Network visualization with cytoscape

Lab session on February 13th

Homework review

- Most difficult homework during the semester
 - Undefined: didn't tell you what is interesting
 - Didn't tell you how to make good visualization

Data exploration: how to find interesting features

- Show as much of the data as possible
- Try different layouts, visual mappings
- But: consider what you expect before applying
 - Interesting features are the surprising ones

Data visualization: how to show interesting features

- Not the same image you were looking at
- Remove unimportant details
- Should make observation obvious, in the blink of an eye
- Focus attention

Describe visualization — legend

- Need to explain every color, shape, etc.
- A legend is better than long text
- Legend for layout?

Focusing attention

- Zoom / crop
 - Creating sub-networks
- Highlight some parts vizmap bypass
 - But big caveat
- Add annotation
 - In cytoscape
 - Afterwards, eg. in presentation editor
- Focus on emptiness?

Fine-tuning — checklist

- Check layout node, node-edge overlaps
 - Hand-tuning layouts vs. visual styles
- Clear selection
- Export legend
- Zoom out
- Export with correct image format

Using visual aspects

- Hierarchy of usefulness:
 - How noticeable they are
 - How useful they are
- Recommended order:
 - 1) Node color
 - 2) Node size
 - 3) Node shape
- Picking colors
 - Gradient vs. categorical
 - Color harmony

Interpreting the observation

- Describing data or the system?
- The available data is
 - Always an abstraction
 - Always partial

Keep an open mind, offer multiple explanations

A plugin to help: NetworkAnalyzer

- Launching
- Plotting data
- Generating visual style
- Globalness of attributes network collections
- App manager other plugins

Accuracy vs. "prettiness"

- Data visualization should be accurate
 - Warnings about vizmap bypass & hand-tuning
- But: full accuracy can be bad, too

→ Need compromise

Homework assignment

- Create visualization of protein structure dataset
 - Visualize clustering coefficient and closeness
 - (make sure to get the small details right!)
- Ensure you have python 3.x installed
 - matplotlib, ipython, jupyter, networkx libraries
 - Anaconda installer: py3.7 from https://www.anaconda.com/download/
- If needed: sections 3 to 5 of the python tutorial
 - https://docs.python.org/3/tutorial/index.html