TEMAS: INTERNOS DE DATOS TEMAS: INTERNOS DE BASES DE DATOS FUNDAMENTOS DE BASES DE DATOS

ORGANIZACIÓN Y METODOS

wso 2015/2016

OBJETIVO

■ Minimizar el número de accesos a disco

- Trabajaremos a dos niveles:
 - Organización de registros de datos a nivel de almacenamiento
 - Adición de estructuras complementarias para acelerar el acceso a dichos registros

MÉTODOS DE ORG. Y ACCESOS A LOS DATOS

- Asumimos que:
 - los datos no caben en memoria principal
 - varios usuarios
 - un procesador
 - un controlador
 - un disco

CRITERIOS DE EVALUACIÓN

- Memoria total ocupada en relación a ala que realmente necesitan los datos
- Tiempo de acceso a los datos, medido en número de registros accedidos bajo diferentes condiciones:
 - Por clave de búsqueda (C1)
 - Por intervalo en la clave de búsqueda (C2)
- Número de accesos a disco en las operaciones de inserción y de borrado de datos

- Un fichero de acceso secuencial es aquél donde los registros están almacenados consecutivamente en un dispositivo de almacenamiento
- Para acceder a un registro determinado debemos pasar obligatoriamente por los registros que le preceden
- Los registros están ordenados por una clave (clave física)

- <u>Ejemplo</u>: Mostrar la relación completa de departamentos
- La consulta se resolvería rápidamente si los departamentos están almacenados conjuntamente en bloques contiguos de un fichero
- Pero... ¿qué pasa si quereos plantear consultas por valor de clave o por rango de valores?

- El primer caso implica:
 - Recorrer uno tras otro cada uno de los registros
 - ■En el peor caso (no encontrarse o ser el último) la búsqueda sería de O(N)
- El segundo caso implica:
 - Realizar la búsqueda por valor de clave de la cota inferior del intervalo y continuar hasta alcanzar la cota superior

- Inserción de un nuevo registro:
 - ■Buscar el bloque que le corresponde y...
 - Si hay sitio, se inserta el nuevo registro
 - En caso contrario, o bien se opta por crear un nuevo bloque o bien se crea un bloque de desbordamiento
 - Es recomendable dejar espacio vacío en los bloques para evitar los problemas de reorganización

- Operación de borrado de un registro:
 - Buscar el registro
 - Puede implicar una reorganización local de los registros de un bloque

- Esta forma de organizar los registros no está exenta de inconvenientes, pero puede subsanarse mediante el uso de estructuras adicionales que nos permitan:
 - Acelerar la localización de los datos
 - Disminuir el número de bloques de disco transferidos
- Entre las técnicas más populares se encuentra:
 - Índices
 - Acceso directo

INDEXACIÓN

- Tiene por objetivo disminuir el tiempo de acceso a los datos por una clave de búsqueda
- Es similar a la idea de un índice en un libro

- Partimos de un fichero secuencial
- Disponemos de una estructura adicional: *fichero índice:*
 - campo clave: la clave de búsqueda
 - campo de referencia: RIDs de registos
- Son más pequeños que los del fichero de datos, aunque el número de ellos es el mismo en ambos ficheros

- Índice primario
 - la clave de búsqueda es el mismo campo clave por el que se está ordenando el fichero de datos

- Índices secundarios
 - construidos sobre otros campos que no sean la clave física del fichero de datos

ÍNDICE SECUNDARIO

- Consulta por un valor de la clave
 - Sobre el índice localizamos la clave (recorrido secuencial)
 - Obtenemos el RID del registro requerido
 - Vamos a disco para recuperar el bloque de datos donde se encuentra el registro señalado por el RID
 - La búsqueda en el índice es más rápida

- Consulta por rango de valores
 - Búsqueda en el índice por valor de clave de la cota inferior
 - Recorrido de las entradas del índice que están en el intervalo, recuperando los registros correspondientes gracias a su RID

- Inserción de un nuevo registro
 - Las mismas operaciones que en el fichero secuencias
 - Hay que actualizar también el índice
- Borrado de un nuevo registro
 - Borrado de un registro en el fichero de datos
 - Borrado de la entrada en el índice

EJEMPLO DE BORRADO (CLAVE=13)

- Se puede montar un índice sobre más de un campo de un registro
 - La clave del índice será la concatenación de los campos indicados
- Pero... cuidado con... (ejemplo)
 - Un índice sobre nombre y DNI
 - Es útil para consultas que involucran el nombre o bien el nombre y el DNI
 - No es útil para consultas sobre el DNI

- Los índices:
 - Aceleran el acceso a los datos
 - Ralentizan las otras operaciones ya que hay que mantener el índice actualizado
- Hay que considerar la conveniencia de crear cada índice:
 - Frecuencia de las consultas
 - Frecuencia de las operaciones de mantenimiento de los datos

INDEXACIÓN

- Índice denso
 - Mismo número de registros que en el fichero de datos que indexa
 - Ideal: mantener el índice en memoria principal
 - Realidad: los índices siguen siendo muy grandes

INDEXACIÓN

- Índice no denso
 - Registros compuestos por la clave de búsqueda y la dirección de comienzo del bloque donde puede encontrarse el registro consultado por valor de clave
 - El número de registros en el índice se reduce al número de bloques del fichero de datos
 - El acceso secuencial al índice no denso se acelera

ÍNDICE NO DENSO

- Diferencias en el proceso de búsqueda
 - Una vez encontrado el bloque donde podría encontrarse el registro:
 - Hay que cargarlo en memoria
 - Hay que hacer una búsqueda secuencial
 - No tiene costes en términos de acceso a disco
- No se tiene garantía alguna de encontrar el registro deseado hasta consultar el bloque de datos leído

ÍNDICE NO DENSO

- Los índices no densos sólo se pueden definir sobre la clave física
- El mantenimiento de un índice no denso es menos costoso:
 - Inserción y borrado menos frecuentes
 - Solo ocurren cuando la operación afecta al valor representativo del bloque

ÍNDICES JERÁRQUICOS

- Volvemos al objetivo de disminuir el tiempo necesario para recorrer el índice en busca de un registro
 - Idea: crear índices sobre índices
 - Varios niveles en el acceso a los datos
- Un índice multinivel está formado por:
 - Un índice de primer nivel sobre le fichero de datos (puede ser denso o no dependiendo de la clave)
 - Otros índices, no densos, construidos sucesivamente unos sobre otros

ÍNDICES JERÁRQUICOS

- El tamaño de los bloques se establece con la idea de optimizar cada una de las operaciones de acceso el disco físico
- Se reduce el número de accesos a disco para localizar un registro (en el peor caso tantos como niveles)
- Se complica el mantenimiento del índice

ÍNDICE JERÁRQUICO O MULTINIVEL

- Los árboles-B (B de balanceado) pueden verse como una generalización de un índice multinivel
- Proporcionan un mecanismo ideal para construir índices equilibrados

■ Estructura:

- Bloque de nivel superior: raíz del árbol
- Bloque del índice de nivel inferior: hojas
- Cada nodo del árbol coincide con un bloque de memoria
- Las claves contenidas en cada nodo nos guiarán hasta el siguiente bloque (nodo) del nivel inmediatamente inferior
- Orden n (como mucho n-1 valores de clave en el nodo y n punteros p_i que apuntan a un nodo hijo)

- Restricciones dentro de los nodos
 - Los valores de clave C_i están ordenados dentro del nodo
 - Los nodos están rellenos como mínimo hasta la mitad $n/2 \le i = \text{número de punteros} \le n$
 - Los valores x del subárbol apuntado por P_i cumplen:
 - $C_{i-1} \le x < C_i$
 - Excepto para:
 - \blacksquare i = 1, donde x < C_1
 - \blacksquare i = m, donde x \ge C_m

- Los nodos hoja tienen una estructura diferente
 - Parejas (clave, RID)
 - Punteros al siguiente nodo hoja
- La lista concatenada de nodos hoja tienen gran utilidad a la hora de hacer consulta por intervalos

- Restricciones dentro de los nodos hoja
 - Los nodos están ordenadas por clave
 - ■Todas las claves ha de ser menores que las del siguiente nodo hoja
 - Los nodos han de estar como mínimo rellenos hasta la mitad
 - ■Todos los nodos hoja se encuentran en el mismo nivel
 - Árbol equilibrado
 - Todos los caminos desde la raía a un nodo hoja tienen la misma longitud

- Proceso de consulta (clave)
 - Navegamos desde la raíz bajando niveles
 - Buscamos el registro en el nodo hoja y recuperamos el registro del fichero de datos gracias al RID
- Proceso de consulta (rango)
 - Se localiza el nodo hoja que contiene el valor inferior
 - Se recorren los nodos hoja hasta alcanzar el superior, recuperando los registros pertinentes del fichero de datos

- Proceso de inserción y borrado
 - Se utilizan algoritmos que garantizan que el árbol resultante sea equilibrado