FUNCIONES MEDIBLES

FIJEMOS	XER	MEDIBLE.

- 1. Probar que dada una σ -álgebra $\mathcal A$ de subconjuntos de X y dada $f:X\to\mathbb R$, son equivalentes:
 - $\langle x \rangle (a) \{x \in X : f(x) > a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$
 - (b) $\{x \in X : f(x) \le a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$
 - (c) $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (d) $\{x \in X : f(x) < a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$

Concluir que si $X \in \mathcal{M}$ y $\mathcal{A} = \mathcal{M}$, entonces f es medible si y sólo si vale alguno de (y por lo tanto todos) los items de arriba.

$$\chi_{A(X)} = \begin{cases} 1, & \text{Xe } \Delta \\ 0, & \text{Xe } \Delta \end{cases}$$

CNTONCES YA ES MEDIBLE SIT A ES MEDIBLE

(=)
$$\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$$
 $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} \}$ $\{ \chi_{A} > \alpha \} = \{ \chi_{A} > \alpha \}$

· | f|=1 ES MEDIBLE (If)=7/1R)

