

Title:	Common Diagnosis Subsystem Configuration					
References:	[1] Requirement Specification Common Diagnosis Sub-System, Rev. 0.4					
	[2] Design Description Common Diagnosis Sub-System, Rev 0.4					
	[3] NE107 - Self-monitoring and diagnosis of field devices - Version: 10.02.2006					
	[4] IEC 61508 Part 3 and Part 7 First edition 1998-12					
	[5] MoMs Lenno 7 June 2006					
	[6] MoMs Lenno 8 June 2006					
	[7] HART Communication Foundation Document Number HCF_SPEC-99, Revision 8.0 [8] FOUNDATION™ Specification Function Block Application Process Part 1, FF-890					
	Rev. FS 1.7					
	[9] PROFIBUS Specification -Profile for Process Control Devices Version 3.01 December					
	2004					
	[10] PROFIBUS Specification - Amendment 2 to the Profibus Profile for Process Control					
	Devices V 3.01 - Condensed Status and Diagnostic Messages V 1.0 June 2005					
Distribution						
Author	Giovanni Invernizzi Date: 2008 December 17					
Remarks:						

Contents

1	Introduc	tion	2
2	Diagnos	is Mapping	3
	2.1 Firm	nware execution non safe state	3
	2.2 Dev	rice Specific Diagnosis Conditions	4
3	Commu	nication Protocols Mapping	6
		RT	
		Command Status Bytes	
	3.1.2	Command 48, Read Additional Status Information	6
	3.1.3	Command XX, Read Lower Priority Diagnosis Conditions	7
		dbus Foundationdbus Foundation	8
	3.2.1	Alert	8
	3.2.2	Additional variables	8
	3.3 Prof	fibus PA	
	3.3.1	Diagnosis	12
	3.3.2	Diagnosis Extension	13
4	Revision	n Chart	14

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			leline	71
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	2/14
Issued by:	Approved:		Released:	Area	of validity:
Giovanni Invernizzi	i			BU	l

1 Introduction

An important goal reached by the Process 5k methodology is the harmonization of the customer oriented part of each device, from housing to data presentation (via HMI or digital communication protocol). We recognize that a Common Diagnosis SubSystem will help in the harmonization process and in finding out a common look and feel though a common integrated way of managing alarms.

Field devices producing common diagnostic conditions can be integrated in the overall systems/tools in an easier and better-harmonized way only if these diagnostic conditions have been mapped in the same way within the field devices. Additional device specific diagnostic conditions can be individually identified for each device but their handling and mapping must be specified and implemented following a common rule.

Whenever all the devices will satisfy the above requirements, it will be possible to treat part of their diagnosis capability with:

- Same reading mechanism/logic
- Same specification for the Asset Monitor (Optimize IT)
- Same representation in the DTM
- · Same description in the DD
- Same naming and meaning

The above requirement enforces treatment of each diagnosis condition not as a simple bit but as a combination of information covering several aspects that were traditionally implemented/assembled within the maintenance stations (ASSET MONITORs). The advantage is that it should be no longer necessary to produce specific device integrations for different Hosts because all the relevant information is directly produced by the field devices.

The scope of this document is to help a developer to:

- Manage the alarms conditions and map them into the NAMUR representation used into the diagnosis subsystem, to achieve the harmonization process and the common look and feel discussed above.
- Map diagnosis subsystem result into the communication subsystems (i.e. Communication Protocol, HMI, etc), to achieve harmonization of the customer oriented part.

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			ine .	ті
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	3/14
Issued by:	Approved:		Released:	Area	a of validity:
Giovanni Invernizzi				BL	JI

2 Diagnosis Mapping

Field devices producing common diagnostic conditions can be integrated in the overall systems/tools in an easier and better-harmonized way only if these diagnostic conditions have been mapped in the same way within the field devices. Additional device specific diagnostic conditions can be individually identified for each device but their handling and mapping must be specified and implemented following a common rule.

