Homework 1

菠萝包萝卜

2025年9月19日

1 Problem 1

Show that if \mathcal{F}_i , $i \in I$ are σ -fields then $\cap_{i \in I} \mathcal{F}_i$ is a σ -field.

Proof. 1. 首先对于这些 \mathcal{F}_i 都有 $\Omega \in \mathcal{F}_i$ 从而 $\Omega \in \cap_i \mathcal{F}_i$

- 2. 设 $A \in \cap_i \mathcal{F}_i$, 于是 $A \in \mathcal{F}_i$, $\forall i \in I$, 从而 $\bar{A} \in \mathcal{F}_i$, $\forall i \in I$, 因此 $\bar{A} \in \cap_i \mathcal{F}_i$
- 3. 设 $A_1, \dots, A_n \dots \in \cap_i \mathcal{F}_i$,于是它们同时属于 $\mathcal{F}_i, \forall i \in I$,所以

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}_i, \forall i \in I$$

故

$$\bigcup_{i=1}^{\infty} A_i \in \bigcap_i \mathcal{F}_i$$

综上所述, $\bigcap_{i \in I} \mathcal{F}$ 是一个 σ − 代数.

2 Problem 2-1.1.1

Let $\Omega = \mathbb{R}$, $\mathcal{F} =$ all subsets so that A or A^c is countable, P(A) = 0 in the first case and = 1 in the second. Show that (Ω, \mathcal{F}, P) is a probability space.

Proof. \mathcal{F} 中的元素满足: 或者 A 可数, 或者 A^c 可数, 我们先说明它是个 σ – 代数:

- 1. 由于空集 \emptyset 可数, 故 \emptyset ∈ \mathcal{F} , 由 \mathcal{F} 定义 Ω ∈ \mathcal{F} , 即包含全集;
- 2. 现在设 $A \in \mathcal{F}$ 则或者 A 可数,或者 A^c 可数,也就是说或者 $(A^c)^c$ 可数,或者 A^c 可数,从 而 A^c 也是满足 \mathcal{F} 定义的集合,于是 $A^c \in \mathcal{F}$,即对补封闭;
- 3. 设有一列 $A_1\cdots A_n\cdots\in\mathcal{F}$,如果这些 A_i 都是可数集,那么由可数个至多可数集的并仍然至多可数可以得到

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

如果至少存在一个 A_k 不可数,于是由于 $A_k \in \mathcal{F}$,我们得到 A_k^c 是可数的,于是我们求反面

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c \subset A_k^c$$

这样 $\bigcap_{i=1}^{\infty} A_i^c$ 作为可数集 A_k^c 的子集也是可数的,从而 $\bigcap_{i=1}^{\infty} A_i^c$ 以及它的补 $\bigcup_{i=1}^{\infty} A_i$ 都在 \mathcal{F} 中,至此我们证明了 \mathcal{F} 是一个 σ — 代数.

然后我们说明给定的 P 是个概率测度,首先由于 P 仅取 0,1,一定满足 $P \ge 0$,其次对于一列不交的 $A_1 \cdots A_n \cdots$,考虑 $\bigcup_{i=1}^{\infty} A_i$:

一方面,如果 A_i 全部为可数集,那么它们的可数并仍然可数从而

$$P(\bigcup_{i=1}^{\infty} A_i) = 0 = \sum_{i=1}^{\infty} 0 = \sum_{i=1}^{\infty} P(A_i)$$

另一方面,如果存在一个 A_k 为不可数集,在前面我们说明了 $\bigcap_{i=1}^{\infty} A_i^c$ 是可数的,从而由 P 定义

$$P(\bigcup_{i=1}^{\infty} A_i) = 1$$

由于这些集合两两不交,于是当 $j \neq k$ 的时候, $A_j \in A_k^c$,这里 A_k^c 可数,于是其它 A_j 作为可数集的子集全可数,于是

$$\sum_{i=1}^{n} P(A_i) = P(A_k) = 1 \Rightarrow P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{n} P(A_i)$$

再结合 \emptyset 可数 $P(\Omega) = 1$ 我们就得到了三元体 (Ω, \mathcal{F}, P) 是概率空间.

3 Problem 3-1.2.1

Suppose X and Y are random variables on $(\Omega, \mathcal{F}, \mathcal{P})$ and let $A \in \mathcal{F}$. Show that if we let $Z(\omega) = X(\omega)$ for $\omega \in A$ and $Z(\omega) = Y(\omega)$ for $\omega \in A^c$, then Z is a random variable.

Proof. 我们现在有

$$Z(\omega) = \begin{cases} X(\omega), \omega \in A \\ Y(\omega), \omega \in A^c \end{cases}$$

其中 $A \in \mathcal{F}$, 为了证明 Z 是随机变量, 我们就是要证 $\forall B \in \mathcal{B}$ 都有

$$\{\omega: Z(\omega) \in B\} \in \mathcal{F}$$

注意到

$$\{\omega : Z(\omega) \in B\} = \{\omega : Z(\omega) \in B, \omega \in A\} + \{\omega : Z(\omega) \in B, \omega \notin A\}$$

$$= \{\omega : X(\omega) \in B, \omega \in A\} + \{\omega : Y(\omega) \in B, \omega \notin A\}$$

$$= \{\omega : X(\omega) \in B\} \cap \{\omega : \omega \in A\} + \{\omega : Y(\omega) \in B\} \cap \{\omega : \omega \notin A\}$$

$$= \{\omega : X(\omega) \in B\} \cap A + \{\omega : Y(\omega) \in B\} \cap A^{c}$$

由于 X,Y 是随机变量 $\{\omega: X(\omega) \in B\}, \{\omega: Y(\omega) \in B\} \in \mathcal{F}$,从而再由 $A \in \mathcal{F}$

$$\{\omega: X(\omega) \in B\} \cap A \in \mathcal{F}, \{\omega: Y(\omega) \in B\} \cap A^c \in \mathcal{F}$$

也就是说 $\{\omega: Z(\omega) \in B\} \in \mathcal{F}$, 进而 Z 是个随机变量.

4 Problem 4-1.2.4

Show that if $F(X) = P(X \le x)$ is countinuous then Y = F(X) has a uniform distribution on (0,1), that is, if $y \in [0,1]$, $P(Y \le y) = y$

Proof. 我们取 $F^{-1}(y) = \sup\{t : F(t) < y\}$,于是

$$P(Y \le y) = P(F(X) \le y) = P(X \le F^{-1}(y)) = F \circ F^{-1}(y) = y$$

从而 $Y \sim U(0,1)$,其中上面的步骤除了需要用到课堂上已经证明的 $\{y: F^{-1}(y) \leq x\} = \{y: y \leq F(x)\}$ 之外还需要用到一个引理: 对于 $F(\cdot)$ 的连续点 $x = F^{-1}(y)$ 总是成立

$$F \circ F^{-1}(y) = y$$

下面说明这件事:

由确界定义, $\forall \epsilon > 0$, $\exists t$ 使得

$$x - \epsilon < t \le x$$

并且 $t \in \{a : F(a) < y\}$, 即 F(t) < y, 由于 F 是单调不减的, 我们有

$$F(x - \epsilon) \le F(t) < y$$

上式对任意 $\epsilon > 0$ 成立,令 $\epsilon \to 0$ 以及连续性就得到了

$$F(x) \le y$$

代入 $x = F^{-1}(y)$ 得到 $F \circ (F^{-1}(y)) \leq y$

另一方面,由确界定义 $\forall t' > x$,一定有 $t' \notin \{a : F(a) < y\}$,这意味着 $F(t') \geq y$,考虑右侧极限,由 $x = F^{-1}(y)$ 处 F 的连续性就有

$$\lim_{t' \to x^+} F(t') = F(x+) = F(x)$$

由于 $F(t') \ge y$ 对 $\forall t' > x$ 成立,在右侧极限下也有

$$F(x) \ge y$$

代入 $x = F^{-1}(y)$ 我们就得到了

$$F \circ F^{-1}(y) > y$$

从而连续点 $x = F^{-1}(y)$ 处 $F \circ F^{-1}(y) = y$.

