BASE ORTONORMAL no espaço é um conjunto ordenado com 3 vetores que têm comprimento 1 unidade e formam ângulo de 90º entre si.

base qualquer

base ortonormal

$$\vec{i} \perp \vec{j} \perp \vec{k}$$

$$|\vec{i}| = |\vec{j}| = |\vec{k}| = 1$$

Propriedade: Se B = $(\vec{i}, \vec{j}, \vec{k})$ é base, então todo vetor do espaço é uma combinação linear de $\vec{i}, \vec{j}, \vec{k}$.

$$\vec{v} = x.\vec{i} + y.\vec{j} + z.\vec{k}$$

$$\vec{v} = (x, y, z)_B$$

$$\vec{i} = 1.\vec{i} + 0.\vec{j} + 0.\vec{k}$$

$$\vec{\iota} = (1,0,0)_B$$

$$\vec{j}=0.\,\vec{\iota}+1.\vec{j}+0.\,\vec{k}$$

$$\vec{j}=(0,1,0)_B$$

$$\vec{k} = 0.\vec{i} + 0.\vec{j} + 1.\vec{k}$$

$$\vec{k} = (0,0,1)_B$$

MÓDULO DE UM VETOR

Seja $\vec{v} = \overrightarrow{OC} = (x, y, z)$ em relação a uma base ortonormal B. O módulo do vetor, que representamos por $|\vec{v}|$ é dado por:

Pitágoras no ΔOAB:

$$\overline{OB}^2 = \overline{OA}^2 + \overline{AB}^2$$

Pitágoras **m**o ΔOBC:

$$\overline{OC}^{\ 2} = \overline{OB}^{\ 2} + \overline{BC}^{\ 2}$$

$$\overline{OC}^2 = \overline{OA}^2 + \overline{AB}^2 + \overline{BC}^2$$

$$|\vec{v}|^2 = x^2 + y^2 + z^2$$

 $|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$

$$|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$$

Exemplo 1: Sendo B = $(\vec{i}, \vec{j}, \vec{k})$ uma base ortonormal, calcular o módulo dos seguintes vetores.

a)
$$\vec{v} = 2\vec{i} + \vec{j} + 2\vec{k}$$

b)
$$\vec{u} = \vec{i} + 3\vec{j} - 2\vec{k}$$

VERSOR DE UM VETOR

Dado um vetor \vec{v} não nulo em relação a uma base ortonormal B, chamamos **versor de** \vec{v} ao vetor que tem módulo 1, mesma direção e mesmo sentido que o vetor \vec{v} . Para calcular o versor de \vec{v} basta dividir o vetor pelo seu módulo.

versor de
$$\vec{v} = \frac{\vec{v}}{|\vec{v}|}$$

Exemplo 2: Calcular o versor do vetor $\vec{v}=2\vec{\imath}-\vec{\jmath}+2\vec{k}$

VETORES UNITÁRIOS são vetores que têm **módulo 1** (1 cm, 1 mm, 1 m , 1 km, ...). O versor de \vec{v} e o oposto do versor são exemplos de vetores unitários.

$$\frac{\vec{v}}{|\vec{v}|}$$
 e $-\frac{\vec{v}}{|\vec{v}|}$ são vetores unitários.