

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	т	
КАФЕДРА _		_

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ*

НА ТЕМУ:

	HA I EIVIY:		
<u>Предсказание возможности</u> решения работника сменить			
Студент <u>ИУ5-65Б</u>		Домрачева К.Г.	
(Группа)	(Подпись, дата)	(И.О.Фамилия)	
Руководитель		Гапанюк Ю.Е	
	(Подпись, дата)	(И.О.Фамилия)	
Консультант		Гапанюк Ю.Е	
	(Подпись, дата)	(И.О.Фамилия)	

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	Завед	УТВЕРЖДА ующий кафе	
	«	»	(И.О.Фамилия) 20 г.
ЗАДАНИЕ			
на выполнение научно-исследоват	ельск	ой рабо	ты

на выполнение научно	о-исследовательско	и работы
по темеПредсказание возможности реше	ния работника сменить мест	го работы
Студент группы <u>ИУ5-65Б</u>		
Домраче	ева Ксения Григорьевна	
(Фамилі	ия, имя, отчество)	
Направленность НИР (учебная, исследовательс Исследоваткл		цственная <i>,</i> др.)
источник тематики (кафедра, предприятие, НИ		
График выполнения НИР: 25% к нед., 50% <i>Техническое задание</i>	% к нед., 75% к нед., 1	00% к нед.
Исследовать методы машинного обучени		сификации
Оформление научно-исследовательской рабо	оты:	
Расчетно-пояснительная записка на 32 лис	стах формата А4.	
 Перечень графического (иллюстративного) мат	, ,	слайды и т.п.)
Дата выдачи задания « 13 » февраля 2023 г.		
Руководитель НИР		Гапанюк Ю.Е.
Студент	(Подпись, дата)	(И.О.Фамилия) Домрачева К.Г.
Студент		(И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

Содержание

Введение	4
Постановка задачи	
Выполнение работы	
•	
Заключение	
Список использованной литературы	25

Введение

Кадровые движения сотрудников в современном мире сильно волнуют работодателей. Изучив данные о движении сотрудников, можно попробовать ответить на крайне важные для работодателя вопросы:

- 1. Как удержать сотрудников?
- 2. Как определить структуру заработной платы?
- 3. Как определить структуру отпусков?

Исследователи, аналитики данных и специалисты по персоналу могут получить ценную информацию по данным, предоставленным кадровыми специалистами.

В данной работе я буду использовать обезличенные данные, собранные в трех городах специалистами отдела кадров. Я выделила один из вопросов кадрового движения целью своей работы: построить модель машинного обучения, которая сможет предсказывать решение сотрудника сменить место работы. Я буду использовать алгоритмы классификации для определения факторов риска смены работы, включая образование, пол, возраст, город, уровень оплаты и опыт работы.

Результатом данной работы станет эффективная модель, которая может помочь оценить риск принятия сотрудником решения сменить работу.

Для достижения поставленной цели были определены следующие этапы:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения для решения задачи регрессии или классификации.
- 2. Проведение разведочного анализа данных.
- 3. Выбор признаков, подходящих для построения моделей.
- 4. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 5. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.
- 6. Выбор метрик для последующей оценки качества моделей.

- 7. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии.
- 8. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 9. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров и оценка качества моделей на основе тестовой выборки.
- 10.Подбор гиперпараметров для выбранных моделей. Построение оптимальных моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Постановка задачи

Данная работа по машинному обучению направлена на решение задачи классификации, а именно, предсказание риска принятия сотрудником решения о смене места работы.

Я взяла за основу данные о работниках, которые приняли решение остаться на прежнем месте или сменить текущее место работы. Данные включают информацию о таких факторах, как образование, пол, возраст, город, уровень оплаты и опыт работы. Каждый сотрудник может быть классифицирован как потенциально рискующий сменить работу и наоборот.

Целью задачи является создание модели машинного обучения, которая будет использовать имеющиеся данные для предсказания риска принятия данного решения. Для этого мы будем использовать различные алгоритмы классификации, такие как К ближайших соседей, метод опорных векторов, дерево решений, случайный лес и градиентный бустинг. Модель должна обучаться на тренировочных данных и проверяться на тестовых данных для оценки ее точности и эффективности.

Результатом работы должна быть модель, которая сможет предсказывать возникновения решения сменить место работы с высокой точностью и помочь работодателям принимать меры для предотвращения таких ситуаций.

Выполнение работы

Для решения задачи классификации был выбран набор данных, содержащий информацию о сотрудниках.

В наборе данных присутствуют следующие столбцы:

- 1. Education: образовательная квалификация сотрудников;
- 2. Joining Year: год, когда каждый сотрудник присоединился к компании, с указанием стажа работы.
- 3. City: место или город, где находится или работает каждый сотрудник.
- 4. Payment Tier: категоризация сотрудников по разным уровням заработной платы.
- 5. Age: возраст каждого сотрудника, предоставляющий демографическую информацию.
- 6. Gender: пол.
- 7. Ever Benched: указывает, находился ли сотрудник когда-либо временно безработным.
- 8. Experience in Current Domain: количество лет опыта сотрудников в текущей области.
- 9. Leave or Not: целевое значение, определяющее, принял ли сотрудник решение поменять место работы.

Данный датасет использован для решения задачи классификации.

Загружаем данные, получаем обую информацию о датасете и делаем предположения о влиянии признаков на целевую переменную. В наборе данных содержится 4653 строк и 9 столбцов.

- Пропусков в данных нет;
- Дублирующиеся строки удалим. После удаления осталось 2764 строк.

Строим график pairplot для визуализации распределения данных попарно для множества колонок.

Рисунок 1 - Визуализация распределения данных попарно для множества колонок

Проверяем сбалансированы ли классы в нашем наборе данных. Получаем следующую гистограмму:

Рисунок 2 - Гистограмма классов

Видим, что классы достаточно сбалансированы.

Проведем исследование данных на основе парных гистограмм по категориям.

Рисунок 3 - Сравнение уровня образования

На гистограмме видно, что смена места работы зависит от уровня образования.

На гистограмме видно, что смена места работы довольно сильно зависит от года, с которого работает сотрудник. Особенно сильное влияние оказывает 2018 год.

JoiningYear

Рисунок 5 - Сравнение по городам

На гистограмме видно, что города имеют различное распределение по решениям о смене места работы.

Рисунок 6 - Сравнение по уровню оплаты

На гистограмме видно, что смена решение о смене места работы имеет зависимость от уровня оплаты.

Далее приведем данные к нужному формату. Сначала масштабируем численные признаки методом Standard Scaler, который преобразует каждый признак таким образом, чтобы он имел среднее значение равное 0 и стандартное отклонение равное 1.

Затем используем OrdinalEncoder для кодирования категориальных колонок. В этом случае каждое уникальное значение признака становится новым отдельным признаком. [4]

Проводим корреляционный анализ данных. Строим тепловую карту корреляций.

Рисунок 7 - Тепловая карта корреляций

Выводы:

- целевой признак LeaveOrNot больше всего коррелирует с возрастом (0.11), полом (0.19), городом, уровнем оплаты и годом приема;
- Образование и опыт сотрудников в текущей области на целевой признак влияют слабо;

Предварительно, по этим данным можно построить модель.

Выберем метрики для оценки качества модели:

- $Precision = \frac{TP}{TP + FP}$ показывает, какую долю объектов, которые модель предсказала как положительные, действительно являются положительными.
- $F_1 = \frac{TP}{TP + FN}$ показывает, какую долю положительных объектов модель способна обнаружить.
- $F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall}$ среднее гармоническое precision и recall. Другими словами, это средневзвешенное значение точности и отзыва. [2]
- $ROC\ AUC$ основана на вычислении следующих характеристик: $TPR = \frac{TP}{TP+FN}$ True Positive Rate, откладывается по оси ординат. Совпадает с recall. $FPR = \frac{FP}{FP+TN}$ False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно. Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика. Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации. [3]

Выберем модели для решения задачи классификации:

- KNN;
- SVC;
- Дерево решений;
- Случайный лес;
- Градиентный бустинг.
 Формируем обучающую и тестовую выборку в соотношении 8:2.
 Строим базовое решения, выводим значениями метрик и ROC-кривую.

Рисунок 8 - ROC-кривая базовой модели KNN

KNeighborsClassifier:

Precision: 0.75 Recall: 0.82 F1-score: 0.79

Рисунок 9- ROC-кривая базовой модели SVC

SVC:

Precision: 0.73 Recall: 0.69 F1-score: 0.71

Рисунок 10 - ROC-кривая базовой модели Decision Tree

DecisionTreeClassifier:

Precision: 0.99 Recall: 1.0 F1-score: 1.0

Рисунок 11 - ROC-кривая базовой модели Random Forest

RandomForestClassifier:

Precision: 0.94 Recall: 0.99 F1-score: 0.96

Рисунок 12 - ROC-кривая базовой модели Gradient Boosting

GradientBoostingClassifier:

Precision: 0.82 Recall: 0.76 F1-score: 0.78

ROC AUC score: 0.873846697729794

Используем GridSearch для поиска оптимальных гиперпараметров для каждой модели.

