```
#import nbconvert #recode the dataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

train = pd.read_csv('/content/train.csv') # Training set is already available train.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Next steps:

View recommended plots

train.info(verbose=True)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890

Data	columns (tot	al 12 columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object

```
891 non-null
    Sex
                                object
                 714 non-null
                                float64
5
   Age
   SibSp
                 891 non-null
                                int64
7
   Parch
                 891 non-null
                                int64
   Ticket
                 891 non-null
                                object
8
9 Fare
                 891 non-null
                                float64
10 Cabin
                 204 non-null
                                object
11 Embarked
                 889 non-null
                                object
dtypes: float64(2), int64(5), object(5)
```

memory usage: 83.7+ KB

d=train.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	E
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000	
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208	
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429	
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000	
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400	
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200	
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000	
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200	

Next steps:

View recommended plots

```
dT=d.T
dT.plot.bar(y='count')
plt.title("Bar plot of the count of numeric features",fontsize=17)
```

Text(0.5, 1.0, 'Bar plot of the count of numeric features')


```
sns.set_style('whitegrid')
sns.countplot(x='Survived',data=train,palette='RdBu_r')
sns.pairplot(train)
```



```
sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r')
```

<Axes: xlabel='Survived', ylabel='count'>

sns.set_style('whitegrid')

sns.countplot(x= Survivea ,nue= PClass ,data=train,palette= rainbow)


```
f_class_survived=train.groupby('Pclass')['Survived'].mean()
f_class_survived = pd.DataFrame(f_class_survived)
f_class_survived
f_class_survived.plot.bar(y='Survived')
sns.countplot(x='Survived',data=f_class_survived,palette='rainbow')
plt.title("Fraction of passengers survived by class",fontsize=17)
```

<ipython-input-9-0920c7b673ab>:5: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and se sns.countplot(x='Survived',data=f_class_survived,palette='rainbow')

sns.countplot(x='Survived',data=f_class_survived,palette='rainbow')
Text(0.5, 1.0, 'Fraction of passengers survived by class')

sns.set_style('whitegrid')
sns.countplot(x='Survived',hue='SibSp',data=train,palette='rainbow')


```
plt.xlabel("Age of the passengers",fontsize=18)
plt.ylabel("Count",fontsize=18)
plt.title("Age histogram of the passengers",fontsize=22)
#train['Age'].hist(bins=30,color='darkred',alpha=0.7,figsize=(10,6))
train['Age'].hist()
```

<Axes: title={'center': 'Age histogram of the passengers'}, xlabel='Age of the passengers', ylabel='Count'>


```
plt.figure(figsize=(12, 10))
plt.xlabel("Passenger Class",fontsize=18)
plt.ylabel("Age",fontsize=18)
sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')
```

<ipython-input-12-2a1e3ee6c4a4>:4: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and se

sns.boxplot(x='Pclass',y='Age',data=train,palette='winter')
<Axes: xlabel='Passenger Class', ylabel='Age'>


```
f_class_Age=train.groupby('Pclass')['Age'].mean()
f_class_Age = pd.DataFrame(f_class_Age)

f_class_Age.plot.bar(y='Age')
plt.title("Average age of passengers by class",fontsize=17)
plt.ylabel("Age (years)", fontsize=17)
plt.xlabel("Passenger class", fontsize=17)
```

Text(0.5, 0, 'Passenger class')


```
a=list(f_class_Age['Age'])
def impute age(cols):
    Age = cols[0]
    Pclass = cols[1]
    if pd.isnull(Age):
        if Pclass == 1:
            return a[0]
        elif Pclass == 2:
            return a[1]
        else:
            return a[2]
    else:
        return Age
train['Age'] = train[['Age', 'Pclass']].apply(impute_age,axis=1)
d=train.describe()
dT=d.T
dT.plot.bar(y='count')
plt.title("Bar plot of the count of numeric features",fontsize=17)
```

Text(0.5, 1.0, 'Bar plot of the count of numeric features')

train.drop('Cabin',axis=1,inplace=True) train.dropna(inplace=True)

train.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked	\blacksquare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S	th
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	S	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S	

Next steps: View recommended plots

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	
0	0	3	male	22.0	1	0	7.2500	S	ılı
1	1	1	female	38.0	1	0	71.2833	С	
2	1	3	female	26.0	0	0	7.9250	S	
3	1	1	female	35.0	1	0	53.1000	S	
4	0	3	male	35.0	0	0	8.0500	S	

sex = pd.get_dummies(train['Sex'],drop_first=True)
embark = pd.get_dummies(train['Embarked'],drop_first=True)

```
train.drop(['Sex','Embarked'],axis=1,inplace=True)
train = pd.concat([train,sex,embark],axis=1)
train.head()
```

	Survived	Pclass	Age	SibSp	Parch	Fare	male	Q	S	=
0	0	3	22.0	1	0	7.2500	1	0	1	ılı
1	1	1	38.0	1	0	71.2833	0	0	0	
2	1	3	26.0	0	0	7.9250	0	0	1	
3	1	1	35.0	1	0	53.1000	0	0	1	
4	0	3	35.0	0	0	8.0500	1	0	1	

Next steps: View recommended plots

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
 train.drop('Survived',axis=1),train['Survived'],
 test_size=0.30,random_state=111)

```
from sklearn.linear model import LogisticRegression
from sklearn.metrics import classification report
nsimu=201
penalty=[0]*nsimu
logmodel=[0]*nsimu
predictions =[0]*nsimu
class report = [0]*nsimu
f1=[0]*nsimu
for i in range(1,nsimu):
        logmodel[i] =(LogisticRegression(C=i/1000,tol=1e-4, max iter=int(1e6),
                                         n_jobs=4))
        logmodel[i].fit(X train,y train)
        predictions[i] = logmodel[i].predict(X_test)
        class report[i] = classification report(y test,predictions[i])
        l=class_report[i].split()
        f1[i] = 1[len(1)-2]
        penalty[i]=1000/i
plt.scatter(penalty[1:len(penalty)-2],f1[1:len(f1)-2])
plt.title("F1-score vs. regularization parameter",fontsize=20)
plt.xlabel("Penalty parameter",fontsize=17)
plt.ylabel("F1-score on test data",fontsize=17)
plt.show()
```


19/19