Capitolo 9. Trasformatori

Esercizio 9.1

Un trasformatore monofase ha i seguenti dati di targa:

$$An = 30 \text{ kVA}$$
 $V1n = 10000 \text{ V}$ $f = 50 \text{ Hz}$

Della macchina sono noti:

numero di spire dell'avvolgimento primario : N1 = 2500numero di spire dell'avvolgimento secondario : N2 = 250sezione del nucleo magnetico : $S = 200 \text{ cm}^2$

Determinare:

- 1) il valore massimo dell'induzione nel nucleo magnetico
- 2) la corrente secondaria nominale
- 3) la tensione con la quale si deve alimentare il primario del trasformatore perché lavori con il valore di induzione precedente, ma con frequenza della tensione di alimentazione di 60 Hz.

Soluzione

1) Trascurando le cadute di tensione dovute alla resistenza ed alla reattanza di dispersione dell'avvolgimento primario ed ammettendo la tensione V1n sinusoidale, si ha:

$$VIn = EI = 4.44 \cdot f \cdot NI \cdot \varphi_{MAX}$$

Da cui essendo $\varphi_{MAX} = B_{MAX}S$ si può ricavare il valore massimo dell'induzione

$$B_{MAX} = V \ln/(4.44 \cdot f \cdot N1 \cdot S) = 0.9 \text{ Wb/m}^2$$

2) La corrente nominale secondaria vale:

$$I2n = An/V20 = 30000/1000 = 30 A$$

Dove V20 = V1n / Ko essendo Ko il rapporto di trasformazione a vuoto coincidente, praticamente con il rapporto spire Ko = N1/N2 = 10.

3) La tensione di alimentazione a 60 Hz è data da:

$$V1' = 4.44 f' \cdot N1 \cdot B_{MAX} = 12000 V$$

Esercizio 9.2

Di un trasformatore monofase, alimentato alla tensione nominale primaria di 6000 V, f = 50 Hz, si conoscono i seguenti dati:

rapporto di trasformazione a vuoto Ko = V1n/V20 = 30 resistenza dell'avvolgimento primario $R1 = 8 \Omega$ resistenza dell'avvolgimento secondario $R2 = 0.01 \Omega$ induttanza di dispersione dell'avvolgimento primario

Ld1 = 0.06 H

induttanza di dispersione dell'avvolgimento secondario

 $Ld2 = 0.13 \cdot 10^{-3} H$

La corrente assorbita nel funzionamento a vuoto, alimentando la macchina con la tensione e frequenza nominali è Io = 0.25 A ed il fattore di potenza corrispondente cos φ o = 0.2.

Il trasformatore, alimentato alla tensione e frequenza nominali, alimenta al secondario un carico ohmico induttivo: in queste condizioni assorbe dalla rete una potenza P1 = 24 kW con $\cos \varphi 1 = 0.8$ (lato primario).

Determinare:

- 1) tensione, corrente e fattore di potenza del carico
- 2) i valori della resistenza e della reattanza equivalenti primarie del trasformatore

Soluzione

1) Si può risolvere il problema applicando il teorema di Boucherot alla rete equivalente di figura.

Il trasformatore assorbe la potenza attiva P1 e reattiva Q1.

$$P1 = 24000 W (dal \ testo)$$

 $Q1 = P1 \tan(\varphi 1) = 18000 \ VAR$
 $A1 = \sqrt{P1^2 + Q1^2} = 30000 \ VAR$

La corrente II assorbita dalla rete è quindi pari a:

$$I1 = A1/V1 = 5 A$$

Le potenze attive e reattive dell'avvolgimento primario sono quindi pari a:

$$Pcu1 = R1 \cdot I1^{2} = 200 W$$

 $Qx1 = X1 \cdot I1^{2} = 471.24 VAR$

Le potenze attive e reattive in AA sono:

$$PAA = P1 - Pcu1 = 23800 W$$

 $QAA = Q1 - Qx1 = 17528 VAR$
 $A AA = \sqrt{PAA^2 + QAA^2} = 29559 VA$

La f.e.m primaria E1 è quindi pari a $E1 = A_AA/I1 = 5912$ V e quella secondaria E2 = E1/Ko = 197 V.

Le potenze attive e reattive assorbite a vuoto sono pari a:

$$Po = V1n \cdot Io \cdot cos \ \varphi o = 300 \ W$$

 $Qo = Po \ tan \ \varphi o = 1470 \ VAR$

La resistenza Ro e la reattanza Xo sono quindi pari a Ro = $V1n^2$ /Po = $120 \text{ k}\Omega$ e Xo = $V1n^2$ /Qo = $24.5 \text{ k}\Omega$.

Le potenze secondarie nelle condizioni di funzionamento specificato valgono quindi:

$$P2 = PAA - EI^{2} / Ro = 23509 W$$

 $Q2 = QAA - EI^{2} / Xo = 16102 VAR$
 $A2 = 28494 VA$

Da cui si può ottenere la corrente secondaria:

$$I2 = A2/E2 = 144.5 A$$

Le potenze attiva e reattiva impegnate dall'avvolgimento secondario valgono:

$$Pcu2 = R2 \cdot I2^2 = 209.9 W$$

 $Ox2 = X2 \cdot I2^2 = 854 VAR$

Da cui la potenza attiva e reattiva del carico valgono:

$$PBB = P2 - Pcu2 = 23299 W$$

 $OBB = O2 - Ox2 = 15248 VAR$

L'angolo di sfasamento tra la tensione e la corrente del carico è:

$$cos \varphi BB = cos(atan(QBB/PBB)) = 0.84$$

e la tensione ai capi del carico:

$$V2 = PBB / (I2 \cdot cos \varphi BB) = 193 V$$

2) Le reattanze e resistenze equivalenti primari si possono calcolare come:

$$R'eq = R1 + R2 \cdot Ko^2 = 17 \Omega$$

 $X'eq = X1 + X2 \cdot Ko^2 = 55.6 \Omega$

Esercizio 9.3

I dati di targa di un trasformatore monofase sono:

$$An = 40 \text{ kVA}$$
 $V1n = 12000 \text{ V}$ $V20 = 260 \text{ V}$ $f = 50 \text{ Hz}$

Sulla macchina si sono eseguite le seguenti prove:

a) Prova a vuoto alimentando la macchina a tensione e frequenza nominali:

$$Po = 0.4 \%$$
 $cos \varphi o = 0.2$

b) Prova di corto circuito eseguita a corrente e frequenza nominali:

$$Pc \% = 1.8 \%$$
 $Vcc = 4 \%$

Determinare

Impedenze, resistenze, reattanze dei circuiti equivalenti semplificati riferiti agli avvolgimenti primario e secondario.

Soluzione

Si fa riferimento al circuito equivalente ridotto riportato in figura. Dalla prova di corto circuito si possono ricavare i parametri R2 e X2 e dalla prova a vuoto si possono ricavare i parametri Ro e Xo. Dalla prova di corto circuito si ricava:

$$Pc = Pc\% \cdot An/100 = 720 W$$

 $I2n = An/V20 = 154 A$
 $Vc = Vc\% \cdot V2n/100 = 10.4 V$
 $cos \varphi cc = Pc/(Vc \cdot I2n) = 0.45$

da cui:

$$R2 = Pc / I2n^2 = 3.04 \cdot 10^{-2} \Omega$$

 $X2 = R2 \tan \varphi 2 = 6 \cdot 10^{-2} \Omega$

La resistenza Ro e Xo si ricavano dalla prova a vuoto:

$$Po = Po\% \cdot An/100 = 160 W$$

 $Qo = Po \ tan \ \varphi o = 784 \ VAR$

Da cui

$$Ro1 = V1n^2/Po = 9 \cdot 10^5 \Omega$$

 $Xo1 = V1n^2/Qo = 1.84 \cdot 10^5 \Omega$

Il rapporto di trasformazione a vuoto è Ko = VIn/V20 = 46.2

Da cui

$$Ro2 = Ro1/Ko^2 = 423 \Omega$$

 $Xo2 = Xo1/Ko^2 = 86.4 \Omega$
 $R1 = R2 \cdot Ko^2 = 64.8 \Omega$
 $X1 = X2 \cdot Ko^2 = 128 \Omega$

Esercizio 9.4

Ad un trasformatore monofase, alimentato alla tensione e frequenza nominali, è allacciato un carico ohmico induttivo che, sotto la tensione V2 = 380 V, assorbe I2 = 40 A con fattore di potenza cos $\varphi 2 = 0.707$.

Il rapporto di trasformazione a vuoto è Ko = V1n/V20 = 4

Con una prova a vuoto, effettuata alla tensione e frequenza nominali (fn = 50 Hz) si è trovato che la corrente assorbita è Io = 0.3 A ed il fattore di potenza cos φ o= 0.15

La prova di corto circuito, eseguita alla frequenza e corrente nominali alimentando la macchina dal lato bassa tensione, ha fornito i seguenti risultati:

$$Vc2 = 19 V$$
 $Ic2 = 50 A$ $cos \varphi cc = 0.45$

Determinare:

- 1) tensione, corrente e fattore di potenza primari nelle condizioni di carico specificate
- 2) la potenza e la tensione di corto circuito percentuali

Soluzione

La tensione, corrente e il fattore di potenza primari possono essere calcolati applicando il teorema di Boucherot.

La potenza attiva e reattiva assorbita dal carico sono pari a :

$$P2 = V2 \cdot I2 \cdot \cos \varphi 2 = 10746 W$$

$$Q2 = P2 \tan \varphi 2 = 10750 VAR$$

Le potenze attiva e reattiva impegnate dalla resistenza e reattanza equivalenti sono pari a:

$$Pcu = Rc2 \cdot I2^2 = 274 W$$

$$Qcu = Xc2 \cdot I2^2 = 543 VAR$$

La potenza trasmessa al secondario (AA) è quindi pari a:

$$PAA = P2 + Pcu = 11020 W$$

 $QAA = Q2 + Qcu = 11292 VAR$

Da cui cos $\varphi AA = 0.695$. La f.e.m. secondaria è pari a :

$$E2 = PAA / (I2 \cdot cos \varphi AA) = 394.5 V$$

Dal rapporto di trasformazione ricaviamo la tensione di alimentazione:

$$V1n = E2 \cdot Ko = 1578 V$$

Le potenze attiva Po e reattiva Qo sono pari a:

$$Po = V1n \cdot Io \cdot cos \ \varphi o = 71 \ W$$

 $Qo = Po \cdot tan \ \varphi o = 468 \ VAR$

Il trasformatore assorbe quindi:

$$P1 = PAA + Po = 11091 W$$

 $Q1 = QAA + Qo = 11760 VAR$

Da cui (essendo tan $\varphi 1 = Q1/P1$) cos $\varphi 1 = 0.815$

La corrente assorbita vale:

$$I1 = P1/V1n \cdot \cos \varphi 1 = 10.25 A$$

La potenza nominale del trasformatore è quindi $An = V20\cdot I2n = 19725 VA$, da cui:

$$Pc = Rc2 \cdot Ic2^2 = 427 W$$

 $Pc\% = 100 \cdot (Pc/An) = 2.16 \%$

$$Vc\% = 100 \cdot (Vc2/V20) = 4.8\%$$

Esercizio 9.5

Ad un trasformatore monofase di potenza nominale An = 70 kVA e rapporto di trasformazione K = V1n / V20 = 500 V / 10000 V, fin = 50Hz a è connesso un carico che assorbe a V2 = 8000 V, una corrente I2 = 5A a cos $\phi 2 = 0.8$. La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: Pcc% = 5%, $cos \varphi cc = 0.5$ Prova a vuoto: Po% = 0.4%, $cos \varphi o = 0.2$

Si determinino la tensione di alimentazione V1 e la corrente I1 del trasformatore e il $\cos \varphi 1$.

Soluzione

Si procede utilizzando il metodo di Boucherot partendo dal carico e risalendo fino lato primario.

La potenza attiva e reattiva assorbite dal carico sono pari a

$$P2=V2\cdot I2\cdot cos\varphi 2=320 \text{ kW}$$

 $Q2=P2\cdot tan\varphi 2=24 \text{ kVar}.$

I parametri serie si calcolano a partire dai risultati della prova in corto circuito:

$$Pcc=Pcc\%\cdot An/100=3.5 \text{ kW}$$

da cui si ricava

$$Rc=Pcc/I2n^2=71.429 \Omega$$
, $Xc=Rc \cdot tan\varphi c=35.714 \Omega$.

dove
$$I2n=An/V20=7 A$$
,

Chiamando sezione A la sezione che comprende l'impedenza serie Rc-Xc, si ottiene

$$PAA = P2 + Rc \cdot I2^2 = 33.79 \text{ kW}$$

 $QAA = Q2 + Xc \cdot I2^2 = 24.89 \text{ kVAR}.$

La tensione al secondario è pari a

$$Vb = (\sqrt{PAA^2 + QAA^2})/I2 = 8.393 \text{ kV}.$$

Chiamando K il rapporto di trasformazione (V1n/V20)=0.05, si ha che la tensione Vb riportata al primario del trasformatore è pari a $Vb'=Vb\cdot K=419.658$ V.

E' ora necessario ricavare i parametri derivati:

$$Po=Po\%\cdot An/100=280 W$$
,
 $Qo=Po\cdot tan\varphi 0=1.372 \ kVAR$,

da cui si ricava

$$X_0 = V \ln^2/Q_0 = 182.254 \Omega$$

 $R_0 = V \ln^2/P_0 = 892.85 \Omega$

Dalla rete si assorbono quindi

$$P1 = PAA + Vb^{2}/Ro = 33.98 \ kW$$

 $Q1 = QAA + Vb^{2}/Xo = 25.86 \ kVAR$

E si ottiene Va=Vb', $Ia=(\sqrt{P1^2+Q1^2})/Vb'=101.756 A$ $cos\varphi a=Pa/(Vb'\cdot Ia)=0.796$

Esercizio 9.6

Un trasformatore monofase di potenza nominale An = 240 kVA e rapporto di trasformazione K = V1n / V20 = 2000 V / 5000 V, fn = 50Hz è connesso un carico sul secondario che assorbe una corrente pari alla nominale e ha una tensione V2 = 3000 V a cos $\varphi 2 = 0.8$ in ritardo (carico ohmico-induttivo). La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: vcc% = 3 %, pcc% = 1,8 %Prova a vuoto: Io% = 1%, $cos \phi o = 0,2$

Si determinino la tensione primaria V1, la corrente I1 assorbita e il cos $\phi 1$.

