Function Skeleton Design(need to be updated)

Skander/Yu/Yachuan December 4, 2017

The point marked by? is additional, which we haven't thought thoroughly about how to design.

Input

- 1. Dataset
- 2. Type of regression
 - lm()
 - glm()
- 3. Criterion
 - AIC(default)
 - BIC
 - ...(Other common criteria)
 - User can provide objective function?
- 4. Parent Selection mechanism
 - Chosen with probability proportional to the fitness value.
 - One proportional. One Random
 - generation gap, G
 - tournament selection
- 5. Gene selection mechanisim
 - Operator choice
 - Crossover
 - Randonm loci selection and chromosomes swap
 - Mutation
 - Additional operators provided by user
 - Rate
- 6. Maximum number of iterations
- 7. Other arguments, similar to those of lm() and glm(), including some choices on the output format.

Funtion Design

- 1. Initialization
 - Normalize the data
 - Calculate the covariance matrix between the covariates
 - Choose the interaction terms
 - Generate the first generation
 - It is recommended to use a heuristic approach to select starting chromosome instead of random selection.
- 2. Parent selection in n-th generation
 - Transform objective function $f(\theta)$ to fitness function $\Phi(\theta)$
 - Selection mechanisom. Mutiple methods are provided in the website mentioned in the input part. Generation gap G is also considered.
- 3. Gene selection. Use specific genetic operator to generate the n+1-th generation.
- 4. Stopping critetia:
 - Whether the number of iterations exceeds the max number.

• Whether the error(objective function value) is small enough

Other thoughts about the function design

- 1. Good data structure design to improve computing efficiency.
 - For example, if using partial updating(only update a proportion of the n-th generation in the n+1-th generation), the fitness value of a given chromosome may be used more than once. And if calculating the fitness value of one chromosome is complicated, it may be better to store the value. I think hashtable can solve the probelm.
- 2. Avoid colinear problem
- 3. Utils functions

Output

- 1. Result (?prediction of the parameters)
- 2. Objective funtion value
- 3. The number of iterations
- 4. ?The corelation of the variables selected.
- 5. Other outputs which can make our function perfect.
- 6. Convergency analysis

Implementation on real example

Test

1. Simulation tests.

The skeleton we designed is based on the material provided by Chris. There are a lot details in the design that we haven't considered yet. Further work is needed. Feel free t correct and improve it.