Отчет по лабораторной работе №6

Дисциплина: архитектура компьютера

Цоппа Ева Эдуардовна

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Символьные и численные данные в NASM	
	4.2.1 Ответы на вопросы по программе	
5	Выводы	20
6	Список литературы	21

Список иллюстраций

4.1	Создание директории	8
4.2		8
4.3	Создание копии файла	8
4.4	Редактирование файла	9
4.5	Запуск исполняемого файла	9
4.6	Редактирование файла	10
4.7	Запуск исполняемого файла	10
4.8	Создание файла	
4.9	Редактирование файла	11
4.10	Запуск исполняемого файла	11
4.11	Редактирование файла	11
4.12	Запуск исполняемого файла	12
4.13	Редактирование файла	12
4.14	Запуск исполняемого файла	12
4.15	Создание файла	12
4.16	Редактирование файла	13
4.17	Запуск исполняемого файла	13
4.18	Изменение программы	14
4.19	Запуск исполняемого файла	14
4.20	Создание файла	15
4.21	Редактирование файла	15
4.22	Запуск исполняемого файла	16
4.23	Создание файла	17
4.24	Написание программы	18
4.25	Запуск исполняемого файла	18
4.26	Запуск исполняемого файла	18

1 Цель работы

Цель данной лабораторной работы - освоение арифметических инструкций языка ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Теоретическое введение

Большинство инструкций на языке ассемблера требуют обработки операндов. Адрес операнда предоставляет место, где хранятся данные, подлежащие обработке. Это могут быть данные хранящиеся в регистре или в ячейке памяти. - Регистровая адресация — операнды хранятся в регистрах и в команде используются имена этих регистров, например: mov ах,bх. - Непосредственная адресация — значение операнда задается непосредственно в команде, Например: mov ах,2.

- Адресация памяти — операнд задает адрес в памяти. В команде указывается символическое обозначение ячейки памяти, над содержимым которой требуется выполнить операцию.

Ввод информации с клавиатуры и вывод её на экран осуществляется в символьном виде. Кодирование этой информации производится согласно кодовой табли-це символов ASCII. ASCII – сокращение от American Standard Code for Information Interchange (Американский стандартный код для обмена информацией). Соглас- но стандарту ASCII каждый символ кодируется одним байтом. Среди инструкций NASM нет такой, которая выводит числа (не в символьном виде). Поэтому, например, чтобы вывести число, надо предварительно преобразовать его цифры в ASCII-коды этих цифр и выводить на экран эти коды, а не само число. Если же выводить число на экран непосредственно, то экран воспримет его не как число,а как последовательность ASCII-символов – каждый байт числа будет воспринят как один ASCII-символ – и выведет на экран эти символы.

Аналогичная ситуация происходит и при вводе данных с клавиатуры. Введенные данные будут представлять собой символы, что сделает невозможным получение корректного результата при выполнении над ними арифметических операций. Для решения этой проблемы необходимо проводить преобразование ASCII символов в числаи обратно.

4 Выполнение лабораторной работы

4.1 Символьные и численные данные в NASM

С помощью утилиты mkdir создаю директорию, в которой буду создавать файлыс программами для лабораторной работы №6 (рис. 4.1). Перехожу в созданный каталог с помощью утилиты cd.

```
evatsoppa@evatsoppa:~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06 Q = ×

[evatsoppa@evatsoppa ~]$ mkdir ~/work/study/2023-2024/Архитектура\ компьютера/arch-pc/lab06

[evatsoppa@evatsoppa ~]$ cd work/study/2023-2024/Архитектура\ компьютера/arch-pc/lab06

[evatsoppa@evatsoppa lab06]$
```

Рис. 4.1: Создание директории

С помощью утилиты touch создаю файл lab6-1.asm (рис. 4.2).

```
[evatsoppa@evatsoppa lab06]$ touch lab6-1.asm
[evatsoppa@evatsoppa lab06]$ ls
lab6-1.asm
```

Рис. 4.2: Создание файла

Копирую в текущий каталог файл in_out.asm с помощью утилиты ср, т.к. он будет использоваться в других программах (рис. 4.3).

```
[evatsoppa@evatsoppa lab06]$ ср ~/Загрузки/in_out.asm in_out.asm
[evatsoppa@evatsoppa lab06]$ ls
in_out.asm lab6-1.asm
```

Рис. 4.3: Создание копии файла

Открываю созданный файл lab6-1.asm, вставляю в него программу вывода значения регистра eax (рис. 4.4).

