

Introduction to Statistical Methods

ISM Team

Session No 3

Bayes Theorem, Random Variables

(Session 3: 20th /21st Nov 2021)

Session No 3 Course Handout

Contact Session	List of Topic Title	Reference
CS - 3	Random Variables – Discrete & Continuous (single variable)	T1:Chapter 3 & 4
HW	Problems on Random Variables	T1:Chapter 3 & 4
Lab		

Agenda Here is what you learn in the entire session

- Definition of Random variables and Different types
- 2 Discrete and Continuous Probability Distributions

In which of the following data it is possible to apply any Statistical Methods to summarize?

Height (cms) by 10 persons

No

: No changes in each of the data (Constant)

Height (cms) by 10 persons

168, 165, 178, 166, 158, 181, 154, 170, 168, 178

Yes

: Changes in each of the data (Variable)

Statistical Methods are possible to apply only if the data varies (Variable).

Discrete (ex. Countable #s)

Continuous (ex. Real #s)

Can the data on height (cms) be called random variable?

→ Yes/No (Why?)

Let us explore the reasons after a while

Like Height, other measurements viz., Weight, Age, BP, Wages etc are also called variables, usually denoted by X, Y, Z etc

If a computer chip is selected at random, the sample space will be Ω

$$\Omega = \{N, D\}$$

of events = $2^1 = 2$

Example 2

If two computer chip is selected at random, the sample space will be Ω

$$\Omega = \{NN, ND, DN, DD\}$$

of events =
$$2^2 = 4$$

Variable \implies Meaning/ Definition

If three computer chips are selected at random, the sample space will be Ω

 $\Omega = \{NNN, NND, NDN, DNN, NDD, DND, DDN, DDD\}$

of events =
$$2^3 = 8$$

Example

4

If four computer chips are selected at random, the sample space will be Ω

 $\Omega = \{NNNN, NNND,..., NNDN, NDDN,...,DNDN, NDDD,...DNDD, DDDD\}$

of events =
$$2^4 = 16$$

If the number of Computer chips selected are 5, 6, ..., n, the size of the sample space also increases $2^5 = 32$, $2^6 = 64$, ..., 2^n .

- Basically, instead of how many events in a Ω are there
- we are interested in counting a # of times a favourable event occurs like No. of defective chips

Variable \implies **Meaning/ Definition**

Variable \implies **Meaning/ Definition**

No. of defective chips

Pascal triangle

n = 0

า = 1

n = 2

n = 3

n = 4

n = 5

Let us denote the counting numbers based on the defined favourable event by X, Y, Z etc.

- X, Y, Z are called Random variable
- The examples of Height, Weight, Age, BP, Wages which are denoted as X, Y, Z, are called <u>Variables</u> whereas in case of example on Computer chips X, Y, Z are called <u>Random variables</u>.
- What is the difference between the two?

Random Variable Explanation – Every value of X based on some chance

Example 1

	Outcome	X	Favourable events (m)	Probability
I	N	0	1	1/2
>	D	1	1	1/2
I	Total		2	1

Example 2

Outcome	X	m	Frequency (f)	Probability
NN	0	1	1	1/4
ND	1	1	2	2/4
DN	1	1	2	2/4
DD	2	1	1	1/4
Total		4	4	1

Random variable

Explanation – Every value of X based on some chance

Example 3

Outcome	X	m	f	Probability	
NNN	0	1	1	1/8	
NND	1	1			
NDN	1	1	3	3 3/8	3/8
DNN	1	1			
NDD	2	1	3 3/8		
DND	2	1		3/8	
DDN	2	1			
DDD	3	1	1	1/8	
Total		8	8	1	

Random variable Probability Distribution

Random variable Probability Distribution

A random variable is a real valued function defined on the sample space Ω

 With the introduction of X we can write the probabilities as

$$> p(0) = P(X=0) = 0.0625$$

$$\rightarrow$$
 p(1) = P(X=1) = 0.2500

$$>$$
 p(2) = P(X=2) = 0.3750

$$>$$
 p(3) = P(X=3) = 0.2500

$$> p(4) = P(x=4) = 0.0625$$
 such that

$$p(0) + p(1) + p(2) + p(3) + p(4) = 1$$

and each
$$p(x) \ge 0$$
, $x = 0, 1, 2, 3, 4$

Random variable Definition

A random variable is a real valued function which is a mapping from the sample space Ω to the set of real numbers, ie., $X: \Omega \rightarrow R$. There are two types viz.,

Types of Random Variables

Discrete random variables

- > Number of sales
- > Number of calls
- > Shares of stock
- ➤ People in line
- ➤ Mistakes per page

Continuous random variables

- > Length
- > Depth
- > Volume
- > Time
- > Weight

Random variable Types of random variables

Two types of random variables

Discrete random variable:

A random variable which take on countable numbers (may be finite or countable infinite values) i.e., without decimal like Natural #s, Whole #s, Integers etc.

Continuous random variable:

A random variable which take on any values in an interval i.e., in the set of real #s which includes, negative, positive, rational, irrational, decimal etc

Random variable Probability distributions based on RVs

Two types of Probability distributions

Discrete Probability Distribution:

A probability distribution based on discrete random variable is called discrete probability distribution.

Continuous Probability Distribution:

A probability distribution based on continuous random variable is called continuous probability distribution

Disercie Probability Distribution

Probability Distribution | Meaning/ Definition

Frequency distribution

Age (yrs)	No. of Persons		
≤1	141		
2-5	187		
6-12	206		
13-19	353		
20-29	365		
30-39	386		
40-49	269		
50-60	63		
> 60	30		
Total	2000		

No. of defective RAM chips (X)	Probability
0	0.0625
1	0.2500
2	0.3750
3	0.2500
4	0.0625
Total	1

Probability Distribution Definition and **Properties**

A random variable 'X' is said to have discrete probability distribution if it satisfy the following conditions

p(x) = P(X=x) is called probability mass function (pmf)

(i)
$$0 \le p(x) \le 1$$
, for all x

$$(ii) \sum_{\text{all } x_i} p(x) = 1$$

Probability Distribution

Discrete distribution

Check whether the following can serve as **Probability distributions**

For what value of c, this can be a probability mass function (pmf)?

$$p(x) = \frac{x-2}{2}$$
, for $x = 1, 2, 3, 4$

No

$$p(x) = cx^2$$
, for $x = 0, 1, 2, 3, 4$

Yes with c = 1/30

Probability Distribution Discrete distribution

No. of defective RAM chips	Probability
0	1/8
1	3/8
2	3/8
3	1/8
Total	1

Probability bar chart

Probability Distribution Discrete distribution

X = No. of defectives

X	0	1	2	3
P(X=x)	0.614	0.324	0.057	0.003

Probability Distribution Discrete distribution

Example 2:

Let X denote the random variable that is defined as the sum of two fair dice, then,

X=x	2	3	4	5	6	7	8	9	10	11	12
P(X=x)	1/36	2/36	3/36	4/36	5/36	6/36	5/36	4/36	3/36	2/36	1/36

Probability Distribution \implies Cumulative Distribution Function

- Let p(x) =P(X=x) is called a (discrete) probability distribution.
- Let F(x) = P(X ≤ x). F(x) is called the Cumulative
 Distribution Function or Distribution Function (DF) of the discrete random variable X. F(x) has the following properties
 1.0≤F(x) ≤ 1, for all x

$$2. \sum_{\text{upto } x} P(X \le x)$$

Probability Distribution — Cumulative Distribution Function

No. of defective RAM chips	Probability	Cumulative probability
0	0.125	0.125
1	0.375	0.500
2	0.375	0.875
3	0.125	1.000
Total	1	

Probability Distribution Discrete distribution function

Probability distributions can be <u>estimated</u> from relative frequencies. Consider the discrete (countable) number of televisions per household (X) from India survey data ...

No. of televisions	No. of households	X	P(x)	1,218 ÷ 101,501
0	1,218	0	0.012	= 0.012
1	32,379	1	0.319	
2	37,961	2	0.374	
3	19,387	3	0.191	
, 4	7,714	4	0.076	K
5	2,842	5	0.028	
Total	101,501		1.000	

e.g.
$$P(X=4) = P(4) = 0.076 = 7.6\%$$

Probability Distribution Discrete distribution function

What is the probability there is at least one television but no more than three in any given household?

No. of televisions	No. of households	X	P(x)
0	1,218	0	0.012
1	32,379	1	0.319
2	37,961	2	0.374
3	19,387	3	0.191
4	7,714	4	0.076
5	2,842	5	0.028
Total	101,501		1.000

"at least one television but no more than three"

$$P(1 \le X \le 3) = P(1) + P(2) + P(3) = 0.319 + 0.374 + 0.191 = 0.884$$

Let X denote the number of tires on a randomly selected automobile that are underinflated.

(a) Which of the following three probability mass functions is legitimate for X and why are the other or not allowed?

X = x	0	1	2	3	4
$p_1(x) = P(X=x)$	0.30	0.20	0.10	0.05	0.05
$p_2(x) = P(X=x)$	0.40	0.10	0.10	0.10	0.30
$p_3(x) = P(X=x)$	0.40	- 0.10	0.20	0.10	0.30

X = x	0	1	2	3	4
p(x) = P(X=x)	0.40	0.10	0.10	0.10	0.30

- (b) For legitimate pmf of part (a), compute (i) P (X \leq 2), (ii) P (2 \leq X \leq 4) and (iii) P (X \neq 0)
- (c) If p (x) = c(5-x), x = 0, 1, 2, 3, 4 what is the value of c?

Probability Distribution Cumulative Distribution Function

A mail-order computer business has six telephone lines. Let X denote the number of lines in use at a specified time. Suppose that the pmf is as follows:

X = x	0	1	2	3	4	5	6
p(x) = P(X=x)	0.10	0.15	0.20	0.25	0.20	0.06	0.04

Calculate the probability that

- (a) At most 3 lines are in use
- (b) Fewer than 3 line in use
- (c) At least 3 lines are in use
- (d) Between 2 and 5 lines are in use
- (e) At least four lines are not in use

Probability Distribution Cumulative Distribution Function

Find the probability mass function from a given distribution function of X

$$F(x) = \begin{cases} 0, & x < 0 \\ 0.06, & x \le 0 \\ 0.19, & x \le 1 \\ 0.39, & x \le 2 \\ 0.67, & x \le 3 \\ 0.92, & x \le 4 \\ 0.97, & x \le 5 \\ 1.00, & x \le 6 \end{cases} \qquad P(X) = F(X) - F(X-1) \begin{cases} 0, & x < 0 \\ 0.06, & x = 0 \\ 0.13, & x = 1 \\ 0.20, & x = 2 \\ 0.28, & x = 3 \\ 0.25, & x = 4 \\ 0.05, & x = 5 \\ 0.03, & x = 6 \end{cases}$$

Probability Distribution Discrete Distribution

How do you describe this frequency distribution?

Wages of employees (Rs)	4001- 4500	4501- 5000	5001- 5500	5501- 6000	6001- 6500	6501- 7000	7001- 7500	7501- 8000	8001- 8500	Total
No. of persons	25	36	45	62	39	55	44	29	15	350

Measures of central tendency – Mean, Median

Measures of dispersion – Range, SD, IQR, Skewness

Probability Distribution Expected value and Variance

How do you describe this probability distribution?

How do you describe
$$p(x) = \begin{cases}
0, & x < 0 \\
0.06, & x = 0 \\
0.13, & x = 1
\end{cases}$$

$$0.20, & x = 2 \\
0.28, & x = 3 \\
0.25, & x = 4 \\
0.05, & x = 5 \\
0.03, & x = 6
\end{cases}$$

Measures of central tendency -**Expectation (Expected value)**

$$p(x) = \begin{cases} 0.20, & x = 2 \\ 0.28, & x = 3 \\ 0.25, & x = 4 \end{cases}$$

Measures of dispersion – Variance

Probability Distribution \implies **Expected value and Variance**

Like mean and standard deviation are computed to describe data measured by quantitative variable, a similar measures viz., expected value (mean) and variance for random variable X are computed for describing the probability distribution using the formula

Probability Distribution \implies **Expected value and Variance**

For a discrete random variable X with probability mass function p(x),

Mean or Expected value
$$= \mu = E(X) = \sum_{over all_X} xp(x)$$

$$E(X^{2}) = \sum_{\text{over all } x} x^{2} p(x)$$

Variance =
$$V(x) = \sigma^2 = E[(x - \mu)^2] = \sum (x - \mu)^2 p(x)$$

= $E(x^2) - (E(x))^2$

Standard deviation
$$\sigma = \sqrt{V(x)}$$

Probability Distribution Expected value and Variance

How do you describe this probability distribution?

