VARIATIONAL PRINCIPLES

Jonathan Gai

5th May 2022

Contents

0.1 The Brachistochrone Problem	2
Calculus for Functions of \mathbb{R}^n 1.1 Constraints and Lagrange Multipliers	5
Euler-Lagrange Equations 2.1 First Integrals of the Euler-Lagrange Equations	7

Lecture 1 29 Apr. 2022

Motivation

0.1 The Brachistochrone Problem

Problem. Particle slides on a wire under influence of gravity between two fixed points *A*, *B*. Which shape of the wire gives the shortest travel time, starting from rest?

The travel time is $T = \int_A^B \frac{d\ell}{v(x,y)}$, and by energy conservation, and by energy conservation

$$\frac{1}{2}mv^2 + mgy = 0 \implies v = \sqrt{-2gy}.$$

So

$$T[y] = \frac{1}{\sqrt{2g}} \int_0^{x_2} \frac{\sqrt{1 + (y')^2}}{\sqrt{-y}} dx$$

subject to y(0) = 0, $y(x_2) = y_2$.

0.2 Geodesics

Problem. What is the shortest path γ between two points A, B on a surface.

Take $\Sigma = \mathbb{R}^2$. The distance along γ is

$$D[y] = \int_A^B d\ell = \int_{x_1}^{x_2} \sqrt{1 + (y')^2} dx,$$

and we want to minimize D by varying γ .

0.3 Introduction

In general, we want to minimize (maximize)

$$F[y] = \int_{x_1}^{x_2} f(x, y, y') \, \mathrm{d}x$$

among all functions s.t. $y(x_1) = y_1$, $y(x_2) = y_2$. The expression is a *functional*. (A function on a space of functions). Functions map numbers to numbers, and functionals map functions to numbers.

Area under the graph is when f = y and the length of a curve is when $f = \sqrt{1 + (y')^2}$.

Calculus of variations finds extrema of functionals on space of functions.

Notation. • $C(\mathbb{R})$ is space of continuous functions on \mathbb{R} .

- $C^k(\mathbb{R})$ is the space of functions with continuous kth derivatives.
- $C^k_{(\alpha,\beta)}$ is the space of functions with continuous kth derivatives and $f(\alpha) = f(\beta)$.

We need to specify the function space beforehand. It is a branch of functional analysis—Part III analysis on the space of functions, while Analysis I is analysis on the number line. Variational Principles follows principles in Nature, where the laws follow from extremizing functionals.

Example (Fermat's Principle). Light between two pints travel along paths which require least time.

Example (Principle of Least Action). Let T be the kinetic energy $\frac{m|\dot{\mathbf{x}}|^2}{2}$ and potential energy $V = V(\mathbf{x})$.

$$S[\gamma] = \int_{t_1}^{t_2} (T - V) \, \mathrm{d}t$$

is minimized along paths of motion.

Leibniz commented on this, saying that "we live in the best of all worlds".

Feynman's take on this: "This is wrong. In quantum theorem the motion takes place along all possible path with different possibilities". [See Part III QFT]

In this course, we discuss

- 1. necessary condition for extrema of the Euler Lagrange Equations;
- 2. lots of examples (geometry, physics, problems with constraints);
- 3. second variation (some sufficient condition of extrema).

The following books will be useful

- 1. Gelfand Fomin "Calculus of Variations";
- 2. DAMTP notes (e.g. P. Townsend);
- 3. Lectures are self-contained.

Lecture 2 2 May 2022

1 Calculus for Functions of \mathbb{R}^n

We consider $f \in C^2(\mathbb{R}^n)$, that is, all functions $f : \mathbb{R}^n \to \mathbb{R}^n$ with continuous second derivatives. The point $\mathbf{a} \in \mathbb{R}$ is *stationary* if

$$\nabla f(\mathbf{a}) = \partial_1 f, \dots, \partial_n f|_{\mathbf{x} = \mathbf{a}} = 0, \quad \partial_i f = \frac{\partial f}{\partial x^i}.$$

If we expand near \mathbf{a} , we have

$$f(\mathbf{x}) = f(\mathbf{a}) + (\mathbf{x} - \mathbf{a}) \cdot \nabla |_{\mathbf{a}} + \frac{1}{2} (x_i - a_i)(x_j - a_j) \partial_{ij}^2 f|_{\mathbf{a}} + \mathcal{O}(|\mathbf{x} - \mathbf{a}|^2).$$

The *Hessian matrix* is $H_{ij} = \partial_i \partial_j f = H_{ij}$. We shift the origin to set $\mathbf{a} = \mathbf{0}$, and diagonalize $H(\mathbf{0})$ by orthogonal transformation

$$H' = R^T H(\mathbf{0}) R = \begin{pmatrix} \lambda_1 & \lambda_2 & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}, \quad f(\mathbf{x}') - f(\mathbf{0}) = \frac{1}{2} \sum_i \lambda_i (x_i')^2 + \mathcal{O}(|\mathbf{x}|^2).$$

We consider several cases.

