TechX 深度强化学习课程(三)

何舜成

宽带网数字媒体实验室 清华大学自动化系

2018年7月27日

TechX 深度强化学 习课程(三)

何舜成

#红M给 **类和**油经丽纹

2用技术

使用 TensorFlow

押经网络的生物学 背景

目录

TechX 深度强化学 习课程(三)

何舜成

神经网络

空田技术

吏用 TensorFlow

理经网络的生物 行景

神经网络

卷积神经网络

实用技术

使用 TensorFlow

神经网络的生物学背景

TechX 深度强化学 习课程(三)

何舜成

神经网络

卷积神经网络

买用技术

使用 TensorFlow

神经网络的生物学 背景

神经网络

感知机(Perceptron)类似于以往的线性模型,只是在输出 端加上了一个非线性单元。

使用 TensorFlow 神经网络的生物等

感知机可以作为一个基础单元,层层累加,构成更复杂的分类器,如人工神经网络(ANN)。
hidden layer

$$\boldsymbol{x}^{(l+1)} = h((\boldsymbol{W}^{(l)})^{\top} \boldsymbol{x}^{(l)}) \tag{1}$$

其中 $h(\cdot)$ 是非线性函数。

激活函数

每个神经元输出的所经过的 $h(\cdot)$ 称为激活函数,以前通常选择 Sigmoid 函数。由于 Sigmoid 可导,如此构成的神经网络将是端到端可导的。如此可以利用梯度下降法优化目标函数。

Sigmoid 之外,还有几种常用的激活函数:

1. 双曲正切函数(tanh)

$$h(x) = tanh(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
 (2)

2. 线性整流函数(ReLU)

$$h(x) = \max(0, x) \tag{3}$$

3. Softmax 函数

$$h(\mathbf{x})_i = \sigma(\mathbf{x})_i = \frac{e^{x_i}}{\sum_{k=1}^n e^{x_k}}$$
(4)

使用 TensorFlow 单经网络的生物学

卷积神经网络 空田技术

吏用 TensorFlow

申经网络的生物学 肯景

ReLU 函数非常简单,起到的作用是削平低于 0 的信号,通过高于 0 的信号。该函数不可导但次梯度存在。

每积件经网络 实用技术 使用 TensorFlow 神经网络的生物学 背景

Softmax 函数由 Sigmoid 函数扩展而来。输入是 n 维向量 $(x_1,\ldots,x_n)^{\top}$,先进行指数运算得到 (e^{x_1},\ldots,e^{x_n}) ,然后进行归一化,即同时除以 $\sum_{i=1}^n e^{x_i}$ 。当输入向量是 2 维时,退化为 Sigmoid 函数。

Softmax 有以下特性:

- ▶ 输入向量的最大分量对应的输出接近 1, 其余分量接近 0, 近似起到 arg max 的作用
- 函数可导
- ▶ 输出向量分量之和为 1,对应一个概率分布,通常用于多分类问题的输出

在深度学习快速发展之前,人工神经网络通常只有输入层、隐藏层和输出层。但这种神经元的堆叠方式显然是可以扩展到更多层的。给定一个 L 层的网络,前 L-1 层都对应有权值矩阵 $\mathbf{W}^{(i)}, i=1,\ldots,L-1$ 。层与层之间的递推关系如下

$$\mathbf{x}^{(l)} = h(\mathbf{u}^{(l)}), \mathbf{u}^{(l)} = (\mathbf{W}^{(l-1)})^{\top} \mathbf{x}^{(l-1)}$$
 (5)

而 $x^{(1)} = x$ 即为网络的原始输入。

给定样本的 groundtruth 为 t, 记损失函数为 $E(x^{(L)},t)$ 。

用 TensorFlow

神丝网络的生物字 背景

将损失函数往前展开一项,得

$$E(\boldsymbol{x}^{(L)}, \boldsymbol{t}) = E(\boldsymbol{h}((\boldsymbol{W}^{(L-1)})^{\top} \boldsymbol{x}^{(L-1)}), \boldsymbol{t})$$
 (6)

