King's College London

University Of London

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

PLACE THIS PAPER AND ANY ANSWER BOOKLETS in the	he EXAM ENVELOPE provided
Candidate No:	Desk No:

BSC AND MSCI EXAMINATION

6CCM223B Geometry of Surfaces

Summer 2019

TIME ALLOWED: TWO HOURS

This paper consists of two sections, Section A and Section B. Section A contributes 45 percent of the total marks for the paper. Answer all questions.

You are permitted to use a Calculator.
Only calculators from the Casio FX83 and FX85 range are allowed.

DO NOT REMOVE THIS PAPER FROM THE EXAMINATION ROOM

TURN OVER WHEN INSTRUCTED

2019 © King's College London

Part A

For each question in Part A there is exactly one correct answer. All ten questions in Part A carry equal marks.

Write your answers to Part A in the answer grid provided.

A 1. Consider the curve

$$\gamma: \mathbb{R} \to \mathbb{R}^2, \ t \mapsto (\cosh(t), \sinh(t)).$$

Which of the following statements is true?

- (A) The curvature of γ at the point $\gamma(0)$ is -1.
- (B) The curvature of γ at the point $\gamma(0)$ is 0.
- (C) The curvature of γ at the point $\gamma(0)$ is 1.
- (D) The curvature of γ at the point $\gamma(0)$ is not defined.
- (E) None of the above.

A 2. Consider the curve

$$\gamma: (-1,1) \to \mathbb{R}^3, \ t \mapsto \left(\frac{1}{3}(1+t)^{\frac{3}{2}}, \frac{1}{3}(1-t)^{\frac{3}{2}}, \frac{t}{\sqrt{2}}\right).$$

Which of the following statements is true?

- (A) The torsion of γ at the point $\gamma(0)$ is $2\sqrt{2}$.
- (B) The torsion of γ at the point $\gamma(0)$ is $-2\sqrt{2}$.
- (C) The torsion of γ at the point $\gamma(0)$ is $-\frac{1}{2\sqrt{2}}$.
- (D) The torsion of γ at the point $\gamma(0)$ is $\frac{1}{2\sqrt{2}}$.
- (E) None of the above.

- **A 3.** Let γ be a simple closed curve in \mathbb{R}^2 of length 1 and $\mathcal{A}(\operatorname{int}(\gamma))$ be the area of the interior $\operatorname{int}(\gamma)$ of γ . Which of the following statements is true for any such curve γ ?
 - (A) $4\pi \mathcal{A}(\operatorname{int}(\gamma)) \leq 1$.
 - (B) $4\pi \mathcal{A}(\operatorname{int}(\gamma)) < 1$.
 - (C) $4\pi \mathcal{A}(\operatorname{int}(\gamma)) \ge 1$.
 - (D) $4\pi \mathcal{A}(\operatorname{int}(\gamma)) > 1$.
 - (E) None of the above.
- **A 4.** Which of the following statements is true?
 - (A) $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$ is a hyperbolic paraboloid.
 - (B) $\{(x,y,z) \in \mathbb{R}^3 : x^2 y^2 z^2 = 1\}$ is a hyperbolic paraboloid.
 - (C) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z\}$ is a hyperbolic paraboloid.
 - (D) $\{(x, y, z) \in \mathbb{R}^3 : x^2 y^2 = z\}$ is a hyperbolic paraboloid.
 - (E) None of the above.

A 5. Consider the surface S given by the surface patch

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \ (u, v) \mapsto \left(u - 3, 1 - v, 6 - \frac{1}{3}u^2 - \frac{2}{3}v^2\right).$$

Which of the following statements is true?

- (A) The tangent plane of S at (0,0) is the xy-plane in \mathbb{R}^3 .
- (B) The tangent plane of S at (0,0) is the xz-plane in \mathbb{R}^3 .
- (C) The tangent plane of S at (0,0) is the yz-plane in \mathbb{R}^3 .
- (D) The tangent plane of \mathcal{S} at (0,0) is the plane in \mathbb{R}^3 given by the equation x+y+z=0.
- (E) None of the above.

A 6. Consider the surface S given by the surface patch

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \ (u, v) \mapsto (u, v, u^2 + v^2).$$

Let $\mathcal{G}(\mathbb{R}^2)$ be the image of the Gauss map \mathcal{G} from \mathbb{R}^2 into the unit sphere S^2 . Which of the following statements is true?

