1

Control Systems

G V V Sharma*

		CONTENTS		10 Oscillator 2
				10.1 Introduction 2
1	Signal I	Flow Graph	1	10.2 Example 2
	1.1	Mason's Gain Formula	1	
	1.2	Matrix Formula	1	Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python
2	Bode Plot		1	codes are available in the text.
	2.1	Introduction	1	Download python codes using
	2.2	Example	1	svn co https://github.com/gadepall/school/trunk/
				control/codes
3	Second	order System	1	control/codes
	3.1	Damping	1	
	3.2	Example	1	1 Commercial Commercial
	3.2	Example	1	1 Signal Flow Graph
4	Routh I	Hurwitz Criterion	1	1.1 Mason's Gain Formula
	4.1	Routh Array	1	1.2 Matrix Formula
	4.2	Marginal Stability	1	2 Bode Plot
	4.3	Stability	1	2.1. 1
	4.4	Example	2	2.1 Introduction
		1		2.2 Example
5	State-Sp	oace Model	2	3 Second order System
	5.1	Controllability and Observ-		3.1 Damping
		ability	2	3.1 Damping
	5.2	Second Order System	2	2 2 F 1
	5.3	Example	2	
	5.4	Example	2	
	5.5	Example	2	THE TROWN THE WAY
	0.0	Zampie	_	4.2 Marginal Stability
6	Nyquist	Plot	2	4.3 Stability
				A closed loop system has the characteristic
7	Comper		2	equation given by
	7.1	Example	2	
				$s^3 + Ks^2 + (K+2)s + 3 = 0 (4.3.0.1)$
8	Gain M	argin	2	Determine the condition for K for which the
	8.1	Introduction	2	system is stable.
	8.2	Example	2	Solution: Computing the Routh array for the
				given characteristic equation, we get-
9	Phase M	Aargin	2	1 211 1 1 7 0 01
				$\begin{vmatrix} s^2 \\ 2 \end{vmatrix} = \begin{vmatrix} 1 & K+2 & 0 \\ 2 & 2 & 0 \end{vmatrix}$
*The author is with the Department of Electrical Engineering,				
		Technology, Hyderabad 502285 India e-ma All content in this manual is released under GN	$ \left \begin{array}{c} s \\ 0 \end{array} \right \frac{\kappa + 2\Lambda - 3}{K} \qquad 0 \qquad 0 $	
	ree and oper		$ s^0 $ $ \tilde{3} $ $ 0 $ $ 0 $	

According to the Routh-Hurwitz stability criterion, for the system to be stable there should be no sign changes in the first column of the Routh array. That means-

$$K > 0$$
 and $\frac{K^2 + 2K - 3}{K} > 0$ (4.3.0.3)

$$\Rightarrow K > 0 \text{ and } (K-1)(K+3) > 0 \quad (4.3.0.4)$$

which gives us

$$K > 0$$
 and $(K > 1 \text{ or } K < -3)$. $(4.3.0.5)$

Note that K cannot be negative.

$$\Rightarrow K > 1 \tag{4.3.0.6}$$

The program to compute the routh-array and stabilty for different values of K.

codes/ee18btech11039/routh array.py

The program for plotting the poles of the system for different values of K.

codes/ee18btech11039/pole plot.py

Fig. 4.3.0: Pole plots for different values of K

4.4 Example

- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
- 5.3 Example
- 5.4 Example
- 5.5 Example
- 6 Nyquist Plot
- 7 Compensators
- 7.1 Example
- 8 Gain Margin
- 8.1 Introduction
- 8.2 Example
- 9 Phase Margin
 - 10 Oscillator
- 10.1 Introduction
- 10.2 Example