

Module 8: Concrete Security

Day 2

Hyeongmin Choe

Seoul National University

July 17, 2024

Module 8: Concrete Security, Day 2

- Quick Review
 - Day 1 tutorial
 - Smaug security estimation
- Falcon Security
 - Analysis in Falcon for NTRU attacks
 - Estimation with Lattice estimator
- Dilithium Security
 - Reductions lattice problems

Quick Review

- Updated Sagemath notebook!
 - Download it from github.com/hmchoe0528/PQC training: git clone https://github.com/hmchoe0528/PQC_training.git
 - Include:
 - Lattice-estimator
 - Security-estimates from Crystals-Kyber/Dilithium
 - ModifiedCBD-related stuffs
 - Try PQC_training/module8/Module8.ipynb
 - The repository is currently public, but may not be maintained after this PQC lectures.

Smaug Security from Day 1

Note, we will take a look on Smaug v4.0, which is not yet public ©

Smaug Security

$$LWE_{nk, nk, q, SparseTernary(nk, h/2, h/2), dGaussian(\sigma)}$$

&

 $LWE_{nk, n(k+1), q, mCBD(numCBD), UniformMod(q/p)}$

$$\delta = \Pr\left[\|\boldsymbol{e}^t \cdot \boldsymbol{r} + e_2 - \boldsymbol{s}^t \cdot \boldsymbol{e}_1\|_{\infty} \ge \frac{q}{4} \right]$$

- MLWE error e ~ dGaussian(sigma) Secret vectors:
- MLWR ModSwitch errors:
- $s \sim \text{SparseTernary(nk, h/2, h/2)}$
- $e_1 \sim \text{UniformMod(q/p)}$

- $r \sim \text{modifiedCBD(numCBD)}$

 $-e_2 \sim \text{UniformMod(q/p')}$

- Key Recovery [Falcon R3]
 - For $\lambda = (2n B)$ -th GS norm of

$$\mathcal{L} = \operatorname{span}\left(\begin{bmatrix} q & h \\ 0 & 1 \end{bmatrix}\right) = \operatorname{span}\left(\begin{bmatrix} g & -f \\ G & -F \end{bmatrix}\right),$$

key can be recovered when $\sqrt{B} \cdot \sigma_{f,g} \leq \sqrt{4/3} \cdot \lambda$.

- Minimized GS norm: $\sigma_{f,g} = 1.17 \cdot \sqrt{q/2n}$
- BKZ for NTRU lattice:

$$\lambda = \left(\frac{B}{2\pi e}\right)^{1-n/B} \cdot \sqrt{q}.$$

$$\Rightarrow (B/2\pi e)^{1-n/B} \cdot \sqrt{q} \ge 1.17 \cdot \sqrt{3B/4 \cdot q/2n}$$

- Key Recovery [Falcon R3]
 - If $(B/2\pi e)^{1-n/B} \cdot \sqrt{q} \ge 1.17 \cdot \sqrt{3B/4 \cdot q/2n}$, key can be recovered with B-BKZ!
 - **E**stimated run-time: $2^{0.292B}$ in classical Core-SVP.

- Falcon512
 - **n**=512
 - **q**=12289
 - B=458

- Falcon1024
 - n=1024
 - **q**=12289
 - B=936

- Signature Forgery [Falcon R3]
 - Kannan's embedding with $K \approx \sqrt{q}$, B-BKZ succeeds on

$$\mathcal{L} = \operatorname{span}\left(\begin{bmatrix} q & h & H(r||m) \\ 0 & 1 & 0 \\ \hline 0 & 0 & K \end{bmatrix}\right)$$

finding many short vectors ($\leq \beta$),

possibly of form (c,*,K), if $\left(\frac{B}{2\pi e}\right)^{n/B} \cdot \sqrt{q} \leq \beta$, where β : max norm of signatures.

- Falcon512
 - $\beta^2 = 34\ 034\ 726$

Falcon1024

$$\beta^2 = 70\ 265\ 242$$

Key Recovery

- Public key: $(A, t = As_1 + s_2)$ in \mathcal{R}_q , where $(s_1, s_2) \in S_\eta^l \times S_\eta^k$
 - MLWE instance with n, k, l, q, $D_s = D_e = \text{Uniform}(-\eta, \eta)$
 - \Rightarrow LWE instance with nk, nl, q, $D_s = D_e = \text{Uniform}(-\eta, \eta)$
- Parameters: n=256, q=8380417
 - Level 2: k = 4, l = 4, $\eta = 2$
 - Level 3: $k = 6, l = 5, \eta = 2$
 - Level 5: $k = 8, l = 7, \eta = 2$

Key Recovery

- Public key: $(A, t = As_1 + s_2)$ in \mathcal{R}_q , where $(s_1, s_2) \in S_\eta^l \times S_\eta^k$
 - MLWE instance with n, k, l, q, $D_s = D_e = \text{Uniform in } [-\eta, \eta]$
 - \Rightarrow LWE instance with nk, nl, q, $D_s = D_e = \text{Uniform in } [-\eta, \eta]$
- Parameters: n = 256, $q = 8380417 = 2^{23} 2^{13} + 1$
 - Level 2: k = 4, l = 4, $\eta = 2$
 - Level 3: $k = 6, l = 5, \eta = 2$
 - Level 5: $k = 8, l = 7, \eta = 2$