Soluzione

Si procede utilizzando il metodo di Boucherot partendo dal carico e risalendo fino lato primario.

La potenza attiva e reattiva assorbite dal carico sono pari a

 $P2=V2\cdot I2n\cdot \cos\varphi 2=11.52\ kW$ $Q2=P2\cdot \tan\varphi 2=86.4\ kVar$ $dove\ I2n=An/V20=48\ A.$ Poiché il trasformatore lavora a corrente nominale non è necessario calcolare i parametri serie ma è sufficiente calcolare la potenza attiva e reattiva di corto circuito.

Dai risultati della prova in corto circuito:

$$Pcc=(pcc\%/100)\cdot An=4.32 \text{ kW},$$

 $Qcc=Pcc\cdot tan\varphi c=5.76 \text{ kVar},$

dove per calcolare tan φ c si calcola $Vc2=vc\%\cdot V20/100=150\ V$ e $cos\varphi c=Pcc/(Vc\cdot I2n)=0.6$.

Chiamando sezione A la sezione che comprende l'impedenza serie Rc-Xc, si ottiene

$$PA=P2+Pc = 119.5 \text{ kW}$$

 $QA=Q2+Qc = 92.16 \text{ kVar}.$

La tensione secondaria Vb è pari a $Vb=(\sqrt{PA^2+QA^2})/I2n$ e la tensione Vb riportata al primario è pari a Vb'= $Vb\cdot K=1.258$ kV.

E' ora necessario ricavare i parametri derivati:

$$Io=(Io\%/100)\cdot I1n=1.2~A$$

 $dove~I1n=An\cdot V1n=120~A$,
 $Po=V1n\cdot Io\cdot cos\varphi 0=480W~e~Qo=Po\cdot tan\varphi 0=2.352~kVAR$,

da cui si ricava

$$Xo=V1n2/Qo=1.701 \ k\Omega \ e \ Ro=V1n2/Po=8.33 \ k\Omega.$$

La potenza assorbita al primario è quindi:

$$P1=PA+Vb^{2}/Ro=119.7 \ kW \ e \ Q1=QA+Vb^{2}/Xo=93.09 \ kVAR \ V1=Vb^{2}, \ I1=(\sqrt{P1^{2}+Q1^{2}})/Vb^{2}=120.572 \ A \ e \ cos \varphi 1=P1/(Vb^{2}-I1)=0.789$$

_ ..._

Esercizio 9.7

Un trasformatore monofase di potenza nominale An = 80 kVA e rapporto di trasformazione K = V1n / V20 = 2000 V / 500 V, fn = 50Hz alimentato a tensione e a frequenza nominali assorbe I1 = 10 A a cos $\varphi 1 = 0.5$ in ritardo. La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: vcc% = 10 %, $cos \varphi cc = 0.6$ Prova a vuoto: Io% = 10%, $cos \varphi o = 0.2$

Si determinino la tensione V2, la corrente I2 e il cos φ 2 del carico

Soluzione

Si fa sempre riferimento al circuito equivalente ridotto del trasformatore riportato negli esercizi precedenti. La potenza assorbita è:

$$A1=V1 \cdot I1=20 \text{ kVA},$$

 $P1=A1 \cdot \cos(\varphi 1)=10 \text{ kW},$
 $Q1=A1 \cdot \sin(\varphi 1)=17.32 \text{ kVAR}.$

Dalla prova a vuoto si ricava

$$Io=(Io\%/100)\cdot I1n=4 A$$
, dove $I1n=An/V1n=40 A$, $Po=V1n\cdot Io\cdot cos(\varphi o)=1.6 kW e$ $Qo=V1n\cdot Io\cdot sin(\varphi o)=8 kVAR$.

La potenza attiva e reattiva a valle del ramo derivato (Ro-Xo) è pari a

$$PA=P1-Po=8.4 \ kW,$$

 $QA=Q1-Qo=9.48 \ kVAR,$
 $AA=12.67 \ kVA.$

Al secondario si avrà una tensione pari a V20 (visto che il primario e' alimentato a tensione nominale), di conseguenza:

$$I2=AA/V20=25.34 A.$$

Dalla prova in cto cto si ricava:

$$Vc = (vc\%/100) \cdot V = 50 V$$
,
 $Pc = Vc \cdot I2n \cdot cos(\varphi I) = 4.8 kW$
 $Qc = Vc \cdot I2n \cdot sin(\varphi I) = 6.4 kVAR$

dove
$$I2n = An/V20 = 160 A$$
.

