TD 3 Probabilités - Couples de Variables Aléatoires Discrètes - 1SN

Exercice 1 : Loi de Poisson et loi binomiale.

On considère une variable aléatoire X de loi de Poisson de paramètre λ , i.e., $X \sim \mathcal{P}(\lambda)$ et une variable aléatoire Y telle que Y|X=n suit une loi binomiale de paramètres n et $p=\frac{1}{2}$, i.e., $Y|X=n \sim \mathcal{B}\left(n,\frac{1}{2}\right)$. On rappelle le résultat classique $e^x=\sum_{n=0}^{+\infty}\frac{x^n}{n!}, \ \forall x\in\mathbb{R}$.

- 1. Déterminer la loi du couple (X, Y).
- 2. Montrer que Y suit une loi de Poisson $\mathcal{P}\left(\frac{\lambda}{2}\right)$.
- 3. Montrer que $E[XY] = \frac{1}{2}\lambda(1+\lambda)$ (on pourra utiliser le théorème des espérances conditionnelles et le fait que la moyenne de Y|X=n est connue).
- 4. Déterminer a tel que la covariance du couple (X, Z = X + aY) soit nulle.

Exercice 2: Tirages sans remise.

On considère une urne constituée de N>1 boules numérotées de 1 à N. On tire deux boules sans remise dans cette urne. On note X_1 le numéro de la première boule et X_2 le numéro de la seconde boule.

- 1. Déterminer les lois de X_1, X_2 et du couple (X_1, X_2) (on prendra soin de préciser les domaines de ces variables et vecteur aléatoires).
- 2. Déterminer la covariance entre X_1 et X_2 . On rappelle que

$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2} \text{ et } \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}.$$

3. Déterminer la loi du couple (Z, U) avec $Z = X_1 - X_2$ et $U = X_1$ (on prendra soin de représenter graphiquement l'ensemble des valeurs possibles du couple (Z, U)). En déduire la loi de Z.

Exercice 3 : Décorrélation n'implique pas indépendance !

Soit X une variable aléatoire de loi normale $\mathcal{N}(0,1)$ et Y une variable aléatoire binaire prenant les valeurs +1 et -1 avec $P[Y=1]=P[Y=-1]=\frac{1}{2}$. On suppose que X et Y sont indépendantes et on pose Z=XY.

- 1. Déterminer la loi de Z.
- 2. Déterminer la covariance du couple (X, Z) notée cov(X, Z).
- 3. Calculer P[X + Z = 0] et en déduire que X et Z ne sont pas indépendantes.

Exercice 4 : couple de variables aléatoires discrète et continue.

Soit (X,Y) un couple de variables aléatoires réelles telles que Y suit une loi exponentielle de paramètre c (de densité notée g(y)) et pour y>0 la loi de X sachant Y=y est la loi de Poisson de paramètre y

$$\begin{split} g(y) &= ce^{-cy} & y > 0 \\ g(y) &= 0 & y \leq 0 \\ P\left[X = k \middle| Y = y\right] &= \frac{y^k}{k!}e^{-y} & k \in \mathbb{N} \end{split}$$

Déterminer P[X = k].

Exercice 5 : parties entières et fractionnaires

Soit U une variable aléatoire de loi uniforme sur [0,1[. Si k est un entier fixé $(k \in \mathbb{N}^*)$, on définit les variables aléatoires X et Y de la façon suivante

$$egin{array}{lll} X & = & \operatorname{Ent}\left(kU
ight) \ Y & = & \operatorname{Frac}\left(kU
ight) = kU - \operatorname{Ent}(kU) \end{array}$$

où $\operatorname{Ent}(kU)$ et $\operatorname{Frac}(kU)$ désignent les parties entières et fractionnaires de kU. Montrer que X et Y sont deux variables aléatoires indépendantes, la première de loi uniforme sur $\{0,...,k-1\}$, la seconde de loi uniforme sur [0,1[.

Réponses

Exercice 1

On considère une variable aléatoire X de loi de Poisson de paramètre λ , i.e., $X \sim \mathcal{P}(\lambda)$ et une variable aléatoire Y telle que Y|X=n suit une loi binomiale de paramètres n et $p=\frac{1}{2}$, i.e., $Y|X=n \sim \mathcal{B}\left(n,\frac{1}{2}\right)$.

1. Déterminer la loi du couple (X, Y).

(X,Y) est un couple de variables aléatoires discrètes à valeurs dans \mathbb{N}^2 tel que

$$\begin{split} P[X = n, Y = k] &= P[Y = k | X = n] P[X = n] \\ &= \frac{n!}{k!(n-k)!} \left(\frac{1}{2}\right)^n \frac{\lambda^n}{n!} e^{-\lambda}, \quad (k, n) \in \{0, ..., n\} \times \mathbb{N} \\ &= \frac{1}{k!(n-k)!} \left(\frac{\lambda}{2}\right)^n e^{-\lambda}, \quad (k, n) \in \{0, ..., n\} \times \mathbb{N} \end{split}$$

