Ejercicio práctico de Introducción a la Investigación Operativa

Una empresa fabrica 3 productos, cuyo proceso de fabricación pasa por tres departamentos, en la siguiente tabla se muestran las necesidades en horas de cada departamento para la producción de cada unidad de producto:

PRODUCTO	Departamento 1	Departamento 2	Departamento 3
A	1,50	2,00	0,25
В	3,00	1,00	0,25
C	2,00	2,50	0,25

En un determinado periodo y con la plantilla existente se disponen de 450 horas en el Departamento 1, de 350 en el 2 y de 50 en el 3. Los márgenes brutos por unidad de producto son de 25€ para A, de 28€ para B y de 30€ para el producto C.

a. El modelo de PLE que permite encontrar las producciones (en valores enteros) óptimas maximizando el margen bruto y teniendo en cuenta las limitaciones horarias es:

```
Max Z= 25X_1+28X_2+30X_3
Sujeto a:
1,50X_1+3,00X_2+2,00X_3 \le 450
2,00X_1+1,00X_2+2,50X_3 \le 350
0,25X_1+0,25X_2+0,25X_3 \le 50
X_1,X_2,X_3 \ge 0
X_1,X_2,X_3 Enteras
```

Determinad cuál es la solución óptima.

```
libname pr '.';
data pr.pr1;
input row $13. x1 x2 X3 type $ rhs;
     datalines;
            25
                  28
                        30
Beneficio
                               MAX
             1.50
                  3 2
Dep1
                               LE
                   1
                         2.5
                               LE
                                       350
Dep2
             0.25
                   0.25 0.25
                               LE
Dep3
                                        50
limsup
             10000 10000 10000
                               UPPERBD
                               INTEGER .
             1 2 3
enteras
run;
proc print data=pr.pr1;
run:
proc lp data=pr.pr1;
run;
```

0bs	_row_	x1	x2	Х3	_type_	_rhs_
1	Beneficio	25.00	28.00	30.00	MAX	
2	Dep1	1.50	3.00	2.00	LE	450
3	Dep2	2.00	1.00	2.50	LE	350
4	Dep3	0.25	0.25	0.25	LE	50
5	limsup	10000.00	10000.00	10000.00	UPPERBD	
6	enteras	1.00	2.00	3.00	INTEGER	

The LP Procedure

Problem Summary

Objective Functi Rhs Variable Type Variable Problem Density	Max	Beneficio _rhs_ _type_ 66.67
Variables		Number
Integer Slack		3
Total		6
Constraints		Number
LE Objective		3 1
Total		4

Solution Summary

Integer Optimal Solution

Objective Value	5540
Phase 1 Iterations	0
Phase 2 Iterations	3
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	1
Initial Basic Feasible Variables	5
Time Used (seconds)	0
Number of Inversions	4
Epsilon	1E-8
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	9999999
Maximum Integer Iterations	100
Time Limit (seconds)	120

Variable Summary

Col	Variable Name	Status	Type	Price	Activity	Reduced Cost
1	x1	BASIC	INTEGER	25	60	0
2	x2	BASIC	INTEGER	28	80	0
3	Х3	BASIC	INTEGER	30	60	0
4	Dep1		SLACK	0	0	-5.2
5	Dep2		SLACK	0	0	-4.8
6	Dep3		SLACK	0	0	-30.4

Constraint Summary

	Constraint		S/S			Dual
Row	Name	Type	Col	Rhs	Activity	Activity
1	Beneficio	OBJECTVE		0	5540	
2	Dep1	LE	4	450	450	5.2
3	Dep2	LE	5	350	350	4.8
4	Dep3	LE	6	50	50	30.4

b. En el modelo anterior incorporad la existencia de unos costes de preparación a la producción (Costes Fijos) que ascienden a 400€ para A, 550€ para B y 550€ para C. ¿Existen cambios en la producción óptima a causa de la incorporación de los costes fijos? Justificad la respuesta.

```
\begin{array}{l} \text{Max Z= } 25X_1 + 28X_2 + 30X_3 - 400Y_1 - 550Y_2 - 550Y_3 \\ \text{Sujeto a:} \\ 1,50X_1 + 3,00X_2 + 2,00X_3 \leq 450 \\ 2,00X_1 + 1,00X_2 + 2,50X_3 \leq 350 \\ 0,25X_1 + 0,25X_2 + 0,25X_3 \leq 50 \\ X_1 - M_1Y_1 \leq 0 \\ X_2 - M_2Y_2 \leq 0 \\ X_3 - M_3Y_3 \leq 0 \\ X_1,X_2,X_3 \geq 0,\ Y_1,\ Y_2,\ Y_3 \in \{0,1\} \\ X_1,X_2,X_3 \text{ Enteras} \end{array}
```

```
data pr.pr1;
```

