There always exists mass-zero branch

The gauge invariance implies the 4-transversality of the polarization tensor both in the vacuum and in a medium

$$\Pi_{\alpha\beta}(k)k_{\beta} = 0. \tag{1}$$

By differentiating it over k_{γ} we get

$$\Pi_{\alpha\gamma}(k) + k_{\beta} \frac{\partial \Pi_{\alpha\beta}(k)}{\partial k_{\gamma}} = 0.$$
 (2)

Setting all components $k_{\beta} = 0$ we obtain

$$\Pi_{\alpha\gamma}(0) = 0, \tag{3}$$

provided that there is no singularity: $\lim_{k\to 0} \frac{\partial \Pi_{\alpha\beta}(k)}{\partial k_{\gamma}} < \lim_{k\to 0} \frac{1}{k}$. This option is not excluded, but it is very exotic and anyway must be subjected to verification.

Once all components of $\Pi_{\alpha\gamma}(0)$ are zero, so are all its eigenvalues, $\varkappa_i(0)=0$. Hence for every mode the dispersion relation $k^2=\varkappa_i(k)$ has the point $k_\alpha=0$ as its solution, in other words there always exists a dispersion curve that passes through the origin in every mode. The abovesaid does not exclude that there may be other branches that come to the point $\mathbf{k}=0$, but with $k_0\neq 0$, because in this case from (2) it only follows that $\Pi_{\alpha\gamma}(k_0,0)+k_0\lim_{\mathbf{k}\to 0}\frac{\partial \Pi_{\alpha0}(k)}{\partial k_\gamma}=0$, then $\Pi_{\alpha\gamma}(k_0,0)$ may be nonzero, for instance $\Pi_{\alpha0}(k_0,0)=-k_0\frac{\partial \Pi_{\alpha0}(k_0,0)}{\partial k_0}\neq 0$. This is just the case with positronium: its dispersion curve comes to a finite mass value at $\mathbf{k}=0$.