Video Classification

Final Presentation

- Team 3 -

Roadmap

./ Closing remarks

./ Review - Initial approach Dataset and Data preprocessing ./ Embedding analysis ./ Baseline models ./ Proposed method Data augmentation and Ablation studies ./ Experimental results

Brief Review of Our Initial Approach

From niche classification to broad-topic modeling

REVIEW - INITIAL APPROACH

Dataset > YouTube-8M (ver. May 14th, 2018)

Technical Specs (full dataset)

- 6.1 M Videos
- 350 h Total video duration
- 2.6 B Audio/Video features
- 24 Categories
- 3862 Classes
- 3.0 Avg. classes per video

Dataset > YouTube-8M (ver. May 14th, 2018)

Technical Specs (working dataset)

- 1.8 K Videos
- 600 min Total video duration (20s/video)
- 10 Categories
- 2954 Classes
- 5.2 Avg. classes per video

Dataset splits

- 8:1:1 Split ratio
- 1440 Videos for training set
- 180 Videos for validation and test sets

Dataset > YouTube-8M > Data Preprocessing

Dataset > YouTube-8M > Data Preprocessing > HDF5 file

```
./embeddings/[train|validation|test]/<category_name>/
<video id>.hdf5
 - raw features/
     ffmpeg numerical
                           float32[5]
     youtube_numerical
                           float32[5]
                           string[N_tags]
     tags
                           string
    - rating
                           string
     definition
                           string
     projection
                           string
    - video codec
                           string
     audio codec
                           string
    - published at
                           string
                           string
    - channel_title
    - default language
                           string
  embedded_features/
                                    float32[1024]
     audio features

    video text features

                                    float32[1024]
    embedded_string_metadata
                                    float32[3072]
     normalized numerical metadata float32[M meta]
```

UMAP Visualization of Embeddings by Category

Baseline models > Zero-Shot Classification

Table 1. Zero-Shot Classification

Metric	Score
Accuracy	$\overline{55.6\%}$
Precision	58.8%
Recall	55.6%
F1 Score	52.7%

Baseline models > TimeSformer-Based Classification

Training parameters

Fine-tuning TimeSformer pretrained for Kinetics-400

• Epochs 10

Batch size

Frame resized dim. 224x224

Learning rate
 CosineAnnealingLR

Peak value 1e-4

Warm up length 1 epoch

Total training time ~ 10h

Accuracy 64.0%

BASELINE MODELS

Proposed Method > Overview

PROPOSED METHOD

Proposed Method > Training

Training parameters

• Epochs 20

• Batch size 8

• Frame resized dim. 224x224

• Learning rate CosineAnnealingLR

Peak value1e-4

Warm up length1 epoch

• Total training time ~ 1m

Ablation Study > Input Features #1

Ablation Study > Input Features #2

Table 1. Input ablation study

Mode	Validation accuracy
Video embedding	72.8%
+ Audio embedding	73.9%
+ Metadata embedding	81.1%
+ All embeddings	79.4%

Data Augmentation Method

```
import torch

noise = torch.randn_like(video_embedding)
noise = noise / (noise.norm(dim=1, keepdim=True) + 1e-8)
noise = noise * augmentation_strength

video_embedding = video_embedding + noise
video_embedding = video_embedding / (video_embedding.norm(dim=1, keepdim=True) + 1e-8)
```

https://github.com/usingcolor/20251R0136COSE47400/blob/main/model_training/model_pl.py#L32C25-L38C26

Ablation Study > Video Embeddings Augmentation #1

Ablation Study > Video Embeddings Augmentation #2

Table 1. Video embedding augmentation ablation study

Mode	Validation accuracy
Video embedding	72.8%
+ 0.01 aug. strength	72.2%
+ 0.05 aug. strength	72.8%
+ 0.1 aug. strength	73.3%
+ 0.5 aug. strength	$\boldsymbol{75.0\%}$
+ 1.0 aug. strength	70.0%

Ablation Study > Metadata Embeddings Augmentation #1

Ablation Study > Metadata Embeddings Augmentation #2

Table 1. Metadata embedding augmentation ablation study

Mode	Validation accuracy
Video emb. & Metadata emb.	81.1%
+ 0.1 aug. strength	80.0%
+ 0.5 aug. strength	80.0%
+ 1.0 aug. strength	82.2 %

Ablation Study > Model Architecture #1

Ablation Study > Model Architecture #2

Table 1. Model architecture ablation study

Mode	Validation Accuracy
3 layers	80.6%
4 layers	81.1 %
5 layers	78.3%
Attention	79.4%

Experimental Results

EXPERIMENTAL RESULTS 22

Closing Remarks

Our novel augmentation strategy mitigates overfitting in cosine distance space.

Integrating additional embeddings (video, audio and metadata) enhances model performance.

The 4-layer architecture yielded the best overall performance.