The Table 2 is an estimation of the common diagnosis condition that shall cover the commonalities of every BUI device. The Table 2: Common Diagnosis Condition is the result of merging the current devices diagnosis conditions management and its columns represent:

- Mnemonics of the diagnosis alarm condition used in the diagnosis subsystem [1].
- Type of the Error, it is a short explanation of the alarm condition.
- **Type of detection**, it is how the diagnosis alarm can be detected inside the device. This column is the merging of different devices types of detection and could be a useful guideline for new device.
- Classification of the alarm condition.
- Group of the alarm condition.

On the rows there is the typical subsystem in which the alarm is raised.

2.1 Firmware execution non safe state

All the alarm conditions that lead to a non safe state for the firmware execution shall not be managed though a software solution, in particular though the diagnosis subsystem. The suggested reaction to those alarm condition is to execute a software reset. This particular class of diagnosis conditions is shown in Table 1.

TYPE OF ERROR	TYPE OF DETECTION
Communication Board Microcontroller Failure	Compare RAM and NovRAM RamCheck FlashCheck
External Power Supply Alarm	Input power supply readback
Front End Board Microcontroller failure	Compare RAM and NovRAM RamCheck FlashCheck

Table 1: firmware execution non safe state conditions

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			leline	TI
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	4/14
Issued by:	Approved:		Released:		Area of validity:
Giovanni Inverniz	zi				BUI

2.2 Device Specific Diagnosis Conditions

	#	MNEMONIC	TYPE OF ERROR	TYPE OF DETECTION	CLASSIFICATION	GROUP	
	0	PV_SENSOR_FAILURE	Primary variable sensor failure	Device specific	- FAILURE	HW_STATUS_SENSOR	
	0	FV_SENSOR_FAILURE	Filliary variable serisor failure	Device specific	PAILORE	TW_STATOS_SENSOR	
	1	SV SENSOR FAILURE	Secondary variable sensor failure	Device specific	FAILURE / MAINTENANCE	HW STATUS SENSOR	
		3V_3ENSOR_I AILORE	Secondary variable sensor failure	Device specific	T AILONE / IVIAINTENANCE	TIW_STATUS_SENSOR	
	2	TV_SENSOR_FAILURE	Tertiary variable sensor failure	Device specific	FAILURE / MAINTENANCE	HW STATUS SENSOR	
		TV_SENSOR_I AILORE	Tertiary variable serisor failure	Device specific	TAILOITE / IVIAINTENANGE	TIW_STATOS_SENSOR	
E E	3	FV SENSOR FAILURE	Fourth variable sensor failure	Device specific	FAILURE / MAINTENANCE	HW STATUS SENSOR	
SENSOR		1 1 2 0 2 1 4 0 0 1 2 1 7 1 2 0 1 2	Touritt variable sensor failure	Device specific	TAILOTTE AND MINTERVALOE	TW_0TXT00_0EN00TT	
	6	PV_SENSOR_OUT_LIMS	Primary variable out of limits	PV > Sensor Limit Hi	OFF SPECIFICATION	OPERATING_CONDITION_PROCESS	
S	0	T V_SENSON_COT_ENVIS	Timaly variable out of limits	PV < Sensor Limit Lo	OIT_SI ESII IOATION	OF ETIATING_CONDITION_F HOOESS	
	7	SV_SENSOR_OUT_LIMS	Secondary variable out of limits	SV > Sensor Limit Hi	OFF SPECIFICATION	OPERATING CONDITION PROCESS	
	,	7 SV_SENSON_OUT_LING Secondary variable out of illi		SV < Sensor Limit Lo	OIT_SEEDITIOATION	OF LITATING_CONDITION_F NOCESS	
	8	TV_SENSOR_OUT_LIMS	Tertiary variable out of limits	TV > Sensor Limit Hi	OFF_SPECIFICATION	OPERATING CONDITION PROCESS	
	0		Tertiary variable out of littles	TV < Sensor Limit Lo		OF ETIATING_CONDITION_FITOCECC	
	9	FV_SENSOR_OUT_LIMS	Fourth variable out of limits	FoV > Sensor Limit Hi	OFF_SPECIFICATION	OPERATING_CONDITION_PROCESS	
	Ŭ	1 V_02110011_001_211110	T out it variable out of limits	FoV < Sensor Limit Lo	011_0120110/(1101)	0. 2	
	12	PV_SENSOR_OUT_RANGE	Primary variable out of range	PV > Range Limit Hi	OFF_SPECIFICATION	OPERATING CONDITION PROCESS	
Z		1 1_02110011_001_1011102	Timaly variable out of farige	PV < Range Limit Lo	011_01 2011 10/(1101V	or Environa_ocidemoid_i nooeoo	
ΙĔ	13	SV_SENSOR_OUT_RANGE	Secondary variable out of range	SV > Range Limit Hi	OFF SPECIFICATION	OPERATING CONDITION PROCESS	
\ \text{\def}	10	OV_CENCOT_COT_HANGE	Secondary variable out or range	SV < Range Limit Lo	OTT_OT EOIT TOATTON	OF ETIATING_OCNERTICIN_F TIODEGO	
APPLICATION	14	TV_SENSOR_OUT_RANGE	Tertiary variable out of range	TV > Range Limit Hi	OFF SPECIFICATION	OPERATING CONDITION PROCESS	
₽		11_02110011_001_1111102	Tornary variable out or range	TV < Range Limit Lo	0.1 <u>_</u> 0. 20.1 10.411014	or Entring_contention_incodes	
⋖	15	FV_SENSOR_OUT_RANGE	Fourth variable out of range	FoV > Range Limit Hi	OFF SPECIFICATION	OPERATING CONDITION PROCESS	
		1 1_02110011_001_1111102	Tourist variable out of range	FoV < Range Limit Lo	0.1 <u>_</u> 0. 20.1 10.411014	or Entring_contention_incodes	
H. H.	18	FE_BOARD_FAILURE	Front End Board Failure	ROM CRC Check Frame Timeout	FAILURE	HW_STATUS_ELECTRONICS	
	19	FE_NV_FAILURE	Front End NvMem Failure	CRC Check	FAILURE	HW_STATUS_ELECTRONICS	

