HEF4051B

8-channel analog multiplexer/demultiplexer Rev. 04 — 12 January 2005 Proc

Product data sheet

1. **General description**

The HEF4051B is an 8-channel analog multiplexer/demultiplexer with three address inputs (A0 to A2), an active LOW enable input (E), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z).

The device contains eight bidirectional analog switches, each with one side connected to an independent input/output (Y0 to Y7) and the other side connected to a common input/output (Z).

With E LOW, one of the eight switches is selected (low-impedance ON-state) by A0 to A2. With E HIGH, all switches are in the high-impedance OFF-state, independent of A0 to A2. If break before make is needed, then it is necessary to use the enable input.

 V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (A0 to A2, and \overline{E}). The V_{DD} to V_{SS} range is 3 V to 15 V. The analog inputs/outputs (Y0 to Y7, and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD} - V_{EE}$ may not exceed 15 V.

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to V_{SS} (typically ground).

2. **Features**

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating
- Multiple package option
- Specified from –40 °C to +85 °C

Philips Semiconductors HEF4051B

8-channel analog multiplexer/demultiplexer

3. Quick reference data

Table 1: Quick reference data

 T_{amb} = 25 °C; R_L = 10 k Ω ; C_L = 50 pF; \overline{E} = V_{DD} (square wave); V_{is} = V_{DD} = 15 V

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ}	output disable time HIGH to OFF for \overline{E} to Z or \overline{E} to Yn		-	85	170	ns
t _{PLZ}	output disable time LOW to OFF for \overline{E} to Z or \overline{E} to Yn		-	115	230	ns
t _{PZH} , t _{PZL}	output enable time OFF to HIGH or LOW for \overline{E} to Z or \overline{E} to Yn		-	40	80	ns
C _i	input capacitance digital inputs		-	-	7.5	pF

4. Ordering information

Table 2: Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
HEF4051BP	–40 °C to +85 °C	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-1				
HEF4051BT	–40 °C to +85 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
HEF4051BTS	–40 °C to +85 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				
HEF4051BTT	–40 °C to +85 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				

5. Functional diagram

4 of 21

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
Y4	1	independent input/output
Y6	2	independent input/output
Z	3	common input/output
Y7	4	independent input/output
Y5	5	independent input/output
Ē	6	enable input (active LOW)
V _{EE}	7	supply voltage of switches
V _{SS}	8	ground (0 V)
A2	9	address input
A1	10	address input
A0	11	address input
Y3	12	independent input/output
Y0	13	independent input/output
Y1	14	independent input/output
Y2	15	independent input/output
V_{DD}	16	supply voltage

7. Functional description

Table 4: Function table [1]

Inputs				Channel ON	
E	A2	A1	A0		
L	L	L	L	Y0 to Z	
L	L	L	Н	Y1 to Z	
L	L	Н	L	Y2 to Z	
L	L	Н	Н	Y3 to Z	
L	Н	L	L	Y4 to Z	
L	Н	L	Н	Y5 to Z	
L	Н	Н	L	Y6 to Z	
L	Н	Н	Н	Y7 to Z	
Н	X	X	X	-	

^[1] H = HIGH voltage level;

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD}	supply voltage		<u>[1]</u>	-0.5	+18	V
V _{EE}	supply voltage of switches	referenced to V _{DD}	[1]	–18	+0.5	V
VI	voltage on any input			-0.5	V _{DD} + 0.5	V
I	DC current into any input or output			-	±10	mA
T _{stg}	storage temperature			-65	+150	°C
T _{amb}	ambient temperature			-40	+85	°C
P _{tot}	power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$				
	DIP16		[2]	-	700	mW
	SO16, SSOP16 and TSSOP16		[2]	-	500	mW
Po	power dissipation per output			-	100	mW

^[1] To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE}.

L = LOW voltage level;

X = don't care.

^[2] For DIP16 packages: above 70 °C, derate linearly with 12 mW/K.
For SO16 packages: above 70 °C, derate linearly with 8 mW/K.
For SSOP16 and TSSOP16 packages: above 60 °C, derate linearly with 5.5 mW/K.

