

Norges teknisk-naturvitenskapelige universitet Institutt for teknisk kybernetikk

Faglig kontakt under eksamen

Navn: Tu Duc Nguyen

Telefon: 73594359

Jose Marcal

Telefon: 73590967

EKSAMEN I TTK4130 MODELLERING OG SIMULERING

02. juni 2008 Tid: 09:00-13:00

Hjelpemidler:

A: Alle kalkulatorer, trykte og håndskrevne hjelpemidler tillatt.

Sensur:

Sensuren vil bli avsluttet i henhold til gjeldende regelverk.

Eksamensettet består av totalt 10 sider.

Alle svar $\underline{\mathbf{M}}$ begrunnes og nødvendige mellomregninger må føres! Svar uten begrunnelser gir null poeng.

Oppgave 1 (20 %)

Gitt numeriske metoder:

Metode 1:

$$\mathbf{k}_1 = \mathbf{f}\left(\mathbf{x}_n + \frac{h}{2}\mathbf{k}_1, t_n + \frac{h}{2}\right)$$

$$\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{k}_1$$

Metode 2:

$$\mathbf{k}_{1} = \mathbf{f}(\mathbf{y}_{n}, t_{n})$$

$$\mathbf{k}_{2} = \mathbf{f}\left(\mathbf{y}_{n} + \frac{h}{3}\mathbf{k}_{1}, t_{n} + \frac{h}{3}\right)$$

$$\mathbf{k}_{3} = \mathbf{f}\left(\mathbf{y}_{n} + \frac{2h}{3}\mathbf{k}_{2}, t_{n} + \frac{2h}{3}\right)$$

$$\mathbf{y}_{n+1} = \mathbf{y}_{n} + h\left(\frac{1}{4}\mathbf{k}_{1} + \frac{3}{4}\mathbf{k}_{3}\right)$$

Metode 3:

a) Bestem stabilitetsfunksjonen $R(\lambda h)$ til metodene. Er metodene A-stabile? L-stabile? Begrunn svarene.

Betrakt nå initialverdi problemet

$$\ddot{\theta}(t) + \theta(t) = 0, \quad t > 0 \tag{1}$$

$$\theta\left(0\right) = 1 \tag{2}$$

$$\dot{\theta}(0) = 0 \tag{3}$$

- **b)** Finn egenverdiene til systemet (1). Bestem stabilitetsegenskapen til systemet. Kan man si noe om $\left|\left[\theta\left(t\right),\dot{\theta}\left(t\right)\right]^{\top}\right|$, $\forall t\geq0$?
- c) Vi ønsker å finne numeriske løsninger på initialverdi problemet (1)-(3). For å bevare systemets egenskaper bl.a. stabilitet og energi, hvilken metode bør man velge (metode 1, 2 eller 3)? Begrunn svaret.
- d) Antar at vi velger metode 3 med tidsskritt h=0.1 sekunder. Gitt at den eksakte løsningen av initialverdiproblemet (1)-(3) ved tidspunkt t=0.2 sekunder er $\left[\theta\left(0.2\right),\dot{\theta}\left(0.2\right)\right]^{\top}=\left[0.9801,-0.1987\right]^{\top}$. Bestem den globale avbruddsfeilen ved tidspunkt t=0.2 sekunder med denne metoden. Er numeriske løsninger med denne metoden og med h=0.1 sekunder stabile? Begrunn svaret.

Oppgave 2 (12%)

- a) La rotasjonsmatrisen ${\bf R}$ består følgende rotasjoner: Rull (roll) med 30°, og trim (pitch) med 30°. Beregn ${\bf R}$.
- b) La \mathbf{a}_1 være en vektor. Beskriv alle rotasjonsmatriser \mathbf{R} som tilfredsstiller ligningen

$$\|\mathbf{R}\mathbf{a}_1 - \mathbf{a}_1\| = 0 \tag{4}$$

(Hint: Bruk vinkel-akse parametrisering).

c) La rotasjonsmatrisen \mathbf{R}^a_d være gitt av en vinkel-akse parametrisering med enhetsvektoren \mathbf{k} og vinkelen θ . Vis at

$$\mathbf{R}_d^a - (\mathbf{R}_d^a)^{-1} = 2\mathbf{k}^{\times} \sin(\theta) \tag{5}$$

Oppgave 3 (8%)

- a) La $\mathbf{a}^b = [0 \ 0 \ 9.8]^{\top}$. La $\mathbf{R}(\eta, \epsilon) = \mathbf{R}^b_a$ være en rotasjonsmatrise med $(\eta, \epsilon) = (\frac{\sqrt{2}}{2}, [0 \ \frac{\sqrt{2}}{2} \ 0]^{\top})$. Beregn \mathbf{a}^a ved bruk av kvartertion produkt.
- b) La rotasjonsmatrisen \mathbf{R}^c_a være gitt av en enkel rotasjon på 60° om z-aksen. Beregn enhets kvartertionen assosiert med rotasjonsmatrisene \mathbf{R}^c_a og \mathbf{R}^c_b .

Oppgave 4 (10 %)

Gitt systemet

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + [\mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{D}(\mathbf{q}, \dot{\mathbf{q}})]\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} = \tau$$
(6)

hvor

- $\mathbf{q}, \dot{\mathbf{q}}, \boldsymbol{\tau} \in \mathbb{R}^n \text{ og } \dot{\mathbf{q}} = d\mathbf{q}/dt.$
- $\mathbf{M}, \mathbf{C}, \mathbf{D}, \mathbf{K} \in \mathbb{R}^{n \times n}$.

