Equation assignment sequence for variable n_{NS}

no	var	equ	quations	token
96	V ₁ 0	_	r_{xN} :: port variable	
95	V_127	_	1_S :: port variable	
94	V_147	_	P_{NK} :: port variable	
93	V_40	_	λ_S :: port variable	
92	V_14	_	S_N :: port variable	
91	V_200	_	$I_{NS,AS}$:: port variable	
90	V_183	_	$k^{d,Fick}_{NS}$:: port variable	
89	V_24	_	A^v :: port variable	
88	V_155	_	B:: port variable	
87	V_8	_	$F_{N,A}$:: port variable	
86	V_{1} 2	_	r_{zN} :: port variable	
85	V_11	_	r_{yN} :: port variable	
84	V_13	_	U_N :: port variable	
83	V_201	_	$I_{N,A}$:: port variable	
82	V_38	_	K^{o}_{K} :: port variable	
81	V_33	_	$P_{K,NK}$:: port variable	
80	V_158	_	$N_{K,KS}$:: port variable	
79	V_90	_	$D_{N,A} :: $ port variable	
78	V_91	-	$D_{NS,AS}$:: port variable	

no	var	equ	quations	token
77	V ₃ 6	_	$P_{NS,KS}$:: port variable	
76	V_35	_	$P_{N,NK}$:: port variable	
75	V_15	_	V_N :: port variable	
74	V_70	_	$F_{NS,AS}$:: port variable	
73	V_1	_	# :: port variable	
72	V_5	_	t:: port variable	
71	V_44	E_23	$k_{xN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	
70	V ₅ 6	E_35	$h_{NS} := H_N \odot (n_{NS})^{-1}$	
69	V ₇ 6	E_53		
68	V_75	E_52	$_h_{NS} := h_{NS}$	
67	V_95	E_70	$\hat{H}^d{}_A := \left(F_{NS,AS} \overset{NS}{\star} \underline{\ } h_{NS}\right) \overset{S \in AS}{\star} \hat{n}^d{}_{AS}$	
66	V_106	E_81	$\hat{q}_{xA} := (A_{yzN} \cdot \underline{k}_{xN}^q \cdot D_{N,A}) \stackrel{N}{\star} T_N$	
65	V_104	E_79	$\hat{w}_A := \text{Instantiate}(\hat{H}^c{}_A, \#)$	
64	V_102	E_77	$\hat{H}^c{}_A := \left(F_{NS,AS} \overset{NS}{\star} \underline{\ } h_{NS}\right) \overset{S \in AS}{\star} \hat{n}^c{}_{AS}$	
63	V_41	E_20	$_\lambda_S := \lambda_S$	
62	V_42	E_21	$C_{pN} := \frac{\partial H_N}{\partial T_N}$	
61	V_96	E_71	$\hat{H}^d{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^d{}_A$	
60	V_107	E_82	$\hat{q}_N := F_{N,A} \overset{A}{\star} \hat{q}_{xA}$	
59	V_105	E_80	$\hat{w}_N := F_{N,A} \stackrel{A}{\star} \hat{w}_A$	
58	V ₁ 03	E ₇ 8	$\hat{H}^c{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^c{}_A$	

no	var	equ	quations	token
57	V ₅ 7	E ₃ 6	$m_N := \lambda_S \overset{S \in NS}{\star} n_{NS}$	
56	V_82	E_59	$Cp_N := C_{pN}$	
55	V ₂ 18	E_183	$T^{ref}_{N} := Instantiate(T_{N}, -)$	
54	V ₁ 08	E_83	$\dot{H}_N := \hat{H}^c{}_N + \hat{H}^d{}_N + \hat{q}_N + \hat{w}_N$	
53	V_67	E_45	$_c_{NS} := c_{NS}$	
52	V_2 8	E_15	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	
51	V_58	E_37	$_m_N := m_N$	
50	V_52	E_31	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	
49	V_20	$\rm E_9$	$H_N := U_N - p_N \cdot V_N$	
48	V_20	E_184	$H_N := Cp_N \cdot (T_N - T^{ref}_N)$	
47	V_20	E_87	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt$	
46	V ₁ 68	E_134	$n_{tN} := 1_S \overset{S \in NS}{\star} n_{NS}$	
45	V_165	E_132	$B_N := \operatorname{Instantiate}(S_N, \#)$	
44	V_152	E_124	$c^{o}_{NK,KS} := \text{Instantiate}(c_{NK,KS}, \#)$	
43	V_151	E_123	$c_{NK,KS} := P_{NK} \cdot \left(P_{NS,KS} \overset{NS}{\star} _ c_{NS} \right)$	
42	V ₄ 8	E_27	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	
41	V_59	E_38	$\rho_N := \underline{m}_N \cdot (V_N)^{-1}$	
40	V_194	E_160	$k_{xAS}^d := I_{NS,AS} \overset{NS}{\star} k_{xNS}^d$	
39	V_18	E_185	$T_N := Root(H_N)$	
38	V ₁ 8	$ ight] ext{E}_7$	$T_N := \frac{\partial U_N}{\partial S_N}$	

