Lab 4. Flexible Modelling

Smoothing

"Smoothing" describes a broad umbrella of techniques which fit a **nonparametric** model to covariate-outcome data. **Parametric** models are models with explicit functional forms for means and variances. They require assumptions and in return allow you to summarize a data relationship in terms of parameters (for example, β_j in a linear regression summarizes the relationship between covariate x_j and the outcome). **Nonparametric** models require fewer (if any) assumptions and are much more flexible, but may be hard to summarize. They are useful for both **visualization** and **prediction**.

Note:

You are not required to know how to generate the figures in {Section 1. Scatterplot smoothing} in any language (except LOWESS curve). However, the code can help you understand what those smoothing methods are doing. You can play with it if you are interested in more details, otherwise knowing the general idea behind the method is enough for this course!

1. Scatterplot Smoothing

We will generate the data for this lab in R. The same data is saved in "lab4-1.csv" if you want to follow along in Stata or SAS.

1.1 Bin Smoother

Create categories for x variables and average Y over each category (piecewise constant)

```
set.seed(210)
x=c(runif(25,0,6),runif(50,6,14),runif(25,14,20))
x=sort(x)
y=-(x-3)^3+(x-6)^3+(x-9)^3+1000+rnorm(100,0,30)
bin1=mean(y[x>0 & x<=5])
bin2=mean(y[x>5 & x<=10])
bin3=mean(y[x>10 & x<=15])
bin4=mean(y[x>15 & x<=20])
plot(x,y)
lines(c(0,5),c(bin1,bin1),col="red")
lines(c(5,10),c(bin2,bin2),col="red")
lines(c(10,15),c(bin3,bin3),col="red")
lines(c(15,20),c(bin4,bin4),col="red")</pre>
```


1.2 Running mean Smoother

Mean of Y over a moving neighborhood of x, with a relatively small bandwidth (which is 11 in this case)

```
running_mean=c()
for(i in 1:100){
  neighbor=max(1,i-5):min(i+5,100)
  running_mean=c(running_mean,mean(y[neighbor]))
}
plot(x,y)
lines(x,running_mean,col="red")
```


If we choose a large bandwidth, say, 75, we cannot capture the shape of the data

```
running_mean=c()
for(i in 1:100){
  neighbor=max(1,i-37):min(i+37,100)
  running_mean=c(running_mean,mean(y[neighbor]))
}
plot(x,y)
lines(x,running_mean,col="red")
```


1.3 Running line Smoother

Linear fit of Y over a moving neighborhood of x, with a relatively small bandwidth (which is 11 in this case)

```
plot(x,y)
midpoint=c()
for(i in 1:100){
   neighbor=max(1,i-5):min(i+5,100)
   mod=lm(y[neighbor]~x[neighbor])
   midpoint[i]=sum(coef(mod)*c(1,x[i]))
   lines(x[neighbor],fitted(mod),col="red")
}
lines(x,midpoint,col="blue",lw=2)
```


1.4 Kernel Smoother

Locally **weighted** running mean smoother of Y over a moving neighborhood of x (the kernel has higher weights the closer you are to the middle of the neighborhood, while bin smoother calculates **equally** weighted mean), with a relatively large bandwidth (which is 75% of the data in this case)

```
kernel_smooth=c()
for(i in 1:100){
  neighbor=max(1,i-37):min(i+37,100)
  weight=exp(-(x[neighbor]-x[i])^2)/sum(exp(-(x[neighbor]-x[i])^2)) ## Gaussian Kernel
  kernel_smooth=c(kernel_smooth,sum(weight*y[neighbor]))
}
plot(x,y)
lines(x,kernel_smooth,col="red")
```


1.5 LOWESS

Locally weighted running line smoother of Y over a moving neighborhood of x (the kernel has higher weights the closer you are to the middle of the neighborhood), with a relatively large bandwidth (e.g. 40% of the data).

The smoother span ('span' option in the following code) is the proportion of points used in smoothing at each value. Larger values give more smoothness. It is same as 'bwidth' in Stata.

```
plot(x,y)
fit=loess(y~x,span=0.4)
lines(x,fitted(fit),col="red")
```


In Stata, if you want to use 40% of data for smoothing at each point, you can use:

```
lowess y x, bwidth(0.4) ## default is 0.8
```


In SAS,

```
proc loess data = dat;
model y = x/smooth=0.4; ## default is chosen by AICC
run;
```


2. Splines

2.1 Piecewise Constant Splines

Same as a bin smoother, discontinuous at knots. We'll specify the knots by ourselves.

```
library(splines2)
mod3=lm(y~bSpline(x,knots=quantile(x,c(0.25,0.5,0.75)),degree=0))
plot(x,y)
lines(x[1:25],fitted(mod3)[1:25],type='l',col="red")
lines(x[26:50],fitted(mod3)[26:50],type='l',col="red")
lines(x[51:75],fitted(mod3)[51:75],type='l',col="red")
lines(x[76:99],fitted(mod3)[76:99],type='l',col="red")
```


Alternatively to specifying the knots ourselves, we can specify only the number of knots with the df argument and allow bSpline to pick the knot locations.

2.2 Piecewise Linear Splines

can be continuous at knots

```
mod4=lm(y~bSpline(x,df=4,degree=1))
plot(x,y)
lines(x,fitted(mod4),col="red")
```


Similar to constant spline, you can specify the knots you want

```
mod5=lm(y~bSpline(x,knots=quantile(x,c(0.25,0.5,0.75)),degree=1))
plot(x,y)
lines(x,fitted(mod5),col="red")
```

```
800
     009
     400
     200
           0
                            5
                                             10
                                                                               20
                                                              15
                                              Χ
temp=summary(mod5)
rownames(temp$coefficients)=c("intercept", "Spline1", 'Spline2', 'Spline3', 'Spline4')
temp
##
## Call:
  lm(formula = y ~ bSpline(x, knots = quantile(x, c(0.25, 0.5,
       0.75)), degree = 1))
##
##
##
  Residuals:
##
       Min
                                            Max
                  1Q
                       Median
                                    3Q
   -120.973
            -29.505
                       -1.807
                                        124.741
##
                                30.811
##
##
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
               296.54
                           15.80
                                 18.774
                                         < 2e-16 ***
## intercept
## Spline1
               708.10
                           23.14 30.605
                                         < 2e-16 ***
## Spline2
               444.37
                           19.36
                                  22.956
                                          < 2e-16 ***
## Spline3
                                  -2.104
                                            0.038 *
               -44.80
                           21.29
## Spline4
              -235.20
                           24.05
                                 -9.778 4.93e-16 ***
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```

It is equivalent to fit a linear model with intercept, x, $(x - Q_{0.25})_+$, $(x - Q_{0.5})_+$, $(x - Q_{0.75})_+$, where $(x - a)_+$ = max(x-a,0). Let's check it!

Residual standard error: 49.9 on 95 degrees of freedom
Multiple R-squared: 0.974, Adjusted R-squared: 0.9729
F-statistic: 889.2 on 4 and 95 DF, p-value: < 2.2e-16</pre>

```
x1=x-quantile(x,0.25); x1[x1<0]=0
x2=x-quantile(x,0.50); x2[x2<0]=0
x3=x-quantile(x,0.75); x3[x3<0]=0
mod6=lm(y~x+x1+x2+x3)
plot(x,y)
lines(x,fitted(mod6),col="red")</pre>
```


summary(mod6)

```
##
## Call:
## lm(formula = y ~ x + x1 + x2 + x3)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    ЗQ
  -120.973
            -29.505
                       -1.807
                                30.811
                                        124.741
##
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               268.317
                            16.568
                                     16.19 < 2e-16 ***
## x
                             3.981
                                     30.61 < 2e-16 ***
                121.840
               -188.431
                             8.161
                                    -23.09 < 2e-16 ***
## x1
## x2
                -56.013
                             9.152
                                     -6.12 2.08e-08 ***
## x3
                 90.681
                             8.786
                                     10.32 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 49.9 on 95 degrees of freedom
## Multiple R-squared: 0.974, Adjusted R-squared: 0.9729
## F-statistic: 889.2 on 4 and 95 DF, p-value: < 2.2e-16
```

Question: What are the slopes for four pieces?

Answer: The slopes for four pieces are 121, 121-188, 121-188-56 and 121-188-56+90 respectively.

In Stata,

