MAST90125: Bayesian Statistical learning

Lecture 22 & 23: Introduction to Gaussian processes

Feng Liu and Guoqi Qian

What have we learned so far

- ▶ We have learned computational techniques for estimating or approximating posterior distributions when we cannot perform inference analytically. We paid particular attention to MCMC techniques such as,
 - Metropolis-Hastings
 - Gibbs sampling
 - Hamiltonian Monte Carlo.

and applied these techniques to regression type models, including generalised linear models.

▶ We will not introduce any further computational techniques for performing Bayesian inference from now on. Rather, we will consider a non-regression model: Gaussian processes.

What is a Gaussian process

- ► A Gaussian process is a collection of random variables, any finite number of which have Gaussian distribution.
- Mathematically, for any set S, a Gaussan process (GP) on S is a set of random variables $(f_x, x \in S)$ such that, for any $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in S$, $(f_{x_1}, \ldots, f_{x_n})$ is (multivariate) Gaussian.

What is a Gaussian process

- ▶ A Gaussian process is a collection of random variables, any finite number of which have Gaussian distribution.
- Mathematically, for any set S, a Gaussan process (GP) on S is a set of random variables $(f_x, x \in S)$ such that, for any $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in S$, $(f_{x_1}, \ldots, f_{x_n})$ is (multivariate) Gaussian.
- **(Gaussian process can be determined by mean function and variance-covariance function)** For any set S, any mean function $\mu: S \to \mathbb{R}$ and any covariance function (also called kernel) $k: S \times S \to \mathbb{R}$, there exists a GP f(x) such that $\mathbb{E}[f(x)] = \mu(x)$, and $cov(f(x_i), f(x_j)) = k(x_i, x_j) \ \forall x_i, x_j \in S$. It denotes $f \sim \mathcal{GP}(\mu, k)$.

What is unique about a Gaussian process

- ► So what restrictions are placed on *x*?
 - ▶ Does x need to be a scalar? No.
 - Does x need to be observed for the prior to be defined? No.
- ▶ So what can we say about $\mu(x)$?
 - $\blacktriangleright \mu(x)$ is a random function.
 - This in turn highlights how general the Gaussian process is. For example, if x is a scalar, then $\mu(x)$ could be any curve.

What is unique about a Gaussian process

- So what restrictions are placed on x?
 - Does x need to be a scalar? No.
 - ▶ Does *x* need to be observed for the prior to be defined? No.
- ▶ So what can we say about $\mu(x)$?
 - $\blacktriangleright \mu(x)$ is a random function.
 - This in turn highlights how general the Gaussian process is. For example, if x is a scalar, then $\mu(x)$ could be any curve.
- In this lecture, we will first consider the Gaussian process prior. In the next lecture, we will show the inference based on the Gaussian process.

What is a Gaussian process prior

Now, assume a GP model

$$\mathbf{y} \sim \mathcal{GP}(\mu, \text{cov}).$$

▶ What do you think is meant if we write

$$p(\mu) = GP(m, k)$$
?

▶ It looks like a prior. As you may have guessed, GP stands for Gaussian process, but what is a Gaussian process prior?

$$p(\mu(x)) = \mathcal{N}(m(x), k(x, x')),$$

so m(x) must be the mean of a normal distribution, k(x, x') the variance of a normal distribution.

Where is data involved?

- After defining a Gaussian process prior, we have a wide variety of choices for how observed data $\mathbf{y} = (y_1, \dots, y_n)$ is generated conditional on $\mathbf{x} = (x_1, \dots, x_n)$. For instance, we could have
 - ▶ The Gaussian process model: $\mathbf{y}|\mu(\mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), \Sigma)$, where Σ is a variance –covariance matrix. Often Σ will simplify to,
 - ightharpoonup $\mathbf{y}|\boldsymbol{\mu}(\mathbf{x}) \sim \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}), \sigma^2 \mathbf{I})$
 - ▶ The latent Gaussian process model: $\mathbf{y}|\mathbf{f} \sim \mathcal{D}(\mathbf{f}); \mathbf{f}|\mu(\mathbf{x}) \sim \mathcal{N}(\mu(\mathbf{x}), \Sigma)$, where \mathcal{D} is some distribution.
- Note: The observed data, \mathbf{y} is a vector of length n. This means $\mu(\mathbf{x})$ is an $n \times 1$ vector, which implies $m(\mathbf{x})$ is an $n \times 1$ vector, and $k(\mathbf{x}, \mathbf{x})$ is an $n \times n$ matrix.

