

## **SECOND SEMESTER 2019-2020**

Course Handout Part II

Date: Dec-2019

In addition to part-I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CS G520/SS G520
Course Title : Advanced Data Mining
Instructor-in-Charge : Jabez Christopher

# **Course Description & Scope:**

Advanced Data Mining is a specialization course of Data Mining. Topics covered go beyond conventional record data mining to mining complex data structures and complex data: Tree/graph, biological data, web/text data, stream data, spatiotemporal data, time series data, high-dimensional data. A substantial portion of the course will focus on research projects, where students will study and work on a well-defined research problem. The course also deals with applications such as mining social networking sites, bioinformatics and medical informatics.

# **Objectives of the Course:**

- To expose key research areas in data mining.
- Emphasize on the design and implementation of efficient and optimized algorithms for data mining.
- Emphasize the use of WEKA, MATLAB and R to implement Data preprocessing and Data Mining tasks
- To improve research and presentation quality thereby enable students to comprehend and critically analyze data mining research.

#### **Text Book**

TB: Aggarwal, Charu C. **Data mining: the textbook**. Springer, 2015.

## Reference books

- 1. R1: Hadzic F., Tan H. & Dillon T. S. "Mining data with Complex Structures" Springer, 2011
- 2. R2:Han J. &Kamber M., "*Data Mining: Concepts and Techniques*", Morgan Kaufmann Publishers, Second Edition, 2006
- 3. R3: Tan P. N., Steinbach M & Kumar V. "Introduction to Data Mining" Pearson Education, 2006
- 4. R4: Mitsa, Theophano. **Temporal data mining**. Chapman and Hall/CRC, 2010.
- 5. R5:Chowriappa, Pradeep, and SumeetDua. **Data mining for bioinformatics**. CRC Press, 2012.
- 6. R6:Dunham, Margaret H. **Data mining: Introductory and advanced topics**. Pearson Education India, 2006.
- 7. R7: Ross, T. J. (2005). **Fuzzy logic with engineering applications**. John Wiley & Sons.



**Reading Material:** Research papers and other reading material will be provided on the course website.

[RM 01] Bradley, Paul S., Usama M. Fayyad, and Olvi L. Mangasarian. "Mathematical programming for data mining: Formulations and challenges." INFORMS Journal on Computing 11, no. 3 (1999): 217-238.

[RM 02] Mangasarian, Olvi L. "Mathematical programming in data mining." Data mining and knowledge discovery 1, no. 2 (1997): 183-201

## **Course Plan:**

| Lectur<br>e No. | Learning objectives                                                                                                                                                        | Topics to be covered                                                                                                                                                                                                                                       | Reference                               |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|
| 1               | To understand the objectives of the course                                                                                                                                 | Introduction to the course & Lab Topics                                                                                                                                                                                                                    |                                         |  |  |  |  |
| 2,3             |                                                                                                                                                                            | Overview of Knowledge Discovery                                                                                                                                                                                                                            | R2 Ch 1,<br>2, 3;<br>TB Ch 1<br>[RM 01] |  |  |  |  |
| 4-8             | Refresh the basics of KDD and Data Mining tasks.                                                                                                                           | Overview of Data Mining                                                                                                                                                                                                                                    | R2 Ch 6,<br>8, 10;<br>[RM 02]           |  |  |  |  |
| 9,10            |                                                                                                                                                                            | Statistics for Data Mining                                                                                                                                                                                                                                 | Class Notes                             |  |  |  |  |
|                 | WEB DATA MINING                                                                                                                                                            |                                                                                                                                                                                                                                                            |                                         |  |  |  |  |
| 11-15           | Concentrate on use of Data Mining techniques to Web and Social Networks, and understand their their use in Web analytics, user profiling and personalization.              | Social Network Analysis: Preliminaries and Properties                                                                                                                                                                                                      | TB Ch. 19                               |  |  |  |  |
|                 |                                                                                                                                                                            | BIOLOGICAL DATA MINING                                                                                                                                                                                                                                     | 1                                       |  |  |  |  |
| 16-20           | Enable students to find patterns and statistical dependencies in large biological databases and to gain an understanding of the underlying system from which the data were | <ul> <li>Data Transformations</li> <li>Normalization Techniques for Gene Expression Analysis.</li> <li>Data Preprocessing of Mass Spectrometry Data</li> <li>Data Preprocessing for Genomic Sequence Data</li> <li>Ontologies in Bioinformatics</li> </ul> | R5 Ch. 5                                |  |  |  |  |
|                 | obtained.  Use computational biology & data mining                                                                                                                         | <ul> <li>Applications of Classification &amp; Clustering in</li> <li>Bioinformatics.</li> <li>Distance Metric in Gene Expressions for Coexpressed Genes</li> </ul>                                                                                         | R5 Ch. 6                                |  |  |  |  |



