

Introducción al uso de la infraestructura del NLHPC

Objetivos

- Accediendo al cluster Guacolda-Leftraru
 - SSH
 - Infraestructura y recursos
- Uso de Slurm
 - Parámetros
 - Uso interactivo y encolado de tareas
 - Uso de comandos informativos
 - Monitoreo de las tareas
- Uso de Módulos
 - Consultando por software y sus versiones
 - Cargando módulos
- Escalamiento
- Ejercicios prácticos

Participación general

Nuestra metodología busca ser dinámica y participativa

- Realizar consultas durante la presentación
- Se realizarán ejercicios en grupo
- En cada ejercicio los usuarios deberán:
 - Participar en la realización de los ejercicios
 - Compartir pantalla de manera grupal
 - Explicar los resultados de los ejercicios
- Se asignarán distintos usuarios para la realización de cada ejercicio

Infraestructura

Nodo Login/debug (gn)

Partición Debug

- 4 Nodos
 - o Intel(R) Xeon(R) CPU E5-2660
 - o 20 CPUs
 - o 59 GB RAM
- Límites de tiempo de ejecución a 30 minutos
- Orientado a acceso y pruebas de compilación
- Total partición:
- 80 CPUs
- 236 GB RAM

Infraestructura - Leftraru

Nodo Slims (cn)

Partición Slims

- 132 Nodos
 - Intel(R) Xeon E5-2660 v2
 - o 20 CPUs
 - o 46 GB RAM
- Límites de tiempo de ejecución: 30 días
- Partición por defecto
- Total partición:
- 2.640 CPUs
- 6.072 GB RAM

Infraestructura - Leftraru

Nodo General (sn)

Partición General

- 48 nodos
 - Intel(R) Xeon Gold 6152
 - o 44 cores
 - o 187 GB RAM DIMM DDR4
- Límites de tiempo de ejecución: 30 días
- Total partición:
- 2.112 CPUs
- 8.976 GB RAM

Infraestructura - Leftraru

Nodo Largemem (fn)

Partición Largemem

- 9 nodos
 - Intel(R) Xeon Gold 6152
 - 44 cores
 - 765 GB RAM
- Destinado para tareas de 192G+ RAM
- Límites de tiempo de ejecución: 30 días
- Total partición:
- 396 CPUs
- 6.885 GB RAM

Infraestructura - Guacolda

Nodo GPU (gn)

Partición GPU

- 2 Nodos
 - Intel(R) Xeon Gold 6152
 - o 44 cores
 - 187 GB RAM
 - 2 NVIDIA Volta V100 cada nodo
 - 16GB
 - 5120 CUDA cores cada una
- Destinado a tareas que requieran uso de GPUs
- Límites de tiempo de ejecución: 30 días
- Total partición:
- 88 CPUs
- 374 GB RAM
- 20.480 CUDA cores

Infraestructura NLHPC

- 266 TFlops
- 5236 cores
- 191 nodos
- 4 PB almacenamiento IBM Spectrum Scale
- Red LAN Infiniband FDR 56Gbps

https://wiki.nlhpc.cl/Hardware Disponible

Accediendo al Cluster

Accediendo al Cluster

Protocolo: SSH

Host: leftraru.nlhpc.cl

Linux, macOS: ssh usuario@leftraru.nlhpc.cl

Windows:

Llaves SSH

Generar Ilave SSH

```
[dbowman@HAL ~] ssh-keygen -t ed25519
Enter file in which to save the key (/home/dbowman/.ssh/id_ed25519)
Enter passphrase (empty for no passphrase)
```

Copiar Ilave SSH

```
[dbowman@HAL ~] ssh-copy-id dbowman@leftraru.nlhpc.cl
```

Acceder al cluster

```
[dbowman@HAL ~] ssh-copy-id dbowman@leftraru.nlhpc.cl
```

El uso de llaves SSH ofrece un método de autenticación más seguro.

