Class February 23

1. Direct Products and Finite Abelian Groups

Definition 0.1. G always denotes a group. G is the inner direct product of the subgroups $A, B \leq G$ if i) $A \triangleleft G$, $B \triangleleft G$ ii) $A \cap B = \{e\}$ iii) G = AB. The notation for direction products is $G = A \times B$.

Lemma 0.2. Assume $G = A \times B$.

- (a) A and B commute element-wise i.e. $ab = ba \ \forall a \in A, b \in B$.
- (b) if A and B are abelian, then so is G.

Proof. (a) Consider the commutators $[a,b] := (aba^{-1})b^{-1} = a(ba^{-1}b^{-1}) \in A \cap B = \{e\}$ $\implies aba^{-1}b^{-1} = e \implies ab = ba \ \forall a \in A, b \in B$

(b) $g_1, g_2 \in G \implies \exists a_1, a_2 \in A, b_1, b_2 \in B \text{ s.t. } g_1 = a_1b_1 \text{ and } g_2 = a_2b_2 \implies g_1g_2 = a_1b_1a_2b_2 = a_1a_2b_1b_2 \text{ and because } A, B \text{ are abelian, this equals } a_2(a_1b_2)b_1 = a_2b_2a_1b_1 = g_2g_1 \qquad \Box$

Example 0.3. (a) $V = <(12)(34) > \times <(13)(24) > \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

- (b) $U(8) = \{[1], [3], [5], [7]\} = <[3] > \times <[5] > \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$
- (c) $\mathbb{Z}_6 = \langle [3] \rangle \cong \mathbb{Z}_3 \times \langle [2] \rangle \cong \mathbb{Z}_2$
- (d) $D_6 = \{b^i, ab^i \mid 0 \le i \le 5\}$ such that $a^2 = b^6 = e$, $aba^{-1} = aba = b^{-1}$. Therefore, $D_6 \cong \langle b^3 \rangle \times \{e, b^2, b^4, a, ab^2, ab^4\} \implies D_6 \cong \mathbb{Z}_2 \times D_3$
- (e) By contrast, neither D_4 nor Q_8 can be written as direct products of two proper subgroups (Exercise).
- (f) Trivially, $\forall G, G = G \times \{e\}$

Lemma 0.4. If $|G| = p^2$, p is prime, then either G is cyclic or $G = A \times B \cong \mathbb{Z}_p \times \mathbb{Z}_p$ with subgroups A and B of order p.

Class February 26