선형대수학 2 숙제 #1

2017-18570 컴퓨터공학부 이성찬

- 9.3.11 (가) Let $S = \operatorname{diag}(-1, 1, \dots, 1) \in \mathfrak{M}_{n,n}(\mathbb{R})$. Then $S \cdot S^{\mathbf{t}} = I_n$ 이고 $\det S = -1$. 따라서 $S \in \mathbf{O}(n) \mathbf{SO}(n)$ 이고 $\mathbf{O}(n) \mathbf{SO}(n) \neq \emptyset$ 이다.
 - (나) $S \cdot \mathbf{SO}(n)$ 의 정의로부터 λ_S 가 surjection 인 것은 자명. $\det S = -1 \neq 0$ 이므로 S 는 가역이다. 따라서 $\lambda_S(A) = \lambda_S(B) (A, B \in \mathbf{SO}(n))$ 이면 양변의 왼쪽에 S^{-1} 을 곱하여 A = B 를 얻게 되므로 λ_S 는 injection. 따라서 λ_S 는 bijection.
 - (다) $R \in \mathbf{O}(n) \mathbf{SO}(n)$ 이면, $S^{-1}R \in \mathbf{SO}(n)$ 이므로 $R = S(S^{-1}R) \in S \cdot \mathbf{SO}(n)$. 그리고 $SA \in S \cdot \mathbf{SO}(n)$ $(A \in \mathbf{SO}(n))$ 이면, $(SA)^{\mathbf{t}}(SA) = A^{\mathbf{t}}S^{\mathbf{t}}SA = I$ 이지만 $\det(SA) = \det S \cdot \det A = -1$ 이므로 $SA \in \mathbf{O}(n) - \mathbf{SO}(n)$. 두 집합이 서로가 서로를 포함하므로 $\mathbf{O}(n) - \mathbf{SO}(n) = S \cdot \mathbf{SO}(n)$.
 - (라) $S \cdot SO(n)$ 의 원소들은 전부 행렬식의 값이 -1 이고, SO(n) 의 원소들은 전부 행렬식의 값이 1 이므로 두 집합은 disjoint. $O(n) = SO(n) \cup (O(n) SO(n))$ 이고 (다) 의 등식에 의해 $O(n) = SO(n) \coprod (S \cdot SO(n))$.
 - 9.5.6 (계산으로 증명, 반각공식) \mathbb{R}^2 의 basis $\{(1,0)^{\mathbf{t}},(0,1)^{\mathbf{t}}\}$ 에 대해 S_{θ} 와 $S_{Y_{\theta}}$ 의 함숫값이 같음을 보이면 Linear Extension Theorem 에 의해 두 operator 가 같다. $S_{Y_{\theta}}(1,0)^{\mathbf{t}} = (1,0)^{\mathbf{t}} 2(-\sin(\theta/2))(-\sin(\theta/2),\cos(\theta/2))^{\mathbf{t}} = (1-2\sin^2(\theta/2),2\sin(\theta/2)\cos(\theta/2))^{\mathbf{t}} = (\cos\theta,\sin\theta)^{\mathbf{t}}.$ $S_{Y_{\theta}}(0,1)^{\mathbf{t}} = (0,1)^{\mathbf{t}} 2\cos(\theta/2)(-\sin(\theta/2),\cos(\theta/2))^{\mathbf{t}} = (2\sin(\theta/2)\cos(\theta/2),1-2\cos^2(\theta/2))^{\mathbf{t}} = (\sin\theta,-\cos\theta)^{\mathbf{t}}.$ 이므로 함숫값이 같다. 따라서 $S_{\theta} = S_{Y_{\theta}}$.
- 9.5.12 $\frac{1}{\|Y\|}Y = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^{\mathbf{t}} = \left(-\sin\frac{\pi/2}{2}, \cos\frac{\pi/2}{2}\right)^{\mathbf{t}}, \frac{1}{\|Z\|}Z = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^{\mathbf{t}} = \left(-\sin\frac{\pi/3}{2}, \cos\frac{\pi/3}{2}\right)^{\mathbf{t}}.$ 따라서 구하는 각 $\theta = \frac{\pi}{2} \frac{\pi}{3} = \frac{\pi}{6}$. (보기 9.5.11 이용)
 - 9.6.6 (가) $\langle Z \rangle^{\perp} = \langle X \rangle \oplus \langle Y \rangle = \langle X' \rangle \oplus \langle Y' \rangle$ 이므로, $(\{X,Y\},\{X',Y'\} \vdash \langle Z \rangle^{\perp})$ 의 basis)

$$[I]_{\mathfrak{B}}^{\mathfrak{B}'} = \left([I(Z)]_{\mathfrak{B}}, [I(X')]_{\mathfrak{B}}, [I(Y')]_{\mathfrak{B}} \right) = \left([Z]_{\mathfrak{B}}, [X']_{\mathfrak{B}}, [Y']_{\mathfrak{B}} \right)$$

이다. $[Z]_{\mathfrak{B}}$ 는 $(1,0,0)^{\mathbf{t}}$ 이고, $[X']_{\mathfrak{B}}$, $[Y']_{\mathfrak{B}}$ 의 Z-방향으로의 성분은 0 이므로 $(X',Y'\in \langle Z\rangle^{\perp})$ $[I]_{\mathfrak{B}}^{\mathfrak{B}'}$ 의 첫 행은 (1,0,0) 이다. 따라서 $[I]_{\mathfrak{B}}^{\mathfrak{B}'}=\mathrm{diag}(1,U)$ 인 $U\in\mathfrak{M}_{2,2}(\mathbb{R})$ 이 존재한다.

- (나) $[I]_{\mathfrak{B}}^{\mathfrak{B}'} = [I]_{\mathfrak{D}}^{\mathfrak{E}} \cdot [I]_{\mathcal{E}}^{\mathfrak{E}} \cdot [I]_{\mathcal{E}}^{\mathfrak{B}'}$. 우변의 세 행렬 모두 $\mathbf{SO}(3)$ 의 원소이므로 그 곱도 $\mathbf{SO}(3)$ 의 원소이다. 이제 $[I]_{\mathfrak{D}}^{\mathfrak{B}'}$ 의 세 column 이 \mathbb{R}^3 의 orthonormal basis 가 되려면 $U \in \mathbf{O}(2)$. 또 행렬식이 1 이므로 $U \in \mathbf{SO}(2)$. (따라서 회전변환이므로 $U = R_{\eta}$ 로 둘 수 있다. 이를 (다)에서 이용한다.)
- (다) Change of Bases 에 의해 첫번째 등식은 자명. 그리고 $[I]_{\mathfrak{B}}^{\mathfrak{B}'}$ 와 $[I]_{\mathfrak{B}'}^{\mathfrak{B}}$ 은 서로 역행렬 이고 $[I]_{\mathfrak{B}}^{\mathfrak{B}'} = \operatorname{diag}(1,R_{\eta})$ 이므로 $[I]_{\mathfrak{B}'}^{\mathfrak{B}} = \operatorname{diag}(1,R_{-\eta})$. 따라서 $[R'_{Z,\theta}]_{\mathfrak{B}}^{\mathfrak{B}} = \operatorname{diag}(1,R_{\eta}) \cdot \operatorname{diag}(1,R_{\theta}) \cdot \operatorname{diag}(1,R_{-\eta}) = \operatorname{diag}(1,R_{\eta+\theta-\eta}) = \operatorname{diag}(1,R_{\theta}) = [R_{Z,\theta}]_{\mathfrak{B}}^{\mathfrak{B}}$.

 $[\]frac{1}{\sin^2\frac{\theta}{2} = \frac{1-\cos\theta}{2}, \cos^2\frac{\theta}{2} = \frac{1+\cos\theta}{2}, \sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$

- 9.6.8 (가) 선형사상 L 에 대응하는 행렬 A 를 생각하자. $\det(A+I)=0$ 을 보이자. $\det(A+I)=\det(A+A\cdot A^{\mathbf{t}})=\det(A+A\cdot \det(I+A^{\mathbf{t}})=-\det(I+A)^{\mathbf{t}}=-\det(I+A)$ 이므로 $\det(A+I)=0$ 이고 L 은 eigenvalue -1 을 갖는다. 따라서 L(Z)=-Z 인 unit vector Z 가 존재한다.
 - (나) 이제 \mathbb{R}^3 의 orthonormal basis \mathfrak{B} 를 찾아주면 된다. $[L_A]_{\mathfrak{B}}^{\mathfrak{B}} = \begin{pmatrix} -1 & a & b \\ 0 & B \end{pmatrix}$ 가 orthogonal matrix 가 되려면, a = b = 0, $B \in \mathbf{O}(2)$ 이어야 하고, 행렬식 값 $\det([L_A]_{\mathfrak{B}}^{\mathfrak{B}}) = -1$ 으로부터 $\det B = 1$ 이므로 $B \in \mathbf{SO}(2)$ 가 되어 $B = R_{\theta}$ 인 $\theta \in \mathbb{R}$ 가 존재한다. Orthonormal basis 도 존재한다.
- **10.2.13 (라)** $\|1\| = \int_0^1 1 dt = 1$. $\|\sqrt{12}(t \frac{1}{2})\| = \int_0^1 12(t \frac{1}{2})^2 dt = \left[4(t \frac{1}{2})^3\right]_0^1 = 1$. 이므로 각 vector 는 unit vector 이다. 이제 두 벡터가 수직임을 보이자.

$$\left\langle 1, \sqrt{12} \left(t - \frac{1}{2} \right) \right\rangle = \int_0^1 1 \cdot \sqrt{12} \left(t - \frac{1}{2} \right) dt = 0$$

따라서 주어진 집합은 $\mathcal{P}_1(\mathbb{R})$ 의 orthonormal basis.

(마) $\|f_n(x)\| = \frac{1}{2\pi} \int_0^{2\pi} e^{\mathbf{i}nx} \overline{e^{\mathbf{i}nx}} dx = \frac{1}{2\pi} \int_0^{2\pi} e^{\mathbf{i}nx} e^{-\mathbf{i}nx} dx = 1$ $\langle f_n(x), f_m(x) \rangle = \frac{1}{2\pi} \int_0^{2\pi} e^{\mathbf{i}nx} \overline{e^{\mathbf{i}mx}} dx = \frac{1}{2\pi} \int_0^{2\pi} \left[\cos(n-m)x + \mathbf{i} \sin(n-m)x \right] dx$ (단 $i \neq j$) 이를 적분하면

$$= \frac{1}{2\pi} \left[\frac{\sin(n-m)x}{n-m} + \mathbf{i} \frac{-\cos(n-m)x}{n-m} \right]_0^{2\pi} = 0$$

이므로 $\{f_n\}_{n\in\mathbb{Z}}$ 는 $C^0[0,2\pi]$ 의 orthonormal subset.

10.3.2 (가) 먼저 첫 번째 vector 를 그 크기인 $\sqrt{2}$ 로 나누어 $w_1 = (1/\sqrt{2}, 1/\sqrt{2}, 0)^t$ 로 두자. 두 번째 vector 는 $(-1,0,2)^t - \langle (-1,0,2)^t, w_1 \rangle w_1 = (-1/2, 1/2, 2)^t$ 이므로 크기로 나누어 주면 $w_2 = (-\sqrt{2}/6, \sqrt{2}/6, 2\sqrt{2}/3)^t$. 세 번째 vector 는 $(2,1,1)^t - \langle (2,1,1)^t, w_2 \rangle w_2 - \langle (2,1,1)^t, w_1 \rangle w_1 = (2/3, -2/3, 1/3)^t$ 이고 unit vector 이다. 따라서

$$\left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)^{\mathbf{t}}, \left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}\right)^{\mathbf{t}}, \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)^{\mathbf{t}} \right\}$$

(라) 1 은 크기가 1 이므로 그대로 둔다. 두 번째 vector 는 $t-\langle t,1\rangle \cdot 1=t-1/2$. 크기인 $\int_0^1 (t-1/2)^2 dt=1/12$ 의 양의 제곱근으로 나눠주면 $\sqrt{12}(t-1/2)$. 세 번째 vector 로는 $t^2-\langle t^2,\sqrt{12}(t-1/2)\rangle \cdot \sqrt{12}(t-1/2)-\langle t^2,1\rangle \cdot 1=t^2-t+1/6=t^2-t+1/6$ 이고 크기가 $1/\sqrt{180}$ 이므로 나누어 주면 $6\sqrt{5}(t^2-t+1/6)$ 을 얻는다. 따라서

$$\left\{1,\sqrt{12}\left(t-\frac{1}{2}\right),6\sqrt{5}\left(t^2-t+\frac{1}{6}\right)\right\}$$

- 10.3.6 (가) $W \leq (W^{\perp})^{\perp}$ 임을 보였다. 이제 $\dim V = \dim W + \dim W^{\perp} = \dim W^{\perp} + \dim(W^{\perp})^{\perp}$ 에서 $\dim W = \dim(W^{\perp})^{\perp}$ 를 얻는다. Dimension argument 에 의해 $W = (W^{\perp})^{\perp}$.
 - (나) $x \in (U+W)^{\perp}$ 라고 하자. 그러면 모든 $u \in U, w \in W$ 에 대해, $x \perp (u+w), U, W$ 는 0 을 원소로 가지므로 u=0, w=0 으로 각각 두면 $x\perp u, x\perp w$ 를 각각 얻으므로 $x \in U^{\perp} \cap W^{\perp}$. $(U + W)^{\perp} \subset U^{\perp} \cap W^{\perp}$. $x \in U^{\perp} \cap W^{\perp}$ 라고 하자. 그러면 $x \perp u, x \perp w \ (u \in U, w \in W)$ 이므로 $x \perp (u + w)$ 가 되어 $x \in (U+W)^{\perp}$. $U^{\perp} \cap W^{\perp} \subset (U+W)^{\perp}$. 따라서 $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$ 를 얻는다.
 - (다) (나) 의 양변에 orthogonal complement 를 취하면 $U+W=(U^\perp\cap W^\perp)^\perp$ 임을 알 수 있다. 따라서 $U^{\perp} + W^{\perp} = ((U^{\perp})^{\perp} \cap (W^{\perp})^{\perp})^{\perp} = (U \cap W)^{\perp}$ 이다. ((7))를 이용)
- **10.3.9** (증명 완성) 보기 10.3.8 의 notation 을 그대로 사용한다.
- $(2), (3) \Rightarrow (1)$ Rank Theorem 에 의해 $\dim W = [\text{row rank of } A] = [\text{column rank of } A] = \dim \operatorname{im} L_A$ 이다. 그리고 보기 10.3.8 에서 $W^{\perp}=\ker L_A$. 이제 Perp Theorem 으로부터 n=1 $\dim \mathbb{R}^n = \dim W + \dim W^{\perp} = \dim \operatorname{im} L_A + \dim \ker L_A.$
- (1), (3) \Rightarrow (2) [column rank of A] = dim im L_A = dim \mathbb{R}^n dim ker L_A . (Dimension Theorem) \bigcirc \mathbb{Z} , $\ker L_A = W^{\perp}$ 이므로 $\dim \mathbb{R}^n - \dim \ker L_A = \dim \mathbb{R}^n - \dim W^{\perp} = \dim W$. (Perp Theorem) 그리고 $\dim W = [\text{row rank of } A]$ 이므로 row rank 와 column rank 가 같음을 보였다.
 - **10.4.6** (가) $\langle f, f_0 \rangle = \frac{1}{2\pi} \int_0^{2\pi} x dx = \frac{1}{2\pi} \cdot 2\pi^2 = \pi. \ n \neq 0$ 인 경우에는 $\langle f, f_n \rangle = \frac{1}{2\pi} \int_{-2\pi}^{2\pi} x e^{-inx} dx$ $= \frac{1}{2\pi} \left[\frac{x}{n} \sin nx + \mathbf{i} \frac{x}{n} \cos nx \right]_0^{2\pi} - \frac{1}{2\pi n} \int_0^{2\pi} (\sin nx + \mathbf{i} \cos nx) dx$ $=\frac{i}{n}-0=\frac{i}{n}$

