

Fusão de Informação em Análise de Dados

Ficha Prática nº 3

Objetivo: Pretende-se continuar a exemplificar a aplicação da fusão de dados de sensores para obter a estimativa dos estados de um Veículo Aéreo Não Tripulado (VANT), usando um filtro de Kalman.

1. <u>Introdução</u>

Esta ficha pretende dar continuidade à anterior, usando um filtro de *Kalman* para estimar os estados de um Veículo Aéreo Não Tripulado (VANT), tendo por base os dados dos sensores dos VANTs, nomeadamente os giroscópios e os acelerómetros (geralmente integrados numa Unidade de Medição Inercial (UMI)).

2. Enquadramento

Antes de entrar no desenvolvimento dos algoritmos para estimativa dos estados do sistema, convém definir a representação dinâmica do sistema e as equações do Filtro de *Kalman*.

2.1 Filtro de Kalman

Considerando o filtro complementar especificado e desenvolvido na ficha anterior, coloca-se a questão de como escolher o valor de α da equação:

$$\hat{\phi}_{t+1} = (1 - \alpha)(\hat{\phi}_t + \dot{\phi}_G \Delta t) + \alpha \hat{\phi}_{Acc}$$

A escolha deve ter em consideração vários aspetos como, por exemplo, o ruído e a exatidão dos sensores (acelerómetro *vs* giroscópio) e os tipos de movimento identificados. Assim, a melhor escolha de α irá depender de cada situação, e até poderá variar com o tempo.

Neste contexto, o Filtro de *Kalman* oferece a possibilidade de escolher os coeficientes de forma otimizada (pelo menos, matematicamente).

O Filtro de *Kalman*, também conhecido como Estimador Linear Quadrático, é um tipo de observador ou estimador ótimo dos estados do sistema, no sentido de que tenta minimizar uma função de custo quadrática. Além disso, o Filtro de *Kalman* não só leva em consideração as medições do sensor, mas também a dinâmica subjacente do sistema.

De seguida, são apresentadas as equações do Filtro de Kalman e uma explicação de como implementá-las.

2.1.1 Representação do sistema dinâmico

Um sistema causal, linear e invariante no tempo pode ser descrito no espaço de estados usando o seguinte formato (tempo discreto):

$$x_{t+1} = A x_t + B u_t + w_t$$

 $y_{t+1} = C x_{t+1} + v_{t+1}$

Onde x_t é o vetor de estado do sistema no instante t e u_t é o vetor de entrada no instante t. A, B e C são as matrizes do sistema: A relaciona os estados atuais com os próximos, B relaciona as entradas com os próximos estados e C relaciona os estados do sistema com os estados medidos.

Tem-se, ainda, ruído aditivo do sistema (\boldsymbol{w}_t) e ruído de medição (\boldsymbol{v}_t) – assumindo que ambos são processos gaussianos de média zero.

Pretendendo-se um algoritmo que abranja uma grande variedade de sistemas dinâmicos, a dinâmica do nosso sistema deverá ser definida da forma mais geral possível. Além disso, quanto maior for a exatidão do modelo da dinâmica do sistema, melhor será o desempenho do Filtro de *Kalman*.

Uma forma de definir as matrizes do sistema o mais geral possível é considerar o seguinte:

- Pretende-se eliminar o offset (*bias*) variável do giroscópio em cada momento, pois isso causa deriva;
- Pode-se usar as taxas angulares transformadas das medidas dos giroscópios modificadas subtraindo o offset - para obter uma estimativa atualizada da posição angular;
- Pode-se fazer estimativas da posição angular usando os acelerómetros.

Desta forma, define-se o vetor de estado, o vetor de entrada e o vetor de medição:

$$oldsymbol{x}_t = egin{bmatrix} \hat{oldsymbol{\phi}}_t \ \hat{oldsymbol{\theta}}_t \ \hat{oldsymbol{ heta}}_t \ \hat{oldsymbol{ heta}}_{G_t} \end{bmatrix}$$
 $oldsymbol{u}_t = egin{bmatrix} \dot{oldsymbol{\phi}}_{G_t} \ \dot{oldsymbol{ heta}}_{G_t} \end{bmatrix}$
 $oldsymbol{z}_t = egin{bmatrix} \hat{oldsymbol{\phi}}_{Acc_t} \ \hat{oldsymbol{ heta}}_{Acc_t} \end{bmatrix}$

Onde $\mathbf{b}_{\widehat{\phi}_t}$ é o offset do giroscópio no instante t, associado à estimativa $\widehat{\phi}_t$.

