

BiRRE: Learning Bidirectional Residual Relation Embeddings for Supervised Hypernymy Detection

Chengyu Wang^{1,2}, Xiaofeng He^{3*}

¹ School of Software Engineering, East China Normal University, Shanghai, China
² Alibaba Group, Hangzhou, China

³ School of Computer Science and Engineering, East China Normal University, Shanghai, China

Outline

- Introduction
- The BiRRE Model
 - M1: Hyponym Projection
 - M2: Hypernym Projection

General Framework

M3: Hypernymy Relation
 Classification

- Experiments
- Conclusion

Introduction (1)

- Hypernymy ("is-a") relations are important for NLP and Web applications
 - Semantic resource construction: semantic hierarchies, taxonomies, knowledge graphs, etc.
 - Web-based applications: query understanding, post-search navigation, personalized recommendation, etc.
- Predicting hypernymy relations between term pairs
 - Pattern-based approaches: have low recall
 - Distributional classifiers: suffer from the "lexical memorization" problem

Introduction (2)

- Our Idea: Learning Bidirectional Residual Relation Embeddings
 - High performance: distributional models
 - Alleviating the "lexical memorization" problem: avoiding classifying hypernymy vs. non-hypernymy relations using word vectors as features directly
 - Two ways of modeling the hypernymy relations:
 - Hyponym projection: mapping hypernyms to hyponyms in the embedding space
 - Hypernym projection: mapping hyponyms to hypernyms in the embedding space
 - Model design: given a term pair (x, y), measuring whether
 - \vec{x} can be projected to \vec{y} by hypernym projection
 - \vec{y} can be projected to \vec{x} by hyponym projection

Positive sample: (cat ,mammal)

Negative sample: (desk, fruit)

BiRRE: The Proposed Framework

Hyponym Projection (M1)

- Learning N projection matrices from hypernyms to hyponyms
 - Simple objective function

$$\min_{\mathcal{M}} \sum_{(x_i, y_i) \in D^{(+)}} \sum_{p=1}^N \theta_i^{(p)} \|\mathbf{M}^{(p)} \mathbf{y}_i - \mathbf{x}_i\|^2$$

s. t.
$$\mathbf{M}^{(p)^T}\mathbf{M}^{(p)} = \mathbf{I}_d, p \in \{1, \cdots, N\}$$

Considering negative regularization

(a) Hypernym-to-hyponym mappings

$$\min_{\mathcal{M}} \frac{1}{|D^{(+)}|} \sum_{(x_i, y_i) \in D^{(+)}} \sum_{p=1}^{N} \theta_i^{(p)} \|\mathbf{M}^{(p)} \mathbf{y}_i - \mathbf{x}_i\|^2$$

$$+rac{\lambda}{|D^{(-)}|}\sum_{(x_i,y_i)\in D^{(-)}}\sum_{p=1}^N\phi_i^{(p)}(\mathbf{M}^{(p)}\mathbf{y}_i)^T\cdot\mathbf{x}_i$$
 No standard off-the learning algorithm!

s. t.
$$\mathbf{M}^{(p)^T}\mathbf{M}^{(p)} = \mathbf{I}_d, p \in \{1, \cdots, N\}$$

No standard off-the-shelf

Hyponym Projection (M1)

- Efficient learning algorithm for hyponym projection
 - Slight changes of the objective function

$$\begin{split} & \min_{\mathcal{M}} \frac{1}{|D^{(+)}|} \sum_{(x_i,y_i) \in D^{(+)}} \sum_{p=1}^N \theta_i^{(p)} \|\mathbf{M}^{(p)} \mathbf{y}_i - \mathbf{x}_i\|^2 \\ & - \frac{\lambda}{|D^{(-)}|} \sum_{(x_i,y_i) \in D^{(-)}} \sum_{p=1}^N \phi_i^{(p)} \|\mathbf{M}^{(p)} \mathbf{y}_i - \mathbf{x}_i\|^2 & \text{Latent Proposition of the properties of$$

Latent Projection Model with **Negative Regularization**

s. t.
$$\mathbf{M}^{(p)^T} \mathbf{M}^{(p)} = \mathbf{I}_d, p \in \{1, \dots, N\}$$

Learning projection matrices

- Learning latent variables

1: **for**
$$p = 1$$
 to N **do**

2:
$$\mathbf{B}^{(p)} = \sum_{(x_i, y_i) \in D^{(+)}} \theta_i^{(p)} \mathbf{x}_i \mathbf{y}_i^T$$
$$-\alpha \cdot \sum_{(x_i, y_i) \in D^{(-)}} \phi_i^{(p)} \mathbf{x}_i \mathbf{y}_i^T;$$
$$\mathbf{D}^{(p)} \mathbf{x}_i \mathbf{y}_i^T = \mathbf{Optimization}$$

$$heta_i^{(p)*} = heta_i^{(p)} - \eta \cdot \sum_{(x_i,y_i) \in D^{(+)}} \|\mathbf{M}^{(p)}\mathbf{y}_i \!-\! \mathbf{x}_i\|^2$$

3:
$$\mathbf{U}^{(p)}\mathbf{\Sigma}^{(p)}\mathbf{V}^{(p)T} = SVD(\mathbf{B}^{(p)});$$

