Sprawozdanie z układów logicznych

Ćwiczenie nr 5 Temat: Analiza układu synchronicznego

	Data:	
	Czas wykonania:	
Grupa laboratoryjna nr:	Zajęcia:	
Płyta montażowa nr:	Prowadzący: Maciej Huk	

1) Opis problemu

Zaprojektować układ synchroniczny o jednym wejściu x i dwóch wyjściach Z_1 oraz Z_2 działający w następujący sposób: pierwsza napotkana 1 w sekwencji wejściowej generuje Z_1 = 1, druga 1 -> Z_2 = 1, trzecia 1 -> Z_1 = 1, czwarta 1 -> Z_2 = 1 itd. Dodatkowo należy przyjąć, że w danej chwili zawsze Z_1 , Z_2 = 0. Gdy x = 0, Z_1 , Z_2 = 0. Inaczej: układ ma przekazywać **jedynki nieparzyste** na wyjście Z_1 , a **parzyste** na Z_2 . Na rysunku poniżej zilustrowano sposób działania dla przykładowej sekwencji wejściowej.

Rysunek 1 Schemat działania układu dla przykładowej sekwencji wejściowej

Przeprowadzić syntezę układu Moore'a z wykorzystaniem przerzutników D oraz Mealy'ego z wykorzystaniem przerzutników JK.

2) <u>Układy synchroniczne</u>

Układ synchroniczny cechuje się występowaniem sygnału taktującego (synchronizującego), który umożliwia zmianę stanu wewnętrznego układu tylko w ściśle określonych momentach. Osiąga się to dzięki zastosowaniu przerzutników synchronicznych do budowy bloku pamięci.

Przerzutniki synchroniczne zmieniają swój stan pod wpływem impulsu zegarowego, odpowiednio do wartości sygnałów na wejściach informacyjnych, przy czym podczas jednego taktu może nastąpić tylko jedna zmiana stanu przerzutnika. Częstotliwość tych impulsów powinna być tak dobrana, aby w przerwach między nimi zanikały procesy przejściowe wywołane zmianą stanów sygnałów na wejściach informacyjnych. W takich warunkach różnice w prędkości działania poszczególnych elementów nie mają wpływu na pracę układu.

Układy synchroniczne możemy podzielić na:

- Automat Moore'a wyjście układu jest tu funkcją stanu wewnętrznego i może się zmieniać tylko w chwili
 nadejścia taktu zegarowego, co zapewnia o utrzymaniu odpowiedniej wartości logicznej na wyjściu układu
 przez cały czas trwania taktu.
- Automat Mealy'ego wyjście układu jest funkcją stanu wewnętrznego i aktualnego stanu wejść i w tym
 przypadku zmiana wartości logicznej na wyjściu układu może nastąpić także w momencie zmiany wartości na
 wejściu układu (bez zmiany taktu).

Rysunek 2 Schemat układu synchronicznego Moore'a (Mealy'ego z przerywaną linią)

3) Przerzutniki synchroniczne

W ćwiczeniu wykorzystane są dwa typy przerzutników:

Typu D 7474 (ang. Dual D-type positive-edgr-triggered flip-flops)

Tabela 1 Stanów przerzutnika typu D

~PRE	~CLR	CLK	D	Q	~Q
0	1	X	X	1	0
1	0	X	X	0	1
0	0	X	X	1	1
1	1	个	1	1	0
1	1	个	0	0	1
1	1	0	X	Qn-1	~Qn-1

• Typu JK 7476 (ang. Dual JK Mater-Slave Flip-Flops with Preset and Clear)

~PRE ~CLK ~Q ~CLR J Κ Q 1 XX 0 Χ 1 0 Χ 0 Χ Χ 1 1 0 0 Χ 1 1 1 \downarrow 0 0 ~Q_{n-1} Q_{n-1} 1 1 \downarrow 1 0 1 0 1 0 1 1 0 1 1 1 \downarrow 1 1 $^{\sim}Q_{n-1}$ $Q_{\text{n-1}}$

Χ

Χ

 Q_{n-1}

Н

 $^{\sim}Q_{n-1}$

Tabela 2 Przerzutnik typu JK

Tabela 3 Tablica wzbudzeń przerzutników

1

1

Q(t)	Q(t+1)	D	JK
0	0	0	0x
0	1	1	1x
1	0	0	x1
1	1	1	х0

4) Synteza układu Moore'a

- A stan początkowy lub po podaniu parzystej 1 i po niej 0
- **B** stan po podaniu nieparzystej 1
- C stan po podaniu parzystej 1
- D stan po podaniu nieparzystej 1 i po niej 0

Graf 1 Stan wejść-wyjść układu Moore'a

Tabela 4 Tablica przejść-wyjść układu Moore'a

stan X	0	1	Z1	Z2
Α	Α	В	0	0
В	D	С	1	0
С	Α	В	0	1
D	D	С	0	0

Kodowanie stanów:

A = 00

B = 10

C = 01

D = 11

Na podstawie powyższego kodowania wypełnienie tabeli wejść-wyjść układu z dwoma przerzutnikami typu D:

Tabela 5 Wartości wejść-wyjść przerzutników D realizujące opisany układ

х	Q ₁ Q ₂ (t)	Q ₁ Q ₂ (t+1)	D_1	D_2
0	00	00	0	0
0	01	00	0	0
0	11	11	1	1
0	10	11	1	1
1	00	10	1	0
1	01	10	1	0
1	11	01	0	1
1	10	01	0	1

Tabela 6 Wartości wejść D1 i D2 przerzutników D

Tabela 0 W	urto	JUI VI
D_1		
$Q_1 Q_2$ X	0	1
00	0	1
01	0	1
11	1	0
10	1	0

D2 przerzutnikow D		
D_2		
$Q_1 Q_2$ X	0	1
00	0	0
01	0	0
11	1	1
10	1	1

Po analizie tabeli nr 6 i sklejeniu obszarów jedynek można stwierdzić, że:

$$\begin{array}{l} D_1 = x \overline{Q_1} + \bar{x} Q_1 = \overline{\overline{x} \overline{Q_1}} * \overline{\bar{x}} \overline{Q_1} \\ D_2 = Q_1 \end{array}$$

Tabela 7 Wartości wyjść Z_1 i Z_2 w zależności od wyjść przerzutników

$Q_1 Q_2$	$\overline{\mathbb{Q}_1} \overline{\mathbb{Q}_2}$	Z_1	Z_2
00	11	0	0
10	01	1	0
0 1	1 <mark>0</mark>	0	1
11	00	0	0

Na podstawie tabeli nr 7 można zauważyć, że aby otrzymać Z_1 = 1 należy użyć bramki NOR, której wejściami będą Q_2 i $\overline{Q_1}$, a aby otrzymać Z_2 = 1 trzeba użyć bramki NOR o wejściach Q_1 i $\overline{Q_2}$.

Otrzymany schemat układu:

Rysunek 3 Schemat układu Moore'a

Wykres 1 Wartości logicznych wejść-wyjść układu dla sekwencji 11110001101110

Wykres 2 Wartości logicznych wejść-wyjść układu dla sekwencji 00111011001111

5) Synteza układu Mealy'ego

Graf 2 Stanów wejść – wyjść układu Mealy'ego

Tabela 8 Tablica stanów przejść-wyjść układu Mealy'ego

stan X	0	1
Α	A/00	B/10
В	D/00	C/01
С	A/00	B/10
D	D/00	C/01

Można zauważyć, że stany A i C oraz B i D są ze sobą zgodne. Zredukowana tablica Mealy'ego posiada więc tylko dwa stany. Układ Mealy'ego można zrealizować za pomocą jednego przerzutnika JK.

Graf 3 Stanów przejść-wyjść układu Mealy'ego po minimalizacji

Tabela 9 Tablica zminimalizowana stanów przejść-wyjść układu Mealy'ego

stan X	0	1
Α	A/00	B/10
В	B/00	A/01

A – stan po podaniu parzystej 1

B – stan po podaniu nieparzystej 1

Kodowanie:

A = 0

B = 1

Tabela 10 Wartości wejść-wyjść przerzutnika JK realizujące układ

	Table 10 Transcook trojec tryjec prizerzakima ski reanzające aktau				
Х	Q(t)	Q(t+1)	J	K	
0	0	0	0	Х	
0	1	1	Х	0	
1	0	1	1	Х	
1	1	0	х	1	

Tabela 11 Wartości wejść J i K przerzutnika JK

J		
QX	0	1
0	0	1
1	Х	Х

K				
QX	0	1		
0	Х	Х		
1	0	1		

J = x K = x

Tabela 12 Wartości wyjść Z1 i Z2 w zależności od wyjść przerzutnika

х	Q	$\overline{\mathbb{Q}}$	Z1	Z2
0	0	1	0	0
0	1	0	0	0
1	1	0	1	0
1	0	1	0	1

$$\begin{aligned} Z_1 &= xQ = \ \overline{\overline{x} + \overline{Q}} \\ Z_1 &= x\overline{Q} = \ \overline{\overline{x} + Q} \end{aligned}$$

Rysunek 4 Schemat układu Mealy'ego

Wykres 3 Wartości logicznych wejść-wyjść układu dla sekwencji 11110001101110

Wykres 4 Wartości logicznych wejść-wyjść układu dla sekwencji 00111011001111