Title

D. Zack Garza

Sunday 20th September, 2020

Contents

1 Notation 10

- Acyclic
- Alexander duality
- Basis
 - For an R-module M, a basis B is a linearly independent generating set.
- Boundary
- Boundary of a manifold
 - Points $x \in M^n$ defined by

$$\partial M = \{x \in M : H_n(M, M - \{x\}; \mathbb{Z}) = 0\}$$

- Cap Product
 - Denoting $\Delta^p \xrightarrow{\sigma} X \in C_p(X;G)$, a map that sends pairs (*p*-chains, *q*-cochains) to (*p q*)-chains $\Delta^{p-q} \to X$ by

$$H_p(X;R) \times H^q(X;R) \xrightarrow{\frown} H_{p-q}(X;R)$$

 $\sigma \frown \psi = \psi(F_0^q(\sigma))F_q^p(\sigma)$

where F_i^j is the face operator, which acts on a simplicial map σ by restriction to the face spanned by $[v_i \dots v_j]$, i.e. $F_i^j(\sigma) = \sigma|_{[v_i \dots v_j]}$.

- Cellular Homology
- CW Cell
 - An *n*-cell of X, say e^n , is the image of a map $\Phi: B^n \to X$. That is, $e^n = \Phi(B^n)$. Attaching an *n*-cell to X is equivalent to forming the space $B^n \coprod_f X$ where $f: \partial B^n \to X$.
 - * A 0-cell is a point.
 - * A 1-cell is an interval $[-1,1]=B^1\subset\mathbb{R}^1$. Attaching requires a map from $S^0=\{-1,+1\}\to X$
 - * A 2-cell is a solid disk $B^2 \subset \mathbb{R}^2$ in the plane. Attaching requires a map $S^1 \to X$.

- * A 3-cell is a solid ball $B^3 \subset \mathbb{R}^3$. Attaching requires a map from the sphere $S^2 \to X$.
- Cellular Map
 - A map $X \xrightarrow{f} Y$ is said to be cellular if $f(X^{(n)}) \subseteq Y^{(n)}$ where $X^{(n)}$ denotes the n-skeleton.
- Chain
 - An element $c \in C_p(X;R)$ can be represented as the singular p simplex $\Delta^p \to X$.
- Chain Homotopy
 - Given two maps between chain complexes $(C_*, \partial_C) \xrightarrow{f, g} (D_*, \partial_D)$, a chain homotopy is a family $h_i : C_i \to B_{i+1}$ satisfying

$$f_{i} - g_{i} = \partial_{B,i-1} \circ h_{n} + h_{i+1} \circ \partial_{A,i}$$

$$\dots \stackrel{d_{A,n-1}}{\longleftarrow} A_{n-1} \stackrel{d_{A,n}}{\longleftarrow} A_{n} \stackrel{d_{A,n+1}}{\longleftarrow} A_{n+1} \stackrel{d_{A,n+2}}{\longleftarrow} \dots$$

$$h_{n-2} f_{n-1} \stackrel{d_{B,n-1}}{\longleftarrow} B_{n-1} \stackrel{d_{B,n}}{\longleftarrow} B_{n} \stackrel{d_{B,n+1}}{\longleftarrow} B_{n+1} \stackrel{d_{B,n+2}}{\longleftarrow} \dots$$

• Chain Map

– A map between chain complexes $(C_*, \partial_C) \xrightarrow{f} (D_*, \partial_D)$ is a chain map iff each component $C_i \xrightarrow{f_i} D_i$ satisfies

$$f_{i-1} \circ \partial_{C,i} = \partial_{D,i} \circ f_i$$

(i.e this forms a commuting ladder)

- Closed manifold
 - A manifold that is compact, with or without boundary.
- Coboundary
- Cochain
 - An cochain $c \in C^p(X;R)$ is a map $c \in \text{hom}(C_p(X;R),R)$ on chains.