input _row_ \$13. x1 x2 x3 y1 y2 y3 _type_ \$ _rhs_; datalines; Beneficio 25 28 30 -400 -550 -550 MAX 1.50 3 2 450 Dep1 0 0 0 LE 2 2.5 0 0 350 Dep2 1 0 LE 0.25 0.25 0.25 0 50 Dep3 0 0 LE -10000 CF1 1 0 0 0 0 LE 0 0 -10000 0 CF2 0 1 0 0 LE CF3 0 0 1 0 0 -10000 LE 0 10000 10000 10000 limsup UPPERBD

run;

bin

enteras

proc print data=pr.pr1;
run;

proc lp data=pr.pr1 IMAXIT=200;
run;

1

2

3

0bs	_row_	x1	x2	х3	y1	y2	уЗ	_type_	_rhs_
1	Beneficio	25.00	28.00	30.00	- 400	- 550	- 550	MAX	
2	Dep1	1.50	3.00	2.00	0	0	0	LE	450
3	Dep2	2.00	1.00	2.50	0	0	0	LE	350
4	Dep3	0.25	0.25	0.25	0	0	0	LE	50
5	CF1	1.00	0.00	0.00	-10000	0	0	LE	0
6	CF2	0.00	1.00	0.00	0	-10000	0	LE	0
7	CF3	0.00	0.00	1.00	0	0	-10000	LE	0
8	limsup	10000.00	10000.00	10000.00		•		UPPERBD	
9	enteras	1.00	2.00	3.00				INTEGER	
10	bin				1	2	3	BINARY	

INTEGER

BINARY

3

The LP Procedure

Problem Summary

Objective Function Rhs Variable	Max Beneficio rhs
	- -
Type Variable	_type_
Problem Density (%)	29.17
Variables	Number
Integer	3
Binary	3
Slack	6
Total	12
Constraints	Number
LE	6
Objective	1
Total	7

Integer Iteration Log

Iter	Problem	Condition	Objective	Branched	Value	Sinfeas	Active	Proximity
1	0	ACTIVE	5529.9	y2	0.008	0.02	2	
2	- 1	ACTIVE	4984.3	y3	0.006	0.012	3	
3	2	ACTIVE	4746	y1	0.01	0.01	4	
4	-3	SUBOPTIMAL	4350				2	143.5
5	-2	FATHOMED	4437.6				1	143.5
6	1	FATHOMED	4368				0	

Solution Summary

Integer Optimal Solution

Objective Value	4350
Phase 1 Iterations	0
Phase 2 Iterations	6
Phase 3 Iterations	6
Integer Iterations	6
Integer Solutions	1
Initial Basic Feasible Variables	8
Time Used (seconds)	0
Number of Inversions	6
Epsilon	1E-8
•	1.797693E308
Infinity	
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	200
Time Limit (seconds)	120

						Reduced
Col	Variable Name	Status	Type	Price	Activity	Cost
		DAGTO	THITCOED	0.5	100	0
-	x1	BASIC	INTEGER	25	100	0
_	x2	BASIC	INTEGER	28	100	0
3	х3	DEGEN	INTEGER	30	0	0
4	y1		BINARY	- 400	1	- 400
5	y2		BINARY	- 550	1	-550
6	у3		BINARY	- 550	0	39450
7	Dep1		SLACK	0	0	-2
8	Dep2	BASIC	SLACK	0	50	0
9	Dep3		SLACK	0	0	-88
10	CF1	BASIC	SLACK	0	9900	0
11	CF2	BASIC	SLACK	0	9900	0
12	CF3		SLACK	0	0	- 4
		Cons	straint S	ummary		
	Constraint		S/S			Dual
Row	Name	Type	Col	Rhs	Activity	Activity
1	Beneficio	OBJECT	/E .	0	4350	
2	Dep1	LE	 7	450	450	2
3	Dep1	LE	8	350	300	0
4	•	LE	9	50	50	88
	Dep3 CF1	LE	10	0	-9900	
_				-		0
	CF2	LE	11	0	-9900	0
7	CF3	LE	12	0	0	4

c. La empresa se plantea hacer horas extras (CUYO NÚMERO NO ESTÁ LIMITADO), pero las limita al hecho de que al menos deben cumplirse las limitaciones horarias disponibles para uno de los tres departamentos. Incorporar este hecho al modelo del apartado b y calculad la solución óptima en este caso. ¿En qué departamento o departamentos es más rentable realizar horas extras? Justificad la respuesta.

```
\begin{array}{l} \text{Max Z= } 25X_1 + 28X_2 + 30X_3 - 400Y_1 - 550Y_2 - 550Y_3 \\ \text{Sujeto a:} \\ 1,50X_1 + 3,00X_2 + 2,00X_3 - 450 \leq M_4(1-Y_4) \\ 2,00X_1 + 1,00X_2 + 2,50X_3 - 350 \leq M_5(1-Y_5) \\ 0,25X_1 + 0,25X_2 + 0,25X_3 - 50 \leq M_6(1-Y_6) \\ X_1 - M_1Y_1 \leq 0 \\ X_2 - M_2Y_2 \leq 0 \\ X_3 - M_3Y_3 \leq 0 \\ Y_4 + Y_5 + Y_6 = 1 \\ X_1, X_2, X_3 \geq 0; \ Y_1, \ Y_2, \ Y_3, \ Y_4, \ Y_5, \ Y_6 \in \{0,1\} \\ X_1, X_2, X_3 \text{ Enteras} \end{array}
```

data pr	.pr1;												
input	_row_	\$13.	x1	x2	хЗ	у1	у2	уЗ	у4	у5	у6	_type_	\$ _rhs_;
d	atali	nes;											

Beneficio	25	28	30	-400	-550	-550	0	0	0	MAX	
Dep1	1.50) 3	2	0	0	0	10000	0	0	LE	10450
Dep2	2	1	2.5	0	0	0	0	10000	0	LE	10350
Dep3	0.25	0.2	5 0.25	0	0	0	0	0	10000	LE	10050
CF1	1	0	0	-10000	0	0	0	0	0	LE	0
CF2	0	1	0	0	-10000	0	0	0	0	LE	0
CF3	0	0	1	0	0	-10000	0	0	0	LE	0
Limit	0	0	0	0	0	0	1	1	1	GE	1
limsup	10000	10000	10000			•		•		UPPERBD	
enteras	1	2	3	•		•		•		INTEGER	
bin				1	2	3	4	5	6	BINARY	

```
run;
proc print data=pr.pr1;
proc lp data=pr.pr1 IMAXIT=200;
run;
  Obs _row_
                             x2
                                     х3
                                                 у2
                                                        у3
                                                                         y6 _type_ _rhs_
                    x1
                                           y1
                                                               y4 y5
    1 Beneficio
                  25.00
                          28.00
                                   30.00
                                           -400
                                                 -550
                                                        -550
                                                               0
                                                                     0
                                                                            0 MAX
                           3.00
                                   2.00
                                                          0 10000
                                                                            0 LE
    2 Dep1
                  1.50
                                            0
                                                    0
                                                                      0
                                                                                     10450
                                                           0
                                                                0 10000
    3 Dep2
                   2.00
                            1.00
                                    2.50
                                              0
                                                    0
                                                                            0 LE
                                                                                     10350
    4 Dep3
                   0.25
                            0.25
                                    0.25
                                              0
                                                    0
                                                           0
                                                                0
                                                                      0 10000 LE
                                                                                     10050
    5 CF1
                   1.00
                            0.00
                                    0.00 -10000
                                                    0
                                                           0
                                                                0
                                                                      0
                                                                            0 LE
                                                                                         0
    6 CF2
                   0.00
                            1.00
                                    0.00
                                              0 -10000
                                                                            0 LE
                                                                                         0
                                                           0
                                                                0
                                                                      0
    7 CF3
                   0.00
                            0.00
                                    1.00
                                              0
                                                    0 -10000
                                                                            0 LE
                                                                                         0
    8 Limit
                   0.00
                            0.00
                                    0.00
                                              0
                                                    0
                                                           0
                                                                            1 GE
                                                                1
                                                                      1
                                                                                         1
    9 limsup
                10000.00 10000.00 10000.00
                                                                           . UPPERBD
                   1.00
                            2.00
                                    3.00
                                                                           . INTEGER
   10 enteras
                                                    2
                                                           3
                                                                4
                                                                      5
   11 bin
                                                                            6 BINARY
```

The LP Procedure

Problem Summary

Objective Function Rhs Variable Type Variable Problem Density (%)	Max Beneficio _rhs_ _type_ _25.00
Variables	Number
Integer Binary Slack Surplus Total	3 6 6 1
Constraints	Number
LE GE Objective	6 1 1
Total	8

