数理工学実験 熱方程式の差分法

滝本亘(学籍番号 1029-33-1175)

2022年11月14日

1 問題1(拡散方程式の数値解)

1.1 はじめに

拡散方程式

$$\frac{\partial}{\partial t}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t) \quad (L=10)$$
 (1.1)

を初期条件

$$u_0(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-5)^2} \tag{1.2}$$

の下で数値的に解く。以下の4つの場合を考えよ。

(1)

オイラー陽解法

$$u_j^{n+1} - u_j^n \simeq \frac{\Delta t}{\Delta x^2} (u_{j-1}^n - 2u_j^n + u_{j+1}^n)$$
(1.3)

で境界条件は Dirichlet 境界条件 $u_L=u_R=0$ を用いて数値的に解け。 刻み幅は $\Delta t=0.01, \Delta x=0.5(N=20)$ とせよ。

(2)

オイラー陽解法 (1.3) で境界条件は Neumann 境界条件 $J_L=J_R=0$ を用いて数値的に解け。 刻み幅は $\Delta t=0.01, \, \Delta x=0.5 (N=20)$ とせよ。

(3)

クランク・ニコルソン法

$$u_j^{n+1} - u_j \simeq \frac{1}{2} \frac{\Delta t}{\Delta x^2} (u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}) + \frac{1}{2} \frac{\Delta t}{\Delta x^2} (u_{j-1}^n - 2u_j^n + u_{j+1}^n)$$
(1.4)

で境界条件は Dirichlet 境界条件 $u_L=u_R=0$ を用いて数値的に解け。 刻み幅は $\Delta t=0.01,\,\Delta x=0.05(N=200)$ とせよ。

(4)

クランク・ニコルソン法 (1.4) で境界条件は Neumann 境界条件 $J_L=J_R=0$ を用いて数値的に解け。

刻み幅は $\Delta t = 0.01$, $\Delta x = 0.05(N = 200)$ とせよ。

いずれの場合も t=1,2,3,4,5 (n=100,200,300,400,500) における u(x,t) の値を出力すること。また、得られた u(x,t) の値をそれぞれ一つの図(横軸 x, 縦軸 u)に図示せよ。

1.2 原理・方法の詳細

1.2.1 オイラー陽解法

1次元空間内での拡散を考える。微粒子の濃度を C(x,t) とする。微粒子の流れを J(x,t) とすると、粒子数の保存を表す連続の式は

$$\frac{\partial}{\partial t}C(x,t) = -\frac{\partial}{\partial x}J(x,t) \tag{1.5}$$

と書ける。また、流れ J(x,t) は濃度勾配に比例すると仮定すると

$$J(x,t) = -D\frac{\partial}{\partial x}C(x,t) \tag{1.6}$$

と表される。これらから拡散方程式

$$\frac{\partial}{\partial t}C(x,t) = D\frac{\partial^2}{\partial x^2}C(x,t) \tag{1.7}$$

が得られる。

以下ではD=1とした拡散方程式

$$\frac{\partial}{\partial t}u(x,t) = \frac{\partial^2}{\partial x^2}u(x,t) \tag{1.8}$$

を考える。

拡散方程式 (1.8) を解くためには初期条件

$$u(x,0) = u_0(x) (1.9)$$

と境界 x=0,L における境界条件を考える必要がある。代表的な境界条件には

・Dirichlet 境界条件: 境界上での u の値が指定されている。

$$u(0,t) = u_L \tag{1.10}$$

$$u(L,t) = u_R (1.11)$$

・Neumann 境界条件: 境界上でのuの微分の値が指定されている。

$$\frac{\partial u}{\partial x}(0,t) = J_L \tag{1.12}$$

$$\frac{\partial u}{\partial x}(L,t) = J_R \tag{1.13}$$

の2つがある。

ここでは、時間と空間を離散化して拡散方程式 (1.8) を数値的に解くことを考える。時間と空間の刻み幅をそれぞれ $\Delta t, \Delta x$ とする。 $(L=N\Delta x)$ の離散化された時空間上での平均濃度を

$$u_j^n \equiv \frac{1}{\Delta x} \int_{(j-1)\Delta x}^{j\Delta x} u(y, n\Delta t) dy$$
 (1.14)

と書く。 u_j^n は区間 $|(j-1)\Delta x,j\Delta x|$ に対して割り当てられていることに注意が必要である。また、 u_0^n,u_{N+1}^n は境界条件のために用いる。方程式 (1.5) を $[n\Delta t,(n+1)\Delta t]$ で積分すると

$$u(x,(n+1)\Delta t) - u(x,n\Delta t) = -\int_{n\Delta t}^{(n+1)\Delta t} \frac{\partial}{\partial x} J(x,s) ds$$
 (1.15)

となる。式 (1.15) の右辺の積分を時刻 $n\Delta t$ の値で近似すると

$$u(x, (n+1)\Delta t) - u(x, n\Delta t) \simeq -\Delta t \frac{\partial}{\partial x} J(x, n\Delta t)$$
 (1.16)

となる。この場合

$$u_{j}^{n+1} - u_{j}^{n} \simeq -\frac{1}{\Delta x} \int_{(j-1)\Delta x}^{j\Delta x} \Delta t \frac{\partial}{\partial y} J(y, n\Delta t) dy$$

$$= -\frac{\Delta t}{\Delta x} [J(j\Delta x, n\Delta t) - J((j-1)\Delta x, n\Delta t)]$$
(1.17)

となる。ただし式 (1.6) より

$$J(j\Delta x, n\Delta t) = -\frac{\partial u}{\partial x}(j\Delta x, n\Delta t)$$
(1.18)

である。この量はさらに

$$J(j\Delta x, n\Delta t) \simeq -\frac{u_{j+1}^n - u_j^n}{\Delta x}$$
(1.19)

と近似されるので、差分方程式

$$u_j^{n+1} - u_j^n \simeq \frac{\Delta t}{\Lambda x^2} (u_{j-1}^n - 2u_j^n + u_{j+1}^n)$$
(1.20)

を得る。

式 (1.20) のような最も単純な差分方程式による数値解法がオイラー陽解法である。以下では

$$c \equiv \frac{\Delta t}{\Delta x^2} \tag{1.21}$$

と書くことにする。

初期条件は $\left\{u_{j}^{0}\right\}_{j=1}^{N}$ と表される。また、境界条件は

· Dirichlet 境界条件:

$$u_0^n = u_L (1.22)$$

$$u_{N+1}^n = u_R ag{1.23}$$

· Neumann 境界条件:

$$u_0^n = u_1^n - J_L \Delta x \tag{1.24}$$

$$u_{N+1}^n = u_N^n + J_R \Delta x \tag{1.25}$$

と表される。

1.2.2 クランク・ニコルソン法

式 (1.15) において積分をより精度の良い台形公式で近似すると

$$u(x,(n+1)\Delta t) - u(x,n\Delta t) \simeq -\frac{\Delta t}{2} \left[\frac{\partial}{\partial x} J(x,(n+1)\Delta t) + \frac{\partial}{\partial x} J(x,n\Delta t) \right]$$
 (1.26)

となる。これを用いると

$$u_j^{n+1} - u_j^n \simeq \frac{1}{2} \frac{\Delta t}{\Delta x^2} (u_{j-1}^{n+1} - 2u_j^{n+1} + u_{j+1}^{n+1}) + \frac{1}{2} \frac{\Delta t}{\Delta x^2} (u_{j-1}^n - 2u_j^n + u_{j+1}^n)$$
(1.27)

を得る。

式 (1.27) がクランク・ニコルソン法である。この方法はオイラー陽解法よりも精度が良くなっている。式 (1.27) を書き直すと

$$-\frac{c}{2}u_{j-1}^{n+1} + (1+c)u_j^{n+1} - \frac{c}{2}u_{j+1}^{n+1} = (1-c)u_j^n + \frac{c}{2}u_{j-1}^n + \frac{c}{2}u_{j+1}^n$$
(1.28)