$$p(x) = \begin{cases} 0, \ x < 0 \\ 0.06, \ x = 0 \\ 0.13, \ x = 1 \end{cases} \\ E(X) = 0 * 0.6 + 1 * 0.13 + ... + 6 * 0.03 = \\ E(X) = 0 + 0.13 + 0.40 + 0.84 + 1.00 + 0.25 + 0.18 = 2.8 \\ 0.20, \ x = 2 \\ 0.28, \ x = 3 \\ 0.28, \ x = 3 \\ 0.25, \ x = 4 \\ 0.05, \ x = 5 \\ 0.03, \ x = 6 \end{cases} \\ V(X) = E(X^2) = 0 * 0.6 + 1 * 0.13 + ... + 6 * 0.03 = \\ E(X) = 0 + 0.13 + 0.40 + 0.84 + 1.00 + 0.25 + 0.18 = 2.8 \\ E(X^2) = 0^2 * 0.06 + 1^2 * 0.13 + ... + 6^2 * 0.03 = \\ E(X^2) = 0 + 0.13 + 0.80 + 2.52 + 4.00 + 1.25 + 1.08 = 9.18 \\ V(X) = E(X^2) - (E(X))^2 \\ 0.03, \ x = 6 \end{cases}$$

Probability Distribution \implies **Expected value and Variance**

Properties of Expectation

If X and Y are two random variables $E(X\pm Y) = E(X)\pm E(Y)$

If $X_1, X_2, ..., X_n$ are n RVs, then $E(\sum X) = \sum E(X)$

If X and Y are two independent random variables (irvs), then E(XY) = E(X)E(Y) and for n irvs, $E(\prod X) = \prod E(X)$

Probability Distribution Expected value and Variance

Properties of Variance

If X and Y are two random variables then

$$V(X\pm Y) = V(X) + V(Y) \pm Cov(X, Y)$$

If X and Y are independent random variables (irvs), then $V(X\pm Y) = V(X) + V(Y)$

Probability Distribution Expected value and Variance

 Let X be a discrete random variable having the probability mass function

X = x	0	1	2	3	4	5	6	7
# Registered	150	450	1950	3750	k	2550	1500	300

- Find the value of k
- Find the probability distribution function of X
- Calculate E(X) and V(X)
- Assume N = 15000

Continuous Probability Distribution

Definition

- A <u>continuous random variable</u> can assume any value in an interval on the real line or in a collection of intervals.
- It is not possible to talk about the probability of the random variable assuming a particular value.
- Instead, we talk about the probability of the random variable assuming a value within a given interval.

Definition

- The probability of the continuous random variable assuming a specific value is 0.
- The probability of the random variable assuming a value within some given interval from x_1 to x_2 is defined to be the <u>area under the graph</u> of the <u>probability density function</u> between x_1 and x_2 .

Definition

- A random variable is called continuous when it assumes values in a given interval.
- The probability that a random variable X assumes different values x in a given interval, say (a, b), is denoted by f(x) = P(a ≤ X ≤ b), called probability density function (pdf).

Introduction

- A <u>continuous random variable</u> can assume any value in an interval on the real line or in a collection of intervals.
- It is not possible to talk about the probability of the random variable assuming a particular value.
- Instead, we talk about the probability of the random variable assuming a value within a given interval.

Introduction

 The probability of the continuous random variable assuming a specific value is 0.

• The probability of the random variable assuming a value within some given interval from x_1 to x_2 is defined to be the <u>area under the graph</u> of the <u>probability density function</u> between x_1 and x_2 .

Introduction

 A random variable is called continuous when it assumes values in a given interval.

The probability that a random variable X assumes different values x in a given interval, say (a, b), is denoted by $f(x) = P(a \le X \le b)$, called probability density function (pdf).

