# Towards Explainability in Knowledge Enhanced Neural Networks

Data Science Master Thesis

Riccardo Mazzieri

Supervisor: Luciano Serafini

Co-Supervisor: Alessandro Daniele

September 21, 2021





#### Outline



- 1 Introduction and motivations
- 2 Knowledge Enhanced Neural Networks (KENN)
- **3 Contributions:** Experiments on collective classification
- 4 Contributions: Extracting explanations from KENN
- 5 Conclusions

#### Introduction



Deep NNs have several flaws. For example:

- They are **data hungry**:
  - With few data, learning is not possible, even for simple logical reasoning tasks;
  - This motivates **Neural Symbolic Integration (NeSy)**.

#### Introduction



#### Deep NNs have several flaws. For example:

- They are **data hungry**:
  - With few data, learning is not possible, even for simple logical reasoning tasks;
  - This motivates **Neural Symbolic Integration (NeSy)**.
- They are black boxes:
  - Predictions are not explainable, might lead to lack of trust in Al applications;
  - This motivates the research field of **Explainable AI (XAI)**.

#### Knowledge Enhanced Neural Networks



KENN<sup>1</sup> consists in a residual layer designed to improve the predictions of a base NN, by using logical prior knowledge, consisting in a set of FOL formulas  $\mathcal{K}$ .



<sup>&</sup>lt;sup>1</sup>Daniele, Alessandro, and Luciano Serafini. "Knowledge enhanced neural networks." Pacific Rim International Conference on Artificial Intelligence. Springer, Cham, 2019.

## Basic Terminology



#### Definition (The Language)

Our language will be a function-free first order language  $\mathcal{L}$ , defined by:

- A set of **constants**:  $C = \{a_1, \ldots, a_{|C|}\}$ ;
- A set of **predicates**:  $\mathcal{P} = \{P_1, \dots, P_{|\mathcal{P}|}\}$ ;

#### Definition (Clause)

A clause c is a formula expressed a disjunction of literals:

$$c := \bigvee_{i=1}^{k} I_i, \quad I_i \neq I_j \quad \forall i \neq j$$

# Language Semantic



$$\mathcal{C} = \{a_1, a_2, \ldots, a_n\}$$

$$\mathcal{P} = \{P_1, P_2, P_3\}$$



 $x_i \in \mathbb{R}^m$ 



## Language Semantic









#### **KENN: Intuition**



Given the vector of predictions of the NN y, KENN computes the final vector of predictions as follows:

$$y' = y + \sum_{c \in \mathcal{K}} w_c \cdot \delta^c$$

where, for each  $c \in \mathcal{C}$ :

- $\delta^c$  improves the truth value of c, keeping  $\|\delta^c\|_2$  minimal;
- $w_c \in \mathbb{R}$  is the **clause weight**, a learnable parameter that quantifies the importance of clause c.

### Citeseer Experiments



- We tested KENN on a Collective Classification task;
- The **Citeseer Dataset** was used: citation network with 4732 citations (edges) between 3312 papers (nodes);
- The task is to predict the topic of each paper (6 possible topics).





- We also provide a comparison with two other NeSy models:
  - Semantic Based Regularization<sup>2</sup>;
  - Relational Neural Machines<sup>3</sup>;

<sup>&</sup>lt;sup>2</sup>Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

<sup>&</sup>lt;sup>3</sup>Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).



- We also provide a comparison with two other NeSy models:
  - Semantic Based Regularization<sup>2</sup>;
  - Relational Neural Machines<sup>3</sup>;
- The same base NN and the same base knowledge are used.

<sup>&</sup>lt;sup>2</sup>Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

<sup>&</sup>lt;sup>3</sup>Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).



- We also provide a comparison with two other NeSy models:
  - Semantic Based Regularization<sup>2</sup>;
  - Relational Neural Machines<sup>3</sup>;
- The same base NN and the same base knowledge are used.
- The main evaluation metric is the **relative improvement** over the base NN accuracy;

<sup>&</sup>lt;sup>2</sup>Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

<sup>&</sup>lt;sup>3</sup>Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).



- We also provide a comparison with two other NeSy models:
  - Semantic Based Regularization<sup>2</sup>;
  - Relational Neural Machines<sup>3</sup>;
- The same base NN and the same base knowledge are used.
- The main evaluation metric is the relative improvement over the base NN accuracy;
- Same experiments are performed over different sizes of the training set.

<sup>&</sup>lt;sup>2</sup>Diligenti, Michelangelo, Marco Gori, and Claudio Sacca. "Semantic-based regularization for learning and inference." Artificial Intelligence 244 (2017): 143-165.

<sup>&</sup>lt;sup>3</sup>Marra, Giuseppe, et al. "Relational neural machines." arXiv preprint arXiv:2002.02193 (2020).