9. Static characteristics

Table 6:Static characteristics $V_{SS} = 0$ V; unless otherwise specified

Symbol	Parameter	Conditions	T _{amb} =	-40 °C	T _{amb} = 25 °C		T _{amb} = 85 °C		Unit	
			Min	Max	Min	Max	Min	Max		
I _{DD}	quiescent device current	all valid input combinations; V _I = V _{SS} or V _{DD} ; I _O = 0 A	'	'				'	'	
		V _{DD} = 5 V	-	20	-	20	-	150	μΑ	
		V _{DD} = 10 V	-	40	-	40	-	300	μΑ	
		V _{DD} = 15 V	-	80	-	80	-	600	μΑ	
V _{IL}	LOW-level input	I _O < 1 μΑ								
	voltage	$V_O = 0.5 \text{ V or } 4.5 \text{ V};$ $V_{DD} = 5 \text{ V}$	-	1.5	-	1.5	-	1.5	V	
		$V_O = 1.0 \text{ V or } 9.0 \text{ V};$ $V_{DD} = 10 \text{ V}$	-	3.0	-	3.0	-	3.0	V	
		V _O = 1.5 V or 13.5 V; V _{DD} = 15 V	-	4.0	-	4.0	-	4.0	V	
V_{IH}	HIGH-level input voltage	I _O < 1 μA								
		$V_O = 0.5 \text{ V or } 4.5 \text{ V};$ $V_{DD} = 5 \text{ V}$	3.5	-	3.5	-	3.5	-	V	
		$V_O = 1.0 \text{ V or } 9.0 \text{ V};$ $V_{DD} = 10 \text{ V}$	7.0	-	7.0	-	7.0	-	V	
		V _O = 1.5 V or 13.5 V; V _{DD} = 15 V	11.0	-	11.0	-	11.0	-	V	
ILI	Input leakage current	$V_1 = 0 \text{ V or } 15 \text{ V}; V_{DD} = 15 \text{ V}$	-	0.3	-	0.3	-	1.0	μΑ	
l _{OZ}	3-state output	V _{DD} = 15 V								
	leakage current	output returned to V _{DD}	-	1.6	-	1.6	-	12.0	μΑ	
		output returned to V _{SS}	-	-1.6	-	-1.6	-	-12.0	μΑ	
C _i	input capacitance digital inputs		-	-	-	7.5	-	-	pF	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{ON}	ON resistance	$V_{is} = 0 V to V_{DD} - V_{EE}$				
		$V_{DD} - V_{EE} = 5 V$	-	350	2500	Ω
		$V_{DD} - V_{EE} = 10 \text{ V}$	-	80	245	Ω
		$V_{DD} - V_{EE} = 15 \text{ V}$	-	60	175	Ω
		V _{is} = 0 V				
		$V_{DD} - V_{EE} = 5 V$	-	115	340	Ω
		$V_{DD} - V_{EE} = 10 \text{ V}$	-	50	160	Ω
		$V_{DD} - V_{EE} = 15 \text{ V}$	-	40	115	Ω
		$V_{is} = V_{DD} - V_{EE}$				
		$V_{DD} - V_{EE} = 5 V$	-	120	365	Ω
		$V_{DD} - V_{EE} = 10 \text{ V}$	-	65	200	Ω
		$V_{DD} - V_{EE} = 15 \text{ V}$	-	50	155	Ω
ΔR_{ON}	ON resistance	$V_{is} = 0 V to V_{DD} - V_{EE}$				
	difference between any two channels	$V_{DD} - V_{EE} = 5 V$	-	25	-	Ω
	any two chamileis	$V_{DD} - V_{EE} = 10 \text{ V}$	-	10	-	Ω
		$V_{DD} - V_{EE} = 15 \text{ V}$	-	5	-	Ω
I _{L(OFF)}	OFF-state leakage	$V_{SS} = V_{EE}$; $V_{DD} - V_{EE} = 15 \text{ V}$				
	current	all channels OFF; \overline{E} at V_{DD}	-	-	1000	nΑ
		any channel; E at V _{SS}	-	-	200	nA

HIGH (from address inputs)

V_{is} = 0 V to VDD – VEE V

VSS = VEE 001aac283

Fig 8. Test set-up for measuring R_{ON}

voltages

 $I_{is} = 200 \mu A; V_{SS} = V_{EE} = 0 V.$

- (1) $V_{DD} = 5 \text{ V}.$
- (2) $V_{DD} = 10 \text{ V}.$
- (3) $V_{DD} = 15 \text{ V}.$

