项目管理工程师考前培训

一计算题

(1) 财务净现值

NPV 指今后某年的Y元相当于今年的X元

公式:
$$NPV = \sum_{t=0}^{n} (CI - CO)_{t} (1 + i)^{-t}$$

CI:现金流入量 co:现金流出量

简化:

- ■不同时点的资金转算
 - \square 根据现值计算终值: $F_n=P(1+R)^n$ 其中 F为n年末的终 值、P为n年初的现值、R为年利率,(1+R)n为复利因子
 - □ 根据终值计算现值: P=F_n/(1+R)ⁿ

- (2) 投资收益率ROI 建成投产后,在运营正常年获得的净收益与项目总投资之比。
- (3) 投资回收期(Payback Period) 项目从投产年算起,用每年的净收益将初始投资全部收回的时间。

静态投资回收期(Pt)计算公式:

Pt = [累计净现金流量开始出现正值的年份数] - 1 +[上年累计净现金流量的绝对值/当年净现金流量]

动态投资回收期动态投资回收期(T)计算公式: 动态投资回收期(年)=[累计净现金流量现值开始出现正值年份数]-1 +[上年累计净现金流量现值的绝对值/当年净现金流量现值]

某软件公司项目A的利润分析如下表所示。设贴现率为10%,第二年的利润净现值是<u>(9)</u>元。(05年上)

利润分析	第零年	第一年	第二年	第三年
利润值		¥889,000	¥1,139,000	¥1,514,000

(9) A. 1,378,190

B. 949,167

C. 941,322

D. 922,590

解答: 1139000/ (1+10%) = 941322

选 C

年度	2004	2005	2006	2007	2008
投资	1000	-			
成本	-	1000	1000	1000	1000
收入	_	1500	1500	1500	1500
净现金流量	-1000	500	500	500	500
净现值	-925.93	428.67	396.92	367.51	340.29

(7) A. 1 B. 2 C. 2.27 D. 2.73

解答:根据公式

动态投资回收期(年)=[累计净现金流量<mark>现值</mark>开始出现正值年份数]-1 +[上年累计净现金流量<mark>现值</mark>的绝对值/当年净现金流量<mark>现值</mark>]

列式:

根据概率论中心极限定律——总工期服从正态分布

■总工期的正态分布示图

Tm - 最可能的时间

T。 - 最乐观的时间(最短的),在这个时间内只有1%的相似项目完成

T_p - 最悲观的 (最长的) 时间, 在这个时间内只有 1% 的相似项目完成

T。 - 时间估算计算

$$T_e = \frac{T_o + 4T_m + T_p}{6}$$

$$\sigma = 标准偏差$$

$$\sigma = \underline{T_{\underline{p}} - \underline{T_{\underline{o}}}}$$

6

用于带有某种程度随 意可变性的高不确定 性环境

例1:公司的某项目即将开始,项目经理估计该项目10天即可完成,如果出现问题耽搁了也不会超过20天完成,最快6天即可完成。根据项目历时估计中的三点估算法,你认为该项目的历时为

(37) 该项目历时的估算标准差为(38)。

(37) A. 10天 B. 11天 C. 12天 D. 13天

(38) A. 2.1天 B. 2.2天 C. 2.3天 D. 2.4天

解答: (37)B T=(6+4x10+20)/6=11 (38)C σ=(20-6)/6=2.3

例2: A任务持续时间悲观估计为36天,最大可能估计为21天, 乐观估计为6天。那么A行为在16到26天之间完成的概率有多大?

A.55.70% B.68.26% C.95.46% D.99.73%

解答: (1) 求出σ。

 $\sigma = (36-6) / 6 = 5$

(2) 由 σ可知 21+5=26 21-5=16, 因此16—26 天落在1 σ分布内。

(3) 由1 σ的概率P为68.26可得答案为 B. 68.26%

注意: 必须记住三个数字是 1σ 68.3%

2σ 95.5%

3σ 99.7%

要求完工时间在14.5天的概率是多少。

活动	t_0	t_{m}	t_p
A	2	3	6
В	4	6	8
C	3	4	6
总计	9	13	20

解答:

活动A

期望工期: 活动B

活动C

总工期

方差: 活动A

活动B

活动C

总方差 = 1.139

标准差=

$$t_e = \frac{2 + 4X \ 3 + 6}{6} = 3.33 \%$$
 $t_e = \frac{4 + 4X3 + 8}{6} = 6 \%$
 $t_e = \frac{3 + 4X4 + 6}{6} = 4.17 \%$
 $t_e = \frac{9 + 4X13 + 20}{6} = 13.5 \%$

$$\sigma^{2} = \left(\frac{6-2}{6}\right)^{2} = 0.444$$

$$\sigma^2 = (\frac{8 - 4}{6})^2 = 0.444$$

$$\sigma^2 = (\frac{6 - 3}{6})^2 = 0.25$$

$$\sigma = \sqrt{\sigma^2} = \sqrt{1.139} = 1.067$$
 \(\tau

平均历时	T=13.5天	1 δ =1.067天		
	范围	概率	从	到
Т	±1 δ	68.26%	12.4	14.6
Т	±2δ	95.46%	11.4	15.6
Т	±3 δ	99.73%	10.3	16.7

- 13.5天完成项目的概率为50%,
- 68.26%的一半,34.13%
- 14.57天内完成的概率是84.13%

活动排序网络图

- ❖ 活动排序网络图有三种类型:
 - 前导图 (PDM) / 单代号网络图 (AON)
 - · 箭线图 (ADM) / 双代号网络图 (AOA)
- ❖ 单代号网络图特点:
 - 用节点表示活动,用箭线表示活动之间的关系;
 - · 一项活动前的活动为紧前活动;后面的活动为紧后活动;
 - 活动之间可以表达四种逻辑关系
- ❖ 双代号网络图特点:
 - 用箭线表示活动,活动之间用节点(事件)连结;
 - 有虚活动 (还有一种是条件网络图)

双代号网络中的虚活动

- 1) AOA网络因为表达活动关系的需要
- 2) 虚活动没有历时,不需要资源
- 3) 用带箭头的虚线表示

原理:

- 项目分解为若干任务 (WBS)
- 为每个任务确定工期(固定值)
- 把所有的任务按逻辑关系连接起来,从开始到完成组成许多条路径
- 计算所有路径的持续时间
- ■找出最长的路径和持续时间

方法:

使用正推法计算最早开始日期(ES), 最早结束日期(EF),

使用逆推法计算最迟开始日期(LS),最迟结束日期(LF),

开始节点ES为0时:总时差=LS-ES或LF-EF;工期=EF-ES或LF-LS;

自由时差=紧后工作的ES - 此活动的EF

开始节点ES为1时: 总时差=LS-ES或LF-EF;工期=EF-ES+1或LF-LS+1

自由时差=紧后工作的ES - 此活动的EF - 1

ES	工期	EF		
工作编号				
LS	总时差	LF		

下图中活动 "G"可以拖延(36) 周而不会延长项目的最终结束日期。(08上)

(36) A. 0 B. 1

C. 3

D. 4

解答: D

一项任务的最早开始时间是第3天,最晚开始时间是第13天,最早完成时间是第9天,最晚完成时间是第19天。该任务(40)。(08上)

- (40) A. 在关键路径上
- B. 有滞后
- C. 进展情况良好 D. 不在关键路径上

解答: 若在关键路径上,则ES=LS且EF=LF 选 D

	20	00版术语说明	解释	
P	v	Planned Value (计划值)	应该完成多少 工作	应该干多少
E	E V	Earned Value (挣 值)	完成了多少预 算工作	干了多少
A	C	Actual Cost(实 际成本)	完成工作的实 际成本	花了多少
В	BAC	Budget at Completion(完 工预算)	全部工作的预算	总预算
E	CAC	Estimate at Completion(完工估算)	全部工作的成本	全部工作成本
E	CTC	Estimate to Complete (完工 尚需估算)	当前预计未完 成工作成本	未完成成本

