We examine the free group via the set that it's defined over. In the language of categories \mathscr{F}^A is the free category of A, where the objects are like : $A \to G$, and the morphisms are group homomorphisms σ like

$$A \xrightarrow{j_1} G$$

$$\downarrow^{j_2} \downarrow^{\sigma}$$

$$H$$

Now we define

Definition 0.1. F(A) is an initial object in \mathscr{F}^A .

Claim. The maps $\{a\} \rightarrow \langle a \rangle$ are initial in the category.

This defined F(A) up to isomorphism, but why do they exist? In particular, define the resolution of the first cancelation relation among the words by $r:W(A)\to W(A)$, and define moreover $R:W(A)\to W(A)$ by $w\longmapsto Rr^{\lfloor n/2\rfloor}(w)$. Then $F(A)=(R(W(A)),\cdot)$, where \cdot denotes concatonation.

Fact. This is a group, and this is easy to check for yourself.