

תכנית לימודים היחידה למתמטיקה קורס 90901 חשבון דיפרנציאלי אינטגרלי1

תשפ"ג
6.00 שעות סימסטריאליות, [הרצאה - 4.00 + תרגול - 2.00]
5.00
קדם: 7012 קורס הכנה מתמטיקה -או- 7013 קורס הכנה מתמטיקה - רענון
קדם: 7012 קורס הכנה מתמטיקה -או- 7102 קד"א-מכינה מתמטיקה
קדם: 7012 קורס הכנה מתמטיקה -או- 7202 מתמטיקה - מכינה בדרך הנדסה
נם לכלל תכניות הלימוד, עליך להתעדכן בתנאי הקדם הנדרשים לך בהתאם לתכנית הלימודים האישית שלך.
ללא חובת נוכחות
קורס זה מיועד להקנות לסטודנטים את הרקע המתמטי ואת הכלים הדרושים להם בלימודי הנדסה, בתחום
החשבון הדיפרנציאלי והאינטגרלי במשתנה אחד.
הוא מדגיש את הטכניקה ואת המושגים הבסיסיים של החשבון האינפיניטסימאלי תוך שימת דגש על הצגה
מדויקת של נושאי הלימודים ופיתוח חשיבה מתמטית, בד בבד עם הצגת היישומים של הקורס בפיסיקה והנדסה.
המספרים הממשיים. פונקציות. סדרות. גבול של סדרה. גבולות ורציפות. משפט ערכי הביניים ומשפט
. הנגזרת וחשבון נגזרות. Weierstrass
משפט Fermat, משפט Rolle, משפט Lagrange, כלל Hopital. שימושים: עליה וירידה, קודות קיצון, קמירות,
קעירות ונקודת פיתול. נוסחת Taylor עם שארית Lagrange.
חקירת פונקציות. אינטגרל לא מסוים ואינטגרל מסוים ֹֹׁ (אינטגרל Riemann). המשפט היסודי של החשבון
· · · · · · · · · · · · · · · · · · ·
3

תוצרי למידה אקדמיים

	תוצרי למידה
קורס זה מיועד להקנות לסטודנטים את הרקע המתמטי ואת הכלים הדרושים להם בלימודי הנדסה, בתחום החשבון הדיפרנציאלי והאינטגרלי במשתנה אחד.	1 1111 / 111 1101.7.1
יווופבון ווו יפו נביאלי וווא נסגו לי בניפוננוז אווו .	ההוראה בקורס

תוצרי למידה – מיומנויות

פתרון בעיות: הגדרת הבעיה, זיהוי אסטרטגיות. היכולת לזהות גישה אחת או יותר לפתרון בעיה ללא יישום בהקשר מסוים

תקשורת בע"פ ובכתב: ארגון, שפה, הגשה, סימוכין ומסר מרכזי. יכולת חלקית להציג נושא ולהשתמש בתוכן רלוונטי ובמקורות מידע לפיתוח הרעיונות

חשיבה ביקורתית: הסברת הנושאים, סימוכין, הקשרים ונקיטת עמדה. הצגת הנושא ממקורות המידע נעשית ללא פרשנות, הערכה או נקיטת עמדה