- (A) $\mathcal{G}(\mathbb{R}^2) = \{(x, y, z) \in S^2 : z = 0\}.$
- (B) $\mathcal{G}(\mathbb{R}^2) = \{(x, y, z) \in S^2 : z < 0\}.$
- (C) $\mathcal{G}(\mathbb{R}^2) = \{(x, y, z) \in S^2 : z > 0\}.$
- (D) $\mathcal{G}(\mathbb{R}^2) = S^2$.
- (E) None of the above.

- **A 7.** Let $\gamma: (-1,1) \to \mathbb{R}^3$ be a unit speed curve that is contained in a surface \mathcal{S} . Assume that $\gamma(0) = O = (0,0,0)$, $\dot{\gamma}(0) = \frac{1}{\sqrt{2}}(1,1,0)$ and $\ddot{\gamma}(0) = (1,-1,2)$, and that the unit normal \mathbf{N} to \mathcal{S} at O is (0,0,1). Let κ_g be the geodesic curvature of γ at O. Which of the following statements is true?
 - (A) $\kappa_g = -\sqrt{2}$.
 - (B) $\kappa_g = \sqrt{2}$.
 - (C) $\kappa_g = 0$.
 - (D) $\kappa_g = \frac{1}{\sqrt{2}}$.
 - (E) None of the above.
- **A8.** Consider the surface \mathcal{S} given by the surface patch

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \ (u, v) \mapsto (u - v, u + v, u^2 + v^2).$$

and put $O = \sigma(0,0) = (0,0,0)$. Which of the following statements is true?

- (A) The principal curvatures of $\mathcal S$ at O are -1 and 1.
- (B) The principal curvatures of S at O are 0 and 1.
- (C) Both principal curvatures of S at O are equal to 0.
- (D) Both principal curvatures of $\mathcal S$ at O are equal to 1.
- (E) None of the above.

- **A 9.** Which of the following statements is true?
 - (A) There exists no surface with mean curvature H=0 and Gaussian curvature K=0.
 - (B) There exists no surface with mean curvature H=0 and Gaussian curvature K>0.
 - (C) There exists no surface with mean curvature H<0 and Gaussian curvature K=0.
 - (D) There exists no surface with mean curvature H>0 and Gaussian curvature K=0.
 - (E) None of the above.
- **A 10.** Let γ be a unit speed simple closed curve of length π on a surface σ and assume that γ is positively oriented and has constant geodesic curvature 1. Let K be the Gaussian curvature of σ and $d\mathcal{A}_{\sigma}$ be the area element on σ . Which of the following statements is true?
 - (A) $\iint_{int(\gamma)} K d\mathcal{A}_{\sigma} = -\pi$.
 - (B) $\iint_{int(\gamma)} K d\mathcal{A}_{\sigma} = 0.$
 - (C) $\iint_{int(\gamma)} K d\mathcal{A}_{\sigma} = \pi.$
 - (D) $\iint_{int(\gamma)} K d\mathcal{A}_{\sigma} = 2\pi.$
 - (E) None of the above.

Part B

All four questions in Part B carry equal marks.

- **B 11.** (i) Let γ be a unit speed curve in \mathbb{R}^3 with nowhere vanishing curvature. State the Frenet-Serret equations for γ .
 - (ii) Let γ be a unit speed curve in \mathbb{R}^3 with constant positive curvature and zero torsion. Prove that γ is a circle, or part of a circle.
- **B 12.** Let $\gamma: I \to \mathbb{R}^3$ be a unit speed curve with nowhere vanishing curvature, $I \subseteq \mathbb{R}$ open interval. Put $U = I \times \mathbb{R}_+ \subseteq \mathbb{R}^2$ with $\mathbb{R}_+ = \{v \in \mathbb{R} : v > 0\}$ and define

$$\sigma: U \to \mathbb{R}^3$$
, $(u, v) \mapsto \sigma(u, v) = \gamma(u) + v\dot{\gamma}(u)$.

Assume that σ is an injective map.

- (i) Show that σ is a regular surface patch.
- (ii) Calculate the first fundamental form of σ .
- (iii) Calculate the second fundamental form of σ .
- (iv) Prove that the Gaussian curvature K of σ satisfies K=0.

