This is the midterm examination from Fall 2004. It was both long and challenging. We will try to make our midterm shorter and more routine.

1. (a) [3 marks] Write each of the following rational functions f(x) in form of a formal power series $f(x) = \sum_{i>0} a_i x^i$.

$$\frac{1}{(1-2x)^3}, \qquad \frac{x^3}{(1+4x^2)^5}.$$

- (b) [1 mark] Determine the coefficient $[x^5] \frac{x^2}{(1+x)^7}$.
- (c) [3 marks] Write the following formal power series in closed form:

$$\sum_{i\geq 0} \left(-\frac{1}{2}\right)^i x^{3i}, \qquad \sum_{i\geq 0} \binom{i+2}{i} 5^i x^i.$$

- 2. (a) [2 marks] Use the Binomial Theorem to prove that $\sum_{i=0}^{n} {n \choose i} = 2^n$.
 - (b) [3 marks] Prove that

$$\sum_{r=0}^{n} \sum_{s=0}^{r} \binom{n}{r} \binom{r}{s} = 3^{n}.$$

(Hint: Use the Binomial Theorem to expand $(1+2)^n$.)

- 3. An even composition of n is a composition of n into an even number of parts such that each part is a positive even number. For example, the even compositions of 8 are (2,6),(4,4),(6,2),(2,2,2,2).
 - (a) [4 marks] Determine the generating function for the number of even compositions of n having 2k parts. Use this generating function to determine the number of 2k-part even compositions of n.
 - (b) [3 marks] Determine the generating function for the the number of all even compositions of n.
 - (c) [3 marks] Use your answer in part (b) to determine a_n , the number of even compositions of n.
- 4. For each of the following sets, write down a decomposition that uniquely creates the elements of that set.
 - (a) [2 marks] The $\{0,1\}$ -strings that have no blocks of 1s with length 3, and no substrings of 0s of length 2.
 - (b) [2 marks] The set of $\{0,1\}$ -strings with no occurrence of the substring 010.
- 5. (a) [3 marks] Find the generating function $\Phi_{S_1}(x)$ for the following set of strings:

$$S_1 = \{0\}^* (\{1\}\{111\}^*\{00\}\{000\}^*)^* \{1\}^*.$$

(b) [4 marks] Find the generating function $\Phi_{S_2}(x)$ for the following set of strings:

$$S_2 = \bigcup_{k=0}^{\infty} \{0\}^k (\{1\}\{111\}^*\{00\}\{000\}^*)^* \{1\}^k.$$

- (c) [1 mark] Find a string that is in S_1 but not in S_2 .
- (d) [1 mark] Let $a_n = [x^n]\Phi_{S_1}(x)$ and $b_n = [x^n]\Phi_{S_2}(x)$. Without evaluating a_n or b_n , show that $a_n \geq b_n$ for all $n \geq 0$.
- 6. Let A be the set of binary strings a such that in each substring of three consecutive positions in a, there is at least one 1 and at least one 0. Let a_n be the number of strings of length n in A.
 - (a) [2 marks] For n = 1, 2, 3, 4, write down all the strings of length n in A.
 - (b) [3 marks] Prove that the generating function for a_n is given by

$$\Phi_A(x) = \frac{1 + 2x + 3x^2 + 2x^3 + x^4}{1 - x^2 - 2x^3 - x^4}.$$

- (c) [2 marks] From part (b), find a recurrence relation for the numbers a_n , together with an appropriate set of initial conditions.
- 7. (a) [4 marks] Solve the linear, homogeneous recurrence equation

$$a_n + a_{n-1} - 8a_{n-2} - 12a_{n-3} = 0 \quad \forall \quad n \ge 3$$

with initial conditions $a_0 = 4$, $a_1 = 8$, $a_2 = 2$.

- (b) [1 marks] What is the asymptotic value of a_n ?
- (c) [3 marks] Find a particular solution of the nonhomogeneous linear recurrence equation

$$a_n - a_{n-1} - 5a_{n-2} - 3a_{n-3} = \frac{15}{8}(-2)^n \quad \forall \quad n \ge 3.$$

- 8. (a) [2 marks] Let G be a 3-regular graph with 10 vertices. (This means every vertex has degree 3.) How many edges does G have? Justify your answer.
 - (b) [3 marks] Let G be a connected graph with 27 edges and exactly one cycle. How many vertices does G have? Justify your answer.
 - (c) [3 marks] Is there a bipartite graph with 9 vertices and 23 edges? Explain.
- 9. Let Q_n denote the *n*-cube graph: the vertex set of Q_n consists of all binary sequences (i.e. binary strings) of length n and the edge set of Q_n consists of all pairs of binary sequences which differ in exactly one position.
 - (a) [3 marks] Determine the number of vertices and edges in Q_n .
 - (b) [2 marks] Show that Q_n is bipartite.
 - (c) [3 marks] Prove that Q_n has no bridges.
 - (d) [4 marks] Prove that that the graph Q_n does not contain a subgraph isomorphic to the graph drawn below:

