[section]

Конспект по матанализу в формате вопросов коллоквиума (лекции Кислякова Сергея Витальевича)

November 4, 2019

Contents

Chapter 1

Введение

1.1 Простейшие свойства вещественных чисел

- 1. Алгебраические операции
 - (a) сложение $a,b\in\mathbb{R}$: сумма a+b определяется единственным образом
 - i. a + b = b + a (коммутативность)
 - ii. (a + b) + c = a + (b + c) (ассоциативность)
 - ііі. $\exists 0: a+0=a, \forall a \in \mathbb{R}$ (нейтральный по сложению)
 - iv. $\forall a \in \mathbb{R} \exists a' : a + a' = a' + a = 0$ (обратный по сложению)
 - (b) умножение $x,y\in\mathbb{R}$: произведение $x\cdot y$ определяется единственным образом
 - i. xy = yx (коммутативность)
 - іі. (xy)z = x(yz) (ассоциативность)
 - ііі. $\exists 1: x \cdot 1 = x, \forall x \in \mathbb{R}$ (нейтральный по умножению)
 - iv. x(a+b) = xa + xb (дистрибутивность)
 - v. $\forall x \neq 0 \in \mathbb{R} \exists y \stackrel{def}{=} x^{-1} : xy = 1$ (обратный по умножению)
- 2. Порядок на \mathbb{R}
 - **Def 1.** Упорядоченная пара $(u, v) = \{\{u\}, \{u, v\}\}\$.
 - **Def 2.** Декартово произведение $X \times Y = \{(x, y) \mid \forall x \in X, y \in Y\}.$
 - **Def 3.** Отношение между элементами множеств X,Y $A\subset X\times Y$

Отношения порядка: a < b, a > b, a = b

(a)
$$\forall a,b \in \mathbb{R}: \begin{bmatrix} a=b\\ a>b \text{ (антисимметричность)}\\ a< b \end{bmatrix}$$

- (b) $a < b \land b < c \Rightarrow a < c$ (транзитивность)
- (c) $a < b \land c \in \mathbb{R} \Rightarrow a + c < b + c$
- (d) $a < b \land c > 0 \Rightarrow ac < bc$
- (e) $u < v \land x < y \Rightarrow u + x < v + y$

1.2 Множества в \mathbb{R}

Def 4 (Отрезки, интервалы, сегменты). $a, b \in \mathbb{R}, a \leq b$

$$[a,b] = \{a \in \mathbb{R} \mid a \leq x \leq b\} \text{(замкнутый отрезок)}$$

$$(a,b] = \{a \in \mathbb{R} \mid a < x \leq b\} \text{(открытый слева отрезок)}$$

$$[a,b) = \{a \in \mathbb{R} \mid a \leq x < b\} \text{(открытый справа отрезок)}$$

$$(a,b) = \{a \in \mathbb{R} \mid a < x < b\} \text{(открытый отрезок)}$$

Def 5 (Лучи). $a \in \mathbb{R}$

$$[a, +\infty) = \{x \in \mathbb{R} \mid x \ge a\}$$
$$(a, +\infty) = \{x \in \mathbb{R} \mid x > a\}$$
$$(-\infty, a] = \{x \in \mathbb{R} \mid x \le a\}$$
$$(-\infty, a) = \{x \in \mathbb{R} \mid x < a\}$$

Def 6.

Множество $A\subseteq\mathbb{R}$ ограничено сверху, если $\exists\ x\in\mathbb{R}:a\leq x\ \forall a\in A.$ Любое такое x -верхняя граница A.

Множество $A\subseteq\mathbb{R}$ ограничено снизу, если $\exists\ y\in\mathbb{R}: a\geq y\ \forall a\in A.$ Любое такое y -нижняя граница A.

 $//\pm\infty$ - не нижняя/верхняя граница.

Ограниченное множество - ограниченное сверху и снизу.

1.3 Натуральные числа

1.3.1 Аксиома Архимеда

Аксиома (Архимед). Множество натуральных чисел не ограниченно сверху.

Lemma.
$$x > 0 \Rightarrow \exists n \in \mathbb{N} : \frac{1}{n} < x$$

Доказательство. Предположим противное. $\forall n \in \mathbb{N} : x \leq \frac{1}{n}$. Тогда $\forall n : n < x^{-1}$, а это противоречит аксиоме Архимеда.

1.3.2 Аксиома индукции

Аксиома (индукции). Любое не пустое подмножество натуральных чисел имеет наименьший элемент.

Statement (Обоснование метода математической индукции). Пусть P_1, P_2, \ldots - последовательность суждений. Предположим, что

- 1. P_1 верно
- 2. Для любого $k: P_k \to P_{k+1}$

Tогда все условия P_i верны.

