

Teoria de Grupos e Tensores

Matheus Pereira Coutinho

Instituto de Física da USP matheus.coutinho9@usp.br

Sumário

1	Monóides, Semigrupos e Grupos1.1 Definições Básicas	4 4 5
2	Homomorfismo, Grupo do Círculo e Semigrupos	7
3	Corpos, Espaços Vetoriais, Álgebras e Álgebras de Lie 3.1 Espaço Vetorial 3.2 Álgebra 3.3 Álgebra de Lie	8 8 9 10
4	Relações, Relações de Equivalência e Classes de Equivalência4.1 Relação4.2 Relação de Equivalência4.3 Classe de Equivalência	12 12 12 13
5	Relações de Equivalência e o Espaço Quociente 5.1 Espaço Vetorial Quociente	1 4
6	Grupo de Permutações e Grupos Matriciais 6.1 Grupo de Matrizes	15 15 15 17
7	Grupo de Heisenberg, Subgrupos Uniparamétricos	18
8	Grupos Associados a Formas Lineares e Sesquileares 8.1 Formas	19 19 20 20
9	Grupo Ortogonal Especial SO(2) 9.1 Propriedades de SO(2) 9.2 Significado Geométrico 9.3 Gerador de SO(2)	23 23 24 25
10	10.1 Adjunta de uma Matriz 10.2 Grupo de Matrizes Unitárias 10.3 Grupo SU(2)	27 27 28 29
11	Grupos O(p,n) e SO(p,n) 11.1 Invariância de formas lineares 11.2 O(1,1) e SO(1,1) 11.3 Intuição Geométrica 11.4 Relação com Física	32 32 34 35 36
12	2 Grupos de Lorentz	38
13	3 Grupos SO(3) 13.1 Características de SO(n) e SO(3)	39
14	${ m Grupo~SO(3)}$ e o ângulos de Euler	41

15	Grupo de Lorentz em 3+1 dimensões e o Grupo de Galileu	42
16	Grupos Simpléticos e Ações de Grupos	43

1 Monóides, Semigrupos e Grupos

1.1 Definições Básicas

Antes de definir as estruturas algébricas básicas de monóides, semigrupos e grupos, é necessário introduzir algumas noções, mais elementares ainda, são essas, conjuntos em mapas.

Definição [Conjunto]

Um conjunto é uma coleção de elementos, e para se definir um conjunto específico é necessária uma regra que me permita verificar se um determinado objeto pertence ao conjunto ou não.

Definição [Mapa]

Consideremos dois conjuntos X e Y. Um mapa é uma regra que associa um elemento $y \in Y$ a cada $x \in X$

$$\varphi: X \longrightarrow Y$$

$$\varphi: x \mapsto \varphi(x)$$

O conjunto X é chamado de Domínio do mapa e Y de contradomínio do mapa. A imagem do mapa é o conjunto de elementos de Y, tais que $\varphi(x)=y$

Algumas definições

- Um mapa é dito ser injetivo se, quando $x \neq x' \Rightarrow \varphi(x) \neq \varphi(x')$
- Um mapa é dito ser sobrejetivo se, para cada elemento de $y \in Y$ existe um $x \in X$, tal que $\varphi(x) = y$
- Um mapa é dito ser bijetivo quando ele é injetivo e sobrejetivo

Dadas as definições acima, podemos definir um tipo especial de mapa, que também tem um nome particular, o produto ou operação.

Definição [Produto]

Consideremos um conjunto X qualquer e o conjunto $X \times X$ chamado de produto cartesiano, que o é conjunto formado por pares de elementos de X, ou seja, $X \times X := \{(a,b), a,b \in X\}$. Um **produto** em X é um mapa da forma

$$\varphi: X \times X \longrightarrow X$$

$$\varphi:(a,b)\longmapsto \varphi(a,b)$$

em outros termos, é um mapa que associa um elemento de X a cada par de elementos de X.

Por vezes, $\varphi(a,b)$ é denotado, simplesmente, por $a \star b$ ou $a \cdot b$

Dados os ingrediente, podemos definir as estruturas algébricas mais elementares

1.2 Estruturas Algébricas

Definição [Semigrupo]

Um **semigrupo** é um conjunto não-vazio S dotado de um produto, ou seja, um mapa da forma $\varphi: S \times S \longrightarrow S$, tal que

$$\varphi(\varphi(a,b),c) = \varphi(a,\varphi(b,c)) \quad \forall a,b,c \in S \quad (Associatividade)$$

Ou, em notação simplificada $(a \star b) \star c = a \star (b \star c)$

Deste modo, o semigrupo é representado pelo par, conjunto, produto (S, \star)

Definição [Monóide]

Um **monóide** é um conjunto não-vazio M dotado de um produto, ou seja, um mapa da forma $\varphi: M \times M \longrightarrow M$, tal que

- $(a \star b) \star c = a \star (b \star c)$ $\forall a, b, c \in M$ (Associatividade)
- Existe um (único) elemento $e \in M$ tal que $e \star a = a \star e = a \ \forall a \in M$ (elemento neutro)

Deste modo, o monóide é representado pelo par, conjunto, produto (M, \star)

Definição [Grupo]

Um **grupo** é um conjunto não-vazio G dotado de um produto, ou seja, um mapa da forma $\varphi: G \times G \longrightarrow G$, tal que

- $(a \star b) \star c = a \star (b \star c)$ $\forall a, b, c \in G$ (Associatividade)
- Existe um (único) elemento $e \in M$ tal que $e \star a = a \star e = a \ \forall a \in G$ (elemento neutro)
- Para cada $a \in G$ exite um (único) a^{-1} tal que $a \star a^{-1} = a^{-1} \star a = e \quad \forall a \in G$ (elemento inverso)

Deste modo, o grupo é representado pelo par, conjunto, produto (G, \star)

 \bigstar Um grupo é dito ser abeliano se o seu produto é comutativo, ou seja, $a \star b = b \star a \quad \forall a, b \in G$

Exemplos:

- ▶ O conjunto $GL(n,\mathbb{R})$ de todas as matrizes reais $n \times n$ com determinante não nulo (e, portanto, inversíveis) é um grupo em relação à operação de produto usual de matrizes. $GL(n,\mathbb{R})$ é não Abeliano se n > 1
- ▶ Sendo X um conjunto não-vazio qualquer e denotamos por $S=X^X$ o conjunto de todos os mapas $\varphi:X\longrightarrow X,$ S então é um monóide com o produto sendo a composição de mapas e o elemento neutro sendo o mapa ou função identidade id(x)=x, $\forall x\in X.$
- ▶ Sendo X um conjunto não-vazio qualquer e denotamos por $S = X^X$ o conjunto de todos os mapas bijetores $\varphi : X \longrightarrow X$, S então é um grupo não abeliano com o produto sendo a composição de mapas, o

elemento neutro sendo o mapa ou função identidade id(x) = x, $\forall x \in X$ e o elemento inverso é o mapa inverso φ^{-1} . Esse grupo é chamado de grupo de permutações de X e é denotado por Perm(X)

▶ O conjunto dos números reais \mathbb{R} com a soma usual de números reais é um grupo abeliano, sendo 0 o elemento neutro e -a o elemento inverso de cada elemento a. Este grupo é denominado de grupo aditivo dos reais $(\mathbb{R}, +)$

2	Homomorfismo, Grupo do Círculo e Semigrupos

3 Corpos, Espaços Vetoriais, Álgebras e Álgebras de Lie

Definição [Corpos]

Um **corpo** é um conjunto não vazio dotado de dois mapas, ambos de forma $f: \mathbb{K} \times \mathbb{K} \longrightarrow \mathbb{K}$, denominados de soma e produto, e denotados por + e \cdot , respectivamente, tais que valem as seguintes propriedades para todos $a, b, c \in \mathbb{K}$