|        | T                                                             |                                                                     |              |  |  |  |  |
|--------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------|--|--|--|--|
|        | tasks to analyze vast                                         | Gene Expression Clustering Using Mutual                             |              |  |  |  |  |
|        | experimental data                                             | Information Distance Measure                                        |              |  |  |  |  |
|        | generated by high-                                            | Gene Expression Data Clustering Using aLocal                        |              |  |  |  |  |
|        | throughput technologies,                                      | Shape-Based Clustering                                              |              |  |  |  |  |
|        | and thereby enables the                                       | Fuzzy k-Means Clustering on Gene Expression                         |              |  |  |  |  |
|        | generation of new                                             | Temporal Data Mining in Medicine and                                |              |  |  |  |  |
|        | hypotheses.                                                   | Bioinformatics                                                      |              |  |  |  |  |
|        | SPATIAL &TEMPORAL DATA MINING                                 |                                                                     |              |  |  |  |  |
| -      | To study how to Mining with Contextual Spatial Attributes. TB |                                                                     |              |  |  |  |  |
|        | investigate temporal data                                     | Trajectory Mining                                                   |              |  |  |  |  |
|        | and understand models and                                     | , , , , , , , , , , , , , , , , , , ,                               |              |  |  |  |  |
|        | methods for                                                   | Temporal Data Similarity Computation,                               |              |  |  |  |  |
|        | representation.                                               | Representation, and Summarization                                   |              |  |  |  |  |
|        | representation                                                | Temporal Data Types and Preprocessing                               |              |  |  |  |  |
| 21-25  |                                                               | Temporal Data Preprocessing     Temporal Data Preprocessing         |              |  |  |  |  |
|        |                                                               | Time Series Similarity Measures                                     | R4 Ch. 2     |  |  |  |  |
|        |                                                               | Time Series Summarization Methods                                   | R4 CII. 2    |  |  |  |  |
|        |                                                               | Time Series Summarization Methods     Temporal Event Representation |              |  |  |  |  |
|        |                                                               | Temporal Event Representation     Temporal Knowledge Representation |              |  |  |  |  |
|        |                                                               | 1 0 1                                                               |              |  |  |  |  |
|        |                                                               | in Case-Based Reasoning Systems                                     |              |  |  |  |  |
|        |                                                               | Forecasting Model and Error Measures                                |              |  |  |  |  |
|        |                                                               | Event Prediction                                                    |              |  |  |  |  |
|        |                                                               | Time Series Forecasting                                             |              |  |  |  |  |
|        |                                                               | Moving Averages                                                     |              |  |  |  |  |
| 26.20  |                                                               | Exponential Smoothing                                               | R4 Ch. 4     |  |  |  |  |
| 26-28  |                                                               | Time Series Forecasting via Regression                              | TB Ch. 14    |  |  |  |  |
|        |                                                               | Forecasting Seasonal Data via Regression                            |              |  |  |  |  |
|        |                                                               | Random Walk                                                         |              |  |  |  |  |
|        |                                                               | Autocorrelation                                                     |              |  |  |  |  |
|        |                                                               | Autoregression                                                      |              |  |  |  |  |
|        |                                                               | ARIMA Models                                                        |              |  |  |  |  |
|        | II. 1                                                         | RECENT TRENDS                                                       |              |  |  |  |  |
|        | Understand the use of                                         | Optimization Algorithms for Data Mining                             |              |  |  |  |  |
|        | Optimization techniques to                                    | Lagrangian Methods                                                  | Research     |  |  |  |  |
| 20.20  | catalyze the performance                                      | Gradient Descent Algorithm                                          | articles (to |  |  |  |  |
| 29-36  | of Algorithms and                                             | Simulated Annealing                                                 | be `         |  |  |  |  |
|        | parameter-tuning.                                             | Evolutionary Algorithms (GA)                                        | decided)     |  |  |  |  |
|        |                                                               | Swarm Intelligence Algorithms                                       | ĺ            |  |  |  |  |
|        | ** 1 11 ***                                                   | Particle Swarm Optimization                                         | 7.5          |  |  |  |  |
|        | Understand how to handle                                      | Soft Computing Approaches for Data Mining                           | R7 Ch 1,     |  |  |  |  |
|        | uncertainty in decision-                                      | Handling Uncertainty in Data                                        | 4, Class     |  |  |  |  |
|        | making systems by                                             | Resolving Uncertainty using Fuzzy Logic                             | notes&       |  |  |  |  |
| 37-40  | incorporating fuzzy logic                                     | Fuzzy Inference Systems                                             | Research     |  |  |  |  |
|        | and FIS                                                       | Evolving Fuzzy Systems                                              | articles (to |  |  |  |  |
|        |                                                               |                                                                     | be           |  |  |  |  |
|        |                                                               |                                                                     | decided)     |  |  |  |  |
| 41, 42 |                                                               | RESEARCH GAPS & FUTURE DIRECTIONS                                   |              |  |  |  |  |

# **Evaluation Scheme:**

| Compo | nent Duration | Weightage | Date & Time | Nature of |
|-------|---------------|-----------|-------------|-----------|
|-------|---------------|-----------|-------------|-----------|



|                                |          | (%) |                      | Component |
|--------------------------------|----------|-----|----------------------|-----------|
| Mid-Semester Test              | 1½ hours | 20  | 6/3 - 9.00 - 10.30AM | Closed    |
| Quizzes (2)                    | ½ hour   | 5   |                      | Closed    |
| Labs Assignments&<br>Projects* |          | 30  |                      | Open      |
| Term Paper & Seminar           |          | 10  |                      | Open      |
| Comprehensive Exam             | 3 Hours  | 35  | 12/05 - FN           | Closed    |

<sup>\*</sup>Lab-projects will emphasize on the use of WEKA/MATLAB/R to implement preprocessing and data mining algorithms on datasets from open repositories. In addition to this the students are expected to survey, review & compare research works in similar areas and prepare articles and reports. Evaluation would be a continuous assessment model during the practical sessions.

**Chamber Consultation Hours:** To be announced in the class.

Make-up Policy:

**Notices:** All the notices concerning this course will be displayed on the CMS.

**Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

.

**INSTRUCTOR-IN-CHARGE** 

