Studying Social Inequality with Data Science INFO 3370 / 5371 Spring 2024

### **Predicting life outcomes**

Results of the PSID Income Prediction Challenge

### Learning goals for today

By the end of class, you will be able to

- know who had the best predictions!
- reason about predictability of life outcomes

# **Equality Opportunity and Prediction**

#### Possible claim

To the degree that we can predict life outcomes, people do not have equal opportunity

### **Equality Opportunity and Prediction**



In supervised machine learning, the goal is to

- learn patterns in the available data
- predict outcomes for previously unseen cases



When a task involves unseen data, mimic the task with data we have





## Prepare environment

```
library(tidyverse)
library(rsample)
set.seed(14850)
```

#### Load data

```
learning <- read_csv("learning.csv")
holdout_public <- read_csv("holdout_public.csv")</pre>
```

### Create a train-test split within learning

Using the rsample package,

```
split <- learning |>
  initial_split(prop = 0.5)
```



### Learn candidates in the train set

```
candidate 1 <- lm(
 g3_log_income ~ g2_log_income,
 data = training(split)
candidate 2 <- lm(
 g3_log_income ~ g2_log_income + race + sex,
 data = training(split)
candidate_3 <- lm(
 g3_log_income ~ g2_log_income * race * sex,
 data = training(split)
```

#### Learn candidates in the train set



### Evaluate performance on the test set. Choose a model

```
fitted |>
  group_by(model) |>
 mutate(error = g3_log_income - yhat) |>
 mutate(squared error = error ^ 2) |>
  summarize(mse = mean(squared error))
## # A tibble: 3 x 2
## model
                  mse
## <chr> <dbl>
## 1 candidate 1 0.439
```

## 2 candidate\_2 0.437 ## 3 candidate 3 0.477



## Apply your chosen model

Learn in the full learning set

```
chosen <- lm(
  g3_log_income ~ g2_log_income +
    race + sex,
  data = learning
Predict for the holdout set
predicted <- holdout_public %>%
  mutate(
    predicted = predict(
      chosen,
      newdata = holdout_public
```

### Summary



#### Your submissions

- 21 submissions
- 20 submissions predicting for all holdout cases
- ▶ 17 submissions with non-missing predictions
- ▶ 14 submissions by unique teams

| [class submissio | n results reda | cted for onli | ne posting] |
|------------------|----------------|---------------|-------------|
|                  |                |               |             |
|                  |                |               |             |
|                  |                |               |             |
|                  |                |               |             |
|                  |                |               |             |
|                  |                |               |             |

| our exercise was a particular case |  |  |
|------------------------------------|--|--|
| of a broader research project      |  |  |
|                                    |  |  |
|                                    |  |  |

