Tareal Villarroel Herrera

May 5, 2025

1 Tarea 1

1.0.1 Francisco Javier Villarroel Herrera

```
[4]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt
  import statsmodels.api as sm
  import statsmodels.formula.api as smf
  import sklearn
  import scipy
  from scipy.stats import nbinom
  from statsmodels.iolib.summary2 import summary_col

import warnings
  warnings.filterwarnings("ignore")

//matplotlib inline
```

Las variables tienen la siguiente descripcion:

- Date: data medida en frecuencia diaria
- Location: ubicacion del medidor
- Min_Temp: temperatura minima observada
- Max Temp: temperatura maxima observada
- Leakage: Filtracion medida en el area
- Evaporation: Tasa de evaporacion
- Electricity: Consumo electrico KW
- Parameter#: Diferentes sensores de reportando direccion y velocidad de viento en distintos momentos del dia, asi como otras metricas relevantes.
- Failure today: El sensor reporta fallo (o no)

1.1 1. Análisis exploratorio, tipos de datos y limpieza

Se comienza cargando la base de datos machine_failure_data.csv y se transforma la variable Date a formato de fecha. Además, se restringe el análisis a datos posteriores al año 2008, para asegurar consistencia temporal.

La variable dependiente Failure today se recodifica a valores binarios (1 para "Yes" y 0 para "No"),

facilitando su uso en modelos de regresión. La variable Leakage se transforma a logaritmo (con un pequeño ajuste de +0.1 para evitar problemas con ceros), con el objetivo de estabilizar su varianza y mejorar la interpretación.

Se eliminan variables con más de un 10% de datos faltantes (Evaporation, Electricity, y algunos Parameter5). Además, se descarta Parameter6 por falta de interpretabilidad clara. Finalmente, se eliminan las filas con valores faltantes restantes y se genera una variable estacional a partir del mes de la fecha para capturar efectos temporales.

```
[5]: df = pd.read csv('../../data/machine failure data.csv')
[5]:
                    Date
                           Location
                                       Min_Temp
                                                   Max_Temp
                                                              Leakage
                                                                         Evaporation
               12/1/2008
                                    3
                                            13.4
                                                        22.9
                                                                   0.6
                                                                                  NaN
               12/2/2008
                                    3
                                             7.4
                                                                   0.0
     1
                                                        25.1
                                                                                  NaN
     2
               12/3/2008
                                    3
                                            12.9
                                                        25.7
                                                                   0.0
                                                                                  NaN
                                    3
     3
               12/4/2008
                                             9.2
                                                                   0.0
                                                        28.0
                                                                                  NaN
                                            17.5
     4
               12/5/2008
                                    3
                                                        32.3
                                                                   1.0
                                                                                  {\tt NaN}
     142188
              6/20/2017
                                   42
                                             3.5
                                                        21.8
                                                                   0.0
                                                                                  NaN
     142189
              6/21/2017
                                   42
                                             2.8
                                                        23.4
                                                                   0.0
                                                                                  NaN
     142190
              6/22/2017
                                   42
                                                                   0.0
                                                                                  NaN
                                             3.6
                                                        25.3
     142191
                                   42
              6/23/2017
                                             5.4
                                                        26.9
                                                                   0.0
                                                                                  NaN
     142192
              6/24/2017
                                   42
                                             7.8
                                                        27.0
                                                                   0.0
                                                                                  NaN
              Electricity Parameter1_Dir
                                               Parameter1_Speed Parameter2_9am
     0
                        NaN
                                            W
                                                             44.0
                                                                                  W
                                                             44.0
     1
                        NaN
                                          WNW
                                                                                NNW
     2
                        NaN
                                          WSW
                                                             46.0
                                                                                  W
     3
                                                             24.0
                        \mathtt{NaN}
                                           NE
                                                                                 SE
     4
                        NaN
                                            W
                                                             41.0
                                                                                ENE
                                            Ε
                                                                                ESE
     142188
                        {\tt NaN}
                                                             31.0
                                            Ε
                                                             31.0
                                                                                 SE
     142189
                        {\tt NaN}
     142190
                                          NNW
                                                              22.0
                                                                                 SE
                        {\tt NaN}
                                            N
     142191
                        NaN
                                                             37.0
                                                                                 SE
     142192
                        {\tt NaN}
                                           SE
                                                             28.0
                                                                                SSE
             Parameter3_3pm
                                Parameter4_9am
                                                   Parameter4_3pm
                                                                     Parameter5_9am \
     0
                         24.0
                                            71.0
                                                              22.0
                                                                               1007.7
     1
                         22.0
                                            44.0
                                                              25.0
                                                                               1010.6
     2
                         26.0
                                            38.0
                                                              30.0
                                                                               1007.6
     3
                          9.0
                                            45.0
                                                              16.0
                                                                               1017.6
     4
                         20.0
                                            82.0
                                                              33.0
                                                                               1010.8
                                                                               1024.7
     142188
                         13.0
                                            59.0
                                                              27.0
     142189
                         11.0
                                            51.0
                                                              24.0
                                                                               1024.6
```

21.0

1023.5

56.0

9.0

142190

```
142191
                       9.0
                                       53.0
                                                        24.0
                                                                       1021.0
     142192
                       7.0
                                       51.0
                                                        24.0
                                                                       1019.4
             Parameter5_3pm
                             Parameter6_9am
                                             Parameter6_3pm Parameter7_9am \
     0
                     1007.1
                                                                          16.9
                     1007.8
                                                          NaN
                                                                          17.2
     1
                                         NaN
     2
                     1008.7
                                         NaN
                                                          2.0
                                                                          21.0
     3
                      1012.8
                                         NaN
                                                          NaN
                                                                          18.1
                                         7.0
     4
                      1006.0
                                                          8.0
                                                                          17.8
     142188
                      1021.2
                                                          NaN
                                                                           9.4
                                         NaN
     142189
                      1020.3
                                         NaN
                                                          NaN
                                                                          10.1
     142190
                      1019.1
                                         NaN
                                                          NaN
                                                                          10.9
     142191
                      1016.8
                                         NaN
                                                          NaN
                                                                          12.5
     142192
                     1016.5
                                         3.0
                                                          2.0
                                                                          15.1
             Parameter7_3pm
                             Failure_today
     0
                        21.8
     1
                       24.3
                                         No
                       23.2
     2
                                         No
     3
                       26.5
                                         No
     4
                       29.7
                                         No
     142188
                       20.9
                                         No
     142189
                       22.4
                                         No
     142190
                       24.5
                                         No
                       26.1
     142191
                                         No
     142192
                       26.0
                                         No
     [142193 rows x 22 columns]
[6]: #Cambiamos el formato de la fecha, y empezamos desde el 2009
     df['Date'] = pd.to_datetime(df['Date'], format='%m/%d/%Y')
     df = df[df['Date'].dt.year > 2008]
     #La variable dependiente se pasa a 0 y 1.
     df['Failure_today'] = df['Failure_today'].replace(["Yes", "No"],[1,0])
     #Leakage se transforma a logaritmo
     df['Leakage_log'] = np.log(df['Leakage']+0.1)
     #El parámetro 6 no es de interes, al no poderse interpretar.
     df = df.drop(['Parameter6_9am', 'Parameter6_3pm'], axis=1)
     df
[6]:
                  Date Location Min_Temp Max_Temp Leakage Evaporation \
            2009-01-01
                                3
                                       11.3
                                                  26.5
                                                            0.0
                                                                          NaN
     30
```

31	2009-01-02	3 9.6	3 23.9	0.0 NaN
32	2009-01-03	3 10.5		0.0 NaN
33	2009-01-04	3 12.3		0.0 NaN
34	2009-01-05	3 12.9		0.0 NaN
•••	***		••	•••
142188	2017-06-20	42 3.9	5 21.8	0.0 NaN
	2017-06-21	42 2.8		0.0 NaN
	2017-06-22	42 3.6		0.0 NaN
	2017-06-23	42 5.4		0.0 NaN
	2017-06-24	42 7.8		0.0 NaN
	Electricity Pa	rameter1_Dir	Parameter1_Speed	Parameter2_9am \
30	NaN	WNW	56.0	W
31	NaN	W	41.0	WSW
32	NaN	SSE	26.0	SSE
33	NaN	WNW	37.0	SSE
34	NaN	WNW	41.0	ENE
	***	***	***	*** ***
142188	NaN	E	31.0	ESE
142189	NaN	E	31.0	SE
142190	NaN	NNW	22.0	SE
142191	NaN	N	37.0	SE
142192	NaN	SE	28.0	SSE
	Parameter3_9am	Parameter3_3pm	n Parameter4_9am	Parameter4_3pm \
30	Parameter3_9am 19.0	Parameter3_3pr	n Parameter4_9am	Parameter4_3pm \ 26.0
30 31	-	-	46.0	-
	19.0	31.0 11.0	46.0 44.0	26.0 22.0
31	19.0 19.0	31.0	0 46.0 0 44.0 0 43.0	26.0
31 32	19.0 19.0 11.0 6.0	31.0 11.0 7.0 17.0	46.0 44.0 43.0 41.0	26.0 22.0 22.0
31 32 33	19.0 19.0 11.0	31.0 11.0 7.0	46.0 44.0 43.0 41.0	26.0 22.0 22.0 12.0
31 32 33	19.0 19.0 11.0 6.0	31.0 11.0 7.0 17.0	46.0 44.0 43.0 41.0 41.0	26.0 22.0 22.0 12.0
31 32 33 34 	19.0 19.0 11.0 6.0 6.0	31.0 11.0 7.0 17.0 26.0	46.0 44.0 43.0 41.0 41.0 59.0	26.0 22.0 22.0 12.0 9.0
31 32 33 34 142188	19.0 19.0 11.0 6.0 6.0 	31.0 11.0 7.0 17.0 26.0 	46.0 44.0 43.0 41.0 41.0 59.0 51.0	26.0 22.0 22.0 12.0 9.0
31 32 33 34 142188 142189	19.0 19.0 11.0 6.0 6.0 15.0 13.0	31.0 11.0 7.0 17.0 26.0 	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0	26.0 22.0 22.0 12.0 9.0 27.0 24.0
31 32 33 34 142188 142189	19.0 19.0 11.0 6.0 6.0 15.0 13.0	31.0 11.0 7.0 17.0 26.0 13.0 9.0	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0 53.0	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0
31 32 33 34 142188 142189 142190	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0 53.0	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0
31 32 33 34 142188 142189 142190	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0 7.0	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0 53.0 51.0	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0
31 32 33 34 142188 142189 142190	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0 7.0	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0 53.0 51.0 	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0
31 32 33 34 142188 142189 142190 142191 142192	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0	31.0 11.0 7.0 17.0 26.0 13.0 11.0 9.0 7.0 Parameter5_3p	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0 53.0 51.0 Parameter7_9an	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0
31 32 33 34 142188 142189 142191 142192	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0 7.0 Parameter5_3 ₁ 1003 1013	46.0 44.0 43.0 41.0 41.0 59.0 51.0 56.0 53.0 51.0 Parameter7_9am 19.1	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.0
31 32 33 34 142188 142189 142191 142192 30 31	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0 9.0 13.0 Parameter5_9am 1004.5 1014.4	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0 7.0 Parameter5_3 ₁ 1003 1013	0 46.0 0 44.0 0 43.0 0 41.0 0 41.0 0 59.0 0 51.0 0 56.0 0 53.0 0 51.0 0 51.0 0 10 51.0 0 11 0 14.0 0 12 19.0	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.0 24.0
31 32 33 34 142188 142190 142191 142192 30 31 32	19.0 19.0 11.0 6.0 6.0 15.0 13.0 13.0 9.0 13.0 9.0 13.0 Parameter5_9am 1004.5 1014.4 1018.7	31.0 11.0 7.0 17.0 26.0 13.0 11.0 9.0 7.0 Parameter5_3 1003 1013 1014 1010	0 46.0 0 44.0 0 43.0 0 41.0 0 59.0 0 51.0 0 56.0 0 53.0 0 51.0 0 70 70 70 70 70 70 70 70 70 70 70 70 70	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 3.7
31 32 33 34 142188 142190 142191 142192 30 31 32 33	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0 9.0 13.0 Parameter5_9am 1004.5 1014.4 1018.7 1015.1	31.0 11.0 7.0 17.0 26.0 13.0 11.0 9.0 7.0 Parameter5_3 1003 1013 1014 1010	0 46.0 0 44.0 0 43.0 0 41.0 0 59.0 0 51.0 0 56.0 0 53.0 0 51.0 0 70 70 70 70 70 70 70 70 70 70 70 70 70	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 3.7
31 32 33 34 142188 142190 142191 142192 30 31 32 33 34	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0 9.0 13.0 Parameter5_9am 1004.5 1014.4 1018.7 1015.1 1012.6	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0 7.0 Parameter5_3 1003 1013 1014 1010 1009	0 46.0 0 44.0 0 43.0 0 41.0 0 41.0 0 59.0 0 51.0 0 56.0 0 53.0 0 51.0 0 Farameter7_9am .2 19.1 .8 173 20.1 .2 .2	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.1 1 26.5 7 33.9 4 34.4
31 32 33 34 142188 142190 142191 142192 30 31 32 33 34 	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0 9.0 13.0 Parameter5_9am 1004.5 1014.4 1018.7 1015.1 1012.6 	31.0 11.0 7.0 17.0 26.0 13.0 11.0 9.0 7.0 Parameter5_3p 1003 1013 1014 1010 1009 	0 46.0 0 44.0 0 43.0 0 41.0 0 59.0 0 51.0 0 56.0 0 53.0 0 51.0 Parameter7_9am 1 14.5 2 22.5 9.6	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.0 24.0 34.0 4 20.9
31 32 33 34 142188 142190 142191 142192 30 31 32 33 34 142188	19.0 19.0 11.0 6.0 6.0 15.0 13.0 9.0 13.0 9.0 13.0 Parameter5_9am 1004.5 1014.4 1018.7 1015.1 1012.6 1024.7	31.0 11.0 7.0 17.0 26.0 13.0 9.0 9.0 7.0 Parameter5_3p 1003 1013 1014 1010 1009 1021 1020	0 46.0 0 44.0 0 43.0 0 41.0 0 59.0 0 51.0 0 56.0 0 53.0 0 51.0 0 51.0 0 51.0 0 52.2 19.1 14.2 19.2 10.3	26.0 22.0 22.0 12.0 9.0 27.0 24.0 21.0 24.0 24.0 24.0 24.0 24.0 34.0 4 20.9 1 22.4

```
142191
                     1021.0
                                      1016.8
                                                         12.5
                                                                         26.1
     142192
                     1019.4
                                      1016.5
                                                         15.1
                                                                         26.0
             Failure_today Leakage_log
     30
                       0.0
                               -2.302585
     31
                       0.0
                               -2.302585
     32
                       0.0
                               -2.302585
                       0.0
                               -2.302585
     33
     34
                       0.0
                               -2.302585
                       0.0
     142188
                               -2.302585
     142189
                       0.0
                               -2.302585
     142190
                       0.0
                               -2.302585
     142191
                       0.0
                               -2.302585
     142192
                       0.0
                               -2.302585
     [139886 rows x 21 columns]
[7]: #Cambio formato fecha
     # Crear una función para asignar estaciones
     def obtener estacion(fecha):
         mes = fecha.month
         if mes in [12, 1, 2]:
             return 1 #Invierno
         elif mes in [3, 4, 5]:
             return 2 #Primavera
         elif mes in [6, 7, 8]:
             return 3 #Verano
         else:
             return 4 #Otoño
     # Aplicar la función
     df['Season'] = df['Date'].apply(obtener_estacion)
[7]:
                  Date Location Min_Temp Max_Temp Leakage
                                                                 Evaporation \
            2009-01-01
                                3
                                       11.3
                                                 26.5
                                                            0.0
                                                                         NaN
     30
     31
            2009-01-02
                                3
                                        9.6
                                                 23.9
                                                            0.0
                                                                         NaN
     32
                                3
                                       10.5
                                                 28.8
                                                            0.0
            2009-01-03
                                                                         NaN
     33
            2009-01-04
                                3
                                       12.3
                                                 34.6
                                                            0.0
                                                                         NaN
     34
            2009-01-05
                                3
                                       12.9
                                                 35.8
                                                            0.0
                                                                         NaN
     142188 2017-06-20
                                                            0.0
                                                                         NaN
                               42
                                        3.5
                                                 21.8
     142189 2017-06-21
                               42
                                        2.8
                                                 23.4
                                                            0.0
                                                                         NaN
     142190 2017-06-22
                               42
                                        3.6
                                                            0.0
                                                                         NaN
                                                 25.3
     142191 2017-06-23
                               42
                                        5.4
                                                 26.9
                                                            0.0
                                                                         NaN
```

