

Hyperparameter optimization

Summary up until evaluation metrics

Overview

- Pipelines
- Holdout cross-validation
- K-fold cross-validation
- Learning & validation curves
- Grid search & randomized search
- Nested cross-validation
- Evaluation metrics (not included in this presentation)

Pipelines

The holdout method ("validation" partition)

 The method of splitting the full dataset into training partition and an evaluation partition is referred to as the hold out method

K-fold cross-validation (CV)

Learning & validation curves

Underfitting, try:

- Construct or collect more features
- More flexible modelling
- Less regularisation

Overfitting, try:

- More data / fewer features
- Less flexible modelling
- More regularization

Balanced fitting, try:

- Pat yourself on the back
- Perform victory dance
- Brag about it

Learning & validation curves

Validation curve for SVC

- Here we varied the C parameter
- For each C, 10-fold CV was performed
- Plot two lines of training and validation accuracy

Grid search & randomized search

- Grid search:
 - Brute-force exhaustive search through grid of specified set of hyperparameters
- Randomized search:
 - w We **don't** specify a grid of hyperparameter combinations to search exhaustively
 - Instead we specify
 - A range of possible hyperparameter values (could be continous)
 - Parameter specific probability distributions
 - Max set of iterations

Nested cross-validation

- Cross-validation loop within a crossvalidation loop
- Addresses the fact that the initial split between the training/val set and test set is also sensitive to how the split is done
- Becomes very computationally expensive
- Is rarely done when you are working with datasets of over a certain size

Thank you for listening

