Discrete adjoint method with applications to scalar hyperbolic PDE networks

Jack Reilly

University of California Berkeley jackdreilly@berkeley.edu

April 26, 2013

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Demo: Ramp metering

Overview

Discrete adjoint method

Optimization of a PDE-constrained system Example: linear system
Solving the original problem
Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks Complexity analysis of adjoint method

Demo: Ramp metering

•00000000000

Optimization of a PDE-constrained system

Optimization problem

minimize_{$$u \in \mathcal{U}$$} $J(x, u)$
subject to $H(x, u) = 0$

- $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^n$: state variables
- $\mathbf{v} \in \mathcal{U} \subseteq \mathbb{R}^m$: control variables

$$J: \mathcal{X} \times \mathcal{U} \to \mathbb{R}$$
$$(x, u) \mapsto J(x, u)$$

$$H: \mathcal{X} \times \mathcal{U} \to \mathbb{R}^{n_H}$$

 $(x, u) \mapsto H(x, u)$

Want to do gradient descent. How to compute the gradient?

Discrete linear dynamics

$$x_{t+1} = Ax_t + Bu_t, \ t \in \{0, \dots, T-1\}$$

with initial condition x_0 .

Let

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_T \end{bmatrix} \qquad \qquad u = \begin{bmatrix} u_0 \\ \vdots \\ u_{T-1} \end{bmatrix}$$

Example: linear system

$$x = \begin{bmatrix} Ax_0 + Bu_0 \\ Ax_1 + Bu_1 \\ \vdots \\ Ax_{T-1} + Bu_{T-1} \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ A & \ddots \\ \vdots \\ A & 0 \end{bmatrix} x + \begin{bmatrix} B \\ \vdots \\ B \end{bmatrix} u + \begin{bmatrix} Ax_0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Can be written as

$$(\tilde{A} - I)x + \tilde{B}u + c = 0$$

Note: $(\tilde{A} - I)$ is invertible (lower triangular, with -1 on diagonal). Good: system is deterministic!

Example: linear system

Linear system

$$H_x x + H_u u + c = 0$$

- $x \in \mathbb{R}^n$ state
- ▶ $u \in \mathbb{R}^m$ control, with $m \le n$
- ▶ $H_x \in \mathbb{R}^{n \times n}$, assume invertible
- $\vdash H_{u} \in \mathbb{R}^{n \times m}$
- $c \in \mathbb{R}^n$

want to minimize linear cost function

minimize_{$$u \in \mathcal{U}$$} $J_x x + J_u u$
subject to $H_x x + H_u u + c = 0$

 $J_x \in \mathbb{R}^{1 \times n}$ and $J_u \in \mathbb{R}^{1 \times m}$ are given row vectors.

Example: linear system

Optimization problem

minimize
$$_{u \in \mathcal{U}}$$
 $J_x x + J_u u$
subject to $H_x x + H_u u + c = 0$

An equivalent problem is

minimize_{$$u \in \mathcal{U}$$} $-J_x H_x^{-1}(H_u u + c) + J_u u$

and the gradient is

Gradient

$$\nabla_{u}J = -J_{x}H_{x}^{-1}H_{u} + J_{u}$$

Gradient

$$\nabla_{u}J = -J_{x}H_{x}^{-1}H_{u} + J_{u}$$

Two ways to compute the first term

Forward

$J_{\sim}M$ $H_{\sim}M = -H_{\parallel}$

Solve for $M \in \mathbb{R}^{n \times m}$: m inversions

Cost
$$O(mn^2)$$
.

Then product $1 \times n$ times $n \times m$: O(nm)

Adjoint

$$\lambda^T H_u$$
$$\lambda^T H_x = -J_x$$

Solve for
$$\lambda \in \mathbb{R}^n$$
: 1 inversion

$$H_{x} [M_{1} \mid \dots \mid M_{m}] = [H_{u_{1}} \mid \dots \mid H_{u_{m}}]$$

$$H_{x}^{T} \lambda = I_{x}^{T}$$

Cost
$$O(n^2)$$
.

Then product $1 \times n$ times $n \times m$: O(nm)

Optimization of a PDE-constrained system

General problem

Linear system

minimize_{$$u \in \mathcal{U}$$} $J(x, u)$
subject to $H(x, u) = 0$

$$\nabla_{u}J = \frac{\partial J}{\partial x}\nabla_{u}x + \frac{\partial J}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$$

minimize_{$$u \in \mathcal{U}$$} $J_x x + J_u u$
subject to $H_x x + H_u u + c = 0$

$$\nabla_u J = J_{\mathsf{x}} \mathbf{M} + J_{\mathsf{u}}$$

$$H_x \mathbf{M} = -H_u$$

000000000000

Optimization of a PDE-constrained system

General problem

minimize_{$u \in \mathcal{U}$} J(x, u)subject to H(x, u) = 0

$$\nabla_{u}J = \frac{\partial J}{\partial x} \nabla_{u}x + \frac{\partial J}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$$

Linear system

minimize_{$$u \in \mathcal{U}$$} $J_x x + J_u u$
subject to $H_x x + H_u u + c = 0$

$$\nabla_u J = J_x \mathbf{M} + J_u$$

$$H_{\times}M = -H_{u}$$

Instead, solve for $\lambda \in \mathbb{R}^n$

Adjoint

$$H_x^T \lambda = J_x^T$$

Optimization of a PDE-constrained system

General problem

Linear system

$$minimize_{u \in \mathcal{U}} \quad J(x, u)$$

subject to
$$H(x, u) = 0$$

$$\nabla_{u}J = \frac{\partial J}{\partial x} \nabla_{u}x + \frac{\partial J}{\partial u}$$

On trajectories, H(x, u) = 0 constant, thus $\nabla_u H = 0$

$$\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$$

Adjoint

$$\frac{\partial H}{\partial x}^{T} \lambda = \frac{\partial J}{\partial x}$$

minimize_{$$u \in \mathcal{U}$$} $J_x x + J_u u$
subject to $H_x x + H_u u + c = 0$

$$\nabla_u J = J_x M + J_u$$

$$H_{\star}M = -H_{u}$$

Instead, solve for $\lambda \in \mathbb{R}^n$

Adjoint

Solving the original problem

Computing $\nabla_u J(x, u)$

Want to evaluate

$$\frac{\partial J}{\partial x} \nabla_{u} x$$
where
$$\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$$

000000000000

Computing $\nabla_u J(x, u)$

Want to evaluate

$$\frac{\partial J}{\partial x} \nabla_{u} x$$
where $\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$

If λ is solution to the adjoint equation

$$\frac{\partial J}{\partial x} + \lambda^T \frac{\partial H}{\partial x} = 0$$

000000000000

Computing $\nabla_u J(x, u)$

Want to evaluate

$$\frac{\partial J}{\partial x} \nabla_{u} x$$
where $\frac{\partial H}{\partial x} \nabla_{u} x + \frac{\partial H}{\partial u} = 0$

If λ is solution to the adjoint equation

$$\frac{\partial J}{\partial x} + \lambda^T \frac{\partial H}{\partial x} = 0$$

Then

$$\frac{\partial J}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} = -\lambda^{T} \frac{\partial H}{\partial x} \nabla_{\mathbf{u}} \mathbf{x} = \lambda^{T} \frac{\partial H}{\partial \mathbf{u}}$$

Adjoint solution λ

$$\nabla_{u}J = \lambda^{T} \frac{\partial H}{\partial u} + \frac{\partial J}{\partial u}$$

Also useful for sensitivity analysis.

