421 HW 13 Group

Put names here

NOTE: Unless stated otherwise, G is a (multiplicative) group with identity element e.

Problem (8.2.20).

- (a) Let N and K be subgroups of a group G. If N is normal in G, prove that $NK = \{nk \mid n \in N, k \in K\}$ is a subgroup of G. [Compare Exercise 26(b) of Section 7.3.]
 - (b) If both N and K are normal subgroups of G, prove that NK is normal.

Solution.

```
normality: \forall n \in N, g \in G \quad gng^{-1} \in N
To prove: e_G \in NK
Since N and K are subgroups of G, e_G \in N, and e_G \in K.
Since e_G \in N and e_G \in K, e_G e_G \in NK.
e_G \in NK
To prove: NK is closed under inverses
Let nk \in NK, where n \in N and k \in K.
N and K are both groups, so n^{-1} \in N and k^{-1} \in K.
Since n^{-1} \in N, N is a normal subgroup of G, and k^{-1} \in G, k^{-1}n^{-1}k \in N.
Since k^{-1}n^{-1}k \in N and k^{-1} \in K, k^{-1}n^{-1}kk^{-1} \in NK.
Equivalently, k^{-1}n^{-1} = (nk)^{-1} \in NK.
NK is closed under inverses.
To prove: NK is closed under multiplication
Let nk, mj \in NK, for some n, m \in N and k, j \in K.
Since N is normal, m \in N, and k \in K, kmk^{-1} \in K.
 n \in N kmk^{-1} \in N
                                                k, j \in K
     nkmk^{-1} \in N
                                                kj \in K
                          nkmk^{-1}kj \in NK
                            nkmj \in NK
                           (nk)(mj) \in NK
NK is closed under multiplication.
(b)
Let nk \in NK, for some n \in N and k \in K.
Let g be an arbitrary element of G.
```

Since N and K are normal, $gng^{-1} \in N$ and $gkg^{-1} \in K$.

By the definition of NK, $gnq^{-1}qkq^{-1} \in NK$.

By inverses, $gnkg^{-1} \in NK$. NK is normal.

Problem (8.3.9). Let $G = \mathbb{Z}_6 \times \mathbb{Z}_2$ and let N be the cyclic subgroup $\langle (1,1) \rangle$. Describe the quotient group G/N. [That is, what well-known group G/N isomorphic to?] Justify.

Solution. $|G/N| = [G:N] = \frac{|G|}{|N|} = \frac{12}{6} = 2.$

All groups of order 2 are isomorphic to \mathbb{Z}_2 .

G/N is isomorphic to \mathbb{Z}_2 .

Problem (8.3.25).

- (a) Find the order of $\frac{8}{9}$, $\frac{14}{5}$, and $\frac{48}{28}$ in the additive group \mathbb{Q}/\mathbb{Z} .
- (b) Prove that every element of \mathbb{Q}/\mathbb{Z} has finite order.
- (c) Prove that \mathbb{Q}/\mathbb{Z} contains elements of every possible finite order.

Solution.

The identity element is \mathbb{Z} .

(a)

$$\begin{vmatrix} \frac{8}{9} \\ \frac{9}{9} \end{vmatrix} = 9, \ |\frac{14}{5} = 5, \ |\frac{48}{28}| = |\frac{12}{7}| = 7.$$

(b)

Let $\frac{a}{b}$ be an arbitrary element of \mathbb{Q}/\mathbb{Z} , for some $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$.

 $b^{\underline{a}}_{\overline{b}} = a \in \mathbb{Z}$, so $|\frac{a}{b}| |b$.

 $\left|\frac{a}{b}\right| \mid b$, and b > 0, so $\left|\frac{a}{b}\right| \leq b$

The order of this element is less than a finite integer, and so must be finite.

Since this element was arbitrary, the order of any element is finite.

(c)

Let $b \in \mathbb{Z}^+$.

Consider the element $\frac{1}{h}$.

 $b^{\frac{1}{b}} = 1 \in \mathbb{Z}$, so the order of $\frac{1}{b}$ must divide b.

For every positive integer a such that a < b, $0 < a \frac{1}{b} < 1$.

This means that $a\frac{1}{b}$ is not an integer, so $\frac{1}{b}$ cannot be of order less than b.

The only integer which divides b and is not less than b is b.

 $\frac{1}{b}$ must be of order b.

Since b was an arbitrary element of \mathbb{Z}^+ , for every finite order, there exists an element with that order.

Problem (8.4.18). Find all homomorphic images of D_4 . In other words, if $f: D_4 \to H$ is a surjective homomorphism, then what are all the possibilities for H, up to isomorphism? [Hint: First Isomorphism Theorem.]