- 1. If all $\lambda_i > 0$, $f(\mathbf{x}') > f(\mathbf{0})$ in all directions, it is a *local minimum*.
- 2. If all $\lambda_i < 0$, $f(\mathbf{x}') < f(\mathbf{0})$ in all directions, it is a *local maximum*.
- 3. If some $\lambda_i > 0$ and some $\lambda_i < 0$, f increases in some directions, and decreases in other directions. It is a *saddle point*.
- 4. If some $\lambda_i = 0$ and the rest are of the same sign, we need to consider higher order terms in expansion.

The special case when n=2, we have $\det(H)=\lambda_1\lambda_2$ and $\mathrm{Tr}(H)=\lambda_1+\lambda_2$. If $\det(H)>0$, $\mathrm{Tr}(H)>0$, it is a local minimum. If $\det(H)<0$, $\mathrm{Tr}(H)<0$, it is a local maximum. If $\det(H)<0$, it is a saddle point. If $\det(H)=0$, we need to look at third and higher derivatives.

Remark. 1. If $f: D \to \mathbb{R}$ maps from a domain. We need to check boundary values too for global extrema.

2. If f is harmonic on \mathbb{R}^2 , that is $f_{xx} + f_{yy} = 0 \implies \text{Tr}(H) = 0$. If $D \subseteq \mathbb{R}^2$, all turning points are saddle points, and the extrema must be on the boundary.

Example. Take $f(x,y) = x^3 + Y^3 - 3xy$, and we have $\nabla f = (3x^2 - 3y, 3y^2 - 3x)$. So the critical points are points where $x^2 - y = 0$ and $y^2 - x = 0$. So the stationary points are x = 0, y = 0 and x = 1, y = 1. The Hessian matrix is

$$H = \begin{pmatrix} 6x & -3 \\ -3 & 6y \end{pmatrix}.$$

At (0,0), det(H) = -9 < 0, so it's a saddle point at (0,0). And at (1,1), det(H) = 27 > 0, Tr(H) = 12 > 0, it is a local minimum.

Figure 1: Plot of *f* showing the critical points

1.1 Constraints and Lagrange Multipliers

Example. Find the circle centered at (0,0) with the smallest radius, which intersects the parabola $y = x^2 - 1$.

Figure 2: Circles and parabola

The direct method is to solve the constraints

$$f = x^2 + y^2 = x^2 + (x^2 - 1)^2 = x^4 - x^2 + 1.$$

If $\partial f = 0$, we have $4x^3 - 2x = 0$. So the solutions are (0, -1) with radius 1 and $(\pm \frac{1}{\sqrt{2}}, -\frac{1}{2})$ with radius $\frac{\sqrt{3}}{2} < 1$ which is the global minimum.

The other method is *Lagrange Multiplier*. Define $h(x,y,\lambda)=f(x,y)-\lambda g(x,y)$ where g(x,y)=0 is the constraint and λ is the Lagrange multiplier. Now we extremize the function $h(x,y)=x^2+y^2-\lambda(y-x^2+1)$ over 3 variables with no constraints; that is,

$$\begin{cases} \frac{\partial h}{\partial x} = 2x + 2\lambda x = 0\\ \frac{\partial h}{\partial y} = 2y - \lambda = 0\\ \frac{\partial h}{\partial \lambda} = y - x^2 + 1 = 0. \end{cases}$$

Note that the last equation just gives the constraint back. The solutions are (0, -1) and $(\pm \frac{1}{\sqrt{2}}, -\frac{1}{2})$ as before will $\lambda = -2$ and $\lambda = -1$, respectively.

We show that Lagrange Multiplier works by geometry.

Figure 3: Gradients of the functions

We know that ∇g is perpendicular to g=0 and ∇f is perpendicular to f being constant. They must be parallel so $\nabla f = \lambda \nabla g$ and $\nabla (f - \lambda g) = 0$.

If we have multiple constraints with $f : \mathbb{R}^n \to \mathbb{R}$ subject to $g_a(\mathbf{x}) = 0$ for a = 1, ..., k, then we let

$$h(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_k)=f-\sum_a\lambda_ag_a.$$

And solve for $\frac{\partial h}{\partial x^i} = 0$ and $\frac{\partial h}{\partial \lambda^i} = 0$.

Lecture 3 4 May 2022

2 Euler-Lagrange Equations

If we want to extremize the functional

$$F[y] = \int_{\alpha}^{\beta} f(x, y, y') dx.$$
 (2.1)

for f given. It depends on y fixing only $y(\alpha) = y_1$ and $y(\beta) = y_2$. We assume that

Figure 4: Different possible functions

the extremum exists, y = y(x), and consider small perturbation $y \to y + \epsilon \eta(x)$ with η satisfying $\eta(\alpha) = \eta(\beta) = 0$. We want to compute $F[y + \epsilon \eta]$.

