

JUN 2 9 2001 **TECH CENTER 1600/290**

> PATENT 0020-4491P

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Kyogo ITOH et al

Serial Number:

09/202,047

Group:

1642

Filed:

December 7, 1998

Examiner:

Sheela Huff

For: Tumor Antigen Proteins, Genes Therefor, and Tumor Antigen Peptides

DECLARATION UNDER 37 C.F.R. § 1.132

Dear Sir:

The undersigned, Kyogo Itoh, M.D., Ph.D., hereby declares and states as follows:

- 1. My Curriculum Vitae including a list of my publications and credentials, is attached hereto as Appendix A.
- 2. On the basis of the qualifications set forth in my Curriculum Vitae, I submit that I am an expert in the fields of molecular biology and oncology. I have long been engaged in research on tumor antigens and identified several novel tumor antigens such as SART-2, SART-3, Cyclophilin B, and ART-1 in addition to SART-1 as the subject matter of the present invention.
- 3. I have studied the Office Action issued on February 1, 2001 and understood what is the essence of the Office Action.
- I am the primary inventor of the US Patent Application number 4. 09/202,047 (hereinafter, "present application") and am familiar with the scientific and practical significance of the invention. I am also familiar with cited Nakao et al,

Kyogo Itoh, M.D., Ph.D.

Cancer Res. 55: 4248-4252, October 1, 1995 (hereinafter, "Nakao et al") as one of co-authors.

- 5. In my capacity as set forth above, I would like to express my opinion on the Office Action especially on the following issues:
 - 1) Claims 7 and 8 meets the requirements under 35 USC § 112; and
 - 2) Claims 6-9 and 12-13 are novel over Nakao et al
- 5.1. Claims 7 and 8 meets the Disclosure Requirements
- 5.1.1. The amended claims 7 and 8 read:
 - Claim 7: An isolated tumor antigen peptide consisting of part of the protein of claim 6, which binds to MHC class I antigen to be recognized by CTLs.
 - Claim 8: An isolated tumor antigen peptide of claim 7 which comprises the amino acid sequence of positions 749-757, 736-744, 785-793, or 690-698 in the amino acid sequence of SEQ ID NO: 1.

The Examiner stated as follows:

"The specification fails to enable any peptides that are produced through "intracellular decomposition" which bind MHC class I antigen and can be recognized by T cells..."

However, one of ordinary skill in the art could make and use the peptides as claimed in claims 7 and 8 above on the basis of the description, teaching, and guidance in the specification in view of the technical background at the filing date of the priority application of the present application (June 7, 1996, hereinafter, "priority date").

5.1.2. The present invention is based on the successful cloning of a novel tumor antigen protein, which is now called "SART-1". Before the priority date, there had

been no tumor antigens identified other than those originated from a special tumor, i.e., melanoma. Accordingly, it was very much desired a tumor antigen protein to be isolated from more common tumors such as squamous cell carcinoma (see, page 7, line 1 through page 8, line 22 of the specification). The present inventors, for the first time, succeeded in the cloning and the characterization of a novel tumor antigen protein (SART-1) from a tumor other than melanoma, that is, squamous cell carcinoma derived from esophageal cancer. J. Exp. Med., one of most famous learned journals, published our research results regarding cloning and characterization of SART-1 in recognition of the significance. See, Appendix B (J. Exp. Med. 187: 277-288, 1998).

- 5.1.3. The cloning of SART-1 was extremely difficult. In the absence of any genetic information, we, the inventors, had to use the expression cloning technique, which comprises expressing randomly an enormous numbers of cDNA clones, determining the activity of each clone, and selecting the intended clone(s). We repeated the procedures again and again and finally isolated one cDNA clone from squamous cell carcinoma derived from esophageal cancer, as described in Examples 1 to 3 of the present application. The clone is referred to as "K3" in the present specification and now known as "SART-1". We then confirmed that the gene encoding SART-1 (K3), when transformed into a cell, yields a peptide fragment(s) through the intracellular processing of SART-1, which fragment binds to major histocompatibility complex (MHC) class I antigen, i.e., HLA antigen, and is recognized by cytotoxic T lymphocytes (CTLs), as recited in claim 6. These results are shown in Table 2 in Example 3 of the present specification. In Table 2, the activity of SART-1 (K3) is determined by measuring the amount of IFN- γ generated by CTLs. It is known that CTL produces IFN- γ only when it recognizes a peptide presented by MHC class I antigen (HLA antigen), which peptide have been generated through the intracellular processing, and hence the results in Table 2 certainly prove that "an isolated protein" of the present invention as defined in claim 6 has the activity as recited in the said claim.
- 5.1.4. As mentioned above, the cloning of SART-1 could not be achieved without resolving considerable difficulties. Once the tumor antigen protein was cloned and identified, the next step for determining a part (portion) thereof having an

activity as a tumor antigen peptide could be carried out by a technique known in the art.

- 5.1.5. It was commonly known in the art that antigen peptides which are bound and presented by MHC class I antigen (HLA antigen) are generally 8-12 amino acid long. For example, antigen peptides listed in *Immunogenetics*, **41**:178-228, 1995 are all have amino acid sequences of 8 to 12 amino acids. See, Table. Likewise, *J. Immunol.*, **152**:3913, 1994 (see, abstract) and *J. Immunol.*, **152**:3904, 1994 also describes the requisite amino acid length of antigen peptide presented by MHC class I antigen (HLA antigen) to be 8-12 a.a. and 8-11 a.a., respectively. These publications have been filed with the USPTO as IDS.
- 5.1.6. Further, it was also known that, regarding some MHC class I antigens such as HLA-A24, there is a rule (motif) in the amino acid sequence of a peptide to be presented thereby. Accordingly, one could even identify a tumor antigen peptide based on a peptide sequence comprising the motif. The state of art at the priority date is described in the above-mentioned three documents in detail, as well as in the present specification (see, page 16, lines 16-23). By means of such a method, we identified peptide "690-698" as an antigen peptide, which is described in Example 4 at page 37, lines 12-15 of the present specification.
- 5.1.7. With regard to a tumor antigen peptide restricted to HLA antigen lacking "rule" in the amino acid sequence, it could be identified according to the method described in Example 4 of the present specification. That is, from a cDNA encoding a tumor antigen protein, clones of various length were prepared using Deletion Kit and analyzed the activity by measuring the amount of IFN- γ produced by CTLs as mentioned above. Peptide fragments of 8-12 amino acids were then synthesized based on the sequence of a clone having activity, and allowed to contact with cells for assay to determine whether of not the synthetic peptide fragments have the activity of binding to HLA antigen and being recognized by CTLs, as claimed in claim 7. After the series of procedures, there obtained three tumor antigen peptides corresponding to amino acid sequences "736-744", "749-757" and "785-793". One ordinary skilled in the art could identify any tumor antigen peptides by following the procedures described in

Example 4 involving "deletion".

5.1.8. As mentioned above, once a "tumor antigen protein" has been identified, one ordinary skilled in the art could identify tumor antigen peptides as recited in claims 7 and 8 on the basis of the known techniques regarding the length and motif of peptides capable of binding to MHC class I antigen, guidance and working examples in the present specification. Accordingly, the peptides as the subject matters of claims 7 and 8 are described in the specification to such an extent to enable one ordinary skilled in the art to make and use the same.

5.2. Claims 6-9 and 12-13 are novel over Nakao et al

- 5.2.1. I am familiar with the cited Nakao et al document, which reports the results of research work conducted in my office under my supervision. The results are those obtained prior to the cloning or identification of SART-1. It is my conclusion that Nakao et al did not anticipate the tumor antigen peptide derived from SART-1 on the basis of the facts below.
- 5.2.2. The Examiner takes the position that the tumor antigen peptide of the present invention and the antigen peptide of Nakao et al are identical because the both peptides are originated from KE-4 and recognized by KE-4CTL; however, this is not pertinent. That is, there are many tumor antigens which are distinct from SART-1 and yet expressed on KE-4 and recognized by KE-4CTL. We have so far identified such tumor antigens, namely, SART-2 (Nakao, M. et al, *J. Immunol.*, **164**, 2565 (2000)) and SART-3 (Yang, D. et al, *Cancer Res.*, **59**: 4056(1999)), which are distinct from each other and also from SART-1 in terms of structure.
- 5.2.3. Further, the subject matter as claimed in the present application is "isolated tumor antigen protein" and "isolated tumor antigen peptide", while Nakao et al do not describe such an "isolated" protein or peptide. Examiner pointed out that Nakao et al teach a peptide antigen expressed on SCC from KE-4 tumor cells specifically making reference to Fig. 3 on page 4251. Although the said Fig. 3 indicates the presence of a substance having activity in fraction No. 23, there are no evidences showing that the said fraction contains a single

protein/peptide, much less SART-1 of the present invention.

- 5.2.4. It is well known in the art that HPLC, when conducted under the conditions set forth in Nakao et al, gives peaks each containing plural peptides. Actually, it was technically very difficult for us to isolate and identify tumor antigen protein or peptide from the active fraction No. 23. We then used the "expression cloning technique" and succeed in the isolation and identification of SART-1 after continuous endeavors. It would be objectively understood that the active peak (No. 23) corresponds to a mixture of peptides of unknown structure, which is clearly distinct from the isolated tumor antigen protein or peptide of the present invention.
- 6. In summary, it is my conclusion that the peptides as the subject matters of claims 7 and 8 are described in the specification to such an extent to enable one ordinary skilled in the art to make and use the same, and that, on June 7, 1996, Nakao et al did not anticipate the tumor antigen peptide derived from SART-1.
- 7. I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the above-identified application or any patent issuing thereon.

Date: June 6, 2001

Kyogo Itoh, M.D., Ph.D.

CURRICULUM VITAE

Kyogo Itoh, M.D., Ph.D.

Title and Affiliation:

Primary appointment: Professor and Chairman, Department of Immunology, Director of Kurume University Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, Kurume, Fukuoka 830, Japan.

Adjunct appointment: Adjunct Professor, Department of Immunology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, U.S.A.

Birthdate and Place: 9/12/48, Akita, Japan

Citizenship: Japanese

Office Address:

Department of Immunology Kurume University School of Medicine 67 Asahi-machi, Kurume Fukuoka 830, Japan Telephone: 0942-31-7551 or 0942-35-3311(ext; 3240)

FAX: 0942-31-7699

e-mail: kyogo@med.kurume-u.ac.jp

Education:

Tohoku Univ. School of Medicine, Sendai, Japan, Ph.D. 1981, Immunology

Hirosaki Univ. School of Medicine, Hirosaki, Japan, M.D., 1974, Medicine.

Academic and Professional Appointments:

1998-present, Director of Kurume University Research Center for Innovative Cancer Therapy.

1992-present, Professor and Chairman, Department of Immunology, Kurume University School of Medicine, Kurume, Fukuoka 830, Japan.

1995-present, Adjunct Professor, Department of Immunology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, U.S.A.

1992-1995, Adjunct Associate Professor, Departments of Immunology and General Surgery, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas, U.S.A.

1990-1992, Associate Immunologist and Associate Professor of Immunology (Tenure),

Department of Immunology (General Surgery), and Chief of the TIL Core Lab, The University of Texas, M.D. Anderson Cancer Center, Houston, TX.

1990, Assistant Immunologist and Assistant Professor, Department of Immunology (General Surgery), and Chief of the TIL Core Lab, The University of Texas M. D. Anderson Cancer Center, Houston, TX.

1987-1990 Assistant Immunologist and Assistant Professor, Department of General Surgery (Immunology) and Chief, TIL Core Lab, The University of Texas M. D. Anderson Cancer Center, Houston, TX.

1987-1992 Member of the Graduate Faculty, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX.

1986-87 Visiting Scientist, Department of General Surgery (Immunology), The University of Texas System Cancer Center, M.D. Anderson Hospital and Tumor Institute, Houston, TX.

1985-86 Postdoctoral Fellow, Department of General Surgery (Immunology), The University of Texas System Cancer Center, M.D. Anderson Hospital and Tumor Institute, Houston, TX.

1984-85 Research Associate, Departments of Surgery and Immunology, The University of Alabama at Birmingham, Alabama.

1978-88 Senior Instructor, Department of Microbiology, Tohoku University School of Dentistry and Medicine, Sendai, Japan.

1974-78 Surgeon, The Second Department of Surgery, Hirosaki University School of Medicine, Hirosaki, Japan.

1974-75 Surgeon, Division of Surgery, Misawa Central Hospital, Misawa, Japan.

Editorships and Editorial Board Memberships

Associate editor for J. Immunotherapy (1997-)

A member of editorial board for International Journal Clinical oncology(1996-)

Society Memberships:

The American Association of Immunologists (1987-present)

The American Association for Cancer Research (1988-present)

The American Society of Clinical Oncology (1990-present)

The Japanese Society for Immunology (1978-1984; 1992-present)

The Japanese Cancer Society (1979-1984; 1992-present)

Society for Fundamental Cancer Immunology

Bibliography

Kyogo Itoh, M.D., Ph.D.

- a. Published and accepted articles in refereed journals:
- 1. Itoh, T., Murakami, T., Shioya, A., Itoh, K., Inoue, S., Itoh, S., Konn, M., and Oh-Uchi, K. A Case of lymphangioma in the descending colon. (Jp.) Clin. Surgery, 32: 515-518, 1977.
- 2. Itoh, K., Murakami, T., Inamoto, J., Kumakura, T., Takaya, S., Matsura, K., Matsuda, K., Machida, J., Endo, M., and Konn, M. The study of diverticulosis in the colon associated with colon cancer. (Jp.) Clin. Surgery, 33: 439-444, 1978.
- 3. Suzuki, H., Itoh, K., Munakata, H., and Kitajima, S. A case of nonspecific cyst in the mediastrium. (Jp.) Surg. Therapy, 39: 351-355, 1978.
- 4. Kaneda, I., Sato, J., Itoh, K., and Kumagai, K. A method for isolation of lymphocytes and monocytes to detect their functions. (Jp.) Igaku-no-Ayumi, 107: 17-19,1978.
- 5. Itoh, K., Sato, J., Abo, T., and Kumagai, K. Detection of human peripheral blood monocytes and T lymphocytes by staining with acid-alpha-naphtylacetate esterase (Jp.) Immunol. Exp. Methods. 7: 2173-2176, 1978.
- 6. Kumagai, K., Itoh, K., Hinuma, S., and Tada, M. Pretreatment of plastic petri dishes with fetal calf serum. A simple method for macrophage isolation. J. Immunol. Methods, 29: 17-25, 1979.
- 7. Itoh, K., and Kumagai, K. Effect of tunicamycin and neuraminidase on the expression of Fc-IgM and -IgG receptors on human lymphocytes. J. Immunol., 124: 1830-1836, 1980.
- 8. Itoh, K., Inoue, M., Kataoka, S., and Kumagai, K. Differential effect of interferon on expression of IgG- and IgM-Fc receptors on human lymphocytes. J. Immunol., 124: 2589-2595, 1980.
- 9. Abo, T., Kawate, T., Itoh, K., and Kumagai, K. Studies on the bioperiodicity of the immune response. I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J. Immunol., 126: 1360-1363, 1981.
- 10. Itoh, K., Saitoh, F., Kumagai, K., and Kosaka, S. Depressed natural killer activity in rheumatoid arthritis and its in vitro augmentation with interferon and N-(2-cariboxypenyl)-4-chloroanthranilic acid disodium salt (CCA), an antiarthritis agent. The Rheumachi, 21 (Suppl.): 69-74, 1981.
- 11. Kumagai, K., Itoh, K., Suzuki, R., Hinuma, S., and Saitoh, F. Studies of murine large granular lymphocytes. I. Identification as effector cells in NK and K

- cytotoxicities. J. Immunol., 129: 388-394, 1982.
- 12. Itoh, K., Suzuki, R., Umezu, T., Hanaumi, K., and Kumagai, K. Studies of murine large granular lymphocytes. II. Tissue, strain and age distributions of LGL and LAL. J. Immunol., 129: 395-400, 1982.
- 13. Kataoka, S., Itoh, K., Kurane, I., and Kumagai, K. Detection of guinea pig T-mu and T-gamma cells by a double rosette assay. J. Immunol. Methods, 51: 89-100, 1982.
- 14. Kurane, I., Itoh, K., Kataoka, S., Saitoh, F., and Kumagai, K. T lymphocytes with receptors for IgM-Fc (T-mu) as an effector cell in delayed-type hypersensitivity. Cell Immunol., 71: 404-416, 1982.
- 15. Sato, J., Okano, K., Kukuchi, T., Suzuki, N., Nomura, Y., Goto, Y., and Itoh, K. Different monocyte-dependency of human T-gamma or T-gamma-depleted lymphocytes in response to PHA or Con A. (Jp.) Clin. Immunol., 14: 27-34, 1982.
- 16. Itoh, K., Kurane, I., Saito, F., Kawakami, K., Kosaki, S., and Kumagai, K. CCA-mediated interferon induction and immuno-regulation. (Jp.) Clin. Immunol., 15: 242-252, 1983.
- 17. Kosaka, S., Itoh, K. and Kumagai, K. Study on an immuno-modulator SA-96 (DE-019) and the clinical effectiveness for chronic rheumatoid arthritis. (Jp.) Tohoku J. Med., 96: 13-21, 1983.
- 18. Itoh, K., Tsuchikawa, K., Awataguchi, T., Shiiba, K., and Kumagai, K. A case of chronic lymphocytic leukemia with properties characteristic of natural killer (NK) cells. Blood, 61: 940-948, 1983.
- 19. Suzuki, R., Handa, K., Itoh, K., and Kumagai, K. Natural killer (NK) cells as a responder to interleukin 2 (IL-2). I. Proliferative response and establishment of cloned cells. J. Immunol., 130: 981-987, 1983
- 20. Arai, S., Yamamoto, H., Itoh, K., and Kumagai, K. Suppressive effect of human natural killer cells on the pokeweed mitogen-induced differentiation of human peripheral blood B lymphocytes. J. Immunol., 131: 651-657, 1983.
- 21. Kataoka, S., Sato, J., Fujiva, H., Toyota, T., Suzuki, R., Itoh, K., and Kumagai, K. Immunologic aspects of non-obese diabetic (NOD) mouse. Abnormalities of cellular immunity. Diabetes, 32: 247-253, 1983.
- 22. Itoh, K., Matsui, H., Suzuki, R., Miura, M., and Kumagai, K. Expression of Ia antigen production of fibronectin and interferon associated with differentiation of macrophages. (Jp.) Igaku-no-Ayumi, 126: 50-51, 1983.
- 23. Furukawa, K., Itoh, K., Okamura, K., Kumagai, K., and Suzuki, M. Changes in NK cell activity during the estrous cycle and pregnancy in mice. J. Reprod. Immunol., 6: 353-360, 1984.

