CS 346: Bottom Up Parser

Resource: Textbook

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, "Compilers: Principles, Techniques, and Tools", Addison-Wesley, 1986.

Bottom-Up Parsing

Bottom-up parser:

- parse tree created from the given input starting from leaves towards the root
- tries to find the right-most derivation of the given input in the reverse order

```
S \Rightarrow ... \Rightarrow \omega (the right-most derivation of \omega)
```

← (the bottom-up parser finds the right-most derivation in the reverse order)

- Bottom-up parsing: also known as shift-reduce parsing because its two main actions are shift and reduce
 - At each shift action, the current symbol in the input string is pushed to a stack
 - At each reduction step, the symbols at the top of the stack (this symbol sequence is the right side of a production) replaced by the non-terminal at the left side of that production
 - Two more actions: *accept* and *error*

Shift-Reduce Parsing

• Shift-reduce parser tries to reduce the given input string into the starting symbol

a string \rightarrow the starting symbol reduced to

- At each reduction step, a substring of the input matching to the right side of a production rule is replaced by the non-terminal at the left side of that production rule
- If the substring is chosen correctly, the right most derivation of that string is created in the reverse order

Rightmost Derivation:
$$S \Rightarrow \omega$$
rm

Shift-Reduce Parser finds:
$$\omega \Leftarrow_{rm} ... \Leftarrow_{rm} S$$

Shift-Reduce Parsing -- Example

$$S \rightarrow aABb$$
 input string: aaabb
 $A \rightarrow aA \mid a$ aaAbb
 $B \rightarrow bB \mid b$ aAbb \downarrow reduction
aABb
S

• How do we know which substring to be replaced at each reduction step?

Handle

- Handle of a string is a substring that matches the right side of a production rule
 - not every substring that matches the right side of a production rule is handle
- A **handle** of a right sentential form $\gamma (\equiv \alpha \beta \omega)$:

 a production rule $A \to \beta$ and a position of γ where the string β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ

$$S \stackrel{rm}{\Longrightarrow} \alpha A \omega \stackrel{rm}{\Longrightarrow} \alpha \beta \omega$$

 ω is a string of terminals

• If the grammar is *unambiguous*, then every right-sentential form of the grammar has exactly one handle

Handle Pruning

• A right-most derivation in reverse can be obtained by **handle-pruning**

$$S=\gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \dots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n = Q$$
 input string

- Start from γ_n , find a handle $A_n \rightarrow \beta_n$ in γ_n , and replace β_n by A_n to get γ_{n-1}
- Then find a handle $A_{n-1} \rightarrow \beta_{n-1}$ in γ_{n-1} , and replace β_{n-1} by A_{n-1} to get γ_{n-2}
- Repeat this, until we reach S

A Shift-Reduce Parser

$$E \rightarrow E+T \mid T$$
 Right-Most Derivation of id + id*id

 $T \rightarrow T*F \mid F$ $E \Rightarrow E+T*F \Rightarrow E+T*id \Rightarrow E+F*id$
 $F \rightarrow (E) \mid id$ $\Rightarrow E+id*id \Rightarrow T+id*id \Rightarrow F+id*id \Rightarrow id+id*id$

Right-Most Sentential Form Reducing Production

	0
<u>id</u> +id*id	$F \longrightarrow id$
<u>F</u> +id*id	$T \rightarrow F$
<u>T</u> +id*id	$E \rightarrow T$
E+ <u>id</u> *id	$F \rightarrow id$
E+ <mark>F</mark> *id	$T \rightarrow F$
E+T* <u>id</u>	$F \rightarrow id$
E + T * F	$T \rightarrow T*F$
E+T	$E \rightarrow E+T$

 \mathbf{E}

Handles are red and underlined in the right-sentential forms.

A Stack Implementation of A Shift-Reduce Parser

Four possible actions of a shift-parser:

- 1. **Shift**: The next input symbol is shifted onto the top of the stack
- 2. Reduce: Replace the handle on the top of the stack by the non-terminal
- 3. Accept: Successful completion of parsing
- 4. Error: Parser discovers a syntax error, and calls an error recovery routine

- Initial stack: contains only the end-marker \$
- End of the input string: marked by the end-marker \$

