Wi-Fi Security

Halil Kemal TAŞKIN

Wi-Fi

- Wi-Fi: Wireless Fidelity
- Introduced in September 1997
- Based on the IEEE 802.11 family of standards
- Commonly used for local area networking of devices and Internet access
- Designed to work seamlessly with Ethernet

Wi-Fi Generations

Generation	IEEE standard	Adopted	Maximum link rate (Mbit/s)	Radio frequency (GHz)
Wi-Fi 7	802.11be	(2024)	1.376 to 46.120	2.4 / 5 / 6
Wi-Fi 6E	802.11ax	2020	574 to 9.608	6
Wi-Fi 6		2019		2.4 / 5
Wi-Fi 5	802.11ac	2014	433 to 6.933	5
Wi-Fi 4	802.11n	2008	72 to 600	2.4 / 5
Wi-Fi 3	802.11g	2003	6 to 54	2.4
Wi-Fi 2	802.11a	1999	6 to 54	5
Wi-Fi 1	802.11b	1999	1 to 11	2.4
Wi-Fi 0	802.11	1997	1 to 2	2.4

Source: Wikipedia

Source: Wikipedia

Wi-Fi Security

- Encryption Protocols
 - None / Open Access
 - WEP
 - WPA
 - WPA2
 - WPA3

WEP: Wired Equivalent Privacy

- Introduced as part of the original IEEE 802.11 standard in 1997.
- Two key sizes: 40-bit (WEP-40) and 104-bit (WEP-104).
- Uses RC4 Stream Cipher to ensure confidentiality of the data transmitted.
- Uses CRC-32 Checksum to ensure integrity of the data transmitted.
- Broken and deprecated in 2004.
- Known Attacks:
 - FMS (Fluhrrer, Mantin and Shamir) Attack, 2001
 - KoreK Attack, 2004
 - ChopChop Attack, 2004
 - Fragmentation Attack, 2005,
 - PTW (Pychkine, Tews, Weinmann) Attack, 2007

WEP

Encryption and Decryption

WPA: Wi-Fi Protected Access

- Became available in 2003.
- Replacement to the WEP.
- Improved key sizes.
- Uses Message Integrity Check (MIC) protocol for integrity.
- Known Attacks:
 - Back and Tews' Improved Attack on RC4, 2008
 - Ohigashi-Morii Attack, 2009
 - Michael Attacks, 2010
 - The Hole196 Vulnerability, 2010
 - Dictionary Attack against the 4-way handshake

WPA2

- Became available in 2006.
- WPA2 replaced WPA.
- Improved encryption protocol.
- Known attacks:
 - KRACK Attack
 - PMKID Attack (PSK)
 - WPS Attack
 - The Hole196 Vulnerability, 2010
 - Dictionary Attack against the 4-way handshake

WPA/WPA2 Modes

• WPA/WPA2 can be implemented in either of two modes:

Personal or Pre-Shared Key (PSK) Mode

- Mostly suitable for home use.
- Define an encryption passphrase on the wireless router.
- The passphrase must be entered by users when connecting to the Wi-Fi network.

Enterprise (EAP/RADIUS) Mode

- Provides the security needed for wireless networks in business environments.
- Uses IEEE 802.1X Authentication Protocol.
- Users are assigned login credentials they must present when connecting to the network.
- Users never deal with the actual encryption keys.

TKIP vs CCMP

- TKIP: Temporal Key Integrity Protocol
 - Uses RC4 for encryption
 - WPA uses TKIP
- CCMP: Counter Mode CBC-MAC Protocol
 - Authenticated Encryption using AES algorithm
 - Uses Counter mode of operation for encryption
 - Uses CBC-MAC for authentication
 - WPA2 uses CCMP.
- Modes
 - WPA TKIP PSK
 - WPA2 CCMP PSK

WPA/WPA2 4-Way Handshake Protocol

- Used to agree on a session key.
- Both parties are assumed to have shared secret passphrase.
- Each time a client connects to an AP,
 4-Way Handshake occurs.
- ANonce and SNonce randomizes the session key.

