

NASA

OAST

CIVIL SPACE TECHNOLOGY INITIATIVE

PRECEDING PAGE BLANK NOT FILMED

N89-11761

5/12
358

DR. JUDITH H. AMBRUS
ASSISTANT DIRECTOR FOR SPACE
LARGE SPACE SYSTEMS

SPACE R&T STRATEGY

OAST

**REVITALIZE TECHNOLOGY FOR LOW EARTH ORBIT
APPLICATIONS**

**DEVELOP TECHNOLOGY FOR EXPLORATION OF THE
SOLAR SYSTEM**

16

MAINTAIN FUNDAMENTAL R&T BASE

BROADEN PARTICIPATION OF UNIVERSITIES

**EXTEND TECHNOLOGY DEVELOPMENT TO IN-SPACE
EXPERIMENTATION**

FACILITATE TECHNOLOGY TRANSFER TO USERS

MISSION NEEDS

OAST

CSTI

- TRANSPORTATION TO LOW EARTH ORBIT
 - PROPULSION
 - AEROBRAKING
- OPERATIONS IN LOW EARTH ORBIT
 - AUTONOMOUS SYSTEMS
 - TELEROBOTICS
 - POWER
- SCIENCE
 - STRUCTURES
 - SENSORS
 - DATA SYSTEMS

BACKGROUND

OAST

CSTI

- THE FIRST STEP IN REVITALIZING THE NATION'S CIVIL SPACE TECHNOLOGY BASE
- WILL FILL GAPS IN MANY TECHNOLOGY AREAS
- FOCUSED TECHNOLOGY EFFORT, WILL RESULT IN DEMONSTRATED / VALIDATED TECHNOLOGIES

EARTH TO ORBIT PROPULSION

~~OAST~~

~~CSTI~~

OBJECTIVE:

PROVIDE A VALIDATED TECHNOLOGY BASE FOR THE DESIGN OF HIGH PERFORMANCE, LONG LIFE LOX/H₂ AND LOX /HC ENGINES

- ENABLE FULLY REUSABLE VEHICLES TO REDUCE TRANSPORTATION COSTS

61

APPROACH:

EXTEND KNOWLEDGE AND UNDERSTANDING OF ROCKET ENGINE CHEMICAL AND PHYSICAL PROCESSES BY BUILDING AND VALIDATING COMPONENTS AND HEALTH MONITORING DEVICES

EARTH TO ORBIT PROPULSION

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION
PROPELLION, POWER AND ENERGY DIVISION
- LEAD NASA FIELD CENTER
MARSHALL SPACE FLIGHT CENTER
- PARTICIPATING CENTER
LEWIS RESEARCH CENTER
- FY 1989 BUDGET : \$ 29.1 M

EARTH-TO-ORBIT PROPULSION

ORIGINAL PAGE IS
OF POOR QUALITY

CRITICAL COMPONENTS IN AN ADVANCED
BOOSTER ENGINE WHICH INCLUDE THE
TURBOMACHINERY, MAIN COMBUSTOR
AND TURBINE DRIVE GAS GENERATORS

RS88-541(3)

BOOSTER TECHNOLOGY

OAST

CSTI

OBJECTIVE:

DEVELOP THE ENGINE TECHNOLOGY FOR ALTERNATE PROPULSION CONCEPTS FOR THE SPACE SHUTTLE SOLID ROCKET BOOSTER (SRB)

- PROVIDE A SAFE ABORT OPTION
- PROVIDE THE ABILITY TO TAILOR THRUST
- PROVIDE THE POTENTIAL FOR ADDITIONAL IMPULSE

22

APPROACH:

EXPLORE ALTERNATIVE BOOSTER TECHNOLOGIES INCLUDING LIQUID AND HYBRID CONCEPTS

BOOSTER TECHNOLOGY

~~OAST~~

~~CSTI~~

MANAGEMENT

- LEAD OAST DIVISION
PROPULSION, POWER, AND ENERGY DIVISION

- LEAD NASA FIELD CENTER
MARSHALL SPACE FLIGHT CENTER

- FY 1989 BUDGET: \$ 9.0 M

BOOSTER TECHNOLOGY

ADVANCED HYBRID BOOSTERS
USING ADVANCED MATERIALS

RS88-542(3)