Sensitivity analysis

 λ_k is the price of changing H_k

Optimization algorithm

Algorithm 1 Gradient descent loop

Pick initial control u^{init}

while not converged do

$$x = forwardSim(u, IC, BC)$$
 solve for state trajectory (forward system)

$$\lambda = adjointSln(x, u)$$
 solve for adjoint parameters (adjoint system)

$$\Delta u = \nabla_u J = \lambda^T \frac{\partial H}{\partial u} + \frac{\partial J}{\partial u}$$
 Compute the gradient (search direction)

$$u \leftarrow u + t\Delta u$$
 update u using line search along Δu

end while

Optimization algorithm using adjoint

Line search

Example 1: decreasing step size

$$t^{(k)} = t^{(1)}/k$$

Example 2: backtracking line-search

- fix parameters $0 < \alpha < 0.1$ and $0 < \beta < 1$
- ightharpoonup given search direction Δu

Algorithm 2 Backtracking line search

while
$$J(u + t\Delta u) - J(u) > \alpha(\nabla_u J)^T (t\Delta u)$$
 do $t \leftarrow \beta t$ end while

Optimization algorithm using adjoint

Constraints on control

What if there are physical constraints on the permissible control values u?

$$u_{\min} \le u \le u_{\max}$$
 (1)

Barrier functions

Lecture 9 slides....

Overview

Discrete adjoint method

Optimization of a PDE-constrained system Example: linear system Solving the original problem Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Demo: Ramp metering

Hyperbolic PDE's

A conservation law in one space dimension can written in the form:

$$\frac{\partial u(t,x)}{\partial t} + \frac{\partial f(u(t,x))}{\partial x} = 0$$
 (2)

Example

We will constantly refer to the example with linear flux function:

$$u_t + au_x = 0 (3)$$

A Cauchy problem wants solution to:

$$\begin{cases} u_t + f(u)_x = 0 \\ u(0, x) = u_0(x) \end{cases}$$
 (4)

Riemann problem

Define a Riemann problem as a Cauchy problem:

$$\begin{cases} u_t + f(u)_x = 0 \\ u(0, x) = u_0(x) \end{cases}$$
 (5)

where:

$$u_0(x) = \begin{cases} u_l & x < 0 \\ u_r & x \ge 0 \end{cases} \tag{6}$$

Example

On board...

Overview

Discrete adjoint method

Optimization of a PDE-constrained system Example: linear system Solving the original problem Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks Complexity analysis of adjoint method

Demo: Ramp metering

Network description

Consider a network of hyperbolic PDE's $(\mathcal{I}, \mathcal{J})$

- ▶ $I \in \mathcal{I}$ a link with dynamics according to PDE.
- ▶ $J \in \mathcal{J}$ a junction with incoming links Inc(J), outgoing links Out(J).

Boundary conditions at junctions?

Riemann problem at junction

For a junction J, let each link $I \in Inc(J) \cup Out(J)$ have constant IC $u_I^0 \in \mathbf{u}_J$.

Define a **Riemann Solver** RS:

$$RS:\mathbb{R}^{m+n} \longrightarrow \mathbb{R}^{m+n} \tag{7}$$

$$\mathbf{u}_{J}^{0} \qquad \qquad \mapsto RS\left(\mathbf{u}_{J}^{0}\right) = \hat{\mathbf{u}}_{J} \tag{8}$$

where $\hat{u}_J^I \in \hat{\mathbf{u}}_J$ is the boundary condition at the junction interface for link I.

Define a **Riemann Solver** *RS*:

$$RS:\mathbb{R}^{m+n} \longrightarrow \mathbb{R}^{m+n} \tag{7}$$

$$\mathbf{u}_{J}^{0} \qquad \qquad \mapsto RS\left(\mathbf{u}_{J}^{0}\right) = \hat{\mathbf{u}}_{J}$$
 (8)

where $\hat{u}_J^I \in \hat{\mathbf{u}}_J$ is the boundary condition at the junction interface for link I.

Consider a specific link

Define a **Riemann Solver** RS:

$$RS:\mathbb{R}^{m+n} \longrightarrow \mathbb{R}^{m+n} \tag{7}$$

$$\mathbf{u}_{J}^{0} \qquad \qquad \mapsto RS\left(\mathbf{u}_{J}^{0}\right) = \hat{\mathbf{u}}_{J}$$
 (8)

where $\hat{u}_J^I \in \hat{\mathbf{u}}_J$ is the boundary condition at the junction interface for link I.

