Simio Basics

Chuljin Park & Seong-Hee Kim Hanyang University/Georgia Tech

Overview

- We now move to the design and analysis of dynamic systems that evolve through time.
- We will use Simio which is one of several popular "discrete-event" simulation software packages.

Simio World View

- Simio takes the process interaction world view.
- Entities/tokens flow through a network of objects and processes.
- A network of objects usually represents a physical shape of a system and is automatically animated.
- A network of add-on processes describes logical behaviors behind the network of objects.

Simio User Interface

Help (or F1)

Properties

Example: Repair and Inspection

- A repair and inspection facility consists of two stations: a repair station with two technicians, and an inspection station with 1 inspector.
- Each repair technician works at the rate of 3 items per hour; the inspector can inspect 8 items per hour.
- Approximately 10% of all items fail inspection and are sent back to repair station (This percentage holds even for TV that have been repaired two or more times.)
- We assume (i) TV arrive at the rate of 5 per hour, (ii) the arrival process is a Poisson arrival process and (ii) service times are exponentially distributed
- OBJECTIVE: What are utilization, average number in the system, average times in waiting lines of each station?

Example: Repair and Inspection

Analytic Results

Arrival Rate (per hr)	5			
Interarrival Time (hours)	0.2			
Rework Rate	10%			
	Repair	Inspect	Overall	
Split	111.1%	111.1%		
Capacity	2	1		
Process Time (hour)	0.3333	0.125	0.45830	hours
Process Rate (per hr per unit)	3.0	8.0		
Utilization	92.6%	69.4%		
Num at Station (L)	12.5	2.3	14.8	units
Time at Station (W - hours)	2.33	0.41	2.7	hours
Num in Queue (LQ)	11.1122	1.5782828	12.7	units
Time in Queue (WQ)	2.000	0.2840909	2.3	hours

First Simio Model

Comparison to Arena Model

Interface

- Project Library contains the objects that become a part of your Simio project.
- Navigation identifies the components of your simulation model.
- Property Inspector displays properties of the object selected in the navigation panel. "Show Commonly Used Properties Only" is to screen out certain properties.
- Right click + up/down : Zoom in 2D and 3D
- Right click + right/left: Zoom in but Rotate in 3D
- Left click + right/left: Move around in 2D and 3D

Standard Object Library

- An object is placed into the facility view of a model.
- An object represents a physical component of the system – such as a worker, machine, vehicle, or pathway.

Fixed Objects

Source, Server, Sink, Combiner, Separator,
Resource, WorkStation.

• Links

- Connector, TimePath, Path, Conveyor
- Nodes
 - BasicNode, TransferNode
- Transporters
 - Vehicle, Worker

Model Entity

 ModelEntity creates entities that move through our model while Model will contain positioned objects and the flow of entities.

 Should be connected with a Source object.

Server

- Inputbuffer.Contents, Processing.Contents, OutputBuffer.Contents
- Blue diamond: Output node (TransferNode)
- Gray diamond: Input node (BasicNode)

Can have a schedule rather than a fixed capacity

Initial Capacity: # of parallel servers

Ranking Rule: FIFO, LIFO, smallest value first, largest value first

 Failure time can be modeled in Reliability Logic

Can seize secondary resources

Links

Results - ModelEntity

ModelEntity	TV	[Population]	Content	NumberInSystem	Average	15.0451)
					Maximum	47.3800	
			FlowTime	TimeInSystem	Average (Ho	2.9988)
					Maximum (Ho	20.5116	
					Minimum (Ho	0.0367	

Results - Sink

Sink	Sink1	[DestroyedObjects]	FlowTime	TimeInSystem	Average (Ho	2.9988
					Maximum (Ho	20.5116
					Minimum (Ho	0.0367
					Observations	2,484.9500

Results - Server

Server Inspector	InputBuffer	uffer Content	NumberInStation	Average	1.5488	
				Maximum	16.5100	
		HoldingTime	TimeInStation	Average (Ho	0.2/96	
				Maximum (Ho	2.3724	
					Minimum (Ho	0.0000
		Processing	Content	NumberInStation	Average	0.6890
					Maximum	1.0000
			HoldingTime	TimeInStation	Average (Ho	0.1247
RepairMan				Maximum (Ho	1.0374	
				Minimum (Ho	0.0000	
	InputBuffer	Content	NumberInStation	Average	10.9224	
					Maximum	43.0700
			HoldingTime	TimeInStation	Average (Ho	1.9531
					Maximum (Ho	7.5396
				Minimum (Ho	0.0000	
		Processing	Content	NumberInStation	Average	1.8477
				Maximum	2.0000	
		HoldingTime	TimeInStation	Average (Ho	0.3339	
					Maximum (Ho	2.9063
					Minimum (Ho	0.0001

Basic Animation – Entity & Server

- We can change colors of entities/servers using Color in the Decoration ribbon tab.
- We can add more pictures of entities/servers using Add Additional Symbol in the Additional symbols ribbon tab.
- New symbols can be uploaded.

Plots

Expression Builder for Variables

Expression builder is useful in finding appropriate variable/statistic names.

- # waiting in queue: ServerName.InputBuffer.Contents.NumberWaiting
- Max queue length: ServerName.InputBuffer.Contents.MaximumNumberWaiting
- Current simulation clock: Run.TimeNow

Making Multiple Replications

 Project Home > New Experiment

 Set # of replications and performance measures using Design > Add Response

Checking Measures over Multiple Replications

Built-in Output Statistics

Performance Measures	Simio Output Statistics
Time in system	EntityName.Population.TimeInSystem.Average
Lq	ServerName.InputBuffer.Contents.AverageNumberWaiting
Wq	ServerName.InputBuffer.Contents.AverageTimeWaiting
Server utilization	ServerName.ResourceState.PercentTime(1)
Max queue length	ServerName.AllocationQueue.MaximumNumberWaiting

Set up Warm-up Period if needed. Set Upper Percentile and Lower Percentile levels. Defaults are [25%, 75%] but better to use [10%, 90%] or [5%, 95%].

SMORE Plots

Click the Response Results tab for Simio MORE plots.

SMORE Plots

Example: Repair and Inspection2

Now, we want to reflect the new service time data in the repair station which is uniformly distributed with minimum 0.3 and maximum 0.36666.

 OBJECTIVE: Can we check the difference between the original model and the new model based on the same measures?

Setting Referenced Property

Designing New Experiments

Check the Results

Next Class (Week 9)

More SIMIO stuffs...

- Properties & States
- Variables & Tables