定理 设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x_0 \neq 0$ 处收敛, 则 $\sum_{n=0}^{\infty}$ 在 $(-|x_0|, |x_0|)$ 内闭绝对一致收敛.

证明 任给 $r > 0, 0 < r < |x_0|$, 来证级数在 [-r, r] 绝对一致收敛.

先由 $\sum_{n=0}^{\infty}a_nx_0^n$ 收敛可得 $a_nx_0^n\to 0$, 则 $\exists M>0, |a_nx_0^n|< M, \forall n\geq 1.$

 $\forall x \in [-r, r],$

$$|a_nx^n| \leq |a_n|r^n \leq |a_n||x_0^n| \left(\frac{r}{|x_0|}\right)^n \leq M \left(\frac{r}{|x_0|}\right)^n$$

由 M 判别法可知 $\sum_{n=0}^{\infty} a_n x^n$ 在 [-r,r] 上绝对一致收敛, 再由 r 的任意性得证.

•
$$R = 0, \sum_{n=0}^{\infty} a_n x^n$$
 收敛域为 $\{0\}$.

•
$$R = +\infty, \sum_{n=0}^{\infty} a_n x^n$$
 收敛域为 $(-\infty, +\infty)$.

•
$$0 < R < +\infty, \sum_{n=0}^{\infty} a_n x^n$$
 在 $(-R,R)$ 收敛, 且在 $(-\infty,-R) \cup (R,+\infty)$ 发散.

在 (-R,R) 内闭绝对一致收敛.

定义 上述推论中的 R 称为幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径.

定理 对于幂级数 $\sum_{n=0}^{\infty} a_n x^n$, 定义

$$\rho = \overline{\lim}_{n \to +\infty} \sqrt[n]{|a_n|}$$

则幂级数的收敛半径为 $R = \rho^{-1}$. 特殊的 ρ , R 有自然的理解.

证明 $\overline{\lim}_{n\to+\infty} \sqrt[n]{|a_nx^n|} = \rho|x|$. 由 Cauchy 判别法可知当 $\rho|x| < 1$ 时收敛, 当 $\rho|x| > 1$ 时发散.

- 若 $\rho \in (0, +\infty)$, 则可得 $R = \rho^{-1}$.
- 若 $\rho = 0$ 则 $\rho |x|$ 恒成立, 于是收敛半径为 $+\infty$.
- 若 $\rho = +\infty$, $\forall |x| \neq 0$, $\rho |x| = +\infty > 1$ 发散, 收敛半径为 0.

定理 对于幂级数 $\sum_{n=0}^{\infty} a_n x^n$, 若极限

$$\rho = \lim_{n \to +\infty} \frac{\left| a_{n+1} \right|}{\left| a_n \right|}$$

存在 (容许 $+\infty$), 则 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 $R = \rho^{-1}$.

证明

$$\varliminf_{n\to\infty}\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}\leq\varliminf_{n\to\infty}\sqrt[n]{\left|a_{n}\right|}\leq\varliminf_{n\to\infty}\sqrt[n]{\left|a_{n}\right|}\leq\varlimsup_{n\to\infty}\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}.$$

例 $\sum_{n=1}^{\infty} n! x^{n^n}$ 的收敛半径.

$$\mathbf{\textit{M}} \quad \rho = \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = \overline{\lim_{n \to \infty}} \sqrt[n^n]{n!} \leq \overline{\lim_{n \to \infty}} \sqrt[n^n]{n^n} = 1 \Longrightarrow \rho = 1.$$

对于幂级数 $\sum a_n(x-x_0)^n=\sum a_nt^n$,若其收敛半径为 $R\in(0,+\infty)$,则原级数在 (x_0-R,x_0+R) 内收敛,在 $(-\infty,x_0-R)\cup(x_0+R,+\infty)$ 发散.

§ 幂级数的性质

定理 (Abel) 设 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径为 $R \geq 0$, 则

- $\sum a_n x^n$ 在 (-R,R) 内闭绝对一致收敛,
- 若 $\sum a_n R^n$ 收敛, 则 $\sum a_n x^n$ 在 (-R,R] 内闭一致收敛,
- 若 $\sum a_n(-R)^n$ 收敛,则 $\sum a_n x^n$ 在[-R,R)内闭一致收敛.

也就是说, $\sum a_n x^n$ 在其收敛域内闭一致收敛。

证明 来证第3条结论. 只要证级数在 [-R,0] 一致收敛.

$$\sum_{n=0}^{\infty}a_nx^n=\sum_{n=0}^{\infty}a_n(-R)^n\Big(-\frac{x}{R}\Big)^n,$$

其中 $\sum a_n(-R)^n$ 一致收敛, $\left(-\frac{x}{R}\right)^n$ 在 [-R,0] 一致有界且单调减. 由 Abel 判别法知幂级数在 [-R,0] 一致收敛.

推论 幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在其收敛域内连续.

例

$$1 + x + x^{2} + \dots = \frac{1}{1 - x},$$

$$x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots = -\ln(1 - x).$$

左端的收敛域为 [-1,1), 于是

$$S(-1) = \lim_{x \to -1} S(x) = \lim_{x \to -1} -\ln(1-x) = -\ln 2.$$

定理 设 $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ 的收敛半径 R>0,则任给收敛域内的两个点 x_1,x_2 ,有

$$\begin{split} \int_{x_1}^{x_2} \sum_{n=0}^{\infty} a_n (x-x_0)^n &= \sum_{n=0}^{\infty} \int_{x_1}^{x_2} a_n (x-x_0)^n \\ &= \sum_{n=0}^{\infty} \frac{a_n}{n+1} \Big[(x_2-x_0)^{n+1} - (x_1-x_0)^{n+1} \Big]. \end{split}$$

取 $x_1 = x_0, x_2 = x$ 即得

$$\int_{x_0}^{x} \sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1},$$

$$\varlimsup_{n\to\infty}\sqrt[n]{\frac{|a_{n-1}|}{n}}=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}.$$

所以逐项积分得到的幂级数的收敛半径与原幂级数的收敛半径一致, 且收敛域不会变小. 对于幂级数 $\sum a_n x^n$ 和 $\sum \frac{a_n}{n+1} x^{n+1}$, 若 $\sum a_n R^n$ 收敛,

$$\sum \frac{a_n}{n+1} R^{n+1} = \sum a_n R^n \cdot \frac{R}{n+1}$$

可由 Abel 判别法得到收敛.

定理 设 $\sum a_n(x-x_0)^n$ 的收敛半径为 R>0, 记和函数为 f(x), 则 $f\in C^\infty(-R,R)$, 且 $\forall k\geq 1$,

$$f^{(k)}(x) = \sum_{n=k}^{\infty} a_n n(n-1)...(n-k+1)(x-x_0)^{n-k}.$$

证明

$$\varlimsup_{n\to\infty}\sqrt[n]{|a_n|n...(n-k+1)}=\varlimsup_{n\to\infty}\sqrt[n]{|a_n|}.$$

于是求导后的幂级数在 (-R,R) 内闭一致收敛, 因而可逐项求导.

*生成函数 / Generating function

任给序列 $\{a_n\}$, 生成幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 称为序列的生成函数.

$$\left\{\frac{1}{n}\right\}$$
 的生成函数 $x + \frac{x^2}{2} + \dots = -\ln(1-x)$.