파이썬 딥러닝 파이토치 정오표(초판 1쇄 발행 2020년 10월 8일)

페이지	책	수정 내용
11 4라인	y축은 Top1	y축은 Top-1
	# tensor([[[1., 2.],	# tensor([[[10., 12.],
01 ===1010	# [3., 4.]],	# [14., 16.]],
21 코드라인3	# [[5., 6.],	# [[18., 20.],
	# [7., 8.]])	# [22., 24.]]])
23 코드라인2	if torch.cuda.is_available()	if torch.cuda.is_available():
25 9라인	한 결과는 (1, 100)이며	한 결과는 (64, 100)이며
25 코드라인2	for t in range(1, 501)	for t in range(1, 501):
25 아래 5라인	t 값이 1부터 501까지	t 값이 1부터 500까지
26 12라인	즉, y_pred-y.pow(2)는	즉, (y_pred-y).pow(2)는
41 수식	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$
	original dataset	original dataset
		7
48	traning lest	training lost
	traning validation test	traning vaildation test
	[그림 2-17] 데이터의 분합	[그림 2~17] 데이터의 분합
49	Training Data 1 2 3 4 5 8 3 8 9 30 1 3 2 3 4 5 8 3 8 9 30 1 3 3 8 9 3 8 9 1 3 3 8 9 3 8 1 3 3 8 9 3 8 1 3 3	Training Validataion 성능 축정(평균) [그림 2~원)Cross Validation의 개최
50	$x_0 = 1$ $x_2 \qquad \qquad$	$x_0 = 1$ $x_1 w_2 w_3$ $x_2 w_4 \sum \square \sum w_1 x_1$ $x_1 x_2 x_3 x_4 x_4 x_5 x_6 x_$
50 아래 9라인	이상이 아니면 -1을 출력	이상이 아니면 0을 출력
	$w_i \leftarrow w_i + \Delta w_i$	$w_i \leftarrow w_i + \Delta w_i$
	9714	Where
50		$-\Delta w_i = \eta(t-o)x_i$
50	$-\Delta w_i = \eta(t-o)x_i$	- t = 실제 값
	- t = 실제값	·- 0 = 예측 값
	- O = 예측 값	- ŋ = 학습률
	85: ST 576504	

71 코드10번		
71 포 <u>10</u> 한 라인1	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
73 13라인	[그림 2-34]는 Hidden Layer가	[그림 2- <mark>35</mark>]는 Hidden Layer가
	[표 2-1] 분류모행(Classification Model)에서 사용하는 성능 지표	[표 2~1] 분류 모형(Classification Mode)에서 사용하는 성능 지표
74	행적스(경상, 불량) 영상 표량 불량 사기에 Negative FRFstate Posetive) 대기에 Negative FRFstate Posetive) TRTnux Negative) TRTnux Negative)	급해스득성인, 불편 정성 표명
	정밀도(Precision) = $\frac{$ 옳게 분류된 불량 데이터의 $수$ = $\frac{TP}{FP+TP}$	정밀도(Precision) = $\frac{ rac{ orall s V \circ z}{ }$ 올바르게 예측된 데이터의 $rac{ c}{ }$ = $\frac{ TP}{ FP+TP}$
75	재현율(Recall) = $\frac{$ 옳게 분류된 불량 데이터의 $\dot{\phi}$ = $\frac{TP}{FN+TP}$	재현율(Recall) = $\dfrac{\mbox{\sc Superscript{Wealth}}}{\mbox{\sc Superscript{Max Wealth}}} = \dfrac{\mbox{\sc Superscript{N+TP}}}{\mbox{\sc Superscript{Max Wealth}}} = \dfrac{\mbox{\sc TP}}{\mbox{\sc Superscript{Max Wealth}}} = \dfrac{\mbox{\sc TP}}{\mbox{\sc Superscript{Max Wealth}}} = \dfrac{\mbox{\sc TP}}{\mbox{\sc FN+TP}}$
	특이도(Specificity) = $\frac{$ 옳게 분류된 정상 데이터의 $\dot{\phi}$ = $\frac{TN}{TN+FP}$	특이도(Specificity) = $\frac{볼량으로 예측된 데이터의 수}{실제 불량인 데이터의 수} = \frac{TN}{TN+FP}$
		첫 번째로, 신경망의 단점으로 지적되어
	첫째, 신경망의 단점으로 지적돼왔던 과적	왔던 과적합과 Gradient Vanishing을 완
	합과 Gradient Vanishing을 완화시킬 수	화시킬 수 있는 알고리즘이 효과를 보였다
	있는 알고리즘이 발전한 것과 타 알고리즘	는 점입니다. 두 번째로, 신경망은 타 알고
78 아래6라인	대비 학습 시간이 매우 오래 걸리는 문제	리즘 대비 학습 시간이 매우 오래 걸리는
"" "	가 있었는데 Graphics Processing	문제가 있었는데 Graphics Processing
	Unit(GPU)을 신경망의 연산에 사용할 수	Unit(GPU)를 신경망의 연산에 사용할 수
	이에 되면서 이를 해결하게 된 것입니다.	이 있게 되면서 학습 속도를 높일 수 있게 되
	있게 되면서 이글 에걸이게 된 것합니다. 	
