VM Placement & Migration

Gabriel Scalosub

Borrowed extensively from:

Itai Segall, Danny Raz

and various other papers/resources (see list at the end)

Outline

- Introduction
 - Datacenters, VM requirements and infrastructure characteristics
- VM placement
 - (Multidimensional) bin packing
 - Networking aware
- VM migration

Schematic Cloud Infrastructure

Schematic Datacenter Network

Core layer

Aggregation layer

Top-of-Rack (ToR)

Rack

Datacenters Topologies

- "Fat-trees" are ubiquitous
- Main objective:
 - Maximize potential of concurrent connections
 - Resilience
- Intra-rack vs. Inter-rack

Locality	y All			
Rack	12.9			
Cluster	57.5			
DC	11.9			
Inter-DC	17.7			
Percentage				

Al-Fares et al., "A Scalable, Commodity Data Center Network Architecture", SIGCOMM 2008

Roy et al., "Inside the Social Network's (Datacenter) Network", SIGCOMM 2015

Placement at a High Level

- Tenants have demands for resources
- Placement: decide how to allocate physical resources to tenants
 - Where to run VMs?
 - How to split network bandwidth?
 - How much resources to allocate to each VM?
- Virtual datacenter embedding (VDC)

Topology & Infrastructure vs. Placement

- Classic topology & Infrastructure:
 - Hardware based
 - Application agnostic
 - Single DC
 - Goal: Make resources "uniform"
 - Any selection equally good, single continuous pool of resources

- Placement and resource allocation
 - Software based
 - (Re-)configurable and application-aware
 - Also multiple DCs
 - Goal: Manage resources
 - Potentially heterogeneous
 - In recent years also for networks (SDN)

VM Requirements

- CPU
 - #cores ≤ #vCPUs
 - vCPU:core ratio (oversubscription)
 - Should be small for CPU-intensive workloads
 - cache
- Memory
 - Major effect on performance
- Acceleration
 - E.g., GPU, TPU
 - For accelerating workloads
 - ML, video processing, big-data analytics

- Storage
 - Directly attached / network
- Network
 - VLAN
 - Bandwidth
 - Latency
- Specific HW architecture
 - E.g., x86, ARM

Workload Requirements

- Virtual network
 - Bandwidth
 - Latency
 - East-West vs. North-South
- Customer policies
 - E.g., VM must be located in US-located DC
- (Dis)affinity
 - E.g., Isolation: both VMs cannot be on same physical host
 - Security, fault-tolerance

Consulting firms and systems integrators

Technology firm and ISVs

's providers

Brooks, "An Introduction to AWS GovCloud (US)", 2016

Spectre

Virtual Network Functions (VNFs)

- Beyond "simple" VM placement
- Simple VNF
 - Single location, "in isolation"
 - E.g., choosing where to place an IDS

Virtual Network Functions (VNFs)

- Beyond "simple" VM placement
- Simple VNF
 - Single location, "in isolation"
 - E.g., choosing where to place an IDS
- VNF chaining
 - Logical traffic steering
 - Implemented by actual placement
 - And forwarding rules... (SDN)

Concretization of abstract Network Function Virtualization (NFV)

• ≠ SDN

Infrastructure Characteristics

https://aws.amazon.com/ec2/instance-types/ https://www.ec2instances.info/

- E.g., Amazon's EC2
- Non uniform instances
 - Bare-metal
 - HW, virtual resources, pricing...
- Multiple locations

Region & Number of Availability Zones

Zones	
US East	China
N. Virginia (6),	Beijing (2),
Ohio (3)	Ningxia (3)
US West	Europe
N. California (3),	Frankfurt (3),
Oregon (3)	Ireland (3),
Asia Pacific Mumbai (2),	London (3), Paris (3)
Seoul (2),	South America
Singapore (3),	São Paulo (3)
Sydney (3), Tokyo (4),	AWS GovCloud (US- West) (3)

