#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히긔/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

지도학습(2) - 회귀분석

단순 선형 회귀 분석으로 농어의 길이를 가지고 무게를 예측하는 모델을 만들어 보자

#01. 작업준비

패키지 가져오기

```
import sys
import numpy as np
import seaborn as sb # 데이터 시각화를
from pandas import read_excel # 엑셀 데이터를 가
from matplotlib import pyplot as plt # 그래프 그리기 위

from sklearn.linear_model import LinearRegression # 선형회귀분석 모듈
from sklearn.model_selection import train_test_split # 훈련/검증 데이터
```

데이터 가져오기

```
origin = read_excel("https://data.hossam.kr/F02/fish.xlsx")
origin = origin[["길이", "무게"]]
origin.head()
```

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인 미쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

	길이	무게
0	8.4	5.9
1	13.7	32.0
2	15.0	40.0
3	16.2	51.5
4	17.4	70.0

그래프 한글 설정

```
plt.rcParams["font.family"] = 'AppleGothic' if sys.platform = 'darwin'
plt.rcParams["font.size"] = 12
plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["axes.unicode_minus"] = False
```

#02. 데이터 전처리

훈련데이터와 검증데이터 분할

- train data / 훈련데이터 : 모델을 생성하는데 사용되는 데이터
- test data / 검증데이터 : 모델이 얼마나 잘 만들어졌는지 확인하는 용도

데이터 프레임을 통째로 넣는 경우

데이터 프레임에 독립변수와 종속변수가 모두 포함되어 있는 형태

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인 피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb 같은 유형으로 7:3으로 분할된 두 개의 데이터프레임이 반환된다.

train, test = train_test_split(origin, test_size=0.3, random_state=777)

4

train.head()

	길이	무게
8	19.6	85.0
0	8.4	5.9
15	22.0	120.0
26	24.6	188.0
51	42.0	1100.0

test.head()

	길이	무게
16	22.0	130.0
12	21.0	125.0
21	22.7	145.0
33	27.5	250.0

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인 미쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

	길이	무게
36	30.0	320.0

데이터 프레임을 독립변수와 종속변수로 분리하여 사용하는 경우

독립변수를 7:3으로 분할한 형태와 종속변수를 7:3으로 분할한 형태가 반환된다.

총 4개의 데이터프레임이 리턴된다.

```
# 독립변수, 종속변수 분리
x_data = origin[["길이"]]
y_data = origin[["무게"]]
```

x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test

x_train

	길이
8	19.6
0	8.4
15	22.0
26	24.6

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

	길이
51	42.0
2	15.0
6	18.7
4	17.4
42	37.0
30	27.3
28	25.6
37	32.8
10	21.0
34	28.0
44	39.0
31	27.5
53	43.0
50	40.0
5	18.0
20	22.5
43	37.0
1	13.7

#೧६ 다하히기/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

	길이
27	25.0
32	27.5
14	22.0
13	21.3
18	22.0
48	40.0
24	24.0
46	39.0
25	24.0
55	44.0
29	26.5
7	19.0
49	40.0
23	23.5
38	34.5
47	40.0
39	35.0

#೧६ 다하히기/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧도 다하히기/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb x_test

	길이
16	22.0
12	21.0
21	22.7
33	27.5
36	30.0
17	22.0
11	21.0
9	20.0
35	28.7
52	43.0
19	22.5
45	39.0
41	36.0
54	43.5
3	16.2
40	36.5

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

	길이
22	23.0

y_train

	무게
8	85.0
0	5.9
15	120.0
26	188.0
51	1100.0
2	40.0
6	78.0
4	70.0
42	700.0
30	300.0
28	197.0
37	514.0
10	110.0
34	250.0

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

	무게
44	900.0
31	260.0
53	1100.0
50	820.0
5	100.0
20	150.0
43	690.0
1	32.0
27	180.0
32	265.0
14	120.0
13	130.0
18	110.0
48	900.0
24	225.0
46	820.0
25	145.0
55	1000.0

#೧೯ 다하히기/다인 미쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히귀/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

	무게
29	218.0
7	80.0
49	1015.0
23	170.0
38	556.0
47	850.0
39	840.0

y_test

	무게
16	130.0
12	125.0
21	145.0
33	250.0
36	320.0
17	135.0
11	115.0
9	85.0

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

	무게
35	300.0
52	1000.0
19	130.0
45	650.0
41	700.0
54	1000.0
3	51.5
40	685.0
22	150.0

