# CIRCUIT AND NETWORK THEORY (ECEN 2102)

Time Allotted: 3 hrs Full Marks: 70

Figures out of the right margin indicate full marks.

Candidates are required to answer Group A and <u>any 5 (five)</u> from Group B to E, taking <u>at least one</u> from each group.

Candidates are required to give answer in their own words as far as practicable.

|    |        |                                                                                                                                                                                                                                              | Group -<br>(Multiple Choice Ty                                |                                                       |                                                  |  |  |
|----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--|--|
| 1. | Cho    | ose the correct alter                                                                                                                                                                                                                        | native for the follow                                         | ing:                                                  | $10 \times 1 = 10$                               |  |  |
|    | (i)    | · ·                                                                                                                                                                                                                                          | ed DC voltage drops e                                         | ntirely across the                                    | rcuit. Under steady state (d) R & L combination. |  |  |
|    | (ii)   |                                                                                                                                                                                                                                              | is overdamped when (b) R <sup>2</sup> /4L <sup>2</sup> = 1/LC |                                                       | C (d) $R^2/4L^2 \ge 1/LC$ .                      |  |  |
|    | (iii)  |                                                                                                                                                                                                                                              | eciprocity of any two procity (b) $Y_{21} = Y_{12}$           |                                                       | (d) $Y_{22} = Y_{12}$ .                          |  |  |
|    | (iv)   |                                                                                                                                                                                                                                              | mmetry of any two portion $(b) Y_{12} = Y_{11}$               |                                                       | (d) $Z_{11} = Z_{22}$ .                          |  |  |
|    | (v)    | network is                                                                                                                                                                                                                                   | odes and 8 fundame                                            | •                                                     | umber of branches in the (d) 18.                 |  |  |
|    | (vi)   | A network containing (a) is always reciprosection (c) is always non rec                                                                                                                                                                      |                                                               | (b) may be re                                         | eciprocal<br>symmetrical.                        |  |  |
|    | (vii)  | A coil of negligible resistance has an inductance of 10 mH. The current passing through the coil changes linearly from 2 A to 6 A in 0.1 sec. The voltage across the coil during this time would be (a) 0.8 V (b) 0.6 V (c) 0.4 V (d) 0.2 V. |                                                               |                                                       |                                                  |  |  |
|    | (viii) |                                                                                                                                                                                                                                              | series resonant circu (b) $(\Delta\omega) / \omega_0$         | •                                                     | (d) $\Delta\omega + \omega_0$ .                  |  |  |
|    | (ix)   | In a series RC circuit<br>considered as a<br>(a) Band Pass Filter<br>(c) Low Pass Filter                                                                                                                                                     | t, if the output is meas                                      | sured across the ca<br>(b) Band Rejo<br>(d) High Pass |                                                  |  |  |

ECEN 2102 1

#### **B.TECH/ECE/3RD SEM/ECEN 2102/2022**

- (x) Superposition theorem is not applicable for
  - (a) Current Calculation
  - (c) Power Calculation

- (b) Voltage Calculation
- (d) None of the above.

### **Group - B**

2. (a) State the reciprocity theorem.

[(CO4)(Remember/LOCQ)]

(b) Find the value of R which will dissipate maximum power in the network of shown in the Fig.1. Also calculate the maximum power. [(CO2)(Evaluate/HOCQ)]



(c) Find the effective resistance faced by the voltage source indicated in the Fig.2.

[(CO1)(Analyze/IOCQ)]



2 + 6 + 4 = 12

3. (a) Find the open circuit voltage across the terminals a and b of the circuit shown in Fig.3. [(CO2)(Evaluate/HOCQ)]



(b) Use mesh analysis to determine i<sub>1</sub>, i<sub>2</sub> and i<sub>3</sub> in the circuit shown in Fig.4.



## **Group - C**

4. (a) The circuit shown in the Fig.5 is initially in steady state with the switch S open. At t=0, the switch S is closed. Obtain the current in the inductor for t>0.



ECEN 2102 2

#### **B.TECH/ECE/3**<sup>RD</sup>**SEM/ECEN 2102/2022**

(b) A pulse excitation of height 'V' and width 'a' is applied to a series RC network. Derive the current i(t) in the series circuit for t≥0. Also plot the voltages across the resistor and capacitor against time for t≥0. [(CO3)(Apply/IOCQ)]

$$6 + 6 = 12$$

5. (a) Evaluate the Laplace transform of the periodic function as shown in Fig.6.

[(CO2)(Evaluate/HOCQ)]



(b) A series R-L network is excited by an unit step voltage. Find the time at which the voltage drop across R and that across L will be equal. [(CO4)(Understand/LOCQ)]

$$6 + 6 = 12$$

## **Group - D**

6. (a) What do you mean by driving point impedance of a network? Two four terminal networks are connected in series, show that the impedance matrix of the overall network is the sum of the impedance matrices of the individual network.

[(CO4)(Remember/LOCQ)]

(b) Determine the ABCD parameters of the two port network shown in the Fig.7.

[(CO2)(Analyse/IOCQ)]



$$(2+4)+6=12$$

7. (a) Find the reduced incidence and tie-set matrices for the graph given in the Fig.8.

[(CO4)(Understand/LOCQ)]



(b) Form the fundamental cut-set matrix for the network given in the Fig.9 and hence find the matrix form of KCL equations. [(CO4)(Apply/IOCQ)]



6 + 6 = 12

ECEN 2102 3

#### **Group - E**

- 8. (a) Design a 1<sup>st</sup> order active low pass filter with a dc gain of 4 and a corner frequency of 500 Hz. Derive the transfer function of it. [(CO6)(Create/HOCQ)]
  - (b) Derive the transfer function of the circuit shown in the Fig.10 and identify the filter type.

    [(CO6)(Analyze/IOCQ)]



6 + 6 = 12

9. (a) Write down the input file using PSPICE code for the circuit of Fig.11 to obtain the node voltages. [(CO1)(Apply/IOCQ)]



(b) Write a note on ac analysis using PSPICE.

[(CO2) (Understand/LOCQ)]

7 + 5 = 12

| Cognition Level         | LOCQ  | IOCQ | HOCQ  |
|-------------------------|-------|------|-------|
| Percentage distribution | 26.04 | 42.7 | 31.26 |

## Course Outcome (CO):

After the completion of the course students will be able to

- 1. Apply the previous knowledge gathered from Basic Electrical Engineering for understanding the basic concepts of this subject.
- 2. Solve problems in various electric circuits using Network Theorems.
- 3. Analyze complex circuits in Laplace domain.
- 4. Understand the application of Graph theory to solve various network behaviour.
- 5. Evaluate the output of various Two port network without going through the detailed configuration.
- 6. Design various types of filters using SPICE software.

\*LOCQ: Lower Order Cognitive Question; IOCQ: Intermediate Order Cognitive Question; HOCQ: Higher Order Cognitive Question.

4

ECEN 2102