- **B 13.** Let S be a surface in \mathbb{R}^3 with regular surface patch $\sigma: U \to \mathbb{R}^3$.
 - (i) State the definition of a geodesic on the surface.
 - (ii) Prove that a unit speed curve γ on σ is a geodesic if and only if its geodesic curvature κ_g is zero everywhere.
 - (iii) Let p and q be any points in S. Does there always exist a geodesic in S passing through p and q? Justify your answer!
 - (iv) Every great circle in the unit sphere S^2 is a geodesic. Give a justification why this is true.
- **B 14.** Consider the paraboloid with surface patch

$$\sigma: \mathbb{R}^2 \to \mathbb{R}^3, \ (u,v) \mapsto (u,v,u^2+v^2)$$

and the curve

$$\gamma: \mathbb{R} \to \mathbb{R}^3, \ t \mapsto (\cos(t), \sin(t), 1)$$

in the paraboloid. Compute the geodesic curvature of γ and use the local version of the Gauss-Bonnet Theorem to compute the value of

$$\iint_{\mathrm{int}(\gamma)} K d\mathcal{A}_{\sigma},$$

where K is the Gaussian curvature of σ and $d\mathcal{A}_{\sigma}$ is the area element on σ .

Solutions

For each question I state one possible solution that is based on the material taught in the course. For some questions, in particular proofs, there are of course other solutions for which a student can get full marks.

A 1. We have $\gamma'(t) = (\sinh(t), \cosh(t)) \neq 0$ for all $t \in \mathbb{R}$. Thus γ is a regular curve and its curvature is well-defined everywhere. Furthermore, $\gamma''(t) = (\cosh(t), \sinh(t)) = \gamma(t)$. Thus $\gamma'(0) = (0, 1)$ and $\gamma''(0) = (1, 0)$. The curvature $\kappa(0)$ of γ at $\gamma(0)$ is

$$\kappa(0) = \frac{\|\gamma''(\gamma' \cdot \gamma') - \gamma'(\gamma' \cdot \gamma'')\|}{\|\gamma'\|^4}(0) = 1.$$

A 2. We have

$$\begin{split} \gamma'(t) &= \left(\frac{1}{2}(1+t)^{\frac{1}{2}}, -\frac{1}{2}(1-t)^{\frac{1}{2}}, \frac{1}{\sqrt{2}}\right), \text{ (implies } \gamma \text{ unit speed and regular) }, \\ \gamma''(t) &= \left(\frac{1}{4}(1+t)^{-\frac{1}{2}}, \frac{1}{4}(1-t)^{-\frac{1}{2}}, 0\right) \text{ (implies } \kappa \neq 0 \text{ and torsion well-defined) }, \\ \gamma'''(t) &= \left(-\frac{1}{8}(1+t)^{-\frac{3}{2}}, \frac{1}{8}(1-t)^{-\frac{3}{2}}, 0\right). \end{split}$$

Thus $\gamma'(0) = \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{\sqrt{2}}\right)$, $\gamma''(0) = \left(\frac{1}{4}, \frac{1}{4}, 0\right)$, $\gamma'''(0) = \left(-\frac{1}{8}, \frac{1}{8}, 0\right)$ and hence $(\gamma' \times \gamma'')(0) = \left(-\frac{1}{4\sqrt{2}}, \frac{1}{4\sqrt{2}}, \frac{1}{4}\right)$. For the torsion $\tau(0)$ of γ at $\gamma(0)$ we then get

$$\tau(0) = \frac{(\gamma' \times \gamma'') \cdot \gamma'''}{\|\gamma' \times \gamma''\|^2}(0) = \frac{1}{2\sqrt{2}}.$$

- **A 3.** The isoperimetric inequality states that $\mathcal{A}(\operatorname{int}(\gamma)) \leq \frac{1}{4\pi}\ell(\gamma)^2$ for any simple closed curve γ in \mathbb{R}^2 of length $\ell(\gamma)$, with equality holding if and only if γ is a circle. Since $\ell(\gamma) = 1$ by assumption, it follows that $4\pi\mathcal{A}(\operatorname{int}(\gamma)) \leq 1$ is the correct inequality.
- **A 4.** Equation (D) describes a hyperbolic paraboloid. [(A) gives a hyperboloid of one sheet, (B) a hyperboloid of two sheets and (C) an elliptic paraboloid.]
- **A 5.** We have $\sigma_u(u,v) = (1,0,-\frac{2}{3}u)$ and $\sigma_v(u,v) = (0,-1,-\frac{4}{3}v)$. The tangent plane at (0,0) is spanned by $\sigma_u(0,0) = (1,0,0)$ and $\sigma_v(0,0) = (0,-1,0)$ and therefore coincides with xy-plane in \mathbb{R}^3 .