KNeighboursClassifier:

Best hyperparameters: {'algorithm': 'ball_tree', 'n_neighbors': 12, 'weights': 'uniform'}

Best score: 0.8182086216536695

SVC:

Best hyperparameters: {'C': 10, 'degree': 4, 'gamma': 'auto', 'kernel': 'rbf'}

Best score: 0.7906019223108587

DecisionTreeClassifier:

Best hyperparameters: {'criterion': 'gini', 'max_depth': 7, 'max_features': None, 'min_samples_leaf': 4, 'min_samples_split': 2}

Best score: 0.8010050764532239

RandomForestClassifier:

Best hyperparameters: {'max_depth': None, 'max_features': 'log2', 'min samples leaf': 4, 'min samples split': 10, 'n estimators': 200}

Best score: 0.803267519892138

Gradient Boosting Classifier:

Best hyperparameters: {'learning_rate': 0.05, 'max_depth': 5, 'max_features':

None, 'min_samples_leaf': 2, 'min_samples_split': 5}

Best score: 0.811410273433909

Рисунок 13 - ROC-кривая модели KNN после поиска гиперпараметров

KNeighborsClassifier:

Precision: 0.83 Recall: 0.44 F1-score: 0.58

Рисунок 14 - ROC-кривая модели SVC после поиска гиперпараметров

SVC:

Precision: 0.84 Recall: 0.62 F1-score: 0.71

Рисунок 15 - ROC-кривая модели Decision Tree после поиска гиперпараметров

DecisionTreeClassifier:

Precision: 0.85 Recall: 0.65 F1-score: 0.73

ROC AUC score: 0.8444239694239695

Рисунок 16 - ROC-кривая модели Random Forest после поиска гиперпараметров

RandomForestClassifier:

Precision: 0.88 Recall: 0.61 F1-score: 0.72

Рисунок 17 - ROC-кривая модели Gradient Boosting после поиска гиперпараметров

GradientBoostingClassifier:

Precision: 0.84 Recall: 0.63 F1-score: 0.72

Таблица 1 - Сравнение базовых моделей с моделями после подбора гиперпараметров по 4 метрикам

Модель	Baseline	GridSearch()
KNN	Precision: 0.75 Recall: 0.82 F1-score: 0.79 ROC AUC score: 0.8531 544653444516	Precision: 0.83 Recall: 0.44 F1-score: 0.58 ROC AUC score: 0.7811 42506142506
SVC	Precision: 0.73 Recall: 0.69 F1-score: 0.71 ROC AUC score: 0.7831 56730530161	Precision: 0.84 Recall: 0.62 F1-score: 0.71 ROC AUC score: 0.8312 653562653562
Decision Tree	Precision: 0.99	Precision: 0.85

	Recall: 1.0 F1-score: 1.0 ROC AUC score: 0.9959 451681616494	Recall: 0.65 F1-score: 0.73 ROC AUC score: 0.8444 239694239695
Random forest	Precision: 0.88 Recall: 0.61 F1-score: 0.72 ROC AUC score: 0.8300 778050778052	Precision: 0.88 Recall: 0.61 F1-score: 0.72 ROC AUC score: 0.8300 778050778052
Gradient Boosting	Precision: 0.82 Recall: 0.76 F1-score: 0.78 ROC AUC score: 0.8738 46697729794	Precision: 0.84 Recall: 0.63 F1-score: 0.72 ROC AUC score: 0.8529484029484029

На основании полученных метрик лучшими для решения данной задачи классификации оказались модели случайного леса и градиентного бустинга.

Заключение

Классификация решений о смене месты работы с помощью методов машинного обучения является актуальной и перспективной задачей в области кадровых движений. Анализ и обработка таких данных с помощью алгоритмов машинного обучения могут помочь в определении риска смены работы у сотрудников предприятия.

В рамках НИР была рассмотрена задача классификации сотрудников с помощью методов машинного обучения. Данные были проанализированы, визуализированы и подготовлены к обучению. Были применены различные алгоритмы, такие как метод ближайших соседей, метод опорных векторов, дерево решений, случайный лес и градиентный бустинг.

В результате исследования было показано, что большинство использованных методов могут достичь хороших результатов, но самыми точными на основании трех метрик из четырех оказались модели градиентного бустинга и случайного леса.

Список использованной литературы

- 1. Т-test на Python для проверки и получения t-статистики // Помощник Python URL: https://pythonpip.ru/osnovy/t-test-na-python (дата обращения: 30.04.2023).
- 2. Machine Learning Metrics in simple terms // Medium URL: https://medium.com/analytics-vidhya/machine-learning-metrics-in-simple-terms-d58a9c85f9f6 (дата обращения: 01.05.2023).
- 3. Опорный пример для выполнения проекта по анализу данных. // Jupyter nbviewer URL: https://scikit-learn.org/stable/tutorial/statistical_inference/supervised_learning.html (дата обращения: 25.04.2023).
- 4. Репозиторий курса "Технологии машинного обучения", бакалавриат, 6 семестр. // GitHub URL: https://github.com/ugapanyuk/courses_current/wiki/COURSE_TMO_SPRING_2023/ (дата обращения: 25.04.2023).