Лабораторная работа № 2.1.3

Определение C_p/C_v по скорости звука в газе

Каменская Елизавета

1 марта 2021 г.

Цель работы

1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

Оборудование

Звуковой генератор (ГЗ), электронный осциллограф (ЭО), микрофон, телефон, раздвижная труба, теплоизолированная труба, обогреваемая водой из термостата, баллон со сжатым углекислым газом, газгольдер.

Теоретическая справка

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}},$$

где R - газовая постоянная, T - температура газа, μ - его молярная масса. Преобразуя эту формулу найдем

 $\gamma = \frac{\mu}{RT}c^2\tag{1}$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука.

Звуковые колебания в трубе являются наложением всех отраженных от торцов волн, поэтому картина упрощается, когда длина трубы L равна целому числу полуволн, т.е.

$$L = n\frac{\lambda}{2},\tag{2}$$

где λ - длина волны звука в трубе, а n - любое целое число. Если условие (2) выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Амплитуда звуковых колебаний при этом резко возрастает - наступает резонанс.

Скорость звука c связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f \tag{3}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f ГЗ ($\lambda = const$) можно изменять длину трубы L, которая постепенно увеличивается, причем наблюдается ряд последовательных резонансов. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$

т.е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (3).

2. **При постоянной длине трубы** можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f Γ 3, а следовательно, и длину звуковой волны λ . Для последовательных резонансов имеем

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k)$$
 (4)

Из (3) и (4) имеем

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k$$
 (5)

Скорость звука, деленная на 2L, определяется по угловому коэффициенту графика зависимости частоты от номера резонанса.

Экспериментальная установка

Звуковые колебания в трубе возбуждаются телефоном Т и улавливающим микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты. В качестве источника переменной ЭДС используется ГЗ, а вознивающий в микрофоне сигнал наблюдается на ЭО (рис. 1).

Рис. 1: Схема экспериментальной установки

Ход работы

- 1. Включим в сеть ЭО и ГЗ. Подберем на выходе генератора такое напряжение, чтобы при резонансе на осциллографе наблюдались неискаженные синусоидальные колебания.
- 2. Заполним трубу воздухом. При разных значениях частоты на ГЗ будем плавно изменять длину трубы, отмечая соответствующее удлинение для каждого резонанса (труба без удлинения $L_0 = 700 \pm 5$ мм).

$N_{\overline{0}}$	f , К Γ ц	L_1	L_2	L_3	L_4	L_5	L_6
1	4.8000 4.9411 5.1480 5.1400	5.90	9.4	13.0	16.6	20.3	-
2	4.9411	0.10	3.6	6.9	10.4	14.0	17.6
3	5.1480	4.00	7.5	10.8	14.3	17.6	20.9
4	5.1400	5.14	10.5	13.8	17.5	20.9	-

Таблица 1: Удлинения трубы, при которых наблюдались резонансы соответствующих частот.

- 3. Изобразим полученные результаты на графике, проведя для каждой частоты наилучшую прямую (рис. 2).
- 4. Найдем среднее значение $\lambda/2$ из графика (таблица 2).
- 5. Оценим по графику ошибку измерения: $\lambda/2 = 35.8 \pm 0.5$ мм.

Рис. 2: Результаты измерений.

	1	2	3	4	среднее
$\lambda/2$, cm	36.0	34.9	33.8	38.5	35.8

Таблица 2: Длина полуволны.

6. Найдем скорость звука (таблица 3) и оценим точность полученного результата:

$$\delta c = c\sqrt{(\frac{\delta f}{f})^2 + (\frac{\delta \lambda}{\lambda})^2},$$

где $\delta f = 50$ Γ ц.

	1	2	3	4	среднее
с, м/с	343.68	353.78	368.6	368.02	358.52

Таблица 3: Скорость звука в воздухе.

$$c = 358.52 \pm 4.37 \text{m/c}$$

- 7. Измерим скорость звука в углекислом газе. Сначала проведем измерения с изменением длины трубы (таблица 4), а затем с изменением частот (таблица 5).
- 8. Из первого опыта следует, что $\lambda/2=3.2$ см. Следовательно:

$$c = 243.2 \pm 3.7 \text{m/c}$$

	1	2	3	4	5	6
ΔL , cm	0.2	3.6	7.0	10.9	14.1	17.3

Таблица 4: Реонансные удлинения трубы с углекислым газом при $f=3.8~{\rm K}\Gamma$ ц.

	1	2	3	4
f, КГц	3.45	3.63	3.85	4.03

Таблица 5: Резонансные частоты при L=const.

Из второго опыта получаем $\Delta f \approx 200$ Гц. Следовательно:

$$c = 280 \pm 3 \text{m/c}$$

Отсюда получаем среднюю скорость звука в углекислом газе:

$$c = 261.6 \pm 3.35 \text{m/c}$$

9. Посчитаем показатель адиабаты по формуле (1) для воздуха ($\mu=28,97$ г/моль):

$$\gamma = 1.4 \pm 0.017$$

для углекислого газа ($\mu = 44,01\ {\mbox{г/моль}}$):

$$\gamma = 1.32 \pm 0.017$$

Вывод

В ходе работы были измерены частоты колебаний и длины полуволн при резонансе звуковых колебаний в газе. На основании измерений были найдены значения скорости звука в воздухе и углекислом газе, а также показатель адиабаты для этих газов.