PARTE I - POTENCIAL ELÉTRICO

- 1. © Uma carga elétrica cria no ponto P, situado a 20 cm dela um campo elétrico de intensidade 900 N/C. O módulo do potencial elétrico deste ponto é:
 - a) 100 V
- b) 180 V
- c) 200 V
- d) 270 V
- e) 360 V
- 2. © Sabendo que 180 V é o potencial elétrico, em um ponto no vácuo, produzido por uma carga elétrica de 80×10^{-10} C. Determine qual é a distância desse ponto até a carga elétrica que o produz.
- 3. \blacksquare Tem-se no campo de uma carga pontual $Q=100~\mu C$ dois pontos A e B distantes de Q respectivamente 30 cm e 90 cm. Uma carga $q=-2~\mu C$ é transportada desde B até A. Calcule Os potenciais dos pontos A e B criados pela carga Q.
- 4. © Analise as alternativas abaixo referentes às unidades de medida estudadas no potencial elétrico:
 - I. A unidade de medida da carga elétrica é metro por segundo.
 - II. A unidade de medida do trabalho da força elétrica é Joule.
 - III. A unidade de medida do campo elétrico é Newton por Coulomb.
 - IV. A unidade de medida da energia potencial elétrica é Coulomb.
 - V. A unidade de medida do potencial elétrico é Volt.

Está(ão) correta(s):

- A) Todas estão incorretas.
- B) Todas estão corretas.
- C) I, II e V.
- D) I, III e IV.
- E) II, III e V.
- 5. © Se o deslocamento fosse feito por outra trajetória, qual seria o trabalho realizado?

6. • O diagrama abaixo representa o gráfico do potencial elétrico em função da distância devido à presença de uma carga elétrica no vácuo. Nessas condições, o valor de x é:

- a) 0,36 m
- b) 0,40 m
- c) 0,44 m
- d) 0,48 m
- e) 0,60 m

PARTE II - TRABALHO DA FORÇA ELÉTRICA E ENERGIA POTENCIAL ELÉTRICA

- 7. © Determine o trabalho que deve ser realizado pela força elétrica para transportar uma carga q = 6×10^{-6} C de um ponto A até um ponto B, cujos potenciais são, respectivamente, 60 V e 40 V.
- 8. ② (sala de aula) Na figura vemos a representação de uma das linhas de força de um campo elétrico. Estão demarcados os valores de potencial dos pontos A e B. Calcule a energia potencial adquirida por uma carga de prova q = 3,0 pC ao ser colocada em cada um desses dois pontos.

- 9. © Uma partícula de carga elétrica q = 2,0 μ C é usada como carga de prova em uma região onde há campo elétrico. Ao ser colocada num ponto A, de potencial V_A , adquire uma energia potencial de 4,0 μ J e, ao ser colocada em outro ponto, B, de potencial V_B , adquire potencial de 8,0 μ J.
 - a) Determine os potenciais de V_A e V_B .
 - b) Trocamos a carga de prova por outra, de valor q' = 3,0 μ C. Determine os potenciais de A e B, bem como a energia potencial da carga de prova em A e em B.
- 10. 10. 11. Num ponto P de uma região onde há campo elétrico, o potencial elétrico vale $V_P = 6,0$ V. Considere uma carga elétrica puntiforme $q = 2,0 \times 10^{-8}$ C. Se você a colocar no ponto P, qual será a energia potencial por ela adquirida?
- 11. \bullet No campo elétrico de carga $Q=3~\mu C$ são dados dois pontos, A e B, conforme a figura abaixo. Determine:
 - a) os potenciais elétricos de A e de B;
 - b) o trabalho da força elétrica que atua sobre uma carga elétrica q $=1~\mu\mathrm{C},$ no deslocamento de A para B. O meio é o vácuo.

- 12. **44** Uma partícula de carga $q=2,5\times 10^{-8}$ C, positiva, colocada num determinado ponto P de uma região onde existe um campo elétrico, adquire energia potencial elétrica $E_{Pep}=5,0\times 10^6$ J, e sobre ela passa a ser exercida força de módulo $F_P=7,5$ N, vertical para cima.
 - a) Qual é o potencial elétrico desse campo nesse ponto?
 - b) Qual é o vetor campo elétrico desse campo nesse ponto?
 - c) Se em vez dessa partícula fosse colocada nesse ponto outra partícula de carga positiva $q=1,5\times 10^{-8}$ C, quais seriam a energia potencial elétrica por ela adquirida e a força exercida sobre ela pelo campo elétrico?
- 13. \clubsuit A figura representa, esque maticamente, várias superfícies equipotenciais de um campo elétrico.

- a) Determine o trabalho realizado pela força elétrica para levar uma carga q=10 μC do ponto A ao ponto D, pelo caminho indicado.
- b) qual seria o trabalho realizado se fosse levada de A para D por outro caminho?
- 14. \blacktriangle Abaixo estão representadas superfícies equipotenciais produzidas por uma carga elétrica $Q=4~\mu C$ fixa no vácuo, sabe-se que a distância entre cada superfície equipotencial é de 1,0 metro. Use $k_0=9\times 10^9~Nm^2/C^2$.

- a) Qual o potencial elétrico do ponto A? E do ponto B?
- b) Qual o trabalho realizado pela fel para deslocar uma carga q = 2 μ C do ponto A para o ponto B? Dê o significado de seu cálculo.
- 15. \heartsuit Uma partícula com carga elétrica q = 1 mC e massa 2 g é abandonada em repouso num ponto de um campo elétrico onde o potencial elétrico vale 100 V, calcule a velocidade que é terá quando passar por um ponto onde o potencial elétrico vale 75 V.