Задания

23 марта 2021 г.

- 1. Пусть $F: \mathbf{C} \to \mathbf{D}$ некоторый функтор. Какие из следующих утверждений верны? Как изменится ответ, если предположить, что F эквивалентность категорий?
 - (a) Если $f: X \to Y$ мономорфизм в ${\bf C}$. то F(f) мономорфизм в ${\bf D}$.
 - (b) Если X (ко)предел диаграммы $D: \mathbf{J} \to \mathbf{C}$, то F(X) (ко)предел диграммы $F \circ D: \mathbf{J} \to \mathbf{D}$.
- 2. Пусть **Cat** категория малых категорий. Ее объекты это малые категории. Морфизмы в категории **Cat** это функторы между категориями.

Пусть **Graph** – категория графов. Ее объекты – графы, то есть пары (V,E), состоящие из множества вершин V и функции E, сопоставляющей каждой паре вершин $x,y\in V$ множество E(x,y) ребер из x в y.

Морфизм графов (V,E) и (U,D) состоит из функции $f:V\to U$ и функции $f:E(x,y)\to D(f(x),f(y))$ для всех $x,y\in V$. Композиция и тождественные морфизмы определены очевидным образом.

Определите забывающий функтор из **Cat** в **Graph**. Докажите, что этот функтор строгий.

- 3. В лекции определялся функтор $I:\mathbf{Mon} \to \mathbf{Grp}$ обратимых элементов моноида.
 - (a) Является ли I строгим? Докажите это. Рассмотрим два моноида: первый M_1 моноид из строк над конечным алфавитом с операцией конкатенации; второй M_2 $(\mathbb{Z},+).$

 $I(M_1)$ — тривиальный моноид; $I(M_2)=M_2$. Гомоморфизмы $f_1(s)=length(s), \ \ f_2(s)=2\cdot length(s)$ отобразятся в один и тот же (единственный) гомоморфизм f(x)=0. I не строгий.

(b) Является ли I полным? Докажите это.

Рассмотрим два моноида:

$$M_1 = (4\mathbb{Z} \cup \{-2\}, *)$$

 $M_2 = (4\mathbb{Z} \cup \{2\}, *)$

$$I(M_1)=I(M_2)=(4\mathbb{Z},*)$$
 Пусть $f(x)=x$: $I(M_1)\to I(M_2)$

Пусть
$$g:M_1\to M_2$$
 — прообраз $f.$ $4=g(4)=g(-2*-2)=g(-2)^2 \Rightarrow g(-2)=2$ $-8=g(-8)=g(4*-2)=g(4)*g(-2)=8$

Получили противоречие, значит g — не прообраз f. Значит у f нет прообраза, значит I не полный.

4. Докажите, что если $F: \mathbf{C} \to \mathbf{C}$ – некоторый эндофунктор, то начальная F-алгебра X удовлетворяет уравнению $X \simeq F(X)$.

Пусть (X_0,α) — начальный объект. Тогда рассмотрим алгебру $(F(X_0),F(\alpha))$. Тогда существует кникальный f, для которого диаграмма ниже коммутирует.

$$F(X_0) \xrightarrow{\alpha} X_0$$

$$F(f) \downarrow \qquad f \downarrow$$

$$F(F(X_0)) \xrightarrow{F(\alpha)} F(X_0)$$

 $\alpha\circ f:X_0\to X_0$ — морфизм в категории F-алгебр. Так как (X_0,α) — начальный, то $\alpha\circ f=id.$

Тогда из диаграммы получаем:

$$F(\alpha)\circ F(f)=F(\alpha\circ f)=F(id)=id=f\circ \alpha$$

То есть α — изо, а значит $X_0 \simeq F(X_0)$