II. Випадок обробки векторних спостережень. Припустимо тепер, що спостереження є векторними:

$$\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n, \qquad \vec{x}_i \in \mathbb{R}^q, \ i = \overline{1, n}.$$

У векторному випадку можна скористатися такими засобами:

- 1) критерієм на базі F статистики,
- 2) діаграмою розсіювання (у випадку q = 2).
- 1) Критерій на базі F статистики. Задачу будемо розв'язувати шляхом перевірки гіпотези:

 $H_{\scriptscriptstyle 0}$: найбільш підозрілий на аномальність вимір не ϵ викидом, $\alpha > 0$.

1. Спочатку обчислюємо наступні величини:

$$\overline{\vec{x}}_i(n) = \frac{1}{n-1} \sum_{\substack{j=1 \ j \neq i}}^n \vec{x}_j, \quad \hat{V}_i(n) = \frac{1}{n-2} \sum_{\substack{j=1 \ j \neq i}}^n (\vec{x}_j - \overline{\vec{x}}_i(n)) (\vec{x}_j - \overline{\vec{x}}_i(n))^T, \quad i = \overline{1,n}.$$

Iviaxananoorea.

$$d_i^2(n) = \left(\vec{x}_i - \overline{\vec{x}}_i(n)\right)^T \hat{V}_i^{-1}(n) \left(\vec{x}_i - \overline{\vec{x}}_i(n)\right), \quad i = \overline{1, n}.$$

- 3. Знаходимо індекс найбільш підозрілого на аномальність виміру $i_0 = \arg\max_i d_i^2(n)$.
- 4. Визначаємо значення такої статистики:

$$F_{i_0}(n) = \frac{(n-1)(n-1-q)}{n(n-2)q} d_{i_0}^2(n).$$

З'ясувалося, що розподіл статистики $F_{i_0}(n)$ можна наблизити F – розподілом з параметрами q та (n-1-q).

5. Тоді, так як область відхилення гіпотези H_0 - це область великих значень статистики $F_{i_0}(n)$, то гіпотезу H_0 будемо приймати, якщо справедлива наступна нерівність:

$$F_{i_0}(n) < F_{\alpha}(q, n-1-q),$$

де $F_{\alpha}(q,n-1-q)-100\alpha$ відсоткова точка F — розподілу з q та n-1-q степенями свободи.

Якщо вектор спостережень \vec{x}_{i_0} виявився аномальним, то його вилучають з вибірки, і вею процедуру повторюють починаючи з пункту 1 до того часу, доки на деякому кроці найбільш підозрілий на аномальність вимір виявиться не викидом. Після цього процедуру завершують.

2) Діаграма розсіювання. Вона описана у розділі, який присвячений розвідувальному аналізу.

Перевірка стохастичності вибірки (Tests for Randomness)

Нехай досліджується вибірка

$$x_1, x_2, \ldots, x_n, n \in \mathbb{N}$$
.

Перед обробкою вибірки має сенс впевнитися, що вона є випадковою (стохастичною), а не знаходиться під впливом деякого систематичного зміщення, наприклад: монотонного або періодичного.

Розв'язувати проблему будемо шляхом перевірки гіпотези H_0 : вибірка є стохастичною, $\alpha > 0$.

Для цього пропонується використовувати:

- 1) критерій серій на базі медіани вибірки,
- 2) критерій зростаючих та спадаючих серій,
- критерій квадратів послідовних різниць (критерій Аббе),
 Зупинимося детальніше на кожному з них.

для перевірки гіпотези H_0 , причому <mark>альтернативна гіпотеза</mark> вигляда ϵ таким чином

 H_1 : у вибірці наявне систематичне монотонне зміщення середнього.

- 1. Спочатку по вибірці визначається оцінка медіани \hat{x}_{med} .
- 2. Потім під i им членом вибірки x_1, x_2, \ldots, x_n , який більше \hat{x}_{med} ставиться плюс, а який менше \hat{x}_{med} ставиться мінус. Виміри які дорівнюють \hat{x}_{med} до уваги не приймаються. Тобто символи розставляються згідно

$$\begin{bmatrix} +\text{, якщо } x_i > \hat{x}_{med}, \\ \sqcup, якщо } x_i = \hat{x}_{med}, \\ -\text{, якщо } x_i < \hat{x}_{med}. \end{bmatrix}$$

В результаті отримаємо деяку послідовності плюсів та мінусів

Означення. *Серія* - це підпослідовність підряд розташованих однакових символів у послідовності.

