

Which video are you more likely to like?

Davie504

Not Davie 504

凸 10

√J 0

Which drug should you give if you are uncertain about *p*?

Drug A

Drug B

Which one do you give to a patient?

Philosophical Ponderings:

You ask about the probability of rain tomorrow.

Person A: My leg itches when it rains and its kind of itchy.... Uh, p = .80

Person B: I have done complex calculations and have seen 10,451 days like tomorrow... p = 0.80

What is the difference between the two estimates?

"Those who are able to represent what they do not know make better decisions" - CS109

Today we are going to learn something unintuitive, beautiful and useful

Review

Inference on a non-bernoulli random variable

$$P(A=a)$$

$$P(A = a|Y = 0)$$

We can perform inference when there are two random variables using Bayes!

Number or Dictionary?

belief
$$P(A=a|Y=0) = \frac{P(Y=0|A=a)P(A=a)}{P(Y=0)}$$

Inference on a non-bernoulli random variable

In plain English: run bayes for each value of a

P(A = a | Y = 0) =

RV bayes as code

```
def update(belief, obs):
    for a in support:
        prior_a = belief[a]
        likelihood = calc_likelihood(a, obs)
        belief[a] = prior_a * likelihood
        normalize(belief)
```

likelihood

$$P(Y = 0|A = a)P(A = a)$$

$$P(Y = 0)$$

Normalize???

```
# RV bayes as code
def update(belief, obs):
     for a in support:
      prior a = belief[a]
      likelihood = calc_likelihood(a, obs)
      belief[a] = prior a * likelihood
     normalize(belief)
```

In plain English: this is the sum of all the things in belief

$$P(A = a|Y = 0) = \frac{P(Y = 0|A = a)P(A = a)}{P(Y = 0)}$$

$$= \frac{P(Y = 0|A = a)P(A = a)}{\sum_{a} P(Y = 0, A = a)}$$

$$= \frac{P(Y = 0|A = a)P(A = a)}{\sum_{a} P(Y = 0|A = a)P(A = a)}$$

End Review

Where are we in CS109?

Overview of Topics

Counting Theory

Core Probability

Random Variables

Probabilistic Models

YOU

Let's play a game!

Flip a plate 5 times. If you get heads 3 times you win

$$P(X = 3) = {5 \choose 3} \cdot \frac{1}{2}^{3} \cdot \frac{1}{2}^{2}$$
$$= 0.3125$$

What if you don't know a probability?

What if you don't know a probability?

Former CS109 Student: Ultimate Frisbee Start

https://www.maikaisogawa.com/wp-content/uploads/2018/12/Ultimate-Probability-Write-Up-Maika-Isogawa.pdf

What is your belief that you flip a heads on my coin?

The parameter *p* to a binomial can be a random variable

$$p = \frac{9}{10}$$

Let *X* be our belief about the probability of heads:

Let *H* be our observed number of heads in 10 flips:

$$f(X=x|H=9,T=1)$$
 Binomial
$$= P(H=9,T=1|X=x)f(X=x)$$
 Uniform?
$$P(H=9,T=1)$$

Let *X* be our belief about the probability of heads:

Let *H* be our observed number of heads in 10 flips:

Binomial
$$= P(H=9,T=1|X=x)f(X=x)$$
 Uniform?
$$P(H=9,T=1) = \frac{\binom{10}{9}x^9(1-x)^1}{P(H=9,T=1)} = K \cdot x^9(1-x)^1$$

$$f(X = x | H = 9, T = 1)$$

Two different perspectives:

Flip a coin n times, comes up with h heads (let H = h be the event of flipping n times and getting h heads)

We don't know probability X that coin comes up heads

Frequentist (never prior)

Bayesian (prior is great)

$$X = \lim_{k \to \infty} \frac{\text{count}(\text{heads in } k \text{ flips})}{k}$$

$$\approx \frac{h}{n}$$

$$f(X = x | H = h) = \frac{P(H = h | X = x) \cdot f(X = x)}{P(H = h)}$$

Flip a coin *n* times, comes up with *h* heads and *t* tails

- We don't know probability X that coin comes up heads
- Our belief before flipping coins is that: X ~ Uni(0, 1)
- Let H = number of heads
- Given X = x, coin flips independent:

Bayesian
"posterior"
probability distribution

Bayesian "prior" probability distribution

Flip a coin *n* times, comes up with *h* heads and *t* tails

- We don't know probability X that coin comes up heads
- Our belief before flipping coins is that: X ~ Uni(0, 1)
- Let H = number of heads
- Given X = x, coin flips independent:

$$f(X=x|H=h) = \frac{P(H=h|X=x) \cdot f(X=x)}{P(H=h)}$$

$$= \frac{\binom{n}{h}x^h(1-x)^t \cdot 1}{P(H=h)}$$

$$= \frac{\binom{n}{h}}{P(H=h)} \cdot x^h(1-x)^t \qquad \text{Move terms around}$$

$$= \frac{1}{c} \cdot x^h(1-x)^t \qquad c = \int_0^1 x^h(1-x)^t \, \partial x$$
Stanford University

Flip a coin with unknown probability!

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

n "successes" and *m* "failures"...

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^n (1 - x)^m$$

where
$$c = \int_{0}^{1} x^{n} (1 - x)^{m}$$

Belief after 7 success and 1 fail

Equivalently!

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

let a = num "successes" + 1

let b = num "failures" + 1

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}$$

where
$$c = \int_0^1 x^{a-1} (1-x)^{b-1}$$

Beta Random Variable

X is a **Beta Random Variable**: $X \sim Beta(a, b)$

• Probability Density Function (PDF): (where a, b > 0)

$$f(x) = \begin{cases} \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$B(a,b) = \int_{0}^{1} x^{a-1} (1-x)^{b-1} dx$$

$$B_{\text{eta}(0.8,0.2)}$$

$$B_{\text{eta}(0.8,0.2)}$$

$$B_{\text{eta}(0.8,0.2)}$$

$$B_{\text{eta}(0.8,0.8)}$$

$$B_{\text{eta}(0.8,0.8)}$$

• Symmetric when a = b

$$E[X] = \frac{a}{a+b} \qquad Var(X) = \frac{ab}{(a+b)^2(a+b+1)}$$

Beta is the Random Variable for Probabilities

Used to represent a distributed belief of a probability

Beta Parameters *can* come from experiments:

a = "successes" + 1

b = "failures" + 1

Think about the difference between a **point estimate** and a **distribution**

$$p = 0.75$$

Beta is a distribution for probabilities. Its range is values between 0 and 1

Beta Parameters *can* come from experiments:

a = "successes" + 1

b = "failures" + 1

If the Prior was Beta?

X is our random variable for probability

If our **prior belief** about X was beta

$$f(X = x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$$

What is our **posterior belief** about X after observing *n* heads (and *m* tails)?

$$f(X = x | N = n) = ???$$

If the Prior was Beta?

$$f(X = x|N = n) = \frac{P(N = n|X = x)f(X = x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m f(X = x)}{P(N = n)}$$

$$= \frac{\binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}}{P(N = n)}$$

$$= K_1 \cdot \binom{n+m}{n}x^n(1-x)^m \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$$

$$= K_3 \cdot x^n(1-x)^m x^{a-1}(1-x)^{b-1}$$

$$= K_3 \cdot x^{n+a-1}(1-x)^{m+b-1}$$

$$X|N \sim \text{Beta}(n+a, m+b)$$

A beta understanding

- If "Prior" distribution of X (before seeing flips) is Beta
- Then "Posterior" distribution of X (after flips) is Beta

Beta is a **conjugate** distribution for Beta

- Prior and posterior parametric forms are the same!
- Practically, conjugate means easy update:
 - o Add number of "heads" and "tails" seen to Beta parameters

Laplace Smoothing

One imagined heads

Prior:
$$X \sim \mathrm{Beta}(a=2,b=2)$$
One imagined tail

Fancy name. Simple prior

Check this out, Boss

$$o$$
 Beta($a = 1, b = 1$) =?

$$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} = \frac{1}{B(a,b)} x^0 (1-x)^0$$
$$= \frac{1}{\int_0^1 1 \, dx} 1 = 1 \quad \text{where} \quad 0 < x < 1$$

$$o$$
 Beta $(a = 1, b = 1) = Uni(0, 1)$

Mystery Plate

Let X be the probability of getting a heads when flipping a plate.

