23 - Larger than Memory Database

1. Background

- A. Allow an in-memory DBMS to store/access data on disk without bringing back all overheads of a disk-oriented DBMS
- B. Handling OLAP in disk-oriented DB can use same mechanism of in-memory DB
- C. Handling OLTP in disk-oriented DB should include handling hot and cold portions of DB

2. Implementation issues

A. OLTP issues

- i. Runtime operations (cold data identification)
 - On-line
 DBMS monitors transaction access patterns and track it.
 tracking data are included in tuples/pages
 - Off-line
 maintain access log and process it in background to get
 frequencies.
- ii. Eviction policies(timing, evicted metadata)

1. Timing

- A. Threshold
 DBMS monitors memory usage, if memory usage reaches some threshold, eviction occurs
- B. On demandDBMS/OS runs a replacement policy

- 2. Evicted metadata
 - A. Tuple tombstones
 - B. Bloom filters
 - C. DBMS managed pages
 - D. OS virtual memory
- iii. Data Retrieval Policies(granularity, retrieval mechanism, merging)
 - 1. Granularity
 - A. All tuples in block
 - B. Only tuples needed
 - 2. Retrieval mechanism
 - A. Abort and restart
 - B. Synchronous retrieval
 - 3. Merging
 - A. Always merge
 - B. Merge only on update
 - Selective merge
 if a block's access frequency is above some threshold, merge it
 back into the table heap

3. Leanstore

- A. Prototype in-memory storage manager that supports larger-than-memory DB
- B. Hierarchical + randomized block eviction
 - i. Pointer swizzling switch the content of pointers based on whether the target object resides in memory or on disk
 - ii. Replacement strategy randomly select blocks for eviction, only track accesses for cold data unswizzle their pointer but leave in memory, maintain FIFO queue to block these flush
 - iii. Block hierarchyDBMS can evict block if its children are also evicted.