- 24. Kosaka, S., Hanaumi, K., Itoh, K., and Kumagai, K. Effects of Auranofin on chronic rheumatoid arthritis, the levels of Au and immuno-complex in serum. (Jp.) Immunology and Diseases, 7: 121-128, 1984.
- 25. Itoh, K., Tilden, A. B., Kumagai, K., and Balch, C. M. Leu 11a+ lymphocytes with natural killer (NK) activity are precursors of recombinant interleukin 2 (rIL2)-induced activated killer (AK) cells. J. Immunol., 134: 802-807, 1985.
- 26. Itoh, K., Shiiba, K., Shimizu, Y., Suzuki, R., and Kumagai, K. Generation of activated killer (AK) cells by recombinant interleukin 2 (rIL2) in collaboration with interferon-gamma (IFN-gamma). J. Immunol., 134: 3124-3129, 1985.
- 27. Itoh, K., Tilden, A. B., and Balch, C. M. The role of interleukin 2, and a serum suppressive factor on the induction of activated killer cells cytotoxic for autologous melanoma cells. Cancer Res., 45: 3173-3178, 1985.
- 28. Balch, C. M., Itoh, K., and Tilden, A. B. Cellular immune defects in melanoma patients involving interleukin 2-activated lymphocyte cytotoxicity and a serum suppressive factor. Surgery, 98: 151-157, 1985.
- 29. Itoh, K., Tilden, A. B., and Balch, C. M. Interleukin 2 activation of cytotoxic T lymphocytes infiltrating into human metastatic melanomas. Cancer Res., 46: 3011-3017, 1986.
- 30. Tilden, A. B., Grossi, C. E., Itoh, K., Dougherty, P. A., and Balch, C. M. Subpopulation analysis of human granular lymphocytes: Association with age, gender and cytotoxic activity. Nat. Immun. Cell Growth Regul., 5: 96-104, 1986.
- 31. Itoh, K., Tilden, A. B., and Balch, C. M. Lysis of human solid tumor cells by lymphokine activated natural killer cells. J. Immunol., 136: 3910-3915, 1986.
- 32. Komiyama, K., Crago, S. S., Itoh, K., Moro, I., and Mestecky, J. Inhibition of natural killer (NK) cell activity by IgA. Cell Immunol., 101: 143-149, 1986.
- 33. Tilden, A. B., Itoh, K., and Balch, C. M. Human lymphokine-activated killer (LAK) cells: Identification of two types of effector cells. J. Immunol., 138: 1068-1073, 1987.
- 34. Ioannides, C. G., Itoh, K., Pahwa, R., Good, R. A., and Platsoucas, C. D. Identification of a second T-cell antigen receptor in man and mouse by an anti-peptide gamma chain specific monoclonal antibody. Proc. Natl. Acad. Sci., 84: 4244-4248, 1987.
- 35. Itoh, K., Platsoucas, C. D., and Balch, C. M. Monocyte- and natural killer cell-mediated spontaneous cytotoxicity against human non-cultured melanoma tumor cells. Cell. Immunol., 108: 495-500, 1987.
- 36. Itoh, K., Platsoucas, C. D., Tilden, A. B., Pollack, R. E., and Balch, C. M. Lysis of fresh solid tumor targets in the presence of Con A is mediated primarily by

- Leu 7+ peripheral blood T lymphocytes: Blocking by the anti-CD3 monoclonal antibody and comparison with recombinant interleukin 2-induced lysis by natural killer cells. Cell Immunol., 108: 283-296, 1987.
- 37. Itoh, K., Balch, C. M., and Platsoucas, C. D. Spontaneous human T cell cytotoxicity against murine hybridomas expressing the OKT3 monoclonal antibody. Comparison with natural killer cell activity. Cell Immunol., 108: 313-322, 1987.
- 38. Naito, S., Giavazzi, R., Waler, S. M., Itoh, K., Mayo, J., and Fidler, I. J. Growth and metastatic behavior of human tumor cells implanted into nude and beige nude mice. Clin. Exp. Metastasis., 5: 135-146, 1987.
- 39. Itoh, K., Balch, C. M., and Platsoucas, C. D. CD8+ T cells lyse autologous monocytes in the presence of anti-CD3 monoclonal antibody. Association with interleukin-1 (IL-1) production. Cell Immunol., 114: 257-271, 1988.
- 40. Itoh, K., Balch, C. M. and Platsoucas, C. D. Monocyte-independent interleukin-2 production and proliferation of human T cells in response to murine hybridomas expressing the OKT3 monoclonal antibody. Cell. Immunol., 115: 36-56, 1988.
- 41. Okamoto, H., Itoh, K., Trial, J., Platsoucas, C. D., Bucana, C., and Kripke, M. L. In vitro cytotoxic activity of an interleukin 2-dependent, murine Thy-1+ dendritic epidermal cell line. J. Leuk. Biol., 43: 502-508, 1988.
- 42. Han, X, Itoh, K., Balch, C. M., and Pellis, N. R. Recombinant interleukin 4 (rIL4) inhibits interleukin 2 induced activation of peripheral blood lymphocytes. Lymphokine Res., 7(3): 227-235, 1988.
- 43. Itoh, K., Platsoucas, C. D., and Balch, C. M. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas. Activation by interleukin 2 and autologous tumor cells, and the involvement of the T cell receptor. J. Exp. Med., 168: 1419-1441, 1988.
- 44. Yagita, M., Itoh K., Tsudo, M., Owen Schaub, L., Platsoucas, C. D., Balch, C. M., and Grimm, E. A. Involvement of both Tac and non-Tac interleukin 2 binding peptides in the interleukin 2-dependent proliferation of human tumor infiltrating lymphocytes. Cancer Res., 49: 1154-1159, 1989.
- 45. Itoh, K., Pellis, N. R., and Balch, C. M. Monocyte-dependent, serum-borne suppressor factor against induction of lymphokine-activated killer (LAK) cells. Cancer Immunol. Immunother., 29(1): 57-62, 1989.
- 46. Seki, H., Nanno, M., Chen, P. F., Itoh, K., Ioannides, C., Good, R. A., and Platsoucas, C.D. Molecular heterogeneity of gamma-delta T-cell antigen receptors expressed by CD4-CD8- T-cell clones from normal donors. Proc. Natl. Acad. Sci., 86: 2326-2330, 1989.
- 47. Balch, C. M., Riley, L. B., Bae, Y. J., Salmeron, M. A., Platsoucas, C. D., von Eschenbach, A. C. and Itoh, K. Patterns of human tumor-infiltrating

- ymphocytes in 120 human cancers. Arch. Surg., 125: 200-205, 1990.
- 48. Schackert, G., Price, J. E., Zhang, R., Bucana, C. D., Itoh, K., and Fidler, I. J. Site specificity for growth of different human melanomas as metastases in the brain of nude mice. Am. J. Pathol., 136: 95-102, 1990.
- 49. Waters, C. A., Schimke, P. A., Snider, C. E., Itoh, K., Smith, K. A., Strom, T. B., and Murphy, J. R. Interleukin-2 receptor targeted cytotoxicity. Receptor binding requirements for productive entry of IL-2 toxin into cells. Eur. J. Immunol., 20: 785-791, 1990.
- 50. Kim, T. Y., von Eschenbach, A. C., Filaccio, M. L., Hayakawa, K., Parkinson, D. R., Balch, C. M., and Itoh, K. Clonal analysis of lymphocytes from tumor, peripheral blood and non-tumorous kidney in primary renal cell carcinoma. Cancer Res., 50: 5263-5268, 1990.
- 51. Riley, L. B., Pellis, N. R., Schantz, S. P., Freedman, R. S., Balch, C. M. and Itoh, K. Humoral modulation of lymphokine-activated killer (LAK) cell induction in humans. IgG-related and non-IgG inhibitors in sera from cancer patients. Int. J. Cancer., 46: 785-791, 1990.
- 52. Hayakawa, K., Salmeron, M. A., Kornbluth, J., Bucana, C., and Itoh, K. The role of IL-4 in proliferation and differentiation of human NK cells. Study of an IL-4-dependent versus an IL-2-dependent NK cell clone. J. Immunol., 146(7): 2453-2460, 1991.
- 53. Zhang, R. D., Price, J. E., Schackert, G., Itoh, K., and Fidler, I. J. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis. Cancer Res., 51: 2029-2035, 1991.
- 54. Mansfield, P. F., Rosenblum, M. G., Murray, J. L., and Itoh, K. Augmentation of IL-2-induced activation of human melanoma tumor-infiltrating lymphocytes by heteroconjugate antibody. Cancer Immunol. Immunother., 33: 247-254, 1991.
- 55. Itoh, K., Hayakawa, K., Salmeron, M. A., Legha, S. S., Murray, J. L., Talpaz, M., Balch, C. M., Parkinson, D. R., Lee, K., Zukiwski, A. A., Ring, S. E., LaPushin, R., and Augustus, L. B. Alteration in interactions between tumor-infiltrating lymphocytes and tumor cells in human melanomas after chemotherapy of immunotherapy. Cancer Immunol. Immunother., 33: 238-246,1991.
- 56. Mansfield, P. F., Salmeron, M. A., Rosenblum, M. G., and Itoh, K. Effects of HC antibody in autologous tumor-specific cytotoxicity by human melanoma tumor-infiltrating lymphocytes. Int. J. Cancer, 49: 356-361, 1991.
- 57. Hayakawa, K., Salmeron, M. A., Parkinson, D. R., Markowitz, A. B., von Eschenbach, A. C., Legha, S. S., Balch, C. M., Ross, M. I., Augustus, L. B., and Itoh, K. Study of tumor-infiltrating lymphocytes for adoptive therapy of renal cell carcinoma (RCC) and metastatic melanoma. Sequential proliferation of cytotoxic

- NK and noncytotoxic T cells in RCC. J. Immunother., 10: 313-325, 1991.
- 58. Ioannides, C. G., Rashed, S., Fisk, B., Fan, D., Itoh, K., and Freedman, R. S. Lymphocytes infiltrating ovarian malignant ascites: Modulation of IL-2 induced proliferation by IL-4 and of selective increase in CD8+ T cells by TNF- alpha. Lymphokine Res., 10: 307-315, 1991.
- 59. Morkowski, J. J., Nanno, M., Chen, P-F, Itoh, K., Ioannides, C. G., Kruziel, E., Becker, F. F., and Platsoucas, C. D. IL-2 dependent murine T cell lines and clones expressing gamma/delta T cell antigen receptors. I. Functional and biochemical characterization. Scand. J. Immunol., 34: 779-794, 1991.
- 60. Morita, T., Salmeron, M. A., Moser, R. P., Ross, M. I., and Itoh, K. Oligoclonal expansion of V-beta-8+ cells in interleukin-2-activated T cells residing in subcutaneous metastatic melanoma. Clin. Exp. Met., 10: 69-76, 1992.
- 61. Waters, C. A., Snider, C. E., Itoh, K., Poisson, L., Strom, T. B., Murphy, J. R., and Nichols, J. C. DAB486IL-2 (IL-2 toxin) selectively inactivates high-affinity IL-2 receptor-bearing human peripheral blood mononuclear cells. Annals N.Y. Acad. Sci., 636: 403-405, 1992.
- 62. Hayakawa, K., Morita, T., Augustus, L. B., von Eschenbach, A. C., and Itoh, K. Human renal cell carcinoma cells are able to activate natural killer cells. Int. J. Cancer, 51: 290-295, 1992.
- 63. Nanno, M., Seki, H., Mathioudakis, G., Suzuki, R., Itoh, K., Ioannides, C., Suzuki, S., Chen, P-F., and Platsoucas, C. D. Gamma/delta T-cell antigen receptors expressed on tumor infiltrating lymphocytes from patients with solid tumors. Eur. J. Immunol., 22:679-687,1992.
- 64. Salmeron, M. A., Morita, T., Seki, H., Suzuki, R., Platsoucas, C. D., and Itoh, K. Lymphokine production by human melanoma tumor-infiltrating lymphocytes. Th1 cell activity in autologous tumor-specific cytotoxic T lymphocytes. Cancer Immunol. Immunother., 35:211-217,1992.
- 65. Itoh, K., Salmeron, M. A., Morita, T., Seito, D., Mansfield, P. F., Ross, M. I., and Balch, C.M., Augustus, L.B. Distribution of autologous tumor-specific cytotoxic T lymphocytes in human metastatic melanoma. Int. J. Cancer, 52:52-59,1992.
- 66. Salmeron, M. A., Balch, C. M., Ross, M. I., and Itoh, K. Role of uncultured human melanoma cells in the proliferation of autologous tumor-specific cytotoxic T lymphocytes. Cell. Immunol., 143:228-237,1992.
- 67. Morita, T., Salmeron, M.A., Hayakawa, K., Swanson, D.A.,von Eschenbach, A.C., and Itoh, K. T-cell functions of interleukin-2-activated tumor-infiltrating lymphocytes from renal cell carcinoma. Regional Immunology, 4:225-235,1992.
- 68. Ziegler, L.D., Palazzolo, P., Cunningham, J., Janus, M., Itoh, K., Hayakawa, K.,

- Hellstrom, I., Hellstrom, K.E., Nicaise, C., Dennin, R., and Murray, J.L. Phase I trial of murine monoclonal antibody L6 in combination with subcutaneous interleukin-2 in patients with advanced carcinoma of the breast, colorectum, and lung. J. Clin. Oncol., 10:1470-1478, 1992.
- 69. Hoshino, T., Yamada, A., Honda, J., Imai, Y., Nakao, M., Inoue, M., Sagawa, K., Yokoyama, M.M., Oizumi, K., and Itoh, K. Tissue-specific distribution and agedependent increase of human CD11b⁺ T cells. J. Immunol. 151:2237-2246, 1993.
- 70. Umezu, Y., Augustus, L.B., Seito, D., Hayakawa, K., Ross, M.I., Etoh, O., Swanson, D.A., and Itoh, K. Increase in the ability of human cancer cells to induce cytotoxic T lymphocytes by ultraviolet irradiation. Cancer Immunol. Immunother. 37:392-399, 1993.
- 71. Nakao, M., Kubo, K., Hara, A., Hirohashi, N., Futagami, E., Shichijo, S., Sagawa, K., and Itoh, K. A monoclonal antibody (H227) recognizing a new epitope to 4F2 molecular complex associated with T cell activation. Cell. Immunol., 152:226-233, 1993.
- 72. Hirohashi, N., Nakao, M., Kubo, K., Yamada, A., Shichijo, S., Hara, A., Sagawa, K., and Itoh, K. A novel antigen (H47 Ag) on human lymphocytes involved in T cell activation. Cell. Immunol. 152:371-382, 1993.
- 73. Fujimaki, W., Itoh, K., An,T., Gano,JB., Ross,MI., Mansfield,PF., Balch,CM., Augustus,LB., Karkevitch,DD., Johnson,D., Fidler,IJ., and Kleinerman,ES.: Cytokine production and immune cell activation in melanoma patients treated with liposomal muramyl tripeptide (CGP 19835A Lipid). Cancer Biotherapy 8:307-318, 1993.
- 74. Murray, JL., Cunningham, JE., Brewer, H., Mujoo, K., Zukiwski, AA., Podoloff, DA., Kasi, LP., Bhadkamkar, V., Fritsche, HA., Benjamin, RS., Legha SS., Ater, JL., Jaffe, N., Itoh, K., Ross, MI., Bucana, CD., Thompson, L., Cheung, L., and Rosenblum, MG.: Phase I trial of murine monoclonal antibody 14G2a administered by prolonged intravenous infusion in patients with neuroectodermal tumors. J. Clin. Oncology 12:184-193, 1994.
- 75. Khakevitch, DD., Seito, D., Balch, G.C., Maeda, T., Balch, C.M., and Itoh, K. Characterization of autologous tumor-specific T-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma. Int. J. Cancer 58:317-323, 1994.
- 76. Seito, D., Morita, T., Masuoka, K., Maeda, T., Saya, H., and Itoh, K. Polyclonal usage of T-cell receptor (TCR)a and b genes for cytotoxic T lymphocytes in human metastatic melanoma; possible involvement of TCRa in tumor cell recognition. Int. J. Cancer 58:497-502,1994.
- 77. Itoh, K., Umezu, Y., Morita, T., Saya, H., Seito, D., Augustus, L.B., Nakao, M., Sakata, M., Masuoka, K., and Matsui, H. Increase in the capability of interleukin 2 gene-transduced renal cell carcinoma cells to induce cytotoxic

- lymphocytes. Kurume Med. J. 41:53-63,1994.
- 78. Nishiyori, A., Fukuda, K., Itoh, K., and Kato, H. Genotype-phenotype agreement of aldehyde dehydrogenase 2 among 120 healthy Japanese. Kurume Med. J. 41: 117-121, 1994
- 79. Hoshino, T., Yamada, K., Masuoka, K., Tsuboi, I., Itoh, K., Nonaka, K., Oizumi, K.: Elevated adenosine deaminase activity in the serum of patients with diabetes mellitus. Diabetes Research and Clinical Practice 25:97-102, 1994.
- 80. Imai, Y., Shichijo, S., Yamada, A., Katayama, T., Yano, H., Itoh, K.: Sequence analysis of the MAGE gene family encoding human tumor-rejection antigens. Gene 160:287-290, 1995.
- 81. Masuoka, K., Sagawa, K., Mochizuki, M., Oizumi, K., Itoh, K.: Polyclonal use of T-cell receptor a for human T-cell lymphotropic virus type 1-infected T cells. Investigative Ophthalmology & Visual Science 36:254-258, 1995
- 82. Sagawa, K., Mochizuki M., Masuoka, K., Katagiri, K., Katayama, T., Maeda, T., Tanimoto, A., Sugita, S., Watanabe, T., Itoh K.: Immunopathological mechanisms of human T-cell lymphotropic virus type 1 (HTLV-I) uveitis; Detection of HTLV-I-infected T cells in the eye and their constitutive cytokine production. J. Clin. Invest, 95: 852-858, 1995.
- 83. Sakaguchi, M., Kato, H., Nishiyori, A., Sagawa, K., Itoh, K.: Characterization of CD4⁺ T helper cells in patients with Kawasaki disease (KD): Preferential production of tumor necrosis factor-alpha (TNF-a) by Vb2⁻ or Vb8⁻ CD4⁺ T helper cells. Clin. Exp. Immunol. 99:276-282 1995
- 84. Sagawa, K., Itoh, K., Sakaguchi, M., Tamai, M., Sugita, S., Mukaida, N., Matsushima, K., and Mochizuki, M. Production of IL-8 and the other cytokines by T cell clones established from the ocular fluid of patients with Bechet's disease Ocul. Immunol. Inflamation. 3(2):63-71,1995
- 85. Tsuboi, I., Tanaka, H., Nakao, M., Schichijo, S., Itoh, K., nonsteriodal antiinflamatory drugs differentially regulate cytokone production in human lymphocytes: Up-regulation of TNF, IFN-g, and IL-2, in contrast to down-regulation of IL-6 production Cytokine 7(4):372-379,1995.
- 86. Nagao, Y., Sata, M., Tanikawa, K., Itoh, K., Kameyama, T. High prevalence of hepatitis C virus antibody and RNA in patients with oral cancer. Oral Pathol. 64, 304-308,1995.
- 87. Nagao, Y., Sata, M., Tanikawa, K., Itoh, K., Kameyama, T. Lichen planus and hepatitis C virus in the Northern Kyushu region of Japan. Eur. J. Clin. Invest.25, 910-914, 1995.
- 88. Shichijo, S., Hayashi, A., Takamori, S., Tsunosue, R., Hoshino, T., Sakata, M., Kuramoto, T., Oizumi, K., Itoh, K. Detection of MAGE-4 protein on lung cancers. Int. J. Cancer 64,158-165,1995.

- 89. Toh, Y., Yamana, H., Shichijo, S., Fujita, H., Tou, U., Sakaguchi, M., Kakegawa, T., Itoh, K. Expression of MAGE-1 gene by esophageal carcinomas. Jap. J. Cancer Res. 86, 714-717, 1995.
- Shichijo, S., Tsunosue, R., Imai, Y., Masuoka K., Natori H., Tamai, M., Miyajima, J., Sagawa, K., Itoh, K. Preferential expression of MAGE gene family on human lymphocytic leukemias. Cancer Immunol. Immunother. 41, 95-103, 1995.
- 91. Shichijo, S., Tsunosue, R., Kubo, K., Kuramoto, T., Tanaka, Y., Hayashi A., Itoh, K. Establishment of an enzyme-linked immunosorbent assay (ELISA) for measuring cellular MAGE-4 protein on human cancers. J. Immunol. Meth. 186, 137-149, 1995
- 92. Hoshino, T., Itoh, K., Gouhara, R., Yamada, A., Tanaka, Y., Ichikawa, Y., Azuma, M., Mochizuki, M., Oizumi, K. Spontaneous production of the various cytokines except IL-4 from CD4⁺ T cells in the affected organs of sarcoidosis patients. Clin. Exp. Immunol. 102:399-405, 1995.
- 93. Eura, M., Ogi, K., Chikamatsu, K., Dae, LK., Nakano, K., Masuyama, K., Itoh, K., Ishikawa, T. Expression of MAGE gene family by human head and neck squamous cell carcinomas. Int. J. Cancer 64, 304-308, 1995.
- 94. Yamada, A., Kataoka, A., Shichijo, S., Kamura, T., Imai, Y., Nishida, T., Itoh, K. Expression of MAGE-1, MAGE-2, MAGE-3/-6 and MAGE-4a/-4b genes in ovarian tumors. Int. J. Cancer 64:388-393,1995
- 95. Takahashi, K., Shichijo, S., Noguchi, M., Hirohata, M., Itoh K. Identification of MAGE-1 and -4 proteins in spermatogonia and primary spermatocytes of testis. Cancer Res. 55: 3478-3482, 1995.
- 96.Nakao, M., Yamana, H., Imai, Y., Toh, Y., Toh, U., Kimura, A., Yanoma, S., Kakegawa, T., Itoh, K. HLA A2601-restricted cytotoxic T lymphocytes recognizing a peptide antigen expressed on squamous cell carcinoma. Cancer Res. 55, 4248-4252,1995.
- 97. Hoshino, T., Ohta, A., Nakao, M., Ota, T., Inokuchi, T., Matsueda, S., Gouhara, R., Yamada, A., Itoh, K., and Oizumi, K., TCR gd+ T cells in peripheral blood of patients with adult Still's disease. J. Rheumatol. 23: 124-129, 1996.
- 98. Nagao, Y., Sata, M., Itoh, K., Tanikawa, K., and Kameyama, T., Quantitative analysis of HCV RNA and genotype in patients with chronic hepatitis C accompanied by oral lichen planus. Eur. J. Clin. Invest. 26: 495-498, 1996.
- 99. Tamai, M. Sagawa, K. Kawabata, R. Inoue, A., and Itoh, K., Production of IL-6 by T cells from the femoral head of patients with rapidly destructive coxopathy (RDC). Clin Exp Immunol. 103: 506-513. 1996.
- 100. Shichijo, S., Sagawa, K., Brasseur, T., and Itoh, K., MAGE-1 gene is expressed

- in T cell leukemia. (Letter), Int. J. Cancer, 65, 709-711, 1996.
- 101. Sagawa, K., Mochizuki, M., Sugita, S., Nagai, K., Sudo, T., and Itoh, K., Suppression by IL-10 and IL-4 of cytokine production induced by two-way autologous mixed lymphocyte reaction. Cytokine. 8: 501-506, 1996.
- 102. Sugita, S., Sagawa, K., Mochizuki, M., Shichijo, S., Itoh, K., Sugita, S., Sagawa, K., Mochizuki, M., Shichijo, S., and Itoh, K., Melanocyte lysis by cytotoxic T lymphocytes recognizing the MART-1 melanoma antigen in HLA-A2 patients with Vogt-Koyanagi-Harada disease. Int. Immunol. 8: 799-803, 1996.
- 103. Toh, U., Yamana, H., Fujita, H., Toh, Y., Fujii, T., Kubo, K., Yamada, A., Shichijo, S., and Itoh, K., A monoclonal antibody KIS-1 recognizing a new membrane antigen on human squamous-cell carcinoma. Int. J. Cancer 66: 600-606, 1996.
- 104. Nagao, Y., Sata, M., Suzuki, H., Tanikawa, K., Itoh, K., and Kameyama, T., Effectiveness of glycyrrhizin for oral lichen planus in patients with chronic HCV infection. J. Gastroenterol 31:691-695, 1996.
- 105. Sagawa, K., Mochizuki, M., Katagirl, K., Tsuboi, I., Sugita, S., Mukaida, N., and Itoh, K., In vitro effects of immunosuppressive agents on cytokine production by HTLV-I-infected T cell clones derived from the ocular fluid of patients with HTLV-I uveitis. Microbiol Immunol. 40: 373-379, 1996.
- 106. Ohyama, Y., Nakamura, S., Matsuzaki, G., Shinohara, M., Hiroki, A., Fujimura, T., Yamada, A., Itoh, K., and Nomoto, K., Cytokine messenger RNA expression in the labial salivary glands of patients with Sjogren's syndrome. Arthritis Rheum. 39: 1376-1384, 1996.
- 107. Shichijo, S., Yamada, A., Sagawa, K., Iwamoto, O., Sakata, M., Nagai, K., and Itoh, K., Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2'-deoxycytidine. Jpn. J. Cancer Res. 87: 751-756, 1996.
- 108. Nagao, Y., Sata, M., Ide, T., Suzuki, H., Tanikawa, K., Itoh, K., and Kameyama, T., Development and exacerbation of oral lichen planus during and after interferon therapy for hepatitis C. Eur. J. Clin. Invest. 26: 1171-1174, 1996.
- 109. Fujimaki, T., Price, JE., Fan, D., Bucana, CD., Itoh, K., Kirino, T., and Fidler, I. J., Selective growth of human melanoma cells in the brain parenchyma of nude mice. Melanoma Res. 6: 363-371, 1996.
- 110. Yamashita, N., Ishibashi, H., Hayashida, K., Kudo, J., Takenaka, K., Itoh, K., and Niho, Y., High frequency of the MAGE-1 gene expression in hepatocellular carcinoma. Hepatology 24: 1437-1440, 1996.
- 111. Miyajima, J., Imai, Y., Nakao, M., Noda, S., and Itoh, K., Higher susceptibility of erythropoietin-producing renal cell carcinomas to lysis by lymphokine-activated killer cells. J. Immunother Emphasis Tumor Immunol. 19: 399-404, 1996.

- 112. Sudo, T., Kuramoto, T., Komiya, S., Inoue, A., and Itoh, K., Expression of MAGE genes in osteosarcoma. J. Orthop. Res. 15: 128-132, 1997.
- 113. Iwamoto, O., Nagao, Y., Shichijo, S., Eura, M., Kameyama, T., and Itoh, K., Detection of MAGE-4 protein in sera of patients with head-and-neck squamous-cell carcinoma. Int. J. Cancer 70: 287-290, 1997.
- 114. Tamai, M., Yokouchi, M., Komiya, S., Mochizuki, K., Hidaka, S., Narita, S., Inoue, A., and Itoh, K., Correlation between vitamin D receptor genotypes and bone mineral density in Japanese patients with osteoporosis. Calcif. Tissue Int. 60: 229-232, 1997.
- 115. Seki, N., Hoshino, T., Kikuchi, M., Hayashi, A., and Itoh, K., HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer. Cell Immunol. 175: 101-110, 1997.
- 116. Yamada, A., Hara, A., Inoue, M., Kamizono, S., Higuchi, T., and Itoh, K., □ 2-integrin-mediated signal up-regulates counterreceptor ICAM-1 expression on human monocytic cell line THP-1 through tyrosine phosphorylation. Cell Immunol. 178: 9-16, 1997.
- 117. Hoshino, T., Suzuki, R., Tsuruta, Y., Matsutani, T., Kikuchi, M., Kawamoto, M., Gouhara, R., Shiraishi, T., Mochizuki, M., Itoh, K., and Oizumi, K., Nonrestricted T cell receptor (TCR)-V α and -V β gene usage in patients with pulmonary sarcoidosis. Clin. Exp. Immunol. 108: 529-538, 1997.
- 118. Gohara, R., Nakao, M., Ogata, Y., Isomoto, H., Oizumi, K., and Itoh, K., Histocompatibility leukocyte antigen-A2402-restricted cytotoxic T lymphocytes recognizing adenocarcinoma in tumor-infiltrating lymphocytes of patients with colon cancer. Jpn. J. Cancer Res. 88: 198-204, 1997.
- 119. Hoshino, T., Seki, N., Kikuchi, M., Kuramoto, T., Iwamoto, O., Kodama, I., Koufuji, K., Takeda, J., and Itoh, K., HLA class-I-restricted and tumor-specific CTL in tumor-infiltrating lymphocytes of patients with gastric cancer. Int. J. Cancer 70: 631-638, 1997.
- 120. Nakao, M., Sata, M., Saitsu, H., Yutani, S., Kawamoto, M., Kojiro, M., and Itoh, K., CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma. Cell Immunol. 177: 176-181, 1997.
- 121. Toh, U., Yamana, H., Nakao, M., Imai, Y., Seki, N., Takasu, H., Kaneshige, T., Fujita, H., Shirouzu, K., and Itoh, K., HLA class I-restricted and tumor-specific cytotoxic T lymphocytes from metastatic lymph nodes of esophageal cancers. Cell Immunol. 177: 137-143, 1997.
- 122. Shichijo, S., Hoshino, T., Koufuji, K., Hayashi, A., Kawamoto, M., Kikuchi, M., Higuchi, T., Ichiki, M., Oizumi, K., and Itoh, K., Detection of MAGE-4 protein in sera of lung cancer patients. Jpn. J. Cancer Res. 88: 414-419, 1997.

- in T cell leukemia. (Letter), Int. J. Cancer, 65, 709-711, 1996.
- 101. Sagawa, K., Mochizuki, M., Sugita, S., Nagai, K., Sudo, T., and Itoh, K., Suppression by IL-10 and IL-4 of cytokine production induced by two-way autologous mixed lymphocyte reaction. Cytokine. 8: 501-506, 1996.
- 102. Sugita, S., Sagawa, K., Mochizuki, M., Shichijo, S., Itoh, K., Sugita, S., Sagawa, K., Mochizuki, M., Shichijo, S., and Itoh, K., Melanocyte lysis by cytotoxic T lymphocytes recognizing the MART-1 melanoma antigen in HLA-A2 patients with Vogt-Koyanagi-Harada disease. Int. Immunol. 8: 799-803, 1996.
- 103. Toh, U., Yamana, H., Fujita, H., Toh, Y., Fujii, T., Kubo, K., Yamada, A., Shichijo, S., and Itoh, K., A monoclonal antibody KIS-1 recognizing a new membrane antigen on human squamous-cell carcinoma. Int. J. Cancer 66: 600-606, 1996.
- 104. Nagao, Y., Sata, M., Suzuki, H., Tanikawa, K., Itoh, K., and Kameyama, T., Effectiveness of glycyrrhizin for oral lichen planus in patients with chronic HCV infection. J. Gastroenterol 31:691-695, 1996.
- 105. Sagawa, K., Mochizuki, M., Katagirl, K., Tsuboi, I., Sugita, S., Mukaida, N., and Itoh, K., In vitro effects of immunosuppressive agents on cytokine production by HTLV-I-infected T cell clones derived from the ocular fluid of patients with HTLV-I uveitis. Microbiol Immunol. 40: 373-379, 1996.
- 106. Ohyama, Y., Nakamura, S., Matsuzaki, G., Shinohara, M., Hiroki, A., Fujimura, T., Yamada, A., Itoh, K., and Nomoto, K., Cytokine messenger RNA expression in the labial salivary glands of patients with Sjogren's syndrome. Arthritis Rheum. 39: 1376-1384, 1996.
- 107. Shichijo, S., Yamada, A., Sagawa, K., Iwamoto, O., Sakata, M., Nagai, K., and Itoh, K., Induction of MAGE genes in lymphoid cells by the demethylating agent 5-aza-2'-deoxycytidine. Jpn. J. Cancer Res. 87: 751-756, 1996.
- 108. Nagao, Y., Sata, M., Ide, T., Suzuki, H., Tanikawa, K., Itoh, K., and Kameyama, T., Development and exacerbation of oral lichen planus during and after interferon therapy for hepatitis C. Eur. J. Clin. Invest. 26: 1171-1174, 1996.
- 109. Fujimaki, T., Price, JE., Fan, D., Bucana, CD., Itoh, K., Kirino, T., and Fidler, I. J., Selective growth of human melanoma cells in the brain parenchyma of nude mice. Melanoma Res. 6: 363-371, 1996.
- 110. Yamashita, N., Ishibashi, H., Hayashida, K., Kudo, J., Takenaka, K., Itoh, K., and Niho, Y., High frequency of the MAGE-1 gene expression in hepatocellular carcinoma. Hepatology 24: 1437-1440, 1996.
- 111. Miyajima, J., Imai, Y., Nakao, M., Noda, S., and Itoh, K., Higher susceptibility of erythropoietin-producing renal cell carcinomas to lysis by lymphokine-activated killer cells. J. Immunother Emphasis Tumor Immunol. 19: 399-404, 1996.

- 112. Sudo, T., Kuramoto, T., Komiya, S., Inoue, A., and Itoh, K., Expression of MAGE genes in osteosarcoma. J. Orthop. Res. 15: 128-132, 1997.
- 113. Iwamoto, O., Nagao, Y., Shichijo, S., Eura, M., Kameyama, T., and Itoh, K., Detection of MAGE-4 protein in sera of patients with head-and-neck squamous-cell carcinoma. Int. J. Cancer 70: 287-290, 1997.
- 114. Tamai, M., Yokouchi, M., Komiya, S., Mochizuki, K., Hidaka, S., Narita, S., Inoue, A., and Itoh, K., Correlation between vitamin D receptor genotypes and bone mineral density in Japanese patients with osteoporosis. Calcif. Tissue Int. 60: 229-232, 1997.
- 115. Seki, N., Hoshino, T., Kikuchi, M., Hayashi, A., and Itoh, K., HLA-A locus-restricted and tumor-specific CTLs in tumor-infiltrating lymphocytes of patients with non-small cell lung cancer. Cell Immunol. 175: 101-110, 1997.
- 116. Yamada, A., Hara, A., Inoue, M., Kamizono, S., Higuchi, T., and Itoh, K., □ 2-integrin-mediated signal up-regulates counterreceptor ICAM-1 expression on human monocytic cell line THP-1 through tyrosine phosphorylation. Cell Immunol. 178: 9-16, 1997.
- 117. Hoshino, T., Suzuki, R., Tsuruta, Y., Matsutani, T., Kikuchi, M., Kawamoto, M., Gouhara, R., Shiraishi, T., Mochizuki, M., Itoh, K., and Oizumi, K., Nonrestricted T cell receptor (TCR)-V α and -V β gene usage in patients with pulmonary sarcoidosis. Clin. Exp. Immunol. 108: 529-538, 1997.
- 118. Gohara, R., Nakao, M., Ogata, Y., Isomoto, H., Oizumi, K., and Itoh, K., Histocompatibility leukocyte antigen-A2402-restricted cytotoxic T lymphocytes recognizing adenocarcinoma in tumor-infiltrating lymphocytes of patients with colon cancer. Jpn. J. Cancer Res. 88: 198-204, 1997.
- 119. Hoshino, T., Seki, N., Kikuchi, M., Kuramoto, T., Iwamoto, O., Kodama, I., Koufuji, K., Takeda, J., and Itoh, K., HLA class-I-restricted and tumor-specific CTL in tumor-infiltrating lymphocytes of patients with gastric cancer. Int. J. Cancer 70: 631-638, 1997.
- 120. Nakao, M., Sata, M., Saitsu, H., Yutani, S., Kawamoto, M., Kojiro, M., and Itoh, K., CD4+ hepatic cancer-specific cytotoxic T lymphocytes in patients with hepatocellular carcinoma. Cell Immunol. 177: 176-181, 1997.
- 121. Toh, U., Yamana, H., Nakao, M., Imai, Y., Seki, N., Takasu, H., Kaneshige, T., Fujita, H., Shirouzu, K., and Itoh, K., HLA class I-restricted and tumor-specific cytotoxic T lymphocytes from metastatic lymph nodes of esophageal cancers. Cell Immunol. 177: 137-143, 1997.
- 122. Shichijo, S., Hoshino, T., Koufuji, K., Hayashi, A., Kawamoto, M., Kikuchi, M., Higuchi, T., Ichiki, M., Oizumi, K., and Itoh, K., Detection of MAGE-4 protein in sera of lung cancer patients. Jpn. J. Cancer Res. 88: 414-419, 1997.

- 123. Nagai, K., Yamada, A., Eguchi, H., Kato, H., and Itoh, K., HLA-A2402-restricted and tumor-specific cytotoxic T lymphocytes from tumor-infiltrating lymphocytes of a child with Wilms' tumor. Pediatr Res. 42: 122-127, 1997.
- 124. Noguchi, M., Miyajima, J., Itoh, K., and Noda, S., Detection of circulating tumor cells in patients with prostate cancer using prostate specific membrane-derived primers in the polymerase chain reaction. Int. J. Urol. 4: 374-379, 1997.
- 125. Nagao, Y., Sata, M., Itoh, K., Chiba, I., Komiyama, K., Yanoma, K., Eura, M., Tanikawa, K., and Kameyama, T., High prevalence of hepatitis C virus antibody and RNA in patients with head and neck squamous cell carcinoma. Hepatology Reseach 7: 206-212, 1997.
- 126. Tsuzurahara, S., Sata, M., Iwamoto, O., Shichijo, S., Kojiro, M., Tanikawa, K., and Itoh, K., Detection of MAGE-4 protein in the sera of patients with hepatitis-C virus-associated hepatocellular carcinoma and liver cirrhosis. Jpn. J. Cancer Res. 88: 915-918, 1997.
- 127. Hoshino, T., Ohta, A., Yang, D., Kawamoto, M., Kikuchi, M., Inoue, Y., Kamizono, S., Ota, T., Itoh, K., and Oizumi, K., Elevated serum interleukin 6, interferon-gamma, and tumor necrosis factor-alpha levels in patients with adult Still's disease. J. Rheumatol. 25: 396-398, 1998.
- 128. Suekane, S., Nakao, M., Inoue, M., Noda, S., and Itoh, K., Histocompatibility leukocyte antigen-A2-restricted and tumor-specific cytotoxic T lymphocytes from tumor-infiltrating lymphocytes of patient with testicular embryonal cancer. Jpn. J. Cancer Res. 88: 1181-1189, 1998.
- 129. Shichijo, S., Nakao, M., Imai, Y., Takasu, H., Kawamoto, M., Niiya, F., Yang, D., Toh, Y., Yamana, H., and Itoh, K., A gene encoding antigenic peptides of human squamous cell carcinoma recognized by cytotoxic T lymphocytes. J. Exp. Med. 187: 277-288, 1998.
- 130. Eton, O., Kharkevitch, D. D., Gianan, M. A., Ross, M. I., Itoh, K., Pride, M. W., Donawho, C., Buzaid, A. C., Mansfield, P. F., Lee, J. E., Legha, S. S., Plager, C., Papadopoulos, N. E., Bedikian, A. Y., Benjamin, R. S., and Balch, C. M., Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOXTM in patients with metastatic melanoma. Clin. Cancer Res. 4: 619-627, 1998.
- 131. Higuchi, T., Seki, N., Kamizono, S., Yamada, A., Kimura, A., Kato, H., and Itoh, K., α Polymorphism of the 5'-flanking region of the human tumor necrosis factor (TNF)- α gene in Japanese. Tissue Antigens 51: 605-612, 1998.
- 132. Takaki, T., Hiraki, A., Uenaka, A., Gomi, S., Itoh, K., Udono, H., Shibuya, A., Tsuji, T., Sekiguchi, S., and Nakayama, E., Variable expression on lung cancer cell lines of HLA-A2-binding MAGE-3 peptide recognized by cytotoxic T lymphocytes. Int. J. Oncol. 12: 1103-1109, 1998.

- 133. Gotoh, M., Shichijo, S., Hoshino, T., Imai, Y., Imaizumi, T., Inoue, Y., Takasu, H., Yamaoka, T., and Itoh, K., Sequence analysis of genes encoding rodent homologues of the human tumor-rejection antigen SART-1. Jpn. J. Cancer Res. 89: 849-854, 1998.
- 134. Matsumoto, H., Shichijo, S., Kawano, K., Nishida, T., Sakamoto, M., and Itoh, K., Expression of the SART-1 antigens in uterine cancers. Jpn. J. Cancer Res. 89: 1292-1295, 1998.
- 135. Sakaguchi, M., Sugita, S., Sagawa, K., Itoh, K., and Mochizuki, M., Cytokine production by T cells infiltrating in the eye of uveitis patients. Jpn. J. Ophthalmol. 42: 262-268, 1998.
- 136. Kawamoto, M., Shichijo, S., Imai, Y., Imaizumi, T., Koga, T., Yanaga, H., and Itoh, K., Expression of the SART-1 tumor rejection antigen in breast cancer. Int. J. Cancer 80: 64-67, 1999.
- 137. Yamada, A., Kubo, K., Takeshita, T., Harashima, N., Kawano, K., Mine, T., Sagawa, K., Sugamura, K., and Itoh, K., Molecular cloning of a glycosylphosphatidylinositol -anchored molecule CDw108. J. Immunol. 162: 4094-4100, 1999.
- 138. Kikuchi, M., Nakao, M., Inoue, Y., Matsunaga, K., Shichijo, S., Yamana, H., and Itoh, K., Identification of a SART-1-derived peptide capable of inducing HLA-A24-restricted and tumor-specific cytotoxic T lymphocytes. Int. J. Cancer 81: 459-466, 1999.
- 139. Yang, D., Hiromatsu, Y., Hoshino, T., Inoue, Y., Itoh, K., and Nonaka, K., Dominant infiltration of Th1-type CD4+ T cells at the retrobulbar space of patients with thyroid-associated ophthalmopathy. Thyroid. 9: 305-310, 1999.
- 140. Oiso, M., Eura, M., Katsura, F., Takiguchi, M., Sobao, Y., Masuyama, K., Nakashima, M., Itoh, K., and Ishikawa, T., A newly identified MAGE-3-derived epitope recognized by HLA-A24-restricted cytotoxic T lymphocytes. Int. J. Cancer 81: 387-394, 1999.
- 141. Yamada, A., Kawano, K., Harashima, N., Niiya, F., Nagai, K., Kobayashi, T., Mine, T., Ushijima, K., Nishida, T., and Itoh, K., Study of HLA class I restriction and the directed antigens of cytotoxic T lymphocytes at the tumor sites of ovarian cancer. Cancer Immunol Immunother 48: 147-152, 1999.
- 142. Seki, N., Kamizono, S., Yamada, A., Higuchi, T., Matsumoto, H., Niiya, F., Kimura, A., Tsuchiya, K., Suzuki, R., Date, Y., Tomita, T., Itoh, K., and Ochi, T. Polymorphisms in the 5'-flanking region of tumor necrosis factor- α gene in patients with rheumatoid arthritis. Tissue Antigens 54: 194-197, 1999.
- 143. Seki, N., Yamaguchi, K., Yamada, A., Kamizono, S., Sugita, S., Taguchi, C., Matsuoka, M., Matsumoto, H., Nishizaka, S., Itoh, K., and Mochizuki, M., Polymorphism of the 5'-flanking region of the tumor necrosis factor (TNF)-alpha gene and susceptibility to human T-cell lymphotropic virus type I (HTLV-I)

- uveitis. J. Infect. Dis. 180: 880-883, 1999.
- 144. Kamizono, S., Yamada, A., Higuchi, T., Kato, H., and Itoh, K., Analysis of tumor necrosis factor-alpha production and polymorphisms of the tumor necrosis factor-alpha gene in individuals with a history of Kawasaki disease. Pediatr Int. 41: 341-345, 1999.
- 145. Yang, D., Nakao, M., Shichijo, S., Sasatomi, T., Takasu, H., Matsumoto, H., Mori, K., Hayashi, A., Yamana, H., Shirouzu, K., and Itoh, K., Identification of a gene coding for a protein possessing shared tumor epitopes capable of inducing HLA-A24-restricted cytotoxic T lymphocytes in cancer patients. Cancer Res. 59: 4056-4063, 1999.
- 146. Matsunaga, K., Nakao, M., Masuoka, K., Inoue, Y., Gouhara, R., Imaizumi, T., Nishizaka, S., and Itoh, K., Cytokines required for induction of histocompatibility leukocyte antigen-class I-restricted and tumor-specific cytotoxic T lymphocytes by a SART1-derived peptide. Jpn. J. Cancer Res. 90: 1007-1015, 1999.
- 147. Imaizumi, T., Kuramoto, T., Matsunaga, K., Shichijo, S., Yutani, S., Shigemori, M., Oizumi, K., and Itoh, K., Expression of the tumor-rejection antigen SART1 in brain tumors. Int. J. Cancer 83:760-764, 1999.
- 148. Gomi, S., Nakao, M., Niiya, F., Imamura, Y., Kawano, K., Nishizaka, S., Hayashi, A., Sobao, Y., Oizumi, K., and Itoh, K., A cyclophilin B gene encodes antigenic epitopes recognized by HLA-A24-restricted and tumor-specific CTLs. J. Immunol. 163: 4994-5004, 1999.
- 149. Date, Y., Seki, N., Kamizono, S., Higuchi, T., Hirata, T., Miyata, K., Ohkuni, M., Tatsuzawa, O., Yokota, S., Joo, K., Ueda, K., Sasazuki, T., Kimura, A., Itoh, K., and Kato, H., Identification of a genetic risk factor for systemic juvenile rheumatoid arthritis in the 5'-flanking region of the TNF α gene and HLA genes. Arthritis Rheum. 42: 2577-2582, 1999.
- 150. Nakao, M., Shichijo, S., Imaizumi, T., Inoue, Y., Matsunaga, K., Yamada, A., Kikuchi, M., Tsuda, N., Ohta, K., Takamori, S., Yamana, H., Fujita, H., and Itoh, K., Identification of a gene coding for a new squamous cell carcinoma antigen recognized by the CTL. J. Immunol. 164: 2565-2574, 2000.
- 151. Harada, K., Yamada, A., Mine, T., Kawagoe, N., Takasu, H., and Itoh, K., Mouse homologue of the human SART3 gene encoding tumor-rejection antigen. Jpn. J. Cancer Res. 91: 239-247, 2000.
- 152. Hamaguchi, K., Kimura, A., Seki, N., Higuchi, T., Yasunaga, S., Takahashi, M., Sasazuki, T., Kusuda, Y., Okeda, T., Itoh, K., and Sakata, T., Analysis of tumor necrosis factor- α promoter polymorphism in type 1 diabetes: HLA-B and DRB1 alleles are primarily associated with the disease in Japanese. Tissue Antigens 55: 10-16, 2000.
- 153. Seki, N., Yamada, A., Suefuji, Y., Mine, T., Tanaka, S., Gomi, SY., Kawagoe, N.,

- Koufuji, K., and Itoh, K., Establishment and epitope analysis of allo-specific cytotoxic T lymphocytes at a tumor site recognizing a spouse's HLA-A0206 molecule. Am. J. Reprod Immunol. 43: 167-173, 2000.
- 154. Inoue, Y., Nakao, M., Matsunaga, K., Kikuchi, M., Gomi, S., Toh, U., Takamori, S., Yamana, H., and Itoh, K., Induction of human leukocyte antigen-A26-restricted and tumor-specific cytotoxic T lymphocytes by a single peptide of the SART1 antigen in patients with cancer with different A26 subtypes. J. Immunother 23: 296-303, 2000.
- 155. Kawagoe, H., Yamada, A., Matsumoto, H., Ito, M., Ushijima, K., Nishida, T., Yakushiji, M., and Itoh, K., Serum MAGE-4 protein in ovarian cancer patients. Gynecol Oncol. 76: 336-339, 2000.
- 156. Niiya, F., Nishizaka, S., Matsunaga, K., Koufuji, K., Mori, M., Katai, H., Yamana, H., and Itoh, K., Expression of SART3 tumor-rejection antigen in gastric cancers. Jpn. J. Cancer Res. 91: 337-342, 2000.
- 157. Murayama, K., Kobayashi, T., Imaizumi, T., Matsunaga, K., Kuramoto, T., Shigemori, M., Shichijo, S., and Itoh, K., Expression of the SART3 tumor-rejection antigen in brain tumors and induction of cytotoxic T lymphocytes by its peptides. J. Immunother. 23: 511-518, 2000.
- 158. Shintaku, I., Kawagoe, N., Yutani, S., Hoshi, S., Orikasa, S., Yoshizumi, O., and Itoh, K., Expression of the SART1 tumor rejection antigen in renal cell carcinoma. Urol Res. 28: 178-184, 2000.
- 159. Sasatomi, T., Yamana, H., Shichijo, S., Tanaka, S., Okamura, T., Ogata, Y., Itoh, K., and Shirouzu, K., Expression of the SART1 tumor-rejection antigens in colorectal cancers. Dis. Colon Rectum. 43: 1754-1758, 2000.
- 160. Mine, T., Harada, K., Matsumoto, T., Yamana, H., Shirouzu, K., Itoh, K., and Yamada, A., CDw108 expression during T-cell development. Tissue Antigens 55: 429-436, 2000.
- 161. Kamizono, S., Yamada, K., Seki, N., Higuchi, T., Kimura, A., Nonaka, K., and Itoh, K., Susceptible locus for obese type 2 diabetes mellitus in the 5'-flanking region of the tumor necrosis factor-alpha gene. Tissue Antigens 55: 449-452, 2000.
- 162. Ishida, H., Komiya, S., Inoue, Y., Yutani, S., Inoue, A., and Itoh, K., Expression of the SART1 tumor-rejection antigen in human osteosarcomas. Int. J. Oncol. 17: 29-32, 2000.
- 163. Kawano, K., Gomi, S., Tanaka, K., Tsuda, N., Kamura, T., Itoh, K., Yamada, A., Identification of a new endoplasmic reticulum-resident protein recognized by HLA-A24-restricted tumor-infiltrating lymphocytes of lung cancer. Cancer Res. 60: 3550-3558, 2000.
- 164. Ito, M., Shichijo, S., Miyagi, Y., Kobayashi, T., Tsuda, N., Yamada, A., Saito, N.,

- and Itoh, K., Identification of SART3-derived peptides capable of inducing HLA-A2-restricted and tumor-specific CTLs in cancer patients with different HLA-A2 subtypes. Int. J. Cancer 88: 633-639, 2000.
- 165. Kawagoe, N., Shintaku, I., Yutani, S., Etoh, H., Matuoka, K., Noda, S., and Itoh, K., Expression of the sart3 tumor rejection antigen in renal cell carcinoma. J. Urol. 164: 2090-2095, 2000.
- 166. Nishizaka, S., Gomi, S., Harada, K., Oizumi, K., Itoh, K., and Shichijo, S., A new tumor-rejection antigen recognized by cytotoxic T lymphocytes infiltrating into a lung adenocarcinoma. Cancer Res. 60: 4830-4837, 2000.
- 167. Toh, U., Yamana, H., Sueyoshi, S., Tanaka, T., Niiya, F., Katagiri, K., Fujita, H., Shirozou, K., and Itoh, K., Locoregional cellular immunotherapy for patients with advanced esophageal cancer. Clin. Cancer Res. 6:4663-4673, 2000.
- 168. Kamizono, S., Hiromatsu, Y., Seki, N., Bednarczuk, T., Matsumoto, H., Kimura, A., and Itoh, K., A polymorphism of the 5' flanking region of tumour necrosis factor alpha gene is associated with thyroid-associated ophthalmopathy in Japanese. Clin. Endocrinol (Oxf). 52: 759-764, 2000.
- 169. Tanaka, S., Tsuda, N., Kawano, K., Sakamoto, M., Nishida, T., Hashimoto, T., Shichijo, S., Kamura, T., and Itoh, K., Expression of Tumor-rejection Antigens in Gynecologic Cancers. Jpn. J. Cancer Res. 91: 1177-1184, 2000.
- 170. Sugita, S., Taguchi, C., Takase, H., Sagawa, K., Sueda, J., Fukushi, K., Hikita, N., Watanabe, T., Itoh, K., and Mochizuki, M., Soluble fas ligand and soluble fas in ocular fluid of patients with uveitis. Br. J. Ophthalmol. 84: 1130-1134, 2000.
- 171. Tsuda, N., Murayama, K., Ishida, H., Matsunaga, K., Komiya, S., Itoh, K, and Yamada, A., Expression of a newly defined tumor-rejection antigen SART3 antigen in musculoskeletal tumors and induction of HLA-class I-restricted CTLs by SART3-derived peptides. J. Orthopedic Research 19:346-351, 2001.
- 172. Harashima, N., Tanaka, K., Sasadomi, T., Locoregional, Y., Miyagi, Y., Yamada, A., Tamura, M., Yamana, Y., Itoh., K., and Shichijo, S., Recognition of the Lck tyrosine kinase as a tumor antigen by T cells of metastatic cancer patients. Eur. J. Immunology, 31:323-332, 2001.
- 173. Suefuji, Y., Sasatomi, T., Shichijo, S., Nakagawa, S., Deguchi, H., Koga, T., Kameyama, T., and Itoh, K., Expression of SART3 antigen and induction of CTLs by SART3-derived peptides in breast cancer patients. British J. Cancer, 84:915-919, 2001.
- 174. Ito, M., Sichichijo, S., Tsuda, N., Ochi, M., Harashima, N., Saito, N., and Itoh, K., Molecular basis of T cell-mediated recognition of pancreatic cancer cells. Cancer Res. 61:2038-2046, 2001.
- 175. Yutani, S., Shichijo, S., Inoue, Y., Kawagoe, N., Okuda, K., Kurohiji, T., Tanaka,

- M., Sata, M., and Itoh, K., Expression of the SART1 tumor-rejection antigen in hepatocellular carcinomas. Oncol Rep., 8:369-372, 2001.
- 176. Koga, C., Itoh, K., Aoki, M., Suefuji, Y., Yoshida, M., Asosina, S., and Tadamitsu, K., Anxiety and pain suppresses the natural killer cell activity in oral surgery outpatients. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodonitics 2001, in press.
- 177. Sasatomi, T., Suefuji, Y., Miyagi, Y., Ogata, H., Akagi, T., Shirouzu, K., and Itoh, K., Expression of tumor-rejection antigens in colorectal cancers. Cancer 2001, in press.
- 178. Harada, K., Yamada, A., Yang, D., Itoh, K., and Shichijo, S., Binding of a SART3 tumor-rejection antigen to a pre-mRNA splicing activation factor RNPS1: a possible regulation of splicing by a complex formation. Int. J. Cancer 2001, in press.
- 179. Tamura, M., Nishizaka, S., Maeda, Y., Ito, M., Harashima, N., Harada, M., Shichijo, S., and Itoh, K., Identification of cyclophilin B-derived peptides capable of inducing histocompatibility leukocyte antigen-A2-restricted and tumor-specific cytotoxic T lymphocytes. Jap. J. Cancer Res. 2001, in press.
- 180. Inoue, Y., Katou, K., Takei, M., Tobisu, K., Takaue, Y., Kakizoe, T., Noguchi, M., Itoh, K., and Wakasugi, H., Induction of the tumor specific cytotoxic T lymphocyte from prostate cancer patients using prostatic acid phosphate(PAP)derived HLA-A2402 binding peptide. J. Urology 2001, in press.
- 181. Imai, N., Harashima, N., Ito, M., Miyagi, Y., Harada, M., Yamada, A., and Itoh, K., Identification of Lck-derived peptides capable of inducing HLA-A2-restricted and tumor-specific CTLs in cancer patients with distant metastases. Int. J. Cancer 2001, in press.
 - b. Invited Articles in Journals, and Book chapters (written by English only):
 - 1. Abo, T., Kawate, T., Hinuma, S., Itoh, K., Abo, W., Sato, J., and Kumagai, K. The Circadian Periodicities of Lymphocyte Subpopulations and the Role of Corticosteroid in Human Beings and Mice. *In:* M. H. Smolensky et al (eds.), Recent Advances in the Chronobiology of Allergy and Immunology, pp. 301-316. Oxford and New York: Pergamon Press, 1980.
 - 2. Kumagai, K., Kataoka, S., Saito, S., Itoh, K., Kurane, I., and Suzuki, N. Distinct characteristics of IgM-Fc and IgG-Fc receptors in nature, expression and modulation. *In:* H. Yoshida, Y. Hagihara, and S. Ebashi (eds.), Advances in Pharmacology and Therapeutics. II. Vol. 2. Neurotransmitters Receptors, pp. 229-239, Oxford and New York: Pergamon Press, 1982.

