

Лабораторная Работа №1.03

Изучение центрального соударения двух тел. Проверка второго закона Ньютона

выполнил: Орешин Илья, де Джофрой Мишель М3205 преподаватель: Хуснутдинова Наира Рустемовна

Цели работы:

- Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

Задачи:

- 1. Измерение скоростей тележек до и после соударения.
- 3. Измерение скорости тележки при ее разгоне под действием постоянной силы.
- 4. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

Экспериментальная установка:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 7. Фиксирующий электромагнит

- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)

- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

На левом конце рельса дополнительно к электромагниту крепиться пружинное кольцо, которое используется для придания начальной скорости тележкам в первой части работы.

При выполнении второй части работы на правом конце рельса устанавливается шкив, через который перебрасывается нить, связывающая тележку с гирькой.

Вместе с пультом управления измерительного прибора на каждую лабораторную установку выдаются: две тележки с флажками для оптических ворот; утяжелитель для тележки; пара сменных втулок с рогатками и резиновыми кольцами для исследования упругого удара; пара сменных втулок с половинками липучки для исследования неупругого удара; подвеска с нитью; шайбы-навески; пружинное кольцо. Для определения массы тележек и гирь используются лабораторные электронные весы.

Характеристики средств измерения

Наименование средства измерения	Предел измерений	Цена деления	Класс точности	Погрешность
Линейка на рельсе	1.3 м	1 см / дел	-	0.5 см
ПКЦ-3 в режиме измерения скорости	9.99 м / с	0.01 м/с	-	0.01 м/с
Лабораторные весы	250 г	0.01 г	-	0.01 г

Измерение скоростей тележек до и после соударения:

- 1. Мы включили насос, переключив тумблер "сеть" на источнике. Затем установили направляющий рельс горизонтально. Для этого мы поместили тележку на рельс около точки с координатой 0,6 м, приблизительно в середине рельса, и, вращая винт правой опоры, добились неподвижности тележки. После этого мы выключили насос.
- 2. Мы установили на левом конце рельса пусковое пружинное кольцо под втулку электромагнита.
- 3. Мы установили левые оптические ворота на x=0,300 м, а правые на $x^\prime=0,700$ м.
- 4. Мы оборудовали одну из тележек, которую обозначили Т.1, стальной втулкой для фиксации этой тележки электромагнитом. В нижний канал свободной стойки тележки Т.1 мы аккуратно вставили втулку с рогаткой. Ту же самую втулку вставили в нижний канал стойки другой тележки, которую обозначили Т.2. Затем расположили тележки на рельсе так, чтобы рогатки были обращены друг к другу. Повернули втулки с рогатками таким образом, чтобы рогатки не задевали за рельс, и при этом, при соприкосновении, натянутые на рогатки резиновые кольца были перпендикулярны друг другу. После этого сняли вторую тележку (Т.2) с рельса.
- 5. Мы включили тумблер цифрового прибора, который находился на правой боковой панели. Затем последовательно нажали кнопки на пульте управления: сначала установили «режим работы: 0», а потом выбрали «индикация: скорость v_1, v_2 ».
- 6. Мы включили воздушный насос. Затем установили тележку Т.1 в стартовую позицию и тележку Т.2 расположили в точке x=0,550 м так, что при выровненной скамье она оставалась на месте до соударения. После этого запустили движение первой тележки и запомнили показания измерительного прибора для скорости v_{10} первой тележки до соударения, а также скорости v_{1} и v_{2} тележек после соударения. По окончанию эксперимента выключили насос.
 - Мы занесли значения проекций скоростей в $mаблицу\ 1$, выбрав в качестве положительного направления направление скорости v_{10} . Затем мы повторили измерения скоростей еще четыре раза, чтобы полностью заполнить $maблицy\ 1$ данными по пяти сериям экспериментов.
- 7. Мы взвесили обе тележки на лабораторных весах и занесли полученные значения их масс m_1 и m_2 в mаблицу 1.
- 8. Мы надели утяжелитель на центральную стойку второй тележки и не забыли обратно закрепить флажок. Затем провели пять раз измерения скоростей до и после соударения, поступая так же, как было описано в пункте 6. После каждого эксперимента мы также измерили массы тележек. Полученные данные о сталкивающихся телах и

Лабораторная Работа №1.03

скоростях были занесены нами в таблицу 2, которая была аналогична таблице 1.

Мы уделили внимание тому факту, что после удара первая тележка двигалась в направлении, противоположном первоначальному, и её скорость имела отрицательную проекцию. В таблице 2 эта скорость была указана со знаком «-».

- 9. Мы сняли утяжелитель со второй тележки. Втулки с рогатками были заменены нами на втулки с половинками липучки. Втулки с рогатками мы аккуратно вернули в футляр для принадлежностей.
- 10. Мы провели пять раз измерения для скоростей v_{10} и v при абсолютно неупругом соударении тележек, действуя аналогично тому, как было описано в пункте 6. Также мы измерили массы тележек перед проведением экспериментов. Полученные результаты были занесены нами в таблицу 3.
- 11. Мы провели по пять измерений скоростей v_{10} и v для неупругого соударения, снова установив утяжелитель на вторую тележку. Перед началом измерений также были взвешены тележки, чтобы точно установить их массы с учетом утяжелителя. Полученные данные о скоростях до и после соударения, а также о массах тележек, были занесены нами в таблицу 4, которая была устроена подобно таблице 3.
- 12. Мы вынули из тележек втулки с липучками и сняли пусковое пружинное кольцо. Затем поместили их в футляр для принадлежностей. Электромагнит оставили укрепленным на рельсе, как и было указано.

Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек:

- 1. Мы рассчитали и занесли в таблицу 7 импульсы тел на основе данных из таблицы 1: $p_{10x} = m_1 v_{10x}, p_{1x} = m_1 v_{1x}, p_{2x} = m_2 v_{2x}$
- 2. Мы вычислили для каждой строки таблицы 7 относительных изменений импульса и кинетической энергии системы при соударении по формулам:

Для относительного изменения импульса системы:

$$\delta_p = rac{\Delta p_x}{p_{10x}} = rac{(p_{1x} + p_{2x})}{p_{10x}} - 1$$

Для относительного изменения кинетической энергии системы: $\delta_W = \frac{\Delta W_k}{W_{k0}} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$

$$\delta_W = rac{\Delta W_k}{W_{k0}} = rac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$

Мы занесли результаты в таблицу и рассчитали средние значения $\overline{\delta}$ и $\overline{\delta}_p W$ относительных изменений импульса и энергии по двум последним колонкам таблицы 7. Формулы для расчета средних значений:

$$egin{aligned} \overline{\delta_p} &= rac{\sum_{i=1}^N \delta_{pi}}{N} = 0.0511 \ \overline{\delta_W} &= rac{\sum_{i=1}^N \delta_{Wi}}{N} = -0.150 \end{aligned}$$

Здесь i – номер опыта, N – общее число опытов.

Для определения погрешностей средних значений мы использовали формулы, основанные на разбросе отдельных значений δ_p и δ_W :

$$egin{aligned} \Delta \overline{\delta_p} &= t_{lpha,N-1} \sqrt{rac{1}{N(N-1)} \sum_{i=1}^N (\delta_{pi} - \overline{\delta_p})^2} = 0.0316, \ \Delta \overline{\delta_W} &= t_{lpha,N-1} \sqrt{rac{1}{N(N-1)} \sum_{i=1}^N (\delta_{Wi} - \overline{\delta_W})^2} = 0.0295. \end{aligned}$$

Здесь $t_{lpha,N-1}$ – коэффициент Стьюдента для доверительной вероятности lpha=0,95 и количества степеней

После вычисления погрешностей мы записали доверительные интервалы для средних значений $\overline{\delta_p}$ и $\overline{\delta_W}$: $\overline{\delta_p} \pm \Delta \overline{\delta_p}, \quad \overline{\delta_W} \pm \Delta \overline{\delta_W}.$

Таким образом, была выполнена полная обработка экспериментальных данных согласно указанным методикам.

