Fall 2024

Summary: Groups

1 Definition and first examples

Definition 1.1. A group is a set G with a binary operation (multiplication) $: G \times G \to G$ satisfying the axioms:

- 1. the group operation is associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 2. there exists an identity element $e \in G$ such that $a \cdot e = e \cdot a = a$ for any $a \in G$
- 3. for each $a \in G$ there exists the inverse element $a^{-1} \in G$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

Definition 1.2. A group G is *finite* if the set G is finite.

Definition 1.3. A group G is abelian (commutative) if $a \cdot b = b \cdot a$ for all $a, b \in G$.

Definition 1.4. If G is finite as a set, then the *order of the group* G is the number of elements in G. Notation: |G|.

Definition 1.5. *Generators* of a group G form a subset $S \subset G$ such that any element of G can be written as a product of the elements in S.

Definition 1.6. Any equation satisfied by the generators is a *relation* in G.

Definition 1.7. A presentation of G in terms of generators and relations is the expression

$$\langle S \mid R_1, R_2, \dots R_k \rangle$$

where S is a set of generators of G and $R_1, R_2, \dots R_k$ are the relations satisfied by the elements in S such that any other relation follows from these.

Definition 1.8. Let g be an element in the group G. The smallest positive integer n such that $g^n = 1$, if it exists, is called the *order of the element* g *in* G and denoted o(g). If there is no such integer, then we say that g is of infinite order (this implies that the group G is infinite).

2 Group homomorphisms. Subgroups and normal subgroups.

Definition 2.1. A map $\phi: G \to H$ between two groups is a *group homomorphism* if

$$\phi(x \cdot_G y) = \phi(x) \cdot_H \phi(y)$$

for any $x, y \in G$.

Definition 2.2. A group isomorphism is a homomorphism $\phi: G \to H$ that is a bijection between the sets G and H.

Definition 2.3. A group endomorphism is a homomorphism $\phi: G \to G$. A group automorphism is an isomorphism $\phi: G \to G$.

Definition 2.4. The *kernel* of a homomorphism $\phi: G \to H$ is the set of all elements $g \in G$ such that $\phi(g) = 1_H$: Ker $\phi = \{g \in G : \phi(g) = 1\}$. The image of a homomorphism $\phi: G \to H$ is the set Im $\phi = \{h \in H \mid \exists g \in G : \phi(g) = h\}$.

Remark 2.5. If G is presented in terms of generators and relations, to check if a given map $\phi: G \to H$ is a group homomorphism, it suffices to check that the images of the generators of G in H satisfy the relations for the generators in G.

Definition 2.6. A *subgroup* $H \subset G$ is a nonempty subset of G that forms a group with respect to the group operation in G. In particular, $1 \in H$ and for any $a, b, \in H$, we have $a \cdot b \in H$.

Definition 2.7. A subgroup $H \subset G$ is *normal* if $qhq^{-1} \in H$ for any $g \in G, h \in H$. Notation: $H \triangleleft G$.

Proposition 2.8. If G is abelian, any subgroup is normal in $G: H \subset G \implies H \triangleleft G$.

Proposition 2.9. Let $\phi: G \to H$ be a group homomorphism. Then

- 1. The image of ϕ is a subgroup in $H: \phi(G) \subset H$.
- 2. The kernel of ϕ is a normal subgroup in G: $\operatorname{Ker} \phi \lhd G$.

3 The dihedral group D_n .

Definition 3.1. The *dihedral group* D_n , $n \geq 3$ is the group of rigid symmetries of a flat regular n-gon. The group operation is composition.

Proposition 3.2. The dihedral group D_n is a non-abelian group of order 2n. It has the following presentation in generators and relations:

$$D_n = \langle r, s \mid r^n = 1, s^2 = 1, srs = r^{-1} \rangle.$$

4 Cosets. Lagrange's theorem.

Definition 4.1. Let $H \subset G$ be a subgroup. A *left coset* with respect to H in G is the subset of element of G defined as follows:

$$gH = \{gh, h \in H\}.$$

Proposition 4.2. Let H be a subgroup of G.

- 1. Two cosets xH and yH are either equal, or disjoint.
- 2. Any element $g \in G$ belongs to an H-coset.
- 3. If H is finite, |xH| = |yH| for any $x, y \in G$.

Theorem 4.3. (Lagrange's Theorem). Let G be a finite group, and $H \subset G$ a subgroup. Then the order of H divides the order of G.

Definition 4.4. In the conditions of Lagrange's theorem, the number [G:H] = |G|/|H| is called the *index of H in G*. It equals to the number of left *H*-cosets in *G*.

