KTH Matematik

Examinator: Maurice Duits Kursansvarig: Olof Sisask

Σ p	G/U	bonus

Efternamn	förnamn	pnr	programkod

Kontrollskrivning 2A till Diskret Matematik SF1610, för CINTE, vt2017

Inga hjälpmedel tillåtna.

Minst 8 poäng ger godkänt.

Godkänd KS nr n medför godkänd uppgift n vid tentor till (men inte med) nästa ordinarie tenta (högst ett år), n = 1, ..., 5.

13–15 poäng ger ett ytterligare bonuspoäng till tentamen.

Uppgifterna 3)-5) kräver väl motiverade lösningar för full poäng. Uppgifterna står inte säkert i svårighetsordning.

Spara alltid återlämnade skrivningar till slutet av kursen!

Skriv dina lösningar och svar på samma blad som uppgifterna; använd baksidan om det behövs.

1) (För varje delfråga ger rätt svar $\frac{1}{2}$ p, inget svar 0p, fel svar $-\frac{1}{2}$ p. Totalpoängen på uppgiften rundas av uppåt till närmaste icke-negativa heltal.)

Kryssa för om påståendena a)-f) är sanna eller falska (eller avstå)!

		\mathbf{sant}	falskt
a)	Om A, B, C är mängder med $ A \cup B \cup C = A + B + C $, då är $A \cap B = \emptyset$.	X	
b)	För varje $n \geq 1$ finns det n^n sätt att ordna n olika objekt.		X
c)	Antalet funktioner f från $\{1, 2,, n\}$ till $\{n+1,, 2n\}$, där $n \ge 1$, är n^n .	X	
d)	$S(n,k) = S(n-1,k-1) + nS(n-1,k)$ för alla n och $2 \le k \le n$.		X
e)	Om $k > l \ge 1$, då gäller $\binom{n}{k} > \binom{n}{l}$.		X
f)	För alla n och $1 \le k \le n$ gäller $S(n+1,k+1) \ge S(n,k)$.	X	

Namn	poäng uppg.2

2a) (1p) Hur många olika (kombinatoriska) ord kan en få genom att ordna bokstäverna i ordet IDENTITET?

(Svaret får innehålla kombinatoriska uttryck från kursen — du behöver inte beräkna det som ett heltal. Det räcker att ange rätt svar.)

Svar:

$$\binom{9}{3,2,2,1,1}$$
.

b) (1p) Skriv talet $\binom{17}{14}$ som en produkt av primtal. (Det räcker att ange rätt svar.)

Svar:

$$\binom{17}{14} = \frac{17!}{14! \, 3!} = \frac{17 \cdot 16 \cdot 15}{3 \cdot 2 \cdot 1} = 2^3 \cdot 5 \cdot 17.$$

c) (1p) På hur många sätt kan tabellen fyllas i med siffrorna 1, 2, 3, 4 på ett sådant sätt att båda av de följande två kraven uppfylls?

- Varje siffra förekommer en och endast en gång i varje av de tre sammanhängande 2×2 -blocken som finns, **och**
- varje siffra förekommer en och endast en gång i varje rad?

(Ett exempel på en korrekt ifylld tabell är $\begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 3 & 4 & 1 & 2 \end{bmatrix}$.

Tabellen $\begin{bmatrix} 1 & 2 & 4 & 3 \\ \hline 3 & 4 & 2 & 1 \end{bmatrix}$ är däremot otillåten på grund av blocket $\begin{bmatrix} 2 & 4 \\ \hline 4 & 2 \end{bmatrix}$.)

(Det räcker att ange rätt svar.)

Svar: En kan fylla i det vänstra 2×2 -blocket på 4! sätt. Efter detta är kolonn nr 3 bestämt enligt kraven, och efter detta är kolonn nr 4 bestämt. Svaret är alltså

$$4! = 24.$$

Namn	poäng uppg.3

3) (3p) Hur många dagar finns det under året 2017 som inte är den 1:a eller 12:e i en månad och som inte är i februari? (2017 har 365 dagar, och februari har 28 dagar.)

