TPC 3

Exercício 1: Determine, caso existam, os limites seguintes:

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

a)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$
; b) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$; c) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$;

c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$
;

d)
$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^2}$$
; e) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$; f) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$.

$$(e) \lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2};$$

$$f$$
) $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^6+y^2}$

Exercício 2: Estude quanto à continuidade as funções seguintes:

a)
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0); \end{cases}$$

c)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$$

Exercício 3: Considere a função $f: \mathbb{R}^2 \setminus \{(0,0)\} \longrightarrow \mathbb{R}$ definida por $f(x,y) = \frac{2xy}{x^2 + y^2}$.

Indique qual das afirmações seguintes é verdadeira:

- \square a função f é prolongável por continuidade à origem e, sendo q o seu prolongamento por continuidade, tem-se q(0,0)=0
- \square a função f não é prolongável por continuidade à origem, mas $\lim_{(x,y)\to(0,0)} f(x,y) = 0$
- \square a função f não é prolongável por continuidade à origem, pois o limite $\lim_{(x,y)\to(0,0)} f(x,y)$ não existe
- \square a função f é prolongável por continuidade à origem e, sendo q o seu prolongamento por continuidade, tem-se g(0,0)=2