CSCE 312 LAB 2

•••

By Dr. Eun Jung Kim

!! Deadlines !!

- Demo Deadline: Feb 08, 2024
 - You need to show demo at regular lab time
- Report Deadline: Feb 11, 2024

Digital Circuit Design Using Hardware

Use a Simulator Instead of Hardware

- We will use a tool named Logisim to design the circuits
- Please download Logisim to your machine using following link https://github.com/logisim-evolution/logisim-evolution/releases
- Version 3.8.0

AND Gate Using Logisim

Problem 1 Part 1(Demo+Report)

Design logic circuits for

- \circ F = abc + ab + bc + ca
- \circ G = a'b' + a'bc' + ab'c'

Problem 1 Part 1

- What 74xx series circuit you used?
 - For AND gate, it may be 7408

Problem 1 Part 2 and 3(Report)

Compute the propagation delay of the circuit

Assume, AND = 22ns, OR = 22ns, NOT = 22ns, So, propagation delay = 22 + 22 + 22 = 66nS

Mention parameters such as Vcc, Temperature, Resistance, Capacitance

Switching Characteristics at Vcc=5V,Ta=25°C								
Symbol	Parameter	Conditions	Min	Тур	Max	Units		
tplh	Propagation Delay Time LOW-to-HIGH Level Output	CI=15pF RI=400R			22	nS		
tphl	Propagation Delay Time HIGH-to-LOW Level Output	CI=15pF RI=400R			15	nS		

Problem 2

Design a car emergency system where a switch is pressed that number should be shown in 7-segment LED display.

Total switch = 10(From switch 0 to switch 9)

If none of the switches are pressed, the LED should be off.

Encoder

- Used to convert decimal numbers into binary (n-bit)
- Inputs = 2^n , outputs = n
- For example, a 4:2 encoder takes 4 inputs and has 2 outputs
- Input Y0 can be represented in 00, input Y2 can be represented in 01 .. and so on

INPUTS				OUTPUTS	
Y3	Y2	Y1	YO	A1	AO
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

Boolean Expression for a 4:2 Encoder

Here,

- A1 = Y3 + Y2
- A0 = Y3 + Y1

For example, if Y2 is set, Then A1 = 0+1 = 1 and A0 = 0+0 = 0So, Output = 10

INPUTS				OUTPUTS		
Y3	Y2	Y1	YO	A1	A0	
0	0	0	1	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	0	1	1	

For this Problem, we have 10 cars. So you need an encoder that supports that.

Decoder

- It does exact opposite of the encoder, so take n inputs and produces 2^n outputs
- For example as a 2 to 4 decoder, it takes 2 bit inputs, and produce 4 outputs
- e.g) 01 -> 0010(1)
- How to produce boolean expressions for decoder?

7 segment display

- Develop the truth table of 7 segment display
- Build boolean expressions for all the inputs.

Problem 2 Todos

- Write some short answers(Report)
- Understand 7-segment display
- Design the system using Encoder and Decoder (Demo)
- Add screenshots in your report and brief explanation of how it works(Report)

Thank You.

Any Questions??