中国科学技术大学 2024 年新生入学考试 数学试卷

阮系	院系	姓名	学号	总分	
----	----	----	----	----	--

说明: 试卷满分 100 分, 考试时间 120 分钟. 禁止使用手机、计算器等电子设备.

- 一、填空题 (每空 5 分, 共 40 分. 结果须化简, 写在答题纸上.)
 - 1. 用 $\operatorname{card}(X)$ 表示有限集 X 中元素的个数. 若 $\operatorname{card}(A \cup B) = 30$, $\operatorname{card}(A \cup C) = 40$, $\operatorname{card}(B \cup C) = 50$, 则 $\operatorname{card}(A \cup B \cup C)$ 的取值范围是______.
 - 2. 平面区域 $\{(x,y) \mid xy \ge 0 \text{ 并且 } |x-1|+|y-1| \le 2\}$ 的面积是_____.

 - 4. 设复数 z, w 满足 z + w = 1 且 zw = i,其中 i 是虚数单位,则 $z^5 + w^5 = _$
 - 5. 设正四棱锥铁块的每个侧面都是边长 1 的正三角形,将此铁块磨制成半径 r 的球,则 r 的最大值是__⑤__.
 - 6. 已知数列 $\{n^{10}\}$ $(n \in \mathbb{N}^*)$ 的前 n 项和公式为 $S_n = c_0 + c_1 n + c_2 n^2 + \cdots + c_{11} n^{11}$,则 $c_{10} = 6$.
 - 7. 设 $(x+24)^{2024}$ 的展开式的 x^m 项系数最大,则 $m=_{0}$.
- 二、解答题(每题 20 分, 共 60 分. 须写出必要的计算和证明过程.)
 - 9. 设 L_1, L_2 是双曲线 $H: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的渐近线,O 是原点,A 是 H 上动点,点 B 在 L_1 上使得 AB // L_2 . 求证: $\triangle OAB$ 的面积是定值.
 - 10. 设圆 $x^2+y^2=1$ 的内接正 n 边形的面积为 A_n ,记 $Q_n=\frac{A_{4n}-A_{2n}}{A_{2n}-A_n}$, $n\geqslant 3$. 求证: $\frac{1}{4} < Q_n < \frac{1}{3}$ 并且 $\pi < \frac{A_{2n}-Q_nA_n}{1-Q_n}$.
 - 11. 设 $a_1, a_2, a_3, b_1, b_2, b_3$ 都是正数,并且

$$\frac{a_1^{2025}}{b_1^{2024}} + \frac{a_2^{2025}}{b_2^{2024}} + \frac{a_3^{2025}}{b_3^{2024}} = a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = 1.$$

求证: $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3$.

参考答案和评分标准

① [50,70] ② 6 ③ $(\frac{1}{2},e-2)$ ④ -4-5i ⑤ $\frac{\sqrt{6}-\sqrt{2}}{2}$ ⑥ $\frac{1}{2}$ ⑦ 81 ⑧ $\frac{\pi-1}{2\pi}$ [50,51 60] 更正: ①{50,51,...,60}

9. 解法一: 不妨设
$$L_1: y = \frac{b}{a}x$$
, $L_2: y = -\frac{b}{a}x$, $A(x,y)$, $B(at,bt)$. (5 分)

由
$$AB // L_2$$
, 得 $bt - y = -\frac{b}{a}(at - x)$, 故 $2t = \frac{x}{a} + \frac{y}{b}$. (5分)

$$\triangle OAB$$
 的面积 = $\frac{1}{2}\overrightarrow{OA} \times \overrightarrow{OB} = \frac{t}{2}(bx - ay) = \frac{ab}{4}$. (10 分)

解法二:作坐标变换,化双曲线方程为 xy=1,结论显然成立.

10.
$$A_n = \frac{n}{2}\sin\frac{2\pi}{n}$$
, $A_{2n} - A_n = 2n\sin\frac{\pi}{n}\sin^2\frac{\pi}{2n}$, $Q_n = 2\frac{\sin\frac{\pi}{2n}}{\sin\frac{\pi}{n}}\frac{\sin^2\frac{\pi}{4n}}{\sin^2\frac{\pi}{2n}}$. (5 $\%$)

注意到
$$f(\theta) = \frac{\sin\frac{\theta}{2}}{\sin\theta} = \frac{1}{2\cos\frac{\theta}{2}}$$
 在 $(0,\pi)$ 单调增并且 $f(\theta) > \frac{1}{2}$. (5分)

由此可得
$$Q_n > \frac{1}{4}$$
, $Q_{2n} < Q_n$, $Q_n \leqslant Q_3 = \frac{4}{\sqrt{3}} - 2 < \frac{1}{3}$. (5分)

故
$$\pi = A_n + (A_{2n} - A_n) + (A_{4n} - A_{2n}) + (A_{8n} - A_{4n}) + \cdots$$

 $< A_n + (A_{2n} - A_n)(1 + Q_n + Q_n^2 + \cdots) = \frac{A_{2n} - Q_n A_n}{1 - Q_n}.$ (5 分)

11. 首先证明引理:
$$\forall x, y \in (0,1)$$
, $\frac{x^{2025}}{y^{2024}} + \frac{(1-x)^{2025}}{(1-y)^{2024}} \ge 1$. (5 分)

设
$$f(x) = \frac{x^{2025}}{y^{2024}} + \frac{(1-x)^{2025}}{(1-y)^{2024}}$$
,则 $f'(x) = 2025 \left[\left(\frac{x}{y} \right)^{2024} - \left(\frac{1-x}{1-y} \right)^{2024} \right]$.

当
$$0 < x < y$$
 时, $\frac{x}{y} < 1$, $\frac{1-x}{1-y} > 1$, $f'(x) < 0$

当
$$0 < x < y$$
 时, $\frac{x}{y} < 1$, $\frac{1-x}{1-y} > 1$, $f'(x) < 0$.
当 $y < x < 1$ 时, $\frac{x}{y} > 1$, $\frac{1-x}{1-y} < 1$, $f'(x) > 0$. 故 $f(x)$ 的最小值 $f(y) = 1$. (5 分)

由引理可得
$$\frac{a_1^{2025}}{b_1^{2024}} + \frac{a_2^{2025}}{b_2^{2024}} + \frac{a_3^{2025}}{b_2^{2024}} \geqslant \frac{(a_1 + a_2)^{2025}}{(b_1 + b_2)^{2024}} + \frac{a_3^{2025}}{b_3^{2024}} \geqslant \frac{(a_1 + a_2 + a_3)^{2025}}{(b_1 + b_2 + b_3)^{2024}}.$$
 (5 分)

上式等号成立
$$\Leftrightarrow \frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} \Leftrightarrow a_i = b_i, \ \forall i,$$
 (5 分)