10 Identificação de Cônicas-Traslação e Rotação

1. Seja $\mathcal C$ o lugar geométrico dos pontos P(x,y) do plano cujas coordenadas x e y satisfazem

$$4x^2 - 4xy + 7y^2 + 12x + 6y - 9 = 0$$

- a) Encontrar as mudanças consecutivas das coordenadas que levam $\mathcal C$ à forma canônica e identificar a cônica $\mathcal C$.
- b) Determine excentricidade, vértices, focos e assíntotas (se houver)

Resposta:

a)as mudanças de coordenadas são

$$\left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{ccc} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{array} \right) \left(\begin{array}{c} x' \\ y' \end{array} \right) \qquad \quad \left\{ \begin{array}{ccc} x'' & = & x' \\ y'' & = & y' + \sqrt{5} \end{array} \right.$$

e a equação canônica da elipse é

$$\frac{(x'')^2}{3} + \frac{(y'')^2}{8} = 1.$$

b) Exentricidade da cônica é

$$e = \sqrt{\frac{5}{8}}$$

	x"y"	x'y'	xy
F_1	$(0,\sqrt{5})$	(0,0)	(0,0)
F_2	$(0, -\sqrt{5})$	$(0, -2\sqrt{5})$	(-4, -2)
V_1	$(0,\sqrt{8})$	$(0,\sqrt{8}-\sqrt{5})$	$\left(2\frac{\sqrt{8}}{\sqrt{5}}-2\right), \frac{\sqrt{8}}{\sqrt{5}}-1\right)$
V_2	$(0,\sqrt{8})$	$(0, -(\sqrt{8} + \sqrt{5}))$	$\left(-2 - \frac{2\sqrt{8}}{\sqrt{5}}, -1 - \frac{\sqrt{8}}{\sqrt{5}}\right)$
Ex.	$\sqrt{\frac{5}{8}}$	$\sqrt{\frac{5}{8}}$	$\sqrt{\frac{5}{8}}$

2. Seja \mathcal{C} a curva do plano constituída dos pontos que satisfazem a equação

$$3x^2 + 3y^2 + 2xy + 4\sqrt{2}x - 4\sqrt{2}y = -4$$
.

- (a) Encontre a forma canônica (ou reduzida) de C.
- (b) Encontre as coordenadas do(s) foco(s) da curva \mathcal{C} em relação ao sistema de eixos XY.
- (c) Esboce o desenho da curva C no sistema de eixos XY.

Resposta:

(a) A forma canônica (ou reduzida) de \mathcal{C} é

$$u^2 + \frac{v^2}{2} = 1.$$

(b) As coordenadas do(s) foco(s) da curva $\mathcal C$ em relação ao sistema de eixos XY

$$F_1 = \left(-\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$$
 $F_2 = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.

3. Seja ℓ o lugar geométrico dos pontos P=(x,y) do plano cujas coordenadas x e y satisfazem

$$4x^2 - 4xy + 7y^2 + 12x + 6y - 9 = 0.$$

- a) Identificar a cônica ℓ .
- b) Encontrar as mudanças consecutivas das coordenadas que levam ℓ à forma canônica.
- c) Encontrar a excentricidade de ℓ . Encontrar também as coordenadas dos focos, dos vértices e as equações das assíntotas (se aplicável) no sistema Oxy.

Resposta:

- a) A cônica é uma elipse.
- b) A mudança de coordenadas é

$$\left(\begin{array}{c} x'' \\ y'' \end{array} \right) = \left(\begin{array}{c} 0 \\ \sqrt{5} \end{array} \right) + \left(\begin{array}{cc} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{array} \right) \left(\begin{array}{c} x \\ y \end{array} \right)$$

c)
$$F_1 = (0,0) F_2 = (-4,-2)$$

$$V_1 = \left(\frac{2(\sqrt{8} - \sqrt{5})}{\sqrt{5}}, \frac{(\sqrt{8} - \sqrt{5})}{\sqrt{5}}\right)$$

$$V_2 = \left(-\frac{2(\sqrt{5} + \sqrt{8})}{\sqrt{5}}, -\frac{(\sqrt{5} + \sqrt{8})}{\sqrt{5}}\right)$$

4. Em cada uma das equações abaixo elimine, através de uma rotação, o termo xy. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s), vertice(s), diretrizes e assíntotas (quando couber).

