LINEAR ALGEBRA FALL 2019

SOLUTIONS TO SELECTED PROBLEMS FROM HOMEWORK 1-4

- **1.C. 6.** (a) Yes, because if a and b are real numbers, then $a^3 = b^3$ if and only if a = b. Clearly the subset $\{(a, b, c) \mid a = b\}$ is closed under addition and scalar multiplication and is therefore a subspace.
- (b) No because (1,1,0) and $(1,\omega,0)$ where ω is a 3rd root of 1 other than 1 are in this subset. But $(1,1,0)+(1,\omega,0)=(2,1+\omega,0)$ is not in this subset: We have $\omega^3-1=0$. Since $\omega^3-1=(\omega-1)(\omega^2+\omega+1)$ and since $\omega\neq 1$, $\omega^2+\omega+1=0$. So $(1+\omega)^3=1+3\omega+3\omega^2+1=-1\neq 2^3$.
 - **1.C. 8.** The union of the x-axis and the y-axis.
- 2.A. 5: (a) If we think of **C** as a vector space over **R**, and if there are scalars $c_1, c_2 \in \mathbf{R}$ such that $c_1(1+i) + c_2(1-i) = 0$, then $(c_1 + c_2) + i(c_1 c_2) = 0$, so $c_1 + c_2 = 0$ and $c_1 c_2 = 0$ so both c_1 and c_2 are zero.
- (b) If we think of **C** as a vector space over **C**, then the scalars can be any complex numbers. And we have i(1+i)+(1-i)=0, so 1+i and 1-i are not linearly independent.
- **2.C. 2.** Let V be a subspace of \mathbb{R}^2 . By 2.39, since dim $\mathbb{R}^2 = 2$, any two linearly independent vectors in \mathbb{R}^2 span \mathbb{R}^2 , So If V contains 2 linearly independent vectors it is equal to \mathbb{R}^2 . If V does not contain 2 linearly independent vectors, it is either $\{0\}$ or is spanned by 1 non-zero vector (a, b). In the latter case, $V = \text{span}((a, b)) = \{(\lambda a, \lambda b)\}$ which is the line through the origin and (a, b).
- **3.A. 12.** Let v_1, \ldots, v_n be a basis for V. To show that $\mathcal{L}(V, W)$ is infinite dimensional, it is enough to show that for any positive integer m, there are m linearly independent maps T_1, \ldots, T_m in $\mathcal{L}(V, W)$. (because if a vector space is finite dimensional of dimension say r, then there are at most r linearly independent vectors in that space.) Since W is infinite dimensional, we can choose m linearly independent vectors w_1, \ldots, w_m in W. Now by 3.5, for each $1 \leq i \leq m$, there is a unique linear map T_i which sends v_1 to w_i and v_2, \ldots, v_n

to zero. We claim T_1, \ldots, T_m are linearly independent. If $c_1T_1 + \cdots + c_mT_m$ is the zero map, then it sends every vector to 0. So in particular

$$c_1T_1 + \dots + c_mT_m(v_1) = 0,$$

so $c_1w_1 + \cdots + c_mw_m = 0$. Since the w_i are linearly independent, this implies that all the c_i should be zero, so T_1, \ldots, T_m are linearly independent.

3.C. 3 Let dim V = n and dim range(T) = k. Then dim null(T) = n - k. Pick a basis u_{k+1}, \ldots, u_n for null(T) and extend it to a basis u_1, \ldots, u_n for V. Let $w_i = T(u_i)$ for $1 \le i \le k$. Then $w_1, \ldots, w_k \in \text{range}(T)$ and they are linearly independent: To see this assume $c_1w_1 + \cdots + c_kw_k = 0$. Then $T(c_1u_1 + \ldots c_ku_k) = 0$, so $c_1u_1 + \ldots c_ku_k \in \text{null}(T)$, so

$$c_1u_1 + \dots + c_ku_k = c_{k+1}u_{k+1} + \dots + c_nu_n$$

for some c_{k+1}, \ldots, c_n . Since the u_i are linearly independent, this implies that all the c_i should be 0, so w_1, \ldots, w_k are linearly independent.

We now extend w_1, \ldots, w_k to a basis w_1, \ldots, w_m for W. For $1 \leq i \leq k$, $T(u_i) = w_i$, so there is a 1 in the *i*-th entry of the *i*-th column, and the rest of the entries of the *i*-th column are zero. For $k+1 \leq i \leq n$, $T(u_i) = 0$, so the *i*-th column is zero.

3.C. 4. The vector $T(v_1)$ is either 0 or not. If $T(v_1) = 0$, then for any basis w_1, \ldots, w_m of W, we have

$$T(v_1) = 0w_1 + \dots + 0w_m$$

so the first column of the matrix is zero.

If $T(v_1) \neq 0$, then we let $w_1 = T(v_1)$ and extend w_1 to a basis w_1, \ldots, w_m for W. We have

$$T(v_1) = 1w_1 + 0w_2 + \dots + 0w_m.$$

So the first column of the matrix with respect to this basis has 1 in the first row and 0 everywhere else.

3.D. 4. Asume $\operatorname{null}(T_1) = \operatorname{null}(T_2)$. Let w_1, \ldots, w_k be a basis for $\operatorname{range}(T_1)$. For each $1 \leq i \leq k$, choose v_i in V such that $T_1(v_i) = w_i$. Let $w_i' = T_2(v_i)$. Then w_1', \ldots, w_k' are linearly independent in W since if a linear combination of them is zero

$$c_1w_1' + \dots + c_kw_k' = 0,$$

then $T_2(c_1v_1 + \cdots + c_kv_k) = 0$, and so $c_1v_1 + \cdots + c_kv_k \in \text{null}(T_2) = \text{null}(T_1)$. Therefore, $c_1v_1 + \cdots + c_kv_k \in \text{null}(T_1)$ and so $0 = T_1(c_1v_1 + \cdots + c_kv_k) = T_1(c_1v_1 + \cdots + c_kv_k)$ $c_1w_1 + \cdots + c_kw_k$. So each c_i should be 0 since by our assumption the w_i are linaerly independent. This show the w'_i are linaerly independent, and so

$$\dim \operatorname{range}(T_2) \ge \dim \operatorname{range}(T_1) = k.$$

A similar argument shows dim range $(T_1) \ge \dim \operatorname{range}(T_2)$, and so

$$\dim \operatorname{range}(T_2) = \dim \operatorname{range}(T_1) = k.$$

We conclude that w'_1, \ldots, w'_k form a basis for range (T_2) . Extend w_1, \ldots, w_k to a basis w_1, \ldots, w_m for W and extend w'_1, \ldots, w'_k to a basis w'_1, \ldots, w'_m for W. Define S to be the unique linear map such that $S(w'_i) = w_i$ for each i, $1 \le i \le m$. (See Theorem 3.5 on Page 54.) Clearly S is injective and surjective and is therefore invertible.

To show that $T_1 = ST_2$ note that for every $v \in V$, if $T_1(v) = c_1w_1 + \cdots + c_kw_k$, then $T_1(v - c_1v_1 - \cdots - c_kv_k) = 0$, so $v - c_1v_1 - \cdots - c_kv_k \in \text{null}(T_1) = \text{null}(T_2)$. Therefore

$$T_2(v - c_1v_1 - \dots - c_kv_k) = 0$$
so $T_2(v) = T_2(c_1v_1 + \dots + c_kv_k) = c_1w'_1 + \dots + c_kw'_k$. Hence
$$ST_2(v) = S(c_1w'_1 + \dots + c_kw'_k) = c_1w_1 + \dots + c_kw_k = T_1(v).$$

3.D. 5. Suppose dim V = n, and range $(T_1) = \text{range}(T_2)$. Since V is finite dimensional, range (T_1) and range (T_2) are both finite dimensional. Let

$$k = \dim \operatorname{range}(T_1) = \dim \operatorname{range}(T_2).$$

Pick a basis w_1, \ldots, w_k for range (T_1) . (which is equal to range (T_2) .) Let v_1, \ldots, v_k be such that $T_1(v_i) = w_i$ for each $1 \le i \le k$. We know that

$$\dim \operatorname{null}(T_1) = \dim V - \dim \operatorname{range}(T_1) = n - k.$$

Pick a basis v_{k+1}, \ldots, v_n for null (T_1) . We claim that v_1, \ldots, v_n form a basis for V. It is enough to show that they are linearly independent. To show this, assume that

$$c_1v_1+\ldots c_nv_n=0.$$

Then

$$0 = T_1(c_1v_1 + \dots + c_nv_n) = c_1w_1 + \dots + c_kw_k.$$

Since the w_i are linearly independent, each $c_i = 0$ for $1 \le i \le k$, so $c_{k+1}v_{k+1} + \cdots + c_nv_n = 0$. Since $v_{k+1}, \ldots v_n$ form a basis for null (T_1) , they are linearly independent, so all the c_i should be equal to 0, so v_1, \ldots, v_n are linearly independent.

