470120

a N-oxide, an addition salt, a quaternary amine or a stereochemically isomeric form thereof, wherein $-b^1=b^2-C(R^{2a})=b^3-b^4=$ represents a bivalent radical of formula

 $-CH=CH-C(R^{2a})=CH-CH=(b-1);$

 $-N=CH-C(R^{20})=CH-CH=(b-2);$

 $-CH=N-C(R^{2a})=CH-CH=(b-3);$

 $-N=CH-C(R^{2a})=N-CH=(b-4);$

 $-N=CH-C(R^{2a})=CH-N=(b-5);$

 $-CH=N-C(R^{2n})=N-CH=(b-6);$

 $-N=N-C(R^{2*})=CH-CH=(b-7);$

q is 0, 1, 2; or where possible q is 3 or 4;

R¹ is hydrogen; aryl; formyl; C₁₋₆alkylcarbonyl; C₁₋₆alkyl; C₁₋₆alkyloxycarbonyl; C₁₋₆alkyl substituted with formyl, C₁₋₆alkylcarbonyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkylcarbonyloxy; C₁₋₆alkyloxyC₁₋₆alkylcarbonyl substituted with C₁₋₆alkyloxycarbonyl;

 R^{2a} is cyano, aminocarbonyl, mono- or di(methyl)aminocarbonyl, C_{1-6} alkyl substituted with cyano, aminocarbonyl or mono- or di(methyl)aminocarbonyl, C_{2-6} alkenyl substituted with cyano, or C_{2-6} alkynyl substituted with cyano;

each R^2 independently is hydroxy, halo, C_{1-6} alkyl optionally substituted with cyano or -C (=0) R^6 , C_{3-7} cycloalkyl, C_{2-6} alkenyl optionally substituted with one or more halogen atoms or cyano, C_{2-6} alkynyl optionally substituted with one or more halogen atoms or cyano, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or di $(C_{1-6}$ alkyl) amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, - S (=0) $_P$ R 6 , -NH-S (=0) $_P$ R 6 , -C (=0)R 6 , -NHC (=0)H, -C (=0)NHNH $_2$, -NHC (=0)R 6 , -C (=NH)R 6 or a radical of formula

wherein each A independently is N, CH or CR6;

B is NH, O, S or NR^6 ;

p is 1 or 2; and

R⁶ is methyl, amino, mono- or dimethylamino or polyhalomethyl;

- L is C_{1-10} alkyl, C_{2-10} alkenyl, C_{2-10} alkynyl, C_{3-7} cycloalkyl, whereby each of said aliphatic group may be substituted with one or two substituents independently selected from
 - * C₃₋₇cycloalkyl,
 - * indolyl or isoindolyl, each optionally substituted with one, two, three or four substituents each independently selected from halo, C₁₋₆alkyl, hydroxy, C₁₋₆alkyloxy, cyano, amino-carbonyl, nitro, amino, polyhalomethyl, polyhalomethyloxy and C₁₋₆alkylcarbonyl,
 - * phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R²; or
- L is $-X-R^3$ wherein
 - R^3 is phenyl, pyridinyl, pyrimidinyl, pyrazinyl or pyridazinyl, wherein each of said aromatic rings may optionally be substituted with one, two, three, four or five substituents each independently selected from the substituents defined in R^2 ; and
 - X is $-NR^1-$, -NH-NH-, -N=N-, -O-, -C(=O)-, -CHOH-, -S-, -S(=O)- or $-S(=O)_2-$;
- Q represents hydrogen, C_{1-6} alkyl, halo, polyhalo C_{1-6} alkyl or NR 4 R 5 ; and
- R^4 and R^5 are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkylcarbonyl,

C₁₋₁₂alkyloxycarbonyl, aryl, amino, mono- or

 $di(C_{1-12}alkyl)$ amino, mono- or $di(C_{1-12}alkyl)$ aminocarbonyl

FI

wherein each of the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl, C_{1-6} alkyloxycarbonyl, cyano, amino, imino, mono- or di(C_{1-6} alkyl) amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, $-S(=0)_pR^6$, $-NH-S(=0)_pR^6$, $-C(=0)R^6$, -NHC(=0)H, $-C(=0)NHNH_2$, $-NHC(=0)R^6$, $-C(=NH)R^6$, aryl and Het; or

- R^4 and R^5 taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C_{1-12} alkyl)amino C_{1-4} alkylidene;
- Y represents hydroxy, halo, C_{3-7} cycloalkyl, C_{2-6} alkenyl optionally substituted with one or more halogen atoms, C_{2-6} alkynyl optionally substituted with one or more halogen atoms, C_{1-6} alkyl substituted with cyano or $-C(=0)R^6$, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, carboxyl, cyano, nitro, amino, mono- or $di(C_{1-6}$ alkyl) amino, polyhalomethyl, polyhalomethyloxy, polyhalomethylthio, $-S(=0)_pR^6$, $-NH-S(=0)_pR^6$, $-C(=0)R^6$, -NHC(=0)H, $-C(=0)NHNH_2$, $-NHC(=0)R^6$, $-C(=NH)R^6$ or aryl;
- aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C₁₋₆alkyl, C₃₋₇cycloalkyl, C₁₋₆alkyloxy, cyano, nitro, polyhaloC₁₋₆alkyl and polyhaloC₁₋₆alkyloxy;
- Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridinyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy.