Sample

Sampling: with or without Replacement

Discretization

- Three types of attributes:
 - Nominal values from an unordered set
 - Ordinal values from an ordered set
 - Continuous real numbers
- Discretization:
 - discretize the range of a continuous attribute
- Some techniques:
 - Binning methods
 - Clustering-based methods
 - Entropy-based methods (Decision Trees)
 - Histogram analysis

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A graphical method
 - Consists of a set of rectangles that reflect the counts or frequencies of the classes present in the given data

Discretization and Concept Hierarchies

Discretization

- Reduce the number of values for a given continuous attribute by dividing the range of the attribute into intervals.
- Interval labels can then be used to replace actual data values

Concept hierarchies

- Reduce the data by collecting and replacing low level concepts (numeric values for age) by higher level concepts (such as young, middle-aged, or senior)
- Things can be done at different levels
- Concept hierarchies for **nominal attributes**, where attributes such as street can be generalized to higher-level concepts, like city, state, or country

Concept Hierarchy

Concept hierarchy for attribute price

Concept Hierarchy

Concept hierarchy for attribute street

Summary

- Data preparation is a big issue for data mining
- Data preparation includes
 - Data cleaning and data integration
 - Data reduction and feature selection
 - Discretization
- Many methods have been proposed but still an active area of research

Measuring the Dispersion of Data

- Variance, standard deviation, range, quartiles, interquartile range, the fivenumber summary, and boxplots
- They can be used to find outliers
- Variance and std. dev. indicate how spread out a data distribution is
 - low σ means the data tend to be close to the mean
 - large σ indicates that the data are spread out
- Variance and standard deviation (sample: s, population: σ)
 - Variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right]$$

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

- Standard deviation s (or σ) is the square root of variance s^2 (or σ^2)
- Remember: Mean (sample: \bar{x} , population: μ) $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $\mu = \frac{\sum x_i}{N}$

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ –σ to μ +σ: contains about 68% of the measurements (μ : mean, σ : standard deviation)
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it

Measuring the Dispersion of Data (cont.)

- Let x_1, x_2, \ldots, x_N be the values of a numeric attribute, X.
- range(X) = max min
- Assume that the values of X are sorted in increasing order
- The kth q-quantile is the value x s.t. at most k/q of the data values are less than x and at most (q-k)/q of the data values are more than x
- Quantiles are values in X that allow us to break the data distribution into equal-size consecutive sets
- When we break X into 4 equal parts, the quantiles are called quartiles
- When we break X into 100 equal parts, the quantiles are called percentiles

Measuring the Dispersion of Data (cont.)

- Quartiles:
 - Q₁ (25th percentile)
 - Q2 (50th percentile) = median
 - Q₃ (75th percentile)
- Inter-quartile range: $IQR = Q_3 - Q_1$
- Five number summary: min, Q_1 , M, Q_3 , max
- Outlier: usually, a value higher/lower than 1.5 x IQR above/below Q_3/Q_1

Boxplots

- A way of visualizing a distribution
- Shows five-number summary: min, Q1, M, Q3, max
- Boxplot:
 - Data is represented with a box
 - The ends of the box are at the first and third quartiles -- the height of the box is IQR
 - The median is marked by a line within the box
 - Whiskers: two lines outside the box extend to Minimum and Maximum

Boxplots (cont.)

- Outlier: usually, a value higher/lower than 1.5 x IQR
- Whiskers extend to extreme lows only if less/higher than 1.5 x IQR Q₁/Q₃
- Otherwise, terminate at terminate at 1.5 x IQR beyond Q₁/Q₃
- Remaining points are plotted individually

Boxplots of Symmetric & Skewed Data

Scatter plots

- Provides a first look at bivariate data to see clusters of points, outliers, ... etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

