

✓ Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

grade 100%

Week 2 Quiz

LATEST	SUBMISSION GRADE
4000	

10	10%)								
1.	whi				ideo lessons, enced by the		e disjoint se	ts (1,3,5,7),	(2,8) and (4,6),	1/1 point
	\bigcirc	(2,8)								
	\bigcirc	(4,6)								
	\bigcirc	None of the	above.							
	`	/ Correct								
		A disjoin	t set is refere	nced by one	of the values	in the set.				
2.	Wha	at is the unio	on of the dis	oint sets (1	,3,5,7) and (2	,8)?				1 / 1 point
	\circ	(3,11)								
		(1,2,3,5,7,8)								
	\bigcirc	(2,6,8,10,14,1	16,24,40,56)							
	\bigcirc	((1,2),(1,8),(3,	,2),(3,8),(5,2),(5,8),(7,2),(7,8	())					
	`	/ Correct The unio		sets contains	s only each el	ement from	the first set a	and each ele	ement from	
		the secon	riu set.							
3.	Wha	at happens v	when you tal	ce the unior	n of two disjo	oint sets th	at contain th	ne same va	lue?	1/1 point
	\circ	Any element	found in bot	h disjoint se	ts will appear	twice in the	union of the	se two disjo	oint sets.	
	\bigcirc	The element	s cancel and	neither appe	ears in the un	ion of the tv	vo disjoint set	ts.		
					to see if the s			both disjoir	nt sets and	
					ly once in the					
		I wo differen	it disjoint sets	by definitio	n can never s	nare the sar	ne value.			
		/ Correct								
	`		sets represen	t a partitioni	ing of unique	values into	subsets that (do not have	any items in	
					ngs to exactly "up-tree" par					
		belongs					•			
4.					resentation i			ich of the	following	1 / 1 point
	arra	ys would No	OT be a valid	representa	ition of the d	isjoint set ((1,3,5,7)?			
	\circ	-1	-1	1	-1	1	-1	1	-1	
		1	2	3	4	5	6	7	8	
	\bigcirc	5	-1	-1	-1	3	-1	1	-1	
		1	2	3	4	5	6	7	8	
	\bigcirc	-1	-1	1	-1	3	-1	5	-1	
		1	2	3	4	5	6	7	8	
		3	-1	5	-1	7	-1	1	-1	
		1	2	3	4	5	6	7	8	

Correc

This is indeed not valid because there is no root of the up-tree. Element 1 points to element 3 which points to element 5 which points to element 7 which points to element 1, so no element in this disjoint set is the root and would represent the disjoint set.

