CS & IT ENGINEERING

Theory of Computation

Finite Automata Lecture No. 5

TOPICS TO BE COVERED

01 Regular Languages

02 Finite Automata

03 DFA

04

05

Regular Languages

Regular

Expression

Finite

Automata

Regular

Grammas

αX	Xa
bX	Xb
aa X	Xaaa
abX	Xaa
	Xal

$$|\omega| = 2$$
 $|\omega| = 2$
 $|\omega| = 2$

$$|\omega| = \text{even}$$

 $|\omega| = \text{odd}$
 $\gamma_{\alpha}(\omega) = \text{even}$
 $\gamma_{\alpha}(\omega) = \text{odd}$

Finite Dutomata

(Finite State Machine)

(Finite Machine)

JIt represents a regular language (accepts)

(se cognites)

FA

FSMI

FM

Automata

Automaton one M/C

Finite Automota

(Transducers) IP FA Moore mealy mk

→ Definition? -) configuration? -> Representations? -> DF-A VS NFA

What is FA?

Sylve John Stay

Finite Automata
accepts

valid stong If WELL, FA halts at final state Invalid If |well, FA halts at nonfinal state

L =
$$ab(a+b)^{*}$$

all strings starts wilk ab

$$\Sigma = d^{*}(a, b, aa, ab, ba, ba, bb, aaa, aab, aba, aba, aba, bab, baa, bab, bba, bba, bbb, ...}$$

FA Configuration

FA Representations

- 1) State Diagram
- (2) Transition Table
- 3) Set function Relation

Set

FA =
$$(\{1,2\},\{a,b\},\delta,$$

1, $\{1,3\}$
 $\{1,a\}=1$
 $\{1,a\}=$

$$S=\{(1,a),1\}$$

$$S=\{(1,a),1\}$$

$$(1,b)\in A$$

$$(1,b)\in A$$

$$(1,b)\in A$$

E: 1 and states

19/19/1

1 Start Halt

E not araphy

E Accepted

ax (ba) x a $a^{\circ}()^{\circ}a^{\circ}$ min string

$$\sum_{i=1}^{\infty} |\mathcal{E}| = 1$$

$$|\mathcal{E}| = 1$$
Symbol
$$|\mathcal{E}| = 1$$
Symbol
$$|\mathcal{E}| = 1$$
Symbol
$$|\mathcal{E}| = 1$$

Reached

Halt

Stop

end

E - FA

EX ax aax

1

$$(a+b)^{*} = \{a,b\} = \Sigma$$

$$\Sigma = \{a,b\} = \Sigma$$

$$= (a+b)$$

$$\Sigma^{*} = \Sigma \cup \Sigma \cup \Sigma^{2} \cup \Sigma$$

$$\alpha + \Sigma + C$$

$$\alpha + C$$

* (ab*a) b Subset of [even no.of a's Jaabaa X having even às