Electricity Parameter1_Dir Parameter1_Speed Parameter2_9am	142192	2017-06-24	42	7.8	27.0	0.0	NaN	
31		Electricity Par	ameter1_Di	r Par	cameter1_Spee	d Param	eter2_9am	. \
32	30	NaN	WN	N	56.	0	W	•
33	31	NaN	,	N	41.	0	WSW	•
34	32	NaN	SS	Ξ	26.	0	SSE	
	33	NaN	WN'	N	37.	0	SSE	
142189	34	NaN	WN	Ŋ	41.	0	ENE	
142189	 142188	 NaN	•••	Ξ	 31.	 0	 ESE	
142190								
142191								
Parameter3_3pm								
30								
30		Parameter3 3pm	Parameter4	9am	Parameter4 3	om Par	ameter5 9am	\
31 11.0 44.0 22.0 1014.4 32 7.0 43.0 22.0 1018.7 33 17.0 41.0 12.0 1015.1 34 26.0 41.0 9.0 1015.1 34 26.0 41.0 9.0 1012.6 142188 13.0 59.0 27.0 1024.7 142189 11.0 51.0 24.0 1024.6 142191 9.0 56.0 21.0 1023.5 142191 9.0 53.0 24.0 1021.0 142192 7.0 51.0 24.0 1019.4 8 1003.2 19.7 25.7 0.0 31 1013.1 14.9 22.1 0.0 32 1014.8 17.1 26.5 0.0 33 1010.3 20.7 33.9 0.0 34 1009.2 22.4 34.4 0.0 142188 1021.2 9.4 20.9 0.0 <t< td=""><td>30</td><td>_</td><td></td><td></td><td></td><td>-</td><td></td><td>`</td></t<>	30	_				-		`
32								
33								
34 26.0 41.0 9.0 1012.6 142188 13.0 59.0 27.0 1024.7 142189 11.0 51.0 24.0 1024.6 142190 9.0 56.0 21.0 1023.5 142191 9.0 53.0 24.0 1021.0 142192 7.0 51.0 24.0 1019.4 Parameter5_3pm Parameter7_9am Parameter7_3pm Failure_today \ 30 1003.2 19.7 25.7 0.0 31 1013.1 14.9 22.1 0.0 32 1014.8 17.1 26.5 0.0 33 1010.3 20.7 33.9 0.0 34 1009.2 22.4 34.4 0.0 142188 1021.2 9.4 20.9 0.0 142189 1020.3 10.1 22.4 0.0 142190 1016.8 12.5 26.1 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
142188 13.0 59.0 27.0 1024.7 1024.7 142189 11.0 51.0 24.0 1024.6 1024.6 142190 9.0 56.0 21.0 1023.5 142191 9.0 53.0 24.0 1021.0 1021.0 142190 142190 7.0 51.0 24.0 1021.0 1021.0 142190 1019.4 1019.4 1019.4 1019.4 1019.4 1019.4 1021.0 1022.0 1020.0 1021.0 1022.0 102.0<								
142189 11.0 51.0 24.0 1024.6 142190 9.0 56.0 21.0 1023.5 142191 9.0 53.0 24.0 1021.0 142192 7.0 51.0 24.0 1019.4 Parameter5_3pm Parameter7_9am Parameter7_3pm Failure_today \ 30 1003.2 19.7 25.7 0.0 31 1013.1 14.9 22.1 0.0 32 1014.8 17.1 26.5 0.0 33 1010.3 20.7 33.9 0.0 34 1009.2 22.4 34.4 0.0 142188 1021.2 9.4 20.9 0.0 142189 1020.3 10.1 22.4 0.0 142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.30258			•••	11.0				
142190 9.0 56.0 21.0 1023.5 142191 9.0 53.0 24.0 1021.0 142192 7.0 51.0 24.0 1019.4 Parameter5_3pm Parameter7_9am Parameter7_3pm Failure_today \ 30 \ 25.7 0.0 31 1013.1 14.9 22.1 0.0 32 1014.8 17.1 26.5 0.0 33 1010.3 20.7 33.9 0.0 34 1009.2 22.4 34.4 0.0 142188 1021.2 9.4 20.9 0.0 142189 1020.3 10.1 22.4 0.0 142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 131 -2.302585 1 33 -2.302585 1 33 -2.302585 1	142188	13.0		59.0	27	.0	1024.7	
142191 9.0 53.0 24.0 1021.0 142192 7.0 51.0 24.0 1019.4 Parameter5_3pm Parameter7_9am Parameter7_3pm Failure_today \	142189	11.0		51.0	24	.0	1024.6	
142192 7.0 51.0 24.0 1019.4 Parameter5_3pm Parameter7_9am Parameter7_3pm Failure_today \ 30 1003.2 19.7 25.7 0.0 31 1013.1 14.9 22.1 0.0 0.0 32 1014.8 17.1 26.5 0.0 0.0 34 1009.2 22.4 34.4 0.0 0.0 34 1009.2 22.4 34.4 0.0 0.0 34 1021.2 9.4 20.9 0.0 0.0 142188 1021.2 9.4 20.9 0.0 0.0 142189 1020.3 10.1 22.4 0.0 0.0 142190 1019.1 10.9 24.5 0.0 0.0 142191 1016.8 12.5 26.1 0.0 0.0 30 -2.302585 1 1 1 1 1 1 1 1 1 1 1 1	142190	9.0		56.0	21	.0	1023.5	
Parameter5_3pm Parameter7_9am Parameter7_3pm Failure_today \ 30	142191	9.0		53.0	24	.0	1021.0	
30	142192	7.0		51.0	24	.0	1019.4	
30		Parameter5_3pm	Parameter	7_9am	Parameter7_	3pm Fa	ilure_today	\
32	30	_				_	-	
33	31	1013.1		14.9	2:	2.1	0.0	
34 1009.2 22.4 34.4 0.0 142188 1021.2 9.4 20.9 0.0 142189 1020.3 10.1 22.4 0.0 142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	32	1014.8		17.1	2	6.5	0.0	
34 1009.2 22.4 34.4 0.0 142188 1021.2 9.4 20.9 0.0 142189 1020.3 10.1 22.4 0.0 142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	33	1010.3		20.7	33	3.9	0.0	
142188 1021.2 9.4 20.9 0.0 142189 1020.3 10.1 22.4 0.0 142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 30 -2.302585 1 </td <td>34</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td></td>	34						0.0	
142189 1020.3 10.1 22.4 0.0 142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	•••	•••	•••		•••		••	
142190 1019.1 10.9 24.5 0.0 142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	142188	1021.2		9.4	20	0.9	0.0	
142191 1016.8 12.5 26.1 0.0 142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	142189	1020.3		10.1	2:	2.4	0.0	
142192 1016.5 15.1 26.0 0.0 Leakage_log Season 30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	142190	1019.1		10.9	2	4.5	0.0	
Leakage_log Season 30 -2.302585	142191	1016.8		12.5	20	6.1	0.0	
30 -2.302585 1 31 -2.302585 1 32 -2.302585 1 33 -2.302585 1	142192	1016.5		15.1	2	6.0	0.0	
31 -2.302585 1 32 -2.302585 1 33 -2.302585 1		Leakage_log Se	ason					
32 -2.302585 1 33 -2.302585 1	30	-2.302585	1					
33 -2.302585 1	31	-2.302585	1					
	32	-2.302585	1					
34 -2.302585 1	33	-2.302585	1					
	34	-2.302585	1					

```
142188
                                3
               -2.302585
                                3
     142189
               -2.302585
                                3
     142190
               -2.302585
     142191
               -2.302585
                                3
               -2.302585
                                3
     142192
     [139886 rows x 22 columns]
[8]: #Falta más del 10% de estas variables: Evaporation, Electricity, Parameter 5
     df = df.drop(['Evaporation', 'Electricity', 'Parameter5_9am', 'Parameter5_3pm'],
      ⇒axis=1)
     #Luego se limpian los pocos NaN que van quedando
     df.dropna(inplace=True)
     df.reset_index(drop=True, inplace=True)
     df
[8]:
                  Date Location
                                  Min_Temp Max_Temp Leakage Parameter1_Dir \
     0
            2009-01-01
                                3
                                        11.3
                                                  26.5
                                                             0.0
                                                                             WNW
                                3
                                         9.6
                                                  23.9
                                                             0.0
     1
            2009-01-02
                                                                               W
     2
            2009-01-03
                                3
                                        10.5
                                                  28.8
                                                             0.0
                                                                             SSE
                                3
     3
            2009-01-04
                                        12.3
                                                  34.6
                                                             0.0
                                                                             WNW
            2009-01-05
                                3
                                        12.9
                                                  35.8
                                                             0.0
                                                                             WNW
     120011 2017-06-20
                               42
                                         3.5
                                                  21.8
                                                             0.0
                                                                               Ε
     120012 2017-06-21
                               42
                                         2.8
                                                  23.4
                                                             0.0
                                                                               F.
     120013 2017-06-22
                               42
                                         3.6
                                                  25.3
                                                             0.0
                                                                             NNW
     120014 2017-06-23
                               42
                                                  26.9
                                                             0.0
                                         5.4
                                                                               N
     120015 2017-06-24
                               42
                                         7.8
                                                  27.0
                                                             0.0
                                                                              SE
             Parameter1_Speed Parameter2_9am Parameter2_3pm Parameter3_9am \
     0
                          56.0
                                             W
                                                           WNW
                                                                           19.0
                          41.0
                                                           SSW
     1
                                           WSW
                                                                           19.0
     2
                          26.0
                                           SSE
                                                             Ε
                                                                           11.0
     3
                          37.0
                                                                            6.0
                                           SSE
                                                            NW
     4
                          41.0
                                                            NW
                                                                            6.0
                                           ENE
     120011
                          31.0
                                           ESE
                                                             Ε
                                                                           15.0
     120012
                          31.0
                                                           ENE
                                                                           13.0
                                            SE
     120013
                          22.0
                                            SE
                                                             N
                                                                           13.0
     120014
                          37.0
                                            SE
                                                           WNW
                                                                            9.0
     120015
                          28.0
                                           SSE
                                                             N
                                                                           13.0
             Parameter3_3pm Parameter4_9am Parameter4_3pm Parameter7_9am \
```

26.0

22.0

19.7

14.9

46.0

44.0

31.0

11.0

0

1

2	7.0	43.0	22.0	17.1
3	17.0	41.0	12.0	20.7
4	26.0	41.0	9.0	22.4
•••	•••	•••	•••	•••
120011	13.0	59.0	27.0	9.4
120012	11.0	51.0	24.0	10.1
120013	9.0	56.0	21.0	10.9
120014	9.0	53.0	24.0	12.5
120015	7.0	51.0	24.0	15.1
	Parameter7_3pm	Failure_today	Leakage_log Seaso	on
\circ	25.7	0.0	_0 200505	1

	Parameter7_3pm	Failure_today	Leakage_log	Season
0	25.7	0.0	-2.302585	1
1	22.1	0.0	-2.302585	1
2	26.5	0.0	-2.302585	1
3	33.9	0.0	-2.302585	1
4	34.4	0.0	-2.302585	1
•••	•••	•••		
120011	20.9	0.0	-2.302585	3
120012	22.4	0.0	-2.302585	3
120013	24.5	0.0	-2.302585	3
120014	26.1	0.0	-2.302585	3
120015	26.0	0.0	-2.302585	3

[120016 rows x 18 columns]

[9]: df.dtypes

[9]:	Date	datetime64[ns]
	Location	int64
	Min_Temp	float64
	Max_Temp	float64
	Leakage	float64
	Parameter1_Dir	object
	Parameter1_Speed	float64
	Parameter2_9am	object
	Parameter2_3pm	object
	Parameter3_9am	float64
	Parameter3_3pm	float64
	Parameter4_9am	float64
	Parameter4_3pm	float64
	Parameter7_9am	float64
	Parameter7_3pm	float64
	Failure_today	float64
	Leakage_log	float64
	Season	int64
	dtype: object	

[10]: df.describe() [10]: Min_Temp Date Location count 120016 120016.000000 120016.000000 25.421494 2013-05-07 09:01:51.585122304 12.391379 mean min 2009-01-01 00:00:00 1.000000 -8.500000 25% 2011-02-26 00:00:00 13.000000 7.800000 50% 26.000000 2013-07-06 00:00:00 12.200000 75% 2015-06-29 00:00:00 38.000000 17.000000 2017-06-25 00:00:00 49.000000 max 33.900000 std NaN 14.114414 6.329952 Max_Temp Leakage Parameter1_Speed Parameter3_9am 120016.000000 120016.000000 120016.000000 120016.000000 count 23.443086 2.357949 40.668528 mean 15.041653 min -4.8000000.000000 7.000000 2.000000 25% 18.100000 0.000000 31.000000 9.000000 50% 23.000000 0.000000 39.000000 13.000000 75% 28.500000 0.800000 48.000000 20.000000 48.100000 367.600000 135.000000 87.000000 max7.145401 8.502443 13.388251 8.318630 std Parameter7_9am Parameter3_3pm Parameter4_9am Parameter4_3pm 120016.000000 120016.000000 count 120016.000000 120016.000000 mean 19.201648 67.742018 50.854436 17.219990 min 2.000000 0.000000 0.00000 -7.200000 25% 13.000000 56.000000 36.000000 12.500000 50% 19.000000 69.000000 16.900000 51.000000 75% 24.000000 82.000000 65.000000 21.800000 max 87.000000 100.000000 100.000000 40.200000 std 8.590975 19.090525 20.972111 6.449757 Parameter7_3pm Failure today Leakage_log Season 120016.000000 120016.000000 count 120016.000000 120016.000000 mean 21.914747 0.223745 -1.186474 2.494059 -2.302585 min -5.400000 0.000000 1.000000 25% 16.800000 0.000000 -2.3025852.000000 50% 21.400000 0.000000 -2.3025852.000000 75% 26.800000 0.000000 -0.105361 4.000000 46.700000 max 1.000000 5.907267 4.000000 std 7.010703 0.416755 1.742637 1.117069

[11]: df['Parameter1_Dir'].value_counts()

[11]: Parameter1_Dir W 8930 SE 8590

```
S
             8233
      Ε
             8155
             8080
      WSW
      SW
             8003
      N
             7986
      SSW
             7911
      WNW
             7204
      ENE
             7184
      NW
             7046
      ESE
             6547
      NE
             6331
      NNE
             5784
      NNW
             5740
      Name: count, dtype: int64
[12]: df['Parameter2_9am'].value_counts()
[12]: Parameter2_9am
             10406
      N
      SSE
              8460
      Ε
              8331
      SE
              8130
      S
              7874
      SW
              7445
      NNE
              7397
      W
              7213
              7209
      ENE
      NW
              7122
      NNW
              7067
      ESE
              6955
      SSW
              6878
      NE
              6767
      WNW
              6491
      WSW
              6271
      Name: count, dtype: int64
[13]: df['Parameter2_3pm'].value_counts()
[13]: Parameter2_3pm
      SE
             8717
      W
             8683
             8575
      S
      SSE
             8249
      WSW
             8156
             7979
      SW
             7600
      WNW
```

SSE

8292

```
N
             7576
      ESE
             7217
      SSW
             7142
      Ε
             7097
      NW
             6963
      NE
             6961
      ENE
             6871
      NNW
             6578
      NNE
             5652
      Name: count, dtype: int64
[14]: direccion_simplificada = {
          'N': 'N', 'NNE': 'N', 'NNW': 'N', 'NE': 'N', 'NW': 'N',
          'S': 'S', 'SSE': 'S', 'SSW': 'S', 'SE': 'S', 'SW': 'S',
          'E': 'E', 'ENE': 'E', 'ESE': 'E',
          'W': 'W', 'WNW': 'W', 'WSW': 'W'
      }
      df['Parameter1_Dir'] = df['Parameter1_Dir'].map(direccion_simplificada)
      df['Parameter2_9am'] = df['Parameter2_9am'].map(direccion_simplificada)
      df['Parameter2 3pm'] = df['Parameter2 3pm'].map(direccion simplificada)
[14]:
                   Date Location Min_Temp Max_Temp Leakage Parameter1_Dir
             2009-01-01
                                 3
                                         11.3
                                                   26.5
                                                              0.0
                                 3
                                                   23.9
                                                              0.0
      1
             2009-01-02
                                          9.6
                                                                                W
      2
             2009-01-03
                                 3
                                         10.5
                                                   28.8
                                                              0.0
                                                                                S
      3
             2009-01-04
                                 3
                                         12.3
                                                   34.6
                                                              0.0
                                                                                W
      4
             2009-01-05
                                 3
                                         12.9
                                                   35.8
                                                              0.0
                                                                                W
      120011 2017-06-20
                                                                                Ε
                                42
                                          3.5
                                                   21.8
                                                              0.0
      120012 2017-06-21
                                                              0.0
                                                                                Ε
                                42
                                          2.8
                                                   23.4
      120013 2017-06-22
                                42
                                          3.6
                                                   25.3
                                                              0.0
                                                                                N
      120014 2017-06-23
                                42
                                          5.4
                                                   26.9
                                                              0.0
                                                                                N
                                42
                                                                                S
      120015 2017-06-24
                                          7.8
                                                   27.0
                                                              0.0
              Parameter1_Speed Parameter2_9am Parameter2_3pm Parameter3_9am \
      0
                           56.0
                                              W
                                                              W
                                                                            19.0
      1
                           41.0
                                              W
                                                              S
                                                                            19.0
      2
                           26.0
                                              S
                                                              Ε
                                                                            11.0
                                              S
      3
                           37.0
                                                              N
                                                                             6.0
      4
                           41.0
                                              Ε
                                                              N
                                                                             6.0
      120011
                                              Ε
                                                              Ε
                                                                            15.0
                           31.0
                                              S
                                                              Ε
      120012
                           31.0
                                                                            13.0
      120013
                           22.0
                                              S
                                                              N
                                                                            13.0
      120014
                                              S
                                                              W
                           37.0
                                                                             9.0
      120015
                           28.0
                                              S
                                                              N
                                                                            13.0
```

```
Parameter3_3pm Parameter4_9am Parameter4_3pm Parameter7_9am \
                                         46.0
      0
                        31.0
                                                          26.0
                                                                           19.7
                                         44.0
                        11.0
                                                          22.0
                                                                           14.9
      1
      2
                         7.0
                                         43.0
                                                          22.0
                                                                           17.1
      3
                        17.0
                                         41.0
                                                          12.0
                                                                           20.7
      4
                        26.0
                                         41.0
                                                                           22.4
                                                           9.0
                                         59.0
                                                          27.0
                                                                           9.4
      120011
                         13.0
      120012
                        11.0
                                         51.0
                                                          24.0
                                                                           10.1
      120013
                         9.0
                                         56.0
                                                          21.0
                                                                           10.9
      120014
                         9.0
                                         53.0
                                                          24.0
                                                                           12.5
      120015
                         7.0
                                         51.0
                                                          24.0
                                                                           15.1
              Parameter7_3pm Failure_today Leakage_log Season
                        25.7
                                                 -2.302585
      0
                                         0.0
                        22.1
                                         0.0
                                                                 1
      1
                                                -2.302585
      2
                        26.5
                                         0.0
                                                 -2.302585
                                                                 1
      3
                        33.9
                                         0.0
                                                -2.302585
                                                                 1
                        34.4
                                         0.0
                                                -2.302585
      120011
                                         0.0
                                                -2.302585
                                                                 3
                        20.9
      120012
                        22.4
                                         0.0
                                                -2.302585
                                                                 3
      120013
                        24.5
                                         0.0
                                                                 3
                                                -2.302585
      120014
                        26.1
                                         0.0
                                                -2.302585
                                                                 3
      120015
                        26.0
                                         0.0
                                                -2.302585
                                                                 3
      [120016 rows x 18 columns]
[15]: #Matriz de correlación
      numeric_df = df.select_dtypes(include=['float64', 'int64'])
      numeric_df = numeric_df.drop(['Location', 'Season', 'Leakage'], axis=1)
```

```
numeric_df = numeric_df.drop(['Location', 'Season', 'Leakage'], axis=1)

corr = numeric_df.corr()

# Crea la máscara para ocultar la mitad superior
mask = np.triu(np.ones_like(corr, dtype=bool))

# Establece tamaño del gráfico y el color
f, ax = plt.subplots(figsize=(11, 9))
cmap = sns.diverging_palette(230, 20, as_cmap=True)

# Crea el heatmap
sns.heatmap(
    corr, annot=True, mask=mask, fmt=".2f", cmap='coolwarm', square=True, color annot=True, color annot=True,
```


Relaciones: - Parameter1_Dir Dirección del viento - Parameter1_Speed Velocidad del viento - Parameter2_9am Dirección del viento a las 9am - Parameter2_3pm Dirección del viento a las 3pm - Parameter3_9am Velocidad del viento a las 9am - Parameter3_3pm Velocidad del viento a las 3pm - Parameter7_9am Temperatura medida a las 9am - Parameter7_3pm Temperatura medida a las 3pm

1.2 2. Modelo OLS

Se ejecuta un modelo de regresión lineal (OLS) donde la variable dependiente es Failure_today. Se seleccionan como regresores: Min_Temp, Max_Temp, variables de Parameter relacionadas con mediciones de los sensores (Parameter1, Parameter2, Parameter3, Parameter4), y la variable Season.

El Leakage_log fue analizado por separado, y se dejo finalmente de lado al estar demasiado correlacionada con la variable de estudio de probabilidad de fallas, que luego más adelante se descubriria que tiene predicción perfecta en los siguientes modelos. Por lo tanto, se dejo fuera del analisis de aquí en adelante.

El modelo permite interpretar los coeficientes como cambios esperados en la probabilidad de falla ante una unidad de cambio en los regresores.

En este caso, el modelo OLS muestra una relación estadísticamente significativa entre varias variables meteorológicas y la probabilidad de falla de sensores, aunque la capacidad explicativa general del modelo es moderada ($R^2 = 0.272$). Esto sugiere que el 27.2% de la variabilidad en las fallas puede explicarse por las variables incluidas, lo cual es aceptable dado que se trata de un fenómeno complejo, y tomando en cuenta de que se esta usando una regresión lineal para una variable dependiente binaria, lo cual no suele ser una buena idea.

Entre las variables más destacadas, la temperatura mínima y máxima tienen un efecto opuesto: un aumento en la temperatura mínima se asocia con un aumento en la probabilidad de falla, mientras que un aumento en la temperatura máxima parece reducirla. Esto podría reflejar que condiciones frías internas persistentes afectan negativamente a los sensores, mientras que temperaturas más altas (dentro de ciertos límites) podrían estabilizar su funcionamiento.

Los parámetros medidos a distintas horas también influyen. Por ejemplo, "Parameter4_9am" tiene un coeficiente positivo muy significativo, indicando una fuerte relación con las fallas, mientras que "Parameter3_3pm" muestra un efecto negativo, lo que sugiere que ciertos parámetros de desempeño o condiciones ambientales en la tarde reducen la probabilidad de falla.

En cuanto a la ubicación, algunas destacan fuertemente por su efecto negativo, como Location_24, Location_48 y Location_36. Esto puede estar reflejando entornos más exigentes o equipos en condiciones más propensas a fallos. Por otro lado, Location_4 es una de las pocas con un coeficiente positivo y significativo, lo cual podría sugerir que en ese lugar particular hay condiciones que incrementan la vulnerabilidad del sistema.

Finalmente, la variable estacionalidad también aporta hallazgos interesantes. La estacion de otoño aumentan la probabilidad de falla, lo que da la idea de que las condiciones ambientales con transiciones bruscas de temperatura, mayor humedad y condiciones meteorológicas más inestables, podrían aumentar el estrés sobre los sensores y sus componentes.

