

(11) Publication number: 0 578 515 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 93401328.5

(51) Int. CI.5: C12N 15/13, C12P 21/08

(22) Date of filing: 24.05.93

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

- (30) Priority: 26.05.92 US 888233
- (43) Date of publication of application : 12.01.94 Bulletin 94/02
- 84 Designated Contracting States: AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE
- Applicant: Bristol-Myers Squibb Company 345 Park Avenue New York, N.Y. 10154 (US)

- (2) Inventor: Harris, Linda J. 1214 16th Ave E. Seattle, WA 98112 (US) Inventor: Bajorath, Jurgen 928 137th St. SW Seattle, WA 98204 (US) Inventor: Ku-Chuan, Hsiao 18730 50th Avenue NE Seattle, WA 98155 (US)
- (74) Representative : Beauchamps, Georges Cabinet Z.Weinstein 20, avenue de Friedland F-75008 Paris (FR)

- (54) Humanized monoclonal antibodies.
- (57) A method of preparing humanized monoclonal antibodies is described which utilizes comparative model burding methodology. A humanized anti-CD18 antibody, 60.3, has been formulated and demonstrated to have analogous binding characteristics to the original murine monoclonal antibody, while displaying essentialy complete human Ig heavy and light chains.

Technical Field

35

The present invention is directed to a method for producing humanized monoclonal antibodies by utilizing comparative model building to construct the humanized antibody from homologous regions of human proteins by rational design. Specific humanized monoclonal antibodies are prepared.

Background of the Invention

Murine derived monoclonal antibodies have been utilized as diagnostic and therapeutic agents for numerous human pathologic conditions including acute inflammatory responses associated with numerous diseases. Administration of murine derived monoclonal antibodies (mAbs) as therapeutic agents in man has been severely limited by the development of antibody within the recipient to the mouse antigens of the murine derived monoclonal antibody. In attempts to circumvent this outcome mAbs have been restructured by recombinant DNA technology in such a way as to decrease their immunogenicity in humans. Immunoglobulins are well defined both chemically and biologically with the general structures illustrated in Molecular Cell Biology. Darnell, Lodish and Baltimore, Eds. Scientific American Book, Inc. W.H. Freeman, New York, NY (1986), Initially, this involved the construction of chimeric antibodies, Morrison et al. Proc. Natl. Acad. Sci. USA 81: 6851-6855 (1984). Recombinant technology was employed to replace the murine heavy and light chain constant regions with corresponding human constant regions. Upon expression, such interspecies antibody chimeras yielded molecules with the antigen binding specificities of the parent murine antibody. The following references generally describe chimeric antibody technology: Lobuglio et al. Proc. Natl. Acad. Sci. USA86: 4220-4224 (1989) : United States Patent 4,816,567; PCT International Publication No. WO 87/02671, published May 7, 1987; European Patent Publication No. 255,694, published February 10, 1988; European Patent Publication No. 274,394, published July 13, 1988; European Patent Publication No. 323,806, published July 12, 1989; PCT International Publication No. WO/89/00999, published February 9, 1989; European Patent Publication No. 328,404, published August 16, 1989; European Patent Publication No. 322, 424 published September 13, 1989, and European Patent Publication No. 438,310 published July 24, 1991.

The immunogenicity of chimeric antibodies can be further reduced by grafting rodent hypervariable regions into the variable region frameworks of human light and heavy chains, Jones <u>et al.</u> Nature <u>321</u>: 522-525 (1986). These hypervariable regions have also been termed complementarity determining regions (CDR). The technique involves the substitution or recombinant grafting of antigen-specific murine CDR sequences for those existent within "generic" human heavy and light chain variable regions, European Patent Publication No. 239,400, published September 30, 1987. In this approach, little, if any, concern is shown for the variable region frameworks (FRs) within which the murine CDR's are placed.

Studies by Queen $\underline{et\,al}$, Proc. Natl. Acad. Sci. USA $\underline{86}$: 10029-10022 (1989), have shown the CDRs from a murine anti-Tac monoclonal antibody can be grafted into a human framework. The human framework variable regions were chosen to maximize identity with the murine sequence. The authors also utilized a computer model of the mMab to identify several amino acids which, while outside the CDRs, are close enough to interact with the CDRs or antigen . These residues were mutated to the residue found in the murine sequence. The grafted anti-Tac antibody had an affinity for the antigen which was only about 1/3 that of the murine anti-Tac mAb.

Leukocyte infiltration into an inflammatory site is dependent on the adhesion of the leukocytes to the endothelium prior to extravasation. The rapid binding of polymorphonuclear leukocytes (PMN) to the endothelium and diapedesis occurs within minutes after the introduction of a chemotactic stimulus in tissue, Cybulski et al., Am. J. Pathol. $\underline{124}$: 367 (1986). This rapid extravasation appears to depend on the response of the PMNs to chemoattractants and on the presence of the CD11/CD18 family of glycoproteins on the leukocyte surface. The family of glycoproteins associated with PMNs are termed leukocyte integrins and include LFA-1 (CD11a/CD18), Mac-1 (CD11b/CD18) and p150,95 (CD11c/CD18). Each of these heterodimers has a unique alpha chain (CD11 a, b, c) and an invariant beta-2 chain (CD18). Stimulation of PMNs with various chemotactic factors causes increased expression of leukocyte integrins (CD11b/CD18) fostering strong adhesion to unstimulated endothelium in vitro; Harian, Blood $\underline{65}$:513 (1985). Essentially all of the chemoattractant-induced adhesion is inhibited by treating the PMNs with mMAbs specifically reactive with the CD11/CD18 complex, Harian et al., Blood $\underline{66}$: 167 (1985); Zimmerman and McIntyre J. Clin. Invest $\underline{81}$: 531 (1988); Smith et al., J. Clin . Invest $\underline{82}$: 1746 (1988) and Lo et al., J. Exp. Med. $\underline{169}$: 1779 (1989).

Murine hybridomas producing monoclonal antibodies reactive with the beta chain common to the Mac-1, LFA-1 and the p150,95 integrins have been described. The mMAbs are designated 1B4, 60.3, TS1/18, H52 and ATCC TIB 218. The 1B4 is an IgG1 antibody and was prepared by Wright et al. Proc. Natl. Acad. Sci. USA 80: 5699-5703 (1983), the 60.3 is also IgG2a and was prepared by Beatty et al. J. Immunol. 131:2913-2918

(1983), TS1/18 is an IgG1 antibody and was prepared by Sanchez-Madrid et al., J. Exp. Med. <u>158</u>: 1785-1803 (1983), and ATCC TIB 218, a IgG2a kappa prepared by Springer et al., J. Exp. Med. <u>158</u>: 586-602 (1983). These antibodies appear to be functionally equivalent and cross-react with the beta 2 - chain found on human, sheep, pig, rabbit and dog leukocytes but not with the beta-2 chain found on murine and rat leukocytes.

Summary of the Invention

The present invention is directed to a method for producing humanized monoclonal antibodies by utilizing a process of comparative model building. In this method computer data bases are searched to locate homologous human protein sequences that correspond to specified regions of the non-human derived (usually murine) antibody, and a series of models is formulated, tested and modified to produce a model of a humanized antibody which is then constructed by recombinant DNA technology. In a preferred embodiment, a humanized monoclonal antibody corresponding to the murine anti-CD18 antibody 60.3 was prepared.

The variable (V) region sequences from both the heavy (H) and light (L) chains were determined from cDNA (amplified by PCR), and spliced onto human constant (C) regions, resulting in a chimeric 60.3 Ab (IgG1, kappa). The chimeric Ab was expressed in tissue culture (Ag8.653 mouse myeloma cells, detected by ELISA), and examined in binding assays. The results from competition and inhibition assays showed that the chimeric Ab was as effective as the murine 60.3 mAb.

The deduced murine V_H and V_L protein sequences were compared to the protein sequence data base, and two human Ig protein sequences were selected to be used as templates. The present inventors modeled a murine 60.3 Fv according to the deduced V_H and V_L protein sequences. Based on the 60.3 Fv model and the two human template sequences selected from the protein data base, a humanized Fv was modeled.

Construction of the humanized 60.3 was done by piecing 5 pairs of complementary oligonucleotides together (spanning the entire V region) to form the VH and VL. These were then attached onto vectors containing genes for appropriate C regions to form humanized Ab (IgG1, kappa). The humanized proteins were again expressed in Ag8.653 cells and binding assays were done. FACS analyses indicated that the humanized Ab recognized cells expressing CD18. About a dozen of the humanized 60.3 Ab master wells were transferred and assayed for Ig.

30 Brief Description of the Drawings

In the drawings:

Figure 1 illustrates an amino acid comparison of the murine 60.3 antibody heavy chain (m60.3) with the human variable heavy chain consensus sequence for the framework regions of human subgroup $V_{\rm H}1$ (hVh1/Jh4), the human template (M030) used for humanization (h60.3 template), a germline sequence homologous to M030 (21-2 'CL), and phases I to IV of the humanization process. All amino acids which are identical to the phase IV sequence are shaded. In addition, sequences which are different than the previous phase sequence are shown in bold.

Figure 2 illustrates an amino acid residue comparison of the murine 60.3 antibody light chain (m60.3) with the human variable light chain consensus sequence for the framework regions of human subgroup $V_kIII(hVkIII/Jk)$, phases I-IV of the humanization process and the human template used for the humanization (h60.3 template). All amino acids which are identical to the phase IV sequence are shaded. In addition, sequences which are different than the previous phase sequence are shown in bold.

FIGURE 3 illustrates five pairs of complementary oligonucleotides corresponding to the variable regions of the light chain.

FIGURE 4 illustrates five pairs of complementary oligonucleotides corresponding to the variable region of the heavy chain.

FIGURE 5 illustrates the binding of murine, chimeric and humanized 60.3 antibody to HL60 human myelomonocytic cells. Fluorescein isothiocyanate (FITC) labelled antibody was incubated with cells at the concentrations indictated on the abscissa and the amount of antibody bound is indicated by relative fluorescence intensity on the ordinate.

FIGURE 6 illustrates the competition by preincubation of cells with chimeric and humanized 60.3 of the binding of FITC-labelled murine 60.3 to HL60 cells. HL60 cells were preincubated with 1 ug/ml of either chimeric 60.3 (circles) or humanized 60.3 (squares), followed by incubation with various concentrations of FITC-labelled murine 60.3. In the absence of competing antibody, FITC - m60.3 binding to the HL60 cells increased with increasing concentration (x).

FIGURE 7 illustrates the direct competition of FITC-murine 60.3 binding to HL60 cells by chimeric and humanized 60.3. The dashed line shows the fluorescent intensity of binding by FITC-murine 60.3 in the absence

of competitor, while additions of increasing concentrations of chimeric 60.3 (squares) and humanized 60.3 (circles) inhibited FITC-m60.3 binding.

FIGURE 8 illustrates the results of a chemiluminescence binding assay of murine (closed square), chimeric (open square) and humanized (closed diamond) 60.3 antibody upon HL60 cells. The anticancer antibody L6 (open diamond), which does not bind to HL60 cells, was used as a control.

FIGURE 9 illustrates a series of restriction maps for plasmids utilized in the production of the variable light chain plasmid pGK.11.

FIGURE 10 illustrates the nucleotide sequence for the humanized variable light chain.

FIGURE 11 illustrates a series of restriction maps for plasmids utilized in the production of the variable heavy chain plasmid pNy1.16.

FIGURE 12 illustrates the nucleotide sequence for the humanized variable heavy chain.

Description of Preferred Embodiments

10

50

The present invention is directed to a method of producing humanized monoclonal antibodies (mAbs) by utilizing a process of comparative model building and rational design. In a preferred embodiment this method is utilized to produce a humanized molecule of the anti-CD18 murine monoclonal antibody 60.3. The mouse mAb 60.3 (IgG2a), which recognizes a functional epitope on the beta subunit (CD18) of leukocyte integrins, prevents the adherence and aggregation of polymorphonuclear neutrophils (PMN), resulting in a blockage of neutrophil mediated damage during shock and reperfusion injury. It would be advantageous to modify mAb 60.3 to reduce the potential for HAMA (human anti-mouse Abs) response. Therefore, in one embodiment, the present invention was directed to "humanize" the 60.3 mAb by creating an Ab whose constant (C) region is human, but whose variable (V) region is composed of both human (principally framework sequences) and mouse (principally CDR loops) sequences. For the studies described in the present invention, murine, chimeric and humanized antibodies were purified from solution by protein A chromatography on IPA - 400 Fast Flow Immobilized rProteinA (Repligen, Cambridge, MA) using the manufacturer's recommended protocol.

In the present invention recombinant methods are utilized to produce humanized monoclonal antibodies that contain complementarity determining regions (CDRs) analogous to the originally derived monoclonal antibody, and which have homologous human heavy and light chain framework regions. The resulting antibodies demonstrate the binding affinity and specificity of the original antibody yet are completely humanized monoclonal antibodies.

As used herein the term "humanized" and its various grammatical forms as it relates to antibodies is defined to mean that the amino acid residues of the antibody in the heavy and light chains are replaced with amino acid residues corresponding to homologous human protein regions without altering the binding activity of the antibody. For the humanized 60.3 monoclonal antibody of the present invention there is approximately 80% sequence identity of the variable regions of the heavy and light chains with those of the human mAb, while the constant regions are distinctly human. Some variation of individual amino acids in the antigen binding and framework regions are contemplated by this invention and are within the scope of this invention when such variations do not interfere or inhibit the binding to antigen, such as the lie for Glu substitution at position 106 of the light chain.

As used herein the term "canonical loop conformation" refers to a small repertoire of main chain conformations for five of the six loops (all except H3). The particular conformation adopted is determined by only a limited number of residues within the loop or the framework.

As used herein the term "framework residues" means residues which are located outside the structurally defined CDR loops. These residues can be part of the hypervariable regions for the antibody.

As used herein the term "monoclonal antibody" refers to all recombinant antibodies derived from an initial single cell and includes murine monoclonal antibodies, chimeric antibodies and humanized antibodies.

In the present invention a procedure of comparative model building was utilized to construct the appropriately designed humanized antibody. As a preferred embodiment, the modeling of the murine 60.3 antibody is summarized.

The Brookhaven Protein Database (Bernstein et al. (1977) J. Mol. Biol. $\underline{122}$: 535-542) was searched for the antibody crystal structures which show reasonably high homology (> 50% sequence identity) to the variable regions of murine 60.3. If the variable light chain and heavy chain templates which fulfill these criteria are from different antibodies, these structures are combined by superposition of the set of structural invariants at the V_L - V_H domain interface (Novotny et al. (1985) Proc. Natl. Acad. Sci. USA $\underline{82}$: 4592-4596). This provides the "structural template" for model building of murine 60.3 (and humanized 60.3 below).

The CDR loops and their known structural framework determinants of murine 60.3 are determined by defining the CDR loops structurally according to the method of Chothia et al. (Chothia et al. (1989) Nature 342:

877- 883). The structurally defined CDR loops consist on average of shorter sequence segments than the hypervariable regions defined by Kabat (Kabat et al (1987) Sequences of Proteins of Immunological Interest). The five canonical CDR loops (L1-13, H1-H2, i.e. all except H3) in the 60.3 variable light and heavy chain are assigned to known canonical loop conformations, and the framework residues which are crucial for the conformations of the CDR loops are determined.

The non-canonical H3 loop region within the 60.3 sequence is defined and a model of murine 60.3 is then built. The CDR loops of the structural template are replaced with canonical CDR backbone templates as determined using interactive computer graphics (INSIGHT II, Ver. 2.0 Biosym Technologies, Inc. 1991). Loop searches (Jones TA (1986) Embo J.: 819-822) in the Brookhaven Protein Data Bank are carried out to extract an initial backbone approximation for the non-canonical CDR loop H3.

All non-conserved amino acid side chains in similar positions are replaced using interactive computer graphics. The model then consists of a combination of backbone fragments of different antibodies with replaced side chains. The model is solvated with a 7 Šwater layer and the structure is refined using an energy minimization (Mackay et al. (1989) Prediction of Protein Structure and the Principles of Protein Conformation. New York: Plenum Press pp.317-358) protocol where, over the course of 1600 cycles of conjugate gradients minimization, constraints of 80 kcal/mol/Ų on all protein non-hydrogen atoms are gradually released until, at the final stage of the minimization procedure, all atoms of the system are free to move.

The most homologous human variable region sequences are found by searching the sequence data base for the most homologous human sequences for the variable light and the variable heavy chains of the 60.3 antibody and these sequences are combined to obtain a "human template". The structural template for murine 60.3 is confirmed to be suitable for the human template. The sequences of the structural template chosen initially showed > 50% sequence identity to the variable regions of the "human template". Furthermore the percent homology is chosen to be similar to that found for comparison of the structural template with the murine sequence. The CDR loops and known structural determinants are then grafted onto the human template (Jones et al. (1986) Nature 321: 522-535). The CDR loop regions and structural determinants in the "human template" sequence are replaced by the analogous sequences from the murine antibody, as determined above. This provides the Phase I h60.3 sequence. A Phase I model of humanized 60.3 is built using the same model building protocol as described for murine 60.3.

In Phase II the murine and Phase I h60.3 models were compared. These models now consist of the murine binding site and murine framework (murine 60.3 or m60.3) and of murine binding site and human framework (Phase I humanized 60.3 or h60.3). The of murine and Phase I h60.3 were superimposed using the structural invariants of the immunoglobulin fold (Novotny et al. (1985) Natl. Acad. Sci. USA 82: 4592-4596). The models of the binding site regions were compared residue by residue from the N-terminus to the C-terminus. By this comparison, all framework residues and residues within the framework - CDR junctions which can interact with the murine CDR loops and may therefore be important for the structural integrity of the murine binding site were identified. These residues typically include all the known structural determinants for the specified canonical CDR loop conformations (Chothia et al. (1989) Nature 342: 877-883) and other residues found to be critical in the comparison (due to proximity to the CDR loops and potential for interaction with them). These residues were then "re-mutated" to the murine residues, forming the Phase II h60.3 model.

The murine 60.3 model and the modified humanized sequence were then further refined by again subjecting the models to the energy minimization procedure described above. This construct represents the Phase II h60.3 model.

In Phase III, further improvements of the structural model of h60.3 were made A conformational search (Bruccoleri RE and Karplus M. (1987) Biopolymers $\underline{26}$: 137- 168) was carried out over regions of the binding site which cannot be directly assigned to known structural templates. Typically, this is the CDR loop H3 and perhaps one or more CDR loops which may not belong to known canonical structure types. Side chain conformations of the antigen binding site loops and the framework - CDR junctions are also further refined using an iterative conformational search protocol (Bruccoleri RE and Karplus M. (1987) Biopolymers $\underline{26}$: 137-168). The refined model structure may be called Phase III h60.3.

In Phase IV, analysis of the binding site features of the Phase III h60.3 model was carried out. The binding site features of the construct were analyzed in detail in order to classify the antibody structure, for example, as a "groove-type" or "cavity-type" or "flat" antibody. This allows one, in the absence of detailed structural knowledge of the antibody-antigen complex, to postulate which parts of the CDR surface or residues at the CDR-framework junctions are unlikely to be involved in antigen binding. In the Phase III and earlier models, these positions may be occupied by murine residues which can now be changed to human residues.

This improves the "degree of humanization" of the antibody since parts of some CDR loops and other entire CDR loops can be "humanized". At this stage, the final version of humanized 60.3, Phase IV h60.3 was obtained.

Comparative molecular modeling has been used here to enable a detailed three-dimensional comparison of a murine antibody and its humanized version. This comparative study has enabled the present inventors to analyze residue-residue interactions which are likely to be critical to retain the murine specificity in the structural context of a largely human antibody. Furthermore, the different modeling concepts based on structural homology (experimental structural data) and conformational search (which represents an *abinitio* method) have been combined to obtain the best possible picture of the 60.3 binding site in order to, gain some insight into which of the binding site residues may be not involved in antigen binding.

In addition to the application summarized above, comparative model building can be applied to other problems. For example, many of the antibody structures which are modeled today are used to guide mutagenesis experiments in order to explore affinity and antigen specificity. Such antibodies are often modeled because experimental structures are not available for these antibodies. Comparative model building provides an opportunity to assess the confidence level of such theoretically derived structures.

For example, the combining site of a clinically relevant antibody can be derived starting from different structural templates and employing the different methods based on structural homology and conformational search. By pairwise combination of two different templates with two different methods, four model structures can be derived in an independent way and then compared by superposition of structural invariants. This comparison allows for the determination of how well the independently derived structures agree and which parts of the models do not show satisfying agreement. In the absence of experimental structural data, such comparative model building exercises presently provide the only way to assess the confidence level of antibody models. If the independently derived structures agree well, a high confidence level can be assigned to the model and a "consensus model" can be prepared. The consensus model would then typically represent a combination of structural elements derived by structural homology and conformational search. On the other hand, disagreement of the models allows for the identification of the particular critical regions in model structures which are less well defined and need to be improved or, if this is not possible, treated with caution. Such knowledge, obtained by comparative model building, is very important for the use of model structure for experimental design.

Although the humanized 60.3 Ab was prepared by grafting the murine CDRs onto the human frameworks, certain amino acids were not changed from the murine protein sequence to their human counterpart (due to their importance in retaining the conformation of the CDR loops). Therefore, three humanized 60.3 L "mutants" (based on computer modeling) were constructed in an effort to 1) further reduce its divergence and 2) determine the contribution of these amino acids on antigen (Ag) binding.

There are 4 amino acids in the L chain which are changed: one is in the CDR2 (postulated not to be involved in binding) and the remaining amino acids all reside in the framework 2 region. The three humanized 60.3 L "mutants" are as follows:

1) Mutant 1: amino acid change is only at position 50, from Arg (R) to Asp (D).

35

55

- 2) Mutant 2: 3 amino acids changes are carried out at positions 50 (as in Mutant 1), 54 [from Leu (L) to Arg (R)] and 55 [from Glu (E) to Ala (A)].
- 3) Mutant 3: contains the changes in Mutant 2, and at position 68 Arg (R) is changed to Gly (G).

From this set of mutants, effects can be seen on binding by (1) Arg 68 alone (by comparing results from Mutants 3 and 2) and (2) Leu 54 and Glu 55 (by comparing results from Mutants 2 and 1).

Total cellular RNA was extracted from a 60.3 producing cell-line according to the method of Davis et al (1986). The first strand cDNA was synthesized using a cDNA synthesis kit from InVitrogen and an oligo (dT) primer. The cDNA was then amplified by polyermase chain reaction (PCR) using degenerate primers (Larrick, et al.(1991) Scand. J.. Immun. $\underline{32}$:121-128; Colloma and Larrick (1991) Biotechniques $\underline{11}$: 152-156). For the heavy chain, the sense primers (MH-SP-ALT.1 and MH-SP-SLT.2) were from the signal peptide and had an Xho I restriction site and the 5' end. The antisense primer (MH- gamma-CONST) was a consensus sequence from the CH1 domain of murine γ heavy chains and had a Pst I site at the 3' end.

For the PCR amplification of the light chain, the sense primers (EcoRI/FR1-ML (k)) were from the 5' end of the first framework region and had an Xho I restriction site at the 5' end. The antisense primer (HindIII/M1(k-)CONST) was from the k constant region, but had a Sal I restriction site instead of the Hind III site described by Larrick et al.

For both the heavy and light chains, the PCR products were either restricted (Xho I and Pst I for the heavy chain; Sal I and Xho I for the light chain) and cloned into similarly restricted pUC 18 or treated with nucleotide kinase followed by blunt ended ligation into Sma I digested pUC 18. Ligation products were used to transform competent DH α E. coli cells.

Clones containing inserts were selected using X-Gal/PTG; positive clones were screened for appropriately sized EcoR I-Sal I restriction fragments. EcoR I and Sal I flank the cloning sites in pUC 18 and are therefore expected to release the PCR product producing an approximately 0.5kh fragment. Selected-clones were sub-

jected to the double stranded DNA sequencing (Hsiao (1991) Nucl. Acid Res 19:2787) using Sequenase (U.S.Biochemical). The sequence is shown in Figures 10 and 12, and Sequence I.D. numbers 9 and 10. The V gene sequences were compared to sequences of other murine Ig genes (Kabat et al, (1987) Sequences of Proteins of Immunological Interest, 4th ed., Nat. Inst. of Health, Bethesda, MD.) The heavy chain was found to belong to the VH IIa subgroup and the light chain to belong to the Vk IIIb subgroup.

In order to be sure that the correct V genes had been cloned and sequenced, heavy and light chain from purified 60.3 were subjected to N-terminal amino acid sequencing. The amino acid sequence of the heavy chain was identical to that deduced from the DNA sequence. However, there was a discrepancy for the 7th and 8th amino acids of the L chain. For the DNA, these amino acids (Tyr and Gln, respectively) are encoded by the sense primer used for the PCR reaction. Ser and Pro were found at these positions by amino acid sequencing. Furthermore, almost all other Vk genes of this subgroup had Ser and Pro at this position. It was concluded that the primers used were not entirely appropriate for the V gene. They were however, similar enough to the cDNA that annealing and priming could occur. The codons for these 4 amino acids occur at the 3' end of the primer and are as follows:

Tyr Gln : TA (C/T) CA (A/G)
Ser Pro : TCX CCX

To determine the real sequence at this position, the entire procedure (cDNA synthesis, PCR amplifying, cloning, and sequencing) was repeated using primers which terminated before the codons in question. This showed that Ser and Pro were encoded at positions 7 and 8, respectively. The initial PCR product was reP-CRed, using a sense primer which encoded Ser and Pro rather than Tyr and Gln at positions 7 and 8.

For each V gene, 2 PCR primers were synthesized. The amplification of genes by PCR, cloning into Puc18, as well as the double stranded DNA sequencing were all done as described above. The PCRed V genes were then cloned into the expression vectors PNγ 1.16 and PGk11 which have human constant regions (Fig. 9 and 11) before transfection into the mouse myeloma cell line, Ag8.653.

The VL and VH genes were inserted into pGk.11 and pNγ1.16, respectively, by amplifying the genes by PCR adding restriction site and intron sequences at the 5' and 3' ends.

The sense primers for both the H and L chains contained within their sequences the following in the 5' - 3' direction:

1. N6,

15

30

35

40

45

- 2, restriction site for cloning (EcoRI and SacI for the H chain; EcoRI and HindIII for the L chain; EcoRI is for cloning into pUC18, SacI and Hindm are for cloning into the expression vectors),
- 3. branch point lariat signal,
- 4. polypyrimidine tract,
- 5. splice acceptor site,
- 6. leader peptide 2,
- 7. the beginning of the FR1 of the V gene.

The reverse complement of the antisense primer contained:

- 1. 3' end of VDJ gene for the H chain and of the VJ gene for the L chain,
- splice donor signal,
 - 3. restriction site for cloning (Sall and Xhol for both H and L chains; Sall is for cloning into pUC 18, Xhol is for cloning into the expression vectors),
 - 4. N6.

The sense primer for the heavy chain was:

5'a6GAATTCGAGCTCTTTTTCTGATAACGTTGTCCTTCTGTTTCTTGCAGGT GTCCAGTGTCAGGTCCAACTTCAGCAGCCTGGG3'

50 The anti-sense primer for the heavy chain was:

5'A6GTCGACCTCGAGTGTGAGGACTCACCTGAGGAGACGGTGACTGAGGT GCCT3'

The sense primer for the light chain was:

55

5'a6GAATTCAAGCTTTCCTGACTACATGAGTGCATTTCTGTTTTATTTCCA ATTTCAGATACCACCGGAGACATTGTGCTAACACAATCTCCA3'. The anti-sense primer for the light chain was:

5'A6GTCGACCTCGAGATCACTTACGTTTGATTTCCAGCTTGGTGCCTCCAC 3'

The amplification of genes by PCR, cloning into pUC18 and the double stranded DNA sequencing were done as described above. The PCRed V genes were the cloned into the expression vectors. For the heavy chain, the V gene was directionally cloned into the Sac I and Xho sites of pNγ1.16. For the light chain, the V gene was directionally cloned into the HindIII and Xho I sites of pGk.11.

Humanized VH and VL genes were constructed by oligos and is described in detail herein below. The insertion of humanized V_H and V_L genes into pN $\gamma 1.16$ and pGk.11, respectively were done by the procedures described for the chimeric Ab. The sequences needed for cloning and expression were built in (or included in) in oligo #1 and #10.

The presence of the chimeric 60.3 Abs were detected by ELISA. In this assay, 96 well plates were coated with goat anti-human IgG. The chimeric 60.3 in the sample which bound to the plates were detected by using horse radish peroxidase (HRPO) conjugated human anti-kappa IgG. Purified chimeric L6 (an unrelated anti-tumor antibody) was used as a standard. The culture supernatants from Ab producing clones were selected for binding in FACS binding assays.

FACS Binding Assays

5

30

35

40

45

HL60 is a human myelomonocytic cell line which expresses CD 18 on the cell surface.

HL60 target cells, grown in culture media (DMEM, 1% fetal calf serum and 2% L-Glutamine), were made 10⁷/ml in the culture containing 0.1% NaAzide at 4°C. 10⁶ cells were used per binding assay. Bovine IgG (Sigma, 20 ug/ml final concentration) was added for 10 min. at 4°C to mask the Fc receptors before performing the assays. Binding assays were done as direct binding, pre-incubation or competition assays.

1) Standard binding assays

Various amounts of murine, chimeric or humanized 60.3 were incubated for 45 minutes with HL60 cells, washed and then incubated with FITC-labeled goat anti-mouse (for murine 60.3) antibody (Tago, Inc.) at 1:50 dilution or FITC-labeled goat anti-human antibody (for chimeric and humanized 60.3.) The fluorescence intensity was then monitored.

2) Pre-incubation assays

Pre-incubation experiments were done with murine 60.3. For pre-incubation with either chimeric 60.3, or humanized 60.3, 1000 ng/ml of either c60.3 or h60.3 was added to the HL60 cells for 45 minutes to 1 hr at 4°C. Cells were then washed twice with 1 ml of ice cold NaAzide-containing culture media and centrifuged in a Beckman table top centrifuge (Model TJ-6) at 1000 rpm for 5 min. After decanting washes, cells were resuspended in various concentrations of FITC-conjugated murine 60.3 Abs and incubated on ice for 45 min. to 1 hr. with intermittent mixing at 10min intervals. Cell pellets were fixed in 300 ul of 1 % paraformaldehyde at 4°C before analysis of FACS machines.

3) Co-incubation assays

Co-incubation assays were carried out by incubating various concentrations of chimeric 60.3 or humanized 60.3 with a saturating concentration (1 ug) of FITC-conjugated murine 60.3 Abs. Both types of Abs were added to the HL60 cells simultaneously; thus eliminating one incubation step. Incubation, washing and centrifugation were all done as in the pre-incubation assays. The cells were also suspended in 1 % ice cold paraformaldehyde before analysis by FACS.

The mean channel values obtained from FACS analyses were translated into linear fluorescence equivalence (LFE)values. The LFE values were further used to calculate the fluorescence intensity levels (FIL) according to the following equation:

FIL = LFE of sample/LFE of negative control (no second antibody)

Electroporation of cells was carried out on a BioRad electroporator, set on capacitance of about 960 fu and .25 volts. A count of viable cells was taken before starting. Cells were at least 90% viable for use. Cells were also in the $4-6 \times 10^5$ /ml range; if they are overgrown, they will not show high transfection efficiency. 1 $\times 10^7$ cells/electroporation group were removed and one group was used for a control electroporation and one for an "unzapped" control. Cells were centrifuged at 1000 rpm for 10 minutes. Supernatant was removed by vacuum with a sterile, unplugged pasteur pipet and the pellet was resuspended in as large a volume of PBS as the tube will allow and washed again.

The pellet was resuspended in 0.8 ml PBS per 1 x 10⁷ cells and 0.8 ml aliquot were added into labeled cuvettes. 10 ug each of DNA was added to cuvette. Incubate cuvette on ice for 10 minutes after mixing. The cuvettes were electroporated noting time factor reading and put on ice for 10 minutes, and then transferred

into 19 mls of IMDM/10% FBS, using 1 ml of medium to wash them out of the cuvettes. Cells were at 37° C for 48 hours, and then plated at 10^{4} , 3×10^{3} , and 1×10^{3} cells per ml in IMDM with 10% FBS and fed for 2-3 weeks before screening.

Enzyme-linked immunosorption assays (ELISA) were carried out as is known in the art. In an illustrative embodiment of ELISA in the present invention was performed as follows. Plates were created by diluting goat anti-human IgG 1:10,000 with 0.05M carbonate buffer, pH9.6 and transferring 100 ul to each well of a 96 well microtiter plate. The plate was then incubated at 4°C for 12 to 16 hours. The plates were then rinsed 1 to 3x and specimen diluent was added. The plates were then incubated at room temperature for 1 hr and rinsed 3x. On separate plates, 30 ul of cultural supernatant was diluted to 300 ul with the specimen diluent and 50 ul was transferred to the previously coated plates. 50 ul of specimen diluent was added and maintained at room temp for 1 to 2 hours and rinsed 3x. HRPO- conjugated human anti kappa was diluted with conjugate diluent 1:5,000 and 100 ul was added per well to plates and incubated at 37°C for 30 minutes and washed 3x. A chromagen (1:300) with buffer substrate, pH 5.5 (room temperature) and 100ul was added to the plates. The plates were incubated at room temperature for 15 minutes, 100 ul of 3M H₂SO₄ was added and the plates were read at a wavelength of 450 nm and 630 nm.

Chimeric and humanized Mab 60.3 were analyzed using size exclusion HPLC (secHPLC), sodium dode-cylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and isoelectric focusing (IEF). Test samples were compared to a murine 60.3.

o secHPLC

A TSK3000SW Spherogel 7.5 \times 600 mm column manufactured by Toso Haas was used. The mobile phase was 0.05 M phosphate buffered saline and samples were eluted at 0.5 ml/minute for 60 minutes. The chromatograms show that the test lots have multiple contaminating peaks and a major peak eluting at about 27.5 minutes. The major peak observed with the reference murine 60.3 Mac chromatogram, eluted at about 26.7 minutes.

SDS-PAGE

SDS-PAGE was performed using a 4-20% gradient gel and bands were detected by Coomassie blue staining. All lots were compared to the murine reference lot. Samples were run both reduced with 2-mercaptoethanol and non-reduced. Non-reduced gels showed that the major band ran consistent with the reference standard. The reduced gel showed data consistent with heavy and light chain separation.

35 IEF

30

Isoelectric focusing was performed using precast gels with a pH range of 3-10. Both 2 ug and 5 ug of sample were applied and run at 100 volts for 60 minutes, 200 volts for 60 minutes, and 500 volts for 30 minutes. Gels were stained with Coomassie Blue R-250. The chimeric 60.3 sample had no visible bands. This suggests that the material did not migrate into the gel. The humanized 60.3 sample had visible bands at the top of the gel in a region difficult to determine pl's. This data suggest that the chimeric and humanized lots of antibody have pl's greater than 8.0 as determined by the reference markers. This is in contrast to the murine mAb 60.3 which has a pl range of 6.8 - 7.5.

Having described this invention and embodiments thereof, the present invention is further illustrated by the following Examples which are not intended to limit the scope of the invention.

EXAMPLE 1: Comparative Model Building

The structural templates for comparative model building of murine 60.3 were determined. The Brookhaven Protein Data Bank was searched for the sequences with known structure which are most homologous to murine 60.3 heavy and light chains. The antiphosphocholine murine myeloma antibody, McPC603 (Satow et al. (1986) J. Mol. Biol. 190: 593-604) was found to be the most homologous to the light chain, with 68% sequence identity/homology. The anti-p-azophenylarsonate murine monoclonal IgG2, R19.9 (Lascombe et al (1989) Proc. Natl. Acad. Sci. USA 86: 607-611), was found to be the most homologous to the heavy chain, with 59% sequence identity/ homology. MCPC603 VL and R19.9 VH were combined in order to obtain the structural template for model building of murine and humanized 60.3.

The CDR loops and known structural determinants of murine 60.3 were determined. Three CDR loops in 60.3 can be directly assigned to known canonical types (Chothia et al (1989) Nature 342: 377-383). These

are L2 (type 1), L3 (type 1) and H1 (type 1). The remaining CDR loops do not belong to known canonical structure types. The boundaries of these loops can be determined by aligning the 60.3 sequence with that of the structural model. These assignments are shown along with those of L2, L3 and H1 in Figs. 1 and 2. The framework residues which are crucial for the conformations of the CDR loops are also shown in Figs. 1 and 2 (for example, * L1 indicates structural determinants for the L1 loop) and in Sequence I.D. Numbers 2, 4, 6, and 8.

A model of murine 60.3 was then built. Backbone loop templates for L2 and L3 were taken from McPC603, and H1 from R19.9. L1 was initially modeled by a two residue deletion of the L1 loop of McPC603. H2 was found to be similar to the corresponding loop region in R19.9, which may represent a not yet classified canonical motif.

No loop closely related to H3 was found in the Brookhaven database. As a initial approximation for H3, an antibody non-CDR loop of the same size as 60.3 H3 (defined here as 96 to 102 in the Kabat numbering scheme or as H99 - H109 in the continuous sequence) was used. The backbone template for this loop was a 13 residue segment of the antibody NEW (Polijak RE. et al. (1974) Proc. Natl. Acad. Sci. USA $\underline{71}$: 3340), beginning at residue L8. The loop was selected because it has the same length and showed a reasonable fit into the adjacent framework of H3. Energy minimization/conformation refinement of murine 60.3 resulted in: 1) residual rms derivatives of the energy function: 0.63 kcal/mol A 2) Backbone rms deviations from the initial crystal coordinates: V_L : 0.86 Å; V_H :1.17 Å.

The most homologous human variable region sequences were found. The human sequence most homologous to 60.3 V_L is PIR Accession # A01900 (sequence identity/homology 66%). This is the Vg germline sequence described by Pech and Zachau (Pech, M. and Zachau, H.G. (1984) Nucleic Acids Res. $\underline{12}$: 9229-9236). Vg belongs to human Vk subgroup IIIa.

The human sequence most homologous to 60.3 V_H is PIR Accession # A32483 (homology 59%). This is the heavy chain from human monoclonal Ab MO30 (anti-HIV gp 120) (Larrick et al. (1989) BBRC 160 1250-1256). There are two germline sequences highly homologous (1 aa mismatch through FR3) to MO30 : 21-2 and 3-1 (Berman et al (1988) EMBO J. 7: 727-738). These sequences belong to human VH subgroup 1.

The structural template for murine 60.3 was confirmed to be suitable for the human template. The human template for the heavy chain (MO30) is 56% homologous to R19.9. The human template for the light chain (Vg) is 62% homologous to McPC603. These numbers are similar to the homology between murine 60.3 and the same structural templates. The CDR loops and the structural determinants for the human template are shown in Figs. 1 and 2. The CDR loops and known structural determinants were then grafted onto the human template (Jones et al. (1986) Nature 321:522-535). The results are shown in Figures 1 and 2 in the column marked Phase I h60.3. In these figures, the h60.3 sequences and all identical sequences from the other columns are shaded.

A Phase 1 model of humanized 60.3 was then built using the same model building protocol as for murine 60.3. The backbone CDR loop templates were the same as for m60.3. Energy minimization/conformational refinement of murine 60.3 and Phase I h60.3 resulted in:

residual rms derivatives of the energy function:

82% 82%

m60.3 : 0.63 kcal/molÅ Phase 1h60.3 : 0.58 kcal/molÅ

35

40

50

55

Backbone rms deviations from the initial crystal coordinates:

m60.3 model V_L : 0.86 A; V_H : 1.17 Å Phase I h60.3 V_L : 0.96 A; V_H : 1.15 Å

In Phase II, the murine and Phase I h60.3 models were compared and refined. A comparison of the models of murine and humanized 60.3 gave an rms deviation of 0.66 Å and 0.78 Å for V_L and V_H , respectively. As a result of the comparison, it was postulated that certain residues which were still "human" were important for the conformation of the CDR loops. These were therefore changed to the murine residues, and are shown in bold in the column marked Phase II/III h60.3 in Figures 1 and 2. Sequence comparisons of m60.3 and Phase II 60.3 models (including the CDR loops) gave the following homologies:

Phase II 60.3 V_L: vs.murine 60.3 V_L vs. human template V_I

Phase II h60.3 V_H

Phase II h60.3 F_V

vs. murine $60.3 F_V$ 80% vs. human template F_V 81%

In Phase III further improvements of the structural model of h60.3 were made. After further refinement of the murine and humanized models, the following parameters were obtained:

Final rms derivatives of the energy function:

murine 60.3 model: 0.55 kcal/mol Å
Phase III h60.3: 0.78 kcal/mol Å

Backbone rms deviations from the initial crystal coordinates:

murine V_L: 0.82 A, V_H: 1.09 A F_V: 0.98 Å Phase III h60.3 V_L: 0.88 A, V_H: 1.07 A F_V: 1.00 Å

Finally, in Phase IV, the binding site features of the Phase III h60.3 model were analyzed. When comparing murine vs. humanized models at previous stages, the emphasis was more on the comparisons of the CDR - framework interactions in the murine antibody and the humanized contacts. The Phase IV model, where the L1 and H3 loops were remodeled using conformational search, allows a more detailed analysis of the CDR surface than the previous models.

Analysis of the model suggests that 60.3 is a distinct groove-type antibody and that certain CDR loops (**L2 and H1**) may not be involved in antigen binding. In the Phase IV model, the amino acids in these loops have been changed to the sequences from the human template.

EXAMPLE 2

30

35

45

50

55

CONSTRUCTION OF THE HUMANIZED 60.3 V_H AND V_L GENES

Construction of the humanized 60.3 V genes was done according to the modeling methodology described in Example 1 by piecing 5 pairs of complementary oligos together (see Figures 3 and 4 and Sequence I.D. Numbers 11 to 30) each oligo was about 90 to 100 nt in length, together they span the entire V regions, forming the V_H and V_L . The step by step protocol used was as follows.

1. Five microfuge tubes were labeled and the following oligos (10 ng each, 10 ul) were added:

tube 1: oligo #2 tube 2: oligo #3 and #4 tube 3: oligo #5 and #6 tube 4: oligo #7 and #8

tube 5 : oligo #9

- 2. Tubes 2, 3 and 4 were heated to 100°C for 3 min. and then cooled slowly to room temp.
- 3. To all 5 tubes, 10x kinase buffer (40 m M Tris. CI pH7.5, 10 mM MgCl₂, 10mMDTT, lug DNA, 0.5 mMATP, 50 ug/ml bovine serum algumin and 1 "weiss" unit T4 DNA ligase), 100 uM ATP (1 ul) and nucleotide kinase were added to phosphorylate the 5' ends of the oligos. One Weiss unit is equivalent to 60 cohesive-end units. Reactions proceeded at 37° for 1 hr.
- 4. The tubes were extracted with phenol/CHCl₃ and precipitated with ethanol.
- 5. Oligos #1 and #10 (10ng, 10 ul) were added to tubes 1 and 5, respectively. Tubes 1 and 5 were mixed and step 2 was repeated for tubes 1 and 5.
- 40 6. The contents from all 5 tubes were pooled into a single tube.
 - 7. Ligate at 12° C, for 12 to 16 hours in a vol. of 25 ul.
 - 8. Analyze 2 ul on 1.0 % agarose.
 - 9. After successful ligation, restriction digest an aliquot with EcoRI and SalI for 45 min. at 37°C.
 - 10. Apply onto 3.0% low melt agarose gel and cut out the correct sized band (approximately 0.4kb).
 - 11. Ligate into Puc 18 (pre-digested with EcoRI and Sall).
 - 12. Transform DH5α cells.
 - 13. Select the potential positives based on Xgal/IPTG indicators.
 - 14 Miniprep cultures were prepared and maintained for 12 to 16 hours.
 - 15. Plasmid DNA was isolated from these cultures and the insert sizes were checked by cutting with EcoRI and Sall.
 - 16. The plasmid DNA was sequenced for verification. Several of the clones had mutations such as single base deletions.
 - 17. The synthetic H and L variable genes were cloned into appropriate expression vectors (pNG1.16 and pGk. 11, respectively.)
 - 18. The potential positives were isolated after selection on ampicillin.
 - 19. Steps 14 to 16 were repeated.
 - 20. Transfection into mouse Ag8.653 myeloma cells was carried out, followed by selection with G418 (Raff, et al., (1991) J. Infect. Dis. 163 : 346-354).

21. Ig positives were then screened with ELISA (gamma, kappa capture). The DNA sequences of the murine 60.3 heavy and light chains are shown in Sequence I.D. numbers 5 and 7, respectively; and the DNA sequences for the humanized 60.3 H and L chains are shown in Sequence I.D. numbers 1 and 3, respectively.

5

EXAMPLE 3

BINDING ASSAYS OF 60.3

The binding activity of the humanized 60.3 antibody was measured by preincubation, competition and chemilluminescence assays.

HL60 is a human myelomonocytic cell line which expresses CD 18 on the cell surface.

HL60 target cells, grown in culture media (DMEM, 1% fetal calf serum and 2% L-Glutamine), were made 10⁷/ml in the culture media containing 0.1% NaAzide at 4°C. 10⁶ cells were used per binding assay. Bovine lgG (Sigma, 20 ug/ml final concentration) was added for 10 minutes at 4°C to mask the Fc receptors before performing the assays. Three types of binding assays were performed.

A) Standard curves

As illustrated in Figure 5, various amounts of murine, chimeric, and humanized 60.3 were incubated for 45 minutes with HL60 cells. The cells were washed and then incubated for 45 minutes with either -FITC conjugated goat anti mouse IgG (for m60.3) or FITC conjugated goat anti human IgG (for c60.3 and h60.3). Excess antibody was washed off and the cells were fixed with 1% paraformaldehyde and assayed by FACS. For each curve, the value obtained at 1500 ng/ml is taken as 100%. Data at other concentrations are plotted as % of this value. As can be seen in Figure 5, all three antibodies titrate over approximately the same range., indicating similar affinities (known to be about 109 for m60.3).

B) Preincubation experiments

HL60 cells were preincubated for 45 minutes with 1 μ g/ml of either c60.3 or h60.3. The indicated amount of FITC conjugated m60.3 (or no antibody) was then added and the cells were incubated for another 45 minutes. After washing, the cells were fixed with paraformaldehyde and assayed by FACS. As can be seen in Figure 6, both the chimeric and humanized antibodies were able to completely block the binding of FITC - m60.3 to HL60 cells (note FIL = 1 is equivalent to no binding).

35

45

55

30

C) Competition experiments

As illustrated in Figure 7, 1 μ g of FITC conjugated m60.3 and the indicated amount of either c60.3 or h60.3 were coincubated with HL60 cells for 45 minutes. The cells were washed, fixed with paraformaldehyde and assayed by FACS. As can be seen in Figure 7, the chimeric and humanized antibody competed equivalently in this assay. The dashed line shows binding of 1 μ g FITC - m60.3 in absence of competitor.

3) Chemilluminescence Assay

An assessment of activity of 60.3 by inhibition of Zymosan-induced, luminol-enhanced chemiluminescence of PMN was carried out. The material and compositions and procedures used were as follows.

Prepararion of Components:

50 1. GGVB

1.1. Materials

- a)5x Veronal: Dissolve 41.2g NaCl and 5.095g 5,5-diethylbarbiturate (Paragon B-2 buffer) in 700 ml deopmozed (diH20). Adjust pH to 7.35 ± 0.05 with 1N HCl. Bring volume to 1 liter with diH20. Filter sterilize and store at 4°C. Stability but is at least 2 months.
- b) Stock metals: mix equal volumes of 2M $MgCl_2$ (40.66g/100ml) and 0.3M $CaCl_2$ (4.4g/100ml). Filter sterilize and store at 4°C. Stability is at least 6 months.

- c) gelatin
- d) dextrose

1.2. Procedure

5

10

For 300 ml GGVB:

Add 0.3g gelatin and 0.3g dextrose to 240 ml diH20. Heat with mixing until just dissolved. Let cool to below 37C.

Add 60 ml 5x Veronal and 0.3 ml stock metals. Filter sterilize and store at 4C.

This is made up fresh for each day's assays.

2.2. Zymosan

2.1. Materials:

15

- a) Zymosan A, SigmaZ-4250
- b) diH20
- c) 1 x PBS

20 2.2. Procedure:

Suspend zymosan to 25 mg/ml (1.5g/60ml) in diH $_2$ 0. Heat in glass in a water bath at 100C for 60 min. Transfer to 50 ml polypropylene centrifuge tubes. Centrifuge (8500 rpm in the TJ-6, 10 min, RT) and wash twice with 1 x PBS. Resuspend to 50 mg/ml (1.5g/30ml) in 1 x PBS. Store at 4C. Stability is at least 1-2 months at 4C.

3. Complement (adsorbed human serum)

3.1. Material:

30

35

- a) Freshly drawn human blood, without anticoagulants. Type O may be best, or use the same donor that supplies PMN. Transfer blood immediately after drawing into sterile 50ml glass centrifuge tubes (available from blood lab).
- b) 0.1 M EDTA, pH 7.35. Dissolve 3.72g NA_2H_2 EDTA in 80 ml di H20, with mixing. Adjust pH to 7.35 \pm 0.05 with freshly prepared 2N NaOH. Bring to 100 ml volume with diH20.
- c) Zymosan prep (see 2.1)

3.2. Procedure:

Allow blood to clot at room temperature for 1 hour. Rim the tube with a glass pipet to contract the clot. Centrifuge (8500 RPM in TJ-6, 20 min., RT) and carefully remove serum to a sterile polypropylene tube. Repeat centrifugation if necessary.

Add 0.1 M EDTA to serum to 10% mg/ml zymosan needed to adsorb serum at 0.2 mg zymosan/ml of serum. Add this volume of zymosan to each of four centrifuge tubes. Centrifuge zymosan tubes (8500 rpm in the TJ-6, 10 min,. RT) and remove supernatant. Keep the tubes on ice.

Resuspend the zymosan pellet of one tube with a small amount of serum. Add the reaminder of the serum and mix by inversion.

Incubate the serum/zymosan mixture on a rocker or rotator, 30 min, 4C.

Centrifuge as above. Repeat the adsorption with the other three tubes.

After the final centrifugation, filter the serum through a 0.45um syringe filter Aliquot into microfuge tubes or equivalent and store at -70C. The adsorbed serum has an unknown stability but it probably good for at least six months.

4 Human PMN

55

50

4.1. Materials

a) Freshly drawn heparinized blood.

- b) Ficoll-Hypaque Mono-Poly Resolving Medium (MPRM), Flow Labs no. 16-980- 49
- c) 1 x PBS
- d) 3% HoAc in diH20
- e) Serum-free, phenol red-free RPMI with 0.5% gelatin (RPMI-gel): Add gelatin (1.25g/250 ml) to serum-free, phenol red-free RPMI and heat with stirring until gelatin is just dissolved. Filter sterilize (0.45 um filter) and store in 50ml aliquots at 4C. Stability is least 2 weeks.

4.2. Procedure

10

Aliquot 4 ml MPRM into 15 ml polypropylene centrifuge tubes.

Overlay gently with 5 ml fresh blood.

Centrifuge (30 min, 2000 rpm in TJ-6, RT). If RBC are not completely pelleted, centrifuge an additional 10 minutes. If no RBC sedimentation has occurred, additional centrifugation will not work and another donor must be found.

Aspirate top (plasma) layer and first layer of cells (monocytes).

With a Pasteur pipet, carefully remove the second cell layer (PMN) to a 50ml centrifuge tube. Repeat with all tubes.

Add RT at room temperature, 1 x PBS to the PMN tube to a final volume of 50 ml and mix gently.

Remove 50ul and dilute appropriately in 3% HoAc (usually 1:20 is appropriate for a prep of 30ml whole blood) and count PMN in a hemocytometer. Calculate total PMN present in the 50ml tube.

Centrifuge PMN (10 min, 2000 rpm in TJ-6, RT) and resuspend to desired density (normally 2×10^6 ml) in RPMI-gel. Store at RT, swirling gently to resuspend occasionally (once or twice an hour). Viability should be > 90% after 6 hours; if used after 6-8 hours, check viability by trypan blue exclusion prior to use.

25 5 Luminol

5.1. Materials

a) Luminol (5 amino-2,3 dihydro - 1,4 - phthalazinedione), Sigma no. A-8511.

FW=172.2

b) DMSO, chromatography grade

5.2. Procedure

Dissolve luminol to 10⁻²M in DMSO (17.7 mg/10ml). Store at 4C in the dark (wrap tube in foil). Stability is more than 1 month; make fresh 3-4 weeks.

6. Antibody

6.1. Materials and Procedure

Dilute antibody in GGVB to appropriate concentrations.

Assay Design

45

50

55

30

35

Test volumes per tube are normally 1 ml, composed of the following.

- 100 ul antibody (sensitivity to concentration is unknown, previous work has been with 5 ug/ml preps)
 - 100 ul PMN (normal concentration at 2 x 106/ml)
 - mix by swirling gently and incubate 30 min, at room temperature (RT) (cover all tubes with one sheet of Parafilm)
 - 100 ul Zymosan (high concentrations, around 50mg/ml,seem to work best)
 - just before loading luminometer, add:
 - 600 ul luminol (diluted in GGVB, normal concentrations are 10-4 or 5 x 10-5M)
 - 100 ul complement (low concentrations, on the order of 1-2%, seem to work better)

Staging of Assay

Set up CL tubes (Clinicon 2174-089, available through LKB). Keep in the dark (in a drawer) to prevent spon-

taneous luminescence from absorbed fluorescent light.

Thaw complement at RT and hold on ice, just prior to assay complement may be unstable (may lost 50% of activity in 6-8 hours) at 4C.

Add antibody, PMN, and zymosan as described above to CL tubes.

Take tubes to luminometer. Program assay parameter into controlling computer.

Prepare final dilution of Luminol (and keep wrapped in foil) just before adding to CL tubes.

Prepare final dilution of complement in GGVB.

Add luminol and complement to CL tubes as described above and load into luminometer. Start the program immediately. Peak luminescence is reached 4-5 minutes after adding complement.

70 Throughout assay setup and during the first rotation of the CL tubes in the luminometer, apply anti-static charge with the anti-static gun to prevent CL tubes hanging up in the luminometer.

Results

The above procedure was utilized to measure the ability of murine, chimeric, and humanized 60.3 to inhibit CR3(CDIIb/CD18) medicated up take of opsonized zymosan by neutrophils. In the absence of 60.3. phagocytic uptake of opsonized zymosan results in an increase in hexase monophosphate shunt activity that is measured as light output by luminol-enhanced chemiluminescence.

% inhibition of chemiluminescence signal = 100 x (1 - signal of sample/signal of negative control antibody)

The results shown in Figure 8 illustrate that all of the 60.3 antibodies were reactive in this assay, while an irrelevant antibody (murine L6 anti-tumor antibody) showed no reactivity.

EXAMPLE 4

25

35

45

50

55

CONSTRUCTION OF pGK.11

In order to express either chimeric or humanized light chains, cassette vectors were constructed capable of expressing variable region genes, synthesized using PCR (polymerase chain reaction). In addition to sequences found on pSV2-gpt, these vectors contain an Ig promoter and leader, the 5' portion of an intron, a MCS for insertion of the variable region gene, the mouse heavy chain enhancer (MHE), the 3' portion of an intron and the human Ck gene. The variable region was PCRed so that in addition to the coding region it contained flanking intron sequences.

The cassette for the expression of the light chain was constructed as follows (and is illustrated in Figure i):

- 1. The 121 bp Hind III to Bgl II fragment of pSV2-gpt (Mulligan and Berg (1980) Science 209: 1422) was deleted from the 5' end of the Ecogpt by restriction with Hind III and Bgl II, filling in with Klenow polymerase, and religation. The product, pG.2, was detected by the absence of Hind III and Bgl II sites and linearization with EcoR I.
- 40 2. The pBR322 part of pG.2 (EcoR I-Pvu II fragment) was replaced with the analogous portion of pUC 18 (Pvu II Pvu II fragment) to form pG.3 This product was screened for by digestion with Pst I, which linearizes pG.3 giving a 5.05 kb fragment.
 - 3. pG.3 was made into pG.5 by the replacement of the 750 bp EcoR I to BamH I fragment with the 64 bp EcoR I to BamH I multiple cloning site (MCS) from plC20R (Marsh et al. 1984). pG.5 was screened for the presence of an Xho I site (part of the MCS).
 - 4. A Not I site was inserted in the Nde I site of pG.5 to form pG.12. Oligonucleotide linkers (Sequence I.D. numbers 33 and 34) were used for this purpose. pG.12 was screened for the presence of a Not I site.
 - 5. A 2.75 kb EcoR I fragment containing the human Ck gene was inserted into the EcoR I site of the MCS of pG.12 to form pGk.3. When the Ck fragment was in the correct orientation, Sac I digestion produced 0.126, 0.509 and 6.7 kb fragments (vs. 0.509, 2.1 and 4.7 kb fragments in the wrong orientation).
 - 6. A 140 bp portion of the SV140 enhancer was removed from pG.3 by restriction with Sph I, destroying the overhang with the exonuclease activity in Klenow polymerase, followed by digestion with Pvu II and blunt end ligation. The product, pG.9, was screened for the loss of Pvu II, Nsi I and Sph I sites.
 - 7. A Not I site was inserted in the Nde I site of pG.9 to form pG.10. Oligonucleotide linkers, described in #4 above, were used for this purpose. pG.10 was screened for the presence of a Not I site.
 - 8. The 195 bp Not I to BamH I fragment from pG.12 was inserted into the Not I to BamH I site of pG.10 to form **pG.11**. This served to place an 879bp fragment from pG.10 with a 195 base pair fragment containing a MCS. pG.11 was screened for the presence of Xho I site in the MCS region.

- 9. The 3kb Nar I to Cla I fragment from pGk.3 was directionally subcloned into the same sites of pG.11 to form pGk.4.
- 10. A 1kb fragment containing the mouse heavy chain enhancer was transferred from pICMHEXX to pGk.4 as a Cla I to Hind III fragment, thus forming pGk.5. EcoR I digestion of pGk.5. produced 0.3, 2.75 and 5.1 kb fragments. pICMHEXX was made by the insertion of the 1kb Xba I fragment (filled in with Klenow polymerase) from RBL 216 (Lang et al (1982) Nucl. Acid Res. 10: 611-620) into the filled in Bgl II site of pIC 19 R (Marsh et al (1984) Gene 32: 481-486).
- 11. A 579 bp Sau3a I fragment containing the 4B9 promoter pGkA1.9 (Raff et al, 1991) was inserted into the BamH I site (in the MCS) of pGk.5 to form pGk.11. The resulting plasmids were screened for the correct orientation of the insert: BamH I plus Asp718 I digestion gave a 1.2 kb fragment in the correct orientation vs. a 2.2 kb fragment in the wrong orientation. Also, BamH I plus Hind III digestion should give a 0.58 kb fragment.

The sequence of specific regions is contained in the following segments. The sequence is given in clockwise orientation beginning at the EcoR I site at 0° and is illustrated in Figure 10 and Sequence I.D. 10.

The ampicillin resistance gene is bp 7383 to 8241

The ecogpt gene is bp 5651 to 6107

The mouse heavy chain enhancer is bp 2770 to 3788

The Sau3a I fragment containing the Alk promoter and leader is bp 3827 to 4393, with the leader peptide encoded by bp 3951 to 3999.

The EcoR I fragment containing the human Ck gene is bp 6 to 2756, with the Ck region itself encoded by bp 2113 to 2435.

EXAMPLE 5

Construction of pNy1.16

25

35

40

45

50

55

5

10

In order to express either chimeric or humanized heavy chains, cassette vectors were constructed capable of expressing variable region genes synthesized using PCR (polymerase chain reaction). In addition to sequences found on pSV2-neo, these vectors contain an Ig promoter and leader, the 5' portion of an intron, a MCS for insertion of the variable region gene, the moue heavy chain enhancer (MHE), the 3' portion of an intron and the human C $\gamma1$ gene. The variable region gene is PCRed so that in addition to the coding region it contains flanking intron sequences.

The cassette for the expression of the heavy chain was constructed as follows (as illustrated in Figure 11) 1. The Hind III site in pSV2-neo was removed by digestion with Hind III, fill in with Klenow polymerase and religation. The product, **pN.1** was screened for the absence of the Hind III site.

- 2. The 750 bp EcoR I to BamH I fragment from pN.1 was replaced by a 64 bp EcoR I to BamH I multiple cloning site (MCS) from pIC20R to form **pN.5**
- 3. A PCR region was done on p1CMHEXX in a manner that primers were chosen to delete the EcoR I site while generating a new MCS region. This resulted in a product consisting of: a) recognition sequences for EcoR V, Asp 718 I, Sac I and Xho I; b) a 695 bp of the mouse heavy chain enhancer from the 5'Xba I site to the EcoR I site; and c) recognition sequences for Hind III, Sal I and BamH I. This 723 bp PCR product was cloned into p1C20R to form **pMHE.per**.
- 4. The 723 EcoR V BamH I fragment from pMHE.per was subcloned into the same sites in the MCS region of pN.5. This removed the previous MCS, while inserting the one associated with the MHE. The product, **pN.8**, was screened for the presence of 0.7 and 5.0 kb Xho I Hind III fragments and for linearization to 5.7 kb with EcoR I.
- 5. Two PCR SOEing (Horton et al, (1990) Biotech. $\underline{8}$: 528-535) reactions were used to create several mutations in the L6 heavy chain promoter. Outer primers had enzyme sites EcoR V and SacI for subcloning into pIC20R to form **pMUTL6HCP**. The sequence of this insert is shown as bp 7793-8495 in Fig.12 and in Sequence I.D. number 9.
- 6. The 703 bp EcoR V to SacI fragment from pMUTL6HCP was inserted into the same sites of pN.8 to form pN.9.
- 7. A 3.5 kb Xho I BamH I fragment from pN γ 1A2.5, containing the PCRed MHEXR (Sequence I.D. Number 31) plus the 2.8 kb Hindm BamH I fragment encoding the human γ 1 gene (Sequence I.D. Number 32) was inserted into the same sites of pN.9 to form pN γ 1.16. The sequence of this insert is shown as bp 2-2799 in Fig. 12 and in Sequence I.D. Number 9.

The foregoing description and the Examples are intended as illustrative and are not to be taken as limiting. Still other variations within the spirit and scope of this invention are possible and will readily present themselves to those skilled in the art.

5	SEQUENCE LISTING	
	(1) GENERAL INFORMATION:	
10	 (i) APPLICANT: (A) NAME: Bristol-Myers Squibb Company (B) STREET: 345 Park Avenue (C) CITY: New York (D) STATE OR PROVINCE: New York (E) COUNTRY: USA 	
15	(F) POSTAL CODE: 10154 (G) TELEPHONE: 206-728-4800 (H) FAX: 206-727-3601	
	(ii) TITLE OF THE INVENTION: HUMAMIZED MONOCLONAL ANTIBODIES	
	(iii) NUMBER OF SEQUENCES 34	
20	 (iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.25 	
25	(v) CURRENT APPLICATION DATA:(A) APPLICATION NUMBER: EP93401328.5(B) FILING DATE: 24-MAY-1993(C) CLASSIFICATION:	
30	<pre>(vi) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US07/888233 (B) FILING DATE: 26-MAY-1992 (C) CLASSIFICATION:</pre>	
	(2) INFORMATION FOR SEQ ID NO:1:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 361 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
	CAGGTCCAAC TTGTCCAGTC CGGTGCCGAA GTTAAGAAGC CTGGCGCTTC TGTGAAGGTC	60
45	TCCTGCAAGG CTTCTGGCTA CACCTTCACC GACTACTGGA TGAACTGGGT TCGACAGGCA	120
	CCTGGACAGG GCCTAGAGTG GATGGGAAGG ATTGATCCTT CCGATAGTGA AACTCACTAC	180
	AATCAGAAGT TCCAGGGTAG GGTAACAATG ACCCGAGACA CATCCACCAG CACAGTCTAC	240
50	ATGGAACTCA GCAGCCTGCG ATCTGAGGAC ACCGCAGTCT ATTACTGTGC ACGAGGTGGA	300
	CGGCTCGGTT CCTTTGCTAT GGACTACTGG GGTCAAGGCA CCCTCGTCAC CGTCTCCTCA	360

5								
	G	361						
	(2) INFORMATION FOR SEQ ID NO:2:							
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 							
	(ii) MOLECULE TYPE: peptide							
15	(v) FRAGMENT TYPE: internal							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:							
20	Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15							
	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30							
25	Trp Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45							
	Gly Arg Ile Asp Pro Ser Asp Ser Glu Thr His Tyr Asn Gln Lys Phe 50 60							
30	Gln Gly Arg Val Thr Met Thr Arg Asp Thr Ser Thr Ser Thr Val Tyr 65 70 75 80							
	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95							
	Ala Arg Gly Gly Arg Leu Gly Ser Phe Ala Met Asp Tyr Trp Gly Gln 100 105 110							
35	Gly Thr Leu Val Thr Val Ser Ser 115 120							
	(2) INFORMATION FOR SEQ ID NO:3:							
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 334 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 							
45	(ii) MOLECULE TYPE: DNA (genomic)							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:							
	GAAATTGTGC TAACACAATC TCCAGCTACA TTGTCTTTGT CTCCAGGTGA GAGAGCCACT	60						
50	CTATCCTGCA GAGCCAGTGA AAGTGTTGAT AGTTATGGCA ATAGTTTTAT GCACTGGTAC	120						

5																
	CAGCAGAAA	AC CAGO	ACAGG	C AC	CAAG	GCTC	CTC	ATCT	ATC (GTGC	ATCC	AA C	CTAG	AAAC:	r	180
	GGTATCCCT	rg ccac	GTTCA	G TG	GCAG'	TGGT	TCT	AGGA	CAG A	ACTT	CACT	CT C	ACCT	ATTC:	r	240
10	TCTCTAGAC	GC CTG	AGATT	T TG	CAGT	GTAT	TAC:	FGTC	AGC Z	AAAG:	TAAT	GA GO	GATC	CTCG	3	300
	ACGTTCGGT															334
	(2) INFOR	RMATION	FOR	SEQ :	ID NO	0:4:										
15	(i)	(B) 7	ICE CH. ENGTH YPE:	: 111 amino	lam: oac:	ino a id	S: acids	5								
	(ii)	MOLECU	LE TY	PE: Į	pept:	ide										
20	(v)	FRAGME	NT TY	PE:	inte	rnal										
	(xi)	SEQUEN	CE DE	SCRII	PTIO	N: S1	EQ II	O NO:	:4:							
	Glu 1	Ile Va	l Leu	Thr	Gln	Ser	Pro	Ala		Leu	Ser	Leu	Ser		Gly	
25	-	3 mar 3 T	o (17)bes	5	G	_	_		10		_			15		
	Giu	Arg Al	20	Leu	ser	cys	arg	A1a 25	ser	Glu	Ser	Val	Asp 30	Ser	Tyr	
	Gly	Asn Se	r Phe	Met	His	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Ala	Pro	
30	Arg	Leu Le	u Ile	Tyr	Arq	λla	Ser	Asn	Leu	Glu	Thr		Tle	Pro	Ala	
		50				55					60					
	Arg 65	Phe Se	r Gly	Ser	Gly 70	Ser	Arg	Thr	Asp	Phe 75	Thr	Leu	Thr	Tyr	Ser 80	
35	Ser	Leu Gl	u Pro	Glu 85	Asp	Phe	Ala	Val	Tyr 90	Tyr	Cys	Gln	Gln	Ser 95	Asn	
	Glu	Asp Pr	o Arg 100	Thr	Phe	Gly	Gly	Gly 105	Thr	Lys	Val	Glu	Glu 110	Lys		
40	(2) INFOR	RMATION	FOR	SEQ]	ED NO	0:5:										
	(i)	(B) 1 (C) 5	CE CH. ENGTH YPE: TRAND	: 361 nucle EDNES	L bas eic a SS: s	se pa acid sing:	airs									
45	(ii)	MOLECU					omic)								
	(xi)	SEQUEN	CE DE	SCRII	PTIO	V: S]	EQ II	O NO:	:5:							
50	CAGGTCCA	AC TTC	.GCAGC	C TGC	GCCI	[GAC	CTT	CTGA	AGC (CTGGC	GCT	CC AC	STGAZ	AGCTO	}	60

5										
	FCCTGCAAGG CTTCTGGCTA CACCTTCACC GACTACTGGA TGAACTGGGT TAAGCAGAGG									
	CCTGGACGAG GCCTCGAGTG GATTGGAAGG ATTGATCCTT CCGATAGTGA AACTCACTAC									
10	AATCAGAAGT TCAAGGACAA GGCCACACTG ACTGTAGACA AATCCTCCAG CACAGCCTAC									
	ATCCAACTCA GCAGCCTGAC ATCTGAGGAC TCTGCAGTCT ATTACTGTGC ACGAGGGGGA									
	CGGCTCGGGT CCTTTGCTAT GGACTACTGG GGTCAAGGCA CCTCAGTCAC CGTCTCCTCA									
	3									
15	(2) INFORMATION FOR SEQ ID NO:6:									
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 120 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear									
	(ii) MOLECULE TYPE: peptide									
	(v) FRAGMENT TYPE: internal									
05										
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:									
	Gln Val Gln Leu Gln Gln Pro Gly Pro Asp Leu Leu Lys Pro Gly Ala 1 10 15	a								
30	Pro Val Lys Leu Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Tyr 20 25 30	r								
	Trp Met Asn Trp Val Lys Gln Arg Pro Gly Arg Gly Leu Glu Trp Ilo 35 40 45	е								
35	Gly Arg Ile Asp Pro Ser Asp Ser Glu Thr His Tyr Asn Gln Lys Pho	е								
	Lys Asp Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Ty 65 70 75 80									
	Ile Gln Leu Ser Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95	5								
40	Ala Arg Gly Gly Arg Leu Gly Ser Phe Ala Met Asp Tyr Trp Gly Gl 100 105 110	n								
	Gly Thr Ser Val Thr Val Ser Ser 115 120									
45	(2) INFORMATION FOR SEQ ID NO:7:									
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 334 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 									
50	(ii) MOLECULE TYPE: DNA (genomic)									

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
10	GACATTGTGC TAACACAATC TCCAGCTTCT TTGGCTGTGT CTCTAGGGCA GAGGGCCACC	60
	ATATCCTGCA GAGCCAGTGA AAGTGTTGAT AGTTATGGCA ATAGTTTTAT GCACTGGTAC	120
	CAGCAGAAAC CAGGACAGCC ACCCAAACTC CTCATCTATC GTGCATCCAA CCTAGAATCT	180
15	GGGATCCCTG CCAGGTTCAG TGGCAGTGGG TCTAGGACAG ACTTCACCCT CACCATTAAT	240
	CCTGTGGAGG CTGATGATGT TGCAACCTAT TACTGTCAGC AAAGTAATGA GGATCCTCGG	300
	ACGTTCGGTG GAGGCACCAA GCTGGAAATC AAAC	334
20	(2) INFORMATION FOR SEQ ID NO:8:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 111 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: peptide	
	(v) FRAGMENT TYPE: internal	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	Asp Ile Val Leu Thr Gln Ser Pro Ala Ser Leu Ala Val Ser Leu Gly 1 10 15	
	Gln Arg Ala Thr Ile Ser Cys Arg Ala Ser Glu Ser Val Asp Ser Tyr 20 25 30	
35	Gly Asn Ser Phe Met His Trp Tyr Gln Gln Lys Pro Gly Gln Pro Pro 35 40 45	
	Lys Leu Leu Ile Tyr Arg Ala Ser Asn Leu Glu Ser Gly Ile Pro Ala 50 60	
40	Arg Phe Ser Gly Ser Gly Ser Arg Thr Asp Phe Thr Leu Thr Ile Asn 65 70 75 80	
	Pro Val Glu Ala Asp Asp Val Ala Thr Tyr Tyr Cys Gln Gln Ser Asn 85 90 95	
45	Glu Asp Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 110	
	(2) INFORMATION FOR SEQ ID NO:9:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9201 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

