Appunti di Geometria 2, corso di fisica

Federico Belliardo Alberto Bordin Alessandro Candido Marco Costa Valerio Lomanto Andrea Luzio Giacomo Petrillo Roberto Ribatti

Anno accademico 2015-2016

2 INDICE

Indice

1	Spa	zi topologici	4
	1.1	Definizioni di base	4
	1.2	Spazi metrici e metrizzabili	4
	1.3	Sottospazi	5
	1.4	Chiusura, parte interna, frontiera	6
	1.5	Morfismi degli spazi topologici	7
	1.6	Separazione	8
	1.7	Numerabilità	8
	1.8	Connessione	10
	1.9	Compattezza	11
		1.9.1 Compattezza in spazi metrizzabili	12
		1.9.2 Compattezza e funzioni continue	
	1.10	Topologia prodotto e topologia quoziente	13
2	Var	iotà	15
4	2.1	Definizioni di base	15
	$\frac{2.1}{2.2}$		
		Esempi di varietà	
	2.3 2.4	Spazio proiettivo (reale)	
	$\frac{2.4}{2.5}$	Filtrazione di \mathbb{P}^n	17 17
	_		- •
	2.6	Sfera come n -varietà	17
	2.7	Varietà differenziabili	18
	2.8	Varietà con bordo	
	2.9	Fibrato tangente	22
		2.9.1 Modello locale	
		2.9.2 Caratterizzazione differenziale di T_xU	
	2.40	2.9.3 Costruzione del fibrato tangente su varietà differenziabili	
		Fibrati	
		Fatti di algebra lineare	
		Richiami della scorsa lezione	
	2.13	Altri fibrati su M	28

INDICE

2.14	Equivalenza tra fibrati	26
2.15	Richiami della lezione scorsa	26
2.16	Teorema di Embedding	26
2.17	Topologia sullo spazio delle applicazione lisce tra varietà - fede	3(
	Spazi di applicazioni lisce	3(
2.19	Orientazione	31
2.20	Cobordismo	31
	2.20.1 Alcuni $\eta_n(Y)$ e $\Omega_n(Y)$	3:
2.21	Trasversalità	3;
2.22	Cenni alle dimostrazioni dei teoremi di trasversalità	36
	Immersioni e embedding	38
2.24	Versione orientata dei teoremi di trasversalità	38
2.25	Ripasso della lezione sulla trasversalità	38
2.26	Teoria del grado	36
2.27	Numero d'intersezione	4(
	2.27.1 Versione orientata	4(
	2.27.2 Autointersezione	4(
2.28	Funzioni di Morse	43
2.29	Superfici	44
2.30	La forma di intersezione su $\eta_1(S)$	44
	Somma connessa	46
	Relazione tra somma connessa e caratteristica di Eulero	46
2.33	Teoria di Morse	46

Capitolo 1

Spazi topologici

1.1 Definizioni di base

Definizione 1 (Topologia). Sia dato un insieme X e una famiglia τ di sottoinsiemi di X. τ è detta topologia se soddisfa le seguenti proprietà:

- $\varnothing, X \in \tau$
- τ è chiusa per intersezioni finite, ovvero: $\forall A_1, A_2 \in \tau \implies A_1 \cap A_2 \in \tau$
- τ è chiusa per unioni arbitrarie, ovvero: $\forall \mathcal{B} \subseteq \tau \implies \bigcup_{A \in \mathcal{B}} A \in \tau$.

Gli elementi di τ sono detti aperti per la topologia τ .

Definizione 2 (Spazio topologico). Sia $X \neq \emptyset$ un insieme munito di una topologia τ . La coppia (X, τ) è detta *spazio topologico*.

Definizione 3 (Chiuso). Un sottoinsieme $Y \subseteq X$ è detto *chiuso* se $\mathscr{C}Y$ è aperto.

Osservazione1. Ø eXsono sia aperti che chiusi.

Proposizione 1. Sia F_{τ} la famiglia dei sottoinsiemi chiusi di X. Questa gode delle seguenti proprietà:

- $\varnothing, X \in F_{\tau}$
- F_{τ} è chiusa pe unioni finite
- F_{τ} è chiusa per intersezioni arbitrarie.

Osservazione 2. Un insieme $X \neq \emptyset$ ammette sempre due topologie degeneri:

- $\tau_B = \{\varnothing, X\}$ detta topologia banale
- $\tau_D = \mathscr{P}(X)$ detta topologia discreta.

Definizione 4 (Finezza). Date due topologie τ e τ' su X, si dice che τ è più fine di τ' se $\tau' \subset \tau$, ovvero tutti gli aperti di τ' sono anche aperti di τ , ma esistono aperti in τ non presenti in τ' .

Osservazione 3. La topologia banale è quella meno fine, mentre quella discreta è la più fine.

1.2 Spazi metrici e metrizzabili

Definizione 5 (Spazio metrico). Sia dato un insieme $X \neq \emptyset$ e una funzione $d: X \times X \rightarrow \mathbb{R}$ tale che:

- $\bullet \ \forall x,y \in X: d(x,y) \geq 0 \land (d(x,y) = 0 \iff x = y)$
- d(x,y) = d(y,x)
- $d(x,z) \le d(x,y) + d(y,z)$

La funzione d è detta distanza e la coppia (X, d) è detta $spazio\ metrico$.

Esempio 1. Esempi di spazi metrici sono:

- $\bullet \ \mathbb{R}^n$ munito della distanza euclidea d_E
- Un insieme X qualsiasi munito della distanza discreta $d_D = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$

Definizione 6 (Palla aperta). Sia (X,d) uno spazio metrico, definiamo la palla aperta centrata in x di raggio r come:

$$B_r(x) := \{ y \in X \mid d(x, y) < r \}$$

Proposizione 2 (Topologia indotta). Sia (X,d) uno spazio metrico e τ_d una famiglia di sottoinsiemi così definita:

$$\tau_d := \{ A \subseteq X \mid \forall x \in A \ \exists \, B_r(x) \subseteq A \}$$

Affermo che τ_d è una topologia su X (la chiamerò topologia indotta).

Dimostrazione. Verifico che si tratti di una topologia:

- $\emptyset \in \tau_d$ per vacuità, $X \in \tau_d$ perché le palle aperte sono a valori in X per definizione.
- Siano A_1, \ldots, A_n sottoinsiemi di X. Considero la loro intersezione $\bigcap A_k$. Per ogni punto x nell'intersezione considero tutti gli A_k tali che $x \in A_k$. Prendo quindi una palla aperta $B^k(x)$ per ognuno di questi (posso farlo per definizione di τ_d). Tra queste prendo quella con raggio minore: questa è contenuta in $\bigcap A_k$, segue che τ_d è chiuso per intersezioni finite.
- se $x \in \bigcup A_j$ allora x appartiene almeno ad uno degli A_j . Poiché questi sono aperti segue che $\exists B_{r_i}(x) \subseteq A_i \subseteq \bigcup A_j$.

Definizione 7. Uno spazio topologico (X, τ) si dice *metrizzabile* se esiste una distanza d tale che $\tau = \tau_d$, ovvero la topologia sia uguale alla topologia indotta dalla distanza d.

Esempio 2. Esempi di topologie indotte sono:

- (\mathbb{R}^n, d_E) induce (\mathbb{R}^n, τ_E) .
- Lo spazio topologico indotto da (X, d_D) (dove d_D è la distanza discreta dell'Esempio 1) è τ_D (la topologia discreta). Infatti $B_{1/2}(x) = \{x\}$, quindi ogni punto è un aperto.

Proposizione 3. Sia (X,d) uno spazio metrico e (X,τ_d) lo spazio topologico indotto. Si verifica che:

- le apelle aperte sono aperti per la topologia indotta
- $ogni A \in \tau_d \ \dot{e} \ unione \ di \ palle \ aperte.$

Dimostrazione.

• Sia $y \in B_r(x)$, devo trovare un r' tale che $B_{r'}(x) \subseteq B_r(x)$. Prendo r' < r - d(x, y). Segue:

$$\forall z \in B_{r'}(y) : d(x, z) \le d(x, y) + d(y, z) < d(x, y) + r - d(x, y) < r$$

• Sia A un qualsiasi aperto per la topologia indotta. A è unione dei suoi punti e per ogni punto x ho una palla aperta centrata in x e contenuta in A. Segue che A è unione di palle aperte.

Definizione 8. (X, d) e (X, d') si dicono topologicamente equivalenti se le topologie indotte coincidono.

Osservazione 4. È chiaro che uno spazio metrico ha una "struttura" più rigida di uno spazio topologico e conseguentemente spazi metrici diversi possono indurre la stessa topologia.

Teorema 4. Tutte le distanze indotte da un prodotto scalare sono topologicamente equivalenti.

Dimostrazione. to do

Esempio 3. to do

Definizione 9 (Intorno). Dato $x \in (X, \tau)$, si dice *intorno* di x (rispetto a τ) un insieme U_x che contiene un aperto A tale che $x \in A \subseteq U_x$.

Definizione 10 (Base di aperti). Dato uno spazio topologico (X, τ) si dice *base di aperti* una famiglia di aperti \mathcal{B} tale che ogni elemento di τ è ottenibile come unione di elementi di \mathcal{B} .

Definizione 11 (Base di intorni). Una base di intorni è un insieme di intorni di un punto x tale che qualsiasi intorno di x contenga almeno uno degli elementi della base.

Osservazione 5. Le palle aperte sono una base di intorni per una topologia indotta.

Lemma 5. Un insieme è aperto se ogni punto ha un intorno contenuto nell'insieme:

$$A \ aperto \iff \forall x \in A \,\exists U_x \subseteq A$$

Dimostrazione. L'implicazione verso destra è banale perché A è un intorno dei suoi punti¹. Mostriamo l'altra: per definizione di intorno possiamo prendere gli U_x aperti. Sia $A' := \bigcup_{x \in A} U_x$. A' è aperto perché unione di aperti ed è contenuto in A, però contiene tutti i punti di A quindi A = A'.

1.3 Sottospazi

Si può definire una topologia sui sottoinsiemi di uno spazio topologico:

Proposizione 6 (Topologia dei sottospazi). Sia (X, τ) spazio topologico e $\chi \subseteq X$, l'insieme $\tau_{\chi} := \{A \cap \chi \mid A \in \tau\}$ è una topologia su χ .

¹Se è banale, perché l'abbiamo spiegata?

Dimostrazione. Verifichiamo le tre proprietà della topologia:

- Il vuoto c'è perché $\varnothing \cap \chi = \varnothing$; χ c'è perché $X \cap \chi = \chi$.
- Siano $a_1, \ldots, a_n \in \tau_{\chi}$. Allora $\forall k \, \exists A_k \in \tau : a_k = A_k \cap \chi$. Quindi:

$$\bigcap a_k = \bigcap (A_k \cap \chi) = \left(\bigcap A_k\right) \cap \chi$$

Ma $\bigcap A_k$ è aperto in (X, τ) .

• Sia $\{a_k\}_{k\in I}\subseteq \tau_{\chi}$. Definiti come sopra gli A_k , abbiamo:

$$\bigcup a_k = \bigcup (A_k \cap \chi) = \left(\bigcup A_k\right) \cap \chi \qquad \Box$$

Definizione 12 (Sottospazio). Chiamiamo (χ, τ_{χ}) sottospazio di (X, τ) .

È interessante che la topologia dello spazio di partenza si colleghi direttamente alla topologia di sottospazio di ogni aperto:

Proposizione 7. A aperto \iff tutti gli aperti in A come sottospazio sono aperti

Dimostrazione. Mostriamo le due implicazioni:

- \implies Infatti ogni aperto in A è intersezione di due aperti.
- \iff Infatti A è aperto in A.

1.4 Chiusura, parte interna, frontiera

In generale i sottoinsiemi di uno spazio topologico non sono né aperti né chiusi. Tuttavia possiamo associare a ognuno in modo naturale un aperto e un chiuso.

Definizione 13 (Chiusura). La *chiusura* di un insieme Y è l'intersezione di tutti i chiusi che lo contengono:

$$\overline{Y} := \bigcap_{\substack{C \text{ chiuso} \\ C \supset Y}} C$$

Proposizione 8. La chiusura di Y è il più piccolo chiuso che contiene Y, cioè:

$$\left. \begin{array}{l}
Y \subseteq C \subseteq \overline{Y} \\
C \ chiuso
\end{array} \right\} \implies C = \overline{Y}$$

Dimostrazione. Infatti dalla definizione di \overline{Y} segue $\overline{Y} = \overline{Y} \cap C$.

Definizione 14 (Parte interna). La parte interna di un insieme Y è l'unione di tutti gli aperti contenuti in Y:

$$\mathring{Y} := \bigcup_{\substack{A \text{ aperto} \\ A \subseteq Y}} A$$

Proposizione 9. La parte interna di Y è il più grande aperto contenuto in Y, cioè:

$$\begin{vmatrix}
\mathring{Y} \subseteq A \subseteq Y \\ A \ aperto
\end{vmatrix} \implies A = \mathring{Y}$$

Dimostrazione. Infatti dalla definizione di \mathring{Y} segue $\mathring{Y} = \mathring{Y} \cup A$.

Osservazione 6. La parte interna e la chiusura sono rispettivamente aperta e chiusa.

Definiamo ora alcune proprietà che collegano singoli punti di un insieme alle nozioni di chiusura e parte interna.

Definizione 15 (Punto interno). Gli elementi della parte interna di Y si chiamano punti interni di Y:

$$x$$
 interno a $Y : \leftrightarrow x \in \mathring{Y}$

Definizione 16 (Punto di accumulazione). Un elemento x (non necessariamente in Y) è punto di accumulazione per Y se ogni intorno di x contiene punti di Y diversi da x:

$$x$$
 accumulazione per $Y: \leftrightarrow \forall U_x: (U \setminus \{x\}) \cap Y \neq \emptyset$

Definizione 17 (Punto isolato). I punti di Y non di accumulazione sono *isolati*:

$$x$$
 isolato in $Y: \leftrightarrow \begin{cases} x \in Y \\ \neg(x \text{ accumulazione per } Y) \end{cases}$

Lemma 10. La chiusura di un insieme è l'insieme stesso unito ai suoi punti di accumulazione:

$$\overline{Y} = Y \cup \{x \mid x \ accumulatione \ per \ Y\}$$

Dimostrazione. Mostriamo le due inclusioni:

 \subseteq Ci basta verificare che $y \in \overline{Y} \setminus Y \implies y$ accumulazione per Y. Per assurdo:

$$y$$
 non di accumulazione $\to \exists A$ aperto :
$$\begin{cases} y \in A \\ A \cap Y = \varnothing \end{cases}$$
 cioè
$$\begin{cases} y \not \in \mathscr{C} A \\ Y \subseteq \mathscr{C} A \end{cases}$$

Ma $\mathscr{C}A$ è chiuso, quindi avremmo $y \notin \overline{Y} \not\downarrow$.

 \bigcirc Ci basta verificare che $y \notin Y \land y$ accumulazione per $Y \implies y \in \overline{Y}$. Per assurdo, $y \notin \overline{Y} \rightarrow y \in \mathscr{C}\overline{Y}$. Ma $\mathscr{C}\overline{Y}$ è aperto, quindi $\mathscr{C}\overline{Y}$ sarebbe un intorno di y disgiunto da $Y \not \downarrow$.

Vogliamo ora formalizzare il concetto di "bordo" di un insieme, cioè la famiglia dei punti che lo "separa" dal suo complementare. Diamo questa definizione:

Definizione 18 (Frontiera). La famiglia dei punti della chiusura di Y esterni a Y è la frontiera di Y:

$$\mathscr{F}Y := \overline{Y} \setminus \mathring{Y}$$

Proposizione 11. La frontiera consta dei punti esterni isolati o di accumulazione:

$$\mathscr{F}Y = (\{x \mid x \text{ isolato in } Y\} \cup \{x \mid x \text{ accumulatione per } Y\}) \setminus \mathring{Y}$$

Dimostrazione. Basta usare il Lemma 10 e osservare che $Y \cup \{x \mid x \text{ accumulazione}\} = \{x \mid x \text{ isolato}\} \cup \{x \mid x \text{ accumulazione}\}.$

Proposizione 12. La frontiera di un insieme è anche frontiera del complementare:

$$\mathscr{F}Y = \mathscr{F}\mathscr{C}Y$$

Dimostrazione. Passando al complementare le unioni diventano intersezioni quindi parte interna e chiusura si scambiano:

$$(\mathring{\mathscr{C}Y}) = \bigcup_{\substack{A \text{ aperto} \\ A \subseteq \mathscr{C}Y}} A = \mathscr{C} \left(\bigcap_{\substack{\mathscr{C}A \text{ chiuso} \\ \mathscr{C}A \supseteq Y}} \mathscr{C} A \right) = \mathscr{C} \, \overline{Y}$$

Un conto analogo mostra che $\overline{\mathscr{C}Y} = \mathscr{C}\mathring{Y}$. Quindi:

$$\mathscr{F}\mathscr{C}Y = \overline{\mathscr{C}Y} \setminus (\mathring{\mathscr{C}Y}) = \mathscr{C}\mathring{Y} \setminus \mathscr{C}\overline{Y} = \overline{Y} \setminus \mathring{Y} = \mathscr{F}Y \qquad \Box$$

Osservazione 7. Sia X l'insieme ambiente e $x \in Y \subseteq X$. Si ha che:

xinterno a $Y \implies x$ di accumulazione per Y

Ad esempio per (X, τ_{disc}) preso $Y := \{x\}$ allora x è interno a Y, poiché quest'ultimo è aperto, ma $\{x\} \setminus \{x\} = \emptyset$ quindi non è di accumulazione. Tuttavia, basta supporre che i singoletti non siano aperti affinché invece l'implicazione sia valida.

1.5 Morfismi degli spazi topologici

In generale, dati degli spazi con certe proprietà, i *morfismi* sono funzioni tra gli spazi che mantengono in qualche modo le proprietà. Ad esempio i morfismi degli spazi vettoriali sono le funzioni lineari, che mandano 0 in 0, sottospazi in sottospazi, ecc.

In particolare gli *isomorfismi* mettono in corrispondenza due spazi in modo che siano completamente indistinguibili relativamente alle proprietà considerate. Data una famiglia di spazi, si può definire su di essa un'equivalenza per isomorfismo e considerare le sottofamiglie di spazi *isomorfi* come singoli elementi.

Vediamo ora che i naturali morfismi degli spazi topologici sono le funzioni continue. Siano da qui in poi X, Y spazi topologici² e $f: X \to Y$.

Definizione 19 (Continuità). f si dice continua se le controimmagini di aperti sono aperte:

$$f$$
 continua : $\leftrightarrow \forall A \subseteq Y, A \text{ aperto} : f^{-1}(A) \text{ aperto}$

Possiamo definire una forma locale di continuità e collegarla alla nozione globale:

Definizione 20 (Continuità locale). f è continua in $x \in X$ se ogni intorno di f(x) contiene l'immagine di un intorno di x:

$$f$$
 continua in $x : \leftrightarrow \forall U_{f(x)} \exists U_x : f(U_x) \subseteq U_{f(x)}$

Proposizione 13. f continua $\iff \forall x \in X : f$ continua in x

Dimostrazione. Mostriamo le due implicazioni:

- \Rightarrow $\forall x \in X \, \forall U_{f(x)}$ definiamo $U_x := f^{-1}(U_{f(x)})$. Poiché f^{-1} manda aperti in aperti, U_x è un intorno di x, e ovviamente $f(U_x) = U_{f(x)}$.
- \iff Sia $A\subseteq Y$, A aperto. Poiché A è un intorno dei suoi punti, abbiamo che $\forall x\in f^{-1}(A)\ \exists U_x: f(U_x)\subseteq A$ cioè $U_x\subseteq f^{-1}(A)$. Il Lemma 5 conclude. \square

Definiamo gli isomorfismi topologici, che chiameremo omeomorfismi:

Definizione 21 (Omeomorfismo). f è un omeomorfismo se è continua, bigettiva e con inversa continua:

$$f$$
 omeomorfismo : $\leftrightarrow \begin{cases} f \text{ bigettiva} \\ f, f^{-1} \text{ continue} \end{cases}$

È necessario specificare che f^{-1} sia continua perché la continuità di una funzione invertibile non implica la continuità dell'inversa:

²Identificheremo, quando non ci siano ambiguità, lo spazio topologico (X, τ) con X o con τ . Si noti che comunque τ contiene tutta l'informazione perché $X = \bigcup \tau$.

Esempio 4. Consideriamo due spazi topologici sullo stesso insieme $(X, \tau_1), (X, \tau_2)$. Sia τ_1 più fine di τ_2 , cioè $\tau_1 \supset \tau_2$. Sia id : $X \to X$ l'identità. id è invertibile e continua rispetto a $\tau_1 \to \tau_2$, ma non continua rispetto a $\tau_2 \to \tau_1$.

1.6 Separazione

Per adesso gli spazi topologici sono un concetto molto generale. Cominciamo a definire delle proprietà che ci permettano di avere un'idea più intuitiva di come sono fatti certi spazi topologici.

Definizione 22 (Proprietà di separazione). Uno spazio topologico si dice di Hausdorff³ o separato o T_2 se per ogni coppia di punti distinti esistono due intorni disgiunti:

$$X \in T_2 : \leftrightarrow \forall x \neq y \exists U_x, U_y : U_x \cap U_y = \varnothing$$

Proposizione 14. Gli spazi metrizzabili sono separati:

$$X metrizzabile \implies X \grave{e} T_2$$

Dimostrazione. $x \neq y \rightarrow r := d(x,y) \neq 0 \rightarrow B_{r/3}(x) \cap B_{r/3}(y) = \emptyset$

Proposizione 15. Negli spazi separati i singoletti sono chiusi:

$$X \stackrel{.}{e} T_2 \implies \forall x \in X : \{x\} \ chiuso$$

Dimostrazione. Abbiamo che $\forall y \in \mathscr{C}\{x\} \exists U_y, U_x : U_y \cap U_x = \emptyset$ cioè in particolare $U_y \subseteq \mathscr{C}\{x\}$. Quindi $\mathscr{C}\{x\}$ è aperto.

Vediamo che non vale il viceversa:

Esempio5 (Topologia di Zariski). Sia τ_z una topologia su $\mathbb R$ i cui aperti sono i complementari di insiemi finiti:

$$\tau_z := \{ A \subset \mathbb{R} \mid A = \varnothing \lor (A = \mathscr{C} F \land \# F \in \mathbb{N}) \}$$

Gli aperti non vuoti non sono disgiunti, quindi (\mathbb{R}, τ_z) non è T_2 . Però i singoletti sono chiusi.

Osservazione 8. La topologia euclidea è più fine di τ_z .

Proposizione 16. La proprietà T_2 passa ai sottospazi.

Dimostrazione. Sia $\chi \subseteq X$. $\forall x \neq y \in X \exists U_x, U_y : U_x \cap U_y = \emptyset$, per $x, y \in \chi$ prendiamo come intorni $U_x \cap \chi$ e $U_y \cap \chi$.

Proposizione 17. La proprietà T_2 è invariante per omeomorfismo.

Dimostrazione. Sia $f:X\to Y$ un omeomorfismo. Mostriamo che Y è $T_2\implies X$ è $T_2\colon$

$$\begin{aligned} \forall x_1 \neq x_2 \in X: \\ y_1 &:= f(x_1), \ y_2 := f(x_2) \\ f \text{ iniettiva } &\to y_1 \neq y_2 \\ Y & \in T_2 \ \to \exists U_{y_1}, U_{y_2} \text{ aperti}: U_{y_1} \cap U_{y_2} = \varnothing \\ U_{x_1} &:= f^{-1}(U_{y_1}), \ U_{x_2} := f^{-1}(U_{y_2}) \\ U_{y_1} \cap U_{y_2} &= \varnothing \ \to U_{x_1} \cap U_{x_2} = \varnothing \\ f \text{ continua } &\to U_{x_1}, U_{x_2} \text{ sono aperti} \end{aligned}$$

Applicando lo stesso ragionamento a f^{-1} si mostra che $X \in T_2 \implies Y \in T_2$. \square

Osservazione 9. In generale le proprietà che dipendono solo dalla topologia sono invarianti per omeomorfismo, perché un omeomorfismo induce una bigezione tra le topologie tale che due aperti corrispondenti sono messi in bigezione dall'omeomorfismo.

Esempio 6. Sia id : $\mathbb{R} \to \mathbb{R}$ l'identità e τ_E la topologia euclidea. id è continua rispetto a $\tau_E \to \tau_z$ perché $\tau_z \subseteq \tau_E$, però non nell'altro verso. Infatti (\mathbb{R}, τ_E) è T_2 ma (\mathbb{R}, τ_z) no, quindi non possono essere omeomorfi.

1.7 Numerabilità

Di solito con insieme numerabile si intende un insieme con la cardinalità dei numeri naturali. Per brevità di notazione chiameremo numerabili anche gli insiemi finiti:

Definizione 23 (Numerabilità). S numerabile : $\leftrightarrow \#S \leq \#\mathbb{N}$

Definizione 24 (Proprietà di numerabilità). Uno spazio topologico è *1-numerabile* se ogni punto ha una base di intorni numerabile:

X 1-numerabile : $\leftrightarrow \forall x \in X \exists$ base di intorni di x numerabile

Proposizione 18. X metrizzabile $\implies X$ 1-numerabile

Dimostrazione. Avevamo già osservato che le palle aperte centrate in un punto formano una base di intorni per il punto. Ci basta scegliere la sottofamiglia numerabile $\{B_{1/n}(x) \mid n \in \mathbb{N}\}$, che è ancora una base perché $\forall r \exists n : B_{1/n}(x) \subseteq B_r(x)$.

Definizione 25 (Proprietà di numerabilità). Uno spazio topologico è *2-numerabile* se ha una base di aperti numerabile:

X2-numerabile :
 $\leftrightarrow \ \exists$ base di aperti di Xnumerabile

³Preferiremo la notazione T_2 perché ci da fastidio dire che uno spazio topologico sia "di Hausdorff".

Figura 1.1: Costruzione di $B_{1/n}(y)$ tale che $B_{1/n}(y) \subseteq B_r(x)$ e $x \in B_{1/n}(y)$.

Lemma 19. 2-numerabile \implies 1-numerabile

Dimostrazione. Sia \mathcal{B} una base di aperti di X numerabile. $\forall x \in X$ sia $\mathcal{B}_x := \{A \in \mathcal{B} \mid x \in A\}$. \mathcal{B}_x è numerabile ed è una base di intorni di x.

Definizione 26 (Densità). Un sottospazio è denso se interseca tutti gli aperti:

$$Y$$
 denso in $X:\leftrightarrow \begin{cases} Y\subseteq X\\ \forall A \text{ aperto}, A\neq\varnothing: A\cap Y\neq\varnothing \end{cases}$

Lemma 20. Uno spazio metrizzabile che contiene un denso numerabile è 2-numerabile:

Dimostrazione. Mostriamo che $\{B_{1/n}(y) | y \in Y \land n \in \mathbb{N}\}$ è una base di aperti di X. Ogni aperto A si può scrivere come $A = \bigcup_{x \in A} B_{r_x}(x)$. Scegliamo $\rho_x < r_x$ abbastanza piccolo tale che $\exists n_x \in \mathbb{N} : \rho_x \leq 1/n_x \leq r_x - \rho_x$ (vedi Figura 1.1). Consideriamo $B_{\rho_x}(x)$: è un aperto non vuoto quindi $\exists y_x \in Y \cap B_{\rho_x}(x)$. Poniamo $A' := \bigcup_{x \in A} B_{1/n_x}(y_x)$. Allora $A' \subseteq A$ perché $B_{1/n_x}(y_x) \subseteq B_{r_x}(x)$ e $A \subseteq A'$ perché $x \in B_{1/n_x}(y_x)$, quindi A = A'.

Esempio 7. \mathbb{Q} è denso in \mathbb{R} e numerabile, quindi \mathbb{R} è 2-numerabile. Si noti che nel dimostrare il Lemma 20 abbiamo usato la densità di \mathbb{Q} .

Costruiamo ora una topologia che sia 1-numerabile ma non 2-numerabile:

Definizione 27. Sia τ_s una topologia su \mathbb{R} generata dagli intervalli chiusi a sinistra e aperti a destra:

$$\tau_s := \left\{ \bigcup \mathcal{I} \mid \mathcal{I} \subseteq \{[a;b) \mid a \leq b\} \right\}$$

Proposizione 21. τ_s è più fine di τ_E .

Dimostrazione. Infatti la topologia euclidea è generata dagli intervalli aperti, e ogni intervallo aperto si può scrivere come:

$$(c;d) = \bigcup_{\substack{a > c \\ a < d}} [a;d) \qquad \Box$$

Proposizione 22. τ_s è 1-numerabile.

Dimostrazione. Infatti $\left\{\left[x;x+\frac{1}{n}\right)\mid n\in\mathbb{N}\right\}$ è una base di intorni di x numerabile.

Proposizione 23. \mathbb{Q} *è denso in* \mathbb{R} *secondo* τ_s .

Dimostrazione. Segue banalmente dalla densità di \mathbb{Q} secondo τ_E .

Proposizione 24. (\mathbb{R}, τ_s) è T_2 .

Dimostrazione. Presi $x < y \exists z : x < z < y \text{ quindi } [x; z) \cap [y; \infty) = \emptyset.$

Proposizione 25. (\mathbb{R}, τ_s) non è 2-numerabile.

Dimostrazione. Sia $\mathcal B$ una base di aperti. Abbiamo che:

$$\forall x \in \mathbb{R} \,\exists B_x \in \mathcal{B} : \begin{cases} x \in B_x \\ B_x \subseteq [x; \infty) \end{cases}$$

Quindi $y \neq x \rightarrow B_y \neq B_x$, cioè l'applicazione $(x \mapsto B_x)$ da \mathbb{R} in \mathcal{B} è iniettiva, ovvero $\#\mathcal{B} > \#\mathbb{R}$.

Osservazione 10. Quindi 1-numerabilità non implica 2-numerabilità.

Seguono due proposizioni analoghe a quelle mostrate per la proprietà T_2 :

Proposizione 26. Le proprietà di numerabilità passano ai sottospazi.

Proposizione 27. Le proprietà di numerabilità sono invarianti per omeomorfismo.

Gli spazi numerabili si possono studiare usando le successioni, cioè le applicazioni con dominio \mathbb{N} . Indichiamo con (a_n) l'applicazione $(n \mapsto a_n)$:

Definizione 28 (Convergenza). Si dice che (a_n) converge a x se è definitivamente contenuta in ogni intorno di x:

$$a_n \to x : \leftrightarrow \forall U_x \, \exists N \, \forall n \ge N : a_n \in U_x$$

Diamo ora una definizione che ci servirà per dimostrare la Proposizione 29:

Definizione 29. Una base di intorni annidati è una base di intorni numerabile ordinata per inclusione:

$$\{U_n\}_{n\in\mathbb{N}}$$
 base di intorni annidati : \leftrightarrow
$$\begin{cases} \{U_n\} \text{ base di intorni} \\ \forall n: U_{n+1}\subseteq U_n \end{cases}$$

Proposizione 28. Una base di intorni numerabile induce una base di intorni annidati.

Dimostrazione. Sia $\{U_n\}_{n\in\mathbb{N}}$ una base di intorni. Definiamo $U_k'=\bigcap_{n=0}^k U_n$. U_k' è un intorno perché è un'intersezione finita di intorni. $\{U_k'\}_{k\in\mathbb{N}}$ è una base di intorni annidati perché gli U_k' sono tutti contenuti negli U_n , e per costruzione sono annidati.

Proposizione 29. In uno spazio 1-numerabile, ai punti di accumulazione di un insieme convergono sottosuccessioni a valori nell'insieme:

$$X \text{ 1-numerabile}$$

$$Y \subseteq X$$

$$x \text{ accumulatione per } Y$$

$$\Rightarrow \exists (a_n) \subseteq Y : a_n \to x$$

Dimostrazione. Sia $\{U_n\}_{n\in\mathbb{N}}$ una base di intorni annidati di x. Poiché x è di accumulazione per Y, $\forall n \exists a_n \in (U_n \setminus \{x\}) \cap Y$. La successione (a_n) converge a x perché gli U_n sono annidati.

1.8 Connessione

Con la proprietà di connessione vogliamo rendere l'idea intuitiva che uno spazio sia "tutto attaccato".

Definizione 30 (Connessione). Uno spazio è connesso se non è esprimibile come unione di due aperti disgiunti non vuoti:

$$X \text{ sconnesso } : \leftrightarrow \exists A, B \text{ aperti } : \begin{cases} X = A \cup B \\ A \cap B = \emptyset \\ A, B \neq \emptyset \end{cases}$$

Proposizione 30. In uno spazio connesso, gli unici insiemi sia aperti che chiusi sono lo spazio stesso e il vuoto:

$$\left. \begin{array}{l} X \ connesso \\ A \subseteq X \\ A \ aperto \ e \ chiuso \end{array} \right\} \implies A = X \lor A = \varnothing$$

Dimostrazione. A è chiuso quindi $\mathscr{C}A$ è aperto, e $X=A\cup\mathscr{C}A$. Se fosse $A,\mathscr{C}A\neq\varnothing$, X sarebbe sconnesso. \Box

Proposizione 31. *I connessi di* \mathbb{R} *sono gli intervalli:*

$$Y \subseteq \mathbb{R}$$
 connesso secondo $\tau_E \iff Y$ è un intervallo

Dimostrazione. Mostriamo le due implicazioni:

- \Longrightarrow Se Y non fosse un intervallo, avremmo $\exists x \in (\inf Y; \sup Y) : x \notin Y$. Ma allora $Y = (Y \cap (-\infty; x)) \cup (Y \cap (x; \infty)) \notin$.
- \Leftarrow Supponiamo per assurdo che Y sia sconnesso. Allora $Y = A_1 \cup A_2$ aperti (nella topologia di Y) disgiunti non vuoti. In particolare $\exists x_1 \in A_1, x_2 \in A_2$ WLOG $x_1 < x_2$. Poiché Y è un intervallo, $[x_1; x_2] \subseteq Y$. Poniamo:

$$\xi := \sup(A_1 \cap [x_1; x_2]) = \min(x_2, \sup A_1)$$

 ξ è di accumulazione per A_1 e A_2 , quindi $\xi \in \overline{A_1} \cap \overline{A_2}$. Ma essendo gli A_i complementari in Y, $A_i = \overline{A_i} \notin$.

Teorema 32. L'immagine continua di connessi è connessa:

$$\left. \begin{array}{c} f: X \to Y \ continua \\ X \ connesso \end{array} \right\} \implies f(X) \ connesso$$

Dimostrazione. Per assurdo supponiamo $f(X) = B_1 \cup B_2, B_1, B_2$ aperti disgiunti non vuoti. $A_1 := f^{-1}(B_1)$ e $A_2 := f^{-1}(B_2)$ sono aperti per continuità di f. Inoltre sono non vuoti, disgiunti e $X = A_1 \cup A_2$, assurdo.

Osservazione~11. La connessione è invariante per omeomorfismo, ma non passa ai sottospazi.

Definizione 31 (Arco). Un arco in X è un'applicazione $\gamma:[0,1] \to X$ continua con topologia euclidea sul dominio.

Diciamo che una arco γ collega due punti x_0, x_1 se $\gamma(0) = x_0$ e $\gamma(1) = x_1$.

Definizione 32 (Connessione per archi). Uno spazio topologico è *connesso per archi* se ogni sua coppia di punti è collegata da un arco:

$$X$$
 connesso per archi : $\leftrightarrow \forall x_0, x_1 \in X \exists \gamma : [0,1] \rightarrow X : \begin{cases} \gamma \text{ continua} \\ \gamma(0) = x_0 \\ \gamma(1) = x_1 \end{cases}$

Proposizione 33. X connesso per archi $\implies X$ connesso

Dimostrazione. Supponiamo per assurdo $X = A_0 \cup A_1$ aperti non vuoti disgiunti. Siano $x_0 \in A_0$ e $x_1 \in A_1$, e γ un arco che li collega. L'intervallo [0,1] è connesso quindi $\gamma([0,1])$ è connesso per continuità di γ . Ma posso anche scriverlo come $\gamma([0,1]) = (A_0 \cap \gamma([0,1])) \cup (A_1 \cap (\gamma([0,1]))$ che è sconnesso ξ .

Esempio 8. Non è vero il viceversa! Si prendano gli insiemi in \mathbb{R}^2 :

$$Y_1 := \{(0, y) \mid -1 \le y \le 1\}$$
 $Y_2 := \left\{ \left(x, \sin \frac{1}{x} \right) \mid x \in \mathbb{R} \right\}$

 $Y = Y_1 \cup Y_2$ è connesso ma non per archi.

Invece per gli aperti di \mathbb{R}^n il viceversa vale:

Proposizione 34. $A \subseteq (\mathbb{R}^n, \tau_E)$ aperto connesso $\implies A$ connesso per archi

Dimostrazione. Introduciamo la seguente relazione di equivalenza su A:

 $x \sim y : \leftrightarrow x$ e y sono collegati da un arco

È una buona definizione perché, dati x, y collegati da γ e y, z collegati da η , la concatenazione ζ di γ e η :

$$\zeta(t) = \begin{cases} \gamma(2t) & t \in [0, \frac{1}{2}] \\ \eta(2t - 1) & t \in (\frac{1}{2}, 1] \end{cases}$$

è continua. Infatti $\zeta^{-1}(S \subseteq A) = \gamma^{-1}(S) \cup \eta^{-1}(S)$.

Andiamo a mostrare che, fissato $x \in A$, la sua classe di equivalenza [x] è un insieme sia aperto che chiuso. La Proposizione 30 conclude.

Sia $y \in [x]$ cioè $y \in A$, $y \sim x$. Per ipotesi esiste una palla aperta $B_r(y) \subseteq A$. Abbiamo che $\forall z \in B_r(y) : z \sim x$ perché z è collegato a y tramite l'arco radiale:

$$\rho(t) = y + t(z - y), \qquad d_E(y, \rho) \le d_E(y, z)$$

Dunque $B_r(y) \subseteq [x]$.

Per mostrare che l'insieme è chiuso basta vedere che il complementare è aperto. Ma se un punto y non è collegato a x, allora i punti z in una palletta intorno a lui non possono essere collegati a x: altrimenti potrei collegare y a x passando per z con un arco radiale tra z e y.

Definizione 33 (Componenti connesse per archi). Su uno spazio topologico X arbitrario, le classi di equivalenza per la relazione sopra definita sono dette componenti connesse per archi di X.

1.9 Compattezza

Generalmente la proprietà di compattezza è utile in spazi T_2 , tuttavia non esiste una convenzione globalmente accettata riguardo al richiedere o meno che uno spazio compatto sia necessariamente T_2 . Noi intenderemo sempre implicitamente che sia T_2 .

Esistono due nozioni di compattezza, non sempre equivalenti:

Definizione 34 (Compattezza per ricoprimenti). Uno spazio topologico X è compatto per ricoprimenti se ogni ricoprimento aperto ammette un sottoricoprimento finito.

Definizione 35 (Compattezza per successioni). X è compatto per successioni se ogni successione a valori in X ammette una sottosuccessione convergente in X.

Generalmente quando diciamo solo "compatto" intendiamo "compatto per ricoprimenti".

Proposizione 35. I sottospazi compatti di un compatto sono i chiusi:

$$\begin{array}{c} X \ compatto \\ Y \subseteq X \end{array} \right\} \implies \left(Y \ compatto \iff Y \ chiuso \right)$$

Dimostrazione. Mostriamo le due implicazioni:

- \bigoplus Un ricoprimento aperto di Y corrisponde a una famiglia \mathcal{A} di aperti di X tale che $Y \subseteq \bigcup \mathcal{A}$. La famiglia $\mathcal{A} \cup \{X \setminus Y\}$ è un ricoprimento aperto di tutto X, da cui per compattezza posso estrarre un sottoricoprimento finito \mathcal{F} di X.
 - Se $Y=\varnothing$ la tesi è banale; consideriamo Y non vuoto: \mathcal{F} dovrà necessariamente contenere elementi di \mathcal{A} . Allora $\{F\cap Y\,|\, F\in\mathcal{F}\}$ è il sottoricoprimento di Y cercato.⁴
- \Longrightarrow Voglio mostrare che $X \setminus Y$ è aperto. Fisso $y \in X \setminus Y$. Per $T_2, \forall x \in Y \exists U_x, W_x$ aperti disgiunti, $x \in U_x, y \in W_x$.

Si osservi che $\bigcup_{x\in Y} U_x$ è ricoprimento di Y. Per compattezza, posso estrarre un sottoricoprimento finito U_1, \ldots, U_n . Considero i rispettivi insiemi aperti W_1, \ldots, W_n che assieme agli U_i separavano i punti.

Allora $W := \bigcap_{i=1}^n W_i$ è un intorno di y, che contiene solo punti di $X \setminus Y$ perché gli U_i ricoprono Y.

Ci accingiamo ora a mostrare sotto che ipotesi la compattezza per ricoprimenti equivale alla compattezza per successioni.

 $^{^4}$ Si osservi che non abbiamo usato la proprietà T_2 di X.

Lezioni 22 febbraio, 24 febbraio 1.9. COMPATTEZZA

Lemma 36. I sottoinsiemi infiniti di uno spazio compatto hanno punti di accumulazione:

$$\left. \begin{array}{l} X \ compatto \\ Y \subseteq X \\ Y \ infinito \end{array} \right\} \implies \exists y \in X \ punto \ di \ accumulazione \ per \ Y \end{array}$$

Dimostrazione. Supponiamo per assurdo che tutti gli $x \in X$ non siano di accumulazione per Y. Abbiamo due casi:

- $x \in X \setminus Y \implies \exists U_x : U_x \cap Y = \emptyset$
- $x \in Y \implies \exists U_x : U_x \cap Y = \{x\}$

12

La famiglia di intorni $\{U_x\}_{x\in X}$ ricopre X (posso scegliere gli intorni aperti). Per compattezza estraggo U_1, \ldots, U_n sottoricoprimento finito.

Allora
$$Y \subseteq \bigcup_{i=1}^n U_i \implies Y \subseteq \{x_1, \dots, x_n\}$$
 che è finito, assurdo.

Proposizione 37. X 1-numerabile e compatto $\implies X$ compatto per successioni

Dimostrazione. Sia $(a_n)_{n\in\mathbb{N}}$ una successione a valori in X. Si hanno allora due casi:

- se assume un numero finito di valori ne assumerà uno di questi infinite volte, quindi posso estrarre una sottosuccessione costante;
- se assume un numero infinito di valori distinti allora per il Lemma 36 si ha che $\exists x \in X$ di accumulazione per $\{a_n\}$.

Nel secondo caso la sottosuccessione si estrae per 1-numerabilità, infatti, presa una base di intorni $\{U_n\}$ di x WLOG annidati, costruisco induttivamente la sottosuccessione (a_{n_k}) in modo che $a_{n_k} \in U_k$:

$$n_0 := \min\{m \in \mathbb{N} \mid a_m \in U_0\}$$

$$n_k := \min\{m \in \mathbb{N} \mid a_m \in U_k \land m > n_{k-1}\}$$

Questa è una buona definizione perché gli n_k sono strettamente crescenti e perché x è di accumulazione per $\{a_n\}$. La sottosuccessione converge a x perché abbiamo preso gli intorni annidati.

Osservazione 12. Se un punto x è di accumulazione per un dato insieme in uno spazio T_2 si ha che ogni intorno di x interseca l'insieme in infiniti punti. Infatti, supponendo che l'intersezione sia invece finita, sottraggo questi punti (tranne eventualmente x) all'intorno, che rimane un intorno di x perché in uno spazio T_2 i singoletti sono chiusi e l'intersezione finita di aperti è aperta, ma non ha punti in comune con l'insieme a parte al più x, assurdo.

Proposizione 38. X 2-numerabile e compatto per successioni $\implies X$ compatto

Dimostrazione. Dato un ricoprimento \mathcal{R} di X, da esso ne devo estrarre uno finito. Otteniamo prima un risultato intermedio, cioè l'estrazione di un sottoricoprimento numerabile. In questo primo passaggio non è coinvolta l'ipotesi di compattezza per successioni. Sia dunque \mathcal{B} una base numerabile di aperti di X. Allora dalle definizioni di ricoprimento e base abbiamo che:

$$\forall x \in X \quad \exists R_x \in \mathcal{R} : x \in R_x \quad \exists B_x \in \mathcal{B} : x \in B_x \subseteq R_x$$

La famiglia dei B_x è numerabile. Se per ogni $B \in \{B_x\}_{x \in X}$ scelgo un solo $R_B \in \{R_x \mid B_x = B\}$ ho un sottoricoprimento numerabile.

Il secondo passaggio è estrarre da un ricoprimento numerabile un sottoricoprimento finito. Per assurdo, se il ricoprimento $(R_n)_{n\in\mathbb{N}}$ non ammette un sottoricoprimento finito, posso costruire una successione tale che $a_n\notin\bigcup_{i=0}^n R_i$ (altrimenti $\{R_i\}_{i\leq n}$ ricopre). Ma una sottosuccessione convergente di (a_n) sarebbe definitivamente contenuta in un R_i .

Corollario 39. Per uno spazio 2-numerabile si ha che: compatto ⇔ compatto per successioni.

1.9.1 Compattezza in spazi metrizzabili

Se uno spazio metrizzabile è compatto questa proprietà risulta avere conseguenze "importanti" su ogni spazio metrico che induce la topologia.

Definizione 36. Sia (X, d) uno spazio metrico. Esso si dice totalmente limitato se $\forall \varepsilon > 0 : X$ è ricoperto da un numero finito di palle di raggio ε .

Proposizione 40. Sia (X, τ_d) compatto per successioni, allora ogni metrica inducente (X, d) è totalmente limitata.

Dimostrazione. Per assurdo, supponiamo $\exists \varepsilon > 0$ tale che X non è ricoperto da un numero finito di palle di raggio ε . Allora dato $x_0 \in X$ esiste una successione (x_n) tale che $x_{n+1} \notin \bigcup_{i=0}^n B_{\varepsilon}(x_i)$. Questa successione non ammette una sottosuccessione convergente perché i punti distano fra loro almeno ε , da cui l'assurdo.

Proposizione 41. (X, τ_d) compatto per successioni $\implies X$ 2-numerabile

Dimostrazione. $\forall n \in \mathbb{N}$ esiste una famiglia finita \mathcal{F}_n di palle aperte di raggio 2^{-n} che ricopre X, per totale limitatezza. Sia $\mathcal{B} := \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$. Abbiamo che \mathcal{B} è numerabile, per verificare che è anche una base di τ_d mostriamo prima che se \mathcal{A} è un ricoprimento di X allora esiste un \bar{n} tale che ogni palla di $\mathcal{F}_{\bar{n}}$ è contenuta in uno degli aperti di \mathcal{A} . Poniamo:

$$\forall x \in X \quad n_x := \min\{n \in \mathbb{N} \mid \exists A \in \mathcal{A} : B_{2^{-n}}(x) \subseteq A\}$$

È una buona definizione perché le palle $B_{2^{-n}}(x)$ sono arbitrariamente piccole. Ora invertiamo n_x , cioè per ogni $n \in \{n_x\}_{x \in X}$ scegliamo un x_n tale che $n_{x_n} = n$. Per assurdo, supponiamo che gli n_x non abbiano massimo: allora (x_n) è una successione e ha una sottosuccessione convergente a un punto \bar{x} . Quindi gli x_n sono frequentemente contenuti in $B_{2^{-(1+n_{\bar{x}})}}(\bar{x})$, e quindi c'è un $m > 1 + n_{\bar{x}}$ tale che $n_{x_m} \leq 1 + n_{\bar{x}}$ $\frac{1}{2}$. Il massimo degli n_x è \bar{n} che cercavamo.

 $\forall A \in \tau_d \, \forall x \in A$ consideriamo $\mathcal{A} := \{A, X \setminus \{x\}\}$. È un ricoprimento perché in uno spazio metrico i singoletti sono chiusi. Allora $B_{2^{-\bar{n}}}(x) \subseteq A$ e al variare di x queste palle ricoprono A.

Corollario 42. $metrizzabile \implies (compatto \iff compatto per successioni)$

Proposizione 43. Per un insieme in (\mathbb{R}^n, τ_E) vale che: compatto \iff chiuso e limitato.

Dimostrazione. (\mathbb{R}^n, τ_E) è metrizzabile quindi compatto equivale a compatto per successioni. Mostriamo le due implicazioni:

 \Rightarrow Per assurdo:

Limitatezza Se l'insieme è illimitato allora contiene una successione che tende a ∞ . Le sottosuccessioni di questa tendono necessariamente anch'esse a ∞ .

Chiusura Se l'insieme non è chiuso allora è più piccolo della sua chiusura, quindi c'è un punto di accumulazione x fuori dall'insieme. Lo spazio è 1-numerabile quindi c'è una successione contenuta nell'insieme che tende a x. Tutte le sottosuccessioni di questa convergono a x.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tabu$

Teorema 44. (X, τ_d) compatto \iff (X, d) completo e totalmente limitato

Dimostrazione. La dimostrazione è lasciata per esercizio al lettore, ma non è richiesta nel corso. \Box

1.9.2 Compattezza e funzioni continue

Lemma 45. L'immagine continua di un compatto è compatta.

Dimostrazione. Sia X compatto e $f: X \to Y$ continua. Vogliamo dimostrare che f(X) con la topologia di sottospazio è compatto.

Prendiamo dunque un ricoprimento aperto \mathcal{A} di f(X). Consideriamo $\mathcal{A}_X := \{f^{-1}(A) \mid A \in \mathcal{A}\}$. Per definizione di continuità, gli elementi di \mathcal{A}_X sono aperti, mentre per ragioni insiemistiche ricoprono X. Allora da \mathcal{A}_X posso estrarre un sottoricoprimento finito \mathcal{A}_X^F . Tornando indietro, l'insieme $\{f(A) \mid A \in \mathcal{A}_X^F\}$ è un sottoricoprimento finito di \mathcal{A} .

Lemma 46. L'immagine continua di un compatto per successioni è compatta per successioni.

Dimostrazione. Siano X compatto per successioni e $f: X \to Y$ continua, vogliamo dimostrare che f(X) è compatto per successioni.

Sia $(y_n)_{n\in N}$ una successione in Y. Per ognuno degli y_n scelgo un $x_n \in f^{-1}(y_n)$, definendo così una successione in X. Estraggo da essa una sottosuccessione convergente (x_{n_k}) (esiste poiché X è compatto per successioni). Tornando indietro, $(f(x_{n_k}))$ è una sottosuccessione di (y_n) e converge per continuità di f.

Lemma 47. Se $f: X \to \mathbb{R}$ è continua e X è compatto allora f ammette massimo e minimo assoluti.

Dimostrazione. L'immagine continua di compatti è compatta, dunque f(X) è compatto. Ma in \mathbb{R} compatto equivale a chiuso e limitato. Dalla limitatezza segue che esiste, in \mathbb{R} , estremo superiore e inferiore, dalla chiusura che essi sono in f(X). \square

Lemma 48. Se X è compatto e $f: X \to Y$ è continua e invertibile, allora f^{-1} è continua (corollario: è un omeomorfismo).

Dimostrazione. Per prima cosa mostriamo che f è chiusa (cioè manda chiusi in chiusi). Sia $C \subseteq X$ chiuso. X è compatto quindi C è compatto. L'immagine continua di compatti è compatta quindi f(C) e Y = f(X) sono compatti. f(C) è un sottospazio compatto di Y quindi è chiuso.

Sia ora $A \subseteq X$ aperto. Il suo complementare $\mathscr{C} A$ è un chiuso di X, allora la sua immagine $f(\mathscr{C} A)$ è un chiuso di Y ovvero $\mathscr{C} f(\mathscr{C} A)$ è aperto. Per invertibilità, $\mathscr{C} f(\mathscr{C} A) = f(A)$. Abbiamo quindi che f^{-1} è continua.

1.10 Topologia prodotto e topologia quoziente

Definiamo ora delle operazioni fra spazi topologici che ci permettano di costruirne altri in maniera "naturale".

Definizione 37 (Topologia prodotto). Siano X, Y spazi topologici. La topologia prodotto è la topologia meno fine su $X \times Y$ tale che le proiezioni canoniche $(x, y) \mapsto x$ e $(x, y) \mapsto y$ sono continue.

Osservazione 13. Si vede come la condizione sulle proiezioni non sia impossibile da soddisfare. Infatti la topologia discreta sul prodotto cartesiano soddisfa banalmente.

Non è altrettanto palese che effettivamente esista una topologia minimale rispetto all'inclusione che soddisfi il requisito. Il punto non è stato chiarito a lezione. È chiaro comunque che la topologia di cui stiamo parlando è quella generata dalle preimmagini secondo p_1 o p_2 di aperti di X o di Y.

Osservazione 14. Tutte le proprietà comuni ai due spazi di partenza si propagano allo spazio prodotto⁵, in particolare il prodotto di spazi compatti è compatto, il prodotto di spazi connessi è connesso, il prodotto di spazi T_2 è T_2 .

Osservazione 15. Data una funzione surgettiva $f: X \to Y$, la relazione $a \sim b : \leftrightarrow f(a) = f(b)$ è di equivalenza, e l'insieme quoziente si identifica con Y perché $X/\sim = \{f^{-1}(\{y\}) \mid y \in Y\}.$

Viceversa, data una relazione di equivalenza \sim su X, l'immersione che manda un elemento nella sua classe di equivalenza

$$f := (x \mapsto [x]_{\sim}) : X \to X/\sim$$

ha la proprietà che $a \sim b \iff f(a) = f(b)$.

Definizione 38 (Topologia quoziente). Siano X uno spazio topologico e \sim una relazione di equivalenza su X. La topologia quoziente è la topologia più fine su X/\sim tale che l'immersione $x\mapsto [x]_{\sim}$ è continua.

Osservazione 16. Anche questa volta, se l'esistenza di topologie che rendano continua l'immersione è palese (basti pensare alla topologia banale), non è affatto scontato che esista una "topologia più fine possibile".

Definizione 39 (Insieme f-saturo). Data una funzione $f: X \to Y$ si dice f-saturo un $X' \subseteq X$ tale che $f^{-1}(f(X')) = X'$.

Proposizione 49. La topologia quoziente su $X/\sim \grave{e}$ data dalle immagini attraverso $f:=(x\mapsto [x]_{\sim})$ di aperti f-saturi di X.

Osservazione 17. Non tutte le proprietà si propagano al quoziente. Fortunatamente si propagano la connessione e la compattezza.

 $^{^5 {\}rm fatto}$ non dimostrato a lezione

Capitolo 2

Varietà

C'era una volta un nero serpentello sul verde schermo di un telefonino e mosso da veloce polpastrello guatava i frutti del suo bel giardino.

Non viveva chiuso da alcun cancello: nessun lato fermava il suo cammino, e se da questo spariva, da quello andava verso il prossimo spuntino.

Di vivere in un ritto piano il moro serpente credeva, poiché era dura immaginare che se io accosto

dello schermo ogni lato a quello opposto di quel mondo si svela la natura: non ha forma di un piano, ma di un toro. ¹

2.1 Definizioni di base

Definizione 40 (n-euclideo). X s.t. è detto n-euclideo se $\forall x \in X$ esiste un intorno aperto U di x e un omeomorfismo $f: U \to W \subseteq (\mathbb{R}^n, \tau_E)$ con W aperto.

Definizione 41 (varietà).

Una n-varietà topologica è uno s.t. n-localmente euclideo, T_2 e 2-numerabile

Definizione 42.

(U,f) è detta carta locale di X intorno a x $f^{-1}:W\to U$ è detta parametrizzazione locale di X intorno a x Un'unione di tutte le carte locali è detto atlante (completo)

Figura 2.1: $(\mathbb{R},\tau_E)\times(\mathbb{R},\tau_D)$ è localmente 1-euclideo ma non 2-numerabile

Proposizione 50. localmente euclideo \implies 2-numerabile

Dimostrazione. Si consideri $X=(\mathbb{R}^n,\tau_E)\times(\mathbb{R},\tau_D)$. Tale spazio è localmente n-euclideo, ma non 2-numerabile.

Un controesempio minimale è (X, τ_D) con X non numerabile, questi è 0-localmente euclideo, ma non 2-numerabile.

Proposizione 51. localmente euclideo $\implies T_2$

Dimostrazione. Prese 2 copie di (\mathbb{R}^n, τ_E) sia $(x,0) \in (\mathbb{R}^n_0, \tau_0)$ e $(x,1) \in (\mathbb{R}^n_1, \tau_1)$, e sia $X = (\mathbb{R}^n_0 \cup \mathbb{R}^n_1, \tau_0 \cup \tau_1)$. Si consideri la relazione di equivalenza $(x,0) \sim (x,1)$ se x > 0 mentre gli altri elementi fanno classe a sé. Si consideri l'insieme quoziente X/\sim e la funzione $f: (-\varepsilon, \varepsilon) \to X/\sim$ che manda $t \mapsto [(t,0)]$. Si verifica che f è un omeomorfismo (esercizio) che rende X/\sim localmente 1-euclideo. Tuttavia X/\sim non è T_2 in quanto non è possibile separare i punti [(0,0)] e [(0,1)].

¹Il sonetto è lasciato per esercizio ma non è richiesto nel corso.

Lezioni 29 febbraio, 2 marzo 2.2. ESEMPI DI VARIETÀ

Figura 2.2: $\mathbb{R} \sqcup \mathbb{R}$ quozientato in modo che l'unione non sia disgiunta sulla semiretta positiva; i punti nell'origine sono disgiunti ma non separati

2.2 Esempi di varietà

 \bullet (\mathbb{R}^n, τ_E)

16

- \bullet Ogni aperto di \mathbb{R}^n
- Le *n*-sfere: $S^n \subseteq (\mathbb{R}^{n+1}, \tau_E)$ $S^n = \{x \in \mathbb{R}^{n+1} \mid x_1^2 + x_2^2 + \dots + x_{n+1}^2 = 1\}$ Osservazione 18. S^n è compatto, T_2 e 2-numerabile

Dobbiamo esibire un atlante A.

Siano
$$N = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$
 e $S = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ -1 \end{pmatrix}$ il polo Nord e il polo Sud.

$$\mathcal{A} = \{ (S^n \setminus \{N\}, f_N), (S^n \setminus \{S\}, f_S) \}$$

Dove f_N e f_S sono le proiezioni stereografiche di centro N ed S così definite:

$$f_N: (S^n \setminus \{N\}) \to \mathbb{R}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \\ x_{n+1} \end{pmatrix} \mapsto \begin{pmatrix} \frac{x_1}{1 - x_{n+1}} \\ \vdots \\ \frac{x_n}{1 - x_{n+1}} \\ 0 \end{pmatrix}$$

Figura 2.3: la proiezione stereografica f_N di centro N

2.3 Spazio proiettivo (reale)

Sia $\mathbb{R}_0^n := \mathbb{R}^n \setminus \{0\}$ (come sottospazio topologico); introduciamo su \mathbb{R}_0^{n+1} la relazione \sim (di equivalenza proiettiva):

$$x, y \in \mathbb{R}_0^{n+1}, \ x \sim y \ : \leftrightarrow \ \exists \lambda \in \mathbb{R} \text{ t.c. } x = \lambda y$$

Le relative classi di equivalenza sono date da $[x]_{\sim} = \operatorname{span}(x) \setminus \{0\}.$

Inoltre, essendo $S^n \subset \mathbb{R}_0^{n+1}$, posso restringere tale relazione di equivalenza a S^n , ottenendo \sim_S (rispetto a cui le classi di equivalenza sono date da $[x]_{\sim_S} = \{x, -x\} = [x]_{\sim} \cap S^n$). Consideriamo ora gli insiemi quoziente $X := \mathbb{R}_0^{n+1}/\sim$ e $Y := S^n/\sim_S$, con le rispettive proiezioni $\pi : \mathbb{R}_0^{n+1} \to X$ e $\pi_S : S^n \to Y$.

Osservazione 19. L'applicazione $[x]_{\sim} \mapsto \text{span}(x)$ è una biiezione tra X e $\{V \subset \mathbb{R}^{n+1} \mid V \text{ è SSV}^2 \text{ di dimensione 1}\}.$

Proposizione 52. La biiezione $[x]_{\sim_S} \mapsto [x]_{\sim}$ (con inversa $[y]_{\sim} \mapsto [y]_{\sim} \cap S$) è un omeomorfismo tra X e Y (rispetto alle topologie quoziente).

Si ricorda che gli aperti della topologia quoziente sono le immagini degli aperti saturi rispetto alla proiezione.

Definizione 43 (Cono). Un sottoinsieme $C \subseteq \mathbb{R}_0^n$ è un *cono* se span $(C) \setminus \{0\} \subseteq C$ (e dunque, poiché $x \in \text{span}(x)$, se span $(C) \setminus \{0\} = C$).

²Sottospazio vettoriale

Lemma 53. Valgono le seguenti:

- $A \subseteq \mathbb{R}_0^{n+1} \ \dot{e} \ \pi$ -saturo $\leftrightarrow A \ \dot{e} \ un \ cono.$
- $A \subseteq S^n \ \dot{e} \ \pi_S$ -saturo $\leftrightarrow \forall x \in A \ -x \in A$.

Pertanto, la biiezione tra $\{A \subseteq \mathbb{R}_0^{n+1} \mid A \ \text{è} \ \pi\text{-saturo}\}$ e $\{A_S \subseteq S^n \mid A_S \ \text{è} \ \pi_S\text{-saturo}\}$ data semplicemente da $A \mapsto A \cap S^n$, span $(A_S) \setminus \{0\} \longleftrightarrow A_S$ manda aperti in aperti e viceversa, mostrando continuità e apertura di $[x]_{\sim_S} \mapsto [x]_{\sim}$, che dunque è realmente un omeomorfismo; X e Y sono dunque topologicamente equivalenti. Questi quozienti sono dunque identificati sotto il nome di *spazio proiettivo reale di dimensione n*, indicato con \mathbb{P}^n .

Proposizione 54. \mathbb{P}^n è una varietà (compatta).

È infatti T_2 , 2-numerabile e localmente omeomorfo a \mathbb{R}^n .

Dimostrazione. Siano $[x],[y]\in\mathbb{P}^n$ distinti. Tornando alle controimmagini in S^n abbiamo:

$$\pi_S^{-1}([x]) = \{x, -x\}; \ \pi_S^{-1}([y]) = \{y, -y\}; \ x \neq \pm y$$

Allora possiamo prendere U_x, U_{-x}, U_y, U_{-y} intorni aperti (rispettivamente di x, -x, y, -y) in modo che non si intersechino e che $U_x = -U_{-x}, U_y = -U_{-y}$; le unioni $U_x \cup U_{-x}$ e $U_y \cup U_{-y}$ sono duque π_S -sature e disgiunte, e passando alle loro immagini otteniamo intorni aperti disgiunti di [x] e [y], dunque \mathbb{P}^n è T_2 . Similmente si può mostrare che è anche 2-numerabile. Inoltre, dalla continuità di π_S e dalla compattezza di S^n segue che \mathbb{P}^n è compatto.

Esibiamo ora un atlante: vedendolo come quoziente di \mathbb{R}^{n+1}_0 , sia Π_i il piano affine:

$$\{(x_1,\ldots,x_{n+1})\in\mathbb{R}_0^{n+1}\,|\,x_i=1\}$$

Allora la restrizione di π

$$\phi_i: \Pi_i \to \mathbb{P}^n$$
$$\phi_i: x \mapsto [x]$$

è iniettiva e continua. Con $U_i := \phi_i(\Pi_i) \subset \mathbb{P}^n$ e $\tau_i : \Pi_i \to \mathbb{R}^n$ l'isomorfismo banale, ho $f_i := \tau_i \circ \phi_i^{-1} : U_i \to \mathbb{R}^n$ biiettiva e continua, dunque se U_i è aperto, (U_i, f_i) è una carta per \mathbb{P}^n . Ma posto

$$G_i := \{(x_1, \dots, x_{n+1}) \in \mathbb{R}_0^{n+1} \mid x_i = 0\}$$

Ho $U_i = \pi(\mathbb{R}_0^{n+1} \setminus G_i)$ e $\mathbb{R}_0^{n+1} \setminus G_i$ è un aperto π -saturo, ergo U_i è aperto. $\{(U_i, f_i)\}_{1 \le i \le n+1}$ è dunque un atlante per \mathbb{P}^n .

Proposizione 55. $\pi_S: S^n \to \mathbb{P}^n$ è un omeomorfismo locale, ovvero

$$\forall x \in S^n \ \exists U \ interno \ aperto \ di \ x \ t.c. \ \pi_S(U)$$
è aperto in $\mathbb{P}^n \ e \ \pi_S|_U : U \to \pi_S(U)$ è omeomorfismo

La dimostrazione è lasciata per esercizio al lettore.

2.4 Filtrazione di \mathbb{P}^n

Poiché si ha $\pi^{-1}(\mathbb{P}^n \setminus U_i) = G_i$, il quale è chiaramente identificabile con $\mathbb{R}^n \setminus \{0\} = \mathbb{R}^n_0$, e inoltre vale evidentemente $\pi|_{\mathbb{R}^n_0}(\mathbb{R}^n_0) = \mathbb{P}^{n-1}$, valgono:

- $\mathbb{P}^n = U_i \sqcup \mathbb{P}^{n-1}$
- $\mathbb{P}^n \setminus \mathbb{P}^{n-1}$ è omeomorfo a \mathbb{R}^n

2.5 Ripasso e complementi sul proiettivo

Definizione 44 (Spazio proiettivo). Dalla scorsa lezione sappiamo che posso definire lo spazio proiettivo \mathbb{P}^n dalle funzioni $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}/\sim$ o $\pi_S: S^n \subseteq \mathbb{R}^{n+1} \to S^n/\sim$. Dove gli insiemi quozienti sono omeomorfi (come spazi topologici) e quindi definiscono entrambi lo stesso spazio topologico \mathbb{P}^n .

Osservazione 20. Intuitivamente gli aperti della prima topologia sono i coni di centro nell'origine e gli aperti della seconda sono le intersezioni di questi coni con la sfera unitaria. Dunque abbiamo una proiezione che è corrispondenza biunivoca tra gli spazi topologici che induce una corrispondenza biunivoca tra gli aperti.

Osservazione 21. \mathbb{P}^n è T_2 e 2-numerabile, queste proprietà passano al quoziente perché la proiezione π è una mappa aperta (manda aperti in aperti).

Osservazione 22. \mathbb{P}^n è compatto perché è immagine di S^n tramite una mappa continua.

2.6 Sfera come *n*-varietà

Proposizione 56. Si può costruire un atlante $\mathcal{A} = \{(U_1, f_1), (U_2, f_2), \dots, (U_{n+1}, f_{n+1})\}.$

Dimostrazione. Considero il piano $x_{n+1} = 1$. La retta passante per l'origine degli assi e per un punto della sfera appartenente alla calotta con $x_{n+1} > 0$ interseca il piano suddetto in un punto. Il piano è isomorfo a \mathbb{R}^n e questa procedura stabilisce una biezione tra i punti della calotta superiore e i punti del piano. Ripeto la costruzione per la calotta inferiore. Devo costruire una carta locale anche per l'equatore

ma esso è isomorfo a una sfera S^{n-1} dunque posso procedere iterativamente, finché non arrivo a S^0 .

Dunque si riesce a dotare S^n di un atlante, essa è poi 2-numerabile e T_2 poiché queste proprietà passano ai sottospazi topologici.

2.7 Varietà differenziabili

Proposizione 57 (Prodotto di varietà topologiche). Date M_1 e M_2 n_1 -varietà e n_2 -varietà topologiche $M_1 \times M_2$ è una $(n_1 + n_2)$ -varietà.

Dimostrazione. Devo esibire un atlante. Se $\mathcal{A}_1 = (U_i, f_i)$ è un atlante per M_1 e $\mathcal{A}_2 = (U_i, f_i)$ è un atlante per M_2 allora il prodotto $\mathcal{A}_1 \times \mathcal{A}_2 = (U_i \times U_j, f_i \times f_j)$ è un atlante per il prodotto. Il prodotto di funzioni è definito come segue: sia $f_i: U_i \to A_i$ e $f_j: W_j \to B_j$ allora $f_i \times f_j: U_i \times W_j \to A_i \times B_j$ è la funzione tale che $(p,q) \mapsto f_i(p) \times f_j(q)$. T_2 e 2-numerabilità sono proprietà che passano al prodotto topologico.

Osservazione 23. La topologia sul prodotto cartesiano degli insiemi è quella meno fine che rende le proiezioni $f: M_1 \times M_2 \to M_1$ e $f: M_1 \times M_2 \to M_2$ continue.

Osservazione 24. $S^p \times S^q$ è una (p+q)-varietà, proprio come $S^1 \times S^1 \times S^n \times \dots S^1$ è chiamato n-toro ed è anche una n-varietà.

Definizione 45. $f: M_1 \to M_2$ con f continua si dice morfismo tra spazi topologici.

L'obbiettivo è studiare gli spazi topologici a meno di applicazioni continue.

Osservazione25. S^n è omeomorfo a $S^m?$ S^n e \mathbb{P}^n sono omeomorfi? Sono domande di non facile risposta. . .

Esempio 9 (Curva di Peano). Definisco una funzione $f:[0,1] \to [0,1] \times [0,1]$ continua e surgettiva. Dunque i due insiemi di partenza e di arrivo con la topologia euclidea sono omeomorfi.

Definizione 46 (Differenziabilità in un punto). $f: \mathbb{R}^n \to \mathbb{R}^k$ è differenziabile in x_0 se esiste un applicazione lineare $L: \mathbb{R}^n \to \mathbb{R}^k$ tale che $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-L(h)}{\|h\|} = 0$ Se L esiste è necessariamente unica.

Definizione 47. $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ è differenziabile in Ω se è differenziabile in ogni suo punto.

Definizione 48 (Funzione differenziale). d $f: \Omega \to \operatorname{Hom}(\mathbb{R}^n, \mathbb{R}^m) \approx \mathbb{R}^{nm}$ è chiamata differenziale della funzione $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$.

Osservazione 26. Posso costruire induttivamente $d(df) = d^2f$, $d(d^2f) = d^3f$ e così via.

Osservazione 27. f è n-differenziabile e posso costruire induttivamente le funzioni sopra mostrate fino alla n-esima.

Definizione 49. $f \in C^{\infty}$ se è k-differenziabile $\forall k > 0$.

Definizione 50. Dall'analisi reale sappiamo che f è C^{∞} se tutte le derivate parziali esistono e sono continue

Definizione 51 (Diffeomorfismo). $f: \Omega \subseteq \mathbb{R}^n \to \Omega' \subseteq \mathbb{R}^n$ è un diffeomorfismo se è C^{∞} ed è invertibile tale che f^{-1} è C^{∞} .

Proposizione 58. Se $f: \mathbb{R}^n \to \mathbb{R}^m$ è diffeomorfismo allora n=m, cioè la dimensione è un invariante per diffeomorfismo.

Dimostrazione. Sia g la funzione inversa di f. allora $g \circ f = \mathrm{id}$ e $f \circ g = \mathrm{id}$, in particolare vale che $\mathrm{d}(f \circ g) = \mathrm{d}f \circ \mathrm{d}g = \mathrm{id}$ (dall'analisi reale). Dunque valutando il differenziale in un punto ottengo che le due matrici che sono i differenziali della funzione f e della sua inversa sono una l'inversa dell'altra ma per avere un'inversa la matrice deve essere quadrata, dunque il diffeomorfismo conserva le dimensioni. \square

Definizione 52 (*n*-varietà topologica differenziabile). Sia un atlante $\mathcal{A} = (U_i, f_i)$. Considero gli omeomorfismi $f_i: U_i \to A_i \subseteq \mathbb{R}^n$ e $f_j: W_j \to B_j \subseteq \mathbb{R}^n$ e l'intersezione $U_i \cap U_j$. Dico che \mathcal{A} è un atlante differenziabile se ogni funzione $f_k \circ f_j^{-1}: f_j(U_i \cap U_j) \to f_i(U_i \cap U_j)$ è C^{∞} . Essa è evidentemente una funzione da \mathbb{R}^n a \mathbb{R}^n ed è anche invertibile infatti $f_j \circ f_k^{-1}$ è la sua inversa.

Definizione 53. Data una n-varietà M (topologica) due atlanti differenziabili si dicono compatibili se $A_1 \cup A_2$ è ancora un atlante differenziabile.

Osservazione 28. Se le carte non si intersecano l'atlante è differenziabile

Osservazione 29. Potrei avere più di un atlante differenziabile, l'unione di tutti gli atlanti differenziabili è l'atlante massimale per quella struttura di n-varietà liscia.

Osservazione 30. Data una n-varietà topologica esiste sempre un atlante differenziabile massimale?

Esempio 10. Verifichiamo che gli spazi proiettivi \mathbb{P}^n introdotti precedentemente sono esempi di n-varietà differenziabili. Per farlo mostriamo che l'atlante topologico $\{(U_1, \phi_1), \ldots, (U_{n+1}, \phi_{n+1})\}$ fornito precedentemente è in effetti un atlante differenziabile.

Ricordiamo che U_j è l'immagine tramite ϕ_j^{-1} del piano $\pi_j := \{x_j = 1\}$. Ricordiamo la definizione di $\phi_j : \mathbb{P}^n \to \mathbb{R}^n$ e per $x_j \neq 1$ ho:

$$\phi_j([x_1, \dots, x_j, \dots, x_{n+1}]) = \left(\frac{x_1}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_{n+1}}{x_j}\right)$$

Conseguentemente avrò $\phi_i^{-1}: \mathbb{R}^n \to \mathbb{P}^n$ e:

$$\phi_i^{-1}(y_1,\ldots,y_{i-1},y_{i+1},\ldots,y_{n+1}) = ([y_1,\ldots,y_{i-1},1,y_{i+1},\ldots,y_{n+1}]).$$

Se adesso mi restringo all'intersezione $U_i \cap U_i$ e considero la composizione:

$$\phi_{j} \circ \phi_{i}^{-1}([\xi_{1}, \dots, \xi_{i-1}, \xi_{i+1}, \dots, \xi_{n}]) = \phi_{j}(\xi_{1}, \dots, \xi_{i-1}, 1, \xi_{i+1}, \dots, \xi_{j}, \dots, \xi_{n}) = \left(\frac{\xi_{1}}{\xi_{j}}, \dots, \frac{1}{\xi_{j}}, \dots, \frac{\xi_{j-1}}{\xi_{j}}, \frac{\xi_{j+1}}{\xi_{j}}, \dots, \frac{\xi_{n}}{\xi_{j}}\right).$$

Questa funzione è in effetti un diffeomorfismo (è C^{∞} , invertibile e con inversa C^{∞}). Per esercizio si verifichi che anche S^n minuto dell'atlante $\{(U_N, \phi_N), (U_S, \phi_S)\}$ citato precedentemente, è una n-varietà differenziabile.

Definizione 54 (Carte f-adattate). Siano date M e N, due varità differenziabili di dimensione m e n rispettivamente, e una funzione f tra i due spazi.

Siano date anche (U, ϕ) e (W, ψ) , carte dell'atlante di M e N rispettivamente, queste si diranno f-adattate se $f(U) \subseteq W$.

Definizione 55 (C^{∞}) . Con la stessa notazione della definizione precedente, f si dice C^{∞} se $\forall x \in M \exists (U_x, \phi), (W, \psi)$ f-adattate tali che $\psi \circ f \circ \phi^{-1}$ è C^{∞} . $\psi \circ f \circ \phi^{-1}$ è detta rappresentazione locale differenziabile o carta locale.

Proposizione 59. Se $f \ \grave{e} \ C^{\infty}$ lo sono anche tutte le sue rappresentazioni locali.

Osservazione 31. La struttura di diffeomorfismo è più debole della compatibilità tra atlanti.

Esempio 11. Considero uno spazio topologico $M:=(\mathbb{R},\tau_E)$ e due funzioni da M a \mathbb{R} :

$$\phi_0 := id;$$
 $\phi_1 := \begin{cases} y = x & x \le 0 \\ y = 2x & x > 0 \end{cases}$

 $\{(M,\phi_0)\}$ e $\{(M,\phi_1)\}$ sono due atlanti differenziali (banalmente perchè costituiti da una sola carta), ma i due atlanti non sono compatibili, infatti $\{(M,\phi_0),(M,\phi_1)\}$ NON è un atlante differenziabile poichè $\phi_1\circ\phi_0^{-1}=\phi_1$ che non è differenziabile in 0. Tuttavia le due varietà differenziabili sono diffeomorfe attraverso ϕ_1^{-1} , infatti $\phi_0\circ\phi_1^{-1}\circ\phi_1=\mathrm{id}$, che evidentemente è differenziabile.

 $Osservazione\ 32.$

Teorema 60 (Funzione inversa). $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$, C^{∞} , tale che $\forall x \in \Omega$, $d_x f$ è invertibile $\Longrightarrow \exists U_x, U \subseteq \Omega$ tale che f(U) è aperto e f è un diffeomorfismo.

Osservazione 33. In pratica restringendo f ad un intorno aperto opportuno di x in Ω , $(U, f_{||})$ è una carta locale differenziabile di Ω intorno a x.

È interessante notare come questo teorema, a partire da un informazione locale (in un punto), ci restituisce informazioni "localmente globali".

Definisco prima un modello locale lineare, ovvero una proiezione $\pi: \mathbb{R}^n \to \mathbb{R}^m$ con $n \geq m$ tale che $j(x_1, \ldots, x_n) = (x_1, \ldots, x_m)$. Noto che $\forall x \in \mathbb{R}^n, d_x j$ è iniettivo (essendo $d_x j = j(x)$ per linearità di j).

Teorema 61 (Funzione implicita, versione surgettiva). Sia $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ (con U aperto $e \ n \ge m$) una funzione C^{∞} tale che $\forall x \in U$, $d_x f$ è surgettivo \Longrightarrow Esiste una parametrizzazione locale di U intorno a $x: \phi: U' \subseteq \mathbb{R}^n \to \phi(U') \subseteq U$ diffeomorfismo tale che $f \circ \phi = \pi$

Similmente a prima definisco prima un modello locale lineare, stavolta una inclusione $j: \mathbb{R}^n \to \mathbb{R}^m$ con $n \leq m$ tale che $\pi(x_1, \dots, x_n) = (x_1, \dots, x_n, 0, 0, \dots)$. Noto che $\forall x \in \mathbb{R}^n, d_x j$ è surgettivo (essendo $d_x j = j(x)$ per linearità di j).

Teorema 62 (Funzione implicita, versione iniettiva). Sia $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ (con U aperto $e \ n \ge m$) una funzione C^{∞} tale che $\forall x \in U$, $d_x f$ è iniettivo \Longrightarrow Esiste una carta locale di U intorno a $x: \psi: U \to U'' \subset \mathbb{R}^m$ diffeomorfismo tale che $\psi \circ f = j$.

Proposizione 63. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un generico diffeomorfismo. La composizione del differenziale $df: \mathbb{R}^n \to GL_n(\mathbb{R})$, del determinante $det: GL_n(\mathbb{R}) \to \mathbb{R} \setminus \{0\}$ e della funzione segno $sgn: \mathbb{R} \setminus \{0\} \to \{\pm 1\}$: $sgn \circ det \circ df$ è una funzione costante che può valere $1 \ o - 1$.

Dimostrazione. \mathbb{R}^n è connesso e sgn \circ det \circ df è composizione di funzioni continue, quindi continua.

Definizione 56. Se $\forall x \in \mathbb{R}^n$, det $d_x f > 0$, si dice che f preserva l'orientazione.

Osservazione 34. In pratica basta valutare il segno di $\det(d_x f)$ in un punto, per saperne il valore dappertutto per la proposizione precedente.

Inoltre, se f non preserva l'orientazione basterà comporla con

$$\tau:(x_1,\cdots,x_n)\to(x_1,\cdots,-x_n)$$

per ottenere una funzione che la preserva. Ci si potrà quindi restringere allo studio delle funzioni che preservano l'orientazione.

Teorema 64. Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ un diffeomorfismo che preserva l'orientazione $\implies f$ è diff-isotopo, ovvero: $\exists F: \mathbb{R}^n \times [0,1] \to \mathbb{R}^n$ con $f_t = F|_{\mathbb{R}^n \times \{t\}}$, tale che:

- F è differenziabile
- $f_0 = f$
- $f_1 = id$
- $f_t \ \dot{e} \ un \ diffeomorfismo \ \forall t \in [0,1]$

MOLTO DA SISTEMARE

Lemma 65. Sia $f: \mathbb{R}^n \to \mathbb{R}$ liscia con $U \subseteq \mathbb{R}^n$ aperto connesso, f(0) = 0, $0 \in U$. Allora $\exists g_i : \mathbb{R}^n \to \mathbb{R}$ liscie tali che $f(x) = \sum_i x_i g_i(x)$.

Dimostrazione. Per il teorema fondamentale del calcolo abbiamo:

$$f(x) = \int_0^1 \frac{\mathrm{d}f(tx)}{\mathrm{d}t} \, \mathrm{d}t = \sum_{i=1}^n \left(\int_0^1 \frac{\partial f}{\partial x_i}(tx) \, \mathrm{d}t \right) x_i$$

Allora poniamo:

$$g_i(x) := \int_0^1 \frac{\partial f}{\partial x_i}(tx) dt$$

Teorema 66 (Linearizzazione dei diffeomorfismi di \mathbb{R}^n a meno di isotopia). Sia $f: \mathbb{R}^n \to \mathbb{R}^n$ diffeomorfismo con $\forall x \in \mathbb{R}^n : \det(\mathrm{d}f_x) > 0$. Allora $\exists F: \mathbb{R}^n \times [0,1] \to \mathbb{R}^n$ liscia tale che $\forall t \in [0,1]: f_t$ è un diffeomorfismo di \mathbb{R}^n e $f_0 = f$, $f_1 = \mathrm{id}$, dove $f_t := F|_{\mathbb{R}^n \times \{t\}}$.

