Table 1. Hypotheses for covariates affecting landings. S_t is quarter 3 (July-September) catch in the current season, S_{t-1} is quarter 3 catch in the previous season. N_t is the post-monsoon October-March catch in the current season and N_{t-1} is the October-March catch in the prior season. Because the fishing season is July-June, N_t spans two calendar years.

Stage	Hypothesis	Resp.	Covariates
Age	DD1. S_t is dominated by mature age 2+ fish, thus	S_t	N_{t-1}
2+	abundance of the 1-yr and 2-yr ages in the prior season		
	(Oct-Mar catch) should be correlated with the		
	abundance of mature fish this year.		
Age	DD2. Abundance of 1-yr and 2-yr fish should be	N_t	S_{t-1} and S_{t-2}
1-2	correlated with strength of the cohorts from the		
	previous two seasons. The quarter 3 catch, dominated		
	by mature fish, in the prior two years is expected to be		
	correlated with post-monsoon catch.		
Age	DD3. Because age 2 fish appear in the post-monsoon	N_t	N_{t-1}
2+	catch, we also expect the post-monsoon catch		
	(dominated by age 1 and 2) in the previous season to be		
	correlated with the post-monsoon catch in the current		
	season. Post-monsoon catch two seasons prior should be		
C	minimally correlated with current post-monsoon catch.	C	C1
Spawn	S1. The onset of monsoon precipitation triggers	S_t	Seasonal precipitation
	movement of adults from offshore to spawning areas due		
	to changes in salinity, turbulence or noise. Spent adults migrate inshore and are exposed to the fishery.		anomaly during Jun-Jul in year t
Spawn	S2. The level of precipitation in pre-monsoon months	S_t	Seasonal
Spawn	predicts spawning strength.	$\mid \mathcal{S}_t \mid$	precipitation
	predicts spawning strength.		anomaly during
			Apr-May in year t
Spawn	S3. Low SST is associated with delayed and limited	S_t	Average SST during
Spawii	spawning as a behavioral response by adults to avoid		Jun-Sep in year t
	exposing larvae to low temperatures associated with		0 33-1 0 °F J 00-1
	poor survival. Conversely, high SST is indicative of		
	poor upwelling and poor larval feeding conditions.		
Spawn	S4. xtremely high upwelling brings poorly oxygenated	S_t	Average upwelling
•	water and very low temperatures to the surface causing	-	index Jun-Sep, Max
	sardines to move offshore where they are less exposed to		upwelling index
	the fishery.		Jun-Sep in year t

Table 1. Continued.

Stage	Hypothesis	Resp.	Covariates
Larv.	L1. Highest somatic growth occurs in Sep-Oct. Larval	N_t	Average SST during
	growth and survival is higher in warmer water. Low		Sep-Oct in year t-1
	SST at this time is also associated with strong		
	upwelling which advects larvae into offshore waters		
	where productivity is lower.		
Juv.	L2. Upwelling is associated with higher productivity	N_t	Ave. upwelling
	and higher density of zooplankton, which leads to better	and S_t	index Jun-Sep and
	larval and juvenile growth and survival. Thus the		max upwelling
	strength of upwelling during the monsoon should be		index Jun-Sep in
	associated with higher biomass in subsequent years. At		year t-1 and t-2
	the same time, extremely strong upwelling brings poorly		
	oxygenated water to the surface causing larval mortality		
	and advects larvae offshore.		
Juv.	L3. Chlorophyll blooms are signatures of high	N_t	Ave. Chl-a density
	productivity from nutrient influx either due to	and S_t	Jun-Dec in year t-1
	upwelling or coastal inputs. Bloom intensity in prior		and t-2
	years should be associated with future sardine biomass.		
All	A1. During the Mar-Apr, the sea temperatures are high	Catch	Ave. SST Q2 year t,
ages	and sardines migrate offshore to avoid high temp.	Q2	max SST Q2 year t
		year t	
All	A1. The changes brought about by the El Niño	N_t	ONI year t-1
ages	Southern Oscillation (ENSO) cycle have a variety of	and S_t	
	effect on environmental parameters (precipitation, SST,		
	thermal fronts, Wind) which impacts spawning and		
	early survival. This in turn impacts the overall		
	abundance.		