This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-173471

(43) Date of publication of application: 26.07.1991

(51)Int.CI.

H01L 27/118 H05K 3/00

(21)Application number: 01-312541

(71)Applicant: NEC CORP

HOKURIKU NIPPON DENKI

SOFTWARE KK

(22)Date of filing:

01.12.1989

(72)Inventor: TAWADA SHIGEYOSHI

MIZUMAKI TOSHIHIRO

(54) WIRING STRUCTURE OF MASTER SLICE SYSTEM LSI (57) Abstract:

PURPOSE: To comparatively easily adjust wiring length by arranging a first and a second wiring layer wherein a vertical and a horizontal wiring lattice are defined and a third wiring layer wherein a wiring lattice connecting diagonal lines of both lattices is defined.

CONSTITUTION: When both of the lattice intervals in the vertical and the horizontal directions are (d), the wiring length between the terminals t1 and t2 of a wiring network is shorter than or equal to 8d, in order to satisfy restrictions like the delay time of an LSI required for high speed operation. When wiring process is performed by using a first and a second wiring layer 2 in accordance with the order that the angle of the line connecting the terminals t1 and t2 is approximate to 0° or 90°, the wiring between the terminal t1 and t2 is detoured by wiring

routes 101 and 102, and a wiring route 201 of α length 12d is obtained. On the other hand, by constituting an oblique wiring between the terminals t1 and t2 by using the layer 3, a wiring route 221 of a length I=4.22/1d can be obtained as follows, the wiring routes 101 and 102 are not corrected, and through holes 231 and 232 between the first and the this wiring 1, 3 are arranged at the positions of the terminals t1 and t2.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

⑯日本国特許庁(JP)

⑩特許出願公開

平3-173471 ⑫ 公 開 特 許 公 報 (A)

@int.Cl.3

識別記号

庁内整理番号

⑩公開 平成3年(1991)7月26

H 01 L 27/118 H 05 K 3/00

6921-5E 8225-5F D

H 01 L 21/82

M

審査請求 未請求 請求項の数 1 (金4頁

会発明の名称

マスタスライス方式LSIの配線構造

類 平1-312541 创持

題 平1(1989)12月1日 ②出

多和日 賜 跫 ⑦光 **@**# 明 署 牧

茂芳 後博 東京都港区芝5丁區33番1号 日本電気株式会社内

石川県石川郡営来町安後寺1番地 北陸日本電気ソフト

日本電気保式会社 砂出 題 人

東京都港区芝 5 丁目 7 番 1 号

北陸日本電気ソフトウ 頤 (1)出

石川県石川都鶴来町安養寺 [番地

エア株式会社内

エア株式会社

倒代 理 人 弁理士 河原 純一

1. 発明の名称

マスタスライス方式しらしの配縁構造

2. 特許請求の範囲

型直方向および水平方向の配線格子が定義され た第1の配線層および第2の配線層と、

これら第1の配線感および第2の配線層に定義 された亜直方向および水平方向の配線格子の各格 予点の対角を結ぶ解めの配譲指子が定義された第 3 の記録図と

を有することを特徴とするマスタスライス方式 L5:の配線構造。

3. 発明の詳細な説明

(産業上の利用分野)

本発明はマスクスライス方式しSIの配線構造 に関し、韓に配線工程以前のマスクを共通とし配 採に関するマスクのみを品越ごとに設計製作して J. S 1 を作成するマスタスライス方式L S 1 の例

姓兵、この艦のマスタスライス方式LSIの配 線構造では、すべての配線層の配線指子が飛直方 削および水平方向に定義されていた「参考文献: 『論理波響のCAV』,備相処理学会,昭和56 年3月20日発行》。

いた、毎2回に示すように、重点方向格子間隔 および水平方向格子間隔をともに4としたとさに 盤線ネットの猫子し1および端子に2両の配線長 が高速動作を必要とするしち1の遅延持関等の制 物を盗足するために8d以内であるという 断限が ある場合を例にとって説例すると、幾子し1およ び端子:2回を結ぶ直紋の角度が0貫をたは30 度に近いものから版に第1の記録图 1 および第2 の配線路2を用いて配線する配線処理を行った箱 果、寒る関に示すように、配線機構101と配線 超越102とによって端子11および端子12間 の紀線が还回させられ、配線長!20の配線経路 201が待られたときに、従来のマスタスライス

特開平3-173471(2)

競経路(11日よび112を得ることにより、制限を調えす症候長84の配級経路211を得ていた。

(発明が解決しようとする課題)