- a + b = b + a
- a + (b + c) = (a + b) + c
- Existe um elemento $0 \in \mathbb{K}$ tal que a + 0 = 0 + a = a, $\forall a \in \mathbb{K}$
- Para cada $a \in \mathbb{K}$ existe um elemento b tal que a+b=0. Frequentemente esse elemento é denotado por -a
- $a \cdot b = b \cdot a$
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- Existe um elemento $1 \in \mathbb{K}$ tal que $a \cdot 1 = 1 \cdot a = a$, $\forall a \in \mathbb{K}$
- Para cada elemento a existe um elemento b tal que $a \cdot b = 1$. Frequentemente esse elemento é denotado por a^{-1}
- $a \cdot (b+c) = a \cdot b + a \cdot c$

Com isso, podemos representar um corpo pela tripla $(\mathbb{K}, +, \cdot)$

- ★ É comum, especialmente em fisica, chamar os elementos de um corpo de escalares.
- \bigstar Os corpos utilizados em física são, na grande maioria dos casos, $\mathbb R$ e $\mathbb C$

3.1 Espaço Vetorial

Definição [Espaço Vetorial]

Um **espaço vetorial** sobre um corpo \mathbb{K} é um conjunto V não vazio dotado de dois mapas, de formas $\varphi: V \times V \longrightarrow V$ e $\psi: \mathbb{K} \times V \longrightarrow V$, cujos nomes são soma vetorial e produto por escalar, respectivamente, tais que valem as seguinte propriedades para todos $u, v, w \in V$ e $a, b \in \mathbb{K}$

- \bullet u + v = v + u
- u + (v + w) = (u + v) + w
- Existe um elemento $0 \in V$ tal que u + 0 = 0 + u = u, $\forall u \in V$
- Para cada $u \in V$ existe um elemento v tal que u+v=0. Frequentemente esse elemento é denotado por -u
- \bullet $a \cdot (b \cdot u) = (a \cdot b) \cdot u$
- Existe um único elemento $1 \in \mathbb{K}$ tal que $u \cdot 1 = 1 \cdot u = u$, $\forall u \in V$
- $\bullet \ a \cdot (u+v) = a \cdot u + a \cdot v$
- $(a+b) \cdot u = a \cdot u + b \cdot u$

Com isso, podemos representar um espaço vetorial pela tripla $(V, +, \cdot)$

★ Os elementos de um espaço vetorial são chamados de vetores.

Exemplos:

- \blacktriangleright Se \mathbbm{K} é um corpo, então ele também é um espaço vetorial sob as ele mesmo e com as operações nele definidas.
- ▶ Um exemplo muito relevante me física é o conjunto $\mathbb{R}^n := \{(x_1,...,x_n), x_i \in \mathbb{R}, i=1,...,n\}$ com as operações soma

$$(x_1,...,x_n) + (y_1,...,y_n) = (x_1 + y_1,...,x_n + y_n)$$

e produto por escalar

$$a \cdot (x_1, ..., x_n) = (a \cdot x_1, ..., a \cdot x_n)$$

Frequentemente um elemento de \mathbb{R}^n é denotado por uma matriz coluna

$$(x_1, ..., x_n) \longrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

- ightharpoonup O mesmo exemplo do espaço \mathbb{R}^n também pode ser considerado para o espaço \mathbb{C}^n
- ▶ Um exemplo de fundamental importância é o espaço vetorial formado pelo conjunto de funções $f: X \longrightarrow \mathbb{R}$, onde X é um conjunto qualquer, e com a soma vetorial e produto por escalar definidos por

$$(f+g)(x) = f(x) + g(x) , \quad \forall x \in X$$
$$(a \cdot f)(x) = a \cdot f(x)$$

Esse exemplo demonstra o quão amplo é o conceito de espaço vetorial.

3.2 Álgebra

Definição [Álgebra]

Uma álgebra é um espaço vetorial V sobre um corpo $\mathbb K$ e com um terceiro mapa, denominado de produto da álgebra, e de forma $\varphi: V \times V \longrightarrow V$. A notação para esse produto será, a priori, $\varphi(u,v) := u \times v$. Tal produto deve ainda satisfazer os seguintes requerimentos para todos $u,v,w \in V$

$$u \times (v+w) = u \times v + u \times w$$
 e $(u+v) \times w = u \times w + v \times w$
 $a \cdot (u \times v) = (a \cdot u) \times v = u \times (a \cdot v)$, $\forall a \in \mathbb{K}$

- \bigstar Uma álgebra é dita ser comutativa se $u \times v = v \times u$
- \bigstar Uma álgebra é dita ser associativa se $u \times (v \times w) = (u \times v) \times w$

Um exemplo de álgebra, muito utilizada em física, é a a álgebra do produto vetorial, que é o espaço vetorial $\mathbb{R}^3 := \{(x_1, x_2, x_3), x_i \in \mathbb{R}\}$ com o produto da álgebra

$$(x_1, x_2, x_3) \times (y_1, y_2, y_3) = (x_2y_3 - x_3y_2, x_1y_3 - x_3y_1, x_1y_2 - x_2y_1)$$

Propriedades notáveis dessa álgebra, em partícular, são

$$u\times v=-v\times u$$

$$u \times (v \times w) \neq (u \times v) \times w$$
$$u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0$$

A ultima propriedade é chamada de identidade de Jacobi.

Constantes de Estrutura

Se A é uma álgebra de dimensão n, portanto é também um espaço vetorial, podemos considerar o conjunto $B := \{b_1, ..., b_n\}$. Com base na noção de base da álgebra, sabemos que qualquer elemento dela pode ser escrito como uma combinação linear dos elementos da base. Em especial, podemos escrever o produto de dois elementos da base como combinação dos elementos da base

$$b_i \cdot b_j = \sum_{k=1}^n c_{ij}^k b_k$$

Os coeficientes c_{ij}^k são denominados constantes de estrutura da álgebra A na base B. Por meio dessas constantes nós podemos determinar o produto de dois elementos da álgebra, pois dados dois elementos u e v escritos na base B.

$$u = \sum_{i=1}^{n} u_i b_i \quad e \quad v = \sum_{j=1}^{n} v_j b_j$$

O produto $u \times v$ será

$$u \times v = \sum_{k=1}^{n} \lambda_k b_k$$

com

$$\lambda_k = \sum_{i=1}^n \sum_{j=1}^n u_i v_j c_{ij}^k$$

E, portanto

$$u \times v = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} u_i v_j c_{ij}^k \right) b_k$$

Nosso próximo passo definir uma álgebra de Lie. Mas antes disso é preciso falar de notação, pois o o produto em álgebras de Lie é denotado por [u, v]

3.3 Álgebra de Lie

Definição [Álgebras de Lie]

Uma álgebra L é dita ser uma álgebra de Lie se satisfazer as seguintes condições

- $\forall a \in L \quad [a, a] = 0$
- $\forall a,b,c \in L \ [a,[b,c]] + [c,[a,b]] + [b,[c,a]] = 0$ (identidade Jacobi)

Alternativamente, podemos escrever a primeira condição como

$$[a, b] = -[b, a]$$
 (anticomutatividade)

▶ Como já apresentado, é direta a conclusão de que o espaço vetorial $\mathbb{R}^3 := \{(x_1, x_2, x_3), x_i \in \mathbb{R}, i = 1, ..., n\}$ com o produto vetorial é um exemplo de álgebra de Lie