דגשים ונלווים

נושאי הקורס לפי שבועות

הבהרה! סדר הנושאים והיקפם יכול להשתנות בהתאם לשיקול דעת המרצה

	מבוא והתכנסות סדרות.
מפגש 1	מושגים בסיסיים בתורת קבוצות. סדרות: סדרה מונוטונית, סדרה חסומה, הגדרת הגבול של סדרה, התבדרות.
	אריתמטיקה של גבולות. כלל הסנדביץ'.
	גבול של סדרה מונוטונית וחסומה; הוכחה באינדוקציה. המספר e של Euler כגבול של סדרה. תת-סדרה, משפט
מפגש 2	(ללא הוכחה), דוגמאות. Bolzano-Weierstrass
	מומלץ לסיים את הפרק "מבוא והתכנסות סדרות" אחרי 4-5 הרצאות.
	גבולות ורציפות של פונקציות ממשיות
	פונקציות: תחום הגדרה, טווח, תמונה, גרף, הזזות ושיקופים של גרף, פונקציה חח"ע, על, זוגיות אי-זוגיות,
מפגש 3	מונוטוניות, מחזוריות. הרכבת פונקציות, פונקציה הפוכה. פונקציות אלמנטריות: פונקציה ליניארית ופולינומים,
	פונקציה רציונלית, פונקצית שורש, פונקציה מעריכית, לוגריתמים.
	פונקציות טריגונומטריות, פונקציות הפוכות לפונקציות טריגונומטריות. פונקציות היפרבוליות.
_	מושג הגבול של פונקציה, הגדרה בעזרת סדרות (Heine) ודוגמאות. גבול חד-צדדי, דוגמאות כולל פונקציה
מפגש 4	מפוצלת, גבולות מסוג Euler. חישוב גבולות של פונקציות טריגונומטריות.
	הגדרת רציפות של פונקציה. מיון סוגי אי רציפות. רציפות של הפונקציות האלמנטריות. משפט ערך הביניים
מפגש 5	ומשפט Weierstrass (מינימום ומקסימום של פונקציה רציפה בקטע סגור וחסום).
	מומלץ לסיים את הפרק "גבולות ורציפות של פונקציות ממשיות" אחרי 6-5 הרצאות.
	חשבון דיפרנציאלי:
מפגש 6	הגדרת הנגזרת. נגזרת כשיפוע וכמהירות, משוואת המשיק והנורמל. גזירת פולינומים, חזקות, אקספוננט,
	f(x)^g(x) לוגריתם, פונקציות טריגונומטריות. כללי גזירה. כלל השרשרת. נגזרת של פונקציה
מפגש 7	. l'Hopital משפט, Rolle, משפט ערך הביניים של, Lagrange ומשפט, כלל Rolle .
	נוסחת Taylor עם שארית Lagrange. פולינום Taylor של פונקציות אלמנטריות. שימושים (גבולות, הוכחת אי-
מפגש 8	שיוויונים). שיוויונים).
	י תחומי עליה/ירידה ונקודות קיצון (מינימום ומקסימום מקומי/מוחלט); תחומי קמירות/קעירות ונקודות פיתול;
מפגש 9	אסימפטוטות, חקירת פונקציות.
	י י מומלץ לסיים את הפרק "חשבון דיפרנציאלי" אחרי 8-7 הרצאות.
	י חשבון אינטגרלי
מפגש 10	פונקציה קדומה, אינטגרל לא מסוים, אריתמטיקה של אינטגרלים. שיטות אינטגרציה: אינטגרציה בחלקים, הצבה
	(כולל הצבה טריגונומטרית), אינטגרל של פונקציות רציונליות, שילובים של שיטות.
	· · · · · · · · · · · · · · · · · · ·

	37
	סכומי Riemann, אינטגרל מסוים, שטח ומסה. המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי ונוסחת
מפגש 11	Newton-Leibniz. חישוב גבולות בעזרת סכום Riemann. גזירה של אינטגרל לפי פרמטר. דוגמאות לשימוש
	באינטגרל המסויים.
מפגש 12	אינטגרל לא אמיתי מסוג ראשון, קריטריוני השוואה. אינטגרל לא אמיתי מסוג שני.
	מומלץ לסיים את הפרק "חשבון אינטגרלי" אחרי 7-8 הרצאות.
מפגש 13	

נושאי המעבדה / תרגול לפי שבועות

הבהרה! סדר הנושאים והיקפם יכול להשתנות בהתאם לשיקול דעת המרצה

מפגש 1	מבוא-קבוצות (שייכות, הכלה), אינדוקציה, ערך מולחט ואי שויונים בסיסיים, בינום ניוטון, גרפים של פונקציות אלמנטריות.		
מפגש 2	סדרות – מושגי יסוד , חשבון גבולות (אריתמטיקה, כלל הסנדוויץ', מכפלה של סדרה חסומה בסדרה שואפת לאפס).		
מפגש 3	סדרות – סדרה מונוטונית חסומה, גבולות מיוחדים. סיום הפרק "מבוא והתכנסות סדרות".		
מפגש 4	מושגי יסוד של פונקציות ממשיות.		
מפגש 5	גבולות, גבול חד-צדדי, גבולות מיוחדים.		
מפגש 6	רציפות של פונקציות-הגדרה, מיון סוגי אי-רציפות. משפט ערך הביניים ומשפט Weierstrass. סיום הפרק "גבולות ורציפות של פונקציות ממשיות".		
מפגש 7	הנגזרת: שיפוע, מהירות, משיק, נורמל. חשבון נגזרות, כלל השרשרת. פונקציה מפוצלת: נגזרת רציפה בנקודת פיצול (לא לפי הגדרה).		
מפגש 8	חשבון דיפרנציאלי-משפטי יסוד: משפט Fermat, משפט Rolle, משפט Permat, כלל l'Hopital.		
מפגש 9	פולינום Taylor עם שארית, שימושים.		
מפגש 10	חקירת פונקציות ושימושים כולל בעיות קיצון. סיום הפרק "חשבון דיפרנציאלי".		
מפגש 11	פונקציה קדומה, אינטגרל לא מסוים. אינטגרציה בחלקים, חישוב אינטגרלים בשיטת ההצבה (כולל הצבה טריגונומטרית) , אינטגרל של פונקציה רציונלית, שילובים של שיטות.		
מפגש 12	פונקציה קדומה, אינטגרל לא מסוים. אינטגרציה בחלקים , חישוב אינטגרלים בשיטת ההצבה (כולל הצבה טריגונומטרית) , אינטגרל של פונקציה רציונלית, שילובים של שיטות.		
מפגש 13	אינטגרל מסוים וסכומי Riemann, משפט היסודי של חדו"א ונוסחת Newton-Leibniz. גזירה של אינטגרל לפי פרמטר. שימושים של אינטגרל מסוים.		

רכז הקורס סטאנצ'סקו יוני			
לשמות מרצים נוספים, מתרגלים, שעות קבלה, מועדי הרצאות ובחינות <u>לחץ כאן</u>			
שפה בה נלמד הקורס עברית			
פירוט נושא ללימוד עצמי הנכלל			
בבחינה הסופית			
*רלוונטי לקורסים בהם הוגדר פרק מסוים מחומר הלימוד - ללימוד עצמי אשר ייכלל בבחינה הסופית.			
רשימת מקורות 1. ה. אנטון, "חשבון דיפרנציאלי ואינטג	בון דיפרנציאלי ואינטגרלי א", האוניברסיטה הפתוחה, תל אביב,		
.1997			
2. ב. צ. קון-ס. זעפרני, "חשבון דיפרנצ	נפרני, "חשבון דיפרנציאלי ואינטגרלי 1", הוצאת בק – ספרי לימוד,		
חיפה, 1994.			
-10th ed., Addison-Wesley, 2001 .3	.Thomas, G.B and Finney, R.L.: Calculus, 9th -10th ed., Addison-		
לאתר הלמידה מרחוק יש ללחוץ כאן לאתר הלמידה מרחוק יש ללחוץ כאן	רחוק יש ללחוץ כא <u>ו</u>		

חובות הקורס ומפתח לקביעת הציון הסופי

תאור רכיב	משקל מציון סופי
מבחן סופי	85
בוחן אמצע	10
תרגילים	5
פרויקט עם בחינה	0
פרויקט ללא בחינה	0
ציון סופי בלבד	0

הבהרות למעבר קורס

על מנת לעבור בהצלחה את הקורס [למעט מכינות, מעבדות, סמינרים וליווי פרויקטים] <u>יש לעמוד בכל אחד מהתנאים הבאים</u>:

- 1. הציון הסופי בקורס הוא 60 לפחות [בשקלול של כל מרכיבי הקורס, לרבות תרגילים, פרויקטים ומטלות נוספות].
 - 2. נוכחות לפי תנאי חובת נוכחות. בהתייחס לסעיף נוכחות של סילבוס זה.

בחנים ומבחנים

סוג בוחן אמצע מודל/ממוחשב

Moodle משך בוחן אמצע

חדר בוחן אמצע מודל

משך מבחן בדקות 180 דקות

חדר מבחן כיתת לימוד (פרונטאלי)

עזרים למבחן מחשבון רגיל

הבהרות עזרים למבחן

דפי נוסחאות דף נוסחאות הנכתב ע"י מרצה ויהיה חלק משאלון הבחינה

מ**ספר דפים** 0

דפי נוסחאות מרצה דפי הנוסחאות יפורסמו באתר הקורס (ב- Moodle) כשבועיים לפני הבחינה.