Notes on Assignment 5

QUESTION 1

Write an R program to implement, QR factorization using the following.

- 1. Classic Gram Schmidt,
- 2. Modified Gram Schmidt (MGS) by modifying CGS as discussed in class,
- 3. Modified Gram Schmidt as outlined in the text book,
- 4. Householder method.

Directions

Program should take a matrix A as input and return both Q and R as output. Use the following matrix :

$$A = egin{bmatrix} 1 & 2 \ 0 & 3 \ -1 & 4 \end{bmatrix}$$

Compare results and verify that A = QR

SOLUTION

Let

 $A_{CGS} = ext{Classic Gram Schmidt} \ A_{MGS} = ext{Modified Gram Schmidt}$

 $A_{TMGS} = \text{Text Book Modified Gram Schmidt}$

 $A_{HH} =$ Householder Method

PSEUDOCODE

Algorithm For j=1 to n do: $v_j=a_j$ For i=1 to j-1 do: $r_{ij}=q_i^*a_j$ $v_j=v_j-r_{ij}q_i$ $r_{jj}=\|v_j\|_2$ $q_j=rac{v_j}{r_{jj}}$

1 Notes

Gram-Schmidt Orthogonalization using this algorithm produce a reduced QR fractorization denoted as $A=\hat{Q}\hat{R}$

THEOREM 7.1

• Every $A \in \mathbb{C}^{m \times n}$ $(m \ge n)$ has a full QR factorization, hence also a reduced QR factorization.

Proof:

Suppose first that A has full rank and that we want just a reduced QR factorization.

In this case, a proof of existence is provided by the Gram-Schmidt algorithm.

By construction, this process generates orthonormal columns of \hat{Q} and entries of \hat{R} such that (7.4) holds.

Failure can occur only if at some step, v_j is zero and thus cannot be normalized to produce q_i .

However, this would imply $a_j \in \langle q_1, \cdots, q_{j-1} \rangle = \langle a_1, \cdots, a_{j-1} \rangle$, contradicting the assumption that A has full rank.

Suppose that A does not have full rank. Then at one or more steps j, we shall find that (7.5) gives $v_j=0$.

Pick q_j arbitrarily to be any normalized vector orthogonal to $\langle q_1, \cdots, q_{j-1} \rangle$ and then continue the Gram-Schmidt process.

Finally, the full, QR Factorization of an $m \times n$ matrix with m > n can be constructed using arbitrary orthonormal vectors in the same way. Follow G-S process through step n,

- then continue additional m-n steps,
- introducing q_i at each step.

Now we turn to Uniqueness.

Suppose $A=\hat{Q}\hat{R}$ is a reduced QR Factorization. If the i^{th} column of \hat{Q} is multiplied by z and the i^{th} row of \hat{R} is multiplied by $z^{-1}for some scalar \$ z$ with |z|=1, we obtain another QR factorization of A. The next theorem asserts that if A has $full\ rank$

• this is the only way to obtain distinct reduced QR factorizations.

ESummary

How to do Classic by hand

Modified Gram Schmidt A_{MGS}

For j-1 to n do:

$$v_{\,i}^{(1)}=a_{j}$$

end for

For i = 1 to n do:

$$r_{ij} = \|v_j^{(1)}$$

$$q_i = rac{v_i^{(1)}}{r_{ij}}$$

For j = i + 1 to n do:

$$egin{aligned} r_{ij} &= q_i^{(1)} v_j^{(1)} \ v_j^{i+1} &= v_j^{(1)} - r_{ij} q_i \end{aligned}$$

end for

end for

 \nearrow Text Book Modified Gram Schmidt A_{TMGS}

PSEUDOCODE

For i = 1 to n do:

$$v_i = a_i$$

For i = 1 to n do:

$$r_{ii} = \|v_i\|$$

$$q_i = rac{v_i}{r_{ii}}$$

For j = i + 1 to n do:

$$r_{ij}=q_i^st v_j$$

$$v_j = v_j - r_{ij}q_i$$

Note:

common to let v_i overwrite a_i

& q_i overwrite v_i

Mouseholder method A_{HH}

PSEUDOCODE

THE ALGORITHM

For k = 1 to n do:

- $x = A_{k:m, k}$
- $\bullet \ \ v_k = \ \mathrm{sign} \ (x_1) \ \|x\| \ e_1 + x$
- $ullet v_k = rac{v_k}{\|v_k\|_2}$
- $ullet A_{k:m,\;k:n} = A_{k:m,\;k:n} 2v_k(v_k^*A_{k:m,\;k:n})$

IMPLICIT CALCULATION OF A PRODUCT Q^*B

sequence of n operations applied to b the same operations that were applied to A to make it triangular

For k = 1 to n do:

•
$$b_{k:m} = b_{k:m} - 2v_k(v_k^*b_{k:m})$$

IMPLICIT CALCULATION OF A PRODUCT QX

Computation of a product Qx can be achieved by the same process in reverse order

For k = n down to 1 do:

$$\bullet \hspace{0.2cm} x_{k:m} = x_{k:m} - 2v_k(v_k^*x_{k:m})$$

Upon completion of this algo,

A has been reduced to upper triangullar form

• (We have calculated R)

But

- we still need to calculate Q and,
- n-column submatrix \hat{Q}
 - corresponding to a reduced $\mathbf{Q}\mathbf{R}$ factorization

THE ALGORITHM

For k = 1 to n do:

- $x = A_{k:m, k}$
- $\bullet \ \ v_k = \ \mathrm{sign} \ (x_1) \ \|x\| \ e_1 + x$
- $ullet v_k = rac{v_k}{\|v_k\|_2}$
- $ullet A_{k:m,\;k:n} = A_{k:m,\;k:n} 2 v_k (v_k^* A_{k:m,\;k:n})$

Implicit calculation of a product Q^*B

sequence of n operations applied to b the same operations that were applied to A to make it triangular

For k = 1 to n do:

$$ullet \ b_{k:m} = b_{k:m} - 2 v_k (v_k^* b_{k:m})$$

IMPLICIT CALCULATION OF A PRODUCT Qx

Computation of a product Qx can be achieved by the same process in reverse order

For
$$k=n$$
 down to 1 do: • $x_{k:m}=x_{k:m}-2v_k(v_k^*x_{k:m})$