Dimostrazione. WLOG f(0) = 0. Infatti se $f(0) = x_0$, $H(x,t) := f(x) - t(x_0)$ è un'isotopia tra f e la f' con f'(0) = 0.

Per definizione, $df_0(x) = \lim_{t\to 0} \frac{f(tx)}{t}$.

Poniamo:

$$\tilde{F}(x,t) := \begin{cases} \frac{f(tx)}{t} & t \in [0,1] \\ \mathrm{d}f_0(x) & t = 0 \end{cases}$$

CLAIM \tilde{F} è liscia. Infatti applicando il Lemma 65 abbiamo $\tilde{F}(x,t) = \sum_i x_i g_i(x)$.

Sia $A := \mathrm{d} f_0$, osserviamo che det A > 0. Dobbiamo mostrare che A è connessa con l'identità in modo liscio, ovvero se consideriamo $\mathrm{GL}_n^+ := \{M \in \mathrm{GL}_n \, | \, \det M > 0\}$ aperto di GL_n , dobbiamo mostrare che è connesso per archi.

Intanto, il cammino più intuitivo $t \mapsto tA + (1-t)I$ non funziona in generale se n è dispari, perché il determinante si può annullare.

Restringiamoci prima al caso semplice $A \in SO_n$: le A^i sono una base ortonormale rispetto al prodotto scalare canonico. Notiamo che $I \in SO_n$ e che possiamo connettere A a I attraverso SO_n , il procedimento è geometricamente intuitivo.

Passiamo ora al caso generale $A \in GL_n^+$. Sia \langle , \rangle_A il prodotto scalare definito positivo tale che le A^i sono una base ortonormale; sia \langle , \rangle_I quello canonico.

Osserviamo che $\langle , \rangle_t := t \langle , \rangle_A + (1-t) \langle , \rangle_I$ ci dà un cammino di prodotti scalari definiti positivi. $\forall t$ applico Gram-Schmidt alle A^i ottenendo una base ortonormale $B_t := \{B_t^1, \ldots, B_t^n\}$. Abbiamo che:

- $B_1 = A$
- $B_0 \in SO_n$
- le formule G-S per i B^i sono liscie.
- $\det B_t > 0$

Allora da B_0 ci connettiamo all'identità come nel caso $A \in SO_n$.

Sia $f: U \to \mathbb{R}^n$ con f liscia, $0 \in U \subseteq \mathbb{R}^n$, U aperto, f(0) = 0. Espandiamo in serie la f:

$$f(x) = df_0(x) + x^{\mathrm{T}}(Hf_0)x + R \quad \text{con} \quad \lim_{x \to 0} \frac{R}{\|x\|^2} = 0$$

Dove Hf è la matrice hessiana:

$$(Hf_0)_{ij} := \frac{\partial^2 f}{\partial x_i \partial x_i}(0)$$

Ricordiamo che l'hessiana è simmetrica per le funzioni liscie.

Se $\mathrm{d} f_0 \neq 0$ cioè $\nabla f(0) \neq 0$, siamo nelle ipotesi del Teorema 61. Allora \exists parametrizzazione locale ψ tale che $f \circ \psi(x) = x_1$.

Supponiamo che d $f_0 = 0$. Allora chiamiamo 0 punto critico di f. In questo caso $f(x) = x^{\mathrm{T}}(Hf_0)x + R$.

Supponiamo che sia un punto critico non degenere, cioè $\det(Hf_0) \neq 0$. Allora applichiamo il teorema di Sylvester alla matrice Hf (che è simmetrica e non degenere), avremo indici di positività e negatività i_+ e $i_- = n - i_+$ e:

$$\exists P \in GL_n : P^{T}(Hf_0)P = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & 1 & & \\ & & & -1 & & \\ & & & & \ddots & \\ & & & & & -1 \end{pmatrix} =: J$$

Definiamo le forme quadratiche: $Q_H(x) := x^{\mathrm{T}}(Hf_0)x$, $Q_J(x) = x_1^2 + \cdots + x_{i_+}^2 - (x_{i_++1}^2 + \cdots + x_n^2)$. Allora $f(x) = Q_H(x) + R$.

Chiamiamo i_{-} l'indice del punto critico non degenere.

Esercizio 1. La proprietà di punto critico e il suo indice sono invarianti per riparametrizzazione differenziabile a sinistra.

Teorema 67 (Lemma di Morse). Sia f come sopra ma a valori in \mathbb{R} , allora esiste una riparametrizzazione locale intorno all'origine che trasforma la f nella forma quadratica canonica del tipo di Q_J :

$$\begin{cases}
f \in C^{\infty}(U, \mathbb{R}^{n}) \\
U \text{ intorno di } 0 \text{ in } \mathbb{R}^{n} \\
0 \text{ punto critico di indice } \lambda \\
f(0) = 0
\end{cases} \implies \exists \psi, U', U'' : \begin{cases}
U'' \subseteq \mathbb{R}^{n} \\
U' \subseteq U \\
U' \text{ intorno di } 0 \\
\psi : U'' \to U' \\
f \circ \psi(x) = -\sum_{i=1}^{\lambda} x_{i}^{2} + \sum_{i=\lambda+1}^{n} x_{i}^{2}
\end{cases}$$

Dimostrazione. WLOG restringiamoci a U convesso.

Applichiamo due volte il Lemma 65:

$$f(0) = 0 \rightarrow f(x) = \sum_{i} x_{i} g_{i}(x)$$
$$df_{0} \equiv 0 \rightarrow f(x) = \sum_{i} b_{ij}(x) x_{i} x_{j}$$

Dove le b_{ij} sono liscie. WLOG $b_{ij} = b_{ji}$ perché simmetrizzo con $b_{ij} \mapsto \frac{b_{ij} + b_{ji}}{2}$, che a meno di restringere U non cambia l'indice di $(b_{ij}) =: B$ che in effetti è λ (a meno di un cambiamento lineare di base, posso suppore $Hf_0 = J$).

Applichiamo Gram-Schmidt alle B:

$$\forall x \,\exists P(x) \in \operatorname{GL}_n : P^{\mathrm{T}}BP = \begin{pmatrix} -1 & & & \\ & \ddots & & \\ & -1 & & \\ & & 1 & \\ & & n - \lambda \begin{pmatrix} & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} =: J$$

Osserviamo che P(0) = I e che le P sono liscie.

Sia $\varphi: U \to \mathbb{R}^n$ con $\varphi(x) := P(x)^{-1}$. Osserviamo che d $\varphi_0 = \mathrm{id}$.

Applichiamo il teorema della funzione inversa: φ è un diffeomorfismo se restringiamo il codominio all'immagine.

Abbiamo finalmente
$$f = \varphi^{\mathrm{T}}(P^{\mathrm{T}}BP)\varphi = \varphi^{\mathrm{T}}J\varphi$$
.

Definizione 57 (Funzioni a foruncolo). $\lambda : \mathbb{R}^n \to \mathbb{R}^n, \lambda(\underline{x}) = \lambda(|\underline{x}|)$ tale che

- $1 > \lambda(\underline{x}) > 0$
- $\lambda(\underline{x}) = 1 \forall \underline{x} : |\underline{x}| < a$
- $\lambda(\underline{x}) = 0 \forall \underline{x} : |\underline{x}| > b$
- λ liscia

è detta funzione a foruncolo (o anche partizione dell'unità di Paley-Littlewood)

Osservazione 35. Nei punti in cui $|\underline{x}| = \pm a$ tutte le derivate sono nulle, dunque λ non può essere analitica in quei punti.

Usiamo adesso questa nozione per estendere funzioni definite localmente.

Proposizione 68. Sia M una varietà e (U, ϕ) una carta. Allora posso estenderla su tutta la varietà.

Dimostrazione. Basta considerare $\lambda \cdot f : M \to \mathbb{R}$ con λ a foruncolo.

2.8 Varietà con bordo

Definizione 58 (Diffeomorfismo fra sottoinsiemi arbitrari di \mathbb{R}^n). $f: A \to B$ con $A, B \subseteq \mathbb{R}^n$. $f \in diffeomorfismo$ se

- è un omeomorfismo
- $\forall x \in A \exists \phi : U \to \mathbb{R}^n$ carta locale tale che $f|_{U \cap A} = \phi|_{U \cap A}$

22 Lezioni 10 marzo, 14 marzo

2.9. FIBRATO TANGENTE

Per le varietà con bordo, prendo come modello il sempiano superiore $\mathbb{H}_n = \{x \in \mathbb{R}^n \mid x_n \geq 0 \ \forall n\}$

Definizione 59 (Varietà con bordo). *M* è una varietà con bordo se

- è spazio topologico T_2 , 2-numerabile
- è munito di atlante massimale tale che $\phi_{\lambda}: U_{\lambda} \to U_{\lambda} \subseteq \mathbb{H}_n$, ϕ omeomorfismo.
- $\forall \mu, \lambda \ \phi_{\mu} \circ \phi_{\lambda}^{-1} : \phi_{\lambda}(U_{\lambda} \cap U_{\mu}) \rightarrow \phi_{\mu}(U_{\lambda} \cap U_{\mu})$ è diffeomorfismo.

Definizione 60 (Bordo). $\partial M := \{x \in M \mid \exists \text{ carta intorno a } x \text{ tale che } \phi_{\lambda}(x) \in \partial H\}$ è detto il *bordo* di M.

Proposizione 69. Se un punto è di bordo per una carta, lo è per tutte le carte dell'atlante. (La dimostrazione è lasciata per esercizio).

Si estendono ora tutte le definizioni date alle varietà alle varietà con bordo.

Definizione 61 (Sottovarietà). Una sottovarietà N^n di M^m varietà con $\partial M = \emptyset, N \subseteq M (n \le m)$ se $\forall x \in N, \exists$ carta locale di $x \in M$ con $\phi : U \to \mathbb{R}^m$

Definizione 62 (Punto regolare). y è un punto regolare per f se $\forall x \in f^{-1}(y)$, $d_x f$ è surgettiva.

Proposizione 70. y punto regolare $\implies f^{-1} := N$ è sottovarietà di U.

Dimostrazione. Segue da funzione implicita in forma surgettiva.

Proposizione 71. $f: U \to \mathbb{R}^m$, U aperto di \mathbb{R}^n . Se $\forall x \in U, d_x f$ iniettiva, f omeomorfismo $\Longrightarrow N := f^{-1}(y)$ è sottovarietà di \mathbb{R}^n e f diffeomorfismo.

Dimostrazione. Segue da funzione implicita in forma iniettiva

Osservazione 36. Nel teorema sopra l'ipotesi di omeomorfismo è necessaria! Come controesempio basta prendere

Si osservi che abbiamo tre modelli possibili al variare del domicilio di una n-sottovarietà contenuta in una m-varietà ($n \le m$):

- Il bordo sta nel bordo (1).
- Il bordo di \mathbb{H}^n non sta nel bordo di \mathbb{H}^m (2).
- Caso misto (3).

Definizione 63 (Sottovarietà propria). $N \in M$ è sottovarietà propria se l'unico modello che si realizza è (1), ossia $\partial N = N \cap \partial M$.

2.9 Fibrato tangente

2.9.1 Modello locale

Si definisce di seguito il fibrato tangente di un aperto di \mathbb{R}^n e altre nozioni ad esso connesse. Queste definizioni non saranno generali, poiché la teoria che si intende affrontare non si limita a varietà immerse, esse però costituiranno il modello locale delle strutture più generali quali le varietà differenziabili, come sono state precedentemente definite.

Definizione 64 (Fibrato tangente). Si definisce fibrato tangente di un aperto U di \mathbb{R}^n l'insieme $T(U) = U \times \mathbb{R}^n$. Ogni $x \in U$ è detto punto di U mentre ogni $v \in \mathbb{R}^n$ è detto vettore di \mathbb{R}^n .

Si nota che, fissato un x punto di U, la traslazione $v \mapsto v + x \ \forall v \in \mathbb{R}^n$ consente di identificare \mathbb{R}^n con lo spazio dei vettori tangenti a U nel punto x.

Definizione 65 (Proiezione naturale). Si definisce proiezione naturale π_U : $T(U) \to U$ la mappa $(x, v) \mapsto x$.

Nella precedente definizione l'aggettivo *naturale* serve solamente a specificare che la mappa cui ci si riferisce è quella indotta dalla definizione come prodotto. In seguito ci si riferirà ad essa anche solo come proiezione.

Definizione 66 (Fibra). Si definisce fibra la controimmagine di un punto tramite la proiezione naturale, e si scrive $T_xU = \pi_U^{-1}(x)$.

Alla luce di quest'ultima definizione si identificano:

- $T_xU = \{x\} \times \mathbb{R}^n = \{(x, v) \in T(U) \mid v \in \mathbb{R}^n\}$
- $T(U) = \bigsqcup_{x \in U} T_x U$

Cioè si identifica la fibra come lo spazio tangente del punto x, quindi lo spazio dei vettori applicati, mentre l'intero fibrato come unione disgiunta delle fibre.

Definizione 67 (Applicazione tangente). Data un'applicazione liscia $f: U \to W$ si definisce l'applicazione tangente di f la funzione $Df: T(U) \to T(W)$ che manda $(x,v) \mapsto (f(x), \mathrm{d}_x f(v))$, cioè quell'applicazione che fa commutare il seguente diagramma:

$$T(U) \xrightarrow{-Df} T(W)$$

$$\downarrow^{\pi_U} \qquad \downarrow^{\pi_W}$$

$$U \xrightarrow{f} W$$

Osservazione 37. L'applicazione tangente manda fibre in fibre in modo lineare, poiché $\forall x \in U \ d_x f: T_x U \to T_x W$, e il differenziale è un'applicazione lineare per definizione. L'applicazione tangente gode inoltre delle seguenti proprietà:

- è un'applicazione liscia in tutte le sue variabili (infatti f è liscia e, $d_x f$ è liscia perché lineare)
- è functoriale: $h = g \circ f \implies Dh = Dg \circ Df$
- D(id) = id
- ullet se f è un diffeomorfismo anche Df è un diffeomorfismo e manda fibra in fibra attraverso isomorfismi lineari

Definizione 68 (Applicazioni fibrate). Un'applicazione che ha la proprietà di Df di mandare fibra in fibra in modo lineare è detta applicazione fibrata.

Se f è un diffeomorfismo si ha che Df è quindi un diffeomorfismo fibrato (come si è già enunciato tra le proprietà di Df).

2.9.2 Caratterizzazione differenziale di T_xU

Di seguito sarà esposta una caratterizzazione più intrinseca delle definizioni che sono state nella sezione precedente.

Definizione 69 (Spazio dei germi). Dato un punto $x \in U$ aperto di \mathbb{R}^n , e un intorno W di x definisce dunque lo spazio dei germi \mathcal{E}_x l'insieme quoziente delle funzioni lisce da un aperto di W in \mathbb{R} con la seguente relazione di equivalenza:

$$(W_1, f_1) \approx (W_2, f_2) : \leftrightarrow \exists W_3 \subseteq W_1 \cap W_2 \text{ t.c. } f_1(y) = f_2(y) \ \forall y \in W_3$$

Lo spazio dei germi \mathcal{E}_x ha una naturale struttura di \mathbb{R} -algebra, cioè:

- $\bullet\,$ un $\mathbb{R}\text{-spazio}$ vettoriale
- munito di un prodotto (in questo caso commutativo)

Per verificarlo è sufficiente mostrare che la somma e il prodotto di due germi è un germe fissato, indipendentemente dai rappresentanti scelti.

Osservazione 38. Si ha che lo spazio \mathcal{E}_x non dipende dall'aperto U, che costituisce in questo caso la struttura locale, infatti è caratterizzato dalle proprietà locali.

Definizione 70 (Derivata direzionale). Dato $v \in T_xU$ la derivata direzionale lungo il vettore v nel punto x è un'applicazione lineare sullo spazio dei germi definita nel modo seguente:

$$\delta_v : \mathcal{E}_x \to \mathbb{R}$$

$$\delta_v([f]) := \sum_j v^j \left(\frac{\partial f}{\partial x^j}(x) \right)$$

Dove i v^j sono le componenti del vettore v nella base canonica di \mathbb{R}^n .

Osservazione 39 (Proprietà della derivata direzionale). Si verifica facilmente che la derivata direzionale, in un punto x fissato, ha le seguenti proprietà:

23

- è ben definita (cioè non dipende dal rappresentante del germe)
- \bullet è \mathbb{R} -lineare
- ha la proprietà di Leibniz:

$$\delta_v(f \circ g) = f(x)\delta_v(g) + g(x)\delta_v(f)$$

Che si riassumono dicendo che δ_v è una derivazione su \mathcal{E}_x (questa definizione corrisponde agli ultimi due punti).

Si ha inoltre che, sempre fissato il punto x, è definita la funzione δ_v : $T_xU \to \operatorname{Der}(\mathcal{E}_x)$ che ad ogni vettore associa una derivazione su \mathcal{E}_x .

Lemma 72. L'applicazione δ è un isomorfismo di spazi vettoriali

Dimostrazione. Si verificano le proprietà di un isomorfismo singolarmente:

Linearità è evidente dalla definizione

Iniettività il nucleo di δ è evidentemente $\{0\}$, infatti la derivazione nulla è quella in cui $v^j=0$ $\forall j$

Suriettività si deve verificare che $\forall d \in \operatorname{Der}(\mathcal{E}_x) \ \exists v \in T_x U \text{ t.c. } d = \delta_v$. Dato $f \in \mathcal{E}_x$ sia h = f - f(x). Poiché f è un germe si può restringere a piacere il dominio fino a renderlo convesso. Si applica dunque ad h il lemma di Morse: $h(x) = \sum_j g_j(x) x_j$ con le g_j lisce e t.c. $g_j(x) = \frac{\partial f}{\partial x^j}(x)$. Allora si ha:

$$d(h) = d(f - f(x)) = d(f) - d(f(x)) = d(f) = \sum_{j} d(x^{j})g_{j}(x)$$

e quindi v è definito per componenti $v^j = d(x^j)$

Osservazione 40. Sia $\varphi: U \to W$ un'applicazione liscia, e $f: W \to \mathbb{R}$ un'altra applicazione liscia. Allora $\delta_v: \mathcal{E}_x \to \mathbb{R}$ ha la seguente proprietà:

$$\delta_v(f \circ \varphi) = \delta_{d\varphi(v)}(f)$$

2.9.3 Costruzione del fibrato tangente su varietà differenziabili

Si vogliono ora estendere le definizioni date a generiche varietà differenziabili. Sia dunque M una n-varietà liscia e $\mathcal{A} = \{(U_j, \varphi_j)\}_i$ un atlante massimale.

Osservazione 41. Dato un cambiamento di carte $\varphi_j \circ \varphi_i^{-1}$ si ha che esso è una funzione tra aperti di \mathbb{R}^n ed è perciò definita l'applicazione tangente:

$$D(\varphi_j \circ \varphi_i^{-1}) : (x, v) \mapsto (\varphi_j \circ \varphi_i^{-1}(x), d_x(\varphi_j \circ \varphi_i^{-1})(v))$$

Si considerano ora le applicazioni μ_{ji} definite come segue:

$$\mu_{ji}: U_i \cap U_j \to \mathrm{GL}(n)$$

$$x \mapsto \mathrm{d}_{\varphi_j(x)(\varphi_j \circ \varphi_i^{-1})}$$

Osservazione 42 (Proprietà delle μ_{ji}). Si ha che le funzioni ora definite hanno le seguenti proprietà:

- ogni μ_{ii} è liscia
- $\forall i \text{ si ha che } \mu_{ii} : U_i \to GL(n) \text{ ha come immagine } \{\text{id}\}$
- $\bullet \ \mu_{ji} = [\mu_{ji}]^{-1}$
- $\forall x \in U_i \cap U_j \cap U_k$ si ha che $\mu_{ik}(x)\mu_{kj}(x)\mu_{ji}(x) = \mathrm{id}$

Una famiglia di funzioni che verifica le ultime tre proprietà è detta cociclo.

Un cociclo è una colla che incolla le fibre

R.Benedetti

Procediamo ora con la costruzione del fibrato tangente su una varità differenziabile. Sia M una varietà differenziabile con atlante massimale $\{(U_i, \phi_i)\}_{i \in I}$. Definiamo lo spazio topologico $T = M \times \mathbb{R}^n \times I$. Questo è uno spazio topologico in quanto prodotto di spazi topologici (si intenda I con la topologia discreta).³ Sia ora $T' \subseteq T : (x, v, i) \in T' : \longleftrightarrow x \in U_i$. Si pensi a T' come uno spazio topologico munito della topologia di sottospazio.

Si definisca ora la relazione di equivalenza \sim su T' tale che: $(x,v,i)\sim (x',v',j):\leftrightarrow x'=x\wedge v'=\mu_{jk}(x)v$ (dove $\mu_{\alpha\beta}$ è il cociclo definito un precedenza). Definiamo $T(M)^5=T'/\sim$ dotato della topologia quoziente. Chiamiamo q la proiezione di T'

 $^4 \sim$ è effettivamente una relazione di equivalenza grazie alle proprietà del cociclo. In particolare:

- $\mu_{ii}(x) = \mathrm{id}_n \implies a \sim a$
- $\mu_{ik}(x)\mu_{ki}(x) = \mathrm{id}_n \implies (a \sim b \iff b \sim a)$
- $\mu_{ij}(x)\mu_{ik}(x)\mu_{ki}(x) \implies ((a \sim b \land b \sim c) \implies a \sim c)$

su T(M).

Si dovrebbe ora verificare che T(M) è 2-numerabile e T_2 . La seconda è banale avendo operato sempre con spazi T_2 e passando la proprietà attraverso le operazioni fatte. La prima non la dimostriamo.

Definiamo ora la funzione $\pi_M: T(M) \to M$ tale che $\pi_M([(x,v,i)]) = x$.

Osservazione 43. La mappa π_M è continua in quanto se $A \subseteq M$ è un aperto $(\pi_M \circ q)^{-1}(A)$ è l'intersezione di T' con $A \times \mathbb{R}^n \times J$ che è un aperto. Questo, dato che gli aperti in T' erano gli insiemi la cui controimmagine attraverso q è aperta, ci dice che $\pi^{-1}(A)$ è effettivamente aperto in T'.

Ora bisogna collegare quanto abbiamo definito con la struttura tangente su \mathbb{R}^n .

Definizione 71 (Banalizzazioni locali). Una banalizzazione locale di T(M) è una mappa $\Psi_i: U_i \times \mathbb{R}^n \to T(M)$ tale che $\Psi_i(x,v) = [(x,v,i)]$

Osservazione 44. Si possono dimostrare i seguenti fatti:

- Le Ψ_i sono funzioni continue
- $(\pi_M \circ \Psi)(x,v) = x$ per ogni $x \in U_i$
- Ψ_i è un omeomorfismo di spazi topologici fra $U_i \times \mathbb{R}^n$ e $\pi_M^{-1}(U_i)$. Ψ_i è surgettiva perchè se $\pi_M([x,v,k]) \in U_i$ allora $\Psi_i(x,\mu_{ki}(x)v) = [(x,\mu_{ki}(x)v,i) \sim (x,v,k)]$. Ψ_i è chiaramente iniettiva. E' dunque invertibile. Basta dimostrare che è una mappa aperta ovvero preso A aperto in $U_i \times \mathbb{R}^n$ che $A' = \Psi_i(A)$ è aperto. Data la topologia come quoziente di T(M) basterà dimostrare che $q^{-1}(A')$ è aperto in T'. Ma la famiglia di insiemi $\{(U_k \times \mathbb{R}^n \times \{k\})\}$ sono un ricoprimento aperto di T'. Basta quindi dimostrare che $q^{-1}(A') \cap (U_k \times \mathbb{R}^n \times \{k\})$ è un aperto. Ma su questa intersezione $q = \Psi_i \circ r$ dove $r: T' \to U \times \mathbb{R}^n$ t.c. $r(x,v,k) = (x,\mu_{ik}(x)v)$.

Dotiamo ora T(M) di un atlante differenziale.

Definizione 72 (Carte di T(M)). $\Phi_i: \Psi(U_i \times \mathbb{R}^n) \to \phi(U_i) \times \mathbb{R}^n$ definita come $\Phi_i(\Psi((x,v))) := (\phi_i(x),v)$ è una carta locale di T(M). L'insieme $\{(\Psi(U_i \times \mathbb{R}^n), \Phi_i)_{i \in I}\}$ è un atlante di T(M).

Componendo tutto a dovere si può controllare che, grazie all'azione dell'cociclo sui vettori, le mappe di transizione:

$$K_{ij}: \Phi_j(\Psi_j(U_j \times \mathbb{R}^n)) \to \Phi_i(\Psi_i(U_i \times \mathbb{R}^n))$$

sono proprio:

$$K_{ij}((x,v)) = \left(\phi_i \circ \phi_j^{-1}(x), \mu_{ij}(\phi_j^{-1}(x))v\right) = \left(\phi_i \circ \phi_j^{-1}(x), d(\phi_i \circ \phi_j^{-1})(x)v\right)$$

 $^{^3}$ Lo spazio topologico T, dato che M, R^n e I sono T_2 è T_2 . Non è invece numerabile (sia 1-numerabile che 2-numerabile) non essendolo I. Preso infatti un aperto, possiamo scegliere un punto x_0 in questo. Tramite una carta a caso ϕ_i rimbalziamo il problema in una nostra copia di \mathbb{R}^n . Qui possiamo prendere la famiglia (non numerabile, per esempio una per ogni raggio maggiore di zero) di palle aperte concentriche su x_0 . Le controimmagini $\phi^{-1}(B_r(x_0))$ sono aperti nell'aperto originario e la restrizione di ϕ a ognuno di questi aperti è una legittimissima carta, dunque sta nell'atlante massimale dunque l'insieme degli indici non potrà essere numerabile. Questo non ci spaventa in quanto i trattamenti successivi risolveranno il problema.

⁵Come spazio topologico

2.9. FIBRATO TANGENTE Lezioni 16 marzo, 17 marzo

25

Che è proprio quello che volevamo!

Non rimane ora che sollevare la definizione di applicazione tangente da aperti di \mathbb{R}^n al livello delle varietà.

Definizione 73 (funzione tangente). La funzione tangente ad $f: U \to W$ è la $Df: T(U) \to T(W)$ che fa commutare il seguente diagramma.

Indicando con f' la composizione attraveso le mappe di f e sollevandola alla sua funzione tangente Df' (cosa già ben definita nella lezione precedente) e ricalandola attraverso le mappe a Df.

26 Lezione 17 marzo 2.9. FIBRATO TANGENTE

Figura 2.4: Esempio di fibrato tangente

Figura 2.5: Esempio di proiezione naturale di ${\cal U}$

Figura 2.6: Un germe è definito da ciò che accade in un intorno del punto

Figura 2.7: Cambiamento di carte su cui si definisce il cociclo

2.10 Fibrati

Definizione 74 (gruppo di Lie). Si dice gruppo di Lie un gruppo che è anche una varieta liscia e dove sia la moltiplicazione che la funzione cha associa ad ogni elemento il suo inverso sono applicazioni lisce (esempi: GL(n) e G finito con τ_D sono gruppi di Lie).

