1. Evaluate the following integrals.

(a)
$$\int_{-1}^{1} \frac{1}{x^2 - 2x + 5} \, dx$$

(b)
$$\int \frac{1}{x(\ln x)^2} \, dx$$

(c)
$$\int \cos^3(x) \sin^4(x) dx$$

(d)
$$\int e^x \sin(2x) \ dx$$

(e)
$$\int \frac{2x^3 - 9x^2 - 5x + 7}{2x^2 - 5x - 3} dx$$

(f)
$$\int_0^1 \frac{81x^5}{\sqrt{3x^3 + 1}} \, dx$$

$$(g) \int_0^{\ln(2)} \frac{x}{e^x} \, dx$$

(h)
$$\int \frac{\sqrt{9-4x^2}}{x} \, dx$$

2. Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x}$$

(b)
$$\lim_{x\to 0} (x+e^{2x})^{1/x}$$

- **3.** Find the area of the region enclosed by the curves $y = x^2 4x$ and $y = -x^2 + 6x 8$.
- **4.** (a) Sketch the region \mathcal{R} between the graphs of the functions $y = e^x$ and y = -x, from x = 0 to x = 1.
 - (b) Suppose that \mathcal{R} is the base of a solid which, when sliced perpendicular to the base \mathcal{R} , and parallel to the y-axis, forms square cross-sections. Write down, **but do not evaluate**, an integral for the volume of this solid.
- **5.** Solve the differential equation

$$\sqrt{1-x^2}\,\frac{dy}{dx} = \frac{1}{y}$$

given that $y = -\sqrt{\pi}$ when x = 1/2. Express y as a function of x.

6. The Bertalanffy equation is used by ecologists to model the growth of organisms over time. It is derived from the differential equation

$$\frac{dL}{dt} = k(L - M)$$

where L is the length of the organism at time t, M is the maximal length of the organism, and k is a rate constant.

Suppose upon first measurement a salmon is $20\,\mathrm{cm}$ in length. 1 year later, the salmon has grown to $50\,\mathrm{cm}$ in length. If the maximal length M is $80\,\mathrm{cm}$, use this model to predict the length of the fish 2 years after the first measurement.

7. Determine whether the sequence

$$a_n = (-1)^n \left(\frac{e^n - n}{e^n + n}\right)$$

converges or diverges. If the sequence converges, find its limit; otherwise, explain why it diverges.

8. Determine whether the series $\sum_{n=1}^{\infty} \frac{2 + (-3)^n}{5^n}$

is convergent or divergent.

If it is convergent, find its sum.

- 9. Suppose the series $\sum_{n=1}^{\infty} a_n$ is a convergent series of positive terms whose sum is 10. Determine whether the following converge or diverge, and justify your answer. If possible, find the value to which these converge.
 - (a) The sequence $\{a_n\}$
 - (b) The sequence of partial sums $\{s_N\}$, where $s_N = a_1 + a_2 + \cdots + a_N$
 - (c) The series $\sum_{n=1}^{\infty} e^{-a_n}$
- 10. Determine whether the series converges or diverges. Justify your answer.
 - (a) $\sum_{n=1}^{\infty} \frac{2n+3}{4n+5}$
 - (b) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
 - (c) $\sum_{n=1}^{\infty} \frac{(4n^2+1)^n}{(n\pi)^{2n}}$
- 11. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. Justify your answer.
 - (a) $\sum_{n=0}^{\infty} \frac{\cos n}{3^n + 1}$
 - (b) $\sum_{n=5}^{\infty} \frac{(-1)^n}{n 2\sqrt{n}}$
- 12. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(x+3)^n}{n^3 \, 5^n}$.
- 13. (a) Find a power series representation for

$$f(x) = \frac{1}{4 - 3x}$$

and write down the first four non-zero terms of the series.

(b) Use your answer from part (a) to find a power series representation for

$$g(x) = \frac{x}{(4-3x)^2}$$

Answers

1. (a) $\pi/8$

(b)
$$-\frac{1}{\ln x} + C$$

(c)
$$\frac{1}{5}\sin^5 x - \frac{1}{7}\sin^7 x + C$$

(d)
$$\frac{1}{5}e^{x}(\sin(2x) - 2\cos(2x)) + C$$

(e)
$$\frac{1}{2}x^2 - 2x - \ln|2x + 1| - 5\ln|x - 3| + C$$

- (f) 8
- (g) $\frac{1 \ln 2}{2}$

(h)
$$-3 \ln \left| \frac{3 + \sqrt{9 - 4x^2}}{2x} \right| + \sqrt{9 - 4x^2} + C$$

- 2. (a) 2
 - (b) e^{3}

3.
$$\int_{1}^{4} (-x^{2} + 6x - 8) - (x^{2} - 4x) dx = 9$$

4.
$$\int_0^1 (e^x + x)^2 dx$$

5.
$$y = -\sqrt{2\arcsin(x) + \frac{2\pi}{3}}$$

6. You will find
$$L(t) = -60 \left(\frac{1}{2}\right)^t + 80$$
. At $t = 2$ years, $L = 65$ cm.

7.
$$\lim_{n\to\infty} |a_n| = 1$$
, so the sequence diverges by oscillation.

- 8. Sum of convergent geometric series: convergent. The sum is 1/8.
- 9. (a) Converges to 0
 - (b) Converges to the sum of the series, 10.
 - (c) Diverges by the divergence test, since $e^{-a_n} \to 1 \neq 0$
- 10. (a) Diverges by divergence test.
 - (b) Converges by ratio test.
 - (c) Converges by root test.
- 11. (a) Absolutely convergent by comparison test.
 - (b) Conditionally convergent by comparison test (or limit comparison test) and alternating series test.
- 12. IoC: [-8,2]

13. (a)
$$f(x) = \sum_{n=0}^{\infty} \frac{3^n x^n}{4^{n+1}} = \frac{1}{4} + \frac{3x}{16} + \frac{9x^2}{64} + \frac{27x^3}{256} + \dots$$

(b) As
$$g(x) = \frac{xf'(x)}{3}$$
, we have that $g(x) = \sum_{n=1}^{\infty} \frac{n3^{n-1}x^n}{4^{n+1}}$