UAV SEARCH & RESCUE

SENIOR CAPSTONE

Kevin Dorosh, Richard Preston, Ryan Stocking, Elyse Cooper Sponsor – Prof. Karen Panetta

Drones!

- What are we using them for?
 - Ok, let me give you a (terrifying) scenario...

- Disaster scenarios
 - Dirty bomb
 - Natural disaster
 - Nuclear power plant failure
 - e.g., Chernobyl
 - e.g., Stuxnet
 - On related note, Russia hacked a US power plant July of this year!

The Project

- Why
 - Faster response times and fewer lives lost

Customer Requirements

- Compatible with 3DR Solo Drone
- Supports picture, thermal, and radiation sensing
- Accurate GPS location
- Real time transmission of data
- Intuitive UI for data visualization

Hasn't this been done before?

- This project has actually been in Panetta's lab for years
 - Many variations have seen different levels of success
- The U.S. military/government already has this tech, but it isn't open-sourced for use by low-ranking first-responders
 - Open source tools have come far
 - We are contributing toward OpenDroneMap and other tools as we leverage them

How it works

Fairly simple!

Inputs

Thermal camera images

GPS coordinates

Radiation counts per second

Outputs

Visualization of data on UI

- Slight pivot after stakeholder interview with Luke Harwath
 - Director of Communications for Help.NGO Global Dirt since 2011
 - First deployment to Japan to deliver dosimeters (detect how much radiation someone has been exposed to)
 - Radiation can have 50km radius
 - Used radioisotope identifier coupled with GPS to map radiation
 - Radiation varies greatly with height
 - Fixed wing would be better for speed unfortunately that's not what we have

The pieces

- Software
 - Ardupilot
 - MissionPlanner
 - WebODM
 - This is what I am building off of
- Hardware
 - Black box attachment
 - Thermal camera
 - Geiger Mueller tube
 - Standard images & GPS
- WebODM
 - Database
 - Nodes for image processing
 - Front End

MissionPlanner (above)

Geiger Muller Tube (above)

What are the hardware people doing?

- Hardware proof of concept
 - Measured alpha particles from a smoke detector
 - Transmitted to receiver and displayed Counts
 Per Second (CPS) on Arduino serial monitor

What am I doing?

- Learning A LOT of technologies I've never used before to leverage WebODM
 - NodeJS (and npm)
 - Docker
 - Django
 - React
 - Babel
- Learning drone/imaging terminology
 - Dense Point Cloud
 - 3D Mesh
 - Textured Mesh
 - LAS format point cloud
 - PLY format point cloud
 - · etc.
- Learned how to fly the drone
- Began modifications to WebODM
 - Small UI changes so far

Hey look. It's me. A drone at Tufts!

The Image Processing

DJI_0176.JPG

DJI_0177.JPG

DJI_0178JPG

DJI_0179.JPG

DJI_0180.JPG

Becomes:

WebODM

Baseline map overlay/display

For next semester

- We don't want or need to use the browser
 - We don't even expect to have an internet connection!
 - Thus I may package the UI into cross-platform desktop applications using Electron
- Django comes with a lot of user authentication and support for multiple nodes for image processing
 - We need a less robust solution that is simpler and runs quicker
 - We need to support image stitching with gaps (i.e., doesn't have 60% overlap)
- Front End
 - Support UI tooltips and overlays for thermal and radiation data
- Back End
 - Read data in from serial port rather than taking user uploaded files
 - Important since this needs to run in REAL TIME
- Testing
 - Homeland security

Challenges

- I am building top-down and they are building bottom up
 - We are at risk of not being able to "plug and play" when the time comes
 - We have designed an API we will (attempt) to adhere to that should minimize this risk
- Unknown bottlenecks
 - We need to know how quickly we can send and process data with our prototype hardware
- Scaling
 - I am a one-man UI/image processing team!

Questions?