MATH 145 Recitation 3 - Solution Key

1. Find the following limits

1.1. $\lim_{x\to 1} \frac{x^2-1}{x+1}$

Solution. The function $f(x) = \frac{x^2 - 1}{x + 1}$ is continuous at x = 1 because the denominator is $1 + 1 = 2 \neq 0$. We can find the limit by **direct substitution**:

$$\lim_{x \to 1} \frac{x^2 - 1}{x + 1} = \frac{(1)^2 - 1}{1 + 1} = \frac{1 - 1}{2} = \frac{0}{2} = 0$$

1.2. $\lim_{x\to 3} \frac{x^3-8}{x-2}$

Solution. The function $f(x) = \frac{x^3-8}{x-2}$ is continuous at x=3 because the denominator is $3-2=1 \neq 0$. We can find the limit by **direct substitution**:

$$\lim_{x \to 3} \frac{x^3 - 8}{x - 2} = \frac{(3)^3 - 8}{3 - 2} = \frac{27 - 8}{1} = \frac{19}{1} = 19$$

1.3. $\lim_{h\to 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}$

Solution. This limit is in the $\frac{0}{0}$ indeterminate form (assuming $a \ge 0$). We **rationalize the numerator** by multiplying by its conjugate. We assume a > 0.

$$\begin{split} \lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h} &= \lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h} \cdot \left(\frac{\sqrt{a+h} + \sqrt{a}}{\sqrt{a+h} + \sqrt{a}}\right) \\ &= \lim_{h \to 0} \frac{(\sqrt{a+h})^2 - (\sqrt{a})^2}{h(\sqrt{a+h} + \sqrt{a})} \\ &= \lim_{h \to 0} \frac{(a+h) - a}{h(\sqrt{a+h} + \sqrt{a})} \\ &= \lim_{h \to 0} \frac{h}{h(\sqrt{a+h} + \sqrt{a})} \\ &= \lim_{h \to 0} \frac{1}{\sqrt{a+h} + \sqrt{a}} \quad (Since \ h \neq 0) \\ &= \frac{1}{\sqrt{a+0} + \sqrt{a}} = \frac{1}{\sqrt{a} + \sqrt{a}} = \frac{1}{2\sqrt{a}} \end{split}$$

2. $\epsilon - \delta$ Proofs of Limits

2.1. $f(x) = x[3 - \cos(x^2)], a = 0$

Solution. Step 1: Find the limit l. $l = \lim_{x\to 0} x[3-\cos(x^2)] = 0 \cdot [3-\cos(0)] = 0 \cdot (3-1) = 0$. We must prove $\lim_{x\to 0} f(x) = 0$.

Step 2: $\epsilon - \delta$ **Proof.** We need to show that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - 0| < \delta$, then $|f(x) - 0| < \epsilon$.

We want $|x[3-\cos(x^2)]-0| < \epsilon$, which is $|x|\cdot |3-\cos(x^2)| < \epsilon$. We know $-1 \le \cos(x^2) \le 1$. This implies $1 \ge -\cos(x^2) \ge -1$. Adding 3, we get $4 \ge 3 - \cos(x^2) \ge 2$. Thus, the term is always positive,

and $|3 - \cos(x^2)| \le 4$. Our inequality becomes $|x| \cdot |3 - \cos(x^2)| \le 4|x|$. We want $4|x| < \epsilon$, which means $|x| < \epsilon/4$. This suggests $\delta = \epsilon/4$.

Formal Proof. Let $\epsilon > 0$ be given. Choose $\delta = \epsilon/4$. If $0 < |x - 0| < \delta$, then $|x| < \epsilon/4$. Consider $|f(x) - 0| = |x[3 - \cos(x^2)]| = |x| \cdot |3 - \cos(x^2)|$. Since $|3 - \cos(x^2)| \le 4$ for all x, we have

$$|f(x) - 0| \le |x| \cdot 4$$

Since $|x| < \epsilon/4$, we substitute

$$|f(x) - 0| < (\epsilon/4) \cdot 4 = \epsilon$$

Thus, $0 < |x| < \delta$ implies $|f(x) - 0| < \epsilon$.

2.2.
$$f(x) = x^2 + 5x - 2$$
, $a = 2$

Solution. Step 1: Find the limit l. $l = \lim_{x\to 2} (x^2 + 5x - 2) = (2)^2 + 5(2) - 2 = 4 + 10 - 2 = 12$. We must prove $\lim_{x\to 2} f(x) = 12$.

Step 2: $\epsilon - \delta$ **Proof.** We need to show that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x-2| < \delta$, then $|(x^2 + 5x - 2) - 12| < \epsilon$.

