Universidade Estadual de Campinas

Faculdade de Engenharia Agrícola

COMPRESSÃO UNIAXIAL

Nome: Renan da Silva Guedes | 223979

Conteúdo

1	Intr	Introdução				
2	Obj	Objetivo				
3	Mat	ceriais e Métodos				
4	Resultados e discussão					
5	Conclusão					
6	Anexos					
${f L}$	ista	de Figuras				
	1	Elaboração do corpo de prova e execução das medidas de diâmetro (D) e e altura (h) do mesmo	4			
	2	Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a 0.5mm/s	4			
	3	Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a $0.8\mathrm{mm/s}$	5			
	4	Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a $1.2\mathrm{mm/s}$	5			
	5	Comportamento do módulo de elasticidade médio do corpo de prova sob diferentes velocidades na compressão	6			
${f L}$	ista	de Tabelas				
	1	Dimensão dos corpos de prova submetidos aos testes de compressão uniaxial para três valores de velocidade	6			
	2	Desvios referentes ao conjunto de pontos para cada velocidade	6			

1 Introdução

O experimento realizado terá como base ensaios de compressão uniaxial em corpos de prova de batata inglesa. Tendo em vista a importância do conhecimento das características mecânicas de um produto, ao analisar os seus atributos de forma empírica, possibilita-se explorar esses elementos na elaboração de projetos, com base em seu comportamento, peculiaridades e limitações.

2 Objetivo

Determinação do módulo de elasticidade (Módulo de Young).

3 Materiais e Métodos

Para a realização do experimento foi feito uso de batatas inglesas, cortador de batata cilíndrico, paquímetro digital, máquina universal de ensaios e *software* para aquisição dos dados.

A figura 1 ilustra os procedimentos adotados na primeira parte do experimento. Inicialmente, fazendo uso das batatas, submeteu-se as mesmas aos cortadores cilíndricos, de modo a obter corpos de prova uniformes. Feito isso, com o auxílio de um paquímetro, foram coletados os valores de altura e diâmetro.

Dessa forma, repetiu-se o procedimento para 15 corpos de prova e todos os valores foram anotados como mostra a tabela 1. Logo em seguida, os 15 corpos de prova foram divididos em três grupos. Cada grupo de 5 foi ensaiado a uma determinada velocidade como também mostra a tabela 1.

Ao longo da realização dos ensaios, com o auxílio do *software* para aquisição de dados, foi feito o armazenamento dos valores de força medidos (F, em kgf) pela célula de carga.

Em seguida, foram construídos os gráficos da tensão (σ) em função da deformação do corpo (ϵ) , como é visto nas figuras 2, 3 e 4. Com base no comportamento das curvas, foi realizado o ajuste da reta que melhor se adéqua ao trecho de menor variação adotado para o conjunto de 5 curvas em cada parte. Desta maneira, após construir as retas, aplicando o comando Fit do Wolfram Mathematica foram obtidas as equações de reta que apresentam como propriedade o coeficiente angular igual ao módulo de elasticidade médio procurado.

Por fim, com os valores do módulo de elasticidade obtidos (E_1, E_2, E_3) foi construído o gráfico que os relaciona com a velocidade de deformação aplicada aos corpos de prova (v_1, v_2, v_3) , como é visto na figura 5.

4 Resultados e discussão

A partir dos gráficos obtidos (Figuras 2, 3 e 4), nota-se que ao elevar a velocidade de deformação dos corpos de prova cilíndricos ocorre elevação nos valores de módulo de elasticidade (Figura 5).

Na primeira parte do experimento, sob velocidade de $0.5 \,\mathrm{mm/s}$, foi obtido um valor de $E_1 = 3.22 \,\mathrm{MPa}$ com base no ajuste realizado. Na segunda etapa, a $0.8 \,\mathrm{mm/s}$ o comportamento mecânico da batata inglesa ocasionou aumento de $0.32 \,\mathrm{MPa}$ ($E_2 = 3.54 \,\mathrm{MPa}$) e, por fim, na bateria final ($v_3 = 1.2 \,\mathrm{mm/s}$), o valor de E foi novamente incrementado levando a um $E_3 = 3.77 \,\mathrm{MPa}$.

5 Conclusão

A partir do ensaio realizado, nota-se que ao aplicar cargas mais rapidamente aos corpos de prova de batata inglesa, a mesma apresentou uma elevação do módulo de elasticidade como foi discutido. Dessa forma, conclui-se que deformações quando empregadas num menor intervalo de tempo ocasionam aumento nas tensões normais sentidas pelo corpo empregado no ensaio.

6 Anexos

Figura 1: Elaboração do corpo de prova e execução das medidas de diâmetro (D) e e altura (h) do mesmo.

Figura 2: Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a $0.5\,\mathrm{mm/s}$

Figura 3: Gráfico da tensão ($\sigma,$ em MPa) em função da deformação ($\epsilon)$ sob compressão a $0.8\,\mathrm{mm/s}$

Figura 4: Gráfico da tensão (σ , em MPa) em função da deformação (ϵ) sob compressão a 1.2 mm/s

Figura 5: Comportamento do módulo de elasticidade médio do corpo de prova sob diferentes velocidades na compressão.

Corpo de Prova	Diâmetro (mm)	Altura (mm)	Velocidade (mm/s)
1	13.16	30.83	0.5
2	12.89	31.34	0.5
3	13.20	30.85	0.5
4	13.25	31.80	0.5
5	13.15	32.25	0.5
6	12.81	30.75	0.8
7	12.89	31.78	0.8
8	13.44	31.14	0.8
9	13.60	30.91	0.8
10	13.52	31.03	0.8
11	13.15	31.50	1.2
12	13.35	30.70	1.2
13	13.53	30.71	1.2
14	13.32	31.40	1.2
15	13.28	32.51	1.2

Tabela 1: Dimensão dos corpos de prova submetidos aos testes de compressão uniaxial para três valores de velocidade.

Velocidade	Desvio Padrão	Desvio Padrão
(mm/s)	da deformação	da tensão normal
0.5	0.049	0.19
0.8	0.053	0.21
1.2	0.024	0.17

Tabela 2: Desvios referentes ao conjunto de pontos para cada velocidade.