

TRIE

Prepared By

Lec Swapnil Biswas

TRIE

- → A tree based data structure (k-ary tree)
- Root is an empty node.
- → (k=26) Each node will have 26 children (Each child represents a alphabetic letter)
- Implemented by linked data structure
- ☐ It allows for very fast searching and insertion operations
- ☐ The word TRIE comes from the word Retrieval
- ☐ It refers to the quick retrieval of strings
- ☐ Used for storing strings, string matching, lexicographical sorting etc.

WHY TRIE?

- Consider a database of strings
- \square Number of strings in the database is n
- \square Now what is the complexity to find a given string x whether x exists in the database or not
- \square Ans: $O(n \times m)$ where m is the average length of the strings
- ☐ Now if the database is too big, then finding a string from the database will be time consuming
- \Box Goal is to find a string x without the dependency of n
- \Box TRIE will solve this issue to find a string x in O(length(x)) complexity
- \Box So doesn't matter how long the database is, time complexity of finding a string x will remain length(x)

INSERT IN TRIE

- ☐ insert("MIT")
- ☐ insert("MIST")
- ☐ insert("BUET")
- ☐ insert("MISTCE")
- ☐ insert("BUBT")
- ☐ insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ Is it possible to know the frequency of any string in the TRIE?
- NO
- But keeping a counter variable at each node can address this issue

INSERT IN TRIE (WITH COUNTER)

- ☐ insert("MIT")
- ☐ insert("MIST")
- ☐ insert("BUET")
- ☐ insert("MISTCE")
- ☐ insert("BUBT")
- ☐ insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ insert("BUP")

INSERT IN TRIE (WITH COUNTER)

- ☐ insert("MIT")
- insert("MIST")
- ☐ insert("BUET")
- insert("MISTCE")
- ☐ insert("BUBT")
- insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ insert("BUP")


```
struct Node{
  int EoW;
  Node *children[26];
}
```


NODE REPRESENTATION

INSERT IN TRIE


```
insert(x)
                                     Initially pointing u at the root
     Node pointer u \leftarrow root
                                     Iterates for size(x) number of times
     for k \leftarrow 0 to size(x) - 1
           r \leftarrow x[k] - 65
                                     r is the relative position of current char
O(|x|)
                                                 No children condition
           if u->children[r] is NULL
               u->children[r] \leftarrow new Node() Creates new node under children[r]
                                 Pushes u down for next iteration
           u ← u->children[r]
                                  Increments u->EoW after completing iteration
     u->EoW \leftarrow u->EoW + 1;
```


- ☐ insert("MIT")
- insert("MIST")
- ☐ insert("BUET")
- ☐ insert("MISTCE")
- ☐ insert("BUBT")
- ☐ insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ insert("BUP")

We reach a vertex with counter >0
Means "BUBT" exists

- ☐ insert("MIT")
- insert("MIST")
- ☐ insert("BUET")
- ☐ insert("MISTCE")
- ☐ insert("BUBT")
- ☐ insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ insert("BUP")

We reach to NULL

Means "BRAC" doesn't exist

- ☐ insert("MIT")
- insert("MIST")
- ☐ insert("BUET")
- ☐ insert("MISTCE")
- ☐ insert("BUBT")
- ☐ insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ insert("BUP")

☐ search("BUBT")

search("BRAC")

☐ search("MI")

We can't reach a node with counter=0
Means "MI" doesn't exist

- insert("MIT")
- ☐ insert("MIST")
- ☐ insert("BUET")
- ☐ insert("MISTCE")
- ☐ insert("BUBT")
- ☐ insert("MISTME")
- ☐ insert("BUP")
- ☐ insert("CU")
- ☐ insert("MIST")
- ☐ insert("BUP")

We reach to NULL

Means "CUET" doesn't exist

☐ We don't find a string in TRIE if

- The search ends to a NULL
- The search ends to a node with counter = 0 (Not the end of a word)

METHODS

- □ void insert(string x)
- ☐ int search(string x)
- → bool delete(string x)
- void lexSort()

RELATIVE POSITION OF A CHARACTER

- Consider the strings can only contain uppercase letters
- ☐ The relative position of a character is obtained by subtracting 65 from it

Character	Relative Position	Character	Relative Position	Character	Relative Position
Α	0	1	9	R	18
В	1	J	10	S	19
C	2	K	11	T	20
D	3	L	12	U	21
E	4	M	13	V	22
F	5	N	14	W	23
G	6	Ο	15	X	24
Н	7	Р	16	Υ	25
	8	Q	17		

RELATIVE POSITION OF A CHARACTER

```
int relPos(char c){
    int ascii = (int) c;
    return ascii - 65;
}
```



```
find(x, Node pointer cur \leftarrow root, k \leftarrow 0)
                                                  Root
                                                      find("MI", k=0) = 0 NOT FOUND
    if cur is NULL
                                                              return 0
                                                                        \int find("MI", k=2) = 0
    if k equals size(x)
        return cur->EoW
    r \leftarrow x[k] - 65
    return find(x, cur->children[r], k+1)
   find("MI")
```



```
find(x, Node pointer cur \leftarrow root, k \leftarrow 0)
                                                      Root
                                                           find("MIT", k=0) =4 FOUND 4 TIMES
    if cur is NULL
                                                                    \int find("M|T", k=1) = 4
         return 0
                                                                            find("MIT", k=2) =4
    if k equals size(x)
         return cur->EoW
                                                                                 find("MIT", k=3) = 4
    r \leftarrow x[k] - 65
    return find(x, cur->children[r], k+1)
   find("MI")
   find("MIT")
```



```
find(x, Node pointer cur \leftarrow root, k \leftarrow 0)
                                                     Root
                                                                             NOT FOUND
                                                         find("CWC", k=0) =0
    if cur is NULL
                               find("CWC", k=1) = 0
         return 0
    if k equals size(x)
         return cur->EoW
    r \leftarrow x[k] - 65
                                                find("CWC", k=2) =0
    return find(x, cur->children[r], k+1)
   find("MI")
   find("MIT")
   find("CWC")
```


- ☐ Number of recursive call can not exceed the length of longest string in the TRIE
 - Let the longest string in the TRIE is **s**
 - So the time complexity of searching is O(|s|)

LEXICOGRAPHICAL ORDER

■ What are the strings stored in the TRIE?

BUBT

BUET

BUP

CU

MIST

MISTCE

MISTME

MIT

- ☐ Strings are sorted lexicographically
- ☐ Left to Right approach (Merging with parent)


```
void printTRIE(Node *cur = root, string s="")
    if(cur->EoW>0)
         cout<<s<endl:
    for(int i=0: i<26: i++)
         if(cur->children[i]!=NULL)
              char c = char(i + 65):
              printTRIE(cur->children[i], s+c);
```

Base case:

If the pointer reaches to the end of a word Then the word is printed

Traversing all the edges of a node from left to right Calling the function recursively for those nodes Having at least one child(edge).

So for leaf node: No recursive call is made

DELETE FROM TRIE

List down the words

CR CRIME DOG EXAM EXIT IR IRON

□ 2 Cases for deletion

- The word is a Ex CR IR prefix of other : words
- The word is not a
 Ex
 CRIME
 DOG
 EXAM
 EXIT
 prefix
 of
 any
 iron

But it is to be checked that whether the word exists in the TRIE or not before deletion

- ☐ The word is a prefix of other words
 - Simply remove the EoW mark from the final node of the string in TRIE
 - delete("CR")
- How did we understand that "CR" is a prefix of other words?
 - Because the final node of CR in TRIE is not a leaf.
- How to check that whether a node is a leaf or not?
 - Leaf: If a node having no child or all the child point to NULL

```
bool isLeaf(Node *u){
  for(int i=0; i<26; i++)    if(u->children[i]!=NULL)    return false;
  return true;
}
```


- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")
- delete("IRON")

- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")

- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")

- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")

- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")
- delete("IRON")

- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")
- delete("IRON")

- Remove all the nodes from leaf node to the first junction node associated with the string along with the edges
- delete("EXAM")
- delete("IRON")

