FILE COPY NO. 2-W

CASE FILE COPY

N 62 66131 MR No. E5A29

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WARTIME REPORT

ORIGINALLY ISSUED

January 1945 as Memorandum Report E5A29

ESTIMATION OF F-3 AND F-4 KNOCK-LIMITED PERFORMANCE RATINGS
FOR TERNARY AND QUATERNARY BLENDS CONTAINING TRIPTANE OR
OTHER HIGH-ANTIKNOCK AVIATION-FUEL BLENDING AGENTS

By Henry C. Barnett

Aircraft Engine Research Laboratory Cleveland, Ohio

To be returned to the files of the National Advisory Committee for Aeronautics Washington, D. C.

WASHINGTON

NACA WARTIME REPORTS are reprints of papers originally issued to provide rapid distribution of advance research results to an authorized group requiring them for the war effort. They were previously held under a security status but are now unclassified. Some of these reports were not technically edited. All have been reproduced without change in order to expedite general distribution.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

MEMORANDUM REPORT

for the

Army Air Forces, Air Technical Service Command

ESTIMATION OF F-3 AND F-4 KNOCK-LIMITED PERFORMANCE RATINGS

FOR TERNARY AND QUATERNARY BLENDS CONTAINING TRIPTANE OR

OTHER HIGH-ANTIKNOCK AVIATION-FUEL BLENDING AGENTS

By Henry C. Barnett

SUMMARY

Charts are presented which permit the estimation of F-3 and F-4 knock-limited performance ratings for certain ternary and quaternary fuel blends. Ratings for various ternary and quaternary blends estimated from these charts compare favorably with experimental F-3 and F-4 ratings. Because of the unusual behavior of some of the aromatic blends in the F-3 engine, the charts for aromatic-paraffinic blends are probably less accurate than the charts for purely paraffinic blends.

INTRODUCTION

As part of a general program to evaluate the knock-limited performance of triptane and other high-antiknock components of aviation fuels, the Cleveland laboratory of the NACA conducted tests on the F-3 and the F-4 rating engines. The results of these tests have been reported in reference 1. The present report presents data of reference 1 in the form of charts, which can be used to estimate the F-3 and the F-4 antiknock ratings for multicomponent blends of the various fuels tested.

The F-4 data appearing on the charts in this report are based on the blending equation suggested in reference 2 for supercharged-engine test data:

$$\frac{1}{P_{b}} = \frac{N_{1}}{P_{1}} + \frac{N_{2}}{P_{2}} + \frac{N_{3}}{P_{3}} + \dots$$
 (1)

where

Pb knock-limited indicated mean effective pressure of blend

P₁, P₂, P₃ knock-limited indicated mean effective pressure of components 1, 2, 3, . . .

 N_1 , N_2 , N_3 mass fractions of components 1, 2, 3, . . . in the blend

Equation (1) has been found to be satisfactory for blends in which all components are paraffinic and have equal concentrations of tetraethyl lead. The equation applies most generally when the test data are taken at high fuel-air ratios. With the exception of data for one fuel in the present analysis, all of the F-4 knock-limited performance data are considered at a fuel-air ratio of 0.11.

The analysis of F-3 data presented herein is strictly empirical but has been found to agree satisfactorily in most cases with the experimental data. The accuracy of the performance charts presented was checked by testing prepared blends under F-3 and F-4 conditions and comparing the observed ratings with those predicted from the charts.

TEST DATA

The experimental results upon which this analysis is based are given in table I (reproduced from reference 1). No performance numbers in this table greater than 161 were used as will be indicated later. The performance numbers for the F-4 tests were estimated from a reference-fuel framework (reference 1) consisting of knock-limited-performance curves for 90 percent S-3 reference fuel plus 10 percent M-4 reference fuel and for S-3 reference fuel clear and with 0.5, 1.25, 2, 4, and 6 ml TEL per gallon.

The use of this method of rating instead of the usual procedure of direct matching was necessary because of the extensive nature of the program; complete mixture-response curves for 132 blends were obtained. For this reason the accuracy of the performance numbers shown in table I for F-4 ratings is largely dependent on the day-to-day reproducibility of the engine. The brief analysis of the results given in reference I indicates that this reproducibility is good at

high fuel-air ratios. Inasmuch as the analysis in the present report is concerned only with data at a fuel-air ratio of 0.11, it is believed that the performance-number ratings at this fuel-air ratio are reasonably accurate.

All blends tested were prepared on a volume basis.

PREPARATION OF PERFORMANCE CHARTS

In order to make the final charts useful for the prediction of blends giving F-4 performance numbers greater than 161 at a fuel-air ratio of 0.11, it was considered desirable to extrapolate the performance curve to at least a performance number of 200. This extrapolation was made by plotting the performance numbers against knock-limited indicated mean effective pressure from the reference-fuel framework in reference 1. (See fig. 1.) Although there is a definite break in this curve at a performance number of 130, the curve appears to be linear between 130 and 161. On the assumption that this linear relation is true, a straight line was drawn through the points at 130 and 161 and extended to a performance number of 200. The extrapolation between 161 and 200 is shown as a dashed line in figure 1. In reference 1 a different method of extrapolation was used for performance numbers greater than 161 (see fig. 1); consequently, the performance-number values above 161 in table I for F-4 ratings are not the same as those used in preparing the performance charts in the present report.

Ternary Blends

As an example of the preparation of a performance chart, consider first that it is desired to know the F-3 and the F-4 performance numbers of all possible ternary blends of hot-acid octane, an aviation alkylate, and a virgin base stock. These three fuels were chosen because their blending relations follow equation (1). A plot of composition against the reciprocal of the knock-limited indicated mean effective pressure for binary blends of any two of these fuels will result in a straight line. The three binary combinations of these materials are shown in figure 2. The ordinate scale of this figure is a reciprocal scale used for convenience in order that the indicated mean effective pressures can be plotted directly. Test data for figure 2 were taken from table I.

In the next operation, lines of constant performance number are drawn on the plot (shown as dashed lines, fig. 2). These lines are established by reading values of indicated mean effective pressure at equal increments of performance number in figure 1. The data as shown in figure 2 are the basic information needed to establish F-4 rating lines on the final chart for multicomponent blends.

For convenience in relating composition and knock-limited performance of ternary fuel blends, all performance charts are prepared on triangular coordinate paper. A brief description of the use of triangular coordinate paper is given in the appendix. A more detailed description of triangular plots is given in reference 3.