► Consider a specific link

Conditions on Riemann solver

► Self-similar

$$RS(\mathbf{u}_{J}) = RS(\mathbf{\hat{u}}_{J}) = \mathbf{\hat{u}}_{J}$$
 (9)

Conditions on Riemann solver

Self-similar

$$RS(\mathbf{u}_J) = RS(\mathbf{\hat{u}}_J) = \mathbf{\hat{u}}_J$$
 (9)

▶ All shockwaves must emanate outward from junction

Conditions on Riemann solver

Self-similar

$$RS(\mathbf{u}_{J}) = RS(\hat{\mathbf{u}}_{J}) = \hat{\mathbf{u}}_{J}$$
 (9)

▶ All shockwaves must emanate outward from junction

Conservation of mass

$$\sum_{i \in Inc(J)} f\left(\{\mathbf{\hat{a}}_J\}_i\right) = \sum_{j \in Out(J)} f\left(\{\mathbf{\hat{a}}_J\}_j\right)$$

(10)

Riemann solver for linear flux function

Example
On board...

Overview

Discrete adjoint method

Optimization of a PDE-constrained system

Example: linear system

Solving the original problem

Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks Complexity analysis of adjoint method

Demo: Ramp metering

Discretizing via Godunov method

- Cannot represent (or not practical to represent) continuous function on computer.
- Approximate solution by discretizing space and time.
- ▶ Solve for vector of discrete variables.

Godunov's scheme (high level)

- 1. Split system in discrete chunks of size $\triangle x$.
- 2. Approximate IC by averaging over $\triangle x$.
- 3. Find exact sln of system by solving Riemann problems at discretized boundaries for $\triangle t$ time.
- 4. Approximate new sln by averaging over $\triangle x$.
- 5. Set IC as new sln and go to step 3.

Discretizing single system

Godunov's scheme: local solutions of Riemann problems

Figure: credit: http://www.uv.es/astrorela/simulacionnumerica/node34.html

Derivation of Godunov's method

Take discrete initial condition U_i at cell i. We want \bar{U}_i , the average value at cell i at time $\triangle t$:

$$\bar{U}_{i} = U_{i} - \frac{1}{x_{i+1} - x_{i}} \int_{0}^{\triangle t} \left(f\left(u\left(t, x_{i+1}\right)\right) - f\left(u\left(t, x_{i}\right)\right) \right) dt \tag{11}$$

This requires solution of u(x, t) over $[0, \triangle x] \times [0, \triangle t]$.

But since Riemann problems are self-similar, fluxes across boundaries are constant:

$$\int_{0}^{\triangle t} f(u(t,x_{i})) dt \approx \triangle t g^{G}(U_{i},U_{i+1})$$
 (12)

where $g^{\it G}$ is the flux across cell boundaries obtained via sln of Riemann problem.

Now only function of discrete values:

$$\bar{U}_{i} = U_{i} - \frac{\triangle t}{x_{i+1} - x_{i}} \left(g^{G} \left(U_{i}, U_{i+1} \right) - g^{G} \left(U_{i-1}, U_{i} \right) \right)$$
(13)

Discretizing single system

CFL condition

In previous derivation, it is assumed no solution from one Riemann problem influences another at the discrete boundaries.

This limits how large the time-step to guarantee convergence of Godunov scheme to continuous solution.

The Courant Friedrichs Lewy (CFL) condition

$$\lambda^{\mathsf{max}} \le \frac{\triangle x}{\wedge t} \tag{14}$$

Discretizing PDE network

Solving for Godunov flux easy for 1-to-1 junctions. What about *n*-to-*m*?

- ► Apply Riemann solver at junction
- ▶ Use Riemann solution as boundary condition for g^G at junction.

1. Begin with initial condition $(t = 0) \{U_I : I \in \mathcal{I}\}.$

- 1. Begin with initial condition $(t = 0) \{U_I : I \in \mathcal{I}\}.$
- 2. For every junction $J \in \mathcal{J}$:
 - 2.1 Apply the Riemann solver to Riemann data to obtain the boundary condition $\hat{\bf U}_J = RS({\bf U}_J)$.

