High Voltage with Flexible Termination System (HV FT-CAP) **KE** X7R Dielectric, 500 – 3,000 VDC (Commercial Grade)

Overview

KEMET's High Voltage with Flexible Termination (HV FT-CAP) surface mount MLCCs in X7R dielectric address the primary failure mode of MLCCs- flex cracks, which are typically the result of excessive tensile and shear stresses produced during board flexure and thermal cycling. Featuring several of the highest CV (capacitance/voltage) values available in the industry, these devices utilize a pliable and conductive silver epoxy between the base metal and nickel barrier layers of the termination system. The addition of this epoxy layer inhibits the transfer of board stress to the rigid ceramic body, therefore mitigating flex cracks which can result in low IR or short circuit failures. Although flexible termination technology does not eliminate the potential for mechanical damage that may propagate during extreme environmental and handling conditions, it does provide superior flex performance over standard termination systems.

The HV FT-CAP offers low leakage current, exhibits low ESR at high frequencies and finds conventional use as snubbers or filters in applications such as switching power supplies and lighting ballasts. Their exceptional performance at high frequencies has made them a preferred choice of design engineers worldwide. In addition to their use in power supplies, these capacitors are widely used in industries related to automotive(hybrid), telecommunications, medical, military, aerospace, semiconductors and test/diagnostic equipment.

Combined with the stability of an X7R dielectric and designed to accommodate all capacitance requirements, these flex-robust devices are RoHS-compliant, offer up to 5 mm of flex-bend capability and exhibits a predictable change in capacitance with respect to time and voltage. Capacitance change with reference to ambient temperature is limited to $\pm 15\%$ from -55°C to +125°C.

In addition to Commercial Grade, Automotive Grade devices are available which meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements.

Ordering Information

C	1210	X	154	K	C	R	A	С	TU
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance	Rated Voltage (VDC)	Dielectric	Failure Rate/ Design	Termination Finish ¹	Packaging/ Grade (C-Spec)
	0603 0805 1206 1210 1808 1812 1825 2220 2225	X = Flexible Termination	Two significant digits + number of zeros.	J = ±5% K = ±10% M = ±20%	C = 500 B = 630 D = 1,000 F = 1,500 G = 2,000 Z = 2,500 H = 3,000	R = X7R	A = N/A	C = 100% Matte Sn L = SnPb (5% Pb minimum)	See "Packaging C-Spec Ordering Options Table" below

¹ Additional termination finish options may be available. Contact KEMET for details.

Packaging C-Spec Ordering Options Table

Packaging Type ₁	Packaging/Grade Ordering Code (C-Spec)
Bulk Bag/Unmarked	Not required (Blank)
7" Reel/Unmarked	TU
13" Reel/Unmarked	7411 (EIA 0603 and smaller case sizes) 7210 (EIA 0805 and larger case sizes)
7" Reel/Marked	ТМ
13" Reel/Marked	7040 (EIA 0603 and smaller case sizes) 7215 (EIA 0805 and larger case sizes)
7" Reel/Unmarked/2mm pitch ²	7081
13" Reel/Unmarked/2mm pitch ²	7082

¹ Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.

Benefits

- -55°C to +125°C operating temperature range
- · Industry-leading CV values
- Superior flex performance (up to 5 mm)
- Exceptional performance at high frequencies
- Lead (Pb)-free, RoHS and REACH compliant
- EIA 0603, 0805, 1206, 1210, 1808, 1812, 1825, 2220, and 2225 case sizes
- DC voltage ratings of 500 V, 630 V, 1 KV, 1.5 KV, 2 KV, 2.5 KV, and 3 KV

- · Capacitance offerings ranging from 10 pF to 560 nF
- Available capacitance tolerances of ±5%, ±10% or ±20%
- Low ESR and ESL
- Non-polar device, minimizing installation concerns
- Automotive (AEC-Q200) Grade available
- 100% pure matte tin-plated termination finish allowing for excellent solderability
- SnPb plated termination finish option available upon request (5% Pb minimum)

Applications

Typical applications include switch mode power supplies (input filters, resonators, tank circuits, snubber circuits, output filters), high voltage coupling and DC blocking, lighting ballasts, voltage multiplier circuits, DC/DC converters and coupling capacitors in Ćuk converters. Markets include power supply, LCD fluorescent backlight ballasts, HID lighting, telecom equipment, industrial and medical equipment/control, LAN/WAN interface, analog and digital modems, and automotive (electric and hybrid vehicles, charging stations and lighting applications).

Application Note

X7R dielectric is not recommended for AC line filtering or pulse applications. These capacitors and/or the assembled circuit board containing these capacitors may require a protective surface coating to prevent external surface arcing.

¹ The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. Please contact KEMET if you require a laser marked option. For more information see "Capacitor Marking".

² The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

Dimensions - Millimeters (Inches)

EIA Size Code	Metric Size Code	L Length	W Width	T Thickness	B Bandwidth	S Separation Minimum	Mounting Technique
0603	1608	1.60 (0.063) ±0.17 (0.007)	0.80 (0.032) ±0.15 (0.006)		0.45 (0.018) ±0.15 (0.006)	0.58 (0.023)	
0805	2012	2.00 (0.079) ±0.30 (0.012)	1.25 (0.049) ±0.30 (0.012)		0.50 (0.02) ±0.25 (0.010)	0.75 (0.030)	Solder Wave or Solder Reflow
1206	3216	3.30 (0.130) ±0.40 (0.016)	1.60 (0.063) ±0.35 (0.013)		0.60 (0.024) ±0.25 (0.010)		
1210	3225	3.30 (0.130) ±0.40 (0.016)	2.60 (0.102) ±0.30 (0.012)		0.60 (0.024) ±0.25 (0.010)		
1808	4520	4.70 (0.185) ±0.50 (0.020)	2.00 (0.079) ±0.20 (0.008)	See Table 2 for Thickness	0.70 (0.028) ±0.35 (0.014)		
1812	4532	4.50 (0.178) ±0.40 (0.016)	3.20 (0.126) ±0.30 (0.012)		0.70 (0.028) ±0.35 (0.014)	N/A	Solder Reflow
1825	4564	4.60 (0.181) ±0.40 (0.016)	6.40 (0.252) ±0.40 (0.016)		0.70 (0.028) ±0.35 (0.014)		Only
2220	5650	5.90 (0.232) ±0.75 (0.030)	5.00 (0.197) ±0.40 (0.016)		0.70 (0.028) ±0.35 (0.014)		
2225	5664	5.90 (0.232) ±0.75 (0.030)	6.40 (0.248) ±0.40 (0.016)		0.70 (0.028) ±0.35 (0.014)		

Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Environmental Compliance

Lead (Pb)-free, RoHS, and REACH compliant without exemptions (excluding SnPb termination finish option).

