CS 580: Algorithm Design and Analysis

Order Statistics

The **selection problem** is the problem of computing, given a set A of n distinct numbers and a number i, $1 \le i \le n$, the i^{th} h **order statistics** (i.e., the i^{th} smallest number) of A.

We will consider some special cases of the order statistics problem:

- the minimum, i.e. the first,
- the maximum, i.e. the last, and
- the median, i.e. the "halfway point."

Order Statistics

Medians occur at $i = \lfloor (n+1)/2 \rfloor$ and $i = \lceil (n+1)/2 \rceil$. If n is odd, the median is unique, and if n is even, there are two medians.

Recall

We work in the **comparison model**:

• Given input array $x = (x_1, ..., x_n)$, we can access the array via

How many comparisons are necessary and sufficient for finding the minimum?

Algorithm:

Given vector $x = (x_1, ..., x_n)$ as input, consider the standard algorithm.

Let
$$q = x_1$$
.

For each i = 2, ..., n:

If
$$x_i < q$$
:

$$q = x_i$$

Return q

This algorithms makes n-1 comparisons.

Can we do better than n-1 comparisons?

Can we do better than n-1 comparisons? If not, then show a lower bound of the form:

• Every deterministic algorithm for finding the min (which is correct on every input) makes at least n-1 comparisons.

Lower Bound:

Consider any (correct) deterministic algorithm A for finding the min.

Construct a graph *G* with:

- vertices x_1, \dots, x_n .
- edge (x_i, x_j) if A compares elements x_i and x_j at some point during its execution.

What happens if the graph G is not connected at the end of A's execution?

. . .

 (x_n)

Lower Bound:

Consider any (correct) deterministic algorithm A for finding the min. Construct a graph *G* with:

- vertices x_1, \dots, x_n .
- edge (x_i, x_i) if A compares elements x_i and x_i at some point during its execution.

If G is not connected at the end of A's execution, then the algorithm can output the wrong answer on some inputs.

For G to be connected, it must have at least n-1 edges (if it has exactly n-1, it is a tree) $\Rightarrow A$ makes at least n-1 comparisons.

Selection (Find s-th smallest element)

Selection is a trivial problem **if the input numbers are sorted.** If we use a sorting algorithm having $O(n \lg n)$ worst-case running time, then the selection problem can be solved in in $O(n \lg n)$ time.

But using a sorting is more like using a cannon to shoot a fly since only one number needs to computed.

<u>Selection</u> (Find s-th smallest element)

Selection is a trivial problem **if the input numbers are sorted.** If we use a sorting algorithm having $O(n \lg n)$ worst-case running time, then the selection problem can be solved in in $O(n \lg n)$ time.

But using a sorting is more like using a cannon to shoot a fly since only one number needs to computed.

Task: Design a selection algorithm inspired by QuickSort but with fewer comparisons.

O(n) expected-time selection using the randomized partition

Idea: In order to find the s-th order statistics in a region of size n, use the randomized partition to split the region into two subarrays. Let k-1 and n-k be the size of the left subarray and the size of the right subarray. If k=s, the pivot is the key that's looked for. If $s \le k-1$, look for the ?-th element in the left subarray.

O(n) expected-time selection using the randomized partition

Idea: In order to find the s-th order statistics in a region of size n, use the randomized partition to split the region into two subarrays. Let k-1 and n-k be the size of the left subarray and the size of the right subarray. If k=s, the pivot is the key that's looked for. If $s \le k-1$, look for the s-th element in the left subarray. Otherwise ?

O(n) expected-time selection using the randomized partition

In order to find the s-th order Idea: statistics in a region of size n, use the randomized partition to split the region into two subarrays. Let k-1 and n-k be the size of the left subarray and the size of the right subarray. If k = s, the pivot is the key that's looked for. If s < k-1, look for the s-th element in the left subarray. Otherwise, look for the (s-k)-th one in the right subarray

Analysis

Define

- T(n,s) =expected # comparisons for selection of s-th statistic
- $T(n) = \max_{s} T(n, s)$ is the expected # comparisons of selection for the worst case index s.

Analysis

Define

- T(n,s) =expected # comparisons for selection of s-th statistic
- $T(n) = \max_{s} T(n, s)$ is the expected # comparisons of selection for the worst case index s.

Task: Write an inequality to upper bound T(n) as a function of the amount of work done in Partition and in recursive selection calls.

Analysis

Recall: T(n) is the expected # comparisons of selection for the worst case index s.

For each i, $0 \le i \le n-1$, the size of the left subarray is equal to i with probability 1/n. Assuming that the larger interval is taken, for some $\alpha > 0$, T(n) is at most

Work for
$$\alpha n + \frac{1}{n} \sum_{1 \leq k \leq n-1, k \neq s} T(\max(k, n-k)).$$
 This is at most
$$\sum_{k \in n-1, k \neq s} T(\max(k, n-k)).$$
 Expected work for recursive call

This is at most

$$\alpha n + \frac{2}{n} \left(\sum_{k=\lceil n/2 \rceil}^{n-1} T(k) \right).$$

Analysis (cont'd)

Assume that there is c > 0 such that $T(k) \le ck$ for all k < n.

Then the sum $\sum_{k=\lceil n/2 \rceil}^{n-1} T(k)$ is at most $\sum_{k=\lceil n/2 \rceil}^{n-1} ck$. This is at most

$$\sum_{k=1}^{n-1} ck - \sum_{k=1}^{\lceil n/2 \rceil - 1} ck$$

$$= \frac{cn(n-1)}{2} - \frac{c}{2} \left(\left\lceil \frac{n}{2} \right\rceil - 1 \right) \left\lceil \frac{n}{2} \right\rceil$$

$$\leq \frac{cn(n-1)}{2} - \frac{c}{2} \left(\frac{n}{2} - 1 \right) \frac{n}{2}$$

$$= cn \left(\frac{3n}{8} - \frac{1}{4} \right).$$

Analysis (cont'd)

So, if c is sufficiently large,

$$T(n) \le \alpha n + c\left(\frac{3}{4}n - \frac{1}{2}\right).$$

By making the constant c at least 4α , we have

that αn is at most $\frac{cn}{4}$. Then $T(n) \le c \cdot n$.

Min and Max

How many comparisons are necessary and sufficient for computing both the minimum and the maximum?

Min and Max

How many comparisons are necessary and sufficient for computing both the minimum and the maximum?

Well, to compute the maximum n-1 comparisons are necessary and sufficient. The same is true for the minimum. So, the number should be 2n-2 for computing both.

Min and Max

Hint: Actually you can do better by processing the input numbers in pairs

Min and Max Algorithm

Simultaneous computation of max and min can be done in $\leq 3n/2$ comparisons

Assume n is even:

- Divide the numbers in pairs and find the larger and smaller one in each pair
- From the n/2 larger items, find the maximum
- From the n/2 smaller items, find the minimum
 For n odd, compare the remaining (n-th item) with both the min and max.