7. symbol-logic

10 Solved (with steps)

1)

Premises:

- 1. $P \rightarrow QP \setminus to Q$
- 2. PP

Goal:?

Steps: MP on (1), $(2) \Rightarrow QQ$.

Conclusion: QQ.

2)

Premises:

- 1. $P \rightarrow QP \setminus Q$
- 2. ¬Q\Inot Q

Goal:?

Steps: MT on (1), $(2) \Rightarrow \neg P \setminus Inot P$.

Conclusion: ¬P\Inot P.

3)

Premises:

- 1. PVRP \lor R
- 2. ¬P\Inot P

Goal: ?

Steps: DS on (1), $(2) \Rightarrow RR$.

Conclusion: RR.

4)

Premises:

- 1. $P \rightarrow QP \setminus to Q$
- 2. $Q \rightarrow RQ \setminus R$
- 3. PP

Goal: 3

Steps: HS on (1), $(2) \Rightarrow P \rightarrow RP \setminus R$; MP with $(3) \Rightarrow RR$.

Conclusion: RR.

5)

Premises:

1. PAQP \land Q

Goal: ?

Steps: Simplification \Rightarrow from (1) get PP (also QQ).

Conclusion: PP (and separately QQ).

6)

Premises:

- 1. PP
- 2. QQ

Goal: PAQP \land Q

Steps: Conjunction (Λ -Intro) on (1),(2).

Conclusion: PAQP \land Q.

7)

Premises:

- 1. $P \rightarrow (QVR)P \setminus (Q \setminus R)$
- 2. ¬Q\Inot Q
- 3. PP

Goal: ?

Steps: MP on (1),(3) \Rightarrow QVRQ \lor R; DS with (2) \Rightarrow RR.

Conclusion: RR.

8)

Premises:

- 1. $(P \land Q) \rightarrow R(P \land Q) \land R$
- 2. R→SR \to S
- 3. PP
- 4. QQ

Goal: ?

Steps: From (3),(4) via Λ -Intro \Rightarrow P Λ QP \land Q; MP with (1) \Rightarrow RR; MP with (2) \Rightarrow SS.

Conclusion: SS.

Premises:

- 1. $P \rightarrow QP \setminus to Q$
- 2. $R \rightarrow \neg QR \setminus Inot Q$
- 3. PVRP \lor R

Goal:?

Steps: Case analysis:

- If PP: MP (1) \Rightarrow QQ.
- If RR: MP (2) $\Rightarrow \neg Q \setminus Inot Q$.

Since cases yield QQ or ¬Q\Inot Q, no single determined conclusion follows.

Conclusion: No valid single conclusion.

10)

Premises:

1. $\neg (P \land Q) \setminus Inot(P \setminus Iand Q)$

Goal: ¬PV¬Q\Inot P \lor \Inot Q

Steps: By De Morgan's Law, $\neg(P \land Q) \equiv \neg P \lor \neg Q \land (P \land Q) \land (P \land$

Conclusion: ¬PV¬Q\Inot P \Ior \Inot Q.

40 Unsolved (you try!)

For each set of premises, derive the strongest valid conclusion (or state "No valid conclusion").

Direct inference & DS/MP/MT

- 1. $P \rightarrow Q$, PP \to Q,\; P \Rightarrow ?
- 2. $P \rightarrow Q$, $\neg QP \setminus Q$, $\setminus Inot Q \Rightarrow ?$
- 3. PvQ, $\neg PP \setminus IOP Q_i \setminus IOP \Rightarrow ?$
- 4. $PVQ_{,} \neg QP \setminus Q_{,} \setminus A \supseteq Q \Rightarrow ?$
- 5. $P \rightarrow Q$, $QP \setminus Q$, $Q \rightarrow ?$
- 6. $P \rightarrow (Q \land R)$, PP \to $(Q \land R)$, $P \Rightarrow ?$
- 7. $P \rightarrow (Q \lor R)$, $\neg Q$, $PP \lor to (Q \lor lor R)$, $\lor lnot Q$, \lor ; $P \Rightarrow ?$

- 10. $\neg (PVQ) \setminus Inot(P \setminus Ior Q) \Rightarrow ?$

Chain reasoning / HS

- 11. $P \rightarrow Q$, $Q \rightarrow R$, $PP \setminus Q$, $Q \setminus Q \setminus R$, $P \Rightarrow ?$
- 12. $P \rightarrow Q$, $Q \rightarrow RP \setminus Q$, $Q \setminus R \Rightarrow ?$ (derivable conditional)
- 13. $(PVQ) \rightarrow R$, $P(P \setminus Q) \setminus R$, $P \Rightarrow ?$
- 14. $(P \land Q) \rightarrow R$, P, $Q(P \land Q) \land R$, P, Q, Q \Rightarrow ?
- 15. $P \rightarrow Q$, $R \rightarrow S$, $P \lor RP \lor to Q$, $\ \ R \lor to S$, $\ \ P \lor lor R \Rightarrow ?$

Contraposition & contradictions

- 16. $P \rightarrow Q$, $\neg QP \setminus Q$, $\setminus Inot Q \Rightarrow ?$
- 18. $P \rightarrow \neg Q$, QP \to \Inot Q,\; Q \Rightarrow ?
- 19. $\neg\neg P \setminus Inot \setminus P \Rightarrow ?$
- 20. $P \rightarrow Q$, $P \rightarrow \neg QP \setminus Q$, $P \setminus Q$ $P \setminus Q$

Mixed connectives

- 21. $PV(Q\Lambda R)$, $\neg PP \setminus IOr(Q \setminus R)$, $\setminus Inot P \Rightarrow ?$
- 22. $(P \rightarrow Q) \land (P \rightarrow R)$, $P(P \land Q) \land (P \land R)$, $P \Rightarrow ?$
- 23. $(P \rightarrow Q) \land (R \rightarrow S)$, $P \lor R(P \lor to Q) \lor land <math>(R \lor to S) \land P \lor R \Rightarrow ?$
- 24. $P \leftrightarrow Q$, PP \leftrightarrow Q,\; P \Rightarrow ?
- 25. $P \leftrightarrow Q$, ¬PP \leftrightarrow Q,\; \lnot P \Rightarrow ?

Validity / No-conclusion traps

- 26. $P \rightarrow Q$, $QP \setminus Q \setminus Q \Rightarrow ?$
- 27. $P \rightarrow Q$, $\neg PP \setminus to Q \setminus : \setminus Inot P \Rightarrow ?$
- 28. PVQ, PP \lor Q,\; $P \Rightarrow ?$
- 29. PVQ, QP \lor Q,\; $Q \Rightarrow ?$
- 30. $P \rightarrow Q$, $\neg Q \rightarrow R$, $\neg RP \setminus Q$, \\ \\ \\ \Inot Q \\ \to R,\\; \\ \\ \Inot R \\ \\ ?

Derivations with equivalences

- 31. $\neg (PVQ) \setminus Inot(P \setminus Ior Q) \Rightarrow rewrite to CNF form$
- 32. $\neg(P \land Q) \setminus (P \land Q) \Rightarrow \text{rewrite to DNF-style disjunction}$
- 33. $P \rightarrow QP \setminus Q \Rightarrow rewrite with only V, \neg \setminus Inot$
- 34. $P \leftrightarrow QP \setminus P$ \leftrightarrow $Q \Rightarrow P$ rewrite as conjunction of two conditionals

Small truth/evaluation tasks (treat variables as booleans)

- 35. Is $PV \neg PP \setminus PP \setminus P$ a tautology? \Rightarrow True/False
- 36. Is $P\Lambda$ ¬PP \land \lnot P satisfiable? ⇒ Yes/No

- 37. If PP is False and QQ is True, evaluate $P \rightarrow QP \setminus Q$.
- 38. If PP is True and QQ is False, evaluate $P \leftrightarrow QP \setminus P$
- 39. If PP is False, evaluate $(P \rightarrow Q) \land (Q \rightarrow P)(P \land Q) \land (Q \land P)$ when QQ is True.
- 40. If PP is True and QQ is True, evaluate $(P \land Q) \rightarrow (P \lor Q)(P \lor Q) \land (P \lor Q)$.

Answer Key (for the 40 unsolved)

- 1) QQ \mid 2) ¬P\Inot P \mid 3) QQ \mid 4) PP \mid 5) No valid conclusion \mid 6) QARQ \land R \mid 7) RR \mid 8) ¬(PAQ)\Inot(P \land Q) \mid 9) QASQ \land S \mid 10) ¬PA¬Q\Inot P \land \Inot Q
- 11) RR | 12) P \rightarrow RP \to R | 13) RR | 14) RR | 15) No valid single conclusion (either QQ or SS; not fixed)
- 21) QARQ \land R \mid 22) QARQ \land R \mid 23) No valid single conclusion (either QQ or SS, case-dependent) \mid 24) QQ \mid 25) \neg Q\Inot Q
- 26) No valid conclusion (affirming the consequent) | 27) No valid conclusion | 28) PP | 29) QQ | 30) QQ (since $\neg R \setminus R$ forces $\neg \neg Q \setminus R$
- **35)** True (tautology) | **36)** No | **37)** True | **38)** False | **39)** False (True \(\text{False} \) | **40)** True