Proofs that relations are in BCNF

1. **USER** relation :-

❖ Attributes:-USER {User_ID, Pan_No., Email_ID, Name, Contact_No., Hold Balance, Availabel Balance, Blocked Balance}

❖ Functional Dependencies:-

User ID \rightarrow Pan No.

User ID → Email ID

User ID → Name

User ID \rightarrow Contact No.

User ID → Hold Balance

User_ID → Availabel_Balance

User ID → Blocked Balance

Pan_No. → User_ID

Email ID → User ID

Let X = {User_ID , Pan_No. , Email_ID}

X⁺ = {User_ID , Pan_No. , Email_ID , Name , Contact_No. ,
Hold Balance , Availabel Balance , Blocked Balance}

Such that Primary Key = {User_ID, Pan_No., Email_ID}

The left side of all the FD's in the minimal set of FD's for the relation 'USER' is {User_ID, Pan_No., Email_ID}, which is the primary Key of this relation. Such that "USER" is in BCNF.

2. Account relation:-

- Attributes:Account {Account_No, Bank_Name, IFSC, User_ID}
- ❖ Functional Dependencies :- Account_No → IFSC
 Account No → User ID

IFSC → Bank_Name

Let X = Account_No X⁺ = {Account_No , Bank_Name , IFSC , User_ID}

Such that **Primary Key = Account_No**

Here as we can see in last FD violates BCNF as determinant is not key. It also violates 3NF as last FD dependent is not prime attributes.

The above given relation is in 2NF it satisfies transitivity.

To convert this into BCNF we here do "LossLess Decomposition".

Account

- Attributes :-Account {Account_No , IFSC , User ID}
- ❖ Functional Dependencies :-Account_No → IFSC Account_No → User_ID

Bank_Info

- Attributes :-Account { IFSC ,Bank Name }
- ❖ Functional Dependencies :-IFSC → Bank_Name

Above in both relation determinant is key, such that our relation becomes in BCNF.

3. Transactions relation:

- ❖ Attributes:Transactions {Transaction ID, Transaction Time, User ID}
- ❖ Functional Dependencies:-

Transaction_ID → Transaction_Time

Transaction_ID → User_ID

Let X = Transaction_ID X⁺ = {Transaction ID, Transaction Time, User ID}

Such that **Primary Key = Transaction ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Transactions' is Transaction_ID, which is the primary Key of this relation. Such that "Transactions" is in BCNF.

4. Bank Wallet relation:-

❖ Attributes :-

```
Bank_Wallet { Transaction_ID , Bank_Acc_No , Amount ,
Transaction Type}
```

❖ Functional Dependencies:-

```
Transaction ID → Bank Acc No
```

Transaction ID → Amount

Transaction ID → Transaction Type

Such that **Primary Key = Transaction_ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Bank_Wallet' is Transaction_ID, which is the primary Key of this relation. Such that "Bank_Wallet" is in BCNF.

5. Wallet Stock relation:-

❖ Attributes :-

```
Wallet_Stock {Transaction_ID , Stock_Symbol , Order_Type , Qty
, Price , Order_ID}
```

❖ Functional Dependencies :-

```
Transaction ID → Stock Symbol
```

Transaction_ID → Order_Type

Transaction ID → Qty

Transaction_ID → Price
Transaction ID → Order ID

Let X = Transaction_ID X⁺ = {Transaction_ID , Stock_Symbol , Order_Type , Qty , Price , Order ID}

Such that **Primary Key = Transaction_ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Wallet_Stock' is Transaction_ID, which is the primary Key of this relation. Such that "Wallet_Stock" is in BCNF.

6. Holding Histroy relation :-

❖ Attributes :-

Holding Histroy {User_ID , Transaction_ID , To Time_Stamp , From Time_Stamp , Sold Price , Baught Price , Profit/Loss , Amount}

❖ Functional Dependencies :-

Transaction_ID → To Time_Stamp

Transaction_ID → From Time_Stamp

Transaction_ID → Sold Price

Transaction_ID → Baught Price

Transaction_ID → Profit/Loss

Transaction ID → Amount

Transaction_ID → User_ID

Let X = Transaction_ID

X⁺ = {User_ID , Transaction_ID , To Time_Stamp , From Time Stamp , Sold Price , Baught Price , Profit/Loss , Amount}

Such that **Primary Key = Transaction_ID**

The left side of all the FD's in the minimal set of FD's for the relation 'Holding History' is Transaction_ID, which is the primary Key of this relation. Such that "Holding History" is in BCNF.

7. **Order** relation:-

Attributes:Order {Order_ID , Order_time , Stop_Price , Status , User_ID , Stock Symbol}

❖ Functional Dependencies :-

Order ID → Order time

Order ID → Stop Price

Order ID → Status

Order ID → User ID

Order_ID → Stock_Symbol

Let X = Order_ID

X⁺ = {Order_ID, Order_time, Stop_Price, Status, User_ID, Stock Symbol}

Such that **Primary Key** = Order_ID

The left side of all the FD's in the minimal set of FD's for the relation 'Order' is Order_ID, which is the primary Key of this relation. Such that "Order" is in BCNF.

8. Watchlist relation:-

❖ Attributes :-

Watchlist {User_ID , Stock_Symbol}

Here, Primary Key = {User_ID, Stock_Symbol} According to thorem, All attributes of the relation are key such that "Watchlist" is in BCNF.

9. **Holding** relation :-

Attributes:Holding {User_ID, Stock_Symbol, Purchase_Time,
Invested Price, Qty}

❖ Functional Dependencies :-

```
{User_ID , Stock_Symbol , Purchase_Time} → Invested_Price {User_ID , Stock_Symbol , Purchase_Time} → Qty
```

```
\label{eq:loss_symbol} Let \ X = \{User\_ID \ , \ Stock\_Symbol \ , \ Purchase\_Time \} \\ X^+ = \{User\_ID \ , \ Stock\_Symbol \ , \ Purchase\_Time \ , \ Invested\_Price \ , \ Qty \}
```

Such that Primary Key = { User_ID , Stock_Symbol ,
Purchase Time }

The left side of all the FD's in the minimal set of FD's for the relation 'Holding' is {User_ID, Stock_Symbol, Purchase_Time}, which is the primary Key of this relation. Such that "Holding" is in BCNF.

10. Stocks relation:-

- Attributes:-Stocks {Stock_Symbol, Name, Type, Highest, Lowest, Exchange, CIN}
- Functional Dependencies :-

Stock Symbol → Name

Stock Symbol → Type

Stock_Symbol → Highest

Stock Symbol → Lowest

Stock_Symbol → Exchange

Stock_Symbol → CIN

Let $X = Stock_Symbol$

 X^+ = {Stock_Symbol , Name , Type , Highest , Lowest , Exchange , CIN}

Such that **Primary Key = Stock_Symbol**

The left side of all the FD's in the minimal set of FD's for the relation 'Stocks' is Stock_Symbol, which is the primary Key of this relation. Such that "Stocks" is in BCNF.

11. **Stock_History** relation:-

Attributes:-

Stock_History {Stock_Symbol, Time_Stamp, Price, Open_Price, Previous Close, Inc/Dec, Volume}

❖ Functional Dependencies :-

```
{Stock_Symbol, Time_Stamp} → Price

{Stock_Symbol, Time_Stamp} → Open_Price

{Stock_Symbol, Time_Stamp} → Previous Close

{Stock_Symbol, Time_Stamp} → Inc/Dec

{Stock_Symbol, Time_Stamp} → Volume
```

Let X = {Stock_Symbol, Time_Stamp}

X' = {Stock_Symbol, Time_Stamp, Price, Open_Price, Previous Close, Inc/Dec, Volume}

Such that Primary Key = {Stock Symbol, Time Stamp}

The left side of all the FD's in the minimal set of FD's for the relation 'Stock_History' is {Stock_Symbol, Time_Stamp}, which is the primary Key of this relation. Such that "Stock_History" is in BCNF.

