Chapter 10

• What is learning?

Arthur Samuel (1959):

"Field of study that gives computers the ability to learn without being explicitly programmed".

• Tom Mitchell (1997):

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E".

 How to construct programs that automatically improve with experience.

- How to construct programs that automatically improve with experience.
- Learning problem:
 - Task T
 - Performance measure P
 - Training experience E

- Chess game:
 - Task T: playing chess games
 - Performance measure P: percent of games won against opponents
 - Training experience E: playing practice games againts itself

- Handwriting recognition:
 - Task T: recognizing and classifying handwritten words
 - Performance measure P: percent of words correctly classified
 - Training experience E: handwritten words with given classifications

Example

Experience

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Low Weak

Prediction

5	Rainy	Cold	High	Strong	Warm	Change	?
6	Sunny	Warm	Normal	Strong	Warm	Same	?
7	Sunny	Warm	Low	Strong	Cool	Same	?

• What is learning?

• What is learning?

• Learning is an (endless) generalization or induction process.

- Supervised learning: the learner (learning algorithm)
 are trained on labelled examples, i.e., input where the
 desired output is known.
- Unsupervised learning: the learner operates on unlabelled examples, i.e., input where the desired output is unknown.

 Inferring a boolean-valued function from training examples of its input (instances) and output (classifications).

- Learning problem:
 - Target concept: a subset of the set of instances X

c:
$$X \rightarrow \{0, 1\}$$

– Target function:

Sky × AirTemp × Humidity × Wind × Water × Forecast
$$\rightarrow$$
 {0, 1}

- Hypothesis:

Characteristics of all instances of the concept to be learned

■ Constraints on instance attributes

h:
$$X \to \{0, 1\}$$

Satisfaction:

h(x) = 1 iff x satisfies all the constraints of h

h(x) = 0 otherwsie

Consistency:

h(x) = c(x) for every instance x of the training examples

Correctness:

h(x) = c(x) for every instance x of X

How to represent a hypothesis?

Hypothesis representation (constraints on instance attributes):

```
<Sky, AirTemp, Humidity, Wind, Water, Forecast>
```

- ?: any value is acceptable
- single required value
- Ø: no value is acceptable
- Example:

```
h1 = <Sunny, ?, ?, Strong, ? , ?>
```

General-to-specific ordering of hypotheses:

$$h_j \ge_g h_k \text{ iff } \forall x \in X: h_k(x) = 1 \Rightarrow h_j(x) = 1$$

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

What is a hypothesis that is consistent with the training examples?

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

What is the most specific hypothesis that is consistent with the training examples?

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

```
h = \langle \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset \rangle
```

h = <Sunny, Warm, Normal, Strong, Warm, Same>

h = <Sunny, Warm, ? , Strong, Warm, Same>

h = <Sunny, Warm, ? , Strong, ? , ? >

- Initialize h to the most specific hypothesis in H:
- For each positive training instance x:

For each attribute constraint a_i in h:

If the constraint is not satisfied by x

Then replace a_i by the next more general constraint satisfied by x

Output hypothesis h

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

h = <Sunny, Warm, ? , Strong, ? , ? >

Prediction

5	Rainy	Cold	High	Strong	Warm	Change	No
6	Sunny	Warm	Normal	Strong	Warm	Same	Yes
7	Sunny	Warm	Low	Strong	Cool	Same	Yes

• The output hypothesis is the most specific one that satisfies all positive training examples.

• The result is consistent with the positive training examples.

 Is the result is consistent with the negative training examples?

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Sunny	Warm	Normal	Strong	Cool	Change	No

```
h = <Sunny, Warm, ? , Strong, ? , ? >
```

The result is consistent with the negative training examples
if the target concept is contained in H (and the training
examples are correct).

- The result is consistent with the negative training examples
 if the target concept is contained in H (and the training
 examples are correct).
- Sizes of the space:
 - Size of the instance space: |X| = 3.2.2.2.2.2 = 96
 - Size of the concept space $C = 2^{|X|} = 2^{96}$
 - Size of the hypothesis space $H = (4.3.3.3.3.3) + 1 = 973 << 2^{96}$
 - ⇒ The target concept (in C) may not be contained in H.

