Bases e dimensão Álgebra Linear – Videoaula 6

Luiz Gustavo Cordeiro

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática

Bases e dimensão

Motivação

Qual o "tamanho" de um espaço vetorial?

Quantos vetores são necessários para formar cada um desses espaços?

Bases Motivação

Definição

Uma base de um espaço vetorial V é um conjunto $\mathfrak{B}\subseteq V$ que é gerador e linearmente independente.

Bases canônicas

- $\{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2
- $\{(1,0,0),(0,1,0),(0,0,1)\}$ é uma base para \mathbb{R}^3
- Fixado $n \in \mathbb{N}$ e dado $i \leq n$, denotamos

$$\begin{array}{rcl} e_1 & = & (1,0,0,\ldots,0) \\ e_2 & = & (0,1,0,\ldots,0) \\ & \vdots \\ e_i & = & (0,\ldots,0,1,0,\ldots,0) \\ & \vdots \\ e_n & = & (0,\ldots,0,0,1) \end{array}$$

Então $\mathcal{E}_n = \{e_1, \dots, e_n\}$ é a base canônica de \mathbb{R}^n .

• $\{1, x, x^2, x^3, \ldots\}$ é uma base para $\mathbb{R}[x]$.

Um espaço vetorial V é **finitamente gerado** se existe um conjunto finito $F \subseteq V$ tal que $V = \langle F \rangle$.

- $\mathbb{R}, \mathbb{R}^2, \dots, \mathbb{R}^n$ são finitamente gerados (têm dimensão finita)
- $M_{m \times n}(\mathbb{R})$ é finitamente gerado;
- $\mathbb{R}[x]$ não é finitamente gerado;
- \mathbb{R}^X é finitamente gerado se, e somente se, X é finito;
- $\mathbb{R}^{\mathbb{R}}$ não é finitamente gerado.

Propriedades básicas

Teorema

Se V é finitamente gerado e $S \subseteq V$ é tal que $\langle S \rangle = V$, então existe $S' \subseteq S$ finito tal que $\langle S' \rangle = V$.

Como V é finitamente, gerado, existe $F = \{f_1, \dots, f_n\}$ tal que $V = \langle F \rangle$.

Como $\langle S \rangle = V$, então cada f_i é combinaç<mark>ão linear de ele</mark>mentos de S:

$$f_i = \lambda_1 s_{i,1} + \cdots + \lambda_{n(i)} s_{i,n(i)}.$$

Tome $S_i = \{s_{i,1}, \ldots, s_{i,n(i)}\} \subseteq S$, que é finito tal que $f_i \in \langle S_i \rangle$.

Seja $S' = S_1 \cup \cdots \cup S_n$. Então S' é finito e

$$V = \langle F \rangle \subseteq \langle S_1 \cup \cdots \cup S_n \rangle = \langle S' \rangle.$$

Propriedades básicas

Teorema

Se V é um espaço vetorial, $F = \{f_1, \ldots, f_n\}$ é gerador (e finito) e $L \subseteq V$ é Ll, então L tem no máximo n elementos.

Suponha que L tivesse n+1 elementos $\ell_1, \ldots, \ell_{n+1}$.

Primeiro, escrevemos ℓ_1 como combinação linear dos f_i :

$$\ell_1 = \sum_{j=1}^n \lambda_{1,j} f_j.$$

Como $\ell_1 \neq 0_V$, algum $\lambda_{1,j}$ é $\neq 0$. Reordenando se necessário, digamos que $\lambda_{1,1} \neq 0$.