- 3. Kumagai, K., Itoh, K., Kataoka, S., and Kurane, I. Distinct characteristics of IgG-Fc and IgM-Fc receptors in sensitivity to enzymes and modulation by interferon. *In:* T. Aoki, I. Urushizaki, and E. Tsubura (eds.), Manipulation of Host Defense Mechanisms, International Congress Series No. 576, pp. 104-117, Excerpta Medica, 1982.
- 4. Kumagai, K., Itoh, K., Kurane, I., and Saitoh, F. Regulatory effect of interferon on effector cells in cell-mediated immune responses. *In:* K. Takeya, D., Mizuno, N. Ishida, and Z. Cohn (eds.), Molecular Regulating Self-Defense Mechanisms, pp. 183-193, Tokyo, Tokyo University Press, 1982.
- 5. Kumagai, K., Kurane, I., Itoh, K., Saitoh, F., and Tsuchiya, Y. Interferon and interferon inducer myroridin K as an immunomodulator in Herpes virus. *In:* H. Shiota, Y-C Cheng, and W. H. Prusoff (eds.), Clinical, Pharmacological and Basic Aspects, International Congress Series No. 571, pp. 311-320, Excerpta Medica, 1982.
- 6. Itoh, K., and Kumagai, K. Augmentation of NK activity by several anti-inflammatory agents. *In:* T Hosino, H. S. Koren, and A. Uchida (eds.), Natural Killer Activity and Its Regulation, p. 460, Amsterdam, Excerpta Medica, 1984.
- 7. Arai, S., Munakata, T., Kuwano, K., Itoh, K., and Kumagai, K. Suppressive effect of human natural killer cells on pokeweed mitogen induced B cell differentiation. *In:* T. Hosino, H. S. Koren, and A. Uchida (eds.), Natural Killer Activity and Its Regulation, p. 290, Amsterdam, Excerpta Medica, 1984.
- 8. Shiiba, K., Itoh, K., Shimizu, Y., and Kumagai, K. Interleukin 2 (IL2)-dependent proliferation of human NK cells accompanied by interferon production. *In:* T. Hoshino, H. S. Koren, and A. Uchida (eds.), Natural Killer Activity and Its Regulation, p. 187, Amsterdam, Excerpta Medica, 1984.
- 9. Kumagai, K., Suzuki, R., Itoh, K., Shiiba, K., Ebina, N., and Igarashi, M. Interleukin 2-induced differentiation of NK cells to activated killer cells. *In:* E. Lotzova and R.B. Herberman (eds.), Natural Immunity and Biological Response Modification for the Therapy of Cancer and Other Diseases, pp. 131-142, 1986.
- 10. Platsoucas, C. D., Ioannides, C. G., Itoh, K., Fox F. E., Pahwa, R., and Good, R. A. Gamma T cell receptors in man and mouse: Identification by antipeptide gamma-chain specific monoclonal antibody. *In:* T-cell Receptor, Vol. 73, pp.77-86, 1988.
- 11. Parkinson, D. R., Talpaz, M., Lee, K. H., Legha, S., Markowitz, A. B., Itoh, K., Balch, C. M., Murray, J. L., Zukiwski, A. A., Benjamin, R. S., and Gutterman, J. U. Interleukin 2 alone and in combination with other cytokines in melanoma: The investigational approach at the University of Texas M.D. Anderson Cancer Center. *In:* Cancer Treatment Review, Supplement A, Vol 16, pp. 39-48, New York: Academic Press, 1989.
- 12. Itoh, K. and Balch, C. M. Cell-mediated cytotoxicity against fresh solid tumor

- cells. Regulation by soluble mediators. *In:* R. B. Herberman and E. Lotzova (eds.), The Role of interleukin-2-Activated Killer Cells in Cancer, pp. 65-87, Boca Raton: CRC Press, 1990.
- 13. Salmeron, M. A., and Itoh, K. Cytotoxicity, interleukin 2 production, and the molecules involved in the recognition of autologous tumor cells in tumor-specific T cell clones from human metastatic melanoma tumor-infiltrating lymphocytes (TIL). In: M. T. Lotze and O. J. Finn (eds.), UCLA Symposium on Molecular and Cellular Biology New Series: Cellular Immunity and the Immunotherapy of Cancer, Vol. 135, pp. 371-378, New York: Wiley-Liss, Inc., 1990.
- 14. Itoh, K. Tumor-infiltrating Lymphocytes (TILs) in Human Metastatic Melanomas. *In:* E. Grimm (ed.), Cancer Bulletin, 43: 109-116, 1991.
- 15. Itoh, K., Balch, C. M., Murray, J. L., Parkinson, D. R., Markowitz, A. B., Talpaz, M., Lee, K., Zukiwski, A. A., Ross, M. I., Legha, S. S., Hayakawa, K., Salmeron, M. A., and Augustus, L. B. Immunological properties of melanoma tumor-infiltrating lymphocytes before and after IL-2-based therapies. In Vivo, 5: 647-654, 1991.
- 16. Itoh, K., Houghton, A., and Balch, C. M. Immune response to melanoma. *In:* C.M. Balch (ed.), Cutaneous Melanoma: Clinical Management and Treatment Results, Philadelphia: J. B. Lippincott, Co., pp. 145-164, 1991.
- 17. Itoh, K. and Balch, C. M. Properties of human tumor-infiltrating lymphocytes. *In:* M. B. Atkins and J. W. Mier (eds.), Therapeutic Applications of Interleukin-2, New York: Marcel Dekker, Inc., pp.39-48,1992.
- 18. Waters, C. A., Snider, C. E., Itoh, K., Poisson, L., Strom, T. B., Murphy, J. R., and Nichols, J. C. DAB-486-IL-2 (IL-2 toxin) selectively initiates high-affinity IL-2 receptor-bearing human peripheral blood mononuclear cells. *In:* R. L. Edelson (ed), Antigen and Clone-specific Immunoregulation, Vol. 636, New York: Annals of the New York Aademy of Sciences, pp. 403-405, 1992.
- 19. Itoh, K., Hayakawa, K., von Eschenbach A.C., and Morita, T. Natural killer cells in human renal cell carcinoma. In: Renal cell carcinoma. E.A. Klein, et al (eds.) Marcel dekker, Inc., New York, pp. 95-105, 1993.
- Itoh, K., Balch, C. M., von Eschenbach, A. C., Morita, T., Hayakawa, K, and Seito, D. Human tumor-infiltrating lymphocytes. *In:* Gann Monograph on Cancer Research No. 40, T. Ogura and F. Takaku (eds), Tokyo Univ. Press, Tokyo, pp. 117-123,1993.
- 21. Itoh, K., Augustus, LB., Nakao, M., Miyajima, J., Eton, O., Swamson, DA.: T-lymphocyte response in renal cell carcinoma. In: Biology of Renal Cell Carcinoma, Ronald M. Bukowski, James H. Finke, Eric A. Klein, Springer-Verlag, New York, pp. 94-105, 1995.
- 22. Sakaguchi, M., Kato, K., Nishiyori, A., Sagawa, K., Itoh, K., Production of tumor

- necrosis factor-alpha by Vb2- or Vb8- CD8+ T cells in Kawasaki disease. In: Kawasaki Disease. Kato, H., editor, Elsevier, Tokyo. pp 206-212. 1995
- 23. Nishiyori, A., Sakaguchi, M., Kato, H., Sagawa, K., Itoh, K., Troxic shock syndrome toxin-1 and Vb2 expression on T cells in Kawasaki disease. In: Kawasaki Disease. Kato, H., editor, Elsevier, Tokyo. pp 139-143. 1995
- 24. Itoh, K., Hayashi, A., Nakao, M., Hoshino, T., Seki, N., Shichijo, S., Human tumor rejection antigens MAGE. *JB Review* J. Biochom. 119, 385-390, 1996.
- 25. Itoh, K., Imai, Y., Kuramoto, T., Yamada, A., Yamana, H., shichijo, S., Expression of MAGE-1 and -4 proteins in normal tissues and various cancers. In: Melanogenesis and malignant melanoma: biochemistry, cell biology, molecular biology, pathology, diagnosis and treatment. (eds.) Hiri, Y., Hearing, V. J., Nakajima, J., Elsevier Science B. V. Tokyo. pp. 87-96, 1996
- 26. Mochizuki, K., Ono, A., Ikeda, E., Hikita, N., Watanabe, T., Yamaguchi, K., Sagawa, K., Itoh, K., HTLV-I uveitis. J. Acquired Immune Deficiency Syndromes and Human Retrovirology. Vol. 13, Supple. 1, S50-S56, 1996.
- 27. Itoh, K., Hayashi, H., Nakao, M., Imai, Y., Yamada, A., Nishida, T., and Shichijo, S. Development of cancer vaccine by tumor rejection antigens. In: International Reviews of Immunology. (eds) Kumagai, K., Kasakura, S., Springer-Verlag, New York, 14, 153-171, 1997
- 28. Shichijo, S., Nakao, M., Imai, Y., Takasu, H., Hayashi, A., Yamana, H., and Itoh, K., A gene encoding squamous cell carcinoma antigens recognized by cytotoxic T lymphocytes. In: Recent Advances of Human Tumor Immunology and Immunotherapy (Gann Monograph on Cancer Research No. 48). (eds) Kikuchi, K., and Sato, T. Japan Scientific Societies Press, Tokyo 1999, in press.
- 29. Itoh, K., Shichijo, S., Inoue, Y., Hayashi, A., Toh, U., Yamana, H., SART1 gene encoding squamous cell carcinoma antigen recognized by cytotoxic T lymphocytes. In: Cell Therapy. (eds). Ikeda, Y., et al, pp16-28, Springer, Tokyo, 2000.

c. Others

1. Institutional Service Responsibilities and Other Duties:

Chief, TIL Core Laboratory, Smith Research Building, Houston, Texas, 1988 - 1992.

Committee Member, Institutional Animal Care and Use Committee 1991-92.

A Gene Encoding Antigenic Peptides of Human Squamous Cell Carcinoma Recognized by Cytotoxic T Lymphocytes

By Shigeki Shichijo,* Masanobu Nakao,[§] Yasuhisa Imai,* Hideo Takasu,* Mayumi Kawamoto,* Fumihiko Niiya,[‡] Damu Yang,[§] Yuji Toh,[‡] Hideaki Yamana,[‡] and Kyogo Itoh^{*§}

From the *Departments of Immunology and \$\frac{1}{2}\$ the Department of Surgery, Kurume University School of Medicine, and the \$Division of Cancer Vaccine, Kurume University Research Center for Innovative Cancer Therapy, Kurume, 830, Japan

Summary

Except for melanomas, tumor antigens recognized by cytotoxic T lymphocytes (CTLs) are yet unidentified. We have identified a gene encoding antigenic peptides of human squamous cell carcinomas (SCCs) recognized by human histocompatibility leukocyte antigens (HLA)-A2601-restricted CTLs. This gene showed no similarity to known sequences, and encoded two (125- and 43-kilodalton [kD]) proteins. The 125-kD protein with the leucine zipper motif was expressed in the nucleus of the majority of proliferating cells tested, including normal and malignant cells. The 43-kD protein was expressed in the cytosol of most SCCs from various organs and half of lung adenocarcinomas, but was not expressed in other cancers nor in a panel of normal tissues. The three nonapeptides shared by the two proteins were recognized by the KE4 CTLs, and one of the peptides induced in vitro from peripheral blood mononuclear cells (PBMCs) the CTLs restricted to the autologous tumor cells. The 43-kD protein and this nonapeptide (KGSGKMKTE) may be useful for the specific immunotherapy of HLA-A2601+ epithelial cancer patients.

any genes encoding tumor-rejection antigens rec-IV ognized by CTLs were identified from cDNA of melanomas (1-6). Further, a large number of nonapeptides recognized by HLA class I-restricted CTLs cytotoxic to melanoma cells have been identified in the past five years (5-15). Some of them are under clinical trials as cancer vaccines, and major tumor regression in several HLA-A1+ melanoma patients was reported in the vaccine therapy with the melanoma antigen (MAGE)-3 peptide (16). Therefore, these nonapeptides recognized by the CTLs could be a new tool for the specific immunotherapy of melanoma. However, no peptides are yet identified from human squamous cell carcinomas (SCCs)1 one of the major human cancers, except for a mutated CASP-8 (17). We previously reported the HLA-A2601-restricted and tumor-specific CTL line recognizing peptide antigen(s) expressed on SCCs (18). In this study, we have investigated a gene encoding tumor antigen recognized by this CTL line, and report a new gene encoding two novel proteins and three nonapeptides as the antigens recognized by the HLA-A2601-restricted CTLs.

Materials and Methods

Identification of 6A1-1D7 Genes. Expression-gene cloning methods developed by T. Boon and colleagues (4, 6) were used in this study to identify a gene coding tumor antigen recognized by the KE4 CTLs (18). In brief, messenger RNA (mRNA) of the KE4 tumor cells was converted to cDNA, ligated to Sall adapter, and inserted into the expression vector pSV-SPORT-1 (GIBCO BRL, Gaithersburg, MD). cDNA of HLA-A2601 or HLA-A0201 was obtained by reverse transcription PCR (RT-PCR), and was cloned into the eukaryotic expression vector pCR3 (Invitrogen, San Diego, CA). Both 200 ng of plasmid DNA pools or clones of the KE4 cDNA library and 200 ng of the HLA-A2601 cDNA were mixed with 1 μl of lipofectin in 70 μl of OPTI-MEM® (GIBCO BRL) for 15 min. 30 µl of the mixture was then added to the VA13 (2 \times 10⁴) cells and incubated for 5 h. 200 μ l of the RPMI-1640 medium containing 20% FCS was then added and cultured for 2 d followed by adding the KE4 CTLs (104 cells/ well; reference 8). After a 18-h incubation, 100 µl of supernatant was collected to measure IFN- γ by an ELISA kit (Otsuka Pharm. Co., Tokyo, Japan) in a duplicate assay. DNA sequencing was performed with dideoxynucleotide sequencing method using DNA Sequencing kit (Perkin-Elmer Corp., Foster, CA) and analyzed by ABI PRISMTM 377 DNA Sequencer (Perkin-Elmer).

¹Abbreviations used in this paper: aa, amino acid; gp, glycoprotein; GST, glutathione S-transferase; LAP, liver-enriched transcriptional-activator protein; LIP, liver-enriched transcriptional-inhibitory protein; mRNA, messenger RNA; nt, nucleotide; ORF, open reading frame; S-D, Shine-Dalgarno; SART, squamous cell carcinoma antigen recognized by T cells; SCC, squamous cell carcinoma.

J. Exp. Med. © The Rockefeller University Press • 0022-1007/98/02/277/12 \$2.00 Volume 187, Number 3, February 2, 1998 277-288 http://www.jem.org

Northern Blot Analysis. Nylon membranes (Hybond-N⁺; Amersham, Buckinghamshire, UK) with UV-fixed total RNAs (5 μg/lane) extracted from the various cells or UV-fixed poly A⁺ RNA (2 μg/lane) from various tissues were prehybridized for 10 min and hybridized overnight at 65°C in the same solution (7% SDS, 1 mM EDTA, 0.5 M NaH₂PO₄, pH 7.2) containing ³²P-labeled 6A1-1D7 probe. The membranes were washed three times at 65°C in a washing buffer (1% SDS, 40 mM Na₂HPO₄, pH 7.2), and then autoradiographed. The relative expression level of the squamous cell carcinoma antigen recognized by T cells 1 (SART-1) mRNA was calculated by the following formula: index = (SART-1 density of a sample) × (β-actin density of the KE4 tumor/SART-1 density of the KE4 tumor).

Cloning of the SART-1 Gene. We tentatively named this gene encoding a tumor antigen recognized by the KE4 CTLs as the SART-1 gene. The SART-1 clone was obtained from both PBMCs (SuperScriptTM Human Leukocyte cDNA Library in pCMV-SPORT; GIBCO BRL) and KE4 cDNA libraries by the standard colony hybridization method with the ³²P-labeled 6A1-1D7 cDNA as a probe. Sequence data of the SART-1 are available from EMBL/GenBank/DDBJ under accession number AB006198. The difference of the sequence at nucleotide (nt) position 812 of the ART-1 between PBMCs and KE4 was further analyzed by treatment of the PCR products with an SecI restriction enzyme. Amplification was performed for 30 cycles (1 min at 94°C, 2 min at 56°C, and 2 min at 72°C) with the primers of 5'-CCAAGT-TACTGGAGGAGATGG-3' (forward primer) and 5'-TTGGA-

CAGGATAGAGCGAGG-3' (reverse primer).

Preparation of Glutathion S-transferase Fusion Proteins and Rabbit Antisera. For SART-1800/GST (GST, glutathione s-transferase) protein, the full length of SART-1 was digested with EcoRI and NotI at the multiple cloning site of pCMV-SPORT, and then ligated into the pGEX-4T-2 vector (Pharmacia Biotech AB, Uppsala, Sweden). For SART-1_{6AI-1D7/GST} protein, the SART-1 cDNA fragment (nt 1,663-2,449) was amplified by PCR using a forward primer 5'-TGGGAATTCGATGAGGATCCCGAGC-3' (sf-1), and a reverse primer 5'-TACGGGCGGCCGCTGTCACT-TGGT-3' (sr-1). Amplified product was digested with EcoRI and NotI, and ligated to the pGEX-5X-3 (Pharmacia Biotech AB). For SART-1_{67/GST} protein, the SART-1 cDNA fragment (nt 1,663-1,866) was amplified by PCR using a sf-1 primer and a reverse primer 5'-CGTGAATTCTCACCGTGCTCCAGCC-3'. Amplified product was digested with EcoRI and ligated to the pGEX-TX-3. For SART-1_{219/GST} protein, the SART-1 cDNA fragment (1,781-2,449) was amplified by PCR using a forward primer 5'-GAGAATTCCATGGACTTTGAACGGGATG-3' (sf-2) and a sr-1 primer. Amplified product was digested with EcoRI and NotI, and ligated to the pGEX-5X-3. Polyclonal anti-SART-1800/GST, anti-SART-16A1-1D7/GST, anti-SART-167/GST, and anti-SART-1219/GST Abs were prepared by immunization of rabbits with purified SART-1_{800/GST}, SART-1_{6A1-ID7/GST}, SART-1_{67/GST}, and SART-1219/GST proteins, respectively, by the methods previously reported (19).