上述した従来のマスタスライス方式しSIの配線構造では、高速動作を必要とするしSIの遺跡 時間等の制約を概定するために設定された配線是 に制限がある配線ネットの配線において配線処理 彼にその制限が満たされなかった場合に、制限を 続たすようにするために他の配線を移動させて配 線の修正を行う必要があったので、配線の修正に を大な工数を関するという欠点がある。

また、配縁の修正を行っても配線長の初限を始たすことができなかった場合には、ブロックの配置紀正等を行って記録処理をやり直す必要があり、さらに処理時間が増大するという欠点がある。

本類明の目的は、上述の点に嵌み、第1の配数 簡および第2の配級層に定義された垂直方向および水平方向の配数格子の各格子点の対角を結ぶ数 めの配数格子が定義された第3間の配額層を利用 して、他の配額を移動したりブコックの配置位置 を変更したりすることなしに、比較的容易に配線 長の網盤を行うことができるマスタスライス方式 しSIの配額構造を提供することにある。

(課題を解決するための手段)

本発明のマスクスライス方式しい!の配譲構造は、準直方向および水平方向の配線格子が定難された第1の配線器および第2の配線器と、これら類1の配線器がよび第2の配線器に定義された重直方向および水平方向の配線器子の多様子点の対角を結ぶ終めの配線格子が定義された第3の配線器とを有する。

【作用】

本発明のマスクスライス方式しる!の配線構造では、第1の配線層および第2の配線層に重直方向および水平方向の配線格子が定義され、第3の配線層に第1の配線層および第2の配線層に定義された屋直方向および水平方向の配線格子の各格子点の試角を絡ぶ斜めの配線格子が定意される。

(実施例)

次に、本発明について図面を参照して詳細に説明する。

第1回は、本預明の一支施例に係るマスタスライス方式しち!の配線構造を示す図である。北実 施術のマスクスライス方式しち!の配線構造は、 虚直方向および水平方向の配線格子が定義された 第1の配線暦1および第2の配線暦2と、第1の 配線暦1および第2の配線暦2と、第1の 配線暦1および第2の配線暦2に定義された既成 方向および水平方向の配線格子の各格子点の対角 を結め料めの配線格子が定義された偶3の配線層 3とから複成されている。

次に、このように縁成された本実施例のマスタ . スライス方式 L S I の配領構造における配線過程について、第2個~群4回を参照しながら異称的に説明する。

第2回に栄すように、塩皮方病格子間隔および水平方向格子関隔をともに d としたときに配線ネットの続子に 1 および倫子に 2 隣の配線及が高速動物を必要とする 1 S 1 の辺延時間等の制約を構足するために 8 4 以内であるという制度がある場

合を例にとって説明すると、漢字(13岁よび漢字:2間を結ぶ直線の角度かの度または90度に近いものから関に第1の配線層1および第2の配線器2を用いて配線する配線処理を行った結果、第3回に示すように、配線緩緩101と配線器291が深られたと合に、第4四に示すように、縮子12時を発すの配線器3期のスルーケール2312よび23を突張し、端子11年よび3時で3時で12時で12時で12時で12時で12日の配線器3間のスルーケール2312よび232を突張し、端子11年よび3時で12日を第3の配線器3両のスルーケール2312よび232を突張し、端子11年よび3時で12日を第3の配線器3を用いて斜めの配線を行うことにより、前段を増たす配線を

$$s = \sqrt{(14)^2 + (14)^4}$$

の配線経路221を得ることができる。

(発明の効果)

以上説明したように本発明は、高速動作を必要 とするLSIの選延時間等の制約を満足するため

持開平3-173471(3)

に設定された配額長の機関に対して第1の配線層 および第2の配線層を吊いて配線処理を行った後 に制限を満たしていない配線を制限を満たすよう にするために第3層の配線層を利用することによ り、他の配線を移動したりブロックの配便位置を 変更したりすることなしに、比較的容易に配額長 の困難を行うことができる効果がある。

4. 図面の簡単な説明

第1図は本発明の一変遊遊に係るマスタスライス方式し\$1の配線構造を示す図。

第2回は配款ネットの端子ペアの一例を示す図、 第3回は第1の配線商および第2の配線原を用 いた配線処理後の配線例を示す図、

系。図は第3の配線温を用いて入事修正を行っ た彼の配線筋を示す図。

第5回は第1の配線電および第2の配線圏を用いて人手器圧を行った後の配線例を示す図である。 図において、

1・・・緊1の配線面、

2・・・第2の転線層、

3 · · · 奈3の配線度、 i 0 i . i 0 2 . 2 2 i · 読辞経路、 2 3 i . 2 3 2 · スルーホール、

しし、して・帽子である。

特許出職人 日 本 電 気 検 武 会 社 北陸日本電気ソフトウェア株式会社 北 弾 人 奈 登 士 何 願 ・ ・ ・ ・

第 1 図

・ 第1の従籍屋かよび第2の配線層体 定務された配 格子

※ 第3の配験所に対象された配 格子

第2図

特閒平3-173471 (4)

