Ledern Homework 24

sum in the parentheses:

η,		n2	n3	E (kni
l .	1	1	1	1.361
1	١	1	2	1.472
3	١	١	3	1.583
4	١	2	١	1.611
5	1	1	4	1.494
6_	١	2	2.	1.722
7	1	1	5	1.804
8	١	2	3	1.833
9	١	3, 3,	2	1.861
10	+	1	1	1,917
٠١	١	2	4	1.944
				·

where N, 13 th x-dir nz y-dir nz z-dir

there are no vepcates (in the first ii), so there we no degenerate every y tereds.

we cannot use $n^2 = n_1^2 + n_2^2 + n_3^2$ because we assumes a choe, we're
use a vectorylar prism with noniduntical edges, so we have to wake
it fit the new boundary caditions

b) Now for some derivations of a new equation.

$$(x,y,t) = \begin{cases} A Sin(k_1 x) Sin(k_2 y) Sin(k_3 t) & \text{in box } \\ O & \text{out box} \end{cases}$$

$$= \begin{cases} A Sin(\frac{n_1 \pi}{L} x) Sin(\frac{n_2 \pi}{2L} y) Sin(\frac{n_3 \pi}{3L} t) \\ O & \text{out box} \end{cases}$$

Quick math detour,

Since we constructed boundary anditions to be zero at sn, Irall Integers

this setup the bonds are 0 to En Sin 20 do = = = (n L)

$$| = \int |\psi|^2 dv = \int |A|^2 \sin^2(\frac{n_1 \pi}{L} x) \sin^2(\frac{n_2 \pi}{2L} y) \sin^2(\frac{n_3 \pi}{3L} y) dv$$

$$= |A|^2 \left(\frac{1}{2} n_1 \frac{L}{2}\right) \left(\frac{1}{2} n_2 \frac{2L}{2}\right) \left(\frac{1}{2} n_3 \left(\frac{3L}{2}\right)\right)$$

$$= |A|^2 \left(\frac{3}{32} L^3\right) \left(n_1 n_2 n_3\right)$$

$$A = \sqrt{\frac{32}{3(3n_1n_2n_3)}} 4/3L^3$$

I Will call it sultisfactory to say

$$\forall (x,y,z) = \begin{cases} \sqrt{\frac{32}{3C^2n_1n_2n_3}} \end{cases}$$

 $\psi(x,y,z) = \begin{cases} \sqrt{\frac{32}{32n_1n_2n_3}} & S \ln(\frac{n_1\pi}{2}x) S \ln(\frac{n_2\pi}{22}y) S \ln(\frac{n_3\pi}{32}z) & \text{in box} \end{cases}$ out of box.

		Q.	or the	~ (f'mest	five every levels uses		
		101	nz	n3				
	1.	١	١	1		We assumed a		
	7.	1	١	2		tra intro		
	3.	١	١	3		立(r,t)= Y(r)eint N		
	۲.)	2	1		this will require a		
	5.	١	١	4		this will require a graph, but 191		
42 6.3			Y					

We assumed a seperator equation, so

 $\Psi(\vec{r},t) = \Psi(r)e^{i\omega t}$ What is ω ?

this will require a complex plot to graph, but I \$\P\2 looks just like |412, just constart in time.

+4
$$\nabla^2 \Psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \Psi \right)$$

$$\nabla^{2} \Psi = \frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \frac{d}{dr} \Psi \right) + \frac{1}{r^{2} \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \Psi \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{d^{2}}{d\theta^{2}}$$

$$= \frac{1}{r^{2}} \frac{d}{dr} \left(r^{2} \left(\frac{1}{r^{2}} e^{-r/2} \cos \theta - \frac{1}{r^{2} \sin \theta} \frac{d}{d\theta} \right) \sin \theta \left(-\sin \theta \right) \frac{r}{a} e^{-r/2}$$

$$= \frac{1}{r^{2}} \frac{d}{dr} \left(\frac{r^{2}}{a} e^{-r/2} \cos \theta - \frac{1}{r^{2} \sin \theta} \frac{d}{d\theta} \sin \theta \right) \sin \theta \left(-\sin \theta \right) \frac{r}{a} e^{-r/2}$$

$$= \frac{1}{r^{2}} \frac{d}{dr} \left(\frac{r^{2}}{a} e^{-r/2} \cos \theta - \frac{1}{r^{2} \sin \theta} \frac{d}{d\theta} \sin \theta \right) \sin \theta \left(-\sin \theta \right) \frac{r}{a} e^{-r/2}$$

$$= \frac{1}{r^{2}} \frac{d}{dr} \left(\frac{r^{2}}{a} e^{-r/2a} - \frac{r^{3}}{2u^{2}} e^{-r/2a} \right) (650 + \frac{1}{r^{2} sing} \frac{d}{ds} sing(-sing) \frac{1}{a} e^{-r/2a}$$

