Семинар 1. АЛГЕБРА МАТРИЦ

Понятие матрицы. Прямоугольные, квадратные и диагональные матрицы. Операции над матрицами. Транспонирование матрицы. Вычисление определителей первого, второго и третьего порядков.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ: Перед рассмотрением примеров и решением задач необходимо ознакомиться с материалами Лекции 1. Алгебра матриц. Выписать основные определения и свойства.

Понятие матрицы Прямоугольные, квадратные и диагональные матрицы. Операции над матрицами

Пример 1. Определить размер матриц
$$A = \begin{pmatrix} 0 & -2 \\ -5 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 0 \\ 7 & 0 & -12 \end{pmatrix}$,

$$C = \begin{pmatrix} 0 & 8 \\ 0 & 11 \\ -1 & 23 \\ 5 & 12 \end{pmatrix}$$

Решение. Например, матрица $A = \begin{pmatrix} 0 & -2 \\ -5 & 4 \end{pmatrix}$ - квадратная матрица размера

 2×2 , 2-го порядка.

Матрица
$$B = \begin{pmatrix} 1 & -1 & 0 \\ 7 & 0 & -12 \end{pmatrix}$$
- прямоугольная матрица размера 2×3 .

Матрица
$$C = \begin{pmatrix} 0 & 8 \\ 0 & 11 \\ -1 & 23 \\ 5 & 12 \end{pmatrix}$$
 - прямоугольная матрица размера 4×2 .

Пример 2. Найти сумму матриц
$$A = \begin{pmatrix} -4 & 0 & 7 \\ 5 & 2 & -3 \end{pmatrix}$$
 и $B = \begin{pmatrix} 10 & 1 & -5 \\ 3 & 0 & 2 \end{pmatrix}$.

Решение. Пусть матрица C = A + B.

$$C = \begin{pmatrix} -4 & 0 & 7 \\ 5 & 2 & -3 \end{pmatrix} + \begin{pmatrix} 10 & 1 & -5 \\ 3 & 0 & 2 \end{pmatrix} = \begin{pmatrix} -4+10 & 0+1 & 7-5 \\ 5+3 & 2+0 & -3+2 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 2 \\ 8 & 2 & -1 \end{pmatrix}.$$

Ответ.
$$C = \begin{pmatrix} 6 & 1 & 2 \\ 8 & 2 & -1 \end{pmatrix}$$
.

Пример 3. Дана матрица $A = \begin{pmatrix} 1 & 0 \\ -2 & 3 \\ 4 & -6 \end{pmatrix}$. Найти матрицы 4A, -2A.

Решение.

$$4A = 4 \cdot \begin{pmatrix} 1 & 0 \\ -2 & 3 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ -8 & 12 \\ 16 & -24 \end{pmatrix}.$$

$$-2A = -2 \cdot \begin{pmatrix} 1 & 0 \\ -2 & 3 \\ 4 & -6 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 4 & -6 \\ -8 & 12 \end{pmatrix}.$$

Ответ.
$$4A = \begin{pmatrix} 4 & 0 \\ -8 & 12 \\ 16 & -24 \end{pmatrix}, -2A = \begin{pmatrix} -2 & 0 \\ 4 & -6 \\ -8 & 12 \end{pmatrix}$$

Пример 4. Даны 2 матрицы $A = \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 0 \\ -6 & 1 \end{pmatrix}$. Найти матрицу

2A-3B.

$$2A - 3B = 2 \cdot \begin{pmatrix} 0 & -1 \\ 3 & -2 \end{pmatrix} - 3 \cdot \begin{pmatrix} 2 & 0 \\ -6 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 6 & -4 \end{pmatrix} - \begin{pmatrix} 6 & 0 \\ -18 & 3 \end{pmatrix} =$$
 Решение.
$$= \begin{pmatrix} 0 - 6 & -2 - 0 \\ 6 + 18 & -4 - 3 \end{pmatrix} = \begin{pmatrix} -6 & -2 \\ 24 & -7 \end{pmatrix}$$

Ответ.
$$2A - 3B = \begin{pmatrix} -6 & -2 \\ 24 & -7 \end{pmatrix}$$
.

Пример 5. Даны 2 матрицы $A = \begin{pmatrix} -3 & 1 \\ 2 & 0 \end{pmatrix}$ и $B = \begin{pmatrix} 2 & 1 \\ -5 & 1 \end{pmatrix}$. Найти матрицы

 $A \cdot B$ и $B \cdot A$.

