25.01.2023

Nume: Grupa:

EXAMEN LA ALGORITMI FUNDAMENTALI

Pentru graful din imaginea din stânga rezolvați cerințele 1-4 și justificați răspunsurile; vecinii unui vârf se consideră în ordine lexicografică

- **1) (0,5p)** Justificați dacă graful are sau nu o sortare topologică și, în caz afirmativ, indicați o sortare topologică.
- **2) (0,5p)** Exemplificați (cu explicații) cum funcționează parcurgerea în lățime bf(7), ilustrând si arborele bf asociat și modul în care se poate folosi bf(7) pentru a calcula distanța de la 7 la 9; vecinii unui vârf se consideră în ordine lexicografică
- **3) (0,75p)** Care sunt componentele tare conexe ale grafului? Adăugați un arc astfel încât să creați o componentă tare conexă mai mare decât cele din graful inițial (ca număr de vârfuri).
- **4) (0,75p)** Considerăm graful neorientat H asociat acestui graf obținut astfel: două vârfuri x și y sunt adiacente în H dacă există arc de la x la y sau de la y la x în graf. Puneți ponderi pe muchiile grafului H astfel încât graful să aibă un unic arbore parțial de cost minim, dar să existe și muchii cu aceeași pondere.

Pentru graful din imaginea din stânga rezolvați cerințele 5 și 6:

- **5) (0,5p)** Exemplificați pașii algoritmului lui Dijkstra (cu explicații) pornind din vârful 2
- **6) (0,5p)** Exemplificați pașii algoritmului lui Prim (cu explicații) pornind din vârful 2
- **7) (0,5p)** Fie G = (V, E, w) un graf orientat ponderat, cu ponderi numere întregi și s un vârf în G. Considerăm algoritmul lui Bellman Ford descris în următorul pseudocod:

Considerăm graful din figura din dreapta pseudocodului. La finalul execuției pseudocodului de mai sus pentru acest graf, s=1 și arcele considerate in ordinea E={(1,3), (4,1) (4,2), (2,3), (3,4)} vectorul d are elementele [0, 5, -1, 1]. Adăugați în pseudocod instrucțiunile necesare (cu explicații) pentru ca algoritmul să testeze existența unui circuit cu cost negativ în graf accesibil din s (=pentru care există un drum de la s la un vârf al său) și ilustrați-le pe graful dat ca exemplu (cu explicații).

CERINȚĂ - Minim 3p din primele 7 subiecte

8) (1p) În rețeaua de transport din figura alăturată pe un arc e sunt trecute valorile f(e)/c(e) reprezentând flux/capacitate. Sursa este vârful 1, iar destinatia 7.

Ilustrați pașii algoritmului Ford-Fulkerson pentru această rețea pornind de la fluxul indicat și alegând la fiecare pas un s-t lanț f-nesaturat de lungime minimă (algoritmul Edmonds-Karp). Indicați o tăietură (s-t tăietură) minimă în rețea (se vor indica vârfurile din bipartiție, arcele

directe, arcele inverse) și determinați capacitatea acestei tăieturi. Justificați răspunsurile.

9) (1,5p) a) Fie G=(V,E) un graf neorientat hamiltonian conex. Arătați că pentru orice mulțime nevidă X de vârfuri strict inclusă în V se verifică următoarea proprietate: graful obținut din G prin eliminarea vârfurilor din X are cel mult |X| componente conexe.

- b) Folosind a), arătați că graful alăturat nu este hamiltonian.
- c) Dați exemplu de un graf neorientat conex care nu verifică proprietatea a)

10) (0,5p) Explicați cum se modifică algoritmul (relațiile de recurență) pentru calculul distanței de editare între două cuvinte dacă operația de modificare a unui caracter în altul are costul w1 și operația de ștergere a unui caracter are costul w2, cu w1 și w2 numere naturale date (deci nu toate operațiile au costul 1, ca în cazul distantei de editare Levenshtein clasică).

11) (0,5p) Descrieți algoritmul de 6-colorare a vârfurilor unui graf neorientat conex planar și exemplificați acest algoritm pentru graful alăturat.

ca ajutați-o găsind drumul minim (cu număr minim de stele) care trece prin cel puțin p stele distincte. În drumul sau Luna poate trece printr-o stea de mai multe ori. Explicați soluția și justificați corectitudinea algoritmului ales.