

EXAME DE ACESSO 2015 MATERIAL DE ESTUDO DE MATEMÁTICA PARA ENGENHARIAS

ISPTF(

Autores: Walter Pedro, Luísa Vega, Paulo Kaminda, Cláudio Bernardo, Joaquim Bumba, Valdik Fonseca, Cândido João, Odálya Pérez e Francisco Gil

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS.

Janeiro de 2015

Índice

CAPÍTULO I - CONJU <mark>NTOS NUMÉRICOS</mark>	
1.1 Os princi <mark>pais conjuntos numér</mark> icos são	1
1.2 Interv <mark>alos de núme</mark> ros reais	1
CAPÍTULO I <mark>I - POTENCIA</mark> ÇÃO E RADICIAÇÃO	4
2.1 Poten <mark>ciação</mark>	4
2.2 Propriedades da Potenciação	4
2.3 Radiciação	8
2.4 Número irracional	8
2.5 Conversão de um rad <mark>ical em potên</mark> cia de expoente fracionário	8
2.6 Conversão de uma potência c <mark>om expoe</mark> nte fracionário em radical	8
2.7 Propriedades dos radicais	9
2.8 Redução dos radicais	11
2.9 Racionalização	11
CAPÍTULO III — POLINÓMIOS	14
3.1 Definição	14
3.2 Monómio	14
3.3 Grau de polinómio	14
3.4 Valor numérico	15
3.5 Operações com polinómios	16
3.5.1 Adição e Subtração (Diferença) de polinómios	16
3.6 Multiplicação de polinómios	19
3.6.1 Multiplicação de polinómios por um número real (ou escalar)	19
3.6.2 Regra de sinais da Multiplicação	
3.6.3 Multiplicação de um monómio por um polinómio	20
3.6.4 Multiplicação de um polinómio por um polinómio	22

3.6.5 Divisão de polinómios	25
3.6.5.1 Divisão de polinómios pelo método das chaves	25
3.7 Dispositivo prático de Briot-Ruffini	28
3.8 Produtos notáveis e factorização	31
3.9 Compl <mark>etando quad</mark> rado	32
3.10 Fact <mark>orização</mark>	34
3.10.1 C <mark>ondições d</mark> e factorização de polinómios	35
CAPÍTULO IV: <mark>EXPONENC</mark> IAIS E LOGARITMOS	37
4.1 Equações exponenciais	37
4.2 Resolução de equ <mark>ações expo</mark> nenciais	37
4.3 Inequações exponenciais	38
4.4 Resolução de inequações exponenciais	38
4.5 Logaritmo ($\log_a b = C$)	39
4.5.1 Condição de existência do logaritmo	40
4.5.2 Logaritmos iguais	41
4.5.3 Logaritmo do produto	41
4.5.4 Logaritmo do quociente	41
4.5.5 Cologaritmo de um número	41
4.5.6 Logaritmo da potência	42
4.5.7 Logaritmo da potência da base	42
4.5.8 Logaritmo da raiz n-ésima	
4.6 Mudança de base	42
4.7 Mudança da base como quociente	43
4.8 Mudança de base como produto	43
4.9 Função exponencial	
INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIJ 4.9.1 Definição	
4.9.2 Representação gráfica	44

4.10 Função logaritmo	45
4.10.1 Domínio da função logarítmica	46
4.10.2 Gráfico de uma função logarítmica	46
4.10.3 Ca <mark>racterísticas do gráf</mark> ico da função logarítmica y = logax	47
CAPÍTULO V <mark>- EQUAÇÕES</mark> ALGÉBRICAS	48
5.1 Defini <mark>ção</mark>	48
5.2 Classi <mark>ficação</mark>	48
CAPÍTULO VI - <mark>DESIGUALD</mark> ADES ALGÉBRICAS	53
6.1 Introdução <mark>sobre inequ</mark> ações	53
6.2 Manipulação de <mark>equações</mark>	53
6.2.1 Inequações do 1º grau	54
6.2.2 Inequações do 2º grau	55
6.2.3 Inequações modulares	57
6.2.4 Inequações produto	60
6.2.5 Inequações quociente	63
CAPÍTULO VII – TRIGONOMETRIA	66
7.1 Relações Trigonométricas no triângulo Rectângulo: Teorema de Pitágoras	66
7.2 Fórmula fundamental da trigonometria	66
7.3 Ângulos notáveis	66
7.4 Fórmulas Trigonométricas	67
CAPÍTULO VIII – GEOMETRIA	
8.1 Unidades de medida de área e de volume	73
8.2 Áreas de figuras geométricas planas	74
8.3 Áreas e volumes de figuras geométricas sólidas	75
8.4 O Plano Cartesiano	
8.5 Representação de coordenadas no plano	78
8.6 Distância entre dois pontos de um plano	78

8.7 Equação Geral da Recta no Plano	80
8.8 Estudo da Circunferência	83
8.8.1 Equação da <mark>reduzida circunferencia</mark>	83
8.8.2 Equa <mark>ção geral da ci</mark> rcunferência	84
CAPÍTULO IX - NOÇÕES BÁSICAS DE DERIVADAS	86
9.1 Propr <mark>iedades das</mark> Derivadas	86
9.2 Regra <mark>s de Deriva</mark> ção	86
9.3 Máximos e Mínimos	89

ISPTEC

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS.

CAPÍTULO I - CONJUNTOS NUMÉRICOS

1.1 Os principais conjuntos numéricos são

N = {Números Naturais } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...}

$$\mathbb{Z} = \{\text{Números Inteiros}\} = \{\dots -3, -2, -1, 0, 1, 2, 3, 4 \dots\}$$

Q = {NúmerosRacionais} = {x : x =
$$\frac{a}{b}$$
, a, b \in z, b \neq 0}

$$\Re = \mathbf{Q} \cup \{\text{N\'umeros irracionais}\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...\}$$

1.2 Intervalos de números reais

Intervalos	Representação <mark>na recta real</mark>	Condição	Conjunto
[a, b]		a≤x≤b	$\{x \in \mathbb{R} : a \le x \le b\}$
Fechado	a b		[X Cital . G = X = D]
a, b[a <x <b<="" th=""><th>{x ∈ℝ : a <x <b}<="" th=""></x></th></x>	{x ∈ℝ : a <x <b}<="" th=""></x>
Aberto	a b		
]a, b]		a <x b<="" th="" ≤=""><th></th></x>	
Semi aberto		U √∧ ⊒ D	$\{x \in \mathbb{R} : a < x \le b\}$
à esquerda	a b		
[a, b[_	a ≤ x <b< th=""><th></th></b<>	
Semi aberto		0 = 1 10	$\{x \in \mathbb{R} : a \le x < b\}$
à direita	a b		

Nota: o intervalo fechado significa que os extremos (a e b) estão incluídos.

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

1

Exercícios Resolvidos

- 1. Usando a notação de conjunto escrever os intervalos
- a)]-3, 6[= $\{x \in R : -3 < x < 6\}$ b)] π , 6] = $\{x \in R : \pi < x \le 6\}$ c) [$\sqrt{2}$, $\sqrt{3}$] = $\{x \in R : \sqrt{2} \le x \le \sqrt{3}\}$
- d) [-1,0[= $\{x \in R : -1 \le x \ (0)\}$ e) $]-\infty,0[$ = $\{x \in R : x < 0\}$
- 2. Se A = $\{x \in \mathbb{R} : 2 < x < 5\}$ e B = $\{x \in \mathbb{R} : 3 \le x < 8\}$ determinar
 - a) A \cap B={ x $\in \mathbb{R}$: 3 \leq x \leq 5}
- b) $A B = \{ x \in \mathbb{R} : 5 < x < 8 \}$ c) $B A = \{ x \in \mathbb{R} : 2 < x < 3 \}$
- 3. Represente graficamente os resultados de cada expressão abaixo:
 - a)] π , 6] \cup [-1, 1[

b) [$\sqrt{2}$, $\sqrt{3}$] \cap [$\frac{1}{2}$, 3]

Exercícios de Fixação

- 1. Quais das alternativas abaixo são falsas?
 - a) {Ø} é um conjunto unitário
 - b) { } é um conjunto vazio
 - c) Se A = $\{1, 2, 3\}$ então $\{3\} \in A$
 - d) $\{x \in \mathbb{N}: x = 2n, \text{ onde } n \in \mathbb{N} \}$ é o conjunto dos números naturais ímpares
- f) $\left[\frac{1}{2}, \frac{1}{2}\right] \cup \left\{\right\} \subset \emptyset$ g) $B \cap A \subset A \cup B$
- h) Q ⊂R-Z
- 2. Escreva cada preposição abaixo usando o sinal de desigualdade
 - INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS a) a é um número positivo
 - b) b é um número negativo
 - c) a é maior que b

- 3. Representar na reta real os seguintes intervalos
 - a) [-10, 11]
- b) [0, 3[
- c)]-3, 0]
- d)]3, 7[
- e)]0,+∞ [
- 4. Representar graficamente os intervalos dados pelas desigualdades
 - a) $2 \le x \le 7$
- b) $\sqrt{3} \le x \le \sqrt{5}$
- c) $0 \le x < 2$
- d) $-\infty < x < -1$

- 5. Determinar graficamente
 - a)]5, 7] \(\cappa\) [6, 9]
- b) $]-\infty$, 7] \cap [8, 10] c)]-3, 0] \cup]0, 8[)
- <u>]0, 7]</u>]5,7[
- 6. Sejam M = $\{x \in \mathbb{R}: 2 \le x \le 10\}$, N = $\{x \in \mathbb{R}: 3 \le x \le 8\}$ e P = $\{x \in \mathbb{R}: 2 \le x \le 9\}$. Determinar o conjunto P - (M - N).

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS.

CAPÍTULO II - POTENCIAÇÃO E RADICIAÇÃO

2.1 Potenciação

A potência é o produto de **n** fatores iguais a **a**. Ou seja $a^n = \underbrace{a.a.a. \dots a}_{\text{n fatores}}$, n \in N.

Exemplos:

a)
$$3^3 = 3 \cdot 3 \cdot 3 = 27$$

b)
$$(-2)^2 = (-2)(-2) = 4$$

a)
$$3^3 = 3 \cdot 3 \cdot 3 = 27$$
 b) $(-2)^2 = (-2)(-2) = 4$ c) $\left(\frac{3}{4}\right)^2 = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$

2.2 Propriedades da Potenciação

A) Multiplicação de Potências da mesma base

Procedimento: conserva-se a base e somam-se os expoentes.

$$a^m \cdot a^n = a^{m+n}$$

Exemplos:

a)
$$2^x \cdot 2^2 = 2^{x+2}$$

b)
$$a^4 \cdot a^7 = a^{4+7} = a^{11}$$

c)
$$(0,9)^8 \cdot (0,9)^2 \cdot (0,9)^5 = (0,9)^{15}$$
 d) $2^4 \cdot 2^8 = 2^{4+8} = 2^{12}$

d)
$$2^4.2^8 = 2^{4+8} = 2^{12}$$

B) Divisão de Potências da mesma base

Procedimento: Conserva-se a base e subtraiem-se os expoentes.

$$\frac{a^m}{a^n} = a^{m-n}; \quad (\alpha \neq 0)_{OU}$$

$$a^{m-n} = \frac{a^m}{a^n}$$

Exemplos: a)
$$\frac{2^6}{2^3} = 2^{6-3} = 2^5$$

b)
$$\frac{3^4}{3^x} = 3^{4-x}$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLO

c)
$$\frac{a^4}{a^5} = a^{4-5} = a^{-1}$$

$$d) \quad a^{4-x} = \frac{a^4}{a^x}$$

C) Potência de uma Potência

Procedimento: Conserva-se a base e multiplicam-se os expoentes

$$(a^m)^n = a^{m.n}$$

Exemplos: a)
$$(3^2)^3 = 3^{2.3} = 3^6$$

b)
$$(4^3)^2 = 4^{3\cdot 2} = 4^6$$

c)
$$(b^x)^4 = b^{x\cdot 4} = b^{4\cdot x}$$
 d) $3^{7x} = (3^7)^x$

d)
$$3^{7x} = (3^7)^{7}$$

D) Potências de um Produto

Procedimento: Eleva-se cada factor a esse expoente

$$(a.b)^{m} = a^{m}.b^{m}$$

Exemplos:

$$(x \cdot a)^2 = x^2 \cdot a^2$$

b)
$$(4x)^3 = 4^3 \cdot x^3 = 64x^3$$

C)
$$(3\sqrt{x})^4 = 3^4 \cdot (\sqrt{x})^4 = 3^4 \cdot (x^{1/2})^4 = 3^4 \cdot x^{4/2} = 3^4 \cdot x^2 = 81x^2$$

d)
$$\sqrt{x} \cdot \sqrt{y} = x^{\frac{1}{2}} \cdot y^{\frac{1}{2}} = (x \cdot y)^{\frac{1}{2}} = \sqrt{x \cdot y}$$

e)
$$(5.4)^2 = 5^2.4^2 = 20^2$$

E) Potências de um quociente

Procedimento: Eleva-se o dividendo e o divisor a esse expoente

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$
, com $b \neq 0$ e $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$; $(b \neq 0)$

Exemplos:

a)
$$\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}$$

a)
$$\left(\frac{2}{3}\right)^2 = \frac{2^2}{3^2} = \frac{4}{9}$$
 b) $\left(\frac{1}{5}\right)^2 = \frac{1^2}{5^2} = \frac{1}{25}$

INC)
$$\frac{\sqrt{2}}{\sqrt{3}} = \frac{2^{\frac{1}{2}}}{3^{\frac{1}{2}}} = \left(\frac{2}{3}\right)^{\frac{1}{2}} = \sqrt{\frac{2}{3}}$$
 TECNICOD) $\left[\frac{4}{9}\right]^2 = \frac{4^2}{9^2} = \frac{16}{81}$ E CIENCIAS

F) Casos particulares

a) Base negativa:

Exemplos: a)
$$(-2)^4 = (-2)(-2)(-2)(-2) = 16$$

b)
$$(-3)^3 = (-3)(-3)(-3) = -27$$

a) Base positiva: $(a)^{-n} = \frac{1}{a^n}$

Exemplos: a
$$= \left(\frac{1}{a}\right)^3 = \frac{1}{a^3}$$

b)
$$\left(\frac{2}{3}\right)^{-2} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

c)
$$(-4)^{-2} = \left(-\frac{1}{4}\right)^2 = \frac{1}{16}$$

d)
$$\left(-\frac{2}{3}\right)^{-3} = \left(-\frac{3}{2}\right)^3 = -\frac{27}{8}$$

b) Expoente fraccionário:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Exemplos:

a)
$$\sqrt{x} = \sqrt[2]{x^1} = x^{1/2}$$

b)
$$\sqrt[3]{x^7} = x^{7/3}$$

c)
$$a^{\frac{5}{2}} = \sqrt{a^5}$$

d)
$$25^{\frac{1}{2}} = \sqrt{25} = 5$$
 e) $x^{\frac{8}{3}} = \sqrt[3]{x^8}$

e)
$$x^{8/3} = \sqrt[3]{x^8}$$

f)
$$(9)^{\frac{1}{2}} = \sqrt{9^1} = 3$$

EXERCÍCIOS PROPOSTOS

1. Calcule:

a)
$$1^{2002}$$

b)
$$2^4$$

c)
$$(-2)^4$$

d)
$$(-\frac{2}{3})^{-4}$$

2. Escreve numa só potência:

a)
$$3^5.3^2.3^7$$

b)
$$\frac{2^4 \cdot 2^6}{3^7 \cdot 3^3}$$

c)
$$\frac{10^5.10^{-3}.10}{10^{-7}.10^4}$$

d)
$$((-5)^4)^{\frac{3}{2}}$$

3. Calcule cada uma das potências:

a)
$$(2x^3)^2$$
 b) $(\frac{2}{3}x^3)^3$ e) $\frac{(\sqrt[6]{8^3})^2}{(2^5)^{3/5}}$ f) $\left[\frac{2^9}{(2^2 \cdot 2)^3}\right]^{-3}$

4. Assi<mark>nale verdadeira o</mark>u falso, caso seja falso corrija:

a)
$$7^3 \times 4^3 = 28^3$$
 b) $(2+5)^2 = 2^2 + 5^2$ c) $(9^4)^6 = 3^{48}$ d) $(0,25)^{-2} = 16$

5. Escreva na forma decimal:

a)
$$10^6$$
 b) 10^8 c) 10^{-6} d) 10^{-2}

6. Escreve <mark>na forma de</mark> potência de base 2:

a)
$$(-0.5)^{-3}$$
 b) -0.25^2 c) $(-0.25^2)^{-3}$ d) $16^{-2}:0.25^{-3}$

7. Simplifique dando a resposta na forma de potência de base 3:

$$\frac{(27^3)^6.(243^{-2})^4.(3)}{[(0.1)^2]^{-3}.(729^2)^{-3}.[(0,3^{-4})^{-2}]^6.9}$$

8. Calcular o valor da expressão:

a)
$$\frac{(7+3)^2 \cdot 10^{-2}}{10^{-3} \cdot 10^{-1}}$$
 b) $\frac{5,4.0,036.23}{2,3.0,054.0,36}$ c) $\frac{4^7 \cdot 8^2 \cdot 2}{1024^2}$ d) $\frac{2^9 \cdot 2 \cdot 2^3}{2^4 \cdot 2^2 \cdot 2^5}$

9. Se $x = 3^6$ e $y = 9^3$, podemos afirmar que:

a)
$$x \in 0$$
 dobro de y b) $x - y = 1$ c) $x = y$ d) $y \in 0$ triplo de x

10. Para x = 4, qual é o valor de $\left[\left(x^{-2} \right)^2 + x^{\frac{1}{2}} . x^{-3} \right] : x^{-5}$?

11. Simplifica a expressão
$$\frac{(-5)^2 - 3^2 + \left(\frac{2}{3}\right)^0}{3^{-2} + \frac{1}{5} + \frac{1}{2}}.$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

2.3 Radiciação

A raiz enésima de um número a é indicado por

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a \qquad (n \in Z \ e \ n \ge 2)$$

Em
$$\sqrt[n]{a}$$
, temos: $\begin{cases} n - o \text{ indice;} \\ a - o \text{ radicando.} \end{cases}$

Exemplos:

a)
$$\sqrt{4} = 2$$
 pois $2^2 = 4$
b) $\sqrt[5]{32} = 2$ pois $2^5 = 32$

b)
$$\sqrt[5]{32} = 2$$
 pois $2^5 = 32$

2.4 Número irracional

É um número real que não pode ser escrito sob a forma p/q, com p e q números inteiros.

Exemplos:
$$\sqrt{2}$$
, $\sqrt[3]{5}$, $\sqrt[4]{15}$

2.5 Conversão de um radical em potência de expoente fracionário

Um radical pode ser representado na forma de potência com expoente fraccionário: $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

Exemplos:

a)
$$\sqrt{2} = 2^{\frac{1}{2}}$$

b)
$$\sqrt[3]{5} = 5^{\frac{1}{3}}$$

a)
$$\sqrt{2} = 2^{\frac{1}{2}}$$
 b) $\sqrt[3]{5} = 5^{\frac{1}{3}}$ c) $\sqrt[3]{5^2} = 5^{\frac{2}{3}}$

2.6 Conversão de uma potência com expoente fracionário em radical

Uma potência de expoente fracionário pode ser transformada num radical

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$
 TITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS.

Exemplos:

a)
$$-10^{\left(-\frac{3}{2}\right)} = \frac{1}{\sqrt{-10^3}}$$

b)
$$5^{\left(\frac{2}{3}\right)} = \sqrt[3]{5^2}$$

c)
$$5^{\left(-\frac{2}{3}\right)} = \frac{1}{\sqrt[3]{5^2}}$$

2.7 Propriedades dos radicais

a) Produto de radicais com mesmo índice

Procedimento: Conserva-se o índice e multiplicam-se os radicandos, simplificando sempre que for possível o resultado obtido.

Exemplos:

Efetue as multiplicações seguintes:

$$a(2\sqrt{7})x(3\sqrt{5}) = (2.3)\sqrt{7.5} = 6\sqrt{35}$$

b)
$$J(3\sqrt[3]{2})x(5\sqrt[3]{6})x8\sqrt[3]{4} = (3.5.8)\sqrt[3]{2.6.4} = 120\sqrt[3]{48} = 240\sqrt[3]{6}$$

C)
$$\int (\sqrt[3]{18x^2})x(\sqrt[3]{2x}) = \sqrt[3]{36x^2} = x\sqrt[3]{36}$$

$$d\sqrt{3}$$
, $\sqrt[3]{2} = 3^{\frac{1}{2}}$, $2^{\frac{1}{3}} = 3^{\frac{3}{6}}$, $2^{\frac{2}{6}} = \sqrt[6]{3^3}$, $2^2 = \sqrt[6]{108}$

e)
$$(3\sqrt{2}-2)\cdot(\sqrt{2}+3)=3(\sqrt{2})^2-9\sqrt{2}-2\sqrt{2}-6=6-(9+2)\sqrt{2}-6=-11\sqrt{2}$$

b) Divisão de radicais com mesmo índice:

Procedimento: Devemos conservar o índice e dividir os radicandos, simplificando sempre que for possível o resultado obtido

Exemplos:

Efectue as divisões abaixo:

a)
$$\sqrt[3]{20} \div \sqrt[3]{10} = \sqrt[3]{\frac{20}{10}} = \sqrt[3]{2}$$
 b) $\sqrt{28} \div \sqrt{7} = \sqrt{\frac{28}{7}} = \sqrt{4} = 2$

b)
$$\sqrt{28} \div \sqrt{7} = \sqrt{\frac{28}{7}} = \sqrt{4} = 2$$

C)
$$30\sqrt{15} \div 5\sqrt{3} = \frac{30}{5}\sqrt{\frac{15}{3}} = 6\sqrt{5}$$
 d) $\sqrt{12} \div \sqrt{3} = \sqrt{\frac{12}{3}} = 2$ e) $\sqrt{50} \div \sqrt{2} = \sqrt{\frac{50}{2}} = 5$

d)
$$\sqrt{12} \div \sqrt{3} = \sqrt{\frac{12}{2}} = 2$$

e)
$$\sqrt{50} \div \sqrt{2} = \sqrt{\frac{50}{2}} = 5$$

c) Potência de radical

Procedimento: Para elevar um radical a uma potência, conservamos o índice do radical e elevamos o radicando à potência indicada.

Exemplos:

Calcule as potências:

a)
$$(\sqrt{2})^2 = (2^{\frac{1}{2}})^2 = 2^{\frac{2}{2}} = 2$$

b)
$$(\sqrt[3]{9})^2 = (\sqrt[3]{3^2})^2 = (3)^{\frac{2}{3}})^2 = (3)^{\frac{4}{3}} = \sqrt[3]{3^4} = \sqrt[3]{3^3}$$

c)
$$(4\sqrt{5})^3 = 4^3\sqrt{5^3} = 64\sqrt{5^3} = 64\sqrt{5^2.5} = 64.5\sqrt{5} = 320\sqrt{5}$$

d)
$$(\sqrt{7} + \sqrt{3})^2 = (\sqrt{7})^2 + 2\sqrt{7}\sqrt{3} + (\sqrt{3})^2 = 7 + 2\sqrt{7.3} + 3 = 10 + 2\sqrt{21} = 2(5 + \sqrt{21})$$

d) Radical de radical

Procedimento: Devemos multiplicar os índices desses radicais e conservar o radicando, simplificando o radical obtido, sempre que possível (considerando o radicando um número real positivo e os índices números naturais não-nulos).

$$\sqrt[m]{\sqrt[n]{a}} = \max \sqrt{1xa} = \max \sqrt{a}$$

Exemplos:

Reduza a um único radical:

a)
$$\sqrt{81} = \sqrt[2x^2]{1x81} = \sqrt[4]{81}$$

a)
$$\sqrt{81} = {}^{2x2}\sqrt{1x81} = {}^{4}\sqrt{81}$$

c) $\sqrt{3}\sqrt{5^{2}} = {}^{2x3}x\sqrt{5^{2}} = {}^{12}\sqrt{5^{2}} = 5^{\frac{1}{12}} = 5^{\frac{1}{6}} = {}^{6}\sqrt{5}$

b)
$$\sqrt[3]{7} = {}^{3}x{}^{2}\sqrt{7} = {}^{6}\sqrt{7}$$

d)
$$\sqrt[4]{\sqrt{2\sqrt[3]{5}}} = \sqrt[4x2x\sqrt[3]{2x5} = \sqrt[24]{10}$$

2.8 Redução dos radicais

Para reduzir os radicais ao máximo possível, devemos decompor primeiro os radicandos.

Exemplos:

a)
$$\sqrt{144} = \sqrt{2^4 \cdot 3^2} = 2^2 \cdot 3 = 12$$

a)
$$\sqrt{144} = \sqrt{2^4 \cdot 3^2} = 2^2 \cdot 3 = 12$$
 b) $\sqrt[3]{243} = \sqrt[3]{243} = \sqrt[3]{3^5} = \sqrt[3]{3^5} = \sqrt[3]{3^5} = 3\sqrt[3]{9}$ c) $\sqrt{8} - \sqrt{18} = 2\sqrt{2} - 3\sqrt{2} = -\sqrt{2}$

c)
$$\sqrt{8} - \sqrt{18} = 2\sqrt{2} - 3\sqrt{2} = -\sqrt{2}$$

2.9 Racionalização

Procedimentos: Recorrer às propriedades de radiciação

1. Temos no denominador apenas raiz quadrada:

$$\frac{4}{\sqrt{3}} = \frac{4}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{4\sqrt{3}}{(\sqrt{3})^2} = \frac{4\sqrt{3}}{3}$$

2. Temos no denominador raízes com índices maiores que 2:

a) $\frac{2}{\sqrt[3]{x}}$ Temos que multiplicar numerador e denominador por $\sqrt[3]{x^2}$, pois 1 + 2 = 3.

$$\frac{2}{\sqrt[3]{x}} \cdot \frac{\sqrt[3]{x^2}}{\sqrt[3]{x^2}} = \frac{2 \cdot \sqrt[3]{x^2}}{\sqrt[3]{x^1 \cdot x^2}} = \frac{2 \cdot \sqrt[3]{x^2}}{\sqrt[3]{x^{1+2}}} = \frac{2 \cdot \sqrt[3]{x^2}}{\sqrt[3]{x^3}} = \frac{2 \cdot \sqrt[3]{x^2}}{x}$$

b) $\frac{1}{\sqrt[5]{x^2}}$ Temas que multiplicar numerador e denominador por $\sqrt[5]{x^3}$, pois 2 + 3 = 5.

$$\frac{1}{\sqrt[5]{x^2}} \cdot \frac{\sqrt[5]{x^3}}{\sqrt[5]{x^3}} = \frac{\sqrt[5]{x^3}}{\sqrt[5]{x^2 \cdot x^3}} = \frac{\sqrt[5]{x^3}}{\sqrt[5]{x^{2+3}}} = \frac{\sqrt[5]{x^3}}{\sqrt[5]{x^5}} = \frac{\sqrt[5]{x^3}}{x}$$

3. Temos no denominador soma ou subtração de radicais:

$$\frac{2}{\sqrt{7} - \sqrt{3}} = \frac{2}{\left(\sqrt{7} - \sqrt{3}\right)} \cdot \frac{\left(\sqrt{7} + \sqrt{3}\right)}{\left(\sqrt{7} + \sqrt{3}\right)} = \frac{2\left(\sqrt{7} + \sqrt{3}\right)}{\left(\sqrt{7}\right)^2 - \left(\sqrt{3}\right)^2} = \frac{2\left(\sqrt{7} + \sqrt{3}\right)}{7 - 3} = \frac{2\left(\sqrt{7} + \sqrt{3}\right)}{4} = \frac{\left(\sqrt{7} + \sqrt{3}\right)}{2}$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

EXERCÍCIOS PROPOSTOS

1. Dê o valor das expressões e apresente o resultado na forma fracionária:

a)
$$\sqrt{\frac{1}{100}}$$

b)
$$\sqrt{0.81}$$

c)
$$\sqrt{2,25}$$

d)
$$\sqrt{\frac{4}{9}}$$

2. Calcule a raiz indicada:

a)
$$\sqrt[9]{a^3}$$

b)
$$\sqrt[3]{48}$$

c)
$$\sqrt{t^7}$$

d)
$$\sqrt[4]{t^{12}}$$

3. Escr<mark>eva na forma</mark> de potência com expoente fracionário:

a)
$$\sqrt{7}$$

b)
$$\sqrt[4]{2^3}$$

c)
$$\sqrt[5]{3^2}$$

d)
$$\sqrt[6]{a^5}$$

4. Escreva na forma de radical:

a)
$$8^{-\frac{1}{2}}$$

b)
$$a^{\frac{5}{7}}$$

c)
$$(a^3b)^{\frac{1}{4}}$$

d)
$$(m^2n)^{-\frac{1}{5}}$$

5. Calcule as seguintes raízes:

c)
$$\sqrt[3]{-125}$$

6. Fatorize e escreva na forma de potencia com expoente fracionario:

a)
$$\sqrt[3]{32}$$

b)
$$\sqrt[8]{512}$$

c)
$$\sqrt[8]{625}$$

d)
$$\sqrt[4]{27}$$

7. Simplifique os radicais:

a)
$$\sqrt[5]{a^{10}x}$$

b)
$$\sqrt{a^4b^2c}$$

c)
$$\sqrt{25a^4x}$$
 $\sqrt[3]{432}$

8. Determine as somas algébricas:

a)
$$\frac{7}{3}\sqrt[3]{2} - 2\sqrt[3]{2} - \frac{5}{4}\sqrt[3]{2}$$

b)
$$5\sqrt[3]{2} - 8\sqrt[3]{3} + 2 - 4\sqrt[3]{2} + 8\sqrt[3]{3}$$

9. Simplifique as expressões e calcule as somas algébricas:

a)
$$\sqrt[4]{96} + \sqrt[4]{486} - 2\sqrt[4]{6} + 9\sqrt[4]{243} =$$

b)
$$4\sqrt[3]{\frac{81}{64}} + 81\sqrt[3]{\frac{375}{729}} - 10\sqrt[3]{\frac{24}{125}} =$$

10. Simplifique a expressão $-\sqrt[4]{a^2y^4} - \left(\frac{1}{2}y\sqrt[6]{a^3} - \sqrt[10]{a^5y^{10}}\right)$.

11. Racionalize as expressões:

a)
$$\frac{2}{\sqrt{5}-\sqrt{3}} - \frac{2}{\sqrt[3]{2}}$$
 b) $\frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{\sqrt{3}-1}{\sqrt{3}+1}$

Respostas dos exercícios propostos sobre radiciação

1- a)
$$\frac{1}{10}$$
 b) $\frac{9}{10}$ c) $\frac{15}{10}$ d) $-\frac{1}{4}$

b)
$$\frac{9}{10}$$

c)
$$\frac{15}{10}$$

d)
$$-\frac{1}{2}$$

2- a)
$$\sqrt[3]{a}$$
 b) $2\sqrt[3]{6}$ c) $t^3 \sqrt{t}$ d) t

b)
$$2\sqrt[3]{6}$$

c)
$$t^3 \sqrt{t}$$

3- a)
$$7^{\frac{1}{2}}$$

b)
$$2^{\frac{3}{4}}$$

c)
$$3^{\frac{2}{5}}$$

d)
$$a^{\frac{1}{6}}$$

4- a)
$$\frac{1}{\sqrt{8}}$$

b)
$$\sqrt[7]{a^5}$$

c)
$$\sqrt[4]{a^3.b}$$

3- a)
$$7^{\frac{1}{2}}$$
 b) $2^{\frac{3}{4}}$ c) $3^{\frac{2}{5}}$ d) $a^{\frac{5}{6}}$
4- a) $\frac{1}{\sqrt{8}}$ b) $\sqrt[7]{a^5}$ c) $\sqrt[4]{a^3.b}$ d) $\sqrt[4]{m^2.n}$

$$c) - 5$$

$$d) - 1$$

6- a)
$$2^{\frac{5}{3}}$$
 b) $2^{\frac{3}{7}}$ c) $3^{\frac{4}{7}}$ d) $3^{\frac{3}{4}}$

b)
$$2^{\frac{3}{7}}$$

c)
$$3^{\frac{4}{7}}$$

d)
$$3^{\frac{3}{4}}$$

7- a)
$$a^2 \sqrt[5]{x}$$
 b) $a^2 b \sqrt{c}$ c) $5a^2 \sqrt{x}$ d) $6\sqrt[5]{2}$

b)
$$a^2b\sqrt{c}$$

c)
$$5a^2\sqrt{x}$$

d)
$$6\sqrt[3]{2}$$

8- a)
$$-\frac{11}{12}\sqrt[3]{2}$$
 b) $\sqrt[3]{2} + 2$

b)
$$\sqrt[3]{2} + 2$$

9- a)
$$3\sqrt[4]{6} + 27\sqrt[3]{3}$$
 b) $44\sqrt[3]{3}$

b)
$$44\sqrt[3]{3}$$

$$10- a) - \frac{y}{2} \sqrt{a}$$

11- a)
$$\sqrt{5} - \sqrt{3} - \sqrt[3]{4}$$
 b) 4

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

CAPÍTULO III - POLINÓMIOS

3.1 Definição

Um polinómio na variável real x é definido como sendo uma soma algébrica de monómios.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0$$
, onde $(n \in \mathbb{N}_0)$.

3.2 Monómio

Um monómio é uma expressão constituída por um número, por uma variável ou por um produto de números de expoentes naturais.

3.3 Grau de polinómio

Dado o polinómio $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x^1 + a_0$, não identicamente nulo, com $a_n \neq 0$, o grau do polinómio é dado pela mais alta potência da variável do polinómio P(x).

Exemplos	Procedimentos	Grau do polinómio
$P(x) = 4x^3 - 3x + 5$	Expoente do m <mark>aior term</mark> o	3
$P(x) = -7x^3y^2 + 2xy + 15$	Soma dos expoentes do termo d <mark>e</mark> maior grau	5
P(x)=5	Número	0

Observação:

Um**Polinômio é nulo**, (P(x) = 0) quando todos os coeficientes são iguais a Zero.

Exemplos:

a)
$$P(x) = 0x^4 + 0x^3 + 0x^2 + 0x + 0 = 0$$

b) Se $P(x) = (a-7)x^3 - 4(2-b)x^2 + 6(c+2)x - 4d$ é identicamente nulo, concluímos que:

$$\begin{cases} a-7=0 & \Rightarrow a=7 \\ -4(2-b)=0 \Rightarrow b=2 \end{cases}$$
$$6(c+2)=0 & \Rightarrow c=-2$$
$$-4d=0 & \Rightarrow d=0$$

Em relação a uma das variáveis, o grau do polinómio é dado pelo maior expoente dessa variável.

Exemplos:

a)
$$P(x)=5x^3+3x^2-4x-5 \Rightarrow gr(P(x))=3 \Rightarrow Polinomiodo 3.°grau$$

b)
$$P(x) = 5yx^3$$

 $gr(P(x)) = 3 \Rightarrow graupolinomio P(x) emrelação a x.$
 $gr(P(x)) = 1 \Rightarrow graudo polinmio P(x) emrelação a y$

c)
$$P(x) = 2xy^2 - 4x^2y$$

$$gr(P(x)) = 2 \Rightarrow grau polinomio P(x) em relação a x.$$

 $gr(P(x)) = 2 \Rightarrow grau do polinmio P(x) em relação a y.$

3.4 Valor numérico

Quando é atribuído um número à variável x, ou seja $x = \alpha$ ($\alpha \in \mathbb{R}$), e calculamos $P(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + ... + a_2 \alpha^2 + a_1 \alpha^1 + a_0$, dizemos que $P(\alpha)$ é o valor numérico do polinómio para $x = \alpha$.

Exemplos:

Determinar o valor numérico do polinómio $P(x) = x^3 - 4x^2 + 6x - 4$ para:

a)
$$x=1$$

b)
$$x = -\frac{1}{2}$$
 c) $x = 0$

c)
$$x = 0$$

d)
$$x = 3$$

Resolução:

a) Substituindo a variável x por 1 teremos:

$$P(1) = 1^3 - 4(1)^2 + 6(1) - 4 = 1 - 4 + 6 - 4 = 1$$

b) Substituindo a variável x por $\left(-\frac{1}{2}\right)$ teremos:

$$P\left(-\frac{1}{2}\right) = \left(-\frac{1}{2}\right)^3 - 4\left(-\frac{1}{2}\right)^2 + 6\left(-\frac{1}{2}\right) - 4 = -\frac{1}{8} - 4 \cdot \left(\frac{1}{4}\right) + 6 \cdot \left(-\frac{1}{2}\right) - 4 = -\frac{65}{8}$$

c)
$$P(0) = 0^3 - 4(0)^2 + 6(0) - 4 = 0 - 0 + 0 - 4 = -4$$

d)
$$P(3) = 3^3 - 4(3)^2 + 6(3) - 4 = 27 - 36 + 18 - 4 = 5$$

Exercícios

1. Determine o valor numérico dos seguintes polinómios:

a)
$$P(x) = \frac{3}{4}x^2$$
 para $x = -3$

a)
$$P(x) = \frac{3}{4}x^2$$
 para $x = -3$ b) $P(x) = 2x^3 - 2x + 5$ para $x = 2$

$$P(x) = -7x + 15 \text{ pra } x = 5$$

$$P(x) = -7x + 15$$
 pra $x = 5$ d) $P(x) = 3x^3 - 4x^2$ para $x = 1$

2. Dado o polinómio

$$P(x) = x^2 + 2x + a$$
, obtenha o valor numerico de a , de modo que $P(3) = 10$.

3. Determine o grau dos seguintes polinómios:

a)
$$F = 3ab^3 - 5a^2bc^2 - 3a^3b$$

d)
$$B = 10cx^2 - 4y$$

b)
$$G = 5a^2x - 3ax^2 + 8x^4 - 3ax^3$$

e)
$$L = 10dx^3 - 4$$

c)
$$D = 4bx^2 - 2bx + 2$$

f)
$$A = 33x - 41x^2$$

3.5 Operações com polinómios

Sejam
$$P(x) \in Q(x)$$
, tais que $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x^1 + a_0$, e
$$Q(x) = b_n x^n + b_{n-1} x^{n-1} + ... + b_2 x^2 + b_1 x^1 + b_0 \text{ e } k \in \mathbb{R}.$$

3.5.1 Adição e Subtração (Diferença) de polinómios

As operações de adição e subtração de polinômios requerem a aplicação de jogos de sinais, redução de termos semelhantes e o reconhecimento do grau do polinômio. Vejamos, com exemplos, como realizadas operações adição são as de

a) Adição

$$P(x)+Q(x)=(a_n+b_n)x^n+(a_{n-1}+b_{n-1})x^{n-1}+...+(a_1+b_1)x^1+(a_0+b_0)$$

Observação: P(x) + Q(x) = (P+Q)(x)

Exemplo:

Dados os polinómios P(x)e Q(x). Calcule P(x)+Q(x)

$$P(x) = 3x^3 - 2x^2 + 7$$
 e $Q(x) = 3x^4 - 7x^3 + 2x + 1$.

Somando-se os coeficientes dos termos de mesmo grau, obtemos:

$$P(x) + Q(x) = (0+3)x^4 + (3-7)x^3 + (-2+0)x^2 + (0+2)x + (7+1) = 3x^4 - 4x^3 - 2x^2 + 2x + 8$$

b) Subtração

$$P(x) - Q(x) = (a_n - b_n)x^n + (a_{n-1} - b_{n-1})x^{n-1} + \dots + (a_1 - b_1)x^1 + (a_0 - b_0)$$

Observação: P(x) - Q(x) = (P - Q)(x)

Exemplo: Dados os polinómios P(x)e Q(x). Calcule P(x)-Q(x)

$$P(x) = 3x^3 - 2x^2 + 7$$
 e $Q(x) = 3x^4 - 7x^3 + 2x + 1$.

Subtraindo-se os coeficientes dos termos de mesmo grau, obtemos:

$$P(x)-Q(x)=(0-3)x^4+(3+7)x^3+(-2-0)x^2+(0-2)x+(7-1)=-3x^4+4x^3-2x^2-2x+6$$

Exercícios resolvidos:

1. Efectue as seguintes adições de polinómios:

a)
$$(2x^2 - 9x + 2) + (3x^2 + 7x - 1)$$

b)
$$(5x^2 + 5x - 8) + (-2x^2 + 3x - 2)$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS C)
$$(2x^3 + 5x^2 + 4x) + (2x^3 - 3x^2 + x)$$

2. Efectue as seguintes subtrações de polinómios

a)
$$(6x^2 - 6x + 9) - (3x^2 + 8x - 2)$$

b)
$$(-2a^2-3a+6)-(-4a^2-5a+6)$$

c)
$$(4x^3 - 6x^2 + 3x) + (7x^3 - 6x^2 + 8x)$$

Resolução:

1.a)
$$(2x^2-9x+2)+(3x^2+7x-1)=2x^2-9x+2+3x^2+7x-1=5x^2-2x-1$$

1.b)
$$(5x^2 + 5x - 8) + (-2x^2 + 3x - 2) = 5x^2 + 5x - 8 - 2x^2 + 3x - 2 = 3x^2 + 8x - 10$$

1.c)
$$(2x^3 + 5x^2 + 4x) + (2x^3 - 3x^2 + x) = 2x^3 + 5x^2 + 4x + 1 + 2x^3 - 3x^2 + x = 4x^3 + 2x^2 + 5x$$

2.0)
$$(6x^2 - 6x + 9) - (3x^2 + 8x - 2) = 6x^2 - 6x + 9 - 3x^2 - 8x + 2 = -3x^2 - 14x + 11$$

2.b)
$$(-2a^2 - 3a + 6) - (-4a^2 - 5a + 6) = -2a^2 - 3a + 6 + 4a^2 + 5a - 6 = 2a^2 + 2a$$

2.C)
$$(4x^3 - 6x^2 + 3x) - (7x^3 - 6x^2 + 8x) = 4x^3 - 6x^2 + 3x - 7x^3 + 6x^2 - 8x = -3x^3 - 5x$$

Exercícios propostos:

Efectue as seguintes adições e subtrações:

a)
$$(5x^2 - 2ax + a^2) + (-3x^2 + 2ax - a^2)$$

b)
$$(y^2-3y-5)+(-3y+7-5y^2)$$

c)
$$(9x^2 - 4x - 3) + (3x^2 - 10)$$

d)
$$(7x-4y+2)-(2x-2y+5)$$

e)
$$(x^2 + 2xy + y^2) - (y^2 + x^2 + 2xy)$$

f)
$$(7ab+4c-3a)-(5c+4a-10)$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

Resposta:

a)
$$(2x^2)$$
;

b)
$$(-4y^2 + 2)$$

b)
$$(-4y^2+2)$$
; c) $(12x^2-4x-13)$;

d)
$$(5x-2y-3)$$
;

e)
$$(0)$$

e) (0); f)
$$(7ab-c-7a+10)$$

3.6 Multiplicação de polinómios

3.6.1 Multiplicação de polinómios por um número real (ou escalar)

Na m<mark>ultiplicação</mark> de um polinómio por um número(escalar), dev<mark>emos</mark> observar o seguinte procedimento:

Seguir cuidadosamente a regra dos sinais e a redução dos termos semelhantes.

3.6.2 Regra de sinais da Multiplicação

$$(+)\cdot(+)=+;$$
 $(+)\cdot(-)=-;$ $(-)\cdot(+)=-$ e $(-)\cdot(-)=+$

$$(+)\cdot(-)=-;$$

$$(-)\cdot (+) = -$$

$$k \cdot P(x) = (k \cdot a_n)x^n + (k \cdot a_{n-1})x^{n-1} + \dots + k \cdot a_2x^2 + (k \cdot a_1)x^1 + (k \cdot a_0)$$

Observação: $k \cdot P(x) = (k \cdot P)(x)$

Exemplos:

Multiplique os seguintes polinómios pelas constantes correspondentes:

a)
$$P(x) = 3x^3 - 2x^2 + 7$$
 e k = -4.

Multiplicando-se os coeficientes dos termos do polinómio pela constante (-4) obtemos:

$$(-4)P(x) = (-4)(3x^3 - 2x^2 + 7) = (-4)3x^3 - (-4)2x^2 + (-4)7 = -12x^3 + 8x^2 - 28$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

b)
$$P(x) = -5x^4 - 3x^3 + 7x + 3$$
 e k = 2.

Multiplicando-se os coeficientes dos termos do polinómio pela constante (2) obtemos:

$$(2)P(x) = (2)(-5x^4 - 3x^3 + 7x + 3) = -(2)5x^4 - (2)3x^3 + (2)7x + (2)3 = -10x^4 - 6x^3 + 14x + 6$$

3.6.3 Multiplicação de um monómio por um polinómio

Para multiplicarmos um polinómio por um monómio devemos multiplicar cada monómio do polinómio por cada monómio multiplicador, aplicando a propriedade distributiva da multiplicação.

Vejamos o exemplo abaixo:

Multiplicar o polinómio $2x^2 + y$ pelo monómio $7xy^2$.

Efeituando as multiplicações, teremos:

$$7xy^{2} \cdot (2x^{2} + y) = (7xy^{2} \cdot 2x^{2}) + (7xy^{2} \cdot y) = 14x^{3}y^{2} + 7xy^{3}$$

Veja mais exemplos:

a)
$$2a \cdot (7b + 3c) = (2a \cdot 7b) + (2a \cdot 3c) = 14ab + 6ac$$

b)
$$(4x-2y)\cdot(-3x)=4x(-3x)-2y(-3x)=-12x^2+6xy$$

c)
$$(6a-5b)\cdot 3c = 6a\cdot (3c)-(5a\cdot 3c)=18ab-15ac$$

Exercícios resolvidos

1. Multiplicar o polinómio $7ax^2 - 4ax - a + 2$ pelo monómio $3a^2x$.

efetuando as multiplicações, teremos:

$$(7ax^{2} - 4ax - a + 2) \cdot (3a^{2}x) = 7a^{2}x(3a^{2}x) - 4ax(3a^{2}x) - a \cdot (3a^{2}x) + 2 \cdot (3a^{2}x) =$$

$$= 21a^{3}x^{3} - 12a^{3}x^{2} - 3a^{3}x + 6a^{2}x$$

2. Multiplicar o polinómio $3x^2y + 2xy^2 + x^3 - 5y^3$ pelo monómio $(-xy^{-1})$.

efetuando as multiplicações, teremos:

$$(3x^{2}y + 2xy^{2} + x^{3} - 5y^{3}) \cdot (-xy^{-1}) = 3x^{2}y(xy^{-1}) + 2xy^{2} \cdot (-xy^{-1}) + x^{3} \cdot (-xy^{-1}) - 5y^{3} \cdot (-xy^{-1}) = 3x^{3}y^{0} - 2x^{2}y^{1} - x^{4}y^{-1}x + 5xy^{2} = 3x^{3} - 2x^{2}y - x^{4}y^{-1} + 5xy^{2}$$

3. Multiplicar o polinómio $x^3 - 5x^2 + 10x - 7$ pelo monómio $(-2x^2)$.

efetuando as multiplicações, teremos:

INSTITUTO SUPERIOR POLITECNICO DE TECNOLOGIAS E CIÊNCIAS
$$(x^3 - 5x^2 + 10x - 7) \cdot (-2x^2) = x^3(-2x^2) - 5x^2(-2x^2) + 10x \cdot (-2x^2) - 7 \cdot (-2x^2) = -6x^5 + 10x^4 - 20x^3 + 14x^2$$

4. Multiplicar o polinómio $y^2 - 2y + 1$ pelo monómio $0.5y^3$.

efetuando as multiplicações, teremos:

$$(y^{2} - 2y + 1) \cdot (0.5y^{3}) = y^{2}(0.5y^{3}) - 2y(0.5y^{3}) + 1 \cdot (0.5y) =$$

$$= 0.5y^{5} - y^{4} + 0.5y^{3}$$

5. Multiplicar o polinómio $x^3 - 3x^2$ pelo monómio $\frac{x}{2}$.

Efetuando as multiplicações, teremos:

$$\left(\frac{x}{2}\right) \cdot \left(x^3 - 3x^2\right) = \frac{x}{2}\left(x^3\right) + \frac{x}{2}\left(-3x^2\right) = \frac{x^4}{2} - \frac{3x^3}{2}$$

6. Multiplicar o polinómio $\frac{2}{3}x^2 + \frac{1}{2}x$ pelo monómio $\frac{2x}{3}$.

Efetuando as multiplicações, teremos:

$$\left(\frac{2x}{3}\right) \cdot \left(\frac{2}{3}x^2 + \frac{1}{2}x\right) = \frac{2x}{3}\left(\frac{2}{3}x^2\right) + \frac{x}{2}\left(\frac{1}{2}x\right) = \frac{4x^3}{9} - \frac{2x^2}{6}$$

7. Simplifique as expressões:

a)
$$2a \cdot (a^4 + 5a) - 3a^3 \cdot (a^2 - 2)$$

b)
$$\frac{2y(y^2-2y)^2}{5} - \frac{y^2(3y-7)}{5}$$

Resolução:

a)
$$2a \cdot (a^4 + 5a) - 3a^3 \cdot (a^2 - 2) =$$

= $2a^5 + 10a^2 - 3a^5 + 6a^3$
= $-a^5 + 6a^3 \cdot 10a^2$

b)
$$\frac{2y(y^2 - 2y)^2}{5} - \frac{y^2(3y - 7)}{5} = \frac{2y^3 - 4y^2}{5} - \frac{3y^3 - 7y^2}{5} = \frac{2y^3}{5} - \frac{4y^2}{5} - \frac{3y^3}{5} + \frac{7y^2}{5}$$

$$= \frac{2y^3}{5} - \frac{4y^2}{5} - \frac{3y^3}{5} + \frac{7y^2}{5}$$
INSTITUTO SUPERIOR POLITE = $\frac{2y^3}{5} + \frac{3y^2}{5} + \frac{3y^2}{5}$

3.6.4 Multiplicação de um polinómio por um polinómio

Para multiplicar dois polinómios, aplicamos a propriedade distributiva da multiplicação em relação à adição e à subtração. Isto é, multiplicamosacada termo do 1º polinómio por cada termo do 2º polinómio, em seguida agrupamos os termos semelhantes.

Exemplos:

1. Se multiplicarmos (3x-1) por $(5x^2+2)$, teremos:

$$(3x-1)\cdot(5x^2+2)$$
 \rightarrow aplicar a propriedade distributiva.

$$3x \cdot (5x^2) + 3x \cdot (2) - 1 \cdot (5x^2) - 1(2) = 15x^3 + 6x - 5x^2 - 2$$

Portanto:
$$(3x-1) \cdot (5x^2+2) = 15x^3 - 5x^2 + 6x - 2$$

2. Multiplicando $(2x^2 + x + 1)$ por (5x - 2), teremos:

$$(2x^2 + x + 1) \cdot (5x - 2)$$
 \rightarrow aplicar a propriedade distributiva.

$$2x^{2} \cdot (5x) + 2x^{2} \cdot (-2) + x \cdot (5x) + x \cdot (2) + 1 \cdot (5x) \cdot (-2)$$

$$= 10x^{3} - 4x^{2} + 5x^{2} - 2x + 5x - 2$$

$$= 10x^{3}x^{2} + 3x - 2$$

Portanto:
$$(2x^2 + x + 1)(5x - 2) = 10x^3 + x^2 + 3x - 2$$

3. Dados os polinómios P(x) e Q(x), calcule $P(x) \cdot Q(x)$

a)
$$P(x) = 3x^3 - 2x^2 + 7 \in Q(x) = 3x^4 + 1$$

 $P(x)Q(x) = (3x^3 - 2x^2 + 7)(3x^4 + 3)$
 $= (3x^3 \cdot 3x^4) + (3x^3 \cdot 3) - (2x^2 \cdot 3x^4) - (2x^2 \cdot 3) + (7 \cdot 3x^4) + (7 \cdot 3)$
 $= 9x^7 - 9x^3 - 6x^6 - 6x^2 + 21x^4 + 21$
 $= 9x^7 - 6x^6 + 21x^4 - 9x^3 + 21$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

b)
$$P(x) = 3ab - 5ab^2 e Q(x) = 2a + 7a^2b^3$$

 $P \cdot Q = (3a^2b - 5ab^2)(2a + 7a^2b^3)$
 $= (3a^2b \cdot 2a) + (3a^2b \cdot 7a^2b^3) - (5ab^2 \cdot 2a) - (5ab^2 \cdot 7a^2b^3)$
 $= 6a^3b + 21a^4b^4 - 10a^2b^2 - 35a^3b^5$
 $= 21a^4b^4 - 35a^3b^5 + 6a^3b^210a^2b^2$

Exercícios resolvidos:

Efectue os seguintes produtos:

a)
$$3(x+5)$$

b)
$$2x(x+5)$$

c)
$$4x(a+b)$$

d)
$$2x(x^2-2x+5)$$
 e) $(3x+2)(x+5)$ f) $(x-4y)(x-y)$

e)
$$(3x+2)(x+5)$$

f)
$$(x-4y)(x-y)$$

g)
$$(3x^2-4x-3)(x+1)$$
 h) $(x^3-2)(x^3+8)$

h)
$$(x^3-2)(x^3+8)$$

Resolução

a)
$$3(x+5) = 3x+15$$
; b) $2x(x+5) = 2x^2 + 10x$;

c)
$$4x(a+b) = 4ax + 4bx$$
 d) $2x(x^2 - 2x + 5) = 2x^3 - 4x^2 + 10x$;

e)
$$(3x+2)(x+5) = 6x^2 + 15x + 2x + 10$$

= $6x^2 + 17x + 10$

$$(x-4y)(x-y) = x^2 - xy - 4xy + 4y^2$$

= $x^2 + 4y^2 - 5xy$

g)
$$(3x^2-4x-3)(x+1)=3x^3+3x^2-4x^2-4x-3x-3$$

h)
$$(x^3-2)(x^3+8)=x^6+8x^3-2x^2-16$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS.

Exercícios propostos

1. Considere os polinómios: $P(x) = x^2 - 3x + 5$; Q(x) = -x + 5 e

 $R(x) = 3x^3 + 2x - 1$. Calcule:

- a) P(x) + Q(x)
 - c) P(x) Q(x)
- e) $3 \cdot Q(x)$

- b) $P(x) \cdot R(x)$
- d) $P(x) \cdot Q(x)$
- f) $R(x) \cdot O(x)$

Respostas:

a)
$$(x^2 - 4x + 10)$$
; b) $(3x^5 - 9x^4 + 17x^3 - 7x^2 + 13x - 5)$; c) $(x^2 + 2x)$;

d)
$$(-x^3 + 8x^2 - 20x + 25)$$
; e) $(-3x + 15)$; f) $(3x^5 - 9x^4 + 17x^3 - 7x^2 + 13x - 5)$

2. Efetue e simplifique as expressões sequintes:

a)
$$x(x-2)$$
 b) $a(b+c)-b(a-c)$

c)
$$(3x-2)\left(-\frac{1}{2}x^2\right)-3x(x+1)$$
 d) $x\left(4x^3+x^2-1\right)-3x(x-4)$

Respostas:

a)
$$(x^2 - 2x)$$
; b) $(2ac)$; c) $\left(-\frac{3}{2}x^3 - 2x^2 - 3x\right)$; d) $\left(4x^4 + x^3 - 3x^2 + 11x\right)$

3. Calcule os seguintes produtos:

a)
$$4x(a+b)$$

b)
$$2x(x^2-2x+5)$$
 c) $(3x+2)(2x+1)$

c)
$$(3x+2)(2x+1)$$

d)
$$(6x^2-4)(6x^2+4)$$

e)
$$(x^2 - x - 1)(x + 1)$$

Respostas:

a)
$$(4xa+4xb)$$
;

a)
$$(4xa + 4xb)$$
; b) $(2x^3 - 4x^2 + 10x)$; c) $(6x^2 + 7x + 2)$; d) $(36x^4 - 16)$ e) $(3x^3 - x^2 - 7x - 3)$

c)
$$(6x^2 + 7x + 2)$$

d)
$$(36x^4 - 16)$$

e)
$$(3x^3 - x^2 - 7x - 3)$$

3.6.5 Divisão de polinómios

3.6.5.1 Divisão de polinómios pelo método das chaves

Dados os polinómios P(x) e Q(x) e

$$P(x) \div Q(x) = q(x)$$
, pois $q(x) \times Q(x) + r(x) = P(x)$, onde $r(x)$ é o resto da divisão.

O res<mark>to da divisão r(x) é um polinómio cujo grau não pode ser igual nem maior que o grau do divisor Q(x).</mark>

As partes que constituem uma divisão são:

$$P(x) \rightarrow \text{Dividendo}; \quad Q(x) \rightarrow \text{Divisor}; \quad q(x) \rightarrow \text{Quociente e} \quad r(x) \rightarrow \text{Resto}$$

Este método consiste no seguinte formato

$$P(x)$$
 $Q(x)$ $Q(x)$

Exemplo 1:

Divida
$$P(x) = x^3 + 3x^2 - 4x + 1$$
 por $Q(x) = x^2 - x + 1$.

1) Escolher o primeiro termo do quociente, que deve ser multiplicado pelos termos do divisor. Pode também dividir diretamente o 1º termo de maior grau do polinómio P(x) (dividendo) pelo 1º termo de maior grau do polinómio Q(x) (Divisor); $\frac{x^3}{x^2} = x$, obtendo assim o 1º termo do quociente.

$$x^3 + 3x^2 - 4x + 1$$
 $x^2 - x + 1$ $x (x^2 - x + 1) = x^3 - x^2 + x$

2) Multiplicar o termo do quociente obtido e passar o inverso do resultado para subtrair do polinômio.

$$\frac{x^3 + 3x^2 - 4x + 1}{-x^3 + x^2 - x} \frac{x^2 - x + 1}{x}$$

3°• Agora deve-se repetir o primeiro passo, escolher o termo conveniente para multiplicar pelo primeiro termo do divisor para que fique igual ao primeiro termo do polinômio que foi resultado da primeira operação.

$$\frac{x^{3} + 3x^{2} - 4x + 1}{-x^{3} + x^{2} - x} = \frac{x^{2} - x + 1}{x + 4}$$

$$x + 4 = 4x^{2} - 5x + 1$$

$$x + 4 = 4x^{2} - 4x + 4$$

4°• Repetir o mesmo processo do segundo passo.

$$\begin{array}{c|c}
x^3 + 3x^2 - 4x + 1 & x^2 - x + 1 \\
-x^3 + x^2 - x & x + 4 \\
\hline
4x^2 - 5x + 1 \\
-4x^2 + 4x - 4 \\
-x - 3
\end{array}$$

Como o resto tem um grau menor do que o grau do divisor não é possível continuar com a divisão. Assim temos que q(x) = x + 4 e que r(x) = -x - 3.

Exemplo 2:

$$\begin{array}{c|ccccc}
12x^3 + 4x^2 - 8x & 4x \\
-12x^3 & 3x^2 + x - 2 \\
\hline
0x + 4x^2 & \\
-4x^2 & \\
\hline
0x - 8x & \\
+8x & \\
0
\end{array}$$

Assim temos que $q(x) = 3x^2 + x - 2$ e o resto r(x) = 0.

Exemplo 3:

$$\begin{array}{c|cccc}
10x^2 - 43x + 40 & 2x - 5 \\
-10x^2 + 25x & 5x - 9 \\
\hline
0x - 18x + 40 & \\
18x - 45 & \\
\hline
-5 & \\
\end{array}$$

Assim temos que q(x) = 5x - 9 e o resto r(x) = -5.

Exemplo 4:

$$6x^{4} - 10x^{3} + 9x^{2} + 9x - 5$$

$$-6x^{4} + 12x^{3} - 15x^{2}$$

$$0x^{4} + 2x^{3} - 6x^{2} + 9x - 5$$

$$-2x^{3} + 4x^{2} - 5x$$

$$0x^{3} - 2x^{2} + 4x - 5$$

$$2x^{2} - 4x + 5$$

$$0$$

Assim temos que $q(x) = 3x^2 + x - 1$ e o resto r(x) = 0.

Exemplo 5:

$$\begin{array}{r}
 12x^3 - 19x^2 + 15x - 3 \\
 -12x^3 + 4x^2 - 8x
 \end{array}$$

$$\begin{array}{r}
 4x - 5 \\
 0x^3 - 15x^2 + 7x - 3 \\
 + 15x^2 - 5x + 10
 \end{array}$$

Assim temos que q(x) = 4x - 5 e o resto r(x) = 0.

Exercícios propostos:

1) Calcule os quocientes:

a)
$$(2x^2 - 5x + 12) \div (x - 4)$$

b) $(6x^4 - 11x^3 - 5x^2 - 18x + 7) \div (2x^2 - 3x - 1)$
c) $(7x - 2x^4 - 3x^5 - 2 - 6x^2) \div (3x - 2)$
d) $(4a^2 - 7a + 3) \div (4a - 3)$

e)
$$(3x^3 - 13x^2 + 37x - 50) \div (x^2 - 2x + 5)$$
 f) $(x^3 - 6x^2 + 7x + 4) \div (x^2 - 2x - 1)$

Respostas:

a)
$$(2x \text{ e resto } 0)$$
; b) $(3x^2 - x - 6 \text{ e resto } -x + 1)$; c) $(x^4 - 2x + 1 \text{ e resto } 0)$; d) $(a - 1 \text{ e resto } 0)$ e) $(3x - 7 \text{ e resto } 0)$

3.7 Dispositivo prático de Briot-Ruffini

O dispositivo prático de **Briot-Ruffini** consiste na divisão de um polinómiopor um divisor do primeiro grau da forma $(x-\alpha)$, onde α é uma das suas raízes.

Exemplo:

Dados:
$$P(x) = 5x^3 - 2x^2 + 3x - 1 = Q(x) = x - 2$$
.

Aplicando a regra do Briot Ruffini, teremos:

O primeiro coeficiente de P(x) é o 5. Repete-se o primeiro coeficiente na linha de baixo

Em seguida, multiplica-se o 5 por 2 e soma-se o resultado com o segundo coeficiente de P(x), o número (-2), isto é, 5.2 + (-2) = 8. O resultado 8 deve ser escrito em baixo do coeficiente (-2).

Repete-se o processo, multiplicando $\mathbf{8}$ por $\mathbf{2}$ e somando-se o terceiro coeficiente de P(x), o número $\mathbf{3}$. O cálculo é dado por $\mathbf{8.2} + \mathbf{3} = \mathbf{19}$. Escreve-se o resultado em baixo do coeficiente $\mathbf{3}$.

Aplicando o mesmo procedimento pela última vez, multiplica-se o 19 por 2 e soma-se o resultado ao (-1), ou seja, 19.2 + (-1) = 37. O resultado (37) é colocado em baixo de (-1) e é o resto de nossa divisão.

O polinômio resultante dessa divisão tem como coeficientes $\mathbf{5}$, $\mathbf{8}$ e $\mathbf{19}$ e terá um grau a menos que o polinómio inicial. Isto é, a divisão de $\mathbf{5x^3} - \mathbf{2x^2} + \mathbf{3x} - \mathbf{1}$ por $\mathbf{x} - \mathbf{2}$ é $\mathbf{5x^2} + \mathbf{8x} + \mathbf{19}$, e o resto da mesma é $\mathbf{r} = \mathbf{37}$.

Exercícios Resolvidos

Seja o polinômio P (x) = x⁴-2x³+4x-10. Efetuar a divisão pelo binômio (x-2).
 Vemos que P (x) está incompleto, faltando o termo ax². Completamo-lo da seguinte forma:

$$P(x) = x^4 - 2x^3 + 0x^2 + 4x - 10$$

Concluímos que: $q(x) = 3x^3 + 4x^2 + 8x + 20$ e o resto r(x) = 30

2. Efetuar, utilizando o dispositivo prático de Briot-Ruffini, a divisão do polinômio $P(x) = 2x^4 + 4x^3 - 7x^2 + 12$ por Q(x) = (x - 1).

Resolução

Concluímos que: $q(x) = 2x^3 + 6x^2 - x - 1$ e o restor(x) = 11

3. Obter o quociente e o resto da divisão de

$$P(x) = 2x^5 - x^3 - 4x + 6 \text{ por } Q(x) = (x + 2).$$

Resolução

Concluímos que: $q(x) = 2x^4 - 4x^3 + 7x^2 - 14x + 24$ e o resto r(x) = -42

Exercícios propostos:

1. Aplicando o dispositivo pratico de Briot-Ruffini, calcule o quociente e o resto caso exista da divisão de:

a)
$$P(x) = 2x^2 - 3x + 2 \text{ por } Q(x) = x + 3$$

b)
$$P(x) = x^4 + 3x^2 + x - 5$$
 por $Q(x) = x + 2$

c)
$$P(x) = 2x^3 - 7x^2 + 2x + 1$$
 por $Q(x) = x - 4$

d)
$$P(x) = 2x^3 - 10x^2 + 8x - 3 \text{ por } Q(x) = x - 5$$

e)
$$P(x) = x^2 - 2x + 1$$
 por $Q(x) = 3x + 1$

f)
$$P(x) = 2x^3 - 3x^2 + x + 2 \text{ por } Q(x) = 2x - 1$$

Soluções:

a)
$$q(x) = 5x - 18$$
; $r(x) = 56$

b)
$$q(x) = x^3 - 2x^2 + 7x - 13$$
; $r(x) = 21$

c)
$$q(x) = 2x^2 + x + 6$$
; $r(x) = 25$

d)
$$q(x) = 2x^2 + 8$$
; $r(x) = 37$

e)
$$q(x) = \frac{x}{3} - \frac{7}{9}$$
 ; $r(x) = \frac{16}{9}$

f)
$$q(x) = x^2 - x$$
; $r(x) = 2$

3.8 Produtos notáveis e factorização

3.8.1 Produtos notáveis(ou casos notáveis)

Designação	Expressão	Expansão do produto
Produto da som <mark>a pela difer</mark> ença	(x+y)(x-y)	$x^2 - y^2$
Quadrado de uma soma	$(x+y)^2$	$x^2 + 2xy + y^2$
Quadrado de uma diferença	$(x-y)^2$	$x^2 - 2xy + y^2$
Cubo de uma soma	$(x+y)^3$	$x^3 + 3x^2y + 3xy^2 + y^3$
Cubo de uma diferença	$(x-y)^3$	$x^3 - 3x^2y + 3xy^2 - y^3$

Produtos especiais

$$(x+y)(x-y) = x^2 - y^2$$

$$(x-y)(x^2+xy+y^2)=x^3-y^3$$

$$(x+y)(x^2-xy+y^2)=x^3+y^3$$

$$(x-y)(x+y)(x^2+y^2)=x^4-y^4$$

$$(x-y)(x^4+x^3y+x^2y^2+xy^3)=x^5-y^5$$

$$(x-y)(x+y)(x^2+xy+y^2)(x^2-xy+y^2)=x^6-y^6$$

>
$$\ln(x_1+y_0)^2 \pm (x_{ER}y_0)^2 = 4xy \in \text{CNICO DE TECNOLOGIAS E CIÊNCIAS}$$

Exemplos:

a)
$$(x+4)(x-4) = x^2 - 4^2 = x^2 + 16$$

b)
$$(3x+5y)(3x-5y) = (3x)^2 - (5y)^2 = 3^2x^2 - 5^2y^2 = 9x^2 - 25y^2$$

c)
$$(3+2)(3-2)=3^2-2^2=9-4=5$$

d)
$$(x+1)^2 = (x)^2 + 2(x)(1) + (1)^1 = x^2 + 2x + 1$$

e)
$$(3x+4y)^2 = (3x)^2 + 2(3x)(4y) + (4y)^2 = 3^2x^2 + 24xy + 4^2y^2 = 9x^2 + 24xy + 16y^2$$

f)
$$(x+2)^3 = (x)^3 + 3(x)^2(2) + 3(2x)(2)^2 + (2)^3 = x^3 + 6x^2 + 24x + 8$$

g)
$$(2x-3)^3 = (2x)^3 - 3(2x)^2(3) + 3(2x)(3)^2 - (3)^3 = 8x^3 + 36x^2 + 54x - 27$$

3.9 Completando quadrado

O método de completar quadrado consiste em formar trinómios quadrados perfeitos. Este foi criado por Al-Khowarkmi.

Para completar o quadrado é necessário rec<mark>ordar qual</mark> é a forma de um trinómio quadrático perfeito.

$$x^2 + 2ax + a^2$$

Nesta equação:

O coeficiente do primeiro termo deve ser 1 (repara que $x^2 = 1(x^2)$).

O último termo a^2 é o termo independente.

O coeficiente do termo do meio é o dobro da raiz quadrada do último termopelo 1º termo

$$(\sqrt{a^2} = a; e \text{ o seu dobro} = 2a).$$

Desta forma teremos:

$$x^{2} + 2ax + a^{2} = 0 \Leftrightarrow (x+a)^{2} = 0 \Leftrightarrow (x+a)(x+a) = 0 \Leftrightarrow x = -a$$

(neste caso há uma raiz dupla).

Exemplos:

a)
$$x^2 - 8x + 16 = 0$$

- O coeficiente do primeiro termo é 1.
- O último termo é um quadrado perfeito 4.
- O coeficiente do termo do meio é o dobro da raíz quadrada do último termo.

Então
$$x^2 - 8x + 16 = 0 \Leftrightarrow (x - 4)^2 = 0 \Leftrightarrow x = 4$$
 (raiz dupla)

b)
$$x^2 - 11x + 24 = 0$$

- O coeficiente do primeiro termo é 1.
- O último termo não é um quadrado perfeito.
- O coeficiente do termo do meio não é o dobro da raíz quadrada do último term

Nestes casos multiplica-se e divide-se o 2º termo, por 2 e eleva-se a metade desse número ao quadrado em seguida adiciona-se para completar o quadrado perfeito, como não podemos alterar a equação inicial, subtraímos a metade e desse número ao 3º termo.

$$x^{2} - 2\left(\frac{11}{2}\right)x + \left(\frac{11}{2}\right)^{2} - \left(\frac{11}{2}\right)^{2} + 24 = 0$$

$$\Leftrightarrow \left(x - \frac{11}{2}\right)^{2} - \left(\frac{11}{2}\right)^{4} + 24 = 0$$

$$\Leftrightarrow \left(x - \frac{11}{2}\right)^{2} - \frac{121}{4} + \frac{96}{4} = 0$$

$$\Leftrightarrow \left(x - \frac{11}{2}\right)^{2} - \frac{25}{4} = 0$$

$$\Leftrightarrow \left(x - \frac{11}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} = 0 \rightarrow \text{us and o } a^{2} - b^{2} = (a - b)(a + b) \text{ vem :}$$

$$\Leftrightarrow \left(x - \frac{11}{2} - \frac{5}{2}\right)\left(x - \frac{11}{2} + \frac{5}{2}\right) = 0$$

$$\Leftrightarrow \left(x - \frac{16}{2}\right)\left(x - \frac{6}{2}\right) = 0$$

$$\Leftrightarrow \left(x - 8\right)(x + 3) = 0$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

A equação tem duas raízes reais: $x_1 = 8$ ou $x_2 = 3$.

c) Resolução de equação quadrática através do método de Completar o

o quadrado:
$$2x^2 - 12x + 8 = 0$$

- Tornar o coeficiente do termo x^2 igual a 1, dividimos ambos os termos da equação por 2: $x^2 6x + 4 = 0$
- Multiplica-se e divide-se o 2° termo, isto é o coeficiente de " χ " por 2 (dois) e adiciona-se e subtrai-se o **quadrado da metade** do coeficiente do termo em " χ " para formar o quadrado perfeito:

$$x^{2} - 2\left(\frac{6}{2}\right)x + \left(\frac{6}{2}\right)^{2} - \left(\frac{6}{2}\right)^{2} + 4 = 0 \Leftrightarrow x^{2} - 2(3)x + (3)^{2} - (3)^{2} + 4 = 0$$
$$\Rightarrow (x - 3)^{2} - 9 + 4 \Rightarrow (x - 3)^{2} - 5 = 0 \Leftrightarrow (x - 3)^{2} - \left(\sqrt{5}\right)^{2} = 0$$
$$\Leftrightarrow \left(x - 3 - \sqrt{5}\right)\left(x - 3 + \sqrt{5}\right) = 0$$

A equação tem duas soluções (ou raízes): $x_1=3+\sqrt{5}\,$ ou $\,x_2=3-\sqrt{5}\,$.

d)
$$x^2 + 8x + 16 = 0$$

- O coeficiente do primeiro termo é 1.
- O último termo é o quadrado perfeito de 4. (reparar que $16 = 4^2$)
- O coeficiente do termo do meio é o dobro da raíz quadrada do último termo.

Então
$$x^2 + 8x + 16 = 0 \Leftrightarrow (x+4)^2 = 0 \Leftrightarrow x = -4$$
 (neste caso há uma raiz dupla)

3.10 Factorização

A factirização de um polinómio consiste em coloca-lo na forma de um produto de dois ou mais factores.

3.10.1 Condições de factorização de polinómios

I. Colocação de factor comum em evidência

Coloca-se em evidência o factor comum do polinómio para obter a forma factorizada.

Exemplos:

a)
$$2xy + 3y = 2x \cdot y + 3 \cdot y = y(2x + 3)$$

b)
$$x^2 - 4x = x \cdot x - 4 \cdot x = x(x - 4)$$

c)
$$8x^3 + 4x^2 - 12x = (4x) \cdot x^2 - (4x) \cdot x - (4x) \cdot 3 = 4x(2x^2 + x - 3)$$

d)
$$x^3y + xy^3 = (xy) \cdot x^2 + (xy) \cdot y^2 = xy(x^2 + y^2)$$

II. Agrupamento

Agrupam-se termos do polinómio que possuem factores em comum que são colocados em evidência.

Exemplos:

$$2x^3 - x^2 + 4x - 2 = (2x^3 - x^2) + (4x - 2) = x^2(2x - 1) + 2(2x - 1) = (2x - 1)(x^2 + 2)$$

a)
$$6x^2 - 5x - 4xy + 10y = (6x^2 - 5x) - (4xy - 10y) = x(6x - 5) - 2y(2x - 5)$$

III. Factorização de Trinômiosquadrados perfeitos

Os Trinômios quadrados perfeitos são o resultado da expansão do quadrado de uma soma ou do quadrado de uma diferença de dois termos. Para factorizar um Trinômio quadrado perfeito é preciso identificar quais são esses termos, o que feito por inspeção (ou tentativa).

Exemplos:

Fatorize as seguintes expressões:

a)
$$4x^2 + 4x + 1 = (2x)^2 + 2(2x)(1) + (1)^2 = (2x+1)^2$$

b)
$$9x^2 - 12x + 4 = (3x)^2 + 2(3x)(2) + (2)^2 = (3x - 2)^2 + 2(3x)(2) + (3x - 2)^2 + 3(3x - 2)^2 +$$

c)
$$16x^2 + 24xy + 9y^2 = (4x)^2 + 2(4x)(3y) + (3y)^2 = (4x + 3y)^2$$

d)
$$x^2 - 10x + 25 = (x)^2 + 2(x)(5) + (5)^2 = (x - 5)^2$$

e)
$$64y^2 + 80y + 25 = (8x)^2 + 2(8x)(5) + (5)^2 = (8x+5)^2$$

Exercícios propostos:

1. Factorize as seguintes expressões:

a)
$$6x^3 + 8x^8$$

b)
$$4ax^2 6a^2 4x^2 + 4a^3x^2$$

c)
$$10000 - x^2 y^2$$

d)
$$a^2b^4 - 9$$

e)
$$ax^2 - bx^2 + 3a - 3b$$

f)
$$25a^4 - 100b^2$$

g)
$$33xy^2 - 44x^2y + 22x^2y$$

Respostas:

a)
$$(2x^3(3+4x^5))$$
; b) $(2ax^2(12a+2a^2))$; c) $(100+xy)(100-xy)$;

d)
$$(ab^2+3)(ab^2-3)$$
 e) $a(x^2+3)-b(x^2+3)$ ou $x^2(a-b)-3(a-b)$

f)
$$(5a^2 + 10b)(5a^2 - 10b)$$
 g) $(11xy(3y + 4x + 2x))$

ISPTEC

CAPÍTULO IV: EXPONENCIAIS E LOGARITMOS

4.1 Equações exponenciais

As equações em que as variáveis aparecem como expoentes de potências, chamam-se equações exponenciais.