#### Results





#### Results





## Clause Weights Learning





### Explainability



In XAI, two main paradigms for explainability are distinguished:

- Transparency
- Post-hoc explainability



### Explainability in KENN



#### KENN can be considered a partially transparent model:

- A KENN layer will always be based on the prediction of a base NN, which will always be an inherently opaque model;
- On the contrary, everything happening inside the KENN layer is transparent;
- The explanations will only regard the knowledge enforcement stage.



 $\neg \operatorname{Dog}(a) \vee \operatorname{Animal}(a)$ 





















Since the NN was confident that a is not an Animal, the truth value for a being a dog should decrease.



■ In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;



- In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;
- We need ways to assess how the knowledge is modifying the base NN predictions, from a macroscopic point of view. Given any  $\mathcal{C} \subseteq \mathcal{K}$  we might want to know:



- In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;
- We need ways to assess how the knowledge is modifying the base NN predictions, from a macroscopic point of view. Given any  $\mathcal{C} \subseteq \mathcal{K}$  we might want to know:
  - if, and where those clauses provided a positive or negative contribution;



- In real use cases, we might have hundreds or thousands of clauses or samples ⇒ one by one examination of each sample is not feasible;
- We need ways to assess how the knowledge is modifying the base NN predictions, from a macroscopic point of view. Given any  $\mathcal{C} \subseteq \mathcal{K}$  we might want to know:
  - if, and where those clauses provided a positive or negative contribution;
  - $\blacksquare$  if and where there is any conflict between the formulas inside  $\mathcal{C}.$



#### Improvement Score

Given  $\mathcal{C} \subseteq \mathcal{K}$ , the improvement score quantifies the positive (or negative) contribution of  $\mathcal{C}$  for sample x and is defined as follows:

$$IS(x,C) = \sum_{i=1}^{m} \delta_i \cdot I_i.$$



#### Improvement Score

Given  $\mathcal{C} \subseteq \mathcal{K}$ , the improvement score quantifies the positive (or negative) contribution of C for sample x and is defined as follows:

$$IS(x,C) = \sum_{i=1}^{m} \delta_i \cdot I_i.$$

$$IS(x_1, \mathcal{C}) = -1.2$$
  $IS(x_2, \mathcal{C}) = 5.4$   $IS(x_3, \mathcal{C}) = 1.4$   $IS(x_4, \mathcal{C}) = -3.3$   $IS(x_5, \mathcal{C}) = 0.1$ 

$$IS(x_2, \mathcal{C}) = 5.4$$

$$IS(x_3, \mathcal{C}) = 1.4$$

$$IS(x_4,\mathcal{C}) = -3.3$$

$$IS(x_5,\mathcal{C})=0.1$$



#### Improvement Score

Given  $\mathcal{C} \subseteq \mathcal{K}$ , the improvement score quantifies the positive (or negative) contribution of  $\mathcal{C}$  for sample x and is defined as follows:

$$IS(x,C) = \sum_{i=1}^{m} \delta_i \cdot I_i.$$

$$IS(x_1, \mathcal{C}) = -1.2$$
  $IS(x_2, \mathcal{C}) = 5.4$   $IS(x_3, \mathcal{C}) = 1.4$   $IS(x_4, \mathcal{C}) = -3.3$   $IS(x_5, \mathcal{C}) = 0.1$ 



#### Disagreement Score

We first define the disagreement vector:

$$DV(x,C) = \sum_{c \in C} |\delta_c| - \left| \sum_{c \in C} \delta_c \right|.$$

Starting from DV(x, C) we can finally define the disagreement score for a specific subset of predicates  $\hat{P} \subseteq P$ :

$$DS(x, \mathcal{C}, \hat{\mathcal{P}}) = \sum_{i \in \hat{\mathcal{P}}} DV(x, \mathcal{C})_i.$$

#### **Conclusions**



- Experimental results show that KENN outperforms other NeSy methods for the collective classification task;
- 2 Further experiments show a correlation between the clause weights and the satisfaction of the clause in the training data;
- KENN is inherently a transparent NN layer: explanations can be easily extracted in a understandable and human readable form;
- We proposed two evaluation metrics which can be used for debugging purposes.

Thank you for your attention

## Appendix: Clause Enhancer





# Appendix: Knowledge Enhancer





### Appendix: KENN for relational data





| U |       |      |  |
|---|-------|------|--|
| i | Unary |      |  |
| 0 | 1.3   | 2.7  |  |
| 1 | 1.9   | 0.4  |  |
| 2 | -3.2  | -0.1 |  |
| 3 | 2.3   | 0.1  |  |

T

| В  |    |        |
|----|----|--------|
| SX | sy | Binary |
| 0  | 2  | 3.1    |
| 1  | 0  | 4.8    |
| 1  | 2  | 6.5    |
| 2  | 3  | 5.6    |

# Appendix: KENN for relational data





## Appendix: preactivations vs activations





## Example: truth value of a clause





# Example: truth value of a clause





## Increasing satisfaction of a single clause





## Increasing satisfaction of a single clause





$$\delta_s^{w_c}(z_c) = w_c \cdot \operatorname{softmax}(z_c)$$