# Measuring the predictability of life outcomes with a scientific mass collaboration

Matthew J. Salganik<sup>a,1</sup>, Jan Lundberg<sup>a</sup> D. Alexander T. Kindel<sup>a</sup>, Caitlin E. Ahearn<sup>b</sup>, Khaled Al-Ghoneim<sup>c</sup>, Abdullah Almaatoug<sup>d,e</sup>, Drew M. Altschul<sup>f</sup>, Jennie E. Brand<sup>b,g</sup>, Nicole Bohme Carnegie<sup>h</sup>, Ryan James Compton<sup>i</sup>, Debanjan Datta<sup>i</sup>, Thomas Davidson<sup>k</sup>, Anna Filippova<sup>l</sup>, Connor Gilroy<sup>m</sup>, Brian J. Goode<sup>n</sup>, Eaman Jahani<sup>o</sup>, Ridhi Kashyap<sup>p,q,r</sup>, Antie Kirchner<sup>s</sup>, Stephen McKay<sup>t</sup>, Allison C. Morgan<sup>u</sup>, Alex Pentland<sup>e</sup>, Kiyan Polimis<sup>v</sup>, Louis Raes<sup>w</sup> D. Daniel E. Rigobon<sup>x</sup>, Claudia V. Roberts<sup>y</sup>, Diana M. Stanescu<sup>z</sup>, Yoshihiko Suhara<sup>e</sup>, Adaner Usmani<sup>aa</sup>, Erik H. Wang<sup>2</sup>, Muna Adem<sup>bb</sup>, Abdulla Alhairi<sup>cc</sup>, Bedoor AlShebli<sup>dd</sup>, Redwane Amin<sup>ee</sup>, Ryan B. Amos<sup>y</sup>, Lisa P. Argyle<sup>ff</sup> (B. Livia Baer-Bositis<sup>99</sup>, Moritz Büchi<sup>hh</sup> B. Bo-Ryehn Chungii, William Eggertii, Gregory Faletto<sup>kk</sup>, Zhilin Fanii, Jeremy Freese<sup>99</sup>, Teiomay Gadgil<sup>mm</sup>, Josh Gagné<sup>99</sup>, Yue Gao<sup>nn</sup>, Andrew Halpern-Manners<sup>bb</sup>, Sonia P. Hashim<sup>y</sup>, Sonia Hausen<sup>99</sup>, Guanhua He<sup>oo</sup>, Kimberly Higuera<sup>99</sup>, Bernie Hogan<sup>pp</sup>, Ilana M. Horwitz<sup>qq</sup>, Lisa M. Hummel<sup>99</sup>, Naman Jain\*, Kun Jin\*, David Jurgens\*, Patrick Kaminskibb,tt, Areg Karapetyanuu,vv, E. H. Kim<sup>99</sup>, Ben Leizman<sup>y</sup>, Najjia Liuz, Malte Mösery, Andrew E. Mackz, Mayank Mahajany, Noah Mandellww, Helge Marahrensbb, Diana Mercado-Garcia<sup>qq</sup>, Viola Mocz<sup>xx</sup>, Katariina Mueller-Gastell<sup>gg</sup>, Ahmed Musse<sup>yy</sup>, Ojankun Niu<sup>ee</sup>, William Nowak<sup>zz</sup>, Hamidreza Omidvar<sup>aaa</sup>, Andrew Or<sup>y</sup>, Karen Ouvang<sup>y</sup>, Katy M. Pinto<sup>bbb</sup>, Ethan Porter<sup>ccc</sup>, Kristin E. Porter<sup>ddd</sup>, Crystal Qiany, Tamkinat Rauf<sup>99</sup>, Anahit Sarqsyan<sup>eee</sup>, Thomas Schaffner<sup>y</sup>, Landon Schnabel<sup>99</sup>, Bryan Schonfeld<sup>2</sup>, Ben Senderfff, Jonathan D. Tangy, Emma Tsurkov<sup>99</sup>, Austin van Loon<sup>99</sup>, Onur Varol<sup>999,hhh</sup> . Xiafei Wang<sup>iii</sup>. Zhi Wang<sup>hhh,jjj</sup> Julia Wang<sup>y</sup>, Flora Wang<sup>fff</sup>, Samantha Weissman<sup>y</sup>, Kirstie Whitaker<sup>kkk,ill</sup>, Maria K. Wolters<sup>mmm</sup>, Wei Lee Woon<sup>nnn</sup>, James Wu<sup>ooo</sup>, Catherine Wu<sup>y</sup>, Kengran Yang<sup>aaa</sup>, Jingwen Yin<sup>II</sup>, Bingyu Zhao<sup>ppp</sup>, Chenyun Zhu<sup>II</sup>. Jeanne Brooks-Gunn<sup>qqq,rrr</sup>. Barbara E. Engelhardt<sup>y,ii</sup>, Moritz Hardt<sup>sss</sup>, Dean Knox<sup>2</sup>, Karen Levy<sup>ttt</sup>, Arvind Narayanan<sup>y</sup>, Brandon M. Stewart<sup>a</sup>, Duncan J. Wattsuuu,vvv,www , and Sara McLanahana,1

|                            | Birth | Age 1 | Age 3 | Age 5 | Age 9 |
|----------------------------|-------|-------|-------|-------|-------|
| Core<br>mother<br>survey   | •     | •     |       | •     | •     |
| Primary caregiver survey   |       |       | •     | •     | •     |
| Core father survey         | •     | •     | •     | •     | •     |
| In-home assessment         |       |       | •     | •     | •     |
| Child survey               |       |       |       |       | •     |
| Child care provider survey |       |       | •     |       |       |
| Teacher survey             |       |       |       | •     | •     |

|                            | Birth | Age 1 | Age 3 | Age 5 | Age 9 | Age 15   |
|----------------------------|-------|-------|-------|-------|-------|----------|
| Core<br>mother<br>survey   |       |       | •     |       | •     | •        |
| Primary caregiver survey   |       |       | •     | •     | •     | Combined |
| Core father survey         | •     | •     | •     | •     | •     |          |
| In-home assessment         |       |       | •     | •     | •     | •        |
| Child survey               |       |       |       |       | •     | •        |
| Child care provider survey |       |       | •     |       |       |          |
| Teacher survey             |       |       |       | •     | •     |          |

#### Six age 15 outcomes:

- ► GPA
- Material HardshipGrit
- Evicted
- Job training
- ▶ Job loss



- 441 registered participants
- social scientists and data scientists
- undergraduates, grad students, and professionals
- many working in teams



















#### Life outcome

Lundberg et al. 2024.

