

Symmetric Key Distribution without using PKC

- □ Symmetric key distribution using symmetric key encryption Needham-Schroeder Protocol.
- ☐ This protocol is widely used in single sign on (SSO) solutions, e.g. window domain authentication, Kerberos.

Distribution without using PKC – Approach-One

- □ *Approach One*: Given *n* users (parties/nodes) to communicate with each other, the system needs n(n-1)/2 keys.
- \square As *n* increases, the number of keys becomes untenable for everyone.
- \square The n^2 problem!

distribution.

Distribution without using PKC - Scalability problem

Distribution without using PKC – Approach-Two

- □ *Approach Two*: use a key distribution centre (*KDC*) or security server.
 - A key hierarchy, e.g. two hierarchical approach *master keys* (*long-term keys*) and *session keys* (*valid just for one session*).

Distribution without using PKC – Approach-Two

- □ A unique master key, shared between a pair of user/KDC, is for session key distribution.
- □ A session key is to secure a particular session.
- □ Benefit of using Approach Two
 - \triangleright Reduces the scale of the problem reduces the n^2 problem to an n problem, thus making the system more scalable.

□ But:

- > The need to trust the intermediaries KDC.
 - o KDC has enough information to impersonate anyone to anyone. If it is compromised, all the resources in the system are vulnerable.
- > KDC is a single point of failure.
- > KDC may be a performance bottleneck.

Distribution without using PKC - Needham-Schroeder Protocol

- ☐ The Needham-Schroeder is a key distribution protocol.
- ☐ It uses Approach-Two. That is:
 - ▶ both parties, A and B, shares a secret key with the KDC, K_a and K_b ;
 - $\triangleright A$ and B wishes to establish a secure communication channel, i.e. establish a shared one-time session key K_{ab} , for use between A and B in this session.
- \square N_a, N_b are nonces (random challenges), generated by A and B respectively, to keep messages fresh.

Distribution without using PKC - Needham-Schroeder Protocol

Distribution without using PKC - Needham-Schroeder Protocol

- (1) A sends a request to KDC for a session key to establish a secure channel with B.
- (2) KDC generate a random number K_{ab}, and replies with the response containing
 - \triangleright session key K_{ab} .
 - > original request enables A matching the response with the request.
 - \triangleright an item (the session key and A's identity) which only B can view.
- (3) A forwards the item to B.
 - At this point, the session key is securely delivered to A and B, and they may begin secure communication.
- (4) B sends a nonce N_b to A encrypted using the new session key.
- (5) A responds with N $_{\rm b}$ -1.
 - Steps (4) & (5) assure B that the message received in (3) was not a replay, i.e. to authenticate A.

Symmetric Key Distribution using PKC – Two passes

 \square Secret key distribution with mutual authentication using public key cipher + timestamps. C_A and C_B are, respectively, Alice's and Bob's certificates.

Symmetric Key Distribution using PKC - Three passes

- □ Symmetrical key distribution with mutual authentication using public key cipher + nonces (random numbers).
- □ In both of these two protocols, entity authentication is done by using digital signatures.

