UNCLASSIFIED

AD 274 323

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

ද ස

DRAG AND STABILITY DATA FOR MODELS OF THE MK 76 MOD 4 PRACTICE BOMB OBTAINED FROM FREE-FLIGHT FIRINGS

RELEASED TO ASTIA

- BY THE MAVAL ORDWANCE LABORATORY

 Mithout restrictions

 For Release to Military and Government Agencies Chly.
- Approval by BuWeps required for release to contractors.
- Approval by BuWeps required for all subsequent release.

1 NOVEMBER 1961

UNITED STATES NAVAL ORDNANCE LABORATORY, WHITE OAK, MARYLAND

635 200

ASS APR 16 1964

UNCLASSIFIED NOLTR 61-152

Ballistics Research Report 56

DRAG AND STABILITY DATA FOR MODELS OF THE MK 76 MOD 4 PRACTICE BOMB OBTAINED FROM FREE-FLIGHT FIRINGS

Prepared by:

Leonard E. Crogan

ABSTRACT: A series of 0.45 scale models of the Mk 76 Mod 4 Practice Bomb were fired in the Naval Ordnance Laboratory Aerodynamics Range No. 1 within the Mach number range of 0.45 to 2.04 to obtain drag and stability coefficients.

PUBLISHED MARCH 1962

U. S. NAVAL ORDNANCE LABORATORY WHITE OAK, MARYLAND

UNCLASSIFIED

1 November 1961

DRAG AND STABILITY DATA FOR MODELS OF THE MK 76 MOD 4
PRACTICE BOMB OBTAINED FROM FREE-FLIGHT FIRINGS

This report presents the results of firings made with models of the Mk 76 Mod 4 Practice Bomb in the Naval Ordnance Laboratory Aerodynamics Range No. 1 to determine their free-flight characteristics.

This work was done at the request of the Naval Weapons Laboratory, Dahlgren, Virginia, under task number NOL-526.

W. D. COLEMAN Captain, USN Commander

A. E. SEIGEL By direction

CONTENTS

		Page		
Introduction	1	1		
Model Detail	ls	ī		
Discussion a	and Results			
		1 2		
		3		
MOTOL OHOUB.		3		
	ILLUSTRATIONS			
	222001.41120.1D			
Figure 1	Model of Mk 76 Mod 4 Practice Bomb			
Figure 2	Model of Mk 76 Mod 4 Practice Bomb with	its		
	Exploded Sabot			
Figure 3	Mk 76 Mod 4 Practice Bomb Model and Sabo	t		
	Package	•		
Figure 4	Shadowgraph Print of Model of Mk 76 Mod	4		
	Practice Bomb, Round 1521, M = 0.556	_		
Figure 5	Shadowgraph Print of Model of Mk 76 Mod	4		
	Practice Bomb, Round 1510, M = 2.082	•		
Figure 6	Zero Yaw Drag Coefficient for Mk 76 Mod	4		
	Practice Bomb Models as a Function of Ma			
	Number			
Figure 7	Slope of the Pitching Moment Coefficient	;		
	Corrected to Zero Yaw as a Function of M			
	Number			
Figure 8	Slope of the Normal Force Coefficient as	a		
	Function of Mach Number			
Figure 9	Slope of the Damping Moment Coefficient	as a		
	Function of Mach Number			
	Tables			
Table I Average Physical Dimensions of Models of the				
Mk 76 Mod 4 Practice Bomb				
Table II	Drag Data for Mk 76 Mod 4 Practice Bomb			
Moble TIT	Stability Data for Mr. 76 Mod 4 Dragtice	Domb		

SYMBOLS

 $C_D = \frac{D_t}{qS}$ = total drag coefficient based on the maximum body cross-sectional area(S) of the model

 C_{M} = (slope of the pitching moment)/qSD = slope of the pitching moment coefficient referred to the CG

