Отчёт по лабораторной работе №4

Дисциплина: Архитектура компьютера

Бережной Иван Александрович

Содержание

1	Цель работы				
2	Зада	адание			
3		олнение лабораторной работы		7	
	3.1	Написание программы Hello world!		7	
	3.2	Работа с транслятором NASM		8	
	3.3	Работа с компоновщиком LD		9	
	3.4	Запуск исполняемого файла		10	
	3.5	Задание для самостоятельной работы		10	
4	Выводы			14	
Сп	Список литературы				

Список иллюстраций

3.1	Создание файлов
3.2	Редактирование hello.asm
3.3	Создание объектного файла
3.4	Создание файлов obj.o и list.lst
3.5	Компоновка hello.exe
3.6	Компоновка main.exe
3.7	Запуск исполняемого файла
3.8	Создание файла lab4.asm
3.9	Редактирование lab4.asm
3.10	Создание объектного файла lab4.o
3.11	Создание исполняемого файла lab4.exe
3.12	Запуск исполняемого файла lab4.exe
3.13	Копирование файлов
3.14	Загрузка файлов на GitHub

Список таблиц

1 Цель работы

Освоение процедуры компиляции и сборки программ, написанных на ассемблере NASM.

2 Задание

- 1. Написание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с компоновщиком LD
- 4. Запуск исполняемого файла
- 5. Задание для самостоятельной работы

3 Выполнение лабораторной работы

3.1 Написание программы Hello world!

Создадим каталог для работы с программами на языке ассемблера NASM командой mkdir. Перейдём в него (утилита cd) и создадим текстовый файл hello.asm с помощью команды touch (рис. 3.1).

[iaberezhnoy@fedora ~]\$ mkdir -p ~/work/arch-pc/lab04
[iaberezhnoy@fedora ~]\$ cd ~/work/arch-pc/lab04
[iaberezhnoy@fedora lab04]\$ touch hello.asm

Рис. 3.1: Создание файлов

Откроем новый файл в текстовом редакторе и введём в него предложенный текст (рис. 3.2).

```
hello.asm
                  \oplus
  Открыть
                                                  ~/work/arch-pc/lab04
 1; hello.asm
                                    ; Начало секции данных
 2 SECTION .data
      hello: DB 'Hello world!',10 ; 'Hello world!' плюс
                                   ; символ перевода строки
      helloLen: EQU $-hello ; Длина строки hello
 6
 7 SECTION .text ; Начало секции кода
 8
      GLOBAL _start
10 _start: ; Точка входа в программу
11
     mov eax,4 ; Системный вызов для записи (sys_write)
                        ; Описатель файла '1' - стандартный вывод
12
      mov ebx,1
     mov ecx,hello ; Адрес строки hello в есх
13
14
      mov edx,helloLen ; Размер строки hello
15
      int 80h ; Вызов ядра
      mov eax,1 ; Системный вызов для выхода (sys_exit) mov ebx,0 ; Выход с кодом возврата '0' ′′ int 80h
16
17
                        ; Выход с кодом возврата '0' (без ошибок)
18
19
      int 80h
                      ; Вызов ядра
```

Рис. 3.2: Редактирование hello.asm

3.2 Работа с транслятором NASM

Напишем следующую команду в терминале: nasm -f elf hello.asm и выведем список файлов в репозитории командой ls. Видим новый файл: hello.o. Расширение .o указывает на то, что файл является объектным (рис. 3.3).

```
[iaberezhnoy@fedora lab04]$ nasm -f elf hello.asm
[iaberezhnoy@fedora lab04]$ ls
hello.asm hello.o
```

Рис. 3.3: Создание объектного файла

Теперь выполним команду nasm -o obj.o elf -g -l list.lst hello.asm. Co-

здались файлы obj.o и list.lst (рис. 3.4).

```
[iaberezhnoy@fedora lab04]$ nasm -o obj.o -f elf -g -l list.lst hello.asm [iaberezhnoy@fedora lab04]$ ls hello.asm hello.o list.lst obj.o
```

Рис. 3.4: Создание файлов obj.o и list.lst

3.3 Работа с компоновщиком LD

Передадим объектный файл на обработку компоновщику командой ld. В репозитории появился исполняемый файл hello.exe (рис. 3.5).

```
[iaberezhnoy@fedora lab04]$ ld -m elf_i386 hello.o -o hello
[iaberezhnoy@fedora lab04]$ ls
binutils-0.2.dev0-py3-none-amy.whl hello hello.asm hello.o list.lst obj.o
```

Рис. 3.5: Компоновка hello.exe

Введём следующую команду (рис. 3.6). В папке появился ещё один исполняемый файл, но с другим именем, а именно main.exe. Объектный файл, из которого был собран исполняемый, называется obj.o (имена различаются, т.к. мы указали значение main после флага -o).

```
[iaberezhnoy@fedora lab04]$ ld -m elf_i386 obj.o -o main
[iaberezhnoy@fedora lab04]$ ls
binutils-0.2.dev0-py3-none-a<u>n</u>y.whl <mark>hello</mark> hello.asm hello.o list.lst <u>main</u> obj.o
```

Рис. 3.6: Компоновка main.exe

3.4 Запуск исполняемого файла

Запустим файл командой ./hello (рис. 3.7).