	class Net(nn.Module)	었다는 점입니다. class Net(nn.Module):
00 = = = 101		
82 코드라인	definit(self)	definit(self):
2,3,8		
00 1-7 5-1-1	def forward(self, x)	def forward(self, x):
82 아래 5라인	이 예제에서는 30%의 노드들은	이 예제에서는 50%의 노드들은
	class Net(nn.Module)	class Net(nn.Module):
83 코드라인	definit(self)	definit(self):
2,3,9		
	def forward(self, x)	def forward(self, x):
83 아래 1라인	Validation Accuracy를 결과를	Test Accuracy를 결과를 비교한
	class Net(nn.Module)	class Net(nn.Module):
82 코드라인	definit(self)	definit(self):
2,3,9		
	def forward(self, x)	def forward(self, x):
89 수식아래	[그림 3-7]을 보면	[그림 3-9]를 보면
90 6라인	코드에 따라 activation functoin 이전에	코드에 따라 Activation Fuction 이전에
	class Net(nn.Module)	class Net(nn.Module):
90 코드라인	definit(self)	definit(self):
2,3,9		
	def forward(self, x)	def forward(self, x):
91 3라인	512차원으로	256차원으로
91 코드위3라인	Validation Loss, Validation Accuracy	Test Loss는 감소하며, Test Accuracy
		기법으로 Xavier Initialization, LeCun
92 12라인	기법을 간략하게 소개하겠습니다.	Initialization 그리고 He Initialization 등
		이 있습니다.

92	*LeCun Initialization: LeCun이라는 Convolutional Neural 네트워크의 창시자의 이름에서 따 온 기법으로, LeCun Normal Initialization과 LeCun Uniform Initialization의 있습니다. 각각 초기 분포가 다음과 같은 분포를 따르도록 weigh를 초기화하는 것입니다. $W \sim N \left(0, Var(W)\right)$ $Var(W) = \sqrt{\frac{1}{n_{th}}}$ 여기서 n_{th} : 이젠 Layer의 노드 수 $-\text{LeCun Uniform Initialization}$ *He Initialization: Xavier Initialization은 ReLU 함수를 사용할 때 비효율적이라는 것을 보이는 데, 이를 보완한 초기화 기법이 He Initialization입니다. $W \sim U\left(-\frac{1}{n_{th}}, +\sqrt{\frac{1}{n_{th}}}\right)$	*LeCun Initialization: LeCun이라는 CNN 창사자의 이용에서 따온 기법으로, LeCun Normal Initialization라 LeCun Uniform Initialization의 있습니다. 각각 호기 분포가 다음과 같은 분포를 따르도록 weight를 초기화하는 것입니다. - LeCun Normal Initialization $W \sim W(V)$ $V = V = V = V = V = V = V = V = V = V =$
93 코드	def weight_init(m) #(2) if isinstance(m, nn.Linear) #(3)	def weight_init(m): #(2) if isinstance(m, nn.Linear):#(3)
95	$\theta = \theta - \eta \nabla_{\theta} I(\theta)$	$\theta_{t+1} \leftarrow \theta_t - \eta \nabla_{\theta} J(\theta)$
		11.5
95	$\nu_t = \gamma \nu_{t-1} - \eta \nabla_{\theta} J(\theta)$ $\theta = \theta - \nu_t$	$\nu_t = \gamma \nu_{t-1} - \eta \nabla_{\theta} J(\theta)$ $\theta_{t+1} \leftarrow \theta_t - \nu_t$
96	$\nu_t = \gamma \nu_{t-1} - \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$	$\nu_t = \gamma \nu_{t-1} - \eta \nabla_{\theta} J(\theta - \gamma \nu_{t-1})$
30	$\theta = \theta - v_t$	$\theta_{t+1} = \theta_t - \nu_t$
96	$G_t = G_{t-1} - (\nabla_{\theta} J(\theta_t))^2$ $\theta = \theta - \nu_t$	$G_t = G_{t-1} - (\nabla_{\theta} J(\theta_t))^2$ $\theta_{t+1} \leftarrow \theta_t - \frac{\eta}{\sqrt{G + \epsilon}} \nabla_{\theta} J(\theta_t)$
96 7라인	진행될수록 부분이 RMSProp는 G가	진행될수록 G_{-t} 부분이 RMSProp는 G_{-t} 가
96	$G = \gamma G + (1 - \gamma)(\nabla_{\theta} J(\theta_t))^2$ $\theta = \theta - \frac{\eta}{\sqrt{G + \epsilon}} \nabla_{\theta} J(\theta_t)$	$G = \gamma G + (1 - \gamma)(\nabla_{\theta} J(\theta_t))^2$ $\theta_{t+1} \leftarrow \theta_t - \frac{\eta}{\sqrt{G + \epsilon}} \nabla_{\theta} J(\theta_t)$