- 3. Далі обчислюємо такі дві статистики:
 - v(n) загальну кількість серій у ній,
 - $\tau(n)$ кількість членів у найдовшій серії.
- 4. Зрозуміло, що вибірка буде мати стохастичну природу, якщо довжина найдовшої серії $\tau(n)$ не занадто довга, а загальна кількість серій v(n) не занадто мала. Причому відомо, що розподіл статистики v(n) можна наблизити деяким нормальним розподілом, а $\tau(n)$ деяким пуасонівським розподілом. Тоді область прийняття гіпотези:

$$\begin{cases} v(\vec{n}) > v_{\beta}(n), \\ \tau(n) < \tau_{1-\beta}(n), \end{cases}$$

де $\nu_{\beta}(n), \tau_{\beta}(n)$ – квантилі рівня β статистик $\nu(n)$ та $\tau(n)$ відповідно.

А β вибирається таким чином, щоб помилка І роду не перевищувала α . Відомо, що при фіксованому значенні β рівень значущості α буде належати інтервалу $\left[\beta, 2\beta - \beta^2\right]$. Останнє дозволяє визначити β , як розв'язок такого співвідношення $2\beta - \beta^2 \le \alpha$.

Самостійна робота. Знайти значення β, як розв'язок останньої нерівності при заданому α.

2) Критерій зростаючих та спадаючих серій. Перевірку гіпотези H_0 за допомогою цього критерію будемо здійснювати при умові, що його альтернативна гіпотеза виглядає таким чином

 H_1 : у вибірці наявне систематичне монотонне або циклічне зміщення середнього.

1. Спочатку у вибірці $x_1, x_2, ..., x_n$ замінюємо підряд розташовані однакові виміри одним їх представником.

$$X_1, X_2, \dots, X_{n'}$$

ставимо символ плюс, якщо його наступний член з вибірки строго більше поточного, і ставимо символ мінус, якщо його наступний член з вибірки строго менше поточного, тобто символи під i—им членом розставляються згідно

$$\begin{bmatrix} +, якщо x'_i < x'_{i+1}, \\ -, якщо x'_i > x'_{i+1}. \end{bmatrix}$$

Отримуємо деяку послідовність довжини (n'-1) плюсів та мінусів:

- 3. Далі, на базі утвореної послідовності плюсів та мінусів, визначаємо статистики v(n) та $\tau(n)$ абсолютно аналогічно, як це робилося у попередньому критерії.
- 4. Потім використовується та ж сама ідея для побудови області прийняття нашої гіпотези про стохастичність вибірки. Вона буде мати ідентичний вигляд:

$$\begin{cases} v(n) > v_{\beta}(n), \\ \tau(n) < \tau_{1-\beta}(n), \end{cases}$$

де $v_{\beta}(n)$, $\tau_{\beta}(n)$ — квантилі рівня β статистик v(n) та $\tau(n)$ відповідно. Зауваження відносно вибору β залишається у силі.

3) Критерій квадратів послідовних різниць (критерій Аббе). Даний критерій використовується при роботі <u>з нормальними</u> вибірками. <u>На цьому класі</u> вибірок він <u>є більш потужним</u> ніж попередні критерії.

Згадаємо як розуміти, що критерій K_1 є більш потужний ніж інший критерій K_2 ?

При перевірці гіпотези H_0 за допомогою цього критерія, у нього в якості альтернативної виступає така гіпотеза

 H_1 : у вибірці наявне систематичне зміщення середнього.

На основі вибірки підрахуємо таку статистику:

$$\gamma(n) = \frac{\frac{1}{2(n-1)} \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2}{\frac{1}{n-1} \left[\left(\sum_{i=1}^{n} x_i^2 \right) - n\overline{x}^2(n) \right]},$$

де
$$\overline{x}(n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$
.