```
mkspline sx1 6 sx2 10 sx3 14 sx4 = x
regress y sx*
OR
mkspline sx 3 = x, pctile displayknots
regress y sx*
OR
gen x1=cond(x > 6, x - 6, 0)
gen x2=cond(x > 10, x - 10, 0)
gen x3=cond(x > 14, x - 14, 0)
regress y x x1 x2 x3
predict fitted_spline
twoway scatter y x || line fitted_spline x
```

In SAS,

```
proc transreg data=dat ss2 short;
  model identity(y) = pspline(x / nknots=3 degree = 1);
run;
```

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom									
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F				
Model	4	8854623	2213656	888.41	<.0001				
Error	95	236712	2492						
Corrected Total	99	9091335							

Root MSE	49.91697	R-Square	0.9740
Dependent Mean	536.37060	Adj R-Sq	0.9729
Coeff Var	9.30643		

Univariate Regression Table Based on the Usual Degrees of Freedom										
Variable	DF	Coefficient	Type II Sum of Squares	Mean Square	F Value	Pr > F	Label			
Intercept	1	269.66383	664191	664191	266.56	<.0001	Intercept			
Pspline.x_1	1	121.03622	2383539	2383539	956.59	<.0001	x 1			
Pspline.x_2	1	-190.96987	1475069	1475069	591.99	<.0001	x 2			
Pspline.x_3	1	-54.31165	88078	88078	35.35	<.0001	x 3			
Pspline.x_4	1	92.96705	261424	261424	104.92	<.0001	x 4			

2.3 Piecewise Cubic Splines

##

```
match 1st and 2nd derivatives at knots
```

```
mod7=lm(y~bSpline(x,knots=quantile(x,c(0.25,0.5,0.75)),degree=3))
plot(x,y)
lines(x,fitted(mod7),col="red")
```



```
temp=summary(mod7)
rownames(temp$coefficients)=c("intercept","Spline1",'Spline2','Spline3','Spline4','Spline5','Spline6')
temp
```

```
## Call:
  lm(formula = y ~ bSpline(x, knots = quantile(x, c(0.25, 0.5,
##
       0.75)), degree = 3))
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -67.870 -18.718 -0.011 17.513
                                     69.002
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
                          17.082
## intercept 158.678
                                    9.289 6.52e-15 ***
## Spline1
              559.668
                           38.592 14.502
                                          < 2e-16 ***
## Spline2
              932.721
                                  45.461
                                           < 2e-16 ***
                           20.517
## Spline3
                                   25.317
              595.629
                           23.527
                                           < 2e-16 ***
## Spline4
               22.769
                           25.048
                                    0.909
                                             0.366
## Spline5
             -151.407
                           28.007
                                  -5.406 4.96e-07 ***
## Spline6
                5.939
                          23.437
                                    0.253
                                             0.801
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
```

```
## Residual standard error: 29.33 on 93 degrees of freedom
## Multiple R-squared: 0.9912, Adjusted R-squared: 0.9906
## F-statistic: 1746 on 6 and 93 DF, p-value: < 2.2e-16</pre>
```

Similarly, it is equivalent to fit a linear model with an intercept, x, x^2 , x^3 , $(x - Q_{0.25})_+^3$, $(x - Q_{0.5})_+^3$, $(x - Q_{0.75})_+^3$.

