

- ความดัน
- กฎของบอยล์ ชาร์ลสและ กฎรวมแก๊ส
- กฎของเอโวกาโดร
- กฎของแก๊สสมบูรณ์แบบ
- ปริมาณสารสัมพันธ์
 เกี่ยวกับแก๊ส

- กฎความดันย่อยของ
 ดาลตัน
- ทฤษฎีจลน์โมเลกุลของ
 แก๊ส
- การแพร่ผ่านและการแพร่
- แก๊สจริง
- เคมีในบรรยากาศ

1

สถานะของสสาร

ของเหลว

Gas

แก๊ส

ความดัน (Pressure)

- > Jan Beptista Van Helmont (1577-1644)
 - อากาศประกอบด้วยสารหลายชนิด
 - การเผาใหม้มี CO₂ เกิดขึ้น
- Evangelista Torricelli (1608-1647)
 - อากาศในบรรยากาศมีความดัน
 - สร้างเครื่องวัดความดัน (Barometer)

ความดันบรรยากาศคืออะไร

มวลของอากาศที่กดลงบนผิวโลกเนื่องจากแรงโน้มถ่วง

Fig 1 Barometer ของ Torricelli

Standard Atmospheric Pressure

1.00 atm = 760 mm Hg, 760 torr 1.00 atm = 101325 Pa = 1.01325 bar = 14.7 psi

$$P_{\text{gas}} = P_{\text{bar.}} + \Delta P$$
$$(\Delta P \ge 0)$$

(b) Gas pressure greater than barometric pressure

$$P_{\text{gas}} = P_{\text{bar.}} + \Delta P$$
$$(\Delta P < 0)$$

(c) Gas pressure less than barometric pressure

แก๊สมีความดันมากกว่าบรรยากาศ : $P_{gas} = P_{atm} + h$

แก๊สมีความดันน้อยกว่าบรรยากาศ : $P_{gas} = P_{atm} - h$

Fig 2 Manometer อย่างง่าย

กฎแก๊สของบอยล์ และชาร์ลส์ (The Gas Laws of Boyle and Charles)

🗲 ศึกษาสมบัติทั่วไปของแก๊ส

กฎของบอยล์ (Boyle's Law)

- > Robert Boyle (1627-1691)
- ใช้หลอดแก้วตัวเจปลายปิดด้านหนึ่งศึกษาความสัมพันธ์ ระหว่างความดันและปริมาตร (1662)

$$P \alpha \frac{1}{V}$$
 $PV = k$

k = ค่าคงที่ของแก๊ส ที่อุณหภูมิหนึ่งๆ

ที่ T คงที่ ความดันของแก๊สจะแปรผกผันกับปริมาตร

Table 1 ข้อมูลจากการ

ทดลองของบอยล์

Volume (in³)	Pressure (in of Hg)	Pressure × Volume (in of Hg × in³)
48.0	29.1	14.0×10^{2}
40.0	35.3	14.1×10^2
32.0	44.2	14.1×10^{2}
24.0	58.8	14.1×10^{2}
20.0	70.7	14.1×10^{2}
16.0	87.2	14.0×10^{2}
12.0	117.5	14.1×10^2

PV = k

Fig 3 การพล๊อตแบบต่างๆจากข้อมูลในตารางที่ 1

EX 1 บอลลูนลูกหนึ่งบรรจุด้วยก๊าซไฮโดรเจนมีปริมาตร 1.05 dm³ ที่อุณหภูมิ 20 °c ความดัน 755 mmHg เมื่อปล่อยให้บอลลูน ลอยสู่อากาศ สูงขึ้น 2.5 km ปริมาตรของก๊าซไฮโดรเจนจะเป็น เท่าใด ถ้าในระดับความสูงทุกทุก 500 m ความดันของก๊าซใน บอลลูนลดลง 26 mmHg

500 m ความดันของก๊าซลดลง 26 mmHg

 $= 1.27 \, dm^3$

9

กฎของชาร์ลส์ (Charles's Law)

- > Jacques Charles (1746-1823)
 - เป็นคนแรกที่เดินทางโดยบอลลูนบรรจุด้วย H₂
 - พบว่าที่ความดันคงที่ ปริมาตรแปรผันเป็นเส้นตรงกับอุณหภูมิ (1787) **VαT**