A 6. We have $\sigma_u(u,v) = (1,0,2u)$ and $\sigma_v(u,v) = (0,1,2v)$. Thus $(\sigma_u \times \sigma_v)(u,v) = (-2u,-2v,1)$ and hence the Gauss map is

$$\mathcal{G}: \mathbb{R}^2 \to S^2, \ (u,v) \mapsto \frac{1}{\sqrt{1+4(u^2+v^2)}}(-2u,-2v,1).$$

From this we easily see that $\mathcal{G}(\mathbb{R}^2) = \{(x, y, z) \in S^2 : z > 0\}.$

- **A 7.** At O we have $\kappa_g = \ddot{\gamma}(0) \cdot (\mathbf{N} \times \dot{\gamma}(0)) = (1, -1, 2) \cdot \frac{1}{\sqrt{2}}(-1, 1, 0) = -\sqrt{2}$.
- **A 8.** We have $\sigma_u(u,v) = (1,1,2u)$, $\sigma_v(u,v) = (-1,1,2v)$, $\sigma_{uu}(u,v) = (0,0,2)$, $\sigma_{uv}(u,v) = (0,0,0)$ and $\sigma_{vv}(u,v) = (0,0,2)$. This gives $\mathbf{N}(0,0) = \frac{(\sigma_u \times \sigma_v)(0,0)}{\|(\sigma_u \times \sigma_v)(0,0)\|} = (0,0,1)$ for the normal vector at (0,0). Thus, at (0,0), we get $E = \|\sigma_u(0,0)\|^2 = 2$, $E = (\sigma_u \cdot \sigma_v)(0,0) = 0$, $E = \|\sigma_v(0,0)\|^2 = 0$, $E = (\sigma_{uv} \cdot \mathbf{N})(0,0) = 0$. It follows that both the first and the second fundamental form have the matrix representation $\mathcal{F}_I = \mathcal{F}_{II} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$. Then $\mathcal{F}_I^{-1} \mathcal{F}_{II} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and thus both principal curvatures are equal to 1.
- A 9. Let κ_1, κ_2 be the principal curvatures. Then, by definition, $H = \frac{1}{2}(\kappa_1 + \kappa_2)$ and $K = \kappa_1 \kappa_2$. If H = 0, then $0 = 4H^2 = (\kappa_1 + \kappa_2)^2 = 2K + \kappa_1^2 + \kappa_2^2$, which implies $K \leq 0$. Thus there exists no surface with H = 0 and K > 0. The other cases are possible. For example, the round cylinder has K = 0 and K > 0 (with inward unit normal) or K = 0 (with outward unit normal). The plane has K = 0 and K = 0.
- A 10. The local version of the Gauss-Bonnet Theorem states

$$\int_{\gamma} \kappa_g ds = 2\pi - \iint_{\text{int}(\gamma)} K d\mathcal{A}_{\sigma}.$$

By assumption, $\kappa_g = 1$ and $\ell(\gamma) = \pi$, thus $\int_{\gamma} \kappa_g ds = \int_0^{\pi} ds = \pi$. Inserting this into the above equation implies $\iint_{\text{int}(\gamma)} K d\mathcal{A}_{\sigma} = \pi$.

B 11. (i) Let κ be the curvature and τ be the torsion of γ . Furthermore, define $\mathbf{t} = \dot{\gamma}$, $\mathbf{n} = \frac{1}{\kappa} \dot{\mathbf{t}}$ and $\mathbf{b} = \mathbf{t} \times \mathbf{n}$. The Frenet-Serret equations are

$$\dot{\mathbf{t}} = \kappa \mathbf{n} , \ \dot{\mathbf{n}} = -\kappa \mathbf{t} + \tau \mathbf{b} , \ \dot{\mathbf{b}} = -\tau \mathbf{n}.$$

