

DIALOG(R)File 352:Derwent WPI

(c) 2004 Thomson Derwent. All rts. reserv.

015604877 **Image available**

WPI Acc No: 2003-667034/200363

XRAM Acc No: C03-182036

XRPX Acc No: N03-532309

**Light emitting device for digital still camera or mobile telephone, has
organic compound layer comprising light emitting and electron transport
layer, provided between anode and cathode**

Patent Assignee: SEMICONDUCTOR ENERGY LAB (SEME)

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No	Kind	Date	Applicat No	Kind	Date	Week
JP 2003168567	A	20030613	JP 2001367497	A	20011130	200363 B

Priority Applications (No Type Date): JP 2001367497 A 20011130

Patent Details:

Patent No	Kind	Lan Pg	Main IPC	Filing Notes
JP 2003168567	A		32 H05B-033/22	

Abstract (Basic): JP 2003168567 A

NOVELTY - An organic compound layer (103) between an anode (102) and a cathode (104) has a light emitting layer (112) and an electron transport layer (114) which are separated by a separating layer (113). The electron transport layer contacting the cathode contains a donor property molecule.

USE - Used for a digital still camera, notebook-type personal computer, mobile computer, portable image reproducing apparatus, goggle type display, video camera, mobile telephone, head mounting display, navigation system, sound reproducing apparatus e.g. car audio, stereo device, game machine, personal digital assistant (PDA), handheld game machine, digital book, image reproducing apparatus equipped with DVD, display device, TV or electric appliance.

ADVANTAGE - The characteristics of a light emitting device is improved without affecting the characteristics of thin film transistor,

by providing an organic compound layer comprising an electron transport layer between the anode and cathode.

DESCRIPTION OF DRAWING(S) - The figure shows a sectional view of the light emitting device.(Drawing includes non-English language text).

Anode (102)

Organic compound layer (103)

Cathode (104)

Light emitting layer (112)

Separately layer (113)

Electron transport layer (114)

pp; 32 DwgNo 1/16

Title Terms: LIGHT; EMIT; DEVICE; DIGITAL; STILL; CAMERA; MOBILE; TELEPHONE ; ORGANIC; COMPOUND; LAYER; COMPRISE; LIGHT; EMIT; ELECTRON; TRANSPORT;

LAYER; ANODE; CATHODE

Derwent Class: L03; P85; U14; W01; W04; X26

International Patent Class (Main): H05B-033/22

International Patent Class (Additional): G09F-009/30; H05B-033/14

File Segment: CPI; EPI; EngPI

DIALOG(R)File 347:JAPIO

(c) 2004 JPO & JAPIO. All rts. reserv.

07674705

LIGHT EMITTING DEVICE

PUB. NO.: 2003-168567 [JP 2003168567 A]

PUBLISHED: June 13, 2003 (20030613)

INVENTOR(s): NISHI TAKESHI

SEO TETSUSHI

APPLICANT(s): SEMICONDUCTOR ENERGY LAB CO LTD

APPL. NO.: 2001-367497 [JP 2001367497]

FILED: November 30, 2001 (20011130)

INTL CLASS: H05B-033/22; G09F-009/30; H05B-033/14

ABSTRACT

PROBLEM TO BE SOLVED: To provide a light emitting device of which, the injection characteristics of electron emitted from a negative electrode is improved as same as the case of using previously used materials like alkali metal or alkali earth metal, without influencing the characteristics of a TFT.

SOLUTION: As a donor level existing between respective lowest unoccupied molecular orbital (LUMO) levels can be formed between a negative electrode and an organic compound layer, the injection of electron from the negative electrode and the transmission of injected electron can be efficiently carried out by doping an organic compound functioning as an electron donor (hereinafter referred to as donor-natured molecule) in an organic compound layer contacting with the negative electrode. As excessive loss of energy accompanied by the movement of electron and transmutation of the organic compound itself do not cause any problem, an injection characteristics of electron is improved and reduction of driving voltage is realized regardless of the work function of the negative electrode material.

COPYRIGHT: (C)2003,JPO

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2003-168567

(P 2003-168567 A)

(43)公開日 平成15年6月13日(2003.6.13)

(51) Int.Cl.	識別記号	F I	マークト (参考)
H05B 33/22		H05B 33/22	B 3K007
G09F 9/30	338	G09F 9/30	338 5C094
	365		365 Z
H05B 33/14		H05B 33/14	A

審査請求 未請求 請求項の数 9 O L (全32頁)

(21)出願番号 特願2001-367497(P 2001-367497)

(22)出願日 平成13年11月30日(2001.11.30)

(71)出願人 000153878

株式会社半導体エネルギー研究所
神奈川県厚木市長谷398番地

(72)発明者 西 毅
神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究所内

(72)発明者 濑尾 哲史
神奈川県厚木市長谷398番地 株式会社半導体エネルギー研究所内

F ターム(参考) 3K007 AB11 DB03 GA00
5C094 AA21 BA03 BA27 CA19 DA15
EA04 EA07 HA08

(54)【発明の名称】発光装置

(57)【要約】

【課題】 TFTの特性に影響を与えることなく、また、これまで用いられてきたアルカリ金属やアルカリ土類金属といった材料を用いた場合のように陰極からの電子の注入性を向上させるような発光素子を提供する。

【解決手段】 陰極に接する有機化合物層に電子供与体として機能する有機化合物（以下、ドナー性分子と示す）をドーピングすることにより、陰極と有機化合物層の間にそれぞれの最低空分子軌道（LUMO : Lowest Unoccupied Molecular Orbital）準位の間のドナー準位を形成することができるので、陰極からの電子の注入、および注入された電子の伝達を効率良く行うことができる。また、電子の移動に伴うエネルギーの余分な損失や有機化合物層自体の変質等の問題もないことから陰極材料の仕事関数に拘わらず電子の注入性を向上させると共に駆動電圧の低下を実現することができる。

【特許請求の範囲】

【請求項1】陽極、陰極、及び有機化合物層を有する発光装置であって、前記陽極と前記陰極との間に前記有機化合物層を有し、前記有機化合物層は、発光層および電子伝達層を有し、前記発光層と前記電子伝達層との間は分離層を介して空間的に分離され、前記電子伝達層はドナー性分子を含み、かつ前記陰極と接して形成されることを特徴とする発光装置。

【請求項2】陽極、陰極、及び有機化合物層を有する発光装置であって、前記陽極と前記陰極との間に前記有機化合物層を有し、前記有機化合物層は、発光層および電子伝達層とを有し、

前記発光層と前記電子伝達層との間は分離層を介して空間的に分離され、

前記電子伝達層はドナー性分子および電子輸送性材料を含み、かつ前記陰極と接して形成されることを特徴とする発光装置。

【請求項3】絶縁表面上に設けられたTFTと、前記TFT上に形成された層間絶縁膜と、前記層間絶縁膜上に形成された第1の電極と、前記第1の電極の端部を覆って形成された絶縁層と、前記第1の電極上に形成された有機化合物層と、前記有機化合物層上に形成された第2の電極とを有する発光装置であって、前記TFTは、ソース領域およびドレイン領域を有し、前記第1の電極は、前記ソース領域または前記ドレイン領域のいずれか一方と電気的に接続され、前記有機化合物層は、発光層および電子伝達層を有し、かつ前記発光層と前記電子伝達層との間は分離層を介して空間的に分離され、前記電子伝達層はドナー性分子を含むことを特徴とする発光装置。

【請求項4】絶縁表面上に設けられたTFTと、前記TFT上に形成された層間絶縁膜と、前記層間絶縁膜上に形成された第1の電極と、前記第1の電極の端部を覆って形成された絶縁層と、前記第1の電極上に形成された有機化合物層と、前記有機化合物層上に形成された第2の電極とを有する発光装置であって、前記TFTは、ソース領域およびドレイン領域を有し、前記第1の電極は、前記ソース領域または前記ドレイン領域のいずれか一方と電気的に接続され、

前記有機化合物層は、発光層および電子伝達層を有し、かつ前記発光層と前記電子伝達層との間は分離層を介して空間的に分離され、

前記電子伝達層はドナー性分子および電子輸送性材料を含むことを特徴とする発光装置。

【請求項5】請求項3または請求項4において、

前記第1の電極は陽極であり、前記第2の電極は陰極であり、

前記電子伝達層は、前記第2の電極と接して形成されることを特徴とする発光装置。

【請求項6】請求項3または請求項4において、前記第1の電極は陰極であり、前記第2の電極は陽極であり、

前記電子伝達層は、前記第1の電極と接して形成されることを特徴とする発光装置。

10 【請求項7】請求項1乃至請求項6のいずれか一において、

前記有機化合物層は、正孔注入層、正孔輸送層、発光層、ブロッキング層、電子輸送層、および電子伝達層からなり、

前記発光層と前記電子伝達層との間に前記ブロッキング層、および前記電子輸送層を有することを特徴とする発光装置。

【請求項8】請求項1乃至請求項7のいずれか一において、

20 前記電子伝達層に3,3',5,5'-テトラメチルベンジンを含むことを特徴とする発光装置。

【請求項9】請求項1乃至請求項8のいずれか一において、

前記発光装置は、表示装置、デジタルスチルカメラ、ノート型パーソナルコンピュータ、モバイルコンピュータ、記録媒体を備えた携帯型の画像再生装置、ゴーグル型ディスプレイ、ビデオカメラ、携帯電話から選ばれた一種であることを特徴とする発光装置。

【発明の詳細な説明】

30 【0001】

【発明の属する技術分野】本発明は、一对の電極間に有機化合物を含む膜（以下、「有機化合物層」と記す）を設けた素子に電界を加えることで、蛍光又は磷光が得られる発光素子を用いた発光装置及びその作製方法に関する。なお、本明細書中における発光装置とは、画像表示デバイス、発光デバイス、もしくは光源を指す。また、発光素子にコネクター、例えばFPC (Flexible printed circuit) もしくはTAB (Tape Automated Bonding) テープもしくはTCP (Tape Carrier Package) が取り付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュール、または発光素子にCOG (Chip On Glass) 方式によりIC (集積回路) が直接実装されたモジュールも全て発光装置に含むものとする。

【0002】

【従来の技術】本発明でいう発光素子とは、電界を加えることにより発光する素子である。その発光機構は、電極間に有機化合物層を挟んで電圧を印加することにより、陰極から注入された電子および陽極から注入された正孔が有機化合物層中で再結合して、励起状態の分子

50 （以下、「分子励起子」と記す）を形成し、その分子励

起子が基底状態に戻る際にエネルギーを放出して発光すると言われている。

【0003】このような発光素子において、通常、有機化合物層は $1\mu m$ を下回るほどの薄膜で形成される。また、発光素子は、有機化合物層そのものが光を放出する自発光型の素子であるため、従来の液晶ディスプレイに用いられているようなバックライトも必要ない。したがって、発光素子は極めて薄型軽量に作製できることが大きな利点である。

【0004】また、例えば $100 \sim 200 nm$ 程度の有機化合物層において、キャリアを注入してから再結合に至るまでの時間は、有機化合物層のキャリア移動度を考えると数十ナノ秒程度であり、キャリアの再結合から発光までの過程を含めてもマイクロ秒以内のオーダーで発光に至る。したがって、非常に応答速度が速いことも特長の一つである。

【0005】こういった薄型軽量・高速応答性・直流低電圧駆動などの特性から、発光素子は次世代のフラットパネルディスプレイ素子として注目されている。また、自発光型であり視野角が広いことから、視認性も比較的良好であり、携帯機器の表示画面に用いる素子として有効と考えられている。

【0006】ところで、イーストマン・コダック社のTangらは、素子の特性向上のために、キャリア輸送性の異なる有機化合物を積層し、正孔と電子がそれぞれ陽極、陰極よりバランス良く注入される構造とし、しかも有機層の膜厚を $200 nm$ 以下とすることで、 $10 V$ 以下の印加電圧で $1000 cd/m^2$ と外部量子効率 1% の実用化に充分な高輝度、高効率を得ることに成功している（文献1：Appl.Phys.Lett., 51, 913(1987)）。なお、この高効率素子において、Tangらは基本的に絶縁体と見なされる有機化合物に対して、金属電極から電子を注入する際に問題となるエネルギー障壁を低下させるため、仕事関数の小さいMg（マグネシウム）を使用したが、Mgは酸化しやすく不安定であることと、有機表面への接着性に乏しいことから、比較的安定で、しかも有機表面への密着性に優れたAg（銀）と共に蒸着により合金化させたものを用いていた。

【0007】さらに、凸版印刷株式会社のグループ（文献2：第51回応用物理学会学術講演会、講演予稿集9 p-zc-15, p. 1127）は、Mgより更に仕事関数の小さいLi（リチウム）を用い、Al（アルミニウム）と合金化することにより安定化させ、陰極として用いることによりMg合金を用いた素子より低い駆動電圧と高い発光輝度を達成したことを報告している。

【0008】上記の合金電極を背景として、より安定な陰極の開発が望まれていたが、最近になって極薄膜の絶縁層（ $0.5 nm$ ）としてフッ化リチウム（LiF）等の陰極バッファー層を介在させることにより、アルミニウム陰極でもMg:Ag等の合金を用いて形成された陰

極と同等以上の発光特性が得られることが報告されている（文献3：L.S.Hung, C.W.Tang and M.G.Mason:Appl.Phys.Lett., 72, 1593(1998).）。

【0009】この陰極バッファー層を設けることによる特性向上の機構は、陰極バッファー層を形成するLiFが有機化合物層の電子輸送層を形成するAl_xAl_{1-x}F_yと接して形成されたときにAl_xAl_{1-x}F_yのエネルギー-bandを曲げ、電子注入障壁が低下するためであると考えられている。

【0010】その他にも、発光素子の陰極に接する有機化合物層に仕事関数が $4.2 eV$ 以上のアルカリ金属や、アルカリ土類金属、希土類金属を含む遷移金属のいずれか一つ以上からなる金属ドーピング層を形成することにより、陰極からの有機化合物層への電子注入障壁を小さくして、陰極からの電子の注入性を向上させるという技術も報告されている（特開平10-270171号公報）。

【0011】以上のようにして、陽極、陰極及び有機化合物層からなる発光素子において、電極からのキャリアの注入性を向上させる工夫をすることで、発光素子の素子特性の向上が図られている。