T = อุณหภูมิในหน่วยเคลวิน (K)

k = ค่าคงที่สัดส่วนของแก๊ส ที่ความดันหนึ่งๆ

$$T(K) = T(^{\circ}C) + 273.15$$

Fig 4 การพล๊อต V เทียบกับ T (${}^{\circ}C$) สำหรับแก๊สต่างๆ

Fig 5 การพล๊อต V เทียบกับ T (K) สำหรับแก๊สต่างๆ

$$T(K) = T(^{\circ}C) + 273.15$$

EX 2 แก๊สอาร์กอนที่อุณหภูมิ 15 °C 1 atm มี V = 2.58 L แก๊สนี้จะมี ปริมาตรเท่าไรที่ 38 °C ความดัน 1 atm

$$V/T = b$$

$$V_1/T_1 = V_2/T_2 = b$$

$$V_2 = (V_1/T_1)T_2$$

$$V_1 = 2.58 L, T_1 = 15 + 273 = 288 K$$

$$T_2 = 38 + 273 = 311 K$$

$$V_2 = (311 K/288 K)(2.58 L)$$

$$V_2 = 2.79 L$$

เมื่อ P คงที่ V จะเพิ่มขึ้นเมื่อ T เพิ่มขึ้น เป็นไปตาม Charles's law

Combined Gas Law

$$\frac{PV}{T} = k = nR$$

ถ้า n คงที่
$$n_1 = n_2 = n_3 =$$
 จะได้

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = \frac{P_3V_3}{T_3} = \dots = k$$

$$T_1 \qquad T_2 \qquad T_3$$

EX 3 แก๊สมีเธนที่ 15 °C ความดัน 1 atm มี V = 2.58 L ถ้าแก๊สนี้ ขยายตัวมีปริมาตร 3.2 L จะมีอุณหภูมิเป็นกี่ °C ที่ P = 1.5 atm

กฎของเอโวกาโดร (Avogadro's Law)

Avogadro เสนอกฏที่ว่า ที่อุณหภูมิและความดันเดียวกัน แก๊สใด ๆที่มีปริมาตรเท่ากัน จะมีจำนวนอนุภาคเท่ากันเสมอ (1811)

V a n

V = an หรือ V/n = a

$$V_1/n_1 = V_2/n_2 = V_3/n_3 = \dots = a$$

V = ปริมาตรแก๊ส

n = จำนวนโมล

แก๊สจริงจะประพฤติตามกฏนี้ที่ P ต่ำ ๆ

a = ค่าคงที่สัดส่วนของแก๊ส ที่ P และ T หนึ่งๆ

กฎของแก๊สสมบูรณ์แบบ (The Ideal Gas Law)

จากสามกฎที่ สังเกตได้จากการทดลอง

```
Boyle's law: V = k/P (เมื่อ T และ n คงที่)
```

Charles's law: V = bT (เมื่อ P และ n คงที่)

Avogadro's law: V = an (เมื่อ T และ P คงที่)

สมการรวม: กฎของแก๊สสมบูรณ์แบบ

หรือเรียกว่าสมการสภาวะของแก๊สสมบูรณ์แบบ (Equation of State)

R = ค่าคงที่สัดส่วนรวม (Universal gas constant)

เมื่อ P => atm และ V => L => R = 0.08206 L atm K⁻¹ mol⁻¹

PV = nRT

R มีหลายค่าขึ้นกับหน่วยของความดัน

 $R = 0.08206 L atm K^{-1} mol^{-1}$

 $R = 8.3145J K^{-1} mol^{-1}$

R = 1.98772cal K-1 mol-1

แก๊สใด ๆที่ประพฤติเป็นไปตามสมการสภาวะหรือกฎของแก๊ส เรียกว่าแก๊สอุดมคติหรือแก๊สสมบูรณ์แบบ

แก๊สจริงจะมีพฤติกรรมใกล้เคียงแก๊สสมบูรณ์แบบ เมื่อ P < 1 atm

ในการคำนวณเกี่ยวกับแก๊สจริง ที่ P ต่ำ ๆ T สูง จะใช้สมการสภาวะ ของแก๊สสมบูรณ์แบบ
$$n = \frac{(1.5 \text{ atm})(8.56 \text{ L})}{-1 - 1} = 0.57 \text{ mol}$$

$$(0.08206 \text{ L.atm.K} \cdot \text{mol} \cdot)(273 \text{ K})$$

EX 5 NH₃(g) มี V = 3.5 L ที่ 1.68 atm ถ้าแก๊สนี้ถูกลดปริมาตร ลงเหลือ 1.35 Lที่ อุณหภูมิคงที่ จงคำนวณความดันสุดท้ายของ แก๊สนี้

PV = nRT

แก๊สเดิม **n** และ **T** คงที่: $P_1V_1 = P_2V_2$

$$P_2 = \left(\frac{V_1}{V_2}\right) P_1 = \left(\frac{3.5 \text{ L}}{1.35 \text{ L}}\right) (1.68 \text{ atm}) = 4.4 \text{ atm}$$

Molar mass determination

จาก
$$PV = nRT \qquad \text{และ} \qquad n = \frac{m}{M}$$

$$PV = \frac{m}{M}RT$$

$$M = \frac{mRT}{PV} = \frac{dRT}{P}$$

$$P = \frac{dRT}{M}$$

<u>Ex 6</u> แก๊ส X ที่ 20°C และ d = 0.83 g/L มี P = 345 mmHg แก๊ส X ควรเป็นใดระหว่าง CO₂ กับ H₂S (S=32, C=12,O= 16)

P =
$$dRT/MW$$

MW = dRT/P
= $0.83 \times 0.082 \times 293$
 $345/760$
= 43.9 g/mol
= CO_2

ปริมาณสัมพันธ์ของแก๊ส (Gas Stoichiometry)

ในการคำนวณเกี่ยวกับปริมาณของแก๊ส สมมติว่าแก๊สสมบูรณ์

1 mole ที่ 0 °C และ 1 atm จะมี V = 22.42 L หาได้จาก

$$V = \frac{nRT}{P} = \frac{(1.000 \text{ mol})(0.08206 \text{ L.atm.K}^{-1} \cdot \text{mol}^{-1})(273.2 \text{ K})}{1.000 \text{ atm}} = 22.42 \text{ L}$$

V = 22.42 L = ปริมาตรต่อโมล (Molar volume)

ของแก๊สสมบูรณ์แบบ ที่ 0 °C และ 1 atm

สภาวะอุณหภูมิและความดันมาตรฐาน

(Standard Temperature and Pressure, STP)ของแก๊สคือ ที่ 0 °C และ 1 atm EX 7 Quicklime (CaO) ได้จากการสลายด้วยความร้อน CaCO₃ จง คำนวณปริมาตร CO₂ ที่ STP ที่เกิดจากการสลาย CaCO₃ 152 g

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

$$\frac{1 \text{mol CaCO}_3}{100.09 \text{ g CaCO}_3} = 1.52 \text{ mol CaCO}_3$$

ถ้าใช้ CaCO₃ 1.52 mol จะเกิด CO₂ 1.52 mol แก๊ส 1 mol ที่ STP จะมีปริมาตร 22.42 L

$$1.52 \, \mathrm{mol} \, \mathrm{CO}_2 \times \frac{22.42 \, \mathrm{L} \, \mathrm{CO}_2}{1 \, \mathrm{mol} \, \mathrm{CO}_2} = 34.1 \, \mathrm{L} \, \mathrm{CO}_2$$

 $molCaCO_3 = mol CO_2$ $\frac{152}{100} = \frac{V}{22.4}$ V = 34.1 L

จะเกิด *CO*₂ 34.1 L ที่ STP

กฎความดันย่อยของดาลตัน (Dalton's Law of Partial Pressures)

▶ John Dalton (1803) ได้สรุปผลของการสังเกตและเสนอเป็นกฎ เกี่ยวกับความดันย่อยว่า ในภาชนะที่มีแก๊สผสม ความดันรวมเป็น ผลรวมของความดันแก๊สแต่ละชนิดที่ผสมกันอยู่

$$P_{total} = P_1 + P_2 + P_3 + \dots$$

$$P_1 = \frac{n_1RT}{V}, P_2 = \frac{n_2RT}{V}, P_3 = \frac{n_3RT}{V}$$

 P_1 , P_2 , P_3 = ความดันย่อย (partial pressures) ของแก๊สแต่ละชนิด n_1 , n_2 , n_3 = จำนวนโมลของแก๊สแต่ละชนิด

V = ปริมาตรรวมของภาชนะ

$$P_{Total} = P_1 + P_2 + P_3 + ... = \frac{n_1 RT}{V} + \frac{n_2 RT}{V} + \frac{n_3 RT}{V} + ...$$

$$P_{Total} = (n_1 + n_2 + n_3 + ...) \frac{RT}{V}$$

$$P_{Total} = n_{Total} \frac{RT}{V}$$

Mole fraction

$$X_{1} = \frac{n_{1}}{n_{Total}}, X_{2} = \frac{n_{2}}{n_{Total}}, X_{3} = \frac{n_{3}}{n_{Total}}$$

$$X_{1} = \frac{P_{1}V/RT}{\frac{P_{1}V}{P_{2}V} + \frac{P_{2}V}{P_{3}V} + \dots}}{RT RT RT}$$

$$X_{1} = \frac{P_{1}}{P_{1} + P_{2} + P_{3} + \dots} = \frac{P_{1}}{P_{Total}}$$

$$P_1 = X_1 P_{Total}, P_2 = X_2 P_{Total}, P_3 = X_3 P_{Total}$$

Fig 6 ความดันย่อยของแต่ละแก๊สในแก๊สผสม

ความดันรวมจะขึ้นกับจำนวนโมลของแก๊สที่ผสมกันอยู่

Ex 8 แก๊สผสม X,Y,Z อย่างละ 0.15,0.32 และ 0.50 mol อยู่ใน ภาชนะ 2 L ที่ 40°C มี P_{total} เท่าใด

