الموضوع الأول

التمرين الأول:

- \overrightarrow{v} in the initial \overrightarrow{v} initial \overrightarrow{v} in the initial \overrightarrow{v} initial \overrightarrow{v} in the و \overrightarrow{v} مرتبطان خطیا فإن المستویان (P) و (P') غیر متوازیان فهما متقاطعان
 - (P') هي اتحاد المستويان المتعامدان المنصفان لزاويتان المحصورتان بين المستويين (P) و (P').

$$d(A, (P')) = d(A, (P)) e^{-\frac{|(1)-2(2)+0-2|}{\sqrt{1^2+(-2)^2+1^2}}} = \frac{5}{\sqrt{6}} \circ d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{|2(1)+(2)-0+1|}{\sqrt{2^2+1^2+(-1)^2}} = \frac{5}{\sqrt{6}} \text{ is } d(A, (P)) = \frac{1}{\sqrt{6}} \text{ is } d(A, (P)$$

(AH) النقطة (AH) هي تقاطع المستقيم (AH) المستوي (P) نعوض التمثيل الوسيطي للمستقيم (AH) في المعادلة الديكارتية للمستوي . H(0;0;1) و منه t=-1 و منه t=-1 و منه t=-1 و منه t=-1 و منه t=-1(P') نعوض التمثيل الوسيطي للمستقيم (AH') في المستقيم (AH') المستوي (P') نعوض التمثيل الوسيطي للمستقيم (AH') $t' = \frac{1}{3}$ نجد $t' = \frac{1}{3}$ و منه $t' = \frac{1}{3}$ نجد

و لدينا $S=AI\times IH$ هي AHH' مساحة المثلث $I\left(\frac{7}{6};\frac{1}{6};\frac{2}{3}\right)$ و لدينا (5

التمرين الثاني:

الجزء الأول:

 $\lim_{x \to +\infty} \sqrt{2x+8} = +\infty$. $\lim_{x \to +\infty} \sqrt{2x+8} = +\infty$ ب)در اسة اتجاه تغیر الدالة f المشتقة $\frac{1}{\sqrt{2x+8}} = \frac{2}{\sqrt{2x+8}} = \frac{1}{\sqrt{2x+8}}$ و منه fمتز ایدة علی هذا

*************** الأستاذ: جو اليل أحمد ***********

3) رسم المنحنى

الجزء الثاني:

. التخمين نلاحظ من المثيل ان (u_n) المتتالية متزايدة و هي متقاربة نحو 4 فاصلة نقطة تقاطع (u_n) و المنصف الأول .

. محققة
$$0 \le u_0 \le 4$$
 البرهان بالتراجع : لدينا $0 \le u_0 \le 4$

 $0 \le u_{n+1} \le 4$ نفرض ان $0 \le u_n \le 4$ و لنبر هن

و منه [0;4] یکافئ ان $f(0) \leq f(u_n) \leq f(u_n)$ لان الدالة f متز ایدة علی المجال $u_n \leq d$

. $0 \leq u_n \leq 4$ فإن $n \leq u_n$ فإن $n \leq u_{n+1} \leq 4$ و منه من أجل كل عدد طبيعي $n \leq 2\sqrt{2} \leq f(u_n) \leq 4$

 (u_n) در اسة اتجاه تغير المتتالية

نین
$$u_{n+1} - u_n = \sqrt{2u_n + 8} - u_n = \frac{(\sqrt{2u_n + 8} + u_n)(\sqrt{2u_n + 8} - u_n)}{\sqrt{2u_n + 8} + u_n} = \frac{2u_n + 8 - u_n^2}{\sqrt{2u_n + 8} + u_n} = \frac{(4 - u_n)(2 + u_n)}{\sqrt{2u_n + 8} + u_n}$$
 لدينا

. فإن $0 \geq u_{
m n+1} - u_{
m n} \geq 0$ فإن $0 \leq u_{
m n} \leq 4$ إذن المتتالية متز ايدة

$$(4-u_{n+1}) = 4 - \sqrt{2u_n + 8} = \frac{(4+\sqrt{2u_n+8})(4-\sqrt{2u_n+8})}{(4+\sqrt{2u_n+8})} = \frac{16-2u_n-8}{(4+\sqrt{2u_n+8})} = 2\frac{4-u_n}{(4+\sqrt{2u_n+8})}$$
و منه

. و هو المطلوب ($4-u_{n+1}$) في ان $(4-u_{n+1}) \leq \frac{1}{2}$ و المطلوب ($4-u_{n+1}$) و المطلوب ($4-u_{n+1}$)

$$(4-u_n) \leq \frac{1}{2} \ (4-u_{n-1}) \leq \frac{1}{2^2} \ (4-u_{n-2}) \leq \frac{1}{2^3} \ (4-u_{n-3}) \leq \cdots \leq \frac{1}{2^n} \ (4-u_0)$$
مما سبق نجد

أي أن $(4-u_n) \le \frac{4}{2^n}$ أي أن $(4-u_n) \le \frac{1}{2^n}$ و هو المطلوب

$$\lim_{n \to +\infty} rac{4}{2^n} = 0$$
 بما ان $\lim_{n \to +\infty} (4 - u_n) \le \lim_{n \to +\infty} rac{4}{2^n}$

 $\lim_{n \to +\infty} \frac{4}{2^n} = 0$ بالمرور الى النهاية لدينا $\lim_{n \to +\infty} (4 - u_n) \le \lim_{n \to +\infty} \frac{4}{2^n}$ بما ان $0 \le (4 - u_n) \le \frac{4}{2^n}$ بما ان

فإن

. 4 و منه نهاية المتتالية هي ا $\lim_{n o +\infty} (4-u_n) = 0$

************ الأستاذ: جو اليل أحمد **

التمرين الثالث:

.
$$\begin{cases} z' = 1 + i \\ z'' = 1 - i \end{cases}$$
 يكافئ $\frac{z}{z^2 - 2z + 2} = 0$ نحسب المميز $\Delta = -4$ للمعادلة حلين هما $\Delta = -2$ يكافئ (1) حل (1) المعادلة $\Delta = -2$ المعادلة حلين هما $\Delta = -2$ المعادلة حلين عما $\Delta = -2$

$$A$$
 الكتابة على الشكل الأسي $\frac{z_2}{z_1} = \frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i = \frac{e^{\frac{\pi}{2}i}}{2}$ صورة النقطة B صورة النقطة B صورة النقطة B بالدوران الذي زاويته B و مركزه B .

$$z=x+iy$$
 عدد تخیلي صرف اي $z=x+i$ عدد تخیلي صرف اي $z=x+i$ عدد تخیلي صرف نضع (Γ) عدد عدد تخیلي عدد تخیلي عدد تخیلي صرف نضع

لدينا
$$\frac{z-2}{z-1} = \frac{x^2+y^2-2x+2yi-x-iy+2}{x^2+y^2-2x+1} = \frac{x^2+y^2-3x+2}{x^2+y^2-2x+1} + \frac{y}{x^2+y^2-2x+1}$$
 نخيلي صرف يعني الدينا $\frac{z-2}{z-1} = \frac{(\overline{z}-1)(z-2)}{(\overline{z}-1)(z-1)} = \frac{\overline{z}.z-2\overline{z}-z+2}{(\overline{z}-1)(z-1)}$ نخيلي صرف يعني $\frac{z-2}{z-1} = \frac{(\overline{z}-1)(z-2)}{(\overline{z}-1)(z-1)} = \frac{\overline{z}.z-2\overline{z}-z+2}{(\overline{z}-1)(z-1)}$ مجموعة النقط هي الدائرة التي مركزها $\frac{z}{z-1} = \frac{(\overline{z}-1)(z-2)}{(\overline{z}-1)(z-1)} = \frac{\overline{z}.z-2\overline{z}-z+2}{(\overline{z}-1)(z-1)}$ النقطة $\frac{z}{z-1} = \frac{(\overline{z}-1)(z-2)}{(\overline{z}-1)(z-1)} = \frac{\overline{z}.z-2\overline{z}-z+2}{(\overline{z}-1)(z-1)}$ مجموعة النقط هي الدائرة التي مركزها $\frac{z}{z-1} = \frac{(\overline{z}-1)(z-2)}{(\overline{z}-1)(z-1)} = \frac{\overline{z}.z-2\overline{z}-z+2}{(\overline{z}-1)(z-1)}$

4) أ) تعيين طبيعة S=hoR هو التشابه الذي مركزه O و نسبته 2 و زاويته $\frac{\pi}{2}$.

ب) العبارة المركبة للتحويل
$$S=hoR$$
 هي $z'=2\mathrm{e}^{rac{\pi}{2}\mathrm{i}}$.

ج) مجموعة النقط (Γ') صورة (Γ) بالتحويل S هي عن دائرة مركزها ω' حيث $\omega' = S(\omega)$ و منه $\omega'(0;3)$ و نصف قطرها $\omega'(0;3)$. $\omega'(0;3)$ و نصف قطرها $\omega'(0;3)$. $\omega'(0;3)$ النقطة (S(K)=K') .

التمرين الرابع:

الجزء الأول :

دراسة اتجاه تغير
$$g$$
 لدينا المشتقة $\frac{2x^2-1}{x} = \frac{2x^2-1}{x}$ السارة البسط (1

х	0		$\frac{\sqrt{2}}{2}$		+ ∞
g'(x) إشارة		_	0	+	

و منه g متزايدة على المجال $\left[\frac{\sqrt{2}}{2};+\infty\right]$ و متناقصة على المجال g

$$\left[\frac{\sqrt{2}}{2}; +\infty\right[$$
 سنجال g متزایدة علی المجال g متزایدة علی المجال $g\left(\frac{\sqrt{2}}{2}\right) = \left(\frac{\sqrt{2}}{2}\right)^2 + 1 - \ln\left(\frac{\sqrt{2}}{2}\right) = \frac{3+\ln 2}{2}$: $g\left(\frac{\sqrt{2}}{2}\right)$ و هو عدد موجب و بما أن g متزایدة علی المجال g فیمة حدیة صغری إذن $g(x)$ موجبة علی المجال g فیمة حدیة صغری و متناقصة علی المجال g

******* الأستاذ: جو البل أحمد *******************************

الجزء الثاني:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{\ln x}{x} + x - 1 \right] = +\infty \qquad , \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{\ln x}{x} - 1 \right] = -\infty \qquad \qquad (1)$$

.
$$f'(x) = \frac{\frac{1}{x} \times x - lnx}{x^2} + 1 = \frac{x^2 - 1 - lnx}{x^2} = \frac{g(x)}{x^2}$$
 هي $g(x) = \frac{1}{x} \times x - lnx$ (2) أ) المشتقة على المجال] بين المجال على المجال على المجال المج

بما ان g(x) موجبة على المجال]g(x) فإن f متزايدة على هذا المجال

х	0		+ ∞
f'(x)		+	
f(x)			→ +∞ +
	$-\infty$		

$$f'(1)=2$$
 و لدينا $y=f'(1)(x-1)+f(1)$ و $y=f'(1)(x-1)+f(1)$ و 2 و كتابة معادلة المماس $y=2x-2$ إذن المعادلة هي

- الدينا $\frac{\ln x}{x}$ و نهاية الفرق عند $\infty +$ يساوي الصفر حسب التزايد المقارن و منه y = x 1 معادلة المستقيم (4) المقارب المائل للمنحنى y = x 1 معادلة المستقيم (x = x 1)
- (Δ) و (C) لدينا $f(x) y = \frac{\ln x}{x}$ هذا الفرق موجب على المجال]1; + ∞ [و منه يكون (Δ) يقع فوق (Δ) على هذا المجال
 - و الفرق سالب على المجال [1; 0] و منه (C) يقع تحت (Δ) على هذا المجال.
 - 5) رسن البيان و المستقيم المقارب و المماس

- و) أ)النقطة A(1;0) تنتمي إلى A(m) يعني ان A(1;0) تنتمي A(1;0) عني ان A(1;0) محققة (بتعويض إحداتيات A(1;0) في المعدلة A(1;0)).
- ب)المناقشة بيانيا حسب قيم العدد الحقيقي m عدد حلول المعادلة f(x)=mx-m المناقشة دائرية
- لما $[0,\infty]$ نلاحظ ان المستقيم $(0,\infty)$ و $(0,\infty)$ يتقاطعان في نقطة و حيدة $M\in [0,\infty]$ نلاحظ ان المستقيم وحيد هو 1.
 - لما [1:2] نلاحظ ان المستقيم (Δ_m) و (Δ_m) يتقاطعان في نقطتان المعادلة تقبل حلين .
 - لما 2 m=2 نلاحظ ان المستقيم (Δ_m) و (Δ_m) يتقاطعان في نقطة و حيدة M=2 لما M=2
 - .. لما $m \in]2;+\infty[$ لما يتقاطعان في نقطتان إذن المعادلة تقبل حلين $m \in]2;+\infty[$
 - $]0;+\infty[$ الدالة الأصلينة لدالة $x\mapsto \frac{\ln x}{x}$ هي الدالة $x\mapsto \frac{\ln x}{x}$ على المجال $x\mapsto \frac{\ln x}{x}$ الدالة الأصلينة لدالة $x\mapsto \frac{\ln x}{x}$ على المجال $x\mapsto \frac{\ln x}{x}$

.....
$$I_n = \int_1^n f(x) dx = \int_1^n \left[\frac{\ln x}{x} + x - 1 \right] dx = \left[\frac{(\ln x)^2}{2} + \frac{1}{2} x^2 - x \right]_1^n = \frac{(\ln(n))^2}{2} + \frac{1}{2} n^2 - n + \frac{1}{2} n^2$$

ج)لاينا
$$I_1=0$$
 و هي أصغر قيمة للعدد الطبيعي $I_2=\frac{(ln3)^2}{2}+\frac{1}{2}$ و $I_3=\frac{(ln3)^2}{2}+\frac{1}{2}$ و $I_2=\frac{(ln2)^2}{2}+\frac{1}{2}$ و $I_1=0$ لان $I_1=0$ الان $I_2=1$ و $I_2<2$ و $I_3>2$ و $I_3>2$

·************ الأستاذ: جو اليل أحمد*************************

التصحيح المفصل لاختبار مادة الرياضيات بكالوريا 2016 شعبة علوم التجريبية

الموضوع الثاني

التمرين الأول:

$$1=-2t+5$$
 حل وحيد $t=2$ محققة إذن C هي نقط تقاطعهما. C تعني ان الجملة C الجملة C حل وحيد C حل وحيد C حل C حل محققة إذن C

2) أ) الشعاع $\overrightarrow{n}(2;11;-7)$ ناظيمي على المستوي (P) المعين بالمستقيمين (Δ) و (Δ) يعنى انه عمودي على شعاعي توجيها هما $\vec{n} \cdot \vec{v} = 2(3) + 11(2) - 7(4) = 6 + 22 - 28 = 0$. محققة \overrightarrow{n} . $\overrightarrow{u} = 2(-2) + 11(1) - 7(1) = -4 + 11 - 7 = 0$

 $\overrightarrow{n}(2;11;-7)$ مرتبط خطيا مع الشعاع $\overrightarrow{BC}(-2;-11;7)$ يعني أن الشعاع (P) يعني أن الشعاع على (P) $\overrightarrow{BC} = -\overrightarrow{n}$ و هذا محقق لأن

3) أ) إثبات أن المجموعة (P') هي مستوي من الجملة نستنتج ان (P') معين بالشعاعين (D; 12; -6) و هما شعاعان غير مرتبطان خطيا لأن $\frac{-6}{2} \neq \frac{12}{9}$ و يمر من النقطة K(3;12;-7) فهو مستوي التحقق من ان X = 13x - y - 2z - 41 = 0 هي معادلة و هي (P') بتعويض الجملة في المعادلة الديكارتية نجد (P') $(3-\beta)$ و المعادلة الديكارتية نجد (P')محققة

(P') ايجاد نقطة تقاطع (P') مع (Δ) نعويض التمثيل الوسيطي للمستقيم في المعادلة الديكارتية للمستوي و نحاول إيجاد الوسيط

