• Data Simulation

Paper

Data Simulation

Paper

Υ

• Y could be different between groups

FP TP

 \square Alg = 0

- Many algorithms can be combined, each one finding a part of the positives
- The validation indices of the individual algorithms can be non-differential

• ALG_U corresponds to Alg_1 U...U Alg_n U...U Alg_n

exposed non-exposed ALG_U

Y = 0

Y = 1

FI

TF

 \square Alg = 0

☑ FN

The proportion of false negative of ALG_U (so the sensitivity), is assumed to be the equal in both groups, and it must be due to 'MAJOR' cause:

- Non-sistematic errors
- Private medicine
- ...

All the others cases must detected in al least one algorithm.

Some events are certainly found in a patient's medical history (e.g. lung cancer), unless there are 'MAJOR' causes. We can think of an exposure positively correlated with the event (e.g. smoking), and a first algorithm A including all subjective diagnoses and a second algorithm B including all objective diagnoses.

Some events are certainly found in a patient's medical history (e.g. lung cancer), unless there are 'MAJOR' causes. We can think of an exposure positively correlated with the event (e.g. smoking), and a first algorithm A including all subjective diagnoses and a second algorithm B including all objective diagnoses.

events are higher among the exposed group

Some events are certainly found in a patient's medical history (e.g. lung cancer), unless there are 'MAJOR' causes. We can think of an exposure positively correlated with the event (e.g. smoking), and a first algorithm A including all subjective diagnoses and a second algorithm B including all objective diagnoses.

- events are higher among the exposed group
- a subjective diagnosis would result in A having a higher SE in the exposed group, but also a lower SP, due to the influence of exposure
- A may have a higher SP in the non-exposed group, but also a lower SE

Some events are certainly found in a patient's medical history (e.g. lung cancer), unless there are 'MAJOR' causes. We can think of an exposure positively correlated with the event (e.g. smoking), and a first algorithm A including all subjective diagnoses and a second algorithm B including all objective diagnoses.

- events are higher among the exposed group
- a subjective diagnosis would result in A having a higher SE in the exposed group, but also a lower SP, due to the influence of exposure
- A may have a higher SP in the non-exposed group, but also a lower SE
- the proportion of FP in AUB should not depend on the exposure group (MAJOR causes L E)

Venn diagram

For each Ω six different probabilities exist:

- P(A)
- P(B)
- P(AUB)
- P(A∩B)
- P(A|B)
- P(B|A)

Venn diagram

For each Ω six different probabilities exist:

- P(A)
- P(B)
- P(AUB)
- P(A∩B)
- P(A|B)
- P(B|A)

$$P(A \cap B) = P(A) * P(B|A)$$
 \rightarrow $P(A \cap B) = 0.7 * 0.9 = 0.63$
 $P(B) = P(A \cup B) - P(A) + P(A \cap B)$ \rightarrow $P(B) = 0.8 - 0.7 + 0.63 = 0.73$
 $P(A|B) = P(A \cap B) / P(B)$ \rightarrow $P(A|B) = 0.63 / 0.73 = 0.86$

Data Simulation

Paper

Data Simulation

Paper

	E. Schnitzer & R. Platt	Pregnancy Algorithm	Non-differentility test
Data	Defined cohort of pregnancies	 Cohort of pregnancies defined by multiple components 	Simulated data
Exposure	Gestational age-specific exposure		Binary exposure
Causal Inference	 Target trials (ITT): IPW G-computation TMLE 		Differential misclassificationRisk Ratio
Possible developement		Can missed pregnancies affect causal effects?	