 C_{M_q} + C_{M_s} - (slope of yaw damping moment due to q)/ (\overline{ZV}) qSD + (slope of yaw damping moment due to $\dot{\propto}$)/ (\overline{ZV}) qSD - slope of damping moment coefficient referred to the CG

 $C_{N_{\alpha}}$ = (slope of normal force)/qS = slope of normal force coefficient

CG = center of gravity

CP = center of pressure

D - maximum body diameter of model

D_t = component of the aerodynamic force directed along the trajectory

I = moment of inertia about CG, IA denotes axial and IB, transverse

k_D, k_M - parameters used to correct to zero yaw the drag and pitching moment coefficients, respectively

M - Mach number (based on midrange value of V)

P.E. = probable error based on accuracy of data fitting (P.E.s, swerve equation; P.E.y, yaw equation)

 $q = \frac{QV^2}{2}$ - dynamic pressure; or q = lateral component of angular velocity of model

 $Re_{L} = \frac{e^{VL}}{\mu} - Reynolds number based on maximum length (L) of model$

 $S = \frac{\pi p^2}{4}$ - maximum cross-sectional area of body of model

V - velocity (usually a midrange value)

SYMBOLS

 \propto = angle of attack

 $\dot{\alpha}$ - rate of change of angle of attack with time

 δ^2 - mean squared yaw

// = coefficient of viscosity

O = density of air

 λ_1 , λ_2 - damping rates of nutational arm (1) and precessional arm (2)

Subscript

o coefficient corrected to zero yaw

INTRODUCTION

1. Models of the Mk 76 Mod 4 Practice Bomb were fired in the Naval Ordnance Laboratory Aerodynamics Range No. 1 (reference (a)) to determine their drag and stability characteristics within the Mach number range of 0.45 to 2.04.

MODEL DETAILS

2. Figure 1 is a sketch of the model of the Mk 76 Mod 4 Practice Bomb. Table I lists the average physical dimensions of the models. Figure 2 shows the model with an exploded view of its sabot. Figure 3 shows the model and sabot in a package ready for loading in the gun. The models were 0.45 the size of their prototypes. Figures 4 and 5 are shadowgraph prints of the model in flight at Mach numbers of 0.556 and 2.082, respectively.

DISCUSSION AND RESULTS

- 3. The drag and stability coefficients for the models of the Mk 76 Mod 4 Practice Bomb were obtained using data reduction techniques described in reference (b).
- 4. Table II lists the drag coefficients, both uncorrected and corrected to zero yaw, for the models of the Mk 76 Mod 4 Practice Bomb. Because of the high drag of the configuration and the large number of stations (33) in the 330-ft. NOL Aerodynamics Range No. 1, drag data at several Mach numbers were obtained from each round. Figure 6 is the drag curve corrected to zero yaw for the models of the Mk 76 Mod 4 Practice Bomb. These coefficients were corrected to zero yaw by using the equation

$$c_{D_0} = c_D - k_D - \delta.$$

Values for \mathbf{k}_D were obtained by grouping the data within specific Mach number regions.

5. Table III contains the stability data obtained from firing models of the Mk 76 Mod 4 Practice Bomb. The slope of the pitching moment coefficient was corrected to zero yaw by using the equation

where again the factor k_M was determined from a number of rounds within a specific Mach number region. Figure 7 is a plot of the slope of the pitching moment coefficient corrected to zero yaw as a function of Mach number.

6. The slope of the normal force coefficient and the slope of the damping moment coefficient were not corrected to zero yaw because of their high probable errors and the resultant scatter in the coefficients. However, the uncorrected coefficients were plotted. Figure 8 is a plot of the slope of the normal force coefficient, and Figure 9 is a plot of the slope of the damping moment coefficient.

CONCLUSIONS

7. Drag and stability coefficients were obtained for 0.45 scale models of the Mk 76 Mod 4 Practice Bomb within the Mach number range of 0.45 to 2.04. The data are presented in tabular and graphic form.

REFERENCES

- (a) May, A. and Williams, T. J., "Free-Flight Ranges at the Naval Ordnance Laboratory," NavOrd Report 4063 (1955)
 (b) Murphy, C. H., "Data Reduction for the Free-Flight Spark Ranges," BRL Report No. 900 (1954)

FIG. I MODEL OF MK 76 MOD 4 PRACTICE BOMB

FIG.2 MODEL OF MK 76 MOD 4 PRACTICE BOMB WITH ITS EXPLODED SABOT

Į,

7

•

MK 76 MOD 4 PRACTICE BOMB MODEL AND SABOT PACKAGE F16. 3

FIG. 4 SHADOWGRAPH PRINT OF MODEL OF MK 76 MOD 4 PRACTICE BOMB, RD. 1521, M=0.556

U

,

FIG. 5 SHADOWGRAPH PRINT OF MODEL OF MK 76 MOD 4 PRACTICE BOMB, RD. 1510, M = 2.082

.

_

ZERO YAW DRAG COEFFICIENT FOR MKT6 MOD4 PRACTICE BOMB MODELS AS A FUNCTION OF MACH NUMBER F1G. 6

SLOPE OF THE PITCHING MOMENT COEFFICIENT CORRECTED TO ZERO YAW AS A FUNCTION OF MACH NUMBER F16. 7

SLOPE OF THE DAMPING MOMENT COEFFICIENT AS A FUNCTION OF MACH NUMBER F16. 9

TABLE I

AVERAGE PHYSICAL DIMENSIONS OF MODELS OF MK 76 MOD 4 PRACTICE BOMB

Max. Dia.	Body (In.)	Length (In.)	Weight (Grams) (In.	CG from nose)	IB (Gram-In.2)	Α
1.86	00	11.313	1137.33	2.890	5963.2	292.9

NOLTR 61-152
TABLE II

DRAG DATA FOR MK 76 MOD 4 PRACTICE BOMB

					6 -2	
Round	M	$^{\mathrm{C}}^{\mathrm{D}}$	P.E.	$Re_L \times 10^-$	6 8 ² 2	$^{C}_{D_{o}}$
No.			(±)		(Deg. 2)	
1 5 10	2.042	.926	.002	13.15	39.4	.852
1510	2.018	.888	.001	13.00	25.2	.841
1510	1.973	.864	.004	12.71	4.2	. 856
1509	1.858	.851	.001	11.96	3.9	.844
1508	1.712	.856	.001	10.96	4.6	.847
1511	1.416	.987	.003	9.119	87.5	.827
1511	1.392	.902	.001	8.966	50.9	.809
1512	1.380	.825	.001	8.810	1.2	.823
1511	1.364	.834	.003	8.784	6.2	.823
1513	1.306	.921	.002	8.344	48.6	.792
1507	1.295	. 886	.002	8,228	35.8	.791
1513	1.286	. 840	.001	8.216	27.9	.766
1507	1.273	.816	.001	8.087	20.8	.761
1513	1.260	.795	.005	8.046	4.1	.784
1507	1.252	.800	.003	7.958	1.6	.796
1514	1.146	.838	.007	7.332	34.5	.679
1514	1.121	.747	.002	7.172	19.8	.656
1514	1.100	.683	.010	7.039	1.2	.677
1517	1.036	.765	.007	6.624	49.6	. 623
1518	1.026	.69 0	.002	6.614	27.1	.612
1517	1.023	.688	.002	6.539	29.5	.604
1518	1.014	.638	.001	6.536	16.1	. 592
1517	1.009	.639	.009	6.450	2.0	. 63 3
1572	1.002	.621	.010	6.373	2.7	.613
1518	1.001	.612	.003	6.451	1.1	. 6 09
1515	0.944	.354	.002	5.999	12.1	. 295
1573	0.937	.333	.002	5.921	6.2	.303
1573	0.932	.298	.001	5.887	3.6	. 280
1573	0.926	.306	.004	5.855	0.8	.302
1520	0.757	.283	.006	4.838	42.9	.214
1520	0.754	.244	.002	4.816	26.9	. 200
1520	0.749	.216	.004	4.786	1.5	.214
1521	0.555	.207	.001	3.546	7.2	.195
1575	0.513	. 243	.002	3.256	27.7	.198
1575	0.511	.221	.001	3.245	11.7	.202
1575	0.509	.235	.005	3.228	2.3	.231
1522	0.507	.203	.001	3.219	13.5	.181
1574	0.450	.191	.004	2.870	2.6	.187