A Stack Implementation of A Shift-Reduce Parser

	<u>Stack</u>	<u>Input</u>	Action			
	\$	id+id*id \$	shift			
	\$id	+id*id\$	reduce by $F \rightarrow id$	<u>Par</u>	<u>rse Tree</u>	
	\$F	+id*id\$	reduce by $T \to F$			
	\$ T	+id*id\$	reduce by $E \rightarrow T$		E 8	
	\$E	+id*id\$	shift			
	\$E+	id*id\$	shift	E 3	+ T 7	
	\$E+id	*id\$	reduce by $F \rightarrow id$			
	\$E+F	*id\$	reduce by $T \rightarrow F$	$T^{1}2$	T 5 *	F
	\$E+T	*id\$	shift			
	\$E+T*	id\$	shift	F 1	F ¹ 4	id
	\$E+T*id	\$	reduce by $F \rightarrow id$			
	\$E+T*F	\$	reduce by $T \rightarrow T*F$	id	id	
	\$E+T	\$	reduce by $E \rightarrow E+T$			
	\$E	\$	accept			
ı						

Conflicts During Shift-Reduce Parsing

- For certain class of CFGs, shift-reduce parsers cannot be used
- Stack contents and the next input symbol may not decide action:
 - shift/reduce conflict: Whether make a shift operation or a reduction
 - reduce/reduce conflict: The parser cannot decide which of several reductions to make
- If a shift-reduce parser cannot be used for a grammar, that grammar is called as non-LR(k) grammar

An ambiguous grammar can never be a LR grammar

Shift-Reduce Parsers

Two main categories of shift-reduce parsers:

1. Operator-Precedence Parser

• simple, but only a small class of grammars

2. LR-Parsers

- covers wide range of grammars
 - SLR simple LR parser
 - LR most general LR parser
 - LALR intermediate LR parser (lookahead LR parser)
- SLR, LR and LALR work same, only their parsing tables are different

LR Parsers

• The most powerful shift-reduce parsing (yet efficient) is:

- LR parsing is attractive because:
 - LR parsers can be constructed to recognize virtually all programming language constructs for which CFGs can be written
 - LR parsing is most general non-backtracking shift-reduce parsing, yet it is still efficient
 - Class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers or LL methods

$$LL(1)$$
-Grammars $\subset LR(1)$ -Grammars

• LR-parser can detect a syntactic error as soon as it is possible to do so a left-to-right scan of the input

LR Parsing Algorithm

A Configuration of LR Parsing Algorithm

• A configuration of a LR parsing is:

- S_m and a_i decides the parser action by consulting the parsing action table (Initial Stack contains just S_o)
- S_0 : does not represent any grammar symbol
- A configuration of a LR parsing represents the right sentential form:

$$X_1 \dots X_m a_i a_{i+1} \dots a_n$$
\$

Actions of A LR-Parser

- 1. **shift s** -- shifts the next input symbol and the state **s** onto the stack $(S_o X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_o X_1 S_1 ... X_m S_m a_i s, a_{i+1} ... a_n \$)$
- 2. reduce $A \rightarrow \beta$ (or **rn** where n is a production number)
 - pop $2|\beta|$ (=r) items from the stack;
 - then push A and s where $s=goto[s_{m-r}, A]$

$$(S_o X_1 S_1 ... X_m S_m, a_i a_{i+1} ... a_n \$) \rightarrow (S_o X_1 S_1 ... X_{m-r} S_{m-r} A s, a_i ... a_n \$)$$

- Output is the reducing production $A \rightarrow \beta$
- 3. Accept Parsing successfully completed
- **4. Error** -- Parser detected an error (an empty entry in the action table)

Reduce Action

- pop $2 | \beta |$ (=r) items from the stack; let us assume that $\beta = Y_1 Y_2 ... Y_r$
- then push A and s where $s=goto[s_{m-r}, A]$

$$(S_{o} X_{1} S_{1} ... X_{m-r} S_{m-r} Y_{1} S_{m-r-1} ... Y_{r} S_{m}, a_{i} a_{i+1} ... a_{n} \$)$$

$$(S_{o} X_{1} S_{1} ... X_{m-r} S_{m-r} A s, a_{i} ... a_{n} \$)$$

• In fact, $Y_1Y_2...Y_r$ is a handle

$$X_1 \dots X_{m-r} \land a_i \dots a_n$$
 $\Rightarrow X_1 \dots X_m \land Y_1 \dots \land Y_r \land a_i \land a_{i+1} \dots \land a_n$

(SLR) Parsing Tables for Expression Grammar

1) $E \rightarrow E+T$

2)
$$E \rightarrow T$$

- 3) $T \rightarrow T*F$
- 4) $T \rightarrow F$
- $5) F \rightarrow (E)$
- 6) $F \rightarrow id$

A 4 •	- 1 1
Λ of 101	Iahla
Action	Table

Goto Table

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Actions of A (S)LR-Parser -- Example

