GEOMETRIA EUCLIDEA

Ilir Lika

Istituto Maria Immacolata

15 giugno 2025

ENTI PRIMITIVI

DEFINIZIONE

una definizione é una frase con la quale associamo un nome all'ente(un oggetto geometrico) e ne descriviamo le caratteristiche

ESEMPIO

un triangolo è un poligono con 3 lati

gli enti che compongono tutti gli altri enti sono chiamati enti primitivi e sono:

- il punto(A)
- la retta(r)
- il piano(α)

ENTI PRIMITIVI

TEOREMI E POSTULATI

TEOREMA

un teorema è un **enunciato** del quale si prova la sua veridicità con una dimostrazione

una dimostrazione è una serie di deduzioni che parte da qualcosa che si suppone vero(l'ipotesi) e arriva a quello che voleva dimostrare(la tesi) ipotesi \rightarrow deduzioni \rightarrow tesi

POSTULATO O ASSIOMA

gli assiomi sono proprietà che si danno per vere senza bisogno di dimostrazioni

POSTULATI DI APPARTENENZA

gli enti primitivi vengono definiti dai postulati di appartenenza e di ordine

POSTULATI DI APPARTENENZA

il piano è un insieme di punti.Le rette sono sottoinsiemi del piano a una retta appartengono *almeno* 2 punti distinti.

nel piano esistono *almeno* 3 punti che appartengono alla stessa retta.

due punti distinti appartengono entrambi a una sola retta

POSTULATI DI ORDINE

Ogni retta può essere **orientata** stabilendo su di essa un verso di percorrenza

POSTULATI DI ORDINE

se A e B sono 2 punti distinti su una retta,o A precede B oppure B precede A

se A precede B e B precede C, allora A precede C

preso un punto A su una retta c'è almeno un punto che precede A ed uno che segue A

presi due punti B e C su una retta, con B che precede C, c'è almeno un punto A della retta che segue B e precede C

SEMIRETTE

SEMIRETTE

su una retta orientata consideriamo un punto P:chiamiamo semiretta di **origine** P l'insieme del punto P e di tutti i punti che lo precedono, oppure l'insieme del punto P e di tutti i punti che lo seguono

SEGMENTI

SEGMENTO

su una retta orientata consideriamo i punti A e B,con A che precede B.il **segmento** di **estremi** A e B e l'insieme dei punti di A e B e dei punti della retta che seguono A e precedono B

SEMIPIANI

SEMIPIANI

Partizione del piano mediante una retta Una retta di un piano divide i punti del piano che non le appartengono in due insiemi distinti, in modo che, se due punti appartengono allo stesso insieme, allora il segmento di cui sono estremi è contenuto nell'insieme e non interseca la retta; se appartengono a insiemi diversi, allora il segmento interseca la retta

SEMIPIANO DI ORIGINE

Considerata una retta r di un piano, un semipiano di origine r è l'insieme dei punti di r e di uno dei due insiemi in cui il piano è diviso da r

FIGURE CONVESSE E CONCAVE

FIGURE CONVESSE E CONCAVE

Una figura è convessa se, presi due suoi punti qualsiasi, questi sono sempre estremi di un segmento tutto contenuto nella figura. In caso contrario la figura è concava

ANGOLI

ANGOLO

In un piano consideriamo le semirette a e b con la stessa origine V. Un angolo di vertice V e lati a e b è l'insieme dei punti delle semirette a e b e di una delle due parti in cui esse dividono il pian

FIGURE UGUALI E CONGRUENTI

FIGURE UGUALI E CONGRUENTI

- ullet uguali o ogni punto delle due figure coincidono
- congruenti → le due figure possono esser sovrapposte per mezzo di movimenti rigidi(senza deformazioni)

LINEE

se con la matita tracciamo un segno su un foglio senza mai alzare la punta otteniamo una linea

ogni linea che non sia una retta,una semiretta o un segmento è detta **linea** curva

un tratto di curva compreso fra due suoi punti(**gli estremi**) è detto **arco** tra le linee distinguiamo :

- linee aperte
- linee chiuse
- linee intrecciate(che si intersecano in se stesse in almeno un punto)
- linee non intrecciate

LINEE

una linea chiusa e non intrecciata divide il piano in due insiemi: quello dei **punti interni** e quello dei **punti esterni** alla linea

PARTIZIONE DEL PIANO MEDIANTE UNA LINEA CHIUSA

una linea che congiunge un punto interno e un punto esterno di una linea chiusa la interseca in almeno un punto

LA CIRCONFERENZA

LA CIRCONFERENZA

dati su un piano i punti C e P, la loro **circonferenza** di **centro** C e **raggio** CP è l'insieme dei punti del piano che hanno la distanza uguale a quella di P

POLIGONALI

POLIGONALE

una **poligonale** o **spezzata** è un insieme di segmenti tale che:

- ogni segmento è consecutivo ma non adiacente al successivo
- ogni estremo dei segmenti appartiene al massimo a 2 di essi

POLIGONI

POLIGONO

un **poligono** é l'insieme dei punti di una poligonale chiusa e non intrecciata e dei suoi punti interni

- i segmenti che formano la poligonale sono i **lati**;i loro estremi sono i vertici
- gli angoli convessi formati dalle semirette di lati consecutivi sono gli angoli del poligono
- gli angoli adiacenti agli angoli interni sono gli angoli esterni
- i segmenti che hanno per estremi due angoli non dello stesso lato sono le diagonali

MULTIPLI E SOTTOMULTIPLI DI SEGMENTI

Dati un numero naturale n e un segmento AB, il segmento CD **multiplo** di AB secondo n è:

- il segmento nullo se n = 0
- AB se n=1
- la somma di n segmenti congruenti ad AB se n > 1 in simboli $CD \cong nAB$
- Se $n \neq 0$, CD è diviso in n parti congruenti ad AB anche che a è sottomultiplo di b secondo n in simboli $AB \cong \frac{1}{n}CD$

MULTIPLI E SOTTOMULTIPLI DI ANGOLI

Dati un numero naturale n e un angolo α,β é multiplo di α secondo n quando:

- angolo nullo se n=0
- α se n=1
- somma di n volte α $\beta = n\alpha$
- Se $n \neq 0$, β è diviso in n parti congruenti a α anche che α è sottomultiplo di β secondo n in simboli $\alpha \cong \frac{1}{n}\beta$

PUNTO MEDIO

PUNTO MEDIO

il **punto medio** di un segmento è il punto che lo divide in 2 segmenti congruenti

BISETTRICE

BISETTRICE

la **bisettrice** di un angolo è la semiretta che lo divide in 2 angoli congruenti

ANGOLI RETTI, ACUTI, OTTUSI

