Universitatea Politehnica din București 2003 Disciplina: Geometrie și Trigonometrie

1. Să se calculeze volumul piramidei determinate de trei muchii adiacente ale unui cub de latură l.

a)
$$\frac{l^3}{6}$$
; b) $\frac{l^3}{4}$; c) $\frac{l^3}{3}$; d) $\frac{l^3}{2}$; e) $\frac{l^3\sqrt{2}}{3}$; f) $\frac{2l^3}{3}$.

Soluție. Baza piramidei este un triunghi dreptunghic cu catetele de lungime l, iar înalțimea este tot l. Atunci $V = \frac{A_b h}{3} = \frac{1}{3} \frac{l^2}{2} l = \frac{l^3}{6}$.

2. Ecuația cercului cu centrul C(1,-1) și de rază 2 este:

a)
$$x^2 + y^2 - 2x + 2y - 1 = 0$$
; b) $x^2 + y^2 - 4x - 4y = 0$; c) $x^2 + y^2 - x + y = 0$; d) $x^2 + y^2 - 2x + 2y - 2 = 0$; e) $x^2 + y^2 - 2x + 2y - 4 = 0$; f) $x^2 + y^2 = 4$.

Soluție. Ecuația este $(x-1)^2 + (y+1)^2 = 2^2$, deci $x^2 + y^2 - 2x + 2y - 2 = 0$.

3. Un paralelipiped dreptunghic are înălțimea 4, aria bazei 6 și o latură a bazei 3. Să se calculeze lungimea diagonalei paralelipipedului.

a)
$$2\sqrt{5}$$
; b) $\sqrt{13}$; c) $\sqrt{61}$; d) 4; e) $\sqrt{29}$; f) $\sqrt{43}$.

Soluție. Lungimea diagonalei este $d=\sqrt{a^2+b^2+c^2}$, unde a=înălțimea= 4, b=latura bazei= 3. Atunci aria bazei este $A=c\cdot b=3c\Rightarrow 6=3c\Rightarrow c=2$, și deci $d=\sqrt{16+9+4}=\sqrt{29}$.

4. Fie $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$. Să se calculeze z^{12} .

a)
$$1 + i\sqrt{3}$$
; b) $1+i$; c) i; d) -1 ; e) 0; f) 1.

Soluție. Trecând la forma trigonometrică obținem

$$z = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}, \quad z^{12} = \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{12} = \cos\frac{12\pi}{3} + i\sin\frac{12\pi}{3} = \cos4\pi + i\sin4\pi = 1.$$

5. Fie vectorii $\vec{u} = \vec{i} + \sqrt{3}\vec{j}$ și $\vec{v} = \sqrt{3}\vec{i} + \vec{j}$. Măsura unghiului dintre acești vectori este:

a)
$$\frac{\pi}{3}$$
; b) 0; c) $\frac{\pi}{6}$; d) $\frac{\pi}{2}$; e) $\frac{\pi}{4}$; f) $\frac{2\pi}{3}$.

Soluție. Avem formula $\vec{u} \cdot \vec{v} = ||\vec{u}|| \cdot ||\vec{v}|| \cos \alpha$. În cazul nostru, egalitatea se rescrie $(\vec{i} + \sqrt{3}\vec{j})(\sqrt{3}\vec{i} + \vec{j}) = \sqrt{(1+3)(3+1)}\cos \alpha$, deci

$$\sqrt{3} + \sqrt{3} = 4\cos\alpha \Leftrightarrow \cos\alpha = \frac{\sqrt{3}}{2} \Leftrightarrow \alpha \in \left\{2k\pi \pm \frac{\pi}{6} \;\middle|\; k \in \mathbb{Z}\right\},\,$$

și prin urmare unghiul corespunzător din intervalul $[0,\pi]$ este $\alpha=\frac{\pi}{6}$.

6. Să se determine raza cilindrului circular drept de volum 3 și înălțime $\frac{1}{3\pi}$.

a) 3; b) 6; c)
$$3\pi$$
; d) $\sqrt{2}$; e) 6π ; f) 18.

Soluție. Dacă V este volumul cilindrului, R raza și h înăltimea, condiția din enunț se rescrie $V=\pi R^2 h \Leftrightarrow 3=\pi R^2 \frac{1}{3\pi} \Leftrightarrow R^2=9$, și deci R=3.

