Chapter 2 §6. Properties of Gröbner Bases. Remember that $\{g_1, \ldots, g_s\}$ is a Gröbner basis for the ideal $I \subset k[x_1, \ldots, x_n]$ if and only if $\{g_1, \ldots, g_s\} \subset I$ and

(2.6.0.1)
$$\langle cx^{\alpha} : cx^{\alpha} \text{ is a leading term of some } f \in I \rangle = \langle LT(g_1), \dots, LT(g_s) \rangle.$$

(2.6.0.1) can be replaced by: Every LT(f) for $f \in I$ is divisible by one of the LT(q_i)'s.

The following lists the key property of a Gröbner basis.

Proposition 2.6.0.2. (Proposition 1) Let $G = \{g_1, \ldots, g_s\}$ be a Gröbner basis for an ideal $I \subset k[x_1, \ldots, x_n]$ and let $f \in k[x_1, \ldots, x_n]$. Then there is a unique $r \in k[x_1, \ldots, x_n]$ with the following properties:

- (i) No term of r is divisible by any of the $LT(g_i)$'s.
- (ii) There is a $g \in I$ such that f = g + r.

In particular, r is the remainder on division of f by G no matter how the elements of G are listed in using the division algorithm.

Proof. The division algorithm gives $f = a_1g_1 + \cdots + a_sg_s + r$ with two properties: (i) no term of r is divisible by any of the $LT(g_i)$'s, $1 \le i \le s$, and (ii) multidegree $(a_ig_i) \le \text{multidegree}(f)$, $1 \le i \le s$. Once G has been ordered and this division has been carried out, $g = a_1g_1 + \cdots + a_sg_s \in I$. It remains to establish uniqueness.

Suppose $f = g_1 + r_1 = g_2 + r_2$ are two such expressions. Then $w = r_1 - r_2 = g_2 - g_1 \in I$. The leading term of w is not divisible by any of the $LT(g_i)$'s. But since $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I, $LT(w) \in LT(I) \subset \langle LT(g_1), \ldots, LT(g_s) \rangle$. This last is a monomial ideal and as such the leading term of any of its members is divisible by at least one of the monomial generators $LT(g_i)$. The only possibility is that the leading term of w is zero which forces w = 0. The uniqueness is established.

The remainder r is sometimes called the *normal form* of f. It is a fact although we won't dwell on it that Gröbner bases are the only bases for which the remainder r is unique for each $f \in I$. Although the remainder r doesn't depend on the order of the divisors, the quotients do, in general, depend on this order.

Corollary 2.6.0.3. (Corollary 2) Let G be a Gröbner basis for the ideal $I \subset k[x_1, \ldots, x_n]$ and let $f \in k[x_1, \ldots, x_n]$. Then $f \in I \Leftrightarrow$ the remainder on dividing f by G is zero.

No proof is required as this follows trivially from Proposition 2.6.0.2.

Remark. The property detailed in corollary 2.6.0.3 is sometimes taken as the definition of a Gröbner basis. It is equivalent to the one given at the beginning of this section.

Definition 2.6.0.4. (Definition 3.) We will write \overline{f}^F for the remainder on division of f by the ordered s-tuple $F = (f_1, \ldots, f_s)$. If F is a Gröbner basis for $\langle f_1, \ldots, f_s \rangle$, we can regard F as a set (without any particular order) by the observation before the proof of Proposition 2.6.0.2.

Definition 2.6.0.5. (Definition 4) Let $f, g \in k[x_1, \ldots, x_n]$ be nonzero polynomials.

- (i) The least common multiple of x^{α} and x^{β} is $x^{\alpha \vee \beta}$.
- (ii) If $LT(f) = cx^{\alpha} \neq 0$ and $LT(g) = dx^{\beta} \neq 0$, then the S-polynomial of f and g is the combination

(2.6.0.6)
$$S(f,g) = \frac{x^{\alpha \vee \beta}}{cx^{\alpha}} \cdot f - \frac{x^{\alpha \vee \beta}}{dx^{\beta}} \cdot g.$$

Key Remark (2.6.0.6a). multidegree(S(f,g)) < max{multidegree(f), multidegree(g)}.

Lemma 2.6.0.7. (Lemma 5) Suppose $f_i = d_i x^{\delta} + h_i$, $1 \le i \le s$, where for each $i, 1 \le i \le s$, $d_i \in k$, $h_i \in k[x_1, \ldots, x_n]$ and $d_i x^{\delta}$ is the leading term of f_i . Suppose each $c_i \in k$ and

(2.6.0.8) multideg
$$\left(\sum_{i=1}^{s} c_i f_i\right) < \delta$$
.

Then $\sum_{i=1}^{s} c_i f_i = \sum_{i=1}^{s-1} a_i S(f_i, f_{i+1})$ for some choice of $a_i \in k$, $1 \le i \le s-1$. Furthermore, each $S(f_i, f_j)$ has multidegree $< \delta$.

Proof. \Box (2.6.0.8) states that $(\sum_{i=1}^{s} c_i d_i) x^{\delta} + (\sum_{i=1}^{s} c_i h_i)$ has multidegree $< \delta$. It is clear that the mulidegree of $\sum_{i=1}^{s} c_i h_i$ is less than δ ; so we must have

(2.6.0.9)
$$\sum_{i=1}^{s} c_i d_i = 0.$$

Let $p_i = \frac{f_i}{d_i} = x^{\delta} + \frac{1}{d_i} h_i$. Then

$$\sum_{i=1}^{s} c_i f_i = \sum_{i=1}^{s} c_i d_i p_i = c_1 d_1 (p_1 - p_2)$$

$$+ (c_1 d_1 + c_2 d_2) (p_2 - p_3)$$

$$+ (c_1 d_1 + c_2 d_2 + c_3 d_3) (p_3 - p_4)$$

$$+ (c_1 d_1 + c_2 d_2 + c_3 d_3 + c_4 d_4) (p_4 - p_5) + \cdots$$

$$+ (c_1 d_1 + c_2 d_2 + \cdots + c_{s-1} d_{s-1}) (p_{s-1} - p_s)$$

$$+ (\sum_{i=1}^{s} c_i d_i) p_s.$$

Use the fact that

$$p_i - p_{i+1} = \frac{1}{d_i} h_i - \frac{1}{d_{i+1}} h_{i+1} = \frac{x^{\delta \vee \delta}}{d_i x^{\delta}} h_i - \frac{x^{\delta \vee \delta}}{d_{i+1} x^{\delta}} h_{i+1} = S(f_i, f_{i+1})$$

and (2.6.0.9) to conclude that

(2.6.0.10)
$$\sum_{i=1}^{s} c_i f_i = \sum_{i=1}^{s-1} \left(\sum_{j=1}^{i} c_j d_j \right) S(f_i, f_{i+1}).$$

The last assertion of the lemma is a consequence of Key Remark (2.6.0.6a).

What follows is the main result of this section:

Theorem 2.6.0.11. (Theorem 6.) Let I be a polynomial ideal with basis $B = \{g_1, \ldots, g_s\}$. B is a Gröbner basis for $I \iff$ For each pair $i \neq j$, there is an ordering G_{ij} of $\{g_1, \ldots, g_s\}$ such that $\overline{S(g_i, g_j)}^{G_{ij}} = 0$.

Proof. $\square(\Longrightarrow)$: The $S(g_i,g_j) \in I$; so if G is an (ordered) Gröbner basis the division of $S(g_i,g_j)$ by G is zero by corollary 2.6.0.3.

 (\Leftarrow) : Let $f \in I$ be nonzero. We must show that $LT(f) \in \langle LT(g_1), \ldots, LT(g_s) \rangle$. Since G is a basis for I there is an expression of the form

(2.6.0.12)
$$f = h_1 g_1 + \dots + h_s g_s$$
, where each $h_i \in k[x_1, \dots, x_n]$.

Let $\delta = \max\{\text{multideg}(h_i g_i): 1 \leq i \leq s\}$. Clearly, multideg $(f) \leq \delta$.

Case I: $(\text{multideg}(f) = \delta)$. In this case, for at least one value of i, $\text{multideg}(h_i g_i) = \delta = \text{multideg}(f)$, and LT(f) is divisible by $\text{LT}(g_i)$; so $\text{LT}(f) \in \langle \text{LT}(g_1), \dots, \text{LT}(g_s) \rangle$. When this is true for an arbitrary $f \in I$, $\{g_1, \dots, g_s\}$ a Gröbner basis for I. The remainder of the proof rests on the following contention:

Contention. There is always an expression of the form (2.6.0.12) for which multideg $(f) = \delta$.