The performance chart for the system of hot-acid octane, aviation alkylate, and virgin base stock is shown in figure 3. Lines of constant performance number in this figure were determined by noting the intersections of the constant performance lines (fig. 2) with the blending lines. For example, the 150-performance-number line in figure 2 intersects the blending line of hot-acid octane and aviation alkylate at a composition of 32 percent hot-acid octane and 68 percent alkylate and intersects the blending line of hot-acid octane and virgin base stock at a composition of 67 percent hot-acid octane and 33 percent virgin base stock. These two compositions were plotted on figure 3 and joined by a straight line. Any point on this line represents a blend of hot-acid octane, alkylate, and virgin base stock that will give a performance number of 150 in the F-4 engine at a fuel-air ratio of 0.11. All other performance lines in figure 3 were established in the same manner.

It will be noted that the lines in figure 3 are parallel, which is true when the curves shown in figure 2 are linear. On the basis of data in this report and in references 4 and 5, it appears that most paraffinic fuels blend linearly at high fuel-air ratios. Even though certain constituents such as the aromatics or ethers did not blend linearly with paraffinic base fuels, the procedure just outlined for the preparation of performance-number charts is not altered. A nonlinear relation in a plot of the type shown in figure 2 results in a variation of slope with performance number on the final triangular plot. (See appendix.)

The procedure used for determining the lines of constant F-3 performance for blends of the same fuels used in preparing figure 3

differs from that used for F-4 performance in that performance numbers are plotted directly against composition on linear coordinate paper and an estimated "best" curve is drawn through the data points to determine the binary blending relations shown in figure 4. There is nothing to justify the use of this empirical method for dealing with F-3 ratings other than that the end result agrees reasonably well with the experimental results. One or two exceptions to this method will be pointed out later.

The compositions at the intersections of a given constant performance line with the blending lines (fig. 4) were plotted on triangular coordinate paper and joined by straight lines. The resulting F-3 performance lines are shown in figure 5. The final chart (fig. 6) was obtained by superimposing figure 5 on figure 3. Performance charts for the following fuel constituents blended with aviation alkylate and virgin base stock (all blends leaded to 4 ml TEL/gal) were prepared in the same manner and are presented in figure 7: triptane, diisopropyl, neohexane, isopentane, benzene, cumene, mixed xylenes, toluene, and methyl tert-butyl ether. Charts for hot-acid octane, triptane, diisopropyl, neohexane, isopentane, benzene, mixed xylenes, toluene, and methyl tert-butyl ether blended with aviation alkylate and one-pass catalytic stock are presented in figure 8.

In figure 7(f) the lines showing F-4 performance numbers for cumene blends were determined by plotting peak knock-limited-power values rather than power values at a fuel-air ratio of 0.11. This deviation from the procedure used for all other plots in figures 6, 7, and 8 was necessitated by the fact that most of the mixture-response curves for the cumene blends tested (reference 1) intersected at fuel-air ratios between 0.10 and 0.11. (See fig. 9.) The fuel-air ratio for peak knock-limited power varied between 0.115 and 0.132 for the cumene blends used in preparing figure 7(f).

No plot was prepared for blends of cumene, aviation alkylate, and one-pass catalytic stock because rich-mixture peaks were not obtained for a sufficient number of the binary blends of cumene and one-pass catalytic stock reported in reference 1.

Lines of F-3 performance for xylene blends were not plotted in figures 7(g) and 8(g) because the curve of composition against F-3 ratings for binary blends of xylene and aviation alkylate passed through a minimum. (See fig. 10.)

In general, data obtained on the F-3 engine for the aromatic blends could not be handled with complete satisfaction by the empirical procedure previously explained. For this reason the accuracy of the lines of constant F-3 performance shown for the aromatic paraffinic systems in figures 7 and 8 is questionable.

Quaternary Blends

The performance charts presented in figures 6, 7, and 8 are of interest primarily from considerations of maximum knock-limited performance attainable with various combinations of fuel blending agents and current base stocks. The producers of aviation fuel, however, are interested in the maximum knock-free power attainable with a finished blend that meets physical-property specifications for aviation fuels. In the present analysis an attempt has been made to show how performance charts can be prepared for ternary blends in which each of the components has been isopentanized to a Reid vapor pressure of 7 pounds per square inch.

The addition of isopentane to adjust the vapor pressure of the components in a system such as that shown in figure 7(a) will necessarily affect the maximum knock-free power attainable because of the performance rating of isopentane relative to the ratings of the other components in the system. (See table II.) In figure 7(a), for example, a blend of 58.5 percent triptane, 30.5 percent alkylate, and ll percent virgin base stock has a lean-rich performance-number rating of 135/200 and a Reid vapor pressure of approximately 3.5 pounds per square inch (estimated from table II). In order to obtain the same performance (135/200) with a blend of triptane, alkylate, and virgin base stock that has been isopentanized to a Reid vapor pressure of 7 pounds per square inch (maximum from specification), a blend of 55 percent triptane, 17 percent alkylate, 7 percent virgin base stock, and 21 percent isopentane could be used. The addition of isopentane has thus effectively decreased the quantity of triptane needed to obtain the 135/200 performance rating. The reason is that isopentane has better performance characteristics than the alkylate or the virgin base stock used as well as a higher Reid vapor pressure than the other three constituents in the blend. (See table II.)

It must be emphasized that the preceding example is merely given as a sample consideration of a fuel characteristic other than knock, which must be considered for a finished fuel blend. This example is not intended to imply that the preparation of fuel blends as presented in the present report with Reid vapor pressures adjusted to

meet specifications will necessarily produce blends that will meet all pertinent specifications.

Several performance charts for quaternary blends containing isopentane were prepared for comparison with the charts described before for ternary blends. In each of the quaternary systems the vapor pressure was adjusted to 7 pounds per square inch. Three assumptions were made in the preparation of these charts:

- (1) The relation between composition (volume basis) and Reid vapor pressure for binary blends of isopentane with another paraffinic fuel is linear.
- (2) The relation between composition and the reciprocal of the F-4 (rich) knock-limited indicated mean effective pressure for binary blends of isopentane with another paraffinic fuel is linear.
- (3) The relation between composition and the F-3 performance number for binary blends of isopentane with another paraffinic fuel is linear.

On the basis of the available data, assumption (3) appears to be valid for only a few cases. For this reason the F-3 performance lines on the charts for quaternary blends may be in error.

As an example of the preparation of the performance chart for a quaternary system, assume that it is desired to isopentanize the blends represented by figure 7(a). The first step in this problem is to determine the amount of isopentane to be added to each of the pure components (fig. 7(a)) to obtain a Reid vapor pressure of 7 pounds per square inch and to determine the resultant F-3 and F-4 performance number ratings for these blends. This information was obtained from the foregoing assumptions and the data in table II and is presented in the following table:

	F-3 perform- ance number	F-4 indi- cated mean effective pressure
76% triptane + 24% isopentane + 4 ml TEL/gal	145	(lb/sq in.) 455
85% alkylate + 15% isopentane + 4 ml TEL/gal	121	200
92% virgin base + 8% isopentane + 4 ml TEL/gal	78	142

The triangular chart shown in figure 11(a) was obtained by treating these three blends (all of which have Reid vapor pressures of 7 lb/sq in.) as separate components by the procedure used in preparing figure 7(a). Any point on figure 11(a) represents the F-3 and the F-4 performance number of a quaternary blend. The actual quantity of each component in the blend, however, cannot be readily determined from the chart because the percentages given on the altitudes of the triangle show only the amounts of the binary blends at the vertexes. For this reason, the grid of the chart was so adjusted, as shown in figure 11(b), that the quantity of any one of the four components in the blend could be read directly from the chart. The concentration of isopentane in the blends is shown by the red lines.

As an example of the method of determining the composition of fuel in figure 11(b) suppose that it is desired to prepare a blend of triptane, aviation alkylate, virgin base stock, and isopentane having a lean-rich rating of 130/180. The concentrations of triptane, alkylate, and virgin base stock in the blend having the desired rating can be read directly from the altitudes of the triangle in the manner used in previous charts. These concentrations are 48, 19, and 13 percent, respectively. The concentration of isopentane can be determined either by subtracting the sum of the percentages of the other components from 100 or by noting the position of the blend on the chart relative to the red line (20 percent isopentane).

Performance charts for the following quaternary systems have been prepared and are presented in figure 12.

Triptane - hot-acid octane - aviation alkylate - isopentane
Triptane - diisopropyl - aviation alkylate - isopentane
Triptane - diisopropyl - hot-acid octane - isopentane
Diisopropyl - hot-acid octane - aviation alkylate - isopentane

The vapor pressure determined for the diisopropyl used in figure 12 was 7.4 pounds per square inch. (See table II.) In the preparation of figure 12, however, a vapor pressure of 7 pounds per square inch was assumed for diisopropyl.

ACCURACY OF PERFORMANCE CHARTS

The accuracy of the charts was determined by selecting ternary or quaternary blends from the various charts and testing these blends by the standard F-3 and F-4 procedures. Inasmuch as the

F-4 ratings shown on the charts were estimated at a fuel-air ratio of 0.11, the check ratings were determined at this same fuel-air ratio.

the work to be the the

The check blends tested are shown with their ratings in table III. These blends are also shown on the various charts by the symbols. The fuel numbers shown adjacent to each of the symbols on the charts correspond to the fuel numbers given in this table. All the data in table III are presented in figure 13 to show the relation between estimated and observed performance numbers. For the 25 blends shown in figure 13 the average deviation from the match line was 3.1 performance numbers for the F-3 ratings and 1.5 for the F-4 ratings.

In consideration of the accuracy of the charts it must be emphasized that the proviously mentioned discrepancies noted in the F-3 ratings of binary blends containing aromatics are responsible for some of the large deviations in table III. For this reason the F-3 performance lines for the aromatic systems shown in figures 7 and 8 must be used with considerable caution.

DISCUSSION OF PERFORMANCE CHARTS

The data in figures 7 and 8 can be used for certain general comparisons of paraffins, aromatics, and ethers. In figure 7(a), for example, at the point representing a blend of 80 percent aviation alkylate, 20 percent virgin base stock, and 4 ml TEL per gallon the lean-rich rating is 110/122. Moving on a straight line from this point toward the triptane vertex until 20 percent triptane has been added, the rating becomes 118/145. The addition of 20 percent triptane to the base blend has thus increased the lean rating of the base blend by 8 performance numbers and the rich rating by 23.

On the other hand, if in figure 7(e) 20 percent benzene is added to the same base blend used in the foregoing example, then the rating changes from 110/122 to 106/146. The addition of 20 percent benzene has decreased the lean rating by 4 performance numbers, whereas the rich rating has been increased by 24.

From this comparison it follows that in the illustrative example the aromatic (benzene) and the paraffin (triptane) are equally effective for increasing the F 4 (rich) performance but that triptane is more effective than benzene for improving lean performance.

When any two of the charts in figure 7 or 8 are compared, the nearer a given constant performance line is to the base of the triangle, the better the performance of the fuel represented by the top vertex of the triangle. For example, in figure 7(a) the line representing an F-4 performance number of 200 is much nearer the base of the triangle than the same line in figure 7(b). Triptane plus 4 ml TEL per gallon has therefore a higher rating than diisopropyl plus 4 ml TEL per gallon.

Observations similar to those made in the foregoing discussion can be made for the charts in figures 11 and 12. In the case of these figures, however, the effect of a single component cannot be isolated from the other components because the concentration of isopentane varies with that of any other component in the system.

SUMMARY OF RESULTS

Charts are presented which permit the estimation of F-3 and F-4 knock-limited performance ratings for certain ternary and quaternary fuel blends. Ratings for various ternary and quaternary blends estimated from these charts compare favorably with experimental F-3 and F-4 ratings. Because of the unusual behavior of some of the aromatic blends in the F-3 engine, the charts for aromatic-paraffinic blends are probably less accurate than the charts for purely paraffinic blends.

Aircraft Engine Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 29, 1944.

APPENDIX - THE USE OF TRIANGULAR COORDINATE PAPER

The use of triangular coordinate paper to represent composition for a three-component system will be greatly simplified if it is remembered that for any point in an equilateral triangle the sum of the perpendiculars from that point to each of the sides is equal to the altitude of the triangle. For example, in the following diagram OP + OM + ON = Bb.

If each of the vertexes of the triangle represent 100 percent of one of the three constituents, then the percentage of component A in blend O is OM; the percentage of the component B is OP, and the percentage of component C is ON.

The equation of a straight line on triangular coordinate paper is of the form

$$a = bN_1 + cN_2 + N_3$$

where

a, b, c constants

 N_1 , N_2 , N_3 concentration of components 1, 2, and 3 in ternary blend

Any equation relating knock-limited performance and blend composition that can be reduced to this form can be represented by a straight

line of constant performance on triangular coordinate paper. Equation (1) presented in the text of this report can be reduced to this form by multiplying through by any one of the performance values P_1 , P_2 , or P_3 .

REFERENCES

- 1. Imming, Harry S., Barnett, Henry C., and Genco, Russell S.: F-3 and F-4 Engine Tests of Several High-Antiknock Components of Aviation Fuel. NACA MR No. E4K27, 1944.
- 2. Sanders, Newell D.: A Method of Estimating the Knock Rating of Hydrocarbon Fuel Blends. NACA ARR No. 3H21, 1943.
- 3. Sherwood, Thomas K., and Reed, Charles E.: Applied Mathematics in Chemical Engineering. McGraw-Hill Book Co., Inc., 1939, pp. 300-303.
- 4. Sanders, Newell D., Hensley, Reece V., and Breitwieser, Roland:
 Experimental Studies of the Knock-Limited Blending Characteristics of Aviation Fuels. I Preliminary Tests in an AirCooled Cylinder. NACA ARR No. E4I28, 1944.
- 5. Sanders, Newell D., Wear, Jerrold D., and Stricker, Edward G.:
 Knock-Limited Blending Characteristics of Fuel Components in
 a Pratt & Whitney R-2800 Cylinder. I Triptane, Hot-Acid
 Octanes, Isopentane, Diisopropyl, Neohexane, and Xylidines.
 NACA MR No. E4JOl, Army Air Forces, Oct. 1, 1944. (Available
 as NACA TN No. 1374, 1947.)

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES

For each fuel there are three rows of values: The first row is imep, lb/sq in.; the second row for F-3 ratings is octane number or tetraethyl lead in S-3 reference fuel, ml/gal; the second row for F-4 ratings is percentage S-3 reference fuel in M-4 reference fuel or tetraethyl lead in S-3 reference fuel, ml/gal; the third row is performance number. The following abbreviations are used throughout the table: VBS for virgin base stock; alkylate for aviation alkylate; one-pass stock for one-pass catalytic stock; and MTB ether for methyl tert-butyl ether.

Fuel	Fuel composition ^a [by volume]	F-3				r ratio		
	[by volume]	ratings	0.065	0.070	0.085	0.095	0.100	0.110
A-355	VBS		73	83	122	137	141	143
		90.7	96.6 91	99.8	0.08	99.8	99.0	97.8
A-118	50% alkylate + 50% VBS		86	99	143	159	162	165
		98.8	0.10	0.19	0.34	0.33	0.29	109
A-356	Alkylate		104	129	176	190	195	201
		0.64	0.55	0.93	1.57	1.71	1.87	2.14
A-132	30% one-pass stock + 70% VBS		72	71	116	130	136	145
		90.6	93.8	90.0	100	98.0	97.5	97.7
A-116	50% one-pass stock + 50% VBS		64	76	116	137	145	156
		90.9	88.6	93.1 84	100	0.01	0.01	103
A-119	80% one-pass stock + 20% VBS		67	76	114	142	154	165
H ₁₃		92.7	90.6	93.1	99.2 97	0.09	0.16	109
A-122	30% one-pass stock + 70% alkylate		82	103	152	172	178	182
		0.15	100	0.26	0.45	0.58	0.75	0.83
A-117	50% one-pass stock + 50% alkylate		76	91	143	167	176	186
		100	96.3 91	0.06	0.34	0.44	0.58	1.17
A-121	80% one-pass stock + 20% alkylate		72	79	123	149	160	177
		96.3 88	93.8 84	95 96	0.09	0.19	0.26	0.48
A-410	One-pass stock		73	83	125	151	164	179
		93.4	96.6 91	99.8	0.12	0.16	0.28	0.49
A-136	20% triptane + 80% VBS		74	90	134	155	162	167
		94.2	95.0 88	0.05	0.23	0.27	0.27	0.28
A-137	40% triptane + 60% VBS		100	119	164	191	201	205
		0.18	0.43	0.55	0.96	1.75	2.07	139
A-138	60% triptane + 40% VBS	0.67	117	142	224 5.54	260	264	269
		120	129	134	160	175	175	175
A-272	20% triptane + 80% alkylate		90	126	185	213	225	237
		1.08	0.19	0.88	2.13	3.17	3.79 152	156
A-273	40% triptane + 60% alkylate	2.43	98 0.38	126	225 5.69	262	274	283
		142	113	123	160	177	182	184
A-274	60% triptane + 40% alkylate		111	159	275	316	326	334
		2.70	0.90	2.76	195	213	216	218
A-275	80% triptane + 20% alkylate	7.00	139	190	314			
		3.06	2.59	5.90				

^aEach fuel contains approximately 4 ml TEL/gal. bBased on a fixed reference-fuel framework (reference 1).

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES - Continued

Fuel	Fuel compositiona	F-3				atings ^b		
	[by volume]	ratings	0.005	Lo ogo	Fuel-ai		0.100	0.116
A-276	20% triptane + 80% one-pass stock ^C	98.80	0.065 66 90.0 77	72 90.7 78	0.085 117 0.01 101	0.095 146 0.14 105	0.100 160 0.26 110	186
A-277	40% triptane + 60% one-pass stock	96 0.08 103	81 99.4 99	99 0.05 101	139 0.29 111	176 0.88 124	195 1.77 136	231 3.86 152
A-278	60% triptane + 40% one-pass stock ^C	0.48	100 0.43 114	109 0.36 113	171 1.36 131	218 3.52 150	244	291
A-279	80% triptane + 20% one-pass stock ^C	1.80	126 1.63 134	147 1.82 137	290	361	391	
A-271	Triptane ^C	3.30 149	204	262	d ₃₉₃			
A-397	20% diisopropyl + 80% VBS	96.6	77 96.9 91	91 0.08 103	132 0.20 108	149 0.19 107	154 0.16 106	155 0.04 101
A-398	40% diisopropyl + 60% VBS	0.09	81 99.4 98	96 0.16 106	143 0.34 112	167 0.44 114	175 0.50 116	180 0.67 120
A-399	60% diisopropyl + 40% VBS	0.33	96 0.33 111	108 0.34 112	163 0.90 124	187 1.55 134	197 1.86 137	207 2.21 141
A-400	80% diisopropyl + 20% VBS	1.17	111 1.10 127	141 1.56 134	202 3.23 148	226 4.14 153	236 5.07 158	250 163
A-405	20% diisopropyl + 80% alkylate	0.90	125 1.78 136	146 1.78 136	192 2.58 144	210 2.97 146	217 3.21 148	222 3.24 148
A-406	40% diisopropyl + 60% alkylate	1.45	138 2.47 143	158 2.67 144	206 3.49 150	227 4.29 154	234 4.80 156	240 5.00 157
A-407	60% diisopropyl + 40% alkylate	1.40	132 1.91 138	154 2.29 141	212 3.87 152	240	252 167	263 171
A-408	80% diisopropyl + 20% alkylate	2.10	136 2.24 141	162 3.05 147	226 5.85 161	261	275	292
A-401	20% diisopropyl + 80% one-pass stock	96.1 88	79 98.1 95	0.05 102	132 0.20 108	163 0.39 113	177 0.67 120	195 1.60 134
A-402	40% diisopropyl + 60% one-pass stock	0.06	84 0.05 102	99 0.20 108	150 0.43 114	177 0.95 125	189 1.48 133	209 2.34 142
A-403	60% diisopropyl + 40% one-pass stock	0.24	96 0.33 111	114 0.44 114	165 1.02 126	196 2.00 138	210 2.72 145	235 4.29 154
A- 04	30% diisopropyl + 20% one-pass stock	0.68	120 1.34 131	143 1.65 135	197 2.90 146	229 4.57 155	245	272
A-393	Diisopropyle	2.41	147 3.53 150	173 4.11 153	246	289	304	324

a Each fuel contains approximately 4 ml TEL/gal.

