计算方法

非线性方程的数值解法

- 1. 已知方程 $e^x + 10x 4 = 0$ 在 [0, 0.4] 内有唯一根。
 - a) 试分析迭代格式 $A: x_{n+1} = \ln(4-10x_n)$ 和 $B: x_{n+1} = \frac{1}{10}(4-e^{x_n})$ 的收敛性;
 - b) 写出求解此方程的牛顿迭代格式。
- 2. 设 f(x) 可导,且 $0 < m \le f'(x) \le M$ 。证明: 对于满足 $0 < \lambda < \frac{2}{M}$ 的任意常数 λ ,迭代格式 $x_{n+1} = x_n \lambda f(x_n)$ 均收敛于 f(x) = 0 的根 a.
- 3. 设有方程

$$f(x) = x^2 + \ln x - 4 = 0,$$

- a) 证明该方程在区间 [1,2] 内有唯一根 x^* ;
- b) 讨论用两迭代格式 $A: x_{n+1} = \sqrt{4 \ln x_n}$ 和 $B: x_{n+1} = e^{4-x_n^2}$ 求区间 [1,2] 内的根的收敛性。
- 4. 已知方程 $x^3 x^2 1 = 0$ 在 [1.4, 1.5] 内有唯一根。
 - a) 分析迭代格式 $x_{n+1} = \sqrt[3]{1 + x_n^2}$ 的收敛性
 - b) 写出求此根的牛顿迭代格式,并问初值 x_0 取何值时牛顿迭代必收敛。
- 5. 应用牛顿法于方程 $f(x)=x^n-a=0$ 和 $f(x)=1-\frac{a}{x^n}=0$,分别导出求 $\sqrt[n]{a}$ 的迭代格式,并求

$$\lim_{k \to \infty} \frac{\sqrt[n]{a} - x_{k+1}}{(\sqrt[n]{a} - x_k)^2}.$$