Corollary 4.5. In a finite group, the order of any element divides the order of the group.

Corollary 4.6. Let G be a finite group, and $g \in G$ an element. Then $g^{|G|} = 1$.

Corollary 4.7. Let G be a finite group of prime order, |G| = p. Then G is cyclic (= there exists $x \in G$ such that $G = \{1, x, x^2, \dots x^{p-1}\}$.)

5 Applications of Lagrange's theorem in arithmetic.

Definition 5.1. The *group of units* in $\mathbb{Z}/n\mathbb{Z}$ is the group of all invertible elements in $\mathbb{Z}/n\mathbb{Z}$ with respect to multiplication. It is denoted $((\mathbb{Z}/n\mathbb{Z})^*,\cdot)$.

Proposition 5.2. Let $[a]_n \in \mathbb{Z}/n\mathbb{Z}$, $[a]_n \neq [0]_n$. Then $[a]_n$ is a unit in $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(a,n) = 1. In particular, $|((\mathbb{Z}/n\mathbb{Z})^*, \cdot)| = \varphi(n)$, where $\varphi(n)$ is the Euler's totient function of n.

Theorem 5.3. (Fermat's Little Theorem (FLT)). Let p be a prime, and $a \in \mathbb{Z}$ such that p does not divide a. Then

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Theorem 5.4. (Euler's Theorem). Let $a, n \in \mathbb{Z}^+$, such that gcd(a, n) = 1. Then

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
,

where $\varphi(n)$ is Euler's totient function of n.

Remark 5.5. For a prime p, the group $((\mathbb{Z}/p\mathbb{Z})^*, \cdot)$ is cyclic of order p-1.

6 Quotient group.

Proposition 6.1. Let G be a group, and $N \triangleleft G$ a normal subgroup. The set of left N-cosets in G is a group under the operation

$$(xN)(yN) = (xyN).$$

Definition 6.2. Let $N \triangleleft G$. Then the group of left N-cosets in G is called the *quotient group* and denoted G/N.

Proposition 6.3. Let $\phi: G \to H$ be a group homomorphism. Then $G/\mathrm{Ker}\phi \simeq \mathrm{Im}\phi$.

7 The symmetric group S_n

Definition 7.1. Let G be a finite group and E a finite set. We say that G acts on E (by permutations) if for all $x \in E$ and $g \in G$ the element $g \cdot x \in E$ is defined, such that

- 1. $1 \cdot x = x \quad \forall x \in E$,
- 2. $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x) \quad \forall g_1, g_2 \in G, \quad \forall x \in E.$

Definition 7.2. Let G act on the set E. The *orbit* of $x \in E$ is the set

$$Orb_x = \{g \cdot x, g \in G\}.$$

The orbits of size 1 are called the *fixed points* of the action.

Definition 7.3. The *symmetric group* of order n is the group of all permutations (bijective maps) of $n \ge 1$ ordered elements:

$$\rho: \{1, 2, \dots n\} \to \{1, 2, \dots n\},\$$

where $\rho(i) = k \in \{1, 2, ... n\}$ and $i \neq j \implies \rho(i) \neq \rho(j)$. The product in S_n is the composition of permutations. The neutral element is the trivial permutation. The inverse element for such that $\rho(i) = k$ is $\rho^{-1}(k) = i$ for all $i, k \in \{1, ... n\}$. The group is denoted S_n . We have $|S_n| = n!$, the number of all permutations of n elements.

Definition 7.4. Let $\sigma \in S_n$ be a permutation and consider the subgroup $\langle \sigma \rangle \subset S_n$ generated by σ . If the action of $\langle \sigma \rangle$ by permutations of the set of n elements contains exactly one nontrivial orbit with k > 1 elements (and possibly some fixed points), then $\sigma \in S_n$ is called a k-cycle.

Definition 7.5. A 2-cycle is called a *transposition*.

Notation 7.6. Let $\pi \in S_n$ be a k-cycle, and $x \in \{1, 2, \dots n\}$ a number in the nontrivial orbit of π . Then in the *cycle notation* we represent π as follows: $\pi = (x, \pi(x), \pi^2(x), \dots \pi^{k-1}(x))$.

Definition 7.7. Two cycles $\pi_1, \pi_2 \in S_n$ are *disjoint* if their nontrivial orbits do not intersect.

Proposition 7.8. Disjoint cycles commute in S_n .

Theorem 7.9. Any permutation in S_n is a product of disjoint cycles, uniquely up to the order of the factors.

Proposition 7.10. Let $\pi, \rho \in S_n$. The cycle decomposition of $\pi \rho \pi^{-1}$ is obtained from that of ρ by replacing each integer i in the disjoint cycle decomposition of ρ by the integer $\pi(i)$.

Proposition 7.11. Every k-cycle in S_n is a product of (k-1) transpositions. In particular,

$$(12 \dots k) = (1k)(1 \ k-1) \dots (13)(12).$$

Caution: The decomposition of a permutation as a product of *disjoint cycles* is unique. The transpositions in the Proposition above are *not* disjoint.

Corollary 7.12. The group S_n is generated by the transpositions $\{(ij)\}_{1 \leq i < j \leq n}$

Proposition 7.13. No permutation in S_n can be written both as a product of an odd number of transpositions and as a product of an even number of transpositions.

Definition 7.14. A permutation is *odd* if it is a product of an odd number of transpositions, and *even* if it is a product of an even number of transpositions. A transposition is an odd permutation.

Proposition 7.15. The set A_n of all even permutations form a normal subgroup in S_n of index 2: $[S_n : A_n] = 2$.

8 The orbit-stabilizer theorem.

Let G be a finite group acting on a finite set E. Then the orbit of $x \in E$ is the set $Orb_x = \{g \cdot x \in G\}$ (see Definitions 7.1.7.2).

Definition 8.1. Let G act on the set E. The *stabilizer* of $x \in E$ is

$$\operatorname{Stab}_x = \{ q \in G \mid q \cdot x = x \}.$$

Proposition 8.2. Let G act on the set E. The stabilizer Stab_x of an element $x \in E$ is a subgroup in G.

Proposition 8.3. Let G act on the set E. Two orbits of the G-action Orb_x and Orb_y either coincide, or do not intersect. In particular, E splits as a disjoint union of orbits of G-action: $E = \bigcup_i \operatorname{Orb}_{x_i}$.

Theorem 8.4. (The Ortbit-Stabilizer theorem). Let a finite group G act on a finite set E. Then for any element $x \in E$, the number of elements in the orbit of x under the G-action equals to the index of the stabilizer subgroup of x in G:

$$|\operatorname{Orb}_x| = [G : \operatorname{Stab}_x].$$

9 Conjugacy classes and the class equation

Definition 9.1. Let G be a group acting on itself by conjugations: $g \cdot x = gxg^{-1} \ \forall x \in G, g \in G$. Then an orbit of $x \in G$ is called the *conjugacy class* of x in G and denoted C_x , and the stabilizer of x with respect to this action is called the *centralizer* of $x \in G$ and denoted $G_x \subset G$.

Proposition 9.2. The elements $g_1 \in S_n$ and $g_2 \in S_n$ belong to the same conjugacy class in S_n if and only if they decompose as a product of disjoint cycles of the same lengths. The set of lengths of cycles in a disjoint cycle decomposition of an element $g \in S_n$ is called the cycle type of g. Conjugacy classes in S_n are in bijection with cycles types.

Definition 9.3. The center Z(G) of the group G is the set of elements that commute with any element in G:

$$Z(G) = \{ x \in G \mid xg = gx \ \forall g \in G \}.$$

Theorem 9.4. (The class equation). Let G be a finite group, and let Z(G) be its center, and $\{x_i\}_{i=1}^m$ a set of representatives the conjugacy classes $\{C_{x_i}\}_{i=1}^m$ containing more than one element each. Let G_{x_i} be the stabilizer subgroup for x_i . Then

$$|G| = |Z(G)| + \sum_{i=1}^{m} |C_{x_i}| = |Z(G)| + \sum_{i=1}^{m} [G:G_{x_i}].$$

10 Direct product of groups

Definition 10.1. Let G, H be groups. The *direct product* $G \times H$ is the group whose elements are pairs $G \times H = \{(g,h) \mid g \in G, h \in H\}$ with the multiplication $(g_1,h_1) \cdot (g_2,h_2) = (g_1g_2,h_1h_2)$ for any $g_1,g_2 \in G, H_1,h_2 \in H$.

It is easy to check that $(1_G, 1_H) \in G \times H$ is the identity element, and $(g, h)^{-1} = (g^{-1}, h^{-1})$.

