Evolution & Learning in Games Econ 243B

Jean-Paul Carvalho

Lecture 6: Deterministic Dynamics

Best Responses

- ► The **best response dynamic** is generated by agents always switching to their current best response.
- ► The set of rest points of the dynamic (where $\dot{x} = 0$) are the set of Nash equilibria:

$$NE(F) = \{x \in X : x_i > 0 \implies F_i(x) = \max_{j \in S} F_j(x)\}.$$

- ► The dynamic has some peculiar features: the best response correspondence is <u>discontinuous</u> (small changes in the state *x* can produce sharp changes in responses) and <u>multivalued</u> (there could be multiple best responses to a state).
- ▶ Differential inclusions—set-valued differential equations—are used.

The Best Response Dynamic

► The best response dynamic is given by the following differential inclusion:

$$\dot{x} \in M(F(x)) - x. \tag{1}$$

Definition. A Carathéodory solution to the differential inclusion $\dot{x} \in V(x)$ is a Lipschitz continuous trajectory $\{x_t\}_{t \geq 0}$ that satisfies $\dot{x}_t \in V(x_t)$ at all but a measure zero set of times in $[0, \infty)$.

Theorem. Fix a continuous population game F. Then for each $\xi \in X$, there exists a trajectory $\{x_t\}_{t\geq 0}$ with $x_0 = \xi$ that is a Carathéodory solution to the differential inclusion (1).

Solution Trajectories

- ► As we shall see, while solutions to the best response dynamic exist, the best response protocol is discontinuous so the solutions *need not be unique*; multiple solution trajectories can emanate from a single initial condition.
- ► Yet they can be quite simple.
- ▶ Let $\{x_t\}$ be a solution to (1) and suppose that the best response to state x_t is the pure strategy $i \in S$ at all times $t \in [0, T]$.
- ► Then during this interval, evolution is described by the affine differential equation:

$$\dot{x} = e_i - x$$
.

Solution Trajectories

- ▶ Hence the state x moves directly toward vertex e_i of the set X, proceeding more slowly as the vertex is approached.
- ▶ This means that the state x_t lies on the segment containing x_0 and e_i throughout the interval [0, T].
- Solving $\dot{x} = e_i x$ we get the following explicit formula for x_t :

$$x_t = (1 - \exp^{-t})e_i + \exp^{-t}x_0$$
 for all $t \in [0, T]$.

Two-Strategy Coordination

► Let the strategy set be $S = \{U, D\}$ and the payoff matrix be:

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right).$$

► The game F(x) = Ax has three Nash equilibria, two pure $(e_U \text{ and } e_D)$ and a mixed equilibrium $(x_U^*, x_D^*) = (\frac{2}{3}, \frac{1}{3})$.

Denote the state by $\chi = x_D$, so that $\chi^* = \frac{1}{3}$.

Then the best response-dynamic can be expressed as:

► From every initial condition except χ^* , there is a unique solution trajectory of the dynamic that converges to a pure Nash equilibrium:

$$\chi_0 < \chi^* \implies \chi_t = e^{-t} \chi_0. \tag{2}$$

$$\chi_0 > \chi^* \implies \chi_t = 1 - e^{-t} (1 - \chi_0).$$
(3)

- ▶ There are many solution trajectories from χ^* :
 - a stationary trajectory,
 - one that proceeds to $\chi = 0$ according to (2),
 - another that proceeds to $\chi = 1$ according to (3).
- Notice that solutions (2) and (3) quickly leave the vicinity of χ^* .
- ► In contrast, for Lipschitz continuous dynamics:
 - 1. solutions from all initial conditions are unique,
 - 2. solutions that start near a stationary point move very slowly near that point.

Imitative Dynamics

Recall that imitative dynamics are based on learning protocols of the form:

$$\rho_{ij}(\pi,x)=x_jr_{ij}(\pi,x),$$

where r_{ii} is a conditional imitation rate.

