Analiza II - Definitii

Curs - P. Ilias, Latex - Chris Luntraru June 18, 2018

1 Spatii liniare normate

Definitie 1.1 (Norma). O functie $p: X \to \mathbb{R}_+$ se numeste norma pe X daca indeplineste urmatoarele conditii:

- $p(\mathbf{0}_x) = 0$; $p(x) = x \Leftrightarrow x = \mathbf{0}_x$
- $p(x+y) \le p(x) + p(y)$
- $p(\alpha \cdot x) = |\alpha| \cdot p(x)$

Definitie 1.2 (Spatiu liniar normat). Se numeste spatiu liniar normat un spatiu liniar real sau complex X pe care se defineste cel putin o norma: $|| \ || \ || : X \to \mathbb{R}_+$

2 Functii derivabile

Definitie 2.1 (Functie derivabila intr-un punct). Functia $f:D\subseteq\mathbb{R}\to (X,||\cdot||_X)$ este derivabila in punctul $x_0\in D\cap D'$ daca $\exists\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\in X$. In plus, notam $\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=f'(x_0)\in X$ derivata functiei f in punctul x_0 .

Definitie 2.2 (Functie derivabila pe o multime). Functia $f:D\subseteq\mathbb{R}\to (X,||\ ||_X)$ este derivabila pe multimea $A\subseteq D\cap D'$ daca f este derivabila in orice punct din A.

Definitie 2.3 (Functie derivabila la dreapta/stanga intr-un punct).

• O functie $f: D \subseteq \mathbb{R} \to (X, ||\ ||_X)$ se numeste derivabila la dreapta in punctul $x_0 \in D \cap (D \cap (x_0, \infty))'$ daca $\exists \lim_{\substack{x \to x_0 \\ x > x_0}} \frac{f(x) - f(x_0)}{x - x_0} \in X$

- O fct. $f: D \subseteq \mathbb{R} \to (X, ||\ ||_X)$ se numeste derivabila la stanga in punctul $x_0 \in D \cap (D \cap (-\infty, x_0))'$ daca $\exists \lim_{\substack{x \to x_0 \\ x \le x_0}} \frac{f(x) f(x_0)}{x x_0} \in X$
- O functie $f: D \subseteq \mathbb{R}$ este derivabila in $x_0 \in D^O \Leftrightarrow f$ este derivabila la stanga si la dreapta in x_0 si $f'_s(x_0) = f'_d(x_0)$

2.1 Functii derivabile reale

Definitie 2.4 (Minim local, global, maxim local, global). Fie $f:D\subseteq\mathbb{R}\to\mathbb{R}$ o functie.

- Elementul $x_0 \in D$ se numeste punct de minim local pentru functia f daca $\exists R > 0$ astfel incat $\forall x \in D \cap (x_0 R, x_0 + R)$ avem $f(x) \geq f(x_0)$
- Elementul $x_0 \in D$ se numeste punct de minim global pentru functia f daca $\forall x \in D$ avem $f(x) \geq f(x_0)$
- Elementul $x_0 \in D$ se numeste punct de maxim local pentru functia f daca $\exists R > 0$ astfel incat $\forall x \in D \cap (x_0 R, x_0 + R)$ avem $f(x) \leq f(x_0)$
- Elementul $x_0 \in D$ se numeste punct de maxim global pentru functia f daca $\forall x \in D$ avem $f(x) \leq f(x_0)$

Definitie 2.5 (Punct fix). Fie $f: D \subseteq \mathbb{R} \to \mathbb{R}$ o functie. Elementul $u \in D$ se numeste punct fix pentru f daca f(u) = u.

Definitie 2.6 (Contractie). O functie $f: D \subseteq \mathbb{R} \to \mathbb{R}$ se numeste contractie daca $\exists \ 0 < M < 1$ astfel incat $|f(x) - f(y)| \le M \cdot |x - y|, \forall x, y \in D$.

