### PRIJENOS i DISTRIBUCIJA ELEKTRIČNE ENERGIJE

### 1. KONSTRUKCIJSKI RAD - MEHANIČKI PRORAČUN NADZEMNIH VODOVA

Izračunajte i izradite montažne tablice provjesa i naprezanja vodiča za zatezno polje prikazanog slikom jednog nadzemnog voda nazivnog napona 220 kV.

Vodič: HRN N.C1.351 Al/Fe 360/57

Maksimalno radno naprezanje (N/mm²): 100

Faktor normalnog dodatnog tereta: 1,0



Slika 1. Zatezno polje

Tablica 1. Podaci vodiča HRN N.C1.351 Al/Fe

| Podaci vodiča                                                     | Al/Fe - 360/57       |
|-------------------------------------------------------------------|----------------------|
| Nazivni presjek (mm²)                                             | 360/57               |
| Računski presjek A (mm²)                                          | 417,54               |
| Promjer vodiča d (mm)                                             | 26,6                 |
| Uzdužna masa m <sub>1</sub> (kg/m)                                | 1,471                |
| Modul elastičnosti E (N/mm²)                                      | 77 000               |
| Koeficijent linearnog toplinskog istezanja β (1/°C)               | $18,9 \cdot 10^{-6}$ |
| Normalno dozvoljeno naprezanje $\sigma_d$ (N/mm <sup>2</sup> )    | 110                  |
| Iznimno dozvoljeno naprezanje σ <sub>i</sub> (N/mm <sup>2</sup> ) | 210                  |

### ALGORITAM ZA IZRADU MONTAŽNIH TABLICA PROVJESA I NAPREZANJA ZA ZATEZNO POLJE OD n RASPONA

| 1. | Prikupiti podatke o vodiču i smještaju zateznog polja: vodič Al/Fe, A, d, $m_1$ , E, $\beta$ , $\sigma_d$ , k rasponi: $a_1$ , $a_2$ ,, $a_n$ denivelacija ovjesišta: $h_1$ , $h_2$ ,, $h_n$ spojnice ovjesišta: $a_1$ , $a_2$ ,, $a_n$ |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Odrediti dodatni teret i reducirane težine vodiča: G <sub>0</sub> , g <sub>0</sub> , G <sub>l</sub> , g <sub>z</sub> .                                                                                                                  |
| 3. | Odabrati maksimalno radno naprezanje $\sigma_{max}$ .                                                                                                                                                                                   |
| 4. | Izračunati kritični raspon a <sub>k</sub> .                                                                                                                                                                                             |
| 5. | Izračunati idealan raspon a <sub>idealno</sub> .                                                                                                                                                                                        |
| 6. | Odabrati osnovno stanje jednadžbe stanja: $ a_{idealno} < a_k \implies -20 \text{ °C bez dodatnog opterećenja} \\ a_{idealno} > a_k \implies -5 \text{ °C sa dodatnim opterećenjem} $                                                   |
| 7. | Računati horizontalno naprezanje za zatezno polje, za odabrane temperature: $\overline{\sigma}_2$ , $\sigma_2$                                                                                                                          |
| 8. | Računati provjese za pojedine raspone i odabrane temperature: f i f .                                                                                                                                                                   |
| 9. | Ispisati montažne tablice provjesa i naprezanja:  VODIČ: HRN N.C1.351 Al/Fe  Zatezno polje: stup br stup br  Maksimalno radno naprezanje: (N/mm²)  Faktor normalnog dodatnog tereta k:                                                  |

| Ide                                                    | alni rasp  | oon    | Montaža pri temperaturi (°C) |       |       |            |            |       |     |         |
|--------------------------------------------------------|------------|--------|------------------------------|-------|-------|------------|------------|-------|-----|---------|
| $a_{idealno} = (m)$                                    |            |        | - 20°                        | - 10° | 0°    | 10°        | 20°        | 30°   | 40° | -5°+led |
|                                                        | jes vodiča | a (m)  |                              |       |       |            |            |       |     |         |
| Horizontalno naprezanje (N/mm²)                        |            |        |                              |       |       |            |            |       |     |         |
| Horiz                                                  | ontalna si | la (N) |                              |       |       |            |            |       |     |         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |            |        |                              |       | Provj | es f(m) za | stvarne ra | spone |     |         |
|                                                        |            |        |                              |       |       |            |            |       |     |         |
|                                                        |            |        |                              |       |       |            |            |       |     |         |
|                                                        |            |        |                              |       |       |            |            |       |     |         |
|                                                        |            |        |                              |       |       |            |            |       |     |         |
|                                                        |            |        |                              |       |       |            |            |       |     |         |
|                                                        |            |        |                              |       |       |            |            |       |     |         |
|                                                        |            |        |                              | •     |       |            | •          |       | •   | •       |
|                                                        |            |        |                              |       |       |            |            |       |     |         |