第5日

(19) Japanese Patent Office (JP)

(12) UNEXAMINED PATENT APPLICATION GAZETTE (A)

(11) Unexamined Patent Application Publication [KOKAI] No. H3-173471 [1991]

(43) KOKAI Date: July 26, 1991

(51) Int. Cl.⁵

I.D. Symbol

Intern. Ref. No.

H 01 L 27/118

D

6921-5E

H 05 K 3/00

8225-5F

H 01 L 21/82

M

Examination Request Status: Not yet requested

Number of Claims: 1

(Total 4 pages [in orig.])

(54) Title of Invention

Master Slice LSI Wiring Structure

(21) Patent Application No.

H1-312541 [1989]

(22) Filing Date:

December 1, 1989

(72) Inventor

Shigeyoshi Tawada

c/o NEC Corporation

5-33-1 Shiba, Minato-ku, Tokyo

(72) Inventor

Toshihiro Mizumaki

c/o Hokuriku NEC Software, Ltd.

1 Anyoji, Tsurugi-cho, Ishikawa-gun, Ishikawa

(71) Applicant

NEC Corporation

5-7-1 Shiba, Minato-ku, Tokyo

(71) Applicant

Hokuriku NEC Software, Ltd.

1 Anyoji, Tsurugi-cho, Ishikawa-gun, Ishikawa

(74) Agent Junichi Kawahara, patent attorney

Specificati n

1. Title of Invention

Master Slice LSI Wiring Structure

2. Claims

A master slice LSI wiring structure comprising:

a first wiring layer and a second wiring layer for which vertical-direction and horizontal-direction wiring lattice members are defined; and

a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in said first wiring layer and second wiring layer.

3. Detailed Description of Invention

[Field of the Invention]

This invention concerns a master slice LSI wiring structure, and more particularly concerns a master slice LSI wiring structure for producing LSIs, wherewith, using common masks prior to the wiring step, only masks pertaining to the wiring are designed and fabricated individually for each product type.

[Prior Art]

Conventionally, in this type of master slice LSI wiring structure, all of the wiring lattice members in the wiring layers are defined in the vertical direction and horizontal direction (cf. "Ronri Sochi no CAD [Logic Device CADs]", Joho Shori Gakkai (Japan Society for Information Processing), March 20, 1981).

A case is now described wherein, as diagrammed in Fig. 2, when both the vertical direction lattice member interval and the horizontal direction lattice member interval are made d, and the wiring length between the terminals t1 and t2 in the wiring network is limited to 8d or less in order to satisfy restrictions such as the LSI delay time required for high-speed operation, as a result of implementing a wiring process that does the wiring using the first wiring layer 1 and the second wiring layer 2 sequentially from an angle of the straight line connecting the terminals t1 and t2 that is near either 0 or 90 degrees, the wiring between the terminals t1 and t2 is made circuitous by wiring paths 101 and 102, as diagrammed in Fig. 3, yielding the wiring path 201 having a wiring length of 12d, whereupon, with the conventional master slice LSI wiring structure, as diagrammed in Fig. 5, the wiring paths 101 and 102 are altered manually to yield wiring paths 111 and 112, whereby the wiring path 211 having a wiring length of 8d which

satisfies the restriction is obtained.

[Problems Which the Present Inv ntion Att mpts to Solve]

With the conventional master slice LSI wiring structure described in the foregoing, if, after the wiring process in wiring a wiring net wherein a limitation is placed on the wiring length in order to satisfy a restriction such as the LSI delay time required for high-speed operation, that limitation has not been met, it is necessary to alter the wiring, moving other wiring, in order to satisfy the limitation. Many steps are required for such alteration, which constitutes a shortcoming.

Furthermore, in cases where the wiring length limitation cannot be met even after the wiring has been altered, it is necessary to redo the wiring process, performing block placement alterations, etc., resulting in a further increase in processing time, which is a shortcoming.

In view of these shortcomings, an object of the present invention is to provide a master slice LSI wiring structure wherewith, using a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined by the first wiring layer and the second wiring layer, wiring lengths can be adjusted with comparative ease, without moving the other wiring or changing block placement positions.

