数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

Moore's Law: The number of transistors on microchips doubles every two years Our World

Our World in Data

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important for other aspects of technological progress in computing – such as processing speed or the price of computers.

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count) Year in which the microchip was first introduced

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Licensed under CC-BY by the authors Hannah Ritchie and Max Roser.

英伟达3个月卖出800吨H100! 云服务供应商的大规模H100 集群容量即将耗尽,全球陷入GPU短缺——整体算来,全球公司需要约432000张H100。

by新智元

WHEN EVERYONE DIGS FOR GOLD

Path to 100 Million Users (stylized)

集成电路的分类

分类	单芯片内集成的逻 辑门数量	集成内容	器件封装	需要掌握的内容	
小规模 (SSI)	<10 gates	逻辑门、触 发器等		① 学会查阅器件资料; ② 典型集成电路芯片的功能、外特性; ③ 能熟练运用并完成设计要求。	
中规模 (MSI)	10~100 gates	译码器、计 数器、加法 器等模块	I A PART OF THE PA		
大规模 (LSI)	100~10000 gates	存储器、微 处理器或复		① 了解典型PLD集成芯片的功能和特性; ② 能够使用HDL语言完成逻辑设计;	
超大规模 (VLSI)	>10000 gates	杂的数字系 统			

前提: 忽略输入端原、反变量的差别.

门的级数——

电路输入与输出之间串联的门的最大数值

□二级电路

AND-OR 电路(积之和) OR-AND 电路(和之积)

- □ 三级电路 OR-AND-OR电路
- □ 各门没有特定的排列顺序
- □ 输出门可以使与门也可以是或门

1. 二级电路

AND-OR 电路(积之和)

$$f = a'c'd + bc'd + bcd' + acd'$$

OR-AND 电路(和之积)

$$f = (c+d)(a'+b+c)(c'+d')(a+b+c')$$

5个门,16 个输入端

5个门,14 个输入端

1. 二级电路

AND-OR 电路(积之和)

$$f = a'c'd + bc'd + bcd' + acd'$$

2. 三级电路

OR-AND-OR 电路

$$f = c'd(a'+b)+cd'(a+b)$$

5个门,16 个输入端

5个门,12 个输入端

二级门电路的8种基本形式——1

二级门电路的8种基本形式——2

多级门电路设计实例

- \triangleright 设计组合电路,对输入的2个二进制数 $X=X_1X_2$ 和 $Y=Y_1Y_2$ 比较,当X>Y,输出F=1; 否则,F=0.
 - ①确定输入输出

② 真值表

$X_1 X_2 Y_1 Y_2$	F	$X_1 X_2 Y_1 Y_2$	F
0 0 0 0	0	1 0 0 0	1
0 0 0 1	0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1
0 0 1 0	0	1 0 1 0	0
0 0 1 1	0	1 0 1 1	0
0 1 0 0	1	1 1 0 0	1
0 1 0 1	0	1 1 0 1	1
0 1 1 0	0	1 1 1 0	1
0 1 1 1	0	1 1 1 1	0

③最简二级与或电路

$$\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{Y}}_1 + \mathbf{X}_2 \overline{\mathbf{Y}}_1 \overline{\mathbf{Y}}_2 + \mathbf{X}_1 \mathbf{X}_2 \overline{\mathbf{Y}}_2$$

④ 采用单一逻辑门(与非门)设计

$$\mathbf{F} = \mathbf{X}_1 \overline{\mathbf{Y}}_1 + \mathbf{X}_2 \overline{\mathbf{Y}}_1 \overline{\mathbf{Y}}_2 + \mathbf{X}_1 \mathbf{X}_2 \overline{\mathbf{Y}}_2 \qquad = (\overline{\mathbf{X}_1 \overline{\mathbf{Y}}_1}) \overline{(\mathbf{X}_2 \overline{\mathbf{Y}}_1 \overline{\mathbf{Y}}_2)} \overline{(\mathbf{X}_1 \mathbf{X}_2 \overline{\mathbf{Y}}_2)}$$

