Обработка данных РНК-секвенирования с целью изучения функций белка Pcbp1

Потапенко Евгений

Оксана Станевич, Евгений Бакин Институт биоинформатики

Проблема и суть задачи

and apoptosis

Проблема и суть задачи

Объект / Данные

Объект исследования: эмбриональные стволовые клетки (ЭСК) мыши в исходном(Native) и праймированном (EpiLC) плюрипотентных состояниях с нокаутом по гену Pcbp1 и без.

Данные: 12 наборов SE ридов длинной ~ 100 п.н. полученные на секвенаторе Illumina NovaSeq 6000 SP.

ЭСК в исходном состоянии

ЭСК в исходном состоянии с нокаутом Pcbp1

ЭСК в праймированном состоянии

ЭСК в праймированном состоянии с нокаутом Pcbp1

P1-1 Epi LC

P1-3Epi LC

P1-22Epi LC

Sample

S1 Native

S2 Native

S3 Native

11

12

3

10

55 765 949

46 110 750

Number of

42 380 298

41 535 143

50 376 749

reads

47 364 318

P1-1 Native 4 45 108 795 P1-3 Native 5 47 062 337 P1-22Native 6 43 063 892 7 S1 Epi LC 50 987 437 S2 Epi LC 8 35 868 628 S3 Epi LC 9 39 986 664

Work numbe

Цель проекта

Изучение профиля экспрессии генов эмбриональных стволовых клеток мыши при нокаутировании гена Pcbp1.

Задачи и методы

- 1) Анализ литературы по теме
- 2) Процессинг и оценка качества ридов
- 3) Выравнивание на референсный геном
- 4) Визуализация полученных данных
- 5) Дифференциальный анализ экспрессии генов
- 6) Анализ полученных результатов

FASTQC		
Trimmomatic		
STAR		
RseQC		
featureCounts		
DESeq2, edgeR, limma-voom		
GO		
KEGG		

Reads and mapping quality

Distribution of reads

DGE analysis

WTNative 1

WTNative 3

P1Native 3

P1Native 1

EpiLC Pcbp1 KO

DGE analysis

Overlapping of DE genes

Number of DE genes

KEGG Pathway Enrichment Analysis of PCBP1

Stage: Naive State: Pcbp1 KO

Stage: EpiLC State: Pcbp1 KO

Defined genes of interest:

Паракринные влияния

SYMBOL	GENENAME	PATHWAY/FUNCTION
Wnt5a and Wnt9a	Ligands in Wnt-signaling pathway.	Wnt signaling
Inhbe	inhibin beta-E	TGF-β signaling
Cnpy1	canopy FGF signaling regulator 1	FGF signaling
Cnpy2	canopy FGF signaling regulator 2	

Дальнейшие планы:

- 1) Анализ имеющихся в общем доступе данных по интересующим сигнальным путям и генам интереса.
- Сопоставления данных RNA-seq и ChIP-seq для определения генов потенциально регулируемых на транскрипционном уровне.

Github репозиторий проекта:

https://github.com/PotapenkoEugene/Bioinf_project_fall_2019