96	$G = \gamma G + (1 - \gamma)(\nabla_{\theta} J(\theta_{t}))^{2}$ $\Delta_{\theta} = \frac{\sqrt{s + \epsilon}}{\sqrt{G + \epsilon}} \nabla_{\theta} J(\theta_{t})$ $\theta = \theta - \Delta_{\theta}$ $s = \gamma s + (1 - \gamma)\Delta_{\theta}^{2}$	$G = \gamma G + (1 - \gamma)(\nabla_{\theta} J(\theta_{t}))^{2}$ $\Delta_{\theta} = \frac{\sqrt{s + \epsilon}}{\sqrt{G + \epsilon}} \nabla_{\theta} J(\theta_{t})$ $\theta_{t+1} \leftarrow \theta_{t} - \Delta_{\theta}$ $s = \gamma s + (1 - \gamma)\Delta_{\theta}^{2}$
103 코드라인2 104 아래 3, 5	if torch.cuda.is_available()	if torch.cuda.is_available():
104 아테 3, 5 라인	MNIST	FashionMNIST
105 4라인	해당 데이터를 인터넷상에서 다운로드해 이용할 것인지를 지정합니다.	FashionMNIST 데이터셋은 의류, 가방, 신발 등 10가지 종류로 구성된 이미지 데 이터셋입니다.
105 5라인	■ ransform	■ transform
105 12라인 106 코드라인4	다운로드한 MNIST 데이터셋을 for i in range(10)	다운로드한 FashionMNIST 데이터셋을 for i in range(10):
107 코드	class AE(nn.Module) #(1) definit(self) #(2)	class AE(nn.Module): #(1) definit(self): #(2)
	def forward(self, x) #(16)	def forward(self, x): #(16)

108 13번	Output의 크기를 '256'으로	Output의 크기를 '512'로
100 13년	-	
1라인	설계하기'의 (6)에서 정의한	설계하기'의 (1)에서 정의한
	def train(model, train_loader,	def train(model, train_loader,
109 코드8번	optimizer, log_interval)	optimizer, log_interval):
라인 1,3	for batch_idx,(image, _) in	for batch_idx,(image, _) in
	enumerate(train_loader) #(2)	enumerate(train_loader): #(2)
111 코드라인	def evaluate(model, test_loader)	def evaluate(model, test_loader):
1, 6	with torch.no_grad() #(5)	with torch.no_grad(): #(5)
112 13번	Mini-Batch 개수만큼	데이터 개수만큼
110 = = = 101	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
112 코드라인 2, 7, 12	for i in range(10)	for i in range(10):
Σ, 7, 12	for i in range(10)	for i in range(10):
114 코드2번 라인1	if torch.cuda.is_available()	if torch.cuda.is_available():
114 코드5번 라인3	for i in range(10)	for i in range(10):
	class AE(nn.Module)	class AE(nn.Module):
115 코드6번	definit(self)	definit(self):
라인 1,2,16	def forward(self, x)	def forward(self, x):
	def train(model, train_loader,	def train(model, train_loader,
115 코드8번	optimizer, log_interval)	optimizer, log_interval):
- 라인 1, 3	for batch_idx,(image, _) in	for batch_idx,(image, _) in
	enumerate(train_loader)	enumerate(train_loader):
116 코드9번	def evaluate(model, test_loader)	def evaluate(model, test_loader):
라인 1, 6	with torch.no_grad()	with torch.no_grad():
440 400	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
116 코드10번	for i in range(10)	for i in range(10):
라인 1,6,11	for i in range(10)	for i in range(10):
101 -1-1 0-101	선형http://item.gmarket.co.kr/	
121 아래 2라인	Item?goodscode=1686873084 결합	선형 결합
	픽셀 값을 뽑으면 'Max Pooling', 평균 픽	픽셀 중 최대값을 추출하는 것을 'Max Pooling',
124 아래 5라인	셀 값을 뽑으면 'Average Pooling'이라	사각형 안의 픽셀 값의 평균을 계산하여 추출하는
	합니다.	것을 'Average Pooling'이라고 합니다.
		CNN의 구조는 Convolution - Pooling -
125 6라인	CNN의 구조는 다음과 같습니다.	Convolution - Pooling - Fully Connected
		Layer와 같은 구조를 지닙니다.
129 코드2번 라인 1	if torch.cuda.is_available()	if torch.cuda.is_available():
132 코드5번 라인 3	for i in range(10)	for i in range(10):
기년 기	class Net(nn.Module) #(1)	class Net(nn.Module): #(1)
132 코드6번	definit(self) #(2)	definit(self): #(2)
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	def forward(self, x): #(7)
	No. 1 / No. 1	업데이트할 때 이용하는 옵티마이저를 정의
		이용하며, 파라미터를 업데이트할 때 반영될
134 2번		
		을 기본 옵션으로 설정하며 학습률은 분석가
	취향에 따라 다르게 설정하기도 합니다.	dof train(model train lead-
105 7 500	def train(model, train_loader,	def train(model, train_loader,
135 코드8번	optimizer, log_interval)	optimizer, log_interval):
라인 1, 3	for batch_idx,(image, label) in	for batch_idx,(image, label) in
	enumerate(train_loader) #(2)	enumerate(train_loader): #(2)

100 7 5 0 1	def evaluate(medal test leader)	def errelyete(medel test leader):
136 코드9번	def evaluate(model, test_loader)	def evaluate(model, test_loader):
라인 1, 5	with torch.no_grad() #(4)	with torch.no_grad(): #(4)
137 코드라인1	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
136 코드2번	if torch.cuda.is_available()	if torch.cuda.is_available():
라인 1 136 코드5번		
라인 3	for i in range(10)	for i in range(10):
138 코드2번		
라인 1	if torch.cuda.is_available()	if torch.cuda.is_available():
138 코드5번	(10)	(10)
라인 3	for i in range(10)	for i in range(10):
139 코드6번	class Net(nn.Module)	class Net(nn.Module):
라인 1,2,7	definit(self)	definit(self):
니 인 1,2,7	def forward(self, x)	def forward(self, x):
	def train(model, train_loader,	def train(model, train_loader,
140 코드8번	optimizer, log_interval)	optimizer, log_interval):
라인 1, 3	for batch_idx,(image, label) in	for batch_idx,(image, label) in
1 2, 0	enumerate(train_loader)	
140 코드9번	def evaluate(model, test_loader)	enumerate(train_loader): def evaluate(model, test_loader):
140 코드9인 라인 1, 5		
140 코드10번	with torch.no_grad()	with torch.no_grad():
라인 1	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
144 코드6번	class Net(nn.Module) #(1)	class Net(nn.Module): #(1)
라인 1, 2	definit(self) #(2)	definit(self):#(2)
142 코드	def forward(self, x) #(20)	def forward(self, x): #(20)
147 4라인	[그림 4-12]를 보면 왼쪽	[그림 4-14]를 보면 왼쪽
147 아래 4라인	[그림 4-13]의 예시를	[그림 4-15]의 예시를
148 5라인	[그림 4-14]의 두 번째	[그림 4-16]의 두 번째
148 아래 6라인	[그림 4-14]의 세 번째	[그림 4-16]의 세 번째
152 5라인	[그림 4-15]와 같습니다.	[그림 4-17]과 같습니다.