Propriedades básicas

Vamos "trocar" ℓ_1 com f_1 em F: Definimos

$$F_1 = \{\ell_1, f_2, \dots, f_n\}.$$

Como $\lambda_{1,1} \neq 0$, segue que F_1 é gerador de V, pois

$$\ell_1 = \sum_{j=1}^n \lambda_{1,j} f_j. \iff f_1 = \frac{1}{\lambda_{1,1}} \ell_1 - \sum_{j=2}^n \frac{\lambda_{1,j}}{\lambda_{1,1}} f_j.$$

Propriedades básicas

Agora repetimos o argumento com ℓ_2 : Escrevemos ℓ_2 como combinação linear dos elementos de F_1 :

$$\ell_2 = \mu_{2,1}\ell_1 + \sum_{j \neq 1} \lambda_{2,j} f_j.$$

Como L é linearmente independente, os $\lambda_{2,j}$ não podem ser todos nulos. A menos de reordenação, suponha $\lambda_{2,j} \neq 0$. Vamos "trocar" ℓ_2 com f_2 : Definimos

$$F_2 = \{\ell_1, \ell_2, f_3, \ldots, f_n\}.$$

Como $\lambda_{2,2} \neq 0$, segue que F_2 é gerador de V.

Propriedades básicas

Repetimos este processo: Dado $F_k = \{\ell_1, \dots, \ell_k, f_{k+1}, \dots, f_n\}$ gerador, escrevemos ℓ_{k+1} como combinação linear de seus elementos:

$$\ell_{k+1} = \sum_{i=1}^{k} \mu_{k+1,i} \ell_i + \sum_{j=k+1}^{n} \lambda_{k+1,j} f_j.$$

Como L é linearmente independente, os $\lambda_{k+1,j}$ não podem ser todos nulos. A menos de reordenação, suponha $\lambda_{k+1,k+1} \neq 0$. Vamos "trocar" ℓ_{k+1} com f_{k+1} : Definimos

$$F_{k+1} = \{\ell_1, \dots, \ell_{k+1}, f_{k+2}, \dots, f_n\}.$$

Como $\lambda_{k+1,k+1} \neq 0$, segue que F_{k+1} é gerador de V.

Propriedades básicas

No fim, temos que $F_n = \{\ell_1, \dots, \ell_n\}$ é gerador. Mas então ℓ_{n+1} é combinação linear de ℓ_1, \dots, ℓ_n , contradizendo que L é LI.

Portanto, L tem no máximo n elementos.

Teorema

Se V é um espaço vetorial e

- $L \subseteq V \notin LI$.
- $G \subseteq V$ é gerador.
- $L \subseteq G$.

então existe uma base \mathcal{B} de V com $L \subseteq \mathcal{B} \subseteq G$.

Caso finitamente gerado: SPG ("sem perda de generalidade") assumimos G e L finitos.

$$G = \left\{\underbrace{\ell_1, \ell_2, \ldots, \ell_n}_{L}, g_1, \ldots, g_m\right\}.$$

- $L_0 = L$:
- $L_1 = \begin{cases} L_0 \cup \{g_1\}, & \text{se for LI} \\ L_0, & \text{caso contrário} \end{cases}$
- $L_2 = \begin{cases} L_1 \cup \{g_2\}, & \text{se for LI} \\ L_1, & \text{caso contrário} \end{cases}$
- $L_{k+1} = \begin{cases} L_k \cup \{g_{k+1}\}, & \text{se for LI} \\ L_k, & \text{caso contrário} \end{cases}$

Então L_m tem as propriedades:

- $L \subset L_m \subset G$
- *L_m* é LI;
- Se $g \in G \setminus L_m$ então $L_m \cup \{g\}$ é LD.

Vamos mostrar que L_m é gerador (e portanto base).

Seja $g \in G$:

- Se $g \in L_m$, então $g \in \langle L_m \rangle$;
- Se $g \notin L_m$, então $L_m \cup \{g\}$ é LD:

$$\mu g + \sum_{b \in L_m} \lambda_b b = 0_V,$$

com coeficientes μ, λ_b não todos nulos.

Se $\mu = 0$, contradiríamos L_m ser LI. Logo $\mu \neq 0$ e

$$g = -\sum_{b \in L_m} \frac{\lambda_b}{\mu} b \in \langle L_m \rangle.$$

Portanto, $G \subseteq \langle L_m \rangle$, e assim $V = \langle G \rangle \subseteq \langle L_m \rangle$.

Corolário (Todo gerador contém uma base)

Se G é gerador de V, então existe uma base $\mathbb B$ de V com $\mathbb B\subseteq G$.