Доказательство. Рассмотрим множество $A = \{n \in \mathbb{N} \mid P_n$ - верно $\}$ и его дополнение $B = \mathbb{N} \setminus A$. Если не все P_i верны, то $B \neq \emptyset$. По аксиоме индукции существует наименьший элемент $l \in B$. Если $l \neq 1, l-1 \notin B$. А тогда P_{l-1} - верно, из чего следует, что P_l - верно. То есть $l \notin B$. Противоречие. Иначе не выполнено первое условие.

1.3.3 Неравенство Бернулли

Theorem 1.3.1 (Неравенство Бернулли). Пусть a > 1. Тогда $a^n \ge 1 + n(a-1)$, $n \in \mathbb{N}$

Доказательство. Индукция:

База: n = 1: $a \ge 1 + (a - 1)$

Переход: $n \to n+1$

Известно:

$$a^n \ge 1 + n(a-1).$$

Тогда:

$$a^{n+1} \ge a + n(a-1)a = (a-1) + 1 + n(a-1)a = 1 + (a-1)(1+na) \ge 1 + (a-1)(1+n)$$

Corollary. Множество $\{a^n \mid n \in \mathbb{N}\}$ для a > 1 не ограничено сверху.

Доказательство. Пусть $a^n \leq b$, $\forall n \in \mathbb{N}$. Тогда $1+(a-1)n \leq b \Rightarrow n \leq \frac{b-1}{a-1}$. Противоречие

1.3.4 Аксиома Кантора-Дедекинда

Def 7. Щель – пара вещественных чисел (A, B), где $A, B \subset \mathbb{R} \land A \neq \emptyset \land B \neq \emptyset$, такая что всякое число из A не более любого из B.

Def 8. Число c лежит в щели (A,B), если $\forall a\in A,b\in B:a\leq c\leq b$

Def 9. Щель называется узкой, если она содержит ровно одно число.

Аксиома (Кантор, Дедекинд). В любой щели есть хотя бы одно вещественное число.

Statement. Квадратный корень из 2 существует и единственный.

Доказательство.

1. Существование

Рассмотрим множества:

$$A = \{a > 0 \mid a^2 < 2\}, B = \{b > 0 \mid b^2 > 2\}$$

Они образуют щель: $a^2-b^2=(a+b)(a-b)<0$. По аксиоме Кантора-Дедекинда $\exists v: a\leq v\leq b \ \forall a\in A, \forall b\in B.$ Тогда $v^2=2$.

Lemma. B множестве B нет наименьшего элемента. B множестве A нет наибольшего элемента.

Докажем, что $v^2=2$. Пусть $v^2>2\vee b^2<2$. То есть $v\in A\vee v\in B$. Следовательно,

$$\left[\begin{array}{l} \exists v_1 \in A : v_1 > v \implies v$$
 - не в щели $\exists v_1 \in B : v_1 < v \implies v$ - не в щели

Противоречие.

2. Единственность

Возьмем $c \ge 0$: $c^2 = 2$. Пусть существует еще одно $c_1 \ge 0 \land c_1 \ne c$: $c_1^2 = 2$. Тогда

$$\left[\begin{array}{c} c < c_1 \\ c > c_1 \end{array} \right. \Rightarrow 2 > 2$$

Опять противоречие.

1.3.5 Иррациональность корня из двух

Def 10. Квадратный корень из числа 2 — такое вещественное неотрицательное число c, для которого верно $c^2=2$.

Theorem 1.3.2. Квадратный корень из двух иррационален.

Доказательство. Пусть $\sqrt{2} \in \mathbb{Q}$. Тогда $\sqrt{2} = \frac{p}{q}$, $p,q \in \mathbb{N}$. Не умоляя общности, считаем эту дробь несократимой.

$$2 = \frac{p^2}{q^2} \Rightarrow 2q^2 = p^2 \Rightarrow 2 \mid p \Rightarrow 4 \mid p^2 \Rightarrow 2 \mid q$$

5

1.3.6 Существование рациональных и иррациональных чисел в каждом невырожденном отрезке

Def 11. $\langle u,v\rangle$ - любой отрезок с концами в $u,v \quad (u\leq v)$. Его длина $|\langle u,v\rangle|:=v-u$

Theorem 1.3.3. Пусть c > 0. Тогда на каждом отрезке вида (a,b), где a < b существует точка вида rc, где $r \in \mathbb{Q}$.

 \mathcal{A} оказательство. Заменим $c \to 1, a \to \frac{a}{c}, b \to \frac{b}{c}$. Теперь будем доказывать $a \le r \le b$. Существует $q \in \mathbb{N}: \frac{1}{q} < b - a$. Рассмотрим множество $\{\frac{p}{q} \mid p \in \mathbb{Z}\}$. Кроме того $\exists p: \frac{p}{q} \ge b$. Среди таких p существует наименьший p_0 .