となる。ただし、境界条件は

・Dirichlet 境界条件: $u_0^n = u_L, u_{N+1}^n = u_R$ より

$$(1+c)u_1^{n+1} - \frac{c}{2}u_2^{n+1} = (1-c)u_1^n + cu_L + \frac{c}{2}u_2^n$$
(1.29)

$$-\frac{c}{2}u_{N-1}^{n+1} + (1+c)u_N^{n+1} = (1-c)u_N^n; cu_R + \frac{c}{2}u_{N-1}^n$$
(1.30)

・Neumann 境界条件: $u_0^n=u_1^n-J_L\Delta x,\,u_{N+1}^n=u_N^n+J_R\Delta x$ より

$$\left(1 + \frac{c}{2}\right)u_1^{n+1} - \frac{c}{2}u_2^{n+1} = \left(1 - \frac{c}{2}\right)u_1^n - cJ_L\Delta x + \frac{c}{2}u_2^n \tag{1.31}$$

$$-\frac{c}{2}u_{N-1}^{n+1} + \left(1 + \frac{c}{2}\right)u_N^{n+1} = \left(1 - \frac{c}{2}\right)u_N^n + cJ_R\Delta x + \frac{c}{2}u_{N-1}^n \tag{1.32}$$

である。これらの連立方程式を解く際には LU 分解という方法が用いられる。

式 (1.28) と境界条件 (1.29),(1.30) あるいは (1.31),(1.32) を合わせた連立方程式は $\mathbf{x} \equiv (u_1^{n+1},...,u_N^{n+1})^T$ と既知な量を成分とするベクトル \mathbf{z} 及び、ある行列 \mathbf{A} を用いて

$$Ax = z \tag{1.33}$$

のように表される。 A は Dirichlet 境界条件では

$$\mathbf{A} = \begin{pmatrix} 1+c & -\frac{c}{2} & 0 & \cdots & 0 \\ -\frac{c}{2} & 1+c & -\frac{c}{2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -\frac{c}{2} & 1+c & -\frac{c}{2} \\ 0 & \cdots & 0 & -\frac{c}{2} & 1+c \end{pmatrix}$$
(1.34)

Neumann 境界条件では

$$\mathbf{A} = \begin{pmatrix} 1 + \frac{c}{2} & -\frac{c}{2} & 0 & \cdots & 0 \\ -\frac{c}{2} & 1 + c & -\frac{c}{2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -\frac{c}{2} & 1 + c & -\frac{c}{2} \\ 0 & \cdots & 0 & -\frac{c}{2} & 1 + \frac{c}{2} \end{pmatrix}$$
 (1.35)

となる。また、z は Dirichlet 境界条件では

$$z_{1} = (1-c)u_{1}^{n} + cu_{L} + \frac{c}{2}u_{2}^{n}$$

$$z_{j} = (1-c)u_{j}^{n} + \frac{c}{2}u_{j-1}^{n} + \frac{c}{2}u_{j+1}^{n} \quad (2 \le j \le N-1)$$

$$z_{N} = (1-c)u_{N}^{n} + cu_{R} + \frac{c}{2}u_{N-1}^{n}$$

$$(1.36)$$

Neumann 境界条件では

$$z_{1} = (1 - \frac{c}{2})u_{1}^{n} + cJ_{L}\Delta x + \frac{c}{2}u_{2}^{n}$$

$$z_{j} = (1 - c)u_{j}^{n} + \frac{c}{2}u_{j-1}^{n} + \frac{c}{2}u_{j+1}^{n} \quad (2 \le j \le N - 1)$$

$$z_{N} = (1 - \frac{c}{2})u_{N}^{n} + cJ_{R}\Delta x + \frac{c}{2}u_{N-1}^{n}$$

$$(1.37)$$

である。式 (1.33) から x を求めるのが目標である。

LU 分解とは ${m A}$ を上三角行列 U と下三角行列 L の積 ${m A}=LU$ 分解することである。今、 ${m A}$ を

$$\mathbf{A} = \begin{pmatrix} a_1 & b_1 & 0 & \cdots & 0 \\ c_1 & a_2 & b_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & c_{N-2} & a_{N-1} & b_{N-1} \\ 0 & \cdots & 0 & c_{N-1} & a_N \end{pmatrix}$$
 (1.38)

のように書く。

$$L = \begin{pmatrix} \alpha_1 & 0 & 0 & \cdots & 0 \\ c_1 & \alpha_2 & 0 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & c_{N-2} & \alpha_{N-1} & 0 \\ 0 & \cdots & 0 & c_{N-1} & \alpha_N \end{pmatrix}$$
 (1.39)

$$U = \begin{pmatrix} 1 & \beta_1 & 0 & \cdots & 0 \\ 0 & 1 & \beta_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 0 & 1 & \beta_{N-1} \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix}$$
 (1.40)

と置くと、

$$LU = \begin{pmatrix} \alpha_1 & \alpha_1 \beta_1 & 0 & \cdots & 0 \\ c_1 & \alpha_2 + c_1 \beta_1 & \alpha_2 \beta_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & c_{N-2} & \alpha_{N-1} + c_{N-2} \beta_{N-2} & \alpha_{N-1} \beta_{N-1} \\ 0 & \cdots & 0 & c_{N-1} & \alpha_N + c_{N-1} \beta_{N-1} \end{pmatrix}$$
(1.41)

となる。式 (1.38) と式 (1.41) を比較すると

$$\alpha_{1} = a_{1}
\beta_{1} = \frac{b_{1}}{\alpha_{1}}
\alpha_{2} = a_{2} - c_{1}\beta_{1}
\beta_{2} = \frac{b_{2}}{\alpha_{2}}
\vdots
\alpha_{N-1} = a_{N-1} - c_{N-2}\beta N - 2
\beta_{N-1} = \frac{b_{N-1}}{\alpha_{N-1}}
\alpha_{N} = a_{N} - c_{N-1}\beta_{N-1}$$
(1.42)

のように昇順に Lと Uを求められる。

次に LU 分解を用いて連立方程式 (1.33) を解く。LUx=z において $Ux\equiv y$ とおくと

$$L\mathbf{y} = \mathbf{z} \tag{1.43}$$

となる。この式から y を求め、Ux = y から x を求める。まず Ly = z は

$$\begin{pmatrix}
\alpha_1 & 0 & 0 & \cdots & 0 \\
c_1 & \alpha_2 & 0 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & c_{N-2} & \alpha_{N-1} & 0 \\
0 & \cdots & 0 & c_{N-1} & \alpha_N
\end{pmatrix}
\begin{pmatrix}
y_1 \\ y_2 \\ \vdots \\ y_{N-1} \\ y_N
\end{pmatrix} = \begin{pmatrix}
z_1 \\ z_2 \\ \vdots \\ z_{N-1} \\ z_N
\end{pmatrix}$$
(1.44)

より、y は昇順に

$$y_{1} = \frac{z_{1}}{\alpha_{1}}$$

$$y_{2} = \frac{z_{2} - c_{1}y_{1}}{\alpha_{2}}$$

$$\vdots$$

$$y_{N-1} = \frac{z_{N-1} - c_{N-2}y_{N-2}}{\alpha_{N-1}}$$

$$y_{N} = \frac{z_{N} - c_{N-1}y_{N-1}}{\alpha_{N}}$$
(1.45)

のように決まる。次にUx = yは

$$\begin{pmatrix} 1 & \beta_{1} & 0 & \cdots & 0 \\ 0 & 1 & \beta_{2} & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 0 & 1 & \beta_{N-1} \\ 0 & \cdots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{N-1} \\ x_{N} \end{pmatrix} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N-1} \\ y_{N} \end{pmatrix}$$
(1.46)

