42)
$$H \leq G$$
, $C(H) = \frac{2}{2}x \leq G(xh = hx \forall h \in H)^2$
Prove $C(H) \leq G$

xeGVxeC(H) by $def C(H) \Rightarrow C(H)eG$ WTS $a, b \in C(H) \Rightarrow ab \in C(H), b^{-1}e C(H)$ 1) $abx = axb = xab \forall xeC(H) \in def C(H)$ $V = ab \in C(H) \in C(H)$

z)
$$b \in C(H) \Rightarrow bx = xb \forall x \in C(H)$$

 $(b'x)'=x'b=bx'=(xb')'=xb'$
 $b' \in C(H) \leftarrow$

52) A = [0 - 1] B = [0 - 1]

 $A, B \in SL(z, R)$

Find IAI, IBI, IABI

58) U(15) Find by subgroups

U(15) = Numbers < and coprime to 15 $\{1^{-1}, 2, 4, 7, 8, 11, 13, 14, 3 \Rightarrow |u(15)| = 8\}$

$$U(15)$$

$$<1>= £13$$

$$<2>= £1, 2, 4, 83 = <8>$$

$$<4>= £1, 43$$

$$<7>= £1, 7, 4, 133 = <13>$$

$$<11>= £1, 113$$

$$<14>= £1, 143$$

$$<2, 8, (0, 41, 62, 41)$$

4.2,8,10,41,62,64,72

$$\langle a \rangle = \{a, a^2, a^3, a^4, a^5\}$$

 $\langle b \rangle = \{b, b^2, ..., b^7\}$
 $\langle c \rangle = \{c, ..., c^{19}\}$

By cor, a generates <a> => ka> | Lk.

$$-i |\langle a \rangle| = 6 \Rightarrow a^5, a$$

 $|\langle b \rangle| = 8 \Rightarrow b^7, b^5, b^3, b$
 $|\langle c \rangle| = 20 \Rightarrow c, c^3, c^7, c^9, c'', c'^3, c'^7, c''$

8) aEG, |a|=15 Find orders of a) $a_1^3 a_1^4 a_2^4 a_3^4 a_4^6 a_5^6 a$

$$\langle a \rangle = \{a, a^2, ..., a^4 \}$$

 $|a^3\rangle = |\langle a^3 \rangle| = 5$
 $|a^6\rangle = |\langle a^6\rangle| = |\langle a^{gcd(6,15)} \rangle| = |\langle a^3 \rangle| = 5$

6 12
$$\frac{18}{3}$$
 $\frac{24}{30}$ $\frac{36}{6}$
 $|a^{9}| = |\langle a^{a} \rangle| = |\langle a^{d} \rangle| = |\langle a^{d} \rangle| = |\langle a^{3} \rangle| = 5$
 $d = \gcd(9, 15)$
 $|a^{12}| = \cdots = 5$

b) $|a^{5}| = |\langle a^{5} \rangle| = 3$
 $|a^{10}| = |\langle a^{9} \rangle| = |\langle a^{5} \rangle| = 3$

c) $|a^{2}| = |\langle a^{2} \rangle| \quad \gcd(2, 15) = 1 \Rightarrow |\langle a^{2} \rangle| = 15$
 $|a^{4}| = 15$
 $|a^{4}| = 15$
 $|a^{14}| = 15$

10) Z_{24} | istall quevators for sgp of ord 8

Let $G = \langle a \rangle$, $|a| = 24$

By FTCG, the subgroup $\langle a^{12} \rangle$ is the unique sgp of $\langle a \rangle$ of order $\langle a \rangle$ where $\langle a \rangle$ is possibly sorrof in $\langle a \rangle$

-'. Sgp of order $8 = \langle a^3 \rangle$. II3 and $213 \Rightarrow$ generated by a, a^2 41) $a, b \in G$ ab = ba |a| = m |b| = nIf $\langle a \rangle \cap \langle b \rangle = \underbrace{2e3}$, prove G contains g st |g| = km/m, nShow this need not be true if $ab \neq ba$

Consider $ab \in G$. Since ab = ba, $|ab| = a^*b^*$, $|k \in \mathbb{Z}|$ |et | e | cm(a,b) | and |ab| = r $|(ab)| = a^*b^* = e \Rightarrow a^* = b^* \Rightarrow a^* = e$ $|a^*e(a,b)| = e^*e^*$ $|a^*e(a,b)| = e^*e^*$ $|a^*e(a,b)| = e^*e^*$ $|a^*e(a,b)| = e^*$ $|a^*e(a,b)| = e^*$

<S>=G
62 S=<S> and if ∃H ≤ G st S≤H,
64 then (S>≤H
72