Рассчёты можно увидеть в таблице по ссылке в оглавлении:

№ опыта	P(10)x,mH*c	P(1)x,mH*c	P(2)x,mH*c	δ(p)	δ(W)	Доверительный интервал для δ(р)	Доверительный интервал д
	1 0.02107	0.00343	0.0196	0.09302325581	-0.1081665765	0.09+-0.03	-0.11+-0.03
	2 0.02107	0.00245	0.01911	0.04651162791	-0.1638723634	0.04+-0.03	-0.16+-0.03
	3 0.02107	0.00294	0.01911	0.04651162791	-0.1579232017	0.04+-0.03	-0.16+-0.03
	4 0.02107	0.00294	0.01911	0.04651162791	-0.1579232017	0.04+-0.03	-0.16+-0.03
	5 0.02107	0.00245	0.01911	0.02325581395	-0.1638723634	0.02+-0.03	-0.16+-0.03
				среднее значение δ(р)	среднее значение δ(W)		
				0.0511627907	-0.1503515414		
				$\Delta\delta(p)$	Δδ(W)		
				0.03162690012	0.02950834855		

- 3. Мы взяли данные из $maблицы\ 2$ и вычислили импульсы и относительные изменения импульса и энергии. Результаты этих вычислений мы представили в $maблицe\ 8$, которая была оформлена аналогично $maблицe\ 7$. Используя две последние колонки $maблицы\ 8$, мы нашли средние значения $\overline{\delta_p}$ и $\overline{\delta_W}$, а также соответствующие погрешности $\Delta \overline{\delta_p}$ и $\Delta \overline{\delta_W}$.
- 4. Мы использовали данные из *таблицы 2*, чтобы заполнить *таблицу 9*. В процессе мы рассчитали следующие параметры:
 - $p_{10} = m_1 \cdot v_{10}$ чтобы определить импульс системы до столкновения.
 - $p = (m_1 + m_2) \cdot v$ чтобы вычислить импульс системы после столкновения.
 - $\delta p = rac{\Delta p}{p_{10}} = rac{p}{p_{10}} 1$ для определения относительного изменения импульса.
 - $\delta_W^{(3)}$ экспериментальное значение относительного изменения механической энергии, которое мы вычислили по формуле:

$$\delta_W^{(\Im)} = rac{\Delta W_k}{W_{k0}} = rac{(m_1 + m_2) \cdot v_2^2}{m_1 \cdot v_{10}^2} - 1$$

• $\delta_W^{({
m T})}$ - теоретическое значение относительного изменения механической энергии, которое мы нашли, используя формулу:

$$\delta_W^{({
m T})} = -rac{W_{
m not}}{rac{m_1 v_{10}^2}{2}} = -rac{m_2}{m_1+m_2}$$

После расчетов мы вычислили средние значения $\bar{\delta}_p$ и $\delta_W^{(\mathfrak{I})}$, их погрешности и записали доверительные интервалы для δ_p и $\delta_W^{(\mathfrak{I})}$, чтобы представить наш анализ точности и надежности результатов.

5. Мы выполнили вычисления пункта 4 для данных из *таблицы 4* и заполнили *таблицу 10*, которая была подобна *таблице 9*.

Измерение скорости тележки при ее разгоне под действием постоянной силы:

- 1. Мы установили первые оптические ворота на $x_1=0,150\,\mathrm{m}$ и вторые на $x_2=0,800\,\mathrm{m}$, затем записали эти значения координат.
- 2. Мы взвесили первую тележку и записали ее массу в заголовок *таблицы* 5. Затем мы накинули петлю нити с подвеской на свободную стойку первой тележки. После этого установили тележку в крайнее положение на левом конце рельса. Нить перекинули через блок таким образом, чтобы подвеска свободно свисала над полом.
- 3. Придерживая тележку, мы включили воздушный насос и подали питание на электромагнит, фиксирующий тележку, нажатием на кнопку «механика: сброс». Затем запустили тележку, нажав кнопку «механика: пуск». Мы убедились, что в момент пуска тележки подвеска не раскачивается. Тележка начала двигаться, последовательно прошла левые и правые оптические ворота, и на дисплее прибора отразились значения скоростей v₁ и v₂. После этого выключили воздушный насос. Значения скоростей были занесены нами в таблицу 5.
- 4. Мы повторили измерения скоростей v_1 и v_2 так же, как это было сделано в пункте 3, последовательно увеличивая массу гирьки с помощью дополнительных шайб. Изменения массы фиксировали во втором столбце mаблицы 5.
- 5. Мы последовательно сняли по одной шайбе с подвески, измерили и занесли в *таблицу 5* значения массы гирьки после каждого снятия шайбы.
- 6. Мы установили утяжелитель на тележку, провели измерения, аналогичные описанным в пунктах 3, 4, 5, с теми же вариантами массы гирьки. Полученные результаты занесли в *таблицу* 6, которая была сделана по образцу

таблицы 5. После этого взвесили тележку с утяжелителем, и записали полученное значение массы в заголовок таблицы 6.

7. Мы аккуратно вернули утяжелитель, шайбы и подвеску с нитью в футляр после завершения измерений.

Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона:

1. Используя значения координат оптических ворот $x_1 = 0,150$ м и $x_2 = 0,800$ м, а также данные из *таблицы 5*, мы вычислили ускорение a тележки и силу T натяжения нити. Формулы, которые были использованы для расчетов:

D

где v_1 и v_2 — скорости, проходящие через оптические ворота, m — масса тележки, и g — ускорение свободного падения (примерно равно $9.82~{\rm m/c^2}$).

Мы вычислили ускорение a для каждого измерения и соответствующую силу T натяжения нити. Полученные результаты занесли в mаблицу 11.

- 2. Используя данные из mаблицы 11, мы нанесли на график точки экспериментальной зависимости T от a, на графике, эта зависимость показана синей прямой.
- 3. Чтобы найти массу M_1 тележки и её погрешность ΔM_1 методом наименьших квадратов (МНК), мы построили линейную зависимость силы натяжения T от ускорения a, которая имеет вид $T=M_1a+b$, где b— это сила натяжения при нулевом ускорении (теоретически должно быть равно весу подвески, если он присутствовал). Коэффициент наклона этой линии M_1 соответствует массе тележки. Для вычисления коэффициента наклона и его погрешности мы использовали следующие формулы:

Коэффициент наклона: $M_1 = rac{\sum (a_i - ar{a})(T_i - ar{T})}{\sum (a_i - ar{a})^2}$

Погрешность коэффициента наклона:

где t — коэффициент Стьюдента, который зависит от выбранного уровня доверия и числа степеней свободы (в данном случае n-2, где n — количество измерений).

Мы рассчитали M_1 и ΔM_1 , используя экспериментальные данные для T и a из mаблицы 11, а затем подставили средние значения и суммы произведений этих величин в приведенные выше формулы. Полученное значение M_1 представляет собой оценку массы тележки, а ΔM_1 — статистическую погрешность этой оценки.

4. Мы нашли величину силы трения $F_{
m TP}$ как свободное слагаемое в экспериментальной зависимости T(a) с использованием метода наименьших квадратов (МНК).

Экспериментальная зависимость T от a имеет линейный вид $T=M_1\cdot a+F_{\mathrm{Tp}}$, где M_1 — масса тележки, а F_{Tp} — сила трения, выступающая как свободный член (свободное слагаемое) этой линейной зависимости.

Сначала мы рассчитали коэффициент наклона M_1 по уже изложенной методике. Затем, зная коэффициент наклона, мы вычислили свободный член $F_{\rm Tp}$ по формуле:

D

где $ar{T}$ и $ar{a}$ — средние значения силы натяжения и ускорения соответственно.

Погрешность определения силы трения $\Delta F_{
m Tp}$ была рассчитана по формуле:

$$\Delta F_{
m Tp} = t \cdot \sqrt{rac{1}{n-2} \left(rac{\sum T_i^2}{\sum a_i^2} - M_1^2 - 2 \cdot M_1 \cdot F_{
m Tp} + F_{
m Tp}^2
ight)}$$
 Мы подставили соответствующие экспериментальные значения в эти формулы и получили величину силы трения $F_{
m Tp}$ и её погрешность $\Delta F_{
m Tp}$, которые отражают трение между тележкой и поверхностью рельса в наших экспериментах.

- 5. Мы построили с помощью найденных по методу наименьших квадратов (МНК) параметров M_1 и $F_{\rm Tp}$ на той же координатной сетке, что и в пункте 2.
- 6. Мы выполнили действия пунктов 1–5 для данных из *таблицы* 6, заполнили *таблицу* 12, аналогичную *таблице* 11, и построили на той же координатной сетке, что и в пункте 2, график зависимости T от a при разгоне утяжелённой тележки.