より、x は降順に

$$\begin{aligned}
 x_N &= y_N \\
 x_{N-1} &= y_{N-1} - \beta_{N-1} x_N \\
 &\vdots \\
 x_2 &= y_2 - \beta_2 x_3 \\
 x_1 &= y_1 - \beta_1 x_2
 \end{aligned}$$
(1.47)

のように求まる。

1.3 実験方法

この問題では式 (1.14) のように u_j^n に区間 $[(j-1)\Delta x, j\Delta x]$ を割り当てるという離散化を行っている。従って、初期条件は

$$u_j^0 = \frac{1}{2} [u_0((j-1)\Delta x) + u_0(j\Delta x)]$$
(1.48)

であると考える。また、 $\left\{u_{j}^{n}\right\}$ をプロットする場合は、各jに対応する座標として $x=(j-1/2)\Delta x$ を採用する。

(1)

```
#include <stdio.h>
         #include <math.h>
         #define N 20
 3
         #define M 500
 4
         double u0(double x){
                return \exp(-0.5*(x-5)*(x-5))/\operatorname{sqrt}(2*M_PI);
 7
 8
         double FE(double dx, double dt){
10
11
                double c = dt/(dx*dx);
12
                double u[M+1][N+2];
13
14
                \begin{array}{l} \textbf{for}(\textbf{int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{\\ u[0][j] = (u0((j{-}1){*}dx){+}u0(j{*}dx))/2; \end{array}
15
16
17
18
                \begin{array}{l} u[0][0] = 0; \\ u[0][N{+}1] = 0; \end{array}
19
20
21
                for(int i=0; i<M; i++){}
23
                       for(int j=1; j<=N; j++){
24
                             \mathbf{u}[\mathbf{i}+1][\mathbf{j}] = \mathbf{u}[\mathbf{i}][\mathbf{j}] + \mathbf{c} * (\mathbf{u}[\mathbf{i}][\mathbf{j}-1] - 2 * \mathbf{u}[\mathbf{i}][\mathbf{j}] + \mathbf{u}[\mathbf{i}][\mathbf{j}+1]);
26
27
                      \begin{array}{l} u[i+1][0] = 0; \\ u[i+1][N+1] = 0; \end{array}
28
29
30
31
                FILE *fp;
32
                fp = fopen("1-1","w");
33
34
```

```
for(int j=1; j<=N; j++){
35
                  printf("%.2f", j*dx-0.25);
fprintf(fp, "%.2f", j*dx-0.25);
36
37
38
39
                  for(int k=1; k<=5; k++){
                         \begin{array}{l} printf("\&\%.8f",\,u[100*k][j]);\\ printf(fp,\,"_{\tt u}\%.8f",\,u[100*k][j]); \end{array} 
40
41
42
43
                  printf("\\\\n");
44
                  fprintf(fp,"\n");
45
46
47
             fclose(fp);
48
49
       }
50
       int \min(void){
51
52
             double dt = 0.01;
             double dx = 0.5;
53
54
             FE(dx, dt);
55
       }
56
```

(2)

```
#include <stdio.h>
 1
        #include <math.h>
 2
        #define N 20
 3
        #define M 500
 4
 5
        double u0(double x){
 6
              \mathbf{return}\ \exp(-0.5*(x-5)*(x-5))/\mathrm{sqrt}(2*M\_PI);
 7
 9
        double FE(double dx, double dt){
10
11
12
              double c = dt/(dx*dx);
              double u[M+1][N+2];
13
14
15
              for(int j=1; j<=N; j++){
                    u[0][j] = (u0((j-1)*dx)+u0(j*dx))/2;
16
17
18
              \begin{array}{l} u[0][0] = u[0][1]; \\ u[0][N{+}1] = u[0][N]; \end{array}
19
20
21
              for(int i=0; i<M; i++){
22
23
                    for(int j=1; j <=N; j++){
^{24}
                          \mathbf{u}[\mathbf{i}+1][\mathbf{j}] = \mathbf{u}[\mathbf{i}][\mathbf{j}] + \mathbf{c}*(\mathbf{u}[\mathbf{i}][\mathbf{j}-1]-2*\mathbf{u}[\mathbf{i}][\mathbf{j}]+\mathbf{u}[\mathbf{i}][\mathbf{j}+1]);
25
26
27
                    u[i+1][0] = u[i+1][1];
28
                    u[i+1][N+1] = u[i+1][N];
29
30
31
              FILE *fp;
32
              fp = fopen("1-2","w");
33
34
              \begin{array}{l} \mathbf{for}(\mathbf{int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{\\ printf("\%.2f",\ j{*}dx{-}0.25);\\ fprintf(fp,\ "\%.2f",\ j{*}dx{-}0.25); \end{array}
35
36
37
38
                     for(int k=1; k<=5; k++){
39
                          printf("&%.8f", u[100*k][j]);
40
```

```
fprintf(fp, \verb"""\%.8f", u[100*k][j]);
41
                }
42
43
                printf("\\\\n");
44
45
                fprintf(fp, "\n");
           }
46
47
            fclose(fp);
48
       }
49
50
       int \min(void){
51
            double dt = 0.01;
52
            double dx = 0.5;
53
54
            \mathrm{FE}(\mathrm{d} x,\,\mathrm{d} t);
55
       }
56
```

(3)

```
1
         #include<stdio.h>
         #include<math.h>
 2
         #define N 200
 3
         #define M 500
 4
 5
 6
         double u0(double x){
                return \exp(-0.5*(x-5)*(x-5))/\operatorname{sqrt}(2*M_PI);
 7
         }
 8
 9
         double CK(double dx, double dt){
10
11
12
                double c = dt/(dx*dx);
                double u[M+1][N+2];
13
14
                \begin{array}{l} \mathbf{for}(\mathbf{int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{\\ u[0][j] = (u0((j{-}1){*}dx){+}u0(j{*}dx))/2; \end{array}
15
16
17
18
                \begin{array}{l} u[0][0] = 0; \\ u[0][N{+}1] = 0; \end{array}
19
20
21
                \begin{array}{l} \textbf{double} \ a\_n[N];\\ \textbf{double} \ b\_n[N-1]; \end{array}
22
23
                double c_n[N-1];
^{24}
25
                for(int j=0; j< N-1; j++){
26
                       a_n[j]=1+c;
^{27}
                       b_n[j] = -c/2;
28
                       c_n[j] = -c/2;
29
30
                a_n[N-1]=1+c;
31
32
                double a[N];
33
                double b[N-1];
34
35
                a[0]=a_n[0];
36
                \begin{array}{l} \textbf{for}(\inf_{j=1}^{a_{i-1}(j)},\\ \textbf{for}(\inf_{j=1}^{j};j<\!N;\,j++)\{\\ \textbf{b}[j-1]\!=\!\textbf{b}_{-\!n}[j-1]/\textbf{a}[j-1];\\ \textbf{a}[j]\!=\!\textbf{a}_{-\!n}[j]\!-\!\textbf{c}_{-\!n}[j-1]\!*\textbf{b}[j-1]; \end{array}
37
38
39
40
41
                for(int i=0; i<M; i++){}
42
43
                       double z[N];
44
45
                      z[0]=(1-c)*u[i][1]+(c/2)*u[i][2];
46
```

```
for(int j=1; j< N-1; j++){
47
                              z[j] = (1-c) * u[i][j+1] + (c/2) * u[i][j] + (c/2) * u[i][j+2];
48
49
                       z[N-1]=(1-c)*u[i][N]+(c/2)*u[i][N-1];
50
51

double y[N];

52
53
                       \begin{array}{l} y[0]{=}z[0]/a[0];\\ \textbf{for}(\textbf{int}\ j{=}1;\ j{<}N;\ j{+}{+})\{\\ y[j]{=}(z[j]{-}c\_n[j{-}1]{*}y[j{-}1])/a[j]; \end{array}
54
55
56
57
58
                       \begin{array}{l} u[i{+}1][N]{=}y[N{-}1];\\ \textbf{for}(\textbf{int}\ j{=}N{-}1;\ j{>}0;\ j{-}{-})\{ \end{array}
59
60
                              u[i+1][j]=y[j-1]-b[j-1]*u[i+1][j+1];
61
62
                       u[i+1][0] = 0;
63
64
                       u[i+1][N+1] = 0;
65
66
67
                FILE *fp;
68
                fp = fopen("1-3","w");
69
70
                for(int j=1; j<=N; j++){}
71
                       printf("%.3f", j*dx-0.025);
72
73
                       fprintf(fp, "%.3f", j*dx-0.025);
74
                       \begin{array}{l} \mathbf{for}(\mathbf{int}\ k{=}1;\ k{<}{=}5;\ k{+}{+})\{\\ \quad \quad \mathrm{printf}(\texttt{"&\%.8f"},\ u[100{*}k][j]);\\ \quad \quad \mathrm{fprintf}(\mathbf{fp},\ \texttt{"}{}_{\texttt{"}}\%.8f",\ u[100{*}k][j]); \end{array}
75
76
77
78
79
                       printf("\\\\n");
80
                       fprintf(fp, "\n");
81
82
83
                fclose(fp);
84
85
86
         \mathbf{int} \ \mathrm{main}(\mathbf{void}) \{
87
                double dt = 0.01;
88
89
                double dx = 0.05;
90
                CK(dx, dt);
91
         }
92
```

