El Coste de la Vida en las Comunidades Autónomas, Áreas Urbanas y Ciudades de España

Working Paper Area d'Economia

Àlex Costa Vittorio Galletto Jaume García Josep Lluís Raymond Daniel Sánchez-Serra

El Coste de la Vida en las Comunidades Autónomas, Áreas Urbanas y Ciudades de España

IERMB Working Paper in Economics, nº 20.01, November 2020

IERMB Working Paper in Economics, n° 20.01, November 2020

El Coste de la Vida en las Comunidades Autónomas, Áreas Urbanas y Ciudades de España

Autores: Àlex Costa, Vittorio Galletto, Jaume García, Josep Lluís Raymond, Daniel Sánchez-Serra

© Àlex Costa, Vittorio Galletto, Jaume Garcia, Josep Lluís Raymond, Daniel Sánchez-Serra, 2020

Publicado por:

Institut d'Estudis Regionals i Metropolitans de Barcelona -Barcelona Institute of Regional and Metropolitan Studies

Parc de Recerca, Mòdul A Universitat Autònoma de Barcelona 08193 Cerdanyola del Vallès, Barcelona, Spain.

https://iermb.uab.cat/

El Coste de la Vida en las Comunidades Autónomas, Áreas Urbanas y Ciudades de España^{1,2}

Àlex Costa

Departament d'Anàlisi Oficina Municipal de Dades Ajuntament de Barcelona alexcostasaenz@gmail.com

Vittorio Galletto

Institut d'Estudis Regionals i Metropolitans de Barcelona Universitat Autònoma de Barcelona vittorio.galletto@uab.cat

Jaume García

Departament d'Economia i Empresa Universitat Pompeu Fabra jaume.garcia@upf.edu

Josep Lluís Raymond

Departament d'Economia i d'Història Econòmica Universitat Autònoma de Barcelona josep.raymond@gmail.com

Daniel Sánchez-Serra

Directorate for Education and Skills
Organisation for Economic Co-operation and Development (OECD)

daniel.sanchezserra@oecd.org

Resumen: En este trabajo se estima el coste de la vida de áreas subnacionales de la economía española: comunidades autónomas (CCAA), áreas urbanas funcionales (AUF), ciudades centrales de estas AUF y sus coronas, a partir de las variables de renta familiar disponible per cápita y del coste de la vivienda. Estas dos variables muestran una buena capacidad predictiva para las paridades del poder adquisitivo (PPA) subnacionales estimadas por el *Bureau of Economic Analysis* de los Estados Unidos, que son la única fuente oficial sistemática de PPA subnacionales. Además, se ilustra el efecto que la consideración de las PPA tiene sobre los valores de la renta familiar disponible per cápita, uno de los indicadores macroeconómicos más relevantes para medir la desigualdad entre territorios.

Palabras clave:

JEL: C53, E31, R11, R12

¹ Los autores agradecen la colaboración de Francesc Coll (IERMB) en la elaboración cartográfica.

² Este documento no refleja las opiniones oficiales de la OCDE o de sus países miembros. Las opiniones expresadas y los argumentos empleados son los de los autores. *This document does not reflect the official views of the OECD or of its member countries. The opinions expressed and arguments employed are those of the authors.*

1. INTRODUCCIÓN

No hay duda de que el coste de la vida varía en el territorio, y de que esta variación es significativa desde un punto de vista estadístico y relevante para el análisis económico. Autores como Kokoski (1991), McMahon (1991), McMahon y Chang (1991), Moulton (1995) y Walden (1998) han mostrado que los precios no solo varían entre países sino entre territorios dentro de los países. Como consecuencia, los diferenciales de precios reflejan diferenciales en el coste de la vida entre territorios y ello puede tener un impacto en el bienestar de los individuos que residen en ellos.

La información estadística disponible de precios aún es limitada en ámbitos subnacionales. En el preámbulo del Reglamento núm. 1445/2007 del Parlamento Europeo y del Consejo, de 11 de diciembre de 2007, por el que se establecen reglas comunes para el suministro de información básica sobre las paridades de poder adquisitivo, y para su cálculo y difusión, se indica que "debe alentarse a los Estados miembros a elaborar datos para las PPA (Paridad de Poder Adquisitivo) regionales". Sin embargo, y a pesar de la larga tradición que tiene el *Bureau of Economic Analysis* (BEA) en ofrecer datos de PPA a nivel nacional y subnacional, en la estadística oficial europea estos datos sólo están disponibles a nivel de país, y no hay información para ámbitos subnacionales, sean éstos regiones, áreas metropolitanas o ciudades.

Frente a esta laguna de la estadística oficial europea, han existido diversas aproximaciones académicas a los precios regionales para distintos países europeos. En este marco recientemente se ha publicado un documento de trabajo de la OCDE (Costa *et al.*, 2019) donde se aproximan estos precios, con una metodología homogénea, para más de 300 regiones pertenecientes a países miembros de la OCDE. En ese documento puede encontrarse una extensa referencia a los trabajos académicos hechos en este ámbito.

El interés de las PPA no sólo reside en la información directa sobre el coste de la vida, sino que también es muy relevante para hacer comparaciones territoriales válidas de Producto Interior Bruto (PIB) o renta familiar disponible per cápita. El ajuste de variables macroeconómicas con PPA, permite calificar con mayor precisión el nivel de desarrollo de los territorios (algo clave, por ejemplo, para implementar fondos de cohesión) o para conocer el riesgo de pobreza de los residentes en cada territorio teniendo en cuenta que un mismo umbral monetario no significa lo mismo cuando nos encontramos con niveles de precios diferentes.

El objetivo del presente estudio es obtener una estimación de las PPA para ámbitos subnacionales de España: comunidades autónomas (CCAA), áreas urbanas funcionales (AUF), ciudades centrales de estas AUF y sus coronas. Para ello se utiliza una metodología que contempla la estimación de un modelo de precios relativos, inspirado en la hipótesis de Balassa-Samuelson (Balassa, 1964; Samuelson, 1964) para los Estados Unidos ya que se dispone de variables relevantes a nivel regional e inferior. Posteriormente se utiliza las elasticidades obtenidas para ajustar las PPA en España haciendo uso de la información subnacional disponible. Aparte del cálculo de las PPA a nivel subnacional en España, se ilustra el interés de las mismas a través de la comparativa de la renta familiar disponible per cápita para diferentes ámbitos territoriales, según se tengan en cuenta o no las PPA estimadas. Este estudio supone la continuidad en una línea de trabajo de los autores que se inició en 2015 con una primera aproximación a las PPA de las CCAA por encargo de la Generalitat de Catalunya (Costa et al., 2015), y que posteriormente supuso la elaboración del citado trabajo publicado por la OCDE (Costa et al., 2019).

El artículo se organiza de la siguiente manera. En la sección 2 se presentan los antecedentes del cálculo de las PPA en la literatura, tanto a nivel internacional como para el caso español. La metodología utilizada, así como las fuentes de información estadística utilizadas tanto para España como para los Estados Unidos, se detallan en la tercera sección. En la sección 4 se justifica, a partir de la hipótesis de Balassa-

Samuelson, la especificación de la ecuación de precios relativos estimada, presentándose los resultados obtenidos. Las estimaciones de las PPA para las CCAA, AUF y sus ciudades centrales se presentan en la sección 5, juntamente con un ejercicio de utilización de dichos estadísticos para los análisis comparativos de renta familiar disponible per cápita. El artículo finaliza con un resumen de las principales conclusiones.

2. ANTECEDENTES SOBRE EL CÁLCULO DE PPA SUBNACIONALES

2.1 Antecedentes internacionales

En el ámbito europeo, varios trabajos académicos y algunas oficinas nacionales de Estadística han proporcionado estimaciones de precios a nivel subnacional. Concretamente, la ONS del Reino Unido (Ball y Fenwick, 2003) proporciona estimaciones regionales a nivel NUTS1 para los años 2000 y 2003 así como para el año 2010 en una publicación posterior (ONS, 2011). Roos (2006) proporciona estimaciones para el año 2002 de los niveles de precios para 440 distritos (Kreise) así como para 16 estados (Bundesländer) en Alemania. Posteriormente, y siguiendo la aproximación de Roos (2006), Kosfeld et al. (2008) proporcionan estimaciones de los índices de precios regionales entre 1995 y 2004 para las NUTS 3 de Alemania. Istat (2008), en colaboración con el Instituto Guglielmo Tagliacarne y la Unión de las Cámaras de Comercio de Italia, proporcionan índices de precios para el año 2006 para las capitales de las regiones italianas. Y en base a estas estimaciones, el Banco de Italia (Cannari y Iuzzolino, 2009), estima índices de precios regionales para las NUTS 2 italianas. Para la República Checa, Musil et al. (2012) proporcionan estimaciones de los precios regionales a nivel NUTS3 para el año 2007, mientras que Čadil et al. (2014) y Kocourek et al. (2016) proporciona estimaciones similares para las regiones NUTS 3 y LAU 1, respectivamente. Matzka y Nachbagauer (2009) proporcionan estimaciones de los índices de precio en 2008 para las NUTS 2 austríacas. Rokicki (2015) proporciona estimaciones regionales (NUTS 2 y 3) de los niveles de precios para los años 2000 y

2011 en Polonia. Recientemente, Kolcunová (2015) y Janský y Kolcunová (2017) proporcionan estimaciones de los niveles de precios a nivel NUTS 2 para 12 y 28 países europeos respectivamente.

