### (19) 世界知的所有権機関 国際事務局



# 

### (43) 国際公開日 2004年6月17日(17.06.2004)

### PCT

## (10) 国際公開番号 WO 2004/050220 A1

B01D 57/00, 57/02, B03C 5/00, (51) 国際特許分類7: B01D 69/00, G01N 27/26, 37/00, 1/40

(21) 国際出願番号:

PCT/JP2003/015256

(22) 国際出願日:

2003年11月28日(28.11.2003)

(25) 国際出願の言語:

日本語

(26) 国際公開の曾語:

日本語

(30) 優先権データ: 特願 2002-349256

2002年11月29日(29.11.2002)

(71) 出願人(米国を除く全ての指定国について): 日本電気 株式会社 (NEC CORPORATION) [JP/JP]; 〒108-8001 東京都港区芝五丁目7番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 馬場 雅和 (BABA,Masakazu) [JP/JP]; 〒108-8001 東京都 港区芝 五丁目7番1号 日本電気株式会社内 Tokyo (JP). 佐野 亨 (SANO,Toru) [JP/JP]; 〒108-8001 東京都 港区芝 五 丁目7番1号 日本電気株式会社内 Tokyo (JP). 飯田 -浩 (HDA,Kazuhiro) [JP/JP]; 〒108-8001 東京都 港区芝 五丁目7番1号 日本電気株式会社内 Tokyo (JP). 川浦 久雄 (KAWAURA, Hisao) [JP/JP]; 〒108-8001 東京都 港区芝 五丁目7番1号 日本電気株式会社内 Tokyo (JP). 井口 憲幸 (IGUCHI, Noriyuki) [JP/JP]; 〒108-8001 東 京都港区芝五丁目7番1号日本電気株式会社内 Tokyo (JP). 服部 涉 (HATTORI, Wataru) [JP/JP]; 〒108-8001 東京都 港区芝 五丁目7番1号 日本電気株式会社内 Tokyo (JP). 染谷 浩子 (SOMEYA, Hiroko) [JP/JP]; 〒 108-8001 東京都港区芝五丁目7番1号 日本電気株 式会社内 Tokyo (JP). 麻生川 稔 (ASOGAWA, Minoru)

(54) Title: MICROCHIP, SOLVENT DISPLACEMENT METHOD USING THE MICROCHIP, CONCENTRATING METHOD, AND MASS SPECTROMETRY SYSTEM

(54) 発明の名称: マイクロチップ、ならびにこれを用いた溶媒置換方法、濃縮方法、および質量分析システム



- A...INTRODUCTION OF SPECIMEN
- B...RECOVERY
- ..SPECIMEN
- E. SOLVENT B F...STOP BY VALVE

- (57) Abstract: A mass spectrometry system capable of recovering specific components from a specimen in high densities and performing a solvent displacement. A separation device (100) is installed on a microchip and incorporates a flow passage (112) for flowing the specific components therein. The flow passage (112) is formed of a specimen inlet flow passage (300), a filtrate discharge flow passage (302) branched from the specimen inlet flow passage (300), and a specimen recovering part (308) branched from the specimen inlet flow passage. A filter (304) stopping the passage of the specific components is installed at the inlet of the filtrate discharge flow passage (302) from the specimen inlet flow passage (300). A damming area (hydrophobic area) (306) stopping the entry of liquid specimen and allowing the liquid specimen to be passed by an external force of a specified value or more provided thereto is installed at the inlet of the specimen recovering part (308) from the specimen inlet flow passage (300).
- (57) 要約: 試料中の特定成分を高濃度で回収するとともに溶媒置 換も行う。分離装置100は、マイクロチップ上に設けられ、特 定成分が流れる流路112を含む。流路112は、試料導入流路 300と、試料導入流路300から分岐して形成された廬液排出 流路302と試料回収部308とに分岐して形成され、直液排出 流路302の試料導入流路300からの入り口に特定成分の通過 を阻止するフィルター304が設けられ、試料回収部308の試 料導入流路300からの入り口に液体試料の進入を阻止するとと もに一定以上の外力の付与により液体試料を通過させる堰き止め 領域(疎水領域)306が設けられる。

### (19) 日本国特許庁(JP)

# 再 公 表 特 許(A1)

(11) 国際公開番号

W02004/050220

発行日 平成18年3月30日 (2006.3.30)

(43) 国際公開日 平成16年6月17日 (2004.6.17)

| (51) Int.C1. | F 1                    |        |                        |            | テーマコード          | (参考)          |
|--------------|------------------------|--------|------------------------|------------|-----------------|---------------|
| GO1N 35/08   | •                      | GO 1 N | 35/08                  | Α          | 2G058           |               |
| GO1N 27/62   | <b>(2006.01)</b>       | GO 1 N | 27/62                  | V          |                 |               |
| GO1N 37/00   | •                      | GO 1 N | 37/00                  | 101        |                 |               |
| GO1N 27/64   | (2006.01)              | GO 1 N | 27/64                  | В          |                 |               |
|              |                        |        | 審査請求                   | 未請求        | 予備審査請求 未請求      | (全 34 頁)      |
| 出願番号         | 特願2004-556858 (P2004-5 | 56858) | (71) 出願人               | 000004     | 237             |               |
| (21) 国際出願番号  | PCT/JP2003/015256      |        |                        | 日本電        | 気株式会社           |               |
| (22) 国際出願日   | 平成15年11月28日 (2003.1    | 1.28)  |                        | 東京都        | 港区芝五丁目7番1号      |               |
| (31) 優先権主張番号 | ·                      | ,      | (74) 代理人               | . 100110   | 928             |               |
| (32) 優先日     | 平成14年11月29日 (2002.1    | 1.29)  |                        | 弁理士        | 速水 進治           |               |
| (33) 優先權主張国  | 日本国 (JP)               |        | (72) 発明者               | 馬場         | 雅和              |               |
| (81) 指定国     | CA, CN, JP, US         |        |                        |            | 港区芝五丁目7番1号      | 日本電気株         |
|              |                        |        | (50) PO 50 +           | 式会社        | • •             |               |
|              |                        |        | (72) 発明者               |            |                 |               |
|              |                        |        |                        |            | 港区芝五丁目7番1号      | 日本電気株         |
|              |                        |        | (70) <b>73 II</b> I 44 | 式会社        | • •             |               |
|              |                        |        | (72) 発明者               |            |                 | O + 65 65 +++ |
|              |                        |        |                        | 来京都<br>式会社 | 港区芝五丁目7番1号<br>内 | 口平电式体         |
|              |                        |        |                        |            | 最終              | 冬頁に続く         |

(54) 【発明の名称】マイクロチップ、ならびにこれを用いた溶媒置換方法、濃縮方法、および質量分析システム

### (57)【要約】

試料中の特定成分を高濃度で回収するとともに溶媒置換 も行う。分離装置100は、マイクロチップ上に設けら れ、特定成分が流れる流路112を含む。流路112は 、試料導入流路300と、試料導入流路300から分岐 して形成された廬液排出流路302と試料回収部308 とに分岐して形成され、廬液排出流路302の試料導入 流路300からの入り口に特定成分の通過を阻止するフ イルター304が設けられ、試料回収部308の試料導 入流路300からの入り口に液体試料の進入を阻止する とともに一定以上の外力の付与により液体試料を通過さ せる堰き止め領域(疎水領域)306が設けられる。



- B...RECOVERY
  C...SPECIMEN
  D...SOLVENT A
  E...SOLVENT B
  F.,,STOP BY VALVE

### 【特許請求の範囲】

### 【請求項1】

基板上に設けられ、特定成分を含む液体試料が流れる流路と、

前記流路に設けられた試料導入部と、を含み、

前記流路は、第一の流路と第二の流路とに分岐して形成され、前記第一の流路の前記試料導入部からの入り口に前記特定成分の通過を阻止するフィルターが設けられ、前記第二の流路の前記試料導入部からの入り口に前記液体試料の進入を阻止するとともに一定以上の外力の付与により前記液体試料を通過させる堰き止め領域が設けられたことを特徴とするマイクロチップ。

#### 【請求項2】

請求の範囲第1項に記載のマイクロチップにおいて、

前記堰き止め領域は、疎液領域であることを特徴とするマイクロチップ。

#### 【請求項3】

請求の範囲第1項または第2項に記載のマイクロチップにおいて、

前記第一の流路において、前記フィルターを通過した前記液体試料は毛細管現象により 移動することを特徴とするマイクロチップ。

#### 【請求項4】

請求の範囲第1項乃至第3項いずれかに記載のマイクロチップにおいて、

前記第一の流路において、前記フィルターの下流に設けられ、当該第一の流路への液体の流入を停止する流入停止部をさらに含むことを特徴とするマイクロチップ。

### 【請求項5】

請求の範囲第4項に記載のマイクロチップにおいて、

前記流入停止部は、前記第一の流路に所定量の液体が流入したときに当該第一の流路への液体の流入を停止することを特徴とするマイクロチップ。

#### 【請求項6】

請求の範囲第4項または第5項に記載のマイクロチップにおいて、

前記流路を流れる前記液体試料に外力を付与する外力付与手段をさらに含み、

前記外力付与手段は、前記第一の流路への液体の流入が前記流入停止部により停止されたときに、前記液体試料が前記疎水領域を越えて前記第二の流路に流れ込むように前記液体試料に外力を付与することを特徴とするマイクロチップ。

#### 【請求項7】

請求の範囲第1項乃至第6項いずれかに記載のマイクロチップにおいて、

前記フィルターは、複数の柱状体により構成されたことを特徴とするマイクロチップ。

### 【請求項8】

請求の範囲第1項乃至第6項いずれかに記載のマイクロチップにおいて、

前記フィルターは、アルミニウム酸化物、多孔質膜、または高分子ゲル膜により構成されたことを特徴とするマイクロチップ。

### 【請求項9】

基板上に設けられ、特定成分を含む液体試料が流れる流路と、

前記流路の側壁に沿って設けられた複数の排流路と、

を含み、前記排流路は、前記特定成分の通過を阻止するように構成されたことを特徴とするマイクロチップ。

### 【請求項10】

基板上に設けられ、特定成分を含む液体試料が流れる流路と、

前記流路の流れを遮るように設けられ、前記特定成分の通過を阻止するフィルターと、を含み、

前記流路において、前記フィルターの一方側に分岐して設けられた試料導入部および試料回収部と、他方側に設けられた溶媒導入部とを含むことを特徴とするマイクロチップ。

### 【請求項11】

請求の範囲第10項に記載のマイクロチップにおいて、

10

20

30

50

前記フィルターの他方側において、前記溶媒導入部とは異なる位置に設けられ、前記フィルターを通過した前記液体試料が排出される排出部をさらに含むことを特徴とするマイクロチップ。

