Piyush Rai

Probabilistic Machine Learning (CS772A)

Oct 31, 2017

• Will look at some fundamental/popular deep probabilistic models

- Will look at some fundamental/popular deep probabilistic models
 - Supervised Learning: Probabilistic/Bayesian neural networks

- Will look at some fundamental/popular deep probabilistic models
 - Supervised Learning: Probabilistic/Bayesian neural networks

• Unsupervised Learning: Deep Generative Models

- Will look at some fundamental/popular deep probabilistic models
 - Supervised Learning: Probabilistic/Bayesian neural networks

• Unsupervised Learning: Deep Generative Models

• Disclaimer: Very rapidly evolving area, deserves an entire course. Will only cover the basic principles underlying some of the representative models (from probabilistic/Bayesian perspective)

• Deep probabilistic models for supervised learning

$$y_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}), \sigma^2)$$
 (for real-valued responses)
 $y_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}))$ (for other types of responses)

where $NN(x_n; \mathbf{W})$ is a neural network with features x_n as inputs and parameters \mathbf{W}

Deep probabilistic models for supervised learning

$$y_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}), \sigma^2)$$
 (for real-valued responses)
 $y_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}))$ (for other types of responses)

where $\mathsf{NN}(x_n; \mathbf{W})$ is a neural network with features x_n as inputs and parameters \mathbf{W}

Deep probabilistic model for unsupervised learning

$$\mathbf{x}_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}), \sigma^2 \mathbf{I}_D)$$
 (for real-valued features) $\mathbf{x}_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}))$ (for other types of features)

where $NN(z_n; \mathbf{W})$ is a neural network with latent variables z_n as inputs and and parameters \mathbf{W}

Deep probabilistic models for supervised learning

$$y_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}), \sigma^2)$$
 (for real-valued responses)
 $y_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}))$ (for other types of responses)

where $NN(x_n; \mathbf{W})$ is a neural network with features x_n as inputs and parameters \mathbf{W}

Deep probabilistic model for unsupervised learning

$$\mathbf{x}_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}), \sigma^2 \mathbf{I}_D)$$
 (for real-valued features)
 $\mathbf{x}_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}))$ (for other types of features)

where $NN(z_n; \mathbf{W})$ is a neural network with latent variables z_n as inputs and and parameters \mathbf{W}

• In both cases, these models learn a nonlinear mapping from inputs to outputs

Deep probabilistic models for supervised learning

$$y_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}), \sigma^2)$$
 (for real-valued responses)
 $y_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}))$ (for other types of responses)

where $NN(x_n; \mathbf{W})$ is a neural network with features x_n as inputs and parameters \mathbf{W}

Deep probabilistic model for unsupervised learning

$$\mathbf{x}_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}), \sigma^2 \mathbf{I}_D)$$
 (for real-valued features) $\mathbf{x}_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}))$ (for other types of features)

where $NN(z_n; \mathbf{W})$ is a neural network with latent variables z_n as inputs and and parameters \mathbf{W}

- In both cases, these models learn a nonlinear mapping from inputs to outputs
 - The nonlinear nature of the NN architecture facilitates learning these nonlinear mappings

Deep probabilistic models for supervised learning

$$y_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}), \sigma^2)$$
 (for real-valued responses)
 $y_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{x}_n; \mathbf{W}))$ (for other types of responses)

where $NN(x_n; \mathbf{W})$ is a neural network with features x_n as inputs and parameters \mathbf{W}

Deep probabilistic model for unsupervised learning

$$\mathbf{x}_n \sim \mathcal{N}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}), \sigma^2 \mathbf{I}_D)$$
 (for real-valued features)
 $\mathbf{x}_n \sim \mathsf{ExpFam}(\mathsf{NN}(\mathbf{z}_n; \mathbf{W}))$ (for other types of features)

where $NN(z_n; \mathbf{W})$ is a neural network with latent variables z_n as inputs and and parameters \mathbf{W}

- In both cases, these models learn a nonlinear mapping from inputs to outputs
 - The nonlinear nature of the NN architecture facilitates learning these nonlinear mappings
- Note: Such models are not limited to exp-family distributions only

• A simple neural network with one intermediate (also called "hidden") layer and a single output

• Each intermediate layer computes a nonlinear transformation of its previous layer's nodes

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- ullet The nonlinear transform that computes $oldsymbol{h}$ can be defined in various ways, e.g.,

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- ullet The nonlinear transform that computes $oldsymbol{h}$ can be defined in various ways, e.g.,
 - Linear transform (e.g., $\mathbf{W}^{(1)}x$ in the above picture) followed by a nonlinearlity (e.g., sigmoid)

