Proiectare logică

Curs 3

Algebra booleană. Funcții booleene. Porți logice. Reprezentarea funcțiilor booleene

Cristian Vancea

https://users.utcluj.ro/~vcristian/PL.html

Cuprins

- Algebra booleană
- Funcții booleene
- Funcții booleene elementare (porți logice)
- Reprezentarea funcțiilor booleene

- Bazele algebrei booleene au fost puse de George Boole (1815-1864).
- Algebra booleană este folosită pentru a descrie la nivel simbolic comportamentul circuitelor de comutare prin care se transferă, prelucrează și stochează datele din calculator.
- Circuitele de comutare au 2 stări codificate cu valorile binare 1 și 0, de unde denumirea de circuite logice.
- Algebra booleană operează cu propoziții logice adevărate (valoarea 1) sau false (valoarea 0) => algebra logică.
- Propoziții logice:
 - Simple;
 - Compuse \rightarrow se obțin din cele simple prin legături logice: conjuncție $\frac{1}{2}$ $\frac{$

Definiție – Algebra booleană este formată din:

- Elementele 0 și 1;
- 2 operații binare: SAU (+), ŞI (•);
- 1 operație unară: NOT (¯).

26 26	SAU	
x_1x_2	$x_1 + x_2$	
0 0	0	
0 1	1	
1 0	1	
1 1	1	

26 26	ŞI	
x_1x_2	$x_1 \cdot x_2$	
0 0	0	
0 1	0	
1 0	0	
1 1	1	

26	NOT
X	$\bar{\chi}$
0	1
1	0

Axiome

- 1. $\forall x_1, x_2 \in \{0, 1\} => x_1 + x_2 \in \{0, 1\}, x_1 \cdot x_2 \in \{0, 1\}$
- 2. Comutativitate:

$$x_1 + x_2 = x_2 + x_1 x_1 \cdot x_2 = x_2 \cdot x_1$$

3. Asociativitate:

$$x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$$

 $x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3$

4. Distributivitate:

$$x_1 + (x_2 \cdot x_3) = (x_1 + x_2) \cdot (x_1 + x_3)$$

$$x_1 \cdot (x_2 + x_3) = (x_1 \cdot x_2) + (x_1 \cdot x_3)$$

5. Elemente neutre:

$$x + 0 = 0 + x = x, x \cdot 1 = 1 \cdot x = x$$

6. Principiul terțului exclus:

$$x + \bar{x} = 1$$

7. Principiul contradicției :

$$x \cdot \bar{x} = 0$$

Proprietăți

- 1. Dubla negație: $\bar{x} = x$
- 2. Idempotența: x + x = x, $x \cdot x = x$
- 3. Absorția:

$$x_1 + (x_1 \cdot x_2) = x_1$$

 $x_1 \cdot (x_1 + x_2) = x_1$

- 4. Consecințe pentru elementele neutre: x + 1 = 1, $x \cdot 0 = 0$
- 5. Formulele lui De Morgan:

$$\frac{\overline{x_1 + x_2 + \dots + x_n}}{\overline{x_1 \cdot x_2 \cdot \dots \cdot x_n}} = \overline{x_1} \cdot \overline{x_2} \cdot \dots \cdot \overline{x_n}$$

- 5. Teorema lui Shannon (generalizare) Complementul unei expresii (funcții) booleene de \boldsymbol{n} variabile se obține complementând variabilele și interschimbând + cu ·.
- Principiul dualității orice proprietate sau axiomă rămâne valabilă dacă se interschimbă + cu · și 0 cu 1.

Funcții booleene

Definiție
$$-f: \{0, 1\}^n \to \{0, 1\}, f(x_{n-1}, x_{n-2}, ..., x_0) = y$$

- Variabilele şi rezultatul pot avea doar valoarea 0 sau 1.
- Variabilele x_i reprezintă elemente de comutare cu 2 stări (întrerupător închis/deschis, tranzistor blocat/în conducție).
- Funcțiile caracterizează funcționarea unor circuite construite cu elemente de comutare.
- 2 funcții sunt egale dacă au rezultate identice pentru orice combinație valorică a variabilelor de intrare.
- Pentru n variabile se pot defini 2^{2^n} funcții.

Ex:
$$n = 1 \Rightarrow f(x_0): \{0, 1\} \rightarrow \{0, 1\}$$
. Se pot defini 4 funcții:

$$f_1$$
: $f_1(0) = 0$, $f_1(1) = 0$ – constanta 0

$$f_2$$
: $f_2(0) = 0$, $f_2(1) = 1$ – variabila x_0

$$f_3$$
: $f_3(0) = 1$, $f_3(1) = 0$ – variabila x_0 negat

$$f_4$$
: $f_4(0) = 1$, $f_4(1) = 1$ – constanta 1

Funcții booleene elementare

Orice funcție booleană se poate realiza cu funcții elementare => Orice circuit logic se poate realiza cu circuite de bază (porți logice) care corespund funcțiilor elementare.