Have we previously encountered Gaussian processes?

- ► Even though we do not think of these models as Gaussian processes, we have already considered Gaussian processes in this course. Where?
 - Linear models can be viewed as Gaussian process models.
 - Generalised linear models can be viewed as latent Gaussian process models.
- ▶ We will now show how linear models can be viewed as Gaussian processes.

Linear models are Gaussian process models

- ▶ In lecture 13, we showed the estimates of linear regression correspond to posterior estimates, if we assume
 - ▶ Priors: $p(\beta) \propto 1$ and $p(\tau) \propto \tau^{-1}$
 - ▶ Likelihood: $p(\mathbf{y}|\mathbf{X}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}/\tau)$.
- From the likelihood statement, we can deduce that $\mu(X) = X\beta$. This just leaves us to determine $p(\mu(X))$.
- In Assignment 1, you were asked to determine the parameters of the improper normal prior that would be equivalent to a flat prior. If you remember, this was $p(\beta) = \mathcal{N}(\beta_0, \Sigma)$, as $\Sigma^{-1} \to \mathbf{0}$ and the choice of β_0 was arbitrary.
- ► Thus linear regression is a Gaussian process model where

$$p(\mu(\mathbf{X})) = \mathcal{N}(m(\mathbf{X}) = \mathbf{X}\beta_0, k(\mathbf{X}, \mathbf{X}) = \mathbf{X}\Sigma\mathbf{X}')$$
 as $\Sigma^{-1} \to \mathbf{0}$.

Linear models are Gaussian process models

- ▶ In lecture 14, we considered the case where
 - Priors: $p(\beta) = \mathcal{N}(\beta_0, \mathbf{K}/\tau_\beta)$, $p(\tau) = \mathsf{Ga}(\alpha_e, \gamma_e)$, $p(\tau_\beta) = \mathsf{Ga}(\alpha_\beta, \gamma_\beta)$
 - ► Likelihood: $p(\mathbf{y}|\mathbf{X}, \boldsymbol{\beta}) = \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{I}/\tau)$.

Further we noted that special cases of this model corresponded to random effect regression/the linear mixed model.

- As with linear regression, we can deduce that $\mu(X) = X\beta$ from the likelihood statement. This just leaves us to determine $\rho(\mu(X))$.
- From properties of the normal distribution we know that if $\beta \sim \mathcal{N}(\beta_0, \mathbf{K}/\tau_\beta)$, then $\mathbf{X}\beta \sim \mathcal{N}(\mathbf{X}\beta_0, \mathbf{X}\mathbf{K}\mathbf{X}'/\tau_\beta)$
- \triangleright Thus a regression with a normal prior for β is a Gaussian process model where

$$p(\mu(\mathbf{X})) = \mathcal{N}(m(\mathbf{X}) = \mathbf{X}\beta_0, k(\mathbf{X}, \mathbf{X}) = \mathbf{X}\mathbf{K}\mathbf{X}'/\tau_\beta)$$

Linear models are Gaussian process models

- In lecture 14, we also briefly considered the LASSO, which from a Bayesian perspective assumes the prior $p(\beta_i) = \frac{\gamma}{2}e^{-\gamma|\beta_j|}$.
- ▶ We noted that this Laplace or double exponential prior can be written as:
- ► Hence LASSO is a Gaussian process model with

$$p(\mu(X)) = \mathcal{N}(m(X) = 0, k(X, X) = XKX'),$$

where **K** is a diagonal matrix such that $\mathbf{K}_{ij} = \sigma_i^2$.

Are Gaussian processes more flexible?

