INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

11 Nº de publication :

2 1

2 774 398

(à n'utiliser que pour les commandes de reproduction)

21) No d'enregistrement national :

98 01163

(51) Int Cl6: C 23 F 11/14, C 07 C 237/06, 323/52

DEMANDE DE BREVET D'INVENTION

A1

- 22) Date de dépôt : 02.02.98.
- (30) Priorité :

(71) Demandeur(s): CECA SA Societe anonyme — FR.

- Date de mise à la disposition du public de la demande : 06.08.99 Bulletin 99/31.
- Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule
- 60 Références à d'autres documents nationaux apparentés :
- 72) Inventeur(s): POU TONG EAK et FOUQUAY STE-PHANE.
- 73) Titulaire(s) :
- 74 Mandataire(s): ELF ATOCHEM SA.
- (54) INHIBITEURS DE LA CORROSION CARBONIQUE DU FER ECOCOMPATIBLES.
- Des compositions dans lesquelles sont associées des polyméthylène-polyaminodipropionamides à des mercapto-acides développent une remarquable synergie dans leur fonction d'inhibition de la corrosion carbonique de l'acier et dans leur écocompatibilité.

FR 2 774 398 - A

5

10

15

Dans la production du pétrole et du gaz, la corrosion due au gaz carbonique, connue sous le nom de corrosion carbonique, a lieu en fond de puits, où la température se situe en général vers 60°C ou plus, dans les canalisations de surface et dans les installations de raffinage du brut. On y remédie habituellement par utilisation d'inhibiteurs de corrosion à base de sels d'amines, de sels d'ammonium quaternaire, d'imidazolines ou d'esters phosphoriques. Ces composés ne sont pas entièrement satisfaisants parce qu'écotoxiques.

Dans la demande de brevet français n°9701298, il a été proposé d'utiliser les polyméthylène-polyamino-diproprionamides comme inhibiteurs de corrosion non écotoxiques pour l'environnement marin.

On vient maintenant de trouver une activité synergique inattendue quant à l'établissement d'une inhibition de la corrosion carbonique du fer dans les milieux aqueux, pour des compositions aqueuses associant un polyméthylène-polyamino-dipropionamide et un composé mercaptoacide; de façon plus explicite, pour des compositions comportant comme matière active

- au moins l'un des polyméthylène-polyaminodipropionamides correspondant à la formule :

H2NCO-(CH2)2-NH-[-(CH2)n-NH-]m-(CH2)2-CONH2

dans laquelle m est un nombre entier pouvant prendre toute valeur de 1 à 4, qui représente le nombre de maillons polyméthylène-amino -(CH2) $_{\rm n}$ -NH- , n pouvant avoir dans chaque maillon polyméthylène-amino une valeur entière de 2 à 6, - au moins un mercaptoacide répondant à la formule générale

$$R_{1} = \begin{bmatrix} R_{2} & R_{4} \\ C & & C \\ A & C \\ R_{3} & R_{5} \end{bmatrix}$$

35

avec

 $q = 0 \hat{a} 3$,

 $R_1=H$ ou SH,

 R_2 et R_3 , ensemble ou indépendamment = C_{1-4} , $CON(R_6)(R_7)$, 40 $COOR_8$,

5 R_4 et R_5 , ensemble ou indépendamment = OH, NH_2 , ou SH quand $R_1 \neq SH$,

 R_6 et R_7 , ensemble ou indépendamment = H, C_{1-4} ,

 $R_8 = H, C_{1-8},$

15

20

30

35

40

R₂ à R₅ pouvant être inclus dans un cycle aliphatique,

10 R_3 et R_5 pouvant être inclus dans un cycle aromatique lorsque q=1,

A étant un groupe acide COOH, SO₃H, OSO₃H, PO₃H ou OPO₃H, le rapport pondéral entre le ou les composants mercaptoacides et le ou les composants dipropionamides étant compris entre 0.3 et 2.

Les polyméthylène-polyamino-dipropionamides s'obtiennent aisément par condensation d'acrylamide sur des bases polyméthylène-polyamines, par exemple les bases EDA, DETA, TETA, TEPA, HEPA en série éthylènimine, les bases PDA, DPTA (Norspermidine) en série propylèneimine, ou encore des composés hybrides éthylène/propylèneimine.

On les caractérise parfaitement par spectrographie RMN. Ils offrent déjà en eux-mêmes une très faible écotoxicité marine (50 à 100 ppm sur Skeletonema costatum).