Preparation of SART-1-tag Fusion Protein in Expression Vector Constructs. For preparation of the SART-1_{800/myc}, the SART-1 of positions 29–2,449 was amplified by PCR using a forward primer 5'-GCTCGGAATTCACGTGCCACTATGGG-3' and a reverse primer 5'-AGGGAATTCTCGCTTGGTGATGGT-GTTC-3' (sr-2). Amplified product was digested with EcoRI, and ligated to pcDNA3.1/Myc-His vector (Invitrogen). The gene encoding a tag peptide was ligated to the 2,438 position before the stop codon of the third frame, which was used as the

 $SART-1_{800/myc}$. Similarly, the SART-1 fragment of positions 1,663–2,449 or 1,782–2,449 was amplified by PCR using a sf-1 and a sr-2 primer or a sf-2 primer and a sr-2 primer, and the amplified product was used for preparation of the $SART-1_{6A1-ID7/myc}$ or $SART-1_{219/myc}$ respectively.

Western Blot Analysis. The samples were lysed with a buffer consisting of 10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.5% Triton X-100, 0.2 mM PMSF (Sigma Chemical Co., St. Louis, MO), and 0.03 one trypsin inhibitor unit (TIU)/ml aprotinin, sonicated, and centrifuged at 14,000 rpm for 20 min, and the supernatant was used as the cytosol fraction. Then, the pellet was lysed with a buffer consisting of 7.2 M urea, 1.6% Triton X-100, 0.8% dithiothreitol, and 2% lithium dodecyl sulfate, and was centrifuged, and the supernatant was used as the nuclear fraction. The lysate was separated by SDS-PAGE. The proteins in acrylamide gel were blotted to HybondTM-polyvinylidene difluoride (PVDF) membrane (Amersham) and were incubated with appropriate Abs for 4 h at room temperature. The other methods of Western blot analysis were previously described (19).

KE4 CTL, Its Sublines, and CTL Assay. HLA-A2601-restricted and SCC-specific CTL line (KE4 CTL) established from an esophageal cancer patient (18) was used in this study as effector cells for identification of the peptide antigens encoded by the SART-1 gene. KE4 CTL sublines were established from the parental KE4 CTL line by the limiting dilution culture as reported (20). In brief, 1 cell/well (round bottomed 96-well microculture plate) of the parental KE4 CTL line was incubated with the culture medium (45% RPMI-1640 medium, 45% AIM-V® medium [GIBCO BRL], and 10% FCS [EQUITECH BIO, Ingram, TX] with 100 units/ml of IL-2 [Shionogi Pharm. Co., Osaka, Japan] and 0.1 mM MEM nonessential amino acids solution [GIBCO BRL]; termed as the culture medium) in the presence of irradiated (50 gray) allogenic PBMCs (2 × 105 cells/well) donated from three healthy volunteers as feeder cells. The proliferating CTL sublines were expanded in wells of 24-well microculture plates in the culture medium alone for up to 30 d. The sublines were tested for their cytotoxicity to the KE4 (A2402/2601), KE3 (A2402/A0201), and VA13 fibroblast cell lines in a 6-h 51Crrelease assay as reported (18) at an E/T ratio of 5:1, and the 80 sublines showing cytotoxicity against the KE4, but not either KE3 or VA13, were used in this study.

Constructions of Deletion Mutants. The pcDNA3/6A1-1D7 plasmid, a derivative of the pcDNA3 vector containing a 990-bp DNA fragment of the 6A1-1D7 gene corresponding to the nucleotide positions 1,517-2,506 of the SART-1 gene and a CMV promoter for directing transcription, was digested with NotI for preparation of deletion mutants. The linear lysed DNA was subjected to the second restriction enzyme Apal digestion to generate one end sensitive to ExoIII. ExoIII nuclease/Mung bean nuclease was performed according to the manufacturer's instructions (TaKaRa, Ootsu, Japan) to obtain five deletion mutants of the 6A1-1D7 (6A11-192 corresponding to nucleotide positions 1-492 of the 6A1-1D7 gene, $6A1_{1-625}$, $6A1_{1-736}$, $6A1_{1-839}$, and $6A1_{1-951}$). The SART-1_{1-1,668} fragment was prepared by digestion of the SART-1 in pSV-SPORT with the KpnI and BamHI, separated by agarose gel electrophoresis and purified by Qiaex gel extraction kit (Qiagen, Hilden, Germany). This fragment was ligated to the KpnI and BamHI sites of 6A11.492, 6A11.625, 6A11.736, 6A11.839, and $6A1_{1.951}$ in pcDNA3 vector, respectively, and five mutants (SART-1_{1-2,008} corresponding to nucleotide positions 1-2,008, SART-1_{1-2,141}, SART-1_{1-2,252}, SART-1_{1-2,355}, and SART-1_{1-2,467}) were obtained. Further, the SART-1 gene in pCMV-SPORT was digested with BamHI, ApaI, or SmaI, respectively, and each

band was separated, purified, and ligated to prepare the three mutants $(SART-1_{1-179}, SART-1_{1-1,190},$ and $SART-1_{1-1,668})$.

Peptides and Assays. In this manuscript, amino acid (aa) positions were named based on the sequence of the predicted SART-1800 protein because all the synthesized peptides are located in the region shared by both the SART-1800 and SART-1259 proteins that was translated in the third frame. A series of 22 different 10 mer, according to the predicted as sequences corresponding to a part of deduced SART-1800 protein (aa positions 730-800: SHR-FHGKGSGKMKTERRMKKLDEEALLKKMSSSDTPLGTVA-LLQEKQKAQKTPYIVLSGSGKSMNANTITK), were prepared. Each peptide is a 10 mer that shares the same as with the following peptide at positions 4-10. Six different nonapeptides were also prepared in which each of the three 10 mer (SART-1736-745, SART-1748-757, SART-1784-793) was deleted at position 1 or 10. Further, each aa of the three nonapeptides (SART-1736-744, SART-1749-757, SART-1785-793) was substituted by glycine (G) when it was not glycine or by threonine (T) when it was glycine to determine as residues critical for binding to HLA-A2601 and CTL-mediated recognition. These peptides were purchased from Biologica (Nagoya, Japan). The purity was >70% in most of the peptides, and >95 % in those used for induction of CTLs. For letection of antigenic peptides, the HLA-A2601 or -A0201 cDNA (as a control) were transfected to the VA13 (2 × 10+) cells and incubated for 5 h. Then, 200 µl.of the RPMI-1640 medium containing 20% FCS was added and cultured for 2 d, followed by adding the peptides at the concentration of 10 µM in most experiments, or 10 nM to 50 µM in certain experiments. 2 h later, the supernatant was removed and the KE4 CTLs (104 cells/well) were added, incubated for 18 h, and 100 µl of supernatant was collected to measure IFN-y by an ELISA kit in a duplicate assay.

Induction of CTL by Nonapeptides. PBMCs (2 × 106) from a KE4 patient that had been cryopreserved in a nitrogen tank were thawed in the morning of experiments, and were incubated with a nonapeptide (10 µM) in a well of a 24-well plate containing 2 ml of the culture medium. PBMCs from HLA-A2601+ healthy volunteers were also used. At days 7 and 14 of culture, cells were collected, washed, and stimulated with antigen presenting cells consisting of the irradiated autologous PBMCs that had been preincubated with the same nonapeptide (10 µM) for 2 h followed by washing with PBS. The ratio of the responder to stimulator cell was 10:1. Cells were harvested at day 21 of the culture, and most of them were tested for their CTL activity in a 6-h 51Crrelease assay. Some of them were provided for preparation of the CTL sublines by incubation of 10 cells/well (round bottomed 96-well microculture plate) with the culture medium in the presence of irradiated allogenic PBMCs as feeder cells. These cells from the microculture were tested for their activity at 10 d of culture to produce IFN-y in response to tumor cells by an ELISA. Several sublines from well-proliferating wells were further expanded in the culture medium alone in wells of a 24-well plate, and were tested for their cytotoxicity to the KE4 and KE3 tumor cells at an E/T ratio of 5:1 in a 6-h 51Cr-release assay at 15 d of the culture.

Results

Identification of the 6A1-1D7 Gene. The total of 10⁵ cDNA clones from cDNA library of the KE4 tumor cells were tested for their ability to stimulate IFN-γ production by the KE4 CTLs after cotransfection with the HLA-A2601 into the VA13 human fibroblast cells. This method allows

Figure 1. Recognition of the SART-1 gene products by the KE4 CTLs. Different amounts of the 6AI-1D7 (Fig. 1 A) or the SART-1 cloned from the KE4 tumor (Fig. 1 B) and 100 ng of HLA-A2601 or HLA-A0201 cDNA were cotransfected into VA13 cells, followed by testing their ability to stimulate IFN- γ production by the KE4 CTLs. The background of IFN- γ production by the KE4 CTLs in response to VA13 cells (~200 pg/ml) was subtracted in the figure. Similar results were obtained in the SART-1 cloned from the PBMCs (data not shown).

identification of genes encoding tumor-rejection antigens (1–6). After repeated experiments for the several candidate clones, one clone (6A1-1D7) was confirmed to encode a tumor antigen recognized by the KE4 CTLs when cotransfected with HLA-A2601 (Fig. 1 A). The sequence of this cDNA clone proved to be 990 bp long. Expression of this gene was investigated by Northern blot analysis. A band of \sim 2.6 kb was observed in all the normal tissues and tumor cell lines tested (Fig. 2). The relative level of mRNA expression was within the range of 2.3 \pm 2.9 in all the samples except for testis (the expression level: 7.5) and pancreas (17.4) (Fig. 2). These results suggest that this gene was ubiquitously expressed at the mRNA level with higher expression in testis and pancreas, and that the 990-bp-long cDNA was incomplete.

Identification of the SART-1 Gene. A 2,506-bp-long gene was independently cloned from the cDNA libraries of KE4 tumor and PBMCs of healthy donors using the 6A1-1D7 as a probe (Fig. 3). The (nt) sequences of these clones were identical with the exception of the position 812 (cytosine in the KE4 versus thymine in PBMCs). This would be due to a genetic polymorphism, but not due to a point mutation, since the samples in which the nt position 812 was cytosine were the KE4 CTLs, a B cell line from the KE4 patient (Bec-1), fetal liver, COS cells, and 16 of 22 solid tumor cell lines tested, whereas it was thymine in testis, VA13 cells, and the other six tumor cell lines. An aa translated from these codons in the third frame is identical (ACC, ACU = threonine). KE4 CTLs also recognized VA13 cells cotransfected with these new genes and HLA-A2601 (Fig. 1 B). Both clones contained the 6A1-1D7 at positions 1,517-2,506. This 2,506-bp-long gene showed no similarity to known sequences, and was tentatively named as the SART-1 gene. Although the SART-1 mRNA was ubiquitously expressed, the KE4 CTLs did not recognize

Figure 2. Expression of the SART-1. 21 tumor cell lines (KE4, KE3, TE8, Kuma-1, HSC4, QG56, Sq-1, A549, MKN28, Colo201, SW620, KMG-A, R-28, 86-2, LK79, LC65A, KIM-1, KYN-1, M36, M73, NALM-1; reference 18), PBMCs, Bec-1, COS, or 16 tissues (heart, brain, placenta, lung, liver, skeletal muscle, kidney, and pancreas on human multiple tissue Northern blot, and spleen, thymus, prostate, testis, uterus, small intestine, colon, and peripheral blood leukocyte on human multiple tissue Northern blot IV; Clontech Lab., Inc., Palo Alto, CA) were provided for Northern blot analysis with the 6A1-1D7 as a probe. Some of the results are shown in the figure.

nonmalignant cells including Bec-1 cells (18) or VA13 cells transfected with HLA-A2601 alone (Fig. 1). This might be due to preferential expression of tumor antigens on the malignant cells by the mechanism of posttranscriptional regulation.

GGTTCGGCGG CAGCCGGGCT CGGAGTGGAC GTGCCACTAT GGGGTCGTCC AAGAAGCATC GCGGAGAGAA GCAGCCCGCC GGGACGACGA CACCOGOGT GCCACCGACC ACCCCCCCC GCACCCCGAA CACAAAAAA ACAACCACCG GAGTGCCGCC ACTGCCGGA GCGGTGCCA ACGACGGAAG COTOCGAGOU GOGCGUGAAG CGGGAGAAGO GCGAUGACGG CUACGAGGCC GCUGCCAGC CCAAAACUAG CUCAGGGGAU GCCUCCUCAC TCAGCAYCGA DEAGACTANE ANACTOCOGG CANAGTTGOG GETGANACCE TIGGAGGITA ATGCCATCAN GANGGAGGOG GECNCCANGG AGGA STCATCAACC CTATGGCCTT GCGACACCGA GAGGAGCTGC GGGAGAACCT GCCGGCTGCC AAGGAGAAGC GCCTGCTGAA CCAAAAGCTG GCGAAGATAA AGACCETAGO AGAGGATGAC COCTGGCTGG ACGARACTGC ACCTEGATE CAGAGGACCE GGCAGCTGCA GAAGGAGAAG GACCTGGCAG AGAAGAGGCC CAAGTTACTO GAGGAGATGG ACCAAGAGTT TGGTGTCAGC ACTCTGGTGG AGGAGGAGTT CGGCCAGAGG CCCCAGGACC TGTACAGTGC CGGGACCTG CAGGGCCTCA COGTOGAGCA TOCCATIGAT TCCTTCCGAG AAGGGGAGAC AATGATTCTT ACCCTCAAGG ACAAAGGCGT GCTGCAGGAG GAGGAGGACG FOCTOGIÇÃA COTOMAÇETO OTOGATAROS AGEOGOCAGA GAAAAATOTO GAGETOCOGA AGAAGAACOE TOACTACETO CECTATOCOG AGGACGAGAG STEGACIAC CEGGGGCAGC ANAMACTICS CECTATECTS ECCANGENTS ACGANGAGET TEANGE GAG CGGCCACATT CETTCEGETT GGAGCAGGGC GGEAGGGETG ATGGCCTGCG GGAGCGGGAG CTGGAGGAGA TCCGGGCCAA GCTGCGGCTG CAGGCTCAGT CCCTGAGCAC AGTGGGGCCC CGGCTGGCCT CCGAATACCT CACGCCTGAG GAGATGGTGA CCTTTAAAAA GACCAAGCGG AGGGTGAAGA AAATCCGCAA GAAGGAGAAG GAGGTAGTAG TGCGC FRACTIGCTS COTCTCGGGG ACCAGACTCA GGATGGGGAC TITGGTTCCA GACTGGGGGG ACGGGGTCGC CGCCGAGTGT CCGAAGTGGA GGAGGAGAAG SAGCOTOTGO CTCAGCOCCT GOOGTOGGAC GACACOCGAG TGGAGAACAT GGACATCAGT GATGAGGAGG AAGGTGGAGG TCCACOGCOG GOGTOCCCGG ACACAGOOT. DOADOADATO DADDADATTE ACADODOTODO DODADDAA DADDODAAD AADACOTODA DOTODADDO DADDADDAD ADDTOTODOD IGGGAGANG GIGGIGGAGA HIGTGANGAN GEIGGAGIGI COCCAGGGGG GEIGGGAGGA GGA<u>IGA</u>GGAI CCCGAGGGGA ÁGGGGCGAI CGIGHTAN CCCAGGICTG AGHTEIGCTG CACCHIGGGG GAGAICCTCA CCLACGGGCI GGCIGGCAAY CGCGAGGAGC ÁGGGGGACT CAIGGAGHIT GAACGGGAIG <u>ACCAGEGETE ACCEDACGET GGETECGAAT ETGAEGGGGA GGAGAACATE GGETÄÄÄČEA EGGTGAACET GGACGAGGAG AAGEAGEAGE ACGATITETE</u> TOCTTOCTCC ACCACCATED TOGACGAGGA ACCGATGGIG ANTAGGGGGC TOGCAGCTGC COTGCTCCTG TGTCAGAACA AAGGGCTGCT GGAGACCACA GTGCAGAAGG TGGCCCGGGT GAAGGCCCCC AACAAGTCGC TGCCCTCAGC CGTGTACTGC ATCGAGGATA AGATGGCCAT CGATGACAAG TACAGCCGGA GGG-GGAATA CCG-GGCTTC ACA-GGACT TEAGGAGAA GGA-GGCTAC AAA-CCCGACG ITAAGATCGA ATA-GTGGAT GAGACGGGC GGAAACTCAC ACCCAAGGAG GCTTTCCGCC ACCTGTCGCA CCGGTTCCAT GGGAAGGGCT CAGGAAGAT GAAGACAGA CGCGGGATGA AGAAGCTGGA CGAGGAGGC STECTGANGA AGATGAGETE CAGCGACACG CCCCTGGGCA CCGTGGGCCCT GCTCCAGGAG AAGCAGAAGA CTCAGAAGAC CCCCTACATC GTGCTCAGGG MAGCOGCAA GAGCATGAAC GCGAACACCA TCACCAAGTG ACAGCGCCCT CCCGTAGTCG GCCCTGCCTC AACCTTCATA TTAAATAAAG CTCCCTCCTT 2500

Figure 3. Nucleotide sequence of the SART-1. The cloned cDNA (6A1-1D7) was initially provided for the nucleotide sequencing. The sequence of 6A1-1D7 is 990 bp long (positions 1,517-2,506, underlined by the solid line) that has an ORF of 201 bp long encoding 67 aa if the first AUG codon (1,663-1,665, underlined by the bold line) and stop codon (1,864-1,866, underlined by the dotted line) in the first frame are used for protein synthesis. One S-D and each of the two different S-D-like sequences are marked by the dot on the top. The 2,506-bp-long SART-1 was then cloned from cDNA libraries of the KE4 tumor and human PBMCs. The SART-1 has an ORF 2,400 bp long encoding 800 aa when the first AUG codon (39-41, underlined by the bold line) and stop codon (2,439-2,441, underlined by the dotted line) are used for protein synthesis in the third frame. There was only one nt difference at the position 812 (marked by ∇) between the SART-1 of KE4 tumor and PBMCs (cytosine in the KE4 tumor versus thymine in PBMCs). These sequence data are available from EMBL/GenBank/DDBJ under accession number AB006198.

We then intended to investigate the SART-1 protein expression in various cells and tissues by Western blot analysis with anti-SART-1_{800/GST} and -SART-1_{6A1-1D7/GST} Abs, since both the SART-1 and 6A1-1D7 encoded a tumor antigen recognized by the KE4 CTLs. The first AUG codon resided at positions 39-41 of the SART-1 in the third frame with suitable context (CCACUAUGG; Fig. 3) for initiation of protein synthesis (21, 22). The SART-1 thus contains an open reading frame (ORF) of 2,400 bp encoding a protein of 800 aa residues (SART-1800). In contrast, the first AUG codon of the 6A1-1D7 exists at positions 1,663-1,665 with unfavorable content (GGAGG-AUGA) in the first frame. Between this first AUG and the stop UGA (1,864–1,866) codon of the 6A1-1D7, there is one Shine-Dalgamo (S-D) sequence (AGGAGG, 1.771-1,776), one S-D-like sequence (AGGGGG, 1,681-1,686), and the other S-D like sequence (GGAG at seven different regions) that are known to induce frame shifting in prokaryotic mRNAs (23, 24). A protein of 259 aa (SART-1259) could be translated if any of these S-D sequences induces -1 frame shifting and change the stop codon from the positions 1,864-1,866 of the first frame to the positions 2,439-2,441 of the third frame. If not, a peptide of 67 aa could be translated in the first frame.

Expression of the SART-1800 Protein. An Ab to the SART-1800/GST recognized a 125-kD band of SART-1800 protein after cleavage of GST with thrombin (data not shown), and recognized a 125-kD band in the nuclear fraction of PBMCs activated with 10 µg/ml of PHA (PHA blasts), KE4 tumor, and Bec-1, but not unstimulated PBMCs (Fig. 4 A). No protein in the cytosol was recognized by this Ab in any samples tested. The 125-kD band was also expressed in the nucleus of the majority of tumor tissues, tumor cell lines, and normal cell lines tested, but was not expressed in normal tissues except for testis and fetal liver. The summary is shown in Table 1. When the SART-1 of positions 29-2,449 (SART-1800) was transfected to VA13, intensities of the 125-kD band in both the nuclear and cytosol fractions increased (Fig. 4 A). Furthermore, this Ab and anti-myc monoclonal Ab recognized a 132-kD band of the VA13 cells transfected with the SART-1 of positions 29-2,449 in conjunction with pcDNA3.1/Myc-His vector (SART-1800/my; Fig. 4 A). The different migration of these bands (125 and 132 kD) will be due to a tag peptide (theoretically \sim 5 kD). These results suggest that the 125 kD of the SART-1800 protein was expressed in the nucleus of proliferating cells including normal and malignant cells, but not in nonproliferating cells, nor any normal tissues except for testis and fetal liver.

Expression of the SART-1₂₅₉ Protein. An Ab to the SART-1_{6A1-1D7/CST} recognized a 43-kD band of the recombinant SART-1_{6A1-1D7} protein after cleavage of GST with factor Xa (Fig. 4 B). Therefore, the SART-1₂₅₉ could be translated by the mechanism of -1 frame shifting in the prokaryotic mRNA, and be recognized by anti-SART-1_{6A1-1D7/CST} Ab. This Ab also recognized a 43-kD protein in the cytosol of KE4 and TE9 esophageal SCC cell lines, fresh esophageal SCCs, and lung SCCs and adenocarcinomas, but not PBMCs (Fig. 4 B). No protein in the nucleus

Figure 4. Expression of SART-1800 and SART-1259 proteins. Tumor cell lines used for Western blot analysis were head and neck SCCs (Ca9-22, HSC3, HSC4, Kuma-1, and Kuma-3), esophageal SCCs (KE4, KE3, TE8, TE9, TE10, and TE11), lung adenocarcinomas (1-87, LK87, PC-9, A549, 11-18, and RERF-LC-MS), lung SCCs (Sq-1, RERF-LC-AI, and QG56), leukemia cells (MOLT-4, HPB-ALL, HPB-MLT, HUT-102, BALL-1, NALM16, ARH77, THP1, U937, HL60, ML-1, ML-2, NALL-1, SPI-801, K562, and HEL), and melanomas (M36, M73) (18). PBMCs, PHA blasts, fibroblast cells (WI-38, VA13), and tumor tissues

Table 1. Expression of the SART-1800 and SART-1259 Proteins in Normal and Cancer Cells and Tissues

	SART-1 ₈₀₀ (nucleus)*		SART-1 ₂₅₉ (cytosol)‡	
·.	Cell lines	Tissues	Cell lines	Tissues
Normal				
РВМС	0/5\$		0/5	
PHA blast	2/2		0/2	
Fibroblast	2/2	_	0/2	_
Fetal liver	· —	1/1	.—	1/1
Newborn liver		0/1	_	0/1
Liver		0/1		0/1
Testis		1/1	_	3/3
Placenta		0/1	_	0/2
Esophagus	_	0/2	—	0/4
Pancreas	_	0/1		0/1
Cancer				
Head and neck SCC	2/2	2/2	3/5	7/7 (100%)
Esophageal SCC	5/5	3/5	4/6	18/30 (60%)
Lung cancer				•
Adenocarcinoma	3/3	7/7	3/6.	16/35 (47%)
SCC	2/2	3/4	3/3	8/17 (47%)
Leukemia	4/4	4/4	0/16	0/10 (0%)
Melanoma	1/1	_	0/2	0/10 (0%)

*Expression of the SART-1800 protein in the nucleus of various normal and cancer cells and tissues was investigated by Western blot analysis with anti-SART-1800/GST Ab.

‡Expression of the SART-1₂₅₉ protein in the cytosol of various normal and cancer cells and tissues was investigated by Western blot analysis with anti-SART-16AI-ID7/GST Ab.

Number of positive per total samples tested are shown.

was detected by this Ab in any samples tested (data not shown). The 43-kD protein was expressed in the cytosol of all the head and neck SCC tissues tested, 60% of esophageal SCCs, and half of the lung SCCs and lung adenocarcinomas, but not observed in leukemia, melanomas, nor any normal tissues, normal cell lines, or normal cells except for fetal liver and testis (Table 1). These results suggest that the

from various organs were also studied. (A) Expression of the SART-1800 protein was investigated by Western blot analysis with anti-SART-1800/GST Ab. Anti-myc monoclonal Ab (Invitrogen) was also used for analysis of VA13 transfected with the SART-1800/myr (B) Expression of the SART-1259 was investigated with anti-SART-16AI-ID7/GST Ab. In the left gel, 70-, 43-, and 27-kD bands corresponded to the SART-16A1-1D7/GST, SART-16A1-1D7, and GST, respectively. The data of the cytosol fraction were shown. No bands were detected by this Ab in the nucleus of any samples tested (data not shown). (C) Expression of the SART-1259 was investigated with anti-SART-167/GST and anti-SART-1219/GST Abs. The data of the cytosol fraction were shown. (D) Anti-myc and anti-SART-1219/GST Abs were used for analysis of COS cells transfected with the SART-16A1-1D7/myc or SART $t_{219/myc}$. The total lysate was used for experiments.

281 Shichijo et al. SART-1₂₅₉ protein was translated by the mechanism of -1 frame shifting using an internal ribosomal entry site in human mRNAs primarily from SCCs and adenocarcinomas, and was recognized by this Ab.

To investigate this possibility, we developed rabbit Abs against GST fusion protein with a peptide of 67 aa in the first frame (SART-167/GST) and a protein of 219 aa in the third frame (SART-1219/GST), since each of the two proteins is necessary for construction of the SART-1259. Both anti-SART-167/GST and anti-SART-1219/GST Abs recognized a 43-kD band in the cytosol of the KE4, but not of PBMCs or PHA blasts (Fig. 4 C). These Abs also recognized a 43-kD protein of the other SCCs and lung adenocarcinomas, and the pattern of the reactivity was almost identical to that of anti-SART-16A1-1D7/GST Ab shown in Table 1. The results suggest that this 43-kD protein consists of both a peptide of 67 aa in the first frame and a protein of 219 aa in the third frame. Furthermore, we prepared the plasmid construct in which the part of the SART-1 at nt positions 1,663-2,449 or 1,782-2,449 was ligated into the pcDNA3.1/ Myc-His vector (SART-1_{6A1-1D7/myc} and SART-1_{219/myc}, respectively). When the SART-16A1-1D7/mye was transfected to COS cells, two bands (48 and 43 kD) were detected with both anti-myc monoclonal and anti-SART-1219/GST Abs, whereas only a 43-kD band was detected in COS cells transfected with the SART-1219/myc (Fig. 4 D). The 48-kD protein might consist of 43 kD of SART-1259 plus 5 kD of a tag peptide that would be initiated by the AUG codon at positions 1,663-1,665 with the mechanism of -1 frame shifting. On the other hand, the 43-kD protein might consist of the 38-kD protein of the SART-1219 plus 5 kD of a tag peptide that would be initiated by the AUG codon at positions 1,782-1,784 in the third frame.

Identification of Regions Containing Antigenic Peptides for CTLs. To identify antigenic peptides encoded by the SART-1 gene, we investigated the capability of deletion mutants of both the 6A1-1D7 and SART-1 genes to stimulate IFN-y production by the KE4 CTLs, since both genes encoded tumor antigens recognized by the KE-4 CTL as shown in Fig. 1. Higher levels of IFN-y production were observed in the $6A1_{1-990}$ (full length), $6A1_{1-951}$, and 6A1_{1.839} when cotransfected with HLA-A2601 into VA13 cells (Fig. 5 A). In contrast, no IFN- γ production was observed in the $6A1_{1.736}$ or any of the two mutants. Similarly, higher levels of IFN-y production were observed in the SART-1_{1-2,506} (full length), SART-1_{1-2,467}, and SART-1_{1-2,355} (Fig. 5 B). In contrast, a very low level or no IFN-γ production was observed in the SART-11-2,252 or any of the other five mutants, respectively. These results suggest that antigenic peptide(s) mainly resided within the 254-bp region of the 3' end of both the 6A1-1D7 and SART-1. This region encodes 62 deduced as of the SART-1 protein at the positions of 737-800 in the third frame, which was shared by both the 6A1-1D7-derived SART-1259 protein and the SART-1-derived SART-1800 protein.

Determination of Peptide Antigens. A series of 22 SART-1 oligopeptides (10 mer) corresponding to the region shown above were loaded to the VA13 cells that had been trans-

Figure 5. Identification of regions containing antigenic peptides for CTL. Deletion mutants of 6A1-1D7 gene (6A11-492, 6A11-625, 6A11-736, 6A11-839, and 6A11.951) and the full length of 6A1-1D7 in A or mutants of SART-1 gene (SART-11-2,008, SART-11-2,141, SART-11-2,252, SART-11-2,355, and the others) and the full length of SART-1 in B were cotransfected to VA13 cells (2 \times 10⁴) with HLA-A2601 or -A0201, and 2 d later these cells were tested for their ability to stimulate IFN-y production by the KE4 CTLs. The background of IFN-y production by the KE4 CTLs in response to VA13 cells transfected with both each mutant and HLA-A0201 (~50 pg/ml) was subtracted in the figure.

fected with HLA-A2601 or -A0201, and tested for their ability both to stimulate IFN-y production and to be recognized by the KE4 CTLs in a 51Cr-release assay. Representative results are shown in Fig. 6 A. The three 10 mer (SART-1₇₃₆₋₇₄₅ [KGSGKMKTER], SART-1₇₄₈₋₇₅₇ [KKL-DEEALLK], and SART-1₇₈₄₋₇₉₃ [IVLSGSGKSM]) possessed the activity to stimulate significant levels of IFN-y production (>50 pg/ml), whereas none of the other 10 mer did. The SART-1₇₃₆₋₇₄₅ or SART-1₇₄₈₋₇₅₇ peptide had the high (45% lysis at an E/T ratio of 5:1) or low (10% lysis) activity to be recognized when loaded on VA13 cells transfected with HLA-A2601, respectively. None of the other 10 mer, including the SART-1784-793, had the significant level (>10% lysis) of activity in a ⁵¹Cr-release assay.

Six different nonapeptides from these three 10 mer with deletion of one as at position 1 or 10 were tested for their ability to stimulate IFN-γ production by the parental KE4 CTL (Fig. 6 B). Each nonapeptide (SART-1736-744 [KGSGK-MKTE], SART-1₇₄₉₋₇₅₇ [KLDEEALLK], and SART-1₇₈₅₋₇₉₃ [VLSGSGKSM]) had higher activity to stimulate IFN-y production than had the parental 10 mer. In contrast, each of the remaining nonapeptides failed to stimulate IFN-y production.

To confirm the presence of a peptide-specific CTL, 80 KE4 CTL sublines were tested for their reactivity to each of the three 10 mer (SART-1736-745, SART-1748-757, and SART-1784-793). 4, 5, or 6 of 80 of the KE4 CTL sublines showed the SART-1₇₃₆₋₇₄₅, SART-1₇₄₈₋₇₅₇, or SART-1₇₈₄₋₇₉₃ peptide-specific reactivity, respectively. The representative results are shown in Fig. 7.

In the SART-1₇₃₆₋₇₄₄ peptide, the ability to stimulate IFN-y production was observed at 50 nM with the maximal level at 3 μM (Fig. 8). This ability was observed as low as 10 nM with the maximal level at 0.78 µM in the cases of both the SART-1748-757 and SART-1785-793 peptides.

282 A Gene Coding Squamous Cell Carcinoma Antigen

Figure 6. Determination of peptide antigens. A series of 22 SART-1 oligopeptides (10 mer; 10 μ M) in A or 6 different nonapeptides (10 μ M) from three 10 mer (SART-1₇₈₋₇₅₇, SART-1₇₄₈₋₇₅₇, and SART-1₇₈₄₋₇₉₃) with deletion of one as at position 1 or 10 in B were loaded for 2 h to the VA13 cells (2 × 10⁴) transfected with HLA-A2601 or -A0201. For IFN- γ production, the KE4 CTLs (10⁴) were added, incubated for 18 h, and the culture supernatant was collected for measurement of IFN- γ by the ELISA in duplicate assays. The background of IFN- γ production by the KE4 CTLs in response to each peptide loaded to the VA13 cells transfected with HLA-A0201 (~50 pg/ml) was subtracted in the figure. In a ⁵¹Cr-release assay, these VA13 cells were labeled with Na₂ ⁵¹CrO₄ for 1 h followed by adding the KE4 CTLs (5 × 10⁴). 6 h later, the supernatant was harvested for measurement of the radioactivity in triplicate assays as reported (18). The background of percent lysis by the KE4 CTLs of the VA13 cells that were transfected with HLA-A0201 and loaded by each peptide was <5%.

Figure 7. CTL sublines recognizing each nonapeptide. 80 KE4 CTL sublines were tested for their ability to produce IFN-y by recognition of each of the three 10 mer (SART-1736-745, SART-1748-757, and SART-1784-793) that was loaded at 10 µM on the VA13 cells for 2 h transfected with HLA-A2601 or -A0201. Detailed methods are shown in the legend for Fig. 6. Four, five, or six of 80 of the KE4 CTL sublines reacted to the SART-SART-1₇₄₈₋₇₅₇, 1736-745, OI SART-1784-793, respectively. The representative results from the peptide-specific CTL sublines (No. 48 and 53: the SART-1736-745-specific CTLs; No. 3 and 60: the SART-1748-757-specific CTLs; and No. 13 and 36: the SART-1784-793-specific CTLs) are shown in the figure. The other CTL sublines were mostly not reactive to any of the 10 mer, and only a few sublines were reactive to two of the three 10 mer (data not shown). None of the sublines were reactive to all the three peptides.

Appendix B

Figure 8. Dose dependency of nonapeptides. Various doses of each of the nonapeptides (SART-1₇₄₉₋₇₅₇, and SART-1₇₄₅₋₇₉₃) were loaded for 2 h on VA13 cells transfected with HLA-A2601 or -A0201 followed by testing their ability to stimulate IFN-γ production by the parental KE4 CTLs. Detailed methods are shown in the legend for Fig. 6.

Figure 9. Determination of an required for CTL-mediated recognition. Each an of the three nonapeptides (SART-1₇₃₆₋₇₄₄, SART-1₇₄₉₋₇₅₇, and SART-1₇₈₅₋₇₉₃) was substituted by glycine when it was not glycine, or

Determination of an Required for CTL-mediated Recognition. Each as of the three nonapeptides (SART-1736-744, SART-1₇₄₉₋₇₅₇, and SART-1₇₈₅₋₇₉₃) was substituted by glycine (G) when it was not glycine or by threonine when it was glycine. These peptides, along with the parental nonapeptides, were tested for their ability to stimulate IFN-y production by the parental KE4 CTLs. The representative results are shown in Fig. 9. The ability of the SART-1736-744 disappeared or extremely decreased when glutamic acid (E) or threonine (T) at position 9 (9E-G in Fig. 9) or 8 (8T-G in Fig. 9) was substituted, respectively. It also decreased when glycine or methionine (M) at position 4 or 6 was substituted, whereas it slightly increased when glycine or serine (S) at position 2 or 3 was substituted to threonine or glycine, respectively. The ability of SART-1749-757 disappeared when leucine (L) or alanine (A) at position 2 or 6 was substituted. It also decreased when glutamic acid or leucine at position 5 or 8 was substituted. In a case of the SART-1₇₈₅₋₇₉₃, the ability disappeared when glycine or serine at position 4 or 8 was substituted. It decreased when leucine or serine at position 2 or 5 was substituted, whereas slightly increased when serine at position 3 was substituted.

Induction of CTLs by the Nonapeptides. The three nonapeptides (SART-1₇₃₆₋₇₄₄, SART-1₇₄₉₋₇₅₇, and SART-1₇₈₅₋₇₉₃) were tested for their ability to induce the CTLs against the autologous tumor cells from PBMCs of a KE4 patient. PBMCs stimulated with the SART-1₇₃₆₋₇₄₄ and their subline No. 1 showed higher levels of the KE4 autologous tumor cell lysis than those of the KE3 allogenic tumor cell lysis (Table 2). In contrast, PBMCs cultured with IL-2 alone or stimulated with SART-1₇₄₉₋₇₅₇ or SART-1₇₈₅₋₇₉₃ equally lysed both the tumor cells. The cells from the total of 144 microcultures (48 microcultures from PBMCs alone, 48 stimulated with the SART-1₇₃₆₋₇₄₄, and 48 with the

threonine when it was glycine. These substituents along with the parental nonapeptides (10 μ M) were loaded for 2 h to the VA13 cells transfected with HLA-A2601 or -A0201 followed by testing their ability to stimulate IFN- γ production by the parental KE4 CTLs. Detailed methods are shown in the legend for Fig. 6.

284 A Gene Coding Squamous Cell Carcinoma Antigen

Table 2. Cytotoxicity in PBMCs Stimulated with the Three Nonapeptides*

		Percent specific lysis (E/T ratio of 5:1)		
Effector cells		KE3 (A2402/ A0201)	KE4 (A2601/ A2402)	
PBMC alone PBMC stimulated with SART-1 ₇₃₆₋₇₄₄ PBMC stimulated with SART-1 ₇₄₉₋₇₅₇ PBMC stimulated with SART-1 ₇₈₅₋₇₉₃	Bulk culture Bulk culture Subline No. 1 Bulk culture Subline No. 1 Bulk culture	11.50 15.80 0.00 26.10 0.00 12.00	12.10 28.50 12.00 27.50 0.00 13.00	

*The three nonapeptides (SART-1736-744, SART-1749-757, and SART-1785-793) were tested for their ability to induce CTLs against the KE4 tunor cells from PBMCs of a KE4 patient. After the stimulation, PBMCs or the sublines were tested for their cytotoxicity against the autologous KE4 and allogenic KE3 tumor cells at an E/T ratio of 5:1 in triplicate determinants in a 6-h 51Cr-release assay. The mean values of percent specific lysis are shown in the table.

SART-1₇₄₉₋₇₅₇) were independently tested for their activity to produce IFN-γ by recognition of the KE3, KE4 tumor, and VA13 cells. The cells from 10 of 48 of the microcultures from the PBMCs stimulated with the SART-1₇₃₆₋₇₄₄ produced higher levels of IFN-γ by recognition of the KE4, but not the other cells. The representative result of the one microculture showing positive IFN-γ production is shown in Fig. 10. In contrast, the cells from none of 48 of the microcultures besides one from PBMCs alone or PBMCs stimulated with the SART-1₇₄₉₋₇₅₇ produced higher IFN-γ by recognition of the KE4 tumor cells. The representative result of one microculture showing negative IFN-γ production is shown in Fig. 10.

Discussion

The results of this study suggest that SART-1 gene is a bicistronic gene encoding two proteins, SART-1800 (125 kD) in the nucleus and SART- 1_{259} (43 kD) in the cytosol. Most eukaryotic mRNAs have a single ORF and a single functional initiation site, which is usually the AUG codon that lies closest to the 5' end (21, 22). However, there are some viral mRNAs that break this rule; two proteins are translated from either the same or a different ORF (25-27). Several human genes are also suggested to be bicistronic. liver-enriched transcriptional-activator protein (LAP) mRNA was found to be translated into two proteins, LAP and the liver-enriched transcriptional-inhibitory protein (LIP; 28, 29). The LIP contains the DNA-binding and dimerization domains, but is devoid of the transcription-activation domain. LAP and LIP seem to exhibit antagonistic activities. Another example is the glycoprotein (gp) 75 encoding two

Figure 10. Induction of CTLs by the nonapeptides. The cells from total of 144 microcultures (48 microcultures from PBMCs alone, 48 stimulated with the SART-1₇₃₆₋₇₄₄, and 48 with the SART-1₇₄₉₋₇₄₇) were independently tested for their activity to produce IFN-γ in response to the KE3, KE4 tumor, and VA13 cells. The cells from 10 of 48 of the microcultures from the PBMCs stimulated with the SART-1₇₃₆₋₇₄₄ produced IFN-γ by recognition of the KE4, but not the other cells. The representative result of one microculture (subline 11) showing positive IFN-γ production is shown in the figure. In contrast, the cells from none of 48 of the microcultures besides one from either PBMCs alone or PBMCs stimulated with the SART-1₇₄₉₋₇₅₇ produced IFN-γ by recognition of the KE4 cells. The representative result of one microculture (subline 6 from PB-MCs alone or subline 14 from PBMCs with the SART-1₇₄₉₋₇₅₇) showing negative IFN-γ production is shown in the figure.

different polypeptides, gp75 recognized by sera from cancer patients and a peptide with 24 as recognized by CTLs (30). However, the mechanism of posttranscriptional regulation in human mRNAs is scarcely understood at the present time. Therefore, SART-1 shall be a novel tool to explore the mechanism.

It is of note that SART-1 encodes a leucine zipper motif around nt positions 1,125-1,202 in the third frame (corresponding peptide: RELEEIRAKLRLQAQSLSTVG-PRLAS). The leucine zipper motif is known to form homo- or heterodimers that can bind DNA and modulate transcription of many genes (31, 32). Indeed, the SART-1 gene product bound to DNA (our unpublished results). Although its biological functions are currently unknown, the SART-1800 protein might be involved in regulation of gene transcription, because it was localized in the nucleus of proliferating cells, possessed a leucine zipper motif, and bound to DNA. In contrast, the SART-1259 protein without leucine zipper motif expressed in the cytosol of SCCs and adenocarcinomas might inhibit the activity of the SART-1800. If this is the case, these proteins might be involved in regulation of proliferation of epithelial cells and their malignant transformation.

The region of antigenic peptides encoded by the 6A1-1D7 and SART-1 genes was 62 aa from the COOH terminus shared by the SART-1₂₅₉ and SART-1₈₀₀. Therefore, both proteins could be used for antigen processing to present the antigenic peptides on the groove of the HLA-A2601 molecule, although the SART-1₂₅₉ protein, but not the SART-1₈₀₀, is expected to be used as a major source of the antigenic peptides recognized by the KE4 CTL because of its preferential expression in the cytosol of tumor cells.

The three 10 mer and their nonapeptides in the region of SART-1 protein at positions of 730-800 were identified by an IFN-γ assay as antigenic peptides recognized by the HLA-A2601-restricted KE4 CTLs. Because of the presence of CTL sublines reacting to each of the three 10 mer among the 80 sublines tested, the parental KE4 CTL line would consist of the mixtures of these peptide-specific CTL clones. The other sublines were either not reactive to any of the 10 mer or reactive to two of the three 10 mer. Among these 10 mer, SART-1736-745, and also SART-1748-757 to some extent, but not SART-1785-794, had the activity in a ⁵¹Cr-release assay. SART-1₇₃₆₋₇₄₄, but not the others, possessed the ability to induce CTLs in PBMCs against the autologous tumor cells. Although the molecular basis for this discrepancy is presently unclear, SART-1736-744 might be naturally expressed on the HLA-A2601 allele of the KE4 tumor cells.

Our results suggest that threonine and glutamic acid at positions 8 and 9 of SART-1736-744 (KGSGKMKTE), leucine and alanine at positions 2 and 6 of SART-1749-757 (KLDEEALLK), and glycine and serine at positions 4 and 8 FSART-1₇₈₅₋₇₉₃ (VLSGSGKSM) are critical for the recognition of each peptide by the parental KE4 CTLs. In addition, glycine and methionine at positions 4 and 6 of SART-1₇₃₆₋₇₄₄, glutamic acid and leucine at positions 5 and 8 of SART-1749-757, and leucine and serine at positions 2 and 5 of SART-1₇₈₅₋₇₉₃ are important for the recognition. The binding motif for HLA-A2601 has not been determined as far as we know, and the KE4 CTL did not react to HLA-A2603+ SCC and thus seemed to be HLA-A2601 restricted (18). The F pocket residues of these two subtypes are different (33), and therefore a binding motif at position 9 for them may be different from each other. Subsequently, it is difficult to compare our results of aa residues at position 9 to others, showing that valine or a hydrophobic residue at position 9 is important for binding to HLA-A26 (34, 35). With regard to the position 2, threonine, leucine, or valine was reported as the motif for binding to HLA-A26. Our results indicated that leucine of both SART-1749-757

and SART-1785-793 was required for binding to HLA-A2601 allele, and substitution of glycine to threonine at position 2 of the SART-1736-744 rather increased its activity to induce IFN-y production by the parental KE4 CTLs. From the results of the experiments of dose-dependent reactions, both SART-1749-757 and SART-1785-793 seemed to have higher affinity for binding to the groove of HLA-A2601 molecule than that of SART-1736-744. Modified gp100 nonapeptides are reported to be more potent for induction from PBMCs of HLA-A2-restricted CTLs cytotoxic to melanoma cells (36). Therefore, a modified SART-1736-744 peptide at position 2 from glycine to threonine, or probably to leucine or valine, may increase affinity of the binding to HLA-A2601, which in turn increase the ability to induce CTLs restricted to HLA-A2601+ SCCs. This issue needs to be tested for development of better cancer vaccines.

The SART-1736-744 peptide, but not the others, induced from the patient's PBMCs the CTLs restricted to the autologous tumor cells. CTL precursors in the patient's PBMCs increased by 10-fold after three rounds of stimulation with the peptide in vitro. This peptide failed to induce CTLs in PBMCs from any of three HLA-A2601+ healthy donors tested under the conditions used in this study (data not shown). The SART-1₂₅₉ protein was expressed in the cytosol of the majority of SCCs tested and half of lung adenocarcinomas. Because of its preferential expression in the cytosol of SCCs and adenocarcinomas, the SART-1259 protein, but not the SART-1800, could be a major source of antigenic peptides recognized by CTLs. The HLA-A26 allele is found in ~22% of Japanese, 17% of Caucasians, and 14% of Africans (37). The A2601 subtype is found most frequently among the A26 subtypes (38). Therefore, the SART-1₂₅₉ protein along with the SART-1₇₃₆₋₇₄₄ peptide could be useful for specific immunotherapy of relatively large numbers of HLA-A2601 patients with SCCs or adenocarcinomas as a cancer vaccine and also an antigen in vitro to induce CTLs for adoptive cellular therapy.

We thank Dr. Teruo Kakegawa of Kurume University for critical discussion.

This study was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, and Culture (Japan) and a grant from the Science Research Promotion Fund of the Japanese Private School Promotion Foundation.

Address correspondence to Kyogo Itoh, Department of Immunology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830, Japan. Phone: 81-942-31-7551; Fax: 81-942-31-7699; E-mail: kitoh@kutume.ktarn.or.jp

Received for publication 28 August 1997 and in revised form 11 November 1997.

References

- van der Bruggen, P., C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, A. Knuth, and T. Boon. 1991. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 254:1643–1647.
- Kawakami, Y., S. Eliyahu, C.H. Delgado, P.F. Robbins, L. Rivoltini, S.L. Topalian, T. Miki, and S.A. Rosenberg. 1994. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tu-

286 A Gene Coding Squamous Cell Carcinoma Antigen

Appendix B

- mor. Proc. Natl. Acad. Sci. USA. 91:3515-3519.
- 3. Kawakami, Y., S. Eliyahu, C.H. Delgado, P.F. Robbins, K. Sakaguchi, E. Appella, J.R. Yannelli, G.J. Adema, T. Miki, and S.A. Rosenberg. 1994. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with *in vivo* tumor rejection. *Proc. Natl. Acad. Sci. USA*. 91:6458–6462.
- Brichard, V., A. Van Pel, T. Wölfel, C. Wölfel, E. De Plaen, B. Lethé, P. Coulie, and T. Boon. 1993. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 178: 489–495.
- Robbins, P.F., M. El-Gamil, Y.F. Li, Y. Kawakami, D. Loftus, E. Appella, and S.A. Rosenberg. 1996. A mutated β-catenin gene encodes a melanoma-specific antigen recognized by tumor infiltrating lymphocytes. J. Exp. Med. 183:1185–1192.
- Guilloux, Y., S. Lucas, V.G. Brichard, A. Van Pel, C. Viret, E. De Plaen, F. Brasseur, B. Lethé, F. Jotereau, and T. Boon. 1996. A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanoma is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J. Exp. Med. 183:1173–1183.
- Traversari, C., P. van der Bruggen, I.F. Luescher, C. Lurquin, P. Chomez, A. Van Pel, E. De Plaen, A. Amar-Costesec, and T. Boon. 1992. A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E. J. Exp. Med. 176:1453-1457.
- van der Bruggen, P., J. Bastin, T. Gajewski, P.G. Coulie, P. Boël, C. De Smet, C. Traversan, A. Townsend, and T. Boon. 1994. A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur. J. Immunol. 24:3038-3043.
- Gaugler, B., B. Van den Eynde, P. van der Bruggen, P. Romero, J.J. Gaforio, E. De Plaen, B. Lethé, F. Brasseur, and T. Boon. 1994. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J. Exp. Med. 179: 921-930.
- Cox, A.L., J. Skipper, Y. Chen, R.A. Henderson, T.L. Darrow, J. Shabanowitz, V.H. Engelhard, D.F. Hunt, and C.L. Slingluff, Jr. 1994. Identification of a peptide recognized by five melanoma-specific human cytotoxic T cell lines. *Science*. 264:716-719.
- Kawakami, Y., S. Eliyahu, K. Sakaguchi, P. F. Robbins, L. Rivoltini, J. R. Yannelli, E. Appella, and S. A. Rosenberg. 1994. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J. Exp. Med. 180:347-352.
- 12. Kawakami, Y., S. Eliyahu, C. Jennings, K. Sakaguchi, X. Kang, S. Southwood, P.F. Robbins, A. Sette, E. Appella, and S.A. Rosenberg. 1995. Recognition of multiple epitopes in the human melanoma antigen gp 100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J. Immunol. 154:3961–3968.
- Kang, X., Y. Kawakami, M. El-Gamil, R. Wang, K. Sakaguchi, J.R. Yannelli, E. Appella, S.A. Rosenberg, and P.F. Robbins. 1995. Identification of a tyrosinase epitope recognized by HLA-A24-restricted, tumor-infiltrating lymphocytes. J. Immunol. 155:1343–1348.
- Wang, R.-F., E. Appella, Y. Kawakami, X. Kang, and S.A. Rosenberg. 1996. Identification of TRP-2 as a human tumor

- antigen recognized by cytotoxic T lymphocytes. J. Exp. Med. 184:2207–2216.
- Castelli, C., W.J. Storkus, M.J. Maeurer, D.M. Martin, E.C. Huang, B.N. Pramanik, T.L. Nagabhushan, G. Parmiani, and M.T. Lotze. 1995. Mass spectrometric identification of a naturally processed melanoma peptide recognized by CD8+ cytotoxic T lymphocytes. J. Exp. Med. 181:363-368.
- Marchand, M., P. Weynants, E. Rankin, F. Arienti, F. Belli, G. Parmiani, N. Cascinelli, A. Bourlond, R. Vanwijck, Y. Humblet, et al. 1995. Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3. Int. J. Cancer. 63:883-885.
- Mandruzzato, A., F. Brasseur, G. Andry, T. Boon, and P. van der Bruggen. 1997. A CASP-8 mutation recognized by cytotoxic T lymphocytes on a human head and neck carcinoma. J. Exp. Med. 186:785-793.
- 18. Nakao, M., H. Yamana, Y. Imai, Y. Toh, U. Toh, A. Kimura, S. Yanoma, T. Kakegawa, and K. Itoh. 1995. HLA A2601-restricted CTLs recognize a peptide antigen expression on squamous cell carcinoma. *Cancer Res.* 55:4248-4252.
- Shichijo, S., A. Hayashi, S. Takamori, R. Tsunosue, T. Hoshino, M. Sakata, T. Kuramoto, K. Oizumi, and K. Itoh. 1995. Detection of MAGE-4 protein in lung cancer. *Int. J. Cancer.* 54:158-165.
- Kim, T., A.C. von Eschenbach, M.D. Filaccio, K. Hayakawa, D.R. Parkinson, C.M. Balch, and K. Itoh. 1990.
 Clonal analysis of lymphocytes from tumor, peripheral blood, and nontumorous kidney in primary renal cell carcinoma. Cancer Res. 50:5263–5268.
- Kozak, M. 1986. Bifunctional messenger RNAs in eukaryotes. Cell. 47:481–483.
- 22. Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229-241.
- Larsen, B., J. Peden, S. Matsufuji, T. Matsufuji, K. Brady, R. Maldonado, N.M. Wills, O. Fayet, J.F. Atkins, and R.F. Gesteland. 1995. Upstream stimulators for recoding. *Biochem. Cell Biol.* 73:1123–1129.
- Sachs, A.B., P. Sarnow, and M.W. Hentze. 1997. Stating at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 89:831-838.
- Nomoto, A., N. Kitamura, F. Golini, and E. Wimmer. 1977. The 5'-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked VPg. Proc. Natl. Acad. Sci. USA. 74:5345–5349.
- Pelletier, J., and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. *Nature*. 334:320–325.
- Pilipenko, E.V., A.P. Gmyl, S.V. Maslova, Y.V. Svitkin, A.N. Sinyakov, and V.I. Agol. 1992. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell. 68:119–131.
- 28. Descombes, P., and U. Schibler. 1991. A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. *Cell*. 67:569-579.
- Ossipow, V., P. Descombes, and U. Schibler. 1993. CCAAT/ enhancer-binding protein mRNA is translated into multiple proteins with different transcription activation potentials. Proc. Natl. Acad. Sci. USA. 90:8219–8223.
- Wang, R.-F., M.R. Parkhurst, Y. Kawakami, P.F. Robbins, and S.A. Rosenberg. 1996. Utilization of an alternative open reading frame of a normal gene in generating a novel human cancer antigen. J. Exp. Med. 183:1131-1140.

- 31. Curran, T., and B.R. Franza, Jr. 1988. Fos and Jun: the AP-1 connection. *Cell.* 55:395–397.
- 32. Ron, D., and J.F. Habener. 1990. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. *Genes Dev.* 6: 439–453.
- 33. Arnett, K.L., and P. Parham. 1995. HLA class I nucleotide sequences. *Tissue Antigens*. 45:217–257.
- 34. Goulder, P., C. Conlon, K. McIntyre, and A. McMichael. 1994. Identification of a novel human leukocyte antigen A26-restricted epitope in a conserved region of Gag. *AIDS (Phila)*. 10:1441–1443.
- 35. Tanigaki, N., D. Fruci, A. Chersi, G. Falasca, R. Tosi, and R.H. Butler. 1994. HLA-A2-binding peptides cross-react not

- only within the A2 subgroup but also with other HLA-A-locus allelic products. Hum. Immunol. 39:155-162.
- 36. Parkhurst, M.R., M.L. Salgaller, S. Southwoog, P.F. Robbins, A. Sette, S.A. Rosenberg, and Y. Kawakami. 1996. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A0201-binding residues. J. Immunol. 157:2539–2548.
- 37. Imanishi, T., T. Akaza, A. Kimura, K. Tokunaga, and T. Gojobori. 1992. Allele and haplotype frequencies for HLA and complement loci in various ethnic groups. In HLA 1991. Vol. 1. K. Tsuji, M. Aizawa, and T. Sasazuki, editors. Oxford, Scientific Publications, Oxford. 1065–1220.
- 38. Date, Y., A. Kimura, H. Kato, and T. Sasazuki. 1996. DNA typing of the HLA-A gene: population study and identification of four new alleles in Japanese. *Tissue Antigens*. 47:93–101.