课程偏号: A073003

北京理工大学 2009-2010 学年第二学期

线性代数 B 试题 A 卷

7.7.7.	班级	学号	姓名	成绩	
--------	----	----	----	----	--

題号	-	Ξ	E	四	ħ	六	t	1	九	+	总分
得分											
签名											

一、(10分) 设A 是三阶矩阵,A* 是其件随矩阵,已知 $|A| = \frac{1}{2}$,求行列式 $|(3A)^{-1} - 2A^*|$ 的值。

二、(10分) 设
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, $AB = A + 2B$, 来 B .

三、(10分)设有线性方程组

$$\begin{cases} x_1 + 2x_2 + x_3 = 1\\ 2x_1 + 3x_2 + (\lambda + 2)x_3 = 3\\ x_1 + \lambda x_2 - 2x_3 = 0 \end{cases}$$

问: A取何值时,此方程组有唯一解? 无解? 有无穷多解? 并在有无穷多解时求通解。 (用导出组的基础解系表示通解) 图、(10分) 已知 $\alpha_1 = (1,2,3,4), \alpha_2 = (2,3,4,5), \alpha_3 = (3,4,5,6), \alpha_4 = (4,5,6,7)$ 。

- 求向量组α₁,α₂,α₄的秩和一个极大无关组;
- (2) 用所求的极大无关组线性表出剩余向量。

五、(10分)已知取3的两组基:

$$\alpha_1 = (1,1,1)^T$$
, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (0,0,1)^T$,
 $\beta_1 = (1,0,1)^T$, $\beta_2 = (0,0,-1)^T$, $\beta_3 = (1,2,0)^T$,

- (1) 求α,α,α, 到β,β,β,β, 的过渡矩阵:
- (2) 求α=(3,2,1)^r关于基α,,α,,α, 的坐标。

六、(10 分) 设矩阵
$$A \sim B$$
,其中 $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{pmatrix}$, $B = \begin{pmatrix} 2 & \\ 2 & \\ & b \end{pmatrix}$, 求 a,b 的催。

七、(10 分)已知向量组。 $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,2)^T$,求生成子空间 $L(\alpha_1,\alpha_1)$ 的一个标准正交基。

八、(10分) 已知实二次型 $f(x_1,x_2,x_3)=2x_1x_2+2x_1x_3+2x_1x_3$ 。

- (1) 求一正交变换X = QY,将二次型 $f(x_1, x_2, x_3)$ 化为标准形;
- (2) 判断二次型 $f(x_1, x_2, x_3)$ 是否正定。

九、(10 分) 设 X_0 是非齐次线性方程组 AX=b 的一个特解, X_1,X_2,\cdots,X_t 是其导出方程组 AX=0 的一个基础解系,证明: X_0,X_1,X_2,\cdots,X_t 线性无关。

十、(10 分) 设三阶矩阵 A 的各行元素之和均为 3,向量 $\alpha_1 = (-1,2,-1)^T$, $\alpha_2 = (0,-1,1)^T$ 是线性方程组 AX = 0 的两个解。

- (1) 求 A 的特征值与特征向量;
- (2) 证明:存在可途矩阵P和对角矩阵 Λ ,使得 $P^{-1}\Lambda P = \Lambda$;
- (3) 求 $(A \frac{3}{2}E)^6$ 。其中E为三阶单位矩阵。