Proof of contention. Let the h_i 's be chosen so that δ is a minimum and suppose multideg $(f) < \delta$. (The proof is by contradiction.) Assume that of all possible expressions of the form

(0.1)
$$f = \sum_{i=1}^{s} h_i g_i \quad \text{with } h_i \in k[\mathbf{x}],$$

(0.1) is one of those for which $\delta = \max \text{ multidegree}(h_i g_i)$, $1 \le i \le s$ is minimal, and that, for this δ , multidegree(f)< δ . Write f as (Here and in what follows "md" is an abbreviation for "multidegree".)

$$(0.2) f = \sum_{md(i)=\delta} h_i g_i + \sum_{md(i)<\delta} h(i) g_i$$

$$= \sum_{md(i)=\delta} LT(h_i) g_i + \sum_{md(i)=\delta} (h_i - LT(h_i)) g_i + \sum_{md(i)<\delta} h(i) g_i.$$

Without loss of generality we can assume that (a) $\{i: md(i) = \delta\} = \{i: 1 \leq i \leq m\}$ for some integer m, $1 \leq m \leq s$, and (b) that $md(g_i) \leq md(g_{i+1})$, $1 \leq i < m$. Since f and the terms of the second and third summands of (0.2) have multidegrees $< \delta$, it follows that

 $\sum_{md(i)=\delta} LT(h_i)g_i$ has multidegree $<\delta$ too. To be more specific: Let $LT(h_i)=c_i\mathbf{x}^{\alpha(i)}$, for those i's with $md(h_ig_i))=\delta$. Then the "first summand" of (0.2) is $\sum_{md(i)=\delta} c_ix^{\alpha(i)}g_i$ or $\sum_{i=1}^m c_ix^{\alpha(i)}g_i$, with our new numbering. This "first summand" satisfies the hypothesis of Lemma (2.6.0.7) and it follows that this sum is a linear combination of the S-polynomials $S(\mathbf{x}^{\alpha(i)}g_i,\mathbf{x}^{\alpha(i+1)}g_{i+1})$, where $1 \leq i < m$. That is,

(A.1)
$$\sum_{md(i)=\delta} LT(h_i)g_i = \sum_{i=1}^m c_i x^{\alpha(i)}g_i = \sum_{i=1}^{m-1} a_i S(\mathbf{x}^{\alpha(i)}g_i, \mathbf{x}^{\alpha(i+1)}g_{i+1})$$
 for some $a_i \in k$

Note that $\mathbf{x}^{\alpha(i)}g_i$ and $\mathbf{x}^{\alpha(i+1)}g_{i+1}$ both have multidegree δ ; so since $md(g_i) \leq md(g_{i+1})$, $\alpha(i) \geq \alpha(i+1)$, $1 \leq i < m$, and $\mathbf{x}^{\alpha(i)-\alpha(i+1)}g_i$ and g_{i+1} have the same multidegree. This observation leads directly to

$$S(\mathbf{x}^{\alpha(i)}g_i, \mathbf{x}^{\alpha(i+1)}g_{i+1}) = \frac{\mathbf{x}^{\alpha(i)}g_i}{\mathrm{LC}(g_i)} - \frac{\mathbf{x}^{\alpha(i+1)}g_{i+1}}{\mathrm{LC}(g_{i+1})}$$

$$= \mathbf{x}^{\alpha(i+1)} \left(\frac{\mathbf{x}^{\alpha(i)-\alpha(i+1)}g_i}{\mathrm{LC}(g_i)} - \frac{g_{i+1}}{\mathrm{LC}(g_{i+1})} \right)$$

$$= \mathbf{x}^{\alpha(i+1)}S(g_i, g_{i+1}).$$
(A.2)

(A.1) then becomes

(A.3)
$$\sum_{md(i)=\delta} LT(h_i)g_i = \sum_{i=1}^{m-1} a_i \mathbf{x}^{\alpha(i+1)} S(g_i, g_{i+1}), \qquad a_i \in k, \ 1 \le i < m.$$

We now use the division algorithm and the fact that the remainder is zero when we divide $S(g_i, g_{i+1})$ by G_{ij} , i.e. $\{(g_1, \ldots, g_s)\}$ taken in the order G_{ij} , to find $B_i^{\ell} \in k[\mathbf{x}]$, satisfying