و منه بالتويض في التمثيل الوسيطي نجد k=2 و منه k=2 و منه بالتويض في التمثيل الوسيطي نجد k=3. D(4; 3; 4) ان

ايجاد نقطة تقاطع (P') مع (Δ') نعويض التمثيل الوسيطي للمستقيم في المعادلة الديكارتية للمستوي و نحاول إيجاد الوسيط

و منه بالتويض في التمثيل الوسيطي t=-1 و منه t=-2 و منه بالتويض في التمثيل الوسيطي t=-1 و منه بالتويض في التمثيل الوسيطي E(7;-2;-3) نجد ان

$$S = \frac{BC \times CD \times CE}{6} = \frac{\sqrt{174.\sqrt{29.\sqrt{54}}}}{6} = \frac{\sqrt{6 \times 29.\sqrt{29.\sqrt{9 \times 6}}}}{6} = \frac{6 \times 29 \times 3}{6} = \frac{87}{6}$$
 ج)حساب حجم رباعي الوجوه $BCDE$ و هي

التمرين الثاني:

الجزء الأول:

$$\lim_{x \to +\infty} \frac{5x}{x+2} = \lim_{x \to +\infty} \frac{5x}{x} = 5$$
(1)

. ب)دراسة اتجاه تغبر f المشتقة $f'(x) = \frac{10}{(x+2)^2}$ و هي موجبة على المجال $f(x) = \frac{10}{(x+2)^2}$ متزايدة على هذا المجال

************ الأستاذ: جو اليل أحمد ***************

. $f(x) \ge 0$ فإن $[0; +\infty[$ من المجال x من المجال عدد حقيقي المجال عدد عدية صغرى و منه من أجل كل عدد عقيقي المجال المجال $[0; +\infty[$

الجزء الثاني:

. محققة $1 \leq u_0 \leq 3$ البرهان بالتراجع لدينا $1 \leq u_0 \leq 3$ نفرض ان $1 \leq u_n \leq 3$ و لنبرهن ان $1 \leq u_n \leq 3$

 $1 \leq \frac{5}{3} \leq f(u_n) \leq 5$ ابما أن f متزايدة على f(3) فإن $f(3) \leq f(3)$ أي ان $f(3) \leq 1$ ابما أن $f(3) \leq 1$

 $1 \leq u_n \leq 3$ المن $1 \leq u_{n+1} \leq 3$

ب)اتجاه تغیر المتتالیة (u_n) لدینا الفرق $u_{n+1} - u_n = \frac{5u_n - u_n^2 - 2u_n}{u_n + 2} = \frac{-u_n^2 + 3u_n^2}{u_n + 2} = \frac{u_n \cdot (-u_n + 3)}{u_n + 2}$ عدد $u_{n+1} - u_n = \frac{5u_n}{u_n + 2} - u_n = \frac{5u_n - u_n^2 - 2u_n}{u_n + 2} = \frac{u_n \cdot (-u_n + 3)}{u_n + 2}$ عدد $u_n = \frac{5u_n}{u_n + 2} - u_n = \frac{5u_n - u_n^2 - 2u_n}{u_n + 2} = \frac{u_n \cdot (-u_n + 3)}{u_n + 2}$ عدد $u_n = \frac{5u_n}{u_n + 2} - u_n = \frac{5u_n - u_n^2 - 2u_n}{u_n + 2} = \frac{u_n \cdot (-u_n + 3)}{u_n + 2} = \frac{u$

اً) لدبنا
$$v_{n+1}=1-\frac{3}{u_{n+1}}=1-\frac{3}{\frac{5u_n}{u_n+2}}=1-\frac{3u_n+6}{5u_n}=\frac{2u_n-6}{5u_n}=\frac{2}{5}\left(\frac{u_n-3}{u_n}\right)=\frac{2}{5}\left(1-\frac{3}{u_n}\right)=\frac{2}{5}v_n$$
 الدبنا $v_n=1-\frac{3}{u_n}=1-\frac{3}{u$

$$u_n = \frac{3}{1-v_n} = \frac{3}{1+2\left(\frac{2}{5}\right)^n}$$
 . $v_n = -2\left(\frac{2}{5}\right)^n$ هي v_n عبارة الحد العام v_n

. $lim(u_n) = 3$ جساب النهاية

$$S_{\rm n} = \frac{1}{u_0} + \frac{1}{u_1} + \dots + \frac{1}{u_n} = \left(\frac{1-v_0}{3}\right) + \left(\frac{1-v_1}{3}\right) + \dots + \left(\frac{1-v_n}{3}\right) = \frac{1}{3}$$
 Lipid $S_{\rm n}$ Lipid $S_{\rm n}$

.
$$S_{\rm n} = \frac{{
m n}+1}{3} - \frac{(v_0+v_1+\dots+v_n)}{3} = \frac{{
m n}+1}{3} + \frac{2\left(\frac{\left(\frac{2}{5}\right)^{n+1}-1}{\left(\frac{2}{5}\right)-1}\right)}{3} = \frac{{
m n}+1}{3} + \frac{10\left(\left(\frac{2}{5}\right)^{n+1}-1\right)}{9} = \frac{1}{3}$$