These generate a mean dynamic of the form:

$$\begin{split} \dot{x}_i &= \sum_{j \in S} x_j \rho_{ji} \big(F(x), x \big) - x_i \sum_{j \in S} \rho_{ij} \big(F(x), x \big) \\ &= \sum_{j \in S} x_j x_i r_{ji} \big(F(x), x \big) - x_i \sum_{j \in S} x_j r_{ij} \big(F(x), x \big) \\ &= x_i \sum_{j \in S} x_j \big[r_{ji} \big(F(x), x \big) - r_{ij} \big(F(x), x \big) \big]. \end{split}$$

Imitative Dynamics

Definition. Suppose that the conditional imitation rates are Lipschitz continuous and that net conditional imitation rates are *monotone*, that is:

$$\pi_j \geq \pi_i \Leftrightarrow r_{kj}(\pi, x) - r_{jk}(\pi, x) \geq r_{ki}(\pi, x) - r_{ik}(\pi, x)$$

for all $i, j, k \in S$.

Then the mean dynamic above is called an **imitative dynamic**.

Properties of Imitative Dynamics

- ► All imitative dynamics satisfy *support invariance*.
- ► Since imitative dynamics are Lipschitz continuous, we know they also exhibit *uniqueness* and *forward and backward invariance*:

Proposition. For every initial condition $\xi \in X$, an imitative dynamic admits a unique solution trajectory $\mathcal{T}_{(-\infty,\infty)} = \{x: (-\infty,\infty) \to X | x \text{ is continuous} \}.$

Pure Coordination

The **replicator dynamic** is:

$$\frac{\dot{x}_1}{x_1} = (1 - x_1)(3x_1 - 2).$$

No closed-form solution to the initial value problem, but we can immediately deduce:

$$\frac{\dot{x}_1}{x_1} > 0 \text{ iff } 3x_1 > 2 \text{ or } x_1 > \frac{2}{3}.$$

Rest Points of Imitative Dynamics

► Recall that:

$$NE(F) = \{x \in X : x_i > 0 \implies F_i(x) = \max_{j \in S} F_j(x)\}.$$

► The set of rest points of an imitative dynamic is the set of restricted equilibria:

$$RE(F) = \{x \in X : x_i > 0 \implies F_i(x) = \max_{j \in S: x_j > 0} F_j(x)\}.$$

These are the Nash equilibria of a restricted version of *F* in which only strategies in the support of *x* can be played.

Limit Sets

- ► More generally, the limiting behavior of deterministic dynamics can be characterized as follows.
- ► The ω -limit of trajectory $\{x_t\}_{t\geq 0}$ is the set of all points that the trajectory approaches <u>arbitrarily closely</u> infinitely often:

$$\omega(\{x_t\}) = \left\{ y \in X : \text{there exists } \{t_k\}_{k=1}^{\infty} \right.$$
 with $\lim_{k \to \infty} t_k = \infty$ such that $\lim_{k \to \infty} x_{t_k} = y \right\}$.

- ► If $\omega(\{x_t\}) = x^*$, a singleton, then x^* is a called an **absorbing state** (rest point).
- ► More generally, $\omega(\{x_t\})$ is called a **recurrence class** or ω **-limit set** of the dynamic.

Limit Sets

- ► For dynamics that admit a unique forward solution trajectory from each initial condition, $\omega(\xi)$ denotes the ω -limit set of the trajectory starting from state ξ .
- ► The set of all ω -limit points of all solution trajectories is:

$$\Omega(V_F) = \bigcup_{\xi \in X} \omega(\xi).$$

► The notion of recurrence (or the set of recurrence classes) of a deterministic dynamic is captured by $\Omega(V_F)$.

Analyzing Convergence

Example. Random Matching in Rock-Paper-Scissors

Suppose a win is worth w > 0, a loss -l < 0 and a draw 0. Then for F(x) = Ax:

$$A = \left(\begin{array}{ccc} 0 & -l & w \\ w & 0 & -l \\ -l & w & 0 \end{array}\right).$$

When w = l, let us call the game (standard) *RPS*. When w > l, we call it *good RPS* and when w < l we call it *bad RPS*.

For all cases, the unique Nash equilibrium of A is $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$, an interior equilibrium.

Best Response Dynamic in standard RPS

- ▶ One can construct a figure which appears to indicate that every solution trajectory converges to the unique Nash equilibrium $x^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
- ▶ To prove this, we claim that along every solution trajectory $\{x_t\}$, whenever the best response is unique, we have:

$$\frac{d}{dt}\left(\max_{k\in S}F_k(x_t)\right) = -\max_{k\in S}F_k(x_t). \tag{4}$$

Note: Best response correspondence is not continuous, but max. payoff is continuous.