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-55°C to +125°C
Capacitance Change with Reference to +25°C and 0 Vdc Applied (TCC)	±15%
¹ Aging Rate (Maximum % Capacitance Loss/Decade Hour)	3.0%
² Dielectric Withstanding Voltage (DWV)	150% of rated voltage for voltage rating of < 1000V 120% of rated voltage for voltage rating of ≥ 1000V (5±1 seconds and charge/discharge not exceeding 50mA)
³ Dissipation Factor (DF) Maximum Limit at 25°C	2.5%
⁴Insulation Resistance (IR) Minimum Limit at 25°C	See Insulation Resistance Limit Table (500VDC applied for 120±5 seconds at 25°C)

¹ Regarding Aging Rate: Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.

1kHz ± 50Hz and 1.0 ± 0.2 Vrms if capacitance ≤10μF

120Hz \pm 10Hz and 0.5 \pm 0.1 Vrms if capacitance >10μF

Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON".

Post Environmental Limits

H	ligh Temperatu	re Life, Biased	Humidity, Mois	ture Resistanc	e
Dielectric	Rated DC Voltage	Capacitance Value	Dissipation Factor (%)	Capacitance Shift	Insulation Resistance
	> 25		3.0		
X7R	16/25	All	5.0	±20%	10% of Initial Limit
	< 16		7.5		·

Insulation Resistance Limit Table (X7R Dielectric)

EIA Case Size	1,000 Megohm Microfarads or 100 GΩ	100 Megohm Microfarads or 10 GΩ
0603	N/A	All
0805	< .0039 μF	≥ .0039 µF
1206	< 0.012 μF	≥ 0.012 µF
1210	< 0.033 μF	≥ 0.033 µF
1808	< 0.018 μF	≥ 0.018 µF
1812	< 0.027 μF	≥ 0.027 µF
1825	< 0.120 uF	≥ 0.120 uF
2220	< 0.150 uF	≥ 0.150 uF
2225	< 0.180 uF	≥ 0.180 uF

² DWV is the voltage a capacitor can withstand (survive) for a short period of time. It exceeds the nominal and continuous working voltage of the capacitor.

³ Capacitance and dissipation factor (DF) measured under the following conditions:

⁴ To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits.

Table 1A - Capacitance Range/Selection Waterfall (0603 - 1812 Case Sizes)

