План лекции

- Графы. Представление графов.
- Обход графа. Поиск путей в графах. BFS. DFS.
- Топологическая сортировка.
- Компоненты связности. Алгоритм Косарайю.

Графы. Представление графов.

Графы: применение

- Географические карты. Какой маршрут из Москвы в Лондон требует наименьших расходов? Какой маршрут из Москвы в Лондон требует наименьшего времени? Требуется информация о связях между городами и о стоимости этих связей.
- Микросхемы. Транзисторы, резисторы и конденсаторы связаны между собой проводниками. Есть ли короткие замыкания в системе? Можно ли так переставить компоненты, чтобы не было пересечения проводников?
- Расписания задач. Одна задача не может быть начата без решения других, следовательно имеются связи между задачами. Как составить график решения задач так, чтобы весь процесс завершился за наименьшее время?

Графы: применение

- Компьютерные сети. Узлы конечные устройства, компьютеры, планшеты, телефоны, коммутаторы, маршрутизаторы... Каждая связь обладает свойствами латентности и пропускной способности. По какому маршруту послать сообщение, чтобы она было доставлено до адресата за наименьшее время? Есть ли в сети «критические узлы», отказ которых приведёт к разделению сети на несвязные компоненты?
- Структура программы. Узлы функции в программе. Связи может ли одна функция вызвать другую (статический анализ) или что она вызовет в процессе исполнения программы (динамический анализ). Чтобы узнать, какие ресурсы потребуется выделять системе, требуется граф,

- Ориентированный граф: G = (V, E) есть пара из V конечного множества и E подмножества множества $V \times V$.
- Вершины графа: элементы множества V (vertex, vertices).
- Рёбра графа: элементы множества E (edges, связи).
- Неориентированный граф: рёбра есть неупорядоченные пары.
- ullet Петля: ребро из вершины v_1 в вершину v_2 , где $v_1=v_2$.

- ullet Смежные вершины: v_i и v_j смежны, если имеется связь (v_i,v_j) .
- ullet Множество смежных вершин: обозначаем Adj[v]
- ullet Степень вершины: величина |Adj[v]|
- ullet Путь из v_0 в v_n : последовательность рёбер, таких, что $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)\dots e_n=(v_{n-1},v_n)$.
- Простой путь: путь, в котором все вершины попарно различны.
- \bullet Длина пути: количество n рёбер в пути.
- **Цик**л: путь, в котором $v_0 = v_n$.

- **Неориентированный связный граф**: для любой пары вершин существует путь.
- Связная компонента вершины v: множество вершин неориентированного графа, до которых существует путь из v.
- ullet Расстояние между $\delta(v_i,v_j)$: длина кратчайшего пути из v_i в v_j .

$$\delta(u, v) = 0 \Leftrightarrow u = v$$

$$\delta(u, v) \leqslant \delta(u, v') + \delta(v', v)$$

- Дерево: связный граф без циклов.
- Граф со взвешенными рёбрами: каждому ребру приписан вес c(u,v).

Ориентированный граф.

Типичные: задачи на графах

- Проверка графа на связность.
- Является ли граф деревом.
- ullet Найти кратчайший путь из u в v.
- Найти цикл, проходящий по всем рёбрам ровно один раз (цикл Эйлера).
- Найти цикл, проходящий по всем вершинам ровно один раз (цикл Гамильтона).
- Проверка на планарность определить, можно ли нарисовать граф на плоскости без самопересечений.

- Каждой вершине сопоставляется множество смежных с ней.
- Всё представляется в виде матрицы смежности.
- Всё представляется в виде списка рёбер.

Представление графа в памяти в виде матрицы смежности

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	0	1
3	1	0	0	0	1	0
4	0	1	1	0	0	0
5	0	0	1	1	0	1
6	0	0	0	1	1	0

Представление графа в памяти в виде множеств смежности


```
v_1: \{2,4\}
v_2: \{6\}
```

$$v_3:\{1,5\}$$

$$v_4: \{2,3\}$$

$$v_5: \{3,4,6\}$$

$$v_6: \{4, 5\}$$

Представление взвешенного графа в памяти в виде матрицы смежности

	1	2	3	4	5	6
1	0	5	0	10	0	0
2	0	0	0	0	0	11
3	15	0	0	0	2	0
4	0	2	4	0	0	0
5	0	0	0	7	0	6
6	0	0	0	4	4	0

Представление взвешенного графа в памяти в виде множеств смежности


```
v_1 : \{(2,5), (4,10)\}
v_2 : \{(6,11)\}
v_3 : \{(1,15), (5,2)\}
v_4 : \{(2,2), (3,4)\}
v_5 : \{(4,7), (6,6)\}
v_6 : \{(4,4), (5,4)\}
```