二级门电路的设计

任何逻辑都可以用二级门电路实现

$$F(X,Y,Z) = \sum_{XYZ} (1,6,7) = \prod_{XYZ} (0,2,3,4,5)$$

$$F'(X,Y,Z) = \sum_{XYZ} (0,2,3,4,5) = \prod_{XYZ} (1,6,7)$$

NAND and NOR gates:

相比与门、或门——速度更快;价格便宜;使用的器件更少

与非门/或非门节省空间和门延迟。

加减法器和0C门

- ■半加器
- ■全加器
- ■多位加法器
- ■全减器
- OCi门

半加器(Half Adder)

功能:对两个1位二进制数执行相加运算

$$S_i = a_i \oplus b_i$$

$$C_{i+1} = a_i b_i$$

真值表

a _i b _i	S _i C _{i+1}		
0 0	0 0		
0 1	1 0		
1 0	1 0		
1 1	0 1		

利用单一逻辑门与非门实现半加器

$$\begin{cases} S_{i} = \overline{a}_{i}b_{i} + a_{i}\overline{b}_{i} = \overline{a}_{i}b_{i} + a_{i}\overline{b}_{i} + a_{i}\overline{a}_{i} + b_{i}\overline{b}_{i} \\ = \overline{a}_{i}(\overline{a}_{i} + \overline{b}_{i}) + b_{i}(\overline{a}_{i} + \overline{b}_{i}) = a_{i}\overline{a}_{i}\overline{b}_{i} + b_{i}\overline{a}_{i}\overline{b}_{i} \\ = \overline{a}_{i}\overline{a}_{i}\overline{b}_{i}\overline{b}_{i}\overline{a}_{i}\overline{b}_{i} \end{cases}$$

$$C_{i+1} = \overline{a}_{i}\overline{b}_{i}$$

全加器(Full Adder)

1 0 1 1 A

1 1 1 0 B

$$C_i$$

A = $a_3 a_2 a_1 a_0 = 1011$
 $A = b_3 b_2 b_1 b_0 = 1110$

...... S_i

全加器表示

$\mathbf{a_i}$	b _i ($C_{\mathbf{i}}$	$S_i C_{i+1}$		
0	0	0	0 0		
0	0	1	1 0		
0	1	0	1 0		
0	1	1	0 1		
1	0	0	1 0		
1	0	1	0 1		
1	1	0	0 1		
1	1	1	1 1		

$\mathbf{b_{i}c_{i-1}}$			$\mathbf{C_{i+1}}$						
a_i	00	01	11	10	a_i	00	01	11	10
0	0	1	0	1	0	0	0	1	0
1	1	0	1	0	1	0	1	1	1

$$S_{i} = \overline{a_{i}} \overline{b_{i}} c_{i} + a_{i} \overline{b_{i}} \overline{c_{i}} + a_{i} \overline{b_{i}} \overline{c_{i}} + a_{i} \overline{b_{i}} c_{i} + a_{i} \overline{b_{i}} c_{i}$$

$$= (\overline{a_{i}} \overline{b_{i}} + a_{i} \overline{b_{i}}) c_{i} + (a_{i} \overline{b_{i}} + a_{i} \overline{b_{i}}) \overline{c_{i}}$$

$$= (\overline{a_{i}} \bigoplus \overline{b_{i}}) c_{i} + (a_{i} \bigoplus \overline{b_{i}}) \overline{c_{i}}$$

$$= a_{i} \bigoplus \overline{b_{i}} \bigoplus \overline{C_{i}}$$

$$C_{i+1}=(a_i \bigoplus b_i) C_i + a_i b_i$$

全加器逻辑表示

solution 1:

$$\begin{cases} S_i = a_i \bigoplus b_i \bigoplus C_i \\ C_{i+1} = (a_i \bigoplus b_i) C_i + a_i b_i \end{cases}$$

全加器逻辑表示(2)

solution 2

全加器的应用

典型芯片

74LS82: 2-bit adder

74LS283: 4-bit adder

二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀	二进制数 A ₃ A ₂ A ₁ A ₀	余三码 S ₃ S ₂ S ₁ S ₀
0 0 0 0	0 0 1 1	1000	1011
0 0 0 1	0 1 0 0	1001	1100
0 0 1 0	0101	1010	X
0 0 1 1	0110	1011	X
0 1 0 0	0 1 1 1	1 1 0 0	×
0 1 0 1	1000	1 1 0 1	×
0 1 1 0	1001	1110	×
0 1 1 1	1010	1111	×

应用——余3码产生器

A₃A₂A₁A₀: 输入 8421 BCD码

S₃S₂S₁S₀: 输出余3码

S = A + 0011

(1) 串行进位

$$A = A_3A_2A_1A_0 = 1011$$

 $B = B_3B_2B_1B_0 = 1110$

$$S_{i} = a_{i} \bigoplus b_{i} \bigoplus C_{i}$$

$$C_{i+1} = (a_{i} \bigoplus b_{i}) C_{i} + a_{i}b_{i}$$

- 优点:线路简单
- 缺点:串行进位,运算速度慢
- 关键: 进位形成时间
- 解决方案: 改串行进位为并行进位

(2) 超前进位

$$C_{i+1} = (A_i \bigoplus B_i) C_i + A_i B_i$$

$$A = A_3A_2A_1A_0 = 1011$$

 $B = B_3B_2B_1B_0 = 1110$

$$C_{i+1}=P_iC_i+G_i$$

 $P_i=A_i\oplus B_i$
 $G_i=A_iB_i$
——进位迭代公式

$$C_{1} = P_{0}C_{0} + G_{0}$$

$$C_{2} = P_{1}C_{1} + G_{1} = P_{1}P_{0}C_{0} + P_{1}G_{0} + G_{1}$$

$$C_{3} = P_{2}C_{2} + G_{2} = P_{2}P_{1}P_{0}C_{0} + P_{2}P_{1}G_{0} + P_{2}G_{1} + G_{2}$$

$$C_{4} = P_{3}C_{3} + G_{3} = P_{3}P_{2}P_{1}P_{0}C_{0} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}G_{1} + P_{3}G_{2} + G_{3}$$

(2) 超前进位

$$P_{i} = A \bigoplus B_{i} \qquad G_{i} = A_{i}B_{i}$$

$$C_{1} = P_{0}C_{0} + G_{0}$$

$$C_{2} = P_{1}C_{1} + G_{1} = P_{1}P_{0}C_{0} + P_{1}G_{0} + G_{1}$$

$$C_{3} = P_{2}C_{2} + G_{2} = P_{2}P_{1}P_{0}C_{0} + P_{2}P_{1}G_{0} + P_{2}G_{1} + G_{2}$$

$$C_{4} = P_{3}C_{3} + G_{3} = P_{3}P_{2}P_{1}P_{0}C_{0} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}G_{1} + P_{3}G_{2} + G_{3}$$

26

全减器 (Binary Full Subtracter)

$$A = a_3 a_2 a_1 a_0 = 1110$$

 $B = b_3 b_2 b_1 b_0 = 1011$

真值表

a _i	b _i	C _i	Di	C _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

全减器——例

真值表

a _i	b _i	C _i	D _i	C _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$\begin{cases}
\mathbf{D_i} = \mathbf{a_i} \bigoplus \mathbf{b_i} \bigoplus \mathbf{C_i} \\
\mathbf{C_{i+1}} = (\mathbf{C_i} \bigoplus \mathbf{b_i}) \mathbf{a_i} + \mathbf{C_i} \mathbf{b_i}
\end{cases}$$

OC门(集电极开路门: Open Collector Gate)

- ■几个OC门的输出端可以直接互连: ■使用时必须加负载/上拉电阻

OC门&线与

 $F=F_1 \cdot F_2 = \overline{A_1B_1C_1} \cdot \overline{A_2B_2C_2}$

不使用OC门,需要2个与非门、1个与门

小 结

- ■半加器
- ■全加器
- ■多位加法器
- ■全减器
- OCi门