Pandas

Pandas

- pandas含有使数据分析工作变得更快更简单的高级数据结构和操作工具。它是基于NumPy构建的,让以NumPy为中心的应用变得更加简单。
- 三大数据结构: Series、DataFrame、Index

• 带索引的一维数组

```
import pandas as pd

data = pd. Series([0.25, 0.5, 0.75, 1])
print(data)
```

```
0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64
```

• 索引与数据

```
data = pd. Series([0.25, 0.5, 0.75, 1])
print(data. values)
print(type(data. values))
print(data. index)
print(type(data. index))
```

```
[0.25 0.5 0.75 1.]

<class 'numpy.ndarray'>
RangeIndex(start=0, stop=4, step=1)
<class 'pandas.core.indexes.range.RangeIndex'>
```

• 由字典生成Series对象

```
a_dict = {
    'AAA':23423,
    'BBB':43422,
    'CCC':3334
}

a_ser = pd. Series(a_dict)
print(a_ser)
print(a_ser['BBB'])
```

```
AAA 23423
BBB 43422
CCC 3334
dtype: int64
43422
```

• 索引参数index中含有字典中不存在的键时,默 认设置对应值为NaN

```
a_dict = {
    'AAA':23423,
    'BBB':43422,
    'CCC':3334
}

a_ser = pd. Series(a_dict, index=['AAA', 'CCC'])
b_ser = pd. Series(a_dict, index=['BBB', 'DDD'])
print(a_ser)
print(b_ser)
```

AAA 23423 CCC 3334 dtype: int64

BBB 43422. 0 DDD NaN

dtype: float64

• 类比字典

```
0.75

True

Index(['a', 'b', 'c', 'd'], dtype='object')
[('a', 0.25), ('b', 0.5), ('c', 0.75), ('d', 1.0)]
```

向Series对象添加数据

```
a 0.25
```

b 0.50

c 0.75

d 1.00

e 1.25

dtype: float64

• 类比数组

```
data = pd. Series ([0.25, 0.5, 0.75, 1.0]
               , index=['a', 'b', 'c', 'd'])
print(data['a':'c']),
print(data[0:2])
a 0.25
                                显式索引的切片中, 左右
 0.50
                                两端都包含在结果中
 0.75
dtype: float64
a 0.25
 0.50
dtype: float64
```

```
data = pd. Series([0.25, 0.5, 0.75, 1.0])
                 , index=['a', 'b', 'c', 'd'])
print(data[(data > 0.2) & (data < 0.6)])</pre>
print (data[['a', 'd']])
a 0.25
                                             布尔数组索引
  0.50
                          Index子集索引
dtype: float64
a 0.25
    1.00
dtype: float64
```

· 显式索引vs隐式索引

```
a
```

3 b 5 c

dtype: object

当index的值为数字时容易造成混淆!

用默认位置检索(如data[0]) 会报错!

• loc索引,指定利用显式索引进行取值和分片操作

1 a
3 b
5 c
dtype: object

b

• iloc索引,表明取值和分片都是采取隐式数值索引

c
3 b
5 c
dtype: object

• DataFrame是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。

```
area_dict = {'California':423967, 'Texas':695662, 'New York':141297}
population_dict = {'California':1.3, 'Texas':0.98, 'New York':1.13}
area = pd. Series(area_dict)
population = pd. Series(population_dict)
print(area)
print(population)
```

```
California 423967
Texas 695662
New York 141297
dtype: int64

California 1.30
Texas 0.98
New York 1.13
dtype: float64
```

```
area_dict = {'California':423967, 'Texas':695662, 'New York':141297}
population_dict = {'California':1.3, 'Texas':0.98, 'New York':1.13}
area = pd. Series(area_dict)
population = pd. Series(population_dict)
states_df = pd. DataFrame({'area':area, 'population':population})
print(states_df)
```

	area	population
California	423967	1.30
Texas	695662	0.98
New York	141297	1. 13

通过Series对象创建 DataFrame对象

• 获取DataFrame对象的行列索引值

```
states_df = pd. DataFrame({'area':area, 'population':population})
print(states_df.index)
print(states_df.columns)
```

```
Index(['California', 'Texas', 'New York'], dtype='object')
Index(['area', 'population'], dtype='object')
```

• 通过字典创建DataFrame对象

```
data = [{'a':13,'b':4}, {'a':'CHN','b':'USA'}]
df = pd. DataFrame(data, index=['c', 'd'])
print(df)
```

```
a b
c 13 4
d CHN USA
```

• 通过数组创建DataFrame对象

```
foo bar
a 0.127044 0.336537
b 0.804913 0.273848
c 0.417295 0.967519
```

