Spatial Concepts and Data Models

1

What is a Data Model?

- •What is a model? (Dictionary meaning!)
 - A set of plans (blueprint drawing)
 - •A miniature representation of a system to analyze properties of interest
- •What is Data Model?
 - Specify structure or schema of a data set
 - Document description of data
 - Facilitates early analysis of some properties, e.g. querying ability, consistency, storage space requirements, etc.
- Examples:
 - •GIS organize spatial set as a set of layers
 - •Databases organize dataset as a collection of tables
- •Data models facilitate
 - \bullet Early analysis of properties, e.g. storage cost, querying ability, ...
 - Reuse of shared data among multiple applications
 - Exchange of data across organization
 - Conversion of data to new software / environment

Types of Data Models

- Two Types of data models
 - · Generic data models
 - Developed for business data processing
 - Support simple abstract data types (ADTs), e.g. numbers, strings, date
 - Not convenient for spatial ADTs, e.g. polygons
 - Need to extend with spatial concepts, e.g. ADTs
 - Application Domain specific, e.g. spatial models
 - Set of concepts developed in Geographic Info. Science
 - Common spatial ADTs across different GIS applications

3

Models of Spatial Information

State-Park Spatial dB

- Forests collections of forest stands
- · Accessed by road
- Has Manager
- Fire-stations within State-Park
- Facilities: Camping ground, Offices
- Rivers passes through the park and supply water at different facilities

- Two common models
 - Field based
 - Object based
- Example: Forest stands
 - Fig.
 - (a) forest stand map
 - (b) Object view has 3 polygons
 - (c) Field view has a function

Field based Model

- Three main concepts:
 - Spatial Framework is a partitioning of space
 - e.g., Grid imposed by Latitude and Longitude
 - Field Functions:
 - f: Spatial Framework → Attribute Domain
 - Field Operations
 - Examples, addition(+) and composition(o).

$$f + g : x \to f(x) + g(x)$$

 $f \circ g : x \to f(g(x))$

5

Types of Field Operations

- Local: value of the new field at a given location in the spatial framework depends only on the value of the input field at that location(e.g., Thresholding)
- Focal: value of the resulting field at a given location depends on the values that the input field assumes in a small neighborhood of the location(e.g., Gradient)
- Zonal: Zonal operations are naturally associated with aggregate operators or the integration function. An operation that calculates the average height of the trees for each species is a zonal operation.
- Classify following operations on elevation field
 - Identify peaks (points higher than its neighbors)
 - Identify mountain ranges (elevation over 2000 feet)
 - Determine average elevation of a set of river basins

Object Model

- Object model concepts
 - Objects: distinct identifiable things relevant to an application
 - Objects have attributes and operations
 - Attribute: a simple (e.g. numeric, string) property of an object
 - Operations: function maps object attributes to other objects
- Example from a roadmap
 - Objects: roads, landmarks, ...
 - Attributes of road objects:
 - spatial: location, e.g. polygon boundary of land-parcel
 - non-spatial: name (e.g. Route 66), type (e.g. interstate, residential street), number of lanes, speed limit, ...
 - Operations on road objects: determine center line, determine length, determine intersection with other roads, ...

7

Classifying Spatial objects

- Spatial objects are spatial attributes of general objects
- Spatial objects are of many types
 - •Simple
 - •0- dimensional (points), 1 dimensional (curves), 2 dimensional (surfaces)
 - •Example given at the bottom of this slide
 - Collections
 - •Polygon collection (e.g. boundary of Japan or Hawaii), ...

Spatial Object Types	Example Object	Dimension
Point	City	0
Curve	River	1
Surface	Country	2

Classifying Operations on spatial objects in Object Model

- Classifying operations
 - Set theory based: 2-dimensional spatial objects (e.g. polygons) are sets of points
 - a set operation (e.g. intersection) of 2 polygons produce another polygon
 - Topological operations: Boundary of USA touches boundary of Canada
 - Directional: New York city is to east of Chicago
 - Metric: Chicago is about 700 miles from New York city.

Set theory based	Union, Intersection, Containment,
Toplogical	Touches, Disjoint, Overlap, etc.
Directional	East,North-West, etc.
Metric	Distance

Topological Relationships

- Topological Relationships
 - Invariant under elastic deformation (without tear, merge).
 - Two countries which touch each other in a planar paper map will continue to do so in spherical globe maps.
- Topology is the study of topological relationships
- Example gueries with topological operations
 - What is the topological relationship between two objects A and B?
 - Find all objects which have a given topological relationship to object A?