<u>input</u>	<u>action</u>	<u>output</u>
id*id+id\$	shift 5	
*id+id\$	reduce by F→id	$F \rightarrow id$
*id+id\$	reduce by $T \rightarrow F$	$T \rightarrow F$
*id+id\$	shift 7	
id+id\$	shift 5	
+id\$	reduce by F→id	$F \rightarrow id$
+id\$	reduce by $T \rightarrow T*F$	$T \rightarrow T*F$
+id\$	reduce by $E \rightarrow T$	$E \rightarrow T$
+id\$	shift 6	
id\$	shift 5	
\$	reduce by F→id	$F \rightarrow id$
\$	reduce by $T \rightarrow F$	$T \longrightarrow F$
\$	reduce by $E \rightarrow E + T$	$E \rightarrow E + T$
\$	accept	
	id*id+id\$ *id+id\$ *id+id\$ *id+id\$ *id+id\$ id+id\$ +id\$ +id\$ +id\$ +id\$ *id\$	id*id+id\$ shift 5 *id+id\$ reduce by F→id *id+id\$ reduce by T→F *id+id\$ shift 5 +id\$ reduce by F→id +id\$ reduce by E→T +id\$ reduce by E→T +id\$ reduce by E→T +id\$ shift 6 id\$ shift 5 \$ reduce by F→id \$ reduce by T→F \$ reduce by E→E+T

Constructing SLR Parsing Tables – LR(0) Item

• LR(0) item: a production of G a dot at the some position of the right side

Ex: $A \to aBb$ Possible LR(0) Items: $A \to aBb$ (four different possibilities) $A \to a \cdot Bb$ $A \to aB \cdot b$ $A \to aBb \cdot aBb \cdot$

- Sets of LR(0) items: states of action and goto table of the SLR parser
- Collection of sets of LR(0) items (the canonical LR(0) collection) is the basis for constructing SLR parsers
- Augmented Grammar: G' is

G with a new production rule $S' \rightarrow S$ where S' is the new starting symbol

The Closure Operation

I: set of LR(0) items for a grammar G*closure(I)*: Set of LR(0) items constructed from I by the two rules:

- 1. Initially, every LR(0) item in I is added to closure(I)
- 2. If $A \to \alpha \bullet B\beta$ is in closure(I) and $B \to \gamma$ is a production rule of G; then $B \to \bullet \gamma$ will be in the closure (I)

We will apply this rule until no more new LR(0) items can be added to closure(I)

The Closure Operation — Example

$$E' \rightarrow E \qquad \text{closure}(\{E' \rightarrow \bullet E\}) = \\ \{E' \rightarrow \bullet E \qquad \text{kernel items} \\ E \rightarrow T \qquad E \rightarrow \bullet E + T \qquad E \rightarrow \bullet T \\ T \rightarrow T*F \qquad E \rightarrow \bullet T \qquad T \rightarrow F \\ T \rightarrow F \qquad T \rightarrow \bullet T*F \qquad T \rightarrow \bullet F \\ F \rightarrow \text{id} \qquad F \rightarrow \bullet \text{id} \}$$

Kernel and Non-kernel Items

• Each set of items formed by taking the closure of a set of kernel items

• We are really interested in kernel items

Non-kernel items can be removed to save storage

Non-kernel items could be generated by the closure process

Goto Operation

- If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto (I,X) is defined as follows:
 - If $A\to\alpha$, $X\beta$ in I then every item in $closure(\{A\to\alpha X\ ,\ \beta\})$ will be in goto (I,X)

Example:

```
I = \{ E' \rightarrow \bullet E, E \rightarrow \bullet E+T, E \rightarrow \bullet T, \\ T \rightarrow \bullet T*F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id \} 
goto (I,E) = \{ E' \rightarrow E \bullet , E \rightarrow E \bullet +T \} 
goto (I,T) = \{ E \rightarrow T \bullet , T \rightarrow T \bullet *F \} 
goto (I,F) = \{ T \rightarrow F \bullet \} 
goto (I,() = \{ F \rightarrow (\bullet E), E \rightarrow \bullet E+T, E \rightarrow \bullet T, T \rightarrow \bullet T*F, T \rightarrow \bullet F, \\ F \rightarrow \bullet (E), F \rightarrow \bullet id \} 
goto (I,id) = \{ F \rightarrow id \bullet \}
```

Construction of The Canonical LR(0) Collection

• To create the SLR parsing tables for a grammar G, we will create the canonical LR(0) collection of the grammar G'

• Algorithm:

```
C is { closure({S'→ • S}) }
repeat the followings until no more set of LR(0) items can be added to C.
for each I in C and each grammar symbol X
    if goto(I,X) is not empty and not in C
    add goto(I,X) to C
```

• goto function is a DFA on the sets in C.

The Canonical LR(0) Collection -- Example

$$I_0: E' \to .E$$

$$E \to .E+T$$

$$E \to .T$$

$$T \to .T *F$$

$$T \to .F$$

$$F \to .(E)$$

$$F \to .\mathrm{id}$$

$$I_1: E' \to E.$$

$$E \rightarrow E.+T$$

$$I_2: E \rightarrow T$$
.

$$T \rightarrow T.*F$$

$$I_3: T \rightarrow F$$
.

$$I_4: F \rightarrow (.E)$$

$$E \rightarrow .E + T$$

$$E \rightarrow .T$$

$$T \rightarrow .T*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_5: F \longrightarrow id$$
.

$$I_6: E \rightarrow E+.T$$

$$T \rightarrow .T*F$$

$$T \rightarrow .F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_7: T \rightarrow T^*.F$$

$$F \rightarrow .(E)$$

$$F \rightarrow .id$$

$$I_8: F \rightarrow (E.)$$

$$E \rightarrow E.+T$$

$$I_0: E \to E+T$$
.

$$T \rightarrow T.*F$$

$$I_{10}: T \rightarrow T*F.$$

$$I_{11}: F \rightarrow (E)$$
.

Transition Diagram (DFA)

Constructing SLR Parsing Table

(of an augmented grammar G')

- 1. Construct the canonical collection of sets of LR(0) items for G' $C \leftarrow \{I_0, ..., I_n\}$
- 2. Create the parsing action table as follows
 - If \underline{a} is a terminal, $A \rightarrow \alpha.a\beta$ in I_i and goto $(I_i, a) = I_j$ then action[i, a] is **shift** j
 - If $A \rightarrow \alpha$. is in I_i , then action[i,a] is **reduce** $A \rightarrow \alpha$ for all a in FOLLOW(A) where $A \neq S$
 - If $S' \rightarrow S$. is in I_i , then action[i,\$] is *accept*
 - If any conflicting actions generated by these rules, the grammar is not SLR(1)
- 3. Create the parsing goto table
 - for all non-terminals A, if goto $(I_i, A)=I_i$ then goto [i, A]=j
- 4. All entries not defined by (2) and (3) are errors
- 5. Initial state of the parser contains $S' \rightarrow .S$

The Canonical LR(0) Collection -- Example

$$I_0: E' \rightarrow .E$$

$$E \rightarrow .E+T$$

 $E \rightarrow .T$

$$T \rightarrow .T*F$$

 $T \rightarrow .F$

$$F \rightarrow .(E)$$

 $F \rightarrow .id$

$$I_1: E' \to E$$
.

 $E \rightarrow E.+T$

$$I_2: E \rightarrow T$$
.

 $T \rightarrow T.*F$

$$I_3:T \to F$$
.

 $I_4: F \rightarrow (.E)$

 $E \rightarrow .E+T$

 $E \rightarrow .T$

 $T \rightarrow .T*F$

 $T \rightarrow .F$

 $F \rightarrow .(E)$

 $F \rightarrow .id$

$$I_5: F \rightarrow id$$
.

$$I_6: E \rightarrow E+.T$$

 $T \rightarrow .T*F$

 $T \rightarrow .F$

 $F \rightarrow .(E)$

 $F \rightarrow .id$

$$E+.T$$
 $I_9: E \rightarrow E+T.$

 $T \rightarrow T.*F$

 $I_{10}: T \rightarrow T*F.$

 $I_{11}: F \rightarrow (E)$.

$$I_7: T \rightarrow T^*.F$$

 $F \rightarrow .(E)$

 $F \rightarrow .id$

 $I_8: F \rightarrow (E.)$

 $E \rightarrow E.+T$

Parsing Tables of Expression Grammar

Action Table

Goto Table

state	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

SLR(1) Grammar

• An LR parser using SLR(1) parsing tables for a grammar G is called as the SLR(1) parser for G

• If a grammar G has an SLR(1) parsing table, it is called SLR(1) grammar (or SLR grammar in short)

• Every SLR grammar is unambiguous, but every unambiguous grammar is not a SLR grammar

shift/reduce and reduce/reduce conflicts

• **shift/reduce conflict:** choice between a shift operation or reduction for a terminal

