Number Theory and RSA Problem

Yu Zhang

HIT/CST/NIS

Cryptography, Autumn, 2014

Outline

- 1 Arithmetic and Basic Group Theory
- 2 RSA Assumption
- 3 "Textbook RSA" Encryption
- 4 RSA Encryption in Practice

Content

- 1 Arithmetic and Basic Group Theory
- **2** RSA Assumption
- 3 "Textbook RSA" Encryption

4 RSA Encryption in Practice

Primes and Divisibility

- The set of integers \mathbb{Z} , $a, b, c \in \mathbb{Z}$.
- a divides b: $a \mid b$ if $\exists c, ac = b$ (otherwise $a \nmid b$). b is a **multiple** of a. If $a \notin \{1, b\}$, then a is a **factor** of b.
- p > 1 is **prime** if it has no factors.
- \blacksquare An integer > 1 which is not prime is **composite**.
- Greatest common divisor gcd(a, b) is the largest integer c such that $c \mid a$ and $c \mid b$. gcd(0, b) = b, gcd(0, 0) undefined.
- **a** and b are relatively prime (coprime) if gcd(a, b) = 1.
- **Euclid's theorem**: there are infinitely many prime numbers.

Modular Arithmetic

- Remainder $r = [a \mod N] = a b \lfloor a/b \rfloor$ and r < N. N is called **modulus**.
- $\mathbb{Z}_N = \{0, 1, \dots, N 1\} = \{a \mod N | a \in \mathbb{Z}\}.$
- **a** and b are **congruent modulo** N: $a \equiv b \pmod{N}$ if $[a \mod N] = [b \mod N]$.
- **a** is invertible modulo $N \iff \gcd(a,N) = 1$. If $ab \equiv 1 \pmod{N}$, then $b = a^{-1}$ is multiple inverse of a modulo N.
- Cancellation law: If gcd(a, N) = 1 and $ab \equiv ac \pmod{N}$, then $b \equiv c \pmod{N}$.
- **Euclidean algorithm**: $gcd(a, b) = gcd(b, [a \mod b])$.
- **Extended Euclidean algorithm**: Given a, N, find X, Y with $Xa + YN = \gcd(a, N)$.

Examples of Modular Arithmetic

"Reduce and then add/multiply" instead of "add/multiply and then reduce".

Compute 193028 · 190301 mod 100

 $193028 \cdot 190301 = [193028 \mod 100] \cdot [190301 \mod 100] \mod 100$ = $28 \cdot 1 \equiv 28 \mod 100$.

 $ab \equiv cb \pmod{N}$ does not necessarily imply $a \equiv c \pmod{N}$.

$$a = 3, c = 15, b = 2, N = 24$$

$$3 \cdot 2 = 6 \equiv 15 \cdot 2 \pmod{24}$$
, but $3 \not\equiv 15 \pmod{24}$.

Use extended Euclidean algorithm to ...

Find the inverse of $11 \pmod{17}$

 $(-3) \cdot 11 + 2 \cdot 17 = 1$, so 14 is the inverse of 11.

Groups

A **group** is a set \mathbb{G} with a binary operation \circ :

- **Closure**:) $\forall g, h \in \mathbb{G}, g \circ h \in \mathbb{G}$.
- (Existence of an Identity:) \exists identity $e \in \mathbb{G}$ such that $\forall g \in \mathbb{G}, e \circ g = g = g \circ e$.
- **■** (Existence of Inverses:) $\forall g \in G, \exists h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. h is an inverse of g.
- (Associativity:) $\forall g_1, g_2, g_3 \in \mathbb{G}$, $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$.

 \mathbb{G} with \circ is **abelian** if

Commutativity:) $\forall g, h \in \mathbb{G}, g \circ h = h \circ g$.

Existence of inverses implies cancellation law.

When \mathbb{G} is a **finite group** and $|\mathbb{G}|$ is the **order** of group.

Group Exponentiation

$$g^m \stackrel{\mathsf{def}}{=} \underbrace{g \circ g \circ \cdots \circ g}_{m \text{ times}}.$$

Theorem 1

 \mathbb{G} is a finite group. Then $\forall g \in \mathbb{G}, g^{|\mathbb{G}|} = 1$.

Corollary 2

 $\forall g \in \mathbb{G} \text{ and } i, g^i = g^{[i \mod |\mathbb{G}|]}.$

Corollary 3

Define function $f_e: \mathbb{G} \to \mathbb{G}$ by $f_e(g) = g^e$. If $\gcd(e, |\mathbb{G}|) = 1$, then f_e is a permutation. Let $d = [e^{-1} \mod |\mathbb{G}|]$, then f_d is the inverse of f_e . $(f_d(f_e(g)) = g)$ e'th root of $c: g^e = c$, $g = c^{1/e} = c^d$.

The Group \mathbb{Z}_N^*

$$\mathbb{Z}_N^* \stackrel{\text{def}}{=} \{ a \in \{1, \dots, N-1\} | \gcd(a, N) = 1 \}$$

Euler's phi function: $\phi(N) \stackrel{\text{def}}{=} |\mathbb{Z}_N^*|$.

Theorem 4

 $N = \prod_i p_i^{e_i}$, $\{p_i\}$ are distinct primes, $\phi(N) = \prod_i p_i^{e_i-1}(p_i-1)$.

Corollary 5 (Euler's theorem & Fermat's little theorem)

$$a \in \mathbb{Z}_N^*$$
. $a^{\phi(N)} \equiv 1 \pmod{N}$. If p is prime and $a \in \{1, \dots, p-1\}$, then $a^{p-1} \equiv 1 \pmod{p}$.

Corollary 6

Define function $f_e: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ by $f_e(x) = [x^e \mod N]$. If $\gcd(e, \phi(N)) = 1$, then f_e is a permutation. Let $d = [e^{-1} \mod \phi(N)]$, then f_d is the inverse of f_e . e'th root of $c: g^e = c$, $g = c^{1/e} = c^d$.

Examples on Groups

- \blacksquare \mathbb{Z} is an abelian group under '+', not a group under '-'.
- lacksquare The set of real numbers $\mathbb R$ is not a group under '·'.
- $\blacksquare \mathbb{R} \setminus \{0\}$ is an abelian group under '·'.
- \blacksquare \mathbb{Z}_N is an abelian group under '+' modulo N.
- If p is prime, then \mathbb{Z}_p^* is an abelian group under '·' modulo p.
- $\blacksquare \ \mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}, \ |\mathbb{Z}_{15}^*| = 8.$
- \mathbb{Z}_3^* is a subgroup of \mathbb{Z}_{15}^* , but \mathbb{Z}_5^* is not.
- lacksquare g^3 is a permutation on \mathbb{Z}_{15}^* , but g^2 is not (e.g., $8^2\equiv 2^2\equiv 4$).

N=pq where p,q are distinct primes. $\phi(N)=?$

$$\phi(N) = (N-1) - (q-1) - (p-1) = (p-1)(q-1).$$

Arithmetic algorithms

- **Addition/subtraction**: linear time O(n).
- Mulplication: naively $O(n^2)$. Karatsuba (1960): $O(n^{\log_2 3})$ Basic idea: $(2^b x_1 + x_0) \times (2^b y_1 + y_0)$ with 3 mults. Best (asymptotic) algorithm: about $O(n \log n)$.
- **Division with remainder**: $O(n^2)$.
- **Exponentiation**: $O(n^3)$.