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			deline	TI
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	5/14
Issued by:	Approved:		Released:		Area of validity:
Giovanni Inverniz	zzi				BUI

	20	FE_NV_WARNING	Front End NvMem Warning	EEPROM write cycles exceeded	MAINTENANCE	HW_STATUS_ELECTRONICS
	21	FE_BOARD_NOT_DETECTED	Front End Not Detected	No Start-up Communication	FAILURE	HW_STATUS_ELECTRONICS
	22	FE_BOARD_COMM_ERROR	Front End Communication Error	Data CRC Frame counter	FAILURE	HW_STATUS_ELECTRONICS
	26	CB_NV_FAILURE	Communication Board NvMem Failure	CRC Check	FAILURE	HW_STATUS_ELECTRONICS
>	27	CB_NV_WARNING	Communication Board NvMem Warning	EEPROM write cycles exceeded	MAINTENANCE	HW_STATUS_ELECTRONICS
Z	30	NV_STORAGE_ACTIVE	NV storage active		CHECK_FUNCTION	HW_STATUS_ELECTRONICS
	31	NV_CONCISTENCY_CHECK	EEPROM Consistency Check	NV Failures states, repair	FAILURE	CONFIG_STATUS

Table 2: Common Diagnosis Condition

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline				
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	6/14
Issued by:	Approved:		Released:	Area of	validity:
Giovanni Inverniz	zi			BUI	

3 Communication Protocols Mapping

3.1 HART

The HART protocol provides different methods to communicate diagnosis condition and the device status, those methods and the decision about them will be explained in following paragraph.

3.1.1 Command Status Bytes

All slave response messages must return two Command Status bytes in the first two bytes of Data field. The first byte is multiplexed and contains either the Communication Status or the Response Code. The second byte of a slave response message always contains Field Device Status.

Communication Status is returned if a communication error is detected by the field device.

If there are no communication errors then the Response Code gives the result of the executed command.

The Device Status represents the current state of the slave.

The first two bytes are managed directly by the HART communication subsystem, while the Device Status is managed by the Diagnosis Subsystem.

Device Status	
BIT MASK	DEFINITION
0x80	Device Malfunction – The device detected a serious error or failure that compromises device operation
0x40	Configuration Changed
0x20	Cold Start
0x10	More Status Available – More status information is available via Command 48, Read Additional Status Information
0x08	Loop Current Fixed
0x04	Loop Current Saturated
0x02	Non-Primary Variable Out of Limits – A Device Variable not mapped to the PV is beyond its operating limits
0x01	Primary Variable Out of Limits – The PV is beyond its operating limits

3.1.2 Command 48, Read Additional Status Information

CMD 48	CMD 48 Structure				
BYTE	FORMAT ¹	MEANING ¹	COMMON DIAGNOSIS		
0-5	Bits or Enum	Device-Specific Status	Device Status (bit string)		
6	Bits	Extended Device Status	Not Used		
7	Bits	Device Operating Mode	Not Used		
8-10	Bits	Analog Channel Saturated	Not Used		
11-13	Bits	Analog Channel Fixed	Not Used		
14			High priority alarm bit number (integer)		
15			Classification of high priority alarm bit (bit string)		
16	Bits or Enum	Device-Specific Status	Group of the worst diagnosis condition (bit string)		
17–22			Alarm History (bit string)		
23-24			Not Used		

-

HART Communication Foundation Document Number HCF_SPEC-99, Revision 8.0

¹ The format is specified in

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			T eline	TI .
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	7/14
Issued by:	Approved:		Released:	Area	of validity:
Giovanni Invernizzi	i			BU	

3.1.3 Command XX, Read Lower Priority Diagnosis Conditions

An additional command shall be added to extract from the device information about lower priority diagnosis conditions.

CMD XX Stru	cture
SEND	
BYTE	MEANING
0	Diagnosis Condition Number (based on device status bit string)
RETURN	
0	Diagnosis Condition Number (based on device status bit string)
1	Classification
2	Group
3	Priority
4 to 5	Occurrences counter
6 to 11	How long the diagnosis condition has been set, expressed in:
	Bytes 6 to 7 day
	Bytes 8 to 11 msec
12 to 17	Time stamp of the last occurrence.
	If a real time clock is available this represent the time.
	If we have an run time hour counter the meaning will be how long ago it happened
	Expressed in:
	Bytes 12 to 13 day
	Bytes 14 to 17 msec
18 to 31	Diagnosis Condition Composition (list of enumerated)

ABB	Tec Common Diagnos	line .	ΤΙ		
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	8/14
Issued by:	Approved:		Released:	Area	of validity:
Giovanni Invernizzi				BL	JI

3.2 Fieldbus Foundation

Every FF device supporting common diagnosis shall have:

- A resource block containing diagnosis conditions coming from electronics.
- A device transducer block containing diagnosis conditions coming from the measurement variable production process and from the sensor electronics if it is physically divided (it could be substituted with another sensor).
- An HMI transducer block containing diagnosis conditions coming from the HMI.
- An advanced transducer block (if needed) containing diagnosis conditions coming from advanced algorithms that produce more sophisticated information.

The FF protocol provides different methods to communicate diagnosis condition and the device status, those methods and the decision about them will be explained in following paragraph.

3.2.1 Alert

Alert objects generate notification messages when alarms or events are detected. Alert objects report alarm and event occurrences using the FMS Event Notification service in a manner that ensures that alert messages are not lost. Two types of alerts are defined, events and alarms. Events are used to report a status change when a value in a function block changes state. Alarms are used to report a status change when a function block value enters an abnormal state and also when it returns to normal. Every ABB FF devices shall have multi-alert notification.

The alert notification shall contain classification of the diagnosis condition, the variable used will be the **subcode** using this structure (if the alert notification value could be used and read by all the asset monitors the grouping could be moved inside the value):

	NAM	UR	GROUPS	ERROR CODES
	Bit 15	Bit 14	Bit 13 to Bit 10	Bit 9 to bit 0
DIAGNOSIS_CLASS_CHECK_FUNCTION	0	0		0 – 1024
DIAGNOSIS_CLASS_OFF_SPECIFICATION	0	1		0 – 1024
DIAGNOSIS_CLASS_MAINTENANCE	1	0		0 – 1024
DIAGNOSIS_CLASS_FAILURE	1	1		0 – 1024

3.2.2 Additional variables

Each block (resource or transducer) shall have a variable (bit-string) to store the active diagnosis conditions.

