REVISION REPORT

GEUN SOO JANG, TAEHYEONG KIM, HYUN-MIN KIM, KI MAN KONG, JEONG RYE PARK, JONG-HYEON SEO, SANG-HYUP SEO † , AND SHIN WON YOON

<Revisions>

L3-4 in Abstract:

It is by setting an acceptable upper limit for each plate, and carrying out \longrightarrow It is done by setting an acceptable upper limit for each plate, and by carrying out

L13 in P1:

two each of A's and B's \longrightarrow two A's and two B's

L19, L21 in P1:

a 'Ætter' → a 'better' choice

L19-20 in P1:

Let us examine the other case. \longrightarrow Let us examine another case.

L22 in P1

 $[A, B, B, B] \times 3$ is the 'Best' method. $\longrightarrow [A, B, B, B] \times 3$ is the 'best' choice.

L23 in P1:

Minimize the number of list. \longrightarrow Minimize the number of lists.

L36-37 in P2:

The above example denotes what is the best arrangement in such print method. \longrightarrow The above example shows what is the best arrangement in such printing method.

L45-46 in P2:

and variable information such as the manufactured date.

 \longrightarrow and variable information such as the manufacturing date.

L48 in P2:

the number of label loss increased compared to the past.

 \longrightarrow the number of label losses increased compared to the past.

L81 in P3:

 $\mathrm{input} \overline{\mathrm{ted}} \longrightarrow \mathrm{input}$

L92 in P3:

 b_i be the number of order. $\longrightarrow b_i$ be the number of orders.

L96 in P3:

satisfy the following \longrightarrow satisfying the following

L98 in P3: Period is inserted.

L119 in P4:

 $input ted \longrightarrow input$

L127 in P4:

N is a printing number that expressed in $\longrightarrow N$ is a printing number that is expressed in

L142 in P6:

We can see the Figure \longrightarrow We can see Figure

(4.6) below L154 in P7: Period is deleted.

L156 in P7:

because its number of plate \longrightarrow because its number of plates

L159 in P7:

Now, we consider real problem of World Komax.

 \longrightarrow Now, we consider a real problem of World Komax.

The line above matrix A which is above L166 in P8:

The matrix A can be found as follows.

 \longrightarrow The matrix A can be found as follows.

L175 in P9:

The two populations are as such. \longrightarrow The two populations are as follows.

L205 in P10:

the size of $I(cf. Section 3) \longrightarrow the size of <math>I^{*}(cf. Section 3)$

L206 in P10:

For each 82 samples,

 \longrightarrow For each of the 82 samples,