REPORT

Math basics

학과명: 컴퓨터공학부

소프트웨어전공

교과명: 컴퓨터그래픽스

교수명: 오찬영

학 번: 202001796

이 름: 원민철

제출일: 2024.03.17

Let
$$A = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 3 & 1 & -1 \\ 2 & 4 & 0 & 3 \\ -3 & 1 & -1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 0 & -2 \\ 4 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} 3 & -2 & 0 & 5 \\ 1 & 0 & -3 & 4 \end{bmatrix}$.

(a) Does the matrix $D = ABC$ exist?

(b) Does the matrix $E = BAC$ exist?

If so, then $d_{34} = \begin{bmatrix} 1 & 2 & 3 & -1 & 1 \\ 1 & 0 & -3 & 4 \end{bmatrix}$.

- If so, then $f_{43} =$ _____. (c) Does the matrix F = BCA exist?
- (d) Does the matrix G = ACB exist?
- If so, then $g_{31} =$ _____. If so, then $h_{21} =$ _____.
- If so, then $j_{13} =$

A) Yes
$$d_{34} = \begin{bmatrix} 2 & 4 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & -1 \\ 0 & -2 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 2 & 6 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 4 \end{bmatrix} = 142$$

- b) NO
- C) ND
- J) NO

e) Yes
$$h_{21} = \begin{bmatrix} 1 & 0 & -3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 3 & 1 & -1 \\ 2 & 4 & 0 & 3 \\ -3 & 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 6 \\ 4 \end{bmatrix} = \begin{bmatrix} -11 \\ -8 \\ -5 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 6 \\ 4 \end{bmatrix} = -37$$

f) No

Let
$$A=\begin{bmatrix}1&1/3\\c&d\end{bmatrix}.$$
 Find numbers c and d such that $A^2=-I.$ Answer: $c=$ ____ and $d=$ ____ .

$$\begin{bmatrix} 1 & 1/3 \\ C & d \end{bmatrix} \begin{bmatrix} 1 & 1/3 \\ C & d \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 + \frac{1}{3}C & \frac{1}{3} + \frac{1}{3}d \\ C + Cd & \frac{1}{3}C + d^{2} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$d = -1 \cdot C = -6$$

- (1) Let $\mathbf{u}=(2,0,-1)$, $\mathbf{v}=(3,1,0)$, and $\mathbf{w}=(1,-1,c)$ where $c\in\mathbb{R}$. The set $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is not equal to _____ .
- (2) Let $\mathbf{u}=(1,-1,3)$, $\mathbf{v}=(1,0,1)$, and $\mathbf{w}=(1,2,c)$ where $c\in\mathbb{R}$. The set $\{\mathbf{u},\mathbf{v},\mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is not equal to _____.

3차원 직교정규 기저를 생각해 보자. 첫 번째 기저 벡터는 아래 그림과 같이 (3,4,0) 방향을 향하고, 두 번째는 하나의 주축을 향하며, 세 번째는 그 둘의 벡터곱으로 정의된다. 이 기저를 계산하라.

$$V_1 = (3.4.0)$$
, $V_2 = (0.0.1)$
 $340 \rightarrow 4.73, 0$, $V_3 = (4.73.0)$

두 개의 점 p_0 와 p_1 이 있다. p_0 의 좌표는 (2,0)이고 p_1 의 좌표는 (5,0)이다. p_0 에 벡터 (-1,2)가 저장되어 있고, p_1 에는 벡터 (2,5)가 저장되어 있다. p_0 와 p_1 을 잇는 선분을 따라 두 벡터를 선형보간할 때, 선분 위의 점 (4,0)에 놓일 벡터를 계산하라.

