

UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

Parte 2 - Introdução ao Método de Elementos Finitos Notas de Aula

Prof.: José da Rocha Miranda Pontes

Mestrandos: Daniel Lessa Coelho e Luís Henrique Carnevale

Modelo

O modelo matemático usado numa primeira abordagem introdutória método de elementos finitos é o de um escoamento entre placas paralelas como na figura abaixo.

Esse é um tipo de escoamento laminar, completamente desenvolvido com regime permanente em que o movimento do fluido é mantido devido ao gradiente de pressão dP/dx, imposto. As equações da continuidade o de Navier-Stokes para um problema bidimensional são:

$$\frac{dv_x}{dx} + \frac{dv_y}{dy} = 0 ag{1}$$

$$v_x \frac{dv_x}{dx} + v_y \frac{dv_x}{dy} = \frac{-1}{\rho} \frac{dP}{dx} + v \left(\frac{d^2 v_x}{dx^2} + \frac{d^2 v_x}{dy^2} \right)$$
 (2)

$$v_x \frac{dv_y}{dx} + v_y \frac{dv_y}{dy} = \frac{-1}{\rho} \frac{dP}{dy} + v \left(\frac{d^2v_y}{dx^2} + \frac{d^2v_y}{dy^2} \right)$$
(3)

Por ser um escoamento completamente desenvolvido, a equação da continuidade se torna $\frac{dv_y}{dy} = 0$, integrando em relação a y a solução de v_y tem que ser constante e devido a condição de não escorregamento, conclui-se que $v_y = 0$ em todo escoamento. Reescrevendo as equações de Navier-Stokes sem as derivadas sem as derivadas em relação a x e com a solução de v_y :

$$v\frac{d^2v_x}{dv^2} = \frac{-1}{\rho}\frac{dP}{dx} \tag{4}$$

$$\frac{dP}{dy} = 0 \tag{5}$$

Sabendo que P = P(x, y), integrando a da segunda equação deduz-se que P = f(x). Esse resultado é importante pois mostra que a pressão nesse problema é uma função somente de x. Como o escoamento é completamente desenvolvido v_x não pode ser uma função de x, então a equação (4) é da forma F(y) = G(x) que so admite uma solução se o gradiente de pressão for constante (chamado de g daqui pra frente). Logo a equação que modela esse escoamento é:

$$\frac{d^2v_x}{dy^2} = g \tag{6}$$

Essa EDO pode ser resolvida integrando duas vezes em relação a y e sua solução é:

$$v_x = \frac{g}{2}y^2 + C_1y + C_2 \tag{7}$$

Aplicando as condições de contorno de não escorregamento ($v_x(0) = 0$, $v_x(L) = 0$) chega-se à solução final:

$$v_x = \frac{g}{2}y(y - L) \tag{8}$$

Forma Fraca

Definindo o espaço de funções de Sobolev como:

$$H^{1}(y) = \left\{ u \in L^{2}(y), \ \frac{du}{dx_{i}} \in L^{2}(y), i = 1, 2, \cdots, n \right\}$$
 (9)

onde $L^2(y)$ é o espaço de funções quadrado integráveis:

$$L^{2}(y) = \left\{ u : y \to \mathbb{R}, \int_{0}^{L} u^{2} dy < \infty \right\}$$
 (10)

Defini-se o espaço das funções de ponderação w sendo:

$$\mathbb{W}(y) = \left\{ w | w \in H^1(y), w = 0 \text{ em } \Gamma \right\}.$$

onde Γ são os pontos do contorno.

Fazendo a ponderação da equação 6 no dominio [0, L], tem-se:

$$\int_{0}^{L} w \frac{d^{2} v_{x}}{dy^{2}} dy = \int_{0}^{L} w g dy \tag{11}$$

Fazendo intetgração por partes no lado esquerdo:

$$w(L)\frac{dv_x}{dy}\Big|_L - w(0)\frac{dv_x}{dy}\Big|_0 - \int_0^L \frac{dw}{dy}\frac{dv_x}{dy}dy = \int_0^L wgdy \tag{12}$$

Pela definição do espaço \mathbb{W} sabemos que w(0) = w(L) = 0, chegando-se na forma fraca:

$$\int_0^L \frac{dw}{dy} \frac{dv_x}{dy} dy = \int_0^L wg dy \tag{13}$$

Aproximação

Agora utilizamos o método de Galerkin para aproximar as funções w e v_x como;

$$w \approx \sum_{j}^{n} w_{j} N_{j} \tag{14}$$

$$v_x \approx \sum_{i}^{n} u_i N_i \tag{15}$$

onde N são as funções de base, que dependem do tipo de elemento utilizado na discretização do domínio e n é o número de pontos.

Substituindo essas aproximações na Eq. 13, temos:

$$\int_{0}^{L} \frac{d}{dy} \left(\sum_{j=1}^{n} w_{j} N_{j} \right) \frac{d}{dy} \left(\sum_{i=1}^{n} u_{i} N_{i} \right) dy - \int_{0}^{L} \sum_{j=1}^{n} w_{j} N_{j} \sum_{i=1}^{n} g_{i} N_{i} dy = 0$$
 (16)

Como a derivada é um operador linear (soma das derivadas é igual a derivada da soma)e como u_i , w_j e g_i são coeficientes constantes, podemos desenvolver a equação como:

$$\int_0^L \sum_{i}^n \left(w_j \frac{dN_j}{dy} \right) \sum_{i}^n \left(u_i \frac{dN_i}{dy} \right) dy - \int_0^L \sum_{i}^n w_j N_j \sum_{i}^n g_i N_i dy = 0$$
 (17)

A integral também é uma operação linear, então podemos passar os somatórios e coeficientes para fora da integração, e lembrando que $\sum_j a_j \cdot \sum_i b_i = \sum_j \sum_i a_j b_i$ (propriedade distributiva), segue-se:

$$\sum_{j}^{n} w_{j} \left[\sum_{i}^{n} \left[u_{i} \int_{0}^{L} \frac{dN_{j}}{dy} \frac{dN_{i}}{dy} dy - g_{i} \int_{0}^{L} N_{j} N_{i} dy \right] \right] = 0$$
 (18)

Agora, pra continuarmos, é necessário lembrar que quando se faz a ponderação para encontrar a forma fraca da equação, queremos que essa ponderação seja válida para qualquer função de peso. Analisando a Eq. 18 vemos que ou w_j é igual a zero ou o somatorio interno é igual a zero. Mas se $w_j = 0$ a unica função peso que satisfaz a ponderação é w = 0 então assumimos que:

$$\sum_{i}^{n} \left[u_i \int_0^L \frac{dN_j}{dy} \frac{dN_i}{dy} dy - g_i \int_0^L N_j N_i dy \right] = 0$$
 (19)

Forma Matricial

A equação encontrada pela aproximação de Galerkin representa um sistema de equações lineares $n \times n$ onde temos n incognitas $u_i = (u_1, u_2, ..., u_n)$. Da algebra linear sabemos que um sistema pode ser representado em uma forma matricial, então definindo:

$$\mathbf{K} = \int_0^L \frac{dN_j}{dy} \frac{dN_i}{dy} dy \tag{20}$$

$$\mathbf{M} = \int_0^L N_j N_i dy \tag{21}$$

Logo, pode se escrever o sistema:

$$\mathbf{K}u_i = \mathbf{M}g_i \tag{22}$$

onde **K** e **M** são conhecidas como matriz de rigidez e massa respectivamente. Esses nomes têm origem no uso do método de elementos finitos na mecânica de sólidos.

Funções de Forma

As funções de forma, também conhecidas como funções de base dependem do tipo de elemento em que o domínio é discretizado. Elas tem que respeitar algumas propriedades especiais:

- Devem valer 1 em um nó, e 0 nos outros;
- A soma de todas as funções de forma em um elemento é igual à 1.

Para o nosso problema 1D usaremos dois tipos de elemento, o linear e o quadrático, ambos em uma malha homogênea, ou seja, com todos os elementos do mesmo tamanho.

Linear 1D

Uma malha 1D consiste em dividir o dominio em segmentos de reta que serão os elementos. Para o elemento linear, as funções de forma definidas são retas, então precisamos de dois pontos por elemento. A figura 1 mostra a representação de uma malha linear com 3 elementos com suas funções de base.

Figura 1: Malha 1D linear com 3 elementos.

As funções de forma para o elemento 1 da figura 1 são as retas:

$$N_1 = \frac{x_2 - x}{\Delta x} \tag{23}$$

$$N_2 = \frac{x - x_1}{\Delta x} \tag{24}$$

onde $\Delta x = x_2 - x_1$ é o tamanho do elemento

As matrizes **K** e **M** no elemento são:

$$\mathbf{k}^{e} = \begin{bmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{bmatrix}$$
 (25)
$$\mathbf{m}^{e} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$
 (26)

Suas componentes são calculadas resolvendo-se as integrais definidas anteriormente:

$$k_{11} = \int_{x_1}^{x_2} \frac{dN_1}{dx} \frac{dN_1}{dx} dx \qquad (27) \qquad m_{11} = \int_{x_1}^{x_2} N_1 N_1 dx \qquad (30)$$

$$k_{22} = \int_{x_1}^{x_2} \frac{dN_2}{dx} \frac{dN_2}{dx} dx \qquad (28) \qquad m_{22} = \int_{x_1}^{x_2} N_2 N_2 dx \qquad (31)$$

$$k_{12} = k_{21} \int_{x_1}^{x_2} \frac{dN_1}{dx} \frac{dN_2}{dx} dx$$
 (29)
$$m_{12} = m_{21} = \int_{x_1}^{x_2} N_1 N_2 dx$$
 (32)

Substituindo as funções nas integrais da matriz de rigidez no elemento, temos:

$$k_{11} = \int_{x_1}^{x_2} \left(\frac{d}{dx} \left(\frac{x_2 - x}{\Delta x} \right) \right)^2 dx = \int_{x_1}^{x_2} \left(\frac{-1}{\Delta x} \right)^2 dx = \frac{1}{\Delta x^2} x \Big|_{x_1}^{x_2} = \frac{1}{\Delta x}$$
 (33)

$$k_{22} = \int_{x_1}^{x_2} \left(\frac{d}{dx} \left(\frac{x - x_1}{\Delta x} \right) \right)^2 dx = \int_{x_1}^{x_2} \left(\frac{1}{\Delta x} \right)^2 dx = \frac{1}{\Delta x^2} x \Big|_{x_1}^{x_2} = \frac{1}{\Delta x}$$
 (34)

$$k_{12} = k_{12} = \int_{x_1}^{x_2} \frac{d}{dx} \left(\frac{x_2 - x}{\Delta x} \right) \frac{d}{dx} \left(\frac{x - x_1}{\Delta x} \right) dx = \int_{x_1}^{x_2} \frac{-1}{\Delta x} \frac{1}{\Delta x} dx = \frac{-1}{\Delta x^2} x \Big|_{x_1}^{x_2} = \frac{-1}{\Delta x}$$
(35)

Logo a matriz de rigidez para o elemento é:

$$\mathbf{k}^e = \frac{1}{\Delta x} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \tag{36}$$

Fazendo o mesmo processo para a mtriz de massa no elemento, temos:

$$m_{11} = \int_{x_1}^{x_2} \left(\frac{x_2 - x}{\Delta x}\right)^2 dx = \int_{x_1}^{x_2} \frac{x_2^2 - 2x_2x + x^2}{\Delta x^2} dx = 2\frac{\Delta x}{6}$$
 (37)

$$m_{22} = \int_{x_1}^{x_2} \left(\frac{x - x_1}{\Delta x}\right)^2 dx = \int_{x_1}^{x_2} \frac{x^2 - 2x_1 x + x_1^2}{\Delta x^2} dx = 2\frac{\Delta x}{6}$$
 (38)

$$m_{12} = m_{12} = \int_{x_1}^{x_2} \left(\frac{x_2 - x}{\Delta x}\right) \left(\frac{x - x_1}{\Delta x}\right) dx = \int_{x_1}^{x_2} \frac{-x_2^2 x_1 + (x_1 + x_2)x - x^2}{\Delta x^2} dx = \frac{\Delta x}{6}$$
(39)

