UNIDAD N°: 1 RADIOPROPAGACIÓN

OBJETIVOS

Caracterizar la influencia de la troposfera

- Para frecuencias f > 30MHz deja de ser válida la propagación por O.S. Las comunicaciones se producen a través de capas bajas de la atmósfera llamada troposfera, entre antenas situadas a varias λ sobre el suelo.
- Es importante conocer la trayectoria de propagación ya que los accidentes del terreno pueden obstaculizar el paso de la onda produciendo una atenuación importante.
- Los trayectos múltiples por reflexión en el suelo o en capas estratificadas, pueden producir un alcance mayor al previsto y posibilidad de crear interferencias.

- Las ondas que viajan por la troposfera experimentan una refracción a causa de la no uniformidad de las capas atmosféricas que se traduce en una trayectoria curvilínea de los rayos.
- Los gases y vapores atmosféricos, O2 y H2O, producen absorción y atenuación adicional para f >10GHz. Lo mismo ocurre con la lluvia, niebla y nubes.
- La lluvia produce además una despolarización de la onda y un incremento de la temperatura de ruido del receptor.

- En la troposfera se produce también dispersión, por lo que se puede aprovechar para constituir enlaces radio pero se producen interferencias.
- El alcance es del orden de la visión óptica entre antenas. Más allá se pueden producir enlaces por difracción y más lejos enlaces por dispersión aunque apenas se utilizan.
- Los aspectos a analizar son: Refracción, Difracción, Dispersión

2.6.1 Índice de refracción. Curvatura de los rayos.

El índice de refracción n es función de:

- presión atmosférica p
- presión del vapor de agua e
- Temperatura absoluta T

El valor de **n** varía muy poco (millonésimas) por lo que se utiliza el coindice de refracción o Refractividad **N**

$$N = (n-1) 10^6$$

La Recomendación 453 CCIR facilita:

$$N = \frac{77.6}{T} (p + 4810 \frac{e}{T})$$
 p,e(mb); T (° K)

2.6.1 Índice de refracción. Curvatura de los rayos.

- En condiciones normales T= 290°K, p= 1013mb, e= 10.2mb => N=316; n= 1,000316.
- Las características de la atmósfera varían con la altura. La Recomendación 453 del CCIR define la atmósfera de referencia en la que el índice de refracción

$$n(h)=1+315*10^{-6}*e^{-0.136h}$$
, $h(km)$
 $N(h)=315*e^{-0.136h}$

2.6.1 Índice de refracción. Curvatura de los rayos.

Para alturas de hasta 1Km, se hace una aproximación lineal

$$N = Ns (1 - 0.136h); 0 < h < 1;$$
 $Ns = Coindice en la superfície$

h(km)

Para tener datos de forma normalizada se trabaja con refractividad a nivel del mar (No)

 $Ns = No e^{-0.136hs}$

La Recomendación 453 CCIR proporciona **No** para los meses del año.

La figura se muestra la gráfica para el mes de febrero.

2.6.1 Índice de refracción. Curvatura de los rayos.

Ejemplo

Calcular la refractividad en la meseta castellana España (h = 0.7Km) para el mes de febrero.

De la figura CCIR 453 (febrero) => No = 320

$$Ns = No * e^{-0.136*hs} = 320 * e^{-0.136*0.7} = 290.94$$

2.6.1 Índice de refracción. Curvatura de los rayos.

La ley de Snell dice:

$$\frac{\operatorname{sen}\alpha_i}{\operatorname{sen}\alpha_r} = \frac{n(h+dh)}{n(h)}$$

$$\varphi(h) + \alpha_i = 90^\circ = \alpha_i = 90^\circ - \varphi(h)$$

$$sen (\alpha_i) = sen (90^\circ - \varphi(h)) = cos (\varphi(h))$$

$$n(h)*cos(\phi(h)) = n(h + dh)*cos(\phi(h + dh)) = constante$$

Derivando con respecto a la altura se obtiene:

$$\frac{dn(h)}{dh} \cdot \cos(\varphi(h)) - n(h) \cdot sen(\varphi(h)) \cdot \frac{d\varphi(h)}{dh} = 0$$

2.6.1 Índice de refracción. Curvatura de los rayos.