Возьмем
$$\frac{p_0-1}{q} = \frac{p_0}{q} - \frac{1}{q} \in (a,b)$$

Corollary. На каждом отрезке вида (a, b), где a < b, существует рациональное число.

Theorem 1.3.4. На каждом отрезке вида (a, b), где a < b, существует иррациональное число.

Доказательство. По следствию из теоремы 1.3.3 $\exists r \in \mathbb{Q} : r \in \left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$. Тогда $r\sqrt{2} \in (a,b) \land r \notin \mathbb{Q}$.

1.4 Свойства подмножеств $\mathbb R$

1.4.1 Грани

Def 12 (supremum). Пусть $A \subset \mathbb{R}$ - ограничено сверху.

Точная верхняя грань (супремум) – наименьшая из всех его верхних границ.

Def 13 (infimum). Пусть $A \subset \mathbb{R}$ - ограничено снизу.

Точная нижняя грань (инфимум) – наибольшая из всех его верхних границ.

Theorem 1.4.1 (об описании точной верхней грани). Пусть $A \neq \emptyset$ и ограничено сверху. Следующие условия эквивалентны:

- 1. $x = \sup A$
- 2. x верхняя граница для A и $\forall \varepsilon > 0 \exists y \in A \cap (x \varepsilon, x]$

Доказательство.

 $1 \Rightarrow 2$

 $x=\sup A\Rightarrow x$ - верхняя граница. Пусть $\exists \varepsilon>0:A\cap(x-\varepsilon,x]=\varnothing$. Тогда $y\leq x-\varepsilon, \ \forall y\in A$. Но из этого следует, что $x-\varepsilon$ тоже наименьшая граница, которая меньше x. Следовательно, $x\neq\sup A$. Противоречие.

 $2 \Rightarrow 1$

x - верхняя граница, $\forall \varepsilon>0 \exists y\in A\cap (x-\varepsilon,x].$ Докажем, что x - наименьшая верхняя граница.

Пусть $\exists y < x : y$ - верхняя граница A. Рассмотрим (y,x]. Для него верно $\forall z \in (y,x] : z \notin A$. Но тогда x - не верхняя граница.

Theorem 1.4.2 (об описании точной нижней грани). Пусть $A \neq \emptyset$ и ограничено снизу. Следующие условия эквивалентны:

- 1. $x = \inf A$
- 2. x нижняя граница для A и $\forall \varepsilon > 0 \exists y \in A \cap [x, x + \varepsilon)$

1.4.2 Связность отрезка

Def 14. Замкнутое множество – множество, содержащее все свои предельные точки.

Note. Любое замкнутое, ограниченное, непустое множество содержит все свои грани.

Theorem 1.4.3 (о связности отрезка). Никакой замкнутый отрезок нельзя представить в виде объединения двух непустых непересекающихся замкнутых множеств.

Для любого отрезка $[a,b],\ a\leq b$: если $[a,b]=E\cup F\wedge E, F-$ замкнуты $\wedge E\neq\varnothing\wedge F\neq\varnothing,$ то $E\cap F\neq\varnothing.$

Доказательство. E, F замкнуты, значит и ограничены сверху. Предположим, что $E \cap F = \emptyset$. Не умоляя общности $x = \sup E < b$, тогда $(x,b] \in F$. С одной стороны, x - предельная точка для E, с другой стороны, предельная точка для F. Так как E, F - замкнуты, $x \in E \land x \in F$. Следовательно, $E \cap F \neq \emptyset$. Противоречие.

1.4.3 Предельные и изолированные точки

Def 15. Окрестность точки $x \in \mathbb{R}$ – любой открытый интервал вида $(x - \varepsilon, x + \varepsilon)$, где $\varepsilon > 0$.

Def 16. Проколотая окрестность точки $x \in \mathbb{R}$ – объединение двух открытых интервалов вида $(x - \varepsilon, x) \cup (x, x + \varepsilon)$

Def 17. Пусть $A \subset \mathbb{R}, u \in \mathbb{R}$.

u называется предельной точкой для A, если в любой проколотой окрестности точки u есть точки множества A.

$$\forall \varepsilon > 0 \quad \stackrel{\circ}{U}_{\varepsilon}(u) \cap A \neq \varnothing.$$

Examples.

- 1. \mathbb{Z} , \mathbb{N} не имеют предельных точек.
- 2. $\{\frac{1}{n} \mid n \in \mathbb{N}\}$ имеет одну предельную точку 0.

3. Для \mathbb{Q} все предельные точки - \mathbb{R} .

Def 18. Все точки множества A, не являющиеся предельными, называются изолированными:

$$u\in A$$
 — изолированная, если $\exists\ arepsilon>0:\ U_{arepsilon}(u)\cap A=\{u\}\Leftrightarrow \stackrel{\circ}{U}_{arepsilon}(u)\cap A=\varnothing$

Examples.

- 1. $[1,2] \cup \{3\}$ имеет одну изолированную точку 3.
- 2. [1,2] не имеет ни одной изолированной точки.

Lemma. Пусть A ограничено сверху (снизу), $y = \sup A$ ($y = \inf A$).

$$\left[egin{array}{ll} y
otin A \Rightarrow y \end{array}
ight.$$
 - предельная точка A $y \in A$

1.4.4 Теорема о вложенных отрезках

Theorem 1.4.4 (о вложенных отрезках). $a \le b, I = \langle a, b \rangle$.

 $\{I_n\}_{n\in\mathbb{N}}$ - последовательность замкнутых отрезков $I_{n+1}\subseteq I_n$. Тогда у этих отрезков есть хотя бы одна общая точка.

Доказательство. Рассмотрим две последовательности концов отрезков:

$$a_1 \le a_2 \le a_3 \dots$$

 $b_1 \ge b_2 \ge b_3 \dots$

Заметим, что $a_k \leq b_j \ \forall k, j \in \mathbb{N}$. Тогда множества $A = \{a_k \mid k \in \mathbb{N}\}$ и $B = \{b_j \mid j \in \mathbb{N}\}$ образуют щель. По аксиоме Кантора-Дедекинда $\exists t \in \mathbb{R} : t \in (A, B)$.

$$a_k \le t \le b_j \forall j, k \in \mathbb{N}.$$

Возьмем k = j:

$$t \in [a_j, b_j], \ \forall j \in \mathbb{N}.$$

А эта точка принадлежит всем отрезкам.

Note. Эта точка единственна тогда и только тогда, когда $\forall \varepsilon>0$ $\exists n: |I_n|<\varepsilon$

Доказательство. Если такая точка единственная, (A,B) - узкая щель. То есть $\forall \varepsilon > 0 \; \exists k,j \in \mathbb{N} : b_j - a_k < \varepsilon$. Не умоляя общности, $j \geq k$. Тогда $b_j - a_j < \varepsilon$. В обратную сторону очевидно.

1.4.5 Теорема о компактности

Theorem 1.4.5 (о компактности). Любое бесконечное ограниченное подмножество вещественных чисел имеет хотя бы одну предельную точку.

Доказательство. Пусть A - ограничено. Тогда $\exists a_1,b_1:a_1\leq x\leq b_1 \quad \forall x\in A$. Получаем $A\subset [a_1,b_1]$. Возьмем середину отрезка $c=\frac{b_1+a_1}{2}$. Теперь $I_2=\left\{\begin{array}{ll} [a_1,c] & \text{если } A\cap [a_1,c] \text{- бесконечно} \\ [c,b_1] & \text{если } A\cap [c,b_1] \text{- бесконечно} \end{array}\right.$ Будем аналогично делить пополам получаемый отрезок. Эти отрезки представляют собой последовательность вложенных замкнутых отрезков:

$$I_1 \supset I_2 \supset I_3 \ldots \supset I_n \supset \ldots$$

Причем $|I_n| = \frac{|I_1|}{2^{n-1}}$, $\forall n \in \mathbb{N}$. По теореме о вложенных отрезках $1.4.4 \ \forall n \in \mathbb{N} \exists ! x : x \in I_n$. Этот x и есть предельная точка для множества A. $\forall \varepsilon > 0 \ \exists n \in \mathbb{N} : |I_n| < \varepsilon \land x \in I_n \Rightarrow I_n \subset U_{\varepsilon}(x)$. Тогда $\exists y \in A \cap I_n : y \neq x$.

1.4.6 Теорема о вложенных полуоткрытых отрезках

Theorem 1.4.6 (о вложенных полуоткрытых отрезках). Рассмотрим последовательность вложенных полуоткрытых интервалов, среди которых существуют полуинтервалы сколь угодно малой длины:

$$J_1\supset J_2\ldots\supset J_n\supset\ldots, \qquad \operatorname{rde}\ J_n=[a_n,b_n).$$

$$T\operatorname{orda}\ \left[igcap_{n=1}^\infty J_n=\varnothing \atop \bigcap\limits_{n=1}^\infty J_n=\{x_0\}\Longleftrightarrow \exists n_0:b_{n_0}=b_{n_0+1}=b_{n_0+2}=\ldots \right]$$

Доказательство. Рассмотрим последовательность $I_n = [a_n, b_n]$. По теореме о вложенных отрезках $1.4.4 \, \exists! t \in \bigcap_{n=1}^{\infty} I_n$. Если $t \notin \bigcap_{n=1}^{\infty} J_n$, то $\exists n_0 : t \notin J_{n_0} \wedge t \in I_{n_0}$. А тогда $t = b_{n_0}$, которое совпадает совпадает со концами всех следующих интервалов. Иначе $t \in \bigcap_{n=1}^{\infty} J_n$ и правые концы одинаковы.

