

#### Reminders

Assignment #1 Marks Released (Avg: 96%)

Assignment #3 is live and is due on October 18th <a href="https://github.com/dilevin/CSC2549-a3-finite-elements-3d">https://github.com/dilevin/CSC2549-a3-finite-elements-3d</a>

Assignment #4 (Cloth Simulation) coming soon.

#### **Graphics Reading Group**

Seminar Room in BA5166 (Dynamic Graphics Project) Wednesdays 11am

$$N(\bar{x}) = (\lambda_{o}(\bar{x})T, \lambda_{1}(\bar{x})I, \lambda_{2}I, \lambda_{3}(x)I)$$
 $I \in \mathbb{R}^{3\times 3}$ , identity
 $N \in \mathbb{R}^{3\times 12}$ 
 $V(\bar{x}) = N(\bar{x})q$ ,  $q = \begin{pmatrix} x_{6} \\ \vdots \\ x_{3} \end{pmatrix}$ 
 $v(\bar{x}) = d_{x} = N(\bar{x})q$ 

## **Potential Energy**

Neohookean material model measures "strain energy density" as a function of the deformation gradient

Strain Energy Density is the strain energy per unit volume

We need to integrate to to get the actual potential energy

$$NH(F(X)) \rightarrow E \in \mathbb{R}$$
  
 $(Y(F(X)) dX = V = Potential energy)$   
Totraheden

### Quadrature



## Quadrature



#### Quadrature

QR 
$$F(\bar{x}) d\bar{x} = \sum_{i=0}^{n} F(\bar{x}_i) w_i$$

$$q vadratue point$$
QR  $F(\bar{x}_i) d\bar{x} = \sum_{i=0}^{n} F(\bar{x}_i) w_i$ 

$$q vadratue point$$

### **Potential Energy**

#### **Forces**

Forco= 
$$-\frac{2U}{2q} = -\frac{2\Psi(F(q))}{2q}$$
 vol (44)

Forces: 
$$\frac{2FT}{3q} \frac{3N}{3F}$$
 $F \in IR^{3\times 3}$ 
 $F = CF_{11} F_{12}F_{13} \cdots F_{31}F_{32}F_{3}$ 

#### **The Stiffness Matrix**

## **Equations of Motion for 3D Finite Elements**

## **Implicit Euler**

**Linearly Implicit Euler** 

Fully Implicit Euler

$$M\ddot{q} = F(qtH)$$
 $M\ddot{q}^{tH} = M\ddot{q}^{t} + \Delta t F(q^{t} + \Delta t \dot{q}^{tH}) = 0$ 

## **Backward Euler using Optimization**

$$\frac{q^{t+1} = \operatorname{arymin} \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)}{E(q^{t+1})}$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

$$= \frac{1}{2} \left( v - q^t \right)^T M \left( v - q^t \right) + V \left( q^{t+s+v} \right)$$

Δυ = argmin = Δυ HΔυ + Δυ g hessian gradient

$$\Delta v^{4} = -H'g$$
 (1)

 $\dot{q}_{(k)}^{t+1} = \dot{q}_{(k)}^{t+1} + \Delta V$  (2)

 $\dot{q}_{(k)}^{t+1} = \dot{q}_{(k)}^{t+1} + \Delta V$  (3)

$$J = M_{\frac{1}{2}} \frac{1}{2} \frac{1}$$

### **Newton's Method**



#### **Newton's Method**

# **Backtracking Line Search**



Sufficient decrease: P(qt+1 +dov) < F(qt+1) + B2bu

Newton's Method / Line Search

DU=-(-1-19 d using line search 9th = 9th LAV 9 (11) = 9 + 2 + q + (11)

# **Skinning Simulations**



Simulation Tetrahedral Mesh



Visualization Triangle Mesh

# **Skinning Simulations**

