Accurate RFID Positioning in Multipath Environments

Jue Wang & Dina Katabi

RFIDs

Battery-free RF stickers with unique IDs

RFIDs

Battery-free RF stickers with unique IDs

RFIDs

Imagine you can localize RFIDs to within 10 to 15 cm!

5-cent stickers to tag any and every object Reader's range is ~15m

No more customer checkout lines

No more customer checkout lines

RFIDs on Basket

Many applications can be enabled by 10-15 cm RFID localization

Why don't we have accurate RFID localization?

The Challenge: Multipath Effect

Localization uses RSSI or Angle-of-Arrival (AoA)

But, signal bounces off objects in the environment

Multipath propagation limits the accuracy of RFID localizations

PinIt

Accurate RFID localization (e.g., 10 to 15cm) even in multipath and non-line-of-sight settings

- Focuses on proximity to reference RFIDS
- Exploits multipath effects to increase accuracy

Nearby RFIDs have similar profiles with smaller shifts in the peaks

Capturing Multipath Profiles with an Antenna Array

Use textbook equations to process $y_1, ..., y_n$ and obtain the multipath profile

Capturing Multipath Profiles with an Antenna Array

Accurate multipath profiles require many antennas in the array

Array is bulky and expensive

Capturing Multipath with a Sliding Antenna

Can capture very accurate multipath profiles with a single sliding antenna

How do we detect proximity from multipath profiles?

Naïve approach: correlate profiles!

Correlation cannot capture peak shifts

How do we detect proximity from multipath profiles?

Borrow from speech recognition!

Computes the total warping to obtain s_1 from s_2

Computes the total warping to obtain s_1 from s_2

Computes the total warping to obtain s_1 from s_2

Compute DTW by finding the route with lowest total cost

Computes the total warping to obtain s_1 from s_2

DTW captures proximity from multipath profiles

Experimental Results

Implementation & Evaluation

Implemented a PinIt Reader in USRP

Commercial off-the-shelf RFIDs

Experiment

- 200 RFIDs deployed on the shelves in the library spaced by 15 cm
- Objective: Find randomly placed books by localizing their RFIDs

PinIt improve the accuracy by 6x in comparison to AoA and 10x in comparison to RSSI

Accuracy as a Function of Reference Spacing

Accuracy as a Function of Reference Spacing

Can pin the accuracy to the nearest neighbor

Automatic Checkout

Five items in two adjacent baskets at checkout:

Which Items Belong to Which Basket?

Is the Cookie Bag in the Orange or Blue Basket?

Is the Cookie Bag in the Orange or Blue Basket?

Is the Cookie Bag in the Orange or Blue Basket?

Is the Noodle in the Orange or Blue Basket?

Is the Noodle in the Orange or Blue Basket?

Is the Noodle in the Orange or Blue Basket?

Conclusion

- PinIt provides accurate RFID positioning even in multipath and NLOS settings
- It uses DTW to compare RFID multipath profiles
- It enables new applications including eliminating checkout lines, object tracking in libraries and pharmacies, smart homes, ...