However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. The choice of language used is subject to many considerations, such as company policy, suitability to task, availability of third-party packages, or individual preference. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. It affects the aspects of quality above, including portability, usability and most importantly maintainability. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. Normally the first step in debugging is to attempt to reproduce the problem. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Computer programmers are those who write computer software. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and Model-Driven Architecture (MDA). While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Programmers typically use high-level programming languages that are more easily intelligible to humans than machine code, which is directly executed by the central processing unit. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. Code-breaking algorithms have also existed for centuries. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. Following a consistent programming style often helps readability. Programmable devices have existed for centuries. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs.