

CONTRACTOR REPORT ARLCD-CR-81034

COMPRESSIBLE FLUIDS INVESTIGATION

C. GUSTAVSON TRW, INCORPORATED 1 SPACE PARK REDONDO BEACH, CA 90278

ROBERT DOMBROSKI PROJECT ENGINEER ARRADCOM

OCTOBER 1981

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
LARGE CALIBER
WEAPON SYSTEMS LABORATORY
DOVER, NEW JERSEY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

81 10 14

The views, opinions, and/or findings contained in this report are those of the author and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Destroy this report when no longer needed. Do not return to the originator.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement or approval of such commercial firms, products, or services by the U.S. Government.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS BEFORE COMPLETING FORM						
1. REPORT NUMBER	2. GOVT ACCESSION NO.	<u>. </u>				
a contract	(1) 1- 1:01	1. N. E.				
Contractor Report ARLCD-CR-81034	1 + 1 - 1 - 1	<u> </u>				
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED				
COLUMN TRACTOR TO THE TOTAL CAST ON		Eimal				
COMPRESSIBLE FLUIDS INVESTIGATION		Final				
		6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(a)	· - · · · · · · · · · · · · · ·	8. CONTRACT OR GRANT NUMBER(a)				
C. Gustavson, TRW	ADCOM	DAAK10-80-C-0257				
Robert Dombroski, Project Engr, ARRA	ADCOM	barrio-00-0-0257				
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
TRW, Incorporated		AREA & WORK UNIT NUMBERS				
1 Space Park						
Redondo Beach, CA 90278						
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
ARRADCOM, TSD		October 1981				
STINFO Div (DRDAR-TSS)		13. NUMBER OF PAGES				
Dover, NJ 07801		•				
14. MONITORING AGENCY NAME & ADDRESS(If differen	I from Controlling Office)	15. SECURITY CLASS. (of this report)				
ARRADCOM, LCWSL	t trout controlling cures,	de de de la company				
Weapons Div (DRDAR-LCW-E)		Unclassified				
Dover, NJ 07801		15a. DECLASSIFICATION DOWNGRADING				
bover, N.1 07801		SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)		<u> </u>				
17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)						
Compressible fluid	o igaminy by block italiable,					
Molecular structure						
Hydrostatic testing						
Miscibility experiments						
Binary systems						
20. ABSTRACT (Continue on reverse side if necessary and	d Identify by black members					
This report describes an inves artillery recoil mechanisms. An exideal properties which a compressib fluids were evaluated in a series o indicate that perfluorinated compou	tigation of comp amination of che le fluid should f hydrostatic an nds exhibit bett	mical theory revealed the possess. More than 20 sample d miscibility tests. Results er qualities for artillery				
applications than the silicone oil	currently in use	•				

DD | FORM 1473

EDITION OF ! NOV 65 IS OBSOLETE

UNCLASSIFIED

ACKNOWLEDGEMENT

This program was monitored by Mr. R. Dombroski of ARRADCOM. The author, Mr. C. Gustavson, wishes to acknowledge the technical contributions of Messrs. E. K. Burchman and W. B. Coleman of TRW, and the assistance of Dr. K. V. Scherer, Jr. of the University of Southern California, who served as consultant on the program. Also, appreciation is extended to the following TRW personnel for their technical efforts: Mr. I. J. Mihaljevich (compressibility tests), Messrs. E. W. Fournier and R. J. Lindgren (analytical data) and Mr. J. A. Riley (statistical analysis).

Accession For
NTIS Const
DTIC

CONTENTS

						Page
1.0	INTRODUCTION					1
2.0	SUMMARY AND CONCLUSIONS			•	•	2
3.0	RECOMMENDATIONS					3
4.0	TECHNICAL DISCUSSION				•	4
	4.1 Theory and Approaches			•		4
	4.2 Selection of Fluids					5
	4.3 Description of the Compressibility Test Appa	ratus				6
	4.4 Data Analysis				•	14
	4.5 Discussion of Results					19
	4.6 Investigation of Binary Systems					30
5.0	CONSIDERATIONS UNDER DYNAMIC CONDITIONS					35
6.0	REFERENCES					37
APPE	INDICES					
	A Drawing of Low Volume Fluid Compressibility T	est A	ppaı	rati	ıs	39
	B Material Safety Sheet for Oil, Perfluorinated Fluid	Hydr	aul'	ic		43
DIST	TRIBUTION LIST					47

LIST OF TABLES

TABLE		Page
I	Abbreviations, Chemical Names, Structures, and Vendors of Tested Fluids	. 7
H	Physical Properties of Fluorinated and Perfluorinated Polyethers	. 10
III	Physical Properties of Siloxanes and Silanes	. 11
IV	Physical Properties of Special Compounds for Structural Studies	. 12
٧	Fluorinated and Perfluorinated Polyethers, Statistical Analysis of Compressibility Data	. 13
IV	Siloxanes and Silanes, Statistical Analysis of Compressibility Data	. 16
VII	Special Compounds, Statistical Analysis of Compressibility Data	. 17
IIIV	Molecular Weight, Molecular Volume, and Compressibility of Tested Fluids	. 24
IX	Comparison of Compressibility of Selected Compounds at Reduced Temperatures	. 27
Χ	Binary Systems, Miscible at -45°C	. 33

LIST OF FIGURES

FIGURE		Pag	<u>e</u>
1	Schematic of the PVT Test Apparatus	. 13	}
2	Typical Compressibility Versus Pressure Curve	. 18	;
3	Compressibility Curve of FE-2 Fluid with Superimposed 3-Sigma Bands	. 20)
4	Compressibility Versus Temperature of Selected Commercial Fluids at 5000 psig	21	
5	Effect of Molecular Weight of Dimethylsiloxane Oligomers on Compressibility at 5000 psig and 25°C	. 23	}
6	Relative Effects of Molecular Structure on Compressibility at 5000 psig and 25°C	. 26	;
7	Compressibility at 5000 psig of Compounds with Molecular Volumes of 195-275 cc. as a Function of Test Temperature .	. 28	3
8	Compressibility at 5000 psig of Compounds with Molecular Volumes of 195-275 cc. at Reduced Temperatures	. 29	}
9	Range of Kinematic Viscosities as Shown by Selected Compounds Tested	. 31	

1.0 INTRODUCTION

For maximum efficiency of the compressible fluid recoil mechanism, a fluid with as high compressibility as possible is needed, particularly at low temperatures. At present, DC-200 (10) (a Dow Corning silicone fluid with a viscosity of 10 cs at room temperature) is being used in testing the prototype and in the compressible fluid test fixture (CFTF). Results of a previous ARRADCOM program (ref 1) indicated that some molecular structures could provide increased compressibility. A recommendation was made to survey the availability of other fluids and to evaluate them for compressibility. The current program was conceived as both a study of the relationship between molecular structure and compressibility and as a further survey of commercially available fluids. As such, this program was an extension of the initial ARRADCOM effort.

In the current program advantage was taken of an increased interest in compressible fluids, studies of liquid theory, and use of "perfluorinated" liquids for medical, hydraulic, and electronic applications. The use of "liquid springs," which depend on both the deformation of a cylinder wall and the compressibility of a hydraulic fluid for a "spring" effect, is at least partially responsible for the current interest in liquid compressibility. A number of papers have been published recently on the effect of pressure on a variety of liquids. Fluorinated compounds with unique structures have been synthesized for use as blood substitutes. A number of companies are offering liquids of various structures for hydraulic use (fluorinated and perfluorinated ethers, polysiloxanes, polyphosphates and polysilicates, hydrocarbons) and for electronic use (perfluorocarbons and polysilicates). Compounds for further evaluation in this program were selected on the basis of previous test data, current literature, and commercial availability.

2.0 SUMMARY AND CONCLUSIONS

A pressure/volume/temperature (PVT) device was constructed for testing the compressibility of fluids under static conditions. The compressibilities of a series of nine fluorinated and perfluorinated polyethers, seven polysiloxanes and silanes, and ten special compounds of known chemical structure were measured at -46, 25, and 66°C in increments of 1000 psig up to 5000 psig. The results were analyzed statistically to describe the data mathematically and to estimate test error ($\tilde{c} = (0.2\%)$).

Five commercial fluids were found to be more compressible than DC-200 (10) within the test temperature range. A low molecular weight 2 fluorinated polyether exhibited a compressibility at 5000 psig of 3.4 versus 2.6 for DC-200 (10) at -46° C.