#03. 데이터 분석

선형회귀 분석 수행

```
model = LinearRegression()
fit = model.fit(x_train, y_train)

print("계수: ", fit.coef_)
print("절편: ", fit.intercept_)
print("훈련 데이터 설명력: ", fit.score(x_train, y_train))
print("검증 데이터 설명력: ", fit.score(x_test, y_test))
```

```
지도학습(2) - 회귀분석
 #01. 작업준비
   패키지 가져오기
   데이터 가져오기
   그래프 한글 설정
 #02. 데이터 전처리
   훈련데이터와 검증데이터 분
     데이터 프레임을 통째로 넣
     는 경우
     데이터 프레임을 독립변수
     와 종속변수로 분리하여 사
     용하는 경우
 #03. 데이터 분석
   선형회귀 분석 수행
   분석 결과 시각화
 #04. 과적합
   과소적합(underfitting)
     해결방법
   과대적합
     해결방법
```

```
print("v = {0:.2f} * X + {1:.2f}".format(fit.coef [0][0], fit.intercept)
 계수: [[37.01288998]]
 절편: [-636.25427098]
 훈련 데이터 설명력: 0.9114180355953712
 검증 데이터 설명력: 0.933893451951942
 v = 37.01 * X + -636.25
분석 결과 시각화
```

```
plt.figure(figsize=(10, 5))
# 원본 데이터 전체
# sb.regplot(data=origin, x="길이", v="무게")
# 학습에 사용된 데이터만으로 산점도 그래프 그리기
sb.regplot(x=x train['길이'], y=y train['무게'], label='train data')
# 검정 데이터만로 산점도 그래프 그리기
sb.regplot(x=x test['길이'], y=y test['무게'], label='test data')
plt.legend()
plt.grid()
plt.show()
plt.close()
```

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인미쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

91%라는 설명력에 비해 추세선으로부터 실제 데이터들이 너무 멀리 떨어져 있다.(=잔차가 크다)

과대적합의 냄새가 난다.

#04. 과적합

과소적합(underfitting)

분석 모델이 너무 단순해서 데이터의 구조를 제대로 학습하지 못할 경우

모델이 단순하다는 의미는 변수(피처)의 수가 부족함을 의미함

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

> 데이터 프레임을 통째로 넣 는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인미쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

해결방법

- 모델 파라미터가 더 많은 모델을 선택 (단순선형회귀 -> 다항회귀)
- 학습 알고리즘에 더 좋은 특성을 제공

결국은 변수를 늘리라는 뜻

과대적합

훈련 데이터에 있는 잠음의 양이 모델에 비해 너무 복잡한 경우설명력에 비해 잔차가 큰 경우라 할 수 있다.

해결방법

- 파라미터 수가 적은 모델을 선택
- 훈련 데이터의 특성 수를 줄임
- 모델을 단순화 시킴
- 결국은 변수를 줄이라는 뜻
- 훈련 데이터의 잡음을 줄임
- 이상치 제거

#05. 다항회귀(단일피쳐 다항회귀, 곡선회귀)

데이터에 잘 맞는 일차 함수나 직선을 구하는 게 아니라 다항식이나 곡선을 구해서 학습하는 방법하나의 입력 변수에 대하여 차수를 확장하여 다차워 회귀 모델을 도출한다.

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

> 데이터 프레임을 통째로 넣 는 경우

> 데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히긔/다인피쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

데이터 전처리

훈련 데이터의 독립변수 추가

	길이	길이^2
8	19.6	384.16
0	8.4	70.56
15	22.0	484.00
26	24.6	605.16
51	42.0	1764.00

검증 데이터의 독립변수 추가

	길이	길이^2
16	22.0	484.00

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

file:///D:/03-

해결방법

#05	다하히귀/다인π쳐	나하히
지도학습(2)-회귀분석2.ipynb		

	길이	길이^2
12	21.0	441.00
21	22.7	515.29
33	27.5	756.25
36	30.0	900.00

분석

```
model = LinearRegression()
fit = model.fit(x_train, y_train)

print("계수: ", fit.coef_)
print("절편: ", fit.intercept_)
print("훈련 데이터 설명력: ", fit.score(x_train, y_train))
print("검증 데이터 설명력: ", fit.score(x_test, y_test))

print("y = {0:.2f} * X + {1:.2f}".format(fit.coef_[0][0], fit.intercept_
```

```
계수: [[-23.92139238 1.06707967]]
```

절편: [143.06821268]

훈련 데이터 설명력: 0.9741164053383602 검증 데이터 설명력: 0.9608757319315259

y = -23.92 * X + 143.07

```
지도학습(2) - 회귀분석
#01. 작업준비
패키지 가져오기
```

그래프 한글 설정

데이터 가져오기

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인미쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

분석 결과 시각화

```
plt.figure(figsize=(10, 5))
sb.scatterplot(x=x train['길이'], y=y train['무게'])
# 그래프가 그려진 범위 안에서 1씩 증가하는 좌표를 생성
xmin, xmax = plt.xlim()
print(xmin.round(), xmax.round())
xrange = np.arange(xmin.round(), xmax.round(), 1)
#print(xrange)
# v값에 대한 추정치를 계산
y pred = xrange * fit.coef [0][0] + xrange**2 * fit.coef [0][1] + fit.ir
#print(y pred)
sb.scatterplot(x=x test['길이'], y=y test['무게'])
sb.lineplot(x=xrange, y=y pred, color='red')
plt.grid()
plt.show()
plt.close()
```

7.0 46.0

#01. 작업준비

패키지 가져오기

데이터 가져오기

그래프 한글 설정

#02. 데이터 전처리

훈련데이터와 검증데이터 분 할

데이터 프레임을 통째로 넣는 경우

데이터 프레임을 독립변수 와 종속변수로 분리하여 사 용하는 경우

#03. 데이터 분석

선형회귀 분석 수행

분석 결과 시각화

#04. 과적합

과소적합(underfitting)

해결방법

과대적합

해결방법

#೧೯ 다하히기/다인而쳐 다하히 file:///D:/03-지도학습(2)-회귀분석2.ipynb

농어의 무게에 영향을 줄만한 피쳐들 추가

길이와 높이

이어서 계속...