• reduce/reduce conflict: If a state does not know whether it will make a reduction operation using the production rule i or j for a terminal

• If the SLR parsing table of a grammar G has a conflict, we say that the grammar is not SLR grammar

Conflict Example

$$S \rightarrow L=R$$

$$S \rightarrow R$$

$$L \rightarrow *R$$

$$L \rightarrow id$$

$$R \rightarrow L$$

 $I_0: S' \rightarrow .S$

$$S \rightarrow .L=R$$

$$S \rightarrow .R$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$R \rightarrow .L$$

 $I_1: S' \rightarrow S.$

$$I_2: S \rightarrow L.=R$$

$$R \rightarrow L$$
.

$$I_3: S \rightarrow R.$$

$$I_6: S \rightarrow L = .R \quad I_9: S \rightarrow L = R.$$

$$R \rightarrow .L$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

Problem

$$FOLLOW(R) = \{=, \$\}$$

shift 6

reduce by $R \rightarrow L$

shift/reduce conflict

$$I_4:L \rightarrow *.R$$

$$R \rightarrow .L$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$I_5$$
: $L \rightarrow id$.

 $I_7: L \rightarrow *R.$

 $I_8: R \rightarrow L.$

Conflict Example 2

Problem

FOLLOW(A)=
$$\{a,b\}$$

FOLLOW(B)= $\{a,b\}$
a reduce by A $\rightarrow \epsilon$
reduce by B $\rightarrow \epsilon$
reduce/reduce conflict

b reduce by
$$A \to \varepsilon$$

reduce by $B \to \varepsilon$
reduce/reduce conflict

Constructing Canonical LR(1) Parsing Tables

- In SLR method, the state i makes a reduction by $A \rightarrow \alpha$ when the current token is a:
 - if $A \rightarrow \alpha$ in I_i and a is in FOLLOW(A)
- In some situations, βA cannot be followed by the terminal a in a right-sentential form when $\beta \alpha$ and the state i are on the top stack. This means that making reduction in this case is not correct.

$$S \rightarrow AaAb$$

$$S \rightarrow BbBa$$

$$A \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$

$$Aab \Rightarrow \epsilon ab$$

$$AaAb \Rightarrow Aa \varepsilon b$$

Bba
$$\Rightarrow$$
 ϵ ba

An Example

- If L is reduced to R then the contents appear as: R= (no right sentential form can derive it)
- $R \rightarrow L$ is **INVALID** for the input symbol "="

LR(1) Item

• To avoid some of invalid reductions, the states need to carry more information

- Extra information is put into a state by including a terminal symbol as a second component in an item
- A LR(1) item is:

 $A \rightarrow \alpha \cdot \beta$, a where **a** is the look-ahead of the LR(1) item (**a** is a terminal or end-marker)

LR(1) Item (cont.)

- When β (in the LR(1) item $A\to\alpha.\beta,a$) is not empty, the look-ahead does not have any effect
- When β is empty $(A \to \alpha.,a)$, then Reduce by $A \to \alpha$ only if the next input symbol is a (not for any terminal in FOLLOW(A))
- A state contains $A \to \alpha., a_1 \text{ where } \{a_1, ..., a_n\} \subseteq FOLLOW(A)$...

$$A \rightarrow \alpha_{n}$$

Canonical Collection of Sets of LR(1) Items

• Process: similar to the construction of the canonical collection of the sets of LR(0) items,

but closure and goto operations work a little bit different

closure(I): (where I is a set of LR(1) items)

- every LR(1) item in I is in closure(I)
- if $A \rightarrow \alpha$. $B\beta$, a in closure(I) and $B \rightarrow \gamma$ is a production rule of G;

then $B\rightarrow .\gamma$, b belongs to closure(I) for each terminal b in FIRST(βa)

goto operation

• If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal),

then goto (I, X) defined as follows:

• If $A \to \alpha.X\beta$, a in I then every item in closure($\{A \to \alpha X.\beta, a\}$) belongs to goto (I,X)

Construction of The Canonical LR(1) Collection

• Algorithm:

```
C is { closure({S'→.S,$}) }
repeat the followings until no more set of LR(1) items can be added to C.
for each I in C and each grammar symbol X
if goto (I, X) is not empty and not in C
add goto (I, X) to C
```

• goto function is a DFA on the sets in C

A Short Notation for The Sets of LR(1) Items

• A set of LR(1) items containing the following items

$$A \rightarrow \alpha \cdot \beta, a_1$$

. . .

$$A \rightarrow \alpha \cdot \beta, a_n$$

can be written as

$$A \rightarrow \alpha \cdot \beta, a_1/a_2/.../a_n$$

Canonical LR(1) Collection - Example

$$I_5: S \to Bb.Ba$$
, \$\\ B \to \cdot \cdot a\\\
 $B \to ., a\$
 $I_7: S \to BbB.a$, \$\\
 $I_9: S \to BbBa.$, \$

Canonical LR(1) Collection – Example 2

$$S' \rightarrow S$$
 $I_0:S' \rightarrow .S,\$$
1) $S \rightarrow L=R$ $S \rightarrow .L=R,\$$

2)
$$S \rightarrow R$$
 $S \rightarrow .R,$ \$

3)
$$L \rightarrow *R$$
 $L \rightarrow .*R,=$

4) L
$$\rightarrow$$
 id L \rightarrow .id,=

5)
$$R \rightarrow L$$
 $R \rightarrow .L,$ \$

$$I_6:S \rightarrow L=.R,\$ \qquad to \ I_9$$

$$R \rightarrow .L,\$ \qquad to \ I_{10}$$

$$L \rightarrow .*R,\$ \qquad to \ I_{11}$$

$$L \rightarrow .id,\$ \qquad to \ I_{12}$$

 $I_7:L \rightarrow *R.,=$

 $I_8: R \rightarrow L.,=$

$$I_{9}:S \to L=R.,\$$$
 $I_{10}:R \to L.,\$$
 $I_{11}:L \to *.R,\$$
 $R \to .L,\$$
 $L \to .*R,\$$
 $L \to .id,\$$
 $I_{12}:L \to id.,\$$
 $I_{12}:L \to id.,\$$

Construction of LR(1) Parsing Tables

- 1. Construct the canonical collection of sets of LR(1) items for G'. $C \leftarrow \{I_0, ..., I_n\}$
- 2. Create the parsing action table as follows
 - If a is a terminal, $A \rightarrow \alpha$ $a\beta$, b in I_i and $goto(I_i,a) = I_j$ then action[i,a] is *shift j*.
 - If $A \rightarrow \alpha$, a is in I_i , then action[i,a] is **reduce** $A \rightarrow \alpha$ where $A \neq S$.
 - If $S' \rightarrow S_{\bullet}$, \$\(\) is in I_i , then action[i,\$] is accept.
 - If any conflicting actions generated by these rules, the grammar is not LR(1)
- 3. Create the parsing goto table
 - for all non-terminals A, if $goto(I_i, A) = I_j$ then goto[i, A] = j
- 4. All entries not defined by (2) and (3) are errors
- 5. Initial state of the parser contains $S' \rightarrow .S,$ \$

Canonical LR(1) Collection – Example 2

$$S' \rightarrow S$$
 $I_0:S' \rightarrow .S,\$$
1) $S \rightarrow L=R$ $S \rightarrow .L=R,\$$
2) $S \rightarrow R$ $S \rightarrow .R,\$$

3)
$$L \rightarrow *R$$
 $L \rightarrow .*R,=$

4) L
$$\rightarrow$$
 id L \rightarrow .id,=

5)
$$R \rightarrow L$$
 $R \rightarrow .L,\$$

 $I_8: R \rightarrow L.,=$

LR(1) Parsing Tables – (for Example 2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4				
6	s12	s11				10	9
7			r3				
8			r5				
9				r1			
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

no shift/reduce or no reduce/reduce conflict

so, it is a LR(1) grammar

LALR Parsing Tables

- LALR stands for LookAhead LR
- LALR parsers are often used in practice because LALR parsing tables are smaller than LR(1) parsing tables
- Number of states in SLR and LALR parsing tables for a grammar G are equal
- But, LALR parsers recognize more grammars than SLR parsers
- yacc creates a LALR parser for the given grammar
- A state of LALR parser will be again a set of LR(1) items

Creating LALR Parsing Tables

Canonical LR(1) Parser

LALR Parser

shrink # of states

- Shrink process may introduce a **reduce/reduce** conflict in the resulting LALR parser (so the grammar is NOT LALR)
- But, this shrink process does not produce a **shift/reduce** conflict

The Core of A Set of LR(1) Items

• The core of a set of LR(1) items is the set of its first component

Ex:
$$S \to L \bullet = R, \$$$
 \Rightarrow $S \to L \bullet = R$ Core $R \to L \bullet , \$$ $R \to L \bullet$

