拉伸法和动力学法测量弹性模量 实验报告

李金鹏

2019013254

实验日期: 2020年10月15日

第一部分 拉伸法测弹性模量

1.1 实验目的

- (1) 学习用拉伸法测量弹性模量的方法;
- (2) 掌握螺旋测微计和读数显微镜的使用;
- (3) 学习用逐差法处理数据。

1.2 数据处理

1. 测钢丝长度L及其伸长量 δL

仪器编号 8 ; 钢丝长度L= 1000 mm

	<u>Дигин</u> ,	<u> </u>	<u> 1000 </u>			
序		$y_i/$	mm	$l_i'(l_i' = y_{i+5})$	(y_i) /mm	$l_i \left(l_i = \frac{l_+ + l}{2} \right)$
号	$F_i(F_i = mg)/N$	增砝码时	减砝码时	增砝码时1+	减砝码时1_	$l_i \left(l_i - \frac{1}{2} \right)$ /mm
1	0.200×1×9.80	0. 155	0. 195	1.310	1. 455	1.3825
2	0.200×2×9.80	0. 457	0. 495	1.213	1.306	1.2595
3	0.200×3×9.80	0.711	0.802	1. 199	1. 248	1. 2235
4	0.200×4×9.80	0.942	1.001	1. 258	1. 325	1. 2915
5	0.200×5×9.80	1.230	1. 259	1.335	1. 212	1. 2735
6	0.200×6×9.80	1. 465	1.650			15
7	0.200×7×9.80	1.670	1.801			$\bar{l} = \frac{1}{5} \sum_{i=1}^{5} l_i$
8	0.200×8×9.80	1.910	2.050			= <u>1.2861</u> mm
9	0.200×9×9.80	2. 200	2. 326			标准偏差
10	0.200×10×9.80	2. 565	2. 471			$s_l = 0.0572 \text{mm}$

$$\therefore \delta L = \frac{1}{5}\bar{l} = \frac{1}{5} \times 1.2816 = 0.2563 \text{mm}$$

不确定度计算:

$$\Delta_l = \sqrt{\left(\Delta_{l/X}\right)^2 + (s_l)^2}$$

本实验读数显微镜测某一位置 y_i 的仪器误差为 0.01mm,因此用它测量一段伸长量 $l=y_{i+5}-y_i$,则l

的仪器误差为
$$\Delta_{l (\chi)} = \sqrt{\left(\Delta_{y_{i+5}(\chi)}\right)^2 + \left(\Delta_{y_{i(\chi)}}\right)^2} = \sqrt{2} \times 0.01$$
mm

所以
$$\Delta_l = \sqrt{\left(\Delta_{l/\!\!\!\!/}\right)^2 + (s_l)^2} = \sqrt{\left(\sqrt{2} \times 0.01\right)^2 + 0.0572^2} = 0.05892$$
mm

又因为
$$\delta L = \frac{1}{5}l$$
,所以 $\Delta_{\delta L} = \frac{1}{5}\Delta_l = 0.01178$ mm

 $\therefore \delta L \pm \Delta_{\delta L} = (0.2563 \pm 0.0118) \text{mm}$

2. 测钢丝直径D

测定螺旋测微计的零点d(单位为mm)

测量前-0.018, -0.021, -0.026,

测量后<u>-0.026</u>, <u>-0.028</u>, <u>-0.027</u>; 平均值 \bar{d} =<u>-0.0243</u>mm

序号	1	2	3	4	5	6
D_i /mm	0. 200	0.199	0. 198	0. 199	0.201	0. 200
$D_i - \bar{d}/\mathrm{mm}$	0. 224	0. 223	0. 222	0. 223	0.225	0. 224

钢丝的平均直径 \overline{D} =<u>0.2238</u>mm, s_D =<u>0.001283</u>mm

$$\Delta_D = \sqrt{\left(\Delta_{(x)}^2 + (s_D)^2\right)^2} = \sqrt{0.004^2 + (0.001283)^2} = 0.0042 \text{mm}$$

 $D \pm \Delta_D = (0.2238 \pm 0.0042) \text{mm}$

由以上数据可求出:
$$E = \frac{4FL}{\pi D^2 \delta L} = \frac{4 \times 0.2 \times 9.8 \times 1.000}{\pi \times 0.0002238^2 \times 0.2563 \times 10^{-3}} = 1.9440 \times 10^{11} \text{Pa}$$
 = 194.40GPa

3. 总不确定度的计算

$$\begin{split} \frac{\Delta_E}{E} &= \sqrt{\left(\frac{\partial}{\partial F} \ln E\right)^2 (\Delta_F)^2 + \left(\frac{\partial}{\partial L} \ln E\right)^2 (\Delta_L)^2 + \left(\frac{\partial}{\partial D} \ln E\right)^2 (\Delta_D)^2 + \left(\frac{\partial}{\partial (\delta L)} \ln E\right)^2 (\Delta_{\delta L})^2} \\ &= \sqrt{\left(\frac{\Delta_F}{F}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{2\Delta_D}{D}\right)^2 + \left(\frac{\Delta_{\delta L}}{\delta L}\right)^2} \\ &= \sqrt{(0.5\%)^2 + \left(\frac{3}{1000}\right)^2 + \left(\frac{2 \times 0.0042}{0.2238}\right)^2 + \left(\frac{0.0118}{0.2563}\right)^2} \\ &= 0.0596861 \end{split}$$

 $E \pm \Delta_E = (192.50 \pm 11.60)$ Gpa

$$\therefore \Delta_E = 0.0447935E = 0.1160 \times 10^{11} \text{Pa}$$

4、采用最小二乘法直线拟合

由以上关系可知:
$$\delta L = \frac{4FL}{\pi D^2 E}$$
, 又 $\delta L = y_i - y_0$

所以,
$$y = y0 + \frac{4FL}{\pi D^2 E} = y0 + \frac{4L}{\pi D^2 E} \times 0.200 \times 9.80 \times n$$

对增砝码的数据使用最小二乘法直线拟合如下

R^2=0.9972 说明线性拟合非常好,且 b ×0.001= $\frac{4L}{\pi D^2 E}$

所以
$$E = \frac{4L \times 1000}{\pi D^2 b} = 1.9925 \times 10^{11} \text{Pa} = 199.25 \text{ Gpa}$$

第二部分 动力学法测弹性模量

2.1 实验目的

- (1) 学习一种更实用,更准确的测量弹性模量的方法;
- (2) 学习用实验方法研究与修正系统误差。

2.5 数据记录及处理

1. 被测样品的长度、直径和质量

长度*l*= 19.982cm , 质量 32.33g

种类: 黄铜

螺旋测微计零点位置d(单位为 mm)

测量前__-0.325__, __-0.344__, __-0.341__,

测量后<u>-0.340</u>, <u>-0.345</u>, <u>-0.365</u>; 平均值*ā*=<u>-0.343mm</u>

序号	1	2	3	4	5	6
D_i /mm	4. 621	4. 631	4. 610	4. 620	4. 635	4. 634
$D_{i-}\overline{d}/\mathrm{mm}$	4. 964	4. 974	4. 953	4. 963	4. 978	4. 977

则黄铜棒的平均直径钢丝的平均直径 $\overline{D}=4.968$ mm, $s_D=0.010312$ mm

$$\Delta_D = \sqrt{\left(\Delta_{\text{fX}}\right)^2 + (s_D)^2} = \sqrt{0.004^2 + (0.010312)^2} = 0.0110606$$
mm

$$D \pm \Delta_D = (4.968 \pm 0.011) \text{mm}$$

2. 测基振频率

悬线位置 x/mm	-40	-30	-20	-10	10	15	20	25
共振频率 f/Hz	412.23	404.15	399.83	396.89	396.83	397.57	398.73	399.92

作出 f-x 曲线如下图。

由图线上读出:在x=0处,f=395.69Hz。

由以上数据可求得

$$E = 1.6067 \frac{l^3 m}{D^4} f^2 T_1$$

$$= 1.6067 \times \frac{0.19982^3 \times 32.33 \times 10^{-3}}{(4.968 \times 10^{-3})^4} \times 395.69^2 \times 1.0035$$

$$= 1.0689 \times 10^{11} \text{Pa}$$

$$= 106.896 \text{Pa}$$

下面计算E的不确定度 Δ_E

$$\frac{\Delta_E}{E} = \sqrt{\left(\frac{\partial}{\partial l} \ln E\right)^2 (\Delta_l)^2 + \left(\frac{\partial}{\partial m} \ln E\right)^2 (\Delta_m)^2 + \left(\frac{\partial}{\partial f} \ln E\right)^2 (\Delta_f)^2 + \left(\frac{\partial}{\partial D} \ln E\right)^2 (\Delta_D)^2}$$

其中,

$$\ln E = \ln 1.6067 + \ln T_1 + 3\ln l + \ln m + 2\ln f - 4\ln D$$

故

$$\frac{\partial \ln E}{\partial l} = \frac{3}{l}, \quad \frac{\partial \ln E}{\partial m} = \frac{1}{m}, \quad \frac{\partial \ln E}{\partial f} = \frac{2}{f}, \quad \frac{\partial \ln E}{\partial D} = -\frac{4}{D}$$

$$\therefore \frac{\Delta_E}{E} = \sqrt{\left(\frac{3\Delta_l}{l}\right)^2 + \left(\frac{\Delta_m}{m}\right)^2 + \left(\frac{2\Delta_f}{f}\right)^2 + \left(\frac{4\Delta_D}{D}\right)^2}$$

$$= \sqrt{\left(\frac{3 \times 0.002}{19.982}\right)^2 + \left(\frac{0.05}{32.33}\right)^2 + \left(\frac{2 \times 0.10}{395.69}\right)^2 + \left(\frac{4 \times 0.0110606}{4.968}\right)^2}$$

$$= 0.00906$$

- $\Delta_E = 0.00905E = 0.0097 \times 10^{11} \text{Pa}$
- $E \pm \Delta_E = (116.83 \pm 0.97)$ Gpa

第三部分 课后题

(2) 在本实验中读数显微镜作测量时哪些情况下会产生空程误差? 应如何消除它?

手轮改变转动方向时会产生空程从而产生误差。消除方法:在增(减)砝码过程中始终向着一个方向转动,从增砝码转向减砝码时,在开始读数前应该保证手轮已在这个方向上转了几圈。

(3) 从 E 的不确定度计算式分析哪个量的测量对 E 的结果影响最大?测量时应注意哪些问题?

$$\frac{\Delta_E}{E} = \sqrt{\left(\frac{\partial}{\partial F} \ln E\right)^2 (\Delta_F)^2 + \left(\frac{\partial}{\partial L} \ln E\right)^2 (\Delta_L)^2 + \left(\frac{\partial}{\partial D} \ln E\right)^2 (\Delta_D)^2 + \left(\frac{\partial}{\partial (\delta L)} \ln E\right)^2 (\Delta_{\delta L})^2}$$

$$= \sqrt{\left(\frac{\Delta_F}{F}\right)^2 + \left(\frac{\Delta_L}{L}\right)^2 + \left(\frac{2\Delta_D}{D}\right)^2 + \left(\frac{\Delta_{\delta L}}{\delta L}\right)^2}$$

其中: $\frac{\Delta_F}{F} = 0.005$, $\frac{\Delta_L}{L} = 0.003$, $\frac{2\Delta_D}{D} = 0.38$, $\frac{\Delta_{\delta L}}{\delta L} = 0.046$.

钢丝直径以及 δL 对 E 的结果影响很大,必须正确使用螺旋测微计,耐心读数,不可鲁莽,避免钢丝弯曲,使用读数显微镜时最好有一个参考线。

第三部分 实验总结

拉伸法和动力学法相比,各有优缺点。拉伸法原理简单,容易上手,但是使用读数显微镜时要耐得住性子,数据繁多不好处理,而且容易眼花影响实验结果。动力法虽然原理复杂,但搞清楚以后只需要耐心调节仪器,不费眼,而且更精准,对我个人而言,我更喜欢后者—动力法。

还有一点就是在用拉伸法时我的读数显微镜里出现的气泡影响读数,再加上自己没有耐得住性子,导致最终测的结果不确定度很大,相对误差达到 5.9%。在以后的实验里我要努力做到更加细致,

毕竟做实验最起码要有严谨的精神和做风。

2020年10月15日 (原始数据见下页)

