1 Úvod

- $\bullet\,$ sufixový strom (ST) aj keď si dáme pozor a snažíme sa použiť čo najmenej pamäte, vyžaduje asi 10–20B/znak
- sufixové pole (SA) potrebuje 1 int/znak; ak máme text do 4miliárd znakov, môžeme použiť
 32bitový int, čo je 4B/znak (ak nepoužijeme LCP pole ďalších 12B/znak) + samotný text
- vezmime si napríklad ľudský genóm, čo je reťazec asi 3miliardy znakov nad abecedou A, C, G, T
- samotný string teda zaberie asi 3GB (ak použijeme 1B/znak), alebo 750MB, ak použijeme zhustenú reprezentáciu a 2bity/znak
- sufixový strom bude zaberať 30–60GB a sufixové pole asi 12GB (+samotný reťazec 0.75GB)
- a to je len pamäť výslednej štruktúry, kde nepočítame pamäť použitú dočasne počas konštrukcie
- pri spracovaní väčších vstupov nás teda bude limitovať veľkosť RAM
- v tejto prednáške si ukážeme, ako dosiahnuť pamäťovo ešte úspornejšie riešenie
- dokonca si ukážeme, že vstupný text môžeme skomprimovať tak, že pritom stále umožníme rýchle vyhľadávanie
- \bullet výsledná štruktúra, FM-index, je založená na Burrows-Wheelerovej transformácií a rotáciách reťazca T

2 Burrows-Wheelerova transformácia

- uvažujme všetky rotácie stringu T a zotrieďme ich lexikograficky
- $\bullet\,$ t.j. uvažujme BW $n\times n$ maticu M
- T^{bwt} je reťazec pozostávajúci z posledného písmena z každého riadku posledný stĺpec matice
- ullet triediť všetky rotácie je podobné ako triediť všetky sufixy, preto neprekvapí, že medzi T^{bwt} a sufixovým poľom existuje jednoduchý vzťah:
 - $-T^{\text{bwt}}[i] = T[SA[i] 1] \text{ (kde } T[-1] = \$)$
- \bullet z toho vyplýva, že $T^{\rm bwt}$ vieme vypočítať v lineárnom čase (existujú aj priame konštrukcie bez SA)

2.1 Použitie v kompresii

- príklad: ak v anglickom texte objavíme substring "ATTLE", aké bolo predchádzajúce písmeno?
 - s najväššou pravdepodobnousťou B (zo slov battle, embattle) alebo C (cattle dobytok)
 - ale je zopár ďalších možností: R (prattle tárať), T (tattle klebetiť)
- ullet ak zotriedime rotácie T, všetky rotácie začínajúce sa na "ATTLE" budú po sebe, takže v poslednom stĺpci bude v tejto oblasti veľa Bčok a Cčok a zopár R, T; písmená s rovnakým kontextom sa pomocou BWT dostanú k sebe
- vo všeobecnosti bude T^{bwt} obsahovať úseky s opakovanými písmenami a všeobecnejšie dlhšie úseky, kde sa vyskytuje len zopár písmen takýto reťazec sa oveľa ľahšie komprimuje
- napríklad algoritmus bzip2 sa skladá z viacerých krokov:
 - 1. BWT získame opakované písmená a dlhé úseky s malým počtom písmen
 - 2. MTF (pri kódovaní si udržiavame zoznam písmen; i-te písmeno nahradíme číslom i a zároveň ho presunieme na začiatok zoznamu move-to-front) úsek s rovnakými písmenami sa tak premení na úsek samých núl; úsek s malým počtom písmen sa premení na úsek s malými číslami
 - 3. RLE (run-length encoding) k písmen c po sebe nahradíme zakódovaním (k,c)
 - 4. nakoniec použijeme Huffmanov kód na zakódovanie jednotlivých symbolov

