Теорема 1 Энтропия языка $L^t = \{\alpha \in L_G : |\alpha| = t\}$, где G — разложимая стохастическая KC-грамматика, имеющая вид «цепочки», выражается формулой

$$H(L^t)\tilde{\sum}_{i\in I_l}\sum_{j=1}^{k_i}d_iH(R_i)\cdot t^2,$$

где $H(R_i) = -\sum_{j=1}^{k_i} p_{ij} \log p_{ij}$ — энтропия множества R_i правил вывода с нетерминалом A_i в левой части, и l — номер критического класса, наиболее удалённого от начала цепочки.

Энтропия языка L^t определяется количеством правил, нетерминал в левой части которых находится в наиболее удалённом от начала цепочки критическом классе. Число правил, нетерминал в левой части которых находится в других критических классах, есть $o(t^2)$, поэтому такие правила не оказывают влияния на асимптотику энтропии. Число правил, нетерминал в левой части которых находится в докритических классах, есть O(1), поэтому такие правила также не влияют на энтропию языка L^t .