NOLTR 61-152

MK 76 MOD & PRACTICE BOMB

STABILITY DATA FOR

, ,						TAE	BLE	Ш						
$\lambda_2 \times 10^3$ (1/Ft.)	-7-139	-9.409	-7.730	-8.545	-13.14	-9.920	-10,37	-10,67	-13.691	-8.211	-7-893	-9.413	-8.241	-6.576
$\lambda_1 \times 10^3$ (1/Ft.)	-7.226	-9.281	-10,66	-7.846	-7,179	-29.16	-12,47	-17.92	-7.160	-7.842	-12,32	-7.031	-7.443	-8.340
C.P C.G. $\lambda_1 \times 10^3$ (Gal.) (1/Ft.)	1.33	2.52	2.47	2.03	1,92	3.26	2.48	2,22	1.56	3.29	3,36	ł	3.29	2•33
M. (+)	10	O 1	8	97	50	2	8	20	30	8	93	8	30	8
* P.	-160	-220	-220	-190	-240	-4,80	-260	-320	-210	-180	-230	-210	-180	-170
P E	7.0	9	6*0	6*0	7	~	~	٣	v	~	4	i	~	v
CN (Rad.	-7.1	ヺ	4.9	1°9-	φ	ጥ	8 7	6-	-15	1-	r.	;	7	ዋ
Chr.	-7.49	-9.5	9,0	-11.3	-10.5	-10.0	-24°-8	-22.7	-23.8	-25.2	-17.5	-17.0	-16.6	-17.9
P.E.	86	۳.	٧.	r.	۲.	.7	ٿ	ۍ'	- 4	.2	ŗ.	۳,	r.	۲.
Cha/Rad.	ग्ग-6-	7.6-	-12.0	-13.1	-11.9	-11-4	-19.6	-50.0	-23.3	-24.5	-16.6	-14.6	-13.9	-1h.6
P.S. 4 (In.)	80.	٦.	۲.	Ŗ.	80.	80.	80.	80.	80.	Ŗ.	86	.1	8	7.
P.E.	10.	g .	8	10 •	600•	80.	. 01	80.	900*	700	200 •	۵.	.007	60 0.
M Re_L x 10^-6 \$ (Deg. 2) P.E. y P.E. 4 (In.)	25.4	3.0	51.6	23.2	18.8	18.4	26.8	14.3	2.7	3.6	3.7	10.4	n.8	14.1
Ret x 10-6	13.00	11.96	8.966	8.216	R_087	7.172	6.539	6.540	6.373	5.487	5.136	3.545	3.245	1.219
*	2,018	1.858	1,392	1,286	1,273	1,121	1,023	1.01	1,002	0.932	4.79A	0.555	0.511	0.507
ROTIND NO.	A-1510						A-1517	A-1518						

,

•

.

.

External Distribution List

		No. of Copies
ı	Chief, Bureau of Naval Weapons Department of the Navy Washington 25, D. C.	2
	Commander U. S. Naval Weapons Laboratory Dahlgren, Virginia Attn: Mr. Arthur L. Jones Dr. W. A. Kemper Mr. R. A. Niemann Mr. J. Barsky	1 1 1 2
	ASTIA Document Service Center Arlington Hall Station Arlington 12, Virginia Attn: TIPDR	10
	Commanding General Ballistics Research Laboratories Aberdeen Proving Ground, Maryland Attn: Dr. J. Sternberg Mr. L. C. MacAllister Dr. C. H. Murphy Mr. S. S. Zaroodny Library	1 1 1 1
	NASA Ames Research Center Moffett Field, California	1
	Commander U. S. Naval Ordnance Test Station China Lake, California Attn: Dr. W. R. Haseltine	1
	NASA Lewis Research Center 21000 Brookpark Road Cleveland 35, Ohio	1
	NASA Langley Research Center Langley Field, Virginia	1