2.2 Reverzná transformácia $T^{\mathrm{bwt}} \to T$

- $\bullet\,$ predpokladajme na chvíľu, že všetky znaky v T sú rôzne triedenie rotácií je potom jednoduché, lebo stačí porovnať prvé písmeno
- \bullet ak zotriedime znaky $L=T^{\rm bwt},$ dostaneme prvý stĺpec F
- uvedomme si, že ak máme prvý aj posledný stĺpec, vieme ľahko zrekonštruovať T, totiž L_i je písmeno, ktoré sa v T nachádza pred F_i
- stačí teda začať od konca s \$, nájsť riadok, kde $F_i = \$$; tak zistíme posledný znak $c = L_i$; opäť nájdeme riadok, kde $F_j = c$ a odčítame predchádzajúci znak $c = L_j$ takto pokračujeme až na začiatok refazca
- \bullet ostáva domyslieť: ak sa vTznak copakuje, ktorá pozícia vL prislúcha ku ktorej pozícií vF?
- ullet nie je ťažké nahliadnuť, že i-ty výskyt c v L zodpovedá i-temu výskytu c v F:
 - ak cx je pred cy, potom x < y a tým pádom xc je pred yc
 - inými slovami, všetky riadky začínajúce sa na c sú utriedené podľa zvyšku reťazca a v tom istom poradí sú riadky, ktoré majú c na konci
- na efektívnu implementáciu reverznej transformácie potrebujeme pre L_i rýchlo nájsť zodpovedajúci riadok F_i
- \bullet toto nazývame LF-zobrazenie a dá sa jednoducho vypočítať už počas triedenia L na F avšak my budeme navyše chcieť LF-zobrazenie reprezentovať s malou pamäťou
- na to stačí pre každý znak c a pre ľubovoľné i vedieť zistiť počet c-čok v L[0..i] (toto je klasická úloha rank $_c(L,i)$) a kde sa začína úsek c-čok v F

3 FM-index

3.1 Vyhľadávanie

- ullet v predošlej sekcií sme popísali použitie BWT v kompresii a inverznú transformáciu; ako však v T (resp. T^{bwt}) vyhľadávať?
- keďže BWT úzko súvisí s SA, mohli by sme skúsiť binárne vyhľadávanie rovnako, ako v SA; avšak vo výslednom FM-indexe si nebudeme pamätať priamo T a zistenie j-teho znaku v i-tom riadku bude pomalšie ako v SA tým pádom bude celé binárne vyhľadávanie pomalšie
- existuje však lepší spôsob, pomocou LF-zobrazenia
- vyhľadávanie $P=p_0\dots p_{m-1}$ pôjde odzadu, od posledného znaku; postupne budeme vyhľadávať $P_{i\dots}=p_ip_{i+1}\dots p_{m-1}$ pre $i=m-1,\dots,0$
- presnejšie: keďže riadky pomyselnej matice M sú zotriedené lexikograficky, riadky začínajúce sa slovom w tvoria jeden súvislý úsek; nech teda $[s_i, e_i)$ je interval riadkov začínajúcich sa sufixom $P_{i...}$
- ak poznáme $[s_{i+1}, e_{i+1})$, ako zistíme $[s_i, e_i)$?
- poznáme úsek riadkov, ktoré začínajú na $P_{i+1...}$; niektoré z týchto riadkov končia na p_i tieto riadky zodpovedajú výskytom $P_{i+1...}$, pred ktorými sa nachádza p_i
- hoci riadky, ktoré začínajú na $P_{i+1...}$ a končia na p_i nemusia tvoriť jeden súvislý úsek, ich rotácie o 1 vľavo sú riadky začínajúce sa na $P_{i...} = p_i P_{i+1...}$ tie sa nachádzajú v M v rovnakom poradí a tvoria súvislý úsek riadkov ak sa pozrieme na všetky riadky začínajúce sa na p_i , budú v rovnakom poradí ako všetky riadky končiace sa na p_i
- vieme, že $[s_i, e_i)$ bude podinterval riadkov, ktoré začínajú na p_i ($[F[p_i], F[p_i+1])$); riadky $[F[p_i], s_i)$ sú riadky, ktoré začínajú na $p_i x$, kde $x < P_{i+1...}$, riadky $[s_i, e_i)$ začínajú na $P_{i...}$ (tento úsek hľadáme), a riadky $[e_i, F[p_i+1])$ sú riadky, ktoré začínajú na $p_i y$, kde $y > P_{i+1...}$
- stačí teda zistiť rank $_{p_i}(L,s_{i+1})$ koľkokrát sa znak p_i vyskytuje pred s_{i+1} , t.j. počet výskytov $p_i x$, kde $x < P_{i+1...}$, a rank $_{p_i}(L,e_{i+1})$ počet výskytov $p_i x$ pre $x \le P_{i+1...}$ (|x| = m i 1)
- $[s_{m-1}, e_{m-1}) \leftarrow [F[p_{m-1}], F[p_{m-1}+1])$
- $\bullet \ [s_i,e_i) \leftarrow [F[p_i] + \operatorname{rank}_{p_i}(L,s_{i+1}), F[p_i] + \operatorname{rank}_{p_i}(L,e_{i+1}))$
- \bullet na konci dostaneme interval $[s_0, e_0)$ riadky začínajúce na P