• Find the states (sets of LR(1) items) in a canonical LR(1) parser with the same cores. Merge them as a single state

$$I_1:L \to id \bullet ,=$$

$$L \to id \bullet ,=$$

$$L \to id \bullet ,$$

 $I_2:L \rightarrow id \bullet ,\$$ have same core, merge them

• Do this for all states of a canonical LR(1) parser to get the states of the LALR parser

number of the states of the LALR parser = number of states of the SLR parser for any grammar

Creation of LALR Parsing Tables

- Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar
- Find each core; find all sets having that same core; replace those sets having same cores with a single set which is their union.

$$C = \{I_0, ..., I_n\} \rightarrow C' = \{J_1, ..., J_m\}$$
 where $m \le n$

- Create the parsing tables (action and goto tables) same as the construction of the parsing tables of LR(1) parser
 - Note that: If $J=I_1 \cup ... \cup I_k$ since $I_1,...,I_k$ have same cores \longrightarrow cores of goto $(I_1,X),...,$ goto (I_2,X) must be same
 - So, goto (J,X)=K, where K is the union of all sets of items having same cores as goto (I_1,X)
- Grammar is LALR(1) if no conflict is introduced
 - possible to introduce reduce/reduce conflicts
 - cannot introduce a shift/reduce conflict

Shift/Reduce Conflict

• Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR parser must have:

$$A \rightarrow \alpha$$
, a and $B \rightarrow \beta$ ay, b

• This means that a state of the canonical LR(1) parser must have:

$$A \rightarrow \alpha$$
, a and $B \rightarrow \beta$ ay, c

But, this state has also a shift/reduce conflict. i.e. the original canonical LR(1) parser has a conflict

(Reason for this, the shift operation does not depend on lookaheads)

Reduce/Reduce Conflict

• For reduce/reduce conflict:

$$I_1: A \to \alpha$$
, a
$$B \to \beta$$
, b
$$\downarrow \qquad \qquad B \to \beta$$
, c
$$I_{12}: A \to \alpha$$
, a/b
$$I_{12}: A \to \alpha$$
, a/b
$$B \to \beta$$
, b/c

Canonical LR(1) Collection – Example 2

$$S' \rightarrow S$$
 $I_0:S' \rightarrow .S,$ \$

1)
$$S \rightarrow L=R$$
 $S \rightarrow .L=R,$ \$

2)
$$S \rightarrow R$$
 $S \rightarrow .R,$ \$

3)
$$L \rightarrow *R$$
 $L \rightarrow .*R,=$

4) L
$$\rightarrow$$
 id L \rightarrow .id,=

5)
$$R \rightarrow L$$
 $R \rightarrow .L,\$$

 $I_7:L \rightarrow *R.,=$

 $I_8: R \rightarrow L.,=$

$$I_1:S' \rightarrow S..,\$$$
 $I_4:L \rightarrow *.R,=$ $R \rightarrow .L,=$ $R \rightarrow .L,=$ $R \rightarrow L..,\$$ $L \rightarrow .id,=$ $L \rightarrow .id,=$ $I_3:S \rightarrow R..,\$$ id $I_5:L \rightarrow id.,=$

 $I_0:S \rightarrow L=R.,$ \$

$$I_6:S \rightarrow L=.R,\$$$
 to I_9
 $R \rightarrow .L,\$$ to I_{10}
 $L \rightarrow .*R,\$$
 $L \rightarrow .id,\$$ to I_{11}

$$I_{10}:R \to L.,\$$$
 $I_{11}:L \to *.R,\$$
 $R \to .L,\$$
 $L \to .*R,\$$
 $L \to .id,\$$
 $L \to .id,\$$
 $I_{12}:L \to id.,\$$
 $I_{12}:L \to id.,\$$

Canonical LALR(1) Collection – Example 2

$$S' \rightarrow S \qquad I_{0}:S' \rightarrow \bullet S, \$ \qquad I_{1}:S' \rightarrow S \bullet, \$ \qquad I_{411}:L \rightarrow * \bullet R, =/\$ \qquad to \ I_{713}$$

$$1) S \rightarrow L = R \qquad S \rightarrow \bullet L = R, \$ \qquad R \rightarrow \bullet L, =/\$ \qquad to \ I_{810}$$

$$2) S \rightarrow R \qquad S \rightarrow \bullet R, \$ \qquad L \rightarrow \bullet *R, =/\$ \qquad L \rightarrow \bullet *R, =/\$ \qquad to \ I_{411}$$

$$4) L \rightarrow id \qquad L \rightarrow \bullet id, =/\$ \qquad to \ I_{411}$$

$$4) L \rightarrow id \qquad L \rightarrow \bullet id, =/\$ \qquad to \ I_{411}$$

