# **Lecture 4: Fast Fourier Transform**

Prof. Tai-kyong Song
Dept. of Electronic Engineering
SOGANG UNIVERSITY

#### Introduction

#### **N-point DFT**

$$X(k) = \sum_{n=0}^{N-1} x(n) \underline{W_N^{kn}} \qquad k = 0, 1, \dots, N-1$$

$$k = 0, 1, \dots, N - 1$$

where 
$$W_N = \exp(\frac{1}{2\pi}j2\pi/N)$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn} \qquad n = 0, 1, \dots, N-1$$

#### Computational Advantage of FFT

|             | # of            | # of Addidtions      |
|-------------|-----------------|----------------------|
|             | Multiplications |                      |
| N-point DFT | $N^2$           | N(N-1)               |
| N-point FFT | $(N/2) log_2N$  | N log <sub>2</sub> N |

Note) Multiplications and additions are complex

operations here.

#### Introduction

#### Basic Idea of DFT

Rather than directly computing DFT of a sequence of length N, computation of DFT is decomposed into successively smaller DFT's until one gets m stage  $(N = b^{m})$  b-point DFT's. Then, the results are added. Also, we use the following properties:

1)
$$W_N^{k(N-n)} = (W_N^{kn})^*$$
: Symmetric property  
2) $W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n}$ : Periodicity

2)
$$W_N^{kn} = W_N^{k(n+N)} = W_N^{(k+N)n}$$
: Periodicity

→ Radix b N-FFT **Divide and Conquer** method

#### Introduction

Depending on how decomposition is made,

two basic classes of FFT exist:

1)Decimation-In-Time (DIT) FFT:

Time sequence x(n) is decomposed into successively smaller sequence.

2) Decimation-In-Frequency (DIF) FFT:

Sequence of DFT X(k) is decomposed into successively smaller sequence.

Note) Here, we consider only the special (and most commonly used) case of N, being an integer power of 2 (Radix 2), i.e.,  $N = 2^m$ 

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$

$$=\sum_{n=0}^{N-1} x(n)W_N^{nk} (n = even)$$

$$+\sum_{n=0}^{N-1} x(n)W_N^{nk} \underline{(n=odd)}$$

$$\to X(k) = G(k) + W_N^k H(k) \tag{A}$$

where G(k) and H(k) are periodic function with period of N/2.

# complex multiplications = # complex additions

$$= N + 2(N/2)^2 (< N^2 \text{ for } N > 2)$$

$$= \sum_{n=0}^{N/2-1} x(2n)W_N^{2nk} + \sum_{n=0}^{N/2-1} x(2n+1)W_N^{(2n+1)k}$$

$$= \sum_{n=0}^{N/2-1} x(2n)W_{N/2}^{nk} + W_N^k \sum_{n=0}^{N/2-1} x(2n+1)W_{N/2}^{nk}$$

(N/2 - point DFT N/2 - point DFT)

: 
$$W_N^2 = (e^{-j2\pi/N})^2 = e^{-j2\pi/N/2} = W_{N/2}^1$$

Flow graph of DIT decomposition of 8-point DFT computation into two 4-point DFT's. (Note that H(4) = H(0), G(4) = G(0), H(5) = H(1), G(5) = G(1), .....)



$$X(k) = G(k) + \underline{W_N^k} H(k)$$
  
$$k = 0, 1, \dots, N - 1 (= 7)$$

#### Successive Decomposition

The above procedure of decomposition is continued until it gets down to 2-point DFT. Decomposing G(k) and H(k) into two N/4 even points and N/4 odd points

$$G(k) = \sum_{r=0}^{N/2-1} g(r) W_{N/2}^{rk} \qquad H(k) = \sum_{l=0}^{N/4-1} h(2l) W_{N/4}^{lk}$$

$$= \sum_{l=0}^{N/4-1} g(2l) W_{N/4}^{lk} + W_{N/2}^{k} \sum_{l=0}^{N/4-1} g(2l+1) W_{N/4}^{lk} \qquad + W_{N/2}^{k} \sum_{l=0}^{N/4-1} h(2l+1) W_{N/4}^{lk}$$

# complex multiplications = # complex additions

$$= N + 2\{N/2 + 2(N/4)^2\} = N + N + 4(N/4)^2$$

Note: 
$$W_{N/2}^k = W_N^{2k}$$

Example: 8-point DIT FFT



$$G(k) = \sum_{r=0}^{N/2-1} g(r)W_{N/2}^{rk} \qquad H(k) = \sum_{l=0}^{N/4-1} h(2l)W_{N/4}^{lk}$$

$$= \sum_{l=0}^{N/4-1} g(2l)W_{N/4}^{lk} + W_{N/2}^{k} \sum_{l=0}^{N/4-1} g(2l+1)W_{N/4}^{lk} + W_{N/2}^{k} \sum_{l=0}^{N/4-1} h(2l+1)W_{N/4}^{lk}$$

$$\mathbf{k} = \mathbf{0}, \mathbf{1}, \dots, N/2 - \mathbf{1} (= \mathbf{3})$$

$$H(k) = \sum_{l=0}^{N/4-1} h(2l) W_{N/4}^{lk} + W_{N/2}^{k} \sum_{l=0}^{N/4-1} h(2l+1) W_{N/4}^{lk}$$

Flow graph of complete DIT decomposition of

8-point DFT calculation.