| Vodič        | AlFe 360/57                            |
|--------------|----------------------------------------|
| A =          | 417,54 mm <sup>2</sup>                 |
| d =          | 26,6 mm                                |
| $m_1 =$      | 1,471 kg/m                             |
| E =          | $77000 \text{ N/mm}^2$                 |
| $\beta =$    | $18.9 \cdot 10^{-6} \text{ K}^{-1}$    |
| $\sigma_d$ = | $110 \text{ N/mm}^2$                   |
| $\sigma_i$ = | $210 \text{ N/mm}^2$                   |
| k =          | 1,0 (faktor normalnog dodatnog tereta) |

### **Profil trase**

Iz profila trase određuju se rasponi, denivelacije i spojnice ovjesišta. Veličine koje se određuju definirane se sljedećom slikom.



Slika 2. Raspon, denivelacija, spojnica ovjesišta

Značenje oznaka na slici 2 su sljedeće:

 $a_{12}$  – raspon

 $a_1'$  – spojnica ovjesišta

 $h_{12}$  - denivelacija

### RASPONI:

 $a_1 = 252 \text{ m}$ 

 $a_2 = 185 \text{ m}$ 

 $a_3 = 120 \text{ m}$ 

 $a_4 = 105 \text{ m}$ 

### DENIVELACIJE OVJESIŠTA:

$$h_{12} = h_2 - h_1 = 66,3 - 81,6 = -15,3 \text{ m}$$

$$h_{23} = h_3 - h_2 = 80,4 - 66,3 = 14,1 \text{ m}$$

$$h_{34} = h_4 - h_3 = 68,5 - 80,4 = -11,9 \text{ m}$$

$$h_{45} = h_5 - h_4 = 70,3 - 68,5 = 1,8 \text{ m}$$

SPOJNICE OVJESIŠTA:

$$a'_{1} = \sqrt{h_{12}^{2} + a_{1}^{2}} = \sqrt{(-15,3)^{2} + 252^{2}} = 252,46 m$$

$$a'_{2} = \sqrt{h_{23}^{2} + a_{2}^{2}} = \sqrt{14,1^{2} + 185^{2}} = 185,54 m$$

$$a'_{3} = \sqrt{h_{34}^{2} + a_{3}^{2}} = \sqrt{(-11,9)^{2} + 120^{2}} = 120,59 m$$

$$a'_{4} = \sqrt{h_{45}^{2} + a_{4}^{2}} = \sqrt{1,8^{2} + 105^{2}} = 105,2 m$$

### 2. ODREĐIVANJE DODATNOG TERETA I REDUCIRANE TEŽINE VODIČA

Reducirana težina odnosno specifična težina nezaleđenog vodiča iznosi:

$$g_0 = \frac{G_0}{A} = \frac{m_1 \cdot g}{A} = \frac{1,471 \cdot 9,81}{417,54} = 34,561 \cdot 10^{-3} \frac{N}{m \cdot mm^2}$$

Reducirana težina leda, uz uvažavanje faktora normalnog dodatnog tereta, koja se stvara na vodiču iznosi:

$$g_1 = k \cdot \frac{0.18 \cdot \sqrt{d} \cdot g}{A} = 1.0 \cdot \frac{0.18 \cdot \sqrt{26.6} \cdot 9.81}{417.54} = 21.81 \cdot 10^{-3} \frac{N}{m \cdot mm^2}$$

