SR02: TD 10

TD Exercices sur une séance de 2h

Objectifs

- Analyser les situations d'inter-blocage de processus

Exercice 1. (Diagnostic)

Soit un système qui ne contient qu'une seule ressource de chaque type. L'état du système est comme suivi :

- Le processus A détient la ressource R et veut la ressource S.
- Le processus B ne détient aucune ressource mais veut la ressource T.
- Le processus C ne détient aucune ressource mais veut la ressource S.
- Le processus D détient la ressource U et veut les ressources S et T
- Le processus E détient la ressource T et veut la ressource V.
- Le processus F détient la ressource W et veut la ressource S.
- Le processus G détient la ressource V et veut la ressource U.
- Ce système est-il en situation d'interblocage?

Exercice 2. (Inter-blocage)

L'état d'un système est représenté par le graphe suivant :

Demande de ressources

- Donner la représentation par matrice
- Y a t-il interblocage?

Exercice 3. (Algorithme du banquier)

Soit un système dont l'état est représenté comme suit :

ALLOCATION						N	IAX		DISPONIBLE				
	R ₀	R1	R2	R3		R ₀	R1	R2	R3	R0	R1	R2	R3
P ₀	0	0	1	2	P ₀	0	0	1	2	1	5	2	0
P1	1	0	0	0	P1	1	7	5	0				
P2	1	3	5	4	P2	2	3	5	6				
P3	0	6	3	2	P3	0	6	5	2				
P4	0	0	1	4	P4	1	6	5	6				

Matrice d'allocation

- Donner la représentation par graphe
- Si le processus P1 fait la demande (0, 4, 2, 0), le système qui utilise l'algorithme du banquier lui attribuera-t-il la ressource ?
- Après P1, P4 fait la demande (1, 0, 0, 0). Peut-on satisfaire immédiatement cette demande ?

Exercice 4. (Graphe d'attente)

L'état des allocations de ressources d'un système est donné par la représentation suivante :

ALLOCATION					DEMANDE					DISPONIBLE			
	RO	R1	R2	R3		R0	R1	R2	R3	R0	R1	R2	R3
P0	1	0	0	0	P ₀	0	0	1	0	0	0	0	0
P1	0	0	0	0	P1	1	1	1	0				
P2	0	0	1	1	P2	0	1	0	0				
P3	0	0	0	0	P3	0	1	0	1				
P4	0	1	0	0	P4	0	0	0	1				

Matrice d'allocation et de demande

- Représenter le graphe d'allocation.
- Représenter le graphe des attentes