Cálculo diferencial e integral I Contenido Extra 02: Notación sigma

Para los fines de esta sección, consideremos el conjunto $\mathscr{A} = \{a_k \in \mathbb{R} \mid k \in \mathbb{N}\} \subset \mathbb{R}$.

Definición 1 (Notación sigma). Para cada $k \in \mathbb{Z}$ definimos

$$\sum_{j=k}^{j=k} a_j = a_k = \sum_{j=k}^{k} a_j = \sum_{k=k}^{k} a_j$$

De manera recursiva, si $m \ge k$, definimos

$$\sum_{j=k}^{m+1} a_j = \sum_{j=k}^{m} a_j + a_{m+1}.$$

ATENCIÓN: j es una variable muda, es decir, puede sustituirse por cualquier otro símbolo:

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{m} a_i = \sum_{\ell=1}^{m} a_{\ell},$$

pero debe existir coherencia como se muestra en los ejemplos anteriores, esto es, si cambia la variable en un lugar, entonces debe cambiarla en todos los lugares donde aparezca.

Ejemplo 2. (I)
$$\sum_{\ell=1}^{3} \ell = 1 + 2 + 3 = 6$$
.

(II)
$$\sum_{m=1}^{4} m^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30.$$

Como pudo notar en el ejemplo anterior, la notación sigma para la suma puede ser considerada como "la abreviatura" de una suma "larga", es decir, la suma $a_1 + a_2 + \cdots + a_n$ la podemos escribir como $\sum_{j=1}^{n} a_j$. También, a partir de la definición, si $m \leq n$, podemos escribir la suma $a_m + a_{m+1} + a_m$

 $\cdots + a_{n-1} + a_n$ como $\sum_{\ell=m}^n a_\ell$ (note que aquí usamos otra "variable" para ilustrar el concepto de $variable\ muda$).

Proposición 3. Sea $c \in \mathbb{R}$ fijo.

(I)
$$\sum_{j=m}^{M} c = (M-m+1)c$$
.

(II)
$$\sum_{j=m}^{M} ca_j = c \sum_{j=m}^{M} a_j.$$

(III)
$$\sum_{j=m}^{M} (a_j + b_j) = \sum_{j=m}^{M} a_j + \sum_{j=m}^{M} b_j$$
.

(IV) [Cambio de índice] Sea $s \in \mathbb{Z}$. Se cumple que

$$\sum_{j=m}^{M} a_j = \sum_{l=m+s}^{M+s} a_{l-s}.$$

Observación: Recordamos al lector que el principio de inducción matemática es equivalente al principio del buen orden, que, para fines prácticos, significa que podemos iniciar nuestro proceso de inducción a partir de cualquier número natural cuando esto sea necesario.

Demostración. (I) Haremos la prueba por inducción sobre M (para $M \geq m$).

Base de inducción: Consideremos M=m. Entonces

$$\sum_{i=m}^{m} c = \sum_{i=m}^{m} c = c = (m-m+1)c,$$

donde la primera igualdad se obtiene por definición de la notación sigma.

 $Hipótesis\ de\ inducción$: Supongamos que el resultado es cierto para M fija, con $M\geq m$, es decir, supongamos que

$$\sum_{i=m}^{M} c = (M-m+1)c.$$

Paso inductivo: Demostremos el resultado para M+1. Notemos que

$$\sum_{j=m}^{M+1} c = \sum_{j=m}^{M} c + c = (M-m+1)c + c = ((M+1)-m+1)c$$

donde la primera igualdad se obtiene por definición de notación sigma y la segunda igualdad se obtiene por la hipótesis de inducción. La última igualdad prueba lo deseado, lo cual termina la inducción.

- (II) La prueba es por inducción sobre M (para $M \ge m$) y es análoga a la anterior.
- (III) Por inducción sobre M (para $M \ge m$). Aunque es similar a la prueba dada en el inciso (I), se incluye para ilustrar el cuidado que se debe tener al manipular sumas bajo la notación sigma.

Base de inducción: Supongamos que M=m. Entonces

$$\sum_{j=m}^{M} (a_j + b_j) = \sum_{j=m}^{m} (a_j + b_j) = a_m + b_m = \sum_{j=m}^{m} a_j + \sum_{j=m}^{m} b_j,$$

donde la segunda y tercera igualdades se obtienen por definición de la notación sigma.

