(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False? True False

1 / 1 point

1 / 1 point

9. Consider the following 2 hidden layer neural network:

 $x_{3}^{(i)}$

 \square $W^{[1]}$ will have shape (3, 4)

8. There are certain functions with the following properties:

✓ Correct

 $x_{2}^{(i)}$

 $(a_3^{[2]})$ Which of the following statements are True? (Check all that apply). $ightharpoonup W^{[1]}$ will have shape (4, 4) ✓ Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[1]}$ will have shape (4, 1) ✓ Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $a_{2}^{[2]}$

 $b^{[1]}$ will have shape (3, 1) $W^{[2]}$ will have shape (3, 4) ✓ Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[2]}$ will have shape (1, 1) \square $W^{[2]}$ will have shape (3, 1) $b^{[2]}$ will have shape (3, 1)

✓ Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $W^{[3]}$ will have shape (3, 1) $lacksquare b^{[3]}$ will have shape (1, 1)

✓ Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $ightharpoonup W^{[3]}$ will have shape (1, 3)

 $b^{[3]}$ will have shape (3, 1) 10. Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

 $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$ $igotimes W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$ $igcup W^{[l]}$ has shape $\left(n^{[l]},n^{[l+1]}
ight)$

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

Correct

 $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$

✓ Correct

True