Konačno, reducirana težina zaleđenog vodiča jednaka je zbroju reducirane težine nezaleđenog vodiča i reducirane težine leda, odnosno:

$$g_z = g_0 + g_1 = 34,561 \cdot 10^{-3} + 21,81 \cdot 10^{-3} = 56,371 \cdot 10^{-3} \frac{N}{m \cdot mm^2}$$

### 3. ODABIR MAKSIMALNOG RADNOG NAPREZANJA $\sigma_{max}$

Makismalno naprezanje vodiča zadano je tekstom zadatka i iznosi:

$$\sigma_{\text{max}} = 100 \, \frac{N}{mm^2}$$

### 4. IZRAČUNAVANJE KRITIČNOG RASPONA

Kritični raspon određuje početne uvjete za jednadžbu stanja. Naime, vrijednost idealnog raspona koja će biti određena u sljedećoj točki usporedit će se s kritičnim rasponom te će se moći utvrditi da li je početno stanje -20°C bez dodatnog opterećenja ledom ili -5°C uz dodatno opterećenje ledom.

$$a_k = \sigma_{\text{max}} \sqrt{\frac{360\beta}{g_z^2 - g_0^2}} = 100 \sqrt{\frac{360 \cdot 18,9 \cdot 10^{-6}}{\left(56,371 \cdot 10^{-3}\right)^2 - \left(34,561 \cdot 10^{-3}\right)^2}} = 185,223 \text{ m}$$

### 5. IZRAČUNAVANJE IDEALNOG RASPONA

Da bi mogli odrediti početne uvjete za jednadžbu stanja, kritični raspon potrebno je usporediti s tzv. idealnim rasponom kojim se nadomještaju pojedini rasponi unutar zateznog polja. Denivelacije ovjesišta uzimaju se u obzir korekcijskim faktorom.

$$a_{idea \ln o} = \sqrt{\frac{\sum_{i=1}^{n} a_{i}^{3}}{\sum_{i=1}^{n} \frac{a_{i}^{1/3}}{a_{i}^{2}}}} \cdot \frac{\sum_{i=1}^{n} \frac{a_{i}^{1/3}}{a_{i}^{2}}}{\sum_{i=1}^{n} \frac{a_{i}^{1/3}}{a_{i}^{2}}} = \sqrt{\frac{252^{3} + 185^{3} + 120^{3} + 105^{3}}{252} + \frac{252,46^{3}}{185} + \frac{185,54^{3}}{120^{2}} + \frac{105,02^{3}}{105^{2}}}{252} + \frac{105,02^{3}}{185} + \frac{120,59^{3}}{120} + \frac{105,02^{3}}{105}} = \sqrt{\frac{25220258}{665,225}} \cdot \frac{666,846}{665,225} = 195,1855 \, m$$

### 6. ODABIR OSNOVNOG STANJA JEDNADŽBE STANJA

$$a_{idealno} < a_k$$
 => početno stanje je -20°C bez dodatnog opterećenja

a<sub>idealno</sub> > a<sub>k</sub> => početno stanje je -5°C uz dodatno opterećenje ledom

$$a_{idealno}$$
=195,1855 m >  $a_k$  = 185,223 m

Početno stanje definiraju, dakle, sljedeće veličine:

$$\theta_I = -5^{\circ}\text{C}$$
  
 $g_I = g_z = 56,371 \cdot 10^{-3} \text{ N/(m·mm}^2)$   
 $\sigma_I = \sigma_{max} = 100 \text{ N/mm}^2$ 

# 7. IZRAČUN HORIZONTALNOG NAPREZANJA ZA ZATEZNO POLJE ZA ODABRANE TEMPERATURE $\overline{\sigma_2}, \sigma_2$

Obzirom da postoje denivelacije ovjesišta u zateznom polju, računamo nadomjesno maksimalno naprezanje:

$$\frac{1}{\sigma} = \sigma \cdot \frac{\sum_{i=1}^{n} \frac{a_{i}^{3}}{a_{i}^{2}}}{\sum_{i=1}^{n} \frac{a_{i}^{2}}{a_{i}^{2}}} \implies \sigma = \frac{1}{\sigma} \cdot \frac{\sum_{i=1}^{n} \frac{a_{i}^{2}}{a_{i}^{2}}}{\sum_{i=1}^{n} \frac{a_{i}^{3}}{a_{i}^{2}}}$$

