Applied $P = \{ f_0 : \theta \in P \}$ in $P = \{ f_0 : \theta \in P \}$ $\{ f_0(x) - f_0(x) \} \in M(x) \cdot \| g_1 - g_1 \|_2$. $F(x) = P \cdot M(x) + |f_0(x)| \quad \text{for some } g_0 \in P.$ $|f(x)| \leq F(x).$

Take $\theta_1, \theta_2, ---, \theta_N$ be $mk_0 - \varepsilon - covering of <math>\Theta$ $N \leq (H + \frac{2R}{\varepsilon})^d.$

$$\begin{array}{ll}
\forall \theta, \exists j & & & & \\
|| f_{\theta} - f_{\theta j} ||_{L^{2}(Q)}^{2} \\
&= \int || f_{\theta}(x) - f_{\theta j}(x)|^{2} dQ(x) \\
&\leq || f_{$$

eg.
$$f_{\theta}(x) = 1_{\{|x-\theta| \le 1\}}$$

Prof: (Probablistic arguments).

Lare
$$\theta_1$$
, θ_2 , ..., θ_N be max ε -packing under $L^2(Q)$:

 $V:=V$, V

$$N \leq n^2 = \frac{4 \log^2 N}{54}$$

$$N \leq (\frac{c}{\epsilon})^8$$

VC - dues VC (Magniph)dem

Appleasun to M estimator.

Real.
$$F(\hat{\theta}_n) - F(\hat{\theta}_n) = F(\hat{\theta}_n) - F_n(\hat{\theta}_n) + F_n(\hat{\theta}_n) F_n(\hat{\theta}_n) +$$

$$||F_n(v)-F_n(v)-F_n(v)| \leq \sqrt{\frac{d}{n}}$$

$$||F_n(v)-F_n(v)-F_n(v)| \leq \sqrt{\frac{d}{n}}$$

$$\overline{\text{IET}}_{perisu}^{pp} \left(P_n - P \right) \left(f_0 - f_{pr} \right) \leq p_n(u)$$