153 아래 2라인	[그림 4-18]처럼	[그림 4-20]처럼
155 1라인	[그림 4-20]을 확대한 부분이	[그림 4- <mark>22</mark>]를 확대한 부분이 [그림 4-24]처럼 이전
156 7라인	[그림 4-22]처럼 이전 class BasicBlock(nn.Module) #(1)	class BasicBlock(nn.Module): #(1)
	definit(self, in_planes, planes, stride = 1) #(2)	<pre>definit(self, in_planes, planes, stride = 1): #(2)</pre>
150 75		
158 코드	def forward(self, x) #(24)	def forward(self, x): #(24)
	class ResNet(nn.Module) #(30)	class ResNet(nn.Module): #(30)
	definit(self, num_classes = 10)	definit(self, num_classes = 10):
	#(31)	#(31)
	def _make_layer(self, planes,	def _make_layer(self, planes,
150 75	num_blocks, stride) #(44)	num_blocks, stride): #(44)
159 코드	def forward(self, x) #(51)	def forward(self, x): #(51)
	out = F.avg_pool2d(out, 8s) #(56)	out = F.avg_pool2d(out, 8) #(56)
		최종 출력 값은 10개의 클래스를 표현하기
163		기 값과 Loss를 계산해야 하므로 출력 값의
	크기를 10으로 설정합니다.	
163~165	(44)~(58)	(45)~(59)
169 코드	for Epoch in range(1, EPOCHS + 1) #(6)	for Epoch in range(1, EPOCHS + 1): #(6)
175 코드2번	if torch.cuda.is_available()	if torch.cuda.is_available():
라인1		
176	transforms.C[Enter]Crop(224), #(7)	transforms.CenterCrop(224), #(7)

	(7) 해당 이미지 중앙을 기준으로 224 * 22	4 크기로 이미지를 잔라내어 사이지를 벼겨
177	하는 것을 의미합니다.	
177		로른 범거하다는
178 5번코드	(8) 해당 이미지를 256 * 256 크기로 사이즈	^글 연경합니다.
라인 3	for i in range(10)	for i in range(10):
179 6번코드	def train(model, train_loader, optimizer,	def train(model, train_loader, optimizer,
라인 1	log_interval)	log_interval):
180 7번코드	def evaluate(model, test_loader)	def evaluate(model, test_loader):
라인 1, 5	with torch.no_grad()	with torch.no_grad():
182 3번	resnet34 모델	resnet18 모델
182 10번코드	for Epoch in range(1, EPOCHS + 1) #(1)	for Epoch in range(1, EPOCHS + 1): #(1)
	''' 11. IMAGENET 데이터로 미리 학습된 Res	Net18 모델을 불러온 후 개미, 벌 이미지 데이
	터에 맞게 Fine Tuning 해보기 '''	
	model = models.resnet18(pretrained = T	rue) #(1)
	num_ftrs = model.fc.in_features	#(2)
	model.fc = nn.Linear(num_ftrs, 2)	#(3)
	model = model.cuda()	#(4)
184 (1) 위 코드	model.edda()	"(1)
104 (1) 뒤 고드 추가		0.0001) #(5)
デクト 	optimizer = torch.optim.Adam(model.par	
	EPOCHS = 10	#(6)
	for epoch in range(1, EPOCHS + 1):	#(7)
		n\"], optimizer, log_interval = 5) #(8)
	valid_loss, valid_accuracy = ev	valuate(model, dataloaders[\"val\"]) #(9)
	print("\n[EPOCH: {}], \tTest	Loss: {:.4f}, \tTest Accuracy: {:.2f}
	%\n".format(epoch, valid_loss,	
184 2번	resnet34 모델	resnet <mark>18</mark> 모델
186 2번코드	if torch.cuda.is_available()	if torch.cuda.is_available():
라인1 187 3번코드		
라인9	transforms.C[Enter]Crop(224),	transforms.CenterCrop(224),
187 5번코드 라인3	for i in range(10)	for i in range(10):
7 2 9	def train(model, train_loader,	def train(model, train_loader,
187 6번코드	optimizer, log_interval)	optimizer, log_interval):
라인 1, 3	for batch_idx,(image, label) in	for batch_idx,(image, label) in
·	enumerate(train_loader)	enumerate(train_loader):
188 7번코드	def evaluate(model, test_loader)	def evaluate(model, test_loader):
라인 1, 5	with torch.no_grad()	with torch.no_grad():
188 10번코드	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
라인 1 189 라인 2	for Epoch in range(1, EPOCHS + 1)	for Epoch in range(1, EPOCHS + 1):
189 아래 8라인	optimizer~ 끝까지 삭제	101 Lpoch in range(1, Li Ocho + 1).