5 Problem 5

Show that if S is a σ -field, then $\sigma(X) = \{\{X \in B\} : B \in S\}$ is the smallest σ - field on Ω that makes X a measurable map.

Proof. 首先证明 $\{\{\omega: X \in B\}: B \in \mathcal{S}\}\$ 是 σ - 代数:

- 1. 由于 \mathcal{S} 是 σ 代数,于是 $S \in \mathcal{S}$,其中 S 是 \mathcal{S} 中的元素的全集,所以 $\{\omega : \omega \in \Omega\} = \{\omega : X(\omega) \in S\} \in \{\{\omega : X \in B\} : B \in \mathcal{S}\}$,从而 $\sigma(X)$ 中有元素 Ω
 - 2. 设 $A \in \{\{\omega : X \in B\} : B \in S\}$,则存在一个 $B' \in S$ 使得 $A = \{\omega : X(\omega) \in B'\}$,这样就有

$$A^c = \{\omega : X(\omega) \notin B'\} = \{\omega : X(\omega) \in B'^c\}$$

由 S 为 σ - 代数, 故 $B'^c \in S$ 从而 $A^c \in \sigma(X)$

3. 设一列 $A_1 \cdots A_n \cdots \in \{\{\omega : X \in B\} : B \in \mathcal{S}\}$, 对这些 A_i 始终有 $B_i \in \mathcal{S}$ 使得

$$A_i = \{\omega : X(\omega) \in B_i\}$$

从而取可列并

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \{\omega : X(\omega) \in B_i\} = \{\omega : X(\omega) \in \bigcup_{i=1}^{\infty} B_i\}$$

由于 $S \in \sigma$ 一代数, 我们的 $\bigcup_{i=1}^{\infty} B_i \in S$ 从而

$$\bigcup_{i=1}^{\infty} A_i = \{\omega : X(\omega) \in \bigcup_{i=1}^{\infty} B_i\} \in \sigma(X)$$

这样证明了 $\sigma(X)$ 是 σ - 代数, 而 $\sigma(X)$ 的定义蕴含了 $\forall B \in \mathcal{S}$

$$X^{-1}(B) = \{\omega : X(\omega) \in B\} \in \sigma(X)$$

也就是说 X 确实是 $\sigma(X)$ — 可测的,接下来证它是最小的使得 X 可测的 σ — 代数,等价地只需证明任意一个使得 X 可测的 \mathcal{G} ,总是有 $\sigma(X)\subset\mathcal{G}$

设 $X \in \mathcal{G}$ 可测的, 也就是说 $\forall B \in \mathcal{S}$ 总有

$$\{\omega: X(\omega) \in B\} \in \mathcal{G}$$

我们任取 $A \in \sigma(X)$, 由定义, 存在一个 $\tilde{B} \in \mathcal{S}$ 满足

$$A = \{\omega : X(\omega) \in \tilde{B}\}\$$

由 \mathcal{G} 可测立即得 $\{\omega: X(\omega) \in \tilde{B}\} \in \mathcal{G}$,也是 $A \in \mathcal{G} \Rightarrow \sigma(X) \subset \mathcal{G}$,从而 $\sigma(X)$ 是使得 X 可测的最小 σ — 代数.

6 Problem 6-1.3.1

Show that if \mathcal{A} generates \mathcal{S} , then $X^{-1}(A): A \in \mathcal{A}$ generates $\sigma(X) = \{\{X \in B\}: B \in \mathcal{S}\}$

Proof. 首先 $\sigma(A) = S$, 换言之, 只要 F 是一个包含 A 的 σ - 代数, 那么 $S \subset F$; 现在对于 $X^{-1}(A) = \{\omega : X(\omega) \in A\}, A \in A$, 对所有这样的 A, 我们得到集类 G

$$\mathcal{G} = \{ \{ \omega : X(\omega) \in A \} : A \in \mathcal{A} \}$$

为了说明 $\sigma(X)$ 是由 \mathcal{G} 生成的,我们需要说明: $\sigma(X) = \sigma(\mathcal{G})$

先说明 $\sigma(\mathcal{G})\subset\sigma(X)$: 事实上由 $A\subset\mathcal{S}$,根据 \mathcal{G} 的定义,我们任取 $G\in\mathcal{G}$ 一定存在有 $A'\in\mathcal{A}$ 使得

$$G = \{\omega : X(\omega) \in A'\}$$

由于 $A' \in \mathcal{A} \subset \mathcal{S}$, 由 $\sigma(X)$ 的定义就有 $A' \in \sigma(X)$ 从而 $\sigma(\mathcal{G}) \subset \sigma(X)$;