Integer Iteration Log

Iter F	Problem	Condition	Objective	Branched	Value	Sinfeas	Active	Proximity
1	0	ACTIVE	138569.09	y1	0.487	0.96974	2	
2	1	ACTIVE	133033.2	x2	1380	1.45283	3	
3	2	ACTIVE	133032.69	у3	0.315	0.93337	4	
159	-116	FATHOMED	5262.0833			Ē	11	3899.86
160	158	FATHOMED	3975				10	3800
161	117	SUBOPTIMAL	9250				0	

Solution Summary

Integer Optimal Solution

Objective Value	9250
Phase 1 Iterations	1
Phase 2 Iterations	10
Phase 3 Iterations	253
Integer Iterations	161
Integer Solutions	2
Initial Basic Feasible Variables	9
Time Used (seconds)	0
Number of Inversions	82
Epsilon	1E-8
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	9999999
Maximum Integer Iterations	200
Time Limit (seconds)	120

Variable Summary

Col	Variable	Name	Status	Type	Price	Activity	Reduced Cost
1	x1			INTEGER	25	0	-31
2	x2		BASIC	INTEGER	28	350	0
3	x3			INTEGER	30	0	-40
4	y1			BINARY	- 400	0	-400
5	y2			BINARY	- 550	1	-550
6	у3			BINARY	- 550	0	- 550
7	y4		ALTER	BINARY	0	0	0
8	у5			BINARY	0	1	-280000
9	у6		ALTER	BINARY	0	0	0
10	Dep1		BASIC	SLACK	0	9400	0
11	Dep2			SLACK	0	0	-28
12	Dep3		BASIC	SLACK	0	9962.5	0
13	CF1		DEGEN	SLACK	0	0	0
14	CF2		BASIC	SLACK	0	9650	0
15	CF3		DEGEN	SLACK	0	0	0
16	Limit		DEGEN	SURPLUS	0	0	0

Constraint Summary

Constraint		S/S			Dual
Name	Type	Col	Rhs	Activity	Activity
Beneficio	OBJECTVE		0	9250	
Dep1	LE	10	10450	1050	0
Dep2	LE	11	10350	10350	28
Dep3	LE	12	10050	87.5	0
CF1	LE	13	0	0	0
CF2	LE	14	0	-9650	0
CF3	LE	15	0	0	0
Limit	GE	16	1	1	0
	Name Beneficio Dep1 Dep2 Dep3 CF1 CF2 CF3	Name Type Beneficio OBJECTVE Dep1 LE Dep2 LE Dep3 LE CF1 LE CF2 LE CF3 LE	Name Type Col Beneficio OBJECTVE . Dep1 LE 10 Dep2 LE 11 Dep3 LE 12 CF1 LE 13 CF2 LE 14 CF3 LE 15	Name Type Col Rhs Beneficio OBJECTVE . 0 Dep1 LE 10 10450 Dep2 LE 11 10350 Dep3 LE 12 10050 CF1 LE 13 0 CF2 LE 14 0 CF3 LE 15 0	Name Type Col Rhs Activity Beneficio OBJECTVE . 0 9250 Dep1 LE 10 10450 1050 Dep2 LE 11 10350 10350 Dep3 LE 12 10050 87.5 CF1 LE 13 0 0 CF2 LE 14 0 -9650 CF3 LE 15 0 0

NOTAS

/*To help monitor the growth of the branch-and-bound tree, the LP procedure reports on the status of each problem that is solved. The report, displayed in the Integer Iteration Log, can be used to reconstruct the branch-and-bound tree. Each row in the report describes the results of the attempted solution of the linear program at a node in the tree. In the following discussion, a problem on a given line in the log is called the current problem. The following columns are displayed in the report:

identifies the number of the branch-and-bound iteration.

Problem

identifies how the current problem fits in the branch-and-bound tree.

Condition

reports the result of the attempted solution of the current problem. Values for Condition are:

ACTIVE: The current problem was solved successfully.

INFEASIBLE: The current problem is infeasible.

FATHOMED: The current problem cannot lead to an improved integer solution and therefore it is dropped.

SINGULAR: A singular basis was encountered in attempting to solve the current problem. Solution of this relaxed problem is suspended and will be attempted later if necessary. SUBOPTIMAL: The current problem has an integer feasible solution. Objective

reports the objective value of the current problem.

Branched

names the variable that is branched in subtrees defined by the descendants of this problem.

Value

gives the current value of the variable named in the column labeled Branched. Sinfeas

gives the sum of the integer infeasibilities in the optimal solution to the current problem.

Active

reports the total number of nodes currently active in the branch-and-bound tree. Proximity

reports the gap between the best integer solution and the current lower (upper for maximizations) bound of all active nodes. */