ENTERED

PCT

RAW SEQUENCE LISTINGPATENT APPLICATION: **US/09/889,756A**DATE: 03/27/2003

TIME: 13:19:45

Input Set: N:\Crf4\03272003\I889756.raw
Output Set: N:\CRF4\03272003\I889756A.raw

```
1 <110> APPLICANT: Joelle Thonnard
 2 <120> TITLE OF INVENTION: BASB055
 3 <130> FILE REFERENCE: BM45353
 4 <140> CURRENT APPLICATION NUMBER: US/09/889,756A
 5 <141> CURRENT FILING DATE: 2002-04-03
 6 <150> PRIOR APPLICATION NUMBER: 9901462.3
 7 <151> PRIOR FILING DATE: 1999-01-22
 8 <150> PRIOR APPLICATION NUMBER: 9902069.5
 9 <151> PRIOR FILING DATE: 1999-01-29
10 <160> NUMBER OF SEQ ID NOS: 4
11 <170> SOFTWARE: FastSEQ for Windows Version 4.0
13 <210> SEQ ID NO: 1
14 <211> LENGTH: 1239
15 <212> TYPE: DNA
16 <213> ORGANISM: Neisseria meningitidis
17 <400> SEQUENCE: 1
18
         atggettttt atgettttaa ggegatgegt geggeegegt tggetgeege egttgeattg
                                                                                  60
19
         gtactgtcgt cttgcggtaa aggcggagac gcggcgcagg gcgggcagcc tgctggtcgg
                                                                                 120
20
         gaageceetg egecegtegt eggtgtegta acegteeate egeaaacegt egeattgace
                                                                                 180
21
         gtcgagttgc cggggcgttt ggaatcgctg cgtaccgccg atgtccgcgc ccaagtcggc
                                                                                 240
22
         ggcatcatcc aaaaacgcct gttccaagaa ggcagttatg tccgtgccgg acagccgctq
                                                                                 300
         tatcagatcg acagttccac ttatgaagca aatctggaaa gcgcgcgcgc gcaactggca
23
                                                                                 360
24
         acggctcagg caacgcttgc caaagcggat gcggatttgg cgcgatacaa gcctttggtt 🔗
                                                                                 420
25
         geogeogaag cegteageog geaggaatae gatgetgegg taacggegaa acgttetgee
                                                                                 480
26
         gaggcaggtg tcaaagcagc acaggcggca atcaaatctg ccggcattaa tctgaaccgt
                                                                                 540
27
         tegegeatta eegegeegat tteeggettt ateggteagt eeaaagttte egaaggtaeg
                                                                                 600
28
         ctgttgaatg cgggcgatac gaccgtgctg gcaaccatcc gccaaaccaa tccgatgtat
                                                                                 660
29
         gtgaacgtta cccagtctgc atccgaagtg atgaaattgc qccgtcagat agccgaaggc
                                                                                 720
30
         aaactgctgg cggcggatgg tgtgattgcg gtcggcatca aatttgacga cggcacagtt
                                                                                 780
31
         taccctgaaa aaggccgcct gctgtttgcc gatccggtcg tcaacgaatc gaccggtcag
                                                                                 840
32
         attaccetge gegeegeeqt accqaacqat caqaatatee tqatqeeeqq tetqtatqtq
                                                                                 900
33
         cgcgtgctga tggaccaagt ggcggtggat aacqcatttg ttgtgccgca gcaggcggta
                                                                                 960
34
         acgcgcggtg cgaaagatac cgtgatgatt gtgaatgccc aaggcggtat ggaaccccgc
                                                                               1020
35
         gaggtaacgg ttgcgcaaca gcagggtacg aattggattg ttacqtcqqq tctgaaqqac
                                                                               1080
36
         ggggacaagg tggttgtgga aggcatcagt atcgccggta taacqqqtgc qaaaaaggta
                                                                               1140
37
         acgcccaaag aatgggcgtc gtctgaaaac caagccgccg cgcctcaatc cggcgttcag
                                                                               1200
         acggcatctg aagccaaaac tgcttctgaa gcggaataa
                                                                               1239
40 <210> SEQ ID NO: 2
41 <211> LENGTH: 412
42 <212> TYPE: PRT
43 <213> ORGANISM: Neisseria meningitidis
44 <400> SEQUENCE: 2
45
         Met Ala Phe Tyr Ala Phe Lys Ala Met Arg Ala Ala Ala Leu Ala Ala
```

RAW SEQUENCE LISTING DATE: 03/27/2003 PATENT APPLICATION: US/09/889,756A TIME: 13:19:45

Input Set : N:\Crf4\03272003\1889756.raw
Output Set: N:\CRF4\03272003\1889756A.raw

