OUTPUT = Volume per Cycle x Cycles per Hour x Efficiency

OUTPUT = $Q_l = (q_h k_d) * (n_c) * (k_e) m^3$ or cu.yd/hour

 Q_1 = production of shovel in one hour in loose volume,

 q_h = bucket (dipper) size = heaped capacity of bucket (loose),

 k_d = dipper factor for shovel depending on the material handled,

 n_c = number of cycles in one hour,

If c_t is the cycle time of shovel in seconds then,

$$n_c = \frac{3600}{c_t}$$

angle of swing = α

$$Q_l = q_h k_d \frac{3600}{c_s} k_{\alpha d} k_e$$

EXAMPLE – OUTPUT

A subcontractor with an $1\frac{1}{4}$ cu.yd bucket capacity backhoe will excavate 11100 m³ (bm) earth. Following data is given for the excavation. Determine how many work-days it will take to finish the excavation if backhoe works 10 hrs/day and 50 min/hr.

$$q_h = bucket capacity = 1\frac{1}{4} cu.yd$$

Soil type = Average (Earth)

 α = angle of swing = 75°

d = depth of cut = 3.9 m

SOLUTION

$$q_h = 1.25 \text{ cu.yd x } 0.76 \text{ m}^3/\text{cu.yd} = 0.95 \text{ m}^3 \text{ (loose)}$$

dipper factor =
$$k_d = \frac{0.85+1.10}{2} = 0.975$$
 (Table 8.7)

$$c_s = 23 \ seconds$$

$$d_{\text{max}} = \frac{5.5 + 7.5}{2} = 6.5 \text{ m}$$
 From Table 8.9 $\frac{d}{d_{max}} = \frac{3.9}{6.5} \times 100 = 60\%$

$$\frac{d}{d_{max}} = \frac{3.9}{6.5} \times 100 = 60\%$$

$$k_{\alpha d} = \frac{1.16 + 1.05}{2} = 1.105$$

 $k_{\alpha d} = \frac{1.16 + 1.05}{2} = 1.105$ From Table 8.10 for depth ratio=60% and $\alpha = 75^{\circ}$

Then,
$$Q_1 = (0.95 \text{ x } 0.975) \text{ x } \frac{3600}{23} \text{ x } 1.105 \text{ x } \frac{50}{60} = 133.42 \text{ m}^3/\text{hr (loose)}$$

Output in a day = $133.42 \times 10 = 1334.2 \text{ m}^3/\text{day}$ (loose)

 k_s = swelling factor = 1.25 (Table 8.8)

$$k_s$$
 = swelling factor in bm = $\frac{1334.2}{1.25}$ = 1067.4 m³/day (bm)

Number of workdays needed = $\frac{11100}{1067.4}$ = 10.4 days TAKE 11 WORK-DAYS