¿Qué es SLURM

- Gestor de recursos
- Administra los recursos de las particiones de Leftraru y Guacolda.
- Gestiona las tareas en ejecución y en espera en el cluster.
- Reserva recursos compartidos.
- Permite la ejecución de tareas hasta por 30 días

Obteniendo información de las particiones

• **sinfo**: ver estado de las particiones

infinite

uр

[root@master2 ~]# sinfo

debug

```
PARTITION AVAIL
                 TIMELIMIT
                                   STATE NODELIST
                            NODES
slims*
                  infinite
                                   drain cn037
             un
slims*
                  infinite
                                      mix cn[023-024,026,045,072-073,079,087,096,107,129,131]
             uр
slims*
                  infinite
                                    alloc cn[019-020,038-044,....108-128.130]
             uр
slims*
                  infinite
                                     idle cn[001-018,021-022,...082-083,086,088-090,132]
             uр
general
                  infinite
                                      mix sn[002.006.014-016.021.028.030-031]
             uр
                  infinite
                                    alloc sn[001.003-005.007-013....032-048]
general
             uр
                  infinite
                                      mix fn[001.007]
largemem
             uр
                  infinite
                                   alloc fn[002.004]
largemem
             uр
                  infinite
                                     idle fn[003.005-006.008-009]
largemem
             uр
                  infinite
                                     mix gn[001-002]
gpus
             uр
```

idle leftraru[1-4]

squeue: listado de tareas en ejecución y pendientes

Monitorear desde la consola:

[usuario@leftraru1	~]\$	squeue
--------------------	------	--------

JOBID	PARTITION	NAME	USER	ST	TIME	NODES NO	DELIST(REASON)
4400799	slims	example	usuario	R	0:00	1	cn042

sacct: estados de tareas ejecutadas

[usuario@leftraru1 ~]\$ sacct -X

JobID	JobName	Partition	Account	AllocCPUS	State	ExitCode
24118136	14131-DIA+	slims	users	2	RUNNING	0:0
24118147	14132-DIA+	slims	users	2	RUNNING	0:0
24118148	14133-DIA+	slims	users	2	COMPLETED	0:0
24118154	14137-DIA+	slims	users	2	COMPLETED	0:0

Información detallada de job

[root@leftraru1 ~]# scontrol -dd show job 9160565

```
JobId=9160565 JobName=w.fepc-f-cnt-oo.m2
  UserId=workxwz(11942) GroupId=fisica_cmm(11222) MCS_label=N/A
   Priority=109951 Nice=0 Account=unab QOS=120-30-std
   JobState=RUNNING Reason=None Dependency=(null)
   Requeue=0 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
   RunTime=04:28:03 TimeLimit=3-00:00:00 TimeMin=N/A
   SubmitTime=2017-10-09T11:25:36 EligibleTime=2017-10-09T11:25:36
   StartTime=2017-10-09T15:04:40 EndTime=2017-10-12T15:04:40 Deadline=N/A
   PreemptTime=None SuspendTime=None SecsPreSuspend=0
   Partition=slims AllocNode:Sid=leftraru4:52235
   RegNodeList=(null) ExcNodeList=(null)
```


Enviar trabajos en SLURM

Parámetros en SLURM

Parámetro	Uso	Acción
-J	-J mi-tarea	Asigna nombre a la tarea
-р	-p slims	Indica partición a utilizar
-n	-n 1	N° de procesos
-C	-c 20	CPUs por proceso
ntasks-per-node	ntasks-per-node=20	Procesos por nodo
mem-per-cpu	mem-per-cpu=2300	Memoria por CPUs
- O	-o salida_%j.out	Log de salida
-е	-e errores_%j.err	Log de salida de errores
-mail-user	-mail-user=user@abc.xyz	Donde se envia info del JOBs
-mail-type	-mail-user=ALL	Tipo de información a enviar

Ejercicio 1

- Ejecute el comando hostname en la partición Slims con srun:
 - Con un único proceso.
 - Con dos procesos iguales.
 - Con dos procesos en distintos nodos.
 - Lanzando un proceso que tenga dos hilos.
- ¿Qué resultados se han obtenido?
- En la partición slims
 - ¿Cuántos cores puedo reservar por proceso? ¿Por qué es ese número?
 - ¿Qué diferencia hay en la partición general?
 - ¿Qué ocurre si reservo más cores de los disponibles?
- ¿Qué ocurre si no especifico la partición en la que quiero ejecutar mi comando?

Ejemplo de script básico SBATCH

Utilizar su editor por consola preferido: nvim, vim, vi, nano

```
#!/bin/bash
#SBATCH -J ejemplo
#SBATCH -p slims
#SBATCH -n 1
#SBATCH -c 1
#SBATCH -o archivo_%j.out
#SBATCH -e archivo_%j.err
#SBATCH --mail-user=foo@example.org
#SBATCH --mail-type=ALL
sleep 10
```

Y ejecutar el script:

sbatch test.sh

Ejercicio 2

- Crea un script de ejecución para lanzarlo con sbatch, con las siguientes consideraciones:
 - Utilizar la partición slims.
 - Reserva un único core.
 - Ejecuta el comando stress -c 1
- El comando stress sirve para poner a prueba los distintos componentes de un computador. En este ejemplo estamos pidiendo usar una CPU (al 100%) durante un tiempo ilimitado. Ya que no se le ha especificado al comando un tiempo de término, en principio, la tarea no debiera terminar nunca. En relación a esto:
 - ¿Cuánto tiempo estará la tarea en ejecución?
 - ¿Qué comando puedo utilizar para obtener información acerca de la tarea en ejecución?
 - ¿Cómo puedo cancelar mi tarea?
- Para poder lanzar tareas, debo conocer el uso del Cluster ¿Qué comando me permite conocer el estado de las particiones?

Monitorear Job - htop

Puede ingresar a través de ssh a un nodo en donde tenga una tarea en ejecución y ejecutar **htop**

```
Tasks: 44, 39 thr; 3 running
                                                       Load average: 2.00 2.01 2.05
                                                       Uptime: 4 days, 00:36:11
.8335 nperinet
                                   892 R 100. 0.0 2h47:30 ./LL RK4.x
8605 root
                                                  0:11.06 /usr/lib/systemd/systemd --switched-root --system --de
 1 root
 669 root
671 root
                                  6908 S 0.0 0.0 0:00.78 /usr/lib/systemd/systemd-journald
                                  1268 S 0.0 0.0 0:00.83 /usr/lib/systemd/systemd-udevd
726 root
1012 root
1002 root
                                  1236 S 0.0 0.0 0:00.25 /sbin/auditd -n
1206 root
                                  6968 S 0.0 0.0 0:00.00 /usr/sbin/NetworkManager --no-daemon
1209 root
                                  6968 S 0.0 0.0 0:00.09 /usr/sbin/NetworkManager --no-daemon
1139 root
                                  6968 S 0.0 0.0 0:02.34 /usr/sbin/NetworkManager --no-daemon
1144 avahi
                                  1300 S 0.0 0.0 0:00.44 avahi-daemon: running [cnf004.local]
1148 dbus
                                  1352 S 0.0 0.0 0:00.44 /bin/dbus-daemon --system --address=systemd: --nofork
1166 root
                                   776 S 0.0 0.0 0:00.00 /usr/sbin/gssproxy -D
1167 root
                                   776 S 0.0 0.0 0:00.00 /usr/sbin/gssproxy -D
                                   776 S 0.0 0.0 0:00.00 /usr/sbin/gssproxy -D
1168 root
1169 root
                                   776 S 0.0 0.0 0:00.00 /usr/sbin/gssproxy -D
                                   776 S 0.0 0.0 0:00.00 /usr/sbin/gssproxy -D
1170 root
1164 root
                                   776 S 0.0 0.0 0:00.30 /usr/sbin/gssproxy -D
```


Generador de scripts SBATCH

En el siguiente link podrá crear de forma simple sus scripts SBATCH para ser ejecutados en el cluster.