(4)

```
#include<stdio.h>
1
2
     #include<math.h>
3
     #define N 200
     #define M 500
4
5
     double u0(double x){
6
7
         return \exp(-0.5*(x-5)*(x-5))/\operatorname{sqrt}(2*M_PI);
8
9
10
     double CK(double dx, double dt){
11
         double c = dt/(dx*dx);
12
         double u[M+1][N+2];
13
14
         for(int j=1; j<=N; j++){
15
             u[0][j] = (u0((j-1)*dx)+u0(j*dx))/2;
16
```

```
17
18
               \begin{array}{l} u[0][0] = u[0][1]; \\ u[0][N{+}1] = u[0][N]; \end{array}
19
20
^{21}
22
                double a_n[N];
                double b_n[N-1];
23
                double c_n[N-1];
^{24}
25
                for(int j=0; j< N-1; j++){
26
                      a_n[j]=1+c;

b_n[j]=-c/2;

c_n[j]=-c/2;
27
28
29
30
               a_n[0]=1+c/2;
a_n[N-1]=1+c/2;
31
32
33
                double a[N];
34
                double b[N-1];
35
36
37
                a[0]=a_n[0];
               \begin{array}{l} \text{alij}, \\ \text{for}(\text{int } j{=}1; j{<}N; j{+}{+}) \{ \\ b[j{-}1]{=}b\_n[j{-}1]/a[j{-}1]; \\ a[j]{=}a\_n[j]{-}c\_n[j{-}1]{*}b[j{-}1]; \end{array}
38
39
40
41
42
43
                for(int i=0; i<M; i++){
44
                       double z[N];
45
46
                      \begin{array}{l} z[0] \! = \! (1 \! - \! c/2) \! * \! u[i][1] \! + \! (c/2) \! * \! u[i][2]; \\ \textbf{for(int} \ j \! = \! 1; \ j \! < \! N \! - \! 1; \ j \! + \! ) \{ \\ z[j] \! = \! (1 \! - \! c) \! * \! u[i][j \! + \! 1] \! + \! (c/2) \! * \! u[i][j] \! + \! (c/2) \! * \! u[i][j \! + \! 2]; \end{array}
47
48
49
50
                       z[N-1]=(1-c/2)*u[i][N]+(c/2)*u[i][N-1];
51
52
                       double y[N];
53
54
                       y[0]=z[0]/a[0];
55
                       \mathbf{for}(\mathbf{int}\ j{=}1;\ j{<}N;\ j{+}{+})\{
56
                             y[j] = (z[j] - c_n[j-1] * y[j-1])/a[j];
57
58
59
                      \begin{array}{l} u[i{+}1][N]{=}y[N{-}1];\\ \textbf{for}(\textbf{int}\ j{=}N{-}1;\ j{>}0;\ j{-}{-})\{ \end{array}
60
61
                             u[i+1][j]=y[j-1]-b[j-1]*u[i+1][j+1];
62
63
                       u[i+1][0] = 0;
64
                       u[i+1][N+1] = 0;
65
66
67
68
                FILE *fp;
69
                fp = fopen("1-4","w");
70
71
72
                for(int j=1; j<=N; j++){
                       printf("%.3f", j*dx-0.025);
73
                       fprintf(fp, "%.3f", j*dx-0.025);
74
75
                       for(int k=1; k<=5; k++){
76
                             printf("&%.8f", u[100*k][j]);
77
                              fprintf(fp, "\\".8f", u[100*k][j]);
78
79
80
                       printf("\\\\n");
81
                       fprintf(fp,"\n");
82
                }
83
84
```

1.4 結果

(1)

x	u(x,1)	u(x,2)	u(x,3)	u(x,4)	u(x,5)
0.25	0.00473066	0.01218549	0.01580967	0.01670326	0.01630477
0.75	0.01155420	0.02576286	0.03210569	0.03342273	0.03242227
1.25	0.02266471	0.04185003	0.04920762	0.05009837	0.04813450
1.75	0.04020099	0.06102650	0.06713057	0.06653366	0.06316955
2.25	0.06567331	0.08310940	0.08550295	0.08236481	0.07719194
4.75	0.22675697	0.17685005	0.14972974	0.13170493	0.11810794
5.25	0.22675697	0.17685005	0.14972974	0.13170493	0.11810794
5.75	0.20863758	0.16819439	0.14438659	0.12787507	0.11507050
6.25	0.17667996	0.15213539	0.13422978	0.12047838	0.10914272
6.75	0.13778451	0.13087046	0.12021757	0.10999903	0.10059968
7.25	0.09903642	0.10702863	0.10355947	0.09706705	0.08980993
7.75	0.06567331	0.08310940	0.08550295	0.08236481	0.07719194
8.25	0.04020099	0.06102650	0.06713057	0.06653366	0.06316955
8.75	0.02266471	0.04185003	0.04920762	0.05009837	0.04813450
9.25	0.01155420	0.02576286	0.03210569	0.03342273	0.03242227
9.75	0.00473066	0.01218549	0.01580967	0.01670326	0.01630477

(2)

\overline{x}	u(x,1)	u(x,2)	u(x,3)	u(x,4)	u(x,5)
0.25	0.00850960	0.03066739	0.05144589	0.06682939	0.07751347
0.75	0.01312011	0.03640481	0.05596939	0.07002702	0.07970402
1.25	0.02327120	0.04770836	0.06466083	0.07612812	0.08387473
1.75	0.04042091	0.06411173	0.07681084	0.08456593	0.08962388
2.25	0.06574809	0.08466488	0.09137206	0.09454500	0.09639525
2.75	0.09906029	0.10778001	0.10700755	0.10510737	0.10353006
3.25	0.13779168	0.13121876	0.12218764	0.11521915	0.11032989
3.75	0.17668199	0.15229131	0.13533900	0.12387171	0.11612510
4.25	0.20863813	0.16826426	0.14503179	0.13018755	0.12034186
4.75	0.22675714	0.17688763	0.15017416	0.13351791	0.12256087
5.25	0.22675714	0.17688763	0.15017416	0.13351791	0.12256087
5.75	0.20863813	0.16826426	0.14503179	0.13018755	0.12034186
6.25	0.17668199	0.15229131	0.13533900	0.12387171	0.11612510
6.75	0.13779168	0.13121876	0.12218764	0.11521915	0.11032989
7.25	0.09906029	0.10778001	0.10700755	0.10510737	0.10353006
7.75	0.06574809	0.08466488	0.09137206	0.09454500	0.09639525
8.25	0.04042091	0.06411173	0.07681084	0.08456593	0.08962388
8.75	0.02327120	0.04770836	0.06466083	0.07612812	0.08387473
9.25	0.01312011	0.03640481	0.05596939	0.07002702	0.07970402
9.75	0.00850960	0.03066739	0.05144589	0.06682939	0.07751347

