南京邮电大学 2015/2016 学年第一学期

《线性代数与解析几何》期末试卷(A)参考答案

	姓名
--	----

题号	_	=	=	四	五	六	七	八	九	总分
得分										

得 分

一.填空题(每小题 4 分, 共 20 分)

1. 设行列式
$$D = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 ,则第三行元素的代数余子式之和

$$A_{31} + A_{32} + A_{33} = \underline{0}$$
.

- 2. 设 A 和 B 是 3 阶矩阵, $A = \begin{pmatrix} \lambda & 1 & 1 \\ 1 & \lambda & 1 \\ 1 & 1 & \lambda \end{pmatrix}$,且秩 r(AB) < r(B),则 λ 应满足 $\underline{\lambda=1}$ 或 $\underline{\lambda=-2}$
- 3. 已知 $\alpha_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 是 R^2 的一组基,则向量 $\beta = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ 在基 α_1 , α_2 下的坐标为 $(1,1)^T$.
- 4. 母线平行于 z 轴且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 1 \\ x^2 y^2 + z^2 = 0 \end{cases}$ 的柱面方程为 $\frac{x^2 + 2y^2 = 1}{2}$.
- 5. 已知二阶实对称矩阵 A 的特征值是 0 和 1,若 $B = (kI + A)^2$ 是正定阵,其中 I 是单位矩阵,则 k 应满足 $k \neq 0,-1$.
- 二.选择题(每小题 4分, 20分)
- 1. 设 A 是 3 阶方阵,将 A 的第 2 列加到第 1 列得 B,交换 B 的第 2,3 行得单位阵 I,记

$$P_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \emptyset A =$$
 (D)

《线性代数与解析几何》试卷 第 1 页 共 5 页

$(A) P_1P_2$	(B) $P_1^{-1}P_2$	(C) P_2P_1	(D) $P_2P_1^{-1}$
(/ - /	(-) -1 -7	(-) -)-	(- / -)-1

2. 设 A 是 3 阶矩阵, 秩 r(A) = 2, 且 α_1, α_2 是齐次线性方程组 AX = 0 的两个不同的 解向量,则AX = 0的一个基础解系是 (D)

$$(A)$$
 α_1

$$(B)$$
 α_2

(C)
$$\alpha_1 + \alpha_2$$

(A)
$$\alpha_1$$
 (B) α_2 (C) $\alpha_1 + \alpha_2$ (D) $\alpha_1 - \alpha_2$

3. 直线
$$L_1: \frac{x}{1} = \frac{y}{-2} = \frac{z}{1}$$
 和 $L_2: \begin{cases} x - y = 6 \\ 2y + z = 3 \end{cases}$ 的夹角为 (B)

(A)
$$\frac{\pi}{2}$$

$$(B) \ \frac{\pi}{3}$$

(A)
$$\frac{\pi}{2}$$
 (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{6}$

$$(D)$$
 $\frac{\pi}{6}$

4. 若向量组 α, β, γ 线性无关, α, β, δ 线性相关,则 (C)

$$(A)$$
 α 必可由 β, γ, δ 线性表示

$$(A)$$
 α 必可由 β, γ, δ 线性表示 (B) α 必不可由 β, γ, δ 线性表示

$$(C)$$
 δ 必可由 α, β, γ 线性表示

$$(C)$$
 δ 必可由 α, β, γ 线性表示 (D) δ 必不可由 α, β, γ 线性表示

5.
$$n$$
 阶实对称矩阵 A 和 B 相似的充分必要条件是 (D)

$$(A)$$
 $A 与 B$ 都有 n 个线性无关的特征向量 (B) $A 与 B$ 的秩相等

$$(C)$$
 $A 与 B$ 的主对角线上的元素的和相等 (D) $A 与 B$ 的 n 个特征值均相等

$$(D)$$
 A 与 B 的 n 个特征值均相等

三、(本题 10 分) 设 n 阶矩阵 A 和 B 满足 A+2B=AB, (1)证明: A-2I 可

逆,其中 I 为单位阵;(2)已知 $B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,求矩阵 A.

