CCM218 Notes

Luca Hullen Panuci

August 2018

1 Probability

1.1 Foundations

In 1933, Andrey Kolmogorov published a book which is known as one of the first formal approaches in Probability Theory. In his book, Foundations of Probability Theory, Kolmogorov introduces probability with three axiomes.

1.2 Fundamental Definitions

- Let Ω be the set of all elementary events. We call Ω a sample space of the experiment.
- Let Σ be the subsets of Ω that form a σ -algebra, satisfying:
 - 1. Σ contains at least one subset of Ω
 - 2. Let A be a set of elements. If $A \in \Sigma$, so $\Omega/A \in \Sigma$
 - 3. If $A_1, A_2, ..., A_n \in \Sigma$, so $A_1 \cup A_2 \cup ... \cup A_n \in \Sigma$.
- The elements of Σ are denoted random events
- If $A,B \in \Sigma$, so:
 - 1. $A \cup B \in \Sigma$
 - $2. A \cap B \in \Sigma$
- $\Omega \in \Sigma$
- $\varnothing \in \Sigma$
- $\langle \Omega, \Sigma \rangle$ is defined as the mensurable space.

1.3 Probability

For $A \in \Sigma$, we now introduce the Probability of A as a non-negative real number.

The probability P Domain and Image are represented by: $P:\Sigma \mapsto [0,1]$.

 $So, \forall A \in \Sigma, \exists P(A) \geq 0$, satisfying:

- $P(\Omega) = 1$.
- If $A,B \in \Sigma$ and $A \cap B = \emptyset$, so $P(A) + P(B) = P(A \cup B)$

We also define $\langle \Omega, \Sigma, P \rangle$ as the probability space.

Theorem 1. Let $A \in \Sigma$, we have that $P(A) + P(A^c) = 1$.

Proof. Since A^c is the logical negation of A, we have that $A^c = \Omega/A$, the sum $P(A) + P(A^c) = P(A) + P(\Omega/A) = P(\Omega) = 1$.

Theorem 2. $P(\emptyset) = 0$, the probability of the empty set.

Proof. Let
$$A \in \Sigma$$
, we have that $P(A \cup \emptyset) = P(A) + P(\emptyset) = P(A)$
 $\Rightarrow P(\emptyset) = P(A) - P(A) = 0.$
(Note that $A \cup \emptyset = A$)

Theorem 3. If $A_1, A_2, ..., A_n \in \Sigma$, and $A_i \cap A_j = \emptyset, \forall i, j$ between 1 and n, then:

$$P(\bigcup_{j=1}^{n} A_j) = \sum_{j=1}^{n} A_j$$

Proof. Considering n=2, we have simply reduce to the case in the definition of probability. Using induction, we can proof that this equality holds \forall n, where n is a non-negative number.

Obs: Using induction, if we assume that the equation is true for N, we notice that $A_N \cap A_{N+1} = \emptyset$, and the proof is almost complete.