Torre

Iniciante - Fácil

Nome do arquivo: torre.c, torre.cpp, torre.pas, torre.java, torre.js ou torre.py

No jogo de xadrez, a torre é uma peça que pode se mover para qualquer outra posição do tabuleiro na linha ou na coluna da posição que ela ocupa. O professor Paulo está tentando inventar um novo tipo de jogo de xadrez onde todas as peças são torres, o tabuleiro também é quadrado mas pode ter qualquer dimensão e cada posição do tabuleiro é anotada com um número inteiro positivo, como na figura ao lado.

	1	2	3	4	5	6
1	4	1	3	8	4	5
2	9	2	8	9	2	7
3	5	5	4	3	2	5
4	8	2	9	1 1	9	8
5	7	1	3	2	1	2
6	5	1	2	9	3	8

Ele definiu o **peso** de uma posição (i,j) como sendo a soma de todos os números que estejam na linha i com todos os números da coluna j, mas sem somar o número que está exatamente na posição (i,j). Quer dizer, se uma torre estiver na posição (i,j), o peso da posição é a soma de todas as posições que essa torre poderia atacar.

O professor Paulo está solicitando a sua ajuda para implementar um programa que determine qual é o peso máximo entre todas as posições do tabuleiro. No exemplo da figura acima, com um tabuleiro de dimensão seis (ou seja, seis linhas por seis colunas), o peso máximo é 67, referente à posição (4,4).

Entrada

A primeira linha da entrada contém um inteiro N, representando a dimensão do tabuleiro. Cada uma das N linhas seguintes contém N inteiros positivos X_i , definindo os números em cada posição do tabuleiro.

Saída

Seu programa deve produzir uma única linha, contendo um único inteiro, o peso máximo entre todas as posições do tabuleiro.

Restrições

- $\bullet \ 3 \le N \le 1000$
- $0 < X_i \le 100$

Informações sobre a pontuação

• Em um conjunto de casos de teste cuja soma é 60 pontos, $N \leq 300$.

Exemplos

Entrada	Saída
6	67
4 1 3 8 4 5	
9 2 8 9 2 7	
5 5 4 3 2 5	
8 2 9 1 9 8	
7 1 3 2 1 2	
5 1 2 9 3 8	

Entrada	Saída
3	20
5 1 1	
5 2 1	
8 5 5	