• 类比字典

```
area = pd. Series ({'California': 423967, 'Texas': 695662,
                   'New York': 141297, 'Floriade': 170312,
                   'Illinois':149995})
pop = pd. Series ({'California': 38332521, 'Texas': 26448193,
                   'New York': 19651127, 'Floriade': 19552860,
                   'Illinois':12882135})
data = pd. DataFrame({'area':
                                              area
                                                        pop
                                California
                                                   38332521
                                            423967
print(data)
                                Texas
                                           695662
                                                   26448193
                                New York
                                           141297
                                                   19651127
                                Floriade
                                           170312
                                                   19552860
                                Illinois
                                            149995
                                                    12882135
```

```
data = pd. DataFrame({'area':area, 'pop':pop})
print(data['area'])

California 423967
Texas 695662
New York 141297
Floriade 170312
Illinois 149995
Name: area, dtype: int64
```

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['a'] = [1, 2, 3, 4, 5]
data['b'] = 0
print(data)
```

area pop a b
California 423967 38332521 1 0
Texas 695662 26448193 2 0
New York 141297 19651127 3 0
Floriade 170312 19552860 4 0
Illinois 149995 12882135 5 0

用字典的语法形式进行列扩充

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data)
```

	area	pop	density
California	423967	38332521	90. 413926
Texas	695662	26448193	38. 018740
New York	141297	19651127	139. 076746
Floriade	170312	19552860	114. 806121
Illinois	149995	12882135	85. 883763

通常应用中某 一列是其他列 的计算结果, 如人口密度

• 类比二维数组

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data.values)
```

```
[[4. 23967000e+05 3. 83325210e+07 9. 04139261e+01]
[6. 95662000e+05 2. 64481930e+07 3. 80187404e+01]
[1. 41297000e+05 1. 96511270e+07 1. 39076746e+02]
[1. 70312000e+05 1. 95528600e+07 1. 14806121e+02]
[1. 49995000e+05 1. 28821350e+07 8. 58837628e+01]]
```

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data.values[2])
                                      跟操作二维数组一样
print (data. values[1, 1])
print(data. values[1:, :2])
[1.41297000e+05 1.96511270e+07 1.39076746e+02]
26448193. 0
   695662. 26448193.
   141297. 19651127.
   170312. 19552860.
   149995. 12882135.
```

• iloc索引器,行列都使用隐式索引,我们可以像操作 ndarray数组一样,对DataFrame数据类型进行索引分片操作:

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data.iloc[:2,1:2])
```

```
pop
California 38332521
Texas 26448193
```

• loc索引器,采用显式的标签值索引进行分片,规则是左右都取

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data.loc[:'Floriade', 'area':'pop'])
```

	area	pop
California	423967	38332521
Texas	695662	26448193
New York	141297	19651127
Floriade	170312	19552860

```
# 人口密度大于100的州
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data[data['density'] > 100])
```

```
area pop density
New York 141297 19651127 139.076746
Floriade 170312 19552860 114.806121
```

```
# 人口密度大于100的州,且只看其面积和人口密度
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
print(data.loc[data['density'] > 100, ['area', 'density']])
```

```
area density
New York 141297 139.076746
Floriade 170312 114.806121
```

• 如需修改DataFrame中的某个值,使用任何一种索引器方法定位到具体的一个数据项即可

```
data = pd. DataFrame({'area':area, 'pop':pop})
data['density'] = data['pop'] / data['area']
data.loc['Floriade', 'area'] = 99999999
data.iloc[4,1] = 8888888
print(data)
```

	area	pop	density
California	423967	38332521	90. 413926
Texas	695662	26448193	38. 018740
New York	141297	19651127	139. 076746
Floriade	9999999	19552860	114. 806121
Illinois	149995	8888888	85. 883763

• NumPy中使用的一元运算符可以拿到Pandas数据对象中使用

```
a 2 a 7.389056
b 4 b 54.598150
c 6 c 403.428793
d 8 d 2980.957987
dtype: int64 dtype: float64
```

```
rng = np. random. RandomState (18)
df = pd. DataFrame (rng. randint (0, 10, (3, 4)),
                   columns=['a', 'b', 'c', 'd'])
print(df)
print (np. sin (df * np. pi / 4))
  3 8 5 1
1 2 2 8 8
          a
   0.707107 - 2.449294e - 16 - 7.071068e - 01 7.071068e - 01
  1.000000 1.000000e+00 -2.449294e-16 -2.449294e-16
  1.000000 7.071068e-01 -7.071068e-01 -7.071068e-01
```

• 二元运算会在计算过程中对齐两个对象的索引

```
ser1 = pd. Series({'a':10,'b':20,'d':40})
ser2 = pd. Series({'b':2,'c':3,'d':4})
print(ser1 / ser2)
```

```
a NaN
b 10.0
c NaN
d 10.0
dtype: float64
```

```
ser1 = pd. Series({'a':10,'b':20,'d':40})
ser2 = pd. Series({'b':2,'c':3,'d':4})
print(ser1. add(ser2, fill_value=0))

a 10.0
b 22.0
c 3.0
d 44.0
dtype: float64
```

```
rng = np. random. RandomState (10)
A = pd. DataFrame (rng. randint (0, 20, (2, 2)),
                 columns=['A', 'B'])
B = pd. DataFrame (rng. randint (0, 10, (3, 3)),
                 columns=['B', 'C', 'A'])
print(A)
print(B)
                    A B
print(A + B)
                   15
                   B C
                                       DataFrame对象同样会进
                                       行索引对齐
                           В
                    9. 0 5. 0 NaN
                   24. 0 1. 0 NaN
                    NaN NaN NaN
```

```
rng = np. random. RandomState (10)
A = pd. DataFrame (rng. randint (0, 20, (2, 2)),
                  columns=['A', 'B'])
B = pd. DataFrame(rng. randint(0, 10, (3, 3)),
                  columns=['B', 'C', 'A'])
print(A)
print(B)
print (A. add (B, fill value=A. stack (1 15
                                     0 1 9 0
1 1 8 9
2 0 8 6
                                       9.0 5.0 16.0
                                       24.0 1.0 15.0
                                        13.0 7.0 15.0
```

数值运算

• Series 与 DataFrame之间试 0 1

```
Name: 0, dtype: int32
```

数值运算

```
rng = np. random. RandomState (1
A = pd. DataFrame (rng. randint (
                  columns=['A'
print(A)
print(A['B'])
print(A. sub(A['B'], axis=0))
                                Name: B, dtype: int32
```

数值运算

• DataFrame与Series的运算要对齐指定方向上的索引

40

0.0 NaN 0.0 NaN

0.0 NaN 8.0 NaN

1.0 NaN

0. 0 NaN

• NumPy中,NaN与任何数运算,结果仍为NaN

· 忽略NaN进行计算

```
print (np. nansum (var))
print (np. nanmax (var))
print (np. nanmin (var))

7. 0
4. 0
1. 0
```

• 在Pandas中, NaN表示缺失值时, 类型是浮点数; 表示缺失对象时, 类型是object类型 0 1

```
var = pd. Series([1, 2], dtype=int)
print(var)
var[0] = np. nan
print(var)
```

```
var = pd. Series(['aa', 'bb'])
print(var)
var[0] = np. nan
print(var)
```

```
0   1
1   2
dtype: int32

0   NaN
1   2.0
dtype: float64
```

```
0 aa
1 bb
dtype: object

0 NaN
1 bb
dtype: object
```

• isnull()与notnull()方法

```
var = pd. Series(['aa', np. nan, 1, np. nan])
print(var. isnull())
print(var. notnull())
```

```
False
      True
  False
      True
dtype: bool
      True
     False
      True
     False
dtype: bool
```

• 丢弃缺失值

```
var = pd. Series(['aa', np. nan, 1, np. nan])
print(var. dropna())
```

```
0 aa
2 1
dtype: object
```

```
df = pd. DataFrame([[1, np. nan, 2],
                     [2, 3, 5],
                     [np. nan, 4, 6]])
print(df)
                                               NaN
print(df.dropna())
                                               3.0
print(df.dropna(axis=1))
                                         NaN
```

```
df = pd. DataFrame([[1, np. nan, 2, 4],
                    [2, 3, 5, 3],
                    [np. nan, np. nan, np. nan, np. nan]])
print(df)
print(df. dropna(how='any'))
                                         NaN 2.0 4.0
print(df. dropna(how='all'))
                                         3.0 5.0 3.0
                                     2.0
                                     NaN
                                          NaN NaN
                                                    NaN
                                    2.0 3.0 5.0 3.0
                                     1.0 NaN 2.0 4.0
                                     2.0 3.0 5.0 3.0
```

```
df = pd. DataFrame([[1, np. nan, 2, 4],
                  [2, np. nan, np. nan, 3],
                  [np. nan, np. nan, np. nan, np. nan]])
print(df)
print(df. dropna(thresh=3))
  1.0 NaN 2.0 4.0
  2.0 NaN NaN 3.0
                                   表示留下该行(或列)时,
                                   非缺失值的个数至少需要
  NaN NaN
           NaN NaN
                                   thresh个
  1.0 NaN 2.0 4.0
```

• 填充缺失值

```
0 1 2 3
0 11.0 0.0 22.0 44.0
1 22.0 0.0 0.0 33.0
2 0.0 0.0 0.0 0.0
```

```
data = pd. Series([1, np. nan, 2, np. nan
print(data)
print(data. fillna(method='ffill'))
print(data. fillna(method='bfill'))
```

