Computational Logic - Assignment 3

Alessandro Marostica

December 7, 2023

Exercise 2

Let's break down the proof in two parts:

- 1. R is symmetric $\Rightarrow \varphi \Rightarrow \Box \diamond \varphi$
- 2. $\varphi \Rightarrow \Box \diamond \varphi \Rightarrow R$ is symmetric

R is symmetric $\Rightarrow \varphi \Rightarrow \Box \diamond \varphi$:

Let's assume that φ is true in a world w, $w \models \varphi$. We need to show that $w \models \Box \diamond \varphi$. By definition of modal operators, since R is symmetric, if v is accessible from w, then w is accessible from v. Therefore, if φ is true in v, then φ is also true in w. This implies that $\Box \varphi$ is true in w and $\diamond \varphi$ is true in w. Therefore $\Box \diamond \varphi$ holds in w. Since this holds for an arbitrary world w where φ is true, we can conclude that $\varphi \Rightarrow \Box \diamond \varphi$.

$\varphi \Rightarrow \Box \diamond \varphi \Rightarrow \mathbf{R}$ is symmetric:

To show symmetry, we need to show that if wRv then vRw for all worlds w and v. Let's assume wRv, this means that v is accessible form w. Let's also consider the formula $\varphi = \neg \Box \neg \diamond \bot$, which is not necessarily false. By assuming $\varphi \Rightarrow \Box \diamond \varphi$, we have $\neg \Box \neg \diamond \bot \Rightarrow \Box \diamond \neg \Box \neg \diamond \bot$. In the world w:

- 1. $\neg \Box \neg \diamond \bot$ is true in w since $\diamond \bot$ is true in vv, which is accessible from w.
- 2. $\square \diamond \neg \square \neg \diamond \bot$ is true in w by assumption.

This implies that $\neg \Box \neg \diamond \bot$ is true in all worlds accessible from w, including v. Now, considering formula $\diamond \bot$, we have that this is true in v since $\neg \Box \neg \diamond \bot$ is true in v. Therefore vRw. Since this is true in an arbitrary world, we can conclude that R is symmetric.

Exercise 3

As in Exercise 2, we will break down this proof in two parts:

- 1. F is euclidean $\Rightarrow F \models \diamond \varphi \Rightarrow \Box \diamond \varphi$
- 2. $F \models \diamond \varphi \Rightarrow \Box \diamond \varphi \Rightarrow F$ is euclidean

F is euclidean \Rightarrow $F \models \diamond \varphi \Rightarrow \Box \diamond \varphi$:

Let w be a world in W, Suppose $w \models \diamond \varphi$, meaning there exists a world v such that wRv and $v \models \varphi$. We now need to show that $w \models \Box \diamond \varphi$. Thanks to the euclidean property, if wRv and wRu then vRu for any u in W. Since wRv is reflexive, vRw, then vRv. This means that $\diamond \varphi$ is true at v. Now $\Box \diamond \varphi$ is ture at w because $\diamond \varphi$ is ture at all worlds accessible from w.

 $F \models \diamond \varphi \Rightarrow \Box \diamond \varphi \Rightarrow F$ is euclidean:

Let's take any x, y, z in W such that xRy and xRz. We need to show that yRz. Let's consider the formula $\phi = \phi \varphi$, where ϕ is an arbitrary formula. Since xRy there exists u such that xRu and $u \models \varphi$. Now, xRz and, by assuming $F \models \phi \varphi \Rightarrow \Box \phi \varphi$, we have $xRz \Rightarrow zRw$ for any w such that xRu. Therefore we have zRw for some w such that zRu. Since z is accessible from z, z is also accessible from z, z in z

Exercise 4

Model 1

- 1. $x_1 \Vdash \diamond \diamond \Box \bot$
- 2. $x_2 \Vdash (\diamond \Box \bot) \land \neg (\diamond \diamond \diamond \Box \bot)$
- $3. x_3$ ⊩ □⊥
- 4. $x_4 \Vdash \diamond \diamond \diamond \Box \bot$

Model 2

- 1. $x_1 \Vdash \diamond \diamond \square \perp$: x_1 is the world where two jumps are needed to reach a world with no accessible neighbours.
- 2. $x_2, x_4 \Vdash \diamond \Box \bot$: States 2 and 4 cannot be uniquely characterized since they can both directly reach a world with no accessible neighbours.
- 3. $x_3 \Vdash \Box \bot$: x_3 is the world with no accessible neighbours.

Exercise 5

1.
$$\vdash \diamond (P \rightarrow Q) \rightarrow (\Box P \rightarrow \diamond Q)$$

1.		$\diamond(P \to Q)$	Assumption
2.		$\neg \Box \neg (P \to Q)$	Rewrite 1
3.		$\Box P$	Assumption
4.		$\Box \neg Q$	Assumption
5.	ШГ	P	□ <i>e</i> 3
6.		$\neg Q$	□ <i>e</i> 4
7.		$P \rightarrow Q$	Assumption
8.			
0.		Q	$\rightarrow e5,7$
9.		<u>Q</u>	→ e5, 7 ¬e6, 8
			·
9.		Т	¬e6,8
9. 10.		\bot $\neg (P \to Q)$	¬e6,8
9. 10. 11.			¬ <i>e</i> 6, 8 ¬ <i>i</i> 7 − 9 □ <i>i</i> 5, 10
9.10.11.12.		$ \begin{array}{c} \bot \\ \neg (P \to Q) \\ \Box \neg (P \to Q) \\ \bot \end{array} $	¬ <i>e</i> 6,8 ¬ <i>i</i> 7 − 9 □ <i>i</i> 5, 10 ¬ <i>e</i> 2, 11
9.10.11.12.13.		$ \begin{array}{c} \bot \\ \neg(P \to Q) \\ \Box \neg(P \to Q) \\ \bot \\ \neg \Box \neg Q \end{array} $	$\neg e6, 8$ $\neg i7 - 9$ $\Box i5, 10$ $\neg e2, 11$ $\neg i4 - 12$

The box from line 5 to line 10 should be dashed, yet I had no idea how to make one.

$$2. \ \vdash \Box(\Box P \to Q) \lor \Box(\Box Q \to P)$$

To prove the invalidity of this sequent it is sufficient to provide such Kripke structure:

The leftmost world does not satisfy either of the two operands of the given disjunction, we can then conclude that the sequent is not a tautology.