Решение.

$$A \cdot B = \begin{pmatrix} -3 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -5 & 1 \end{pmatrix} = \begin{pmatrix} (-3) \cdot 2 + 1 \cdot (-5) & (-3) \cdot 1 + 1 \cdot 1 \\ 2 \cdot 2 + 0 \cdot (-5) & 2 \cdot 1 + 0 \cdot 1 \end{pmatrix} = \begin{pmatrix} -11 & -2 \\ 4 & 2 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 2 & 1 \\ -5 & 1 \end{pmatrix} \cdot \begin{pmatrix} -3 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 \cdot (-3) + 1 \cdot 2 & 2 \cdot 1 + 1 \cdot 0 \\ (-5) \cdot (-3) + 1 \cdot 2 & (-5) \cdot 1 + 1 \cdot 0 \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ 17 & -5 \end{pmatrix}$$

Ответ.
$$A \cdot B = \begin{pmatrix} -11 & -2 \\ 4 & 2 \end{pmatrix}, B \cdot A = \begin{pmatrix} -4 & 2 \\ 17 & -5 \end{pmatrix}.$$

Пример 6. Даны 2 матрицы
$$A = \begin{pmatrix} 4 & 0 & 1 \\ -2 & -3 & 0 \end{pmatrix} B = \begin{pmatrix} 2 & -3 \\ 1 & 1 \\ 0 & -4 \\ -2 & 1 \end{pmatrix}$$
 и. Найти

матрицы $A \cdot B$ и $B \cdot A$.

Решение.

$$A \cdot B = \underbrace{\begin{pmatrix} 4 & 0 & 1 \\ -2 & -3 & 0 \end{pmatrix}}_{2 \times 3} \cdot \underbrace{\begin{pmatrix} 2 & -3 \\ 1 & 1 \\ 0 & -4 \\ -2 & 1 \end{pmatrix}}_{4 \times 2}$$
 невозможно выполнить операцию умно-

жения, поскольку число столбцов первой матрицы не совпадает с числом строк второй матрицы.

$$B \cdot A = \underbrace{\begin{pmatrix} 2 & -3 \\ 1 & 1 \\ 0 & -4 \\ -2 & 1 \end{pmatrix}}_{4 \times 2} \cdot \underbrace{\begin{pmatrix} 4 & 0 & 1 \\ -2 & -3 & 0 \end{pmatrix}}_{2 \times 3} = \underbrace{\begin{pmatrix} 14 & 9 & 2 \\ 2 & -3 & 1 \\ 8 & 12 & 0 \\ -10 & -3 & -2 \end{pmatrix}}_{4 \times 3}$$

Ответ.
$$A \cdot B$$
 не определено, $B \cdot A = \begin{pmatrix} 14 & 9 & 2 \\ 2 & -3 & 1 \\ 8 & 12 & 0 \\ -10 & -3 & -2 \end{pmatrix}$.

Транспонирование матрицы

Пример 7. Для матрицы $A = \begin{pmatrix} 0 & 12 \\ 3 & 6 \\ -7 & 5 \end{pmatrix}$ найти транспонированную матрицу.

Решение. Транспонированной является матрица $A^T = \begin{pmatrix} 0 & 3 & -7 \\ 12 & 6 & 5 \end{pmatrix}$.

Ответ.
$$A^T = \begin{pmatrix} 0 & 3 & -7 \\ 12 & 6 & 5 \end{pmatrix}$$

Пример 8. Даны 2 матрицы
$$A = \begin{pmatrix} -2 & 3 \\ 2 & 1 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & 7 \\ 3 & -2 \\ 5 & 0 \end{pmatrix}$. Найти $A \cdot B^T$.

Решение.

$$A \cdot B^T = \begin{pmatrix} -2 & 3 \\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 3 & 5 \\ 7 & -2 & 0 \end{pmatrix} = \begin{pmatrix} 19 & -12 & -10 \\ 9 & 4 & 10 \end{pmatrix}.$$

Ответ.
$$A \cdot B^T = \begin{pmatrix} 19 & -12 & -10 \\ 9 & 4 & 10 \end{pmatrix}$$
.

Пример 9. Найти
$$f(A)$$
, если $f(x) = 2x^2 - x + 4$ и $A = \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix}$.