(ii) Assume that $\kappa(s) = \kappa > 0$ is constant and $\tau(s) = 0$. The third Frenet-Serret equation gives $\dot{\mathbf{b}} = 0$ and thus $\mathbf{b}(s) = \mathbf{b}$ is a constant vector in \mathbb{R}^3 . Thus $\frac{d}{ds}(\gamma \cdot \mathbf{b}) = \dot{\gamma} \cdot \mathbf{b} + \gamma \cdot \dot{\mathbf{b}} = \mathbf{t} \cdot \mathbf{b} = 0$ since \mathbf{t} and \mathbf{b} are perpendicular. Thus $\gamma \cdot \mathbf{b}$ is constant, say equal to $d \in \mathbb{R}$. This shows that γ lies in the plane in \mathbb{R}^3 given by the equation $(x, y, z) \cdot \mathbf{b} = d$.

Using the second Frenet-Serret equation and the assumptions that $\kappa(s) = \kappa > 0$ is constant and $\tau = 0$, we obtain $\frac{d}{ds} \left(\gamma + \frac{1}{\kappa} \mathbf{n} \right) = \mathbf{t} + \frac{1}{\kappa} \dot{\mathbf{n}} = 0$. Thus there exists $\mathbf{a} \in \mathbb{R}^3$ so that $\gamma(s) + \frac{1}{\kappa} \mathbf{n}(s) = \mathbf{a}$ for all s. This implies $\|\gamma(s) - \mathbf{a}\| = \|-\frac{1}{\kappa} \mathbf{n}(s)\| = \frac{1}{\kappa} \|\mathbf{n}(s)\| = \frac{1}{\kappa}$ for all s, which shows that $\gamma(s)$ lies on the sphere with radius $\frac{1}{\kappa}$ and centre \mathbf{a} .

Since the intersection of a sphere with a plane is circle, the result follows.

- B12. (i) We have $\sigma_u = \dot{\gamma} + v\ddot{\gamma}$ and $\sigma_v = \dot{\gamma}$, and therefore $\sigma_u \times \sigma_v = v\ddot{\gamma} \times \dot{\gamma}$. Using the first Frenet-Serret equation, we obtain $\sigma_u \times \sigma_v = v(\dot{\mathbf{t}} \times \mathbf{t}) = v\kappa(\mathbf{n} \times \mathbf{t}) = -v\kappa \mathbf{b}$. Since both v and κ are non-zero by assumption, it follows that σ is a regular surface patch.
 - (ii) Since $\|\dot{\gamma}\| = 1$, we have $\dot{\gamma} \cdot \ddot{\gamma} = 0$. Using this we get

$$E = \|\sigma_u\|^2 = (\dot{\gamma} + v\ddot{\gamma}) \cdot (\dot{\gamma} + v\ddot{\gamma}) = \|\dot{\gamma}\|^2 + v^2 \|\ddot{\gamma}\|^2 = 1 + v^2 \kappa^2,$$

$$F = \sigma_u \cdot \sigma_v = (\dot{\gamma} + v\ddot{\gamma}) \cdot \dot{\gamma} = \|\dot{\gamma}\|^2 = 1,$$

$$G = \|\sigma_v\|^2 = \|\dot{\gamma}\|^2 = 1.$$

Thus the first fundamental form is $(1 + v^2 \kappa(u)^2) du^2 + 2du dv + dv^2$.

- (iii) Using the Frenet-Serret equations we calculate $\sigma_{uu} = \dot{\mathbf{t}} + v\dot{\kappa}\mathbf{n} + v\kappa\dot{\mathbf{n}} = (\kappa + v\dot{\kappa})\mathbf{n} v\kappa^2\mathbf{t} + v\kappa\tau\mathbf{b}$, $\sigma_{uv} = \kappa\mathbf{n}$ and $\sigma_{vv} = 0$. Moreover, for the unit normal we get $\mathbf{N} = \frac{\sigma_u \times \sigma_v}{\|\sigma_u \times \sigma_v\|} = -\mathbf{b}$. This implies $L = \sigma_{uu} \cdot \mathbf{N} = -v\kappa\tau$, $M = \sigma_{uv} \cdot \mathbf{N} = 0$ and $N = \sigma_{vv} \cdot \mathbf{N} = 0$. Thus the second fundamental form is $-v\kappa\tau(u)du^2$.
- (iv) $K = \frac{LN M^2}{EG F^2} = 0.$

