ゲノムの樹 いきものつなぎ

さまざまな生物のDNA情報をつかって、 系統樹を作ってみよう

> 理研CLST 分子配列比較解析ユニット (ユニットリーダー 工樂 樹洋)

DNAをしらべる研究

DNA解析技術の急速な進歩によって、 大量のDNA情報がえられるようになった

DNA情報は、インターネット上の データベースからダウンロードできる

コンピュータやプログラミングをつかって、 まるで実験をするように、生物の遺伝子の研究が可能に

DNAをつくっている部品「塩基」

二重らせん構造

ヌクレオチド

4 種類の塩基

ヒトゲノム

は私たちの生命活動の 「設計図」であると同時に 長年の進化の産物でもある

系統樹の読み取り方

節足動物のばあい

系統樹はDNA情報なしでもつくられてきた しかし、

形や行動などをくらべて、どのくらい 似ているかを評価するのはむずかしい

それに対して、

DNAをくらべて、どのくらい似ているかを 定量的にしらべるのは比較的やりやすい

_{生命の}進化の歴史は DNA情報をつかって再現できる

さまざまな生物のDNA情報をつかって、 系統樹を作ってみよう

膨大なDNA情報の中から

膨大なDNA情報の中から

ロドプシンという遺伝子に注目

もうまく かんたい 脊椎動物において、網膜の桿体細胞で機能し、明暗視をつかさどる

http://www.chm.bris.ac.uk/motm/retinal/retinalv.htm より転載

ヒトの ロドプシン遺伝子 のDNA情報

CGGGTCAGCCACAAGGGCCACAGCCATGAATGGCACAGAAGGCCCTAACTTCTACGTGCCCTTCTCCAAT GCGACGGGTGTGGTACGCAGCCCCTTCGAGTACCCACAGTACTACCTGGCTGAGCCATGGCAGTTCTCCA TGCTGGCCGCCTACATGTTTCTGCTGATCGTGCTGGGCTTCCCCCATCAACTTCCTCACGCTCTACGTCAC CGTCCAGCACAAGAAGCTGCGCACGCCTCTCAACTACATCCTGCTCAACCTAGCCGTGGCTGACCTCTTC ATGGTCCTAGGTGGCTTCACCAGCACCCTCTACACCTCTCTGCATGGATACTTCGTCTTCGGGCCCACAG GATGCAATTTGGAGGGCTTCTTTGCCACCCTGGGCGGTGAAATTGCCCTGTGGTCCTTGGTGGTCCTTGGC CATCGAGCGGTACGTGGTGTGTAAGCCCATGAGCAACTTCCGCTTCGGGGAGAACCATGCCATCATG TCCCCGAGGCCTGCAGTGCTCGTGTGGAATCGACTACTACACGCTCAAGCCGGAGGTCAACAACGAGTC TTTTGTCATCTACATGTTCGTGGTCCACTTCACCATCCCCATGATTATCATCTTTTTTCTGCTATGGGCAG CTCGTCTTCACCGTCAAGGAGGCCGCTGCCCAGCAGCAGGAGTCAGCCACCACACAGAAGGCAGAGAAGG AGGTCACCCGCATGGTCATCATCATGGTCATCGCTTTCCTGATCTGCTGGGTGCCCTACGCCAGCGTGGC ATTCTACATCTTCACCCACCAGGGCTCCAACTTCGGTCCCATCTTCATGACCATCCCAGCGTTCTTTGCC AAGAGCGCCGCCATCTACAACCCTGTCATCTATATCATGATGAACAAGCAGTTCCGGAACTGCATGCTCA GAGCCAGGTGGCCCCGGCCTAAGACCTGCCTAGGACTCTGTGGCCGACTATAGGCGTCTCCCATCCCCTA CACCTTCCCCCAGCCACAGCCATCCCACCAGGAGCAGCCCTGTGCAGAATGAACGAAGTCACATAGGCT GGACATCCACCAAGACCTACTGATCTGGAGTCCCACGTTCCCCAAGGCCAGCGGGATGTGTGCCCCTCCT CCTCCCAACTCATCTTTCAGGAACACGAGGATTCTTGCTTTCTGGAAAAGTGTCCCCAGCTTAGGGATAAG AATGAATGGGAAGGGAACATATCTATCCTCTCAGACCCTCGCAGCAGCAGCAACTCATACTTGGCTAA TGATATGGAGCAGTTGTTTTTCCCTCCTGGGCCTCACTTTCTTCTCCTATAAAATGGAAATCCCAGATC GCACTTTGTAAATAGCAAGAAGCTGTACAGATTCTAGTTAATGTTGTGAATAACATCAATTAATGTAACT AGTTAATTACTATGATTATCACCTCCTGATAGTGAACATTTTGAGATTGGGCATTCAGATGATGGGGTTT TGTAGGCAGGGACAGTCACAGGAATGCAGAATGCAGTCATCAGACCTGAAAAAAACAACACTGGGGGAGGG GGACGGTGAAGGCCAAGTTCCCAATGAGGGTGAGATTGGGCCTGGGGTCTCACCCCTAGTGTGGGGCCCC AGGTCCCGTGCCTCCCCTTCCCAATGTGGCCTATGGAGAGACAGGCCTTTCTCTCAGCCTCTGGAAGCCA CCTGCTCTTTTGCTCTAGCACCTGGGTCCCAGCATCTAGAGCATGGAGCCTCTAGAAGCCATGCTCACCC GCCCACATTTAATTAACAGCTGAGTCCCTGATGTCATCCTTATCTCGAAGAGCTTAGAAACAAGAGTGG GAAATTCCACTGGGCCTACCTTCCTTGGGGATGTTCATGGGCCCCAGTTTCCAGTTTCCCTTGCCAGACA AGCCCATCTTCAGCAGTTGCTAGTCCATTCTCCATTCTGGAGAATCTGCTCCAAAAAGCTGGCCACATCT CTGAGGTGTCAGAATTAAGCTGCCTCAGTAACTGCTCCCCCTTCTCCATATAAGCAAAGCCAGAAGCTCT AGCTTTACCCAGCTCTGCCTGGAGACTAAGGCAAATTGGGCCATTAAAAGCTCAGCTCCTATGTTGGTAT TAACGGTGGTGGGTTTTGTTGCTTTCACACTCTATCCACAGGATAGATTGAAACTGCCAGCTTCCACCTG ATCCCTGACCCTGGGATGGCTGGATTGAGCAATGAGCAGAGCCAAGCAGCACAGAGTCCCCTGGGGCTAG AGGTGGAGGAGGCAGTCCTGGGAATGGGAAAAACCCCA