Análisis de la trayectoria del rayo

La trayectoria es curvilínea debido a la disminución del índice de refracción con la altura. Por la ley de Snell,

$$n_i \cdot \operatorname{sen} \varphi_i = \operatorname{cte} \quad i = 1, 2, 3, \dots$$

$$n_5 \quad n_4 \quad n_3 \quad n_2 \quad \varphi_3 \quad \varphi_4 \quad \varphi_5 \quad \varphi_4 \quad \varphi_5 \quad \varphi_1 \quad \varphi_2 \quad \varphi_2 \quad \varphi_2 \quad \varphi_3 \quad \varphi_3 \quad \varphi_3 \quad \varphi_4 \quad \varphi$$

 $n_2 < n_1 \rightarrow \text{sen } \varphi_2 > \text{sen } \varphi_1 \rightarrow \text{el rayo se curva!}$

2.6.1 Índice de refracción. Curvatura de los rayos.

Expresada en la variable continua h y tomando diferenciales,

$$n(h) \cdot \operatorname{sen} \varphi(h) = \operatorname{cte}$$

Así
$$\begin{cases} \cos(\varphi(h)) = dh/ds \\ ds = Rd\varphi \to 1/R = d\varphi/ds \end{cases}$$

2.6.1 Índice de refracción. Curvatura de los rayos.

•Derivando la ley de Snell se obtiene

$$\frac{dn}{dh} \cdot \operatorname{sen}\varphi + n \cdot \cos\varphi \cdot \frac{d\varphi}{dh} = 0$$

• Y por otro lado, se puede escribir, utilizando $\cos\varphi = dh/ds$,

$$\cos\varphi \cdot \frac{d\varphi}{dh} = \frac{d\varphi}{ds}$$

2.6.1 Índice de refracción. Curvatura de los rayos.

• Despejamos $d\varphi/ds$ para obtener la curvatura

$$\frac{1}{R} = \frac{d\varphi}{ds} = -\frac{1}{n} \cdot sen\varphi \cdot \frac{dn}{dh} \Big|_{\substack{\varphi = 90^{\circ} \\ n(h) \approx 1}} \approx -\frac{dn}{dh}$$

$$-\frac{dn}{dh} = -\frac{dN}{dh} \cdot 10^{-6} = 0.136 \cdot N_{s} \cdot 10^{-6}$$

$$N = (n-1) \cdot 10^{6} \quad N(h) = N_{s}(1-0.136 \cdot h), \ h = 0$$
UN ARCO DE RADIO
$$R = \frac{1}{0.136 \cdot N_{s} \cdot 10^{-6}}$$

UN ARCO DE RADIO

$$R = \frac{1}{0.136 \cdot N_s \cdot 10^{-6}}$$

2.6.1 Índice de refracción. Curvatura de los rayos.

Para incidencia casi rasante $\varphi(h) \approx 0$, $\cos(\varphi(h)) \approx 1$, $n(h) \approx 1$

$$\frac{dn(h)}{dh} = \frac{d\varphi(h)}{ds} = -\frac{1}{R} = -\rho$$

ρ es la curvatura del trayecto

R es el radio de curvatura del rayo $R = \frac{1}{\rho}$

El signo negativo indica que el rayo se incurva hacia la tierra (visto desde arriba es convexo)

2.6.1 Índice de refracción. Curvatura de los rayos.

$$N = (n-1) 10^6$$

$$\frac{dN}{dh} = \frac{dn}{dh} \cdot 10^6 \rightarrow \frac{dn}{dh} = 10^{-6} \frac{dN}{dh}$$

$$\Delta N = \frac{dN}{dh} = -10^6 \, \rho$$

$$\rho = -\Delta N \cdot 10^{-6}$$

$$N = N_S(1 - 0.136h)$$
 se deduce

$$\Delta N = \frac{dN}{dh} = -N_s \cdot 0.136$$

$$\rho = 1.36 \cdot 10^{-7} \cdot N_s$$

2.6.1 Índice de refracción. Curvatura de los rayos.

Para el ejemplo
$$N_S = 290,9$$

$$\rho = 39.6 \cdot 10^{-6} \, km$$

$$R = \frac{1}{\rho} = 25.250$$
 km

2.6.2 Geometría del terreno

Se va a estudiar la influencia de la refractividad sobre el trayecto radioeléctrico, utilizando el modelo de la figura donde por sencillez se asume la superficie terrestre lisa, sin rugosidades.

2.6.2 Geometría del terreno

En la figura anterior:

- (1) Trayectoria curvilínea del rayo
- (2) Trayectoria rectilínea del rayo
- (3) Curvatura terrestre

Sean Ro = 6370 km el radio de la curvatura de la tierra y R el radio de curvatura de la tierra del rayo.

2.6.2 Geometría del terreno

En primer lugar se va a calcular la expresión de la protuberancia terrestre $b_E(x)$. La protuberancia terrestre es la altura de la tierra sobre la línea recta que une las bases de las antenas.