https://wiki.nlhpc.cl/Generador Scripts

Ejercicio 3

- Crea un script para lanzarlo con sbatch, con las siguientes consideraciones:
 - La partición a lanzar es slims.
 - Reserva un nodo completo.
 - Ejecuta el comando stress -c 40 -t 10m.
- Verifica en qué nodo se está ejecutando tu tarea, accede mediante ssh al nodo y ejecuta htop.
- ¿Cuántos procesos se están ejecutando?
- ¿Cuál es el porcentaje de uso de cada proceso?
- ¿Cómo sería la manera correcta de lanzar la tarea con el fin de que cada proceso se ejecute al 100%?
- Compara y explica el uso de CPU entre los puntos 3 y 4.

Reserva Memoria RAM

Límite en la memoria RAM:

- Por defecto se reserva 1GB de RAM por core reservado
- Si se excede se obtendrá el error: "Exceeded job memory limit"
- Reservar RAM por core usado: #SBATCH --mem-per-cpu=2300

systemd-cgtop -m | grep job_id

Ejercicio 4

- Crea un script para lanzarlo con sbatch, con las siguientes consideraciones:
 - La partición a lanzar es slims.
 - No asignar memoria RAM
 - Reserva un único core.
 - Debe enviar un correo electrónico cuando la tarea cambie de estado.
 - Ejecutar stress -m 1 --vm-bytes 2048M -t 15m
- Revisa los log de salida
- ¿Qué ocurre con la ejecución? ¿Cuál es la razón?
- Modifica el script para ejecutar la tarea.
- ¿Cuántos recursos de RAM está utilizando la tarea?

Sistema de Módulos LMOD

- Permite tener diferentes aplicaciones y versiones de estos en un mismo sistema operativo.
- En el NLHPC usamos Lmod (https://github.com/TACC/Lmod).
- El actual sistema de módulos está disponible para las distintas arquitecturas de procesador (AVX512, AVX, SSE4.2)

Lmod: Buscar módulo

```
eguerra@leftraru1:/home/eguerra$ ml spider Python
 Python:
   Description:
     Python is a programming language that lets you work more quickly and integrate your systems more effectively.
     Versions:
       Python/2.7.15
       Python/3.7.2
       Python/3.7.3
     Other possible modules matches:
       Biopython IPython protobuf-python
 To find other possible module matches execute:
     $ module -r spider '.*Python.*'
 For detailed information about a specific "Python" module (including how to load the modules) use the module's full
name.
 For example:
     $ module spider Python/3.7.3
```

Lmod: Cargar distintas versiones

eguerra@leftraru1:/home/eguerra\$ python -V

Pvthon 2.7.15

```
equerra@leftraru1:/home/equerra$ ml Pvthon/3.7.3
equerra@leftraru1:/home/equerra$ ml
Currently Loaded Modules:
  1) GCCcore/8.2.0
                                        4) impi/2019.2.187
                                                             7) intel/2019b 10) libreadline/8.0
                                                                                                  13) SOLite/3.27.1
                                                                                                                     16) libffi/3.2.1
  2) icc/2019.2.187-GCC-8.2.0-2.31.1
                                        5) imkl/2019.2.187
                                                             8) bzip2/1.0.6 11) ncurses/6.1
                                                                                                  14) XZ/5.2.4
                                                                                                                     17) Pvthon/3.7.3
  3) ifort/2019.2.187-GCC-8.2.0-2.31.1
                                        6) binutils/2.32
                                                             9) zlib/1.2.11 12) Tcl/8.6.9
                                                                                                  15) GMP/6.1.2
eguerra@leftraru1:/home/eguerra$ python -V
Python 3.7.3
eguerra@leftraru1:/home/eguerra$ ml Python/2.7.15
The following have been reloaded with a version change:
  1) Pvthon/3.7.3 => Pvthon/2.7.15
equerra@leftraru1:/home/equerra$ ml
Currently Loaded Modules:
  1) GCCcore/8.2.0
                                        4) impi/2019.2.187
                                                             7) intel/2019b 10) libreadline/8.0
                                                                                                  13) SOLite/3.27.1
                                                                                                                    16) libffi/3.2.1
  2) icc/2019.2.187-GCC-8.2.0-2.31.1
                                        5) imkl/2019.2.187
                                                             8) bzip2/1.0.6 11) ncurses/6.1
                                                                                                  14) XZ/5.2.4
                                                                                                                     17) Python/2.7.15
  3) ifort/2019.2.187-GCC-8.2.0-2.31.1
                                        6) binutils/2.32
                                                             9) zlib/1.2.11 12) Tcl/8.6.9
                                                                                                  15) GMP/6.1.2
```