Рис. 4.4: Редактирование файла

Создаю исполняемый файл программы и запускаю его (рис. 4.5). Вывод про- граммы: символ j, потому что программа вывела символ, соответствующий по системе ASCII сумме двоичных кодов символов 4 и 6.

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-1.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[evatsoppa@evatsoppa lab06]$ ./lab6-1
j
```

Рис. 4.5: Запуск исполняемого файла

Изменяю в тексте программы символы "6" и "4" на цифры 6 и 4 (рис. 4.6).

```
Pinclude 'in_out.asm'
SECTION .bss
bufl: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax,6
mov ebx,|4
add eax,ebx
mov [bufl],eax
mov eax,bufl
call sprintLF
call quit
```

Рис. 4.6: Редактирование файла

Создаю новый исполняемый файл программы и запускаю его (рис. 4.7). Теперь вывелся символ с кодом 10, это символ перевода строки, этот символ не отображается при выводе на экран.

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-1.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-1 lab6-1.o
[evatsoppa@evatsoppa lab06]$ ./lab6-1
```

Рис. 4.7: Запуск исполняемого файла

Создаю новый файл lab6-2.asm с помощью утилиты touch (рис. 4.8).

```
[evatsoppa@evatsoppa lab06]$ touch lab6-2.asm
```

Рис. 4.8: Создание файла

Ввожу в файл текст другой программы для вывода значения регистра еах (рис. 4.9).

```
OTKPHTE ▼ 

• lab6-2.asm

~/work/study/2023-2024/Apxutektypa komnbiotepa/arch-pc/lab06

%include 'in_out.asm'

SECTION .text
GLOBAL _start
_start:
mov eax,'6'
mov ebx,'4'
add eax,ebx
call iprintLF
call quit
```

Рис. 4.9: Редактирование файла

Создаю и запускаю исполняемый файл lab6-2 (рис. 4.10). Теперь вывод число 106, потому что программа позволяет вывести именно число, а не символ, хотя все еще происходит именно сложение кодов символов "6" и "4".

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-2.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[evatsoppa@evatsoppa lab06]$ ./lab6-2
106
```

Рис. 4.10: Запуск исполняемого файла

Заменяю в тексте программы в файле lab6-2.asm символы "6" и "4" на числа 6 и 4. (рис. 4.11).

Рис. 4.11: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. 4.12). Теперь

программа складывает не соответствующие символам коды в системе ASCII, а сами числа, поэтому вывод 10.

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-2.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[evatsoppa@evatsoppa lab06]$ ./lab6-2
10
```

Рис. 4.12: Запуск исполняемого файла

Заменяю в тексте программы функцию iprintLF на iprint (рис. 4.13).

```
add eax,ebx
call iprint
call quit
```

Рис. 4.13: Редактирование файла

Создаю и запускаю новый исполняемый файл (рис. 4.14). Вывод не изменился, потому что символ переноса строки не отображался, когда программа исполнялась с функцией iprintLF, а iprint не добавляет к выводу символ переноса строки, в отличие от iprintLF.

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-2.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-2 lab6-2.o
[evatsoppa@evatsoppa lab06]$ ./lab6-2
10[evatsoppa@evatsoppa lab06]$
```

Рис. 4.14: Запуск исполняемого файла

4.2 Выполнение арифметических операций в NASM

Создаю файл lab6-3.asm с помощью утилиты touch (рис. 4.15).

```
[evatsoppa@evatsoppa lab06]$ touch lab6-3.asm
```

Рис. 4.15: Создание файла

Ввожу в созданный файл текст программы для вычисления значения выражения f(x) = (5*2+3)/3 (рис. 4.16).

```
    lab6-3.asm

Открыть 🔻
             ⊞
SECTION .data
SECTION .text
GLOBAL _start
_start:
; ---- Вычисление выражения
mov eax,5 ; EAX=5
mov ebx,2 ; EBX=2
mul ebx ; EAX=EAX*EBX
add eax,3 ; EAX=EAX+3
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,3 ; EBX=3
div ebx ; EAX=EAX/3, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
; ---- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint : сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
mov eax, rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.16: Редактирование файла

Создаю исполняемый файл и запускаю его (рис.4.17).

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-3.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[evatsoppa@evatsoppa lab06]$ ./lab6-3
Результат: 4
Остаток от деления: 1
```

Рис. 4.17: Запуск исполняемого файла

Изменяю программу так, чтобы она вычисляла значение выражения f(x) = (4*6+2)/5 (рис. 4.18).

```
SECTION .data
div: DB 'Результат: ' .0
rem: DB 'Остаток от деления: ',0
SECTION .text
GLOBAL _start
_start:
; --- Вычисление выражения
mov eax,4 ; EAX=4
mov ebx,6 ; EBX=6
mul ebx ; EAX=EAX*EBX
add eax,2 ; EAX=EAX+2
xor edx,edx ; обнуляем EDX для корректной работы div
mov ebx,5 ; EBX=5
div ebx ; EAX=EAX/5, EDX=остаток от деления
mov edi,eax ; запись результата вычисления в 'edi'
: --- Вывод результата на экран
mov eax,div ; вызов подпрограммы печати
call sprint ; сообщения 'Результат: '
mov eax,edi ; вызов подпрограммы печати значения
call iprintLF; из 'edi' в виде символов
mov eax, rem ; вызов подпрограммы печати
call sprint ; сообщения 'Остаток от деления: '
mov eax,edx ; вызов подпрограммы печати значения
call iprintLF; из 'edx' (остаток) в виде символов
call quit ; вызов подпрограммы завершения
```

Рис. 4.18: Изменение программы

Создаю и запускаю новый исполняемый файл (рис. 4.19). Я посчитала для проверки правильности работы программы значение выражения самостоятельно, программа отработала верно.

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-3.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-3 lab6-3.o
[evatsoppa@evatsoppa lab06]$ ./lab6-3
Результат: 5
Остаток от деления: 1
```

Рис. 4.19: Запуск исполняемого файла

Создаю файл variant.asm с помощью утилиты touch (рис.4.20).

```
[evatsoppa@evatsoppa lab06]$ touch variant.asm
[evatsoppa@evatsoppa lab06]$ mousepad variant.asm
```

Рис. 4.20: Создание файла

Ввожу в файл текст программы для вычисления варианта задания по номеру студенческого билета (рис. 4.21).

```
*~/work/study/2023-2024/Архитектура компьютера/arch-pc/lab06/variant.asm - Mousepad
Файл Правка Поиск Просмотр Документ Помощь
%include 'in_out.asm'
msg: DB 'Введите No студенческого билета: ',0
rem: DB 'Ваш вариант: ',0
SECTION .bss
x: RESB 80
SECTION .text
mov eax, msg
mov ecx, x
mov edx, 80
call sread
mov eax,x ; вызов подпрограммы преобразования
mov ebx,20
div ebx
inc edx
mov eax, rem
call sprint
mov eax,edx
call iprintLF
```

Рис. 4.21: Редактирование файла

Создаю и запускаю исполняемый файл (рис. 4.22). Ввожу номер своего студ.билета с клавиатуры, программа вывела, что мой вариант - 6.

```
[evatsoppa@evatsoppa lab06]$ nasm -f elf variant.asm
[evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o variant variant.o
[evatsoppa@evatsoppa lab06]$ ./variant
Введите No студенческого билета:
1132236045
Ваш вариант: 6
```

