Your sinear must be provided with descriptions have to get the mover. Compute the determinants of the following matrices points in space R^2 . (1) R^2 points) Find the vector projection of R^2 (2) R^2 points) R^2 (2) R^2 (3) R^2 (4) R^2 (2) R^2 (3) R^2 (4) R^2 (5) R^2 (5) R^2 (6) R^2 (7) R^2 (7) R^2 (8) R^2 (9) R^2 (9) R^2 (1) R^2 (1) R^2 (2) R^2 (3) R^2 (3) R^2 (4) R^2 (5) R^2 (6) R^2 (7) R^2 (8) R^2 (8) R^2 (9) R^2 (9) R^2 (1) R^2 (2) R^2 (2) R^2 (3) R^2 (3) R^2 (4) R^2 (5) R^2 (6) R^2 (7) R^2 (8)	CALCULUS II 2017 Fall Semester Midterm Exam	Dept. or School Student Name
Compute the determinants of the following matrices points in space $R^{\prime\prime}$ (1) 2 points) find the vector projection of \overline{RR} (1) 2 points) find the vector projection of \overline{RR} (2) 2 points) find the value t which P, Q, R $S(t, t, 2-P)$ are coplans.	Your answer must be provided with descriptions how to get	O(9 3 0) and R(-
(1) (2 points) Find the vector projection of RR (1) (2 points) Find the value t which P , Q , R (2) (3 points) Find the value t which P , Q , R (2) (3 points) Find the value t which P , Q , R (2) (3 points) Find the value t which P , Q , R (2) (3 points) Find the value t which P , Q , R (3) (4 5 6) (5 9)	1. Compute the determinants of the following matrices	e R ³ .
(2) (3 points) Find the value t which P , Q , R 4 5 6 $(7 + 8 + 9)$ are coplanar.	1 2 3 5 1 0	(1) (2 points) Find the vector projection of PR onto
(2) (3 points) Find the value t which P , Q , R $4 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9$		
(2) (3 points) Find the value t which P , Q , R (1, t , t		
(2) (3 points) Find the value t which P , Q , R (1, t , $2-t^2$) are coplanar. $S(1, t, 2-t^2)$ are coplanar.		
	(2) (3) points) Determine personation equation for the line	
	1 2 4 5 7 8 8	

(3 points) Let a tetrahedron be given by four vertices, $P(0,0,4),\ Q(2,1,0),\ R(0,4,0),\ S(0,0,0)$ and four triangular faces, as shown in the figure. m

If v_1, v_2, v_3, v_4 are vectors with lengths equal to the areas and directions perpendicular to the respective faces and of the faces opposite the vertices P,Q,R,S, respectively, pointing outward. Find the sum $v_1 + v_2 + v_3 + v_4$.

the line $x=1,\ y=t,\ z=t$ which is perpendicular to 4. (3 points) Find the equation of the plane containing the plane x+3y-2z=0.

5. (1) (2 points) Line L_1 is given by parametric equations, Determine the point in which these lines intersect. x = -1 - s, y = -7 - 2s, z = 6 + s. x=2+3t, y=-1+2t, z=3-4t. Line L_2 is given by parametric equations,

(2) (3 points) Determine parametric equations for the line that passes through the point in (1) and meets

CALCULUS II	Dept. or	proctor
2017 Fall Semester Midterm Exam	Student	Name
6. (3 points) Let L be a curve of intersection of the cylinder $x^2+(y-2)^2=4$ and the plane $z=x$. At what point on this curve is the largest maximum curvature?	8. (4 points) Let $f(r,\theta) = \int_{r\cos\theta}^{r\sin\theta} \alpha$ Calculate $\frac{\partial^2 f}{\partial r \partial \theta} \left(1, \frac{\pi}{2}\right)$.	$\cos(e^t)dt$.
7. (3 points) Find the following limit, if it exists, or show that the limit does not exist. $\limsup_{(x,y) \to (0,0)} \left(\frac{x^2 \left(1-\sin^2 y\right) + 3y^2}{x^2 + 3y^2}\right)$		

of the number c of satisfying the following equation; $\frac{\partial z}{\partial s} \frac{\partial z}{\partial t} = 2 \Big(\frac{\partial z}{\partial x} \Big)^2 + c \Big(\frac{\partial z}{\partial y} \Big)^2.$ derivatives, x=s+2t, and y=s-2t, find the value 9. (3 points) If z=f(x,y) has continuous partial

$$\frac{\partial z}{\partial s} \frac{\partial z}{\partial t} = 2 \left(\frac{\partial z}{\partial x} \right)^2 + c \left(\frac{\partial z}{\partial y} \right)^2.$$

 $f(x,y)\!=\!4 an^{-1}(xy)$ at the point (1,1) and use it to (3 points) Find the differential dz of the function estimate the number $4 \tan^{-1} [(0.98)^2]$. 10.

z of coffee is proportional to the population x divided by the supply $y,\ z=crac{x}{y}$ (c: constant) and x,y depend on time in 11. (4 points) Suppose that the price such a way that

$$\frac{dx}{dt} = 0.01x, \quad \frac{dy}{dt} = -\sqrt{x}.$$

Find the rate of increase in the price z when x = 1,000,000 and y = 10,000.