```
x1_3=x1^3
x2_3=x2^3
x3_3=x3^3
x_sq=x^2
x_cb=x^3
mod8=lm(y~x+x_sq+x_cb+x1_3+x2_3+x3_3)
plot(x,y)
lines(x,fitted(mod8),col="red")
```


summary(mod8)

```
##
## Call:
  lm(formula = y \sim x + x_sq + x_cb + x1_3 + x2_3 + x3_3)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
   -67.870 -18.718 -0.011 17.513
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 90.13359
                           21.50000
                                      4.192 6.29e-05 ***
               302.89791
                           22.39548 13.525 < 2e-16 ***
## x
## x_sq
               -30.43245
                            5.57569 -5.458 3.97e-07 ***
```

```
## x_cb
              0.61739
                         0.39667 1.556
                                           0.123
## x1_3
               0.47225
                         0.63347 0.745
                                           0.458
                                           0.950
## x2_3
                         0.51415 0.062
               0.03212
## x3_3
              -0.28691
                         0.58260 -0.492
                                           0.624
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 29.33 on 93 degrees of freedom
## Multiple R-squared: 0.9912, Adjusted R-squared: 0.9906
## F-statistic: 1746 on 6 and 93 DF, p-value: < 2.2e-16
```

In Stata,

```
gen x_sq=x^2
gen x_cub=x^3
gen x1=cond(x > 6, (x - 6)^3, 0)
gen x2=cond(x > 10, (x - 10)^3, 0)
gen x3=cond(x > 14, (x - 14)^3, 0)
regress y x x_sq x_cub x1 x2 x3
predict fitted_spline
twoway scatter y x || line fitted_spline x
```

. regress y x x_sq x_cub x1 x2 x3

Source	SS	df	MS	Number of obs	=	100
				F(6, 93)	=	1781.32
Model	9012910.13	6	1502151.69	Prob > F	=	0.0000
Residual	78425.1391	93	843.281066	R-squared	=	0.9914
				Adj R-squared	=	0.9908
Total	9091335.27	99	91831.6694	Root MSE	=	29.039

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x	305.3281	15.22431	20.06	0.000	275.0956	335.5606
x_sq	-32.41541	2.300889	-14.09	0.000	-36.98452	-27.8463
x_cub	.8335522	.1436818	5.80	0.000	.5482287	1.118876
x1	.0872974	.1181901	0.74	0.462	1474048	.3219995
x2	.0017223	.0491719	0.04	0.972	0959233	.0993679
x 3	0347964	.0481239	-0.72	0.471	1303608	.060768
_cons	90.26577	18.35739	4.92	0.000	53.81163	126.7199

In SAS,

```
proc transreg data=dat ss2 short;
  model identity(y) = spline(x / knots=6 10 14);
run;
```

The TRANSREG Procedure Hypothesis Tests for Identity(y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	6	9011337	1501890	1745.99	<.0001		
Error	93	79998	860				
Corrected Total	99	9091335					

Root MSE	29.32907	R-Square	0.9912
Dependent Mean	536.37060	Adj R-Sq	0.9906
Coeff Var	5.46806		

Univariate Regression Table Based on the Usual Degrees of Freedom Type II Sum of Coefficient Variable DF Squares Mean Square | F Value | Pr > F 1085.94235 31503.8 <.0001 Intercept 1 2.71E7 2.71E7 Spline(x) -55.12164 9011337 1501890 1745.99 < .0001 6

2.4 Restricted/Natural Cubic Splines

```
Linear on edges!
```

```
library(Hmisc)
mod9=lm(y~rcspline.eval(x,nk=5,inclx=T))
plot(x,y)
lines(x,fitted(mod9),col="red")
```



```
temp=summary(mod9)
rownames(temp$coefficients)=c("intercept","Spline1",'Spline2','Spline3','Spline4')
temp
```

```
##
## Call:
## lm(formula = y ~ rcspline.eval(x, nk = 5, inclx = T))
##
## Residuals:
##
       Min
                1Q Median
                                3Q
## -84.599 -27.803
                     2.039 24.330 103.586
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## intercept 224.404
                          15.401 14.571
                                           <2e-16 ***
## Spline1
              154.378
                           4.852 31.819
                                            <2e-16 ***
## Spline2
             -527.398
                          24.600 -21.439
                                            <2e-16 ***
## Spline3
             1088.711
                         105.172 10.352
                                            <2e-16 ***
               15.315
                         161.574
                                  0.095
## Spline4
                                            0.925
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 42.77 on 95 degrees of freedom
## Multiple R-squared: 0.9809, Adjusted R-squared: 0.9801
```

