Matematyka

Michał Nycz

r.a. 2024/2025

Spis treści

1	Pod			1
	1.1	Funkto	ry zdaniotwórcze	1
	1.2			1
	1.3	Prawa	rachunku zdań	1
				1
		1.3.2	Prawo kontrapozycji	2
	1.4	Prawa	rachunku kwantyfikatorów	2
2	Teo	ria mno	ogości	3
	2.1	Działar	nia na zbiorach	3
	2.2	Iloczyn	kartezjański	4
3	Rac	hunek	prawdopodobieństwa i kombinatoryka	5
	3.1			5
				5
				5
		3.1.3		5
		3.1.4		5
		3.1.5	Regóła mnożenia	6
		3.1.6	Permutacja bez powtórzeń	7
		3.1.7	Permutacja z powtórzeniami	7
				7
				8
		3.1.10	Kombinacja bez powtórzeń	8
	3.2			8
	3.3			9
		3.3.1	Prawdopodobieństwo całkowite	9
	3.4	Niezale	żność zdarzeń	0
	3.5	Zmienr	na losowa jednowymiarowa	0
		3.5.1	Zmienne losowe dyskretne (skokowe)	1
		3.5.2	Zmienne losowe ciągłe	1
		3.5.3	Wybrane rozkłady dyskretne	3
		3.5.4	Wybrane rozkłady ciągłe	5
			Rozkład wykładniczy	5
			Rozkład normalny	6
	3.6	Zmienr	ne losowe dwuwymiarowe	7
			Tw. Nigrówność Schwarza	7

		3.6.2	Kowariancja	,
		3.6.3	Niezależne zmienne losowe	,
		3.6.4	Rozkłady niezależnych zmiennych losowych	,
	3.7	Prawa	Wielkich Liczb)
		3.7.1	Prawa Bernoulliego)
	3.8	Twiero	dzenia Graniczne)
4	Stat	tystyka	22	2
_	4.1		i statystyczne	
	4.2	_	położenia (tendencji centralnej)	-
	4.3		kterystyki rozproszenia	
	4.4		kterystyki asymetrii	
_	ъ. <i>г</i> .			
5		cierze	26	
	5.1	_	ólne typy macierzy	
		5.1.1	Macierz zerowa	
		5.1.2	Macierz kwadratowa	
		5.1.3	Macierz trójkątna	
		5.1.4	Macierz diagonalna	
		5.1.5	Macierz jednostkowa	
	5.2		nia na macierzach	
		5.2.1	Transponowanie (Transpozycja)	
		5.2.2	Mnożenie macierzy przez liczbę	
		5.2.3	Dodawanie i odejmowanie macierzy	
		5.2.4	Mnożenie macierzy	
	5.3		acznik macierzy	
		5.3.1	Wzory Sarrusa	
		5.3.2	Tw. Laplace'a	
	5.4		z odwrotna	
	5.5		macierzy	
		5.5.1	Minor bazowy	
		5.5.2	Rząd macierzy	
	5.6	Układ	y równań liniowych	
		5.6.1	Układ Cramera	
		5.6.2	Metoda macierzy odwrotnej	
		5.6.3	Metoda Cramera	
		5.6.4	Twierdzenie Kroneckera-Capelliego	
		5.6.5	Macierz schodkowa	}
		5.6.6	Operacje elementarne na wierszach	?
		5.6.7	Metoda Gaussa (eliminacji zmiennych)	;
6	Rac	hunek	różniczkowy 33	Ł
Ū	6.1		dna funkcji w punkcie	
	6.2		dne funkcji jednej zmiennej	
	0.2	6.2.1	Wzory na pochodne podstawowych funkcji	
		6.2.2	Tw. Rolle'a	
		6.2.2	Tw. Lagrange'a	
		6.2.4	Monotoniczność	
		6.2.4	Ekstrema lokalne	
		6.2.6	Wypukłość	
		6.2.7	Punkty przegięcia	
	6.3		dne cząstkowe funkcji wielu zmiennych	
	0.0	6.3.1	Tw. Schwarza	
		0.0.1	I NOII	

		6.3.2	Kryterium Sylvestera
		6.3.3	Ekstrema lokalne funkcji dwóch zmiennych
7	Rac	hunek	Całkowy
	7.1	Funkc	a pierwotna
		7.1.1	Tw. o funkcji pierwotnej
	7.2	Całka	nieoznaczona
	7.3	Wzory	podstawowe
	7.4	Całka	oznaczona Riemanna
		7.4.1	Tw. Newtona-Leibniza

1 Podstawy logiki matematycznej

Zdanie (w logice) jest to wyrażenie w trybie orzekającym, które jest: albo **prawdziwe** - ma wartość logiczną 1, albo **fałszywe** - ma wartość logiczną 0.

Forma zdaniowa (funkcja zdaniowa, predykat) określona w dziedzinie D jest to wyrażanie zawierające zmienną (lub zmienne), które staje się zdaniem, gdy w miejsce zmiennej (lub zmiennych) podstawimy nazwę (lub nazwy) dowolnego elementu (lub dowolnych elementów) zbioru D.

1.1 Funktory zdaniotwórcze

"Nieprawda, że"	- symbol \sim	Negacja
"i"	- symbol \land	Koniunkcja
"lub"	- symbol \vee	Alternatywa
"jeżeli, to"	- symbol \implies	Implikacja
"wtedy i tylko wtedy"	- symbol \iff	Równoważność

Tabela 1: Wartości logiczne zdań złożonych

$\sim p$	p	q	$p \wedge q$	$p \lor q$	$p \implies q$	$p \iff q$
0	1	1	1	1	1	1
1	0	1	0	1	1	0
	1	0	0	1	0	0
	0	0	0	0	1	1

1.2 Kwantyfikatory

```
"dla każdego x\dots" - symbol \wedge albo \forall - kwantyfikator duży, ogólny "istnieje x, takie że \dots" - symbol \forall albo \exists - kwantyfikator mały, szczegółowy, egzystencjonalny
```

1.3 Prawa rachunku zdań

Tautologia - Zdanie zawsze prawdziwe.

1.3.1 Prawa De Morgana dla zdań

I prawo De Morgana

Prawo zaprzeczania koniunkcji: negacja koniunkcji jest równoważna alternatywie negacji

$$[\sim (p \land q)] \iff (\sim p \lor \sim q)$$

Tabela 2: Wartości logiczne I prawa De Morgana

p	q	$p \wedge q$	$\sim (p \wedge q)$	$\sim p$	$\sim q$	$(\sim p) \vee (\sim q)$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

II prawo De Morgana

Prawo zaprzeczenia alternatywy: negacja alternatywy jest równoważna koniunkcji negacji

$$[\sim (p \lor q)] \iff (\sim p \land \sim q)$$

Tabela 3: Wartości logiczne II prawa De Morgana

			0		1	0
p	q	$p \lor q$	$\sim (p \vee q)$	$\sim p$	$\sim q$	$(\sim p) \land (\sim q)$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

1.3.2 Prawo kontrapozycji

$$(p \implies q) \iff (\sim p \implies \sim q)$$

Tabela 4: Wartości logiczne prawa kontrapozycji

p	q	$p \implies q$	$\sim q$	$\sim p$	$(\sim q) \implies (\sim p)$
1	1	1	0	0	1
1	0	0	1	0	0
0	1	1	0	1	1
0	0	1	1	1	1

1.4 Prawa rachunku kwantyfikatorów

Jeżeli f(x) i g(x) są formami zdaniowymi o zakresie zmienności $x \in X$, to:

Prawa De Morgana dla kwantyfikatorów

1.
$$\sim \forall f(x) \iff \exists x \sim f(x)$$

$$2. \sim \exists f(x) \iff \forall x \sim f(x)$$

2 Teoria mnogości

2.1 Działania na zbiorach

Suma

 $C = A \cup B$

 ${\bf Iloczyn}$

 $D=A\cap B$

Różnica

$$E = A \setminus B$$

Dopełnienie zbioru

$$A`=X\setminus A$$

2.2 Iloczyn kartezjański

$$A\times B=\{(a,b):a\in A\ \mathrm{i}\ b\in B\}$$

$$A = \{a, b, c\} \qquad B = \{1, 2\}$$

$$A \times B = \{(a, 1)(a, 2)(b, 1)(b, 2)(c, 1)(c, 2)\}$$

Oznaczenie: $\left|X\right|$ - ilość elementów

Tw.
$$|A \times B| = |A| \cdot |B|$$

 $\mathbb R$ - zbiór liczb
 rzeczywistych (prosta liczbowa)

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) : x \in \mathbb{R} \; \mathrm{i} \; y \in \mathbb{R} \}$$
 - płaszczyzna

 \mathbb{R}^n - przestrzeń n wymiarowa

3 Rachunek prawdopodobieństwa i kombinatoryka

3.1 Elementy kombinatoryki

3.1.1 Symbol sumy

 \sum - sigma, symbol sumy

$$\sum_{i=2}^{5} i^2 = 2^2 + 3^2 + 4^2 + 5^2 = 4 + 9 + 16 + 25 = 54$$

3.1.2 Symbol iloczynu

 \prod - pi, symbol iloczynu

$$\prod_{i=1}^{n} i = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!$$

3.1.3 Silnia

n! - n silnia $n \in \mathbb{N}_0$

$$n! = \begin{cases} 1, & n = 0 \lor n = 1\\ 1 \cdot 2 \cdot \dots \cdot n, & n > 1 \end{cases}$$

$$n! = (n-1)! \cdot n, \quad n \in \mathbb{N}$$

Def. Permutacja skończonego zbirou A to ciąg wszystkich elementów zbioru A.

