

Normalización

- Proceso de Normalización.
- Forma Normal Boyce/Codd.
- Dependencia Multivalor y Cuarta Forma Normal
- Proceso Total

Resumen de 1FN, 2FN y 3FN

Primera Forma Normal (1FN)

 Todos los atributos de cada tupla contienen un solo valor tomado de sus dominios respectivos (valores atómicos).

Segunda Forma Normal (2FN)

 Es 1FN y cada atributo no clave de la relación es total y funcionalmente dependiente (DFC) de su clave primaria.

Tercera Forma Normal (3FN)

• Es 2FN y ningún atributo no-clave en la relación esta en DF con algún otro atributo no-clave.

Forma Normal Boyce/Codd

Clave Candidata:

- Es un atributo o conjunto de atributos que pueden representar de forma única a cada registro de una entidad o relación.
- Cuando en una relación hay más de una clave candidata, una se designa como clave primaria.

Forma Normal Boyce/Codd

ASESORIA

N Estudiante	N Curso	N Asesor
Gómez	Mate I	Arias
Gómez	Física	Flores
Pérez	Mate I	Arias
Pérez	Álgebra	Sánchez
Ramos	Física	Flores
Ramos	Mate I	García

Restricciones:

- Para cada curso (C), cada estudiante(E), tiene un solo asesor (A)
- Cada curso tiene varios asesores (A), pero cada profesor asesora en un solo curso

Forma Normal Boyce/Codd

 Para cada curso, cada estudiante tiene un solo asesor

 $(E, C) \longrightarrow A$

 Cada profesor asesora en un solo curso (pero cada curso tiene varios asesores)

 $(E, A) \rightarrow C$

Forma Normal Boyce/Codd

- Existen dos clave candidatas que se traslapan o están sobrepuestas (E,C) y (E,A).
- Tenemos además la dependencia funcional:

 $A \longrightarrow C$

Forma Normal Boyce/Codd

- Anomalías de eliminación (Identifique alguna)
- El problema existe porque hay un atributo que es determinante pero no clave candidata: N Asesor
- Es conveniente crear dos relaciones nuevas:
 - ESTUDIANTE_ASESOR (<u>E</u>, <u>A</u>) y
 - ASESOR_CURSO (<u>A</u>,C)

Fo	orma N	ormal	Boyce	/Codd	
		ASESORI	:A		
		NEstudiante	e NCurso	NAsesor	
		Gómez	Mate I	Arias	
_		Gómez	Física	Flores	
		Pérez	Mate I	Arias	
		Pérez	Álgebra	Sánchez	
	SOR-	Ramos	Física	Flores	
	UDIANTE	Ramos	Mate I	García	
531			1	105000	
	<u>NEstudiante</u>	N Asesor		ASESOR_0	LUKSU
	Gómez	Arias		N Asesor	Curso
	Gómez	Flores			
	Pérez	Arias		Arias	Mate I
	Pérez	Sánchez		Flores	Física
	Ramos	Flores		Sánchez	Álgebra
	Ramos	García		García	Mate I

Forma Normal Boyce/Codd

Una relación está en forma normal Boyce Codd (BCFN) si y solo si todo determinante es una clave candidata.

Forma Normal Boyce/Codd

PROYECTO_TAREA_EMPLEADO

Proyecto	Tarea	Empleado
P01	análisis	Juana Paz
P01	calidad	Mario Gómez
P15	diseño	Ana Llanos
P20	análisis	Juana Paz
P30	análisis	Ramón Díaz

REGLAS:

- Para cada proyecto, una tarea tiene un solo empleado especialista responsable, aún cuando el empleado esté en varios proyectos,
- · Un proyecto está asociado a distintas tareas,
- Un empleado se especializa en un tipo de tarea,
- Una misma tarea puede ser responsabilidad de distintos empleados en distintos proyectos.

Forma Normal Boyce/Codd

 Esta relación tiene dos claves candidatas sobrepuestas:

(Proyecto, Tarea) y (Proyecto, Empleado),

 Existe un determinante de Tarea que es Empleado, pero Empleado no es clave candidata.

Empleado --- Tarea

Forma Normal Boyce/Codd

- Anomalías de inserción. ¿Cuáles?
- Anomalías de eliminación. ¿Cuáles?
- El problema existe porque hay un atributo que es determinante pero no clave candidata: Empleado
- Creamos dos relaciones nuevas:
 - PROYECTO_EMPLEADO y
 - EMPLEADO_TAREA

Forma Normal Boyce/Codd EXAMEN

Materia	Estudiante	Posición
Lengua	Pérez	5
Matemática	Pérez	1
Lengua	Gómez	1
Matemática	Gómez	3
Historia	Pérez	2
Historia	Gómez	1

REGI AS

•No hay empates; es decir, dos estudiantes no pueden ocupar la misma posición en la misma materia.

Forma Normal Boyce/Codd

 Esta relación tiene dos claves candidatas sobrepuestas, de acuerdo con las reglas dadas:

(Estudiante, Materia) y (Materia, Posición),

 Sin embargo, esta relación si está en BCFN porque estas claves candidatas son los únicos determinantes.

Dependencia Multivalor y Cuarta Forma Normal

Dependencia Multivalor

- Dada una relación R, se dice que un atributo R.y es dependiente multivalor (DMV) de un atributo R.x, si un rango específico de valores de y está determinado por un valor específico de x, con independencia del resto de atributos de R
- Se lee: "R.y es multivalor de Rx" o "Rx multidetermina a R.y".