Algorithm 1: Exponentiating by Squaring

```
input : g \in G; exponent x = [x_n x_{n-1} \dots x_2 x_1 x_0]_2
output: q^x
```

- 1 $y \leftarrow q; z \leftarrow 1$
- 2 for i=0 to n do
- 3 | if $x_i == 1$ then $z \leftarrow z \times y$ 4 | $y \leftarrow y^2$
- return z

Algorithms for Factoring

- **Factoring** N = pq. p, q are of the same length n.
- Trial division: $\mathcal{O}(\sqrt{N} \cdot \mathsf{polylog}(N))$.
- **Pollard's** p-1 method: effective when p-1 has "small" prime factors.
- Pollard's rho method: $\mathcal{O}(N^{1/4} \cdot \mathsf{polylog}(N))$.
- Quadratic sieve algorithm [Carl Pomerance]: sub-exponential time $\mathcal{O}(\exp(\sqrt{n \cdot \log n}))$.
- The best-known algorithm is the **general number field sieve** [Pollard] with time $\mathcal{O}(\exp(n^{1/3} \cdot (\log n)^{2/3}))$.

Content

- 1 Arithmetic and Basic Group Theory
- 2 RSA Assumption
- 3 "Textbook RSA" Encryption
- 4 RSA Encryption in Practice

The RSA Problem

Recall group exponentiation on \mathbb{Z}_N^*

Define function $f_e: \mathbb{Z}_N^* \to \mathbb{Z}_N^*$ by $f_e(x) = [x^e \mod N]$. If $\gcd(e, \phi(N)) = 1$, then f_e is a permutation. If $d = [e^{-1} \mod \phi(N)]$, then f_d is the inverse of f_e . e'th root of c: $g^e = c$, $g = c^{1/e} = c^d$.

Idea: factoring is hard

- \implies for N = pq, finding p, q is hard
- \implies computing $\phi(N) = (p-1)(q-1)$ is hard
- \implies computations modulo $\phi(N)$ is not available

There is a gap.

⇒ **RSA problem** [Rivest, Shamir, and Adleman] is hard:

Given $y \in \mathbb{Z}_N^*$, compute y^{-e} , e^{th} -root of y modulo N.

Open problem

RSA problem is easier than factoring?

Generating RSA Problem

Algorithm 2: GenRSA

input : Security parameter 1^n **output**: N, e, d

- 1 $(N, p, q) \leftarrow \mathsf{GenModulus}(1^n)$
- 2 $\phi(N) := (p-1)(q-1)$
- 3 find e such that $\gcd(e,\phi(N))=1$
- **4 compute** $d := [e^{-1} \mod \phi(N)]$
- 5 return N, e, d

The RSA Assumption

The RSA experiment RSAinv_{A,GenRSA}(n):

- **1** Run GenRSA (1^n) to obtain (N, e, d).
- **2** Choose $y \leftarrow \mathbb{Z}_N^*$.
- **3** \mathcal{A} is given N, e, y, and outputs $x \in \mathbb{Z}_N^*$.
- 4 RSAinv_{A,GenRSA}(n) = 1 if $x^e \equiv y \pmod{N}$, and 0 otherwise.

Definition 7

RSA problem is hard relative to GenRSA if \forall PPT algorithms \mathcal{A} , \exists negl such that

$$\Pr[\mathsf{RSAinv}_{\mathcal{A},\mathsf{GenRSA}}(n) = 1] \le \mathsf{negl}(n).$$

Constructing One-Way Functions

Algorithm 3: Algorithm computing $f_{GenModulus}$

input : String x output: String N

- 1 **compute** n such that $p(n) \leq |x| < p(n+1)$
- **2 compute** $(N, p, q) := \mathsf{GenModulus}(1^n; x)$

/* run $\operatorname{GenModulus}(1^n)$ using x as the random tape

 ${f 3}$ return N

Reduce the factoring problem to the inverting problem.

Theorem 8

If the factoring problem is hard relative to GenModulus, then $f_{\text{GenModulus}}$ is a one-way function.

*/

Constructing One-Way Permutations

Construction 9

Define a family of permutations with GenRSA:

- Gen: on input 1^n , run GenRSA (1^n) to obtain (N,e,d) and output $I=\langle N,e\rangle$, Set $\mathcal{D}_I=\mathbb{Z}_N^*$.
- Samp: on input $I = \langle N, e \rangle$, choose a random elements of \mathbb{Z}_N^* .
- f: on input $I = \langle N, e \rangle$ and $x \in \mathbb{Z}_N^*$, output $[x^e \mod N]$.

