Задание отборочного тура хакатона для программистов-робототехников 2022

Тема: «Роботизация технологических процессов лабораторного исследования керна».

Основные цели отборочного тура:

- ознакомление с функционалом промышленного робота Eidos A12;
- выполнение практической задачи в симуляторе;
- подключение пневматического захвата;
- создание оптимальных программ движения робота;
- подбор мехатронных комплектующих;
- моделирование сборок в системах автоматизированного проектирования;
- решение практической конструкторской задачи.

Задачи:

- 1. «Управление промышленным роботом Eidos A12 с применением симулятора».
- 2. «Разработка эскизного проекта выталкивателя керна из тубуса».

Список приложений:

В документе

Приложение 1. Подключение к виртуальной машине

Приложение 2. Импорт шаблона проекта.

Приложение 3. Подключение пневматического захвата.

Приложение 4. Оформление выполнения задания.

Вне документа

Приложение A. Инструкция по эксплуатации робота Eidos A12

Приложение Б. Руководство по работе с симулятором

Приложение В. Шаблон проекта симулятора

Приложение Г. 3D модели для отборочного тура

1. Управление промышленным роботом Eidos A12 с применением симулятора.

- 1. Ознакомиться с функционалом промышленного робота Eidos A12 (Приложение A).
- 2. Ознакомиться с функционалом симулятора (Приложение Б).
- 3. Выполнить практическую задачу.

Требуемое ПО: Симулятор Eidos (Рисунок 1).

Симулятор установлен на виртуальной машине. Параметры подключения индивидуальные для каждой команды, они указаны в тексте электронного письма.

Рисунок 1 – Интерфейс симулятора

- для начала выполнения 1 задания необходимо ознакомиться с инструкцией «Подключение к виртуальной машине» (Приложение 1);
- импортировать предоставленный шаблон проекта (Приложение В), инструкция по подключению шаблона проекта находится в Приложении 2;
- интегрировать приложенные 3D модели лабораторного оборудования (Приложение Γ) в симулятор (Рисунок 2), расставить согласно надписям на лабораторной панели;

Рисунок 2 – 3D модели лабораторного оборудования

 установить из библиотеки инструмента симулятора (Приложение 3) пневматический захват (Рисунок 3);

Рисунок 3 – Внешний вид захвата

- из исходного положения (Приложение 4) произвести захват одной из пробирок;

Рисунок 4 — Расположение лабораторного оборудования на рабочем столе

- извлечь из штатива, сымитировать переливание содержимого в колбу;
- установить пробирку обратно в штатив;
- провести те же манипуляции со второй пробиркой;

 произвести захват колбы, приподнять над центральной частью поверхности лабораторного стола, наклонить и произвести пять вращательных движений вокруг оси – сымитировать перемешивание содержимого (Приложение 5);

Рисунок 5 – Имитация смешивания жидкостей

- установить колбу в цилиндрическое углубление на лабораторном столе;
- манипулятор вернуть в исходное положение.

Результат задания:

Результатом задания является сохраненная в симуляторе программа движения робота. Папку проекта необходимо запаковать в архив и сохранить себе на компьютер. Проекты находятся в папке C:\rcs_simulator\projects\. С удалённого компьютера проект не удалять.

Метрики для проверки задания:

- расположение точек подхода;
- правильность срабатывания пневмозахвата;
- оптимальная конфигурация движения рычагов робота;
- время выполнения операции.

2. Разработка эскизного проекта выталкивателя керна из тубуса.

Введение:

Керн - образец породы цилиндрической формы, полученный из скважины при ее бурении, источник информации:

- о геологическом строении недр;
- о вещественном составе горных пород;
- о наличии или отсутствии в них углеводородов.

После изъятия керн раскладывается в керновые тубусы (Рисунок 6) в строгой последовательности нахождения его в геологическом разрезе скважины, с указанием скважины и глубины, транспортируется.

В лаборатории керн извлекается из тубусов, исследуется и анализируется.

Рисунок 6 – Тубус с керном

Проблематика:

Существующий выталкиватель керна (Рисунок 7) — достаточно габаритное устройство при ограниченных размерах лабораторий. Перед загрузкой тубуса с керном зона работы установки увеличивается ввиду выхода штока выталкивателя (около 1,2 метра).

Рисунок 7 – Образец выталкивателя керна

Задача:

Разработать эскизный проект-решение для извлечения керна из тубуса в горизонтальном положении с применением стандартных исполнительных механизмов и мехатронных компонентов. Основная цель проекта – минимизировать габариты устройства.

Дополнительная задача:

Выдержать максимальный рабочий габарит установки не более 2,5 м.

Требуемое ПО:

Система автоматизированного проектирования (САПР) или САD — программный пакет, предназначенный для создания чертежей, конструкторской и/или технологической документации и/или 3D моделей.

3D модели керна и тубуса расположены в Приложении Г.

Результат задания:

Результатом выполнения задания является САD сборка, включающая в себя все файлы компонентов, краткое описание работы устройства. Сборка должна быть подписана с указанием САПР, в которой производилось моделирование. Детали сборки должны иметь оригинальные расширения, а также включать в себя дерево проектирования модели. В дополнение сборку необходимо конвертировать в один из популярных форматов (.stp, .igs, .x_t).

Метрики для проверки задания:

- технологичность конструкции;
- оптимальность расположения исполнительных механизмов;
- минимальное количество примененных мехатронных компонентов;
- габариты установки;
- сложность сборки/обслуживания;
- уровень детализации сборки;
- выполнение дополнительного задания.

3. Оформление отчета.

Выполненное задание необходимо оформить в виде архива «Название команды.zip» со следующим содержанием:

- 1. Анкета участников (пример оформления в Приложении 4).
- 2. Папка с файлами результата задания 1.
- 3. Папка с файлами результата задания 2.

Архив необходимо загрузить по ссылке из электронного письма. https://cloud.bnipi.ru/s/gXJmRFzJciCF7K8

Срок выполнения задания:

10:00 12.10.2022 по московскому времени, после этого форма будет закрыта.

Приложение 1. Подключение к виртуальной машине

Для подключения (Рисунок 8) вам будет выдан IP адрес удалённого компьютера и порт в формате 127.0.0.1:3389, логин и пароль. Логин – hackaton, Пароль – индивидуальный для каждой команды, указан в электронном письме с заданием. Чтобы подключиться, необходимо открыть стандартную программу для работы с удалённым компьютером (Пуск → Стандартные → Подключение к удалённому рабочему столу).

Рисунок 8 – Подключение к виртуальной машине

Перед подключением вам потребуется наладить обмен файлами с удалённым компьютером (Рисунок 9). Для этого необходимо нажать кнопку «Показать параметры», перейти во вкладку «Локальные ресурсы», перейти в раздел «Локальные устройства и ресурсы» и нажать кнопку «Подробнее». Далее необходимо отметить галочкой диск, который будет использоваться для обмена данными.

Рисунок 9 – Настройка обмена данными

После подключения отмеченный диск будет виден в виртуальной машине (Рисунок 10).

Рисунок 10 – Отображение диска в виртуальной машине

Приложение 2. Импорт шаблона.

Перед началом работы в симуляторе необходимо поместить папку с шаблоном проекта (hackaton) по пути C:\rcs_simulator\projects\hackaton. Далее после запуска симулятора необходимо импортировать проект (Рисунок 11).

Рисунок 11 – Импорт проекта

После импорта проекта откроется окно редактора. Чтобы отобразить сцену , необходимо выбрать в главном меню пункт Сцена \rightarrow Открыть сцену и выбрать сцену с названием Spatial.tscn (Рисунок 12).

Рисунок 12 – Отображение сцены

После открытия сцены на экране должен быть отображён робот и захват (Рисунок 13).

Рисунок 13 – Начальная сцена

Во избежание потери данных, рекомендуется создавать резервные копии проекта и скачивать их на локальный компьютер. Проекты находятся в папке C:\rcs_simulator\projects\

Приложение 3. Подключение пневматического захвата.

Для установки захвата на робота необходимо:

- 1. Выбрать объект робота в списке объектов и вызвать контекстное меню.
- 2. Отметить галочку «Редактируемые потомки» (Рисунок 14).

Рисунок 14 – Выбор пункта «Редактируемые потоки»

3. Переместить захват (grab) на 6-ую ось робота (link6). Эта манипуляция позволит соединить пневмозахват с роботом (Рисунок 15).

Рисунок 15 – Перемещение захвата на 6-ую ось робота

4. Установить смещение и вращение захвата на 0 в «Инспекторе» (Рисунок 16).

Рисунок 16 – Установка смещения и вращения захвата на 0

5. Сбросить ссылки на Grab, Joint 1 Path и Joint 2 Path (Рисунок 17).

Рисунок 17 – Сброс ссылок

Для подключения захвата к системе НМІ необходимо:

1. Создать объект «RcsSignalHolder» (Рисунок 18,19).

Рисунок 18 – Добавление дочернего узла

Рисунок 19 – Создание объекта RcsSignalHolder

- 2. В настройках объекта добавить как минимум 1 выходной сигнал.
- 3. Добавить новое устройство и добавить связь с захватом (Рисунок 20).

Рисунок 20 – Добавление нового устройства и связи с захватом

4. Перейти к свойствам робота и открыть вкладку Signals. Добавить новую шину и в качестве Signal Holder Path указать ранее созданный объект RcsSignalsHolder (Рисунок 21).

Рисунок 21 – Добавление и настройка шины сигналов

5. Нажать кнопку Update Signals Configuration для сохранения конфигурации (Рисунок 22).

Рисунок 22 – Сохранение конфигурации

- 6. Запустить робота и систему НМІ (Рисунок 23). Для этого необходимо перейти во вкладку RCS РМ и нажать последовательно:
- Rescan folders
- Refresh robots
- Start all
- Toggle HMI

Рисунок 23 – Запуск робота

В случае появления ошибок (Рисунок 24) в системе HMI сохраните проект (Сцена → Сохранить сцену) и перезапустите симулятор. Если после перезапуска сцена пустая, в главном меню откройте Сцена → Открыть сцену и выберите сцену с названием Spatial.tscn.

Рисунок 24 – Пример ошибки

7. В системе НМІ открыть настройки сигналов и добавить новый сигнал типа boolean. Адрес по умолчанию (Рисунок 25).

Рисунок 25 – Добавление сигнала в системе НМІ

Чтобы объект было возможно схватить с помощью данного захвата, необходимо создать объект KinematicBody и дочерние узлы MeshInstance и CollisionShape. Также объект KinematicBody должен принадлежать группе «grabable » (Рисунок 26).

Рисунок 26 – Задание свойства объекту

Приложение 4. Оформление выполнения задания.

Название команды

№	Фамилия, имя и отчество	Телефон для связи	Почта	ВУ3
1				
2				
3				
4				

Примечание: первой позицией заполняются контактные данные капитана команды