nearPeriodDiffEqui1: errors in patch scheme for equilibrium of a 1D heterogeneous diffusion with nearly correct period

A.J. Roberts

September 5, 2023

Explore heterogeneous diffusion in 1D on patches to compare with approach in arxiv:2308.07563 by authors CDE. The microscale period ϵ is to be a little different from the cell (patch) size η . Then explore accuracy via forced equilibria. Here we use cells that are patches in the equation-free patch scheme (e.g., Roberts et al. 2023; Bunder, Kevrekidis, and Roberts 2021; Samaey, Roberts, and Kevrekidis 2010). We invoke functions from the Equation-Free Toolbox (Maclean, Bunder, and Roberts 2021).

Suppose the spatial microscale lattice is at points x_i , with constant spacing dx. With dependent variables $u_i(t)$, let's seek the equilibrium of the forced the microscale lattice diffusion system

$$\frac{\partial u_i}{\partial t} = \frac{1}{dx^2} \delta[c_{i-1/2} \delta u_i] - u_i + f_i, \tag{1}$$

in terms of the centred difference operator δ , and for some time-constant forcing f_i . The system has a microscale heterogeneity via the coefficients $c_{i+1/2}$ which has periodicity ϵ in x. Instead of varying cell-size for fixed heterogeneity period, here we explore results for various periods ϵ at fixed cell-size η .

Figure 1: example solutions of heterogeneous diffusion equilibrium with forcing $f(x) = \sin x$. By symmetry the plot shows half the domain. As shown, solve with 10,30,90 patches/cells. The bottom 90 patch equilibrium is the exact reference solution. The top two equilibria are for patch ratios r = 1/9, 1/3 respectively: computation is done only on the fraction r of the domain.

0.1 Code various numbers of patches over domain

Establish system of length 2π . Explore various number of patches.

```
71 %}
72 clear all
73 Xlim = [-pi pi]
74 lMax = 3
75 nPatches = 10 *3.^(0:lMax-1)
76 maxDetune = 100
77 %{
```

Set up microgrid parameters, and set strength of heterogeneity (abs-value less than one). CDE used cell size $\eta/\epsilon \in [1, 50]$, and at least 4096 points, so here with, say, 90 cells that is over 45 points per cell (per patch). For computational speed, use less.

```
85 %}
86 mPerPatch = 12
87 eta = diff(Xlim)/nPatches(lMax)
88 dx = eta/mPerPatch
89 heteroAmp = 0.9 % 0.9 is close to CDE's (4.1a)
90 %{
```

Loop over cell to heterogeneity ratios The micro-scale heterogeneity must be 2π -periodic over the macroscale domain, so in general has to be of the following form for integer nDetune (positive means smaller period, as shown by CDE, negative means larger).

```
99 %}
100 RmsErrs = []; etaEps = [];
101 for nDetune = -9:maxDetune
102 epsilon = 2*pi/(2*pi/eta+nDetune)
103 %{
```

Figure 2: errors in equilibrium as function of cell-size η to heterogeneity periodicity ϵ : blue dots are r=1/9; red dots are r=1/3. The errors are RMS of the difference between solutions, such as in Figure 1, in the five common patches/cells. The errors are essentially zero in the vicinity of the ideal integer ratio for η/ϵ . The low error valleys appear broader for larger ratio r.

Consequently, the heterogeneity

$$\cos(2\pi x/\epsilon) = \cos\left[2\pi x/\eta + 2\pi(1/\epsilon - 1/\eta)x\right]$$
$$= \cos(2\pi x/\eta)\cos(kx) - \sin(2\pi x/\eta)\sin(kx)$$
for wavenumber $k := 2\pi(1/\epsilon - 1/\eta)$.

So the discrepancy between cell-size and heterogeneous-period can be viewed as a modulation of precise cell-periodicity by 'macroscale' modulation of wavenumber k. That is, the discrepancy may be viewed as an example of a "functionally graded material". In the patch scheme such modulations are resolved on patches of spacing H provided their wavenumber $k < \pi/H$. That is, patch-resolution requires

$$2\pi(1/\epsilon - 1/\eta) < \pi/H$$

$$\iff \eta/\epsilon - 1 < (\eta/H)/2$$

$$\iff \eta/\epsilon < 1 + r/2$$

where $r := \eta/H$ is the patch ratio. For example, for $r = \frac{1}{3}, \frac{1}{9}$ we need $\frac{\eta}{\epsilon} < \frac{7}{6}, \frac{19}{18} \approx 1.17, 1.06$ in order to realise accuracy—see Figure 2.

The sides of the valleys for r = 1/3 in Figure 2 appear to be affected by higher-harmonic structures developing in the equilibrium solution, and these structures are then relatively poorly resolved.

0.2 Code to create the patch schemes

Establish the global data struct patches for the microscale heterogeneous lattice diffusion system (1) solved on 2π -periodic domain. Use spectral interpolation for best accuracy.

```
,0,dx,nSubP,'EdgyInt',true);
%{
```

Set the microscale heterogeneity with harmonic mean one, and set the forcing so solution should have amplitude near one. Choose forcing anti-symmetric to ensure solution effectively satisfies BCs of u=0 at $x=0,\pi$.

```
%}
178
      xMid = (patches.x(1:end-1,:,:,:)+patches.x(2:end,:,:,:))/2;
179
      patches.cs = 1./(1+ heteroAmp*cos(2*pi*xMid/epsilon) );
180
       xMid=squeeze(xMid)
       xMicro=squeeze(patches.x)
       cMicro = squeeze(patches.cs)
183
      patches.f = 2*sin(patches.x); % sign or sin
184
      xs=squeeze(patches.x);
185
    %{
186
```

Solve for equilibrium The linear system is of the form $\vec{f}(\vec{u}) = J\vec{u} + \vec{f_0}$. Get the constant term in the system by evaluating at zero.