La matrisene $\mathbf{M},\,\mathbf{C},\,\mathbf{D},\,\mathrm{og}\;\mathbf{K}$ har egenskapene

- $\mathbf{K} = \mathbf{K}^{\top} > 0$.
- $\mathbf{M}(\mathbf{q}) = \mathbf{M}(\mathbf{q})^{\top} > 0, \forall \mathbf{q} \neq 0.$
- $\dot{\mathbf{q}}^{\top} \mathbf{D}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} \geq 0, \ \forall \mathbf{q}, \dot{\mathbf{q}} \in \mathbb{R}^n.$
- $\dot{\mathbf{M}} 2\mathbf{C}$ er skevsymmetrisk, dvs.

$$\left(\dot{\mathbf{M}} - \mathbf{2C}\right)^{ op} = -\left(\dot{\mathbf{M}} - \mathbf{2C}\right)$$

hvor $\frac{d}{dt}\mathbf{M} = \mathbf{\dot{M}}$.

Vis at systemet (6) er passivt med inngangsvektoren τ og utgangsvektoren $\dot{\mathbf{q}}$.

Oppgave 5 (15 %)

Betrakt systemet i Figur . Systemet består av et indre volum og et ytre volum. Det strømmer væsker i begge volumene. Variablene angitt i figuren har følgdende betydning:

Indre volum:

- ρ_1 : massetetthet [kg/m³]
- v_1 : absoluttverdien av hastighet [m/s]
- T_1 : temperatur [K]
- c_1 : spesifikk varmekapasitet [Js/(kg·K)]
- r_1 : radius av indre rør [m]

Ytre volum:

- ρ_2 : massetetthet [kg/m³]
- v_2 : absoluttverdien av hastighet [m/s]
- T_2 : temperatur [K]
- c_2 : spesifikk varmekapasitet [Js/(kg·K)]
- r_2 : radius av ytre rør [m]

Omgivelse:

• T_3 : temperatur av omgivelsen [K].

La

- L: lengden av røret [m]
- κ_{12} : varmeoverganstall mellom det indre- og det ytre-volumet $[W/m^2K]$.
- κ_{23} : varmeoverganstall mellom det ytre volumet og omgivelsen [W/m²K].

Antar at

- $T_1 > T_2 > T_3$.
- Konduksjon skjer radielt i rørene.
- c_1, c_2, v_1, v_2 , og trykket i det indre og det ytre volumet er konstante.
- Potensielle og kinetiske energien i systemet kan neglisjeres.
- a) Sett opp partielle differensial ligningene for $T_1(x,t)$ og $T_2(x,t)$.

Oppgave 6 (15 %)

Betrakt Figur . Systemet består av en tank og en ventil. Variablene angitt i figuren har følgende betydning:

- q_{inn} : volumstrøm inn $[m^3/s]$
- q_{ut} : volumstrøm gjennom ventilen [m³/s]
- p_{atm} : atmosfæretrykk [N/m²]
- p: bunntrykket i tanken $[N/m^2]$
- ρ : massetetthet [kg/m³]
- h: væskenivået i tanken [m]
- A: bunnareal av tanken [m^2]

Antar at væsken er inkompressibel, og at trykket på inngangen til ventilen er lik bunntrykket i tanken. La

$$q_{ut} = C_v u \sqrt{\frac{2}{\rho} \Delta p}$$

hvor C_v er ventilkonstanten, u er ventilåpningen (0 $\leq u \leq$ 1), og Δp er trykkfallet over ventilen.

- a) Bestem bunntrykket i tanken.
- \mathbf{b}) Vis at den dynamisk modellen for væskenivået h er gitt ved

$$\frac{d}{dt}h = \alpha q_{\rm inn} - \beta \sqrt{h} \tag{7}$$

Bestem α og β .

- **c**) Linearisere systemet (7) om arbeidspunktet (q_{inn}^*, h^*) , hvor $h^* \neq 0$.
- d) Finn egenverdiene av den lineariserte modellen i **c**). Bestem stabilitetsegenskapen til det lineariserte systemet om likevektspunktet, og det ulineære systemet (7). Stemmer det med den fysiske betraktningen?

Oppgave 7 (20 %)

Figur viser en vogn i bevegelse. På enden av en fastmontert stang plasses en vippemekanisme bestående av en stang med to massepunkt på hver sider. Den fastmonterte stangen er plassert i vognens massenter.

Følgende antagelser gjelder:

- \bullet vognen har masse M. Massepunktene har masse m. Alle andre komponenter antas masseløs.
- \bullet vognen er festet til en fjær med fjærkonstant k.
- det virker en kraft F på vognen.
- ullet vognens massesenter har avstand x fra veggen.
- det er ingen strekk i fjære når vognen har posisjon x_0 .
- den fastmonterte stangen har lengde L. Vinkelen mellom horisontallinjen og den fastmonterte stangen er θ_0 .
- stangen av vippemekanismen har lengde l. Vinkelen mellom horisontallinjen og vippe-stangen er θ .
- $\bullet\,$ tyngdeakselerasjonen er g.
- ingen friksjon i systemet.
- a) Velg passende generaliserte koordinater og sett opp et uttrykk for systemets totale potensielle energy U.
- b) Sett opp et uttrykk for systemets totale kinetiske energy T.
- c) Utledd bevegelsesligningene for systemet.