ここでは40文字だけに注目

ここでは40文字だけに注目

準備:何文字違うか数えてみよう

ヒト AGGCCCTAACTTCTACGTGCCCTTCTCCAATGCGACGGGT イルカ GGGCCTGAACTTCTACGTGCCTTTCTCTAACAAGACAGGC カバ GGGCCCGAACTTCTACGTGCCTTTCTCCAACAAGACAGGC

	ヒト	イルカ	カバ	きんぎょ
۲ ١				
イルカ				
カバ				
きんぎょ				

準備:何文字違うか数えてみよう

ヒト AGGCCCTAACTTCTACGTGCCCTTCTCCAATGCGACGGGT イルカ GGGCCTGAACTTCTACGTGCCTTTCTCTAACAAGACAGGC カバ GGGCCCGAACTTCTACGTGCCTTTCTCCAACAAGACAGGC

	ヒト	イルカ	カバ
イルカ			
カバ			
きんぎょ			

正解は

	ヒト	イルカ	カバ
イルカ	10		
カバ	8	2	
きんぎょ	12	14	13

ここからが本番です

	ヒト	イルカ	カバ
イルカ	10		
カバ	8	2	
きんぎょ	12	14	13

ここからが本番です

方眼紙に基準点を書きましょう

ステップ1:最も小さい数を「2」で割る

	ヒト	イルカ	カバ
イルカ	10		
カバ	8	2	
きんぎょ	12	14	13

$$2 \div 2 = 1$$

→ イルカとカバをつなぐ枝の長さが「1|

→ イルカとカバをつなぐ枝の長さが「1」

ステップ2:組んだペアを合体させる(数は平均に)

ステップ2:組んだペアを合体させる(数は平均に)

合体後

	ヒト	イルカ+カバ
イルカ+カバ	9	
きんぎょ	12	13.5

ふたたび、最も小さい数を「2」で割る

	۲١	イルカ+カバ
イルカ+カバ	9	
きんぎょ	12	13.5

$$9 \div 2 = 4.5$$

→ ヒトと (イルカ+カバ) をつなぐ枝の長さが「4.5」

→ ヒトと(イルカ+カバ)をつなぐ枝の長さが「4.5」

ふたたび、組んだペアを合体させる(数は平均に)

ふたたび、組んだペアを合体させる(数は平均に)