2. Легко бачити, що до області відхилення гіпотези H_0 потрібно віднести область малих значень, тоді область прийняття гіпотези буде мати вигляд:

$$\gamma(n) > \gamma_{\alpha}(n)$$
,

де $\gamma_{\alpha}(n)$ – квантиль рівня α статистики $\gamma(n)$, який можна підрахувати таким чином

$$\gamma_{\alpha}(n) = \begin{bmatrix} \textit{визначається по табл. 4.9 з роботи } [*], \textit{якщо } n \leq 60, \\ 1 + \frac{u_{\alpha}}{\left[n + \frac{1}{2}\left(1 + u_{\alpha}^2\right)\right]^{\frac{1}{2}}}, \textit{якщо } n > 60, \end{cases}$$

а u_{α} – квантиль рівня α стандартного нормального розподілу,

[*] Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. – М.: Наука, 1983.

Практика використання критеріїв перевірки вибірки на стохастичность. ...

Розвідувальний аналіз (Exploratory data analysis)

Розвідувальний аналіз — це один із етапів попередньої обробки даних, який дозволяє провести візуальний експрес-аналіз даних на основі засобів їх візуалізації або перетворення, тобто представлення даних у зручному для оперативного аналізу вигляді.

Наприклад, у вигляді різноманітних графіків, діаграм, ехем, таблиць і т.п. Результати цього аналізу слугуватимуть відправною точкою для планування подальшої поглибленої обробки інформації.

- I. Випадок обробки скалярних спостережень. У цій ситуації у розвідувальному аналізі можна використовувати:
 - 1) пробіт-графік (probit plot),
 - 2) ймовірнісний графік (probability plot),
 - 3) висячі гістобари (hanging histobars),
 - 4) завмерлу коренеграму (suspended rootogram),
 - 5) зображення "скринька з вусами" (box-and-whisker plot) та його модифікації (multiple box-and-whisker plot, notched box-and-whisker plot),
 - 6) зображення "стебло-листок" (stem-and-leaf plot), і т.д.
- II. Випадок обробки двовимірних спостережень. У цій ситуації у розвідувальному аналізі можна використовувати:
 - 1) діаграму розсіювання (scatter diagram),
 - 2) таблиця спряженості (contingency table).

Далі буде розглянуто послідовно можливості кожного з цих засобів.

Класи розподілів типу зсув-масштабу

Для опису перших двох графічних представлень даних потрібно познайомитися з класами розподілів типу зсув-масштабу.

Означення Класовов на выхода из полноэкранного режима розподілу $F_0(\cdot) \in \mathcal{F}$, по для выхода из полноэкранного режима розподілу ього класу існують дійсні a та b (b>0) такі, що її можна представити таким чином:

$$F(x) = F_0 \left(\frac{x - a}{b} \right).$$

Зауважимо, що параметр a називають *параметром зсуву*, а b - *параметром масштабу*.

Приклади класів розподілів типу зсув-масштабу.

1. Клас нормальних розподілів.

Дійсно довільну функцію розподілу F(x) нормально розподіленої величини $\xi \sim \mathcal{N}\left(m,\sigma^2\right)$ можна представити у вигляді

$$F(x) = \Phi\left(\frac{x-m}{\sigma}\right),\,$$

де $\Phi(x)$ — функція розподілу нормально розподіленої величини з параметрами 0 та 1. Для цього класу розподілів: $\Phi(\cdot)$ — базова функція, a = m, $b = \sigma$.

2. Клас показникових (експоненціальних) розподілів. Нехай F(x) - функція показникового розподілу з параметром λ ($\lambda > 0$), тобто

$$p(x) = F'(x) = \begin{bmatrix} \lambda e^{-\lambda x}, \text{ якщо } x \ge 0, \\ 0, \text{ якщо } x < 0. \end{bmatrix}$$

Тоді справедливо

$$F(x) = \Phi_1(\lambda x),$$

де $\Phi_1(x)$ — функція експоненціального розподілу з параметром 1. Тобто роль базової функції тут відіграє функція $\Phi_1(\cdot)$, а потрібні константи визначаються згідно з $a=0,\ b=\lambda^{-1}$.

