PK №1

Рубежный контроль №1. Емельянова Т.И. Вариант №5: задание 1, датасет 5

Задание:

Для заданного набора данных проведите корреляционный анализ. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Набор данных состоит из информации, необходимой для прогнозирования поступления в аспирантуру в Индии.

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
%matplotlib inline
sns.set(style="ticks")
```

In [6]:

```
dataset = pd.read_csv('dataset/Admission_Predict_Ver1.1.csv')
```

In [7]:

```
print(dataset.shape[0], 'x', dataset.shape[1])
```

500 x 9

In [8]:

```
dataset.head(5)
```

Out[8]:

	Serial No.	GRE Score	TOEFL Score	University Rating	SOP	LOR	CGPA	Research	Chance of Admit
0	1	337	118	4	4.5	4.5	9.65	1	0.92
1	2	324	107	4	4.0	4.5	8.87	1	0.76
2	3	316	104	3	3.0	3.5	8.00	1	0.72
3	4	322	110	3	3.5	2.5	8.67	1	0.80
4	5	314	103	2	2.0	3.0	8.21	0	0.65

Набор данных содержит несколько параметров, которые считаются важными при подаче заявки на магистерские программы. Включены следующие параметры:

- 1. Баллы GRE (из 340)
- 2. Баллы TOEFL (из 120)
- 3. Рейтинг университета (из 5)
- 4. Заявление о целях и рекомендательное письмо (из 5)
- 5. Средний балл бакалавриата (из 10)
- 6. Исследовательский опыт (0 или 1)
- 7. Шанс допуска (от 0 до 1)

In [11]:

dataset.dtypes

Out[11]:

Serial No. int64 GRE Score int64 TOEFL Score int64 University Rating int64 float64 SOP LOR float64 float64 **CGPA** Research int64 Chance of Admit float64

dtype: object

In [10]:

```
print('Число уникальных значений для каждого столбца')
dataset.nunique()
```

Число уникальных значений для каждого столбца

Out[10]:

Serial No.	500
GRE Score	49
TOEFL Score	29
University Rating	5
SOP	9
LOR	9
CGPA	184
Research	2
Chance of Admit	61
dtype: int64	

```
In [13]:
```

```
print('Число пропусков')
dataset.isna().sum()
```

Число пропусков

Out[13]:

Serial No. GRE Score 0 TOEFL Score University Rating SOP 0 0 LOR **CGPA** 0 0 Research Chance of Admit 0 dtype: int64

Визуализирование

Визуализация различных значений для каждого столбца:

In [15]:

```
for column in dataset:
   plt.hist(dataset[column], 50)
   plt.xlabel(column)
   plt.show()
```


Тепловая карта

```
In [18]:
```

```
fig, ax = plt.subplots(1, 1, sharex='col', sharey='row', figsize=(10,5)) fig.suptitle('Корреляционная матрица') sns.heatmap(dataset.corr(), ax=ax, annot=True, fmt='.3f')
```

Out[18]:

<Axes: >

Корреляционная матрица

По тепловой карте видно, что такие признаки, как Баллы GRE и TOEFL, а также CGPA (средний бал бакалавриата) имеют сильную связь с шансом поступлнения. На основании этого можно сделать модель предсказания шанса поступления судя по этим параметрам.

Для этого можно использовать классифкацию (или регрессию) на основе метода k-ближайших соседей (также можно использовать SVM и дерево решений).

In []: