RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Chair for Software Modeling and Verification Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Master Thesis -

Comparing Hierarchical and On-The-Fly Model Checking for Java Pointer Programs

Sally Chau

Matriculation Number 370584 April 25, 2019

First Reviewer: apl. Prof. Dr. Thomas Noll Second Reviewer: Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen Supervisor: Christoph Matheja

Acknowledgement

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt und durch meine Unterschrift, dass die vorliegende Arbeit von mir selbstständig, ohne fremde Hilfe angefertigt worden ist. Inhalte und Passagen, die aus fremden Quellen stammen und direkt oder indirekt übernommen worden sind, wurden als solche kenntlich gemacht. Ferner versichere ich, dass ich keine andere, außer der im Literaturverzeichnis angegebenen Literatur verwendet habe. Die Arbeit wurde bisher keiner Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Bonn, den 28. September 2015, Sally Chau

Abstract

Contents

1	Introduction	11
	1.1 Attestor	11
	1.2 Related Work	11
2	Linear Temporal Logic	12
3	Recursive State Machines	13
4	Hierarchical Model Checking	14
5	RSM Approach	15
	5.1 Implementation	15
6	On-the-fly Approach	16
	6.1 Implementation	16
7	Benchmarks	17
8	Conclusion and Future Work	18
	8.1 Possible Extensions	18

Introduction

- 1.1 Attestor
- 1.2 Related Work

Chapter 2 Linear Temporal Logic

Recursive State Machines

Definition 3.1 (Recursive State Machine). Ein Spiel \mathcal{G} ist ein Tupel $(\mathcal{N}, (\Sigma_i)_{i \in \mathcal{N}}, (U_i)_{i \in \mathcal{N}})$, wobei $\mathcal{N} = \{1, \ldots, n\}$ die Menge der Spieler beschreibt, Σ_i den Strategieraum eines Spielers $i \in \mathcal{N}$ und $U_i : \Sigma_1 \times \cdots \times \Sigma_n \to \mathbb{R}^n$ die Auszahlungsfunktion für einen Spieler $i \in \mathcal{N}$ in einem Zustand S. Mit $S = (S_1, \ldots, S_n) \in \Sigma_1 \times \cdots \times \Sigma_n$ beschreiben wir den Zustand eines Spieles, in dem Spieler i Strategie $S_i \in \Sigma_i$ spielt.

Chapter 4 Hierarchical Model Checking

Chapter 5 RSM Approach

5.1 Implementation

Chapter 6 On-the-fly Approach

6.1 Implementation

Benchmarks

Conclusion and Future Work

8.1 Possible Extensions