INDEX	PARAMETER NAME		DATA TYPE	NOTES
48	DIAG_WORST_COND		UNSIGNED16	
49	DIAG_EXT		BIT_STRING	
50	DIAG_EXT_HISTORY		BIT_STRING	
51	DIAG_CONDITION_IDX		UNSIGNED8	
		COUNTER	UNSIGNED16	
52	DIAG_DETAILS	TIME_COUNTER	TIME_DIFF_S	Diagnosis Detailed History
		LAST_TIME	DATE_S	Data Type
53	DIAG_SIMUL_STATUS		UNSIGNED8	Enable/Disable Simulation
54	DIAG_SIMUL		BIT_STRING	Set simulation conditions
55	DIAG_MASK		BIT_STRING	Mask simulation conditions

The meaning of variables is explained in the following tables.

This variable is necessary to identify the worst diagnosis condition occurred to the device and to drive, inside the DTM/EDD, the description, the possible cause and the suggested action.

DIAG WORST COND

	NAM	UR	GROUPS	ERROR CODES		
	Bit 15	Bit 14	Bit 13 to Bit 10	Bit 9 to bit 0		
DIAGNOSIS_CLASS_CHECK_FUNCTION	0	0		0 – 1024		
DIAGNOSIS_CLASS_OFF_SPECIFICATION	0	1		0 – 1024		
DIAGNOSIS_CLASS_MAINTENANCE	1	0		0 – 1024		
DIAGNOSIS_CLASS_FAILURE	1	1		0 – 1024		

The diagnosis extension is necessary to show which diagnosis conditions are set more than the diagnosis worst condition.

DIAG EXT

The diagnosis extension history is necessary to remember which diagnosis conditions have been occurred till now and to drive the details reading.

DIAG_EXT_HISTORY

The details of the diagnosis condition shall be accessed writing the DIAG_CONDITION_IDX and reading the values in the following variables. This policy was chosen because, with the same variables, the user can read either common or device specific alarm condition details. The advantage is that we don't have to make any device specific variable for device specific diagnosis condition.

		Example 1	Example 2
DIAG_CONDITION_IDX		PV out of limits	Communication Error
	COUNTER	4	2
DIAG_DETAILS	TIME_COUNTER	10 min 21 sec 45 msec	14 min 1 sec 5 msec
	LAST_TIME ²	20/11/2006 21.34	02/08/2006 11.25

² If a real time clock is available, else a format like DIAGNOSIS_CONDITION_DETAILS_TIME_COUNTER will be used.

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline				ТΙ
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17 en			0.5	
Issued by:	Approved:		Released:		Area of validity:
Giovanni Invernizzi					BUI

3.3 Profibus PA

All the diagnosis information available on Profibus PA devices shall be stored into the physical block. Moreover the diagnosis variable defined by the profile, new variable shall be added to the standard physical block described in [8] and they are:

INDEX	PARAMETER NAME		DATA TYPE	NOTES
35	DIAG_WORST_0	COND	UNSIGNED16	
36	DIAG_EXT_HIST	ORY	OCTET_STRING	
37	DIAG_CONDITION_IDX		UNSIGNED8	
	COUNTER		UNSIGNED16	Custom Data Type:
38	38 DIAG_DETAILS	TIME_COUNTER	TIME_DIFF_S	Diagnosis Detailed History
		LAST_TIME		Data Type
39	DIAG_SIMUL_STATUS		UNSIGNED8	Enable/Disable Simulation
40	DIAG_SIMUL		OCTET_STRING	Set simulation conditions
41	DIAG_MASK		OCTET_STRING	Mask simulation conditions

The meaning of those variables is explained in the following tables.

This variable is necessary to identify the worst diagnosis condition occurred to the device and to drive, inside the DTM/EDD, the description, the possible cause and the suggested action.