Решение. $f(A) = 2A^2 - A + 4 \cdot E$, где E – единичная матрица.

$$2A^2 = 2 \cdot \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

$$2A^{2} - A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ -3 & 1 \end{pmatrix}$$

$$4 \cdot E = 4 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}.$$

$$2A^{2} - A + 4E = \begin{pmatrix} 3 & 0 \\ -3 & 1 \end{pmatrix} + \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ -3 & 5 \end{pmatrix}$$

Ответ.
$$f(A) = \begin{pmatrix} 7 & 0 \\ -3 & 5 \end{pmatrix}$$
.

Вычисление определителей первого, второго и третьего порядков

Определитель матрицы $A = a_{11}$ первого порядка: $\det A = a_{11}$

Определитель матрицы $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ второго порядка:

$$\det A = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} \cdot a_{22} - a_{21} \cdot a_{12}$$

Определитель матрицы $A=egin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ третьего порядка:

$$\det A = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$=a_{11}\cdot a_{22}\cdot a_{33}+a_{21}\cdot a_{32}\cdot a_{13}+a_{12}\cdot a_{23}\cdot a_{31}-a_{31}\cdot a_{22}\cdot a_{13}-a_{21}\cdot a_{12}\cdot a_{33}-a_{32}\cdot a_{23}\cdot a_{11}.$$

Правило Саррюса вычисления определителя третьего порядка также позволяет облегчить процесс вычисления.

Выписываем определитель матрицы
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Справа от него выписываем первые два столбца
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} \ a_{23} \ a_{21} & a_{22} \ a_{31} \ a_{31} \ a_{32} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \ a_{22} \ a_{23} \ a_{31} \ a_{32} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{13} \ a_{22} \ a_{23} \ a_{31} \ a_{32} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{13} \ a_{22} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{22} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{22} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{22} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{23} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{12} \ a_{23} \ a_{24} \ a_{25} \$$

Произведение элементов на главной диагонали и на диагоналях ей параллельных, берем со знаком «+» и вычитаем произведения элементов на побочной диагонали и ей параллельных.

Пример 10. Даны две квадратные матрицы $A = \begin{pmatrix} 1 & -1 \\ -5 & 4 \end{pmatrix}$ и

$$B = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 5 & -4 \\ 1 & 6 & -2 \end{pmatrix}$$
. Найти $\det A$ и $\det B$.

Решение.

$$\det A = \begin{vmatrix} 1 & -1 \\ -5 & 4 \end{vmatrix} = 1 \cdot 4 - ((-5) \cdot (-1)) = 4 - 5 = -1$$

$$\begin{vmatrix} 2 & 3 & 1 \end{vmatrix}$$

$$\det B = \begin{vmatrix} 2 & 3 & 1 \\ 0 & 5 & -4 \\ 1 & 6 & -2 \end{vmatrix} = \underbrace{2 \cdot 5 \cdot (-2)}_{-20} + \underbrace{0 \cdot 6 \cdot 1}_{0} + \underbrace{3 \cdot (-4) \cdot 1}_{-12} - \underbrace{1 \cdot 5 \cdot 1}_{5} - \underbrace{2 \cdot 6 \cdot (-4)}_{-48} - \underbrace{0 \cdot 3 \cdot (-2)}_{0} = \\ -20 - 12 - 5 + 48 = 11$$

Ответ. $\det A = -1$, $\det B = 11$.

Пример 11. Найти
$$\begin{vmatrix} \cos x & \sin x \\ \sin x & -\cos x \end{vmatrix}$$
.

Решение.

$$\begin{vmatrix} \cos x & \sin x \\ \sin x & -\cos x \end{vmatrix} = -\cos^2 x - \sin^2 x = -1.$$

Ответ. 1

Пример 12. Решить уравнение
$$\begin{vmatrix} x+1 & x-1 \\ x & x+1 \end{vmatrix} = 0$$
.

Решение. Преобразуем левую часть уравнения, вычислив определитель:

$$\begin{vmatrix} x+1 & x-1 \\ x & x+1 \end{vmatrix} = (x+1)^2 - x(x-1) = x^2 + 2x + 1 - x^2 + x = 3x + 1$$

$$3x+1=0 \Leftrightarrow x=-\frac{1}{3}$$

Ответ.
$$x = -\frac{1}{3}$$
.

Пример 13. Решить неравенство
$$\begin{vmatrix} x-1 & x-1 \\ 6 & x+3 \end{vmatrix} < 0$$
.

