Histogram of favorite.data

FIGURE 1. The histogram of favorite.data

1. Problem 1

For the dataset given on Blackboard, the following summary statistics were calculated.

Statistic	Value
Mean	1688.51
Median	1706
Std. Dev	883.47
Max	3907
Min	2

The histogram for the dataset can be found in Figure 1

2. Problem 2

We generate 10,000 random values from the standard normal distribution. The histogram of the values is shown below in Figure 2.

The following statistics were calculated. $\,$

3. Problem 3

The two sequences specified in the problem were multiplied together. The requested elements can be found in the table below.

1

FIGURE 2. The histogram of 10,000 random standard normal data points

Statistic	Value	
Mean	-0.0032	
Median	00966	
Std. Dev	1.00658	

Element	Value
15	5475
16	5760
17	6035

All of the elements between 5 and 32 (inclusive) are greater than 2,000. 16 elements are greater than 6,000.

4. Problem 4

The following table describes the results of summing all of the perfect squares between 1 and x.

\overline{x}	Value
100	385
100,000	10568146

5. Problem 5

All of the perfect squares between 1 and 500 can be found in the table below (code with the vector object in the appendix).

	X
1	1.00
2	4.00
3	9.00
4	16.00
5	25.00
6	36.00
7	49.00
8	64.00
9	81.00
10	100.00
11	121.00
12	144.00
13	169.00
14	196.00
15	225.00
16	256.00
17	289.00
18	324.00
19	361.00
20	400.00
21	441.00
22	484.00

The 4 column matrix with all perfect squares between 1 and 100,000 can be found below (code in the appendix).

For the above matrix **X**, $x_{15,3} = 29,929$.

	1	2	3	4
1	1.00	6400.00	25281.00	56644.00
2	4.00	6561.00	25600.00	57121.00
3	9.00	6724.00	25921.00	57600.00
4	16.00	6889.00	26244.00	58081.00
5	25.00	7056.00	26569.00	58564.00
6	36.00	7225.00	26896.00	59049.00
7	49.00	7396.00	27225.00	59536.00
8	64.00	7569.00	27556.00	60025.00
9	81.00	7744.00	27889.00	60516.00
10	100.00	7921.00	28224.00	61009.00
11	121.00	8100.00	28561.00	61504.00
12	144.00	8281.00	28900.00	62001.00
13	169.00	8464.00	29241.00	62500.00
14	196.00	8649.00	29584.00	63001.00
15	225.00	8836.00	29929.00	63504.00
16	256.00	9025.00	30276.00	64009.00
17	289.00	9216.00	30625.00	64516.00
18	324.00	9409.00	30976.00	65025.00
19	361.00	9604.00	31329.00	65536.00
20	400.00	9801.00	31684.00	66049.00
21	441.00	10000.00	32041.00	66564.00
22	484.00	10201.00	32400.00	67081.00
23	529.00	10404.00	32761.00	67600.00
24	576.00	10609.00	33124.00	68121.00
25	625.00	10816.00	33489.00	68644.00
26	676.00	11025.00	33856.00	69169.00
27	729.00	11236.00	34225.00	69696.00
28	784.00	11449.00	34596.00	70225.00
29	841.00	11664.00	34969.00	70756.00
30	900.00	11881.00	35344.00	71289.00
31	961.00	12100.00	35721.00	71824.00
32	1024.00	12321.00	36100.00	72361.00
33	1089.00	12544.00	36481.00	72900.00
34	1156.00	12769.00	36864.00	73441.00
35	1225.00	12996.00	37249.00	73984.00
36	1296.00	13225.00	37636.00	74529.00
37	1369.00	13456.00	38025.00	75076.00
38	1444.00	13689.00	38416.00	75625.00
39	1521.00	13924.00	38809.00	76176.00
40	1600.00	14161.00	39204.00	76729.00
41	1681.00	14400.00	39601.00	77284.00
42	1764.00	14641.00	40000.00	77841.00
43	1849.00	14884.00	40401.00	78400.00
44	1936.00	15129.00	40804.00	78961.00
45	2025.00	15376.00	41209.00	79524.00
46	2116.00	15625.00	41616.00	80089.00
47	2209.00	15876.00	42025.00	80656.00
48	2304.00	16129.00	42436.00	81225.00
49	2401.00	16384.00	42849.00	81796.00
50	2500.00	16641.00	43264.00	82369.00
51	2601.00	16900.00	43681.00	82944.00
52	2704.00	17161.00	44100.00	83521.00
53	2809.00	17424.00	44521.00	84100.00
54	2916.00	17689.00	44944.00	84681.00
55	3025.00	17956.00	45369.00	85264.00
56	3136.00	18225.00	45796.00	85849.00
57	3249.00	18496.00	46225.00	86436.00
۲.	2224	4050000	1005000	0500500