Homework 2

1. Question 1.4.4

Develop a table like the one on page 181 for TwoSum.

statement block	time in seconds	frequency	total time
D	t_0	x (depends on input)	t_0x
$^{\mathrm{C}}$	t_1	$N^2/2 + N/2$	$t_1(N^2/2 - N/2)$
В	t_2	N	t_2N
A	t_3	1	t_3

2. Fall 2010 Midterm Question 1d

Consider the following Java data type definition for a 2-3 tree, where the nested class Node represents either a 2-node or a 3-node.

```
public class TwoThreeTree<Key extends Comparable<Key>, Value> {
    private Node root;
    private class Node {
        private int count; // subtree count
        private Key key1, key2; // the one or two keys
        private Value value1, value2; // the one or two values
        private Node left, middle, right; // the two or three subtrees
    }
    ...
```

}

How much memory (in bytes) does each Node object consume?

Node - 16 bytes of overhead + 8 bytes of extra overhead because Node is nested

count - 8 bytes (4 int bytes + 4 bytes of padding)

key1 and key2 - 8 bytes each (references)

value1 and value 2 - 8 bytes each (references)

left, middle, right - 8 bytes each (references)

$$16 + 8 + 8 + 8 * 2 + 8 * 2 + 8 * 3 = 88$$
 bytes per Node

3. Fall 2011 Midterm Question 2

Suppose that you collect the following timing data for a program as a function of the input size N.

N	$_{ m time}$
125	$0.03 \sec$
1,000	$1.00 \sec$
8,000	$32.00 \sec$
64,000	$1,024.00 \ \text{sec}$
512,000	32,768.00 sec

Estimate the running time of the program (in seconds) as a function of N and use tilde notation to simplify your answer.

Hint: recall that $\log_b a = \lg a / \lg b$:

Ratio $8N/N$	Ratio $T(8N)/T(N)$
8	33.33333
8	32
8	32
8	32
8	32

$$\lg 32/\lg 8 = \log_8 32 = 5/3$$

$$b = 5/3$$

$$a * 1000^{5/3} = 1.00$$

$$a = 1/100000T(N) = 1/100000N^{5/3} \sim N^{5/3}$$