Prior: Imagine 5 coin flips that were heads

Observation: Flip it a few times...

What is the updated probability density function of X after our observations?

Check out the Demo!

Damn

A beta example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Frequentist:

$$p \approx \frac{14}{20} = 0.7$$

A beta example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Bayesian:

$$X \sim \text{Beta}$$

Prior:

$$X \sim \text{Beta}(a = 81, b = 21)$$

80 successes / 100 trials

$$X \sim \text{Beta}(a = 9, b = 3)$$

8 successes / 10 trials

$$X \sim \text{Beta}(a=5,b=2)$$

4 successes / 5 trials

A beta example

Before being tested, a medicine is believed to "work" about 80% of the time. The medicine is tried on 20 patients. It "works" for 14 and "doesn't work" for 6. What is your new belief that the drug works?

Which video are you more likely to like?

凸 10

Which video are you more likely to like?

占 10,000 **分** 50

Beta PDF (Using Laplace prior)

凸 10

√ 0

Beta PDF (Using Laplace prior)

Next level?

Alpha GO mixed deep learning and core reasoning under uncertainty

Multi Armed Bandit

Multi Armed Bandit

Drug A

Drug B

Which one do you give to a patient?

Lets Play!

Drug A

Drug B

Which one do you give to a patient?

Lets Play!

```
sim.py
    import pickle
    import random
    def main():
      X1, X2 = pickle.load(open('probs.pkl', 'rb'))
 6
      print("Welcome to the drug simulator. There are two drugs")
 8
      while True:
        choice = getChoice()
10
        prob = X1 if choice == "a" else X2
11
        success = bernoulli(prob)
12
13
        if success:
14
          print('Success. Patient lives!')
15
        else:
          print('Failure. Patient dies!')
16
17
        print('')
```

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times.

If you had a uniform prior, what is your posterior belief about the likelihood of success?

2 successes 3 failures

$$X \sim \text{Beta}(a=3,b=4)$$

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. X is the probability of success.

$$X \sim \text{Beta}(a=3,b=4)$$

What is expectation of X?

$$E[X] = \frac{a}{a+b} = \frac{3}{3+4} \approx 0.43$$

Optimal Decision Making

You try drug B, 5 times. It is successful 2 times. X is the probability of success.

$$X \sim \text{Beta}(a=3,b=4)$$

What is the probability that X > 0.6

$$P(X > 0.6) = 1 - P(X < 0.6) = 1 - F_X(0.6)$$

Wait what? Chris are you holding out on me?

stats.beta.cdf(
$$x$$
, a, b)

$$P(X > 0.6) = 1 - F_X(0.6) = 0.1792$$

Explore something new? Or go for what looks good now?

One option: Upper Confidence Bound

Amazing option: Thompson Sampling

1. Chose a sample from each drug's beta

2. Select the drug with the higher sample

Beta: The probability density for probabilities

Beta is a distribution for probabilities

Beta Distribution

If you start with a $X \sim \text{Uni}(0, 1)$ prior over probability, and observe:

let a = num "successes" + 1

let b = num "failures" + 1

Your new belief about the probability is:

$$f_X(x) = \frac{1}{c} \cdot x^{a-1} (1-x)^{b-1}$$

where
$$c = \int_0^1 x^{a-1} (1-x)^{b-1}$$

Distributions

Think about the difference between a **point estimate** and a **distribution**

$$p = 0.75$$

Problem with a point estimate:

Person A: My leg itches when it rains and its kind of itchy.... Uh, p = .80

Person B: I have done complex calculations and have seen 10,451 days like tomorrow... p = 0.80

Give me the uncertainty!!!

Any parameter for a "parameterized" random variable can be thought of as a random variable.

Eg:

$$P(\Lambda = \lambda | N = 5)$$

Grades are Not Normal

Grades are Not Normal