التمرين الثالث:

$$\begin{cases} z = \frac{\sqrt{3}}{2} + \frac{1}{2}i \\ z^2 + \sqrt{3}z + 1 = 0 \end{cases}$$
 كافئ
$$\begin{cases} z - \frac{\sqrt{3}}{2} - \frac{1}{2}i = 0 \\ z^2 + \sqrt{3}z + 1 = 0 \end{cases}$$
 كافئ
$$\begin{cases} z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z^2 + \sqrt{3}z + 1 = 0 \end{cases}$$
 (1)
$$\begin{cases} z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z^2 + \sqrt{3}z + 1 = 0 \end{cases}$$
 ..
$$\begin{cases} z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z^2 + \sqrt{3}z + 1 = 0 \end{cases}$$
 ..
$$\begin{cases} z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \end{cases}$$
 ..
$$\begin{cases} z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \\ z - \frac{\sqrt{3}}{2} - \frac{1}{2}i \end{cases}$$
 نحسب مميز المعادلة الثانية $\Delta = -1$ المعادلة حلين هما
$$z - \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

***************** الأستاذ: جواليل أحمد *****************

$$Z_{\rm A} = e^{\frac{\pi}{6}} \quad \text{i.i.} \quad \partial_1 = \frac{\pi}{6} \quad \text{oi.} \quad \partial_2 \begin{cases} \cos\theta_1 = \frac{\sqrt{3}}{2} \\ \sin\theta_1 = \frac{1}{2} \end{cases} \\ \sin\theta_1 = \frac{1}{2} \end{cases} = |z_{\rm A}| = 1 \quad \text{ting} \quad Z_{\rm A} = \frac{\sqrt{3}}{2} + \frac{1}{2} \, \text{i. i.} \quad \partial_2 = \frac{\pi}{6} \quad \text{oi.} \quad \partial_2 = \frac{\pi}{6} \end{cases}$$

$$\cos\theta_1 = \frac{1}{2} \quad |z_{\rm B}| = 1 \quad \text{ting} \quad Z_{\rm B} = -\frac{\sqrt{3}}{2} + \frac{1}{2} \, \text{i. i.} \quad \partial_2 = \frac{\pi}{6} \quad \text{oi.} \quad \partial_2 = \frac{\pi}{6} \end{cases}$$

$$|z_{\rm B}| = \frac{\pi}{6} \quad \text{oi.} \quad \partial_2 = \frac{\pi}{6} \quad \text{oi.} \quad \partial_2 = \frac{\pi}{6} \quad \text{oi.} \quad \partial_2 = \frac{\pi}{2} \quad \partial_2 = \frac{$$

التمرين الرابع:

الجزء الأول :

1) أ) حساب النهايات

$$\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} [1 + (x^2 + x - 1)e^{-x}] = \lim_{x \to -\infty} [1 + x^2e^{-x}] = +\infty$$
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} [1 + (x^2 + x - 1)e^{-x}] = \lim_{x \to +\infty} [1 + x^2e^{-x}] = 1$$

حسب التز ايد المقارن.

ب)دراسة اتجاه تغير الدالة $g'(x)=(2x+1)e^{-x}-(x^2+x-1)e^{-x}=\frac{(-x^2+x+2)e^x}{(-x^2+x+2)e^x}$ و هذه العبارة تنعدم عند العددين $g'(x)=(2x+1)e^{-x}-(x^2+x-1)e^{-x}$ و هذه العبارة تنعدم عند العددين $g'(x)=(2x+1)e^{-x}$

جدول الأشارة هو

x	-∞	- 1	2	+ ∞	
g'(x)		- 0	+ 0	_	

و منه g متناقصة على المجالين $[-1;\infty]$ و $[-1;\infty]$ و متزايدة على المجال $[-1;\infty]$.

******* الأستان: حو البل أحمد *******************

2) أ) لدينا g(-1,52) = 0,041662 و g(-1,52) = -0,0407 و g(-1,52) = -0,041662 و متناقصة على هذا g(x) = 0 المجال فحسب نظرية القين المتوسطة المعادلة g(x) = 0 تقبل حلا و حيد α من هذا المجال و لدينا g(0) = 0 و منه المعادلة g(x) = 0 تقبل حلين إحداهما معدوم والأخر α و لا يوجد مجال أخر تغير فيه الدالة α إشارتها .

ب)من جدول تغيرات الدالة g نستنتج أن

х	-∞	α		0	+ ∞
g(x)	+	0	_	0	+

الجزء الثاني :

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[-x + (x^2 + 3x + 2)e^{-x} \right] = \lim_{x \to +\infty} \left[-x + x^2 e^{-x} \right] = -\infty$$

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left[-x + (x^2 + 3x + 2)e^{-x} \right] = \lim_{x \to -\infty} x \left[-1 + xe^{-x} \right] = +\infty$$

حسب التزايد المقارن

.
$$f'(x) = -1 + (2x+3)e^{-x} - (x^2+3x+2)e^{-x} = -1 - (x^2+x-1)e^{-x} = -g(x)$$
 جساب المشتقة (ب

f جدول تغيرات الدالة

1) أ) حساب النهايات

 $\lim_{h\to 0} \frac{f(\alpha+h)-f(\alpha)}{h} = f'(\alpha) = 0$

وذالك من جدول تغيرات الدالة f وهذا يعني أن المماس للمنحنى (C_f) عند النقطة ذات الفاصلة lpha موازي لحامل محور الفواصل و هو التفسير الهندسي .