Definizione 75 (automorfismi lisci). Data F una varieta liscia sia $\operatorname{Aut}(F) := (\{f : F \to F \mid f \text{ diffeomorfismo}\}, \circ)$ il gruppo degli automorfismi lisci di F.

Sia $G \subseteq \operatorname{Aut}(F)$ un sottogruppo che agisce su F mediante l'azione

$$G \times F \to F$$

 $(g, f) \to g(f)$

Definizione 76 (fibrato). Per costruire il *fibrato* ripetiamo parola per parola la costruzione di T(M) sostituendo F a \mathbb{R}^n e G a $\mathrm{GL}(n)$ ottenendo un *fibrato* π : $E \to M$ che viene detto di *gruppo strutturale* G e *fibra* (tipica) F.

Osservazione 45. E è una varietà di dimensione $\dim(E) = \dim(F) + \dim(M)$. π è liscia ed è localmente un prodotto di fibra F grazie alla banalizzazione locale

$$\mathbb{R}^{n} \times F \supseteq (W_{i}, F) \xleftarrow[\phi, \mathrm{id}]{} U_{i} \times F \xrightarrow{\Psi_{i}} \pi^{-1}(U_{i})$$

$$\downarrow^{p_{i}} \qquad \downarrow^{\pi}$$

$$U_{i} \longleftarrow M$$

$$\Psi_j \circ \Psi_i^{-1} : (U_i \cap U_j) \times F \to (U_i \cap U_j) \times F$$
$$(x, f) \mapsto (x, \mu_{ii}(x)[f])$$

Definizione 77. Se per qualche k ho $G = GL(k, \mathbb{R})$ e $F = \mathbb{R}^k$ si ottengono i cosiddetti *fibrati vettoriali reali* di rango k.

Se invece F=G e ho R_g (la rappresentazione regolare, cioè quella definita dall'azione di G su se stesso mediante la moltiplicazione a destra) si ottengono i fibrati principali di gruppo strutturale G.

2.11 Fatti di algebra lineare

Sia V uno spazio vettoriale di dimensione finita n. Sia $V^* := \text{Hom}(V, \mathbb{R})$ lo spazio duale di V e $V^{**} := (V^*)^* = \text{Hom}(V^*, \mathbb{R})$ il biduale. Sia $\mathcal{B} = \{v_1, \dots, v_n\}$ base di V e $\mathcal{B} = \{v^1, \dots, v^n\}$ base di V^* dove $v^j(v_i) = \delta^j_i$. Poiché esiste un isomorfismo canonico

$$\varphi: V \to V^{**}$$

$$v \mapsto f_v: V^* \to \mathbb{R}$$

$$f_v(\psi) = \psi(v)$$

d'ora in poi con un piccolo abuso identificheremo V con V^{**} .

Definizione 78 (tensori).

$$T_h^k(V) := V^{\otimes k} \otimes (V^*)^{\otimes h} := \text{Mult}((V^*)^k \times V^h, \mathbb{R})$$

Un elemento $t \in T_h^k(V)$ è detto tensore di tipo (k, h) su V.

Esempio 12. $T_0^0(V) = \mathbb{R}$, $T_1^0(V) = V^*$, $T_0^1(V) = V^{**} = V$. Un prodotto scalare è un $t \in T_2^0(V) = \text{Bil}(V \times V, \mathbb{R})$ con t simmetrico.

Osservazione 46. Esiste un isomorfismo canonico

$$\varphi : \operatorname{End}(V) \to T_1^1(V) = \operatorname{Bil}(V^* \times V, \mathbb{R})$$

$$f \mapsto ((\psi, v) \mapsto \psi(f(v)))$$

Definizione 79 (basi \mathcal{B}_h^k). Abbiamo visto che una base \mathcal{B} determina una base duale $\mathcal{B}^* = \mathcal{B}_1^0$, vorremmo generalizzare questo fatto ad un qualsiasi (k, h) costruendo una base \mathcal{B}_h^k di $T_h^k(V)$. Cominciamo con $T_2^0(V)$.

Si definisce in modo canonico l'applicazione bilineare

$$\Phi: V^* \times V^* \to T_2^0(V)$$
$$(\phi, \psi) \mapsto ((v, w) \mapsto \phi(v)\psi(w))$$

Utilizzeremo la notazione $\Phi(\phi, \psi) = \phi \otimes \psi$ e chiameremo gli elementi del tipo $\phi \otimes \psi$ tensori decomponibili di $T_2^0(V)$.

Si verifica che la funzione Φ ha le seguenti proprietà:

- Data una base e la base duale $\mathcal{B}^* = \{v^1, \dots, v^n\}$ allora $\mathcal{B}_2^0 = \{v^i \otimes v^j\}_{i,j=1,\dots,n}$ è una base di $T_2^0(V)$.
- (proprietà universale) Per ogni applicazione bilineare $g: V^* \times V^* \to Z$ esiste un'unica applicazione lineare $G: T_2^0(V) \to Z$ tale che $g = G \circ \Phi$. Infatti G è univocamente determinata dalla relazione $G(v^i \otimes v^j) = g(v^i, v^j)$.

Lo stesso argomento si può ripetere per $T_0^2(V)$ e in generale per $T_h^k(V)$ ottenendo le basi

$$\mathcal{B}_h^k = \{v_{i_1} \otimes \cdots \otimes v_{i_k} \otimes v^{j_1} \otimes \cdots \otimes v^{j_h}\}$$

2.12 Richiami della scorsa lezione

Sia M una varietà differenziabile con atlante massimale $\{(U_i, \phi_i)\}$ e sia $\{\mu_{ij}: U_i \cap U_j \to G\}$ un cociclo a valori in un gruppo $G \subseteq \operatorname{Aut}(F)$ (con F varietà liscia). Ripetendo la costruzione usata per realizzare il fibrato tangente T(M) (per cui s'era usato $G = \operatorname{GL}(n, \mathbb{R})$ e $F = \mathbb{R}^n$, $n = \dim M$), ottengo un fibrato $E \xrightarrow{\pi} M$ di fibra F e gruppo strutturale G.

2.13 Altri fibrati su M

Vogliamo innanzitutto definire i fibrati tensoriali su M.

Si ricorda dalla scorsa lezione che dato V spazio vettoriale su \mathbb{R} di dimensione n, chiamando V^* il suo duale e identificando V^{**} con V (in virtù dell'isomorfismo canonico tra di essi), i corrispondenti spazi tensoriali sono definiti come:

$$T_h^k(V) := V^{\otimes k} \otimes (V^*)^{\otimes h} := \text{Mult}((V^*)^k \times V^h, \mathbb{R})$$

Osservazione 47. $T_0^0(V) = \mathbb{R}, T_1^0(V) = V^*, T_0^1(V) = V^{**} = V$

Inoltre, data $\mathcal{B} := \{v_1, \dots, v_n\}$ base di V, posso costruire \mathcal{B}_h^k base di $T_h^k(V)$: sia innanzitutto $\mathcal{B}^* = \{v^i\}_{i \le n}$ la base duale di \mathcal{B} . Allora:

$$\mathcal{B}_h^k = \mathcal{B}^{\otimes k} \otimes (\mathcal{B}^*)^{\otimes h} := \left\{ v_{i_1 \dots i_k}^{j_1 \dots j_h} := v_{i_1} \otimes \dots \otimes v_{i_k} \otimes v^{j_1} \otimes \dots \otimes v^{j_h} \right\}_{i_l, j_m \leq n}$$

Dunque dim $T_h^k(V) = n^{k+h}$ e dare una base \mathcal{B} di V stabilisce un isomorfismo (non canonico) tra $T_h^k(V)$ e $T_{h'}^{k'}(V)$ quando k+h=k'+h'.

Un $t \in T_h^k(V)$ è detto *tensore di tipo* (k,h) su V e si esprime in termini di \mathcal{B}_h^k come:

$$t = t_{j_1 \dots j_h}^{i_1 \dots i_k} \ v_{i_1 \dots i_k}^{j_1 \dots j_h}$$

Dove gli indici ripetuti si intendono sommati, e i $t_{j_1...j_h}^{i_1...i_k} \in \mathbb{R}$ sono le coordinate di t rispetto a \mathcal{B}_h^k . Ha dunque senso chiedersi che forma abbiano i cambi di coordinate in $T_h^k(V)$: siano $\mathcal{B} = v_i$, $\mathcal{B}' = w_i$ basi di V (e \mathcal{B}_h^k , $\mathcal{B}_h^{\prime k}$ le basi corrispondenti di $T_h^k(V)$), e sia A la matrice di cambio di base (in V) corrispondente, ovvero $A = \mathcal{M}_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}_V)$. Innanzitutto, per quanto riguarda il cambio di base in V^* , abbiamo

$$\mathcal{M}_{\mathcal{B}'^*}^{\mathcal{B}^*}(\mathrm{id}_{V^*}) = \left(\mathcal{M}_{\mathcal{B}^*}^{\mathcal{B}'^*}(\mathrm{id}_{V^*})\right)^{-1} = (A^t)^{-1}$$

Osservazione 48. L'applicazione $A \mapsto (A^t)^{-1}$ è, coefficiente per coefficiente, funzione razionale dei coefficienti. Inoltre, è un automorfismo di $GL(n, \mathbb{R})$.

Sia ora $B = (A^t)^{-1}$, e siano i loro coefficienti $A = (a_{si})$, $B = (b^{rj})$, cosicché $v_i = a_{si}w_s$ e $v^j = b^{rj}w^r$. Allora:

$$t = t_{j_{1}...j_{h}}^{i_{1}...i_{k}} \ v_{i_{1}...i_{k}}^{j_{1}...j_{h}} = t_{j_{1}...j_{h}}^{i_{1}...i_{k}} \ v_{i_{1}} \otimes \cdots \otimes v_{i_{k}} \otimes v^{j_{1}} \otimes \cdots \otimes v^{j_{h}} =$$

$$= t_{j_{1}...j_{h}}^{i_{1}...i_{k}} \ a_{s_{1}i_{1}} w_{s_{1}} \otimes \cdots \otimes a_{s_{k}i_{k}} w_{s_{k}} \otimes b^{r_{1}j_{1}} w^{r_{1}} \otimes \cdots \otimes b^{r_{h}j_{h}} w^{r_{h}} =$$

$$= t_{j_{1}...j_{h}}^{i_{1}...i_{k}} \ a_{s_{1}i_{1}} \cdots a_{s_{k}i_{k}} \ b^{r_{1}j_{1}} \cdots b^{r_{h}j_{h}} \ w_{s_{1}} \otimes \cdots \otimes w_{s_{k}} \otimes w^{r_{1}} \otimes \cdots \otimes w^{r_{h}} =$$

$$= t'_{r_{1}...r_{h}}^{s_{1}...s_{k}} \ w_{s_{1}...s_{k}}^{r_{1}...r_{h}}$$

Dunque, indicando i prodotti $a_{s_1i_1} \cdots a_{s_ki_k}$ e $b^{r_1j_1} \cdots b^{r_hj_h}$ con $a_{i_1...i_k}^{s_1...s_k}$ e $b_{r_1...r_h}^{j_1...j_h}$, otteniamo:

$$t'_{r_1...r_h}^{s_1...s_k} = a_{i_1...i_k}^{s_1...s_k} b_{r_1...r_h}^{j_1...j_h} t_{j_1...j_h}^{i_1...i_k}$$

Il cambio di coordinate resta dunque una funzione razionale nei coefficienti di A. Ora, sia $\rho_h^k: \mathrm{GL}(n,\mathbb{R}) \to \mathrm{GL}(T_h^k(\mathbb{R}^n))$ l'applicazione che manda cambi ci coordinate in cambi di coordinate corrispondenti: $A \mapsto A_h^k$, dove A_h^k è la trasformazione lineare $t_{j_1...j_h}^{i_1...i_k} \mapsto a_{i_1...i_k}^{s_1...s_k} b_{r_1...r_h}^{j_1...j_h} t_{j_1...j_h}^{i_1...i_k}$, ovvero quella che ha coefficienti

Avendo su M il fibrato tangente T(M) definito dal cociclo $\{\mu_{ij}: U_i \cap U_j \to \operatorname{GL}(\mathbb{R}^n)\}$, il cociclo $\{(\mu_h^k)_{ij}: U_i \cap U_j \to \operatorname{GL}(T_h^k(\mathbb{R}^n))\}$, dove $(\mu_h^k)_{ij} = \rho_h^k \circ \mu_{ij}$, definisce un fibrato $T_h^k(M) \xrightarrow{\pi_h^k} M$ di fibra $T_h^k(\mathbb{R}^n)$, e si ha $(\pi_h^k)^{-1}(x) = T_h^k(T_xM)$.

Definizione 80 (Fibrato Tensoriale). $T_h^k(M)$ è detto fibrato tensoriale di tipo (k,h) su M.

In particolare, $T_1^0(M) =: T^*(M)$ è detto fibrato cotangente.

Osservazione 49. Un fibrato tensoriale di tipo (k,h) è sempre un fibrato vettoriale di rango n^{k+h} .

Vediamo altri esempi di fibrati, realizzabili a partire dal cociclo $\{\mu_{ij}\}$ del fibrato tangente.

Definizione 81 (Fibrato delle basi). Il fibrato principale $B \xrightarrow{\hat{\pi}} M$ di gruppo $GL(n,\mathbb{R})$ (ovvero quello che ha per fibra $GL(n,\mathbb{R})$ stesso) costruito mediante il cociclo $\{\mu_{ij}\}$ è detto fibrato delle basi su M.

Infatti, $\hat{\pi}^{-1}(x)$ ($\simeq \{x\} \times \mathrm{GL}(n,\mathbb{R})$) è l'insieme delle basi di T_xM ($\simeq \{x\} \times \mathbb{R}^n$).

Osservazione 50. det : $GL(n, \mathbb{R}) \to \mathbb{R}^*$ e sgn : $\mathbb{R}^* \to \{\pm 1\}$ sono omomorfismi di gruppi.

Definizione 82. $\{\det(\mu_{ij}): U_i \cap U_j \to \mathbb{R}^*\}$ è un cociclo, detto *cociclo determinante*. Il fibrato risultante di fibra \mathbb{R} è detto *fibrato determinante*.

Definizione 83. Cociclo segno $\{\operatorname{sgn}(\det(\mu_{ij})): U_i \cap U_j \to \{\pm 1\}\}\$ è detto *cociclo segno*, e naturalmente vi si può costruire il fibrato principale, con fibra $\{\pm 1\}$, detto *fibrato dei segni*.

Osservazione 51. Per n pari, $S^n \xrightarrow{\pi} \mathbb{P}^n$ è un caso particolare di quest'ultimo tipo di fibrati.

2.14 Equivalenza tra fibrati

Siano $E_1 \xrightarrow{\pi_1} M_1$ e $E_2 \xrightarrow{\pi_2} M_2$ fibrati con stessa fibra e stesso gruppo strutturale G. Essi sono *isomorfi* se $\exists f, F$ diffeomorfismi tali che il seguente diagramma commuti:

$$E_1 \xrightarrow{F} E_2$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\pi_2}$$

$$M_1 \xrightarrow{f} M_2$$

e valga $\forall x \in M_1 : F|_{\pi_1^{-1}(x)} \in G$.

Il prototipo di questo tipo di equivalenza si realizza tra fibrati tangenti di varietà diffeomorfe:

$$T(M_1) \xrightarrow{Df} T(M_2)$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\pi_2}$$

$$M_1 \xrightarrow{f} M_2$$

Se $M_1 = M_2 = M$, posso definire una relazione di equivalenza forte tra fibrati su M imponendo ulteriormente che sia f = id.

2.15 Richiami della lezione scorsa

Definizione 84 (Equivalenza tra fibrati in termini di cocicli). Sia M una varietà differenziabile con atlante massimale $\{(U_i,\phi_i)\}$ e sia $\{\mu_{ij}:U_i\cap U_j\to G\}$ un cociclo a valori in un gruppo $G\subseteq \operatorname{Aut}(F)$ (con F varietà liscia). Ripetendo la costruzione usata per realizzare il fibrato tangente T(M) (per cui s'era usato $G=\operatorname{GL}(n,\mathbb{R})$ e $F=\mathbb{R}^n,\ n=\dim M$), ottengo un fibrato $E\stackrel{\pi}{\longrightarrow} M$ di fibra F e gruppo strutturale G. Siano dati due fibrati su M con lo stesso gruppo di struttura e la stesa fibra: $\pi_1:E_1\to M$ e $\pi_2:E_2\to M$. Siano $\{\mu_{ij}:U_i\cap U_j\to G\}$ e $\{\lambda_{ij}:U_i\cap U_j\to G\}$ rispettivamente coclici di E_1 e E_2 . E_1 ed E_2 sono fibrati equivalenti (nel senso dei coclici) se $\exists \gamma_i:U_i\to G$ tale che $\forall xU_i\cup U_j$ dati λ_{ij} e μ_{ij} sia $\lambda_{ji}=\gamma_j^{-1}\times \mu_{ji}\times \gamma_i^{-1}$. (Quest'ultima è la moltiplicazione tra elementi del gruppo G)

Definizione 85 (Immersione liscia). Sia $f: X \to Y$, f è una immersione se $\forall x \in XDf_x: T_xX \to T_{f(x)}X$ (restrizione dell'applicazione tangente alla fibra) è iniettiva.

Definizione 86 (Embedding). Una immersione f è un embedding se f: $X \to f(X)$ è un omeomorfismo (funzione continua fra spazi topologici tale che ha inversa continua).

2.16 Teorema di Embedding

Teorema 73 (Di embedding elementare di Whitney). Se X è una varietà compatta allora esiste un N abbastanza grande tale che \exists un embedding $f: X \to \mathbb{R}^n$

Dimostrazione. Poiché X è compatta esiste un atlante finito $\{(U_i,\phi_i)\}_{i=1,\dots,m}$ tale che

- $B_2(0) \subseteq \phi_i(U_i)$
- $\phi_i^{-1}(\mathbf{B}_1(0))$ ricopre tutto X

Sia $\lambda : \mathbb{R}^N \to [0,1]$ la funzione a foruncolo relativa alle palle B_1 e B_2 . Definisco la funzione $\lambda_i : U_i \subseteq X \to [0,1]$ come $\lambda \circ \phi_i$ in U_i e 0 in $X \setminus U_i$.

 B_i ricopre X e $B_i = \lambda^{-1} \subseteq U_i$. Poiché λ_i vale 1 quando sono su $\phi_i^{-1}(B_1(0))$ ho un ricoprimento.

Definisco $f: X \to \mathbb{R}^N$ come $\lambda_i \phi_i$ in U_i e 0 in $X \setminus U_i$. Considero le funzioni $g_i: X \to \mathbb{R}^N$ definita come $x \mapsto (f_i(x), \lambda_i(x))$. Definisco ancora la funzione g che: $x \mapsto (g_1, g_2, \dots, g_m)$.

Dico che g così definita è un embedding, devo dunque dimostrare che è una immersione (cioè che il suo differenziale è iniettivo) e che la funzione stessa g è omomorfismo nella sua immagine cioè ha funzione inversa continua.

- $\bullet\,$ è diffeomorfismo per costruzione
- \bullet tutte le g_i per come son state costruite sono immersioni ogniuna nel suo $\psi^{-1}(B_1(0))$
- g è iniettiva: se ho $x \neq y$ ho due possibilità: $x, y \in B_i$ allora la f_i coincide con la ϕ_i sulla palla B_i , che è iniettiva sulla palla. Oppure x, y stanno in due palle diverse in particolare $y \in B_i$ allora $\lambda_i(y) = 1$ e $\lambda_i(x) = 0$. Dunque ogni funzione g_i è iniettiva e quindi lo è anche la funzione g.

Se ho una varietà X con bordo $\partial X \neq 0$ si può rafforzare la costruzione in modo che $(X,\partial X)$ sia una sottovarietà del semipiano $(\mathbb{H}^N,\partial\mathbb{H}^N)$ con $\partial X=X\cup\partial\mathbb{H}^N$ e su ∂X ho $X\perp\partial\mathbb{H}^N$. Inoltre se x_1,x_2,x_3,\ldots,x_k sono punti della varietà con bordo non nullo si può rafforzare la costruzione in modo che un intorno di x_j va in un piano di \mathbb{R}^N .

Definizione 87 (Metrica Riemanniana). Una metrica riemanniana su una varietà X è un campo di tensori di tipo (0,2) su X simmetrici e definiti positivi. Cioè è una sezione del fibrato tangente tale che ogni tensore associato ad un punto della varietà è simmetrico e definito positivo: $R: TX \rightarrow T_2^0$

Teorema 74. Ogni X compatta ha una metrica Riemanniana.

Dimostrazione. Esistendo un embedding, per il teorema sopra, posso vedere la varietà come immersa in un \mathbb{R}^n dotato del suo prodotto scalare canonico g_0 . $X \hookrightarrow \mathbb{R}^n$. Posso definire la metrica riemanniana sulla varietà X come $g_x = g_0|_{T_xX}$. Ad ogni punto x prendo dunque come metrica il tensore associato al prodotto canonico ristretto all'immagine del T_xX attraverso l'embedding.

2.17 Topologia sullo spazio delle applicazione lisce tra varietà - fede

2.18 Spazi di applicazioni lisce

Definizione 88 (Topologia sulle applicazioni lisce tra varietà in \mathbb{R}^N). Definisco $\mathcal{E} := \{f : X \to Y \mid f \text{liscia}\}$, con X e Y varietà lisce. Voglio munire $\mathcal{E} = f : X \to Y$, f liscia di una topologia. Se $X \subseteq \mathbb{R}^N$ e $Y = \mathbb{R}^N$ considero la base di intorni data $U_{r,k,\epsilon}$ e $r \in \mathbb{N}$ e $K \subseteq X$ è un compatto e $\epsilon > 0$. Questa base di intorni è definita da

$$U_{r,K,\epsilon} := \left\{ g : X \to \mathbb{R}^N \mid \left\| \frac{\partial f}{\partial x_{i_1} \dots \partial x_{i_k}} - \frac{\partial g}{\partial x_{i_1} \dots \partial x_{i_k}} \right\| \leqslant \epsilon \right\}$$

Posso considerare un ricoprimento compatto finito, K_i (che trovo se la varietà X è compatta) e posso prendere l'intersezione dei $U_{r,K_i,\epsilon}$, in questo modo ottengo dei $U_{r,\epsilon}$ che sono indipendenti dal compatto K, questo è ora un intorno della funzione $f:X\to Y$. Unendo gli intorni per tutte le funzioni ottengo effettivamente una base di intorni per lo spazio delle funzioni lisce \mathcal{E} .

Definizione 89. Per definire una topologia tra varietà generiche mi riduco al caso di varietà reali. Definisco una base di intorni $U_{r,K,\epsilon,(U,\phi),(U',\phi')} = \{g: X \to \mathbb{R}^N\}$ tale che $g(U) \subseteq U'$ e valga $\phi \circ g \circ \phi^{-1} \in U_{r,K,\epsilon}(\phi \circ g \circ \phi^{-1})$ cioè che $\phi \circ g \circ \phi^{-1}$ sia intorno di una funzione da \mathbb{R}^N a \mathbb{R}^N . Posso considerare un ricoprimento compatto finito, K_i (che trovo se la varietà X è compatta) e posso prendere l'intersezione dei $U_{r,K_i,(U_i,\psi_i)(U'_i,\psi'_j)}$, in questo modo ottengo dei $U_{r,\epsilon,(U,\phi),(U',\phi')}$ che sono indipendenti dal compatto K, questo è ora un intorno della funzione $f: X \to Y$. Si procede similmente a quanto fatto precedentemente per rimuovere la dipendenza dal compatto K. Unendo gli intorni per tutte le funzioni ottengo effettivamente una base di intorni per lo spazio delle funzioni lisce \mathcal{E} .

Osservazione 52. La topologia che ottengo è metrizzabile.

Date due varietà X e Y consideriamo $\mathcal{E}(X,Y)=\{f:X\to Y \text{ liscie}\}$ con la topologia definita precedentemente. Restringiamoci al caso X compatta. Consideriamo alcuni sottoinsiemi:

- le immersioni $\operatorname{Imm}(X,Y) = \{f: X \to Y \text{ immersioni}\}$ ovvero $\forall x \in X \ Df_x: T_x X \to T_{f(x)} Y$ è iniettiva (la funzione tangente ristretta alla fibra x che manda lo spazio tangente a x nello spazio tangente a f(x) è iniettiva)
- gli embedding $\operatorname{Emb}(X,Y) = \{f : X \to Y \text{ embedding}\}\$ ovvero, poiché X compatta f è un'immersione iniettiva.
- i diffeomorfismi $Diff(X, Y) = \{f : X \to Y \text{ diffeomorfismi}\}\$

Osservazione 53. Questi insiemi possono anche essere vuoti.

Teorema 75. Questi elencati sono sottoinsiemi aperti di $\mathcal{E}(X,Y)$.

Moralmente, se una funzione è "abbastanza vicina" a un'immersione (o embedding o diffeom.) è essa stessa un'immersione (o embedding o diffeom.).

Dimostrazione.

 $\operatorname{Imm}(X,Y)$ La condizione di essere immersione è una condizione che si verifica sul comportamento di iniettività delle tangenti che è una condizione aperta. (La formalizzazione di questa idea è lasciata per esercizio)

 $\operatorname{Emb}(X,Y)$ Suppongo g funzione "vicina" ad un embedding f. Per il punto precedente g un immersione, resta da mostrare che è iniettiva.

Supponiamo per assurdo che sia falso. Allora potrò costruire una successione $g_n \to f$ e tali che esistano due successioni di punti distinti x_n e y_n tali che $g_n(x_n) = g_n(y_n)$. Poiché X compatto, posso estrarre due sottosuccessioni $x_n \to x_0$ e $y_n \to y_0$. Se per assurdo $x_0 \neq y_0$, valuto f in questi punti e dovrei avere $f(x_0) = f(y_0)$, ch'è assurdo poiché f è iniettiva, ma allora $x_0 = y_0$ e entrambe le serie convergono allo stesso punto x_0 .

Leggendo tutto attraverso una carta intorno a x_0 posso pensare x_0 e le successioni x_n e y_n in \mathbb{R}^n . Poiché $g_n(y_n) - g_n(x_n) = 0$, per il teorema del valor medio $\exists z_n$ t.c. $d_{z_n}g_n[y_n - z_n] = 0$. Ho inoltre che $z_n \to x_0$ perché $z_n \in [x_n, y_n]$.

Considero adesso $v_n:=\frac{y_n-x_n}{\|y_n-x_n\|}\in S^{n-1}$. Poiché S^n è compatto a meno di estrarre una sottosuccessione $v_n\to v_0\in S^{n-1}$. Segue che $\mathrm{d}_{x_0}f[v_0]=0$, assurdo perché anche il differenziale di f è iniettivo. 4

 $\mathrm{Diff}(X,Y)$ Per i punti precedenti presa g funzione "vicina" a f diffeomorfismo, g è un embedding. Mi resta da mostrare la surgettività.

Poiché g è un embedding $g(x) \subseteq Y$ è aperto, inoltre X è compatta, quindi g(x) è anche chiuso (nelle ipotesi in cui lavoriamo compatto \iff chiuso).

Ma se X e Y sono connesse (ipotesi di comodo) allora g(x) = Y, ovvero g è diffeomorfismo. In mancanza dell'ipotesi di comodo mi posso restringere alle singole componenti connesse in partenza e in arrivo.

