Device Modeling Report

COMPONENTS: CMOS OPERATIONAL AMPLIFIER

PART NUMBER: NJU7009

MANUFACTURER: NEW JAPAN RADIO

Bee Technologies Inc.

Pin Configuration

Spice Model (1/2)

*\$						
*PART NUMBER: NJU7009						
*MANUFACTURER: NEW JAPAN RADIO						
	*CMOS OPAMP					
_	• •	• , ,	chnologies Corporation 2009			
	T NJU7009 INPUT+ '		_			
M_M1	3 INPUT- 2 VDD	MbreakPD3	L=6u W=2.5m			
_	4 INPUT+ 2 VDD		L=6u W=2.5m			
M_M3	2 1 VDD VDD	MbreakPD				
M_M4	5 1 VDD VDD	MbreakPD				
_	6 1 VDD VDD					
M_M6	1 1 VDD VDD	MbreakPD				
M_M7	5 5 VSS VSS	MbreakND				
_	5 4 VSS VSS	MbreakND				
M_M9	3 3 8 VSS	MbreakND1	L=6u W=65m			
M_M10	4 3 9 VSS	MbreakND1	L=6u W=85m			
_	1 6 10 10					
M_M12	6 6 VSS VSS	MbreakND				
M_M13	7 5 VSS VSS	MbreakND1				
_	7 7 VDD VDD					
M_M15	OUTPUT 7 12 12	MbreakPD1	L=2u W=50m			
M_M16	11 4 VSS VSS	MbreakND2	L=2u W=15m			
V_V1	OUTPUT 11	0.089				
V_V2	VDD 12	0.099				
_	10 VSS	200k				
R_R2	8 VSS	200				
R_R3	9 VSS	200				
_	INPUT+ VSS					
R_R5	INPUT- VSS	3.0E+12				
_	VDD VSS	10.123E+3				
C_C1	OUTPUT 4	0.415p				

Spice Model (2/2)

- .model MbreakND NMOS (LEVEL=3 L=6u W=128u VTO=0 RS=10.000E-3
- + RD=10.000E-3 RDS=10E6 TOX=2.0E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakND1 NMOS (LEVEL=3 L=6u W=200u VTO=0 RS=10.000E-3
- + RD=10.000E-3 RDS=2.4E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakND2 NMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.000E-3
- + RDS=1.0000E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .model MbreakPD PMOS (LEVEL=3 L=6u W=27u VTO=0 RS=10.000E-3
- + RD=10.00E-3 RDS=1.00E9 TOX=2.0000E-6 RG=5 RB=1.0000E-3
- + KP=10E-6)
- .MODEL MbreakPD1 PMOS (LEVEL=3 VTO=-0.1 RS=10.000E-3 RD=10.000E-3
- + RDS=1.00E6 TOX=2.0000E-6 RG=5 RB=1.0000E-3 KP=50E-6)
- .MODEL MbreakPD2 PMOS (LEVEL=3 VTO=0 RS=10.000E-3 RD=10.00E-3
- + RDS=5E9 TOX=2.0000E-6 RG=5 RB=1.000E-3 KP=1E-6)
- .MODEL MbreakPD3 PMOS (LEVEL=3 VTO=-5.25m RS=10.000E-3 RD=10.00E-3
- + RDS=5E9 TOX=2.000E-6 RG=5 RB=1.000E-3 KP=1E-6)
- **.ENDS NJU7009**

*\$

Equivalent Circuit

MOSFET MODEL

PSpice model parameter	Model description		
LEVEL			
L	Channel Length		
W	Channel Width		
KP	Transconductance		
RS	Source Ohmic Resistance		
RD	Ohmic Drain Resistance		
VTO	Zero-bias Threshold Voltage		
RDS	Drain-Source Shunt Resistance		
TOX	Gate Oxide Thickness		
CGSO	Zero-bias Gate-Source Capacitance		
CGDO	Zero-bias Gate-Drain Capacitance		
CBD	Zero-bias Bulk-Drain Junction Capacitance		
MJ	Bulk Junction Grading Coefficient		
PB	Bulk Junction Potential		
FC	Bulk Junction Forward-bias Capacitance Coefficient		
RG	Gate Ohmic Resistance		
IS	Bulk Junction Saturation Current		
N	Bulk Junction Emission Coefficient		
RB	Bulk Series Resistance		
PHI	Surface Inversion Potential		
GAMMA	Body-effect Parameter		
DELTA	Width effect on Threshold Voltage		
ETA	Static Feedback on Threshold Voltage		
THETA	Mobility Modulation		
KAPPA	Saturation Field Factor		
VMAX	Maximum Drift Velocity of Carriers		
XJ	Metallurgical Junction Depth		
UO	Surface Mobility		

Output Voltage Swing - Voн, Vol

Simulation result

Evaluation circuit

Comparison table

(Condition: $RL=50k\Omega$ to 1.5V)

Parameter	Measurement	Simulation	%Error
V он[V]	2.900	2.901	0.03
Vol[V]	0.100	0.099	1.00

Input Offset Voltage - Vio

Simulation result

Evaluation circuit

Comparison table

Parameter	Measurement	Simulation	%Error
V ıo [mV]	2.000	2.0074	0.37

Input Current - Ib, Ibos

Simulation result

Evaluation circuit

Comparison table

Parameter	Measurement	Simulation	%Error
I _b [pA]	1.000	1.000	0
Ibos[pA]	1.000	1.000	0

Slew Rate - SR

Simulation result

Evaluation circuit

Comparison table

(Condition: Gv=0dB, CL=15pF, RL=50k Ω to 1.5V)

Parameter	Measurement	Simulation	%Error
SR[V/us]	1.000	0.992	0.8

Large Signal Voltage Gain - Av

Simulation result

Evaluation Circuit

Comparison Table

(Condition: RL=50k Ω to 1.5V, Vo=1.5V)

Parameter	Measurement	Simulation	%Error
Av[dB]	80.000	82.846	3.56

Unity Gain Frequency - $f\tau$

Simulation result

Frequency

Evaluation Circuit

Comparison Table

(RL=50k Ω to 1.5V, CL=10pF)

Gv=40[dB]	Measurement	Simulation	%Error
f⊤ [MHz]	3.000	3.084	2.80

Common Mode Rejection Ratio – CMR

Simulation result

Evaluation circuit

Comparison Table

(Condition: Vicm=0V~2.1V)

Parameter	Measurement	Simulation	%Error
CMR[dB]	80.000	82.214	-3.54

 \times Common Mode Rejection Ratio =20*log(Av/Avcm) =20*log(13877/1.0755) =82.214dB