- While we have just shown that linear models are examples of Gaussian processes, do you think Gaussian processes are restricted to linear models?
- The answer is no. We can come up with a wide variety of possible choices for $m(\mathbf{x})$ and $k(\mathbf{x}, \mathbf{x})$. Some possible ideas for $m(\mathbf{x})$ could be:
 - $m(\mathbf{x}) = \sin(\pi \mathbf{x}' \boldsymbol{\beta})$
 - $m(\mathbf{x}) = \exp(-\alpha x_1/x_2)$ where $\mathbf{x} = (x_1 \ x_2)$ and α is some constant.
 - $\mathbf{m}(\mathbf{x}) = \alpha x_1^{-x_2}$ where $\mathbf{x} = (x_1 \ x_2)$ and α is some constant.
 - $m(x) = \sum_{i=1}^{\infty} \beta_i b_i(x)$ where $b_i(x)$ is some function of x.
 - m(x) = 0, which is very commonly used in practice.

Possible choices for the covariance function.

▶ We have already showed how linear models can be viewed as Gaussian processes with covariance function,

$$k(\mathbf{X}, \mathbf{X}) = \mathbf{X} \mathbf{\Sigma}(\boldsymbol{\theta}) \mathbf{X}',$$

where Σ is an arbitrary positive (semi-)definite matrix, possibly dependent on some additional parameters, θ .

- Other possible choices of covariance function include:
 - ▶ White noise, $k(\mathbf{X}_i, \mathbf{X}_{i'}) = \sigma^2 \delta_{\mathbf{X}_i, \mathbf{X}_{i'}}$, where $\delta_{\mathbf{X}_i, \mathbf{X}_{i'}}$ is a Kronecker delta function.
 - ▶ Squared exponential, $k(\mathbf{X}_i, \mathbf{X}_{i'}) = \sigma^2 e^{-\sum_{j=1}^p (\mathbf{X}_{ij} \mathbf{X}_{i'j})^2 / l_j^2}$
 - Periodic, $k(t_i, t_{i'}) = \sigma^2 e^{-2\sin^2(\alpha \pi (t_i t_{i'}))/I}$

among others.

Implications of the flexibility of a Gaussian process

- ▶ Imagine you want to make predictions of two points, y_i and y_j .
- To make these predictions, you assume **y** was generated according to a linear model, $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$.
- ▶ If the vectors of predictors for observation i, j satisfy $\mathbf{X}_i = \mathbf{X}_j$ for every element, what can you say about the predictions \hat{y}_i, \hat{y}_j ?
 - ▶ The predictions $\hat{y}_i = \mathbf{X}_i \hat{\boldsymbol{\beta}} = \mathbf{X}_j \hat{\boldsymbol{\beta}} = \hat{y}_j$ must be identical.
- ▶ If the vectors of predictors for observation i, j satisfy $\mathbf{X}_i = \mathbf{X}_j$ for every element, would can you say about the y_i, y_j ?
 - According to the assumed model, any difference between y_i and y_j must be due to difference in the residuals ϵ_i , ϵ_j

Implications of the flexibility of a Gaussian process

- Now imagine you assume data \mathbf{y} was generated according to a Gaussian process, such that for $i=1,\ldots n$, $y_i=\mu(\mathbf{X}_i)+\epsilon_i$, $\mu(\mathbf{X}_i)\sim\mathcal{N}(m(\mathbf{X}_i),k(\mathbf{X}_i,\mathbf{X}_i))$.
- **B** Based on the model assumed, can we say that if $\mathbf{X}_i = \mathbf{X}_j$ for every element then any difference between y_i and y_j must be due to differences in the residuals ϵ_i , ϵ_j .
 - If y_i , y_j are drawn conditional on the same realisation of a Gaussian process prior, $\mu(\mathbf{X})$, then $\mu(\mathbf{X}_i) = \mu(\mathbf{X}_j)$, if $\mathbf{X}_i = \mathbf{X}_j$ for every element.
- Moreover, if $\mathbf{X}_i = \mathbf{X}_j$ for every element then what can we say about the covariance function $\mathbf{k}(\mathbf{X}, \mathbf{X})$?
 - If $X_i = X_j$ are identical, then rows, columns i and j of k(X, X) must be identical. This indicates k(X, X) is not full-rank, and that elements i and j of $\mu(X)$ are equal.