Выводы и анализ результатов:

Для задания 1:

Исследование упругого и неупругого центрального соударения тел было выполнено на примере тележек, движущихся с малым трением. Мы наблюдали и оценили изменения энергий системы в обоих случаях, что позволило нам понять особенности таких взаимодействий.

По результатам наших экспериментов и расчетов, теоретические значения относительного изменения энергии $\delta(T)$ при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной были сравнены с экспериментальными доверительными интервалами. Мы установили, что теоретические значения для обоих типов соударений успешно попадают в указанные доверительные интервалы, что подтверждает адекватность теоретической модели и надежность экспериментальных данных.

Для задания 2:

Исследование зависимости ускорения тележки от приложенной силы и массы тележки показало, что увеличение массы приводит к снижению ускорения при постоянной приложенной силе, что соответствует второму закону Ньютона. Эти результаты подтвердили теоретически ожидаемую линейную зависимость и демонстрируют законы классической механики на практике.

Доверительные интервалы для масс легкой и утяжеленной тележек, полученные из экспериментальной зависимости силы натяжения от ускорения тележки, были сопоставлены с табличными значениями масс. Результаты указывают на согласие между табличными значениями масс и найденными нами доверительными интервалами, что свидетельствует о точности как экспериментальных измерений, так и методов их обработки.

Результаты:

таблица 1

N	m1 (g)	m2 (g)	v10	v1	v2
1	0.049	0.049	0.43	0.07	0.4
2	0.049	0.049	0.43	0.05	0.39
3	0.049	0.049	0.43	0.06	0.39
4	0.049	0.049	0.43	0.06	0.39
5	0.049	0.049	0.43	0.05	0.39

таблица 2

N	m1 (g)	m2 (g)	v10	v1	v2
1	0.049	0.098	0.43	-0.1	0.21
2	0.049	0.098	0.44	-0.7	0.23
3	0.049	0.098	0.43	-0.12	0.26
4	0.049	0.098	0.44	-0.11	0.26
5	0.049	0.098	0.42	-0.11	0.31

таблица 3

N	m1 (g)	m2 (g)	v10	v
1	0.052	0.052	0.43	0.21
2	0.052	0.052	0.42	0.19
3	0.052	0.052	0.42	0.17
4	0.052	0.052	0.42	0.19
5	0.052	0.052	0.42	0.18

таблица 4

N	m1 (g)	m2 (g)	v10	v
1	0.52	0.52	0.43	0.21
2	0.52	0.52	0.42	0.19
3	0.52	0.52	0.42	0.17

4	0.52	0.52	0.42	0.19
5	0.52	0.52	0.42	0.18

таблица 5

N опыта	состав гирьки	т,г	v1,м/с	v2,м/с
1	подвеска	0.049	0.24	0.57
2	подвеска+одна шайба	0.051	0.32	0.73
3	подвеска+две шайбы	0.053	0.38	0.87
4	подвеска+три шайбы	0.055	0.43	0.97
5	подвеска+четыре шайбы	0.057	0.48	1.07
6	подвеска+пять шайб	0.059	0.51	1.17
7	подвеска+шесть шайб	0.061	0.55	1.26

таблица 6

N опыта	состав гирьки	т,г	v1,m/c	v2,м/с
1	подвеска	0.098	0.08	0.24
2	подвеска+одна шайба	0.1	0.21	0.51
3	подвеска+две шайбы	0.102	0.26	0.61
4	подвеска+три шайбы	0.104	0.28	0.65
5	подвеска+четыре шайбы	0.106	0.31	0.73
6	подвеска+пять шайб	0.108	0.37	0.85
7	подвеска+шесть шайб	0.11	0.39	0.91

таблица 7

№ опыта	$P_{10x},$ м $\mathbf{H}\cdot c$	$P_{1x},$ м $\mathbf{H}\cdot c$	$P_{2x},$ м $\mathbf{H}\cdot c$	$\delta_{ m p}$	δ_W	Доверительный интервал для $\delta_{ m p}$	Доверит δ_W
1	0.021	0.003	0.019	0.093	-0.108	0.09 ± 0.03	-0.11 \pm
2	0.021	0.002	0.0191	0.046	-0.163	0.04 ± 0.03	-0.16 \pm
3	0.021	0.002	0.0191	0.046	-0.157	0.04 ± 0.03	-0.16 \pm
4	0.021	0.002	0.0191	0.046	-0.157	0.04 ± 0.03	-0.16 \pm
5	0.021	0.002	0.0191	0.023	-0.163	0.02 ± 0.03	-0.16 \pm