【0012】その他にも、発光素子の陽極と接する正孔輸送層に電子受容性の材料をドーピングすることにより、正孔の注入性の向上に伴うキャリア密度の増加と、導電性を増加させることができ、これにより低電圧の駆動が可能になるという報告がされている。（文献4：J.Blochwitz, M.Pfeiffer, T.Fritz, and K.Leo:Applied.Physics.Letters., 73, 6, 729(1998).）。

【0013】
【発明が解決しようとする課題】しかし、アクティブマトリクス型の発光装置において、有機化合物層と陰極との間に上述したような陰極バッファー層や金属ドーピング層を設けて、発光素子の素子特性向上を図ろうすると、陰極からの注入性が向上する一方で、陰極バッファー層や金属ドーピング層の一部に含まれるアルカリ金属およびアルカリ土類金属が拡散してドリフトするため、発光素子と接続されたTFTに影響を与え、その特性が低下するという問題が生じる。すなわち、発光素子としての特性が向上する一方で、TFT特性が低下するという問題が生じる。

【0014】また、電子供与性の材料をドーピングすることにより電子の注入性を向上させることができる一方で、ドナー（電子供与体）として機能する有機化合物は、電荷移動錯体を形成する可能性がある。そして、この電荷移動錯体が発光層との界面に存在する場合には、発光層において生じたキャリアの再結合によるエネルギーが、非発光性の電荷移動錯体に移動して、消光してしまうという問題が生じる。

【0015】そこで、本発明では、これまで用いられてきたアルカリ金属やアルカリ土類金属といったTFTの

特性に影響を与える材料を用いることなく陰極からの電子の注入性を向上させる一方で、発光層においてキャリアの再結合により生じるエネルギーが移動することによる発光素子の消光を防ぐ構造を有する発光素子を提供することを目的とする。

【0016】

【課題を解決するための手段】本発明は、上記課題を解決するためになされたものであり、陰極に接する有機化合物層に電子供与体として機能する有機化合物（以下、ドナー性分子と示す）をドーピングすることにより、陰極と有機化合物層の間にそれぞれの最低空分子軌道（LUMO: Lowest Unoccupied Molecular Orbital）準位の間に位置するドナー準位を形成することができるので、陰極からの電子の注入、および注入された電子の伝達を効率良く行うことができる。また、電子の移動に伴うエネルギーの余分な損失や有機化合物層自体の変質等の問題もないことから陰極材料の仕事関数に拘わらず電子の注入性を向上させると共に駆動電圧の低下を実現することができる。

【0017】さらに、これらのドナー性分子は拡散して、TFTの特性を低下させるという問題もないことから、アルカリ金属やアルカリ土類金属を用いた場合のようなデメリットを受けることなく発光素子の特性を向上させることができる。

【0018】そこで、本発明においては、有機化合物層の一部にドナー性分子を含む電子伝達層を形成する。なお、ここで形成される電子伝達層は、発光素子の陰極と接して形成されるため、陰極からの電子の注入性を向上させることができると共に、発光層との間に両者を分離するための層（以下、分離層と呼ぶ）を有して電子伝達層と発光層とが直接接しない構造を形成している。また、分離層として機能するものには、電子輸送性材料からなる電子輸送層や、ブロッキング性の材料からなるブロッキング層を用いることができる。

【0019】この構造は、ドナー性分子が電子伝達層で電荷移動錯体を形成した場合において、電荷移動錯体が発光層との界面に存在すると、発光層でキャリアの再結合により生じるエネルギーが非発光性の電荷移動錯体に移動し、消光してしまうという問題を防ぐことができる。

【0020】すなわち、本発明の発光素子は、陽極と陰極との間に有機化合物層が形成される発光素子であって、有機化合物層は、発光層と、ドナー性分子を含む電子伝達層を有し、前記発光層と前記電子伝達層との間に空間的に分離され、前記電子伝達層は、陰極と接して形成されることを特徴とする発光装置である。

【0021】本発明において開示する発明の構成は、陽極、陰極、及び有機化合物層を有する発光装置であって、前記陽極と前記陰極との間に前記有機化合物層を有し、前記有機化合物層は、発光層と、電子伝達層とを有

し、前記発光層と前記電子伝達層との間は分離層を介して空間的に分離され、前記電子伝達層は、前記陰極と接して形成されることを特徴とする発光装置である。

【0022】さらに、他の発明の構成は、絶縁表面上に設けられたTFTと、前記TFT上に形成された層間絶縁膜と、前記層間絶縁膜上に形成された第1の電極と、前記第1の電極の端部を覆って形成された絶縁層と、前記第1の電極上に形成された有機化合物層と、前記有機化合物層上に形成された第2の電極とを有する発光装置であって、前記TFTは、ソース領域およびドレイン領域を有し、前記第1の電極は、前記ソース領域または前記ドレイン領域のいずれか一方と電気的に接続され、前記有機化合物層は、発光層と、電子伝達層とを有し、前記発光層と前記電子伝達層との間は分離層を介して空間的に分離され、前記電子伝達層はドナー性分子および電子輸送性材料を含み、かつ前記陰極と接して形成されることを特徴とする発光装置である。

【0023】なお、上記構成において、第1の電極が陽極であり、第2の電極が陰極である場合には、電子伝達層は第2の電極と接して形成されるが、第1の電極が陰極であり、第2の電極が陽極で形成されている場合には、電子伝達層は第1の電極と接して形成される。

【0024】なお、上記各構成において、有機化合物層は、発光層と、電子伝達層とを有し、前記発光層と、前記電子伝達層との間にこれらを空間的に分離する分離層として、ブロッキング層、または電子輸送層を有し、前記電子伝達層は、ドナー性分子を含む有機化合物からなることを特徴とする。なお、分離層を設けることにより電子伝達層で生じた電荷移動錯体に、発光層でのキャリアの再結合によるエネルギーが移動するのを防ぐことができる。

【0025】なお、本発明の発光装置は、TFTと電気的に接続された発光素子とを有するアクティブマトリクス型の発光装置に適した構成であるが、パッシブマトリクス型の発光装置においても実施することが可能である。

【0026】尚、本発明の発光装置から得られる発光は、一重項励起状態又は三重項励起状態のいずれか一方、またはその両者による発光を含むものとする。

【0027】

【発明の実施の形態】【実施の形態1】本発明の発光装置の素子構造について、図1を用いて説明する。

【0028】図1において、陽極102上に有機化合物層103が形成され、有機化合物層103上に陰極104が形成されている。なお、陽極102から有機化合物層103に正孔が注入され、陰極104からは有機化合物層103に電子が注入される。そして、有機化合物層103において、正孔と電子が再結合することにより発光が得られる。

【0029】また、有機化合物層103は、発光層11

2、分離層113および電子伝達層114を少なくとも含み、キャリアに対する機能の異なる層のいずれか一つ、もしくは複数を組み合わせて積層することにより形成される。なお、具体的には、正孔注入層、および正孔輸送層等があり、分離層113としてブロッキング層、および電子輸送層などが形成される。なお、本実施の形態においては、有機化合物層103が正孔注入層111、発光層112、分離層113及び電子伝達層114からなる積層構造を有する場合について説明する。