```
## F-statistic: 1219 on 4 and 95 DF, p-value: < 2.2e-16
```

In Stata,

```
keep x y
mkspline x_spline = x, cubic nknots(5) displayknots
regress y x_spline*
OR
mkspline x_spline = x, cubic knots(1 6 10 14 19)
quietly regress y x_spline*
predict fitted_spline
twoway scatter y x || line fitted_spline x
```


In SAS, There is no function to do it **directly**.

3. Generalized Additive Model (GAM)

A generalized additive model (GAM) is a generalized linear model in which the linear predictor depends linearly on unknown smooth functions of some predictor variables. It is like a cubic spline but with every x value as a knot and a penalty on the second derivative (curvature). (We don't want a discontinuous or a zigzag curve)

GAM is very flexible. If now there are three covariates x_1, x_2, x_3 and an outcome y, and you believe that y and x_3 have a linear relationship, you can specify a GAM: $E(Y) = f_1(x_1) + f_2(x_2) + \beta_3 x_3$. If you are not sure at all, you can just use a very general model: $E(Y) = f_1(x_1) + f_2(x_2) + f_3(x_3)$, where f_1, f_2, f_3 are some nonparametric functions (You cannot write out the explicit form of those functions), and GAM can find the 'best' fit for you. In GAM, we still assume a normal distribution for the error terms (which is parametric), and that is why we say GAM is a **semiparametric** method.

```
library(gam)
mod10=gam(y~s(x,4))
plot(x,y)
lines(x,fitted(mod10),col='red')
```


summary(mod10)

```
##
## Call: gam(formula = y \sim s(x, 4))
  Deviance Residuals:
##
         Min
                     10
                           Median
                                          30
                                                   Max
   -116.2892
              -21.6298
                          -0.0602
                                    30.9159
##
                                              112.9267
##
   (Dispersion Parameter for gaussian family taken to be 2039.414)
##
##
##
       Null Deviance: 9091335 on 99 degrees of freedom
## Residual Deviance: 193744.7 on 95.0002 degrees of freedom
## AIC: 1052.7
```

```
## Number of Local Scoring Iterations: 2
## Anova for Parametric Effects
           Df Sum Sq Mean Sq F value
                                       Pr(>F)
## s(x, 4) 1 3055335 3055335 1498.1 < 2.2e-16 ***
## Residuals 95 193745
                         2039
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Anova for Nonparametric Effects
             Npar Df Npar F
## (Intercept)
## s(x, 4)
                 3 954.95 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

In Stata, there is no GAM function. In SAS,

```
proc gam data=dat;
  model y = spline(x);
run;
```

Regression Model Analysis Parameter Estimates							
Parameter	Parameter Standard Error t Value Pr >						
Intercept	856.37727	9.42097	90.90	<.0001			
Linear(x)	-32.09643	0.82927	-38.70	<.0001			

Smoothing Model Analysis Fit Summary for Smoothing Components							
Smoothing Component Parameter DF GCV Obs							
Spline(x)	0.999913	3.000000	2146.903500	100			

	Si	moothing Model Analysis Analysis of Deviance					
Source	DF	Sum of Squares	Sum of Squares Chi-Square Pr > Chi				
Spline(x)	3.00000	5842245	2864.4656	<.0001			

The figure above shows the "departure" from linear model. If we combine both the linear effect and nonlinear effect, we should get the same plot as in R. Let's try!

```
proc gam data=dat plots=COMPONENTS(additive clm);
  model y = spline(x);
run;
```


4. Assess nonlinearity with Splines/GAM

Given the dataset "lab4-1.csv", we are interested in whether x and y have a linear relationship. How can we do a formal statistical test?

```
Model 9: E[Y] = \beta_0 + \beta_1 x
```

```
Model 10: E[Y] = \beta_0 + \beta_1 x + Spline(x)/GAM(x)
```

We use F test to compare the variance explained by the linear term and the variance explained by (linear term + spline term). If the former is not far smaller than the latter, then we say, a single linear term is enough! Remember, F test can only compare nested models!

```
mod11=lm(y~x)
mod12=lm(y~x+bSpline(x, df=6, degree = 3))
## or use GAM mod10=gam(y~x+s(x,4))
anova(mod11,mod12)
```

```
## Analysis of Variance Table
##
## Model 1: y ~ x
## Model 2: y ~ x + bSpline(x, df = 6, degree = 3)
## Res.Df    RSS Df Sum of Sq    F    Pr(>F)
## 1    98 6036003
## 2    93    80004    5    5955999    1384.7 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1</pre>
```

Q: How to interpret this result?

