#### Notes for this week

#### **Outline from the doc**

- Lab
  - Tic-tac-toe 2D with list of lists (move to prev week)
  - More advanced NumPy, slicing, selecting, dtypes, vectorization
  - Basic plotting
- Class
  - quiz, book chapters 1 and 2
  - Debugging and timing code in IPython
  - Introduction to NumPy
  - Vectorized computation vs. Python loops
  - Slicing NumPy arrays
  - (2 and 3 dimensional arrays and NumPy broadcasting)
  - Practice basic NumPy manipulations and contrasting arrays with lists

In [2]: import numpy as np

# **COMP 3122 - Artificial Intelligence with Python**

Week 2

# github.com/kamrik/ML1

### The plan for today

- Using Jupyter
- · Creating, slicing and reshaping numpy arrays
- Basic data plotting

#### **Extra material**

- Making data mean more through storytelling by Ben Wellington at TEDxBroadway (15 min video)
- All About Jupyter by Brian Granger PyData NYC 2015 conference talk (40 min video)

### **Book section numbering**

- The book table of contents has chapter numbers but no section numbers
- But you can see section numbers in the URL of each section (hover over the link)
- You can also see the number in the <u>listing of files in notebooks folder on GitHub</u>
- Example: 02.02-The-Basics-Of-NumPy-Arrays.ipynb
- Sections X.00 (under the large heading of the chapter)

#### **Book sections for this week**

TBD

- Chapter 2. Introduction to NumPy, sections 2.1 2.5
- Chapter 4. Visualization with Matplotlib

### **Jupyter - quick recap**

- A document editable in the browser
- Consists of 2 types of cells: Code cells and Text cells
- Saved as \*.ipynb files, but can be exported/converted to many static formats like HTML, PDF etc

### Two ways of reading the book

- Static at <a href="https://jakevdp.github.io/PythonDataScienceHandbook/">https://jakevdp.github.io/PythonDataScienceHandbook/</a>
- Download from github and run as notebook, then you can modify and run the code samples
- Downloading the <u>repo</u>: either git clone it, or download as ZIP (<u>screenshot</u>)

# Downloading and running a single notebook locally

- Download the [exercise notebook]
  - Either clone the repo or
  - Click Raw (<u>screenshot</u>) and then File->Save as)
- Make sure to place it under the user's home directory
- Run Jupyter (note, it can only see files below the dir where it runs, by defaul the user's home dir)
- Edit the notebook and complete tasks there

- Book section 2.3 "Computation on NumPy Arrays: Universal Functions"
- This part is rather different from Java or C# arrays loops are extermely rare

### Operations between an array and a single number

### **Operations between two arrays**

```
In [4]: y = np.arange(7, 0, -1)
print(x)
print(y)

[0 1 2 3 4 5 6]
[7 6 5 4 3 2 1]

In [5]: # Element-wise operations
x + y

Out[5]: array([7, 7, 7, 7, 7, 7])
```

#### Lab exercise

- Download and run exercises/numpy\_basics.ipynb notebook from GitHub
- Read the first section with examples
- Complete the tasks below the "Exercises" heading as you read book section 2.2 (it's pretty short)

```
In [6]: import matplotlib.pyplot as plt
```

In [7]: %matplotlib inline

```
In [10]: x = np.arange(1,11)
    plt.plot(x, x**2)
```

Out[10]: [<matplotlib.lines.Line2D at 0x21ad157b630>]



```
In [ ]:
```

In [12]: import seaborn as sns
mpg = sns.load\_dataset('mpg')

In [13]: | mpg.head()

Out[13]:

|   | mpg  | cylinders | displacement | horsepower | weight | acceleration | model_year | origin | name                      |
|---|------|-----------|--------------|------------|--------|--------------|------------|--------|---------------------------|
| 0 | 18.0 | 8         | 307.0        | 130.0      | 3504   | 12.0         | 70         | usa    | chevrolet chevelle malibu |
| 1 | 15.0 | 8         | 350.0        | 165.0      | 3693   | 11.5         | 70         | usa    | buick skylark 320         |
| 2 | 18.0 | 8         | 318.0        | 150.0      | 3436   | 11.0         | 70         | usa    | plymouth satellite        |
| 3 | 16.0 | 8         | 304.0        | 150.0      | 3433   | 12.0         | 70         | usa    | amc rebel sst             |
| 4 | 17.0 | 8         | 302.0        | 140.0      | 3449   | 10.5         | 70         | usa    | ford torino               |

htt

```
In [18]: year = mpg['model_year'].values
    fuel = mpg['mpg'].values
    weight = mpg['weight'].values
In [24]: plt.plot(weight, fuel, 'bo')
```

Out[24]: [<matplotlib.lines.Line2D at 0x21ad4447208>]



# Format parameter

The optional parameter fmt is a convenient way for defining basic formatting like color, marker and linestyle.

- plot(x, y) # plot x and y using default line style and color
- plot(x, y, 'bo') # plot x and y using blue circle markers
- plot(y) # plot y using x as index array 0..N-1
- plot(y, 'r+') # ditto, but with red plusses

Full list under "Format strings" here

# **Labels and legends**

```
In [29]: plt.plot(x, 1/x, '.-')
    plt.xlabel('x')
    plt.ylabel('1/x')
    plt.grid()
```

htt 5/6



# (optional) Demo of a Jupyter notbook

TBD - maybe move to the lecture

NYC Taxi data - <a href="https://anaconda.org/jbednar/nyc\_taxi/notebook">https://anaconda.org/jbednar/nyc\_taxi/notebook</a>