(A.4)
$$S(g_i, g_{i+1}) = \sum_{\ell=1}^s B_i^{\ell} g_{\ell}, \quad B_i^{\ell} \in k[\mathbf{x}], \text{ multidegree}(B_i^{\ell} g_{\ell}) < \text{multidegree}(g_{i+1}) = \delta - \alpha(i+1).$$

Now putting these together, the "first summand" has an expression

$$\sum_{md(i)=\delta} LT(h_i)g_i = \sum_{i=1}^{m-1} \sum_{\ell=1}^{s} a_i \mathbf{x}^{\alpha(i+1)} B_i^{\ell} g_{\ell} = \sum_{\ell=1}^{s} \left(\sum_{i=1}^{m-1} a_i \mathbf{x}^{\alpha(i+1)} B_i^{\ell} \right) g_{\ell}$$

of the form $H_1g_1 + \cdots + H_sg_s$ where for each t, $1 \le t \le s$, multidegree(H_tg_t) $< \delta$. Adding to this sum the second and third sums of (0.2) we can express f as a sum $F_1g_1 + \cdots + F_sg_s$ in which each summand has multidegree $< \delta$. This contradicts the minimality of δ and shows that Case I is really the only case that can occur.

Theorem 2.6.0.11 (Theorem 6.) is sometimes called "Buchberger's S-pair criterion".

Exercises for Chapter 2 §6

§2.6.1.

Show that Proposition 1 can be strengthened slightly as follows. Fix a monomial ordering and let $I \in k[x_1, \ldots, x_n]$ be an ideal. Suppose that $f \in k[x_1, \ldots, x_n]$.

(a) Show that f can be written in the form f = g + r, where $g \in I$ and no term of r is divisible by any element of LT(I).

Solution. Choose a Gröbner basis $\{g_1, \ldots, g_s\}$ for I. Then since $\langle \operatorname{LT}(I) \rangle = \langle \operatorname{LT}(g_1), \ldots, \operatorname{LT}(g_s) \rangle$ and these are monomial ideals, saying no term of r is divisible by any element of $\operatorname{LT}(I)$ is the same as saying no term of r is divisible by any of the $\operatorname{LT}(g_i)$'s. Now divide f by (g_1, \ldots, g_s) to get an expression $f = q_1g_1 + \cdots + q_sg_s + r$ where no term of r is divisible by any element of $\operatorname{LT}(I)$. Furthermore putting $g = q_1g_1 + \cdots + q_sg_s \in I$ we have f = g + r.

(b) Given two expressions f = g + r = g' + r' as in part (a), prove that r = r'. Thus r and g are uniquely determined.

Solution. If f = g + r = g' + r', then r - r' = g' - g. Now the leading term of w = r - r' is either zero or it is not divisible by any LT(f), $f \in I$. But $r - r' = g - g' \in I$ and the leading term of any element w of I is divisible by LT(w) itself. The only possibility is that w = 0.

This result shows once a monomial order is fixed, we can define a unique "remainder of f on division by I"

§2.6.2.

In §2.5 we showed that $G = \{x + z, y - z\}$ is a Gröbner basis for lex order. Let us use this basis to study the uniqueness of the division algorithm.

(a) Divide xy by (x+z, y-z).

Solution.

$xy^2 - x$	$-y^3 + x$	$x^7y^2 + x^3y^2 - y + 1$	remainder
x^6		$x^7 + x^3y^2 - y + 1$	
		$x^3y^2 - y + 1$	x^7
x^2		$x^3 - y + 1$	
		-y+1	x^3
		+1	-y
			+1

gives

$$x^{7}y^{2} + x^{3}y^{2} - y + 1 = (x^{6} + x^{2})(xy^{2} - x) + (x^{7} + x^{3} - y + 1)$$

Mathematica 3.01. The command

 $\label{eq:polynomial} \begin{aligned} &\textbf{PolynomialReduce}[x^7*y^2+x^3*y^2-y+1, \ \{x^*y^2-x,y-y^3\}, \{x,y\}, \\ &\textbf{MonomialOrder->DegreeLexicographic}] \end{aligned}$

Produces the output

Out[1] = {{
$$x^2 + x^6, 0$$
}, $1 + x^3 + x^7 - y$ }

Then using lex order,

x+z	y-z	xy	remainder
y		-yz	
	-z	$-z^2$	
			$-z^2$

We get $xy = y(x + z) - z(y - z) - z^2$

(b) Now reverse the order and divide xy by (y-z, x+z)

Solution.

y-z	x+z	xy	remainder
x		xz	
	z	$-z^2$	
			$-z^2$

Here we get $xy = x(y-z) + z(x+z) - z^2$. Comparing this with $xy = y(x+z) - z(y-z) - z^2$ we see immediately that the remainders are the same, as we know they must be, but the individual quotients differ. The sums $x(y-z) + z(x+z) = y(x+z) - z(y-z) = xy + z^2$ are the same of course.

