Алгебра. Практика.

А. В. Щеголёв

Определение 1. Кольцо R называется Eвклидовым, если существует $\phi: R \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ — норма Eвклида, что $\forall a, b \in R \ \exists q, r \in R: a = bq + r, \phi(r) < \phi(b)$.

Упражнение 1.

- 1. Пусть дана какая-то норма Евклида ϕ на кольце R. Тогда эту норму можно докрутить так, что для новой нормы ϕ' верно, что $\phi'(ab) \geqslant \phi'(a)$.
- 2. Для ϕ' верно, что для всех обратимых элементов ϕ' -значения равны.

Определение 2. Общим делителем a и b называется c, что $c \mid a$ и $c \mid b$. Наибольшим общим делителем (НОД) a и b называется общий делитель a и b, делящийся на все другие общие делители a и b.

Теорема 1 (алгоритм Евклида). В Евклидовом кольце у любых двух чисел есть $HO\mathcal{A}$.

Доказательство. Заметим, что (a, b) = (a + bk, b).

Пусть даны a и b. Предположим, что $\phi(a) \geqslant \phi(b)$, иначе поменяем их местами. Тем самым по аксиоме Евклида найдутся q и r, что a = bq + r, а $\phi(r) < \phi(b) \leqslant \phi(a)$, значит $\phi(a) + \phi(b) > \phi(r) + \phi(b)$. При этом (a,b) = (r,b). Значит бесконечно $\phi(a) + \phi(b)$ не может бесконечнго уменьшаться, так как натурально, значит за конечное кол-во переходов мы получим, что одно из чисел делит другое, а значит НОД стал определён.

Упражнение 2. $\sigma\left(\begin{smallmatrix} a&1&0\\b&0&1\end{smallmatrix}\right)=\left(\begin{smallmatrix} d\\0&\sigma\end{smallmatrix}\right)$. Чему может быть равно σ_{2*} ?

Упражнение 3. Докажите, что Гауссова норма — норма Евклида.

Упражнение 4. Найти (17 + 23i, 13 - 21i).

Упражнение 5. Ждите позже...

Упражнение 6. Найти все решения 17x + 24y = 3 над \mathbb{Z} .

1 Занятие 30.11.2020

Лемма 2. Пусть $\{\alpha_i\}_{i=1}^n$ — различные (комплексные) значения, а f — некоторый полином степени < n. Тогда

$$\frac{f(x)}{\prod_{i=1}^{n}(x-\alpha_i)} = \sum_{i=1}^{n} \frac{a_i}{x-\alpha_i}$$

 $e \partial e$

$$a_i := \frac{f(\alpha_i)}{\prod_{t \neq i} (\alpha_i - \alpha_t)}$$

Доказательство. Заметим, что по интерполяционной теореме Лагранжа

$$f(x) = \sum_{i=1}^{n} f(\alpha_i) \prod_{j \neq i} \frac{x - \alpha_j}{\alpha_i - \alpha_j} = \sum_{i=1}^{n} a_i \prod_{j \neq i} (x - \alpha_j)$$

Следовательно

$$\frac{f(x)}{\prod_{i=1}^{n}(x-\alpha_i)} = \sum_{i=1}^{n} \frac{a_i}{x-\alpha_i}$$

Лемма 3. Пусть $\{\alpha_i\}_{i=1}^n$ — различные (комплексные) значения. Определим

$$P(x) := \prod_{i=1}^{n} (x - \alpha_i)$$

Tог ∂a

$$\prod_{i \neq t} (\alpha_t - \alpha_i) = P'(\alpha_i)$$

Доказательство. Заметим, что

$$P'(x) = \sum_{i=1}^{n} \prod_{j \neq i} (x - \alpha_j)$$

Следовательно

$$P'(\alpha_t) = \sum_{i=1}^n \prod_{j \neq i} (\alpha_t - \alpha_j) = \prod_{j \neq t} (\alpha_t - \alpha_j)$$

Следствие 3.1.

$$\prod_{\substack{i \in [0; n-1] \\ i \neq t}} (\zeta_n^t - \zeta_n^i) = n \zeta_n^{-t}$$

Теорема 4.

$$\frac{2n+1}{x^{2n+1}-1} - \frac{1}{x-1} + n = \frac{x^2-1}{2x} \sum_{i=1}^{n} \frac{1}{\frac{x^2+1}{2x} - \cos(\frac{2\pi i}{2n+1})}$$

2

Доказательство.

$$\frac{2n+1}{x^{2n+1}-1} = \sum_{i=1}^{2n+1} \frac{1}{x-\zeta_{2n+1}^i} \cdot \frac{2n+1}{(2n+1)\zeta_{2n+1}^{-i}} = \sum_{i=1}^{2n+1} \frac{1}{\zeta_{2n+1}^{-i}x-1}$$

Заметим, что

$$\frac{1}{\zeta_{2n+1}^i x - 1} + \frac{1}{\zeta_{2n+1}^{-i} x - 1} = \frac{2x \cos(\frac{2\pi i}{2n+1}) - 2}{x^2 + 1 - 2x \cos(\frac{2\pi i}{2n+1})} = \frac{x^2 - 1}{x^2 + 1 - 2x \cos(\frac{2\pi i}{2n+1})} - 1 = \frac{\frac{x^2 - 1}{2x}}{\frac{x^2 + 1}{2x} - \cos(\frac{2\pi i}{2n+1})} - 1$$

Следовательно

$$\frac{2n+1}{x^{2n+1}-1} - \frac{1}{x-1} + n = \sum_{i=1}^{n} \frac{1}{\zeta_{2n+1}^{i}x-1} + \frac{1}{\zeta_{2n+1}^{-i}x-1} = \frac{x^{2}-1}{2x} \sum_{i=1}^{n} \frac{1}{\frac{x^{2}+1}{2x} - \cos(\frac{2\pi i}{2n+1})}$$

Следствие 4.1.

$$\sum_{i=1}^{n} \frac{1}{1 - \cos(\frac{2\pi i}{2n+1})} = \frac{n(n+1)}{3}$$

Следствие 4.2.

$$\sum_{i=1}^{n} \frac{1}{1 - \cos(\frac{2\pi i}{2n+1})} = \frac{n(n+1)}{3}$$