Université Cadi Ayyad-Marrakech Ecole supérieure de Technologie Safi

Première année génie informatique : Structures de données TP N° 2 : Les Piles « conversion décimale et octale vers le binaire »

Conversion Décimale → Binaire

Pour passer du décimal au binaire, on effectue des divisions successives du nombre à convertir sur 2 jusqu'à obtenir un quotient nul. Puis on constitue le nombre binaire correspondant en lisant la suite des restes (0 et 1) de bas en haut comme l'indique l'exemple ci-contre : $(34)_{10} = (100010)_2$

Conversion Octale → *Binaire*

Le passage d'un nombre écrit en base 8 vers son équivalent en base 2 se fait en remplaçant chaque chiffre du premier nombre par son écriture en binaire sur trois bits (exemple : (362)₈=(011110010)₂.

3	6	2
011	110	010

L'objectif de ce problème est d'écrire une application en langage C permettant une conversion du décimal et octal vers le binaire en utilisant une pile d'entiers. Les éléments de la pile ont la structure suivante :

typedef struct noeud{
 int data ;
 struct nœud *suivant ;
}Pile ;

Question 1) : Ecrire les fonctions primitives de gestion de pile (*creation*, *empiler*, *depiler*...) permettant la gestion d'une pile des entiers.

Question 2) : Écrire une fonction *Pile* *decimal2binaire(int n), qui reçoit un nombre entier décimal (base 10) n (>0), et qui crée et retourne la pile des restes des divisions successives de ce nombre par 2.

Question 3) : L'affichage du nombre binaire correspondant à un entier *n* revient à l'affichage de la pile des restes des divisions successives de ce dernier par 2. Ecrire une fonction qui prend en paramètre une pile et affiche ses éléments.

Question 4) : Ecrire une fonction d'entête *Pile *extraction(int n)* qui permet l'extraction des chiffres composants un entier n, passé en paramètre, dans une Pile créée et retournée par la fonction.

Exemple: pour n=6248, la pile retournée a la forme suivante:

Sommet	6	
	2	
	4	
La pile	8	
/D'1 +		

Question 5) : Ecrire une fonction *Pile *renverser (Pile *maPile)* qui permet de renverser une pile passée en paramètre dans une autre pile créée et retournée par la fonction.

Question 6) : En utilisant toutes les fonctions précédentes, Ecrire une fonction *void octal2binaire(int n)*, qui prend en paramètre un entier *n* en base 8 et puis affiche son équivalent en binaire. On suppose que les chiffres qui composent *n* sont tous inferieurs à 8.

Indices: Création de 3 Pile: pResultat, pEx, pBin,

- pEx : contient la décomposition des chiffres de n
- pBin : contient le code binaire de d'un chiffre octal
- pResultat : contient le resultat final de la conversion de n en binaire