b Based on a fixed reference-fuel framework (reference 1).

c Knock-limited performance of the engine with one-pass catalytic stock was low on the day these fuels were tested.

d Estimated value.

e Values for knock-limited imep were averaged from three curves.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES - Continued

Puel	Fuel compositiona	F-3				ratingsb		
	[by volume]	ratings	0.065	0.070	Fuel-ai	r ratio	0.100	0.110
A-411	20% neohexane + 80% VBS		74	86	124	142	147	150
4-411	LOW HEOHEXANE + 80% VBS	94.5	95.0	100	0.10	0.09	0.05	99.2
		84	88	100	104	103	102	98
A-412	40% neohexane + 60% VBS		81	97	138	158	164	167
		0.05	99.4	106	0.28	0.31	0.32	0.28
A-413	60% neohexane + 40% VBS		93	108	159	178	183	187
N-410	OCA HEOREXANE + 40% VBS	0.36	0.26	0.34	0.67	1.03	1.17	1.25
		112	110	112	120	126	128	130
A-414	80% neohexane + 20% VBS		108	130	182	203	208	210
		2.00	0.75	1.06	1.95	2.48	2.57	2.41
A-415	200/			130	172	193	199	202
A-415	20% neohexane + 80% alkylate	1.10	0.95	1.06	1.41	1.85	1.95	1.91
		127	125	127	132	137	138	138
A-416	40% neohexane + 60% alkylate		118	137	186	203	207	209
		1.50	1.25	1.38	2.19	2.48	2.50	2.35
	and it and it is							-
A-417	60% neohexane + 40% alkylate	2.57	124	146	195	3.10	215 3.07	2.83
		143	133	136	145	147	147	14
A-418	80% neohexane + 20% alkylate		137	158	208	224	227	220
		3.36	2.35	2.67	3.61	3.93	3.93 152	3.5
			-	-				
A-420	20% neohexane + 80% one-pass stock	96.6	79 98.1	95	0.38	0.50	180	190
		90	95	105	113	116	124	13
A-421	40% neohexane + 60% one-pass stock		86	107	165	190	197	203
		0.10	0.10	0.33	1.02	1.70	1.86	1.96
				-				
A-422	60% neohexane + 40% one-pass stock	0.33	108	138	192	210	215 3.07	2.90
		111	121	132	143	146	147	146
A-423	80% nechexane + 20% one-pass stock		132	162	214	230	233	234
		1.66	1.91	3.05	153	4.72 156	4.67 156	153
. 701	Neohexanef							-
A-394	Neonexane	6.00	159 4.76	187	230	240	242 5.87	5.43
		161	156	160	163	162	161	159
A-123	20% isopentane + 80% VBS		72	87	127	141	146	149
		94.4	93.8	0.02	0.14	0.07	0.03	98.9
. 201	tool to a cool true			-				
A-124	40% isopentane + 60% VBS	99.1	80 98.8	0.20	0.29	0.21	155	0.13
		97	96	108	110	108	107	10
A-134	60% isopentane + 40% VBS		87	112	153	168	172	174
		0.23	105	0.41	0.46	0.46	0.45	0.43
. 285	20% isopentane + 80% alkylate			-	-			-
A-375	20% isopentane + 80% aikylate	0.92	121	1.69	186	201	204	2.00
		124	131	135	140	142	141	138
A-376	40% isopentane + 60% alkylate		121	144	191	203	205	204
		0.99	1.39	1.69	2.52	2.48	· 2.36	2.00
1 700	and topontone i and		-					-
A-388	20% isopentane + 80% one-pass stock	95.8	78 97.5	0.02	0.20	0.34	173 0.47	1.29
		87	94	101	108	111	115	130
A-389	40% isopentane + 60% one-pass stock		85	97	140	168	180	192
		100	0.07	0.17	0.30	0.46	0.92	1.4

aEach fuel contains approximately 4 ml TEL/gal.
bBased on a fixed reference-fuel framework (reference 1).
fvalues for knock-limited imep were averaged from two curves.

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES - Continued

Fuel	Fuel composition ^a	F-3				tingsb		
	[by volume]	ratings	0.065	0.070	Fuel-air	0.095	0.100	0.110
A-139	20% hot-acid octane + 80% VBS	94.3	70 92.5	83 98.0	128 0.15	147 0.16	151	154
A-140	40% hot-acid octane + 60% VBS	100	74 95.0	89 0.03	106 143 0.34	106 168 0.46 114	105 173 0.47 115	101 179 0.58 117
A-141	60% hot-acid octane + 40% VBS	0.18	84 0.05 102	101 106 0.31 111	111 165 1.02 126	191 1.75 136	198 1.91 138	20 7 2.21 140
A-367	20% hot-acid octane + 80% alkylate	0.82	121 1.39 131	142 1.60 134	188 2.32 141	205 2.62 144	210 2.72 145	215 2.76 145
A-368	40% hot-acid octane +60% alkylate	0.72	125 1.58 134	148 1.87 137	200 3.10 147	219 3.59 150	226 3.86 152	235 4.29 154
A-369	60% hot-acid octane + 40% alkylate	0.88	129 1.77 136	154 2.29 141	216 4.31 154	240	248 164	257 168
A-370	80% hot-acid octane + 20% alkylate	0.72 121	129 1.77 136	154 2.29 141	238	269	276	280
A-371	20% hot-acid octane + 80% one-pass stock	95.1 86	80 98.8 95	90 0.06 102	138 0.28 110	170 0.49 115	185 1.30 130	206 2.14 140
A-372	40% hot-acid octane + 60% one-pass stock	100	88 0.14 105	97 0.17 107	154 0.48 115	192 1.80 136	208 2.57 143	229 3.73 151
A-373	60% hot-acid octane + 40% one-pass stock	0.18	90 0.19 107	101 0.23 108	164 0.96 125	203 2.48 143	220 3.43 149	245 5.71 160
A-374	80% not-acid octane + 20% one-pass stock	0.45 115	99 0.41 114	115 0.45 115	187 2.26 141	224 3.93 152	240 5.60 160	268 175
A-330	Hot-acid octanef	1.08	131 1.86 137	159 2.76 145	250 178	289	304	317
A-257	20% mixed xylenes + 80% VBS	92.6 79	68 91.3 79	78 94.7 86	114 99.2 97	132 98.7 96	138 98.1 94	148 98.6 96
A-258	40% mixed xylenes + 60% VBS	95.5 86	69 91.9 80	78 94.7 86	0.03 101	147 0.16 106	160 0.26 110	182 0.83 123
A-259	60% mixed xylenes + 40% VBS	95.2 86	74 95.0 87	85 99.3 99	146 0.38 113	194 1.90 137	216 3.14 148	253
A-260	80% mixed xylenes + 20% VBS	0.04	0.05 102	95 0.14 105	214 4.00 153			
A-261	20% mixed xylenes + 80% alkylate	0.52	0.14 105	101 0.23 108	158 0.65 119	194 1.90 137	208 2.57 143	3,59 150
A-262	40% mixed xylenes + 60% alkylate	0.27		95 0.14 105	153 0.46 115	206 2.69 144	252 167	18
A-263	60% mixed xylenes + 40% alkylate	0.14	0.07	98 0.19 107	1.89	274 185		
A-264	80% mixed xylenes + 20% alkylate	0.27	0.12	103 0.27 110		336	370	

