1

Assignment 13

Utkarsh Surwade AI20MTECH11004

Download latex-tikz codes from

https://github.com/utkarshsurwade/Matrix_Theory_EE5609/tree/master/codes

1 **Problem**

Find a 3×3 matrix for which the minimal polynomial is x^2 .

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix A , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix \mathbf{A} , then, $p(\mathbf{A}) = 0$
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$ Every root of characteristic polynomial should be the root of minimal polynomial

TABLE 1: Definitions

3 Explanation

Statement	Solution
Assuming matrix A as follows:	Let us Consider 3×3 upper triangular matrix,
	$\mathbf{A} = \begin{pmatrix} e & a & b \\ 0 & f & c \\ 0 & 0 & d \end{pmatrix}$
Characteristic polynomial of A	$\begin{vmatrix} x\mathbf{I} - \mathbf{A} \end{vmatrix} = \begin{pmatrix} x - e & -a & -b \\ 0 & x - f & -c \\ 0 & 0 & x - d \end{pmatrix}$ $= (x - e)(x - f)(x - d)$
Given	The minimum polynomial is
	$p(x) = x^2$
	Therefore p(x) must divide characteristic polynomial. This will be satisfied only if at least two values among e,f,d are zeros.
Characteristic polynomial	
when e=0 and f=0	$\left x\mathbf{I} - \mathbf{A} \right = x^2(x - d)$
Since $p(x) = x^2$ Hence $p(\mathbf{A}) = \mathbf{A}^2 = 0_{3\times 3}$	Therefore calculating $p(\mathbf{A})$ as follows:
	$\begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & d \end{pmatrix} \begin{pmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & d \end{pmatrix} = 0_{3 \times 3}$
	$\begin{pmatrix} 0 & 0 & ac + bd \\ 0 & 0 & dc \\ 0 & 0 & d^2 \end{pmatrix} = 0_{3\times 3}$

With entries a=0,d=0,e=0,f=0 The matrix A will be:	For A^2 to be a zero matrix, either d=0,a=0 or d=0,c=0
For b=1,c=1	$\mathbf{A} = \begin{pmatrix} 0 & 0 & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{pmatrix}$ $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$
Conclusion	Thus the matrix, $\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ has the minimal polynomial as x^2 .

TABLE 2: Solution summary