CFD 0 - Exercise 02

Taylor-Series

$$T_{N}(x; x_{0}) = \sum_{n=0}^{N} \frac{1}{n!} f^{(n)}(x_{0}) \cdot (x - x_{0})^{n}$$

$$= f(x_{0}) + \frac{1}{1!} f'(x_{0}) \cdot (x - x_{0})^{1}$$

$$+ \frac{1}{2!} f''(x_{0}) \cdot (x - x_{0})^{2}$$

$$+ \dots$$

$$+ \frac{1}{N!} f^{(N)}(x_{0}) \cdot (x - x_{0})^{N}$$

 $x_0 \rightarrow \text{Point for series expansion.}$

 $f(x_0),f'(x_0),f''(x_0),...,f^{(N)}(x_0) \rightarrow \text{Known values of the function and its derivatives at } x_0.$

CFD 0 - Exercise 02

Taylor-Series

Example:
$$f(x) = e^{-x}$$
 at $x_0 = 0$

$$f(x) = +e^{-x} \implies f(0) = +1$$

$$f'(x) = -e^{-x} \implies f'(0) = -1$$

$$f''(x) = +e^{-x} \implies f''(0) = +1$$

$$\vdots$$

Series up to 2nd order, $T_2(x; 0)$:

```
def taylor2(x):
    return 1. - x + 0.5 * x**2

x = np.linspace(a,b,n_pts)
y = taylor2(x)
```


CFD 0 - Exercise 02

Taylor-Series

Example: $f(x) = e^{-x}$, at $x_0 = 0$

For the general case, $T_N(x;0)$:

```
def taylorN(x,N):
      y = np.zeros_like(x)
     for n in np.arange(N+1):
          y \leftarrow (-x)**n / float(fac(n))
      return v
   = np.linspace(a,b,n_pts)
8 y = taylorN(x)
```


 $zeros_like \rightarrow zeros_vector$ with same length as x arange \rightarrow all numbers in range 0,1,2,...N

float → for floating-point division

3/5