Schema Design

schema, n. – a representation of a plan or theory in the form of an outline or model.

Data Modeling

- How do we represent real world relationships and properties in our program?
 - ...in a way that makes writing the program easy
 - ...while remaining flexible for future changes
 - ...oh, it also has to be fast (enough).

What we'll focus on today

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?
- Conceptual Design
 - Conceptual entities and their relationships
- Logical Design
 - In an SQL database: What are my tables, keys, and relationships?
 - In a program: What are my functions and data structures?
- Physical Design
 - Javascript code, CREATE TABLE statements

- Analysis
 - What does my program need to output?
 - What data will I need to produce that output?

Example: A Journal Analysis

- I want a program to keep my journal in.
- I want to be able to enter the text of each journal entry.
- I want to be able to see journal entries chronologically.

- Conceptual Design
 - Conceptual entities
 - Their relationships

Conceptual Design

(circles are properties)

- Logical Design
 - In an SQL database: What are my tables, keys, and relationships?
 - In a program: What are my functions and data structures?

Logical Design

All done??

- New requirements
 - I want to be able to have multiple journals
 - I want to be able to #tag entries and find all entries with a particular #tag
- Let's do it again!
 - Analysis –> Conceptual Design –> Logical Design

Conceptual Design, Take 2

Logical Design, Take 2?

But Wait!!! Redundancy

- Database organization that minimizes data redundancy and improves data integrity
- How do I change the name of "happy times" to "time that passes"?

select * from entries;			
id	date_created	text	journal_title
0	2017-01-01	I am happy	happy times
1	2017-01-02	I am very happy	happy times
2	2017-01-18	Despair fills me	happy times
3	2017-01-19	Sadness is my life	an anatomy of pain

Normalization

- Focuses on optimal storage
- Eliminate repeating groups in individual tables
- Create a separate table for each set of related data
- Identify each set of related data with a primary key

Am I Normalized?

Normalized!

Normalization

- Best when application is writeintensive
- Usually smaller tables
 - Fast reads on single tables
 - Updates, etc. are fast
 - Data is not duplicated
 - Retrieval speed suffers due to potential joins needed

De-Normalization

- Best when application is readintensive
- Usually larger tables
 - Less need for joins, etc
 - Allows for efficient index usage
 - May have redundant data
 - Updates, etc. become complex and costly

What Do I Do?!

- Real world applications will most likely have both read-loads and write-loads
- Utilize both approaches depending on the situation!
- Also, let your DBA handle most this...

Design one!

- Wordpress
- Wikipedia
- AirBnB
- Google (search)

- Twitter
- Gmail
- Facebook
- Instagram

Steps for Developing your ERD

- 1. Identify Entities
- 2. Define Relationships
- 3. Draw Rough-Draft ERD
- 4. Fill in Cardinality/Modality (arrows with relationship type)
- 5. Define Primary Keys
- 6. Draw Key-Based ERD (labeling Primary and Foreign Keys)
- 7. Identify Attributes
- 8. Map Attributes
- 9. Draw fully attributed ERD

Conceptual or Logical Design either is fine