AEROASSIST FLIGHT EXPERIMENT

OAST

CSTI

OBJECTIVE:

INVESTIGATE THE CRITICAL VEHICLE TECHNOLOGIES AND
UPPER ATMOSPHERIC CHARACTERISTICS APPLICABLE TO
THE DESIGN OF AN AEROASSISTED ORBITAL TRANSFER
VEHICLE

25

- PROVIDE A LARGE SAVING IN PROPELLANT WHICH COULD
DOUBLE THE PAYLOAD WEIGHT

APPROACH:

CONDUCT A REENTRY FLIGHT EXPERIMENT THROUGH THE
UPPER ATMOSPHERE TO VALIDATE DESIGN CODES

AEROASSIST FLIGHT EXPERIMENT

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION
 - FLIGHT PROJECTS DIVISION
- LEAD NASA FIELD CENTER
 - MARSHALL SPACE FLIGHT CENTER
- PARTICIPATING CENTERS
 - LANGLEY RESEARCH CENTER
 - JOHNSON SPACE FLIGHT CENTER
 - AMES RESEARCH CENTER
- FY 1989 BUDGET: \$ 13.3 M

ROBOTICS

OAST

CSTI

OBJECTIVE:

**DEVELOP THE TECHNOLOGY BASE REQUIRED TO
EVOLVE FROM TELEOPERATIONS TO TELEROBOTICS**

- PERFORM SPACE ASSEMBLY AND CONSTRUCTION, SATELLITE SERVICING, AND PLATFORM MAINTENANCE AND REPAIR EFFICIENTLY AND SAFELY

28

APPROACH:

**DEVELOP COMPONENTS TO BE EVALUATED IN AN
INTEGRATED TESTBED THAT WILL DEMONSTRATE
CAPABILITIES SUCH AS STOPPING SLOWLY SPINNING
SPACECRAFT, PERFORMING SIMPLE SERVICING, ETC.**

ROBOTICS

OAST

CSTI

MANAGEMENT

- **LEAD OAST DIVISION**
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
- **LEAD NASA FIELD CENTER**
JET PROPULSION LABORATORY
- **PARTICIPATING CENTERS**
GODDARD SPACE FLIGHT CENTER
LANGLEY RESEARCH CENTER
JOHNSON SPACE CENTER
- **FY 1989 BUDGET : \$ 13.8 M**

ROBOTICS

ADVANCED DUAL ARM
MANIPULATOR WITH
DEMONSTRATED VISUAL
TRACKING CAPABILITY

30

ORIGINAL PAGE IS
OF POOR QUALITY

RS88-557(3)

SCIENCE SENSOR TECHNOLOGY

OAST

CSTI

OBJECTIVE:

DEVELOP AN ADVANCED SENSOR TECHNOLOGY BASE FOR SCIENTIFIC SENSING INVESTIGATION OF EARTH SYSTEMS, THE SOLAR SYSTEM, AND THE UNIVERSE

- DEVELOP PASSIVE, SENSITIVE, RELIABLE, AND IMPROVED IMAGING CAPABILITY OF SPACE-BASED ADVANCED DETECTORS
- KEEP COSTS TO A MINIMUM

31

APPROACH:

DEVELOP ADVANCED TUNABLE SOLID STATE AND GAS LASERS AND ACCOMPANYING ADVANCED TECHNOLOGY

SCIENCE SENSOR TECHNOLOGY

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION
- LEAD NASA CENTER
LANGLEY RESEARCH CENTER
- PARTICIPATING CENTERS
GODDARD SPACE FLIGHT CENTER
JET PROPULSION LABORATORY
MARSHALL SPACE FLIGHT CENTER
AMES RESEARCH CENTER
LEWIS RESEARCH CENTER
- FY 1989 BUDGET : \$ 7.8M