§2.6.3.

In Corollary 2, we showed that if $I = \langle g_1, \ldots, g_s \rangle$ and if $G = \{g_1, \ldots, g_s\}$ is a Gröbner basis for I, then $\overline{f}^G = 0$ for all $f \in I$. Prove the converse of this statement. Namely show that if G is a basis for I with the property that $\overline{f}^G = 0$ for all $f \in I$, then G is a Gröbner basis for I.

Solution. The fact that $\overline{f}^G = 0$, the leading term of f is divisible by one of the $LT(g_i)$'s or $LT(f) \in \langle LT(g_1), \ldots, LT(g_s) \rangle$. Since this is true for each $f \in I$ we have $LT(I) \subset \langle LT(g_1), \ldots, LT(g_s) \rangle$. As the g_i 's themselves belong to I, $LT(I) \supset \langle LT(g_1), \ldots, LT(g_s) \rangle$. This gives $LT(I) = \langle LT(g_1), \ldots, LT(g_s) \rangle$ and shows that $\{g_1, \ldots, g_s\}$ is a Gröbner basis for I.

§2.6.4.

Let G and G' be Gröbner bases for an ideal I with respect to the same monomial order in $k[x_1, \ldots, x_n]$. Show that $\overline{f}^G = \overline{f}^{G'}$ for all $f \in k[x_1, \ldots, x_n]$. Hence the remainder on division by a Gröbner basis is even independent of which Gröbner basis we use, as long as we use one particular monomial order. Hint: Soo Exercise 2.6.1.

Solution. We have shown that for a fixed monomial order the decomposition f = g + r where $g \in I$ and no term of r is divisible by any element of LT(I) in Exercise 2.6.1 There was no mention of a specific Gröbner basis in this decomposition; so we can safely infer that it is independent of the basis used to get the decomposition (if, in fact, a basis was used).

§2.6.5.

Compute S(f,g) using the lex order.

(a)
$$f = 4x^2z - 7y^2$$
, $g = xyz^2 + 3xz^4$.

Solution.

$$S(f,g) = \frac{1}{4} \cdot yz(4x^2z - 7y^2) - \frac{1}{3} \cdot x(xyz^2 + 3xz^4) = -\frac{7}{4}y^4z - x^2z^4.$$

(b)
$$f = x^4y - z^2$$
, $g = 3xz^2 - y$.

Solution.

$$S(f,g) = z^{2}(x^{4}y - z^{2}) - \frac{1}{3} \cdot x^{3}y(3xz^{2} - y) = -z^{4} + \frac{1}{3}x^{3}y^{2}.$$

(c)
$$f = x^7y^2z + 2ixyz$$
, $g = 2x^7y^2z + 4$.

Solution.

$$S(f,g) = x^7 y^2 z + 2ixyz - \frac{1}{2}(2x^7 y^2 z + 4) = 2ixyz - 2.$$

(d)
$$f = xy + z^3$$
, $g = z^2 - 3z$.

Solution.

$$S(f,g) = z^{2}(xy + z^{3}) - xy(z^{2} - 3z) = 3xyz + z^{5}.$$

§**2.6.6.**

Does s(f,g) depend on which monomial order is used? Illustrate your assertions with examples

Solution. Let f = x, $g = x + y^2$. Then using lex order

$$S_{lex}(f,g) = x - (x + y^2) = -y^2.$$

Using grlex order g would more naturally be written as $g = y^2 + x$ and

$$S_{grlex}(f,g) = y^2(x) - x(y^2 + x) = -x^2.$$

So the answer to the first question is: Yes.

§2.6.7.

Prove that $\operatorname{multideg}(S(f,g)) < \gamma$, where $x^{\gamma} = \operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))$. Explain why this inequality is a precise version of the claim that S-polynomials are designed to produce cancellation.

