

IOWA Case Competition - NovaSphere Logistics

Optimizing NovaSphere Logistics: Data-Driven Insights for Cost & Sustainability

Team Members

Abishek Karnan Rajesh abishek.karnan_rajesh@uconn.edu

Bharath Girirajan bharath.girirajan@uconn.edu

Sudarsan Nullur Murali sudarsan.n_m@uconn.edu

Tejasri Voota teja_sri.voota@uconn.edu

Problem Statement & Business Case

NovaSphere Logistics is a mid-sized last-mile delivery service provider, specializing in e-commerce and retail deliveries across metropolitan areas. The company aims to deliver fast, reliable, and cost-effective logistics solutions while optimizing operational efficiency and sustainability.

Key challenges include

- High Costs → Increasing operational expenses.
- Delivery Delays → Late deliveries affecting customer satisfaction.
- High Carbon Emissions →
 Environmental concerns from inefficient logistics.

Optimizing operations will lead to

- Cost Reduction → Lower operational expenses & improved profitability.
- Faster Deliveries → Improved efficiency & customer satisfaction.
- Sustainable Logistics → Reduced carbon footprint & eco-friendly operations.

Dataset Overview - NovaSphere Logistics

Dataset Summary

The dataset consists of 350 rows and 5 key columns, capturing operational metrics for NovaSphere Logistics. It includes delivery time, package weight, cost, and emissions, providing insights into logistics efficiency and sustainability

Key Features in the Dataset

Delivery_ID	Unique identifier for each delivery.
Delivery Time (minutes)	Time taken for each delivery, including delays
Package Weight (kg)	Weight of the package being delivered
Carbon Emissions (kg CO ₂)	Environmental impact per delivery.
Cost (\$)	Operational cost incurred for the delivery.

Data Quality Issues Identified Missing Values: Package Weight (kg): 12 rows contain missing values.

Incorrect or Outlier Entries

Negative Delivery Time (-1 min): 15 row contained an invalid negative value.

Carbon Emissions = 9999 kg CO₂: 10 row had an unrealistic emission value.

Cost = \$0: 7 rows had cost as zero, representing free deliveries due to loyalty points or other discounts^[1].

Data Preprocessing - Ensuring Clean & Reliable Data

Steps Taken for Data Cleaning & Preprocessing

- Handled Missing Values → Removed 12 rows with missing package weight data.
- Fixed Invalid Entries →
 - Negative Delivery Time (-1 min): Removed 15 rows with incorrect values.
- Carbon Emissions = 9999 kg CO₂: Replaced 10 rows with the mean (7.48) of valid emissions.
- Removed Cost = \$0 Rows → 7 rows were dropped as they were outliers and did not contribute to cost analysis.
- Final Cleaned Dataset → After preprocessing, we were left with 317 rows of reliable data.

Relationship Between Package Weight and Cost

Cost slightly increases with weight:

0-10 kg: Average cost \$24.72

10-20 kg: Average cost \$25.24 20-30 kg: Average cost \$25.69

The difference is small, meaning weight is not a strong driver of cost.

Variation in Costs Suggests Other Influencing Factors:

Some lightweight packages (<10 kg) have high costs, indicating cost drivers beyond weight (indicating some external factors).

Some heavy packages (25-30 kg) have low costs, suggesting possible bulk shipment optimizations or discounts (indicating some external factors).

• Insights from the Regression Line

The red regression line in the scatter plot shows a slight positive correlation, meaning cost increases marginally with weight.

However, the spread of data points is large, confirming that package weight alone does not determine cost.

Relationship Between Delivery Time and Cost

No Strong Correlation Between Delivery Time and Cost:

The correlation coefficient is close to 0, confirming that delivery time does not directly impact cost.

The red regression line is almost flat, showing no clear upward or downward trend.

Longer Delivery Times Do Not Mean Higher Costs:

Some short delivery times (<30 min) have high costs, while some longer deliveries (>90 min) have lower costs.

This suggests that cost is not determined by time alone but by other logistical factors.

Analysis of Carbon Emissions

Correlation: -0.04 14 - 12 - (Ö) 10 -

Carbon Emissions vs Package Weight

Correlation: $-0.05 \rightarrow$ Almost no relationship between package weight and carbon emissions.

The flat regression line confirms that package weight does not significantly impact emissions.

Possible Reasons:

Vehicles carry multiple packages, making individual package weight less relevant. Route optimization & vehicle type (fuel efficiency) may play a bigger role.

Carbon Emissions vs. Delivery Time

Correlation: $-0.04 \rightarrow$ No strong relationship between delivery time and carbon emissions.

The flat regression line suggests that longer delivery times do not necessarily lead to higher emissions.

Possible Reasons:

Traffic congestion, idling, or stop-and-go driving may affect emissions more than delivery duration.

Route type (highway vs. urban roads) could have a greater influence on emissions.

Relationship Between Carbon Emissions and Cost

Weak Positive Correlation Between Carbon Emissions and Cost

Correlation: 0.04, indicating a very weak relationship between emissions and cost. The red regression line is nearly flat, suggesting emissions do not strongly influence cost.