Рис. 4.22: Запуск исполняемого файла

4.2.1 Ответы на вопросы по программе

1. За вывод сообщения "Ваш вариант" отвечают строки кода:

```
mov eax, rem
call sprint
```

2. Инструкция mov ecx, х используется, чтобы положить адрес вводимой стро- ки х в регистр ecx mov edx, 80 - запись в регистр edx длины вводимой строки call sread - вызов подпрограммы из внешнего файла, обеспечивающей ввод сообщения с клавиатуры

- 3. call atoi используется для вызова подпрограммы из внешнего файла, кото-рая преобразует ascii-код символа в целое число и записывает результат врегистр еах
- 4. За вычисления варианта отвечают строки:

```
xor edx,edx ; обнуление edx для корректной работы div
mov ebx,20 ; ebx = 20
div ebx ; eax = eax/20, edx - остаток от деления
inc edx ; edx = edx + 1
```

- 5. При выполнении инструкции div ebx остаток от деления записывается в регистр edx
- 6. Инструкция inc edx увеличивает значение регистра edx на 1
- 7. За вывод на экран результатов вычислений отвечают строки:

```
mov eax,edx
call
iprintLF
```

4.3 Выполнение заданий для самостоятельной работы

Создаю файл lab6-4.asm с помощью утилиты touch (рис. 4.23).

```
[evatsoppa@evatsoppa lab06]$ touch lab6-4.asm
```

Рис. 4.23: Создание файла

Открываю созданный файл для редактирования, ввожу в него текст программы для вычисления значения выражения $x^3 / 2 + 1$ (рис. 4.24). Это выражение было под вариантом 6.

Рис. 4.24: Написание программы

Создаю и запускаю исполняемый файл (рис. 4.25). При вводе значения 2, вывод 5.

```
, consider (evatsoppa@evatsoppa lab06]$ nasm -f elf lab6-4.asm [evatsoppa@evatsoppa lab06]$ ld -m elf_i386 -o lab6-4 lab6-4.o [evatsoppa@evatsoppa lab06]$ ./lab6-4 
Bведите значение переменной х: 2 
Результат: 5[evatsoppa@evatsoppa lab06]$
```

Рис. 4.25: Запуск исполняемого файла

Провожу еще один запуск исполняемого файла для проверки работы программы с другим значением на входе (рис. 4.26). Программа отработала верно.

```
[evatsoppa@evatsoppa lab06]$ ./lab6-4
Введите значение переменной х: 4
Результат: 33[evatsoppa@evatsoppa lab06]$
```

Рис. 4.26: Запуск исполняемого файла

Листинг 4.1. Программа для вычисления значения выражения х^3/2+1.

```
%include 'in out.asm'; подключение внешнего файла
SECTION .data;
msg: DB 'Введите значение переменной х: ',0
rem: DB 'Результат: ',0
SECTION .bss;
х: RESB 80; Переменная, значение к-рой будем вводить с клавиатуры
SECTION .text;
GLOBAL start;
_start:;
; — Вычисление выражения
mov eax, msg;
call sprint;
mov ecx, x;
mov edx, 80;
call sread
mov eax, x; вызов подпрограммы преобразования ASCII кода в число, 'eax=x'
call atoi;
mov ecx.eax
mul eax
mul ecx
xor edx.edx
mov ebx,2;
div ebx ; eax = eax / 2
add eax,+1; eax = eax + 1 = x^3 / 2 + 1
mov edi,eax ; запись результата вычисления в 'edi'
; — Вывод результата на экран
mov eax, rem; вызов подпрограммы печати
call sprint; сообщения 'Результат: '
mov eax,edi; вызов подпрограммы печати значения
call iprint; из 'edi' в виде символов
call quit; вызов подпрограммы завершения
```

5 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.

6 Список литературы

- 1. Лабораторная работа №6
- 2. Таблица ASCII