If molecular weight is used as a criterion, the fluorine compounds exhibit higher compressibilities than other general structures either tested on this program or for which data were available in the literature. However, if molecular volume is used as a criterion, the siloxane structure apparently affords greater compressibility at temperatures above -46°C. A possible explanation is that the behavior of the fluorine compounds is due to the weak intermolecular association of the "shielding" fluorine atoms whereas the siloxane behavior is due to the wider angle of the silicon-oxygen bond as contrasted to the carbon-oxygen bond.

A limited study of binary systems did not provide a practical fluid with high compressibility. Two observations are noteworthy; isopentyl ether is a good solvent for perfluorinated compounds and heptane/1,5-heptadiene exhibits a nonideality of solution.

Appendix A contains an outline sketch of the test apparatus. Appendix B contains a material safety data sheet for perfluorinated hydraulic fluid.

^{1.} As used herein, compressibility is defined as the percent change in volume ($\triangle V/Vo~X~100$) at a specified pressure and temperature, where Vo=volume at ambient pressure.

^{2.} Molecular volume is defined as the volume of one gram mole (specific volume X molecular weight).

3.0 RECOMMENDATIONS

A fluorinated polyether (FE-2) is tentatively recommended for low temperature application. For use in the higher temperature range, a higher molecular weight oligomer (FE-4) or the perfluorinated polyethers (Fomblin D-1 or Brayco 814-Z) are tentatively recommended. However, further testing under dynamic conditions, further characterization of the fluids, and trade-off studies are necessary.

The following tasks are recommended as a follow-on to the current effort:

- Supplement the data available from the vendors and in the open literature to characterize the candidate fluid or fluids to be tested in the CFTF (lubricity, compatibility, air solubility, shear stability, etc.).
- Explore methods of cost reduction/improvement and conduct trade-off studies on the primary candidate fluid(s) considering modifications of molecular structure, method of synthesis, formulation, and desirable properties.
- Modify candidate fluid(s) by formulating (incorporation of antioxidants, anti-corrosion agents, stabilizers, etc.) as necessary to improve their operational properties.

4.0 TECHNICAL DISCUSSION

This section is comprised of discussions of theory and approaches, description of the experiments conducted, analysis of the data, and rationale for the recommended fluids

4.1 THEORY AND APPROACHES

According to the concept of continuity of states, liquids can be viewed as a transitional phase having some properties of both solids and gases. The transition can occur over a temperature range of several hundred degrees centigrade from the melting point (slightly dependent on pressure), where solid and liquid can exist in equilibrium, to the critical temperature, where the substance can no longer exist as a liquid regardless of the pressure. At any temperature within this range, applied external pressure will have the effect of restricting molecular motion, close-packing the molecules and, therefore, increasing intermolecular repulsion. This is supported by the observed effect of temperature; if increased, the density and viscosity will decrease, and vice versa. Intermolecular repulsion is apparent from the increased pressure with increased temperature at constant volume. Within certain constraints, the PVT relationship can be extended to liquids.

Since liquids were shown to be slightly compressible, many attempts have been made to describe the phenomenon mathematically and physically. Excellent reviews of proposed theories and equations of state can be found in the literature. (References 2 and 3 are suggested.) Theories attempt to explain compressibility of a liquid in terms of "holes", "cells" or by interaction between molecules. In the case of nonideality of solutions, two basically different theories have been proposed; those based on physical intermolecular forces, and those based on chemical interaction between molecules. Prediction of compressibility has not been successful in either case and even the more recently proposed equations of state (refs 4 and 5) require experimentally derived coefficients.

The approach taken in this program consisted of two phases:

- Construction of a simple PVT apparatus, similar in most respects to that used in the previous ARRADCOM program (ref 1), for measuring the compressibility of test liquids directly, and
- 2) a limited investigation of the associative properties of binary solutions.

4.2 SELECTION OF FLUIDS

There were three criteria in the selection of single fluids to be tested: (1) test data in the literature and from the previous ARRADCOM investigation (ref 1); (2) suitability of compounds based on general operational requirements; and (3) compounds having potentials for furthering the understanding of molecular structure and compressibility relationships.

Because one of the major objectives of the program was to improve compressibility at low temperatures, a number of compounds were excluded as candidates. Only sparse data were available at low temperatures; however, it was assumed that relatively low values at room temperature signified poor compressibility at low temperatures as well. Phosphate and silicate esters were eliminated on the basis of high bulk modulus data reported on two such fluids by Chevron (ref 6). Polyvinylacetates, polyethylene, polyvinylchlorides, polymethacrylates, and polyisobutylenes exhibited low compressibilities at room and elevated temperatures (ref 7). The compressibilities of polybutadiene, styrene, and their copolymers (ref 8) were also too low for consideration. Materials with functional groups conducive to hydrogen bonding, such as hydroxyl groups, were excluded because these would be highly associated and would be expected to exhibit high viscosities and poor compressibilities. Chlorine-containing materials were excluded because they apparently offered no advantage in compressibility (ref 1) over fluorine compounds and were considered potentially more corrosive.

Prime candidates for further characterization were the fluorinated ethers, fluorocarbons, and polysiloxanes. Reported advantages of the fluorine compounds, particularly the fluorinated polyethers, are stability

at high temperatures, chemical inertness, good lubricating quality, and non-flammability. The siloxanes are somewhat inferior in some respects, but have the advantage of low viscosity coefficients. Two of the fluids tested [DC-200 (10), Fomblin Y0-4] had been tested in the previous ARRADCOM program (ref 1). However, retesting was necessary for data comparison and to aid in the evaluation of molecular weight/compressibility relationships, which will be discussed in more detail in a subsequent section.

A number of compounds were tested to assess the effects of chemical structure on compressibility. These were tetra-alkylsilanes, "block" compounds consisting of both perfluoro and hydrocarbon moities (ref 9), and perfluorocarbons.

The fluids tested, their chemical names, structures, and source are presented on table 1. Their molecular weights (or approximated values), boiling points, critical temperatures (where available), pour points, and densities and viscosities at -46, 25, 66°C are listed in tables II, III and IV.

4.3 DESCRIPTION OF THE COMPRESSIBILITY TEST APPARATUS

Figure 1 is a schematic of the apparatus constructed for measuring liquid compressibility. Essential features of the design are (1) vertical orientation of all components (except for a line pressure transducer) to minimize possibilities of entrapped air; (2) separation of pump and test fluid by a floating piston; (3) capability of testing as little as 25 ccs of liquid; (4) a precision of ± 0.05% in volume change measurements; (5) provision of a degassing chamber to permit degassing of test fluid after filling the apparatus; and (6) absence of absorbent seals within the valves and pressure test chamber. The entire apparatus was enclosed in a temperature-controlled cabinet equipped with a circulating fan. Liquid nitrogen was used as the coolant; heating coils were used to attain elevated temperatures. The correction for volume expansion on internal compression at 5000 psig was .0035 cc, an order of magnitude less than the precision of measuring the volumetric change from the calibrated expansion tube. The volume of the test fluid compression chamber was 6.50 ccs.

Abreviations, Chemical Names, Structures, and Vendors of Tested Fluids Table I.

Source Helix Associates, Newark, DE	Same as above	Montedison USA Bridgetown, Mo.	Same as above	Bray Oil Co. El Monte, Ca.	Dow Corning Midland, MI.	Petrach Systems, Inc. Bristol, PA.
Structure $F\left(\begin{array}{c} C_{F} & C_{F_{2}} \\ C_{F_{3}} \\ \end{array} \right) \begin{array}{c} C_{F_{3}} \\ H \\ \end{array}$	Same as above n = 4	$ \left\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Same as above, higher x and n values	$\left\{\left(0-CF_2CF_20CF_2CF_2\right)_{x}^{2} 0CF_2\right\}_{n}$	$H_3C\left(\frac{1}{5}i0\right)_n Si(CH_3)_3$	$(H_3C)_3$ Si0 $\begin{cases} cH_3 \\ fi0 \\ cH_2 \\ cH_2 \\ cH_3 \end{cases}$ si(cH_3) ₃
Chemical Name Poly-1,2-epoxy hexa- fluoropropane ether	Same as above	Polyperfluoroisopropylether ("Fomblin Y" Fluids)	Same as above	Polyperfluoroethyl ethers ("Fomblin Z" Fluids)	Polydimethylsiloxane	Polymethyl-3,3,3-tri- -fluoropropylsiloxane
Fluid FE-2	FE-4	0-1	Y0-4, Y-25, YVAC 06/6	3X-823-1, 3X-823-2, 814-Z	DC-200 (10) (10 Centistoke)	PS-15.1

Table I. Abreviations, Chemical Names, Structures, and Vendors of Tested Fluids (Cont'd.)