$$= \frac{1}{r^{2}} \left(\frac{2r}{a} e^{-r/2a} - \frac{r^{3}}{r^{2}} e^{-r/2a} \right) (650 + \frac{1}{r^{2} sing} \frac{d}{ds} sing(-sing) \frac{1}{a} e^{-r/2a}$$

$$= \frac{1}{r^{2}} \left(\frac{2r}{a} e^{-r/2a} - \frac{r^{3}}{r^{2}} e^{-r/2a} \right) (650 + \frac{1}{r^{2} sing} \frac{d}{ds} sing(-sing) \frac{1}{a} e^{-r/2a}$$

$$= \frac{1}{r^{2}} \left(\frac{2r}{a} e^{-r/2a} - \frac{r^{3}}{r^{2}} e^{-r/2a} \right) (650 + \frac{1}{r^{2} sing} \frac{d}{ds} sing(-sing) \frac{1}{a} e^{-r/2a}$$

$$= \frac{1}{r^{2}} \left(\frac{2r}{a} e^{-r/2a} - \frac{r^{2}}{2a^{2}} e^{-r/2a} - \frac{3r^{2}}{2a^{2}} e^{-r/2a} + \frac{r^{3}}{4a^{3}} e^{-r/2a} \right) \cos \theta - \frac{2}{r} \cos \theta = \frac{r}{a} e^{-r/2a}$$

$$= \left[\frac{z}{ar} - \frac{z}{2a^{2}} - \frac{3}{2a^{2}} + \frac{r}{4a^{3}} \right] e^{-r/2a} \cos \theta - \frac{z}{r^{2}} \cos \theta = \frac{r}{r^{2}} \cos \theta =$$

=
$$\left[\frac{r}{4a^{2}} - \frac{2}{a^{2}}\right]e^{-r/2a}$$
 (OSO = $\left[\frac{1}{4a^{2}} - \frac{2}{ar}\right]\frac{r}{a}e^{-r/2a}$ (OSO = $\left[\frac{1}{4a^{2}} - \frac{2}{ar}\right]\frac{\psi}{A}$ we left with the A since it is a constant

$$-\frac{t^2}{2m}\left[\frac{1}{4\kappa^2}-\frac{2}{\omega r}\right]\psi + \mu\psi = E\psi$$

$$-\frac{t^2}{2m}\left[\frac{1}{4\alpha^2}-\frac{2}{\alpha r}\right]-\frac{ke^2}{r}=E$$

$$-\frac{t^2}{2m}\left[\frac{1}{4a^2}-\frac{2}{\frac{(4\pi 6a^2)}{me^2}}\right]^2-\frac{e^2}{4\pi 6a^2}=E$$

$$-\frac{h^{2}}{2m}\frac{1}{4a^{2}}+\frac{2h^{2}me^{2}}{(2m)(u\pi6h^{2})r}-\frac{e^{2}}{u\pi6r}=E$$

$$-\frac{t^{2}}{2m}\frac{1}{4a^{2}}+\frac{e^{2}}{4m\epsilon_{0}}-\frac{e^{2}}{4m\epsilon_{0}}=\bar{c}$$

$$-\frac{t}{2m}\frac{1}{4a^{2}}=\bar{c}$$

it will be halpful to remember

a. = 418 th2

k = Tunes

trabbing the derived point (A) above, the explicit 50 hotem looks like

$$\begin{bmatrix} -\frac{tr^2}{8ma^2} + \frac{c^2}{4me_0r} \end{bmatrix} \psi = (\cancel{B} - \cancel{U}) \psi$$

$$\begin{bmatrix} -\frac{tr^2}{8ma^2} + \frac{c^2}{4me_0r} \end{bmatrix} \psi = (\cancel{E} + \frac{c^2}{4me_0r}) \psi$$

b) Now for this bugger... Hey, it's good for you.

$$= -\frac{\Gamma}{a}e^{-r/a} - 4\Gamma^{3}e^{-r/a} - 12r^{2}ae^{-r/a} - 24ra^{3} - 24a^{3}e^{-r/a}$$

$$= -\frac{\Gamma^{4}}{a}e^{-r/a} - 4r^{3}e^{-r/a} - 12r^{2}ae^{-r/a} - 24ra^{3} - 24a^{3}e^{-r/a}$$

Using L'hopitals to figure out limit at 00

(Y

 $| = |A|^{2} \left(\frac{2}{3}\right) (2\pi) (0 + 24a^{3})$ $| = |A|^{2} \left(32\pi a^{3}\right)$ $| = \sqrt{\frac{1}{32\pi a^{3}}}$ Units