3 Derivate de ordin superior. Formula lui Taylor.

Definitie 3.1 (Functie derivabila de 2 ori, de n ori).

- Functia $f: D \subseteq \mathbb{R} \to \mathbb{R}$ este derivabila de 2 ori intr-un punct $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f este derivabila pe $V \cap D$ si $f': V \cap D \to \mathbb{R}$ este derivabila in x_0 .
- Functia $f: D \subseteq \mathbb{R} \to \mathbb{R}$ este derivabila de 2 ori pe multimea $A \subseteq D \cap D'$ daca f este derivabila pe 2 ori in orice punct din A.
- Fie $n \in \mathbb{N}, n \geq 3$. Functia $f : D \subseteq \mathbb{R} \to \mathbb{R}$ este de n ori derivabila in $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f este de n-1 ori derivabila pe $V \cap D$ si $f^{(n-1)} : V \cap D \to \mathbb{R}$ este derivabila in x_0 .
- Functia $f: D \subseteq \mathbb{R} \to \mathbb{R}$ este de n ori derivabila pe multimea $A \subseteq D \cap D'$ daca f este derivabila de n ori in orice punct din A.

• Functia $f:D\subseteq\mathbb{R}\to\mathbb{R}$ este indefinit derivabila pe $A\subseteq D\cap D'$ daca f este de n ori derivabila pe $A,\forall n\in\mathbb{N}$.

Definitie 3.2 (Polinomul Taylor, Restul). Fie $n \in \mathbb{N}^*$ si $f : D \subseteq \mathbb{R} \to \mathbb{R}$ o functie derivabila de n ori in $x_0 \in D \cap D'$.

- Functia $T_{f,n,x_0}: D \to \mathbb{R}$ definita prin $T_{f,n,x_0}(x) = f(x_0) + \frac{f'(x_0)}{1!} \cdot (x x_0) + \frac{f''(x_0)}{2!} \cdot (x x_0)^2 + \ldots + \frac{f^{(n)}(x_0)}{n!} \cdot (x x_0)^n$ se numeste polinomul Taylor de rang n atasat functiei f si punctului x_0 .
- Functia $R_{f,n,x_0}: D \subseteq \mathbb{R} \to \mathbb{R}$ definita prin $R_{f,n,x_0}(x) = f(x) T_{f,n,x_0}(x)$ se numeste restul de rang n atasat functiei f si punctului x_0 .

4 Functii convexe. Functii concave.

Definitie 4.1 (Functie convexa, Functie concava).

- O functie $f: I \subseteq \mathbb{R} \to \mathbb{R}$, cu I interval, se numeste functie convexa pe I daca $f((1-t)\cdot x + t\cdot y) \leq (1-t)\cdot f(x) + t\cdot f(y), \forall x,y\in I, \forall t\in [0,1].$
- O functie $f: I \subseteq \mathbb{R} \to \mathbb{R}$, cu I interval, se numeste functie concava pe I daca $f((1-t)\cdot x + t\cdot y) \geq (1-t)\cdot f(x) + t\cdot f(y), \forall x,y\in I, \forall t\in [0,1].$

5 Serii de functii

Alegem sirul de functii $(f_n)_{n\in\mathbb{N}}$, unde $f_n:D\subseteq\mathbb{R}\to\mathbb{R}, \forall n\in\mathbb{N}$. Ii asociem sirul de functii $(s_n)_{n\in\mathbb{N}}$, unde $s_n:D\subseteq\mathbb{R}\to\mathbb{R}$ si $s_n(x)=f_0(x)+f_1(x)+\ldots+f_n(x)$.

Definitie 5.1 (Simplu, absolut, uniform convergenta).

- Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este simplu convergenta pe multimea $A \subseteq D$ daca sirul de functii $(s_n)_{n \in \mathbb{N}}$ converge simplu pe multimea A.
- Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este absolut convergenta pe multimea $A \subseteq D$ daca seria de functii $\sum_{n=0}^{\infty} |f_n|$ este simplu convergenta pe multimea A.
- Spunem ca seria de functii $\sum_{n=0}^{\infty} f_n$ este uniform convergenta pe multimea $A \subseteq D$ daca sirul de functii $(s_n)_{n \in \mathbb{N}}$ converge uniform pe multimea A.

5.1 Serii de puteri

Fie $x_0 \in \mathbb{R}$.

Definitie 5.2 (Serie de puteri). Se numeste serie de puteri o serie de functii $\sum_{n=0}^{\infty} f_n \text{ unde } f_n : \mathbb{R} \to \mathbb{R} \text{ cu } f_0(x) = a_0, \forall x \in \mathbb{R} \text{ si } f_n(x) = a_n(x-x_0)^n, \forall n \in \mathbb{R}$ $\mathbb{N}, \forall x \in \mathbb{R}$

Definitie 5.3 (Raza de convergenta, interval de convergenta, multime de convergenta, suma seriei de puteri). Se considera seria de puteri $\sum_{n=0}^{\infty} a_n (x-x_0)^n$.

- Numarul $R = \sup\{r \geq 0 | \sum_{n=0}^{\infty} |a_n| r^n \text{ serie convergenta de numere reale}\} \in \overline{\mathbb{R}}$ se numeste raza de convergenta a seriei de puteri.
- Multimea $(x_0 R, x_0 + R) \subseteq \mathbb{R}$ se numeste intervalul de convergenta al seriei de puteri.
- Multimea $A = \{x \in \mathbb{R} | \sum_{n=0}^{\infty} a_n (x x_0)^n \text{ serie convergenta de numere reale} \}$ se numeste multimea de convergenta a seriei de puteri.
- Functia $f: A \to \mathbb{R}$ definita prin $f(x) = \sum_{n=0}^{\infty} a_n (x x_0)^n$ se numeste suma seriei de puteri.

6 Aplicatii liniare si continue intre spatii normate reale

Definitie 6.1 (Aplicatie liniara). O functie $T:(X,||\ ||_X) \to (Y,||\ ||_Y)$ se numeste aplicatie liniara daca $T(\alpha \cdot x + \beta \cdot y) = \alpha \cdot T(x) + \beta \cdot T(y), \forall x,y \in X, \forall \alpha,\beta \in \mathbb{R}$

7 Functii diferentiabile

Definitie 7.1 (Functie diferentiabila intr-un punct). O functie $f: D \subseteq (X, || ||_X) \to (Y, || ||_Y)$ se numeste functie diferentiabila in punctul $x_0 \in D \cap D'$ daca $\exists ! T \in \mathcal{L}(X, Y)$ astfel incat $\lim_{x \to x_0} \frac{||f(x) - f(x_0) - T(x - x_0)||_Y}{||x - x_0||_X} = 0$.

Definitie 7.2 (Functie diferentiabila pe o multime). Functia $f: D \subseteq (X, || ||_X) \rightarrow (Y, || ||_Y)$ este diferentiabila pe multimea $A \subseteq D \cap D'$ daca f este diferentiabila in orice punct din multimea A.

Definitie 7.3 (Derivata partiala). Fie $n \geq 2$ si $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ si $x_0 \in D \cap D'$. Spunem ca functia f admite derivata partiala in raport cu variabila $x_i, 1 \leq i \leq n$, in punctul $x_0 \in D \cap D'$ daca $\exists \lim_{t \to 0} \frac{f(x_0 + t \cdot e_i) - f(x_0)}{t} \in \mathbb{R}^m$

Definitie 7.4 (Punct critic). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ o functie si $x_0 \in D \cap D'$. Spunem ca x_0 este punct critic pentru f daca f este diferentiabila in x_0 si $df(x_0) = \mathbf{0}$.