Source Same as above	Silar Laboratories, Inc. Scotia, NY	Same as above	Same as above	Petrach Systems, Inc. Bristol, PA.	Chemical Procurement Laboratories, College Point, N.Y.	PCR Research Chemicals, Inc. Gainesville, Fla.
$\begin{array}{c} \text{Structure} \\ \text{H}_{3}\text{C} \left(\begin{array}{c} \zeta_{6}\text{H5} \\ \zeta_{10} \\ \zeta_{10} \end{array} \right) \times \left(\begin{array}{c} \zeta_{11} \\ \zeta_{10} \\ \zeta_{10} \end{array} \right) \times \left(\begin{array}{c} \zeta_{11} \\ \zeta_{10} \\ \zeta_{11} \end{array} \right) \end{array}$	$(c_{3})_{2} = (c_{3})_{2} c_{5} (c_{4})_{3} s_{1} \left[0 s_{1} (c_{4})_{3}\right]_{2}$	[CH ₃ (CH ₂) ₃] ₂ ^{S1} (C ₂ H ₅	[CH ₃ (CH ₂) ₃] ₃ si CH ₃	[CH3(CH2)3]4 Si	$c_{7}^{H_{1}_{6}}$ and $c_{H_{2}} = c_{H_{3}}$	F ₂ CF ₃ F ₂
Chemical Name Polymethyl (8-12°) phenylmethyl siloxane copolymer	<pre>3-(heptafluoroisopropoxy) - propyl - di-(trimethyl) siloxy) silane</pre>	Dibutylethylmethyl silane	Tributylmethylsilane	Tetrabutylsilane	Mixture of n-heptane and 1,5-heptadiene	Perfluoro-l-methyl decalin
Fluid PS-061	S-1174 (Mod)	DBMES	TBMS	78 S	н/1-5 нD	D F.W.D

Abreviations, Chemical Names, Structures, and Vendors of Tested Fluids (Cont'd.) Table I.

Source	Commercial Chemicals Div/3M St. Paul, MN ("Fluorinert" Liquids)	Same as above	Same as above	Same as above	Dr. Kirby Scherer, consultant	Same as above	Same as above
Structure	C_6F_{14} (Mixed isomers)	c_8F_{18} (Mixed isomers)	F_2 F_2 (Plus isomers) F_2 F_2 F_4 F_9	ي.	C_3F_7 ¢ - R (R = C_2H_5) C_5	Same as above, $(R = CH_3)$	Same as above, $R = CH_2CH(CH_3)_2$
Chemical Name	Perfluorohexane	Perfluorooctane	Perfluoro-2-butyl tetrahydrofuran	Mixture of perfluorooctane and above compound	Ethylperfluorodimethyl- perfluoropropylm⊲thane	Methylperfluorodimethyl- perfluoropropylmethane	Isobutylperfluorodimethyl perfluoropropylmethane
Fluid	FC-72	FC-104	FC-80	FC-77	KS-1	KS-2	KS-3

Physical Properties of Fluorinated and Perfluorinated Polyethers $^{\left(1
ight)}$ Table II.

				Pour	Densi	ty,q/cc, a	t°C	Viscosit	/iscosity, cs, at °C	oc Tt
Fluid		Tb,°C	Tc,°C	Point, °C	-46	52 91	99	-46	25	99
FE-2		104	218	-123	1.847	1.660	1,555	5.0	8.0	0.5
FE-4		194	295	- 94	1.908	1.756	1.665	73	2.5	<u>-</u> .
D-1		215	;	> 30	1 963	1.808	1.724	276 4.8	4.8	1.6
Y0-4		: 1	1	< - 70	2.039	1.872	1.794	43,000(4)	29(4)	5.7(4)
YVAC-06/6		155/	;	< - 50	2.018	1.877	1.792	>10,000(4/	20(4)	10.5(4)
		0.1 torr							•	;
Y-25		;	;	< - 30	2.055	1.877	1.791	>100,000°	170(4) 2	22(4)
3X-823-1		150/	!	89 - >	1.965	1.812	1.720	123	10	2.0
3X-823-2	2600 ⁽³⁾	8 militorr 250/ 8 militorr	!	89 - v	2.007	1.822	1.721	375(5)	24	S.
814-Z			}	06 - >	1,950	1.814	1.729	~200 ₍₅₎	30	თ

Molecular weights (M.W.), boiling points (Tb), critical temperatures (Tc), and pour points are vendor data. Density and viscosity data are TRW data, except where otherwise noted.

Average molecular weights.

Average molecular weights, estimated by analogy with other Mcrtediscn (Y series) fluids.

Vendor viscosity data.

Estimated by extrapolation.

20€

Table III. Physical Properties of Siloxanes and Silanes $^{\left(1
ight)}$

Fluid	Σ. Σ.	ر م	Pour Point.°C	Densit -46	Density,g/cc, at°C 25	99 <u>)</u>	Viscos	Viscosity, cs, at°C 16	
				}	ł		(5)	15	(2)
DC-200(10)	980	:	00 ا-	0.999	0.935	0.898	1001	21/5/	14,
PS-181	1500- 3500	;	·- 40	1.344	1.245	1.194	i	295	59
PS-061	1550	1	<- 55	1.047	0.985	0.945	:	53	24
S-1174(Mod)	448	65-68/ 1 torr	< - 50	1.157	1.079	1.031	39	2.7	1.3
DBENS	186	40-42/ 1 torr	;	0.833	0.798	0.767	38(3)	2.0	1.1
TBMS	214	55/ l torr	;	0.833	0.807	0.782	;	3.5	1.3
TBS	256	230- 232	! ! !	0.920	0.856	0.829	62	2.6	1.2
PS-140	:	:	;	0.955	0.904	0.867	;	009	161

Molecular weights (M.W.), boiling points (Tb), and pour points are vendor data or estimated from vendor data. Vendor viscosity data. Maasgred at -49°C.

⁽²⁾

Table IV. Physical Properties of Special Compounds for Structural Studies

			Pour	Densi	tv.a/cc. at	<u></u> 3،	Viscos	itv.cs.ato	ن
Fluid	M.W. 99.	M.W.,g. Tb, °C(1)	Point, °C(1) -46) -46	25 66	99	-46	25	99
Heptane	100	98.5	ł	i ! !	0.682	1 1		;	:
CH2-1/H	;	;	i	:	0.676	1 1	1	3 1 1	1 1
PFMD	453	159- 160	-70	2.132 ⁽¹⁾	1.972 ⁽¹⁾	1.877(1)		3.2	1.2
FC-72	340	56	06-	1.855 ⁽¹⁾	1.665(1)		1.4(1)		!!
FC-104	435	101	-65	1.927(1)		1.643 ⁽¹⁾			0.41(1)
FC-77	415	97	-110	1.947 ⁽¹⁾	1.773(1)	1.672 ⁽¹⁾	5(1)	0.8(1)	0.43(1)
FC-80	420	102(2)	-80(2)	1.898 ⁽²⁾	1.757 ⁽²⁾	1.658 ⁽²⁾	5.3(2)	0.8(2)	0.44(2)
KS-1	342	103	1 2	1.729	1.623	1.540	6.1	0.88	0.58
KS-2	334	85	j	1.822	1.663	1.563	4.6	0.85	0.55
KS-3	376	132	!	1.639	1.506	1.428	6.6	1.1	99.0

(1) Vendor data.

⁽²⁾ Data by analogy with 3M Fluid FC-75.

Figure 1. Schematic of the PVT Test Apparatus

The test fluid was introduced via the filler cup and tube with the compression piston in the upper part of the cylinder. A slightly reduced pressure was used to facilitate flow of the more viscous fluids. With the filler valve closed, the piston was slowly withdrawn to the bottom position. After degassing under reduced pressure, the fluid was raised to a convenient level in the calibrated expansion tube. With the upper valve closed, the fluid was compressed to the desired pressure. The bottom valve was closed and the meniscus in the calibrated tube recorded. The upper valve was opened slowly, and the new meniscus level recorded. The compression/decompression cycle was repeated three times for each pressure level (increments of 1000 psig to 5000 psig). The sigma of the three readings was nominally 0.002 ccs.

