Your latest: 100% • Your highest: 100% • To pass you need at least 75%. We keep your highest score.

Next item →

1/1 point

- 1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do *not* define a function f:A o B?
 - $\textcircled{ \ } f(1) = 5, f(2) = 8, \text{and} \, f(10) = 40.$
 - $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
 - $\bigcirc \ f(1)=4, f(2)=4, \text{and} \ f(10)=4.$
 - $\bigcirc \ f(a)=4a,$ for each $a\in A$
 - **⊘** Correct

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A.$ In this case, unfortunately, $f(1) = 5 \notin B$.

2. Suppose that ${\cal A}$ contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1/1 point

Suppose that $T:A \to Y$ is the function which gives T(a) = + if person a tests positive and T(a) = - if they test negative.

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a)=S if the person actually has VBS.

Which of the following must be true of person \boldsymbol{a} if we have a false positive?

- $\bigcirc \ T(a) = + \operatorname{and} D(a) = S$
- $\bigcirc T(a) = -\operatorname{and} D(a) = S$
- $\textcircled{ } T(a) = + \operatorname{and} D(a) = H$
- $\bigcirc \ T(a) = -\operatorname{and} D(a) = H$

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R} o\mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the graph of q?

1/1 point

- \bigcirc (1,0)
- $\bigcirc (-1,0)$
- \bigcirc (2, -1)
- $\bigcirc (0,-1)$

Recall that the graph of g consists of all points (x,y) such that y=g(x) . Here g(2)=3
eq -1 , so the point (2,-1) is \emph{not} on the graph of g .

4. Let the point A=(2,4) . Which of the following graphs does $\it not$ contain the point A?

1/1 point

- The graph of h(x) = x-1
- \bigcirc The graph of g(x)=x+2
- $\bigcirc \ \ {\it The graph of} \ s(x)=x^2$
- $\bigcirc \ \ {\it The graph of} \ f(x)=2x$

 \odot correct The graph of h consists of all points (x,y) such that y=h(x) . Here $h(2)=1 \neq 4$, so the point (x,y)(2,4) is $\it not$ on the graph of h .

5. Suppose that h(x) = -3x + 4 . Which of the following statements is true?

1/1 point

- h is a strictly decreasing function
- $\bigcirc \ h$ is a strictly increasing function
- $\bigcirc \ \ h$ is neither a strictly increasing function nor a strictly decreasing function.
- All statements are correct
- ⊘ Correct

A function h is called strictly decreasing if whenever a < b, then h(a) > h(b)

Since the graph of \hbar is a line with negative slope, this is in fact true!

6. Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with f(3)=15

1/1 point

Which of the following is a possible value for f(3.7)?

- \bigcirc -3
- \bigcirc 3
- O 14.7

 \odot correct $\mbox{A function } f \mbox{ is called strictly increasing if whenever } a < b, \mbox{then } f(a) < f(b).$

Since f(3)=15 is given and 3<3.7, it must be that 15< f(3.7), and this answer satisfies that.