利用复合函数求导的链式规则,得

$$\frac{\partial E}{\partial \mathbf{W}^{(L-1)}} = \mathbf{x}^{(L-1)} (h'(\mathbf{u}^{(L)}) \star \frac{\partial E}{\partial \mathbf{x}^{(L)}})^{\top}$$
(7)

⋆表示逐项相乘。如果定义

$$\boldsymbol{\delta}^{(L)} = h'(\boldsymbol{u}^{(L)}) \star \frac{\partial E}{\partial \boldsymbol{x}^{(L)}} \tag{8}$$

反向传播算法与 δ 规则

那么就有

$$\frac{\partial E}{\partial \mathbf{W}^{(L-1)}} = \mathbf{x}^{(L-1)} (\mathbf{\delta}^{(L)})^{\top}$$
 (9)

如果接着展开,可以得到递推式

$$\boldsymbol{\delta}^{(l)} = \boldsymbol{h}'(\boldsymbol{u}^{(l)}) \star ((\boldsymbol{W}^{(l)})^{\top} \boldsymbol{\delta}^{(l+1)}), l = L - 1, \dots, 2$$
 (10)

以及

$$\frac{\partial E}{\partial \mathbf{W}^{(l)}} = \mathbf{x}^{(l)} (\mathbf{\delta}^{(l+1)})^{\top}, l = L - 2, \dots, 1$$
 (11)

至此,我们可以利用 δ 中间变量递推地求出每一层网络权 值的梯度,这种算法称为反向传播。

实用技术 使用 TensorFlow

神经网络的生物学 背景

多分类问题的分类器输出的是所有类别上的一个概率分布,而 groundtruth 可以视作某一类上概率为 1 的分布,衡量分类器的损失通常使用交叉熵(令 $y = \operatorname{softmax}(x), x = x^{(L)}$):

$$H(t, \mathbf{y}) = -\sum_{i=1}^{n} t_i \log(y_i)$$
 (12)

 $0 \log 0$ 定义为 0。因此如果 groundtruth 标签为 j,那么交 义熵损失还可以写为

$$L = -\log(y_j) = -\log\left(\frac{e^{x_j}}{\sum_{k=1}^n e^{x_k}}\right) = \log\left(\sum_{k=1}^n e^{x_k}\right)$$
 (13)

梯度为(当且仅当 i = j 时 $\delta_{ij} = 1$,其余情况为 0)

$$\frac{\partial L}{\partial x_i} = y_i - \delta_{ij} \tag{14}$$

- 最速下降法的损失函数定义为分类器在所有样本上的误差(平方误差或交叉熵)之和。在神经网络的优化中,一般用随机梯度下降(Stochastic Gradient Descent, SGD):
- 1. 从 N 个样本 $\mathbb X$ 中等概率随机抽取 m 个($m \ll N$)样本 $\mathbb X_m$,称作 mini-batch
- 2. 计算这个 mini-batch 上的误差 $J(X_m, \mathbf{W})$
- 3. 计算梯度并更新权值 $\mathbf{W}' = \mathbf{W} \epsilon \nabla J(X_m, \mathbf{W})$
- 重复以上步骤直至误差收敛。

避免陷入局部极小值。

神经网络的生物等

由于神经网络激活函数的非线性,优化的损失函数极度非

凸,会存在大量局部极小值。进行梯度下降的过程中需要

图 1: 多个局部极小值示意

申经网络的生物学 ^收号

对比原始的梯度下降法,随机梯度下降会有更多优点:

- ▶ 样本抽样带来随机性,将改善陷入局部极小值的情况
- 在训练样本数庞大的情况下,将减小单次梯度计算和 存储压力

TechX 深度强化学 习课程(三)

何舜成

神经网络

卷积神经网络

买用技术

使用 TensorFlow

神经网络的生物学 背景

卷积神经网络

图像卷积

$$g_{ij} = \sum_{s=i}^{i+2} \sum_{t=j}^{j+2} h_{st} k_{st}$$

TechX 深度强化学 习课程(三)

何舜成

神经网络

卷积神经网络

定用技术

使用 TensorFlow

经网络的生物学 景

图像卷积

$$g_{ij} = \sum_{s=i}^{i+2} \sum_{t=j}^{j+2} h_{st} k_{st}$$

TechX 深度强化学 习课程(三)

何舜成

神经网络

卷积神经网络

实用技术

h Ш Т.....

经网络的生物学 景

图像卷积

卷积作为特征提取的方法,广泛应用于传统图像处理领域。 应用不同的卷积核,可以提取出不同的图像特征。

图 2: 在不同卷积核作用下的效果

TechX 深度强化学 习课程(三)

何舜成

申经网络

卷积神经网络

实用技术

使用 TensorFlow 神经网络的生物学

图像池化

特征提取后,一般还需要用池化(压缩)的方法将特征集中起来。

 $g_{ij} = \max\{h_{2i,2j}, h_{2i+1,2j}, h_{2i,2j+1}, h_{2i+1,2j+1}\}$

TechX 深度强化学 习课程(三)

何舜成

伸经网络

卷积神经网络

实用技术

图像池化

特征提取后,一般还需要用池化(压缩)的方法将特征集 中起来。

 $g_{ij} = \max\{h_{2i,2j}, h_{2i+1,2j}, h_{2i,2j+1}, h_{2i+1,2j+1}\}$

TechX 深度强化学 习课程(三)

何舜成

伸经网络

卷积神经网络

实用技术

将卷积的方法迁移到神经网络上来,就形成了为人熟知的卷积神经网络(Convolutional Neural Networks,CNN)。早在 1998 年,Yann LeCun 等人就提出一种 LeNet 的网络结构,用在 MNIST 数据集上进行数字分类。

图 3: LeNet 网络结构

卷积神经网络

MNIST 是一个手写数字的数据库(Mixed National Institute of Standards and Technology),共有 10 个类别。

图 4: 手写数字样例

TechX 深度强化学 习课程(三)

何舜成

申经网络

卷积神经网络

实用技术

使用 TensorFlow 神经网络的生物学

以往利用图像卷积提取特征都是采用人工设计卷积核,来提取不同含义的特征。而 CNN 将卷积核的参数视为神经网络权值,通过训练来调整。池化层则将特征集中起来,一步步从区域特征集中到全局特征。

CNN 相比于全连接神经网络有独特的优点:

- ▶ 通过权值共享,极大减少网络参数量,提升泛化能力和计算速度
- ▶ 卷积操作关注局部关联,去除不必要的长程关联
- 网络结构具有物理含义,可进行可视化
- 平移不变性

TechX 深度强化学 习课程(三)

何舜成

神经网络

卷积神经网络

实用技术

使用 TensorFlow

神经网络的生物学 背景

实用技术

目前我们只学习了神经网络和卷积神经网络的理论原型, 实际应用时有许多可以改进的技术,包括多种正则化手段 以及优化技巧。

动量项的加入加速了损失函数的优化。基本想法是在计算 参数更新方向时,保留一部分上一轮的更新方向。

设由 mini-batch 计算得到的梯度为 g,学习率为 ϵ ,那么以往的算法中,每一步的"速度" $v = -\epsilon g$,参数更新式为 $\theta = \theta + v$ 。