(3)

\overline{x}	u(x,1)	u(x,2)	u(x,3)	u(x,4)	u(x,5)
0.025	0.00057443	0.00143559	0.00178272	0.00182558	0.00174313
0.075	0.00115145	0.00287264	0.00356582	0.00365107	0.00348597
0.125	0.00173364	0.00431263	0.00534969	0.00547636	0.00522825
0.175	0.00232361	0.00575702	0.00713472	0.00730134	0.00696969
0.225	0.00292393	0.00720726	0.00892127	0.00912593	0.00871000
0.275	0.00353721	0.00866477	0.01070971	0.01095000	0.01044890
0.325	0.00416605	0.01013098	0.01250042	0.01277345	0.01218610
0.375	0.00481304	0.01160728	0.01429372	0.01459617	0.01392132
0.425	0.00548078	0.01309505	0.01608996	0.01641804	0.01565426
0.475	0.00617188	0.01459561	0.01788946	0.01823893	0.01738465
:	:	:	:	:	:
4.775	0.22838511	0.17749266	0.15000733	0.13160517	0.11752154
4.825	0.22914769	0.17784863	0.15022643	0.13176369	0.11764889
4.875	0.22972130	0.17811607	0.15039094	0.13188268	0.11774445
4.925	0.23010451	0.17829458	0.15050070	0.13196205	0.11780818
4.975	0.23029635	0.17838391	0.15055561	0.13200175	0.11784005
5.025	0.23029635	0.17838391	0.15055561	0.13200175	0.11784005
5.075	0.23010451	0.17829458	0.15050070	0.13196205	0.11780818
5.125	0.22972130	0.17811607	0.15039094	0.13188268	0.11774445
5.175	0.22914769	0.17784863	0.15022643	0.13176369	0.11764889
5.225	0.22838511	0.17749266	0.15000733	0.13160517	0.11752154
÷	:	÷	:	:	:
9.525	0.00617188	0.01459561	0.01788946	0.01823893	0.01738465
9.575	0.00548078	0.01309505	0.01608996	0.01641804	0.01565426
9.625	0.00481304	0.01160728	0.01429372	0.01459617	0.01392132
9.675	0.00416605	0.01013098	0.01250042	0.01277345	0.01218610
9.725	0.00353721	0.00866477	0.01070971	0.01095000	0.01044890
9.775	0.00292393	0.00720726	0.00892127	0.00912593	0.00871000
9.825	0.00232361	0.00575702	0.00713472	0.00730134	0.00696969
9.875	0.00173364	0.00431263	0.00534969	0.00547636	0.00522825
9.925	0.00115145	0.00287264	0.00356582	0.00365107	0.00348597
9.975	0.00057443	0.00143559	0.00178272	0.00182558	0.00174313

(4)

x	u(x,1)	u(x,2)	u(x,3)	u(x,4)	u(x,5)
0.025	0.00715622	0.02930336	0.05057466	0.06632318	0.07723021
0.075	0.00719989	0.02936193	0.05062108	0.06635593	0.07725258
0.125	0.00728734	0.02947905	0.05071390	0.06642140	0.07729730
0.175	0.00741879	0.02965469	0.05085304	0.06651953	0.07736433
0.225	0.00759457	0.02988880	0.05103838	0.06665022	0.07745359
0.275	0.00781512	0.03018134	0.05126978	0.06681336	0.07756501
0.325	0.00808100	0.03053221	0.05154707	0.06700879	0.07769848
0.375	0.00839284	0.03094134	0.05187001	0.06723634	0.07785386
0.425	0.00875142	0.03140860	0.05223836	0.06749578	0.07803101
0.475	0.00915757	0.03193386	0.05265181	0.06778689	0.07822976
÷	:	:	:	:	:
4.775	0.22838517	0.17752672	0.15049100	0.13366513	0.12261136
4.825	0.22914775	0.17788149	0.15070122	0.13380095	0.12270168
4.875	0.22972136	0.17814803	0.15085911	0.13390295	0.12276951
4.925	0.23010456	0.17832596	0.15096447	0.13397100	0.12281476
4.975	0.23029640	0.17841498	0.15101718	0.13400504	0.12283740
5.025	0.23029640	0.17841498	0.15101718	0.13400504	0.12283740
5.075	0.23010456	0.17832596	0.15096447	0.13397100	0.12281476
5.125	0.22972136	0.17814803	0.15085911	0.13390295	0.12276951
5.175	0.22914775	0.17788149	0.15070122	0.13380095	0.12270168
5.225	0.22838517	0.17752672	0.15049100	0.13366513	0.12261136
:	÷ :	÷:	:	÷ :	:
9.525	0.00915757	0.03193386	0.05265181	0.06778689	0.07822976
9.575	0.00875142	0.03140860	0.05223836	0.06749578	0.07803101
9.625	0.00839284	0.03094134	0.05187001	0.06723634	0.07785386
9.675	0.00808100	0.03053221	0.05154707	0.06700879	0.07769848
9.725	0.00781512	0.03018134	0.05126978	0.06681336	0.07756501
9.775	0.00759457	0.02988880	0.05103838	0.06665022	0.07745359
9.825	0.00741879	0.02965469	0.05085304	0.06651953	0.07736433
9.875	0.00728734	0.02947905	0.05071390	0.06642140	0.07729730
9.925	0.00719989	0.02936193	0.05062108	0.06635593	0.07725258
9.975	0.00715622	0.02930336	0.05057466	0.06632318	0.07723021

1.5 考察

図より、x=5 について対象な結果が得られたことが分かる。これは方程式と初期条件の対称性によるものである。

2 問題 2 (Fisher 方程式)

2.1 はじめに

拡散方程式に非線形項 f(u) = u(1-u) を加えた偏微分方程式 (Fisher 方程式)

$$\frac{\partial u}{\partial t} = u(1 - u) + \frac{\partial^2 u}{\partial x^2} \tag{2.1}$$

を考える。この方程式は遺伝学における優性遺伝子の空間伝播を表現するために提案された。初期 条件

$$u_0(x) = \frac{1}{(1 + e^{bx - 5})^2} \tag{2.2}$$

境界条件 (L = 200)

$$u(0,t) = 1 (2.3)$$

$$u(L,t) = 0 (2.4)$$

の下で b = 0.25, 0.5, 1.0 の場合に Fisher 方程式をオイラー陽解法

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = f(u_j^n) + \frac{u_{j-1}^n - 2u_j^n + u_{j+1}^n}{\Delta x^2}$$
 (2.5)

を用いて数値的に解け。ただし、刻み幅は $\Delta x=0.05(N=4000),\ \Delta t=0.001$ とし、t=10,20,30,40,(n=10000,20000,30000,40000) の u(x,t) の値を出力すること。また、得られた u(x,t) の値を b の値ごとに一枚の図(横軸 x, 縦軸 u)に図示せよ。