Solution. The First Isomorphism Theorem says that $D_4/\ker f \cong H$.

Since $D_4/\ker f \cong H$, $|D_4/\ker f| = |H|$

Theorem 8.13 says that, since D_4 is finite, $|D_4/\ker f| = |D_4|/|\ker f|$.

Since $|H| = |D_4|/|\ker f|$, $|H||\ker f| = |D_4$, so $|H| | |D_4|$.

Since $|D_4| = 8$, H can be of order 8, 4, 2, or 1.

Case |H| = 8: H and D_4 have the same number of elements, so any surjective homomorphism f is also an injection. Since f is a surjection, an injection, and a homomorphism, it is a bijective homomorphism, and therefore an isomorphism. In this case, $H \cong D_4$.

Case |H| = 4, $|\ker f| = 2$: There are two possibilities (\mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$). Setting the kernel of f to $\{r_0, r_2\}$ makes $D_4/\ker f$ isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

By theorem 8.16, the kernel of any f must be a normal subgroup of D_4 . If the kernel of f contains r_1 or r_3 , it can't even be a group since a group must contain both identity and inverses, and there's just not enough space in a group of order 2. If the kernel of f contains d, h, v, or t, then (by checking each case), it isn't a normal subgroup. This excludes \mathbb{Z}_4 as a possibility.

Case |H| = 2: There is only one possibility, \mathbb{Z}_2 .

Case |H| = 1: The only possibility is $\{e\}$.

Problem (8.4.26). Prove that $(\mathbb{Z} \times \mathbb{Z})/\langle (2,2) \rangle \cong \mathbb{Z} \times \mathbb{Z}_2$. [Hint: Show that $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_2$, given by $f((a,b)) = (a-b,[b]_2)$, is a surjective homomorphism.]

Solution.

Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}_2$ be defined as $f((a,b)) = (a-b,[b]_2)$.

To prove: f is surjective

Let (c,d) be an arbitrary element of $\mathbb{Z} \times \mathbb{Z}_2$.

Let b be 0 if d = [0], or 1 if d = [1].

Let a be c+d.

(a,b) is an element of $\mathbb{Z} \times \mathbb{Z}$, and f((a,b)) = (c,d).

Since (c, d) was arbitrary, every element in $\mathbb{Z} \times \mathbb{Z}_2$ has a preimage.

f is surjective.

To prove: f is a homomorphism.

Let (a, b) and (c, d) be arbitrary elements of $\mathbb{Z} \times \mathbb{Z}$.

To check homomorphism of addition:

$$f((a,b)) + f((c,d)) \mid f((a,b) + (c,d))$$

$$(a,[b]_2) + (c,[d]_2) \mid f((a+c,b+d))$$

$$(a+c,[b]_2 + [d]_2) \mid (a+c,[b+d]_2)$$
To check whether $[b]_2 + [d]_2 = [b+d]_2$, see 4 cases:
$$b \quad d \quad [b+d]_2 \quad [b]_2 + [d]_2$$

$$\text{even even} \quad 0 \quad 0$$

$$\text{even odd} \quad 1 \quad 1$$

$$\text{odd even} \quad 1 \quad 1$$

$$\text{odd odd} \quad 0 \quad 0$$
It is always that $[b]_2 + [d]_2 = [b+d]_2$.
Thus, $(a+c,[b]_2 + [d]_2) = (a+c,[b+d]_2)$, and $f((a,b) + (c,d)) = f((a,b)) + f((c,d))$.
$$f \text{ is homomorphic under addition.}$$

It is now established that f is a surjective homomorphism.

The kernel of f is all (a, b) for which a - b = 0 and $[b]_2 = 0$ - that is, a = b and b is even.

This is the subgroup of $\mathbb{Z} \times \mathbb{Z}$ which is generated by (2,2).

The first isomorphism states that, given groups G and H, and a surjective homomorphism $f: G \to H$, $G/\ker f \cong H$.

By the first isomorphism, with $G = \mathbb{Z} \times \mathbb{Z}$ and $H = \mathbb{Z} \times \mathbb{Z}_2$, $\mathbb{Z} \times \mathbb{Z}/\langle (2,2) \rangle \cong \mathbb{Z} \times \mathbb{Z}_2$.

Problem (3.3.16). Let T, R, and F be the four-element rings whose tables are given in Example 5 of Section 3.1 and in Exercises 2 and 3 of Section 3.1. Show that no two of these rings are isomorphic.