Tw. Ilość wszystkich permutacji zbioru n-elementowego wynosi n!.

3.1.4 Symbol Newtona

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} \qquad k, n \in \mathbb{N}_0 \\ \binom{n}{n-k} = \binom{n}{k} \qquad k, n \in \mathbb{N}_0 \\ k \leqslant n$$

$$\binom{n}{0} = 1 \quad \binom{n}{1} = n \quad \binom{n}{n-1} = n \quad \binom{n}{n} = 1$$

Tw. Ilość wszystkich k-elementowych podzbiorów zbioru n-elementowego wynosi $\binom{n}{k}$

Tw. Ilość wszystkich podzbiorów zbioru n-elementowego 2^n

Tw. Dla $k, n \in \mathbb{N}, k \leqslant n$

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

Dwumian Newtona

Tw. Dwumian Newtona, dla $a,b\in\mathbb{R}$ i $n\in\mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Trójkąt Pascala

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \end{pmatrix} \begin{pmatrix} 1 \\ 4$$

3.1.5 Regóła mnożenia

Jeżeli pewien wybór zależy od skończenie wielu decyzji, powiedzmy k, przy czym podejmując pierwszą decyzję mamy n_1 możliwości, drugą n_2 możliwości, ..., k-tą n_k możliwości, bo wybór ten może być zrobiony na:

1 5 10 10 5 1 1 6 15 20 15 6 1

$$n = n_1 \cdot n_2 \cdot \ldots \cdot n_k$$

3.1.6 Permutacja bez powtórzeń

 $Permutacja\ bez\ powtórzeń$ zbioru n-elementowego $A=\{a_1,a_2,\ldots,a_n\}$, dla $n\in\mathbb{N}$ nazywamy każdy n-wyrazowy ciąg utworzony ze wszystkich n-elementów zbioru A, czyli każde uporządkowanie elementów zbioru A.

Liczba wszystkich różnych permutacji bez powtórzeń zbioru n-elementowego jest równa

$$P_n = n!$$

Permutacje wykorzystujemy, gdy:

- występują wszystkie elementy zbioru,
- kolejność jest istotna.

3.1.7 Permutacja z powtórzeniami

Permutacją n-wyrazową z powtórzeniami zbioru k-elementowego $A = \{a_1, a_2, \dots, a_k\}$, w której element a_i występuje n_i razy, $i = 1, 2, \dots, k$, przy czym $\sum_{i=0}^k n_i = n$.

Liczba wszystkich różnych n-wyrazowych permutacji z powtórzeniami ze zbioru k-elementowego jest równa:

$$P_n(n_1, n_2, \dots, n_k) = \frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!},$$

gdzie $n_i \in \mathbb{N}, i=1,2,\ldots,k,\; n_i$ - liczba powtórzeń elementu $a_i \in A, \sum_{i=0}^k n_i = n$

3.1.8 Wariacja z powtórzeniami

 $Wariacją\ k$ -wyrazową z powtórzeniami zbioru A, n-elementowego, gdzie $k \in \mathbb{N}$, nazywamy każdy k-wyrazowy ciąg, którego wyrazami są elementy danego zbioru A.

Liczba wszystkich różnych k-wyrazowych wariacji z powtórzeniami zbioru n-elementowego jest równa:

$$W_n^k = n^k$$

Wariacje z powtórzeniami wykorzystujemy, gdy:

- kolejność elementów jest istotna,
- elementy mogą się powtarzać (losowanie ze zwracaniem),
- niekoniecznie wszystkie elementy zbioru są wykorzystane.

3.1.9 Wariacja bez powtórzeń

Wariacją~k-wyrazową bez powtórzeń zbioru A, n-elementowego, gdzie $k \in \mathbb{N}$, nazywamy każdy k-wyrazowy ciąg różnowartościowy, którego wyrazami są elementy danego zbioru A.

Liczba wszystkich różnych k-wyrazowych wariacji bez powtórzeń zbioru n-elementowego jest równa

$$V_n^k = \frac{n!}{(n-k)!}$$

Wariacje bez powtórzeń wykorzystujemy, gdy:

- kolejność elementów jest istotna,
- elementy nie mogą się powtarzać (losowanie bez zwracania),
- niekoniecznie wszystkie elementy zbioru są wykorzystane.

3.1.10 Kombinacja bez powtórzeń

 $Kombinacją\ k$ -elementową bez powtórzeń zbioru A, n-elementowego, gdzie $k \in \mathbb{N}$, nazywamy każdy podzbiór k-elementowy zbioru A, przy czym elementy nie mogą się powtarzać.

Liczba wszystkich różnych kombinacji k-elementowych bez powtórzeń jest równa:

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\mathcal{A}$$

3.2 Prawdopodobieństwo klasyczne

 ω - zdarzenie elementarne,

 Ω - zbiór wszystkich zdarzeń elementarnych,

A - zdarzenie losowe, $A \subset \Omega$,

 \mathcal{A} - zbiór wszystkich zdarzeń losowych,

 \emptyset - zdarzenie niemożliwe,

 Ω - zdarzenie pewne,

A' - zdarzenie przeciwne, $A' = \Omega \setminus A$,

Rodzinę podzbiorów $\mathcal A$ zbioru Ω nazywamy algebrą zbiorów, jeżeli:

(i)
$$A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$$
,

(ii)
$$A, B \in \mathcal{A} \implies A \cap B \in \mathcal{A}$$
,

(iii)
$$A \in \mathcal{A} \implies A' = (\Omega \setminus A) \in \mathcal{A}$$
,

(iv)
$$\Omega \in \mathcal{A}, \emptyset \in \mathcal{A}$$
.

Prawdopodobieństwo P(A) to liczba przypisana zdarzeniu losowemu

(i)
$$A \cap B = \emptyset \implies P(A \cup B) = P(A) + P(B)$$
,

(ii)
$$A \subset B \implies P(B \setminus A) = P(B) - P(A)$$
,

(iii)
$$P(A') = 1 - P(A)$$
,

(iv)
$$P(\emptyset) = 0, P(\Omega) = 1,$$

(v)
$$A \subset B \implies P(A) \leqslant P(B)$$
,

(vi)
$$P(A) \in [0, 1],$$

(vii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

W modelu klasycznym prawdopodobieństwa zakładamy, że zbiór Ω jest skończony i wszystkie zdarzenia elementarne są jednakowo prawdopodobne.

Zdarzenia losowe to wszystkie podzbiory zbioru Ω i prawdopodobieństwo określa się wzorem:

$$P(A) = \frac{|A|}{|\Omega|}, \qquad |x|$$
 - liczność zbioru x

3.3 Prawdopodobieństwo warunkowe

P(A|B) - prawdopodobieństwo zdarzenia A pod warunkiem, że zaszło zdarzenie B.

$$A, B \subset \Omega, \quad P(B) > 0$$

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

3.3.1 Prawdopodobieństwo całkowite

Rozkład przestrzeni Ω (układ zupełny)

Zdarzenia B_1, B_2, \dots, B_n tworzą rozkład przestrzeni $\Omega,$ jeżeli:

(i)
$$B_1 \cup B_2 \cup \dots B_n = \Omega$$

(ii)
$$B_i \cap B_j = \emptyset$$
, dla $i \neq j, i, j = 1, 2, ..., n$

(iii)
$$P(B_i) > 0$$
, dla $i = 1, 2, \dots, n$

Tw. Prawdopodobieństwo całkowite

Jeżeli B_1, B_2, \ldots, B_n tworzą rozkłąd Ω , to dla dowolnego zdarzenia $A \subset \Omega$:

$$P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$$

Tw. wzór Bayes'a

Jeżeli B_1, B_2, \ldots, B_n tworzą rozkład Ω , to dla dowolnego $k \in \{1, 2, \ldots, n\}$