1		-		-		222	
1	-1	7	-1	7	-1	???	
•	2	3	4	5	6	7	
) -3							
) -2							
) -1							
) -4							
✓ Cor	ect						
but	there is no -0		oint to the 0th	element of the	array, so we inc	ld have height zero rement the height	
hen enco	ding size into	the root of an	un-tree wha	t value should	d he placed in e	element 7 of the	1 / 1 poi
llowing a			ар агоо, т				
3	-1	7	-1	7	-1	???	
1	2	3	4	5	6	7	
) -1							
) -1) -3) -2		ree represents (the disjoint set	: (1.3.5.7) which	n has four eleme	ents.	
) -3) -2 ✓ Corr		ree represents (the disjoint set	: (1,3,5,7) which	n has four eleme	ents.	
or Cor Cor hen compath comp	rect. This up-tr outing the un ression) which	ion of two disj	oint sets repr	esented as up	o-trees in an ar	ents. ray, (using proper complexity than the	1/1 poli
or complete	nect. This up-to buting the un ression) which ns? make the up-t	ion of two disj h of these stra	oint sets repr tegies results	esented as up in a better ov	o-trees in an ar	ray, (using proper complexity than the	1/1 poi
or complete	puting the un ression) which ns? make the up-t	ion of two disj h of these stra tree with fewer (oint sets repr tegies results elements a sub	esented as up in a better ov otree of the roo	o-trees in an ar verall run time	ray, (using proper complexity than the with more	1/1 poi
-1 -1 -3 -3 -2 Cor Cor Cor Always elemen Always height.	outing the unression) which make the up-total. make the up-total. make the up-total.	ion of two disjo h of these stra tree with fewer of tree with a short	oint sets repr tegies results elements a sul ter height a su	esented as up in a better ov otree of the roo	p-trees in an ar verall run time ot of the up-tree	ray, (using proper complexity than the with more	1/1 pol
hen complete	puting the unression) which make the up-t ts. make the up-t ts. make the up-t trail run time op-tree.	ion of two disjusted in the second street with fewer of the with a short complexity is no	oint sets repr tegies results elements a sul ter height a su ot affected by v	esented as up in a better or otree of the ro btree of the ro which up-tree is	p-trees in an ar verall run time ot of the up-tree	ray, (using proper complexity than the with more e with a larger ome a subtree of the	1/1 pol
-1 -1 -3 -3 -2 -Cor Cor Cor Cor Always elemen Always height. The ove other u Using e	puting the unression) which is? make the up-t ts. make the up-t ts. make the up-t ts. make the up-t is. make the up-t is. make the up-t is.	tree with a short complexity is no eight strategies	oint sets repr tegies results elements a sub ter height a su of affected by v above results	esented as up in a better or otree of the roo btree of the ro which up-tree is in the same ov	o-trees in an ari verall run time ot of the up-tree oot of the up-tree s chosen to beco verall run time co	ray, (using proper complexity than the with more e with a larger ome a subtree of the complexity.	1/1 poi
-1 -1 -3 -3 -2 -Cor Cor Cor Cor Always elemen Always height. The ove other u Using e	puting the unression) which is? make the up-t ts. make the up-t ts. make the up-t ts. make the up-t is. make the up-t is. make the up-t is.	tree with a short complexity is no eight strategies	oint sets repr tegies results elements a sub ter height a su of affected by v above results	esented as up in a better or otree of the roo btree of the ro which up-tree is in the same ov	p-trees in an arreverall run time ot of the up-tree not of the up-tree	ray, (using proper complexity than the with more e with a larger ome a subtree of the complexity.	1/1 poi
-1 -1 -3 -3 -2 -Cor Cor Cor Cor Always elemen Always height. The ove other u Using e	puting the unression) which is? make the up-t ts. make the up-t ts. trial run time op-tree. tither size or he eed, the overa	tree with a short complexity is no eight strategies	oint sets repr tegies results elements a sul ter height a su of affected by v above results ity is the same	esented as up in a better or other of the rooth the same over the same own when using eight	o-trees in an arriverall run time ot of the up-tree oot of the up-tree s chosen to becoverall run time co	ray, (using proper complexity than the with more e with a larger ome a subtree of the complexity.	1/1 poi:
-1 -1 -3 -3 -2 -Cor Cor Cor Cor Always elemen Always height. The ove other u Using e	puting the unression) which is? make the up-t its. make the up-t its. make the up-t its. ither size or his its is on his its is its interest of the overa	tion of two disjusted in the second street with a short complexity is not eight strategies.	oint sets repr tegies results elements a sul ter height a su of affected by v above results ity is the same	esented as up in a better or other of the rooth the same over the same own when using eight	o-trees in an arriverall run time ot of the up-tree oot of the up-tree s chosen to becoverall run time co	ray, (using proper complexity than the with more e with a larger ome a subtree of the complexity.	

Which one of the following is equal to $lg*(2^64)$?

\bigcirc	6
0	64
0	_

5

65536

✓ Correct

Whic	th of these is considered the least run-time complexity?
	O(log* N)
_	
	D(1)
\bigcirc	O(log N)
0 0	O(log log N)
~	 Correct Constant time is indeed better than iterated-log time complexity, which is "practically" constant time, but does grow ever so slightly as N increases.
accel indire	th of the following best describes "path compression" as described in the video lessons to lerate disjoint set operations? (Here we say "parent pointer" to mean whatever form of ection is used to refer from a child to its parent; this could be a literal pointer or it could be an y index as in the lectures.)
	When the root of the up-tree containing an element is found, the element and all of its siblings that share the same parent have their parent pointers reset to point to the root node.
tl	When traversing the up-tree from an element to its root, if any elements in the traversal (including the first element, but excluding the root itself) do not point directly to the root as their parent yet, they will have their parent pointer changed to point directly to the root.
	When the root of an element's node is found, all of the descendants of the root have their parent pointer set to the root.
	When the root of the up-tree containing an element is found, both the element and its parent will always have their parent pointers set to point to the root node.
~	Correct That's right: Path compression only flattens the lineage of nodes in an up-tree from an element to the root, and not all of the elements in the up-tree every time. This has amortized benefits as the data structure is optimized over the process of several union and find operations.

1 / 1 point

1 / 1 point

9.

10.