Reduce the RSA problem to the inverting problem.

Content

- 1 Arithmetic and Basic Group Theory
- **2** RSA Assumption
- 3 "Textbook RSA" Encryption
- 4 RSA Encryption in Practice

"Textbook RSA"

Construction 10

- Gen: on input 1^n run GenRSA (1^n) to obtain N, e, d. $pk = \langle N, e \rangle$ and $sk = \langle N, d \rangle$.
- Enc: on input pk and $m \in \mathbb{Z}_N^*$, $c := [m^e \mod N]$.
- Dec: on input sk and $m \in \mathbb{Z}_N^*$, $m := [c^d \mod N]$.

Insecurity

Since the "textbook RSA" is deterministic, it is insecure with respect to any of the definitions of security we have proposed.

RSA Implementation Issues

- Encoding binary strings as elements of \mathbb{Z}_N^* : $\ell = \|N\|$. Any binary string m of length $\ell-1$ can be viewed as an element of Z_N . Although m may not be in Z_N^* , RSA still works.
- **Choice of** e: Either e=3 or a small d are bad choices. Recommended value: $e=65537=2^{16}+1$
- Using the Chinese remainder theorem: to speed up the decryption.

$$[c^d \mod N] \leftrightarrow ([c^d \mod p], [c^d \mod q]).$$

Assume that exponentiation modulo a v-bit integer takes v^3 operations. RSA decryption takes $(2n)^3=8n^3$, whereas using CRT takes $2n^3$.

Example of "Textbook RSA"

```
N=253, p=11, q=23, e=3, d=147, \phi(N)=220.
m = 0111001 = 57.
Encryption: 250 := [57^3 \mod 253].
Decryption: 57 := [250^{147} \mod 253].
Using CTR,
            [250^{[147 \mod 10]} \mod 11] = [8^7 \mod 11] = 2
           [250^{[147 \mod 22]} \mod 23] = [20^{15} \mod 23] = 11
57 \leftrightarrow (2,11).
```

Attacks on "Textbook RSA" with a small e

Small e and small m make modular arithmetic useless.

- If e=3 and $m< N^{1/3}$, then $c=m^3$ and $m=c^{1/3}$.
- In the hybrid encryption, 1024-bit RSA with 128-bit DES.

A general attack when small e is used:

- lacksquare e=3, the same message m is sent to 3 different parties.
- $c_1 = [m^3 \mod N_1]$, $c_2 = [m^3 \mod N_2]$, $c_3 = [m^3 \mod N_3]$.
- N_1, N_2, N_3 are coprime, and $N^* = N_1 N_2 N_3$, \exists unique $\hat{c} < N^*$: $\hat{c} \equiv c_1 \pmod{N_1}$, $\hat{c} \equiv c_2 \pmod{N_2}$, $\hat{c} \equiv c_3 \pmod{N_3}$.
- With CRT, $\hat{c} \equiv m^3 \pmod{N^*}$. Since $m^3 < N^*$, $m = \hat{c}^{1/3}$.

Common Modulus Attacks

Common Modulus Attacks: the same modulus N.

Case I: for multiple users with their own secret keys. Each user can find $\phi(N)$ with his own e,d, then find others' d.

Case II: for the same message encrypted with two public keys. Assume $\gcd(e_1,e_2)=1,\ c_1\equiv m^{e_1}$ and $c_2\equiv m^{e_2}\pmod N$. $\exists X,\,Y$ such that $Xe_1+Ye_2=1$.

$$c_1^X \cdot c_2^Y \equiv m^{Xe_1} m^{Ye_2} \equiv m^1 \pmod{N}.$$

CCA in "Textbook RSA" Encryption

Recovering the message with CCA

 \mathcal{A} choose a random $r \leftarrow \mathbb{Z}_N^*$ and compute $c' = [r^e \cdot c \bmod N]$, and get m' with CCA. Then $m = [m' \cdot r^{-1} \bmod N]$.

