lim an =0, then $\sum_{n=1}^{\infty}$ an converges: If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n \to \infty} a_n = 0$ $\lim_{n \to \infty} S_n = L \qquad \lim_{n \to \infty} S_{n-1} = L$ $\lim_{n \to \infty} S_{n-1} = L$ Still ... $N \rightarrow \infty$ Still technically going to o $S_n - S_{n-1} = a_n$ $\lim_{n \to \infty} \left(S_n - S_{n-1} \right) = \lim_{n \to \infty} a_n$ lin Sn-lin Sn- = lin an L - L = lim an lim an = 0