Решение. Преобразуем левую часть неравенства, вычислив определитель:

$$\begin{vmatrix} x-1 & x-1 \\ 6 & x+3 \end{vmatrix} = (x-1)(x+3) - 6(x-1) = x^2 + 2x - 3 - 6x + 6 = x^2 - 4x + 3.$$

Решим неравенство, разложив квадратный трехчлен в левой части на множители: (x-1)(x-3) < 0, решая это неравенство методом интервалов, получим:

Ответ. $x \in (1;3)$.

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Вычислить
$$4A - 5B$$
, если $A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$, $B = \begin{pmatrix} 4 & -1 \\ 6 & 5 \end{pmatrix}$

Ответ.
$$\begin{pmatrix} -16 & 13 \\ -30 & -37 \end{pmatrix}$$

2. Вычислить
$$2A + 3B$$
, если $A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -2 & 3 & 0 \\ 2 & -7 & 1 \end{pmatrix}$

Ответ.
$$\begin{pmatrix} -4 & 13 & 6 \\ 6 & -19 & 1 \end{pmatrix}$$

3. Вычислить
$$-A + 3E$$
, если $A = \begin{pmatrix} -2 & 7 & 0 \\ -2 & 1 & 4 \\ -1 & 2 & 3 \end{pmatrix}$.

Ответ.
$$\begin{pmatrix} 5 & -7 & 0 \\ 2 & 2 & -4 \\ 1 & -2 & 0 \end{pmatrix}$$

Заданы матрицы A и B, вычислить, если это возможно, произведения $A \cdot B$ и $B \cdot A$.

4.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}, B = \begin{pmatrix} 4 & -1 \\ 6 & 5 \end{pmatrix}$$
.

Ответ.
$$A \cdot B = \begin{pmatrix} 16 & 9 \\ -18 & -15 \end{pmatrix}, B \cdot A = \begin{pmatrix} 4 & 11 \\ 6 & -3 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}, B = \begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix}.$$

Ответ.
$$A \cdot B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \ B \cdot A = \begin{pmatrix} 20 & 40 \\ -10 & -20 \end{pmatrix}$$

6.
$$A = \begin{pmatrix} 4 & 0 & -2 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 1 \\ -1 \\ 5 \\ 2 \end{pmatrix}.$$

Other.
$$A \cdot B = (31), B \cdot A = \begin{pmatrix} 12 & 0 & -6 & 9 & 3 \\ 4 & 0 & -2 & 3 & 1 \\ -4 & 0 & 2 & -3 & -1 \\ 20 & 0 & -10 & 15 & 5 \\ 8 & 0 & -4 & 5 & 2 \end{pmatrix}$$

7.
$$A = \begin{pmatrix} 5 & 2 \\ 7 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & -2 \\ -7 & 5 \end{pmatrix}.$$

Otbet.
$$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

8.
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ -2 & 2 \\ -1 & 0 \end{pmatrix}.$$

Ответ.
$$A \cdot B$$
 не определено, $B \cdot A = \begin{pmatrix} 10 & 14 \\ 4 & 4 \\ -1 & -2 \end{pmatrix}$

$$\mathbf{9.} \ A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \ B = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Ответ.
$$A \cdot B = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -12 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \ B \cdot A = \begin{pmatrix} -3 & 0 & 0 \\ 0 & -12 & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

10.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 & 3 \\ -1 & 2 & -4 \\ 4 & 1 & 2 \end{pmatrix}.$$

Ответ.
$$A \cdot B = \begin{pmatrix} 4 & 5 & -3 \\ 11 & 5 & 2 \\ 20 & 0 & 19 \end{pmatrix}, \ B \cdot A = \begin{pmatrix} 5 & -2 & 14 \\ -5 & 8 & -11 \\ 6 & 5 & 15 \end{pmatrix}.$$

11*. Найти
$$f(A)$$
, если $f(x) = -2x^2 + 5x + 9$ и $A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$.

Ответ.
$$f(A) = \begin{pmatrix} 12 & 18 \\ 0 & -24 \end{pmatrix}$$

12*. Найти
$$f(A)$$
, если $f(x) = 2x^3 + x^2 + 2$ и $A = \begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix}$.

Ответ.
$$f(A) = \begin{pmatrix} 4 & 6 \\ -1 & -1 \end{pmatrix}$$

13*. Найти
$$f(A)$$
, если $f(x) = 2x^2 - 3x + 5$ и $A = \begin{pmatrix} -2 & 1 & 0 \\ 0 & 1 & 4 \\ -1 & 2 & 3 \end{pmatrix}$.