- Cocycle
- Colimit
- Compact
 - A space X is compact iff every open cover of X has a finite subcover.
- Cone
 - For a space X, defined as

$$CX = \frac{X \times I}{X \times \{0\}}$$

Example: The cone on the circle CS^1

Note that the cone embeds X in a contractible space CX.

- Contractible
 - A space is contractible if its identity map is nullhomotopic.
- Contractible
- Coproduct
- Covering Space
- Cup Product
 - A map taking pairs (p-cocycles, q-cocycles) to (p+q)-cocyles by

$$H^p(X;R) \times H^q(X;R) \xrightarrow{\smile} H^{p+q}(X;R)$$

 $(a \cup b)(\sigma) = a(\sigma \circ I_0^p) \ b(\sigma \circ I_p^{p+q})$

where $\Delta^{p+q} \xrightarrow{\sigma} X$ is a singular p+q simplex and

$$I_i^j:[i,\cdots,j]\hookrightarrow\Delta^{p+q}$$

is an embedding of the (j-i)-simplex into a (p+q)-simplex. On a manifold, the cup product is Poincare dual to the intersection of submanifolds. * Applications - $T^2 \not\simeq S^2 \vee S^1 \vee S^1$. Proof: todo

• CW Complex

- Cycle
- Deck Transformation
- Deformation
- Deformation Retract
 - A map r in $A \overset{\hookrightarrow}{\iota}^{\iota} X$ that is a retraction (so $r \circ \iota = \mathrm{id}_A$) that also satisfies $\iota \circ r \simeq \mathrm{id}_X$.
 - Note that this is equality in one direction, but only homotopy equivalence in the other.
- Degree of a Map
- Derived Functor
 - For a functor T and an R-module A, a left derived functor (L_nT) is defined as $h_n(TP_A)$, where P_A is a projective resolution of A.
- Dimension of a manifold
 - For $x \in M$, the only nonvanishing homology group $H_i(M, M \{x\}; \mathbb{Z})$
- Direct Limit
- Direct Product
- Direct Sum
- Eilenberg-MacLane Space
- Euler Characteristic
- Exact Functor
 - A functor T is right exact if a short exact sequence

$$0 \to A \to B \to C \to 0$$

yields an exact sequence

$$\dots TA \to TB \to TC \to 0,$$

and is *left exact* if it yields

$$0 \to TA \to TB \to TC \to \dots$$

Thus a functor is exact iff it is both left and right exact, yielding

$$0 \to TA \to TB \to TC \to 0$$

- Examples:
 - * $\cdot \otimes_R \cdot$ is a right exact bifunctor.
- Exact Sequence
- Excision
- Ext Group
- Flat

- An *R*-module is flat if $A \otimes_R \cdot$ is an exact functor.
- Free and Properly Discontinuous
- Free module
 - A -module M with a basis $S = \{s_i\}$ of generating elements. Every such module is the image of a unique map $\mathcal{F}(S) = \mathbb{R}^S \to M$, and if $M = \langle S \mid \mathcal{R} \rangle$ for some set of relations \mathcal{R} , then $M \cong \mathbb{R}^S/\mathcal{R}$.
- Free Product
- Free product with amalgamation
- Fundamental Class
 - For a connected, closed, orientable manifold, [M] is a generator of $H_n(M; \mathbb{Z}) = \mathbb{Z}$.
- Fundamental classes
- Fundamental Group
- Generating Set
 - $-S = \{s_i\}$ is a generating set for an R- module M iff

$$x \in M \implies x = \sum r_i s_i$$

for some coefficients $r_i \in R$ (where this sum may be infinite).

