Math 470 Assignment 25

Arnold Jiadong Yu

April 12, 2018

10.3.1. Find the interior, closure, and boundary of each of the following subsets of \mathbf{R} .

a)
$$E = \{1/n : n \in \mathbb{N}\}$$

proof: E is a sequences of points apporching 0 from 1 by $\frac{1}{n}$. Every points are isolated, then $E^o = \emptyset$, $\overline{E} = E \cup \{0\}$ and $\partial E = E \cup \{0\}$

b)
$$E = \bigcup_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n} \right)$$

proof: $E=(\frac{1}{2},1)\cup(\frac{1}{3},\frac{1}{2})\cup...$ For every open interval $(\frac{1}{n+1},\frac{1}{n})$ is open as $n\to\infty$. Then the $E^o=E$. $\overline{E}=[0,1]$ and $\partial E=\{1/n:n\in {\bf N}\}\cup\{0\}$.

$$c)E = \bigcup (-n, n)$$

proof: When $n \to \infty$, $E = (-\infty, \infty)$. Hence $E^o = \overline{E} = \mathbf{R}$ and $\partial E = \emptyset$.

$$d)E = \mathbf{Q}$$

proof: By definition of rationals. Every points are isolated. Then $E^o = \emptyset$, $\overline{E} = \mathbf{R}$ and $\partial E = \mathbf{R}$.

10.3.2. Identify which of the following sets are open, which are closed, and which are neither. Find E^o , \overline{E} , and ∂E and sketch E in each case.

a)
$$E = \{(x, y) : x^2 + 4y^2 \le 1\}$$

proof: $E^c = \{(x,y) : x^2 + 4y^2 > 1\}$ which is open. Then E is closed. $\overline{E} = E$, and $E^o = \{(x,y) : x^2 + 4y^2 < 1\}$. Therefore $\partial E = \{(x,y) : x^2 + 4y^2 = 1\}$.

b)
$$E = \{(x,y) : x^2 - 2x + y^2 = 0\} \cup \{(x,0) : x \in [2,3]\}$$

proof: $x^2 - 2x + y^2 = 0 \Rightarrow (x - 1)^2 + y^2 = 1$. A circle center at (1, 0) with radius 1. E is closed, since $E^c = \{(x, y) : x^2 - 2x + y^2 < 0\} \cup \{(x, y) : x^2 - 2x + y^2 > 0\} \setminus \{(x, 0) : x \in [2, 3]\}$ is open. $E^o = \emptyset$, $\overline{E} = E$ and $\partial E = E$.

c) $E = \{(x, y) : y \ge x^2, 0 \le y < 1\}$

proof: E includes all points on $y=x^2$ and below y=1. Therefore, E is neither open nor closed. $E^o=\{(x,y):y>x^2,0< y<1\}, \overline{E}=\{(x,y):y\geq x^2,0\leq y\leq 1\}$ and $\partial E=\{(x,y):y=x^2,0\leq y\leq 1\}\cup\{(x,1):-1\leq x\leq 1\}.$

d) $E = \{(x, y) : x^2 - y^2 < 1, -1 < y < 1\}$

proof: By definition, E is open. Therefore, $E^o = E$, $\overline{E} = \{(x,y): x^2 - y^2 \le 1, -1 \le y \le 1\}$ and $\partial E = \{(x,y): x^2 - y^2 = 1, -1 \le y \le 1\} \cup \{(x,y): -\sqrt{2} \le x \le \sqrt{2}, y = -1 \text{ or } 1\}.$