OLS Regression Results

Dep. Variable: Failure_today R-squared: 0.827

```
Model:
                                 OLS
                                      Adj. R-squared:
                                                                       0.827
Method:
                      Least Squares F-statistic:
                                                                 4.309e+05
                                     Prob (F-statistic):
Date:
                  vie., 25 abr. 2025
                                                                       0.00
Time:
                            00:27:19 Log-Likelihood:
                                                                      40084.
No. Observations:
                              120016 AIC:
                                                                 -8.016e+04
Df Residuals:
                              120014 BIC:
                                                                  -8.014e+04
Df Model:
Covariance Type:
                                HCO
```

	coef	std err	z	P> z	[0.025	0.975]
const Leakage_log	0.4818 0.2175	0.001	571.971 656.442	0.000	0.480 0.217	0.483 0.218
Omnibus: Prob(Omnibus): Skew: Kurtosis:		7926.00 0.00 -0.39 4.83	00 Jarque 95 Prob(3	•		1.955 19911.459 0.00 2.76

Notes:

[1] Standard Errors are heteroscedasticity robust (HCO)

```
df['Location'] = df['Location'].astype('category')
df['Season'] = df['Season'].astype('category')

y = df['Failure_today']

X = pd.concat([
    df.drop(['Leakage_log','Failure_today','Date','Location','Parameter1_Dir',u
    'Parameter2_9am','Parameter2_3pm'],axis=1),
    pd.get_dummies(df[['Location','Season','Parameter1_Dir',u
    'Parameter2_9am','Parameter2_3pm']], drop_first=True, dtype=float),
], axis=1)

X = sm.add_constant(X)
model = sm.OLS(y, X)
results = model.fit(cov_type='HCO')
print(results.summary())
```

OLS Regression Results

Dep. Variable: Failure_today R-squared: 0.272

Model: OLS Adj. R-squared: 0.272

Method: Least Squares F-statistic: 910.3

Date: vie., 25 abr. 2025 Prob (F-statistic): 0.00

Time: No. Observations: Df Residuals: Df Model: Covariance Type:		00:27:20 120016 119950 65 HC0	Log-Likelihood: AIC: BIC:		-46200. 9.253e+04 9.317e+04
====					
0.975]	coef	std err	z	P> z	[0.025
const	-0.3509	0.014	-25.672	0.000	-0.378
-0.324 Min_Temp	0.0198	0.000	52.190	0.000	0.019
0.020 Max_Temp -0.017	-0.0175	0.000	-44.581	0.000	-0.018
Parameter1_Speed 0.007	0.0066	0.000	50.226	0.000	0.006
Parameter3_9am 0.003	0.0027	0.000	15.292	0.000	0.002
Parameter3_3pm -0.004	-0.0043	0.000	-23.382	0.000	-0.005
Parameter4_9am 0.008	0.0074	8.8e-05	84.274	0.000	0.007
Parameter4_3pm 0.001	0.0012	0.000	11.535	0.000	0.001
Season -0.024	-0.0263	0.001	-22.801	0.000	-0.029
Location_3 -0.013	-0.0322	0.010	-3.255	0.001	-0.052
Location_4 0.141	0.1240	0.009	14.447	0.000	0.107
Location_5 -0.053	-0.0729	0.010	-7.305	0.000	-0.093
Location_6 -0.156	-0.1760	0.010	-17.036	0.000	-0.196
Location_7 -0.049	-0.0681	0.010	-7.157	0.000	-0.087
Location_8 0.017	-0.0025	0.010	-0.260	0.795	-0.022
Location_9 -0.022	-0.0431	0.011	-4.069	0.000	-0.064
Location_10 -0.037	-0.0566	0.010	-5.599	0.000	-0.076
Location_11 0.004	-0.0129	0.009	-1.482	0.138	-0.030
Location_12	-0.0238	0.010	-2.280	0.023	-0.044

-0.003 Location_13	-0.0935	0.011	-8.534	0.000	-0.115
-0.072 Location_14	-0.0696	0.010	-6.784	0.000	-0.090
-0.049					
Location_15 -0.069	-0.0885	0.010	-8.808	0.000	-0.108
Location_16 -0.088	-0.1079	0.010	-10.686	0.000	-0.128
Location_17	-0.0375	0.014	-2.598	0.009	-0.066
Location_18 -0.057	-0.0776	0.010	-7.442	0.000	-0.098
Location_19 -0.079	-0.1008	0.011	-8.952	0.000	-0.123
Location_20 -0.124	-0.1432	0.010	-14.401	0.000	-0.163
Location_21 -0.055	-0.0721	0.009	-8.157	0.000	-0.089
Location_22 -0.020	-0.0380	0.009	-4.197	0.000	-0.056
Location_23 -0.040	-0.0601	0.010	-5.881	0.000	-0.080
Location_24 -0.216	-0.2377	0.011	-21.072	0.000	-0.260
Location_26 -0.118	-0.1393	0.011	-12.581	0.000	-0.161
Location_27 -0.142	-0.1622	0.010	-15.838	0.000	-0.182
Location_28 -0.134	-0.1542	0.011	-14.635	0.000	-0.175
Location_29 -0.047	-0.0654	0.009	-6.982	0.000	-0.084
Location_30	-0.0077	0.010	-0.798	0.425	-0.027
Location_31	-0.0674	0.010	-6.675	0.000	-0.087
-0.048 Location_32	-0.0107	0.009	-1.172	0.241	-0.029
0.007 Location_33	-0.0174	0.009	-1.911	0.056	-0.035
0.000 Location_34	-0.0882	0.011	-8.302	0.000	-0.109
-0.067 Location_35	-0.0658	0.010	-6.330	0.000	-0.086
-0.045 Location_36	-0.1639	0.010	-15.959	0.000	-0.184
-0.144 Location_37	-0.0162	0.009	-1.730	0.084	-0.034

0.002 Location_38	-0.1104	0.011	-10.195	0.000	-0.132
-0.089					
Location_39 -0.079	-0.0983	0.010	-9.846	0.000	-0.118
Location_40 -0.076	-0.0945	0.010	-9.747	0.000	-0.114
Location_41	-0.0338	0.010	-3.327	0.001	-0.054
Location_42	0.0897	0.010	9.260	0.000	0.071
Location_43	-0.0317	0.009	-3.388	0.001	-0.050
Location_44	-0.0912	0.011	-8.537	0.000	-0.112
Location_45	-0.1150	0.010	-11.496	0.000	-0.135
Location_46	-0.0586	0.011	-5.379	0.000	-0.080
Location_47	-0.0358	0.010	-3.433	0.001	-0.056
Location_48	-0.1828	0.010	-18.078	0.000	-0.203
Location_49	-0.0857	0.009	-9.947	0.000	-0.103
Season_2 -0.001	-0.0069	0.003	-2.468	0.014	-0.012
Season_3 0.025	0.0176	0.004	4.948	0.000	0.011
Season_4 0.104	0.0988	0.003	37.403	0.000	0.094
Parameter1_Dir_N 0.001	-0.0057	0.004	-1.589	0.112	-0.013
Parameter1_Dir_S 0.019	0.0125	0.003	3.615	0.000	0.006
Parameter1_Dir_W 0.034	0.0260	0.004	6.253	0.000	0.018
Parameter2_9am_N 0.022	0.0160	0.003	5.117	0.000	0.010
Parameter2_9am_S 0.040	0.0337	0.003	10.723	0.000	0.028
Parameter2_9am_W 0.071	0.0633	0.004	15.469	0.000	0.055
Parameter2_3pm_N 0.010	0.0036	0.004	1.029	0.304	-0.003
Parameter2_3pm_S 0.039	0.0326	0.003	9.473	0.000	0.026
Parameter2_3pm_W	0.0594	0.004	14.477	0.000	0.051

0.067

Omnibus:	9891.871	Durbin-Watson:	1.795
Prob(Omnibus):	0.000	Jarque-Bera (JB):	12170.207
Skew:	0.768	Prob(JB):	0.00
Kurtosis:	2.725	Cond. No.	9.30e+16

Notes:

- [1] Standard Errors are heteroscedasticity robust (HCO)
- [2] The smallest eigenvalue is 1.47e-25. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

1.3 3. Modelo Probit

Para mejorar la adecuación del modelo a una variable dependiente binaria, se estimó un modelo Probit, que asume una distribución normal acumulada para la probabilidad de falla. Se utilizaron las mismas variables independientes del modelo SLO, permitiendo una comparación directa.

Este modelo proporciona estimaciones más realistas de probabilidad, y sus coeficientes deben interpretarse en términos de cambios marginales en la función de distribución normal.

En especifico en el modelo Probit, los efectos marginales estimados muestran que varios factores tienen un impacto significativo sobre la probabilidad de falla de sensores. Las temperaturas mínima y máxima son especialmente relevantes, con un efecto positivo de la mínima (0.0227) y un efecto negativo de la máxima (-0.0249). Esto indica que aumentos en la temperatura mínima elevan la probabilidad de falla, mientras que mayores temperaturas máximas la reducen, lo que podría estar asociado al comportamiento térmico de los componentes durante el día.

Varios parámetros operativos también muestran asociaciones claras: la velocidad de Parameter1 tiene un impacto positivo (0.0051), así como algunas mediciones en la mañana y la tarde para otros parámetros (por ejemplo, Parameter3_9am: 0.0020; Parameter4_9am: 0.0083). Estos resultados sugieren que la dinámica operacional del sistema durante ciertos horarios puede influir en el desgaste o falla del sensor.

Respecto a la variable estacional, el otoño (Season_4) tiene un coeficiente marginal de 0.1549, el más alto entre las estaciones, indicando un efecto positivo importante sobre la probabilidad de falla en comparación al verano (estación de referencia). No obstante, el valor de su error estándar es excesivamente grande (76,700), lo que hace que este resultado no sea confiable estadísticamente, ya que implica una inestabilidad del modelo o un problema de colinealidad. Esto limita la capacidad de interpretar con certeza el impacto del otoño en este modelo específico, a diferencia del modelo MCO, donde sí fue estadísticamente significativo.

Finalmente, hay ubicaciones geográficas con efectos marcados. Algunas zonas como Location_6, Location_24, y Location_48 presentan coeficientes negativos significativos, lo que indica que en esas locaciones la probabilidad de falla es menor que en la ubicación de referencia. Otras, como Location_4 y Location_8, muestran aumentos en la probabilidad, lo cual podría relacionarse con condiciones ambientales locales o tipos de instalación.

```
[19]: model = sm.Probit(y, X)
    probit_model = model.fit(cov_type='HCO')
    print(probit_model.summary())

mfxp = probit_model.get_margeff()
    print(mfxp.summary())
```

Optimization terminated successfully.

Current function value: 0.363948

Iterations 10

Probit Regression Results

=======================================		=======			========	====
Dep. Variable: Model: Method: Date: Time: converged: Covariance Type:	vie., 25 a	Probit MLE abr. 2025 00:27:22 True HC0	Pseudo R-squ.: Log-Likelihood: LL-Null: LLR p-value:		0.3 -436 -638	380. 301. .000
0.975]	coef	std err	z	P> z		
const 2.2e+05	-2.8608	1.12e+05	-2.55e-05	1.000	-2.2e+05	
Min_Temp 0.116	0.1110	0.002	45.741	0.000	0.106	
Max_Temp -0.116	-0.1218	0.003	-42.314	0.000	-0.127	
Parameter1_Speed 0.026	0.0251	0.001	42.500	0.000	0.024	
Parameter3_9am 0.012	0.0098	0.001	11.113	0.000	0.008	
Parameter3_3pm -0.013	-0.0147	0.001	-17.411	0.000	-0.016	
	0.0406	0.001	66.811	0.000	0.039	
Parameter4_3pm	-0.0011	0.000	-2.232	0.026	-0.002	
Season nan	-0.2475	nan	nan	nan	nan	
Location_3 0.010	-0.0857	0.049	-1.760	0.078	-0.181	
Location_4 0.435	0.3122	0.063	4.990	0.000	0.190	
Location_5	-0.1553	0.047	-3.297	0.001	-0.248	

-0.063 Location_6	-0.8853	0.048	-18.523	0.000	-0.979
-0.792 Location_7	-0.2827	0.047	-5.976	0.000	-0.375
-0.190	0.2021	0.041	0.910	0.000	0.373
Location_8 0.414	0.3257	0.045	7.224	0.000	0.237
Location_9 0.180	0.0900	0.046	1.970	0.049	0.000
Location_10 -0.011	-0.1068	0.049	-2.196	0.028	-0.202
Location_11 0.025	-0.0771	0.052	-1.478	0.139	-0.179
Location_12 0.180	0.0902	0.046	1.978	0.048	0.001
Location_13 -0.387	-0.4773	0.046	-10.316	0.000	-0.568
Location_14 0.105	0.0117	0.048	0.245	0.807	-0.082
Location_15 -0.029	-0.1200	0.046	-2.596	0.009	-0.211
Location_16 -0.180	-0.2686	0.045	-5.973	0.000	-0.357
Location_17 0.271	0.1139	0.080	1.419	0.156	-0.043
Location_18 -0.126	-0.2162	0.046	-4.704	0.000	-0.306
Location_19 -0.153	-0.2467	0.048	-5.171	0.000	-0.340
Location_20 -0.419	-0.5083	0.046	-11.140	0.000	-0.598
Location_21 -0.406	-0.5070	0.051	-9.871	0.000	-0.608
Location_22 0.133	0.0320	0.052	0.620	0.535	-0.069
Location_23 -0.194	-0.2807	0.044	-6.315	0.000	-0.368
Location_24 -1.157	-1.2718	0.058	-21.741	0.000	-1.386
Location_26 -0.628	-0.7437	0.059	-12.604	0.000	-0.859
Location_27 -0.462	-0.5501	0.045	-12.191	0.000	-0.639
Location_28 -0.414	-0.4995	0.044	-11.481	0.000	-0.585
Location_29	-0.4692	0.050	-9.378	0.000	-0.567
Location_30	0.1098	0.050	2.191	0.028	0.012