Questions:

- Has the learner converged to the target concept, as there can be several consistent hypotheses (with both positive and negative training examples)?
- Why the most specific hypothesis is preferred?
- What if there are several maximally specific consistent hypotheses?
- What if the training examples are not correct?

List-then-Eliminate Algorithm

 Version space: a set of all hypotheses that are consistent with the training examples.

• Algorithm:

- Initial version space = set containing every hypothesis in H
- For each training example $\langle x, c(x) \rangle$, remove from the version space any hypothesis h for which $h(x) \neq c(x)$
- Output the hypotheses in the version space

List-then-Eliminate Algorithm

Requires an exhaustive enumeration of all hypotheses in H

Compact Representation of Version Space

• G (the generic boundary): set of the most generic hypotheses of H consistent with the training data D:

```
G = \{g \in H \mid consistent(g, D) \land \neg \exists g' \in H : g' >_g g \land consistent(g', D)\}
```

 S (the specific boundary): set of the most specific hypotheses of H consistent with the training data D:

```
S = \{s \in H \mid consistent(s, D) \land \neg \exists s' \in H: s >_g s' \land consistent(s', D)\}
```

Compact Representation of Version Space

• Version space = $\langle G, S \rangle = \{h \in H \mid \exists g \in G \exists s \in S : g \geq_g h \geq_g s\}$

Candidate-Elimination Algorithm

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

 $S_4 = \{ \langle Sunny, Warm, ?, Strong, ?, ? \rangle \}$

 $G_4 = \{ \langle Sunny, ?, ?, ?, ?, ? \rangle, \langle ?, Warm, ?, ?, ?, ? \rangle \}$

- Initialize G to the set of maximally general hypotheses in H
- Initialize S to the set of maximally specific hypotheses in H

- For each positive example d:
 - Remove from G any hypothesis inconsistent with d
 - For each s in S that is inconsistent with d:

Remove s from S

Add to S all least generalizations h of s, such that h is consistent with d and some hypothesis in G is more general than h

Remove from S any hypothesis that is more general than another hypothesis in S

- For each negative example d:
 - Remove from S any hypothesis inconsistent with d
 - For each g in G that is inconsistent with d:

Remove g from G

Add to G all least specializations h of g, such that h is consistent with d and some hypothesis in S is more specific than h

Remove from G any hypothesis that is more specific than another hypothesis in G

- The version space will converge toward the correct target concepts if:
 - H contains the correct target concept
 - There are no errors in the training examples
- A training instance to be requested next should discriminate among the alternative hypotheses in the current version space:

 Partially learned concept can be used to classify new instances using the majority rule.

- Size of the instance space: |X| = 3.2.2.2.2.2 = 96
- Number of possible concepts = $2^{|X|} = 2^{96}$
- Size of $H = (4.3.3.3.3.3) + 1 = 973 << 2^{96}$

- Size of the instance space: |X| = 3.2.2.2.2.2 = 96
- Number of possible concepts = $2^{|X|} = 2^{96}$
- Size of $H = (4.3.3.3.3.3) + 1 = 973 << 2^{96}$
 - ⇒ a biased hypothesis space

- An unbiased hypothesis space H' that can represent every subset of the instance space X: Propositional logic sentences
- Positive examples: X₁, X₂, X₃
 Negative examples: X₄, X₅

$$h(x) \equiv (x = x_1) \lor (x = x_2) \lor (x = x_3) \equiv x_1 \lor x_2 \lor x_3$$

 $h'(x) \equiv (x \neq x_4) \land (x \neq x_5) \equiv \neg x_4 \land \neg x_5$

Any new instance x is classified positive by half of the version space, and negative by the other half

⇒ not classifiable

Example	Day	Actor	Price	EasyTicket
1	Mon	Famous	Expensive	Yes
2	Sat	Famous	Moderate No	
3	Sun	Infamous	Cheap	No
4	Wed	Infamous	Moderate	Yes
5	Sun	Famous	Expensive	No
6	Thu	Infamous	Cheap	Yes
7	Tue	Famous	Expensive	Yes
8	Sat	Famous	Cheap	No

9	Wed	Famous	Cheap	?
10	Sat	Infamous	Expensive	?

Example Quality		Price	Buy	
1	Good	Low	Yes	
2	Bad	High	No	

3	Good	High	?
4	Bad	Low	?

 A learner that makes no prior assumptions regarding the identity of the target concept cannot classify any unseen instances.