We want $|x^2 + 5x - 14| < \epsilon$, which factors to $|(x-2)(x+7)| < \epsilon$. This is $|x-2| \cdot |x+7| < \epsilon$. We need to bound |x+7| for x near a=2. Let's restrict $\delta \le 1$. Then $|x-2| < 1 \implies -1 < x-2 < 1 \implies 1 < x < 3$. If 1 < x < 3, then 8 < x+7 < 10. So, |x+7| < 10. Our inequality becomes $|x-2| \cdot |x+7| < |x-2| \cdot 10$. We want $|x-2| \cdot 10 < \epsilon$, so $|x-2| < \epsilon/10$. We need both $\delta \le 1$ and $\delta \le \epsilon/10$. We choose $\delta = \min(1, \epsilon/10)$.

Formal Proof: Let $\epsilon > 0$ be given. Choose $\delta = \min(1, \epsilon/10)$. If $0 < |x-2| < \delta$, then:

1. |x-2| < 1, which implies 1 < x < 3, and therefore |x+7| < 10.

2. $|x-2| < \epsilon/10$.

Consider $|f(x) - 12| = |x^2 + 5x - 14| = |(x - 2)(x + 7)| = |x - 2| \cdot |x + 7|$. Using our two conditions:

$$|f(x) - 12| < (\epsilon/10) \cdot 10 = \epsilon$$

Thus, $0 < |x-2| < \delta$ implies $|f(x)-12| < \epsilon$.

2.3. $f(x) = \frac{x}{2-\sin^2 x}, a = 0$

Solution. Step 1: Find the limit l. $l = \lim_{x\to 0} \frac{x}{2-\sin^2 x} = \frac{0}{2-\sin^2(0)} = \frac{0}{2-0} = 0$. We must prove $\lim_{x\to 0} f(x) = 0$.

Step 2: Formal $\epsilon - \delta$ **Proof.** We need to show that for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - 0| < \delta$, then $|\frac{x}{2 - \sin^2 x} - 0| < \epsilon$.

We want $\frac{|x|}{|2-\sin^2 x|} < \epsilon$. We need to bound the denominator. We know $0 \le \sin^2(x) \le 1$. Multiplying by -1: $0 \ge -\sin^2(x) \ge -1$. Adding 2: $2 \ge 2 -\sin^2(x) \ge 1$. Since the denominator is always ≥ 1 , we have $|2-\sin^2(x)| \ge 1$. Therefore, $\frac{|x|}{|2-\sin^2 x|} \le \frac{|x|}{1} = |x|$. We want $|x| < \epsilon$. This suggests $\delta = \epsilon$.

Formal Proof: Let $\epsilon > 0$ be given. Choose $\delta = \epsilon$. If $0 < |x-0| < \delta$, then $|x| < \epsilon$. Consider

Formal Proof: Let $\epsilon > 0$ be given. Choose $\delta = \epsilon$. If $0 < |x - 0| < \delta$, then $|x| < \epsilon$. Consider $|f(x) - 0| = |\frac{x}{2 - \sin^2 x}| = \frac{|x|}{|2 - \sin^2 x|}$. As shown above, $|2 - \sin^2 x| \ge 1$, so $\frac{1}{|2 - \sin^2 x|} \le 1$.

$$|f(x) - 0| \le |x| \cdot 1 = |x|$$

Since $|x| < \epsilon$, we have:

$$|f(x) - 0| < \epsilon$$

Thus, $0 < |x| < \delta$ implies $|f(x) - 0| < \epsilon$.

3. Find the following limits in terms of $\alpha = \lim_{x\to 0} \frac{\sin x}{x}$

3.1. $\lim_{x\to\infty} \frac{\sin x}{x}$

Solution. We use the Squeeze Theorem. We know $-1 \le \sin(x) \le 1$ for all x. As $x \to \infty$, we can assume x > 0. Dividing by x, we get

$$\frac{-1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$$

We take the limit of the outer functions

$$\lim_{x \to \infty} \frac{-1}{x} = 0 \quad and \quad \lim_{x \to \infty} \frac{1}{x} = 0$$

By the Squeeze Theorem, the limit of the middle function must also be 0.

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

3.2. $\lim_{x\to\infty} x \sin\frac{1}{x}$

Solution. We use a substitution. Let $t = \frac{1}{x}$. As $x \to \infty$, we have $t \to 0$. The limit becomes

$$\lim_{x\to\infty}x\sin\frac{1}{x}=\lim_{t\to0}\frac{1}{t}\sin(t)=\lim_{t\to0}\frac{\sin(t)}{t}$$

This is the definition of α .

$$\lim_{x \to \infty} x \sin \frac{1}{x} = \alpha$$

4. Prove that $\lim_{x\to a} f(x) = \lim_{h\to 0} f(a+h)$

Proof. (\Rightarrow) Assume $\lim_{x\to a} f(x) = L$. This means that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x-a| < \delta$, then $|f(x)-L| < \epsilon$. We want to show $\lim_{h\to 0} f(a+h) = L$. Let $\epsilon > 0$ be given. Use the same δ from the assumption. Assume $0 < |h-0| < \delta$, which is $0 < |h| < \delta$. Let x = a+h. Then h = x - a. Substituting h = x - a into our assumption $0 < |h| < \delta$ gives $0 < |x-a| < \delta$. By our initial assumption, this implies $|f(x)-L| < \epsilon$. Substituting x = a+h back into this conclusion gives $|f(a+h)-L| < \epsilon$. Thus, for any $\epsilon > 0$, we found a $\delta > 0$ such that $0 < |h| < \delta$ implies $|f(a+h)-L| < \epsilon$.

