Schätzung von Hauspreisen in Ames, Iowa mit Hilfe von Regressionsbäumen

David Weghorn

13. Juli 2018

Inhaltsverzeichnis

- Einleitung
- 2 Vorstellung des Datensatzes
- Theoretische Grundlagen
- 4 Schwächen Regressionsbäume
- **5** Kombinierte Schätzer
- 6 Fazit

Einleitung Vorstellung des Datensatzes Theoretische Grundlagen Schwächen Regressionsbäume Kombinierte Schätzer Fazit

1. Einleitung

- Vorstellung einer beliebten Machine Learning Methode
- Simulation von Schwächen der Methode und Darstellung von Lösungen

2. Vorstellung des Datensatzes

Beschreibung von 1460 Hausverkäufen in Ames, Iowa

- Zielvariable: SalePrice in USD
- 79 erklärende Variablen:
 - Eigenschaften des Hauses (Garagenfläche, Qualität der Räume, Bauweise, Lage,...)
 - Umstände des Hausverkaufs (Zeitpunkt, Art der Bezahlung)

3.1 Theoretische Grundlage Regressionsbäume

Konstruktion von Regressionsbäumen

- Unterteilung des Datensatzes:
 - $\min_{\substack{j,s\\ \text{mit j als Split-Variable und s als Split-Punkt}} \left[\sum_{x_i \in R_{m+1}(j,s)} (y_i c_{m+1})^2 \right]$
 - $\hat{c}_m = \frac{1}{n} \sum_{i=1}^{N} (y_i | x_i \in R_m(j, s))$

3.2 Grundlage Regressionsbäume 2D Fall

3.2 Grundlage Regressionsbäume - 2D Fall

3.2 Grundlage Regressionsbäume

3.2 Regressionsbaum mit 3 Unterteilungskonditionen

4.1 Schwächen von Regressionsbäumen - Overfitting

Overfitting führt zu extrem guter Anpassung an Trainingsdatensatz aber zu schlechter Vorhersagekraft

Einleitung Vorstellung des Datensatzes Theoretische Grundlagen Schwächen Regressionsbäume Kombinierte Schätzer Fazit

4.2 Instabilität / Varianz

Simulation

- 1. Ziehe Zufallsstichproben (80%) aus dem Trainingsdatensatz
- 2. Trainiere Regressionsbaum für jede Stichprobe
- 3. Visualisiere Bäume und vergleiche Unterteilungsknoten
- ⇒ Erwartung bei herkömmlichen Verfahren: geringe Varianz der Koeffizienten und Vorhersage

4.2 Instabilität / Varianz - Stichprobe 1

4.2 Instabilität / Varianz - Stichprobe 2

4.2 Schwächen von Regressionsbäumen

Erwartung: geringe Varianz der Koeffizienten und Vorhersage

- Aber Beobachtung: Regressionsbäume der verschiedenen Stichproben variieren in
 - den Variablen die zur Unterteilung herangezogen werden
 - den Werten an denen die Unterteilung durchgeführt wird
 - ⇒ Problem für die Interpretation und Belastbarkeit der Vorhersagen

5. Kombinierte Schätzer - Ensemble

- Die Kombination der Schätzer verringert Varianz und Gefahr des Overfittings des Trainingsdatensatzes
- Vorstellung verschiedener Verfahren:
 - einfache Kombination Bagging (Randomisierung Datensatz)
 - gewichtete Kombination (Randomisierung Datensatz)
 - Random Forest (Randomisierung erkl. Variablen)
- Nachteil:
 Einfache Darstellung bzw. Interpretation gehen verloren

5.1 Bagging - pseudo code

1. set parameters

```
training\_data=train_{data}
test\_data=test_{data}
s \in [0,1]
```

2. train single trees

3. combine trees to ensemble

```
for each n=1 to N: \operatorname{prediciton}_{ensemble,i} = \tfrac{1}{n} \operatorname{prediction}_i + \ldots + \tfrac{1}{n} \operatorname{prediction}_N
```

5.1 Kombinierter Schätzer - Bagging

5.2 Gewichteter Schätzer - pseudo code

1. set parameters

```
training_data=data<sub>train</sub>
test_data=data<sub>test</sub>
s \in [0,1]
```

2. train single trees and evaluate fit

```
for each n=1 to N:

sample_{train} = random \ sample \ from \ data_{train}(size=s)
tree. fit (train_{sample})
prediction_i = tree_i. predict (data_{test})
sample_{weight} = data_{train} - sample_{train}
prediction_{weighting,i} = tree.predict(sample_{weighting})
mse_{inverse,i} = \frac{1}{mse_{inverse,i}}
weight_i = \frac{1}{\sum_{i=1}^{N} mse_{inverse,i}}
weight_i = \frac{1}{\sum_{i=1}^{N} mse_{inverse,i}}
```

3. combine trees to ensemble

```
for each n=1 to N:

prediction_{ensemble,i} = \mathbf{weight}_{i} \times prediction_{i} + ... + \mathbf{weight}_{N} \times prediction_{N}
```

