1ab6 实验报告

-----闫世杰 2020200982

利用 priority_queue 优化 KNN search 添加数据结构

struct Bin{

}

KDT *T; //记录候选节点,即待检查平面

long long distance;//记录该节点的 split_line 距离 Target 的直线距离,将其作为优先 队列的排序标准,使得距离最小的节点(及最优节点)位于最前

在自顶向下递归寻找 Target 所在的最小 cell 过程中,在每次进入一子树的同时,判断当前最小距范围是否和该平面有交点,如果有交集,将另一棵子树加入待考察的 priority_queue 中,作为候选,当遍历到叶子节点时,从优先队列中选择最优的节点进行回溯,如果最优节点的平面与当前最小距范围无交点,说明已经达到了最优,直接清空优先队列返回即可

不断更改 E_{Max} 的值,对于测试所给出的数据,发现 E_{Max} = 5 时,BBF 的准确率已经有 95%,当 E_{Max} = 20 时,已经完全正确

由于测试数据维度较小,且数据规模不大,整个搜索过程只需不到 1s,且由于 BBF 需要维护一个优先队列.因此在数据测试上,发现 BBF 必普通的 KNN 还要慢一点

时间测试表(E_MAX=20):

点数 搜索次数	10000 10000	20000 20000	50000 50000	100000 100000
BBF_KNN	0.056999s	0.087552s	0.235076s	0.4886698
NOR_KNN	0.033032s	0.049679s	0.094528s	0.18016s