OBS. En komplett lösning med fullständiga motiveringar skall ges.

Lösning: Vi presenterar två högt relaterade lösningar.

Metod 1:

Det finns 365-28 dagar som inte är i februari. Utav dessa finns det 11 dagar som är den 1:a i en månad (en för varje månad förutom februari) och på samma sätt 11 dagar som är den 12:e i en månad. Alltså är antalet dagar som uppfyller kraven

$$365 - 28 - 11 - 11 = 315.$$

Metod 2: Låt

 $D_1 = \{ dagarna under 2017 som är 1:a dagen i en månad \}$

 $D_{12} = \{ dagarna under 2017 som är 12:e dagen i en månad \}$

 $D_{\text{feb}} = \{\text{dagar i februari 2017}\}.$

Svaret vi är ute efter är

$$365 - |D_{\text{feb}} \cup D_1 \cup D_{12}|.$$

Enligt inklusion–exklusion gäller det för vilka tre mängder $A,\,B,\,C$ som helst att

$$|A \cup B \cup C| = |A| + |B| + |C|$$
$$-|A \cap B| - |A \cap C| - |B \cap C|$$
$$+|A \cap B \cap C|,$$

så i vårt fall gäller

$$|D_{\text{feb}} \cup D_1 \cup D_{12}| = 28 + 12 + 12$$
$$-1 - 1 - 0$$
$$+ 0,$$

vilket igen ger svaret 315.

Svar: 315 dagar.

Namn	poäng uppg.4

4) (3p) Vi har 6 olika smaksättningar — vanilj, choklad och så vidare — som vi vill använda för att baka 3 kakor. Vi vill använda varje smaksättning precis en gång, och varje kaka måste få åtminstone en smaksättning (men kan få flera). Utöver detta så får vanilj och choklad inte förekomma i samma kaka. På hur många olika sätt kan vi smaksätta våra 3 kakor?

OBS. En komplett lösning med fullständiga motiveringar skall ges, och svaret ska ges som ett heltal.

Lösning: Enligt definitionen av Stirlingtalen av den andra ordningen finns det S(6,3) sätt att dela upp de 6 smaksättningarna i 3 icke-tomma grupper. Bland dessa finns det S(5,3) sätt där vanilj och choklad förekommer i samma grupp: vi kan tänka på dem som en enda ingrediens vanilj-choklad tillsammans med de övriga fyra. Alltså är svaret S(6,3) - S(5,3). För att räkna ut vilket heltal detta är så skapar vi tabellen för Stirlingtalen med hjälp av rekursionen

$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k) :$$

n	1	2	3
1	1		
2	1	1	
2 3	1	3	1
4	1	7	6
5	1	15	25
6	*	*	90

Svar: S(6,3) - S(5,3) = 90 - 25 = 65.

Namn	poäng uppg.5

5) (3p) Du har köpt 5 identiska blommor och 7 identiska chokladkakor. På hur många sätt kan du fördela dessa bland 4 vänner? (Det är okej att få 1 eller 0 saker.)

OBS. Lösningen ska motiveras, och svaret ges som summor och/eller produkter av heltal.

Lösning: Enligt multiplikationsprincipen kan vi behandla blommorna och chokladkakorna separat, och sedan multiplicera ihop svaren. Enligt formeln som härleds ur metoden med 'prickar och pinnar' är antalet sätt att fördela de 5 blommorna bland de 4 vännerna

$$\binom{5+4-1}{4-1} = \binom{8}{3},$$

motsvarande antalet sätt att välja positioner för 3 pinnar och 5 prickar bland totalt 8 positioner. På samma sätt är antalet sätt att fördela de 7 chokladkakorna

$$\binom{7+4-1}{4-1} = \binom{10}{3}.$$

Enligt multiplikationsprincipen är det totala antalet sätt då

Svar:
$$\binom{8}{3} \cdot \binom{10}{3} = 56 \cdot 120 \ (= 6720).$$