CSI 3202 Micro-Computer Graphics Viewing & Projections

Presenter: Girendra Persaud University of Guyana

Outline

- Objects & Viewers
- Light & Objects
- Imaging Models
- What is Projection?
- Planar Geometric Projections
 - Non-planar geometric projections
- Parallel Projection
 - Orthographic Projection
 - Multi-view Orthographic Projection
 - Oblique Projection
- Perspective Projection
 - One point perspective
 - Two-point perspective
- Questions?
- Review Questions
 - Resources

Objects & Viewers

- How an object looks depends on the position/location of the viewer. – True? Or False?
- Image Formation Process depends on the object & viewer and the spatial relationship between the two.

Light & Objects

- Image Formation also depend on light sources (presence of light).
- Light also influence the object's color and casts shadows.

FIGURE 1.17 Scene with a single point light source.

Imaging Models

Ray Tracing (Photon Mapping) -generally light travels in straight lines

FIGURE 1.18 Ray interactions. Ray A enters camera directly. Ray B goes off to infinity. Ray C is reflected by a mirror. Ray D goes through a transparent sphere.

Imaging Systems

▶ The Pinhole Camera

FIGURE 1.19 Pinhole camera.

Pinhole Camera

Synthetic-Camera Model

FIGURE 1.24 Equivalent views of image formation. (a) Image formed on the back of the camera. (b) Image plane moved in front of the camera.

Projection Plane

FIGURE 1.25 Imaging with the synthetic camera.

Projection Plane with Clipping

FIGURE 1.26 Clipping. (a) Window in initial position. (b) Window shifted.

Viewing

FIGURE 4.3 Classical views.

What is projection?

Specifying the projection transformation is like choosing a lens for a camera

what the field of view

what the field of view

viewing volume is

and therefore what objects are inside it

and to some extent how they look

• 3D projection is any method of mapping three-dimensional points to a two-dimensional plane*

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
 - converge at a center of projection (COP)
 - are parallel (DOP)
- Such (COP) projections preserve lines
 - but not necessarily angles
- Non-planar projections
 - needed for applications such as map construction

Planar Projections

- Parallel Projection
 - Orthographic Projection
 - Multi-view Orthographic Projection
 - Oblique Projection
- Perspective Projection
 - One point perspective
 - Two-point perspective

FIGURE 4.4 Orthographic projections.

Orthographic Projection

Projectors are orthogonal to projection

plane

Orthographic Projection

Formula:

- If the normal of the viewing plane (the camera direction) is parallel to one of the 3D axes,
- 3D point a_x , a_y , a_z onto the 2D point b_x , b_y using an orthographic projection parallel to the y axis (profile view), the following equations can be used:
 - $b_x = s_x a_x + c_x$
 - $b_v = s_z a_z + c_z$
- where the vector s is an arbitrary scale factor, and c is an arbitrary offset. These constants are optional, and can be used to properly align the viewport

Orthographic Projection

- glOrtho(left, right, bottom, top, near, far);
- gluOrtho2D(left, right, bottom, top);

Pros and Cons – Orthographic Projection

- Preserves both distances and angles
 - Shapes preserved
 - Can be used for measurements
 - Building plans
 - Manuals
- Cannot see what object really looks like because many surfaces hidden from view
 - Often we add the isometric

Oblique Projection

Arbitrary relationship between projectors and projection plane

$$^{\circ} x'' = x + \cos \alpha \cdot y;$$

•
$$y'' = z + \sin \alpha \cdot y$$
.

- OpenGL no support
 - To implement oblique projections, we must first apply a shear transformation on the object(s) and then apply orthographic projection

Pros and Cons - Oblique Projection

- Can pick the angles to emphasize a particular face
 - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side
- In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Perspective Projection

- Perspective projections create more realistic looking scenes
 - as an object gets farther from the viewer it will appear smaller on the screen
 - the viewing volume for a perspective projection is a frustum, which looks like a pyramid with the top cut off, with the narrow end toward the user

Perspective Viewing

FIGURE 4.9 Perspective viewing.

Perspective Views

FIGURE 4.10 Classical perspective views. (a) Three-point. (b) Two-point. (c) One-point.

Viewing Transformations

FIGURE 4.11 Viewing transformations.

Perspective Projection

 See calculations on Chapter 4 of text "Interactive Computer Graphics 6th Edition"
(p. 226 – ...)

- OpenGL Command:
 - glFrustum(left, right, bottom, top, near, far);
 - gluPerspective(fov, aspect, near, far);

Pros & Cons – Perspective Projection

Pros

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer
 - Looks realistic

Cons

- Equal distances along a line are not projected into equal distances
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not by computing)

Review

- Objects & Viewers
- Light & Objects
- Imaging Models
- What is Projection?
- Planar Geometric Projections
 - Non-planar geometric projections
- Parallel Projection
 - Orthographic Projection
 - Multi-view Orthographic Projection
 - Oblique Projection
- Perspective Projection
 - One point perspective
 - Two-point perspective

Questions?

Review Question

Study the diagram

- What projection is represented on the right?
 - When it might be appropriate to use this?

Resources

- Interactive computer graphics: a top down approach with OpenGL / Edward Angel. ISBN: 0-201-38597-X
- http://www.songho.ca/opengl/gl_projection matrix.html
- http://en.wikipedia.org/wiki/3D_projection