### 【請求項12】

請求の範囲第11項に記載のマイクロチップにおいて、

前記排出部において、前記フィルターを通過した前記液体試料は毛細管現象により移動することを特徴とするマイクロチップ。

### 【請求項13】

請求の範囲第10項乃至第12項いずれかに記載のマイクロチップにおいて、

前記溶媒導入部には、前記フィルターの方向からの液体の進入を阻止するとともに、前記フィルターの方向への液体の排出が容易となるように形成された堰き止め領域が設けられたことを特徴とするマイクロチップ。

#### 【請求項14】

請求の範囲第10項乃至第13項いずれかに記載のマイクロチップにおいて、

前記試料導入部には、前記フィルターの方向からの液体の進入を阻止するとともに、前記フィルターの方向への液体の排出が容易となるように形成された堰き止め領域が設けられたことを特徴とするマイクロチップ。

### 【請求項15】

請求の範囲第13項または第14項に記載のマイクロチップにおいて、

前記堰き止め領域は、疎液領域であることを特徴とするマイクロチップ。

### 【請求項16】

基板上に設けられ、特定成分を含む液体試料が流れる第一の流路と、前記第一の流路に並行して形成された第二の流路と、を含む流路と、

前記第一の流路と第二の流路の間に介在し、前記特定成分の通過を阻止するフィルターと、を含み、

前記第一の流路には、流れ方向の上方に、前記液体試料を導入する試料導入部が設けられ、前記第二の流路には、前記第一の流路の流れ方向の下方に対応する位置に置換溶媒導入部が設けられたことを特徴とするマイクロチップ。

#### 【請求項17】

請求の範囲第16項に記載のマイクロチップにおいて、

前記第一の流路および前記第二の流路に異なる方向に外力を付与する外力付与手段をさらに含むことを特徴とするマイクロチップ。

#### 【請求項18】

請求の範囲第17項に記載のマイクロチップにおいて、

前記外力付与手段は、前記第一の流路には、前記第二の流路よりも大きい外力を付与することを特徴とするマイクロチップ。

### 【請求項19】

基板上に設けられ、特定成分を含む液体試料が流れる流路と、

前記流路中に設けられた電極と、を含み、

前記電極は、前記特定成分とは異なる極性に帯電されることを特徴とするマイクロチッ 40 プ。

### 【請求項20】

請求の範囲第1項乃至第8項いずれかに記載のマイクロチップを用いて液体試料中に含まれる特定成分を濃縮する方法であって、

前記液体試料が前記堰き止め領域を通過しない程度の外力を付与して前記特定成分および溶媒を含む前記液体試料を前記試料導入部に導入する工程と、

前記液体試料を前記試料導入部に導入する工程と同程度の外力を付与して前記溶媒または当該溶媒と異なる他の溶媒を前記試料導入部に一定時間導入する工程と、

前記第一の流路への液体の流入を停止させる工程と、

を含むことを特徴とする濃縮方法。

30

10

20

### 【請求項21】

請求の範囲第20項に記載の濃縮方法において、

前記第一の流路への液体の流入を停止させる工程において、他の工程における外力よりも高い外力を付与することを特徴とする濃縮方法。

#### 【請求項22】

請求の範囲第1項乃至第8項いずれかに記載のマイクロチップを用いて特定成分を含む液体試料の溶媒を置換する方法であって、

前記液体試料が前記堰き止め領域を通過しない程度の外力を付与して前記特定成分および第一の溶媒を含む前記液体試料を前記試料導入部に導入する工程と、

前記液体試料を前記試料導入部に導入する工程と同程度の外力を付与して前記第一の溶媒とは異なる第二の溶媒を前記試料導入部に一定時間導入する工程と、

前記第一の流路への液体の流入を停止させる工程と、

を含むことを特徴とする溶媒置換方法。

### 【請求項23】

請求の範囲第22項に記載の溶媒置換方法において、

前記第一の流路への液体の流入を停止させる工程において、他の工程における外力よりも高い外力を付与することを特徴とする溶媒置換方法。

#### 【請求項24】

請求の範囲第10項乃至第15項いずれかに記載のマイクロチップを用いて液体試料中に含まれる特定成分を濃縮する方法であって、

前記特定成分および溶媒を含む前記液体試料を前記試料導入部に導入する工程と、

前記溶媒または当該溶媒と異なる溶媒を前記溶媒導入部から導入して前記特定成分を前記料回収部から回収する工程と、

を含むことを特徴とする濃縮方法。

#### 【請求項25】

請求の範囲第24項に記載の濃縮方法において、

前記液体試料を導入する工程と、前記回収する工程との間に、

前記試料導入部からいずれかの前記溶媒を導入する工程をごさらに含むことを特徴とする濃縮方法。

### 【請求項26】

請求の範囲第10項乃至第15項いずれかに記載のマイクロチップを用いて特定成分を含む液体試料の溶媒を置換する方法であって、

前記特定成分および第一の溶媒を含む前記液体試料を前記試料導入部に導入する工程と

前記第一の溶媒とは異なる第二の溶媒を前記溶媒導入部から導入して前記特定成分を前記試料回収部から回収する工程と、

を含むことを特徴とする溶媒置換方法。

### 【請求項27】

請求の範囲第26項に記載の溶媒置換方法において、

前記液体試料を導入する工程と、前記回収する工程との間に、

前記試料導入部から前記第二の溶媒を導入する工程をさらに含むことを特徴とする溶媒 置換方法。

### 【請求項28】

特定成分を含む液体試料が流れる第一の流路、第二の流路、およびこれらの流路の間に介在するフィルターを含む分離装置を用い、前記液体試料の溶媒を置換する方法であって、

前記特定成分および第一の溶媒を含む液体試料を前記第一の流路中で第一の方向に移動させる工程と、

第二の溶媒を前記第二の流路中で前記第一の方向とは異なる方向に移動させる工程と、 を同時に行い、

前記第一の流路において、前記液体試料が移動するにつれて、前記第一の溶媒に対する

20

30

40

前記第二の溶媒の割合が高くなるようにすることを特徴とする溶媒置換方法。

### 【請求項29】

請求の範囲第28項に記載の溶媒置換方法において、

前記特定成分および第一の溶媒を含む液体試料を前記第一の流路中で第一の方向に移動させる外力を前記第二の溶媒を前記第二の流路中で前記第一の方向とは異なる方向に移動させる外力よりも大きくすることにより、前記第一の流路の下流において、前記特定成分を濃縮させることを特徴とする溶媒置換方法。

### 【請求項30】

電極が設けられた流路を用いて特定成分を含む液体試料の溶媒を置換する方法であって、 前記電極を、前記特定成分と逆の極性に帯電させて前記特定成分と第一の溶媒を含む液 体試料を前記流路に流す工程と、

前記電極の帯電状態を保ったまま、第二の溶媒を前記流路に流す工程と、

前記電極の帯電を解除し、前記第二の溶媒とともに前記特定成分を回収する工程と、を含むことを特徴とする溶媒置換方法。

#### 【請求項31】

請求の範囲第30項に記載の溶媒置換方法において、

前記回収する工程において、前記電極を前記特定成分と同じ極性に帯電させることを特徴とする溶媒置換方法。

#### 【請求項32】

生体試料を分子サイズまたは性状に応じて分離するとともに、当該試料に対し、酵素消化 処理を行うための前処理を行う前処理手段と、

前記前処理手段に前処理された試料に対し、酵素消化処理を行う手段と、

酵素消化処理された試料を乾燥させる乾燥手段と、

乾燥後の試料を質量分析する質量分析手段と、

#### を備え、

前記前処理手段は、請求の範囲第1項乃至第19項いずれかに記載のマイクロチップを含むことを特徴とする質量分析システム。

### 【発明の詳細な説明】

### 【技術分野】

本発明は、マイクロチップに関し、さらにそのようなマイクロチップを用いて試料中の特定成分の濃縮および溶媒置換を行う方法、ならびに質量分析システムに関するものである。

### 【背景技術】

ポストゲノム時代の一翼を担う研究手法としてプロテオミクスが注目を集めている。プロテオミクス研究では最終的に質量分析法等によりタンパク質等の同定を行うが、その前段階において、質量分析等を可能にするための試料分離および前処理が行われる。こうした試料分離の手法として、従来、2次元電気泳動が広く利用されてきた。2次元電気泳動は、ペプチド、タンパク質等の両性電解質をその等電点で分離した後、さらに分子量により分離するものである。

しかしながら、この分離方法は、通常、一昼夜を要するほど時間がかかる上、試料の回収率が低く、質量分析等に供する試料が比較的少量しか得られず、この点について改良が望まれていた。

一方、近年では、試料の前処理・反応・分離・検出などの化学操作をマイクロチップ上で行うマイクロ化学分析(μーTAS)が急速に発展しつつある。マイクロチップを利用する分離・分析手法によれば、使用する試料が微量で済み、環境負荷も小さく高感度な分析が可能となる。分離に要する時間を大幅に短縮することも可能となる。

特許文献1には、基板上に溝やリザーバを設けた構成のマイクロチップによりキャピラリ電気泳動を実現する装置が記載されている。

特許文献 1 特開 2 0 0 2 - 2 0 7 0 3 1 号公報

### 【発明の開示】

10

20

ところが、マイクロチップにより分離した成分を、その後の質量分析等に供する試料と して調製するためには、さらに、種々の化学処理、溶媒置換、脱塩等を行うことが必要と こうした操作をマイクロチップ上で行う技術は、現在、見いだされていない。

データを得ることができないという問題がある。また、質量分析時には、試料を質量分析 用の基質と混合して測定を行うが、試料の基質との混合割合が低いと、出力値が小さくな り、満足な検出結果を行うのが困難であった。

こうした事情に鑑み、本発明は、試料中の特定成分を濃縮して高濃度で回収する技術を 提供することを目的とする。本発明の目的は、試料中の特定成分を濃縮した状態で溶媒を 置換する技術を提供することにある。本発明のまた別の目的は、試料中の特定成分を濃縮 した状態で試料に含まれる塩類等の不要成分を除去する技術を提供することにある。本発 明の目的は、これらの処理をマイクロチップ上で行う技術を提供することにある。

本発明によれば、基板上に設けられ、特定成分を含む液体試料が流れる流路と、流路に 設けられた試料導入部と、を含み、流路は、第一の流路と第二の流路とに分岐して形成さ れ、第一の流路の試料導入部からの入り口に特定成分の通過を阻止するフィルターが設け られ、第二の流路の試料導入部からの入り口に液体試料の進入を阻止するとともに一定以 上の外力の付与により液体試料を通過させる堰き止め領域が設けられたことを特徴とする マイクロチップが提供される。