4.4 DATA ANALYSIS

One of the principal sources of error in such a device is trapped or entrained air (refs 10 and 11). Although the test fluid was degassed whenever the boiling point was high enough to permit it, there still remained the possibility of air pockets or air bubbles clinging to the surfaces within the compression chamber. Since a plot of the compressibility versus pressure must intercept at the origin, any displacement from the origin can be attributed reasonably to compression of the air bubbles. A shift of the plotted data to the origin is, therefore, a convenient method of correcting for errors due to trapped or entrained air.

In order to develop a consistent method of correction by shifting the curve, and to improve the definition of the compressibility values, the data were analyzed statistically. A least squares computer program was utilized to determine the best fit, using seven mathematical models. The second degree polynomial was found to best represent the data. The curve for each experimental set of data were shifted by imposing a zero intercept $(y = 0 + b_1x + b_2x^2)$. In most cases (60 out of 75 sets of data) the shift in compressibility was 0.2% or less. The constants for each of the fluids are listed in tables V, VI, and VII.

A typical uncorrected curve of % compressibility versus pressure is shown in figure 2. The three points shown as the 'first experiment' were obtained in the first experiment with the test apparatus; the 'second

Table V. Fluorinated and Perfluorinated Polyethers, Statistical Analysis of Compressibility Data

Fluid	Temp,°C	$b_1^{(1)}(x 10^3)$	b ₂ ⁽¹⁾ (x 10 ⁸)	Compressibility @ 5000 psi, %
FE-2	-46	0.858	-3.61	3.39
	23	1.363	-5.381	5.47
	66	1.976	-10.722	7.19
FE-4	-46	0.666	-2.00	2.80
	23	1.15	-4.93	4.54
	66	1.36	-4.21	5.77
D-1	-46	0.741	-3.29	2.88
	23	0.882	-0.464	4.30
	66	1.36	-3.64	5.88
Y0-4	-46	0.705	-2.93	2.79
	23	0.985	-3.93	3.94
	66	1.12	-1.57	5.19
YVAC 06/6	23	0.904	-1.14	4.23
	66	1.05	1.11	5.56
Y-25	23	0.616	1.00	3.33
	66	0.895	-1.29	4.15
3X-823-1	-46	0.587	-1.29	2.61
	23	0.965	-2.50	4.20
	66	1.49	-6.93	5.73
3X-823-2	-46	0.601	-0.286	2.83
	23	1.01	-2.64	4.41
	66	1.06	-1.21	5.00
814-Z	-46	0.460	2.22	2.85
	23	0.867	-0.857	4.12
	66	1.30	-3.21	5.69

⁽¹⁾ Second degree polynomial constants for $y = 0 + b_1x + b_2x^2$

Table VI. Siloxanes and Silanes, Statistical Analysis of Compressibility Nata

F] u i d	Temp, "C	$b_1 (x 10^3)^{(1)}$	$b_2 (x 10^8)^{(1)}$	Compressibility
DC-200	-46	. 384	2,59	@ 5000 psi, ** 2.57
	23	.920	-2.36	4.01
	66	1.19	-4.71	4.80
PS-181	- 30	. 356	5.79	3.33(2)
	23	.643	-1.29	2.89
	66	.744	. 357	3.81
PS-061	- 46	. 567	.250	2.90
	23	.774	-1.57	3.48
	66	. 950	693	4.58
S-1174 (MOD)	-46	.561	500	2.68
	23	. 958	-2.643	4.13
	66	1.208	-3.786	5.09
DBEMS	-46	. 492	-1.79	2.01
	23	.665	-1.07	3.06
	66	. 935	-3.46	18.8
TBMS	- 46	. 469	500	2.22
	23	.636	429	3.07
	66	.919	-2.50	3.97
TBS	- 46	. 426	571	1.99
	23	.718	-3.00	2.84
	66	.853	-2.29	3.69

⁽¹⁾ Second Degree Polynomial constants for $y = 0 + b_1 x + b_2 x^2$

⁽²⁾ This value probably in error due to high viscosity.

Table VII. Special Compounds, Statistical Analysis of Compressibility Data

Fluid	Temp,°C	b ₁ (x 10 ³) ⁽¹⁾	b ₂ (x 10 ⁸) ⁽¹⁾	Compressibility @ 5000 psi, %
HEPTANE	-46	0.514	-0.714	2.40
HET TAILE	23	0.761	-0.0714	3.79
	66	1.39	-6.00	5.48
H/1-5 HD	-46	0.387	3.15	2.72
1171 -0 110	23	0.770	0	3.85
	66	1.285	-3.286	5.60
PFMD	-46	0.480	-0.643	2.24
77110	23	0.798	-1.571	3.59
	66	0.779	2.143	4,43
FC-72	-46	. 0.895	-4.071	3.46
, 0 - , 2	23	1.379	-3.714	5.97
FC-104	-46	0.613	-0.929	2.98
10-10-	23	1.128	-3.786	4.69
	66	1.722	-8.286	6.54
FC-77	-46	0.679	-1.714	2.97
	23	1.024	-1.571	4.73
	66	1.340	-1.071	6.43
FC-80	-46	0.620	-1,429	2.74
	23	0.924	0	4.62
	6 5	1.597	-7.429	6.13
KS-1	-46	0.481	1.071	2.67
	23	1.138	-5.321	4.26
	66	1.886	-13.79	5.98
KS-2	-46	0.388	1.357	2.28
	23	0.957	-2.179	4.24
	66	1.493	-5.500	6.09
KS-3	-46	0.427	0.929	2.37
•	23	0.944	-2.357	4.13
	66	1.287	-5.286	5.11

⁽¹⁾ Second degree polynomial constants for $y = 0 + b_1 x + b_2 x^2$

Figure 2. Typical Compressibility Versus Pressure Curve

experiment' data were obtained three months later. The data indicate a reasonable repeatability between experiments over the course of the program. Three separate experiments were conducted on the FE-2 fluid for three reasons:

- (1) Unusually high intercepts were experienced (>0.2%) in some cases;
- (2) The fluid was of particular interest to the program; and
- (3) An estimate of sigma (standard error) was desired.

The data at 25°C are shown in figure 3, with superimposed 3-sigma bands. The sigma value, \pm 0.2%, is a pooled estimate of standard deviation based on compressibility data at 25 and 66°C.

4.5 DISCUSSION OF RESULTS

The compressibility versus temperature of five commercial fluids are compared to DC-200 (10) in figure 4. All have apparent compressibilities greater than DC-200 (10) over the temperature range of -46 to 66°C (-51 to 151°F). Of particular interest at the lower temperatures is FE-2, which offers a substantial improvement over DC-200 (10). This material is similar to that tested previously (ref 1) (FE-3) but of lower molecular weight. The next higher molecular weight tested on the current program is FE-4, which offers only a (possible) slight advantage over DC-200 at low temperatures but somewhat greater advantage in the higher temperature range [5.8 versus 4.8% for DC-200 (10) at 66°C]. For use in the higher temperature range, D-1 or 814-Z also afford somewhat higher compressibilities. FE-2 and FE-4 are probably most available and lowest in cost, D-1 is considered intermediate, and 814-Z least available and most costly.

The effect of molecular weight (and therefore molecular volume) on compressibility is an important factor in selecting a fluid for use or for further study. Figure 5 is a plot of compressibility of polymethylsiloxanes versus molecular weight extrapolated from data in reference 12. At low molecular weights the effect is dramatic but at higher molecular weights the effect becomes essentially nil. The authors suggest that the independence of molecular weight in the latter region is due to "the maximum number of chemical bonds per unit volume" having been reached.

Figure 3. Compressibility Curve of FE-2 Fluid With Superimposed 3-Sigma Bands

Figure 4. Compressibility Versus Temperature of Selected Commercial Fluids at 5000 psig

Thus for maximum compressibility, the fluid selected should have the lowest possible molecular weight commensurate with other requirements, particularly those at the nigher temperatures.

The molecular weight, specific volume, molecular volume, and compressibility at 5000 psig of the fluids lested on this program are listed in table VIII. It should be noted that the molecular weights of the polymeric materials are only approximate in most cases. However, in each series of compounds with the same chemical structure, the general effect of molecular weight is apparent. For instance, in the fluorinated ether eries, only minor effects are seen at molecular weights over 1000.

