Definitions

- 1.) Given a set X, a topology on X is a collection of sets $\mathcal{T} \subset \mathcal{P}(X)$ such that
 - i.) $\varnothing, X \in \mathcal{T}$
 - ii.) Given a collection $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of sets in \mathcal{T} , $\bigcup_{{\alpha}\in\mathcal{A}}U_{\alpha}\in\mathcal{T}$
 - iii.) Given a finite collection $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of sets in \mathcal{T} , $\bigcap_{{\alpha}\in\mathcal{A}}U_{\alpha}\in\mathcal{T}$
- 2.) Given a set X and a topology \mathcal{T} on X, (X,\mathcal{T}) is a topological space.
- 3.) Given a topological space (X, \mathcal{T}) , an open subset of X is a subset $U \subset X$ where $U \in \mathcal{T}$.
- 4.) Given topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) the function $f: X \to Y$ is *continuous* if for all $U \in \mathcal{T}_Y$, $f^{-1}(U) \in \mathcal{T}_X$.
- 5.) Given a set X, the collection $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of subsets of X is a cover of X if $\bigcup_{{\alpha}\in\mathcal{A}}U_{\alpha}=X$
- 6.) Given a cover $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of X, $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is an open cover if U_{α} is open in X for all ${\alpha}\in\mathcal{A}$.
- 7.) Given a cover $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ of X, a finite subcover of $\{U_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ is a cover $\{U_{\beta}\}_{{\beta}\in\mathcal{B}}$ of X where $\mathcal{B}\subset\mathcal{A}$ and \mathcal{B} is finite.
- 8.) Given a topological space (X, \mathcal{T}) , it is *compact* if for all open covers $\{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$ of X, there exists a finite subcover $\{U_{\beta}\}_{{\beta} \in \mathcal{B}}$ of $\{U_{\alpha}\}_{{\alpha} \in \mathcal{A}}$.

Proof

Assume f is continuous and let $V \subset Y$ be open. Fix $y \in V$, thus there exists $\varepsilon > 0$ where $\operatorname{Ball}(y,\varepsilon) \subset V$. Since $\operatorname{Ball}(y,\varepsilon)$ is open, $f^{-1}(\operatorname{Ball}(y,\varepsilon))$ is open, thus there exists $\delta > 0$ where $\operatorname{Ball}(x,\delta) \subset f^{-1}(\operatorname{Ball}(y,\varepsilon))$, thus for all $x' \in \operatorname{Ball}(x,\delta)$ we know that $x' \in f^{-1}(\operatorname{Ball}(y,\varepsilon))$, and thus $f(x') \in \operatorname{Ball}(y,\varepsilon)$.

Assuming (b), fix $\varepsilon > 0$, thus for some $\delta > 0$, $x' \in \operatorname{Ball}(x,\delta) \Longrightarrow f(x') \in \operatorname{Ball}(y,\varepsilon)$ for arbitrary $x \in X$ and $y \in Y$. We can see that $f(x') \in \operatorname{Ball}(y,\varepsilon) \Longrightarrow x' \in f^{-1}(\operatorname{Ball}(y,\varepsilon))$, thus $x' \in \operatorname{Ball}(x,\delta) \Longrightarrow x' \in f^{-1}(\operatorname{Ball}(y,\varepsilon))$, thus $\operatorname{Ball}(x,\delta) \subset f^{-1}(\operatorname{Ball}(y,\varepsilon))$. Let $V \subset Y$ be open where $\operatorname{Ball}(y,\varepsilon) \subset V$, thus $f^{-1}(\operatorname{Ball}(y,\varepsilon) \subset f^{-1}(V))$, thus $\operatorname{Ball}(x,\delta) \subset f^{-1}(V)$. Since x is arbitrary, we know that $\operatorname{Ball}(x,\delta) \subset f^{-1}(V)$ for all $x \in f^{-1}(V)$, thus $f^{-1}(V)$ is open.

It follows that (a) and (b) are equivalent. ■