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- ullet The nonlinear transform that computes $oldsymbol{h}$ can be defined in various ways, e.g.,
 - Linear transform (e.g., $\mathbf{W}^{(1)}x$ in the above picture) followed by a nonlinearlity (e.g., sigmoid)
 - A nonlinear function modeled by a Gaussian Process

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- ullet The nonlinear transform that computes $oldsymbol{h}$ can be defined in various ways, e.g.,
 - Linear transform (e.g., $\mathbf{W}^{(1)}x$ in the above picture) followed by a nonlinearlity (e.g., sigmoid)
 - A nonlinear function modeled by a Gaussian Process
- An NN with one hidden layer with infinite many nodes can approximate any function

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- ullet The nonlinear transform that computes $oldsymbol{h}$ can be defined in various ways, e.g.,
 - Linear transform (e.g., $\mathbf{W}^{(1)}x$ in the above picture) followed by a nonlinearlity (e.g., sigmoid)
 - A nonlinear function modeled by a Gaussian Process
- An NN with one hidden layer with infinite many nodes can approximate any function
 - Note: A GP is equivalent to such an NN if the NN weights have Gaussian priors[†]

- Each intermediate layer computes a nonlinear transformation of its previous layer's nodes
- ullet The nonlinear transform that computes $oldsymbol{h}$ can be defined in various ways, e.g.,
 - Linear transform (e.g., $\mathbf{W}^{(1)}x$ in the above picture) followed by a nonlinearlity (e.g., sigmoid)
 - A nonlinear function modeled by a Gaussian Process
- An NN with one hidden layer with infinite many nodes can approximate any function
 - Note: A GP is equivalent to such an NN if the NN weights have Gaussian priors[†]

Deep Models as Feature Extractors

Deep models can learn features at different levels of abstraction

Example: Lowest layer learns edges, higher layers learns (parts of) objects

ullet Consider a regression (supervised learning) problem given training data $\mathcal{D} = \{m{x}_n, y_n\}_{n=1}^N$

$$y_n \sim \mathcal{N}(NN(\boldsymbol{x}_n; \mathbf{W}), \sigma^2)$$

ullet Consider a regression (supervised learning) problem given training data $\mathcal{D} = \{m{x}_n, y_n\}_{n=1}^N$

$$y_n \sim \mathcal{N}(NN(\boldsymbol{x}_n; \mathbf{W}), \sigma^2)$$

• The goal is to learn the parameters **W**. Point estimation (MLE/MAP) via gradient methods

ullet Consider a regression (supervised learning) problem given training data $\mathcal{D} = \{m{x}_n, y_n\}_{n=1}^N$

$$y_n \sim \mathcal{N}(NN(\boldsymbol{x}_n; \mathbf{W}), \sigma^2)$$

- The goal is to learn the parameters W. Point estimation (MLE/MAP) via gradient methods
 - ullet Regularization important (a huge number of parameters); amounts to using a prior on $oldsymbol{W}$

ullet Consider a regression (supervised learning) problem given training data $\mathcal{D}=\{m{x}_n,y_n\}_{n=1}^N$

$$y_n \sim \mathcal{N}(NN(\boldsymbol{x}_n; \mathbf{W}), \sigma^2)$$

- The goal is to learn the parameters **W**. Point estimation (MLE/MAP) via gradient methods
 - Regularization important (a huge number of parameters); amounts to using a prior on W
- Overfitting a concern. Fully Bayesian inference is desirable (i.e., a Bayesian neural network)

ullet Consider a regression (supervised learning) problem given training data $\mathcal{D} = \{m{x}_n, y_n\}_{n=1}^N$

$$y_n \sim \mathcal{N}(NN(\boldsymbol{x}_n; \mathbf{W}), \sigma^2)$$

- The goal is to learn the parameters **W**. Point estimation (MLE/MAP) via gradient methods
 - Regularization important (a huge number of parameters); amounts to using a prior on W
- Overfitting a concern. Fully Bayesian inference is desirable (i.e., a Bayesian neural network)

• Fully Bayesian treatment for such neural nets also has other benefits (e.g., Active Learning)

ullet Even if $p(\mathbf{W})$ is Gaussian, the model is not conjugate due to the nonlinearities

- ullet Even if $p(\mathbf{W})$ is Gaussian, the model is not conjugate due to the nonlinearities
- ullet MCMC methods can be used to learn the posterior $p(\mathbf{W}|\mathcal{D})$ but can be slow

- ullet Even if $p(\mathbf{W})$ is Gaussian, the model is not conjugate due to the nonlinearities
- MCMC methods can be used to learn the posterior $p(\mathbf{W}|\mathcal{D})$ but can be slow
 - However, methods such as SGLD[†] allow efficient MCMC inference for such models (recall that SGLD only requires gradient expressions of the log-joint probability log $p(\mathcal{D}, \mathbf{W})$ of the model)

^{† &}quot;Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks" (Li et al. 2016)

- ullet Even if $p(\mathbf{W})$ is Gaussian, the model is not conjugate due to the nonlinearities
- MCMC methods can be used to learn the posterior $p(\mathbf{W}|\mathcal{D})$ but can be slow
 - However, methods such as SGLD[†] allow efficient MCMC inference for such models (recall that SGLD only requires gradient expressions of the log-joint probability log $p(\mathcal{D}, \mathbf{W})$ of the model)
- Variational inference is another popular alternative to MCMC for such models

Probabilistic Machine Learning - CS772A (Piyush Rai, IITK)

• Standard VI doesn't work for Bayesian neural networks

^{† &}quot;Weight Uncertainty in Neural Networks" (Blundell et al. 2015)

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)

^{† &}quot;Weight Uncertainty in Neural Networks" (Blundell et al. 2015)

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]

^{† &}quot;Weight Uncertainty in Neural Networks" (Blundell et al. 2015)

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

$$\hat{\phi} = \underset{\phi}{\operatorname{arg\,min}} \operatorname{\mathsf{KL}}(q(\mathbf{W}|\phi)||p(\mathbf{W}|\mathcal{D}))$$

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

$$\begin{split} \hat{\phi} &= \arg\min_{\phi} \mathsf{KL}(q(\mathbf{W}|\phi)||p(\mathbf{W}|\mathcal{D})) \\ &= \arg\max_{\phi} \mathbb{E}_{q}[\log p(\mathcal{D},\mathbf{W}) - \log q(\mathbf{W}|\phi)] \quad \text{(The ELBO)} \\ &= \arg\max_{\phi} \mathbb{E}_{q}[\log p(\mathcal{D}|\mathbf{W}) + \log p(\mathbf{W}) - \log q(\mathbf{W}|\phi)] \end{split}$$

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

$$\begin{split} \hat{\phi} &= & \arg\min_{\phi} \mathsf{KL}(q(\mathbf{W}|\phi)||p(\mathbf{W}|\mathcal{D})) \\ &= & \arg\max_{\phi} \mathbb{E}_q[\log p(\mathcal{D},\mathbf{W}) - \log q(\mathbf{W}|\phi)] \quad \text{(The ELBO)} \\ &= & \arg\max_{\phi} \mathbb{E}_q[\log p(\mathcal{D}|\mathbf{W}) + \log p(\mathbf{W}) - \log q(\mathbf{W}|\phi)] \end{split}$$

• The expectation above can be approximated using Monte Carlo samples from $q(\mathbf{W})$

^{† &}quot;Weight Uncertainty in Neural Networks" (Blundell et al. 2015)

Variational Inference for Bayesian Neural Networks

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

$$\begin{split} \hat{\phi} &= \arg\min_{\phi} \mathsf{KL}(q(\mathbf{W}|\phi)||p(\mathbf{W}|\mathcal{D})) \\ &= \arg\max_{\phi} \mathbb{E}_q[\log p(\mathcal{D},\mathbf{W}) - \log q(\mathbf{W}|\phi)] \quad \text{(The ELBO)} \\ &= \arg\max_{\phi} \mathbb{E}_q[\log p(\mathcal{D}|\mathbf{W}) + \log p(\mathbf{W}) - \log q(\mathbf{W}|\phi)] \end{split}$$

- ullet The expectation above can be approximated using Monte Carlo samples from $q(\mathbf{W})$
 - Note: Variance reduction methods typically employed to reduce the variance in the estimate

^{† &}quot;Weight Uncertainty in Neural Networks" (Blundell et al. 2015)

Variational Inference for Bayesian Neural Networks

- Standard VI doesn't work for Bayesian neural networks
- Reason: The ELBO is intractable (due to non-conjugacy)
 - To do VI, ELBO has to be approximated, e.g., using Monte Caro methods[†]
- ullet Suppose $p(\mathbf{W}|\mathcal{D})$ is the true posterior, $q(\mathbf{W}|\phi)$ is the variational approximation

$$\begin{split} \hat{\phi} &= & \arg\min_{\phi} \mathsf{KL}(q(\mathbf{W}|\phi)||p(\mathbf{W}|\mathcal{D})) \\ &= & \arg\max_{\phi} \mathbb{E}_q[\log p(\mathcal{D},\mathbf{W}) - \log q(\mathbf{W}|\phi)] \quad \text{(The ELBO)} \\ &= & \arg\max_{\phi} \mathbb{E}_q[\log p(\mathcal{D}|\mathbf{W}) + \log p(\mathbf{W}) - \log q(\mathbf{W}|\phi)] \end{split}$$

- ullet The expectation above can be approximated using Monte Carlo samples from $q(\mathbf{W})$
 - Note: Variance reduction methods typically employed to reduce the variance in the estimate
- Black-box VI can be another alternative (again based on Monte Carlo approximation)

Bayesian Neural Networks on MNIST

• Some results on MNIST[†] (using standard feedforward network as the model; no convolution etc.)