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A)}$$

3.4 Niezależność zdarzeń

Zdarzenia A i B są niezależne, jeżeli:

$$P(A \cap B) = P(A) \cdot P(B)$$

Zdarzenia A_1,A_2,\ldots,A_n są niezależne, jeżeli dla każdego $k\leqslant n$ i dla każdego ciągu indeksów $i_1,i_2,\ldots,i_k,$ gdzie $1 \le i_1 < i_2 < \cdots < i_k \le n$, zachodzi warunek:

$$P(A_{i_1} \cap A_{i_2} \cap ... \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot ... \cdot P(A_{i_k})$$

Jeżeli zdarzenia Ai Bsą niezależne oraz P(A)>0i P(B)>0, to

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

$$P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{P(A) \cdot P(B)}{P(A)} = P(B)$$

3.5 Zmienna losowa jednowymiarowa

Zmienną losową nazywamy funkcję X przyporządkowującą zdarzeniu elementarnemu dokładnie jedną liczbę rzeczywistą, tj. $X:\Omega\to\mathbb{R}.$

$$\{X < a\} = \{\omega \in \Omega : X(\omega) < a\}$$

$$\{X > a\}, \{X \geqslant a\}, \{X \leqslant a\}, \{X = a\}, \{X \in (-\infty, a]\}, \dots$$

Dystrybuanta

Funkcja dystrybuanty zmiennej losowej X to funkcja $F: \mathbb{R} \to [0,1]$ określona wzorem:

$$F(x) = P(X \leqslant x), \quad x \in \mathbb{R}$$

Właściwości dystrybuanty:

- (i) F(x) jest niemalejąca,
- (ii) F(x) jest prawostronnie ciągła,
- (iii) $\lim_{x \to -\infty} F(x) = 0,$
- (iv) $\lim_{x \to \infty} F(x) = 1$,

Funkcja przeżycia

Funkcja przeżycia zmiennej losowej X to funkcja $S: \mathbb{R} \to [0,1]$ określona wzorem:

$$S(x) = P(X > x) = 1 - F(x), \quad x \in \mathbb{R}$$

Właściwości funkcji przeżycia:

- (i) S(x) jest malejąca,
- (ii) S(x) jest prawostronnie ciągła, (iii) $\lim_{x\to -\infty} S(x)=1,$ (iv) $\lim_{x\to \infty} S(x)=0,$

Dystrybuanta F(x) oraz funkcja przeżycia S(x) wyznaczają rozkład zmiennej losowej X.

Zmienne losowe dyskretne (skokowe)

Zmienna losowa X ma rozkład dyskretny, jeżeli zbiór jej wartośći jest skończony bądź przeliczalny.

 $\{x_i:i\in I\}$ - ciąg (skończony lub nieskończony) wszystkich wartości zmiennej losowej X

$$p_i = P(X = x_i), \quad \sum_i p_i = 1, \quad i \in I$$

$$\{(x_i,p_i):i\in I\}$$
- rozkład zm. l. X

Dystrybuanta dyskretnej zmiennej losowej X to:

$$F(x) = \begin{cases} 0, & x < x_1, \\ p_1, & x_1 \le x < x_2, \\ p_1 + p_2, & x_2 \le x < x_3, \\ \vdots & & \\ \sum_{i=1}^{n-1} p_i & x_{n-1} \le x < x_n \\ 1, & x \ge x_n \end{cases}$$

Zmienne losowe ciągłe

Ciągła zmienna losowa X, to zmienna losowa zdefiniowana za pomocą funkcji gęstości prawdopodobieństwa f(x).

Funkcja $f:\mathbb{R}\to\mathbb{R}$ jest gęstością rozkładu zmiennej losowej X, jeżeli dla dowolnych $a,b\in\mathbb{R}$ takich, że $a \leq b$ zachodzi warunek:

$$P(X \in [a,b]) = \int_{a}^{b} f(x)dx$$

Funkcja gestości prawdopodobieństwa spełnia warunki:

(i)
$$f(x) \ge 0$$
, $x \in \mathbb{R}$

(ii)
$$\int_{-\infty}^{\infty} f(x)dx = 1$$

Dystrybuanta ciągłej zmiennej losowej X to:

$$F(x) = \int_{-\infty}^{x} f(t)dt, \quad f(x) = F'(x), \quad x \in \mathbb{R}$$

Zmienna losowa X ma rozkład ciągły, jeżeli posiada funkcję gestości f(x).

Parametry zmiennych losowych

EX - wartość oczekiwana zm. l. \boldsymbol{X}

$$EX = \int_{\Omega} X dP$$

Zm. l. dyskretna:

Zm. l. ciągła:

$$EX = \sum_{i \in I} x_i p_i$$

$$EX = \int_{-\infty}^{\infty} x f(x) dx$$

Momenty rzędu $n: n \in \mathbb{N}$ zmiennej losowej X:

- absolutny $M_n = E|X|^n$
- zwykły $m_n = EX^n$
- centralny $\mu_n = E(X m)^n$, gdzie m = EX

Zm. l. dyskretna:

Zm. l. ciągła:

$$M_n = \sum_{i \in I} |x_i|^n p_i$$

$$M_n = \int_{-\infty}^{\infty} |x|^n f(x) dx$$

$$m_n = \sum_{i \in I} (x_i)^n p_i$$

$$m_n = \int_{-\infty}^{\infty} (x)^n f(x) dx$$

$$\mu_n = \sum_{i \in I} (x_i - m)^n p_i$$

$$\mu_n = \int_{-\infty}^{\infty} (x - m)^n f(x) dx$$

Jeżeli istnieje moment absolutny rzędu n zmiennej losowej X, to istnieją wszystkie momenty rzędu $k:k\leqslant n$ zm. l. X.

Najważniejsze momenty zmiennej losowej X:

- $m_1 = EX$ wartość oczekiwana zm. l. X
- $m_2 = EX^2$ drugi moment zwykły zm. l. X
- $\mu_2 = E(X-m)^2$ drugi moment centralny zm. l. X
- $VarX = \mu_2$ wariancja zmiennej losowej X

$$VarX = EX^2 - (EX)^2 = m_2 - m^2$$

Własności wartości oczekiwanej EX i wariancji VarX ($\alpha \in \mathbb{R}$) :

Wartość oczekiwana:

Wariancja:

1.
$$E(\alpha) = \alpha$$

2.
$$E(\alpha X) = \alpha E X$$

3.
$$E(X+Y) = EX + EY$$

$$4. X \ge 0 \implies EX \ge 0$$

5.
$$X \geqslant Y \implies EX \geqslant EY$$

1.
$$Var(\alpha) = 0$$

2.
$$Var(\alpha X) = \alpha^2 Var X$$

3. Jeżeli
$$X$$
 i Y są niezależne to $Var(X+Y) = VarX + VarY$

4.
$$VarX \ge 0$$

5.
$$Var(X \pm \alpha) = VarX$$

Odchylenie standardowe zmiennej losowej X:

$$\sigma_x = SD(X) = \sqrt{VarX}$$

Nierówność Czebyszewa

Jeżeli X jest zmienną losową o wariancji VarX i wartości oczekiwanej EX, to dla dowolnego $\varepsilon>0$ zachodzi nierówność:

$$P(|X - EX| > \varepsilon) \le \frac{VarX}{\varepsilon^2}$$

3.5.3 Wybrane rozkłady dyskretne

Rozkład dwumianowy (Bernoulliego)

Próba Bernoulliego - eksperyment losowy, który kończy się jednym z dwóch możliwych wyników, nazywanych (umownie) sukcesem i porażką.

p - prawdopodobieństwo sukcesu, $p \in (0,1)$

q - prawdopodobieństwo porażki, $\ q=1-p$

Rozkład dwumianowy to n-krotne niezależne powtórzenie próby Bernoulliego.

$$S \sim B(n, p)$$
 $n \in \mathbb{N}$

S - liczba sukcesów w n próbach Bernoulliego.

$$P(S = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, 2, \dots, n$$

P(S=k) - prawdopodobieństwo, że w n próbach sukces wystąpi k razy.

$$ES = np$$
 $VarS = npq$

N - najbardziej prawdopodobna liczba sukcesów w n próbach Bernoulliego.