Les mercaptoacides utiles pour l'invention, tels que décrits plus haut, sont très généralement des produits connus.

On préfère les mercaptoacides carboxyliques, par exemple l'acide mercaptoacétique HSCH2COOH, RN=[68-11-1], ou l'acide mercaptopropionique HSCH2COOH, RN=[107-96-0]

Les compositions inhibitrices de l'invention sont des compositions dans lesquelles les composants mercaptoacides, seuls ou en mélange, et dipropionamides sont présents dans des rapports pondéraux de 0,3 à 2, mais le maximum d'efficacité inhibitrice se trouve pour des rapports pondéraux de 0,5 et 1.

Mais ce qui est encore plus étonnant, c'est que cette synergie se manifeste également au niveau de l'écotoxicité, les compositions synergiques de l'invention se révélant de façon inattendue beaucoup moins écotoxiques que chacun de leurs composants pris isolément.

Les compositions selon l'invention sont avantageusement présentées sous forme de solutions aqueuses à 10 % - 75 % de matière active, qu'on obtient très simplement par mélange à froid ou à tiède des constituants. Elles sont également un objet de la présente invention.

Les compositions inhibitrices selon l'invention peuvent être utilisées en injection en continu aussi bien qu'en traitement séquencé. En continu, les dosages utiles sont compris entre 3 ppm et 100 ppm exprimés poids de matière active, mercaptoacide + dipropionamide par rapport au milieu corrosif. En traitement séquencé, on peut l'utiliser à la dose de 1 % à 10 % par rapport au fluide porteur, l'eau par exemple.

L'invention trouve une application importante pour la protection de l'acier contre la corrosion CO₂ dans l'industrie de la production pétrolière. Les compositions synergiques de l'invention donnent également satisfaction comme inhibiteurs de la corrosion sulfhydrique du fer.

Les exemples qui suivent, sont destinés à mieux faire 20 comprendre l'invention et ses avantages.

EXEMPLES

Dans les exemples, le polyméthylène-polyaminodiproprionamide utilisé a été le dipropionamide sur base TETA 25 de formule

 ${\rm NH_2CO\,(CH_2)_2NH~[\,(CH_2)_2NH]_3~(CH_2)_2CONH_2}\\ {\rm (C_{12}H_{28}N_6O_2~;~M=288,39~g~.~mol^{-1}),~dont~les~caractéristiques~RMN~sont~rapportées~au~tableau~ci-joint.}$

30 Tableau des caractéristiques RMN du dipropionamide

 $NH_2CO(CH_2)_2NH$ [(CH₂)₂NH]₃ (CH₂)₂CONH₂

,				_	_												
	1	2	3		4	5		6	6		5	4		3	2	1	
HON		~										-		<u> </u>	-	1	
nzn	CO	CH2	CH2	NH	CH2	CH2	NH	CH2	CH2	NH	CH2	CH2	NH	CH2	CH2	CO	NH2
										<u></u>					Citz		MAZ

 ^{1}H RMN (D₂O) : 2,34 (t, 4H, H₂) ; 2,58 (s, 12H, H₄ à H₆) ; 2,73 (t, 4H, H₃).

 ^{13}C RMN (D₂O) : 36,7 (C₂) ; 46,7 (C₃) ; 49,6 (m , C₄ à C₆) ; 179,6 (C₁).

EXEMPLE 1 : propriétés inhibitrices de l'association polyaminodipropionamide - acide mercaptoacétique

Pour évaluer l'efficacité inhibitrice de corrosion des produits mis en oeuvre pour réduire la corrosion en milieu saturé en gaz carbonique, la procédure expérimentale utilisée a été la suivante.

Comme milieu corrosif, on utilise une solution de type NACE contenant 50 g/l de NaCl et de 0,25 g/l d'acide acétique saturée par barbotage en continu de $\rm CO_2$.

On opère dans une cellule de Pyrex thermostatée de 15 600 ml comportant outre une entrée et une sortie de gaz, trois électrodes assujetties à la cellule par des rodages. Elles sont composées d'une électrode de travail en acier au carbone dont la surface de contact avec la solution corrosive est de 1 cm², d'une électrode de référence (électrode au calomel saturé) et d'une contre électrode en platine à très grande surface en contact avec la solution corrosive. On place dans la cellule 500 ml de la solution corrosive, on introduit ensuite la contre électrode et l'électrode de référence. On désaère la solution par barbotage d'azote pendant une heure et on la sature en CO2 par barbotage par ce gaz pendant au moins une heure supplémentaire. Pour bien assurer la saturation en CO2, on laisse barboter ce gaz pendant toute la durée de l'expérience.

