

TD 6 – Optimisation Réseaux de neuronnes

▷ Exercice 1. On s'intéresse ici à la modélisation via un neurone formel.

Définition 1. Un neurone formel est une fonction paramétrée par n+1 paramètres w_1, \ldots, w_n, b :

$$g: \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \longrightarrow \mathbb{R}$$

 $(x, w, b) \longmapsto g(x, w, b) := \sigma(\sum_{i=1}^n w_i x_i + b)$

où σ est une fonction donnée qui s'appelle une fonction d'activation. Chaque paramètre w_i s'appelle le poids synaptique associé au signal d'entrée x_i .

On prendra dans la suite, sauf mention contraire, comme fonction σ la fonction sigmoïde :

$$\sigma \colon \mathbb{R} \longrightarrow \mathbb{R}$$

$$z \longmapsto \sigma(z) \coloneqq \frac{1}{1 - e^{-z}}.$$

La figure 1 schématise un neurone formel.

- 1. produit scalaire entre les entrées x et les poids synaptiques $w: w^T x$;
- 2. ajout d'une valeur de référence (biais b) : $z = w^T x + b$
- 3. application de la fonction d'activation à la valeur obtenue $z: a = \sigma(z)$

Définition 2. On a à notre disposition K points $x^k \in \mathbb{R}^n$ et $y^k \in \mathbb{R}$, on appelle apprentissage du neurone l'estimation par les moindres carrés des paramètres du neurone.

1.1. Écrire le problème aux moindres carrés qui défini l'apprentissage. On donnera en particulier la fonction résidu r en précisant clairement l'espace de départ et l'espace d'arrivée.

OPTIMISATION TD 6

Figure 1 – Représentation schématique d'un neurone.

- **1.2.** Ce problème est-il un problème aux moindres carrés linéaires? Si oui, on donnera la matrice X.
- 1.3. Si on prend comme fonction d'activation σ l'identité, le problème au moindres carrés devient-il linéaire? Si oui, on donnera la matrice X.
- **1.4.** Calculer la dérivée de la fonction à minimiser $f(\beta)$.
- ▶ Exercice 2. On considère maintenant le cas d'un réseau à plusieurs couches données par le schéma de la figure 2.

FIGURE 2 – Schéma d'un réseau avec une couche en entré $(a^0 = x)$, 3 couches cachés et une couche en sortie.

- **2.1.** On note L le nombre de couches (sans compter la couche d'entrée), donnez :
 - les nombre de neurones n_l pour $l=1,\ldots,L$ dans chaque couche et la dimension $n_0=n$ des données en entrée;
 - Les dimensions des paramètres W^l et b^l intervenant dans la couche l.
- **2.2.** On note a^l la sortie de la couche l (a^l s'appelle dans la terminologie des réseaux de neurones l'activation de la couche l). Écrire a^{l+1} en fonction de a^l, W^{l+1}, b^{l+1} et de σ . En déduire la fonction exprimant y en fonction de x et des paramètres du modèle : $y(x, \beta)$.
- **2.3.** On suppose que l'on a comme données K couples $(x^k, y^k)_{k=1,\dots,K}$, où $x^k \in \mathbb{R}^n$ et $y^k \in \mathbb{R}$. Écrire dans ce cas le problème aux moindres carrés qui définit l'apprentissage.

OPTIMISATION TD 6

2.4. Calculer les dérivées partielles de $y(x,\beta)$ par rapport à $\beta^4=(W^4,b^4)$ et par rapport à β^3 .

- **2.5.** En déduire les dérivées partielles de la fonction à minimiser par rapport à ces paramètres β^4 et β^3 .
- **2.6.** Généralisation au cas d'un réseaux à L couches (hors la couche d'entrée) avec un nombre n_l de neurones pour la couche l (la sortie y étant toujours un élément de \mathbb{R}).

Remarque 1. En pratique :

- la sortie y est dans \mathbb{R}^{n_L} ;
- On n'utilise pas les moindres carrées, mais une autre fonction coût ;

— ...