DELETION OF AN EDGE

r \(\tau \) 22
Node *v \(\tau \) u->children[r]
u->children[r] = NULL

DELETE THE RED MARKED EDGE

DELETION OF AN EDGE

 $r \leftarrow 22$ Node * $v \leftarrow u$ ->children[r] u->children[r] = NULL
delete v

DELETE THE RED MARKED EDGE

DELETION OF AN EDGE

deleteEdge(Node *u, char c, int d)
 if d is 0
 return without doing anything

r \(\cap c - 65 \)
Node *v \(\cap u -> children[r] \)
u->children[r] \(\cap NULL \)
delete v

DELETE IN TRIE


```
delete(string x, Node *u \leftarrow root, k \leftarrow 0)
     if u is NULL
           return 0
     if k equals size (x)
           if u->EoW is 0
                  return 0
           if isLeaf(u) is false
                 u \rightarrow EoW = 0
                 return 0
           return 1
     r \leftarrow x[k]-65
     d ← delete(x, u->children[r],k+1)
     j <- isJunction(u)</pre>
     removeEdge(u, x[k], d)
     if j is 1
     return d
```

Traversing of x is not complete

r becomes the relative position of k-th character in x

d becomes 1 if the next node is removable

Otherwise d becomes 0

If u is a junction then set j variable to 1.

Removes the k-th edge of u if d permits

Then if u was a junction before removing the edge then sets the permission as O

Then sends the permission to it's parent

- A node containing an EoW=1 mark
- A node having at least 2 child

Thank You!

CSE 215: Data Structures & Algorithms II

Single Source Shortest Paths

Lec Sumaiya Nuha Mustafina Dept Of CSE <u>sumaiyamustafina@cse.mist.ac.bd</u>

Single Source Shortest Paths

Source = A

All possible paths:

A->B

A->B->C

A->B->C->D

A->E

A->E->F

A->E->F->D

Minimum distance from A to D is 2+3+2=7. So shortest path from A to D: A->B->C->D

Shortest Path Problem

A Shortest Path Problem includes:

- \Box A directed graph G = (V,E)
- Weight (w) associated with each edge
- Weight associated with each path

If path $p = v0 \rightarrow v2 \rightarrow ... \rightarrow vk$, then the weight of path p is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
.

Weight of Path

The weight of path $p = \langle v0 \rangle v2 \rangle ... \langle vk \rangle$ is

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$
.

If,
$$p = \langle A-\rangle E-\rangle D>$$

 $w(p) = w(A,E) + w(E,F) + w(F,D)$
 $= 1+4+3=8$

Shortest Path Weight

The **shortest-path weight** δ (u, v) from u to v is defined by

$$\delta(u, v) = \begin{cases} \min\{w(p) : u \stackrel{p}{\leadsto} v\} & \text{if there is a path from } u \text{ to } v, \\ \infty & \text{otherwise}. \end{cases}$$

A **shortest** path from vertex u to vertex v is then defined as any path p with weight δ (u, v)

Single-source shortest-paths problem: Variants

Single-source shortest-paths problem:

Given a graph G (V, E), we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$.

Variants:

- **Single-destination shortest-paths problem**: Find a shortest path to a given destination vertex t from each vertex .
- **Single-pair shortest-path problem**: Find a shortest path from u to v for given vertices u and v.
- □ All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v.

Optimal substructure property of shortest path

Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it.

***Optimal substructure is one of the key indicators that dynamic programming and the greedy method might be applied.

Optimal substructure property of shortest path

Subpaths of shortest paths are shortest paths

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Proof!!!!

Optimal substructure property of shortest path

Subpaths of shortest paths are shortest paths

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $p = \langle v_0, v_1, \dots, v_k \rangle$ be a shortest path from vertex v_0 to vertex v_k and, for any i and j such that $0 \le i \le j \le k$, let $p_{ij} = \langle v_i, v_{i+1}, \dots, v_j \rangle$ be the subpath of p from vertex v_i to vertex v_j . Then, p_{ij} is a shortest path from v_i to v_j .

