به نام زیبایی سوالات تستی + تشریحی میان ترم درس تجزیه و تحلیل سیستم ها استاد درس: دکتر بیگی زمان امتحان: ۹۰ دقیقه

١ سوالات تستى

ینه است؟ $\delta(t^{\mathsf{Y}} - \mathsf{I})$ برابر کدام گزینه است

$$\delta(t-1)-\delta(t+1)$$
 (Y $\delta(t-1)+\delta(t+1)$ (1)

$$\frac{1}{r}\delta(t-1) + \frac{1}{r}\delta(t+1) \quad (r) \qquad \frac{1}{r}\delta(t-1) - \frac{1}{r}\delta(t+1) \quad (r)$$

سوال ۲- مقدار انتگرال $d\omega$ است؟ $I=\int_{-\infty}^{\infty}X^{\mathsf{r}}(j\omega)d\omega$ سیگنال زیر کدام است؟

$$7\pi (7)$$
 $7\pi (7)$
 $7\pi (7)$
 $7\pi (7)$

سوال ۳- در هر مورد، سیگنال زمانی به همراه نرخ نمونه برداری متناظر آن داده شده است. در کدام گزینه، شرط نایکوئیست رعایت نمی شود؟

$$x(t) = \frac{\sin \pi t}{\pi t}$$
 , $F_s = \text{VYHz}$ (\)

$$x(t) = \frac{\sin^r \pi t}{(\pi t)^r}$$
, $F_s = 1/\Upsilon Hz$ (Υ

$$x(t) = \sin \Upsilon t$$
 $F_s = \frac{\Upsilon}{\pi} Hz$ (Υ

. که منظور از
$$*$$
 عملگر کانولوشن است $x(t) = rac{\sin \pi t}{\pi t} * e^{-|t|}$, $F_s = exttt{THz}$ (۴

سوال + سیستم کلی با ورودی x[n] و خروجی y[n] را به صورت شکل زیر در نظر بگیرید که در آن، رابطهی ورودی-خروجی هر سیستم به صورت زیر است:

۱ روج
$$y[n] = \begin{cases} x[n/\Upsilon] &, & \text{r.} \\ 0 &, & \text{r.} \end{cases}$$
 سیستم n فرد $y[n] = x[n] + \frac{1}{7}x[n-1] + \frac{1}{7}x[n-\Upsilon]$ سیستم $y[n] = x[\Upsilon n]$

كدام گزينه رابطهي ورودي خروجي سيستم زير را بدرستي نشان مي دهد؟

$$y[n] = \begin{cases} x[n] + \frac{1}{7}x[n-1] + \frac{1}{7}x[n-1] & , & \text{ top } n \\ \circ & , & \text{ in } n \end{cases}$$

$$y[n] = \begin{cases} x[n] + \frac{1}{7}x[n-1] + \frac{1}{7}x[n-1] & , & \text{ top } n \\ \circ & , & \text{ in } n \end{cases}$$

$$y[n] = \begin{cases} x[n] + \frac{1}{7}x[n-1] + \frac{1}{7}x[n-1] & , & \text{ top } n \\ \circ & , & \text{ in } n \end{cases}$$

$$(Y = x[n] + \frac{1}{7}x[n-1] + \frac{1}{7}$$

$$y[n] = x[n] + \frac{1}{5}x[n-1] (\Upsilon$$

$$y[n] = x[n] + \frac{1}{7}x[n-1] + \frac{1}{7}x[n-7]$$
 (4

سوال ۵- سیگنال x(t) را با تبدیل فوریه ی $X(j\omega)$ در نظر بگیرید، فرض کنید اطلاعات زیر را در مورد سیگنال x(t) داریم:

$$lacktriangle$$
سیگنال $x(t)$ حقیقی است.

$$x(t) = \circ \quad , \quad t \leq \circ \blacksquare$$

$$x(t)$$
 سیگنال $x(t)=\circ$ مقیقی است. $x(t)=\circ$, $t\le\circ$ π $\int_{-\infty}^{\infty}\Re\{X(j\omega)\}e^{j\omega t}d\omega=\mathrm{T}\pi|t|e^{-|t|}$

برابر کدام است x(t)

$$au \pi t e^t u(t)$$
 (Y $au \pi t e^{-t} u(t)$ (Y $au t e^{-t} u(t)$ (Y $au t e^{-t} u(t)$ (Y $au t e^{-t} u(t)$ (Y

سوال ۶- تبدیل فوریه x(t) سیگنال x(t) به شکل زیر است. کدام مورد در مورد این سیگنال صحیح است؟

را) کے حقیقی است.
$$x(t)$$
 (۲ حقیقی است. $x(t)$ (۴ حقیقی است. $x(t)$ (۴ خیر است. $x(t)$ = $x(t)$ - $x(t)$ - $x(t)$ = $x(t)$ - $x($

سوال ۷- رابطهی ورودی-خروجی برای ۴ سیستم به صورت زیر است:

۱ سیستم
$$y(t) = \begin{cases} \circ &, & x(t) < \circ \\ x(t) + x(t - \mathsf{T}) &, & x(t) \geq \circ \end{cases}$$
۲ سیست $y(t) = \begin{cases} \circ &, & t < \circ \\ x(t) + x(t - \mathsf{T}) &, & t \geq \circ \end{cases}$
۳ سیست $y(t) = \int_{-\infty}^{\mathsf{T}t} x(\tau) d\tau$
۴ سیست $y(t) = x(t - \mathsf{T}) + x(\mathsf{T} - t)$

