Example 3.33. Determine whether the system \mathcal{H} is time invariant, where

$$\Re x(t) = \text{Odd}(x)(t) = \frac{1}{2} [x(t) - x(-t)].$$
 (1)

Solution. Let $x'(t) = x(t - t_0)$, where t_0 is an arbitrary real constant. From the definition of \mathcal{H} , we have

not equal
$$\exists x(t-t_0) = \frac{1}{2}[x(t-t_0) - x(-(t-t_0))]$$
 by substituting $t-t_0$ for t in (1)
$$= \frac{1}{2}[x(t-t_0) - x(-t+t_0)]$$
 and
$$\exists x'(t) = \frac{1}{2}[x'(t) - x'(-t)]$$
 from definition of \mathcal{H} in (1)
$$= \frac{1}{2}[x(t-t_0) - x(-t-t_0)].$$
 from definition of x' in (2)

Since $\Re x(t-t_0) = \Re x'(t)$ does not hold for all x and t_0 , the system is not time invariant.

A system H is said to be time invariant if, far every function x and every real constant to, the following condition holds:

$$\mathcal{H} \times (t-t_0) = \mathcal{H} \times'(t)$$
 for all t , where $\times'(t) = \times (t-t_0)$.