Za horizontalnu trasu bez denivelacija vrijedi:  $\sigma = \sigma = \sigma_{max}$ 

Jednadžba stanja za kosi raspon glasi:

$$\frac{\overline{\sigma}_1 - \overline{\sigma}_2}{E} + \beta (\mathcal{G}_1 - \mathcal{G}_2) = \frac{a_{idea \ln o}^2}{24} \left( \frac{g_1^2}{\overline{\sigma}_1^2} - \frac{g_2^2}{\overline{\sigma}_2^2} \right)$$

Početno stanje je:

$$\theta_{I} = -5^{\circ} C$$

$$g_{I} = g_{z} = 56,371 \cdot 10^{-3} \text{ N/(m \cdot mm^{2})}$$

$$\sigma_{I} = \sigma_{max} = 100 \text{ N/mm}^{2} \implies \qquad \overline{\sigma}_{1} = \sigma_{1} \cdot \frac{\sum_{i=1}^{n} \frac{a_{i}^{'3}}{a_{i}^{2}}}{\sum_{i=1}^{n} \frac{a_{i}^{'3}}{a_{i}}} = 100,24 \frac{N}{mm^{2}}$$

Slijedi izračun nadomjesnih naprezanja  $\overline{\sigma_2}$  rješavanjem kubne jednadžbe i potom stvarnog naprezanja  $\sigma_2$  za temperature od -20°C do 40°C. Uvrštavanjem vrijdnosti početnog stanja u jednadžbu stanja dobivamo:

$$\frac{100,24-\overline{\sigma}_2}{77000}+18,9\cdot10^{-6}\left(-5-\vartheta_2\right)=\frac{195,1855^2}{24}\left(\frac{\left(56,371\cdot10^{-3}\right)^2}{100,24^2}-\frac{\left(34,561\cdot10^{-3}\right)^2}{\overline{\sigma}_2^2}\right)$$

U prethodnoj jednadžbi mijenjamo temperature i određujemo naprezanja  $\overline{\sigma_2}$  i  $\sigma_2$ .

#### **NAPOMENA**:

Za sve temperature osim -5°C računamo s reduciranom težinom nezaleđenog vodiča.

U nastavku će se pokazati slijed proračuna naprezanja vodiča za temperaturu -20°C.

### 1) $\theta_2 = -20^{\circ} \text{C}$

$$\frac{100,24 - \overline{\sigma}_2}{77000} + 18,9 \cdot 10^{-6} \left(-5 - \left(-20\right)\right) = \frac{195,1855^2}{24} \left(\frac{\left(56,371 \cdot 10^{-3}\right)^2}{100,24^2} - \frac{\left(34,561 \cdot 10^{-3}\right)^2}{\overline{\sigma}_2^2}\right)$$

$$\overline{\sigma}_2 + 21,8295 = 38,8406 - \frac{145996,004}{\overline{\sigma}_2^2}$$

$$\overline{\sigma}_2^3 - 83,418 \cdot \overline{\sigma}_2^2 - 145996,004 = 0 ->$$
KUBNA JEDNADŽBA

## DIGRESIJA – RJEŠAVANJE KUBNE JEDNADŽBE METODOM TANGENTE (NEWTONOVA METODA)

1. Odaberemo početnu točku  $(x_0, y_0)$  i u njoj povučemo tangentu na zadanu krivulju.



2. Jednadžba tangente u točki  $(x_0, y_0)$  glasi:

$$y-y_0 = f(x_0) \cdot (x-x_0) = y'_0 \cdot (x-x_0)$$

3. Sjecište tog pravca s osi apscisa, daje nam novu točku  $T(x_1,0)$  pa imamo:

$$y_T - y_0 = y'_0 \cdot (x_T - x_0)$$
  
 $-y_0 = y'_0 \cdot (x_1 - x_0)$  =>  $x_1 = x_0 - y_0/y'_0$ 

4. Iz točke  $T_1(x_1,0)$  dignemo okomicu. Ta okomica siječe krivulju u točki  $T_1(x_1, y_1)$ . U toj točki vučemo novu tangentu na zadanu krivulju, koja siječe os apscisu u novoj točki  $T_2(x_2, 0)$  pa imamo:

 $x_2 = x_1 - y_1/y'_1$  prikazani postupak nastavljamo dalje, odnosno:

$$\chi_{n+1} = \chi_n - y_n/y'_n$$

### NASTAVAK RJEŠAVANJA ZADATKA

Dakle, ako primijenimo metodu tangente na problem rješavanja kubne jednadžbe dobit ćemo sljedeće izraze:

$$y = f(\overline{\sigma}_2) = \overline{\sigma}_2^3 - 83,418 \cdot \overline{\sigma}_2^2 - 145996,004 = 0$$

$$y = f(x) = x^3 - 83,418 \cdot x^2 - 145996,004 = 0$$

Početnu vrijednost za opisani iterativni postupak određujemo kao prvo pozitivno rješenje  $f(x_0)$ , odnosno uvrštavamo u kubnu jednadžbu proizvoljne vrijednosti dok ne dobijemo pozitivan rezultat. Nakon što dobijemo pozitivnu vrijednost  $f(x_0)$ , krećemo u rješavanju kubne jednadžbe prema metodi tangente uz upravo tu vrijednost  $x_0$ .

Tablica 2. Određivanje početne vrijednosti  $x_0$  za iterativni postupak

| X    | 0           | 50          | 70          | 100        |
|------|-------------|-------------|-------------|------------|
| f(x) | -145996,004 | -229541,004 | -211744,204 | +19823,996 |

### 1. ITERACIJA

$$x_0 = 100$$
  
 $y_0 = 19823,996$   
 $y' = 3 \cdot x^2 - 166,836 \cdot x$   
 $y'_0 = 3 \cdot x_0^2 - 166,836 \cdot x_0$   
 $y'_0 = 3 \cdot 100^2 - 166,836 \cdot 100 = 13316,4$   
 $x_1 = x_0 - y_0/y'_0 = 100 - 19823,996/13316,4 = 98,5113$   
 $\Delta x_1 = x_1 - x_0 = 98,5113 - 100 = -1,4887$ 

Iterativni postupak nastavljamo dok razlika između dvije uzastopne iteracije ne bude manja od  $\varepsilon = 0.01$ .

### 2. ITERACIJA

$$x_1 = 98,5113$$
  
 $y_1 = 476,567$   
 $y'_1 = 3 \cdot x_1^2 - 166,836 \cdot x_1$   
 $y'_1 = 3 \cdot 98,5113^2 - 166,836 \cdot 98,5113 = 12678,20$   
 $x_2 = x_1 - y_1/y'_1 = 98,5113 - 476,567/12678,20 = 98,4737$   
 $\Delta x_2 = x_2 - x_1 = 98,4737 - 98,5113 = -0,0376 > \epsilon$ 

### 3. ITERACIJA

$$x_2 = 98,4737$$
  
 $y_2 = 0,16665$   
 $y'_2 = 3 \cdot x_2^2 - 166,836 \cdot x_2$   
 $y'_2 = 3 \cdot 98,4737^2 - 166,836 \cdot 98,4737 = 12662,25$   
 $x_3 = x_2 - y_2/y'_2 = 98,4737 - 0,16665/12662,25 = 98,47368$   
 $\Delta x_3 = x_3 - x_2 = 98,47368 - 98,4737 = -0,000013 < \epsilon$ 

Budući je razlika između 3. i 2. iteracije manja od  $\varepsilon$ , iteracijski postupak se zaustavlja. Dobivena vrijednost odgovara nadomjesnom naprezanju za temperaturu -20° C.

$$\overline{\sigma_2} = 98,4737 \text{ N/mm}^2$$

Stvarno naprezanje, računamo iz nadomjesnog:

$$\sigma_2 = \overline{\sigma}_2 \cdot \frac{\sum_{i=1}^n \frac{{a'_i}^2}{a_i}}{\sum_{i=1}^n \frac{{a'_i}^3}{a_i^2}} = 98,4737 \frac{665,225}{666,846} = 98,2343 \frac{N}{mm^2}$$

Isti postupak ponavljamo za sve ostale temperature.