Similarly, pick v'_1, \ldots, v'_k in V such that $T_2(v'_i) = w_i$ for $1 \le i \le k$. Pick a basis v'_{k+1}, \ldots, v'_n for null (T_2) . Then v'_1, \ldots, v'_n is a basis for V.

By Theorem 3.5, there is a linear map S such that $S(v_i) = v_i'$ for each $1 \le i \le n$. We show $T_1 = T_2 S$. We have $T_1(v_i) = 0$ and $T_2 S(v_i) = T_2(v_i') = 0$

for each $k+1 \le i \le n$. And $T_1(v_i) = w_i$ and $T_2S(v_i) = T_2(v_i') = w_i$ for each $1 \le i \le k$. So $T_1 = T_2S$.

3.D: 16. We first show that for every v in V, Tv is a scalar multiple of v. To do this, we assume Tv and v are linearly independent and get a contradiction. If Tv and v are linearly independent, then we can extend Tv, v to a basis Tv, v, v_2, \ldots, v_n for V. Then by Theorem 3.5 on Page 54, there is a linear map S which maps Tv to a non-zero vector, and maps v, v_2, \ldots, v_n to the zero vector. For such a linear map TS(v) = T(0) = 0, but $ST(v) = S(Tv) \neq 0$, a contradiction.

Now suppose u_1, \ldots, u_n is a basis for V. We know for each i, there is λ_i such that $Tu_i = \lambda_i u_i$. For any $i \neq j$, we also know by the above argument that $T(v_i + v_i)$ is a scalar multiple of $v_i + v_j$. Suppose that

$$T(v_i + v_j) = \lambda(v_i + v_j).$$

But we assumed $T(v_i) = \lambda_i v_i$ and $T(v_j) = \lambda_j v_j$, so

$$\lambda v_i + \lambda v_j = \lambda_i v_i + \lambda_j v_j.$$

Since v_i and v_j are linearly independent, this implies that $\lambda = \lambda_i = \lambda_j$, so all the λ_i are equal.

3.E. 12. This is easy if we assume V is finite dimensional since the dimension of V and $U \times V/U$ are equal, but here there is no assumption on the dimension of V. Let $v_1 + U, \ldots, v_n + U$ be a basis for V/U. Then every vector in V/U can be written uniquely as $c_1(v_1 + U) + \cdots + c_n(v_n + U)$. (which is equal to $(c_1v_1 + \cdots + c_nv_n) + U$.)

Define a map T from $U \times V/U$ to V as follows

$$T(u, v + U) = u + c_1v_1 + \dots + c_nv_n$$

where $v + U = c_1v_1 + \cdots + c_nv_n + U$. Clearly T is linear. To show that T is injective, assume T(u, v + U) = 0. This means that $u + c_1v_1 + \cdots + c_nv_n = 0$, so $c_1v_1 + \cdots + c_nv_n \in U$. By 3.85 this is equivalent to say $c_1(v_1 + U) + \cdots + c_n(v_n + U) = 0$ in V/U. (the zero vector in V/U is 0 + U = U.) Since the $v_i + U$ is a basis for V/U, this implies that each c_i is zero, and so u is also zero.

To show T is surjective, we note that if $v \in V$, then $v+U = c_1v_1+\cdots+c_nv_n+U$ for some c_1,\ldots,c_n . Again by 3.85 this means that $v-c_1v_1-\cdots-c_nv_n\in U$. Call this vector u. Then $T(u,c_1v_1+\cdots+c_nv_n+U)=v$, so T is surjective.

3.E. 16. Note that here the dimension of V might be infinite. For example, if $F = \mathbf{R}$, V is the vector space of all polynomials with real coefficients, and U

is the subspace of all polynomials f such that f(0) = 0, then V/U is spanned by 1 + U, so V/U is 1-dimensional, but V and U are infinite dimensional.

Let v+U be a basis for V/U. (For any vector v which is not in U, v+U is linearly independent in V/U and is therefore a basis for V/U.) For every $v' \in V$, there is a unique c such that v' + U = c(v + U). Define $T: U \to F$ such that T(v') = c. Clearly T is linear.

We show that $\operatorname{null}(T) = U$. First if $u \in U$, then u + U = 0 + U = 0(v + U), so by our definition of T, T(u) = 0. Conversely, if T(v') = 0, then v' + U = 0(v + U) = 0 + U, so $v' \in U$ by 3.85.