# Lab report - 5: Discrete-time FT and LTI systems

Name: K Sri Rama Rathan Reddy - 2022102072

Team Mate: B Karthikeya - 2022102042

Team: Noicifiers

# **QUESTION 1**

a

The DTFT of any discrete – time signal x[n] is given as :

$$X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n] e^{-j\omega n}$$

Function For calculating the DTFT of a given signal:

```
function X = DT_Fourier(x,N0,w)
    X = zeros(1,length(w));
    for k = 1:length(x)
        X = X + (x(k)*exp(-1j*w*(k-N0)));
    end
end
```

### Inputs:

- $\bullet$  x, a discrete-time signal of finite duration, the signal is zero elsewhere.
- $N_0$ , location of the sample x[0] in the given input signal x, note that  $N_0$  is a positive integer between 1 and length(x).
- $\omega$ , a vector of frequencies at which to compute the DTFT (though frequency is a continuous variable in DTFT we can evaluate it at only a finite set of points)

#### **Output:**

X, a complex vector corresponding to the DTFT computed at the frequencies in  $\omega$ .

b







### DTFT for the signal $a^{n}$ .u[n] for a = +- b where b = 9.900000e-01





Explanation for varying a

# **QUESTION 2**

### a

 $An\ order-M\ moving\ average\ filter\ is\ a\ discrete-time\ LTI\ system\ with\ input\ x[n]\ and\ output\ y[n]\ relation y[n]=1/M\sum_{m=0}^{M-1}x[n-m]$ 

$$y[n] = 1/M \sum_{m=0}^{M-1} x[n-m]$$



C





d





е

- As M is increased, Noise is filtered out efficiently.
- This is because as the no of samples increases, as noise has a very high frequency, it gets canceled out easily averages out to a particular value causing a shift.



- Here time period of the sine wave is 400. So, average of the sine wave is zero, the output would be average noise causing a shift in the signal.
- However, with increasing M, the edges become less sharp.

f





- In Unfiltered Signal
  - Large peaks correspond to the DTFT of the sine wave.
  - $\circ\;$  There are some small peaks corresponding to noise.
- In filtered signals
  - as M increases, the number of small peaks decreases indicating that the noise is being efficiently filtered out with increasing M.

# g

## part a



fig 1 Impulse Response of Differentiator Filter.

### part c





part d



## part f



- in the Noise-corrupted signal,
  - $\circ\;$  Large peaks correspond to the DTFT of the sine wave.
  - There are some small peaks corresponding to noise.
- In the filtered signal, only noise is present which is amplified 5 times due to the coefficient of sine wave. So the plot corresponds to the DTFT of the Noise signal.
- The sine wave has a frequency of 400 units. so here,  $sin(n) sin(n-1) \approx 0$ . Therefore only noise remains.

# h

#### • MOVING AVERAGE FILTER:

 It serves as a low-pass filter, which smoothens out signals by eliminating short-term swings and keeping longer-term trends.

- Averaging eliminates high frequencies, making it equal to low-pass filtering.
- The moving average filter is a straightforward Low Pass **FIR filter** that is frequently used to smooth out a variety of collected data or signals.

#### • DIFFERENTIATOR:

- it acts as a high-pass filter.
- As we can see only noise that has a high frequency is passing out of the filter leaving behind the Sine wave which has a very low frequency when compared with the noise.
- o It is also an FIR filter.

# **QUESTION 3**

The inverse DTFT is given by the expression :  $x[n]=1/2\pi\int_{-\pi}^{\pi}X(e^{j\omega})e^{j\omega n}d\omega$ 

#### a

Function to calculate the Inverse DTFT of the Signal:

```
function x = Inv_DTFT(X,n,w)
    x = zeros(1,length(n));
    for k = 1:1:length(n)
        x = (1/2*pi)*int(X*exp(1j*w*n),w,-pi,pi);
    end
end
```

x[n] is expected to be a **complex-valued signal**. Hence, the Real part, Imaginary part, and magnitude are plotted with respect to time.

The frequency domain rectangular wave which in the interval  $[-\pi, \pi]$  is given by:

$$X(e^{j\omega}) = 1, if \; |\omega| \leq \omega_c \ 0, if \; \omega_c < |\omega| < \pi$$



b







fig 2







fig 4

| $\chi(e^{i0}) = \int 1$ , $ n0  \le nc$                                                                |
|--------------------------------------------------------------------------------------------------------|
| x(n) = 1 / x (ejv) dw                                                                                  |
| 2-TT 10 1 e 2500 200 - 240                                                                             |
| $= \frac{1}{2\pi} \left( \frac{e^{jnon}}{yn} \right)^{00} = \frac{1}{100}$                             |
| T Zjn                                                                                                  |
| = 1 Sin (n2n)                                                                                          |
| M(n) 2 NC x Sin (MCN)                                                                                  |
| $NC = \frac{TT}{16}$ $A(N) = \frac{1}{16} \times \frac{\sin(TN/16)}{TN/16}$                            |
| $n_{c} = \pi  _{8} \Rightarrow x(n) = \frac{1}{6} \frac{s_{0}(\pi n)_{8}}{ttn _{8}}$                   |
| ως = T/4 =) α [n] = 1 sin(πη/4)  4 Th/4                                                                |
| $\mathcal{W}_{c} = TT _{2} \Rightarrow \mathfrak{M}[N] \Rightarrow \frac{1}{2} \frac{Sin(NT/2)}{NT/2}$ |



C







fig 3: explanation