The relative effects of molecular weight/compressibility as a function of general molecular structure at 25°C are pictured in figure 6. All compounds are monomeric except the polymethyldisiloxanes and the fluorinated ethers, FE-2 and FE-4. The hydrocarbon values were extrapolated from reference 13. Based on molecular weight alone, the fluorine compounds have higher compressibilities than the others, including the siloxanes.

If compressibilities are compared on a molecular volume basis, the picture is different. Table IX lists the boiling points (Tb), critical temperatures (Tc) and compressibilities at reduced temperatures of compounds having nearly the same molecular volumes (specific volume X molecular weight). If the compressibilities of these compounds are plotted at the actual test temperatures, as shown in figure 7, the disiloxane (HMDS) is superior in compressibility at room temperature and above. At reduced temperatures, as shown in figure 8, all the compounds appear to have nearly the same compressibilities at the lower temperatures and at the higher temperatures except for the disiloxane. It may be noted that HMDS has next to the lowest molecular volume of the compounds listed in table IX. However, the next higher siloxane oligomer (trimer) has a critical temperature of 563°K (ref 14), an estimated molecular volume of approximately 380 cc, and a compressibility of about 4.6% at $25^{\circ}\mathrm{C}$ and 5000 psig. Even at this high molecular volume, the compressibility of the siloxane appears to be above the population of the other compounds. The greater compressibility of the siloxanes may be related to the flexible siliconoxygen-silicon bonds which, in turn, are attributed to the greater angle

Effect of Molecular Weight of Dimethylsiloxane Oligomers on Compressibility at 5000 psig and $25\,^{\circ}\text{C}$ Figure 5.

Table VIII. Molecular Weight (M.W.), Molecular Volume, and Compressibility of Tested Fluids

99	7.2	5.8	5.9	5.2	5.6	4.2	5.7	5.0	5.7	4.8	3.8	4.6	5.1	3.8	4.0	3.7	4.4	1	¥
25	5.5	4.5	4.3	3.9	4.2	3.3	4.2	4.4	٩.٦	4.0) 2.9	3.5	4.1	3.1	3.1	2.8	3.6	0.9	7 7
- 46	3.4	2.8	5.9	2.8	ı		5.6	2.8	2.9	2.6	3.3(-30)	2.9	2.7	2.0	2.2	2.0	2.2	3.5	~
99	291	471	464	836	1088	1675	1047	1511	2313	1091	2094	2646	435	243	274	309	263	•	265
25	272	446	442	801	1039	1598	993	1427	2205	1048	2008	1574	415	233	265	599	250	204	249
-46	245	411	407	736	996	1460	916	1295	2051	981	1860	1480	387	223	257	278	231	183	226
99	.643	.601	.580	.557	.558	.558	.581	.581	.478	1.136	.838	1.058	.970	1.304	1.279	1.206	0.533	ı	609 0
25	.602	. 569	.553	.534	.533	. 532	. 552	.549	.551	1.07	. 803	1.015	0.927	1.253	1.239	1.168	0.507	0.601	0.572
-46	.541	. 524	. 509	. 490	. 496	.487	. 509	. 498	.513	1.001	.744	. 955	.864	1.200	1.200	1.087	0.469	0.539	0.519
Z	452	784	800	1500	1950	3000	1800	2600	4000	980	2500 ⁽¹⁾				214		493	340	435
Fluid	FE-2	FE-4	D-1	Y0-4	YVAC 06/6	Y-25	.3 X-823-1	3 X 823-2	814-2	0C-200 (10)	PS-181	PS-061	S-1174 (Mod)	DBEMS	TBMS	TBS	PFMD	FC-72	FC-104

(1)Estimated mean value

ity of Tested Fluids (Con't.) Compressibility, 5000 psig, % at °C -46 25 66 -46 25 66 2.7 4.6 6.1 2.3 4.2 6.1 2.3 4.2 6.1 2.4 4.1 5.1	
Table VIII. Molecular Weight (M.W.), Molecular Volume, and Compressibility of Tested Fluids (Con't.) Specific Volume, cc/g at °C Molecular Volume, cc, at °C Compressibility, 5000 psig, Fluid M.W46 25 66 -46 25 66 -46 25 66 -46 25 66 FC-77 415 0.514 0.564 0.598 213 234 248 3.0 4.7 6.4 FC-80 420 0.578 0.603 2201 214 226 2.3 4.2 6.1 KS-1 348 0.578 0.616 0.649 183 201 214 226 2.3 4.2 6.1 KS-1 348 0.578 0.601 0.640 183 201 214 226 2.3 4.2 6.1	334 0.610 0.664 0.700 229 250 376 0.610 0.664 0.700

Relative Effects of Molecular Structure on Compressibility at $5000~\mathrm{psig}$ and $25\,^{\circ}\mathrm{C}$ Figure 6.

Table IX. Comparison of Compressibility of Selected Compounds at Reduced Temperatures

	Molo Volumo				Compre	ssibility	at 5000	Sig. %	
Compound	at 25°C, cc	Tb, °K	Tc, °K	1/Tc (1)	Comp	1/10	Comp	1/Tc (1) Comp 1/Tc (T) Comp 1/Tc (1)	Come
HMDS	213	373	517(2)	.439	2.9	.576		.656	12.1
FE-2	272	377	491(3)	.462	3.4	.607		69.	7.2
FC-104	249	374	510 ⁽⁴⁾	.445	3.0	3.0 .584	4.7	.665	6.5
KS-3	250	405	520(5)	.436	2.4	.573		.652	5.1
PFMD	250	432	586(3)	.387	2.2	.508		.578	4.4
TBMS	265	473	(2)009	.38	2.2	.50		.57	4.0
n-Decane	195	447	(9)619		1.4	.481		.548	4.0

Test temperature divided by critical temperature

Reference 14 (2)

Vendor data

Extrapolated from data in Reference 15

Estimated by method of Lyderson, described in Reference 16 Reference 16 (4) (5) (6)

Figure 7. Compressibility at 5000 psig of Compounds with Molecular Volumes of 195 - 275 cc. as a Function of Test Temperature

Compressibility at 5000 psig of Compounds with Molecular Volumes of 195 - 275 cc. at Reduced Temperatures Figure 8.

of the silicon-oxygen-silicon bond ($140-145^{\circ}$) (ref 17) as contrasted to the carbon-oxygen-carbon bond (110°). At the lower temperatures, the fluorine compound's apparently greater compressibility may be due primarily to the weak intermolecular association.

These results are important in the selection of a fluid or fluids because they indicate a need for a better definition of overall requirements and a trade-off study to arrive at an optimized material. As an example, the optimum balance of viscosity and molecular weight has not yet been defined. The fluids studied on this program provide a wide range of viscosities, as shown in figure 9. It would appear that FE-2 is the best selection, considering both compressibility and viscosity and, indeed, this may be true for low temperature application. At higher temperatures, however, a fluid such as 814-Z may be preferred even though a DC-200 fluid may be blended to provide higher compressibility.

4.6 INVESTIGATION OF BINARY SYSTEMS

This approach was based on the chemical theory, originally proposed by Dolezalek, which attributes nonideality of solutions to chemical association and solvation. Accordingly, a compressible fluid should have low chemical reactivity as well as low physical intermolecular attractive forces. As an example, compounds with negligible hydrogen bonding potential, such as hydrocarbons, therefore would be expected to exhibit markedly higher compressibility than those with hydrogen bonding, such as alcohols. Binary systems, or solutions, of interest would be those in which the unlike molecules have a minimal chemical affinity for one another. However, sufficient affinity must be present to attain and maintain solution over the desired temperature range. This would require compositional trade-offs in obtaining optimum solution and compressibility over the desired temperature range.

A series of miscibility experiments were conducted first with various combinations of hydrocarbons, polyesters, perfluorocarbons, siloxanes, and silanes. Some of these have shown promise of synergism in compressibility. Dunlap and Scott (ref 18) found that mixtures of perfluorohexane/hexane had higher compressibilities than either compound alone. However, perfluorocarbon compounds are insoluble in most other liquids below room

Figure 9. Range of Kinematic Viscosities as Shown by Selected Compounds Tested

temperature. (We found one exception; perfluorotoluene in isopentyl ether. This was not considered a practical liquid and, therefore, compressibility was not measured.) Combinations of polymers, such as DC-200, polybutene, and dioctylphthalate were also found incompatible at -46°C, although mutually soluble at room temperature. Binary systems consisting of polyisobutylene/benzene or cyclohexane and polydimethylsiloxane/hexamethyldisiloxane, which would be expected to be compatible at low temperatures, showed no benefit in compressibility in the 25 to 65°C temperature range (ref 19).