7. Aria unei sfere de volum $\frac{4\pi}{3}$ este:

a) 8; b)
$$\frac{3\pi}{2}$$
; c) 4π ; d) 4; e) 3π ; f) 2π .

Soluţie. Avem $A=4\pi R^2$ şi $V=\frac{4\pi R^3}{3}$. Deci $\frac{4\pi R^3}{3}=\frac{4\pi}{3}\Leftrightarrow R=1$ şi deci $A=4\pi$.

8. Fie $\sin \alpha = \frac{4}{5}$, $0 < \alpha < \frac{\pi}{2}$. Să se calculeze $\cos \alpha$.

a)
$$\frac{3}{5}$$
; b) $-\frac{3}{5}$; c) $\frac{1}{2}$; d) 0; e) $\frac{1}{5}$; f) $-\frac{1}{5}$.

Soluţie. Cum $\alpha \in (0, \frac{\pi}{2}) \Leftrightarrow \cos \alpha > 0$ şi deci

$$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}.$$

- 9. Fie $E(x) = \sin 2x \cos x + \operatorname{tg} \frac{3x}{2}$. Să se calculeze $E\left(\frac{\pi}{6}\right)$.
 - a) 0; b) 1; c) $\frac{\sqrt{2}}{2}$; d) $\frac{\sqrt{3}}{2}$; e) $\frac{1}{2}$; f) 2.

Soluţie. Avem $E\left(\frac{\pi}{6}\right) = \sin\frac{\pi}{3} - \cos\frac{\pi}{6} + tg\frac{\pi}{4} = \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + 1 = 1.$

- 10. Să se determine numărul soluțiilor ecuației $\cos x = \sqrt{3} \sin x$ situate în intervalul $[0, 2\pi]$.
 - a) 0; b) 2; c) 4; d) 1; e) 3; f) 6.

Soluție. Se observă că dacă avem $\cos x = 0$, atunci $\sin x \in \{\pm 1\}$ deci ecuația devine $0 = \pm \sqrt{3}$, fără soluții. Deci $\cos x \neq 0$. Împărțim prin $\cos x$. Ecuația se rescrie $\operatorname{tg} x = \frac{1}{\sqrt{3}} \Leftrightarrow \left\{ x = \frac{\pi}{6} + k\pi \middle| k \in \mathbb{Z} \right\}$. În intervalul $[0, 2\pi]$ avem doar soluțiile $\frac{\pi}{6}, \frac{\pi}{6} + \pi$, deci două soluții.

- 11. Să se determine coordonatele mijlocului segmentului AB, unde A(7, -2, 3) și B(-3, 4, 1).
 - a) (0,1,2); b) (1,1,1); c) (2,1,2); d) (2,1,0); e) (0,0,0); f) (-2,-1,2).

Soluție. Mijlocul M al segmentului AB are coordonatele $\left(\frac{7+(-3)}{2},\frac{(-2)+4}{2},\frac{3+1}{2}\right)=(2,1,2)$.

- 12. Să se determine distanța dintre punctele A(5,0,-2) și B(1,4,0).
 - a) 5,5; b) 6; c) 5; d) $\sqrt{6}$; e) 4; f) 4,5.

Soluţie. Distanţa dintre puncte este $d = \sqrt{(5-1)^2 + (0-4)^2 + (-2-0)^2} = \sqrt{36} = 6$.

- 13. Pe latura AB a triunghiului ABC se ia punctul M astfel încât $AM = \frac{1}{2}AB$, iar pe latura AC se ia punctul N astfel încât $AN = \frac{1}{3}AC$. Fie S' aria ΔAMN şi S aria ΔABC . Să se calculeze raportul $\frac{S'}{S}$.
 - a) $\frac{1}{3}$; b) $\frac{1}{5}$; c) $\frac{1}{4}$; d) $\frac{1}{2}$; e) $\frac{1}{36}$; f) $\frac{1}{6}$.

Soluție. Se aplică formula de arie $S = \frac{bc \sin A}{2}$ și avem

$$\frac{S(AMN)}{S(ABC)} = \frac{\frac{AM \cdot AN \sin A}{2}}{\frac{AB \cdot AC \sin A}{2}} = \frac{AM}{AB} \cdot \frac{AN}{AC} = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}.$$

14. Să se determine ecuația planului care trece prin punctul A(3, -2, -7) și este paralel cu planul 2x - 3z + 5 = 0

a)
$$x + y + z + 6 = 0$$
; b) $2x - y - 3z + 5 = 0$; c) $2x - 3z = 0$; d) $2x - 3z - 27 = 0$; e) $x - 3y - 9 = 0$; f) $2x - 3z - 20 = 0$.

Soluție. Planele paralele cu planul 2x - 3z + 5 = 0 au ecuațiile de forma $2x - 3z + \lambda = 0$. Deoarece A(3, -2, -7) se află în plan, rezultă $2 \cdot 3 - 3(-7) + \lambda = 0$, deci $\lambda = -27$.

- 15. Se consideră triunghiul ABC cu BC = 2, $AB = \sqrt{2}$, $AC = 1 + \sqrt{3}$. Să se calculeze $\cos A$.
 - a) $\frac{\sqrt{2}}{2}$; b) $\frac{\sqrt{3}}{2}$; c) $-\frac{\sqrt{2}}{2}$; d) 0; e) $-\frac{1}{2}$; f) $\frac{1}{2}$.

Soluție. Din teorema cosinusului, obținem

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{AC^2 + AB^2 - BC^2}{2AC \cdot AB} = \frac{2 + 2\sqrt{3}}{2(1 + \sqrt{3})\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

- 16. Să se determine volumul conului circular drept care are secțiunea axială un triunghi echilateral de latură 4.
 - a) 4π ; b) $\frac{2\pi}{3}$; c) $\frac{\pi\sqrt{3}}{3}$; d) $\frac{4\pi}{3}$; e) $\frac{4\pi\sqrt{3}}{3}$; f) $\frac{8\pi\sqrt{3}}{3}$.

Soluție. Dacă R,G,h sunt respectiv raza, generatoarea și înălțimea conului, avem 2R=G=4 și deci R=2 și $h=\sqrt{G^2-R^2}=\sqrt{16-4}=2\sqrt{3}$. Atunci volumul conului este $V=\frac{\pi R^2h}{3}=\frac{4\pi2\sqrt{3}}{3}=\frac{8\pi\sqrt{3}}{3}$.

- 17. Fie un tetraedru regulat de muchie l. Să se calculeze distanța dintre mijloacele a două muchii opuse.
 - a) $l\sqrt{3}$; b) $\frac{l}{\sqrt{2}}$; c) $\frac{l}{4}$; d) $\frac{l}{5}$; e) $\frac{l}{\sqrt{3}}$; f) $l\sqrt{2}$.

Soluţie. Notăm cu VABC tetraedrul dat și cu M mijlocul laturii BC. Deoarece $AM = VM = \frac{l\sqrt{3}}{2}$ rezultă că triunghiul AMV este isoscel, deci $MN \perp AV$, unde N este mijlocul lui AV. Deci

$$MN^2 = \sqrt{AM^2 - AN^2} = \sqrt{\left(\frac{l\sqrt{3}}{2}\right)^2 - \left(\frac{l}{2}\right)^2} = \frac{l}{\sqrt{2}}.$$

- 18. Se consideră vectorii $\vec{u} = m\vec{i} + 3\vec{j}, \ \vec{v} = 2\vec{i} + n\vec{j}, \ m,n \in \mathbb{R}$. Vectorii sunt perpendiculari dacă și numai dacă:
 - a) m + n = 0; b) m = 2, n = 3; c) mn = 5; d) m = 1, n = 2; e) m = n = 0; f) 2m + 3n = 0.

Soluție. Vectorii sunt perpendiculari d.n.d. $\vec{u} \cdot \vec{v} = 0$. Folosind egalitățile $\vec{i}^2 = 1 = \vec{j}^2; \vec{i}\vec{j} = 0$, rezultă

$$(m\vec{i} + 3\vec{j})(2\vec{i} + n\vec{j}) = 0 \Leftrightarrow (2m\vec{i}^2 + (mn + 6)\vec{i}\vec{j} + 3n\vec{j}^2 = 0 \Rightarrow 2m + 3n = 0.$$