5

(ii) MOLECULE TYPE: DNA (genomic)

10 (xi) SEQUENCE DESCRIPTION: SEO ID NO:9: AAGCTTTCTG GGGCAGGCCA GGCCTGACCT TGGCTTTGGG GCAGGGAGGG GGCTAAGGTG 60 AGGCAGGTGG CGCCAGCCAG GTGCACACCC AATGCCCATG AGCCCAGACA CTGGACGCTG 120 AACCTCGCGG ACAGTTAAGA ACCCAGGGGC CTCTGCGCCC TGGGCCCAGC TCTGTCCCAC 180 ACCGCGGTCA CATGGCACCA CCTCTCTTGC AGCCTCCACC AAGGGCCCAT CGGTCTTCCC 240 CCTGGCACCC TCCTCCAAGA GCACCTCTGG GGGCACAGCG GCCCTGGGCT GCCTGGTCAA 300 GGACTACTTC CCCGAACCGG TGACGGTGTC GTGGAACTCA GGCGCCCTGA CCAGCGGCGT 360 GCACACCTTC CCGGCTGTCC TACAGTCCTC AGGACTCTAC TCCCTCAGCA GCGTGGTGAC 420 CGTGCCCTCC AGCAGCTTGG GCACCCAGAC CTACATCTGC AACGTGAATC ACAAGCCCAG 480 CAACACCAAG GTGGACAAAC GCGTTGGTGA GAGGCCAGCA CAGGGAGGGA GGGTGTCTGC 540 25 TGGAAGCCAG GCTCAGCGCT CCTGCCTGGA CGCATCCCGG CTATGCAGCC CCAGTCCAGG 600 GCAGCAAGGC AGGCCCCGTC TGCCTCTTCA CCCGGAGGCC TCTGCCCGCC CCACTCATGC 660 TCAGGGAGAG GGTCTTCTGG CTTTTTCCCC AGGCTCTGGG CAGGCACAGG CTAGGTGCCC 720 30 CTAACCCAGG CCCTGCACAC AAAGGGGCAG GTGCTGGGCT CAGACCTGCC AAGAGCCATA 780 TCCGGGAGGA CCCTGCCCCT GACCTAAGCC CACCCCAAAG GCCAAACTCT CCACTCCCTC 840 AGCTCGGACA CCTTCTCTCC TCCCAGATTC CAGTAACTCC CAATCTTCTC TCTGCAGAGC 900 CCAAATCTTG TGACAAAACT CACACATGCC CACCGTGCCC AGGTAAGCCA GCCCAGGCCT 960 35 CGCCCTCCAG CTCAAGGCGG GACAGGTGCC CTAGAGTAGC CTGCATCCAG GGACAGGCCC 1020 CAGCCGGGTG CTGACACGTC CACCTCCATC TCTTCCTCAG CACCTGAACT CCTGGGGGGA 1080 CCGTCAGTCT TCCTCTTCCC CCCAAAACCC AAGGACACCC TCATGATCTC CCGGACCCCT 1140 40 GAGGTCACAT GCGTGGTGGT GGACGTGAGC CACGAAGACC CTGAGGTCAA GTTCAACTGG 1200 TACGTGGACG GCGTGGAGGT GCATAATGCC AAGACAAAGC CGCGGGAGGA GCAGTACAAC 1260 AGCACGTACC GTGTGGTCAG CGTCCTCACC GTCCTGCACC AGGACTGGCT GAATGGCAAG 1320 45 GAGTACAAGT GCAAGGTCTC CAACAAAGCC CTCCCAGCCC CCATCGAGAA AACCATCTCC 1380 AAAGCCAAAG GTGGGACCCG TGGGGTGCGA GGGCCACATG GACAGAGGCC GGCTCGGCCC 1440 ACCCTCTGCC CTGAGAGTGA CCGCTGTACC AACCTCTGTC CCTACAGGGC AGCCCCGAGA 1500

55

50

1560

1620

ACCACAGGTG TACACCCTGC CCCCATCTAG AGAGGAGATG ACCAAGAACC AGGTCAGCCT

GACCTGCCTG GTCAAAGGCT TCTATCCCAG CGACATCGCC GTGGAGTGGG AGAGCAATGG

	GCAGCCGGAG	AACAACTACA	AGACCACGCC	TCCCGTGCTG	GACTCCGACG	GCTCCTTCTT	1680
	CCTCTACAGC	AAGCTCACCG	TGGACAAGAG	CAGGTGGCAG	CAGGGGAACG	TCTTCTCATG	1740
10	CTCCGTGATG	CATGAGGCTC	TGCACAACCA	CTACACGCAG	AAGAGCCTCT	CCCTGTCTCC	1800
	GGGTAAATGA	GTGCGACGGC	CGGCAAGCCC	CCGCTCCCCG	GGCTCTCGCG	GTCGCACGAG	1860
	GATGCTTGGC	ACGTACCCCC	TGTACATACT	TCCCGGGCGC	CCAGCATGGA	AATAAAGCAC	1920
15	CCAGCGCTGC	CCTGGGCCCC	TGCGAGACTG	TGATGGTTCT	TTCCACGGGT	CAGGCCGAGT	1980
	CTGAGGCCTG	AGTGGCATGA	GGGAGGCAGA	GCGGGTCCCA	CTGTCCCCAC	ACTGGCCCAG	2040
	GCTGTGCAGG	TGTGCCTGGG	CCCCTAGGG	TGGGGCTCAG	CCAGGGGCTG	CCCTCGGCAG	2100
20	GGTGGGGGAT	TTGCCAGCGT	GCCCTCCCT	CCAGCAGCAC	CTGCCCTGGG	CTGGGCCACG	2160
	GGAAGCCCTA	GGAGCCCCTG	GGGACAGACA	CACAGCCCCT	GCCTCTGTAG	GAGACTGTCC	2220
	TGTTCTGTGA	GCGCCCCTGT	CCTCCCGACC	TCCATGCCCA	CTCGGGGGCA	TGCCTAGTCC	2280
	ATGTGCGTAG	GGACAGGCCC	TCCCTCACCC	ATCTACCCC	ACGGCACTAA	CCCCTGGCTG	2340
25	CCCTGCCCAG	CCTCGCACCC	GCATGGGGAC	ACAACCGACT	CCGGGGACAT	GCACTCTCGG	2400
	GCCCTGTGGA	GGGACTGGTG	CAGATGCCCA	CACACACACT	CAGCCCAGAC	CCGTTCAACA	2460
	AACCCCGCAC	TGAGGTTGGC	CGGCCACACG	GCCACCACAC	ACACACGTGC	ACGCCTCACA	2520
30	CACGGAGCCT	CACCCGGGCG	AACTGCACAG	CACCCAGACC	AGAGCAAGGT	CCTCGCACAC	2580
	GTGAACACTC	CTCGGACACA	GGCCCCCACG	AGCCCCACGC	GGCACCTCAA	GGCCCACGAG	2640
	CCTCTCGGCA	GCTTCTCCAC	ATGCTGACCT	GCTCAGACAA	ACCCAGCCCT	CCTCTCACAA	2700
35	$\tt GGGTGCCCCT$	GCAGCCGCCA	CACACACACA	GGGGATCACA	CACCACGTCA	CGTCCCTGGC	2760
	CCTGGCCCAC	TTCCCAGTGC	CGCCCTTCCC	TGCAGGACGG	ATCCAGACAT	GATAAGATAC	2820
	ATTGATGAGT	TTGGACAAAC	CACAACTAGA	ATGCAGTGAA	AAAAATGCTT	TATTTGTGAA	2880
	ATTTGTGATG	CTATTGCTTT	ATTTGTAACC	ATTATAAGCT	GCAATAAACA	AGTTAACAAC	2940
40	AACAATTGCA	TTCATTTTAT	GTTTCAGGTT	CAGGGGGAGG	TGTGGGAGGT	TTTTTAAAGC	3000
	AAGTAAAACC	TCTACAAATG	TGGTATGGCT	GATTATGATC	TCTAGTCAAG	GCACTATACA	3060
	TCAAATATTC	CTTATTAACC	CCTTTACAAA	TTAAAAAGCT	AAAGGTACAC	AATTTTTGAG	3120
45	CATAGTTATT	AATAGCAGAC	ACTCTATGCC	TGTGTGGAGT	AAGAAAAAAC	AGTATGTTAT	3180
	GATTATAACT	GTTATGCCTA	CTTATAAAGG	TTACAGAATA	TTTTTCCATA	ATTTTCTTGT	3240
	ATAGCAGTGC	AGCTTTTTCC	TTTGTGGTGT	AAATAGCAAA	GCAAGCAAGA	GTTCTATTAC	3300
50	TAAACACAGC	ATGACTCAAA	AAACTTAGCA	ATTCTGAAGG	AAAGTCCTTG	GGGTCTTCTA	3360
	CCTTTCTCTT	CTTTTTTGGA	GGAGTAGAAT	GTTGAGAGTC	AGCAGTAGCC	TCATCATCAC	3420

	TAGATGGCAT	TTCTTCTGAG	CAAAACAGGT	TTTCCTCATT	AAAGGCATTC	CACCACTGCT	3480
	CCCATTCATC	AGTTCCATAG	GTTGGAATCT	ААААТАСАСА	AACAATTAGA	ATCAGTAGTT	3540
10	TAACACATTA	ТАСАСТТААА	AATTTTATAT	TTACCTTAGA	GCTTTAAATC	TCTGTAGGTA	3600
	GTTTGTCCAA	TTATGTCACA	CCACAGAAGT	AAGGTTCCTT	CACAAAGATC	CGGGACCAAA	3660
	GCGGCCATCG	TGCCTCCCCA	CTCCTGCAGT	TCGGGGGCAT	GGATGCGCGG	ATAGCCGCTG	3720
15	CTGGTTTCCT	GGATGCCGAC	GGATTTGCAC	TGCCGGTAGA	ACTCCGCGAG	GTCGTCCAGC	3780
	CTCAGGCAGC	AGCTGAACCA	ACTCGCGAGG	GGATCGAGCC	CGGGGTGGGC	GAAGAACTCC	3840
	AGCATGAGAT	CCCCGCGCTG	GAGGATCATC	CAGCCGGCGT	CCCGGAAAAC	GATTCCGAAG	3900
20	CCCAACCTTT	CATAGAAGGC	GGCGGTGGAA	TCGAAATCTC	GTGATGGCAG	GTTGGGCGTC	3960
	GCTTGGTCGG	TCATTTCGAA	CCCCAGAGTC	CCGCTCAGAA	GAACTCGTCA	AGAAGGCGAT	4020
	AGAAGGCGAT	GCGCTGCGAA	TCGGGAGCGG	CGATACCGTA	AAGCACGAGG	AAGCGGTCAG	4080
	CCCATTCGCC	GCCAAGCTCT	TCAGCAATAT	CACGGGTAGC	CAACGCTATG	TCCTGATAGC	4140
25	GGTCCGCCAC	ACCCAGCCGG	CCACAGTCGA	TGAATCCAGA	AAAGCGGCCA	TTTTCCACCA	4200
	TGATATTCGG	CAAGCAGGCA	TCGCCATGGG	TCACGACGAG	ATCCTCGCCG	TCGGGCATGC	4260
	GCGCCTTGAG	CCTGGCGAAC	AGTTCGGCTG	GCGCGAGCCC	CTGATGCTCT	TCGTCCAGAT	4320
30	CATCCTGATC	GACAAGACCG	GCTTCCATCC	GAGTACGTGC	TCGCTCGATG	CGATGTTTCG	4380
	CTTGGTGGTC	GAATGGGCAG	GTAGCCGGAT	CAAGCGTATG	CAGCCGCCGC	ATTGCATCAG	4440
	CCATGATGGA	TACTTTCTCG	GCAGGAGCAA	GGTGAGATGA	CAGGAGATCC	TGCCCCGGCA	4500
35	CTTCGCCCAA	TAGCAGCCAG	TCCCTTCCCG	CTTCAGTGAC	AACGTCGAGC	ACAGCTGCGC	4560
	AAGGAACGCC	CGTCGTGGCC	AGCCACGATA	GCCGCGCTGC	CTCGTCCTGC	AGTTCATTCA	4620
	GGGCACCGGA	CAGGTCGGTC	TTGACAAAAA	GAACCGGGCG	CCCCTGCGCT	GACAGCCGGA	4680
	ACACGGCGGC	ATCAGAGCAG	CCGATTGTCT	GTTGTGCCCA	GTCATAGCCG	AATAGCCTCT	4740
40	CCACCCAAGC	GGCCGGAGAA	CCTGCGTGCA	ATCCATCTTG	TTCAATCATG	CGAAACGATC	4800
	CTCATCCTGT	CTCTTGATCA	GATCTTGATC	CCCTGCGCCA	TCAGATCCTT	GGCGGCAAGA	4860
	AAGCCATCCA	GTTTACTTTG	CAGGGCTTCC	CAACCTTACC	AGAGGGCGCC	CCAGCTGGCA	4920
45	ATTCCGGTTC	GCTTGCTGTC	CATAAAACCG	CCCAGTCTAG	CTATCGCCAT	GTAAGCCCAC	4980
	TGCAAGCTAC	CTGCTTTCTC	TTTGCGCTTG	CGTTTTCCCT	TGTCCAGATA	GCCCAGTAGC	5040
	TGACATTCAT	CCGGGGTCAG	CACCGTTTCT	GCGGACTGGC	TTTCTACGTG	TTCCGCTTCC	5100
50	TTTAGCAGCC	CTTGCGCCCT	GAGTGCTTGC	GGCAGCGTGA	AGCTAGCTTT	TTGCAAAAGC	5160
	CTAGGCCTCC	AAAAAAGCCT	CCTCACTACT	TCTGGAATAG	CTCAGAGGCC	GAGGCGGCCT	5220

	CGGCCTCTGC	ATAAATAAAA	AAAATTAGTC	AGCCATGGGG	CGGAGAATGG	GGCGGGATGG	5280
	GCGGAGTTAG	GGCGGAACTG	GGCGGAGTTA	GGGGCGGAC	TATGGTTGCT	GACTAATTGA	5340
10	GATGCATGCT	TTGCATACTT	CTGCCTGCTG	GGGAGCCTGG	GGACTTTCCA	CACCTGGTTG	5400
	CTGACTAATT	GAGATGCATG	CTTTGCATAC	TTCTGCCTGC	TGGGGAGCCT	GGGGACTTTC	5460
	CACACCCTAA	CTGACACACA	TTCCACAGCT	GCCTCGCGCG	TTTCGGTGAT	GACGGTGAAA	5520
15	ACCTCTGACA	CATGCAGCTC	CCGGAGACGG	TCACAGCTTG	TCTGTAAGCG	GATGCCGGGA	5580
	GCAGACAAGC	CCGTCAGGGC	GCGTCAGCGG	GTGTTGGCGG	GTGTCGGGGC	GCAGCCATGA	5640
	CCCAGTCACG	TAGCGATAGC	GGAGTGTATA	CTGGCTTAAC	TATGCGGCAT	CAGAGCAGAT	5700
20	TGTACTGAGA	GTGCACCATA	TGCGGTGTGA	AATACCGCAC	AGATGCGTAA	GGAGAAAATA	5760
	CCGCATCAGG	CGCTCTTCCG	CTTCCTCGCT	CACTGACTCG	CTGCGCTCGG	TCGTTCGGCT	5820
	GCGGCGAGCG	GTATCAGCTC	ACTCAAAGGC	GGTAATACGG	TTATCCACAG	AATCAGGGGA	5880
	TAACGCAGGA	AAGAACATGT	GAGCAAAAGG	CCAGCAAAAG	GCCAGGAACC	GTAAAAAGGC	5940
25	CGCGTTGCTG	GCGTTTTTCC	ATAGGCTCCG	CCCCCTGAC	GAGCATCACA	AAAATCGACG	6000
	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAGA	TACCAGGCGT	TTCCCCCTGG	6060
	AAGCTCCCTC	GTGCGCTCTC	CTGTTCCGAC	CCTGCCGCTT	ACCGGATACC	TGTCCGCCTT	6120
30	TCTCCCTTCG	GGAAGCGTGG	CGCTTTCTCA	TAGCTCACGC	TGTAGGTATC	TCAGTTCGGT	6180
	GTAGGTCGTT	CGCTCCAAGC	TGGGCTGTGT	GCACGAACCC	CCCGTTCAGC	CCGACCGCTG	6240
	CGCCTTATCC	GGTAACTATC	GTCTTGAGTC	CAACCCGGTA	AGACACGACT	TATCGCCACT	6300
35	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	GTAGGCGGTG	CTACAGAGTT	6360
	CTTGAAGTGG	TGGCCTAACT	ACGGCTACAC	TAGAAGGACA	GTATTTGGTA	TCTGCGCTCT	6420
	GCTGAAGCCA	GTTACCTTCG	GAAAAAGAGT	TGGTAGCTCT	TGATCCGGCA	AACAAACCAC	6480
	CGCTGGTAGC	GGTGGTTTTT	TTGTTTGCAA	GCAGCAGATT	ACGCGCAGAA	AAAAAGGATC	6540
40	TCAAGAAGAT	CCTTTGATCT	TTTCTACGGG	GTCTGACGCT	CAGTGGAACG	AAAACTCACG	6600
	TTAAGGGATT	TTGGTCATGA	GATTATCAAA	AAGGATCTTC	ACCTAGATCC	TTTTAAATTA	6660
	AAAATGAAGT	TTTAAATCAA	TCTAAAGTAT	ATATGAGTAA	ACTTGGTCTG	ACAGTTACCA	6720
45	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC	GATCTGTCTA	TTTCGTTCAT	CCATAGTTGC	6780
	CTGACTCCCC	GTCGTGTAGA	TAACTACGAT	ACGGGAGGC	TTACCATCTG	GCCCCAGTGC	6840
	TGCAATGATA	CCGCGAGACC	CACGCTCACC	GGCTCCAGAT	TTATCAGCAA	TAAACCAGCC	6900
50	AGCCGGAAGG	GCCGAGCGCA	GAAGTGGTCC	TGCAACTTTA	TCCGCCTCCA	TCCAGTCTAT	6960
	TAATTGTTGC	CGGGAAGCTA	GAGTAAGTAG	TTCGCCAGTT	AATAGTTTGC	GCAACGTTGT	7020

		TGCCATTGCT	GCAGGCATCG	TGGTGTCACG	CTCGTCGTTT	GGTATGGCTT	CATTCAGCTC	7080
		CGGTTCCCAA	CGATCAAGGC	GAGTTACATG	ATCCCCCATG	TTGTGCAAAA	AAGCGGTTAG	7140
1	0	CTCCTTCGGT	CCTCCGATCG	TTGTCAGAAG	TAAGTTGGCC	GCAGTGTTAT	CACTCATGGT	7200
		TATGGCAGCA	CTGCATAATT	CTCTTACTGT	CATGCCATCC	GTAAGATGCT	TTTCTGTGAC	7260
		TGGTGAGTAC	TCAACCAAGT	CATTCTGAGA	ATAGTGTATG	CGGCGACCGA	GTTGCTCTTG	7320
1	5	CCCGGCGTCA	ACACGGGATA	ATACCGCGCC	ACATAGCAGA	ACTTTAAAAG	TGCTCATCAT	7380
		TGGAAAACGT	TCTTCGGGGC	GAAAACTCTC	AAGGATCTTA	CCGCTGTTGA	GATCCAGTTC	7440
		GATGTAACCC	ACTCGTGCAC	CCAACTGATC	TTCAGCATCT	TTTACTTTCA	CCAGCGTTTC	7500
2	0	TGGGTGAGCA	AAAACAGGAA	GGCAAAATGC	CGCAAAAAAG	GGAATAAGGG	CGACACGGAA	7560
		ATGTTGAATA	CTCATACTCT	TCCTTTTTCA	ATATTATTGA	AGCATTTATC	AGGGTTATTG	7620
		TCTCATGAGC	GGATACATAT	TTGAATGTAT	TTAGAAAAAT	AAACAAATAG	GGGTTCCGCG	7680
	_	CACATTTCCC	CGAAAAGTGC	CACCTGACGT	CTAAGAAACC	ATTATTATCA	TGACATTAAC	7740
2	5	СТАТАААААТ	AGGCGTATCA	CGAGGCCCTT	TCGTCTTCAA	GAATTCATCG	ATATCGGAAA	7800
		ATGAAAAAAA	ATATTTTTTA	ATTTTAAAAT	GAAATGTTTA	TTTTCAATTT	CTCCAAATTT	7860
		CACAAGGAAA	GATTAGTCAC	GGGTATGGGA	GAGCAGAGGA	CCATAAGAGT	TCAGGAATAG	7920
3	0	AATCCATTAT	GATTCTGGAG	TCAAGGAAGT	ACTGATGCCA	AGGTTTCAGT	ATAAGAGCAG	7980
		TATCCACTGG	AAAGGATAAA	GTCACTACAA	CTGAGCACAG	AGCAGGACAG	CTACCTAATG	8040
		AGTGGTCACT	AATGGGCCAC	TGTTACACTG	TTATACGGCT	TAGGAATGAG	CACTGAGGCT	8100
3	5	GTGAGGTGTA	TGGGTAAGGA	CATCAGGATG	TAAACCCAGC	TCAGGTAGAG	GACTCAGAGC	8160
		ACAGCACAAT	CAGCACGAAC	ТААТАААСАА	CAGATAAGAT	AAGGCACAAG	CTCAGCAATA	8220
		TTGGATCAGG	GATCTTTGTA	AATCTGACTG	TGTATTCAGT	CTAGTTCAAT	GTGACTCATG	8280
		AAGCCCACCC	ATATGCAAAT	CTAGAGAAGA	CTTTAGAGTA	TAAATCTGAG	GCTCACCTCA	8340
4	0	CATACCAGCA	AGGGAGTGAC	CAGCTTGTCT	TAAGGCACCA	CTGAGCCCAA	GTCTTAGACA	8400
		TCATGGATTG	GCTGTGGAAC	TTGCTATTCC	TGATGGCAGC	TGCCCAAGGT	AAGTCATCAG	8460
		AAAAAAGAGT	TCCAAGGGAA	ATTGAAGCAG	TTCCGAGCTC	GGTACCCTCG	AGATCCTAGA	8520
4	5	GAGGTCTGGT	GGAGCCTGCA	AAAGTCCAGC	TTTCAAAGGA	ACACAGAAGT	ATGTGTATGG	8580
		AATATTAGAA	GATGTTGCTT	ТТАСТСТТАА	GTTGGTTCCT	AGGAAAAATA	GTTAAATACT	8640
		GTGACTTTAA	AATGTGAGAG	GGTTTTCAAG	TACTCATTTT	TTTAAATGTC	CAAAATTTTT	8700
5	ю	GTCAATCAAT	TTGAGGTCTT	GTTTGTGTAG	AACTGACATT	ACTTAAAGTT	TAACCGAGGA	8760
		ATGGGAGTGA	GGCTCTCTCA	TACCCTATCC	AGAACTGACT	TTTAACAATA	ATAAATTAAG	8820

5		
	TTTAAAATAT TTTTAAATGA ATTGAGCAAT GTTGAGTTGA	8880
40	CCAGAACACC TGCAGCAGCT GGCAGGAAGC AGGTCATGTG GCAAGGCTAT TTGGGGAAGG	8940
10	GAAAATAAAA CCACTAGGTA AACTTGTAGC TGTGGTTTGA AGAAGTGGTT TTGAAACACT	9000
	CTGTCCAGCC CCACCAAACC GAAAGTCCAG GCTGAGCAAA ACACCACCTG GGTAATTTGC	9060
	ATTTCTAAAA TAAGTTGAGG ATTCAGCCGA AACTGGAGAG GTCCTCTTTT AACTTATTGA	9120
15	GTTCAACCTT TTAATTTTAG CTTGAGTAGT TCTAGTTTCC CCAAACTTAA GTTTATCGAC	9180
	TTCTAAAATG TATTTAGAAT T	9201
	(2) INFORMATION FOR SEQ ID NO:10:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7059 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	GGATCCAGAC ATGATAAGAT ACATTGATGA GTTTGGACAA ACCACAACTA GAATGCAGTG	60
30	AAAAAAATGC TTTATTTGTG AAATTTGTGA TGCTATTGCT TTATTTGTAA CCATTATAAG	120
	CTGCAATAAA CAAGTTAACA ACAACAATTG CATTCATTTT ATGTTTCAGG TTCAGGGGGA	180
	GGTGTGGGAG GTTTTTTAAA GCAAGTAAAA CCTCTACAAA TGTGGTATGG CTGATTATGA	240
35	TCTCTAGTCA AGGCACTATA CATCAAATAT TCCTTATTAA CCCCTTTACA AATTAAAAAG	300
	CTAAAGGTAC ACAATTTTTG AGCATAGTTA TTAATAGCAG ACACTCTATG CCTGTGTGGA	360
	GTAAGAAAAA ACAGTATGTT ATGATTATAA CTGTTATGCC TACTTATAAA GGTTACAGAA	420
	TATTTTCCA TAATTTCTT GTATAGCAGT GCAGCTTTTT CCTTTGTGGT GTAAATAGCA	480
40	AAGCAAGCAA GAGTTCTATT ACTAAACACA GCATGACTCA AAAAACTTAG CAATTCTGAA	540

CAAACAATTA GAATCAGTAG TTTAACACAT TATACACTTA AAAATTTAT ATTACCTTA 780

GAGCTTTAAA TCTCTGTAGG TAGTTTGTCC AATTATGTCA CACCACAGAA GTAAGGTTCC 840

TTCACAAAGA TCCGGGGCCC ACTCATAAAT CCAGTTGCCG CCACGGTAGC CAATCACCGT 900

ATCGTATAAA TCATCGTCGG TACGTTCGGC ATCGCTCATC ACAATACGTG CCTGGACGTC 960

GGAAAGTCCT TGGGGTCTTC TACCTTTCTC TTCTTTTTTG GAGGAGTAGA ATGTTGAGAG

TCAGCAGTAG CCTCATCATC ACTAGATGGC ATTTCTTCTG AGCAAAACAG GTTTTCCTCA

TTAAAGGCAT TCCACCACTG CTCCCATTCA TCAGTTCCAT AGGTTGGAAT CTAAAATACA

600

660

720

55

	GAGGATTTCG CGTGGGTCAA	TGCCGCGCCA	GATCCACATC	AGACGGTTAA	TCATGCGATA	1020
	CCAGTGAGGG ATGGTTTTAC	CATCAAGGGC	CGACTGCACA	GGCGGTTGTG	CGCCGTGATT	1080
10	AAAGCGGCGG ACTAGCGTCG	AGGTTTCAGG	ATGTTTAAAG	CGGGGTTTGA	ACAGGGTTTC	1140
	GCTCAGGTTT GCCTGTGTCA	TGGATGCAGC	CTCCAGAATA	CTTACTGGAA	ACTATTGTAA	1200
	CCCGCCTGAA GTTAAAAAGA	ACAACGCCCG	GCAGTGCCAG	GCGTTGAAAA	GATTAGCGAC	1260
15	CGGAGATTGG CGGGACGAAT	ACGACGCCCA	TATCCCACGG	CTGTTCAATC	CAGGTATCTT	1320
	GCGGGATATC AACAACATAG	TCATCAACCA	GCGGACGACC	AGCCGGTTTT	GCGAAGATGG	1380
	TGACAAAGTG CGCTTTTGGA	TACATTTCAC	GAATCGCAAC	CGCAGTACCA	CCGGTATCCA	1440
20	CCAGGTCATC AATAACGATG	AAGCCTTCGC	CATCGCCTTC	TGCGCGTTTC	AGCACTTTAA	1500
	GCTCGCGCTG GTTGTCGTGA	TCGTAGCTGG	AAATACAAAC	GGTATCGACA	TGACGAATAC	1560
	CCAGTTCACG CGCCAGTAAC	GCACCCGGTA	CCAGACCGCC	ACGGCTTACG	GCAATAATGC	1620
	CTTTCCATTG TTCAGAAGGC	ATCAGTCGGC	TTGCGAGTTT	ACGTGCATGG	ATCTGCAACA	1680
25	TGTCCCAGGT GACGATGTAT	TTTTCGCTCA	TGTGAAGTGT	CCCAGCCTGT	TTATCTACGG	1740
	CTTAAAAAGT GTTCGAGGGG	AAAATAGGTT	GCGCGAGATT	ATAGAGATCA	GCTTTTTGCA	1800
	AAAGCCTAGG CCTCCAAAAA	AGCCTCCTCA	CTACTTCTGG	AATAGCTCAG	AGGCCGAGGC	1860
30	GGCCTCGGCC TCTGCATAAA	ТАААААААТ	TAGTCAGCCA	TGGGGCGGAG	AATGGGGCGG	1920
	GATGGGCGGA GTTAGGGCGG	AACTGGGCGG	AGTTAGGGGC	GGGACTATGG	TTGCTGACTA	1980
	ATTGAGATGC TGCATTAATG	AATCGGCCAA	CGCGCGGGGA	GAGGCGGTTT	GCGTATTGGG	2040
35	CGCTCTTCCG CTTCCTCGCT	CACTGACTCG	CTGCGCTCGG	TCGTTCGGCT	GCGGCGAGCG	2100
	GTATCAGCTC ACTCAAAGGC	GGTAATACGG	TTATCCACAG	AATCAGGGGA	TAACGCAGGA	2160
	AAGAACATGT GAGCAAAAGG	CCAGCAAAAG	GCCAGGAACC	GTAAAAAGGC	CGCGTTGCTG	2220
	GCGTTTTTCC ATAGGCTCC	CCCCCTGAC	GAGCATCACA	AAAATCGACG	CTCAAGTCAG	2280
40	AGGTGGCGAA ACCCGACAGG	ACTATAAAGA	TACCAGGCGT	TTCCCCCTGG	AAGCTCCCTC	2340
	GTGCGCTCTC CTGTTCCGA	CCTGCCGCTT	ACCGGATACC	TGTCCGCCTT	TCTCCCTTCG	2400
	GGAAGCGTGG CGCTTTCTC	ATGCTCACGC	TGTAGGTATC	TCAGTTCGGT	GTAGGTCGTT	2460
45	CGCTCCAAGC TGGGCTGTG	r gcacgaaccc	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC	2520
	GGTAACTATC GTCTTGAGT	C CAACCCGGTA	AGACACGACT	TATCGCCACT	GGCAGCAGCC	2580
	ACTGGTAACA GGATTAGCA	G AGCGAGGTAT	GTAGGCGGTG	CTACAGAGTI	CTTGAAGTGG	2640
50	TGGCCTAACT ACGGCTACA	C TAGAAGGACA	GTATTTGGTA	TCTGCGCTCT	GCTGAAGCCA	2700
	GTTACCTTCG GAAAAAGAG	T TGGTAGCTCT	TGATCCGGC	AACAAACCAC	CGCTGGTAGC	2760

	GGTGGTTTTT	TTGTTTGCAA	GCAGCAGATT	ACGCGCAGAA	AAAAAGGATC	TCAAGAAGAT	2820
	CCTTTGATCT	TTTCTACGGG	GTCTGACGCT	CAGTGGAACG	AAAACTCACG	TTAAGGGATT	2880
10	TTGGTCATGA	GATTATCAAA	AAGGATCTTC	ACCTAGATCC	TTTTAAATTA	AAAATGAAGT	2940
	ТТТАААТСАА	TCTAAAGTAT	ATATGAGTAA	ACTTGGTCTG	ACAGTTACCA	ATGCTTAATC	3000
	AGTGAGGCAC	CTATCTCAGC	GATCTGTCTA	TTTCGTTCAT	CCATAGTTGC	CTGACTCCCC	3060
15	GTCGTGTAGA	TAACTACGAT	ACGGGAGGC	TTACCATCTG	GCCCCAGTGC	TGCAATGATA	3120
	CCGCGAGACC	CACGCTCACC	GGCTCCAGAT	TTATCAGCAA	TAAACCAGCC	AGCCGGAAGG	3180
	GCCGAGCGCA	GAAGTGGTCC	TGCAACTTTA	TCCGCCTCCA	TCCAGTCTAT	TAATTGTTGC	3240
20	CGGGAAGCTA	GAGTAAGTAG	TTCGCCAGTT	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT	3300
	ACAGGCATCG	TGGTGTCACG	CTCGTCGTTT	GGTATGGCTT	CATTCAGCTC	CGGTTCCCAA	3360
	CGATCAAGGC	GAGTTACATG	ATCCCCCATG	TTGTGCAAAA	AAGCGGTTAG	CTCCTTCGGT	3420
	CCTCCGATCG	TTGTCAGAAG	TAAGTTGGCC	GCAGTGTTAT	CACTCATGGT	TATGGCAGCA	3480
25	CTGCATAATT	CTCTTACTGT	CATGCCATCC	GTAAGATGCT	TTTCTGTGAC	TGGTGAGTAC	3540
	TCAACCAAGT	CATTCTGAGA	ATAGTGTATG	CGGCGACCGA	GTTGCTCTTG	CCCGGCGTCA	3600
	ATACGGGATA	ATACCGCGCC	ACATAGCAGA	ACTTTAAAAG	TGCTCATCAT	TGGAAAACGT	3660
30	TCTTCGGGGC	GAAAACTCTC	AAGGATCTTA	CCGCTGTTGA	GATCCAGTTC	GATGTAACCC	3720
	ACTCGTGCAC	CCAACTGATC	TTCAGCATCT	TTTACTTTCA	CCAGCGTTTC	TGGGTGAGCA	3780
	AAAACAGGAA	GGCAAAATGC	CGCAAAAAAG	GGAATAAGGG	CGACACGGAA	ATGTTGAATA	3840
35	CTCATACTCT	TCCTTTTTCA	ATATTATTGA	AGCATTTATC	AGGGTTATTG	TCTCATGAGC	3900
	GGATACATAT	TTGAATGTAT	TTAGAAAAAT	AAACAAATAG	GGGTTCCGCG	CACATTTCCC	3960
	CGAAAAGTGC	CACCTGACGT	CTAAGAAACC	ATTATTATCA	TGACATTAAC	CTATAAAAAT	4020
	AGGCGTATCA	CGAGGCCCTT	TCGTCTCGCG	CGTTTCGGTG	ATGACGGTGA	AAACCTCTGA	4080
40	CACATGCAGC	TCCCGGAGAC	GGTCACAGCT	TGTCTGTAAG	CGGATGCCGG	GAGCAGACAA	4140
	GCCCGTCAGG	GCGCGTCAGC	GGGTGTTGGC	GGGTGTCGGG	GCTGGCTTAA	CTATGCGGCA	4200
	TCAGAGCAGA	TTGTACTGAG	AGTGCACCAT	AGCGGCCGCA	TATGCGGTGT	GAAATACCGC	4260
4 5	ACAGATGCGT	AAGGAGAAAA	TACCGCATCA	GGCGCCATTC	GCCATTCAGG	CTGCGCAACT	4320
	GTTGGGAAGG	GCGATCGGTG	CGGGCCTCTT	CGCTATTACG	CCAGAATTCG	GCCCAGGGGA	4380
	CTGTGAGGAC	AGAAGGCTTG	TGGGTTTGAG	GGAGGACTGT	CTTGCAGAGG	ATGATAGGGT	4440
50	AAAATAGAAT	GAAGGATGAT	TTTTATAAAT	GGTTACGTGC	CTTAGGATGA	CTACATATTT	4500
	AGTCCCTTAT	AAGAGAAATT	GAGTAGTTGG	ТААААСААСА	GATAATAATT	ATTAAATGAG	4560

		GAAAGAGAGA	AACCACAGGT	GCAAAGATTC	ACTTTATTTA	TTCATTCTCC	TCCAACATTA	4620
10		GCATAATTAA	AGCCAAGGAG	GAGGAGGGG	GTGAGGTGAA	AGATGAGCTG	GAGGACCGCA	4680
	10	ATAGGGGTAG	GTCCCCTGTG	GAAAAAGGGT	CAGAGGCCAA	AGGATGGGAG	GGGGTCAGGC	4740
		TGGAACTGAG	GAGCAGGTGG	GGGCACTTCT	CCCTCTAACA	CTCTCCCCTG	TTGAAGCTCT	4800
1		TTGTGACGGG	CGAGCTCAGG	CCCTGATGGG	TGACTTCGCA	GGCGTAGACT	TTGTGTTTCT	4860
	15	CGTAGTCTGC	TTTGCTCAGC	GTCAGGGTGC	TGCTGAGGCT	GTAGGTGCTG	TCCTTGCTCT	4920
		CCTGCTCTGT	GACACTCTCC	TGGGAGTTAC	CCGATTGGAG	GGCGTTATCC	ACCTTCCACT	4980
2		GTACTTTGGC	CTCTCTGGGA	TAGAAGTTAT	TCAGCAGGCA	CACAACAGAG	GCAGTTCCAG	5040
	20	ATTTCAACTG	CTCATCAGAT	GGCGGGAAGA	TGAAGACAGA	TGGTGCAGCC	ACAGTTCCTG	5100
		AGGAAAGAAG	CAAACAGGAT	GGTGTTTAAG	TAACAAAGTT	CTGCCCTTGG	GTGTGTTGTT	5160
		TGCGGATAAG	GGCATGTTAG	GGACAGACAG	AAAACAGCAT	GCTTATCCCA	GATAATTATA	5220
		GCAAGGAGAC	CAAGAAGCGT	ATTTAAAATC	TTGATGTTTT	GAGTTTCTTC	CTAGCTTCCC	5280
	25	CCTATTCCTT	AATAAAGTTC	TAAATTGTTT	TGTTGGAGCT	CTTTGCAGCC	ATTCTGAGGG	5340
		CTTTGCATGC	TTTTCTGACC	TTGCAGTAAA	CTCAATGCTT	TAGGCAAAGA	ATGGCCACGT	5400
		CATCCGACCC	CCTCAGAGTT	TAGAATTCAT	CGATATCTAG	ATCCTAGATA	ATTGCATTCA	5460
	30	TTTAAAAAAA	AAATATTTCT	CCTAAAATGA	ATACTCAGAA	AGTGGTCTTG	AAAAAGATTT	5520
		GTGAAGCCGT	TTTGACCAGA	ATGTCAAAGT	CTTAATAGTA	AGGCAAAACA	AACAACTAAA	5580
		AAAGATCATG	AACAAAGTCA	CTGTAAAGAC	TTCGGGTATT	GGAAAATAAT	TGAATGGAGA	5640
	35	CCAATAATCA	GAGGGAAGAA	TAATAGAGTA	ATTTTAAGAA	GTTTTCTAAA	TATATTAGAA	5700
		ATTAAAGACA	CTAAAGTCCT	TCAATTTCTT	ACATAACCTA	ATTTTGAAAA	TGAATTCTAA	5760
		ATACATTTTA	GAAGTCGATA	AACTTAAGTT	TGGGGAAACT	AGAACTACTC	AAGCTAAAAT	5820
		TAAAAGGTTG	AACTCAATAA	GTTAAAAGAG	GACCTCTCCA	GTTTCGGCTG	AATCCTCAAC	5880
	40	TTATTTTAGA	AATGCAAATT	ACCCAGGTGG	TGTTTTGCTC	AGCCTGGACT	TTCGGTTTGG	5940
		TGGGGCTGGA	CAGAGTGTTT	CAAAACCACT	TCTTCAAACC	ACAGCTACAA	GTTTACCTAG	6000
4		TGGTTTTATT	TTCCCTTCCC	CAAATAGCCT	TGCCACATGA	CCTGCTTCCT	GCCAGCTGCT	6060
	45	GCAGGTGTTC	TGGTTCTGAT	CGGCCATCTT	GACTCAACTC	AACATTGCTC	AATTCATTTA	6120
		AAAATATTTT	AAACTTAATT	TATTATTGTT	AAAAGTCAGT	TCTGGATAGG	GTATGAGAGA	6180
5		GCCTCACTCC	CATTCCTCGG	TTAAACTTTA	AGTAATGTCA	GTTCTACACA	AACAAGACCT	6240
	50	CAAATTGATT	GACAAAAATT	TTGGACATTT	AAAAAAATGA	GTACTTGAAA	ACCCTCTCAC	6300
		ΑΤΤΤΤΑΑΑΩΤ	CACAGTATTT	AACTATOTOT	CCTAGGAACC	AACTTAACAC	ТААААССААС	6361

5		
	ATCTTCTAAT ATTCCATACA CATACTTCTG TGTTCCTTTG AAAGCTGGAC TTTTGCAGGC	6420
	TCCACCAGAC CTCTCTAGGA TCTCGAGCTC GCGAAAGCTT GCATGCCTGC AGGTCGACTC	6480
10	TAGAGGATCA AACCAACTGT CTTTGAGTAG AGCCAAAATT GTTGATATAC TTTGAATTTT	6540
	AATTATATTT CTTGCTGAGC AGAGGTGGCA AGAGTTTTCA CTAATGTGCA AAACCACCTC	6600
	ATGTTCCCCT CACCTGGGAG CCAGAGTAGC AGGAGGAAGA GAAGCTGAGC TGGGGCTTCC	6660
15	ATGGTTCCCT CTGGGTCCTA ACTGAGCAGT TCCTCCCCAG GGCTCTGACA CAGGCATTGA	6720
	TATGGGCTCT GGAAGGTAGG GCAGCTGGGA GGGACATGCA AAGCAGCTGG GTGGGAGCTG	6780
	AGCTTCCAGC TGCAGAGACC ACCTGCTTCT TCCTCTCTGC ACTGAGCATC CTGCGCCACC	6840
20	CTGGTTGTCA GGCCAGAAAA GTCTGTTGGC TCAGTCTGAG TGTAGAACTT CTCCCTTGTG	6900
20	CTCAGAGAAT TTCATTCCTA TGTCTTTCTT CTCCTCAATC ACCTAAATTC ACCCAGATGA	6960
	TGTTTGGCAC AAGCCTGTTA AGAACAATAT AAAAGGCTGT GTTTTCATTT CTCTCTTCCT	7020
	ATCCTCAATA TGCCCAGTCA TCTCCCTAAG TGCATTATT	7059
25	(2) INFORMATION FOR SEQ ID NO:11:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 81 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
30	AAAAAAGAAT TCGAGCTCTT CTGATAACGC TGTCCTTCTG TTTGCAGGTG TCCAGTGTCA	60
	GGTCCAACTT GTCCAGTCCG G	81
	(2) INFORMATION FOR SEQ ID NO:12:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 93 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
50	TTAACTTCGG CACCGGACTG GACAAGTTGG ACCTGACACT GGACACCTGC AAACAGAAGG	60
	ACAGCGTTAT CAGAAGAGCT CGAATTCTTT TTT	93

5		
	(2) INFORMATION FOR SEQ ID NO:13:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
	TGCCGAAGTT AAGAAGCCTG GCGCTTCTGT GAAGGTCTCC TGCAAGGCTT CTGGCTACAC	60
20	CTTCACCGAC TACTGGATGA ACTGGGTTCG	90
20	(2) INFORMATION FOR SEQ ID NO:14:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: CCAGGTGCCT GTCGAACCCA GTTCATCCAG TAGTCGGTGA AGGTGTAGCC AGAAGCCTTG	60
	CAGGAGACCT TCACAGAAGC GCCAGGCTTC	90
35	(2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
45	ACAGGCACCT GGACAGGGCC TAGAGTGGAT GGGAAGGATT GATCCTTCCG ATAGTGAAAC	60
	TCACTACAAT CAGAAGTTCC AGGGTAGGGT	90
	(2) INFORMATION FOR SEQ ID NO:16:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid	

5		
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	CGGGTCATTG TTACCCTACC CTGGAACTTC TGATTGTAGT GAGTTTCACT ATCGGAAGGA	60
15	TCAATCCTTC CCATCCACTC TAGGCCCTGT	90
	(2) INFORMATION FOR SEQ ID NO:17:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
	AACAATGACC CGAGACACAT CCACCAGCAC AGTCTACATG GAACTCAGCA GCCTGCGATC	60
	TGAGGACACC GCAGTCTATT ACTGTGCACG	90
30	(2) INFORMATION FOR SEQ ID NO:18:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
40	AGCCGTCCAC CTCGTGCACA GTAATAGACT GCGGTGTCCT CAGATCGCAG GCTGCTGAGT	60
	TCCATGTAGA CTGTGCTGGT GGATGTGTCT	90
	(2) INFORMATION FOR SEQ ID NO:19:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 93 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (genomic)	

5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	AGGTGGACGG CTCGGTTCCT TTGCTATGGA CTACTGGGGT CAAGGCACCC TCGTCACCGT	60
10	CTCCTCAGGT GAGTCCTCAC ACTCGAGGTC GAC	93
	(2) INFORMATION FOR SEQ ID NO:20:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
	AAAAAAGTCG ACCTCGAGTG TGAGGACTCA CCTGAGGAGA CGGTGACGAG GGTGCCTTGA	60
	CCCCAGTAGT CCATAGCAAA GGAACCG	87
25	(2) INFORMATION FOR SEQ ID NO:21:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(, (g	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	TTTTTGAAT TCAAGCTTTC CTGACTACAT GAGTGCATTT CTGTTTTATT TCCAATTTCA	60
	GATACCACCG GAGAAATTGT GCTAACACAA	90
40	(2) INFORMATION FOR SEQ ID NO:22:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
50	AATTTCTCCG GTGGTATCTG AAATTGGAAA TAAAACAGAA ATGCACTCAT GTAGTCAGGA	60
	AAGCTTGAAT TCAAAAAA	78

5		
	(2) INFORMATION FOR SEQ ID NO:23:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	TCTCCAGCTA CATTGTCTTT GTCTCCAGGT GAGAGAGCCA CTCTATCCTG CAGAGCCAGT	60
20	GAAAGTGTTG ATAGTTATGG CAATAGT	87
	(2) INFORMATION FOR SEQ ID NO:24:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
	ACTATCAACA CTTTCACTGG CTCTGCAGGA TAGAGTGGCT CTCTCACCTG GAGACAAAGA	60
	CAATGTAGCT GGAGATTGTG TTAGCAC	87
35	(2) INFORMATION FOR SEQ ID NO:25:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
40		
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
45	TTTATGCACT GGTACCAGCA GAAACCAGGA CAGGCACCAA GGCTCCTCAT CTATCGTGCA	60
	TCCAACCTAG AAACTGGTAT CCCTGCC	87
	(2) INFORMATION FOR SEQ ID NO:26:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid	

5		
	<pre>(C) STRANDEDNESS: single (D) TOPOLOGY: linear</pre>	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	AGTTTCTAGG TTGGATGCAC GATAGATGAG GAGCCTTGGT GCCTGTCCTG GTTTCTGCTG	60
15	GTACCAGTGC ATAAAACTAT TGCCATA	87
	(2) INFORMATION FOR SEQ ID NO:27:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
	AGGTTCAGTG GCAGTGGTTC TAGGACAGAC TTCACTCTCA CCTATTCTTC TCTAGAGCCT	60
	GAAGATTTTG CAGTGTATTA CTGTCAG	87
30	(2) INFORMATION FOR SEQ ID NO:28:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
40	CACTGCAAAA TCTTCAGGCT CTAGAGAAGA ATAGGTGAGA GTGAAGTCTG TCCTAGAACC	60
	ACTGCCACTG AACCTGGCAG GGATACC	87
	(2) INFORMATION FOR SEQ ID NO:29:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: DNA (genomic)	

