Contents

1	Res	ults an	d discussion: HSL analogue-ciprofloxacin conjugates	2		
	1.1	Biolog	ical testing	2		
		1.1.1	Antibacterial activity	3		
			1.1.1.1 YM64	3		
			1.1.1.2 PAO1	6		
		1.1.2	Determination of anti-biofilm activity	10		
		1.1.3	Effect on biofilm formation	10		
		1.1.4	Biofilm disruption	10		
				11		
2 References						

1 Results and discussion: HSL analogue-ciprofloxacin conjugates

1.1 Biological testing

This work

All conjugates were tested for growth inhibition (MIC), biofilm formation inhibition and activity against nascent (24 h) and established (48 h) biofilms in *P. aeruginosa*.

The conjugates shown in ?? were tested, as well as BHL 19, HHQ 21, PQS 22, ciprofloxacin 24, methyl ciprofloxacin 151, the alkynyl ciprofloxacin derivative 68, the *tert*-butyl ester ciprofloxacin derivative 198, the carboxylic acid ciprofloxacin derivative 199, trimethoprim 25 and the alkynyl trimethoprim derivative 71.

Cultures were grown in the presence of the compounds at a range of 6 concentrations from 25 to 0.125 μ M. MICs were calculated by fitting a modified Gompertz function.¹ An example of the fitting is shown in ??.

Figure 1

1.1.1 Antibacterial activity

1.1.1.1 YM64

In YM64 at 5 h several of the HSL analogue-ciprofloxacin conjugates showed activity at the highest concentration (see Figure 2 and Figure 3). Conjugates **162** and **167** showed similar activity to ciprofloxacin **24** and the cleavable conjugate **157** showed better activity (see Figure 2). The activity of the cleavable conjugate **157** was even more pronounced at 24 h (see Figure 4).

It should be noted that the highest concentration tested was 25 μ M in this set of assays as opposed to 2 μ M in the previous set (see ??), but oddly all compounds including ciprofloxacin 24 showed less activity. This is thought to be due to a change in the plate seals used (see ??).

Figure 2: YM64 OD readings at 5 h for the HCTL, 2-methoxybenzene and 3-methoxybenzene HSL analogue-ciprofloxacin conjugates.

Figure 3: YM64 OD readings at 5 h for the alcohol and ketone HSL analogue-ciprofloxacin conjugates.

Figure 4: YM64 OD readings at 24 h for the HCTL, 2-methoxybenzene and 3-methoxybenzene HSL analogue-ciprofloxacin conjugates.

Figure 5: YM64 OD readings at 24 h for the alcohol and ketone HSL analogue-ciprofloxacin conjugates.

1.1.1.2 PAO1

In PAO1 at 5 h conjugates **157**, **162**, **167** showed activity at the highest concentration (see Figure 6). The cleavable conjugate **157** showed similar activity to ciprofloxacin **24**. At 24 h conjugate **167** still showed some activity, and cleavable conjugate **157** showed similar activity to ciprofloxacin **24** (see Figure 8).

Figure 6: PAO1 OD readings at 5 h for the HCTL, 2-methoxybenzene and 3-methoxybenzene HSL analogue-ciprofloxacin conjugates.

Figure 7: PAO1 OD readings at 5 h for the alcohol and ketone HSL analogue-ciprofloxacin conjugates.

Figure 8: PAO1 OD readings at 24 h for the HCTL, 2-methoxybenzene and 3-methoxybenzene HSL analogue-ciprofloxacin conjugates.

Figure 9: PAO1 OD readings at 24 h for the alcohol and ketone HSL analogue-ciprofloxacin conjugates.

Approximate MICs for the more active compounds are shown in ??

Compound	YM64 -	YM64 -	PAO1 -	PAO1 -
	5 h	24 h	5 h	24 h
SHL4THCip				$0.0455~\pm$
157				
2MeOA4T4Cip	$0.0406 \pm$	$0.0391 \pm$		
162				
3MeOA4T4Cip)	$0.0364 \pm$		
167				
Cip 24				

Table 1:.

1.1.2 Determination of anti-biofilm activity

Biofilm growth was measured using crystal violet staining.²

1.1.3 Effect on biofilm formation

1.1.4 Biofilm disruption

2 References

- [1] R. Lambert and J. Pearson. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values. *Journal of Applied Microbiology*, 88(5):784–790, 2000.
- [2] G. A. O'Toole and R. Kolter. Flagellar and twitching motility are necessary for *Pseudomonas aeruginosa* biofilm development. *Molecular Microbiology*, 30(2):295–304, 1998.

Todo list