Uebungsblatt 03

Truong (Hoang Tung Truong, 3080216), Testfran (Minh Kien Nguyen, 3157116), Hamdash

Aufgabe 1

 $F \to G$ ist unerfüllbar genau dann wenn für alle passenden Belegungen α gilt $\hat{\alpha}(F \to G) = 0$ genau dann wenn für alle passenden Belegungen α gilt $\hat{\alpha}(\neg F \lor G) = 0$ genau dann wenn für alle passenden Belegungen α gilt $!\hat{\alpha}(F) \mid \hat{\alpha}(G) = 0$ genau dann wenn für alle passenden Belegungen α gilt $!\hat{\alpha}(F) = 0$ und $\hat{\alpha}(G) = 0$ genau dann wenn für alle passenden Belegungen α gilt $\hat{\alpha}(F) = 1$ und $\hat{\alpha}(G) = 0$ genau dann wenn für alle passenden Belegungen α gilt F ist allegemeingültig und F0 ist unerfüllbar

Aufgabe 2

1.
$$F_{[G_1/A_1,G_2/A_2]}$$

= $(A_1 \to A_2) \land A_3 \to (\neg (A_1 \lor A_2) \lor \neg (A_1 \to A_2))$
= $(A_1 \to A_2) \land A_3 \to ((\neg A_1 \land \neg A_2) \lor (A_1 \land \neg A_2))$
= $(A_1 \to A_2) \land A_3 \to \neg A_2$
= $\neg ((\neg A_1 \lor A_2) \land A_3) \lor \neg A_2$
= $(A_1 \land \neg A_2 \lor \neg A_3) \lor \neg A_2$
= $(A_1 \land \neg A_2) \lor \neg A_2 \lor \neg A_3$
= $\neg A_2 \lor \neg A_3$
2. $\alpha(G_1) = (A_1 \to A_2)_{[1/A_1,0/A_2]} = 1 \to 0 = 0$
 $\alpha(G_2) = (A_1 \lor A_2)_{[1/A_1,0/A_2]} = 1 \lor 0 = 1$
 $\alpha_{[A_1 \mapsto \alpha(G_1),A_2 \mapsto \alpha(G_2)]} = [A_1 \mapsto 0, A_2 \mapsto 1, A_3 \mapsto 1]$
3. $\alpha(F_{[G_1/A_1,G_2/A_2]})$
= $\alpha(\neg A_2 \lor \neg A_3)$
=! $\alpha(A_2) \mid !\alpha(A_3)$
=! $\alpha(A_2) \mid !\alpha(A_3)$
=! $\alpha(A_1 \mapsto \alpha(G_1))_{[A_2 \mapsto \alpha(G_2)]}$
= $\alpha(A_1 \mapsto \alpha(G_1))_{[A_2 \mapsto \alpha(G_2)]}$

Aufgabe 3

- 1. Definition von $F_{[G_1/A_1,G_2/A_2]}$ (Annahme: A_1,A_2 seien atomare Formeln)
- Ist F eine atomare Formel:

Falls
$$F = A_1 \text{ dann } F_{[G_1/A_1, G_2/A_2]} := G_1$$

Falls
$$F = A_2 \text{ dann } F_{[G_1/A_1, G_2/A_2]} := G_2$$

Falls
$$F \neq A_1$$
 und $F \neq A_2$ dann $F_{[G_1/A_1,G_2/A_2]} := F$

- Ist $F = \neg F_1$, dann $F_{[G_1/A_1,G_2/A_2]} := \neg F_{1[G_1/A_1,G_2/A_2]}$
- Ist $F=F_1\odot F_2$ eine zusammengesetzte Formel $(\odot\in\{\land,\lor,\to,\leftrightarrow,...\})$ dann

$$F_{[G_1/A_1,G_2/A_2]} = (F_1 \odot F_2)_{[G_1/A_1,G_2/A_2]}$$

$$:= F_{1[G_1/A_1,G_2/A_2]} \odot F_{2[G_1/A_1,G_2/A_2]}$$

- 2. Beweis (Annahme: A_1, A_2 seien atomare Formeln)
- Ist F eine atomare Formel

Falls
$$F = A_1$$
 dann

$$\alpha(F_{[G_1/A_1,G_2/A_2]}) = \alpha(G_1)$$

$$= \alpha_{[A_1 \mapsto \alpha(G_1)]}(A_1)$$

$$= \alpha_{[A_1 \mapsto \alpha(G_1), A_2 \mapsto \alpha(G_2)]}(F)$$

Falls
$$F = A_2$$
 dann

$$\alpha(F_{[G_1/A_1,G_2/A_2]}) = \alpha(G_2)$$

$$=\alpha_{[A_2\mapsto\alpha(G_2)]}(A_2)$$

$$= \alpha_{[A_1 \mapsto \alpha(G_1), A_2 \mapsto \alpha(G_2)]}(F)$$

Falls $F \neq A_1$ und $F \neq A_2$ dann

$$\alpha(F_{[G_1/A_1,G_2/A_2]}) = \alpha(F)$$

$$=\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto\alpha(G_2)]}(F)$$

• Ist $F = \neg F_1$, dann mit der Annahme (1): $\alpha(F_{1[G_1/A_1,G_2/A_2]}) = \alpha_{[A_1 \mapsto \alpha(G_1),A_2 \mapsto \alpha(G_2)]}(F_1)$ gilt:

$$\alpha(F_{[G_1/A_1,G_2/A_2]}) = !\alpha(F_{1[G_1/A_1,G_2/A_2]})$$

$$=!\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto(G_2)]}(F_1)$$

$$=\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto(G_2)]}(\neg F_1)$$

$$= \alpha_{[A_1 \mapsto \alpha(G_1), A_2 \mapsto (G_2)]}(F)$$

• Ist $F = F_1 \odot F_2$ eine zusammengesetzte Formeln $(\odot \in \{\land, \lor, \rightarrow, \leftrightarrow, ...\})$ und mit der Annahme $\alpha(F_{2[G_1/A_1, G_2/A_2]}) = \alpha_{[A_1 \mapsto \alpha(G_1), A_2 \mapsto \alpha(G_2)]}(F_2)$ und (1) gilt

$$\alpha(F_{[G_1/A_1,G_2/A_2]}) = \alpha(F_{1[G_1/A_1,G_2/A_2]} \odot F_{2[G_1/A_1,G_2/A_2]})$$

$$= \alpha(F_{1[G_1/A_1,G_2/A_2]}) \odot \alpha(F_{1[G_1/A_1,G_2/A_2]})$$

$$=\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto\alpha(G_2)]}(F_1)\odot\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto\alpha(G_2)]}(F_2)$$

$$=\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto\alpha(G_2)]}(F_1\odot F_2)=\alpha_{[A_1\mapsto\alpha(G_1),A_2\mapsto\alpha(G_2)]}(F)\ \Box$$

Aufgabe 4

a.
$$ite(x, y, z) = (x \land y) \lor (\neg x \land z)$$

•
$$\neg$$
 Junktor: $\neg x = ite(x, \bot, \top) = (x \land \bot) \lor (\neg x \land \top) = (\bot \lor \neg x) = \neg x$

•
$$\vee$$
 Junktor: $x \vee y = \top \wedge (x \vee y)$
= $(x \vee \neg x) \wedge (x \vee y)$
= $x \vee (\neg x \wedge y)$
= $(x \wedge \top) \vee (\neg x \wedge y)$
= $ite(x, \top, y)$

•
$$\rightarrow$$
 Junktor: $x \rightarrow y = \neg x \lor y$
 $= \top \land (y \lor \neg x)$
 $= (x \lor \neg x) \land (y \lor \neg x)$
 $= (x \land y) \lor \neg x$
 $= (x \land y) \lor (\neg x \land \top)$
 $= ite(x, y, \top)$

•
$$\leftrightarrow$$
 Junktor: $x \leftrightarrow y = (x \land y) \lor (\neg x \land \neg y)$
= $ite(x, y, ite(y, \bot, \top))$

b. Behauptung: \vee, \wedge sind zweistellige monotone boolesche Funktionen

Beweis (durch Wahrheitstabelle): $\forall a_1, a_2, b_1, b_2 \in \mathbb{B} : \forall i \in \{1, 2\} : a_i \leq b_i \Rightarrow f(a_1, a_2) \leq f(b_1, b_2)$, also

$\overline{a_1}$	a_2	b_1	b_2	$a_1 \vee a_2$	$b_1 \vee b_2$
0	0	0	0	0	0
0	0	1	0	0	1
1	0	1	0	1	1
0	0	0	1	0	1
0	0	1	1	0	1
1	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	1	1	1	1	1

Aus der Eigenschaft, dass die Komposition von monotonen Funktionen wieder eine monotone Funktionen ist, können wir schließen, dass die Komposition von $\vee, \wedge, \perp, \top$ wieder eine monotone Funktion ist (1)

Behauptung: ¬ ist keine monotone boolesche Funktion (2)

Beweis: (durch Wahrheitstabelle) Für \neg gilt $\forall a_1, b_1 \in \mathbb{B} : a_1 \leq b_1 \Rightarrow f(a_1) \geq f(a_2)$

a_1	b_1	$\neg a_1$	$\neg b_1$
0	0	1	1
0	1	1	0
1	1	0	0

(1) (2) \Rightarrow Aus $\{\vee,\wedge,\bot,\top\}$ können wir \neg nicht erreichen.

Also $\{\vee,\wedge,\perp,\top\}$ ist keine ausreichende Menge von Junktoren