Bulk Thermal Conductivity Model for Un-doped Single-Crystal Semiconductor & Dielectric Materials

Brandon Ferraro ME 233 - Automated Model Discovery March 13th, 2025

Background & Physics

Semiconductor & Dielectric Materials:

- Phonons are the dominant energy carrier in dielectric/semiconductor materials.
- Phonons are quantized atomic displacement waves that carry energy through crystalline lattices.
 - Although massless, these quanta display particle/wave behavior similar to other energy carriers (e.g. photons, electrons).
 - **Acoustic phonons** (longitudinal & transverse) are the main contributors to thermal conductivity, relative to optical phonons, due to a much greater group velocity

Phonon Thermal Conductivity Integral:

$$\implies k(T) = \frac{1}{3}v^2 \int_0^{\theta_D/T} C_s(x_\omega, T) \tau(x_\omega, T) dx_\omega, \quad \text{where } x_\omega = \frac{\hbar \omega}{k_B T}$$

Heat capacity per unit volume, C□ $C_s = 9n_a k_B \left(\frac{T}{\theta_D}\right)^3 \frac{x_\omega^4 \exp(x_\omega)}{[\exp(x_\omega) - 1]^2} = \begin{cases} \frac{12\pi^4}{5} n_a k_B \left(\frac{T}{\theta_D}\right)^3, & T << \theta_D \\ 3n_a k_B, & T >> \theta_D \end{cases}$

$$\tau^{-1}(x_{\omega}, T) = \tau_{phonon-phonon}^{-1} + \underline{\tau_{phonon-impurity}}^{-1} + \underline{\tau_{phonon-boundary}}^{-1}$$
$$= AT^{\gamma} \omega^{n} \exp(-Bx_{\omega})$$

Assumptions:

- Neglecting other energy carrier contributions (e.g. electrons)
- Materials are **undoped/pure** (no impurity scattering)
- Properties are **not limited by size effects** (no boundary scattering)
- Isotropic material properties

Project Objectives

Goals:

- Rediscover known scaling behavior:
 - $k \propto T^3$, for small T
 - $k \propto 1/T$, for large T
- Discover change in regime using smooth Heaviside function
- Discover model for **predicting/interpolating nonlinear regime**

Principle Objective:

• Discover (ideally sparse) **universal model** for thermal conductivity curves

Data

Undoped material data found in literature:

- Semiconductor materials: Si, Ge
- Dielectric materials: Diamond, NaCl

Neural Network & Model Parameters

Neural Network Architecture:

Loss Function:

$$\implies L(\theta; log(T)) = ||\widehat{log(k)} - log(k)(\theta; T)||_2^2 + \alpha ||\theta||_1$$

Evaluation Metric:

$$\implies R^2 = 1 - \frac{||\log(k) - \widehat{\log(k)}||_2^2}{||\log(k) - \overline{\log(k)}||_2^2}$$

Optimization:

- Adam optimizer with exponential decaying learning rate:
 - initial_learning_rate = 5e-4
 - decay_steps = 5000
 decay_rate = 0.95

Model Parameters:

- num epoches = 10000
- batch size = 10
- $\alpha \in [0, 0.001, 0.01, 0.1]$

Results - L1 Regularization

Stanford University

Results - Learned Model Weights and R²

	Si	NaCl	Diamond	Ge	Si	NaCl	Diamond	Ge	Si	NaCl	Diamond	Ge	Si	NaCl	Diamond	Ge	
	a = 0	a = 0	a = 0	a = 0	a = 0.001	a = 0.001	1 a = 0.001	a = 0.001	a = 0.01	a = 0.01	a = 0.01	a = 0.01	a = 0.1	a = 0.1	a = 0.1	a = 0.1	
w_1,1	3.9384	4.4522	6.0648	2.3931	8.3909	5.6488	6.8676	2.0785	2.9153	4.0872	7.9840	2.3680	2.9267	7.4892	6.4518	6.4599	$\left.\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
w_1,2	3.9880	2.6474	2.4755	4.2583	1.5422	2.7429	2.4713	4.2351	3.7523	2.7257	3.2696	4.3753	3.6933	2.6672	4.8974	1.5550	\(\int \text{(W1,1((\text{(\text{(\text{\text{(\text{\text{\text{(\text{\text{W1,2}})}}}}\)
w_2,1	-0.0097	-0.0835	-0.0125	-0.0021	-0.0154	-0.0753	-0.0086	-0.0027	-0.0131	-0.0686	-0.0188	-0.0028	-0.0133	-0.0846	0.0004	-0.0017	$w_{2,1} \exp(\sigma(w_{1,1}((\cdot)-w_{1,2})))$
w_2,2	1.3637	1.8962	1.0744	0.4097	0.7934	1.6742	0.5762	0.6919	2.1926	1.3862	1.8005	0.6242	2.1732	1.5746	1.7462	-0.5773	$W_{2,2}\sigma(W_{1,1}((\cdot)-W_{1,2}))$
w_2.3	2.6462	0.9600	-1.8159	3.0462	3.2878	1.0606	-0.2216	1.9121	1.1258	1.9800	-0.3588	1.1452	1.0472	0.0001	-0.0566	0.0017	$w_{2,3}tanh(\sigma(w_{1,1}((\cdot)-w_{1,2})))$
w_2,4	-2.0959	-0.6929	-0.5344	-1.5165	-0.2970	-0.8010	-0.3715	-1.9132	-1.7944	-0.9790	-1.1451	-0.7153	-2.9272	-0.7843	-1.8975	1.3959	$w_{2,4}exp(\cdot)$
w_2,5	-0.9297	-1.2446	1.2860	-0.9124	0.3526	0.1753	2.6601	-0.2082	-1.3702	-0.3130	2.7478	-0.7597	-0.0004	-0.0001	-0.0002	0.0019	$W_{2,5}(\cdot)$
w_2,6	1.4883	-0.2919	3.7637	-0.0395	1.3911	-1.6817	2.6933	-1.4594	-0.9271	-0.3783	0.9724	-2.5921	-0.0004	-0.0001	0.0003	0.0024	$w_{2,6}tanh(\cdot)$
w_2,7	-0.8124	-1.2067	-0.2163	-0.2427	-2.7414	-0.9596	-1.0129	0.6889	-1.1565	-1.1543	-1.8633	0.2745	-0.0003	0.0001	-1.0590	0.0016	W2,7
R^2	0.9836	0.9804	0.9672	0.9580	0.9097	0.9740	0.9578	0.9628	0.9803	0.9876	0.9864	0.9492	0.9789	0.9036	0.9604	0.9351	
ъ	1 /	~ 1										[]00(1	$v = w_0 \circ G$	(w(100	$(T) - W_1$	$\frac{1}{2}$	evn(log(T))

Remarks/Conclusions:

- α too small \rightarrow no sparsity induced
- note, α too large \rightarrow poor convergence/oscillating loss function
- Small, random variations in R^2 value for both different materials and different values of α
- $w_{2,2} \neq -4$, $w_{2,2} \neq 3$, as anticipated by defined phonon scattering theory
- The global fit is decent (> 0.9) but not explainable by known physics
- Smooth heaviside function is inconsistent
- Insufficient model architecture and function space
- Insufficient data distributions (need a larger temperature range)

$$\begin{cases} \log(k) = w_{2,2\sigma}(w_{1,1}(\log(T) - w_{1,2})) + w_{2,4}exp(\log(T)) \\ k \sim T + exp(-T) \end{cases}$$

Limitations on Objectives:

- ☐ Rediscover known scaling behavior
- Discover change in regime using smooth Heaviside function
- Discover model for predicting/interpolating nonlinear regime
- ☐ Discover (ideally sparse) universal model for thermal conductivity curves