2. Montrer que Y suit une loi de Poisson $\mathcal{P}\left(\frac{\lambda}{2}\right)$. On a pour tout $k \in \mathbb{N}$

$$\begin{split} P[Y=k] &= \sum_{n\in\mathbb{N}} P[X=n,Y=k] \\ &= \sum_{n=k}^{\infty} \left[\frac{1}{k!(n-k)!} \left(\frac{\lambda}{2} \right)^n e^{-\lambda} \right], \\ &= e^{-\lambda} \frac{1}{k!} \sum_{m=0}^{\infty} \left[\frac{1}{m!} \left(\frac{\lambda}{2} \right)^{m+k} \right], \\ &= e^{-\lambda} \frac{1}{k!} \left(\frac{\lambda}{2} \right)^k \sum_{m=0}^{\infty} \left[\frac{1}{m!} \left(\frac{\lambda}{2} \right)^m \right], \\ &= \frac{e^{-\frac{\lambda}{2}}}{k!} \left(\frac{\lambda}{2} \right)^k. \end{split}$$

On reconnait une loi de Poisson de paramètre $\frac{\lambda}{2}$, i.e., $Y \sim \mathcal{P}\left(\frac{\lambda}{2}\right)$.

3. Montrer que $E[XY] = \frac{1}{2}\lambda(1+\lambda)$ (on pourra utiliser le théorème des espérances conditionnelles). D'après le théorème des espérances conditionnelles

$$E[XY] = E_X \{ E_Y[XY|X] \} = E_X \{ X E_Y[Y|X] \} = E_X \left\{ X \times \frac{X}{2} \right\} = \frac{1}{2} E[X^2].$$

En effet comme la loi de Y|X=n est une loi binomiale $\mathcal{B}\left(n,\frac{1}{2}\right)$, son espérance est $E_Y[Y|X=n]=\frac{n}{2}=\frac{X}{2}$.

Comme X suit une loi de Poisson de paramètre λ , on en déduit

$$E[X^2] = \operatorname{var}[X] + E^2[X] = \lambda + \lambda^2.$$

d'où

$$E[XY] = \frac{\lambda(1+\lambda)}{2}.$$

4. Déterminer a tel que la covariance du couple (X, Z = X + aY) soit nulle. D'après ce qui précède, on a

$$E[X] = \lambda \text{ et } E[Z] = \lambda + a\frac{\lambda}{2} = \lambda \left(1 + \frac{a}{2}\right).$$

de plus

$$E[XZ] = E[X^2] + aE[XY] = \lambda + \lambda^2 + a\left[\frac{\lambda(1+\lambda)}{2}\right].$$

On en déduit

$$cov(X, Z) = E[XZ] - E[X]E[Z] = \lambda \left[1 + \frac{a}{2}\right].$$

La covariance du couple (X, Z) est donc nulle si et seulement si a = -2.

Exercice 2

1) X_1 et X_2 suivent des lois uniformes sur $\{1,...,N\}$ tandis que le couple (X_1,X_2) suit une loi uniforme sur $\{(i,j),i\in\{1,...,N\},j\in\{1,...,N\}\},i\neq j\}$, c'est-à-dire

$$P[X_1 = i, X_2 = j] = \frac{1}{N(N-1)}$$
 $i \in \{1, ..., N\}, j \in \{1, ..., N\}, i \neq j$

2) Il est clair que $E[X_1] = E[X_2] = \frac{N+1}{2}$. De plus

$$E[X_1 X_2] = \sum_{i \neq j} ij \frac{1}{N(N-1)}$$

$$= \frac{1}{N(N-1)} \sum_{i \neq j} ij$$

$$= \frac{1}{N(N-1)} \left[\sum_{i,j} ij - \sum_{i} i^2 \right]$$

Des calculs simples permettent d'obtenir

$$E[X_1X_2] = \frac{(N+1)(3N+2)}{12}$$

et par suite

$$cov(X_1, X_2) = -\frac{N+1}{12}.$$

3) Le changement de variables est tel que

$$\begin{cases} Z = X_1 - X_2 \\ U = X_1 \end{cases} \iff \begin{cases} X_1 = U \\ X_2 = U - Z \end{cases}$$

donc il est bijectif de

$$\{(i,j)\,,i=1,...,N,j=1,...,N,i\neq j\}$$

dans

$$\{(u, z), u \in \{1, ..., N\}, z \in \{u - N, ..., u - 1\}, z \neq 0\}$$

Le couple (Z,U) suit une loi uniforme sur son ensemble de définition. Z est à valeurs dans $\{-(N-1),...,-2,-1\} \cup \{1,2,...,N-1\}$ et On a

$$P[Z=z] = \frac{N-|z|}{N(N-1)}$$
 $z \in \{-(N-1), ..., -2, -1\} \cup \{1, 2, ..., N-1\}.$

Exercice 3

1) On détermine la fonction de répartition de Z

$$\begin{split} P\left[Z < z \right] & = & P\left[XY < z \right] \\ & = & P\left[X < z, Y = 1 \right] + P\left[-X < z, Y = -1 \right]. \end{split}$$

Puisque X et Y sont indépendantes, on a

$$\begin{split} P\left[Z < z\right] &= P\left[X < z\right] P\left[Y = 1\right] + P\left[X > -z\right] P\left[Y = -1\right] \\ &= F(z) \times \frac{1}{2} + F(z) \times \frac{1}{2} \\ &= F(z) \end{split}$$

où F(z) est la fonction de répartition de la loi normale $\mathcal{N}(0,1)$. Donc $Z \sim \mathcal{N}(0,1)$.