Fuera de Europa, se encuentran estudios similares a los europeos. Brandt y Holz (2006) estima deflactores de los niveles de precios para las provincias chinas para los años 1984-2002. Aten y D'souza (2008) proporcionan estimaciones de los precios para los años 2005 y 2006 en 38 áreas de los Estados Unidos. Posteriormente, Aten *et al.* (2012) proporcionan estimaciones de los precios para los años 2006 y 2010 para los estados y áreas metropolitanas estadounidenses (*Metropolitan Statistical Areas*, MSA). Desde entonces, el *Bureau of Economic Analysis* (BEA) proporciona estimaciones anuales de precios para las mismas unidades territoriales. Recientemente, Majumder *et al.* (2020) proporcionan estimaciones de los niveles de previos en las regiones urbanas y rurales de India para el año 2010. El Gobierno de Australia Occidental proporciona estimaciones del índice de precios regionales para sus regiones y ciudades para el período 2000-2019 (Government of Western Australia, 2020).

2.2 Antecedentes en España

Tal y como se comentó anteriormente uno de los déficits en la estadística oficial a nivel mundial hace referencia a la disponibilidad de las PPA a nivel regional o inferior. Evidentemente, España no escapa a esa situación, no habiendo ninguna estimación oficial de las PPA a nivel de CCAA u otros ámbitos territoriales.

Las primeras estimaciones publicadas para las CCAA españolas aparecen en un artículo de José Ramón Lorente, publicado en 1992 en la revista Síntesis de Indicadores Económicos del Ministerio de Economía y Hacienda (Lorente, 1992). Aunque el objetivo del estudio de Lorente era analizar las diferencias salariales por comunidades y su incidencia en el bienestar de los asalariados, Lorente realiza una estimación de los niveles de precios que se dan en las distintas comunidades, haciendo uso de la Encuesta

Regional de Precios, concebida para medir los niveles de precios en las distintas comunidades. De hecho, la encuesta se realizó en 17 capitales de provincia, una por comunidad autónoma, por lo que más que PPA regionales serían PPA entre las ciudades más representativas de cada región.

El trabajo de Lorente ofrece una estimación para un año base de las PPA por comunidades, a la que se puede aplicar las tasas de variación del IPC por comunidades y así disponer de una estimación temporal de las PPA, procedimiento aceptado internacionalmente si no se dispone de una encuesta específica. Este fue el procedimiento inicialmente utilizado por Julio Alcaide y Pablo Alcaide en el año 2000 cuando publicaron una serie para el período 1995-1999 (Alcaide y Alcaide, 2000). Posteriormente FUNCAS fue publicando las estimaciones con la misma metodología, hasta 2010. Un artículo de Pablo Alcaide proporciona las últimas estimaciones disponibles facilitadas por FUNCAS (Alcaide, 2011).

A pesar de la sencillez del procedimiento, se detectan discrepancias importantes cuando se comparan las extrapolaciones a partir de un año base con los valores obtenidos en la siguiente ronda de cálculo de las PPA. En concreto, Biggeri y Laureti (2011) indican que estas discrepancias se explican por las diferencias metodológicas entre el cálculo del IPC y las PPA (distintas cestas de la compra) y/o por el tipo de índice utilizado en cada caso (Laspeyres encadenado en el caso del IPC e índices tipo Fisher para las PPA).

De hecho, en el estudio de Costa *et al.* (2015) se pone de manifiesto la distinta capacidad de la inflación diferencial con respecto a la evolución de las PPA según que esos diferenciales sean relevantes o no en valor absoluto. En dicho estudio, se emplea el método basado en extrapolaciones a partir de la evolución del IPC para el cálculo de las PPA regionales, utilizado por algunos organismos internacionales de referencia, aunque con algunos resultados un tanto sorprendentes, como el hecho de que la PPA de Madrid se sitúa solo tres décimas por encima de la media para España. En dicho estudio, además del método de basado en extrapolaciones a partir de la evolución del IPC

relativo, utilizan dos aproximaciones alternativas: una de carácter macroeconométrico y otra de carácter microeconométrico. La primera está basada en la hipótesis de Balassa-Samuelson (Balassa, 1964 y Samuelson, 1964), según la cual países con un PIB per cápita más alto tienden a tener niveles de precios más altos, en la medida en que la productividad en los países de renta alta es mayor en los sectores que producen bienes comercializables, lo cual se traduce, a través de la equiparación salarios para toda la economía, en niveles de precios más altos. En dicho trabajo se estima la relación entre el nivel de precios y el PIB per cápita para un conjunto de países de la OCDE, utilizándose los coeficientes estimados para obtener las PPA para las comunidades autónomas españolas. Se utilizan distintos métodos de estimación aprovechando la estructura de datos de panel de la base de datos y se amplía la especificación del modelo a través de incorporar la estructura del PIB (agricultura, industria y servicios) ponderando de manera distinta el sector servicios (el sector menos comercializable) y los otros dos sectores, como indicador del distinto grado de comercialización.

Una aproximación macroeconométrica de características similares se utiliza en el estudio de Costa *et al.* (2019), también basada en la hipótesis de Balassa y Samuelson, con el objetivo de calcular las PPA para más de 300 regiones correspondientes a países de la OCDE. Con respecto al estudio de Costa *et al.* (2015) hay algunas diferencias tanto en lo que se refiere a los datos utilizados para la estimación del modelo del nivel de precios como a la especificación del mismo. Los datos corresponden a los 50 estados de Estados Unidos y el distrito federal de Columbia. Por otra parte, se utiliza la renta disponible per cápita en lugar del PIB per cápita atendiendo a la mayor capacidad explicativa de la primera variable, obteniéndose menores elasticidades del nivel de precios con respecto al PIB per cápita que con respecto a la renta disponible per cápita. Finalmente, aunque la estructura del PIB por sectores también se incorpora en el modelo utilizado, la especificación utilizada, en cuanto a la forma funcional, es distinta a la empleada en Costa *et al.* (2015). Evidentemente, entre las PPA calculadas están incluidas las de las comunidades autónomas españolas.

Tal y como se ha comentado anteriormente, en el trabajo de Costa et al. (2015) también se utiliza una aproximación microeconométrica para el cálculo de las PPA. Se emplea una adaptación del método de Coondoo et al. (2004). Dicho modelo está basado en la estimación de un sistema de ecuaciones de valores unitarios para los distintos bienes que caracterizan el coste de la vida en las diferentes regiones, utilizando la renta como una "proxy" de las diferencias en la calidad de los productos entre regiones. La adaptación utilizada consiste en estimar una ecuación de gasto total de los hogares con datos de la Encuesta de Presupuestos Familiares (EPF), utilizado la renta como aproximación de la calidad e imponiendo restricciones en los efectos regionales a fin de poder identificar los coeficientes que permiten calcular las PPA para las CCAA. Asimismo, en dicho estudio se realizan ajustes adicionales en las estimaciones, dado que la EPF facilita datos de gasto dentro y fuera de la comunidad y las PPA pretenden captar el efecto diferencial en cada comunidad. Para realizar dichos ajustes se hace uso de la información sobre el gasto de los residentes fuera de la región que facilita la encuesta de movimientos turísticos de los españoles (Familitur), así como de la información de la Contabilidad Regional de España para obtener los factores de corrección correspondientes.

Las estimaciones finales de las PPA por comunidades autónomas que se presentan en Costa et al. (2015) corresponden a una estimación de síntesis basada en las obtenidas a partir de la hipótesis de Balassa-Samuelson incluyendo la estructura sectorial y las estimaciones del modelo gasto con datos de la EPF con la corrección antes mencionada. Las ponderaciones utilizadas para cada método se basan en la variabilidad estimada para cada región en base a las diferentes opciones utilizadas para cada aproximación, siendo mayor el peso cuanto menor es la variabilidad en relación con el otro método. Los resultados obtenidos tienen alguna similitud con los del estudio de Rubiera et al. (2013), aunque los resultados para Cataluña y Madrid son bastante distintos, situándose ambas comunidades en la zona media del ranking de dicho estudio. Estas diferencias se pueden explicar por el hecho de que en dicho trabajo sólo se analizan productos de alimentación

y se estima un sistema de ecuaciones con mucha estructura (muchas restricciones y una forma funcional compleja) sin tener en cuenta el tratamiento de los gastos cero desde el punto de vista econométrico.

