

# **CORDIC (COordinate Rotation Digital Computer)**

Trabajo Final de Circuitos Lógicos Programables

Carrera de Especialización en Sistemas Embebidos

Autor: Ing. Lucas Pablo Meoli

Docente: Ing. Nicolás Álvarez



#### Introducción

- Algoritmo descrito por Jack E. Volder en 1959
- Iterativo
- Calcular funciones por medio de sumas y desplazamiento de bits
- Consiste en rotar un vector



#### **Funcionamiento**



$$x' = x \cos \theta - y \sin \theta$$
$$y' = y \cos \theta + x \sin \theta$$

Rotación de un vector



$$x' = \cos \theta (x - y \operatorname{tg} \theta)$$
$$y' = \cos \theta (y + x \operatorname{tg} \theta)$$

Pseudorotación de un vector



#### **Funcionamiento**

Restringiendo el valor de la tangente:

$$\operatorname{tg} \theta = \pm 2^{-i}, i \in \mathbb{N}$$

$$x_{i+1} = K_i (x_i - y_i d_i 2^{-i})$$
$$y_{i+1} = K_i (y_i + x_i d_i 2^{-i})$$

$$K_i = \cos \theta_i = \cos(\arctan 2^{-i}) = \frac{1}{\sqrt{1 + \lg^2 \theta_i}} = \frac{1}{\sqrt{1 + 2^{-2i}}}$$



## **Ecuaciones generales**





$$x_{i+1} = x_i - y_i d_i 2^{-i}$$

$$y_{i+1} = y_i + x_i d_i 2^{-i}$$

$$z_{i+1} = z_i - d_i \arctan(2^{-i})$$

$$d_i = \begin{cases} -1 & \text{, si } z_i < 0 \\ 1 & \text{, si } z_i \ge 0 \end{cases}$$



## Tabla de rotación

| Iteración = i | 2^(-i)      | atan(2^(-i)) | Decimal | Bits                 |
|---------------|-------------|--------------|---------|----------------------|
| 0             | 1           | 45°          | 32768   | 00100000000000000    |
| 1             | 0.5         | 26.56°       | 19344   | 000100101110010000   |
|               |             |              |         |                      |
| 14            | 0.000061035 | 0.00349      | 3       | 0000000000000011     |
| 15            | 0.000030517 | 0.001749     | 1       | 00000000000000000001 |



#### Diseño

# Módulo principal CORDIC









## Diseño

Arquitectura iterativa







# Máquina de Estados





#### **Simulaciones**





# Síntesis e implementación





# VIO





#### Recursos utilizados





#### Prueba en FPGA

| Name                  | Value     |   | Activity | Direction | VIO      |
|-----------------------|-----------|---|----------|-----------|----------|
| ¹₄ rst                | [B] 0     | • |          | Output    | hw_vio_1 |
| T₄ start              | [B] 1     | + |          | Output    | hw_vio_1 |
| > 🖫 xi[16:0]          | [U] 1000  | • |          | Output    | hw_vio_1 |
| > 🖫 yi[16:0]          | [U] 0     | - |          | Output    | hw_vio_1 |
| > 🖫 zi[17:0]          | [U] 43690 | * |          | Output    | hw_vio_1 |
| > 1 input_x_vio[16:0] | [S] 824   |   | 1        | Input     | hw_vio_1 |
| > 🖫 input_y_vio[16:0] | [S] 1427  |   |          | Input     | hw_vio_1 |
| > 1 input_z_vio[17:0] | [U] 0     |   |          | Input     | hw_vio_1 |

#### Rotación 60°

| Name                  | Value     |   | Activity | Direction | VIO      |
|-----------------------|-----------|---|----------|-----------|----------|
| ી₀ rst                | [B] 0     | • |          | Output    | hw_vio_1 |
| ¹₄ start              | [B] 1     | * |          | Output    | hw_vio_1 |
| > 1 xi[16:0]          | [S] 1000  | • |          | Output    | hw_vio_1 |
| > 🖫 yi[16:0]          | [S] 0     | • |          | Output    | hw_vio_1 |
| > 🖫 zi[17:0]          | [S] 32768 | • |          | Output    | hw_vio_1 |
| > 🖫 input_x_vio[16:0] | [S] 1165  |   | 1        | Input     | hw_vio_1 |
| > 1 input_y_vio[16:0] | [S] 1164  |   | 1        | Input     | hw_vio_1 |
| > 1 input_z_vio[17:0] | [S] 0     |   |          | Input     | hw_vio_1 |

Rotación 45°



#### Rotación 30°

| Name                  | Value     |   | Activity | Direction | VIO      |
|-----------------------|-----------|---|----------|-----------|----------|
| ી∉ rst                | [B] 0     | • |          | Output    | hw_vio_1 |
| T₀ start              | [B] 1     |   |          | Output    | hw_vio_1 |
| > 1 xi[16:0]          | [S] 1000  | • |          | Output    | hw_vio_1 |
| > 🖫 yi[16:0]          | [S] 0     | - |          | Output    | hw_vio_1 |
| > 🖫 zi[17:0]          | [S] 65536 | ~ |          | Output    | hw_vio_1 |
| > 1 input_x_vio[16:0] | [S] 0     |   | 1        | Input     | hw_vio_1 |
| > 1 input_y_vio[16:0] | [S] 1649  |   | 1        | Input     | hw_vio_1 |
| > 1 input_z_vio[17:0] | [S] 0     |   |          | Input     | hw_vio_1 |

Rotación 90°



#### Prueba en FPGA



| Name                  | Value      |   | Activity | Direction | VIO      |
|-----------------------|------------|---|----------|-----------|----------|
| l₁ rst                | [B] 0      | * |          | Output    | hw_vio_1 |
| T₀ start              | [B] 1      | v |          | Output    | hw_vio_1 |
| > 🖫 xi[16:0]          | [S] -5000  | * |          | Output    | hw_vio_1 |
| > 🖫 yi[16:0]          | [S] -5000  | * |          | Output    | hw_vio_1 |
| > 🖫 zi[17:0]          | [U] 131072 | v |          | Output    | hw_vio_1 |
| > 🖫 input_x_vio[16:0] | [S] 8232   |   | #        | Input     | hw_vio_1 |
| > 🗓 input_y_vio[16:0] | [S] 8235   |   | 1        | Input     | hw_vio_1 |
| > 1 input_z_vio[17:0] | [S] 0      |   |          | Input     | hw_vio_1 |

Rotación 135°

Rotación 180°

# Código implementado en VHDL

# iGracias! ¿Preguntas?