

Final datasheet

EconoDUAL™3 module with CoolSiC™ Trench MOSFET and PressFIT / pre-applied thermal interface material / NTC

Features

- · Electrical features
 - V_{DSS} = 1200 V
 - $I_{DN} = 500 \text{ A} / I_{DRM} = 1000 \text{ A}$
 - Integrated temperature sensor
 - Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder
- Mechanical features
 - Standard housing
 - PressFIT contact technology
 - Isolated base plate
 - High power density
 - Pre-applied thermal interface material

Potential applications

- Construction, commercial, and agriculture vehicles
- Wind turbines
- · Motor drives
- UPS systems
- Solar applications

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EconoDUAL™3 module

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET, T1 / T2	4
3	Body diode (MOSFET, T1 / T2)	6
4	NTC-Thermistor	6
5	Characteristics diagrams	8
6	Circuit diagram	15
7	Package outlines	
8	Module label code	. 17
	Revision history	. 18
	Disclaimer	

EconoDUAL™3 module

1 Package

1 Package

Table 1 Insulation coordination

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.4	kV
Isolation test voltage NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz, t = 1 min	3.4	kV
Material of module baseplate			Cu	
Internal isolation		basic insulation (class 1, IEC 61140)	Al ₂ O ₃	
Creepage distance	d _{Creep nom}	terminal to baseplate, nom., (PD2, IEC 60664-1, Ed. 3.0)	> 15	mm
Creepage distance	$d_{Creepmin}$	terminal to baseplate, min., (PD2, IEC 60664-1, Ed. 3.0)	14.7	mm
Creepage distance	d _{Creep nom}	terminal to terminal, nom., (PD2, IEC 60664-1, Ed. 3.0)	12.1	mm
Creepage distance	d _{Creep min}	terminal to terminal, min., (PD2, IEC 60664-1, Ed. 3.0)	11.5	mm
Clearance	d _{Clear nom}	terminal to baseplate, nom.	> 12.5	mm
Clearance	d _{Clear min}	terminal to baseplate, min.	12.5	mm
Clearance	d _{Clear nom}	terminal to terminal, nom.	10.0	mm
Clearance	d _{Clear min}	terminal to terminal, min.	9.6	mm
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Table 2 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Stray inductance module	L _{sCE}				20		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch			0.8		mΩ
Storage temperature	$T_{\rm stg}$			-40		125	°C
Maximum baseplate operation temperature	T_{BPmax}					150	°C
Mounting torque for module mounting	М	- Mounting according to valid application note	M5, Screw	3		6	Nm
Terminal connection torque	М	- Mounting according to valid application note	M6, Screw	3		6	Nm
Weight	G		•		345		g

EconoDUAL™3 module

2 MOSFET, T1 / T2

Note: Storage and shipment of modules with TIM => see AN2012-07

2 MOSFET, T1 / T2

Table 3 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	1200	V
Implemented drain current	/ _{DN}			500	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 65 °C	470	А
Repetitive peak drain current	/ _{DRM}	verified by design, t _p lim	nited by T _{vjmax}	1000	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V _{GS}			-7/20	V

Table 4 Recommended values

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-50	V

Table 5 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 500 A	$V_{\rm GS}$ = 15 V, $T_{\rm vj}$ = 25 °C		1.75		mΩ
			$V_{\rm GS}$ = 18 V, $T_{\rm vj}$ = 25 °C		1.46	1.91	
			$V_{\rm GS}$ = 18 V, $T_{\rm vj}$ = 125 °C		2.36		
			$V_{\rm GS}$ = 18 V, $T_{\rm vj}$ = 175 °C		3.13		
Gate threshold voltage	V _{GS(th)}	$I_D = 224 \text{ mA}, V_{DS} = V_{GS}, T_{V}$ after 1ms pulse at $V_{GS} = -1$		3.45	4.3	5.15	V
Total gate charge	Q _G	$V_{\rm DD} = 800 \text{ V}, V_{\rm GS} = -3/18 \text{ V},$, T _{vj} = 25 °C		1.6		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			0.9		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		48.4		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		2.4		nF

EconoDUAL™3 module

2 MOSFET, T1 / T2

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 800 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.158		nF
C _{OSS} stored energy	Eoss	$V_{\rm DS}$ = 800 V, $V_{\rm GS}$ = -3/18 V,	T _{vj} = 25 °C		945		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.32	660	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 500 \text{A}, R_{\rm Gon} = 6.8 \Omega,$	T _{vj} = 25 °C		156		ns
(inductive load)		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}$	T _{vj} = 125 °C		172		
		dead - 1000 H3	T _{vj} = 175 °C		182		
Rise time (inductive load)	t _r	$I_{\rm D} = 500 \text{A}, R_{\rm Gon} = 6.8 \Omega,$	T _{vj} = 25 °C		261		ns
		$V_{DD} = 600 \text{ V}, V_{GS} = -3/18 \text{ V},$ $t_{dead} = 1000 \text{ ns}$	T _{vj} = 125 °C		243		
		dead - 1000 HS	T _{vj} = 175 °C		238		
Turn-off delay time	t _{d off}	$I_{\rm D} = 500 \text{A}, R_{\rm Goff} = 3.9 \Omega,$	T _{vj} = 25 °C		276		ns
(inductive load)		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		305		
			T _{vj} = 175 °C		319		
Fall time (inductive load)	t _f	$I_{\rm D} = 500 \text{A}, R_{\rm Goff} = 3.9 \Omega,$	T _{vj} = 25 °C		74		ns
		$V_{\rm DD} = 600 \text{ V}, V_{\rm GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		76		
			T _{vj} = 175 °C		77		
Turn-on energy loss per	E _{on}	$I_{\rm D} = 500 \text{ A}, V_{\rm DD} = 600 \text{ V},$	T _{vj} = 25 °C		40.2		mJ
pulse		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon} = 6.8 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		38.3		
		4.7 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 1000 ns	T _{vj} = 175 °C		39		
Turn-on energy loss per	E _{on,o}	$I_{\rm D} = 500 \text{ A}, V_{\rm DD} = 600 \text{ V},$	T _{vj} = 25 °C		16.8		mJ
pulse, optimized		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon,o} = 2.4 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		17.1		
		9.3 kA/ μ s (T_{vj} = 175 °C), t_{dead} = 200 ns	T _{vj} = 175 °C		18.1		
Turn-off energy loss per	E _{off}	$I_{\rm D} = 500 \text{ A}, V_{\rm DD} = 600 \text{ V},$	T _{vj} = 25 °C		20.4		mJ
pulse		$L_{\sigma} = 8 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 3.9 \Omega, \text{ dv/dt} = 6.2$	T _{vj} = 125 °C		21.6		
		$kV/\mu s (T_{vi} = 175 °C)$	T _{vj} = 175 °C		22.2		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, Valid with IF Thermal Interface Materi	• • •		0.12		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

EconoDUAL™3 module

infineon

3 Body diode (MOSFET, T1 / T2)

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

Tvj op > 150°C is allowed for operation at overload conditions for MOSFET and body diode. For detailed specifications, please refer to AN 2021-13.

3 Body diode (MOSFET, T1 / T2)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward	I _{SD}	$T_{\rm vi} = 175 ^{\circ}\text{C}, V_{\rm GS} = -3 ^{\circ}\text{V}$	T _H = 65 °C	240	Α
current		,			

Table 7 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V _{SD}	$I_{SD} = 500 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.14	5.2	V
			T _{vj} = 125 °C		3.88		
			T _{vj} = 175 °C		3.78		
Peak reverse recovery	I _{rrm}	$I_{SD} = 500 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		76		А
current		4.7 kA/ μ s, V_{DD} = 600 V, V_{GS} =-3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		114		
		VGS5 V, t _{dead} - 1000 HS	T _{vj} = 175 °C		148		
Recovered charge	Q _{rr}	$I_{SD} = 500 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		3.7		μC
		4.7 kA/ μ s, V_{DD} = 600 V, V_{GS} =-3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		4.9		
		VGS5 V, t _{dead} - 1000 HS	T _{vj} = 175 °C		7		
Reverse recovery energy	E _{rec}	$I_{SD} = 500 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		0.12		mJ
		4.7 kA/ μ s (T_{vj} = 175 °C), V_{DD} = 600 V, V_{GS} =-3 V,	T _{vj} = 125 °C		0.37		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		0.67		
Reverse recovery energy,	$E_{\rm rec,o}$	$I_{SD} = 500 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		1.3		mJ
optimized		9.3 kA/ μ s (T _{vj} = 175 °C),	T _{vj} = 125 °C		3.8		
		$V_{\rm DD}$ = 600 V, $V_{\rm GS}$ = -3 V, $t_{\rm dead}$ = 200 ns	T _{vj} = 175 °C		5.3		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol Note or test condition	Values			Unit	
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 ^{\circ}\text{C}, R_{100} = 493 \Omega$	-5		5	%

(table continues...)

EconoDUAL™3 module

4 NTC-Thermistor

Table 8 (continued) Characteristic values

Parameter	Symbol Note or test condition		Symbol Note or test condition Values			Unit
			Min.	Тур.	Max.	
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		K
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4.