 (\Leftarrow) Assume $\lim_{h\to 0} f(a+h) = L$. This means that for every $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |h| < \delta$, then $|f(a+h) - L| < \epsilon$. We want to show $\lim_{x\to a} f(x) = L$. Let $\epsilon > 0$ be given. Use the same δ from the assumption. Assume $0 < |x-a| < \delta$. Let h = x-a. Then x = a+h. Substituting h = x-a into our assumption $0 < |x-a| < \delta$ gives $0 < |h| < \delta$. By our initial assumption, this implies $|f(a+h) - L| < \epsilon$. Substituting a + h = x back into this conclusion gives $|f(x) - L| < \epsilon$. Thus, for any $\epsilon > 0$, we found a $\delta > 0$ such that $0 < |x-a| < \delta$ implies $|f(x) - L| < \epsilon$.

Since both statements imply each other, they are equivalent.

5. For which of the following functions f is there a continuous function F with domain \mathbb{R} such that F(x) = f(x) for all x in the domain of f?

Solution. This is possible if and only if all discontinuities of f(x) are **removable discontinuities**. This occurs at a point x = c if f(c) is undefined but $\lim_{x\to c} f(x)$ exists.

5.1.
$$f(x) = \frac{x^2-4}{x-2}$$

The domain of f(x) is $\mathbb{R} \setminus \{2\}$. We check the limit at x = 2.

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 4$$

Since the limit exists, the discontinuity is removable. Yes, this function can be extended. The continuous extension is F(x) = x + 2.

5.2.
$$f(x) = \frac{|x|}{x}$$

The domain of f(x) is $\mathbb{R} \setminus \{0\}$. We check the limit at x = 0 by checking the one-sided limits.

$$\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1$$

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} -1 = -1$$

Since the right-hand limit (1) does not equal the left-hand limit (-1), the overall limit $\lim_{x\to 0} f(x)$ does not exist. This is a non-removable (jump) discontinuity. No, this function cannot be extended to be continuous on all of \mathbb{R} .

6. Suppose that f is continuous at a and f(a) = 0. Prove that if $\alpha \neq 0$, then $f + \alpha$ is nonzero in some open interval containing a.

Solution. Proof. Let $g(x) = f(x) + \alpha$. We are given that f(x) is continuous at a and f(a) = 0. Since f(x) and the constant function $h(x) = \alpha$ are continuous at a, their sum $g(x) = f(x) + \alpha$ is also continuous at a. The value of g(x) at a is $g(a) = f(a) + \alpha = 0 + \alpha = \alpha$.

By the definition of continuity for g(x) at a, for any $\epsilon > 0$, there exists a $\delta > 0$ such that if $|x - a| < \delta$, then $|g(x) - g(a)| < \epsilon$.

We are given $\alpha \neq 0$, so $|\alpha| > 0$. Let us choose $\epsilon = \frac{|\alpha|}{2}$. Since $|\alpha| > 0$, this is a valid positive ϵ . For this ϵ , there must exist some $\delta > 0$ such that if $|x - a| < \delta$, then $|g(x) - g(a)| < \frac{|\alpha|}{2}$.

Substitute $g(a) = \alpha$:

$$|g(x) - \alpha| < \frac{|\alpha|}{2}$$

Now, we use the reverse triangle inequality $(|A| - |B| \le |A - B|)$, which implies $|A - B| \ge |A| - |B|$. Let $A = \alpha$ and B = g(x). Then $|g(x) - \alpha| \ge |\alpha| - |g(x)|$. Combining this with our inequality, we obtain

$$|\alpha| - |g(x)| \le |g(x) - \alpha| < \frac{|\alpha|}{2} \implies \frac{|\alpha|}{2} < |g(x)|.$$

Since $\frac{|\alpha|}{2} > 0$, this proves that |g(x)| > 0, which means $g(x) \neq 0$. This holds for all x satisfying $|x-a| < \delta$, which is the open interval $(a-\delta,a+\delta)$. Thus, $g(x) = f(x) + \alpha$ is nonzero in the open interval $(a-\delta,a+\delta)$ containing a.