Apprentissage Statistique

Du Perceptron au Deep Learning

PHILIPPE BESSE

INSA de Toulouse Institut de Mathématiques

Intelligence Artificielle

- 1943 que Mc Culloch et Pitts neurone formel
- 1959 Rosenblatt perceptron
- 1970 Approche symbolique vs connexioniste
- Connaissance localisée vs répartie

Systèmes experts

- Base de connaissance, base de faits
- Moteur d'inférence

Introduction au deep learning

Réseaux de neurones

- Années 80 :
 - Algorithme de rétropropagation de l'erreur
 - Modèle markovien d'apprentissage
 - Développement considérable
- Années 90 : mise en veilleuse (boosting, SVM...)
- 2010; le retour : deep learning

Définition

- Un réseau est un graphe de neurones formels se distinguant par le type des neurones et l'architecture
- Analogie biologique avec les axones, dendrites et noyaux.

Représentation d'un neurone formel

Notations

•
$$s = h(x_1, \dots, x_p) = g\left(\alpha_0 + \sum_{j=1}^p \alpha_j x_j\right) = g(\alpha_0 + \alpha' x)$$

- $[\alpha_0, \ldots, \alpha_p]$: vecteur de poids
- Mémoire ou connaissance répartie du réseau

Fonction d'activation d'un neurone

Linéaire
$$g(x) = x$$
 (identité)

Seuil
$$g(x) = \mathbf{1}_{[0,+\infty[}(x)$$

Sigmoïde
$$g(x) = 1/(1 + e^x)$$

ReLu
$$g(x) = max(0, x)$$
 (REctified Linear unit)

softmax
$$g(x)_j = \frac{e^{x_j}}{\sum_{k=1}^K e^{x_k}}$$
 pour tout $k \in \{1 \dots K\}$

Radiale
$$g(x) = \sqrt{1/2\pi}e^{-x^2/2}$$

Stochastique
$$g(x) = 1$$
 avec probabilité $1/(1 + e^{-x/H})$ sinon $g(x) = 0$

Perceptron élémentaire avec une couche cachée et une couche de sortie.

Fonction de transfert du réseau

- $Y = f(X^1, \dots, X^p; \alpha)$
- α : α_{jkℓ} poids (paramètre) de la jème entrée du kème neurone de la ℓème couche.
- X^1, \ldots, X^p : *entrées* (variables explicatives)
- Y: sortie (variable à expliquer) ou cible du modèle
- apprentissage = estimation
- Théorème d'approximation universelle
- Y est quantitative, qualitative à une ou plusieurs classes
- Exemple en régression

$$y = f(x; \alpha, \beta) = \beta_0 + \beta' z$$

avec $z_k = g(\alpha_{k0} + \alpha_k' x); k = 1, \dots, q$

Estimation par moindres carrés

- Observations: $(x_i^1, \ldots, x_i^p; y_i)$ $i = 1, \ldots, n$
- $Q(\alpha, \beta) = \sum_{i=1}^{n} Q_i = \sum_{i=1}^{n} [y_i f(x_i; \alpha, \beta)]^2$
- Avec $\alpha_{j=0,p;k=1,q}$ et $oldsymbol{eta}_{k=0,q}$
- Minimisation de Q ou d'une autre fonction (entropie, nombre de mal classés)

Calcul du gradient par rétropropagation

• Soit
$$z_{ki} = g(\alpha_{k0} + \alpha'_k x_i)$$
 et $z_i = \{z_{1i}, \dots, z_{qi}\}$

$$\frac{\partial Q_i}{\partial \beta_k} = -2(y_i - \phi(x_i))(\beta' z_i) z_{ki} = \delta_i z_{ki}
\frac{\partial Q_i}{\partial \alpha_{ki}} = -2(y_i - \phi(x_i))(\beta' z_i) \beta_k g'(\alpha'_k x_i) x_{ip} = s_{ki} x_{ip}.$$

- δ_i et s_{ki} : termes d'erreur en sortie et sur chaque neurone
- avec $s_{ki} = f'(\alpha'_k x_i) \beta_k \delta_i$
- Évaluation en deux passes, avant puis retour

Algorithmes d'optimisation

Algorithme itératif :

$$\beta_k^{(r+1)} = \beta_k^{(r)} - \tau \sum_{i=1}^n \frac{\partial Q_i}{\partial \beta_k^{(r)}}$$
$$\alpha_{kp}^{(r+1)} = \alpha_{kp}^{(r)} - \tau \sum_{i=1}^n \frac{\partial Q_i}{\partial \alpha_{kp}^{(r)}}.$$

- Taux d'appentissage : τ
- Second ordre : BFGS, Levenberg-Marquardt, gradient conjugué
- Variantes avec inertie, adaptative...
- Attention à la convergence : optimum local
- Possibilité : batch d'observations à chaque itération

Algorithme de rétropropagation du gradient

- Initialisation
- Poids $b_{jk\ell}$ uniforme sur [0,1]
- Normaliser dans [0,1] $x^1,\ldots,x^p;y$
- tant que Q > errmax ou niter < itermax
 - Ordre aléatoire de l'échantillon d'apprentissage
 - pour $i = 1 \dots n$
 - $\varepsilon(i) = y_i \phi(x_i^1, \dots, x_i^p; (b)(i-1))$
 - $b_{jk\ell}(i) = b_{jk\ell}(i-i) + \Delta b_{jk\ell}(i)$ pour tout j, k, l
 - fin pour
- fin tant que

Paramètres et complexité du modèle

- Architecture du réseau : nombre de paramètres
- Nombre maximum d'itérations ou erreur maximum tolérée
- Coefficient de pénalisation (decay) : $Q(\theta) + \gamma \|\theta\|^2$
- Taux d'apprentissage et stratégie d'évolution
- Taille des batchs
- ...

Utilisation

- Champs d'application nombreux
- Principales critiques
 - Difficultés d'apprentissage
 - Taille et temps de l'apprentissage
 - Boîte noir

Cancer du sein / carte visa

Matrice de confusion pour l'échantillon test

	benign	malignant		FALSE	TRUE
FALSE	83	1	FALSE	110	16
TRUE	3	50	TRUE	27	47

• Taux d'erreur estimée à 3% et 21,5%

Concentration d'ozone

FIGURE - Ozone : Valeurs observées et résidus de l'échantillon test

Taux d'erreur de 14,4% (quantitatif) et 15,6% (qualitatif).

Ozone : optimisation des réseaux et courbes ROC

Pourquoi deep learning

- Yan le Cun : MNIST, de 12% (1989) à 0.3% (2012)
- Convolutional neural network (ConvNet)
- Bases de données
- Puissance de calcul (GPU)
- Logiciels Caffe, Torch, Tensorflow, Theano, Keras...
- Applications vedettes des réseaux : ConvNet, LSTM, AutoEncoder...
 - Traitement d'images : reconnaissance d'objets
 - Signal : reconnaissance de la parole
 - Traduction automatique

MNIST Database (Le Cun, 1989)

Couches de réseau de convolution

ImageNet Database

- Concours chaque année depuis 2010
- 15 millions d'images avec labels, 22000 catégories
- Sous-ensemble : 1,2 millions d'images, 1000 catégories
- 50 000 images de validation, 150 000 de test

Couche de convolution

- Propriétés d'invariance
- Translation, rotation, homothétie,
- Scattering et bases d'ondelettes (S. Mallat)

remiers succès									
2012 Teams	%error	2013 Teams	%error	2014 Teams	%error				
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7	GoogLeNet	6.6				
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3				
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0				
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1				
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5				
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7				
		Adobe	15.2	TTIC-ECP	10.2				
		VGG (Oxford)	15.2	XYZ	11.2				
		VGG (Oxford)	23.0	UvA	12.1				

Y. le Cun, tutoriel StatLearn

Principales couches

- Fully connected : softmax
- Convolution neural network
- Max pooling
- Normalisation
- Drop out
- LSTM ou réseau récurrent
- ...

Utilisation rudimentaire

- Sans base de données démesurée ni google cloud
- Choisir un réseau proche de l'objectif et déjà appris
- Inception de tensorFlow ou AlexNet de Caffe
- Supprimer la dernière couche fully conected
- Apprendre la dernière couche sur le nouveau problème ou
- Lui substituer une autre méthode d'apprentissage