Implications of the flexibility of a Gaussian process

- \triangleright On the previous slide, a comment was made about if y_i, y_j are drawn conditional on the same realisation of a Gaussian process prior.
- \blacktriangleright What does this tell you about $\mu(X)$?
 - $m{
 u}(\mathbf{X})$ is defined for all possible values $\mathbf{X} \in \mathcal{X}$
- What does this tell you about y?
 - y is conditional on a particular random function evaluated at the points X.
- So if you observe another group of data y_2 , and assume the same Gaussian process prior $\mu_2(X_2) \sim \mathcal{N}(\mathbf{m}(X_2), \mathbf{k}(X_2, X_2))$, what can we say about $\mu_2(X_2)$?
 - If y_2 is just a continuation of the data y, then $\mu_2(X_2)$ must be the same function as $\mu(X)$ except evaluated at a different set of points.
 - If \mathbf{y}_2 is not a continuation of the data \mathbf{y} , then $\mu_2(\mathbf{X}_2)$ would be a different function from $\mu(\mathbf{X})$, even if both are realisations from the same prior.

An example of a Gaussian process

- ightharpoonup To conclude this lecture, we generate functions μ from a Gaussian process. For this example, assume
 - ightharpoonup Either $m(x) = \exp(-\alpha x)$.
 - $k(x_i, x_i) = \sigma^2 e^{-\beta \sin^2(\pi(x_i x_j)/12)}$
- \blacktriangleright We will consider values for x between (0, 24).
- ▶ We will fix σ^2 at one, and vary α, β .

R code for generating $\mu(x)$

```
#function generating function for Gaussian process prior described on previous slide.
#Inputs are
#x: points where gaussian process was evaluated.
#\alpha: parameter in mean function exp(-\alpha x)
#beta: decay parameter for k
#sigma2: scale parameter for k
#n: number of functions to generate
mu.fun<-function(x,alpha,beta,sigma2,n){
library(mytnorm)
mx <- exp(-alpha*x) #mean function
np<-length(x)
                    #number of location to evaluate Gaussian process.
mT<-matrix(x.np.np)
kx \le sigma2 * exp(-beta * sin(pi * (mT-t(mT))/12)^2)
result <- rmvnorm (n.mean=mx.sigma=kx)
return(result)
#An example of generating function with $n=5$.
x<-sort(runif(200.0.24)) #generate 200 points for gaussian process to be evaluated at.
test<-mu.fun(x=x,alpha=-0.1,beta=2,sigma2=1,n=5)
#plotting result
plot(x.test[1,].type='l'.col=1.ylim=c(min(test).max(test)).ylab=expression(mu(x)).main='realisations of Gaussian process')
for(i in 2:5){lines(x.test[i,].type='1',col=i)}
```

Examples of Gaussian processes

In this example, we assume $\alpha = 0$, $\beta = 2$, $\sigma^2 = 1$?

- By setting $\alpha = 0$, we have implied that $m(x) = 1 \ \forall x$.
- Can you see any patterns within each of the five functions?
 - ► The curves are periodic, with a period of 12. This shows that k(x, x') is not full rank for the range of x values we considered.
- There still appears to be considerable variation in shape between different curves.

Examples of Gaussian processes

In this example, we assume $\alpha = 0$, $\beta = 0.3$, $\sigma^2 = 1$?

- Like before, by setting $\alpha = 0$, we have implied that $m(x) = 1 \ \forall x$.
- Can you see any patterns within each of the five functions?
 - As expected, the curves are still periodic, with a period of 12.
- Page 12. By reducing β , we have reduced the rate of decay in correlation. This has reduced variation within each curve $\mu(x)$.

Examples of Gaussian processes

▶ In this example, we assume $\alpha = -0.1$, $\beta = 1$, $\sigma^2 = 1$?

- By setting $\alpha = -0.1$, we have implied that m(x) will increase with x.
- Can you see any patterns within each of the five functions?
 - By allowing m(x) to be non-constant, the periodicity is more difficult to detect.
- In this particular case, the variation in m(x) likely dominates variation due to k(x, x'). The trend in m(x) is clearly seen in each curve generated.