The origins of unpredictability in life outcome prediction tasks



#### In-depth, qualitative interviews

- ▶ 73 respondents in 40 families
- Separate interviews with the youth and primary caregiver
- lacktriangle Life history of the youth from birth to the interview (pprox age 18)





#### Irreducible error

#### Zero Irreducible Error

Irreducible error is zero if each feature value maps to **one** outcome value

| Feature     | Outcome     |
|-------------|-------------|
| Value       | Value       |
| •           |             |
| feature     | outcome     |
| observation | observation |
| window      | time        |

#### Non-Zero Irreducible Error

Irreducible error is non-zero if at least one feature value maps to **multiple** outcome values



Unmeasurable features occur after the feature observation window

► Bella: A lasting event

- ► Bella: A lasting event
  - ▶ after age 9, her father died

- ► Bella: A lasting event
  - after age 9, her father died
  - high school went off course

- ► Bella: A lasting event
  - ▶ after age 9, her father died
  - high school went off course
- Charles: A fleeting event

- ► Bella: A lasting event
  - ▶ after age 9, her father died
  - high school went off course
- Charles: A fleeting event
  - online high school

- ▶ Bella: A lasting event
  - ▶ after age 9, her father died
  - ▶ high school went off course
- ► Charles: A fleeting event
  - online high school
  - worked in the basement for one semester

- ► Bella: A lasting event
  - ▶ after age 9, her father died
  - ▶ high school went off course
- ► Charles: A fleeting event
  - online high school
  - worked in the basement for one semester
  - ▶ video games = bad grades that semester





Lola's social network

Lola's social network

elderly neighbor got Lola ready for school each day

#### Lola's social network

- lack elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola

#### Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola
- aunt employed Lola's mother in a family business

#### Lola's social network

- elderly neighbor got Lola ready for school each day
- grandparents remodeled the basement to house Lola
- aunt employed Lola's mother in a family business

Predicted GPA: 3.04 Actual GPA: 3.75

#### Zero Irreducible Error

Non-Zero Irreducible Error

Feature is measured,



Feature is unmeasured,





How close do you feel to your mom? Would you say...

| Extremely close,  | . 1 |
|-------------------|-----|
| Quite close       |     |
| Fairly close, or, |     |
| Not very close?   |     |
| REFUSED           |     |
| DON'T KNOW        | -2  |

How close do you feel to your mom? Would you say...

| Extremely close,  | 1 |
|-------------------|---|
| Quite close,      | 2 |
| Fairly close, or, |   |
| Not very close?   | 4 |
| REFUŚED           |   |
| DON'T KNOW        |   |

A daughter told us about her "not very close" mother

How close do you feel to your mom? Would you say...

| Extremely close,  | 1  |
|-------------------|----|
| Quite close,      |    |
| Fairly close, or, |    |
| Not very close?   | 4  |
| REFUSED           | -1 |
| DON'T KNOW        |    |

## A daughter told us about her "not very close" mother

- kicked her out of the house and called police
- mother: "you better start treating me better, because I might not live that long."
- daughter: "I couldn't even focus in class... I was shaking."

Outcome: Failed 8th grade. Low GPA. Dropped out.

#### Zero Irreducible Error

#### Non-Zero Irreducible Error

#### Granular measurement,



#### Coarse measurement,



#### Unmeasurable features

Events after the feature observation window create outcome variance





With intervening events,



#### Unmeasured features

A measurable feature could distinguish units with highly disparate outcomes

#### Feature is measured.



Feature is unmeasured,



# Imperfectly-measured features

A feature is measured in coarse categories

#### Granular measurement.



#### Coarse measurement,







## Generalizing to other life outcome prediction tasks



▶ life outcome predictions may be inaccurate

- ▶ life outcome predictions may be inaccurate
  - ▶ if generated by algorithms
  - ▶ if generated by humans

- ▶ life outcome predictions may be inaccurate
  - if generated by algorithms
  - if generated by humans
- ▶ from accuracy to impact evaluations

- ▶ old goal: between-group variability
  - how means vary across groups

- ▶ old goal: between-group variability
  - how means vary across groups
- new goal: within-group variability
  - how variances vary across groups

- old goal: between-group variability
  - how means vary across groups
- new goal: within-group variability
  - how variances vary across groups
- more work to better understand unpredictability
  - empirical estimates
  - formal models

# Learning goals for today

By the end of class, you will be able to

- know who had the best predictions!
- reason about predictability of life outcomes