*Each fuel contains approximately 4 ml TEL/gal.
bBased on a fixed reference-fuel framework (reference 1).
fvalues for knock-limited imep were averaged from two curves.

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES - Continued

Fuel	Fuel compositiona	F-3				atingsb		
	[by volume]	ratings				r ratio		
			0.065	0.070	0.085	0.095	0.100	0.110
A-265	20% mixed xylenes + 80% one-pass stock ^C	94.7 84	71 93.1 83	74 92.0 81	111 97.9 94	138 0.03 101	151 0.11 105	178 0.50 116
A-266	40% mixed xylenes + 60% one-pass stock	97.5 92	80 98.8 95	86 100 100	133 0.21 108	172 0.58 118	196 1.81 136	246 5.86 161
A-267	60% mixed xylenes + 40% one-pass stock	98.8 96	95 0.31 111	100 0.22 108	184 2.06 139	251	282	339
A-268	80% mixed xylenes + 20% one-pass stock	0.16	102 0.48 115	106 0.31 111	351			
A-256	Mixed xylenes ^{c,e}	0.92	105 0.60 118	122 0.69 120				
4-24 5	20% cumene + 80% VBS	92.4 78	67 90.6 78	72 90.7 78	98 92.5 82	123 95.7 88	134 96.9 91	154 0.02 101
A-244	40% cumene + 60% VBS	92.7 7 9	67 90.6 78	70 89.3 76	95 91.3 80	117 93.7 84	130 95.6 88	160 0.14 105
A-246	60% cumene + 40% VBS	94.2	67 90.6 78	72 90.7 78	94 90.8 78	118 94.0 85	132 96.3 91	174 0.42 114
A-247	80% cumene + 20% VBS	96.0 88	77 96.9 91	76 93.3 84	90 89.2 76	120 94.7 86	151 0.11 105	
A-248	20% cumene + 80% alkylate	0.32	98 0.38 113	102 0.25 109	143 0.34 111	172 0.58 117	187 1.39 131	215 2.76 145
A-249	40% cumene + 60% alkylate	0.11	71 93.1 84	76 93.3 84	113 98.8 95	148 0.17 106	171 0.44 114	233 4.00 153
A-250	60% cumene + 40% alkylate	0.03	77 96.9 91	76 93.3 84	94 90.8 78	124 96.0 90	149 0.08 103	277
A-251	80% cumene + 20% alkylate	97.7 93	74 95.0 87	73 91.3 80	86 87.5 73	114 92.7 82	160 0.26 110	
A-252	20% cumene + 80% one-pass stock	93.0	70 92.5 82	69 88.6 75	91 89.6 76	120 94.3 85	137 97.8 93	175 0.44 114
A-253	40% cumene + 60% one-pass stock	93.6 82	70 92.5 82	67 87.4 74	75 82.9 67	95 86.3 72	112 90.0 77	168 0.30 111
A-254	60% cumene + 40% one-pass stock	93.0	66 90.0 78	62 84.0 68	65 78.8 62	81 81.3 65	94 84.4 69	153 100 100
A-255	80% cumene + 20% one-pass stock	95.0 85	66 90.0 78	63 84.8 69	70 80.8 64	98 87.3 74	141 99.1 98	
A-240	Cumene ^e	95.0 85	77 96.9 91	75 92.7 83	87 87.9 74	122 95.3 88		

aEach fuel contains approximately 4 ml TEL/gal.

bBased on a fixed reference-fuel framework (reference 1).

cKnock-limited performance of the engine with one-pass catalytic stock was low on the day these fuels were tested.

eValues for knock-limited inep were averaged from three curves.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES - Continued

Fuel	Fuel compositiona	F-3				ratings		
	[by volume]	ratings	0.065	0.070	0.085	r ratio	+	10 222
1 743	and the second was			-		0.095	0.100	0.110
A-341	20% benzene + 80% VBS	91.4 76	78 97.5 93	99.4 97	134 0.22 108	155 0.27 110	162 0.29 110	168 0.30 111
A-342	40% benzene + 60% VBS	92.4	81 994 97	89 0.05 102	146 0.37 112	178 1.03 126	190 1.63 134	208 2.28 141
A-343	60% benzene + 40% VBS	94.2 83	78 97.5 93	85 99.4 97	244 173	346	384	
A-344	80% benzene + 20% VBS	96.2	98 0.38 113	115 0.45 115				
A-358	20% benzene + 80% alkylate	0.43 114	117 1.20 129	127 0.92 124	182 1.95 137	212 3.10 147	222 3.57 150	234 4.14 153
A-359	40% benzene + 60% alkylate	0.12	102 0.48 115	112 0.41 114	182 1.95 137	230 4.72 156	253	295
A-360	60% benzene +40% alkylate	100	102 0.48 115	110 0.38 113	336			
A-361	80% benzene + 20% alkylate	98.3 94	119 1.30 130	178 4.63 156				
A-362	20% benzene + 80% one-pass stock	93.8 82	77 96.9 91	86 100 100	142 0.33 111	172 0.58 118	164 1.25 130	203 1.96 138
A-363	40% benzene + 60% one-pass stock	92.0 78	82 100 100	79 95.3 88	160 0.73 121	213 3.17 148	238 5.33 159	264
A-364	60% benzene + 40% one-pass stock	91.5 77	68 91.3 80	72 90.7 78	191 2.52 143	25 4 172	280	328
A-365	80% benzene + 20% one-pass stock	93.0	94 0.29 110	93 0.11 105				
A-340	Benzene ^f	87 68	199	196				
A-321	20% toluene + 80% VBS	93.7 82	85 0.07 103	96 0.16 106	137 0.26 110	156 0.29 110	164 0.32 111	172 0.27 110
A-322	40% toluene + €0% VBS	95.1 85	92 0.24 109	96 0.16 106	175 1.57 134	228 4.43 155	245	266
A-323	60% toluene + 40% VBS	97.0 91	88 0.14 105	95 0.14 105	204 3.36 149	303	346	425
A-324	80% toluene + 20% VBS	98.8 96	101 0.45 115	113 0.42 114	340			

aEach fuel contains approximately 4 ml TEL/gal.
bBased on a fixed reference-fuel framework (reference 1).
fvalues for knock-limited imep were averaged from two curves.