SCIENCE SENSOR TECHNOLOGY

ADVANCED EARTH
SENSING INCLUDES
THE DIFFERENTIAL
ABSORPTION
DETECTOR
IMAGING
INSTRUMENTATION

AUTONOMOUS SYSTEMS

OAST

CSTI

OBJECTIVE:

DEVELOP AN ARTIFICIAL INTELLIGENCE TECHNOLOGY
BASE FOR EFFICIENT AUTONOMOUS OPERATIONS IN
SPACE AND ON THE GROUND

- FREE HUMAN RESOURCES FROM ROUTINE OPERATIONS
- DECREASE COSTS OF SPACE OPERATIONS

34

APPROACH:

DEMONSTRATE KNOWLEDGE BASED DECISION MAKING,
MACHINE LEARNING, UNCERTAINTY PLANNING AND
SIMILAR ADVANCED CONCEPTS

AUTONOMOUS SYSTEMS

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

- LEAD NASA FIELD CENTER
AMES RESEARCH CENTER

- PARTICIPATING CENTER
JOHNSON SPACE CENTER

- FY 1989 BUGET: \$ 12.1 M

AUTONOMOUS SYSTEMS

36

AUTONOMOUS SYSTEMS APPLICATIONS
AIDING THE INTEGRATED COMMUNICATIONS
OFFICER (INCO) IN MISSION CONTROL CENTER

ORIGINAL PAGE IS
OF POOR
QUALITY

RS88-559(3)

DATA: HIGH RATE/CAPACITY

OAST

CSTI

OBJECTIVE:

DEVELOP HIGH SPEED, HIGH VOLUME DATA HANDLING TECHNOLOGIES AND SYSTEMS NEEDED TO MEET THE SCIENTIFIC AND OPERATIONAL REQUIREMENTS OF FUTURE MISSIONS

- 37
- PERFORM RECOGNITION, EXTRACTION, AND TRANSMISSION OF SIGNIFICANT OBSERVATIONS ON-BOARD THE SPACECRAFT
 - ENSURE HIGH SCIENTIFIC RETURNS WHILE KEEPING OPERATIONAL COSTS LOW

APPROACH:

PRODUCE, TEST AND VALIDATE FLIGHT QUALIFIABLE COMPONENTS FOR ON-BOARD DATA PROCESSING AND STORAGE

DATA : HIGH RATE /CAPACITY

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION**
INFORMATION SCIENCES AND HUMAN FACTORS DIVISION

- LEAD NASA FIELD CENTER**
LANGLEY RESEARCH CENTER

- PARTICIPATING CENTERS**
GODDARD SPACE FLIGHT CENTER
JET PROPULSION LABORATORY

- FY 1989 BUDGET : \$ 8.1 M**

DATA: HIGH RATE/CAPACITY

OPTICAL DISK TECHNOLOGY
SYSTEM RECENTLY DEMONSTRATED
FOR SPACE APPLICATIONS

RS88-555(3)

CONTROL OF FLEXIBLE STRUCTURES

OAST

CSTI

OBJECTIVE:

DEVELOP STRUCTURES AND CONTROLS TECHNOLOGY
THAT WILL ENABLE THE DESIGN VERIFICATION AND
QUALIFICATION OF PRECISION SPACE STRUCTURES AND
LARGE FLEXIBLE SPACE SYSTEMS

04

- INCREASE SURFACE AND POINTING PRECISION AND USE
OF ARTICULATED MOVING COMPONENTS

APPROACH:

VERIFY THE ANALYSIS AND DESIGN METHODS THROUGH
GROUND TESTS AND IN-SPACE FLIGHT EXPERIMENTS

CONTROL OF FLEXIBLE STRUCTURES

OAST

CSTI

MANAGEMENT

- **LEAD OAST DIVISION**
MATERIALS AND STRUCTURES DIVISION

- **LEAD NASA FIELD CENTER**
LANGLEY RESEARCH CENTER

- **PARTICIPATING CENTERS**
MARSHALL SPACE FLIGHT CENTER
JET PROPULSION LABORATORY
GODDARD SPACE FLIGHT CENTER

- **FY 1989 BUDGET: \$15.7 M**

CONTROL OF FLEXIBLE STRUCTURES

CONTROL AND STRUCTURES
EXPERIMENT IN SPACE

RS88.553(3)