ここで、フィルターは、特定成分が通過できない程度の大きさの複数の細孔を有する。 フィルターはたとえば数十nm~数百nm程度の間隔で配置された複数の柱状体とするこ とができる。また、フィルターは、細孔の大きさが数nm程度のアルミニウム酸化物、ケ イ酸ナトリウム水溶液(水ガラス)やコロイド粒子を焼結して得られる多孔質膜、高分子 ゾルをゲル化して得られる高分子ゲル膜により構成することもできる。また、フィルター は、成分の大きさだけでなく、成分の電荷によって通過を阻止するように構成することも できる。

このような構成により、フィルター表面で特定成分を濃縮し、第二の流路から取り出す ことができる。また、第二の流路から特定成分を取り出す際に、最初の試料中に含まれて いた溶媒とは異なる溶媒を用いることにより、溶媒の置換を行うこともできる。

本発明のマイクロチップにおいて、堰き止め領域は、疎液領域とすることができる。 こで、疎液領域とは、試料中に含まれる液体との親和性の低い領域のことをいう。試料中 に含まれる液体が親水性の溶媒の場合、堰き止め領域を疎水性領域とすることができる。 また、マイクロチップ上に被覆部を設けた場合、被覆部の該当する位置を疎液領域とする ことによっても同様の効果が得られる。なお、疎液領域の溶液に対する疎液の度合いは、 疎液領域を構成する材料の種類や、疎液領域における疎液部分の形状等によって制御する ことができる。

本発明のマイクロチップにおいて、第一の流路において、フィルターを通過した液体試 料は毛細管現象により移動することができる。これにより、流路に導入された液体を第一 の流路に自動的に流すことができる。

本発明のマイクロチップにおいて、第一の流路において、フィルターの下流に設けられ 当該第一の流路への液体の流入を停止する流入停止部をさらに含むことができる。ここ で、流入停止部は、第一の流路の端部に接続されたシリコーンチューブを閉塞する弁によ り 実 現 す る こ と も で き 、 ま た 第 一 の 流 路 の 端 部 に 所 定 容 量 の 液 体 を 収 容 可 能 な リ ザ ー バ を 形成することによっても実現できる。

本発明のマイクロチップにおいて、流入停止部は、第一の流路に所定量の液体が流入し たときに当該第一の流路への液体の流入を停止することができる。

本発明のマイクロチップにおいて、流路を流れる液体試料に外力を付与する外力付与手 段をさらに含むことができ、外力付与手段は、第一の流路への液体の流入が流入停止部に より停止されたときに、液体試料が疎水領域を越えて第二の流路に流れ込むように試料に 外力を付与することができる。ここで、外力付与手段は圧力印加手段とすることができる 。第二の流路の端部には目的成分回収部を設けておくことができる。

10

20

30

50

上述したいずれかのマイクロチップを用いて液体試料中に含まれる特定成分を濃縮する方法であって、液体試料が堰き止め領域を通過しない程度の外力を付与して特定成分および溶媒を含む液体試料を試料導入部に導入する工程と、液体試料を試料導入部に導入する工程と同程度の外力を付与して溶媒または当該溶媒と異なる他の溶媒を試料導入部に一定時間導入する工程と、第一の流路への液体の流れを停止させる工程と、を含むことを特徴とする濃縮方法が提供される。

本発明の濃縮方法において、第一の流路への液体の流れを停止させる工程において、他の工程における外力よりも高い外力を付与することができる。

上述したいずれかのマイクロチップを用いて特定成分を含む液体試料の溶媒を置換する方法であって、液体試料が堰き止め領域を通過しない程度の外力を付与して特定成分および第一の溶媒を含む液体試料を試料導入部に導入する工程と、液体試料を試料導入部に導入する工程と同程度の外力を付与して第一の溶媒とは異なる第二の溶媒を試料導入部に一定時間導入する工程と、第一の流路への液体の流入を停止させる工程と、を含むことを特徴とする溶媒置換方法が提供される。

このように、第一の溶媒に含まれた特定成分をフィルターにより濾過した後、第二の溶媒で特定成分を洗浄することができるので、第一の溶媒や塩類等のサイズの小さい分子を除去することができる。また、フィルター上で特定成分が濃縮されるので、高濃度の試料を回収することができる。

本発明の濃縮方法において、第一の流路への液体の流入を停止させる工程において、他の工程における外力よりも高い外力を付与することができる。

本発明によれば、基板上に設けられ、特定成分を含む液体試料が流れる流路と、流路の側壁に沿って設けられた複数の排流路と、を含み、排流路は、特定成分の通過を阻止するように構成されたことを特徴とするマイクロチップが提供される。排流路は、溶媒や塩類などの低分子のみが通過可能に構成されたキャピラリとすることができる。また、流路との接続部分にフィルターが設けられた流路とすることもできる。このような構成により、試料が流路を進行するに従って、試料中の特定成分を濃縮していくことができる。また、このようなマイクロチップを用いて液体試料中に含まれる特定成分を濃縮する方法が提供される。

本発明によれば、板上に設けられ、特定成分を含む液体試料が流れる流路と、流路の流れを遮るように設けられ、特定成分の通過を阻止するフィルターと、を含み、流路において、フィルターの一方側に設けられた試料導入部および試料回収部と、他方側に設けられた溶媒導入部とを含むことを特徴とするマイクロチップが提供される。

ここで、フィルターは、特定成分が通過できない程度の大きさの複数の細孔を有する。フィルターはたとえば数十 n m ~ 数百 n m程度の間隔で配置された複数の柱状体とすることができる。また、フィルターは、細孔の大きさが数 n m程度のアルミニウム酸化物、ケイ酸ナトリウム水溶液(水ガラス)やコロイド粒子を焼結して得られる多孔質膜、高分子ゾルをゲル化して得られる高分子ゲル膜により構成することもできる。また、フィルターは、成分の大きさだけでなく、成分の電荷によって通過を阻止するように構成することもできる。

このような構成により、フィルター表面で特定成分を濃縮し、流路の他方側から溶媒を導入することにより、高濃度の試料を取り出すことができる。また、流路の他方側からから溶媒を導入する際に、最初の試料中に含まれていた溶媒とは異なる溶媒を用いることにより、溶媒の置換を行うこともできる。

本発明のマイクロチップにおいて、フィルターの他方側において、溶媒導入部とは異なる位置に設けられ、フィルターを通過した液体試料が排出される排出部をさらに含むことができる。

本発明のマイクロチップにおいて、排出部において、フィルターを通過した液体試料は 毛細管現象により移動することができる。

本発明のマイクロチップにおいて、溶媒導入部には、フィルターの方向からの液体の進入を阻止するとともに、フィルターの方向への液体の排出が容易となるように形成された

堰き止め領域を設けることができる。

本発明のマイクロチップにおいて、試料導入部には、フィルターの方向からの液体の進入を阻止するとともに、フィルターの方向への液体の排出が容易となるように形成された堰き止め領域を設けることができる。

本発明のマイクロチップにおいて、堰き止め領域は、疎液領域とすることができる。ここで、疎液領域とは、試料中に含まれる液体との親和性の低い領域のことをいう。試料中に含まれる液体が親水性の溶媒の場合、堰き止め領域を疎水性領域とすることができる。また、マイクロチップ上に被覆部を設けた場合、被覆部の該当する位置を疎液領域とすることによっても同様の効果が得られる。

本発明によれば、以上のいずれかのマイクロチップを用いて液体試料中に含まれる特定成分を濃縮する方法であって、特定成分および溶媒を含む液体試料を試料導入部に導入する工程と、溶媒または当該溶媒と異なる溶媒を溶媒導入部から導入して特定成分を試料回収部から回収する工程と、を含むことを特徴とする濃縮方法が提供される。

本発明の溶媒置換方法において、液体試料を導入する工程と、回収する工程との間に、試料導入部からいずれかの溶媒を導入する工程をさらに含むことができる。これにより、フィルター上で濃縮された特定成分を溶媒で洗浄することができる。

本発明のマイクロチップを用いて特定成分を含む液体試料の溶媒を置換する方法であって、特定成分および第一の溶媒を含む液体試料を試料導入部に導入する工程と、第一の溶媒とは異なる第二の溶媒を溶媒導入部から導入して特定成分を試料回収部から回収する工程と、を含むことを特徴とする溶媒置換方法が提供される。

本発明の溶媒置換方法において、液体試料を導入する工程と、回収する工程との間に、試料導入部から第二の溶媒を導入する工程をさらに含むことができる。これにより、フィルター上で濃縮された特定成分を溶媒で洗浄することができる。

本発明によれば、基板上に設けられ、特定成分を含む液体試料が流れる第一の流路と、第一の流路に並行して形成された第二の流路と、を含む流路と、第一の流路と第二の流路の間に介在し、特定成分の通過を阻止するフィルターと、を含み、第一の流路には、流れ方向の上方に、液体試料を導入する試料導入部が設けられ、第二の流路には、第一の流路の流れ方向の下方に対応する位置に置換溶媒導入部が設けられたことを特徴とするマイクロチップが提供される。

ここで、フィルターは、特定成分が通過できない程度の大きさの複数の細孔を有する。フィルターはたとえば数十nm~数百nm程度の間隔で配置された複数の柱状体とすることができる。また、フィルターは、細孔の大きさが数nm程度のアルミニウム酸化物、ケイ酸ナトリウム水溶液(水ガラス)やコロイド粒子を焼結して得られる多孔質膜、高分子ゾルをゲル化して得られる高分子ゲル膜により構成することもできる。

このように、フィルターを並行して設けられた流路の間に介在するように設けることにより、フィルターの面積を広くとることができ、フィルターの目詰まりを防止することができる。さらに、分離流量を多くすることもできる。また、試料中の特定成分が第一の流路を進行する過程で、特定成分が第二の溶媒により洗浄されるので、特定成分に付着した第一の媒体や塩類等の不純物を除去することができる。さらに、このような構成にすることにより、連続的な処理を行うことができる。

本発明のマイクロチップにおいて、第一の流路および第二の流路に異なる方向に外力を付与する外力付与手段をさらに含むことができる。

本発明のマイクロチップにおいて、外力付与手段は、第一の流路には、第二の流路よりも大きい外力を付与することができる。

これにより、第一の流路を流れる試料中の特定成分が、第一の流路を進行するに従って濃縮されるので、試料の溶媒を置換するとともに濃縮をおこなうことができる。これにより、目的成分を高濃度で得ることができるので、その後の分析等を精度よく行うことがある。

本発明によれば、基板上に設けられ、特定成分を含む液体試料が流れる流路と、流路中に設けられた電極と、を含み、電極は、特定成分とは異なる極性に帯電されることを特徴

10

20

30

40

とするマイクロチップが提供される。

たとえば、特定成分がタンパク質等の場合、タンパク質がマイナスに帯電しているので、電極をプラス帯電させることができる。ここで、電極は、複数の柱状体により構成することができる。これにより、表面積を広くとることができ、多くの成分を収集することができる。また、この場合、複数の電極は、互いに電気的作用を及ぼさない形状とされるのが好ましい。また、複数の電極を設けた場合、それぞれの電極は個別に制御可能に形成することができる。これにより、たとえば、まず全部の電極を特定成分と異なる極性に帯電させて特定成分を収集した後、いずれか一の電極のみそのまま帯電させ、他の電極を中性または特定成分と同じ極性に帯電させることにより、一の電極に特定成分を集結させることができる。これにより、より効率よく特定成分を濃縮することができる。

本発明によれば、特定成分を含む液体試料が流れる第一の流路、第二の流路、およびこれらの流路の間に介在するフィルターを含む分離装置を用い、液体試料の溶媒を置換する方法であって、特定成分および第一の溶媒を含む液体試料を第一の流路中で第一の方向に移動させる工程と、第二の溶媒を第二の流路中で第一の方向とは異なる方向に移動させる工程と、を同時に行い、第一の流路において、液体試料が移動するにつれて、第一の溶媒に対する第二の溶媒の割合が高くなるようにすることを特徴とする溶媒置換方法が提供される。

本発明の溶媒置換方法において、特定成分および第一の溶媒を含む液体試料を第一の流路中で第一の方向に移動させる外力を第二の溶媒を第二の流路中で第一の方向とは異なる方向に移動させる外力よりも大きくすることにより、第一の流路の下流において、特定成分を濃縮させることができる。

本発明によれば、電極が設けられた流路を用いて特定成分を含む液体試料の溶媒を置換する方法であって、電極を、特定成分と逆の極性に帯電させて特定成分と第一の溶媒を含む液体試料を流路に流す工程と、電極の帯電状態を保ったまま、第二の溶媒を流路に流す工程と、電極の帯電を解除し、第二の溶媒とともに特定成分を回収する工程と、を含むことを特徴とする溶媒置換方法が提供される。

本発明の溶媒置換方法において、回収する工程において、電極を特定成分と同じ極性に 帯電させることができる。

なお、以上では、特定成分の濃縮および溶媒置換の機能を有するマイクロチップについて説明したが、このマイクロチップには、さらに、たとえば試料の精製、分離、前処理( 濃縮および溶媒置換を除く)、および乾燥の機能を持たせることができ、これにより質量 分析装置にそのまま用いることもできる。

本発明によれば、生体試料を分子サイズまたは性状に応じて分離する分離手段と、前記分離手段により分離された試料に対し、酵素消化処理を含む前処理を行う前処理手段と、前処理された試料を乾燥させる乾燥手段と、乾燥後の試料を質量分析する質量分析手段と、を備え、前記前処理手段は、上記いずれかに記載のマイクロチップを含むことを特徴とする質量分析システムが提供される。ここで、生体試料は、生体から抽出したものであってもよく、合成したものであってもよく、合成したものであってもよい。

本発明によれば、生体試料を分子サイズまたは性状に応じて分離するとともに、当該試料に対し、酵素消化処理を行うための前処理を行う前処理手段と、前処理手段に前処理された試料に対し、酵素消化処理を行う手段と、酵素消化処理された試料を乾燥させる乾燥手段と、乾燥後の試料を質量分析する質量分析手段と、を備え、前処理手段は、上記いずれかに記載のマイクロチップを含むことを特徴とする質量分析システムが提供される。

### 【図面の簡単な説明】

上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。

- 図1は、本発明の実施の形態における濃縮装置の一部を示す図である。
- 図2は、本発明の実施の形態における濃縮装置の一部を示す図である。
- 図3は、本発明の実施の形態における疎水領域の一例を示す図である。
- 図4は、濃縮装置の他の例を示す図である。

10

20

30

- 図5は、本発明の実施の形態における溶媒置換装置の構成を示す図である。
- 図6は、本発明の実施の形態における溶媒置換装置の構成を模式的に示す図である。
- 図7は、本発明の実施の形態における溶媒置換装置の構成を示す図である。
- 図8は、図7に示した溶媒置換装置の断面図を示す図である。
- 図9は、本発明の実施の形態における溶媒置換装置の製造方法を示す工程断面図である
- 図10は、電極の他の例を示す図である。
- 図11は、電極の他の例を示す図である。
- 図12は、基板に形成されたマイクロチップを示す図である。
- 図13は、本発明の実施の形態における濃縮装置の製造方法を説明する工程図である。
- 図14は、本発明の実施の形態における濃縮装置の製造方法を説明する工程図である。
- 図15は、本発明の実施の形態における濃縮装置の製造方法を説明する工程図である。
- 図16は、質量分析装置の構成を示す概略図である。
- 図17は、本実施の形態における分離装置または溶媒置換装置を含む質量分析システムのブロック図である。
  - 図18は、フィルターとして高分子ゲル膜を用いた例を示す図である。
  - 図19は、フィルターの製造方法を示す工程図である。
  - 図20は、フィルターの製造方法を示す工程図である。
- 図21は、図19および図20に示す製造方法により製造されたフィルターを示す図である。
- 図22は、本発明に係る溶媒置換装置をマイクロチップとして構成した概略構成図である。
  - 図23は、ジョイントの構造を示す図である。
  - 図24は、ジョイントの他の例を示す図である。
- 図25は、図22に示したように構成された溶媒置換装置のフィルターの詳細図である
- 図26は、図1に示した疎水領域の一例を示す上面図である。
- 図27は、図1に示した廬液排出流路の一例を示す図である。
- 図28は、本発明の実施の形態における濃縮装置の一例を示す図である。
- 図29は、電極の他の例を示す図である。
- 図30は、実施例のチップの概略構成を示す図である。
- 図31は、実施例の柱状体の構成を示す図である。
- 図32は、実施例のチップの構成を示す図である。
- 図33は、実施例の濃縮置換装置部に水を導入した様子を示す図である。
- 図34は、実施例の濃縮部にDNAが堆積している様子を示す図である。
- 図35は、実施例の試料回収部にDNAが流れている様子を示す図である。
- 【発明を実施するための最良の形態】
- 生体物質の分析に際しては、たとえば、
- (i)細胞とその他の成分の分離、濃縮
- ( i i) 細胞を破壊して得られる成分のうち、固形物(細胞膜の断片、ミトコンドリア、 小胞体)と液状分画(細胞質)の分離、濃縮
- (iii)液状分画の成分のうち、高分子量成分(DNA(デオキシリボ核酸)、RNA(リボ核酸)、タンパク質、糖鎖)と低分子量成分(ステロイド、ブドウ糖等)の分離、 濃縮
- (iv) 高分子の分解産物と未分解産物の分離
- といった前処理が、行われる。

本発明においては、以上のような前処理を行うとともに、次の処理のため等に溶媒の置換処理を行う。

本発明において、濃縮、または溶媒置換対象の試料は、溶媒(キャリア)中に所定成分が溶解または分散した試料とする。

10

20

30

20

30

50

(第一の実施の形態)

図1は、本発明の第一の実施の形態における濃縮装置の一部を示す図である。

図1 (a) に示すように、濃縮装置100は、試料導入流路300と、廬液排出流路302と、試料回収部308と、試料導入流路300と廬液排出流路302との間に設けられたフィルター304と、試料導入流路300と試料回収部308との間に設けられた疎水領域306とを有する。

ここで、フィルター 3 0 4 には、特定成分の通過を阻止する程度の大きさの細孔が設けられる。フィルター 3 0 4 の細孔のサイズは、濃縮目的の特性成分の種類に応じて適宜設定される。フィルター 3 0 4 は、アルミニウム酸化物、ケイ酸ナトリウム水溶液(水ガラス)やコロイド粒子を焼結して得られる多孔質膜、高分子ゾルをゲル化して得られる高分子ゲル膜、または多数の柱状体等により構成することができる。これらの製造方法については後述する。

また、疎水領域306により、試料回収部308への液体の進入が阻害され、試料導入流路300に導入された溶媒が試料回収部308に流れ込むのを防ぐことができる。

疎水領域306は、親水性の流路112表面に、疎水性処理を施すことにより形成することができる。疎水性処理は、シランカップリング剤やシラザン(ヘキサメチルシラザン等)等のシラン化合物を用いて、スピンコート法、スプレー法、ディップ法、または気相法等により流路112表面に疎水性膜を形成する手法を用いることができる。シランカップリング剤としては、たとえばチオール基等の疎水基を有するものを用いることができる

また、疎水性処理は、スタンプやインクジェットなどの印刷技術を用いて行うこともできる。スタンプによる方法では、PDMS(polydimethylsiloxane)樹脂を用いる。PDMS樹脂はシリコーンオイルを重合して樹脂化するが、樹脂化した後も分子間隙にシリコーンオイルが充填された状態となっている。そのため、PDMS樹脂を流路112の表面に接触させると、接触した部分が強い疎水性となり水をはじく。これを利用して、疎水領域306に対応する位置に凹部を形成したPDMS樹脂のブロックをスタンプとして接触させることにより、疎水領域306が形成される。また、インクジェットによる方法では、シリコーンオイルをインクジェットプリントのインクとして用いることにより、疎水領域306が形成される。このように疎水性処理が施された領域では、流体が通過できないため、試料の流れが阻害される。

また、疎水領域306の疎水性の度合いは、材料の選択により適宜制御することもできるが、疎水領域306の疎水性部分の形状によっても制御することができる。図26は、疎水領域306の一例を示す上面図である。疎水領域306は、複数の疎水部306aが、略等間隔で規則的に配置されている。疎水領域306において、疎水部306a以外の領域は親水性となっている。このようにしておけば、疎水領域306全面を疎水性とするよりも、試料導入流路300から溶媒を移動しやすくすることができる。また、疎水部306aの間隔を密にするほど疎水性の度合いが高くなる。このように、疎水領域306の疎水性部分の形状を適切に設計することにより、疎水領域306の堰き止め機能を適宜制御することができる。

本実施の形態における濃縮装置100は、図12に示すように、基板101に形成されたマイクロチップである。図12(a)は、基板101の一部を示す上面図、図12(b)は、図12(a)のA-A、断面図である。

図12(a)に示すように、疎水領域306の側方には、呼び水注入口344を含む流体スイッチ348が設けられている。上述したように、試料導入流路300と試料回収部308に流出したい。との間には疎水領域306が設けられているため、試料は試料回収部308に流出しない。しかし、呼び水注入口344から呼び水を流すと、これが流体スイッチとなり、試料導入流路300から試料回収部308の方向に試料を流すことができる。ここで、呼び水注入口344には外部から水が導入されるようになっており、呼び水注入口344は、所定の容量に形成される。このように形成された呼び水注入口344に一定量の流速で水が導入されると、一定時間の経過後に水が呼び水注入口344から疎水領域306に流

50

さらに、図12(b)に示すように、基板101上には被覆部材350が配置される。 上述したように、疎水領域306は、基板101上の流路112表面に設けられてもよいが、被覆部材350に疎水性処理を施すことによっても同様の効果を得ることができる。 この場合、被覆部材350を基板101上に配置したときに、被覆部材350の疎水領域 306に対応する位置に疎水性処理を施すことができる。

図1に戻り、このように構成された濃縮装置100に、図1(b)に示すように、成分310および溶媒Aを含む試料を導入する。ここで導入される成分310はたとえばタンパク質である。本実施の形態における濃縮装置100は、後述するように、たとえばMALDI-TOFMS測定の前処理に用いることができる。この場合、濃縮装置100には、アセトニトリル等の溶媒中で分子内ジスルフィド結合を切断する処理や、バッファー中でタンパク質の低分子化処理が行われた試料が導入される。ここで、溶媒Aは、たとえばアセトニトリル等の有機溶媒、リン酸バッファー等の塩を含む溶液である。

成分310を含む溶媒Aが試料導入流路300に導入されると、溶媒Aはフィルター304を通過して毛細管現象により廬液排出流路302に流出し、成分310はフィルター304表面に堆積する。このとき、試料はたとえばポンプを用いて圧力を印加することにより試料導入流路300に導入されるが、溶媒Aが疎水領域306を越えて試料回収部308~進入しない程度の圧力が加えられる。

このようにして試料を流すと、図1 (c)に示すように、成分310はフィルター304表面で濃縮される。

この後、図1(d)に示すように、溶媒Bを試料導入流路300に導入し、成分310に付着した溶媒Aを充分洗い流す。ここで、溶媒Bは、たとえば、溶媒Aがアセトニトリルの場合はバッファー溶液や蒸留水、溶媒Aがバッファー溶液の場合は蒸留水等とすることができる。これにより、成分310に付着した溶媒Aを除去することができるとともに、試料中に含まれていた塩類等の不純物を除去することもできる。

一定時間洗浄を行った後、図1(e)に示すように、廬液排出流路302のフィルター304から遠い端部に設けられた流入停止部312により廬液排出流路302への液体の流入を停止する。流入停止部312としては、各種弁を用いることができるが、たとえば廬液排出流路302の端部にシリコーンチューブ等を接続しておき、そのシリコーンチューブをたとえば電磁弁等で閉塞することによって実現することができる。また、たとえば図27に示すように、廬液排出流路302の端部に所定の容量のリザーバ360を設けておくことによっても実現することができる。試料導入流路300に導入する試料中の溶媒Aの量および成分310を洗浄するのに要する溶媒Bの量を予め検出しておき、リザーバ360をそれだけの量を収容可能に形成しておくことができる。これにより、リザーバ360が容媒で満たされると、廬液排出流路302への液体の流入が停止された状態となる

廬液排出流路302への液体の流入を停止した状態で、試料導入流路300に印加する 圧力を高くするか、および/または、図12(a)に示した流体スイッチ348から呼び 水を流すことにより、フィルター304表面で濃縮された成分310を溶媒Bとともに試 料回収部308から取り出すことができる。

本実施の形態における濃縮装置100によれば、特定成分の通過を阻止するフィルターを用いることにより、特定成分を高濃度に濃縮することができる。これにより、たとえばMALDI-TOFMS測定を行う際に、タンパク質分子をMALDI-TOFMS用の基質と比較的高い濃度で混和することができる。また、特定成分を置換溶媒で洗浄することができるので、脱塩も行うことができる。これにより、MALDI-TOFMS測定を行う際の精度を高めることができる。本実施の形態における濃縮装置100によれば、特定成分を高濃度で不純物を除去した状態で回収することができるので、MALDI-TO

FMS測定に限らず、種々の反応に好適な試料を得ることができる。なお、以上の説明では、溶媒Aを溶媒Bに置換する例を説明したが、本実施の形態における濃縮装置100は、溶媒の置換を行う場合のみに限らず、特定成分の濃縮のみに用いることもできる。

次に、図13、図14、および図15を参照して、本実施の形態における濃縮装置10 0の製造方法を説明する。ここでは、フィルター304として多数の柱状体105を用いる例を説明する。柱状体の形状は、円柱、楕円柱等、擬円柱形状;円錐、楕円錐、三角錐等の錐体;三角柱、四角柱等の角柱のほか、ストライプ状の突起等、さまざまな形状を含む。基板101上への流路112およびフィルター304の形成は、基板101を所定のパターン形状にエッチング等を行うことができるが、その作製方法には特に制限はない。

ここで、各分図において、中央が上面図であり、左右の図が断面図となっている。この方法では、微細加工用レジストのカリックスアレーンを用いた電子線リソグラフィ技術を利用して柱状体105を形成する。カリックスアレーンの分子構造の一例を以下に示す。カリックスアレーンは電子線露光用のレジストとして用いられ、ナノ加工用のレジストとして好適に利用することができる。



20

10

ここでは、基板101として面方位が(100)のシリコン基板を用いる。まず、図13(a)に示すように、基板101上にシリコン酸化膜185、カリックスアレーン電子ビームネガレジスト183をこの順で形成する。シリコン酸化膜185、カリックスアレーン電子ビームネガレジスト183の膜厚は、それぞれ40nm、55nmとする。次に、電子ビーム(EB)を用い、柱状体105となる領域を露光する。現像はキシレンを用いて行い、イソプロピルアルコールによりリンスする。この工程により、図13(b)に示すように、カリックスアレーン電子ビームネガレジスト183がパターニングされる。つづいて全面にポジフォトレジスト155を塗布する(図13(c))。膜厚は1.8μmとする。その後、流路112となる領域が露光するようにマスク露光をし、現像を行う(図14(a))。

ここで、図15(b)の工程に次いで、基板101表面の親水化を行うことが好ましい。基板101表面を親水化することにより、流路112や柱状体105に試料液体が円滑に導入される。特に、柱状体105により流路が微細化したフィルター304(図1)においては、流路の表面を親水化することにより、試料液体の毛管現象による導入が促進され、成分の濃縮を効率よく行うことができる。

そこで、図15(b)の工程の後、基板101を炉に入れてシリコン熱酸化膜187を形成する(図15(c))。このとき、酸化膜の膜厚が30nmとなるように熱処理条件を選択する。シリコン熱酸化膜187を形成することにより、分離装置内に液体を導入する際の困難を解消することができる。その後、被覆189で静電接合を行い、シーリングして濃縮装置を完成する(図15(d))。

20

50

なお、基板101にプラスチック材料を用いる場合、エッチングやエンボス成形等の金型を用いたプレス成形、射出成形、光硬化による形成等、基板101の材料の種類に適した公知の方法で行うことができる。

基板101にプラスチック材料を用いる場合にも、基板101表面の親水化を行うことが好ましい。基板101表面を親水化することにより、流路112や柱状体105に試料液体が円滑に導入される。特に柱状体105により構成されたフィルター304においては、表面を親水化することにより、試料液体の毛管現象による導入が促進され、濃縮を効率よく行うことができる。

親水性を付与するための表面処理としては、たとえば、親水基をもつカップリング剤を流路 1 1 2 の側壁に塗布することができる。親水基をもつカップリング剤としては、たとえばアミノ基を有するシランカップリング剤が挙げられ、具体的には  $N-\beta$  (アミノエチル) $\gamma-$ アミノプロピルメチルジメトキシシラン、 $N-\beta$  (アミノエチル) $\gamma-$ アミノプロピルトリエトキシシラン、 $N-\beta$  (アミノエチル) $\gamma-$ アミノプロピルトリエトキシシラン、 $\gamma-$ アミノプロピルトリエトキシシラン、 $\gamma-$ アミノプロピルトリエトキシシラン、 $\gamma-$ アミノプロピルトリメトキシシラン等が例示される。これらのカップリング剤は、スピンコート法、スプレー法、ディップ法、気相法等により塗布することができる。

また、流路壁に試料の分子が粘着するのを防ぐために、流路112に付着防止処理を行うことができる。付着防止処理としては、たとえば、細胞壁を構成するリン脂質に類似した構造を有する物質を流路112の側壁に塗布することができる。このような処理により、試料がタンパク質等の生体成分である場合、成分の変性を防ぐことができると共に、流路112における特定の成分の非特異吸着を抑制することができ、回収率を向上するできる。親水性処理および付着防止処理としては、たとえば、リピジュア(登録商標)を 0 . 5 w t の となるようにTBEバッファー等の緩衝液に溶解させ、この溶液で流路112内を満たし、数分間放置することによって流路112の内壁を処理することができる。この後、溶液をエアガン等で吹き飛ばして流路112を乾燥させる。付着防止処理の他の例としては、たとえばフッ素樹脂を流路112の側壁に塗布することができる。

(第二の実施の形態)

図2は、本発明の第二の実施の形態における濃縮装置100の一部を示す図である。本実施の形態においても、濃縮装置100は、マイクロチップとすることができる。図2(a)に示すように、本実施の形態において、流路112は、試料導入流路300と、溶媒導入流路303と、フィルター304と、試料導入部313と、試料回収部314と、虚液排出部316と、溶媒導入部318とを有する。試料導入部313と試料導入流路300との間には疎水領域307が、溶媒導入部318と溶媒導入流路303との間には疎水領域306が設けられている。本実施の形態において、図1を参照して説明した第一の実施の形態における濃縮装置100と同様の構成要素には同様の符号を付し、適宜説明を省略する。

図3は、本実施の形態における疎水領域306および疎水領域307の一例を示す図である。この図に示すように、疎水領域306は、溶媒導入部318から溶媒導入流路303に進行する方向にテーパー状に広くなるように形成される。これにより、液体は溶媒導入部318から溶媒導入流路303の方向には容易に進入するが、溶媒導入流路303から溶媒導入部318の方向には進入しにくくすることができる。同様に、疎水領域3076、試料導入部313から試料導入流路300に進行する方向にテーパー状に広くなるように形成される。これにより、液体は試料導入部313から試料導入流路300の方には容易に進入するが、試料導入流路300から溶媒導入部313の方向には進入しにくくすることができる。ここでも、第一の実施の形態において図26を参照して説明したのと同様、疎水領域306および疎水領域307部分に流体スイッチ348を設け

た構成とすることもできる。さらに、試料導入部 3 1 3、試料回収部 3 1 4、溶媒導入部 3 1 8、 虚液排出部 3 1 6 は、シリコーンチューブやシリンジ等を介して外部に接続された構成とすることもでき、試料の流入や流出、溶媒の流入や流出は、外付けポンプや電磁弁等により制御することができる。

図2に戻り、図2 (b)に示すように、まず試料導入部313から試料を導入する。ここで、試料は、第一の実施の形態で説明したのと同様、溶媒Aに含まれた成分310とする。試料導入流路300に導入されると、溶媒Aはフィルター304を通過して溶媒導入流路303に流出する。このとき、溶媒導入部318の入り口には疎水領域306が設けられているので、溶媒Aは溶媒導入部318に進入することなく、廬液排出部316から排出される。これにより、図2 (c)に示すように、試料中の成分310はフィルター304表面に堆積され、フィルター304表面で濃縮される。

この後、溶媒導入部318から置換用の溶媒Bを導入すると、溶媒Bはフィルター304を通過する。フィルター304表面に堆積していた成分310は溶媒Bとともに試料回収部314から流出される。これにより、成分310の溶媒を置換することができるとともに、成分310を濃縮して回収することができる。

なお、以上の実施の形態においては、溶媒導入部 3 1 8 の入り口にそれぞれ疎水領域 3 0 6 を設ける構成としたが、疎水領域 3 0 6 を設ける代わりに、溶媒 A を導入中は、溶媒 導入部 3 1 8 には空気圧をかけ、溶媒 A が流れ込まない構成とすることもできる。同様に溶媒導入部 3 1 8 から溶媒 B を導入中は、試料導入部 3 1 3 に空気圧をかけ、溶媒 B が試料導入部 3 1 3 に流れ込まない構成とすることもできる。

さらに、図示していないが、フィルター304表面に成分310を濃縮させた後(図2(c))、試料導入部313から溶媒Bを導入して成分310表面に付着した溶媒Aやその他の塩等の化合物を洗い流すこともできる。なお、以上の説明では、溶媒Aを溶媒Bに置換する例を説明したが、本実施の形態における濃縮装置100は、溶媒の置換を行う場合のみに限らず、特定成分の濃縮のみに用いることもできる。

本実施の形態によれば、簡便な構造で特定成分の濃縮および溶媒置換を行うことができる。これにより、MALDI-TOFMS測定等次の処理において、高濃度の試料を用いることができるので、精度のよい検査や効率のよい反応を行うことができる。なお、

図4は、第一の実施の形態および第二の実施の形態で説明した濃縮装置100の他の例を示す図である。

図4 (a) に示すように、試料導入流路300は、側壁部分に廬液排出流路302が複数形成された構成とすることもできる。この場合、廬液排出流路302の入り口には、フィルター304が設けられており、試料導入流路300に導入された試料の溶媒のみが廬液排出流路302の方に流出する。そのため、試料が試料導入流路300を通過する過程で、試料は徐々に濃縮され、最終的に高濃度の試料を回収することができる。

また、図4(b)に示すように、試料導入流路300は、側壁部分に複数のキャピラリ341が形成された構成とすることもできる。この場合も図4(a)に示した例と同様、試料導入流路300に導入された試料の溶媒のみがキャピラリ341を通過して排出される。これにより、試料が試料導入流路300を通過する過程で、試料が徐々に濃縮され、最終的に高濃度の試料を回収することができる。

### (第三の実施の形態)

図5は、本発明の第三の実施の形態における溶媒置換装置130の構成を示す図である。本実施の形態において、溶媒置換装置130は、マイクロチップとすることができる。図5(a)に示すように、本実施の形態において、流路112には、流れ方向に沿ってフィルター324が設けられ、これにより第一溶媒用流路320と第二溶媒用流路322に分離されている。フィルター324には、特定成分の通過を阻止する程度の大きさの細孔が設けられる。

ここで、フィルター324は、アルミニウム酸化物、ケイ酸ナトリウム水溶液(水ガラス)やコロイド粒子を焼結して得られる多孔質膜、高分子ゾルをゲル化して得られる高分子ゲル膜、または多数の柱状体等により構成することができる。多数の柱状体は、第一の

20

30

実施の形態において図13から図15を参照して説明したのと同様の方法で作成することができる。

このように構成された溶媒置換装置130の第一溶媒用流路320に溶媒Aおよび特定成分を含む試料を導入し、それと同時に第二溶媒用流路322に置換用の溶媒Bを導入する。このとき、試料および溶媒Bは対向流となるように、流路112の反対側の端部からそれぞれ導入される。

ここで、溶媒置換装置 1 3 0 は、第一溶媒用流路 3 2 0 および第二溶媒用流路 3 2 2 の内部に導入される試料に外力を付与する外力付与手段をさらに備えた構成とすることができる。外力付与手段としてはポンプを用いることができ、第一溶媒用流路 3 2 0 および第二溶媒用流路 3 2 2 に独立して設けることができる。これにより、各流路における試料の流れを対抗流とすることができるとともに、試料に印加する外力を異ならせることもできる。

このようにすると、各溶媒Aおよび溶媒Bの拡散により、流路112中の溶媒Aおよび溶媒Bの存在比が図5(a)に示すように、図中上側の試料導入位置近くでは溶媒Aの存在比が圧倒的に高く、図中下側の置換溶媒導入位置では溶媒Bの存在比が圧倒的に高くなる。ここで、試料中の成分310が第一溶媒用流路320を進行していくに従って、第一溶媒用流路320内の溶媒Bの濃度が高くなってくる。流路112にはフィルター324が設けられているので、成分310はフィルター324を通過せず、第一溶媒用流路320内を図中下方向に移動する。これにより、成分310は徐々に溶媒Bに取り囲まれた状態となり、溶媒を置換することができる。

このとき、たとえば試料の導入圧力を溶媒Bの導入圧力よりも高くしておくと、図5(b)に示すように、第一溶媒用流路320中の成分310の移動速度を速めることができ、これにより試料中の特定成分を濃縮して回収することができる。このときも図5(a)に示した例と同様、図中下方向にいくに従って、溶媒Bの存在比が高くなるので、溶媒を置換することができる。

図6は、本実施の形態における溶媒置換装置130の構成を模式的に示す図である。第一溶媒用流路320には、図中上側に試料導入部326が設けられ、図中下側に試料回収部328が設けられる。また、第二溶媒用流路322には図中上側に溶媒排出部332が設けられ、図中下側に交換用溶媒導入部330が設けられる。図5を用いて説明したように、試料導入部326から溶媒Aおよび成分310を導入し、交換用溶媒導入部330から溶媒Bを導入して対向流とすると、成分310が第一溶媒用流路320を進行して試料回収部328に達する間に第一溶媒用流路320中における溶媒Bの存在比が徐々に高くなるので、試料回収部328において、成分310は溶媒Bに含まれた状態で回収することができる。

本実施の形態において、構成を簡略化して、溶媒の置換および特定成分の濃縮を行うことができる。また、フィルター324は、流路112の流れ方向に沿って形成されているので、試料中の成分が詰まりにくいというメリットを有する。また、試料中の成分が第一溶媒用流路320を移動する過程において溶媒が置換されるので、成分を交換後の溶媒で洗浄することができ、脱塩を行うこともできる。

図18を参照して、本実施の形態において、フィルター324として高分子ゲル膜325を用いた例を説明する。ここで、溶媒置換装置130の流路112は、隔壁165aおよび隔壁165bにより第一溶媒用流路320および第二溶媒用流路322に分離されている。隔壁165aおよび隔壁165bの間には高分子ゲル膜325が設けられる。ここで、高分子ゲル膜325は、1nmサイズの孔を多数有する。現在のナノ加工技術では、1nmサイズの孔を設けることは困難である。そこで、本実施の形態の溶媒置換装置130においては、高分子ゲル膜325の孔を、第一溶媒用流路320および第二溶媒用流路322に連通するフィルター324として利用するものである。

このように構成されたフィルター324によれば、試料中に含まれる1nm以下の物質のみが高分子ゲル膜325を通過することができるため、1nmより大きい成分がフィルター324を通過して第二溶媒用流路322に流出するのを阻止することができる。

20

10

30

40

30

40

50

高分子ゲル膜325は、次のように調製することができる。所定の濃度の高分子ゾルを隔壁165aと隔壁165bとの間に流し込む。このとき、隔壁165aと隔壁165bとの間を被覆などで覆わない状態とし、その他の領域を疎水性の被覆で覆うようにする。このようにすれば、高分子ゾルは第一溶媒用流路320あるいは第二溶媒用流路322に溢れ出すことなく、第二溶媒用流路322に留まる。この状態で放置することにより、高分子ゾルはゲル化して高分子ゲル膜325を形成する。高分子ゲルとしては、ポリアクリルアミド、メチルセルロース、アガロースなどが例示される。

本実施形態の分離装置により、例えば1nm程度という極めて小さなタンパク質の濃縮も可能となる。なお、ナノ加工技術により、より小さいサイズの孔を設けることが可能となった場合でも、高分子ゲル膜325を用いることにより、さらに小さいサイズの孔をフィルターとして利用することができる。

なお、高分子ゲル膜325以外の多孔質体として、ケイ酸ナトリウム水溶液(水ガラス)を焼結して得られる多孔質膜、また、例えば水酸化アルミニウムゾルや水酸化鉄コロイドゾルなどのコロイド粒子を焼結して得られる多孔質膜を採用してもよい。

さらに、ナノオーダーの細孔を含むフィルターは、以下のような方法で設けることも可能である。図19 および図20を参照して説明する。まず、図19 (a) のように、ガラスあるいは石英などの絶縁性の基板101に流路112を形成する。次に、図19 (b) に示されるように、流路112の中央付近のみが開いたフォトレジストパターン351を形成したのち、図19 (c) のように、アルミニウムを蒸着法などにより蒸着させて数μm厚のフィルター324およびアルミニウム層352を形成する。さらに、アルミニウム層352およびフォトレジストパターン351を除くことにより、図19 (d) のように流路112内にアルミニウム製のフィルター324を備えた基板101が得られる。フィルター324の高さは流路112の深さと同じとする。

続いて、図20(e)のように、電極353をフィルター324に接触させ、かつ流路112の流れの方向に沿って電極353を基板101に押し当てる。次に、図20(f)のように一方の流路に硫酸などの電解質液354を導入し、その流路端に電極を電解質液に浸すようにして配置する。電極353をプラス極、前記流路端に設けた電極をマイナス極にして電圧を印加し陽極酸化を行う。酸化は電流が停止するまで行う。その結果、図20(g)のように、アルミニウム酸化物からなるフィルター324dが得られる。そして、もう一方の流路に塩酸を導入し、酸化されずに残ったアルミニウムを溶解除去する。その後、図20(h)のように被覆180を基板101に取り付けて分離装置を得る。

図20(g)中のアルミニウム酸化物からなるフィルター324dを拡大した図を図21に示す。図示されるように、この隔壁は、試験管状の凹部355が規則正しく形成されたアルミニウム酸化膜である。このアルミニウム酸化膜は、0.1 nmオーダーの隙間の格子を持つことから、イオンのみを通過させることができる。これにより、非常に微小サイズのタンパク質であっても、濃縮を行うことができる。

また、上記では、図20(f)に示されるように、一方の流路にのみ電解質液354を導入した状態で陽極酸化を行ったが、両方の流路に電解質液を導入して陽極酸化を行うと、隔壁に貫通孔を形成させることができる。こうして得られる貫通孔は1~4nmのサイズを有するため、このような隔壁を備えた分離装置は、タンパク質の濃縮の目的に好適に用いることができる。

