Esperimentazioni 2

Modulo di Ottica e Fisica Moderna

Lezione 7

Interferometro

Interferometro di Michelson

Layout ottico

movable mirror M1 laser fixed mirror half-transparent mirror В screen

SCHEMA VISTA DALL'ALTO

M2

COMMENTI:

- a) in laboratorio non utilizziamo la lastra di compensazione
- b) nel disegno trascuriamo il dettaglio del beam splitter

LINEARIZZAZIONE DELL'INTERFEROMETRO

I raggi A e B arrivano paralleli tra di loro allo schermo dopo diverse riflessioni su specchi disposti a angoli opportuni (45° -90°)

Supponiamo di volerne considerare la provenienza da sorgenti virtuali poste dietro agli specchi

© 2010 Encyclopædia Britannica, Inc.

IMMAGINE GENERATA DA SPECCHIO PIANO

IMMAGINE GENERATA DA SPECCHIO PIANO

osservatore:

- vede i raggi rossi provenire dallo stesso punto Q', sorgente virtuale.
- Q' è l'immagine di P' dietro allo specchio

IMMAGINE GENERATA DA SPECCHIO PIANO

l'immagine virtuale è sorgente virtuale per l'osservatore

LINEARIZZAZIONE DELL'INTERFEROMETRO

LINEARIZZAZIONE DELL'INTERFEROMETRO

M1 movable mirror M2' fixed mirror half-transparent mirror В screen

LINEARIZZAZIONE DELL'INTERFEROMETRO

ritannica, Inc.

LINEARIZZAZIONE DELL'INTERFEROMETRO

LINEARIZZAZIONE DEI PERCORSI DEI RAGGI

linearizzo l'interferometro:

- •la sorgente Σ si trova davanti all'osservatore (screen/detector)
- •M₂ e M₁' risultano essere paralleli tra di loro
- •Considero un raggio inclinato e disegno le sorgenti virtuali dei raggi riflessi da M2 e M1'

LINEARIZZAZIONE DEI PERCORSI DEI RAGGI

- •Considero un raggio che parte da un punto S sulla sorgente estesa, ad un angolo θ rispetto all'orizzontale
- •il detector/schermo vede i raggi riflessi da M_1 e M_2 ' come provenienti dalle sorgenti virtuali Σ_1 e Σ_2
- •la distanza tra Σ_1 e Σ_2 sarà pari a 2d

Formazione delle frange di interferenza (I)

• La differenza di cammino tra i 2 raggi provenienti dai punti S1 e S2 sulle sorgenti virtuali Σ_1 e Σ_2 sarà

$$2d\cos q$$

la differenza di fase sarà

$$d = \frac{2p}{l} 2d \cos q$$

Formazione delle frange di interferenza (II)

si avranno massimi di interferenza quando

$$2d\cos q = m/$$

fissiamo λ , m e d: anche θ e' costante -> frange circolari per ciascun ordine di massimo m

Formazione delle frange (M1 parallelo M2)

M1 e M2 allineati o disallineati

circolari

frange di egual spessore: parallele

Misura in laboratorio

- L'interferometro viene usato per diverse misure. In particolare osservando la variazione della figura di interferenza sullo schermo si possono misurare
 - lo spostamento dello specchio mobile (nota λ)
 - la lunghezza d'onda della luce (noto lo spostamento dello specchio)
 - l'indice di rifrazione di materiali diversi posti sul cammino ottico del fascio laser (noto lo spessore del materiale)
- infatti la distanza tra i 2 specchi è pari a d. Se sposto uno dei 2 vario d.
- i massimi e minimi di interferenza si sposteranno (vedi prossima slide), e contando il numero di massimi che si alternano al centro della figura possiamo valutare di quanto si è spostato lo specchio oppure, misurando lo spostamento, ricavare la lunghezza d'onda

Cosa succede in θ =0 se vario d? $\sqrt{}$

$$2d\cos\theta_{m} = m\lambda_{0}$$

 $d_m = 4,803432$ mm

$$\theta = 0$$

$$2d = m\lambda_0$$

 λ è costante, variando d varia m, ovvero in θ =0 si alternano via via massimi di ordine m successivo

$$d = m \frac{\lambda_0}{2}$$

a uno spostamento Δd corrisponderanno N alternanze di massimi in θ =0

$$\Delta d = N \left(\frac{\lambda_0}{2} \right)$$

d_{m+1}=4,803749mm

Misura in laboratorio (1)

- Lunghezza d'onda della luce:
 - Partendo da metà corsa della vite micrometrica sposto lo specchio, contando sullo schermo almeno 70 massimi di intensità successivi

attenzione a non variare il verso di rotazione!

- leggere sulla vite lo spostamento (ogni giro della vite corrisponde a uno spostamento di 25µm)
- sostituire N e d nella formula e ricavare λ

Misura in laboratorio (2)

- Indice di rifrazione dell'aria
 - Agendo con delicatezza sulla pompa, togliere lentamente l'aria dalla camera e contare le frange che sono state inghiottite.
 - Occorre partire da pressione atmosferica (ci si riporta a pressione atmosferica tirando la levetta) e per semplicita' supponiamo di riuscire a togliere tutta l'aria.

$$n_{aria} = 1 + \frac{N/_{vuoto}}{2d}$$

dove N e' il numero di frange contate, d (=3cm) la profondita'della camerina e λ_{vuoto} = 632,8 nm

Misura in laboratorio (3)

• Indice di rifrazione del vetro L'idea e' sempre quella di contare le frange che si alternano in θ =0 in corrispondenza di una variazione di cammino ottico:

qui si varia lo spessore del vetro variando l'angolo di incidenza della luce sul vetro.

- Montare la lastrina di vetro sul lato magnetizzato del braccio girevole.
- Posizionare il braccio in modo che lo zero del suo nonio sia allineato con lo zero del goniometro.
 - Se il braccio mobile e' fissato in modo corretto, lo zero della scala graduata del braccio mobile deve coincidere con lo zero del goniometro sul piano dell'interferometro. Altrimenti cercare la posizione di perpendicolarità osservando le figure riflesse
 - Ruotare LENTAMENTE il vetro agendo sul braccio girevole. Contare le frange (N) che passano andando da 0 gradi a un angolo ϑ (almeno 10 gradi)

L'indice di rifrazione del vetro si calcola tenendo conto dei cammini ottici in aria e in vetro, nel modo seguente:

$$n_{vetro} = \frac{(2t - N/)(1 - \cos J)}{2t(1 - \cos J) - N/}$$

 λ = lunghezza d'onda nel vuoto = 632,8 nm e t = spessore del vetro

Apparato

vista dall'alto