Exemple de funcții elementare:

/INV)	•		
x_0	f	_	
0	1		
1	0		
	$\frac{x_0}{0}$		

SAU (OR)	x_1	x_0	f
$f = x_1 + x_0$	0	0	0
$J - x_1 + x_0$	0	1	1
$x_0 \longrightarrow f$	1	0	1
x_1	1	1	1
			•

SAU-NU (NOR)	x_1	x_0	f
$f = \overline{x_1 + x_0}$	0	0	1
$J - x_1 + x_0$	0	1	0
$x_0 \longrightarrow C$	1	0	0
x_1	1	1	0

ŞI (AND)	x_1	x_0	f
$f = x_1 \cdot x_0$	0	0	0
$J = x_1 \cdot x_0$	0	1	0
x_0 $-f$	1	0	0
x_1	1	1	1

ŞI-NU (NAND)	<u>x</u> 1	x_0	f
,	0	0	1
$f = \overline{x_1 \cdot x_0}$	0	1	1
x_0	1	0	1
x_1 —	1	1	0

SAU-EXCLUSIV	x_1	x_0	f
(XOR)	0	0	0
$f = x_1 \oplus x_0$	0	1	1
	1	0	1
x_0	1	1	0
1 /			

COINCIDENȚĂ	x_1	x_0	f
(XNOR)	0	0	1
·	0	1	0
$f = x_1 \oplus x_0$	1	0	0
$= x_1 \odot x_0$	1	1	1
x_0 x_1			
^ 1 /		8	3

Funcții booleene elementare

Prioritatea operațiilor

Ex:
$$(b+c) \cdot \overline{a+(b+a) \cdot \overline{c}}$$

 $\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow$
1 4 3 1 2 1 <- ordinea operațiilor

Funcții booleene

Formulele de expansiune ale lui Shannon

O funcție $f: \{0, 1\}^n \rightarrow \{0, 1\}$, se poate extinde după variabila x_i astfel:

$$f(x_{n-1}, \dots, x_{i}, \dots, x_{0}) = (x_{i} \cdot f(x_{n-1}, \dots, 1, \dots, x_{0})) + (\overline{x_{i}} \cdot f(x_{n-1}, \dots, 0, \dots, x_{0}))$$

$$(x_i + f(x_{n-1}, ..., 0, ..., x_0)) \cdot (\overline{x_i} + f(x_{n-1}, ..., 1, ..., x_0))$$

Observație: Pentru forma duală s-au interschimbat + cu · și 0 cu 1.

Reprezentarea grafică

Tabel de adevăr

- Pentru n variabile sunt 2^n combinații.
- Pentru combinațiile în care funcția nu este specificată se trece X în coloana rezultat => funcția este incomplet definită.

x_{r}	$n-1$ x_n	ı-2		x_0	\int
	0	0	•••	0	
(0	0	•••	1	
			•••		
	1	1	•••	1	

$$\mathsf{Ex}_1: f = x_0 + (x_1 \cdot \overline{x_2})$$

$$\begin{array}{c|cccc} x_2 x_1 x_0 & f \\ \hline 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{array}$$

Ex₂: funcție incomplet definită

x_1	f	
		X
0	1	1
1	0	X
1	1	0

Reprezentarea grafică

Diagramă Karnaugh

- Se pretează pentru funcții cu maxim n=4 variabile.
- Se împart cele n variabile în 2 grupuri cu k, respectiv l variabile:

$$k + l = n, k, l > 0, |k - l| \le 1.$$

- Se desenează un dreptunghi cu $\mathbf{2}^n$ celule având $\mathbf{2}^l$ linii și $\mathbf{2}^k$ coloane.
- Variabilelor din grupul \boldsymbol{l} se dau valori consecutive în cod Gray, care se atașează liniilor (de sus în jos). Similar codurile Gray consecutive ale variabilelor din grupul \boldsymbol{k} se atașează coloanelor (de la stânga la dreapta).
- În celule se introduce valoarea funcției pentru valorile variabilelor asociate la linia și coloana curentă.
- Rândurile și coloanele de la extremități se consideră învecinate.