External Distribution List

	No. of Copies
NASA George C. Marshall Space Flight Center Huntsville, Alabama Attn: Dr. N. R. Lucas (M-SFM-M)	1
NASA 1512 H Street, N.W. Washington 25, D. C.	1
NASA Goddard Space Flight Center Greenbelt, Maryland	1
Office of Naval Research Department of the Navy Main Navy Building Washington 25, D. C. Attn: Library	1

1. Bombs, Practice Mark 76 mod 4 2. Bombs, Practice Drag 3. Bombs, Practice Stability 4. Bombs, Practice Wind tunnel tests I. Title II. Grogan, Leomard E. III. Series IV. Project	1. Bombs, Practice - Mark 76 mod 4 2. Bombs, Practice Drag 3. Bombs, Practice Stability 4. Bombs, Practice Wind tunsel tests I. Title II. Grogan, III. Series IV. Project
Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 61-152) DRAG AND STABILITY DATA FOR MODELS OF THE NK 76 MOD 4 PRACTICE BOMB OBTAINED FROM FREE-FLIGHT FIRINGS (U), by Leonard E. Crogan. 1 Nov. 1961. 3p. illus., charts. (Ballistics research report 56). Task NOL-526. A series of 0.45 scale models of the Mk 76 mod 4 practice bomb were fired in the Naval Ordnance Laboratory aerodynamics range no. 1 within the Mach number range of 0.45 to 2.04 to obtain drag and stability coefficients.	Naval Ordnance Laboratory, White Oak, Md. (NOL techalcal report 61-152) DRAG AND STABILITY DATA FOR MODELS OF THE MK 76 MOD 4 PRACTICE BOMB OBTAINED FROM FREE-FLIGHT FIRINGS (U), by Leonard E. Crogan. 1 Nov. 1961. 3p. illus., charts. (Ballistics research report 56). Task NOL- 526. A series of 0.45 scale models of the Mk 76 mod 4 practice bomb were fired in the Naval Ordnance Laboratory serodynsmics range no. 1 within the Mach number range of 0.45 to 2.04 to obtain drag and stability coefficients.
Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 61-152) DRAG AND STABILITY DATA FOR MODELS OF THE DRAG AND STABILITY DATA FOR MODELS OF THE OK MOD 4 PRACTICE BOMB OBTAINED FROM FREE-FILIGHT FIRINGS (U), by Leonard 2. Crogan. 1 Nov. 1961. 3p. illus., charts. Crogan. 1 Nov. 1961. 3p. illus., charts. Crogan. 1 Nov. 1961. 3p. illus., charts. Drag (Ballistics research report 56). Task NOL- 526. A series of 0.45 scale models of the Mk 75 mod 4 practice bomb were fired in the Naval Ordnance Laboratory aerodynamics range no. 1 within the Mach number range of 0.45 to 2.04 to obtain drag and stability I. Leonard E. III. Series IV. Project IV. Project	Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 61-152) DRAG AND STABILITY DATA FOR MODELS OF THE DRAG AND STABILITY DATA FOR MODELS OF THE MK 76 MOD 4 PRACTICE BOMB OBTAINED FROM FREE-FILGHT FIRINGS (U), by Leonard E. Grogan. 1 Nov. 1961. 3p. 11lus., charts. A series of 0.45 scale models of the Mk A series of 0.45 scale models of the Mk A series of 0.45 scale models of the Mk Naval Ordnance Laboratory aerodynamics France no. 1 within the Mach number range of 0.45 to 2.04 to obtain drag and stability I. Title coefficients. III. Series IV. Project III. Series

į

1

į