0.208 Location_31	-0.1386	0.048	-2.869	0.004	-0.233
-0.044					
Location_32 0.177	0.0878	0.045	1.941	0.052	-0.001
Location_33	0.0955	0.046	2.068	0.039	0.005
Location_34	-0.4182	0.043	-9.617	0.000	-0.503
Location_35	-0.1395	0.049	-2.840	0.005	-0.236
Location_36	-0.5772	0.047	-12.268	0.000	-0.669
Location_37	-0.0756	0.050	-1.507	0.132	-0.174
Location_38	-0.2593	0.046	-5.585	0.000	-0.350
Location_39	-0.2465	0.046	-5.344	0.000	-0.337
Location_40	-0.1019	0.048	-2.119	0.034	-0.196
Location_41 0.097	0.0029	0.048	0.062	0.951	-0.091
Location_42	0.2362	0.079	2.989	0.003	0.081
Location_43	-0.0956	0.050	-1.923	0.055	-0.193
Location_44	-0.3055	0.044	-6.880	0.000	-0.392
Location_45	-0.4566	0.045	-10.054	0.000	-0.546
Location_46	-0.0408	0.048	-0.850	0.395	-0.135
Location_47	-0.0391	0.046	-0.856	0.392	-0.129
Location_48 -0.527	-0.6161	0.046	-13.536	0.000	-0.705
Location_49	-0.6831	0.059	-11.522	0.000	-0.799
Season_2	0.0292	nan	nan	nan	nan
nan					
Season_3	0.1569	nan	nan	nan	nan
nan Season_4	0.7568	2.93e+05	2.58e-06	1.000	-5.75e+05
5.75e+05	0.7000	2.000100	2.006 00	1.000	0.706.00
Parameter1_Dir_N -0.029	-0.0673	0.020	-3.404	0.001	-0.106
Parameter1_Dir_S	0.0269	0.018	1.497	0.134	-0.008

0.062						
Parameter1_Dir_W	0.0854	0.021	4.062	0.000	0.044	
0.127						
$Parameter2_9am_N$	0.0904	0.018	4.929	0.000	0.054	
0.126						
Parameter2_9am_S	0.2007	0.017	11.615	0.000	0.167	
0.235						
${\tt Parameter2_9am_W}$	0.2814	0.020	14.268	0.000	0.243	
0.320						
$Parameter2_3pm_N$	-0.0063	0.019	-0.330	0.741	-0.044	
0.031						
Parameter2_3pm_S	0.0866	0.018	4.941	0.000	0.052	
0.121						
$Parameter2_3pm_W$	0.1814	0.021	8.688	0.000	0.140	
0.222						
=======================================		=======		========	========	-===
====						

Probit Marginal Effects _____

Dep. Variable: Failure_today Method: dydx At: overall

=======================================		=======	========	=======	========	====
====	dy/dx	std err	z	P> z	[0.025	
0.975]						
Min_Temp 0.025	0.0227	0.001	18.345	0.000	0.020	
Max_Temp -0.023	-0.0249	0.001	-21.067	0.000	-0.027	
Parameter1_Speed 0.006	0.0051	0.000	19.012	0.000	0.005	
Parameter3_9am 0.002	0.0020	0.000	13.647	0.000	0.002	
Parameter3_3pm -0.002	-0.0030	0.000	-10.703	0.000	-0.004	
Parameter4_9am 0.009	0.0083	0.000	25.321	0.000	0.008	
Parameter4_3pm 5.7e-06	-0.0002	0.000	-1.912	0.056	-0.000	
Season nan	-0.0507	nan	nan	nan	nan	
Location_3 0.001	-0.0175	0.010	-1.846	0.065	-0.036	
Location_4 0.091	0.0639	0.014	4.547	0.000	0.036	

Location_5 -0.015	-0.0318	0.009	-3.629	0.000	-0.049
Location_6	-0.1812	0.001	-128.842	0.000	-0.184
Location_7 -0.042	-0.0579	0.008	-7.363	0.000	-0.073
Location_8 0.088	0.0667	0.011	6.040	0.000	0.045
Location_9	0.0184	0.010	1.870	0.062	-0.001
Location_10 -0.004	-0.0219	0.009	-2.349	0.019	-0.040
Location_11 0.004	-0.0158	0.010	-1.528	0.127	-0.036
Location_12 0.038	0.0185	0.010	1.856	0.063	-0.001
Location_13 -0.085	-0.0977	0.006	-15.386	0.000	-0.110
Location_14	0.0024	0.010	0.244	0.807	-0.017
Location_15 -0.008	-0.0246	0.009	-2.877	0.004	-0.041
Location_16	-0.0550	0.008	-7.216	0.000	-0.070
Location_17	0.0233	0.017	1.396	0.163	-0.009
Location_18	-0.0443	0.008	-5.436	0.000	-0.060
Location_19	-0.0505	0.008	-5.975	0.000	-0.067
Location_20 -0.092	-0.1040	0.006	-17.596	0.000	-0.116
Location_21 -0.088	-0.1038	0.008	-12.936	0.000	-0.120
Location_22 0.028	0.0065	0.011	0.611	0.541	-0.014
Location_23 -0.044	-0.0574	0.007	-8.163	0.000	-0.071
Location_24	-0.2603	nan	nan	nan	nan
Location_26 -0.136	-0.1522	0.008	-18.238	0.000	-0.169
Location_27 -0.102	-0.1126	0.005	-21.760	0.000	-0.123
Location_28 -0.094	-0.1022	0.004	-23.457	0.000	-0.111
Location_29 -0.081	-0.0960	0.007	-12.879	0.000	-0.111

Location_30	0.0225	0.011	2.072	0.038	0.001
0.044 Location_31	-0.0284	0.009	-3.049	0.002	-0.047
-0.010 Location_32	0.0180	0.010	1.845	0.065	-0.001
0.037 Location_33 0.039	0.0195	0.010	1.954	0.051	-5.68e-05
Location_34 -0.074	-0.0856	0.006	-14.762	0.000	-0.097
Location_35	-0.0286	0.009	-3.039	0.002	-0.047
Location_36	-0.1181	0.004	-32.079	0.000	-0.125
Location_37	-0.0155	0.010	-1.573	0.116	-0.035
Location_38	-0.0531	0.008	-6.615	0.000	-0.069
Location_39	-0.0505	0.008	-6.465	0.000	-0.066
Location_40	-0.0208	0.009	-2.290	0.022	-0.039
Location_41 0.020	0.0006	0.010	0.062	0.951	-0.019
Location_42	0.0483	0.017	2.865	0.004	0.015
Location_43	-0.0196	0.010	-2.033	0.042	-0.038
Location_44	-0.0625	0.007	-9.110	0.000	-0.076
Location_45 -0.080	-0.0935	0.007	-13.311	0.000	-0.107
Location_46 0.010	-0.0084	0.010	-0.873	0.383	-0.027
Location_47	-0.0080	0.009	-0.880	0.379	-0.026
Location_48 -0.117	-0.1261	0.005	-26.186	0.000	-0.136
Location_49 -0.122	-0.1398	0.009	-15.395	0.000	-0.158
Season_2 nan	0.0060	nan	nan	nan	nan
Season_3 nan	0.0321	nan	nan	nan	nan
Season_4 1.5e+05	0.1549	7.67e+04	2.02e-06	1.000	-1.5e+05
Parameter1_Dir_N -0.006	-0.0138	0.004	-3.395	0.001	-0.022

Parameter1_Dir_S 0.013	0.0055	0.004	1.492	0.136	-0.002
Parameter1_Dir_W 0.026	0.0175	0.004	4.151	0.000	0.009
Parameter2_9am_N 0.026	0.0185	0.004	4.803	0.000	0.011
Parameter2_9am_S 0.048	0.0411	0.004	11.473	0.000	0.034
Parameter2_9am_W 0.065	0.0576	0.004	15.219	0.000	0.050
Parameter2_3pm_N 0.006	-0.0013	0.004	-0.332	0.740	-0.009
Parameter2_3pm_S 0.025	0.0177	0.004	4.764	0.000	0.010
Parameter2_3pm_W 0.046	0.0371	0.005	8.044	0.000	0.028

====

1.4 4. Modelo Logit

En esta sección se estimó un modelo Logit como alternativa al Probit. Ambos modelos son similares, pero el Logit utiliza la función logística, lo que facilita ciertas interpretaciones estadísticas. También se utilizaron las mismas variables independientes que en los modelos anteriores.

Analizando el modelo logit, los efectos marginales muestran cómo varía la probabilidad de una falla en los sensores ante pequeños cambios en las variables explicativas. En este caso, los coeficientes se interpretan como la variación en la probabilidad (en puntos porcentuales) ante un cambio marginal en la variable correspondiente, manteniendo constantes las demás.

Entre las variables numéricas, Parameter1_Speed, Parameter3_9am y Parameter4_9am tienen efectos positivos, indicando que aumentos en estos parámetros incrementan la probabilidad de falla. En contraste, Parameter3_3pm y Parameter4_3pm tienen efectos negativos, sugiriendo que niveles más altos en esas horas disminuyen la probabilidad de falla. Las temperaturas también tienen una ligera influencia: un aumento en la temperatura máxima reduce levemente la probabilidad de falla, mientras que un aumento en la mínima la incrementa.

En cuanto a las variables categóricas, los resultados varían ampliamente por ubicación. Algunas localizaciones presentan una disminución clara en la probabilidad de falla (por ejemplo, Location_6, Location_24 y Location_49), mientras que otras como Location_8 y Location_4 presentan aumentos significativos. Estos efectos podrían deberse a diferencias operativas, ambientales o de mantenimiento en cada sitio.

Finalmente, también se observan diferencias según la dirección del viento, siendo notables los efectos positivos de direcciones como oeste y sur en la mañana y tarde, especialmente en Parameter2_9am_W, el cual presenta uno de los mayores impactos positivos marginales. Esto podría reflejar condiciones climáticas que afectan el funcionamiento de los sensores.

El modelo logit revela una serie de patrones interesantes y consistentes con lo observado en modelos anteriores, reforzando la idea de que tanto condiciones ambientales como factores específicos del

lugar y la hora influyen significativamente en la probabilidad de fallas en sensores.

```
[20]: model = sm.Logit(y, X)
    logit_model = model.fit(cov_type='HCO')
    print(logit_model.summary())

mfxl = logit_model.get_margeff()
    print(mfxl.summary())

params = logit_model.params
    conf = logit_model.conf_int()
    conf['Odds Ratio'] = params
    conf.columns = ['Odds Ratio', '5%', '95%']
    print("Odds Ratios")
    print(np.exp(conf).iloc[1:17 , ])
```

Optimization terminated successfully.

Current function value: 0.362374

Iterations 8

Logit Regression Results

Dep. Variable:	Fail:	re_today	No. Observat	:======== :ions:	120016
Model:	rairo	Logit		119950	
Method:		MLE	Df Model:	•	65
Date:	vie 25 a		Pseudo R-squ		0.3183
Time:	v10., 20 c	00:27:36	_		-43491.
converged:		True	LL-Null:		-63801.
Covariance Type:		HCO	LLR p-value:		0.000
=======================================			======================================	=======	===========
====					
	coef	std err	Z	P> z	[0.025
0.975]					
					•
const	-4.9296	nan	nan	nan 💆	nan
nan					
Min_Temp	0.1985	0.004	46.253	0.000	0.190
0.207					
Max_Temp -0.216	-0.2256	0.005	-46.536	0.000	-0.235
Parameter1_Speed	0.0439	0.001	42.624	0.000	0.042
0.046					
Parameter3_9am	0.0171	0.002	11.068	0.000	0.014
0.020					
Parameter3_3pm	-0.0249	0.002	-16.604	0.000	-0.028
-0.022					
Parameter4_9am	0.0741	0.001	72.116	0.000	0.072
0.076					

Parameter4_3pm	-0.0032	0.001	-3.679	0.000	-0.005
-0.001 Season	-0.4332	nan	nan	nan	nan
nan Location_3	-0.2122	0.086	-2.468	0.014	-0.381
-0.044 Location_4 0.700	0.4803	0.112	4.286	0.000	0.261
Location_5	-0.2594	0.084	-3.090	0.002	-0.424
Location_6	-1.6614	0.083	-20.008	0.000	-1.824
Location_7	-0.5413	0.083	-6.512	0.000	-0.704
Location_8	0.6519	0.080	8.159	0.000	0.495
Location_9	0.2636	0.081	3.272	0.001	0.106
Location_10 -0.050	-0.2193	0.086	-2.544	0.011	-0.388
Location_11 -0.030	-0.2136	0.094	-2.276	0.023	-0.398
Location_12 0.355	0.1971	0.081	2.446	0.014	0.039
Location_13	-0.8845	0.081	-10.961	0.000	-1.043
Location_14 0.300	0.1328	0.085	1.561	0.118	-0.034
Location_15 0.014	-0.1467	0.082	-1.789	0.074	-0.307
Location_16 -0.360	-0.5171	0.080	-6.456	0.000	-0.674
Location_17 0.621	0.3392	0.144	2.357	0.018	0.057
Location_18 -0.251	-0.4093	0.081	-5.070	0.000	-0.568
Location_19 -0.278	-0.4438	0.084	-5.259	0.000	-0.609
Location_20 -0.768	-0.9266	0.081	-11.458	0.000	-1.085
Location_21 -0.767	-0.9448	0.091	-10.392	0.000	-1.123
Location_22 0.236	0.0512	0.094	0.544	0.586	-0.133
Location_23 -0.375	-0.5281	0.078	-6.778	0.000	-0.681
Location_24 -2.277	-2.4773	0.102	-24.271	0.000	-2.677