5.2 Gewichteter Schätzer

5.3 Random Forest - pseudo code

1. set parameters

```
training_data=data<sub>train</sub>
test_data=data<sub>test</sub>
s \in [0,1]
x \in [1, \# features], usually \sqrt{\# features}
```

2. train single trees

3 combine trees to ensemble

```
for each n=1 to N: \text{prediction}_{ensemble,i} \ = \ \frac{1}{n} \times \text{prediction}_i + \ldots + \frac{1}{n} \times \text{prediction}_N
```

5.3 Random Forest

5.3 Random Forest - Einfluss der erklärenden Variablen

Einfluss: Summe der totalen MSE Reduktion der Variable gewichtet mit der Anzahl der unterteilten Beobachtungen und Gesamtzahl der Bäume

6. Zusammenfassung

Vorhersagekraft der angewandten Methoden

	Einzelbaum	Kombination	Gewichtet	Random Forest
RMSE	41.567	29.381	29.136	30.960
\mathbf{R}^2	0,773	0,892	0,893	0,875

Einleitung Vorstellung des Datensatzes Theoretische Grundlagen Schwächen Regressionsbäume Kombinierte Schätzer Fazit

6. Zusammenfassung

- Regressionsbäume stellen ein einfach zu implementierendes Maschinelles Verfahren dar
- Regressionsbäume könne auch nichtlineare Zusammenhänge gut modellieren
- Hohe Varianz bei kleinen Veränderungen des Trainingsdatensatzes birgt Probleme
- Randomisierung der Variablen oder Daten und Kombination der Schätzer verbessern Schätzung enorm

Questions

Vielen Dank für die Aufmerksamkeit Fragen?

Einleitung Vorstellung des Datensatzes Theoretische Grundlagen Schwächen Regressionsbäume Kombinierte Schätzer Fazit

Quellen

Sammlung der Python Codes:

www.github.com/Davekofski/seminar_paper

Datensatz:

www.kaggle.com/c/

house-prices-advanced-regression-techniques

Dokumentation: ww2.amstat.org/publications/jse/v19n3/

decock/DataDocumentation.txt

Literatur:

Breiman, L. Machine Learning (1996): 24: 123 "Bagging predictors".

Hastie, T; R. Tibshirani, J. Friedman (2009): "Elements of Statistical Learning", Chap. 8, 9, 15.

James, G, D. Witten, T. Hastie, R. Tibshirani (2013): "An Introduction to Statistical Learning", Chap. 8.

Appendix

APPENDIX

3.1 Theoretische Grundlage Regressionsbäume

Schätzung mit Regressionsbäumen

- Unterteilung des Datensatzes:
 - $\min_{\substack{j,s\\j,s}} [\min_{\substack{c_m\\c_m+1}} \sum_{\substack{x_i \in R_m(j,s)}} (y_i c_m)^2 + \min_{\substack{c_m+1\\c_m+1}} \sum_{\substack{x_i \in R_{m+1}(j,s)}} (y_i c_{m+1})^2]$ mit j als Split-Variable und s als Split-Punkt
 - $\hat{c}_m = ave(y_i|x_i \in R_m(j,s))$
- Vorhersage:
 - $\hat{f}(X) = \sum_{m=1}^{N} c_m I\{(X_1, X_2) \in R_m\}$

Vorbereitung der Variablen

Unterteilung der Variablen

- 1. kontinuierliche Variablen(30)
- 2. kategorische Variablen (18):
 - ordinale "Qualitätsvariablen" (10)
 - andere ordinale Variablen (8)
- 3. nominale Variablen (27)
- 4. Datumsangaben (4)
- ⇒ nach Bearbeitung insgesamt 342 Variablen (viele Dummy Variablen)

Vorbereitung der Variablen

Unterteilung der Variablen

- 1. kontinuierliche Variablen(30): keine weitere Bearbeitung
- 2. kategorische Variablen (18):
 - ordinale "Qualitätsvariablen" (10):
 Excellent: 4, Good: 3, Average: 2, Fair: 1, NA: 0
 - andere ordinale Variablen (8): individuelle Codierung
- nominale Variablen (27): Dummy Variablen (OneHotEncoding)
- 4. Datumsangaben (4): neue "Altersvariablen"
 + Dummys für Jahr (Verkauf, Erbauung) und Monat (Verkauf)
- ⇒ insgesamt 342 Variablen (viele Dummy Variablen)

Fehlende Beobachtungen

Behandlung fehlender Variablen

- "Qualitäts- und Zustandsvariablen" (Keller, Küche, Garage, Pool, Elektrik, Zaun,...) fehlende Variablen ⇒ nicht vorhanden: mit 0 ersetzen
- numerische Variablen: Median einsetzen

Grundlage Regressionsbäume

4.1 Overfitting

Instabilität / Varianz - Stichprobe 3

Random Forest - Marginaler Effekt OveralQual

Random Forest - Marginaler Effekt GrLivArea

