

School of Electrical Engineering

Course Title: Introduction to Engineering

Course Code: BEEE101N

<u>Design of 5V regulated DC Power Supply using Voltage Regulator IC (LM7805)</u>

Learning objectives:

- Understand the operation of a voltage regulator circuit.
- Analyze the operation of rectifier circuit with capacitor filter connected to a voltage regulator IC.
- Determination of output voltages without and with the voltage regulator.
- Study the application of voltage regulators.

Components required for hardware setup:

Sl. No.	Item	Range	Quantity
1	Transformer	230/12 V	1
2	PN Junction Diode	1N4002 or IN4007	4
3	Capacitor (C ₁)	10μF to 470μF	1
		(any value)	
4	Capacitor (C ₂ and C ₃)	0.01µF	2
5	IC 7805		1
6	Resistive Load	≥1kΩ	1
7	Breadboard	-	1
8	Wires	-	As required
9	Oscilloscope with voltage probes	-	1

Circuit Diagram of 5V Regulated DC power supply using Full Wave Diode Bridge Rectifier and Regulator IC (LM7805)

Figure 1. 5V Regulated DC power supply using LM7805

Theory:

A voltage regulator is an electronic circuit that provides a stable DC voltage independent of the load current, temperature and AC line voltage variations. Electronic voltage regulators are found in many power supply devices/adapters such as computer power supplies where they stabilize the DC voltages used by the processor and other elements. A voltage regulator IC maintains the output voltage at a constant value. 7805 Voltage Regulator, a member of the 78xx series of fixed linear voltage regulators used to maintain such fluctuations, is a popular voltage regulator integrated circuit (IC). The pin diagram of LM7805 is shown in Figure (2).

Figure 2. Pin Diagram of LM7805

Experimental Procedure:

- 1. Plug the transformer in to the AC power socket and measure the voltage at the secondary side of the transformer using oscilloscope.
- 2. Build the rectifier and regulator circuit using 4 diodes, required capacitors, voltage regulator IC and the transformer as shown in the circuit diagram.
- 3. Observe and measure the voltage across the rectifier (before IC) with the help of an oscilloscope. Record the resulting waveform.
- 4. Now, observe and measure the output voltage of regulator circuit. Record the resulting waveform.

Observations:

S.No	Maximum value of transformer output voltage (V _m)	RMS value of unregulated voltage across C_1 or C_2 $(V_{rms} = V_m/\sqrt{2})$	Average value of unregulated voltage across C_1 or C_2 $(V_{avg} = 2V_m/\pi)$	Regulated Voltage across Load (V _{regulated})
1				