Fig 9. Typical R_{ON} as a function of input voltage

10. Dynamic characteristics

Table 8: Dynamic characteristics

 $V_{EE} = V_{SS} = 0 \ V; \ R_L = 10 \ k\Omega; \ C_L = 50 \ pF; \ T_{amb} = 25 \ ^{\circ}C; \ input \ transition \ times \leq 20 \ ns; \ test \ circuit \ see \ \underline{Figure \ 13}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	propagation delay Z to Yn or Yn to Z	\overline{E} = V _{SS} ; V _{is} = V _{DD} (square-wave); see <u>Figure 10</u>	<u>[1]</u>			
		$V_{DD} = 5 V$	-	15	30	ns
		V _{DD} = 10 V	-	5	10	ns
		V _{DD} = 15 V	-	5	10	ns
t _{PHL}	HIGH to LOW propagation delay An to Z or An to Yn	\overline{E} = V _{SS} ; An = V _{DD} (square-wave); V _{is} = V _{EE} ; see <u>Figure 11</u>	[1] [2]			
		V _{DD} = 5 V	-	150	300	ns
		V _{DD} = 10 V	-	60	120	ns
		V _{DD} = 15 V	-	45	90	ns
t _{PLH}	LOW to HIGH propagation delay An to Z or An to Yn	$\overline{E} = V_{SS}$; An = V_{DD} (square-wave); $V_{is} = V_{DD}$; see Figure 11	[1] [2]			
		$V_{DD} = 5 V$	-	150	300	ns
		V _{DD} = 10 V	-	65	130	ns
		V _{DD} = 15 V	-	45	90	ns

Philips Semiconductors HEF4051B

8-channel analog multiplexer/demultiplexer

 Table 8:
 Dynamic characteristics ...continued

 $V_{EE} = V_{SS} = 0 \text{ V}; R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}; T_{amb} = 25 ^{\circ}C; \text{ input transition times} \le 20 \text{ ns}; \text{ test circuit see } \frac{\text{Figure } 13.}{\text{Figure } 13.}$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ}	output disable time HIGH to OFF for $\overline{\mathbb{E}}$ to Z or $\overline{\mathbb{E}}$ to Yn	$\overline{E} = V_{DD}$ (square wave); $V_{is} = V_{DD}$; see <u>Figure 12</u>	<u>[1]</u>			
		$V_{DD} = 5 V$	-	120	240	ns
		$V_{DD} = 10 \text{ V}$	-	90	180	ns
		V _{DD} = 15 V	-	85	170	ns
t _{PLZ}	output disable time LOW to OFF for \overline{E} to Z or \overline{E} to Yn	\overline{E} = V _{DD} (square wave); V _{is} = V _{EE} ; see <u>Figure 12</u>	<u>[1]</u>			
		$V_{DD} = 5 V$	-	145	290	ns
		V _{DD} = 10 V	-	120	240	ns
		V _{DD} = 15 V	-	115	230	ns
t _{PZH}	output enable times OFF to HIGH or LOW for \overline{E} to Z or	\overline{E} = V _{DD} (square wave); V _{is} = V _{DD} ; see Figure 12	<u>[1]</u>			
	Ē to Yn	$V_{DD} = 5 V$	-	140	280	ns
		V _{DD} = 10 V	-	55	110	ns
		V _{DD} = 15 V	-	40	80	ns
t _{PZL}	output enable times OFF to HIGH or LOW for \overline{E} to Z or	$\overline{E} = V_{DD}$ (square wave); $V_{is} = V_{EE}$; see Figure 12	<u>[1]</u>			
	Ē to Yn	$V_{DD} = 5 V$	-	140	280	ns
		V _{DD} = 10 V	-	55	110	ns
		V _{DD} = 15 V	-	40	80	ns
P _D	dynamic power dissipation		[3]	-	-	-

^[1] V_{is} is the input voltage at a Yn or Z terminal, whichever is assigned as input. V_{os} is the output voltage at a Yn or Z terminal, whichever is assigned as output.

[3] Dynamic power dissipation P_D can be calculated with the following formulae (P_D in μW):

for
$$V_{DD}$$
 = 5 V, P_D = $1000 \times f_i$ + Σ $(f_o \times C_L) \times V_{DD}{}^2;$

for
$$V_{DD}$$
 = 10 V, P_D = 5500 × f_i + Σ (f_o × C_L) × V_{DD}^2 ;

for
$$V_{DD}$$
 = 15 V, P_D = 15000 × f_i + Σ (f_o × C_L) × V_{DD}^2 , where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{DD} = supply voltage in V;

 $\Sigma(C_L \times f_o)$ = sum of the outputs.

^[2] The temperature coefficient for propagation delays is 0.35 % C.

11. Waveforms

Philips Semiconductors HEF4051B

8-channel analog multiplexer/demultiplexer

Table 9: Test data

Test	Input		Load	Switch	
	V _{is}	t _r , t _f	CL	R _L	
t _{PHL}	V _{EE}	20 ns	50 pF	10 kΩ	V_{DD}
t _{PLH}	V_{DD}	20 ns	50 pF	10 kΩ	V _{EE}
t _{PZH} , t _{PHZ}	V_{DD}	20 ns	50 pF	10 kΩ	V _{EE}
t _{PZL} , t _{PLZ}	V _{EE}	20 ns	50 pF	10 kΩ	V_{DD}
other	pulse	20 ns	50 pF	10 kΩ	open

12. Additional dynamic characteristics

Table 10: Additional dynamic characteristics

 $V_{is} = 0.5V_{DD}(p-p)$ sine-wave and symmetrical.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
d _{sin}	distortion, sine-wave response	channel ON; $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; $f_{is} = 1 \text{ kHz}$; see Figure 14				
		V _{DD} = 5 V	-	0.25	-	%
		V _{DD} = 10 V	-	0.04	-	%
		V _{DD} = 15 V	-	0.04	-	%
f _{ct}	crosstalk between any two channels	V _{DD} = 10 V	[1] -	1	-	MHz
V _{ct}	crosstalk \overline{E} or An to Yn or Z	$R_L = 10 \text{ k}\Omega; C_L = 15 \text{ pF};$ $\overline{E} \text{ or An} = V_{DD} \text{ (square-wave)};$ $\text{crosstalk is } V_{OS} \text{ (peak value)};$ $V_{DD} = 10 \text{ V}; \text{ see } \overline{\text{Figure } 15}$	-	50	-	mV
f _{OFF}	OFF-state feed-through	V _{DD} = 10 V	[2] _	1	-	MHz

9397 750 14377

 $V_{is} = 0.5V_{DD}(p-p)$ sine-wave and symmetrical.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{ON}	ON-state frequency	$V_{DD} = 5 V$	<u>[3]</u> _	13	-	MHz
	response	V _{DD} = 10 V	<u>[3]</u> _	40	-	MHz
		V _{DD} = 15 V	<u>[3]</u> _	70	-	MHz

[1] R_L = 1 k
$$\Omega$$
; $20log \frac{V_{os}}{V_{is}} = -50$ dB; see Figure 16.

[2] R_L = 1 k
$$\Omega$$
; C_L = 5 pF; channel OFF; $20log \frac{V_{os}}{V_{is}} = -50$ dB; see Figure 14.

[3]
$$R_L = 1 \text{ k}\Omega$$
; $C_L = 5 \text{ pF}$; channel ON; $20 log \frac{V_{os}}{V_{is}} = -3 \text{ dB}$; see Figure 14.

13. Test circuits additional dynamic characteristics

Fig 14. Load circuitry for sine wave distortion, OFF state frequency and ON state frequency measurement

Fig 15. Load circuitry for crosstalk measurement of logic inputs to output

Fig 16. Load circuitry for crosstalk measurement between channels

14. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil); long body

SOT38-1

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E (1)	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.7	0.51	3.7	1.40 1.14	0.53 0.38	0.32 0.23	21.8 21.4	6.48 6.20	2.54	7.62	3.9 3.4	8.25 7.80	9.5 8.3	0.254	2.2
inches	0.19	0.02	0.15	0.055 0.045	0.021 0.015	0.013 0.009	0.86 0.84	0.26 0.24	0.1	0.3	0.15 0.13	0.32 0.31	0.37 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT38-1	050G09	MO-001	SC-503-16			99-12-27 03-02-13

Fig 17. Package outline SOT38-1 (DIP16)

9397 750 14377

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075		0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 18. Package outline SOT109-1 (SO16)

9397 750 14377

SOT338-1

_							-,												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT338-1		MO-150				99-12-27 03-02-19

Fig 19. Package outline SOT338-1 (SSOP16)

9397 750 14377

© Koninklijke Philips Electronics N.V. 2005. All rights reserved.

SOT403-1

						-,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT403-1		MO-153				-99-12-27 03-02-18	

Fig 20. Package outline SOT403-1 (TSSOP16)

9397 750 14377

15. Revision history

Table 11: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
HEF4051B_4	20050112	Product data sheet	-	9397 750 14377	HEF4051B_CNV_3
Modifications:	• Section 4	t of this data sheet has n standard of Philips Se "Ordering information", a (SSOP16) and SOT403	miconductors. and <u>Section 14 "Pac</u>	kage outline": Modi	fied to include the
HEF4051B_CNV_3	19950101	Product specification	-	-	-

16. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

17. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

18. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

19. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

20. Contents

General description
Features
Quick reference data
Ordering information
Functional diagram 3
Pinning information 6
Pinning 6
Pin description 6
Functional description 7
Limiting values 7
Static characteristics 8
Dynamic characteristics
Waveforms
Additional dynamic characteristics 13
Test circuits additional dynamic
characteristics
Package outline 15
Revision history
Data sheet status 20
Definitions
Disclaimers
Contact information 20

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 12 January 2005 Document number: 9397 750 14377