І. Випадок обробки скалярних спостережень

Детальніше:

1) Пробіт-графік (probit plot).

Нехай \mathcal{F} - деякий клас розподілів типу зсув-масштабу з базовою функцією $F_0(\cdot)$ для якої існує $F_0^{-1}(\cdot)$.

Розглянемо обробку вибірки спостережень x_1, x_2, \dots, x_n над скалярною змінною ξ з функцією розподілу $F_{\varepsilon}(x)$.

Подивимося, який повинен мати вигляд побудований пробітграфік у випадку коли функція розподілу випадкової величини ξ , яка спостерігається, належить цьому класу розподілів \mathcal{F} . Тоді існують a та b (b>0) такі, що

$$\hat{F}_{\xi}(x) \approx F_{\xi}(x) = F_0 \left(\frac{x-a}{b} \right).$$

А сам пробіт-графік буде мати такий вигляд:

$$y = F_0^{-1}(\hat{F}_{\xi}(x)) \approx F_0^{-1} \left(F_0 \left(\frac{x - a}{b} \right) \right) = \frac{x}{b} - \frac{a}{b}.$$

<u>Призначення</u>. Це дозволяє використовувати цей графік для візуального розв'язку наступних задач:

- 1) Перевірки гіпотези $H_0: F_{\xi}(\cdot) \in \mathcal{F}$.
 - У випадку справедливості цієї гіпотези пробіт-графік буде уявляти собою приблизно деяку пряму, в протилежному випалку гіпотезу вілхиляють.
- 2) Виявлення наявності аномальних спостережень у вибірці. Про присутність викидів у вибірці буде говорити наявність деяких точок графіку, які розташовані суттєво осторонь основної маси точок графіку.

2) Ймовірнісний графік (probability plot).

<u>Побудова.</u> Нехай $\hat{F}_{\xi}(x)$ — емпірична функція розподілу, яка обчислена по вибірці спостережень x_1, x_2, \dots, x_n над випадковою величиною ξ .

Ймовірнісний графік для класу розподілів \mathcal{F} — це графік функції $y = \hat{F}_{\xi}(x)$, побудований на спеціальному *ймовірнісному папері класу розподілів* \mathcal{F} . Останній відрізняється від звичайного паперу зміненим масштабом по осі y. З цією метою на такому папері смугу $\{(x,y): 0 \le y \le 1\}$ трансформують таким чином: $(x,y) \to (x, \mathcal{F}_0^{-1}(y))$.

<u>Призначення.</u> Можливості та методика використання ймовірнісного графіку точно такі як і у пробіт-графіку:

- 1) Перевірки гіпотези $H_0: F_{\varepsilon}(\cdot) \in \mathcal{F}$.
 - У випадку справедливості цієї гіпотези пробіт-графік буде уявляти собою приблизно деяку пряму, в протилежному випадку гіпотезу відхиляють.
- 2) Виявлення наявності аномальних спостережень у вибірці. Про присутність викидів у вибірці буде говорити наявність деяких точок графіку, які розташовані суттєво осторонь основної маси точок графіку.

Якщ φ \mathcal{F} – клас нормальних розподілів, то цей графік називають нормальним ймовірнісним графіком, а відповідний папір — нормальним ймовірнісним папером.

Наступні два засоби розвідувального аналізу торкаються візульної перевірки гіпотези нормальності.

Наступні два засоби розвідувального аналізу торкаються візульної перевірки гіпотези нормальності.

Означення. Нормальним розподілом найбільш узгодженим з вибіркою x_1, x_2, \dots, x_n називається такий нормальний закон

$$\mathcal{N}(\overline{x}(n), s^2(n)),$$

де
$$\overline{x}(n) = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $s^2(n) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}(n))^2$.

3) Висячі гістобари (hanging histobars).

<u>Побудова</u>. Спочатку по вибірці x_1 , x_2 , ..., x_n визначають вибіркові значення математичного сподівання $\overline{x}(n)$ та дисперсії $s^2(n)$. Потім будується графік щільності нормального розподілу найбільш узгодженого з вибіркою $x_1, x_2, ..., x_n$, а саме $\mathcal{N}(\overline{x}(n), s^2(n))$. Далі у центрі кожного інтервалу групування даних до цієї кривої підвішують гістобару (вузенький прямокутник), висота якої пропорційна відносній частоті попадання вимірів у цей інтервал групування.