Put NaNs on the patch-edges, to then find all micro-grid points interior to the patches, and hence are the variables in \vec{u} .

```
205 %}
206 u0([1 end],:,:,:)=nan;
207 i=find(~isnan(u0));
208 nJac=length(i);
209 %{
```

Create Jacobian J column by column: since linear we numerically differentiate with unit vectors.

```
214 %}
```

```
for j=1:nJac
216
         u0(i)=((1:nJac)==i);
217
         dudt= (patchSys1(0,u0)-f0);
218
         Jac(:, j) = dudt(i);
       end
220
       assert(rcond(Jac)>1e-9, 'Jacobian seems too ill-conditioned')
221
    %{
222
    Solve linear system.
    %}
226
      u0(i) = -sparse(Jac) \setminus f0(i);
227
      ueq = squeeze(u0);
228
    %{
229
    Check the residual.
    %}
233
      res = patchSys1(1,u0);
234
      normRes = norm(res(i));
235
      assert(normRes<1e-8, "norm of the residual is too big")
236
    %{
237
    Plot one example equilibrium for comparison
    %}
241
         if nDetune==1
242
         figure(1)
243
         subplot(lMax,1,find(nPatch==nPatches))
244
         j=find(xs(2,:)>0);
245
         plot(xs(:,j),ueq(:,j))
246
         vlim([min(0,min(min(ueq(:,j)))) max(1.2,max(max(ueq(:,j))))]),
247
         xlim([0 pi])
248
         ylabel("$u(x)$")
249
         if nPatch==nPatches(end),
250
             xlabel("$x$"), drawnow
251
             %set(gca,'position',[.2 .2 r r])
252
```

Jac=nan(nJac);

215

```
exportgraphics(gcf,mfilename+"ueq.pdf" ...
253
             ,'ContentType','vector')
254
             end%if
255
         end%if nDetune
256
    %{
257
    Use common patches for quantitative comparison
    %}
261
         if nPatch==nPatches(1), J=find(xs(2,:)>0);
262
         else J=3*J-1:
263
         end
264
         us = cat(3, us, ueq(:, J));
265
    %{
266
    End of the for-loop over the number of patches. Here compute the errors in
    the patch solutions compared to the full-domain exact solution.
    %}
273
    end%for nPatch
274
    uErrs = us-us(:,:,end);
275
    rmsErrs = reshape( rms(uErrs,[1 2],'omitnan') ,1,[]);
276
    log10rmsErrs = log10(rmsErrs)
277
    RmsErrs = [RmsErrs; rmsErrs];
    etaEps = [etaEps; eta/epsilon];
279
    %{
280
    At end of loop over detuning parameters, plot errors as function of the cell
    to periodicity ratio.
    %}
286
    end%for nDetune
287
    figure(2)
288
    semilogy(etaEps,RmsErrs,'.:')
289
    xlabel("$\eta/\epsilon$")
290
    ylabel("RMS error")
291
    set(gca,'position',[.2 .2 .64 .64])
292
    exportgraphics(gcf,mfilename+"Err.pdf" ...
293
```

References 9

```
294 ,'ContentType','vector')
295 %{
```

End of the main script.

0.3 heteroDiff(): heterogeneous diffusion

This function codes the lattice heterogeneous diffusion inside the patches. For 2D input arrays u and x (via edge-value interpolation of patchSys1, ??), computes the time derivative ?? at each point in the interior of a patch, output in ut. The array of diffusivities c_i have previously been stored in struct patches.cs.

```
%}
314
    function ut = heteroDiff(t,u,patches)
315
      dx = diff(patches.x(2:3));
                                    % space step
      i = 2:size(u,1)-1;  % interior points in a patch
317
      ut = nan+u;
                            % preallocate output array
      ut(i,:,:,:) = diff(patches.cs(:,1,:,:).*diff(u))/dx^2 ...
                     -u(i,:,:,:) +patches.f(i,:,:,:);
320
    end% function
321
    %{
322
```

References

```
Bunder, J. E., I. G. Kevrekidis, and A. J. Roberts (July 2021). "Equation-free patch scheme for efficient computational homogenisation via self-adjoint coupling". In: Numerische Mathematik 149.2, pp. 229–272. DOI: 10.1007/s00211-021-01232-5 (cit. on p. 1).
```

```
Maclean, John, J. E. Bunder, and A. J. Roberts (2021). "A toolbox of Equation-Free functions in Matlab/Octave for efficient system level simulation". In: Numerical Algorithms 87, pp. 1729–1748. DOI: 10.1007/s11075-020-01027-z (cit. on p. 1).
```

References 10

Roberts, A. J. et al. (Jan. 2023). Accurate and efficient multiscale simulation of a heterogeneous elastic beam via computation on small sparse patches. Tech. rep. https://arxiv.org/abs/2301.13145. DOI: 10.48550/arXiv.2301.13145 (cit. on p. 1).

Samaey, G., A. J. Roberts, and I. G. Kevrekidis (2010). "Equation-free computation: an overview of patch dynamics". In: *Multiscale methods: bridging the scales in science and engineering.* Ed. by Jacob Fish. Oxford University Press. Chap. 8, pp. 216–246. ISBN: 978-0-19-923385-4 (cit. on p. 1).