Single-source shortest-paths problem: Algorithms

- □ Dijkstra Algorithm (Greedy Method)
 O((V+E)log V) using Binary Heap as priority queue
- Bellman Ford Algorithm (Dynamic Problem)
 O(VE)

d[v] : Distance from source to vertex v

d[v] : shortest path
estimate

$$d[v] >= \delta (s, v)$$

If $d[v] = \delta$ (s, v), it never changes

If there is a negative weight cycle on any path from s to v, we define δ (s, v) = - ∞

- If the graph G=(V, E) contains no negative weight cycles reachable from the source s, then for all vertex v, the shortest-path weight δ (s, v) remains well defined, even if it has a negative value.
- If the graph contains a negative-weight cycle reachable from s, then, shortest-path weights are not well defined.
- If there is a negative weight cycle on any path from s to v, then δ (s, v) = $-\infty$

- Dijkstra Algorithm
 - Consider all edges' weights are nonnegative
- Bellman Ford Algorithm (Dynamic Problem)
 - Allow negative-weight edges in the input graph and produce a correct answer as long as no negative-weight cycles are reachable from the source.
 - Can detect negative-weight cycles

Cycle in shortest path!!

Are Shortest Paths Unique?

Is Shortest Path Unique?

Shortest paths are not unique.

Shortest Path Concepts

INITIALIZE-SINGLE-SOURCE (G, s)

```
1 for each vertex v \in G.V
```

 $v.d = \infty$

 $\nu.\pi = NIL$

 $4 \quad s.d = 0$

Shortest Path Concepts

Relaxation:

The process of relaxing an edge (u,v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating v.d and v. π

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

Properties of shortest paths and relaxation

Triangle inequality

Upper-bound property

No-path property

Convergence property

Path-relaxation property

Predecessor-subgraph property

Dijkstra Algorithm

```
DIJKSTRA(G, w, s)
   INITIALIZE-SINGLE-SOURCE (G, s)
   S = \emptyset
   Q = G.V
   while Q \neq \emptyset
        u = \text{EXTRACT-MIN}(Q)
        S = S \cup \{u\}
        for each vertex v \in G.Adj[u]
             Relax(u, v, w)
```

Q : Min Priority Queue with priority value based on d.

S: set of vertices whose final shortest-path weights from the source s have already been determined

DIJSKTRA's SIMULATION

DIJSKTRA's SIMULATION

DIJSKTRA's SIMULATION

DIJSKTRA's SIMULATION

DIJSKTRA's SIMULATION

Bellman Ford Algorithm

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```


Bellman Ford Algorithm

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 for i = 1 to |G, V| - 1
3 for each edge (u, v) \in G.E
4 RELAX(u, v, w)
5 for each edge (u, v) \in G.E
6 if v.d > u.d + w(u, v)
7 return FALSE
8 return TRUE

