Projekt 10: Transport w nanostrukturach opartych na grafenie

Kacper Połuszejko, 412183

Rys. 1: Relacja dyspersji dla $s_f = 1$ (po lewej) oraz $s_f = 16$ (po prawej).

0.00

k [1/nm]

0.01

Rys. 2: Relacje dyspersji dla $s_f=1$ oraz $s_f=16$ przedstawione na jednym rysunku. Należy zauważyć, że dla niskich energii wykresy te dobrze się pokrywają. Dla energi wyższych niż 0.1 eV zaczynają się jednak "rozjeżdżać".

Rys. 3: Relacje dyspersji dla B = 1.5 T oraz $s_f=16.\,$

 $\mathbf{Rys.}$ 4: Mapa potencjału otrzymana dla symulowanego układu.

Rys. 5: Konduktancja w funkcji pola magnetycznego dla $V_{np}=0.1 eV.$

 ${f Rys.}$ 6: Mapa prądu dla B = 1.9 T (minimum konduktancji). Obserwujemy duże rozproszenie wsteczne.

 $\bf Rys.$ 7: Mapa prądu dla B = 2.2 T (maksimum konduktancji). Nadal obserwujemy rozproszenie wsteczne, ale duża część prądu jest jednak transmitowana

Rys. 8: Mapa prądu dla B=2.4 T (minimum konduktancji). Obserwujemy duże rozproszenie wsteczne.