46	1				5					10					15	
47	Ala	Val	Ala	Leu	Val	Leu	Ser	Ser	Cys	Gly	Lys	Gly	Gly	Asp	Ala	Ala
48				20					25	_	_	_	_	30		
49	Gln	Gly	Gly	Gln	Pro	Ala	Gly	Arg	Glu	Ala	Pro	Ala	Pro	Val	Val	Gly
50			35					40					45			
51	Val	Val	Thr	Val	His	Pro	Gln	Thr	Val	Ala	Leu	Thr	Val	Glu	Leu	Pro
52		50					55					60				
53	Gly	Arg	Leu	Glu	Ser	Leu	Arg	Thr	Ala	Asp	Val	Arg	Ala	Gln	Val	Gly
54	65					70					75					80
55	Gly	Ile	Ile	Gln	Lys	Arg	Leu	Phe	Gln	Glu	Gly	Ser	Tyr	Val	Arg	Ala
56					85	_	_			90			•		95	
57	Gly	Gln	Pro		Tyr	Gln	Ile	Asp		Ser	Thr	Tyr	Glu		Asn	Leu
58		_	_ •	100		_ -	_		105				_	110	_	
59	GIu	Ser		Arg	Ala	GIn	Leu		Thr	Ala	Gln	Ala		Leu	Ala	Lys
60		_	115	_	_		_	120	_	_	_		125		_ ~	
61	Ala		Ата	Asp	Leu	Ala		Tyr	Lys	Pro	Leu		Ala	Ala	GLu	Ala
62	17. 1	130	3	01	a 1	m	135	. 1 -		**- 3	ml	140		_	_	
63		ser	Arg	GIN	Glu	_	ASP	Ата	Ата	val		Ата	ьуs	Arg	ser	
64 65	145	λΊο	C1 11	17 n 1	T 110	150	7. l a	Cln	71-	7. 7.	155	Tera	Com	7 T -	C1	160
66	GIU	АІА	СТА	val	Lys 165	Ата	Ата	GTII	Ата	170	тте	гуѕ	ser	Ala	175	TTE
67	Δen	Τ.Δ11	Δen	Ara		λκα	Tla	Thr	λla		Tlo	Cor	Clu	Dho		Gly
68	ASII	пец	ASII	180	Ser	Arg	TTE	T 111F	185	FIU	116	Ser	СТУ	190	TIE	СТУ
69	Gln	Ser	Lvs		Ser	Glu	Glv	Thr		Len	Δsn	Δla	Glv		Thr	Thr
70	0111	501	195	,	501	O_u		200	Deu	Deu	21011	2114	205	пор	1111	1111
71	Val	Leu		Thr	Ile	Ara	Gln		Asn	Pro	Met.	Tvr		Asn	Val	Thr
72		210					215					220				
73	Gln	Ser	Ala	Ser	Glu	Val	Met	Lys	Leu	Arq	Arq	Gln	Ile	Ala	Glu	Gly
74	225					230		-		Ī	235					240
75	Lys	Leu	Leu	Ala	Ala	Asp	Gly	Val	Ile	Ala	Val	Gly	Ile	Lys	Phe	Asp
76					245					250					255	
77	Asp	Gly	Thr	Val	Tyr	Pro	Glu	Lys	Gly	Arg	Leu	Leu	Phe	Ala	Asp	Pro
78				260					265					270		
79	Val	Val	Asn	Glu	Ser	Thr	Gly	Gln	Ile	Thr	Leu	Arg	Ala	Ala	Val	Pro
80			275					280					285			
81	Asn		Gln	Asn	Ile	Leu		Pro	Gly	Leu	\mathtt{Tyr}		Arg	Val	Leu	Met
82	_	290			-	_	295			-		300			_	
83	_	GIn	Val	Ala	Val		Asn	Ala	Phe	Val		Pro	Gln	Gln	Ala	
84	305	_	~ 3		_	310					315	_	_ •		_	320
85	Thr	Arg	GLY	Ala		Asp	Thr	Val	Met		Val	Asn	Ala	Gln	_	Gly
86	1 (-1	a 1	D	3	325	77- 7	ml	**- 3		330	01	a 1	a 1	1	335	_
87	мет	GIU	Pro		Glu	vaı	Thr	vaı		GIn	GIn	GIn	GIŸ		Asn	Trp
88 89	тіо	17 - 1	mh ~	340	C1	T 0	T	7.00	345	3 an	T	17a 1	37 m 1	350	a1	a 1
90	тте	vат	355	ser,	стХ	ьeu	гла	360	GTÀ	ASP	гÀ2	val	365	val	GIU	Gly
91	Tla	Ser		Δla	Gly	Tle	Thr		λ 1 =	Lare	Laze	V=1		Dro	Lvc	Clu
92	116	370	116	VIG	GIY	116	375	GTÄ	та	пур	пλя	380	TIIL	PIO	ьys	GIU
93	Trn		Ser	Ser	Glu	Δen		Δla	Δla	Δla	Pro		Ser	Glv	Va 1	Gln
94	385				J_4	390	V ± 11	u	21.LU	41-LU	395	J 111	OCT	O T Y	¥ u i	400
- •	555										5,5					4 U U

DATE: 03/27/2003

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/889,756A TIME: 13:19:45

Input Set : N:\Crf4\03272003\1889756.raw
Output Set: N:\CRF4\03272003\1889756A.raw

95	Thr Ala Ser Glu Ala Lys Thr Ala Ser Glu Ala Glu	
96	405 410	
98 <210>	SEQ ID NO: 3	
99 <211>	LENGTH: 41	
100 <212>	TYPE: DNA	
101 <213>	ORGANISM: Artificial Sequence	
102 <220>	FEATURE:	
103 <223>	OTHER INFORMATION: primer	
104 <400>	SEQUENCE: 3	
105	aggcagaggc atatggcttt ttatgctttt aaggcgatgc g	41
107 <210>	SEQ ID NO: 4	
108 <211>	LENGTH: 42	
	TYPE: DNA	
110 <213>	ORGANISM: Artificial Sequence	
111 <220>	FEATURE:	
112 <223>	OTHER INFORMATION: primer	
113 <400>	SEQUENCE: 4	
114	aggeagagge tegagtteeg etteagaage agttttgget te	42

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/889,756A

DATE: 03/27/2003 TIME: 13:19:46

Input Set : N:\Crf4\03272003\1889756.raw
Output Set: N:\CRF4\03272003\1889756A.raw