TABLE I - PERFORMANCE RATINGS OBTAINED IN F-3 AND F-4 ENGINES - Concluded

Fuel	Fuel compositiona	F=3			Fuel-air	ratio		
	[by volume]	ratings	0.065		0.085	0.095	0.100	0.110
A-325	20% toluene + 80% alkylate	0.48	121 1.39 131	139 1.47 132	191 2.52 143	221 3.73 151	232 4.53 155	162
A-326	40% toluene + 60% alkylate	0.54	108 0.75 121	128 0.97 125	223 5.38 159	275 186	308	348
A-327	60% toluene + 40% alkylate	0.25	100 0.43 114	105 0.30 111	300			
A-328	80% toluene + 20% alkylate	0.16	108 0.75 121	116 0.47 115				
A-331	20% toluene + 80% one-pass stock	95.1 85	80 98.8 95	90 0.06 103	137 0.26 110	169 0.47 115	184 1.25 130	212 2.55 143
A-332	40% toluene + 60% one-pass stock	95.3 86	85 0.07 103	92 0.09 103	151 0.44 114	202 2.41 142	224 3.72 151	262
A-333	60% toluene + 40% one-pass stock	97.4	91 0.21 108	95 0.14 105	178 1.73 135	270	319	
A-334	80% toluene + 20% one-pass stock	0.10	102 0.48 115	106 0.31 111				
A-320	Toluenef	0.57	134 2.00 138	140 1.51 133				
A-336	20% MTB ether + 80% VBS	98.8	95 0.31 111	101 0.23 108	144 0.30 111	170 0.49 115	179 0.83 121	187 1.25 130
A-337	40% MTB ether + 60% VBS	0.12	112 0.95 125	113 0.42 114	165 1.02 126	204 2.55 143	223 3.64 151	253
A-338	60% MTB ether + 40% VBS	0.92	192	163 3.14 148	228	281	307	355
A-339	80% MTB ether + 20% VBS	2.61		239	309	379		
A-347	20% MTB ether + 80% alkylate	1.68	143 3.06 146	155 2.38 142	230	258 174	268 	281
A-348	40% MTB ether + 60% alkylate	2,30	166 5.43 159	174 4.21 154	258	312	338	377
A-349	60% MTB ether + 40% alkylate	2.50 143	258	229	327	406	442	
A-350	80% MTB ether + 20% alkylate	6.0 161	307	271				
A-351	. 20% MTB ether + 80% one-pass stock	96.1	87 0.12 105	91 0.08 103	144 0.35 112	179 1.10 127	194 1.72 135	218 2.9'
A-352	2 40% MTB ether + 60% one-pass stock	0.14	113 1.00 126	112 0.41 114	163 0.85 123	204 2.55 143	225 3.79 152	269
A-353	60% MTB ether + 40% one-pass stock	0.47	185	160 2.86 146	230	289	319	37
A-354	4 80% MTB ether + 20% one-pass stock	1.00	269		301	370		
A=33	5 MTB etherf	>6.00 > 161						

aEach fuel contains approximately 4 ml TEL/gal.
bBased on a fixed reference-fuel framework (reference 1),
fValues for knock-limited imep were averaged from two curves.

TABLE II - F-3 AND F-4 PERFORMANCE RATINGS AND REID VAPOR
PRESSURES FOR VARIOUS AVIATION FUEL COMPONENTS

	Reid vapor	Performanc	e numbera
Blending agent	pressure		ъ
	(lb/sq in.)	F-3	F-4
		Cama	C
Isopentane	19.6	· ^c 133	^C 144
Neohexane	8.7	161	159
Methyl tert-butyl ether	8.8	> 161	>200
Diisopropyl	7.4	1.42	202
Virgin base stock	5.9	73	94
Alkylate	4.7	119	137
Benzene	3.5	d 68	>200
Triptane	3.0	149	>200
Hot-acid octane	2.7	127	197
Toluene	1.1	118	>200
Mixed xylenes	.5	124	>200
Cumene	.3	85	>200

^aPerformance numbers are for pure blending agent containing 4 ml TEL/gal.

dAssumed to be the same as the rating for unleaded benzene.

National Advisory Committee for Aeronautics

bPerformance numbers over 161 are extrapolated (fig. 1).
Ratings are for a fuel-air ratio of 0.11.

CExtrapolated from experimental data for blends containing up to 60 percent isopentane.

TABLE III - F-3 AND F-4 PERFORMANCE RATINGS OF TERNARY

AND QUATERNARY FUEL BLENDS

[The following abbreviations are used throughout the table: VBS for virgin base stock; alkylate for aviation alkylate; one-pass stock for one-pass catalytic stock; and MTB ether for methyl tert-butyl ether.]

		The second of the second or the second of th	F	Performance	ce numb	ers
Figure	Fuel	Fuel composition a	F-3 1	ratings	F-4 1	ratingsb
		(by volume)	Esti- mated	Observed	Esti- mated	Observed
		Ternary ble	ends			
6	A-477	59% hot-acid octane + 25% VBS + 1.6% alky-late	112	110	150	149
6	A-487	ll% hot-acid octane + 48% VBS + 41% alky- late	98	90	110	111
7(a)	A-233	20% triptane + 5% VBS + 75% alkylate	1.26	126	150	151
7(a)	A-235	29% triptane + 20% VBS + 51% alkylate	119	120	150	151
7(a)	A-234	38% triptane + 35% VBS + 27% alkylate	114	115	150	150
7(a)	A-466	43% triptane + 28% VBS + 29% alkylate	119	116	160	158
7(a)	A-481	12% triptane + 14% VBS + 74% alkylate	116	1.1.7	140	142
7(a)	A-486	13% triptane + 61% VBS + 26% alkylate	.95	93	110	112

 $^{
m aE}$ ach fuel contains approximately 4 ml TEL/gal. $^{
m bF-4}$ ratings made at a fuel-air ratio of 0.11.

TABLE III - F-3 AND F-4 PERFORMANCE RATINGS OF TERNARY
AND QUATERNARY FUEL BLENDS - Continued

	Per					ers .
Figure	Fuel	Fuel compositiona	F-3 1	ratings	F-4	ratings ^b
		(by volume)	Esti- mated	Observed	Esti- mated	Observed
		Ternary blondb -	Cont	inued		
7(b)	A-478	43% diisopropyl + 12% VBS + 45% alky- late	123	122	150	150
7(b)	A-524	34% diisopropyl + 52% VBS + 14% alky- late	103	101	120	121.
7(c)	A-483	56% neohexane + 14% VBS + 30% alkylate	131	124	140	140
7(c)	A-523	12% neohexane + 43% VBS + 45% alkylate	102	103	110	111
7(e)	À-482	23% benzene + 34% VBS + 43% alkylate	97	100	140	139
7(⊖)	A-522	47% benzene + 41% VBS + 12% alkylate	87	77	160	154
7(h)	A-484	14% toluene + 54% VBS + 32% alkylate	92	97	130	130
7(h)	A-521	23% toluene + 17% VBS + 60% alkylate	107	106	160	156
7(i)	A-520	33% MTB ether + 55% VBS + 12% alkylate	106	108	160	154

 $^{\rm a}{\rm Each}$ fuel contains approximately 4 ml TEL/gal. $^{\rm b}{\rm F}\text{-4}$ ratings made at a fuel-air ratio of 0.11.

TABLE III - F-3 AND F-4 PERFORMANCE RATINGS OF TERNARY

AND QUATERNARY FUEL BLENDS - Concluded

1	V			Pe	rformance	numbe	20.0
	TT :	T	Ti - 1		atings		ratingsb
-	Figure	Fuel.	Fuel composition ^a (by volume)	***	Observed		and the same of th
			(by volume)	mated		mated	
1	-		Ternary blands -	- Concl	uded		
	7(i)	A-539	6% MTB ether + 59% VBS + 35% alkylate	94	99	110	111
and the second of the second of the second	8(a)	A-470	55% hot-acid octane + 13% one-pass stock + 32% alkylate	118	118	160	159
The second secon	8(b)	A-471	35% triptane + 45% one- pass stock + 20% alkylate	1.08	111	160	159
	8(b)	A-480	20% triptane + 16% one- pass stock + 64% alkylate	117	112	150	150 ,
Committee of the second of the committee of the second of	8(c)	A-555	39% diisopropyl + 24% one-pass stock + 37% alkylate	118	115	150	150
-			Quaternary 1	olends			
A STREET OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	12(a)	A-472	19% triptane + 10% hot- acid octane + 52.5% alkylate + 18.5% iso- pentane	128	131	160-	157
the same of the sa	12(b)	A-474	11.5% triptane + 25.5 diisopropyl + 50.5% alkylate + 12.5% iso- pentane	130	136	160	159
Account and a series of the series	12(d)	A-473	34% diisopropyl + 12.5% hot-acid octane + 41.5% alkylate + 12% isopentane	129	131.	159	159

aEach fuel contains approximately 4 ml TEL/gal.

bF-4 ratings made at a fuel air ratio of 0.11.

Figure 1. - Relation between performance numbers and knock-limited indicated mean effective pressures as determined in the NACA F-4 rating engine.

Figure 2. - Knock-limited performance determined by the F-4 rating method for binary blends of hot-acid octane, an aviation alkylate, and a virgin base stock. All blends contain 4 ml TEL per gallon.

Percentage composition (by volume)

Figure 4. - Knock-limited performance determined by the F-3 rating method for binary blends of hot-acid octane, an aviation alkylate, and a virgin base stock. All blends contain 4 ml TEL per gallon.

Virgin base + 4 ml TEL/gal

Figure 5. - Knock-limited performance determined by the F-3 rating method for ternary blends containing hot-acid octane, an aviation alkylate, and a virgin base stock.

Virgin base + 4 ml TEL/gal

Figure 6. - Knock-limited performance determined by the F-3 and F-4 rating methods for ternary blends containing hot-acid octane, an aviation alkylate, and a virgin base stock. F-4 ratings at a fuel-air ratio of 0.11.

Virgin base + 4 ml TEL/gal

(a) Triptane blends; F-4 ratings at a fuel-air ratio of 0.11.

Figure 7. - Knock-limited performance determined by the F-3 and F-4 rating methods for ternary blends containing high-antiknock blending agents, an aviation alkylate, and a virgin base stock.

(c) Neohexane blends; F-4 ratings at a fuel-air ratio of 0.11. Figure 7. - Continued.

Virgin base + 4 ml TEL/gal

Virgin base + 4 ml TEL/gal

(h) Toluene blends; F-4 ratings at a fuel-air ratio of 0.11. Figure 7. - Continued.

(a) Hot-acid octane blends; F-4 ratings at a fuel-air ratio of 0.11.

Figure 6. - Knock-limited performance determined by the F-3 and F-4 rating methods for ternary blends containing high-antiknock blending agents, an aviation alkylate, and one-pass catalytic stock.

(c) Diisopropyl blends; F-4 ratings at a fuel-air ratio of 0.11. Figure 8. - Continued.

(a) Blends with a virgin base stock.
Figure 9. - Knock-limited performance of binary blends of cumene with an aviation alkylate, a virgin base stock, and one-pass catalytic stock as determined in an F-4 rating engine.

(b) Blends with an aviation alkylate. Figure 9. - Continued.

(c) Blends with one-pass catalytic stock. Figure 9. - Concluded.

Percentage mixed xylenes (by volume)

Figure 10. - Knock-limited performance determined by the F-3 rating method for binary blends of mixed xylenes with an aviation alkylate.

(a) Plain triangular coordinate.

Figure 11. - Knock-limited performance determined by the F-3 and F-4 rating methods for quaternary blends containing triptane, an aviation alkylate, a virgin base stock, and isopentane. F-4 ratings at a fuel-air ratio of 0.11.

(b) Triangular coordinate adjusted to show blend composition in terms of concentrations of individual constituents. Figure 11. - Concluded.

(a) Blends of triptane, hot-acid octane, an aviation alkylate, and isopentane; F-4 ratings at a fuel-air ratio of 0.11.
 Figure 12. - Knock-limited performance determined by the F-3 and F-4 rating methods for quaternary

blends.

(c) Blends of triptane, diisopropyl, hot-acid octane, and isopentane; F-4 ratings at a fuel-air ratio of 0.11.

Figure 12. - Continued.

(d) Blends of diisopropyl, hot-acid octane, an aviation alkylate, and isopentane; F-4 ratings at a fuel-air ratio of O.ll.
Figure 12. - Concluded.

Figure 13. - Relation between estimated and observed knocklimited performance ratings as determined by the F-3 and F-4 rating methods.