Rx _____ R.y

Dependencia Multivalor Curso Profesor Texto Química Moreno Química Orgánica Físico Química Matemáticas Merino Análisis Vectorial Álgebra Trigonometría

- ✓ Cada Curso tiene un conjunto definido de Profesores y un conjunto de Textos.
- ✓ Los profesores son independientes de los textos.
- Un profesor puede dictar varios cursos, y un texto podría emplearse para más de una materia

Dependencia Multivalor

CURSO_PROFESOR_TEXTO Curso **Profesor** <u>Texto</u> Química Moreno Físico Química Química Moreno Química Orgánica Química Mora Físico Química Química Mora Química Orgánica Matemáticas Merino Análisis Vectorial Matemáticas Merino Álgebra Matemáticas Merino Trigonometría

Esta relación especifica que: el curso impartido puede ser dictado por varios profesores utilizando varios textos". Existen dos DMV:

Curso --- Profesor y Curso --- Texto

 La redundancia de datos causada por la DMV, se puede eliminar siguiendo <u>uno</u> de los siguientes métodos:

✓ Crear una nueva relación para cada atributo DMV.

Curso \longrightarrow Profesor Curso \longrightarrow Texto R1 = (<u>Curso</u>, <u>Profesor</u>) R2 = (<u>Curso</u>, <u>Texto</u>)

Tratamiento de las DMV

✓ Reemplazar un atributo DMV con atributos funcionalmente dependientes DF.

Curso — (Texto1, Texto2, Texto3)

 $R3 = (\underline{Curso}, texto1, texto2, texto3)$

Tratamiento de las DMV

★ Crear una nueva relación para cada atributo DMV.

Curso → Profesor

Curso	→]	Texto

Curso	<u>Profeso</u> r
Química Química Matemáticas	Moreno Mora Merino
Tiuternaticus	TICTITO

Química Físico Química	<u>Curso</u>
Química Química Química Química Química Química Análisis Vectorial Algebra Trigonometría	Matemática Matemática

Tratamiento de las DMV

PReemplazar un atributo DMV con atributos funcionalmente dependientes DF.

Curso → (Texto1, Texto2, Texto3)

Curso	Texto 1	Texto 2	Texto 3
Química	Físico Química	Química Orgánica	
Química	Química Orgánica	Físico Química	
Matemáticas	Análisis Vectorial	Algebra	Trigonometría

Cuarta Forma Normal

Una relación está en cuarta forma normal (4FN) si es BCFN y no contiene dependencias multivalor.

Cuarta Forma Normal - Ejemplo

NACIMIENTOS

- En un nacimiento nace un niño (los mellizos se consideran dos nacimientos).
- En un nacimiento hay una sola madre, y pueden atender el parto una o más enfermeras y uno o más módicos

R = (bebe, madre, enfermera, médico)

Cuarta Forma Normal - Ejemplo

NACIMIENTOS

· Normalizando:

 $R1 = (\underline{bebe}, madre)$

R2 = (bebe, enfermera, médico)

• No hay DT, y está en FNBC pero en R2 tenemos las dependencias multivaloradas:

> bebe médico bebe enfermera

Cµarta Forma Normal - Ejemplo

NACIMIENTOS -

Procedimientos alternativos:

Crear una nueva relación para cada atributo DMV.

 $R3 = (\underline{bebe}, \underline{m\'edico})$ $R4 = (\underline{bebe}, \underline{enfermera})$

Reemplazar un atributo DMV con atributos funcionalmente dependientes DF.

R5 = (bebe, médico1, médico2, médico3) R6 = (<u>bebe</u>, enfermera1, enfermera2)

R7 = (bebe, médico1, médico2, médico3, enfermera1, enfermera2)

Normalización

Sin Normalizar

Datos almacenados redundantemente en archivo no plano

1FN

La relación tiene registros por separado para cada valor en cada campo del registro, o cada campo de un registro contiene un solo valor (PK definida)

2FN

Cada atributo depende total y funcionalmente de su clave principal

3FN

Ningún atributo no-clave depende transitivamente de su clave principal

BCFN

Todo determinante existente en la relación es clave candidata

4FN

La relación no contiene dependencias multivaloradas

Resumen del Análisis de las Dependencias Funcionales

	Uno a uno	Muchos a uno	Muchos a muchos
Definición de la relación	R(A,B)	S(C, D)	T(E, F)
Dependencias	$A \Longrightarrow B$ $B \Longrightarrow A$	$C \Rightarrow D$ $D \neq C$	F ≠ E E ≠ F
Clave	АоВ	С	(E, F)
Regla para agregar otro atributo	A o B ⇒ C	C⇒E	(E, F) ⇒ G

Proceso Total de Normalización (Diagrama de Dependencias)

- Elaborar el diagrama que muestre las dependencias funcionales y multivaloradas entre los atributos.
- Separar las relaciones DMV de un atributo y su determinante en otra nueva relación.
- Eliminar atributos no-clave para que todos los no-clave en las relaciones divididas sean total y funcionalmente dependientes de la clave principal.
- Separar las no-claves transitivamente dependientes

Proceso Total de Normalización (Diagrama de Dependencias)

PASO 1. Construir diagrama de dependencias según la semántica de los datos:

la Semantica de los datos:			
Sea la relación R1 (A, B, C, D, E, F, G, H, I), con las siguientes dependencias:			
•H es DF de (A, B)			
•I y C son DFC de A	D +		
D es DMV de A	F -		
•E y F son DF de B	H		
•G es DF de F y DT de B] ⊷		
Como D es DMV de A, $PK(R1) = (A, B, D)$			

Objetivos Generales de la Normalización

- Eliminar ciertos tipos de redundancia.
- Evitar ciertas anomalías en la actualización de datos.
- Producir un diseño que sea una "buena" representación del mundo real: que sea fácil de entender intuitivamente y constituya una buena base para un crecimiento futuro.
- Simplificar la imposición de ciertas reglas de integridad.