3. METODOLOGÍA Y FUENTES DE INFORMACIÓN

En este estudio se sigue una estrategia de estimación parecida, aunque no idéntica, a la utilizada en los trabajos anteriores, previamente mencionados, (Costa *et al.*, 2015 y Costa *et al.*, 2019). Tal y como se detalla en la siguiente sección, se utiliza el marco teórico de la hipótesis de Balassa-Samuelson, que asocia mayor productividad con niveles de renta per cápita más altos, a fin de establecer una relación entre el nivel de precios, la renta per cápita y el precio de la vivienda. Ello permite diseñar un procedimiento de ajuste de las PPA para distintos niveles territoriales en España. Para ello, se parte de la estimación de la relación entre el nivel de precios y las diferentes variables explicativas para los Estados Unidos para el período 2010-2018, ámbito para el que se dispone de información a nivel subnacional (regional o de nivel inferior). Bajo el supuesto de que dicha relación tiene validez externa para otros países, se utilizan las elasticidades obtenidas para ajustar los precios relativos de 2017 para distintos ámbitos territoriales en España para los que se dispone de las variables explicativas de la ecuación de precios estimada a nivel subnacional con datos americanos³.

En concreto, y de forma esquemática, las tres fases del procedimiento seguido serían:

• Obtención de las elasticidades entre las PPA y sus variables explicativas a nivel subnacional para los Estados Unidos:

³ Aunque el período para el cual se estima la ecuación de precios para los niveles territoriales de los Estados Unidos (2010-2018) no es exactamente el período para el que se hacen los ajustes de precios relativos para España (2017), la estabilidad estructural de las elasticidades obtenidas para los diferentes años permite garantizar la validez externa a nivel de temporal de las estimaciones de la ecuación de precios (véase Anexo 1). Por otra parte, también cabe suponer la estabilidad en los coeficientes para ámbitos territoriales diferentes, lo que es difícil de establecer dada la falta de datos; ahora bien, sí es posible contrastar la estabilidad en los coeficientes entre territorios diferentes: estados de los Estados Unidos, áreas metropolitanas de los Estados Unidos y países de la OCDE (véase Anexo 2).

El primer paso consiste en la estimación de elasticidades entre el indicador de PPA y la renta familiar disponible y el precio del alquiler de las viviendas. Se trata de indicadores que, para el conocimiento de los autores, sólo están disponibles como estadística consolidada y de periodicidad anual, para los estados y las áreas metropolitanas de los Estados Unidos. Concretamente, la renta familiar disponible y las PPA las publica el BEA, mientras que el precio del alquiler de las viviendas proviene del *American Community Survey* (ACS) que realiza el *Census Bureau*.

En relación con el precio de alquiler, cabe precisar que, si bien la información que proporciona el ACS es muy rica, pudiendo disponer de indicadores sobre precios de alquiler, incluyendo o no el coste de los suministros, o sobre el valor de las viviendas, entre otros, en este trabajo se ha optado por emplear la información más acotada sobre el precio de los contratos de alquiler. La razón de esta decisión reside en que se considera que es la variable que, además de cumplir con el objetivo de medir el coste de la vivienda, es el indicador más parecido al que está disponible en el caso español proveniente, como se indica más adelante, del Sistema Estatal Índices de Precios de Alquiler de Vivienda que publica el Ministerio de Transportes, Movilidad y Agenda Urbana.

• Obtención de precios no ajustados a partir de los modelos estimados a nivel subnacional para España:

El segundo paso consiste en la aplicación de las elasticidades obtenidas en los modelos anteriores para obtener unos precios territoriales para las CCAA⁴, para las AUF españolas y para las ciudades centrales de las AUF y sus coronas.

⁴ En este estudio no se han considerado las ciudades autónomas de Ceuta y Melilla, a pesar de que en la nomenclatura europea de NUTS ambas ciudades se consideran en el mismo nivel que las CCAA (NUTS2). Debe destacarse que el concepto de CCAA no es exactamente equiparable al de NUTS 2 a nivel europeo, por lo que los precios relativos para las ciudades autónomas de Ceuta y Melilla no han sido calculados.

Si bien para las CCAA y de ciudad (municipio) central se adoptan las unidades administrativas oficiales, no existir una definición oficial para las áreas urbanas aunque existen diferentes propuestas en la literatura. La elección tomada ha sido la de utilizar las AUF tal como las define Eurostat y la OCDE (Eurostat 2017) por diferentes motivos. En primer lugar, porque al provenir de instituciones internacionales dedicadas precisamente a la elaboración de estadísticas parece el criterio más robusto y conveniente en el caso de ampliar la investigación a otros países y entornos. En segundo lugar, porque el INE también ha adoptado esta unidad en el marco de los Indicadores Urbanos (adaptación del proyecto Urban Audit, actualmente denominado data collection for sub-national statistics (mainly cities)) con la ventaja de que los indicadores demográficos, sociales, económicos, entre otros, que el INE publica son coherentes en sus fuentes y metodologías con los que la misma institución pública para las provincias, CCAA y España. Además, se trata de una metodología similar a la utilizada para identificar las áreas metropolitanas en los Estados Unidos utilizadas en la primera parte de este estudio.

La metodología para la identificación de las AUF parte de las ciudades con un centro urbano de al menos 50.000 habitantes en la UE, Suiza, Islandia y Noruega (Eurostat, 2017 p. 11). Cada ciudad forma parte de su propia zona de *commuting* o bien de una zona *commuting* policéntrica que cubre varias ciudades. El conjunto de la ciudad (o ciudades) y sus zonas de *commuting* son las que se denominan Áreas Urbanas Funcionales. En España se han identificado un total de 70 AUF con una población total de 31.758.628 habitantes en 2017, que representa el 68% de la población total.

La elección de los datos y sus fuentes para las unidades espaciales españoles se ha hecho tratando de maximizar la coherencia con los datos y fuentes utilizados para los Estados Unidos, así como entre los datos para CCAA y para las AUF. Para los indicadores de renta se ha utilizado la renta familiar disponible obtenida de la Encuesta de Condiciones de Vida del INE para las CCAA y de los Indicadores Urbanos del INE para el resto de ámbitos subnacionales. Para el indicador de los precios de la vivienda se ha utilizado el precio del alquiler proveniente del Sistema Estatal Índices de Precios de Alquiler de Vivienda que publica el Ministerio de Transportes, Movilidad y Agenda Urbana⁵. Estos precios se refieren a la totalidad de los alquileres vigentes, al igual que los datos ofrecidos por la ACS de los Estados Unidos⁶.

Obtención de los precios ajustados de cada nivel territorial respecto al superior:

El último paso consiste en realizar un ajuste jerárquico de los precios de cada nivel territorial. Las PPA de las CCAA deben producir una media ponderada de 100, las PPA de las AUF de una comunidad autónoma, junto con la parte no AUF de esa comunidad autónoma, deben ajustarse a la PPA de esa comunidad autónoma y, finalmente, las PPA de la ciudad y de su corona deben ajustarse a la PPA estimada para la AUF.

4. ESPECIFICACIÓN Y ESTIMACIÓN DE LA ECUACIÓN DE PRECIOS RELATIVOS

Como ya se ha indicado, el objetivo de nuestro trabajo es aproximar los niveles de precios para distintos ámbitos espaciales a partir de la información disponible que, en nuestro caso, son los niveles de renta familiar disponible y los precios de los alquileres de la vivienda.

⁵ En el caso del País Vasco y Navarra no hay información en la base de datos del Ministerio. Se ha realizado una estimación a partir de los datos del portal inmobiliario "idealista" y de la relación entre éstos y los del Ministerio.

⁶ Esta información tiene una cobertura mayor que la de los datos de los portales inmobiliarios (como "*idealista*"), donde aparecen solamente los precios de alquileres que están en oferta en el mercado en un momento dado.

Una fuente de inspiración indirecta para proponer una relación entre las tres variables comentadas es la ampliamente difundida contribución de Balassa (1964) y Samuelson (1964) que justificaba el fenómeno empírico generalmente observado de la apreciación del tipo de cambio real de las economías que experimentaban un crecimiento diferencial de su productividad. Dado que una mayor productividad suele estar asociada a una mayor renta familiar disponible per cápita, cabe esperar una relación positiva entre los niveles de renta per cápita y niveles de precios según la siguiente lógica.

Consideremos dos espacios económicos, el espacio económico doméstico (áreas metropolitanas, regiones o países) y la media de espacios económicos foráneos, y dos tipos de bienes, los comercializables, representados fundamentalmente por los bienes industriales, y los no comercializables, representados por parte de los servicios y por la vivienda.

Si los precios de los bienes comercializables domésticos los representamos por PC y los precios de los bienes comercializables foráneos los denominamos PC^* , ignorando los costes de transporte, la ley de un solo precio en el libre mercado debe garantizar que se satisfaga $PC = PC^*$. Esta igualdad se justifica por el hecho de que, si los precios difieren, la presión competitiva tenderá a igualarlos.

Si a continuación suponemos que el espacio económico doméstico es más rico en términos de renta per cápita que el espacio económico foráneo, la productividad en la producción de bienes comercializables en el espacio económico doméstico Π_C será más elevada que esta misma productividad en el espacio económico foráneo Π_C^* . Es decir, se verificará $\Pi_C > \Pi_C^*$, dado que los espacios económicos más desarrollados utilizan tecnologías más avanzadas que los menos desarrollados, lo que les permite una ventaja en términos de productividad en la producción de este tipo de bienes. Por contra, en términos de la producción de bienes no comercializables, dado que se utiliza menos

tecnología, la productividad en ambos espacios económicos será similar. Denominando Π_{NC} a la productividad en la producción de bienes no comercializables en el espacio doméstico y Π_{NC}^* a la productividad en la producción de bienes no comercializables en el espació foráneo, aproximadamente se verificará $\Pi_{NC} = \Pi_{NC}^*$. Como mero ejemplo ilustrativo, la productividad de un camarero atendiendo a una mesa en un restaurante será similar si el restaurante está ubicado en una zona muy desarrollada o en una zona poco desarrollada, circunstancia que no se da en el caso de la producción de bienes que incorporan un elevado capital y tecnología, y que generalmente se corresponden con los bienes comercializables.

