ENTROPY 2019 - QUALIFICATION ROUND

Calculus, Optimization and Linear Algebra

The questions will be multiple choice of 4 choices, 1 or more CORRECT ANSWER for each question.

If you have any questions, please contact ENTROPY's hotline: (028) 3724 6560 or 0937 367 366

Question 12

The the n	The the maximum directional derivatives of a function f at a given point P is?	
A	1	
В	undefined	
С	$\nabla f(P)$	
D	$ \nabla f(P) $	

You're editing your response. Sharing this URL allows others to also edit your response.

Which of the following statements is TRUE?	
A	$\nabla f(a,b)$ is parallel to the graph of $z = f(x,y)$ at (a,b)
В	$\nabla f(a,b)$ is parallel to the level curve of $z = f(x,y)$ at (a,b)
С	$\nabla f(a,b)$ is perpendicular to the graph of $z = f(x,y)$ at (a,b)
D	$\nabla f(a,b)$ is perpendicular to the level curve of $z = f(x,y)$ at (a,b)

	7	_ ^
Λ.		

		_
-/-	_ /	
	- 1	

$$\bigcirc$$

Question 14

Which of the below constraints can be reformulated as a linear constraint in a linear optimization problem? Here, x and y denote the decision variables.

-F	
A $y + \cos x \le 0.7$	
В	$xy \le 1$, where y can be positive or negative
С	$x/y \le 1$, where y is known as positive
D	$x^y \le 1$, where y is known as positive

)	Δ
-		

You're editing your response. Sharing this URL allows others to also edit your response.

Consider the following linear programming problem:

Maximize: $3x_1 - 2x_2$

subject to: $x_1 - x_2 = 5$

 $x_1, x_2 \ge 0$

Which of the following statements is true?

		0
	A	The optimal value of the problem is 15.
	В	The problem is unbounded.
	C	The optimal value of the problem is 0.
	D	The optimal value of the problem is 5.

Question 16

Could you indicate which of the following loss functions are convex?	
A Misclassification loss	
В	Logistic loss
С	Hinge loss
D	Exponential Loss with the formula $e^{-yf(x)}$

You're editing your response. Sharing this URL allows others to also edit your response.

Consider the following linear programming problem:

Maximize: $x_1 + 2x_2$

subject to: $x_1 + x_2 \le 5$

 $x_1 + 3x_2 \le 9$

Which is an infeasible solution for the above linear programming problem?

	/		
A	(x_1, x_2)) = (1, 3)

B
$$(x_1, x_2) = (3, 1)$$

C
$$(x_1, x_2) = (1, 1)$$

D
$$(x_1, x_2) = (3, 2)$$

Question 18

Given f, f', f'' continuous function on R. Which of the following statements is TRUE?

\mathbf{A}	$f(x - \alpha f'(x)) \le f(x)$ for some $\alpha > 0$ small enough
В	$f(x + \alpha f'(x)) \le f(x)$ for all $\alpha > 0$
С	$f(x - \alpha f'(x)) = f(x)$ for all $\alpha > 0$

All hold TRUE D

You're editing your response. Sharing this URL allows others to also edit your response.

Given the sigmoid function defined as follow:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

what is the derivative of sigmoid activation function?

_		
	A	$1-\sigma(x)$
	В	$\sigma(x)^2$
	С	$\sigma(x)[1-\sigma(x)]$
	D	All of the above

Question 20

Given a multivariate optimization problem as follow:

$$\min_{x} f(x)$$
, (x is a vector).

Which of the following statements hold true

· · · · · · ·	which of the following Statements hold true	
A	A When the Hessian is negative definite, critical point is local maximizer	
В	Solving this minimization problem is exactly equivalent to finding some x such that $\nabla f(x) = 0$	
С	If f is continuous and twice differentiable, then the Hessian is guaranteed not to be singular	
D	Steepest Descent performs poorly when the Hessian is poorly conditioned	

You're editing your response. Sharing this URL allows others to also edit your response.

af + bg for all a, b

Suppose that we have f and g be the convex functions. Which of the following statements is TRUE? f - g is convex \mathbf{A} В fg is convex \mathbf{C} $h = \max\{f, g\}$ is convex

Question 22

Assume that A is a 3 \times 3 matrix with the property that $A^2 = A$. Which of the following statements MUST be true:

following statements West be true.	
A	$A = I_3$
В	$det(A) \neq 0$
C	$det(A^3) = det(A)$
D	None of the above

You're editing your response. Sharing this URL allows others to also edit your response.

Which of the following statement is TRUE about the Hessian matrix of a function f ?		
A	If the Hessian is positive definite (e.g., all eigenvalues are positive) at the point x , then x is a local minimum of f	
В	If the Hessian is negative definite (e.g., all eigenvalues are negative), then ${\bf x}$ is a local maximum of f	
С	If the Hessian has a mix of positive and negative eigenvalues, then x is a saddle point of f	
D	All of the above	

		_
(-)	Λ

_		
/	- 1	
	- 1	-

-		
_	7	
l l	-)	П.
		_

Question 24

Given a square matrix $A \in \mathbb{R}^{n \times n}$, let x be an eigenvector of A with corresponding eigenvalue λ . Which of the following statements is not TRUE? x is an eigenvector of A + aI with eigenvalue $\lambda + aI$ \mathbf{A} $A^k x = \lambda^k x$ for any integer k В \mathbf{C} If A is invertible, then x is an eigenvector of A-1 with eigenvalue λ If A is invertible, then x is an eigenvector of A-I with eigenvalue D

()	Α

 $\lambda - 1$

$$\bigcirc$$
 c

You're editing your response. Sharing this URL allows others to also edit your response.

Never submit passwords through Google Forms.

This form was created inside of John von Neumann Institute VNU-HCM. Report Abuse - Terms of Service

Google Forms

You're editing your response. Sharing this URL allows others to also edit your response.