CS 1674: Intro to Computer Vision Support Vector Machines: Exercise

Prof. Adriana Kovashka
University of Pittsburgh
October 13, 2020

Example

Simplified case: Support vectors are given

Solving for the alphas

- We know for the support vectors, f(x) = 1 or -1 exactly
- Add a 1 in the feature representation for the bias
- The support vectors have coordinates and labels:
 - x1 = [??1], y1 = -1
 - x2 = [??1], y2 = +1
 - x3 = [??1], y3 = +1

Solving for the alphas

- For support vectors, $\mathbf{w}^T \mathbf{x}_j = \mathbf{y}_j$ so $\Sigma_i \alpha_i \mathbf{y}_i \operatorname{dot}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{y}_j$
- Thus we can form the following system of linear equations (one for each of three j's), with α1, α2, α3 as the unknowns:
- $\alpha 1 = ?$, $\alpha 2 = ?$, $\alpha 3 = ?$

Solving for w, b

We know $w = \alpha_1 y_1 x_1 + ... + \alpha_N y_N x_N$ where N = # SVsThus w = ?, b = ?

Plotting the boundary

For SVMs, we used this eq for a line: ax + cy + b = 0 where w = [a c]

Thus $ax + b = -cy \rightarrow y = (-a/c) x + (-b/c)$

Thus y-intercept is?

Slope of decision boundary?

Effect of margin size vs miscl. cost (c)

Training set

Misclassification ok, want large margin

Misclassification not ok

Effect of margin size vs miscl. cost (c)

Find a test set A which is better classified using a small cost c

Find a test set B which is better classified using a large cost c