Solution. If $f = ax^{\alpha} + h_f$ and $g = bx^{\beta} + h_g$ where $\operatorname{multideg}(h_f) < \alpha$ and $\operatorname{multideg}(h_g) < \beta$, then $\gamma = \alpha \vee \beta$ both $\frac{x^{\alpha \vee \beta}}{x^{\alpha}}h_f$ and $\frac{x^{\alpha \vee \beta}}{x^{\alpha}}h_g$ have $\operatorname{multidegree} < \alpha \vee \beta = \gamma$; so S(f,g) which is a k-linear combination of these last two mentioned polynomials has $\operatorname{multidegree} < \alpha \vee \beta = \gamma$.

For the moment I'll pass on the explanation called for in the last sentence of the exercise.

§**2.6.8**.

Show that $\{y-x^2, z-x^3\}$ is not a Gröbner basis for lex order with x>y>z.

Solution. $xy - z \in I$ but its leading term xy is not divisible by either $-x^2$ or $-x^3$, the leading terms of the basis elements in the lex order. Thus

$$xy \in \langle LT(I) \rangle \not\subset \langle LT(y-x^2), LT(z-x^3) \rangle = \langle -x^2, -x^3 \rangle.$$

§2.6.9.

Using Theorem 6, determine whether the following sets G are Gröbner bases for the ideal they generate. You may use a computer algebra system to compute the S-polynomials and remainders.

(a)
$$G = \{x^2 - y, x^3 - z\}$$
 grlex order.

Solution. $S(x^2 - y, x^3 - z) = -xy + z$ which is not divisible by the leading terms x^2 and x^3 ; so this G is not a Gröbner basis for I.

(b)
$$G = \{x^2 - y, x^3 - z\}$$
 invlex order (see Exercise 2.2.6).

Solution. invlex order is just lex order with the variables in the order z > y > x. Thus in invlex order we would write the polynomials of G as $G = \{-y + x^2, -z + x^3\}$. Here $S_{invlex}(-z + x^3, -y + x^2) = y(-z + x^3) - z(-y + x^2) = -zx^2 + yx^3$. Using Mathematica 3.0, the command:

PolynomialReduce[- $z^*x^2+y^*x^3$,{- $y+x^2$,- $z+x^3$ },{z,y,x}, MonomialOrder->Lexicographic] gives {{ $-x^3, x^2$ }, 0} which is interpreted as

$$-zx^{2} + yx^{3} = x^{2}(-z + x^{3}) - x^{3}(-y + x^{2}) + 0.$$

This shows that indeed $G = \{x^2 - y, x^3 - z\}$ is a Gröbner basis in the invlex order.

(c)
$$G = \{xy^2 - xz + y, xy - z^2, x - yz^4\}$$
 lex order.

Solution.

$$S(xy^2 - xz + y, xy - z^2) = (xy^2 - xz + y) - y(xy - z^2) = -xz + yz^2 + y;$$

$$S(xy^2 - xz + y, x - yz^4) = (xy^2 - xz + y) - y^2(x - yz^4) = -xz + y^3z^4 + y;$$

$$S(xy - z^2, x - yz^4) = (xy - z^2) - y(x - yz^4) = y^2z^4 - z^2.$$

Dividing $S(xy^2 - xz + y, xy - z^2) = -xz + yz^2 + y$ by $G = (xy^2 - xz + y, xy - z^2, x - yz^4)$ yields

$$-xz + yz^{2} + y = (-z)(x - yz^{4}) + y + yz^{2} - yz^{5};$$

so from this first division alone it follows that G is not a Gröbner basis.

§**2.6.10.**

Let $f, g \in k[x_1, ..., x_n]$ be polynomials such that LM(f) and LM(g) are relatively prime monomials and LC(f) = LC(g) = 1.

(a) Show that S(f,g) = -(g - LT(g))f + (f - LT(f))g.