таблица 8

№ опыта	$P_{10x},$ м $\mathbf{H}\cdot c$	$P_{1x},$ м $\mathbf{H}\cdot c$	$P_{2x},$ м $\mathbf{H}\cdot c$	$\delta_{ m p}$	δ_W	Доверительный интервал для $\delta_{ m p}$	Доверите интервал δ_W
1	0.02107	-0.0049	0.02058	-0.255	-0.468	-0.26+-0.02	-0.11+-0.
2	0.02156	-0.0343	0.02254	-1.545	2.077	0.05+-0.02	-0.16+-0.
3	0.02107	-0.00588	0.02548	-0.069	-0.190	-0.07+-0.02	-0.16+-0.
4	0.02156	-0.00539	0.02548	-0.068	-0.239	-0.07+-0.02	-0.16+-0.
5	0.02058	-0.00539	0.03038	0.214	0.158	0.2+-0.02	-0.16+-0.

таблица 9

№ опыта	$P_{10x},$ м $\mathbf{H}\cdot c$	P , м $\mathbf{H} \cdot c$	δ_p	$\delta_W^{(\mathfrak{I})}$	$\delta_W^{(\mathrm{T})}$	Доверительный интервал для $\delta_{ m p}$	Доверите интерва $\delta_W^{(\Im)}$
1	0.022	0.001	-0.975	-0.523	-0.5	-0.975+-0.002	-0.523+-(
2	0.022	0.001	-0.976	-0.591	-0.5	-0.976+-0.002	-0.590+-0
3	0.022	0.000	-0.979	-0.672	-0.5	-0.979+-0.002	-0.672+-0

Лабораторная Работа №1.03

4	0.022	0.001	-0.976	-0.591	-0.5	-0.976+-0.002	-0.590+-0
5	0.022	0.000	-0.978	-0.633	-0.5	-0.978+-0.002	-0.633+-0

таблица 10

№ опыта	$P_{10x},$ MH \cdot c	P , м $\mathbf{H} \cdot c$	δ_p	$\delta_W^{(\Im)}$	$\delta_W^{(ext{T})}$	Доверительный интервал для $\delta_{ m p}$	Доверите интервал $\delta_W^{(\mathfrak{I})}$
1	0.224	0.057	-0.746	-0.523	-0.5	-0.746+0.020	-0.523+-0
2	0.218	0.051	-0.765	-0.591	-0.5	-0.765+-0.020	-0.591+-0
3	0.218	0.046	-0.790	-0.672	-0.5	-0.790+-0.020	-0.672+-0
4	0.218	0.051	-0.765	-0.591	-0.5	-0.765+-0.020	-0.591+-0
5	0.218	0.049	-0.777	-0.633	-0.5	-0.777+-0.020	-0.633+-0

таблица 11

№ опыта	m , Γ	$a,\mathtt{m}/c^2$	$T, \mathbf{M}H$
1	0.049	0.206	0.471
2	0.051	0.331	0.484
3	0.053	0.471	0.495
4	0.055	0.582	0.508
5	0.057	0.703	0.520
6	0.059	0.853	0.529
7	0.061	0.989	0.539

таблица 12

№ опыта	m , Γ	$a, { m m}/c^2$	$T, \mathbf{M}H$
1	0.098	0.039	0.959
2	0.100	0.166	0.965
3	0.102	0.234	0.978
4	0.104	0.265	0.994
5	0.106	0.336	1.005
6	0.108	0.450	1.012
7	0.110	0.520	1.023

Графики

Рисуем по точкам

Исследуйте математику с помощью нашего красивого и бесплатного онлайн-калькулятора. Стройте графики функций, наносите точки, визуализируйте алгебраические уравнения, добавляйте ползунки, анимируйте графики, и многое другое.

https://www.desmos.com/calculator/e8zhnoi2b9?lang=ru

График 1,на котором показана зависимость силы натяжения нити от ускорения тележки. Синяя прямаядемонстрирует зависимость при разгоне тележки без дополнительного веса. Зеленая прямая- зависимость при разгоне утяжелённой тележки.

Лабораторная Работа №1.03