$$m'\cdot r^{-1}\equiv (c')^dr^{-1}\equiv (r^e\cdot m^e)^dr^{-1}\equiv r^{ed}m^{ed}r^{-1}\equiv rmr^{-1}\equiv m.$$

Doubling the bid at an auction

The ciphertext of an bid is $c = [m^e \mod N]$. $c' = [2^e c \mod N]$.

$$(c')^d \equiv (2^e m^e)^d \equiv 2^{ed} m^{ed} \equiv 2m.$$

Content

- 1 Arithmetic and Basic Group Theory
- 2 RSA Assumption

- 3 "Textbook RSA" Encryption
- 4 RSA Encryption in Practice

Padded RSA

Idea: add randomness to improve security.

Construction 11

Let ℓ be a function with $\ell(n) \leq 2n - 2$ for all n.

- Gen: on input 1^n , run GenRSA (1^n) to obtain (N, e, d). Output $pk = \langle N, e \rangle$, and $sk = \langle N, d \rangle$.
- Enc: on input $m \in \{0,1\}^{\ell(n)}$, choose a random string $r \leftarrow \{0,1\}^{\|N\|-\ell(n)-1}$. Output $c := [(r\|m)^e \mod N]$.
- Dec: compute $\hat{m} := [c^d \mod N]$, and output the $\ell(n)$ low-order bits of \hat{m} .

 ℓ should neither be too large (r is too short in theory) nor be too small (m is too short in practice).

Theorem 12

If the RSA problem is hard relative to GenRSA, then Construction with $\ell(n) = \mathcal{O}(\log n)$ is CPA-secure.

PKCK #1 v2.1 (RSAES-OAEP)

Optimal Asymmetric Encryption Padding (OAEP): encode m of length n/2 as \hat{m} of length 2n. G, H are **Random Oracles**.

$$\hat{m}_1 := G(r) \oplus (m \| \{0\}^{n/2}), \hat{m} := \hat{m}_1 \| (r \oplus H(\hat{m}_1)).$$

RSA-OAEP is CCA-secure in Random Oracle model. ¹ [RFC 3447]

¹It may not be secure when RO is instantiated.

OAEP Improvements

OAEP+: \forall trap-door permutation F, F-OAEP+ is CCA-secure.

SAEP+: RSA (e=3) is a trap-door permutation, RSA-SAEP+ is CCA-secure.

W, G, H are Random Oracles.

Remarks on RSA in Practice

Key lengths with comparable security :

Symmetric	RSA
80 bits	1024 bits
128 bits	3072 bits
256 bits	15360 bits

Implementation attacks:

Timing attack: The time it takes to compute c^d can expose d.

Power attack: The power consumption of a smartcard while it is computing c^d can expose d.

Key generation trouble (in OpenSSL RSA key generation): Same p will be generated by multiple devices (due to poor entropy at startup), but different q (due to additional randomness). N_1, N_2 from different devices, $\gcd(N_1, N_2) = p$. Experiment result: factor 0.4% of public HTTPS keys.

Faults Attack on RSA

Faults attack: A computer error during $c^d \mod N$ can expose d.

Using CRT to speed up the decryption:

$$[c^d \mod N] \leftrightarrow ([m_p \equiv c^d \pmod p], [m_q \equiv c^d \pmod q)]).$$

Suppose error occurs when computing m_q , but no error in m_p .

Then output is m' where $m' \equiv c^d \pmod{p}$, $m' \not\equiv c^d \pmod{q}$. So $(m')^e \equiv c \pmod{p}$, $(m')^e \not\equiv c \pmod{q}$.

$$\gcd((m')^e - c, N) = p.$$

A common defense: check output. (but 10% slowdown)

Summary

- Primes, modular arithmetic.
- \bullet e^{th} -root modulo N, RSA.

Textbook

"A Computational Introduction to Number Theory and Algebra" (Version 2) by Victor Shoup

- RSA, "textbook RSA", padded RSA, PKCS.
- small *e*, common modulus attacks, CCA, faults attack.