MOWNIT

Laboratorium 8 – metody Rungego-Kutty

Jakub Karbowski

7 czerwca 2022

Cel ćwiczenia

Metodami Rungego-Kutty rozwiązać równanie

$$\frac{dy}{dx} = kmy\sin(mx) + k^2m\sin(mx)\cos(mx)$$

$$k = 4$$

$$m = 2$$

$$x \in \left[-\frac{\pi}{4}, 2\pi\right]$$

$$y\left(-\frac{\pi}{4}\right) = \text{na podstawie rozwiązania analitycznego}$$

1

Zastosowane metody

Testowano następujące metody Rungego-Kutty:

- 1. 1 stopnia (rk1) "Eulera",
- 2. 2 stopnia (rk2) "midpoint",
- 3. 4 stopnia (rk4).

Liczony błąd

Błąd liczony jest jako maksymalna różnica między wyliczonym *y* a wartością *y* z rozwiązania analitycznego.

$$\text{err} = \max |y_{\text{numeryczne}} - y_{\text{analityczne}}|$$

Rozwiązanie analityczne

Rysunek 1: Rozwiązanie analityczne y(x)

Rysunek 2: Rozwiązanie numeryczne h = 0.1

Rysunek 3: Rozwiązanie numeryczne h = 0.01

Rysunek 4: Rozwiązanie numeryczne h=0.001

Rysunek 5: Rozwiązanie numeryczne h = 0.0001

Rysunek 6: Rozwiązanie numeryczne h = 0.00001

Analiza błędu

Tabela 1: Błąd dla różnych metod oraz *h*

h	rk1	rk2	rk4
0.1	284.2	87.3	1.0
0.01	201.7	0.06	3×10^{-5}
0.001	30.2	0.001	3×10^{-9}
0.0001	3.1	1×10^{-5}	8×10^{-10}
0.000 01	0.3	1×10^{-7}	9×10^{-9}

Wnioski

- 1. Metoda rk4 bardzo szybko osiąga poprawne rozwiązanie.
- 2. Metoda rk2 jest bliska metodzie rk4, ale liczy się o wiele szybciej.
- 3. Metoda rk1 nawet dla h = 0.0001 działa gorzej niż rk4.