【0030】なお、本発明において有機化合物層において生じた光は、陽極側から出射させても良いし、陰極側から出射させても良い。なお、陽極側から出射させる場合には、陽極を透光性の材料で形成することは必須であるが、陰極を遮光性の材料で形成することにより素子特性をより向上させることができる。また、陰極側から出射させる場合には、陰極を透光性の材料で形成し、陽極を遮光性の材料で形成することが好ましい。

【0031】陽極102を形成する材料としては、陽極からの正孔の注入性を妨げないために仕事関数が4.5eV以上の仕事関数の大きい材料を用いる。なお、陽極が透光性を有する場合と遮光性を有する場合とで適した材料が異なる。

【0032】陽極102を透光性の材料で形成する場合には、酸化インジウム・スズ(ITO)膜、酸化インジウムに2~20[%]の酸化亜鉛(ZnO)を混合した透明導電膜、IZO、およびIDIXO(I_nO_x-ZnO)といった透明導電膜を用いて形成することができる。

【0033】一方、陽極102を遮光性の材料で形成する場合には、元素周期律の第4族、第5族、又は第6族に属する金属元素の窒化物または炭化物である金属化合物を用いることができる。好ましくは、窒化チタン、窒化ジルコニウム、炭化チタン、炭化ジルコニウム、窒化タンタル、炭化タンタル、窒化モリブデン、炭化モリブデンを用いて形成することができる。

【0034】なお、これらの金属化合物は、仕事関数が4.7eV以上である。例えば、窒化チタン(TiN)は、仕事関数が4.7eVである。また、金属化合物は、オゾン雰囲気下における紫外線照射処理(UVオゾン処理)により、仕事関数をさらに大きくすることができる。

【0035】次に、有機化合物層103が形成される。なお、有機化合物層103を形成する材料としては、低分子系、高分子系、もしくは中分子系の公知の有機化合物を用いることができる。なお、ここでいう中分子系の有機化合物とは、昇華性を有さず、分子数が20以下、又は連鎖する分子の長さが10μm以下の材料のことをいう。

【0036】なお、本実施の形態により形成される発光素子の有機化合物層103には、以下に示すような有機

化合物を用いることができる。

【0037】有機化合物層103は、正孔輸送性材料からなる正孔輸送層111、発光性材料からなる発光層112、電子輸送性材料からなる分離層(電子輸送層)113、およびドナー性分子をその一部に含む電子伝達層114を積層することにより形成される。なお、本発明における有機化合物層の積層構造は、ここで示す構成に限られることはなく、その他にも正孔注入材料からなる正孔注入層や、正孔阻止性材料からなるブロッキング層(正孔阻止層)を含めた積層構造とすることも可能である。以下に好適な材料をそれぞれ列挙する。ただし、本発明の発光素子に用いる材料は、これらに限定されない。

【0038】正孔輸送層111を形成する正孔輸送材料としては、芳香族アミン系(すなわち、ベンゼン環-窒素の結合を有するもの)の化合物が好適である。広く用いられている材料として、例えば、先に述べたTPDの他、その誘導体である4,4'-ビス[N-(1-ナフチル)-N-フェニルアミノ]-ビフェニル(以下、「 α -NPD」と記す)や、4,4',4''-トリス(N,N-ジフェニルアミノ)-トリフェニルアミン(以下、「T DATA」と記す)、4,4',4''-トリス[N-(3-メチルフェニル)-N-フェニルアミノ]-トリフェニルアミン(以下、「MT DATA」と記す)などのスターバースト型芳香族アミン化合物が挙げられる。

【0039】発光層112を形成する発光材料としては、具体的には、トリス(8-キノリノラト)アルミニウム(以下、Alq₃と示す)、トリス(4-メチル-8-キノリノラト)アルミニウム(以下、Almq₃と示す)、ビス(10-ヒドロキシベンゾ[h]-キノリナト)ベリリウム(以下、BeBq₃と示す)、ビス(2-メチル-8-キノリノラト)-(4-ヒドロキシ-ビフェニリル)-アルミニウム(以下、BA1qと示す)、ビス[2-(2-ヒドロキシフェニル)-ベンゾオキソゾラト]亜鉛(以下、Zn(BOX)₂と示す)、ビス[2-(2-ヒドロキシフェニル)-ベンゾチアゾラト]亜鉛(以下、Zn(BTZ)₂と示す)などの金属錯体の他、各種蛍光色素が有効である。また、三重項発光材料も可能であり、白金ないしはイリジウムを中心金属とする錯体が主体である。三重項発光材料としては、トリス(2-フェニルビリジン)イリジウム(以下、Ir(ppy)₃と示す)、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン-白金(以下、PtOEPと示す)などが知られている。

【0040】分離層(電子輸送層)113を形成する電子輸送材料としては、金属錯体がよく用いられ、先に述べたAlq₃、Almq₃、BeBq₃などのキノリン骨格またはベンゾキノリン骨格を有する金属錯体や、混合

配位子錯体である BAlq などが好適である。また、Zn (BOX), Zn (BTZ), などのオキサゾール系、チアゾール系配位子を有する金属錯体もある。さらに、金属錯体以外にも、2-(4-ビフェニル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(以下、PBDと示す)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(以下、OXD-7と示す)などのオキサジアゾール誘導体、3-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニル)-1,2,4-トリアゾール(以下、TAZと示す)、3-(4-tert-ブチルフェニル)-4-(4-エチルフェニル)-5-(4-ビフェニル)-1,2,4-トリアゾール(以下、p-EtTAZと示す)

(D1)フルバレン型ドナー

などのトリアゾール誘導体、パソフェナントロリン(以下、BPhenと示す)、パソキュプロイン(以下、BCPと示す)などのフェナントロリン誘導体が電子輸送性を有する。

【0041】電子伝達層114の形成には、以下の構造式(D1)～(D7)で示される分子骨格を少なくとも一部に含むドナー性分子と電子輸送性材料を用いて形成される。なお、ドナー性分子は、注入された電子の輸送性の向上、および電子伝達層の導電性を向上させる点から全体の50%以上に含まれるように形成することが望ましい。

【0042】

【化1】

【0043】

【化2】

(D2)イオウ含有ヘテロ環式ドナー

テトラチオテトラセン(TTT) テトラセレナテトラセン(TSC)

テトラチオナフタレン

テトラチオベリレン

ビベンゾチオフェン(BBT)

テトラフェニルビチオピラリデン(BTP)

【化3】

[0044]

(D3)アミン型ドナー

【0045】

【化4】

(D4)金属錯体型型ドナー

フェロセン

フタロシアニン M(Pc)

[0046]

【化5】

ポルフィリン

(D5)シアニン色素ドナー

(Rは、水素原子またはアルキル基)

【0047】

【化6】

(D6) 硫素含有ヘテロ環式ドナー

(Etはエチル基、Rは水素原子またはアルキル基)

【0048】

(D7) ポリマー型ドナー

【化7】

【0049】その他、有機化合物層に正孔注入層を含める場合には、正孔注入層を形成する正孔注入材料としては、有機化合物であればポルフィリン系の化合物が有効であり、フタロシアニン（以下、H_i-Pcと示す）、銅フタロシアニン（以下、Cu-Pcと示す）などがある。導電性高分子化合物に化学ドーピングを施した材料もあり、ポリスチレンスルホン酸（以下、PSSと示す）をドープしたポリエチレンジオキシチオフェン（以下、PEDOTと示す）や、ポリアニリン、ポリビニルカルバゾール（以下、PVKと示す）などが挙げられる。

40 【0050】さらに有機化合物層にブロッキング層を含める場合には、ブロッキング層を形成する正孔阻止材料として、上で述べたBAIq、OXD-7、TAZ、p-EtTAZ、BPhen、BCPなどが、励起エネルギーレベルが高いため有効である。なお、ブロッキング層は、本発明において、分離層としても機能する。

【0051】次に、陰極104が形成される。陰極104を形成する材料としては、陰極104からの電子の注入性を向上させるために仕事関数が3.8eV以下の仕事関数の小さい材料を用いる。なお、陰極104が透光性を有する場合には、陰極214の可視光に対する透過

率は40%以上であることが好ましい。一方、陰極2104が遮光性を有する場合には、陰極を形成する膜に対する可視光の透過率が10%未満となるように形成する。例えばA1、Ti、W、等からなる単層膜や、仕事関数の小さい材料との積層膜により形成する。

【0052】以上により、陽極2102、有機化合物層203および陰極2104からなり、有機化合物層2103に電子伝達層2114を含む本発明の発光素子を形成することができる。

【0053】[実施の形態2] 本発明により形成される発光装置における発光素子の素子構造について図2を用いて説明する。なお、図2(A)は、発光装置の画素部の断面構造について示すものであり、図2(B)は、発光素子の素子構造について示したものである。具体的には、電流制御用TFTと電気的に接続された一方の電極に対し、有機化合物層を挟んで形成された他方の電極が透光性の材料からなる陰極である場合における上方出射型の素子構造について説明する。

【0054】図2(A)において、基板201上に薄膜トランジスタ(TFT)が形成されている。なお、ここでは、発光素子2115の第1の電極2110と電気的に接続され、発光素子2115に供給される電流を制御する機能を有する電流制御用TFT222と、電流制御用TFT222のゲート電極に印加されるビデオ信号を制御するためのスイッチング用TFT221を示す。

【0055】基板201としては、遮光性を有するシリコン基板を用いるが、ガラス基板、石英基板、樹脂基板、またはフレキシブルな基板材料(プラスチック)を用いても良い。また、各TFTの活性層は、少なくともチャネル形成領域202、ソース領域203、ドレイン領域204を備えている。

【0056】また、各TFTの活性層は、ゲート絶縁膜205で覆われ、ゲート絶縁膜205を介してチャネル形成領域202と重なるゲート電極206が形成されている。また、ゲート電極206を覆って層間絶縁膜208が設けられている。なお、層間絶縁膜208を形成する材料としては、酸化珪素、窒化珪素および窒化酸化珪素等の珪素を含む絶縁膜の他、ポリイミド、ポリアミド、アクリル(感光性アクリルを含む)、BCB(ベンゾシクロブテン)といった有機樹脂膜を用いることができる。

【0057】次に、層間絶縁膜208上に電流制御用TFT222のソース領域203と電気的に接続された配線207、およびドレイン領域204と電気的に接続された第1の電極211が設けられる。なお、本実施の形態においては、第1の電極211は陽極となるように形成されている。そこで、第1の電極(陽極)211は、陽極として機能する仕事関数の大きい材料を用いる。なお、第1の電極211を形成する材料としては、遮光性を有し、かつ反射率の高い導電性材料を用いることが望

ましい。また、電流制御用TFT222は、pチャネル型で形成されるのが望ましい。

【0058】また、第1の電極(陽極)211の端部、および配線207等を覆って絶縁層209が形成される。次に、第1の電極(陽極)211上に有機化合物層213が形成され、その上に、陰極となる第2の電極214を形成することにより発光素子215を完成させることができる。なお、本実施の形態では、第2の電極(陰極)214が光透過性を有するように形成する必要があることから、第2の電極(陰極)214は、光(可視光)を透過する程度の膜厚で形成される。

【0059】本実施の形態においては、第2の電極(陰極)214が光透過性を有することから有機化合物層213におけるキャリアの再結合により生じた光が、第2の電極(陰極)214側から出射される上面出射構造となる。

【0060】次に、図2(A)で説明した発光装置の発光素子における素子構造について図2(B)を用いて詳細に説明する。特に、有機化合物層に低分子系化合物を用いて形成した素子構造について説明する。

【0061】第1の電極(陽極)211は、遮光性の金属化合物膜により形成される。本実施の形態において、第1の電極(陽極)211は、図2(A)で示したように電流制御用TFT222と電気的に接続された電極であり、本実施の形態においては、TiNを用いてスパッタリング法により120nmの膜厚で形成される。なお、ここで用いるスパッタリング法としては、2極スパッタ法、イオンビームスパッタ法、または対向ターゲットスパッタ法等がある。

【0062】そして、第1の電極(陽極)211上に有機化合物層213が形成されるが、初めに陽極からの正孔の注入性を向上させる機能を有する正孔注入層231が形成される。本実施の形態では、正孔注入層231として、銅フタロシアニン(以下、Cu-Pcと示す)を30nmの膜厚で蒸着法により成膜する。

【0063】次に正孔輸送性に優れた材料により正孔輸送層232が形成される。ここでは4,4'-ビス[N-(1-ナフチル)-N-フェニル-アミノ]-ビフェニル(以下、 α -NPDと示す)を40nmの膜厚で蒸着法により成膜する。

【0064】次に発光層233が形成される。本実施の形態では、発光層233において、正孔と電子が再結合し、発光を生じる。なお、発光層233は、正孔輸送性のホスト材料として4,4'-ジカルバゾール-ビフェニル(以下、CBPと示す)を用い、発光性の有機化合物であるトリス(2-フェニルビリジン)イリジウム(以下、Ir(ppy)₃と示す)と共に共蒸着することにより30nmの膜厚で成膜する。

【0065】さらに、ブロッキング層としても機能する分離層II(234)を形成する。ブロッキング層とし

て、発光層233に注入された正孔が分離層I(235)を通り抜けて陰極に到達してしまうことにより再結合に関与しない無駄な電流が流れるのを防ぐだけでなく、発光層でのキャリアの再結合によるエネルギーが電子伝達層で生じた電荷移動錯体に移動するのを防ぐための層である。本実施の形態では分離層II(234)としてパソキュプロイン(以下、BCPと示す)を10nmの膜厚で蒸着法により成膜する。

【0066】そして、電子輸送層としても機能する分離層I(235)を形成する。なお、分離層I(235)は、電子受容性を有する電子輸送性の材料により形成される。本実施の形態では、分離層I(235)としてA1q₁を40nmの膜厚で蒸着法により成膜する。また、ここでは、分離層I(235)、および分離層II(234)が、発光層でのキャリアの再結合によるエネルギーの電荷移動錯体への移動を防ぐための層として機能する。

【0067】最後に電子伝達層236を形成することにより積層構造を有する有機化合物層213が完成する。なお、電子伝達層236は、構造式(D1)～(D7)で示される分子骨格を少なくとも一部に含むドナー性分子により形成される。本実施の形態では、電子伝達層236として、3,3',5,5'-Tetramethylbenzidine(以下、TMBと示す)とA1q₁を5nmの膜厚で共蒸着することにより成膜する。

【0068】次に陰極となる第2の電極214が形成される。本実施の形態において、第2の電極(陰極)214は有機化合物層213で生じた光を透過させる電極であるので透光性を有する材料で形成される。また、第2の電極(陰極)214は、電子を有機化合物層213に注入する電極であるため仕事関数の小さい材料で形成される必要がある。そこで、本実施の形態では、アルミニウム(A1)を20nmの膜厚で形成し、第2の電極(陰極)214を形成する。

【0069】なお、本実施の形態では、陰極における透過率を40%以上確保するために10～30nm程度の極薄膜で形成することとしたが、陰極としての機能を十分有し、かつ透過率を40%以上確保することが可能な材料であれば、必ずしも膜厚を薄くする必要はない。

【0070】さらに、本実施の形態の素子構造を有する発光装置において、有機化合物層に高分子系化合物と低分子系化合物とを用いて形成した場合の素子構造について図3を用いて説明する。

【0071】図2(B)と同様に第1の電極(陽極)301は、遮光性の金属化合物膜により形成される。しかし、第1の電極(陽極)301上に形成される有機化合物層302は、図2(B)とは異なり、正孔輸送層303、発光層304、分離層(電子輸送層)305、および電子伝達層306との積層構造からなる。なお、ここでは正孔輸送層303、および発光層304に高分子系

化合物を用いた場合について説明する。

【0072】正孔輸送層303は、PEDOT(poly(3,4-ethylene dioxythiophene))とポリスチレンスルホン酸(以下、PSSと示す)とを両方用いて形成する他、ポリアニリン(以下、PANIと示す)とショウノウスルホン酸(以下、CSAと示す)とを両方用いて形成することができる。なお、これらの材料は、水溶性であることから水を溶媒として作製した塗布液をスピンドル法により塗布して成膜する。なお、本実施の形態では正孔輸送層303としてPEDOT及びPSSからなる膜を30nmの膜厚で形成する。

【0073】また、発光層304には、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、もしくはポリフルオレン系の材料を用いることができる。

【0074】ポリパラフェニレンビニレン系の材料としては、オレンジ色の発光が得られるポリパラフェニレンビニレン(poly(p-phenylene vinylene))(以下、PPVと示す)、ポリ(2-(2'-エチル-ヘキソキシ)-5-メトキシ-1,4-フェニレンビニレン)(poly[2-(2'-ethylhexoxy)-5-methoxy-1,4-phenylene vinylene])(以下、MEH-PPVと示す)、緑色の発光が得られるポリ(2-(ジアルコキシフェニル)-1,4-フェニレンビニレン)(poly[2-(dialkoxyphenyl)-1,4-phenylene vinylene])(以下、ROPh-PPVと示す)等を用いることができる。

【0075】ポリパラフェニレン系の材料としては、青色発光が得られるポリ(2,5-ジアルコキシ-1,4-フェニレン)(poly(2,5-dialkoxy-1,4-phenylene))(以下、RO-PPPと示す)、ポリ(2,5-ジヘキソキシ-1,4-フェニレン)(poly(2,5-dihexoxy-1,4-phenylene))等を用いることができる。

【0076】また、ポリチオフェン系の材料としては、赤色発光が得られるポリ(3-アルキルチオフェン)(poly(3-alkylthiophene))(以下、PATと示す)、ポリ(3-ヘキシルチオフェン)(poly(3-hexylthiophene))(以下、PHTと示す)、ポリ(3-シクロヘキシルチオフェン)(poly(3-cyclohexylthiophene))(以下、PCHTと示す)、ポリ(3-シクロヘキシル-4-メチルチオフェン)(poly(3-cyclohexyl-4-methylthiophene))(以下、PCHMTと示す)、ポリ(3,4-ジシクロヘキシルチオフェン)(poly(3,4-dicyclohexylthiophene))(以下、PDCHTと示す)、ポリ[3-(4-オクチルフェニル)-チオフェン](poly[3-(4-octylphenyl)-thiophene])(以下、POPTと示す)、ポリ[3-(4-オクチルフェニル)-2,2ビチオフェン](poly[3-(4-octylphenyl)-2,2-bithiophene])(以下、PTOPTと示す)等を用いることができる。

【0077】さらに、ポリフルオレン系の材料としては、青色発光が得られるポリ(9,9-ジアルキルフル

オレン) (poly(9,9-dialkylfluorene) (以下、PDAFと示す)、ポリ(9,9-ジオクチルフルオレン) (poly(9,9-dioctylfluorene) (以下、PDOFと示す) 等を用いることができる。

【0078】なお、これらの材料は、有機溶媒に溶解させた溶液を塗布法により塗布して形成する。なお、ここで用いる有機溶媒としては、トルエン、ベンゼン、クロロベンゼン、ジクロロベンゼン、クロロホルム、テトラリン、キシレン、ジクロロメタン、シクロヘキサン、NMP (N-メチル-2-ピロリドン)、ジメチルスルホキシド、シクロヘキサン、ジオキサン、THF (テトラヒドロフラン) 等である。

【0079】なお、本実施の形態では、発光層304としてPPVをトルエンに溶解させて作製した塗布液をスピニコート法により塗布して、80nmの膜厚に形成する。

【0080】次に、発光層304上に分離層(電子輸送層)305を形成する。なお、ここでは分離層305を形成する材料として低分子系化合物であるA1q₁を用いて蒸着法により40nmの膜厚で形成する。

【0081】次に電子伝達層306を形成することにより積層構造を有する有機化合物層302が完成する。なお、ここでも図2(B)と同様に電子伝達層306としてTMBとA1q₁とを5nmの膜厚で共蒸着することにより形成する。

【0082】最後に第2の電極(陰極)307が形成され、発光素子が完成する。なお、ここで形成される第2の電極(陰極)307は、図2(B)で説明した場合と同様に20nmのA1の積層により形成される。

【0083】【実施の形態3】本実施の形態では、実施の形態2で示した発光装置とは発光素子の素子構造が異なるものについて図4を用いて説明する。なお、図4

(A)は発光装置の画素部の断面構造であり、図4(B)は、発光素子の素子構造について示したものである。具体的には、電流制御用TFTと電気的に接続された一方の電極に対し、有機化合物層を挟んで形成された他方の電極が透光性の材料からなる陽極である場合における上方出射型の素子構造について説明する。

【0084】なお、本実施の形態における発光装置も実施の形態2と同様に電流制御用TFT422及びスイッチング用TFT421を基板401上に有しているが、本実施の形態の場合には電流制御用TFT422はnチャネル型TFTで形成されるのが望ましい。

【0085】電流制御用TFT422及びスイッチング用TFT421を覆って形成された層間絶縁膜408上には、電流制御用TFT422のソース領域403と電気的に接続された配線407、およびドレイン領域404と電気的に接続された第1の電極411が設けられている。なお、本実施の形態においては、第1の電極411は陰極となるように形成されている。そこで、第1の

電極(陰極)411は、陰極として機能する仕事関数の小さい材料を用いる。なお、第1の電極(陰極)411を形成する材料としては、遮光性を有し、かつ反射率の高い導電性材料を用いることが望ましい。

【0086】また、第1の電極(陰極)411上に有機化合物層413が形成され、その上に、陽極となる第2の電極414を形成することにより発光素子415を完成させることができる。なお、本実施の形態では、第2の電極(陽極)414が光透過性を有するように形成する必要があることから、第2の電極(陽極)414は、光(可視光)を透過する透明導電膜で形成される。

