Towards Bringing Together Numerical Methods for Technology Partial Differential Equation and Deep Neural Networks

Progress Update, Supervisor - Markus Hoffmann Stanislav Arnaudov | September 26, 2019

CHAIR FOR COMPUTER ARCHITECTURE AND PARALLEL PROCESSING

Basic idea: Perform numerical simulation with ML-models

Basic idea: Perform numerical simulation with ML-models

Concrete problem: Flow around an object according to the Navier-Stokes equations.

Figure: Simulation Setup

Evaluation

200

3/34

Basic idea: Perform numerical simulation with ML-models

Solutions of the simulation can be represented as images.

Figure: Simulation Image

Basic idea: Perform numerical simulation with ML-models

Our ML-models primarily use images as input and output.

Several cases to investigate

- Constant model
- Fluid speed model
- Fluid viscosity and density model
- Object in space model

Use of numerical solver for real simulation data generation.

September 26, 2019

Data

Description

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
 - inflow speed
 - fluid viscosity
 - fluid density

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynold's number in the range of [90, 350]

Data

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynold's number in the range of [90, 350]

Figure: Karman vortex street

Data

- Use of numerical solver for real simulation data generation.
- The simulation has several adjustable parameters
- Reynold's Number in the range of [90, 350]
- Choosing appropriate color space : Grayscale or RGB

900

■ Two types of architectures based on our preliminary research:

Description

Models

- Two types of architectures based on our preliminary research:
 - ResNet

- Two types of architectures based on our preliminary research:
 - UNet

Description

- Two types of architectures based on our preliminary research:
 - UNet turned out to perform better.

Description

Models

000000000

- Two types of architectures based on our preliminary research:
- Data being used by the network.

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - Usage of pressure field

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - lacktriangle Usage of pressure field o the pressure field turned out to be useful

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - Processing of real values

- Two types of architectures based on our preliminary research:
- Data being used by the network.
 - lacktriangle Processing of real values o extra image channel filled with the value

Description

Two views of the results

Image processing

Numerical Simulation

Two views of the results

Image processing

Numerical Simulation

- Perceived qualities of the <u>image</u> results
- Metrics:
 - Peak signal-to-noise ratio -PSNR
 - Correlation

Stanislav Arnaudov - Progress Update

Two views of the results

Image processing

- Perceived qualities of the <u>image</u> results
- Metrics:
 - Peak signal-to-noise ratio -PSNR
 - Correlation

Numerical Simulation

- Real differences between the predicted and the actual values
- Metrics:
 - Average percentage difference
 - Max percentage difference

Evaluation cases

Two evaluation cases

Individual Images

Recursive Application

Evaluation cases

Two evaluation cases

Individual Images

Recursive Application

Individual Images Cor. and PSNR:

Data

Description

Individual Images Prediction image:

Description

Individual Images Timestep image:

Description

Individual Images Numerical view:

Data

Description

Recursive application – constant model

Description

Models 00000000 Evaluation 000000 Results ○○○○●○ September 26, 2019

31/34

990

Recursive application - constant model

Thank you for your attention.

Stanislav Arnaudov – Progress Update

Description

Models 00000000 Evaluation 000000

Results 00000 September 26, 2019 End ●○ 33/34

Questions?

Stanislav Arnaudov – Progress Update

Description

Models 000000000 Evaluation 000000

Results
00000
September 26, 2019

34/34