For convenience, here are their operation tables:

$$T = \{z, r, s, t\}$$

$$R = \{0, e, b, c\}$$

$$F = \{0, e, a, b\}$$

+	0	e	a	b	•	0	e	a	b
0	0	e	\overline{a}	b	0	0	0	0	0
e	e	0	b	a	e	0	e	a	b
a	a	b	0	e				b	
b	b	a	e	0	b	0	b	e	a

Solution. They are all isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$ under addition, so that cannot be used as a basis for finding differences.

 (T,\cdot) has an element of order 2 (specifically, r), but R and F do not. T cannot be isomorphic to R or F.

In R, there exist two nonzero elements which multiply to be the additive identity. This does not happen in F, so these cannot be isomorphic.

Problem (3.3.34). If $f: R \to S$ is an isomomorphism of rings, which of the following properties are preserved by this isomorphism? Justify your answers.

- (a) $a \in R$ is a zero divisor.
- (b) $a \in R$ is idempotent. (That is, $a^2 = a$.)
- (c) R is an integral domain.

Solution.

(a) Yes.

By theorem 3.10.1, $f(0_R) = 0_S$.

Lemma: if $b \in R \neq 0_R$, then $f(b) \neq 0_S$.

Since f is an isomorphism, f is a bijection, f is an injection, and every element of S has at most one preimage.

The preimage of 0_S is 0_R by theorem 3.10.1, so no element of R but 0_R can map to 0_S .

If $a \in R$ is a zero divisor, then

$$\exists b \in R \quad b \neq 0 \text{ and } (ab = 0_R) \text{ or } ba = 0_R)$$

 $\text{case } ab = 0_R \mid \text{case } ba = 0_R$
 $f(a)f(b) = 0_S \mid f(b)f(a) = 0_S$

In either case, $f(b) \neq 0_S$ by the lemma a few words ago, so f(a) is a zero divisor. (b) Yes.

$$a^{2} = a$$

$$aa = a$$

$$f(a) f(a) = f(a)$$

- (c) Yes.
 Integral domains
- are commutative
- have multiplicative identity (which is not equal to additive identity)
- $ab = 0 \Rightarrow (a = 0 \text{ or } b = 0)$

For commutativity, let f(a), f(b) be any elements of S (which is possible because f is an isomorphism):

$$ab = ba$$
$$f(a)f(b) = f(b)f(a)$$

For multiplicative identity, R has an element 1_R such that $\forall r \in R$ $r1_R = 1_R r = r$. If f is applied, this implies that S has an element $f(1_R)$ such that $\forall f(r) \in S$ $f(r)f(1_R) = f(1_R)f(r) = f(r)$.

Let $f(a), f(b) \in S$ such that cd = 0.

$$f(a)f(b) = 0_S$$

$$f(ab) = 0_S$$

$$ab = 0_R$$

$$a = 0_R \text{ or } b = 0_R$$

$$f(a) = 0_S \text{ or } f(b) = 0_S$$

If R has this property, then S has this property.

If R is an integral domain, then S is an integral domain.

Problem (3.3.38). Let F be a field and $f: F \to R$ a homomorphism of rings.

- (a) If there is a nonzero element c of F such that $f(c) = 0_R$, prove that f is the zero homorphism (that is, $f(x) = 0_R$ for every $x \in F$). [Hint: c^{-1} exists (Why?). If $x \in F$, consider $f(xcc^{-1})$.]
- (b) Prove that f is either injective or the zero homomorphism. [Hint: If f is not the zero homomorphism and f(a) = f(b), then $f(a b) = 0_R$.]

Solution.

(a)

Let c be a nonzero element of F (which exists since F is a field).

Since F is a field, $c \in F$, and c is nonzero, c^{-1} exists.

Let $x \in F$. Since f is a homomorphism, $f(xcc^{-1}) = f(x)f(c)f(c^{-1})$.

$$f(x) = f(xcc^{-1}) = f(x)f(c)f(c^{-1})$$

= $f(x)0_R f(c^{-1})$
= 0_R

Since x was an arbitrary element of F, this must be true for all elements of F.

Thus, f is the zero homomorphism.

(b)

Two cases:

Case f is injective: f is injective.

Case f is not injective:

Let $a, b \in F$ such that f(a) = f(b).

Since f is a homomorphism, $f(a - b) = 0_R$.

If $a - b = 0_F$, then a = b. This is a contradiction.

If $a - b \neq 0_F$, then, by part (a), f is the zero homomorphism.

Thus, if f is not injective, it is the zero homomorphism.

f is either injective or the zero homomorphism.

Problem (3.3.42). If $(m, n) \neq 1$, prove that \mathbb{Z}_{mn} is not isomorphic to $\mathbb{Z}_m \times \mathbb{Z}_n$.

Solution.