Proposition 10.2. Properties of the direct product:

- (a) $G \times H \simeq H \times G$
- (b) $G \times H$ is abelian if an only if G and H are both abelian
- (c) $\{(1,h)_{h\in H}\subset G\times H \text{ is a subgroup isomorphic to } H, \text{ and } \{(g,1)_{g\in G}\subset G\times H \text{ is a subgroup isomorphic to } G\}$
- (d) For the cyclic groups, $C_n \times C_m \simeq C_{mn}$ if and only If gcd(n,m) = 1
- (e) Suppose that $H, K \subset G$ are two subgroups such that (a) $H \cap K = \{1\}$, (b) $\forall h \in H, k \in K$, hk = kh, (c) G is spanned by the products $\{hk\}_{h \in H, k \in K}$. Then $G \simeq H \times K$.

11 Classification of finite abelian groups.

Definition 11.1. A group G is *simple* if it has no nontrivial $(\neq \{1\})$ proper $(\neq G)$ normal subgroups.

Theorem 11.2. (Cauchy). If G is a finite abelian group and a prime p divides the order of G, then G contains an element of order p.

Corollary 11.3. If G is a finite abelian simple group, then G is isomorphic to a cyclic group of prime order.

To classify all finite abelian groups we will use direct products to build more complicated groups out of smaller groups.

Definition 11.4. Let n be a positive integer. A *partition* of n is a set of positive integers $i_1 \ge i_2 \ge ... \ge i_k \ge 1$ such that $i_1 + i_2 + ... + i_k = n$.

Proposition 11.5. Let G be an abelian group of prime power order, $|G| = p^n$. Then G is isomorphic to a direct product of cyclic groups $G = C_{p^{i_1}} \times C_{p^{i_2}} \times \ldots \times C_{p^{i_k}}$, where $(i_1 \ge i_2 \ge \ldots i_k)$ is a partition of n. Different partitions of n correspond to non-isomorphic abelian groups.

Proposition 11.6. Let G be a finite abelian group, and $|G| = p_1^{n_1} \dots p_r^{n_r}$ is the prime factorization of |G| (here p_i are all distinct primes). Then G is isomorphic to a direct product of abelian groups of orders $p_1^{n_1}, p_2^{n_2}, \dots p_r^{n_r}$:

$$G \simeq G_{p_1^{n_1}} \times G_{p_2^{n_2}} \times \dots G_{p_r^{n_r}}.$$

Theorem 11.7. (Classification of finite abelian groups). Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups with prime power orders:

$$G \simeq C_{p_1^{a_1}} \times C_{p_2^{a_2}} \times \dots C_{p_m^{a_m}},$$

where $\{p_1, \ldots p_m\}$ are primes, not necessarily distinct, and $|G| = p_1^{a_1} p_2^{a_2} \ldots p_m^{a_m}$.

Definition 11.8. The numbers $(p_1^{a_1}, p_2^{a_2}, \dots, p_m^{a_m})$ are called the *elementary divisors* of G.

Theorem 11.9. Let G be a finite abelian group. Then G is isomorphic to a direct product of cyclic groups with consecutively dividing orders:

$$G \simeq C_{d_1} \times C_{d_2} \times \dots C_{d_k}$$

where $d_k|d_{k-1}$, $d_{k-1}|d_{k-2}$ and so on, $d_2|d_1$, and $|G| = d_1d_2 \dots d_k$.

Definition 11.10. The numbers $(d_k, d_{k-1}, \dots d_2, d_1)$ are called the *invariant factors* of G.

Example 11.11. Let G be an abelian group, $|G| = 360 = 2^3 \cdot 3^2 \cdot 5$. The partitions of the power of 2 are (3), (2, 1), (1, 1, 1). The partitions of the power of 3 are (2), (1, 1). According to Theorem 11.7, we have the following list of unisomorphic abelian groups of order 360:

$$C_8 \times C_9 \times C_5$$
, $C_8 \times C_3 \times C_3 \times C_5$, $C_4 \times C_2 \times C_9 \times C_5$, $C_4 \times C_2 \times C_3 \times C_3 \times C_5$

$$C_2 \times C_2 \times C_2 \times C_9 \times C_5$$
, $C_2 \times C_2 \times C_2 \times C_3 \times C_3 \times C_5$.

The elementary divisors are (8,9,5), (8,3,3,5), (4,2,9,5), (4,2,3,3,5), (2,2,2,9,5), (2,2,2,3,3,5). Let us collect the powers of distinct primes to rewrite the same list of groups according to Theorem 11.9:

$$C_{360}$$
, $C_{120} \times C_3$, $C_{180} \times C_2$, $C_{60} \times C_6$, $C_{90} \times C_2 \times C_2$, $C_{30} \times C_6 \times C_2$.

The invariant factors of G are (360), (120,3), (180,2), (60,6), (90,2,2), (30,6,2).