4.2 Resolução de equações exponenciais

- a) Obter nos dois membros da equação, potências de bases iguais.
- b) Igualar os expoentes.
- c) Determinar o valor da variável (x).

Exercícios resolvidos

$$8^{x} = 0.25 \to (2^{3})^{x} = \frac{1}{4} \to 2^{3x} = \frac{1}{2^{2}} \to 2^{3x} = 2^{-2} \to 3x = -2 \to x = -\frac{2}{3}$$

$$8^{x^{2}-x} = 4^{x+1} \to (2^{3})^{x^{2}-x} = (2^{2})^{x+1} \to 2^{3(x^{2}-x)} = 2^{2(x+1)} \to 3(x^{2}-x) = 2(x+1)$$

$$3x^2 - 3x = 2x + 2 \rightarrow 3x^2 - 5x - 2 = 0$$

Resolvendo a equação do segundo grau vem:

$$x_1 = \frac{5 + \sqrt{25 + 24}}{6} = \frac{5 + 7}{6} = 2 \Rightarrow x_1 = 2$$

$$x_1 = \frac{5 - \sqrt{25 + 24}}{6} = \frac{5 - 7}{6} = -\frac{1}{3} \Rightarrow x_2 = -\frac{1}{3}$$

$$S = \{ -1/3 ; 2 \}$$

EC

2)
$$3^{x-1} - 3^x + 3^{x+1} + 3^{x+2} = 306$$

Colocando 3^{x-1} em evidência:

$$3^{x-1}(1-3+3^2+3^3) = 306 \to 3^{x-1}.34 = 306 \to 3^{x-1} = \frac{306}{34} \to 3^{x-1}$$

$$= 9 \to 3^{x-1} = 3^2 \to x - 1 = 2 \to x = 3$$

4.3 Inequações exponenciais

As desigualdades que contêm variáveis no expoente, chamam-se inequações exponenciais.

$$a^x > a^b, a^x \ge a^b \ (a > 1; 0 < a < 1)$$

$$a^x < a^b, a^x < a^b$$

4.4 Resolução de inequações exponenciais

- a) Converter os dois membros da inequação em potências da mesma base.
- b) Comparar os expoentes.

Exercícios resolvidos

1)
$$3^x < 9 \rightarrow 3^x < 3^2 \rightarrow x < 2$$
; $S = \{x \in R : x < 2\}$

2)
$$3^x > 81 \rightarrow 3^x > 3^4 \rightarrow x > 4$$
; $S = \{x \in R/x > 4\}$

3)
$$\left(\frac{1}{2}\right)^x > \sqrt{8} \rightarrow \left(\frac{1}{2}\right)^x > 8^{\frac{1}{2}}$$

$$\to (\frac{1}{2})^x > (2^3)^{\frac{1}{2}} \to 2^{-x} > 2^{\frac{3}{2}} \to -x > \frac{3}{2} / (-1) \to x < -\frac{3}{2}$$

$$Cs = \left\{ x \in \frac{R}{x} < -\frac{3}{2} \right\}$$

$$3^{x+2} + 3^{x-1} < 28 \to 3^x. 3^2 + 3^x. \frac{1}{3} < 28 \to 3^x \left(9 + \frac{1}{3}\right) < 28 \to 3^x. \frac{28}{3} < 28 \to 3^x. \frac{28}{3} < 28 \to 3^x. \frac{3}{3} < 3 \to 3^x.$$

5)
$$3^{x^2-4} > 1 \rightarrow 3^{x^2-4} > 3^0 \rightarrow x^2 - 4 > 0 \rightarrow x > \pm \sqrt{4} \rightarrow x > \pm 2$$

Exercícios Propostos

Resolva as seguintes inequações:

a)
$$2^{-x+5} < \frac{1}{4}b)2^{-x+5} > 1$$
 b) $3^{\frac{2}{8}-1} \le \frac{1}{\sqrt[8]{81}}$

3)
$$3^{x+1} + 3^{x+1} < 10$$
 e) $(\frac{1}{3})^{x+3} < \frac{1}{27}$

Exercícios propostos

1) Represente graficamente as seguintes funções:

a)
$$y = -x^2 + x - 2$$

c)
$$y = 3x + 2$$

b) c)
$$f(x) = \frac{1}{x^2 - 3x + 2}$$

d)
$$g(x) = \sqrt{x^2 + 5x - 3}$$

2) Determine se os seguintes pares ordenados pertencem ou não à função $f(x)=2^x$

b)
$$(-3;\frac{1}{2})$$

b)
$$(-3;\frac{1}{2})$$
 c) $(-4;\frac{1}{2})$

4.5 Logaritmo ($\log_a b = C$)

Chama-se logaritmo do número **b** em relação à base **a** à representação

logabi TILCI SE CERTO DE POLITECNICO DE TECNOLOGIAS E CIÊNCIAS

4.5.1 Condição de existência do logaritmo

Para que exista o logaritmo c é preciso que

$$b > 0; a > 0; a \neq 1$$

Exemplos:

$$\log_2 8 = x \leftrightarrow 2^x = 8 \leftrightarrow 2^x = 2^3 \leftrightarrow x = 3$$

b)
$$\log_{32} 64 = x \leftrightarrow 32^x = 64 \leftrightarrow (2^5)^x = 2^6 \leftrightarrow 5x = 6 \leftrightarrow x = \frac{6}{5}$$

c)
$$\log_2 \frac{1}{32} = x \leftrightarrow 2^x = \frac{1}{32} \leftrightarrow 2^x = 32^{-1} \leftrightarrow 2^x = (2^5)^{-1} \leftrightarrow x = -5$$

$$\log_{10} \sqrt[5]{100} = x \leftrightarrow 10^x = \sqrt[5]{100} \leftrightarrow 10^x = 100^{\frac{1}{3}} \leftrightarrow 10^x = (10^2)^{\frac{1}{3}} \leftrightarrow 10^x = 10^{\frac{1}{3}} \leftrightarrow 10^x = 10^x = 10^{\frac{1}{3}} \leftrightarrow 10^x = 10^{\frac{1}{3}} \leftrightarrow 10^x = 10^{\frac{1}{3}} \leftrightarrow 10^x = 1$$

a. Propriedades

a) Logaritmo de 1 em qualquer base é igual a zero.

$$\log_a 1 = 0 \leftrightarrow a^0 = 1$$

b) Logaritmo da base

$$\log_a a = 1 \leftrightarrow a^1 = a$$

c) Logaritmo de potência da base

$$\log_a a^n = n \leftrightarrow a^n = a^n$$

d) Potência de expoente logarítmico

$$a\log_a b = b \leftrightarrow \log_a b = c \leftrightarrow a^c = b \leftrightarrow a \log_a b = b$$

Exemplos:

a)
$$3 \log_3 81 = 81$$
 b) $\frac{1}{2} \log_{\frac{1}{2}} 3 = 3$

4.5.2 Logaritmos iguais

Dois logaritmos da mesma base são iguais, se os seus logaritmandos forem iguais.

$$\log_a b = \log_a c$$
; se $b = c$

4.5.3 Logaritmo do produto

O logaritmo do produto é igual à soma dos logaritmos dos fatores.

$$\log_a(A \cdot B) = \log_a A + \log_a B$$

Exemplo:

$$\log_2(4.8) = \log_2 4 + \log_2 8 \leftrightarrow \log_2 32 = \log_2 2^2 + \log_2 2^3 \leftrightarrow \log_2 2^5$$
$$= 2 + 3 \leftrightarrow 5 = 2 + 3$$

4.5.4 Logaritmo do quociente

O logaritmo do quociente é igual a diferença entre o logaritmo do dividendo e do divisor;

$$\log_a \left(\frac{A}{B}\right) = \log_a A - \log_a B$$

Exemplo:

$$\log_3\left(\frac{81}{27}\right) = \log_3 81 - \log_3 27 \leftrightarrow \log_3 3 = \log_3 3^4 - \log_3 3^3 \leftrightarrow 1 = 4 - 3$$

4.5.5 Cologaritmo de um número

É o logaritmo do inverso desse número

$$\operatorname{colog}_a b = \log_a \frac{1}{b}$$

4.5.6 Logaritmo da potência

$$\log_a(B^n) = n \cdot \log_a B$$

Exemplo:

$$\log_2(4^3) = 3.\log_2 4 \leftrightarrow \log_2 4^3 = 3\log_2 2^2 \leftrightarrow \log_2 4^3 = 3.2$$

$$\leftrightarrow \log_2 4^3 = 6$$

4.5.7 Logarit<mark>mo da potênc</mark>ia da base

$$\log_{a^n} b = \frac{1}{n} \log_a b \; ; (a > 0; a \neq 0; b > 0; n \neq 0)$$

Exemplo:

$$\log_{2^2} 4 = \frac{1}{2} \log_2 4 \leftrightarrow \log_4 4 = \frac{1}{2} \log_2 2^2 \leftrightarrow 1 = 1$$

4.5.8 Logaritmo da raiz n-ésima

O logaritmo da raiz n-ésima é igual ao inverso do índice da raiz multiplicado pelo logaritmo do radicando.

$$\log_a \sqrt[n]{A} = \frac{1}{n} \log_a A$$

Exemplo:

$$\log_3 \sqrt{81} = \frac{1}{2} \log_3 81 = \log_3 81^{\frac{1}{2}} = \frac{1}{2} \log_3 3^4$$
$$= \frac{1}{2} \cdot 4 \cdot \log_3 3 = \frac{1}{2} \cdot 4 \cdot 1 = 2$$

4.6 Mudança de base

Esta operação permite-nos passar de uma a outra base, segundo a nossa conveniência. Existem duas formas:

4.7 Mudança da base como quociente

O logaritmo de b na base a- é igual ao logaritmo de b numa outra base (c), dividindo pelo logaritmo de a na base (c).

$$\log_a b = \frac{\log_c b}{\log_c a}$$

Exemplos

$$\log_5 3 = \frac{\log_7 3}{\log_7 5}$$

$$\log_2 7 = \frac{\log_5 7}{\log_5 2}$$

4.8 Mudança de ba<mark>se como produt</mark>o

O logaritmo de \mathbf{x} na base \mathbf{a} , é igual ao logaritmo de \mathbf{b} (nova base) na base \mathbf{a} , multiplicado pelo logaritmo de \mathbf{x} numa outra base \mathbf{b} .

$$\log_a x \to \log_a x = (\log_a b) \cdot (\log_b x)$$

4.9 Função exponencial

4.9.1 Definição

Uma função do tipo $y = a^x(x \in R; a > 0 e a \neq 1)$, chama-se função exponencial.

A. Domínio da função exponencial

D=R (o expoente x pode ser qualquer número real).

B. Imagem da função exponencial

 $Im = R^*$ (a potência y é sempre um número positivo)

C. Zero da função

A função exponencial não possui zeros, pois $y \neq 0$.

4.9.2 Representação gráfica

Para representarmos graficamente uma função exponencial, podemos fazê-lo da mesma forma que fizemos com a função quadrática, ou seja, atribuimos alguns valores arbitrários ao \mathbf{x} , montarmos uma tabela com os respectivos valores de $\mathbf{f}(\mathbf{x})$, localizarmos os pontos no plano cartesiano e traçarmos a curva do gráfico.

Para a representação gráfica da função $f(x) = 1.8^x$ atribuimos ao x os valores representados no quadro abaixo:

X	у
-6	0.03
-3	0.17
-1	0.56
0	1
1	1.8
2	3.24

Gráfico

a) Função Exponencial Crescente

Se $\alpha > 1$ temos uma função exponencial crescente, qualquer que seja o valor real de x.

b) Função Exponencial Decrescente

Se $0 < \alpha < 1$ temos uma função exponencial decrescente em todo o domínio da função.

4.10 Função logaritmo

Toda função definida pela lei de formação $f(x) = log_{\alpha}x$, com a $\neq 1$ e a > 0 é denominada função logarítmica de base **a**. Nesse tipo de função o domínio é representado pelo conjunto dos números reais maiores que zero e o contradomínio, o conjunto dos reais.

Exemplos:

a)
$$f(x) = log_2x$$

$$b)f(x) = log_3x$$

$$c)f(x) = log_{1/2}x$$

d)
$$f(x) = log_{10}x$$

$$e)f(x) = log_{1/3}x$$

$$f)f(x) = log_4x$$

g)
$$f(x) = log_2(x - 1)$$

$$h)f(x) = log_{0,5}x$$

4.10.1 Domínio da função logarítmica

Dada a função $f(x) = \log_{(x-2)} (4-x)$, temos as seguintes restrições:

a)
$$4 - x > 0 \rightarrow -x > -4 \rightarrow x < 4$$

b)
$$x - 2 > 0 \rightarrow x > 2$$

c)
$$x - 2 \neq 1 \rightarrow x \neq 1 + 2 \rightarrow x \neq 3$$

Realizando a intersecção das restrições a, b e c, temos o seguinte resultado: 2 < x < 3 e 3 < x < 4.

Dessa forma, $D = \{x \in R / 2 < x < 3 \in 3 < x < 4\}$

4.10.2 Gráfico de uma função logarítmica

Para a construção do gráfico da função logarítmica devemos estar atentos a duas situações:

a) Função crescente(a > 1)

b) Função decrescente (0 < a < 1)

4.10.3 Características do gráfico da função logarítmica y = logax

- a) O gráfico está totalmente à direita do eixo y, pois ela é definida para x > 0.
- b) O gráfico intersecta o eixo das abscissas no ponto (1,0), então a raiz da função é x = 1.

Através dos estudos das funções logarítmicas, chegamos à conclusão de que ela é uma função inversa da exponencial. Observe o gráfico comparativo a seguir:

CAPÍTULO V - EQUAÇÕES ALGÉBRICAS

5.1 Definição

Uma equação é uma igualdade entre duas expressões algebraicas, relacionadas através de diversas operações matemáticas.

Convém referir que os valores incluídos numa equação podem ser números, incógnitas ou variáveis que substituem o valor que se tenta descobrir.

Equação

Membro esquerdo Membro direito

$$-2x+3 = \sqrt{3xy}-7$$

5.2 Classificação

As equações classificam-se em função dos se<mark>us graus.</mark> Assim sendo, uma equação pode ser do 1º grau, 2º grau, 3º grau, etc...

Exemplos:

- a) -3x + 4 = 3 (equação do 1º grau)
- b) $5x^2 + 2x 7 = 3x^2 4x + 5$ (equação do 2º grau)
- c) $-x^3 + x^2 2x + 4 = 3x^3 4x 3$

5.3 Resolução de uma equação

Ao substituir a variável por um valor do seu domínio numérico, a equação transforma-se numa proposição verdadeira, então esse valor numérico é denominado solução da equação.

Resolver uma equação significa achar uma equação equivalente mais simples, da forma $\mathbf{x} = \mathbf{c}$, onde \mathbf{c} é a solução da equação. OLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS

A. Procedimento para a resolução de uma Equação Linear

Uma equação linear (ou do primeiro grau) numa variável pode reduzir-se na forma $\mathbf{ax} = \mathbf{b}$ (a, b, $\mathbf{x} \in \Re$, $\mathbf{a} \neq \mathbf{0}$).

Para resolver uma equação linear aplicam-se os seguintes passos:

- a. Eliminar os sinais de agrupamento (parêntesis);
- b. Reduzir os términos semelhantes em cada membro da equação, caso existam;
- c. Transpor para o 1º membro as variáveis e para o 2º, os termos indep<mark>endentes;</mark>
- d. Isolar a variável da equação ax = b;
- e. Escrever o conjunto solução encontrado.

Exemplos:

Encontrar o número natural que satisfaz a seguinte equação:

$$6x + 5 - 4(5x + 0.25) = 3x + 56 - (x + 4)$$

Solução

$$6x + 5 - 4 (5x + 0.25) = 3x + 56 - (x + 4)$$
 $6x + 5 - 20 x - 1 = 3x + 56 - x - 4$ Eliminando parêntesis
 $-14x + 4 = 2x + 52$ Reduzindo os térmos semelhantes
 $52 - 4 = -14x - 2x$
 $48 = -16x$
 $48 : (-16) = x$
 $-3 = x$ $S = \varnothing$, pois -3 não é um número natural (-3 $\not\in$ N)

B. Procedimento para a resolução de uma Equação Quadrática

Uma equação quadrática (ou de segundo grau) numa variável é uma expressão reduzida na forma: $ax^2 + bx + c = 0$

onde a, b, c são os coeficientese (a, b, c, $x \in \mathcal{R}$, $a \neq 0$).

Para resolvermos uma equação do 2º grau recorremos à fórmula de Bháskara (fórmula resolvente) baseada no cálculo do discriminante e representada por:

$$\begin{cases} x = \frac{-b + \sqrt{\Delta}}{2a} \\ x = \frac{-b - \sqrt{\Delta}}{2a} \end{cases}$$

onde:
$$\begin{cases} a, b, c, são os coeficient es da equação quadrática \\ \Delta \acute{e} o discriminante e \Delta = b^2 - 4ac \end{cases}$$

O discrim<mark>inante (Δ) in</mark>dica a quantidade de soluções da equação quadrática. Ou seja:

Se >0, a equação tem duas raízes reais;
Se =0, a equação tem duas raízes reais iguais (ou uma única raiz);
Se <0, a equação não tem raízes reais.

Exemplo:

Determinar o conjunto solução da equação: $x^2 - 2x - 2 = 0$

Solução

Para a = 1, b = -2 e c = -2, substituindo na fórmula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(-2)}}{2(1)}$$

$$\rightarrow x_1 = \frac{-2 + 2\sqrt{3}}{2} = \frac{-2}{2} + \frac{2\sqrt{3}}{2}; x_2 = \frac{-2 - 2\sqrt{3}}{2} = \frac{-2}{2} - \frac{2\sqrt{3}}{2}$$
$$S = \{-1 + \sqrt{3}; -1 - \sqrt{3}\}$$

C. Resolução das Equações Fracionárias

Uma equação fracionária a uma variável é uma expressão algébrica que tem a variável, pelo menos, em algum denominador. Ou seja, tomam a forma

INSTITUTO SUPERIOR POL
$$\frac{P(x)}{Q(x)}$$
, com Q(x) \neq 0 NO LOGIAS E CIÊNCIAS

Para obtermos a solução das equações fracionárias, procedemos da seguinte forma:

- a) Determinar o domínio da equação, isto é, excluir todos os valores que anulam os denominadores;
- b) Simplificar, se é possível, todas as frações algébricas;
- c) Transformar as frações num denominador comum e posteriormente eliminá-lo;
- d) Efetuar os produtos indicados e agrupar os termos semelhantes;
- e) Isolar a variável para determinar a solução da equação quadrática aplicando o algoritmo visto anteriormente.

Exemplo:

Resolver a seguinte equação:

$$\frac{x}{x+2} - \frac{4}{x+1} = \frac{-2}{x+2}$$

Solução

- a) Determinar o domínio D = {-2; 1}
- b) MMC \acute{e} (x +2)(x + 1)
- c) Eliminar os denominadores
- d) Agrupar os termos semelhantes
- e) Resolver a equação

$$\frac{x}{x+2} - \frac{4}{x+1} - \frac{-2}{x+2} = 0$$

$$(x+2)(x+1)\frac{x}{x+2} - (x+2)(x+1)\frac{4}{x+1} - (x+2)(x+1)\frac{-2}{x+1} = 0$$
$$(x+1)x - 4(x+2) - (-2)(x+2) = 0$$

ISPIEC

$$\frac{x}{x+2} - \frac{4}{x+1} - \frac{-2}{x+2} = 0$$

$$\frac{x(x+1) - 4(x+2) - \left[-2(x+1)\right]}{(x+2)(x+1)} = 0$$

$$\frac{x^2 + x - 4x - 8 + 2x + 2}{(x+2)(x+1)} = 0$$

$$\frac{x^2 - x - 6}{(x+2)(x+1)} = 0$$

$$x^2 - x - 6 = 0$$

 $(x - 3) (x + 2) = 0$
 $x_1 = 3$ e $x_2 = -2$

Como x = -2 anula um dos denominadores, então,

a solução da equação é x = 3. $S = \{3\}$.

ISPTEC

CAPÍTULO VI - DESIGUALDADES ALGÉBRICAS

6.1 Introdução sobre inequações

Inequações são expressões matemáticas que envolvem os símbolos:

- a) >(maior que)
- b) < (menor que)
- c) ≥ (maior ou igual a)
- d) ≤ (menor ou igual a)

Resolver uma inequação em x significa encontrar todos os valores de x para os quais a inequação seja verdadeira.

O conjunto de todas as soluções de uma inequação é o que chamamos conjunto solução.

6.2 Manipulação de equações

As inequações podem ser manipuladas como as equações e as regras são muito similares, mas existe uma excepção.

- Se adicionarmos um mesmo número aos dois membros da inequação, esta mantem-se inalterável.
- Se subtrairmos um mesmo número aos dois membros da inequação, esta mantem-se inalterável.
- Se multiplicarmos ou dividirmos ambos os membros por um número positivo, a inequação mantem-se verdadeira.
- Se multiplicarmos ou dividirmos ambos os membros por um número <u>negativo</u>, muda o sinal da desigualdade.

6.2.1 Inequações do 1º grau

Uma inequação linear é dada pela forma ax+b<0, ax+b>0, $ax+b\le0$ e $ax+b\ge0$ onde a,b são números reais com $a\ne0$.

O conjunto das soluções de uma inequação linear com uma variável forma um intervalo de números reais. Por este facto, podemos apresentar o conjunto solução por meio da representação gráfica da reta real ou em forma de intervalos.

Exemplos:

Resolva as inequações:

a)
$$x + 3 > 5$$

$$x > 5 - 3$$

$$S = \{x \in \mathbb{R}: x > 2\}$$

b)
$$2x + 1 \le x - 4$$

$$2x - x \le -4 - 1$$

$$x < -5$$

$$S = \{x \in \mathbb{R}: x \le -5\}$$

c)
$$-3x \le x - 4$$

$$-4x \le -4 / \times (-1)$$

$$4x \ge 4$$

$$x \ge \frac{4}{4}$$

$$x \ge 1$$

$$S = \{x \in \mathbb{R}: x \ge 1\}$$

$$d) \quad \frac{2}{3}x \ge \frac{1}{5}$$

$$10x \ge 3$$

$$x \ge \frac{3}{10}$$

$$S = \left\{ x \in \mathbb{R} : x \ge \frac{3}{10} \right\}$$

PTEC

Exercícios propostos

a)
$$1 - 2x \le 5 + x$$

b)
$$5(1-x)-3(4-2x)>1-x$$

c)
$$2(3x+1) < 4(5-2x)$$

d)
$$3(3x-2)+2(x+\frac{1}{2}) \le 19-x$$

e)
$$\frac{3x}{2} + \frac{x}{3} + \frac{x}{6} > 0$$

f)
$$-3 < \frac{2x+5}{3} \le 5$$

g)
$$\frac{1-2x}{3} + \frac{x-2}{6} > \frac{x+3}{2} - 1$$

h)
$$3x + 4 < 5 < 6 - 2x$$

i)
$$x+1 \le 7-3x < \frac{x}{2}-1$$

$$j) \quad \frac{x-3}{3} + \frac{1-x}{2} < \frac{2(x-5)}{4}$$

6.2.2 Inequações do 2º grau

Considere a função $f(x) = ax^2 + bx + c$, onde $a \neq 0$, sendo a, b, e c números reais. A inequação do 2° grau é toda desigualdade tal que:

$$f(x) > 0, f(x) < 0, f(x) \ge 0 \text{ ou } f(x) \le 0$$

A resolução de uma inequação do 2º grau consiste na determinação dos valores de x que satisfaçam a desigualdade, envolvendo o estudo dos sinais de uma função do 2º grau.

Exemplos:

a)
$$x^2 - 6x + 8 \le 0$$

Achando os zeros de $f(x) = x^2 - 6x + 8$, temos:

$$(x-4)(x-2)=0$$

$$x_1 = 4$$
 ou $x_2 = 2$

Os valores que satisfazem a desigualdade são aqueles que $f(x) \leq 0$

Avaliando os sinais da função na reta real:

$$\bigoplus_{2} \bigoplus_{4} \bigoplus_{x \in \mathbb{R}: 2 \le x \le 4}$$

b)
$$x^2 - x - 12 > 0$$

$$(x-4)(x+3)=0$$

$$x_1 = 4$$
 ou $x_2 = -3s = \{x \in \mathbb{R}: x < -3 \text{ ou } x > 4\}$

$$x^2 - 6x + 9 > 0$$

$$(x-3)(x-3)=0$$

$$x_1 = 3$$
 ou $x_2 = 3S = \{x \in \mathbb{R}: x < 3 \text{ ou } x > 3\}$

$$-8 \le x^2 - 2x - 8 \le 0$$

$$\begin{cases} x^2 - 2x - 8 \ge -8 \\ x^2 - 2x - 8 \le 0 \end{cases}$$

$$x^2 - 2x - 8 \ge -8$$

$$x_1 = 0$$
 ou $x_2 = 2S_1 = \{x \in \mathbb{R}: x \le 0 \text{ ou } x \ge 2\}$

$$x^2 - 2x - 8 \le 0$$

$$x_1 = -2$$
 ou $x_2 = 4S_2 = \{x \in \mathbb{R}: -2 \le x \le 4\}$

$$S_1\cap S_2=\{x\in\mathbb{R}{:} -2\leq x\leq 0\ ou\ 2\leq x\leq 4\}$$

Exercícios propostos

a) $x^2 - 3x + 2 > 0$

b)
$$-3x^2 - 8x + 3 \le 0$$

$$0$$
02 x^2 1 y^2 2 x^2 5 uperior politécnico de tecnologias e ciências

d)
$$x^2 - 6x + 8 > 0$$

e)
$$8x^2 - 14x - 3 \le 0$$

f)
$$3x^2 - \sqrt{5}x \ge 0$$

g)
$$-4 \le 3x^2 - 10 \le 2$$

h)
$$\frac{-x^2}{3} + \frac{x}{2} - \frac{1}{4} > 0$$

i)
$$7x + 1 < x^2 + 3x - 4 \le 2x + 2$$

i)
$$4x^2 - 5x + 4 < 3x^2 - 6x + 6 < +3x - 4$$

Soluções:

a)
$$S = \{x \in \mathbb{R}: x < 1 \text{ ou } x > 2\}$$

b)
$$S = \left\{ x \in \mathbb{R}: x \le -3 \text{ ou } x \ge \frac{1}{3} \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} : x \le 0 \text{ ou } x \ge \frac{1}{2} \right\}$$

d)
$$S = \{x \in \mathbb{R}: x \le 2 \text{ ou } x \ge 4\}$$

e)
$$S = \left\{ x \in \mathbb{R} : \frac{1}{4} \le x \le \frac{3}{4} \right\}$$

f)
$$S = \left\{ x \in \mathbb{R}: \ x \le 0 \ ou \ x \ge \frac{\sqrt{5}}{3} \right\}$$

g)
$$S = \{x \in \mathbb{R}: -2 \le x \le -\sqrt{2} \text{ ou } \sqrt{2} \le x \le 2 \}$$

h)
$$S = \{\emptyset\}$$

i)
$$S = \{x \in \mathbb{R}: -3 \le x < -1\}$$

$$j) \quad S = \{\emptyset\}$$

6.2.3 Inequações modulares

As inequações modulares são dadas segundo a definição de módulo.

De modo geral, se a é um número positivo, então:

$$1^{\circ} \cos(|x| < a \Rightarrow -a < x < a)$$

$$2^{\circ}$$
 caso: $|x| > a \Rightarrow x < -a_{\circ} x > a$

a)
$$|4x-3|>5$$

$$|4x - 3| > 5$$

$$4x - 3 < -5$$
 ou $4x - 3 > 5$

$$x < -\frac{1}{2}$$
 ou $x > 2$

$$S = \left\{ x \in \mathbb{R} : x < -\frac{1}{2} \text{ ou } x > 2 \right\}$$

b)
$$\left| \frac{7-2x}{x+4} \right| \leq 2$$

$$\left|\frac{7-2x}{x+4}\right| \leq 2$$

$$|7 - 2x| \le 2|4 + x|$$

Elevando ambos os lados da desigualdade ao quadrado, temos

$$49 - 28x + 4x^2 \le 4(16 + 8x + x^2)$$

$$49 - 28x + 4x^2 < 64 + 32x + 4x^2$$

$$-60x - 15 \le 0$$

$$-60x \le 15$$

$$60x \ge -15$$

$$x \ge -\frac{1}{4}$$

$$S = \left\{ x \in \mathbb{R} \colon \ x > -\frac{1}{4} \right\}$$

c)
$$|x+3| \le 1$$

$$|x+3| \leq 1$$

$$-1 \le x + 3 \le 1$$

$$-1 - 3 \le x \le 1 - 3$$

$$-4 \le x \le -2$$

$$S = \{x \in \mathbb{R}: -4 \le x \le -2\}$$

d)
$$2x-7+|x+1| \ge 0$$

$$|x+1| = \begin{cases} x+1, para & x \ge -1 \\ -x-1, para & x < -1 \end{cases}$$

1° Caso: Se $x \ge -1$, temos

$$2x - 7 + |x + 1| \ge 0$$

$$2x - 7 + x + 1 \ge 0$$

$$x \ge 2S_1 = \{x \in \mathbb{R}: x \ge -1\} \cap \{x \in \mathbb{R}: x \ge 2\}$$

2° Caso: Se x < -1, temos:

$$2x - 7 + |x + 1| \ge 0$$

$$2x - 7 - x - 1 \ge 0$$

$$x \ge 8$$

$$S_2 = \{x \in \mathbb{R}: x < -1\} \cap \{x \in \mathbb{R}: x \ge 8\} = \emptyset$$

A solução da inequação proposta é:

$$S = S_1 \cup S_2$$

$$S = \{x \in \mathbb{R}: x \ge 2\}$$

Exercícios propostos

a)
$$|3x-2| < 4$$

b)
$$1 < |x - 1| \le 3$$

c)
$$|2-3x| \ge 1$$

d)
$$\left| \frac{2x-3}{3x-1} \right| > 2$$

e)
$$\left| \frac{x+3}{-x-1} \right| > \frac{1}{4}$$

f)
$$||2x-1|-4| \le 3$$

a)
$$|x-1|-3x+7 \le 0$$

h)
$$|x+2|-|x-3|>x$$

$$|x^2-3x+2|>0$$

j)
$$|x-2|-|x+3| > x^2-4x+3$$

TEC

Soluções:

a)
$$S = \left\{ x \in \mathbb{R}: -\frac{2}{3} < x < 2 \right\}$$

b)
$$S = \{x \in \mathbb{R}: -2 \le x < 0 \text{ ou } 2 < x \le 4\}$$

c)
$$S = \left\{ x \in \mathbb{R}: x \le \frac{1}{3} \text{ ou } x \ge \frac{1}{2} \right\}$$

d)
$$S = \left\{ x \in \mathbb{R}: -\frac{1}{4} \le x < \frac{5}{8} \text{ ou } x \ne \frac{1}{3} \right\}$$

e)
$$S = \left\{ x \in \mathbb{R}: \ x < -\frac{11}{3} \ ou \ x > \frac{13}{5} \ , x \neq 1 \right\}$$

f)
$$S = \{x \in \mathbb{R}: -3 \le x \le 0 \text{ ou } 1 \le x \le 4 \}$$

g)
$$S = \{x \in \mathbb{R}: x \geq 3\}$$

h)
$$S = \{x \in \mathbb{R}: x < -5 \text{ ou } 1 < x < 5\}$$

i)
$$S = \{x \in \mathbb{R}: x \neq 2 \ e \ x \neq 1\}$$

i)
$$S = \{\emptyset\}$$

6.2.4 Inequações produto

Consideremos f(x) e g(x) funções de variável x. Chamamos inequações produto as seguintes desigualdades:

$$f(x).g(x) > 0, f(x).g(x) < 0, f(x).g(x) \ge 0 \text{ ou } f(x).g(x) \le 0$$

Para resolvê-las, é necessário fazer o estudo do sinal separadamente, transportar os sinais para um quadro, efetuar o produto dos sinais e determinar os intervalos de valores em que a inequação se torna verdadeira.

Exemplos:

a)
$$(x-4)(x+2) > 0$$

 $(x-4)(x+2) = 0$
 $(x-4) > 0$ ou $(x+2) > 0$
 $x > 4$ ou $x > -2$

	-2	4	
x-4	-	-	+
x + 2	-	+	+
(x-4)(x+2)	+	-	+

$$S = \{x \in \mathbb{R}: \quad x > 4 \text{ ou } x > -2\}$$

b)
$$x^{2} \le 9$$

 $x^{2} \le 9$
 $x^{2} - 9 \le 0$
 $(x - 3)(x + 3) \le 0$
 $(x - 3) \le 0$ ou $(x + 3) \le 0$
 $x \le 3$ ou $x \le -3$

	-3	3	
x-3	-	_	+
x + 3	-	+	+
(x-3)(x+3)	+	-	+

$$S = \{x \in \mathbb{R}: -3 \le x \le 3\}$$

 $S = \{x \in \mathbb{R} \colon \ -1 < x < 1 \ e \ x > 1\}$

d)
$$(x-3)(x^2+3x-4)>0$$

$$x-3>0$$
 ou $x^2+3x-4>0$

	-4	1	3	
x - 3	-	-	-	+
$x^2 + 3x - 4$	+	-	+	+
$(x-3)(x^2+3x-4)$	-	+	-	+
) () (

$$S = \{x \in \mathbb{R}: -4 < x < 1 \text{ ou } x > 3\}$$

Exercícios propostos

a)
$$(x^2-x-2)(-x^2+4x+3)>0$$

b)
$$(-2x^2 + 3x + 2)(x - 4) \ge 0$$

c)
$$(x^2 + 4x - 5)(2x - 6) \ge 0$$

d)
$$(x^2 - x - 2)(-x^2 + 2x + 3) \le 0$$

e)
$$(1-4x^2)(2x^2+3x)>0$$

f)
$$(x^2 - 7x + 10)(x^2 - 3x) \le 0$$

g)
$$x^4 \ge x^2$$

h)
$$x^3 - 2x^2 - x + 2 > 0$$

i)
$$2x^3 - 6x^2 + x - 3 > 0$$

j)
$$x^2 + 1 < 2x^2 - 3 \le -5x$$

Soluções

a)
$$S = \{x \in \mathbb{R}: -1 < x < 1 \text{ ou } 2 < x < 3 \}$$

b)
$$S = \left\{ x \in \mathbb{R} : x \le -\frac{1}{2} \text{ ou } 2 \le x \le 4 \right\}$$

c)
$$S = \{x \in \mathbb{R}: -5 \le x \le 1 \text{ ou } x \ge 3 \}$$

d)
$$S = \{x \in \mathbb{R}: 5 \le x < 7 \text{ ou } x = 2\}$$

e)
$$S = \left\{ x \in \mathbb{R}: \ \frac{3}{2} < x < -\frac{1}{2} \ ou \ 0 < x < \frac{1}{2} \right\}$$

f)
$$S = \{x \in \mathbb{R}: 0 \le x \le 2 \text{ ou } 3 \le x \le 5 \}$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS g)
$$S = \{x \in \mathbb{R}: x \le -1 \text{ ou } x \ge 1 \text{ ou } x = 0\}$$

h)
$$S = \{x \in \mathbb{R}: -1 < x < 1 \text{ ou } x > 2\}$$

i)
$$S = \{x \in \mathbb{R}: x \leq 3\}$$

j)
$$S = \{x \in \mathbb{R}: -3 \le x < -2\}$$

6.2.5 Inequações quociente

Consideremos f(x) e g(x) funções de variável x. Chamamos inequações quociente as seguintes designaldades:

$$\frac{f(x)}{g(x)} > 0, \frac{f(x)}{g(x)} < 0, \frac{f(x)}{g(x)} \ge 0 \text{ ou } \frac{f(x)}{g(x)} \le 0$$

A resolução da inequação quociente é similar ao da inequação produto pois no conjunto dos números reais, a divisão ou multiplicação de dois números apresenta a mesma regra de sinais, lembrando que $g(x) \neq 0$.

Exemplos

a)
$$\frac{3x+4}{1-x} \le 2$$

$$\frac{3x+4}{1-x} \le 2$$

$$\frac{3x+4}{1-x} - 2 \le 0$$

$$\frac{3x+4-2(1-x)}{1-x} \le 0$$

$$\frac{5x+2}{1-x} \le 0$$

$$S = \left\{ x \in \mathbb{R}: \ x \le -\frac{2}{5} \text{ ou } x > 1 \right\}$$
INSTITUTO SUPERIOR POLÍTÉCNICO DE FIECNOLOGIAS E CIÊNCIAS

b)
$$3x - \frac{x+6}{x} \ge 2$$

 $3x - \frac{x+6}{x} \ge 2$
 $\frac{3x^2 - x - 6}{x} - 2 \ge 0$
 $\frac{3x^2 - 3x - 6}{x} \ge 0$
 $3x^2 - 3x - 6 = 0x = 0$
 $x_1 = -1 ex_2 = 2$

	-1	0	2	
$x^2 + 3x - 4$	+	-	-	+
x	-	-	+	+
$3x^2 - 3x - 6$	-	+	-	+
x				

$$S = \{x \in \mathbb{R}: -1 \le x < 0 \text{ ou } e \text{ } x \ge 2\}$$

c)
$$\frac{x^2 - 8x + 12}{x^2 - 9} \le \mathbf{0}$$
$$x^2 - 8x + 12 = 0$$
$$x_1 = 6 e x_2 = 2$$
$$x^2 - 9 = 0$$
$$x_1 = 3 e x_2 = -3$$

	-3	2	3	6	
$x^2 - 8x + 12$	+	+	-	-	+
$x^2 - 9$	+	-	-	+	+
$x^2 - 8x + 12$	+	-	+	-	+
$x^2 - 9$		5		5	

$$S = \{x \in \mathbb{R}: -3 < x \le 2 \text{ ou } 3 < x \le 6\}$$

Exercícios propostos

a)
$$\frac{2x+1}{x+2} > 0$$

b)
$$\frac{3-4x}{5x+1} \ge 0$$

c)
$$\frac{5x-3}{3x-4} \ge -1$$

d)
$$\frac{x^2-4x-5}{-x+3} < 0$$

$$e) \frac{x^2 - 7x + 6}{x^2 - 2x - 3} \ge 0$$

$$\frac{3x+1}{(2x+5)(5x+3)} < 0$$

$$g) \frac{x+1}{x+2} > \frac{x+3}{x+4}$$

h)
$$\frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} < 0$$

$$\frac{(x+1)^3-1}{(x-1)^3+1} > 1$$

$$\int_{j}^{\infty} \frac{(-x^2+10x-25)(x-3)}{(-x+4)} > 0$$

Soluções

a)
$$S = \left\{ x \in \mathbb{R} : x < -2 \text{ ou } x < \frac{1}{2} \right\}$$

b)
$$S = \left\{ x \in \mathbb{R} : -\frac{1}{5} < x \le \frac{3}{4} \right\}$$

c)
$$S = \left\{ x \in \mathbb{R}: \ x < \frac{7}{8} \ ou \ x > \frac{4}{3} \right\}$$

d)
$$S = \{x \in \mathbb{R}: -1 < x < 3 \text{ ou } x > 5\}$$

e)
$$S = \{x \in \mathbb{R}: x < -1 \text{ ou } 1 \le x < 3 \text{ ou } x \ge 6 \}$$

f)
$$S = \left\{ x \in \mathbb{R}: x < -\frac{5}{2} \ ou - \frac{3}{5} < x < -\frac{1}{3} \right\}$$

g)
$$S = \{x \in \mathbb{R}: -4 < x < -2\}$$

h)
$$S = \left\{ x \in \mathbb{R}: x < 1 \text{ ou } \frac{3}{4} < x < 2 \text{ ou } x > 3 \right\}$$

NSTITUTO SUPERIOR POLITECNICO DE TECNOLOGIAS E CIÊNCIAS

$$S = \{x \in \mathbb{R}: x > 0\}$$

j)
$$S = \{x \in \mathbb{R}: x < 3 \text{ ou } x > 4 \text{ e } x \neq 5\}$$

CAPÍTULO VII – TRIGONOMETRIA

7.1 Relações Trigonométricas no triângulo Rectângulo: Teorema de Pitágoras

$$c^2 = a^2 + b^2$$

$$senA = \frac{\text{cat} | \text{etooposto}}{\text{hipotenusa}} = \frac{a}{c}$$

$$\cos A = \frac{\text{catetoadjacente}}{\text{hipotenusa}} = \frac{b}{c}$$

$$\tan gA = \frac{\text{catetooposto}}{\text{catetoadjacente}} = \frac{a}{b}$$

ou
$$\tan gA = \frac{sen(a)}{\cos(a)}$$

$$\cot gA = \frac{1}{\tan gA} = \frac{b}{a} = \frac{\text{catetoadjacente}}{\text{catetooposto}}$$

$$\sec A = \frac{1}{\cos A}$$

$$\sec A = \frac{1}{\cos A}$$
 e $\csc A = \frac{1}{\sec nA}$.

7.2 Fórmula fundamental da trigonometria

$$sen^2A + \cos^2 A = 1$$

$$1 + tg^2 A = \frac{1}{\cos^2 A}, \quad \cos A \neq o$$

7.3 Ângulos notáveis

Os chamados ângulos notáveis, são aqueles que aparecem com mais frequência, a saber:

Relações Trigonométricas	30°	45°	60°
Seno	0	1/2	$\sqrt{2}/2$
Cosseno	1	$\sqrt{3}/2$	$\sqrt{2}/2$
Tangente	0	$\sqrt{3}/3$. 17

7.4 Fórmulas Trigonométricas

Fórmulas Trigonométricas	Fórmulas de Adição e Subtração
sen(-x) = -sen x	
cos(-x) = cos x	
$\cos^2 x + \sin^2 x = 1$	
1 + tan²x = sec²x	sen (a+b) = sena.cosb+senb.cosa
$1 + \cot^2 x = \csc^2 x$	sen (a-b) = sena.cosb-senb.cosa
sen 2x = 2sen x . cos x	cos (a + b) = cosa.cosb – sena.senb
$\cos 2x = \cos^2 x - \sin^2 x$	cos (a – b) = cosa .cosb + sena . senb
$sen^2(x/2) = (1-cos x) / 2$	
cos(x/2) = (1 + cos x) / 2	
$\sec^2 x = 1 + tg^2 x$	
$\cos^2 x = 1 + \cot^2 x$	

Exercícios resolvidos

1. No triângulo rectângulo da figura abaixo, determine as medidas de x e y indicadas (Use: sen $65^{\circ} = 0.91$; cos $65^{\circ} = 0.42$; tg $65^{\circ} = 2.14$)

Resolução

$$\cos 65^{\circ} = y / 9$$

sen 65° = x /9

$$y = 3.78$$

x = 8,19

2. Considerando o triângulo rectângulo ABC da figura, determine as medidas a e b indicadas. (Sen 60° = 0,866)

Resolução

sen
$$60^{\circ} = 12\sqrt{3}$$
 / a $\cos 60^{\circ} = b / 24$
 $0.866 \cdot a = 20.78$ $\cos 60^{\circ} = b / 24$
 $0.5 * 24 = b$
 $b = 12$

3. Nos triângulos das figuras abaixo, calcule tg Â, tg Ê, tg Ô:

Resolução

a) tg
$$\hat{A} = 48 / 14 = 24 / 7$$

tg $\hat{E} = 14 / 48 = 7 / 24$
b) tg $\hat{O} = 3\sqrt{2} / 3\sqrt{2} = 1$
tg $\hat{E} = 3\sqrt{2} / 3\sqrt{2} = 1$
tg $\hat{E} = 3\sqrt{2} / 3\sqrt{2} = 1$
 $x = 6\sqrt{7}$

INSTITUTO SUPERIOR POLITECNICO DE TETGÂ $= 2/6\sqrt{7} = \sqrt{7}/21$ CIAS tg $\hat{O} = 6\sqrt{7}/2 = 3\sqrt{7}$

4. Sabendo que o triângulo retângulo da figura abaixo é isósceles, quais são os valores de tg e tg Ê?

E A

Resposta

Sendo um triângulo isósceles, então os seus lados são iguais.

Logo,
$$tg \hat{A} = 1 e tg \hat{E} = 1$$

5. Encontre a medida RA sabendo que tg $\hat{A} = 3$.

Resolução

$$3 = 9 / x$$

$$3x = 9$$

$$x = 3$$

$$(RA)^2 = 9^2 + 3^2$$

$$(RA)^2 = 90$$

$$(RA) = 3\sqrt{10}$$

ISPTEC

6. Encontre **x** e **y**:

a)

Resolução

a)
$$\cos 45^{\circ} = x / 20\sqrt{2}$$

$$\sqrt{2}/2 * 20\sqrt{2} = x$$

$$x = 20$$

$$(20\sqrt{2})^2 = 20^2 + y^2$$

$$800 = 400 + y^2$$

$$y^2 = 400$$

$$y = 20$$

b)
$$\cos 30^\circ = 9\sqrt{3} / y$$

$$\frac{9\sqrt{3}}{\sqrt{3}/2} = 18$$

$$y = 18$$

$$18^2 = (9\sqrt{3})^2 + x^2$$

$$324 = 243 + x^2$$

$$x^2 = 81$$

$$x = 9$$

Exercícios propostos

- 1. Um navio partiu de um ponto A, percorreu 70 milhas para sul e atingiu o porto B. Em seguida percorreu 30 milhas para leste e atingiu o ponto C. Finalmente, navegou 110 milhas para o norte e chegou ao porto D. Quantas milhas teria poupado se fosse directamente do porto A para o porto D? (Resposta: 160 milhas)
- 2. Sendo a, b e c as medidas dos comprimentos dos lados de um triângulo, indique, justificando, aqueles que são rectângulos:

a)
$$a = 6$$
; $b = 7 e c = 13$;

(Resposta: Falsa)

b) a = 6; b = 10 e c = 8. O SUPERIOR POLITECNIC (Resposta: Verdadeira) 5 E CIENCIAS

3. Calcule o valor de x em cada um dos triângulos rectângulos:

4. Calcule as áreas das seguintes figuras.

a)

(Resposta: A = 153)

b)

5. Qual é a altura do poste?

(Resposta: 9m)

6. Qual é a distância percorrida pelo berlinde?

(Resposta: 256 cm = 2,56 m)

ISPTEC

CAPÍTULO VIII - GEOMETRIA

A geometria é o ramo das matemáticas que estuda as propriedades e das medidas das figuras no espaço ou no plano. No seu desenvolvimento, a geometria usa noções tais como pontos, rectas, planos e curvas, entre outras.

8.1 Unidades de medida de área e de volume

O cálculo de áreas e volumes das figuras geométricas planas ou sólidas exige dos alunos o conhecimento de unidades de medidas. Quando as unidades de medida são diferentes, devemos efectuar a redução à mesma medida. Os quadros abaixo apresenta um resumo das Unidades de medidas.

A. Unidades de Área

km²	hm²	dam²	m²	dm ²	cm ²	mm ²

A unidade principal (ou fundamental) da medida de área é o **metro quadrado (m²)**

Exemplos:

 $km^2 = 100 \text{ hm}^2$ ou $1km^2 = 10^2 \text{ hm}^2$

 $1m^2 = 0.01 dam^2$ ou $1m^2 = 10^{-2} hm^2$

B. Unidades agrárias

Unidades agrárias							
ha	а	са					
hectar	are	centiare					

Exemplos:

 $1ha = 1 hm^2$ $1a = 1dam^2$ $1ca = 1m^2$

C. Unidades de Volume

A unidade principal (ou fundamental) da medida de área é o metro cúbico (m³)

Exemplos:

 $km^3 = 1000 \text{ hm}^3$ ou $1km^3 = 10^3 \text{ hm}^3$

 $1m^2 = 0.001 dam^3$ ou $1m^2 = 10^{-3} hm^3$

D. Unidades de Capacidade

Unidades de capacidade										
kl	hl	dal	1	dl	cl	ml				

A unida<mark>de principal (ou fundamental) da medida de área é o **litro (I)**</mark>

 $1l = 1000 \, \text{ml}$ $1kl = 1000 \, l$

Obs.: Quando se calcula a área de uma figura geométrica a sua unidade de medida aparece sempre ao quadrado (por exemplo, em metros quadrados).

8.2 Áreas de figuras geométricas planas

A = bh

b)Triângulo

 $A = \frac{bh}{2}$

c)Trapézio B

 $A = \frac{(B+b)h}{2}$

d)Retângulo

A = bh

d)Segmento

a)Circunferência

 $C = 2\pi R$

b)Círculo

 $A = \pi R^2$

c)Setor circular

 $A = \frac{\alpha \pi R^2}{360}$

a R

 $A = A_{setor} - A_t$

8.3 Áreas e volumes de figuras geométricas sólidas

Sendo
$${}^{A}B$$
 a área da base, ${}_{A_{I}}$ a área lateral, ${}^{A}T$ a área total, H a altura e V o volume, temos: Prisma regular

$$A_L = 2\pi RH$$

$$A_T = A_L + 2A_B$$

$$V = A_B . H$$

Exercícios propostos

1. Uma mesa rectangular mede 1,2 m x 0,8 m. Se numa das quinas desta mesa eu fixar um barbante com um prego, qual deve ser o tamanho aproximado do barbante de maneira que eu consiga percorrer um sector circular com um terço da área da mesa?

(Resposta: o comprimento do barbante é de aproximadamente 0,6383 m)

2. Uma pizza circular tem área de 706,86 cm². Qual é a área interna da menor caixa quadrada para transportá-la?

(Resposta: A área interna da menor caixa quadrada para transportar a pizza é de 900 cm²)

3. Se dobrarmos as medidas da base e da altura de um rectângulo, em quanto estaremos aumentando a sua área?

(Resposta: Dobrando as medidas das laterais de um rectângulo quadriplica-se a sua área)

- 4. Um prato tem 24 cm de diâmetro e um outro tem 30 cm. Em termos de área, o prato menor é quantos por cento do maior? (Resposta: 64%)
- 5. Observe a figura. Determina a área da parte colorida da figura.

(Resposta: 14,25 cm²)

6. Observe as dimensões do novo aquário do Abel.

O Abel decidiu colocar uma camada de areia de 6 cm de espessura no fundo do aquário e pediu ao João para ir ao mercado comprá-la. Que quantidade de areia, em cm³, deverá o João comprar?

(Resposta: 9000 cm³)

7. Introduziu-se na proveta um paralelepípedo, que ficou completamente submerso.

As dimensões do paralelepípedo são:

- Comprimento: 8 cm, largura; 2 cm, altura: 3 cm
 Qual é a leitura do volume marcado na proveta, depois de colocado na proveta o paralelepípedo? (Resposta: 108 cm³)
- **8.** Na casa da Inês, gastam-se por mês 50 garrafas de 1,5 litros de água. Para ficar mais económico, os seus pais resolveram passar a comprar a água em garrafões de 5 litros. Quantos garrafões são necessários comprar?

(Resposta: São necessários comprar 15 garrafões de 5 litros)

O FOLDOTERIOR FOR LECTURES OF TECHOESONS EXTEREDS

http://www.educ.fc.ul.pt/icm/icm99/icm38/areas.htm/calculo

8.4 O Plano Cartesiano

Para representar graficamente um par ordenado de números reais, fixamos um referencial cartesiano ortogonal no plano. A recta x é o eixo das abscissas e a reta y é o eixo das ordenadas.

Dá-se o nome de eixo x ou eixo das abscissas à reta horizontal. À vertical denomina-se eixo y ou eixo das ordenadas.

A orientação positiva das retas é representada por uma seta como se podemos ver na figura mais abaixo.

Fig. 1 - Referencial ou sistema de referência

Fig. 2 - Quadrantes matemáticos

8.5 Representação de coordenadas no plano

Para se determinar as coordenadas de um ponto P qualquer no plano, traçam-se linhas perpendiculares aos eixos X e y.

8.6 Distância entre dois pontos de um plano

Por meio das coordenadas dos pontos A e B pode-se determinar a distância d(A,B) entre dois pontos representados no plano.

Na figura abaixo, os pontos A, B e C formam um triângulo rectângulo. Assim sendo, pode-se aplicar o teorema de Pitágoras.

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
INSTITUTO SUPERIOR POLITÉCNI

EXERCÍCIOS RESOLVIDOS

1. Determine a distancia entre os pontos A(5.11) e B (2,7)

Resolução.

A (5,11):
$$X_1=5 e y_1=11 e B (2,7)$$
: $x_2=2 e y_2=7$

$$d(A, B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \Rightarrow$$

$$d(A,B) = \sqrt{(2-5)^2 + (7-11)^2} \Rightarrow d(A,B) = \sqrt{(-3)^2 + (-4)^2} \Rightarrow d(A,B) = \sqrt{(9^2 + 16)^2}$$

$$d(A,B) = \sqrt{25} \implies d(A,B) = 5$$

2. Calcule o perímetro do triângulo cujos vértices são A(-1,-3), B(6,1) e C(2,-5)

Resolução:

Para se conhecer a medida de cada lado basta calcular as distancias entre os pontos

$$d(A, B) = \sqrt{(6 - (-1))^2 + (1 - (-3))^2} \Rightarrow \sqrt{65}$$

$$d(A, C) = \sqrt{(2 - (-1))^2 + (5 - (-3))^2} \Rightarrow \sqrt{13}$$

$$d(B,C) = \sqrt{(2-6)^2 + (-5-1)^2} \Rightarrow \sqrt{52}$$

$$P = d(A, B) + d(A, C) + d(B, C)$$

$$P = \sqrt{65} + \sqrt{13} + \sqrt{52} = \sqrt{62} + \sqrt{13} + 2\sqrt{13}$$

$$P = \sqrt{65} + 3\sqrt{13}$$
 o perímetro vale $\sqrt{65} + 3\sqrt{13}$

Exercícios propostos

- 1. Calcule as distâncias entre os pontos abaixo:
 - a) A (4,-1) e B (2,1)
 - b) B (-3,2) e D (4,-6)
 - c) E (-1,-3) e F (-2,-5 UPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS
- 2. Calcule a distância do ponto P (8,-6) à origem do sistema.

- 3. A distância entre os pontos A (x, 3) e B(-1, 7) é 5.então:
 - a) x=3 ou x=-5
 - b) x=2 ou x=-4
 - c) x=1 ou x=-3
 - d) x=0 ou x=-2
 - e) x=-6 ou x=-1
- 4. Se o ponto P(m, O) é equidistante dos pontos P1(2, 4) e P2(4,6), então m é igual a:
 - a) 6 b) 7 c) 8 d) 9
- 5. Quais as coordenadas do ponto P do plano cartesiano que pertencem à bissetriz do segundo quadrante e equidistante dos pontos A(0,3) e B(-1,0)?
 - a) (2, 2) b) (0, 2) c) (2, 0) d) (-2, 2) e) (2, -2)
- 6. Dados os pontos A(-1, -1), B(5, -7) e C(x, 2), determine x sabendo que o ponto c é equidistante dos pontos A e B.
- 7. O perímetro do triangulo ABC cujos vértices são A(0,0), B(12, 5) e C(0, -4) é:
 - a) 23
- b) 33
- c) 22
- **d**) 11
- e) 32

8.7 Equação Geral da Recta no Plano

As equações na forma ax + by + c = 0 são expressões representativas de rectas no plano. Os coeficientes a, b e c são números reais constantes, considerando a e b valores diferentes de zero. A essa representação matemática damos o nome de **equação geral da recta**.

Podemos escreve<mark>r a equação geral da recta utilizando duas formas:</mark>

 1° – através da determinação do coeficiente angular da recta aplicado na forma geral dada por: $y - y_1 = m(x - x_1)$.

2º – através de uma matriz quadrada formada pelos pontos pertencentes à recta dada.

1ª forma

Vamos determinar a equação da recta **s** que passa pelos pontos A(-1, 6) e B(2, -3).

