# 5.3 The Fundamental Theorem of Calculus

Theorem 1 Suppose f is continuous on [a, b]. 閉連續

(1) 
$$g(x) = \int_a^x f(t) dt \implies g'(x) = f(x)$$

(2) 
$$F'(x) = f(x) \implies \int_a^b f(x) \ dx = F(b) - F(a)$$

前言: 定積分是黎曼和的極限, 如果函數長得很複雜, 極限就會很難算. 有沒有一個好的方法可以用來算定積分?

## 0.1 TFTC (1)

Theorem 2 (The Fundamental Theorem of Calculus, Part 1) If f is continuous on [a, b] 閉連續, then

$$g(x) = \int_a^x f(t) \, dt$$

- (1) is **continuous on** [a, b] 閉連續 and
- (2) differentiable on (a, b) 開可微, and
- (3)

$$g'(x) = f(x)$$

- $\therefore f$  連續 (on [a,x]) 所以可積,
- ∴ g 是可以定義的 (黎曼和極限存在).
- 當 f 都是正的 (> 0, 或非負  $\geq$  0),
- g(x) 代表 f 以下從 a 到 x 的面積.
- g'(x) 代表在 x 下一個瞬間增加的面積 (改變率), 就是 f(x) 的長度.



Leibniz notation: 先積一遍, 再微不變.

$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$

Note: f 要閉連續, x 要一致, t 也要一致.

## Proof of TFTC (1).

(1) "g is differentiable on (a, b), and hence is continuous on (a, b)." For  $x \in (a, b)$ ,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \left\{ \frac{1}{h} \left[ \int_{\mathbf{a}}^{x+h} f(t) dt - \int_{\mathbf{a}}^{x} f(t) dt \right] \right\}$$

$$= \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t) dt}{h}$$

Assume h > 0 with  $x + h \le b$ . :  $f \in [x, x + h] \subseteq [a, b]$  **\mathbb{Z}** by Extreme Value Theorem,

$$\exists \ \mathbf{u}, v \in [x, x+h]$$

 $\ni f$  有最小值  $f(\mathbf{u})$  與最大值  $f(\mathbf{v})$ .

By property of definite integral,

$$f(\mathbf{u})h \le \int_{x}^{x+h} f(t) \ dt \le f(v)h$$
$$f(\mathbf{u}) \le \frac{\int_{x}^{x+h} f(t) \ dt}{h} \le f(v).$$



As  $h \to 0$ , we have  $u, v \to x$ , and f is continuous, so  $f(u), f(v) \to f(x)$ .  $\lim_{h \to 0} f(u) = \lim_{u \to x} f(u) = f(x), \lim_{h \to 0} f(v) = \lim_{v \to x} f(v) = f(x).$ By Squeeze Theorem,  $g'(x) = \lim_{h \to 0} \frac{\int_{x}^{x+h} f(t) dt}{h} = f(x).$ 

By Squeeze Theorem, 
$$g'(x) = \lim_{h \to 0} \frac{\int_x^{x+h} f(t) dt}{h} = f(x)$$
.

It is similar for h < 0  $(x + h \ge a)$ .

Therefore, g is differentiable on (a, b) and g'(x) = f(x).

(2) "g(x) is continuous from the right at a and from the left at b." For  $x \to a^+$ , since f is continuous on [a, x], by Extreme Value Theorem,  $\exists u, v \in [a, x] \ni f(u)(x - a) \le \int_a^x f(t) dt \le f(v)(x - a)$ , and by Squeeze Theorem,

$$\lim_{x \to a^+} g(x) = \lim_{x \to a^+} \int_a^x f(t) \ dt = 0 = \int_a^a f(t) \ dt = g(a).$$

It is similar for  $x \to b^-$  and  $\int_a^b f(t) dt = \int_a^b f(t) dt - \int_a^x f(t) dt$ . Therefore, g is continuous on [a, b].