Daqui, pode-se obter a forma geral da representação no espaço de estados:

$$x_{t+1} = \begin{bmatrix} 1 & -\Delta t & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & -\Delta t \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} x_t + \begin{bmatrix} \Delta t & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \Delta t \\ \mathbf{0} & \mathbf{0} \end{bmatrix} u_t + w_t$$
$$y_{t+1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x_{t+1} + v_{t+1}$$

2.1.2 Equações do Filtro de Kalman

Depois da definição da representação do sistema no espaço de estados, podemos estabelecer as equações do Filtro de *Kalman*. Estas podem ser divididas em dois grupos - de Previsão e de Atualização:

Predição:

$$x_{t+1} = A x_t + B u_t$$
$$P = A P A^T + Q$$

Atualização:

$$\widetilde{y}_{t+1} \leftarrow z_{t+1} - C x_{t+1}$$

$$S \leftarrow C P C^{T} + R$$

$$K \leftarrow P C^{T} S^{-1}$$

$$x_{t+1} \leftarrow x_{t+1} + K \widetilde{y}_{t+1}$$

$$P \leftarrow (I - K C) P$$

De forma análoga ao filtro complementar usado na ficha anterior, K é conhecido como o ganho de Kalman, que é escolhido de forma otimizada, dependendo do que o filtro considere estar a fornecer como estimativa mais confiável do estado - a medição ou o modelo da dinâmica do sistema.

P é a matriz de covariância do erro e é definida inicialmente, sendo depois atualizada pelo Filtro de *Kalman*. Se não tivermos a certeza de a estimativa do estado inicial estar correta, poderemos aumentar os valores nesta matriz. No entanto, se estivermos confiantes de que a estimativa inicial está próxima do estado inicial real do sistema (por exemplo, tendo um quadricóptero colocado ao nível do solo, $\phi = 0$ e $\theta = 0$), devemos diminuir o valor dos elementos de P.

 ${m Q}$ e ${m R}$ são matrizes de covariância do ruído do sistema e da medição, respetivamente. ${m Q}$ é definido para indicar ao filtro o quão inseguros estamos sobre a dinâmica do modelo, ou seja, devemos usar valores mais elevados se assumirmos que o nosso modelo é impreciso. ${m R}$ é definido dependendo principalmente dos sensores usados no sistema, onde os parâmetros específicos de ruído podem, em geral, ser encontrados na especificação do sensor. Novamente, valores elevados em ${m R}$ significam maiores níveis de ruído.

Usualmente, P, Q e R são matrizes diagonais.

2.1.3 Implementação e Desempenho do Filtro de Kalman

Tendo o modelo dinâmico e as equações do Filtro de Kalman, a implementação é bastante direta. Resumidamente, inicializamos o vetor de estimativa dos estados $\mathbf{x}_{t=0}$ e a matriz de covariância do erro $\mathbf{P}_{t=0}$, para depois se determinar as matrizes de covariância do ruído \mathbf{Q} e \mathbf{R} e, por fim, atualizar a estimativa dos estados do sistema, sempre que uma medição estiver disponível, usando as equações indicadas anteriormente.

A Figura 1 apresenta o desempenho do Filtro de *Kalman* em comparação com o filtro complementar. Fica claro que usando o modelo genérico do sistema, apenas se obtém um ligeiro ganho de desempenho (se houver) com o Filtro de *Kalman*. Além disso, a implementação do filtro complementar é muito mais simples.

No entanto, se implementarmos o Filtro de *Kalman* com um modelo dinâmico do sistema suficientemente exato, este deverá superar, na maioria dos casos, o filtro complementar mais simples.

Figura 1. Comparação do Filtro de Kalman com o Filtro Complementar para estimativa do roll angle.

Conforme foi referido anteriormente, não se deve usar apenas um dos dois sensores, pois os dados do acelerómetro são muito ruidosos e os dados do giroscópio provocam habitualmente deriva.

Pode-se alcançar um melhor desempenho da fusão dos dados dos sensores e uma implementação mais simples se se utilizar um filtro complementar, que mistura as duas fontes de medição.

Por outro lado, tendo uma descrição exata do sistema dinâmico, deve-se escolher o Filtro de *Kalman*. A Figura 2 apresenta uma comparação geral de todos as abordagens consideradas para estimar os estados do sistema.

Figura 2. Comparação dos resultados obtidos com as abordagens de estimação dos estados do sistema.

3. Exercícios

Considerando o *dataset* disponibilizado com os dados adquiridos com os sensores de uma UMI (com 6 graus de liberdade) e os resultados obtidos na ficha anterior, efetuar as seguintes tarefas:

- 1. Especificar o modelo do sistema e as matrizes das equações de um Filtro de Kalman;
- 2. Estimar e representar os ângulos pitch e roll com base na fusão dos dados dos sensores (acelerómetros e giroscópios) usando um Filtro de Kalman, fazendo variar as matrizes P, Q e R. Discutir os resultados obtidos.
- 3. Comparar graficamente os resultados obtidos com as abordagens de estimação dos estados do sistema considerados nesta ficha e na anterior. Comentar os resultados obtidos.