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

 $V_{GS} = 15 V$

Output characteristic field (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

 $T_{vj} = 175 \,^{\circ}\text{C}$

Drain source on-resistance (typical), MOSFET, T1 / T2

 $R_{DS(on)} = f(I_D)$

 $V_{GS} = 18 V$

EconoDUAL™3 module

5 Characteristics diagrams

Drain source on-resistance (typical), MOSFET, T1 / T2

$$R_{DS(on)} = f(T_{vj})$$

 $I_D = 500 A$

Transfer characteristic (typical), MOSFET, T1 / T2

$$I_D = f(V_{GS})$$

V_{DS} = 20 V

Gate-source threshold voltage (typical), MOSFET, T1 $\!\!\!/$ T2

 $V_{GS(th)} = f(T_{vj})$

 $V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET, T1 / T2

 $V_{GS} = f(Q_G)$

 $I_D = 500 \text{ A}, T_{vj} = 25 ^{\circ}\text{C}$

EconoDUAL™3 module

Capacity characteristic (typical), MOSFET, T1 / T2

 $C = f(V_{DS})$

$$T_{vj} = 25 \, ^{\circ}\text{C}, \, V_{GS} = 0 \, \text{V}, \, f = 100 \, \text{kHz}$$

Switching times (typical), MOSFET, T1 / T2

 $t = f(I_D)$

$$R_{Goff} = 3.9 \Omega$$
, $V_{DD} = 600 V$, $T_{vj} = 175 \,^{\circ}\text{C}$, $V_{GS} = -3/18 V$

Switching times (typical), MOSFET, T1 $\!\!\!/$ T2

 $t = f(I_D)$

$$V_{DD}$$
 = 600 V, R_{Gon} = 6.8 $\Omega,\,R_{Gon,o}$ = 2.4 $\Omega,\,T_{vj}$ = 175 °C, V_{GS} = -3/18 V

Switching times (typical), MOSFET, T1 / T2

 $t = f(R_G)$

 V_{DD} = 600 V, t_{dead} = 1000 ns, I_{D} = 500 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

EconoDUAL™3 module

Current slope (typical), MOSFET, T1 / T2

 $di/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 500 \text{ A}, V_{GS} = -3/18 \text{ V}$

Voltage slope (typical), MOSFET, T1 / T2

 $dv/dt = f(R_G)$

 $V_{DD} = 600 \text{ V}, I_D = 500 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(I_D)$

 V_{DD} = 600 V, R_{Gon} = 6.8 Ω , $R_{Gon,o}$ = 2.4 Ω , V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T1 / T2

 $E_{off} = f(I_D)$

11

 $R_{Goff} = 3.9 \Omega$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

EconoDUAL™3 module

Switching losses (typical), MOSFET, T1 $\!\!/$ T2

 $E = f(R_G)$

 $V_{DD} = 600 \text{ V}, t_{dead} = 1000 \text{ ns}, I_{D} = 500 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(V_{GS(off)})$

 R_{Goff} = 3.9 Ω , V_{DD} = 600 V, R_{Gon} = 6.8 Ω , $V_{GS(on)}$ = 18 V, I_{D} = 500 A, $R_{Gon,o}$ = 2.4 Ω , T_{vj} = 175 °C

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(t_{dead})$

 R_{Gon} = 6.8 Ω , I_D = 500 A, V_{DD} = 600 V, V_{GS} = -3/18 V

Transient thermal impedance, MOSFET, T1 / T2

 $Z_{th} = f(t)$

EconoDUAL™3 module

5 Characteristics diagrams

Forward characteristic body diode (typical), MOSFET, T1 / T2

 $I_{SD} = f(V_{SD})$ $T_{vj} = 25 \,^{\circ}C$

Forward voltage of body diode (typical), MOSFET, T1 / T2

 $V_{SD} = f(T_{vj})$

I_{SD} = 500 A

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(I_{SD})$

 $R_{Gon} = 6.8 \Omega$, $R_{Gon,o} = 2.4 \Omega$, $V_{DD} = 600 V$

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(R_G)$

 t_{dead} = 1000 ns, I_{SD} = 500 A, V_{DD} = 600 V

EconoDUAL™3 module

5 Characteristics diagrams

Switching losses body diode (typical), MOSFET, T1 $\!\!/$ T2

 $E_{rec} = f(V_{GS(off)})$

 R_{Goff} = 3.9 Ω , R_{Gon} = 6.8 Ω , $V_{GS(on)}$ = 18 V, I_{SD} = 500 A, $R_{Gon,o}$ = 2.4 Ω , V_{DD} = 600 V, T_{vj} = 175 °C

 $R_{Gon} = 6.8 \Omega$, $I_D = 500 A$, $V_{DD} = 600 V$, $V_{GS} = -3/18 V$

${\bf Temperature\ characteristic\ (typical),\ NTC-Thermistor}$

 $R = f(T_{NTC})$

infineon

6 Circuit diagram

6 Circuit diagram

Figure 1

7 Package outlines

7 Package outlines

16

Figure 2

EconoDUAL™3 module

8 Module label code

8 Module label code

Code format	Data Matrix		Barcode 0	Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			16550549911530

Figure 3

EconoDUAL™3 module

Revision history

Revision history

Document revision	Date of release	Description of changes
1.00	2024-12-02	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-12-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABM269-001

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.