Wide Cost Variability Across Emission Levels

Deliveries with low emissions (~2-4 kg CO₂) have a wide range of costs, from \$10 to over \$40.

Similarly, deliveries with high emissions (~12-14 kg CO₂) also have low and high cost variations.

This suggests that cost is influenced by other operational factors.

Why Use LLMs to Analize Data?

Automating Data Analysis with AI

- Traditional data analysis requires manual SQL queries and expertise.
- LLMs enable natural language querying, making data insights accessible to nontechnical users.

Faster & Smarter Query Execution

- The LLM-powered agent converts user queries into SQL dynamically.
- Eliminates the need for manual query writing, improving efficiency and accuracy.

Intelligent Data Processing & Preprocessing

- The system can identify missing values, date parsing, and type conversions.
- Ensures clean, structured, and optimized data for analysis.

Seamless User Experience

- A Streamlit-powered UI enables real-time interaction with the LLMbased analyst.
- Users can upload datasets, ask questions, and get instant Algenerated responses.

How the Problem is Solved & Technologies Used

Technologies Used

- LLM Model: OpenAI GPT-4 for natural language to SQL conversion.
- Database Engine: DuckDB for efficient query execution.
- Data Handling: Pandas for preprocessing and analysis.
- Web Interface: Streamlit for a user-friendly data exploration experience.

Automated Query Processing

- User inputs a question →
 LLM converts it into SQL →
 DuckDB executes the
 query.
- Al interprets and presents results in a structured format.

Scalability & Efficiency

- Works with large CSV and Excel files with minimal computational overhead.
- Can be extended with more advanced Alpowered insights in the future.

Insights Using Our Personalized Chatbot Agent

Analysis:

- A correlation value close to 0 indicates a weak or no linear relationship.
- The factors Delivery_Time_Minutes, Package_Weight_kg, and Carbon_Emissions_kgCO2 show little
 correlation with the cost, suggesting they may not significantly affect delivery cost based on this
 dataset.
- On the other hand, Cost_per_kg and especially Cost_per_minute show a somewhat higher correlation, suggesting they might have a more substantial impact on cost.

Suggestions for Other Possible Factors Affecting Cost:

- Geographic Distance: The distance between the pickup and delivery locations could play a significant role.
- 2. Fuel Prices: Fluctuating fuel costs can affect shipping charges.
- 3. Seasonal Trends: Busy seasons might incur higher costs due to demand.
- 4. Carrier Pricing Policies: Different carriers might have varied pricing based on contracts or logistics.
- 5. Delivery Priority: Express or same-day deliveries often cost more.

Would you like the SQL query used for this correlation analysis saved to a file?

Our AI model independently confirmed that **cost is not significantly correlated with package weight, delivery time, or carbon emissions**. Instead, it identified **business-driven factors** like **geographic distance**, **seasonal demand**, **fuel prices**, **and delivery priority**, aligning with our manual analysis. This reinforces the **accuracy and reliability** of our findings.

The Bigger Picture – Understanding Cost Beyond the Data

Potential Cost Optimization Factors (Reducing Operational Expenses & Increasing Profitability)

- Delivery Demand & Market Conditions
 - Peak seasons (holidays, sales events) drive higher labor and fuel costs due to increased demand.
- Distance & Geographic Coverage
 - Longer routes, urban vs. rural delivery challenges, and cross-border logistics increase per-delivery cost.
- Vehicle Type & Fleet Efficiency
 - Investing in fuel-efficient or electric vehicles reduces long-term fuel costs while improving sustainability.
- Warehousing & Inventory Management
 - Decentralized warehousing allows for shorter delivery distances, reducing both cost and emissions.
- Labor Requirements & Workforce Management
 - Hiring surges during peak seasons and overtime pay significantly impact total delivery costs.
- Package Type & Handling Complexity
- Fragile, oversized, or perishable goods require specialized handling, refrigeration, or custom packaging, which raises costs.
- Technology & Automation in Logistics
 - Al-powered route planning and automated sorting hubs can cut costs by reducing inefficiencies.

The Bigger Picture – Understanding Emissions Beyond the Data

Carbon Emission Reduction Factors (Enhancing Sustainability & Environmental Compliance)

- Government Regulations & Sustainability Policies
 - Carbon tax policies, emission caps, and green incentives impact delivery operations and costs.
- Route Optimization & Traffic Management
 - Al-powered logistics can reduce fuel consumption and idle time, lowering carbon emissions.
- Seasonality & Weather Conditions
- Extreme weather delays increase fuel consumption, while off-season deliveries may allow for ecofriendly slower shipping options.

Key Takeaways from Our Analysis

- No strong correlation was found between cost, delivery time, package weight, or carbon emissions.
- This suggests that other operational, market, and strategic business factors are influencing cost and emissions.
- Understanding these hidden drivers is crucial for NovaSphere Logistics to optimize pricing, efficiency, and sustainability.