Solution. Suppose $f = x^{\alpha} + (f - LT(f))$ and $g = x^{\beta} + (g - LT(g))$ and that $\alpha \wedge \beta = 0$. Then

$$\begin{split} S(f,g) &= x^{\beta} \left(x^{\alpha} + (f - \operatorname{LT}(f)) \right) - x^{\alpha} \left(x^{\beta} + (g - \operatorname{LT}(g)) \right) \\ &= x^{\beta} (f - \operatorname{LT}(f)) - x^{\alpha} (g - \operatorname{LT}(g)) \\ &= (f - \operatorname{LT}(f)) \left(g - (g - \operatorname{LT}(g)) \right) - (g - \operatorname{LT}(g)) \left(f - (f - \operatorname{LT}(f)) \right) \\ &= (f - \operatorname{LT}(f)) g - (g - \operatorname{LT}(g)) f \end{split}$$

(b) Deduce that the leading monomial of S(f,g) is a multiple of either $\mathrm{LM}(f)$ or $\mathrm{LM}(g)$ in this case.

Solution. Let α' be the leading exponent of $f - \operatorname{LT}(f)$ and β' the leading exponent of $g - \operatorname{LT}(g)$. The leading exponent of $(f - \operatorname{LT}(f))g$ is $\alpha' + \beta$ and the leading exponent of $(g - \operatorname{LT}(g))f$ is $\alpha + \beta'$; so to complete the argument for (b) it suffices to show that these leading terms couldn't cancel, that is, that $\alpha + \beta' \neq \beta + \alpha'$. Phrased in another manner: The conditions $\alpha + \beta' = \beta + \alpha'$; $\alpha \wedge \beta = 0$; $\beta' < \beta$; $\alpha' < \alpha$ are contradictory. At the moment I haven't found an argument for this; so we'll leave it.

§**2.6.11.**

Let $f, g \in k[x_1, \ldots, x_n]$ and x^{α}, x^{β} be monomials. Verify that

$$S(x^{\alpha}f, x^{\beta}g) = x^{\gamma}S(f, g)$$

where

$$x^{\gamma} = \frac{\mathrm{LCM}\left(x^{\alpha}\mathrm{LM}(f), \ x^{\beta}\mathrm{LM}(g)\right)}{\mathrm{LCM}\left(\mathrm{LM}(f), \ \mathrm{LM}(g)\right)}.$$

Be sure to prove that x^{γ} is a monomial.

Solution. Suppose that $f = a_f x^{m_f} + f - LT(f)$ and $g = a_g x^{m_g} + g - LT(g)$. Then

$$x^{\alpha} f = a_f x^{m_f + \alpha} + x^{\alpha} (f - LT(f));$$

$$x^{\beta} g = a_g x^{m_g + \beta} + x^{\beta} (g - LT(g));$$

and

$$S(x^{\alpha}f, x^{\beta}g) = \frac{x^{(m_f + \alpha)\vee(m_g + \beta)}}{a_f x^{m_f + \alpha}} \cdot x^{\alpha} \left(f - \operatorname{LT}(f) \right) - \frac{x^{(m_f + \alpha)\vee(m_g + \beta)}}{a_g x^{m_g + \beta}} \cdot x^{\beta} \left(g - \operatorname{LT}(g) \right)$$

$$= \frac{x^{(m_f + \alpha)\vee(m_g + \beta)}}{x^{m_f \vee m_g}} \cdot \left(\frac{x^{m_f \vee m_g}}{a_f x^{m_f}} \cdot (f - \operatorname{LT}(f)) - \frac{x^{m_f \vee m_g}}{a_g x^{m_g}} \left(g - \operatorname{LT}(g) \right) \right)$$

$$= x^{\gamma} \cdot S(f, g).$$

§2.6.12.

Let $I \subset k[x_1, \ldots, x_n]$ be an ideal, and let G be a Gröbner basis of I.

- (a) Show that $\overline{f}^G = \overline{g}^G$ if and only if $f g \in I$. Hint: See Exercise 2.6.1.
- (b) Deduce that $\overline{f+g}^G=\overline{f}^G+\overline{g}^G.$ Hint: Use part (a).
- (c) Deduce that $\overline{fg}^G = \overline{\overline{f}^G \cdot \overline{g}^G}^G$.

We will return to an interesting consequence of these facts in Chapter 5.

Solution. Consider the homomorphism $f \mapsto f + I$ of $k[x_1, \dots, x_n] \to k[x_1, \dots, x_n]/I$. Since $f + I = \overline{f}^G + I$, \overline{f}^G is a representative of the coset f + I under this homomorphism. It is the unique representative with the property that none of its terms are divisible by the leading terms $LT(g_i)$ of the Gröbner basis G. Once this has been observed properties (a), (b) and (c) follow from the fact that $f \mapsto f + I$ is a homomorphism.