

Fast Link Adaptation for IEEE 802.11n

Shashi Kant, Tobias Lindstrøm-Jensen and Joachim Wehinger

December 4th, 2007

Agenda

- 1 IEEE 802.11n WLAN Overview and Background
- **2** IEEE Channel Models
- **3** Link Adaptation for IEEE 802.11n
- 4 Accuracy, Search and Bounds
- **5** Results
- 6 Conclusions

Overview IEEE 802.11n

■ IEEE 802.11n

- Multiple input multiple output (MIMO)
- Orthogonal frequency division multiplexing (OFDM)
- Bit interleaved coded modulation (BICM)

Objectives

- Support applications requiring high data rates like multiple high definition TV channels streaming
- Enhance the range
- Keep backward compatibility with IEEE 802.11a/b/g (legacy devices)

MAC features

- Frame aggregation
- SIFS

PHY features

- 6 600 Mbps in 2.4 & 5 GHz bands
- Channel BW
 - 20 MHz (mandatory): 52 Data SCs & 4 Pilot SCs
 - 40 MHz (optional): 108 Data SCs & 6 Pilot SCs
- Modulation: BPSK, QPSK, 16QAM & 64QAM
- Code Rates: 1/2, 2/3, 3/4 & 5/6
- Spatial streams: 1 4
- Convolutional code: generator (133,171)₈
- Optional link adaptation, beamforming, LDPC, antenna selection, etc.

MCS

Block Diagram of the System Model

■ System model of IEEE 802.11n standard based on MIMO BICM-OFDM

Agenda

- 1 IEEE 802.11n WLAN Overview and Background
- **2** IEEE Channel Models
- 3 Link Adaptation for IEEE 802.11n
- 4 Accuracy, Search and Bounds
- **5** Results
- 6 Conclusions

IEEE Channel Models [TGn Channel 2004]

Channel Models	K-factor for LOS/NLOS	RMS Delay Spread (ns)	Number of Clusters	Number of Taps	Modelled Environment
А	0 / -∞	0	N/A	1	Flat fading (no multipath)
В	0 / -∞	15	2	9	Residential
С	0 / -∞	30	2	14	Residential / Small Office
D	3 / -∞	50	3	18	Typical Office
E	6 / -∞	100	4	18	Large Office
F	6 / -∞	150	6	18	Large Space (indoors / outdoors)

- IEEE channel models are slow time varying channels.
- Only scatterers are moving with velocity of 1.2 km/h.
- No explicit relative velocity between Tx and Rx.
- IEEE channels are modelled by cluster modelling approach.

Channel Model B: Power Delay Profile

	Tap index	1	2	3	4	5	6	7	8	9
	Excess delay [ns]	0	10	20	30	40	50	60	70	80
Cluster 1	Power [dB]	0	-5.4	-10,8	-16,2	-21.7				
AoA	A0A [°]	4.3	4.3	4.3	4.3	4.3				
AS (receiver)	AS [°]	14.4	14.4	14.4	14.4	14.4				
AoD	AoD [°]	225.1	225.1	225.1	225.1	225.1				
AS (transmitter)	AS [°]	14.4	14.4	14.4	14.4	14.4				
Cluster 2	Power [dB]			-3.2	-6.3	-9.4	-12.5	-15,6	-18,7	-21.8
AoA	A0A [°]			118,4	118,4	118,4	118,4	118,4	118,4	118,4
AS	AS [°]			25,2	25.2	25,2	25.2	25,2	25,2	25,2
AoD	AoD [°]			106,5	106.5	106,5	106,5	106,5	106,5	106,5
AS	AS [°]			25,4	25,4	25,4	25,4	25,4	25,4	25,4

- PDP can be modeled as an exponential decaying function.
- Each cluster is caused by a specific group of scatterers and denotes modeling of independent propagation paths.
- Multipath in a cluster arrive at the Rx from the same general direction.

Channel Model B: Time-Variant Response

■ We can see two clusters

- First cluster starts from 1st tap (delay 0 ns)
- Second cluster starts from 3rd tap (delay 20 ns)

Time Variant Transfer Function

Channel Model B

Channel Model E

Coherence Bandwidth

Channel Model B

Channel Model E

$$|R_n(t,\Delta f)| = E\{H'(t,f)H(t,f+\Delta f)\}$$

■ Coherence bandwidth for channel B (4.9 MHz) > channel E (0.9 MHz).

Channel Quality Over Time

Channel Model B

Channel Model E

Channel Model B: Correlation Time Function

Speed	Coherence Time				
[km/h]	[ms]				
1.2	13.8				
2.0	8.0				
3.0	5.3				
4.0	4.2				

$$|R_n(\Delta t, f)| = E\{H'(t, f)H(t + \Delta t, f)\}$$

■ Coherence time is decreasing with the increase of speed of scatterers.

Agenda

- 1 IEEE 802.11n WLAN Overview and Background
- **2** IEEE Channel Models
- 3 Link Adaptation for IEEE 802.11n
- 4 Accuracy, Search and Bounds
- **5** Results
- 6 Conclusions

Link Adaptation for IEEE 802.11n

- LA can be segregated in two major types
 - Slow link adaptation (SLA)
 - Fast link adaptation (FLA)
- Channel state information (CSI) not available at Rx
 - SLA will be an easiest choice.
 - SLA depends on long term packet error rate (PER) statistics at MAC, i.e., on averaging over NACK/ACK.
 - Averaging over many channel realizations.
- CSI available at Rx
 - FLA can be deployed.
 - FLA can adapt MCS according to time varying channel conditions to increase throughput of a system.

Link Adaptation Protocol in IEEE 802.11n

Modes

- Immediate response
- Unsolicited (delayed) response, delay is unconstrained.
- MFB requester (Tx) can request MCS from Rx by setting MCS request field
 - It sends a sounding packet (to identify all spatial dimensions).
- MFB responder (Rx) sends estimated MCS
 - By setting the recommended value in MCS feedback field (0-77).
 - By conveying the MCS sequence index (MSI) along with the MCS value.

Table of Some Selected MCS Values

- MCS 0 7 mandatory
- MCS 8-77 optional
- MCS value determines modulation format, code rate and number of spatial streams.
- 40 MHz BW provides higher throughput (TP) by a factor of approximately 2.1 compared to 20 MHz BW.
- 400 ns GI provides higher TP approximately by a factor of 1.11 compared to 800 ns GI.

	No also	lation		PHY Rate (Mb/s)					
MCS Index	Modulation		Code Rate	800 ns GI		400 ns GI			
	SS 1	SS 2	Nate	20 MHz	40 MHz	20 MHz	40 MHz		
0	BPSK	-	1/2	6.5	13.5	7.2	15.0		
1	QPSK	-	1/2	13.0	27.0	14.4	30.0		
2	QPSK	-	3/4	19.5	40.5	21.7	45.0		
3	16QAM	-	1/2	26.0	54.0	28.9	60.0		
4	16QAM	-	3/4	39.0	81.0	43.3	90.0		
5	64QAM	-	2/3	52.0	108.0	57.8	120.0		
6	64QAM	-	3/4	58.5	121.5	65.0	135.0		
7	64QAM	-	5/6	65.0	135.0	72.2	150.0		
8	BPSK	BPSK	1/2	13.0	27.0	14.4	30.0		
11	16QAM	16QAM	1/2	52.0	108.0	57.8	120.0		
15	64QAM	64QAM	5/6	130.0	270.0	144.4	300.0		
33	16QAM	QPSK	1/2	39.0	81.0	43.3	90.0		
35	64QAM	16QAM	1/2	65.0	135.0	72.2	150.0		
38	64QAM	16QAM	3/4	97.5	202.5	108.3	225.0		

General Concept of FLA

 Post-processing SINRs are computed from CSI (H, N_{Rx} x N_{SS})

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$$

$$SINR_{j}(k) = \frac{1}{\left[\left(\frac{1}{\sigma^{2}}\mathbf{H}^{H}(k)\mathbf{H}(k) + \mathbf{I}_{N_{T}}\right)^{-1}\right]_{j,j}} - 1$$

- **FLA comprises**
 - PER estimation block which contains link quality metric (LQM) computation
 - Search mechanism finds a suitable MCS fulfilling PER target, e.g., PER_{target} = 1%

Concept of LQM mathematically,

$$PER_{\mathrm{FadingChannel}}\left(\{\mathrm{CSI}\}\right) \approx \underbrace{PER_{\mathrm{AWGN}}\left(LQM\right)}_{\psi_{MCS,PL}\left(LQM\right)}$$

Link Quality Metrics (LQMs)

Potential LQMs

- Average SINR
- Raw bit error rate (rawBER)
- Exponential Effective SINR Mapping (EESM)
- Mean Mutual Information Bit Mapping (MMIBM)
- Mean Mutual Information Effective SNR Mapping (MIESM)
- General form of the LQMs

$$\mathcal{G}_{ ext{mean}} = rac{1}{N_{ ext{ss}} N_{ ext{sd}}} \sum_{j=1}^{N_{ ext{ss}}} \sum_{k=1}^{N_{ ext{sd}}} \mathcal{G}\Big(SINR_j[k],...\Big)$$

- \blacksquare N_{ss} ... no. of spatial streams
- *N_{SD}* ... no. of subcarriers
- Same problem as link-layer abstraction in system-level simulations

Link Quality Metrics (ctd')

■ EESM (Exponential Effective SNR Mapping) [Simoens 2004]

$$SINR_{eff} = -\beta \log \left(\frac{1}{N_{ss}N_{sd}} \sum_{j=1}^{N_{ss}} \sum_{k=1}^{N_{sd}} \exp \left(-\frac{SINR_{j}(k)}{\beta} \right) \right)$$

■ MIESM (Mutual Information Effective SNR Mapping) [Tsai 2003]

$$SINR_{eff} = \gamma \left[J^{-1} \left(\frac{1}{N_{ss}N_{sd}} \sum_{j=1}^{N_{ss}} \sum_{k=1}^{N_{sd}} J \left(\sqrt{\frac{SINR_{j}(k)}{\gamma}} \right) \right) \right]^{2}$$

■ MIBM (Mutual Information Based Mapping)

$$I_{mean}^{symbol} = \frac{1}{N_{ss}N_{sd}} \sum_{j=1}^{N_{ss}} \sum_{k=1}^{N_{sd}} I_{j}^{symbol} \left(SINR_{j}(k)\right)$$

 J() and I() compute mutual information for different modulation schemes as a function of SINR

Mapping Function

- Simulations in the AWGN channel gives the relation of the mapping from LQM to PER_{ref}.
- Reference packet length 1024 Bytes

$$PER_{PL} = 1 - (1 - PER_{ref})^{\frac{PL}{PL_{ref}}}.$$

Agenda

- IEEE 802.11n WLAN Overview and Background
- **2** IEEE Channel Models
- 3 Link Adaptation for IEEE 802.11n
- 4 Accuracy, Search and Bounds
- **5** Results
- 6 Conclusions

Subcarrier Variation

PER Estimation Accuracy – MI Correction

- LQMs based on MI without correction factors give inaccurate results.
- **■** Correction factors improve PER estimation accuracy.
 - High SINR dynamics over the subcarriers for a single channel realization makes it necessary to introduce a correction factor.

$$I_{mean}^{symbol} = \frac{1}{N_{ss}N_{sd}} \sum_{j=1}^{N_{ss}} \sum_{k=1}^{N_{sd}} I_{j}^{symbol} \left(SINR_{j}(k) \right) + \frac{1}{N_{ss}} \sum_{j=1}^{N_{ss}} \lambda_{j} \operatorname{var} \left\{ I_{j}^{symbol}(k) \right\}$$

PER Estimation Accuracy

■ Example of pdf (from histogram) of estimation errors for channel model B.

258 measurements (MCS 0-15).

- Optimization and evaluation are done on the same set of measurements.
- EESM, MIESM and MMIBM are the most accurate LQMs; MMIRM is less accurate and RawBER is the least accurate.

MCS Search

Optimization problem

$$\max_{\substack{MCS \in \Omega(N_{\mathrm{T}})\\ \text{s.t.}}} TP(MCS)$$
s.t. $PER(MCS) \leq PER_{\text{Threshold}}$

Search set

$$\Omega(N_{\mathrm{T}}) = \text{set of allowed MCS} \ |\Omega(1)| = 8, |\Omega(2)| = 16, |\Omega(2 + \text{unequal})| = 22$$

■ If some subcarriers are in deep fade, it is more important to have a large Hamming distance than a large Euclidean distance [van Nee 2000].

$$PER(MCSx) \le PER(MCSy)$$

 $\Leftrightarrow TP(MCSx) \le TP(MCSy)$

Search

- Exhaustive
- From top
- From bottom
- From last value

MCS 2, QPSK, Rc 3/4
MCS 3, 16QAM, Rc 1/2

Upper Bound of any LA Algorithm

Upper bound of TP (and lower bound on PER)

- $PER_{UB} \le PER(MCSx)$ This is the lower bound on PER.
 - The bound is introduced because all MCS are under trial.
- Let MCSx be the MCS selected with genie knowledge of the PER
 - The *MCSx* succeeds with the same probability for genie as for upper bound.

Trials

- lacktriangle For $T\!P_{
 m UB}$, MCSs prior to MCSx can succeed.
- If any failure, MCS with lower MCP can succeed.

 $TP_{\text{UB}} \ge TP_{\text{Genie}} \ge TP_{\text{LA algorithm}}$

Agenda

- 1 IEEE 802.11n WLAN Overview and Background
- **2** IEEE Channel Models
- 3 Link Adaptation for IEEE 802.11n
- 4 Accuracy, Search and Bounds
- **5** Results
- 6 Conclusions

Numerical Results

- Show
 - TP vs. SNR
 - PER vs. SNR
- **■** Simulation Assumptions
 - Channel B or E
 - 20 MHz BW
 - Packetlength = 1024 Bytes
 - 1x1, 2x2 MIMO configurations
 - Mutual information based metrics only
 - Perfect channel knowledge at Rx

1x1, Channel Model B

Consider MIESM and MMIRM

- Larger gain compared to PER constraint envelope (320% at SNR = 22 dB).
- Largest gain in the mid SNR regime. Bounded by the available MCSs.

1x1, Channel Model E

- Distance to PER constraint envelope is smaller and gap to upper bound is larger compared to the example for channel model B.
- Benefit of FLA is largest in settings with the lowest diversity.
 - FLA exploits varying channel quality.

2x2, Channel B, MCS Distribution

2x2, Channel Model B

- No. of spatial streams ≤ no. of transmit antennas
 - LQMs utilizing post-processing SINRs can calculate the required SINRs for the cases of a lower number of spatial streams. Only constraint is that all spatial dimensions are sounded.

Feedback Delay and Speed

- SNR = 20dB
- At coherence time (4.2, 5.3, 8, 13.8 ms) ~20% loss in TP and ~23% PER
- PER increases fast to a non acceptable level
- The speed of the scatterers, Tx or Rx are unconstrained in some practical conditions.
 - Outer loop adjusting selection threshold such that the desired PER can be met.

Agenda

- IEEE 802.11n WLAN Overview and Background
- **2** IEEE Channel Models
- 3 Link Adaptation for IEEE 802.11n
- 4 Accuracy, Search and Bounds
- **5** Results
- **6** Conclusions

Conclusions

Link Adaptation

- FLA has advantages compared to SLA
- Protocol for LA

FLA comprises

- PER estimation using LQM
 - Mapping fading channel into an equivalent AWGN channel.
 - Methods considered: SNR effective and mutual information.
 - Evaluated the accuracy.
 - Search Criteria and Optimality.

Bounds

- FLA algorithm under investigation and bound for any link adaptation algorithm for the settings applied.
- Unconstrained delay and speed of scatterers
 - Requires outer loop to maintain target PER because the FLA algorithm can not adjust it by itself.
- FLA exploits lack of diversity
 - Most pronounced gain in the mid SNR regime.

References

[Goldsmith 1997] A. Goldsmith and P. Varayia, Capacity of Fading Channels

with Channel Side Information, IEEE Trans. on Inf. Theory, vol.

43, no. 6, Nov. 1997.

[Kant 2007] S. Kant and T. Lindstrøm-Jensen, Fast Link Adaptation for

IEEE 802.11n, Master-thesis, Aalborg University, Denmark, Aug. 2007.

[Kant 2008] S. Kant, T. Lindstrøm-Jensen, J. Wehinger and B.F. Fleury,

Mutual Information Metrics for Fast Link Adaptation in IEE

802.11n, submitted to IEEE ICC, Bejing, China, May 2008.

[Simoens 2004] S. Simoens, S. Rouquette-Leveil, P. Sartori, Y. Blankenhip and B.

Classon, Error Prediction for Adaptive Modulation and Coding in Multiple-Antenna OFDM Systems, 802.11-03/940r4, May 2004.

[TGn Channel] TGn Channel Models for IEEE 802.11 WLANs, 802.11-

03/940r4, May 2004.

[Tsai 2003] S. Tsai and A. Soong, Effective-SNR Mapping for Modeling Frame Error

Rates in Multiple-State Channels, 3GPP2-C30-20030429-010,

Ericsson, 2003.

[van Nee 2000] R. Van Nee and R. Prasad, OFDM for Wireless Multimedia

Communications, Artech House Publishers, 2000.

[802.11n] IEEE P802.11nTM/D3.0, Part 11: Wireless LAN MAC and PHY

specifications: Amendment 4: Enhancements for Higher

Throughput, Sept. 2007.