实验报告

实验名称 整数规划与统计 第 7 次实验

三、实验过程与结果(包括建立的模型、程序、运行结果、结果分析等)

1. (教材 p.347: 10.4.12) 某公司采用一套冲压设备生产一种罐装饮料的易拉罐,这种易拉罐是用镀锡板冲压而成的。易拉罐为圆柱形,包括罐身、上盖和下底,罐身高 10cm,上盖和下底直径均为 5cm。该公司使用两种不同规格的镀锡板原料: 规格 1 的镀锡板为正方形,边长 24cm; 规格 2 的镀锡板为长方形,长、宽分别为 32cm 和 28cm。由于生产设备和生产工艺的限制,对于规格 1 的镀锡板原料,只可以按照模式 1、模式 2 或模式 4 进行冲压;对于规格 2 的镀锡板原料只能按照模式 4 进行冲压。使用模式 1、模式 2、模式 3、模式 4 进行冲压所需的时间分别为 1.5s, 2s, 2s, 3s。

该工厂每周工作 40 小时,每周可供使用的规格 1、规格 2 的镀锡板原料分别为 5 万张和 2 万张。目前每只易拉罐的利润为 0.10 元,原料余料损失为 0.001 元/cm² (如果周末有罐身、上盖或下底不能配套组装成易拉罐出售,也看作是原料余料损失)。问工厂应如何安排每周的生产?

解:

【问题分析】

计算各种模式下的余料损失

模式 1: 正方形边长 24cm, 余料损失 $24^2 - 10 \times \pi \times 5^2 / 4 - 5\pi h = 222.6 \text{ cm}^2$

	罐身个数	底、盖个数	余料损失(cm²)	冲压时间(秒))	
模式1	T	10	222.6	1.5	
模式 2	2	4	183.3	2	
模式3	0	16	261.8	1	
模式4	4	5	169.5	3	

目标: 易拉罐利润, 扣除原料余料损失后的净利润最大

注意: 不能装配的罐身、上下底也是余料

约束:工作时数:每周工作时间不超过40小时;

原料数量: 规格1(模式1~3)5万张,

规格 2 (模式 4) 2 万张;

罐身和底、盖的配套组装。

【模型建立】

决策变量: $x_i \sim$ 按照第 i 种模式的生产张数(i = 1,2,3,4); $y_1 \sim$ 一周生产的易拉罐个数;

 $y_2 \sim$ 不配套的罐身个数; $v_3 \sim$ 不配套的底、盖个数。

每只易拉罐利润 0.10 元, 余料损失 0.001 元/cm²

罐身面积 = $5\pi h$ = 157.1 cm²

底盖面积 = $\pi \times 5^2/4 = 19.6 \text{ cm}^2$

 $1.5x_1 + 2x_2 + x_3 + 3x_4 \le 144000$

目标函数 Max $0.1y_1 - 0.001(222.6x_1 + 183.3x_2 + 261.8x_3 + 169.5x_4 + 157.1y_2 + 19.6y_3)$

约束条件 时间约束 $1.5x_1 + 2x_2 + x_3 + 3x_4 \le 144000$ (即 40 小时)

原料约束 $x_1 + x_2 + x_3 \le 50000$, $x_4 \le 20000$

配套约束 $y_1 = \min \{ 罐身数, 底盖数/2 \}$

 $= \min\{x_1 + 2x_2 + 4x_4, (10x_1 + 4x_2 + 16x_3 + 5x_4)/2\}$

这等价于 $y_1 \le x_1 + 2x_2 + 4x_4$, $y_1 \le (10x_1 + 4x_2 + 16x_3 + 5x_4)/2$

 $y_2 = x_1 + 2x_2 + 4x_4 - y_1$

 $y_3 = 10x_1 + 4x_2 + 16x_3 + 5x_4 - 2y_1$

虽然 x_i 和 y_1 , y_2 , y_3 应是整数,但是因生产量很大,可以把它们看成实数,从而用 线性规划模型处理 。

【模型求解】

Lingo 程序:

Model:

Max = 0.1 *y1 - 0.2226 *x1 - 0.1833 *x2 - 0.2618 *x3 - 0.1695 *x4 - 0.1571 *y2 - 0.0196 *y3;

 $1.5 \times x1 + 2 \times x2 + x3 + 3 \times x4 \le 144000;$

x1 + x2 + x3 <= 50000;

x4 <= 20000;

 $y1 - x1 - 2*x2 - 4*x4 \le 0;$

 $y1 - 5*x1 - 2*x2 - 8*x3 - 2.5*x4 \le 0;$

 $y^2 + y^1 - x^1 - 2 \times x^2 - 4 \times x^4 = 0;$

y3 + 2*y1 - 10*x1 - 4*x2 - 16*x3 - 5*x4 = 0;

end

执行结果:

Global optimal solution found.

Objective value:

4298.338

Total solver iterations:

Variable Value Reduced Cost
Y1 160250.0 0.000000

	_ 00_00.0	0.00000
X1	0.00000	0.5000000E-04
X2	40125.00	0.000000
х3	3750.000	0.000000
X4	20000.00	0.00000
Y2	0.00000	0.2233312
Ү3	0.000000	0.3648437E-01
Row	Slack or Surplus	Dual Price
1	4298.338	1.000000
2	0.00000	0.8350000E-02
3	6125.000	0.00000
4	0.00000	0.1547969
5	0.00000	0.00000
6	0.00000	0.00000
7	0.00000	0.6623125E-01
8	0.00000	0.1688438E-01

模式 2 生产 40125 张, 模式 3 生产 3750 张, 模式 4 生产 20000 张,

共产易拉罐 160250 个(罐身和底、盖无剩余),净利润为 4298 元

2. (教材 p.272: 11.6.4a) 用蒙特卡罗方法求积分: $y = e^{4x} \sin 5x$, 积分区间: $1 \le x \le 3$, 并改变随机点数目观察对结果的影响.

```
解: 先作图
```

```
x=1:0.05:3;y=exp(4*x).*sin(5*x);plot(x,y)
exp(12)= 1.6275e+005
由图形可见,取值区域为:
1 <= x <= 3, -0.2e5 <= y <= 1.2e5
面积 2.8e5
```


程序 1A

```
n = 2500000;
  x = rand(1,n)*(3-1)+1; %a=1,b=3,c=-0.2e5,d=1.2e5,b-a=2,d-c=1.4e5,(b-a)*(d-c)=2.8e5
  y = rand(1,n)*1.4e5 - 0.2e5;
  k = 0;
  for i = 1:n
     if y(i) \le exp(4*x(i))*sin(5*x(i))
         k=k+1;
     end
  end
  s = k/n*2.8e5 - 2*0.2e5
程序2
n = 2500000;
                         %或 x = unifrnd(1,3,1,n);
x = rand(1,n)*(3-1)+1;
y = sum(exp(4*x).*sin(5*x));
s = y/n^*(3-1)
精确值 = -41e^4(4\sin 5 - 5\cos 5 + e^8(5\cos 15 - 4\sin 15))/41 = 25410.998665151
```

程序1运行结果

n	第1次运行	第2次运行	第3次运行	第4次运行	第5次运行	均值	标准差
100000	25568	25957	25120	25792	25114	25510.2	384.58
500000	25370	25403	25505	25368	25145	25358.2	131.57
2500000	25324	25401	25347	25317	25383	25354.4	36.63

程序2运行结果

n	第1次运行	第2次运行	第3次运行	第4次运行	第5次运行	均值	标准差
100000	25116	25382	25115	25299	25765	25335.4	266.82
500000	25305	25536	25339	25497	25258	25387.0	122.44
2500000	25371	25406	25420	25404	25366	25393.4	23.62

总体来讲,随着n的增加,计算精度提高,但提高不快,且有同样的n下计算数值有波动,且波动随着n增加而减小。