2) La covariance du couple (X, Z) est définie par

$$\begin{array}{rcl} \operatorname{cov}\left(X,Z\right) & = & E\left[XZ\right] - E\left[X\right]E\left[Z\right] \\ & = & E\left[X^{2}Y\right] - E\left[X\right]E\left[XY\right]. \end{array}$$

Puisque $X \sim \mathcal{N}(0,1)$, on a E[X] = 0 et $E[X^2] = 1$. De plus E[Y] = 0 (Y prend les valeurs +1 et -1 de manière équiprobable), d'où en utilisant l'indépendance entre les variables X et Y

$$cov(X, Z) = 0.$$

3) La probabilité recherchée s'écrit

$$\begin{split} P\left[X + Z = 0\right] &= P\left[X + XY\right] = 0 \\ &= P\left[X(1 + Y) = 0\right] \\ &= P\left[Y = -1\right] = \frac{1}{2}. \end{split}$$

On a une chance sur 2 d'avoir Z=-X, donc X et Z ne sont pas indépendantes même si cov(X,Z)=0. Ceci est un exemple de couple de variables aléatoires non indépendantes de covariance nulle

Exercice 4

L'objectif de cet exercice est d'étudier un exemple de couple de variables aléatoires (X,Y) tel que l'une des deux variables Y est discrète tandis que l'autre variable X est continue. En utilisant les résultats concernant les probabilités conditionnelles, on obtient

$$P[Y = k] = \int_{\mathbb{R}} P[X = k|Y = y]g(y)dy$$
$$= \int_{0}^{+\infty} \frac{y^{k}}{k!} e^{-y} \times ce^{-cy}dy$$
$$= \int_{0}^{+\infty} \frac{cy^{k}}{k!} e^{-(c+1)y}dy.$$

En effectuant le changement de variables u = (c+1)y, on obtient

$$\begin{split} P\left[Y=k\right] &= \int_0^{+\infty} \frac{c}{k!} \frac{u^k}{(c+1)^k} e^{-u} \times \frac{du}{c+1} \\ &= \frac{c}{(c+1)^{k+1}}, \ k \in \mathbb{N} \end{split}$$

en utilisant le fait que

$$\Gamma(k+1) = \int_0^{+\infty} u^k e^{-u} du = k!.$$

Exercice 5

Loi de X

Il est clair que X est à valeurs dans $\{0, ..., k-1\}$. De plus

$$\begin{split} P\left[X=i\right] &= P\left[i \leq kU < i+1\right] \\ &= P\left[\frac{i}{k} \leq U < \frac{i+1}{k}\right] \\ &= \int_{\frac{i}{k}}^{\frac{i+1}{k}} du = \frac{1}{k} \end{split}$$

Donc X suit la loi uniforme sur $\{0, ..., k-1\}$

Loi de Y

Il est clair que Y est à valeurs dans [0, 1[.

Pour y < 0, il est clair que P[Y < y] = 0

Pour $y \ge 1$, il est clair que P[Y < y] = 1

Pour $y \in [0, 1[$, on a

$$\begin{split} P\left[Y < y\right] &= P\left[\bigcup_{i=0}^{k-1} \left\{Y < y, X = i\right\} \right] \\ &= \sum_{i=0}^{k-1} P\left[Y < y, X = i\right] \\ &= \sum_{i=0}^{k-1} P\left[kU - i < y, i \le kU < i + 1\right] \\ &= \sum_{i=0}^{k-1} P\left[U < \frac{y+i}{k}, \frac{i}{k} \le U < \frac{i+1}{k}\right] \\ &= \sum_{i=0}^{k-1} P\left[\frac{i}{k} \le U < \frac{y+i}{k}\right] \\ &= \sum_{k=0}^{k-1} \frac{y}{k} = y \end{split}$$

Donc Y suit la loi uniforme sur [0, 1].

Indépendance de X et de Y

Pour montrer que X et Y sont deux variables aléatoires indépendantes, il suffit de montrer que

$$P[X = i, Y < y] = P[X = i] P[Y < y]$$
 $\forall i \in \{0, ..., k-1\}, \forall y \in [0, 1].$

Or

$$\begin{split} P\left[X=i,Y < y\right] &= P\left[i \leq kU < i+1, kU-i < y\right] \\ &= P\left[U < \frac{y+i}{k}, \frac{i}{k} \leq U < \frac{i+1}{k}\right] \\ &= \frac{y}{k} \text{ (d'après ce qui précède)}. \end{split}$$

On a bien P[X = i, Y < y] = P[X = i] P[Y < y], ce qui signifie que X et Y sont des variables aléatoires indépendantes.