PRECISION SEGMENTED REFLECTORS

OAST

CSTI

OBJECTIVE:

DEVELOP THE MATERIALS, STRUCTURES, AND CONTROL TECHNOLOGY TO ENABLE THE DESIGN OF LARGE, LIGHT-WEIGHT, HIGH PRECISION ORBITING ASTRONOMICAL INSTRUMENTS

4

- DEVELOP LIGHT-WEIGHT AND SPACE ERECTABLE/DEPLOYABLE SYSTEMS FOR MAKING DEEP SPACE OBSERVATIONS IN THE SUB-MILLIMETER AND SMALLER PORTION OF THE SPECTRUM

APPROACH:

FABRICATE HIGH SURFACE PRECISION PANELS AND CONDUCT SYSTEM LEVEL VALIDATION TESTING

PRECISION SEGMENTED REFLECTORS

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION
MATERIALS AND STRUCTURES DIVISION

- LEAD NASA FIELD CENTER
JET PROPULSION LABORATORY

- FY 1989 BUDGET: \$4.9 M

PRECISION SEGMENTED REFLECTORS

45

ADVANCED PRECISION
SEGMENTED REFLECTOR
STRUCTURE

RS88-554(3)

HIGH CAPACITY POWER

OAST

CSTI

OBJECTIVE:

DEVELOP THE TECHNOLOGY BASE NEEDED TO MEET THE LONG DURATION, HIGH CAPACITY POWER REQUIREMENTS FOR FUTURE NASA SPACE INITIATIVES

94

- INCREASE SYSTEM THERMAL ELECTRICAL ENERGY CONVERSION EFFICIENCY AT LEAST FIVEFOLD
- ACHIEVE SYSTEMS COMPATIBLE WITH SPACE NUCLEAR REACTORS

APPROACH:

EXPERIMENTAL VERIFICATION OF ADVANCED ENERGY CONVERSION TECHNOLOGIES, SUCH AS THE FREE-PISTON STIRLING ENGINE AND HIGH EFFICIENCY THERMOELECTRIC MATERIALS

HIGH CAPACITY POWER

OAST

CSTI

MANAGEMENT

- LEAD OAST DIVISION
PROPELLION, POWER, AND ENERGY DIVISION
- LEAD NASA FIELD CENTER
LEWIS RESEARCH CENTER
- PARTICIPATING CENTER
JET PROPULSION LABORATORY
- FY 1989 BUDGET: \$ 11.1 M

74

HIGH CAPACITY POWER

ORIGINAL COPY
OF POOR QUALITY

CSTI PROGRAM BUDGET

OAST

CSTI

<u>ELEMENTS</u>	<u>FY 88</u>	<u>FY89</u>	<u>PLANNED FY 90-94</u>
ROBOTICS	13.0	13.8	80
AUTONOMOUS SYSTEMS	12.1	12.1	70
EARTH-TO-ORBIT	15.8	29.1	160
BOOSTER TECHNOLOGY	8.0	9.0	20
6 ⁺ AEROASSIST FLIGHT EXP.	15.0	13.3	150
SCIENCE SENSOR TECHNOLOGY	7.8	7.8	40
DATA: HIGH RATE/CAPACITY	8.7	8.1	30
CONTROL OF FLEX. STRUCTURES	17.1	15.7	100
PRECISION SEG. REFLECTORS	4.9	4.9	10
HIGH CAPACITY POWER	12.8	11.1	40
PROGRAM TOTALS	115.2	121.8	700

TECHNOLOGY TRANSFER TO THE USER

CAST

CSTI

- **INCLUDE NASA USER REPRESENTATIVES IN**
 - ADVISORY GROUPS**
 - WORKING GROUPS**
- **INCLUDE INDUSTRY AND UNIVERSITY
REPRESENTATIVES AS APPROPRIATE**
- **DISSEMINATE INFORMATION TO SPACE
COMMUNITY VIA**
 - REPORTS**
 - PAPERS**
 - PRESENTATIONS**