[iaberezhnoy@fedora lab04]\$./hello
Hello world!

Рис. 3.7: Запуск исполняемого файла

3.5 Задание для самостоятельной работы

С помощью команды ср создадим копию файла hello.asm с именем lab4.asm (рис. 3.8).

[iaberezhnoy@fedora lab04]\$ cp hello.asm lab4.asm

Рис. 3.8: Создание файла lab4.asm

Откроем новый файл в текстовом редакторе и заменим в 3-ей строчке текст "Hello world!" на "Ivan Berezhnoy". Сохраним изменения (рис. 3.9).

Рис. 3.9: Редактирование lab4.asm

Создадим объектный файл, оттранслировав текст программы lab4.asm - получили объектный файл lab4.o (рис. 3.10). Командой ld скомпануем последний файл - получили исполняемый файл lab4.exe (рис. 3.11). Теперь исполним его с помощью команды ./lab4. В консоль вывелся наш текст "Ivan Berezhnoy" (рис. 3.12).

```
[iaberezhnoy@fedora lab04]$ nasm -f elf lab4.asm
[iaberezhnoy@fedora lab04]$ ls
binutils-0.2.dev0-py3-none-any.whl hello.asm lab4.asm list.lst obj.o
hello.o lab4.o main
```

Рис. 3.10: Создание объектного файла lab4.o

```
[iaberezhnoy@fedora lab04]$ ld -m elf_i386 lab4.o -o lab4
[iaberezhnoy@fedora lab04]$ ls
binutils-0.2.dev0-py3-none-any.whl hello.asm lab4 lab4.o main
hello hello.o lab4.asm list.lst obj.o
```

Рис. 3.11: Создание исполняемого файла lab4.exe

[iaberezhnoy@fedora lab04]\$./lab4 Ivan Berezhnoy

Рис. 3.12: Запуск исполняемого файла lab4.exe

Скопируем файлы hello.asm и lab4.asm в репозиторий с лабораторной работой №4 (рис. 3.13).

```
[iaberezhnoy@fedora lab04]$ cp hello.asm /home/iaberezhnoy/work/study/2023-2024/'Αρχитектура компь
ωτερα'/arch-pc/labs/lab04
[iaberezhnoy@fedora lab04]$ cp lab4.asm /home/iaberezhnoy/work/study/2023-2024/'Αρχитектура компью
τερα'/arch-pc/labs/lab04
[iaberezhnoy@fedora lab04]$
```

Рис. 3.13: Копирование файлов

Теперь загрузим файлы на GitHub (рис. 3.14).

```
[iaberezhnoy@fedora arch-pc]$ git add .
[iaberezhnoy@fedora arch-pc]$ git commit -m "Lab4 files were added"
[master 8dfae69] Lab4 files were added
17 files changed, 51 insertions(+), 38 deletions(-)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
create mode 100644 labs/lab04/report/image/image1.jpg
create mode 100644 labs/lab04/report/image/image10.jpg
create mode 100644 labs/lab04/report/image/image11.jpg
create mode 100644 labs/lab04/report/image/image12.jpg
create mode 100644 labs/lab04/report/image/image2.jpg
create mode 100644 labs/lab04/report/image/image3.jpg
create mode 100644 labs/lab04/report/image/image3.jpg
create mode 100644 labs/lab04/report/image/image4.jpg
create mode 100644 labs/lab04/report/image/image4.jpg
create mode 100644 labs/lab04/report/image/image4.jpg
create mode 100644 labs/lab04/report/image/image5.jpg
create mode 100644 labs/lab04/report/image/image6.jpg
create mode 100644 labs/lab04/report/image/image7.jpg
create mode 100644 labs/lab04/report/image/image8.jpg
create mode 100644 labs/lab04/report/image/image9.jpg
delete mode 100644 labs/lab04/report/image/image9.jpg
delete mode 100644 labs/lab04/report/image/image9.jpg
delete mode 100644 labs/lab04/report/image/image9.jpg
Giaberezhnoy@fedora arch-pc]$ git push
Перечисление объектов: 100% (28/28), готово.
При сжатии изменений используется до 6 потоков
Сжатие объектов: 100% (22/22), готово.
Запись объектов: 100% (22/22), готово.
Запись объектов: 100% (22/22), готово.
Запись объектов: 100% (22/22), отово.
Запись объектов: 100% (5/5), completed with 4 local objects.
То github.com:NoisyCake/study_2023-2024_arhpc.git
7701760..8dfae69 master -> master
```

Рис. 3.14: Загрузка файлов на GitHub

4 Выводы

В ходе лабораторной работы мы написали простейшие программы на ассемблере NASM, поработали с транслятором NASM и компановщикоом LD и изучили расширенный синтаксис командной строки NASM.

Список литературы

::: Архитектура ЭВМ