Predictive Analytics

Statistical Variation & Regression Recap

Associate Professor Ole Maneesoonthorn

Associate Professor in Econometrics and Statistics

Melbourne Business School

O.Maneesoonthorn@mbs.edu

Statistical Variation

Population vs Sample

Sample Statistics

- The **population** mean μ is unknown
- From our sample of data $X_1, X_2, ..., X_n$, we can compute an estimate (statistic)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- But you also know that if you are to collect another sample, you will get different data
- $\rightarrow \overline{X}$ varies with the sample

Sample Statistics

- Since \bar{X} varies with the sample, we would like to know how variable it is
- This is quantified by the **standard error** of the sample mean

$$StdErr(\bar{X}) = \frac{s}{\sqrt{n}}$$

- Here s is the standard deviation of the data
- The more variable the data, the more variable the sample mean
- The more data points you have (n) the less variable the sample mean
- More data → more accurate estimate

Sampling Distributions

- In order to do inference, we need to know the distribution of the sample statistic
- Theoretically, the sample mean is **normally distributed** (if n > 30)
 - Its mean is located at the population mean μ
 - Its variation is defined by the standard error of the sample mean
- Inference?
 - Confidence intervals gives you likely values of the population mean
 - Hypothesis test establishing concrete evidence in favour of a certain hypothesis

Confidence Intervals 5 Easy Steps:

- 1. Compute the sample mean
- 2. Compute the sample standard deviation
- 3. Compute the standard error of the sample mean
- 4. Choose the probability level (90%, 95%, 99%)
- 5. Compute the lower and upper bounds of the confidence interval

Estimate $\pm Q \times Std.error$

Coverage	90%	95%	99%
Q	1.65	1.96	2.58

Hypothesis testing - 5 easy steps:

- 1. Form the null hypothesis ("status quo")
- 2. Form the alternative hypothesis ("suspected relation")
- 3. Compute the sample mean, standard deviation and standard error
- 4. Compute the test statistic & p-value
- 5. Make a decision regarding the hypothesis

Hypothesis testing - the test statistic:

$$T = \frac{\bar{X} - \mu_0}{SE(\bar{X})}$$

The p-value depends on the definition of your <u>alternative</u> hypothesis

In the case of the alternative being
$$H_a$$
: $\mu < \mu_0$
$$p-value = Pr(T < Tstat)$$

In the case of the alternative being
$$H_a$$
: $\mu > \mu_0$
$$p-value = Pr(T>Tstat)$$

Hypothesis testing – decision rules

- Set your tolerance (significance) level
 - 5% is a typical value
 - (There is a 5% chance you will reject a true null hypothesis)
 - Decrease this number if you wish to be more conservative
- Compare your p-value to the tolerance level
 - If p-value is smaller than the tolerance level → reject the null hypothesis. There is strong evidence in favour of the alternative hypothesis.
 - If p-value is larger than the tolerance level → fail to reject the null hypothesis. There is not enough evidence to support the alternative hypothesis.
- Notice: our final conclusion is about the alternative!

- Sample mean used here as a conceptual tool
- Statistical inference applies to any type of statistics
- Need:
 - Sample estimate (statistic)
 - Standard error
 - Reasonable sample size
- Normal distribution generally holds for most statistics given large sample size
- You can apply confidence intervals, hypothesis testing using the same set of rules

Regression

The multiple linear regression

$$Y = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k + error$$

- Captures the **linear** relationship between the dependent variable Y and k potential explanatory variables
- Focus so far has been on the diagnostic relationship
- i.e. the **interpretation** of the slope coefficients b_1 , b_2 , ..., b_k

The multiple linear regression – interpretation

$$Y = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k + error$$

• Given all other variables held fixed, an increase in 1 unit of X_1 is expected to shift Y by b_1 units

The multiple linear regression – accounting for nonlinear relations

$$Y = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k + error$$

- The explanatory variables can include
 - Quadratic/polynomial terms to capture curvature effects
 - Dummy variables capture the effect of categorical/qualitative variables
 - **Log** transforms percentage interpretations
 - Interaction terms to account for varying effects

The multiple linear regression – model statistics

$$Y = c + b_1 X_1 + b_2 X_2 + \dots + b_k X_k + error$$

- Adjusted R-squared proportion of variation of Y explained by model
- Residual standard error/model error smaller error = larger R-squared
- Statistical significance of coefficients judged by the p-value of each coefficient

"ESSENTIALLY, ALL MODELS ARE WRONG, BUT SOME ARE USEFUL."

George E. Box (1987) (Famous Statistician)

- Are all predictors useful? Which one(s) should we include?
- Example: one predictor
 - Two options include it or not
 - \rightarrow Two possible models
- Example: two predictors
 - Four possible models include X1 AND X2; include X1 only; include X2 only; do not include both.

- Generally, if you have 'j' predictors
- \rightarrow you have 2^j possible models
- → 10 predictors gives 1024 possible models

How do we choose the "best" model?

Logical reasoning – remove irrelevant (nonsense) predictors.

- Not every bit of the data set need to be used
- Exclude any exact relationships, e.g. profit=revenue-cost
- Highest adj. R-squared does not mean best model
- Ask yourself: Does the model make logical sense?

Using statistics!

- Backward procedure: Big → small
- Forward procedure: Small → big (subject to ordering)
- Stepwise procedure: Certain algorithm rules determine the pathway
- Variable removed based on statistical criteria typically the p-value

Combination of both – involve judgement!