La température de l'essai est de 80°C.

On mesure la vitesse de corrosion instantanée $V_{\hbox{corr}}$ par mesure de résistance de polarisation, méthode bien connue de l'homme du métier.

L'acide mercaptoacétique utilisé dans l'essai est l'acide thioglycolique de Elf atochem. Le tableau 1 donne les valeurs de la vitesse de corrosion de l'acier en fonction de composition inhibitrice (compositions pondérales, rapport

30

5

10

pondéral mercaptoacide/dipropionamide, pH de la formule). Les compositions d'essai sont utilisées à la dose uniforme de 15 ppm en matière active, exprimés en poids de l'ensemble des composants actifs, c'est-à-dire acide mercaptoacétique + 5 dipropionamide.

			Table	2211 1				
Vitesse de corr	osio	n rés			nrága			
matières actives	des	formu	lec á	tudiáa	prese	ence de	≥ 15 g	opm de
Milieu corrosif	: Sol	ution	cont	cuaree	:S.			
Milieu corrosif de CH ₃ COOH sature	. Doi	COo	COIL	enant	50 g/I	de Na(21 + 0,	25 g/
Température de t			200					
Vitesse de corros	sion	du bla	inc =	20 mm	/an			
Econolis No	,		1					
Formule Nº	1	2	3	4	5	6	7	8
								
Acide	30	17,5	16	15	6,85	4,5	1,45	†
mercaptoacétique								
Dipropionamide		12,5	14	15	16,45	16,85	17,39	30
		1		1		120,03	1 1,33	30
Eau	70	70	70	70	76,70	78,65	01 76	
				'	, , , , ,	70,65	81,16	70
рН	2	3,39	4,77	6,49	7.6			
		3,33	3,,,	0,49	7,6	8,7	9,25	10,4
Rapport pondéral		1 0						
Acide/Base		1,4	1,42	1	0,42	0,27	0,08	
								ı
Vitesse de	11	6,5	4,7	4,5	5	6,1	5,6	9,5

On remarque plus particulièrement la formule n°4, dont le rapport pondéral acide/base des 15 ppm de sa matière active est égal à 1 et qui permet de réduire la vitesse de corrosion résiduelle à 4,5 mm/an.

corrosion (mm/an)

EXEMPLE 2 : Propriétés inhibitrices de l'association polyméthylène-polyamino-diproprionamide - acide mercapto-propionique

On opère selon le mode opératoire décrit dans l'exemple 5 1. Dans le présent exemple, le mercaptoacide utilisé est l'acide mercaptopropionique d'Elf Atochem.

Le tableau 2 récapitule les informations de composition de l'inhibiteur et les vitesses de corrosion mesurées.

			leau 2						
Vitesse de corrosion résiduelle en présence de 15 ppm de									
matière active de	matière active des formules étudiées.								
Milieu corrosif : solution contenant 50 g/l de NaCl +									
0.25 g/l de CH ₃ COOH, saturée en CO ₂									
Température de tra	avail	: 80°	C						
Vitesse de corros	ion d	u blan	c = 20	mm/an					
Formule n°	9	10	11	12	13	14	15		
Acide mercapto-	30	39,28	24,78	8,10	5,50	2,30			
propionique									
Dipropionamide		10,72	13,27	16,20	16,70	17,25	30		
				,					
Eau	70	50	61,95	75,70	77,80	80,45	70		
		(/	3		
рН	2	3,83	5,27	6,73	8	9,33	10,4		
Rapport pondéral		3,66	1,87	0,5	0,33	0,13			
Acide/Base									
Vitesse de	10	5,5	5,8	4,5	5	5,5	9,5		
corrosion(mm/an)									

10

On remarque plus particulièrement la formule n° 12, à laquelle correspond la vitesse de corrosion résiduelle la plus faible $(4,5\ mm/an)$.

EXEMPLE 3 : Formules concentrées

Les compositions de l'invention se prêtent à la formulation sous des présentations relativement concentrées. Les compositions 16 et 17 rapportées au tableau 3 avec leurs caractéristiques de composition et d'efficacité inhibitrice titrent 50% de matière active et sont des solutions fluides.

Le tableau 3 donne les compositions et les vitesses de corrosion résiduelle en présence de 15 ppm active 50 ppm de nouvelles formules, dans le milieu corrosif étudié à 80°C.

10

	Tableau 3			
Vitesse de corrosion rés	iduelle en présen	ice de 25 nom de		
matière active des formules	étudiées.	ac 25 ppm de		
Milieu corrosif : solution	contenant 50 g/l	de NaCl + 0 25 a/l		
de CH ₃ COOH, saturée en CO ₂	3, =	1.401 + 0.23 g/1		
Température de travail : 80)°C			
Formule	n° 16			
	11. 10	n° 17		
Acide margantanishi				
Acide mercaptoacétique	25			
Acide mercaptopropionique		17,5		
Dipropionamide	25	32,5		
Eau	50	50		
apport Acide/Base 1 0,54				
Vitesse de corrosion	1,8	1,0		
résiduelle (mm/an)		1,0		

EXEMPLE 4 : ECOTOXICITE

Les mesures d'écotoxicité ont été réalisées sur une bactérie (Photobacterium phosphoreum) selon le test Microtox, 15 AFNOR NF T90-320, et sur une algue (Skeletonema costatum) selon la méthode ISO/DIS 10253. La toxicité selon Microtox est exprimée en CL50 (concentration létale en mg/l pour détruire 50% de la population en 15 minutes) ; la toxicité selon ISO/DIS 10253 est exprimée en CE50 (concentration

effective en mg/l pour inhiber la croissance de 50 % de la population en 72 heures).

Le tableau ci-dessous donne les toxicités Microtox et sur Skeletonema costatum des formules étudiées :

١

Produit	Ecotoxicité	Ecotoxicité
	"Microtox"	S. costatum
	CE50 (mg/l)	CE (mg/l)
acide mercaptoacétique	45	>300
(à 100%)		
acide mercaptopropionique	450	97
(à 100%)		
Dipropionamide (100%)	127	672
Formule nº16	1350	2289
Formule n°17	22000	980

5 REVENDICATIONS

Procédé pour limiter la corrosion carbonique de l'acier dans les milieux aqueux, caractérisé en ce que l'on utilise, à titre d'inhibiteur de corrosion non écotoxique, une composition aqueuse comportant comme matière active - au moins l'un des polyméthylène-polyaminodipropionamides correspondant à la formule :

H2NCO-(CH2)2-NH-[-(CH2)n-NH-]m-(CH2)2-CONH2

dans laquelle m est un nombre entier pouvant prendre toute

valeur de 1 à 4, qui représente le nombre de maillons polyméthylène-amino -(CH2)n-NH-, n pouvant avoir dans chaque maillon polyméthylène-amino une valeur entière de 2 à 6,

- au moins un mercaptoacide répondant à la formule générale

$$R_{1} = \begin{bmatrix} R_{2} & R_{4} \\ C & Q & C \\ R_{3} & R_{5} \end{bmatrix}$$

20

avec

q = 0 à 3,

 $R_1=H$ ou SH,

 R_2 et R_3 , ensemble ou indépendamment = C_{1-4} , $CON(R_6)(R_7)$, 25 $COOR_8$,

 R_4 et R_5 , ensemble ou indépendamment = OH, NH_2 , ou SH quand $R_1 \neq SH$,

 R_6 et R_7 , ensemble ou indépendamment = H, C_{1-4} ,

 $R_8 = H, C_{1-8},$

30 R_2 à R_5 pouvant être inclus dans un cycle aliphatique, R_3 et R_5 pouvant être inclus dans un cycle aromatique lorsque q=1,

A étant un groupe acide COOH, SO3H, OSO3H, PO3H ou OPO3H, le rapport pondéral entre le ou les composants thioacides et le ou les composants dipropionamides étant compris entre 0,3 et 2.

5 2. Procédé selon la revendication 1, caractérisé en ce que le mercaptoacide est un acide mercaptocarboxylique

$$R_{1} = \begin{bmatrix} R_{2} & R_{4} \\ C & Q & C \\ R_{3} & R_{5} \end{bmatrix}$$

- 3. Procédé selon la revendication 1, caractérisé en ce que le mercaptoacide est l'acide mercaptoacétique.
 - 4. Procédé selon la revendication 1, caractérisé en ce que le mercaptoacide est l'acide mercaptopropionique.
- 5. Procédé selon l'une ou l'autre des revendications 1 à 4, caractérisé en ce que la composition inhibitrice est utilisée en traitement continu à raison de 3 à 100 ppm, exprimées en poids des matières actives, mercaptoacides + polyméthylène-polyaminodipropionamides, par rapport au poids du milieu corrosif.
- 6. Procédé selon l'une ou l'autre des revendications 1 à 4, caractérisé en ce que la composition inhibitrice est utilisée en traitement séquencé à raison de 1 % à 10 %, exprimés en poids des matières actives, mercaptoacides + polyméthylène-polyaminodipropionamides, par rapport au fluide porteur.
 - 7. Compositions inhibitrices pour limiter la corrosion carbonique de l'acier dans les milieux aqueux, constituées d'une solution aqueuse comportant
- au moins l'un des polyméthylène-polyaminodipropionamides 30 correspondant à la formule :