用前后相邻的元素进行填充

```
1.0
a
     NaN
     2.0
     NaN
     3.0
е
dtype: float64
     1.0
     1.0
     2.0
     2.0
     3.0
dtype: float64
     1.0
a
     2.0
     2.0
     3.0
     3.0
```

dtype: float64

('abcde'))

```
0 1 2 3
0 1.0 1.0 2.0 4.0
1 2.0 3.0 5.0 3.0
2 NaN 5.0 4.0 4.0
```

NaN 5.0 4 NaN

多级索引

MultiIndex

考虑用Series来表示美国不同的州、不同年份的人口数据, 这对Series来说就相当于有了两个索引值

```
MultiIndex(levels=[['California', 'New York', 'Texas'], [2008, 2018]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]])
```

```
index = [('California', 2008), ('California', 2018),
         ('New York', 2008), ('New York', 2018),
         ('Texas', 2008), ('Texas', 2018)]
mul index = pd. MultiIndex. from tuples (index)
population = [33870000, 37250000,
               18970000, 19370000,
               20850000, 25140000]
pop = pd. Series (population, index=mul index)
print(pop)
```

```
      California
      2008
      33870000

      2018
      37250000

      New York
      2008
      18970000

      2018
      19370000

      Texas
      2008
      20850000

      2018
      25140000
```

dtype: int64

MultiIndex

• 二维的Series与DataFrame转换

```
df_pop = pop.unstack()
print(df_pop)
print(df_pop.stack())
```

Г				
	2008	3 2018		
California	33870000	37250000		
New York	18970000	19370000		
Texas	20850000	25140000		
California	2008	33870000		
	2018	37250000		
New York	2008	18970000		
	2018	19370000		
Texas	2008	20850000		
	2018	25140000		
dtype: int64				

使用DataFrame来表示三级索引

考虑表示上述三个州,2008/2018,总人口/18岁以下的人口,这里有三个维度的信息

```
index = [('California', 2008), ('California', 2018),
         ('New York', 2008), ('New York', 2018),
         ('Texas', 2008), ('Texas', 2018)]
mul index = pd. MultiIndex. from_tuples(index)
population = [33870000, 37250000, 18970000, 19370000, 20850000, 25140000]
under_18_pop = [9267089, 9284094, 4687374, 4318033, 5906301, 6879014]
                                                    total
                                                           under18
pop = pd. Series (population, in California 2008
                                                33870000
                                                           9267089
pop df = pd. DataFrame ({'total'
                                           2018
                                                37250000
                                                           9284094
                       'under1
                               New York
                                          2008 18970000
                                                           4687374
print(pop_df)
                                           2018 19370000
                                                           4318033
                               Texas
                                           2008 20850000
                                                           5906301
                                                           6879014
                                           2018
                                                 25140000
                                                                      56
```

• 嵌套列表

```
mul_index = pd. MultiIndex. from_arrays([['a', 'a', 'b',
'b'], [1, 2, 1, 2]])
print(mul_index)
```

```
MultiIndex(levels=[['a', 'b'], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
```

• 元组列表

```
mul_index = pd. MultiIndex.from_tuples([('a', 1), ('a', 0),
    ('b', 1), ('b', 0)])
print(mul_index)
```

```
MultiIndex(levels=[['a', 'b'], [0, 1]],
labels=[[0, 0, 1, 1], [1, 0, 1, 0]])
```

• levels和labels标签

```
MultiIndex(levels=[['a', 'b'], [0, 1]],
labels=[[0, 0, 1, 1], [1, 0, 1, 0]])
```

• 相乘方法

```
mul_index = pd. MultiIndex.from_product([[2008, 2018], [1, 2]])
print(mul_index)
```

```
MultiIndex(levels=[[2008, 2018], [1, 2]],
labels=[[0, 0, 1, 1], [0, 1, 0, 1]])
```

行索引和列索引均可以多级

name		Tom		Bi11	
age		22	18	22	18
month	visit				
May	1	0.700432	- 2. 102260	- 0. 180631	0. 547632
	2	- 1. 420270	- 0. 228577	- 0. 620010	-0. 811929
June	1	0.998547	-0. 454578	- 0. 775359	- 0. 239387
	2	- 0. 291106	0.008166	1. 238868	- 0. 180516

• 与之前介绍的Series,DataFrame的索引本质一致,只是增加了索引的维度

California	2008	33870000
	2018	37250000
New York	2008	18970000
	2018	19370000
Texas	2008	20850000
	2018	25140000

dtype: int64

```
print(pop['New York', 2008])
```

18970000

print(pop['New York'])

2008 18970000 2018 19370000

dtype: int64

print(pop[:, 2008])