We showed in section 2, a cubic spline with 3 knots is equivalent to doing a regression on x, x^2 , x^3 , $(x-a)_+^3$, $(x-b)_+^3$, $(x-c)_+^3$. Hence, we can rewrite Model 10 as:

 $E[Y] = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - a)_+^3 + \beta_5 (x - b)_+^3 + \beta_6 (x - c)_+^3.$

Then testing whether x and y are linear is equivalent to jointly testing:

 $H_0: \beta_2 = \beta_3 = \beta_4 = \beta_5 = \beta_6 = 0$

 H_A : At least one is not equal to zero

Q: Why the F statistic has df(5,93)?

In stata,

```
keep x y
gen x_sq=x^2
gen x_cub=x^3
gen x1=cond(x > 6, (x - 6)^3, 0)
gen x2=cond(x > 10, (x - 10)^3, 0)
gen x3=cond(x > 14, (x - 14)^3, 0)
regress y x x_sq x_cub x1 x2 x3
test (x_sq=0)(x_cub=0)(x1=0)(x2=0)(x3=0)
```

. regress y x x_sq x_cub x1 x2 x3

Source	SS	df	MS		er of obs	=	100 1781.32
Model	9012910.13	6	1502151.69) > F	_	0.0000
Residual	78425.1391	93	843.281066	R-sq	quared	=	0.9914
				- Adj	R-squared	=	0.9908
Total	9091335.27	99	91831.6694	Root	MSE	=	29.039
	•						
У	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
x	305.3281	15.22431	20.06	0.000	275.095	6	335.5606
x_sq	-32.41541	2.300889	-14.09	0.000	-36.9845	2	-27.8463
x_cub	.8335522	.1436818	5.80	0.000	.548228	7	1.118876
x 1	.0872974	.1181901	0.74	0.462	147404	8	.3219995
x 2	.0017223	.0491719	0.04	0.972	095923	3	.0993679
x 3	0347964	.0481239	-0.72	0.471	130360	8	.060768
_cons	90.26577	18.35739	4.92	0.000	53.8116	3	126.7199

- $(1) \quad x \quad sq = 0$
- $(2) \quad x \quad cub = 0$
- (3) x1 = 0
- $(4) \quad x2 = 0$
- $(5) \quad x3 = 0$

$$F(5, 93) = 1412.95$$

 $Prob > F = 0.0000$

The difference in F statistic is due to different quantile calculation methods in R and Stata.

Or you can use a restricted cubic spline to test it in Stata (It is easier in the sense that there is a built-in function and the number of parameters is smaller given the same number of knots).

```
keep x y
mkspline x_spline = x, cubic knots(1 6 10 14 19)
regress y x x_spline*
test (x_spline2=0)(x_spline3=0)(x_spline4=0)
```

У	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x	160.2311	4.798569	33.39	0.000	150.7047	169.7574
$x_spline1$	0	(omitted)				
x_spline2	-586.2153	26.03742	-22.51	0.000	-637.9062	-534.5245
x_spline3	1135.601	96.7791	11.73	0.000	943.4703	1327.732
x_spline4	13.62831	139.644	0.10	0.922	-263.6	290.8566
_cons	216.2682	14.68676	14.73	0.000	187.1113	245.4251

Q: How to test if $x + x^2$ is sufficient?

Q: Are more complex models always better?

Q: How to write code to deal with more than one covariate? For example, there are three covariates, and you are only interested in whether x_3 and y are linear. Given that x_1 , x_2 are potential confounders, you may want to add them to your model.