Provjes idealnog raspona pri različitim temperaturama računamo iz izraza:

$$f = \frac{a_{idea \ln o}^2 \cdot g_{g}}{8 \cdot \sigma_{g}}$$

U prethodnom izrazu  $g_{\mathfrak{g}}$  označava reduciranu težinu vodiča pri temperaturi  $\mathfrak{g}$ . Kao što je već prije bilo istaknuto, za sve temperature osim -5°C, reducirana težina jednaka je reduciranoj težini nezaleđenog vodiča. Samo za temperaturu -5°C potrebno je računati s reduciranom težinom zaleđenog vodiča.

 $\sigma_g$  označava naprezanje vodiča pri temperaturi  $\vartheta$ .

Horizontalnu silu za idealni raspon računamo prema izrazu:

$$F_{g} = \sigma_{g} \cdot A$$

U nastavku je prikazana tablica s rezultatima proračuna za idealni raspon i to za sve temperature.

Tablica 3. Rezultat proračuna za idealni raspon

| 9                                                     | -20°C    | -10°C    | 0°C      | 10°C    | 20°C     | 30°C     | 40°C     | -5°C+LED |
|-------------------------------------------------------|----------|----------|----------|---------|----------|----------|----------|----------|
| $ \overline{\sigma}_2 \left( \frac{N}{mm^2} \right) $ | 98,474   | 87,803   | 78,191   | 69,76   | 62,537   | 56,457   | 51,387   | 100,24   |
| $\sigma_2 \left( \frac{N}{mm^2} \right)$              | 98,235   | 87,59    | 78,002   | 69,591  | 62,385   | 56,32    | 51,263   | 100      |
| f(m)                                                  | 1,6754   | 1,879    | 2,11     | 2,365   | 2,6382   | 2,9223   | 3,2106   | 2,6845   |
| $F_H(N)$                                              | 41017,12 | 36572,23 | 32568,96 | 29056,9 | 26048,41 | 23515,99 | 21404,35 | 41754    |

# 8. IZRAČUNAVANJE PROVJESA ZA POJEDINE RASPONE I ODABRANE TEMPERATURE (f, f')

Za horizontalni raspona bez denivelacije provjes se računa prema izrazu:

$$f = \frac{a^2 \cdot g_g}{8 \cdot \sigma_g}$$

Kao i kod idealnog raspona i za stvarne raspone reduciranu težinu i naprezanje moramo uvrstiti u ovisnosti o temperaturi pri kojoj računamo provjes.

Budući da trasa voda nije horizontalna, već postoje razlike u visinama ovjesišta stupova, stvarni raspon *f* računamo prema:

$$f' = f \cdot \frac{a'}{a} = \frac{a^2 \cdot g_g}{8 \cdot \sigma_g} \cdot \frac{a'}{a} = \frac{a \cdot a' \cdot g_g}{8 \cdot \sigma_g}$$

U nastavku će biti pokazan proračun provjesa za prvi raspon za sve temperature.

Dakle, raspon br. 1:

t = -20°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{-20^{\circ}C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 98,2352} = 2,7979 m$$

t = -10°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{-10^{\circ}C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 87,59} = 3,1379 \ m$$

t = 0°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{0.9C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 78,002} = 3,5236 m$$

t = 10°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{10^{\circ}C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 69,5908} = 3,9495 m$$

t = 20°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{20°C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 62,3854} = 4,4057 m$$

t = 30°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{209C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 56,3203} = 4,8801 \, m$$

t = 40°C 
$$f' = \frac{a \cdot a' \cdot g_0}{8 \cdot \sigma_{40^{\circ}C}} = \frac{252 \cdot 252,46 \cdot 34,561 \cdot 10^{-3}}{8 \cdot 51,263} = 5,3615 m$$

t = -5°C+LED 
$$f' = \frac{a \cdot a' \cdot g_z}{8 \cdot \sigma_{-5^{\circ}C+LED}} = \frac{252 \cdot 252,46 \cdot 56,371 \cdot 10^{-3}}{8 \cdot 100} = 4,4831 \, m$$

Montažna tablica s rezultatima proračuna za sve raspone data je na kraju ovog dokumenta.