図22は本発明に係る溶媒置換装置130をマイクロチップとして構成した概略構成図である。基板101上に第一溶媒用流路320および第二溶媒用流路322が形成され、これらの間にフィルター324には多数の細孔が所定の間隔で形成されている。第一溶媒用流路320および第二溶媒用流路322の両端には、図23に示す形状のジョイント168a~168dが配置され、これらを介してポンプ(不図示)が接続されている。このポンプにより、第一溶媒用流路320および第二溶媒用流路322中に満たされた溶媒に外力が付与され、一定方向に流動するようになっている。なお、本実施形態では外力付与手段としてポンプを採用し、圧力により溶媒や溶媒中の成分を流動させているが、これ以外の外力付与手段を採用することももち

30

50

ろん可能である。たとえば、流路に電圧を印加する等の方法を採用することもできる。この場合は、ジョイントをたとえば図 2 4 のような構造とする。

図25に、図22に示したように構成された溶媒置換装置130のフィルター324の 詳細図を示す。基板101上に第一溶媒用流路320および第二溶媒用流路322が形成 され、これらの間にフィルター324が形成されている。

(第四の実施の形態)

図7は、本発明の第四の実施の形態における溶媒置換装置130の構成を示す図である。この手法は、濃縮対象の特定成分が帯電している場合に効果的に用いることができる。 本実施の形態においても、溶媒置換装置130は、マイクロチップとすることができる。

流路112には電極334が設けられる。電極334は、濃縮対象の特定成分336と反対の電荷に帯電される。たとえば、タンパク質やDNA等の分子を濃縮対象とする場合、これらの分子は一般的にマイナスに帯電している。したがって、この場合電極334をプラスに帯電させ、この状態で流路112に試料を流す。このようにすると、図7(a)に示すように、試料中の成分336は電極334表面に付着し、溶媒Aは流路112を流れていく。これにより、電極334表面に成分336を電極334近傍で濃縮することができる。

この後、図7(b)に示すように、溶媒Bを供給する。このとき、電極334をプラスに帯電させた状態を保っておくと、成分336は電極334表面に付着したままで、成分336表面に付着した溶媒Aやその他の不要な成分のみを洗い流すことができる。

溶媒Bで充分な洗浄を行った後、図7(c)に示すように電極334への電圧の印加を停止または反転させることにより、電極334に付着していた成分336が電極334から遊離し、溶媒Bとともに流路112から流出する。

図8は、図7に示した溶媒置換装置130の断面図を示す図である。電極334には基板101背面に設けられた配線338が接続され、これにより電圧の印加を行うことができる。また、溶媒置換装置130には、被覆部材340が設けられている。

本実施の形態において、電極 3 3 4 は、たとえば以下のようにして作製することができる。図9は、本実施の形態における溶媒置換装置 1 3 0 の製造方法を示す工程断面図である。まず、電極の装着部分を含む金型 1 7 3 を用意する(図9 (a))。つづいて、金型 1 7 3 に電極 3 3 4 を設置する(図9 (b))。電極 3 3 4 の材料としては、たとえば A u、Pt、Ag、Al、Cu等を用いることができる。次に、金型 1 7 3 上に被覆用金型 1 7 9 をセットして電極 3 3 4 を固定し、基板 1 0 1 となる樹脂 1 7 7 を金型 1 7 3 内に射出し、成型する(図9 (c))。樹脂 1 7 7 としては、たとえば PMMAを用いることができる。

このようにして、成形された樹脂177を金型173および被覆用金型179から外すと、流路112が形成された基板101が得られる(図9(d))。電極334表面の不純物をアッシングにより除去し、電極334を基板101裏面に露出させる。つづいて、基板101の裏面に金属膜を蒸着等することにより配線338を形成する(図9(e))。以上のようにして、流路112中に電極334を設けることができる。このようにして形成された電極または配線338は、外部電源(不図示)に接続され、電圧を印加することができるようになっている。

また、電極334は、第二の実施の形態で説明したのと同様、図28に示すような流路中に設けることもできる。これにより、各種溶媒や他の成分の混合を防ぎ、精度のよい濃縮および溶媒の置換を行うことができる。

また、流路112に設ける電極334は、図10に示すような複数の柱状体を含む構成とすることもできる。図10(a)は流路112の斜面図、図10(b)および図10(c)はこの断面図である。この場合も、電極334は、上述したのと同様にして作成することができる。電極334を複数の柱状体により構成することにより、表面積を広く取ることができ、これにより、多くの成分336を電極334表面に付着させることができる。図10(b)および図10(c)に示すように、各電極334a~334dにはそれぞれ配線342a~342dが接続され、これにより複数の電極334a~334dは、独

立して制御される。まず、図10(b)に示すように全ての電極334a~334dを成分336と逆の極性に帯電させて多くの成分336を電極334a~334d表面に付着させる。その後、図10(c)に示したように、たとえば電極334bのみ成分310と逆の極性に帯電させて他の電極334a、電極334c、および電極334dを成分310と同じ極性に帯電させると、各電極334a~334dに付着していた成分310が全て電極334bに集結されるので、成分336をより高濃度に濃縮することができる。

さらに、流路112に設ける電極334は、図11に示すような複数の緩やかな山状形状を有する突起体を含む構成とすることもできる。図11(a)は流路112の斜面図、図11(b)は、この上面図である。このような形状とすると隣接する電極間の相互作用を低減することができ、各電極に効率よく成分336を収集することができるので好ましい。

さらに、電極334は、図29に示すように設けることもできる。図29(a)に示すように、試料が通過できる程度の隙間333aが設けられた電極板333を、流路112の進行方向における間隔をDとして複数配置することができる。このとき、各電極板333は、間隔Dが、流路112の幅Wより広く、より好ましくは流路112の幅の2倍以上となるように配置される。このようにすれば、電極334間の電気力線の影響で、各電極板333に設ける隙間333aは、試料が充分通過できる程度の大きさに形成される。さらに、図29(b)に示すように、試料の電荷と反対の極性に帯電される電極334の間に、電極334の対向電極335を設けた構成とすることもできる。これにより、試料は対向電極335の両側にある電極334のいずれかに向かって進行するので、電極334への試料の付着量を増加することができる。

本実施の形態においても、特定成分を電極334表面に付着させて濃縮させた状態で、溶媒を置換することができる。また、特定成分を電極334に付着させた状態で置換用の溶媒で特定成分を洗浄することもできるので、脱塩処理を行うこともできる。

以上の実施の形態において説明した濃縮装置および溶媒置換装置は、MALDI-TOFMS測定を行うための前処理を行うために用いることができる。以下、タンパク質のMALDI-TOFMS用試料調製および測定を行う例を説明する。

MALDI-TOFMS測定により、測定対象のタンパク質の詳細な情報を得るためには、タンパク質を、1000Da程度まで低分子化する必要がある。

まず、測定対象のタンパク質が分子内ジスルフィド結合を有する場合、DTT(ジチオスレイトール)等の還元試薬を含むアセトニトリル等の溶媒中で還元反応を行う。こうすることにより、次の分解反応が効率よく進行する。なお、還元後、チオール基をアルキル化等により保護し、再び酸化するのを抑制することが好ましい。本実施の形態におけるマイクロチップは、このような反応を行った後に、アセトニトリル等の溶媒をリン酸バッファーや蒸留水等に置換する際に用いることができる。

次に、トリプシン等のタンパク質加水分解酵素を用いて還元処理されたタンパク質分子の低分子化処理を行う。低分子化は燐酸バッファー等の緩衝液中で行われるため、反応後、トリプシンの除去や脱塩等の処理を行う。その後、タンパク質分子をMALDI-TOFMS用の基質と混合し、乾燥処理を行う。

ここで、MALDI-TOFMS用の基質は、測定対象物質に応じて適宜選択されるが、たとえば、シナピン酸、α-CHCA(α-シアノー4-ヒドロキシ桂皮酸)、2,5-DHB(2,5-ジヒドロキシ安息香酸)、2,5-DHBおよびDHBs(5-メトキシサリチル酸)の混合物、HABA(2-(4-ヒドロキシフェニルアゾ)安息香酸)、3-HPA(3-ヒドロキシピコリン酸)、ジスラノール、THAP(2,4,6-トリヒドロキシアセトフェノン)、IAA(トランス-3-インドールアクリル酸)、ピコリン酸、ニコチン酸等を用いることができる。

本実施の形態におけるマイクロチップは、基板上に形成することができ、基板の上流に分離装置等を、また下流に乾燥装置等を形成しておくことにより、基板をMALDI-T OFMS装置にそのままセットするようにすることもできる。このようにすれば、目的と 10

20

30

40

する特定成分の分離、前処理、乾燥、および構造解析を一枚の基板上で行うことが可能となる。

乾燥後の試料をMALDI-TOFMS装置にセットし、電圧を印加し、たとえば337nmの窒素レーザー光を照射し、MALDI-TOFMS分析を行う。

ここで、本実施形態で用いる質量分析装置について簡単に説明する。図16は、質量分析装置の構成を示す概略図である。図16において、試料台上に乾燥試料が設置される。そして、真空下で乾燥試料に波長337mmの窒素ガスレーザーが照射される。すると、乾燥試料はマトリックスとともに蒸発する。試料台は電極となっており、電圧を印加することにより、気化した試料は真空中を飛行し、リフレクター検知器、リフレクター、およびリニアー検知器を含む検出部において検出される。

図17は、本実施の形態の濃縮装置または溶媒置換装置を含む質量分析システムのブロック図である。このシステムは、試料1001について、夾雑物をある程度除去する精製1002、不要成分1004を除去する分離1003、分離した試料の前処理1005、前処理後の試料の乾燥1006、の各ステップを実行する手段を備えている。これらのステップを経て、質量分析による同定1007を行う。また、精製1002から乾燥1006までのステップを一枚のマイクロチップ1008上で行うことができる。

ここで、本実施の形態のマイクロチップは、前処理1005のステップの一部を実行する手段に対応している。

このように、本実施の形態の質量分析システムでは、試料を一枚のマイクロチップ10 08上で連続的に処理することにより、微量の成分についても損出が少ない方法で効率よ く確実に同定を行うことが可能となる。

以上、本発明を実施形態に基づき説明した。これらの実施形態は例示であり、各構成要素や各製造工程の組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。

なお、第一の実施の形態および第二の実施の形態におけるフィルター304も、第三の 実施の形態において説明したのと同様の製法を用いることにより、アルミニウム酸化物、 ケイ酸ナトリウム水溶液(水ガラス)やコロイド粒子を焼結して得られる多孔質膜、高分 子ゾルをゲル化して得られる高分子ゲル膜により構成することができる。

