

Storage capacity in symmetric binary perceptrons

Benjamin Aubin [†], Will Perkins ^{*}, Lenka Zdeborová[†] †Institut de physique théorique, Université Paris Saclay, France *University of Birmingham, England

Summary

We reviewed the problem of computing the storage capacity of binary perceptron [1, 2] with random patterns. The perceptron problem is motivated by studies of simple artificial neural networks and we view it here as a random constraint satisfaction problem (CSP) where the vector of binary weights $\mathbf{w} \in \{\pm 1\}^N$ must satisfy M constraints. For the step constraint, the storage capacity was predicted in [1, 2] using replica method, but proving this result stays up to date an **open mathematical problem**. We consider instead **symmetric constraints** and compute the capacity α_c rigorously.

The simplest neural network

- $K \in \mathbb{R}$ a threshold / stability
- $X_{\mu i} \sim \mathcal{N}\left(0, \frac{1}{N}\right)$ i.i.d
- $\mathbf{X} \in \mathbb{R}^{M \times N}$
- M patterns $\mathbf{X}_{\mu=1...M}$
- Binary weights $\mathbf{w} \in \{\pm 1\}^N$
- Constraint density $\alpha \equiv M/N$

The perceptron satisfies the pattern μ if the vector w satisfies the constraint:

$$\mathbf{X}_{\mu}\mathbf{w} \geq K$$

Storage capacity problem

• Number of satisfying vectors: $\mathcal{Z}(\mathbf{X}) = \sum \mathbb{1}(\mathbf{w} \text{ satisfies all patterns } \mathbf{X}_{\mu})$ $\mathbf{w} \in \{\pm 1\}^N$

• Free entropy: $\phi(\alpha) = \lim_{N \to \infty} \frac{1}{N} \mathbb{E}_{\mathbf{X}}[\log(\mathcal{Z}(\mathbf{X}))]$

For a general constraint function φ , the **storage capacity** $\alpha_c(K)$ is defined as the largest value of α such that in the limit $N \to \infty$ and $\alpha = \mathcal{O}(1)$, all the constraints are simultaneously satisfiable with high probability (satisfiability threshold):

$$\alpha_{c}(K) = \inf \left\{ \alpha : \lim_{N \to \infty} \mathbb{P} \left[\exists \mathbf{w} / \forall \mu \in [1:M], \ \varphi \left(\mathbf{X}_{\mu} \mathbf{w} \right) = 1 \ \right] = 0 \right\} \underset{=}{?} \sup \left\{ \alpha : \lim_{N \to \infty} \mathbb{P} \left[\exists \mathbf{w} / \forall \mu, \ \varphi \left(\mathbf{X}_{\mu} \mathbf{w} \right) = 1 \ \right] = 1 \right\}$$

- ▶ For the binary perceptron, the capacity is computed when the RS free entropy vanishes $\phi(\alpha_c) = 0$ [2] $\longrightarrow \alpha_c^s(K=0) \simeq 0.833$, but proving this result remains a challenging mathematical problem
- ▶ We analyze symmetric variants of the classical step binary perceptron: rectangle and symmetric step

Definitions

Theorem

Let $z, z' \sim \mathcal{N}(0, 1)$ i.i.d. Let $\beta \in [0; 1], z_1 = \sqrt{\beta}z + \sqrt{1 - \beta}z'$ and $z_2 = \sqrt{\beta}z - \sqrt{1 - \beta}z'$

Theorem 1. Under the following assumption: for all choices of K > 0 and $\alpha > 0$ so that

- $p_K^{\mathbf{s},\mathbf{r},\mathbf{u}} \equiv \mathbb{P}[\varphi^{\mathbf{s},\mathbf{r},\mathbf{u}}(z) = 1]$
- $q_K^{\mathbf{r},\mathbf{u}}(\beta) \equiv \mathbb{P}[\varphi^{\mathbf{r},\mathbf{u}}(z_1) = 1 \land \varphi^{\mathbf{r},\mathbf{u}}(z_2) = 1]$

- $H(\beta) \equiv -\beta \log(\beta) (1-\beta) \log(1-\beta)$ $F_{K,\alpha}^{\mathbf{r},\mathbf{u}}(\beta) \equiv H(\beta) + \alpha \log(q_K^{\mathbf{r},\mathbf{u}}(\beta))$

$\varphi^s(z) \equiv \mathbb{1}(z \ge K)$

Main results and plots

- \star RS solution stable $\forall K \in \mathbb{R}$
- $\star \ \alpha_c^{\mathbf{s}} = \alpha_{RS}^{\mathbf{s}} < \alpha_a^{\mathbf{s}} \text{ for } K \in \mathbb{R}$ but not proven rigorously, second moment method fails...!
- $\star \ \alpha_c^{\mathbf{s}}(0) \simeq 0.833, \ \alpha_{AT}^{\mathbf{s}}(0) = 1.015$
- ★ Configuration space: frozen 1RSB

- 1. For all K > 0, we have $\alpha_c^{\mathbf{r}}(K) = -\log(2)/\log(p_K^{\mathbf{r}})$.
- 2. For all $K \in (0, K^* \simeq 0.817)$, we have $\alpha_c^{\mathbf{u}}(K) = -\log(2)/\log(p_K^{\mathbf{u}})$.

 $\partial_{\beta}^2 F_{K,\alpha}^{\mathbf{r},\mathbf{u}}(1/2) < 0$, there is exactly one $\beta \in (1/2,1)$ so that $\partial_{\beta} F_{K,\alpha}^{\mathbf{r},\mathbf{u}}(\beta) = 0$:

1^{st} moment

Proposition 2. If $\alpha > \alpha_a^{\mathbf{s},\mathbf{r},\mathbf{u}}(K) = \frac{-\log(2)}{\log(p_{\kappa}^{\mathbf{s},\mathbf{r},\mathbf{u}})}$, with high probability (whp) there is no satisfying assignment to the binary perceptron with the $\{s, r, u\}$ activation functions. Proof. $\mathbb{P}[\mathcal{Z}_{\mathbf{s},\mathbf{r},\mathbf{u}}(\mathbf{X}) > 0] \leq \mathbb{E}[\mathcal{Z}_{\mathbf{s},\mathbf{r},\mathbf{u}}(\mathbf{X})] = 2^N \mathbb{E} \left| \prod_{\mu=1}^M \varphi_{\mathbf{s},\mathbf{r},\mathbf{u}}(z_{\mu}(\mathbf{1})) \right| = 2^N p_K^{\mathbf{s},\mathbf{r},\mathbf{u}} = 2^N p_K^{\mathbf{s},\mathbf{r},\mathbf{u}}$ $\exp(N(\log(2) + \alpha \log(p_K^{\mathbf{s},\mathbf{r},\mathbf{u}}))) \to 0 \text{ as } N \to \infty$

⋄ Rectangle - r

 $\varphi^r(z) \equiv \mathbb{1}(|z| \le K)$

⋄ Symmetric

step - u

 $\varphi^u(z) \equiv \mathbb{1}(|z| \ge K)$

♦ Step - s

 \star RS solution stable $\forall K \in \mathbb{R}^+$

• For $K < K^* \simeq 0.817$

* RS solution stable

tropy: $\phi_a = \phi_{RS}$

ment method

- * Annealed entropy matches the RS entropy: $\phi_a = \phi_{RS}$
- $\star \ \forall K > 0, \ \alpha_c^{\mathbf{r}}(K) = \alpha_a^{\mathbf{r}}(K) = \alpha_{RS}^{\mathbf{r}}(K)$: by 2^{nd} moment method
- * Configuration space: frozen 1RSB

* Configuration space: frozen 1RSB

2^{nd} moment

1. $\forall K > 0, \ \forall \alpha < \alpha_a^{\mathbf{r}}(K), \ \exists c_2 > 0 \ s.t \ \mathbb{P}[\mathcal{Z}_{\mathbf{r}}(\mathbf{X}) > 0] \ge \frac{1}{c_2} > 0$ Proposition 3.

2. $\forall K \in (0, K^*), \forall \alpha < \alpha_a^{\mathbf{u}}(K), \exists c_2 > 0 \text{ s.t } \mathbb{P}[\mathcal{Z}_{\mathbf{u}}(\mathbf{X}) > 0] \geq \frac{1}{c_2} > 0$

Proof. As $\mathcal{Z}_{\mathbf{r},\mathbf{u}}(\mathbf{X}) \in \mathbb{N}$, $\mathbb{P}[\mathcal{Z}_{\mathbf{r},\mathbf{u}}(\mathbf{X}) > 0] \geq \frac{\mathbb{E}[\mathcal{Z}_{\mathbf{r},\mathbf{u}}(\mathbf{X})]^2}{\mathbb{E}[\mathcal{Z}_{\mathbf{r},\mathbf{u}}(\mathbf{X})^2]}$

- $\mathbb{E}[\mathcal{Z}_{\mathbf{r},\mathbf{u}}(\mathbf{X})]^2 = (2^N p_K^{\mathbf{r},\mathbf{u}})^2$
- If the supremum is achieved for $\beta = 1/2$, using Laplace's method, $\exists c_2 > 0$ s.t: $\mathbb{E}[\mathcal{Z}_{\mathbf{r},\mathbf{u}}^{2}(\mathbf{X})] \leq 2^{N} e^{N \sup_{\beta \in [0;1]} \{F_{K,\alpha}^{\mathbf{r},\mathbf{u}}(\beta)\}}} \leq c_{2} 2^{N} e^{N(\{H(1/2) + \alpha \log(q_{K}^{\mathbf{r},\mathbf{u}}(1/2))\}})} = c_{2} 4^{N} (p_{\kappa}^{\mathbf{r},\mathbf{u}})^{2\alpha N}$
- u: $\forall K, \forall \alpha < \alpha_a^r(K), \beta^* = 1/2$ || r: $\forall K \leq K^*, \forall \alpha < \alpha_a^r(K), \beta^* = 1/2$. Wrong for $K \ge K^*$: 2^{nd} method fails - onset of the RSB region.

Frozen 1RSB

- $|\bullet| \partial_{\beta} F_{K,\alpha}^{\mathbf{r},\mathbf{u}}|_{\beta=1} = +\infty$
- $\forall K, \alpha, \exists d_{min}(\alpha, K) : \forall d \in$ $]0; d_{min}[, \ \forall \mathbf{w}_1, \mathbf{w}_2 \in \{\pm 1\}^N]$ SAT, $\mathbb{P}\left[\frac{1}{N}\mathbf{w}_1^T\mathbf{w}_2 = 1 - d\right] = 0$

- The configuration space is frozen: clusters of single solutions at a distance d > d_{min}

Replicas

• For $K \ge K^*$

- True for s, r and u

- RS solution stable for $K < K^*$, where K^* is the intersection between AT-line and annealed capacity
- 1RSB capacity provides a small correction
- 1RSB solution unstable $(q_0 \neq 0 \text{ while symmetry should impose})$ $q_0 = 0$
- Probably Full RSB (analysis to be done)

2.5 2.0

Conclusion and summary of the results

While the storage capacity for the step binary perceptron has not been proven yet, we provided a rigorous proof of the capacity for similar symmetric constraints (rectangle and symmetric step). Constraint Range of KStorage capacity

		Trange of It	Diorage capacity
Step function	$z \geq K , \varphi^s$	$\forall K \in \mathbb{R}$	RS
Rectangle	$ z \le K, \varphi^r$	$\forall K \in \mathbb{R}^+$	Annealed
Symmetric step	$ z \ge K, \varphi^u$	$0 < K < K^* = 0.817$	Annealed
Symmetric step	$ z \ge K, \varphi^u$	$\forall K > K^* = 0.817$	FRSB(?)

References

- E. Gardner & B. Derrida. Optimal storage properties of neural network models. J. Phys. A: Math. and Gen, 1988.
- W. Krauth & M. Mézard. Storage capacity of memory networks with binary couplings. J. Phys. France, 1989.