Evaluating NAND Trees

Group

Aditya Basu - 191E10002

Course: Algorithms-I (CS21003)

Guidance: Prof. Palash Dey and Prof. Partha P Chakrabarti

Contents

1

Introduction

Introduction to the major problem statement, motivation, topic and related concepts.

2

Algorithms

Formal problem definition of each part, pseudocode, analysis and implementation.

3

Convergence of probabilities

Verify convergence of probabilities of case-wise evaluation of random NAND trees.

Major Problem Statement

 "Designing, analysing and implementing fast algorithms to evaluate NAND Trees"

The major problem statement has three subparts.

Motivation

NAND trees and their evaluation are used to design and improve several real systems:

- 1. Developing faster signal evaluation algorithms of the nature of evaluation of NAND trees are used to make burglar alarms more effective and robust.
- NAND Trees offer standardized facility for hardware fault detection. They are used
 in various semiconductor test methods. For example, the "NAND Tree test" is a
 commonly used test.

Quick recap - NAND Gate

The operation: X = A NAND B = !(A && B) i.e, NOT(A AND B)

The gate

Truth Table

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

What is a NAND Tree ?

A NAND tree is a complete binary tree with the following properties:

Each leaf node is labelled either 0 or 1

- All internal nodes are NAND gates. A NAND gate is a logic gate that takes in two
 inputs and evaluates to 0 if both its inputs are I and to I if either input is 0.
- Essentially, this means that for any internal node:
 node.value = (node.left_child) NAND (node.right_child)

Structure of a node in a NAND tree

```
struct node
{
    bool value;
    struct node *left;
    struct node *right;
};
```


Naive recursive algorithm to evaluate a NAND tree

Evaluation of NAND Tree: Finding the value of top-level NAND gate of the tree (value of the root)

```
Pseudocode:
```

```
bool naive_eval_NAND (node *root)
{
    if (root.left = NULL) // tree is a single leaf node
        return root
```

```
I = naive_eval_NAND (root.left)
r = naive_eval_NAND (root.right)
return (I NAND r)
```


This NAND tree evaluates to 1!

Naive recursive algorithm to evaluate a NAND tree

```
Pseudocode:
bool naive eval NAND (node *root)
   if (root.left = NULL)
        return root.val
    I = naive eval NAND (root.left)
    r = naive eval NAND (root.right)
    return (I NAND r)
```

Analysis:

Let n be the # nodes in the tree

$$T(n) = I$$
, if $n = I$
= $2T(n/2) + I$, otherwise

Thus, using Master's theorem:

$$T(n) = \Theta(n)$$

Note: Even if #leaves = n, we'd get the same running time since: #nodes = 2 #leaves - I

Short-circuiting - Improving the naive $\Theta(n)$ algorithm

- We exploit a particular property of NAND gates to improve our naive algorithm:
 0 NAND X = I i.e 0 NAND 0 = I, 0 NAND I = I
- While evaluating a node, if one of its subtree evaluates to 0, then we don't need to
 evaluate the other subtree.
- We use the above property. This is referred to as the "short-circuiting" algorithm.

In this case,

Don't need to evaluate right subtree since left subtree evaluates to 0!

Hence, NAND tree evaluates to I

"Left-first" - A deterministic short-circuiting algorithm

- While evaluating a node, always evaluate the left subtree of the node first.
- If the left subtree evaluates to 0, we're done, we return 1.
 (i.e. short-circuiting successful!)
- If the left subtree evaluates to 1, only then evaluate the right subtree of the node.
 Then take the NAND operation.

```
Pseudocode:
bool left first (node *root){
     if (root.left = NULL) // leaf
     return root.val
     I = left first (root.left)
     if(I = 0) return I
     else {
     r = left first (root.right)
     return (I NAND r)
```

"Left-first" - A deterministic short-circuiting algorithm

- The left-first algorithm definitely works at least as good as our naive recursive algorithm in all cases.
- In many cases, left-first works faster than the naive algorithm (when it is able to successfully short-circuit many times!)
- However, it is possible to design a NAND tree where left-first wouldn't short-circuit even once!
- This is where we come to the first part of our problem statement.

Designing the worst case!

Upshot of the first part of the problem statement:

- In many cases, left-first works faster than the naive recursive algorithm (when it is able to successfully short-circuit many times!)
- We design, analyze and implement an algorithm to create a NAND tree on which left-first wouldn't short-circuit even once!
- This is designing the worst case. Consequently, time complexity of left-first would be $\Theta(n)$.

High-level logic of the algorithm that creates the worst case:

- The property we have leveraged for short-circuiting 0 NAND X = I
- To ensure that left-first never short-circuits, we need to ensure that the left subtree of ALL nodes never evaluates to 0
- Thus, while creating a node we always assign its left sub-child the value I
- The right sub-child is assigned 0 or 1 depending on the value of the node is.
- The algorithm builds the tree from the root to the leaf using recursion.

```
Pseudocode:
struct tree* make tree (bool value, int
k, int i) {
  struct tree* node = new tree();
                                                     int v = I;
  // allocate space for the node
                                                     node->left = make tree(v, k, i+1);
  node->val = value:
                                                      if (value == 1) v = 0;
  node->left = NULL:
                                                      node->right = make tree(v, k, i+1);
  node->right = NULL; // initialization
                                                      return node:
  if (i == k) return node;
  //current level = required level
```

Example:

Analysis:

Let k be a number such that # leaves (n) = 2^k Consequently, # nodes in the tree = 2n - 1

$$T(k) = I$$
, if $k = 0$
= $2T(k-I) + I$, otherwise

Thus using simple recurrence,

$$T(k) = \Theta(2^k)$$

That is,
$$T(n) = \Theta(n)$$

Thus, we get linear time complexity in building the worst case tree.

Designing a randomized algorithm!

"Random-first" - A randomized short-circuiting algorithm

Upshot of the second part of the problem statement:

- In many cases, left-first works faster than the naive recursive algorithm (when it is able to successfully short-circuit many times!)
- But, we successfully designed a worst case where its running time is $\Theta(n)$
- We try to improve this by designing a randomized algorithm "random-first" which does better than Θ(n) in expectation (sublinear)

Recap - Short-circuiting

- We exploit a particular property of NAND gates to improve our naive algorithm:
 0 NAND X = I i.e 0 NAND 0 = I, 0 NAND I = I
- While evaluating a node, if one of its subtree evaluates to 0, then we don't need to
 evaluate the other subtree.
- We use the above property. This is referred to as the "short-circuiting" algorithm.

In this case,

Don't need to evaluate right subtree since left subtree evaluates to 0!

Hence, NAND tree evaluates to I

"Random-first" - A randomized short-circuiting algorithm

While evaluating a node, we randomly choose a subtree first (either left or right))

- We evaluate the <u>randomly chosen subtree</u> (either left or right) first.
- If the randomly chosen subtree evaluates to 0, we're done, we return 1.
 (i.e. short-circuiting successful!)
- If the randomly chosen subtree evaluates to 1, only then evaluate the other subtree of the node.
- Then take the NAND operation and return the value.

"Random-first" - A randomized short-circuiting algorithm

Pseudocode: bool random_first (node *root) { if (root.left = NULL) // at a leaf node else { return root.val r = random first (root.right) choice = rand() % 2if (r = 0) return I if (choice == 0) { else { l = random_first (root.left) I = random first (root.left) if (I = 0) return Ireturn (I NAND r) else { r = random first (root.right) return (I NAND r)

Recurrence Relations for $T_o(n)$ and $T_I(n)$

Let $T_0(n)$ be the expected runtime of the random-first algorithm on a tree with n leaf nodes assuming the root evaluates to 0.

$$T_{o}(1) = \Theta(1)$$

$$= :. Constant Time$$

$$T_{o}(n) = 2T_{i}(\frac{n-1}{2}) + \Theta(1)$$

$$=) T_{o}(n) \leq 2T_{i}(\frac{n}{2}) + \Theta(1)$$

Recurrence Relations for $T_o(n)$ and $T_I(n)$

Let $T_1(n)$ be the expected runtime of the random-first algorithm on a tree with n leaf nodes assuming the root evaluates to 1

Two Possible Cases In
$$T_1(n)$$

Case 1: Lift Subtrus (0) is called first

 $T_1(n) = T_0(n) + \Theta(1)$

Case 2: Right Subtrus (1) is called first

 $T_1(n) = T_1(n) + T_0(n) + \Theta(1)$

So $T_1(n) = T_1(n) + \Theta(1) + \frac{1}{2} [T_1(n) + T_0(n) + \Theta(1)]$
 $T_1(n) = \frac{1}{2} [T_0(n) + T_0(n) + T_0(n) + \Theta(1)]$

Recurrence Relations for $T_o(n)$ and $T_I(n)$

OBSERVATION:
$$T_{1}(n) \leq T_{0}(n)$$
 $T_{0}(i) = \Theta(i)$

To Prove: $T_{0}(n) = O(n\epsilon)$
 $\forall \quad \exists \in \exists i \in \exists$

Convergence of probabilities of random NAND trees!

What is a random NAND tree?

- It is a NAND tree such that all its leaves have randomly assigned values. (i.e 0 or 1)
- All other internal nodes are usual NAND gates and evaluated using their children.
- Ultimate goal is to evaluate the NAND tree i.e find the value of the root.

Comparative performance of the three algorithms

k: a number such that #leaf nodes(n) in a random NAND tree = 2^k

Enter k: 13

Naive recursive algorithm: 0.00024497 seconds Left-first algorithm: 0.00011752 seconds Random-first algorithm: 2.445e-05 seconds

Enter k: 18

Naive recursive algorithm: 0.00337031 seconds Left-first algorithm: 0.00336206 seconds Random-first algorithm: 9.652e-05 seconds "Fastness" Ratio:

(naive : left_first : random_first)

1:2.08:100

I: I.0024:35

Convergence of probabilities of random NAND trees

Notation:

- k:a number such that #leaf nodes $(n) = 2^k$
- $P_0(k)$: The probability that a random nand tree of 2^k leaf nodes evaluates to 0
- $P_1(k)$: The probability that a random nand tree of 2^k leaf nodes evaluates to 1

The obvious relation:

 $P_0(k) + P_1(k) = I$ (since a NAND tree can evaluate to either 0 or I)

Convergence of probabilities of random NAND trees

Upshot of the third part of the problem statement:

• We shall prove that $P_0(k)$ and $P_1(k)$ converges to a particular value depending on whether k is odd or even.

