MAU22C00 - TUTORIAL 3

1) (From the 2016-2017 Annual Exam) Let Q denote the relation on the set \mathbb{Z} of integers, where integers x and y satisfy xQy if and only if

$$x - y = (x - y)(x + 2y).$$

Determine the following:

- (i) Whether or not the relation Q is reflexive;
- (ii) Whether or not the relation Q is symmetric;
- (iii) Whether or not the relation Q is transitive;
- (iv) Whether or not the relation Q is an equivalence relation;
- (v) Whether or not the relation Q is anti-symmetric;
- (vi) Whether or not the relation Q is a partial order.

Justify your answers.

2) In lecture we discussed an equivalence relation given by $f: A \to A$ for f any function on a non-empty set A with the relation R defined by $R = \{(x,y) \mid f(x) = f(y)\}$. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = \cos x$. What are the equivalence classes determined by the relation R on \mathbb{R} , namely for any $x \in \mathbb{R}$ what is $[x]_R$?