Exercises

Symmetry in Physics

Exercises belonging to the subjects of Chapter 1 of the Lecture Notes

Exercises from Jones Chapter 1: 1.1-1.6

Exercise A1

Let G be a group and K be a conjugacy class of G. Prove that the inverses of the elements of K also form a conjugacy class.

Exercise A2

Show that the conjugacy classes of the symmetric group S_n are characterized by the disjoint cycle structure of their elements, and that for A_n this is not the case (e.g. by counterexample: show explicitly for A_3 that there are distinct conjugacy classes with the same disjoint cycle structure).

Exercise from Jones Chapter 2: 2.2

Exercise A3

Find the centers of C_4 , D_4 , A_4 and S_4 .

Exercise A4

Show that $Z_n \cong C_n$ by explicitly constructing the isomorphism.

Exercises from Jones Chapter 1: 1.7

Exercise A5

Consider the group O(2) of orthogonal 2×2 matrices and the group U(1) of unitary 1×1 matrices.

- (a) Show that O(2) is a non-Abelian group.
- (b) Show that the group elements of O(2) have either determinant 1 or -1. Show that the elements from O(2) with determinant 1 form a group. This group is referred to as SO(2), the special orthogonal group of 2×2 matrices with determinant 1. Show that the elements with determinant -1 do not form a group.
- (c) Show that $SO(2) \cong U(1)$.
- (d) Give an example of a physical system with an SO(2) or U(1) symmetry.

Exercise A6

The rotations around a fixed axis in three dimensions form an Abelian subgroup of SO(3). Show that this subgroup is isomorphic to SO(2).

Exercises belonging to the subjects of Chapter 2 of the Lecture Notes

Exercise B1

Three matrices E, S, and T are given by

$$E = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad S = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \quad T = \left(\begin{array}{cc} \omega & 0 \\ 0 & 1/\omega \end{array} \right),$$

where ω is one of the two roots of the equation $\omega^3 = 1$ and $\omega \neq 1$.

- (a) Using these objects and ordinary matrix multiplication as the composition law construct the group $G(\omega)$ that consists of E, S, T, and their products.
- (b) The matrix group $G(\omega)$ can be considered as a two-dimensional rep of an abstract group G. Show whether this rep is an irrep or not.
- (c) Let ω_1 and ω_2 be the two cubic roots of unity not equal to one. Then $G(\omega_1)$ and $G(\omega_2)$ are two reps of G. Show whether these reps are equivalent or not.

Exercise B2

Let G be a group and ϕ a representation of G. Consider the maps $\phi^*, (\phi^{\mathsf{T}})^{-1}$ and $(\phi^{\dagger})^{-1}$ defined by

$$\phi^*(g) = (\phi(g))^*,
(\phi^{\mathsf{T}})^{-1}(g) = ((\phi(g))^{\mathsf{T}})^{-1},
(\phi^{\dagger})^{-1}(g) = ((\phi(g))^{\dagger})^{-1},$$

for all $g \in G$. Here *, T, †, -1 denote complex conjugation, transposition, Hermitian conjugation and the inverse, respectively.

- (a) Prove that the three maps ϕ^* , $(\phi^{\mathsf{T}})^{-1}$ and $(\phi^{\dagger})^{-1}$ are also representations.
- (b) Show that these maps are irreducible representations if ϕ is an irrep.

Exercises from Jones Chapter 3: 3.3, 3.6

Exercise B3 Galilei group in 1+1 dimensions.

Consider the Galilei transformations in a 1+1 dimensional space:

$$x' = x + vt + a$$
$$t' = t + b$$

or in matrix form:

$$\begin{bmatrix} x' \\ t' \\ 1 \end{bmatrix} = T(a,b,v) \begin{bmatrix} x \\ t \\ 1 \end{bmatrix}, \quad T(a,b,v) \equiv \begin{bmatrix} 1 & v & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix}.$$

(a) Verify the composition law

$$T(a_1, b_1, v_1) \circ T(a_2, b_2, v_2) = T(a_1 + a_2 + b_2 v_1, b_1 + b_2, v_1 + v_2),$$

(b) Show that the inverse is given by

$$T^{-1}(a, b, v) = T(-a + bv, -b, -v).$$

(c) Galilei transformations can be seen as non-relativistic symmetry transformations in a 1+1 dimensional space. What is the natural definition of distance in this 1+1 dimensional space? How does this differ from 1+1 dimensional Minkowski space and from a Euclidean two-dimensional space?

