$$\frac{4}{4}$$
 $\frac{2-2}{2}$

Aldehydes, Ketones and Imines

Chemistry is Dictated by HOMO-LUMO Interactions

- ✓ It is important to identify the HOMO and LUMO of each of the reactants
- ✓ HOMO and LUMO are termed as Frontier Molecular Orbitals

✓ Energy Ordering of MOs

Energy

 σ^* antibonding

 π^* antibonding

Nonbonding orbitals (including lone pairs)

 π bonding

σ bonding

C-C: 1.54A.

Conjugation and Delocalized Bonding

In butadiene:

- ✓ The barrier for rotation for the central C-C bond is 30 kJ/mol
- ✓ The value for a typical C-C bond is 15 kJ/mol
- \checkmark Each carbon is sp² hybridized, these orbitals are used in σ -bonding (localized bonding)
- ✓ Single atomic 2p orbital is free on each carbon atom
- \checkmark π -MOs are formed from these four 2p orbitals and they extend over the whole molecule (delocalized bonding)

C2-C3: Single

7 - Molecular Orbitals of Butadiene

☐ Hückel theory

- \checkmark Mixing of p orbitals leading to the formation of π MOs
- \checkmark Only π -electrons in conjugated systems (σ electrons are not considered)
- ☐ LCAO: Linear Combination of Atomic Orbitals:

$$\psi = c_1 \phi_1 + c_2 \phi_2 + c_3 \phi_3 + c_4 \phi_4$$

502=1

π -Molecular Orbitals of Butadiene

- ✓ The molecular orbitals (ψ) are one-electron wave functions (electron in a box)
- ✓ The coefficients (C) are the weights of the contributions of the atomic orbitals to the molecular orbitals
- ✓ 4 MOs spread all over 4 carbon atoms