Como \emptyset é LI, existe base $\emptyset \subseteq \mathcal{B} \subseteq G$.

Corolário (Todo LI se estende para base)

Se $I \subseteq V$ é LI, então existe uma base \mathfrak{B} de V com $I \subseteq \mathfrak{B}$.

Como V é gerador, existe base $I \subseteq \mathcal{B} \subseteq V$.

Corolário (Todo espaço vetorial tem base)

Todo espaço vetorial admite base.

Como \emptyset é LI e V é gerador, existe base $\emptyset \subseteq \mathcal{B} \subseteq V$.

Teorema da invariância

Teorema (Teorema da invariância)

Quaisquer duas bases de um espaço vetorial têm o mesmo número de elementos.

Caso finitamente gerado: Se B e C são bases, então

ullet $\Begin{array}{ll} \Begin{array}{ll} \$

$$\xrightarrow{\text{Teorema anterior}} \#\mathcal{B} \leq \#\mathcal{C}.$$

€ é LI e B é gerador

$$\xrightarrow{\mathsf{Teorema\ anterior}} \# \mathfrak{C} \leq \# \mathfrak{B}.$$

Dimensão

Espaços euclidianos

Definição

A dimensão de um espaço vetorial V é o número de elementos de qualquer uma de suas bases. Denota-se a dimensão de V por dim(V)

- \bullet \mathbb{R} : $\{1\}$ é base, logo dim $(\mathbb{R})=1$
- \mathbb{R}^2 : $\{(1,0),(0,1)\}$ é base, logo $\dim(\mathbb{R}^2)=2$
- \mathbb{R}^n : $\mathcal{E}_n = \{e_1, \dots, e_n\}$ é base, $\log \operatorname{dim}(\mathbb{R}^n) = n$

Dimensão

Espaços de matrizes

Dados m, n, as matrizes

formam uma base de $M_{m \times n}(\mathbb{R})$ $(1 \le i \le m, 1 \le j \le n)$. Como temos $m \times n$ dessas matrizes, então

$$\dim(\mathsf{M}_{m\times n}(\mathbb{R}))=mn.$$

Dimensão infinita

Temos que

$$\dim(\mathbb{R}[x]) = \infty$$

e que

$$\dim(\mathbb{R}^X) = \infty$$
 quando X é infinito.

(Mas existem diferentes tipos de (infinito))

Espaços de função

Se
$$X = \{x_1, \dots, x_n\}$$
 é finito, sejam

$$\delta_i(x) = \begin{cases} 1, & \text{se } x = x_i \\ 0, & \text{c.c. (caso contrário)}. \end{cases}$$

(chamadas "funções delta de Kronecker").

$$f(x_1)$$

$$f(x_2) f(x_3)$$

$$x_1 \quad x_2 \quad x_3 \quad x_4$$

$$f = f(x_1)\delta_1 + f(x_2)\delta_2 + f(x_3)\delta_3 + \cdots$$

Espaços de função

Para $X = \{x_1, \dots, x_n\}$, temos que

- ullet $\{\delta_1,\ldots,\delta_n\}$ é base de \mathbb{R}^X
- $\dim(\mathbb{R}^X) = \#X$

Como achar bases

Em termos práticos

Como fazer para achar uma base de um espaço vetorial?

Primeiro encontre um conjunto gerador (finito)

$$\{\textit{v}_1,\textit{v}_2,\ldots\}$$

- Ignore todos os vetores nulos.
- **3** Tome $B_1 = \{v_1\}$
- Adicione v₂ se o conjunto continuar LI; caso contrário, não adicione nada

$$B_2 = \begin{cases} B_1 \cup \{v_2\} & \text{, se for LI} \\ B_1 & \text{, caso contrário} \end{cases}$$

Solution Repita o processo acima, adicionando cada v_i se o conjunto resultante for LI:

$$B_{i+1} = egin{cases} B_i \cup \{v_{i+1}\} & ext{, se for LI} \ B_i & ext{, caso contrário} \end{cases}$$

