# Lösungen zu Übungsblatt 3 Kryptographische Verfahren

Besprechung 13. November 2015

### Aufgabe 3.1. Polynomiell Sichere Kaskadenverschlüsselung

a)

Um ein Textpaar (m,c) zu entschlüsseln, können alle Ergebnisse der Verschlüsselungen  $E_{k_i}(m)$  und die der Entschlüssselungen  $D_{k_j}(c)$  miteinander verglichen werden. Im Fall  $E_{k_i}(m) = D_{k_j}(c)$  gilt, dass ein valider Schlüssel zum Textpaar (m,c) genau  $(k_i,k_j)$  ist. Es sind also nun nur genau  $2|\mathcal{K}|$  Ver- bzw. Entschlüsselungsoperationen nötig.

b)

Genau wie bei a) können hier Zwischenergebnisse verglichen werden. Dabei müssen wir in einer Richtung  $|\mathcal{K}|^2$  Verschlüsselungen anwenden (eben genau  $E_{k_i}(E_{k_j}(m))$ ), in der anderen genau |K| viele Entschlüsselungen,  $D_{k_i}(c)$ .

Es sind also  $|K|^2 + |K|$  Ver- und Entschlüsselungsoperationen nötig.

c)

Wählt man  $k_2 = k_1$ , so ergibt sich direkt:

$$\begin{split} 3\mathsf{DES}_{k_1,k_2}(\mathfrak{m}) &= \mathsf{DES}_{k_1} \left( \mathsf{DES}_{k_2}^{-1} \left( \mathsf{DES}_{k_1}(\mathfrak{m}) \right) \right) \\ 3\mathsf{DES}_{k_1,k_1}(\mathfrak{m}) &= \mathsf{DES}_{k_1} \left( \mathsf{DES}_{k_1}^{-1} \left( \mathsf{DES}_{k_1}(\mathfrak{m}) \right) \right) \\ 3\mathsf{DES}_{k_1,k_1}(\mathfrak{m}) &= \mathsf{DES}_{k_1} \left( \mathfrak{m} \right) \end{split}$$

Das heißt, um DES zu simulieren, muss in 3DES nur zweimal der selbe Schlüssel gewählt werden.

#### Aufgabe 3.2. Betriebsmodi

| $\mathfrak{m}_1$ | $\mathfrak{m}_2$ | $m_3$ | $\mathfrak{m}_4$ | $\mathfrak{m}_5$ | $\mathfrak{m}_6$ | $m_7$ | $\mathfrak{m}_8$ | $\mathfrak{m}_9$ | $\mathfrak{m}_{10}$ | $\mathfrak{m}_{11}$ | $\mathfrak{m}_{12}$ | $\mathfrak{m}_{13}$ | k | $c_0$ |
|------------------|------------------|-------|------------------|------------------|------------------|-------|------------------|------------------|---------------------|---------------------|---------------------|---------------------|---|-------|
| K                | R                | Υ     | Р                | Т                | 0                | G     | R                | Α                | Р                   | Н                   |                     | Е                   | D | Χ     |
| 10               | 17               | 24    | 15               | 19               | 14               | 6     | 17               | 0                | 15                  | 7                   | 8                   | 4                   | 3 | 23    |

# a) CBC-Modus

| $\oplus$ | $: [23+10]_{26} = [33]_{26}$  | <sub>3</sub> = | 7  |
|----------|-------------------------------|----------------|----|
| $c_1$    | $: [7+3]_{26}$                | _              | 10 |
| $\oplus$ | $: [10+17]_{26} = [27]_{26}$  | 3 =            | 1  |
| $c_2$    | $: [1+3]_{26}$                | _              | 4  |
| $\oplus$ | $: [4+24]_{26}$ $= [28]_{26}$ | 3 =            | 2  |
| $c_3$    | $: [2+3]_{26}$                | =              | 5  |
| $\oplus$ | $: [5+15]_{26}$               | =              | 20 |
| $c_4$    | $: [20+3]_{26}$               | =              | 23 |
| $\oplus$ | $: [23+19]_{26} = [42]_{26}$  | 3 =            | 16 |
| $c_5$    | $: [16+3]_{26}$               | =              | 19 |
| $\oplus$ | $: [19+14]_{26} = [33]_{26}$  | ; =            | 7  |
| $c_6$    | $: [7+3]_{26}$                | =              | 10 |
| $\oplus$ | $: [10+6]_{26}$               | =              | 16 |
| $c_7$    | $: [16+3]_{26}$               | =              | 19 |
| $\oplus$ | $: [19+17]_{26} = [36]_{26}$  | ; =            | 10 |
| $c_8$    | $: [10+3]_{26}$               | -              | 13 |
| $\oplus$ | $: [13+0]_{26}$               | =              | 13 |
| $c_9$    | $: [13+3]_{26}$               | =              | 16 |
| $\oplus$ | $: [16+15]_{26} = [31]_{26}$  | ; =            | 5  |
| $c_{10}$ | $: [5+3]_{26}$                | -              | 8  |
| $\oplus$ | $: [8+7]_{26}$                | =              | 15 |
| $c_{11}$ | $: [15+3]_{26}$               | =              | 18 |
| $\oplus$ | $: [18 + 8]_{26}$             | =              | 0  |
| $c_{12}$ | $: [0+3]_{26}$                | =              | 3  |
| $\oplus$ | $: [3+4]_{26}$                | =              | 7  |
| $c_{13}$ | $: [7+4]_{26}$                | =              | 11 |

Ergebnis: KEFXTKTNQISDL

# b) CTR-Modus

| $\oplus : [23+1]_{26}$   | =1   |
|--------------------------|------|
| $c_1: [1+10]_{26}$       | = 11 |
| $\oplus : [23 + 2]_{26}$ | =2   |
| $c_2: [2+17]_{26}$       | = 19 |
| $\oplus : [23 + 3]_{26}$ | =3   |
| $c_3: [3+24]_{26}$       | =1   |
| $c_4: [4+15]_{26}$       | = 19 |
| $c_5: [5+19]_{26}$       | = 24 |
| $c_6: [6+14]_{26}$       | = 20 |
| $c_7:[7+6]_{26}$         | = 16 |
| $c_8: [8+17]_{26}$       | = 25 |
| $c_9:[9+0]_{26}$         | =9   |
| $c_{10}: [10+15]_{26}$   | =25  |
| $c_{11}:[11+7]_{26}$     | = 18 |
| $c_{12}: [12+8]_{26}$    | = 20 |
| $c_{13}: [13+4]_{26}$    | =17  |

Ergebnis: LTBTYUNZJZSUR

### c) Counter-Modus

### d) OFB-Modus

| $s_1 : [23 + 3]_{26}$ | =0   |
|-----------------------|------|
| $c_1: [10+0]_{26}$    | = 10 |
| $s_2 : [0+3]_{26}$    | =3   |
| $c_2: [17+3]_{26}$    | =20  |
| $s_3: [3+3]_{26}$     | =6   |
| $c_3: [24+6]_{26}$    | =4   |
| $s_4: [6+3]_{26}$     | =9   |
| $c_4: [15+9]_{26}$    | =24  |
| $s_5: [9+3]_{26}$     | =12  |
| $c_5: [19+12]_{26}$   | =5   |
| $s_6: [12+3]_{26}$    | =15  |
| $c_6: [14+15]_{26}$   | =3   |
| $s_7: [15+3]_{26}$    | = 18 |
| $c_7: [6+18]_{26}$    | =24  |
| $s_8: [18+3]_{26}$    | =21  |
| $c_8: [17+21]_{26}$   | =12  |
| $s_9: [21+3]_{26}$    | =24  |
| $c_9:[0+24]_{26}$     | =24  |
| $s_{10}: [24+3]_{26}$ | =1   |
| $c_{10}: [15+1]_{26}$ | = 16 |
| $s_{11}: [1+3]_{26}$  | =4   |
| $c_{11}: [7+4]_{26}$  | = 11 |
| $s_{12}: [4+3]_{26}$  | =7   |
| $c_{12}:[8+7]_{26}$   | =15  |
| $s_{13}: [7+3]_{26}$  | =10  |
| $c_{13}: [4+10]_{26}$ | =14  |
|                       |      |

Ergebnis: KUEYFDYMYQLPO

# Aufgabe 3.3. Kaskade

Unter der Annahme, dass ein Angreifer  $\mathcal A$  existiert mit

$$P\left(\mathsf{Att}_{\mathcal{A},\Pi}^{\mathsf{CP}}(\mathfrak{n})=1\right)=\frac{1}{2}+\frac{1}{\mathfrak{p}(\mathfrak{n})}$$

lässt sich das Schema aus  $\ref{eq:construieren}$  konstruieren. Der konstruierte Angreifer  $\mathcal{A}'$  spielt gegenüber  $\mathcal{A}$  die Rolle von  $\Pi = \Pi^1 \circ \Pi^2$ . Er erhält von  $\mathcal{A}$  zwei Klartexte, leitet diese an  $\Pi^2$  weiter, das einen zufällig auswählt und mit  $E_2$  verschlüsselt. Den Kryptotext  $\widetilde{c}$  verschlüsselt  $\mathcal{A}'$  mit  $E_1$  und schickt das Ergebnis  $E^1_{k_1}(E^2_{k_2}(m_b))$  an  $\mathcal{A}$  zurück.  $\mathcal{A}$  entscheidet sich nun für einen der beiden Klartexte.

 $\mathcal{A}'$  leitet die Entscheidung an  $\Pi^2$  weiter. Offensichtlich ist  $\mathcal{A}'$  genau dann erfolgreich, wenn  $\mathcal{A}$  erfolgreich ist. Damit wäre das sicher Kryptosystem  $\Pi^2$  mit nicht vernachlässigbarer Wahrscheinlichkeit geknackt.



Abbildung 1: Ablauf des hypothetischen Angriffs