Logo,

$$\mathbf{m}^e = \frac{\Delta x}{6} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \tag{40}$$

Depois de se integrar as funções de forma para um elemento e obter as matrizes locais, é necessário realizar a montagem do sistema global somando suas contribuições, ilustrada na Fig. 2 para uma malha 1D linear com 4 nós. As matrizes globais de rigidez e massa estão representadas na Eq. 41 e Eq. 42

Figura 2: Montagem da matriz de rigidez global para uma malha linear 1D com 3 elementos e qutro nós.

$$\mathbf{K} = \begin{bmatrix} k_{11}^1 & k_{12}^1 \\ k_{21}^1 & k_{22}^1 + k_{22}^2 & k_{23}^2 \\ & k_{32}^2 & k_{33}^2 + k_{33}^3 & k_{34}^3 \\ & & k_{43}^3 & k_{44}^3 \end{bmatrix} = \frac{1}{\Delta x} \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 & \\ & & & -1 & 1 \end{bmatrix}$$
(41)

Logo, o sistema final do nosso modelo é:

$$\frac{1}{\Delta x} \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & \\ & -1 & 2 & -1 \\ & & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \frac{\Delta x}{6} \begin{bmatrix} 2 & 1 & & \\ 1 & 4 & 1 & \\ & 1 & 4 & 1 \\ & & 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} g_1 \\ g_2 \\ g_3 \\ g_4 \end{bmatrix}$$
(43)

onde u_i são as incógnitas e g_i são valores definidos para a simulação.

Quadrático 1D

Para o elemento quadrático, as funções de forma definidas são parabolas, então são necessários 3 pontos por elemento. A figura 3 mostra a representação de uma malha quadrática com 2 elementos e suas funções de base.

Figura 3: Malha 1D quadrática com 2 elementos e 5 nós.

As funções de forma para o elemento 1 da figura 3 são as parábloas:

$$N_1 = 1 - \frac{3x}{\Delta x} + \frac{2x^2}{\Delta x^2} \tag{44}$$

$$N_2 = \frac{4x}{\Delta x} - \frac{4x^2}{\Delta x^2} \tag{45}$$

$$N_3 = \frac{2x^2}{\Delta x^2} - \frac{x}{\Delta x} \tag{46}$$

onde $\Delta x = x_3 - x_1$ é o tamanho do elemento

As matrizes K e M no elemento são:

$$\mathbf{k}^{e} = \begin{bmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{bmatrix}$$
(47)
$$\mathbf{m}^{e} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$
(48)

Suas componentes são calculadas resolvendo-se as integrais definidas anteriormente:

$$k_{11} = \int_{x_1}^{x_3} \frac{dN_1}{dx} \frac{dN_1}{dx} dx \tag{49}$$

$$m_{11} = \int_{x_1}^{x_3} N_1 N_1 dx \tag{55}$$

$$k_{22} = \int_{x_1}^{x_3} \frac{dN_2}{dx} \frac{dN_2}{dx} dx$$
 (50)
$$m_{22} = \int_{x_1}^{x_3} N_2 N_2 dx$$
 (56)

$$k_{33} = \int_{x_1}^{x_3} \frac{dN_3}{dx} \frac{dN_3}{dx} dx$$
 (51)
$$m_{33} = \int_{x_1}^{x_3} N_3 N_3 dx$$
 (57)

$$k_{12} = k_{21} \int_{x_1}^{x_3} \frac{dN_1}{dx} \frac{dN_2}{dx} dx$$
 (52)
$$m_{12} = m_{21} = \int_{x_1}^{x_3} N_1 N_2 dx$$
 (58)

$$k_{13} = k_{31} \int_{x_1}^{x_3} \frac{dN_1}{dx} \frac{dN_3}{dx} dx$$
 (53) $m_{13} = m_{31} = \int_{x_1}^{x_3} N_1 N_3 dx$ (59)

$$k_{23} = k_{32} \int_{x_1}^{x_3} \frac{dN_2}{dx} \frac{dN_3}{dx} dx$$
 (54) $m_{23} = m_{32} = \int_{x_1}^{x_3} N_2 N_3 dx$ (60)

