

AD-A171 896

EVALUATION OF CORROSION RESISTANT SURFACES ON 6061
ALUMINUM ALLOY(U) ARMY CLOSE COMBAT ARMAMENTS CENTER
WATERVLIET NY E TROIANO JUL 86 ARCCB-MR-86023

1/1

UNCLASSIFIED

F/G 11/3

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

AD-A171 096

12
AD

MEMORANDUM REPORT ARCCB-MR-86023 ✓

EVALUATION OF CORROSION RESISTANT SURFACES ON 6061 ALUMINUM ALLOY

EDWARD TROIANO

JULY 1986

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENET WEAPONS LABORATORY
WATERVLIET, N.Y. 12189-4050

DTIC FILE COPY

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER ARCCB-MR-86023	2. GOVT ACCESSION NO. AD-A171696	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) EVALUATION OF CORROSION RESISTANT SURFACES ON 6061 ALUMINUM ALLOY	5. TYPE OF REPORT & PERIOD COVERED Final	
7. AUTHOR(s) Edward Troiano	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Armament Research, Develop, & Engr Center Benet Weapons Laboratory, SMCAR-CCB-TL Watervliet, NY 12189-4050	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS AMCMS No. 2437353410012 PRON No. 4A52F5CK1A1A	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research, Develop, & Engr Center Close Combat Armaments Center Dover, NJ 07801-5001	12. REPORT DATE July 1986	13. NUMBER OF PAGES 30
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	15. SECURITY CLASS. (of this report) UNCLASSIFIED 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Anodizing Chemical Conversion Coating Solid Film Lubricants Bore Evacuator		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study was undertaken in order to provide corrosion protection for 6061 aluminum. Anodizing (Type II and III), chemical conversion coating, and solid film lubricants were tested and evaluated. It was found that anodizing Type II offers excellent corrosion protection, but in cases where anodizing cannot be used, chemical conversion coating and solid film lubricants offer ample corrosion protection.		

TABLE OF CONTENTS

	<u>Page</u>
BACKGROUND AND INTRODUCTION	1
APPROACH TO THE PROBLEM	2
RESULTS AND DISCUSSION OF RESULTS	3
CONCLUSION	4

TABLES

I. COATINGS	2
II. SCRATCHED SPECIMENS (120 HOURS OF CORROSIVE ENVIRONMENT) SAMPLES 1-9	3
III. UNSCRATCHED SPECIMENS (288 HOURS OF CORROSIVE ENVIRONMENT) SAMPLES 1A-9A, 10-15	4
IV. WELDED SPECIMENS (216 HOURS OF CORROSIVE ENVIRONMENT)	4

LIST OF ILLUSTRATIONS

1. Cut Away View - 105mm XM24 Bore Evacuator.	5
2. Specimens 1 thru 9, 1A thru 9A, 10 thru 15.	6-29

DTIC
ELECTE
S D
AUG 11 1986

B

BACKGROUND AND INTRODUCTION

The purpose of this investigation was to test and evaluate various corrosion resistant surfaces on 6061 aluminum. The study was initiated by a request to have Type III anodizing applied (MIL-A-8625C) on the mating surface between an aluminum bore evacuator and a gun tube. The problem encountered was, according to specification MIL-A-8625C 3.3.7, "ANODIC COATINGS SHALL NOT BE APPLIED TO ASSEMBLIES WHICH WILL ENTRAP THE ELECTROLYTE IN JOINTS OR RECESSES." By viewing Figure 1, one can see the proposed corrosion resistant area and the joint in question.

This study includes corrosion tests on anodized surfaces (Type II and Type III, MIL-A8625C) and also chemical conversion coated surfaces (MIL-C-5541C). All surfaces were also tested using heat cured and air cured solid film lubricants (MIL-L-8937 and MIL-L-46147A). Solid film lubricants (SFL) were tested for two reasons; first, they add additional resistance to corrosion, and second, they act as a lubricant which is beneficial when trying to remove the bore evacuator from the gun tube.

According to MIL-A-8625C, if there is any possibility of the electrolyte (anodizing) entering a joint or recess, that joint or recess should be masked off to prevent the electrolyte from entering it. That led to the possibility of creating a mask to seal off the joint in question (See Figure 1). The proposal to make a mask was not pursued, however, due to the difficulty of producing a mask and also the tedious and laborious job of applying the mask to every bore evacuator. Finally, an alternate solution to anodizing had to be investigated. This investigation led to the testing and evaluation of chemical conversion coating and solid film lubricants. The procedure used, results and evaluation of testing and recommendations follow.