$$(2) :: A + 2B = AB, :: A(B-I) = 2B,$$

$$(B-I \vdots I) = \left(\begin{array}{cccccc} 0 & 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right) \longrightarrow \left(\begin{array}{ccccccc} 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \right),$$

$$\therefore A = 2B(B-I)^{-1} = 2 \begin{pmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 4 \end{pmatrix} \qquad \dots 3 \stackrel{\triangle}{D}$$

得分 四、(本题 10 分) 设向量组 $\alpha_1 = (1,3,1,-1)^T, \alpha_2 = (-1,-1,1,-3)^T$,

 $\alpha_3 = (5,8,-2,9)^T$, $\alpha_4 = (-1,1,3,1)^T$,(1) 求向量组的秩; (2) 求它的一个极大

线性无关组,并用该极大线性无关组表示其余向量.

解
$$(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \begin{pmatrix} 1 & -1 & 5 & -1 \\ 3 & -1 & 8 & 1 \\ 1 & 1 & -2 & 3 \\ -1 & -3 & 9 & 1 \end{pmatrix}$$
 初等行変換 $\begin{pmatrix} 1 & -1 & 5 & -1 \\ 0 & 2 & -7 & 4 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 初等行変換 $\begin{pmatrix} 1 & 0 & \frac{3}{2} & 0 \\ 0 & 1 & -\frac{7}{2} & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

$$\therefore R(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 3$$
,向量组 $\alpha_1, \alpha_2, \alpha_4$ 是一个极大线性无关组, $\alpha_3 = \frac{3}{2}\alpha_1 - \frac{7}{2}\alpha_2$

五、(本题 10 分) 求过点M(1,-1,2)与平面 $\pi:3x+2y-2z-1=0$ 平行,且与直线 $L:\frac{x+1}{1}=\frac{y-1}{2}=\frac{z}{3}$ 相交的直线方程.

解 设所求直线 $l(M,\bar{s})$, $\bar{s} = \{a,b,c\}$

已知平面 π 的法向量 $\bar{n} = \{3, 2, -2\}$, 由题意3a + 2b - 2c = 0 ………(1) ……3分

已知直线 $L(P, \bar{s}_1)$, P(-1,1,0) , $\bar{s}_1 = \{1,2,3\}$, 由题意

$$[\overrightarrow{PM}, \vec{s}_1, \vec{s}] = 0$$
, $\{ -5a - 2b + 3c = 0 \quad \dots (2) \dots (3) \}$

由(1),(2)得
$$b=\frac{a}{2}$$
, $c=2a$,2 分

取
$$\vec{s} = \{2,1,4\}$$
,所求直线为 $\frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{4}$ 2 分

另解 先求出过 M 点平行于已知平面的平面与已知直线的交点 N(-3, -3, -6)

《线性代数与解析几何》试卷 第 3 页 共 5 页

$$Arr$$
 六、(本题 12 分) 设 Arr Arr

穷多解,(1)求 λ ,a的值;(2)求方程组AX = b的通解.

解 (1)因为 AX = b 有无穷多解,所以 r(A,b) = r(A) < 32 分

由
$$|A| = 0$$
得 $(\lambda - 1)(\lambda^2 - 1) = 0$,所以 $\lambda = \pm 1$ 3分

当
$$\lambda = 1$$
时, $(A,b) = \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & a \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1-a \end{pmatrix}$, $r(A,b) \neq r(A)$,故 $\lambda \neq 1$

.....2 分

$$\stackrel{\underline{\,}}{\exists} \lambda = -1 \; \text{F} \; , \quad (A,b) = \begin{pmatrix} -1 & 1 & 1 & a \\ 0 & -2 & 0 & 1 \\ 1 & 1 & -1 & 1 \end{pmatrix} \mapsto \begin{pmatrix} -1 & 1 & 1 & a \\ 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 + a \end{pmatrix} \; , \quad \because r(A,b) = r(A) \; ,$$

$$\therefore a = -2$$
2 分

$$(2) \quad \lambda = -1 \,, \quad a = -2 \, \text{B}^{\ddagger} \,, \quad (A,b) \, \longrightarrow \begin{pmatrix} -1 & 1 & 1 & -2 \\ 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \, \longrightarrow \begin{pmatrix} -1 & 0 & -1 & \frac{3}{2} \\ 0 & 1 & 0 & -\frac{1}{2} \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

$$AX = l$$
的通解为 $x = k(1,0,1)^T + (\frac{3}{2}, \frac{-1}{2}, 0)^T$ 3分

得 分

七、(本题 12 分) 设二次型 $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2 - 2x_3^2 - 4x_1x_3$, 求一个正