(i) Jeżeli $(n+1)p \notin \mathbb{N}$, to $N = \lfloor (n+1)p \rfloor$

(ii) Jeżeli
$$(n+1)p \in \mathbb{N}$$
, to $N_1 = (n+1)p$ i $N_2 = N_1 - 1$

Rozkład geometryczny

$$T \sim Geo(p), \quad p \in (0,1) \quad q = 1 - p$$

 ${\cal T}$ - czas oczekiwania na pierwszy sukces w nieskońonym schemacie Bernoulliego (numer próby, w której po raz pierwszy wystąpi sukces).

$$P(T = n) = q^{n-1}p, \quad n = 1, 2, 3, \dots$$

$$ET = \frac{1}{p}, \quad VarT = \frac{q}{p^2}$$

Rozkład Poissona

$$N \sim Poiss(\lambda), \quad \lambda > 0$$

 ${\cal N}$ - liczba szkód zgłoszonych w jednostce czasu.

$$P(N = k) = \frac{\lambda^k}{k!} e^{-\lambda}, \quad k = 0, 1, 2, 3, \dots$$

$$EN = \lambda$$
 $VarN = \lambda$

3.5.4 Wybrane rozkłady ciągłe

Rozkład jednostajny

Rozkład jednostajny na przedziale [a, b]:

$$X \sim \mathcal{U}([a,b])$$

Dystrybuanta F(x)

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b] \\ 0, & x \notin [a, b] \end{cases}$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x \in [a, b] \\ 1, & x > b \end{cases}$$

3.5.5 Rozkład wykładniczy

$$T \sim Exp(\lambda), \quad \lambda > 0$$

Gęstość f(x)

Dystrybuanta F(x)

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0\\ 0, & x < 0 \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

Własność braku pamięci rozkładu wykładniczego

Jeżeli T ma rozkład wykładniczy, $T \sim Exp(\lambda), \lambda > 0$ to dla dowolnych s, t > 0

$$P(T > s + t | T > s) = P(T > t)$$

3.5.6 Rozkład normalny

$$X \sim \mathcal{N}(m, \sigma), \quad m \in \mathbb{R}, \sigma > 0$$

Gęstość

Dystrybuanta

$$EX = m$$
 $VarX = \sigma^2$ $\sigma_x = \sigma$

Rozkład normalny standardowy

$$X \sim \mathcal{N}(0,1)$$

Gęstość

Dystrybuanta

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad x \in \mathbb{R}$$

$$EX = 0$$
 $VarX = 1$ $\sigma_x = 1$

3.6 Zmienne losowe dwuwymiarowe

$$X,Y:\Omega\to\mathbb{R}$$
 $Z=(X,Y)$ - wektor losowy

3.6.1 Tw. Nierówność Schwarza

Jeżeli $EX^2 < \infty$ i $EY^2 < \infty$, to

$$|E(XY)| \leqslant \sqrt{EX^2 \cdot EY^2}$$

3.6.2 Kowariancja

Jeżeli $EX^2 < \infty$ i $EY^2 < \infty$, to kowariancja zmiennych losowych X i Y to liczba Cov(X,Y) określona wzorem:

$$Cov(X,Y) = E((X - EX)(Y - EY))$$

Tw. $Cov(X, Y) = E(XY) - EX \cdot EY$

Tw. $|Cov(X,Y)| \leq \sigma_x \cdot \sigma_y$

Współczynnik korelacji

Jeżeli $0 < Var X < \infty$ i $0 < Var Y < \infty$ to współczynnik korelacji liniowej zm. l. X i Y to liczba $\varrho(X,Y)$ zadana wzorem:

$$\varrho(X,Y) = \frac{Cov(X,Y)}{\sigma_x \cdot \sigma_y}$$

$$-1 \leqslant \rho(X, Y) \leqslant 1$$

$$\varrho(X,Y) \in [-1,1]$$

Załóżmy, że $0 < VarX < \infty$ i $0 < VarY < \infty$, wówczas:

- (i) $\rho(X,Y) = 0 \iff X \text{ i } Y \text{ sa nieskorelowane}$
- (ii) $\varrho(X,Y) > 0 \iff X$ i Y są dodatnio skorelowane
- (iii) $\varrho(X,Y) < 0 \iff X$ i Y są ujemnie skorelowane
- (iv) $\varrho(X,Y) = \pm 1 \iff X$ i Y są liniowo skorelowane

Jeżeli $\varrho(X,Y)=\pm 1$, to istnieją liczby $a,b\in\mathbb{R}$ takie, że

$$Y=aX+b$$
 Jeżeli $\varrho(X,Y)=1$, to $a>0$ Jeżeli $\varrho(X,Y)=-1$, to $a<0$

X i Y są nieskorelowane $\iff Cov(X,Y) = 0$

Fakt: X i Y są nieskorelowane $\iff Cov(X,Y) = 0$

Tw. Jeżeli $EX^2 < \infty$, $i = 1, 2, \dots, n$, to

$$Var(\sum^{n} X_i) = \sum^{n} Var(X_i) + 2 \sum_{1 \le i < j \le n} Cov(X_i, X_j)$$

Tw. Jeżeli zmienne losowe X_1, X_2, \dots, X_n są parami nieskorelowane, to

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

3.6.3 Niezależne zmienne losowe

Zmienne losowe X_1, X_2, \ldots, X_n są niezależne jeżeli dla dowolnych zbiorów borelowskich $B_1, B_2, \ldots, B_n \subset \mathbb{R}$ zdarzenia $X_1 \in B_1, X_2 \in B_2, \ldots, X_n \in B_n$ są niezależne.

Tw. Jeżeli X_1, X_2, \ldots, X_n są niezależne oraz $E|X_i| < \infty, i = 1, 2, \ldots, n$, to

$$E(\prod^{n} X_i) = \prod^{n} EX_i$$

Jeżeli X i Y są niezależne, to są nieskorelowane.

Tw. Jeżeli X_1, X_2, \ldots, X_n są niezależne, to

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$

3.6.4 Rozkłady niezależnych zmiennych losowych

Tw. Jeżeli X i Y to niezależnie zmienne losowe o rozkładzie ciągłym z gęstościa f(x) i g(y) odpowiednio oraz S = X + Y, to S ma ma również rozkład ciągły z gęstością h(x)

$$h(x) = \int f(t)g(x-t)dt, \quad x \in \mathbb{R}$$

$$h = f * g$$
 h – splot funckji f i g

Tw. Jeżeli X i Y to niezależne zm. losowe o rozkładzie Poissona, $X \sim Poiss(\lambda_1)$ i $X \sim Poiss(\lambda_2)$ oraz S = X + Y, to S ma również rozkład Poissona $S \sim Poiss(\lambda)$, gdzie $\lambda = \lambda_1 + \lambda_2$

Tw. Jeżeli X i Y to niezależne zm. losowe o rozkładzie normalnym, $X \sim \mathcal{N}(m_1, \sigma_1)$ i $Y \sim \mathcal{N}(m_2, \sigma_2)$ oraz S = X + Y, to S ma rozkład normalny $S \sim \mathcal{N}(m, \sigma)$, gdzie $m = m_1 + m_2$ i $\sigma^2 = \sigma_1^2 + \sigma_2^2$

Tw. Jeżeli X_1, X_2, \dots, X_n to niezależne zmienne losowe o tym samym rozkładzie normalnym $X_i \sim \mathcal{N}(m, \sigma)$ oraz

3.7 Prawa Wielkich Liczb

3.7.1 Prawa Bernoulliego

Nieskończony ciąg prób Bernoulliego

$$X_i = \begin{cases} 0, & \text{w i-tej probie porażka} \\ 1, & \text{w i-tej probie sukces} \end{cases}$$

$$\begin{array}{c|c|c} x_i & 0 & 1 \\ \hline p_i & q & p \\ \hline q = 1 - p \end{array}$$

$$EX_i = 0q + 1p = p$$
 $EX_i^2 = 0^2q + 1^2p = p$ $VarX_i = EX_i^2 - (EX_i)^2 = p - p^2 = pq$ $\sigma_{X_i} = \sqrt{pq}$

 X_1, X_2, X_3, \ldots – ciąg niezależnych zm. losowych o tym samym rozkładzie

 $S_n = \sum^n X_i$ – liczba sukcesów w n próbach Bernoulliego

 $T_n = \frac{\sum^n X_i}{n}$ – częstość sukcesów w n próbach Bernoulliego

Tw. Słabe Prawo Wielkich Liczb Bernoulliego

Dla każdego $\varepsilon > 0$

$$\lim_{n \to \infty} P(|T_n - p| \leqslant \varepsilon) = 1$$

Tw. Mocne Prawo Wielkich Liczb Bernoulliego

$$P(\lim_{n\to\infty} T_n = p) = 1$$

Tw, Mocne Prawo Wielkich Liczb Kołmogorowa

Załóżmy, że X_1, X_2, \ldots to ciąg niezależnych zmiennych losowych o tym samym rozkładzie ze skończoną wartością oczekiwaną $EX_i=m, i=1,2,\ldots$