- **B13.** (i) A unit speed curve γ on σ is a geodesic if $\ddot{\gamma}(s)$ is perpendicular to the surface at $\gamma(s)$ for all s, or equivalently, if $\ddot{\gamma}(s)$ is parallel to the unit normal $\mathbf{N}(s)$ for all s.
 - (ii) Let γ be a unit speed geodesic on σ . Then $\ddot{\gamma}(s)$ is parallel to $\mathbf{N}(s)$ and therefore perpendicular to $(\mathbf{N} \times \dot{\gamma})(s)$. So $\kappa_g(s) = \ddot{\gamma}(s) \cdot (\mathbf{N} \times \dot{\gamma})(s) = 0$. Conversely, assume $\kappa_g = 0$. Then $0 = \kappa_g(s) = \ddot{\gamma}(s) \cdot (\mathbf{N} \times \dot{\gamma})(s)$ for all s. Since γ is a unit speed curve, we have $\dot{\gamma} \cdot \dot{\gamma} = 1$ and hence $\dot{\gamma} \cdot \ddot{\gamma} = 0$. Thus $\ddot{\gamma}(s)$ is perpendicular to $(\mathbf{N} \times \dot{\gamma})(s)$ and $\dot{\gamma}(s)$ for all s. Since $\dot{\gamma}(s)$, $\mathbf{N}(s)$ and $(\mathbf{N} \times \dot{\gamma})(s)$ are perpendicular unit vectors in \mathbb{R}^3 , it follows that $\ddot{\gamma}(s)$ is parallel to $\mathbf{N}(s)$ for all s, which shows that γ is a geodesic on σ .
 - (iii) No! Consider for example the plane \mathbb{R}^2 with the origin O = (0,0) removed, denoted by \mathcal{S} . The geodesics in the plane are the straight lines. The line passing through the points p = (-1,0) and q = (1,0) also passes through O, but since this point has been removed from \mathbb{R}^2 we cannot find a line in \mathcal{S} passing through p and q.
 - (iv) Every great circle on S^2 is a normal section of S^2 , that is, the intersection of S^2 with a plane perpendicular to the tangent plane at some point of S^2 . Every normal section of a surface has vanishing geodesic curvature and hence is a geodesic.

B 14. We have $\gamma(t) = \sigma(\rho(t))$ with $\rho : \mathbb{R} \to \mathbb{R}^2$, $t \mapsto (\cos(t), \sin(t))$. Since ρ is positively oriented, also γ is positively oriented. Clearly, γ is a unit speed, simple closed curve.

We have $\sigma_u(u,v) = (1,0,2u)$ and $\sigma_v(u,v) = (0,1,2v)$. Thus the unit normal N of σ is

$$\mathbf{N}(u,v) = \frac{1}{\sqrt{4u^2 + 4v^2 + 1}}(-2u, -2v, 1).$$

Moreover, $\dot{\gamma}(t) = (-\sin(t), \cos(t), 0)$ and $\ddot{\gamma}(t) = -(\cos(t), \sin(t), 0)$. Therefore,

$$\mathbf{N}(\rho(t)) \times \dot{\gamma}(t) = \frac{1}{\sqrt{5}} (-2\cos(t), -2\sin(t), 1) \times (-\sin(t), \cos(t), 0)$$
$$= -\frac{1}{\sqrt{5}} (\cos(t), \sin(t), 2).$$

Altogether this implies

$$\kappa_g(t) = \ddot{\gamma}(t) \cdot (\mathbf{N}(\rho(t)) \times \dot{\gamma}(t))$$
$$= (\cos(t), \sin(t), 0) \cdot \frac{1}{\sqrt{5}}(\cos(t), \sin(t), 2) = \frac{1}{\sqrt{5}}.$$

The local version of the Gauss-Bonnet Theorem then implies

$$\iint_{\text{int}(\gamma)} K d\mathcal{A}_{\sigma} = 2\pi - \int_{\gamma} \kappa_g ds = 2\pi - \frac{1}{\sqrt{5}} \int_{\gamma} ds$$
$$= 2\pi - \frac{1}{\sqrt{5}} \ell(\gamma) = 2\pi - \frac{1}{\sqrt{5}} 2\pi = 2\pi \left(1 - \frac{1}{\sqrt{5}}\right).$$