Álgebra Associativa

Dada uma álgebra A associativa, isto é, $a \times (b \times c) = (a \times b) \times c \ \forall a,b,c \in A$. Como por exemplo a álgebra formado pelo conjunto de matrizes reais $n \times n$, denotado por $Mat(\mathbb{R},n)$, com o produto usual de matrizes. É sempre possível construir, a partir dela, uma álgebra de Lie. Para tanto, é necessário definir o produto da álgebra como sendo o comutador

$$[a, b] = ab - ba$$

É fácil ver que, com esse novo produto definido, as condições que definem uma álgebra de Lie são naturalmente satisfeitas

$$[a, a] = aa - aa = 0$$

$$[a, [b, c]] + [c, [a, b]] + [b, [c, a]]$$

$$= a(bc - cb) - (bc - cb)a + c(ab - ba) - (ab - ba)c + b(ca - ac) - (ca - ac)b$$

$$= abc - acb - bca + cba + cab - cba - abc + bac + bca - bac - cab + acb$$

$$= 0$$

É notável, que a última propriedade só é satisfeita se a álgebra for associativa

Definição [Álgebra de Poisson]

Definição [Álgebra de Jordan]

Definição [Álgebra de Grassmann]

Definição [Álgebra de Clliford]

4 Relações, Relações de Equivalência e Classes de Equivalência

4.1 Relação

Definição [Relação]

Dados dois conjuntos não vazios quaisquer A e B, o produto cartesiano entre esses dois conjuntos é simplesmente o conjunto formado por todos os pares ordenados de elementos de A e B, denotado por $A \times B := \{(a,b), a \in A, b \in B\}$. Uma **relação** R entre A e B é simplesmente um subconjunto de $A \times B$. $R \subset A \times B$

4.2 Relação de Equivalência

Definição [Relação de Equivalência em um Conjunto]

Consideremos A um conjunto não vazio qualquer e o produto cartasiano $A \times A := \{(a, a'), \ a, a' \in A\}$. Uma **relação de equivalência** em A é uma relação $E \subset A \times A$, tal que

- $(a, a) \in E$, $\forall a \in A$ (reflexividade)
- se $(a,b) \in E$, então $(b,a) \in E$ (simetria)
- se $(a,b) \in E$ e $(b,c) \in E$, então $(a,c) \in E$ (transitividade)

Se um par (a,b) pertence a uma relação de equivalência E então dizemos que a é equivalente a b seguindo E. Uma notação comum é $a \sim b$. Segunda essa notação as propriedades que uma relação deve possuir para ser considerada uma relação de equivalência escrevem-se

- $a \sim a$ para todo $a \in A$ (Reflexividade)
- Se $a \sim b$ então $b \sim a$ (simetria)
- Se $a \sim b$ e $b \sim c$ então $a \sim c$ (transitividade)

Exemplo:

Consideremos V um espaço vetorial e U um subespaço qualquer de V

 \bigstar Só para se ter intuição, o exemplo acima pode ser pensado, simplesmente, considerando V o espaço \mathbb{R}^2 e U os pontos que pertencem à uma reta que cruza a origem, por exemplo.

Consideremos a relação $E=\{(a,b),\ a,b\in V,\ b-a\in U\}$, isto é, $a\thicksim b$ se $b-a\in U$

Chequemos se as condições são satisfeitas

 $a \sim a$ se $a - a \in U$, e portanto se $0 \in U$. Essa condição é satisfeita, pois U contém o elemento neutro (do contrário não seria subespaço)

 $a \sim b$ implica que $b-a \in U$ e $b \sim a$ implica que $a-b \in U$. Mas a-b=-(b-a) e $b-a \in U$, e como trata-se de um subespaço vetorial um elemento multiplicado por um escalar também é um elemento do subespaço. Logo $a-b \in U$

 $a \sim b \Rightarrow b-a \in U$ e $b \sim c \Rightarrow c-b \in U$. $a \sim c$ implica que $c-a \in U$, para ver com clareza que $c-a \in U$ basta considerar $b-a=u_1 \in U$ e $c-b=u_2 \in U$, se u_1 e u_2 pertencem a U, certamente a subtração deles também pertence a U. Logo, $u_2-u_1=c-b-(b-a)=c-a \in U$

4.3 Classe de Equivalência

Definição [Classe de Equivalência]

Sendo A um conjunto e $E \subset A \times A$ uma relação de equivalência em A, definimos, para cada $a \in A$, sua classe de equivalência como sendo o conjunto de todos os elementos que são equivalente a a, isto é

$$E(a) := \{ a' \in A \text{ tal que } (a, a') \in E \}$$

Uma outra notação para a classe de equivalência de a é [a]

$$[a] = \{a' \in A, \ a' \sim a\}$$

- \bigstar É notável que, pela reflexividade, um elemento a sempre é equivalente a ele mesmo, $a \sim a$, e, por isso uma classe de equivalência nunca é um conjunto vazio, pois contém, no mínimo, o próprio elemento.
- \bigstar Com base na observação acima, temos que, o conjunto A pode ser escrito a partir da união das classes de equivalência dos seus elementos

$$A = \bigcup_{a \in A} [a]$$

- \bigstar Além do mais, se $a,b \in A$ e $a \sim b$, então [a] = [b]. Isso é trivial, pois se $[a] \neq [b]$, então existiria algum elemento, digamos c, que pertence a [a] mas não pertence a b ($c \in [a]$ e $c \notin [b]$), isso significa que esse suposto elemento é equivalente a a mas não é equivalente a b, essa conidção, porém, não pode ser verdade, uma vez que, pela transitividade, se $c \sim a$ e $a \sim b$, então, necessariamente, $c \sim b$, e portanto $c \in [b]$. Logo, as classes de equivalência de dois elementos equivalentes tem de ser iguais.
 - \bigstar Segue-se disso que, se $a \nsim b$ então $[a] \cap [b] = \emptyset$

5 Relações de Equivalência e o Espaço Quociente

5.1 Espaço Vetorial Quociente

Notação: O conjunto de todas as classes de equivalência em um conjunto A, segundo uma relação \sim é denotado por:

$$A/\sim = \{[a], a \in A\}$$

Definição [Espaço Vetorial Quociente]

Consideremos V um espaço vetorial, U um subespaço de V, a relação de equivalência, $x \sim y$ se $y - x \in U$ e o conjunto das classes de equivalência $V/\sim = V/U = \{[x], x \in V\}$. O **espaço quociente** é um espaço vetorial formado pelo conjunto V/U com a soma definida por

$$[x] + [y] := [x + y]$$

e o produto por escalar

$$a\cdot [x]:=[a\cdot x]$$

6 Grupo de Permutações e Grupos Matriciais

6.1 Grupo de Matrizes

Notação: Conjuntos de matrizes reais e complexas $n \times n$ são denotados por $Mat(\mathbb{R},n)$ e $Mat(\mathbb{C},n)$, respectivamente.

