

Understanding shapes-II Quadrilaterals Ex 16.1 Q19

Answer:

Each exterior angle =
$$\left(\frac{360}{n}\right)^{\circ}$$

For a regular pentagon, $n = 5$.

$$\therefore$$
 Exterior angle = $\left(\frac{360}{5}\right)^{\circ} = 72^{\circ}$

Understanding shapes-II Quadrilaterals Ex 16.1 Q20

Answer:

Since the sum of all the angles of a hexagon is 720°, we get: $x^{\circ} + (x-5)^{\circ} + (x-5)^{\circ} + (2x-5)^{\circ} + (2x-5)^{\circ} + (2x+20)^{\circ} = 720^{\circ}$ $\Rightarrow x^{\circ} + x^{\circ} - 5^{\circ} + x^{\circ} - 5^{\circ} + 2x - 5^{\circ} + 2x - 5^{\circ} + 2x + 20^{\circ} = 720^{\circ}$ $\Rightarrow 9x - 20^{\circ} + 20^{\circ} = 720^{\circ}$ $\Rightarrow 9x = 720^{\circ}$ $\therefore x = 80$

Understanding shapes-II Quadrilaterals Ex 16.1 Q21

For a convex hexagon, interior angle = $\left(\frac{2n-4}{n} \times 90^{\circ}\right)$

For a hexagon, n = 6

∴ Interior angle =
$$\left(\frac{12-4}{6} \times 90^{\circ}\right)$$

= $\left(\frac{8}{6} \times 90^{\circ}\right)$
= 120°

So, the sum of all the interior angles = $120^{\circ} + 120^{\circ} + 120^{\circ} + 120^{\circ} + 120^{\circ} + 120^{\circ} + 120^{\circ}$

$$\therefore$$
 Exterior angle $=\left(\frac{360}{n}\right)^{\circ} = \left(\frac{360}{6}\right)^{\circ} = 60^{\circ}$

So, sum of all the exterior angles = $60^{\circ} + 60^{\circ} + 60^{\circ} + 60^{\circ} + 60^{\circ} + 60^{\circ} + 60^{\circ} = 360^{\circ}$ Now, sum of all interior angles = 720°

= 2(360°)

= twice the exterior angles

Hence proved.

********* END *******