کدام سیستم در خاصیت تغییرپذیری با زمان از بقیه متفاوت است؟

سوال ۸- رابطهی $(\frac{t}{r})$ x(t)*x(t)=x(t) برای کدام یک از سیگنال های زیر برقرار است؟ (منظور از * عملگر کانولوشن است)

$$\frac{r}{\pi} \frac{1}{\Delta - jt} \left(\Upsilon \right) \qquad \frac{r}{\pi^{\Upsilon} + t^{\Upsilon}} \left(\Upsilon \right) \qquad \qquad \frac{r}{\pi^{\Upsilon} + t^{\Upsilon}} \left(\Upsilon \right) \qquad \qquad \frac{r}{\pi t} \left($$

سوال ۹- سیستم LTI ای با پاسخ ضربه ی $h(t) = \frac{\sin(f(t-1))}{\pi(t-1)}$ و این لین LTI بیستم این $x(t) = \left[\frac{\sin(f(t))}{\pi t}\right]^{\mathsf{T}}$ میستم به ورودی $x(t) = \left[\frac{\sin(f(t))}{\pi t}\right]^{\mathsf{T}}$ کدام است؟

$$\left[\frac{\sin(\Upsilon(t-1))}{\pi(t-1)}\right]^{\Upsilon} \left(\Upsilon \qquad \frac{\sin(\Upsilon(t-1))}{\pi(t-1)} \times \frac{\sin(\Upsilon(t-\frac{1}{\gamma}))}{\pi(t-\frac{1}{\gamma})} \right) \left(\Upsilon(t-\frac{1}{\gamma})\right)$$

$$\left[\frac{\sin(\Upsilon(t-\frac{1}{\Upsilon}))}{\pi(t-\frac{1}{\Upsilon})}\right]^{\Upsilon}\left(\Upsilon\left(\frac{\sin(\Upsilon(t-1))}{\pi(t-1)}\right)^{\Upsilon}\right)$$

سوال \circ ۱ سیگنال متناوب x(t) با ضرایب سری فوریه ی زیر مفروض است:

$$c_k = \begin{cases} 1 & , & k = 0 \\ -j\left(\frac{1}{r}\right)^{|k|} & , & k \neq 0 \end{cases}$$

کدام گزینه در مورد این سیگنال درست است؟

سیگنال
$$x(t)$$
 مقیقی است. $x(t)$ سیگنال $x(t)$ فرد است. (۱

. مشتق سیگنال
$$x(t)$$
 زوج است. $x(t)$ مشتق سیگنال $x(t)$ فرد است.

سوال ۱۱- رابطهی بین ورودی و خروجی یک سیستم زمان گسسته به صورت زیر است:

$$y[n] = egin{cases} \Re\{x[n-1]\} & , & \text{ ... } \\ \Re\{x[n-1]+x[n-1]\} & , & \text{ ... } \end{cases}$$
 n

کدام گزینه در مورد این سیستم درست است؟

سوال ۱۲- در شکل زیر، تبدیل فوریه ی سیگنال x(t) را x(t) می نامیم. رابطه ی ورودی و خروجی این سیستم به صورت زیر است. کدام گزینه در مورد این سیستم نادرست است؟

$$y(t) = X(t-3)$$

سوال ۱۳ – اگر سیگنال $x(\mathbf{r} - \mathbf{r}t)$ مانند شکل زیر باشد،

x(t) کدام است x(t) کدام

z[n]=x[au n] یک سیگنال متناوب با دوره ی تناوب N زوج است. اگر x[n]=x[au n] یک سیگنال متناوب با دوره ی تناوب x[n]=x[au n] کدام است و ضرایب سری فوریه ی x[n]=x[au n] دارای خاصیت x[n]=x[au n] کدام است و ضرایب سری فوریه ی

$$x[\Upsilon n + 1] = (-1)^n z[n] (\Upsilon x[\Upsilon n + 1] = -z[n] (1)$$

$$x[\Upsilon n + 1] = -z[n] (1)$$

$$x[\Upsilon n + 1] = (-1)^n (\Upsilon$$

$$x[\Upsilon n + 1] = \circ (\Upsilon$$

سوال ۱۵- تبدیل فوریه ی کدام یک از سیگنال های داده شده، دارای همه ی ویژگیهای زیر است؟ الف $\Re\{X(j\omega)\}=\circ$

$$x(t) = t^{\mathsf{T}} e^{-|t|}$$
 (Y $x(t) = e^{-t^{\mathsf{T}}} - 1$ (1)
 $x(t) = t e^{-|t|}$ (Y $x(t) = t^{\mathsf{T}} e^{-|t|}$ (Y

سوال ۱۶-

ضرایب سری فوریه ی سیگنال متناوب x[n] با دوره تناوب ۶ را با α_k نمایش می دهیم و از روی سیگنال متناوب x[n] با دوره x[n] با دوره x[n] می سازیم فوریه ی x[n] می سازیم فوریه ی x[n] می سازیم فوریه ی فوریه ی x[n] را بر حسب x[n] بیابید x[n]

سوال ۱۷ –

سیگنال x(t) را که دارای تبدیل فوریهای با اندازه و فاز زیر است، بیابید.

سوال ۱۸-

 $T_{\mathsf{T}} = \mathsf{T}T_{\mathsf{N}}$ متناوب با پریود اصلی T_{N} و ضرایب سری فوریه ی a_k متناوب با پریود اصلی T_{N} و ضرایب سری فوریه ی $y(t) = x_{\mathsf{N}}(t) + x_{\mathsf{T}}(t)$ را و ضرایب سری فوریه ی b_k است. دوره ی تناوب و ضرایب سری فوریه ی بیابید.