- ★ Ambos os conjuntos acima são grupos abelianos sob a operação de soma usual de matrizes, mas não sob a operação de multiplicação usual de matrizes, pois nem toda matriz possui elemento inverso.
- \bigstar Se considerarmos agora o subconjunto de $Mat(\mathbb{R},n)$ formado por matrizes inversíveis, então esse conjunto é um grupo não abeliano sob a operação de multiplicação usual de matrizes. Esse grupo é denominado de grupo linear real $GL(\mathbb{R},n)$. Analogamente, tem-se o grupo linear complexos $GL(\mathbb{C},n)$. Uma forma de garantir que uma matriz tenha inversa é dizendo que seu determinante é não nulo, com isso, podemos escrever os grupos lineares como

$$GL(n,\mathbb{R}) := \{A \in Mat(n,\mathbb{R}), det(A) \neq 0\}$$
 e $GL(n,\mathbb{C}) := \{A \in Mat(n,\mathbb{C}), det(A) \neq 0\}$

 \bigstar Além destes, devido à propriedade do determinante $det(A \cdot B) = det(A) \cdot det(B)$, o produto de duas matrizes com determinante 1 também possui determinante igual a 1, por isso podemos forma um subgrupo de $GL(n,\mathbb{R})$, formado pelas matrizes de determinante 1

$$SL(n,\mathbb{R}) := \{ A \in Mat(n,\mathbb{R}), det(A) = 1 \}$$

Analogamente, para matrizes complexas

$$SL(n, \mathbb{C}) := \{ A \in Mat(n, \mathbb{C}), det(A) = 1 \}$$

Esses grupos são chamados de grupos lineares especiais

6.2 Grupo de Heisenberg $GH_3(\mathbb{C})$

O grupo de Heisenberg é composto pelo conjunto de matrizes da forma

$$H(a,b,c) = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$$

com a operação usual de multiplicação de matrizes, e $a,b,c\in\mathbb{C}$

 \bigstar É fácil ver que a matriz identidade está no grupo, pois $H(0,0,0) = \mathbb{I}$, e é o elemento neutro

$$H(a,b,c)\cdot H(x,y,z) = H(a+x,b+y,c+z+a\cdot y) = H(a,b,c)$$

$$a+x=a\Rightarrow x=0$$

$$b+y=b\Rightarrow y=0$$

$$c+z+ay=c\Rightarrow z=0$$

$$e = H(0, 0, 0)$$

Além disso, o produto de duas matrizes do grupo de Heisenberg é

$$H(a,b,c) \cdot H(a',b',c') = \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & a' & c' \\ 0 & 1 & b' \\ 0 & 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & a+a' & c'+a \cdot b'+c \end{pmatrix}$$

$$H(a,b,c) \cdot H(a',b',c') = \begin{pmatrix} 1 & a+a' & c'+a \cdot b'+c \\ 0 & 1 & b'+b \\ 0 & 0 & 1 \end{pmatrix}$$

$$H(a,b,c)H(a',b',c') = H(a+a',b+b',c+c'+ab')$$

A inversa de uma matriz H(a, b, c) é dada por

$$H(a,b,c)^{-1} = H(-a,-b,ab-c) = \begin{pmatrix} 1 & -a & ab-c \\ 0 & 1 & -b \\ 0 & 0 & 1 \end{pmatrix}$$

Pois

$$H(a,b,c) \cdot H(x,y,z) = H(0,0,0)$$

$$H(a+x,b+y,c+z+a\cdot y) = H(0,0,0)$$

$$x = -a$$

$$y = -b$$

$$z = a \cdot b - c$$

$$H^{-1}(a,b,c) = H(-a,-b,ab-c)$$

★ Podemos identificar um subgrupo do grupo de Heisenberg formado pelas matrizes

$$H_1(t) := H(t, 0, 0) = \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$H_2(t) := H(0, t, 0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}$$

$$H_3(t) := H(0,0,t) = \begin{pmatrix} 1 & 0 & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$H_j(t)H_j(t') = H_j(t+t')$$

Cada matriz $H_j(t)$ gera um subgrupo uniparamétrico. Que podem ser representados a partir de seus geradores

$$h_j := \left. \frac{d}{dt} H_j(t) \right|_{t=0}$$

6.3 Exponenciação de Matrizes

$$e^x = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

$$e^x e^y = e^{x+y}$$

$$e^{0} = 1$$

$$\frac{d}{dx}e^x = e^x$$

7	Grupo de Heisenberg, Subgrupos Uniparamétricos

8 Grupos Associados a Formas Lineares e Sesquileares

8.1 Formas

Definição [Forma Bilinear]

Seja V um espaço vetorial real, um mapa do tipo $\omega: V \times V \longrightarrow \mathbb{R}$

$$\omega(u,v) \in \mathbb{R}, \ \forall \ u,v \in V$$

é dito ser uma forma bilinear se

•

$$\omega (\alpha_1 u_1 + \alpha_2 u_2, v) = \alpha_1 \omega (u_1 v) + \alpha_2 \omega (u_2, v)$$

•

$$\omega (u, \beta_1 v_1 + \beta_2 v_2) = \beta_1 \omega (u, v_1) + \beta_2 \omega (u, v_2)$$

Exemplo:

$$V = \mathbb{R}^2 = \{(x_1, x_2), \ x_1, x_2 \in \mathbb{R}\}$$

$$x = (x_1, x_2) \quad y = (y_1, y_2)$$

$$\omega(x, y) = x_1 y_1 + x_2 y_2 = \vec{x} \cdot \vec{y}$$

$$\omega(x, y) = x_1 y_1 - x_2 y_2$$

$$\omega(x, y) = x_1 y_2 - x_2 y_1$$

- \bigstar Se $\omega(x,y)=\omega(y,x)$, então ω é dito ser uma forma simétrica
- \star Se $\omega(x,y) = -\omega(y,x)$, então ω é dito ser uma forma alternante

Definição [Produto Escalar]

$$\omega: V \times V \longrightarrow \mathbb{R}$$

- $\bullet~\omega$ é uma forma bilinear
- ω é simétrica
- $\omega(x,x) \geqslant 0$ e se $\omega(x,x) = 0 \Rightarrow x = 0$

Exemplo:

$$\mathbb{R}^n = \{(x_1, \dots, x_n), x_n \in \mathbb{R}\} \equiv V$$

$$x \equiv (x_1, \dots, x_n), \quad y \equiv (x_1, \dots, y_n)$$

$$\omega(x,y) = \sum_{k=1}^{n} x_k y_k$$

Definição [Forma Sesquilineares]

8.2 Grupos que mantém invariantes formas bilineares

Seja V um espaço vetorial real e ω um forma bilinear em V, isto é, para todo $u, v \in V$

$$\omega(u,v) \in \mathbb{R}$$

Consideremos GL(V) o conjunto de operadores lineares inversíveis (bijetores) agindo em V

$$\omega(Ou, Ov) = \omega(u, v)$$

O conjunto de matrizes $O \in \mathrm{GL}(v)$ que mantém ω invariante forma um grupo, podemos ver isso notando as seguintes propriedades

- A identidade pertence ao conjunto $\omega(\mathbb{1}u,\mathbb{1}v) = \omega(u,v)$
- Dados O_1 e O_2 , tais que $\omega(O_1u,O_1v)=\omega(u,v)$ e $\omega(O_2u,O_2v)=\omega(u,v)$, então o produto também mantém a forma ω invariante

$$\omega\left(O_1O_2u, O_1O_2v\right) = \omega\left(O_2u, O_2v\right) = \omega(u, v)$$

• Se O mantém ω invariante, então existe um O^{-1} também mantém ω invariante

$$\omega(O^{-1}u, O^{-1}v) = \omega(u, v)$$

$$\omega(OO^{-1}u, OO^{-1}v) = \omega(\mathbb{1}u, \mathbb{1}v) = \omega(u, v)$$

Representamos esse grupo por

$$\Omega(V,\omega) = \{ O \in \operatorname{GL}(V), \omega(Ou, Ov) = \omega(u, v) \forall u, v \in V \}$$

Denominado Grupo de invariância da forma bilinear ω

 \bigstar As mesmas noções se extendem naturalmente para formas sesquilineares

8.3 Grupos Ortogonais

Consideremos $V = \mathbb{R}^n = \{(x_1, \dots, x_n), x_k \in \mathbb{R}\}$ e o produto escalar

$$\langle x, y \rangle_{\mathbb{R}} = \sum_{k=1}^{m} x_k x_k$$

Qual é o grupo de matrizes que mantém essa forma invariante? $A \in \mathrm{GL}(n,\mathbb{R})$

$$\Omega(\langle , \rangle; \mathbb{R}^n) = \{ A \in \mathrm{GL}(n, \mathbb{R}), \langle Ax, Ay \rangle = \langle x, y \rangle, \forall x, y \in \mathbb{R} \}$$

