Exercice n°1 (4 points) Choisir la bonne réponse parmi les propositions suivantes :

2	0	

Question	A	В	C	Réponses
$\left(\sqrt{8}-\sqrt{2}\right)^2 =$	6	$10-2\sqrt{10}$	2	
Soit $A = (2\sqrt{2} - 3)$ et $B = (2\sqrt{2} - 3)$ alors	A et B sont Inverses	A×B=-1	<i>A×B=-5</i>	
Soit ABC un triangle rectangle en A alors $\cos A\hat{B}C$ =	$\frac{AC}{AB}$	$\frac{AC}{BC}$	$\frac{AB}{BC}$	
Soit la figure C suivante 1 A B	Alors AB=√6	Alors AB=2	Alors AB=4	

Exercice n°2 (5 points)

b) En déduire que
$$A(x) = (x-3)(x-1)$$

a) Factoriser
$$x^3 - 27 - (x - 3)(x - 3)$$

b) En déduire que
$$B(x) = (x-3)(3x+3)$$

3°) Soit
$$H(x) = \frac{B(x)}{A(x)}$$
 avec $x \ne 1$ et $x \ne 3$

a) Montrer que
$$H(x) = \frac{3x+3}{x-1}$$

b) Montrer que
$$H(\sqrt{2}) = 9 + 6\sqrt{2}$$

Exercice n°3 (2 points)

Soit un réel x vérifier $1 \le x \le 2$

1) Vérifier que
$$1 \le 2x - 1 \le 3$$
 et $-4 \le -3x + 2 \le -1$

2) Soit
$$A = |2x - 1| - |-3x + 2|$$
. Montrer que $A = -x + 1$

Exercice n°4 (6points)	<u>_</u>	_C				
	le en A tel que AC= $\sqrt{3}$ et AB =	= 3.				
1) Montrer que BC= $2\sqrt{3}$						
		Α				
2) a) Déterminer	T					
$\cos A\widehat{B}C = \dots$	$\sin A\widehat{B}C = \dots$	$tan A\hat{B}C = \dots$				
b) Déduire la mesure de l'angle ABC						
3) Soit H le projeter orthogon	nal de A sur (BC) Calculer AH.					
4) Soit x un angle aigu. Mo	ontrer que $1 + (tanx)^2 = \frac{1}{(cos)^2}$					
5) Soit x un angle aigu tel	$que \ sinx = \frac{3}{5}.D\'{e}terminer \ cos$	et tanx.				
Exercice n°4 (3 points) La figure suivante représ dans un cercle & de centre 0 e	l]sente un triangle ABC inscrit et de diamètre [AC] tel que	B				
AĈB=60°et AC=4 et M un poir	nt de [AC] tel que AM=1.					
1) a) Montrer que le triangle	ABC est rectangle en B.	A 0 60° C				
b) Montrer que $AB=2\sqrt{3}$ e	et BC = 2.					
2)a) La parallèle à (BC) p	 assant par M coupe (AB) en N 	. Calculer AN et MN.				