### 【実施例】

以下、本発明の実施例を説明する。

本実施例では、チップ100上に図30に示した構成の濃縮置換装置を作製し、評価した。ここで、流路112は、ガラスふたにより覆った構成とした。また、試料導入流路300と 虚液排出流路302との間に柱状体により構成されたフィルター304を設けた。さらに、ここでは、過剰な溶液を逃がすため廃液流路305を設けた。試料回収部308は、シラザンにより疎水処理を施した。

本実施例において、柱状体の作製は、上述した第一の実施の形態に記述した加工方法を用いた。試料導入流路 3 0 0 と廃液流路 3 0 5 の幅は 4 0 μm、 廬液排出流路 3 0 2 と試料回収部 3 0 8 の幅は 8 0 μm、 流路 1 1 2 の深さは 4 0 0 nmとした。

図 3 1 は、フィルター 3 0 4 として形成した柱状体 1 0 5 の走査電子顕微鏡像を示す図である。幅 3  $\mu$  m の短冊状のものが 7 0 0 n m ピッチで並んでおり、短冊の列と列の間隙は 1  $\mu$  m である。

図32は、本実施例の濃縮置換装置を示す図(光学顕微鏡像)である。流路および柱状体の毛細管現象を利用して、濃縮置換装置部に水を導入した様子を図33に示す。シラザン処理をした試料回収部には水が流れていない。

本実施例では、濃縮置換装置を用いることにより、以下に記載するDNAの濃縮・溶媒置換を行った。

蛍光色素で染めたDNA(9.6 k b p)を含む水を試料導入流路300に導入した。 図34にDNAを含む水が流れている様子を蛍光顕微鏡で観察した図を示す。シラザン処理を施した試料回収部(流路)308にはDNAは流れていない。また、柱状体の間隙が狭いため、フィルター304にDNAが堆積し、フィルターは徐々に詰まり廬液排出流路 10

30

302〜水が流れにくくなる。そのためDNAを含む過剰な水は廃液流路305〜と導かれている。その後、試料導入流路300にエタノールを導入した。

図35にエタノールが流路112を流れることによりDNAが移動する様子を蛍光顕微鏡で観察した図を示す。シラザン処理を施した試料回収部308にエタノールが流れており、試料回収部308の流路は、廃液流路305より広いため、フィルターに堆積し濃縮されていたDNAは優先的に試料回収部308へと導かれ試料回収流路出口に染み出した。また、基板を超音波振動器に載せDNAを細分化した後、試料を乾燥し溶媒を自然蒸発させた。その後、試料回収流路出口に染み出したDNAにマトリックスを数マイクロリットル滴下し、MALDI-TOFMS分析を行った。その結果、DNAに起因する分析結果を得ることができた。

以上に示した通り、本実施例においては、DNAを濃縮し、溶媒置換が可能な濃縮置換装置が得られたことが確認できた。

以上説明したように本発明によれば、試料中の特定成分を濃縮して高濃度で回収する技術を提供することができる。本発明によれば、試料中の特定成分を濃縮した状態で溶媒を置換する技術を提供することができる。本発明によれば、試料中の特定成分を濃縮した状態で試料に含まれる塩類等の不要成分を除去する技術を提供することができる。本発明によれば、これらの処理をマイクロチップ上で行う技術を提供することができる。



BEST AVAILABLE COPY

【図3】 Fig.3



【図 4】 Fig.4



【図5】 Fig.5



【図 6】 Fig.6



【図7】 Fig.7

【図8】 Fig.8









BEST AVAILABLE COPY

【図 1 1】 Fig.11

【図 1 2】 Fig.12









【図 1 3】 Fig.13

(b)

【図 1 4】 Fig.14













【図 1 5】 Fig.15

【図 1 6】 Fig.16





【図17】 Fig.17

【図 1 8】 Fig.18





【図19】 Fig.19

【図20】 Fig.20

















【図21】 Fig.21

【図 2 2】 Fig.22





【図23】 Fig.23

【図24】 Fig.24





【図25】 Fig.25

【図26】 Fig.26





【図27】 Fig.27

[図28]





<u>130</u>







【図30】 Fig.30



【図31】 Fig.31

| 44.4                                   | Carry .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Charles Fred 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| **** *** *** *** *** *** *** *** *** * | OF THE PERSON AND ADDRESS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A CAMPACAMENT OF THE PROPERTY OF THE PARTY O | 2062    |
| MAN MUTHER TO                          | CONTRACTOR MARSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contraction (Contraction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATA     |
| 7-H 42 640                             | Given distances                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Long to College Spines)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CHE     |
| A COTTON (A)                           | CHECKERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Commence and Commence of the C | 64.77   |
| property.                              | (The Company of State (State)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CONTRACTOR (CONTRACTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *****   |
| mi dynaka-                             | CHECKER STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CHESTATANAMO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMM'S  |
| Marriage                               | Contract of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Children bearing to Walls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHE     |
| ****                                   | ON CHIEF SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STREET, STREET | 200     |
|                                        | CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THE WILL VIPEL OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C.Par   |
| MITTER TOPE TO                         | CHARLEST PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | distribution .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -       |
| 124 (47)                               | (COLUMN TOWNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 924 (92) 420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (atrice |
| A                                      | Savado Sava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Green Commence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7:      |
| President.                             | Commission of the Commission o | CONTRACTO MEMORY PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rem     |
|                                        | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

BEST AVAILABLE COPY

【図32】 Fig.32











### 【国際調査報告】

#### INTERNATIONAL SEARCH REPORT International application No. PCT/JP03/15256 CLASSIFICATION OF SUBJECT MATTER B01D57/00, 57/02, B03C5/00, B01D69/00, G01N27/26, G01N37/00, 1/40 Int.Cl' According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl<sup>7</sup> B01D57/00, 57/02, B03C5/00, B01D69/00, G01N27/26, G01B37/00, 1/40 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 1926-1996 Toroku Jitsuyo Shinan Koho 1994-2003 Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho Kokai Jitsuyo Shinan Koho 1996-2003 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) DIALOG (WPI/L) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category\* WO 96/12540 A1 (CENT RES. LAB. LTD.), 16-18 02 May, 1996 (02.05.96), & JP 10-507406 A X JP 11-311616 A (Shimadzu Corp.), 19 09 November, 1999 (09.11.99), (Family: none) Α JP 2001-281233 A (The Institute of Physical and 1-32 Chemical Research), 10 October, 2001 (10.10.01), (Family: none) WO 89/06280 Al (E.I DU PONT DE NEMOURS AND CO.), 1 - 32A 13 July, 1989 (13.07.89), & JP 4-505547 A See patent family annex. Further documents are listed in the continuation of Box C. X later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance ·E· earlier document but published on or after the international filing document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other "L" step when the document is taken alone seep when the accument is taken atone document for particular nelevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the an document member of the same patent family special reason (as specified) o" document referring to an oral disclosure, use, exhibition or other document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 03 March, 2004 (03.03.04) Date of mailing of the international search report 16 March, 2004 (16.03.04) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No. Facsimile No.

Form PCT/ISA/210 (second sheet) (July 1998)

## INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/15256

| ategory* | Citation of document, with indication, where appropriate, of the relevant pas             | Sages | Relevant to claim N |
|----------|-------------------------------------------------------------------------------------------|-------|---------------------|
| A        | JP 7-330797 A (Sumitomo Metal Industries, L. 19 December, 1995 (19.12.95), (Family: none) |       | 32                  |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          | ·                                                                                         |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
| -        |                                                                                           | i     |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |
|          |                                                                                           |       |                     |

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

#### 国際出願番号 PCT/JP03/15256 国際調查報告 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl<sup>7</sup> B01D57/00, 57/02, B03C5/00, B01D69/00, G01N27/26, G01N37/00, 1/40 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. Cl' B01D57/00, 57/02, B03C5/00, B01D69/00, G01N27/26. G01N37/00, 1/40 最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996 日本国公開実用新案公報 1971-2003 日本国登録実用新案公報 1994-2003 日本国実用新案登録公報 1996-2003 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) DIALOG (WPI/L) 関連すると認められる文献 引用文献の 関連する 請求の範囲の番号 カテゴリー\* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 X WO 96/12540 A1 (CENT RES LAB LT 16 - 18D) 1996. 05. 02&JP 10-507406 A X JP 11-311616 A (株式会社島津製作所) 1999. 19 11.09 (ファミリーなし) JP 2001-281233 A (理化学研究所) 2001. 1 1 - 32Α 10 (ファミリーなし) WO 89/06280 A1 (E. I DU PONT DE NEMOURS AND COM 1 - 32区欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。 \* 引用文献のカテゴリー の日の後に公表された文献 「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 もの 「E」国際出題目前の出題または特許であるが、国際出題日 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 以後に公安されたもの の新規性又は進歩性がないと考えられるもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 「Y」特に関連のある文献であって、当該文献と他の1以 文献(理由を付す) 上の文献との、当業者にとって自明である組合せに 「O」ロ頭による関示、使用、展示等に背及する文献 よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献 「P」国際出題日前で、かつ優先権の主張の基礎となる出題 国際調査報告の発送日 国際調査を完了した日 03. 03. 2004 16. 3. 2004 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 Q 8418 日本国特許庁 (ISA/JP) 郵便番号100-8915 電話番号 03-3581-1101 内線 3466 東京都千代田区質が関三丁目 4番3号

様式PCT/ISA/210 (第2ページ) (1998年7月)

|                 | 国際調査報告                                 | 国際出願番号 PCT/JP0 | 3/15256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|-----------------|----------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| C (続き) .        | ). 関連すると認められる文献                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 引用文献の<br>カテゴリー* |                                        | は、その関連する箇所の表示  | 関連する<br>請求の範囲の番号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| ~~~~·           | PANY) 1989. 07. 13&JP 4-               |                | No. is a factor of the factor |  |  |  |
| A               | JP 7-330797 A (住友金属<br>12.19 (ファミリーなし) |                | 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                 | ·                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 | ·                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                 |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

## フロントページの続き

- (72) 発明者 川浦 久雄 東京都港区芝五丁目 7番 1 号 日本電気株式会社内
- (72)発明者 井口 憲幸 東京都港区芝五丁目7番1号 日本電気株式会社内
- (72) 発明者 服部 涉 東京都港区芝五丁目 7 番 1 号 日本電気株式会社内
- (72) 発明者 染谷 浩子 東京都港区芝五丁目7番1号 日本電気株式会社内
- (72)発明者 麻生川 稔 東京都港区芝五丁目7番1号 日本電気株式会社内 Fターム(参考) 2G058 BA07 BA10 DA02 DA07 DA09 GA20
- (注) この公表は、国際事務局(WIPO)により国際公開された公報を基に作成したものである。なおこの公表に係る日本語特許出願(日本語実用新案登録出願)の国際公開の効果は、特許法第184条の10第1項(実用新案法第48条の13第2項)により生ずるものであり、本掲載とは関係ありません。