第6回将来HPCIあり方調査研究「ア プリ分野」 全体ミーティング 2013年5月31日

富田浩文

将来HPCIあり方調査研究「アプリ分野」第6回全体ミーティング・アジェンダ

日時: 2013年5月31日(金)、場所: TKP東京駅ビジネスセンター1号館(注1) 3階 ホール3A

□ □ □ □ □ □ □ □ □ □											
	時間	発表内容	発表者(敬称略)								
	10:00-10:10	本日の趣旨説明 (10分)	富田								
	午前の部		(進行:富田)								
157	10:10-11:00	東北・筑波・東大FSチームとの連携状況 (50分)	江川、高橋(大)、片桐								
	11:00-12:15	計算科学ロードマップの査読後と修正の発表 (1時間15分)	池口、藤堂、堀(高)、河宮、 高木、石川(健)、伊藤								
	午後の部		(進行:杉田)								
	13:30-14:15	招待講演:実験観測研究者からの提言:「ビッグデータ」									
		"Tackling Biomedical Big Data" (45分)	宮野悟(東京大学医科学研究 所 ヒトゲノム解析センター教授)								
	14:15-14:45	システム評価法進捗状況 (30分)	野村								
	14:45-15:15	フルアプリ調査とミニアプリ化進捗報告 (30分)	鈴木								
	15:45-16:15	ビッグデータに関する各国の取り組み・動向につ いて(30分)	松岡								
	16:15-17:15	ビッグデータの球出しと構成の議論 (1時間)	WG方式								
	17:30-18:00	まとめ (30分)	(進行:富田)								
	18:00-19:00	個別ディスカッション (1時間)									

※会議終了後、懇親会開催を予定しています。 (注1)前回と違うビルですのでご注意ください。

休憩 30分

休憩 15分

ロードマップの修正について

==== 本日

- 一人、10分以内、端的に。
 - 主な指摘事項をもとにどのように直したか?
- 質疑数分

====

- 現状版は公開されている。
 - この後、異議のある人は、オフィス宛へ、ご連絡ください。
 - 執筆担当者と事務局で調整。(数日中)

====

- 今後の段取り:
 - このまま、パブコメは無理。
 - いったん、リライト(業者をいれるかどうか?)
 - 7月にパブコメ。
 - パブコメを踏まえた、り一ぞなぶるな修正を行い、ロードマップ完成版は、7月中。(ほぼ絶対期限)

アプリ表の穴埋めと精査

- 計算機側へのインプットとして、早急に必要。
- 本日の中で、機構研究者が聞いて回ると思います。

もし時間があれば、本日、WGで、完成版を作る。

例

19'1											
課題:	問題規模と計算手法	実効性 能 (PFLOP S)	実効メ モリバ ンド幅 (PB/s)	実効ネッ トワーク 性能 (PB/s)	使用メモ リ量 (PB)	使用ストアレージ量 (PB)	要求 スト レージ I/O性 能 (TB/s	計算時間/ケース (hour)	ケー ス数	総演算量 (EFLOP)	備考
電子材料の電子状 態計算・手法1	第一原理分子動力学計算 原子数:1億	1000	200	30	5	15	???	14	10	504,000	
電子材料の電子状 態計算・手法2	実空間基底O(N3)法分子動力学計算 原子数:10万	1000	100	1	1.2	12	???	7	20	504,000	
強相関電子系の理 解	手法:厳密対角化 計算規模: 2.0^15X2.0^15	82	131	3.3	82	41	???	10	100	295,200	
プラズマ乱流計算・ マルチスケール乱 流	ボルツマン方程式の5次元計算(スペクトル法+差分法)、10 ¹² 格子、10 ⁶ ステップ	100	40	0.5	0.5	10	10	24	100	864,000	
プラズマ乱流計算・ 大域的非定常乱流	ボルツマン方程式の5次元計算(差分 法)、10 ¹² 格子、10 ⁷ ステップ	300	120	0.5	0.5	10	10	100	10	1080,000	
熱流体シミュレー ション(自動車) (実際の設計、最適 化問題)	Re=10 ⁶ ~10 ⁷ のLES流体計算 格子点数:10 ¹¹	10	20	0.5	0.01	0.1	500	28	1000	1010,000	構造格子でBF= 4と想定
熱流体シミュレー ション(自動車) (ハイエンドベンチ マーク)	Re=10 ⁶ ~10 ⁷ のLES流体計算 格子点数:10 ¹²	100	200	5	0.1	1	500	28	10	101,000	構造格子でBF= 4と想定
風力発電立地条件 アセスメント	高解像度LES流体計算(差分法) • 格子点数: 10000X10000X3000(10m格子) • 積分時間: 48時間	40	120	-	0.1	0.6	???	72	100	1040,000	1立地のアセスメントに100ケース 必要。これを複数ケース行うことが必要。
近未来地球環境予 測システム	地球システムモデル(スペクトル法+ 差分法) ・ 格子点数: 大気2000X1000X200(水平20km) ・ 積分時間: 100年積分	0.53	1.6	0.001	0.00032	0.1	???	600	100	115,000	100アンサンブルこれを何年かに一度は更新。見積もりは海は大気に比べて計算負荷が少ないので、考慮に入れてない。

表

- そもそも、課題だけが挙がっていて、問題サイズ がない。
- 結構ぶつ飛んでいる計算量のものがある。
- 想定、1000EFLOPSですが、実効1000EFLOPSは 行きません!表は、実効を書いていただきたい。
 - 例えば、1ケースの総演算量がわかり、それを何時間でやりたいか
- 上記の問題は、現実的な問題サイズに落とし込むか、次々世代の課題にすべき。

2, 3、4章

- 2, 3章:
 - 対象大学院生レベル
 - リファレンスつけない(基本的に)
 - 用語集つけない(基本的に)
 - より学びたい人のために、4章へのりふぁ一はOK
 - 査読修正後のもので、反映されていない、異議ありの意見は、6月3日までに受け付ける。
- 4章
 - 対象:他分野の研究者が理解できるレベル
 - リファレンス、用語集はつける。

締切

• 4章:6月7日

• アプリ表:6月7日

Hpci aplfs office@riken.jp^