 $\lim_{x \to \infty} [f(x) + x] = \lim_{x \to \infty} (x^2 + 3x + 2)e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} = 0$ (2) الدينا

حسب التزايد المقارن . و منه y=-x معادلة المستقيم (Δ) المقارب جهة $\infty+...$

ب) دراسة الوضعية بين $\binom{C_f}{2}$ و $\binom{\Delta}{2}$ ندرس إشارة الفرق x^2+3x+2 و x^2+3x+2 و التي x^2+3x+2 و التي دراسة الوضعية بين x^2+3x+2 و x^2+3x+2 و التي دعدم عند العددين x^2+3x+2 و التي x^2+3x+2 و التي دراسة العددين x^2+3x+2 و التي x^2+3x+2

$$f(x) = 0$$
 $f(x) = 0$
 $f(x) = 0$

****************** الأستاذ: حو البل أحمد *******************

ج) لدينا $f''(x) = -g'(x) = -(-x^2 + x + 2)e^x = (x^2 - x - 2)e^x$ و منه f'(x) = -g(x) العددين f''(x) = -g(x)

х	-∞		– 1		2	+ ∞	
f''(x)		+	0	_	0 -	+	

و منه المنحني (C_f) ةيقبل نقطتي إنعطاف فاصلتاهما 1- و 2 . لأن f تنعدم و تغير إشارتها عند العددين السابقين

 $B(2; -2 + 12e^{-2})$ و هما A(-1; 1)

(
$$\Delta$$
) رسم المنحتى (C_f) و المستقيم المقارب

هـ) المناقشة بيانيا حسب قيم m لعدد و اشارة حلول المعادلة

و المستقيم m=f(x) يكافئ m-x و يكافئ m-x يكافئ m-x و المنحنى m-x

لما $[-f(lpha); +\infty]$ فإن (Δ_m) و (Δ_m) يتقاطعان في نقطة وحيدة فاصلتها موجبة و منه المعادلة تقبل حل وحيد موجب

لما m=-f(lpha) فإن (C_f) و (Δ_m) يتقاطعان في نقطتين نقطة فاصلتها موجبة و الأخر فاصلتها سالبة و منه المعادلة تقبل حلين مختلفين في الإشارة .

لما $[-2; -f(\alpha)]$ فإن (C_f) و (Δ_m) يتقاطعان في ثلاثة نقاط نقطتان فاصلتهما موجبان الآخرة فاصلتها سالبة و منه المعادلة تقبل ثلاثة حلول خلين سالبين و حل موجب .

لما m=-2 فإن (C_f) و (Δ_m) يتقاطعان في نقطتين احدهما فاصلته معدومة و الأخرة فاصلتها سالبة و منه المعادلة تقبل حلين إحداهما معدوم و الأخر سالب .

لما $[-\infty; -2]$ لا يتقاطعان و منه المعادلة لا تقبل حلول. (C_f) و (C_f) لا يتقاطعان و منه المعادلة لا تقبل حلول.

الجزء الثالث:

h(x) = x + f(x) و $H(x) = (ax^2 + bx + c)e^{-x}$ و الله أصلية لدالة أصلية أصلية

$$H'(x) = (2ax + b)e^{-x} - (ax^2 + bx + c)e^{-x} = x + [-x + (-ax^2 + (2a - b)x + b - c)e^{-x}]$$

$$\begin{cases} a = -1 \\ b = -5 \\ c = -7 \end{cases}$$

$$\begin{cases} -a = 1 \\ (2a - b) = 3 \end{cases}$$
بالمطابقة نجد $h(x) = x + [-x + (x^2 + 3x + 2)e^{-x}]$

$$b - c = 2$$

.... $H(x) = (-x^2 - 5x - 7)e^{-x}$

ل) حساب التكامل التالي $A(\lambda)=\int_0^\lambda h(x)dx=[(-x^2-5x-7)e^{-x}]_0^\lambda=(-\lambda^2-5\lambda-7)e^{-\lambda}+7$ و تفسير ها الهندسي (1) و هو مساحة الحيز المحدد بالمنحنى C_f و المستقيمات التي معادلاتها $x=\lambda$ و $x=\lambda$ و x=0

$$\lim_{\lambda \to +\infty} A(\lambda) = \lim_{\lambda \to +\infty} \left[(-\lambda^2 - 5\lambda - 7)e^{-\lambda} + 7 \right] = 7$$
 ب) حساب النهاية