<u>Призначення</u>. Висячі гістобари використовують для візуальної перевірки гіпотези <u>нормальності розподілу</u> випадкової величини, яка спостерігається. Гіпотезу приймають, якщо основи гістобар незначно відхиляються від осі абсцис. В протилежному випадку її відхиляють.

4) Завмерла коренеграма (suspended rootogram).

Побудова. Вона представляє собою послідовність прямокутників, побудованих у центрах інтервалів групування даних вибірки $x_1, x_2, ..., x_n$, причому висота такого прямокутника для *i*-того інтервала групування даних пропорційна різниці

$$\sqrt{\mathbf{v}_i^{(e)}} - \sqrt{\mathbf{v}_i^{(t)}}$$
,

де $v_i^{(e)}, v_i^{(t)}$ – відповідно емпірична та теоретична відносні частоти попадання у і-тий інтервал групування. Остання підрахована згідно нормального розподілу найбільш узгодженого з вибіркою x_1, x_2, \dots, x_n , тобто $\mathcal{N}(\overline{x}(n), s^2(n))$. Якщо $\hat{p}(x)$ - щільність нормального розподілу найбільш узгодженого з вибіркою X_1, X_2, \ldots, X_n , TO

$$\mathbf{v}_i^{(t)} = \int_{b_{i-1}}^{b_i} \hat{p}(x) dx,$$

 $\mathbf{v}_i^{(t)} = \int\limits_{b_{i-1}}^{b_i} \hat{p}(x) dx\,,$ де b_{i-1}, b_i - лівий та правий кінці i-того інтервалу групування.

Призначення. Це графічне представлення можна використовувати для візуальної перевірки гіпотези про нормальність розподілу випадкової величини, яка спостерігається. Остання попередньо нормально розподіленою, якщо побудовані вважа€ться прямокутники незначно відхиляються від осі абсцис, інакше вона відхиляється.

5) Зображення "скринька з вусами" (box-and-whisker plot).

має у загальному Побудова. Воно випадку такий нижченаведений вигляд:

Mo∂uфiκαμii: multiple box-and-whisker plot, notched box-and-whisker plot.

<u>Призначення</u>. Це зображення надає можливість отримати таку інформацію. Проекція середньої вертикальної лінії скриньки на вісь абсцис дає нам значення медіани, лівої границі скриньки – нижнього квартилю, правої границі скриньки – верхнього квартилю. Проекції лівого кінця лівого вуса та правого кінця правого вуса відповідно дають нам найменше найбільше значення у вибірці. При наявності у вибірці викидів (вимірів, які знаходяться від скриньки на відстані більшій ніж півтори інтерквартильної широти), на зображенні вони будуть представлені у вигляді окремих точок, відображених лівіше та правіше кінців вищевказаних ліній.

```
Stem-and-Leaf Plot for Variable 1: unit = 100
                                             1|2 represents 1200
      LO 18, 19, 21, 21
 7
    2F
         455
18
    2S
         66666777777
    2^{\circ}
30
         888888999999
    3*
         00000000001111111
46
66
    3Т
         22222233333333333333
84
    3F
         4444444445555555555
106 3S
         66666666666777777777777
73
    3°
         88888888888899999999999999
    4*
47
         000000000011111
32
    4T
         22333
         |444444455555555
27
    4F
12
    4S
         6666777
 5
    4^{\circ}
         89
 3
    5*
         0
```

HI 61, 73

У першому рядку вказано, що це зображення побудовано для змінної Variable I, використовуючи масштабний множник 100. Лівіше вертикальної риски вказується ведуча цифра поточного виміру з одним із фіксованих символів, а правіше вертикальної риски його наступна цифра. Врахувавши масштабний множник 100, одразу отримаємо значення поточного спостереження. Цифра, яка стоїть у першому стовпчику вказує кількість відображених спостережень у поточному рядку плюс у всіх рядках до найближчого краю зображення. У самих крайніх рядках, які починаються з абревіатур LO або HI, можуть вказуватися виміри підозрілі на аномальність.