また、得られた結果について考察せよ。(例えばbの値を様々に変えたときに振る舞いはどのように変わるかを見るなど。)

2.2 実験方法

```
#include <stdio.h>
     #include <math.h>
     #define N 4000
     #define M 40000
     #define L 10000
     double u0(double x){
         return 1/((1+\exp(0.25*x-5))*(1+\exp(0.25*x-5)));
9
10
11
     double fu(double u){
12
         return u*(1-u);
13
14
     double FE(double dx, double dt){
15
16
         double c = dt/(dx*dx);
17
18
         double u[N+2];
19
20
         for(int j=1; j<=N; j++){
21
            u[j] = (u0((j-1)*dx)+u0(j*dx))/2;
22
23
24
         u[N+1]=0;
```

```
^{27}
                     double x[N+2];
28
                     double ux[4][N];
29
30
                     \begin{array}{l} \textbf{for(int} \ i{=}1; \ i{<}{=}M; \ i{+}{+})\{\\ \textbf{for(int} \ j{=}1; \ j{<}{=}N; \ j{+}{+})\{\\ x[j] = u[j] + c{*}(u[j{-}1]{-}2{*}u[j]{+}u[j{+}1]) + fu(u[j]){*}dt; \end{array}
31
32
33
34
35
                               for(int j=1; j<=N; j++){}
36
37
                                        u[j] = x[j];
38
39
                              for(int k=1; k<=4; k++){
40
                                        if(i{=}{=}k{*}L)\{
41
                                                for(int j=1; j<=N; j++){
 ux[k-1][j-1]=u[j];
42
43
44
45
46
                               }
                     }
47
48
                     \mathrm{FILE}\ *\mathrm{fp};
49
                     {\rm fp} = \widehat{\rm fopen}("2\text{--}1\text{--}025","w");
50
51
                     \begin{array}{l} \mathbf{for(int\ j=1;\ j<=N;\ j++)\{} \\ \quad \mathbf{printf("\%.3f",\ j*dx-0.025);} \\ \quad \mathbf{fprintf(fp,\ "\%.3f",\ j*dx-0.025);} \end{array}
52
53
54
55
                               for(int k=1; k<=4; k++){
56
                                       \begin{array}{lll} \text{printf}(\texttt{"\&\%.8f"}, \, \text{ux}[k-1][j-1]); \\ \text{fprintf}(\texttt{fp}, \, \texttt{"}_{\sqcup}\%.8\texttt{f"}, \, \text{ux}[k-1][j-1]); \end{array}
57
58
59
60
                               \mathrm{printf}("\verb+\ln"+);
61
62
                               fprintf(fp, "\n");
                     }
63
            }
64
65
            \begin{array}{l} \textbf{int} \ \operatorname{main}(\textbf{void}) \{\\ \textbf{double} \ \operatorname{dt} = 0.001;\\ \textbf{double} \ \operatorname{dx} = 0.05; \end{array}
66
67
68
69
70
                     FE(dx, dt);
            }
71
```

2.3 結果

b = 0.25

x	u(x, 10)	u(x,20)	u(x,30)	u(x,40)
0.025	0.99999997	1.00000000	1.00000000	1.00000000
0.075	0.99999994	1.00000000	1.00000000	1.00000000
0.125	0.99999991	1.00000000	1.00000000	1.00000000
0.175	0.99999988	1.00000000	1.00000000	1.00000000
0.225	0.99999985	1.00000000	1.00000000	1.00000000
0.275	0.99999982	1.00000000	1.00000000	1.00000000
0.325	0.99999979	1.00000000	1.00000000	1.00000000
0.375	0.99999975	1.00000000	1.00000000	1.00000000
0.425	0.99999972	1.00000000	1.00000000	1.00000000
0.475	0.99999969	1.00000000	1.00000000	1.00000000
:	:	:	:	:
99.775	0.00000000	0.00000034	0.07722454	0.99900476
99.825	0.00000000	0.00000033	0.07556180	0.99898715
99.875	0.00000000	0.00000032	0.07393028	0.99896923
99.925	0.00000000	0.00000031	0.07232959	0.99895099
99.975	0.00000000	0.00000031	0.07075930	0.99893243
100.025	0.00000000	0.00000030	0.06921901	0.99891354
100.075	0.00000000	0.00000029	0.06770830	0.99889432
100.125	0.00000000	0.00000028	0.06622677	0.99887476
100.175	0.00000000	0.00000028	0.06477400	0.99885485
100.225	0.00000000	0.00000027	0.06334959	0.99883459
:	:	:	:	:
199.525	0.00000000	0.00000000	0.00000000	0.00000000
199.575	0.00000000	0.00000000	0.00000000	0.00000000
199.625	0.00000000	0.00000000	0.00000000	0.00000000
199.675	0.00000000	0.00000000	0.00000000	0.00000000
199.725	0.00000000	0.00000000	0.00000000	0.00000000
199.775	0.00000000	0.00000000	0.00000000	0.00000000
199.825	0.00000000	0.00000000	0.00000000	0.00000000
199.875	0.00000000	0.00000000	0.00000000	0.00000000
199.925	0.00000000	0.00000000	0.00000000	0.00000000
199.975	0.00000000	0.00000000	0.00000000	0.00000000

b=0.5

x	u(x, 10)	u(x,20)	u(x,30)	u(x,40)
0.025	0.99999970	1.00000000	1.00000000	1.00000000
0.075	0.99999940	1.00000000	1.00000000	1.00000000
0.125	0.99999910	1.00000000	1.00000000	1.00000000
0.175	0.99999879	1.00000000	1.00000000	1.00000000
0.225	0.99999849	1.00000000	1.00000000	1.00000000
0.275	0.99999819	1.00000000	1.00000000	1.00000000
0.325	0.99999788	1.00000000	1.00000000	1.00000000
0.375	0.99999758	1.00000000	1.00000000	1.00000000
0.425	0.99999727	1.00000000	1.00000000	1.00000000
0.475	0.99999696	1.00000000	1.00000000	1.00000000
÷	:	:	:	:
99.775	0.00000000	0.00000000	0.00000000	0.00003740
99.825	0.00000000	0.00000000	0.00000000	0.00003569
99.875	0.00000000	0.00000000	0.00000000	0.00003406
99.925	0.00000000	0.00000000	0.00000000	0.00003251
99.975	0.00000000	0.00000000	0.00000000	0.00003102
100.025	0.00000000	0.00000000	0.00000000	0.00002960
100.075	0.00000000	0.00000000	0.00000000	0.00002825
100.125	0.00000000	0.00000000	0.00000000	0.00002695
100.175	0.00000000	0.00000000	0.00000000	0.00002572
100.225	0.00000000	0.00000000	0.00000000	0.00002454
:	:	÷	:	:
199.525	0.00000000	0.00000000	0.00000000	0.00000000
199.575	0.00000000	0.00000000	0.00000000	0.00000000
199.625	0.00000000	0.00000000	0.00000000	0.00000000
199.675	0.00000000	0.00000000	0.00000000	0.00000000
199.725	0.00000000	0.00000000	0.00000000	0.00000000
199.775	0.00000000	0.00000000	0.00000000	0.00000000
199.825	0.00000000	0.00000000	0.00000000	0.00000000
199.875	0.00000000	0.00000000	0.00000000	0.00000000
199.925	0.00000000	0.00000000	0.00000000	0.00000000
199.975	0.00000000	0.00000000	0.00000000	0.00000000