Adicionalmente se supone que el salario es el mismo en los sectores comercializable y no comercializable y que se corresponde con la productividad en el sector comercializable. Es decir, se supone que se verifica: $W = \Pi_C$; $W^* = \Pi_C^*$. Si el salario por hora en el sector comercializable, cuya productividad es más elevada, fuese mayor que el salario por hora en el sector no comercializable, ello provocaría un aumento en la oferta de trabajo en el sector comercializable y una disminución en el no comercializable. El simple juego de la oferta y la demanda terminará igualando ambos salarios.

Por tanto, el conjunto de igualdades y desigualdades que del razonamiento previo se deducen son las siguientes:

 $PC = PC^*$ Los precios de los productos comercializables son idénticos.

 $\Pi_C > \Pi_C^*$ La productividad en el sector comercializable es más elevada en el espacio económico doméstico que en la media de espacios económicos foráneos siempre que el espacio económico doméstico sea más desarrollado que el foráneo. A la inversa sucederá en caso contrario.

 $W = \Pi_C$; $W^* = \Pi_C^*$ El salario coincide con la productividad en el sector comercializable y es común para el sector comercializable y no comercializable.

 $W=W^*$ Los salarios en el espacio económico doméstico (el más desarrollado) son más elevados que la media del espacio económico foráneo que es el menos desarrollado.

 $\Pi_{NC} = \Pi_{NC}^*$ La productividad en la producción de bienes no comercializables es común para todos los espacios económicos.

Suponiendo que existe igualdad entre precios de los bienes no comercializables y unos costes unitarios de producción ampliamente definidos (es decir, incorporando un margen comercial), se verifica para los bienes no comercializables domésticos:

$$PNC = \frac{W}{\Pi_{NC}}$$

y para los bienes comercializables foráneos:

$$PNC^* = \frac{W^*}{\Pi_{NC}}.$$

No obstante, en la medida en que W (el salario por hora en el espacio doméstico más desarrollado) sea superior a W^* (el salario por hora en el espacio económico menos desarrollado), se verificará la desigualdad $PNC > PNC^*$. Es decir, los precios de los bienes no comercializables, tales como servicios personales, serán más elevados en los espacios económicos más desarrollados que en los menos desarrollados.

Obviamente, alguna de estas afirmaciones puede ser más o menos discutible, pero dependiendo de su finalidad, un modelo teórico debe ser lo suficientemente simplificado para que permita aproximar la compleja realidad y la posterior derivación de implicaciones operativas acordes con la evidencia empírica. En este sentido, las hipótesis descritas se derivan de la propuesta original de Balassa-Samuelson y grosso modo resultan acordes con los datos.

Seguidamente consideremos tres sectores:

- El sector comercializable cuyos respectivos precios son *PC* para el sector doméstico y *PC** para el sector foráneo.
- El sector no comercializable distinto de la vivienda con sus respectivos precios de PNC y PNC*
- El sector vivienda con precios PV y PV*.

Denominando P al índice general de precios, λ_1 al peso del sector no comercializable en el VAB distinto de vivienda y λ_2 al peso de la vivienda, se verifica para el espacio doméstico

$$P = (1 - \lambda_1 - \lambda_2)PC + \lambda_1PNC + \lambda_2PV$$

y para el foráneo

$$P^* = (1 - \lambda_1^* - \lambda_2^*)PC + \lambda_1^*PNC^* + \lambda_2^*PV^*$$

Operando se deduce:

$$P - P^* = (\lambda_1^* + \lambda_2^* - \lambda_1 - \lambda_2)PC + (\lambda_1 - \lambda_1^*)PNC + \lambda_1^*\delta + \lambda_2PV - \lambda_2^*PV^*$$

$$\delta = PNC - PNC^*$$

Suponiendo la linealidad en logaritmos:

$$\ln\left(\frac{P}{P^*}\right) \approx (\lambda_1^* + \lambda_2^* - \lambda_1 - \lambda_2) \ln P C + (\lambda_1 - \lambda_1^*) \ln P NC + \lambda_1^* \ln\left(\frac{PNC}{PNC^*}\right) + \lambda_2 \ln\left(\frac{PV}{PV^*}\right)$$

Atendiendo a los desarrollos previos, cabe suponer que el logaritmo de la ratio de precios de bienes no comercializables está relacionado con el logaritmo de la renta per cápita relativa $\left(\frac{R}{R^*}\right)$, y que el resto de los componentes queda englobado en un término constante y un elemento de perturbación aleatoria, con lo que la ecuación a estimar sería del tipo:

$$\ln\left(\frac{P}{P^*}\right) = \alpha + \beta \ln\left(\frac{R}{R^*}\right) + \lambda_2 \ln\left(\frac{PV}{PV^*}\right) + u$$

Si la perturbación aleatoria verificase las hipótesis estándar, cabría esperar obtener una estimación de λ_2 próxima al peso de la vivienda en el total de gastos. No obstante, es probable que estas hipótesis no se verifiquen por lo que a los coeficientes de la ecuación estimada no cabe darles una interpretación estructural. Se trata únicamente de una ecuación que puede resultar útil para predecir, pero no para simular los efectos de, por ejemplo, una modificación aislada en los precios relativos de la vivienda (es decir, manteniendo constante la renta) sobre los precios relativos en ambos espacios económicos en paridades de poder de compra.

En este sentido, en la Figura 1 se presentan los diagramas de dispersión entre el logaritmo de los niveles de precios en paridades de poder de compra, el logaritmo de la renta per cápita y el logaritmo de los precios de la vivienda para estados y áreas metropolitanas de los Estados Unidos en el año 2018. Como puede observarse, los niveles de precios en PPA $\left(\frac{P}{P^*}\right)$ muestran una elevada correlación tanto con la renta per cápita (los espacios económico más desarrollados muestran niveles de precios más elevados) como con los precios de la vivienda $\left(\frac{PV}{PV^*}\right)$. Si bien correlación no necesariamente implica causalidad, correlación si puede significar capacidad predictiva y este es el significado de la información que estos gráficos muestran.

Figura 1. Diagramas de dispersión entre precios, renta per cápita, y precios de la vivienda. Estados y áreas metropolitanas de los Estados Unidos, 2018

Nota: variables en logaritmos.

Disponiendo de información de 56 estados y de 384 áreas metropolitanas de los Estados Unidos en el período 2010-2018, la ecuación de precios a estimar es:

$$\ln\left(\frac{P}{P^*}\right) = \alpha + \beta \ln\left(\frac{R}{R^*}\right) + \lambda_2 \ln\left(\frac{PV}{PV^*}\right) + u$$

Denominando i al individuo (estado o área metropolitana) y t al periodo temporal, cabe formar un "pooling" de estados y áreas metropolitanas para todos los años y definir una única ecuación que incluya las estimaciones separadas para cada ámbito territorial. Creando una variable ficticia F que adopta el valor unitario si la observación pertenece a un estado y cero si pertenece a un área metropolitana, la ecuación general de partida es:

$$\ln\left(\frac{P}{P^*}\right)_{it} = \alpha + \beta \ln\left(\frac{R}{R^*}\right)_{it} + \lambda_2 \ln\left(\frac{PV}{PV^*}\right)_{it} + \theta_0(F \cdot \alpha) + \theta_1\left(F \cdot \ln\left(\frac{R}{R^*}\right)_{it}\right) + \theta_2\left(F \cdot \ln\left(\frac{PV}{PV^*}\right)_{it}\right) + u_{it}$$

Finalmente, la ausencia de significatividad de alguno de los coeficientes θ estimados, o si su valor es despreciable, puede estimarse una ecuación que implique una elasticidad única para los dos ámbitos territoriales.

Otra cuestión relevante es como tratar la información disponible a efectos de obtener una estimación fiable de los errores estándar. Dado que se opera con un "pooling", cabe esperar una correlación temporal positiva entre los valores de las perturbaciones aleatorias dentro de cada estado o dentro de cada área metropolitana. Adicionalmente, también cabe esperar que la varianza de las respectivas perturbaciones aleatorias difiera. Por este motivo se ha utilizado la opción de "cluster" por estados o áreas metropolitanas creando un identificador común de ambos espacios económicos. Los resultados de la estimación se detallan en la Tabla 1.

Tabla 1. Estimación de la ecuación de precios para los territorios subnacionales de los Estados Unidos, 2010-2018

Variable	Coefic	iente	Coefic	Coeficiente		
v al lable	(significativ	idad)	(significativida			
Constante	4,589	(**)	4,599	(**)		
ln(R/R*)	0,058	(**)	0,059	(**)		
ln(PV/PV*)	0,264	(**)	0,263	(**)		
F	0,015	(**)	0,016	(**)		
F * ln(R/R*)	0,060	(*)	0,047	(*)		
F * ln(PV/PV*)	-0,012					
Error estándar	0,029		0,029			
\mathbb{R}^2	0,866		0,866			
Núm. observ.	3.574		3.574			
* p-value<0.05; ** p-value<0.01						

Por tanto, las ecuaciones empleadas para la predicción de precios son las siguientes:

Áreas Metropolitanas

$$\ln\left(\frac{P}{P^*}\right) = 4,599 + 0,059 \cdot \ln\left(\frac{R}{R^*}\right) + 0,263 \cdot \ln\left(\frac{PV}{PV^*}\right)$$

Estados

$$\ln\left(\frac{P}{P^*}\right) = 4,615 + 0,107 \cdot \ln\left(\frac{R}{R^*}\right) + 0,263 \cdot \ln\left(\frac{PV}{PV^*}\right)$$

Merece destacarse que el coeficiente estimado para λ_2 coincide aproximadamente con el peso de la vivienda en el gasto de los hogares, que es lo que cabría esperar si el término de perturbación cumpliera las hipótesis estándar, tal y como se indicó anteriormente. De hecho, según la Encuesta de Presupuestos Familiares de 2017 el 22,72% del gasto de los

hogares corresponde a alquileres (reales e imputados) y el 30,06% al total de gastos vinculados a la vivienda.

Finalmente, como más adelante se detalla, de estas estimaciones los coeficientes que efectivamente se emplean para predecir precios en los espacios económicos españoles son los correspondientes a las elasticidades, dado que los precios a predecir están sujetos a un proceso de ajuste jerárquico que garantice el cumplimiento de la información oficial disponible acerca de los precios en paridades de poder de compra para las CCAA y las AUF españolas. Estas elasticidades y sus respectivos estadísticos "t", entre paréntesis, son los siguientes:

Tabla 2. Elasticidades que derivan de la ecuación de precios

Elasticidad precios-renta para áreas metropolitanas	0,0595 (4,68)
Elasticidad precios-renta para estados	0,107 (5,44)
Elasticidad precios-precios vivienda	0,263 (33,29)

5. ESTIMACIÓN DE LAS PPA PARA CCAA, AUF Y SUS CIUDADES CENTRALES

Las elasticidades de los precios relativos, con respecto a la renta per cápita y al precio de la vivienda, obtenidas en la sección anterior se utilizan para estimar las PPA a nivel subnacional (regional o inferior) para el caso de España para el año 2017.

5.1 Resultados para las CCAA

Los resultados de las PPA para las CCAA para el año 2017 pueden apreciarse en la Figura 2. No hace falta insistir en la relevancia de estos resultados. Entre Madrid y

Extremadura, las economías de mayor y menor PPA respectivamente, hay una diferencia de casi 30 puntos porcentuales (pp). La presentación ordenada del gráfico nos permite establecer unos grupos según su nivel de PPA. Por una parte, el grupo de mayor PPA con Madrid, Cataluña y País Vasco, seguidos por las Illes Balears. En el otro extremo se encuentran Extremadura. Murcia y Castilla la Mancha, con más de 10 puntos por debajo del nivel de precios medios. Valencia tiene una posición intermedia entre estas tres CCAA y el resto, un grupo de nueve CCAA, desde Galicia hasta Cantabria, todas ellas por debajo del nivel nacional, con diferenciales que van desde los 6,2 pp de Galicia hasta el 1,4 pp de Cantabria.

Madrid 115,7 Cataluña 107,6 País Vasco 107,1 Balears, Illes 102,8 Cantabria 98,6 98,1 Aragón Asturias 98,1 Navarra 97.9 Canarias 96,6 Andalucia 95.4 Castilla y León 94,8 La Rioja 94.5 Galicia 93,8 Valencia 91.3 Castilla La Mancha 89,8 Murcia 87.8 Extremadura 86,4 20 40 60 80 100 120 140

Figura 2. PPA de las comunidades autónomas, 2017

Nota: Los índices están referenciados a España = 100.

Estos resultados se presentan con una óptica espacial a través del Mapa 1. En este caso podemos ver la lógica geográfica del nivel de precios regionales. Claramente Madrid y el norte de la península, junto con las Baleares, muestran los valores superiores de PPA. El mapa nos permite apreciar también la heterogeneidad del interior peninsular, ya que las dos castillas se sitúan con grupos distintos en el coste de la vida. Finalmente, el sur peninsular muestra dos resultados que pueden ser llamativos: el nivel relativamente alto

de las PPA de Andalucía y, por el contrario, el valor -quizás menor de lo esperado- de la Región de Murcia.

Mapa 1. PPA de las comunidades autónomas, 2017

Nota: Los índices están referenciados a España = 100.

Antes de pasar a ilustrar los relevantes efectos que tiene la consideración de las PPA de las CCAA cuando se vinculan con magnitudes como el PIB o la renta familiar disponible, resulta obligado hacer una referencia a la comparativa con estudios anteriores, como los reseñados anteriormente en el apartado de antecedentes.

Desde un punto metodológico, como ya se dijo, la estrategia de estimación en este trabajo es semejante a la aplicada en el estudio de la OCDE (Costa *et al.* 2019). Ahora

bien, hay un elemento diferencial clave: en este estudio se dispone del precio del alquiler, tanto para los Estados Unidos (gracias a la información ofrecida por el *Bureau of Census*), como para España (con los recientes datos del Sistema Estatal de Índices de Precios de Alquiler de Vivienda). La inclusión de esta información permite trabajar con unos ajustes superiores para las PPA regionales de los Estados Unidos y, por tanto, debe suponerse que se estiman unas elasticidades que ofrecen una mejor aproximación a las PPA para el caso español. De todas formas, a pesar de esta diferencia metodológica (y del año de referencia) existe una alta correlación entre las PPA de las CCAA ahora obtenidas y las del estudio de la OCDE: coeficiente de correlación de 0,93 (Figura 3).

En relación al estudio publicado como informe de la Generalitat de Cataluña (Costa *et al.* 2015), cabe decir que, en este caso, la metodología es bastante distinta. Es indiscutible el interés y solidez de la aproximación microeconométrica que se aplicó en aquel estudio, y que se complementaba de forma natural con la óptica macroeconométrica. Ahora bien, dado que en el presente estudio es clave el paso dado para conocer también las PPA de AUF y de sus ciudades centrales, está también fuera de duda que, a este nivel de desagregación territorial, ya no es viable la vía microeconométrica. En consecuencia, si se quiere preservar la homogeneidad metodológica en la estimación de las PPA para cada uno de los niveles de desagregación territorial, la vía macroeconométrica acaba siendo, en la práctica, la única aplicable. Quizás como efecto de una metodología bastante distinta, en este caso la correlación no es tan alta como en el del estudio de la OCDE, pero el valor es también, a nuestro entender, aceptable, con un coeficiente de correlación de 0,79 (Figura 3).

La relación entre los resultados aquí presentados y los obtenidos en los trabajos anteriores queda perfectamente recogida en la Figura 3, en la que se puede apreciar que el tipo de datos empleados para estimar la ecuación es relevante (países de la OCDE en el caso del estudio de Costa *et al.*, 2015, y regiones OCDE en el caso del estudio de Costa *et al.*, 2019). Asimismo, el presente estudio incorpora una variable relevante para

el ajuste de los precios relativos, el precio del alquiler de la vivienda, no utilizada en los trabajos anteriores.

Figura 3. Correlación entre las nuevas estimaciones de las PPA de las CCAA y las estimadas en Costa *et al.* 2015 (a) y Costa *et al.* 2019 (b)

La ilustración de los efectos que tiene la consideración de las PPA en los indicadores macroeconómicos territoriales puede centrarse en el PIB per cápita (PIB pc) o en la renta familiar disponible per cápita (RFD pc). Teniendo en cuenta la disponibilidad de datos a nivel de AUF y de ciudades en este trabajo se utiliza la renta familiar disponible.

En la Tabla 3 se puede comparar el valor de la renta per cápita de las CCAA, con el índice España=100 y su orden, antes y después de la corrección por el coste de la vida. De nuevo, para captar los aspectos espaciales de estos resultados se acompañan de los mapas correspondientes. El hecho de que Madrid pase de ser la cuarta comunidad autónoma en RFD pc a ser la décima, cuando se tiene en cuenta el coste de la vida, hace innecesario insistir en la relevancia de aplicar los valores de PPA. Con la RFD pc en PPA, CCAA como las Illes Balears, La Rioja o Castilla y León pasan a situarse por encima de Madrid o Cataluña. La corrección por PPA hace que la RFD pc de Extremadura pase de estar un 25% por debajo de la media española sin dicha corrección, a estar un 14% por debajo.

Por otra parte, la corrección de la RFD pc haciendo uso de las PPA reduce la variabilidad de esta variable de manera sustancial a consecuencia de la correlación positiva de la RFD pc y la PPA correspondiente. Así, el rango de variación de la RFD pc sin corregir se sitúa entre los 8.503 € de Extremadura y los 14.722 del País Vasco, mientras que con la corrección por PPA pasa a situarse entre los 9.276 € (Canarias) y 13.877 € (Navarra).