Em ordem de vizualizar a forma das matrizes A, tem se a seguinte identidade

$$\langle x, My \rangle = \langle M^T x, y \rangle$$

$$\left(M^T\right)_{ij} = M_{ji}$$

Prova:

$$\langle x, My \rangle = \sum_{i=1}^{m} x_i (My)_i$$
$$(My)_i = \sum_{j=1}^{n} M_{ij} y_i$$
$$\langle x, My \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} x_i M_{ij} y_j$$
$$\langle x, My \rangle = \sum_{j=1}^{m} y_j \sum_{i=1}^{m} x_i M_{ij}$$

A segunda soma pode ser escrita como

$$\sum_{i=1}^{m} x_i M_{ij} = \sum_{i=1}^{m} M_{ij} x_i$$

$$M_{ij} = (M^T)_{ji}$$

$$\sum_{i=1}^{m} x_i M_{ij} = \sum_{i=1}^{m} (M^T)_{ji} x_i = (M^T x)_j$$

$$\langle x, M y \rangle = \sum_{j=1}^{m} y_j (M^T x)_j = \sum_{j=1}^{m} (M^T x)_j y_j$$

$$\langle x, M y \rangle = \langle M^T x, y \rangle$$

Agora utilizemos a identidade para demosn
trar a forma das matrizes $A \in \mathrm{GL}(n,\mathbb{R})$ tais que $\langle Ax,Ay \rangle = \langle x,y \rangle$ para todo $x,y \in \mathbb{R}$

$$\langle Ax, Ay \rangle = \langle A^T Ax, y \rangle$$

$$\langle A^T Ax, y \rangle - \langle x, y \rangle = 0$$

$$\langle (A^T A - 1) x, y \rangle = 0$$

$$\langle Tx, y \rangle = 0 \quad \forall x, y \Rightarrow \quad T = 0$$

$$\langle Tx, Tx \rangle = 0 \Leftrightarrow Tx = 0 \Rightarrow T = 0$$

$$A^T A - 1 = 0$$

$$A^T A = 1 \to A^T = A^{-1}$$

Com isso, concluímos que o grupo de matrizes que mantém o produto escalar usual em \mathbb{R}^n invariante é o grupo de matrizes que possuem a transposta como inversa

$$\Omega(\langle,\rangle;\mathbb{R}^n) = \{A \in \mathrm{GL}(n,\mathbb{R}), A^{-1} = A^T\}$$

As matrizes com essa propriedade são chamadas de matrizes ortogonais.

★ Uma notação mais comum para o grupo das matrizes ortogonas é

$$O(n) = \{ A \in GL(n, \mathbb{R}), A^{-1} = A^T \}$$

Uma propriedade importante das matrizes ortogonais é a seguinte

Se
$$A^{-1} = A^T$$
, então $AA^T = 1$

$$\det(A) \cdot \det(A^T) = 1$$

$$(\det(A))^2 = 1$$

Segue-se disso que, se $A \in O(n)$ então $\det(A) = \pm 1$

Podemos definir um subgrupo de O(n) composto pelas matrizes de O(n) que possuem determinante igual a 1, isto é

$$SO(n) = \{ A \in O(n), \det(A) = 1 \}$$

Esse grupo é denominado grupo das matrizes ortogonais especiais de ordem n

9 Grupo Ortogonal Especial SO(2)

9.1 Propriedades de SO(2)

Consideremos o grupo SO(2) como sendo

$$SO(2) = \{R \in GL(2, \mathbb{R}) \mid R^{-1} = R^T, \det R = 1\}$$

Como as matrizes R tem ordem 2 eles tem a seguinte a forma

$$R = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

Ao passo que sua inversa tem a seguinte forma

$$R^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Podemos checar a afirmação acima

$$\left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right) = \left(\begin{array}{cc} ad - bc & -ab + ab \\ cd - dc & -bc + ad \end{array} \right)$$

$$ad - bc = \det A = 1$$

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \mathbb{1}$$

Mas a inversa também é igual à transpostas

$$R^T = \left(\begin{array}{cc} a & c \\ b & d \end{array}\right)$$

$$R^T = R^{-1}$$

$$\left(\begin{array}{cc} a & c \\ b & d \end{array}\right) = \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$$

$$a = d$$

$$b = -c$$

Portanto, a matriz R deve possuir a seguinte forma

$$R = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}$$

Além do mais, o determinante de R deve ser igual a 1, de forma que os elementos a e c não são independentes

$$\det \mathbf{R} = a^2 + c^2 = 1$$

Podemos definir o grupo SO(2) de forma equivalente

$$SO(2) = \left\{ \begin{pmatrix} a & -c \\ c & a \end{pmatrix}, a, c \in \mathbb{R}, a^2 + c^2 = 1 \right\}$$

A relação $a^2+b^2=1$ nos sugere a possibilidade de escrever os parâmetros a e c em termos de um único parâmetro θ

$$a = \cos \theta$$
$$b = \sin \theta$$

$$SO(2) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \theta \in (-\pi, \pi) \right\}$$

Denotamos essas matrizes por

$$R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Algumas propriedades relevantes

$$R(\theta)^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = R(-\theta)$$

$$R(\theta_1)R(\theta_2) = R(\theta_1 + \theta_2)$$

$$R(0) = 1$$

$$R(-\pi) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = R(\pi)$$

9.2 Significado Geométrico

Consideremos um vetor em \mathbb{R}^2

$$x = \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right)$$

a atuação de uma matriz de SO(2) sobre ele resulta

$$x' = R(\theta)x = \begin{pmatrix} \cos \theta & -\cos \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & x_1 - \sin \theta & x_2 \\ \sin \theta & x_1 + \cos \theta & x_2 \end{pmatrix}$$

$$x_1' = \cos \theta \ x_1 - \sin \theta \ x_2$$
$$x_2' = \sin \theta \ x_1 + \cos \theta \ x_2$$

As componentes do novo vetor x' mostram que a atuação da matriz $R(\theta)$ corresponde a uma rotação do vetor x por um ângulo θ . Por essa razão identificamos os grupo SO(2) como sendo o grupo de rotações em \mathbb{R}^2

9.3 Gerador de SO(2)

As propriedades

- R(0) = 1
- $R(\theta_1) R(\theta_2) = R(\theta_1 + \theta_2)$

caracterizam o grupo SO(2) como um subgrupo uniparamétrico. Podemos definir, portanto, um gerador J como sendo

$$J = \left. \frac{d}{d\theta} R(\theta) \right|_{\theta = 0}$$

Todo elemento do grupo pode ser escrito a partir do gerador J

$$R(\theta) = e^{\theta J}$$

$$\frac{d}{d\theta}R(\theta) = \frac{d}{d\theta} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} -\sin\theta & -\cos\theta \\ \cos\theta & -\sin\theta \end{pmatrix}$$
$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Agora verifiquemos que todo elemento de SO(2) pode ser escrito como a exponencial de J