Binary systems (1/1 volume ratio) found compatible at low temperatures (-45°C) are listed in table X along with predicted and observed densities. The purpose here was to determine what combination of two chemical structures, if any, would result in a lower-than-predicted density. As shown in the table, the heptane/1,5-heptadiene mixture resulted in a lower density, indicating that this combination would have a higher compressibility than either compound by itself. The compressibility data obtained on heptane and on the mixture do indicate a higher value with the latter. However, this would require verification since the increase is small and within the sigma value obtained on FE-2. The value obtained on heptane itself (3.9% at 25°C) agrees well with the value (4.0%) extrapolated from data reported by Bridgman (ref 13).

Three perfluorinated compounds afforded an additional test of a binary system. FC-77 is a mixture of the FC-80 and FC-104 structures. Comparison of the compressibility data tabulated below show no benefit from the mixture:

Temp.	Compressibility at 5000 psig, %					
°C	FC-80	FC-104	FC-77 (Mixture			
-46	2.7	3.0	3.0			
25	4.6	4.7	4.7			
66	6.1	6.5	6.4			

Although the binary system approach has been somewhat disappointing to date, some of the results are at least of academic interest. The heptane/1,5-heptadiene mixture, although interesting scientifically, is

Table X Binary Systems, Miscible at -45°C

System (1	System (1/1 Volume Katlo)	Density,	Density, 24°C, g/cc		Density, -45°C	200
	2	Predicted	Measured	Δ, %	Measured	% · ∇
Heptane	2,4-Dimethylpentane	0.67550	0.67629	0.21	0.73480	8.65
	1,5-Heptadiene	0.69821	0.69616	-0.29	0.75202	8.02
	2,4-Dimethyl -2-pentene	0.68422	0.68621	0.29	0.74588	8.7
	n-Heptanol	0.74505	0.75086	0.78	0.80306	6.95
	Tri-n-hexylsilane	0.73527	0.74119	0.81	0.79698	7.53
1,5-Heptadiene	n-Heptanol	0.76229	0.76826	0.78	0.82167	6.95
	Tri-n-hexylsilane	0.75157	0.75716	0.74	0.80721	6.61
DC 200	Tri-n-hexylsilane	0.89331	0.89864	09.0	0.95600	6.38
	Hexane	0.79614	0.80061	0.55	0.85616	6.95
FE-2	Octafluorotoluene	1.6618	1.6708	0.54	1.8260	9.29

8.69

1.8194

0.26

1.6739

1.6695

Perfluorohexane

not considered a primary candidate because of the instability and reactivity of the double bonds, particularly in the presence of oxygen. The solvent power of isopentyl ether for perfluorinated compounds is also of interest. Because of the expected low association between halogens and oxygen, mixtures of such compounds could provide some advantage.

It should be noted that relatively little information on compressibility of liquid mixtures is available in the literature. Further understanding of their behavior could still offer advantages. For instance, there is a possibility for improved performance in blending polymers with widely different but narrow molecular weight ranges. A balance of compatibility, intermolecular association, and close-packing could be advantageous in polymeric compounds other than the siloxanes, which apparently failed to show any beneficial effect (ref 19).

5.0 CONSIDERATIONS UNDER DYNAMIC CONDITIONS

There are a number of technical questions to be answered in order to firm up the selection of fluids for use under the dynamic processes occurring in a compressible fluid recoil mechanism. Data on many of the desirable properties listed in reference 1 are available from the vendors of commercial liquids such as FE-2, D-1, 814-Z, or DC-200 blends. However, some of the questions cannot be answered adequately without further technical effort. This is discussed briefly below.

The compressibility under dynamic conditions may differ from that at static conditions. This should be verified. The most logical and ready vehicle for such tests is the large scale CFTF at ARRADCOM. Its actual performance can be compared to that predicted by the compressibility values obtained under static conditions. However, smaller scale experiments may be more cost effective and less time consuming. This aspect requires further consideration.

A check on the compatibility of the fluids with the seals and metals in the recoil mechanism is desirable. Although the recommended fluids appear compatible, actual data on specific items are needed to confirm this. If, for instance, the fluorinated liquids plasticize or solvate the polymeric seals to a greater extent than expected, the seals could undergo extrusion and deformation under dynamic conditions. Also the best candidate for low temperature use, FE-2, is not completely fluorinated and the remaining hydrogen may be sufficiently reactive under some conditions to affect the material's reported stability and inertness toward metals.

One of the potentially more troublesome and perhaps least known effect in the use of fluorinated polymers is associated with their unusually high air or oxygen solubilities. Separation of solubilized air under shear and compression/decompression cycling is a problem frequencly encountered in hydraulic systems (ref 10). The mechanism is apparently a decrease in solubility with temperature rise and agglomeration of desolubilized air. In operation, the "bubbles" of air so formed must be compressed before the pressure acts on the liquid itself. The result is a sluggish hydraulic system.

The apparatus constructed for this program may be modified to characterize the fluids with respect to the above phenomenon. After compression/decompression cycling, preferably under adiabatic conditions, the temperature rise, changes in air concentrations, and displacement of the compressibility curve from the zero intercept may be measured. In addition, chemical analyses, such as infrared spectrophotometry, and viscosity measurements may be utilized to check on the thermal and shear stabilities of the fluids.

6.0 REFERENCES

- 1. ARRADCOM Report ASD IR 3-77, "Investigation of Compressible Fluids for Use in Soft Recoil Mechanisms," September 1977.
- 2. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., <u>The Properties of Gases and Liquids</u>, MCGraw Hill, N.Y. 3rd Ed. (1977).
- 3. Rowlinson, J. S., <u>Liquids and Liquid Mixtures</u>, Plenum Press, New York (1969).
- 4. Schmidt, G. and Wenzel, H., "A Modified Van Der Waals Type Equation of State," Chem. Eng. Sci, 35, pp. 1503-1512 (1980).
- NASA Tech Brief, "An Equation of State for Liquids," p. 161, Summer 1980.
- 6. Chevron Technical Manuals on "Hyjet IV" and "M2-V."
- 7. Beret, S. and Prausnitz, J. M., <u>Macromolecules</u>, <u>8</u>, No. 4, p. 536, July-August 1975.
- 8. Renuncio, J. A. R. and Prausnitz, J. M., <u>J. Appl. Polymer Sci</u>, <u>21</u>, p. 2867 (1977).
- 9. D. D. Lawson, J. Moacanin, K. V. Scherer, Jr., T. F. Terranova, and J. D. Ingham, "Methods for the Estimation of Vapor Pressures and Oxygen Solubilities of Fluorochemicals for Possible Application in Artificial Blood Formulations," J. Fluorine Chem., 12, 221 (1978).

 K. V. Scherer, Jr., "Novel Fluorohydrocarbons," U.S. Patent 4,173, 654 (Nov. 6, 1979).
- 10. Magorien, V. G., "Keeping Air Out of Hydraulic Systems," Machine Design, pp 71-76, 7 August 1980.
- 11. Whalley, E., Experimental Thermodynamics, Volume I: Calorimetry of Non-Reacting Systems, McCullough and Scott (editors), Butterworths, London (1968).

- 12. Lichtenthaler, R. N., Liu, D. D., and Prausnitz, J. M., "Specific Volumes of Dimethylsiloxane Polymers to 900 Bars," <u>Macromolecules</u>, 11, pp 192-195, Jan-Feb, 1978.
- 13. Bridgman, P. W., <u>The Physics of High Pressure</u>, G. Bell and Sons, LTD., London (1958).
- 14. Young, C. L., <u>J. Chem. Soc., Faraday Trans. II</u>, pp 580-585 (1972).
- 15. Reed, T. M., Fluorine Chemistry, Simons, J. H., editor, Volume V, p 157, Academic Press, New York (1964).
- 16. Hougen, O. A., Watson, K. M., and Ragatz, R. A., <u>Chemical Process Principles</u>, Part I, 2nd Ed., John Wiley and Sons, Inc., New York.
- 17. Flory, P. J., Crescenei, V., and Mark, JACS, 86, pp 146-152 (1964).
- Dunlap, R. D., and Scott, R. L., <u>Abstr. Papers 135th Meeting Am. Chem.</u> Soc., Boston, April 5-10, 1959.
- 19. Renuncio, J. A. R., and Pausnitz, J. M., Macromolecules, 9, p 324, March-April 1976.