11

Topological Concepts

- Interior, boundary, exteriorLet A be an object in a "Universe" U.
- U

Green is A interior (A°)

Red is boundary of A (∂A)

Blue –(Green + Red) is A exterior (A^{-})

Nine-Intersection Model of Topological Relationships

- Topological Relationship between A and B can be
 - specified using 9 intersection model
- Nine intersections
 - intersections between interior, boundary, exterior of A, B
 - A and B are spatial objects in a two dimensional plane.
 - Can be arranged as a 3 by 3 matrix
 - Matrix element take a value of 0 (false) or 1 (true).
- Q? Determine the number of many distinct 3 by 3 Boolean matrices

$$\Gamma_9(A, B) = \begin{pmatrix} A^{\circ} \cap B^{\circ} & A^{\circ} \cap \partial B & A^{\circ} \cap B^{-} \\ \partial A \cap B^{\circ} & \partial A \cap \partial B & \partial A \cap B^{-} \\ A^{-} \cap B^{\circ} & A^{-} \cap \partial B & A^{-} \cap B^{-} \end{pmatrix}$$

13

Specifying topological operation in 9-Intersection Model

Nine (9) intersection matrices for a few topological operations

Using Object Model of Spatial Data

- Object model of spatial data
 - OGIS/OGC standard set of spatial data types and operations
 - Similar to the object model in computer software
 - Easily used with many computer software systems
 - Programming languages like Java, C++, Visual basic
 - Post-relational databases, e.g. OODBMS, ORDBMS

15

Three-Step Database Design

- Database applications are modeled using a threestep design process
 - Conceptual datatypes, relationships and constraints(ER model)
 - Logical mapping to a Relational model and associated query language(Relational Algebra)
 - Physical file structures, indexing

Example Application Domain

- Database design is for a specific application domain
 - Often a requirements document is available
 - Designers discuss requirements with end-users as needed
 - We will use a simple spatial application domain
 - to illustrate concepts in conceptual and logical data models
 - to illustrate translation of conceptual DM to logical DM
- Spatial application domain
 - A state-park consists of forests.
 - A forest is a collection of *forest-stands* of different species
 - State-Park is accessed by roads and has a manager
 - State-Park has facilities
 - River runs through state-park and supplies water to the facilities

17

Conceptual DM: The ER Model

- Three basic concepts
 - Entities have an independent conceptual or physical existence.
 - Examples: Forest, Road, Manager, ...
 - Entities are characterized by Attributes
 - Example: Forest has attributes of name, elevation, etc.
 - An Entity interacts with another Entity through relationships.
 - Road allow access to Forest interiors.
 - This relationship may be name "Accesses"
- Comparison with Object model of spatial information
 - Entities are collections of attributes are like objects
 - However ER model does not permit general user defined operations
 - Relationships are not directly supported in Object model
 - but may be simulated via operations

Relationship Types

- Relationships can be categorized by
 - cardinality constraints
 - other properties, e.g. number of participating entities
 - Binary relationship: two entities participate
- Types of Cardinality constraints for binary relationships
 - One-One: An instance of an entity relates to a unique instance of other entity.
 - Many-One: Many instances of an entity relate to an instance of an other.
 - Many-Many: Many instances of one entity relate to multiple instances of another.
- Identify type of cardinality constraint for following:
 - Many facilities belong to a forest. Each facility belong to one forest.
 - A manager manages 1 forest. Each forest has 1 manager.
 - A river supplies water to many facilities. A facility gets water from many rivers.

10

ER Diagrams Graphical Notation

- ER Diagrams are graphic representation of ER models
 - Several different graphic notation are used
- Q? Compare and contrast "Attributes" and "Multi-valued attributes"

Concept	Symbol
Entities	
Attributes	
Multi-valued Attributes	
Relationships	\Diamond
Cardinality of Relationship	1:1, M:1, M:N

- Examples:
 - List the entities, attributes, relationships in this ER diagram
 - Identify cardinality constraint for each relationship.
 - How many roads "Accesses" a "Forest_stand"? (one or many)

2

Logical Data Model: The Relational Model

- Relational model is based on set theory
- Main concepts
 - Domain: a set of values for a simple attribute
 - Relation: cross-product of a set of domains
 - Represents a table, i.e. homogeneous collection of rows (tuples)
 - Set of columns (i.e. attributes) are same for each row
- Comparison to concepts in conceptual data model
 - Relations are similar to but not identical to entities
 - Domains are similar to attributes
 - Translation rules establishing exact correspondence

Relational Schema

- Schema of a Relation
 - Enumerates columns, identifies primary key and foreign keys.
 - Primary Key:
 - one or more attributes uniquely identify each row within a table
 - Foreign keys
 - R's attributes which form primary key of another relation S
 - Value of a foreign key in any tuple of R match values in some row of S
- Relational schema of a database
 - Collection of schemas of all relations in the database
 - A Blue print summary drawing of the database table structures
 - Allows analysis of storage costs, data redundancy, querying capabilities
 - Some databases were designed as relational schema in 1980s

