GLIMPSE

Simultaneously achieving climate change mitigation, ecosystem protection, and air quality goals

Rob Pinder,
Dan Loughlin,
Shannon Capps,
Farhan Akhtar,
Brooke Hemming
(EPA ORD)

Daven Henze
(U. of Colorado)
www.glimpse-project.org

Challenge:

Energy and the environment are interconnected:

Common pollution sources

Co-emitted pollutants

Competing technologies

Design

Connect energy system and atmosphere

Three metrics

Air quality and human health

Short-lived climate forcers

Long-term climate change

How it works

Near-term Radiative Forcing

Sulfate
Light in color
Contributes to cooling
Primarily from coalfired power plants

Black carbon

Dark in color

Contributes to warming

Primarily from diesel

$\textbf{Sulfate} \rightarrow \textbf{Scattering}$

(Cooling)

CH₄ (decade)

Greenhouse gases

N₂O (century) CO₂ (centuries)

Black Carbon → Absorbing (Warming)

Combustion
Emissions:
Black carbon,
organic carbon,
sulfate

Direct Radiative Forcing Efficiencies

Change in radiative forcing per change in emission: W m⁻² / (kg m⁻² yr⁻¹) Simulated by GEOS-Chem Adjoint

Future benefits relative to 2005

Current Trajectory	CO ₂ 50% lower by 2050	Both
Current air quality rules go into effect and continue to reduce emissions	All air quality rules are rolled-back to 2005 levels	Current air quality rules go into effect and continue to reduce emissions
No new requirements	A 50% cut in CO ₂ emissions is achieved by 2050	A 50% cut in CO ₂ emissions is achieved by 2050

Future benefits relative to 2005

Current trajectory

Health Benefits

Need to find ways to offset near-term warming from sulfate reduction

Direct Radiative Forcing Efficiencies

Change in radiative forcing per change in emission: W m⁻² / (kg m⁻² yr⁻¹) Simulated by GEOS-Chem Adjoint

What is the climate change benefit from this program?

Reduction in diesel particulate matter 🗶 (PM) emissions

Fraction of PM that is light absorbing

Change in forcing

Equivalent Radiative X CO₂ emission reduction

1 ton of diesel PM emissions

annual CO₂ emissions from **80** passenger cars

(national average)

From a climate change mitigation perspective....

Retrofitting two diesel school buses is equivalent to the annual CO₂ emissions from a passenger car.

Methane Leaks

Question to consider:

When looking across your state's portfolio of air quality and climate change mitigation actions – are there opportunities for greater co-benefits?

www.glimpse-project.org