202 라인 1	def indexed_sentence(sentence)	def indexed_sentence(sentence):
203 두 번째 코 드라인 5	def indexed_sentence_unk(sentence)	def indexed_sentence_unk(sentence):
—-16.5	def get_stats(vocab)	def get_stats(vocab):
212 첫 번째 코	for word, freq in vocab.items()	for word, freq in vocab.items():
드 라 인	for i in range(len(symbols)-1)	for i in range(len(symbols)-1):
3,5,7,10,21	def merge_vocab(pair, v_in)	def merge_vocab(pair, v_in):
2,2,7,10,21		
214 라인 7	for i in range(num_merges) # 4번 과정 for i in range(num_merges)	for i in range(num_merges): # 4번 과정 for i in range(num_merges):
414 년년 /	101 1 III 1 ange(mum_met ges)	Tot I III Lange(mum_merges).

216 첫 번째코		
드라인 4	for n in range(5)	for n in range(5):
217	(1) tokenize Module에 문장을	(1) tokenizer.tokenize 함수에 문장을
229 라인 2	def PreProcessingText(input_sentence)	def PreProcessingText(input_sentence):
	for idx,(k, v) in	for idx,(k, v) in
230 두 번째 코	enumerate(TEXT.vocab.stoi.items())	enumerate(TEXT.vocab.stoi.items()):
드라인 4,12	for idx,(k, v) in	for idx,(k, v) in
	enumerate(LABEL.vocab.stoi.items())	enumerate(LABEL.vocab.stoi.items()):
	c l a s s	c l a s s
244 라인5,6	SentenceClassification(nn.Module)	SentenceClassification(nn.Module):
	definit(self, **model_config)	definit(self, **model_config):
244 아래 라인5	def forward(self, x)	def forward(self, x):
247 라인 9	def binary_accuracy(preds, y)	def binary_accuracy(preds, y):
	c l a s s	c l a s s
257 코드라인	SentenceClassification(nn.Module)	SentenceClassification(nn.Module):
7,8,13	definit(self, **model_config)	definit(self, **model_config):
	def forward(self, x)	def forward(self, x):
260 세 번째 코 드라인 1	def PreProcessingText(input_sentence)	def PreProcessingText(input_sentence):
000 11 11 11 7	c l a s s	c l a s s
262 세 번째 코	SentenceClassification(nn.Module)	SentenceClassification(nn.Module):
드라인 1,2	definit(self, **model_config)	definit(self, **model_config):
263 코드라인16	def forward(self, x)	def forward(self, x):
	def train(model, iterator, optimizer,	def train(model, iterator, optimizer,
-1-1	loss_fn, idx_Epoch, **model_params)	loss_fn, idx_Epoch, **model_params):
264 라인	for idx, batch in enumerate(iterator)	for idx, batch in enumerate(iterator):
1,6,26,31	def evaluate(model, iterator, loss_fn)	def evaluate(model, iterator, loss_fn):
	with torch.no_grad()	with torch.no_grad():
265 코드라인18	for Epoch in range(N_EPOCH)	for Epoch in range(N_EPOCH):
266 세 번째 코		
드라인 5	def predict_sentiment(model, sentence)	def predict_sentiment(model, sentence):
267 두 번째 코 드라인 5	def new_tokenizer(sentence)	def new_tokenizer(sentence):
267 세 번째 코	def PreProcessingText(input_sentence)	def PreProcessingText(input_sentence):
드라인 1,11	def PreProc(list_sentence)	def PreProc(list_sentence):
	class	class
268 두 번째 코	SentenceClassification(nn.Module)	SentenceClassification(nn.Module):
드 라 인	definit(self, **model_config)	definit(self, **model_config):
4,5,10	def forward(self, x)	def forward(self, x):
269 첫 번째 코		
드라인 5	def count_parameters(model)	def count_parameters(model):
269 두 번째 코 드라인 7	for Epoch in range(N_EPOCH)	for Epoch in range(N_EPOCH):
274 아래 2라인	의 입장에서는 D(x)가 1이고(진짜 데이터 를 1로 구분) 가 0일 때	<i>D</i> 의 입장에서는 <i>D(x)</i> 가 1이고(진짜 데이터를 1로 구분) <i>D(G(z))</i> 가 0일 때
91 아래 6라인	[그림 7-4]를 이용해 확인할 수	[그림 6-21] 자료를 통해 확인할 수
	, , , , , , , , , , , , , , , , , , , ,	, , _ 0 , , _ 1