Çeşitli T-Norm Operatörleri ile Sinirsel-Bulanık Çıkarım Sistemi

Salih Berkan AYDEMİR Yusuf OYSAL

Eskişehir Teknik Üniversitesi, Mühendislik Fakültesi, Tepebaşı Eskişehir, TÜRKİYE

1.Özet

Bu çalışmada, Sinirsel-Bulanık Çıkarım Sistemi üzerinde, alışılagelmiş T-norm operatörlerinin dışında, sistem; birçok T-norm ile test edilmiş ve sonuçlar tablolar halinde sunulmuştur. T-norm operatörü olaraki diğer birçok operatörü kapsayan Parametrik Hamacher kullanılmıştır.

2. Sinirsel-Bulanık Çıkarım Sistemi Neyi Ifade Eder?

Sinirsel Bulanık Çıkarım Sistemi, bulanık mantığın karar verme mekanizması ile sinir ağlarının öğrenme mekanizmasını birleştirmektedir [1].

3. T- norm operatörleri

Her $x, y, z \in [0,1]$ için aşağıdaki koşulları sağlayan $T:[0,1] \times [0,1] \rightarrow [0,1]$ fonksiyonuna, üçgensel norm ya da kısaca t-norm denir [2].

 $\begin{array}{ll} (T\text{-}1)\,T(x,y) = T(y,x) & \text{(simetri \"{o}zelli\breve{g}i)} \\ (T\text{-}2)\,T\big(x,T(y,z)\big) = T(T(x,y),z) & \text{(birleşmelilik)} \\ (T\text{-}3)\,y \leq z \text{ iken } T(x,y) \leq T(x,z) & \text{(monotonluk)} \\ (T\text{-}4)\,T(x,1) = x \text{ ve } T(0,0) = 0 & \text{(sınır koşulu)} \end{array}$

5. Deney Sonuçları

Mackey Glass veri Seti için sonuçlar

λ değerleri	HKOK-Eğitim	HKOK-Test	
$\lambda=1$ (çarpım)	0,00224	0,00225	
$\lambda=0$ (Klasik Hamacher)	0,00264	0,00256	
$\lambda = 2$ (Einstein)	0,00221	0,00213	
$\lambda = 0.0153$	0,00174	0,00168	

Box-Jenkins veri Seti için sonuçlar

λ değerleri	HKOK-Eğitim	HKOK-Test
$\lambda = 1$ (çarpım)	0,0238	0,0315
$\lambda=0$ (Klasik Hamacher)	0,0234	0,0309
$\lambda = 2$ (Einstein)	0,0238	0,0313
$\lambda = 0.035$	0,0231	0,0299

4. T- normun Sinirsel Bulanık Ağa Uygulanması ve Parametrelerin Eğitimi

Sinirsel bulanık çıkarım sisteminde değiştirilen katman ve yerine kullanılan T-Norm operatörü aşağıdaki gibidir.

$$\frac{\text{Parametrik-Hamacher}}{\lambda^{n-1} + \sum_{j=1}^{n-1} \lambda^{n-j-1} (1-\lambda)^j \chi^{j} (A_n) - \sum_{i=1}^{n-1} (1-\lambda)^i \chi^{n} (A_n)}$$

Çalışmada, parametreleri optimize etmek için gradyan tabanlı BFGS algoritması [3] kullanılmıştır. Nihayetinde, parametreler amaç fonksiyonunun her bir parametreye olan türevi alınarak güncellenmiştir. Ayrıca burada önemli olan diğer bir nokta ise T-norm içerisinde bulunan Lambda değeri de eğitime dahil edilmiştir..

6. Sonuçların Grafik Üzerinde Gösterimleri

7. KAYNAKÇA

- [1] Jang, J-SR. "ANFIS: adaptive-network-based fuzzy inference system." *IEEE transactions on systems, man, and cybernetics* 23.3 (1993): 665-685.
- [2] Gupta, M. M., & Qi, J. (1991). Theory of T-norms and fuzzy inference methods. Fuzzy sets and systems, 40(3), 431-450
- [3] Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization