

TUMOURSARECOMING

Andrea Giordano and Bharath Narayanan

Jiang, Y., Pjesivac-Grbovic, J., Cantrell, C., & Freyer, J. P. (20.250.255). A multiscale model for avascular tumor growth. *Biophysical journal*, 89(6), 3884–3894. doi:10.25.1529/biophysj.10.255.0.2560.25640.25

https://fontmeme.com/game-ofthrones-font/

Lesson Plan

- Recap
 - How does a tumour grow?
 - What are the scales involved?
- What does the simulation setup look like?
- A look at two scales in detail
- Run your simulations
- An in depth look at the volume-adhesion trade-off
- The limitations of our pseudo-diffusion

IN CASE YOU MISSED IT

How does a tumour grow?

Russell G. Jones, and Craig B. Thompson Genes Dev. 20.250.259;23:537-548

How does a tumour grow?

Russell G. Jones, and Craig B. Thompson Genes Dev. 20.250.259;23:537-548

Cellular

- Cells compete for space
- Minimize volume + adhesive energy
- Monte Carlo

Extra-cellular

- Diffusion of nutrients
- In our case just oxygen
- Oxygen level determines cell type

• Boolean sequence of proteins

Takes the cell through its lifecycle

Sub-cellular

Modelling tumour growth

- Proliferating (P)
 - Actively grow and divide
 - Cell IDs start from 1 onward
 - Consume oxygen at the highest rate

Proliferating

(P)

- Actively grow and divide
- Cell IDs start from 1 onward
- Consume oxygen at the highest rate

Quiescent

(Q)

- Do not grow or divide
- P cells change into Q when oxygen levels decline.
- Cell IDs are retained
- Consume oxygen at half the rate of a P cell

Proliferating

(P)

- Actively grow and divide
- Cell IDs start from 1 onward
- Consume oxygen at the highest rate

Quiescent

(Q)

- Do not grow or divide
- P cells change into Q when oxygen levels decline.
- Cell IDs are retained
- Consume oxygen at half the rate of a P cell

Necrotic

(N)

- Dead cells
- Q cells change to N with even lower levels of oxygen
- ID = -1
- No oxygen consumption

Proliferating

(P)

- Actively grow and divide
- Cell IDs start from 1 onward
- Consume oxygen at the highest rate

Medium

(M)

- Represent cells outside of the tumour
- Oxygen rich
- ID = 0

Quiescent

Q)

- Do not grow or divide
- P cells change into Q when oxygen levels decline.
- Cell IDs are retained
- Consume oxygen at half the rate of a P cell

Necrotic

(N)

- Dead cells
- Q cells change to N with even lower levels of oxygen
- |D = -1|
- No oxygen consumption

Basic setup

- 2D Lattice discretization
- A cell occupies *more* than one site

Start off with a single 'proliferating cell'

Start with a base level of oxygen everywhere

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Cell Evolution

Growth

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Cell Evolution

Growth

Division

0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	0	1	1	1	0	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Cell Evolution

Growth

Division

Death

Activity at two different scales

Cell interaction is simulated according to a
 probabilistic model regarding *energy* evolution
 (ΔH).

$$p = \left\{ egin{array}{ll} 1, & \Delta H < 0 \ e^{-rac{\Delta H}{k_{\mathrm{b}}\mathrm{T}}}, & \Delta H \geq 0 \end{array}
ight.$$

```
      1
      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      2
      1
      1
      3
      2
      2
      4
      3
      4
      4

      2
      1
      1
      2
      2
      2
      4
      4
      4
      6

      2
      2
      1
      2
      2
      2
      6
      6
      6
      6

      5
      2
      2
      2
      2
      6
      6
      6
      6

      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5
```


• Hamiltonian operator definition:

$$H = \sum_{ ext{lattice sites}} J_{ au(S_1) au(S_2)}[1 - \delta(S_1, S_2)] + \sum_{ ext{cells}} oldsymbol{\gamma}(v - V^{\mathrm{T}})^2$$

```
      1
      1
      1
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      2
      1
      1
      3
      2
      2
      4
      3
      4
      4

      2
      1
      1
      3
      2
      2
      4
      3
      4
      4

      2
      1
      1
      2
      2
      2
      4
      4
      4
      6

      2
      2
      1
      2
      2
      2
      2
      6
      6
      6
      6

      5
      5
      5
      5
      5
      6
      6
      5
      5
      5

      5
      5
      5
      5
      5
      6
      6
      6
      5
      5

      5
      5
      5
      5
      5
      6
      6
      6
      5
      5

      5
      5
      5
      5
      5
      6
      6
      6
      5
```


• Hamiltonian operator definition:

Adhesive energy term

$$H = \sum_{\text{lattice sites}} J_{\tau(S_1)\tau(S_2)} [1 - \delta(S_1, S_2)] + \sum_{\text{cells}} \gamma (v - V^T)^2$$

```
      1
      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      1
      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      2
      1
      1
      2
      2
      2
      4
      4
      4
      6

      2
      2
      1
      2
      2
      2
      4
      4
      4
      6

      2
      2
      1
      2
      2
      2
      6
      6
      6
      6

      5
      2
      2
      2
      2
      2
      6
      6
      6
      6

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
```


• Hamiltonian operator definition:

Adhesive energy term

$$H = \sum_{\text{lattice sites}} J_{\tau(S_1)\tau(S_2)}[1 - \delta(S_1, S_2)] + \sum_{\text{cells}} \gamma(v - V^T)^2$$

Volume energy term

1	1	1	3	3	3	3	3	4	4
1	1	1	3	3	3	3	3	4	4
1	1	1	3	3	3	3	3	4	4
2	1	1	3	2	2	4	3	4	4
2	1	1	2	2	2	4	4	4	6
2	2	1	2	2	2	6	6	6	6
5	2	2	2	2	2	6	6	6	6
5	5	5	5	5	6	6	5	5	5
5	5	5	5	5	6	6	6	5	5
5	5	5	5	5	5	5	5	5	5

• Hamiltonian operator definition:

τ(S1): cell type of cell "S1"

Volume energy term

1	1	1	3	3	3	3	3	4	4
1	1	1	3	3	3	3	3	4	4
1	1	1	3	3	3	3	3	4	4
2	1	1	3	2	2	4	3	4	4
2	1	1	2	2	2	4	4	4	6
2	2	1	2	2	2	6	6	6	6
5	2	2	2	2	2	6	6	6	6
5	5	5	5	5	6	6	5	5	5
5	5	5	5	5	6	6	6	5	5
5	5	5	5	5	5	5	5	5	5

• Hamiltonian operator definition:


```
6
           5
   5
```

Cellular level - Monte Carlo Step

1) Random lattice site is picked

Cellular level - Monte Carlo Step

- 1) Random lattice site is picked
- 2) Cell ID becomes that of another cell (unlike)

```
      1
      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      1
      1
      1
      3
      3
      3
      3
      3
      4
      4

      2
      1
      3
      3
      2
      2
      4
      3
      4
      4

      2
      1
      1
      2
      2
      2
      4
      4
      4
      6

      2
      2
      1
      2
      2
      2
      6
      6
      6
      6

      5
      2
      2
      2
      2
      2
      6
      6
      6
      6

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
      5
      5
      5
      5
      5
      5

      5
      5
      5
      5
      5
```


3) Hamiltonian is calculated again.

4) The change in the Hamiltonian affects the probability of keeping

this new state.

$$p = \begin{cases} 1, & \Delta H < 0 \\ e^{-\frac{\Delta H}{k_b T}}, & \Delta H \ge 0 \end{cases}$$

Extracellular level - Diffusion

• What matters in the diffusion?

Extracellular level - Diffusion

Consumption of oxygen at each lattice site.

0.8	0.4	0.5	0.7	0.4	0.7	0	0.3	0.2	0.7
0	0	0.3	0.2	0.4	0.2	0.5	0.3	0.7	0.2
0.9	0.9	0.3	0.4	0.6	0.4	0.1	0.1	0.2	0.4
0.1	0.7	0.4	0.5	0.7	0.1	0.3	0.9	0.4	0.1
0.3	0.2	0.7	0.5	0.1	0.7	0.4	0.1	0.2	0.7
0.3	0.5	0.1	0.5	0.7	0.1	0.5	0.7	0.7	0.7
0.4	0.5	0	0.3	0.7	0.8	0.5	0.7	0.3	0.2
0.3	0.2	0.5	0.3	0.2	0.5	0.3	0.2	0.3	0.5
0.3	0.4	0.1	0.1	0.4	0.1	0.5	0.7	0.4	0.5
0.4	0.6	0.3	0.4	0.6	0	0.3	0.2	0.7	0.5

Consumption of oxygen at each lattice site.

0.8	0.4	0.5	0.7	0.4	0.7	0	0.3	0.2	0.7
0	0	0.3	0.2	0.4	0.2	0.5	0.3	0.7	0.2
0.9	0.9	0.3	0.4	0.6	0.4	0.1	0.1	0.2	0.4
0.1	0.7	0.4	0.5	0.7	0.1	0.3	0.9	0.4	0.1
0.3	0.2	0.7	0.5	0.1	0.7	0.4	0.1	0.2	0.7
0.3	0.5	0.1	0.5	0.7	0.1	0.5	0.7	0.7	0.7
0.4	0.5	0	0.3	0.7	0.8	0.5	0.7	0.3	0.2
0.3	0.2	0.5	0.3	0.2	0.5	0.3	0.2	0.3	0.5
0.3	0.4	0.1	0.1	0.4	0.1	0.5	0.7	0.4	0.5
0.4	0.6	0.3	0.4	0.6	0	0.3	0.2	0.7	0.5

In this lattice, oxygen concentration is shown at each site

Extracellular level - Diffusion

Oxygen consumption depends on cell type

0.8	0.4	0.5	0.7	0.4	0.7	0	0.3	0.2	0.7
0	0	0.3	0.2	0.4	0.2	0.5	0.3	0.7	0.2
0.9	0.9	0.3	0.4	0.6	0.4	0.1	0.1	0.2	0.4
0.1	0.7	0.4	0.5	0.7	0.1	0.3	0.9	0.4	0.1
0.3	0.2	0.7	0.5	0.1	0.7	0.4	0.1	0.2	0.7
0.3	0.5	0.1	0.5	0.7	0.1	0.5	0.7	0.7	0.7
0.4	0.5	0	0.3	0.7	0.8	0.5	0.7	0.3	0.2
0.3	0.2	0.5	0.3	0.2	0.5	0.3	0.2	0.3	0.5
0.3	0.4	0.1	0.1	0.4	0.1	0.5	0.7	0.4	0.5
0.4	0.6	0.3	0.4	0.6	0	0.3	0.2	0.7	0.5

8.0	0.4	0.4	0.6	0.3	0.7	0	0.3	0.2	0.7
0	0	0.2	0.1	0.3	0.2	0.5	0.3	0.7	0.2
0.9	0.9	0.2	0.3	0.5	0.4	0.1	0.1	0.2	0.4
0.1	0.7	0.4	0.4	0.7	0.1	0.3	0.9	0.4	0.1
0.3	0.2	0.7	0.5	0.1	0.7	0.4	0.1	0.2	0.7
0.3	0.5	0.1	0.5	0.7	0.1	0.5	0.7	0.7	0.7
0.4	0.5	0	0.3	0.7	0.8	0.5	0.7	0.3	0.2
0.3	0.2	0.5	0.3	0.2	0.5	0.3	0.2	0.3	0.5
0.3	0.4	0.1	0.1	0.4	0.1	0.5	0.7	0.4	0.5
0.4	0.6	0.3	0.4	0.6	0	0.3	0.2	0.7	0.5

Simulation Flowchart

Simulation Flowchart

Start with a single P cell

Start with a single P cell

Monte-Carlo step

Cell growth

RUN!!!!!

Tumour threshold: 0.0225

RUN!!!!!

Tumour threshold: 0.0225

Results

Initial Oxygen = 0.08

Initial Oxygen = 0.075

Initial Oxygen = 0.072

• Balance between reducing surface adhesion and volume.

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	14	14	14	15	15	0	0	0
0	0	0	0	0	7	14	14	8	15	15	15	0	0
0	0	0	0	7	7	7	8	8	8	9	9	0	0
0	0	0	12	12	7	4	4	8	9	9	9	0	0
0	0	0	12	12	12	4	4	4	9	9	6	6	0
0	0	0	3	3	3	10	10	11	11	6	6	6	0
0	0	13	3	3	10	10	10	11	11	11	6	6	0
0	0	13	13	13	1	1	1	2	2	2	0	0	0
0	0	0	13	5	5	1	1	2	2	0	0	0	0
0	0	0	0	5	5	5	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

What happens if we prioritise volume energy?

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	11	11	11	0	0	0	0	0
0	0	0	0	0	12	13	11	16	12	0	0	0	0
0	0	0	0	13	13	13	16	16	15	15	0	0	0
0	0	0	0	5	5	16	8	15	15	7	7	0	0
0	0	0	5	14	9	8	7	7	3	3	3	14	0
0	0	7	9	14	14	6	5	5	6	3	9	6	0
0	7	7	7	9	6	12	3	10	5	6	6	0	0
0	0	7	7	1	1	3	10	10	10	6	6	0	0
0	6	6	8	1	1	1	2	2	5	12	0	0	0
0	3	8	4	1	3	4	4	2	2	2	0	0	0
3	3	4	0	1	1	4	5	2	2	2	0	0	0
0	4	4	0	1	1	5	4	2	2	0	0	0	0
0	0	0	0	0	5	4	8	4	0	0	0	0	0
0	0	0	0	0	0	8	8	8	0	0	0	0	0
0	0	0	0	0	0	8	8	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

- The primary aim is to achieve the target volume.
- Sacrifices keeping a cell together.

What happens if I prioritise surface adhesion energy?

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

- After six iterations, the cell still doesn't grow.
- Adding a single new lattice site to the cell increases adhesion energy a lot more than it decreases the volume energy.

Pseudo-Diffusion

Pseudo-Diffusion

- Differences with the paper:
 - We only use oxygen
 - We only consume oxygen
 - No REAL diffusion

$$\frac{\partial u_{\mathrm{O}_2}}{\partial t} = D_{\mathrm{O}_2} \nabla^2 u_{\mathrm{O}_2} + a(x, y, z)$$

- Our rate of diffusion is infinitesimally small.
- Question: What would happen in case we used the real diffusion equations?

Appendix

Appendix

• Hamiltonian operator definition:

Appendix

Start with a single P cell

Start with a single P cell

Monte carlo simulation