#### The Butterfly form



$$X_{m+1}(q) = X_m(p) + W_N^{r+N/2} X_m(q)$$



Since 
$$W_N^{N/2} = \exp(-j2\pi N/2/N) = \exp(-j\pi) = -1$$

#### Final result: N = 8 case



 $log_2N$  stages N/2 butterflies  $\Longrightarrow$  # multiplications: N/2  $log_2N$  # additions: N  $log_2N$ .

#### In-place computation and bit reversal

#### Bit reversal in FFT

| Index in | Binary      | Bit      | Bit reverse |
|----------|-------------|----------|-------------|
| Decimal  | Representat | reversed | index in    |
| number   | ion         | Binary   | decimal     |
| 0        | 000         | 000      | 0           |
| 1        | 001         | 100      | 4           |
| 2        | 010         | 010      | 2           |
| 3        | 011         | 110      | 6           |
| 4        | 100         | 001      | 1           |
| 5        | 101         | 101      | 5           |
| 6        | 110         | 011      | 3           |
| 7        | 111         | 111      | 7           |
|          |             |          |             |

$$X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{nk} + \sum_{n=N/2}^{N-1} x(n)W_N^{nk}$$

$$X(k) = \sum_{n=0}^{N/2-1} x(n)W_N^{nk}$$

$$+ W_N^{(N/2)k} \sum_{n=0}^{N/2-1} x(n+N/2)W_N^{nk}$$

$$= \sum_{n=0}^{N/2-1} \left[ x(n) + (-1)^k x(n+N/2) \right] \cdot W_N^{nk}$$

$$\text{because } W_N^{(N/2)k} = \exp(-j\pi k) = (-1)^k$$

$$X(2k) = \sum_{n=0}^{N/2-1} \left[ x(n) + x(n+N/2) \right] \cdot W_N^{2nk}$$

$$X(2k) = \sum_{n=0}^{N/2-1} [x(n) + x(n+N/2)] \cdot W_N^{2nk}$$

$$X(2k+1) = \sum_{n=0}^{N/2-1} [x(n) - x(n+N/2)] \cdot W_N^n \cdot W_N^{2nk}$$

$$(k = 0, 1, ..., N/2-1)$$







#### Radix 2 Inverse FFT

#### Computation of Inverse DFT (IDFT)

To compute IDFT, FFT algorithm can be used without any change in the algorithm.

IDFT of N-point sequence {X(k)}

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W_N^{-kn}$$
 (J)

$$\Rightarrow x(n) = \frac{1}{N} \left\{ \sum_{k=0}^{N-1} X^*(k) W_N^{kn} \right\}^*$$
 (L)

#### Radix 2 FFT

#### 3. Pruned FFT

When the input data sequence has a considerably smaller number of nonzero samples compared with that of zero samples, significant amount of computations can be saved by so called "Pruned FFT".

## **Applications of FFT algorithms**

## Efficient computation of the DFT of two real sequences

$$x(n) = x_1(n) + jx_2(n) : x_1(n), x_2(n)$$

: two real sequences

$$X(k) = X_1(k) + jX_2(k)$$

$$x_1(n) = \frac{x(n) + x^*(n)}{2}, \quad x_2(n) = \frac{x(n) - x^*(n)}{2j}$$

#### **Matlab and FFT**

FFT(x, N): N point FFT of x[n]

$$n = [0:29]$$
  
 $x = \cos(2\pi n/10)$   
 $\theta = 2\pi/10$   $\underline{f} = 1/10$ 



$$N = 64$$
  
 $XN = abs(fft(x, N))$   
 $F = [0: N - 1]/N$   
 $plot(F, XN, '-x'), title('N = 64'), axis([0 1 0 20])$ 



N = 256

#### **Matlab and FFT**

```
n = [0:29]
x1 = \cos(2\pi n/10)
x3 = [x1 \ x1 \ x1]
```



```
N = 2048

X1 = abs(fft(x1,N)) X3 = abs(fft(x3,N))

F = [0:N-1]/N

subplot(2,1,1)

plot(F,X1), title('3 periods'), axis([0 1 0 50])

subplot(2,1,2)

plot(F,X3), title('9 periods'), axis([0 1 0 50])
```



#### **Matlab and FFT**

$$n = [0:149]$$
  
 $x1 = \cos(2\pi n/10)$   
 $N = 2048$   
 $X1 = fft(x1, N)$   
 $X1 = fftshift(X1)$   
 $F = [-N/2 : N/2 - 1]/N$   
 $plot(F, X1)$   
 $xlabel('frequency / f_s')$ 