b=1.0

x	u(x, 10)	u(x,20)	u(x,30)	u(x,40)
0.025	0.99999612	1.00000000	1.00000000	1.00000000
0.075	0.99999225	1.00000000	1.00000000	1.00000000
0.125	0.99998837	1.00000000	1.00000000	1.00000000
0.175	0.99998448	0.99999999	1.00000000	1.00000000
0.225	0.99998058	0.99999999	1.00000000	1.00000000
0.275	0.99997666	0.99999999	1.00000000	1.00000000
0.325	0.99997274	0.99999999	1.00000000	1.00000000
0.375	0.99996880	0.99999999	1.00000000	1.00000000
0.425	0.99996483	0.99999999	1.00000000	1.00000000
0.475	0.99996085	0.99999998	1.00000000	1.00000000
÷	:	:	:	:
99.775	0.00000000	0.00000000	0.00000000	0.00000000
99.825	0.00000000	0.00000000	0.00000000	0.00000000
99.875	0.00000000	0.00000000	0.00000000	0.00000000
99.925	0.00000000	0.00000000	0.00000000	0.00000000
99.975	0.00000000	0.00000000	0.00000000	0.00000000
100.025	0.00000000	0.00000000	0.00000000	0.00000000
100.075	0.00000000	0.00000000	0.00000000	0.00000000
100.125	0.00000000	0.00000000	0.00000000	0.00000000
100.175	0.00000000	0.00000000	0.00000000	0.00000000
100.225	0.00000000	0.00000000	0.00000000	0.00000000
:	÷	÷	:	:
199.525	0.00000000	0.00000000	0.00000000	0.00000000
199.575	0.00000000	0.00000000	0.00000000	0.00000000
199.625	0.00000000	0.00000000	0.00000000	0.00000000
199.675	0.00000000	0.00000000	0.00000000	0.00000000
199.725	0.00000000	0.00000000	0.00000000	0.00000000
199.775	0.00000000	0.00000000	0.00000000	0.00000000
199.825	0.00000000	0.00000000	0.00000000	0.00000000
199.875	0.00000000	0.00000000	0.00000000	0.00000000
199.925	0.00000000	0.00000000	0.00000000	0.00000000
199.975	0.00000000	0.00000000	0.00000000	0.00000000

2.4 考察

b,t の値によらず、u(x,t) は u(0,t)=1 から u(L,t)=0 へと単調に減少している。 b の値が大きく、t の値が小さくなるほど、減少のスピードが速くなっている。

3 問題 3(1 次元調和振動子の Schrödinger 方程式)

3.1 はじめに

量子力学において、1次元調和振動子のダイナミクスは、次の Schrödinger 方程式

$$i\hbar \frac{\partial \psi}{\partial t}(x,t) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{k}{2}x^2\right)\psi(x,t) \tag{3.1}$$

に従う。 $\psi(x,t)=\psi_R(x,t)+i\psi_I(x,t)(\psi_R,\psi_I\in\mathbb{R})$ のように波動関数を実部と虚部に分けると、それぞれの従う方程式は

$$\hbar \frac{\partial \psi_R}{\partial t}(x,t) = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{k}{2} x^2\right) \psi_I(x,t)$$
 (3.2)

$$-\hbar \frac{\partial \psi_I}{\partial t}(x,t) = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{k}{2} x^2\right) \psi_R(x,t)$$
 (3.3)

となり、2つの拡散型方程式の組で表される。この際、粒子の位置の確率密度は $P(x,t)\equiv |\psi(x,t)|^2=\psi_R(x,t)^2+\psi_I(x,t)^2$ で与えられる。

今、パラメータを h=1, m=1, k=1 とし、初期条件

$$\psi(x,0) = \frac{\sqrt{2}}{\pi^{\frac{1}{4}}} e^{-2(x-5)^2} \tag{3.4}$$

の下で Schrödinger 方程式を数値的に解くことを考える。ただし、空間領域は [-L/2,l/2] とし、境界条件は周期境界条件

$$\psi\left(\frac{L}{2},t\right) = \psi\left(-\frac{L}{2},t\right) \tag{3.5}$$

とする。

数値的に解く際には Visscher のスキーム [3] と呼ばれる、実部と虚部の時間発展を半ステップだけずらして解く陽解法を用いる。即ち、離散化された波動関数の実部、虚部をそれぞれ $\{R_j^n\},\{I_j^n\}$ と書くと、 $1\leq j\leq N(L=N\Delta x)$ に対して時間発展は

$$R_j^{n+1} = R_j^n + \Delta t \left(-\frac{1}{2} \frac{I_{j-1}^n - 2I_j^n + I_{j+1}^n}{\Delta x^2} + \frac{1}{2} x_j^2 I_j^n \right)$$
(3.6)

$$I_j^{n+1} = I_j^n - \Delta t \left(-\frac{1}{2} \frac{R_{j-1}^{n+1} - 2R_j^{n+1} + R_{j+1}^{n+1}}{\Delta x^2} + \frac{1}{2} x_j^2 R_j^{n+1} \right)$$
(3.7)

と記述される。ただし、

$$x_j \equiv \left(j - \frac{1}{2}\right) \Delta x - \frac{L}{2} \tag{3.8}$$

であり、境界条件は全てのnで

$$R_0^n = R_N^n \tag{3.9}$$

$$R_{N+1}^n = R_1^n \tag{3.10}$$

$$I_0^n = I_N^n \tag{3.11}$$

$$I_{N+1}^n = I_1^n (3.12)$$

と表される。また、初期条件は $1 \le j \le N$ で

$$R_j^0 = \frac{1}{2} \left[\psi \left((j-1)\Delta x - \frac{L}{2}, 0 \right) + \psi \left(j\Delta x - \frac{L}{2}, 0 \right) \right]$$

$$(3.13)$$

$$I_j^0 = -\Delta t \left(-\frac{1}{2} \frac{R_{j-1}^0 - 2R_j^0 + R_{j+1}^0}{\Delta x^2} + \frac{1}{2} x_j^2 R_j^0 \right)$$
 (3.14)

と表される。 $N=400,~\Delta x=0.05(L=20),~\Delta t=0.001$ の下でこの系を数値的に解き、t=1,2,3,4,5,6,7,8(n=1000,2000,3000,4000,5000,6000,7000,8000) における確率密度 $\left(R_j^n\right)^2+I_j^nI_j^{n-1}(1\leq j\leq N)$ の値を出力せよ。また、得られた確率密度 $\left(R_j^n\right)^2+I_j^nI_j^{n-1}$ の値を一つの図(横軸は x_j)に図示せよ。