Encontre uma base e a dimensão para o subespaço vetorial U de \mathbb{R}^3 gerado pelos vetores

$$a = (3,4,4), b = (-2,0,-2), c = (22,16,26), d = (-9,-12,-12).$$

Primeiro passo: Adicionamos o primeiro vetor: $B_1 = \{a\}$ **Segundo passo**: Vamos ver se podemos adicionar o segundo vetor. Para verificar se a, b são Ll, podemos escalonar a matriz que tem esses vetores como colunas (teorema da aula passada):

$$\begin{bmatrix} 3 & -2 \\ 4 & 0 \\ 4 & -2 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -2 \\ 4 & 0 \\ 4 & -2 \end{bmatrix} \xrightarrow{\frac{1}{4}L_2 \to L_2} \begin{bmatrix} 3 & -2 \\ 1 & 0 \\ 4 & -2 \end{bmatrix} \xrightarrow{L_1 - 3L_2 \to L_1} \begin{bmatrix} 0 & -2 \\ 1 & 0 \\ 0 & -2 \end{bmatrix}$$

$$\xrightarrow{L_1 \leftrightarrow L_2} \begin{bmatrix} 1 & 0 \\ 0 & -2 \\ 0 & 1 \end{bmatrix} \xrightarrow{L_2 + 2L_3 \to L_2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{L_2 \leftrightarrow L_3} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Os vetores são LI: $B_2 = \{(3,4,4), (-2,0,-2)\}.$

DE SANTA CATARINA

Terceiro passo: Vamos ver se podemos adicionar o terceiro vetor. Para verificar se *a*, *b*, *c* são LI, podemos escalonar a matriz que tem esses vetores como colunas (teorema da aula passada):

$$\begin{bmatrix} 3 & -2 & 22 \\ 4 & 0 & 16 \\ 4 & -2 & 26 \end{bmatrix} \xrightarrow{\text{escalona}} \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -5 \\ 0 & 0 & 0 \end{bmatrix}.$$

Falta um pivô! Os vetores não são LI, não adiciona $c: B_3 = \{a, b\}$.

Quarto passo: Vamos ver se podemos adicionar o quarto vetor. Para verificar se a, b, d são LI, podemos escalonar a matriz que tem esses vetores como colunas (teorema da aula passada):

$$\begin{bmatrix} 3 & -2 & -9 \\ 4 & 0 & -12 \\ 4 & -2 & -12 \end{bmatrix} \xrightarrow{\text{escalona}} \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Falta um pivô! Os vetores não são LI, não adiciona d: $B_4 = \{a, b\}$.

Acabamos: $\{a,b\}$ é uma base para $U=\langle\{a,b,c,d\}\rangle$.

Dimensão, dependência linear e conjuntos geradores

Teorema

Se G é gerador de V é $L \subseteq V$ é LI, então

$$\#L \leq \dim(V) \leq \#G$$
.

Equivalentemente:

- Todo conjunto com mais de dim(V) elementos é LD;
- Nenhum conjunto com menos de dim(V) elementos é gerador.

Se ${\mathfrak B}$ é base, então $\#{\mathfrak B}=\dim(V)$ e

$$\#L \le \#\mathcal{B}$$
 (pois \mathcal{B} é gerador)
 $\le \#G$ (pois \mathcal{B} é LI)

Como encontrar bases de \mathbb{R}^n ?

Teorema

Se $\dim(V) = n < \infty$, então

- Todo subconjunto LI de V com n elementos é base;
- Todo subconjunto gerador de V com n elementos é base

Se $G \subseteq V$ é gerador, então existe base $\mathcal{B} \subseteq G$. Então

$$\#G = n = \dim(V) = \#\mathcal{B},$$

logo $G = \mathcal{B}$, que é base.

Como encontrar bases de \mathbb{R}^n ?

Considere os vetores $\{(1,3,2),(-2,3,1),(1,1,1)\}$ de $\mathbb{R}^3.$ Como

$$\det\begin{bmatrix} 1 & -2 & 1 \\ 3 & 3 & 1 \\ 2 & 1 & 1 \end{bmatrix} = 3 - 4 + 3 - 6 + 6 - 1 = 1,$$

eles são LI, e portanto uma base.