1 Problème qui n'était pas présent avant

Lors de l'exécution des scripts sudo ./ethsetup.sh et tx_waveform_radar, une erreur 'command not found' est apparue, empêchant l'émission. Cette erreur n'était pas présente avant

2 Avant tout

Reconstruire les fichiers TX et RX sur chaque PC à partir des sources de 'RAMDisk_Original_version_2' pour repartir sur une base propre.

3 Génération des fichiers de formes d'ondes

- 1. Exécuter ISAC_PROJECT/New_setup/NS_Radar_packets_gen_WIFI_80MHz.py. Noter la valeur XXX affichée avec 'SIG LEN' durant l'exécution.
- 2. Cette exécution produit les fichiers nécessaires à la transmission et au traitement du signal. Le fichier .txt, utilisé pour la transmission, et les fichiers .npy, nécessaires à la réception, sont générés dans le répertoire ISAC_PROJECT/New_setup/tests/WIFI_80MHz/New_test_files

4 TX

- 1. Connexion à l'utilisateur: USRP config: Utiliser le mot de passe "usrpadmin".
- 2. Préparation de l'environnement Ethernet:
 - Exécuter sudo ./ethsetup.sh (sur le bureau).
 - Si la commande échoue, ouvrir ethsetup.sh et exécuter chaque ligne avec sudo. Vérifier la détection des USRP avec uhd_find_devices.
- 3. Création du disque RAM: Exécuter
 - "sudo mount -t tmpfs -o size=8192m tmpfs /export/home/usrpconfig/Desktop/RAMDisk". Ceci crée un disque RAM de 8 Go accessible via le dossier "RAMDisk" sur le bureau.
- 4. Préparation des fichiers de transmission:
 - Copier tx_waveform_radar (depuis RAMDisk_Original_version_2/build-dir) dans le dossier "RAMDisk".
 - Copier le fichier .txt généré précédemment (contenant la forme d'onde) dans le dossier "RAMDisk".
- 5. Lancement de la transmission: exécuter :
 - ./tx_waveforms_radar –args name=sam –subdev "A:0" –ant "TX/RX" –rate 200e6 –freq 3.2e9 sig_len XXX –spb XXX –file "filename.txt" –gain 30 –ref "external"
 - Remplacer les XXX par les valeurs obtenues lors de la génération des formes d'onde.
 - Consulter RAMDisk_Original_version_2/tx_waveforms_radar.cpp pour la signification des paramètres.
- 6. Transmission en boucle: Le fichier .txt sera émis en continu.

5 RX

- 1. Connexion à l'utilisateur: USRP config: Utiliser le mot de passe "usrpadmin".
- 2. Préparation de l'environnement Ethernet:

- Exécuter sudo ./ethsetup.sh (sur le bureau).
- Si la commande échoue, ouvrir ethsetup.sh et exécuter chaque ligne avec sudo. Vérifier la détection des USRP avec uhd_find_devices.
- 3. Création du disque RAM: Exécuter

"sudo mount -t tmpfs -o size=8192m tmpfs /export/home/usrpconfig/Desktop/RAMDisk". Ceci crée un disque RAM de 8 Go accessible via le dossier "RAMDisk" sur le bureau.

4. Préparation du fichier d'enregistrement:

Copier adv_rx_to_file (depuis RAMDisk_Original_version_2/build-dir) dans le dossier "RAMDisk".

5. Lancement de l'enregistrement:

Exécuter la commande suivante :

./adv_rx_to_file -args name=jerome -subdev "A:0" -rx_ant "TX/RX" -sync "external" -ref "external" -rate 200e6 -rx_freq 3.2e9 -rx_gain 30 -nsamps XXX -filename "AAA" -rx_bw 160e6 -channels "0" -nbr_meas BBB -secs CCC

- XXX par 3 fois la valeur sig_len obtenue précédemment.
- AAA par le nom du fichier de sortie souhaité.
- BBB par le nombre de mesures à effectuer.
- CCC par le délai en secondes entre chaque mesure.
- ex: si BBB = 3 et CCC = 1, on va réaliser 2 mesures de AAA samples séparées de 1 seconde.
- 6. Après l'enregistrement, les données seront disponibles dans le fichier "RAMDisk".

6 Traitement de signal

- 1. Préparation des fichiers:
 - RX: Déplacez le(s) fichier(s) généré(s) par le récepteur dans le répertoire suivant : ISAC_PROJECT/New_setup/tests/WIFI_80MHz/New_test_files/To_process
 - .npy: Déplacez le fichier .npy généré précédemment dans le répertoire suivant : ISAC_PROJECT/New_setup/tests/WIFI_80MHz/New_test_files
- 2. Exécution de l'analyse: Lancez le script :

ISAC_PROJECT/New_setup/NS_Radar_packets_rx_analysis_WIFI_80_MHz_final.py

3. Vérification des paramètres:

ATTENTION: Assurez-vous que les paramètres du fichier RX

(NS_Radar_packets_rx_analysis_WIFI_80_MHz_final.py) correspondent exactement à ceux du fichier TX (NS_Radar_packets_gen_WIFI_80MHz.py).

4. Résultats de l'analyse:

Les cartes distance-vitesse (nettoyées et non nettoyées) ainsi que les fichiers CSV correspondants seront générés dans le répertoire To_process.

- 5. Paramètres clés du traitement du signal:
 - m_wanted: Distance maximale représentée sur la carte.
 - v_wanted: Intervalle de vitesse représenté sur la carte (de -v_wanted à +v_wanted).
- 6. Ajustement de la visualisation:

Dans le fichier radcom_OFDM.py, fonction plot_Range_Doppler_Map, lignes 173 et 174, modifiez les valeurs maximales et minimales pour ajuster la représentation de la carte. Veillez à utiliser toute la plage de la colormap.