3.2 実験方法

```
#include <stdio.h>
                                   #include <math.h>
     2
                                  #define N 400
     3
                                   #define M 8000
                                   #define L 1000
                                  double u0(double x){
                                                         \mathbf{return} \ \operatorname{sqrt}(2) * \exp(-2*(x-5)*(x-5)) / \operatorname{pow}(M_{-}PI, 0.25);
     9
 10
11
                                  double FE(double dx, double dt){
12
                                                         double R[N+2];
13
                                                         double I[N+2]:
14
                                                          double Ix[N+2];
15
16
                                                         \mathbf{for}(\mathbf{int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{
17
                                                                                 R[j] = (u0((j-1)*dx-10)+u0(j*dx-10))/2;
18
19
20
                                                       R[0]=R[N];
R[N+1]=R[1];
21
22
23
                                                       \begin{array}{c} \textbf{for(int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{\\ Ix[j]{=}{-}dt*(-(R[j{-}1]{-}2*R[j]{+}R[j{+}1])/(2*dx*dx)+((j{-}1/2)*dx{-}10)*((j{-}1/2)*dx{-}10)\\ \end{array}
24
^{25}
                                                                                                            *R[j]/2);
26
 27
                                                       \substack{Ix[0]=Ix[N];\\Ix[N+1]=Ix[1];}
28
29
30
                                                         double u[8][N];
31
32
33
                                                         for(int i=1; i<=M; i++){
                                                                                \begin{array}{l} \textbf{for(int j=1; j<=N; j++)} \\ R[j] = R[j] + dt*(-(Ix[j-1]-2*Ix[j]+Ix[j+1])/(2*dx*dx) + ((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*((j-1/2)*dx-10)*(
34
35
                                                                                                                                 -1/2)*dx-10)*Ix[j]/2);
36
37
                                                                                R[0]=R[N];

R[N+1]=R[1];
38
39
40
 41
                                                                                 for(int j=1; j<=N; j++){
                                                                                                        I[j] = Ix[j] - dt * (-(R[j-1] - 2*R[j] + R[j+1]) / (2*dx*dx) + ((j-1/2)*dx - 10)*((j-1/2)*dx - 10) + ((j-1/2)*dx - 10) + ((j
42
                                                                                                                                    dx-10)*R[j]/2;
 43
44
                                                                                for(int k=1; k<=8; k++){
45
```

```
\mathbf{if}(i{=}{=}k{*}L)\{
46
                                                          \begin{array}{l} \textbf{for}(\textbf{int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{\\ u[k{-}1][j{-}1]{=}R[j]{*}R[j]{+}I[j]{*}Ix[j]; \end{array}
47
48
49
50
                                               }
                                    }
51
52
                                    \begin{array}{c} \textbf{for(int}\ j{=}1;\ j{<}{=}N;\ j{+}{+})\{\\ Ix[j]{=}I[j]; \end{array}
53
54
55
56
                                    \substack{Ix[0]=Ix[N];\\Ix[N+1]=Ix[1];}
57
58
59
                         }
60
                         {\rm FILE}\ *{\rm fp};
61
                         fp = fopen("3-1","w");
62
63
                         \begin{array}{l} \mathbf{for(int\ j=1;\ j<=N;\ j++)\{} \\ \quad \mathrm{printf("\%.3f",\ j*dx-10-0.025);} \\ \quad \mathrm{fprintf(fp,\ "\%.3f",\ j*dx-10-0.025);} \end{array}
64
65
66
67
                                   \begin{array}{l} \mathbf{for}(\mathbf{int}\ k{=}1;\ k{<}{=}8;\ k{+}{+})\{ \\ \quad \quad \mathrm{printf}(\texttt{"&%.8f"},\ u[k{-}1][j{-}1]); \\ \quad \quad \mathrm{fprintf}(\mathrm{fp},\ \texttt{"}_{\sqcup}\%.8f",\ u[k{-}1][j{-}1]); \end{array}
68
69
70
                                     }
71
72
                                    \begin{array}{l} \operatorname{printf}("\\\\\\);\\ \operatorname{fprintf}(\operatorname{fp},"\\\\\); \end{array}
73
74
                         }
75
76
               }
77
               \mathbf{int} \ \mathrm{main}(\mathbf{void}) \{
78
                         double dt = 0.001;
79
80
                         double dx = 0.05;
81
                         FE(dx, dt);
82
83
              }
```

3.3 結果

\overline{x}	t = 1	t = 2	t = 3	t = 4
-9.975	0.00000000	0.00000000	0.00000000	0.00000000
-9.925	0.00000000	0.00000000	0.00000000	0.00000000
-9.875	0.00000000	0.00000000	0.00000000	0.00000000
-9.825	0.00000000	0.00000000	0.00000000	0.00000000
-9.775	0.00000000	0.00000000	0.00000000	0.00000000
-9.725	0.00000000	0.00000001	0.00000000	0.00000000
-9.675	0.00000000	0.00000001	0.00000000	0.00000001
-9.625	0.00000000	0.00000001	0.00000000	0.00000001
-9.575	0.00000000	0.00000001	0.00000000	0.00000001
-9.525	0.00000000	0.00000001	0.00000000	0.00000002
:	:	:	:	:
-0.225	0.01633562	0.11035893	0.00000000	0.00464261
-0.175	0.01811764	0.10431692	0.00000000	0.00401205
-0.125	0.02005686	0.09845669	0.00000000	0.00345861
-0.075	0.02216260	0.09278542	0.00000000	0.00297398
-0.025	0.02444420	0.08730984	0.00000000	0.00255042
0.025	0.02691097	0.08203553	0.00000000	0.00218105
0.075	0.02957211	0.07696619	0.00000000	0.00185985
0.125	0.03243664	0.07210351	0.00000000	0.00158156
0.175	0.03551332	0.06744752	0.00000000	0.00134141
0.225	0.03881055	0.06299738	0.00000000	0.00113491
:	÷ :	÷	:	:
9.525	0.00000003	0.00000000	0.00000000	0.00000000
9.575	0.00000002	0.00000000	0.00000000	0.00000000
9.625	0.00000002	0.00000000	0.00000000	0.00000000
9.675	0.00000001	0.00000000	0.00000000	0.00000000
9.725	0.00000001	0.00000000	0.00000000	0.00000000
9.775	0.00000001	0.00000000	0.00000000	0.00000000
9.825	0.00000001	0.00000000	0.00000000	0.00000000
9.875	0.00000000	0.00000000	0.00000000	0.00000000
9.925	0.00000000	0.00000000	0.00000000	0.00000000
9.975	0.00000000	0.00000000	0.00000000	0.00000000

\overline{x}	t = 5	t = 6	t = 7	t = 8
-9.975	0.00000000	0.00000000	0.00000000	0.00000000
-9.925	0.00000000	0.00000000	0.00000000	0.00000000
-9.875	0.00000000	0.00000000	0.00000000	0.00000000
-9.825	0.00000000	0.00000000	0.00000000	0.00000000
-9.775	0.00000000	0.00000000	0.00000000	0.00000000
-9.725	0.00000000	0.00000000	0.00000000	0.00000000
-9.675	0.00000000	0.00000000	0.00000000	0.00000000
-9.625	0.00000000	0.00000000	0.00000000	0.00000000
-9.575	0.00000000	0.00000000	0.00000000	0.00000000
-9.525	0.00000000	0.00000000	0.00000000	0.00000000
÷	:	:	:	:
-0.225	0.15539137	0.00000000	0.00001176	0.27506562
-0.175	0.16183354	0.00000000	0.00001550	0.27213079
-0.125	0.16832138	0.00000000	0.00002044	0.26888925
-0.075	0.17483898	0.00000000	0.00002694	0.26535228
-0.025	0.18136903	0.00000000	0.00003535	0.26153081
0.025	0.18789313	0.00000000	0.00004604	0.25743667
0.075	0.19439242	0.00000000	0.00005951	0.25308386
0.125	0.20084809	0.00000000	0.00007645	0.24848899
0.175	0.20724157	0.00000000	0.00009783	0.24367063
0.225	0.21355435	0.00000000	0.00012488	0.23864801
:	÷	÷	:	÷ :
9.525	0.00000000	0.00000000	0.00000000	0.00000000
9.575	0.00000000	0.00000000	0.00000000	0.00000000
9.625	0.00000000	0.00000000	0.00000000	0.00000000
9.675	0.00000000	0.00000000	0.00000000	0.00000000
9.725	0.00000000	0.00000000	0.00000000	0.00000000
9.775	0.00000000	0.00000000	0.00000000	0.00000000
9.825	0.00000000	0.00000000	0.00000000	0.00000000
9.875	0.00000000	0.00000000	0.00000000	0.00000000
9.925	0.00000000	0.00000000	0.00000000	0.00000000
9.975	0.00000000	0.00000000	0.00000000	0.00000000

3.4 考察

図より、t の値に拠らずグラフの概形は同じである。いずれも場合も $(R^n_{-10})^2+I^{n-1}_{-10}I^n_{-10}=(R^n_{10})^2+I^{n-1}_{10}I^n_{10}=0$ であり、その間で 1 つ極大値を持っている。t の値により、極大値も極大値をとる x_j も異なる。