APPENDIX A DRAWING

APPENDIX B MATERIAL SAFETY DATA SHEET

U.S. DEPARTMENT OF LABOR Occupational Safety and Health Administration

Form Approved

JA 1 16 1981

ENVIRONMENTAL HEALTH

MAYERIAL SAFETY DATA SHEET

MANUFACTURE R'S NAME LOAY OTL COLDAIN, INC. ASSURES CHAMBER STORIC COLD SCIENCE STORICS ASSURES CHAMBER STORIC COLD SCIENCE STORICS ASSURES CHAMBER STORIC COLD SCIENCE STORICS ASSURED TO SCIENCE STORICS ASSURED TO SCIENCE STORICS PER STORICS BRAYCO 8142 FORMULA TIV FULS COATINGS FILLER METAL FULS COATING OR CORE FLUX ADDITIVES OTHERS HAZARDOUS MIXTURES OF OTHER LIQUIDS, SOLIDS, OR GASES 5. TIV (Long)			SECT	ION I		
ACCUSES CAMBLE STOCK CHI, SELD SELD COVE, CA 91731 MICRONIC 8147, ILL CONTROL OF THE SECTION II - BASE NAME ENTROCES 14.2 PRESENTATION OF AN INVESTIGATION OF THE SECTION II - HAZARDOUS INGREDIENTS PAPELIA FAMILY SECTION II - HAZARDOUS INGREDIENTS PAPEL PRESERVATIVES, & SOLVENTS	MANUFACTURER'S NAME			EMERGENCY TELEPHON		
PRESIDENTIAL PROPERTY TRADE NAME TRADECT T						
Perfluorinated Polyally I Ether Part Pa	9550 PLAIR THITVE, STITE 301.	(0) (<u>1.</u>)	onur, c	1 91731 MICRONIC 814	7.11	y Irail
SECTION II - HAZARDOUS INGREDIENTS PAINTS, PRESERVATIVES, & SOLVENTS	Perfluorinated Polyallyl Ethe	r		BRAYCO 814	2	*
SECTION II - HAZARDOUS INGREDIENTS PANTS, PRESERVATIVES, & SOLVENTS				FORMULA		
PAINTS, PRESERVATIVES, & SOLVENTS						
PROMERTS BASE METAL ALLOYS WENGLE METALLIC COATINGS SOLVENTS MODITIVES OTHERS HAZARDOUS MIXTURES OF DIHER LIQUIDS, SOLIDS, OR GASES TILY NON-Hazardous as defined by U.S. Dept. of Labor 29CFR, Section 1915, 2. SECTION III - PHYSICAL DATA MODITIVES SECTION III - PHYSICAL DATA MODITIVES SECTION III - PHYSICAL DATA MODITIVES N/A PERCENT, VOLATILE EVOLUTION AT EVOLUTION AT ELECTRON AT	SECTIO	NII ·		RDOUS INGREDIENTS	 -	
ALLOYS WETALLIC COATINGS SOLVENTS FILLER METAL PLUS COATING OR CORE FLUX ADDITIVES OTHERS HAZARDOUS MIXTURES OF OTHER LIQUIDS, SOLIDS, OR GASES NON-Hazardous as defined by U. S. Dept. of Labor 29CFR, Section 1915. 2. SECTION III - PHYSICAL DATA RIGHLING POINT (°F.) SOLVENTY (NON-Hazardous as defined by U. S. Dept. of Labor 29CFR, Section 1915. 2. VAPOR PRESSURE (min Hg.) N/A PERCENT VOLATILE N/A EVAPORATION RATE (PAINTS, PRESERVATIVES, & SOLVENTS	%	J	ALLOYS AND METALLIC COATINGS	·;	
SECTION III - PHYSICAL DATA SECTION III - PHYSICAL DATA MADIENTS PERCENT, VOLATILE BY VOLUME (1) MADOR PRESSURE (mm H9.) MADOR PRESSURE (mm H9	PIGMENTS			BASE METAL	-	
SECTION III - PHYSICAL DATA SECTION III - PHYSICAL DATA MULLING POINT (*F.) VAPOR PRESSURE (min Hg.) VAPOR DENSITY (AIR*1) SOLUBILITY IN WATER Insol. SECTION IV - FIRE AND EXPLOSION HAZARD DATA (NOT-Flatmand of Mark.) SECTION IV - FIRE AND EXPLOSION HAZARD DATA (NOT-Flatmand of Mark.) (NOTE DATA MARKET CARRY (MITTER) SECTION IV - FIRE AND EXPLOSION HAZARD DATA (NOT-Flatmand of Mark.) (NOTE DATA MARKET CARRY (MITTER) N/A STEEDED FOR TROUBTING PROCESSION.	TATALYST			ALLOYS		ĺ
SECTION III - PHYSICAL DATA BUILING POINT (°F.) VAPOR PRESSURE (min Hg.) VAPOR DENSITY (AIR-1) SOLUBILITY IN WATER APPL ABARRET AND GLOR C CLORE. SECTION IV - FIRE AND EXPLOSION HAZARD DATA FLANS PRINT (Method Deck). SECTION IV - FIRE AND EXPLOSION HAZARD DATA (Constituting Point (Method Deck). SECTION IV - FIRE AND EXPLOSION HAZARD DATA (Constituting Point (Method Deck). SECTION IV - FIRE AND EXPLOSION HAZARD DATA (Constituting Point (Method Deck). SECTION IV - FIRE AND EXPLOSION HAZARD DATA (Constituting Point (Method Deck). SECTION IV - FIRE AND EXPLOSION HAZARD DATA (Constituting Point (Method Deck). (Constituting Point (Method Deck). N/A (Constituting Point (Method Deck).	VEHICLE			METALLIC COATINGS		
ADDITIVES OTHERS HAZARDOUS MIXTURES OF OTHER LIQUIDS, SOLIDS, OR GASES Non-Hazardous as defined by U.S. Dept. of Labor 29CFR, Section 1915, 2. SECTION III - PHYSICAL DATA HOLLING POINT (°F.) VAPOR PRESSURE (min Hg.) VAPOR PRESSURE (min Hg.) VAPOR PRESSURE (min Hg.) N/A EVAPORATION RATE EVAPORATION RATE EVAPORATION RATE (SOLVENTS		1	FILLER METAL PLUS COATING OR CORE FLUX		l
HAZARDOUS MIXTURES OF OTHER LIQUIDS, SOLIDS, OR GASES Non-Hazardous as defined by U.S. Dept. of Labor 29CFR, Section 1915. 2. SECTION III - PHYSICAL DATA HOLLING POINT (°F.) SPECIFIC GRAVITY (°I-20-11) N/A PERCENT, VOLATILE N/A EVAPORATION RATE (NODITIVES		1			
Non-Hazardous as defined by U.S. Dept. of Labor 29CFR, Section 1915. 2. SECTION III - PHYSICAL DATA HOLLING POINT (°F.) 500 SPECIFIC GRAVITY (°+20*1) 1.835 VAPOR PRESSURE (min Hg.) N/A PYOLUME (°-) N/A VAPOR DENSITY (AIR*1) N/A EVAPORATION RATE (°-21) N/A SOLUBILITY IN WATER Insol, APPRICADA POINT (Neprila used) N/A SECTION IV - FIRE AND EXPLOSION HAZARD DATA (**CASH POINT (Menina used) N/A CON-Flatinimable, Will not flash. (**CASH POINT (Menina used) N/A	OTHERS	<u> </u>			1	
SECTION III - PHYSICAL DATA BIOLLING POINT (°F.) VAPOR PRESSURE (min Hg.) VAPOR DENSITY (AIR-1) SOLUBILITY IN WATER APPRABANCE AND ODOR Clear, water-white liquid, very n.fld offer. SECTION IV - FIRE AND EXPLOSION HAZARD DATA (COLE Flating above of the colour of	HAZARDOUS MIXTUS		OTHERLI	OLUDS SOLIDS OF GASES		
SECTION IV - FIRE AND EXPLOSION HAZARD DATA [Angle point [Method used] N/A [Angle point [Method						
VAPOR PRESSURE (min Hg.) VAPOR DENSITY (AIR*1) VAPOR DENSITY (AIR*1) N/A SOLUBILITY IN WATER Insol. SECTION IV - FIRE AND EXPLOSION HAZARD DATA FLASH POINT (Merping used) OD-Flaming Diec, Will not flash. N/A STENDAL FOR FRONTING PROCESSING.	SE	CTIO	N III - I	PHYSICAL DATA		
VAPOH DENSITY (AIR=1) VAPOH DENSITY (AIR=1) SOLUBILITY IN WATER Insol. SECTION IV - FIRE AND EXPLOSION HAZARD DATA FLANH POINT (Method used) VOD-Flammable, Will not flash. EXAMPLE LIMITS Let U. N/A STACHAL FIRE FIGHTING PROCESSING.	JUILING POINT (°F.)		500	SPECIFIC GRAVITY (120:1)	1	. 833
VAPOH DENSITY (AIR=1) N/A SOLUBILITY IN WATER Insol. APPLAHANCE AND ODOR Clear, water-white liquid, very mild offer. SECTION IV - FIRE AND EXPLOSION HAZARD DATA FLASH POINT (Method bed) N/A FLASH POINT (Method bed) N/A N/A STANDED FIRE FIRE PROCESSION.	VAPOR PRESSURE (mm Hg.)		N/A			N/A
SECTION IV - FIRE AND EXPLOSION HAZARD DATA **Examplify in Meringa used Non-Flammable, Will not flash. **Examplify in Meringa used Non-Flammable, Will not flash. **Examplify in Medical No. Flammable U.	APOH DENSITY (AIR=1)		N/A	EVAPORATION RATE	<u> </u>	 \!/A
SECTION IV - FIRE AND EXPLOSION HAZARD DATA FLASH POINT (Method beed) Von-Flammable, Will not flash. N/A N/A STREET FOR FROM FROM STREET FROM STR	COLUBILITY IN WATER	14/21		The second secon	- †	
SECTION IV - FIRE AND EXPLOSION HAZARD DATA FLASH POINT (Method used) FLASH POINT (Method used) FLASH POINT (Method used) N/A				guid, very n.ild n.i.r		
Non-Flammable, Will not flash. Extraction of McDIA N/A N/A N/A N/A N/A	APPLARANCE AND ODOR Clear, was					
N/A						
to a chall find a highfing phoce oung a	SECTION IV	- FIR	E AND	EXPLOSION HAZARD DATA		
	SECTION IV	- FIR	E AND	and the second s		