Niech
$$T_n = \frac{\sum_{i=1}^{n} X_i}{n}$$
 wówczas

$$P(\lim_{n\to\infty} T_n = m) = 1$$

3.8 Twierdzenia Graniczne

 X_1, X_2, X_3, \ldots – niezależne zmienne losowe

$$S_n = \sum_{i=1}^n X_i - \text{suma}$$

$$T_n = \frac{\sum_{i=1}^{n} X_i}{n}$$
 – średnia

$$Z_n = \frac{S_n - ES_n}{SD(S_n)}$$
 – standaryzowana suma

$$EZ_n = 0$$
 $VarZ_n = 1$

Nieskończony ciąg prób Bernoulliego

$$X_i = \begin{cases} 0, & \text{w } i\text{-tej próbie porażka} \\ 1, & \text{w } i\text{-tej próbie sukces} \end{cases} EX_i = p \quad VarX_i = pq$$

 X_1, X_2, X_3, \ldots – ciąg niezależnych zm. losowych o tym samym rozkładzie

$$S_n = \sum_{i=1}^n X_i$$

$$ES_n = np$$

$$VarS_n = npq$$

$$SD(S_n) = \sqrt{npq}$$

$$Z_n = \frac{S_n - np}{\sqrt{npq}}$$

Tw. Centralne Twierdzenie Graniczne de Moivre'a-Laplace'a

Jeżeli S_n to liczba sukcesów w n próbach Bernoulliego, to dla dowolnych $a,b \in \mathbb{R}$ takich, że a < b

$$\lim_{n \to \infty} P(a \leqslant \frac{S_n - np}{\sqrt{npq}} \leqslant b) = \Phi(b) - \Phi(a)$$

gdzie Φ to dystrybuanta $\mathcal{N}(0,1)$.

Niech S_n to liczba sukcesów w n próbach Bernoulliego i $T_n = \frac{S_n}{n}$ to częstość sukcesów w n próbach Bernoulliego, wówczas dla dużych n mamy:

$$Z_n \approx \mathcal{N}(0,1)$$
 $S_n \approx \mathcal{N}(np, \sqrt{npq})$ $T_n \approx \mathcal{N}(p, \sqrt{\frac{pq}{n}})$

Tw. Centralne Twierdzenie Graniczne Lindeberga-Levy'ego

Załóżmy, że X_1,X_2,X_3,\ldots to ciąg niezależnych zmiennych losowych o tym samym rozkładzie ze skończoną wariancją, $EX_i=m, Var X_i=\sigma^2, i=1,2,\ldots$

Niech $S_n = \sum^n X_i$ i $Z_n = \frac{S_n - ES_n}{SD(S_n)} = \frac{S_n - n \cdot m}{\sigma \sqrt{n}}$ oraz niech $F_n(x)$ będzie dystrybuantą Z_n . Wówczas dla każdego $x \in \mathbb{R}$

$$\lim_{n \to \infty} F_n(x) = \Phi(x)$$

Wniosek: $S_n \approx \mathcal{N}(m \cdot n, \sigma \sqrt{n})$ i $T_n \approx \mathcal{N}(m, \frac{\sigma}{\sqrt{n}})$

Sondaże (wielkość próby n)

Sondaż przeprowadzamy na grupie n osób. Jedno pytanie.

p – procent osób w całej populacji, która odpowiada TAK.

$$\begin{array}{c|c|c} x_i & 0 & 1 \\ \hline p_i & q & p \end{array}$$

$$X_i \begin{cases} 1, & i\text{-ty badany TAK} \\ 0, & i\text{-ty badany NIE lub NIE WIEM} \end{cases}$$

 X_1, X_2, \dots, X_n – niezależne zm. losowe o tym samym rozkładzie

$$T_n = \frac{\sum_{i=1}^{n} X_i}{n}$$
 – częstość odpowiedzi TAK w badaniu

Z CTG de Moivre'a-Laplace'a wynika, że

$$T_n \approx \mathcal{N}(p, \sqrt{\frac{pq}{n}})$$

Parametry badania:

- n wielkość próby
- $\bullet \ \varepsilon$ dopuszczalny błąd badania
- *u* poziom ufności

$$P(|T_n - p| \le \varepsilon) \ge u$$

$$n \ge \frac{\alpha^2}{4\varepsilon^2} \quad \text{gdzie } \Phi(\alpha) = \frac{1+u}{2}$$

4 Statystyka

4.1 Szeregi statystyczne

Szereg szczegółowy

Szeregi szczegółowe są to uporządkowane ciągi wartości badanej cechy statystycznej. Wartości takiej cechy mogą być uporządkowane rosnąco:

$$x_1 \leqslant x_2 \leqslant \ldots \leqslant x_n$$

lub malejąco:

$$x_1 \geqslant x_2 \geqslant \ldots \geqslant x_n$$

Szereg rozdzielczy

Szereg rozdzielczy stanowi zbiorowość statystyczną podzieloną na części (klasy) według określonej cechy jakościowej lub ilościowej z podaniem liczebości każdej z tych klas. Dla szeregów rozdzielczych cechy ilościowej wyróżniamy:

• szereg rozdzielczy punktowy

$_{-}i$	x_i	n_i	$\sum n_i$
1	x_1	n_1	$\sum n_1$
2	x_2	n_2	$\sum n_2$
$\underline{}$	x_k	n_k	$\sum n_k$
\sum		n	

gdzie x_i to wartość cechy, n_i to liczebność, a $\sum n_i$ to liczebność skumulowana, tj. $\sum n_s = n_1 + n_2 + \ldots + n_s$

• szereg rozdzielczy przedziałowy

gdzie $x_{0,i}$ to dolna granica przedziału, $x_{1,i}$ to górna granica przedziału, n_i to liczebność, a $\sum n_i$ to liczebność skumulowana.

22

4.2 Miary położenia (tendencji centralnej)

Średnia arytmetyczna

Dla poszczególnych szeregów wyraża się wzorami:

szcegółowego: rozdzielczego punktowego: rozdzielczego przedziałowego:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} x_i n_i$ $\bar{x} = \frac{1}{n} \sum_{i=1}^{k} \dot{x}_i n_i$

gdzie n to liczba elementów, k to liczba klas (przedziałów), x_i to wartość cechy, n_i to liczebność, a $\dot{x_i}$ to środek przedziału, tj. $\dot{x_i} = \frac{x_{0,i} + x_{1,i}}{2}$.

Kwantyle

 $Kwantyl\ k_p\ rzędu\ p\in[0,1]$ to wartość cechy, która dzieli uporządkowany szereg na dwie części: jedna zawiera $p\cdot 100\%$ wartości mniejsze lub równe kp, a druga $(1-p)\cdot 100\%$ wartości większe lub równe kp.

ullet dla szeregu szczególowego: wyznaczamy pozycje kwantyla K=p(n+1) następnie wyznaczamy wartośc kp za pomocą wzoru:

$$kp = \begin{cases} x_K & \text{dla } K \in \mathbb{N} \\ x_{\lfloor K \rfloor} + (K - \lfloor K \rfloor)(x_{\lceil K \rceil} - x_{\lfloor K \rfloor}) & \text{dla } k \notin \mathbb{N} \end{cases}$$

• dla szeregów rozdzielczych: wyznaczamy pozycję kwantyla za pomocą wzoru K=np następnie wyznaczamy pierwszą klasę kwantyla dla której $\sum n_i \geqslant K$ i wyliczamy wartość kp za pomocą wzoru:

$$k_p = x_{0K} + \frac{K - \sum n_{K-1}}{n_K} \cdot h_K$$

gdzie x_{0K} to dolna granica klasy, K to pozycja kwantyla, n_K to liczebność klasy kwantyla, $\sum n_{K-1}$ to liczebność skumulowana klasy poprzedzającej, a h_K to rozpiętość klasy kwantyla (dla szeregu rozdzielczego punktowego $h_K = 1$).

23

Nazwy szczególnych kwantyli:

- Kwantyl rzędu $\frac{1}{2}$ to mediana,
- Kwantyle rzędu $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$ to kwartyle,
- Kwantyle rzędu $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ to kwintyle,
- Kwantyle rzędu $\frac{1}{10}, \frac{2}{10}, \dots, \frac{9}{10}$ to decyle,
- Kwantyle rzędu $\frac{1}{100}, \frac{2}{100}, \dots, \frac{99}{100}$ to percentyle,

Mediana

• dla szeregu szczegółowego:

$$Me = \begin{cases} x_{\frac{n+1}{2}} & \text{dla nieparzystego } n \\ \frac{x_{\frac{n}{2}} + x_{\frac{n}{2} + 1}}{2} & \text{dla parzystego } n \end{cases}$$

• $dla\ szeregów\ rozdzielczych\ medianę\ wyznaczamy\ ze\ wzoru\ na\ kwantyl\ rzędu\ \frac{1}{2}.$

Dominanta

- dla szeregu szczególowego i rozdzielczego punktowego jest to wartość cechy, która występuje najcze-
- ullet dla szeregu rozdzielczego przedziałowego dominantę D wyznaczamy ze wzoru:

$$D = x_{0d} + \frac{n_d - n_{d-1}}{(n_d - n_{d-1}) + (n_d - n_{d+1})} \cdot h_d$$

gdzie x_{0d} to dolna granica klasy, n_d to liczebność klasy dominanty, n_{d-1} to liczebność klasy poprzedzającej, n_{d+1} to liczebność klasy następującej, a h_d to rozpiętość klasy dominanty.

