### C.02.01.A2 – Combustão e Equilíbrio Químico

Aplicação em FTAF - Finite Time Air-Fuel Otto Engine Model

Prof. C. Naaktgeboren, PhD



https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-13 07h57m57s UTC





• Ar é modelado apenas como uma mistura de Oxigênio, O<sub>2</sub>, e Nitrogênio, N<sub>2</sub>;





- Ar é modelado apenas como uma mistura de Oxigênio, O<sub>2</sub>, e Nitrogênio, N<sub>2</sub>;
- A proporção é de ψ kmol de N<sub>2</sub> para cada 1 kmol de O<sub>2</sub>;





- Ar é modelado apenas como uma mistura de Oxigênio, O<sub>2</sub>, e Nitrogênio, N<sub>2</sub>;
- A proporção é de ψ kmol de N<sub>2</sub> para cada 1 kmol de O<sub>2</sub>;
- Nitrogênio será considerado gás inerte;





- Ar é modelado apenas como uma mistura de Oxigênio, O2, e Nitrogênio, N2;
- A proporção é de ψ kmol de N<sub>2</sub> para cada 1 kmol de O<sub>2</sub>;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N<sub>2</sub>;





- Ar é modelado apenas como uma mistura de Oxigênio, O<sub>2</sub>, e Nitrogênio, N<sub>2</sub>;
- A proporção é de ψ kmol de N<sub>2</sub> para cada 1 kmol de O<sub>2</sub>;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N<sub>2</sub>;
- Valor típico para  $\psi$  é de  $79/21 \approx 3,76$ .





• Molécula de combustível modelada como Cn<sub>C</sub>Hn<sub>H</sub>On<sub>O</sub>Nn<sub>N</sub>;





- Molécula de combustível modelada como Cn<sub>C</sub>Hn<sub>H</sub>On<sub>O</sub>Nn<sub>N</sub>;
- Valores  $n_{\rm C}$ ,  $n_{\rm H}$ ,  $n_{\rm O}$ , e  $n_{\rm N}$  são parâmetros ajustáveis;





- Molécula de combustível modelada como Cn<sub>C</sub>Hn<sub>H</sub>On<sub>O</sub>Nn<sub>N</sub>;
- Valores  $n_{\rm C}$ ,  $n_{\rm H}$ ,  $n_{\rm O}$ , e  $n_{\rm N}$  são parâmetros ajustáveis;
- Seja  $\varepsilon$  a quantidade de combustível por kmol de  $O_2$  estequiometricamente oxidada;





- Molécula de combustível modelada como Cn<sub>C</sub>Hn<sub>H</sub>On<sub>O</sub>Nn<sub>N</sub>;
- Valores  $n_{\rm C}$ ,  $n_{\rm H}$ ,  $n_{\rm O}$ , e  $n_{\rm N}$  são parâmetros ajustáveis;
- Seja  $\varepsilon$  a quantidade de combustível por kmol de  $O_2$  estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$





- Molécula de combustível modelada como Cn<sub>C</sub>Hn<sub>H</sub>On<sub>O</sub>Nn<sub>N</sub>;
- Valores  $n_{\rm C}$ ,  $n_{\rm H}$ ,  $n_{\rm O}$ , e  $n_{\rm N}$  são parâmetros ajustáveis;
- Seja  $\varepsilon$  a quantidade de combustível por kmol de  $O_2$  estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

•  $\varepsilon/(1+\psi)$  é a razão combustível-ar estequiométrica.





• Seja o a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:





• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim,





• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

•  $\phi$  < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);





• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

- $\phi$  < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$  modela misturas combustível-ar com excesso de combustível (pobre em ar); e





• Seja o a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv rac{n_{
m f}/n_{
m air}}{arepsilon/(1+\psi)}, \qquad {
m assim},$$

- $\phi$  < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$  modela misturas combustível-ar com excesso de combustível (pobre em ar); e
- $\phi = 1$  modela misturas combustível-ar estequiométricas.





• Quantidades químicas reais de ar e combustível são  $n_{air}$  e  $n_{f}$  ...





- Quantidades químicas reais de ar e combustível são  $n_{air}$  e  $n_f$  ...
- ... na câmara de combustão fechada ao final da admissão, assumindo  $(P_0, V_0, T_0)$





- Quantidades químicas reais de ar e combustível são  $n_{air}$  e  $n_f$  ...
- ... na câmara de combustão fechada ao final da admissão, assumindo  $(P_0, V_0, T_0)$
- com  $P_0 \leqslant P_{\text{atm}}$ ,  $T_0 \approx T_{\text{atm}}$ , para motores aspirados e  $V_0 \approx V_{\text{PMI}}$ . Assim:





- Quantidades químicas reais de ar e combustível são  $n_{air}$  e  $n_f$  ...
- ... na câmara de combustão fechada ao final da admissão, assumindo  $(P_0, V_0, T_0)$
- com  $P_0 \leqslant P_{\text{atm}}$ ,  $T_0 \approx T_{\text{atm}}$ , para motores aspirados e  $V_0 \approx V_{\text{PMI}}$ . Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$





- Quantidades químicas reais de ar e combustível são  $n_{\text{air}}$  e  $n_{\text{f}}$  ...
- ... na câmara de combustão fechada ao final da admissão, assumindo  $(P_0, V_0, T_0)$
- com  $P_0 \leqslant P_{\text{atm}}$ ,  $T_0 \approx T_{\text{atm}}$ , para motores aspirados e  $V_0 \approx V_{\text{PMI}}$ . Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$

$$n_{\rm air} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{1 + \psi}{1 + \psi + \phi \varepsilon}.$$











$$n_{\rm f}$$
 C $n_{\rm C}$ H $n_{\rm H}$ O $n_{\rm O}$ N $n_{\rm N}$  +





$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$





$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow n_{\rm CO_2} {\rm CO}_2$$





$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H_2O}$$





$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO}$$





$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO} + n_{\rm H_2} {\rm H}_2$$





$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H_2O} + n_{\rm CO} {\rm CO} + n_{\rm H_2} {\rm H}_2 + n_{\rm O_2} {\rm O}_2$$





$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$





A reação de combustão básica é:

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

Hipótese: oxidação mais completa possível:





$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1+\psi} \operatorname{O}_2 + \frac{\psi}{1+\psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

- Hipótese: oxidação mais completa possível:
- $(\phi \leqslant 1)$ : sem produção de CO e H<sub>2</sub>  $\longrightarrow n_{CO} = n_{H_2} = 0$  kmol, e o sistema fecha;





$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left( \frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

- Hipótese: oxidação mais completa possível:
- $(\phi \leqslant 1)$ : sem produção de CO e H<sub>2</sub>  $\longrightarrow n_{CO} = n_{H_2} = 0$  kmol, e o sistema fecha;
- $(\phi > 1)$ : todo  $O_2$  é utilizado  $\longrightarrow n_{O_2} = 0$  kmol, e requer-se mais equações!





### Equilíbrio Químico:

• Para  $\phi > 1$  o fechamento é obtido por equilíbrio químico;







### Equilíbrio Químico:

- Para  $\phi > 1$  o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":







### Equilíbrio Químico:

- Para  $\phi > 1$  o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com





### Equilíbrio Químico:

- Para  $\phi > 1$  o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:





### Equilíbrio Químico:

- Para  $\phi > 1$  o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:

$$K(T) = \frac{n_{\text{H}_2\text{O}}n_{\text{CO}}}{n_{\text{CO}_2}n_{\text{H}_2}} = K(1740 \text{ K}) = 3,5.$$









$$rac{n_{
m CO}}{n_{
m f}} = -eta \pm \sqrt{eta^2 - \gamma}, \qquad {
m com}$$







$$\frac{n_{\rm CO}}{n_{\rm f}} = -\beta \pm \sqrt{\beta^2 - \gamma}, \qquad {
m com}$$

$$\gamma = \frac{2n_{\rm C}(\phi - 1)}{\phi \varepsilon (K - 1)} \qquad \epsilon$$





$$rac{n_{
m CO}}{n_{
m f}} = -eta \pm \sqrt{eta^2 - \gamma}, \qquad {
m com}$$

$$\gamma = \frac{2n_{\rm C}(\phi - 1)}{\phi \varepsilon (K - 1)} \qquad e$$

$$\beta = \frac{\phi \varepsilon [(2-K)n_{\rm C} - n_{\rm O}] + 2[K(\phi - 1) + 1]}{2(K-1)\phi \varepsilon}.$$





# Solução da Combustão:

| $n_k$               | rico em ar, $\phi \leqslant 1$                                                                                  | pobre em ar, $\phi > 1$                                                                                  |
|---------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| $n_{\mathrm{CO}_2}$ | $n_{\mathrm{C}}n_{\mathrm{f}}=n_{\mathrm{C}}rac{\mathrm{d}\epsilon}{1+\mathrm{\psi}}n_{\mathrm{air}}$          | $n_{\rm C}n_{\rm f}-n_{\rm CO} = n_{\rm C} \frac{\Phi \epsilon}{1+\psi} n_{\rm air}-n_{\rm CO}$          |
| $n_{ m H_2O}$       | $\frac{n_{\mathrm{H}}}{2}n_{\mathrm{f}} = \frac{n_{\mathrm{H}}}{2}\frac{\Phi \epsilon}{1+\Psi}n_{\mathrm{air}}$ | $(n_{\rm O} - 2n_{\rm C})n_{\rm f} + \frac{2}{1 + \psi}n_{\rm air} + n_{\rm CO}$                         |
| $n_{\rm CO}$        | 0                                                                                                               | $n_{\mathrm{CO}}$                                                                                        |
| $n_{ m H_2}$        | 0                                                                                                               | $\frac{2(\phi-1)}{\phi\varepsilon}n_{\rm f}-n_{\rm CO} = \frac{2(\phi-1)}{1+\psi}n_{\rm air}-n_{\rm CO}$ |
| $n_{\mathrm{O}_2}$  | $(1 - \phi) \frac{n_{\text{air}}}{1 + \psi} = (1 - \phi) \frac{n_{\text{f}}}{\phi \varepsilon}$                 | 0                                                                                                        |
| $n_{ m N_2}$        | $\frac{\Psi}{1+\Psi}n_{\rm air}+\frac{n_{\rm N}}{2}n_{\rm f}$                                                   | $\frac{\Psi}{1+\Psi}n_{\rm air}+\frac{n_{\rm N}}{2}n_{\rm f}$                                            |







• A fração residual,  $\zeta$ , de gases do ciclo anterior fica no sistema,  $V_{\text{PMS}} > 0$ ;





- A fração residual,  $\zeta$ , de gases do ciclo anterior fica no sistema,  $V_{\text{PMS}} > 0$ ;
- Silva, R. K. de O. modelou dados de Heywood, J. B., como  $\zeta:\zeta(P,r)$ :





- A fração residual,  $\zeta$ , de gases do ciclo anterior fica no sistema,  $V_{\text{PMS}} > 0$ ;
- Silva, R. K. de O. modelou dados de Heywood, J. B., como  $\zeta:\zeta(P,r)$ :

$$\begin{split} \zeta(P,r) &= 17.807 + 6.423 \text{g}(r) \\ &- [0.029 + 0.013 \text{g}(r)] P \\ &+ [1.828 + 0.798 \text{g}(v)] \times 10^{-5} \times P^2, \qquad \text{com} \end{split}$$







- A fração residual,  $\zeta$ , de gases do ciclo anterior fica no sistema,  $V_{\text{PMS}} > 0$ ;
- Silva, R. K. de O. modelou dados de Heywood, J. B., como  $\zeta:\zeta(P,r)$ :

$$\begin{split} \zeta(P,r) &= 17.807 + 6.423 \text{g}(r) \\ &- [0.029 + 0.013 \text{g}(r)] P \\ &+ [1.828 + 0.798 \text{g}(v)] \times 10^{-5} \times P^2, \qquad \text{com} \end{split}$$

$$g(v) = (5.25 - 0.5r)e^{(8.5-r)}$$
.





$$\mathbb{M}_{a} = n_{air} \left( \frac{1}{1+\psi} O_2 + \frac{\psi}{1+\psi} N_2 \right),$$





$$\mathbb{M}_{a} = n_{\text{air}} \left( \frac{1}{1+\psi} \mathbf{O}_2 + \frac{\psi}{1+\psi} \mathbf{N}_2 \right),$$

$$M_f = n_f C n_C H n_H O n_O N n_N,$$





$$\mathbb{M}_{a} = n_{air} \left( \frac{1}{1+\psi} O_2 + \frac{\psi}{1+\psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{af} = n_{air} \left( \frac{1}{1 + \Psi} O_2 + \frac{\Psi}{1 + \Psi} N_2 \right) + n_f C n_C H n_H O n_O N n_N, \quad (ar-comb.)$$





$$\mathbb{M}_{a} = n_{air} \left( \frac{1}{1+\psi} O_2 + \frac{\psi}{1+\psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{af} = n_{air} \left( \frac{1}{1 + \psi} O_2 + \frac{\psi}{1 + \psi} N_2 \right) + n_f C n_C H n_H O n_O N n_N, \quad (ar-comb.)$$

$$\mathbb{M}_{pr} = n_{CO_2}CO_2 + n_{H_2O}H_2O + n_{CO}CO 
+ n_{H_2}H_2 + n_{O_2}O_2 + n_{N_2}N_2,$$
(produtos)





$$\mathbb{M}_{a} = n_{air} \left( \frac{1}{1+\Psi} O_2 + \frac{\Psi}{1+\Psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{af} = n_{air} \left( \frac{1}{1 + \psi} O_2 + \frac{\psi}{1 + \psi} N_2 \right) + n_f C n_C H n_H O n_O N n_N, \quad (ar-comb.)$$

$$M_{pr} = n_{CO_2}CO_2 + n_{H_2O}H_2O + n_{CO}CO + n_{H_2}H_2 + n_{O_2}O_2 + n_{N_2}N_2,$$
 (produtos)

$$M_{re} = (1 - \zeta) M_{af} + (\zeta) M_{pr},$$
 (reagentes)





