$10_{69} \ (K10a_{38})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{18} - 3u^{17} + \dots + b - 3, \ -3u^{18} - 7u^{17} + \dots + 2a - 7, \ u^{19} + 3u^{18} + \dots + 7u + 2 \rangle \\ I_2^u &= \langle 4u^{13}a - 17u^{13} + \dots + a + 22, \ 2u^{13}a - 2u^{13} + \dots - 2a + 2, \\ u^{14} - u^{13} - 3u^{12} + 4u^{11} + 4u^{10} - 7u^9 - u^8 + 6u^7 - 2u^6 - 2u^5 + 2u^4 - u + 1 \rangle \\ I_3^u &= \langle u^3 + b, \ u^2 + a + u - 1, \ u^4 - u^2 + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 51 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I. \ I_1^u = \langle -u^{18} - 3u^{17} + \dots + b - 3, \ -3u^{18} - 7u^{17} + \dots + 2a - 7, \ u^{19} + 3u^{18} + \dots + 7u + 2 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} \frac{3}{2}u^{18} + \frac{7}{2}u^{17} + \dots + \frac{17}{2}u + \frac{7}{2} \\ u^{18} + 3u^{17} + \dots + 8u + 3 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{1}{2}u^{18} + \frac{3}{2}u^{17} + \dots + \frac{7}{2}u + \frac{3}{2} \\ u^{17} + u^{16} + \dots + 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{18} - \frac{3}{2}u^{17} + \dots - \frac{7}{2}u - \frac{1}{2} \\ -u^{17} - u^{16} + \dots - 3u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}u^{18} + \frac{7}{2}u^{17} + \dots + \frac{17}{2}u + \frac{7}{2} \\ -u^{18} - 2u^{17} + \dots - 4u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $12u^{18} + 26u^{17} 24u^{16} 116u^{15} 42u^{14} + 200u^{13} + 222u^{12} 116u^{11} 334u^{10} 108u^9 + 228u^8 + 240u^7 4u^6 172u^5 118u^4 + 12u^3 + 78u^2 + 64u + 30$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_8	$u^{19} + 4u^{17} + \dots + 2u - 1$
c_3	$u^{19} - 9u^{18} + \dots + 157u - 22$
c_4, c_{10}	$u^{19} - 3u^{18} + \dots + 7u - 2$
<i>C</i> ₅	$u^{19} - 9u^{18} + \dots + 5u - 4$
c_7, c_9	$u^{19} + 8u^{18} + \dots - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_6 c_8	$y^{19} + 8y^{18} + \dots - 2y - 1$		
c_3	$y^{19} + 3y^{18} + \dots + 1461y - 484$		
c_4,c_{10}	$y^{19} - 9y^{18} + \dots + 5y - 4$		
<i>c</i> ₅	$y^{19} + 3y^{18} + \dots + 129y - 16$		
c_7, c_9	$y^{19} + 12y^{18} + \dots + 30y - 1$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.656620 + 0.736849I		
a = -0.530916 + 0.111769I	-3.87251 - 6.01197I	-0.18591 + 7.59122I
b = -0.692991 - 0.514666I		
u = -0.656620 - 0.736849I		
a = -0.530916 - 0.111769I	-3.87251 + 6.01197I	-0.18591 - 7.59122I
b = -0.692991 + 0.514666I		
u = 0.833011 + 0.594872I		
a = 0.493073 - 0.284708I	-1.75185 + 2.35707I	4.45005 - 4.73717I
b = 0.042413 + 0.483034I		
u = 0.833011 - 0.594872I		
a = 0.493073 + 0.284708I	-1.75185 - 2.35707I	4.45005 + 4.73717I
b = 0.042413 - 0.483034I		
u = -0.342490 + 0.822016I		
a = -0.423303 - 0.244228I	-2.12081 + 8.87474I	0.63360 - 6.11132I
b = -0.84616 + 1.72998I		
u = -0.342490 - 0.822016I		
a = -0.423303 + 0.244228I	-2.12081 - 8.87474I	0.63360 + 6.11132I
b = -0.84616 - 1.72998I		
u = -0.954304 + 0.656562I		
a = 1.022240 + 0.645581I	-2.99077 + 0.72249I	1.52455 - 2.82827I
b = 0.517413 - 0.115037I		
u = -0.954304 - 0.656562I		
a = 1.022240 - 0.645581I	-2.99077 - 0.72249I	1.52455 + 2.82827I
b = 0.517413 + 0.115037I		
u = 1.178790 + 0.200823I		
a = 1.12805 + 1.83215I	2.86306 - 5.96190I	6.84845 + 4.63798I
b = -0.06929 + 1.61595I		
u = 1.178790 - 0.200823I		
a = 1.12805 - 1.83215I	2.86306 + 5.96190I	6.84845 - 4.63798I
b = -0.06929 - 1.61595I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.160320 + 0.382174I		
a = -0.30429 - 1.44141I	5.16612 + 4.98291I	9.41511 - 6.18167I
b = 0.996422 - 0.904006I		
u = 1.160320 - 0.382174I		
a = -0.30429 + 1.44141I	5.16612 - 4.98291I	9.41511 + 6.18167I
b = 0.996422 + 0.904006I		
u = -1.141050 + 0.480142I		
a = 0.96822 - 1.32852I	4.50851 - 3.09886I	9.38086 + 1.28227I
b = -0.00563 - 1.67007I		
u = -1.141050 - 0.480142I		
a = 0.96822 + 1.32852I	4.50851 + 3.09886I	9.38086 - 1.28227I
b = -0.00563 + 1.67007I		
u = -1.143800 + 0.588812I		
a = -1.12767 + 2.25574I	0.26882 - 14.12650I	3.54919 + 9.60559I
b = 0.96492 + 2.22818I		
u = -1.143800 - 0.588812I		
a = -1.12767 - 2.25574I	0.26882 + 14.12650I	3.54919 - 9.60559I
b = 0.96492 - 2.22818I		
u = -0.085864 + 0.693927I		
a = 0.667057 + 0.203041I	1.57783 - 1.22058I	5.73688 + 3.21713I
b = -0.176244 - 0.940079I		
u = -0.085864 - 0.693927I		
a = 0.667057 - 0.203041I	1.57783 + 1.22058I	5.73688 - 3.21713I
b = -0.176244 + 0.940079I		
u = -0.695977		
a = 0.715081	0.927841	11.2940
b = 0.538288		

$$\text{II. } I_2^u = \\ \langle 4u^{13}a - 17u^{13} + \dots + a + 22, \ 2u^{13}a - 2u^{13} + \dots - 2a + 2, \ u^{14} - u^{13} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.190476au^{13} + 0.809524u^{13} + \cdots - 0.0476190a - 1.04762 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.190476au^{13} - 0.190476u^{13} + \cdots + 0.952381a - 0.0476190 \\ 0.190476au^{13} + 0.190476u^{13} + \cdots + 0.0476190a - 0.952381 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.190476au^{13} - 0.190476u^{13} + \cdots + 0.952381a - 0.0476190 \\ -0.619048au^{13} + 0.380952u^{13} + \cdots + 0.0952381a - 0.0476190 \\ -0.6190476au^{13} - 0.190476u^{13} + \cdots + 0.0952381a - 0.904762 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -2u^{13} + 7u^{11} - 2u^{10} - 12u^{9} + 6u^{8} + 8u^{7} - 8u^{6} + 4u^{4} - 3u^{3} - a + 2 \\ -0.190476au^{13} - 0.190476u^{13} + \cdots - 0.0476190a + 0.952381 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{13} + 16u^{11} 4u^{10} 28u^9 + 12u^8 + 20u^7 16u^6 + 8u^4 8u^3 + 6u^4 8u^4 8u^4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_8	$u^{28} - u^{27} + \dots + 2u + 1$
c_3	$(u^{14} + 3u^{13} + \dots + 7u + 3)^2$
c_4, c_{10}	$(u^{14} + u^{13} + \dots + u + 1)^2$
<i>C</i> ₅	$(u^{14} - 7u^{13} + \dots - u + 1)^2$
c_7, c_9	$u^{28} + 15u^{27} + \dots + 10u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_8	$y^{28} + 15y^{27} + \dots + 10y^2 + 1$
c_3	$(y^{14} + 5y^{13} + \dots + 23y + 9)^2$
c_4, c_{10}	$(y^{14} - 7y^{13} + \dots - y + 1)^2$
<i>C</i> ₅	$(y^{14} + y^{13} + \dots + 7y + 1)^2$
c_7, c_9	$y^{28} - 5y^{27} + \dots + 20y + 1$

(vi) Complex Volumes and Cusp Shapes

Solı	itions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.98	89783 + 0.381937I		
a = 0.75	5275 - 1.27344I	-1.59516 + 1.40484I	5.50927 - 0.52948I
b = 0.09	00790 - 0.426836I		
u = 0.98	89783 + 0.381937I		
a = 1.91	.833 + 1.38556I	-1.59516 + 1.40484I	5.50927 - 0.52948I
b = 0.20	0805 + 2.13390I		
u = 0.98	89783 - 0.381937I		
a = 0.75	5275 + 1.27344I	-1.59516 - 1.40484I	5.50927 + 0.52948I
b = 0.09	00790 + 0.426836I		
u = 0.98	89783 - 0.381937I		
a = 1.91	.833 - 1.38556I	-1.59516 - 1.40484I	5.50927 + 0.52948I
b = 0.20	0805 - 2.13390I		
u = 0.72	28347 + 0.560551I		
a = 0.91	2076 - 0.177857I	-1.84948 + 2.19128I	2.76081 - 3.85718I
b = 0.44	43852 + 0.575052I		
u = 0.72	28347 + 0.560551I		
a = -0.06	64777 - 0.599184I	-1.84948 + 2.19128I	2.76081 - 3.85718I
	71682 + 0.254174I		
u = 0.72	28347 - 0.560551I		
a = 0.91	2076 + 0.177857I	-1.84948 - 2.19128I	2.76081 + 3.85718I
	13852 - 0.575052I		
u = 0.72	28347 - 0.560551I		
a = -0.06	54777 + 0.599184I	-1.84948 - 2.19128I	2.76081 + 3.85718I
	71682 - 0.254174I		
u = -1.06	68410 + 0.522447I		
a = 1.02	2538 + 1.04810I	-2.72606 - 5.07185I	2.32847 + 6.33126I
b = 0.43	39782 + 0.298160I		
u = -1.06	68410 + 0.522447I		
a = -0.47	7730 + 2.74473I	-2.72606 - 5.07185I	2.32847 + 6.33126I
b = 1.89	0542 + 1.97549I		

Solutions to I_2^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.068410 - 0.522447I		
a = 1.02538 - 1.04810I	-2.72606 + 5.07185I	2.32847 - 6.33126I
b = 0.439782 - 0.298160I		
u = -1.068410 - 0.522447I		
a = -0.47730 - 2.74473I	-2.72606 + 5.07185I	2.32847 - 6.33126I
b = 1.89542 - 1.97549I		
u = -1.157220 + 0.286866I		
a = -0.208422 + 0.989667I	4.53640 + 0.47055I	9.32829 + 0.18349I
b = 0.809510 + 0.540535I		
u = -1.157220 + 0.286866I		
a = 1.17269 - 1.74006I	4.53640 + 0.47055I	9.32829 + 0.18349I
b = -0.06603 - 1.71504I		
u = -1.157220 - 0.286866I		
a = -0.208422 - 0.989667I	4.53640 - 0.47055I	9.32829 - 0.18349I
b = 0.809510 - 0.540535I		
u = -1.157220 - 0.286866I		
a = 1.17269 + 1.74006I	4.53640 - 0.47055I	9.32829 - 0.18349I
b = -0.06603 + 1.71504I		
u = 0.268039 + 0.757899I		
a = 0.805404 - 0.051418I	0.22261 - 3.62879I	3.66617 + 2.63226I
b = 0.148756 + 0.914884I		
u = 0.268039 + 0.757899I		
a = -0.143310 + 0.427216I	0.22261 - 3.62879I	3.66617 + 2.63226I
b = -0.80984 - 1.45942I		
u = 0.268039 - 0.757899I		
a = 0.805404 + 0.051418I	0.22261 + 3.62879I	3.66617 - 2.63226I
b = 0.148756 - 0.914884I		
u = 0.268039 - 0.757899I		
a = -0.143310 - 0.427216I	0.22261 + 3.62879I	3.66617 - 2.63226I
b = -0.80984 + 1.45942I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.142590 + 0.546762I		
a = 0.78194 + 1.24283I	2.77434 + 8.53123I	6.72348 - 6.18031I
b = -0.06519 + 1.60824I		
u = 1.142590 + 0.546762I		
a = -0.88693 - 2.21821I	2.77434 + 8.53123I	6.72348 - 6.18031I
b = 1.12473 - 1.96518I		
u = 1.142590 - 0.546762I		
a = 0.78194 - 1.24283I	2.77434 - 8.53123I	6.72348 + 6.18031I
b = -0.06519 - 1.60824I		
u = 1.142590 - 0.546762I		
a = -0.88693 + 2.21821I	2.77434 - 8.53123I	6.72348 + 6.18031I
b = 1.12473 + 1.96518I		
u = -0.403136 + 0.584808I		
a = -1.142350 + 0.668190I	-4.65252 + 0.62859I	-2.31651 - 1.42251I
b = -0.860151 - 0.151246I		
u = -0.403136 + 0.584808I		
a = -0.445488 - 1.297380I	-4.65252 + 0.62859I	-2.31651 - 1.42251I
b = -1.48801 + 1.19980I		
u = -0.403136 - 0.584808I		
a = -1.142350 - 0.668190I	-4.65252 - 0.62859I	-2.31651 + 1.42251I
b = -0.860151 + 0.151246I		
u = -0.403136 - 0.584808I		
a = -0.445488 + 1.297380I	-4.65252 - 0.62859I	-2.31651 + 1.42251I
b = -1.48801 - 1.19980I		

III.
$$I_3^u = \langle u^3 + b, \ u^2 + a + u - 1, \ u^4 - u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2} - u + 1 \\ -u^{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - u^{2} - u + 1 \\ -u^{3} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} - u + 2 \\ -u^{3} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} + u + 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing		
c_1, c_2, c_6 c_8	$(u^2+1)^2$		
c_3, c_4, c_{10}	$u^4 - u^2 + 1$		
c_5	$(u^2 - u + 1)^2$		
c_7, c_9	$(u+1)^4$		

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing		
c_1, c_2, c_6 c_8	$(y+1)^4$		
c_3, c_4, c_{10}	$(y^2 - y + 1)^2$		
c_5	$(y^2+y+1)^2$		
c_7, c_9	$(y-1)^4$		

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.866025 + 0.500000I		
a = -0.36603 - 1.36603I	-3.28987 + 2.02988I	-2.00000 - 3.46410I
b = -1.000000I		
u = 0.866025 - 0.500000I		
a = -0.36603 + 1.36603I	-3.28987 - 2.02988I	-2.00000 + 3.46410I
b = 1.000000I		
u = -0.866025 + 0.500000I		
a = 1.36603 + 0.36603I	-3.28987 - 2.02988I	-2.00000 + 3.46410I
b = -1.000000I		
u = -0.866025 - 0.500000I		
a = 1.36603 - 0.36603I	-3.28987 + 2.02988I	-2.00000 - 3.46410I
b = 1.000000I		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_8	$((u^{2}+1)^{2})(u^{19}+4u^{17}+\cdots+2u-1)(u^{28}-u^{27}+\cdots+2u+1)$
c_3	$(u^4 - u^2 + 1)(u^{14} + 3u^{13} + \dots + 7u + 3)^2(u^{19} - 9u^{18} + \dots + 157u - 22)$
c_4, c_{10}	$(u^4 - u^2 + 1)(u^{14} + u^{13} + \dots + u + 1)^2(u^{19} - 3u^{18} + \dots + 7u - 2)$
c_5	$((u^{2}-u+1)^{2})(u^{14}-7u^{13}+\cdots-u+1)^{2}(u^{19}-9u^{18}+\cdots+5u-4)$
c_7, c_9	$((u+1)^4)(u^{19} + 8u^{18} + \dots - 2u - 1)(u^{28} + 15u^{27} + \dots + 10u^2 + 1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_8	$((y+1)^4)(y^{19} + 8y^{18} + \dots - 2y - 1)(y^{28} + 15y^{27} + \dots + 10y^2 + 1)$
c_3	$((y^{2} - y + 1)^{2})(y^{14} + 5y^{13} + \dots + 23y + 9)^{2}$ $\cdot (y^{19} + 3y^{18} + \dots + 1461y - 484)$
c_4, c_{10}	$((y^2 - y + 1)^2)(y^{14} - 7y^{13} + \dots - y + 1)^2(y^{19} - 9y^{18} + \dots + 5y - 4)$
<i>C</i> ₅	$((y^{2} + y + 1)^{2})(y^{14} + y^{13} + \dots + 7y + 1)^{2}$ $\cdot (y^{19} + 3y^{18} + \dots + 129y - 16)$
c_7, c_9	$((y-1)^4)(y^{19} + 12y^{18} + \dots + 30y - 1)(y^{28} - 5y^{27} + \dots + 20y + 1)$