Homework

Exercises

 $2-1 \rightarrow 2.5$ (Chapter 2, ML textbook)

Chapter 9 of the Vietnamese Textbook

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

Yes

No

No.	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

(Sky = Sunny) ∨ (Sky = Cloudy ∧ AirTemp = Warm)

7	Rainy	Warm	Normal	Weak	Cool	Same	?
8	Cloudy	Warm	High	Strong	Cool	Change	?

Homogenity of Examples

• Entropy(S) = $-p_1\log_2 p_1 - p_2\log_2 p_2$

Homogenity of Examples

• Entropy(S) = $\sum_{i=1,c}$ - $p_i log_2 p_i$ impurity measure

Information Gain

• Gain(S, A) = Entropy(S) – $\sum_{v \in Values(A)} (|S_v|/|S|)$. Entropy(S_v)

Example

```
• Entropy(S) = -p_+\log_2 p_+ - p_-\log_2 p_- = -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)
= 0.389 + 0.528 = 0.917
```

- Gain(S, Sky)
 - = Entropy(S) $\sum_{v \in \{Sunny, Rainy, Cloudy\}} (|S_v|/|S|) Entropy(S_v)$
 - = Entropy(S) $[(3/6).Entropy(S_{Sunny}) + (1/6).Entropy(S_{Rainy}) + (2/6).Entropy(S_{Cloudy})]$
 - = Entropy(S) (2/6).Entropy(S_{Cloudy})
 - = Entropy(S) $-(2/6)[-(1/2)\log_2(1/2) (1/2)\log_2(1/2)]$
 - = 0.917 0.333 = 0.584

Example

```
• Entropy(S) = -p_+\log_2 p_+ - p_-\log_2 p_- = -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)
= 0.389 + 0.528 = 0.917
```

Gain(S, Water)

```
= Entropy(S) - \sum_{v \in \{Warm, Cool\}} (|S_v|/|S|) Entropy(S_v)
```

= Entropy(S) –
$$[(3/6)$$
.Entropy(S_{Warm}) + $(3/6)$.Entropy(S_{Cool})]

= Entropy(S)
$$-(3/6).2.[-(2/3)\log_2(2/3) - (1/3)\log_2(1/3)]$$

$$= Entropy(S) - 0.389 - 0.528$$

= 0

Example

- Gain(S_{Cloudy} , AirTemp) = Entropy(S_{Cloudy}) - $\sum_{v \in \{Warm, Cold\}} (|S_v|/|S|)$ Entropy(S_v) = 1
- Gain(S_{Cloudy} , Humidity) = Entropy(S_{Cloudy}) - $\sum_{v \in \{Normal, High\}} (|S_v|/|S|)$ Entropy(S_v) = 0

• Hypothesis space: complete!

- Hypothesis space: complete!
- Shorter trees are preferred over larger trees
- Prefer the simplest hypothesis that fits the data

- Decision Tree algorithm: searches incompletely thru a complete hypothesis space.
 - ⇒ Preference bias
- Cadidate-Elimination searches completely thru an incomplete hypothesis space.
 - ⇒ Restriction bias

Overfitting

h∈H is said to overfit the training data if there exists
h'∈H, such that h has smaller error than h' over the
training examples, but h' has a smaller error than h
over the entire distribution of instances.

Overfitting

- h∈H is said to overfit the training data if there exists
 h'∈H, such that h has smaller error than h' over the
 training examples, but h' has a smaller error than h
 over the entire distribution of instances:
 - There is noise in the data
 - The number of training examples is too small to produce a representative sample of the target concept

Overfitting

Homework

Exercises 3-1→3.4 (Chapter 3, ML textbook)