Lemma 2.1: Fundemental Lemma of Calculus of Variations

If $g: [\alpha, \beta] \to \mathbb{R}$ is continuous on $[\alpha, \beta]$ and $\int_{\alpha}^{\beta} g(x) \cdot \eta(x) dx = 0$ for all η continuous on $[\alpha, \beta]$ with $\eta(\alpha) = \eta(\beta) = 0$, then g = 0 on $[\alpha, \beta]$.

Proof. Assume otherwise, $\exists \overline{x} \in (\alpha, \beta)$ such that $g(\overline{x}) \neq 0$. Without loss of generality, $g(\overline{x}) > 0$, then there exists interval $[x_1, x_2] \subseteq (\alpha, \beta)$ such that f(x) > c > 0 for $x \in [x_1, x_2]$ and some c. Take

$$\eta(x) = \begin{cases} (x - x_1)(x_2 - x), & \text{if } x \in [x_1, x_2] \\ 0, & \text{otherwise} \end{cases}$$
(2.2)

So

$$\int_{\alpha}^{\beta} g(x)\eta(x) dx > c \int_{x_1}^{x_2} (x - x_1)(x_2 - x) dx > 0.$$

Remark. The function η is an example of a bump function. There are C^k bump functions

$$\eta(x) = \begin{cases} ((x - x_1)(x_2 - x))^{k+1}, & \text{if } x \in [x_1, x_2] \\ 0, & \text{otherwise} \end{cases}.$$

Now we go back to equation (2.1).

$$F[y + \epsilon \eta] = \int_{\alpha}^{\beta} f(x, y + \epsilon \eta, y' + \epsilon \eta') dx$$

$$= F[y] + \epsilon \int_{\alpha}^{\beta} \frac{\partial f}{\partial y} \eta + \frac{\partial f}{\partial y'} \eta' dx + \mathcal{O}(\epsilon^{2})$$

$$= F[y] + \epsilon \left(\int_{\alpha}^{\beta} \frac{\partial f}{\partial y} \eta - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \eta dx + \frac{\partial f}{\partial y'} \eta \Big|_{\beta}^{\alpha} \right)$$

At the extremum, we have $F[y + \epsilon \eta] = F[y] + \mathcal{O}(\epsilon^2)$; that is, when $\frac{\partial F}{\partial \epsilon}\Big|_{\epsilon=0} = 0$. So

$$\int_{\alpha}^{\beta} \left(\frac{\partial f}{\partial y} - \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) \right) \eta \, \mathrm{d}x.$$

By Lemma, we know

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) - \frac{\partial f}{\partial y} = 0. \tag{2.3}$$

This is the Euler-Lagrange equation, and it is a necessary condition for an extremum.

Remark. 1. Equation (2.3) is a second order ODE for y(x) with boundary conditions $y(\alpha) = y_1$ and $y(\beta) = y_2$.

- 2. The left-hand side of equation (2.3) is denoted $\frac{\delta F}{\delta y(x)}$, and called *functional derivative*. Some books use $\delta y = \epsilon \eta(x)$ as small variation.
- 3. There are other boundary conditions possible. For example, $\frac{\partial f}{\partial y'}\Big|_{\alpha,\beta} = 0$.
- 4. One needs to be careful with derivatives. $\frac{\partial f}{\partial y} = \left(\frac{\partial f}{\partial y}\right)_{x,y'}$ treating x,y,y' as independent, and the *total derivative* is

$$\frac{\mathrm{d}h}{\mathrm{d}x} = \frac{\partial h}{\partial x} + \frac{\partial h}{\partial y}y' + \frac{\partial h}{\partial y'}y''$$
$$\frac{\mathrm{d}}{\mathrm{d}x} = \frac{\partial}{\partial x} + y'\frac{\partial}{\partial y} + y''\frac{\partial}{\partial y'}.$$

Example. If $f = x \cdot ((y')^2 - y^2)$, then

$$\partial_x f = (y')^2 - y^2, \quad \partial_y f = -2xy, \quad \partial_{y'} f = 2xy'.$$

So
$$\frac{df}{dx} = (y')^2 - y^2 - 2xyy' + 2xy'y''$$
.

2.1 First Integrals of the Euler-Lagrange Equations

In some cases equation (2.3) (second order ODE) can be integrated once to a first order ODE called the *first integral*.

If f does not explicitly depend on y, that is, $\frac{\partial f}{\partial y} = 0$. Then equation (2.3) gives $\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\partial f}{\partial y'} \right) = 0$, and

$$\frac{\partial f}{\partial y'} = \text{const.} \tag{2.4}$$

Example. Geodesics on \mathbb{R}^2 have the functional

$$F[y] = \int_{\alpha}^{\beta} \sqrt{dx^2 + dy^2} = \int_{\alpha}^{\beta} \sqrt{1 + (y')^2} dx.$$

By equation (2.4), we must have $\frac{\partial f}{\partial y'} = \frac{y'}{\sqrt{1+(y')^2}} = \text{const. So } y' \text{ is constant, calling it } m$. We have y = mx + c, a straight line.