Exercise 4

Random Sampling

Deadline: October 19, 2016.

Note:

For calculation problem, please give details of the derivation. Answers will receive only half of the points.

- 1. Reading.
 - (a) Lecture notes 4.
 - (b) Chapter 5 of the book "Statistical Inference".
- 2. Let X_1, \ldots, X_n be a random sample of size n from a $N(0, \sigma^2)$ population. Prove that

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{\sigma}\right)^2$$

has a χ^2 distribution with n-1 degrees of freedom.

- 3. Let X_1, \ldots, X_n be a random sample of size n from a $N(0, \sigma^2)$ population. Prove that \bar{X} and S^2 are independent random variables.
- 4. Let X_1, \ldots, X_n be a random sample of size n from a $N(\mu, 1)$ population. Define random variables Y_1, \ldots, Y_n as

$$Y_i = \left\{ \begin{array}{ll} 1 & \text{if } X_i > \mu \\ 0 & \text{if } X_i \le \mu \end{array} \right..$$

Derive the distribution of $\sum_{i=1}^{n} Y_i$

- 5. Two samples X_1, \ldots, X_m and Y_1, \ldots, Y_n are obtained from two independent normal population $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$, respectively, and the condition $\sigma_X = \sigma_Y = \sigma$ holds.
 - (a) Show that

$$\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{\sigma\sqrt{\frac{1}{m} + \frac{1}{n}}}$$

has a standard normal distribution.

(b) Show that

$$\frac{(m+n-2)S_p^2}{\sigma^2}$$

has a χ^2 distribution with m+n-2 degrees of freedom, where

$$S_p^2 = \frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2}$$

is the pooled variance estimate.

(c) With the above two conclusion, show that

$$\frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}}$$

has a student's t distribution with m+n-2 degrees of freedom.

- 6. Let X be a random variable with student t distribution with p degrees of freedom.
 - (a) Derive the mean and variance of X.
 - (b) Prove that when p tends to infinite, X converges in distribution to standard normal. That is,

$$\lim_{p \to \infty} f(x|p) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \text{ for any } -\infty < x < \infty$$

(c) Find the distribution of X^2