California 33870000

New York 18970000

Texas 20850000

dtype: int64

```
print(pop. loc['California':'New York'])
California
           2008
                   33870000
           2018
                   37250000
           2008
                   18970000
New York
                   19370000
           2018
dtype: int64
print(pop. loc[:, 2008:2018])
California
           2008
                   33870000
           2018
                   37250000
New York
           2008
                   18970000
                   19370000
           2018
                   20850000
Texas
           2008
           2018
                   25140000
dtype: int64
```

• 四维DataFrame例子

name		Tom		Bill	
age		22	18	22	18
month	visit				
May	1	0.700432	- 2. 102260	- 0. 180631	0. 547632
	2	- 1. 420270	- 0. 228577	- 0. 620010	- 0.811929
June	1	0.998547	-0. 454578	- 0. 775359	- 0. 239387
	2	- 0. 291106	0.008166	1. 238868	- 0. 180516

```
print(df data['Tom']) # 访问Tom的数据
               22
                       18
age
month visit
May 1 0.700432 -2.102260
     2 -1.420270 -0.228577
June 1
       0.998547 - 0.454578
       -0. 291106 0. 008166
print(df data['Tom', 22]) # Tom年龄为22岁的数据
month visit
May 1 0.700432
       -1.420270
June
       0.998547
            -0.291106
Name: (Tom, 22), dtype: float64
print(df_data['Tom', 22]['May']) # Tom 22岁 5月份的数据
visit
  0, 700432
2 -1, 420270
Name: (Tom, 22), dtype: float64
```

print(df data.iloc[:2, :3])

```
name Tom Bill age 22 18 22 month visit

May 1 0.700432 -2.102260 -0.180631 2 -1.420270 -0.228577 -0.620010
```

DataFrame求和、求平均

```
print(df data.mean(level='month'))
            Tom
                                Bill
name
             22
                        18
                                  22
                                             18
age
month
      -0. 359919 -1. 165418 -0. 400320 -0. 132148
May
      0. 353720 -0. 223206 0. 231754 -0. 209951
June
print(df data. sum(axis=1, level='age'))
                    22
                              18
age
month visit
May
             0.519801 - 1.554628
            -2. 040279 -1. 040506
      1 0. 223188 -0. 693965
June
             0.947762 - 0.172350
```

数据合并

concat

```
df1 = pd. DataFrame({'A':{'1':'A1','2':'A2'},'B':{'1':'B1','2':'B2'}})
df2 = pd. DataFrame({'C':{'1':'C1','2':'C4'},'D':{'1':'D1','2':'D2'}})
print(df1)
print(df2)
print(pd. concat([df1, df2], axis=1))
```

```
1 A1 B1
2 A2 B2
C D
1 C1 D1
2 C4 D2
A B C D
1 A1 B1 C1 D1
2 A2 B2 C4 D2
```

В

```
df1 = pd. DataFrame({'A':{'1':'A1','2':'A2'},'B':{'1':'B1','2':'B2'}})
df2 = pd. DataFrame({'A':{'1':'A3','2':'A4'},'B':{'1':'B3','2':'B4'}})
print(df1)
print (df2)
print(pd. concat([df1, df2], ignore_index=True))
        Α
             В
                                   该参数可以消除重复索引
        A 1
            B1
     2
       A2
            B2
             B
        Α
        A3
            В3
       A4
           B4
             B
        Α
       A 1
            B1
       A2
            B2
       A3
            В3
```

3

A4

B4

```
df1 = pd. DataFrame({'A':{'1':'A1','2':'A2'},'B':{'1':'B1','2':'B2'}})
df2 = pd. DataFrame({'A':{'1':'A3','2':'A4'},'B':{'1':'B3','2':'B4'}})
print(df1)
print(df2)
print(pd. concat([df1, df2], keys=['x','y']))
```

- A B
 1 A1 B1
 2 A2 B2
 - A B
- 1 A3 B3
- 2 A4 B4

A B
x 1 A1 B1
2 A2 B2
y 1 A3 B3

Α4

В4

如果需要保留原来的索引,我们可以添加一层 索引进行区别

列名不一致

```
df1 =
pd. DataFrame({'A':{'1':'A1','2':'A2'},'B':{'1':'B1','2':'B2'},'C':{'1':'C1','
2':'C2'}})
df2 =
pd. DataFrame({'B':{'3':'B3','4':'B4'},'C':{'3':'C3','4':'C4'},'D':{'3':'D3','
4':'D4'})
print (df1)
                                         A1
                                             B1
print (df2)
                                             B2
print(pd. concat([df1, df2]))
                                          В
                                                  D
                                         В3
                                             C3
                                                D3
                                         B4
                                             C4
                                                D4
                                                         D
                                              B1
                                                  C1
                                                      NaN
                                              B2
                                                  C2
                                                      NaN
                                         NaN
                                              В3
                                                  C3
                                                        D3
                                              B4
                                         NaN
                                                  C4
                                                        D4
                                                                           74
```

```
df1 =
pd. DataFrame({'A':{'1':'A1','2':'A2'},'B':{'1':'B1','2':'B2'},'C':{'1':'C1','
2':'C2'}})
df2 =
pd. DataFrame({'B':{'3':'B3','4':'B4'},'C':{'3':'C3','4':'C4'},'D':{'3':'D3','
4':'D4'})
print(df1)
print (df2)
print(pd. concat([df1, df2], join='inner'))
           Α
               В
                  \mathsf{C}
          A 1
              B1
                  C1
                                对输入列取交集
          A2
              B2 C2
           В
                   D
       3
          В3
              С3
                  D3
```

B2 C2**B**3 C3

B1

B4

В

C4 D4

C1

C4

4

В4

```
df1 =
pd. DataFrame({'A':{'1':'A1','2':'A2'},'B':{'1':'B1','2':'B2'},'C':{'1':'C1','
2':'C2'}})
df2 =
pd. DataFrame({'B':{'3':'B3','4':'B4'},'C':{'3':'C3','4':'C4'},'D':{'3':'D3','
4':'D4'})
print (df1)
print (df2)
print(pd.concat([df1, df2], join_axes=[df1.columns]))
             В
                C
          Α
        A 1
             В1
                 C1
                                      指定采用哪个合并项的列
        A2
           B2
                C2
          В
             \mathbb{C}
                 D
        В3
            C3
                 D3
        B4 C4 D4
```

C4

C1

C2

C3

Α

A 1

A2

NaN

NaN

В

В1

B2

В3

B4

merge

一对一连接

```
employee group
                               ле'],
       Bob
              MGR
      Jake
              R&D
                               sa'],
      Lisa
               HR
       Sue
              R&D
             hire_date
  employee
       Bob
                   2004
()
                   2009
      Jake
                   2013
       Sue
3
                   2010
      Lisa
                    hire_date
  employee group
       Bob
              MGR
                          2004
      Jake
              R&D
                          2009
               HR
                          2010
      Lisa
3
              R&D
       Sue
                          2013
```

```
employee group
                  hire date
              MGR
       Bob
                        2004
0
             R&D
                        2009
      Jake
      Lisa
              HR
                        2010
3
              R&D
                        2013
       Sue
  group supervisor
    MGR
               Bi11
()
    R&D
                Tom
     HR
                Bob
  employee group
                  hire_date supervisor
       Bob
              MGR
                        2004
                                    Bi11
      Jake
             R&D
                        2009
                                      Tom
              R&D
       Sue
                        2013
                                     Tom
3
      Lisa
               HR
                         2010
                                      Bob
```

多对一连接

```
df6 = pd. DataFrame({'group':['MGR', 'R&D', 'R&D', 'HR', 'HR'],
'skill':['management','CS','math','office','english']})
df7 = pd. merge(df1, df6)
print (df1)
                                  employee group
print (df6)
                                       Bob
                                            MGR
print(df7)
                                      Jake
                                            R&D
                                      Lisa
                                            HR
                                 3
```

多对多连接

```
skill
 group
   MGR
         management
   R&D
                 CS
   R&D
               math
    HR
             office
     HR
            english
 employee group
                        skill
             MGR
       Bob
                  management
             R&D
      Jake
                           CS
             R&D
      Jake
                         math
             R&D
       Sue
                           CS
       Sue
             R&D
                         math
5
     Lisa
              HR
                       office
      Lisa
              HR
                      english
```

R&D

Sue

合并列名称不一致

• 两个待连接的DataFrame对

```
employee group
     Bob
            MGR
    Jake
            R&D
             HR
    Lisa
                             ╛,
            R&D
     Sue
       hire_date
 name
  Bob
             2004
             2009
 Jake
             2013
  Sue
 Lisa
             2010
employee group
                 hire date
            MGR
                       2004
     Bob
                       2009
    Jake
            R&D
             HR
                       2010
    Lisa
     Sue
            R&D
                       2013
                              80
```

合并索引列

```
df1 = pd. DataFrame({'employee'
                      group':
df2 = pd. DataFrame({'name': [']
                     'hire date Bob
df1_a = df1. set_index('employe Sue
df2 a = df2. set index('name') | Lisa
df3 = pd. merge(df1 a, df2 a, 1
print (df1 a)
print (df2 a)
print(df3)
```

```
group
employee
Bob
            MGR
Jake
            R&D
Lisa
             HR
Sue
            R&D
      hire date
            2004
Jake
            2009
            2013
            2010
             hire date
     group
       MGR
                  2004
Bob
Jake
       R&D
                  2009
Lisa
        HR
                  2010
Sue
       R&D
                  2013
```

```
'Sue'],
Lisa'],
2010]})
ndex=True)
```

join

```
df1_a = df1.set_index('employee')
df2_a = df2.set_index('name')
print(df1_a.join(df2_a))
```

	group	hire_date
employee		
Bob	MGR	2004
Jake	R & D	2009
Lisa	HR	2010
Sue	R & D	2013

DataFrame对象的合并列一个是索引列,

另一个是数据列

```
group
employee
                             Sue'],
Bob
            MGR
Jake
            R&D
             HR
            R&D
          hire_date
   name
                            me')
               2004
    Bob
               2009
   Jake
               2013
    Sue
   Lisa
               2010
```

			1 • 1 ,
	group	name	hire_date
0	MGR	Bob	2004
1	R & D	Jake	2009
3	HR	Lisa	2010
2	R&D	Sue	2013

数据连接操作中的集合操作规则

```
df1 = pd. DataFrame({'name': ['Peter', 'Paul', 'Mary'],
                    'food': ['fish', 'beans', 'bread']},
                   columns=['name', 'food'])
df2 = pd. DataFrame({'name': ['Mary',
                   'drink': ['wine', 'columns=['name', 'dr
                                                    food
                                            name
                                           Peter fish
                                           Paul beans
                                           Mary bread
print (df1)
print (df2)
                                             name drink
print(pd. merge(df1, df2, how='inner'))
                                             Mary wine
                                           Joseph beer
   指定连接方式: 内连接
                                                 food drink
                                           name
                                           Mary bread wine
```

```
print(df1)
print(df2)
print(pd. merge(df1, df2, how='left'))
          food
   name
         fish
  Peter
   Paul
         beans
                             指定连接方式: 左连接
   Mary
         bread
    name drink
    Mary wine
0
  Joseph
         beer
          food drink
   name
         fish
                 NaN
  Peter
   Paul
         beans
               NaN
         bread
                wine
   Mary
```

多个共同列

```
df1 = pd. DataFrame({'name': ['Peter', 'Paul', 'Mary'],
                    rank
              name
                                    , 'Mary', 'Paul'],
df2 = pd.
             Peter
                                   1]})
             Paul
print(df1
              Mary
print (df2)
print (pd.
                    rank
              name
                                      可以在merge函数参数中
             Peter
                                      指定suffixes参数来指定后
              Mary
                                      缀
              Paul
                    rank_x
                            rank_y
              name
             Peter
              Pau1
              Mary
                                                            86
```



```
      key1
      key2
      data1
      data2

      0
      a one -1.220379 -0.614543

      1
      a two -0.284783 0.901116

      2
      b one 0.339224 -0.512699

      3
      b two 0.532306 0.300087

      4
      a one -0.929099 1.680894
```

语法糖: df.groupby('keyl')['datal']

```
grouped = df['data1']. groupby(df['key1'])
print(grouped)
grouped.mean()
```

⟨pandas.core.groupby.groupby.SeriesGroupBy object at 0x013587B0⟩

```
key1
a -0.811420
b 0.435765
Name: data1, dtype: float64
```

```
means = df['data1'].groupby([df['key1'], df['key2']]).mean()
print(means)
means.unstack()
key1 key2
     one -1.074739
a
     two -0. 284783
     one 0. 339224
h
      two 0.532306
Name: data1, dtype: float64
key2
                    two
          one
key1
    -1. 074739 -0. 284783
а
b
    0. 339224 0. 532306
```

遍历各分组

GroupBy对象支持迭代,会生成一个包含组名和数据块的2维元组序列

```
print(name)
   print(group)
a
 key1 key2 data1 data2
    a one -1.220379 -0.614543
0
    a two -0.284783 0.901116
    a one -0.929099 1.680894
b
 keyl key2 data1 data2
    b one 0.339224 -0.512699
3
    b two 0.532306 0.300087
```

for name, group in df. groupby ('key1'):

```
grouped = df.groupby(df.dtypes, axis=1)
for dtype, group in grouped:
    print(dtype)
    print(group)
```

```
float64
                data2
      data1
0 -1. 220379 -0. 614543
1 -0. 284783 0. 901116
2 0.339224 -0.512699
3 0.532306 0.300087
4 -0.929099 1.680894
object
 key1 key2
     a
       one
       two
     a
     h
       one
       two
     а.
        one
```

groupby默认情况下在axis=0的轴向上分组,我们也可以其他轴向上进行分组

aggregate

	key	data1	data2
0	A	0	5
1	В	1	0
2	C	2	3
3	A	3	3
4	В	4	7
5	C	5	9

aggregate

```
print(df.groupby('key').aggregate(['min', np.median, 'max']))
```

	data1			data2		
	min	median	max	min	median	max
key						
A	0	1.5	3	3	4.0	5
В	1	2.5	4	0	3.5	7
C	2	3.5	5	3	6.0	9

aggregate

```
print(df.groupby('key').aggregate({'data1':'min', 'data2':'max'}))
```

```
    data1 data2
    key
    A 0 5
    B 1 7
    C 2 9
```

filter

```
print(df. groupby('key').std())
def filter_func(x):
    return x['data2'].std() > 4
print(df. groupby('key').filter(filter_func))
```

```
data2
key
    2. 12132 1. 414214
В
    2. 12132 4. 949747
 2. 12132 4. 242641
      data1 data2
 key
1 B
```

data1

transform

```
print(df)
print(df.groupby('key').transform(lambda x: x - x.mean()))
```

```
      key
      data1
      data2

      0
      A
      0
      5

      1
      B
      1
      0

      2
      C
      2
      3

      3
      A
      3
      3

      4
      B
      4
      7

      5
      C
      5
      9
```

```
      data1
      data2

      0
      -1.5
      1.0

      1
      -1.5
      -3.5

      2
      -1.5
      -3.0

      3
      1.5
      -1.0

      4
      1.5
      3.5

      5
      1.5
      3.0
```

apply

```
def norm_by_data2(x):
    x['data1'] /= x['data2'].sum()
    return x
print(df)
print(df.groupby('key').apply(norm_by_data2))
```

```
data1 data2
 key
          0
                 5
  В
5
                 9
                data2
      data1
 key
      0.000000
                    5
      0. 142857
  C 0. 166667
  A 0.375000
4
   B 0. 571429
5
      0.416667
```

数据透视表

- 数据透视表根据一个或多个键聚合一张表的数据, 将数据在矩形格式中排列,其中一些分组键是沿着行的,另一些是沿着列的。
- DataFrame拥有pivot_table方法,为groupby工具以及分层索引等操作提供一个便捷接口。

```
import numpy as np
  import pandas as pd
  import seaborn as sns
  titanic = sns.load dataset('titanic')
  print(titanic.head())
  print(titanic.columns)
  survived pclass
                                    deck embark town
                                                     alive alone
                 sex age ...
                   male 22.0 ...
                                     NaN
                                          Southampton
                                                          False
                                                        no
               1 female 38.0 ... C
                                                       yes False
                                         Cherbourg
               3 female 26.0 ... NaN Southampton
                                                       yes True
               1 female 35.0 ...
                                                       yes False
                                       C Southampton
               3 male 35.0 ...
                                          Southampton
                                                            True
                                 NaN
                                                       no
[5 rows x 15 columns]
Index(['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'fare',
      embarked', 'class', 'who', 'adult_male', 'deck', 'embark_town',
      'alive', 'alone',
```

3

dtype='object')

查看不同性别和船舱等级的生还情况

```
print(titanic.groupby(['sex','class'])['survived'].mean().unstack())
```

```
class First Second Third
sex
female 0.968085 0.921053 0.500000
male 0.368852 0.157407 0.135447
```

```
print(titanic.pivot_table('survived', index='sex', columns='class'))
```

透视表在表达更复杂的分组时有优势

查看不同性别和船舱等级的生还情况,同时考虑年龄划分

```
age = pd. cut(titanic['age'], [0, 18, 80])
print(titanic.pivot_table('survived', ['sex', age], 'class'))
```

class		First	Second	Third
sex	age			
female	(0, 18]	0.909091	1.000000	0. 511628
	(18, 80]	0.972973	0.900000	0. 423729
male	(0, 18]	0.800000	0.600000	0. 215686
	(18, 80]	0.375000	0.071429	0. 133663

再增加一个维度:对票价分组,其分割点是最低价和最高价的平均值

```
age = pd. cut(titanic['age'], [0, 18, 80])
fare = pd. qcut(titanic['fare'], 2)
print (titanic. pivot table ('survived', ['sex', age], [fare, 'class']))
                                                     (14.454, 512.329)
fare
                (-0.001, 14.454]
class
                                               Third
                                                                 First
                           First
                                    Second
sex
       age
female (0, 18]
                             NaN
                                 1. 000000 0. 714286
                                                              0.909091
       (18, 80]
                                  0.880000 0.444444
                                                              0.972973
                             NaN
male (0, 18]
                                 0.000000 0.260870
                                                              0.800000
                             NaN
       (18, 80]
                             (), ()
                                 0. 098039 0. 125000
                                                              0.391304
fare
                              Third
class
                   Second
sex
       age
female (0, 18]
                1.000000 0.318182
       (18, 80]
                0. 914286 0. 391304
       (0, 18] 0.818182 0.178571
male
       (18, 80)
                0. 030303 0. 192308
                                                                     104
```

根据性别和船舱等级分组,观测各分组里票价fare的均值和生还人数survived的总数

	fare		Sl	urvived		
class	First	Second	Third	First	Second	Third
sex						
female	106. 125798	21. 970121	16. 118810	91	70	72
male	67. 226127	19. 741782	12.661633	45	17	47