Cancer Diagnosis with Accuracy and Explainability

Group 24: Chuqiao Yuan, Queena Zhou, Rong Liu, Feiyu Chen

Introduction

GOAL

Explainable classifier for cancer diagnosis

Accuracy

Correct Diagnosis

Explainability

Regions of interest (ROI) localization

Methodology

ResNet

Residual learning with deep structure

Binary classification and saliency map

UNet

Semantic segmentation

UNet with ResNet Backbone

UNet with shortcut connections

Stacking

Support Vector Machine

Data

Dataset: CBIS-DDSM (for breast cancer)

- 1318 training cases, 378 testing cases
- Original X-ray image with overlay annotating ROI

Preprocessing

- Shape of image is large and varied
- Cropped to 256*256 patches
- Normalized to [0,1]
- Filtered to maintain only patches with breast organization
- 19702 training images, 5835 testing images

Metrics

Accuracy

Diagnosis Accuracy

Number of images classified correctly

Total number of images

Explainability

Pixel Accuracy

Number of pixels classified correctly

Total number of pixels

Intersection over Union

Intersection of problem pixels

Union of problem pixels

Baseline

Model	Diagnosis Acc.	Pixel Acc.	IoU
Predicting all pixels to be normal	0.700	0.922	0.000
Predicting all pixels to be abnormal	0.300	0.078	0.078

Strongly Imbalanced:Normal pixels outnumber abnormal ones

ResNet

Overview

Motivation

Powerful image classification model

Principles

"Identity shortcut connection" + fit a residual mapping

Expectation

High diagnosis classification accuracy

Suspicion

Limited help in localization

(He, Zhang, Ren, Sun.. 'Deep Residual Learning for Image Recognition'. 2015.)

ResNet Saliency Map

UNet

Overview

Motivation

Directly output ROI annotations

Principle

Upsampling layers + Copying over feature maps

Expectation

High IoU measure

Usage for Diagnosis

Whether the generated annotation contains any problem pixel

(Ronneberger, Fischer, Brox. 'U-Net: Convolutional Networks for Biomedical Image Segmentation'. 2015.)

UNet Tuning

Weight in Loss	# Filters	# Blocks	Diagnosis Acc.	Pixel Acc.	IoU
Balanced	64x	9	0.292	0.071	0.071
Balanced	32x	9	0.622	0.858	0.234
Reduced by 1/3	32x	9	0.592	0.857	0.236
Reduced by 1/2	32x	9	0.680	0.906	0.267
Reduced by 2/3	32x	9	0.708	0.929	0.000
Reduced by 1/2	32x	11	0.708	0.929	0.000

UNet with ResNet Backbone Motivation

- ResNet: add short skips to avoid vanishing gradient
- UNet: add long skips to recover spatial information
- We can have a network that has both long and short skips

UNet with ResNet Backbone

Architecture

https://github.com/qubvel/segmentation models

- Contracting path and expanding path are both ResNets
- We tried ResNet with various depth: ResNet-34/50/101
- ResNet-34 performs the best

Comparing the Models Generated ROI Annotation

- Both UNet and Res+UNet are able to identify problem pixels
- Res+UNet is more confident in locating problem pixels

Comparing the Models Metrics

Model	Diagnosis Accuracy	Pixel-by-Pixel Accuracy	Intersection over Union
ResNet	0.769	0.881	0.007
UNet	0.708	0.911	0.269
UNet with ResNet Backbone	0.705	0.898	0.330

There is a **tradeoff** between accuracy and explainability

StackingReal Life Medical Application

- ResNet has a high false negative rate on classification, which leads to a large amount of unalarmed tumors
- UNet has a high false positive rate on classification, which leads to medical resource waste
- Stacking of the models can achieve a higher accuracy (0.78) and a higher AUC (0.81)
- The final deliverable package will give out both prediction and heat map, available on https://github.com/YuanChuqiao/Diagnosis

ROC for ResNet

ROC for Stacking Model

Conclusion and Takeaways

- 1. Each model has its pros and cons.
- 2. Stacking models reduces false negative rate.
- We recommend doctors to use the stacking model.
- 4. Future work includes:
 - a. Include data augmentation
 - b. Try larger input image size
 - c. Try ResNet100 and ResNeXt50