$$5) R \rightarrow L \qquad R \rightarrow \bullet L, \$ \qquad I_{512}:L \rightarrow id \bullet, =/\$$$

$$I_6:S \rightarrow L= \bullet R, \$ \qquad \text{to } I_9$$

$$R \rightarrow \bullet L, \$ \qquad \text{to } I_{810}$$

$$L \rightarrow \bullet *R, \$ \qquad \text{to } I_{411}$$

$$L \rightarrow \bullet id, \$ \qquad \text{id} \qquad \text{to } I_{512}$$

 $I_{713}:L \rightarrow *R \bullet ,=/$$

 I_{810} : $R \rightarrow L_{\bullet}$, =/\$

$$I_9:S \to L=R \, ullet \, , \$$$
 Same Cores
$$I_4 \ \, \text{and} \ \, I_{11}$$

$$I_5 \ \, \text{and} \ \, I_{12}$$

$$I_7 \ \, \text{and} \ \, I_{13}$$

$$I_8 \ \, \text{and} \ \, I_{10}$$

LALR(1) Parsing Tables – (for Example 2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4	r4			
6	s12	s11				10	9
7			r3				
8			r5				
9				r1			

no shift/reduce or no reduce/reduce conflict

so, it is a LALR(1) grammar

LR(1) Parsing Tables – (for Example 2)

	id	*	=	\$	S	L	R
0	s5	s4			1	2	3
1				acc			
2			s6	r5			
3				r2			
4	s5	s4				8	7
5			r4				
6	s12	s11				10	9
7			r3				
8			r5	r5			
9				r1			
10				r5			
11	s12	s11				10	13
12				r4			
13				r3			

no shift/reduce or no reduce/reduce conflict

so, it is a LR(1) grammar

Using Ambiguous Grammars

- All grammars used in the construction of LR-parsing tables must be un-ambiguous
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts
 - We can resolve these conflicts in favor of one of them to disambiguate the grammar
 - At the end, we will have again an unambiguous grammar
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are **much natural**, and a corresponding unambiguous grammar can be **very complex**
 - Usage of an ambiguous grammar may eliminate unnecessary reductions

Ex.

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow (E) \mid id$$

Sets of LR(0) Items for Ambiguous Grammar

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *,) \}$$

State I₇ has shift/reduce conflicts for symbols + and *

$$I_0 \xrightarrow{E} I_1 \xrightarrow{+} I_4 \xrightarrow{E} I_7$$

when current token is +

shift \rightarrow + is right-associative

reduce \rightarrow + is left-associative

when current token is *

shift \rightarrow * has higher precedence than +

reduce → + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

$$FOLLOW(E) = \{ \$, +, *, \}$$

State I₈ has shift/reduce conflicts for symbols + and *.

$$I_0 \xrightarrow{E} I_1 \xrightarrow{*} I_5 \xrightarrow{E} I_8$$

when current token is *

shift → * is right-associative

reduce → * is left-associative

when current token is +
shift → + has higher precedence than *
reduce → * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

Action	
--------	--

Goto

	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s 5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	

Error Recovery in LR Parsing

- LR parser detects an error when it consults the parsing action table and finds an error entry
- Empty entries in the action table are error entries
- Errors are never detected by consulting the *goto* table
- Some tricks
 - LR parser will **announce error** as soon as there is no valid continuation for the scanned portion of the input
 - Canonical LR parser (LR(1) parser) will never make even a single reduction before announcing an error
 - SLR and LALR parsers may make **several reductions** before announcing an error
 - LR parsers (LR(1), LALR and SLR parsers) will never shift an **erroneous** input symbol onto the stack

Panic Mode Error Recovery in LR Parsing

- Scan down the stack until a state **s** with a goto on a particular non-terminal **A** is found (Get rid of everything from the stack before this state s)
- Discard zero or more input symbols until a symbol **a** is found that can legitimately follow A
 - Symbol a is simply in FOLLOW(A), but this may not work for all situations
- Parser stacks the non-terminal A and the state **goto** [s, A], and it resumes the normal parsing
- Non-terminal A is normally a basic programming block (there can be more than one choice for A)
 - stmt, expr, block, ...

Phrase-Level Error Recovery in LR Parsing

- Each empty entry in the action table marked with a specific error routine
- An error routine reflects the error that the user most likely will make in that case
- An error routine
 - inserts the symbols into the stack or the input
 - or, deletes the symbols from the stack and the input
 - or, can do both insertion and deletion
- Error routine may denote
 - missing operand
 - unbalanced right parenthesis