APPROACH TO THE PROBLEM

Initially, there were 18 pieces of 3" x 10" 6061 aluminum plates labeled 1-9 and 1A-9A. After the initial testing of these 18 specimens, 6 more were added labeled 10-15. Each of the 24 test samples was subjected to the following coatings:

TABLE I - COATINGS

		Heat Cured SFL	Exterior Coating Air Cured SFL	None
Interior Coating	Chemical Conversion Coat	1, 1A, 10, 11	2, 2A, 12, 13	3, 3A, 14, 15
	Anodized Type II Class I	4, 4A	5, 5A	6, 6A
	Anodized Type III	7, 7A	8, 8A	9, 9A

After each piece had been properly coated (according to their respective specification), they were subjected to several tests. The first test done was the adhesion test (ASTM D2510). This test states that tape shall be applied to the coated metal and then lifted off. This action should not expose any surface of the underlying metal. If any bare metal is exposed, the test specimen should be rejected. The second test used was to subject the test specimens to a corrosive salt spray environment (ASTM-B117-73). This test was performed in two different ways. Specimens 1A-9A and 10-15 were subjected to the salt spray chamber as coated in Table I; while specimens 1-9 were subjected to a scribed line which protruded through the coatings and into the base metal so as to expose the base metal to the corrosive environment.

After all 24 specimens had been removed from the salt chamber, a recommendation was made to compare the corrosion protection surface that is currently being used on steel bore evacuators to the corrosion protection that the chemical conversion coat

and solid film lubricants provide. This led to welding a piece of carbon steel with phosphating and heat cured solid film lubricant applied and cured at 400°F. The aluminum was also welded and had chemical conversion coating and heat cured solid film lubricant applied and cured at 300°F. Both welded specimens were then placed in the salt spray cabinet.

RESULTS & DISCUSSION OF RESULTS

After each specimen had been properly coated according to Table I, each sample was tested for adhesion. It was observed in all cases that the adhesion of the coating to the base metal was strong enough to prevent any of the coating from being removed. The results of this particular test show proper and acceptable adhesion of all coatings on their underlying aluminum bases. Next, the scratched and unscratched specimens were placed in a salt spray atmosphere, the scratched specimens were subjected to 120 hours of corrosive environment and the unscratched specimens were subject to 288 hours of corrosive environment. (Photographs of each specimen follow). After the specimens were removed from the salt spray chamber, they were cleaned, dried and evaluated on a scale from 1 to 3; 1 being the most corrosion resistant, 3 being the least corrosion resistant. When more than one sample of the same specimen was tested, an average was taken of those specimens and the results are listed below.

TABLE II

Scratched Specimens (120 hours of corrosive environment)
Samples 1-9

Interior Coating		Exterior Coating		
		Heat Cured SFL	Air Cured SFL	None
	Chemical Conversion Coat	1	2	1
	Anodized Type II Class I	2	2	1
	Anodized Type III	2	2	3

TABLE III

Unscratched Specimens (288 hours of corrosive environment)
Samples 1A-9A, 10-15

		Exterior Coating		
		Heat Cured SFL	Air Cured SFL	None
Interior Coating	Chemical Conversion Coat	2	3	3
	Anodized Type II Class I	1	1	1
	Anodized Type III	1	1	3

Both welded specimens were removed after a total of 216 hours of corrosive environment. They, too, were rated on a scale from 1 to 3 with the following results:

TABLE IV

Welded Specimens (216 hours of corrosive environment)

		Exterior Coating	
		Heat Cured SFL	
Interior Coating	Carbon Steel - Phosphate	3	
	6061 Aluminum - Chemical Conversion Coat	1	

CONCLUSION:

From the results presented in Tables II and III, it can be seen in most cases that the anodized surfaces provided better corrosion protection than the chemical conversion coated surfaces. But due to the nature of the problem (the fact that anodizing will corrode the weld and surrounding area), an anodized surface cannot be used.

It is the findings of this study that in the event it becomes too difficult to mask off a questionable area that is to be anodized, a chemical conversion coating and heat cured solid film lubricant will provide a reasonable amount of corrosion protection. If this corrosion protection is deemed to be inadequate, a mask must be developed, and then we will recommend an anodized Type II Class I surface and possibly a solid film lubricant exterior surface.