3

(d) Why is there no two-dimensional matrix representation for this group and do the three-dimensional matrices T(a, b, v) form an irrep of the Galilei group?

Exercise B4

Let G be a group, ϕ an irreducible matrix representation of G, and K a conjugacy class of G. Define

$$A = \sum_{T \in K} \phi(T).$$

Show that A is proportional to the identity matrix.

Exercises from Jones Chapter 4: 4.2, and Chapter 3: 3.1, 3.2

Exercise B5

Denote the set of all symmetries of the figure shown above by G.

- (a) Show that G forms a group and determine the full group table of G.
- (b) Determine the conjugacy classes of G.
- (c) Determine the dimensions of the nonequivalent irreducible representations of G.

Exercise B6

Consider the so-called four-group V, consisting of four elements e, a, b, c, where e is the identity, and the group multiplication is given by the following group table:

	a	b	c
a	e	c	b
b	c	e	a
c	b	a	e

- (a) How many irreps does V have?
- (b) Write down all irreps of V.

Exercise B7 The irreps of S_3

- a) Write down the elements of S_3 in the standard $2 \times n$ matrix notation and in cycle notation.
- b) Divide these elements in conjugacy classes. How many classes are there?
- c) What are the dimensions of the irreps of S_3 ?
- d) Write down the parity (also called sign) of the permutations of S_3 . Does this furnish a one-dimensional irrep?

Exercises from Jones Chapter 4: 4.5, 4.8, 4.4

Exercise B8

Consider the cyclic group C_5 : gp $\{c\}$ with $c^5 = e$.

- (a) Construct the character table of C_5 .
- (b) Construct the three-dimensional vector representation D^V for the generator c of C_5 .
- (c) Decompose D^V into irreps of C_5 .

Exercise from Jones Chapter 5: 5.1

Exercises belonging to the subjects of Chapter 3 of the Lecture Notes

Exercise C1

Consider the cyclic group C_4 : gp $\{c\}$ with $c^4 = e$.

- (a) Construct the character table of C_4 .
- (b) Construct the three-dimensional vector representation D^V of C_4 and demonstrate whether it is an irrep or not.
- (c) Decompose D^V into irreps of C_4 and use the result to conclude whether a crystal with C_4 symmetry can support a permanent electric dipole moment.
- (d) Determine the Clebsch-Gordan series of the direct product representation $D^V \otimes D^V$ of C_4 .

Exercise from Jones Chapter 4: 4.9, and Chapter 5: 5.2

Exercise C2

Consider the group O(2) of orthogonal 2×2 matrices.

- (a) Write down the two-dimensional representation of O(2) obtained by its action on the vector (x + iy, x iy), corresponding to the spherical basis in two dimensions.
- (b) Show whether this rep of O(2) is an irrep or not.
- (c) Explain why the restriction to the subgroup SO(2) does not yield an irrep of SO(2) over the complex numbers?

Exercise from Jones Chapter 6: 6.1

Exercise C3

- (a) Explicitly give the matrix for a rotation around the z-axis in the defining representation of SO(3).
- (b) Explicitly give the matrix for a rotation around the z-axis in the l=1 irrep of SO(3).
- (c) Show explicitly by a basis transformation that the reps D^V and $D^{(1)}$ of SO(3) are equivalent.

Exercise C4

- (a) Explain the difference between the vector and axial-vector representations of O(3).
- (b) Show that the Kronecker delta δ_{ij} is invariant under O(3) transformations.
- (c) Determine the subgroup of O(3) transformations that leave the tensor $\sigma_{ij} = \delta_{ij} + a\delta_{i3}\delta_{j3}$ invariant, for nonzero $a \in \mathbb{R}$.
- (d) Explain what is a pseudoscalar and give an example of one.

Exercises belonging to the subjects of Chapter 4 of the Lecture Notes

Exercises from Jones Chapter 5: 5.4, 5.5

Exercise D1

- Consider the angular momentum operators L_i (i=1,2,3) acting on the states $|l,m\rangle$. (a) Explain why the eigenvalues of the operator $\vec{L}^2 = \sum_i L_i^2$ can be used to label the irreps of SO(3) (hint: use that $[\vec{L}^2, L_i] = 0$).
- (b) Write down the explicit matrix for L_z acting on the space of $|l,m\rangle$ states for non-negative integer l.
- (c) Use the result of (b) to show that the characters of SO(3) matrices are of the form:

$$\chi^{(l)}(\theta) = 1 + 2(\cos(\theta) + \dots + \cos(l\theta))$$

(d) Draw a picture of the parameter space of SO(3) and indicate the conjugacy classes.