5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
	CAAAGTAATG AGGATCCTCG GACGTTCGGT GGAGGCACCA AGGTGGAAGA GAAACGTAAG	60
10	TGCACTTTCC TCGAGGTCGA CTTTTTT	87
	(2) INFORMATION FOR SEQ ID NO:30:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 99 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	AAAAAAGTCG ACCTCGAGGA AAGTGCACTT ACGTTTCTCT TCCACCTTGG TGCCTCCACC	60
	GAACGTCCGA GGATCCTCAT TACTTTGCTG ACAGTAATA	99
25	(2) INFORMATION FOR SEQ ID NO:31:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
	AAAAAAGAAT TCGAGCTCTT TTCTGATAAC GTTGTCCTTC TGTTTCTTGC AGGTGTCCAG	60
	TGTCAGGTCC AACTTCAGCA GCCTGGG	87
	(2) INFORMATION FOR SEQ ID NO:32:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 51 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: YES	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
	AAAAAAGTCG ACTGTGAGGA CTCACCTGAG GAGACGGTGA CTGAGGTGCC T	51

5		
	(2) INFORMATION FOR SEQ ID NO:33:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 96 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	
	AAAAAAGAAT TCAAGCTTTC CTGACTACAT GAGTGCATTT CTGTTTTATT TCCAATTTCA	60
20	GATACCACCG GAGACATTGT GCTAACACAA TCTCCA	96
	(2) INFORMATION FOR SEQ ID NO:34:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 54 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iv) ANTI-SENSE: YES	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
	AAAAAAGTCG ACCTCGAGAT CACTTACGTT TGATTTCCAG CTTGGTGCCT CCAC	54
35		
40		
40		
45		
50		

Claims

10

15

20

25

30

35

40

45

- A method for producing a humanized monoclonal antibody by utilizing a process of comparative model building comprising:
 - a) selecting a monoclonal antibody to be humanized;
 - b) searching computer databanks for protein crystal structures that demonstrate greater than 50 percent sequence homology to the variable region of said antibody to produce a structural template;
 - c) determining the structure of the complementarity determining region, or CDR, loops and assigning the loops to canonical loop conformations;
 - d) determining the framework residues which are crucial to the conformation of the CDR loops;
 - e) replacing the CDR loops of the structural templates with canonical CDR backbone templates using interactive computer graphics;
 - f) searching computer databanks to extract initial backbone approximations for each loop for non-canonical CDR loops;
 - g) replacing all non-conserved amino-acid side chains in similar positions on said antibody and on the computer model with human amino acid residues using interactive computer graphics to produce a model having a combination of backbone fragments of different antibodies with replaced side chains;
 - h) solvating the models with a water layer corresponding to about 7 angstroms;
 - i) refining the structure with an energy minimization protocol to produce a structure wherein all atoms of the system are freely mobile;
 - j) searching computer databanks to find homologous human sequences for the variable light and variable heavy chains of the antibody;
 - k) combining the sequences found in (j) to obtain human templates;
 - I) comparing the structural template of (a) with the human templates of (k) and selecting a human template with variable regions having greater than 50 percent sequence identity with the structural template;
 - m) determining the CDR loops of the human template selected in (I);
 - n) replacing the CDR loop region of the selected human template with the analogous sequences from the antibody to produce a Phase 1 humanized sequence;
 - o) superimposing the models of the antibody and the Phase 1 humanized sequence to compare the binding site regions;
 - p) identifying by the comparison in (o) all amino acids in the framework residues and CDR junction residues that interact with the antibody CDR loops that can be important to the structural integrity of the antibody binding site; q) reinserting into the Phase 1 humanized sequence all amino acid residues identified in (p) to be different from those in the antibody, and refining the resultant structure with an energy minimization protocol to produce a Phase II humanized sequence;
 - r) refining the Phase II humanized sequence using iterative conformational search protocols on all regions of the binding site and by analysis of the binding site to determine which regions of the CDR surface or residues at the CDR -framework junction are not likely to involve antigen binding; and
 - s) replacing the amino acids in the non-antigen binding regions of the binding site with amino acid residues corresponding to the human residues to produce a humanized monoclonal antibody.
 - 2. The method of Claim 1 wherein the monoclonal antibody is a murine antibody.
 - 3. The method of Claim 2 wherein the monoclonal antibody is an anti-CD18 monoclonal antibody.
 - 4. The method of Claim 3 wherein the monoclonal antibody is 60.3
- 5. A humanized monoclonal antibody having the structural and binding characteristics of the anti- CD18 monoclonal antibody 60.3
 - 6. The humanized monoclonal antibody of Claim 5 wherein the amino acid at position 50 in Figure 2 is changed from Arg to Asp.
- 7. The humanized monoclonal antibody of Claim 6, wherein the amino acid at position 54 is changed from Leu to Arg and the amino acid at position 55 is changed from Glu to Ala.
 - 8. The humanized monoclonal antibody of Claim 7 wherein the amino acid at position 68 is changed from Arg to Gly.

60.3 Heavy Chain Sequences

	Kabat #	hVhl/ Jh4	21-2 'CL	h60.3 template	h60,3 Phase IV	h60.3 Phase II/III	h60.3 Phase I	#n60.3	
	1	Gln	Gin	Gln	GŁ∩	Glin	, Gin	Gin	
	2	Val	. Yel	Val	Vel	٧al	Am	Val	
	3	Gin	- Gin	Gln	Gin	Gin	Gin •	Gin .	
	4	Lau	Leu	Leu	Leu	Leu	Leu	Leu	
	5	Val	Vel	Val	Val	Val	Val	Gin	
	6	Gin	Gin	Gin	Qin -	Gin	Gin .	Gin	
	7	Ser	Ser	Ser	Ser	Ser	Ser	Pro	
	8	Gly	Gly	Gły	Giy	Gly	Gly	Gly	
	9	Ala	Ala	Ala	Ala	Ala	Ala	Pro	
	10	Glu	Glu	Ġн	Glu	Glu	Œ₩	As p	
	11	Yel	Ael	Ael	Val	Yal	Val	Leu	
	12	Lys	Lys	Lys	Lys	Lys	Lye	Leu	
	13	Lys	Lys	Lys	Lys	Lys	Lys	Lys	
	14	Pro	Pro	Pro	Pro	Pro ·	₽œ	₽ro	
FR 1	15	Gły	Caly	Giy	Gły	Gly	Gly	Gly	FR 1
	16	Ala	Ala	Ala	Ala	Ala	Ala	Ala	
	17	Ser	Ser	Ser	Ser	Ser	Ser	Pro	
	18	Val	Val	Val	٧al	Val	Val	Val	
	19	Lys	Lys	Lys	Lys	Lys	Lys	Lys	
	20	Val	Val	Val	Val	Val	Val	Leu	
	21	Ser €	Ser	Ser .	Ser	Ser	Ser	Ser	
	22	Cys	Cys	Cys	Cys	Сув	Сув	Cys	
	23	Lys	Lys	Lys	Lys	Lys	Lys	Lys	
	24	Ala	Ala	Ala	Ala	Ala	Ala	Ala	
	25	Ser	Ser	Ser	Ser	Ser	Ser	Ser	
	26	Gly	Gly	Gily	Gly	Gly	Gly	Gly	H1 1
	27	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr •	H1
	28	Thr	Thr	Ilw	Thr	Tlw	Thr	Thr	•
	29	Phe	Phe	Phe	Phe	Phe	Phe	Phe •	H1 H1
	30	Thr	Thr	Thr	Thr	Thr	Thr	Thr	i
	31	Ser	Ser	Asn	Asn	Asp	Asp	As p	i
I	32	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr	Тут	1
HV1	3 3	Ala	Tyr	Tyr	Туг	Trp	Tyr	Trp	
1	34	äe	Met	Met	Met	Met	Met		H1
ł	3 5	Ser	His	His	His	Asn	His	Asn	
	36	Trp	Top	Trp	Τp	Trp	Trp	Trp	
	37	Vel	Vel	Val	Val	Val	Val	Val	
	38	Arg	Arg	Ang	Arg	Am	Arg	Lys	
	39	Gin	Gin	Gin	Gin	Gin	Gin	Gin	
	40	Ala	Ala	Ala	Ala	Ala	Ala	Arg	
FR 2	41	Pro	Pro	Pro	Pro	Pro	Pro	Pro	FR 2
	42	Gly	Giy	Gity	Gly	Giy	Gly	Gly	
	43	Gin	- Gin	Gin	Gin	Gin	Gin	Arg	
	44	Gly	Gly	Gly	Gly	Gly	Gly	Gly	
		~,	·····~	~",	~',	~''	Cit	3 17	

FIGURE 1 1/3

60.3 Heavy Chain Sequences

	Kabat	hVhl/ Jh4	21-2 'CL	h60.3 template	h60.3 Phase IV	h60.3 Phase II/III	h60.3 Phase I	m60.3	
	45	Leu	Leu	Leu	Leu	Leu	Leu	Leu	•
	46	Glu	Glu	Glu	Glu	Glu	Glu	GİL	
	47	Trp	Trp	Trp	Trp	Trp	Trp	Trp	
	48	Met	Mel	Met	Met	Met	Met	No.	
	 .49	Gły T	City	Caly	City	Gly	Gly	Gly	
	50 51	Trp ile	lo Lo	lle lle	Arg	Arg	lle lle	Arg	
	51 52	Asn	Asn		lle * A	He		lie L	
1	52 52a	Pro		Asn	Asp b-	Asp	Asp D-	Asp D	
1	52a 53	700000000000000000000000000000000000000	Pro	Pro	Pro	Pro	₽ro	Pro	,
	53 54	Gly	Ser	G⊌	Şer ≛	Ser 4	Ser	Ser .	ľ
	5 4 55	Asn.	Gly	Gly	Asp	Asp	Asp	Asp	
- 1		Gly	Gly	Asn Cor	Ser	Ser	Ser	Ser	
HV 2	56 57	Asp	Ser	Ser	Gb	Giu	Ser	Glu	
772	57 58	Thr	Thr	Thr	Thr	Thr	The .	Thr	
	59	Asn Tyr	Ser	Asn •	His	His	A sn	Hi.	
	60	Aja	Tyr Ala	Тут Ala	Tyr	Tyr	Tyr	Туг	
1	61	Gin	Gin		Asn	Asn ~	Ala	Asn	
	62	2000		Gln	G⊭n	Gin	Gin	Gin	
l		Lys	Lys	Lys	Lys	Lys	Lys	Lys	
į	6 3	Phe	Phe	Phe	Phe	Phe	Phe	Phe	
i	64 65	Gin	Gin	Gin .	Q i n	Gi n	Gin ∼:	Lys	
L	- 66	Gly	Gly	Gly A	Gly	Gly	Gly	Asp	
	67	Arg Val	Arg	Arg	λŋ	Arg	Arg	Lys	
	68	\$50000 · 1000000	Val Tu-	Val	Val	Val	Yal	Ala	
	69	Thr ""	Thr	Thr	The	The	Thr	Thr	
		lie The	Met	Met	Met	Met	Met	Leu	
	70 71	Thr	Thr	Thr	Thr	Thr	Thr	Thr	
		Ala *	Arg	Arg	Val.	Am.	Val	Val	• H2
	72 73	Asp	Asp	Asp	Asp	Asp	Asp	Asp	
	73 74	Thr	Thr	Thr	म	Thr	Thr	Lys	
	7 4 75	Ser Thr	Ser	Ser	Ser ∽	Ser	Ser	Ser	
	75 76		Thr	Thr	Thr	Thr	The	Ser	
		Ser	Ser	Ser	Ser	Ser	Ser	Ser	
	77	Thr	Thr	The	Thr	Thr	Thr	Thr	
	78 70	Ala	Val T	Val	Val	Val	Val	Ala	
	79	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr	
	80	Met	Met	Mei	Mei	Met	Met	lie	
FR 3	81	Glu	Glu	G€U	Glu	Glu	Glu	Gin	
rn J	82	Leu	Leu	Leu	Leu	Lou	Lou	Leu	FI
	82a	Ser	Ser	Ser	Ser	Ser	Ser	Ser	
	82b	Ser	Ser	Ser	Ser	Ser	Ser	Ser	
	82c	Leu	Leu	Leu	نوا	Leu	Leu	Leu	
	83	Arg	Arg	Arg	Arg	Arg	Arg	Thr	
	84	Ser	Ser	Ser	Ser	Ser	Ser	Ser	

FIGURE 1 2/3

60.3 Heavy Chain Sequences

	Kabat	hVhl/ Jh4 .	21-2 *CL	h60.3 template	h60.3 Phase IV	h60.3 Phase IVIII	h60.3 Phase i	m60.3	ı
	85	Glu	Glu	GLU	Giu	Glu	Glu Asp	Glu Asp	
	86	Asp	Asp	Asp	Asp Thr	Amp Thr	Lpa Vesi	Ser	
	87	Thr	Thr	Thr Ala	Ala	Ala	Ala	Ala	
	88 8 9	Ala Vai	Ale Val	Val	Val	Vel	Val	Val	
	90	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr	
	91	Tyr	Tyı	Tyr	Tyr	Tyr	Tyr	Tyr	
	92	Cys	Cye	Cys	Cys	Cys	Cys	Cys	
	93	Aia	Ala	Ala	Als	Ala	Ala	Ala	
	94	Arg	Arg	Arg	Arg	Ang	Arg	Arg	* H1
	95			Glu	Gly	Gly	Gly	Gly	
	96			Lys					· [
1	97			Leu					
į	98			Ala					
	99			Thr					
ł	100			Thr					
	100a			No.					ı
	100b			Phe					
HV 3	100c			Gly	Gly	Gly	Gly	Gly	
	100d			Val	Arg	Arg	Am	Arg	нз
1	100e			Leu	Leu	Leu	Leu	Leu	
	100f			lie	Gly	Gly	Gly	Gly	ı
	100g			He	Ser	Ser	Ser	Sar	
	100h			Thr	Phe	Phe	Phe	Phe	
ł	100î	Tyr		Gly	Ala	Ala	Ala	Ala	
ļ	100j	Phe		Met	Met	Met	Met	Met	
- 1	101	Asp		Asp	Asp	Asp	Asp	Asp	
<u> </u>	102	Tyr		Tyr	Tyr	Tyr	Tyr	Tyr	
	103	Τφ		Trp	Trp	Trp	Trp	Trp	
	104	Gly		Gly	Gly	Gly	Gly	Gly	
	105	Gin		G±n	Gin	Gin	Gin	Gin	
	106	Gly		Gly	Gly	Gly	Gly	Gly	
	107	Thr		Thr	Thr	Thr	Th r	Thr	
FR 4	108	Leu		Leu	Lau	Leu	Leu	Ser	FR 4
	109	Vai		Val	Val	Val	Val	Val	
	110	Thr		Thr	Thr	The	Thr	Thr	
	111	Val		Vel	Val	An	Val	Val Ser	
	112	Ser .		Ser S-	Ser	Ser Con	Ser C	Ser For	
	113	Ser .		Ser	Ser	Ser	Ser	Ser	

^{*} The h60.3 heavy chain was made with the sequence shown in the Phase II/III column, with the following exception:

H71: Arg instead of Val

FIGURE 1 3/3

60.3 Light Chain Sequences

	Kabat #	hVkIIV Jk	h60.3 template	h60.3 Phase IV	h60.3 Phase II/III	h60.3 Phase I	m60.3		
	1 2	GIU Ne	Giu Ne	Giu ile	Giu #e	Glu il e	· Asp	"L1	
	3	Val	y z i	Val	Yal	Val	Val		
	4	Leu	Leu	Lau	Lev	Leu Thr	Leu Thr		
	5 6	Thr Gin	Thr Gin	Thr Gin	Thr Gin	Gin	Gin		
	7	Ser	Ser	Ser	Ser	Ser	Ser		
	8	Pro	Pro	Pro	Pro	Pro	Pro		
	9	Gly	Ala	Ala	Ala	Ala	Ala		
FR 1	10	Thr	Thr	Thr	Thr	Bu	Ser		FR 1
	11	توا	Leu	Leu	Leu	Leu	Leu		
	12	Ser	Ser	6er	Ser	Ser .	Ala		
	13	Leu	نعا	Leu	Leu	Leu	Val		
	14	Ser	Ser	Ser	Ser	Ser .	8er		
	15	₽ro	Pro	Pro	Pro	Pro	Leu		
	16	Gly	Gly	Gły	Gły	Gly	Gly		
	17	Giu	Glu	Gitu	Glu	Glu	Gin		
	18	Arg	Arg	Arg	Arg	Arg	Arg		
	19	Ala	Ale Thr	Ala	Ala Thr	Ala Thr	Ala Thr		
	20 21	Thr Leu	Leu	Thr Leu	Leu	Leu	le le		
	22	Ser	Ser	Ser	Şer	Ser	Ser		
	23	Cys	Cys	Cys	Cys	Cys	Сув		
F	. 24	(0.000 T#.7.0000	Arg	Am	Am	Am	Ang		
	25		Ala	Ala	Ala	Ala	Ala	L 1	
l l	26		Ser	Ser	Ser	Ser	Ser		
1	27		Gin	Głu	Glu	Glu	:Glu		
l	28		Ser	Ser	Ser	Ser	Ser		
	29		Val	V≇	Vei	Vai	Val	* L1	
	30		Ser	Asp	Asp	Asp	Asp		
HV 1	31		Ser	Ser	Ser	Ser	Ser		L1
	31a			Туг	Ţyr	Tyr	Tyr	ı	
	31b			Gly	Gly	Gly	Gly	- 1	
ı	31c 31d			Asn Ser	Asn Ser	Asn Ser	Asn Ser		
	31 0		Tyr	Phe	Phe	Phe	Phe	- 1	
	33		Leu	Mel	Met	Met	Met	*L1	
- 1	34		Ala	His	Hia	Ala .	His	_,	
<u> </u>	35	Tre	Trp	Trp	Trp	Top	Trp		
	36	Tyr	Tyr	Tyr	Tyr	Tyr	Туг		
	37	Gin	Gin	Gin	Gin	Gin	Gin		
	38	Gin	Gin	Gin	Gin	Gin	Gin		
	39	Lys	Lys	Lys	Lys	Lys	Lys		
	40	Pro	₽no	Pro	Pro	Pra	Pro		
FR 2	41	Gly	Gły	Gly	Gly	Gly	Gly		FR 2
	42	Gin	Gin	Gh	-Gin	Gin	Gin		
	43	Ala	Ala	Ala	Ala .	Ala	Pro		
	44	Pro	Pro	Pro	Pro	Pro	Pro		
	4 5	Arg	Arg	Arg	Arg	Arg	Lys		
	46	العظ	Leu	باهل	Leu	Lau	Leu		

60.3 Light Chain Sequences

	Kabat #	hVkil/ Jk	h60.3 template	h60.3 Phase IV	h60.3 Phase IVIII	h60.3 Phase i	en60.3	_	
	47 48	Leu lle	Leu le	Leu lle	Leu	Leu	Lev	7.2	
	49			<u> </u>	le Tyr	ile Tyr	ile Tyr	12	
	5 0	Tyr	Tyr	Tyr			*****		ì
1	50 51		Asp	Asp	Arg	Arg	Ag		٠
ĺ	51 52		Ala Ser	Ala	Ala	Ale	Ala		L2
HV 2			*************************************	Ser	Ser	Ser .	Ser		1
mv 2	53		Asn	Asn	Asn	Asn	Aen		
	54		Arg	Arg	Lou	Arg	Leu		
	55		Ala	Ala	Glu	Ala	Glu		
	56	*****************	Ila	Thr	Thr	Ita	Ser .		
	57	Gly	Gly	Gly	Gly	Gly	Gly		
	58	lle	lle S	He	le le	No.	je .		
•	59	Pro	Pro	Pro	Pro	Pro	Pro		
	6 0	Asp	Aa	Ala	Ala	Ala	Ala		
	62	Arg Phe	Arg	Arg	Arg	Arg	Arg		
	63	Ser	Phe Ser	Phe	Phe	Phe	Phe		
	64	Giy	Giy	Ser Gly	Ser Gly	Ser Gly	Ser Giy	12	
	6 5	Ser .	Ser	Ser	Ser .	Ser	Ser	12	
	66	Gly	Gly	Gly	Giy	Gly	Giy		
FR 3	67	Ser	Ser	Ser	Ser	Ser	Ser		FR 3
	68	Gily	Gly	Giy	Gly*	Gly	Arg		11.0
	69	Thr	Thr	Thr	Thr	Thr	Thr		
	70	Asp	Asp	Asp	Asp	Asp	Asp		
	71	Phe	Phe	Phe	Phe	Phe	Phe	"L1	
	72	Thr	Thr	Thr	Thr	Thr	Thr		
	73	Leu	Leu	Leu	Leu	لافا	Leu		
	74	Thr	Thr	Thr	Thr	Thr	Thr		
	75	Бe	je -	Иe	ile "	ije.	No.		
	76	Ser	Ser	Ser	8er	Ser	As n		
	77 ~	Arg	Ser	Ser	Ser	Ser	Pro		
	78	Leu	Leu	Leu	Leu	Leu	Vel		
	79	Glu	Glu	Głu	Glu	Giù	Blu		
	80	Pro	Pro	Pro	Pro	Pro	Na		
	81	Giu	Giu	Giu	Giu	Giu	Asp		

60.3 Light Chain Sequences

	_	Kabat	hVkliV Jk	h60.3 template	h60.3 Phase IV	h60.3 Phase II/III	h60.3 Phase I	m60.3		
	_	82 83	Asp	Asp	Asp	Asp	Asp	Asp		
		84	Phe Ala	Phe Ala	Phe Ala	Phe Ala	Phe Ala	Val Ala		
		85	Val	Val	Val	Val	Val	Thr		
		86	Tyr	Tyr	Tyr	Tyr	Tyr	Тут		
		87	Tyr	Tyr	Tyr	Tyr	Tyr	Tyr		
		88	Cys	Cys	Cys	Cys	Cys	Cys		
		89	***********	Gln	Gin	GÍn	Gin	Gin		
ĺ	l	90		Ciln	Gln	Gln	Gin	Gin	L3	
	Ī	91		Arg	Ser	Ser	6er	Ser 3		
		92		Ser	Asn	Asn	Asri	Asn	ı	
HV3		93		Asn	Glu	Giu	Glu	Glu		L3
		94		Trp	Asp	Asp	Asp	Asp		
		95		Pro	Pro	Pro	Pro	Pro	"เ3	:
		96	Trp, Tyr, Phe, Leu, ¥e		Arg	Arg	Arg	Arg		
i		97	Thr		Thr	Thr	The	Thr		
•		98	Phe		Phe	Phe	Phe	Phe		
		99	Gly		Gly	Gły	Gly	Giy		
		100	Gin, Pro, Gly		Gly	Giy	Gly	Gly		
		101	Gly		Gly	Gly	Gly	Gly		
FR 4		102	Thr		Thr	Thr	Thr	Thr		FR 4
		103	Lys, Arg		Lys	Lys	Lys	Lys		
		104	Val, Leu		Leu*	Leu *	Lau	Leu		
		105	Glu, Asp		Glu	Glu	Glu	Glu		
		106	lle	1	le "	lle "	lle	No.		
		107	Lys		Lys	Lys	Lys	Lys		
		108	Arg	1	Arg	Ang	Am	Arg		

^{*} The h60.3 light chain was made with the sequence shown in the Phase II/III column, with the following exceptions:

Phase II/III column, with the following exceptions:

L68: Arg | Instead of Gly

L75: Tjr | Instead of Re

L104: Val | Instead of Leu

L106: Glu | Instead of Re

FIGURE 3

Oligonucleotide #1:

TTTTTTGAATTCAAGCTTTCCTGACTACATGAGTGCATTTCTGTTTTATTTCCAATTCAGATACCACCGGAGAAATTGTGCTAACACAA

Oligonucleotide #2

AATTTCTCCGGTGGTATCTGAAATTGGAAATAAAACAGAAATGCACTCATGTAG TCAGGAAAGCTTGAATTCAAAAAA

Oligonucleotide #3

TCTCCAGCTACATTGTCTTCTCCAGGTGAGAGCCACTCTATCCTGCAGAGCCAGTGAAAGTGTTGATAGTTATGGCAATAGT

Oligonucleotide #4

ACTATCAACACTTTCACTGGCTCTGCAGGATAGAGTGGCTCTCTCACCTGGAGAC AAAGACAATGTAGCTGGAGATTGTTTAGCAC

Oligonucleotide #5

TTTATGCACTGGTACCAGCAGAAACCAGGACAGGCACCAAGGCTCCTCATCTATCGTGCATCCAACCTAGAAACTGGTATCCCTGCC

Oligonucleotide #6

AGTTTCTAGGTTGGATGCACGATAGATGAGGAGCCTTGGTGCCTGTCCTGGTTTC TGCTGGTACCAGTGCATAAAACTATTGCCATA

Oligonucleotide #7

AGGTTCAGTGGCAGTGTTCTAGGACAGACTTCACTCTCACCTATTCTTCTCTAGAGCCTGAAGATTTTGCAGTGTATTACTGTCAG

Oligonucleotide #8

CACTGCAAAATCTTCAGGCTCTAGAGAAGAATAGGTGAGAGTGAAGTCTGTCCT AGAACCACTGCCACTGAACCTGGCAGGGATACC

Oligonucleotide #9

CAAAGTAATGAGGATCCTCGGACGTTCGGTGGAGGCACCAAGGTGGAAGAGAA ACGTAAGTGCACTTTCCTCGAGGTCGACTTTTTT

Oligonucleotide #10

AAAAAGTCGACCTCGAGGAAAGTGCACTTACGTTTCTCTTCCACCTTGGTGCCT CCACCGAACGTCCGAGGATCCTCATTACTTTGCTGACAGTAATA

FIGURE 4

Oligonucleotide # 1

AAAAAGAATTCGAGCTCTTCTGATAACGCTGTCCTTCTGTTTGCAGGTGTCCAG TGTCAGGTCCAACTTGTCCAGTCCGG

Oligonucleotide #2

TTAACTTCGGCACCGGACTGGACAAGTTGGACCTGACACTGGACACCTGCAAAC AGAAGGACAGCGTTATCAGAAGAGCTCGAATTCTTTTTT

Oligonucleotide #3
TGCCGAAGTTAAGAAGCCTGGCGCTTCTGTGAAGGTCTCCTGCAAGGCTTCTGG
CTACACCTTCACCGACTACTGGATGAACTGGGTTCG

Oligonucleotide #4

CCAGGTGCCTGTCGAACCCAGTTCATCCAGTAGTCGGTGAAGGTGTAGCCAGAA GCCTTGCAGGAGACCTTCACAGAAGCGCCAGGCTTC

Oligonucleotide #5

Oligonucleotide #6

CGGGTCATTGTTACCCTACCCTGGAACTTCTGATTGTAGTGAGTTTCACTATCGG AAGGATCAATCCTTCCCATCCACTCTAGGCCCTGT

Oligonucleotide #7

AACAATGACCCGAGACACCACCACCAGCACAGTCTACATGGAACTCAGCAGCCT GCGATCTGAGGACACCGCAGTCTATTACTGTGCACG

Oligonucleotide #8

AGCCGTCCACCTCGTGCACAGTAATAGACTGCGGCGTCCTCAGATCGCAGGCTGCTGAGTTCCATGTAGACTGTGCTGGTGGATGTGTCT

Oligonucleotide #9

AGGTGGACGGCTCGGTTCCTTTGCTATGGACTACTGGGGTCAAGGCACCCTCGTC ACCGTCTCCTCAGGTGATGCCTCACACTCGAGGTCGACTTTTTT

Oligonucleotide #10

AAAAAGTCGACCTCGAGTGTGAGGACTCACCTGAGGAGACGGTGACGAGGGT GCCTTGACCCCAGTAGTCCATAGCAAAGGAACCG

FIGURE 5

FIGURE 6

FACS Analysis Binding of FITC-m60.3 to HL60 cells

FIGURE 7

- m60.3 - h60.3 --- ce0.3 mL6 Antibody 2 0 Chemiluminescence Assay
Binding of mAbs 60.3 to Human Neutrophils 2 Antibody (µg/ml) 0.1 0.0 -20 8 9 40 8 100 Percent Inhibition of Chemiluminescence

FIGURE 8

FIGURE 9 1/4

FIGURE 9 2/4

FIGURE 9 · 3/4

FIGURE 9 4/4

pGk.11

_	GAATTC				_
1	GAATTC				_
51					_ ,
101					
251					
351					
401					
551					
601					
651					
701					
751					
801					
851					
901					
951					
1001					
1051					
1101					
1151					
1201					
1251					
1251					
9 403					
1451					
1501					
1551	<u>-</u>				
1601					
1651					
	GGCC				
1751	GGACTGTCTT	GCAGAGGATG	ATAGGGTAAA	ATAGAATGAA	GGATGATTTT
1801	TATAAATGGT	TACGTGCCTT	AGGATGACTA	CATATTTAGT	CCCTTATAAG
1851	AGAAATTGAG			AATAATTATT	
1901	VCVCVCVVVC	CACAGGGGGA	AACATTCACT	TTATTTATTC	ATTCTCCTCC
1951	AGAGAGAAAC	TARTER ATTARA	CARCACCAC	GAGGGGGGTG	AGGTGAAAGA
2001	TOTOTOTO	CACCCCAATA	CCCCTACCTC	CCCTGTGGAA	AAAGGGTCAG
2051	AGGCCAAAGG	ATGGGAGGG	CTCACCCTCC	AACTGAGGAG	CAGGTGGGGG
2101				AAGCTCTTTG	
2101	GCTCAGGCCC	TCIAACACIC	CTTCCCIGIIG	CTACACTTTC	TCTTTCTCCT
X121	AGTCTGCTTT	COMONCOCTO	ACCCTCCTCC	TCACCCTCTA	CCTCCTCTCC
2201	TTGCTCTCCT	COMOMOMORA	AGGGIGCIGC	CACTTACCCC	ATTCCACCC
772T	GTTATCCACC	GC1C1G1GAC	COUNTROCCCO	TOTOGONTAG	ALIGORGGGC
2301	GCAGGCACAC	TICCACIGIA	CITICGCCIC	TOTAGANTAG	PACTUALICA
2351	GCAGGCACAC	AACAGAGGCA	TINDRUCTED TO	COMPCCOCACO	WICWGWIGGC
2401	GGGAAGATGA	AGACAGATGG	CANACOMORC	GIICCIGNGG	MANUANGUAA MCMMCMMMCC
∠451	ACAGGATGGT	GTTTAAGTAA	CACACACAT	PCYCCYMCCM	TGTIGTIIGC
2501	GGATAAGGGC	ATGTTAGGGA	CAGACAGAAA	MUNGUATGUT	AMOUNTE
2551	AATTATAGCA	AGGAGACCAA	GAAGCGTATT	TAAAATCTTG	ATGTTTTGAG
2601	TTTCTTCCTA	GCTTCCCCCT	ATTCCTTAAT	AAAGTTCTAA	ATTGTTTTGT
2651	TGGAGCTCTT	TGCAGCCATT	CTGAGGGCTT	TGCATGCTTT	TCTGACCTTG
2701	CAGTAAACTC	AATGCTTTAG	GCAAAGAATG	GCCACGTCAT	CCGACCCCCT
2751	CAGAGTTTAG	AATTCATCGA	TATCTAGATC	CTAGATAATT	GCATTCATTT

pGk.11

		÷			
2801	AAAAAAAA	TATTTCTCCT	AAAATGAATA	CTCAGAAAGT	GGTCTTGAAA
2851	AACATTTGTG	AAGCCGTTTT	GACCAGAATG	TCAAAGTCTT	AATAGTAAGG
2901	CAAAACAAAC	AACTAAAAA	GATCATGAAC	AAAGTCACTG	TAAAGACTIC
2951	GGGTATTGGA	AAATAATTGA	ATGGAGACCA	ATAATCAGAG	GGAAGAATAA
3001	TAGAGTAATT	TTAAGAAGTT	TTCTAAATAT	ATTAGAAATT	AAAGACACTA
3051	AAGTCCTTCA	ATTTCTTACA	TAACCTAATT	TTGAAAATGA	ATTCTAAATA
3101	CATTTTAGAA	GTCGATAAAC	TTAAGTTTGG	GGAAACTAGA	ACTACTCAAG
3151	CTILITOTE	AAGGTTGAAC	TCAATAAGTT	AAAAGAGGAC	CTCTCCAGTT
3201	TOCCOOTEDAT	CCTCAACTTA	TTTTAGAAAT	GCAAATTACC	CAGGTGGTGT
3251	TCGGCIGWYI	CTGGACTTTC	CCTTTCCTCC	GGCTGGACAG	AGTGTTTCAA
	AACCACTTCT	TC D D D CC D C D	CCTACAAGTT	TACCTAGTGG	TTTTATTTTC
3301	CCTTCCCCAA	NUNCCOURCE	CACATGACCT	GCTTCCTGCC	AGCTGCTGCA
3351	GGTGTTCTGG	MINGCCIIGC	CCATCTTCAC	TCAACTCAAC	ATTGCTCAAT
	GGTGTTCTGG	ATATTTTAAA	CUMICITORS	TATTCTTAAA	AGTCAGTTCT
3451	TCATTTAAAA	MAATITIAAA	CIIMMIIIMI	TATIGITIES.	AACTTTAAGT
3501	GGATAGGGTA	TGAGAGAGCC	PACACCECAA	ATTCATTCAC	ABARATTTTG
3551	AATGTCAGTT	CTACACAAAC	AAGACCICAA	VILIGATIONS	TTABLITTE
	GACATTTAAA	AAAATGAGTA	CTTGAAAACC	CICICACAII	BACCARCATC
	AGTATTTAAC	TATTTTTCCT	AGGAACCAAC	TIAAGAGIAA	AAGCAACA1C
3701	TTCTAATATT	CCATACACAT	ACTTCTGTGT	TUUTTTGAAA	GCIGGACIII
3751	TGCAGGCTCC	ACCAGACCTC	TCTAGGATCT	CGAGCTCGCG	AAAGCTIGCA
3801	TGCCTGCAGG	TCGACTCTAG	AGGATCAAAC	CAACTGTCTT	TGAGTAGAGC
3851	CAAAATTGTT	GATATACTTT		TATATTTCTT	GCTGAGCAGA
3901	GGTGGCAAGA	GTTTTCACTA	ATGTGCAAAA	CCACCTCATG	TTCCCCTCAC
3951	CTGGGAGCCA	GAGTAGCAGG	AGGAAGAGAA	GCTGAGCTGG	GGCTTCCATG
4001	GTTCCCTCTG	GGTCCTAACT	GAGCAGTTCC		TCTGACACAG
4051	GCATTGATAT	GGGCTCTGGA	AGGTAGGGCA	GCTGGGAGGG	ACATGCAAAG
4101	CAGCTGGGTG	GGAGCTGAGC	TTCCAGCTGC	AGAGACCACC	TGCTTCTTCC
4151	TCTCTGCACT	GAGCATCCTG	CGCCACCCTG	GTTGTCAGGC	CAGAAAAGTC
4201	TGTTGGCTCA	GTCTGAGTGT	AGAACTTCTC	CCTTGTGCTC	AGAGAATTTC
	ATTCCTATGT	CTTTCTTCTC	CTCAATCACC	TAAATTCACC	CAGATGATGT
4301	TTGGCACAAG	CCTGTTAAGA	ACAATATAAA	AGGCTGTGTT	TTCATTTCTC
	TCTTCCTATC		CCAGTCATCT	CCCTAAGTGC	ATTATTGGAT
	CCAGACATGA		TGATGAGTTT	GGACAAACCA	CAACTAGAAT
	GCAGTGAAAA				ATTGCTTTAT
	TTGTAACCAT	TATAAGCTGC		TTAACAACAA	
4551	CATTTTATGT	TTCAGGTTCA	GGGGGAGGTG	TGGGAGGTTT	TTTAAAGCAA
	GTAAAACCTC		GTATGGCTGA	TTATGATCTC	
	ACTATACATC			TTTACAAATT	
	AGGTACACAA			TAGCAGACAC	
4751	TGTGGAGTAA				
4801		ACAGAATATT	TTTCCATAAT		AGCAGTGCAG
	CTTTTTCCTT	WCWCCWCWY Y			
4851	AACACAGCAT	TGTGGTGTAA	AIRGURARGU	TOTO CARGAGI	
	AACACAGCAT	GACTCAAAAA	ACTIAGCAAI	1CIGAAGGAA	MCICCIIGG
4951	GTCTTCTACC	TTTCTCTTCT	TTTTTGGAGG	AGTAGAATGT	TGAGAGICAG
5001	CAGTAGCCTC	ATCATCACTA	GATGGCATTT	CTTCTGAGCA	AAACAGGTTT
5051	TCCTCATTAA	AGGCATTCCA	CCACTGCTCC	CATTCATCAG	TTCCATAGGT
5101	TGGAATCTAA	AATACACAAA	CAATTAGAAT	CAGTAGTTTA	ACACATTATA
5151	CACTTAAAAA	TTTATATTT	ACCTTAGAGC	TTTAAATCTC	TGTAGGTAGT
5201	TTGTCCAATT	ATGTCACACC	ACAGAAGTAA	GGTTCCTTCA	CAAAGATCCG
5251	GGGCCCACTC	ATAAATCCAG	TTGCCGCCAC	GGTAGCCAAT	CACCGTATCG
5301	TATAAATCAT	CGTCGGTACG	TTCGGCATCG	CTCATCACAA	TACGTGCCTG
5351	GACGTCGAGG	ATTTCGCGTG	GGTCAATGCC	GCGCCAGATC	CACATCAGAC
5401	GGTTAATCAT	GCGATACCAG	TGAGGGATGG	TTTTACCATC	AAGGGCCGAC
5451	TGCACAGGCG	GTTGTGCGCC	GTGATTAAAG	CGGCGGACTA	GCGTCGAGGT
5501	TTCAGGATGT	TTAAAGCGGG	GTTTGAACAG	GGTTTCGCTC	AGGTTTGCCT
5551	GTGTCATGGA	TGCAGCCTCC	AGAATACTTA	CTGGAAACTA	TTGTAACCCG

pGk:11

		-			
2801	AAAAAAAAA	TATTTCTCCT	AAAATGAATA	CTCAGAAAGT	GGTCTTGAAA
2851	カカにカヤヤヤにむに	A A CCCCTTTT	GACCAGAATG	TCAAAGTCTT	AATAGTAAGG
2901	CAAAACAAAC	AAATAAAAAA	GATCATGAAC	AAAGTCACTG	TAAAGACTIC
2951	CCCTATTCCA	BBBTBBTTGB	ATGGAGACCA	ATAATCAGAG	GGAAGAATAA
3001	TAGAGTAATT	TTAAGAAGTT	TTCTAAATAT	ATTAGAAATT	AAAGACACIA
3051	AAGTCCTTCA	ATTTCTTACA	TAACCTAATT	TTGAAAATGA	ATTCTAAATA
3101	CATTTTAGAA	GTCGATAAAC	TTAAGTTTGG	GGAAACTAGA	ACTACTCAAG
3151	CTITITOLL	AAGGTTGAAC	TCAATAAGTT	AAAAGAGGAC	CTCTCCAGTT
3201	TO COOTE DATE	CCTCAACTTA		GCAAATTACC	CAGGTGGTGT
3251	TUGGUIGAAI	CTGGACTTTC	CCTTTCCTCC	GGCTGGACAG	AGTGTTTCAA
2221	AACCACTTCT	TCABACCACA	CCTACAAGTT	TACCTAGTGG	TTTTATTTTC
	AACCACTICI	ATAGCCTTGC	CACATGACCT	GCTTCCTGCC	AGCTGCTGCA
3351		TTCTGATCGG		TCAACTCAAC	ATTGCTCAAT
	GGTGTTCTGG	TICIGATOGG	CONTENTANT	TATTGTTAAA	AGTCAGTTCT
3451	TCATTTAAAA	MARITITATA	TO TO TO THE TOTAL	TCCTCGGTTA	AACTTTAAGT
3501	GGATAGGGTA AATGTCAGTT	TGAGAGAGCC	TOMOTOCOCAT	ATTCATTCAC	AAAAATTTTG
3551	AATGTCAGTT	CTACACAAAC	WWGWCCICUM	CTCTCACATT	TTAAAGTCAC
	GACATTTAAA	AAAATGAGTA	CITGAAAACC		AAGCAACATC
		TATTTTTCCT	AGGAACCAAC		CCTCCACTTT
3701		CCATACACAT	ACTICTGTGT	CCACCTCCCC	AABCCTTCCA
3751	TGCAGGCTCC	ACCAGACCTC	TCTAGGATCT	CARCUCUCU	TCACTACACC
3801	TGCCTGCAGG	TCGACTCTAG	AGGATCAAAC	CAACTGTCII	CCECACACA
3851	-	GATATACTTT	GAATTTTAAT	TATATTTCTT	GCTGAGCAGA TTCCCCTCAC
3901	GGTGGCAAGA	GTTTTCACTA	ATGTGCAAAA	CCACCTCATG	
3951	CTGGGAGCCA	GAGTAGCAGG	AGGAAGAGAA	GCTGAGCTGG	GGCTTCCA1G
4001	GTTCCCTCTG	GGTCCTAACT	GAGCAGTTCC	TCCCCAGGGC	TCTGACACAG
4051	GCATTGATAT	GGGCTCTGGA	AGGTAGGGCA	GCTGGGAGGG	ACATGCAAAG
4101	CAGCTGGGTG	GGAGCTGAGC	TTCCAGCTGC	AGAGACCACC	TGCTTCTTCC
4151	TCTCTGCACT	GAGCATCCTG	CGCCACCCTG	GTTGTCAGGC	CAGAAAAGTC
4201	TGTTGGCTCA	GTCTGAGTGT		CCTTGTGCTC	
4251	ATTCCTATGT	CTTTCTTCTC	CTCAATCACC	TAAATTCACC	CAGATGATGT
4301	TTGGCACAAG	CCTGTTAAGA	ACAATATAAA	AGGCTGTGTT	TICATITCIC
4351	TOTTOTATO	CTCAATATGC	CCAGTCATCT	CCCTAAGTGC	ATTATTGGAT
4401	CCAGACATGA	TAAGATACAT	TGATGAGTTT	GGACAAACCA	CAACTAGAAT
4451	GCAGTGAAAA	AAATGCTTTA	TTTGTGAAAT	TTGTGATGCT	ATTGCTTTAT
4501		TATAAGCTGC	AATAAACAAG	TTAACAACAA	CAATTGCATT
4551	<u> </u>	TTCAGGTTCA	GGGGGAGGTG	TGGGAGGTTT	TTTAAAGCAA
4601	GTAAAACCTC	TACAAATGTG	GTATGGCTGA	TTATGATCTC	TAGTCAAGGC
4651		AAATATTCCT			AAAAAGCTAA
4701				TAGCAGACAC	
4751	TCTCCACTA	GAAAAAACAG			
4801		ACAGAATATT		TTTCTTGTAT	AGCAGTGCAG
4851		TCTCCTCTAA		AAGCAAGAGT	
		GACTCAAAAA			AGTCCTTGGG
4901	CECEECHACE .	TTTCTCTTCT	TTTTTCCACC		
4951	CAGTAGCCTC	, IIICICIICI Serraeracea	CATCCCATTT	CTTCTCACCA	AAACAGGTTT
2001	TCCTCATTAR	, MICHICACIA	CCACTCCTCC	CATTCATCAC	TTCCATAGGT
2021	TGGAATCTAA	NGGCRIICCR	CANTTAGAAT	CACTACTTA	ACACATTATA
5101	CACTTAAAAA	MAAJAJAJAA	- ACCEMPACACE	מנונטמנטמט י	TOTACCTACT
5151	. CACTTAAAAA . TTGTCCAATI	TITTATATIT	ACCITAGAGE	CCTTCCTC	CARRESTAGE
5201	TTGTCCAATI GGGCCCACTC	ATGTUALACU	- WATERWARDING	CCTACCTION	CARAGRICOG
5251	GGGCCCACTC	ATARATCUAG	TIGCCGCCACC	COUCEDOCYCES	TACCTIATO
5301	TATAAATCAT	CGTCGGTACG	TTUGGUATUG	CICHICACAA	CACATCACAC
5351	GACGTCGAGG	ATTTCGCGTG	GGTCAATGCC	DEMONSTRATE	PACCECCENC
5401	GGTTAATCAT	GCGATACCAG	TGAGGGATGG	TITTACCATC	COCHCCACO
5451	TGCACAGGCG	GTTGTGCGCC	GTGATTAAAG	COMMESCACTA	ACCEPTEGAGGT
5501	TTCAGGATGI	TTAAAGCGGG	GTTTGAACAG	GGTTTCGCTC	AGGTTTGCCT
5551	GTGTCATGGA	TGCAGCCTCC	AGAATACTTA	CTGGAAACTA	TTGTAACCCG

pGk.11

					mc
5601	CCTGAAGTTA	AAAAGAACAA	CGCCCGGCAG	TGCCAGGCGT	TGAAAAGATT
5651	AGCGACCGGA	GATTGGCGGG	ACGAATACGA	CGCCCATATC	CCACGGCTGT
5701	TCAATCCAGG	TATCTTGCGG	GATATCAACA	ACATAGTCAT	
5751	ACGACCAGCC	GGTTTTGCGA	AGATGGTGAC	AAAGTGCGCT	TTTGGATACA
5801	TTTCACGAAT	CGCAACCGCA	GTACCACCGG	TATCCACCAG	GTCATCAATA
5851	ACGATGAAGC	CTTCGCCATC	GCCTTCTGCG	CGTTTCAGCA	CTTTAAGCTC
5901	GCGCTGGTTG	TCGTGATCGT	AGCTGGAAAT	ACAAACGGTA	TCGACATGAC
5951	GAATACCCAG	TTCACGCGCC	AGTAACGCAC	CCGGTACCAG	ACCGCCACGG
6001	CTTACGGCAA	TAATGCCTTT	CCATTGTTCA	GAAGGCATCA	GTCGGCTTGC
6051	GAGTTTACGT	GCATGGATCT	GCAACATGTC	CCAGGTGACG	A TGTATTTTT
6101	CGCTCATGTG	AAGTGTCCCA	GCCTGTTTAT	CTACGGCTTA	AAAAGTGTTC
6151	GAGGGGAAAA	TACCTTCCCC	GAGATTATAG	AGATCAGCTT	TTTGCAAAAG
6201	CCTAGGCCTC	CAAAAAAGCC	TCCTCACTAC	TTCTGGAATA	GCTCAGAGGC
6251	CGAGGCGGCC	TO COCCOTO TO	CATAGATAA	AAAAATTAGT	CAGCCATGGG
6231	GCGGAGAATG	CCCCCCAMC	CULTURE	CCCCCCAACT	GGGCGGAGTT
630T	AGGGGCGGA	GGGCGGGATG	MC CONSTRAC	ACATCCTCCA	TTANTCANTC
6351	AGGGGGGGA	CTATGGTTGC	TGACTAATTG	AGRIGOTOCA	TIMETOWNIC
6401	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT	ATTGGGGGGCT	CITCCGCTTC
6451	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT	TUGGUTGUGG	CGWGCGGIWI
6501	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT		AGGGGATAAC.
6551	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG	CAAAAGGCCA	
	AAAGGCCGCG				CCTGACGAGC
6651	ATCACAAAAA	TCGACGCTCA		GGCGAAACCC	GACAGGACTA
	TAAAGATACC		CCCTGGAAGC	TCCCTCGTGC	GCTCTCCTGT
6751	TCCGACCCTG	CCGCTTACCG	GATACCTGTC	CGCCTTTCTC	CCTTCGGGAA
6801	GCGTGGCGCT	TTCTCAATGC	TCACGCTGTA	GGTATCTCAG	TTCGGTGTAG
6851	GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC	GAACCCCCCG	TTCAGCCCGA
6901	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT	TGAGTCCAAC	CCGGTAAGAC
	ACGACTTATC				
	AGGTATGTAG				CTAACTACGG
7051	CTACACTAGA	AGGACAGTAT			AAGCCAGTTA
7101	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT	CCGGCAAACA	AACCACCGCT
7151	GGTAGCGGTG	CTTTTTTTTTT	TTGCAAGCAG	CAGATTACGC	GCAGAAAAA
	AGGATCTCAA				GACGCTCAGT
	GGAACGAAAA				
7201	ATCTTCACCT	DI CACGIIAA	BARTTABAR	TCABCTTTA	AATCAATCTA
_ : _ : _	AGGCACCTAT		TGTCTATTTC		
7451	CTCCCCGTCG			GAGGGCTTAC	
	CAGTGCTGCA				CCAGATTTAT
7551	CAGCAATAAA	CCAGCCAGCC	GGAAGGGCCG	AGCGCAGAAG	TGGTCCTGCA
	ACTTTATCCG				
7651	AAGTAGTTCG				
7701		GTCACGCTCG			CAGCTCCGGT
7751		CAAGGCGAGT			GCAAAAAAGC
7801	GGTTAGCTCC	TTCGGTCCTC	CGATCGTTGT	CAGAAGTAAG	TTGGCCGCAG
7851	TGTTATCACT	CATGGTTATG	GCAGCACTGC	ATAATTCTCT	TACTGTCATG
7901	CCATCCGTAA	GATGCTTTTC	TGTGACTGGT	GAGTACTCAA	CCAAGTCATT
7951	CTGAGAATAG	TGTATGCGGC	GACCGAGTTG	CTCTTGCCCG	GCGTCAATAC
	GGGATAATAC				
	AAACGTTCTT				
	CAGTTCGATG				
0101	CTTTCACCAG	CCTTTCCCTCC	TCACCAAAAA	CYCCAACCCA	ALATECCECA
	AAAAAGGGAA				
0201	TTTTCAATAT	TANGGGGGAC	WCGGWWWIGI.	TGUNTUCTOR	THCTCTTCCT
8 ∠51	TTTTCAATAT	IAIIGAAGCA	TITALCAGG	TIMITOTOTO	MCCCCCCCCCC
8301	ACATATTTGA	ATGTATTTAG	AAAAATAAAC	AAATAGGGGT	TUUGUGUACA
8351	TTTCCCCGAA	AAGTGCCACC	TGACGTCTAA	GAAACCATTA	TTATCATGAC