Consequence:

- Since probabilities converge for values of k > 15, given a random NAND tree of 2^k leaf nodes is formed, it could be virtually told what value the tree would evaluate to (a.k.a with high probability), just by finding k%2.
- CONSTANT TIME!

Mathematical formulations of probability

Notation recap:

- $P_0(k)$: The probability that a random nand tree of 2^k leaf nodes evaluates to 0
- $P_1(k)$: The probability that a random nand tree of 2^k leaf nodes evaluates to 1

For starters:

k = 0 = essentially, I node forms the random tree

• $P_0(0) = P_1(0) = 0.5$, since the tree has one node only, it can either take value 0 or 1. Thus, individually probability is 0.5 each

Mathematical formulations of probability

P ₀ (k)	P _I (k)			
For the root to evaluate to 0, both its subtrees must evaluate to 1	For the root to evaluate to 1, atleast one of its subtrees must evaluate to 0			
Each subtree contains 2 ^{k-1} leaf nodes.	Each subtree contains 2 ^{k-1} leaf nodes.			
Thus, $P_0(k) = P_1(k-1) * P_1(k-1)$	We use: $P_0(k) + P_1(k) = I$			
Since, $P_0(k) + P_1(k) = I$	$=> P_1(k) = I - P_0(k)$			
$=> P_0(k) = (I - P_0(k-I))^2$	$=> P_{ }(k) = I - (P_{ }(k-I))^2$			

Convergence of probabilities of random NAND trees

• We have developed recursively formulation for $P_0(k)$ and $P_1(k)$

$$P_0(k) = (I - P_0(k-I))^2$$

Pseudocode:

```
P_0 (k) {
    if (k = 0)
        return 0.5
    val = P_0(k-1)
    return ((I - val)*(I-val))
}
```

```
P_{1}(k) = I - (P_{1}(k-1))^{2}
```

Pseudocode:

```
P_I (k) {
    if (k = 0)
        return 0.5
    val = P_I(k-I)
    return (I - val*val)
}
```

Convergence of probabilities of random NAND trees

P0(0):	0.5	P0(10):	0.980511
P1(0):	0.5	P1(10):	
P0(1):	0.25	P0(11):	0.000379812
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P1(11):	0.99962
P1(1):	0.75	P1(11).	0.99902
P0(2):	0.5625	P0(12):	
		P1(12):	0.00075948
P1(2):	0.4375		
		PO(13):	5.76809e-07
PO(3):	0.191406	P1(13):	0.999999
P1(3):		. =(==).	P.C. Carlotter
		PO(14):	0.999999
DO(4).	0 (52024	P1(14):	
PO(4):		(,.	11155020 00
P1(4):	0.346176	P0(15):	1.33082e-12
PO(5):	0.119838	P1(15):	1
P1(5):		00/461	2
11(3).	0.000102	PO(16):	
		P1(16):	2.66165e-12
P0(6):	0.774685		
P1(6):	0.225315	PO(17):	0
- \ - /		P1(17):	1
PO(7):	0.0507667		
P1(7):		P0(18):	
P1(1).	0.949233	P1(18):	0
P0(8):	0.901044	DO(10):	0
		PO(19):	
P1(8):	0.0989562	P1(19):	1
P0(9):	0.00979233	P0(20):	1
		P1(20):	0
P1(9):	0.990208	F1(20).	U

We observe that:

For **odd k**: $P_0(k)$ converges to 0 This means, $P_1(k)$ converges to 1

For **even k**: $P_0(k)$ converges to I This means, $P_1(k)$ converges to 0

Convergence is obtained roughly for k more than or equal to 15

Consequence of convergence of probabilities

For odd k: $P_0(k)$ converges to 0. This means, $P_1(k)$ converges to I

For **even k**: $P_0(k)$ converges to 1. This means, $P_1(k)$ converges to 0

This means, given k (not very small), i.e a random NAND tree with 2^k leaf nodes:

compute (k%2)

if k is odd: this means $P_1(k) = I$, thus the random tree evaluates to I! else if k is even: this means $P_0(k) = 0$, thus the random tree evaluates to 0!

Consequence of convergence of probabilities

- By just finding whether k is odd or even, we have evaluated the random NAND tree (with high probability) in constant time
- This is done without actually evaluating the random NAND tree
- Comparatively, if we had to evaluate the random NAND tree using random_first, it would take us sublinear time in expectation.
- So, using probabilistic analysis, we have done way better in evaluating the random NAND tree!

Code up on:

https://github.com/adityabasu1/Evaluating-NAND-Trees

Thank you!