Displaced Photon Background Studies Update LL Meeting Nov 02 2012

Tambe E. Norbert, Shin-chuan Kao, Yuichi Kubota, Giovanni Franzoni, Roger Rusack

DataSet & Triggers

- DataSets:
 - /SinglePhoton/Run2012C/Prompt-Reco V1&2
 - Int Lumi =
- HLT Trigger:
 - HLT_DisplacedPhoton65_CaloIdVL_IsoL_ PFMET25

Signal from Background

Ecal Time Calibration:

$$\langle t_{\gamma_{true}} \rangle \simeq 0$$
 but $t_{\gamma_{Sig}} \neq 0$

2 Types of Backgrounds

- Collision :
 - Left B1 w/ Right B2
 - Left B2 w/ Right B1
 - LeftB2 w/ Right B2
- Non-Collision:
 - Beam halo (beam dump or P+Gas -> muons which Brem/shower in ECAL.

02/11/2012

Tambe E. Norbert(UMN US)

Cosmic muons.

Event Selection

- Selection :
 - $Gamma_Pt1(2) > 60(45)GeV$
 - |eta| < 2.5, Jet_pt > 35 GeV
 - Egamma VL Iso cuts,
 - MET > 0 GeV
- Photon Tagging:
 - CSC Segment |eta| > 1.6
 - Halo tagged if dPhi(cscSeg, gamma) < 0.6

Photon time vs Phi

Cosmic muons?

- Observed in 2012B dataset
- High intensity inPhi = 0 +/- pi
- Most arriving early in Ecal time.
- +ve and -ve might not all come from same source.

Photon time vs Eta

Cosmic muons?

- Intense at impact point in EB then slowly decreases towards IP.
- Eta dependence in early Ecal time.
- Surely +ve and -ve cannot all come from a unique
 source.

Beam halo muons?

02/11/2012

Tambe E. Norbert(UMN US) OUICE.

Photon time vs Eta

Cosmic muons?

- Similarphenomenon in2012C dataset.
- Increased intensity with luminosity
- The fore it must be real.

Must be spikes failing spike cleaning.

Beam halo muons?

Photon time vs Phi

Cosmic muons?

- Similar phenomenon in 2012C dataset.
- Increased intensity with luminosity.
- Phi dependence in +ve and -ve Ecal time of photons.

Beam halo muons?

Photon Time

Photon Time(ns)

Cosmic, spikes, halo, and what else? All here!

Tambe E. Norbert(UMN US)

Definition

• Egamma Photon:

* Egamma + VL Iso selection criteria + Sminor.

Halo Photon :

Tag as Halo photon if:

* CSC Segment matching: dphi (cscsegment, gamma) < 0.6

EB & EE Photons

Egamma Photon Tambe E. Norbert (UMN US) alo Photon

EB & EE Photons

EB & EE Photon Time

Strange structure in later time

Photon Time EB

102/11/20 Egamma (Blue) Halo (Red) Photon Ecal time

Photon Time EE

102/11/20 Egamma (Blue) Halo (Red) Photon Ecal time

Region of Interest EB & EE

Egamma + Halo Photons time Vs Eta

Region of Interest EB & EE

02/11/2 Egamma + Halo Photonsutime Vs Phi

Region of Interest: EB

02/11/201 Egamma photor Es De E. Norbert (UMN US) Halo photons.

Region of Interest: EB

02/11/201 Egamma photor Beste E. Norbert (UMN US) Halo photons.

Region of Interest: EE

Few early time Halo photon than in EB

02/11/201 Egamma photor Es De E. Norbert (UMN US) Halo photons.

Region of Interest: EE

Few early time Halo photon than in EB

02/1 Egamma photons Tambe E. Norbert(UMN US) Halo photons.

Halo Tagging & Egamma Photon Selection Efficiency.

t > 2ns	Total Number of Photons	Egamma Photons	Selection Efficiency(%)	CSC Halo Tagged Photons	Tagging Efficiency
EB	25277	12040	47.6	13237	52.36
EE (eta < 2.5)	9370	7185	76.68	2185	23.3

For photons with time outside 2ns window:

02/11/2012

- Halo tagging efficiency : **EB(EE)** = 52.36(23.3)%
- Egamma selection efficiency: **EB(EE)** = 47.6(76.68) (More E. Norbert(UMN US)

Photon Iso and Id variables.

SMinor

SMajor

Egamma and Halo have very similar isolation criteria.

Egamma(Blue) Halo(Red) Photon

Summary

- There are many non trivial background sources to delayed photon.
- CSC tagging can be use to reject beam halo photons with good efficiency, however not every background photon.
- Egamma photon Isolation variable cannot reject these background photons(see BU slide).
- With current background understanding, we are ready for Moriond although identifying the different sources is yet to come, nevertheless, we

BACK UP

Egamma Photon Id variables.

Ecal Isolation

Hcal Isolation

02/11/2012 Egamma(Blue) Halo (Red) Photon

Egamma Photon Id variables.

Track Isolation

Leading photon pt

Egamma Photon Id variables.

Sigma Ieta Ieta Number of Crystals in BC

02/11/2012 Egamma(Blue) Halo (Red) Photon

Halo + Egamma Photon time EB

Halo + Egamma Photon time EE

Photon Time(ns) EE

Photon Time EE

Strange structure occurs within 0 and 20ns.