Location_26	-1.3564	0.104	-13.016	0.000	-1.561
-1.152 Location_27	-0.9682	0.080	-12.097	0.000	-1.125
-0.811 Location_28	-0.8590	0.077	-11.178	0.000	-1.010
-0.708 Location_29	-0.9130	0.088	-10.332	0.000	-1.086
-0.740 Location_30	0.2034	0.088	2.300	0.021	0.030
0.377 Location_31	-0.2410	0.086	-2.792	0.005	-0.410
-0.072 Location_32	0.1985	0.080	2.492	0.013	0.042
0.355 Location_33	0.1988	0.082	2.431	0.015	0.039
0.359 Location_34 -0.611	-0.7609	0.076	-9.962	0.000	-0.911
Location_35	-0.2295	0.087	-2.626	0.009	-0.401
-0.058 Location_36 -0.898	-1.0613	0.083	-12.774	0.000	-1.224
Location_37 -0.020	-0.1930	0.088	-2.189	0.029	-0.366
Location_38 -0.274	-0.4349	0.082	-5.303	0.000	-0.596
Location_39 -0.273	-0.4361	0.083	-5.229	0.000	-0.600
Location_40 0.114	-0.0536	0.086	-0.627	0.531	-0.221
Location_41 0.149	-0.0161	0.084	-0.191	0.848	-0.181
Location_42 0.629	0.3490	0.143	2.446	0.014	0.069
Location_43 -0.076	-0.2504	0.089	-2.808	0.005	-0.425
Location_44 -0.389	-0.5422	0.078	-6.929	0.000	-0.696
Location_45	-0.8485	0.080	-10.613	0.000	-1.005
Location_46	-0.0620	0.085	-0.730	0.465	-0.228
Location_47	-0.0653	0.080	-0.813	0.416	-0.223
Location_48 -0.924	-1.0836	0.081	-13.346	0.000	-1.243
Location_49 -1.092	-1.2966	0.104	-12.441	0.000	-1.501

Season_2	0.0635	nan	nan	nan	nan	
nan						
Season_3	0.2549	3.88e+04	6.57e-06	1.000	-7.6e+04	
7.6e+04						
Season_4	1.3077	nan	nan	nan	nan	
nan						
Parameter1_Dir_N -0.064	-0.1328	0.035	-3.799	0.000	-0.201	
Parameter1_Dir_S 0.092	0.0296	0.032	0.934	0.350	-0.033	
Parameter1_Dir_W	0.1287	0.037	3.475	0.001	0.056	
0.201	011201		0.1.0	01002		
Parameter2_9am_N	0.1562	0.033	4.795	0.000	0.092	
0.220						
Parameter2_9am_S	0.3528	0.031	11.493	0.000	0.293	
0.413						
Parameter2_9am_W	0.4957	0.035	14.197	0.000	0.427	
0.564						
Parameter2_3pm_N	-0.0162	0.034	-0.477	0.633	-0.083	
0.050						
Parameter2_3pm_S	0.1390	0.031	4.493	0.000	0.078	
0.200						
Parameter2_3pm_W	0.2992	0.037	8.125	0.000	0.227	
0.371						
			========		=======	=====
I o mit Momo	simal Effort					
Logit Marg	ginal Effect =======					
Dep. Variable:		re_today				
Method:		dydx				

Dep. Variable: Failure_today
Method: dydx
At: overall

overall ______ dy/dx std err z P>|z| [0.025 0.975] Min_Temp 0.0228 nan nan nan nan nan -0.0260 nan nan nan nan Max_Temp Parameter1_Speed 0.0051 0.000 26.836 0.000 0.005 0.005 Parameter3_9am 0.0020 0.000 11.984 0.000 0.002 0.002 Parameter3_3pm -0.0029 0.000 -15.038 0.000 -0.003 -0.002 Parameter4_9am 0.0085 nan nan nan nan

nan					
Parameter4_3pm -0.000	-0.0004	9.11e-05	-3.981	0.000	-0.001
Season nan	-0.0498	nan	nan	nan	nan
Location_3 -0.005	-0.0244	0.010	-2.523	0.012	-0.043
Location_4	0.0553	0.013	4.204	0.000	0.029
Location_5	-0.0298	0.009	-3.154	0.002	-0.048
Location_6	-0.1912	0.007	-28.031	0.000	-0.205
Location_7	-0.0623	0.009	-6.943	0.000	-0.080
Location_8 0.094	0.0750	0.010	7.782	0.000	0.056
Location_9 0.049	0.0303	0.009	3.220	0.001	0.012
Location_10 -0.006	-0.0252	0.010	-2.595	0.009	-0.044
Location_11 -0.004	-0.0246	0.011	-2.321	0.020	-0.045
Location_12	0.0227	0.009	2.408	0.016	0.004
0.041 Location_13 -0.085	-0.1018	0.008	-12.180	0.000	-0.118
Location_14	0.0153	0.010	1.549	0.121	-0.004
Location_15	-0.0169	0.009	-1.809	0.070	-0.035
Location_16	-0.0595	0.009	-6.964	0.000	-0.076
Location_17	0.0390	0.017	2.354	0.019	0.007
Location_18	-0.0471	0.009	-5.345	0.000	-0.064
Location_19	-0.0511	0.009	-5.575	0.000	-0.069
Location_20	-0.1066	0.008	-13.181	0.000	-0.122
Location_21	-0.1087	0.009	-11.555	0.000	-0.127
Location_22 0.027	0.0059	0.011	0.542	0.588	-0.015
Location_23	-0.0608	0.008	-7.262	0.000	-0.077
Location_24	-0.2850	0.009	-31.445	0.000	-0.303

-0.267 Location_26	-0.1561	0.011	-14.531	0.000	-0.177
-0.135 Location_27	-0.1114	0.008	-13.290	0.000	-0.128
-0.095 Location_28	-0.0988	0.008	-12.906	0.000	-0.114
-0.084 Location_29	-0.1050	0.009	-11.529	0.000	-0.123
-0.087 Location_30	0.0234	0.010	2.271	0.023	0.003
0.044 Location_31	-0.0277	0.010	-2.847	0.004	-0.047
-0.009 Location_32	0.0228	0.009	2.449	0.014	0.005
0.041 Location_33	0.0229	0.010	2.391	0.017	0.004
0.042	0.0220	0.010	2.001	0.017	0.001
Location_34 -0.072	-0.0875	0.008	-11.355	0.000	-0.103
Location_35 -0.007	-0.0264	0.010	-2.672	0.008	-0.046
Location_36 -0.105	-0.1221	0.008	-14.387	0.000	-0.139
Location_37	-0.0222	0.010	-2.227	0.026	-0.042
Location_38	-0.0500	0.009	-5.585	0.000	-0.068
Location_39	-0.0502	0.009	-5.472	0.000	-0.068
Location_40	-0.0062	0.010	-0.629	0.529	-0.025
Location_41 0.017	-0.0019	0.010	-0.192	0.848	-0.021
Location_42 0.073	0.0402	0.017	2.423	0.015	0.008
Location_43	-0.0288	0.010	-2.882	0.004	-0.048
Location_44 -0.046	-0.0624	0.008	-7.382	0.000	-0.079
Location_45	-0.0976	0.008	-11.892	0.000	-0.114
-0.082 Location_46	-0.0071	0.010	-0.734	0.463	-0.026
0.012 Location_47	-0.0075	0.009	-0.818	0.413	-0.026
0.010 Location_48	-0.1247	0.008	-15.463	0.000	-0.140
-0.109 Location_49	-0.1492	0.011	-14.122	0.000	-0.170

-0.128						
Season_2	0.0073	nan	nan	nan	nan	
nan						
Season_3	0.0293	1.04e+04	2.81e-06	1.000	-2.05e+04	
2.05e+04	0 1505					
Season_4 nan	0.1505	nan	nan	nan	nan	
Parameter1_Dir_N -0.007	-0.0153	0.004	-3.702	0.000	-0.023	
Parameter1_Dir_S 0.011	0.0034	0.004	0.940	0.347	-0.004	
Parameter1_Dir_W 0.023	0.0148	0.004	3.568	0.000	0.007	
Parameter2_9am_N 0.026	0.0180	0.004	4.624	0.000	0.010	
Parameter2_9am_S 0.048	0.0406	0.004	10.375	0.000	0.033	
Parameter2_9am_W 0.066	0.0570	0.004	12.819	0.000	0.048	
Parameter2_3pm_N 0.006	-0.0019	0.004	-0.478	0.633	-0.010	
Parameter2_3pm_S 0.023	0.0160	0.004	4.369	0.000	0.009	
Parameter2_3pm_W 0.043	0.0344	0.004	7.831	0.000	0.026	

====

Odds	Ratios

Udds Katios			
	Odds Ratio	5%	95%
Min_Temp	1.209314	1.229826	1.219527
Max_Temp	0.790504	0.805669	0.798051
Parameter1_Speed	1.042788	1.047009	1.044896
Parameter3_9am	1.014204	1.020380	1.017288
Parameter3_3pm	0.972525	0.978263	0.975390
Parameter4_9am	1.074791	1.079131	1.076959
Parameter4_3pm	0.995179	0.998528	0.996852
Season	NaN	NaN	0.648457
Location_3	0.683301	0.957278	0.808770
Location_4	1.297796	2.013676	1.616583
Location_5	0.654484	0.909519	0.771534
Location_6	0.161357	0.223435	0.189875
Location_7	0.494475	0.684956	0.581974
Location_8	1.641059	2.244637	1.919266
Location_9	1.111461	1.524196	1.301570
Location_10	0.678232	0.950879	0.803067

1.5 5. Comparación de modelos (2, 3 y 4)

Al comparar los modelos MCO, Probit y Logit, se observa que los signos y significancias de los coeficientes son consistentes, lo que sugiere que las variables seleccionadas son robustas a la especificación. Sin embargo, tanto el Probit como el Logit entregan predicciones más razonables de probabilidad, por lo que cualquiera de ellos sería más adecuado que el MCO. Entre ambos, la elección puede depender del criterio de bondad de ajuste o facilidad de interpretación. Igualmente se podría tomar en cuenta que el modelo Probit es menos sensible a valores extremos, y en el caso del Logit tenemos el caso contrario, en este caso pareciera no haber tantos valores extremos por lo podríamos quedarnos con el Probit.

Por ejemplo, variables como Parameter1_Speed, Parameter3_9am y Parameter2_9am_W presentan efectos positivos y significativos en los tres modelos, lo que indica que aumentos en estos parámetros están sistemáticamente asociados con una mayor probabilidad de falla en los sensores. Por el contrario, variables como Parameter3_3pm y Parameter4_3pm presentan efectos negativos consistentes, sugiriendo que condiciones durante la tarde podrían estar relacionadas con una menor probabilidad de fallas.

En cuanto a las ubicaciones, también se mantiene la coherencia: localizaciones como Location_6, Location_24, Location_49 y Location_21 aparecen en los tres modelos con efectos negativos y significativos, indicando que en estos sitios, la probabilidad de falla es considerablemente menor. Esto podría deberse a mejores condiciones ambientales, menor exigencia operativa o un historial de mantenimiento más riguroso. En contraste, Location_4 y Location_8 mantienen efectos positivos significativos, lo que sugiere una mayor vulnerabilidad de los sensores en esas ubicaciones.

Asimismo, las direcciones del viento en parámetros como Parameter1_Dir_W y Parameter2_9am_W mantienen efectos positivos y significativos, reforzando la hipótesis de que ciertas orientaciones del viento podrían estar asociadas a condiciones que aumentan la probabilidad de falla, ya sea por partículas en suspensión, humedad o presión atmosférica.

El acuerdo entre modelos en los signos, magnitudes y significancia de muchos coeficientes permite tener mayor confianza en los resultados. Esto sugiere que, tanto condiciones ambientales como el contexto específico de ciertas ubicaciones, tienen un papel importante en la ocurrencia de fallas, y que estos factores deberían considerarse en estrategias de mantenimiento predictivo o preventivo.

1.6 6. Agregación mensual y modelo Poisson

La base se agrega a nivel mensual, calculando el promedio de las variables numéricas y el conteo de fallas en el mes. Se crea una nueva variable dependiente: número de fallas por mes de cada año (con valor 0 si no se registraron fallas). Este tipo de variable justifica el uso de un modelo de regresión Poisson, adecuado para datos de conteo.

Se estima un modelo Poisson con las mismas variables promediadas anteriormente sacando a las categoricas para que no agreguen tanto ruido al análisis, permitiendo identificar qué factores explican el número de fallas mensuales.

Los resultados del modelo aportan una visión complementaria y enriquecedora respecto a la probabilidad de fallas diarias en los sensores. Este enfoque, que modela la frecuencia esperada de fallas en lugar de simplemente su ocurrencia binaria, permite evaluar con mayor precisión el efecto de distintas variables sobre el conteo de eventos de falla.

Uno de los hallazgos más destacados es la influencia significativa de la temperatura: mientras

que Max_Temp tiene un efecto negativo, sugiriendo que temperaturas máximas más altas están asociadas con menos fallas, la Min_Temp presenta un efecto positivo, indicando que temperaturas mínimas más altas estarían correlacionadas con un aumento en la frecuencia de fallas. Esta dualidad puede estar relacionada con las condiciones de funcionamiento nocturno o matutino, en que los equipos podrían estar más expuestos a factores adversos.

En cuanto a los parámetros ambientales, nuevamente Parameter1_Speed muestra un efecto positivo y altamente significativo, confirmando que a mayor velocidad de este parámetro (posiblemente velocidad del viento u otro flujo), se incrementa la frecuencia de fallas. Por otro lado, Parameter3_9am y Parameter3_3pm mantienen efectos negativos, lo que sugiere que mayores valores de este parámetro estarían asociados a una menor incidencia de fallas, quizás actuando como una variable de protección o indicador de condiciones óptimas.

