Sumedh Kumar Prasad Heart logistic Regression

Problem Statement: Finding out the different factors causing Atherosclerotic Heart Disease (AHD)

importing libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline
```

importing dataset

In [2]: data=pd.read_csv('Heart.csv',index_col=0)

In [3]: data.head(5)

Out[3]:

	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope
1	63	1	typical	145	233	1	2	150	0	2.3	3
2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2
3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2
4	37	1	nonanginal	130	250	0	0	187	0	3.5	3
5	41	0	nontypical	130	204	0	2	172	0	1.4	1

```
In [4]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 303 entries, 1 to 303
Data columns (total 14 columns):
             303 non-null int64
Age
             303 non-null int64
Sex
ChestPain
             303 non-null object
             303 non-null int64
RestBP
Chol
             303 non-null int64
             303 non-null int64
Fbs
RestECG
             303 non-null int64
             303 non-null int64
MaxHR
ExAng
             303 non-null int64
             303 non-null float64
Oldpeak
Slope
             303 non-null int64
Ca
             299 non-null float64
Thal
             301 non-null object
AHD
             303 non-null object
dtypes: float64(2), int64(9), object(3)
```

memory usage: 35.5+ KB

In [5]: data.describe()

Out[5]:

	Age	Sex	RestBP	Chol	Fbs	RestECG	Max
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000
mean	54.438944	0.679868	131.689769	246.693069	0.148515	0.990099	149.6072
std	9.038662	0.467299	17.599748	51.776918	0.356198	0.994971	22.87500
min	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.00000
25%	48.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.5000
50%	56.000000	1.000000	130.000000	241.000000	0.000000	1.000000	153.0000
75%	61.000000	1.000000	140.000000	275.000000	0.000000	2.000000	166.0000
max	77.000000	1.000000	200.000000	564.000000	1.000000	2.000000	202.0000

Dropping the all the NA values from the dataset

```
In [6]: data.dropna(axis=0,inplace=True)
```

```
In [7]: data.isnull().any()
Out[7]: Age
                       False
         Sex
                       False
         ChestPain
                       False
         RestBP
                       False
         Chol
                       False
         Fbs
                       False
         RestECG
                       False
         MaxHR
                       False
         ExAng
                       False
         01dpeak
                       False
         Slope
                       False
         Ca
                       False
         Thal
                       False
         AHD
                       False
         dtype: bool
In [8]:
         data.head()
Out[8]:
            Age Sex
                        ChestPain RestBP
                                           Chol Fbs
                                                      RestECG | MaxHR | ExAng | Oldpeak | Slope
                                   145
                                                      2
                                                                        0
                                                                               2.3
            63
                 1
                      typical
                                           233
                                                 1
                                                                150
                                                                                        3
```

286

229

250

204

0

0

0

0

2

2

0

2

108

129

187

172

1

1

0

0

1.5

2.6

3.5

1.4

2

2

3

Finding the correlation between all the numerical variables

asymptomatic 160

asymptomatic | 120

130

130

nonanginal

nontypical

2 67

3 67

37

41

1

1

1

0

In [9]: data.corr()

Out[9]:

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	
Age	1.000000	-0.092399	0.290476	0.202644	0.132062	0.149917	-0.394563	0.0
Sex	-0.092399	1.000000	-0.066340	-0.198089	0.038850	0.033897	-0.060496	0.1
RestBP	0.290476	-0.066340	1.000000	0.131536	0.180860	0.149242	-0.049108	0.0
Chol	0.202644	-0.198089	0.131536	1.000000	0.012708	0.165046	-0.000075	0.0
Fbs	0.132062	0.038850	0.180860	0.012708	1.000000	0.068831	-0.007842	-0.0
RestECG	0.149917	0.033897	0.149242	0.165046	0.068831	1.000000	-0.072290	0.0
MaxHR	-0.394563	-0.060496	-0.049108	-0.000075	-0.007842	-0.072290	1.000000	-0.:
ExAng	0.096489	0.143581	0.066691	0.059339	-0.000893	0.081874	-0.384368	1.0
Oldpeak	0.197123	0.106567	0.191243	0.038596	0.008311	0.113726	-0.347640	0.2
Slope	0.159405	0.033345	0.121172	-0.009215	0.047819	0.135141	-0.389307	0.2
Ca	0.362210	0.091925	0.097954	0.115945	0.152086	0.129021	-0.268727	0.1
4								

Heatmap of correlation variables

In [11]: sns.heatmap(data.corr(),linecolor="yellow")

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x26b1e4f89b0>

Conclusion from the Heatmap is:

From the corelation we conclude that none of variables are related to each other(No interaction is there between the variables) so we can include all the variables in our dataset for the analysis.