Ответ.
$$f(A) = \begin{pmatrix} 19 & -5 & 8 \\ -8 & 20 & 20 \\ 1 & 8 & 30 \end{pmatrix}$$

Транспонировать матрицу A и найти $A \cdot A^T$ и $A^T \cdot A$.

14.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -3 \end{pmatrix}$$
.

Ответ.
$$A \cdot A^T = \begin{pmatrix} 5 & -6 \\ -6 & 9 \end{pmatrix}, A^T \cdot A = \begin{pmatrix} 1 & 2 \\ 2 & 13 \end{pmatrix}$$

15.
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
.

Ответ.
$$A \cdot A^T = \begin{pmatrix} 14 & 32 \\ 32 & 77 \end{pmatrix}, \ A^T \cdot A = \begin{pmatrix} 17 & 22 & 27 \\ 22 & 29 & 36 \\ 27 & 36 & 45 \end{pmatrix}$$

16.
$$A = \begin{pmatrix} 1 & 3 \\ -2 & 2 \\ -1 & 0 \end{pmatrix}$$
.

Ответ.
$$A \cdot A^T = \begin{pmatrix} 10 & 4 & -1 \\ 4 & 8 & 2 \\ -1 & 2 & 1 \end{pmatrix}, \ A^T \cdot A = \begin{pmatrix} 6 & -1 \\ -1 & 13 \end{pmatrix}.$$

17.
$$A = \begin{pmatrix} 3 \\ -7 \\ 2 \\ 1 \end{pmatrix}$$
.

ОТВЕТ.
$$A \cdot A^T = \begin{pmatrix} 9 & -21 & 6 & 3 \\ -21 & 49 & -14 & -7 \\ 6 & -14 & 4 & 2 \\ 3 & -7 & 2 & 1 \end{pmatrix}, A^T \cdot A = (63).$$

18.
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 4 \end{pmatrix}$$
.

Ответ.
$$A \cdot A^T = \begin{pmatrix} 6 & 5 & 1 \\ 5 & 10 & 10 \\ 1 & 10 & 21 \end{pmatrix}, A^T \cdot A = \begin{pmatrix} 2 & 0 & 5 \\ 0 & 9 & -3 \\ 5 & -3 & 26 \end{pmatrix}.$$

Вычислить определители:

19.
$$\begin{vmatrix} 1 & 2 \\ 4 & -1 \end{vmatrix}$$

20.
$$\begin{vmatrix} 3 & 2 \\ 0 & 0 \end{vmatrix}$$

19.
$$\begin{vmatrix} 1 & 2 \\ 4 & -1 \end{vmatrix}$$
 20. $\begin{vmatrix} 3 & 2 \\ 0 & 0 \end{vmatrix}$ **21.** $\begin{vmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 4 \end{vmatrix}$ **22.** $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{vmatrix}$

23.
$$\begin{vmatrix} 3 & 2 & -1 \\ -2 & 2 & 3 \\ 4 & 2 & -3 \end{vmatrix}$$
 24. $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 0 & 3 \\ 4 & 5 & 6 \end{vmatrix}$ 25. $\begin{vmatrix} 3 & 0 & 2 \\ 7 & 1 & 6 \\ 6 & 0 & 5 \end{vmatrix}$.

Ответы. 19. -9; 20. 0; 21. 15; 22. 1; 23. -12; 24. 9; 25. 3.

Решить уравнения

26.
$$\begin{vmatrix} 2x+1 & 3 \\ x+5 & 2 \end{vmatrix} = 0$$

26.
$$\begin{vmatrix} 2x+1 & 3 \\ x+5 & 2 \end{vmatrix} = 0$$
 27. $\begin{vmatrix} x+3 & x-1 \\ 7-x & x-1 \end{vmatrix} = 0$

$$\begin{vmatrix} \sin x & \sin x \\ \cos x & -\cos x \end{vmatrix} = 0$$

28.
$$\begin{vmatrix} \sin x & \sin x \\ \cos x & -\cos x \end{vmatrix} = 0$$
 29*.
$$\begin{vmatrix} \sin 2x & \sin x \\ \cos x & \cos 2x \end{vmatrix} = 0$$

Ответы.

26. 13; **27.** 1;2 **28.**
$$x = \frac{\pi}{2}n, n \in \mathbb{Z}$$
; **29.** $x = \frac{\pi}{2}n, n \in \mathbb{Z}$; $x = \pm \frac{\pi}{6} + \pi k, k \in \mathbb{Z}$