实验 7 时序逻辑电路设计

"待把相思灯下诉,一缕新欢,旧恨千千缕。最是人间留不住,朱颜辞镜花辞树。"

——《蝶恋花•阅尽天涯离别苦》,王国维

时序逻辑是

7.1. 时序电路的时间参数

7.1.1. 建立时间 tsu

建立时间是指,在时钟信号的有效边沿到来之前,数据信号必须保持稳定的最小时 间。比如,我们希望最少在时钟信号正边沿到来的 30ns 前,数据信号保持稳定,那么 30ns 就是这个电路的建立时间。

7.1.2. 维持时间 thold

维持时间是指,时钟信号的有效边沿之后数据输入仍然必须保持稳定的时间。可能 有很多同学奇怪,为什么时钟信号的有效边沿之后,数据还要保持不变?

这是因为,我们的电路在"采样"这个输入数据的时候,由于内部的一些寄生电容, 导致这个采样信号需要一定的时间才能被稳定的"采样"到电路内部,因此,我们希望 在时钟边沿之后数据信号也保持一定的时间。

上面两个时间约束合起来,就解释了为什么我们经常希望时钟的有效边沿在数据变 化的中间, 因为当时钟边沿在数据变化的中间时, 最大程度保证了建立时间和维持时间 的成立。

这也就是为什么我们上一节实验中的动态逻辑门,要把 CLK 信号延迟 12.5ns, 因为 延迟之后, CLK 的边沿正好处于数据信号变化的正中间。而当我们取消这个延时之后, 就会发现结果不对了,这就是因为没有满足建立时间:时钟边沿到来的同时,数据信号 发生了变化,建立时间为0。

7.1.3. 传播延时 tc-a

传播延时表示, 最坏情况下, 从时钟边沿开始, 经过了多长时间, 数据输出到了输 出端Q。

这么描述大家肯定很模糊,下面这个图可以让大家很好的理解这3个时间参数的关 系。

7.2. 静态锁存器和寄存器

静态时序逻辑的基本原理是利用两个反相器串联构成一个正反馈,从而建立双稳态电路。 也就是说,这个电路的输出在经过两个反相器串联的环路后,一定会稳定在 0 或者 1 (不考 虑恰好处于正中间的亚稳态工作点)。

7.2.1. 多路开关型锁存器

传输门多路开关时建立一个锁存器最稳妥和最常用的技术。下面分别表示了负锁存器和正锁存器的原理。对于负锁存器,当时钟信号为 0,输出 Q 选择输入端 0,输入端 0 就是数据信号 D,也就是说输出 Q"跟随"输入 D;当时钟信号为 1 时,输出 Q 选择输入端 1,输入端 1 连接了输出 Q,因此保持之前的状态。也就是说,负锁存器当 CLK=0 时,Q=D,当 CLK=1 时,Q=Q*(Q*表示上一个状态的 Q 值)。正锁存器的原理正好相反,请读者自行分析。

实现这个双路复选器(MUX)的方法有很多,我们这里给出利用传输门构成的方法(上一个实验的选学内容中已经介绍过传输门逻辑),以及最终的仿真结果。可以看到,在 CLK=VDD 时,输出 Q 跟随输入 D,当 CLK=0 时,输出 Q 保持不变。

7.2.2. 主从边沿触发寄存器

构建一个边沿触发器的最普遍方法时采用主从结构。其基本原理是,由两个互补的锁存器串联(例如一个负锁存器和一个正锁存器串联),那么当 CLK=0 时,负锁存器将输入信号 D 输出到中间节点,此时正锁存器处于维持状态,输入信号被"暂存"到中间节点,随后,当 CLK=1 时,正锁存器将这个中间节点的数据输出到 Q,从而实现了主从正边沿触发寄存器。请读者自行思考如何实现一个主从负边沿触发寄存器。

下面我们给出电路原理图和仿真结果:

7.3. 动态锁存器和寄存器

虽然静态时序逻辑比较稳定,但是正如我们所见,它的电路建构比较复杂。正如在组合逻辑中使用动态组合逻辑门的思路一样,利用电荷以及寄生电容,我们在时序逻辑中也可以构建动态时序逻辑门。

7.3.1. 动态传输门边沿触发寄存器

下面是一个基于主从结构的动态正边沿触发寄存器。当 CLK=0 时,第一个传输门导通,第二个传输门关断,数据输入到中间节点,电荷存储在中间节点的电容上,当 CLK=1 时,第一个传输门导通关断,第二个传输门导通,数据输出到 Q。请读者思考这里电路

中2个反相器的作用是什么,试着把它们去掉后,观察实验结果。

这种结构实现边沿触发器是十分高效的,它只需要8个晶体管,而之前的结构则需 要 20 个!

7.3.2. 真单相正边沿触发寄存器

但是之前的电路中,总是需要互补的时钟信号来驱动传输门,我们是否可以只使用 单一时钟信号呢?真单相钟控寄存器(TSPCR)提供了一种只使用单一时钟信号的方法。 以下是该电路的电路图和结果。

需要我们特别注意的是,TSPCR中晶体管的尺寸会严重影响功能是否可以正确实现。 如果你直接使用默认的晶体管尺寸,你会发现功能并不正确,这里需要注意: TSPCR 中 晶体管的尺寸是实现正确功能的关键。

请你解释原因,并设计合适的晶体管尺寸,保证功能的正常实现,这里我只是增大 了 M5 和 M9 尺寸, 使得功能可以正常实现, 即便如此, 我们仍然可以观察到输出结果 在某些地方并不理想。

7.4. *脉冲寄存器

请大家自行 STFW。

7.5. 动手实验内容

- 1 测试一个电路的建立时间、维持时间和传播延时
- 1 设计一个带异步置位和复位功能的锁存器和寄存器
- 2 设计一个负边沿触发的寄存器
- 3 静态 SR 触发器
- 4 设计一个双边沿触发器