```
In [12]: sns.countplot(x='AHD',hue='Sex', data=data)
```

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x26b1f7f46d8>

conclusion : Male has heigher alveolar hydatid disease(AHD) than Female counterpart.

In [13]: sns.countplot(x='AHD',hue='ChestPain', data=data)

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x26b1f77c0b8>

From the graph it is clear that asymptomatic chest pain causing the Maximum number of AHD attack .

In [13]: sns.countplot(x='AHD',hue='Thal', data=data)

/Users/sanaam/anaconda3/lib/python3.6/site-packages/seaborn/categorical.py:15 08: FutureWarning: remove_na is deprecated and is a private function. Do not use.

stat_data = remove_na(group_data[hue_mask])

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x11a616a20>

From the graph it is clear that Thal having normal not causing the AHD attack most.

Out[14]: Text(0.5,0,'Age')

From the above graph it is clear that Age is approx normally distributed.

Categorical variables (creating dummy variables)

In [15]: data.head(2)

Out[15]:

	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope
1	63	1	typical	145	233	1	2	150	0	2.3	3
2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2

In [16]: data1=data.drop(['ChestPain','Thal'],axis=1)

In [17]: data1.head(2)

Out[17]:

		Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	AHD
	1	63	1	145	233	1	2	150	0	2.3	3	0.0	No
Ī	2	67	1	160	286	0	2	108	1	1.5	2	3.0	Yes

In [20]: data=pd.concat([data1,dummy],axis=1)

In [26]: data.head(2)

Out[26]:

	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	AHD	Cr
1	63	1	145	233	1	2	150	0	2.3	3	0.0	No	0
2	67	1	160	286	0	2	108	1	1.5	2	3.0	Yes	0
4												•	_

Splitting dataset into dependent (X) & independent variables (Y)

```
In [27]: | data.columns
Out[27]: Index(['Age', 'Sex', 'RestBP', 'Chol', 'Fbs', 'RestECG', 'MaxHR', 'ExAng',
                 'Oldpeak', 'Slope', 'Ca', 'AHD', 'ChestPain_nonanginal',
                 'ChestPain_nontypical', 'ChestPain_typical', 'Thal_normal',
                 'Thal reversable'],
                dtype='object')
In [28]: x=data[['Age', 'Sex', 'RestBP', 'Chol', 'Fbs', 'RestECG', 'MaxHR', 'ExAng',
                  'Oldpeak', 'Slope', 'Ca', 'ChestPain_nonanginal',
                 'ChestPain_nontypical', 'ChestPain_typical', 'Thal_normal',
                 'Thal reversable']]
          y=data['AHD']
          y=pd.get dummies(data['AHD'],drop first=True)
         x.head(2)
In [29]:
Out[29]:
             Age | Sex | RestBP
                              Chol | Fbs | RestECG | MaxHR | ExAng |
                                                                 Oldpeak
                                                                          Slope
                                                                                 Ca ChestPa
                 1
                                        2
                                                  150
                                                          0
                                                                 2.3
                                                                          3
                                                                                 0.0
            63
                      145
                              233
                                    1
                                                                          2
                 1
                      160
                              286
                                    0
                                        2
                                                  108
                                                          1
                                                                 1.5
                                                                                 3.0 0
            67
In [30]:
         y.head(2)
Out[30]:
             Yes
            0
```

Building a Logistic Regression model

Let's start by splitting our data into a training set and test set (there is another test.csv file that you can play around with in case you want to use all this data for training).

Train Test Split of the existing heart dataset.

```
In [31]: from sklearn.cross_validation import train_test_split
```

/Users/sanaam/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation. py:41: DeprecationWarning: This module was deprecated in version 0.18 in favo r of the model_selection module into which all the refactored classes and fun ctions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.

"This module will be removed in 0.20.", DeprecationWarning)

In [32]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3,ran
dom_state=101)

In [33]: y_test[0:5]

Out[33]:

	Yes
258	0
275	1
190	1
274	0
136	0

In [34]: x_test[0:3].T

Out[34]:

	258	275	190
Age	76.0	59.0	69.0
Sex	0.0	1.0	1.0
RestBP	140.0	134.0	140.0
Chol	197.0	204.0	254.0
Fbs	0.0	0.0	0.0
RestECG	1.0	0.0	2.0
MaxHR	116.0	162.0	146.0
ExAng	0.0	0.0	0.0
Oldpeak	1.1	8.0	2.0
Slope	2.0	1.0	2.0
Са	0.0	2.0	3.0
ChestPain_nonanginal	1.0	0.0	1.0
ChestPain_nontypical	0.0	0.0	0.0
ChestPain_typical	0.0	1.0	0.0
Thal_normal	1.0	1.0	0.0
Thal_reversable	0.0	0.0	1.0

Training and Predicting

Finding significant variables

In [107]: lg.summary()

Out[107]:

Logit Regression Results

Dep. Variable:	Yes	No. Observations:	207
Model:	Logit	Df Residuals:	190
Method:	MLE	Df Model:	16
Date:	Sun, 10 Jun 2018	Pseudo R-squ.:	-inf
Time:	15:36:30	Log-Likelihood:	-inf
converged:	True	LL-Null:	-1918.8
		LLR p-value:	1.000

	coef	std err	z	P> z	[0.025	0.975]
const	-1.3550	3.603	-0.376	0.707	-8.417	5.707
Age	-0.0198	0.033	-0.603	0.547	-0.084	0.044
Sex	0.9558	0.631	1.514	0.130	-0.282	2.193
RestBP	0.0279	0.014	1.981	0.048	0.000	0.055
Chol	0.0034	0.005	0.710	0.478	-0.006	0.013
Fbs	-0.8584	0.795	-1.079	0.281	-2.418	0.701
RestECG	0.3986	0.250	1.594	0.111	-0.092	0.889
MaxHR	-0.0351	0.015	-2.398	0.016	-0.064	-0.006
ExAng	0.1698	0.571	0.297	0.766	-0.950	1.290
Oldpeak	0.4138	0.295	1.402	0.161	-0.165	0.992
Slope	0.6533	0.479	1.364	0.173	-0.286	1.592
Са	1.3000	0.349	3.725	0.000	0.616	1.984
ChestPain_nonanginal	-2.3257	0.665	-3.496	0.000	-3.630	-1.022
ChestPain_nontypical	-1.0752	0.675	-1.592	0.111	-2.399	0.249
ChestPain_typical	-2.5429	0.862	-2.952	0.003	-4.232	-0.854
Thal_normal	0.3314	1.121	0.296	0.767	-1.865	2.528
Thal_reversable	2.1623	1.108	1.952	0.051	-0.009	4.334