1.4.7 Десятичное разложение вещественного числа

Пусть $x \in [0,1)$. Разобьем полуинтервал на десять равных полуинтервалов $\{I_i\}$. Будем собирать десятичную запись:

- 1. i_1 номер интервала, куда попало x
- 2. i_2 номер интервала второго ранга результата разбиения каждого полуинтервала на 10 частей

Figure 1.1: Decimal decomposition

3. И так далее

Получим $0.i_1i_2i_3\dots$ – десятичную запись числа x.

Note. Не существует десятичного представления, в котором с некоторого момента все девятки.

Theorem 1.4.7. Пусть $(j_1, j_2, ...)$ - цифры от нуля до девяти. $\nexists n \in \mathbb{N} : j_k = 9 \ \forall k \geq n$. Тогда $\exists ! x \in [0, 1)$ для которого $0.j_1j_2...$ - десятичное представление.

Доказательство. Рассмотрим последовательность полуинтервалов $I_1 \supset I_2 \supset \dots$ По теореме 1.4.6 существует непустое пересечение, равное одной точке - и есть наше число.

Chapter 2

Пределы

2.1 Основные свойства пределов функций

2.1.1 Определение предела

Def 19. b – предел функции f в точке x_0 , если для любой окрестности U в точке b существует такая проколотая окрестность $\overset{\circ}{V}$ точки $x_0:f(\overset{\circ}{V}\cap A)\subset U.$

Def 20. b – предел функции f в точке x_0 , если

$$\forall \varepsilon > 0 \exists \stackrel{\circ}{V}(x_0) : \forall x \in \stackrel{\circ}{V} \cap A : |f(x) - b| < \varepsilon$$

Def 21. b – предел функции f в точке x_0 , если

$$\forall \varepsilon > 0 \exists \delta > 0 : \forall x \in A \land x \neq x_0 \land |x - x_0| < \delta : |f(x) - b| < \varepsilon.$$

Если $x_0 = \infty$:

$$\forall \varepsilon > 0 \exists N > 0 : \forall x \in A \land x > N : |f(x) - b| < \varepsilon.$$

Note.

$$\lim_{x \to x_0} f(x) = b \iff \lim_{x \to x_0} |f(x) - b| = 0.$$

2.1.2 Единственность предела

Theorem 2.1.1. $f: A \to \mathbb{R}, x$ - предельная точка для A.

Ecли a,b - предельные для f в точке x_0 , то a=b.

Доказательство. Пусть $a \neq b$. Тогда существуют U_1, U_2 - не пересекающиеся окрестности точек a, b. Так как a, b - предельные,

$$\exists \overset{\circ}{V_1}(x_0) : f(\overset{\circ}{V_1} \cap A) \subset U_1$$

$$\exists \overset{\circ}{V_2}(x_0) : f(\overset{\circ}{V_2} \cap B) \subset U_2$$

Рассмотрим $\overset{\circ}{V}(x) = \overset{\circ}{V}_1(x) \cap \overset{\circ}{V}_2(x)$. $\exists y \in \overset{\circ}{V} \cap A : f(y) \in U_1 \wedge f(y) \in U_2 \Rightarrow U_1 \cap U_2 \neq \varnothing$. Противоречие.

2.1.3 Теорема о пределе сужения

Def 22. A' – множество всех предельных точек.

Theorem 2.1.2 (о пределе сужения). $f: A \to \mathbb{R}, x \in A', B \subset A'$ Пусть $x_1 \in B' \land z = \lim_{x_0} f$. Тогда $z = \lim_{x_0} (f \upharpoonright_B)$.

Доказательство. По условию $\forall U(z) \exists \stackrel{\circ}{V}: f(\stackrel{\circ}{V} \cap A) \subset U$, тем более $f(\stackrel{\circ}{V} \cap B) \subset U$.

Theorem 2.1.3 (частичное обращение теоремы о пределе сужения). Если $B = \overset{\circ}{W}_{\delta}(x_0) \wedge \exists \lim_{x_0} f \upharpoonright_{B} = z, \ mo \ \exists \lim_{x_0} f = z.$

Доказательство. $\forall U(z) \; \exists \stackrel{\circ}{V}(x_0) : f \upharpoonright_B (\stackrel{\circ}{V} \cap A \subset U \Leftrightarrow f((\stackrel{\circ}{V} \cap \stackrel{\circ}{W}_{\delta}) \cap A) \subset U.$ $\stackrel{\circ}{V} \cap \stackrel{\circ}{W}_{\delta}$ - тоже окрестность точки x_0 .

2.1.4 Предел постоянной функции и предел тождественного отображения

Statement. $f(x) = x \iff \lim_{x \to x_0} f(x) = x_0$

Statement. $f(x) = c \iff \lim_{x \to x_0} f(x) = c$

2.1.5 Предельный переход в неравенстве

Theorem 2.1.4 (Предельный переход в неравенстве). $f, g: A \to \mathbb{R}, x \in A'$. Предположим, что существуют пределы y f, g в точке x_0 равные соответственно a, b. Пусть a < b. Тогда существует проколотая окрестность $\overset{\circ}{V}(x_0): f(x) < g(x) \quad \forall x \in \overset{\circ}{V} \cap A$.

Доказательство. Рассмотрим U_1, U_2 - не пересекающиеся окрестности точек a, b. Так как a, b - предельные,

$$\exists \overset{\circ}{V_1}(x_0) : f(\overset{\circ}{V_1} \cap A) \subset U_1$$

$$\exists \overset{\circ}{V_2}(x_0) : f(\overset{\circ}{V_2} \cap B) \subset U_2$$

Возьмем $\overset{\circ}{V}(x) = \overset{\circ}{V_1}(x) \cap \overset{\circ}{V_2}(x)$. Тогда $\forall x \in \overset{\circ}{V} \cap A : f(x) \in U_1 \wedge g(x) \in U_2 \Rightarrow f(x) < g(x)$.

2.1.6 Принцип двух полицейских

Theorem 2.1.5 (Принцип двух полицейских). $f, g, k : A \to \mathbb{R}, x_0 \in A$ Пусть $\lim_{x_0} f = \lim_{x_0} h = b, \ f(x) \le g(x) \le h(x) \quad \forall x \in A.$ Тогда $\lim_{x_0} g = b.$

Доказательство. Рассмотрим $\overset{\circ}{U}(b)$. Существуют проколотые окрестности

$$\overset{\circ}{V_{1}}, \overset{\circ}{V_{2}}: \overset{\circ}{V_{1}} \cap \overset{\circ}{V_{2}} = \overset{\circ}{V} \wedge f(\overset{\circ}{V_{1}} \cap A) \subset \overset{\circ}{U} \wedge h(\overset{\circ}{V_{2}} \cap B) \subset \overset{\circ}{U}
f(\overset{\circ}{V} \cap A) \subset U
h(\overset{\circ}{V} \cap A) \subset U$$

$$\Rightarrow g(\overset{\circ}{V} \cap A) \subset U$$

2.1.7 Предел линейной комбинации

Theorem 2.1.6 (Предел линейной комбинайии). $f, g: A \to \mathbb{R}, x_0 \in A', \alpha, \beta \in \mathbb{R}$ Пусть существуют пределы $\lim_{x_0} f = a, \lim_{x_0} g = b$.

$$h(x) = \alpha f(x) + \beta g(x), \quad x \in A.$$

 $Tor \partial a \lim_{x_0} h = \alpha a + \beta b$

Доказательство.

$$|\alpha f(x) = \beta g(x) - \alpha a - \beta b| =$$

$$= |\alpha (f(x) - a) + \beta (g(x) - b)| \le .$$

$$\le |\alpha||f(x) - a| + |\beta||g(x) - b|$$

Достаточно доказать, что $|\alpha||f(x) - a| + |\beta||g(x) - b| \to 0$. Будем считать, что $\alpha, \beta \neq 0$.

$$\forall \varepsilon > 0 \quad \exists \delta_1 > 0 : |f(x) - a| < \frac{\varepsilon}{2|\alpha|}, x_0 \in A, |x - x_0| < \delta_1, x \neq x_0 \\ \exists \delta_2 > 0 : |g(x) - b| < \frac{\varepsilon}{2|\beta|}, x_0 \in A, |x - x_0| < \delta_2, x \neq x_0$$

Теперь возьмем $\delta = \min(\delta_1, \delta_2)$. Тогда для $x \in A, |x - x_0| < \delta, x \neq x_0$:

$$|\alpha||f(x) - a| + |\beta||g(x) - b| \le |\alpha| \cdot \frac{\varepsilon}{2|\alpha|} + |\beta| \cdot \frac{\varepsilon}{2|\beta|} = \varepsilon.$$

2.1.8 Предел произведения стремящейся к нулю и ограниченной функций

Statement. $A \subset \mathbb{R}, \ f,g:A \to \mathbb{R}, \ x_0 \in A'$ $\Pi pednonoseum$, что $\lim_{x_0} f = 0$ и $\exists c \in \mathbb{R}: |g(x)| \leq c \forall x \in A$. Тогда $\lim_{x \to x_0} f(x)g(x) = 0$

Доказательство. Если c=0, утверждение очевидно (хотя оно и в любом случае очевидно). Будем считать, что c>0. Запишем определение предела f:

$$\forall \varepsilon : \exists \stackrel{\circ}{V}(x_0) : |f(x) - 0| = |f(x)| < \frac{\varepsilon}{c}, \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Тогда

$$|f(x)g(x)| < c|f(x)| \cdot c < \frac{\varepsilon}{c} \cdot c = \varepsilon, \quad \forall x \in \stackrel{\circ}{V} \cap A.$$

Следовательно, $\lim_{x \to x_0} f(x)g(x) = 0$.