加入动量项后, $v = \alpha v - \epsilon g$ 。每一步新计算出来的梯度将 影响之后所有的更新方向(速度项),影响因子呈指数衰减。

实用技术

使用 TensorFlow 神经网络的生物学

在某些情形下,动量项可以有助于保持一个稳定的更新方向,以及起到削减随机梯度下降法带来的高方差。

图 5: 在 Hessian 矩阵病态时动量项可以加快收敛

使用 TensorFlow 神经网络的生物学 背景

以往梯度下降更新的步长仅由梯度范数和学习率决定 $\epsilon \parallel g \parallel$,加入动量项后,假设连续多步计算得到的梯度均接 近 g,那么更新速度将一直增大直至

$$\frac{\epsilon \|\mathbf{g}\|}{1 - \alpha} \tag{15}$$

这样将加快收敛速度。

神经网络的生物等背景

当目标函数出现类似悬崖的结构时,梯度往往会很大,以 至于参数会因此跳到很远的区域。一般我们会对梯度的范 数进行限制,截断那些过大的梯度。

图 6: 梯度截断的效果示意

神经网络中不同的参数往往并不等价,每个参数需要有自 己的学习率。直觉上看,训练历史上拥有较大偏导的参数 应当应用更小的学习率。

RMSProp 算法将梯度各分量按累积的平方梯度进行缩放。 累积平方梯度初始值 r=0,累积时采用指数平滑平均

$$r = \rho r + (1 - \rho)g \star g \tag{16}$$

更新时按下式进行缩放

$$\theta = \theta - \frac{\epsilon}{\delta + r} \star g \tag{17}$$

 δ 是一个小的正数, ρ 决定指数平滑的记忆长度。

神经网络的生物学

图 7: 使用与不使用 Dropout 效果对比

BN 算法对每个神经元在一个 mini-batch 上的响应做了归一化,避开了激活函数的饱和区域。

$$\begin{split} \mu_{\mathcal{B}} &\leftarrow \frac{1}{m} \sum_{i=1}^m x_i & \text{// mini-batch mean} \\ \sigma_{\mathcal{B}}^2 &\leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 & \text{// mini-batch variance} \\ \widehat{x}_i &\leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} & \text{// normalize} \\ y_i &\leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i) & \text{// scale and shift} \end{split}$$

图 8: BN 算法

TechX 深度强化学 习课程(三)

何舜成

神经网络

卷积神经网络

实用技术

使用 TensorFlow

神经网络的生物学背景

- ▶ Caffe 与 Caffe2——Facebook Research 主导,C++ 与 CUDA 编程,底层
- ▶ Torch 与 PyTorch——Facebook 主推, Lua 编程, 偏顶 层
- ▶ Theano──曾流行与科研界, Python 编程, 偏底层
- ▶ TensorFlow——Google 主推,目前最为流行的框架, Python 编程,偏底层
- ▶ Keras——Python 编程,偏顶层

除此之外还有 CNTK 等深度学习框架。本课程将以 TensorFlow 为主。

TensorFlow 简介

TensorFlow(官网tensorflow.org)是目前使用最为广泛的开源的机器学习框架。

图 9: 使用 TensorFlow 的公司

TensorFlow 目前可在 mac OS、Ubuntu、Windows 系统上安装和运行。

TechX 深度强化学 习课程(三)

何舜成

神经网络

参积神经网络

由于在不同的项目中可能使用不同的 Python、TensorFlow 及其他程序包,会导致冲突和不便,我们推荐使用虚拟环 境如 virtualenv,但这里我们将使用 Anaconda。

Anaconda 是一个 Python 开发平台,预装有大部分 Python 开发会用到的工具包,并可以创建虚拟环境,指定 python 版本(conda install python=x.x)。

创建虚拟环境: conda create -n \$ENV_NAME

进入虚拟环境: source activate \$ENV_NAME

退出虚拟环境: source deactivate

在虚拟环境中仍然可以使用pip安装包,比如pip install tensorflow==1.x.0

model.evaluate(x_test, y_test)

```
申经网络的生物学
背景
```

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) =
   mnist.load data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input shape=[28, 28]),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
1)
model.compile(optimizer='adam',
            loss='sparse_categorical_crossentropy',
            metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
```

示例中的用法是 Keras 高度集成之后的,实际在科研和学习中,我们回使用更底层的 TensorFlow API,一方面熟悉深度神经网络的机制,另一方面为编程提供了更大的自由度。

神经网络中最基本的是网络结构。TensorFlow 中需要首先创建计算图(tf.Graph),然后提供所需的数据运行计算图(使用 tf.Session)。

图中的顶点是 Operations 或 ops,图的边是 Tensors(张量)。

