Invariant Object Recognition Enhanced By Object Persistence

Mark W. Schurgin & Jonathan I. Flombaum, Johns Hopkins University

Challenge of object recognition:

An object will not look the same each time we see it.

E.g.:

In the long-term this is a problem, but short-term, an opportunity, if we have an independent way of knowing the object is the *same* token.

GENERAL METHODS

1. Use **apparent motion** to manipulate perceived continuity during **incidental encoding**.

2. Test memory with a standard "old, similar, new" test.

Laws of object physics help us to learn just how different an object can look from itself: continuity constrained temporal association is the engine of object learning.

REPLICATION

Manipulate continuity through dynamic occlusion

RESULTS

Exp 1: Independently noisy encounters

*NB, Exp 2 and 3 include only old vs. new at test

Exp 2: Encounters and tests at different orientations

Reprints:
reprints@jhu.edu

