TIP8419 - Tensor Algebra Homework 10

Prof. André de Almeida andre@gtel.ufc.br

2019.2

Multidimensional Least-Squares Kronecker Factorization (MLS-KronF)

On practice 4 we have implemented the LS-KronF(Least Square Kronecker Factorization) algorithm; now we will implement its generalization to the N-dimensional case, called MLS-KronF (Multidimensional Least Square Kronecker Factorization) algorithm. Let $\mathbf{X} \in \mathbb{C}^{I_1I_2...I_N \times J_1J_2...J_N}$ be a matrix that we wish to approximate as $\mathbf{X} \approx \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)} \cdots \otimes \mathbf{A}^{(N)}$, that is, as Kronecker product of N matrices $\mathbf{A}^{(n)} \in \mathbb{C}^{I_n \times J_n}$, with n = 1, 2, ..., N. For N = 3 and arbitrary I_n and J_n , implement the MLS-KronF algorithm that estimates $\mathbf{A}^{(1)}, \mathbf{A}^{(2)}$ and $\mathbf{A}^{(3)}$ by solving the following problem

$$(\hat{\mathbf{A}}^{(1)}, \hat{\mathbf{A}}^{(2)}, \hat{\mathbf{A}}^{(3)}) = \underset{\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \mathbf{A}^{(3)}}{\arg \min} \|\mathbf{X} - \mathbf{A}^{(1)} \otimes \mathbf{A}^{(2)} \otimes \mathbf{A}^{(3)}\|_F^2$$

using either the truncated HOSVD or the HOOI initialized with the HOSVD (you should implement both versions).

Test the algorithms on a matrix that exactly follows the model. Compare the estimated matrices $\hat{\mathbf{A}}^{(1)}$, $\hat{\mathbf{A}}^{(2)}$ and $\hat{\mathbf{A}}^{(3)}$ with the original ones. What can you conclude? Explain the results.

 $\underline{\rm Hint} \colon Use \ the \ file \ ``Practice_10_kronf_matrix_3D.mat" \ to \ validate \ your \ code.$

Problem 1 Perform a Monte Carlo experiment with 1000 realizations as follows. For each realization, generate $\mathbf{X}_0 = \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C} \in \mathbb{C}^{I_1I_2I_3 \times J_1J_2J_3}$, for randomly chosen $\mathbf{A} \in \mathbb{C}^{I_1 \times J_1}$, $\mathbf{B} \in \mathbb{C}^{I_2 \times J_2}$ and $\mathbf{C} \in \mathbb{C}^{I_3 \times J_3}$, whose elements are drawn from a standard normal distribution. Let $\mathbf{X} = \mathbf{X}_0 + \alpha \mathbf{V}$ be a noisy version of \mathbf{X}_0 , where \mathbf{V} is the additive noise term, whose elements are also drawn from a standard normal. The parameter α controls the power (variance) of the noise term, and is defined as a function of the signal-to-noise ratio (SNR), in dB, as follows

$$SNR_{dB} = 10log_{10} \left(\frac{||\mathbf{X}_0||_F^2}{||\alpha \mathbf{V}||_F^2} \right). \tag{1}$$

Assuming the SNR range $\{0, 5, 10, 15, 20, 25, 30\}$ dB, find the estimates $\hat{\mathbf{A}}$, $\hat{\mathbf{B}}$ and $\hat{\mathbf{C}}$ obtained with the MLS-KRF algorithm for the following configurations:

1.
$$(I_1, I_2, I_3) = (J_1, J_2, J_3) = (2, 2, 2);$$

2.
$$(I_1, I_2, I_3) = (J_1, J_2, J_3) = (5, 5, 5);$$

3.
$$(I_1, I_2, I_3) = (J_1, J_2, J_3) = (2, 3, 4);$$

4.
$$(I_1, I_2, I_3) = (2, 3, 4)$$
 and $(J_1, J_2, J_3) = (5, 6, 7)$.

Let us define the normalized mean square error (NMSE) measure as follows

$$NMSE(\mathbf{X}_0) = \frac{1}{1000} \sum_{i=1}^{1000} \frac{\|\hat{\mathbf{X}}_0(i) - \mathbf{X}_0(i)\|_F^2}{\|\mathbf{X}_0(i)\|_F^2},$$
(2)

where $\mathbf{X}_0(i)$ e $\hat{\mathbf{X}}_0(i)$ represent the original data matrix and the reconstructed one at the *i*th experiment, respectively. For each configuration, plot the NMSE vs. SNR curve obtained with each version of the algorithm (plot the two curves together with different colors). Discuss the obtained results.

<u>Note</u>: For a given SNR (dB), the parameter α to be used in your experiment is determined from equation (1).