[Means Used to Solve the Abovementioned Problems]

The master slice LSI wiring structure of the present invention comprises: a first wiring layer and a second wiring layer for which vertical-direction and horizontal-direction wiring lattice members are defined; and a third wiring layer for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in the first wiring layer and second wiring layer.

[Operation]

In the master slice LSI wiring structure of the present invention, vertical direction and horizontal direction wiring lattice members are defined in the first wiring layer and the second wiring layer, and diagonal wiring lattice members are defined in the third wiring layer, which diagonal wiring lattice members join the diagonals of the lattice points of the horizontal direction and vertical direction wiring lattice members defined in the first wiring layer and the second wiring layer.

[Embodiments]

The present invention is now described in detail, making reference to the drawings.

Fig. 1 is a diagram of a master slice LSI wiring structure in one embodiment of the present invention. The master slice LSI wiring structure in this embodiment comprises: a first wiring layer and a second wiring layer 2 for which vertical-direction and horizontal-direction

wiring lattice members are defined; and a third wiring layer 3 for which diagonal wiring lattice members are defined which join diagonals of vertical-direction and horizontal-direction lattice points defined in the first wiring layer 1 and second wiring layer 2.

The process of implementing the wiring in the master slice LSI wiring structure in this embodiment, configured as stated, is now described specifically, with reference to Fig. 2 to 4.

The case is [again] described wherein, as diagrammed in Fig. 2, when both the vertical direction lattice member interval and the horizontal direction lattice member interval are made d, and the wiring length between the terminals t1 and t2 in the wiring network is limited to 8d or less in order to satisfy restrictions such as the LSI delay time required for high-speed operation, as a result of implementing a wiring process that does the wiring using the first wiring layer 1 and the second wiring layer 2 sequentially from an angle of the straight line connecting the terminals t1 and t2 that is near either 0 or 90 degrees, the wiring between the terminals t1 and t2 is made circuitous by wiring paths 101 and 102, as diagrammed in Fig. 3, yielding the wiring path 201 having a wiring length of 12d, whereupon, as diagrammed in Fig. 4, without altering the wiring paths 101 and 102, through holes 231 and 232 are opened between the first wiring layer 1 and the third wiring layer 3 at the positions of the terminals t1 and t2, [respectively,] and diagonal wiring is implemented between terminal t1 and terminal t2 using the third wiring layer 3, thereby obtaining a wiring path 221 having a wiring length equal to

$$a = \sqrt{(44)^2 + (44)^2}$$
 $= 4\sqrt{2}$

which meets the limitation.

[Benefits of Invention]

After wiring processing has been performed using a first wiring layer and a second wiring layer, and there exists wiring that does not meet a wiring length limitation established to satisfy a restriction such as an LSI delay time required for high-speed operation, the present invention, as described in the foregoing, employs a third wiring layer to make that wiring meet that limitation, thereby making it possible to adjust wiring lengths with comparative ease without moving the other wiring or altering block placement positions.

4. Brief Description of Drawings

Fig. 1 is a diagram of a master slice LSI wiring structure in one embodiment of the present invention;

Fig. 2 is a diagram of one example of a pair of terminals in a wiring network;

Fig. 3 is a diagram of an example of wiring after the implementation of a wiring process using a first wiring layer and a second wiring layer;

Fig. 4 is a diagram of an example of wiring after a manual alteration using a third wiring

layer; and

Fig. 5 is a diagram of an example of wiring after performing a manual alteration using a first wiring layer and a second wiring layer.

The following reference characters are used in the drawings.

- 1 First wiring layer
- 2 Second wiring layer
- 3 Third wiring layer

101, 102, 221

Wiring paths

231, 232

Through holes

tl, t2 Terminals

Patent Applicants

Figure 1

NEC Corporation

Hokuriku NEC Software, Ltd.

Agent

Junichi Kawahara, patent attorney

Wiring lattice defined in first wiring layer and second wiring layer

: Wiring lattice defined in third wiring layer

Figure 5

[Translat r's Notes]

- 1. The original term koushi, usually translated "lattice" (and sometimes "grating" or "grid") is herein translated "lattice member" because the English word "lattice" refers to the entire lattice and never to its constituent elements or "members" as is apparently intended here.
- 2. The term haisen, as used in microchip technology, may also be translated "interconnect," but is translated by the more common "wiring" herein to avoid confusion.
- 3. The original language [A] ni teigi sareta [B], which occurs frequently in the text, is ambiguous. I have translated it "B defined in A," but it could also mean "B defined by A.