- Gluing Along a Map
- Group Ring
- Homologous
- Homotopic
- Homotopy
- Homotopy Class
- Homotopy Equivalence
- Homotopy Extension Property
- Homotopy Groups
- Homotopy Lifting Property
- Injection
 - A map ι with a **left** inverse f satisfying $f \circ \iota = \mathrm{id}$
- Intersection Pairing For a manifold M, a map on homology defined by

$$H_{\widehat{i}}M \otimes H_{\widehat{j}}M \to H_{\widehat{i+j}}X$$
$$\alpha \otimes \beta \mapsto \langle \alpha, \beta \rangle$$

obtained by conjugating the cup product with Poincare Duality, i.e.

$$\langle \alpha, \beta \rangle = [M] \frown ([\alpha]^{\vee} \smile [\beta]^{\vee})$$

Then, if [A], [B] are transversely intersecting submanifolds representing α, β , then

$$\langle \alpha, \beta \rangle = [A \cap B]$$

.

If $\hat{i} = j$ then $\langle \alpha, \beta \rangle \in H_0M = \mathbb{Z}$ is the signed number of intersection points.

- Inverse Limit
- Intersection Pairing
 - The pairing obtained from dualizing Poincare Duality to obtain

$$F(H_iM) \otimes F(H_{n-i}M) \to \mathbb{Z}$$

Computed as an oriented intersection number between two homology classes (perturbed to be transverse).

- Intersection Form
 - The nondegenerate bilinear form cohomology induced by the Kronecker Pairing:

$$I: H^k(M_n) \times H^{n-k}(M^n) \to \mathbb{Z}$$

where n = 2k.

- * When k is odd, I is skew-symmetric and thus a *symplectic form*.
- * When k is even (and thus $n \equiv 0 \mod 4$) this is a symmetric form.
- * Satisfies $I(x,y) = (-1)^{k(n-k)}I(y,x)$
- Kronecker Pairing
 - A map pairing a chain with a cochain, given by

$$H^n(X;R) \times H_n(X;R) \to R$$

 $([\psi,\alpha]) \mapsto \psi(\alpha)$

which is a nondegenerate bilinear form.

- Kronecker Product
- · Lefschetz duality
- Lefshetz Number
- Lens Space
- Local Degree
 - At a point $x \in V \subset M$, a generator of $H_n(V, V \{x\})$. The degree of a map $S^n \to S^n$ is the sum of its local degrees.
- Local Orientation

- Limit
- Linear Independence
 - A generating S for a module M is linearly independent if $\sum r_i s_i = 0_M \implies \forall i, r_i = 0$ where $s_i \in S, r_i \in R$.
- Local homology
 - $-H_n(X,X-A;\mathbb{Z})$ is the local homology at A, also denoted $H_n(X\mid A)$
- Local Homology
- Local orientation of a manifold
 - At a point $x \in M^n$, a choice of a generator μ_x of $H_n(M, M \{x\}) = \mathbb{Z}$.
- Long exact sequence
- Loop Space
- Manifold
 - An *n*-manifold is a Hausdorff space in which each neighborhood has an open neighborhood homeomorphic to \mathbb{R}^n .
- Manifold with boundary
 - A manifold in which open neighborhoods may be isomorphic to either \mathbb{R}^n or a half-space $\{\mathbf{x} \in \mathbb{R}^n \mid x_i > 0\}$.
- Mapping Cone
- Mapping Cylinder
- Mapping Path Space
- Mayer-vietoris Sequence
- Monodromy
- Moore Space
- N-cell
- N-connected
- Nullhomotopic
 - A map $X \xrightarrow{f} Y$ is nullhomotopic if it is homotopic to a constant map $X \xrightarrow{c} \{y_0\}$; that is, there exists a homotopy
- Orientable manifold
 - A manifold for which an orientation exists, see "Orientation of a Manifold".
- Orientation Cover

– For any manifold M, a two sheeted orientable covering space \tilde{M}_o . M is orientable iff \tilde{M} is disconnected. Constructed as

$$\tilde{M} = \coprod_{x \in M} \left\{ \mu_x \mid \mu_x \text{ is a local orientation} \right\}$$

- Orientation of a manifold
 - A family of $\{\mu_x\}_{x\in M}$ with local consistency: if $x,y\in U$ then μ_x,μ_y are related via a propagation.
 - * Formally, a function

$$M^n \to \coprod_{x \in M} H(X \mid \{x\})$$

 $x \mapsto \mu_x$

such that $\forall x \exists N_x$ in which $\forall y \in N_x$, the preimage of each μ_y under the map $H_n(M)$

$$N_x) woheadrightarrow H_n(M \mid y)$$
 is a single generator μ_{N_x} .