交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
将二次型 $f(x_1, x_2, x_3)$ 化成标准形,并指出

 $f(x_1,x_2,x_3)=1$ 代表的二次曲面的名称.

解 二次型的矩阵
$$A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ -2 & 0 & -2 \end{pmatrix}$$
, 令 $\left| A - \lambda I \right| = 0$, 即

《线性代数与解析几何》试卷 第 4 页 共 5 页

$$\begin{vmatrix} 1-\lambda & 0 & -2 \\ 0 & 2-\lambda & 0 \\ -2 & 0 & -2-\lambda \end{vmatrix} = 0, \quad \text{β} \quad \lambda_1 = \lambda_2 = 2, \quad \lambda_3 = -3 \quad \dots \dots 4 \text{ β}$$

得
$$\xi_1 = (2,0,-1)^T$$
, $\xi_2 = (0,1,0)^T$, 两者正交.

$$\forall \lambda_3 = -3 \text{ , } 解 方程 (A+3I)x = 0 \text{ , } 其中 A+3I = \begin{pmatrix} 4 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -0.5 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

得
$$\xi_3 = (1,0,2)^T$$
,4 分

由于
$$\xi_1, \xi_2, \xi_3$$
两两正交,取 $Q = (\xi_1^0, \xi_2^0, \xi_3^0) = \begin{pmatrix} \frac{2}{\sqrt{5}} & 0 & \frac{1}{\sqrt{5}} \\ 0 & 1 & 0 \\ \frac{-1}{\sqrt{5}} & 0 & \frac{2}{\sqrt{5}} \end{pmatrix}$,2分

则正交变换
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$
将 $f(x_1, x_2, x_3)$ 化成标准形 $2y_1^2 + 2y_2^2 - 3y_3^2 \dots 1$ 分

$$f(x_1, x_2, x_3) = 1$$
代表单叶双曲面.1 分

八、(本题 6 分)设 λ_1, λ_2 为矩阵 A 的不同特征值,对应 λ_1, λ_2 的特征向量分别为 α_1, α_2 ,试证明: $\alpha_1, A(\alpha_1 + \alpha_2)$ 线性无关的充分必要条件是 $\lambda_2 \neq 0$.

证 由题意
$$A(\alpha_1 + \alpha_2) = A\alpha_1 + A\alpha_2 = \lambda_1\alpha_1 + \lambda_2\alpha_2$$

$$\therefore \lambda_1 \neq \lambda_2$$
, $\therefore \alpha_1, \alpha_2$, 线性无关2 分

 α_1 , $A(\alpha_1 + \alpha_2)$ 线性无关 $\Leftrightarrow k_1\alpha_1 + k_2A(\alpha_1 + \alpha_2) = 0$ 当且仅当 $k_1 = k_2 = 0$ 成立

$$\Leftrightarrow (k_1 + k_2 \lambda_1)\alpha_1 + k_2 \lambda_2 \alpha_2 = 0$$
 当且仅当 $k_1 = k_2 = 0$ 成立

$$\Leftrightarrow \begin{cases} k_1 + k_2 \lambda_1 = 0 \\ k_2 \lambda_2 = 0 \end{cases} \text{ Q fixed \mathbb{R}} \Leftrightarrow \begin{vmatrix} 1 & \lambda_1 \\ 0 & \lambda_2 \end{vmatrix} \neq 0 \Leftrightarrow \lambda_2 \neq 0 \qquad \dots \dots 4 \text{ β}$$

《线性代数与解析几何》试卷 第 5 页 共 5 页