Respecto a las ubicaciones, se destacan con efectos negativos fuertes y significativos lugares como Location_24, Location_27, Location_28, Location_44, y Location_48, lo cual indica que en estas ubicaciones la frecuencia de fallas es considerablemente menor. Este patrón consistente con los modelos anteriores refuerza la idea de que existen sitios estructuralmente más seguros o con mejores prácticas operativas. Por el contrario, ubicaciones como Location_23, Location_33, Location_37 y Location_43 presentan coeficientes positivos y significativos, sugiriendo que en estos lugares ocurren más fallas en promedio, lo cual podría justificar intervenciones específicas, revisiones de infraestructura, o mejoras en el monitoreo.

```
[21]: #Cambio formato fecha
df['month_year'] = df['Date'].dt.to_period('M')
df
```

[21]:		Date	Location	Min_Temp	Max_Temp	Parameter1_Dir	\
	0	2009-01-01	3	11.3	26.5	W	
	1	2009-01-02	3	9.6	23.9	W	
	2	2009-01-03	3	10.5	28.8	S	
	3	2009-01-04	3	12.3	34.6	W	
	4	2009-01-05	3	12.9	35.8	W	
		•••				•••	
	120011	2017-06-20	42	3.5	21.8	E	
	120012	2017-06-21	42	2.8	23.4	E	
	120013	2017-06-22	42	3.6	25.3	N	
	120014	2017-06-23	42	5.4	26.9	N	
	120015	2017-06-24	42	7.8	27.0	S	

	Parameter1_Speed	Parameter2_9am	Parameter2_3pm	Parameter3_9am	\
0	56.0	W	W	19.0	
1	41.0	W	S	19.0	
2	26.0	S	E	11.0	
3	37.0	S	N	6.0	
4	41.0	E	N	6.0	
•••	•••	•••	•••	•••	
120011	31.0	E	E	15.0	
120012	31.0	S	E	13.0	

```
120013
                          22.0
                                             S
                                                             N
                                                                          13.0
      120014
                          37.0
                                             S
                                                             W
                                                                           9.0
                                             S
      120015
                          28.0
                                                                          13.0
              Parameter3_3pm Parameter4_9am Parameter4_3pm Failure_today \
                                         46.0
      0
                        31.0
                                                          26.0
                                                                          0.0
                                         44.0
                                                          22.0
      1
                        11.0
                                                                          0.0
      2
                         7.0
                                         43.0
                                                          22.0
                                                                          0.0
      3
                         17.0
                                         41.0
                                                          12.0
                                                                          0.0
      4
                        26.0
                                         41.0
                                                           9.0
                                                                          0.0
      120011
                        13.0
                                         59.0
                                                          27.0
                                                                          0.0
      120012
                        11.0
                                         51.0
                                                          24.0
                                                                          0.0
                         9.0
      120013
                                         56.0
                                                          21.0
                                                                          0.0
      120014
                         9.0
                                                          24.0
                                                                          0.0
                                         53.0
                         7.0
      120015
                                         51.0
                                                          24.0
                                                                          0.0
              Leakage_log Season month_year
                -2.302585
      0
                                1
                                     2009-01
      1
                -2.302585
                                1
                                     2009-01
      2
                -2.302585
                                1
                                     2009-01
      3
                -2.302585
                                     2009-01
                                1
                -2.302585
                                1
                                     2009-01
      120011
                -2.302585
                                3
                                     2017-06
      120012
                -2.302585
                                3
                                     2017-06
                -2.302585
      120013
                                3
                                     2017-06
      120014
                -2.302585
                                3
                                     2017-06
      120015
                -2.302585
                                3
                                     2017-06
      [120016 rows x 16 columns]
[22]: df_p = df.groupby(['month_year', 'Location']).agg({
          'Min_Temp': 'mean',
          'Max Temp': 'mean',
          'Parameter1_Speed': 'mean',
          'Parameter3 9am': 'mean',
          'Parameter3_3pm': 'mean',
          'Parameter4_9am': 'mean',
          'Parameter4_3pm': 'mean',
          'Failure_today': 'sum'
      }).reset_index()
      df_p = df_p.dropna().reset_index()
      df_p
                                                    Max_Temp Parameter1_Speed \
[22]:
            index month_year Location Min_Temp
                0
                     2009-01
                                     1 17.975862 31.868966
                                                                      39.965517
      0
```

```
1
                2009-01
                                3 16.312903
                                               34.658065
                                                                   42.677419
          1
2
          2
                2009-01
                                   22.422581
                                                                   51.258065
                                               36.058065
3
          3
                2009-01
                                   16.455172
                                               32.872414
                                                                   41.448276
4
          4
                2009-01
                                6
                                   10.620000
                                               28.520000
                                                                   48.300000
4408
                2017-06
                                    4.345000
                                               14.870000
                                                                   24.800000
       4648
                               45
4409
                2017-06
                                   10.100000
                                               18.356000
                                                                   34.120000
       4649
                               46
4410
       4650
                2017-06
                               47
                                    8.827778
                                               18.661111
                                                                   37.666667
                2017-06
                                               17.729412
4411
       4651
                               48
                                   11.794118
                                                                   38.058824
4412
       4652
                2017-06
                               49
                                    5.952174
                                               18.747826
                                                                   28.000000
      Parameter3_9am
                                        Parameter4_9am
                      Parameter3_3pm
                                                          Parameter4_3pm
0
           10.448276
                             17.931034
                                              38.689655
                                                                23.827586
1
           11.935484
                             18.548387
                                              41.903226
                                                                17.870968
2
           18.516129
                             25.032258
                                              37.096774
                                                                24.516129
3
            7.551724
                             17.758621
                                              65.724138
                                                                36.206897
4
                                                                24.566667
           20.500000
                             22.166667
                                              51.233333
4408
            6.200000
                              9.500000
                                              97.300000
                                                                67.350000
4409
           16.440000
                             16.440000
                                              87.200000
                                                                70.880000
4410
           12.833333
                             18.222222
                                              84.222222
                                                                68.888889
4411
           15.529412
                             19.588235
                                              71.882353
                                                                68.294118
4412
           11.391304
                             13.391304
                                              66.565217
                                                                36.608696
      Failure_today
0
                 0.0
1
                 1.0
2
                 3.0
3
                 3.0
4
                 0.0
4408
                 3.0
4409
                13.0
4410
                 6.0
4411
                 4.0
4412
                 0.0
```

[4413 rows x 11 columns]

```
[23]: poisson = smf.glm("Failure_today ~⊔

GC(Location)+Max_Temp+Min_Temp+Parameter1_Speed+Parameter3_9am+Parameter3_3pm+Parameter4_9am
Gdata=df_p, family=sm.families.Poisson()).fit()

print(poisson.summary())
```

Generalized Linear Model Regression Results

Dep. Variable: Failure_today No. Observations: 4413 Model: GLM Df Residuals: 4359

Model Family: Link Function: Method: Date: Time: No. Iterations: Covariance Type:	Log IRLS vie., 25 abr. 2025 00:27:47 5 nonrobust		Df Model: Scale: Log-Likelihoo Deviance: Pearson chi2: Pseudo R-squ.	53 1.0000 -9957.6 5271.0 4.68e+03 0.8404	
====	coef	std err		P> z	[0.025
0.975] 					
 Intercept -0.195	-0.5482	0.180	-3.043	0.002	-0.901
C(Location)[T.3] 0.149	0.0194	0.066	0.294	0.769	-0.110
0.149 C(Location)[T.4] 0.270	0.1092	0.082	1.332	0.183	-0.052
C(Location)[T.5] 0.004	-0.1288	0.068	-1.905	0.057	-0.261
0.004 C(Location)[T.6] -0.065	-0.2097	0.074	-2.847	0.004	-0.354
C(Location)[T.7] 0.093	-0.0386	0.067	-0.573	0.566	-0.171
C(Location) [T.8] 0.163	0.0436	0.061	0.715	0.475	-0.076
C(Location) [T.9] 0.190	0.0660	0.063	1.040	0.298	-0.058
C(Location) [T.10] 0.190	0.0466	0.073	0.639	0.523	-0.096
C(Location) [T.11] 0.218	0.0810	0.070	1.154	0.248	-0.056
C(Location) [T.12] 0.212	0.0891	0.063	1.419	0.156	-0.034
C(Location) [T.13] -0.153	-0.2836	0.066	-4.268	0.000	-0.414
C(Location) [T.14] -0.087	-0.2111	0.063	-3.332	0.001	-0.335
C(Location) [T.15] 0.074	-0.0612	0.069	-0.887	0.375	-0.197
C(Location) [T.16] -0.288	-0.4036	0.059	-6.865	0.000	-0.519
-0.268 C(Location)[T.17] -0.268	-0.4879	0.112	-4.354	0.000	-0.707
-0.200 C(Location)[T.18] -0.145	-0.2697	0.064	-4.225	0.000	-0.395
C(Location) [T.19]	-0.2330	0.065	-3.579	0.000	-0.361

(-0.105 C(Location) [T.20] 0.002 C(Location) [T.21] 0.134 C(Location) [T.22]	-0.1292 -0.0156	0.067	-1.935	0.053	-0.260
	0.002 C(Location)[T.21] 0.134 C(Location)[T.22]					
	0.134 C(Location)[T.22]	-0.0156	0.076			
				-0.204	0.839	-0.165
	0.188	0.0353	0.078	0.454	0.650	-0.117
(C(Location)[T.23]	0.1417	0.064	2.200	0.028	0.015
(C(Location)[T.24]	-1.2794	0.072	-17.696	0.000	-1.421
(-1.138 C(Location)[T.26]	-0.1453	0.087	-1.670	0.095	-0.316
(0.025 C(Location)[T.27]	-0.5794	0.060	-9.627	0.000	-0.697
(-0.461 C(Location)[T.28]	-0.4712	0.063	-7.466	0.000	-0.595
(-0.347 C(Location)[T.29]	-0.0228	0.064	-0.355	0.723	-0.149
(0.103 C(Location)[T.30]	-0.0049	0.069	-0.071	0.944	-0.141
(0.131 C(Location)[T.31]	-0.2543	0.066	-3.858	0.000	-0.383
(-0.125 C(Location)[T.32]	0.1208	0.062	1.949	0.051	-0.001
(0.242 C(Location)[T.33]	0.2271	0.065	3.476	0.001	0.099
(0.355 C(Location)[T.34]	-0.0875	0.059	-1.471	0.141	-0.204
(0.029 C(Location)[T.35]	-0.3258	0.068	-4.782	0.000	-0.459
(-0.192 C(Location)[T.36]	-0.0724	0.070	-1.039	0.299	-0.209
(0.064 C(Location)[T.37]	0.2830	0.073	3.851	0.000	0.139
	0.427 C(Location)[T.38]	-0.1972	0.060	-3.282	0.001	-0.315
	-0.079 C(Location)[T.39]	-0.0863	0.061	-1.406	0.160	-0.207
(0.034 C(Location)[T.40]	-0.3078	0.071	-4.355	0.000	-0.446
	-0.169					
	C(Location)[T.41] 0.068	-0.0631	0.067	-0.945	0.345	-0.194
	C(Location)[T.42] 0.158	-0.0555	0.109	-0.509	0.611	-0.269
(C(Location) [T.43]	0.1945	0.067	2.902	0.004	0.063
	C(Location)[T.44]	-0.4425	0.060	-7.396	0.000	-0.560

-0.325					
C(Location)[T.45] -0.169	-0.2890	0.061	-4.711	0.000	-0.409
C(Location)[T.46] 0.142	0.0100	0.067	0.149	0.882	-0.122
C(Location)[T.47] 0.007	-0.1133	0.061	-1.848	0.065	-0.233
C(Location)[T.48] -0.615	-0.7352	0.061	-12.038	0.000	-0.855
C(Location) [T.49] -0.225	-0.3977	0.088	-4.518	0.000	-0.570
Max_Temp -0.072	-0.0865	0.007	-11.588	0.000	-0.101
Min_Temp 0.118	0.1026	0.008	13.444	0.000	0.088
Parameter1_Speed 0.066	0.0617	0.002	26.958	0.000	0.057
Parameter3_9am	-0.0163	0.004	-4.352	0.000	-0.024
Parameter3_3pm -0.047	-0.0538	0.003	-15.480	0.000	-0.061
Parameter4_9am 0.017	0.0135	0.002	8.411	0.000	0.010
Parameter4_3pm 0.022	0.0184	0.002	9.815	0.000	0.015

=====

1.7 7. Sobredispersión y selección de alpha

Se evaluó la existencia de sobredispersión en el modelo Poisson, comparando la media y varianza del número de fallas mensuales. Al observar una varianza superior a la media, se justifica el uso de un modelo Binomial Negativa. Se estima el parámetro de dispersión alpha a través de máxima verosimilitud, lo que refuerza la necesidad de usar dicho modelo.

El modelo de regresión lineal ordinaria (OLS) presentado para evaluar la relación entre la variable dependiente Failure_today y una sola variable predictora (posiblemente una variable agregada o representativa) muestra resultados estadísticamente significativos, pero con un poder explicativo extremadamente bajo. El valor de R^2 sin intercepto es apenas 0.001, lo que indica que solo el 0.1% de la variación en las fallas puede ser explicada por esta variable, lo que sugiere que el modelo es muy limitado para capturar los factores que inciden en la ocurrencia de fallas.

El coeficiente estimado es de 0.0085, con una significancia estadística (p = 0.013), lo que implica que, aunque el efecto es pequeño, se detecta una asociación positiva entre la variable predictora y la ocurrencia de fallas. Sin embargo, dada la baja capacidad explicativa del modelo, esta relación debe interpretarse con cautela, ya que puede estar capturando solo un aspecto muy marginal del fenómeno.

Además, las pruebas de normalidad y simetría de los residuos (como Omnibus y Jarque-Bera)

indican que los residuos no siguen una distribución normal, lo cual viola uno de los supuestos clave del modelo lineal clásico. Esto, sumado al sesgo y la curtosis elevados, refuerza la idea de que un modelo lineal no es el más adecuado para este tipo de variable, que es discreta y binaria.

```
[24]: df_p['plambda'] = poisson.mu
sns.histplot(data=df_p, x="plambda", bins=50)
```

[24]: <Axes: xlabel='plambda', ylabel='Count'>


```
[25]: y= df_p['Failure_today']
aux=((y-poisson.mu)**2-poisson.mu)/poisson.mu
auxr=sm.OLS(aux,poisson.mu).fit()
print(auxr.summary())
```

OLS Regression Results

======

Dep. Variable: Failure_today R-squared (uncentered):

0.001

Model: OLS Adj. R-squared (uncentered):

0.001

Method: Least Squares F-statistic:

6.226

Date: vie., 25 abr. 2025 Prob (F-statistic):

0.0126

Time: 00:27:48 Log-Likelihood:

-8281.8

No. Observations: 4413 AIC:

1.657e+04

Df Residuals: 4412 BIC:

1.657e+04

Df Model: 1
Covariance Type: nonrobust

=========	=======	:=========	=======	:========	========	========
	coef	std err	t	P> t	[0.025	0.975]
x1	0.0085	0.003	2.495	0.013	0.002	0.015
Omnibus:		4030.4	33 Durb	oin-Watson:		1.842
Prob(Omnibus)):	0.0	00 Jarq	ue-Bera (JB):	218871.018
Skew:		4.2	24 Prob	(JB):		0.00
Kurtosis:		36.4	51 Cond	l. No.		1.00
=========	=======	==========	=======	:========	========	========

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[26]: alpha=np.exp(0.0085) print(alpha)

1.0085362275720395

1.8 8. Modelo Binomial Negativa

Se estimó el modelo de regresión Binomial Negativa para explicar el número de fallas mensuales. Este modelo permite una mayor flexibilidad al ajustar para la sobredispersión detectada en los datos. Se usaron las mismas variables explicativas que en el modelo Poisson. Sus coeficientes se interpretan de forma similar, pero con errores estándar corregidos por dispersión.

El modelo muestra un ajuste considerablemente más robusto en comparación con modelos anteriores, especialmente teniendo en cuenta que la variable dependiente Failure_today es discreta y dispersa. La elección de este modelo es acertada para abordar conteos de eventos raros o con alta varianza, como las fallas en sensores, y sus resultados reflejan una mejora notable en la capacidad explicativa del modelo.

El valor del pseudo R^2 de 0.2539 (Cox-Snell) indica que el modelo logra capturar aproximadamente un 25% de la variabilidad en la variable dependiente, lo que es significativo en contextos de mod-

elación de fallos, donde los eventos suelen ser esporádicos. Además, el log-likelihood (-12080) y la devianza (1239.6) sugieren un buen ajuste del modelo a los datos.

En cuanto a los coeficientes, se observa que varias ubicaciones (Location) presentan efectos estadísticamente significativos. Por ejemplo, las ubicaciones 14, 16, 17, 24, 27, 28, 40, 44 y 48 tienen coeficientes negativos y altamente significativos, lo cual sugiere que, en comparación con la ubicación base (probablemente Location 1 o la menor numerada), estas ubicaciones reducen la probabilidad de fallas. Esta información puede ser clave para identificar condiciones operativas o ambientales más favorables.

Por otra parte, variables climáticas y técnicas como Max_Temp, Min_Temp, Parameter1_Speed, Parameter4_9am y Parameter4_3pm también son significativas y coherentes con el fenómeno modelado. Por ejemplo, un aumento en la velocidad del parámetro 1 y en la temperatura mínima se asocian con mayores probabilidades de fallas, mientras que temperaturas máximas más altas y ciertos parámetros a las 3pm se vinculan con una disminución en la probabilidad de fallos, posiblemente reflejando condiciones térmicas más estables o sistemas menos exigidos.

Generalized Linear Model Regression Results

		======		=======	
Dep. Variable: Model:	Failur	e_today GLM	No. Observati Df Residuals:	4413 4359	
	17 D	~			
Model Family:	NegativeB:				53
Link Function:		Log	Scale:		1.0000
Method:		IRLS	Log-Likelihoo	d:	-12080.
Date:	vie., 25 ab	r. 2025	Deviance:		1239.6
Time:	00	0:27:48	Pearson chi2:		867.
No. Iterations:		9	Pseudo R-squ.		0.2539
	no	nrobust	r boudo in bqu.	(05).	0.2000
Covariance Type:	1101	mobust			
====					_
	coef	std err	Z	P> z	[0.025
0.975]					
Intercept	-1.3042	0.485	-2.690	0.007	-2.254
-0.354					
C(Location)[T.3]	0.0819	0.175	0.469	0.639	-0.261
0.424					
C(Location)[T.4]	0.0593	0.181	0.328	0.743	-0.295
	0.0095	0.101	0.520	0.743	-0.295
0.414					
C(Location)[T.5]	-0.1660	0.177	-0.937	0.349	-0.513
0.181					

C(Location)[T.6] 0.162	-0.2422	0.206	-1.175	0.240	-0.646
C(Location)[T.7] 0.368	0.0185	0.178	0.104	0.917	-0.331
C(Location) [T.8] 0.290	-0.0330	0.165	-0.200	0.841	-0.355
C(Location)[T.9]	-0.1329	0.182	-0.732	0.464	-0.489
0.223 C(Location)[T.10] 0.450	0.0764	0.191	0.401	0.688	-0.297
C(Location) [T.11] 0.466	0.1312	0.171	0.769	0.442	-0.203
C(Location) [T.12] 0.335	-0.0156	0.179	-0.087	0.931	-0.366
C(Location) [T.13] 0.020	-0.3503	0.189	-1.855	0.064	-0.720
C(Location)[T.14] -0.240	-0.5892	0.178	-3.312	0.001	-0.938
C(Location) [T.15] 0.143	-0.2304	0.190	-1.209	0.227	-0.604
C(Location) [T.16] -0.112	-0.4330	0.164	-2.642	0.008	-0.754
C(Location)[T.17] -0.354	-0.9015	0.280	-3.225	0.001	-1.449
C(Location) [T.18] 0.037	-0.2980	0.171	-1.742	0.082	-0.633
C(Location) [T.19] 0.091	-0.2578	0.178	-1.447	0.148	-0.607
C(Location) [T.20] 0.234	-0.1272	0.184	-0.690	0.490	-0.489
C(Location) [T.21] 0.437	0.0792	0.183	0.434	0.664	-0.279
C(Location)[T.22] 0.440	0.0633	0.192	0.330	0.742	-0.313
C(Location) [T.23] 0.489	0.1218	0.187	0.650	0.516	-0.245
C(Location)[T.24] -0.886	-1.2639	0.193	-6.552	0.000	-1.642
C(Location) [T.26] 0.305	-0.1331	0.224	-0.595	0.552	-0.572
C(Location)[T.27] -0.379	-0.7097	0.168	-4.213	0.000	-1.040
C(Location)[T.28] -0.293	-0.6463	0.180	-3.590	0.000	-0.999
C(Location) [T.29] 0.357	0.0192	0.172	0.112	0.911	-0.318
C(Location) [T.30] 0.273	-0.0794	0.180	-0.441	0.659	-0.432

C(Location) [T.31] 0.071	-0.2623	0.170	-1.543	0.123	-0.595
C(Location) [T.32] 0.327	0.0046	0.164	0.028	0.978	-0.318
C(Location) [T.33] 0.453	0.1075	0.176	0.610	0.542	-0.238
C(Location) [T.34] 0.123	-0.2206	0.175	-1.259	0.208	-0.564
C(Location) [T.35] 0.001	-0.3417	0.175	-1.955	0.051	-0.684
C(Location) [T.36] 0.250	-0.1201	0.189	-0.636	0.525	-0.490
C(Location) [T.37] 0.696	0.3209	0.191	1.677	0.093	-0.054
C(Location) [T.38] 0.092	-0.2423	0.170	-1.423	0.155	-0.576
C(Location) [T.39] 0.214	-0.1245	0.173	-0.721	0.471	-0.463
C(Location) [T.40] -0.230	-0.5962	0.187	-3.192	0.001	-0.962
C(Location) [T.41] 0.344	0.0048	0.173	0.028	0.978	-0.334
C(Location) [T.42] 0.327	-0.1156	0.226	-0.513	0.608	-0.558
C(Location) [T.43] 0.605	0.2594	0.177	1.469	0.142	-0.087
C(Location) [T.44] -0.245	-0.5830	0.172	-3.382	0.001	-0.921
C(Location) [T.45] 0.038	-0.2946	0.170	-1.733	0.083	-0.628
C(Location)[T.46] 0.340	-0.0183	0.183	-0.100	0.920	-0.376
C(Location)[T.47] 0.103	-0.2422	0.176	-1.376	0.169	-0.587
C(Location)[T.48] -0.574	-0.9039	0.168	-5.366	0.000	-1.234
C(Location)[T.49] 0.037	-0.3358	0.190	-1.764	0.078	-0.709
Max_Temp -0.041	-0.0789	0.020	-4.039	0.000	-0.117
Min_Temp 0.141	0.1025	0.020	5.221	0.000	0.064
Parameter1_Speed 0.082	0.0691	0.006	10.651	0.000	0.056
Parameter3_9am 0.006	-0.0136	0.010	-1.359	0.174	-0.033
Parameter3_3pm -0.043	-0.0611	0.009	-6.475	0.000	-0.080

Parameter4_9am	0.0133	0.004	3.181	0.001	0.005
0.021					
Parameter4_3pm 0.037	0.0269	0.005	5.310	0.000	0.017

```
[28]: df_p['ypred']=negativebinomial.predict(df_p)

sns.lmplot(data=df_p, x='Failure_today', y='ypred')
plt.title('Predicción vs Observación')
plt.xlabel('Fallas Observadas')
plt.ylabel('Fallas Predichas')
plt.tight_layout()
plt.show()
```


1.9 9. Comparación de modelos de conteo (6, 7 y 8)

La comparación entre Poisson y Binomial Negativa muestra que esta última ofrece un mejor ajuste al capturar adecuadamente la varianza de los datos. Al igual que en los modelos anteriores, las variables climáticas (Min_Temp, Max_Temp) y parámetros de sensores resultaron significativas y robustas en ambas especificaciones. Se concluye que el modelo Binomial Negativa es más adecuado dada la evidencia de sobredispersión.

El modelo de regresión de Binomial Negativa utilizado para modelar la probabilidad de fallas diarias (Failure_today) se ajusta de forma adecuada al contexto del problema, ya que esta técnica es especialmente útil en presencia de conteos de eventos raros y sobredispersión —es decir, cuando la varianza de la variable dependiente es mayor que su medieno que es común en fallas técnicas poco frecuentes.

Los resultados obtenidos evidencian que el modelo logra capturar patrones significativos en los datos. Con un pseudo R^2 de 0.2539, se estima que cerca del 25% de la variabilidad observada en las fallas puede explicarse por las variables independientes incluidas en el modelo. Esta cifra es destacable dentro del contexto de modelos de conteo, donde generalmente es difícil obtener valores de R^2 altos.

En cuanto a las variables incluidas, tanto las características técnicas como ambientales mostraron ser relevantes. Por ejemplo:

Un mayor valor en la variable Parameter1_Speed se asocia con un incremento en la probabilidad de falla, con un coeficiente positivo y altamente significativo.

De forma similar, Min_Temp también incrementa el riesgo de falla, lo cual podría sugerir que temperaturas más altas durante la noche o madrugada podrían estar afectando la recuperación o estabilidad de los sistemas.

En contraste, Max_Temp y los parámetros técnicos medidos en la tarde (Parameter3_3pm, Parameter4_3pm) presentan coeficientes negativos, indicando que ciertas condiciones climáticas o cargas en la segunda mitad del día podrían estar asociadas con menor riesgo de falla, posiblemente por estabilización térmica o menor exigencia operativa.

Asimismo, el modelo permite identificar ubicaciones críticas, lo que es clave para el monitoreo geoespacial de los equipos. Por ejemplo, las ubicaciones 14, 16, 17, 24, 27, 28, 40, 44 y 48 presentan coeficientes negativos estadísticamente significativos, lo que indica que, en comparación con la categoría base, estas zonas tienen una menor incidencia de fallas. En particular, la ubicación 24 presenta un coeficiente de -1.26, lo que sugiere un efecto protector considerable. Este tipo de análisis puede ser útil para priorizar mantenimiento o planificar estrategias de redistribución de cargas.

Por otro lado, la significancia estadística de varios coeficientes, con valores p < 0.05, fortalece la validez del modelo. También se aprecia que la mayoría de las variables categóricas no son significativas, lo cual puede deberse a una baja incidencia de fallas en esas ubicaciones o a que el modelo ya está capturando la variabilidad mediante otras variables más informativas.

Como conclusión final al análisis, el modelo de regresión de Binomial Negativa no solo permite explicar parcialmente las condiciones asociadas a fallas, sino que también entrega información práctica para la gestión preventiva y la toma de decisiones operativas, destacando su utilidad como herramienta en el análisis de confiabilidad de sistemas. La interpretación de los coeficientes ayuda a entender cómo influyen los factores técnicos, climáticos y espaciales sobre la ocurrencia de fallas,

y orienta hacia acciones concretas de mejora en infraestructura o mantenimiento.