$$P_{Total} = n_{Total} \frac{RT}{V}$$

= 12.45 atm

EX 9 แก๊สที่ใช้ในการดำน้ำได้จากการปั๊ม He 46 L ที่ 25 ºC 1 atm และ O₂ 12 L ที่ 25 ºC 1 atm ลงในถังปริมาตร 5 L จงคำนวณความ

$$n_{He} = \frac{(1 \text{ atm})(46 \text{ L})}{(0.08206 \text{ L.atm.K}^{-1}.\text{mol}^{-1})(298 \text{ K})} = 1.9 \text{ mol}$$

$$n_{O_2} = \frac{(1 \text{ atm})(12 \text{ L})}{(0.08206 \text{ L.atm.K}^{-1} \text{.mol}^{-1})(298 \text{ K})} = 0.49 \text{ mol}$$

$$P_{He} = \frac{(1.9 \text{ mol})(0.08206 \text{ L.atm.K}^{-1}.\text{mol}^{-1})(298 \text{ K})}{5.01}$$

$$P_{O} = \frac{(0.49 \text{ mol})(0.08206 \text{ L.atm.K}^{-1} \text{.mol}^{-1})(298 \text{ K})}{(0.08206 \text{ L.atm.K}^{-1} \text{.mol}^{-1})(298 \text{ K})}$$

$$P_{He} = 9.3$$
 atm

$$P_{O_2} = 2.4 \text{ atm}$$

$$P_{total} = P_{he} + P_{O2} = 9.3 + 2.4 = 11.7$$
 atm

Fig 7 การเผา $KClO_3$ โดยมี MnO_2 เป็นตัวเร่งจะเกิดแก๊ส O_2 ที่เก็บ โดยการแทนที่น้ำจึงผสมอยู่กับไอน้ำอื่มตัว ณ อุณหภูมินั้น

 EX 10
 เมื่อให้ความร้อน KCIO3 จะสลายตัวดังสมการ

 MnO_2 2 KCI(s) + $3O_2(g)$
 O_2 ถูกเก็บโดยการแทนที่น้ำที่ $22 \, ^{\circ}$ C ที่ ความดันรวม $754 \, \text{torr}$ เก็บ ปริมาตรของแก๊สได้ $0.650 \, \text{L}$ ความดันไอน้ำที่ $22 \, ^{\circ}$ C เท่ากับ $21 \, \text{torr}$

 จงคำนวณความดันย่อยของ O_2 และมวลของ KCIO3 ที่สลายตัว

$$2KCIO_{3}(s) \xrightarrow{MnO_{2}} 2KCI(s) + 3O_{2}(g)$$

$$P_{Total} = P_{O_{2}} + P_{H_{2}O} = P_{O_{2}} + 21 \text{ torr} = 754 \text{ torr}$$

$$P_{O_{2}} = 754 - 21 = 733 \text{ torr}$$

$$P_{O_{2}} = 733 \text{ torr} = \frac{733 \text{ torr}}{760 \text{ torr/atm}} = 0.964 \text{ atm}$$

$$n_{O_2} = \frac{(0.964 \text{ atm})(0.650 \text{ L})}{(0.08206 \text{ L.atm.K}^{-1}.\text{mol}^{-1})(295 \text{ K})} = 2.59 \times 10^{-2} \text{ mol}$$

$$2.59 \times 10^{-2} \text{ mol O}_2 \times \frac{2 \text{ mol KCIO}_3}{3 \text{ mol O}_2} = 1.73 \times 10^{-2} \text{ mol KCIO}_3$$

$$1.73 \times 10^{-2}$$
 mol KClO₃ $\times \frac{122.6 \text{ g KClO}_3}{1 \text{ mol KClO}_3} = 2.12 \text{ g KClO}_3$

$$\frac{\text{molO}_2}{3} = \frac{\text{mol KCIO}_3}{3}$$
 $\frac{2}{2.59 \times 10^{-2}} = \frac{\text{m}}{3}$
 $\frac{2}{2 \times 122.6}$
 $\frac{2}{3} \times \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} = \frac{1}{3} \times \frac{1}{3} = \frac{1}{3} \times$

ทฤษฎีจลน์โมเลกุลของแก๊ส (The Kinetic Molecular Theory of Gases)

ทฤษฎีที่ใช้อธิบายพฤติกรรมของแก๊สสมบูรณ์แบบ กล่าวถึงการ เคลื่อนที่ของโมเลกุลของแก๊ส จากสมมติฐานต่อไปนี้

- โมเลกุลมีขนาดเล็กมาก (V_{โมเลกุล} = 0) อยู่
 ห่างกันมาก
- โมเลกุลเคลื่อนที่ตลอดเวลาด้วยความเร็ว คงที่ การชนผนังทำให้เกิดความดัน การชน เป็นแบบยืดหยุ่น
- โมเลกุลไม่มีแรงกระทำต่อกัน
- พลังงานจลน์เฉลี่ยเป็นสัดส่วนโดยตรงกับ อุณหภูมิเคลวิน

ความหมายของอุณหภูมิ (The Meaning of Temperature)

$$\frac{PV}{n} = RT = \frac{2}{3} (KE)_{avg}$$

$$(KE)_{avg} = \frac{3}{2} RT$$

T (K) เป็นตัวชี้บอกการเคลื่อนที่ของอนุภาคแก๊ส

การเพิ่ม T => (KE) เพิ่ม => random motion เพิ่ม

ความเร็วรากกำลังที่สองเฉลี่ย

(Root Mean Square Velocity)

$$u_{rms} = \sqrt{u^{2}}$$

$$(KE)_{avg} = N_{A}(-mu^{2}) = \frac{3}{2}RT$$

$$u^{2} = \frac{3RT}{N_{A}m}$$

การใช้ u_{ms} เพื่อหลีกเลี่ยงปัญหาของทิศทางการเคลื่อนที่ (ไปข้างหน้าหรือถอยหลัง) ซึ่งอาจทำให้เกิดการหักล้างกันได้ก่อนทำการเฉลี่ย การยกกำลังสองแล้วถอดรากจึงเป็นความเร็วเฉลี่ยของอนุภาคทั้งหมด

$$u_{rms} = \sqrt{u^2} = \sqrt{\frac{3RT}{N_A m}}$$

$$u_{rms} = \sqrt{\frac{3RT}{M}}$$

N_A = Avogadro number = 6.02 x 10²³ อนุภาค/mol m = มวลของ 1 อนุภาค (kg) M = มวลโมเลกุล = mN_A (kg/mol)

R = 8.3145 J/K.mol = 8.3145 kg.m²/s².K.mol ได้ u_{rms} ในหน่วย m/s

Ex 11. แก๊ส Ar มวลโมเลกุล 40 ที่อุณหภูมิ 25 °C จะมีความเร็วราก กำลังที่สองเฉลี่ยเท่าไร

$$u_{rms} = \sqrt{\frac{3RT}{M}}$$

$$U_{rms} = \frac{(3x8.3145 \text{ kg.m}^2/\text{s}^2.\text{K.mol} \times 298\text{K})^{1/2}}{(40x10^{-3} \text{ kg/mol})^{1/2}}$$

 $U_{rms} = 431 \, \text{m/s}$

การเคลื่อนที่ของแก๊สจริง

- ✓ การเคลื่อนที่แบบขาดรูปแบบ (Erratic motion)
- ✓ เกิดการชนระหว่างอนุภาคมาก
- ✓ มีระยะทางเฉลี่ยอิสระ (mean free path) สั้นมาก ซึ่งเป็นระยะ เฉลี่ยที่อนุภาคหนึ่งเคลื่อนที่ได้ระหว่างการชน
- ✓ เกิดการกระจายเนื่องจากอนุภาคมีความเร็วไม่เท่ากัน
- ✓ ที่อุณหภูมิสูงขึ้นอนุภาคส่วนใหญ่มีความเร็วมากขึ้น

Fig 8 ทิศทางการเคลื่อนที่ของแก๊ส 1 อนุภาค

การแพร่ผ่านและการแพร่กระจาย (Effusion & Diffusion)

การแพร่ผ่าน

→ การกระจายโมเลกุลจากด้านความดันสูง ไปยังสูญญากาศผ่านช่องเล็กๆ

การแพร่กระจาย

→ การกระจายโมเลกุลจากด้านความเข้มข้น สูงไปต่ำ

การแพร่ผ่าน (Effusion)

> Thomas Graham (1805-1869) พบว่าอัตราการแพร่ผ่านเป็น สัดส่วนผกผันกับรากที่สองของมวลโมเลกุล (M) หรือความหนาแน่น (D)

ของแก๊ส
$$rac{\dot{R}_1^{\prime\prime}}{\dot{R}_2^{\prime\prime}} = rac{\sqrt{M_2}}{\sqrt{M_1}} = \sqrt{rac{D_2}{D_1}}$$

ของแก๊ส $\frac{R_1}{R_2} = \frac{\sqrt{M_2}}{\sqrt{M_1}} = \sqrt{\frac{D_2}{D_1}}$ มวลโมเลกุล หรือความหนาแน่นของแก๊สน้อย เคลื่อนที่เร็ว

$$\frac{R_1}{R_2} = \frac{u_{rms \, 1}}{u_{rms \, 2}} = \frac{\sqrt{\frac{3RT}{M_1}}}{\sqrt{\frac{3RT}{M_2}}} = \sqrt{\frac{\frac{M_2}{M_2}}{M_1}}$$
Graham's Law of Effusion

 $R_1, R_2 =$ อัตราการแพร่ผ่านของแก๊ส 1 และ 2

 M_1 , M_2 = มวลโมเลกุลของแก๊ส 1 และ 2

การแพร่กระจาย (Diffusion)

แก๊สเคลื่อนที่ได้เองผ่านอากาศจากบริเวณที่มีความเข้มข้นมากไปยัง บริเวณที่มีความเข้มข้นน้อยกว่า

$$\frac{S_1}{S_2} = \frac{u_{rms 1}}{u_{rms 2}} = \frac{\sqrt{M_2}}{\sqrt{M_1}}$$

S₁, S₂ = ระยะทางที่เคลื่อนที่ของแก๊ส 1 และ 2

Ex 12. แก๊สใดต่อไปนี้ เคลื่อนที่ได้เร็วที่สุดระหว่าง

$$CO_2 NO_2 H_2 S CH_4$$

(AW, C=12 O=16 N=14 S=32 H=1)

$$CO_2 = 44$$

 $NO_2 = 46$

$$H_2S = 34$$

$$CH_4 = 16$$

Fig 9 การแพร่ผ่านของแก๊สไปทางด้านสูญญากาศ

Fig 10 การแพร่สัมพัทธ์ของแก๊ส NH₃ กับ HCl

Ex .13 แก๊ส CO₂ เคลื่อนที่ด้วยอัตราเร็ว 40 cm/s เปรียบเทียบกับ แก๊ส H₂ จะเคลื่อนที่ด้วยอัตราเร็วกี่ cm/s (C=12,O=16,H=1)

$$R_1 = H_2$$
, $R_2 = CO_2$
 $R_1/R_2 = (M_2/M_1)^{1/2}$
 $R_1/40 = (44/2)^{1/2}$
 $R_1 = 4.69 \times 40$
 $= 187.6 \text{ cm/s}$

H₂ เคลื่อนที่ด้วยอัตราเร็ว 187.6 cm/s

Ex .14 แก๊ส B เคลื่อนที่ผ่านเครื่องวัดแก๊ส ใช้เวลา 20 วินาที แก๊ส SO₃เคลื่อนที่ผ่านเครื่องเดียวกัน ใช้เวลา 45 วินาที แก๊ส B คือแก๊สใดระหว่าง NH₃ ,CH₄, Cl₂ (S=32,O=16,H=1)

$$R_1 = B$$
 , $R_2 = SO_3$ (rate = s/t , ระยะทางเท่ากัน)
$$R_1/R_2 = t_2/t_1 = (M_2/M_1)^{1/2}$$
$$45/20 = (80/M_2)^{1/2}$$
$$R_1 = 4.69 \times 40$$
$$= 15.8 \sim 16$$
$$CH_4 = 16$$

Ex .15 หลอดแก้วยาว 100 cm บรรจุแก๊ส X และ แก๊ส У ที่ ปลายหลอดทั้ง 2 ด้าน เมื่อปล่อยให้แพร่เข้าหากัน จงหา ระยะทางที่ แก๊ส X เคลื่อนที่ได้ MW แก๊ส X = 25 แก๊ส Y= 64

แก๊สจริง (Real Gases)

แก๊สจริงมีอยู่ในธรรมชาติ มีพฤติกรรมเบี่ยงเบน ไปจากแก๊สสมบูรณ์แบบ เนื่องมาจากแก๊สจริงมี

- 1. ปริมาตรของอนุภาค
- 2. มีแรงกระทำระหว่างอนุภาค

Johannes van der Waals (1837-1923)

ได้ดัดแปลงสมการสภาวะเพื่อใช้กับแก๊สจริง

ส่วนของปริมาตร

V_{ideal} = V_{real}- nb n = จำนวนโมลของแก๊ส, b = ค่าคงที่จากการทดลอง

V-nb = ปริมาตรว่างในภาชนะที่อนุภาคเคลื่อนที่ได้จริง

The van der Waals Equation of State

จากกฎของแก๊สสมบูรณ์แบบ PV = nRT

เนื่องจากแก๊สจริงมีปริมาตรของโมเลกุล ดังนั้นปริมาตรช่องว่างที่แก๊ส เคลื่อนที่ได้จริง (V_{ideal}) จะมีค่าน้อยกว่าปริมาตรของภาชนะ (V_{real})

Fig 11 การพล๊อต PV/nRT เทียบกับ P สำหรับแก๊สต่างๆที่ 200 K

Fig~12 การพล๊อต PV/nRT เทียบกับ P สำหรับแก๊ส N_2 ที่ 3 อุณหภูมิ

ส่วนของความดัน

ความดันของแก๊สจริงจะน้อยกว่าความดันของแก๊สสมบูรณ์ เนื่องจากแรงกระทำระหว่างอนุภาคของแก๊สจริง