4-Way Handshake Key Generation

- PSK: Pre-shared Key
 - Passphrase between 8-63 characters
 - Shared secret between all clients
- PMK: Pairwise-Master-Key
 - PMK = PBKDF2(HMAC-SHA1, PSK, SSID, 4096, 256)
 - Generated by both Client and AP before 4-way handshake
- PTK: Pairwise-Transient-Keys
 - PTK = Hash(PMK | | Anonce | | Snonce | | MAC_AP | | MAC_Client)
 - PTK is used to encrypt data between client and AP
 - Length is 64-bytes (512-bit)
 - PTK is splitted into KCK, KEK, TK, MICTX and MICRX keys.

4-Way Handshake Key Generation

- PTK is splitted as follows:
 - KCK: Key Confirmation Key
 - 128-bit key used in the MIC function to create the payload checksum.
 - KEK: Key Encryption Key
 - 128-bit key used to encrypt additional data from the AP to the clients during the handshake.
 - TK: Temporal Key
 - 128-bit key used to encrypt/decrypt messages after the handshake.
 - MIC Authenticator Tx/Rx Keys
 - 64+64-bit TKIP-only keys to compute MIC on AP and client packets.
- MIC: Message Integrity Check
 - MIC = HMAC_SHA1(KCK, payload)

WPA3

- WPA2 handshake seems to be still secure, but vulnerable to dictionary attacks.
- WPA2 has no forward secrecy (i.e. once a key is cracked, all old captured traffic may be decrypted).
- WPA3 become available in January 2018 as a replacement to WPA2.
- WPA3 replaces the Pre-shared Key (PSK) exchange with Simultaneous Authentication of Equals (SAE) exchange, also known as Dragonfly Handshake.
- Dragonfly prevents offline dictionary attacks and ensures perfect forward secrecy
- Attacks
 - Dragonblood, 2019.

Demo Setup

Wi-Fi Access Point with WPA2 CCMP PSK Configuration

Mobile Phone Connected to AP

USB Wi-Fi Dongle with AR9271 Chipset Connected to Kali Linux

Attack Scenario

- A client device is connected to an access point using WPA2 CCMP PSK Wi-Fi configuration.
- Attacker wants to recover/crack secret passphrase without physical access to any devices.
- Attacker is assumed to sniff Wi-Fi signals between access point and client device and also able to send packets to client's device.
- Attacker has a USB Wi-Fi dongle with monitoring mode support.
 - Can capture all Wi-Fi packets regardless of the destination MAC address.
- Attacker wants to capture a 4-way handshake and apply offline dictionary attack to crack the passphrase.

Values Needed from 4-Way Handshake

- SSID: Wi-Fi Name
- BSSID: Access Point's MAC Address
- At least one connected client's MAC Address
- ANonce
- SNonce
- Packets' MIC values

Attack Steps

- Guess a Passphrase (PSK)
- Compute PMK for this Passphrase using
 - PMK = PBKDF2(HMAC-SHA1, PSK, SSID, 4096, 256)
- Compute PTK from the assumed PMK using
 - PTK = Hash(PMK | | Anonce | | Snonce | | MAC_AP | | MAC_Client)
- Use generated PTK to obtain KCK and compute a MIC for captured packets of the handshake
- If computed MIC == MIC of the captured packet;
 - PSK guess is correct
- Otherwise;
 - Go back to first step and make a new guess.

Tools

- airmon-ng
 - Enable monitor mode for the wireless interface
- airodump-ng
 - Monitor Wi-Fi traffic
 - Capture the 4-way handshake
- aireply-ng
 - Mount deauthentication attack to capture handshake faster (if needed)
 - Only active part in the attack scenario
- aircrack-ng
 - Search for passphrase using dictionary file

The end.