4.3 Charakterystyki rozproszenia

Wariancja

Dla poszczególnych szeregów wyraża się wzorami:

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

szcegółowego:

$$s^2 = \frac{1}{2} \sum_{i=1}^{k} (x_i - \bar{x})^2 \cdot n_i$$

rozdzielczego punktowego:

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{2} \cdot n_{i}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (\dot{x}_{i} - \bar{x})^{2} \cdot n_{i}$$

rozdzielczego przedziałowego:

Odchylenie standardowe

$$s = \sqrt{s^2}$$

Odchylenie ćwiartkowe

$$Q = \frac{Q_3 - Q1}{2}, \quad \text{gdzie} \ \substack{Q_1 \ - \text{ kwartyl pierwszy} \\ Q_3 \ - \text{ kwartyl trzeci}}$$

Współczynnik zmienności

$$V = \frac{s}{|\bar{x}|} 100\%, \quad \text{gdzie } \bar{x} \neq 0$$

Rozstęp

$$R = x_{max} - x_{min}$$

4.4 Charakterystyki asymetrii

Współczynnik asymetrii to miara skośności rozkładu cechy statystycznej. Wartość współczynnika asymetrii pozwala określić, czy rozkład cechy jest symetryczny, czy też przesunięty w jedną ze stron. Współczynnik asymetrii wyraża się wzorem:

$$A = \frac{\mu_3}{(s)^3}$$

gdzie μ_3 to trzeci moment centralny, a s to odchylenie standardowe.

Trzeci moment centralny dla poszczególnych szeregów wyraża się wzorami:

szcegółowego: rozdzielczego punktowego: rozdzielczego przedziałowego:

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{3}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (x_{i} - \bar{x})^{3} \cdot n_{i}$$

$$s^{2} = \frac{1}{n} \sum_{i=1}^{k} (\dot{x}_{i} - \bar{x})^{3} \cdot n_{i}$$

Gdy A=0 to rozkład jest symetryczny, gdy A>0 to rozkład jest prawostronnie skośny, a gdy A<0 to rozkład jest lewostronnie skośny.

5 Macierze

Macierz tworzą liczby wpisane do prostokątnej tabelki

$$A_{m,n} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

$$a_{ij}$$
 i - numer wiersza j - numer kolumny

 $M^{m\times n}$ - Zbiór wszystkich macierzy wymiaru $m\times n.$

5.1 Szczególne typy macierzy

5.1.1 Macierz zerowa

Macierz złożona z samych zer.

$$\theta_{3\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

5.1.2 Macierz kwadratowa

Macierz w której liczba wierszy równa się liczbie kolumn (m = n)

Wyróżniamy główną przekątną:

$$\begin{bmatrix} \ddots & & \\ & \ddots & \\ & & \ddots \end{bmatrix}$$

$$(a_{1,1}, a_{2,2}, \dots a_{n,n})$$

5.1.3 Macierz trójkątna

To macierz kwadratowa w której wszystkie elementy nad lub pod główną przekątną wynoszą zero.

$$\begin{bmatrix} \cdot & & 0 \\ & \cdot & \\ & \cdot & \cdot \end{bmatrix}$$
 - Macierz trójkątna dolna.

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot \end{bmatrix}$$
 - Macierz trójkątna górna.

5.1.4 Macierz diagonalna

To macierz, która jest trójkątna górna i dolna. Inaczej mówiąc jest to macierz kwadratowa w której poza główną przekątną występują same zera.

$$\begin{bmatrix} 0 & \ddots \\ \ddots & 0 \end{bmatrix}$$

5.1.5 Macierz jednostkowa

To macierz diagonalna w której na głównej przekątnej występują same 1.

$$I = \begin{bmatrix} 1 & & & 0 \\ & 1 & & \\ & & \ddots & \\ 0 & & & 1 \end{bmatrix}$$
$$I_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

5.2 Działania na macierzach

5.2.1 Transponowanie (Transpozycja)

$$A \in M^{m \times n}, \quad B \in M^{n \times m} \qquad \substack{i \in \{1, 2, \cdots, m\} \\ j \in \{1, 2, \cdots, n\}}$$

$$B = A^T \iff b_{ji} = a_{ij}$$

Aby transponować macierz A należy zamienić wiersze macierzy A na kolumny (albo kolumny na wiersze).

$$A = \begin{bmatrix} 3 & 0 & 5 \\ 4 & 7 & 1 \end{bmatrix} \qquad A^T = \begin{bmatrix} 3 & 4 \\ 0 & 7 \\ 5 & 1 \end{bmatrix}$$

5.2.2 Mnożenie macierzy przez liczbę

$$A, B \in M^{m \times n}, \quad \alpha \in R \qquad \substack{i \in \{1, 2, \dots, m\} \\ j \in \{1, 2, \dots, n\}}$$

$$B = \alpha \cdot A \iff b_{ij} = \alpha \cdot a_{ij}$$

Aby pomnożyć Macierz A przez liczbę α każdy element macierzy A mnożymy przez liczbę α .

$$A = \begin{bmatrix} 3 & 5 \\ 0 & -1 \\ -4 & 8 \end{bmatrix} \qquad 3A = \begin{bmatrix} 9 & 15 \\ 0 & -3 \\ -12 & 24 \end{bmatrix}$$

5.2.3 Dodawanie i odejmowanie macierzy

$$A,B,C,D\in M^{m\times n} \qquad \substack{i\in\{1,2,\cdots,m\}\\j\in\{1,2,\cdots,n\}}$$

$$C = A + B \iff c_{ij} = a_{ij} + b_{ij}$$

 $D = A - B \iff c_{ij} = a_{ij} - b_{ij}$

Dodawanie i odejmowanie można wykonać tylko na macierzach tego samego wymiaru.

Działania te wykonujemy na współrzędnych to znaczy dodajemy/odejmujemy liczby na tych samych pozycjach.

$$A = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 5 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -7 & 6 & 4 \\ -9 & 8 & 0 \end{bmatrix}$$

$$A + B = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 5 & 1 \end{bmatrix} + \begin{bmatrix} -7 & 6 & 4 \\ -9 & 8 & 0 \end{bmatrix} = \begin{bmatrix} -3 & 6 & 1 \\ -11 & 13 & 1 \end{bmatrix}$$

$$A - B = \begin{bmatrix} 4 & 0 & -3 \\ -2 & 5 & 1 \end{bmatrix} - \begin{bmatrix} -7 & 6 & 4 \\ -9 & 8 & 0 \end{bmatrix} = \begin{bmatrix} 11 & -6 & -7 \\ 7 & -3 & 1 \end{bmatrix}$$

$$B - A = \begin{bmatrix} -11 & 6 & 7 \\ -7 & 3 & -1 \end{bmatrix}$$

5.2.4 Mnożenie macierzy

$$A \in M^{m \times p}, \quad B \in M^{p \times n}, \quad C \in M^{m \times n} \qquad \substack{i \in \{1, 2, \dots, m\} \\ j \in \{1, 2, \dots, n\}}$$

$$C = A \cdot B \iff c_{ij} = \sum_{k=1}^{p} a_{ik} \cdot b_{kj}$$

Aby wykonać mnożenie A razy B liczba kolumn macierzy A musi być równa liczbie wierszy macierzy B.

$$\begin{bmatrix} a_1, a_2, \cdots, a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

Aby wykonać mnożenie $A \cdot B$ pierwszy wiersz A mnożymy przez wszystkie kolumny B, następnie drugi wiersz A przez wszystkie kolumny B i tak dalej.

$$A = \begin{bmatrix} 4 & 0 & -2 \\ 1 & 5 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 0 \end{bmatrix}$$

$$A \cdot B = \begin{bmatrix} 4 & 0 & -2 \\ 1 & 5 & -1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} 4 \cdot 3 + 0 \cdot 0 + 4 \cdot (-2) & 4 \cdot 1 + 0 \cdot 2 + (-2) \cdot 0 \\ 1 \cdot 3 + 5 \cdot 0 + (-1) \cdot 4 & 1 \cdot 1 + 5 \cdot 2 + (-1) \cdot 0 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ -1 & 11 \end{bmatrix}$$

$$B \cdot A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \\ 4 & 0 \end{bmatrix} \cdot \begin{bmatrix} 4 & 0 & -2 \\ 1 & 5 & -1 \end{bmatrix} = \begin{bmatrix} 3 \cdot 4 + 1 \cdot 1 & 3 \cdot 0 + 1 \cdot 5 & 3 \cdot (-2) + 3 \cdot (-1) \\ 0 \cdot 4 + 2 \cdot 1 & 0 \cdot 0 + 2 \cdot 5 & 0 \cdot (-2) + 2 \cdot (-1) \\ 4 \cdot 4 + 0 \cdot 1 & 4 \cdot 0 + 0 \cdot 5 & 4 \cdot (-2) + 0 \cdot (-1) \end{bmatrix} = \begin{bmatrix} 13 & 5 & -9 \\ 2 & 10 & -2 \\ 16 & 0 & -8 \end{bmatrix}$$

5.3 Wyznacznik macierzy

Wyznacznik to liczba przyporządkowana macierzy kwadratowej.

Macierze kwadratowe dzielimy na:

- osobliwe, tzn. det A = 0.
- nieosobliwe, tzn. $det A \neq 0$

det A - wyznacznik

$$n = 1$$
 $A = \begin{bmatrix} a \end{bmatrix}$ $det A = a$

$$n = 2$$
 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ $det A = ad - bc$

5.3.1 Wzory Sarrusa

Używane do liczenia wyznacznika dla macierzy kwadratowej rozmiaru n=3.

5.3.2 Tw. Laplace'a

Jeżeli A jest macierzą kwadratową wymiaru $n \ge 2$, to

$$det A = \sum_{j=1}^{n} a_{ij} D_{ij}$$
 Rozwinięcie względem wiersza i

$$det A = \sum_{i=1}^{n} a_{ij} D_{ij} \qquad \text{Rozwinięcie względem kolumny } j$$

Gdzie D_{ij} to dopełnienie algebraiczne a_{ij}

$$D_{ij} = (-1)^{i+j} \cdot det A_{ij}$$

gdzie A_{ij} to macierz, która powstaje z A przez skreślenie wiersza i oraz kolumny j;

Stosując wzór Laplace'a szukamy wiersza lub kolumny z największą ilością zer. Jeżeli w maceirzy występuje wiersz lub kolumna złożona z samych zer to det A = 0.

5.4 Macierz odwrotna

Macierz A^{-1} jest macierzą odwrotną do A, jeżeli:

$$A^{-1} \cdot A = A \cdot A^{-1} = I$$

MacierzAjest odwracalna $\iff A$ jest maceirzą nieosobliwą.

Jeżeli A jest macierzą kwadratową nieosobliwą wymiaru wymiaru $n \ge 2$, to

$$A^{-1} = \frac{1}{\det A} \cdot D^T$$

gdzie $D = \left\lceil D_{ij} \right\rceil$ jest macierzą dopełnień algebraicznych a

Uwaga: n = 1

$$A = \begin{bmatrix} 5 \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} \frac{1}{5} \end{bmatrix}$$

5.5 Minor macierzy

Minor M macierzy A to macierz kwadratowa, która pwostaje z A przez skreślenie pewnej ilości (być może zero) wierszy i kolumn.

5.5.1 Minor bazowy

Minor M macierzy A jest minorem bazowym A, jeżeli $det M \neq 0$ oraz wszystkie minory M' macierzy A wymiaru większego niż M mają wyznaczniki równe zero (det M' = 0)

Uwaga. Macierz A może posiadać więcej niż jeden minor bazowy, ale wszystkie minory bazowe A są tego samego wymiaru.

5.5.2 Rząd macierzy

Rząd macierzy niezerowej to wymiar dowlonego minora bazowego tej macierzy.

Rząd macierzy zerowej wynosi zero $(rz(\theta) = 0)$

5.6 Układy równań liniowych

Z układem równań liniowych można powiązać macierz A wymiaru $m \times n$ nazywaną **macierzą współczynników układu równań** (macierz główna) oraz dwie macierze kolumnowe x (kolumna zmiennych) i b (kolumna wyrazów wolnych).

$$Ax = b$$

5.6.1 Układ Cramera

Układ równań liniowych jest układem Cramera, jeżeli macierz główna układu A jest kwadratowa nieosobliwa. Czyli liczba równań w układzie jest równa liczbie zmiennych a wyznacznik macierzy głównej nie jest równy 0 ($det A \neq 0$).

5.6.2 Metoda macierzy odwrotnej

Układ równań liniowych Cramera ma dokładnie jedno rozwiązanie zadane wzorem

$$x = A^{-1} \cdot b$$

5.6.3 Metoda Cramera

Układ równań liniowych Cramera ma dokładnie jedno rozwiązanie zadane wzorem

$$x_i = \frac{\det A_i}{\det A}, \qquad i = 1, 2, \dots, n$$

gdzie A_i to macierz, która powstaje z A przez zastąpienie kolumny i przez kolumnę wyrazów wolnych.

5.6.4 Twierdzenie Kroneckera-Capelliego

Macierz U (macierz uzupełniona) powstaje z macierzy A przez dołączenie kolumny b.

$$U = \begin{bmatrix} A & \vdots & b \end{bmatrix}$$

- jeżeli rz(A) = rz(U) = n (n liczba niewiadowym), to rozwiązanie jest jedyne;
- jeżeli rz(A) = rz(U) = r < n, to rozwiązań jest nieskończenie wiele i zależą od n-r parametrów.

5.6.5 Macierz schodkowa

Macierz schodkowa to macierz w której każdy pierwszy nie zerowy element wiersza jest przesunięty w prawo w stosunku do wiersza poprzedniego

Nie bierzemy pod uwagę wierszy zerowych

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \quad rz(A) = 3$$

Rząd macierzy schodkowej jest równy liczbie schodków to znaczy nie zerowych wierszy.

5.6.6 Operacje elementarne na wierszach

- 1. Pomnożyć wiersz przez liczbę różną od zera,
- 2. do wiersza dodać inny wiersz pomnożony przez liczbę,
- 3. zamienić dwa wiersze miejscami.

Analogiczne operacje definiujemy dla kolumn

Przekształcenia elementarne nie zmieniają rzędu macierzy.

5.6.7 Metoda Gaussa (eliminacji zmiennych)

Przekształcamy macierz uzupełniną układu za pomocą operacji elementarnych na wierszach do postaci schodkowej. Z przekształconej macierzy odczytujemy czy rząd A jest równy rzędowy U, jeżeli nie to układ jest sprzeczny, jeżeli są równe to z przekształconej macierzy odczytujemy równania układu a następnie rozwiązania.

6 Rachunek różniczkowy

6.1 Pochodna funkcji w punkcie

Załóżmy, że $f:(a,b)\to\mathbb{R}$ i $x_0\in(a,b)$.

Pochodna funkcji f w punkcie x_0 to liczba $f^\prime(x_0)$ określona wzorem

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

6.2 Pochodne funkcji jednej zmiennej

6.2.1 Wzory na pochodne podstawowych funkcji

Pochodna funkcji stałej:

$$(c)' = 0$$
, gdzie $c \in \mathbb{R}$ jest stałą

Pochodna funkcji potęgowej:

$$(x^{\alpha})' = \alpha x^{\alpha - 1}$$
, gdzie $\alpha \in \mathbb{R}$ jest stałą

Pochodna funkcji wykładniczej i logarytmicznej:

$$(a^x)' = a^x \ln a$$
, gdzie $a \in (0,1) \cup (1,\infty)$ jest stałą
$$(\log_\alpha x)' = \frac{1}{x \ln \alpha}, \quad \text{gdzie } \alpha \in (0,1) \cup (1,\infty) \text{ jest stałą}$$

$$(e^x)' = e^x$$

$$(e') = e'$$
$$(\ln x)' = \frac{1}{x}$$

Pochodna funkcji trygonometrycznych:

$$(\sin x)' = \cos x$$
$$(\cos x)' = -\sin x$$
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

Pochodne funkcji łączonych:

$$(\alpha \cdot f)' = \alpha \cdot f', \quad \text{gdzie } \alpha \in \mathbb{R} \text{ jest stałą}$$

$$(f \pm g)' = f' \pm g'$$
$$(f \cdot g)' = f'g + fg'$$
$$(\frac{f}{g})' = \frac{f'g - fg'}{g^2}$$

Przydatne pochodne¹:

$$(x)' = 1$$
$$(ax)' = a$$
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

6.2.2 Tw. Rolle'a

Jeżeli

- 1. funkcja f jest ciągła w przedziale [a, b],
- 2. funckja f ma pochodną w przedziale (a, b),
- 3. f(a) = f(b)

to istnieje $c \in (a, b)$ takie, że f'(c) = 0.

6.2.3 Tw. Lagrange'a

Jeżeli

- 1. funkcja f jest ciągła w przedziale [a, b],
- 2. funckja f ma pochodną w przedziale (a, b),

to istnieje $c \in (a,b)$ takie, że $f'(c) = \frac{f(b) - f(a)}{b - a}.$

6.2.4 Monotoniczność

Jeżeli funkcja f(x) dla każdego $x \in I$, gdzie I to dowolny przedział, ma pochodną:

- 1. f'(x) = 0, to funkcja f jest stała w przedziale I,
- 2. f'(x) > 0, to funkcja f jest rosnąca w przedziale I,
- 3. f'(x) < 0, to funkcja f jest malejąca w przedziale I,
- 4. $f'(x) \ge 0$, to funkcja f jest niemalejąca w przedziale I,
- 5. $f'(x) \leq 0$, to funkcja f jest nierosnąca w przedziale I,

6.2.5 Ekstrema lokalne

Warunek konieczny istnienia ekstremum

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna i ma w punkcie $x_0\in(a,b)$ ekstremum lokalne, to $f'(x_0)=0$.

¹Przydatne pochodne wywodządze się z pochodnych funkcji podstawowych

Warunek wystarczający istnienia ekstremum

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna, $x_0\in(a,b), f'(x_0)=0$ oraz funkcja pochodna f' zmienia znak w otoczeniu punktu x_0 , to

- jeżeli f' zmienia znak z (+) na (-), to w punkcie x_0 jest maksimum lokalne,
- jeżeli f' zmienia znak z (-) na (+), to w punkcie x_0 jest minimum lokalne,

6.2.6 Wypukłość

Funkcja jest wypukła w przedziale I, gdy odcinek łączący dowolne dwa punkty wykresu funkcji f w przedziale I leży powyżej (funkcja ściśle wypukła) lub na wykresie tej funkcji.

Analogicznie funcja jest wklęsła gdy odcinek łączący dwa punkty wykresu funkcji f w przedziale I leży pod (funkcja ściśle wklęsła) lub na wykresie tej funkcji.

Jeżeli funkcja f(x) dla każdego $x \in I$, gdzie I to dowolny przedział, ma pochodną drugiego rzędu:

- 1. f''(x) > 0, to funkcja f jest ściśle wypukła w przedziale I,
- 2. f''(x) < 0, to funkcja f jest ściśle wklęsła w przedziale I,
- 3. $f''(x) \ge 0$, to funkcja f jest wypukła w przedziale I,
- 4. $f''(x) \leq 0$, to funkcja f jest wklęsła w przedziale I,

6.2.7 Punkty przegięcia

Warunek konieczny istnienia punktu przegięcia

Jeżeli funkcja f ma punkt przegięcia w x_0 oraz istnieje pochodna rzędu drugiego funkcji f w punkcie x_0 , to $f''(x_0) = 0$.

Warunek wystarczający istnienia punktu przegięcia

Jeżeli funkcja $f:(a,b)\to\mathbb{R}$ jest różniczkowalna drugiego rzędu, $x_0\in(a,b), f''(x_0)=0$ oraz funkcja pochodna f'' zmienia znak w otoczeniu punktu x_0 , to

- \bullet jeżeli $f^{\prime\prime}$ zmienia znak z (+) na (-), albo
- jeżeli f'' zmienia znak z (-) na (+),

to istnieje punkt przegięcia.

6.3 Pochodne cząstkowe funkcji wielu zmiennych

$$f = f(x_1, x_2, \dots, x_n)$$

Pochodna cząstkowa funkcji f względem zmiennej x_i

$$\frac{\delta f}{\delta x_i} = f'_{x_i}$$

Pochodną cząstkową funkcji f względem zmiennej x_i liczymi tak samo jak pochodną funkcji jednej zmiennej, przyjmując, że x_i to zmienna a wszystkie pozostałe zmienne traktując jak stałe.

Pochodne wyższych rzędów

$$\frac{\delta^2 f}{\delta x_j \delta x_i} = f''_{x_i x_j} = (f'_{x_i})'_{x_j}$$
$$\frac{\delta^2 f}{\delta x_i^2} = f''_{x_i x_i} = (f'_{x_i})'_{x_i}$$

6.3.1 Tw. Schwarza

Jeżeli pochodne mieszane funkcji f(x,y) są funkcjami ciągłymi to są sobie równe, czyli

$$f_{x_i x_j}^{"} = f_{x_j x_i}^{"}$$

6.3.2 Kryterium Sylvestera

Kryterium pozwalające badać określoność symetrycznej macierzy.

Niech

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}$$

będzie macierzą symetryczną o współczynnikach rzeczywistych

Niech ponadto

$$M_1 = a_{1,1}, \quad M_2 = det \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}, \dots \quad M_l = det \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,l} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,l} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l,1} & a_{l,2} & \cdots & a_{l,l} \end{bmatrix}$$

Wówczas

A jest dodatnio określona wtedy i tylko wtedy, gdy jej wiodące minory główne są dodatnie, tj.

$$M_l > 0 \text{ dla } l \in \{1, \dots, n\}$$

A jest ujemnie określona wtedy i tylko wtedy, gdy

$$M_l < 0 \text{ dla } l \in \{1, 3, 5, \dots\}, M_l > 0 \text{ dla } l \in \{2, 4, 6, \dots\}$$

6.3.3 Ekstrema lokalne funkcji dwóch zmiennych

Warunek konieczny

Jeżeli w punkcie $P_0(x_0, y_0)$ istnieje esktremum to

$$\begin{cases} f_x'(P_0) = 0 \\ f_y'(P_0) = 0 \end{cases}$$

Punkt w którym spełnione są warunki konieczne jest punktem stacjonarnym.

Warunek wystarczający

Jeżeli punkt $P_0(x_0,y_0)$ jest punktem stacjonarnym oraz niech $\Delta_1=f''_{xx}$ i $\Delta_2=detf'',$ gdzie f'' to macierz pochodnych cząstkowych drugiego rzędu, to

- \bullet jeżeli $\Delta_1>0$ i $\Delta_2>0 \implies f^{\prime\prime}$ jest dodatnio określona \implies minimum lokalne,
- \bullet jeżeli $\Delta_1<0$ i $\Delta_2>0\implies f''$ jest ujemnie określona \implies maksimum lokalne,

Uwaga. Jeżeli $\Delta_2 < 0$ i $\Delta_1 \neq 0$ to w punkcie stacjonarnym nie ma ekstremum.

7 Rachunek Całkowy

7.1 Funkcja pierwotna

Rozważmy przedział zawarty w zbiorze liczb rzeczywistych $(I \subset \mathbb{R})$. Funkcję rzeczywistą mającą pochodną w każdym punkcie przedziału I nazywamy funkcją pierwotną funkcji f w przedziałe I, jeżeli w każdym punkcie zachodzi F'(x) = f(x).

7.1.1 Tw. o funkcji pierwotnej

Dwie dowolne funckje pierwotne tej samej funckji f różnią się o stałą tzn. Jeśli F i G są funkcjami pierwotnumi w przedziale I do funkcji f, to $\exists c \in \mathbb{R} \ \forall x \in I : F(x) = G(x) + c$.

7.2 Całka nieoznaczona

Rodzina wszystkich funkcji pierwotnych funkcji f w przedziale I nazywamy całką nieoznaczoną funkcji f w przedziale I i oznaczamy ją symbolem $\int f(x)dx$. Zatem

$$\int f(x)dx = F(x) + c \iff F'(x) = f(x)$$

.

7.3 Wzory podstawowe

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + c; \tag{1}$$

$$\int \frac{1}{x} dx = \ln|x| + c; \tag{2}$$

$$\int e^x dx = e^x + c; \tag{3}$$

$$\int a^x dx = \frac{a^x}{lna} + c; \tag{4}$$

$$\int \sin x \, dx = -\cos x + c; \tag{5}$$

$$\int \cos x \, dx = \sin x + c; \tag{6}$$

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + c; \tag{7}$$

$$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + c; \tag{8}$$

7.4 Całka oznaczona Riemanna

7.4.1 Tw. Newtona-Leibniza

Jeżeli $\int f(x)dx = F(x) + c$ to

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Literatura

[1] Krystyna Bieńkowska-Lipińska, Dominik Jagiełło, and Rafał Maj. Rachunek prawdopodobieństwa i statystyka. Ośrodek Kształcenia na Odległość Politechniki Warszawskiej OKNO, 2010.