A exponencial de J pode ser escrita como uma série de Taylor $(J^0 = 1)$

$$e^{\theta J} = \sum_{n=0}^{\infty} \frac{\theta^n}{n!} J^n$$

 J^2

$$J^{2} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -1$$

Essa propriedade nos torna simples o cálculo da exponencial de J, pois

$$J^{2m} = (J^2)^m = (-1)^m \mathbb{1}$$

$$J^{2m+1} = J^{2m}J = (-1)^m J$$

Podemos dividir a somatória entre os J ímpares e pares

$$e^{\theta J} = \sum_{n=0}^{\infty} \frac{\theta^{n}}{n!} J^{n} = \sum_{m=0}^{\infty} \frac{\theta^{2m}}{(2m)!} J^{2m} + \sum_{m=0}^{\infty} \frac{\theta^{2m+1}}{(2m+1)!} J^{2m+1}$$

$$e^{\theta J} = \sum_{m=0}^{\infty} \frac{\theta^{2m}(-1)^{m}}{(2m)!} (-1)^{m} \mathbb{1} + \sum_{m=0}^{\infty} \frac{\theta^{2m+1}}{(2m+1)!} (-1)^{m} J$$

$$\sum_{m=0}^{\infty} \frac{\theta^{2m}(-1)^{m}}{(2m)!} (-1)^{m} = \cos \theta$$

$$\sum_{m=0}^{\infty} \frac{\theta^{2m+1}}{(2m+1)!} (-1)^{m} = \sin \theta$$

$$e^{\theta J} = \cos \theta \mathbb{1} + \sin \theta J$$

$$e^{\theta J} = \cos \theta \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right) + \sin \theta \left(\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array} \right)$$

$$e^{\theta J} = \left(\begin{array}{c} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right) = \mathbf{R}(\theta)$$

10 Grupos U(n) e SU(n), e U(2) e SU(2)

10.1 Adjunta de uma Matriz

Consideremos o espaço $\mathbb{C}^n = \{z = (z_1, \dots, z_n), z_k \in \mathbb{C}\}$, dois elementos de \mathbb{C}^n $z = (z_1, \dots, z_n)$, $w = (w_1, \dots, w_n)$, e uma forma sesquilinear

$$\omega(z, w) = \sum_{k=1}^{n} z_k^* w_k$$

Exite um grupo de matrizes que mantém essa forma invariante, isto é

$$U(n) = \{ U \in \mathrm{GL}(n, \mathbb{C}), \omega (Uz, Uw) = \omega(z, w) \ \forall x, z \in \mathbb{C}^n \}$$

Para estudar esse grupo precisamos adaptar a expressão $\langle x,Ay\rangle=\left\langle A^Tx,y\right\rangle$ válida em \mathbb{R}^n para \mathbb{C}^n \mathbb{C}^n

$$\langle z, w \rangle_{\mathbb{C}} = \sum_{k=1}^{m} z_k^* w_k$$

$$\langle z, Aw \rangle_{\mathbb{C}} = \langle A^{\dagger}z, w \rangle_{\mathbb{C}}$$

onde $A^{\dagger} = (A^*)^T$

Demonstração

$$\langle z,Aw\rangle_{\mathbb{C}} = \sum_{i=1}^{n} z_{i}^{*} (Aw)_{i}$$

$$(Aw)_{i} = \sum_{j=1}^{m} A_{ij}w_{j}$$

$$\langle z,Aw\rangle_{\mathbb{C}} = \sum_{i=1}^{n} z_{i}^{*} \sum_{j=1}^{n} A_{ij}w_{j} = \sum_{j=0}^{n} w_{j} \sum_{i=1}^{n} A_{ij}z_{i}^{*} = \sum_{j=1}^{n} w_{j} \left(\sum_{i=1}^{n} A_{ij}^{*}z_{i}\right)^{*}$$

$$A_{ij}^{\dagger} = A_{ji}^{*}$$

$$\langle z,Aw\rangle_{\mathbb{C}} = \sum_{i=1}^{n} w_{j} \left(\sum_{i}^{n} (A^{\dagger})_{ji}z_{i}\right)^{*}$$

$$\left(\sum_{i}^{n} (A^{\dagger})_{ji}z_{i}\right)^{*} = (A^{\dagger}z)_{j}$$

$$\langle z,Aw\rangle_{\mathbb{C}} = \sum_{j=1}^{n} w_{j} (A^{\dagger}z)_{j}^{*}$$

$$\langle z,Aw\rangle_{\mathbb{C}} = \sum_{j=1}^{n} (A^{\dagger}z)_{j}^{*}w_{j}$$

$$\langle z,Aw\rangle_{\mathbb{C}} = \langle A^{\dagger}z,w\rangle_{\mathbb{C}}$$

$$(A^{\dagger})_{ij} = A_{ji}^*$$
 matriz adjunta de A

Algumas propriedades elementares

- $1^{\dagger} = 1$
- $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$
- $(\alpha A + \beta B)^{\dagger} = \alpha^* A^{\dagger} + \beta^* B^{\dagger}$
- $(A^{-1})^{\dagger} = (A^{\dagger})^{-1}$

10.2 Grupo de Matrizes Unitárias

$$\langle Uz, Uw \rangle_{\mathbb{C}} = \langle z, w \rangle$$

$$\langle Uz, Uw \rangle_{\mathbb{C}} = \langle U^{\dagger}Uz, w \rangle_{\mathbb{C}}$$

$$\langle U^{\dagger}Uz, w \rangle_{\mathbb{C}} - \langle z, w \rangle_{\mathbb{C}} = 0$$

$$\langle (U^{\dagger}U - 1)z, w \rangle_{\mathbb{C}} = 0$$

$$\langle Tx, y \rangle = 0 \quad \forall x, y \Rightarrow \quad T = 0$$

$$\langle Tx, Tx \rangle = 0 \Leftrightarrow Tx = 0 \Rightarrow T = 0$$

$$U^{\dagger}U - 1 = 0$$

$$U^{\dagger}U = 1$$

$$U^{-1} = U^{\dagger}$$

Definição [Matriz Unitária]

Uma matriz $U \in \operatorname{Mat}(n,\mathbb{C})$ é dita ser unitária se $U^{-1} = U^{\dagger}$

- ★ Matrizes unitárias tem um especial importância em mecânica quântica. Todas as transformações em mecânica quântica são implementadas por operadores unitários (Teorema de Wigner)
- \bigstar Outra noção importante em mecânica quântica é a de matriz autoadjunta, isto é $A=A^{\dagger}$. Todas as grandezas físicas observáveis são representadas por matrizes autoadjuntas

Em suma

$$\langle Uz, Uw \rangle_{\mathbb{C}} = \langle z, w \rangle$$

$$U(n) = \{ U \in \operatorname{GL}(n, \mathbb{C}), \quad U^{-1} = U^{\dagger} \}$$

Segue-se da relação

$$\det A^T = \det A$$

que

$$\det A^{\dagger} = (\det A)^*$$

Para matrizes unitárias

$$U^{\dagger}U=\mathbb{1}$$

$$\det U^{\dagger} \det U = 1$$

$$|\det U|^2 = 1$$

Se
$$U \in U(n) \Rightarrow |\det U| = 1$$

$$\det U = e^{i\phi}$$

com $\phi \in (-\pi, \pi]$

Um caso especial é o grupo de matrizes unitárias com determinante 1

$$SU(n) = \{ U \in U(n), \det U = 1 \}$$

Se
$$U \in U(n) \Rightarrow U = e^{i\phi}S$$
, $S \in SU(n)$

10.3 Grupo SU(2)

Matrizes de Pauli

$$\sigma_1 := \left(egin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}
ight), \quad \sigma_2 := \left(egin{array}{cc} 0 & -i \\ i & 0 \end{array}
ight) \quad ext{e} \quad \sigma_3 := \left(egin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}
ight)$$

Identidades úteis

•

$$[\sigma_a, \sigma_b] := \sigma_a \sigma_b - \sigma_b \sigma_a = 2i \sum_{c=1}^3 \varepsilon_{abc} \sigma_c$$

•

$$\{\sigma_a, \sigma_b\} := \sigma_a \sigma_b + \sigma_b \sigma_a = 2\delta_{ab} \mathbb{1}$$

$$\sigma_a \sigma_b = \delta_{ab} \mathbb{1} + i \sum_{c=1}^3 \varepsilon_{abc} \sigma_c$$

Forma geral das matrizes SU(2)

$$U = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

A inversa de U é dada por

$$U^{-1} = \left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right)$$

impondo $U^{-1}=U^{\dagger}=(U^*)^T$ temos

$$\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \left(\begin{array}{cc} a^* & c^* \\ b^* & d^* \end{array}\right)$$

Comparando elemento a elemento obtemos

$$c = -b^*$$
$$d = a^*$$

$$U = \left(\begin{array}{cc} a & b \\ -b^* & a^* \end{array}\right)$$

A condição $\det U = 1$ implica em

$$|a|^2 + |b|^2 = 1$$

$$\mathrm{SU}(2) = \left\{ \left(\begin{array}{cc} a & b \\ -b^* & a^* \end{array} \right), \quad \text{ onde } a,b \in \mathbb{C} \operatorname{com} |a|^2 + |b|^2 = 1 \right\}$$

Decompondo on números a e b em suas respectivas partes reais e imaginárias

$$a = a_1 + ia_2$$

$$b = b_1 + ib_2$$

$$U = \begin{pmatrix} a_1 + ia_2 & b_1 + ib_2 \\ -b_1 + ib_2 & a_1 - ia_2 \end{pmatrix}$$

É possível, ainda, expressar U como combinação linear das matrizes de Pauli

$$U = a_1 \mathbb{1} + i (b_2 \sigma_1 + b_1 \sigma_2 + a_2 \sigma_3)$$

Agora usando a condição de que $|a|^2 + |b|^2 = 1$, podemos escrever o grupo SU(2) da seguinte forma

$$SU(2) = \left\{ \begin{pmatrix} a_1 + ia_2 & b_1 + ib_2 \\ -b_1 + ib_2 & a_1 - ia_2 \end{pmatrix}, \text{ onde } (a_1, a_2, b_1, b_2) \in \mathbb{R}^4 \operatorname{com} a_1^2 + a_2^2 + b_1^2 + b_2^2 = 1 \right\}$$

11 Grupos O(p,n) e SO(p,n)

11.1 Invariância de formas lineares

Consideremos uma forma bilinear especial, definida por

$$\omega_A(x,y) = \langle x, Ay \rangle_{\mathbb{R}} = \sum_{k=1}^n x_k (Ay)_k$$

onde A é alguma matriz real, $A \in \operatorname{Mat}(n, \mathbb{R})$

Estamos interessados em indentificar o grupo de matrizes que mantém essa forma invariante, isto é, o grupo de matrizes M tais que

$$\langle Mx, AMy \rangle_{\mathbb{R}} = \langle x, Ay \rangle_{\mathbb{R}}$$

Usando a identidade

$$\langle x, My \rangle = \langle M^T x, y \rangle$$

temos a seguinte condição

$$\langle x, M^T A M y \rangle_{\mathbb{R}} = \langle x, A y \rangle_{\mathbb{R}}$$

E portanto

$$M^T A M = A \tag{1}$$

Expressamos o grupo que mantém a forma ω_A invariante como

$$\Omega := \{ M \in \mathrm{GL}(n, \mathbb{R}), \quad M^T A M = A \}$$

Onde A é uma matriz qualquer, cuja escolha depende do nosso interesse.

 \bigstar É fácil ver que o caso em que a matriz A é igual a identidade retorna ao caso do grupo de matrizes ortogonais, então esse grupo é, no fundo, uma generalização dos grupos ortogonais

Se A for inversível, podemos reescrever a relação (1)

$$A^{-1}M^T A M = \mathbb{1}$$

$$M^{-1} = A^{-1}M^T A \tag{2}$$

$$\Omega := \left\{ M \in \mathrm{GL}(n, \mathbb{R}), \quad M^{-1} = A^{-1} M^T A \right\}$$

Matrizes que respeitam a relação (2) possuem determinante ± 1 .

$$\det M^{-1} = \det A^{-1} \det M^T \det A = \det M^T$$

$$\frac{1}{\det M} = \det M^T = \det M$$

$$(\det M)^2=1$$

$$\det M = \pm 1$$

Definimos então um subgrupo, formado pelas matrizes de determinante 1

$$S\Omega := \{ M \in GL(n, \mathbb{R}), \ \det M = 1 \ , \ M^{-1} = A^{-1}M^T A \}$$

Um caso de grande interesse em geométria e em física é quando a matriz A é da seguinte forma

onde p é a quantidade de números 1 na diagonal e q a quantidade de números -1 na diagonal, p+q=n

A forma se escreve

$$\omega(x,y) = \langle x, \eta(p,q)y \rangle_{\mathbb{R}} = \langle x, Ay \rangle_{\mathbb{R}}$$
(3)

$$Ay = A \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_p \\ -y_{p+1} \\ \vdots \\ -y_n \end{pmatrix}$$

$$\omega(x,y) = x_1 y_1 + \dots + x_p y_p - x_{p+1} y_{p+1} - \dots - x_m y_m$$

O grupo de matrizes que mantém a forma (3) invariante é

$$O(p,q) = \{ L \in GL(n,\mathbb{R}), L^{-1} = \eta(p,q)L^T\eta(p,q) \}$$

Utilizamos o fato de $\eta(p,q)^{-1}=\eta(p,q)$

O subgrupo formado pelas matrizes de determinante 1 é

$$SO(p,q) = \{L \in O(p,q), \text{ det } L = 1\}$$

11.2 $O(1,1) \in SO(1,1)$

Um caso de particular interesse em física é quando p = q = 1, isto é

$$\eta = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

$$\omega(x,y) = x_1 y_1 - x_2 y_2$$

Mudança de notação: é comum em física expressar os vetores x e y como

$$x = \left(\begin{array}{c} x_0 \\ x_1 \end{array}\right) \quad y = \left(\begin{array}{c} y_0 \\ y_1 \end{array}\right)$$

De forma que

$$\omega(x,y) = x_0 y_0 - x_1 y_1$$

Agora podemos investigar a forma das matrizes L que mantém essa forma invariante

$$L^{-1} = \eta L^T \eta$$

$$L = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

A inversa de qualquer matriz 2×2 é dada por

$$L^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$\eta L^{T} \eta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} a & -c \\ -b & d \end{pmatrix}$$

Como $L \in SO(1,1)$

$$\left(\begin{array}{cc} d & -b \\ -c & a \end{array}\right) = \left(\begin{array}{cc} a & -c \\ -b & d \end{array}\right)$$

Comparando elemento a elemento

$$a = d$$

$$b = c$$

$$L = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right)$$

$$\det L = 1 \longrightarrow a^2 - b^2 = 1$$

Podemos identificar o grupo SO(1,1) como

$$SO(1,1) = \left\{ M \in Mat(R,2) \mid M = \begin{pmatrix} a & b \\ b & a \end{pmatrix}, a, b \in \mathbb{R}, \cos a^2 - b^2 = 1 \right\}$$

11.3 Intuição Geométrica

A condição $a^2 - b^2 = 1$ com $a, b \in \mathbb{R}$ define uma hipérbole

SO(1,1) é homeomorfo à superfície $H_+ \cup H_-$ formada pelas hipérboles H_+ e H_-

$$H_{\pm} := \left\{ (x, y) \in \mathbb{R}^2 \mid x = \pm \sqrt{1 + y^2}, y \in \mathbb{R} \right\}$$

