goal: characterize when state of linear system can be uniquely determined from output

ref: Hespanha 15.1, 15.2

output feedback

oif (A,B) is controllable, can synthesize $K \in \mathbb{R}^{k \times n}$ such that $n = -K \times \text{stabilizes}$ (LTI-DE)

- rank
$$C = n \Rightarrow m \Rightarrow n$$

- if C invertible $(m = n = rank C)$?
+ then $x = C^{-1}(y - Du)$
- otherwise: $y = Cx + Du$
 $\Rightarrow C^{T}y = C^{T}Cx + C^{T}Du$
 $\Rightarrow C^{T}y = C^{T}Cx + C^{T}Du$
 $\Rightarrow x = (C^{T}C)^{-1}C^{T}(y - Du)$
 $\Rightarrow x = (C^{T}C)^{-1}C^{T}(y - Du)$

(non-)observability

cansider LTV-DE
$$x/x^+=A(t)x+B(t)u$$
, $x \in \mathbb{R}^n$, $u \in \mathbb{R}^k$
orecall:
$$y = C(t)x+D(t)u$$
, $y \in \mathbb{R}^m$

$$y(t) = C(t)\Phi(t,t_0)x_0 + \begin{cases} c(t)\Phi(t,z)B(z)u(z)dz + D(t)u(t) \\ t \end{cases}$$

def: x_0 is non-observable on $[t_0,t]$ if C(t) $\overline{D}(t,t_0)$ $x_0=0$ (called un-observable in Hespanha)

and we let N[to,t,] denote non-observable states on [to,t,]

and we let $W[t_0,t_1]$ denote non-observable states on $[t_0,t_1]$ i.e. $W[t_0,t_1]=W(c(t)\overline{\Phi}(t_1,t_0))$

note: if initial condition xo yields output y(t) & time to and y \(\infty \) \(\text{Tto,to} \) then initial condition (xoty) also yields output y(t) & time to since

 $C(t) \underline{D}(t_1, t_0) \left(x_0 + y_1 \right) = C(t) \underline{D}(t_1, t_0) x_0 = y(t_1)$

no matter what input is applied o

note: if $S(t_0,t_1) = \{0\}$ then $g(t_1) \in \mathbb{R}^m$ uniquely determines $\chi(t_0)$ since $C(t_1) \not \equiv (t_1,t_0) \chi_0 = g(t_1)$ has a unique solution $\chi_0 \in \mathbb{R}^n$