2.1.9 Предел произведения имеющих предел функций

Statement. $A \subset \mathbb{R}, \ f, g : A \to \mathbb{R}, \ x_0 \in A', \ \lim_{x_0} f = a, \lim_{x_0} g = b$ $Tor \partial a \lim_{x \to x_0} f(x)g(x) = ab.$

Доказательство.

$$|f(x)g(x) - ab| = |f(x)g(x) - ag(x) + ag(x) - ab| \le \le |g(x)||f(x) - a| + |a||g(x) - b|$$

 $|g(x)| \le c$ в некоторой проколотой окрестности x_0 , а f(x) - a и g(x) - b стремятся к нулю в точке x_0 . Тогда можем применить утверждение 2.1.8:

$$|g(x)||f(x)-a| \stackrel{x\to x_0}{\longrightarrow} 0$$
 $|a||g(x)-b| \stackrel{x\to x_0}{\longrightarrow} 0$ \Rightarrow их сумма стремится к нулю при $x\to x_0$.

2.1.10 Предел частного

Statement. $A \subset \mathbb{R}, \ f, g : A \to \mathbb{R}, \ x_0 \in A', \ \lim_{x_0} f = a, \lim_{x_0} g = b, \ b \neq 0$ $Tor \partial a \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$

Доказательство.

Lemma. В условии утверждения функция g удалена от нуля в некоторой проколотой окресности $\stackrel{\circ}{V}(x_0)$. То есть $\exists c>0 \ \forall x\in \stackrel{\circ}{V}\cap A: |g(x)|\geq c$

Доказательство. (леммы) $\forall \varepsilon > 0 \exists \stackrel{\circ}{U}(x_0) : |g(x) = b| < \varepsilon, \quad \forall x \in \stackrel{\circ}{U} \cap A$. Возьмем $\varepsilon = \frac{|b|}{2}$.

$$|b| - |g(x)| \le |g(x) - b| \le \frac{|b|}{2} \Longrightarrow \frac{|b|}{2} \le |g(x)|.$$

 $\forall x \in \overset{\circ}{V}(x_0) \cap A$ (из леммы):

$$\begin{aligned} |\frac{f(x)}{g(x)} - \frac{a}{b}| &= \frac{|bf(x) - ag(x)|}{|bg(x)|} \le \\ &\le \frac{1}{c|b|} |(b - g(x))f(x) + (f(x) - a)g(x)| \le \\ &\le \frac{1}{|b|c} |g(x) - b| |f(x)| + |(f(x) - a)|g(x)| \longrightarrow 0 \end{aligned}.$$

2.1.11 Сумма геометрической прогрессии

Рассмотрим функцию $f(n) = \sum_{j=1}^{n} q^j = \frac{1-q^n}{1-q}, \quad q \in \mathbb{R}.$

Statement. Ecnu |q| < 1, mo f(x) имеет предел, иначе не имеет предела.

Доказательство.

|q| < 1

Lemma.

$$q^{n+1} \stackrel{n \to \infty}{\longrightarrow} 0 \iff |q|^n \stackrel{n \to \infty}{\longrightarrow} 0.$$

1. Доказательство.

$$\left(\frac{1}{|q|}\right)^n = \left(1 + \frac{1}{|q|} - 1\right)^n \ge 1 + n\left(\frac{1}{|q|} - 1\right).$$

Тогда

$$0 \le |q|^n \le \frac{1}{1 + n\left(\frac{1}{|q|} - 1\right)} \stackrel{n \to \infty}{\longrightarrow} 0.$$

Теперь найдем $\forall \varepsilon > 0 \ N \in \mathbb{N} \forall n > N : \frac{1}{\varepsilon} < 1 + n \left(\frac{1}{|q|} - 1 \right)$. Подойдет $N = \frac{1}{\varepsilon \left(\frac{1}{|q|} - 1 \right)}$.

Из леммы получаем: $f(n) = \frac{1-q^n}{1-q} \longrightarrow \frac{1}{1-q}$.