再说明 $\sigma(X) \subset \sigma(\mathcal{G})$: 考虑集类

$$C = \{B \in \mathcal{S} : \{\omega : X(\omega) \in B\} \in \sigma(\mathcal{G})\}\$$

显然有 $\mathcal{C} \subset \mathcal{S}$, 若能说明 \mathcal{C} 是一个包含 \mathcal{A} 的 σ - 代数就好了, 这样由 $\sigma(\mathcal{A})$ 的定义可以得到 $\mathcal{S} \subset \mathcal{C}$; 即对任意的 $\mathcal{B} \in \mathcal{S}$ 有 $\mathcal{B} \in \mathcal{C}$, 这又等价于 $\{\omega: X(\omega) \in \mathcal{B}\} \in \sigma(\mathcal{G})$, 即对任意 $\mathcal{B} \in \mathcal{S}$ 有 $\{\omega: X(\omega) \in \mathcal{B}\} \in \sigma(\mathcal{G})$, 这便是 $\sigma(X) \subset \sigma(\mathcal{G})$, 下作验证

- 1. 若 $A \in \mathcal{A}$, 则 $\{\omega : X(\omega) \in A\} \in \mathcal{G} \subset \sigma(\mathcal{G})$, 从而 $A \in \mathcal{C}$, 也就是说 $\mathcal{A} \subset \mathcal{C}$
- 2. 若 $B \in \mathcal{C}$ 则 $\{\omega : X(\omega) \in B\} \in \sigma(\mathcal{G})$ 但是

$$\{\omega : X(\omega) \in B\}^c = \{\omega : X(\omega) \in B^c\}$$

由 $\{\omega: X(\omega) \in B^c\} \in \sigma(\mathcal{G})$ 故有 $B^c \in \mathcal{C}$

3. 若 $B_i \in \mathcal{C}$,则 $\{\omega : X(\omega) \in B_i\} \in \sigma(\mathcal{G})$

$$\{\omega: X(\omega) \in \bigcup_{i=1}^{\infty} B_i\} = \bigcup_{i=1}^{\infty} \{\omega: X(\omega) \in B_i\} \in \sigma(\mathcal{G})$$

于是 $\bigcup_n B_n \in \mathcal{C}$ 从而 \mathcal{C} 是 σ - 代数.

现在任取一个 $A \in \mathcal{A} \subset \sigma(\mathcal{A}) = \mathcal{S}$,根据集类 \mathcal{G} 的定义,我们有 $\{\omega: X(\omega) \in A\} \in \mathcal{G}$,而 $\mathcal{G} \subset \sigma(\mathcal{G})$,故 $\{\omega: X(\omega) \in A\} \in \sigma(\mathcal{G})$,接着由 \mathcal{C} 的定义, $A \in \mathcal{C}$,于是 $\mathcal{A} \subset \mathcal{C}$,从而由 \mathcal{S} 的极小性就有 $\mathcal{S} \subset \mathcal{C}$,这便有了

$$\mathcal{S}=\mathcal{C}$$

也就是说对 $\forall B \in \mathcal{S}$ 总是成立

$$\{\omega : X(\omega) \in B\} \in \sigma(\mathcal{G})$$

现在任取 $T \in \sigma(X)$, 于是存在一个 $B' \in \mathcal{S}$ 使得 $T = \{\omega : X(\omega) \in B'\}$, 由上面的结论 $T \in \sigma(\mathcal{G})$ $\Rightarrow \sigma(X) \subset \sigma(\mathcal{G})$ 总之 $\sigma(X) = \sigma(\mathcal{G})$, 证毕.