FIGURE 1 - CUT AWAY VIEW - 105mm XM24 BORE EVACUATOR

SPECIMEN 1

SPECIMEN 1A

10

SPECIMEN 2

SPECIMEN 2A

3

SPECIMEN 3

10

3A

SPECIMEN 3A

4

SPECIMEN 4

12

4A

SPECIMEN 4A

5

SPECIMEN 5

SPECIMEN 5A

SPECIMEN 6

Specimen 6A

7

SPECIMEN 7

7A

Specimen 7A

SPECIMEN 8

Specimen 8A

SPECIMEN 9

Specimen 9A

10

SPECIMEN 10

SPECIMEN 11

12

SPECIMEN 12

13

SPECIMEN 13

SPECIMEN 14

28

SPECIMEN 15

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	<u>NO. OF COPIES</u>
CHIEF, DEVELOPMENT ENGINEERING BRANCH	
ATTN: SMCAR-CCB-D	1
-DA	1
-DP	1
-DR	1
-DS (SYSTEMS)	1
-DC	1
-DM	1
CHIEF, ENGINEERING SUPPORT BRANCH	
ATTN: SMCAR-CCB-S	1
-SE	1
CHIEF, RESEARCH BRANCH	
ATTN: SMCAR-CCB-R	2
-R (ELLEN FOGARTY)	1
-RA	1
-RM	1
-RP	1
-RT	1
TECHNICAL LIBRARY	5
ATTN: SMCAR-CCB-TL	
TECHNICAL PUBLICATIONS & EDITING UNIT	2
ATTN: SMCAR-CCB-TL	
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR, PROCUREMENT DIRECTORATE	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: SMCAR-CCB-TL,
OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

<u>NO. OF COPIES</u>		<u>NO. OF COPIES</u>	
	ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT ATTN: DEP FOR SCI & TECH THE PENTAGON WASHINGTON, D.C. 20315	COMMANDER US ARMY AMCCOM ATTN: SMCAR-ESP-L ROCK ISLAND, IL 61299	1
	COMMANDER DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-DDA CAMERON STATION ALEXANDRIA, VA 22314	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61299	12
	COMMANDER US ARMY MAT DEV & READ COMD ATTN: DRCDE-SG 5001 EISENHOWER AVE ALEXANDRIA, VA 22333	DIRECTOR US ARMY INDUSTRIAL BASE ENG ACTV ATTN: DRXIB-M ROCK ISLAND, IL 61299	1
	COMMANDER ARMAMENT RES & DEV CTR US ARMY AMCCOM ATTN: SMCAR-FS SMCAR-FSA SMCAR-FSM SMCAR-FSS SMCAR-AEE SMCAR-AES SMCAR-AET-0 (PLASTECH) SMCAR-MSI (STINFO)	COMMANDER US ARMY TANK-AUTMV R&D COMD ATTN: TECH LIB - DRSTA-TSL WARREN, MI 48090	1
	DOVER, NJ 07801	COMMANDER US ARMY TANK-AUTMV COMD ATTN: DRSTA-RC WARREN, MI 48090	1
	DIRECTOR BALLISTICS RESEARCH LABORATORY ATTN: AMXBR-TSB-S (STINFO) ABERDEEN PROVING GROUND, MD 21005	COMMANDER US MILITARY ACADEMY ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996	1
	MATERIEL SYSTEMS ANALYSIS ACTV ATTN: DRXSY-MP ABERDEEN PROVING GROUND, MD 21005	US ARMY MISSILE COMD REDSTONE SCIENTIFIC INFO CTR ATTN: DOCUMENTS SECT, BLDG. 4484 REDSTONE ARSENAL, AL 35898	1
		COMMANDER US ARMY FGN SCIENCE & TECH CTR ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	2

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

	<u>NO. OF COPIES</u>		<u>NO. OF COPIES</u>
COMMANDER US ARMY LABCOM MATERIALS TECHNOLOGY LAB ATTN: SLCMT-IML WATERTOWN, MA 01272	2	DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV CODE 26-27, (DOC LIB) WASHINGTON, D.C. 20375	1 1
COMMANDER US ARMY RESEARCH OFFICE ATTN: CHIEF, IPO P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/DLJ AFATL/DLJG EGLIN AFB, FL 32542	1 1
COMMANDER US ARMY HARRY DIAMOND LAB ATTN: TECH LIB 2800 POWDER MILL ROAD ADELPHIA, MD 20783	1	METALS & CERAMICS INFO CTR BATTELLE COLUMBUS LAB 505 KING AVENUE COLUMBUS, OH 43201	1
COMMANDER NAVAL SURFACE WEAPONS CTR ATTN: TECHNICAL LIBRARY CODE X212 DAHLGREN, VA 22448	1		

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

9

-

86