Optimization 1 — Homework 10

December 31, 2020

Problem 1

Consider the problem

$$\min -2x^2 + 2y^2 + 4x$$

s.t. $x^2 + y^2 - 4 \le 0$,
 $x^2 + y^2 - 4x + 3 \le 0$.

- (a) Prove that there exists an optimal solution to the problem.
- (b) Find all KKT points of the problem.
- (c) Find the optimal solution of the problem.

Problem 2

Consider the optimization problem

min
$$\mathbf{a}^T \mathbf{x}$$

s.t. $\mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c \le 0$.

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is PD, $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

- (a) For which values of $\mathbf{Q}, \mathbf{b}, c$ is the problem feasible?
- (b) For which values of $\mathbf{Q}, \mathbf{b}, c$ are the KKT conditions necessary?
- (c) For which values of $\mathbf{Q}, \mathbf{b}, c$ are the KKT conditions sufficient?
- (d) Under the condition of the third part, find the optimal solution of the problem using the KKT conditions.

Problem 3

Consider the problem

min
$$2x^2 + (y-4)^2$$

s.t. $-x^2 + 3ky < 0$,

where k > 0.

(a) Find all KKT points of the problem.

(b) Use necessary second order conditions in order to find the optimal solution of the problem for any k > 0.

Problem 4

Let \mathbf{x}^* be a local minimum point of the problem

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0$, $i = 1, 2, ..., m$,
 $h_j(\mathbf{x}) \le 0$, $j = 1, 2, ..., p$,
 $s_k(\mathbf{x}) = 0$, $k = 1, 2, ..., q$,

where f, g_i are continuously differentiable functions, g_i are convex, h_j and s_k are affine. Suppose that the generalized Slater's condition is satisfied. Then there exist $\lambda \in \mathbb{R}_+^m$, $\eta \in \mathbb{R}_+^p$ and $\mu \in \mathbb{R}^q$ such that

$$\begin{cases} \nabla f\left(\mathbf{x}^{*}\right) + \sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) + \sum_{j=1}^{p} \eta_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) + \sum_{k=1}^{q} \mu_{k} \nabla s_{k}\left(\mathbf{x}^{*}\right) = \mathbf{0}_{n}, \\ \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) = 0, \quad i = 1, 2, \dots, m, \\ \eta_{j} h_{j}\left(\mathbf{x}^{*}\right) = 0, \quad j = 1, 2, \dots, p. \end{cases}$$

Hint: use Motzkin's lemma from HW9

Problem 5

Consider the TRSP

$$\min_{\mathbf{x} \in \mathbb{R}^n} \quad f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$$
s.t. $\|\mathbf{x}\|^2 \le \alpha^2$,

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^n$, $c \in \mathbb{R}$ and $\alpha \in \mathbb{R}_{++}$.

Since **A** is symmetric, we can write it using the spectral decomposition as $\mathbf{A} = \mathbf{Q}\mathbf{D}\mathbf{Q}^T$, where **Q** is orthogonal and **D** is a digonal matrix with the eigenavlues $\lambda_1(\mathbf{A}) \leq \lambda_2(\mathbf{A}) \leq \ldots \leq \lambda_n(\mathbf{A})$ on the diagonal. Then for any $\lambda \neq -\lambda_i(\mathbf{A})$ we can write

$$\mathbf{x}(\lambda) = -\mathbf{Q}(\mathbf{D} + \lambda \mathbf{I}_n)^{-1}\mathbf{Q}^T\mathbf{b} = -\sum_{i=1}^n \frac{\mathbf{Q}_i^T\mathbf{b}}{\lambda_i(\mathbf{A}) + \lambda}\mathbf{Q}_i,$$

where $\mathbf{Q_i}$ is the *i*-th column of \mathbf{Q} (meaning, this is the eigenvector corresponding to $\lambda_i(\mathbf{A})$). Since $\mathbf{Q}^T\mathbf{Q} = \mathbf{I}_n$ we have

$$\|\mathbf{x}(\lambda)\|^{2} = \|(\mathbf{A} + \lambda \mathbf{I}_{n})^{-1} \mathbf{b}\|^{2} = \sum_{i=1}^{n} \frac{(\mathbf{Q}_{i}^{T} \mathbf{b})^{2}}{(\lambda_{i}(\mathbf{A}) + \lambda)^{2}}.$$