***************** الأستاذ: جو اليل أحمد ********************

وية	1.0	Acade services
بينزع	موزات	A A A CONTRACTOR OF THE PROPERTY OF THE PROPER
	0.25	تشريف الأول (4 تطلق) - الشعل في الآياد عور صلى الشر النسود (1) الا (1 - (1 آياد) الا
01.46	0.50	$P(z) = (z - 2\sqrt{3})(z^2 + 2\sqrt{3}z + 12)$ $u = 2\sqrt{3}; h = 12$ $b = u \neq a \neq b$
Ī	0,75	$N = \left[2\sqrt{3}, -\sqrt{3} + 3c - \sqrt{3} - 3c\right] + \rho c C + \theta (c) + 0$ where $C = 0$ and $C = 0$.
	0.50	$\frac{z_1 - z_1}{z_2 - z_1} = \frac{1}{2} \cdot \frac{\sqrt{\lambda}}{2}$ $\frac{z_1 - z_2}{z_1 - z_1} = \frac{1}{2} \cdot \frac{\sqrt{\lambda}}{2}$ $\frac{z_1 - z_2}{z_1 - z_2} = \frac{1}{2} \cdot \frac{\sqrt{\lambda}}{2}$
02:00	0,50	$(x_1 - x_2) = \frac{1}{2} (x_1 - x_2) = \frac{1}{2} (x_2 - x_3) + \frac{1}{2} (x_3 - x_4) + \frac{1}{2} (x_4 - x_4) + \frac{1}{2$
	0.25	$-(AB,AC)=\frac{1}{2}$, $AC=AB$ $AC=AB$ ABC ABC
	0,75	$z_{\mu} = 2\sqrt{3} - 6q > AB = CD$ and $z_{\mu} \in C = D$ and $z_{\mu} = 2\sqrt{3} - 6q > C$
00.50	0.50) النصوعة (1) عن عامل محور التواصل المثلثان البيال ()
		شريال فتشير إلا (المنافل)
	0,50	$\begin{cases} x = 1 + 2t \\ y = t \end{cases} \Rightarrow (a) = -1 \Rightarrow (b)$
01.483	0.50	$5=-2$ $\lambda=1+2t$ $\lambda=-2$ $\lambda=1+2t$ t=1 $t=1+2tt=1+$
	0,50	$\{A'\}_{i=0}$ $\in A_i \to A_i \to B(-1;S;I) \in B(-1;S;I)$
01.30	0,50	(Δ') و (Δ) مودور على الدران (ΔB) مودور على الدران (ΔB) محدود (ΔB) محدود (ΔB) محدود (ΔB)
	0.50	$df(\Delta):(\Delta')) = \sqrt{14}\cdot(\Delta')\cdot(\Delta)\cdot(\Delta)$
	0,25	$h(z) = 3z^2 - 6z + 17 + z + 2z + h(z) + 3z = 3z = 2z + 17$
61.50	0,50	I = 1 (i.e., $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I = 0$) $I = 0$) $I = 0$ (i.e., $I = 0$) $I =$

	(0.5	$(3) = \frac{1000}{100}$ ($3) = \frac{1000}{100}$) $(3) = \frac{1000}{100}$
: 01:00	0.5	-1 المال
(02:00)	(b)	ال المرافق والتراسع أنه من أجر كان عند شبيعي ١/١ على (١/١ الله ١/١٠ الله ١/١٠ الله ١/١٠ الله ١/١٠ الله الله ال منا عرضه النجاد تعور السنتية ((١/١) الاستثناء ((١/١) الله الله الله الله الله الله الله الل
100:23	0,25	 (5) بيال الله من شيل على على حيث خيبي ۱۱ (0 ع) إن
	0,50	$V_{ij} = 0$ (i.e., $V_{ij} = 0$) and $V_{ij} = 0$ (i.e., $V_{ij} = 0$) and $V_{ij} = 0$ (i.e., $V_{ij} = 0$) and $V_{ij} = 0$ (i.e., $V_{ij} = 0$) and $V_{ij} = 0$ (i.e., $V_{ij} = 0$) and $V_{ij} = 0$ (i.e., $V_{ij} = 0$).
(1.73	0,25	$v_{n} = \frac{21}{4} + 9n - v_{n} = v_{n} + nr$ $n - 4r + v_{n} = 4r + 1$
	0.75	$\lim_{n\to\infty} u_n = 0$ $= u_n = \frac{52}{36n + 13}$

34

01:25	0,25 3	$(x) = \frac{(x)(x)(x)}{(x)}$ $\lim_{x \to \infty} \frac{(x)(x)(x)}{(x)} = -\infty$ $\lim_{x \to \infty} \frac{(x)(x)(x)}{(x)} = -\infty$ $\lim_{x \to \infty} \frac{(x)(x)(x)}{(x)} = -\infty$ $\lim_{x \to \infty} \frac{(x)(x)(x)(x)}{(x)(x)} = -\infty$
400 300	0,50	-0.34 (2) سن ال المعلقة النا= (ع) على حال وحدا الناء عند الدورات > 0.34 (2) اسن الناء
460.150	0,50	$\lim_{x\to \infty} x = x + \infty $ $ x = x + \infty $ $ x = x + \infty $ $ x = x + \infty $ $ x = x + \infty $ $ x = x + \infty $ $ x = x + \infty $ $ x = x + \infty $

وجابة السوذجية لوطوع اسجاد الكالورة الخيار عادة الرباطيات الشغبة علوه للربية عاورة 2016

	(k)25 30 4)	ال ال الت $f(x) = -\infty$ الله $f(x) = -\infty$ الله الله الله الله الله الله الله الل
tr2_56	0.50	$-f'(x) = \frac{-x(x)}{(x+1)!} - [-1;+x] \Rightarrow x = 2 \Rightarrow x = (x)$
	0.50	ع) برانية المادعفر فدقة كر على (1945م) والمائة كر بالشيئة لمانا على (1954م) والمناسبة بالمارعش [1907م] . بالمارعش [1907م]
	0,50	د) است. النعالي: (C)) =
	0,50	$\frac{\ln(x+1)}{(x+1)^2} \approx 2\pi \tan 2\pi \ln(x+1) + 2\pi - \frac{1}{x+1} \left(1 + \ln(x+1)\right) \approx 2\pi - (-2\pi + 1)^2$
00.30	0,50	$S = \int_{0}^{1} l'(x) dx = \int_{0}^{1} \left[\frac{c}{x+1} + \frac{\ln(x+1)}{(x+1)} \right] dx + \frac{1}{2} \sin(x+1) dx + \frac{1}{2} \sin$
01:25	0.75	$ \frac{f(x)}{f(x)} = \frac{f(x)}{f(x$
	0.5	ي) تنفتة تيابة € كنفتة تيابة