Ex:

Funcție cu **2** variabile

Funcție cu **2** variabi
$$k=1$$
 (x_0)

$$l=1 (x_1)$$

 $k=2(x_1x_0)$ 1 0 $l=1 (x_2)$ 0 1

Funcție cu 3 varia							
$k=2 (x_1x_0)$	x_2 x_1 x_0	00	01	11	10		
$l=1 (x_2)$	0						
f(0.1)	1					12	

Codul Gray

- cod reflectat codul pe n biți se generează prin reflectarea codului pe n-1 biți și adăugarea unui bit suplimentar pe poziția cea mai semnificativă (la stânga): 0 la codul normal și 1 la cel reflectat.
- cod ciclic fiindcă oricare 2 coduri consecutive diferă printr-un bit.

Reprezentarea grafică

Diagramă Karnaugh

Ex:

Cu 3 variabile

$$k=1 (x_0)$$

$$l=2 (x_2x_1)$$

Cu 4 variabile

$$k=2 (x_1x_0)$$

$$l=2 (x_3x_2)$$

Celulele verzi

reprezintă vecinii

celulei maro.

Observație: 2 celule învecinate pe orizontală sau verticală corespund întotdeauna la 2 combinații valorice care diferă printr-o variabilă. 14

Reprezentarea funcțiilor booleene Reprezentarea grafică

Diagramă Karnaugh

$$\operatorname{Ex:} f = x_0 + (x_1 \cdot \overline{x_2})$$

Tabel de adevăr

x_2	x_1	x_0	$\int \int$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Diagrama Karnaugh

x_2 x_1 x_0	00	01	11	10
0	0	1	1 .	1
1	0	1	1	0

$$f(0,0,0)$$
 $f(0,0,1)$ $f(0,1,1)$..., etc

Reprezentarea grafică

Schemă logică

• Se utilizează simboluri pentru descrierea circuitelor logice și se folosesc prioritățile operatorilor.

$$\operatorname{Ex:} f = x_0 + (x_1 \cdot \overline{x_2})$$

Diagramă de timp

- Pune în evidență evoluția valorilor circuitului în timp.
- Este utilă la evidențierea unor stări tranzitorii de hazard ale circuitelor logice.

$$\operatorname{Ex:} f = x_0 + (x_1 \cdot \overline{x_2})$$

Reprezentarea analitică

Număr de combinație

• Definiție – Fie $f: \{0,1\}^n \to \{0,1\}, f(x_{n-1},x_{n-2},...,x_0) = y$. Pentru un set de valori date variabilelor se numește **număr de combinație** valoarea echivalentă în baza 10:

$$i = x_{n-1} \times 2^{n-1} + x_{n-2} \times 2^{n-2} + \dots + x_0 \times 2^0$$

Ex: n = 3 variabile

$x_2x_1x_0$	Nr. combinație <i>i</i>
0 0 0	0
0 0 1	1
0 1 0	2
0 1 1	3
1 0 0	4
1 0 1	5
1 1 0	6
1 1 1	7

Reprezentarea analitică

Mintermi

• Definiție – Funcția P_i : $\{0,1\}^n \rightarrow \{0,1\}$,

$$P_i(x_{n-1}, x_{n-2}, ..., x_0) = \begin{cases} 1, \text{ pentru nr. de combinație} = i \\ 0, \text{ altfel} \end{cases}$$

se numește contintuent al unității sau minterm.

Ex: n = 3 variabile

$$P_0(0,0,0) = 1$$
 $P_1(0,0,0) = 0$
 $P_0(0,0,1) = 0$ $P_1(0,0,1) = 1$ $P_1(0,1,0) = 0$ $P_1(0,1,0) = 0$

$$P_7(0,0,0) = 0$$
...
 $P_7(1,1,0) = 0$
 $P_7(1,1,1) = 1$

 $P_7 = x_2 \cdot x_1 \cdot x_0$

$$P_0 = \overline{x_2} \cdot \overline{x_1} \cdot \overline{x_0} \qquad P_1 = \overline{x_2} \cdot \overline{x_1} \cdot x_0$$

Reprezentarea analitică

Maxtermi

• Definiție – Funcția $S_i:\{0,1\}^n \to \{0,1\}$, $S_i(x_{n-1},x_{n-2},\dots,x_0) = \begin{cases} 0 \text{, pentru nr. de combinație} = i\\ 1 \text{, altfel} \end{cases}$

se numește contintuent al lui zero sau maxterm.