<u>Призначення</u>. Зображення "стебло-листок" дозволяє візуально з'ясувати загальний вигляд розподілу даних, інтервал їх концентрації, симетричність розподілу, наявність вимірів підозрих на аномальність.

Випадок обробки двовимірних спостережень

1) Діаграма розсіювання (scatter diagram).

<u>Побудова</u>. Нехай маємо спостереження над двома кількісними скалярними змінними

$$\xi: x_1, x_2, ..., x_n,$$

 $\eta: y_1, y_2, ..., y_n.$

Спочатку представимо ці виміри на екрані монітора, який працює у текстовому режимі. У цій ситуації весь екран монітора розбивається на знакомісця (прямокутники). Підраховуємо скільки значень пар (x_i, y_i) з вибірки, тобто точок з координатами (x_i, y_i) попало у кожне знакомісце. А потім усі ці ненульові значення виводимо у відповідні знакомісця. Якщо ці значення з другого десятка, то можна використовувати режим «інверсії», а якщо з третього — режим «blink». У підсумку, побачимо щось на зразок такого

1321	11311	
1241	1311	
2421	1211	
11231	131	
11231	131	

Якщо монітор працює у графічному режимі, то зображення на екрані формується за допомогою різнокольорових пікселів. Тут вже підраховуємо скільки точок з координатами (x_i, y_i) попало в площину кожного пікселя. А потім кожен піксель виводимо на екран тим темнішим відтінком коричневого, чим більше значень пар (x_i, y_i) з вибірки попало в площину цього пікселя.

Призначення. Діаграма розсіювання дозволяє таке:

- з'ясувати загальний вигляд залежності (класу функцій апроксимації залежності) між ξ та η,
- з'ясувати наявність аномальних спостережень.

2) Таблиця спряженості (contingency table).

<u>Призначення</u>. Використовується для табличного представлення спостережень над двома скалярними змінними зі скінченними множинами значень. Це можуть бути номінальні, ординальні, кількісні дискретні або кількісні неперервні змінні, спостереження над якими згруповані.

<u>Побудова</u>. Нехай змінна η приймає всього m_1 значень, а змінна ξ - m_2 значень. Вважаємо, що отримали n спостережень над цими двома скалярними змінними. Тоді кількість наслідків спостережень n_{ij} , коли змінна η прийняла своє i-те значення, а ξ своє j-те

значення заносимо у комірку на перетені i – того рядка та j – того стовичика такої таблиці, яку і називають *таблицею спряженості*:

ηξ	1	2	• • •	j		<i>m</i> ₂	Σ
1	n_{11}	<i>n</i> ₁₂	* * *	n_{1j}	•••	n_{1m_2}	$_{1}^{n_{1\bullet}}$
2	n ₂₁	n ₂₂		n_{2j}	•••	n_{2m_2}	n _{2•}
·	:	:	•••	:		:	÷
i	n_{i1}	n _{i2}	•••	n _{ij}	•••	n_{im_2}	$n_{i\bullet}$
i	÷		•••	i	Hitchica	:	i
m_1	$n_{m_1 1}$	$n_{m_1 2}$	• • •	n_{m_1j}	•••	$n_{m_1 m_2}$	n_{m_1} •
Σ	$n_{\bullet 1}$	n _{•2}	•••	$n_{\bullet j}$	7721212	$n_{\bullet m_2}$	n

Значення n_{ij} називають *частотою відповідної комірки*. Значення у останньому рядку — це сума по стовпчикам, значення у останньому стовпчику — це сума по рядкам таблиці спряженості, а значення у правому нижньому кутку — це загальна кількість спостережень, тобто:

$$n_{i\bullet} = \sum_{j=1}^{m_2} n_{ij} \; , \; n_{\bullet j} = \sum_{i=1}^{m_1} n_{ij} \; , \; n = \sum_{i=1}^{m_1} n_{i\bullet} = \sum_{j=1}^{I} n_{\bullet j} \; .$$

Тут крапка у позначеннях замість індексу позначає, що було здійснено сумування по тому індексу замість якого вона фігурує.