Si ricava quindi

$$Rc = Pc/(I2n^2) = 0.1875 \Omega.$$

 $Xc = Qc/(I2n^2) = 0.25 \Omega.$

Lato carico si trova

$$Pcarico = PA - (Rc \cdot I2^{2}) = 8279.6W,$$

 $Qcarico = QA - (Xc \cdot I2^{2}) = 9319.5 \ VAR.$

da cui
$$cos \varphi$$
 $cr = atan (Qcarico/Pcarico) = 0.66$,
 $Vcarico = \sqrt{Pcarico^2 + Qcarico^2} / I2 = 491.9 \ Ve$
 $Icarico = I2$

Esercizio 9.8

Un trasformatore monofase di potenza nominale An = 240 kVA e rapporto di trasformazione K = V1n / V20 = 2000 V / 5000 V, fn = 50Hz è connesso un carico sul secondario che assorbe una corrente

pari alla nominale e ha una tensione V2 = 3000 V a cos $\varphi 2 = 0.5$ in ritardo (carico ohmico-induttivo). La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: vcc% = 3 %, pcc% = 1.8

Prova a vuoto: Io% = 1%, $\cos \varphi o = 0.2$

Si determinino la tensione primaria V1, la corrente I1 assorbita e il cos ϕ 1.

Soluzione

La potenza assorbita dal carico è pari a

$$P1=V2 \cdot I2n \cdot cos(\varphi 2)=72 \ kW,$$

 $Q1=P2 \cdot tan(\varphi 2)=124.7 \ kVAR,$

$$dove\ I2n = An/V2n = 48\ A.$$

Dalla prova a vuoto si ricava

$$Io=(Io\%/100) \cdot I1n=1.2 A$$
,
 $Po=V1n \cdot Io \cdot cos(\varphi 0)=480 W$
 $Qo=V1n \cdot Io \cdot sin(\varphi 0)=2.352 \ kVAR$

dove I1n=An/V1n=120 A.

La resistenza Ro è quindi pari a

$$Ro=V1n2/Po=8.33 k\Omega$$

e la reattanza Xo è data da Xo= $V1n2/Qo=1.7~k\Omega$.

La potenza assorbita dall'impedenza serie è pari a

$$Pc = (pc\%/100) \cdot An = 4.32 \text{ kW}$$

 $Qc=Pc \cdot tan(\varphi c)=5.76 \text{ kVAR},$

dove $Vc1 = (vcc\%/100) \cdot V1n = 60 \ Ve \cos(\varphi c) = Pc/(Vc1 \cdot I1n) = 0.6$.

LA potenza attiva e reattiva a valle del ramo derivato sono pari a $PAA=P2+Pc=76.32 \ kW$ $QAA=Q2+Qc=130.5 \ kVAR$.

La tensione VAA e' pari a VAA= $\sqrt{PAA^2 + QAA^2}$ /IIn=1.26 kV.

Lato rete si trova $Prete=PA+(VAA^{2}/Ro) = 76.51 \text{ kW},$ $Orete=OA+(VAA^{2}/Xo) = 131.4 \text{ kVAR}.$

Si ricava quindi $cos\phi_rete=atan\ (Qrete/Prete)=0.503$, $Irete=120.72\ A$ Vrete=VAA

Esercizio 9.9

Due trasformatori monofasi A e B sono collegati in parallelo ed alimentano un carico che assorbe una corrente di I2 = 150 A con fattore di potenza cos $\varphi 2$ = 0.8 in ritardo. Dei due trasformatori alimentati alla tensione nominale di 1000 V e alla frequenza nominale f = 50 Hz si conoscono i seguenti dati:

Trasformatore A:

An = 30 kVA
$$K0 = 4$$
 Pfe = $\frac{1}{2}$ Pc Vc % = 5 % $\cos \varphi c = 0.5$

Trasformatore B:

An = 15 kVA
$$K0 = 4$$
 Pfe = 2/3 Pc
Vc % = 5 % $\cos \varphi c = 0.5$

Determinare per le condizioni di carico considerate:

- 1) la tensione V2 ai capi del carico
- 2) il carico percentuale di ciascun trasformatore
- 3) il rendimento di ciascun trasformatore e quello complessivo
- 4) la massima corrente che possono erogare i due trasformatori senza sovraccaricarsi