Ex: n = 3 variabile

$$S_0(0,0,0) = 0$$
 $S_1(0,0,0) = 1$ $S_7(0,0,0) = 1$ $S_0(0,0,1) = 1$ $S_1(0,0,1) = 0$... $S_1(0,1,0) = 1$ $S_1(0,1,0) = 1$... $S_1(0,1,0) = 1$... $S_1(0,1,0) = 1$... $S_1(0,1,0) = 1$... $S_1(0,1,0) = 1$...

$$S_0 = \overline{P_0} = x_2 + x_1 + x_0$$
 $S_1 = \overline{P_1} = x_2 + x_1 + \overline{x_0}$ $S_7 = \overline{P_7} = \overline{x_2} + \overline{x_1} + \overline{x_0}$

 $S_i = \overline{P_i}$ = disjuncție de variabile negate dacă apar cu 1 în numărul de combinație i sau nenegate, altfel (cf. De Morgan). disjuncție => maxterm

Reprezentarea analitică

Forma Canonică Disjunctivă (FCD)

• Orice funcție $f: \{0,1\}^n \to \{0,1\}$ se poate scrie ca o disjuncție de mintermi corespunzători combinațiilor pentru care funcția f=1.

$$f(x_{n-1}, x_{n-2}, ..., x_0) = \sum_{i \in M_1} P_i \rightarrow Forma Canonică Disjunctivă$$

(FCD = sumă de produse) M_1 = mulțimea combinațiilor valorice pentru care f = 1.

Mintermii se numesc termeni canonici disjunctivi.

Ex:
$$n = 3$$
 $f = x_0 + (x_1 \cdot \overline{x_2})$

LA. 11 —	J	$-x_0 + (x_1 \cdot x_2)$	
$\begin{array}{c cccc} x_2 x_1 x_0 & & & \\ \hline 0 & 0 & 0 & & & \\ \end{array}$	<u>f</u>	x_2 x_1 x_0 x_1 x_0 x_1 x_0 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_3 x_4 x_4 x_4 x_4 x_4 x_4 x_5 x_4 x_5 x_4 x_4 x_5 x_4 x_5 x_4 x_4 x_5 x_4 x_5	=
0 0 1	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0 1 0	1	$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ \end{bmatrix} $ $(\overline{x_2} \cdot x_1 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0 \cdot x_0) + (\overline{x_2} \cdot x_0 \cdot x_0$	
0 1 1	1	$(x_2 \cdot \overline{x_1} \cdot x_0) +$	
1 0 0	0	$(x_2 \cdot x_1 \cdot x_0)$	
1 0 1	1	Observație: Fiecare celulă cu valoarea 1 din Diagrama	
1 1 0	0	Karnaugh corespunde unui minterm.	
1 1 1	1	namaagir corespanae anamintemi.	20

Reprezentarea analitică

Forma Canonică Conjunctivă (FCC)

• Orice funcție $f:\{0,1\}^n \to \{0,1\}$ se poate scrie ca o conjuncție de maxtermi corespunzători combinațiilor pentru care funcția f=0.

$$f(x_{n-1}, x_{n-2}, ..., x_0) = \prod_{i \in M_0} S_i \rightarrow \text{Forma Canonică Conjunctivă (FCC)}$$

Ultimos combinatiilor valorica poptru caro $f = 0$ (FCC = produs de sume)

 M_0 = mulțimea combinațiilor valorice pentru care f=0.

Maxtermii se numesc termeni canonici conjunctivi.

Ex:
$$n = 3$$
 $f = x_0 + (x_1 \cdot \overline{x_2})$

x_2	f		
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$x_1 x_0$	00	01	11	10
0	0	1	1	1
1	0	1	1	0

Observație: Fiecare celulă cu valoarea 0 din Diagrama Karnaugh corespunde unui maxterm.

Reprezentarea analitică

Forme Canonice

$$\mathsf{Ex}_1: n = 2 \ f = x_0 \oplus x_1$$

x_1	x_0	\int
0	0	0
0	1	1
1	0	1
1	1	0

x_1	0	1
0	0	1
1	1	0

$$f = P_1 + P_2 = (\overline{x_1} \cdot x_0) + (x_1 \cdot \overline{x_0}) - FCD$$

$$f = S_0 \cdot S_3 = (x_1 + x_0) \cdot (\overline{x_1} + \overline{x_0}) - FCC$$

$$Ex_2$$
: $n = 2$ $f = x_0 + x_1$

$$egin{array}{c|cccc} x_1 & x_0 & f \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array}$$

Reprezentarea analitică

Forma elementară

- Termenii nu conțin toate variabilele de intrare precum la forma canonică.
- Se obține din forma canonică prin tehnici minimizare.

Forma neelementară

Se obţine din alte forme prin extragerea factorului comun unde este posibil.

Observație: La forma neelementară scade numărul de intrări ale porților logice (avantaj), dar crește numărul de niveluri logice (dezavantaj).