Detects Negative Weighted Cycle
8 return TRUE
```

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

How does this part find the shortest path and distance from source?/ Correctness of Line 2-4!!!

Correctness of Line 2-4!!!

A.C.T path-relaxation property:

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$.

Correctness of Line 2-4!!!

A.C.T path-relaxation property:

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$.

Correctness of Line 2-4!!!

A.C.T path-relaxation property:

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$.

relax(A, B, 2)

Correctness of Line 2-4!!!

A.C.T path-relaxation property:

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$.

relax(B, C, 1)

Correctness of Line 2-4!!!

A.C.T path-relaxation property:

If $p = \langle v_0, v_1, \dots, v_k \rangle$ is a shortest path from $s = v_0$ to v_k , and we relax the edges of p in the order $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, then $v_k \cdot d = \delta(s, v_k)$.

relax(C, D, 3)

For each vertex, we found the shortest distance from the source A. Observation:

If the edge relaxation order is maintained then each edge needs to be relaxed once to get the shortest distance of all vertices.

Correctness of Line 2-4!!!

What if the edge relaxation order is done differently ????

Let's assume : E= { CD, BC, AB }

Correctness of Line 2-4!!!

E= { *CD*, *BC*, *AB* }

relax(C, D, 3)

Correctness of Line 2-4!!!

E= { *CD*, *BC*, *AB* }

relax(B, C, 1)

Correctness of Line 2-4!!!

relax(A, B, 2)

After relaxing each edge once, we found the shortest distance of only one vertex.

Correctness of Line 2-4!!!

Let's repeat the process: (Relax the edges for 2nd time)

relax(C, D, 3)

Correctness of Line 2-4!!!

Let's repeat the process: (Relax the edges for 2nd time)

relax(B, C, 1)

Correctness of Line 2-4!!!

Let's repeat the process: (Relax the edges for 2nd time)

relax(A, B, 2)

After relaxing each edge **twice**, we found the shortest distance of two vertices.

Correctness of Line 2-4!!!

Let's repeat the process: (Relax the edges for 3rd time)

relax(C, D, 3)

Correctness of Line 2-4!!!

Let's repeat the process: (Relax the edges for 3rd time)

relax(B, C, 1)

Correctness of Line 2-4!!!

Let's repeat the process: (Relax the edges for 3rd time)

relax(A, B, 2)

After relaxing each edge **thrice**, we found the shortest distance of three vertices.

Correctness of Line 2-4!!!

Maximum Number of edges in a shortest path = V-1

In the example shown, $V = \{A,B,C,D\}$ and $E = \{CD,BC,AB\}$

And after relaxing each edge **thrice** (**V-1 times**), we found the shortest distance of all vertices.

Thus, lines 2-4 find the v.d = $\delta(s,v)$ for each vertices $v \in V$ after relaxing each edge V-1 times.

Correctness of the algorithm returning true

Let's assume graph has no negative weight cycle reachable from source.

A.C.T triangle inequality property,

Correctness of the algorithm returning true

Let's assume graph has no negative weight cycle reachable from source.

Lines 2-4 find the v.d = $\delta(s,v)$ for each vertices $v \in V$ after relaxing each edge V-1 times.

A.C.T triangle inequality property,

For any edge $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u) + w(u, v)$.

$$v.d = \delta(s, v)$$

 $\leq \delta(s, u) + w(u, v)$ (by the triangle inequality)
 $= u.d + w(u, v)$,

So none of the tests in line 6 causes BELLMAN-FORD to return FALSE. Therefore, it returns TRUE.

Correctness of the algorithm returning False

Let's assume graph has negative weight cycle C reachable from source.

Let,
$$C = \langle V0, V1,, Vk \rangle$$
, where $V0 = Vk$. So,

$$\sum_{i=1}^k w(v_{i-1}, v_i) < 0.$$

Let's assume, for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE.

Correctness of the algorithm returning False

Let's assume, for the purpose of contradiction that the Bellman-Ford algorithm returns TRUE. So,

$$v_i.d \leq v_{i-1}.d + w(v_{i-1}, v_i)$$
 for $i = 1, 2, ..., k$.

Summing the inequalities around cycle c gives us

$$\sum_{i=1}^{k} v_i \cdot d \leq \sum_{i=1}^{k} (v_{i-1} \cdot d + w(v_{i-1}, v_i))$$

$$= \sum_{i=1}^{k} v_{i-1} \cdot d + \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Now, in circle, V0=Vk. So,

$$\sum_{i=1}^{k} v_i.d = \sum_{i=1}^{k} v_{i-1}.d$$

$$\sum_{i=1}^{k} v_i \cdot d = \sum_{i=1}^{k} v_{i-1} \cdot d$$

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Correctness of the algorithm returning False

But,

$$0 \leq \sum_{i=1}^{k} w(\nu_{i-1}, \nu_i)$$
 Contradicts
$$\sum_{i=1}^{k} w(\nu_{i-1}, \nu_i) < 0.$$

We conclude that the Bellman-Ford algorithm returns TRUE if graph G contains no negative-weight cycles reachable from the source, and FALSE otherwise.

Correctness of Dijkstra's algorithm

Self Study:

Correctness of Dijkstra Algorithm (Theorem 24.6)

Reference:

Introduction to ALGORITHMS: THOMAS H. CORMEN (3rd Edition)

CSE 215: Data Structures & Algorithms II

Dynamic Programming: LCS

Dynamic programming:

- Applied to optimization problems. Such problems can have many possible solutions. Each solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value.
- Solves every subproblems once and stores it in a table.
- Dynamic programming refers to a tabular method, not computer code.

Two key characteristics that a problem must have for dynamic programming to be a viable solution technique.

- Optimal substructure property.
- Overlapping subproblems property.

Recall: *Optimal substructure is one of the key indicators that dynamic programming and the greedy method might be applied.