			se Si Serie		CO)60	3X	CO	080	5X		C1	200	6X			C1	210	X				C1	80	8X					C1	812	2X		
Сар	Cap		ltage C		С	В	D	С	В	D	С	В	D	F	G	С	В	D	F	G	С	В	D	F	G	Z	Н	С	В	D	F	G	Z	Н
	Code	Rat	ted Volt (VDC)	age	200	630	1000	200	630	1000	200	630	1000	1500	2000	500	630	1000	1500	2000	200	630	1000	1500	2000	2500	3000	200	630	1000	1500	2000	2500	3000
			pacita: oleran						Pro	duct	Ava	ilabi	lity	and	Chip	Thi	ckne	ss C	ode		ee T	able	2 fo	r Ch				Dim	ensi	ons		Ì		
10 pF 11 pF	100 110	J	K	M M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	ES ES	ES ES	FM FM	FM FM		FM FM	FM FM	LB LB	GK GK												
12 pF	120	J	K	M				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM		FM	FM	LB	GK												
13 pF	130	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM			FM	FM	LB	GK												
15 pF	150	J	K	M				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM		FM	FM	LB	GK												
16 pF 18 pF	160 180	J	K	M M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	ES ES	ES ES	FM FM	FM FM		FM FM	FM FM	LB LB	GK GK												
20 pF	200	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM		FM	FM	FM	LB	GK												
22 pF	220	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM	FM	FM	FM		LB	LB	LB	LB	LB	LB	GK						
24 pF 27 pF	240	J	K	M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	ES ES	ES ES	FM FM	FM FM	FM FM	FM FM	FM FM	LB LB	GK GK												
30 pF	300	J	K	M				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM	FM	FM	FM		LB	LB	LB	LB	LB	LB	GK						
33 pF	330	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM	FM	FM	FM	LB	GK												
36 pF	360	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM		FM	FM	LB	GK												
39 pF 43 pF	390 430	J	K	M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	ES ES	ES ES	FM FM	FM FM		FM FM	FM FM	LB LB	GK GK												
47 pF	470	J	K	M				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM	FM	FM	FM	LB	GK												
51 pF	510	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM	FM	FM	FM	LB	GK												
56 pF	560	J	K	М				DG	DG	DG	ES	ES	ES	ES	ES	FM	FM		FM	FM	LB	GK												
62 pF 68 pF	620 680	J	K	M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	ES ES	ES ES	FM FM	FM FM	FM FM	FM FM	FM FM	LB LB	GK GK												
75 pF	750	J	K	M				DG	DG	DG	ES	ES	ES	ES	EF	FM	FM	FM	FM	FM		LB	LB	LB	LB	LB	LB	GK						
82 pF	820	J	K	М				DG	DG	DG	ES	ES	ES	ES	EF	FM	FM	FM	FM	FM		LB	LB	LB	LB	LB	LB	GK						
91 pF	910	J	K	М				DG	DG	DG	ES	ES	ES	ES	EF	FM	FM	FM	FM	FM		LB	LB	LB	LB	LB	LB	GK						
100 pF 110 pF	101	J	K	M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	ES ES	EF EU	FM FM	FM FM	FM FM	FM FM	FM FM	LB LB	LB LB	LB LB	LB LB	LB LB	LC	LB LB	GK GK						
120 pF	121	J	K	M				DG	DG	DG	ES	ES	ES	ES	EU	FM	FM	FM	FM	FM	LA	LA	LA	LA	LB	LC	LB	GG	GG	GG	GG	GG	GG	GK
130 pF	131	J	K	М				DG	DG	DG	ES	ES	ES	ES	EU	FZ	FZ	FZ	FM	FM	LB	GK												
150 pF	151	J	K	М				DG	DG	DG	ES	ES	ES	EF	EU	FZ	FZ	FZ	FM	FM	LB	GK												
180 pF 220 pF	181 221	J	K	M				DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	EF EF	EU EF	FZ FZ	FZ FZ	FZ FZ	FM FM	FM FM	LB LB	GK GK												
270 pF	271	J	K	M				DG	DG	DG	ES	ES	ES	EF	EF	FZ	FZ	FZ	FK	FK	LC	GK												
330 pF	331	J	K	М				DG	DG	DG	ES	ES	EF	EF	EF	FZ	FZ	FZ	FK	FK	LC	GK												
390 pF	391	J	K	М				DG	DG	DG	ES	ES	EF	EF	EF	FZ	FZ	FZ	FK	FS	LB	LB	LB	LB	LB	LB	LC	GK						
470 pF 560 pF	471 561	J	K	M M				DG DG	DG DG	DG DG	ES ES	ES ES	EF EF	EF EF	EF EF	FZ FL	FM FL	FM FL	FS FL	FS FL	LB LB	LB LB	LB LB	LB LB	LB LB	LB LB	LC	GK GH	GK GH	GK GH	GK GH	GK GH	GK GK	GK GK
680 pF	681	J	K	M				DG	DG	DG	ES	ES	EF	EF	EF	FL	FL	FL	FL	FL	LA	LA	LA	LA	LB	LC	LC	GH	GH	GH	GH	GH	GK	GK
820 pF	821	J	K	М				DG	DG	DG	ES	ES	ES	EF	EF	FL	FL	FL	FL	FL	LA	LA	LA	LA	LB	LC	LC	GH	GH	GH	GH	GH	GK	GK
1,000 pF	102	J	K	M	CG	CG	CG		DG	DG	ES	ES	ES	EF	EF	FL	FL	FL	FL	FL	LA	LA	LA	LA	LB	LC	LC	GH	GH	GH		GH	GK	GK
1,200 pF 1,500 pF	122 152	J	K	M	CG	CG		DG DG	DG DG	DG DG	ES	ES ES	ES ES	EU	EU	FL	FL	FL FL	FL FL	FM FM	LB LB	LB LB	LB LB	LB LB	LC	LA		GH	GH	GH		GH	GK GK	GK
1,800 pF	182	J	K	M	CG	00		DG	DG	DG	ES	ES	ES	EU	EU	FL	FL	FL	FL	FM	LB	LB	LB	LB	LC	LC		GH		GH	GH		GK	
2,200 pF	222	J	K	М	CG			DG	DG	DG	ES	ES	ES	EU	EU	FL	FL	FL	FL	FM	LA	LA	LA	LB	LC	LC		GH	GH	GH	GH	GH	GK	
2,700 pF	272	J	K	М	CG			DG	DG	DG	ES	ES	ES	EU		FL	FL	FL	FL	FM	LA	LA	LA	LB	LC			GH		GH	GH	GK		
3,300 pF 3,900 pF	332 392	J	K	M M	CG			DG DG	DG DG	DG DG	ES ES	ES ES	ES ES	EU		FL FL	FL FL	FL FL	FL FL	FM FK	LA	LA	LA	LB LB	LA LB			GH		GH GH		GK GK	GM GO	
4,700 pF	472	J	K	M				DG	DG	DG	ES	ES	ES	EU		FL	FL	FL	FL	FK	LA	LA	LA	LB	LC			GH	GH		GH			
5,600 pF	562	J	K	М				DG	DG		ES	EF	EF	EF		FL	FL	FL	FM	FK	LA	LB	LB	LC				GH	GH	GH	GK	GK	-	
6,800 pF	682	J	K	М				DG			EF	EF	EF	EF		FL	FL		FM	FS	LA	LB	LB	LC				GH		GH				
8,200 pF 10,000 pF	822 103	J	K	M				DG DG	DG DG		EF EF	EU	EU	EF EU		FL FL	FL FL	FL FL	FK FK		LA	LB LB	LB LB	LC				GH		GH GH				
12,000 pF	123	J	K	М				DG	DG		EU	EJ	EJ			FL	FL	FL	FK		LA	LC	LC	LB				GH	GK	GK	GK			
		Rat	ted Volt (VDC)	-	200	630	1000	200	930	1000	200	930	1000	1500	2000	200	630	1000	1500	2000	200	630	1000	1500	2000	2500	3000	200	630	1000	1500	2000	2500	3000
Сар	Cap Code		ltage C		С	В	D	С	В	D	С	В	D	F	G	С	В	D	F	G					Н	С	В	D	F	G	Z	Н		
		C	ase Siz Series		С	0603	3X	С	0805	X		C	1206	X			C	1210	X	C1808X								C.	1812	X				

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 1A - Capacitance Range/Selection Waterfall (0603 - 1812 Case Sizes) cont'd

			se S Serie	ize/ es	CO	060	3X	CO	080	5X		C1	20	6X			C1	21	0X				C1	80	8X					C1	812	2X		
Сар	Cap	Vo	ltage (Code	С	В	D	С	В	D	С	В	D	F	G	С	В	D	F	G	С	В	D	F	G	Z	Н	С	В	D	F	G	Z	н
Cap	Code	Ra	ted Vo (VDC		200	630	1000	200	630	1000	200	630	1000	1500	2000	200	630	1000	1500	2000	200	630	1000	1500	2000	2500	3000	200	630	1000	1500	2000	2500	3000
			apacita Folerar						Pro	duct	Ava	ilab	ility	and	Chip	Thi	ckne	ss C	ode	s - S	ee T	able	2 fo	r Ch	ip Tl	nickı	ness	Dim	ensi	ons				
15,000 pF	153	J	K	М				DG			EU	EJ	EJ			FL	FL		FL		LA	LC	LC	LC				GH	GK	GK	GH			
18,000 pF	183	J	K	M	ļ			DG			EJ	EJ	EJ			FL	FL	FL	FM		LA	LE	LE					GH	GK	GK				
22,000 pF	223	J	K	M				DG			EJ	EJ	EJ			FL	FM	FM			LA	LE	LE					GH	GK	GK	-			
27,000 pF	273	J	K	M	•			ļ			EJ	EJ				FM	FK	FK	FK		LA	LA	LA					GH	GB	GB	GO			
33,000 pF	333	J	K	M	•			ļ			EJ	EJ				FM	FZ	FU	FS		LC	LA	LA					GH	GB	GB	GO			
39,000 pF	393	J	K	M							EJ					FK	FZ	FU	FS		LC	LA	LA					GH	GB	GB				
47,000 pF	473	J	K	M							EJ					FK	FU	FK			LC	LA	LB					GH	GB	GC				
56,000 pF	563	J	K	M							EJ					FZ	FU	FK			LC	LA	LB					GH	GB	GE				
62,000 pF	623	J	K	M							EJ					FZ	FK	FS			LA	LA	LC					GK	GB	GE				
68,000 pF	683	J	K	M							EJ					FZ	FK	FS			LA	LA	LC					GE	GE	GE				
82,000 pF	823	J	K	M	l											FU	FK				LA	LC						GB	GE	GK				
0.10 μF	104	J	K	M	l											FK	FS				LA	LC						GB	GH	GJ				
0.12 μF	124	J	K	M	l											FK					LA							GE	GK					
0.15 μF	154	J	K	M												FK					LB							GE	GN					
0.18 μF	184	J	K	M	İ			Ī																				GF						
0.22 μF	224	J	K	М	İ			Ī			l																	GJ						
0.27 μF	274	J	K	М	İ			İ			İ										İ							GL						I
0.33 μF	334	J	K	M	İ			Ī																				GS						
		Ra	ted Vo		200	630	1000	200	630	1000	200	630	1000	1500	2000	200	630	1000	1500	2000	200	630	1000	1500	2000	2500	3000	200	630	1000	1500	2000	2500	3000
Сар	Cap	Voltage Code		Code	С	В	D	С	В	D	С	В	D	F	G	С	В	D	F	G	С	В	D	F	G	Z	Н	С	В	D	F	G	z	Н
	Code	С	Voltage Code Case Size/ Series			0603	3X	С	0805	SX.		С	1206	5X			С	1210	X				C	1808	3X					С	1812	2X		

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 1B - Capacitance Range/Selection Waterfall (1825 - 2225 Case Sizes)

Code Capacitance Code Capacitance				se Si Serie				С	1825	5X					C	2220	X					C	222!	5X		
Capacitance	Consoitance	Cap	Vo	Itage Co	ode	С	В	D	F	G	z	Н	С	В	D	F	G	Z	Н	С	В	D	F	G	Z	Н
Capacitance Tolerance Product Availability and Chip Thickness Codes - See Table 2 for Chip Thickness Dimensions	Capacitance	Code	Rated	Voltage	(VDC)	200	630	1000	1500	2000	2500	3000	200	630	1000	1500	2000	2500	3000	200	630	1000	1500	2000	2500	3000
560 pf 680 pf 6							ı	Produ	ct Av		lity a		p Thi	cknes	ss Co	des -			2 for	Chip	Thick	ness	Dime	nsion		.,
R80 PF 821																										
820 pF	· ·																									
1,000 pF 102		681	J	K		HG																				KF
1.200 pF 122			J			HG																				KF
1,500 pF			-				_																			KF
1.800 pF			J	1		HG		1						JK												KF
2.200 pF	1,500 pF	152	J	K	M	HG	HG	HG	HG	HG	HG	HG	JK	JK	JK	JK	JK	JK	JK	KF	KF	KF	KF	KF	KF	KF
2,700 pF	1,800 pF	182	J	K	M	HE	HE	HE	HE	HE	HG	HG	JK	JK	JK	JK	JK	JK	JK	KF	KF	KF	KF	KF	KF	KF
3,300 pF 392	2,200 pF	222	J	K	M	HE	HE	HE	HE	HE	HG	HG	JE	JE	JE	JE	JE	JK	JK	KF	KF	KF	KF	KF	KF	KF
3,900 pF	2,700 pF	272	J	K	М	HE	HE	HE	HE	HE	HG	HG	JE	JE	JE	JE	JE	JK	JK	KE	KE	KE	KE	KE	KF	KE
4,700 pF	3,300 pF	332	J	K	М	HE	HE	HE	HE	HE	HG	HG	JE	JE	JE	JE	JE	JK	JE	KE	KE	KE	KE	KE	KF	KE
\$\$ \$\frac{1}{2}\$\text{\$\tex{\$\text{\$\t	3.900 pF	392	J	К	М	HE	HE	HE	HE	HE	HG		JE	JE	JE	JE	JE	JK	JE	KE	KE	KE	KE	KE	KF	KE
5,600 pF					М	HE	HE	HE	HE	HE	HG													KE	KF	KE
6,800 pF	· ·		Ĵ																							KE
8,200 pF																										KE
10,000 pF 103											-															KF
12,000 pF 153 J K M HE HE HE HG HK 15,000 pF 153 J K M HE HE HE HG HK 22,000 pF 223 J K M HE HE HG HG HG 22,000 pF 223 J K M HE HG HG HG 22,000 pF 233 J K M HE HG HG HG 33,000 pF 333 J K M HE HG HG HG 33,000 pF 393 J K M HE HG HG HG 33,000 pF 393 J K M HE HG HG HG 34,000 pF 473 J K M HE HG HG HG 47,000 pF 473 J K M HE HG HG HG 47,000 pF 473 J K M HE HG HG HG 47,000 pF 473 J K M HE HG HG HG 47,000 pF 473 J K M HE HG HG HG 47,000 pF 474 J K M HE HG HG HG 47,000 pF 475 J K M HE HG HG HG 47,000 pF 476 J K M HE HG HG HG 47,000 pF 477 J K M HE HG HG HG 47,000 pF 478 J K M HE HG HG HG 47,000 pF 479 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HE HG HG HG 47,000 pF 470 J K M HG HG 47,000 pF 470 J K M HG HG 47,000 pF 470 J K M HG HG 47,000 pF 470 J K M HG HG 47,000 pF 470 J K M HG HG 47,000 pF 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG HG 470 J K M HG				1				1																		KH
15,000 pF 183				1				1			IIIX															KH
18,000 pF 183				1																						KJ
22,000 pF			ľ							пк								JIN	JIN						KJ	KJ
27,000 pF 333			-						_				-			-	-									
33,000 pF 393																	JN									
39,000 pF 473																								KJ		
47,000 pF 473 J K M HE HG HG HJ J JE JK JK JK KE KF KF KF KF KF 62,000 pF 623 J K M HG HG HG HK HK 68,000 pF 683 J K M HG HJ HJ HK 82,000 pF 823 J K M HG HJ HJ HK 82,000 pF 104 J K M HG HG HG HK HK 10.10 μF 104 J K M HG HB HE 10.10 μF 104 J K M HG HG HG 10.10 μF 104 J K M HG HG HG 10.10 μF 104 J K M HG HG HG 10.10 μF 104 J K M HG HG HG 10.10 μF 104 J K M HG HG HG 10.10 μF 104 J K M HG HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 10.10 μF 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG HG 104 J K M HG			_																							
S6,000 pF 623			_																							
62,000 pF 623			-				-	_																		
68,000 pF 82,000 pF 823	' '																									
82,000 pF 0.10 μF 104			J	1																!						
0.10 μF	68,000 pF	683	J	K		HG			HK							JL										
0.12 μF 124 J K M HG HE JE JN JN JN JN KE KH KH <td< td=""><td>82,000 pF</td><td>823</td><td>J</td><td>K</td><td>M</td><td>HG</td><td>HJ</td><td>HJ</td><td></td><td></td><td></td><td></td><td></td><td>JL</td><td>JL</td><td>JN</td><td></td><td></td><td></td><td>KE</td><td>KF</td><td></td><td>KJ</td><td></td><td></td><td></td></td<>	82,000 pF	823	J	K	M	HG	HJ	HJ						JL	JL	JN				KE	KF		KJ			
0.15 μF 154 J K M HG HE JK JE JK JE KF KJ KJ KJ KF KJ KJ KJ KF KE KF KKF KKF<	0.10 μF	104	J	K	M	HG	HK	HK					JE	JN	JN					KE	KH	KH	KJ			
0.18 μF 184 J K M HG HG HG HJ HG HJ HG HJ HG HJ HJ <td< td=""><td>0.12 μF</td><td>124</td><td>J</td><td>K</td><td>М</td><td>HG</td><td>HE</td><td></td><td></td><td></td><td></td><td></td><td>JE</td><td>JN</td><td>JN</td><td></td><td></td><td></td><td></td><td>KE</td><td>KH</td><td>KH</td><td></td><td></td><td></td><td></td></td<>	0.12 μF	124	J	K	М	HG	HE						JE	JN	JN					KE	KH	KH				
0.22 µF	0.15 μF	154	J	K	М	HG	HE						JK	JE						KF	KJ	KJ				
O.27 μF 274 J	0.18 μF	184	J	K	М	HG	HG						JK	JE						KF	KE					
0.27 μF 274 J K M HJ HJ HJ HJ HJ HJ HJ			J		М	HG	HJ													KF	KF					
0.33 μF																										
0.39 μF			J																							
0.47 μF 0.56 μF 474 564 J K M M M M JN JN KH KJ KH KJ KJ KJ KH KJ KJ KJ Capacitance Capacitance Cap Code Voltage Code C B D F G Z H C B D F G Z H C B D F G Z H C B D F G Z H C B D F G Z H C B D F G Z H C B D F G Z H																				!						
0.56 μF 564 J K M KJ KJ KJ KJ KJ KJ KJ KJ KJ KJ KJ KJ KJ				1		l														!						
Capacitance Cap Code Voltage Code C B D F G Z H C B D F G Z H C B D F G Z H C C B D F G Z C C C C C C C C C C C C C C C C C C			Ĵ			l																				
Capacitance Cap Code Voltage Code C B D F G Z H C B D F G Z H C B D F G Z I	p.		Rated				930	000	200	000	200	000	200	930	000	200	00	200	000		930	90	200	000	200	3000
	Capacitance	Cap Code																		 				1		Н
CZZZOK CZZZOK CZZZOK	·		Case	Case Size/ Series				(1825	X					C	2220	X		-			C	2225	X		

KEMET reserves the right to substitute product with an improved temperature characteristic, tighter capacitance tolerance and/or higher voltage capability within the same form factor (configuration and dimensions).

Table 2A - Chip Thickness/Tape & Reel Packaging Quantities

Thickness	Case	Thickness ±	Paper Q	uantity ¹	Plastic (Quantity						
Code	Size ¹	Range (mm)	7" Reel	13" Reel	7" Reel	13" Reel						
CG	0603	0.80 ± 0.10	4,000	15,000	0	0						
DG	0805	1.25 ± 0.15	0	0	2,500	10,000						
ES	1206	1.00 ± 0.20	0	0	2,500	10,000						
EF	1206	1.20 ± 0.15	0	0	2,500	10,000						
EU	1206	1.60 ± 0.25	0	0	2,000	8,000						
EJ	1206	1.70 ± 0.20	0	0	2,000	8,000						
FZ	1210	1.25 ± 0.20	0	0	2,500	10,000						
FL	1210	1.40 ± 0.15	0	0	2,000	8,000						
FU	1210	1.55 ± 0.20	0	0	2,000	8,000						
FM	1210	1.70 ± 0.20	0	0	2,000	8,000						
FK	1210	2.10 ± 0.20	0	0	2,000	8,000						
FS	1210	2.50 ± 0.30	0	0	1,000	4,000						
LE	1808	1.00 ± 0.10	0	0	2,500	10,000						
LA	1808	1.40 ± 0.15	0	0	1,000	4,000						
LB	1808	1.60 ± 0.15	0	0	1,000	4,000						
LC	1808	2.00 ± 0.15	0	0	1,000	4,000						
GB	1812	1.00 ± 0.10	0	0	1,000	4,000						
GC	1812	1.10 ± 0.10	0	0	1,000	4,000						
GE	1812	1.30 ± 0.10	0	0	1,000	4,000						
GH	1812	1.40 ± 0.15	0	0	1,000	4,000						
GF	1812	1.50 ± 0.10	0 0 1,000			4,000						
GG	1812	1.55 ± 0.10		0 0 1,000		4,000						
GK	1812	1.60 ± 0.20	0	0 1,000		4,000 4,000						
GJ	1812	1.70 ± 0.15		0 0 1,000 0 1,000								
GN	1812	1.70 ± 0.20	0	0	4,000							
GL	1812	1.90 ± 0.20	0	0	500	2,000						
GM	1812	2.00 ± 0.20	0	0	500	2,000						
GS	1812	2.10 ± 0.20	0	0	500	2,000						
G0	1812	2.50 ± 0.20	0	0	500	2,000						
HE	1825	1.40 ± 0.15	0	0	1,000	4,000						
HG	1825	1.60 ± 0.20	0	0	1,000	4,000						
HJ	1825	2.00 ± 0.20	0	0	500	2,000						
HK	1825	2.50 ± 0.20	0	0	500	2,000						
JE	2220	1.40 ± 0.15	0	0	1,000	4,000						
JK	2220	1.60 ± 0.20	0	0	1,000	4,000						
JL	2220	2.00 ± 0.20	0	0	500	2,000						
JN	2220	2.50 ± 0.20	0	0	500	2,000						
KE	2225	1.40 ± 0.15	0	0	1,000	4,000						
KF	2225	1.60 ± 0.20	0	0	1,000	4,000						
KH	2225	2.00 ± 0.20	0	0	500	2,000						
KJ	2225	2.50 ± 0.20	0	0	500	2,000						
Thickness	Case	Thickness ±	7" Reel	13" Reel	7" Reel	13" Reel						
Code	Size ¹	Range (mm)	m) Paper Quantity ¹ Plastic Quantit									

Package quantity based on finished chip thickness specifications.

¹ If ordering using the 2 mm Tape and Reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603 (1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".

Table 2B - Bulk Packaging Quantities

Dookse	ving Type	Loose P	ackaging
Раска	jing Type	Bulk Bag	(default)
Packagi	ng C-Spec ¹	N,	/A ²
Cas	e Size	Packaging Quantities (pieces/unit packaging)
EIA (in)	Metric (mm)	Minimum	Maximum
0402	1005		
0603	1608		
0805	2012		50,000
1206	3216		
1210	3225	1	
1808	4520	ľ	
1812	4532		
1825	4564		20,000
2220	5650		
2225	5664		

¹ The "Packaging C-Spec" is a 4 to 8 digit code which identifies the packaging type and/or product grade. When ordering, the proper code must be included in the 15th through 22nd character positions of the ordering code. See "Ordering Information" section of this document for further details. Commercial Grade product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. Contact KEMET if you require a bulk bag packaging option for Automotive Grade products.

² A packaging C-Spec (see note 1 above) is not required for "Bulk Bag" packaging (excluding Anti-Static Bulk Bag and Automotive Grade products). The 15th through 22nd character positions of the ordering code should be left blank. All product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging.

Table 3 - Chip Capacitor Land Pattern Design Recommendations per IPC-7351

EIA Size Code	Metric Size Code	ı		sity Lev mum (I otrusio	Most))		Media	sity Lev an (Nor rotrusio)		Mini	sity Lev mum (L rotrusio)
Code	Code	С	Y	X	V1	V2	С	Y	X	V1	V2	С	Y	X	V1	V2
0603	1608	0.85	1.25	1.10	4.00	2.10	0.75	1.05	1.00	3.10	1.50	0.65	0.85	0.90	2.40	1.20
0805	2012	0.99	1.44	1.66	4.47	2.71	0.89	1.24	1.56	3.57	2.11	0.79	1.04	1.46	2.42	1.81
1206	3216	1.59	1.62	2.06	5.85	3.06	1.49	1.42	1.96	4.95	2.46	1.39	1.22	1.86	4.25	2.16
1210	3225	1.59	1.62	3.01	5.90	4.01	1.49	1.42	2.91	4.95	3.41	1.39	1.22	2.81	4.25	3.11
1808	4520	2.30	1.75	2.30	7.40	3.30	2.20	1.55	2.20	6.50	2.70	2.10	1.35	2.10	5.80	2.40
1812	4532	2.10	1.80	3.60	7.00	4.60	2.00	1.60	3.50	6.10	4.00	1.90	1.40	3.40	5.40	3.70
1825	4564	2.15	1.80	6.90	7.10	7.90	2.05	1.60	6.80	6.20	7.30	1.95	1.40	6.70	5.50	7.00
2220	5650	2.85	2.10	5.50	8.80	6.50	2.75	1.90	5.40	7.90	5.90	2.65	1.70	5.30	7.20	5.60
2225	5664	2.85	2.10	6.90	8.80	7.90	2.75	1.90	6.80	7.90	7.30	2.65	1.70	6.70	7.20	7.00

Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow solder processes. KEMET only recommends wave soldering of EIA 0603, 0805 and 1206 case sizes.

Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes. Density Level C: For high component density product applications. Before adapting the minimum land pattern variations the user should perform qualification testing based on the conditions outlined in IPC Standard 7351 (IPC-7351).

Image below based on Density Level B for an EIA 1210 case size.

Soldering Process

Recommended Soldering Technique:

- Solder wave or solder reflow for EIA case sizes 0603, 0805 and 1206
- · All other EIA case sizes are limited to solder reflow only

Recommended Reflow Soldering Profile:

KEMET's families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual), convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/J-STD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at these conditions.

Profile Feature	Termination Finish			
1 Tome Teature	SnPb	100% Matte Sn		
Preheat/Soak				
Temperature Minimum (T _{Smin})	100°C	150°C		
Temperature Maximum (T _{Smax})	150°C	200°C		
Time (t_s) from T_{smin} to T_{smax}	60 - 120 seconds	60 - 120 seconds		
Ramp-Up Rate (T _L to T _p)	3°C/second maximum	3°C/second maximum		
Liquidous Temperature (T_L)	183°C	217°C		
Time Above Liquidous (t _L)	60 - 150 seconds	60 - 150 seconds		
Peak Temperature (T _P)	235°C	260°C		
Time Within 5°C of Maximum Peak Temperature (t _p)	20 seconds maximum	30 seconds maximum		
Ramp-Down Rate (T _p to T _L)	6°C/second maximum	6°C/second maximum		
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum		

Note 1: All temperatures refer to the center of the package, measured on the capacitor body surface that is facing up during assembly reflow.

Table 4 - Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
Terminal Strength	JIS-C-6429	Appendix 1, Note: Force of 1.8 kg for 60 seconds.
Board Flex	JIS-C-6429	Appendix 2, Note: Standard termination system – 2.0 mm (minimum) for all except 3 mm for COG. Flexible termination system – 3.0 mm (minimum).
		Magnification 50 X. Conditions:
Solderability	J-STD-002	a) Method B, 4 hours at 155°C, dry heat at 235°C
Solderability	J-51D-002	b) Method B at 215°C category 3
		c) Method D, category 3 at 260°C
Temperature Cycling	JESD22 Method JA-104	1,000 cycles (-55°C to +125°C). Measurement at 24 hours +/-4 hours after test conclusion.
Diagod Humiditu	MIL-STD-202 Method	Load Humidity: 1,000 hours 85°C/85% RH and 200 VDC maximum. Add 100 K ohm resistor. Measurement at 24 hours +/-4 hours after test conclusion.
Biased Humidity	103	Low Volt Humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/-4 hours after test conclusion.
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a and 7b not required. Measurement at 24 hours +/-4 hours after test conclusion.
Thermal Shock	MIL-STD-202 Method 107	-55°C/+125°C. Note: Number of cycles required - 300. Maximum transfer time - 20 seconds. Dwell time - 15 minutes. Air - Air.
High Temperature Life	MIL-STD-202 Method 108	1,000 hours at 125°C (85°C for X5R, Z5U and Y5V) with 1.2 X rated voltage applied.
Storage Life	MIL-STD-202 Method 108	150°C, 0 VDC for 1,000 hours.
Vibration	MIL-STD-202 Method 204	5 g's for 20 min., 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10 – 2,000 Hz
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition F.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical, OKEM Clean or equivalent.

