Лабораторная работа 7. ПОЛНОСВЯЗНЫЕ НЕЙРОННЫЕ СЕТИ (FCNN). РЕШЕНИЕ ЗАДАЧ РЕГРЕССИИ И КЛАССИФИКАЦИИ

1. Изучение примеров. Изучите примеры:

Lab 7 Ex1 Base+TensorFlow&Keras.ipynb, Lab7 Ex2 MLP Scikit-learn.ipynb

2. Загрузка и подготовка данных.

- **2.1.** В соответствии с индивидуальным вариантом загрузите предобработанные датасеты в формате CSV для решения задач регрессии и классификации.
 - **2.2.** К данным примените кросс-валидацию k-fold.
 - 2.3. Выполните оптимизацию признакового пространства в датасетах.

3. Решение задачи регрессии и классификации с помощью FCNN.

- 3.1. Используйте FCNN (MLP) из библиотеки Scikit-learn.
- **3.1.1.** Подберите гиперпараметры для алгоритма нейронной сети (HC) тремя способами: Optuna, RandomizedSearchCV, Hyperopt^{1,2}.
- **3.1.2.** Используйте оптимизаторы: Adam, SGD (стохастический градиентный спуск), lbfgs (оптимизация с использованием алгоритма BFGS).
 - **3.2.** Используйте FCNN посредством API Keras^{3,4} и фреймворка TensorFlow.
- **3.2.1.** Подберите гиперпараметры для алгоритма HC тремя способами: Optuna, Keras $Tune^5$, Ray $Tune^6$.
- **3.2.2.** Используйте оптимизаторы: Adam, SGD (стохастический градиентный спуск), RMSprop 7 .

4. Визуализация.

- 4.1. Выведите архитектуры созданных НС.
- **4.2.** Выведите графики обучения моделей (график потерь, график точности по эпохам).
- **5. Оценка качества моделей.** Вычислите значения метрик оценки качества для обученных моделей регрессии и классификации. Полученные значения отобразите в табличной форме для задачи регрессии (см. образец). Для задачи классификации следует построить аналогичную таблицу.

¹ Hyperopt. – URL: http://hyperopt.github.io/hyperopt/

² Hyperopt. – URL: https://github.com/hyperopt/hyperopt-sklearn

³ Библиотека Keras – Русскоязычная документация Keras. – URL: https://ru-keras.com/home/

⁴ Keras. Deep Learning. – URL: https://keras.io/

⁵ KerasTuner. – URL: https://keras.io/keras_tuner/

⁶ Ray Tune. – URL: https://docs.ray.io/en/latest/tune/index.html

⁷ RMSprop (Root Mean Squared Propagation) — это алгоритм оптимизации, используемый в глубоком обучении и других методах ML для ускорения сходимости градиентного спуска. Он адаптирует скорость обучения для каждого параметра на основе исторической информации о градиентах

Образец

	Train Data					Test Data				
Регрессор/ Фреймворк	R ²	MSE	MAE	Кол-во эпох	Оптимизатор	R²	MSE	MAE	Кол-во эпох	Оптимизатор
	0.XX	0.XXXX	0.XXXX			0.XX	0.XXXX		0.XXXX	0.XXXX

- **6. Деплой модели.** Создайте по одному запросу с целью получения прогноза для задачи регрессии и задачи классификации (см. *Lab7_Ex2_MLP_Scikit-learn.ipynb*).
- **7. Вывод.** Напишите вывод о выполненной *Лабораторной работе №*7, в котором выберите лучшую модель регрессии и классификации, реализованные с помощью FCNN, и обоснуйте свое решение. Сравните полученные результаты с моделями ML, полученными в предыдущих Лабораторных работах.