Optimal substructure property.

- The optimal substructure property states that an optimal solution to a problem contains optimal solutions to its sub problems.
- In simpler terms, if you can solve a larger problem by breaking it down into smaller subproblems, and the solution to the larger problem relies on the solutions to those sub problems, then the problem exhibits optimal substructure.

Overlapping subproblems property.

- Overlapping subproblems occur when a problem can be broken down into sub problems which are reused several times.
- This means that the same sub problem is solved multiple times in the process of solving the larger problem.
- Dynamic programming takes advantage of this property by solving each sub problem **only once** and storing the results (usually in a table or array) so that when the same subproblem is encountered again, it can be quickly retrieved from the table instead of being recalculated.

There are usually *two equivalent ways* to implement a dynamic-programming approach.

The first approach is *top-down with memoization*.

- ☐ Memoization is derived from the Latin word "memorandum" ("to be remembered").
- In this approach, the procedure is written recursively in a natural manner, but modified to save the result of each subproblem (usually in an array or hash table).
- ☐ Recursive code + Memoization code
- The procedure now first checks to see whether it has previously solved this subproblem. If so, it returns the saved value, saving further computation at this level; if not, the procedure computes the value in the usual manner.
- The recursive procedure is said to be memoized as it "remembers" what results it has computed previously.

There are usually *two equivalent ways* to implement a dynamic-programming approach.

The second approach is *the bottom-up method (Tabulation)*.

- This approach typically depends on some natural notion of the "size" of a subproblem, such that solving any particular subproblem depends only on solving "smaller" subproblems.
- We sort the subproblems by size and solve them in size order, smallest first.
- When solving a particular subproblem, we have already solved all of the smaller subproblems its solution depends upon, and we have saved their solutions.

The development of dynamic-programming, is broken into a sequence of *four steps*:

- 1. Characterize the structure of an optimal solution.
- 1. Recursively define the value of an optimal solution.
- 1. Compute the value of an optimal solution, typically in a bottom-up fashion.
- 1. Construct an optimal solution from computed information.

LCS:

- is defined as the longest subsequence that is common to all the given sequences.
- the elements of the subsequence need not be consecutive.
- but the sequence or order will be maintained.

Let's say, X = ABCD Y = JBAGHCED

ABCD JBAGHCED

length of LCS: 3

longest common subsequence is: **ACD**

LCS is a optimization problem as we are try to perform maximization here.

X = ABCBDAB Y= BDCABA

Find the **LCS** of X and Y.

One of the LCS of X and Y = **BCBA**

X = ABCBDAB Y= BDCABA

Find the **LCS** of X and Y.

One of the LCS of X and Y = **BCBA**

Brute Force Approach of finding LCS:

- Enumerate all subsequences of X and check each subsequence to see whether it is also a subsequence of Y, keeping track of the longest subsequence we find.
- Each subsequence of X corresponds to a subset of the indices {1,2,...,m} of X.
- Because X has 2^m subsequences, this approach requires exponential time, making it impractical for long sequences.

Solving LCS using Dynamic Programming:

Step 1: Characterizing a longest common subsequence

The LCS problem has an optimal-substructure property.

Let $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, \dots, z_k \rangle$ be any LCS of X and Y.

- 1. If $x_m = y_n$, then $z_k = x_m = y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- 2. If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- 3. If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Proof: Theorem 15.1 (3rd Edition)
Self Study

Prefix: defined as **i**th prefix of X, for i=0, 1,..., m, as $X_i = \langle x_1, x_2, ..., x_i \rangle$. For example, if X= \langle A,B,C,B,D \rangle , then $X_2 = \langle$ A,B \rangle and X_0 is the empty sequence.

Solving LCS using Dynamic Programming:

Step 2: A recursive solution

The optimal-substructure property implies that we should examine either one or two subproblems when finding an LCS of

$$X = \langle x_1, x_2, ..., x_m \rangle$$
 and $Y = \langle y_1, y_2, ..., y_n \rangle$.

- If $x_m = y_n$: we must find an LCS of X_{m-1} and Y_{n-1} . Appending $x_m = y_n$ to this LCS yields an LCS of X and Y.
- If x_m!= y_n:
 then we must solve two subproblems:
 finding an LCS of X_{m-1} and Y and finding an LCS of X and Y_{n-1}.
 Whichever of these two LCSs is longer is an LCS of X and Y.

Solving LCS using Dynamic Programming:

Step 2: A recursive solution

Let, c[i,j] be the length of an LCS of the sequences X_i and Y_j . Thus optimal substructure of the LCS problem gives the recursive formula:

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

Step 3: Computing the length of an LCS

X = ABCBDAB Y= BDCABA

Step 3: Computing the length of an LCS (Bottom-Up) It computes the entries in row-major order. (That is, the procedure fills in the first row of c from left to right, then the second row, and so on.) The procedure also maintains the table b=[1..m; 1..n] to help in constructing an optimal solution.

X = ABCBDAB Y= BDCABA LCS-LENGTH(X,Y)

