DB: Datenbanken

Normalformen

Prof. Dr. Ludger Martin

Gliederung

- Einführung
- * Funktionale Abhängigkeiten
- Erste Normalform
- Zweite Normalform
- Dritte Normalform
- * Weitere Normalformen

Einführung

- Sechs Normalformen für relationale Datenbanken
- * U.a. von Edgar Frank Codd entwickelt
- Regeln zur Zuordnung von Attributen zu Relationen
- ★ Ziel:

Konsistenzerhöhung durch Redundanzvermeidung

★ Wir behandeln hier 1., 2. und 3. NF

Einführung

Beispiel: Artikellieferung

ArtNr	Bezeichnung	Beschreibung	LiefNr	Name	Ort	PLZ	Menge	Einzelpreis
300	LG 24MB56HQ-B	Monitor	L1	Schulze	Mainz	55116	100	159,00
300	LG 24MB56HQ-B	Monitor	L2	Koch	Wiesbaden	65195	120	149,00
500	LogiLink CHB1102	HDMI Kabel	L1; L2	Schulze;	Mainz;	55116;	70;	12,99;
				Koch	Wiesbaden	65195	40	12,49
600	Dell PowerEdge T20	PC	L1	Schulze	Mainz	55116	100	350,00

Es wird davon ausgegangen, dass die 5-stelligen PLZ eindeutig sind!

Funktionale Abhängigkeiten

Regel:

★ Eine funktionale Abhängigkeit im Bezug auf zwei Attributmengen X und Y einer Relation liegt dann vor, wenn der Attributwert von X den Attributwert von Y festlegt. Y ist funktional abhängig von X: X → Y. (Y muss atomar sein!)

Beispiel:

```
* ArtNr → { Bezeichnung, Beschreibung }

* LiefNr → { Name, Ort, PLZ }

* ArtNr → { Einzelpreis, Menge }

* { ArtNr, LiefNr } → { Einzelpreis, Menge }

* PLZ → Ort
```

Funktionale Abhängigkeiten

Regel:

* Eine funktionale Abhängigkeit $\{X_1, X_2\} \rightarrow Y$ wird als volle funktionale Abhängigkeit bezeichnet, wenn Y nicht von X_1 oder X_2 abhängig ist.

* Beispiel:

```
★ ArtNr → { Bezeichnung, Beschreibung }
★ { ArtNr, LiefNr } → { Einzelpreis, Menge }
```

- $\star LiefNr \rightarrow \{ Name, Ort, PLZ \} \sqrt{}$
- *{ ArtNr, LiefNr} :> Bezeichnung
- $\star PLZ \rightarrow Ort$

nicht zusammengesetzt

Es gilt:

 $ArtNr \rightarrow Bezeichnung_{\square}$

Funktionale Abhängigkeiten

Regel:

* Ein Attribut X ist ein Superschlüssel, wenn X voll funktional abhängig ist.
Eine minimale Teilmenge der Superschlüssel, die die Werte der Attribute vollständig bestimmen, heißen Schlüsselkandidaten.
Ein Attribut X heißt Nicht-Schlüsselattribut, wenn es in keinem Schlüsselkandidaten enthalten ist.

Beispiel:

- ★ Superschlüssel: ArtNr, LiefNr, PLZ
- ★ Schlüsselkandidaten: ArtNr, LiefNr
- ★ Nicht-Schlüsselattribut: Bezeichnung, Beschreibung, Name, Ort, PLZ, Einzelpreis, Menge

Erste Normalform

Regel:

* Eine Relation befindet sich in erster Normalform (1NF), wenn sie ausschließlich atomare Attribute enthält.

→ Zusammengesetzte und mehrwertige Spalten müssen entfernt werden

Erste Normalform

LiefNr, Name, Ort, PLZ, Menge und Einzelpreis waren nicht **atomar**

ArtNr	Bezeichnung	Beschreibung	LiefNr	Name	Ort	PLZ	Menge	Einzelpreis
300	LG 24MB56HQ-B	Monitor	L1	Schulze	Mainz	55116	100	159,00
300	LG 24MB56HQ-B	Monitor	L2	Koch	Wiesbaden	65195	120	149,00
500	LogiLink CHB1102	HDMI Kabel	L1	Schulze	Mainz	55116	70	12,99
500	LogiLink CHB1102	HDMI Kabel	L2	Koch	Wiesbaden	65195	40	12,49
600	Dell PowerEdge T20	PC	L1	Schulze	Mainz	55116	100	350,00

Schlüssel zusammengesetzt aus ArtNr und LiefNr

Zweite Normalform

Regeln:

- * Eine Relation ist in der zweiten Normalform (2NF), wenn die 1NF vorliegt und wenn jedes Nicht-Schlüsselattribut von einem Schlüsselkandidaten voll funktional abhängig ist.
- → Nicht-Schlüsselattribut: Bezeichnung, Beschreibung, Name, Ort, PLZ, Einzelpreis, Menge
- → Volle funktionale Abhängigkeiten:

```
★ ArtNr → { Bezeichnung, Beschreibung }
★ LiefNr → { Name, Ort, PLZ }
★ { ArtNr, LiefNr } → { Einzelpreis, Menge }
★ PLZ → Ort
```

Zweite Normalform

<u>ArtNr</u>	Bezeichnung	Beschreibung
300	LG 24MB56HQ-B	Monitor
500	LogiLink CHB1102	HDMI Kabel
600	Dell PowerEdge T20	PC

<u>LiefNr</u>	Name	Ort	PLZ
L1	Schulze	Mainz	55116
L2	Koch	Wiesbaden	65195

<u>ArtNr</u>	<u>LiefNr</u>	Menge	Einzelpreis
300	L1	100	159,00
300	L2	120	149,00
500	L1	70	12,99
500	L2	40	12,49
600	L1	100	350,00

Dritte Normalform

Regeln:

* Eine Relation befindet sich in dritter Normalform (3NF), wenn die 2NF vorliegt und keine transitiven Abhängigkeiten der Nichtschlüsselattribute existieren.

→ Transitive Abhängigkeiten

 $\star LiefNr \rightarrow PLZ \rightarrow Ort$

Dritte Normalform

<u>ArtNr</u>	Bezeichnung	Beschreibung
300	LG 24MB56HQ-B	Monitor
500	LogiLink CHB1102	HDMI Kabel
600	Dell PowerEdge T20	PC

<u>LiefNr</u>	Name	PLZ
L1	Schulze	55116
L2	Koch	65195

<u>ArtNr</u>	<u>LiefNr</u>	Menge	Einzelpreis
300	L1	100	159,00
300	L2	120	149,00
500	L1	70	12,99
500	L2	40	12,49
600	L1	100	350,00

PLZ	Ort
55116	Mainz
65195	Wiesbaden

Weitere Normalformen

- Zusätzliche Verfeinerungen
 - Boyce-Codd-Normalform (BCNF)
 - ★ Vierte Normalform (4NF)
 - ★ Fünfte Normalform (5NF)
- Abhängigkeitserhaltend bis 3NF
- Verlustlos in allen NF
- Normalformen bauen aufeinander auf

Zusammenfassung

- Normalisierung bewirkt eine Reduzierung der Redundanzen
- In der Praxis meist die 3NF genutzt
- Ein gutes ER-Modell ergibt ein Schema in 3NF

Literatur

- Vossen, Gottfried: Datenmodelle, Datenbanksprachen und Datenbankmanagementsysteme,
 Auflage, Oldenburg Wissenschaftsverlag, 2008
- * Thomas Kudraß: Taschenbuch Datenbanken, Hanser, 2007