11 Acceleration

Acceleration means that there is a change of velocity – a change of speed or a change of direction of motion.

This could mean

- speeding up
 - when the acceleration is in the same direction as the motion
- slowing down (also called deceleration)
 - here the acceleration is in the opposite direction to the motion
- changing direction (a centripetal acceleration)
 - here the acceleration is at right angles to the motion

We measure acceleration in metres per second squared (m/s^2). An acceleration of 3 m/s^2 means that each second the velocity changes by 3 m/s.

acceleration (m/s
2
) = change in velocity (m/s)/time taken (s)
$$a = (v-u)/t$$

When the velocity changes we use \boldsymbol{u} for the velocity at the start, and \boldsymbol{v} for the velocity at the end.

Example 1 – A car is travelling at 3.0 m/s. It accelerates at 2.5 m/s². How fast is it going 5.5 s later?

Change in velocity =
$$a \times t = 2.5 \text{ m/s}^2 \times 5.5 \text{ s} = 13.75 \text{ m/s}$$

New velocity = $3.0 + 13.75 = 17 \text{ m/s}$ (2sf)

Example 2 – A car at 31 m/s stops in 6.8 s. Calculate the deceleration.

Acceleration =
$$(v-u)/t = (0 \, \text{m/s} - 31 \, \text{m/s})/(6.8 \, \text{s}) = (-31 \, \text{m/s})/(6.8 \, \text{s}) = -4.56 \, \text{m/s}^2$$
 so deceleration = $4.6 \, \text{m/s}^2$ (2sf) Here the velocity change is negative as the final velocity (0 m/s) is lower than the starting velocity (31 m/s), thus is a deceleration.

Example 3 – A car starts from rest. It accelerates backwards until it is reversing at $4.0\,\text{m/s}$. This takes $5.0\,\text{s}$. Calculate the acceleration.

Acceleration = $(v-u)/t = (-4.0 \, \text{m/s})/(5.0 \, \text{s}) = -0.80 \, \text{m/s}^2$. The change in velocity is negative as the final velocity $(-4.0 \, \text{m/s})$ is lower than the starting velocity $(0 \, \text{m/s})$. However, although the acceleration is negative, this is not a deceleration as the car is speeding up (backwards).

11.1 Complete the table with the correct values. Each row represents a separate situation.

Acceleration (m/s ²)	Velocity (m/s) after s						
	0.0	1.0	2.0	3.0	4.0	5.0	6.0
3.0	0.0	3.0	(a)	9.0	(b)	(c)	18
5.0	0.0			(d)		(e)	(f)
7.0	3.0			(g)	(h)		(i)
-25.0	30.0			(j)	(k)		(1)
(m)	10.5		13.5		(n)		
(0)	45		36		27		(p)

- 11.2 In Q11.1(d), what would the velocity be 15 s after the start if the acceleration were maintained?
- 11.3 In Q11.1(o), at what time does the vehicle come to a stop?
- 11.4 A tennis ball is thrown in the air upwards at 15 m/s. If it is accelerating downwards at 10 m/s^2 , what will its velocity be 2.0 s after it is thrown? (Remember to say how fast it is going and also which way.)
- 11.5 A rollercoaster speeds up from rest to 100 mph (45 m/s) in 1.2 s.
 - (a) Calculate the acceleration.

- (b) The rollercoaster car then travels vertically upwards, and decelerates at 10 m/s^2 . How much time passes before it is stationary (for a moment)?
- 11.6 A car starts from rest and reaches a speed of 40 m/s in a time of 8.0 seconds. Calculate its average acceleration.
- 11.7 Complete the table with the correct values. Each row represents a separate situation.

Starting velocity (m/s)	Final velocity (m/s)	Time taken (s)	Acceleration (m/s ²)
0.0	(a)	8.5	3.5
4.5	35	8.5	(b)
26	0.0	(c)	-6.7
(d)	5.0	1.2	-1.5
0.0	(e)	300	31

- 11.8 A certain make of car can reach 60 mph from rest in a time of 9.0 seconds. Calculate its average acceleration in m/s². [Note: 1 mph = 0.45 m/s]
- 11.9 Calculate the change of speed of a train which accelerates for 9.0 seconds at a rate of 1.2 m/s^2 in a straight line.
- 11.10 In overtaking a lorry on a straight section of road, a driver increases speed from 50 mph to 70 mph in 5.0 s. [Note: 1 mph = 0.45 m/s.] Calculate the acceleration in:
 - (a) miles per hour per second and;
 - (b) metres per second per second.