12. Stock_Group relation:-

❖ Attributes :-

```
Stock_Group {Group_symbol, Group_Name, Lowest, Highest, Price, Open Price, Close Price, Stock Exchange}
```

❖ Functional Dependencies :-

Group symbol → Lowest

Group_symbol → Highest

Group symbol → Price

Group symbol → Open Price

Group_symbol → Close Price

Group_symbol → Stock_Exchange

Let X = Group symbol

X⁺ = { Group_symbol , Group_Name , Lowest , Highest , Price , Open Price , Close Price , Stock Exchange}

Such that **Primary Key = Group_symbol**

The left side of all the FD's in the minimal set of FD's for the relation 'Stock_Group' is Group_symbol, which is the primary Key of this relation. Such that "Stock Group" is in BCNF.

13. **Stock_Group_History** relation :-

❖ Attributes :-

Stock_Group_History {Group_symbol, Time_Stamp , Inc/Dec , Open Price , Previous Close , Price}

Functional Dependencies :-

```
\{Group\_symbol, Time\_Stamp\} \rightarrow Inc/Dec
```

{Group_symbol, Time_Stamp} → Open Price

{Group_symbol, Time_Stamp} → Previous Close

{Group_symbol, Time_Stamp} → Price

Let $X = \{Group_symbol, Time_Stamp\}$

 $X^+ = \{Group_symbol, Time_Stamp, Inc/Dec, Open Price, Previous Close, Price\}$

Such that **Primary Key** = {**Group_symbol**, **Time_Stamp**}

The left side of all the FD's in the minimal set of FD's for the relation 'Stock_Group_History' is {Group_symbol, Time_Stamp}, which is the primary Key of this relation. Such that "Stock Group History" is in BCNF.

14. **MemberOf** relation:-

Attributes:-

MemberOf {Stock Symbol, Group Name}

Here, Primary Key = {Stock_Symbol, Group_Name} According to thorem, All attributes of the relation are key such that "MemberOf" is in BCNF.

15. Company relation:-

❖ Attributes :-

Company {CIN, Name, CEO, Market Capital, Revenue}

❖ Functional Dependencies :-

CIN → Name

CIN → CEO

CIN → Market Capital

CIN → Revenue

Let X = CIN

X⁺ = {CIN, Name, CEO, Market_Capital, Revenue}

Such that **Primary Key = CIN**

The left side of all the FD's in the minimal set of FD's for the relation 'Company' is CIN, which is the primary Key of this relation. Such that "Company" is in BCNF.

16. **Sector** relation:-

Attributes:-

Sector {Sector Name, CIN}

Here, Primary Key = {Sector_Name, CIN}

According to thorem, All attributes of the relation are key such that "Sector" is in BCNF.

17. **IPO** relation :-

❖ Attributes :-

IPO {IPO_Name, Open_Date, CIN, Issue Price, Close Date, Lot Size, Issue Price, Minimum Invest, Listing Date}

❖ Functional Dependencies :-

IPO Name → CIN

IPO_Name → Open_Date

IPO Name → Issue Price

IPO Name → Close Date

IPO_Name → Lot Size

IPO Name → Issue Price

IPO_Name → Minimum Invest

IPO_Name → Listing Date

Let X = IPO Name

X⁺ = {IPO_Name, Open_Date, CIN, Issue Price, Close Date, Lot Size, Issue Price, Minimum Invest, Listing Date}

Such that **Primary Key = IPO_Name**

The left side of all the FD's in the minimal set of FD's for the relation 'IPO' is IPO_Name, which is the primary Key of this relation. Such that "IPO" is in BCNF.

18. **News** relation:-

- ❖ Attributes :-News {CIN , Title , Description}
- ❖ Functional Dependencies :-

```
\{CIN, Title\} \rightarrow Description
```

Such that **Primary Key** = {CIN, Title}

The left side of all the FD's in the minimal set of FD's for the relation 'News' is {CIN, Title}, which is the primary Key of this relation. Such that "News" is in BCNF.