- 1. Begin with initial condition $(t = 0) \{U_I : I \in \mathcal{I}\}.$
- 2. For every junction $J \in \mathcal{J}$:
 - 2.1 Apply the Riemann solver to Riemann data to obtain the boundary condition $\hat{\mathbf{U}}_J = RS(\mathbf{U}_J)$.
- 3. For every link $I \in \mathcal{I}$:
 - 3.1 Letting $J_I^{\sf Up} = J \in \mathcal{J} : I \in Out(J)$ and $J_I^{\sf Down} = J \in \mathcal{J} : I \in In(J)$, the discrete value over link I at time $\triangle t$, \bar{U}_I , is given by:

$$ar{U}_{I} = U_{I} - rac{ riangle t}{L_{I}} \left(f\left(\left\{ \mathbf{\hat{0}}_{J_{I}^{\mathsf{Down}}}
ight\}_{I}
ight) - f\left(\left\{ \mathbf{\hat{0}}_{J_{I}^{\mathsf{Up}}}
ight\}_{I}
ight)
ight)$$

- 1. Begin with initial condition $(t = 0) \{U_I : I \in \mathcal{I}\}.$
- 2. For every junction $J \in \mathcal{J}$:
 - 2.1 Apply the Riemann solver to Riemann data to obtain the boundary condition $\hat{\mathbf{U}}_J = RS(\mathbf{U}_J)$.
- 3. For every link $I \in \mathcal{I}$:
 - 3.1 Letting $J_I^{\sf Up} = J \in \mathcal{J} : I \in Out(J)$ and $J_I^{\sf Down} = J \in \mathcal{J} : I \in In(J)$, the discrete value over link I at time $\triangle t$, \bar{U}_I , is given by:

$$\bar{U}_{l} = U_{l} - \frac{\triangle t}{L_{l}} \left(f \left(\left\{ \mathbf{\hat{0}}_{J_{l}^{\mathsf{Down}}} \right\}_{l} \right) - f \left(\left\{ \mathbf{\hat{0}}_{J_{l}^{\mathsf{Up}}} \right\}_{l} \right) \right)$$

Example

On board...

Overview

Discrete adjoint method

Optimization of a PDE-constrained system
Example: linear system
Solving the original problem

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Demo: Ramp metering

PDE with control

Modify formulation to include

- state vector $\mathbf{x} \in \mathbb{R}^{|\mathcal{I}|T}$
- ▶ control vector $\mathbf{v} \in \mathbb{R}^{N_v T}$
 - ▶ $\mathbf{v}_{J,k} \subseteq \mathbf{v}_k$ modifies Riemann problem at J for time k.

$$RS: \mathbb{R}^{m+n} \times \mathbb{R}^{|\mathbf{v}_{J,k}|} \longrightarrow \mathbb{R}^{m+n} \tag{15}$$

$$(\mathbf{x}_{J,k},\mathbf{v}_{J,k}) \qquad \qquad \mapsto RS\left(\mathbf{x}_{J,k},\mathbf{v}_{J,k}\right) = \hat{\mathbf{U}}_{J,k} \qquad (16)$$

 \triangleright N_{ν} are the number of control parameters at each time-step.

Updated discrete state equations:

$$h_{l,1}(\mathbf{x}, \mathbf{v}) = x_{l,1} - U_l = 0$$
 (17)

$$h_{l,k}(\mathbf{x}, \mathbf{v}) = x_{l,k} - x_{l,k-1} +$$
 (18)

$$\frac{\triangle t}{L_I}(\hat{F}_I(\mathbf{x}_{J_I^{\mathsf{Down}},k-1},\mathbf{v}_{J_I^{\mathsf{Down}},k-1}) - \hat{F}_I(\mathbf{x}_{J_I^{\mathsf{UP}},k-1},\mathbf{v}_{J_I^{\mathsf{UP}},k-1})) \quad (19)$$

$$=0\forall k\in[2,\ldots,T]\tag{20}$$

Optimization problem

Optimization Problem

$$\min_{\mathbf{v}} J(\mathbf{x}, \mathbf{v})$$

subject to:
$$H(\mathbf{x}, \mathbf{v}) = 0$$

$$\nabla J = \lambda^T H_V + J_V$$

$$H_{\cdot \cdot \cdot}^T \lambda = -J_{\cdot \cdot}$$

Assume initial \mathbf{v}_0 and state $H(\mathbf{x}_0, \mathbf{v}_0) = 0$.