- ostáva domyslieť "detaily":
- ullet ako pre daný riadok M zistiť pozíciu v T
- presne túto informáciu sme si pamätali v sufixovom poli SA[k] = pozícia k-teho najmenšieho sufixu/rotácie v T my si však nechceme pamätať celé sufixové pole (chceme menšiu pamäť)
- \bullet riešenie: budeme si pamätať podmnožinu SA napríklad iba hodnoty SA[k] deliteľné s
- ullet ak chceme zistiť hodnotu SA[k], ktorú nemáme uloženú, budeme sa pomocou LF-zobrazenia posúvať na predchádzajúce rotácie, až kým po < s krokoch nenarazíme na hodnotu SA, ktorú sme si uložili
- ako reprezentujeme $L = T^{\text{bwt}}$ tak, aby sme vedeli rýchlo zistiť rank $_c(L, i)$?
- toto je téma na celú ďalšiu prednášku jednoduchý spôsob je predpočítať a uložiť si hodnotu $\operatorname{rank}_c(L,i)$ pre každý znak c, ale iba pre každú b-tu pozíciu (trade-off medzi časom a pamäťou pre malé abecedy a dostatočne veľké b to nebude veľa pamäte)
- z T^{bwt} vieme vypočítať pôvodné T v O(n); vedeli by sme však zistiť znak T_i , resp. podreťazec $T_{i...i}$ aj bez toho, aby sme si pamätali T? a bez toho, aby sme robili celú inverznú BWT?
- \bullet áno: potrebujeme len vedieť rýchlo zistiť pre pozíciu v T zodpovedajúci riadok v M resp. riadok v SA
- riešenie: hodnoty (podmnožiny) SA si uložíme tak, aby sme vedeli rýchlo odpovedať aj SA[i] = ? aj SA[?] = i
- keď chceme extrahovať $T_{i...j}$, "zaokrúhlime" najskôr j nahor na najbližšiu hodnotu deliteľnú s, zistíme príslušný riadok M a pomocou LF-zobrazenia postupne dekódujeme T až po i-tu pozíciu
- výsledná štruktúra sa bude skladať z:
 - -F (prvý stĺpec M) $-|\Sigma|$ intov
 - $-L = T^{\text{bwt}}$ (posledný stĺpec M) n znakov (zatiaľ ale dá sa skomprimovať)
 - štruktúra pre rank_c $(L, i) n|\Sigma|/b$ intov (zatiaľ ukážeme si lepšie riešenia)
 - podmnožina SA 2n/s intov
- koľko pamäti to zaberie? pre náš príklad s DNA, kde $|\Sigma|=4$, s=64 a b=128: |F|=16B, |L|=750MB, |SA|=12GB×2/64=375MB, |rank|=12GB×4/128=375MB spolu len 1.5GB, čiže 2× veľkosť pôvodného reťazca
- všimnite si, že na rozdiel od ST a SA si nepotrebujeme pamätať pôvodný reťazec T (vieme ho rekonštruovať z $L = T^{\text{bwt}}$)
- $\bullet\,$ z 30–60GB sufixového stromu, cez 12GB sufixové pole sme sa teda dostali na 1.5GB FM-index (20–40× menej pamäte) a to sme ešte nekomprimovali La použili sme len veľmi jednoduché riešenie pre rank
- s kompresiou a ďalšími vylepšeniami vieme dosiahnuť DŠ, ktorá zaberá 30–50% pamäte pôvodného reťazca a navyše v nej vieme rýchlo vyhľadávať
- s kompresiou a ďalšími vylepšeniami vieme dosiahnuť DŠ, ktorá zaberá 30–50% pamäte pôvodného reťazca a navyše v nej vieme rýchlo vyhľadávať