METAHEURÍSTICAS DE BUSCA LOCAL

DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 20 de julho de 2022

Iago Carvalho

ALGORITMO, HEURÍSTICA E META-HEURÍSTICA

Um algoritmo computa a resposta exata para um problema específico

Uma heurística computa uma solução aproximada para um problema específico

Uma meta-heurística é um *framework* para construção de heurísticas

- Não resolvem um problema específico
- Possibilita criar heurísticas para diversos problemas
- São extremamente generalizáveis

META-HEURÍSTICAS

Problemas NP-Completos possuem um número exponencial de soluções

Impraticável listar todas elas

Meta-heurísticas exploram um subconjunto destas soluções

Uma meta-heurística é um *framework*, um "guia", sobre como explorar esse subconjunto de soluções

 Quanto mais eficaz e mais eficiente for esta amostragem melhor é a heurística resultante

CARACTERÍSTICAS DE META-HEURÍSTICAS

Simplicidade

São baseadas em princípios claros

Generalidade

O Podem ser facilmente generalizadas para diversos problemas

Eficácia

O Produzem soluções de boa qualidade

Eficiência

Baixo custo computacional

PRINCÍPIOS DE META-HEURÍSTICAS

Diversificação

- Como ela realiza a busca
- Ato de explorar uma grande área do espaço de buscas

Intensificação

- Buscas realizadas em soluções próximas a outras
- No geral, tende-se a intensificar a busca próximo a soluções de boa qualidade

CONJUNTO DE SOLUÇÕES

Definimos o conjunto de soluções como Γ

- O Define-se uma solução como $S \in \Gamma$
- Uma busca é realizada neste conjunto de soluções

VIZINHANÇA

Considera-se soluções vizinhas como sendo soluções próximas umas das outras

- Função de proximidade definida anteriormente
- Normalmente, relacionado a quantidade de diferentes elementos entre as soluções

VIZINHANÇA - DEFINIÇÃO FORMAL

Uma vizinhança é uma função $N: \Gamma \mapsto 2^{\Gamma}$

 \bigcirc Mapeia uma solução S ∈ Γ a um subconjunto N(S) ⊆ Γ

VIZINHANÇA NO ESPAÇO \mathbb{B}^3

VIZINHANÇA PARA O PROBLEMA DO CAIXEIRO VIAJANTE

META-HEURÍSTICAS DE BUSCA LOCAL

Duas soluções em Γ podem ou não ser vizinhas

O Depende da função de vizinhança aplicada

Meta-heurísticas de busca local são algoritmos que possuem uma única solução

- Realizam buscas no espaço de soluções aplicando uma ou mais funções de vizinhança sobre uma solução inicial
 - Solução inicial muitas vezes criada com uma heurística construtiva

UMA PRIMEIRA META-HEURÍSTICA DE BUSCA LOCAL

Random walk

Inicia de uma solução viável

Criada a partir de uma heurística construtiva

Iteração

Move-se para um vizinho aleatório

Critério de parada

Tempo ou número de iterações sem melhora

MELHORANDO UM POUQUINHO...

Hill climbing

Inicia de uma solução viável

Criada a partir de uma heurística construtiva

Iteração

- Move-se para um vizinho aprimorante
 - Vizinho de melhor qualidade

Critério de parada

- Não existe nenhum vizinho aprimorante
- Ótimo local

ÓTIMO LOCAL

ALGORITMOS DE BUSCA LOCAL

VNS/VND Link

GRASP Link

ILS Link Link

Busca tabu Link

. .

VARIABLE NEIGHBORHOOD DESCENT (VND)