Não é a primeira vez que identificamos um homeomorfismo entre um grupo de matrizes e uma superfície em \mathbb{R}^n

- $GH_3 \longrightarrow \mathbb{C}^3$
- $SO(2) \longrightarrow \mathbb{S}^1$
- $SU(2) \longrightarrow \mathbb{S}^3$
- $SO(1,1) \longrightarrow H_+ \cup H_-$

Partindo de $a^2 - b^2 = 1$, escrevemos

$$a=\pm\sqrt{1+b^2}$$

Dizemos que o grupo SO(1,1) possui duas componentes conexas, uma associada a $a=\sqrt{1+b^2}$ e a outra a $a=-\sqrt{1+b^2}$

$$\mathcal{L}_{+}^{\uparrow} := \left\{ L \in \operatorname{Mat}(\mathbb{R}, 2) \mid L = \begin{pmatrix} \sqrt{1 + b^2} & b \\ b & \sqrt{1 + b^2} \end{pmatrix}, b \in \mathbb{R} \right\}$$

$$\mathcal{L}_{+}^{\downarrow} := \left\{ L \in \operatorname{Mat}(\mathbb{R}, 2) \mid L = \begin{pmatrix} -\sqrt{1 + b^2} & b \\ b & -\sqrt{1 + b^2} \end{pmatrix}, b \in \mathbb{R} \right\}$$

Podemos, ainda, parametrizar a e b em termos de um único parâmetro θ

$$\cosh^2 \theta - \sinh^2 \theta = 1$$

$$b = -\sinh\theta$$

$$a = \cosh \theta$$

$$\mathcal{L}_{+}^{\uparrow} := \left\{ L \in \operatorname{Mat}(\mathbb{R}, 2) \mid L = \left(\begin{array}{cc} \cosh \theta & -\sinh \theta \\ -\sinh \theta & \cosh \theta \end{array} \right), \theta \in \mathbb{R} \right\}$$

$$\mathcal{L}_{+}^{\downarrow} := \left\{ L \in \operatorname{Mat}(\mathbb{R}, 2) \mid L = \begin{pmatrix} -\cosh \theta & -\sinh \theta \\ -\sinh \theta & -\cosh \theta \end{pmatrix}, \theta \in \mathbb{R} \right\}$$
$$\mathcal{B}_{1}(\theta) = \begin{pmatrix} \cosh \theta & -\sinh \theta \\ -\sinh \theta & \cosh \theta \end{pmatrix}, \ \theta \in \mathbb{R}$$
$$\mathcal{L}_{+}^{\uparrow} := \{\mathcal{B}_{1}(\theta), \ \theta \in \mathbb{R}\}$$

As propriedades

• $\mathcal{B}_1(0) = 1$

•
$$\mathcal{B}_1(\theta_1)\mathcal{B}_1(\theta_2) = \mathcal{B}_1(\theta_1 + \theta_2)$$

caracterizam $\mathcal{L}_{+}^{\uparrow}$ como um subgrupo uniparamétrico de SO(1,1). Podemos definir, portanto, um gerador M como sendo

$$M = \left. \frac{d}{d\theta} \mathcal{B}_1(\theta) \right|_{\theta=0}$$

$$M = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right)$$

$$\mathcal{B}_1(\theta) = e^{\theta M}$$

11.4 Relação com Física

Podemos definir uma nova parametrização para os grupos \mathcal{B}_1

$$\tanh \theta = \frac{v}{c} \tag{4}$$

 \bigstar Esse novo parâmetro $v=c \tanh \theta$ é limitado por c, já que $\tanh \theta$ varia de -1 a 1

De (4) derivamos

$$\cosh \theta = \gamma(v)$$
$$\sinh \theta = \frac{v}{c}\gamma(v)$$

com
$$\gamma(v) := (1 - (v/c)^2)^{-1/2}$$

$$B_1(v) := \begin{pmatrix} \gamma(v) & -\frac{v}{c}\gamma(v) \\ -\frac{v}{c}\gamma(v) & \gamma(v) \end{pmatrix} = \begin{pmatrix} \cosh(z) & -\sinh(z) \\ -\sinh(z) & \cosh(z) \end{pmatrix}$$

$$\mathcal{L}_{+}^{\uparrow} = \{ \mathcal{B}_1(v), -c < v < c \}$$

Analisemos agora como uma matriz $\mathcal{B}_1(v)$ age em um vetor $\begin{pmatrix}ct\\x\end{pmatrix}$, isto é $B_1(v)\begin{pmatrix}ct\\x\end{pmatrix}=\begin{pmatrix}ct\\x'\end{pmatrix}$

$$B_1(v) \left(\begin{array}{c} ct \\ x \end{array} \right) = \left(\begin{array}{c} ct' \\ x' \end{array} \right)$$

Derivamos, com isso, as expressões das chamadas transformações de Lorentz

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

ou

$$ct' = \gamma(ct - \beta x)$$

$$x' = \gamma(x - \beta ct)$$

Com $\beta = v/c$

12 Grupos de Lorentz

13 Grupos SO(3)

13.1 Características de SO(n) e SO(3)

O grupo O(3) é definido como

$$O(3) = \{ R \in GL(3, \mathbb{R}), R^{-1} = R^T \}$$

O grupo SO(3) é definido de forma semelhante, mas com a exigência de que o determinante seja 1

$$SO(3) = \{ R \in GL(3, \mathbb{R}), R^{-1} = R^T, \det R = 1 \}$$

Ambos mantém invariante a forma bilinear

$$\langle Rx, Ry \rangle_{\mathbb{R}} = \langle x, y \rangle_{\mathbb{R}}$$

onde
$$\langle x, y \rangle_{\mathbb{R}} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

 \bigstar Por manter o produto escalar invariante, a ação desses grupos preserva os ângulos entre os vetores e a norma deles

 \bigstar Dada uma matriz $R \in SO(n)$ com n ímpar, então 1 é autovalor de R, isto é, existe um vetor $v \in \mathbb{R}^n$ que sarisfaz a equação

$$Rv = v$$

Prova:

$$R \in \mathrm{SO}(n) \longrightarrow RR^T = \mathbbm{1}$$
e det $R = 1$

$$\det(\mathbb{1}-R) = \det\left(R\left(R^T - \mathbb{1}\right)\right) = \det R \cdot \det(R - \mathbb{1})^T$$

$$\det(\mathbb{1}-R) = \det(R-\mathbb{1})$$

$$\det(\mathbb{1} - R) = \det(-(\mathbb{1} - R)) = -\det(\mathbb{1} - R)$$

$$\det(\mathbb{1} - R) = 0$$

Portanto, existe um vetor v tal que

$$(1 - R)v = 0 \longrightarrow Rv = v$$

- \circledast Se Rv = v então $R(\lambda v) = \lambda v$, onde $\lambda \in \mathbb{R}$
- ® Supondo que exitem dois vetores que satisfazam

$$Rv_1 = v_1$$

$$Rv_2 = v_2$$

então a combinação linear deles também satisfaz

$$R(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 R v_1 + \alpha_2 R v_2 = \alpha_1 v_1 + \alpha_2 v_2$$

Concluímos que o conjunto de vetores com essa propriedade forma um subespaço vetorial

$$V_R := \{ v \in \mathbb{R}^3, \ Rv = v \}$$

 \bigstar Se $R\in \mathrm{SO}(3)$ então V_R tem dimensão 1

Prova:

14 Grupo SO(3) e o ângulos de Euler

15	Grupo de	Lorentz	em 3+1	dimensões	e o Grupo	de Galileu

Grupos Simpléticos e Ações de Grupos 16