```
a = tf.constant(3.0, dtype=tf.float32)
b = tf.constant(4.0) # also tf.float32 implicitly
total = a + b
sess = tf.Session()
print(sess.run(total))
```

计算图可以使用 TensorBoard 进行可视化,只要添加如下 代码:

writer = tf.summary.FileWriter('.')
writer.add_graph(tf.get_default_graph())

writer 会将数据写入当前目录下的一个文件,只要在另外的终端中运行 tensorboard:

tensorboard --logdir .

就可以在 Chrome 浏览器中看到计算图。

使用 TensorFlow

大多数情况下我们不会使用常量,而是使用不同的数据输入计算图。此时需要声明一些 placeholder,然后在运行时通过指定 feed_dict 的方式传入数据。注意:若不显式指定,placeholder 本身不限制数据的"形状"。

```
x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32)
z = x + y
print(sess.run(z, feed_dict={x: 3, y: 4.5}))
print(sess.run(z, feed_dict={x: [1, 3], y: [2, 4]}))
```

神经网络中的 ops 通常会是"层",如卷积层、池化层、全连接层等等。下面的代码应用了一个全连接层

```
x = tf.placeholder(tf.float32, shape=[None, 3])
linear_model = tf.layers.Dense(units=1)
y = linear_model(x)
```

参数units=1表明了这一层的输出是长为 1 的向量。 placeholder 中shape=[None, 3]表示输入数据第一维不指定 具体数目,第二维长度为 3。由此推断, y 的形状应为 [None, 1]。

全连接层参数需要初始化才能接着运行计算图。

```
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(y, {x: [[1, 2, 3],[4, 5, 6]]}))
```

TechX 深度强化学 习课程(三)

何舜成

神经网络

实用技术

使用 TensorFlow

```
假设我们有一组数据要进行线性拟合:
```

```
x = tf.constant([[1], [2], [3], [4]],
   dtype=tf.float32)
y_true = tf.constant([[0], [-1], [-2], [-3]],
   dtype=tf.float32)
linear model = tf.layers.Dense(units=1)
y_pred = linear_model(x)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
print(sess.run(y_pred))
```

这样的结果是参数随机初始化的结果,我们需要进一步训 练。

```
反复训练。

loss = tf.losses.mean_squared_error(labels=y_true, predictions=y_pred)
```

首先要定义优化的目标函数,其次选定优化器,最后进行

predictions=y_pred)
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
for i in range(100):
 _, loss_value = sess.run((train, loss))
 print(loss_value)

注意: 当sess.run()需要同时运行多个 ops 时,要用 tuple 的形式传参。

TechX 深度强化学 习课程(三)

何舜成

申经网络

卷积神经网络

实用技术

使用 TensorFlow

神经网络的生物学 背景

神经元的结构

图 10: 不同的神经元形态

TechX 深度强化学 习课程(三)

何舜成

申经网络

等积神经网络 C田技术

使用 TensorFlow

神经元的激活

静息电位、去极化、超极化与发放

图 11: 神经元电信号变化

TechX 深度强化学 习课程(三)

何舜成

申经网络

卷积神经网络 ----

使用 TensorFlow

视网膜后的信号通路

图 12: 视网膜下神经细胞分布

TechX 深度强化学 习课程(三)

何舜成

神经网络 表积神经网络 2田技术

足用 TensorFlow

视觉皮层结构

图 13: 视觉皮层的层次结构

TechX 深度强化学 习课程(三)

何舜成

申经网络 参积神经网络

吏用 TensorFlow