

Lecture 03 - Introduction to Algorithms Recursion

Design and Analysis of Algorithms – IT1205

Year 02 Semester 02

Contents for today

- Recursion & Recurrences
 - Recurrence equation
 - Factorial Series
- Finding a solution to a recurrence
 - Repeated Substitution method.
 - Recursion tree.
 - Master Theorem.

What is Recursion?

 Recursion is a function calls itself again and again until it reach to the base condition.

- Properties of Recursion:
 - Performing the same operations multiple times with different inputs.
 - In every step, try with smaller inputs to make the problem smaller.
 - Base condition is needed to stop the recursion otherwise infinite loop will occur.

Recursion – Example

Factorial

- We read n! as "n factorial"
- $n! = n^*(n-1)^*(n-2)^*...^*2^*1$, and that 0! = 1.
- A recursive definition is

Recursive Call

$$(n)! = \{n * (n-1)! \text{ if } n>0\}$$

 $\{1 \text{ if } n=0\}$

Initial Condition

Recursion tree

- We can draw a recursion tree for any recursive function.
- Drawing a recursion tree will help us to graphically visualize the recursive relation.
- Let's draw the recursion tree for the factorial function

Factorial -A graphical view

Exercise

- Draw the recursive tree for 5!
- How it calculate 5!? Is it:
 Bottom to top calculation or
 Top to bottom calculation

Solution

Factorial(contd.)

Now, we want to build a procedure

Let's try to devise an algorithm straight from the mathematical definition.

Factorial(contd.)

```
(n)! = \{n * (n-1)! \text{ if } n>0\}
{1 \text{ if } n=0\}
```

```
int factorial(int n) {
    if (n = = 0)
        return 1;
    else
        return (n * factorial(n-1));
}
```


Recursive Function

What is recursive Function?

A function that calls itself directly or indirectly to solve a smaller version of its task until a final call which does not require a self-call is a **recursive** function.

Understanding recursive algorithms can be done using *recursive* relations

Definition of Recursive Relation

- A **recursive relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, for all integers $n >= n_0$, where n_0 is a non-negative integer.
- The condition $n = n_0$ is called the *initial condition*.
- NOTE: some cases may contain more than one initial condition.
 e.g. Fibonacci numbers

Definition of Recursive Relation

- Base case(s).
 - Values of the input variables for which we perform **no recursive calls** are called base cases (there should be at least one base case).
 - Every possible chain of recursive calls must eventually reach a base case.
- Recursive calls.
 - Calls to the current method.
 - Each recursive call should be defined so that it makes progress towards a base case.

Recursion –Example 1

• The number of bacteria in a colony doubles every hour. If the colony begins with 05 bacteria, how many will be present in 2 hours?

• Recursive relation:

Let a_n be the number of bacteria after n hours.

$$a_n = 2.a_{n-1}$$

Initial condition $a_0 = 5$.

• <u>Solution</u>: Solve for a₂ given this relation.

$$a_2 = 2*a_1 = 2*2*a_0 = 2*2*5 = 20$$

Recursion –Exercise

• Suppose Sunil deposits Rs.10,000 in a savings account at a bank, yielding 11% interest per year with interest compounded annually. How much will be in the account after 30 years?

Solution

• Solution:

Let P_n denote the amount in the account after n years. Then the sequence $\{P_n\}$ satisfies the recursive relation:

$$P_n = P_{n-1} + 0.11 P_{n-1} = (1.11)P_{n-1}$$

The initial condition is $P_0 = 10,000$.

Note that:

$$P_1 = (1.11)P_0$$

 $P_2 = (1.11)P_1$ (That means 1.11*1.11 P_0) = $(1.11)^2 P_0$
 $P_3 = (1.11)P_2 = (1.11)^3 P_0$
We see a pattern! In general,

$$P_n = (1.11)P_{n-1} = (1.11)^n P_0$$
. For $n = 30$, $P_{30} = (1.11)^{30}10,000$.

Recurrence equation

- Mathematical function that define the running time of recursive functions.
- This describes the overall running time on a problem of size *n* in terms of the running time on smaller inputs.
- when an algorithm contains a recursive call to itself, its running time can often be described by a recurrence. A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.

Definition of Recurrence Relation

- A recurrence relation for T(N) is simply a recursive definition of T(N).
 - This means T(N) is written as a function of T(k) where k < N.
- Two common types are:
 - $\cdot T(N) = T(N-1) + b$
 - T(N) = T(N/2) + c

Recurrence - Example1

• Find the Running time of the following function.

- Statement A takes time "c" for the conditional evaluation
- Statement B takes time "d" for the return assignment
- Statement C takes time:

```
"e" - for the operations(multipl. & return)
```

T(n-1) – to determine (n-1)!

$$T(n) = T(n-1) + C$$

Finding a solution to a recurrence.

- Other methods
 - Repeated Substitution method.
 - Recursion tree.
 - Master Theorem.

Repeated substitution method

- The technique of Repeated Substitution can be used to solve "simple" recurrence relations.
- The idea is very straight-forward. We start with the recurrence relation given to us. We use the recurrence relation to expand the right hand side of the equation. We do so a few times with the goal of **finding a pattern** on the right hand side as the <u>argument becomes smaller</u>.
- Once we find a pattern, we write a general expression on the right hand side. When we have a general expression, we can go ahead and solve the recurrence and obtain a closed form solution.
- We illustrate the technique by solving a number of recurrences. In the course of performing this method, it is common practice to make assumptions regarding the values the argument n can take, in order to be able to solve a recurrence relation.

Method

- 1. Determine T(n) for the general case
- 2. Determine T(0) or T(1) i.e. base case
- 3. Expand T(n) determined in step 1 in T(n-1), T(n-2), etc.
- 4. Solve it to determine: T(n) = Polynomial
- 5. Apply Big- \mathbf{O} to determine the order of $\mathbf{O}(T(n))$.

Repeated substitution method(Example 01)

Example 1:

T(n) = T(n - 1) + c, n > 1 & c is a small positive constant. :T(1) = d

T(n) = T(n - 1) + c

=
$$(T(n - 2) + c) + c$$

= $(T(n - 2) + 2c)$

= $(T(n - 3) + c) + 2c$

= $(T(n - 3) + 3c)$

T(n) = $nc + (d - c)$

Running Time : O(n)

= $(T(n - k) + kc)$

If $k = n - 1$

= $T(n - (n - 1)) + (n - 1)c$

= $T(1) + (n - 1)c$

= $T(1) + (n - 1)c$

Repeated substitution method (Example 02)

```
Example 2:
T(n) = T(n/2) + c, n > 1 & c is a small positive constant. :T(1) = d
T(n) = T(n/2) + c
         = (T(n/4) + c) + c
         = (T(n/2^2) + 2c
         = (T(n/8) + c+c) + c
         = (T(n/2^3) + 3c)
....after k times
         = (T(n/2^k) + k.c)
If k = \log_2 n
         = (T(n/2^{\log_2 n}) + (\log_2 n).c
         = T(n/n) + c \cdot log_2 n
         = T(1) + c \cdot \log_2 n
         = d + c \cdot \log_2 n
```

$$T(n) = c \cdot log_2 n + d$$

Running Time : $O(log_2 n)$