合体後

	ヒト+イルカ+カバ
きんぎょ	12.75

さいごに、のこった数を「2」で割る

	ヒト+イルカ+カバ
きんぎょ	12.75

$$12.75 \div 2 = 6.375$$

→ (ヒト+イルカ+カバ)ときんぎょを つなぐ枝の長さが「6.375」

情報をまとめ、系統樹に

- → イルカとカバをつなぐ枝の長さが「1」
- → ヒトと(イルカ+カバ)をつなぐ枝の長さが「4.5」
- → (ヒト+イルカ+カバ)ときんぎょを つなぐ枝の長さが「6.375」

この系統樹のつくり方は 平均距離法とよばれています

実際の研究では、

より細かなアルゴリズムに

基づいた方法で、

より多くの生物を含め、

より長いDNAの情報を

つかいます

Dunn et al., 2008. Nature, 452:745-

さらに多くの生物を加えてみる

L AGGCCCTAACTTCTACGTGCCCTTCTCCAATGCGACGGGT サル AGGCCCTAACTTCTACGTGCCCTTCTCCAACGCGACGGGC イヌ GGGCCCGAACTTCTACGTGCCCTTCTCCAACAAGACGGGT イルカ **GGGCCTGAACTTCTACGTGCCTTTCTCTAACAAGACAGGC** カバ GGGCCCGAACTTCTACGTGCCTTTCTCCAACAAGACAGGC カモノハシ GGGCCAGGACTTTTTACATCCCCCATGTCCAATAAGACGGGC きんぎょ GGGAGATATGTTCTACGTGCCTATGTCCAATGCCACTGGC

	ヒト	サル	イヌ	イルカ	カバ	カモノハシ
サル						
イヌ						
イルカ						
カバ						
カモノハシ						
きんぎょ						

$$7 \times (7 - 1) \div 2$$

さっきのように、準備→ステップ1→ステップ2

	ヒト	サル	イヌ	イルカ	カバ	カモノハシ
サル	2					
イヌ	5	5				
イルカ	10	8	5			
カバ	8	6	3	2		
カモノハシ	12	12	10	11	10	
きんぎょ	12	12	15	14	13	14

より多くの生物をふくむ系統樹 どんな進化が読み取れるか?

教訓

形や行動だけではわからないことが DNAからわかる

遺伝子をみるかぎり、動物の中で ヒトが特別とは思えない!?

> DNA解析では「プログラミング」 がすごく便利

DNAの塩基のならび方だけでなく、いろんな遺伝子がいつ・どこで働くかもしらべられる

一緒にDNA情報・分子進化の研究をしてみませんか?

ご参加どうもありがとうございました

ロドプシン遺伝子のDNA情報の中の40文字に注目

ヒト AGGCCCTAACTTCTACGTGCCCTTCTCCAATGCGACGGGT
イルカ GGGCCTGAACTTCTACGTGCCTTTCTCTAACAAGACAGGC
カバ GGGCCCGAACTTCTACGTGCCTTTCTCCAACAAGACAGGC

きんぎょ GGGAGATATGTTCTACGTGCCTATGTCCAATGCCACTGGC

ゲノムの樹 いきものつなぎ

さまざまな生物のDNA情報をつかって 系統樹を作ってみよう

サル AGGCCCTAACTTCTACGTGCCCTTCTCCAACGCGACGGGC

✓ ▼ GGGCCCGAACTTCTACGTGCCCTTCTCCAACAAGACGGGT

イルカ GGGCCTGAACTTCTACGTGCCTTTCTCTAACAAGACAGGC

カバ GGGCCCGAACTTCTACGTGCCTTTCTCCAACAAGACAGGC

カモノハシ GGGCCAGGACTTTTACATCCCCATGTCCAATAAGACGGGC

きんぎょ GGGAGATATGTTCTACGTGCCTATGTCCAATGCCACTGGC

企画 理研CLST 分子配列比較解析ユニット 2015年10月24日 理化学研究所 神戸キャンパス 一般公開 裏面のDNAのならび方の違いを、 すべての生物の組ごとに数えると、 右のようになる

ワークショップで説明した手順 (ワークシートの裏面)にしたがって、 ステップ1とステップ2を繰りかえす。

でてきた $\frac{\mathbb{B} \setminus OD}{2}$ を、枝の長さととして、次々に系統樹に書き足していく。

できた系統樹をみると、どの生物と どの生物がどういった関係にあるのか、 また、いつごろ枝分かれしたのかを 読み取ることができる。

- ・ヒトはたしかにサルに近い
- ・イルカは魚類ではなく、哺乳類の カバに近いグループの子孫である、 など

	ヒト	サル	イヌ	イルカ	カバ	カモノハシ
サル	2					
イヌ	5	5				
イルカ	10	8	5			
カバ	8	6	3	2		
カモノハシ	12	12	10	11	10	
きんぎょ	12	12	15	14	13	14