Fazendo o mesmo procedimento de substituir as funções de forma nas integrais e resolvendo-as, temos as matrizes locais:

$$\mathbf{k}^{e} = \frac{1}{3\Delta x} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 7 \end{bmatrix}$$
 (61)
$$\mathbf{m}^{e} = \frac{\Delta x}{15} \begin{bmatrix} 2 & 1 & -0.5 \\ 1 & 8 & 1 \\ -0.5 & 1 & 2 \end{bmatrix}$$
 (62)

A montagem do sistema global é feita da mesma forma que a montagem para o elemento linear, somando as contribuições das matrizes locais (lembrando que somente os nós das extremidades dos elementos se sobrepoem). A montagem está ilustrada na Fig. 4 para uma malha 1D quadrática com 2 elementos e 5 nós. As matrizes globais de rigidez e massa estão representadas na Eq. 63 e Eq. 64.

Figura 4: Montagem da matriz de rigidez global para uma malha linear 1D com 3 elementos e qutro nós.

$$\mathbf{K} = \begin{bmatrix} k_{11}^{1} & k_{12}^{1} & k_{13}^{1} \\ k_{21}^{1} & k_{22}^{1} & k_{23}^{1} \\ k_{31}^{1} & k_{32}^{1} & k_{33}^{1} + k_{33}^{2} & k_{34}^{2} & k_{35}^{2} \\ & & k_{53}^{2} & k_{54}^{2} & k_{55}^{2} \end{bmatrix} = \frac{1}{3\Delta x} \begin{bmatrix} 7 & -8 & 1 \\ -8 & 16 & -8 \\ 1 & -8 & 14 & -8 & 1 \\ & & -8 & 16 & -8 \\ & & 1 & -8 & 7 \end{bmatrix}$$
(63)

$$\mathbf{M} = \begin{bmatrix} m_{11}^1 & m_{12}^1 & m_{13}^1 & & \\ m_{21}^1 & m_{22}^1 & m_{23}^1 & & \\ m_{31}^1 & m_{32}^1 & m_{33}^1 + m_{33}^2 & m_{34}^2 & m_{35}^2 \\ & & & m_{43}^2 & m_{54}^2 & m_{55}^2 \end{bmatrix} = \frac{\Delta x}{15} \begin{bmatrix} 2 & 1 & -0.5 & & \\ 1 & 8 & 1 & & \\ -0.5 & 1 & 4 & 1 & -0.5 \\ & & 1 & 8 & 1 \\ & & & -0.5 & 1 & 2 \end{bmatrix}$$
(64)

Avaliação

Utilizando o modelo para escoamento entre placas paralelas, considerando o intervalo $y \in [0, 1]$ e condições de contorno u(0) = 0 e u(1) = 0:

- Construa as matrizes locais para um elemento 1D quadrático;
- **Faça** um código em *PYTHON* para implementar as matrizes acima, e montar as matrizes globais (assembling);
- Plote a solução numérica de u(y) para 10 e 100 elementos, comparando com a solução analítica;
- EXTRA (OPCIONAL): Explicar brevemente o que é a forma fraca de uma equação e porque fazer a aproximação das funções como um somatório.

Elaboração

O relatório deve conter:

- Introdução: enunciado do modelo matemático (equações, variáveis, hipóteses).
- Objetivo(s): "resolver numericamente ... utilizando o método ...".
- Metodologia(s): como calcular as matrizes locais e como montar o sistema linear global
- Resultados
- Conclusão: discussão sobre os resultados obtidos.

OBS: os arquivos dos códigos em *PYTHON* com a implementação dos métodos devem ser enviados juntamente ao **.pdf** do relatório.

Entrega

Os relatórios devem ser enviados para o e-mail: lh.carnevale@gmail.com até 08 de dezembro de 2020.