### 9. ODREĐIVANJE KRITIČNE TEMPERATURE

Stanje u kojem će nastupiti najveći provjes određujemo iz kritične temperature. Kritična temperatura određuje se prema sljedećem izrazu:

$$\theta_k = \frac{\sigma_z}{\beta \cdot E} \left( 1 - \frac{g_0}{g_z} \right) - 5$$

U gornjem izrazu  $\sigma_z$  označava naprezanje zaleđenog vodiča. Ukoliko uspoređivanjem kritičnog raspona i idealnog raspona izađe da se najveće naprezanje pojavljuje pri temperaturi -5°C uz dodatno opterećenje ledom tada nam je poznat iznos  $\sigma_z$  jer je upravo jednak maskimalnom naprezanju. Međutim, ako se pokaže da maksimalno naprezanje nastaje pri temperaturi -20°C, tada je potrebno izračunati naprezanje zaleđenog vodiča ( $\sigma_z$ ) odnosno naprezanje pri -5°C uz dodatno opterećenje ledom, rješavanjem kubne jednadžbe.

Dakle:

$$\mathcal{G}_k = \frac{100}{18.9 \cdot 10^{-6} \cdot 77000} \left( 1 - \frac{34,561 \cdot 10^{-3}}{56,371 \cdot 10^{-3}} \right) - 5 = 21,59 \, ^{\circ}C$$

Ponovno postoje dvije mogućnosti kod kojih nastaje najveći provjes:

- 1) Ako je  $\theta_k$  < +40°C -> NAJVEĆI PROVJES NASTAJE PRI +40°C
- 2) Ako je  $\theta_k > +40$ °C -> NAJVEĆI PROVJES NASTAJE PRI -5°C UZ LED

Prethodnim proračunom pokazali smo da najveći provjes nastaje pri 40°C što je u skladu i s prije određenom kritičnom temperaturom.

Iznos samog proviesa određujemo prema prethodno navedenom izrazu:

|          | Idealni raspon         |                        |                                       | Montaža pri temperaturi (°C) |            |                            |            |            |            |            |
|----------|------------------------|------------------------|---------------------------------------|------------------------------|------------|----------------------------|------------|------------|------------|------------|
|          | aidealno = 195,1853 (1 | m)                     | - 20°                                 | - 10°                        | 0°         | 10°                        | 20°        | 30°        | 40°        | -5°+led    |
|          | Provjes vodiča (m)     |                        | 1,6754                                | 1,8790                       | 2,1100     | 2,3650                     | 2,6382     | 2,9223     | 3,2106     | 2,6845     |
|          | Horizontalno naprezar  | nje (N/mm2)            | 98,2352                               | 87,5900                      | 78,0020    | 69,5908                    | 62,3854    | 56,3203    | 51,2630    | 100        |
|          | Horizontalna sila (N)  |                        | 41017,1195                            | 36572,3217                   | 32568,9586 | 29056,9248                 | 26048,4119 | 23515,9945 | 21404,3526 | 41754,0000 |
| stup br. | raspon a (m)           | visinska razlika h (m) |                                       |                              |            | Provjes za stvarne raspone |            |            |            |            |
| 1        |                        |                        |                                       |                              |            |                            |            |            |            |            |
|          | 252,0000               | 15,3000                | 2,7979                                | 3,1379                       | 3,5236     | 3,9495                     | 4,4057     | 4,8801     | 5,3615     | 4,4831     |
| 2        |                        | ,                      |                                       |                              |            |                            |            | _          |            |            |
|          | 185,0000               | -14,1000               | 1,5095                                | 1,6929                       | 1,9010     | 2,1308                     | 2,3769     | 2,6329     | 2,8926     | 2,4187     |
| 3        |                        |                        | · · · · · · · · · · · · · · · · · · · |                              |            |                            |            | T          | T          |            |
|          | 120,0000               | 11,9000                | 0,6364                                | 0,7137                       | 0,8014     | 0,8983                     | 1,0021     | 1,1100     | 1,2195     | 1,0197     |
| 4        |                        | <u> </u>               | ,                                     |                              |            |                            |            |            |            |            |
|          | 105,0000               | -1,8000                | 0,4849                                | 0,5439                       | 0,6107     | 0,6845                     | 0,7636     | 0,8458     | 0,9292     | 0,7770     |
| 5        |                        |                        |                                       |                              |            |                            |            |            |            |            |