Statistical Methods for Data Science: A Starter Kit

Yinan Yu

yinan@chalmers.se/yinan.yu@asymptotic.ai

Statistical Data Type

Categorical data: labels or tags

- Nominal: unordered labels, e.g. species of ducks
- Ordinal: ordered labels, e.g. {"duckling", "teen duck", "adult duck"}

Numerical data:

- Discrete (interval): countable, e.g. integers; numbers of ducks
- Continuous (ratio): uncountable, e.g. real values: weights of ducks

Data Container

Array (tensor):

- Scalar, vector, matrix, higher order array
- Same numerical data type
- Python library: numpy

Table:

- Described by columns and rows
- Mixed data types
- Python library: pandas

Descriptive Statistics: numerical data

Data set (a sample): numerical data x_1, \dots, x_N Centrality:

- sample mean: $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- median: sort x_i and median is the value in the middle
- mode (discrete values): the most frequent value in a sample

Dispersion:

- min, max, range: min $\{x_i\}$, max $\{x_i\}$, max $\{x_i\}$ $\min\{x_i\}$
- quantiles/percentiles: given $p \in (0,1)$, q is a pquantile of the data if $p \times 100\%$ of the data are smaller than q

• sample variance: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$

• sample standard deviation: s

Dependence: given a data set with two paired values:

$$\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}$$

• covariance:

$$cov(x,y) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x}) (y_i - \bar{y})$$

• correlation: measures how close data is to a linear relationship

$$corr(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y}, -1 \le corr(x,y) \le 1$$

Descriptive Statistics: categorical data

Data set (a sample): categorical data x_1, \dots, x_N

- Count/frequency
- Transformed into numerical, discrete data

Visualization: numerical data

- Distribution:
 - Histogram/normalized histogram

- Kernel density estimator
- Box plot
- Dependence (two variables):
 - Scatter plot
 - − Heat map for covariance/correlation ■

Visualization: categorical data

- Distribution
 - Bar chart
 - Pie chart

- Mosaic plot

Probability distribution

- Experiment, sample space, event, probability distribution ($\dot{P}(\text{event})/\dot{P}DF/PMF/\dot{C}DF$), random variable (discrete/continuous)
- Quantile function Q: the inverse CDF, i.e.

$$F_X(Q(p)) = p$$
 and $Q(F_X(q)) = q$

- Conditional probability
- Independent and identically distributed (i.i.d.) random variables

Examples

Discrete/continuous, PMF/PDF, parameters, typical use cases (statistical data type, example scenarios)

• Bernoulli distribution

• Categorical distribution

• Binomial distribution

• Discrete uniform

• Gaussian distribution

Generalize this learning routine to unknown distributions

Properties of Gaussian distributions

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian
 - Scaling: $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2), t \neq 0$ is a constant
 - Translation: $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $-tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian

$$-X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

$$-X - Y \sim \mathcal{N}(\mu_X - \mu_Y, \sigma_X^2 + \sigma_Y^2)$$

Bayes' rule

• Parameter estimation:

$$f_{\Theta|data}(\theta \mid data) = \underbrace{\frac{f_{data|\Theta}(data \mid \theta)}{f_{data}(data \mid \theta)}_{f_{\Theta}(\theta)}^{prior}}_{prior}$$

where $f(\cdot)$ is the PDF/PMF

• Multinomial naive Bayes classifier:

$$P(Y = y \mid X = x) = \underbrace{\frac{P(X = x \mid Y = y)}{P(X = x)} \underbrace{P(Y = y)}_{P(X = x)}}_{\text{prior}}$$

• Gaussian naive Bayes classifier/Gaussian mixture models:

$$P(Y = y \mid X = x) = \underbrace{\frac{\text{likelihood}}{f_{X|Y=y}(x \mid Y = y)} \underbrace{P(Y = y)}_{f_X(x)}}_{\text{prior}}$$

Q-Q plot

- Use cases:
 - Compare a data distribution to a theoretical distribution (one sample test)
 - Compare two data distributions (two sample test)
- Steps:
 - Choose a set of m probabilities $p_1, \dots, p_m \in [0, 1]$ (make sure they spread evenly between 0 and 1)
 - For $i = 1, 2, \dots, m$:
 - * Compute the quantile q_i^1 of the first distribution at p_i
 - * Compute the quantile q_i^2 of the second distribution at p_i
 - * Make a scatter plot of the pair (q_i^1, q_i^2)
- Interpretation
 - Case 1: if the two distributions are identical, the points in the Q-Q plot should follow a 45° straight line y=x
 - Case 2: if the two distributions are linearly related, the points in the Q-Q plot follow a straight line that is not necessarily y = x
 - Case 3: if the two distributions are from different families of distributions, the points in the Q-Q plot are not lying on a straight line.

Mathematical Modeling

$$y = g(x; \theta \mid h)$$

- 1. What do we want to predict, i.e. what is the target y?
- 2. What are the variables x?
- 3. What is the mathematical function g that relates variables x to the target y?
- 4. Are there any hyperparameters h in the function g? How do we choose them?
- 5. What are the unknown parameters θ in g? How do we estimate them from data?

Parameter estimation for probabilistic models

- Maximum likelihood estimation: frequentist approach θ is deterministic
- Maximum A Posteriori estimation: Bayesian approach θ is probabilistic

Maximum Likelihood Estimation

Given a model $y = g(x; \mathcal{O} \mid h)$, where \mathcal{O} is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest $\theta \in \mathcal{O}$
- e) Choose the maximum likelihood estimation as the estimation method:

Given data x_1, \dots, x_N and assume i.i.d. random variables X_i with PDF/PMF $f(x_i)$,

$$L(\theta \mid x_1, \cdots, x_N) = \prod_{i=1}^{N} f(x_i; \theta)$$

f) Compute $\hat{\theta}_{MLE}$ by maximizing the likelihood function:

$$\hat{\theta}_{MLE} = \arg \max_{\theta} L(\theta \mid x_1, \dots, x_N)$$

$$= \arg \max_{\theta} \prod_{i=1}^{N} f(x_i; \theta)$$

or equivalently, minimizing the **negative log likelihood function**:

$$\hat{\theta}_{MLE} = \arg\min_{\theta} - \sum_{i=1}^{N} \log(f(x_i; \theta))$$

- Simple case, e.g. i.i.d. Gaussian, find the closed-form solution by:
 - * Taking the partial derivative with respect to the parameter
 - * Setting the derivative to zero
 - * Solving for the parameter
- In general, the estimate needs to be found by iterative methods, e.g. gradient descent

Maximum A Posteriori Estimation

Given a model $y = g(x; \mathcal{O} \mid h)$, where \mathcal{O} is a set of parameters

- a) Describe the experiments
- b) Describe the data generated from the experiments
- c) Describe the random variables (typically with i.i.d. assumption)
- d) Choose a parameter of interest $\theta \in \mathcal{O}$
- e) Choose the maximum a posteriori estimation as the estimation method
 - $-\theta$ is assumed to be drawn from a random distribution
 - Choose a prior distribution for θ along with the hyperparameters: $f_{\Theta}(\theta)$
 - * Prior might be known by the problem setup
 - * If prior unknown, conjugate priors are typically chosen for various reasons
 - Find the likelihood function: $f_{X|\Theta}(\boldsymbol{x}\mid\theta)$ (same as in MLE)
 - Express the posterior distribution in terms of the prior and the likelihood function

$$f_{\Theta\mid X}(\boldsymbol{\theta}\mid \boldsymbol{x}) = rac{f_{X\mid\Theta}(\boldsymbol{x}\mid \boldsymbol{\theta})f_{\Theta}(\boldsymbol{\theta})}{f_{X}(\boldsymbol{x})}$$

f) Compute $\hat{\theta}_{MAP}$ by maximizing the posterior function (or equivalently, minimizing the negative log posterior function without the normalization constant). The optimal solution can be found by a closed-form expression or using iterative techniques.