8 Aplicatii biliniare si continue

Definitie 8.1 (Aplicatie biliniara simetrica). O aplicatie biliniara $T: X \times X \to Y$ se numeste simetrica daca $T(x,y) = T(y,x), \forall x,y \in X$

9 Functii diferentiabile de 2 ori

Definitie 9.1 (Functie diferentiabila de 2 ori). Spunem ca functia $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ este diferentiabila de 2 ori in punctul $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f este diferentiabla pe $V \cap D$ si $df: V \cap D \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ este diferentiabila in punctul x_0 .

Definitie 9.2 (Derivata partiala de ordin 2). Spunem ca functia $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$ admite derivata partiala de ordinul 2 in raport cu variabilele x_i si x_j in punctul $x_0 \in D \cap D'$ daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat f admite derivata partiala in raport cu variabila x_j pe multimea $V \cap D$ si $\frac{\partial f}{\partial x_j}: V \cap D \to \mathbb{R}^m$ admite derivata partiala in raport cu variabila x_i in punctul x_0 .

Definitie 9.3 (Functie de clasa c^2 , c^1).

- Fie $f:D\subseteq\mathbb{R}^n\to\mathbb{R}^m$ o functie si $A=A^{\mathcal{O}}\subseteq D$ nevida. Spunem ca functia f este de clasa c^2 pe multimea A daca f admite toate derivatele partiale de ordinul 2 pe multimea A si acestea sunt functii continue pe multimea A.
- Spunem ca f este functie de clasa c^1 pe multimea A daca f admite toate derivatele partiale pe multimea A si acestea sunt functii continue pe A.

10 Puncte de extrem local pentru functii de mai multe variabile reale

Definitie 10.1 (Minim local, maxim local). Fie $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

- Elementul $x_0 \in D$ se numeste punct de minim local pentru f daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat $f(x_0) \leq f(x), \forall x \in D \cap V$.
- Elementul $x_0 \in D$ se numeste punct de maxim local pentru f daca $\exists V \in \mathcal{V}_{\tau}(x_0)$ astfel incat $f(x_0) \geq f(x), \forall x \in D \cap V$.

• Elementul $x_0 \in D$ se numeste punct de extrem local pentru f daca x_0 este punct de minim local pentru f sau x_0 este punct de maxim local pentru f.

11 Functii integrabile

Definitie 11.1 (Diviziune). Se numeste diviziune a intervalului [a,b] orice mulime finita de elemente $\{x_0,...,x_n\}$ din [a,b] cu $x_0=a$ si $x_n=b$.

Definitie 11.2 (Norma unei diviziuni). Fie $\Delta \in \mathcal{D}([a,b])$ cu $\Delta = \{x_0, \dots x_n\}$. Numarul real $\max_{i=0,n-1} \{x_{i+1} - x_i\} \in \mathbb{R}$ se numeste norma diviziunii Δ .

Definitie 11.3 (Sistem de puncte intermediare). Fie $\Delta \in \mathcal{D}([a,b])$, $\Delta = \{x_0, \ldots, x_n\}$. Se numeste sistem de puncte intermediare asociat diviziunii Δ multimea finita $\{t_1, \ldots, t_n\}$ cu $t_1 \in [x_0, x_1], t_2 \in [x_1, x_2], \ldots, t_n \in [x_{n-1}, x_n]$.

Definitie 11.4 (Suma Riemann). Fie $f:[a,b]\to\mathbb{R}$ o functie, $\Delta\in\mathcal{D}([a,b])$ cu $\Delta=\{x_0,\ldots x_n\}$ si $t_\Delta=\{t_1,\ldots t_n\}$ un sistem de puncte intermediare asociat diviziunii Δ . Numarul real $f(t_1)(x_1-x_0)+f(t_2)(x_2-x_1)+\cdots+f(t_n)(x_n-x_n)$

 x_{n-1}) = $\sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})$ se numeste suma Riemann asociata functiei f, diviziunii Δ si sistemului de puncte intermediare t_{Δ} .

