TEST 1 PRACTICE PROBLEMS 2

ADRIAN PĂCURAR

Problem 1. Suppose $f(x) = x^2 + 1$ and $g(x) = -x^3$. Compute the derivative of $h(x) = \frac{f(x)}{g(x)}$.

Problem 2. Suppose $f(x) = \sin x$ and $g(x) = \cos x$. What is the instantaneous rate of change of the functions a(x) = f(x) - g(x) and $b(x) = \frac{f(x)}{g(x)}$ when x = 0.

Problem 3. Let $m(x) = e^x$. What is the tangent line to the graph of $f(x) = \frac{m(x) + x}{mx + 1}$ when x = 0?

Problem 4. Let f(x) = x - 1. For what x values, if any, does the function $g(x) = \frac{f(x) + 1}{f(x)}$ have a horizontal tangent? What about a vertical tangent?

Problem 5. Let f(x) = x - 1. For what x values, if any, does the function $g(x) = \frac{f(x) + x^2 + 1}{f(x) + 1}$ have a horizontal tangent? What about a vertical tangent?

Problem 6. Let $f(x) = x^2$. At what point does the line passing through (2,2) and (3,3) intersect the graph of f(x)?

Problem 7. Find the equation to the tangent AND normal lines to the graph of $f(x) = x^3$ at the point (1,1).

1

Problem 8. Find the instantaneous rate of change of $y = (x^2 + 3)(2x^3 - 5)$ at x = 0.

Problem 9. Find the derivative of the INVERSE function of $f(x) = \frac{x+1}{x-1}$.

Problem 10. Classify the points of discontinuity to the graph of $y = \frac{x-1}{x^2-1}$.

Problem 11. Compute the derivatives for the following:

(a)
$$(x^2 + x)(x + 1)$$

(b)
$$\frac{x^2 - 3x - 10}{x + 2}$$

Problem 12. Find the limit $\lim_{x\to+\infty}(x-\sqrt{x^2-1})$.