

planetmath.org

Math for the people, by the people.

proof of every filter is contained in an ultrafilter (alternate proof)

 $Canonical\ name \qquad Proof Of Every Filter Is Contained In An Ultrafilter alternate Proof$

Date of creation 2013-03-22 17:52:54 Last modified on 2013-03-22 17:52:54 Owner brunoloff (19748) Last modified by brunoloff (19748)

Numerical id 8

Author brunoloff (19748)

Entry type Proof

Classification msc 54A20

Let \mathfrak{U} be the family of filters over X which are finer than \mathcal{F} , under the partial order of inclusion.

Claim 1. Every chain in \mathfrak{U} has an upper bound also in \mathfrak{U} .

Proof. Take any chain \mathfrak{C} in \mathfrak{U} , and consider the set $\mathcal{C} = \cup \mathfrak{C}$. Then \mathcal{C} is also a filter: it cannot contain the empty set, since no filter in the chain does; the intersection of two sets in \mathcal{C} must be present in the filters of \mathfrak{C} ; and \mathcal{C} is closed under supersets because every filter in \mathfrak{C} is. Obviously \mathcal{C} is finer than \mathcal{F} .

So we conclude, by Zorn's lemma, that \mathfrak{U} must have a maximal filter say \mathcal{U} , which must contain \mathcal{F} . All we need to show is that \mathcal{U} is an ultrafilter. Now, for any filter \mathcal{U} , and any set $Y \subseteq X$, we must have:

Claim 2. Either $\mathcal{U}_1 = \{Z \cap Y : Z \in \mathcal{U}\}\ or \mathcal{U}_2 = \{Z \cap (X \setminus Y) : Z \in \mathcal{U}\}\ (or\ both)\ are\ a\ filter\ subbasis.$

Proof. We prove by contradiction that at least one of \mathcal{U}_1 or \mathcal{U}_2 must have the finite intersection property. If neither has the finite intersection property, then for some $Z_1, \ldots Z_k$ we must have

$$\emptyset = \bigcap_{1 \le i \le k} Z_i \cap Y = \bigcap_{1 \le i \le k} Z_i \cap (X \setminus Y).$$

But then

$$\varnothing = \left(\bigcap_{1 \le i \le k} Z_i \cap Y\right) \cup \left(\bigcap_{1 \le i \le k} Z_i \cap (X \setminus Y)\right) = \bigcap_{1 \le i \le k} Z_i,$$

and so \mathcal{U} does not have the finite intersection property either. This cannot be, since \mathcal{U} is a filter.

Now, by Claim 2, if \mathcal{U} were not an ultrafilter, i.e., if for some Y subset of X we would have neither Y nor $X \setminus Y$ in \mathcal{U} , then the filter generated \mathcal{U}_1 or \mathcal{U}_2 would be finer than \mathcal{U} , and then \mathcal{U} would not be maximal.

So \mathcal{U} is an ultrafilter containing \mathcal{F} , as intended.