Coeficiente angular (ou inclinação) da recta Equação geral da recta no ponto P(x,y)

$$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$$

$$m = \frac{-3 - 6}{2 - (-1)} = \frac{-9}{3} = -3 \implies m = -3$$

$$y - y_1 = m (x - x_1).$$

$$y - 6 = -3 (x + 1)$$

$$y - 6 = -3x - 3$$

$$y - 6 + 3x + 3 = 0$$

$$y + 3x - 3 = 0$$

Então, a equação da recta é 3x + y - 3 = 0

2ª forma

Considerando o ponto genérico P(x, y), pertencente à recta s que passa pelos pontos A(-1, 6) e B(2, -3). Vamos construir a matriz formada pelas coordenadas dos pontos dados:

$$s = \begin{vmatrix} x & y & 1 \\ -1 & 6 & 1 \\ 2 & -3 & 1 \end{vmatrix}$$

$$Sarrus$$

$$s = \begin{vmatrix} x & y & 1 \\ -1 & 6 & 1 \\ 2 & -3 & 1 \end{vmatrix} \begin{vmatrix} x & y \\ -1 & 6 \\ 2 & -3 \end{vmatrix}$$

$$tior politecnico de tecnologias e ciencias$$

Diagonal principal

$$x * (-6) * 1 = 6x$$

$$y * 1 * 2 = 2y$$

$$1 * (-1) * (-3) = 3$$

Diagonal secundária

$$x * 1 * (-3) = -3x$$

$$y * (-1) * 1 = -y$$

s:
$$6x + 2y + 3 - (12 - 3x - y) = 0$$

s:
$$6x + 2y + 3 - 12 + 3x + y = 0$$

s: 9x + 3y - 9 = 0 (dividindo a equação por 3)

A equação de recta desejada é s: 3x + y - 3 = 0

Exercícios propostos

- 1. Encontre a inclinação do segmento com extremos nos pontos
 - a) $A(1, 2) \in B(3, 8)$;
- b) $A(0, -3) \in B(4, 1)$;
- 2. O valor de b para que o coeficiente angular da recta que passa pelos pontos A(4,2) e B(2b + 1,4b) seja -2 é:
 - a) -1
- b) 0
- c) 1
- d) 2
- c) n.d.a
- 2. A equação geral da recta que passa pelos pontos (2,3) e (1,5) é:

a)
$$-2x - y + 7 = 0$$

b)
$$-2x + y - 7 = 0$$

c)
$$2x - y - 7 = 0$$

d)
$$2x + y - 7 = 0$$

- e) n.d.a
- 3. Dada a equação da recta r: x + y 1 = 0 e as afirmações:

I – o ponto (1,1) pertence a r II – a reta passa na origem do sistema cartesiano

III – o coeficiente angular de r é -1 IV – r intercepta a reta s: x + y - 2 = 0 no ponto P(1,2)

a) apenas I é verdadeira

b) apenas III é verdadeira

c) nenhuma é falsa

d) apenas I é falsa

e) n.d.a

- 4. Determine a equação reduzida da recta r, representada pelo gráfico abaixo:
 - a) y = x + 3
- b) y = -x + 3 c) y = 2x + 6
- d) y = x 3
- e) y = -3x + 2

5. Determine a equação geral da recta representada pelo gráfico abaixo

a)
$$x - 2y - 8 = 0$$
 b) $2x + y - 2 = 0$ c) $4x - 2y - 4 = 0$ d) $x - y + 2 = 0$ e) $x - y + 4 = 0$

6. Determine a equação da recta que passa pelos pontos A(-3, 2) e B(5, -4)

a)
$$4x + 3y + 1 = 0$$
 b) $3x + 4y + 1 = 0$

a)
$$4x + 3y + 1 = 0$$
 b) $3x + 4y + 1 = 0$ c) $x + y + 3 = 0$ d) $x + y - 4 = 0$ e) $x - y - 1 = 0$

8.8 Estudo da Circunferência

Circunferência é o lugar geométrico de todos os pontos do pla<mark>n</mark>o que se encontarm à mesma distância de um ponto fixo(centro).

8.8.1 Equação da reduzida circunferencia

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

8.8.2 Equação geral da circunferência

Desenvolvendo a equação reduzida da recta teremos

$$(x-x_0)^2 + (y-y_0)^2 = r^2 \rightarrow x^2 - 2xx_0 + x_0^2 + y^2 - 2yy_0 + y_0^2 = r^2$$

$$x^2 + y^2 - \frac{2xx_0 - 2yy_0 + x_0^2 + y_0^2 - r^2}{2xx_0 - 2yy_0 + x_0^2 + y_0^2 - r^2} = 0$$
 equação geral da circunfênrencia

Exercícios resolvidos

1. Determine a equação da circunferência de centro C e raio r, nos seguintes casos:

(a)
$$C = (0,0)$$
 e $r = 2$

(a)
$$C = (0,0)$$
 e $r = 2$ (b) $C = (-1,3)$ e $r = 3$

(c)
$$C = \left(\frac{1}{2}, \frac{5}{2}\right)$$
 e $r = 4$

Resolução.

Em cada caso serão substituídos os valores na equação $(x-c_1)^2+(y-c_2)^2=r^2$

a)
$$\begin{cases} c_1 = 0 \\ c_2 = 0 \Rightarrow (x - 0)^2 + (y - 0)^2 = 2^2 \Rightarrow x^2 + y^2 - 4 = 0 \\ r = 2 \end{cases}$$

b)
$$\begin{cases} c_1 = -1 \\ c_2 = 3 \implies (x - (-1))^2 + (y - 3)^2 = 3^2 \implies x^2 + 2x + 1 + y^2 - 6y + 9 - 9 = 0 \implies x^2 + y^2 + 2x - 6y + 1 = 0 \\ r = 3 \end{cases}$$

c)
$$\begin{cases} c_1 = \frac{1}{2} \\ c_2 = \frac{5}{2} \Rightarrow \left(x - \frac{1}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = 4^2 \Rightarrow x^2 - x + \frac{1}{4} + y^2 - 5y + \frac{25}{4} - 16 = 0 \\ r = 4 \\ \Rightarrow 4x^2 + y^2 - 4x + y^2 - 20y - 38 = 0 \end{cases}$$

2. Determine o centro e o raio de cada circunferência dada.

a)
$$x^2 + (y-3)^2 = 16$$
 5 Lipe Rind) $(x+2)^2 + y^2 + 12 = 0$ The Charles $3x^2 + 3y^2 - 6x + 12y + 14 = 0$

Resolução.

Podemos completar quadrados ou utilizar as fórmulas de identificação de centro e raio.

a)
$$x^2 + (y-3)^2 = 16 \Rightarrow (x-0)^2 + (y-3)^2 = 4^2 \Rightarrow \begin{cases} C = (0,3) \\ r = 4 \end{cases}$$

b)
$$(x+2)^2 + y^2 - 12 = 0 \Rightarrow (x - (-2))^2 + (y - 0)^2 = (\sqrt{12})^2 \Rightarrow \begin{cases} C = (-2,0) \\ r = \sqrt{12} = 2\sqrt{3} \end{cases}$$

$$3x^2 + 3y^2 - 6x + 12y + 14 = 0 \rightarrow (\div 3) \Rightarrow x^2 + y^2 - 2x + 4y + \frac{14}{3} = 0 \Rightarrow$$

c)
$$\Rightarrow \begin{cases} c_1 = \frac{-2}{-2} = 1 \\ c_2 = \frac{4}{-2} = -2 \\ r = \sqrt{(1)^2 + (-2)^2 - \frac{14}{3}} = \sqrt{1 + 4 - \frac{14}{3}} = \sqrt{5 - \frac{14}{3}} = \sqrt{\frac{1}{3}} = \frac{\sqrt{3}}{3} \end{cases}$$

$$\Rightarrow \begin{cases} C = (1, -2) \\ r = \frac{\sqrt{3}}{3} \end{cases}$$

3. Verifique se as equações dadas representam circunferências. Em caso afirmativo determine o centro e o raio.

a)
$$9x^2 + 9y^2 + 6x - 36y + 64 = 0$$
 b) $x^2 + y^2 + 7x - y + 1 = 0$ c) $4x^2 + 4y^2 + x - 6y + 5 = 0$

b)
$$x^2 + y^2 + 7x - y + 1 = 0$$

c)
$$4x^2 + 4y^2 + x - 6y + 5 = 0$$

Resolução.

Em cada caso, verificar as condições de existência e, se positivo, identificar os termos.

$$9x^{2} + 9y^{2} + 6x - 36y + 64 = 0 \rightarrow (\div 9) \Rightarrow x^{2} + y^{2} + \frac{6}{9}x - 4y + \frac{64}{9} = 0$$

$$\begin{cases} Coef(x^2) = Coef(y^2) \neq 0 \\ Coef(xy) = 0 \\ c_1 = \frac{6/9}{-2} = -\frac{1}{3} \\ c_2 = \frac{-4}{-2} = 2 \end{cases} \Rightarrow r = \sqrt{\left(-\frac{1}{3}\right)^2 + \left(2\right)^2 - \frac{64}{9}} = \sqrt{\frac{1+36-64}{9}} = \sqrt{\frac{-27}{9}} \rightarrow irregular$$

INSTITUTO SUPERIOR POLITÉCNICO DE TECNOLOGIAS E CIÊNCIAS http://www.alunosonline.com.br/matematica/equacao-geral-da-reta.html

CAPÍTULO IX - NOÇÕES BÁSICAS DE DERIVADAS

9.1 Propriedades das Derivadas

a)
$$y = k$$

$$y' = 0$$

b)
$$y = x$$

$$y' = 1$$

c)
$$y = u + v$$
 $y' = u' + v'$

$$v = u' + v$$

d)
$$y = u.v$$

$$y' = u'v + uv'$$

e)
$$y = \frac{u}{u}$$

e)
$$y = \frac{u}{v}$$
 $y' = \frac{u'.v - u..v'}{v^2}$

9.2 Regras de Derivação

Seja u = f(x) e v = g(x) e $n \in R$

a)
$$y = k.u$$
 $y' = k.u'$

$$v' = k.u'$$

b)
$$v = u^n$$

b)
$$y = u^n$$
 $y' = n. u^{n-1}u'$

$$c) y = \ln u \qquad y' = \frac{u'}{u}$$

$$y' = \frac{u'}{u}$$

d)
$$v = a^i$$

d)
$$y = a^u$$
 $y' = a^u . ln a.u'$

e)
$$y = sen u$$

$$y' = u' \cos u$$

f)
$$y = \cos u$$

$$y' = -u' senu$$

g)
$$y = arcsen u$$

$$y' = \frac{u'}{\sqrt{1 - u^2}}$$

h)
$$y = sec u$$

$$y' = u' sec u.tgu$$

i)
$$y = cosseu$$

$$y' = -u' \cos \sec u . \cot gu$$

$$y = arccos u$$

$$y' = -\frac{u'}{\sqrt{1 - u'}}$$

k)
$$y = arc \cot g u$$

$$y' = -\frac{u'}{1 + u^2}$$

$$1) \quad y = u^{v}$$

$$y' = vu^{v-1}.u' + u^{v}.ln u.v'$$

Exercícios resolvidos

Calcule as derivadas abaixo aplicando as técnicas de derivação:

a)
$$f(x) = x^2 + x$$
 para $x = 1$

Derivada =
$$f'(x)$$

técnica: $f(x) = x^n \rightarrow f'(x) = n \cdot x^{n-1}$
 $f(x) = x^2 + x \text{ para } x = 1$
 $f'(x) = 2 \cdot x^{2-1} + 1 \cdot x^{1-1}$
 $f'(x) = 2 \cdot x^1 + 1 \cdot x^0 \rightarrow f'(x) = 2x + 1 \cdot 1$
 $\boxed{f'(x) = 2x + 1} \rightarrow f'(1) = 2 \cdot 1 + 1$
 $f'(1) = 2 + 1 \rightarrow \boxed{f'(1) = 3}$

b) f(x) = 5x - 3 para x = -3

Derivada =
$$f'(x)$$

a derivada de uma constante é 0, exemplo: $f(x) = 2 \rightarrow f'(x) = 0$
 $f(x) = 5x - 3 \text{ para } x = -3$
 $f'(x) = 1 \cdot 5x^{1-1} - 0 \rightarrow f'(x) = 5x^0 \rightarrow f'(x) = 5 \cdot 1 \rightarrow \boxed{f'(x) = 5}$
 $\boxed{f'(-3) = 5}$

c)
$$f(x) = \sqrt{x}$$
, para $x = 4$

Derivada =
$$f'(x)$$

 $f(x) = \sqrt{x} \text{ para } x = 4$
técnica: $\sqrt{x} = x^{\frac{1}{2}} \to f(x) = x^{\frac{1}{2}}$
 $f'(x) = \frac{1}{2} \cdot x^{\frac{1}{2}-1}$
 $f'(x) = \frac{1}{2} \cdot x^{-\frac{1}{2}} \to f'(x) = \frac{1}{2} \cdot \frac{1}{x^{\frac{1}{2}}}$
 $f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{x}} \to f'(x) = \frac{1}{2\sqrt{x}}$
 $f'(4) = \frac{1}{2\sqrt{4}} \to f'(4) = \frac{1}{2 \cdot 2}$
 $f'(4) = \frac{1}{4}$

TEC

d)
$$f(x) = \frac{1}{x}$$
, para $x = 1$

Derivada =
$$f'(x)$$

 $f(x) = \frac{1}{x} \text{ para } x = 1$
técnica: $\frac{1}{x} = x^{-1} \to f(x) = x^{-1}$
 $f'(x) = -1 \cdot x^{-1-1} \to f'(x) = -1x^{-2}$
 $f'(x) = \frac{-1}{x^2}$
 $f'(1) = \frac{-1}{1^2} \to f'(1) = \frac{-1}{1}$
 $f'(1) = -1$

e)
$$f(x) = \frac{x}{x+1}$$

Derivada do quociente de duas funções
$$f(x) = \frac{g(x)}{h(x)} \to f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{[h(x)]^2}$$

$$f(x) = \frac{x}{x+1} \to \begin{cases} g(x) = x \\ h(x) = x+1 \end{cases}$$

$$f'(x) = \frac{1 \cdot x^{1-1} \cdot (x+1) - x \cdot (1 \cdot x^{1-1} + 0)}{(x+1)^2}$$

$$f'(x) = \frac{1 \cdot x^0 \cdot (x+1) - x \cdot (1 \cdot x^0 + 0)}{(x+1)^2}$$

$$f'(x) = \frac{1 \cdot 1 \cdot (x+1) - x \cdot (1 \cdot 1 + 0)}{(x+1)^2}$$

$$f'(x) = \frac{1 \cdot (x+1) - x \cdot (1 + 0)}{(x+1)^2} \to f'(x) = \frac{(x+1) - x \cdot 1}{(x+1)^2}$$

$$f'(x) = \frac{(x+1) - x}{(x+1)^2} \to f'(x) = \frac{\cancel{x} + 1 - \cancel{x}}{(x+1)^2} \to f'(x) = \frac{1}{(x+1)^2}$$

f)
$$f(x) = \sqrt{3x + 4}$$

Regra da cadeia deriva-se primeiro o radical e multiplica-se pela derivada da função dentro do radical $f(x) = \sqrt{3x + 4}$ $\sqrt{3x + 4} = (3x + 4)^{\frac{1}{2}} \rightarrow f(x) = (3x + 4)^{\frac{1}{2}}$ $f'(x) = \frac{1}{2} \cdot (3x + 4)^{\frac{1}{2} - 1} \cdot (1 \cdot 3x^{1 - 1} + 0)$ $f'(x) = \frac{1}{2} (3x + 4)^{-\frac{1}{2}} \cdot (1 \cdot 3x^{0} + 0)$ $f'(x) = \frac{1}{2} \cdot \frac{1}{(3x + 4)^{\frac{1}{2}}} \cdot (1 \cdot 3 \cdot 1 + 0)$

$$f'(x) = \frac{1}{2} \cdot \frac{1}{\sqrt{3x+4}} \cdot 3 \rightarrow \boxed{f'(x) = \frac{3}{2\sqrt{3x+4}}}$$

9.3 Máximos e Mínimos

Os Máximos e Mínimos de uma função são obtidos calculando-se as suas derivadas.

Exemplos

Calcule o Máximo e o Mínimo de cada função:

a)
$$f(x) = x^2$$

Máximo e Mínimo da Função

$$f(x) = x^2$$

o ponto de máximo ou mínimo é dado por

$$f'(x) = 0$$

$$f'(x) = 2 \cdot x^{2-1} \rightarrow f'(x) = 2x$$

$$2x = 0 \rightarrow x = \frac{0}{2} \rightarrow \boxed{x = 0}$$

para saber se é ponto de máximo ou de mínimo, tem-se:

$$f''(x) > 0$$
 ponto de mínimo

$$f''(x) < 0$$
 ponto de máximo

$$f''(x)$$
 é a derivada de $f'(x)$

$$f''(x) = 1 \cdot 2x^{1-1} \rightarrow f''(x) = 2x^0 \rightarrow f''(x) = 2 \cdot 1$$

f''(x) = 2 > 0, portanto, ponto de mínimo

O mínimo da função é obtido pelo valor da função no ponto de mínimo, tem-se:

$$f(x) = x^2 \rightarrow f(0) = 0^2 \rightarrow f(0) = 0$$

o mínimo da função é 0

EC

NOLOGIAS E CIÊNCIAS

b)
$$f(x) = x^3 - 3x^2 - 24x + 32$$

Máximo e Mínimo da Função
$$f(x) = x^3 - 3x^2 - 24x + 32$$
 o ponto de máximo ou mínimo é dado por:
$$f'(x) = 0$$

$$f'(x) = 3 \cdot x^{3-1} - 2 \cdot 3x^{2-1} - 1 \cdot 24x^{1-1} + 0$$

$$f'(x) = 3x^2 - 6x - 24$$

$$\log o:$$

$$3x^2 - 6x - 24 = 0$$
 equação do 2° grau

$$ax^{2} + bx + c = 0$$

$$a = 3 \quad b = -6 \quad c = -24$$

$$\Delta = b^{2} - 4ac \rightarrow \Delta = (-6)^{2} - 4 \cdot 3 \cdot (-24)$$

$$\Delta = 36 + 288 \rightarrow \Delta = 324 \rightarrow \sqrt{\Delta} = 18$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} \rightarrow x = \frac{-(-6) \pm 18}{2 \cdot 3} \rightarrow x = \frac{6 \pm 18}{6}$$

$$x = \begin{cases} \frac{6 + 18}{6} = \frac{24}{6} = 4\\ \frac{6 - 18}{6} = \frac{-12}{6} = -2 \end{cases}$$
os pontos de máximo e mínimo são -2 e 4

para saber se é ponto de mínimo ou de máximo
$$f''(x)$$
 no ponto < 0 ponto de máximo $f''(x)$ no ponto > 0 ponto de mínimo $f''(x)$ é a derivada de $f'(x)$ $f''(x) = 2 \cdot 3x^{2-1} - 1 \cdot 6x^{1-1} - 0$ $f''(x) = 6x^1 - 6x^0 \rightarrow f''(x) = 6x - 6$ $f''(-2) = 6 \cdot (-2) - 6 \rightarrow f''(-2) = -12 - 6$ $f''(-2) = -18 < 0$ ponto de máximo $f''(4) = 6 \cdot 4 - 6 \rightarrow f''(4) = 24 - 6$ $f''(4) = 18 > 0$ ponto de mínimo

o máximo da função é o valor da mesma no ponto de máximo
$$f(x) = x^3 - 3x^2 - 24x + 32$$

$$f(-2) = (-2)^3 - 3(-2)^2 - 24(-2) + 32$$

$$f(-2) = -8 - 12 + 48 + 32$$

$$\boxed{f(-2) = 60} \text{ máximo da função}$$

$$f(4) = (4)^3 - 3(4)^2 - 24(4) + 32$$

$$f(4) = 64 - 48 - 96 + 32 \rightarrow \boxed{f(4) = -48} \text{ mínimo da função}$$

DLOGIAS E CIÊNCIAS

http://www.da-educa.com/2011/02/matematica-derivadas-de-funcoes.html