Storage and Handling

Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature-reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

Construction

Capacitor Marking (Optional):

These surface mount multilayer ceramic capacitors are normally supplied unmarked. If required, they can be marked as an extra cost option. Marking is available on most KEMET devices but must be requested using the correct ordering code identifier(s). If this option is requested, two sides of the ceramic body will be laser marked with a "K" to identify KEMET, followed by two characters (per EIA-198 - see table below) to identify the capacitance value. EIA 0603 case size devices are limited to the "K" character only.

Laser marking option is <u>not</u> available on:

- · COG, Ultra Stable X8R and Y5V dielectric devices.
- EIA 0402 case size devices.
- EIA 0603 case size devices with Flexible Termination option.
- KPS Commercial and Automotive Grade stacked devices.
- X7R dielectric products in capacitance values outlined below.

EIA Case Size	Metric Size Code	Capacitance
0603	1608	≤ 170 pF
0805	2012	≤ 150 pF
1206	3216	≤ 910 pF
1210	3225	≤ 2,000 pF
1808	4520	≤ 3,900 pF
1812	4532	≤ 6,700 pF
1825	4564	≤ 0.018 µF
2220	5650	≤ 0.027 µF
2225	5664	≤ 0.033 µF

Marking appears in legible contrast. Illustrated below is an example of an MLCC with laser marking of "KA8", which designates a KEMET device with rated capacitance of 100 µF. Orientation of marking is vendor optional.

Capacitor Marking (Optional) cont'd

Capacitance (pF) For Various Alpha/Numeral Identifiers												
Almha	Numeral											
Alpha	9	0	1	2	3	4	5	6	7	8		
Character Capacitance (pF)												
Α	0.10	1.0	10	100	1,000	10,000	100,000	1,000,000	10,000,000	100,000,000		
В	0.11	1.1	11	110	1,100	11,000	110,000	1,100,000	11,000,000	110,000,000		
С	0.12	1.2	12	120	1,200	12,000	120,000	1,200,000	12,000,000	120,000,000		
D	0.13	1.3	13	130	1,300	13,000	130,000	1,300,000	13,000,000	130,000,000		
E	0.15	1.5	15	150	1,500	15,000	150,000	1,500,000	15,000,000	150,000,000		
F	0.16	1.6	16	160	1,600	16,000	160,000	1,600,000	16,000,000	160,000,000		
G	0.18	1.8	18	180	1,800	18,000	180,000	1,800,000	18,000,000	180,000,000		
Н	0.20	2.0	20	200	2,000	20,000	200,000	2,000,000	20,000,000	200,000,000		
J	0.22	2.2	22	220	2,200	22,000	220,000	2,200,000	22,000,000	220,000,000		
K	0.24	2.4	24	240	2,400	24,000	240,000	2,400,000	24,000,000	240,000,000		
L	0.27	2.7	27	270	2,700	27,000	270,000	2,700,000	27,000,000	270,000,000		
М	0.30	3.0	30	300	3,000	30,000	300,000	3,000,000	30,000,000	300,000,000		
N	0.33	3.3	33	330	3,300	33,000	330,000	3,300,000	33,000,000	330,000,000		
Р	0.36	3.6	36	360	3,600	36,000	360,000	3,600,000	36,000,000	360,000,000		
Q	0.39	3.9	39	390	3,900	39,000	390,000	3,900,000	39,000,000	390,000,000		
R	0.43	4.3	43	430	4,300	43,000	430,000	4,300,000	43,000,000	430,000,000		
S	0.47	4.7	47	470	4,700	47,000	470,000	4,700,000	47,000,000	470,000,000		
T	0.51	5.1	51	510	5,100	51,000	510,000	5,100,000	51,000,000	510,000,000		
U	0.56	5.6	56	560	5,600	56,000	560,000	5,600,000	56,000,000	560,000,000		
٧	0.62	6.2	62	620	6,200	62,000	620,000	6,200,000	62,000,000	620,000,000		
W	0.68	6.8	68	680	6,800	68,000	680,000	6,800,000	68,000,000	680,000,000		
Х	0.75	7.5	75	750	7,500	75,000	750,000	7,500,000	75,000,000	750,000,000		
Υ	0.82	8.2	82	820	8,200	82,000	820,000	8,200,000	82,000,000	820,000,000		
Z	0.91	9.1	91	910	9,100	91,000	910,000	9,100,000	91,000,000	910,000,000		
а	0.25	2.5	25	250	2,500	25,000	250,000	2,500,000	25,000,000	250,000,000		
b	0.35	3.5	35	350	3,500	35,000	350,000	3,500,000	35,000,000	350,000,000		
d	0.40	4.0	40	400	4,000	40,000	400,000	4,000,000	40,000,000	400,000,000		
е	0.45	4.5	45	450	4,500	45,000	450,000	4,500,000	45,000,000	450,000,000		
f	0.50	5.0	50	500	5,000	50,000	500,000	5,000,000	50,000,000	500,000,000		
m	0.60	6.0	60	600	6,000	60,000	600,000	6,000,000	60,000,000	600,000,000		
n	0.70	7.0	70	700	7,000	70,000	700,000	7,000,000	70,000,000	700,000,000		
t	0.80	8.0	80	800	8,000	80,000	800,000	8,000,000	80,000,000	800,000,000		
у	0.90	9.0	90	900	9,000	90,000	900,000	9,000,000	90,000,000	900,000,000		

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.

Table 5 - Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)

	Tape	Embosse	ed Plastic	Punched Paper		
EIA Case Size	Size	7" Reel	13" Reel	7" Reel	13" Reel	
	(W)*	Pitch	(P ₁)*	Pitch	(P ₁)*	
01005 - 0402	8			2	2	
0603	8			2/4	2/4 -	
0805	8	4	4	4	4	
1206 - 1210	8	4	4	4	4	
1805 - 1808	12	4	4			
≥ 1812	12	8	8			
KPS 1210	12	8	8			
KPS 1812 and 2220	16	12	12			
Array 0612	8	4	4			

^{*}Refer to Figures 1 and 2 for W and P_1 carrier tape reference locations.