(a) Show that if $\mathbf{Q}_{1}^{T}\mathbf{b} \neq 0$ then $-\mathbf{b} \notin \text{Image}(\mathbf{A} - \lambda_{\min}(\mathbf{A})\mathbf{I}_{m})$.

Recall that in the solution of the TRSP we find $\lambda \geq 0$ such that $\|\mathbf{x}(\lambda)\|^2 = \alpha^2$, which is the root of the function $\phi_1(\lambda) = \|\mathbf{x}(\lambda)\| - \alpha$. An alternative approach to find such $\lambda \geq 0$ is to use Newton's method. This generates a sequence

$$\lambda^{k+1} = \lambda^k - \frac{\phi_1(\lambda^k)}{\phi_1'(\lambda^k)}.$$

Consider the function $\phi_2(\lambda) = \frac{1}{\|\mathbf{x}(\lambda)\|} - \frac{1}{\alpha}$. In the attached figure the left plot illustrates the value of $\phi_1(\lambda) + \alpha = \|\mathbf{x}(\lambda)\|$, while the red line is α . The right plot illustrates the value of $\phi_2(\lambda) + \frac{1}{\alpha} = \frac{1}{\|\mathbf{x}(\lambda)\|}$ while the red line is α^{-1} .

- (b) Based on the figures, explain (no mathematical arguments are required) why applying the Newton's method on ϕ_2 is preferred to applying the same method on ϕ_1 .
- (c) Show that the Newton's step applied on the function ϕ_2 is equivalent to the following algorithm:
 - Initialization: choose $\lambda^0 \geq 0$.
 - Step:
 - Factor $\mathbf{A} + \lambda^k \mathbf{I}_n = \mathbf{L}^T \mathbf{L}$ (Cholesky factorization).
 - Solve $\mathbf{L}^T \mathbf{L} \mathbf{p}^k = -\mathbf{b}, \ \mathbf{L}^T \mathbf{q}^k = \mathbf{p}^k$.
 - Set

$$\lambda^{k+1} = \lambda^k + \left(\frac{\|\mathbf{p}^k\|}{\|\mathbf{q}^k\|}\right)^2 \left(\frac{\|\mathbf{p}^k\| - \alpha}{\alpha}\right).$$

(d) Generate the data (A, b) according to the following commands

```
randn('seed',317);
rand('seed',317);
n = 10;
Q = orth(randn(n,n));
D = randperm(2*n)';
D = diag(sort(D(1:n).*sign(randn(n,1))));
A = Q*D*Q';
b = 20*rand(n,1)-15;
alpha = 3;
disp(b'*Q(:,1));
```

Implement the algorithm for solving the TRSP for solving this problem. Consider the following two strategies for finding λ :

1 Risection

Note: set the initial lower bound to $l = 10^{-7}$ or $l = -\lambda_{\min}(\mathbf{A}) + 10^{-7}$. For finding the initial upper bound implement

```
u=1+1;
while phi(u)>0
u=2*u;
end
```

2. Finding the root of $\phi_2(\lambda)$ using Newton's method.

Note: set λ^0 as the initial upper bound in the bisection method. To guarantee that $\mathbf{A} + \lambda^k \mathbf{I}_n \succ 0$, update $\lambda^{k+1} = \max\left\{\lambda^{k+1}, 10^{-7}\right\}$ or $\lambda^{k+1} = \max\left\{\lambda^{k+1}, -\lambda_{\min}\left(\mathbf{A}\right) + 10^{-7}\right\}$.

Compare the number of iterations required for computing λ .