【0087】本実施の形態においては、第2の電極(陽極)414に透明導電膜を用いることから有機化合物層413におけるキャリアの再結合により生じた光が、第2の電極(陽極)414側から出射される上面出射構造となる。なお、本実施の形態においては、第1の電極(陰極)411を遮光性の材料で形成することが望ましい。

【0088】次に、図4(A)で説明した発光装置の発光素子における素子構造について図4(B)を用いて詳細に説明する。特に、有機化合物層に低分子系化合物を用いて形成した素子構造について説明する。

【0089】第1の電極(陰極)411は、遮光性の導電膜により形成される。本実施の形態において、第1の電極(陰極)411は、図4(A)で示したように電流制御用TFT422と電気的に接続された電極であり、本実施の形態においては110nmの膜厚で形成されたA1により形成される。なお、ここでの成膜には蒸着法を用いる。

【0090】そして、第1の電極(陰極)411上に有機化合物層413が形成されるが、初めに電子伝達層431が形成される。なお、電子伝達層431は、構造式(D1)～(D7)で示される分子骨格を少なくとも一部に含むドナー性分子を含み形成される。本実施の形態では、電子伝達層431としてTMBとA1q₁とを5nmの膜厚で共蒸着することにより成膜する。

【0091】次に、電子輸送層としても機能する分離層I(432)が形成される。すなわち、分離層I(432)は、電子受容性を有する電子輸送性の材料により形成される。本実施の形態では、電子輸送層432としてA1q₁を40nmの膜厚で蒸着法により成膜する。

【0092】次に、ブロッキング層としても機能する分離層II(433)を形成する。ブロッキング層として、発光層434に注入された正孔が分離層I(432)を通り抜けて第1の電極(陰極)411に到達してしまうことにより再結合に関与しない無駄な電流が流れるのを防ぐだけでなく、発光層でのキャリアの再結合によるエネルギーが電子伝達層で生じた電荷移動錯体に移動するのを防ぐための層である。本実施の形態では分離層II(433)としてBCPを10nmの膜厚で蒸着法によ

り成膜する。

【0093】次に発光層434が形成される。本実施の形態では、発光層434において、正孔と電子が再結合し、発光を生じる。なお、発光層434は、正孔輸送性のホスト材料としてCBPを用い、発光性の有機化合物であるIr(ppy),と共に蒸着することにより30nmの膜厚で成膜する。

【0094】次に正孔輸送性に優れた材料により正孔輸送層435が形成される。ここではα-NPDを40nmの膜厚で蒸着法により成膜する。

【0095】最後に正孔注入層436を形成することにより積層構造を有する有機化合物層413が完成する。なお、正孔注入層436は、陽極からの正孔の注入性を向上させる機能を有する。本実施の形態においては、正孔注入層436として、Cu-Pcを30nmの膜厚で成膜して形成する。なお、蒸着法を用いて形成する。

【0096】次に陽極となる第2の電極414が形成される。本実施の形態において、第2の電極(陽極)414は有機化合物層413で生じた光を透過させる電極であるので透光性を有する材料で形成される。また、第2の電極(陽極)414は、正孔を有機化合物層413に注入する電極であるため仕事関数の大きい材料で形成する必要がある。なお、本実施の形態では、第2の電極(陽極)414を形成する材料として、ITO膜や酸化インジウムに2~20[%]の酸化亜鉛(ZnO)を混合した透明導電膜をスパッタリング法により100nmの膜厚に成膜して用いる。なお、仕事関数の大きい透光性の導電膜であれば、公知の他の材料(IZO、IDIXO等)を用いて第2の電極(陽極)414を形成することもできる。

【0097】さらに、本実施の形態の素子構造を有する発光装置において、有機化合物層に高分子系化合物と低分子系化合物とを用いて形成した場合の素子構造について図5を用いて説明する。

【0098】図4(B)と同様に第1の電極(陰極)501は、遮光性の導電膜により形成される。しかし、第1の電極(陰極)501上に形成される有機化合物層502は、図4(B)とは異なり、電子伝達層503、電子輸送層504、発光層505、および正孔輸送層506との積層構造からなる。なお、ここでは発光層505、および正孔輸送層506に高分子系化合物を用いた場合について説明する。

【0099】第1の電極(陰極)501に電子伝達層503が形成される。ここでは、図4(B)において説明したのと同様に電子伝達層503としてTMBとAlq₃とを5nmの膜厚で共蒸着することにより成膜する。

【0100】次に、電子伝達層503の上に分離層(電子輸送層)504を形成する。なお、ここでは分離層(電子輸送層)504を形成する材料として低分子系化合物であるAlq₃を用いて蒸着法により40nmの膜

厚で形成する。

【0101】次に、発光層505としてPPVをトルエンに溶解させて作製した塗布液をスピンドルコート法により塗布して、80nmの膜厚に形成する。

【0102】次に正孔輸送層506を形成することにより積層構造を有する有機化合物層502が完成する。なお、本実施の形態では、PEDOTとPSSとを水に溶解させて作製した塗布液をスピンドルコート法により塗布して成膜する。なお、本実施の形態では正孔輸送層506を30nmの膜厚で形成する。

【0103】最後に第2の電極(陽極)507が形成され、発光素子が完成する。なお、ここで形成される第2の電極(陽極)507は、図4(B)で示した場合と同様に酸化インジウム・スズ(ITO)膜や酸化インジウムに2~20[%]の酸化亜鉛(ZnO)を混合した透明導電膜をスパッタリング法により成膜して形成する。

【0104】【実施の形態4】本実施の形態では、実施の形態2または実施の形態3で示した発光装置とは発光素子の素子構造が異なるものについて図6を用いて説明する。なお、図6(A)は発光装置の画素部の断面構造であり、図6(B)は、発光素子の素子構造について示したものである。具体的には、電流制御用TFTと電気的に接続された電極が透光性の材料からなる陽極である場合における下方出射型の素子構造について説明する。

【0105】なお、本実施の形態における発光装置も実施の形態2及び実施の形態3と同様に電流制御用TFT622及びスイッチング用TFT621を基板601上有しているが、本実施の形態の場合には電流制御用TFT622はpチャネル型TFTで形成されるのが望ましい。

【0106】電流制御用TFT622及びスイッチング用TFT621を覆って形成された層間絶縁膜608上には、電流制御用TFT622のソース領域603と電気的に接続された配線607、およびドレイン領域604と電気的に接続された第1の電極611が設けられている。なお、本実施の形態においては、第1の電極611は陽極となるように形成されている。そこで、第1の電極(陽極)611は、陽極として機能する仕事関数の大きい材料を用いる。なお、第1の電極(陽極)611を形成する材料としては、透光性を有する導電性材料を用いることが望ましい。

【0107】また、基板601としては、透光性を有する基板としてガラス基板を用いるが、石英基板を用いても良い。

【0108】また、第1の電極(陽極)611上に有機化合物層613が形成され、その上に、陰極となる第2の電極614を形成することにより発光素子615を完成させることができる。なお、本実施の形態では、第1の電極(陽極)611が光透過性を有するように形成する必要があることから、第1の電極(陽極)611は、