(나) $||f||^2 = \frac{1}{2\pi} \int_0^{2\pi} x^2 dx = \frac{4}{3}\pi^2$

(다) 주어진 부등식에 (가), (나) 에서 구한 값을 대입하면

$$\frac{4}{3}\pi^2 = \|f\|^2 \ge \sum_{n=-k}^{-1} \left|\frac{\mathbf{i}}{n}\right|^2 + \pi^2 + \sum_{n=1}^{k} \left|\frac{\mathbf{i}}{n}\right|^2 = 2\sum_{n=1}^{k} \frac{1}{n^2} + \pi^2$$
이를 정리하면 $\sum_{n=1}^{k} \frac{1}{n^2} \le \frac{\pi^2}{6}$ 을 얻고 $k \to \infty$ 일 때 $\sum_{n=1}^{\infty} \frac{1}{n^2} \le \frac{\pi^2}{6}$.

10.5.8 (가) $X = (a_1 + \mathbf{i}b_1, \dots, a_n + \mathbf{i}b_n)^{\mathbf{t}}, Y = (c_1 + \mathbf{i}d_1, \dots, c_n + \mathbf{i}d_n)^{\mathbf{t}} \in \mathbb{C}^n$ 라고 하자. $(a_i, b_i, c_i, d_i \in \mathbb{C}^n)$

 \mathbb{R}) $k \in \mathbb{R}$ 일때,

$$\gamma(X + kY) = (a_1 + kc_1, b_1 + kd_1, \cdots, a_n + kc_n, b_n + kd_n)^{\mathbf{t}}$$
$$= (a_1, b_1, \cdots, a_n, b_n)^{\mathbf{t}} + k(c_1, d_1, \cdots, c_n, d_n)^{\mathbf{t}}$$
$$= \gamma(X) + k\gamma(Y)$$

이므로 linear 이다. $\gamma(X) = \gamma(Y)$ 이면 $a_i = c_i, b_i = d_i$ for all i 이므로 X = Y 가 되어 γ 는 injection 이고, 임의의 $(a_1, b_1, \cdots, a_n, b_n)^{\mathbf{t}}$ 에 대해 $(a_1 + \mathbf{i}b_1, \dots, a_n + \mathbf{i}b_n)^{\mathbf{t}}$ 를 복원할 수 있으므로 γ 는 surjection. 따라서 γ 는 bijection. 따라서 γ 는 \mathbb{R} -vector space isomorphism.

(나) *X,Y* 를 (가)에서와 같이 두자.

$$\|\gamma(X) - \gamma(Y)\|^2 = \|(a_1 - c_1, b_1 - d_1, \cdots, a_n - c_n, b_n - d_n)^{\mathbf{t}}\|^2$$

$$= \sum_{i=1}^n \{(a_i - c_i)^2 + (b_i - d_i)^2\}$$

$$= \sum_{i=1}^n |(a_i - c_i) + \mathbf{i}(b_i - d_i)|^2 = \|X - Y\|^2$$

(다) Rigid motion 의 합성도 rigid motion 이므로, $\gamma \circ M \circ \gamma^{-1} : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$ 은 rigid motion. 그리고 \mathbb{R}^n 의 rigid motion 은 bijection 이고 γ 도 bijection 이므로 M 은 bijection.

10.6.14 (U(2) 관련 부분 제외)

(가)
$$A^*\cdot A=A\cdot A^*=I$$
 를 계산한다. $A=\left(egin{array}{cc} a & c \\ b & d \end{array}
ight)\in\mathfrak{M}_{2,2}(\mathbb{C})$ 로 두고 계산하면

$$|a|^2 + |b|^2 = 1 (1)$$

$$|a|^2 + |c|^2 = 1 (2)$$

$$|b|^2 + |d|^2 = 1 (3)$$

$$|c|^2 + |d|^2 = 1 (4)$$

$$a\overline{b} + c\overline{d} = 0 \tag{5}$$

$$\bar{a}c + \bar{b}d = 0 \tag{6}$$

(1), (2) 로부터, (1), (3) 으로부터 |a|=|d|, |b|=|c| 를 얻는다. 복소수의 크기가 같으므로 일반성을 잃지 않고 $c=\bar{b}e^{\mathrm{i}\theta_1}, d=\bar{a}e^{\mathrm{i}\theta_2}$ 로 둘 수 있다. (conjugate 해도 편각의 차이만 존재하므로 θ_i 의 값을 조절하면 된다.) 이를 (6) 에 대입하면 $a\bar{b}(1+e^{\mathrm{i}(\theta_1-\theta_2)})=0$ 을 얻는다. 여기서 a,b는 임의의 복소수가 될 수 있으므로 $1+e^{\mathrm{i}(\theta_1-\theta_2)}=0$ 이어야 한다. 따라서 $\theta_1-\theta_2=(2n+1)\pi$ $(n\in\mathbb{Z})$. 이제 $\theta_1=\theta_2+(2n+1)\pi$ 로 두면 $c=\bar{b}e^{\mathrm{i}(\theta_2+(2n+1)\pi)}=-\bar{b}e^{\mathrm{i}\theta_2}$. 이제 $\det A=ad-bc=(|a|^2+|b|^2)e^{\mathrm{i}\theta_2}=e^{\mathrm{i}\theta_2}=1$ 으로부터 $\theta_2=0$ 으로 잡는다. 그러면

$$\mathbf{SU}(2) = \left\{ \left(\begin{array}{cc} \alpha & -\overline{\beta} \\ \beta & \overline{\alpha} \end{array} \right) \in \mathfrak{M}_{2,2}(\mathbb{C}) \middle| \alpha, \beta \in \mathbb{C}, |a|^2 + |b|^2 = 1 \right\}$$

와 같이 표현할 수 있다.

(나) $A \in SU(2)$ 라고 하자. eigenvalue $\lambda \in \mathbb{C}$ 로 두고, $det(A - \lambda I) = 0$ 을 풀어본다.

$$\det(A - \lambda I) = (\alpha - \lambda)(\overline{\alpha} - \lambda) + \beta \overline{\beta} = \lambda^2 - (\alpha + \overline{\alpha})\lambda + |\alpha|^2 + |\beta|^2$$
$$= \lambda^2 - (\alpha + \overline{\alpha})\lambda + 1 = 0$$

Eigenvalue 가 모두 distinct 이면 diagonalizable 이므로 위 이차방정식이 중근인 경우만 고려하면 된다. 중근이 될 조건은 $\alpha+\overline{\alpha}=2\mathfrak{Re}(\alpha)=\pm 2$ 인 경우이다. 그런데 이 경우에는 $|\alpha|^2=\mathfrak{Re}(\alpha)^2+\mathfrak{Im}(\alpha)^2=1+\mathfrak{Im}(\alpha)^2$ 이므로 $|a|^2+|b|^2=1$ constraint 를 만족시키려면 $\alpha=\pm 1,\beta=0$ 이다. 이 경우 이미 diagonal matrix 이므로 당연히 diagonalizable. 따라서 A는 diagonalizable.

10.7.5 주어진 문제를 행렬로 바꾸면
$$\begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{pmatrix}$$
 $\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 3 \\ 2 \end{pmatrix}$ 이 되므로 $(A^* \cdot A)X = A^* \cdot B$ 를 계산하면 $\begin{pmatrix} 4 & 10 \\ 10 & 30 \end{pmatrix}$ $\begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} 9 \\ 24 \end{pmatrix}$ 이다. 역행렬을 왼쪽에 곱하면 $c_0 = 1.5, c_1 = 0.3$. 따라서 $u = 1.5 + 0.3r$