SECTION V - HEALTH HAZARD DATA
Thurso convergent. Not letern lined. Use 5 mg per cubic meter for mist. Officer lined and the English control of the second possibly in very present ally non-toxic. Not expected to cause any ill effect except possibly in very
sensitive individuals. through contact ADPROCEDURES Eye contact - Flush thoroughly with water.
Skin contact - Wipe dry, then wash with soap and water.
Ingestion - Do not induce vomiting, call physician.

			SECTION	214 VI · F	SEACTIVITY DATA		
STABILITY		UNSTABLE		Temperatures above 400°F when in contact			
	STA	STABLE		with a	ctive metals such as aluminum & titanium.		
Aluminum HAZARDOUS U Contact w	chlori	ide and Fr	75		Reagents. may induce decon position to toxic gases.		
HAZARDOUS		MAY OCCUR	!		CONDITIONS TO AVOID		
POLYMERICAT	ICN.	WILL NOT OCCUR		X			

SECTION VII - SPILL OR LEAK PROCEDURES
Steps to be taken in cast material in beliased on spilled. Mop, wipe up or absorb with clay, diatomaceous earth or other inert material.
and store in closed metal container.
WASTE DISPOSAL METHOD Do not burn or contaminate materials that may be burned. Dispose of by method
in compliance with local, state and federal regulations regarding health, air and
water pollution.

	SECTION VIII - SPECIAL	L PROTECTION INFORMATION
	ROTECTION (Specify type) ally required,	
VENTILATION	None normally required	. SPECIAL
	MECHANICAL (General)	OTHÉR
None norma	oves My required. The Laurenear	Safety glasses recommended.

I	SECTION IX - SPECIAL PRECAUTIONS
	Smolers should wash hands before handling tobacco products. Do not store near
ĺ	active metals that are above 400°F
	Do not burn anything that has been contaminated with product,

PAGE (2)

"The information presented herein has been compiled from sources considered to be dependable and is accurate to the best of seller's knowledge, however, seller makes no warranty whatsoever, expressed, implied, or of merchantability regarding the accuracy of such data or the results to be obtained from the use thereof. Seller assumes no responsibility for injury to buyer or to third persons or for any damage to any property and buyer assumes all such risks."

DISTRIBUTION LIST

Assistant Secretary of the Army Research and Development ATTN: Department for Science and Technology The Pentagen Washington, DC 20315

Commander

U.S. Army Materiel Development and Readiness Command ATTN: DRCDE

5001 Eisenhower Avenue Alexandria, VA 22333

Commander

U.S. Army Armament Research and

Development Command

ATTN: DRDAK-LC
DRDAR-LCA
DRUAR-LCN
DRDAR-LCU
DRDAR-LCE
DRDAR-LCM
DRDAR-LCS
URDAR-LCB
DRDAR-LCB
DRDAR-TSS (5)

Dover, NJ 07801

Commander
U.S. Army Armament Materiel
Readiness Command
ATTN: DRSAR-LE
DRSAR-LEP-L

Rock Island, IL 61299

Director
Ballistics Research Laboratory
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-TSB-S

Aberdeen Proving Ground, MD 21005

Commander U.S. Army Electronics Command ATTN: Technical Library Ft Monmouth, NJ 07703

Commander

U.S. Army Mobility Equipment Research and Development Command ATTN: Technical Library Ft Belvoir, VA 22060

Commander

U.S. Army Tank-Automotive Research and Development Command ATTN: DRDTA-UL

DRDTA-RK Warren, MI 48090

Commander

U.S. Military Academy ATTN: CHMN, Mechanical Engineer Dept West Point, NY 10996

Commander

Redstone Scientific Information Center U.S. Army Missile Research and Development Command ATTN: DRSMI-RB (2)

DRSMI-RRS DRSMI-RRS DRSMI-RSM

Redstone Arsenal, AL 35809

Commmander

Rock Island Arsenal ATTN: SARRI-ENM (Mat Sci Div) Rock Island, IL 61202

Commander

HQ, U.S. Army Aviation School ATTN: Office of the Librarian Ft Rucker, AL 36362

Commander

U.S. Army Foreign Science and Technology Center ATTN: DRXST-SD 220 7th Street, N.E. Charlottesville, VA 22901

Commander

U.S. Army Materials and Mechanics Research Center ATTN: Tech Library - DRXMR-PL (2) Watertown, MA 02172 Commander
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

Commander
Harry Diamond Laboratories
ATTN: Technical Library
2800 Powder Mill Road
Adelphia, MD 20783

Director
U.S. Army Industrial Base
Engineering Activity
ATTN: DRXPE-MT
Rock Island, IL 61201

Chief, Materials Branch U.S. Army R&S Group, Europe Box 65, FPO NY 09510

Diector
U.S. Naval Research Laboratory
ATTN: Director, Mech Div
Code 26-27 (DOC Library)
Washington, DC 20375

NASA Scientific and Technical Information Facility P.O. Box 8757 ATTN: ACQ Branch Baltimore/Washington International Airport, MD 21240

Administrator
Defense Technical Information Center
ATTN: Accessions Division (12)
Cameron Station
Alexandria, VA 22314

Metals and Ceramics Information Center Battelle Columbus Laboratory 505 King Avenue Columbus, OH 43201

Mechanical Properties Data Center Battelle Columbus Laboratory 505 King Avenue Columbus, OH 43201 Director
U.S. Army Materiel Systems
Analysis Activity
ATTN: DRXSY-MP
Aberdeen Proving Ground, MD 21005

Commander/Director
Chemical Systems Laboratory
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-CLJ-L
DRDAR-CLB-PA
APG, Edgewood Area, MD 21010

Chief
Benet Weapons Laboratory, LCWSL
U.S. Army Armament Research and
Development Command
ATTN: DRDAR-LCB-TL
Watervliet, NY 12189

Diector
U.S. Army TRADOC Systems
Analysis Activity
ATTN: ATAA-SL
White Sands Missile Range, NM 88002