 $\label{eq:h2NCO-(CH2)2-NH-[-(CH2)n-NH-]m-(CH2)2-CONH2} \\ \text{dans laquelle m est un nombre entier pouvant prendre toute} \\ \text{valeur de 1 à 4, qui représente le nombre de maillons polyméthylène-amino -(CH2)_n-NH-, n pouvant avoir dans chaque maillon polyméthylène-amino une valeur entière de 2 à 6,} \\$

35

5 - au moins un mercaptoacide répondant à la formule générale

$$R_{1} = \begin{bmatrix} R_{2} & R_{4} \\ C & Q & C \\ R_{3} & R_{5} \end{bmatrix}$$

avec

10 q = 0 a 3,

R₁=H ou SH,

 R_2 et R_3 , ensemble ou indépendamment = C_{1-4} , $CON(R_6)(R_7)$, $COOR_8$,

 R_4 et R_5 , ensemble ou indépendamment = OH, NH_2 , ou SH quand 15 $R_1 \neq SH$,

 R_6 et R_7 , ensemble ou indépendamment = H, C_{1-4} ,

 $R_8 = H, C_{1-8},$

R₂ à R₅ pouvant être inclus dans un cycle aliphatique,

 R_3 et R_5 pouvant être inclus dans un cycle aromatique lorsque q=1,

A étant un groupe acide COOH, SO_3H , OSO_3H , PO_3H ou OPO_3H , le rapport pondéral entre le ou les composants thioacides et le ou les composants dipropionamides étant compris entre 0,3 et 2.

- 25 la teneur pondérale en composants actifs, dipropionamides et thioacides étant comprise entre 10 et 75 %.
 - 8. Compositions selon la revendication 7, caractérisées en ce que le mercaptoacide est un acide mercaptocarboxylique

$$R_{1} = \begin{bmatrix} R_{2} & R_{4} \\ C & Q & C \\ R_{3} & R_{5} \end{bmatrix}$$

30

20

- 9. Compositions selon la revendication 7, caractérisées en ce que le mercaptoacide est l'acide mercaptoacétique.
- 10. Compositions selon la revendication 7, caractérisées en ce que le mercaptoacide est l'acide mercaptopropionique.

REPUBLIQUE FRANÇAISE

INSTITUT NATIONAL de la PROPRIETE INDUSTRIELLE

RAPPORT DE RECHERCHE PRELIMINAIRE

N° d'enregistroment national

FA 553186 FR 9801163

établi sur la base des demières revendications déposées avant le commencement de la recherche

DOCL	JMENTS CONSIDERES COMME	Revendications concernées		
atégorie	Citation du document avec indication, en cas des parties pertinentes		de la demande examinée	
Α	US 3 048 620 A (SPIVACK J. * colonne 4, ligne 45-68 * * colonne 1, ligne 52 - co		1,7	
Α	FR 2 528 061 A (GREAT LAKE 9 décembre 1983 * revendication 1 *	S CHEMICAL CORP)	1,7	
Α	US 2 865 817 A (CLAUSEN I. 23 décembre 1958 * exemple XXVI; tableau II			
Α	US 3 775 320 A (VIGO M ET 27 novembre 1973 * revendication 1 *	AL)		
				DOMAINES TECHNIQUES RECHERCHES (int.CL.6)
	·			C23F E21B
	0	d'achévement de la recherche	1	Examinateur
	Dan	12 octobre 1998	To	rfs, F
Y:p	CATEGORIE DES DOCUMENTS CITES articulièrement pertinent à lui seul articulièrement pertinent en combinaison avec un utre document de la même catégorie entinent à l'encontre d'au moins une revendication u arrière-plan technologique général	T : théorie ou princ E : document de b à la date de dé de dépôt ou qu D : cité dans la de	revet bénéficiant pôt et qui n'a été l'à une date posté mande es raisons	bripijedn, y cette gaje g, nue gate swellenie

THIS PAGE BLANK (USPTO)