1		三参数关系	分析(含义)	措施
	1	AC>PV>EV SV<0 CV <o< th=""><th>效率低、速度较慢、投 入超前</th><th>用工作效率高的人员更换一批工 作效率低的人员</th></o<>	效率低、速度较慢、投 入超前	用工作效率高的人员更换一批工 作效率低的人员
	2	PV > AC = EV SV < 0 CV = 0	效率较低、速度慢、投 入和支出相差不大	增加高效人员投入,赶工
	3	AC=EV>PV SV>0 CV=0	投入和支出相差不大	抽出部分人员,增加少量骨干人 员
	4	EV > PV > AC SV > 0 CV > 0	效率高、速度较快、投 入延后	若偏离不大,维 <mark>持现状,加强质</mark> 量管理

当前时间

(3)

时间

变量:

—EV, PV, AC, BAC

-CV, SV, EAC, ETC

—CPI、SPI

公式: CV=EV - AC, SV=EV-PV
CPI=EV/AC(支出), SPI=EV/PV(进度)

预测技术:

ETC=(BAC-EV) 当前偏差被看做是非典型的

ETC=(BAC-EV)/CPI 当前偏差被看做是代表未来的典型偏差

EAC=AC+ETC ----衍化为下面两个公式

EAC=AC+BAC-EV 当前偏差被看做是非典型的

EAC=AC+(BAC-EV)/CPI 当前偏差被看做是代表未来的典

型偏差

在项目实施中间的某次周例会上,项目经理小王用下表向大家通报了目前的进度。根据这个表格,目前项目的进度(51)。

活动	计划值	完成百分比	实际成本
基础设计	20,000元	90%	10,000元
详细设计	50,000元	90%	60,000元
测试	30,000元	100%	40,000元

(51) A. 提前于计划7%

C. 落后于计划7%

B. 落后于计划18%

D. 落后于计划7.5%

解答:求出SPI =100000 - (18000+45000+30000) / 100000

= 7%

选 C

执行情况 计划费用/周 (实际费用,完成百分比)

	40	IH or									
工作	<u>:</u>	01	02	03	04	05	06	07	80	09	10
Α		10	(20,	100%)							
В		20	(25,	100%)					目前	的时	间
С			20		(60,100	%)					
D				15		(50,75	5%)				
E					25		(5	0,40%)			
F		×					20	(0,0%	(b)		

计算并回答: (1) PV、AC、EV (2) EAC(偏差具有代表性)

(3) 当前费用情况(超支/节余)

(4) 进度情况(提前/滞后)

解答:(1)

	ВАС	PV	AC	EV
Α	20	20	20	20
В	20	20	25	20
С	60	60	60	60
D	60	60	50	45
E	100	50	50	40
F	80	0	0	0
TOTAL	340	210	205	185

(2)EAC=AC+(BAC-EV)X(AC/EV)=378

若偏差不具代表性: EAC=205+(340-185)=360

决策树分析

图解方法: 对所虑的决策以及不同方案可能产生的后果进行描述

■ 含胖刀法: X] 別 尼 的 伏 束 丛 及 个 凹 刀 :	条可能广生的归来进行抽及	<u> </u>
决策定义	决策节点	机会节点	纯路径价值
制定决策	依据:每项选择的成本 成果:已定决策(对、错)	依据: 情景概率 发生后的奖励 成果: 期望现金价值 (EMV)	计算: (盈利减去成本) 沿路径
	/ False 建造新油漆厂 -\$120	65% 强要求 \$200 机会节点 EMV \$41.5 ■ 80x65%+	< \$80M

该决策树反映了在环境(即:产品需求状态)具有不确定性的情况下,如何在各种可选投资方案中进行选择。组织选择采用对现有工厂进行改进的方案,因为该方案的 EMV 为 49 美元,而新建工厂方案的 EMV 仅为 41.5 美元。

Thank You!