Method	# Units/Layer	# Weights	Test Error
SGD, no regularisation (Simard et al., 2003)	800	1.3m	1.6%
SGD, dropout (Hinton et al., 2012)			$\approx 1.3\%$
SGD, dropconnect (Wan et al., 2013)	800	1.3m	$1.2\%^{\star}$
SGD	400	500k	1.83%
	800	1.3m	1.84%
	1200	2.4m	1.88%
SGD, dropout	400	500k	1.51%
	800	1.3m	1.33%
	1200	2.4m	1.36%
Bayes by Backprop, Gaussian	400	500k	1.82%
	800	1.3m	1.99%
	1200	2.4m	2.04%
Bayes by Backprop, Scale mixture	400	500k	1.36%
	800	1.3m	1.34%
	1200	2.4m	1.32%

• Note: The scale mixture prior is a sparsity inducing prior of the form

$$p(\mathbf{w}) = \prod_{j} \pi \mathcal{N}(w_j|0,\sigma_1^2) + (1-\pi)\mathcal{N}(w_j|0,\sigma_2^2) \qquad (\sigma_1^2 \gg \sigma_2^2)$$

^{† &}quot;Weight Uncertainty in Neural Networks" (Blundell et al, 2015)

Bayesian Neural Networks: Summary

- Only scratched the surface. Many advanced variants exist
- \bullet Bayesian convolutional neural network † (CNN) for image data
- Since we get uncertainty in model and its predictions, can be extended to active learning[‡]
- Can also be extended to do semi-supervised learning when combined with deep generative models (we will look at DGMs)
- A lot of recent work on scalable Bayesian inference for Bayesian neural networks
 - Both MCMC and variational inference

[†] Bayesian convolutional neural networks with Bernoulli approximate variational inference (Gal and Ghahramani, 2016)

[‡] Deep Bayesian Active Learning with Image Data (Gal and Ghahramani, 2017)

Useful in many ways

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)
 - These features can be useful in supervised learning tasks or for dimensionality reduction

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)
 - These features can be useful in supervised learning tasks or for dimensionality reduction
- Good models for estimating the probability density p(x) of data (akin to GMM, PPCA, etc)

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)
 - These features can be useful in supervised learning tasks or for dimensionality reduction
- Good models for estimating the probability density p(x) of data (akin to GMM, PPCA, etc)
 - Using deep neural nets in these models allows learning very complex densities

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)
 - These features can be useful in supervised learning tasks or for dimensionality reduction
- Good models for estimating the probability density p(x) of data (akin to GMM, PPCA, etc)
 - Using deep neural nets in these models allows learning very complex densities
- Good models for generating new data from the learned model

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)
 - These features can be useful in supervised learning tasks or for dimensionality reduction
- Good models for estimating the probability density p(x) of data (akin to GMM, PPCA, etc)
 - Using deep neural nets in these models allows learning very complex densities
- Good models for generating new data from the learned model
- Useful for semi-supervised learning

- Useful in many ways
- Unsupervised feature learning from raw data (images, text, etc.)
 - These features can be useful in supervised learning tasks or for dimensionality reduction
- Good models for estimating the probability density p(x) of data (akin to GMM, PPCA, etc)
 - Using deep neural nets in these models allows learning very complex densities
- Good models for generating new data from the learned model
- Useful for semi-supervised learning
- Most of these models contain latent variable but some do not (some examples in next lecture)

Assumes data generated by successive nonlinear transformations of multiple layers of latent features

• in SBN, the latent features in each hidden layer are assumed to be binary-valued

• Assumes data generated by successive nonlinear transformations of multiple layers of latent features

- in SBN, the latent features in each hidden layer are assumed to be binary-valued
- Unlike a Bayesian NN, this is a generative model for the data (which here are the only inputs x_n 's)

• The SBN generative model is

$$p(x_{nd}=1|\mathbf{z}_{n}^{(1)}) = \operatorname{sigmoid}(\mathbf{w}_{d,:}^{(1)^{\top}}\mathbf{z}_{n}^{(1)} + b_{d}) \quad \text{(if features are binary)}$$

$$p(z_{nk}^{(1)}=1|\mathbf{z}_{n}^{(2)}) = \operatorname{sigmoid}(\mathbf{w}_{k,:}^{(2)^{\top}}\mathbf{z}_{n}^{(2)} + c_{k})$$

$$\mathbf{z}_{n}^{(1)} \bigcirc \bigvee_{\mathbf{w}} \bigvee_{\mathbf{v} \in \mathbb{N} \setminus \mathbf{v} \in \mathbb{N} \setminus \mathbb$$

• The SBN generative model is

$$p(x_{nd}=1|\mathbf{z}_{n}^{(1)}) = \operatorname{sigmoid}(\mathbf{w}_{d,:}^{(1)^{\top}}\mathbf{z}_{n}^{(1)} + b_{d}) \quad \text{(if features are binary)}$$

$$p(\mathbf{z}_{nk}^{(1)}=1|\mathbf{z}_{n}^{(2)}) = \operatorname{sigmoid}(\mathbf{w}_{k,:}^{(2)^{\top}}\mathbf{z}_{n}^{(2)} + c_{k})$$

$$\mathbf{z}_{n}^{(1)} \qquad \qquad \bigvee_{\mathbf{w}}^{(1)} \bigvee_{\mathbf{k}^{(1,1)} \times \mathbf{k}^{(1)} \text{ atent features} \text{ (each binary)}} \bigvee_{\mathbf{k}^{(1,1)} \times \mathbf{k}^{(1)} \text{ weight matrix}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ atent features} \text{ (each binary)}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ weight matrix}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ atent features} \text{ (each binary)}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ weight matrix}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features} \text{ (each binary)}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}} \bigvee_{\mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \times \mathbf{k}^{(1)} \text{ intent features}}$$

• Not a conjugate model. Inference using MCMC (Neal, 1992[†]; Gan et al, 2015[‡])

[†] Connectionist learning of belief networks (Neal, 1992)

[‡]Learning Deep Sigmoid Belief Networks with Data Augmentation (Gan et al. 2015)

- Observed data $\mathbf{x}_1, \dots, \mathbf{x}_N$, with $\mathbf{x}_n \in \mathbb{R}^D$
- ullet Assume each observation $oldsymbol{x}_n$ to be generated by a Gaussian latent variable $oldsymbol{z}_n \in \mathbb{R}^K$ as follows

$$p(z_n) = \mathcal{N}(z_n|0, I_K)$$

 $p(x_n|z_n) = \text{ExpFam}(x_n|Wz_n)$
 Wz_n : Natural parameters of exp-fam

- Observed data $\mathbf{x}_1, \dots, \mathbf{x}_N$, with $\mathbf{x}_n \in \mathbb{R}^D$
- ullet Assume each observation $oldsymbol{x}_n$ to be generated by a Gaussian latent variable $oldsymbol{z}_n \in \mathbb{R}^K$ as follows

$$p(z_n) = \mathcal{N}(z_n|0, I_K)$$

 $p(x_n|z_n) = \text{ExpFam}(x_n|\mathbf{W}z_n)$
 $\mathbf{W}z_n$: Natural parameters of exp-fam

• These models are popularly known as a Latent Gaussian Models

- Observed data $\mathbf{x}_1, \dots, \mathbf{x}_N$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Assume each observation x_n to be generated by a Gaussian latent variable $z_n \in \mathbb{R}^K$ as follows

$$p(z_n) = \mathcal{N}(z_n|0, I_K)$$

 $p(x_n|z_n) = \text{ExpFam}(x_n|\mathbf{W}z_n)$
 $\mathbf{W}z_n$: Natural parameters of exp-fam

- These models are popularly known as a Latent Gaussian Models
- Many generative models have this form

- Observed data $\mathbf{x}_1, \dots, \mathbf{x}_N$, with $\mathbf{x}_n \in \mathbb{R}^D$
- ullet Assume each observation $oldsymbol{x}_n$ to be generated by a Gaussian latent variable $oldsymbol{z}_n \in \mathbb{R}^K$ as follows

$$p(z_n) = \mathcal{N}(\mathbf{z}_n|0, \mathbf{I}_K)$$

 $p(\mathbf{x}_n|\mathbf{z}_n) = \text{ExpFam}(\mathbf{x}_n|\mathbf{W}\mathbf{z}_n)$
 $\mathbf{W}\mathbf{z}_n$: Natural parameters of exp-fam

- These models are popularly known as a Latent Gaussian Models
- Many generative models have this form, e.g.,
 - Factor Analysis and Probabilistic PCA (e.g., when "Expon" = Gaussian)

- Observed data $\mathbf{x}_1, \dots, \mathbf{x}_N$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Assume each observation x_n to be generated by a Gaussian latent variable $z_n \in \mathbb{R}^K$ as follows

$$p(z_n) = \mathcal{N}(\mathbf{z}_n|0, \mathbf{I}_K)$$

 $p(\mathbf{x}_n|\mathbf{z}_n) = \text{ExpFam}(\mathbf{x}_n|\mathbf{W}\mathbf{z}_n)$
 $\mathbf{W}\mathbf{z}_n$: Natural parameters of exp-fam

- These models are popularly known as a Latent Gaussian Models
- Many generative models have this form, e.g.,
 - Factor Analysis and Probabilistic PCA (e.g., when "Expon" = Gaussian)
 - z_n 's can also be defined as $p(z_n|z_{n-1}) = \mathcal{N}(z_n|\mathbf{A}z_{n-1},\mathbf{I}_K)$ [linear dynamical systems; will see later)

- Observed data $\mathbf{x}_1, \dots, \mathbf{x}_N$, with $\mathbf{x}_n \in \mathbb{R}^D$
- Assume each observation x_n to be generated by a Gaussian latent variable $z_n \in \mathbb{R}^K$ as follows

$$p(z_n) = \mathcal{N}(\mathbf{z}_n|0, \mathbf{I}_K)$$

 $p(\mathbf{x}_n|\mathbf{z}_n) = \text{ExpFam}(\mathbf{x}_n|\mathbf{W}\mathbf{z}_n)$
 $\mathbf{W}\mathbf{z}_n$: Natural parameters of exp-fam

- These models are popularly known as a Latent Gaussian Models
- Many generative models have this form, e.g.,
 - \bullet Factor Analysis and Probabilistic PCA (e.g., when "Expon" = Gaussian)
 - z_n 's can also be defined as $p(z_n|z_{n-1}) = \mathcal{N}(z_n|\mathbf{A}z_{n-1},\mathbf{I}_K)$ [linear dynamical systems; will see later)
- A key limitation: z_n to x_n mapping is linear (note that the natural params = Wz_n)

• Let's assume z_n goes through a nonlinear transformation f before it generates x_n

$$egin{array}{lll} oldsymbol{z}_n & \sim & \mathcal{N}(oldsymbol{z}_n|0,oldsymbol{I}_K) \ oldsymbol{x}_n & \sim & \mathsf{ExpFam}(oldsymbol{x}_n|f(oldsymbol{z}_n)) \end{array}$$

• We now have a Nonlinear version of the Latent Gaussian Model

• Let's assume z_n goes through a nonlinear transformation f before it generates x_n

$$egin{array}{lll} oldsymbol{z}_n & \sim & \mathcal{N}(oldsymbol{z}_n|0,oldsymbol{I}_K) \ oldsymbol{x}_n & \sim & \mathsf{ExpFam}(oldsymbol{x}_n|f(oldsymbol{z}_n)) \end{array}$$

- We now have a Nonlinear version of the Latent Gaussian Model
- How should we model the nonlinear mapping f?

• Let's assume z_n goes through a nonlinear transformation f before it generates x_n

$$egin{array}{lcl} oldsymbol{z}_n & \sim & \mathcal{N}(oldsymbol{z}_n|0,oldsymbol{I}_K) \ oldsymbol{x}_n & \sim & \mathsf{ExpFam}(oldsymbol{x}_n|f(oldsymbol{z}_n)) \end{array}$$

- We now have a Nonlinear version of the Latent Gaussian Model
- How should we model the nonlinear mapping f? Some options
 - Model f using a Gaussian Process (recall GPLVM)

• Let's assume z_n goes through a nonlinear transformation f before it generates x_n

$$egin{array}{lll} oldsymbol{z}_n & \sim & \mathcal{N}(oldsymbol{z}_n|0,oldsymbol{I}_K) \ oldsymbol{x}_n & \sim & \mathsf{ExpFam}(oldsymbol{x}_n|f(oldsymbol{z}_n)) \end{array}$$

- We now have a Nonlinear version of the Latent Gaussian Model
- How should we model the nonlinear mapping f? Some options
 - Model f using a Gaussian Process (recall GPLVM)
 - Model f using a Deep Neural Network (we will look at these)

• Assume that a Gaussian drawn z_n is pushed through an NN to generate x_n (Deep LGM)

$$oldsymbol{z}_n
ightarrow oldsymbol{h}_n^{(L)}
ightarrow oldsymbol{h}_n^{(L-1)} \ldots oldsymbol{h}_n^{(2)}
ightarrow oldsymbol{h}_n^{(1)}
ightarrow oldsymbol{x}_n$$

• L denotes the number of "layers" in the model

• Assume that a Gaussian drawn z_n is pushed through an NN to generate x_n (Deep LGM)

$$oldsymbol{z}_n
ightarrow oldsymbol{h}_n^{(L)}
ightarrow oldsymbol{h}_n^{(L-1)} \ldots oldsymbol{h}_n^{(2)}
ightarrow oldsymbol{h}_n^{(1)}
ightarrow oldsymbol{x}_n$$

• L denotes the number of "layers" in the model. For L=1, the model looks like this

$$z_n \sim \mathcal{N}(z_n|0,\mathbf{I}_K)$$

 $h_n = g(z_n)$ (deterministic nonlinear mapping)

$$\mathbf{x}_n \sim \mathsf{ExpFam}(\mathbf{x}_n|\mathbf{W}\mathbf{h}_n)$$

 $\mathbf{x}_n \sim \operatorname{ExpFam}(\mathbf{x}_n|f(\mathbf{z}_n))$ (Equivalent to the above)

- Assume a prior $p_{\theta}(z)$ and likelihood $p_{\theta}(x|z)$ for this DLGM
- ullet Let's assume we are doing only point estimation for heta (but full posterior for ${m z}$)

- Assume a prior $p_{\theta}(z)$ and likelihood $p_{\theta}(x|z)$ for this DLGM
- Let's assume we are doing only point estimation for θ (but full posterior for z)

ullet Assume the prior $p_{ heta}(oldsymbol{z})$ to be Gaussian $\mathcal{N}(oldsymbol{z}|0,oldsymbol{\mathsf{I}}_{K})$

- Assume a prior $p_{\theta}(z)$ and likelihood $p_{\theta}(x|z)$ for this DLGM
- Let's assume we are doing only point estimation for θ (but full posterior for z)

- Assume the prior $p_{\theta}(z)$ to be Gaussian $\mathcal{N}(z|0,\mathbf{I}_K)$
- Assume the likelihood $p_{\theta}(\mathbf{x}|\mathbf{z})$ to be of the form $\mathcal{N}(\mathbf{x}|f(\mathbf{z}), \sigma^2\mathbf{I})$ with f being an NN

- Assume a prior $p_{\theta}(z)$ and likelihood $p_{\theta}(x|z)$ for this DLGM
- Let's assume we are doing only point estimation for θ (but full posterior for z)

- Assume the prior $p_{\theta}(z)$ to be Gaussian $\mathcal{N}(z|0, \mathbf{I}_K)$
- Assume the likelihood $p_{\theta}(\mathbf{x}|\mathbf{z})$ to be of the form $\mathcal{N}(\mathbf{x}|f(\mathbf{z}),\sigma^2\mathbf{I})$ with f being an NN
- Given N observations $\mathbf{X} = \{x_1, \dots, x_N\}$, the goal will be to infer $\mathbf{Z} = \{z_1, \dots, z_N\}$ and θ . In general, this will be an intractable problem (just like other Bayesian models).

ullet The goal: Given $oldsymbol{x}_1,\ldots,oldsymbol{x}_N$, infer $\{oldsymbol{z}_1,\ldots,oldsymbol{z}_N\}$ and eta

• The goal: Given x_1, \ldots, x_N , infer $\{z_1, \ldots, z_N\}$ and θ

MCMC can be applied in practice but tends to be slow

• The goal: Given x_1, \ldots, x_N , infer $\{z_1, \ldots, z_N\}$ and θ

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - This usually is the case since $p_{\theta}(x|z)$ is defined by a complex NN with nonlinearities

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - ullet This usually is the case since $p_{ heta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - This usually is the case since $p_{\theta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - This usually is the case since $p_{\theta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n
 - Very slow if N is large because we need to infer a large number of $q_{\phi_n}(z_n)$, $n=1,\ldots,N$

ullet The goal: Given $oldsymbol{x}_1,\ldots,oldsymbol{x}_N$, infer $\{oldsymbol{z}_1,\ldots,oldsymbol{z}_N\}$ and eta

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - ullet This usually is the case since $p_{ heta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n
 - Very slow if N is large because we need to infer a large number of $q_{\phi_n}(z_n)$, $n=1,\ldots,N$
 - Note: SVI can help (but only so much..)

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - ullet This usually is the case since $p_{ heta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n
 - Very slow if N is large because we need to infer a large number of $q_{\phi_n}(z_n)$, $n=1,\ldots,N$
 - Note: SVI can help (but only so much..)
 - Also, the process of inferring $q_{\phi_n}(z_n)$ in VB (and also MCMC) is iterative.

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - ullet This usually is the case since $p_{ heta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n
 - Very slow if N is large because we need to infer a large number of $q_{\phi_n}(z_n)$, $n=1,\ldots,N$
 - Note: SVI can help (but only so much..)
 - Also, the process of inferring $q_{\phi_n}(z_n)$ in VB (and also MCMC) is iterative. Can't get a fast prediction of z_n .

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - This usually is the case since $p_{\theta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n
 - Very slow if N is large because we need to infer a large number of $q_{\phi_n}(z_n)$, $n=1,\ldots,N$
 - Note: SVI can help (but only so much..)
 - Also, the process of inferring $q_{\phi_n}(z_n)$ in VB (and also MCMC) is iterative. Can't get a fast prediction of z_n . Ideally, we would like to predict z_n fast for any given x_n

- MCMC can be applied in practice but tends to be slow
- VB can be faster but difficult to work out the ELBO if $p_{\theta}(z)$ and $p_{\theta}(x|z)$ aren't conjugate
 - This usually is the case since $p_{\theta}(x|z)$ is defined by a complex NN with nonlinearities
 - BBVI or other VB methods based on Monte-Carlo approximation used
- VB (and MCMC too) has another issue: Need to infer a $q_{\phi_n}(z_n)$ for each z_n
 - Very slow if N is large because we need to infer a large number of $q_{\phi_n}(z_n)$, $n=1,\ldots,N$
 - Note: SVI can help (but only so much..)
 - Also, the process of inferring $q_{\phi_n}(z_n)$ in VB (and also MCMC) is iterative. Can't get a fast prediction of z_n . Ideally, we would like to predict z_n fast for any given x_n (e.g., z_* for a new test input x_*)

A DLGM with an encoder-decoder mechanism (we can think of the latent z as an encoding of x).
 Proposed almost simultaneously by Kingma & Welling (2013), and Rezende et al (2014)

• Idea: Instead of approximating each posterior $p(z_n|x_n)$ as $q_{\phi_n}(z_n)$, approximate it by a single global function $q_{\phi}(z_n|x_n)$ defined by a neural net with parameters ϕ . Called the "encoder" model

- Idea: Instead of approximating each posterior $p(\mathbf{z}_n|\mathbf{x}_n)$ as $q_{\phi_n}(\mathbf{z}_n)$, approximate it by a single global function $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ defined by a neural net with parameters ϕ . Called the "encoder" model
- ullet The generative model $p_{ heta}(m{x}|m{z})$ serves as a "decoder" model (given $m{z}$, decode $m{x}$)

- Idea: Instead of approximating each posterior $p(\mathbf{z}_n|\mathbf{x}_n)$ as $q_{\phi_n}(\mathbf{z}_n)$, approximate it by a single global function $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ defined by a neural net with parameters ϕ . Called the "encoder" model
- ullet The generative model $p_{ heta}(m{x}|m{z})$ serves as a "decoder" model (given $m{z}$, decode $m{x}$)
- ullet The goal is to learn both the encoder and decoder models (basically, their parameters ϕ and heta)

- Idea: Instead of approximating each posterior $p(\mathbf{z}_n|\mathbf{x}_n)$ as $q_{\phi_n}(\mathbf{z}_n)$, approximate it by a single global function $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ defined by a neural net with parameters ϕ . Called the "encoder" model
- ullet The generative model $p_{ heta}(x|z)$ serves as a "decoder" model (given z, decode x)
- ullet The goal is to learn both the encoder and decoder models (basically, their parameters ϕ and heta)
- Note: No need to do inference for z_n . Can compute z_n directly by plugging in x_n in q_ϕ

- Idea: Instead of approximating each posterior $p(\mathbf{z}_n|\mathbf{x}_n)$ as $q_{\phi_n}(\mathbf{z}_n)$, approximate it by a single global function $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ defined by a neural net with parameters ϕ . Called the "encoder" model
- ullet The generative model $p_{ heta}(m{x}|m{z})$ serves as a "decoder" model (given $m{z}$, decode $m{x}$)
- ullet The goal is to learn both the encoder and decoder models (basically, their parameters ϕ and heta)
- Note: No need to do inference for z_n . Can compute z_n directly by plugging in x_n in q_ϕ
 - This approach of inferring z_n also is called a "recognition model"

- Idea: Instead of approximating each posterior $p(\mathbf{z}_n|\mathbf{x}_n)$ as $q_{\phi_n}(\mathbf{z}_n)$, approximate it by a single global function $q_{\phi}(\mathbf{z}_n|\mathbf{x}_n)$ defined by a neural net with parameters ϕ . Called the "encoder" model
- ullet The generative model $p_{ heta}(x|z)$ serves as a "decoder" model (given z, decode x)
- ullet The goal is to learn both the encoder and decoder models (basically, their parameters ϕ and heta)
- Note: No need to do inference for z_n . Can compute z_n directly by plugging in x_n in q_ϕ
 - This approach of inferring z_n also is called a "recognition model"
- More details in the next class