Assignment 1

Haohu Shen

UCID: 30063099

MATH 271 - Discrete Mathematics

Instructor Jerrod Smith

Jan 30, 2019

Question 1

(a)

ullet ${\cal P}$ is true.

• **Proof** Suppose x and y are real numbers such that $x-\lfloor x\rfloor<\frac{1}{2}$ and $y-\lfloor y\rfloor<\frac{1}{2}$. We show that |x+y|=|x|+|y|.

Let

$$a=x-\lfloor x
floor<rac{1}{2}$$

$$b=y-\lfloor y\rfloor<\frac{1}{2}$$

Then

$$a+b<\frac{1}{2}+\frac{1}{2}=1$$

Thus

$$\lfloor a+b
floor = 0$$

Since $\lfloor x \rfloor + \lfloor y \rfloor \in \mathbb{Z}$, we have

as required.

(b)

- The converse of $\mathcal P$ is: For all real numbers x and y, if $\lfloor x+y\rfloor=\lfloor x\rfloor+\lfloor y\rfloor$, then $x-\lfloor x\rfloor<\frac12$ and $y-\lfloor y\rfloor<\frac12$.
- The converse of \mathcal{P} is false.
- ullet Proof (of the converse): Let $x=0.5\in\mathbb{R}$ and $y=0.4\in\mathbb{R}$ such that

$$|x+y| = |0.5+0.4| = |0.9| = 0 = 0 + 0 = |0.5| + |0.4| = |x| + |y|$$

But

$$\lfloor x - \lfloor x
floor = 0.5 - \lfloor 0.5
floor = 0.5 - 0 = 0.5 = rac{1}{2}
ot< rac{1}{2}$$

Thus the converse of \mathcal{P} is false.

(c)

- The contrapositive of $\mathcal P$ is: For all real numbers x and y, if $\lfloor x+y\rfloor\neq \lfloor x\rfloor+\lfloor y\rfloor$, then $x-\lfloor x\rfloor\geq \frac{1}{2}$ or $y-\lfloor y\rfloor\geq \frac{1}{2}$.
- The contrapositive of $\mathcal P$ is true because it is logically equivalent to $\mathcal P$ which is proven to be true in (a).

(d)

- The negation of $\mathcal P$ is: There exist real numbers x and y such that $x-\lfloor x\rfloor<\frac12$ and $y-\lfloor y\rfloor<\frac12$ but $\lfloor x+y\rfloor\neq \lfloor x\rfloor+\lfloor y\rfloor.$
- The negation of \mathcal{P} is false because its truth value is logically opposite to the truth value of \mathcal{P} which is proven to be true in **(a)**.

Question 2

(a) Solution

Since

$$2019 = 271 \times 7 + 122$$
 $271 = 122 \times 2 + 27$
 $122 = 27 \times 4 + 14$
 $27 = 14 \times 1 + 13$
 $14 = 13 \times 1 + 1$
 $13 = 1 \times 13 + 0$

We have

$$\gcd(2019, 271) = \gcd(271, 122)$$

$$= \gcd(122, 27)$$

$$= \gcd(27, 14)$$

$$= \gcd(14, 13)$$

$$= \gcd(13, 1)$$

$$= \gcd(1, 0)$$

$$= 1$$

Using the table method, we have

	2019	271	
2019	1	0	R_1
271	0	1	R_2
122	1	-7	$R_3 \leftarrow R_1 - 7R_2$
27	-2	15	$R_4 \leftarrow R_2 - 2R_3$
14	9	-67	$R_5 \leftarrow R_3 - 4R_4$
13	-11	82	$R_6 \leftarrow R_4 - R_5$
1	20	-149	$R_7 \leftarrow R_5 - R_6$

Thus when x=20 and y=-149,

$$2019x + 271y = 2019 \times 20 + 271 \times (-149)$$
 $= 40380 - 40379$
 $= 1$
 $= \gcd(2019, 271)$

(b) Solution Let $m=291\in\mathbb{Z}$, $n=-2168\in\mathbb{Z}$ such that

$$2019m + 271n = 2019 \times 291 + 271 \times (-2168) = 587529 - 587528 = 1 = \gcd(2019, 271)$$

In this case $m=291 \neq 20=x$, $n=-2168 \neq -149=y$.

(c)

- · The statement is false.
- Its negation is: $\exists a, b, c \in \mathbb{Z}^+$, $\gcd(a, c) + \gcd(b, c) \neq \gcd(a + b, c)$. We show its negation is true.
- ullet Proof (of negation) Let $a=2\in\mathbb{Z},$ $b=5\in\mathbb{Z}$ and $c=1\in\mathbb{Z}.$ Then

 $\gcd(a,c) + \gcd(b,c) = \gcd(2,1) + \gcd(5,1) = 1 + 1 = 2 \neq 1 = \gcd(7,1) = \gcd(2+5,1) = \gcd(a+b,c)$ as required.

(d)

- The statement is true.
- ullet Proof Let $a=3\in\mathbb{Z}$, $b=3\in\mathbb{Z}$ and $c=2\in\mathbb{Z}$. Then

 $\gcd(a,c) + \gcd(b,c) = \gcd(3,2) + \gcd(3,2) = 1 + 1 = 2 = \gcd(6,2) = \gcd(3+3,2) = \gcd(a+b,c)$ as required.

Question 3

(a)

- The statement is true.
- ullet Proof Suppose $x\in\mathbb{Z}$, we show that x^3+x is even, and we can split the value of x into two cases.

Case 1 If x is odd, then $\exists k \in \mathbb{Z}$ such that x=2k+1. Thus

$$egin{aligned} x^3 + x &= (2k+1)^3 + (2k+1) \ &= (2k+1)((2k+1)^2 + 1) \ &= (2k+1)(4k^2 + 4k + 2) \ &= 2(2k+1)(2k^2 + 2k + 1) \end{aligned}$$

Since $(2k+1)(2k^2+2k+1)\in\mathbb{Z}$, we have x^3+x is even by the definition.

Case 2 If x is even, then $\exists k \in \mathbb{Z}$ such that x=2k. Thus

$$x^{3} + x = (2k)^{3} + 2k$$

= $8k^{3} + 2k$
= $2(4k^{3} + k)$

Since $4k^3+k\in\mathbb{Z}$, we have x^3+x is even by the definition.

Conclusion Since in both cases we have x^3+x is even, thus we can conclude that, for all integers x, x^3+x is even.

(b)

- The statement is false.
- Its negation is: There exist an integer y such that for all integers x, $x^3 + x \neq y$. We prove its negation is true.
- **Proof** (of negation) Let $y=1\in\mathbb{Z}$, then $y=1=2\cdot 0+1$, thus y is odd, since from (a) we have proven that for all integers x, x^3+x is even, thus it is impossible that there is an $x\in\mathbb{Z}$ so that $x^3+x=y$.

(b)

- The statement is true.
- **Proof** Suppose $x,y \in \mathbb{Z}$ such that $x^3+x=y^3+y$, we show that x=y.

Since

$$x^3 + x = y^3 + y$$
 $x^3 + x - y - y^3 = 0$
 $(x^3 - y^3) + (x - y) = 0$
 $(x - y)(x^2 + xy + y^2) + (x - y) = 0$
 $(x - y)(x^2 + xy + y^2 + 1) = 0$
 $(x - y)((x + \frac{y}{2})^2 + \frac{3}{4}y^2 + 1) = 0$

Since

$$(x+rac{y}{2})^2+rac{3}{4}y^2+1\geq 0+0+1=1$$

It must be the case that

$$x - y = 0$$

Thus

$$x = y$$

as required.