FIGURE 11 1/3

FIGURE 11 2/3

FIGURE 11 3/3

1	AAGCTTTCTG	GGGCAGGCCA	GGCCTGACCT	TGGCTTTGGG	GCAGGGAGGG
51	GGCTAAGGTG	AGGCAGGTGG	CGCCAGCCAG	GTGCACACCC	AATGCCCATG
101	AGCCCAGACA	CTGGACGCTG	AACCTCGCGG	ACAGTTAAGA	ACCCAGGGGC
151	CTCTGCGCCC	TGGGCCCAGC	TCTGTCCCAC	ACCGCGGTCA	CATGGCACCA
201	CCTCTCTTGC	AGCCTCCACC	AAGGGCCCAT	CGGTCTTCCC	CCTGGCACCC
251	TCCTCCAAGA	GCACCTCTGG	GGGCACAGCG	GCCCTGGGCT	GCCTGGTCAA
301	GGACTACTTC	CCCGAACCGG	TGACGGTGTC	GTGGAACTCA	GGCGCCCTGA
351	CCAGCGGCGT	GCACACCTTC	CCGGCTGTCC	TACAGTCCTC	AGGACTCTAC
401	TCCCTCAGCA	GCGTGGTGAC	CGTGCCCTCC	AGCAGCTTGG	GCACCCAGAC
451	CTACATCTGC	AACGTGAATC	ACAAGCCCAG	CAACACCAAG	GTGGACAAAC
501	GCGTTGGTGA	GAGGCCAGCA	CAGGGAGGGA	GGGTGTCTGC	TGGAAGCCAG
551	GCTCAGCGCT	CCTGCCTGGA	CGCATCCCGG	CTATGCAGCC	CCAGTCCAGG
601	GCAGCAAGGC	AGGCCCCGTC	TECCTCTTC	CCCGGAGGCC	TCTGCCCGCC
651	CCACTCATGC	TCAGGGAGAG	GCTCTTCTGG	CTTTTTCCCC	AGGCTCTGGG
701	CAGGCACAGG	CTACCTCCCC	CTAACCCAGG	CCCTGCACAC	AAAGGGGCAG
751	GTGCTGGGCT	CACACCTCCC	ANCACCCATA	TCCGGGAGGA	CCCTGCCCCT
751	GACCTAAGCC	CAGACCIGCC	CCCNNCCCT	CCACACCCCTC	ACCTCGGACA
90T	CCTTCTCTCC	CACCCCAAAG	CACHARCICI	CARTICULT	TOTOCACACO
821	CCTTCTCTCC	TCCCAGATTC	CAGTAACTCC	CARICITCIC	ACCUPACCO
901	CCAAATCTTG	TGACAAAACT	CACACATGCC	CACCGIGCCC	AGGI AAGCCA
951	GCCCAGGCCT	CGCCCTCCAG	CTCAAGGCGG	GACAGGTGCC	CTAGAGTAGC
1001	CTGCATCCAG	GGACAGGCCC	CAGCCGGGTG	CTGACACGTC	CACCTCCATC
1051	TCTTCCTCAG	CACCTGAACT	CCTGGGGGGA	CCGTCAGTCT	TCCTCTTCCC
1101	CCCAAAACCC	AAGGACACCC	TCATGATCTC	CCGGACCCCT	GAGGTCACAT
1151	GCGTGGTGGT	GGACGTGAGC	CACGAAGACC	CTGAGGTCAA	GTTCAACTGG
1201	TACGTGGACG	GCGTGGAGGT	GCATAATGCC	AAGACAAAGC	CGCGGGAGGA
1251	GCAGTACAAC	AGCACGTACC	GTGTGGTCAG	CGTCCTCACC	GTCCTGCACC
1301	AGGACTGGCT	GAATGGCAAG	GAGTACAAGT	GCAAGGTCTC	CAACAAAGCC
1351	CTCCCAGCCC	CCATCGAGAA	AACCATCTCC	AAAGCCAAAG	GTGGGACCCG
1401	TGGGGTGCGA	GGGCCACATG	GACAGAGGCC	GGCTCGGCCC	ACCCTCTGCC
1451	CTGAGAGTGA	CCGCTGTACC	AACCTCTGTC	CCTACAGGGC	AGCCCCGAGA
1501	ACCACAGGTG	TACACCCTGC	CCCCATCTAG	AGAGGAGATG	ACCAAGAACC
	AGGTCAGCCT				
	GTGGAGTGGG				
	TCCCGTGCTG				
	TGGACAAGAG				
1751	CATGAGGCTC	TCCACAACCA	CTACACCCAC	AAGAGCCTCT	CCCTGTCTCC
1/31	GGGTAAATGA	CTCCCACCC	CIACACCAG	CCCCTCCCC	CCCTGTCTCCC
1801	GGGTAAATGA	GIGCGACGGC	ACCURACCCC	CCGC1CCCG	#CCCCCCCCC
1851	GTCGCACGAG	GATGCTTGGC	ACGTACCCCC	TGTACATACT	TCCCGGGGGG
	CCAGCATGGA				
	TGATGGTTCT				
	GGGAGGCAGA				
2051		CCCCCTAGGG			
2101	GGTGGGGGAT	TTGCCAGCGT	GGCCCTCCCT	CCAGCAGCAC	CTGCCCTGGG
2151		GGAAGCCCTA			
2201	GCCTCTGTAG	GAGACTGTCC	TGTTCTGTGA	GCGCCCCTGT	CCTCCCGACC
2251	TCCATGCCCA	CTCGGGGGCA	TGCCTAGTCC	ATGTGCGTAG	GGACAGGCCC
2301	TCCCTCACCC	ATCTACCCCC	ACGGCACTAA	CCCCTGGCTG	CCCTGCCCAG
2351	CCTCGCACCC	GCATGGGGAC	ACAACCGACT	CCGGGGACAT	GCACTCTCGG
	GCCCTGTGGA				
	CCGTTCAACA				
2501	ACACACGTGC	ACCCTCACA	CACGGAGCCT	CACCCGGGCG	AACTGCACAG
2551	CACCCAGACC	AGAGCAAGGT	CCTCGCACAC	GTGAACACTC	CTCGGACACA
2501	GGCCCCCACG	TOUCOUNCO!	GGCACCTCAA	GGCCCACGAG	CCTCTCGGGA
	GCTTCTCCAC				
	GGGTGCCCCT				
2701	GGGIGCCCCT	CCTCCCCCAC	THE CONCRETE	GGGGAICACA	TECACCACGICA
2/51	CGTCCCTGGC	CCTGGCCCAC	TUCCAGTEC		TGCMGGWCGG

2801	ATCCAGACAT		ATTGATGAGT	TTGGACAAAC	CACAACTAGA
2851	ATGCAGTGAA		TATTTGTGAA		CTATTGCTTT
2901	ATTTGTAACC	ATTATAAGCT	GCAATAAACA		AACAATTGCA
2951	TTCATTTTAT	GTTTCAGGTT		TGTGGGAGGT	TTTTTAAAGC
3001	AAGTAAAACC	TCTACAAATG		GATTATGATC	TCTAGTCAAG
3051	GCACTATACA	TCAAATATTC	CTTATTAACC	CCTTTACAAA	TTAAAAAGCT
3101	AAAGGTACAC	AATTTTTGAG			ACTCTATGCC
3151	TGTGTGGAGT	AAGAAAAAAC		GATTATAACT	GTTATGCCTA
3201	CTTATAAAGG	TTACAGAATA	TTTTTCCATA		ATAGCAGTGC
3251	AGCTTTTTCC	TTTGTGGTGT	AAATAGCAAA	GCAAGCAAGA	GTTCTATTAC
3301	TAAACACAGC	ATGACTCAAA	AAACTTAGCA	ATTCTGAAGG	AAAGTCCTTG
3351		CCTTTCTCTT	CTTTTTTGGA	GGAGTAGAAT	GTTGAGAGTC
3401	AGCAGTAGCC	TCATCATCAC	TAGATGGCAT	TTCTTCTGAG	CAAAACAGGT
3451	TTTCCTCATT	AAAGGCATTC		CCCATTCATC	AGTTCCATAG
3501	GTTGGAATCT	AAAATACACA	AACAATTAGA	ATCAGTAGTT	TAACACATTA
3551	TACACTTAAA	AATTTTATAT	TTACCTTAGA	GCTTTAAATC	TCTGTAGGTA
3601	GTTTGTCCAA		CCACAGAAGT		CACAAAGATC
3651	CGGGACCAAA	GCGGCCATCG	TGCCTCCCCA	CTCCTGCAGT	TCGGGGGCAT
3701	GGATGCGCGG	ATAGCCGCTG	CTGGTTTCCT	GGATGCCGAC	GGATTTGCAC
3751		ACTCCGCGAG	GTCGTCCAGC	CTCAGGCAGC	AGCTGAACCA'
	ACTCGCGAGG	GGATCGAGCC	CGGGGTGGGC	GAAGAACTCC	AGCATGAGAT
3801		GAGGATCATC	CAGCCGGCGT	CCCGGAAAAC	GATTCCGAAG
3851	CCCCGCGCTG	CATAGAAGGC	GGCGGTGGAA	TCGAAATCTC	GTGATGGCAG
3901	CCCAACCTTT		TCATTTCGAA	CCCCAGAGTC	CCGCTCAGAA
3951	GTTGGGCGTC	GCTTGGTCGG	AGAAGGCGAT		TCGGGAGCGG
4001	GAACTCGTCA	AGAAGGCGAT		CCCATTCGCC	GCCAAGCTCT
4051	CGATACCGTA		AAGCGGTCAG	TCCTGATAGC	GGTCCGCCAC
4101	TCAGCAATAT	CACGGGTAGC	CAACGCTATG		
4151	ACCCAGCCGG	CCACAGTCGA		AAAGCGGCCA	ATCCTCGCCG
4201	TGATATTCGG	CAAGCAGGCA	TCGCCATGGG	TCACGACGAG	
4251	TCGGGCATGC		CCTGGCGAAC		GCGCGAGCCC
4301	CTGATGCTCT		CATCCTGATC	GACAAGACCG	
4351	GAGTACGTGC		CGATGTTTCG	CTTGGTGGTC	GAATGGGCAG
4401	GTAGCCGGAT		CAGCCGCCGC	ATTGCATCAG	CCATGATGGA
4451	TACTTTCTCG		GGTGAGATGA		TGCCCCGGCA
4501	CTTCGCCCAA		TCCCTTCCCG	CTTCAGTGAC	AACGTCGAGC
4551	ACAGCTGCGC		CGTCGTGGCC		GCCGCGCTGC
4601	CTCGTCCTGC	AGTTCATTCA	GGGCACCGGA	CAGGTCGGTC	TTGACAAAAA
4651	GAACCGGGCG		GACAGCCGGA	ACACGGCGGC	ATCAGAGCAG
4701	CCGATTGTCT		GTCATAGCCG	AATAGCCTCT	CCACCCAAGC
4751	GGCCGGAGAA		ATCCATCTTG		
4801	CTCATCCTGT	CTCTTGATCA	GATCTTGATC		TCAGATCCTT
4851	GGCGGCAAGA	AAGCCATCCA	GTTTACTTTG	CAGGGCTTCC	CAACCTTACC
4901	AGAGGGCGCC	CCAGCTGGCA	ATTCCGGTTC	GCTTGCTGTC	
4951	CCCAGTCTAG	CTATCGCCAT	GTAAGCCCAC	TGCAAGCTAC	CTGCTTTCTC
5001	TTTGCGCTTG	CGTTTTCCCT	TGTCCAGATA	GCCCAGTAGC	TGACATTCAT
5051	CCGGGGTCAG	CACCGTTTCT	GCGGACTGGC	TTTCTACGTG	TTCCGCTTCC
5101	TTTAGCAGCC	CTTGCGCCCT	GAGTGCTTGC	GGCAGCGTGA	AGCTAGCTTT
5151	TTGCAAAAGC	CTAGGCCTCC	AAAAAAGCCT	CCTCACTACT	TCTGGAATAG
5201	CTCAGAGGCC	GAGGCGGCCT	CGGCCTCTGC	ATAAATAAAA	AAAATTAGTC
5251	AGCCATGGGG	CGGAGAATGG	GGCGGGATGG	GCGGAGTTAG	GGCGGAACTG
5301	GGCGGAGTTA	GGGGCGGGAC	TATGGTTGCT	GACTAATTGA	GATGCATGCT
5351	TTGCATACTT	CTGCCTGCTG	GGGAGCCTGG	GGACTTTCCA	CACCTGGTTG
5401	CTGACTAATT	GAGATGCATG	CTTTGCATAC	TTCTGCCTGC	TGGGGAGCCT
5451	GGGGACTTTC	CACACCCTAA	CTGACACACA	TTCCACAGCT	GCCTCGCGCG
5501	TTTCGGTGAT	GACGGTGAAA	ACCTCTGACA	CATGCAGCTC	CCGGAGACGG
5551	TCACAGCTTG	TUTOUTOR	GATGCCGGGA	GCAGACAAGC	CCGTCAGGGC
~~~ <u>~</u>	TONONGETIG	TOTOTARGOG	C.11 000000M		

				0010001003	CCCACTCACC
	GCGTCAGCGG	GTGTTGGCGG	GTGTCGGGGC	GCAGCCATGA TARCCCCCATGA	CACACICACA
5651	TAGCGATAGC	GGAGTGTATA	CTGGCTTAAC	TATGCGGCAI	ACATCCCTAA
5701	TGTACTGAGA	GTGCACCATA	TGCGGTGTGA	AATACCGCAC	WREAT GCGTWW
5751	GGAGAAAATA	CCGCATCAGG	CGCTCTTCCG	CTTCCTCGCT	CACIGACICG
5801	CTGCGCTCGG	TCGTTCGGCT	GCGGCGAGCG	GTATCAGCTC	ACTCAAAGGC
5851	GGTAATACGG	TTATCCACAG	AATCAGGGGA	TAACGCAGGA	AAGAACAIGI
5901		CCAGCAAAAG	GCCAGGAACC	GTAAAAAGGC	CGCGTTGCTG
5951	GCGTTTTTCC	ATAGGCTCCG	CCCCCTGAC	GAGCATCACA	AAAATCGACG
6001	CTCAAGTCAG	AGGTGGCGAA	ACCCGACAGG	ACTATAAAGA	TACCAGGCGT
6051	TTCCCCCTGG	AAGCTCCCTC	GTGCGCTCTC	CTGTTCCGAC	CCTGCCGCTT
6101	ACCGGATACC	TGTCCGCCTT	TCTCCCTTCG	GGAAGCGTGG	CGCTTTCTCA
6151	TAGCTCACGC	TGTAGGTATC	TCAGTTCGGT		CGCTCCAAGC
6201	TGGGCTGTGT	GCACGAACCC	CCCGTTCAGC	CCGACCGCTG	CGCCTTATCC
6251	CCTAACTATC	GTCTTGAGTC	CAACCCGGTA	AGACACGACT	TATCGCCACT
6301	GGCAGCAGCC	ACTGGTAACA	GGATTAGCAG	AGCGAGGTAT	GTAGGCGGTG
	CTACAGAGTT	CTTGAAGTGG	TGGCCTAACT	ACGGCTACAC	TAGAAGGACA
6401	GTATTTGGTA	TCTGCGCTCT	GCTGAAGCCA	GTTACCTTCG	GAAAAAGAGT
6451	TGGTAGCTCT	TGATCCGGCA	AACAAACCAC	CGCTGGTAGC	GGTGGTTTTT
	TTGTTTGCAA	CCACCAGATT	ACGCGCAGAA	AAAAAGGATC	TCAAGAAGAT
	CCTTTGATCT	TTTCTACGGG	GTCTGACGCT	CAGTGGAACG	AAAACTCACG
	TTAAGGGATT	TTCCTCATCA	GATTATCAAA	AAGGATCTTC	ACCTAGATCC
	TTTTAAATTA		TTTAAATCAA	TCTAAAGTAT	ATATGAGTAA
6651		ACACTUACCA	ATGCTTAATC	AGTGAGGCAC	CTATCTCAGC
6701	ACTTGGTCTG	TTTCGTTCAT	CCDTDCTTCC	CTGACTCCCC	
6751	GATCTGTCTA		TTRCCATCTC	GCCCCAGTGC	TGCAATGATA
6801	TAACTACGAT	ACGGGAGGGC		TTATCAGCAA	TAAACCAGCC
6851	CCGCGAGACC	CACGCTCACC		TIMICAGCAA	TCCGCCTCCA
6901	AGCCGGAAGG	GCCGAGCGCA	GAAGTGGTCC	GAGTAAGTAG	で中でについる。
6951	TCCAGTCTAT	TAATTGTTGC			TGGTGTCACG
7001	AATAGTTTGC	GCAACGTTGT	TGCCATTGCT		
7051	CTCGTCGTTT	GGTATGGCTT	CATTCAGCTC	CGGTTCCCAA	CONTCARGGC
7101	GAGTTACATG			AAGCGGTTAG	CICCIICGGI
7151	CCTCCGATCG	TTGTCAGAAG	TAAGTTGGCC		
7201	TATGGCAGCA				GTAAGATGCT
7251	TTTCTGTGAC	TGGTGAGTAC			ATAGTGTATG
7301	CGGCGACCGA			ACACGGGATA	
7351	ACATAGCAGA	ACTTTAAAAG	TGCTCATCAT		TCTTCGGGGC
7401	GAAAACTCTC	AAGGATCTTA			
7451	ACTCGTGCAC				
7501	TGGGTGAGCA	AAAACAGGAA			GGAATAAGGG
7551	CGACACGGAA	ATGTTGAATA	CTCATACTCT	TCCTTTTTCA	ATATTATTGA
7601	AGCATTTATC				TTGAATGTAT
7651		_		CACATTTCCC	CGAAAAGTGC
	CACCTGACGT	CTAAGAAACC	ATTATTATCA	TGACATTAAC	CTATAAAAAT
7751	AGGCGTATCA	CGAGGCCCTT	TCGTCTTCAA	GAATTCATCG	ATATCGGAAA
7801	ATGAAAAAA	ATATTTTTTA	ATTTTAAAAT	GAAATGTTTA	TTTTCAATTT
7851	CTCCAAATTT	CACAAGGAAA	GATTAGTCAC	GGGTATGGGA	GAGCAGAGGA
7901	CCATAAGAGT	TCAGGAATAG	AATCCATTAT	GATTCTGGAG	TCAAGGAAGT
7051	ACTGATGCCA	AGGTTTCAGT	ATAAGAGCAG	TATCCACTGG	AAAGGATAAA
0001	GTCACTACAA	CTGAGCACAC	AGCAGGACAG	CTACCTAATG	AGTGGTCACT
0001	AATGGGCCAC	TCTTACACTC	TTATACGGCT	TAGGAATGAG	CACTGAGGCT
0101	GTGAGGTGTA	TECETARES	CATCAGGATG	TARACCCAGO	TCAGGTAGAG
9101	GACTCAGAGC	TGGGTVVGGV	CACCACGAIG	TARTARACAR	CAGATAAGAT
8121	AAGGCACAAG	TOROUGUMAN TO	TTCCATCAACC	CATCTTOTA	AATCTGACTG
8201	TGTATTCAGT	CICAGCAMIA	CTCACTCAGG	PACCLCACCC	ATATGCAAAT
8251	TGTATTCAGT CTAGAGAAGA	CTAGTTUAAT	GIGACICAIG	CCTC > CCTC >	TIMI GOMMI
8301	CTAGAGAAGA	CTTTAGAGTA	TAAATUTGAG	<b>いっしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうし</b>	CATACCAGCA
8351	AGGGAGTGAC	CAGCTTGTCT	TARGGUACUA	CIGNOCCUMA	GICIINGACA

8401	TCATGGATTG	GCTGTGGAAC	TTGCTATTCC	TGATGGCAGC	TGCCCAAGGT
8451	AAGTCATCAG	AAAAAAGAGT	TCCAAGGGAA	ATTGAAGCAG	TTCCGAGCTC
8501	GGTACCCTCG	AGATCCTAGA	GAGGTCTGGT	GGAGCCTGCA	AAAGTCCAGC
8551	TTTCAAAGGA	ACACAGAAGT	<b>ATGTGTATGG</b>	AATATTAGAA	GATGTTGCTT
8601	TTACTCTTAA	GTTGGTTCCT	AGGAAAAATA	GTTAAATACT	GTGACTTTAA
8651	AATGTGAGAG	GGTTTTCAAG	TACTCATTTT	TTTAAATGTC	CAAAATTTTT
8701	GTCAATCAAT	TTGAGGTCTT	GTTTGTGTAG	AACTGACATT	ACTTAAAGTT
8751	TAACCGAGGA	ATGGGAGTGA	GGCTCTCTCA	TACCCTATCC	<b>AGAACTGACT</b>
8801	TTTAACAATA	ATAAATTAAG	TTTAAAATAT	TTTTAAATGA	<b>ATTGAGCAAT</b>
8851	GTTGAGTTGA	GTCAAGATGG	CCGATCAGAA	CCAGAACACC	TGCAGCAGCT
8901	GGCAGGAAGC	AGGTCATGTG	GCAAGGCTAT	TTGGGGAAGG	GAAAATAAAA
	CCACTAGGTA		TGTGGTTTGA	AGAAGTGGTT	TTGAAACACT
9001	CTGTCCAGCC	CCACCAAACC	GAAAGTCCAG	GCTGAGCAAA	ACACCACCTG
9051	GGTAATTTGC	ATTTCTAAAA	TAAGTTGAGG	ATTCAGCCGA	<b>A</b> ACTGGAGAG
9101	GTCCTCTTTT	AACTTATTGA	GTTCAACCTT	TTAATTTTAG	CTTGAGTAGT
9151	TCTAGTTTCC		GTTTATCGAC	TTCTAAAATG	TATTTAGAAT
9201	T				