Signature Forgery

- Weak unforgeability (forgery with a new message):
 - Finding a short vector (z, c, v) with a message μ satisfying

$$H\left(\mu \parallel [A \mid t \mid Id] \cdot \begin{bmatrix} z \\ c \\ v \end{bmatrix}\right) = c$$

- \Rightarrow SelfTargetMSIS $_{H,n,k,l+1,q,\zeta}$ where $\|(\mathbf{z},c,\mathbf{v})\|_{\infty} \leq \zeta$
- \Rightarrow Security of H and MSIS $n, k, l+1, q, \zeta$ where $\|(\mathbf{z}, c)\|_{\infty} \leq \zeta$
- Rejection condition: $\|\mathbf{z}\|_{\infty} \leq \gamma_1 \beta$
- Compressed: $\| \boldsymbol{v} = \boldsymbol{u} + c \boldsymbol{t}_0 \|_{\infty} \le 2\gamma_2 + 1 + 2^{d-1} \cdot \tau$
 - See page 25, Dilithium v3.1 for more detail..

$$\Rightarrow \zeta = \max(\gamma_1 - \beta, 2\gamma_2 + 1 + 2^{d-1} \cdot \tau)$$

Signature Forgery

- Strong unforgeability (forgery with one among the given messages):
 - Forking Lemma: with some rewinding success probability, forging can be reprogrammed as finding (z', c, v') that satisfies

$$H\left(\mu \parallel [A \mid t \mid Id] \cdot \begin{bmatrix} z \\ c \\ v \end{bmatrix}\right) = c = H\left(\mu \parallel [A \mid t \mid Id] \cdot \begin{bmatrix} z' \\ c \\ v' \end{bmatrix}\right),$$

for given a set of valid message-signature pairs $(\mu, (\mathbf{z}, c, \mathbf{v}))$.

• Equivalently, it is finding $\mathbf{x}' = (\mathbf{z}', \mathbf{v}') \neq \mathbf{x} = (\mathbf{z}, \mathbf{v})$ that satisfies

$$[A \mid Id] \cdot (x - x') = 0$$

 \Rightarrow MSIS $_{n,k,l,q,\zeta'}$ where $\|(\mathbf{z},\mathbf{v})\|_{\infty} \leq \zeta'$

Signature Forgery

- Strong unforgeability (forgery with one among the given messages):
 - Equivalently, it is finding $\mathbf{x}' = (\mathbf{z}', \mathbf{v}') \neq \mathbf{x} = (\mathbf{z}, \mathbf{v})$ that satisfies

$$[A \mid Id] \cdot (x - x') = 0$$

$$\Rightarrow$$
 MSIS $_{n,k,l,q,\zeta'}$ where $\|(x-x')=(z,v)-(z',v')\|_{\infty}\leq \zeta'$

- $\|z z'\|_{\infty} \le \|z\|_{\infty} + \|z'\|_{\infty} \le 2(\gamma_1 \beta)$
- $||v v' = u u'||_{\infty} \le ||u||_{\infty} + ||u'||_{\infty} \le 2(2\gamma_2 + 1)$

$$\Rightarrow \zeta' = \max(2(\gamma_1 - \beta), 4\gamma_2 + 2)$$

Signature Forgery

- Weak unforgeability (forgery with a new message):
 - SelfTargetMSIS $H,n,k,l+1,q,\zeta$
- Strong unforgeability (forgery with one among the given messages):
 - MSIS n,k,l,q,ζ'

$$\begin{split} \mathrm{Adv}_{\mathsf{Dilithium}}^{\mathsf{SUF-CMA}}(\mathsf{A}) & \leq \mathrm{Adv}_{k,\ell,D}^{\mathsf{MLWE}}(\mathsf{B}) + \mathrm{Adv}_{\mathsf{H},k,\ell+1,\zeta}^{\mathsf{SelfTargetMSIS}}(\mathsf{C}) + \mathrm{Adv}_{k,\ell,\zeta'}^{\mathsf{MSIS}}(\mathsf{D}) + 2^{-254} \enspace , \\ \zeta &= \max\{\gamma_1 - \beta, 2\gamma_2 + 1 + 2^{d-1} \cdot \tau\}, \\ \zeta' &= \max\{2(\gamma_1 - \beta), 4\gamma_2 + 2\}. \end{split}$$

Dilithium v3.1

• $\beta = \tau \cdot \eta : \infty$ -norm bound for cs_2

 γ_1, γ_2 : coefficient ranges for y and LowBits

 \blacksquare d : compression bit for public key

Etc. Challenge Entropy

	NIST Security Level	2	3	5
	Parameters			
	q [modulus]	8380417	8380417	8380417
$\binom{n}{\tau} \cdot 2$	d [dropped bits from \mathbf{t}]	13	13	13
	$\tau \ [\# \text{ of } \pm 1\text{'s in } c]$	39	49	60
	challenge entropy $\left[\log {256 \choose \tau} + \tau\right]$	192	225	257
	γ_1 [y coefficient range]	2^{17}	2^{19}	2^{19}
	γ_2 [low-order rounding range]	(q-1)/88	(q-1)/32	(q-1)/32
	(k,ℓ) [dimensions of A]	(4,4)	(6, 5)	(8,7)
	η [secret key range]	2	4	2
	$\beta \left[\tau \cdot \eta \right]$	78	196	120
	ω [max. # of 1's in the hint h]	80	55	75
	Repetitions (from Eq. (5))	4.25	5.1	3.85

Thank You!