no	var	equ	quations	token
37	V ₁ 8	E ₁ 91	$T_N := Root\left(0_N\right)$	
36	V_169	E_135	$\xi_{NS} := (n_{tN})^{-1} \odot n_{NS}$	
35	V ₁ 66	$E_{1}33$	$R_N := A^v \cdot B_N$	
34	V ₁ 88	E_154	$k^{d,Fick}{}_{AS} := I_{NS,AS} \overset{NS}{\star} k^{d,Fick}{}_{NS}$	
33	V_62	$\mathbf{E_41}$	$E^{a}_{NK} := Instantiate(R.T_{NK}, \#)$	
32	V_60	E_39	$T_{NK} := P_{N,NK} \stackrel{N}{\star} T_N$	
31	V_157	E_127	$R := A^v \cdot B$	
30	V_153		$x_{NK,KS} := (c^o_{NK,KS})^{-1} \cdot c_{NK,KS}$	
29	V_97	E_72	$d_A := \operatorname{sign}\left(F_{N,A} \stackrel{N}{\star} p_N\right)$	
28	V_4	$\mid E_3 \mid$	0.5 := Instantiate(#, #)	
27	V ₈ 1	E_58		
26	V_74	E_51	$_ ho_N := ho_N$	
25	V_71	E_48	$A_{yzN} := r_{yN} \cdot r_{zN}$	
24	V_17	$\mathbf{E_6}$	$p_N := \left(-\frac{\partial U_N}{\partial V_N}\right)$	
23	V_209	E_173		
22	V_19	$\mid E_8 \mid$	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	
21	V_19	E_136	$\mu_{NS} := (R_N \cdot T_N) \odot ln(\xi_{NS})$	
20	V ₆ 6	E_44	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	
19	V_215	E_179	$A_{yzA} := I_{N,A} \stackrel{N}{\star} A_{yzN}$	
18	V_205	E ₁ 69		

no	var	equ	quations	token
17	V_63	E_42	$K_{NK} := K^o{}_K \odot exp((-E^a{}_{NK}) \cdot (R \cdot T_{NK})^{-1})$	
16	V_160	E_129	$\phi_{NK} := \prod_{KS} x_{NK,KS}^{N_{NK,KS}}$	
15	V_159	E_128	$N_{NK,KS} := P_{K,NK} \stackrel{K}{\star} N_{K,KS}$	
14	V_98	E_73	$c_{AS} := (0.5 \cdot (F_{NS,AS} - d_A \odot F_{NS,AS})) \overset{NS}{\star} c_{NS}$	
13	V_92	$E_{1}40$	$\hat{V}_A := \text{Instantiate}(\hat{V}_A, \#)$	
12	V_92	E ₆ 7	$\hat{V}_A := (\underline{\rho}_N)^{-1} \cdot \underline{k}_{xN}^c \cdot A_{yzN} \cdot D_{N,A} \stackrel{N}{\star} p_N$	
11	V_93	E ₆ 8	$\hat{n}^d_{AS} := A_{yzA} \odot \left(- \underline{k}^d_{xAS} \right) \cdot D_{NS,AS} \overset{NS}{\star} \mu_{NS}$	
10	V_93	E_152	$\hat{n}^{d}_{AS} := A_{yzA} \odot \left(- k^{d,Fick,A}_{AS} \right) \cdot D_{NS,AS} \overset{NS}{\star} c_{NS}$	
9	V_163	E_130	$\tilde{n}_{NS} := V_N \stackrel{N}{\star} \left(P_{N,NK} \stackrel{NK}{\star} \left((K_{NK} \cdot \phi_{NK}) \cdot \left(P_{NS,KS} \stackrel{KS}{\star} N_{NK,KS} \right) \right) \right)$	
8	V_99	E_74	$\hat{n}^c{}_{AS} := \hat{V}_A \odot c_{AS}$	
7	$V_{9}4$	E ₆ 9	$\hat{n}^d{}_{NS} := F_{NS,AS} \stackrel{AS}{\star} \hat{n}^d{}_{AS}$	
6	V_164	E_131	$\tilde{n}_{NS} := \tilde{n}_{NS}$	
5	V_100	E_75	$\hat{n}^c{}_{NS} := F_{NS,AS} \stackrel{AS}{\star} \hat{n}^c{}_{AS}$	
4	V_7	E_5	$t^e := \operatorname{Instantiate}(t, \#)$	
3	V_6	\mathbf{E}_4	$t^o := \operatorname{Instantiate}(t, \#)$	
2	V_110	E_85	$n^o_{NS} := \text{Instantiate}(n_{NS}, \#)$	
1	V_101	E_76	$\dot{n}_{NS} := \hat{n}^c{}_{NS} + \hat{n}^d{}_{NS} + \underline{\tilde{n}}_{NS}$	
0	V ₁ 6	E ₈ 6	$n_{NS} := \int_{t^o}^{t^e} \dot{n}_{NS} \ dt + n^o_{NS}$	