DIAG	WORST	COND

	NAM	UR	GROUPS	ERROR CODES
	Bit 15	Bit 14	Bit 13 to Bit 10	Bit 9 to bit 0
DIAGNOSIS_CLASS_CHECK_FUNCTION	0	0		0 – 1024
DIAGNOSIS_CLASS_OFF_SPECIFICATION	0	1		0 – 1024
DIAGNOSIS_CLASS_MAINTENANCE	1	0		0 – 1024
DIAGNOSIS_CLASS_FAILURE	1	1		0 – 1024

The diagnosis extension history is necessary to remember which diagnosis conditions have been occurred till now and to drive the details reading.

DIAG_EXT_HISTORY

The details of the diagnosis condition shall be accessed writing the DIAG_CONDITION_IDX and reading the values in the following variables. This policy was chosen because, with the same variables, the user can read either common or device specific alarm condition details. The advantage is that we don't have to make any device specific variable for device specific diagnosis condition.

		Example 1	Example 2
DIAG_CONDITION_IDX		PV out of limits	Communication Error
	COUNTER	4	2
DIAG_DETAILS	TIME_COUNTER	10 min 21 sec 45 msec	14 min 1 sec 5 msec
	LAST_TIME ³	20/11/2006 21.34	02/08/2006 11.25

³ If a real time clock is available, else a format like DIAGNOSIS_CONDITION_DETAILS_TIME_COUNTER will be used.

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			deline	TI
Responsibility:	Date:	Language:	Filing system :	Revision	: Page:
APR / ITKET	2008 December 17	en		0.5	
Issued by:	Approved:		Released:		Area of validity:
Giovanni Inverniza	zi				BUI

PROFIBUS Specification - Amendment 2 to the Profibus Profile for Process Control Devices V 3.01 - Condensed Status and Diagnostic Messages V 1.0 June 2005 shall be used as example for computing variable status.

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline				ті	
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:	
APR / ITKET	2008 December 17	en		0.5		
Issued by:	Approved:		Released:		Area of validity:	
Giovanni Inverniz	zzi				BUI	

3.3.1 Diagnosis

Octet	Bit	DIAGNOSIS Mnemonic	Description	EXT_DIAG to be set	DIAGNOSIS CLASS
1	0-7		reserved by PNO, fixed to 0		
2	0-2		reserved by PNO, fixed to 0		
	3	DIA_WARMSTART		no	
	4	DIA_COLDSTART		no	
	5	DIA_MAINTENANCE	Maintenance required	no	MAINTENANCE
	6		reserved by PNO, fixed to 0		
	7	IDENT_NUMBER_VIOLATION		no	
3	0	DIA_MAINTENANCE_ALARM	Failure of the device or armature	yes	FAILURE
	1	DIA_MAINTENANCE_DEMANDED	Maintenance demanded	no	Not Used
	2	DIA_FUNCTION_CHECK	Device is in function check or in simulation or under local control e.g. maintenance	no	CHECK_FUNCTION
	3	DIA_INV_PRO_COND	The process conditions don't allow returning valid values. (Set if a value has the quality Uncertain - Process related, no maintenance or Bad - Process related, no maintenance	no	OFF_SPECIFICATION
	4-7		reserved by PNO, fixed to 0		
4	0-6		reserved by PNO, fixed to 0		
	7	EXTENSION_AVAILABLE	0: There is no more information available 1: More diagnosis information is available in DIAGNOSIS_EXTENSION		

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			ne	TI
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	
Issued by:	Approved:		Released:		Area of validity:
Giovanni Invernizz	i				BUI

3.3.2 Diagnosis Extension

See Device Specific Diagnosis Conditions for details.

Octet	Description
1	
2	Common Diagnosis Conditions
3	
4	
5	Device Specific Conditions
6	

ABB	Technical Information Common Diagnosis Subsystem Mapping Guideline			deline	1
Responsibility:	Date:	Language:	Filing system :	Revision:	Page:
APR / ITKET	2008 December 17	en		0.5	
Issued by:	Approved:		Released:	Area	of validity:
Giovanni Invernizz	zi			BU	I

4 Revision Chart

Rev.	Description of Version/Changes	Primary Author(s)	Date
0.4	First Draft (the revision start from 0.4 to keep this document consistent with other Common Diagnosis Documents)	Giovanni Invernizzi	2007 March 19
0.5	Second Draft after first complete implementation, modified command XX structure.	Giovanni Invernizzi	2008 December 17