ความดันที่ลดลงเป็นสัดส่วนกับ

- 1. แรงที่ลดลงในการชนแต่ละครั้ง ซึ่งแปรผันโดยตรงกับ ความเข้มข้น (n/V)
- 2. ความถี่ของการชนที่ลดลง ซึ่งแปรผันโดยตรงกับความ เข้มข้น (n/V)

ความดันที่ลดลงเนื่องจาก 2 factors

$$(n/V)(n/V)a = (n^2/V^2)a$$

$$P_{ideal} = P_{real} + (n^2/V^2)a$$

a = ค่าคงที่

ถ้า **N** = จำนวนอนุภาค

(1/2)N(N-1) = จำนวนคู่ของอนุภาคที่ชนกันได้

$$(P + \frac{n^2}{V^2}a)(V - nb) = nRT$$

van der Waals Equation of state

P = Observed pressure

 (n^2/V^2) a = Pressure correction

V = Volume of container

nb = Volume correction

$$(P + \frac{n^2}{V^2}a)(V - nb) = nRT$$

$$\longleftarrow \longleftarrow \longleftarrow$$
Corrected P Corrected V

ที่ P ต่ำ : V ของอนุภาคน้อยมาก => nb น้อยมาก => V_{real} ~ V_{ideal}

ที่ T สูง : อนุภาคเคลื่อนที่ได้เร็วมากขึ้น แรงดึงดูดระหว่างอนุภาคมีผลน้อยมาก

แก๊สจริงจะมีพฤติกรรมใกล้เคียงแก๊สสมบูรณ์แบบ

Fig 13 ปริมาตรอนุภาคแก๊สมี ความสำคัญน้อยที่ (α) แก๊สความ ดันต่ำ(ภาชนะใหญ่) แต่มีผลมากที่ (b) แก๊สความดันสูง (ภาชนะเล็ก)

Table 2แวนเดอร์วาลส์ของ แก๊สบางชนิด

Gas	$a\left(\frac{\text{atm L}^2}{\text{mol}^2}\right)$	$b\left(\frac{L}{\text{mol}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H ₂	0.244	0.0266
N_{2}	1.39	0.0391
O ₂	1.36	0.0318
Cl ₂	6.49	0.0562
CO ₂	3.59	0.0427
CH.	2.25	0.0428
NH,	4.17	0.0371
H ₂ O	5.46	0.0305

$\underline{Ex.16}$ จงคำนวณความดันของแก๊ส N_2 0.500 โมล ที่บรรจุในภาชนะ 1 ลิตร อุณหภูมิ 25 °C

n. Ideal gas law

$$PV = nRT$$

$$P = 0.500 \times 0.082 \times 298 \qquad P = 12.22 \text{ atm}$$

$$1.0$$

ข. Van der waals equation

$$(P + \frac{n^2}{V^2}a)(V - nb) = nRT$$

$$P+[(0.50)^2\times1.39][1.0-(0.5\times0.0391)] = 0.5\times0.082\times298$$

$$(1)^2$$

P = 12.11 atm

เคมีในบรรยากาศ Chemistry in the Atmosphere

ในบรรยากาศประกอบด้วยแก๊สหลายชนิดที่ใกล้

ระดับน้ำทะเล: N₂>O₂>Ar>CO₂>Ne>He>CH₄>Kr>H₂>NO>Xe

บรรยากาศในชั้นต่าง ๆ

<u>ชั้น</u>	<u>ความสูง (km)</u>	ความดันเฉลี่ย (torr)
Troposphere	10 "	100
Stratosphere	10-50	10
Mesosphere	50-85	10-1
Thermosphere	85-115	10-4

Table 3 องค์ประกอบของอากาศแห้งที่ใกล้ระดับน้ำทะเล

Component	Mole Fraction	
N_2	0.78084	
O_2	0.20946	
Ar	0.00934	
CO ₂	0.000345	
Ne	0.00001818	
He	0.00000524	
CH4	0.00000168	
Kr	0.00000114	
H ₂	0.0000005	
NO	0.0000005	
Xe	0.00000087	

^{*} The atmosphere contains various amounts of water vapor, depending on conditions.

