MatrixTools

UCAS, Matrix Analysis and Applications, 2023

中国科学院大学(国科大) 矩阵分析与应用 2023 大作业

付国 202328014628082

Usage

python mt.py --input "path/of/input/txt/file" --option "option-name" --output
"path/of/output/txt/file"

Example

```
python mt.py --input example.txt --option QR --output qr.txt
```

Alias of arguments

Argument	Alias
input	-i
option	-opt,opt
output	-0

Available options (case free)

Options	Input	Function	Output	Alias
QR_Gram_Schmidt	A(m,n)	Calculate QR decoposition of A with modified Gram-Schmidt algorithm.	Q(m,n), $R(n,n)$	QR, Gram_Schmidt
Householder	A(m,n)	Calculate QR decomposition of A with Householder reduction, such that $A=QR$, where R is the reduced uppertrapezoidal result.	Q(m,m), $R(m,n)$	
Givens	A(m,n)	Calculate QR decomposition of A with Householder reduction, such that $A=QR$, where R is the reduced uppertrapezoidal result.	Q(m,m), $R(m,n)$	

Options	Input	Function	Output	Alias
PLU	A(n,n)	Calculate PLU decomposition of A such that $A=PLU$, where P is a permutation matrix, L is lower-triangular, and U is upper-triangular.	P(n, n), $L(n, n)$, $U(n, n)$	LU
determinant	A(n,n)	Calculate the determinant of $\it A$.	$\det \operatorname{of} A$	det
rank	A(m,n)	Calculate the rank of $\it A$.	$\operatorname{rank}\operatorname{of}A$	
URV	A(m,n)	Calculate URV $\label{eq:calculate} \mbox{decoposition of } A, \mbox{such} \\ \mbox{that } A = URV^T.$	U(m,m), $R(m,n)$, $V(n,n)$	
equation	C(m,n+1), the augmented matrix	Solve $Ax=b$ for a general form solution. The input C is $[A b]$. The solution form is $s=ps+\sum_i k_i g s_i$, where ps is a particular solution to $Ax=b$, and gs_i are solutions to $Ax=0$	$[ps],$ $[gs_list],$ where each solution has shape $(n,1)$	eq
row_echelon	A(m,n)	Reduce A into row echelon form with partial pivoting.	R(m,n)	
reduced_row_echelon	A(m,n)	Reduce A into reduced row echelon form with partial pivoting and Gauss-Jordan method.	R(m,n)	

Attention

- ullet The input for solving equation Ax=b is the augmented matrix C=[A|b].
- ullet A must be square to have determinant and PLU decomposition.
- Difference between QR_Gram_Schmidt and Householder, Givens
 - o In QR_Gram_schmidt , you orthogonalize columns of A to get Q, so Q has identical shape to A and R is square.
 - \circ In Householder and Givens , you reduce A to upper-trapezoidal R with orthogonal reduction, so R has identical shape to A and Q is square.
- The reduced results of Householder and Givens is upper-trapezoidal, which maybe not in row echelon form.