1. Consider the following indexed sets:

$$A_{1} = \{1\}$$

$$A_{2} = \{2x : x \in \mathbb{N}, x > 1\} = \{4, 6, 8, 10, 12, \dots \}$$

$$A_{3} = \{3x : x \in \mathbb{N}, x > 1\} = \{8, 9, 12, 15, \dots \}$$

$$A_{4} = \{4x : x \in \mathbb{N}, x > 1\} = \{8, 12, 16, 20, \dots \}$$

(a) In a few words, describe the set  $\bigcup A_i$ .



(b) Suppose N is the universal set. In just a few words, describe the set  $\bigcup_{i\in\mathbb{N}} A_i$ 

2. In parts a-d below, a sentence or expression is given. For each, say whether it is a statement, an open sentence, or neither. Also say whether it is true or false, neither true nor false, or whether that depends on the circumstances.

|     | Sentence or expression                                            | Statement? Open sentence? Neither? | True? False? Neither? Depends? |
|-----|-------------------------------------------------------------------|------------------------------------|--------------------------------|
| (a) | $\emptyset \in \mathscr{P}(\mathbb{Z}) - \mathscr{P}(\mathbb{N})$ | Statement                          | True                           |
| (b) | $\mathscr{P}(\mathbb{Z})-\mathscr{P}(\mathbb{N})$                 | Neither                            | Neither                        |
| (c) | There exist integers $a$ and $b$ for which $3a + 5b = 1$ .        | Statement                          | True                           |
| (d) | There exist integers $a$ and $b$ for which $3a + 6b = 1$ .        | Statement                          | False                          |

3. Complete the truth tables.

|     | P              | Q | $P \lor Q$ |
|-----|----------------|---|------------|
|     | T              | T | T          |
| (a) | T              | F | T          |
|     | $\overline{F}$ | T | 7          |
|     | $F_{\perp}$    | F | F          |

(b) 
$$\begin{array}{c|c|c|c|c} P & Q & P \wedge Q \\ \hline T & T & T \\ \hline T & F & F \\ \hline F & T & F \\ \hline F & F & F \\ \hline \end{array}$$

|     | $\overline{P}$ | Q              | $P \Rightarrow Q$ |
|-----|----------------|----------------|-------------------|
|     | T              | T              | T                 |
| (c) | $\overline{T}$ | $\overline{F}$ | F                 |
|     | $\overline{F}$ | T              | Τ                 |
|     | F              | F              | T                 |

1. Consider the following indexed sets:

$$A_1 = \{1\}$$

$$A_2 = \{2x : x \in \mathbb{N}, x > 1\} = \{ 4, 6, 8, 10, 12, \dots \}$$

$$A_3 = \{3x : x \in \mathbb{N}, x > 1\} = \{36, 9, 12, 15, 18, \dots\}$$

$$A_4 = \{4x : x \in \mathbb{N}, x > 1\} = \{8, 12, 16, 20, 24, \dots \}$$

•

(a) In a few words, describe the set  $\bigcup_{i \in \mathbb{N}} A_i$ .

This is the set of all composite numbers and I

(b) In just a few words, describe the set  $\mathbb{N} - \bigcup A_i$ .

This is the set of all prime numbers

2. In parts a-d below, a sentence or expression is given. For each, say whether it is a statement, an open sentence, or neither. Also say whether it is true or false, neither true nor false, or whether that depends on the circumstances.

|     | Sentence or expression                                             | Statement? Open sentence? Neither? | True?<br>False?<br>Neither?<br>Depends? |
|-----|--------------------------------------------------------------------|------------------------------------|-----------------------------------------|
| (a) | $\{-2,0,1\} \in \mathscr{P}(\mathbb{Z}) - \mathscr{P}(\mathbb{N})$ | statement                          | True                                    |
| (b) | $X \cup \overline{X}$                                              | Neither                            | Neither                                 |
| (c) | 3a + 5b = 1.                                                       | Open sentence                      | Depends                                 |
| (d) | There exist integers $a$ and $b$ for which $3a + 5b = 1$ .         | Statement                          | True                                    |

3. Complete the truth tables.

|     | $\overline{P}$ | Q | $P \wedge Q$ |
|-----|----------------|---|--------------|
|     | T              | T | · T          |
| (a) | $\overline{T}$ | F | F            |
|     | $\overline{F}$ | T | F            |
|     | $\overline{F}$ | F | F            |

|     | P              | Q              | $P \lor Q$ |
|-----|----------------|----------------|------------|
|     | $T_{\perp}$    | T              | T          |
| (b) | T              | $\overline{F}$ | Т          |
|     | $\overline{F}$ | T              | Т          |
|     | $\overline{F}$ | $\overline{F}$ | F          |

$$(c) \begin{array}{|c|c|c|c|}\hline P & Q & P \Rightarrow Q \\\hline\hline T & T & T \\\hline T & F & F \\\hline F & T & T \\\hline F & F & T \\\hline \end{array}$$