CS 775: Advanced Computer Graphics

Lecture 12: Understanding Aliasing

• Discrete samples of continuous information

https://www.siggraph.org/education/materials/HyperGraph/mapping/r_wolfe/

http://www.codeproject.com/KB/graphics/RayTracerNet.aspx

• Discrete samples of continuous information

• A signal processing view : Aliasing is caused by inadequate sampling of continuous information.

The effect of sampling interval

Sampling interval equal to onehalf of the period.

Sampling interval more than onehalf of the period.

• The samples seem to represent a signal at a lower frequency which are known as *aliases* (i.e., lost higher frequency information reappears as impersonating lower frequencies) – hence the name "Aliasing."

- Nyquist-Shannon Sampling Theorem:
 - A continuous bandlimited function of a single variable can be completely represented by a set of samples made at equally spaced intervals.
 - The intervals between such samples must be less than half the period (or greater than twice the frequency) of the highest frequency component in the function.

$$f_{max} < \frac{1}{2\Delta x}$$
 or $f_s > 2 f_{max}$

Fourier Theory

- The Fourier Transform Any signal, $\varphi_{\mathfrak{A},\mathfrak{H}}$ be considered to be made up of a weighted sum of sine and cosine waves.
- The Fourier Transform is reversible

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$$

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi ux} du$$

• A Fourier transform converts the function from a spacial domain representation to a spectral/frequency domain representation.

Fourier Theory

Fourier Transform in 1D

Fourier Theory

The Convolution Operator

$$f(x)*g(x) = \int_{-\infty}^{\infty} f(\alpha)g(x-\alpha)d\alpha$$

• The Convolution Theorem

$$F(f(x)*g(x))=F(u)G(u)$$

$$F(f(x)g(x))=F(u)*G(u)$$

And this reconstruction of the original signal from samples works only when

$$f_{max} < \frac{1}{2\Delta x}$$
 or $f_s > 2 f_{max}$

- Nyquist-Shannon Sampling Theorem:
 - A continuous bandlimited function of a single variable can be completely represented by a set of samples made at equally spaced intervals.
 - The intervals between such samples must be less than half the period (or greater than twice the frequency) of the highest frequency component in the function.

$$f_{max} < \frac{1}{2\Delta x}$$
 or $f_s > 2 f_{max}$

Lower sampling rates cause aliasing.

Aliasing in images

- Images can be treated as 2D signals.
- Aliasing in images also happens when information at a higher frequency is sampled at less than the Nyquist limit.

A pixel of side Δx has a Nyquist limit of $1/2\Delta x$.

http://en.wikipedia.org/wiki/Aliasing