23

Relational Schema Example Stand-id Species Forest-name Stand-id Polygonid (Integer) River-Geom Name Length Lineid Name (varchar) Identify relations with Road Road-Geom · primary keys Name NumofLanes Rname Lineid (varchar) · foreign keys Facility Facility-Geo • other attributes Name Forest-name Name Pointid (varchar) (varchar) (varchar) (varchar) (Integer) Compare with ER diagram Name Name Polygonid (varchar) (varchar) (Integer) ForName Name (varchar) (varchar) (varchar) (Integer) Supplies_Water_To FacName RivName RoadName ForName (varchar) (varchar) (varchar) (varchar) Name Age Gender ForName

Relational Schema for "Point", "Line", "Polygon" and "Elevation"

- Relational model restricts attribute domains
 - Simple atomic values, e.g. a number
 - Disallows complex values (e.g. polygons) for columns
 - Complex values need to be decomposed into simpler domains
 - A polygon may be decomposed into edges and vertices

Polygon		
Polygonid	Seq-no	Pointid
(Integer)	(Integer)	(Integer)

Line		
Lineid	Seq-no	Pointid
(Integer)	(Integer)	(Integer)

Point		
Pointid	Latitude	Longitude
(Integer)	(Real)	(Real)

Elevation		
Forest-name	Pointid (F.K.)	Elevation
(varchar)	(Integer)	(Real)

25

More on Relational Model

- Integrity Constraints
 - Key: Every relation has a primary key.
 - Entity Integrity: Value of primary key in a row is never undefined
 - Referential Integrity: Value of an attribute of a Foreign Key must appear as a value in the primary key of another relationship or must be null.
- Normal Forms (NF) for Relational schema
 - Reduce data redundancy and facilitate querying
 - 1st NF: Each column in a relation contains an atomic value.
 - 2nd and 3rd NF: Values of non-key attributes are fully determined by the values of the primary key, only the primary key, and nothing but the primary key.
 - Other normal forms exists but are seldom used
 - Translating a well-designed ER model yields a relational schema in 3rd NF
 - satisfying definition of 1st, 2nd and 3rd normal forms

Mapping ER to Relational

- · Highlights of transactional rules
 - Entity becomes Relation
 - Attributes become columns in the relation
 - Multi-valued attributes become a new relation
 - includes foreign key to link to relation for the entity
 - Relationships (1:1, 1:N) become foreign keys
 - M:N Relationships become a relation
 - · containing foreign keys or relations from participating entities

27

Extending ER with Spatial Concepts

- Motivation
 - ER Model is based on discrete sets with no implicit relationships
 - Spatial data comes from a continuous set with implicit relationships
 - Any pair of spatial entities has relationships like distance, direction, ...
- Explicitly drawing all spatial relationship
 - Clutters ER diagram
 - Generates additional tables in relational schema
 - Misses implicit constraints in spatial relationships (e.g. partition)
- Pictograms
 - Label spatial entities along with their spatial data types
 - · Allows inference of spatial relationships and constraints
 - Reduces clutter in ER diagram and relational schema

Entity Pictograms: Derived and Alternate Shapes

- Derived shape example is city center point from boundary polygon
- Alternate shape example: A road is represented as <u>a polygon for construction</u>, or, as a <u>line for navigation</u>

Conceptual Data Modeling with UML

- Motivation
 - ER Model does not allow user defined operations
 - Object oriented software development uses UML
 - UML stands for Unified Modeling Language
 - It is a standard consisting of several diagrams
 - · class diagrams are most relevant for data modeling
- UML class diagrams concepts
 - Attributes are simple or composite properties
 - Methods represent operations, functions and procedures
 - Class is a collection of attributes and methods
 - Relationship relate classes

33

UML Class Diagram with Pictograms: Example •Exercise: Identify classes, attributes, methods, relationships in the Figure. •Compare it with corresponding ER diagram River Road # Name # Length + GetName() Supplies-Water-To # NumofLanes # Volume GetName() + GetLength() + GetNumofLanes() upplies_water_to LEGEND Strong Aggregation Facility Forest # Name # Elevation # Name Weak Aggregation + GetName() belongs_to accesses + GetName() *..* Cardinality GetElevation(): Point manages monitor Fire-Station ∑ Forest-Stand Manager # Name + GetNa # SpecieName # Name # Age # Gender Name GetName() + GetSpecieName() + GetName() + GetAge() + GetGender()

Comparing UML Class Diagrams to ER Diagrams

- Concepts in UML class diagram vs. those in ER diagrams
 - Class without methods is an Entity
 - Attributes are common in both models
 - UML does not have key attributes and integrity constraints
 - ERD does not have methods
 - Relationships properties are richer in ERDs
 - Entities in ER diagram relate to datasets, but UML class diagram can contain classes which have little to do with data

35

Summary

- Spatial Information modeling can be classed into Field based and Object based
- Field based for modeling smoothly varying entities, like rainfall
- Object based for modeling discrete entities, like country

Summary

- A data model is a high level description of the data
 - it can help in early analysis of storage cost, data quality
- There are two popular models of spatial information
 - Field based and Object based
- Database are designed in 3-steps
 - Conceptual, Logical and Physical
- Pictograms can simplify Conceptual data models