- ▶ To establish the claim, let x_t be a state in which there is a unique optimal strategy, say Paper.
- ► At this state $\dot{x}_t = e_P x_t$. Since $F_P(x) = w(x_R x_S)$:

$$\frac{d}{dt}F_P(x_t) = \nabla F_P(x_t)'\dot{x}_t$$

$$= (w \quad 0 \quad -w)(e_P - x_t)$$

$$= -w(x_R - x_S)$$

$$= -F_P(x_t).$$
(5)

- ▶ Because any solution trajectory passes through states with multiple best responses at most a countable number of times (see Figure), (4) can be integrated with respect to time.
- ► This yields:

$$\max_{k \in S} F_k(x_t) = e^{-t} \max_{k \in S} F_k(x_0). \tag{6}$$

- ▶ In standard RPS, payoffs to each strategy are non-negative and equal zero only at the Nash equilibrium x^* .
- ▶ Then (6) implies that the maximal payoff across strategies $k \in S$ falls over time converging to zero as t approaches infinity; this occurs as x_t converges to the Nash equilibrium x^* .

Lyapunov Functions

The most common method for proving global convergence in dynamical systems is by constructing a **strict Lyapunov function**:

- ► A scalar-valued function.
- ► The value of the function changes monotonically along every solution trajectory.
- ► No general method of constructing Lyapunov function, but know for many games + dynamics.
- ► The Lyapunov function allows us to (partially) characterize the evolution of play without requiring explicit solutions to the differential equation (or inclusion).

Definition. The C^1 function $L: X \to \mathbb{R}$ is a (<u>decreasing</u>) strict Lyapunov function for the differential equation $\dot{x} = V_F(x)$ if along any solution trajectory $\dot{L}(x) \leq 0$, with equality only at rest points of V_F .

Stable Games

RPS (standard or good) is an example of a stable game.

Definition. The population game $F: X \to \mathbb{R}^n$ is a **stable game** if:

$$(y-x)'\big(F(y)-F(x)\big) \le 0 \qquad \text{for all } x,y \in X \tag{7}$$

If the inequality in condition (7) holds strictly whenever $x \neq y$, F is a strictly stable game (e.g. good RPS), whereas if this inequality always binds, F is a <u>null</u> stable game (e.g. standard RPS).

Proposition. If F is a null stable game, NE(F) is a convex set. If F is a strictly stable game, NE(F) is a singleton.

Best Response Dynamics in Stable Games

Theorem. Let F be a C^1 stable game, and let $\dot{x} \in V_F(x)$ be the best response dynamic for F. Define the Lipschitz continuous function $G: X \to \mathbb{R}_+$ by:

$$G(x) = \max_{i \in S} [F_i(x) - \overline{F}(x)],$$

which is non-negative and satisfies $G^{-1}(0) = NE(F)$.

Moreover, if $\{x_t\}_{t\geq 0}$ is a solution to V_F then $\dot{G}(x_t) \leq -G(x_t)$ for almost all t > 0.

Hence *G* is a Lyapunov function for $V_F(x)$ and $\lim_{t\to\infty} x_t \in NE(F)$.

Replicator Dynamic in Stable Games

- ► For convergence of the replicator dynamics, we need to restrict attention to a subset of all initial conditions $\xi \in X$, because if ξ places no mass on a strategy in the support of a Nash equilibrium x^* , then the dynamic cannot converge to x^* from ξ .
- ▶ Let the support of x be $S(x) = \{i \in S : x_i > 0\}$. Then $X_y = \{x \in X : S(y) \subseteq S(x)\}$ is the set of states in X whose supports contain the support of y.

Replicator Dynamics in Stable Games

► The Lyapunov function (in the single-population case) is $h_y: X_y \to \mathbb{R}$ where:

$$h_{y}(x) = \sum_{i \in S(y)} y_{i} \log \frac{y_{i}}{x_{i}}.$$

 h_y is known as the relative entropy of y given x.

Replicator Dynamics in Stable Games

Theorem. Let F be a strictly stable game with unique Nash equilibrium x^* , and let $\dot{x} = V_F(x)$ be the replicator dynamic for F.

Then h_{x^*} is non-negative and $\dot{h}_{x^*}(x) \leq 0$, with equality only when $x = x^*$.

Therefore, $\lim_{t\to\infty} x_t = x^*$.

Characterizing Long-Run Behavior of Nonconvergent Dynamics

- ► This is often an impossible task.
- ▶ But the replicator dynamic in certain contexts has useful *conservative properties* which allow us to characterize its long-run behavior even when the dynamic does not converge.
- ► In particular, in null stable games, all interior solutions of the replicator dynamic preserve the value of the strict Lyapunov function:

$$h_{x^*}(x) = \sum_{i \in S} x_i^* \log \frac{x_i^*}{x_i}.$$

Characterizing Long-Run Behavior of Nonconvergent Dynamics

- ► We know that standard RPS is a null stable game (good RPS is strictly stable and bad RPS is unstable).
- ► Let x^* be the unique Nash equilibrium $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
- ► Then:

$$h_{x^*}(x) = \sum_{i \in S} \frac{1}{3} \log \frac{1/3}{x_i}$$

$$= \frac{1}{3} \sum_{i \in S} \left[\log(1/3) - \log(x_i) \right]$$

$$= \log(1/3) - \frac{1}{3} \sum_{i \in S} \log(x_i)$$

$$= \log(1/3) - \frac{1}{3} \log(x_1 + x_2 + x_3).$$
(8)

Characterizing Long-Run Behavior of Nonconvergent Dynamics

- ► Therefore, if every solution trajectory preserves $h_{x^*}(x)$, then it preserves $x_1x_2x_3$ (an affine transformation of $h_{x^*}(x)$).
- ► Hence all interior trajectories preserve volume, $x_1x_2x_3$.
- ► That is, the level sets of $x_1x_2x_3$ form closed orbits around x^* .

Convergence of Time Averages

- ▶ Even if the process itself does not converge, the average population share over time for each strategy $i \in S$ could converge to its Nash equilibrium share.
- ► Let the average value of the state over the time interval [0, *t*] be:

$$\bar{x}_t = \frac{1}{t} \int_0^t x_s ds.$$

▶ One can show that in standard RPS under the replicator dynamic, $\{\bar{x}_t\}_{t\geq 0}$ converges to the Nash equilibrium $x^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ as t approaches infinity:

$$\lim_{t\to\infty}|\bar{x}_t-x^*|=0.$$

Games with Nonconvergent Dynamics

- ▶ We have focussed on RPS in much of our discussion so far, but we can generalize these insights to a broader class of games in which convergence can fail, called circulant games of which RPS is a member.
- ► The matrix $A \in \mathbb{R}^{n \times n}$ is called a *circulant matrix* if it is of the form:

$$A = \begin{pmatrix} a_1 & a_2 & \cdots & a_{n-1} & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ a_3 & \cdots & a_n & a_1 & a_2 \\ a_2 & a_3 & \cdots & a_n & a_1 \end{pmatrix}.$$

Circulant Games

- ► When *A* is a payoff matrix for a symmetric normal form game, then *A* is a *circulant game*.
- ► The barycenter $x^* = \frac{1}{n}\mathbf{1}$ is always in the set of Nash equilibria of such games.
- ► RPS is a circulant game with n = 3, $a_1 = 0$, $a_2 = -\ell$, and $a_3 = w$.

Chaotic Evolutionary Dynamics

- ► The ω limit sets we have focused on are fairly simple, mainly rest points and closed orbits of a dynamic.
- ► In one-dimensional systems, all continuous-time dynamics converge to equilibrium.
- ► In two dimensional systems rest points, closed orbits, chains of rest points and connecting orbits exhaust the possibilities.

Chaotic Evolutionary Dynamics

- ► For flows in three or more dimensions, however, ω -limit sets can be complicated sets known as **chaotic** (or strange) attractors.
- ► In addition, chaotic dynamics are defined by sensitive dependence on initial conditions:
 - —solution trajectories starting from nearby points on the attractor move apart at an exponential rate.