(a)
$$9x^2 - 4xy + 6y^2 = 30$$
;

Resposta:

	Sist. $\bar{x}\bar{y}$	Sist. xy
excent.	$\sqrt{1/2}$	$\sqrt{1/2}$
F_1	$(0,\sqrt{3})$	$\left(\sqrt{\frac{3}{5}},2\sqrt{\frac{3}{5}}\right)$
F_2	$(0, -\sqrt{3})$	$\left(-\sqrt{\frac{3}{5}}, -2\sqrt{\frac{3}{5}}\right)$
V_1	$(0,\sqrt{6})$	$\left(\sqrt{\frac{6}{5}},2\sqrt{\frac{6}{5}}\right)$
V_2	$(0, -\sqrt{6})$	$\left(-\sqrt{\frac{6}{5}}, -2\sqrt{\frac{6}{5}}\right)$

(obs. os valores no sistema $\bar{x}\bar{y}$ pode variar)

(b)
$$4x^2 - 20xy + 25y^2 - 15x - 6y = 0$$
 Resposta:

	Sist. $\bar{x}\bar{y}$	Sist. xy
V	(0,0)	(0,0)
F	$\left(\frac{3}{4\sqrt{29}},0\right)$	$\left(\frac{15}{116}, \frac{3}{58}\right)$
reta d.	$\bar{x} = -\frac{3}{4\sqrt{29}}$	$5x - 2y = \frac{3}{4}$

(obs. os valores no sistema $\bar{x}\bar{y}$ pode variar)

(c)
$$x^2 - y^2 + 2\sqrt{3}xy + 6x = 0$$

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
Excent.	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{2}$
F_1	(3/2,0)	$\left(\frac{3}{2} - \frac{3\sqrt{3}}{4}, -\frac{3}{4}\right)$	$\left(\frac{3}{8} + \frac{\sqrt{3}}{2} \left(\frac{3}{2} - \frac{3\sqrt{3}}{4}\right), \frac{3}{4} - \frac{6\sqrt{3}}{8}\right)$
F_2	(-3/2,0)	$\left(-\frac{3}{2} - \frac{3\sqrt{3}}{4}, -\frac{3}{4}\right)$	$\left(\frac{3}{8} + \frac{\sqrt{3}}{2}\left(-\frac{3}{2} - \frac{3\sqrt{3}}{4}\right), -\frac{3}{4} - \frac{6\sqrt{3}}{8}\right)$
V_1	$(3/\sqrt{8},0)$	$\left(\frac{3}{\sqrt{8}} - \frac{3\sqrt{3}}{4}, -\frac{3}{4}\right)$	$\left(\frac{3}{8} + \frac{\sqrt{3}}{2} \left(\frac{3}{\sqrt{8}} - \frac{3\sqrt{3}}{4}\right), \frac{3}{2\sqrt{8}} - \frac{6\sqrt{3}}{8}\right)$
V_2	$(-3/\sqrt{8},0)$	$\left(-\frac{3}{\sqrt{8}} - \frac{3\sqrt{3}}{4}, -\frac{3}{4}\right)$	$\left(\frac{3}{8} + \frac{\sqrt{3}}{2} \left(-\frac{3}{\sqrt{8}} - \frac{3\sqrt{3}}{4}\right), -\frac{3}{2\sqrt{8}} - \frac{6\sqrt{3}}{8}\right)$
Assínt.	$x' = \pm y'$	$\bar{y} + \frac{3}{4} = \pm \left(\bar{x} + \frac{3\sqrt{3}}{4}\right)$	$-x + \sqrt{3}y + 3/2 = \pm(\sqrt{3}x + y + (3\sqrt{3}/2))$

(obs. os valores nos outros sistemas pode variar)

(d)
$$18x^2 + 12xy + 2y^2 + 94\frac{\sqrt{10}}{10}x - 282\frac{\sqrt{10}}{10}y + 94 = 0.$$

Resposta:

	Sist. $x'y'$	Sist. $\bar{x}\bar{y}$	Sist. xy
V	(0,0)	(1,0)	$\left(\frac{-1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$
F	$\left(\frac{-47}{2},0\right)$	$\left(\frac{-49}{2},0\right)$	$\left(\frac{-49}{2\sqrt{10}}, \frac{147}{2\sqrt{10}}\right)$
reta d.	x' = 47/2	$\bar{x} = 45/2$	$x - 3y = 45\sqrt{10}/2$

(obs. os valores nos outros sistemas pode variar)

(e)
$$3x^2 + 5y^2 + 4x - 2y - \frac{202}{15} = 0$$

Resposta:

	Sist. $\bar{x}\bar{y}$	Sist. xy
excent.	$\sqrt{2/5}$	$\sqrt{2/5}$
F_1	$(\sqrt{2}, 0)$	$\left(\sqrt{2} - \frac{2}{3}, \frac{1}{5}\right)$
F_2	$(-\sqrt{2},0)$	$\left(-\sqrt{2}-\frac{2}{3},\frac{1}{5}\right)$
V_1	$(\sqrt{5}, 0)$	$\left(\sqrt{5} - \frac{2}{3}, \frac{1}{5}\right)$
V_2	$(-\sqrt{5,0})$	$\left(-\sqrt{5}-\frac{2}{3},\frac{1}{5}\right)$

(obs. os valores nos outros sistemas pode variar)

(f)
$$x^2 + y^2 + 3xy + \frac{6}{\sqrt{2}}x + \frac{9}{\sqrt{2}}y = \frac{1}{2}$$

Resposta:

	Sist. x'y'	Sist. $ar{x}ar{y}$	Sist. xy
Excent.	$\sqrt{6}$	$\sqrt{6}$	$\sqrt{6}$
F_1	$(\sqrt{12},0)$	$\left(\sqrt{12} - \frac{3}{2}, \frac{3}{2}\right)$	$\left(\sqrt{6} - \frac{3}{\sqrt{2}}, \sqrt{6}\right)$
F_2	$(-\sqrt{12},0)$	$\left(\sqrt{12} - \frac{3}{2}, \frac{3}{2}\right)$	$\left(-\sqrt{6}-\frac{3}{\sqrt{2}},-\sqrt{6}\right)$
V_1	$(\sqrt{2},0)$	$\left(\sqrt{2}-\frac{3}{2},\frac{3}{2}\right)$	$\left(1-rac{3}{\sqrt{2}},1 ight)$
V_2	$(-\sqrt{2},0)$	$\left(\sqrt{2}-rac{3}{2},rac{3}{2} ight)$	$\left(-1-\frac{3}{\sqrt{2}},-1\right)$
Assínt.	$y' = \pm \sqrt{5}x'$	$\bar{y} - \frac{3}{2} = \pm\sqrt{5}\left(\bar{x} + \frac{3}{2}\right)$	$\left(\frac{-x+y}{\sqrt{2}}\right) - \frac{3}{2} = \pm\sqrt{5}\left(\left(\frac{x+y}{\sqrt{2}}\right) + \frac{3}{2}\right)$

(obs. os valores nos outros sistemas pode variar)

(g)
$$x^2 + \frac{1}{5}xy + y^2 + \frac{22}{10\sqrt{2}}(x+y) = \frac{88}{10}$$

Resposta:

	Sist. $x'y'$	Sist. $ar{x}ar{y}$	Sist. xy
excent.	$\sqrt{2/11}$	$\sqrt{2/11}$	$\sqrt{2/11}$
F_1	$(0,\sqrt{2})$	$(-1,\sqrt{2})$	$\left(\frac{-1-\sqrt{2}}{\sqrt{2}},\frac{-1+\sqrt{2}}{\sqrt{2}}\right)$
F_2	$(0, -\sqrt{2})$	$(-1, -\sqrt{2})$	$\left(\frac{-1+\sqrt{2}}{\sqrt{2}},\frac{-1-\sqrt{2}}{\sqrt{2}}\right)$
V_1	$(0,\sqrt{11})$	$(-1,\sqrt{11})$	$\left(\frac{-1-\sqrt{11}}{\sqrt{2}},\frac{-1+\sqrt{11}}{\sqrt{2}}\right)$
V_2	$(0, -\sqrt{11})$	$(-1, -\sqrt{11})$	$\left(\frac{-1+\sqrt{11}}{\sqrt{2}},\frac{-1-\sqrt{11}}{\sqrt{2}}\right)$

(obs. os valores nos outros sistemas pode variar)

(h)
$$x^2 + y^2 + 4xy + 4\sqrt{2}y - \frac{2}{3} = 0$$

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
Excent.	$\sqrt{4/3}$	$\sqrt{4/3}$	$\sqrt{4/3}$
F_1	$(0, \sqrt{8/3})$	$\left(-2/3, 2+\sqrt{8/3}\right)$	$\left(\frac{-8}{3\sqrt{2}} - \frac{2}{3}, \frac{4}{3\sqrt{2}} + \frac{2}{3}\right)$
F_2	$(0, -\sqrt{8/3})$	$\left(-2/3, 2 - \sqrt{8/3}\right)$	$\left(\frac{-8}{3\sqrt{2}} + \frac{2}{3}, \frac{4}{3\sqrt{2}} - \frac{2}{3}\right)$
V_1	$(0,\sqrt{2})$	$\left(-2/3,2+\sqrt{2}\right)$	$\left(\frac{-8}{3\sqrt{2}} - 1, \frac{4}{3\sqrt{2}} + 1\right)$
V_2	$(0, -\sqrt{2})$	$(-2/3, 2-\sqrt{2})$	$\left(\frac{-8}{3\sqrt{2}} + 1, \frac{4}{3\sqrt{2}} - 1\right)$
Assínt.	$x' = \pm \frac{1}{\sqrt{3}}y'$	$\bar{x} + \frac{2}{3} = \pm \frac{1}{\sqrt{3}} (\bar{y} - 2)$	$\left(\frac{x+y}{\sqrt{2}}\right) + \frac{2}{3} = \pm \frac{1}{\sqrt{3}} \left(\left(\frac{-x+y}{\sqrt{2}}\right) - 2\right)$

(obs. os valores nos outros sistemas pode variar)

(i)
$$x^2 - 2y^2 + 4xy - 6 = 0$$

Resposta:

	Sist. $\bar{x}\bar{y}$	Sist. xy
Excent.	$\sqrt{5/3}$	$\sqrt{5/3}$
F_1	$(\sqrt{5},0)$	(2,1)
F_2	$(-\sqrt{5},0)$	(-2, -1)
V_1	$(\sqrt{3},0)$	$\left(2\sqrt{\frac{3}{5}},\sqrt{\frac{3}{5}}\right)$
V_2	$(-\sqrt{3},0)$	$\left(-2\sqrt{\frac{3}{5}},-\sqrt{\frac{3}{5}}\right)$
Assínt.	$\bar{y} = \pm \sqrt{2/3}\bar{x}$	$(-x+2y) = \pm \sqrt{2/3}(2x+y)$

(obs. os valores nos outros sistemas pode variar)

(j)
$$-2x^2 + y^2 - 4xy - \sqrt{5}y = \frac{67}{12}$$
.

