Lloyd Max Algorithm for Gray value quantization

Image processing, Retrieval, and Analysis II Project 01 - 1

Quantization by Lloyd Max Algorithm

Find optimal quantization intervals and points which represent original image with given levels

Process:

initialize quantization intervals $a_1=x_{\min}$, $a_i=a_{i-1}+rac{x_{\max}-x_{\min}}{L}$, $a_{L+1}=x_{\max}$

initialize quantization points $b_i = \frac{a_i + a_{i-1}}{2}$

initialize iteration counter t = 0

compute $E_t = \sum_{i=1}^L \int_{a_i}^{a_{i+1}} \left(x-b_i\right)^2 p(x) \, dx$

repeat

$$t = t + 1$$

update quantization intervals $a_i = \frac{b_i + b_{i-1}}{2}$

update quantization points $b_i = \frac{\int_{a_i}^{a_i+1} x p(x) \, dx}{\int_{a_i}^{a_i+1} p(x) \, dx}$

compute
$$E_t = \sum_{i=1}^{L} \int_{a_i}^{a_{i+1}} (x - b_i)^2 p(x) dx$$

until $|E_t - E_{t-1}| \leqslant \epsilon$ or $t \geqslant t_{\max}$

- Transform function q(x)
- Quantized Image (matrix)

Image, Histogram, Probability Density Function

$$p(\lambda) = rac{h(\lambda)}{\sum_{y} h(y)}$$

[histogram with bins=100]

Boundaries and Points

Two types of boundary initialization

Set first and end boundaries to 0 and 256, respectively.

```
Init Boundaries: [ 0. 32. 64. 96. 128. 160. 192. 224. 256.]
Init Certer Points: [ 16. 48. 80. 112. 144. 176. 208. 240.]
```

 Set first and end boundaries to min(g(x)) and max(g(x)), respectively

```
Init Boundaries: [ 8. 37.5 67. 96.5 126. 155.5 185. 214.5 244.]
Init Certer Points: [ 22.75 52.25 81.75 111.25 140.75 170.25 199.75 229.25]
```

Boundaries and Points

Iterate Update boundaries and points until...

```
• Boundaries: a_{\nu}=\frac{b_{\nu}+b_{\nu-1}}{2} if and only if (b_v != 0 and b_v-1 != 0)
```

Points:

```
b_{\nu} = \frac{\int_{a_{\nu}}^{a_{\nu+1}} \lambda p(\lambda) d\lambda}{\int_{a_{\nu+1}}^{a_{\nu+1}} p(\lambda) d\lambda}
                            Init Boundaries: [ 0. 32. 64. 96. 128. 160. 192. 224. 256.]
                            Init Certer Points: [ 16. 48. 80. 112. 144. 176. 208. 240.]
                            Computed Error: 81.5736236572
                            Iteration: 1
                            Boundaries: [ 0. 32. 64. 96. 128. 160. 192. 224. 256.]
                            Points: [ 25.65057471 52.38218054 80.55665354 113.58613037 141.14585682
                              175.91886434 199.61624396 230.510869571
                            Computed Error: 73.6048634981
                            Iteration: 2
                            Boundaries: [ 0. 39.01637763 66.46941704 97.07139195 127.3659936
                              158.53236058 187.76755415 215.06355676 256.
                            Points: [ 30.59301015 55.1087129
                                                                     81.83696546 113.42054869 138.64154216
                              172.57586299 196.06087715 224.807692311
```

Computed Error: 64.9355310102

Error computation

Mean squared quantization error

$$E = \sum_{\nu=1}^{L} \int_{a_{\nu}}^{a_{\nu+1}} (\lambda - b_{\nu})^2 p(\lambda) d\lambda$$

Iteration condition

- iteration Count < max Iteration count
- Computed Error > threshold_1
- Difference between current error and previous error > threshold_2

bauckhage gamma 1

Iteration: 2
Error : 197.30

Iteration: 8
Error : 76.77

Iteration: 17
Error : 23.78

bauckhage_gamma_1

Iteration: 5
Error : 11.50

Iteration: 4
Error : 4.29

bauckhage_gamma_2

Iteration: 9
Error: 64.40

Iteration: 12
Error : 20.07

Iteration: 12
Error: 9.90

bauckhage_gamma_2

Iteration: 20
Error : 3.8

Iteration: 7
Error : 2.06

bauckhage gamma 1

Iteration: 7
Error: 76.77

level = 4
Iteration: 12
Error : 23.77

level = 8
Iteration: 6
Error : 10.76

bauckhage gamma 1

Iteration: 4
Error : 3.41

Iteration: 1
Error: 0.93

bauckhage_gamma_2

Iteration: 8
Error: 64.05

Iteration: 10
Error : 19.97

Iteration: 8
Error : 9.56

bauckhage_gamma_2

Iteration: 10
Error: 3.58

Iteration: 5
Error : 1.32

Histogram transformation

Image processing, Retrieval, and Analysis II Project 01 - 2

Transform to Weibull distribution

We know...

$$P_Y(y) = \int_0^y p_Y(z)dz = \int_0^y p_X(T^{-1}(z)) \left| \frac{d}{dz} T^{-1}(z) \right| dz$$

$$P_Y(y) = 1 - \exp\{-(\frac{y}{l})^k\}$$

So..

$$1 - exp\{-(\frac{y}{l})^k\}$$

$$= \int_0^y p_X(T^{-1}(z)) \left| \frac{d}{dz} T^{-1}(z) \right| dz$$

$$= \int_0^{T^{-1}(y)} p_X(z) dz$$

Transform to Weibull distribution

Continue..

$$\begin{split} 1 - \exp\{-(\frac{T(x)}{l})^k\} &= \int_0^x p_X(z) dz = \widetilde{H}(x) \\ \exp\{-(\frac{T(x)}{l})^k\} &= 1 - \widetilde{H}(x) \\ (\frac{T(x)}{l})^k &= \ln(\frac{1}{1 - \widetilde{H}(x)}) \end{split}$$

$$T(x) = l \cdot \{ln(\frac{1}{1 - \widetilde{H}(x)})\}^{\frac{1}{k}}$$

Demo

CDF

Demo

Illumination compensation

Image processing, Retrieval, and Analysis II

Project 01 - 3

Illumination compensation

- We get some image with decompensated illumination
- Our goal is to make more uniform the illumination

Second step: create the models

```
def linear fitting(l):
    rows, cols = l.shape
    row arr = np.array(range(rows))
    col arr = np.array(range(cols))
    ones = np.ones(rows*cols)
   x1 = np.repeat(row arr, cols)
   x2 = np.tile(col arr, rows)
   X = np.vstack([x1, x2, ones]).T
   z = l.flatten()
    w = lsq solution V3(X, z)
    return np.reshape(np.dot(X, w), (rows, cols))
def bilinear fitting(l):
    rows, cols = l.shape
    row_arr = np.array(range(rows))
    col arr = np.array(range(cols))
    ones = np.ones(rows * cols)
   x1 = np.repeat(row arr, cols)
   x2 = np.tile(col arr, rows)
   X = np.vstack([x1 * x2, x1, x2, ones]).T
    z = l.flatten()
    w = lsq solution V3(X, z)
    return np.reshape(np.dot(X, w), (rows, cols))
```

$$i_l(x, y) = ax + by + c$$

$$\boldsymbol{w} = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{z}$$

$$i_l(x, y) = axy + bx + cy + d$$

3D plots from linear and bilinear models

Resulting images

Original image, result of linear model, and result of bilinear model.

Resulting 3D plots

3D plots for original image, result of linear model, and result of bilinear model.

Experiments with different sample size

2500 pixels

Experiments with different sample size

25000 pixels