الموضوع الثالي

13	s2	SECTION 17 - SEC.
مجموع	موزاد	عنصر الإهلية
01.25	0.25	التربيد (الارتبار (195 لفت) المارا الراب الإيمال (195 لفت مساورة
7[8]86	0.30	س) عين أن التعلقة البيكاراتية التسلول (£400) عي الما بالأساع − و2− ع2
00.50	0;50	$(y_1): x_1 + x_2 + 1 + 0 = x_2 + 3 = x_3 + 3 = x_4 + 3$
00.25	0.50	$z = -z - 1$ $z = -\frac{4}{7}z - \frac{5}{7}z = 2 \text{pr.} (D_i) = \frac{1}{7}z - \frac{1}{$
	0.251	سر) المثالث (LOL) بسود في الشنات CANC
	0.50	4. 1) تبلت في المحلة المحلة لمنظة المنظة وسيطي أن [2]
602.001	0.75:	$(D_i) \cap (\Delta) \cap \{G(-\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})\}$ (4.2)
	10.2%	ARC (e
	17).Str	4.HC
00:50	0.50	. 5- طبيعة والعامس المتبلونية والنظاح كارة مركز هن 10 ال 11 الداخ

	0.16	رون شنور (1.50) (1.
111-25	(04	$S = \begin{pmatrix} \frac{2}{2} \frac{1}{2} + \frac{\sqrt{3}}{2} \frac{1}{2} \frac{1}{2} \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \frac{1}{2} \end{pmatrix} (E) With the part of the second state of the second sta$
	0.50	$z_{s}=e^{-1}$ $z_{s}=e^{-1}$ e^{-2}
02,00	830	Dicential in the second
1	0.50	
	0.50	ESTANCE OF THE PARTY OF THE PAR
00,75	0.75	AB=0.50F_2/1 (A Give AFC) 122-244-1 F 3242-121-3
00:50	0.50	(all out (T)) and the de

111,000	1.00	$q = -\frac{1}{2}$ $q = -\frac{1}{4}$ (4.50): مستند الدامية $q = -\frac{1}{4}$ و $q = -\frac{1}{4}$ و $q = -\frac{1}{4}$
	0.25	r_ = -1 [1] a 472-r, r = 2 -2
01-25	0.75	$H_{s} = \frac{1 + (\frac{1}{2})^{1/2}}{1 + (\frac{1}{2})^{1/2}} \text{and } max = \frac{1}{2} - max \text{ (i.e. } 1)$
	0.25	tima: - t-t-
	11.75	3
102.25	0.75	$\frac{1}{m_1-2} = \frac{1}{3}(1-n_1) = 2 + 2m_2 (1-n_2)$
	ETS:	S = 1 3 = 15 - 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

02.00	0.25 = 3	شهرون ترمو(۱۵۵۵) اد اد المسلم (۵) و مر احل شر ۵ مر ۵ مر ۵ مر ۵ - ۱ - ۱ - ۱ - ۱ (۵) ۵ اد اد المسلم (۱۵۵ مر احل شر ۵ مر ۵ مر ۵ مر ۵ مر ۵ - ۱ - ۱ (۵) ۵ اد وجده شالد او بسالت الما شر (۵) ۵ - (وجرالد (الما على ۱۳۰۲)	
	0:25	عدل عن الدمن أخذ الله عن أخذ الدمن الدن الدمن الدن الدمن الدن الدمن الدن الدمن الدن الدمن الدن الدمن على الدم الدنة "مو عدل فيما عديا صنفري على الدومي الدر(0)": ومنه من أجل الذراع عدم الدارات الدمن الدم	
	0.5	الله الله الله الله الله الله الله الله	
bp.30	0,5	ع استر ال المحدث (1) و القبل حلاوها الله حدث (1.37 ا − 1.38 ا − 1.38 ا − 1.38 ا − 1.37 ا − 1.38 ا − 1.38 ا − 1 المحلوق منزعة القبر المتوسطة)	
00.25	11.25	السام بشرة (ف) ع - سراليال كل عدد عليل و . 10 / (د) ع من ليان [مرحم [ع مرا (الا (م) ع من ليان [= - بم] - م	
01:30	0.5	$\lim f(x)=0 + \lim f(x)=-x = 0 - 1 \text{ or }$	
	0.5	$-f'(z) = \frac{z e' x(z)}{(e'-z)} - z - x - 3 \cdot 2a \cdot x - (a$	

20	دور4 (4)	اخبار مادق الرباضيات الشعبة العلووا عربينة	الإجابة السولاحية للوصوع استحاله التكالوري
	0.25×2	ل من الدو لداما على كال بن المحالين	
		ه] مجدول التغير الله ال	$(0,+\infty[-r]-\infty;a]$. ويتنافث بينا على $(0,+\infty[-r]-\infty;a]$
	03+025	المراجعة في المنظمة المراجعة	$f'(\alpha) = \alpha' + 2\alpha + 2 + \frac{2}{\alpha - 1} + \frac{2}{\alpha - 1}$ (2)
01.75	0.25	for	Jim (/ (x) − x 1) +0 (4=
0.000.000000000000000000000000000000000	0.25	These see to be a first of the seed of the	(c_i) به در هنید د محدی (c_i) به نمای محد
	0.5		$\{C_i\}_{i=0}^{n}$, where $\{E_i\}_{i=0}^{n}$

الصيفحة وارمن وا