Staatsexamen 46115 / 2021 / Frühjahr / Thema Nr. 2 / Teilaufgabe Nr. 1 / Aufgabe Nr. 3

Aufgabe 3 [Schwach zusammenhängend gerichteter Graph]

Wir betrachten eine Variante der Breitensuche (BFS), bei der die Knoten markiert werden, wenn sie das erste Mal besucht werden. Außerdem wird die Suche einmal bei jedem unmarkierten Knoten gestartet, bis alle Knoten markiert sind. Wir betrachten gerichtete Graphen. Ein gerichteter Graph G ist schwach zusammenhängend, wenn der ungerichtete Graph (der sich daraus ergibt, dass man die Kantenrichtungen von G ignoriert) zusammenhängend ist.

Exkurs: Schwach zusammenhängend gerichteter Graph

Beim gerichteten Graphen musst du auf die Kantenrichtung achten. Würde man die Richtungen der Kanten ignorieren wäre aber trotzdem jeder Knoten erreichbar. Einen solchen Graphen nennt man schwach zusammenhängend. ^a

Ein gerichteter Graph heißt (schwach) zusammenhängend, falls der zugehörige ungerichtete Graph (also der Graph, der entsteht, wenn man jede gerichtete Kante durch eine ungerichtete Kante ersetzt) zusammenhängend ist. b

(a) Beschreiben Sie für ein allgemeines $n \in \mathbb{N}$ mit $n \geq 2$ den Aufbau eines schwach zusammenhängenden Graphen G_n , mit n Knoten, bei dem die Breitensuche $\Theta(n)$ mal gestartet werden muss, bis alle Knoten markiert sind.

(b) Welche asymptotische Laufzeit in Abhängigkeit von der Anzahl der Knoten (n) und von der Anzahl der Kanten (m) hat die Breitensuche über alle Neustarts zusammen? Beachten Sie, dass die Markierungen nicht gelöscht werden. Geben Sie die Laufzeit in Θ -Notation an. Begründen Sie Ihre Antwort.

Github: Staatsexamen/46115/2021/03/Thema-2/Teilaufgabe-1/Aufgabe-3.tex

https://studyflix.de/informatik/grundbegriffe-der-graphentheorie-1285

bhttps://de.wikipedia.org/wiki/Zusammenhang_(Graphentheorie)