Data Analysis

Julius

Exploratory Data Analysis (EDA) Julius

Edgar Rios Linares

Problem

Problem description

Context

The original dataset contains 1000 records with 20 categorical attributes prepared by Prof. Hofmann.

In this dataset, each record represents a person taking out a loan from a bank.

Each person is classified as good or bad credit risk based on the set of attributes.

Link to the original dataset at

UCI Machine Learning

Content

The selected attributes:

- Age (numeric)
- Sex (text: male, female)
- Job (numeric: 0 unskilled and non-resident, 1 unskilled and resident, 2 skilled, 3 highly skilled)
- Housing (text: own, rent, or free)
- Saving accounts (text little, moderate, quite rich, rich)
- Checking account (numeric, in DM Deutsch Mark)
- Credit amount (numeric, in DM)
- Duration (numeric, in month)
- Purpose(text: car, furniture/equipment, radio/TV, domestic appliances, repairs, education, business, vacation/others
- Risk (Value target Good or Bad Risk)

Objective

Train a model to predict from new data whether a person applying for a loan represents a good or bad risk

Julius.Ai

Go website Julius, create account https://julius.ai

Create Account

Go website Julius, create account https://julius.ai

Create Account

Go website Julius, create account https://julius.ai

New Project

Load File

Chat with files

Prompt

Create an exploratory data analysis (EDA)

Dataset overview: Provides an informative summary of the dataset, including the number of rows and columns, the data types in each column, and the number of non-null values.

Statistical description: Generates a statistical summary of the dataset, including metrics such as mean, median, standard deviation, minimum, maximum, and quartiles for numeric columns.

Correlation matrix: Calculates the correlation matrix for numeric variables in the dataset.

Heatmap: Visualizes the correlation matrix using a heatmap, making sure that the correlation values are readable and the graph is well labeled.

Summary Dataset

Provides an informative summary of the dataset, including the number of rows and columns, the data types in each column, and the number of non-null values

Summary Dataset

and details from Data types:

. Head: The first few rows of the dataset provide examples of the provided data (

	Unnamed: 0	age	sex	job	housing	saving_accounts	checking account	credit amount	duration	
0	0	67	male	2	own	NULL	little	1169	6	radi
1	1	22	female	2	own	little	moderate	5951	48	radi
2	2	49	male	1	own	little	NULL	2096	12	edu
3	3	45	male	2	free	little	little	7882	42	furn
4	4	53	male	2	free	little	little	4870	24	car

Statistical Summary

Generates a statistical summary of the dataset, including metrics such as mean, median, standard deviation, minimum, maximum, and quartiles for numeric columns.

Statistical Summary

-). This summary includes metrics such as mean, standard deviation, minimum, maximum, and quartiles.
- Categorical Columns Unique Values:

The number of unique values for the categorical columns is as follows:

- sex: 2 unique values (sex: 2 unique values)
- housing: 3 unique values ({outputs_dict['979ce

Correlation matrix

Calculates the correlation matrix for numeric variables in the dataset

Correlation matrix

Note that the heatmap uses a "coolwarm" color palette and annotations for ease of interpretation.

The work is done, great job!"

You have a basic EDA quickly

Educator in Al

Artificial Intelligence

Data Engineering

Machine Learning

Data Science

TLinkedin —> https://www.linkedin.com/in/erlinares/

☐ GitHub: https://github.com/erlinares/365_Al_Journey/

Discord: https://discord.gg/5fFM2zh8

Edgar Rios Linares