Zusammenfassung Gew. Diff'gleichungen

© M: Tim Baumann, http://timbaumann.info/uni-spicker

Bsp. Gesucht: Funktion $y: \mathbb{R} \to \mathbb{R}$ mit $\forall t \in \mathbb{R} : \dot{y}(t) = y(t)$

Lsg. $y(t) = c \cdot e^t$ für $c \in \mathbb{R}$ beliebig. Wenn man als Anfangsbedingung y(0) = 1 fordert, erhält man eine eindeutige Lösung (c = 1).

Bsp. Gesucht: Lösung von $(\dot{y}(t))^2 + (y(t))^2 = a$ für $a \in \mathbb{R}$

Lsg. Anzahl der Lösungen hängt von a ab:

- Falls a < 0: keine reelle Lsg Falls a = 0: Einzige Lsg y(t) = 0
- Falls a > 0: Lsgn: $y(t) = \sqrt{a}\cos(t+\phi)$ für $\phi \in \mathbb{R}$ bel., $y(t) = \pm \sqrt{a}$

Bsp. Sei p(t) ist Populationsgröße zur Zeit t. Angenommen, $\frac{\dot{p}(t)}{p(t)} = a$ ist konstant, also $\dot{p}(t) = p(t)$. Sei $p(t_0) = p_0$.

Lsg.
$$p(t) = p_0 e^{(t-t_0)a}$$

Bsp (Verhulst-Modell). Gesucht: Lösung zu

$$\dot{p}(t) = a_0 p(t) - a_1 (p(t))^2$$

Lsg.
$$p(t) = \frac{a_0}{a_1(1 - ce^{-a_0 t})}$$