Instance Family	Current Generation Instance Types					
General purpose	t2.nano t2.micro t2.small t2.medium t2.large t2.xlarge t2.2xlarge m4.large m4.xlarge m4.2xlarge m4.4xlarge m4.10xlarge m4.16xlarge m5.large m5.xlarge m5.2xlarge m5.4xlarge m5.12xlarge m5.24xlarge					
Compute optimized	c4.large c4.xlarge c4.2xlarge c4.4xlarge c4.8xlarge c5.large c5.xlarge c5.2xlarge c5.4xlarge c5.9xlarge c5.18xlarge					
Memory optimized	r4.large r4.xlarge r4.2xlarge r4.4xlarge r4.8xlarge r4.16xlarge x1.16xlarge x1.32xlarge x1e.xlarge x1e.2xlarge x1e.4xlarge x1e.8xlarge x1e.16xlarge x1e.32xlarge					
Storage optimized	d2.xlarge d2.2xlarge d2.4xlarge d2.8xlarge h1.2xlarge h1.4xlarge h1.8xlarge h1.16xlarge i3.1arge i3.2xlarge i3.4xlarge i3.8xlarge i3.16xlarge					
	f1.2xlarge f1.16xlarge g3.4xlarge g3.8xlarge g3.16xlarge p2.xlarge p2.8xlarge p2.16xlarge p3.2xlarge p3.8xlarge p3.16xlarge					

Amazon EC2	Overview	Features	Pricing Instanc	e Types	FAQs Get	ting Started Resources	. •	
General Purp	nose		Model	vCPU*	Mem (GiB)	Storage (GiB)	Dedicated EBS Bandwidth (Mbps)	Network Performance (Gbps)
		c5.large	2	4	EBS-Only	Up to 3,500	Up to 10	
Compute Op			c5.xlarge	4	8	EBS-Only	Up to 3,500	Up to 10
Memory Opt	ptimized	c5.2xlarge	8	16	EBS-Only	Up to 3,500	Up to 10	
Accelerated	Computing		c5.4xlarge	16	32	EBS-Only	3,500	Up to 10
Storage Opti	imized		c5.9xlarge	36	72	EBS-Only	7,000	10
Instance Fea	tures		c5.18xlarge	72	144	EBS-Only	14,000	25
Measuring Ir	Measuring Instance Performance	c5d.large	2	4	1 x 50 NVMe SSD	Up to 3,500	Up to 10	
_			c5d.xlarge	4	8	1 x 100 NVMe SSD	Up to 3,500	Up to 10
		c5d.2xlarge	8	16	1 x 200 NVMe SSD	Up to 3,500	Up to 10	
		c5d.4xlarge	16	32	1 x 400 NVMe SSD	3,500	Up to 10	
			c5d.9xlarge	36	72	1 x 900 NVMe SSD	7,000	10
			c5d.18xlarge	72	144	2 x 900 NVMe SSD	14,000	25

Outline

- Introduction
 - Datacenters, VM requirements and infrastructure characteristics
- VM placement
 - (Multidimensional) bin packing
 - Networking aware
- VM migration

- Problem definition
 - Input: n items with sizes $a_1, ..., a_n, \forall a_i \in [0,1]$
 - Goal: pack items in minimum number of unit-size bins

- Problem definition
 - Input: n items with sizes $a_1, ..., a_n$, $\forall a_i \in [0,1]$
 - Goal: pack items in minimum number of unit-size bins

- Problem definition
 - Input: n items with sizes $a_1, ..., a_n$, $\forall a_i \in [0,1]$
 - Goal: pack items in minimum number of unit-size bins

- First-fit algorithm
 - First bin in which the item fits (order of opening bins)

- First-fit algorithm
 - First bin in which the item fits (order of opening bins)

- Theorem: First-fit (FF) algorithm is a 2-approximation
 - Number of bins used ≤ 2 · minimum number of bins required (OPT)

• Proof:

- Assume FF uses m bins
- At least m-1 bins are at least half-full
 - 2 bins less than half full -> FF would have put the items together in first bin
- Load of any solution (also OPT) = $\sum_i a_i > \frac{m-1}{2}$
- OPT $> \frac{m-1}{2}$
 - OPT = Number of bins used by OPT
- $2 \cdot \mathsf{OPT} > m-1$
- $m \leq 2 \cdot \mathsf{OPT}$
 - *m* and OPT are integers

- Theorem: No algorithm for BP can have approximation strictly less than 3/2
 - Note: If A $<\frac{3}{2}$ OPT then $\frac{2}{3}$ A < OPT
- Proof:
 - The partition / subset-sum problem:
 - Given positive numbers a_1, \ldots, a_n , can they be partitioned into two sets of equal sum
 - WLOG, $\sum_i a_i = 2$
 - Sum of items in each set is exactly $(\sum_i a_i)/2 = 1$
 - If such an algorithm A exists, it can be used to solve the partition problem:
 - Run A on input to partition
 - If it ends up using 2 bins: Items can be partitioned
 - If it ends up using at least 3 bins: BP-OPT must use *strictly more* than $2/3 \cdot 3 = 2$ bins
 - BP-OPT ≥ 3
 - Items cannot be partitioned
 - The partition problem is NP-complete, so cannot be done unless P=NP

- Better approximation guarantees for "large" instances / special cases
 - Asymptotic PTAS (close to OPT as OPT becomes larger)
 - Hardness essentially for "small" instances...
- Online
 - First-Fit (order of opening), Best-Fit (minimum residual space), Worst-Fit (waterlevel)
 - Next-Fit (only current bin is an option, no going-back to skipped bins)
 - Memory efficiency vs. performance
 - Bin partitioning by size
 - E.g., Harmonic: maintain separate bins for items of sizes $\in \left(\frac{1}{k+1}, \frac{1}{k}\right)$
- Offline: heuristics and tighter analysis
 - E.g., ordering items in decreasing order before assignment
 - First-Fit-Decreasing (FFD) / Best-Fit-Decreasing (BFD)

If Only Life Could Be That Simple

- Bin packing: Single concern
- Real life: Multiple concerns!!
 - Height/width/length
 - Geometric bin packing
 - CPU, memory, storage, networking
 - Vector bin packing

Fig. 1. Two rectangles of size $\frac{3}{5} \times \frac{2}{5}$ and $\frac{4}{5} \times \frac{1}{5}$ can be packed into one unit square bin. However, vectors $(\frac{3}{5}, \frac{2}{5})$ and $(\frac{4}{5}, \frac{1}{5})$ cannot be packed into (1, 1) vector bin.

Multidimensional Bin Packing (Vectors)

- Problem definition
 - Input: n items represented by vectors a_1, \dots, a_n , $\forall a_i \in [0,1]^d$
 - a_{ij} is item i's size in its j-th dimension
 - Goal: pack items in minimum number of unit-vector bins

Multidimensional Bin Packing (Vectors)

- Hard to approximate better than $d^{1-\epsilon}$
 - Reduction from graph coloring
 - Focus on constant d
- $O(\log d)$ -approximation algorithms (for constant d)
 - (multiple) LP-based, using rounding
 - Partitioning items by sizes
 - Matching
 - Resource augmentation

Multidimensional Bin Packing (Vectors)

- Heuristics
 - Reduction to "standard" (1D) bin packing
 - Applying FFD-like approaches
- Focus on sub-objectives
 - Maximize revenue
 - Minimize energy-consumption
 - Minimize customer rejection-rate
 - Minimize latency
 - Ensure service robustness
 - ...
- Which should we pick??

Panigrahy et al., "Heuristics for Vector Bin Packing", 2011 Pires and Barán, "Virtual Machine Placement Literature Review", 2015

Placement Goes Beyond Just Bin Packing

- Multidimensional bin packing
 - Allocates resources locally
- But,
 - Indifferent to network traffic requirements
 - E.g., East-West traffic load due to placement
 - VM density on host affects resources multiplexing
 - Memory mapping, CPU sharing (scheduling)
 - VM performance depends on other co-located VMs' performance
 - Customer workload dynamics
 - Greedy (present only) vs. proactive allocation (potentially wasteful)
 - Migration?
 - Not without cost...