Soluzione

I due trasformatori avendo lo stesso rapporto di trasformazione a vuoto Ko hanno identica tensione a vuoto che vale:

$$V20 = V1n/Ko = 250 V$$

La corrente nominale di ciascun trasformatore vale:

$$I2nA = AnA/V20A = 120 A$$
$$I2nB = AnB/V20B = 60 A$$

Si possono quindi determinare le resistenze e reattanze equivalenti secondarie:

$$Vc2A = Vc\% \cdot V20/100 = 12.5 V$$

 $Vc2B = Vc\% \cdot V20/100 = 12.5 V$

Da cui:

$$Zc2A = Vc2A/I2nA = 0.104 \Omega$$

 $Zc2B = Vc2B/I2nB = 0.208 \Omega$

$$Rc2A = Zc2A \cdot cos \varphi cA = 5.2 \cdot 10^{-2} \Omega$$

 $Xc2A = Zc2A \cdot sin \varphi cA = 9 \cdot 10^{-2} \Omega$

$$Rc2B = Zc2B \cdot cos \varphi cB = 10.4 \cdot 10^{-2} \Omega$$

 $Xc2B = Zc2A \cdot sin \varphi cB = 18 \cdot 10^{-2} \Omega$

Considerando il circuito equivalente secondario e applicando Thevenin ai nodi AB

$$Zeq = Z2cA//Z2cB = 3.46 \cdot 10^{-2} + j \cdot 6 \cdot 10^{-2}$$

$$Eeq = V20$$

Si può ricavare la tensione V2 utilizzando la formula per la caduta di tensione approssimata:

$$\Delta V = Rc2 \cdot I2 \cdot cos \varphi 2 + Xc2 \cdot I2 \cdot sin \varphi 2 = 9.55 V$$

da cui

$$V2 = V20 - \Delta V = 240.45 V$$

Applicando le LKT al circuito equivalente secondario si ha:

$$V2 = V20 - Zc2A \cdot I2A$$

$$V2 = V20 - Zc2B \cdot I2B$$

E considerando l'equivalente di Thevenin

$$V2 = V20 - Zceq2 \cdot I2$$

Dalle tre equazioni precedenti si ricava la seguente uguaglianza:

$$Zceq2 \cdot I2 = Zc2A \cdot I2A = Zc2B \cdot I2B$$

Ed è possibile ricavare le due correnti I2A e I2B

$$I2A = Zceq \cdot I2/Zc2A = 100 A$$

 $I2B = Zceq \cdot I2/Zc2B = 50 A$

Il carico percentuale di ogni trasformatore si calcola come carico% = 100·12/I2n da cui

Le potenze erogate da ciascun trasformatore valgono

$$P2A = V2 \cdot I2A \cdot \cos \varphi 2A = 19250 W$$

 $P2B = V2 \cdot I2B \cdot \cos \varphi 2B = 9625 W$

Le perdite nel rame sono:

$$PcuA = Rc2A \cdot I2A^2 = 520 W$$

 $PcuB = Rc2B \cdot I2B^2 = 260 W$

Le perdite nel ferro, dal legame espresso nei dati:

$$PfeA = 375 W$$

 $PfeB = 250 W$

Da cui il rendimento:

$$\eta A = P2A/(P2A + PcuA + PfeA) = 0.965$$
 $\eta B = P2B/(P2B + PcuB + PfeB) = 0.96$

Avendo le due macchine il medesimo carico percentuale possono lavorare contemporaneamente a pieno carico e perciò la massima corrente erogabile è pari alla somma delle correnti nominali:

$$IMAX = I2nA + I2nB = 180 A$$

Esercizio 9.10

I dati di targa di un trasformatore trifase sono:

$$An = 50 \text{ kVA}$$
 $Ko = V1n/V20 = 30000/500$ $f = 50 \text{ Hz}$

La prova di corto circuito, eseguita a corrente e frequenza nominali, ha fornito i seguenti valori:

$$Vc \% = 5 \%$$
 $cos \varphi c = 0.5$

Determinare la resistenza, reattanza e impedenza di corto circuito equivalenti secondarie

Soluzione

Non essendo specificato altrimenti si possono ipotizzare i collegamenti primari e secondari a stella.

La corrente nominale vale

$$I2n = An/(\sqrt{3} V20) = 57.8 A$$

La tensione di corto circuito secondaria concatenata vale

$$Vc2 = Vc\% \cdot V20/100 = 25 V$$

Da cui:

$$Zc2 = Vc2/(\sqrt{3} I2n) = 0.25 \Omega$$

$$Rc2 = Zc2 \cos \varphi c = 0.125 \Omega$$

$$Xc2 = Zc2 \sin \varphi c = 0.216 \Omega$$

Esercizio 9.11

I dati di targa di un trasformatore trifase sono:

$$An = 5 \text{ kVA}$$
 $V1n = 260 \text{ V}$ $f = 50 \text{ Hz}$

$$Ks = N1/N2 = 17.3$$
 collegamento Δ/Y

La prova di corto circuito, eseguita alla corrente e frequenza nominali, ha fornito i seguenti risultati:

$$Vc1 = 20 V \cos \varphi c = 0.5$$

Determinare:

- 1) La resistenza (Rc2), la reattanza (Xc2) e l'impedenza di corto circuito secondarie.
- 2) Sapendo che R2 = $\frac{1}{2}$ Rc2 e che X2 = $\frac{3}{5}$ Xc2 determinare la resistenza e reattanza dell'avvolgimento primario

Soluzione

Sostituiamo al trasformatore con collegamento D/Y un trasformatore equivalente con collegamento Y/Y. I due trasformatori devono avere il medesimo rapporto di trasformazione Ko. Per il trasformatore D/Y si ha:

$$Ko = Ks/\sqrt{3} = 10$$
 che coinciderà con il rapporto spire del trasformatore Y/Y

La tensione di corto circuito secondaria vale:

$$Vc2 = Vc1/Ko = 2 V$$

La corrente nominale è

$$I2n = An/(\sqrt{3} V20) = 111 A \text{ dove } V20 = V1n/K0 = 26 V$$

I parametri di corto circuito risultano:

$$Zc2 = Vc2/(\sqrt{3}I2n) = 1.04 \cdot 10^{-2} \Omega$$

$$Rc2 = Zc2 \cdot cos \varphi c = 0.52 \cdot 10^{-2} \Omega$$

 $Xc2 = Zc2 \cdot sin \varphi c = 0.89 \cdot 10^{-2} \Omega$

Dai dati si ricava

$$R2 = 0.26 \cdot 10^{-2} \Omega$$

 $X2 = 0.54 \cdot 10^{-2} \Omega$

Noto che:

$$Rc2 = R2 + R1y/Ko^{2}$$
$$Xc2 = X2 + X1y/Ko^{2}$$

Si ricava

$$R1Y = 0.26 \Omega$$
$$X1Y = 0.355 \Omega$$

Per trovare la resistenza e la reattanza di ogni avvolgimento primario collegato a triangolo basta moltiplicare per 3 i precedenti risultati

$$R1 = 3 \cdot R1Y = 0.78 \Omega$$

 $X1 = 3 \cdot X1Y = 1.065 \Omega$

Esercizio 9.12

Ad un trasformatore trifase, alimentato alla tensione nominale e alla frequenza di 50 Hz, è allacciato un carico trifase equilibrato ohmico induttivo che alla tensione V2 = 960 V assorbe la corrente I2 = 100 A con un fattore di potenza cos φ 2 = 0.8.

Il rapporto di trasformazione a vuoto è Ko = V1n/V20 = 15

Con una prova a vuoto effettuata alla tensione nominale e alla frequenza di 50 Hz, si è trovato che la corrente assorbita è Io = 0.4 A ed il fattore di potenza a vuoto è cos φ o = 0.15. La prova di corto circuito eseguita a corrente nominale alimentando la macchina dal lato basso tensione, ha fornito i seguenti dati:

$$Vc2 = 46 V$$
 $cos \varphi c = 0.45$ $Ic2 = 115.8 A$

Determinare:

- 1) tensione, corrente, fattore di potenza primari nelle condizioni di carico riportate
- 2) la potenza e la tensione di corto circuito percentuali

Soluzione

La potenza attiva e reattiva del carico sono :

$$P2 = \sqrt{3} \cdot V2 \cdot I2 \cdot \cos \varphi 2 = 132840 W$$

$$Q2 = P2 \tan \varphi 2 = 99650 VAR$$

La potenza attiva e reattiva impegnate dagli avvolgimenti sono:

$$Pc = 3 \cdot Rc2 \cdot I2^2 = 3090 W$$

 $Qc = 3 \cdot Xc2 \cdot I2^2 = 6150 VAR$

La potenza attiva e reattiva trasmessa al secondario del circuito equivalente sono :

$$P' = P2 + Pc = 135930 W$$

 $Q' = Q2 + Qc = 105800 VAR$

Da cui

$$\cos \varphi' = 0.789$$

La tensione secondaria a vuoto vale:

$$V20 = P'/(\sqrt{3} \cdot I2 \cdot \cos\varphi') = 1000 V$$

Dal rapporto di trasformazione è possibile ricavare la tensione di alimentazione V1n

$$V1n = V20 \cdot Ko = 15000 V$$

La potenza attiva Po e reattiva Qo a vuoto sono:

$$Po = \sqrt{3} V ln \cdot lo \cdot cos \varphi o = 1560 W$$

$$Qo = Po \ tan \ \varphi o = 10230 \ VAR$$

La potenza assorbita del trasformatore vale

$$P1 = P' + Po = 137490 W$$

 $Q1 = Q' + Qo = 116030 VAR$

$$cos\varphi 1 = 0.765$$

La corrente assorbita dal trasformatore vale

$$II = P1/(\sqrt{3} \cdot V1n \cdot \cos\varphi I) = 6.91 A$$

La potenza nominale del trasformatore vale

$$An = \sqrt{3} V20 \cdot I2n = 200 kVA$$

Da cui

$$Pc\% = 100 \cdot Pc/An = 2.07 \%$$

Dove
$$Pc = \sqrt{3} Vc2 \cdot Ic2 \cdot cos\varphi c = 4140 W$$

$$Vc\% = 100 \cdot Vc2/V20 = 4.6\%$$

Esercizio 9.13

Due trasformatori A e B sono collegati in parallelo ed alimentano un carico che assorbe una corrente I2 = 300 A con fattore di potenza cos $\phi 2 = 0.8$ in ritardo. Dei due trasformatori alimentati alla tensione nominale di 10000 V e alla frequenza nominale si conoscono i seguenti dati:

Trasformatore A:

Trasformatore B:

$$An = 60 \text{ kVA}$$
 $I0 \% = 2.4 \%$ $Pfe = \frac{1}{4} Pc$ $K0 = 20$ $Vc \% = 4 \%$ $Pc = 1.25 \%$

Determinare:

- 1) la tensione V2 ai capi del carico
- 2) il carico percentuale di ciascun trasformatore
- 3) il rendimento di ciascun trasformatore e quello complessivo

Soluzione

I due trasformatori avendo lo stesso rapporto di trasformazione a vuoto hanno identica tensione a vuoto V20 che vale

$$V20 = V1n/Ko = 500 V$$

La corrente nominale di ciascun trasformatore può essere trovata come $I2n = An/(\sqrt{3} V20)$ da cui:

$$I2nA = 231 A$$
$$I2nB = 69.4 A$$

Nell'ipotesi di considerare i trasformatori collegati a stella si possono determinare la resistenza e la reattanza di corto circuito.

 $cos \varphi cc = cos \varphi ccA = cos \varphi ccB = Pcc\% / Vcc\% = 0.313$

$$Pc = Pcc\% \cdot An/100 \Rightarrow PcA = 2.5 \ kW$$
 $PcB = 0.75 \ kW$ $Rc2 = Pc/(3 \cdot 12n^2) \Rightarrow Rc2A = 1.56 \cdot 10^{-2} \Omega$ $Rc2B = 1.56 \cdot 10^{-2} \Omega$ $Xc2 = Rc2 \cdot tan \ \varphi cc \Rightarrow Xc2A = 4.73 \cdot 10^{-2} \Omega$ $Xc2B = 15.8 \cdot 10^{-2} \Omega$

Poiché il sistema è simmetrico ed equilibrato si può passare al monofase equivalente e poi risolvere con Thevenin.

$$Zc2eq = Zc2A//Zc2B = 1.2 \cdot 10^{-2} + j \ 3.65 \cdot 10^{-2} \Omega$$

Utilizzando la caduta di tensione approssimata si ottiene

$$DV = Rc2eq \cdot I2 \cdot cos \varphi 2 + Xc2eq \cdot I2 \cdot sin \varphi 2 = 16.35 V$$

Da cui:

$$V2 = V20 - DV = 483.65 V$$

Applicando le LKT al circuito equivalente secondario si ha:

$$V2 = V20 - Zc2A \cdot I2A$$

$$V2 = V20 - Zc2B \cdot I2B$$

E considerando l'equivalente di Thevenin

$$V2 = V20 - Zceq2 \cdot I2$$

Dalle tre equazioni precedenti si ricava la seguente uguaglianza:

$$Zceq2 \cdot I2 = Zc2A \cdot I2A = Zc2B \cdot I2B$$

Ed è possibile ricavare le due correnti I2A e I2B

$$I2A = Zceq \cdot I2/Zc2A = 231 A$$

$$I2B = Zceq \cdot I2/Zc2B = 69 A$$

Il carico percentuale di ogni trasformatore si calcola come carico% = 100·12/I2n da cui

Carico% A = 100 %

Carico% B = 100 %

Le potenze erogate da ciascun trasformatore valgono

$$P2A = V2 \cdot I2A \cdot \cos \varphi 2A = 154.5 \text{ kW}$$

$$P2B = V2 \cdot I2B \cdot cos \varphi 2B = 46.2 \text{ kW}$$

Le perdite nel rame sono:

$$PcuA = 2.5 kW$$

 $PcuB = 0.75 kW$

Le perdite nel ferro, dal legame espresso nei dati:

$$PfeA = 0.5 kW$$

 $PfeB = 0.19 kW$

Da cui il rendimento:

$$\eta A = P2A/(P2A + PcuA + PfeA) = 0.982$$

 $\eta B = P2B/(P2B + PcuB + PfeB) = 0.98$

la potenza assorbita dal carico vale P2 = P2A + P2B = 200.7 kW e il rendimento complessivo

$$\eta A = P2/(P2+PcuA+PfeA+PcuB+PfeB) = 0.98$$