6. TÉMA

ELEKTRONIKA

Térvezérlésű tranzisztoros erősítő kapcsolások munkapont beállítása

Feladatok

1. Rajzolja fel a záróréteges térvezérlésű tranzisztor (*JFET*) transzfer és kimeneti karakterisztikáját!

2. Definiálja a JFET meredekségét, és adja meg kiszámításának módját!

$$g_m = ?$$

3. Mekkora U_{GS} vezérlőfeszültséget kell biztosítani annak a *JFET*-nek, amelynek az alábbi adatait ismeri!

A tranzisztor drain árama:

$$I_{DS} = 2,98 \text{ mA}$$

az $U_{GS} = 0$ V vezérlőfeszültséghez tartozó telítési áram:

$$I_{DSS} = 12 \text{ mA}$$

az elzáródási feszültség:

$$U_0 = -3V!$$

$$U_{GS} = ?$$

4. Egy *JFET* munkapont beállító kapcsolása látható az *1. ábrán*.

Adatok:

tápfeszültség:
$$U_t = 12 \text{ V}$$
 gate ellenállás : $R_G = 1 \text{ M}\Omega$ drain-source feszültség: $U_{DS} = 5 \text{ V}$

A kapcsolásban alkalmazott *JFET* transzfer karakterisztikája a 2. ábrán látható, a koordináta tengelyek kissé hiányos jelölésével.

2. ábra.

- a) Egészítse ki a transzfer karakterisztika hiányzó adatait:
 - írja be a koordináta tengelyekre felmért mennyiségek és a karakterisztika jellegzetes pontjainak jelölését
 - határozza meg a 0 vezérlőfeszültséghez tartozó kimeneti áram értékét
 - határozza meg 0 kimeneti áramhoz tartozó vezérlőfeszültség értékét!
- b) A transzfer karakterisztika segítségével határozza meg az I_{DSM} munkaponti kimeneti áram értékét, ha a munkaponti vezérlőfeszültség értéke: $U_{GSM} = -2,5$ V!

$$I_{DSM} = ?$$

c) Határozza meg az R_S source-ellenállás és az R_D munkaellenállás értékét!

$$R_{S} = ? R_{D} = ?$$

- **5. Z**áróréteges térvezérlésű tranzisztorral (*JFET*-tel) megvalósított földelt source-ú (*FS*) kapcsolás látható az *1. ábrán*.
 - a) A JFET kimeneti karakterisztikájába (2. ábra) rajzolja meg léptékhelyesen az erősítő kapcsolás egyenáramú munkaegyenesét, majd határozza meg a kapcsolás I_{DSmp} munkaponti drain áramát és az U_{DSmp} munkaponti drain-source feszültségét!

Adatok:

a tápfeszültség: $U_t = 10 \text{ V}$

a drain és a source-ellenállások

összege: R_{S}

a vezérlőfeszültség.

 $R_S + R_D = 1 \text{ k}\Omega$ $U_{GS} = -1 \text{ V}$

A munkaegyenes két pontja:

$$U_{\scriptscriptstyle DS}=?$$
 $I_{\scriptscriptstyle DS}=?$ $U_{\scriptscriptstyle DSmp}=?$ $I_{\scriptscriptstyle DSmp}=?$

 \boldsymbol{b}) Számítsa ki az R_S source-ellenállás és az R_D drain-ellenállás értékét!

$$R_S = ? R_D = ?$$

c) Határozza meg az drain-ellenállás U_{RD} feszültségét, valamint a JFET drain-elektródájának U_D feszültségét!

$$U_{RD} = ?$$
 $U_D = ?$

6. Rajzolja fel a fizikai működés ismeretében a záróréteges térvezérlésű tranzisztor (*JFET*) közös source-ú, kisjelű, kisfrekvenciás dinamikus helyettesítő képét!

7. Térvezérlésű tranzisztorral (*JFET*) megvalósított közös source-ú (*FS*) erősítő kapcsolás látható az ábrán.

Adatok:

_	a tápfeszültség:	$U_t = 15 \text{ V}$
_	a drain ellenállás:	$R_D = 1.8 \text{ k}\Omega$
_	a drain áram:	$I_{DS} = 3.5 \text{ mA}$
_	a gate ellenállás :	$R_G = 1 \text{ M}\Omega$
_	a tranzisztor elzáródási feszültsége:	$U_0 = -4.8 \text{ V}$
_	a telítési árama:	$I_{DSS} = 14 \text{ mA}$

Határozza meg a

- az U_{GS} vezérlőfeszültség értékét
- drain-ellenállás U_{RD} feszültségét
- a JFET drain-elektródájának U_D feszültségét
- a source-ellenállás U_{RS} feszültségét
- az R_S source-ellenállás értékét
- a tranzisztor U_{DS} drain-source feszültségét!

$$U_{GS} = ?$$
 $U_{RD} = ?$ $U_{D} = ?$ $U_{RS} = ?$ $R_{S} = ?$ $U_{DS} = ?$

- 8. Záróréteges térvezérlésű tranzisztorral (JFET) megvalósított közös source-ú (FS) kapcsolás látható a 3. ábrán.
 - a) Mekkora U_{GS} vezérlőfeszültséget kell biztosítani a tranzisztor számára, ha $I_{DS} = 2 \text{ mA}$ drain áramot szeretnénk beállítani?

 $U_t = 12 \text{ V}$ $U_{DS} = 5 \text{ V}$

 $U_0 = -3 \text{ V}$ $I_{DSS} = 8 \text{ mA}$

$$U_{GS} = ?$$

 \boldsymbol{b}) Számítsa ki az R_S source-ellenállás és az R_D drain-ellenállás értékét! Határozza meg a *JFET* drain elektródájának U_D feszültségét!

$$U_{RS} = ?$$
 $R_S = ?$ $U_{RD} = ?$ $R_D = ?$ $U_D = ?$