Introduction to Pattern Recognition

What is classification?

- Map a sensored signal into one of C classes.
- Human sensors and intelligence (HI) => <u>Human</u> classification
- Artificial (human-like) intelligence (AI) => Rule based machine classification
- Man-made sensors and math/statistics => <u>Statistically</u> based machine classification
- The last type is used in 90++% of the real world problems =>
 Course focus is on this type

The big picture

- Knowledge of all stages are mandatory!
- Weakest link determine performance.....
- Course focus: classification and evaluation

The physical task

- Usually "modeled" as a statistical source
- In some cases a "deterministic" source
- Examples :
 - object recognition and tracking
 - medical diagnosis
 - speech recognition
 - instrumentation (temperature, pressure, wind, flow a.s.o.)
 - text recognition and parsing

Sensor(s)

- Sensor selection and/or fusion
- Active vs. passive sensor (battery, energy, remoteness)
- Match to task (resolution, noise, aso.)
- Examples :
 - image/video
 - microphone
 - ultrasound sensors
 - antennas (electro-magnetic)
 - accelerator
 - flowmeter
 - strain gage

Feature extraction

- Static or dynamic task -> feature form
- Extraction methods
- Feature quality criterias
 - class discriminability/separability
 - number of features
 - Large: separability(+), "curse of dimensionality"(-)
 - Small : generalization(+)
- Feature selection and/or transform
- Feature correlation

The classifier - general part

- A mathematical model of the task given the chosen features!
 - Model mismatch is always a problem....
- A theoretical optimal classifier exists for any statistical task!
 - The Bayes Decision Rule (BDR) classifier...
 - Represents an (unknown?) upper bound on performance
 - The upper bound is **highly** dependent on :
 - Problem/task complexity
 - Choice of sensor and method for feature extraction (FE)
 - Always try out alternative FE-methods !!!

The classifier - type, structure etc.

- Two kinds of classification :
 - Recognition (x belongs to one of a given set of classes)
 - Clustering (also find the classes/clusters)
- Two kinds of classifier types :
 - Statistical or deterministic (my definition)
 - Choice not necessarily matched to kind of task!
 - Deterministic : a distortion/distance/similarity measure must be chosen
 - Statistical : the form of probabilities and densities must be chosen.

The classifier - type, structure etc.

- Choices for a classifier
 - Deterministic : Template/Reference (KNN), Linear (discriminant)
 - Statistical : (Mixture) Gaussian
 - Classifier structure and complexity

•

The classifier - training

- Classifiers must be trained!
 - Classifier parameter estimation
- Training set
 - Must be large enough(?) and "representative"
 - Supervised : class labels are known
 - Unsupervised : class/cluster labels are not known
- Recognizers must be supervised trained and tested
- Clustering is in principle unsupervised training
- A good choice of training criteria is mandatory!

Evaluation

- Classifiers must be evaluated!
 - What is the real/"true" performance?
- Testset
 - Empirical error rate
 - 95% confidence error bound
- Verification of classifier hypotheses
- Small data set problem
 - "Leave-one-out technique"

Lecture content - 1

- Basic statistics and notation
- Class versus decision borders and regions
- The theoretical optimum BDR-classifier
- The practical suboptimal BDR-classifier
 - Plug in MAP-rule
 - Single Gaussian and Mixture Gaussian (GMM) cases
- The linear classifier
- The template based classifier
 - Distance metrics
 - Decision rules
- State of the art classifiers

Lecture content - 2

- Design/training of classifiers
- Plug in MAP and Maximum Likelihood (ML) training
 - Single Gaussian and GMM cases
- The linear classifier
 - The Minimum square error training and squashing
- The template based classifier
 - Template design using clustering
- Evaluation
 - Generalization
 - Error rate estimation and significance
 - The confusion matrix
 - Leave-one-out strategy for small data sets