Алгоритмы на графах

Представление взвешенного графа в памяти в виде списка рёбер

$$\{from, to, cost\}\dots$$

 $\{\{1, 2, 5\}, \{1, 4, 10\}, \{2, 6, 11\}, \{3, 1, 15\}, \{3, 5, 2\},$
 $\{4, 2, 2\}, \{5, 4, 7\}, \{5, 6, 6\}, \{6, 4, 4\}, \{6, 5, 4\}\}$

4□ > 4□ > 4□ > 4□ > 4□ > 9

Алгоритмы на графах

Преимущества и недостатки методов представления:

Представление	Матрица	Множества	Список
	смежности	смежности	рёбер
Занимаемая	$O(V ^2)$	O(V + E)	O(E)
память			
	Простой	Требует мало	Можно
Особенности	доступ	памяти для	иметь
		ряда графов	мультирёбра

Обход графа. Поиск путей в графах. BFS. DFS.

Поиск в ширину: алгоритм BFS

- Этот алгоритм сначала пытается обработать всех соседей текущей вершины.
- Используется абстракция очередь с методами enqueue и dequeue.
- Термин: предшественник $\pi(u)$ на пути от s: предпоследняя вершина в кратчайшем пути из s в u.
- Используются цвета:
 - Белый для непросмотренных вершин.
 - Серый для обрабатываемых вершин.
 - Чёрный для обработанных вершин.

Обход графа: поиск в ширину от s, BFS

Просмотр вершин графа в порядке возрастания расстояния от s.

```
1: procedure BFS(G: Graph, s: Vertex)
         for all u \in V[G] \setminus \{s\} do
 3:
             d[u] \leftarrow \infty; c[u] \leftarrow \text{white}; \pi[u] \leftarrow \text{nil}
 4:
       end for
 5: d[s] \leftarrow 0; c[s] \leftarrow \text{grey}
 6:
      Q.enqueue(s)
 7:
       while Q \neq \emptyset do
 8:
             u \leftarrow Q.dequeue()
 9:
             for all v \in Adj[u] do
                  if c[v] = white then
10:
                       Q.engueue(v)
11:
                      d[v] \leftarrow d[u] + 1
12:
13:
                      \pi[v] = u; \quad c[v] = \text{grey}
14:
                  end if
15:
             end for
16:
             c[u] \leftarrow \mathsf{black}
17:
         end while
18: end procedure
```

Начало алгоритма.

$$d = \{0, \infty, \infty, \infty, \infty, \infty\}$$

$$\pi = \{nil, nil, nil, nil, nil, nil\}$$

$$Q = \{v_1\}$$

После первого прохождения цикла While

$$d = \{0, 1, \infty, 1, \infty, \infty\}$$

$$\pi = \{nil, v_1, nil, v_1, nil, nil\}$$

$$Q = \{v_4, v_2\}$$

Алгоритмы на графах 4 мая 2021 г. 22 / 52

После второго прохождения цикла While

$$d = \{0, 1, 2, 1, \infty, \infty\}$$

$$\pi = \{nil, v_1, v_4, v_1, nil, nil\}$$

$$Q = \{v_2, v_3\}$$

лгоритмы на графах 4 мая 2021 г. 23 / 52

После третьего прохождения цикла While

$$d = \{0, 1, 2, 1, \infty, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, nil, v_2\}$$

$$Q = \{v_3, v_6\}$$

24 / 52

горитмы на графах 4 мая 2021 г.

После четвёртого прохождения цикла While

$$d = \{0, 1, 2, 1, 3, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, v_3, v_2\}$$

$$Q = \{v_6, v_5\}$$

Алгоритмы на графах 4 мая 2021 г. 25 / 52

Завершение алгоритма

$$d = \{0, 1, 2, 1, 3, 2\}$$

$$\pi = \{nil, v_1, v_4, v_1, v_3, v_2\}$$

$$Q = \{\}$$

Алгоритмы на графах

Алгоритм BFS: свойства

Сложность алгоритма:

- представление в виде множества смежности:
 - ▶ Инициализация: O(|V|)
 - ▶ Каждая вершина обрабатывается не более одного раза. Проверяются все смежные вершины.

$$\sum_{v \in V} |Adj(v)| = O(|E|)$$

T = O(|V| + |E|)

Алгоритмы на графах

Поиск в глубину: алгоритм DFS

- Этот алгоритм пытается идти вглубь, пока это возможно.
- Обнаружив вершину, алгоритм не возвращается, пока не обработает её полностью.
- Используются переменные
 - time глобальные часы.
 - lacktriangledown d[u] время начала обработки вершины. u
 - f[u] время окончания обработки вершины. u
 - ▶ $\pi[u]$ предшественник вершины u.