**Example 0.1** Find the derivative of 
$$g(x) = \int_0^x \sqrt{1+t^2} dt$$
.

$$\therefore \sqrt{1+x^2}$$
 is continuous on  $\mathbb{R}$ , by TFTC part 1,  $g'(x) = \sqrt{1+x^2}$ .

Example 0.2 Find the derivative of Fresnel (Sine) Function

$$S(x) = \int_0^x \sin(\frac{\pi t^2}{2}) \ dt.$$

French physicist Augustin Fresnel [fren`nɛl] 菲涅耳: theory of diffraction of light wave 光波繞射理論. (Other is  $C(x) = \int_0^x \cos(\frac{\pi t^2}{2}) \ dt$ .)

$$\because \sin(\frac{\pi x^2}{2}) \text{ is continuous on } \mathbb{R}, \text{ by TFTC part 1, } S'(x) = \sin(\frac{\pi x^2}{2}). \quad \blacksquare$$



Example 0.3 Find  $\frac{d}{dx} \int_{1}^{x^4} \sec t \ dt$ .

(長得不太一樣, 要用 Chain rule.) Let  $u = x^4$ ,

$$\frac{d}{dx} \int_{1}^{x^{4}} \sec t \, dt = \frac{d}{dx} \int_{1}^{u} \sec t \, dt \quad \text{(對 } u \text{ 的函數微 } x\text{)}$$

$$= \frac{d}{du} \left[ \int_{1}^{u} \sec t \, dt \right] \cdot \frac{du}{dx}$$

$$= \sec u \cdot (x^{4})' \quad \text{(別忘代回 } u = x^{4}\text{)}$$

$$= 4x^{3} \sec(x^{4}).$$

Skill: 不一致, 就要設新變數讓他一致, 再用 Chain Rule.

## 0.2 TFTC (2)

Theorem 3 (The Fundamental Theorem of Calculus, Part 2)
If f is continuous on [a, b] 閉連續, then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a)$$

where F is any antiderivative of f, i.e. F' = f.

算積分雖可以用 Riemann sum 逼近, 但太複雜, 極限也不好求. 但是, 用 TFTC (2) 只要找反導數代上界減代下界. Leibniz notation: 先微再積, 代上減下.

$$\int_{a}^{b} \frac{d}{dx} F(x) \ dx = F(b) - F(a)$$

**Attentin:** 不是隨便的 F 都可以, F 要是個閉連續函數的反導數.

Note: 其他寫法:

$$F(b) - F(a) = \left[ F(x) \right]_{a}^{b} = \left[ F(x) \right]_{a}^{b} = \left[ F(x) \right]_{a}^{b}$$

(不推薦單邊中括號的寫法.)

Proof of TFTC (2).

Let  $g(x) = \int_a^x f(t) dt$ . By TFTC part 1, g'(x) = f(x). So F(x) = g(x) + C, as g(x), is continuous on [a, b]. Therefore,

$$F(b) - F(a) = (g(b) + \mathcal{L}) - (g(a) + \mathcal{L})$$

$$= \int_{a}^{b} f(t) dt - \int_{a}^{a} f(t) dt$$

$$= \int_{a}^{b} f(t) dt.$$

**Example 0.4**  $\int_{1}^{3} e^{x} dx = ?$ 

 $\therefore e^x$  is an antiderivative of  $e^x$  ( $e^x + C$  is the most general one),

$$\therefore \int_{1}^{3} e^{x} dx = e^{x} \Big|_{1}^{3} = e^{3} - e^{1} = e^{3} - e.$$

**Example 0.5** Find the area under  $y = x^2$  from 0 to 1.  $(\int_0^1 x^2 dx = ?)$ 

$$\therefore \frac{x^3}{3}$$
 is an antiderivative of  $x^2$ ,  $\therefore \int_0^1 x^2 dx = \frac{x^3}{3} \Big|_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$ .

