MATH6320 - Theory of Functions of a Real Variable Assignment 9

Joel Sleeba

November 14, 2024

1. not finished

Solution:

(a) Let $r , where <math>r, s \in E$. Then by the convexity of $[r, s] \subset \mathbb{R}$, there is a $t \in [0, 1]$ such that p = tr + (1 - t)s. Then Holder's inequality on $\frac{1}{t}$ and $\frac{1}{(1-t)}$ gives,

$$\int |f|^p d\mu = \int |f|^{tr} |f|^{(1-t)s} d\mu
\leq \left(\int |f|^{\frac{tr}{t}} dm \right)^t \left(\int |f|^{\frac{(1-t)s}{(1-t)}} dm \right)^{1-t}
= \left(\int |f|^r dm \right)^t \left(\int |f|^s dm \right)^{1-t}
= ||f||_r^{rt} ||f||_s^{s(1-t)}$$

Thus we get $||f||_p \le ||f||_r^{\frac{rt}{p}} ||f||_s^{\frac{s(1-t)}{p}}$

For the sake of contradiction, assume that $||f||_p > \max\{||f||_r, ||f||_s\}$. Then by the monotonicity of the function $x \to x^k$, where k > 0, we get

$$||f||_p^{\frac{rt}{p}} > ||f||_r^{\frac{rt}{p}} \quad \text{ and } \quad ||f||_p^{\frac{s(1-t)}{p}} > ||f||_s^{\frac{s(1-t)}{p}}$$

Then we'll get

$$||f||_p = ||f||_p^{\frac{rt}{p}} ||f||_p^{\frac{s(1-t)}{p}} > ||f||_r^{\frac{rt}{p}} ||f||_s^{\frac{s(1-t)}{p}}$$

contradicting our previous result. Hence we see that $||f||_p \leq \max\{||f||_r, ||f||_s\}$

(b) Let $0 < \epsilon$. Consider the set $A_{\epsilon} = \{x \in X : ||f||_{\infty} < |f(x)| + \epsilon\}$. Then

$$\int_{X} |f|^{p} d\mu \ge \int_{A_{\epsilon}} |f|^{p} d\mu$$

$$\ge \int_{A_{\epsilon}} (\|f\|_{\infty} - \epsilon)^{p} d\mu$$

$$= (\|f\|_{\infty} - \epsilon)^{p} \mu(A_{\epsilon})$$

Since we are given that $||f||_{\infty} \in (0, \infty]$, there is an $\varepsilon > 0$ such that $||f||_{\infty} > \varepsilon$. Moreover since $||f||_r < \infty$, the above inequality forces $\mu(A_{\varepsilon}) < \infty$. Then taking power $\frac{1}{p}$ to the above inequality, we get

$$||f||_p \ge (||f||_{\infty} - \epsilon)\mu(A_{\varepsilon})^{\frac{1}{p}}$$

Now taking limits, we get

$$\lim_{p \to \infty} \inf \|f\|_p \ge (\|f\|_{\infty} - \varepsilon)$$

since $\mu(A_{\varepsilon})^{\frac{1}{p}} \to 1$ as $p \to \infty$. Again since $\varepsilon > 0$ was arbitrary, we get

$$\lim_{p \to \infty} \inf \|f\|_p \ge \|f\|_{\infty}$$

Now to get the other inequality, observe that

$$\int |f|^p d\mu = \int |f|^r d\mu \int |f|^{p-r} d\mu$$

$$\leq ||f||_{\infty}^{p-r} \int |f|^r d\mu$$

Hence we get

$$||f||_p = \left(\int |f|^p \ d\mu\right)^{1/p} \le ||f||_{\infty}^{\frac{p-r}{p}} \left(\int |f|^r \ d\mu\right)^{\frac{1}{p}} = ||f||_{\infty} ||f||_r^{\frac{r}{p}}$$

Thus taking limits, we see that

$$\lim_{p \to \infty} \sup \|f\|_p \le \|f\|_{\infty}$$

as $||f||_r^{\frac{r}{p}} \to 0$ as $p \to \infty$ since $||f||_r < \infty$

Combining both the inequalities, we see

$$\lim_{p \to \infty} \sup \|f\|_p \le \|f\|_{\infty} \le \lim_{p \to \infty} \inf \|f\|_p$$

Thus

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}$$