Алгоритм DFS

```
1: procedure DFS(G:Graph)
        for all u \in V[G] do
            c[u] \leftarrow \text{white}; \qquad \pi[u] \leftarrow \text{nil}
 3:
        end for
 4:
 5:
    time \leftarrow 0
    for all u \in V[G] do
 6:
 7:
            if c[u] = white then
                DFS-vizit(u)
 8:
            end if
        end for
10:
11: end procedure
```

Алгоритм DFS

```
1: procedure DFS-VIZIT(u : Vertex)
        c[u] \leftarrow \mathsf{grey}
 3: time \leftarrow time + 1
 4:
    d[u] \leftarrow time
     for all v \in Adj[u] do
 5:
             if c[v] = white then
 6:
                 \pi[v] \leftarrow u
 7:
                 DFS-vizit(v)
 8:
             end if
 9:
      end for
10:
    c[u] \leftarrow \mathsf{black}
11:
    time \leftarrow time + 1
12:
        f[u] \leftarrow time
13:
14: end procedure
```

Начинается обход с вершины \emph{v}_1

Около каждой вершины пишем два числа: время входа в вершину и через знак / — время выхода из вершины.

Первый рекурсивный вызов DFS-vizit (v_4)

Второй рекурсивный вызов DFS-vizit (v_2)

Пятый рекурсивный вызов DFS-vizit (v_5)

Выход из пятой рекурсии вызова DFS-vizit (v_5)

Выход из рекурсии вызов DFS-vizit (v_2)

Завершение алгоритма

Алгоритм DFS

- \bullet Сложность алгоритма для представления в виде множества смежности равна O(|V|+|E|)
- Этот алгоритм не находит кратчайшие маршруты!

Задача: имеется ориентированный граф G = (V, E) без циклов.

Требуется указать такой порядок вершин на множестве V, что любое ребро ведёт из меньшей вершины к большей.

Требуемая структура данных: L — очередь с операцией enqueue.

```
1: procedure TopoSort(G: Graph)
       L \leftarrow 0
     for all u \in V[G] do
           c[u] \leftarrow \mathsf{white};
      end for
 5:
 6:
     time \leftarrow 0
       for all u \in V[G] do
 7:
           if c[v] = white then
 8:
               DFS-vizit(u)
           end if
10:
        end for
11:
12: end procedure
```

```
1: procedure DFS-VIZIT(u : Vertex)
      c[u] \leftarrow \mathsf{grey}
 2:
     for all v \in Adj[u] do
 3:
            if c[v] = white then
 4:
                \pi[v] \leftarrow u
 5:
                DFS-vizit(u)
 6:
 7:
            end if
      end for
 8:
     c[u] \leftarrow \mathsf{black}
       L.enqueue(u)
10:
11: end procedure
```

Прогон алгоритма топологической сортировки

Пусть обход начнётся с вершины \emph{v}_1

Прогон алгоритма топологической сортировки

Результат обхода.

Порядок вершин (добавляем в начало по номерам): $V_1, V_2, V_4, V_6, V_5, V_3$

4 мая 2021 г.

44 / 52

Алгоритмы на графах

Поиск компонент связности

45 / 52

Поиск компонент связности

- Для неориентированных графов: запустив поиск BFS или DFS.
- Все выкрашенные по завершении поиска вершины образуют компоненту связности.
- Выбирается произвольным образом необработанная вершина и алгоритм повторяется, формируя другую компоненту связности.
- Алгоритм заканчивается, когда не остаётся необработанных вершин.

Поиск компонент связности

- Для ориентированных графов: результаты зависят от порядка обхода вершин.
- Компонента сильной связности ориентированного графа: максимальное по размеру множество вершин, взаимно достижимых друг из друга.

- Проведём полный DFS поиск.
- ullet В алгоритме полного DFS не специфицировано, с какой вершины начинается поиск o можно выбрать произвольную.

Обход с вершины v_2 :

- Заменим направления всех рёбер (перевернём все стрелки).
- ullet Каждое ребро u o v заменяется на v o u.

- Обходим ещё раз. Начальная вершина из необработанных, у которой наибольшие значение времени выхода.
- ullet Обход из вершины 2 покрасил вершины v_1, v_2, v_3 и v_4 .
- Остались непокрашенные вершины v_5, v_6, v_7 и v_8 .
- Повторяем, пока останутся непокрашенные вершины.

Номер	1	2	3	4	5	6	7	8
Вход/выход	12/13	1/16	11/14	10/15	2/9	4/5	3/8	6/7

51 / 52

• Каждый «малый» проход алгоритма DFS даст нам вершины, которые принадлежат одной компоненте сильной связности.

• Рассматривая компоненту сильной связности как единую мета-вершину, мы получаем новый граф, который называется конденсацией исходного графа или конденсированным графом.