电工电子学

第二章 电路分析基础

正弦交流电路

相量表示法

设有个正弦电压为 $u=\sqrt{2}\sin(\omega t+\varphi)$,那么相量法表示该电压即为 $\dot{U}=U\angle\varphi$,这里U表示正弦电压的有效值。

只有在各个正弦量均为同一频率时,各正弦量变换成相量进行运算才有意义。

电阻

$$\dot{U} = R\dot{I}$$

电感

$$\dot{U}=jX_L\dot{I}$$

其中 $X_L=\omega L=2\pi fL$,称为感抗。 X_L 是电压有效值与电流有效值之比,而不是它们的瞬时值之比。当电流的频率为零即直流时,感抗为零,故电感在直流稳态时相当于短路。

电容

$$\dot{U} = -jX_C\dot{I}$$

其中 $X_C=\frac{1}{\omega C}=\frac{1}{2\pi fC}$,称为容抗。对于一定的C来说,频率越高 ,则容抗越小,对正弦电流的"阻止"能力越弱,即意味着高频电流容易通过电容。直流时频率为零,容抗为无穷大,故电容在直流电路处于稳定状态时不能通过电流,相当于开路。

基尔霍夫的相量形式

KCL的相量形式为

$$\sum \dot{I} = 0$$

在电路任一节点上的电流相量代数和为零。

KVL的相量形式为

$$\sum \dot{U} = 0$$

沿任一回路, 各支路电压相量的代数和为零。P65

例题1

有时为了测量电感线圈的电感和电阻,将它和一个电阻R串联后接在工频交流电源上,如右图所示。 现测得 $U=220V,U_R=79V,U_L=193V,I=0.4A$ 。 试求线圈的电阻 R_L 和电感L。

以电流为参考相量作出电路的相量图。

$$\cosarphi=rac{U^2+U_R^2-U_L^2}{2UU_R}=0.5, arphi=60^\circ$$

由 $U\sin\varphi=\omega LI$,可知

$$L = \frac{U\sin\varphi}{\omega I} = 1.517H$$

又由 $U_R + R_L I = U \cos \varphi$,可知

$$R_L = \frac{U\cos\varphi - U_R}{I} = 77.5\Omega$$

例题2

如右图所示电路中含有一个晶体管的小信号模型。已知 $r_{be}=700\Omega,\beta=30,R_E=30\Omega,R_C=2.4k\Omega,C=5\mu F,\dot{U}_i=20\angle0^\circ mV$,求外加信号 u_i 的频率为1000Hz时的 \dot{U}_b 和 \dot{U}_o

f = 1000Hz时

瞬时功率

$$p = ui = UI\cos\varphi(1-\cos2\omega t) + UI\sin\varphi\sin2\omega t$$

有功功率

电路中的电感和电容并不消耗功率,只是起能量吞吐作用。电路中的平均功率等于电阻所消耗的功率,因此平均功率又称为有功功率。

对于正弦电路, 其平均功率

$$P=UI\cos\varphi$$

 $\cos \varphi$ 称为功率因数(用 λ 表示), φ 称为功率因数角