What needs to be computed for adjoint method?

- $ightharpoonup rac{\partial J(x_0,v_0)}{\partial v}, rac{\partial J(x_0,v_0)}{\partial x}$: Problem specific, no sparsity assumptions.
- ▶ $\frac{\partial H(x_0,v_0)}{\partial v}$, $\frac{\partial H(x_0,v_0)}{\partial x}$: can analyze properties of PDE networks and Godunov scheme to:
 - derive partial derivative expressions
 - understand sparsity

$$H_{x}$$

Discrete adjoint method

By chain rule:

$$\frac{\partial h_{I,k}}{\partial x} = -\frac{\partial x_{I,k-1}}{\partial x} + \frac{\Delta t}{L_i} \left(\frac{\partial f}{\partial \left\{ \hat{\mathbf{0}}_{J_i^{\mathsf{Down}},k} \right\}_I} \frac{\partial \left\{ \hat{\mathbf{0}}_{J_i^{\mathsf{Down}},k} \right\}_I}{\partial x} - \frac{\partial f}{\partial \left\{ \hat{\mathbf{0}}_{J_i^{\mathsf{UP}},k} \right\}_I} \frac{\partial \left\{ \hat{\mathbf{0}}_{J_i^{\mathsf{UP}},k} \right\}_I}{\partial x} \right)$$

- Only require f' and partial derivatives on Riemann solvers.
- $\frac{\partial h_{i,k}}{\partial x_{i,l}} = 0$ unless l = k 1.
- $\frac{\partial x_{i,k-1}}{\partial x_{i,l}} = 0 \text{ unless } i = j.$

$$\qquad \qquad \frac{\partial \left\{ \hat{\mathbf{0}}_{J_{i}^{\mathsf{Down}},k} \right\}_{i}}{\partial x_{i,i}} = 0 \text{ unless } j \in J_{i}^{\mathsf{Down}} \text{ (same for } J_{i}^{\mathsf{Up}} \text{)}.$$

H_{x}

Discrete adjoint method

- \triangleright Only require f' and partial derivatives on Riemann solvers.

- $\qquad \qquad \frac{\partial \left\{\hat{\mathbf{0}}_{J_{i}^{\mathsf{Down}},k}\right\}_{i}}{\partial x_{j,l}} = 0 \text{ unless } j \in J_{i}^{\mathsf{Down}} \text{ (same for } J_{i}^{\mathsf{Up}}\text{)}.$

Thus each partial term is zero unless variable is from previous time-step and adjacent to constraint link.

godunov

Partial derivates of state equations

 H_{ν}

By chain rule:

$$\frac{\partial h_{l,k}}{\partial v} = \frac{\triangle t}{L_i} \left(\frac{\partial f}{\partial \left\{ \hat{\mathbf{U}}_{J_l^{\mathsf{Down}},k} \right\}_l} \frac{\partial \left\{ \hat{\mathbf{U}}_{J_l^{\mathsf{Down}},k} \right\}_l}{\partial v} - \frac{\partial f}{\partial \left\{ \hat{\mathbf{U}}_{J_l^{\mathsf{UP}},k} \right\}_l} \frac{\partial \left\{ \hat{\mathbf{U}}_{J_l^{\mathsf{UP}},k} \right\}_l}{\partial v} \right)$$

Similar arguments to H_x give us that each partial term is zero unless variable is from same time-step and $v \in \mathbf{v}_J^{\mathsf{Down}} \cup \mathbf{v}_J^{\mathsf{Up}}$.

Example for linear flux function

Example On board...

Complexity of solving gradient

Solving adjoint system

$$H_{\mathsf{x}}^{\mathsf{T}}\lambda = -J_{\mathsf{x}} \tag{25}$$

From previous result, H_x has following properties:

- ▶ size $|\mathcal{I}|T \times |\mathcal{I}|T$
- ▶ lower triangular
- ▶ card $H_x = O(|\mathcal{I}|TD_x)$: $D_x = \max_{J \in \mathcal{J}} |Inc(J) \cup Out(J)|$

Efficiently solve λ via backward-substitution in time $O(\operatorname{card} H_x) = O(|\mathcal{I}|TD_x)$, or **linear in** $|\mathcal{I}T|$.

Solving ∇J

$$\nabla J = \lambda^T H_v + J_v \tag{26}$$

From previous result, H_{ν} has following properties:

- ▶ size $|\mathcal{I}|T \times N_v T$
- ► card $H_v = O(|\mathcal{I}|TD_v)$: $D_v = \max_{v_{i,k} \in \mathbf{v}} |\bigcup Inc(J) \cup Out(J) : v_{i,k} \in \mathbf{v}_{J,k}|$

Sparse matrix multiplication has total cost $O(D_v N_v T)$, typically of smaller order than solving H_v .

Complexity of solving gradient

Total complexity of computing gradient via discrete adjoint

$$O(|\mathbf{x}|D_{x} + |\mathbf{v}|D_{v}) \tag{27}$$

$$\nabla J = \underbrace{\begin{pmatrix} T H_v + J_v & O(|v|D_v) \\ O(|v|D_v) \end{pmatrix}}_{O(|x|D_x)}$$

Overview

Discrete adjoint method

Optimization of a PDE-constrained system
Example: linear system
Solving the original problem
Optimization algorithm using adjoint

Hyperbolic PDE's and Riemann problems

Network of PDE's

Godunov discretization

Discretizing single system Discretizing PDE network

Adjoint method applied to PDE networks

Complexity analysis of adjoint method

Demo: Ramp metering

Discrete adjoint method applied to ramp metering

$$\begin{split} &\rho_{i}\left(k-1\right)+\frac{\triangle t}{\triangle x}\left(f_{i}^{\text{in}}\left(k-1\right)-f_{i}^{\text{out}}\left(k-1\right)\right) \\ &l_{i}\left(k-1\right)+\triangle t\left(D_{i}\left(k-1\right)-r_{i}\left(k-1\right)\right) \\ &\min\left(F_{i},v_{i}\rho_{i}\left(k\right)\right) \\ &\min\left(F_{i},w_{i}\left(\rho_{i}^{\text{jam}}-\rho_{i}\left(k\right)\right)\right) \\ &\min\left(l_{i}\left(k\right),u_{i}\left(k\right)\right) \\ &\min\left(\delta_{i-1}\left(k\right)\left(1-\beta_{i-1}\left(k\right)\right)+d_{i-1}\left(k\right),\sigma_{i}\left(k\right)\right) \end{split}$$

$$f_{i}^{\mathbf{out}}\left(k\right) = \begin{cases} \delta_{i}\left(k\right) & \text{if } P_{i}f_{i+1}^{\mathbf{in}}\left(k\right) > \left(1 - \beta_{i}\left(k\right)\right)\delta_{i}\left(k\right) \\ \frac{f_{i+1}^{\mathbf{in}}\left(k\right) - d_{i}\left(k\right)}{1 - \beta_{i}\left(k\right)} & \text{if } : \left(1 - P_{i}\right)f_{i+1}^{\mathbf{in}}\left(k\right) > d_{i}\left(k\right) \\ \frac{P_{i}f_{i+1}^{\mathbf{in}}\left(k\right)}{1 - \beta_{i}\left(k\right)} & \text{otherwise} \end{cases}$$

- H is piecewise affine
- Solving the forward system gives H(x) as a linear system
- $\left.\begin{array}{c} \left.\begin{array}{c} \frac{dH}{dX}\right|_{X=x} \text{ is compute} \\ \text{simultaneously} \end{array}\right.$

$$r_i(k) = f_{i+1}^{in}(k) - f_i^{out}(k)(1 - \beta_i(k))$$

