HOMEWORK 7

QUESTION 1

(a.)

$$egin{aligned}
abla^2 f(oldsymbol{w}) &=
abla \{ -\sum_{i=1}^m \left[1 - \sigma\left(y_i oldsymbol{x}_i^T oldsymbol{w}
ight)
ight] y_i oldsymbol{x}_i \} \ &=
abla \{ \sum_{i=1}^m \left[\sigma\left(y_i oldsymbol{x}_i^T oldsymbol{w}
ight)
ight] y_i oldsymbol{x}_i \} \ &= \sum_{i=1}^m \left[rac{e^{-y_i oldsymbol{x}_i^T oldsymbol{w}}}{(1 + e^{-y_i oldsymbol{x}_i^T oldsymbol{w}})^2}
ight] (y_i oldsymbol{x}_i^T y_i oldsymbol{x}_i)^T \end{aligned}$$

And we know that $y_i^2=1$, therefore

$$\sum_{i=1}^{m} \left[\frac{e^{-y_i \boldsymbol{x}_i^T \boldsymbol{w}}}{(1 + e^{-y_i \boldsymbol{x}_i^T \boldsymbol{w}})^2} \right] \boldsymbol{x}_i \boldsymbol{x}_i^T = \sum_{i=1}^{m} \sigma' \left(y_i \boldsymbol{x}_i^T \boldsymbol{w} \right) \boldsymbol{x}_i \boldsymbol{x}_i^T \tag{2}$$

(b.)

Case 1

$$w_0 = (-1.5, 1)^T$$

Converges.

Log

number of iterations in outer loop	solution	value
6	(-1.87973941, 2.60188452)	3.3295135687527964

trajectory

Case 2

$$w_0=(1,1)^T$$

The error message below indicates that in this case it doesn't converge.

File "/Users/husky/opt/anaconda3/lib/python3.9/site-packages/numpy/linalg/linalg.py", line 545, in inv ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
File "/Users/husky/opt/anaconda3/lib/python3.9/site-packages/numpy/linalg/linalg.py", line 88, in _raise_linalgerror_singular
raise LinAlgError("Singular matrix")
numpy.linalg.LinAlgError: Singular matrix

(C.)

Case 1

$$w_0 = (-1.5, 1)^T$$

Converges.

Log

number of iterations in outer loop total number of iterations in inner loop 6 0 solution value (-1.87973941 2.60188452) 3.3295135687527964

stepsize

trajectory

Case 2

$$w_0 = (1,1)^T$$

Converges.

Log

number of iterations in outer loop

total number of iterations in inner loop

7	8
solution	value
(-1.87973889 2.60188365)	3.329513568753013

stepsize

trajectory

gap

By the experiments above, we could conclude that:

Pure Newton's method	Damped Newton's method
Not always converge, depending on the initial point	always converge
extremely fast	Slower

(a.)

Newton step:

$$\boldsymbol{x} \leftarrow \boldsymbol{x} - \left[\nabla^2 f(\boldsymbol{x})\right]^{-1} \nabla f(\boldsymbol{x})$$
 (3)

When $f(x)=(x-a)^6$, then its newton step is $rac{a-x}{5}$.

(b.)

$$x_{k+1} - a = \frac{4(x_k - a)}{5} \leftarrow x_{k+1} = x_k + \frac{a - x_k}{5}$$
 (4)

Therefore,

$$y_{k+1} = \frac{4}{5}y_k \tag{5}$$

(C.)

Since

$$|x_{k+1} - a| = y_{k+1} = \frac{4}{5}y_k = (\frac{4}{5})^2 y_{k-1} = \dots = (\frac{4}{5})^k |x_1 - a|$$
 (6)

$$\lim_{k \to +\infty} |x_k - a| = 0 \tag{7}$$

we conclude that x_k converges exponentially to a.

QUESTION 3

(a.)

Case 1

log

lambda	number of iterations	solution	Value
2	31	(1.2, 0)	4.9

trajectory

Case 2

log

lambda	number of iterations	solution	Value
0.1	927	(1.69999998,-0.29999995)	2.2500000000000004

No zero in the solution!

trajectory

gap

Case 3

log

lambda	number of iterations	solution	Value
8	28	(1.11758702e-09, 0.00000000e+00)	8.5

Two zeros in the solution

trajectory