Indeed, the probabilities are the area under the curve in a given interval. Thus, a function with values f(x) defined over the set of all real numbers (a, b) is given by

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

It is important to note that f(c), the value of the pdf of X at a constant c does not give P(X=c) as in the discrete case and in continuous case probabilities are always associated with intervals and P(X=c) = 0. That is

$$P(X = c) = P(c \le X \le c) = \int_{c}^{c} f(x)dx = 0$$

An f(x) is called a probability density function of a continuous random variable if it satisfy the following properties

Let F(x) = P(X ≤ x). F(x) is called the Distribution
 Function (DF) of the continuous random variable X.
 F(x) has the following properties.

1.
$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$
 2. $0 \le F(x) \le 1$

where f(x) is called probability density function.

 As in case of discrete probability distribution, the expected value E(X) and variance V(X) can be computed for the continuous probability distribution

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx \qquad E(X^2) = \int_{-\infty}^{\infty} x^2f(x)dx$$

$$V(X) = E(X^2) - (E(X))^2$$

- If $f(x) = 3e^{-3x}, x>0$
- Find E(X) and V(X)

$$E(X) = \int_{0}^{\infty} 3xe^{-3x}dx \qquad E(X^{2}) = \int_{0}^{\infty} 3x^{2}e^{-3x}dx$$

$$\mathbf{V}(\mathbf{X}) = \mathbf{E}(\mathbf{X}^2) - (\mathbf{E}(\mathbf{X}))^2$$

$$E(X) = \frac{1}{3}$$
 $V(X) = \frac{1}{9}$

A mail-order computer business has six telephone lines. Let X denote the number of lines in use at a specified time. Suppose the pmf of X is as given in the accompanying table.

X	0	1	2	3	4	5	6
p(x)	.10	.15	.20	.25	.20	.06	.04

Calculate the probability of each of the following events.

- a. {at most three lines are in use}
- b. {fewer than three lines are in use}
- c. {at least three lines are in use}
- d. {between two and five lines, inclusive, are in use}
- e. {between two and four lines, inclusive, are not in use}
- f. {at least four lines are not in use}

Book T1: Section 3.2, Ex 23

- A consumer organization that evaluates new automobiles customarily reports the number of major defects in each car is examined. Let x denote the number of the major defects in the randomly selected car of certain type. The cdf of x is given as follows
- Calculate the following probabilities

a.
$$p(2)$$
, that is, $P(X = 2)$

b.
$$P(X > 3)$$

c.
$$P(2 \le X \le 5)$$

d.
$$P(2 < X < 5)$$

$$F(x) = \begin{cases} 0 & x < 0 \\ 0.06 & 0 \le x < 1 \\ 0.19 & 1 \le x < 2 \\ 0.39 & 2 \le x < 3 \\ 0.67 & 3 \le x < 4 \\ 0.92 & 4 \le x < 5 \\ 0.97 & 5 \le x < 6 \\ 1 & 6 \le x \end{cases}$$

Book T1: Section 3.3, Ex 29

The pdf is given by

x	1	2	4	8	16
P(x)	0.05	0.10	0.35	0.40	0.10

- 1. Find E(x)
- 2. Find $E(x^2)$
- 3. Find V(x) directly from definition
- 4. Find V(x) using shortcut formula
- 5. Find $P(x \ge 2)$

Book T1: Section 4.2, Ex 11

 Let x denote the amount of time a book on two hour reserve is actually checked out, and suppose cdf is

a.
$$P(X \leq 1)$$

b.
$$P(0.5 \le X \le 1)$$

c.
$$P(X > 1.5)$$

e.
$$V(X)$$

$$F(x) = \begin{cases} 0 & x < 0 \\ \frac{x^2}{4} & 0 \le x < 2 \\ 1 & 2 \le x \end{cases}$$

The pdf of weekly gravel sales is given by

$$f(x) = \{ \begin{array}{ll} \frac{3}{2}(1-x^2), & 0 \le x \le 1 \\ 0, & otherwise \end{array}$$

- 1. Find E(x)
- 2. Find $E(x^2)$
- 3. Find V(x)

Let x be a random variable with pdf given by

$$f(x) = \begin{cases} cx^2, -1 \leq x \leq 1 \\ 0, \text{ otherwise} \end{cases}$$

- 1. Find constant 'c'
- 2. Find E(x)
- 3. Find V(x)
- **4.** Find $P(x \ge 1/2)$

Thanks