```
In [96]: def get_significant_vars( lm ):
    var_p_vals_df = pd.DataFrame( lm.pvalues )
    var_p_vals_df['vars'] = var_p_vals_df.index
    var_p_vals_df.columns = ['pvals', 'vars']
    return list( var_p_vals_df[var_p_vals_df.pvals <= 0.05]['vars'] )</pre>
```

```
In [97]: significant_vars = get_significant_vars( lg )
In [98]: significant_vars
Out[98]: ['RestBP', 'MaxHR', 'Ca', 'ChestPain_nonanginal', 'ChestPain_typical']
```

Evalutation of the model

We can check Accuracy, precision and recall, using classification report!

Confusion Matrix

Graphical representation in terms of confusion matrix

Note: the model could only predict very few default classes.

Drawing the ROC plot for the Model

```
auc_score = metrics.roc_auc_score( y_test, y_predictions )
         round( float( auc_score ), 2 )
Out[75]: 0.84
In [76]: def draw_roc( actual, probs ):
             fpr, tpr, thresholds = metrics.roc_curve( actual, probs,
                                                        drop intermediate = False )
             auc_score = metrics.roc_auc_score( actual, probs )
             plt.figure(figsize=(6, 4))
             plt.plot( fpr, tpr, label='ROC curve (area = %0.2f)' % auc_score )
             plt.plot([0, 1], [0, 1], 'k--')
             plt.xlim([0.0, 1.0])
             plt.ylim([0.0, 1.05])
             plt.xlabel('False Positive Rate or [1 - True Negative Rate]')
             plt.ylabel('True Positive Rate')
             plt.title('Receiver operating characteristic example')
             plt.legend(loc="lower right")
             plt.show()
             return fpr, tpr, thresholds
```

In [78]: fpr, tpr, thresholds = draw_roc(y_test, y_predictions)
if blue line is below 45 degree it means model is not doing good.

In [79]: from sklearn.metrics import classification_report

In [80]: print(classification_report(y_test,predictions))

support	f1-score	recall	precision	
53	0.87	0.89	0.85	0
37	0.81	0.78	0.83	1
90	0.84	0.84	0.84	avg / total

```
In [81]: print( 'Total Accuracy : ',np.round( metrics.accuracy_score( y_test, y_predict ions), 2 ) )
    print( 'Precision : ',np.round( metrics.precision_score( y_test, y_predictions ), 2 ) )
    print( 'Recall : ',np.round( metrics.recall_score( y_test, y_predictions ), 2 ) )

cm1 = metrics.confusion_matrix( y_test, y_predictions, [1,0] )

sensitivity = cm1[0,0]/(cm1[0,0]+cm1[0,1])
    print('Sensitivity : ', round( sensitivity, 2) )

specificity = cm1[1,1]/(cm1[1,0]+cm1[1,1])
    print('Specificity : ', round( specificity, 2 ) )
```

Total Accuracy: 0.84
Precision: 0.83
Recall: 0.78
Sensitivity: 0.78
Specificity: 0.89

Total accuracy of my model is 84%.

Conclusion:

Our model predicted with the accuracy of 84% that (AHD) Atheroselerotic Heart Disease is caused by the above given independent variables like (ChestPain RestBP Cholestrol, Fbs & so on.) because there is no correlation between the any variable. Precision is 83% and Recall is 78% so there is not much difference between both, as both values close to each other and it is greater than 70%. Area under the Curve is the 84% which is above the 45 degree line which shows that Model is good.

Target variable for this Model is Atherosclerotic Heart Disease (AHD)

It is a type of Classification problem within that "Logistics Regression".