Midterm Solutions	
Part A - Multiple Choice	
1) B 2) D 3) D 4) B 5) C	
Part B - True / False 6. TRUE	
Since the model includes an intercept, the orthogonality condition $X'e = 0$ ensures that the regression line passes through the sample means of the data, y and x . Hence, when $x = x$, $y = xb = y$. You do not need to run an OLS regression, you simply need to calculate y .	3
7. FALSE	
Including an irrelevant regressor: lose efficiency under OLS.	
Excluding a relevent regressor: lose unbiasedness and consisten	
Since consistency is usually considered the most important property, exclusion is generally considered to be more costly.	
8. TRUE/FALSE	
We can write R2 as:	
R ² = 1 - e'e, which is a decreasing y'Moy Function in e'e.	

Since minimizing e'e is the objective of OLS, including an extra variable is akin to relaxing a constraint in the optimization problem. The objective function e'e must be smaller, or at least the same, when a constraint	14
an extra variable is akin to relaxing a constraint	
in the optimization problem. The objective function ex	
must be smaller, or at least the same when a constru	int
is relaxed.	
0 70 -	
9. TRUE	
^	
$e = y - \hat{y} = X\beta + \mathcal{E} - Xb$	
Under our standard assumptions, plim (6) = E	
By Slutsky's theorem,	
DY SIVISKYS INCOVEM,	
plim (e) = plim (Xb) + plim (E) - plim (Xb)	
·	
$= X\beta + \xi - X\beta = \xi$	
10. FALSE	
This model can't be estimated by OLS, but	
not because A.5 has been violated. In this	
model, there is perfect multicollinearity between M and F. Specifically, M=1-F. The assump of full rank has been violated - (X'X) can't	1
I and F. Specifically, M=1-F. The assump	tion
be inverted and b can't be calculated.	
DE INVENTEU UNU D CANT DE CAICULATEU.	

٠		
1 ($^{\circ}$	
	11. FALSE	
	1, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,	
	plin () = & 15 a sufficient, but not necessary condition	7
	for the weak consistency of b. It instead we	
	can show that b is Mean-Sowere consistent for	
	plin (x'x) = Q is a sufficient, but not necessary condition for the weak consistency of b. If instead we can show that b is Mean-Square consistent for b, then we also have weak consistency, since the former implies the latter. In order to show M.S. consistency we need to show that as n > \infty, bias (b) and var (b) > 0.	
	Commenter the Ille T	
	Towner impries the latter. In order to show 11,3.	1
	consistency we need to show that as n > 0, bias (b)	1-0
	and var $(b) \rightarrow 0$.	
,		
]
		·

$E(b_3) = (X_3' M_1 X_3)^{-1} X_3' M_1 X_2 \beta_2$.	
Since $E(b_3) \neq 0$, b_3 is biased, in general.	
b) In order for b, to be unbiased X, and X2 must be	-
b) In order for b, to be unbiased, X, and X2 must be uncorrelated (X,'X2=0). In addition, either X, and X3 must be uncorrelated (X,'X3=0) OR (X2'X3=0)	
X3 must be uncorrelated (X, X3=0) OR (X2 X3=0)
The bias of b, is coming from the term:	
(X, M3X,) X, M3 X2 b2. Substituting in for M3:	
$(X_1'X_1 - X_1'X_3(X_3'X_3)^{-1}X_3'X_1)^{-1}[X_1'X_2 - X_1'X_3(X_3'X_3)^{-1}X_3'X_2]$	92
This has been such discussion when X'V = 0	
This bias term only disappears when $X_1'X_2 = 0$ and either $X_1'X_3 = 0$ or $X_2'X_3 = 0$.	
As for $b_2 = E(b_3) = 0$ when $X_2 X_2 = 0$ and either	
As for b_3 , $E(b_3) = 0$ when $X_3 X_2 = 0$ and either $X_3 X_1 = 0$ or $X_1 X_2 = 0$.	
irrelevant rearessor which causes var(b) to increase	***************************************
c) Efficiency can go either way. We have including an irrelevant regressor which causes var(b) to increase but have excluded a variable which causes var(b)	
to decreuse.	-
We can't determine under which model the OLS	·
estimators would have smaller variance, until we	
calculate the (X'X)" matrix.	

13. i) Fit the model the get 6 by OLS. 76 Then, $\hat{X} = (z'z)^{-1}z'x$ ii) Estimating & by OLS in the following: $y = \hat{X}\beta + u$ b = (x'x)-1x'y = (x'z(z'z)-1z'z(z'z)-1z'x)-1x'z(z'z)-1z'y = (X'Z(Z'Z)-1Z'X)-1X'Z(Z'Z)-1Z'y Which is by in the over-identified case. 14. a) If E(g) = m-j g, then $E(\underline{M}, \widetilde{\Theta}) = \Theta$. If we construct a new estimator: then 0* will be unbiased.

b) An example of where this strategy has been employed is in the estimation of T2. If we use a "natural" estimator $\hat{\tau}^2 = e'e$, we find that $E(\hat{\sigma}^2) = n - k \sigma^2$. If we instead use n j2, we get an unbiased estimator, i.e. 52. 15. a) $R^2 = 1 - (1 - R^2) \frac{n-1}{n-k} = 1 - (886142) \frac{427}{425} = 0.109688$ t-stat = 0.317758 = 800000 1.776 b) Ho: B, = 0 HA: B, +0 The tstat has been calculated in (a). The relevant p-value is reported in Eviews output as 0.0765 At the 1% and 5% significance levels I fail to reject, but at the 10% level I reject. c) $[1.28 - 1.96 \times 0.18]$, $[1.28 + 1.96 \times 0.18]$ = 0.927, 1.633 If I were to repeatedly resample, the true value (Bz) would lie in this interval 95% of the time.