

4

Statistical Inference

If we want to know something about a population, why can't we just ask everyone?

- ▶ We can:
 - ▶ With A Census
 - collects data from every element in the population of interest
- ▶ We can't always ask everyone though:
 - ► Expensive.
 - ► Time consuming.
 - Misleading.
 - Unnecessary.
 - Impractical.

Statistical Inference

- Statistical inference
 - ▶ Uses sample data to make estimates of or draw conclusions about one or more characteristics of a population.
- ► The sampled population
 - ▶ is the population from which the sample is drawn.
- A frame
 - ▶ is a list of elements from which the sample will be selected.

6

Sampling Examples

- ► Election Year!
 - ► Texas members of a political party are considering supporting a
 - Need to estimate the proportion of voters that favor the candidate in Texas
 - ► Of 400 voters, 160 prefer the candidate = 40%

- New Tires
 - Tire company makes a new tire that is supposed to have increased life on the roads
 - ► Makes 120 tires for testing
 - ► Mean of 36,500 miles

Selecting a Sample

Sampling from a Finite Population
Sampling from an Infinite Population

Q

Selecting a Sample

- ▶ Parameter:
 - A measurable factor that defines a characteristic of a population, process, or system.
 - ▶ Examples: Population: Mean, Standard Deviation, Correlation, Variance
- ► Sampling from a Finite Population:
 - ▶ make valid statistical inferences about the population.
- ► Simple Random Sample (Finite Population):
 - ightharpoonup A simple random sample of size n from a finite population of size N
 - is a sample selected such that each possible sample of size *n* has the same probability of being selected.

a

Selecting a Sample

Figure 6.1: Using Excel to Select a Simple Random Sample

10

Selecting a Sample

- ► Sampling from an Infinite Population:
 - ▶ With an infinite population, you cannot select a simple random sample because you cannot construct a frame consisting of all the elements.
 - ▶ Statisticians recommend selecting what is called a random sample.
 - Usually associated with a process that operates over time.
 - An ongoing process
- ► Random Sample (Infinite Population):
 - ▶ A **random sample** of size *n* from an infinite population is a sample selected such that the following conditions are satisfied:
 - 1. Each element selected comes from the same population.
 - 2. Each element is selected independently.

Point Estimation

12

Point Estimation

- ► Sample statistic
 - ▶ An estimate for a population parameter

	Population	Sample
Mean	μ	x
Standard Deviation	σ	S
Proportion	p	p

The sample mean x is the **point estimator** of the population mean μ

The sample standard deviation s is **the point estimator** of the population standard deviation σ .

The sample proportion p is the **point estimator** of the population proportion p.

The numerical value obtained for x, s, or p is called the **point estimate.**

Point Estimation

Annual Salary and Training Program Status for a Simple Random Sample of 30 EAI Employees (Excel)

Annual Salary (\$)	Management Training Program	Annual Salary (\$)	Management Training Program
$x_1 = 69,094.30$	Yes	$x_{16} = 71,766.00$	Yes
$x_2 = 73,263.90$	Yes	$x_{17} = 72,541.30$	No
$x_3 = 69,343.50$	Yes	$x_{18} = 64,980.00$	Yes
$x_4 = 69,894.90$	Yes	$x_{19} = 71,932.60$	Yes
$x_5 = 67,621.60$	No	$x_{20} = 72,973.00$	Yes
$x_6 = 75,924.00$	Yes	$x_{21} = 65,120.90$	Yes
$x_7 = 69,092.30$	Yes	$x_{22} = 71,753.00$	Yes
$x_8 = 71,404.40$	Yes	$x_{23} = 74,391.80$	No
$x_9 = 70,957.70$	Yes	$x_{24} = 70,164.20$	No
$x_{10} = 75,109,70$	Yes	$x_{25} = 72,973.60$	No
$x_{11} = 65,922.60$	Yes	$x_{26} = 70,241.30$	No
$x_{12} = 77,268.40$	No	$x_{27} = 72,793.90$	No
$x_{13} = 75,688.80$	Yes	$x_{28} = 70,979.40$	Yes
$x_{14} = 71,564.70$	No	$x_{29} = 75,860.90$	Yes
$x_{15} = 76,188.20$	No	$x_{30} = 77,309.10$	No