Tabla 3. Renta Familiar Disponible per cápita en € y PPA de las CCAA, 2017

CCAA	RFDpc €	Índice	Orden	RFDpc PPA	Índice	Orden
Andalucía	9.258	81,1	14	9.702	85,0	16
Aragón	11.990	105,1	8	12.221	107,1	8
Asturias	12.085	105,9	6	12.321	108,0	7
Balears, Illes	13.240	116,0	5	12.884	112,9	3
Canarias	8.964	78,5	16	9.276	81,3	17
Cantabria	11.239	98,5	10	11.396	99,9	11
Castilla La Mancha	9.533	83,5	13	10.614	93,0	13
Castilla y León	11.949	104,7	9	12.600	110,4	5
Cataluña	13.338	116,9	3	12.398	108,6	6
Extremadura	8.503	74,5	17	9.837	86,2	15
Galicia	11.239	98,5	11	11.978	105,0	9
La Rioja	12.029	105,4	7	12.727	111,5	4
Madrid	13.279	116,4	4	11.477	100,6	10
Murcia	9.111	79,8	15	10.376	90,9	14
Navarra	13.585	119,0	2	13.877	121,6	1
País Vasco	14.722	129,0	1	13.749	120,5	2
Valencia	10.232	89,7	12	11.211	98,2	12
España	11.412	100,0		11.412	100,0	

Nota: Los índices están referenciados a España = 100. CCAA ordenadas por orden alfabético.

En términos geográficos, los mapas 2 y 3 muestran que la corrección por PPA tiene efectos relevantes en una clara mejora de los resultados para el litoral mediterráneo no catalán, y también en una mejora en el centro-norte peninsular. Asimismo, merece destacarse que Cataluña, Madrid e Islas Baleares cambian de intervalo (color) con el ajuste por PPA, pero no País Vasco y Navarra, poniendo de manifiesto que el nivel de renta per cápita no es el único factor que influye sobre las PPA.

Mapa 2. Renta Familiar Disponible pc de las CCAA, 2017

Mapa 3. Renta Familiar Disponible pc en PPA de las CCAA, 2017

< 90 90 - 95 95 - 100 100 - 115

Nota: Los índices están referenciados a España = 100.

Nota: Los índices están referenciados a España = 100.

5.2 Resultados para las áreas urbanas funcionales (AUF), las ciudades centrales de las AUF y sus coronas

En relación con las PPA de las AUF y su desagregación entre las PPA de la ciudad central de la AUF y de su corona, en la Tabla 4 pueden verse los resultados para las AUF de más de 300.000 habitantes y capitales de las CCAA, ordenadas de mayor a menor PPA. Recordando los resultados para las CCAA, no es sorprendente que Madrid y Barcelona encabecen esta lista, como tampoco lo es que Mérida sea la de menor PPA. Ahora bien, como la Tabla 4 ofrece mucha información para poder hacer una lectura un poco más detallada se adjuntan seguidamente mapa y gráfico de resultados.

El mapa 4 permite visualizar, en primer lugar, las diferencias significativas en el territorio en función de la PPA lo que resalta la importancia de disponer indicadores diferenciados por el territorio. En segundo lugar, cabe destacar la heterogeneidad de las PPA para AUF situadas en una misma comunidad autónoma. Se observan CCAA en las que se dan AUF tanto con una PPA superior a la media nacional como con una PPA inferior a la media, como por ejemplo en la comunidad autónoma de Andalucía, lo que indica la relevancia de calcular las PPA para unidades territoriales inferiores de las CCAA.

Por último, destacar el hecho de que, aunque muchas AUF muestran un valor de PPA superior a la media nacional, no es despreciable el número de las que tienen valores de PPA inferiores a esa media. Por tanto, no por ser una AUF se tiene que registrar una PPA superior a la media del país.

Tabla 4. Población y PPA de las AUF, ciudades centrales y sus coronas, 2017 (AUF de más de 300.000 habitantes y capitales de CA)

	AUF		Ciudad central		Corona	
AUF	Población	PPA	Población	PPA	Población	PPA
Madrid	6.717.732	115,3	3.182.981	123,2	3.534.751	108,2
Barcelona	4.962.864	113,6	1.620.809	120,9	3.342.055	110,1
Donostia/San Sebastián	338.267	109,9	186.370	114,0	151.897	105,1
Bilbao	1.038.319	106,5	345.110	108,1	693.209	104,9
Zaragoza	756.296	103,0	664.938	103,8	91.358	97,2
Toledo	150.252	102,8	83.741	109,6	66.511	94,2
Santander	380.200	102,6	171.951	107,1	208.249	98,9
Palma de Mallorca	678.611	102,5	406.492	103,8	272.119	100,7
Marbella	310.111	102,5	141.172	104,5	168.939	100,8
Oviedo	309.743	102,4	220.301	104,8	89.442	96,5
Vigo	541.686	101,6	292.986	106,4	248.700	96,1
Málaga	858.731	101,6	569.002	101,9	289.729	101,0
Coruña, La	415.144	100,3	244.099	102,7	171.045	96,9
Sevilla	1.543.858	100,3	689.434	106,5	854.424	95,3
Valladolid	422.672	100,0	299.715	101,6	122.957	96,1
Vitoria-Gasteiz	273.689	100,0	246.976	101,8	26.713	83,0
Santiago de Compostela	200.708	99,9	96.456	105,4	104.252	94,8
Córdoba	358.887	99,2	325.916	100,6	32.971	84,8
Logroño	192.903	98,7	150.979	99,6	41.924	95,5
Palmas de Gran Canaria, Las	630.413	97,8	377.650	100,4	252.763	94,0
Santa Cruz de Tenerife	505.160	96,6	203.692	97,8	301.468	95,9
Alicante/Alacant	462.694	95,8	329.988	95,9	132.706	95,5
Pamplona/Iruña	380.983	95,5	197.138	98,4	183.845	93,5
Valencia	1.723.935	94,6	787.808	97,8	936.127	92,0
Granada	561.818	93,7	232.770	97,7	329.048	90,9
Murcia	624.658	91,5	443.243	93,8	181.415	85,6
Mérida	85.085	90,6	59.187	96,1	25.898	78,0

Nota: Datos de población en base a la información padronal del año 2017. Lista de AUF ordenadas de mayor a menor en base a la PPA de la AUF.

Mapa 4. PPA de las AUF, 2017

Nota: Los índices están referenciados a España = 100.

El elevado detalle territorial de los resultados mostrados en la Tabla 4 y su carácter multidimensional, con PPA para AUF, ciudades centrales de las AUF y sus coronas, hace que pueda no ser inmediata la lectura de la información. Por esta razón se muestra la Figura 4, que permite visualizar claramente algunos patrones de comportamiento de las PPA en cada uno de estos niveles territoriales.

Figura 4. PPA de las CCAA, las AUF y las ciudades centrales, 2017

Nota: CCAA ordenadas por orden decreciente de PPA de la Ciudad Central. Para cada CA se muestra la AUF con mayor población. Los índices están referenciados a España = 100.

En primer lugar, se constata que, de forma sistemática, la PPA de la ciudad central es superior a la de su AUF y la de la AUF es superior a la comunidad autónoma. Estos diferenciales, sin embargo, difieren en su magnitud de forma significativa: mientras que en Cataluña, Castilla La Mancha, Andalucía, Galicia o Extremadura el rango de las PPA de la CCAA y la ciudad es de más de 10 puntos porcentuales, en otras CCAA como el País Vasco, Baleares o Navarra el diferencial no supera el punto porcentual. La superficie de la CCAA parece estar asociada positivamente con las diferencias entre la PPA de la CCAA y la de la ciudad y/o la AUF.

Un resultado creemos que también relevante es que las PPA de las ciudades son superiores a las PPA de las coronas de las AUF. Ahora bien, estos diferenciales tienen una magnitud muy variable. Mientras en la AUF de Madrid el diferencial entre ciudad y corona es de 15 puntos porcentuales, en Málaga la PPA de la ciudad y de la corona son

prácticamente iguales. Estas disparidades tienen como consecuencia, por ejemplo, que si bien la ciudad de Madrid tiene una PPA superior a Barcelona, el orden se invierte si atendemos a sus coronas, ya que la corona de Barcelona tiene una PPA superior a la de Madrid. También es destacable que si bien Mérida tiene la AUF de menor PPA (90,6), en términos de ciudades Murcia pasa a ser la de menor PPA, ya que en Mérida hay un gran diferencial de precios entre la ciudad (96,1) y su corona (78,0).

