Statistics and Probability Probability Functions

www.stats-lab.com

Twitter: @StatsLabDublin

The random variable X has probability density function given by

$$f_X(x) = 3e^{-3x}$$

defined over the region x > 0. Let $Y = e^x$.

- 1. Compute E(Y) (i.e. Compute $E(e^x)$).
- 2. Compute Var(Y).

Remarks

- $e^0 = 1$
- $\bullet \ e^{-\infty} = 0$

Question 1: Compute E(Y):

$$E(X) = \int_0^\infty x \ f_X(x) \ dx$$

$$E(Y) = \int_0^\infty Y \ 3e^{-3x} \ dx$$

$$E(e^x) = \int_0^\infty e^x \, 3e^{-3x} \, dx$$

$$E(e^x) = \int_0^\infty e^x \, 3e^{-3x} \, dx$$

Question 2: Compute Var(Y).

$$Var(Y) = E(Y^2) - E(Y)^2$$

N.B:
$$Y^2 = (e^x)^2 = e^{2x}$$

$$E(Y^2) = \int_0^\infty Y^2 \, 3e^{-3x} \, dx$$

$$E(e^{2x}) = \int_0^\infty e^{2x} \ 3e^{-3x} \ dx$$

$$\operatorname{Var}(Y) = E(Y^2) - E(Y)^2$$