2.6.2 Geometría del terreno

De la figura anterior se desprende que la protuberancia de la tierra bE(x) es:

$$b_E(x) = q - p = \sqrt{R_0^2 - \left(\frac{d}{2} - x\right)^2} - \sqrt{R_0^2 - \left(\frac{d}{2}\right)^2} = \frac{x(d - x)}{2R_0}$$

si x << 1
$$\sqrt{1-x^2} = 1 - \frac{x^2}{2}$$

$$b_E(x) = 0.07849 \cdot x \cdot (d - x)$$

$$b_E(x) (m)$$

$$d, x (km)$$

2.6.2 Geometría del terreno

Protuberancia del rayo $b_R(x)$:

$$b_R(x) = \frac{x(d-x)}{2R}$$

Despejamiento C_R(x) para un punto

$$C_R(x) = b_R(x) + h(x) - b_E(x)$$

$$= h(x) + \frac{x(d-x)}{2} \cdot \left(\frac{1}{R} - \frac{1}{R_0}\right)$$

h(x)= ordenada de la recta TR cuando pasa por el punto de abcisa x.

2.6.2 Geometría del terreno

El cálculo del despejamiento $C_R(x)$ puede realizarse considerando que el rayo es rectilíneo y la tierra tiene una curvatura ficticia caracterizada por un radio kRo

2.6.2 Geometría del terreno

La protuberancia terrestre es

$$b_E(x) = \frac{x(d-x)}{2kR_o} = 0.07849 \frac{x(d-x)}{k}$$

El despejamiento vale:

$$C_R(x) = h(x) - b_E(x) = h(x) - \frac{x(d-x)}{2kR_O}$$

Igualando

$$h(x) - \frac{x(d-x)}{2kR_o} = h(x) + \frac{x(d-x)}{2} \left(\frac{1}{R} - \frac{1}{R_o} \right)$$

2.6.2 Geometría del terreno

$$\frac{x(d-x)}{2} \left[\frac{1}{R_o} - \frac{1}{kR_o} \right] = \frac{x(d-x)}{2} \frac{1}{R}; \qquad \frac{1}{R_o} - \frac{1}{R} = \frac{1}{kR_o}$$

$$kR_{o} = \frac{1}{\frac{1}{R_{o}} - \frac{1}{R}} \rightarrow k = \frac{R}{R - R_{o}} = \frac{1}{1 - \frac{R_{o}}{R}}$$
$$= \frac{1}{1 + R_{o}\rho} = \frac{1}{1 + R_{o}\Delta N \cdot 10^{-6}} = \frac{157}{157 + \Delta N}$$

En climas templados
$$\Delta N = -39 \rightarrow k = \frac{4}{3}$$

2.6.2 Geometría del terreno

La tierra es un poco más plana que la realidad para propagación troposférica.

2.6.2 Geometría del terreno

Según los valores de k, se clasifica la troposfera en:

Tipo de Troposfera	k	ΔN
Subrrefractiva intensa	$0 \le k \le 1$	$0 < \Delta N < \infty$
Subrrefractiva	$1 \le k \le 4/3$	$-39 < \Delta N < 0$
Standard	k = 4/3	$\Delta N = -39$
Superrefractiva	k > 4/3	$-157 < \Delta N < -39$
Conductiva	k < 0	$\Delta N \le -157$

2.6.2 Geometría del terreno

Influencia de k, o ΔN en el despejamiento

Si k disminuye también lo hace el despejamiento

2.6.2 Geometría del terreno

Si la Tierra no es lisa, es decir con montañas y valles:

2.6.2 Geometría del terreno

Altura mínima de las antenas

Si k disminuye, con incidencia rasante hay que aumentar las alturas de las antenas de h a h', para que el rayo pase por encima de la protuberancia terrestre. En la siguiente figura se ilustra este fenómeno.

2.6.2 Geometría del terreno

En el caso de troposfera conductiva, k es negativa, no es cómodo pintar una tierra cóncava, por lo que se acostumbra a dibujar una tierra plana y el rayo curvilíneo, con un radio de curvatura R tal que:

2.6.2 Geometría del terreno

Se define un índice de refracción modificado m, de forma que:

$$\frac{1}{R_O} + \frac{dn}{dh} = \frac{dm}{dh} = \frac{1}{kR_O}$$

En la práctica se utiliza $M = (m-1)\cdot 10^6$

$$\Delta M = \frac{dM}{dh} = 10^6 \frac{dm}{dh} = \frac{10^6}{kR_O} = \Delta N + 157$$

Para
$$k = 4/3 \rightarrow \Delta N = -39 \rightarrow \Delta M = 118$$

GRACIAS