En este sentido, los casos de Toledo y Palma de Mallorca merecen ser destacados. En la Figura 4 se observa que Toledo es la tercera ciudad con la PPA más elevada entre las que aparecen, mientras que pertenece a una comunidad autónoma, Castilla-La Mancha, cuya PPA está por debajo de la media nacional siendo la tercera con menor PPA. De hecho, la diferencia entre la PPA de Toledo y la de Castilla- La Mancha es de manera significativa la mayor de las que aparecen en la Figura 4. Esta elevada PPA para Toledo puede explicarse por su "cercanía" con Madrid, en términos de tiempo de desplazamiento (poco más de media hora en tren). Por otra parte, Palma de Mallorca, capital de las Baleares tiene una PPA que apenas difiera de la de su comunidad autónoma, aunque es la décima de las capitales que aparecen la Figura 4 en cuanto a PPA, mientras que Baleares tiene la cuarta PPA más alta entre las CCAA.

Una vez hecha la lectura de los resultados de las PPA para AUF, ciudades y coronas, al igual que se hizo en el caso de las CCAA, pasamos a presentar en la Tabla 5 el efecto que tiene considerar las PPA sobre los datos de RFD pc para las economías locales. Los efectos detectados, como era de esperar, no son de una naturaleza muy distinta a los ya vistos en el caso de las CCAA. En este sentido el caso de Madrid es un buen ejemplo. De todas formas, el detalle a nivel de capital de CCAA nos permite ver efectos de elevada intensidad y de signo contrario, como son los casos, por ejemplo, de Pamplona, que pasa de ser la novena capital a ser la segunda de mayor RFD pc, al tener en cuenta la capacidad adquisitiva o, en sentido inverso, el impacto que tiene sobre Toledo, que pasa de ser la sexta capital en RFD pc a ser la doceava, por su elevada PPA. De hecho, el caso de Toledo es muy ilustrativo de la importancia del uso de las PPA adecuadas en

función del ámbito territorial que se considere. Como se observa en la Tabla 5, la RFD pc disminuye al aplicar el ajuste por la PPA que le corresponde como ciudad (109,6), dado que esta última está por encima de la media de España (100). En cambio, si se utilizase la PPA de Castilla-La Mancha (89,8), la RFD pc aumentaría con el ajuste por la PPA hasta 14,833 € por encima de cualquiera de los valores de la RFD pc ajustados por PPA que aparecen en la Tabla 5.

Tabla 5. Renta Familiar Disponible per cápita en € y PPA de capitales de las CCAA, 2017

Capital	RFD pc €	Índice	Orden	RFD pc PPA	Índice	Orden
Sevilla (Andalucía)	11.346	99,4	15	10.657	93,4	16
Zaragoza (Aragón)	13.211	115,8	10	1 .723	111,5	10
Oviedo (Asturias)	13.704	120,1	4	13.083	114,6	3
Palma de Mallorca						
(Baleares, Illes)	12.514	109,7	12	12.060	105,7	13
Palmas de G. Canarias, Las						
(Canarias)	11.365	99,6	14	11.323	99,2	15
Santander (Cantabria)	13.272	116,3	7	12.398	108,6	11
Valladolid (Castilla y						
León)	13.230	115,9	8	13.019	114,1	5
Toledo (Castilla la						
Mancha)	13.365	117,1	6	12.193	106,8	12
Barcelona (Cataluña)	15.755	138,1	2	13.028	114,2	4
Mérida (Extremadura)	10.085	88,4	17	10.491	91,9	17
Santiago de Compostela						
(Galicia)	13.517	118,4	5	12.825	112,4	8
Logroño (La Rioja)	12.854	112,6	11	12.909	113,1	7
Madrid (Madrid)	15.930	139,6	1	12.933	113,3	6
Murcia (Murcia)	10.703	93,8	16	11.405	99,9	14
Pamplona (Navarra)	13.216	115,8	9	13.437	117,7	2
Vitoria (País Vasco)	14.367	125,9	3	14.108	123,6	1
Valencia (Valencia)	12.453	109,1	13	12.736	111,6	9
España	11.412	100,0		11.412	100,0	

Nota: Ciudades ordenadas alfabéticamente según la comunidad autónoma de pertenencia.

Para acabar con esta lectura de resultados, a efectos de análisis espacial se incluyen los mapas 5 y 6. Se visualiza una suavización de los diferenciales en la RFD pc entre las AUF al considerar las PPA y una mejora en el sur y en el oeste peninsular.

Mapa 5. Renta Familiar Disponible per cápita en las Mapa 6. Renta Familiar Disponible per cápita en PPA en **AUF, 2017**

las AUF, 2017

< 90 90 - 95 95 -100 100 - 115 > 115

Nota: Los índices están referenciados a España = 100.

Nota: Los índices están referenciados a España = 100.

6. CONCLUSIONES

En este trabajo hemos llegado a un conjunto de resultados que, incluso más allá de los datos cuantitativos, nos permiten formular algunas conclusiones de carácter general. En concreto:

- 1) El sistema de estimación de las PPA territoriales, sean CCAA, áreas urbanas funcionales o sus ciudades centrales, utilizado en este trabajo ofrece unos resultados fiables, realistas y relevantes. Los resultados obtenidos muestran una importante variabilidad del coste de la vida para los distintos niveles de desagregación territorial que puedan considerarse, lo que pone de manifiesto la relevancia de esta aproximación. Además, estas estimaciones son fácilmente replicables a lo largo del tiempo a medida que nueva información sobre los niveles de renta familiar disponible y los precios de los alquileres de la vivienda sean publicados por el INE para las unidades territoriales de referencia en este estudio.
- 2) Los resultados de las PPA son directamente significativos para el análisis territorial, ya que aproximan un concepto muy importante en economía, como es el coste de la vida. Un resultado específico del trabajo que aquí se muestra es que esta variabilidad no sólo se aplica a las regiones, sino que también afecta a las áreas urbanas funcionales, a sus ciudades centrales y a sus coronas. Esta distribución territorial del coste de la vida es significativa para el análisis territorial de la economía. Parece claro que esta distribución responde a unos patrones y que, en general, las PPA tienen valores más altos en las ciudades que las coronas, aunque los diferenciales pueden ser muy distintos según las áreas funcionales que se consideren.
- 3) Los resultados obtenidos también permiten incidir sobre la importancia de la elección de la correcta unidad de análisis, especialmente en los estudios de

ámbito regional (Openshaw, 1981). Por una parte, disponer de indicadores de ajuste para unidades subnacionales permite una mejor representación de la realidad local que un indicador común para todo el país. Por otra parte, este indicador debe estar referido a la unidad de análisis correcta: pasar no sólo de indicadores nacionales a indicadores regionales (CCAA) sino también a indicadores para áreas urbanas y grandes ciudades es relevante y necesario.

- 4) Además de la importancia directa de las PPA como medida del diferencial territorial del coste de la vida, los valores de PPA tienen una relevancia indiscutible en relación con otras magnitudes económicas, como el PIB o la renta familiar disponible. La aplicación de las PPA en el cálculo del PIB pc tiene un impacto muy significativo en el diferencial territorial de esta magnitud, y afecta a los análisis, muy extendidos, de convergencia regional, o también a la clasificación de las regiones a los efectos de las políticas de cohesión regional, tal como los ha implementado la UE. En este trabajo se presentan resultados de la aplicación de las PPA en la Renta de los Hogares por habitante que muestran el efecto de considerar esta magnitud deflactada por las PPA, lo que reduce de forma importante el gap entre las CCAA con mayor y menor renta y, además, probablemente permite captar de forma más realista el nivel de bienestar de la población a nivel local. Además de estos efectos, el cálculo de la renta familiar disponible por habitante con las PPA incide en conceptos tan centrales como el Riesgo de Pobreza Monetaria, al permitir definir los umbrales de riesgo de pobreza en términos de capacidad adquisitiva. Vale la pena recordar que el riesgo de pobreza monetaria es una de las dimensiones del concepto AROPE (At Risk Of Poverty and/or Exclusion), que se ha sido considerado el concepto más importante de la estadística social europea.
- 5) Finalmente, este trabajo trata de aproximar de forma realista la comparativa territorial de macromagnitudes, con un planteamiento riguroso, posibilista y pragmático. En este sentido, los autores están convencidos de que, a partir de la

información de base de que disponen las oficinas de estadística, se podría estimar de forma más precisa una magnitud tan importante como la PPA de las distintas economías territoriales, lo cual supondría una mejora de la estadística económica regional y territorial, contribuyendo a una toma de decisiones en el marco de la política regional más acorde a la realidad existente.

Referencias

- Alcaide, J. y P. Alcaide (2000), "El crecimiento económico de las autonomías españolas en 1999", *Cuadernos de Información Comercial Española*, 155, 1-13
- Alcaide, P. (2011), "Avance de las magnitudes económicas españolas en 2010 y serie provisional del balance económico regional. Años 2000 a 2010", *Cuadernos de Información Económica*, 220, 1-62.
- Aten, B. y R. D'souza (2008), "Regional Price Parities, Comparing Price Level Differences Across Geographic Areas", BEA research Spotlight, Survey of Current Business, http://www.bea.gov/regional/gsp. (consultado 29 Septiembre 2019).
- Aten, B., E. Figueroa y T. Martin (2012), "Regional Price Parities for States and Metropolitan Areas, 2006-2010", BEA Research Spotlight, Survey of Current Business, http://www.bls.gov/cpi. (consultado 15 Octubre 2019).
- Balassa, B. (1964), "The Purchasing power parity doctrine: A reappraisal", *Journal of Political Economy*, 72, 584-596
- Ball, A., y D. Fenwick (2003), "Relative Regional Consumer Price Levels in 2003", Office for National Statistics, http://dx.doi.org/10.1086/505722.

- Biggeri, L. y T. Laureti (2011), Understanding changes in PPPs over time, 6th Technical Advisory Group Meeting, International Comparison Program, World Bank
- Brandt, L. y C. Holz (2006), "Spatial Price Differences in China: Estimates and Implications", *Economic Development and Cultural Change*, 55, 43-86, http://dx.doi.org/10.1086/505722.
- Čadil, J., P. Mazouch, P. Musil y J. Kramulova (2014), "True regional purchasing power: Evidence from the Czech Republic", *Post-Communist Economies*, 26:2, 241-256, http://dx.doi.org/10.1080/14631377.2014.904109.
- Cannari, D. y G. Iuzzolino (2009), "Le differenze nel livello dei prezzi al consumo tra Nord e Sud", *Questioni di Economia e Finanza*, No. 49, Banca d'Italia, http://www.bancaditalia.it. (consultado 15 Octubre 2019).
- Coondoo, D., A. Majumder y S. Chattopadhyay (2011), "Estimating spatial consumer price indices through Engel curves an Oalysis", *Review of Income and Wealth*, 57, 138-155
- Costa, A., J. García, J.L. Raymond y D. Sánchez-Serra (2019), Subnational purchasing power of parity in the OECD countries: Estimates based on the Balassa-Samuelson hypothesis, OECD Regional Development Working Papers 2019/12, OECD.
- Costa, A., J. García, X. López y J.L. Raymond (2015), Estimació de les paritats de poder adquisitiu per a les comunitats autònomes espanyoles, Monografia No. 17, Departament d'Economia i Coneixement, Generalitat de Catalunya.
- Eurostat (2017), *Methodological manual on city statistics*. 2017 Edition, Luxembourg: Publications Office of the European Union, 2017.

- Government of Western Australia (2020), Regional Price Index data sets 2000-2019 https://catalogue.data.wa.gov.au/dataset/7ef0c9f9-6b7f-4405-af4e-19f286beba56/resource/ef980a46-8e17-4654-a8c7-bea6b11340ef/download/rpi-data-sets-2000-2019.xlsx.
- Istat (2008), "Le differenze nel livello dei prezzi tra i capoluoghi delle regioni italiane per alcune tipologie di beni", Istat.
- Janský, P. y D. Kolcunová (2017), "Regional differences in price levels across the European Union and their implications for its regional policy", *Annals of Regional Science*, 58, 641-660, http://dx.doi.org/10.1007/s00168-017-0813-x.
- Kokoski, M. (1991), "New Research on Interarea Consumer Price Differences", *Montly Labour Review*, 114, 31-34. https://www.jstor.org/stable/41843608
- Kocourek, A., J. Šimanová and J. Šmída (2016), "Estimation of Regional Price Levels in the Districts of the Czech Republic", Statistika, Vol. 96/4, pp. 56-70.
- Kolcunová, D. (2015), Regional disparities in price levels across the European Union, Charles University in Prague. Faculty of Social Sciences, Institute of Economic Studies.
- Kosfeld, R., H. Eckey y J. Lauridsen (2008), "Disparities in Prices and Income across German NUTS 3 Regions", *Applied Economics Quarterly*, 54, 123-141, http://dx.doi.org/10.3790/aeq.54.2.123.
- Lorente, J. R. (1992), "La dispersión geográfica de los salarios", Síntesis Mensual de Indicadores Económicos, Ministerio de Economía y Hacienda. DG de Previsión y Coyuntura.

- Majumder, A., R. Ray, y S. Santra (2020), "The spatial price map of India drawn using pseudo unit values", *Indian Growth and Development Review*, en prensa. https://doi.org/10.1108/IGDR-09-2019-0092
- Matzka, C. y A. Nachbagauer (2009), Reale Kaufkraft 2008: Einkommen unter Berücksichtigung des Regionalen Preisniveaus, ÖGM Studie, Vienna, http://www.ogm.at (consultado 15 Octubre 2019).
- McMahon, W. (1991), "Geographical Cost of Living Differences: An Update", *Real Estate Economics*, 19, 426-450, http://dx.doi.org/10.1111/1540-6229.00561.
- McMahon, W. y S. Chang (1991), Geographical Cost of Living Differences: Interstate and Intrastate, Update 1991. MacArthur Spencer Series Number 20, Center for the Study of Education Finance
- Moulton, B. (1995), "Interarea indexes of the cost of shelter using hedonic quality adjustment techniques", *Journal of Econometrics*, 68, 181-204. http://dx.doi.org/10.1016/0304- 4076(94)01648-J.
- Musil, P., J. Kramulova, J. Cadil, P. Mazouch. (2012), "Application of Regional Price Levels on Estimation of Regional MacroAggregates Per Capita in PPS", *Statistika: Statistics and Economy Journal*, 49 (4), 3-13
- ONS (2011), Regional Consumer Price Levels, 2010 ONS, Office for National Statistics,
 - https://webarchive.nationalarchives.gov.uk/20160108054525/http://www.ons.gov.uk/ons/rel/cpi/regional-consumer-price-levels/2010/index.html (consultado 12 Julio 2012).

- Openshaw, S. (1981), "The modifiable areal unit problem", *Quantitative Geography: a British View*, 60–69.
- Rokicki, B. (2015), "Regional PPP deflators for Poland and their use", *Ekonomista*, 1, 67-80,

http://www.ekonomista.info.pl/openaccess/?rok=2015&nr=1&strona=67+ (consultado 16 Octubre 2019).

- Roos, M. (2006), "Regional price levels in Germany", *Applied Economics*, 38, 1553-1566, http://dx.doi.org/10.1080/00036840500407207.
- Rubiera, F., E. Lasarte y E. Fernández (2013), "Efectos de los incrementos en el coste de la vida sobre el mapa de la pobreza en España", *Papeles de Economía Española*, 138, 114-128
- Samuelson, P.A. (1964), "Theoretical notes on trade problems", *Review of Economics and Statistics*, 46, 145-154
- Walden, M. (1998), "Geographic Variation in Consumer Prices: Implications for Local Price Indices", *Journal of Consumer Affairs*, 32, 204-226. https://doi.org/10.1111/j.1745-6606.1998.tb00407.x

ANEXO 1. ANÁLISIS DE LA ESTABILIDAD TEMPORAL DE LAS ELASTICIDADES

La Tabla A.1 muestra los resultados de la estimación de la ecuación:

 $\ln(\textit{Precios relativos}) = \beta_0 + \beta_1 \ln\left(\textit{Renta pc relativa}\right) + \beta_2 \ln\left(\textit{Precios relativos vivienda}\right)$

para los distintos años disponibles para estados y áreas metropolitanas (MSA) de los Estados Unidos.

Tabla A.1: Estimaciones de las elasticidades para el período 2010-2018

	Estados	s de EEUU	MSA de EEUU		
Año	Renta relativa pc	Precios relativos vivienda	Renta relativa pc	Precios relativos vivienda	
2010	0,074	0,297	0,068	0,257	
2011	0,062	0,299	0,052	0,262	
2012	0,060	0,300	0,049	0,259	
2013	0,055	0,295	0,053	0,265	
2014	0,063	0,303	0,044	0,271	
2015	0,064	0,297	0,058	0,269	
2016	0,099	0,285	0,064	0,267	
2017	0,113	0,272	0,068	0,263	
2018	0,099	0,293	0,064	0,258	
2010-2018	0,107	0,263	0,060	0,263	

La última fila muestra las elasticidades utilizadas en este trabajo, a partir de la estimación en base a un "pooling" de años, estados y áreas metropolitanas.

ANEXO 2. ANÁLISIS DE LA ESTABILIDAD ESPACIAL DE LAS ELASTICIDADES

No se dispone de información sobre "precios de vivienda" para estados de la OCDE y tampoco se dispone de información sobre "renta per cápita". La ecuación común estimada es:

$$ln(Precios relativos) = \beta_0 + \beta_1 ln (Y relativa)$$

donde *Y* hace referencia a renta per cápita para estados y MSA de Estados Unidos, y al PIB per cápita para los países de la OCDE. Cabe destacar que a nivel de país la diferencia entre renta y PIB per cápita es muy reducida. Todas las estimaciones de la Tabla A.2 están referidas al año 2010.

Tabla A.2: Estimaciones de la elasticidad renta (PIB) pc

Ámbito	Elasticidad
MSA de EEUU	0,285
Estados de EEUU	0,396
30 países OCDE	0,466

Cabe destacar el hecho de que la elasticidad aparente "precios-renta" se reduce progresivamente al pasar de países OCDE, a estados de Estados Unidos y, finalmente, a áreas metropolitanas de Estados Unidos. Una explicación puede ser que las MSA, con una elasticidad de 0,3, están entre sí más interconectadas que los estados, con una elasticidad de 0,4, y estos a su vez, más interconectados que los países de la OCDE, con una elasticidad próxima a 0,5. Una interconexión máxima, por la ley de un solo precio, debería implicar una elasticidad nula.