New 2 mm Pitch Reel Options*

	Packaging Ordering Code (C-Spec)	Packaging Type/Options
•	C-3190	Automotive grade 7" reel unmarked
	C-3191	Automotive grade 13" reel unmarked
	C-7081	Commercial grade 7" reel unmarked
	C-7082	Commercial grade 13" reel unmarked

^{* 2} mm pitch reel only available for 0603 EIA case size. 2 mm pitch reel for 0805 EIA case size under development.

Benefits of Changing from 4 mm to 2 mm Pitching Spacing

- · Lower placement costs.
- Double the parts on each reel results in fewer reel changes and increased efficiency.
- Fewer reels result in lower packaging, shipping and storage costs, reducing waste.

^{*}Refer to Tables 6 and 7 for tolerance specifications.

Figure 1 - Embossed (Plastic) Carrier Tape Dimensions

Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)								
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximum
8 mm		1.0 (0.039)				25.0 (0.984)			
12 mm	1.5 +0.10/-0.0 (0.059 +0.004/-0.0)	1.5	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm		(0.059)				(1.181)			
		1	Variable Dime	ensions — Mill	limeters (Inch	nes)			
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T ₂ Maximum	W Maximum	A ₀ ,B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) and Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Not	te 5
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).
- 3. If S, < 1.0 mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
- 4. B, dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_{o} , B_{o} and K_{o} shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3).
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 4).
 - (e) for KPS product, A_0 and B_0 are measured on a plane 0.3 mm above the bottom of the pocket.
 - (f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Figure 2 - Punched (Paper) Carrier Tape Dimensions

Table 7 - Punched (Paper) Carrier Tape Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	E ₁	P ₀	P ₂	T ₁ Maximum	G Minimum	R Reference Note 2			
8 mm	1.5 +0.10 -0.0 (0.059 +0.004 -0.0)	1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	0.10 (0.004) Maximum	0.75 (0.030)	25 (0.984)			
		Variable D	imensions – M	illimeters (Inch	es)					
Tape Size	Pitch	E2 Minimum	F	P ₁	T Maximum	W Maximum	A_0B_0			
8 mm	Half (2 mm)	6.25	3.5 ±0.05	2.0 ±0.05 (0.079 ±0.002)	1.1	8.3 (0.327)	Note 1			
8 mm	Single (4 mm)	(0.246)	(0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	(0.098)	8.3 (0.327)	Note 1			

- 1. The cavity defined by A_{n} , B_{n} and T shall surround the component with sufficient clearance that:
 - a) the component does not protrude beyond either surface of the carrier tape.
 - b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - c) rotation of the component is limited to 20° maximum (see Figure 3).
 - d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4).
 - e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.
- 2. The tape with or without components shall pass around R without damage (see Figure 6).

Packaging Information Performance Notes

1. Cover Tape Break Force: 1.0 kg minimum.

2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength
8 mm	0.1 to 1.0 Newton (10 to 100 gf)
12 and 16 mm	0.1 to 1.3 Newton (10 to 130 gf)

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.

Figure 3 – Maximum Component Rotation

Figure 4 - Maximum Lateral Movement

Figure 5 - Bending Radius

Figure 6 - Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 8 - Reel Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)								
Tape Size	A	B Minimum	С	D Minimum				
8 mm	178 ±0.20							
12 mm	(7.008 ±0.008) or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)				
16 mm	330 ±0.20 (13.000 ±0.008)	, ,	,	()				
	Variable	Dimensions — Millimeter	rs (Inches)					
Tape Size	N Minimum	W ₁	W ₂ Maximum	W ₃				
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)					
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference				
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)					

Figure 7 - Tape Leader & Trailer Dimensions

Figure 8 – Maximum Camber

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KEMET:

```
C1210X106K3RACTU C0603X152K1RACTU C0603X152K5RACTU C0603X153K5RACTU C0603X221K1RACTU
C0603X221K5RACTU C0603X222K1RACTU C0603X331K1RACTU C0603X331K5RACTU C0603X332K5RACTU
C0603X333K5RACTU C0603X471K1RACTU C0603X472K1RACTU C0603X681K5RACTU C1210X224K1RACTU
C1210X226K8RACTU C1808X103K2RACTU C1808X104K5RACTU C1808X273K1RACTU C1812X103K5RACTU
C1812X105M5RACTU C1812X223K1RACTU C1812X224K2RACTU C1812X474K2RACTU C1825X105K2RACTU
C1825X684K2RACTU C2220X105K2RACTU C2220X156K5RACTU C2225X105K2RACTU C2225X125K2RACTU
C0603X273K5RACTU C1210X474K1RACTU C1210X335K5RACTU C0603X222K2RACTU C0603X472K2RACTU
C0805X221KCRACTU C0805X471KCRACTU C0805X102KDRACTU C0805X101KDRACTU C0805X101KCRACTU
C1206X102KBRACTU C1206X562JCRACTU C1206X103KCRACTU C1206X103KBRACTU C1206X102KGRACTU
C1206X102KDRACTU C1206X102KCRACTU C0603X153K1RACTU C0603X103K2RACTU C0603X683K5RACTU
C0603X102J1RACTU C0603X222J5RACTU C0603X474K8RACTU C1206X223KDRACTU C1812X104KDRACTU
C1812X154KBRACTU C1812X224KCRACTU C1812X334KCRACTU C1206X333KBRACTU C1206X683KCRACTU
C1206X473KCRACTU C0805X123KCRACTU C1812X473KDRACTU C0805X103KCRACTU C0805X472KBRACTU
C0805X472KDRACTU C0805X682KBRACTU C0805X822KBRACTU C1210X473KDRACTU C1812X104KBRACTU
C1210X333KDRACTU C1808X154KCRACTU C1808X683KCRACTU C1210X823KBRACTU C1808X104KBRACTU
C1808X683KDRACTU C1210X104KCRACTU C1210X563KDRACTU C1210X475J5RACTU C0603X124K5RACTU
C0603X181K5RACTU C0603X182M5RACTU C0603X184K4RACTU C0603X271K5RACTU C0603X272K2RACTU
C0603X393K1RACTU C0603X562K2RACTU C0603X822K2RACTU C0603X822K5RACTU C0603X823K5RACTU
C0805X102KBRACTU C0805X471KBRACTU C1206X471JDRACTU C1210X103KFRACTU
C1210X223KCRACAUTO C1210X226K9RACTU C1210X273KDRACTU C1210X334K1RACTU
C0603X224K4RACTU C0603X224K8RACTU
```