2.19 Orientazione

Siano \mathcal{B} e \mathcal{B}' due basi di \mathbb{R}^n , e sia $M_{\mathcal{B}'}^{\mathcal{B}}$ la matrice di cambiamento di base. Due basi inducono la stessa orientazione se det $M_{\mathcal{B}'}^{\mathcal{B}} > 0$.

Proposizione 76. Questa è una relazione di equivalenza sulle basi di \mathbb{R}^n .

Dimostrazione. Infatti grazie alle proprietà del determinante e Binet:

- $\det M_{\mathcal{B}}^{\mathcal{B}} = \det \mathrm{id} = 1$
- $\det M_{\mathcal{B}''}^{\mathcal{B}} = \det(M_{\mathcal{B}'}^{\mathcal{B}}M_{\mathcal{B}''}^{\mathcal{B}'}) = \det M_{\mathcal{B}'}^{\mathcal{B}} \cdot \det M_{\mathcal{B}''}^{\mathcal{B}'}$

•
$$\det M_{\mathcal{B}''}^{\mathcal{B}} = \det M_{\mathcal{B}}^{\mathcal{B}'}$$

Ci sono quindi due classi di equivalenza.

Definizione 90 (Orientazione). Una *orientazione* di \mathbb{R}^n è una classe di equivalenza per la relazione prima definita.

Estendiamo questa definizione alle varietà.

Definizione 91 (Atlante orientato). Sia X una varietà e $A = \{U_j, \phi_j\}$ un atlante di X (non necessariamente il massimale). Diciamo che tale *atlante* è *orientato* se il cociclo $\{\det \lambda_{ji}: U_i \cap U_j \to \mathbb{R} \setminus \{0\}\}$ è in effetti a valori in \mathbb{R}^+ (è lo stesso cociclo usato per definire il fibrato tangente, ristretto però all'atlante).

Definizione 92 (Atlanti compatibili). Due atlanti orientati (ammesso che esistano) sono *compatibili* se la loro unione è un atlante orientato.

Definizione 93 (Orientazione su varietà). Un'orientazione su una varietà è determinata da un atlante orientato massimale. Una varietà è orientabile se ammette un'orientazione, non orientabile altrimenti.

Osservazione 54. Se una varietà è orientabile potrebbe avere più di una orientazione.

Proposizione 77. Se una varietà è connessa e orientabile, allora ha esattamente due orientazioni.

DA FINIRE

2.20 Cobordismo

Considereremo solo varietà compatte se non diversamente specificato. Facciamo prima una versione non orientata, poi faremo quella orientata.

Definizione 94 (Triade). Una tripletta (W, V_0, V_1) è una triade se W è una varietà con bordo $\partial W = V_0 \sqcup V_1$.

Fisicamente potete pensare W come una transizione da V_0 a V_1 .

Osservazione 55. Le componenti del bordo V_0 e V_1 possono anche essere vuote. Ad esempio se W è chiusa avremo $V_0 = V_1 = \emptyset$.

Definizione 95 (Cobordismo). Siano X_0 , X_1 *n*-varietà chiuse. Diciamo che X_0 è cobordante a X_1 se esiste una triade le cui componenti del bordo sono diffeomorfe a X_0 e X_1 :

 X_0 cobordante a $X_1: \leftrightarrow \exists W, V_0, V_1, f_0, f_1: \begin{cases} \partial W = V_0 \sqcup V_1 \\ f_0: X_0 \to V_0 \text{ diffeomorfismo} \\ f_1: X_1 \to V_1 \text{ diffeomorfismo} \end{cases}$

Il concetto di cobordismo estende quello di diffeomorfismo:

 ${\bf Proposizione~78.~} \textit{Due varietà diffeomorfe sono cobordanti}.$

Dimostrazione. Sia $f: X_0 \to X_1$ diffeomorfismo. Poniamo $W := X_0 \times [0, 1]$ cilindro di base X_0 . Allora $(W, X_0 \times \{0\}, X_0 \times \{1\}, \text{id}, f^{-1})$ è il cobordismo cercato. \square

$$X_0 \times \{0\} \qquad X_0 \times \{1\} \qquad X_1$$

$$X_0 \times [0,1] \qquad X_1$$

$$X_0 \times [0,1] \qquad X_1$$

Osservazione 56. Essere diffeomorfe è una relazione di equivalenza, perché:

- $\bullet \ X \xrightarrow{\mathrm{id}} X$
- $\bullet \ X \xrightarrow{f} Y \implies Y \xrightarrow{f^{-1}} X$

$$\bullet \ X \xrightarrow{f} Y \xrightarrow{g} Z \implies X \xrightarrow{g \circ f} Z$$

Lemma 79. Essere cobordanti è una relazione di equivalenza.

Dimostrazione. Verifichiamo le tre proprietà dell'equivalenza:

Riflessiva Per vedere che X è cobordante a se stesso considerare il cilindro $X \times [0,1]$, oppure osservare che X è diffeomorfo a se stesso e usare la Proposizione 78.

Simmetrica Basta osservare che se (W, V_0, V_1) è una triade, lo è anche (W, V_1, V_0) .

Transitiva Sia X_0 cobordante a X_1 tramite la triade (W, V_0, V_1) e X_1 cobordante a X_2 tramite (W', V'_0, V'_1) . Per la seguente Proposizione 80, esiste una varietà \mathcal{W} "incollaggio" di W e W' lungo le componenti del bordo diffeomorfe a X_1 con, intuitivamente, $\partial \mathcal{W} = V_0 \sqcup V'_1$. Allora X_0 è cobordante a X_2 tramite (\mathcal{W}, V_0, V'_1) .

Proposizione 80 (Incollaggio). Siano W e W' n-varietà con due sottovarietà dei loro bordi diffeomorfe:

$$Z \subseteq \partial W, \ Z' \subseteq \partial W', \ \varphi: Z \to Z' \ diffeomorfismo$$

Sia $\mathscr H$ il quoziente dell'unione di W e W' rispetto all'equivalenza indotta da φ :

$$\mathscr{H} = W \sqcup W'/\sim, \qquad x \sim y : \leftrightarrow x = \varphi(y) \lor y = \varphi(x)$$

Allora \mathcal{H} ammette una struttura di n-varietà con bordo dato dalle parti non diffeomorfe dei bordi e con W e W' che possono essere considerate sottovarietà di \mathcal{H} , cioè le immersioni di W e W' in \mathcal{H} sono embedding:

$$\mathscr{H}$$
 n-varietà, $\partial \mathscr{H} = (\partial W \setminus Z) \sqcup (\partial W' \setminus Z'),$
 $W \stackrel{j}{\hookrightarrow} \mathscr{H}, W' \stackrel{j'}{\hookrightarrow} \mathscr{H} \text{ embedding}$

Dimostrazione. In generale, se ho una varietà A con bordo, il bordo ammette un collarenella varietà, cioè esiste un embedding $c:\partial A\times [0,1] \to A$ tale che $c|_{\partial A\times \{0\}}=$ id. Siano g_1 e g_2 due collari di Ze Z'

$$g_1: Z \times (0,1] \rightarrow W$$

 $g_2: Z' \times [1,2) \rightarrow W'$

che danno il bordo in 1:

$$g_1|_{Z\times\{1\}} = id$$

$$g_2|_{Z'\times\{1\}} = id$$

Definiamo una concatenazione g in \mathcal{H} dei collari:

$$g: Z \times (0,2) \to \mathcal{H}$$

$$g(x,t) := \begin{cases} j(g_1(x,t)) & t \in (0,1] \\ j'(g_2(\varphi(x),t)) & t \in (1,2) \end{cases}$$

Osserviamo che \mathscr{H} è ricoperto dagli aperti $j(W \setminus Z)$, $j'(W' \setminus Z')$ e $g(Z \times (0,2))$ e che le mappe j, j' e g inducono un atlante liscio su \mathscr{H} con le proprietà volute. Basta verificare che queste "carte generalizzate" siano compatibili.

Osservazione 57. Abbiamo dimostrato l'esistenza di un incollaggio, ma in verità si può mostrare anche l'unicità: dati due incollaggi di due varietà fissate, sono diffeomorfi e il diffeomorfismo è l'identità fuori da un intorno compatto del bordo d'incollaggio.

Consideriamo ora l'insieme η_n delle *n*-varietà compatte chiuse quozientate per cobordismo:

$$\eta_n := \{X \mid X \text{ n-varietà compatta } \land \partial X = \emptyset\}/\sim_{\text{cob}}$$

Definiamo un'operazione su η_n che lo rende un gruppo abeliano:

$$[X], [Y] \in \eta_n$$
 $[X] + [Y] := [X \sqcup Y]$

L'elemento neutro è $[\emptyset]$, cioè la classe dei bordi:

$$[\varnothing] = \{X \mid \exists W : X = \partial W\}$$

L'unione disgiunta di due varietà chiuse cobordanti è un bordo, per definizione. Ma ogni varietà chiusa è cobordante a se stessa, quindi:

$$[X \sqcup X] = [\varnothing] \implies -[X] = [X]$$

Cioè in particolare $2[X] = [\varnothing]$. Allora $(\eta_n, +, cdot)$ è uno spazio vettoriale sul campo finito $\mathbb{Z}/2\mathbb{Z} = \{0, 1\}$, con prodotto:

$$0 \cdot [X] = [\varnothing], \ 1 \cdot [X] = [X]$$

Vedremo poi che in generale η_n non è banale. Adesso generalizziamo η_n : sia Y una varietà obiettivo, non necessariamente compatta; vogliamo definire un oggetto $\eta_n(Y)$ che si riduca a η_n quando #Y = 1. Poniamo:

$$\mathscr{F} = \{ f : X \to Y \mid X \text{ n-varietà compatta chiusa } \land f \text{ liscia} \}$$

Osserviamo che \mathscr{F} si riduce alle varietà compatte chiuse se Y è un punto. Analogamente alla costruzione di η_n , vogliamo quozientare \mathscr{F} per cobordismo, ma prima dobbiamo definire il cobordismo tra fuzioni:

Definizione 96 (Cobordismo tra funzioni). Siano X_0 e X_1 *n*-varietà compatte chiuse, Y una varietà e $f_0: X_0 \to Y$, $f_1: X_1 \to Y$ liscie. Diciamo che (X_0, f_0) è cobordante a (X_1, f_1) se X_0 è cobordante a X_1 tramite la varietà W e i diffeomorfismi φ_0 e φ_1 ed esiste una funzione liscia $F: W \to Y$ tale che $F \circ \varphi_0 = f_0$ e $F \circ \varphi_1 = f_1$, cioè che fa commutare il diagramma:

Si verifica che anche questa è una relazione di equivalenza e poniamo dunque:

$$\eta_n(Y) := \mathscr{F}/\sim_{\mathrm{cob}}$$

Analogamente a η_n l'unione dei grafici ci dà una somma su $\eta_n(Y)$ con le proprietà già viste, e $\eta_n(Y)$ è un $\mathbb{Z}/2\mathbb{Z}$ -spazio vettoriale.

Ora per evitare complicazioni assumiamo che le varietà obiettivo siano compatte. Consideriamo una funzione liscia $g: Y_1 \to Y_2$. Questa induce una funzione lineare $g_*: \eta_n(Y_1) \to \eta_n(Y_2)$ così definita:

$$g_*([X,f]) := [X,g \circ f]$$

Si verifica facilmente che è ben definita e funtoriale, infatti $g_{1*} \circ g_{2*} = (g_1 \circ g_2)_*$ e id $_* = id$. Inoltre se g è un diffeomorfismo, g_* è un isomorfismo.

Rispetto alla varietà obiettivo questi spazi vettoriali perdono informazioni, cioè è possibile avere varietà non diffeomorfe con spazi uguali. Però se gli spazi sono diversi le varietà non sono diffeomorfe, quindi li possiamo usare per distinguere varietà che siano abbastanza diverse.

Osservazione 58. $(g \circ h)_* = g_* \circ h_*, id_* = id$

$$g_*\left(\left[X \xrightarrow{f} Y_1\right]\right) = \left[X \xrightarrow{g \circ f} Y_2\right]$$

Osservazione 59. Se $g: Y_1 \to Y_2$ è diffeomorfismo, $\exists g^{-1}: Y_2 \to Y_1$ liscia $\implies g_*$ è isomorfismo di spazi vettoriali.

Definizione 97 (Omotopia). $g_0: Y_1 \to Y_2, g_1: Y_1 \to Y_2$ sono omotope se $\exists G: Y_1 \times [0,1] \to Y_2$ tale che, detta $G_t:=G|_{Y_1 \times \{t\}}, G_0=g_0, G_1=g_1.$

Osservazione 60. L'omotopia è un particolare cobordismo (basta considerare il cilindro associato!)

Proposizione 81. $g_0, g_1 \text{ omotope} \Longrightarrow g_{0*} = g_{1*}$.

Dimostrazione. Inserire disegni

Definizione 98 (Cobordismo orientato). $X_0 \sim_{cob^+} X_1$ se \exists triade (W, Z_0, Z_1) con W orientata e isomorfismi $\phi_0: X_0 \to Z_0, \phi_1: X_1 \to Z_1$ che preservano l'orientazione.

Osservazione 61. Anche in questo caso possiamo aggiungere la struttura di gruppo abeliano, con la stessa operazione definita nella lezione precedente. In particolare -[X] = [-X]. (Viene scambiata l'orientazione di tutte le componenti connesse)

2.20.1 Alcuni $\eta_n(Y)$ e $\Omega_n(Y)$

Al fine di mostrare che gli spazi in esame non sono tutti banali si esaminano alcuni di questi in particolare. Prima di tutto si esamina la struttura di varietà differenziabili in dimensione bassa (in particolare n=0,1).

- $\mathbf{n} = \mathbf{0} \ X \in \{0\text{-varietà compatte connesse}\}/\{\text{diffeomorfismi}\} \implies X = \{pt.\},$ mentre in generale, in mancanza di connessione, si avrà un'unione disgiunta di punti;
 - $X \in \{0\text{-varietà compatte orientate connesse}\}/\{\text{diffeomorfismi che preservano l'orientamento}\} \implies X = \{pt., \pm\},$ dove il segno specifica l'orientazione, e nel caso generale non connesso si ha un'unione disgiunta di punti con segno;
- $\mathbf{n} = \mathbf{1} \ X \in \{1\text{-varietà compatte connesse}\}/\{\text{diffeomorfismi}\} \implies X = [a,b]$ nel caso di varietà con bordo $\ \lor \ X = S^1$ nel caso di mancanza di bordo, al solito nel caso generale si ha un'unione disgiunta degli spazi descritti (quest'ultimo fatto è vero, ma la dimostrazione è non banale);
 - $X \in \{1\text{-varietà compatte orientate}\}/\{\text{diffeomorfismi che preservano l'orientamento}\}$ allora X è uno spazio di quelli descritti nel caso non orientato, dove l'orientazione è definita per ogni componente connessa scegliendo il verso orario o antiorario per ogni componente senza bordo (di tipo S^1) e positivo o negativo (con riferimento alla struttura ordinata di \mathbb{R}) per le componenti con bordo (di tipo intervallo chiuso).

Lezione 14 aprile 2.20. COBORDISMO

34

Figura 2.8: Orientamenti su S^1

Sulle componenti con bordo si ha inoltre un'orientazione indotta, conformemente alla convenzione stabilita "prima la normale uscente". Perciò nell'in-

Figura 2.9: Orientamento indotto sul bordo di un intervallo

tervallo [a,b] si ha che il punto a ha segno + se la normale uscente è concorde con l'orientamento dell'intervallo, cioè se [a,b] è preso con verso negativo, - altrimenti. Stessa cosa per b.

Spazio η_0 Si passa ora a $\eta_0(Y)$, con Y varietà compatta chiusa (cioè senza bordo). Si ha che $\eta_0(Y) = \{f: X \to Y\}/\{\text{cobordismi}\}\ \text{con }X\ 0$ -varietà compatta, cioè $X = \{x_1, \dots, x_k\},\ e\ f(x_i) = y_i$. Prese due varietà compatte $X = \{x_1, \dots, x_k\},\ f(x_i) = y_i\ e\ Z = \{z_1, \dots, z_k\},\ g(z_j) = y_j',\ \text{allora }X\ \text{cob. }Z \Longrightarrow \exists W\ \text{t.c.}$ $\partial W = \{x_1, \dots, x_k\} \sqcup \{z_1, \dots, z_k\}\ \text{con }\dim W = 1\ e\ F: W \to Y\ \text{che ristretta al bordo torna ad essere }f\ e\ g.$

Esempio 13. Da questo si può osservare che riesco sempre a connettere tutti i punti con degli archi, ammesso che il totale sia pari (ogni arco ha un principio e una fine).

Perciò una condizione necessaria è che le due varietà abbiano cardinalità con la stessa parità. Inoltre poiché c'è bisogno anche di un diffeomorfismo F su W (che si identifica con l'unione disgiunta degli archi), se si considerano le immagini degli estremi di ogni arco si ha che anch'esse sono connesse da un arco immagine. Perciò, considerando una sola componente connessa di Y, la condizione di parità espressa

Figura 2.10: I tratti costituiscono la transizione W

precedentemente sulle intere varietà si deve quindi restringere alle controimmagini delle componenti connesse.

Si ottiene infine che due varietà sono cobordanti se e solo se le controimmagini di una componente connessa in entrambe le varietà hanno la stessa parità.

Si è così ottenuta la struttura dello spazio:

$$\eta_0(Y) = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$$

tanti termini quante sono le componenti connesse di Y.

Figura 2.11: Un generatore dello spazio $\eta_0(Y)$

Gruppo Ω_0 Come nel caso non orientato si hanno le stesse condizioni necessarie sugli archi (riguardanti la parità delle controimmagini delle componenti connesse). Si ha in più una condizione sull'orientamento, infatti ogni arco ha due estremi orientati in modo opposto. Perciò stavolta ciò che identifica la relazione tra le controimmagini delle componenti connesse non è la parità, ma la somma dei segni,

Lezione 14 aprile

35

che complessivamente deve essere nulla, da cui si ottiene che fissate tali somme in una varietà, l'altra, per essere cobordante, deve avere le stesse con segno opposto, in modo che tutte sommino a 0.

La struttura del gruppo è dunque:

$$\Omega_0(Y) = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$$

anche qui il numero di termini è pari al numero di componenti connesse.

Un paio di claim

- C'è una mappa d'oblio $f: \Omega_n(Y) \to \eta_n Y$, che perde parte delle informazioni, quelle derivanti dall'orientamento;
- Si possono classificare le superfici (2-varietà), mediante gli invarianti $\eta_1(Y)$ e $\Omega_1(Y)$, con Y superficie.

2.21 Trasversalità

Se io vi dico che una cosa è vera, potete anche fregarvene del perché sia vero, insomma... potete anche fregarvene della dimostrazione! In fondo siete fisici... siete abituati a digerire anche di più!

R.Benedetti

Si vuole introdurre un concetto secondo cui ci siano alcuni oggetti siano "speciali" rispetto ad altri. Seguono dunque alcuni esempi:

Esempio 14.

- In \mathbb{R}^2 quali sono i sottospazi di dim = 1 rispetto ad una data retta? Solo se stesso, se come discriminante si considera lo spazio generato dalla retta fissata con l'altra arbitraria. Infatti tutti generano il piano di dim = 2, tranne la retta stessa, che con se stessa genera uno spazio di dim = 1 (sempre sé);
- Per i piani nello spazio relativamente a una retta, o le rette relativamente ai piani, o sottospazi in dimensione più elevata si hanno delle estensioni naturali;
- Per le curve in uno spazio di dim ≥ 2 si ottiene una nozione analoga considerando i punti di intersezione e gli spazi tangenti in tali punti. Cioè sugli spazi tangenti si hanno le stesse relazioni descritte mediante l'algebra lineare.

Osservazione 62. La relazione di essere "non speciale" è aperta, poiché per piccole deviazioni da un elemento generico si continuano ad avere elementi generici, inoltre gli elementi generici sono densi nell'insieme di tutti gli elementi.

Figura 2.12: Due curve trasverse e relativi spazi tangenti nei punti d'interesse

Ancora nelle precedente osservazione si stava trattando con concetti intuitivi, si da dunque ora una definizione formale del concetto di "speciale".

Definizione 99 (Trasversalità). Sia Y una varietà e $A \subseteq Y$ una sottovarietà, con $\partial Y = \partial A = \emptyset$. Sia X compatta e chiusa ($\partial X = \emptyset$), e sia $f: X \to Y$ liscia.

Si definisce allora f trasversa ad A se: $\forall x \in X$ t.c. $y = f(x) \in A$ si ha che $T_y Y = T_y A + D_x f(T_x X)$.

Si scrive inoltre che $f \cap A$.

Esempio 15. $Y=\mathbb{R}^2,~X\stackrel{f}{\longleftrightarrow}\mathbb{R}^2$. I punti su cui verificare la proprietà di trasversalità sono l'intersezione, cioé:

 $\forall x \in X \cap A$ allora $T_xA + \mathrm{id}(T_xX) = \mathbb{R}^2 \iff T_xA \oplus T_xX$, infatti, essendo f un'immersione, allora la sua applicazione tangente coincide con l'identità.

Definizione 100 (Trasversalità per superfici con bordo). Se $\partial X \neq \emptyset$ definisco f trasversa ad A se si ha $f|_{\partial X} \cap A$ (infatti il bordo di una varietà è senza bordo).

Focus Si ha allora che:

- Se $f(X) \cap A = \emptyset$ allora $f \pitchfork A$ per vacuità;
- $X \stackrel{i}{\longleftrightarrow} A \subseteq Y$ sottovarietà, allora $i \pitchfork Y \iff X \pitchfork Y$, cioè $\forall x \in X \cap Y : T_x X + T_x A = T_x Y$.

Inoltre se dim X + dim A = dim Y \Longrightarrow $T_xX \oplus T_xA = T_xY$ (cioè $T_xX \cap T_xA = \{0\}$);

• Se $A = \{y_0\}$, $f \cap \{y_0\}$: $\forall x \in X \text{ t.c. } f(x) = y_0 \text{ allora } T_{y_0}(A) + D_x f(T_x X) = T_{y_0} Y \iff D_x f \text{ è}$ surgettiva $\forall x \in f^{-1}(y_0)$, poiché $T_{y_0}(A)$ **Definizione 101.** Si dice che $y_0 \in Y$ è un valore regolare per f se $\forall x \in f^{-1}(y_0)$ si verifica $D_x f$ è surgettiva, mentre $x \in X$ è un punto critico per f se $D_x f$ non è surgettiva.

In questa lezione si svilupperanno tre "tipi" di teoremi di trasversalità. Non verrà subito data una dimostrazione degli stessi, ne ora, ne durante il corso, tranne qualche idea riguardo la terza.

Tipo 1

Teorema 82 (Teorema 1). Siano X e Y varietà differenziabili, $A \subseteq Y$ e $f: X \to Y$ tale che $f \pitchfork A$. Allora $f^{-1}(A)$ è una sottovarietà di X.

Tipo 2

Teorema 83 (Teorema 2). Le funzioni trasverse ad $A \subseteq Y$ sono un aperto denso in $\epsilon(X,Y)$.

Teorema 84 (Teorema 2++). Sia $f \not \uparrow A$. Esiste una funzione g arbitrariamente vicina a f tale che $g \pitchfork A$. Se X non è chiusa ed $f|_{B(X)} \pitchfork A$ puoi scegliere g tale che coincida con f in un collare del bordo di X.

Tipo 3

Teorema 85 (Teorema 3). Siano X_1 e X_2 varietà compatte e senza bordo della stessa dimensione, Y varietà e A sottovarietà di Y. Siano inoltre $f_1: X_1 \to Y$ e $f_2: X_2 \to Y$. Se $f_1 \pitchfork A$ e $f_1 \sim_{cob} f_2$ detti $Z_1 = f_1^{-1}(A)$ e $Z_2 = f_2^{-1}(A)$ si ha che $(Z_1, f_1|_{Z_1}) \sim_{cob} (Z_2, f_2|_{Z_2})$.

Dimostrazione. Diamo un po' di idee per la dimostrazione, dando per noti gli altri teoremi già esposti. Per il teorema 1 Z_1 e Z_2 sono delle sottovarietà di X_1 e di X_2 . Chiamiamo W la varietà che realizza il cobordismo ($\partial W = X_1 \sqcup X_2$) ed F la relativa funzione ($F|_{X_1} = f_1$ e $F|_{X_2} = f_2$). Grazie al teorema 2 esiste una funzione $G: W \to Y$ vicina a piacere ad F, che ristretta su ∂W valga $f_1 \sqcup f_2$ (anzi, il teorema ci garantisce che la possiamo scegliere in modo che coincida con F in un collare di $X_1 \sqcup X_2$) e che sia trasversa ad F. Chiaramente la controimmagine di F0 in F1 un sottovarietà per il teorema 1 e, grazie al fatto che F2 coincide con F3 in un collare di F3 un segue che F4 realizza il cobordismo fra F5 in un collare di F6 realizza il cobordismo fra F7 e F9.

Vediamo ora qualche semplice applicazione della teoria della trasversalità. Perdonatemi per quello che sto per fare.

Definizione 102 (Retrazione). Sia X una varietà con bordo. $\tau: X \to \partial X$ è una retrazione se $\tau|_{\partial X} = \mathrm{id}_{\partial X}$.

Teorema 86. Non esistono retrazioni!

Dimostrazione. Procediamo per assurdo. Sia $y_0 \in \partial X$. Prendo τ retrazione. $\tau|_{\partial X}$ è ha differenziale iniettivo in y_0 , dunque è trasversa ad $\{y_0\}$. Prendo una funzione τ' vicina a piacere a τ che coincida con τ sul bordo e trasversa ad $\{y_0\}$. Considero $Y = \tau'^{-1}(y_0)$. Y è una varietà 1-dimensionale e $y_0 \in Y$. Dunque Y ha bordo non vuoto. Ma, per la caratterizzazzione delle varietà 1-dimensionali deve avere almeno un altro punto y_1 nel bordo. Dunque $y_1 = \tau(y_1) = \tau'(y_1) = y_0$. Assurdo.

Forse potreste perdonarmi grazie a questo:

Teorema 87 (Teorema del punto fisso di Brouwer). Sia D^n il disco chiuso di raggio 1 in \mathbb{R}^n . Sia $f: D^n \to D^n$. Esiste $x_0 \in D^n$ punto fisso per f.

Dimostrazione. Sia $r: D^n \to \partial D^n$ tale che r(x) sia l'intersezione di ∂D^n con la semiretta di origine $f(x_0)$ passante per x_0 . r è una retrazione.

2.22 Cenni alle dimostrazioni dei teoremi di trasversalità

Teorema 88 (Teorema 1 di \pitchfork). Siano X, Y e $A \subseteq Y$ varietà differenziabili, (X compatta, Y e A chiuse) e $f: X \to Y$ tale che $f \pitchfork A$. Allora $Z := f^{-1}(A)$ è una sottovarietà di X e codim $_X Z = \operatorname{codim}_Y A$.

Dimostrazione. Per semplicità supponiamo $\partial X = \emptyset$.

- Caso particolare: $A = \{y_0\}$ è composto da un solo punto. L'idea è che possiamo "localizzare" il problema per ricondurci al caso in cui X = U aperto di \mathbb{R}^n , $Y = \mathbb{R}^m$, $A = \{0\}$ e applicare il teorema della funzione implicita (versione suriettiva). Quindi, poichè $f \pitchfork A \iff y_0$ è un valore regolare per f, abbiamo che $\forall x \in f^{-1}(y_0) \ D_x f : T_x X \to Y$ è suriettiva.
- Riduzione del caso generale al caso particolare.
 L'idea è che possiamo localizzare in arrivo:

$$(Y, A) = (U \times V, U \times \{0\}) \subseteq (\mathbb{R}^p \times \mathbb{R}^q, \mathbb{R}^p \times \{0\})$$

e (eventualmente restringendo π all'immagine di f)

$$X \xrightarrow{f} U \times V \xrightarrow{\pi} V$$

$$X \xrightarrow{f} A \xrightarrow{U} V \xrightarrow{\pi} 0$$

Sia $g = \pi \circ f$, mostrare per esercizio che $f \pitchfork A \iff g \pitchfork \{0\}$.

La dimostrazione nel caso $\partial X \neq \emptyset$ è sostanzialmente analoga, con qualche complicazione: l'idea è considerare la varietà Doppio

$$D(X) := X \sqcup X/(\mathrm{id} : \partial X \to \partial X)$$

$$D(f):D(X) \to Y \supseteq A$$

Sarà quindi $D(Z)=(D(f))^{-1}(A)$ una sottovarietà di D(X) e allora $Z=f^{-1}(A)=D(Z)\cap X$ sarà una sottovarietà di X. Basta verificare che $D(Z)\pitchfork\partial X$ in D(X). \square

Ora ci prepariamo ad affrontare la dimostrazione del (Teorema 2). Faremo un po' di nomenclatura e poi caleremo dal cielo senza dimostrazione qualche cannone come il teorema di Brown. Infatti se non bariamo un po' non riusciamo ad arrivare in fondo.

Definizione 103. Sia $f: X \to Y$ una funzione liscia. Ricordiamo che un punto $x \in X$ si dice *critico* per f se $D_x f: T_x X \to T_{f(x)} Y$ non è suriettiva. Chiameremo C(f) l'insieme dei punti critici di f.

Osservazione 63. $Y \setminus f(C(f))$ è l'insieme dei valori regolari di f.

Teorema 89 (Brown). $Y \setminus f(C(f))$ è denso in Y.

Dimostrazione. È un corollario del Teorema di Morse-Sard⁶ (cannone di analisi).

Teorema 90 (Teorema 2 di \pitchfork). \pitchfork $(X,Y,A) := \{f : X \to Y \mid f \pitchfork A\}$ è un aperto denso in $\mathcal{E}(X,Y)$.

Dimostrazione.

Apertura Idea: l'algebra lineare ci da dei controlli locali (teorema del rango massimo) e la compattezza ci permette di estendere i controlli a livello globale.

Densità X è compatto $\implies f(X) \subseteq Y$ è compatto, quindi posso ricoprire f(X) con un numero finito di carte locali di Y.

Localmente vedo Y come \mathbb{R}^n : $Y = U \subseteq \mathbb{R}^p \times \mathbb{R}^q$ e $A = \mathbb{R}^p \times \{0\}$. Per ogni punto prendo una palla aperta B e la sua controimmagine $K := f^{-1}(B) \subseteq X$; poiché i K ricoprono X, che è compatta, allora posso estrarre un sottoricoprimento finito.

Sia $\pitchfork_K (X, Y, A) := \{ f : X \to Y \mid f \pitchfork A \text{ lungo } K \}$. Dimostriamo che $\forall K \pitchfork_K (X, Y, A)$ è (un aperto) denso.

La condizione di trasversalità si traduce quindi nel richiedere che, dato $f(x) \in A$, x non sia un punto critico per $\pi \circ f$. Per il teorema di Brown esiste $\{y_n\} \in \mathbb{R}^p \times \mathbb{R}^q$ tale che $y_n \to 0$ e $(\pi \circ f)(y_n)$ è un valore regolare per $\pi \circ f$. Otteniamo $\{f_n(x)\} = \{f(x) - y_n\}$ che è una successione di funzioni trasverse ad A e che converge uniformemente a f in K.

Abbiamo ottenuto che $\pitchfork_K(X,Y,A)$ è (un aperto) denso, dobbiamo estendere questa conquista a tutto X, ma questo non è difficile perché

- 1. per estendere le f_n basta usare le funzioni a foruncolo;
- 2. basta notare che $\pitchfork(X,Y,A) = \bigcup_K \pitchfork_K (X,Y,A)$ e poichè l'intersezione è finita ottengo che anche $\pitchfork(X,Y,A)$ è denso.

Per il caso $\partial X \neq \emptyset$ si usa anche qui il trucco del *Doppio*.

Fra le potenti applicazioni di questi teoremi di trasversalità c'è il teorema di immersione (vedi lezione successiva).

Teorema 91 (Cannone buffo). Sia $i(n) := \min\{N \mid \forall X^n \exists \varphi : X \hookrightarrow \mathbb{R}^N\}$, allora $i(n) = n + (numero\ di\ "1"\ nella\ scrittura\ in\ base\ 2\ di\ n)$, mentre per gli embedding è ancora un problema aperto.

 $^{^6\}mathrm{Baro}$: gioca questa carta insieme ad un oggetto, puoi possedere ed usare l'oggetto anche se è contro le regole.

2.23 Immersioni e embedding

Teorema 92. Una varietà compatta chiusa X di dimensione n ammette embedding $X \hookrightarrow \mathbb{R}^{2n+1}$ e immersione $X \hookrightarrow \mathbb{R}^{2n}$.

Dimostrazione. Si è già visto che $\exists N$ t.c. \exists embedding $X \hookrightarrow \mathbb{R}^N$.

Scomponiamo \mathbb{R}^N in $\mathbb{R}^{N-1} \times \mathbb{R}$. Ora, $\forall v \in \mathbb{R}^N \setminus \mathbb{R}^{N-1}$: $\mathbb{R}^N = \operatorname{span}(v) \oplus \mathbb{R}^{N-1}$ e ad ogni tale v corrisponde una proiezione $\pi_v : \mathbb{R}^N \to \mathbb{R}^{N-1}$. Proiettiamo dunque X su \mathbb{R}^{N-1} tramite $\pi_v|_X$: vogliamo dunque trovare una condizione su v per cui questa sia un'immersione. Si ha $\ker \pi_v = \operatorname{span}(v)$, dunque $\pi_v|_X$ è immersione se $\forall x \in X, \forall z \in T_x X : z \notin \operatorname{span}(v)$ (WLOG possiamo supporre ||v|| = ||z|| = 1, dunque se $z \neq \pm v$).

Sia $\nu: T(X) \to \mathbb{R}$ l'applicazione $(x,z) \mapsto \|z\|$ e sia $T_1(X) := \nu^{-1}(1)$ (ovvero l'unione delle sfere unitarie di ogni T_xX). $T_1(X)$ è dunque sottovarietà di T(X) (per teoremi di trasversalità) di dimensione 2n-1, e si ha $T_1(X) \subseteq X \times S^{N-1}$. sia ora $\rho: T_1(X) \to S^{N-1}$ la proiezione $(x,v) \mapsto v$; allora $\pi_v|_X$ è immersione $v \in S^{N-1} \setminus \operatorname{Im} \rho$.

Per i teoremi di trasversalità avevamo visto che se dim $X < \dim Y$ e $f: X \to Y$ liscia, $Y \setminus f(X)$ è denso in Y. Dunque se dim $S^{N-1} > \dim T_1(X)$ (ovvero se N > 2n) esiste un insieme denso (aperto per compattezza di X) di vettori v che danno $\pi_v|_X$ immersione. Dunque se esiste un embedding in dimensione maggiore di 2n, esiste un'immersione in una dimensione in meno.

Per mostrare l'esistenza di un embedding in \mathbb{R}^{2n+1} ragioniamo in modo analogo: a partire da un embedding $X \hookrightarrow \mathbb{R}^N$ cerco v t.c. $\pi_v|_X : X \to \mathbb{R}^{N-1}$ sia un embedding (ovvero, per compattezza di X, un'immersione iniettiva).

Consideriamo $X \times X \setminus \Delta$, con $\Delta := \{(a,b) \in X \times X \mid a=b\}$; si tratta di una varietà non compatta di dimensione 2n. Sia ora $\alpha : X \times X \setminus \Delta \to S^{n-1}$ l'applicazione $(x,y) \mapsto \frac{x-y}{||x-y||}$.

Se π_v non è iniettiva, $\exists x,y \in X$ t.c. $x-y \in \operatorname{span}(v)$, ovvero (supponendo WLOG ||v||=1) π_v è iniettiva se $v \notin \operatorname{Im} \alpha$. Dunque, se $\dim S^{N-1} > \dim X \times X \setminus \Delta$ (ovvero se N>2n+1) esiste un insieme denso di vettori v che rendono π_v iniettiva; siccome inoltre esiste un denso aperto che la rende immersione, l'intersezione (non nulla per le proprietà di densità) contiene vettori che rendono π_v immersione iniettiva, ovvero embedding. Procedendo induttivamente concludiamo che esiste un embedding in \mathbb{R}^{2n-1} e dunque per quanto visto prima un'immersione in \mathbb{R}^{2n} .

2.24 Versione orientata dei teoremi di trasversalità

Proposizione 93. Siano $X,Y\supseteq A$ varietà orientate $e\ f:X\to Y,\ f\pitchfork A.$ Allora $Z=f^{-1}(A)$ oltre a essere una sottovarietà di X ammette una procedura di

orientazione.

Prima di esibire questa procedura, usiamo questo fatto per mostrare la versione orientata di un fatto già noto: sappiamo che per

con $(X_0, f_0) \sim_{cob} (X_1, f_1)$ mediante (W, F) e $f_0, f_1 \cap A$, abbiamo per le preimmagini $Z_0 = f_0^{-1}(A)$, $Z_1 = f_1^{-1}(A)$ che $(Z_0, f_0|_{Z_0}) \sim_{cob} (Z_1, f_1|_{Z_1})$ ed il cobordismo è realizzato da $(U, \tilde{F}|_U)$, dove \tilde{F} è un'applicazione su W vicina ad F e trasversa ad A per cui $\tilde{F}|_{X_0} = f_0$, $\tilde{F}|_{X_1} = f_1$, e $U = \tilde{F}^{-1}(A) \subseteq W$.

Ora, se $(X_0, f_0) \sim_{cob^+} (X_1, f_1)$ con il cobordismo orientato realizzato da W, F, applicando la procedura di orientazione alle controimmagini di A otteniamo che $(U, \tilde{F}|_U)$ realizza il cobordismo orientato $(Z_0, f_0|_{Z_0}) \sim_{cob^+} (Z_1, f_1|_{Z_1})$.

Mostriamo ora la procedura di orientazione, partendo dal caso $A = \{y_0\}$, dim $X = \dim Y$.

Si ha $f \cap A \leftrightarrow y_0$ è valore regolare per f, dunque $f^{-1}(y_0) = \{x_1, \dots, x_k\}$ (finito per compattezza di X) è un insieme di punti non critici, e per l'uguaglianza delle dimensioni $D_{x_i}f: T_{x_i}X \to T_{y_0}Y$ è un isomorfismo.

Ora, se Y, y_0 e X sono orientati, fisso in $T_{y_0}Y$ una base \mathcal{B}_{y_0} nella classe di orientazione di Y e assegno a x_i il segno (dunque l'orientazione) + se la controimmagine di questa base per $D_{x_i}f$ è una base nella classe di orientazione di X, ed il segno – se è nell'altra classe di orientazione.

Rilassando la condizione sulle dimensioni (dunque passando al caso dim $X \ge \dim Y$, altrimenti non si potrebbe avere $D_x f$ suriettivo) e ponendo $Z = f^{-1}(y_0)$, per $x \in Z$ abbiamo $T_x X = T_x Z \stackrel{\perp}{\oplus} \nu(v)$, con $\nu(x)$ l'iperpiano ortogonale a $T_x Z$. $D_x f : \nu(x) \to T_{y_0} Y$ è quindi isomorfismo, dunque $(D_x f)^{-1}(\mathcal{B}_{y_0})$ è base di $\nu(x)$; scelgo pertanto per Z l'orientazione tale per cui una base di $T_x Z$ compatibile con essa completi la base di $\nu(x)$ appena esibita ad una base di $T_x X$ compatibile con l'orientazione di X.

Il caso $\dim A>0$ si riconduce a quanto mostrato per $A=\{pt\},$ come si vedrà nella lezione seguente.

2.25 Ripasso della lezione sulla trasversalità

Sia $f: X \to Y$ e $A \in Y$ tale che $f \cap A$, le varietà sono tutte orientate, allora $Z = f^{-1}(A)$ è orientabile, precedentemente abbiamo dato una procedura per orientarla.

2.26. TEORIA DEL GRADO

Lezione 27 aprile 39

Sia $A = \{y_0\}$, y_0 è un valore regolare per f. Localmente ho la situazione linearizzata del teorema della funzione implicita surgettiva.

Sia i una immersione cioè $X \hookrightarrow Y \supset A$ e definisco $i^{-1}(A) = X \pitchfork A$. Si ha anche $T_xX + T_xA = T_xY$ e definisco $T_x(X \cup A) = T_xX \cup T_yA$. Nella lezione precedente ho dato una procedura per orientare $i^{-1}(A) = X \pitchfork A$. Ora voglio orientare $T_x(X \cup A)$ sapendo che l'unione degli spazi di cui è intersezione da tutto l'ambiente T_xY . Per fare ciò si darà una procedura per orientare l'intersezione di due spazi vettoriali. Ho che \mathbb{R}^N è lo spazio ambiente e vale $V + W = \mathbb{R}^N$. Sia \mathcal{B} una base dell'intersezione $V \cup W$. Le basi \mathcal{B}_W e \mathcal{B}_W sono basi di V e W così come lo sono rispettivamente anche $(\mathcal{B}, \mathcal{B}_V)$ e $(\mathcal{B}, \mathcal{B}_W)$. L'orientazione di V0 e V1 è data da queste ultime basi. L'insieme V2 e V3 è base di V4 è quella per cui la procedura specificata produce una base per V4 che ha la stessa orientazione data in partenza.

Osservazione 64. Se scambio l'ordine delle varietà ottengo $A \pitchfork X$ e $X \pitchfork A$. Si può verificare che vale la relazione: $A \pitchfork X = (-1)^{\operatorname{codim}(X) \cdot \operatorname{codim}(Y)} X \pitchfork A$ Dove il segno significa semplicemente l'orientazione (stessa orientazione o orientazione opposta).

Se è $f: X \to Y$ con $A \subseteq Y$ generico per dimostrare che $f^{-1}(A)$ è una varietà e dargli una orientazione ci si riconduce al caso in cui $A = \{y_0\}$, a questo punto si applica la procedura esposta precedentemente.

Definizione 104 (Trasversalità di funzioni). Siano date $f_1: X_1 \to Y$ e $f_2: X_2 \to Y$. Voglio dare un senso alla scrittura $f_1 \pitchfork f_2$. Definiamo $f_1 \times f_2: X_1 \times X_2 \to Y \times Y$ come $(x_1, x_2) \mapsto (f(x_1), f(x_2))$. Considero l'insieme diagonale $\Delta = \{(y_1, y_2) \in Y \times Y \mid y_1 = y_2\}$ Diciamo $f_1 \pitchfork f_2: \leftrightarrow f_1 \times f_2 \pitchfork \Delta$.

Teorema 94. Data $f_2: X_2 \rightarrow Y$, definiamo \pitchfork $(A, f_2):= \{f: X_1 \rightarrow Y \supseteq A \mid f \pitchfork f_2\}$ l'insieme così definito è un aperto denso di $\mathcal{E}(X_1, Y)$.

Abbiamo visto nelle lezioni precedenti:

- \bullet Non esistono retrazioni $r:X\to \partial X$ diffeomorfismi, da cui segue il teorema del punto fisso di Brouer
- Vale il teorema di embedding cioè ogni varietà X^n di dimensione n si può immergere con un embedding in \mathbb{R}^{2n+1} se non richiedo iniettività della funzione nella sua immagine (condizione per avere embedding) posso comunque trovare un'immersione in \mathbb{R}^{2n} .

Teorema 95 (Di Whitney versione difficile). $\forall X^n \text{ trovo un embedding } X^n \hookrightarrow \mathbb{R}^{2n}$.

Osservazione 65. Per dimostrarlo non basta usare considerazioni di trasversalità. Devo definire una procedura a partire dalla immersione in \mathbb{R}^{2n} per eliminare tutte le autointersezioni della varietà immersa, questa procedura è nota come Whitney Trick:

Osservazione 66. In tutte le dimensioni $(n \neq 4)$ ogni varietà omeomorfa a \mathbb{R}^n è diffeomorfa a \mathbb{R}^n . In \mathbb{R}^4 questo non vale e c'è un continuo di varietà non diffeomorfe tra loro.

2.26 Teoria del grado

 $f:X^n\to Y^n$ con X^n compatta e chiusa e Y^n connessa. Voglio definire il grado della funzione f, dimostreremo che è un invariate per cobordismo.

Definizione 105 (Versione non orientata). Procederemo seguendo una serie di semplici passi:

- Fisso $y_0 \in Y$.
- Prendo g vicina a f nel senso della topologia definita su $\mathcal{E}(X,Y)$ tale che $g \pitchfork \{y_0\}$ si vede che g è omomorfa a f dai teoremi dimostrati nelle lezioni precedenti sulla trasversalità.
- $g^{-1}(y_0) = x_1, x_2, \dots, x_k$ è un insieme di cardinalità finita, infatti X è compatta
- Definisco $\operatorname{grad}_2(f) = k \mod 2$

Dunque vediamo che il grado di una funzione tra varietà non orientate è una funzione $\mathcal{E}(X,Y) \to \mathbb{Z}/2\mathbb{Z}$.

Teorema 96 (Buona definizione del grado). $f: \operatorname{grad}_2(f)$ è ben definita cioè non dipende né dalla scelta di y_0 né dalla scelta di q.

Teorema 97. Se $f_1: X_0 \to Y$ e $f_2: X_0 \to Y$ sono cobordanti allora $\operatorname{grad}_2(f_1) = \operatorname{grad}_2(f_0)$. In particolare questo vale quando sono omotope, infatti l'omotopia è un particolare cobordismo.

Dimostrazione. Dimostreremo che a y_0 fissato il grado non dipende dalla scelta della g. Siano g_1 e g_2 tali che g_1 \pitchfork y_0 e g_2 \pitchfork y_0 . Sappiamo che g_1 è omotopa a f_1 e che g_2 è omotopa a f_2 , poiché l'omotopia è una relazione di equivalenza e sappiamo che le f_1 e f_2 sono omotope lo sono anche le funzioni g_1 e g_2 , che sono dunque cobordanti. Da questo posso concludere che per il terzo teorema di trasversalità $Z_1 = f_1^{-1}(A)$ e $Z_2 = f_2^{-1}(A)$ sono varietà cobordanti quindi la parità della loro cardinalità è uguale. Questo conclude la dimostrazione della buona positura del grado.

Ora devo eliminare l'arbitrarietà del punto y_0 . Prendo due punti x e y faremo vedere nella prossima lezione che si può utilizzare il fatto che Y è connessa per costruire una isotopia $H: Y \times [0,1] \to Y$ tale che posto $H_t = H|_{Y \times t}$ ho che H_t è un diffeomorfismo di $Y \ \forall t \in [0,1]$ e vale che $H_0 = \text{id} \in H_1(x) = y$. Comunque

prendo due punti esiste un diffeomorfismo che manda un punto nell'altro, in questo senso nessun punto è privilegiato. Questo significa che una varietà è omogenea, cioè a meno di diffeomorfismi ogni punto è equivalente.

Teorema 98 (Lemma di omogeneità). Sia Y una varietà connessa, allora $\forall y_0, y_1 \in Y, \exists f \text{ diffeomorfismo } f: Y \rightarrow Y \text{ t.c. } f(y_0) = y_1.$

Inoltre posso richiedere che f sia a supporto compatto (ovvero è l'identità fuori da un compatto) e che sia isotopa all'identità (ovvero $\exists H$: $Y \times [0,1] \rightarrow Y$ t.c. H_t diffeo $\forall t$, $H_0 = Id$, $H_1 = f$)

Dimostrazione. Partiamo dal caso particolare in cui $Y = \mathbb{R}^n$.

Prendiamo due punti x e y in \mathbb{R}^n e sia WLOG $x\equiv 0$, (l'origine). La funzione cercata potrebbe essere $f:\mathbb{R}^n\to\mathbb{R}^n$ t.c. g(x)=x+y. f(0)=y e f è isotopa all'identità (H(x,t)=x+ty), tuttavia f non è a supporto compatto, poiché la traslazione muove tutto \mathbb{R}^n . Per rimediare sfruttiamo le funzioni a foruncolo precedentemente definite.

Sia $\lambda : \mathbb{R}^n \to \mathbb{R}$ la funzione a foruncolo da \mathbb{R}^n a \mathbb{R} . La funzione cercata potrà quindi essere scritta come $g(x) = x + \lambda(x)y$

Passiamo adesso ad una varietà Y connessa qualunque.

Definiamo una relazione di equivalenza: $x \sim y \leftrightarrow \exists f$ con le proprietà richieste. È facile verificare che si tratta di una relazione di equivalenza. A questo punto se dimostro che le classi di equivalenza sono aperte posso concludere: poiché Y è connesso esiste un'unica classe di equivalenza, tutto Y. Devo mostrare quindi che $\forall x \in Y \exists U_x \subseteq Y \ t.c. \ \forall y \in U_x \ x \sim y$.

Considero una carta locale intorno a x. Suppongo WLOG x=0. All'interno della carta locale posso considerare la funzione g definita prima.

Sia $f:(\mathbb{R}^n,0) \to (\mathbb{R}^{n+1},0)$ diffeomorfismo con f(0)=0. Definiamo $\hat{f}:S^n \to S^n$ come $\hat{f}(x):=\frac{f(x)}{\|f(x)\|}$. Abbiamo che grad $\hat{f}=\operatorname{sgn} \det D_0 f$. Ciò segue dalla linearizzazione a meno di isotopia dei diffeomorfismi $\mathbb{R}^n \to \mathbb{R}^{n+1}$ più il fatto che il grado è invariante di omotopia.

2.27 Numero d'intersezione

Sia Y^n la varietà ambiente e X_1, X_2 sottovarietà compatte chiuse codimensionali (dim $X_1 + \dim X_2 = \dim Y$). Siano $X_1 \stackrel{i_1}{\longleftrightarrow} Y$ e $X_2 \stackrel{i_2}{\longleftrightarrow} Y$ le inclusioni. Diciamo che $X_1 \pitchfork X_2 : \leftrightarrow i_1 \pitchfork i_2$. Ricordiamo la definizione di trasversalità per le funzioni: $i_1 \pitchfork i_2 : \leftrightarrow ((x_1, x_2) \mapsto (i_1(x_1), i_2(x_2)) =: i_1 \times i_2 \pitchfork \Delta := \{(y, y) \in Y \times Y\}.$

Siano \hat{i}_1 e \hat{i}_2 piccole perturbazioni di i_1 e i_2 . Poiché gli embedding sono aperti, possiamo scegliere \hat{i}_1 e \hat{i}_2 embedding, omotopi a i_1 e i_2 e $\hat{i}_1 \pitchfork \hat{i}_2$. Siano $\hat{X}_1 := \hat{i}_1(X_1)$ e \hat{X}_2 analogamente (vedi Figura 2.13).

Figura 2.13: Per definire il numero di intersezioni di due varietà, le spostiamo un po' in modo che siano trasverse.

Definizione 106 (Numero d'intersezione). Il numero d'intersezione di X_1 e X_2 è $(X_1 \cdot X_2) := \#(\hat{X}_1 \cap \hat{X}_2) \mod 2$.

Teorema 99. È una buona definizione.

2.27.1 Versione orientata

Se Y, X_1, X_2 sono orientate, ogni punto di $\hat{X}_1 \cap \hat{X}_2$ ha un segno. Allora abbiamo naturalmente

Definizione 107 (Numero d'intersezione intero).

$$(X_1 \cdot X_2) := \sum_{x \in \hat{X}_1 \cap \hat{X}_2} \operatorname{sgn} x$$

Teorema 100. È una buona definizione.

Osservazione 67. Nella versione non orientata $(X_1 \cdot X_2) = (X_2 \cdot X_1)$, mentre in quella orientata $(X_1 \cdot X_2) = (-1)^{\operatorname{codim} X_1 \operatorname{codim} X_2} (X_2 \cdot X_1)$.

Osservazione 68. Poiché X_1 e X_2 sono codimensionali, codim X_1 codim X_2 = dim X_1 dim X_2 .

2.27.2 Autointersezione

Sia X compatta chiusa orientata, e non lo ripeteremo. C'è un'immersione canonica $X \hookrightarrow TX$ come sezione nulla: $X \ni x \mapsto \underline{0} \in T_xX$. Allora è definito il numero di autointersezione di X dentro TX. Siccome è importante ha un nome:

Definizione 108 (Caratteristica di Eulero-Poincaré). $\chi(X) := (X \cdot X)$.

In generale una sezione è un'applicazione s che fa commutare questo diagramma:

$$X \xrightarrow{s} TX$$

$$\downarrow^{\text{id}} \downarrow^{\pi}$$

$$X$$

ovvero è un campo di vettori tangenti. La sezione nulla è il campo nullo, chiamiamola s_0 . Ha senso chiedersi se $s \pitchfork s_0$. I punti in cui s'intersecano sono gli zeri di s. Per definizione, $s \pitchfork s_0$ se e solo se in carte locali centrate sugli zeri $D_0 s$ è iniettivo.

Rivediamo la costruzione di $(X \cdot X)$. Sia $X \xrightarrow{h} TX$ vicina, omotopa e trasversa a s_0 . Non è detto che h sia una sezione, e invece:

Lemma 101. Non è restrittivo assumere che h sia una sezione.

Dimostrazione. La composizione $\pi \circ h$ è vicina a $\pi \circ s_0 = \mathrm{id}$ che è un diffeomorfismo e i diffeomorfismi sono aperti, allora WLOG $\pi \circ h$ è un diffeomorfismo $X \to X$. Componendo ancora, $s := h \circ (\pi \circ h)^{-1}$ è una sezione e $s \pitchfork s_0^{-7}$.

Dunque siamo in questa situazione:

- s_0 campo nullo
- s campo trasverso a s_0
- $\{x_1, \ldots, x_k\}$ zeri di s

Quindi per definizione $(X \cdot X) = \sum_{i=1}^k \operatorname{sgn}(x_i)$, dove $\operatorname{sgn} x = \operatorname{sgn} \det D_0 s$ in una carta locale centrata in x.

Osservazione69. Ognisè omotopo a $s_0,$ vicino o lontano che sia.

Allora abbiamo dimostrato che

$$\forall s \text{ campo trasverso a } s_0 : (X \cdot X) = \sum_{x \text{ zero di s}} \operatorname{sgn} x$$

Osservazione 70. In carte locali, $\operatorname{sgn} x = \operatorname{grad} \hat{s}^8$.

Da cui sorge naturalmente un tentativo di generalizzazione.

Sia s campo su X con un numero finito di zeri, non necessariamente trasverso a s_0 . Possiamo sostituire il segno di uno zero con il grado di \hat{s} in carte locali, questo si può fare anche se lo zero è degenere.

Definizione 109. Dato x zero isolato di un campo s chiamiamo indice di x: $i(x) := \operatorname{grad} \hat{s}$.

Osservazione 71. x non degenere $\implies i(x) = \operatorname{sgn} x$.

Figura 2.14: Faccio esplodere uno zero eventualmente degenere del campo in più zeri regolari.

Definizione 110. Sia s campo con zeri tutti isolati $\{x_1, \ldots, x_k\}$. La *caratteristica* $di \ s \ e$:

$$\chi(s) := \sum_{i=1}^{k} i(x_i)$$

Osservazione 72. $s \pitchfork s_0 \implies \chi(s) = \chi(X)$.

Teorema 102 (di Hopf). In verità vale $\chi(s) = \chi(X)$ anche se $\neg(s \pitchfork s_0)$.

Dimostrazione. Sia x zero di s. Mi metto in una carta locale centrata in x con dentro un S^{n-1} . Considero un \tilde{s} omotopo a s e \tilde{s} \pitchfork s_0 , con gli zeri contenuti nell' S^{n-1} (vedi Figura 2.14). Allora ho che $i_s(x) = \operatorname{grad} \hat{s}_{S^{n-1}} = \operatorname{grad} \hat{s}_{S^{n-1}}$ per omotopia. Siano \tilde{x}_i gli zeri di \tilde{s} , intorno a ognuno prendo un S_i^{n-1} . Ho che $i_{\tilde{s}}(\tilde{x}_i) = \operatorname{grad} \hat{s}_{S_i^{n-1}}$ e dunque che $\sum_i i_{\tilde{s}}(\tilde{x}_i) = i_s(x)$ per cobordismo.

Osservazione 73. Condizione necessaria per avere campi non nulli è che la varietà abbia caratteristica nulla.

Definizione 111 (Varietà parallelizzabile). Una varietà X si dice parallelizzabile se $TX \simeq X \times \mathbb{R}$.

Tutte le varietà sono parallelizzabili?

Osservazione 74. Se questo fosse vero, allora su ogni varietà X avremmo l'esistanteza di un campo vettoriale mai nullo: infatti se $TX \simeq X \times \mathbb{R}$, abbiamo un diffeomorfismo ϕ tra i due insiemi. Ma su $X \times \mathbb{R}$ posso prendere il campo costante

⁷La dimostrazione di quest'ultimo fatto è non banale.

⁸Vedi inizio lezione.

 $s(x) = e_1$, e poi portarlo indietro tramite ϕ^{-1} , ottenendo un campo vettoriale su X mai nullo.

Analizziamo intanto i casi delle sfere S^n .

Esempio 16 (S^1) . E' facile mostrare che esiste un campo di vettori mai nullo: basta prendere quello tangente in verso antiorario e modulo costante.

Esempio 17 (S^2) . Mostro che esiste un campo vettoriale che si annulla solo sul polo nord e sul polo sud. Dunque ho due zeri isolati. Per calcolare $\chi(S^2)$ devo dunque sommare $i_N(s)$, $i_S(s)$ con N=(0,0,1), S=(0,0,-1).

Osservazione 75. Per il lemma di Morse, dato che N, S sono punti critici della mappa t, esiste un sistema di coordinate in cui la funzione è quadratica. In particolare, esiste intorno di N in cui la funzione è nella forma $-(y_1^2 + y_2^2)$ e un intorno di S in cui è nella forma $y_1^2 + y_2^2$.

Segue che i(N)=i(S)=1 (ho due autovalori negativi o due positivi). Dunque $\chi(S^2)=2.$

Proposizione 103. $\chi(S^{2n+1}) = 0 \ e \ \chi(S^{2n}) = 2.$

Dimostrazione. Basta considerare un campo analogo a quello esibito per S^2 e concludere tramite Morse. $\hfill\Box$

Corollario 104. Per n pari non è possibile che esista un campo mai nullo ("la sfera non è pettinabile").

Proposizione 105. Ci chiediamo se effettivamente per le sfere S^{2n+1} esista un campo di vettori mai nullo. La risposta è affermativa.

Dimostrazione. La risposta è affermativa: $S^{2n+1} \subseteq \mathbb{R}^{2n+2}$. Considero la mappa

$$f: S^{2n+2} \to TS^{2n+2}$$

$$(x_1, y_1, \dots, x_{n+1}, y_{n+1}) \mapsto ((x_1, y_1, \dots, x_{n+1}, y_{n+1}), (-x_1, y_1, \dots, -x_{n+1}, y_{n+1}))$$

Osservazione 76. Questo fatto è vero più in generale: X varietà, $\chi(X)=0 \implies \exists$ campo vettoriale mai nullo.

Teorema 106. X ammette un campo tangente mai nullo $\iff \chi(X) = 0$

Dimostrazione.

⇒) già visto

← ci si appoggia al:

Teorema 107 (Teorema di Hopf). f_0 omotopa $f_1 \iff \operatorname{grad} f_0 = \operatorname{grad} f_1$ Caso particolare: $f: S^n \to S^n$ è omotopa ad una costante $\iff \operatorname{grad} f = 0$

Si ha dunque che $\chi(X)=0$. Sia $s \cap s_0$, con x_j zero isolato di s. Applicando il lemma di omogeneità non è restrittivo supporre che $x_1, \ldots, x_k \in B$, palla dentro una carta di X. Inoltre considero per ogni x_j una palletta di centro x_j e raggio abbastanza piccolo da non contenere altri x_i . Si ha che la figura realizza un cobordismo esplicito.

Figura 2.15: Punti di Morse in carta locale

Perciò la somma dei gradi interni è pari al grado esterno

$$\sum_{j=1}^{k} i_s(x_j) = 0 (2.1)$$

Perciò la sezione sulla sfera esterna è omotopa ad una costante, dunque taglio all'interno della palla e sostituisco con il vettore costante e in questo modo non ho più zeri $\rightarrow \hat{s}$ si estende ad un'applicazione $F: D^{n+1} \rightarrow S^n$, sostituisco \hat{s} definito su D^{n+1} , con il campo F che estende $\hat{s}|_{S^n}$.

Osservazione 77.

• Per semplicità si consideri X connesso, quindi ha 2 orientazioni possibili. $\chi(X) = X \cdot X$ in TX, il fibrato tangente, e si ha che non dipende dall'orientazione di X fissata, infatti passando da un orientazione all'altra si ha che cambia anche quella delle fibre, perciò in TX quando si cambia base si ha che nel Jacobiano cambia di segno un blocco di dimensione pari, e perciò il determinante rimane 1:

- Lo stesso ragionamento vale anche se X non è orientabile, ma solo a livello locale, questo però è sufficiente per far sì che $\chi(X)$ è ben definita anche in questo caso;
- Sia f: X → Y con entrambe le varietà compatte e connesse, f diffeomorfismo locale, e sia p = # f⁻¹(y). Si ha che p è costante come funzione di y.
 Esercizio 2. allora χ(X) = p χ(Y).

Esempio 18. L'ultima osservazione ci permette ad esempio di calcolare la caratteristica di Eulero,

$$\chi(\mathbb{P}^n) = \begin{cases} 0 & n \text{ dispari} \\ 1 & n \text{ pari} \end{cases}$$

Esercizio 3. La caratteristica di Eulero è "moltiplicativa" $\chi(X_1 \times X_2) = \chi(X_1)\chi(X_2)$

2.28 Funzioni di Morse

Si consideri la triade (W, V_0, V_1)

Definizione 112 (Funzioni di Morse). Una funzione sulla triade, $f: W \to [0, 1]$ con $f^{-1}(0) = V_0$ e $f^{-1}(1) = V_1$, è detta di Morse se:

- non ci sono punti critici di f in un intorno di $\partial W = V_0 \sqcup V_1$
- tutti i punti critici sono non degeneri

Perciò per una funzione di Morse si ha che $\forall x$ critico per $f \exists$ una carta locale, in cui (ponendo WLOG x=0) la funzione coincide con il modello locale di Morse $f(x)=-(x_1^2+\cdots+x_{\lambda}^2)+(x_{\lambda+1}^2+\cdots+x_n^2)$, dove n è la dimensione di W e λ l'indice del punto critico.

Si ha che l'applicazione tangente di una funzione $f:W\to\mathbb{R}$ è dunque un campo di funzionali su TW, cioè un elemento di T*W, il fibrato cotangente. Fissiamo su W una metrica Riemanniana g, cosicché $\nabla_g f$ è il campo di vettori che rappresenta Df tramite g.

Figura 2.16: Transizione da vuoto a vuoto

Si applica ora quest'ultimo risultato alle funzioni di Morse. Fissiamo dunque una metrica che nelle carte di Morse della funzione in oggetto appaia come la metrica standard di \mathbb{R}^n .

Sia ora W chiusa, quindi una transizione dal vuoto al vuoto. $f:W\to\mathbb{R}$, e sia q la metrica scelta. Allora si ha che:

$$\{\text{gli zeri di } \nabla_g f\} = \{\text{punti critici di } f\}$$

In quanto punto critico x ha associato un indice di Morse λ , mentre come campo di vettori ha associato il segno del Jacobiano, che si legge esplicitamente dal gradiente.

Teorema 108. W compatta chiusa, $f: W \to \mathbb{R}$ di Morse allora $\chi(W) = \sum_{x \ p.to \ critico} (-1)^{\lambda} \ con \ \lambda \ indice \ di Morse \ del \ punto.$

Teorema 109 (Altro teorema di trasversalità). $\mathcal{M}(W) = \{f : W \to \mathbb{R} \ di \ Morse\}$ è aperto in $\mathcal{E}(W,\mathbb{R})$.

Osservazione 78. Se $f:W^n\to\mathbb{R}$ è di Morse anche -f lo è, e calcolando la caratteristica di Eulero mediante queste due funzioni dobbiamo perciò ottenere lo stesso risultato. Da cui si ottiene che:

$$\chi(W) = \sum_{x_j \text{ p.to critico}} (-1)^{\lambda_j} = \sum_{x_j \text{ p.to critico}} (-1)^{n-\lambda_j}$$

con λ_j indice di Morse di x_j .

Dall'ultima osservazione si ottiene:

Proposizione 110. Se dim W è dispari $\implies \chi(W) = 0$

Corollario 111. Ogni varietà di dimensione dispari ammette un campo di vettori mai nullo.

44

2.29. SUPERFICI

2.29 Superfici

In questa sezione S sarà una superficie, cioè una 2-varietà compatta, chiusa, connessa. L'obiettivo sarà studiare le superfici a meno di diffeomorfismi, come al solito andremo a caccia di invarianti.

Attenzione: S_1, S_2, \ldots saranno qui superfici, mentre S^1, S^2, \ldots saranno circonferenza, sfera, ...

Esempio 19. Seguono alcuni esempi di superfici

Sfera S^2

Toro $T := T_1 := S^1 \times S^1$

Tori siamesi $T_2 := 2$ tori incollati con un tubicino

Toro-catena $T_k := k$ tori incollati con k-1 tubicini

Osservazione 79. Gli esempi precedenti non sono tra loro diffeomorfi, infatti sono distinti dalla χ di Eulero.

 $\chi(S^2) = 2$. Per calcolare la $\chi(T_k)$ usiamo la funzione di Morse "altezza" definita come in figura.

Notiamo che ci sono 2k+2 punti critici di cui

- 1 massimo: $\lambda = 1$
- 2k punti di sella (2 per ogni buco): $\lambda = -1$

• 1 minimo: $\lambda = 1$

Pertanto $\chi(T_k)=2-2k$. Un modo alternativo per calcolarla è mostrare solamente che $\chi(T)=0$ (notiamo in particolare che è facile trovare per T un campo di vettori mai nullo, ad esempio il campo di vettori tangenti al toro che "girano" in senso antiorario) e poi usare la proprietà di additività della χ .

Esercizio 4. Sia \mathbb{P}^2_2 la varietà ottenuta incollando due \mathbb{P}^2 analogamente a quanto fatto per i tori siamesi. Dimostrare che $\chi(\mathbb{P}^2_2)=0$. Hint: usare l'additività di χ . Osservazione 80. Notiamo, grazie all'esercizio, che la χ non distingue tra il toro T e \mathbb{P}^2_2 , tuttavia osserviamo che queste non sono diffeomorfe perché \mathbb{P}^2_2 non è orientabile. Urge un invariante più fine: la forma di intersezione.

2.30 La forma di intersezione su $\eta_1(S)$

Ricordiamo che $\eta_1(S) = \{f : M \to S\}/\sim_{\text{cob}} \text{ dove } M = S^1 \sqcup \cdots \sqcup S^1 \text{ è una 1-varietà compatta, chiusa, che } \eta_1(S) \text{ è uno } \mathbb{Z}/2\mathbb{Z}\text{-spazio vettoriale e che dato un diffeomorfismo } f: S_1 \to S_2 \text{ questo induce un isomorfismo } f_*: \eta_1(S_1) \to \eta_1(S_2) \text{ (vedi lezione dell'11 aprile)}.$

Teorema 112. dim $\eta_1(S)$ è finita (per dimostrarlo si userebbe la compattezza di S).

Corollario 113. dim $\eta_1(S)$ è un invariante per diffeomorfismi.

Definizione 113 (forma di intersezione β). β sarà una

$$\beta: \eta_1(S) \times \eta_1(S) \to \mathbb{Z}/2\mathbb{Z}$$

Cerchiamo un modo di definire $\beta([M_1, f_1], [M_2, f_2])$.

$$f_1 \times f_2 : M_1 \times M_2 \rightarrow S \times S \hookleftarrow \Delta$$
 diagonale

Dai teoremi di trasversalità sappiamo trovare una \tilde{f}_1 e una \tilde{f}_2 omotope rispettivamente a f_1 e f_2 e tali che $\tilde{f}_1 \pitchfork \tilde{f}_2$ e, sempre per i teoremi di trasversalità, abbiamo che $(\tilde{f}_1 \times \tilde{f}_2)^{-1}(\Delta)$ è una sottovarietà di $M_1 \times M_2$, che ha dimensione 2; inoltre codim $(\tilde{f}_1 \times \tilde{f}_2)^{-1}(\Delta) = 2$ pertanto $(\tilde{f}_1 \times \tilde{f}_2)^{-1}(\Delta)$ ha dimensione 0, ovvero è un insieme finito di k punti $\{x_1, \ldots, x_k\}$.

Ha dunque senso definire

$$\beta([M_1, f_1], [M_2, f_2]) := k \mod 2$$

Esercizio 5. β è ben definita, bilineare e simmetrica.

La forma d'intersezione β misura la parità del numero di intersezioni tra le immagini di due curve su una superficie. Grazie ai teoremi di trasversalità (grazie anche alla dimensione finita e al teorema di immersione di Whitney) possiamo supporre che le f_1 e f_2 siano fin da subito immersioni e che i punti in comune alle due immagini su S non siano dei punti di tangenza, ma siano degli incroci "normali", infatti se le f_1 e f_2 non avessero tali requisiti basterebbe perturbarle un poco per trovare delle \tilde{f}_1 e \tilde{f}_2 , omotope alle precedenti, che abbiano i suddetti requisiti.

Caratterizzazione di $\eta_1(S)$ Cercheremo ora di capire come sono fatte le classi di equivalenza [M,f]. Con lo stesso spirito di quando caliamo i cannoni per "perturbare un poco" le funzioni e ricondurci a studiare casi semplici, il nostro intento sarà introdurre alcune "mosse" che pur perturbando una curva non ne cambiano la classe. In questo modo potremo scegliere, senza perdita di generalità, un rappresentante particolarmente semplice: scopriremo che possiamo prendere un rappresentante connesso.

Per quanto già discusso prendiamo una $f:M \to S$ che sia fin da subito un'immersione

faremo ora due semplificazioni:

1. Eliminare i punti doppi

Notiamo che, non avendo orientazione, la scelta è indifferente.

Quindi da una $f:M\to S$ abbiamo ottenuto un embedding $i:M'\to S$ senza punti doppi.

Esercizio: mostrare che [M, f] = [M', i] in $\eta_1(S)$.

2. Connettere l'immagine

Dove il cobordismo è "esplicitato" dalla figura seguente: i cerchi interni vanno immaginati come sollevati di qualche centimetro rispetto al piano del foglio e la parte colorata vista come una bolla di sapone.

Pertanto, grazie alla semplificazione (1), ogni classe di equivalenza $\alpha \in \eta_1(S)$ può essere rappresentata per mezzo di una 1-sottovarietà di S e, grazie alla (2), α può essere rappresentata da una curva connessa. D'ora in poi le curve che considereremo saranno belle lisce, iniettive e connesse.

Teorema 114. La forma di intersezione è non degenere.

Dimostrazione. Utilizzeremo la notazione $\alpha \cdot \gamma := \beta(\alpha, \gamma)$.

Sia $\alpha \in \eta_1(S)$ tale che $\alpha \cdot \gamma = 0 \ \forall \gamma$, vogliamo mostrare che $\alpha = 0$.

Supponiamo per assurdo che $\alpha \neq 0$, sia dunque $\alpha = [c]$ con c connessa su S.

Mostriamo che c non sconnette S. Infatti se $S \setminus c$ fosse sconnesso allora c sarebbe cobordante al vuoto, come si vede dalla figura, e sarebbe dunque $\alpha = 0$.

Dunque c non sconnette S, prendiamo quindi un piccolo arco γ_1 trasverso a c di estremi x_1 e x_2 . Poiché c non sconnette S allora esiste un arco γ_2 che collega x_1 e x_2 . Sia $\gamma = \gamma_1 \cup \gamma_2$, abbiamo dunque costruito un γ tale che $\alpha \cdot \gamma = 1 \neq 0 \not$.

Lezioni 18 maggio, 19 maggio 2.31. SOMMA CONNESSA

Osservazione 81. Abbiamo visto che β è bilineare, simmetrica e non degenere, dunque β è un prodotto scalare.

Inoltre dim $\eta_1(S)$ è finita, allora dato un diffeomorfismo $f: S_1 \to S_2$ questo induce un isomorfismo $f_*: \eta_1(S_1) \to \eta_1(S_2)$ tale che $\beta_1(\alpha, \gamma) = \beta_2(f_*(\alpha), f_*(\gamma))$ dunque f_* è un'isometria tra $(\eta_1(S_1), \beta_1)$ e $(\eta_1(S_2), \beta_2)$.

Abbiamo costruito un nuovo invariante per diffeomorfismi: la classe di isometria di $(\eta_1(S), \beta)$.

2.31 Somma connessa

In questo paragrafo preciseremo la nozione di somma connessa che precedentemente abbiamo usato in maniera intuitiva.

Siano X_1 e X_2 due *n*-varietà compatte, chiuse e connesse. Si delineano due diversi procedimenti per la definizione di somma connessa, andiamo ad analizzarli e confrontarli.

Procedimento 1

46

Considero per ciascuna varietà un embedding da un disco D^n nella varietà: $j_1: D^n \to X_1; \ j_2: D^n \to X_2$. Considero quindi gli insiemi così definiti: $W_1:=X_1 \setminus \mathring{D}_1; \ W_2:=X_2 \setminus \mathring{D}_2$ (ovvero le varietà a cui ho tolto la parte interna del disco). In questa maniera ho ottenuto $\partial W_1 = \partial D_1 \approx S^{n-1}$. In pratica i bordi coincidono e sono diffeomorfi ad una sfera di dimensione n-1.

Fissiamo un diffeomorfismo $\phi: D_1 \to D_2$. Chiamo $\psi:=\phi_{|\partial D_1}$, la restrizione al bordo di $\psi: \partial D_1 \to \partial D_2$.

Considero adesso $(W_1 \sqcup W_2)_{/\psi}$.

Teorema 115. Se almeno una tra X_1 e X_2 è non orientabile, allora $(W_1 \sqcup W_2)_{/\psi}$ è univocamente definito a meno di diffeomorfismi.

Se entrambe sono orientate e si inverte l'orientazione dei bordi, allora $(W_1 \sqcup W_2)_{/\psi}$ è orientato e univocamente determinato a meno di diffeomorfismi che preservano l'orientazione.

Definizione 114. Dal teorema precedente segue che $(W_1 \sqcup W_2)_{/\psi}$ è ben definito, lo chiameremo somma connessa di W_1 e W_2 e scriveremo: $W_1 \sharp W_2 := (W_1 \sqcup W_2)_{/\psi}$

Dimostrazione. Diamo qualche idea sulla dimostrazione.

Il punto chiave è mostrare che $W_1\sharp W_2$ non dipenda dalla scelta del disco. TO DO

Procedura 2

Prendiamo $X_1,X_2,D_1\subseteq X_1,D_2\subseteq X_2,W_1,W_2$ con le stesse definizioni date nella Procedura 1.

Sia data $\psi: S^{n-1} \to S^{n-1}$. Considero $(W_1 \sqcup W_2)_{/\psi}$.

In cosa differiscono le due procedure?

Nella prima prendo un diffeomorfismo ϕ su tutto il disco e lo restringo al bordo. Nella seconda procedura prendo direttamente un diffeomorfismo ψ sul bordo. Le due procedure coincidono se $\forall \psi: S^{n-1} \to S^{n-1}$ posso estendere a $\phi: D^n \to D^n$,

ma quando questa assunzione è vera? Dipende dalla dimensione n delle varietà X di partenza.

Osservazione 82. Immaginiamo di fare lo stesso discorso con gli omomorfismi al posto che con i diffeomorfismi: estendere un omeomorfismo dal bordo a tutta la varietà è banale, basta estendere lungo i raggi. In regime topologico è quindi semplice, non lo è altrettanto in regime differenziale.

Quando si passa ai diffeomorsmi l'estensione è possibile in dimensione 2,3,4,5,6. Oltre la dimensione 7 è in generale falso: è possibile ad esempio trovare una ψ : $S^6 \to S^6$ che non si estende alla varietà X^7 di cui è bordo. Esistono quindi 7-varietà che sono omomorfe alla sfera ma non diffeomorfe. Tali sfere sono dette sfere esotiche.

Da questa osservazione segue che per le superfici le due procedure sono equivalenti. (Per n=2 la dimostrazione dell'estensibilità può essere affrontata per esercizio). Quindi $X_1 \sharp X_2$ è sempre ben definito per le superfici.

Possiamo dimenticare la storia delle orientazioni, credeteci...

R.Benedetti

2.32 Relazione tra somma connessa e caratteristica di Eulero

In questa sezione ci restringeremo al caso delle superfici (n=2). Vogliamo capire qual è l'andamento della caratteristica di Eulero rispetto alla somma connessa. $\chi(X_1\sharp X_2)=?$.

2.33 Teoria di Morse

Lemma 116 (del cilindro). Siano (W, V_0, V_1) una triade, W compatta, $f: W \rightarrow [0,1]$ di Morse senza punti critici; allora $\exists h: V_0 \times [0,1] \rightarrow W$ diffeomorfismo tale che questo diagramma commuta:

$$V_0 \times [0,1] \xrightarrow{h} W \downarrow_f [0,1]$$

Dimostrazione. Fissiamo una metrica Riemanniana g su W. Consideriamo ∇f rispetto a g. $\nabla f > 0$ ovunque perché f non ha punti critici. Allora lo posso normalizzare:

 $\nu(f) := \frac{\nabla f}{\|\nabla f\|} \to \|\nu(f)\| = 1$

Consideriamo l'equazione differenziale ordinaria associata al campo:

$$\varphi:[a,b]\to W$$

$$\frac{\mathrm{d}}{\mathrm{d}t}(f\circ\varphi)=\|\nu(f)\|\ \to\ f(\varphi(t))=t+\text{costante}$$

A meno di riparametrizzazione, $f(\varphi(s)) = s$. Poiché W è compatta, φ è definita su tutto [0,1]. Allora $\forall y \in W \exists !$ curva integrale $\psi_y : [0,1] \to W$ passante per y tale che $f(\psi_y(s)) = s$. Infine $h(y,s) := \psi_y(s)$.

Definizione 115 (Manico). Fissiamo n dimensione e $0 \le \lambda \le n$. Il manico standard di indice λ (e dimensione n) ovvero λ -manico è $D^{\lambda} \times D^{n-\lambda}$.

Osservazione 83. Topologicamente $D^{\lambda} \times D^{n-\lambda} \simeq D^n$.

Definizione 116 (Cuore). Il *cuore* del λ -manico è $D^{\lambda} \times \{0\}$.

Definizione 117 (A-sfera). L'a-sfera è il bordo del cuore.

Definizione 118 (A-tubo). L'a-tubo del λ -manico è $S^{\lambda-1} \times D^{n-\lambda}$.

Definizione 119 (Cocuore). Il *cocuore* del λ -manico è $\{0\} \times D^{n-\lambda}$.

Definizione 120 (B-sfera). La *b-sfera* è il bordo del cocuore.

Definizione 121 (B-tubo). Il *b-tubo* del λ -manico è $D^{\lambda} \times S^{n-\lambda-1}$.

Osservazione 84. Il cuore e il cocuore sono duali: sono codimensionali, trasversi e si intersecano in un punto.

Definizione 122 (Attaccamento). Sia W n-varietà. Fissato un embedding φ : (a-tubo) $\hookrightarrow \partial W$ detto funzione di attaccamento del <math>manico, considerando la relazione di equivalenza indotta da φ , l'insieme:

$$\tilde{W} = (W \sqcup (D^{\lambda} \times D^{n-\lambda}))/\varphi$$

è l'attaccamento del λ -manico a W.

Osservazione 85. Vale sempre dim(a-tubo) = dim ∂W .

Teorema 117. A meno di allisciamento sistematico degli angoli, \tilde{W} è una n-varietà differenziabile univocamente definita a meno di diffeomorfismi.

Osservazione 86. $\partial \tilde{W} = \overline{\partial W \setminus \varphi(a\text{-tubo})} \cup (b\text{-tubo})$

Osservazione 87. L'attaccamento di un manico in generale cambia la topologia.

Teorema 118 (della teoria di Morse). Siano (W, V_0, V_1) triade, $f: W \rightarrow [0, 1]$ di Morse, x punto critico di f di indice λ ; poniamo c:=f(x), $W_t:=f^{-1}([0,t])$, $V_t:=f^{-1}(\{t\})$; sia ε abbastanza piccolo tale che $V_{c-\varepsilon}$ e $V_{c+\varepsilon}$ intersecano una carta di Morse centrata in x. Allora $W_{c+\varepsilon}$ è l'attaccamento di un λ -manico a $W_{c-\varepsilon}$ lungo la componente del bordo $V_{c-\varepsilon}$.

Dimostrazione. Mettiamoci nella carta di Morse. Allora $f = -\sum_{i=1}^{\lambda} x_i^2 + \sum_{i=\lambda+1}^{n} x_i^2$ e i livelli $V_{-\varepsilon}$, $V_{+\varepsilon}$ sono iperboloidi definiti dalle equazioni $f = -\varepsilon$, $f = \varepsilon$. Scegliamo una metrica riemanniana su W tale che nella carta di Morse sia standard, in particolare $\nabla f = 2(-x_1, \ldots, -x_{\lambda}, x_{\lambda+1}, \ldots, x_n)$.

Consideriamo l'unione delle linee integrali di ∇f passanti per l'origine che provengono da $V_{-\varepsilon}$. Ha la dimensione giusta per essere il cuore di un λ -manico. La ingrassiamo a un manico tra le due componenti di $V_{-\varepsilon}$. Per completare la dimostrazione, basta integrare lungo ∇f per ottenere un diffeomorfismo tra questo attaccamento e $V_{+\varepsilon}$.