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
Excent.	$\sqrt{5/3}$	$\sqrt{5/3}$	$\sqrt{5/3}$
F_1	$(\sqrt{5},0)$	$\left(-\frac{1}{2} + \sqrt{5}, -\frac{1}{6}\right)$	$\left(-\frac{1}{6\sqrt{5}} + 1, \frac{1}{6\sqrt{5}} - 2\right)$
F_2	$(-\sqrt{5},0)$	$\left(-\frac{1}{2}-\sqrt{5},-\frac{1}{6}\right)$	$\left(-\frac{1}{6\sqrt{5}} - 1, \frac{1}{6\sqrt{5}} + 2\right)$
V_1	$(\sqrt{3},0)$	$\left(-\frac{1}{2} + \sqrt{3}, -\frac{1}{6}\right)$	$\left(-\frac{1}{6\sqrt{5}} + \sqrt{\frac{3}{5}}, \frac{1}{6\sqrt{5}} - 2\sqrt{\frac{3}{5}}\right)$
V_2	$(-\sqrt{3},0)$	$\left(-\frac{1}{2}-\sqrt{3},-\frac{1}{6}\right)$	$\left(-\frac{1}{6\sqrt{5}} - \sqrt{\frac{3}{5}}, \frac{1}{6\sqrt{5}} + 2\sqrt{\frac{3}{5}}\right)$
Assínt.	$y' = \pm \sqrt{2/3}x'$	$\bar{y} + \frac{1}{6} = \pm \sqrt{2/3} \left(\bar{x} - \frac{1}{2} \right)$	$\left(\frac{2x+y}{\sqrt{5}}\right) + \frac{1}{6} = \pm\sqrt{2/3}\left(\left(\frac{x-2y}{\sqrt{5}}\right) - 2\right)$

(obs. os valores nos outros sistemas pode variar)

(k)
$$x^2 - y^2 - 2\sqrt{3}xy - 2x - 2\sqrt{3}y = 6$$

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
Excent.	2	2	2
F_1	(2,0)	(2, -1)	$\left(rac{2\sqrt{3}-1}{\sqrt{2}},rac{-2-\sqrt{3}}{\sqrt{2}} ight)$
F_2	(-2,0)	(-2, -1)	$\left(rac{-2\sqrt{3}-1}{\sqrt{2}},rac{2-\sqrt{3}}{\sqrt{2}} ight)$
V_1	$(\sqrt{2},0)$	$(\sqrt{2},-1)$	$\left(rac{\sqrt{6}-1}{\sqrt{2}},rac{-\sqrt{2}-\sqrt{3}}{\sqrt{2}} ight)$
V_2	$(-\sqrt{2},0)$	$\left(-\sqrt{2},-1\right)$	$\left(\frac{-\sqrt{6}-1}{\sqrt{2}}, \frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}}\right)$
Assínt.	$y' = \pm x'$	$\bar{y} + 1 = \pm \bar{x}$	$(x+\sqrt{3}y)+2=\pm(\sqrt{3}x-y)$

(obs. os valores nos outros sistemas pode variar)

(1)
$$x^2 + 4y^2 + 4xy - \frac{24}{\sqrt{5}}x + \frac{12}{\sqrt{5}}y = 0$$

Resposta:

	Sist. $\bar{x}\bar{y}$	Sist. xy
V	(0,0)	(0,0)
F	$\left(\frac{3}{5},0\right)$	$\left(\frac{6}{5\sqrt{5}}, \frac{-3}{5\sqrt{5}}\right)$
reta d.	$\bar{x} = -3/5$	$x + 3y = -3\sqrt{5}$

(obs. os valores nos outros sistemas pode variar)