4:
$$\mathbf{R}^{(p)} = \operatorname{diag}(\underbrace{1,\ldots,1}_{d-1},\operatorname{det}(\mathbf{U}^{(p)})\operatorname{det}(\mathbf{V}^{(p)}));$$

$$\mathbf{R}^{(p)} = \operatorname{diag}(\underbrace{1,\ldots,1}_{d-1},\operatorname{det}(\mathbf{U}^{(p)})\operatorname{det}(\mathbf{V}^{(p)})); \qquad \qquad \phi_i^{(p)*} = \phi_i^{(p)} + \eta \cdot \sum_{(x_i,y_i) \in D^{(-)}} \|\mathbf{M}^{(p)}\mathbf{y}_i - \mathbf{x}_i\|^2$$

5:
$$\mathbf{M}^{(p)} = \mathbf{U}^{(p)} \mathbf{R}^{(p)} \mathbf{V}^{(p)T};$$

6: end for

* Refer to the proof of correctness in the paper.

Hypernym Projection (M2) & Hypernymy Relation Classification (M3)

- Learning *one* projection matrix from hypernyms to hyponyms
 - Objective function

$$\begin{split} \min_{\mathbf{Q}} \frac{1}{|D^{(-)}|} \sum_{(x_i,y_i) \in D^{(-)}} & \|\mathbf{Q}\mathbf{x}_i - \mathbf{y}_i\|^2 - \frac{\lambda}{|D^{(+)}|} \\ \sum_{(x_i,y_i) \in D^{(+)}} & \|\mathbf{Q}\mathbf{x}_i - \mathbf{y}_i\|^2 \text{ s. t. } \mathbf{Q}^T\mathbf{Q} = \mathbf{I}_d \end{split}$$

Hypernyms

polar bear

mammal

animal

Hyponyms

- (b) Hypnoym-to-hypernym mappings
- Learning algorithm: a simpler version of M1
- Training of hypernymy relation classifier
 - Hyponym residual vector: $res^{hypo}(\mathbf{x}_i, \mathbf{y}_i) = \mathbf{x}_i \mathbf{M}^{(\tilde{p})}\mathbf{y}_i$
 - Hypernym residual vector: $res^{hyper}(\mathbf{x}_i) = \mathbf{Q}\mathbf{x}_i \mathbf{y}_i$
 - Feature representations: $\mathbf{r}_i = res^{hypo}(\mathbf{x}_i, \mathbf{y}_i) \oplus res^{hyper}(\mathbf{x}_i, \mathbf{y}_i)$
 - Classifier learning: simple back propagation training of feed-forward neural networks

Experiments (1)

- Experimental Settings
 - Word embeddings: fastText embeddings, d = 300
 - Default parameters settings:
 - $\eta = 0.001, N = \max\{1, |\lg|D^{(+)}|\}$
 - Optimization: Adam with dropout rate 0.1
- Effectiveness of BiRRE over the largest dataset (Shwartz et al. 2016)

Method	Precision	Recall	F1	Precision	Recall	F1
	Random Split			Lexical Split		
Roller and Erk (2016)	0.926	0.850	0.886	0.700	0.964	0.811
Shwartz et al. (2016)	0.913	0.890	0.901	0.809	0.617	0.700
Glavas and Ponzetto (2017)	0.933	0.826	0.876	0.705	0.785	0.743
Rei et al. (2018)	0.928	0.887	0.907	0.826	0.860	0.842
BiRRE	0.945	0.932	0.938	0.880	0.918	0.898

Experiments (2)

General Performance

- Results over two general benchmark datasets
 - BLESS
 - ENTAILMENT

Ablation Study

- Choice of baselines
 - Addition, offset and concat of term vectors
 - Unidirectional residual vectors

Method	BLESS	ENT.
Mikolov et al. (2013)	0.84	0.83
Yu et al. (2015)	0.90	0.87
Luu et al. (2016)	0.93	0.91
Nguyen et al. (2017)	0.94	0.91
Wang et al. (2019a)	0.97	0.92
BiRRE	0.98	0.93

Feature Set	BLESS	ENT.	Shwartz
$\mathbf{x}_i + \mathbf{y}_i$	0.76	0.77	0.72
$\mathbf{x}_i - \mathbf{y}_i$	0.79	0.74	0.73
$\mathbf{x}_i \oplus \mathbf{y}_i$	0.81	0.80	0.77
$res^{hypo}(\mathbf{x}_i,\mathbf{y}_i)$	0.92	0.87	0.84
$res^{hyper}(\mathbf{x}_i,\mathbf{y}_i)$	0.89	0.84	0.82
\mathbf{r}_i (i.e., BiRRE)	0.99	0.93	0.88

^{*} Refer to more experiments in the paper.

Conclusion

Model

 A distributional model for supervised hypernymy detection based on bidirectional residual relation embeddings

Results

 BiRRE outperforms previous strong baselines over various evaluation frameworks

Future Work

- Improving projection learning to model complicated linguistic properties of hypernymy
- Extending BiRRE to address other similar tasks, such as graded lexical entailment
- Exploring how deep neural language models can improve the performance of hypernymy detection

Thank You!

Questions & Answers