Otimização de Lanchas do SAMU utilizando Algoritmo Genético Multiobjetivo

Luiz Eduardo Fernandes Bentes 29 de janeiro de 2018

Resumo

1 Descrição do método

A geometria de um casco com apenas uma linha de chine pode ser definida pelas linhas de "chine", "sheer"e linha central. Este tipo de casco possuiu uma proa plana e pode ser modelada pela decomposição da superfície em limites ou curvas de controle que serão restringidas pelos parâmetros de projeto.

Esses parâmetros numéricos incluem **posição** e **inclinação**. No caso do chine, que é a curva mais significativa de um projeto de casco de planeio, a área fechada (Ac) e centróide (XC) também estão incluídos nos parâmetros numéricos. As curvas de fronteira são a **quilha ou linha central (CL)**, a **linha de chine** e a linha pura. O objetivo do método apresentado é criar superfícies de B-spline para representar um casco de navio com base nas restrições mostradas na Tabela 1 com o significado gráfico mostrado na Fig. 2.

Os parâmetros na Tabela 1 têm o significado gráfico representado na Fig. 2, onde os vetores indicam o ângulo entre o eixo X e a linha da seta.

Os parâmetros selecionados usados para definir estas curvas tem significado para o projetista e pode ser relacionado com futuros aspectos do design da embarcação. A definição da curva foi simplificada ao considerar que o casco possui uma travessa vertical plana e que o ponto posterior de todas as curvas tem uma abscissa zero como na Fig. 2

No caso da travessa não-vertical (nonvertical transom), a definição pode ser facilmente reconfigurada considerando uma abscissa diferente de zero para os pontos acima mencionados, que será uma função do ângulo da trave.

Uma característica de design muito importante, o angulo de deadrise da travessa, Ω , é derivada de hr, hc e Bc, $\Omega = \arctan\left(\frac{h_c - h_r}{B_c}\right) \cdot \left(\frac{180}{\pi}\right)$

As dimensões máximas globais do comprimento e largura do casco são Ls e 2 Bx, respectivamente. O método permite a definição de um trilho de pulverização de uma determinada largura, Sp, ao longo do chine.

O método é dividido em dois domínios diferentes: acima e abaixo da curva de chine. O método controla a concavidade/convexidade das curvas utilizando um parâmetro que controla o desvio máximo de cada parte até o segmento reto.

1.1 B-spline

Para introduzir a notação para este artigo, um curto resumo de B-splines seguese. Uma curva B-spline é formada por diversas partes de curvas polinomiais, chamadas de partes Bézier, e a curva completa é C^2 (Curvatura comum ou segunda derivada) nas junções no caso das B-splines cúbicas. A curva é definida com um polígono, chamado polígono controle, e com a ajuda de um algoritmo de interpolação que permite a construção relacionando a curva com o polígono

As etapas de interpolação são codificadas em uma família de funções polinomiais por partes, $B^n_j(u)$, chamadas funções B-spline do n-ésimo grau, e são calculadas usando o algoritmo de De Boor. As B-splines cúbicas são as curvas mais utilizadas no design de navios e aquelas que geralmente se encaixam melhor nas splines tradicionais do loftsman

Name	Description	Location
	Length	
Ls	Abscissa of the forward-most point of the sheer line	Center, sheer
L0	Abscissa where the forefoot is tangent to the keel line	Center
Lx	Abscissa of the sheer's maximum breadth	Sheer (plan)
Lc	Abscissa of the forward-most point of the chine	Center, chine
Xc	Abscissa of the centroid of Ac	Chine (plan)
X_{C1}	Abscissa of an intermediate point of the chine	Chine (profile)
	Width	
Bs	Sheer's half-breadth at the transom	Sheer (plan)
Bx	Ordinate of the sheer's maximum half-breadth	Sheer (plan)
Bc	Chine's half-breadth at the transom	Chine (plan)
Sp	Width of the spray rail at the transom	Three-dimensional
-P	• •	Timee differential
	Height	G 1 (CI
Hs Hc	Height of the foremost point of the sheer Height of the foremost point of the chine	Center, sheer (profile Center, chine (profile
r	Rocker at the transom	Center, chine (profile
hs	Sheer's height at the transom	Sheer (profile)
hc	Chine's height at the transom	Chine (profile)
Z_{C1}	Height of X _{C1} , normally the draft of the ship	Chine (profile)
	Angles	
$\alpha_{\mathbf{K}}$	Angle at the stem	Center
α_S	Angle at the foremost point of the sheer in plan view	Sheer (plan)
β's	Angle at the transom of the sheer in lateral view	Sheer (profile)
α's	Angle at the foremost point of the sheer in lateral view	Sheer (profile)
$\alpha_{\mathbf{C}}$	Angle at the foremost point of the chine in plan view	Chine (plan)
$\beta_{\rm C}$	Angle at the transom point of the chine in plan view	Chine (plan)
α'n	Chine's angle at the foremost point in profile view	Chine (profile)
βс	Chine's angle at the transom point in profile view	Chine (profile)
	Areas	
2 · Ac	Enclosed area between the chine and the X-axis in plan view	Chine (plan)

Tabela 1: Parâmetros da construção do casco da embarcação