Note that in case when all sets B_i have exactly 2 elements (i.e. b = 2), the Hitting Set problem is equivalent to the Vertex Cover problem (two-element sets B_i correspond to edges). In the chapter we saw two approximation algorithm for Vertex Cover; here we generalize the one based on linear programming to arbitrary b.

Consider the following problem for Linear Programming:

Min
$$\sum_{i=1}^{n} w_i x_i$$

s.t. $0 \le x_i \le 1$ for all $i = 1, ..., n$
 $\sum_{i:a_i \in B_j} x_i \ge 1$ for all $j = 1, ..., m$ (all sets are hit)
Let x be the solution of this problem, and w_{LP} is a value

Let x be the solution of this problem, and w_{LP} is a value of this solution (i.e. $w_{LP} = \sum_{i=1}^{n} w_i x_i$).

Now define the set S to be all those elements where $x_i \geq 1/b$:

$$S = \{a_i \mid x_i \ge 1/b\}$$

(1) S is a hitting set.

Proof. We want to prove that any set B_j intersects with S. We know that the sum of all x_i where $a_i \in B_j$ is at least 1. The set B_j contains at most b elements. Therefore some $x_i \geq 1/b$, for some $a_i \in B_j$. By definition of S, this element $a_i \in S$. So, B_j intersects with S by a_i .

(2 The total weight of all elements in S is at most $b \cdot w_{LP}$.

Proof. For each $a_i \in S$ we know that $x_i \ge 1/b$, i.e., $1 \le bx_i$. Therefore

$$w(S) = \sum_{a_i \in S} w_i \le \sum_{a_i \in S} w_i \cdot bx_i \le b \sum_{i=1}^n w_i x_i = bw_{LP}$$

(3 Let S^* be the optimal hitting set. Then $w_{LP} \leq w(S^*)$.

Proof. Set $x_i = 1$ if a_i is in S^* , and $x_i = 0$ otherwise. Then the vector x satisfy constrains of our problem for Linear Programming:

$$0 \le x_i \le 1$$
 for all $i = 1, ..., n$
 $\sum_{i:a_i \in B_j} x_i \ge 1$ for all $j = 1, ..., m$ (because all sets are hit)

Therefore the optimal solution is not worse that this particular one. That is,

$$w_{LP} \le \sum_{i=1}^{n} w_i x_i = \sum_{a_i \in S} w_i = w(S^*)$$

Therefore we have a hitting set S, such that $w(S) \leq b \cdot w(S^*)$.

 $^{^{1}}$ ex53.496.888