2. q = -1

$$f(n) = \left\{ egin{array}{ll} 1, & 2 \mid n \\ 0, & 2 \nmid n \end{array} \right.$$
 нет предела

- 3. q = 1, f(n) = n + 1 нет предела
- 4. q > 1

$$\lim f(n) = \lim \frac{1 - q^n}{1 - q} = \lim \frac{q^n - 1}{q - 1}.$$

Эта функция не имеет предела.

5. q < 1

$$|f(n)| = \left|\frac{q^n - 1}{q - 1}\right| \ge \frac{1}{|q - 1|}(|q|^n - 1).$$

Эта функция тоже не имеет предела.

2.1.12 Предел монотонной функции

Def 23. $f: A \to \mathbb{R}, A \cap \mathbb{R}$

f – (строго) возрастающая, если

$$x_1, x_2 \in A, x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \ (f(x_1) < f(x_2)).$$

f – (строго) убывающая, если

$$x_1, x_2 \in A, x_1 > x_2 \Rightarrow f(x_1) \ge f(x_2) \ (f(x_1) > f(x_2)).$$

f – (строго) монотонна, если (строго) возрастает или (строго) убывает.

Theorem 2.1.7 (о пределе монотонной функции). $f: A \to \mathbb{R}$ - монотонная и ограниченная функция на $A, x_0 \in A'$, (допускается $x_0 = \pm \infty$, то есть A - неограничено). Если f - возрастает и ограничена сверху или убывает и ограничена снизу, то $\exists \lim_{x \to x_0} f(x)$.

Доказательство. Пусть f - возрастает и ограничена сверху. $f(x) \leq M \ \forall x \in A$. $b = \sup\{f(x) \mid x \in A\}$. Докажем, что $b = \lim_{x \to x_0} f(x)$.

Пусть $\varepsilon > 0$. Рассмотрим $U_{\varepsilon}(b) = (b - \varepsilon, b + \varepsilon)$.

$$\exists y \in A : b - \varepsilon < f(y).$$

Тогда $\forall x \in A : y < x < x_0 \Rightarrow f(y) \leq f(x) \leq b$

Note. Доказали, что

$$\lim_{x_0} f = \sup_{x \in A} f(x).$$

Аналогично, если f убывает и ограничена снизу

$$\lim_{x_0} f = \inf_{x \in A} f(x).$$

2.1.13 Ряды

Def 24. Рассмотрим последовательность $\{a_n\}_{n\in\mathbb{N}}$. Ряд – символ $\sum_{n=1}^{\infty} a_n$.

Частичные суммы ряда – последовательность $\{S_k\}_{k\in\mathbb{N}}, \quad S_k = \sum_{n=1}^k a_n.$

Говорят, что ряд $\sum_{n=1}^{\infty} y_n$ сходится, если последовательность его частичных сумм имеет предел. Иначе говорят, что ряд расходится.

Statement.

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\alpha}} - cxodumcs \iff \sum_{n=1}^{\infty} 2^n \frac{1}{2^n (\log 2^n)^{\alpha}} = \sum_{n=1}^{\infty} \frac{1}{(\log 2)^{\alpha}} \cdot \frac{1}{n^{\alpha}}, \quad \alpha > 1.$$

Theorem 2.1.8 (Лейбниц). Пусть a_n - монотонно убывающая неотрицательная последовательност $0 \geq a_1 \geq a_2 \ldots$. Тогда ряд $\sum_{n=1}^{\infty}$ - сходится тогда и только тогда, когда $\sum_{n=1}^{\infty} 2^n a_{2^n}$ - сходится.

Доказательство.

 $\sum\limits_{n=1}^\infty a_n$ - сходится. Достаточно доказать, что частичные суммы второго ряда ограничены.

$$S_k = a_1, +a_2 + \ldots + a_k, \quad k = 2^n$$

 $S_{2^n} = a_1 + a_2 + (a_3 + a_4) + (a_5 + a_6 + a_7 + a_8) + \ldots + (a_{2^{n-1}} + \ldots + a_{2^n})$.

Заменим в каждой скобке на минимальный:

$$S_{2^n} \le a_2 \le 2a_4 + 4a_8 + \dots 2^{n-1}a_{2^n}.$$

Тогда

 \Leftarrow

$$2a_2 + 4a_4 + \dots 2^n a_{2^n} \le 2S_{2^n}.$$

Из чего следует, что $\sum\limits_{n=1}^{\infty} 2^n a_{2^n}$ - сходится.

 $\sum\limits_{n=1}^{\infty}2^{n}a_{2^{n}}$ - сходится. Обозначим его сумму за T. Тогда

$$a_1 + (a_2 + a_3) + (a_4 + a_5 + a_6 + a_7) + \ldots + (a^{2^n} + \ldots + a_{2^{n+1}-1}) \le a_1 + a_2 + a_4 + \ldots + a_{2^n} \le a_1 + T.$$