NLHPC
National Laboratory
for High Performance
Computing
Chile

Ejercicio 5

- Descarga el siguiente código Python con wget: n-queens-problem-3.py en tu directorio de trabajo.
- Crea un script de para lanzarlo con sbatch, con las siguientes consideraciones:
 - Utilizar la partición slims.
 - Cada trabajo reserva un único core.
 - Supondremos que cada trabajo reserva 2300 Mb de RAM.
 - Ejecuta el código con la versión de Python/3.9.5

Ver cuota de disco

```
[$USER@leftraru1 ~]# usoDisco
Uso de disco del usuario: $USER
Cuota = 200G
Utilizado = 148.95G
% de utilización = 74.5%
```


Eficiencia Computacional

- Comportamiento de un programa al ejecutarlo de manera paralela (más de una CPU)
- Un programa puede escalar en un rango de procesadores [1..n]
- Se logra la eficiencia cuando la medición se mantiene constante sobre un factor de 0,5
- Esto es importante, ya que un programa no se ejecutará en la mitad de tiempo si se ejecuta en un doble de procesadores.
 - Buscamos hacer un uso óptimo y eficiente de los recursos

Eficiencia Computacional - Speedup y Eficiencia

- **SpeedUp** es la métrica que nos indica la ganancia mediante la paralelización:
 - SpeedUp = Tiempo Original / Tiempo Mejora
- Eficiencia es la métrica del uso de los recursos computacionales
 - Eficiencia = SpeedUp / Número de CPU

Procesadores	Tiempo de Ejecución	Speedup	Eficiencia
1	1:00:27	1,0	1,0
2	0:33:47	1,8	0,9
4	0:18:02	3,4	0,8
8	0:09:13	6,6	0,8
16	0:05:06	11,9	0,7
32	0:02:31	24,0	0,8
64	0:01:18	46,5	0,7
128	0:00:48	75,6	0,6
256	0:00:34	106,7	0,4
500	0:00:31	117,0	0,2
600	0:00:35	103,6	0,2
700	0:00:35	103,6	0,1

https://wiki.nlhpc.cl/Escalamiento

Eficiencia Computacional - Speedup y Eficiencia - Gráfico

Speedup y Eficiencia

Uso de partición GPUS

- ¿Cómo ejecutar un programa mediante Slurm que necesite utilizar la partición gpus?
 - ¿Qué opciones existen actualmente en el Cluster?
 - ¿Qué módulos se deben cargar para utilizar la partición gpus?

```
#!/bin/bash
#SBATCH -J gpu-example
#SBATCH -p gpus

#SBATCH -n 1
#SBATCH -c 1
#SBATCH --gres=gpu:1
#SBATCH --mem-per-cpu=4250

ml purge
ml fosscuda/2019b
ml NAMD/3.0alpha9
```


Enlaces de interés

Los invitamos a visitar nuestra página web:

www.nlhpc.cl

También tenemos una wiki pública con información útil:

https://wiki.nlhpc.cl/Bienvenida NLHPC

Solicitud de cuentas de usuarios

https://solicitudes.nlhpc.cl/

Dashboard

https://dashboard.nlhpc.cl/

En caso de dudas, pueden escribirnos a soporte@nlhpc.cl

¡Gracias por participar! :)

www.nlhpc.cl 2023