```
LCS-LENGTH(X, Y)
 1 m = X.length
 2 n = Y.length
 3 let b[1..m,1..n] and c[0..m,0..n] be new tables
 4 for i = 1 to m
        c[i,0] = 0
 6 for j = 0 to n
                                         O(mn)
        c[0, j] = 0
    for i = 1 to m
         for j = 1 to n
             if x_i == y_i
10
                 c[i, j] = c[i-1, j-1] + 1
11
                 b[i, j] = "\"
12
13
             elseif c[i - 1, j] \ge c[i, j - 1]
                 c[i,j] = c[i-1,j]
14
                 b[i, j] = "\uparrow"
15
             else c[i, j] = c[i, j-1]
16
                 b[i, j] = "\leftarrow"
17
    return c and b
```

Step 3: Computing the length of an LCS (Bottom-Up)

```
X = ABCBDAB
Y= BDCABA
```

LCS-LENGTH(X,Y)

```
LCS-LENGTH(X, Y)
 1 m = X.length
 2 n = Y.length
 3 let b[1..m, 1..n] and c[0..m, 0..n] be new tables
 4 for i = 1 to m
        c[i,0] = 0
 6 for j = 0 to n
        c[0,j]=0
                            in code x[i-1] == y[j-1]
    for i = 1 to m
         for j = 1 to n
             if x_i == y_i
10
                 c[i, j] = c[i-1, j-1] + 1
11
                 b[i,j] = "\"
12
13
             elseif c[i - 1, j] \ge c[i, j - 1]
                 c[i,j] = c[i-1,j]
14
                 b[i, j] = "\uparrow"
15
16
             else c[i, j] = c[i, j-1]
                 b[i, j] = "\leftarrow"
17
    return c and b
```

Step 4: Constructing an Optimal Solution / Constructing an LCS

```
PRINT-LCS(b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i, j] == "\" "

4 PRINT-LCS(b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] == "\" "

7 PRINT-LCS(b, X, i - 1, j)

8 else PRINT-LCS(b, X, i, j - 1)
```

O(m+n)

Step 3: Computing the length of an LCS (Top-Down : Memoization)

Recursive code + Memoization code

Step 3: Computing the length of an LCS (Top-Down : Memoization)

X= ABCB Y=BDC

Step 3: Computing the length of an LCS (Top-Down : Memoization)

As it is a Top-Down approach, we will start from the top i.e. we will consider the bigger problem first.

$$X = ABCB$$
 , $Y = BDC$

Step 3: Computing the length of an LCS (Top-Down : Memoization)

Time Complexity of LCS:

m and n are length of sequence X and Y.

Bottom-Up Approach : O(mn)

Top-Down Approach : O(mn)

Brute Force Approach : Exponential time

Exercises:

15.4-2

Give pseudocode to reconstruct an LCS from the completed c table and the original sequences $X = \langle x_1, x_2, \ldots, x_m \rangle$ and $Y = \langle y_1, y_2, \ldots, y_n \rangle$ in O(m + n) time, without using the b table.

15.4-3

Give a memoized version of LCS-LENGTH that runs in O(mn) time.

