112-2 Computer Vision HW4 Report

智能所 312581029 廖永誠

Result

Description

- In this assignment, I trained 3 different models to do the semantic segmentation task on the dataset.
 - 1. Using the deeplabv3_resnet50 model as the pretrained model, using transfer learning to train the model on 50 epochs.
 - 2. Using the deeplabv3_resnet50 model as the model architecture, train the model from scratch on 50 epochs.
 - 3. Build a new CNN model by myself, train the model from scratch on 100 epochs. (The model architecture is shown in the src/model.py file.)

3 images of Validation results at different epochs.

ground truch

1. 0403, 0407, 0409

deeplabv3_resnet50_pretrained

1. epoch 5

2. epoch 20

3. epoch 50

deeplabv3_resnet50_scratch

1. epoch 5

2. epoch 20

3. epoch 50

my_model

1. epoch 5

2. epoch 20

3. epoch 50

Test results consisting of 10 segmentation images.

• The images are saved in the datasets/test/predict folder.

• The images are using deeplabv3_resnet50 model as the pretrained model, using transfer learning to train the model on 50 epochs.

• You can also check the other prediction results in the datasets/test/all_prediction folder.

Implement an IoU function to calculate the IoU value for each segmentation results and the overall mIoU

- The IoU function is implemented in the inference.py file. The function name are calculate_iou and calculate_class_iou.
- I implement those function by first extract each class mask from the ground truth and the prediction, then calculate the intersection and union of the mask, and finally calculate the IoU value.
- The result of the IoU value for each segmentation results and the overall mIoU are shown in the following table.

Class	0401	0402	0403	0404	0405	0406	0407	0408	0409	0410
background	0.9691	0.9521	0.9710	0.9654	0.9461	0.9646	0.9329	0.9513	0.9516	0.9550
椅子底 (黃 色)	0.9608	0.9918	0.9803	0.9785	0.9782	0.9770	0.9619	0.9698	0.9572	0.9779
扶手 (咖啡 色)	0.9612	0.9741	0.9842	0.9826	0.9747	0.9717	0.9872	0.9529	0.6129	0.9722
	0.9058	0.9483	0.9228	0.9345	0.9258	0.9128	0.0000	0.8925	0.8869	0.9183
 椅墊 (綠色)	nan	nan	0.9823	nan	nan	nan	0.9777	nan	nan	nan
椅背 (灰色)	0.9863	0.9866	0.9311	0.9681	0.9805	0.9807	0.9488	0.5011	0.3519	0.9824
Mean IOU	0.9535	0.9752	0.9601	0.9659	0.9648	0.9606	0.9689	0.8291	0.7022	0.9627

• This result is using the deeplabv3_resnet50 model as the pretrained model, using transfer learning to train the model on 50 epochs.