(m)
$$x^2 + 5y^2 - 2\sqrt{5}xy + \sqrt{\frac{5}{6}}x + \frac{1}{\sqrt{6}}y = 1$$

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
V	(0,0)	(1,0))	$\left(\frac{\sqrt{5}}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$
F	$\left(\frac{-1}{24},0\right)$	$\left(\frac{23}{24}\right)$	$\left(\frac{23\sqrt{5}}{24\sqrt{6}}, \frac{23}{24\sqrt{6}}\right)$
reta d.	$x' = \frac{1}{24}$	$x' = \frac{25}{24}$	$\sqrt{5}x + y = \frac{25\sqrt{6}}{24}$

(obs. os valores nos outros sistemas pode variar)

(n)
$$y^2 + 2\sqrt{2}xy = 4$$

Resposta:

	Sist. $\bar{x}\bar{y}$	Sist. xy
Excent.	$\sqrt{3}$	$\sqrt{3}$
F_1	$(0, \sqrt{6})$	$(\sqrt{2},2)$
F_2	$(0, -\sqrt{6})$	$\left(-\sqrt{2},-2\right)$
V_1	$(0,\sqrt{2})$	$\left(rac{\sqrt{2}}{\sqrt{3}},rac{2}{\sqrt{3}} ight)$
V_2	$(0, -\sqrt{2})$	$\left(\frac{-\sqrt{2}}{\sqrt{3}},\frac{-2}{\sqrt{3}}\right)$
Assínt.	$\pm\sqrt{2}\bar{x} = \bar{y}$	$\pm\sqrt{2}(\sqrt{2}x - y) = (x + \sqrt{2}y)$

(obs. os valores nos outros sistemas pode variar)

(o)
$$x^2 - 2xy + y^2 + 10\sqrt{2}x - 6\sqrt{2}y + 24 = 0$$

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
V	(0,0)	(2,4))	$\left(\frac{-2}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$
F	$\left(\frac{-1}{2},0\right)$	$\left(\frac{3}{2},4\right)$	$\left(\frac{-5}{2\sqrt{2}}, \frac{11}{2\sqrt{2}}\right)$
reta d.	$x' = \frac{1}{2}$	$x' = \frac{5}{2}$	$x+y=\frac{5}{\sqrt{2}}$

(obs. os valores nos outros sistemas pode variar)

(p)
$$4x^2 + 4xy + y^2 - 6\sqrt{5}y + 3\sqrt{5}x = 9$$

Resposta:

	Sist. x'y'	Sist. $\bar{x}\bar{y}$	Sist. xy
V	(0,0)	(3/5,0))	$\left(\frac{3}{5\sqrt{5}}, \frac{-6}{\sqrt{5}}\right)$
F	$\left(-\frac{3}{4},0\right)$	$\left(\frac{-3}{20},0\right)$	$\left(\frac{-3}{20\sqrt{5}}, \frac{6}{10\sqrt{5}}\right)$
reta d.	$x' = \frac{3}{4}$	$\bar{x} = \frac{27}{20}$	$x - 2y = \frac{27\sqrt{5}}{20}$

(obs. os valores nos outros sistemas pode variar)

5. Seja $\mathcal C$ o lugar geométrico dos pontos P(x,y) do plano cujas coordenadas x e y satisfazem

$$5x^2 - 2xy + 5y^2 - 16\sqrt{2}x + 8\sqrt{2}y + 4 = 0$$

Encontrar as mudanças consecutivas das coordenadas que levam $\mathcal C$ à forma canônica e identificar a cônica $\mathcal C$.

Resposta: Elipse. Com mudança de coordenadas por isto é

$$x = \frac{x' + y'}{\sqrt{2}}, \qquad y = \frac{-x' + y'}{\sqrt{2}}$$

Ε

$$x'' = x' - 2 \qquad \qquad y'' = y' - 1$$

Temos

$$\frac{(x'')^2}{4} + \frac{(y'')^2}{6} = 1$$

que é a forma canônica de \mathcal{C} .