 $\mathit{Hipótesis}$ de inducción: Supongamos que el resultado es cierto para $M \geq m$ fijo, es decir, supongamos que

$$\sum_{j=m}^{M} (a_j + b_j) = \sum_{j=m}^{M} a_j + \sum_{j=m}^{M} b_j.$$

Paso inductivo: Demostremos el resultado para M+1. Tenemos que

$$\sum_{j=m}^{M+1} (a_j + b_j) = \sum_{j=m}^{M} (a_j + b_j) + (a_{M+1} + b_{M+1})$$

$$= \sum_{j=m}^{M} a_j + \sum_{j=m}^{M} b_j + a_{M+1} + b_{M+1}$$

$$= \left(\sum_{j=m}^{M} a_j + a_{M+1}\right) + \left(\sum_{j=m}^{M} b_j + b_{M+1}\right)$$

$$= \sum_{j=m}^{M+1} a_j + \sum_{j=m}^{M+1} b_j,$$

donde la primera igualdad se obtiene por definición de la notación sigma, la segunda igualdad se sigue de la hipótesis de inducción y la última igualdad se cumple por la definición de la notación sigma. Esto termina la prueba.

(IV) La prueba será por inducción sobre M (para $M \ge m$). Base de inducción: Supongamos que M = m. Entonces

$$\sum_{l=m+s}^{M+s} a_{l-s} = \sum_{l=m+s}^{m+s} a_{l-s} = a_{(m+s)-s} = a_m = \sum_{j=m}^{m} a_j,$$

lo cual prueba el caso base.

Hipótesis de inducción: Supongamos que el resultado es cierto para $M \geq m$ fijo, es decir, supongamos que se cumple que

$$\sum_{j=m}^{M} a_j = \sum_{l=m+s}^{M+s} a_{l-s}.$$

Paso inductivo: Probemos que el resultado se cumple para M+1. Para esto, notemos que

$$\sum_{l=m+s}^{(M+1)+s} a_{l-s} = \sum_{l=m+s}^{M+s} a_{l-s} + a_{(M+1+s)-s}$$

$$= \sum_{j=m}^{M} a_j + a_{M+1}$$

$$= \sum_{j=m}^{M+1} a_j,$$

donde la primera igualdad se obtiene por definición de la notación sigma, la segunda igualdad se sigue por la hipótesis inductiva y la tercera igualdad se cumple por definición de la notación sigma. Esto termina la prueba.

Note que el último inciso de la proposición anterior nos permite iniciar la suma a partir de cualquier entero que nos interese.

Lema 4 (Suma telescópica). Se cumple que

$$\sum_{j=1}^{M} (a_j - a_{j-1}) = a_M - a_0.$$

Demostración. La prueba se hará por inducción sobre M. Base de inducción: Supongamos que M=1, entonces

$$\sum_{j=1}^{M} (a_j - a_{j-1}) = \sum_{j=1}^{1} (a_j - a_{j-1}) = a_1 - a_0,$$

donde usamos la definición de la notación sigma.

 $\mathit{Hipótesis}$ de $\mathit{inducción}$: Supongamos que el resultado se cumple para $M \geq 1$ fijo, es decir, supongamos que

$$\sum_{j=1}^{M} (a_j - a_{j-1}) = a_M - a_0.$$

Paso inductivo: Demostraremos que el resultado se cumple para M+1. Tenemos que

$$\sum_{j=1}^{M+1} (a_j - a_{j-1}) = \sum_{j=1}^{M} (a_j - a_{j-1}) + (a_{M+1} - a_{(M+1)-1})$$
$$= (a_M - a_0) + (a_{M+1} - a_M)$$
$$= a_{M+1} - a_0,$$

donde la primera igualdad se obtiene por definición de la notación sigma y la segunda por la hipótesis de inducción. Esto termina la prueba. \Box

Finalizamos estas notas recordando algunas sumas importantes. Ya que la prueba de cada una de ellas se puede hacer por inducción, y probablemente ya se han visto en otros cursos, quedan como ejercicio al lector.

Proposición 5 (Sumas importantes). (I) $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$.

(II)
$$\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}.$$

(III)
$$\sum_{j=1}^{n} j^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

(IV) [Suma geométrica] Si $r \neq 1$, entonces

$$\sum_{j=1}^{n} r^j = \frac{r^{n+1} - 1}{r - 1}.$$

(V) [Teorema del binomio] Si $x, y \in \mathbb{R}$, entonces para toda $n \in \mathbb{N}$ se cumple que

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^j y^{n-j}.$$