Introduction to HIP

DoCoMo Labs USA

Pekka Nikander

Ericsson Research Nomadiclab & Helsinki Institute for Information Technolog

Outline

- Introduction
- The Basic Idea of HIP
 - Bindings, Conceptual model
- End-host Mobility & Multi-homing
 - End-Host Mobility & Multi-Homing Models
 - Conceptual model for mobility & multi-homing
 - A Virtual Interface Model
 - Components in the Architecture
- HIP for Monets
 - Basic delegation, Delegation to Mobile Router
- Summary

Introduction

- Once upon a time computers were big and bulky ...
 - ... and now I usually carry five computers with me.
- Once upon a time Internet connectivity was a luxury ...
 - ... but in a few more years it will be ubiquitous.
- Internet addresses still are addresses (locators) ...
 - ... but today they work poorly as end-point identifiers.
- Since Mobile IP(v6) is such a gross hack ...
 - (and I know since I was in the security desing team)
 - ... maybe it is a time to rethink everything.
- Host Identity Payload (HIP) is a concrete attempt to rethink the architecture — we may be right, we may be wrong, but we try, and hopefully we learn.

The Basic Idea of HIP

- A new layer
- A new Name Space: Host Identifiers
 - Public keys!
 - Represented as hash values, Host ID Tags (HIT)
- Sockets bound to the Host IDs, not IP addresses
- HIs translated to IP addresses transparently in the kernel

Bindings

Bindings in the current architecture

Bindings in the new architecture

Conceptual model

End-host Mobility & Multi-homing

- HIP seems to solve end-host mobility and multi-homing problems almost trivially
- Mobility and multi-homing become duals of each other
 - A mobile host has multiple addresses serially
 - A multi-homed host has multiple addresses parallelly
- Also easy to explain the difference between
 - process mobility (migration) and node mobility
 - end-host multi-homing and site multi-homing
- The thinking can be folded into a Virtual Interface Model
- Resulting Architecture is relatively small and beautiful

End-host Mobility Model

End-host Multi-Homing model

Conceptual model

A Virtual Interface Model

Components in the Architecture

HIP for Monets

- Basic idea: Delegate right to send location updates
 - Remember, HI is a public key
- Use authorization certificates
 - SPKI, Keynote 2 or even PKIX
- The HI owner signs a certificate, delegating the right to send location updates on its behalf, to another HI
 - (HI_{Alice}, HI_{Bob}, right to send location updates)

Basic delegation

Delegation to Mobile Router

Summary

- A concrete, down-to-earth attempt to "fix" the Internet
 - Deployment can start at end-points
 - No changes required to routers
 - Can be made to work with firewalls relatively easily
 - Supports NAT, but requires HIP-capable NAT boxes
 - Backward compatibility can be provided with proxies
- Seems to solve almost trivially
 - end-host mobility
 - end-host multi-homing
- Provides components for
 - site multi-homing
 - monets