- แรงดึงดูดทำให้แก๊สหนักอยู่
 ใกล้ผิวโลกและแก๊สเบาอยู่ใน
 ระดับที่สูงกว่า
- การเปลี่ยนแปลงอุณหภูมิ
 กับระดับความสูงเป็นไปอย่าง
 ไม่สม่ำเสมอ

Fig 14 การเปลี่ยนแปลงอุณหภูมิ
และความสูง

Fig 15 ความเข้มข้นของ องค์ประกอบ smog ในช่วง เวลาต่างๆแต่ละวัน

โอโซนในบรรยากาศ Ozone in the Atmosphere

ข้อดี

O₃ ในบรรยากาศระดับสูงดูดกลืนแสง UV ที่เป็นอันตรายไว้ได้ดี

ข้อเสีย

 O_3 ในบรรยากาศระดับล่างเป็นพิษต่อระบบหายใจ

O₃ มีความหนาแน่นสูงสุดที่ระดับ 15-35 km

O_ุ มีความหนาแน่นต่ำมากที่ระดับ >60 km

ที่ระดับต่ำกว่า 90 km แสงอาทิตย์ทำให้ N_2 และ O_2 แตกตัวเป็นอะตอม O จะรวมตัวกับ O_2 เป็น O_3 ได้

Cyclic process

$$O_{2}(g) \xrightarrow{h\nu} O(g) + O(g)$$
 $O(g) + O_{2}(g) \longrightarrow O_{3}(g)$
 $O_{3}(g) \xrightarrow{h\nu} O_{2}(g) + O(g)$
 $O(g) + O(g) \longrightarrow O_{2}(g)$
การเปลี่ยนแปลงปริมาณ O_{3} จึงไม่มากนัก

สาเหตุที่ทำให้ O3 ลดลง

Chlorofluorocarbon (CFC): CFCl₃ (Freon-11), CF₂Cl₂ (Freon-12)

เคมีในชั้นบรรยากาศ Troposphere

Troposphere อยู่ติดกับผิวโลก เคมีที่เกิดขึ้นเป็นผลมาจาก กิจกรรมของมนุษย์ ซึ่งทำให้เกิดมลพิษขึ้นได้

สาเหตุหลักของการเกิดมลพิษ

- 1. การขนส่ง
- 2. การผลิตไฟฟ้า
- 3. กิจกรรมอื่นๆ

ประเภทของมลภาวะทางอากาศ

- 1. Photochemical smog
- 2. Acid rain
- 3. Greenhouse effect

การขนส่ง มีการเผาใหม้ในเครื่องยนต์ก่อให้เกิด *CO, CO*₂, NO, และ NO₂

เมื่อ NO₂ ถูกแสงแดด

$$NO_2(g) \longrightarrow NO(g) + O(g)$$

O(g) ไวต่อปฏิกิริยา

$$O(g) + O_2(g) \longrightarrow O_3(g)$$

 $O_3(g)$ ไวต่อปฏิกิริยามากกับสารอื่น หรืออาจเกิด

$$O_3(g) \longrightarrow O^*(g) + O_2^*(g)$$

O*(g) และ O2*(g) เป็น excited atom และ molecule

$$O^*(g) + H_2O \longrightarrow 2OH$$

OH radical ทำปฏิกิริยาต่อ

$$OH + NO_2 \longrightarrow HNO_3$$

Photochemical smog

$$NO_2(g) \longrightarrow NO(g) + O(g)$$
 $O(g) + O_2(g) \longrightarrow O_3(g)$
 $NO(g) + 1/2O_2(g) \longrightarrow NO_2(g)$

Net reaction $3/2O_2(q) \longrightarrow O_3(q)$

Smoq เป็นของผสมของควัน ละออง แก๊สพิษต่างๆ

การผลิตไฟฟ้า มีการเผาใหม้ถ่านหินที่มี Sulfur เป็น องค์ประกอบ ซึ่งก่อให้เกิด SO

$$S(\text{in coal}) + O_2(g) \longrightarrow SO_2(g)$$
 $H_2SO_4(aq)$ ฝนกรด $2SO_2(g) + O_2(g) \longrightarrow 2SO_3(g)$ ที่กัดกร่อนทั้ง $SO_3(q) + H_2O(l) \longrightarrow H_2SO_4(aq)$ สิ่งมีชีวิตและไม่มีชีวิต

H₂SO₄(aq) ฝนกรด

การกำจัด SO₂

ใช้วิธี scrubbing โดยเผา CaCO₃ ได้ CaO ไปจับ SO₂ ได้เป็น calcium sulfite (CaSO₃)

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

 $CaO(s) + SO_2(g) \longrightarrow CaSO_3(s)$

Fig 15 แผนภาพกระบวนการ scrubbing เพื่อกำจัด SO₂

ปรากฏการณ์เรื่อนกระจก (Greenhouse Effect)

แก๊สคาร์บอนใดออกไซด์ (CO₂) ที่ถูกผลิตบนพื้นโลกจะไม่ ทำปฏิกิริยากับแสงในช่วง UV-Vis จากนอกโลก แต่จะดูดกลืน แสงในช่วงอินฟาเรด (IR) ที่ปล่อยจากพื้นโลก ทำให้กักเก็บ ความร้อนเอาไว้ ที่ผิวโลกจึงมีอุณหภูมิสูงขึ้น