- TFAE:
 - * M is orientable.
 - * The map $W:(M,x)\to\mathbb{Z}_2$ is trivial.
 - * $\tilde{M}_o = M \coprod \mathbb{Z}_2$ (two sheets).
 - * \tilde{M}_o is disconnected
 - * The projection $\tilde{M}_o \to M$ admits a section.
- Oriented manifold
- Path
- Path Lifting Property
- Perfect Pairing
 - A pairing alone is an R-bilinear module map, or equivalently a map out of a tensor product since $p: M \otimes_R N \to L$ can be partially applied to yield $\varphi: M \to L^N = \hom_R(N, L)$. A pairing is **perfect** when φ is an isomorphism.
 - * Example: $\det_M : k^2 \times k^2 \to k$
- Poincare Duality
 - For a closed, orientable n-manifold, following map $[M] \sim \cdot$ is an isomorphism:

$$D: H^{k}(M; R) \to H_{n-k}(M; R)$$
$$D(\alpha) = [M] \frown \alpha$$

- Projective Resolution
- Properly Discontinuous
- Pullback
- Pushout
- Quasi-isomorphism

- R-orientability
- Relative boundaries
- Relative cycles
- Relative homotopy groups
- Retraction
 - A map r in $A \leftarrow_{r-r}^{\hookrightarrow \iota} X$ satisfying

$$r \circ \iota = \mathrm{id}_A$$
.

Equivalently $X woheadrightarrow_r A$ and $r|_A = \mathrm{id}_A$. If X retracts onto A, then i_* is injective.

- Short exact sequence
- Simplicial Complex
- Simplicial Map
 - For a map

$$K \xrightarrow{f} L$$

between simplicial complexes, f is a simplicial map if for any set of vertices $\{v_i\}$ spanning a simplex in K, the set $\{f(v_i)\}$ are the vertices of a simplex in L.

- Simply Connected
- Singular Chain

$$x \in C_n(x) \implies X = \sum_i n_i \sigma_i = \sum_i n_i (\Delta^n \xrightarrow{\sigma_i} X)$$

• Singular Cochain

$$x \in C^n(x) \implies X = \sum_i n_i \psi_i = \sum_i n_i (\sigma_i \xrightarrow{\psi_i} X)$$

- Singular Homology
- Smash Product
- Surjection
 - A map π with a **right** inverse f satisfying

$$\pi \circ f = \mathrm{id}$$

• Suspension Compact represented as $\Sigma X = CX \coprod_{\mathrm{id}_X} CX$, two cones on X glued along X. Explicitly given by

$$\Sigma X = \frac{X \times I}{(X \times \{0\}) \cup (X \times \{1\}) \cup (\{x_0\} \times I)}$$

- Tor Group
 - For an R-module

$$\operatorname{Tor}_{B}^{n}(\cdot,B) = L_{n}(\cdot \otimes_{R} B)$$

where L_n denotes the nth left derived functor.

- Universal Cover
- Universal Coefficient Theorem for Cohomology
- Universal Coefficient Theorem for Change of Coefficient Ring
- Weak Homotopy Equivalence
- Weak Topology
- Wedge Product

Notation

- C_X
- $\Sigma(X)$
- \bullet Σ_g
- $\underbrace{\iota,\pi}_{i+j}$: for an n-dimensional manifold, the "dual" dimension $\widehat{i+j}\coloneqq n-(i+j)$.