Should look familiar....

Makespan

• Input: n items with sizes $s_i \in \mathbb{R}^+$ and m machines

- Goal: distribute items across machines while minimizing maximum machine load
- Models:
 - Minimizing oversubscription, validating SLA-conformance

Knapsack

- Input: n items with sizes $s_i \in \mathbb{R}^+$ and profits $p_i \in \mathbb{R}^+$, knapsack size B
- Goal: Pick subset of items with overall size at most B, and maximum overall profit
- Variants:
 - Multiple knapsacks, multidimensional knapsack, offline/online
- Models:
 - Maximize utilization of available resources

Vazirani, Approximation algorithms, Springer, 2001

Should also look familiar....

Vazirani, Approximation algorithms, Springer, 2001

- Facility location
 - Input:
 - n potential facility locations with opening costs $f_i \in \mathbb{R}^+$, and
 - m demand locations with connection cost $c_{ij} \in \mathbb{R}^+$ between demand j and facility location i
 - Goal: Decide which facility locations to open
 - Minimize: overall opening costs + overall connection costs of demands to their closest open facility

Vazirani, Approximation algorithms, Springer, 2001

- Facility location
 - Input:
 - n potential facility locations with opening costs $f_i \in \mathbb{R}^+$, and
 - m demand locations with connection cost $c_{ij} \in \mathbb{R}^+$ between demand j and facility location i
 - Goal: Decide which facility locations to open
 - Minimize: overall opening costs + overall connection costs of demands to their closest open facility
 - Example 1:

opening single location i, opening cost f_i

large connection costs!!

Vazirani, Approximation algorithms, Springer, 2001

- Facility location
 - Input:
 - n potential facility locations with opening costs $f_i \in \mathbb{R}^+$, and
 - m demand locations with connection cost $c_{ij} \in \mathbb{R}^+$ between demand j and facility location i
 - Goal: Decide which facility locations to open
 - Minimize: overall opening costs + overall connection costs of demands to their closest open facility
 - Example 2:

opening multiple locations i, opening cost f_i

larger opening costs but much smaller connection costs!!

Vazirani, Approximation algorithms, Springer, 2001

- Facility location
 - Input:
 - n potential facility locations with opening costs $f_i \in \mathbb{R}^+$, and
 - m demand locations with connection cost $c_{ij} \in \mathbb{R}^+$ between demand j and facility location i
 - Goal: Decide which facility locations to open
 - Minimize: overall opening costs + overall connection costs of demands to their closest open facility
 - Variants:
 - Capacitated (each facility has capacity)
 - Models:
 - Networking performance + placement cost

Placement in Real Life

- E.g., OpenStack
 - Open source suite for managing clouds and VMs
 - Filter for subset of hosts based on (dis)affinity
 - Minimum requirements, isolation
 - Optimizes for utilized memory percentage
 - Place where function is maximized: stack VMs
 - À la Best-Fit
 - Place where function is minimized: spread VMs
 - À la Worst-Fit (waterlevel)
 - More on this later in the course

Networking-aware Placement

- Incorporate traffic/network requirements in problem formulation
 - "Simple": Mixed integer linear program (MILP)
 - Linear constraints and objective
 - Some variables are constrained to be integers (usually {0,1})
 - "Harder": Mixed integer quadratic programs
 - These are all HARD!
 - Applicable to relatively small instances
 - Heuristics may be (and are) applied

Meng et al., "Improving the scalability of data-center networks with traffic aware virtual machine placement", INFOCOM 2010

- Server physical "slots" $s_1, ..., s_n$
 - Split among various physical servers
 - Alternatively, servers on racks $R_1, R_2, ...$
- VMs v_1, \ldots, v_n
- Placement:
 - Permutation π : $\{1, ..., n\} \mapsto \{1, ..., n\}$
 - VM j is placed in slot $\pi(j)$
 - Permutation ≡ matching

Meng et al., "Improving the scalability of data-center networks with traffic aware virtual machine placement", INFOCOM 2010

- All VMs have identical local resource requirements
 - For simplicity, no additional constraints
- VM pairs consume different BW:
 - D_{ij} = traffic rate from v_i to v_j
 - location agnostic, depends on application
- Different location-pairs incur different cost:
 - C_{ij} = cost per traffic unit from s_i to s_j
 - application agnostic, depends on slots location
 - E.g., intra-rack cost is 0, inter-rack cost is 1
- Goal: find permutation (matching) minimizing

Meng et al., "Improving the scalability of data-center networks with traffic aware virtual machine placement", INFOCOM 2010

• Goal: find permutation (matching) minimizing (change of auxiliary variables)

$$\sum_{i,i'} D_{ii'} C_{\pi(i)\pi(i')}$$

- Quadratic Programming:
 - $x_{ij} \in \{0,1\}$ represents whether VM v_i is in slot s_i
 - Objective is now

$$\sum_{i,i',j,j'} D_{ii'} C_{jj'} x_{ij} x_{i'j'}$$

- Feasibility constraints (matching)
 - $\forall j, \sum_i x_{ij} = 1$ (exactly one VM per slot)
 - $\forall i, \sum_i x_{ij} = 1$ (exactly one slot per VM)

Meng et al., "Improving the scalability of data-center networks with traffic aware virtual machine placement", INFOCOM 2010

- Algorithm outline
 - Inequality-based intuition
 - If $0 \le a_1 \le \cdots \le a_n$ and $0 \le b_1 \le \cdots \le b_n$, then for any permutation π

$$\sum_{i=1}^{n} a_i b_{n-i+1} \le \sum_{i=1}^{n} a_i b_{\pi(i)} \le \sum_{i=1}^{n} a_i b_i$$

- Meaning: map high-rate VM pairs to low-latency server pairs
- Divide-and-conquer
 - Partition slots and VMs into equal-size clusters
 - Minimize weight of inter-cluster edges
 - Map VM clusters to slot clusters (bijection)
 - For each pair of clusters, solve problem on sub-instance

Outline

- Introduction
 - Datacenters, VM requirements and infrastructure characteristics
- VM placement
 - (Multidimensional) bin packing
 - Networking aware
- VM migration

VM Migration

• Standard placement workflow:

- VM migration workflow and considerations:
 - Time until migration is complete
 - And induced performance degradation whilst
 - Robustness of new configuration
 - Avoid frequent re-configurations / oscillation

VM Migration

- VM migration is much cheaper than physical migration
 - Copy snapshot of VM to new machine; Restart
 - Make-before-break
 - Shutdown old location once new location is ready
 - Plan for short downtime (sub-seconds)
 - Longer downtime might be unacceptable for the application
 - Even cheaper for containers...
- Careful:
 - Need to migrate network as well (virtual network configuration throughout)
 - Move/clone switches
 - Update forwarding tables

(Partial) Bibliography

- Vazirani, Approximation algorithms, Springer, 2001
- Christensen et al., "Approximation and online algorithms for multidimensional bin packing: A survey", Comp. Sci. Rev. 24:63-79, 2017
- Bansal et al. "Improved Approximation for Vector Bin Packing", SODA 2016
- Panigrahy et al., "Heuristics for Vector Bin Packing", 2011
- Jennings and Stadler, "Resource Management in Clouds: Survey and Research Challenges", J. Network Syst. Manage. 23(3): 567-619, 2015
- Usmani and Singh, "A Survey of Virtual Machine Placement Techniques in a Cloud Data Center", Proc. Comp. Sci. 78:491-498, 2016
- Pires and Barán, "Virtual Machine Placement Literature Review", 2015
- Li and Qian, "A survey of network function placement", CCNC 2016
- Meng et al., "Improving the scalability of data-center networks with traffic aware virtual machine placement", INFOCOM 2010
- Ghorbani et al., "Transparent, Live Migration of a Software-Defined Network", SOCC 2014