1.测钢丝长度L及其伸长量δL

扁号_					T dad			1.7		
予	$F_i(F_i = mg)/$	N	y _i /	mm	$l_i(l_i = y)$	$(y_{i+5} - y_i)/\text{mm}$	$t_{\ell}\left(l_{\ell} = \frac{l_{\ell}}{l_{\ell}}\right)$	++1_2		
号	$T_1(T_1 - mg)/$	增	社研时	沙龙在东西30 1	增砝码时1+	减砝码时1_	/mm			
1	0.200×1×9.80	0	1.155	0.195						
2	0.200×2×9.8	0 0	457	01495						
3	0.200×3×9.8	0.0	-711	0.802						
4	0.200×4×9.8		942	1,001						
5	0.200×5×9.	00	.230.	1.259						
6	0.200×6×9.		465	(,650			1	S		
7	0.200×7×9.		. 67°	1.801			$\bar{l} = \frac{1}{5}$	$\sum_{i=1}^{l} l_i$		
8	0.200×8×9	out and the second	910	2.050						
9	0.200×9×9		200	2,326			=	mm		
10	0.200×10×9		565	2.471						
刺定螺	丝直径D 限旋测微计的零 近一V、018	00	021.	-0.026,				1915		
刺定螺	g旋测微计的零 □ -U、018	00	021.	-0.02 6 ,	平均值ā=		nm	1915		
刺定螺	程旋測微计的零	00	021.	-0.026,	平均值ā=4	n	mm 6	1915		
刺定螺 测量前 测量后	環旋測微计的零 市 − □、018 = − 0、0 26	-000	028,	-0.02 6 , -002 7 :		5	6	1915	5 -	
刺定蠖 测量前 房生	前 − ∪、018	-000	2	-0.02 6 , -002 7 :	0.199	5	6	1915	Diton.	- IAI)FE
刺定螺 刺量后 序。 D _i /m	第	-00	2 0.199	$-0.020,$ $-0.02):$ 3 0.198 m. $s_D =$	0.199	5 0.20 mm	0.21	1915	知南	
刺定螺 刺量后 序。 D _i /m	東 ボーン、018 ローの、026 ローの、026 ローの、026 ローの、20 カ平均直径D= 日本品的长度、	直径和质1	2 0.199	$-0.020,$ $-0.02):$ 3 0.198 m. $s_D =$	0199	5 0.20 mm	32.33	9	21/64 -0.325m	m -03
则定蜡剂 则量后 序。D./m B.生物		直径和质1	2 0、199 mi 量。	-0.026, -0.027: 3 0.198 m, s _D =	19,982 cm	5 0、20 mm 1 , 质量	32.33	9	21.16y -0.325m 0.344mm	m -03 120 -034
则是是有一个。 如果是是一个。 如果是一个。	解旋測微计的零 南 - V、018 一 0、026 計 - 0、026 計 0、20 内平均直径D= 一 1 一 1 対 1 対 2 対 3 対 4 対 4 対 4 対 4 対 6 対 7 対 7 対 7 が 8 対 7 が 8 対 7 が 8 が 8 が 8 が 8 が 8 が 8 が 8 が 8	直径和质1	2 0、199 mi	-0.026, -0.027: 3 0.198 m, s _D =	19,982 cm	5 0、20 mm 1	32.33	9	21.16y -0.325m 0.344mm	m -03 -034 -036
刺兒定螺 所見 原	 	直径和质量	2 0、199 mi 量。 2 4631	-0.026, -0.027: 3 0.198 m. s _D =	19,982 cm	5 0、20 mm 1	32.33	g 5634	21.16y -0.325m 0.344mm	m -03 vi -034 -036
刺刺刺刺刺 序 D _L /m 序 D _L /m 基线值	 	直径和质1	2 0、199 mi 量。 2 4,631	-0.026, -0.027: 3 0.198 m, s _D =	19,982 cm	5 0、20 mm 1 , 质量 5 20 4 b 2	32.33 32 4 1 15.0 396.83	9 1 1 39	21/69 -0.325m 0.344mm 0.344mm 5.0	m -03 -034 -036
刺刺刺刺刺 序 D _L /m 序 D _L /m 基线值	 	直径和质	2 0、199 mi 量。 2 4,631	-0.020, -0.027: 3 0.198 m. s _D =	19,982 cm 4 4,63	5 0、20 mm 1 , 质量 5 20 4 b 2	32.33 32 4 1 15.0 396.83	g 36 634 1	21/69 -0.325m 0.344mm 0.344mm 5.0	-034

399.92

398.73