**Example 0.6**  $\int_{2}^{6} \frac{dx}{x} (= \int_{2}^{6} \frac{1}{x} dx) = ?$ 

 $\therefore$  ln x is an antiderivative of  $\frac{1}{x}$  for x > 0,

$$\therefore \int_{3}^{6} \frac{1}{x} dx = \ln x \Big|_{3}^{6} = \ln 6 - \ln \frac{3}{3} = \ln \frac{6}{3} = \ln 2.$$

Note:  $\int_a^b \frac{dx}{x} = \int_a^b \frac{1}{x} dx$  是習慣的寫法, 不可以約掉 x;  $\ln |x| + C$  is the most general one for  $x \neq 0$ , 因爲  $[3,6] \subseteq (0,\infty)$ , 這裡只要  $\ln x$  就好.

**Example 0.7** Find the area of cosine curve from 0 to b, where  $0 \le b \le \frac{\pi}{2}$ .

 $\therefore$  sin x is an antiderivative of cos x,

$$\therefore \int_0^b \cos x \ dx = \sin x \Big|_0^b = \sin b - \sin 0 = \sin b.$$



**Example 0.8** What wrong with the calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = -\frac{1}{x} \Big]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

$$\therefore \frac{1}{x^2} \text{ is } \frac{NOT}{x^2} \text{ continuous on } [-1,3],$$

$$\therefore TFTC \text{ does not hold.}$$

In fact,  $\int_{1}^{3} \frac{1}{r^2} dx$  does not exist.



#### 0.3 TFTC

Theorem 4 Suppose f is continues on [a, b]. 閉連續

$$g(x) = \int_a^x f(t) dt \implies g'(x) = f(x)$$
  $F'(x) = f(x) \implies \int_a^b f(x) dx = F(b) - F(a)$ 

#### Recall:

Leibniz notation: 先積一遍, 再微不變. (f 要在 [a,b] 連續)

$$\frac{d}{dx} \int_{a}^{x} f(t) \ dt = f(x)$$

Leibniz notation: 先微再積, 代上減下. (F') 要在 [a,b] 連續)

$$\int_{a}^{b} \frac{d}{dx} F(x) \ dx = F(b) - F(a)$$

Additional: f(x) 閉連續  $\implies g(x) = \int_a^x f(t) \ dt$  是閉連續開可微. 而且 f(x) 的反導數 F(x) = g(x) + C, 所以也是閉連續開可微.

但是,一個閉連續開可微的函數 G(x), G'(x) 不一定是閉連續, 就是說, G(x) 不一定是個閉連續函數的反導數. 所以 (不適用 TFTC)

$$\int_{a}^{b} \frac{d}{dx} G(x) \ dx \times G(b) - G(a)$$

例如:  $G(x) = \sqrt{x}$  is continuous on [0,1] and differentiable on (0,1), but  $G'(x) = \frac{1}{2\sqrt{x}}$  is continuous on (0,1], 不能用 TFTC:  $\int_0^1 \frac{dx}{2\sqrt{x}} \times \sqrt{x} \Big|_0^1$ . (此例要用 §7.8 瑕積分:

$$\int_0^1 \frac{dx}{2\sqrt{x}} = \lim_{t \to 0^+} \int_t^1 \frac{dx}{2\sqrt{x}} = \lim_{t \to 0^+} \sqrt{x} \Big|_t^1 = \sqrt{1} - \lim_{t \to 0^+} \sqrt{t} = 1 - 0 = 1.$$

後言: Barrow (Newton's teacher) 發現:

求切線 (微分) 與 求面積 (積分) 互爲 inverse process 逆程序

Newton & Leibniz 發展出一套有系統的方法, 並建立學說 (極限, 黎曼和, ... 等). 積分可以用  $\lim \sum$  來算, 但是用反導數會更好算; 我們將會介紹其他的技巧. (§ 7)