Definitie 11.5 (Suma Darboux). Fie $f:[a,b]\to\mathbb{R}$ o functie marginita, $\Delta\in\mathcal{D}([a,b])$ cu $\Delta=\{x_0,\ldots x_n\}$ si

•
$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x) \in \mathbb{R}$$

•
$$m_i = \inf_{x \in [x_{i-1}, x_i]} f(x) \in \mathbb{R}$$

cu $i \in \{1, ... n\}.$

Numarul real $S_{\Delta}=\sum_{i=1}^n M_i(x_i-x_{i-1})$ se numeste suma Darboux superioara asociata functiei f si diviziunii Δ .

Numarul real $s_{\Delta} = \sum_{i=1}^{n} m_i (x_i - x_{i-1})$ se numeste suma Darboux inferioara asociata functiei f si diviziunii Δ .

12 Functii integrabile Riemann

Definitie 12.1 (Functie integrabila Riemann). O functie $f:[a,b] \to \mathbb{R}$ se numeste functie integrabila Riemann pe [a,b] daca $\exists I \in \mathbb{R}$ cu proprietatea ca $\forall \epsilon > 0, \exists \delta_{\epsilon} > 0$ astfel incat $|\sigma_{\Delta}(f,t_{\Delta}) - I| < \epsilon, \forall \Delta \in \mathcal{D}([a,b])$ cu $||\Delta|| < \delta_{\epsilon}$ si $\forall t_{\Delta}$ un sistem de puncte intermediare asociat diviziunii Δ .

Definitie 12.2 (Multime neglijabila Lebesgue). O multime $A \subseteq \mathbb{R}$ se numeste neglijabila Lebesgue daca $\forall \epsilon > 0, \exists (I_n)_{n \in \mathbb{N}}$ un sir de intervale marginite astfel incat $A \subseteq \bigcup_{n \in \mathbb{N}} I_n$ si $\sum_{n \in \mathbb{N}} l(I_n) < \epsilon$.

Definitie 12.3 (Functie ce admite primitive). Fie $I \subseteq \mathbb{R}$ interval si $f: I \to \mathbb{R}$ o functie. Spunem ca f admite primitive pe I daca $\exists F: I \to \mathbb{R}$ o functie derivabila pe I astfel incat $F'(x) = f(x), \forall x \in I$.

13 Integrale improprii

$$I = [a,b) \lor (a,b] \lor (a,b) \lor (a,+\infty) \lor (-\infty,a) \lor [a,+\infty) \lor (-\infty,a] \lor (-\infty,+\infty)$$

Definitie 13.1 (Functie local integrabila). Functia $f: I \to \mathbb{R}$ se numeste local integrabila pe I daca $\forall \alpha, \beta \in I$ cu $\alpha < \beta$, avem $f|_{[\alpha,\beta]}$ este functie integrabila Riemann pe $[\alpha, \beta]$.

Definitie 13.2 (Integrala convergenta, divergenta, absolut convergenta). Fie $f:[a,b)\to\mathbb{R}$ o functie local integrabila pe [a,b)

- Spunem ca integrala improprie $\int_a^{b-0} f(x)dx$ este convergenta daca $\exists \lim_{\substack{x \to b \\ x < b}} \int_a^x f(t)dt \in \mathbb{R}$
- Spunem ca integrala improprie $\int_a^{b-0} f(x) dx$ este divergenta daca nu este convergenta.
- Spunem ca integrala improprie $\int_a^{b-0} f(x)dx$ este absolut convergenta daca integrala improprie $\int_a^{b-0} |f(x)|dx$ este convergenta.

14 Functiile Γ si B ale lui Euler

Definitie 14.1 (Functiile Γ si B).

- Functia $\Gamma:(0,\infty)\to\mathbb{R}$ definita prin $\Gamma(p)=\int_{0+0}^{+\infty}x^{p-1}e^{-x}dx$ se numeste functia gama a lui Euler.
- Functia $B:(0,\infty)\times(0,\infty)\to\mathbb{R}$ definita prin $B(p,q)=\int_{0+0}^{1-0}x^{p-1}(1-x)^{q-1}dx$ se numeste functia beta a lui Euler.