光(可視光)を透過する透明導電膜で形成される。なお、第2の電極(陰極)614は、遮光性の材料により形成されることが望ましい。

【0109】本実施の形態においては、第1の電極(陽極)611に透明導電膜を用いることから有機化合物層613におけるキャリアの再結合により生じた光が、第1の電極(陽極)611側から出射される下面出射構造となる。

【0110】次に、図6(A)で説明した発光装置の発光素子における素子構造について図6(B)を用いて詳細に説明する。特に、有機化合物層に低分子系化合物を用いて形成した素子構造について説明する。

【0111】第1の電極(陽極)611は、透光性の透明導電膜により形成される。本実施の形態において、第1の電極(陽極)611は、図6(A)で示したように電流制御用TFT622と電気的に接続された電極であり、本実施の形態では、第1の電極(陽極)611を形成する材料として、酸化インジウム・スズ(ITO)膜や酸化インジウムに2~20[%]の酸化亜鉛(ZnO)を混合した透明導電膜を用い、スパッタリング法により100nmの膜厚で形成される。

【0112】そして、第1の電極(陽極)611上有機化合物層613が形成されるが、初めに陽極からの正孔の注入性を向上させる機能を有する正孔注入層631が形成される。本実施の形態では、正孔注入層631として、Cu-Pcを30nmの膜厚で蒸着法により成膜する。

【0113】次に正孔輸送性に優れた材料により正孔輸送層632が形成される。ここでは α -NPDを40nmの膜厚で蒸着法により成膜する。

【0114】次に発光層633が形成される。本実施の形態では、発光層633において、正孔と電子が再結合し、発光を生じる。なお、発光層633は、正孔輸送性のホスト材料としてCBPを用い、発光性の有機化合物であるIr(ppy)とと共に共蒸着することにより30nmの膜厚で成膜する。

【0115】さらに、ブロッキング層としても機能する分離層I(634)を形成する。ブロッキング層として、発光層633に注入された正孔が分離層II(635)を通り抜けて陰極に到達してしまうことにより再結合に関与しない無駄な電流が流れるのを防ぐだけでなく、発光層でのキャリアの再結合によるエネルギーが電子伝達層で生じた電荷移動錯体に移動するのを防ぐための層である。本実施の形態では分離層I(634)としてBCPを10nmの膜厚で蒸着法により成膜する。

【0116】そして、電子輸送層としても機能する分離層II(635)を形成する。なお、分離層II(635)は、電子受容性を有する電子輸送性の材料により形成される。本実施の形態では、分離層II(635)としてAlq₃を40nmの膜厚で蒸着法により成膜する。ま

た、ここでは、分離層I(634)、および分離層II(635)が、発光層でのキャリアの再結合によるエネルギーの電荷移動錯体への移動を防ぐための層として機能する。

【0117】最後に電子伝達層636を形成することにより積層構造を有する有機化合物層613が完成する。なお、電子伝達層636は、構造式(D1)~(D7)で示される分子骨格を少なくとも一部に含むドナー性分子により形成される。本実施の形態では、電子伝達層636としてTMBとAlq₃を5nmの膜厚で共蒸着することにより成膜する。

【0118】次に陰極となる第2の電極614が形成される。本発明において、第2の電極(陰極)614は、電子を有機化合物層613に注入する電極であるため仕事関数の小さい材料で形成される必要がある。そこで、本実施の形態では110nmの膜厚で形成されたAlからなる第2の電極(陰極)614を形成する。なお、ここでの成膜には蒸着法を用いる。

【0119】さらに、本実施の形態の素子構造を有する発光装置において、有機化合物層に高分子系化合物と低分子系化合物とを用いて形成した場合の素子構造について図7を用いて説明する。

【0120】図6(B)と同様に第1の電極(陽極)701は、透光性の透明導電膜により形成される。しかし、第1の電極(陽極)701上に形成される有機化合物層702は、正孔輸送層703、発光層704、分離層(電子輸送層)705、および電子伝達層706との積層構造からなる。なお、ここでは正孔輸送層703、および発光層704に高分子系化合物を用いた場合について説明する。

【0121】第1の電極(陽極)701上に正孔輸送層703が形成される。ここでは、正孔輸送層703としてPEDOTとPSSとを水に溶解させて作製した塗布液をスピンドル法により塗布して成膜する。なお、本実施の形態では正孔輸送層703を30nmの膜厚で形成する。

【0122】次に、正孔輸送層703の上に発光層704を形成する。なお、ここでは発光層704としてPATをトルエンに溶解させて作製した塗布液をスピンドル法により塗布して、80nmの膜厚に形成する。

【0123】次に、発光層704の上に分離層(電子輸送層)705を形成する。なお、ここでは分離層705を形成する材料として低分子系化合物であるAlq₃を用いて蒸着法により40nmの膜厚で形成する。

【0124】次に電子伝達層706を形成が形成される。ここでは、図6(B)において説明したのと同様に電子伝達層706としてTMBとAlq₃とを5nmの膜厚で共蒸着することにより形成する。

【0125】最後に第2の電極(陰極)707が形成され、発光素子が完成する。なお、ここで形成される第2

の電極（陰極）707は、図6（B）で示したのと同様に110nmの膜厚で形成されたAlにより形成される。

【0126】 [実施の形態5] 本実施の形態では、同一基板上に画素部と、画素部の周辺に設ける駆動回路のTFT (nチャネル型TFT及びpチャネル型TFT) を同時に作製し、さらに、画素部にはTFTと電気的に接続された発光素子を形成して、素子基板を作製する方法について図8～図11を用いて説明する。なお、本実施の形態では、実施の形態2で示した素子構造を有する発光素子を形成する。

【0·127】まず、基板600上に下地絶縁膜601を形成し、結晶構造を有する第1の半導体膜を得た後、所望の形状にエッチング処理して島状に分離された半導体層602～605を形成する。

〔0128〕基板600としては、ガラス基板（#1737）を用い、下地絶縁膜601としては、プラズマCVD法で成膜温度400℃、原料ガスSiH₄、NH₃、N₂Oから作製される酸化窒化シリコン膜601a（組成比Si=32%、O=27%、N=24%、H=17%）を50nm（好ましくは10~200nm）形成する。次いで、表面をオゾン水で洗浄した後、表面の酸化膜を希フッ酸（1/100希釈）で除去する。次いでプラズマCVD法で成膜温度400℃、原料ガスSiH₄、N₂Oから作製される酸化窒化シリコン膜601b（組成比Si=32%、O=59%、N=7%、H=2%）を100nm（好ましくは50~200nm）の厚さに積層形成し、さらに大気解放せずにプラズマCVD法で成膜温度300℃、成膜ガスSiH₄で非晶質構造を有する半導体膜（ここではアモルファスシリコン膜）を54nmの厚さ（好ましくは25~80nm）で形成する。

【0129】本実施の形態では下地膜601を2層構造として示したが、前記絶縁膜の単層膜または2層以上積層させた構造として形成しても良い。また、半導体膜の材料に限定はないが、好ましくはシリコンまたはシリコングルマニウム(Si,Ge,..(X=0.0001~0.02))合金などを用い、公知の手段(スパッタ法、LPCVD法、またはプラズマCVD法等)により形成すればよい。また、プラズマCVD装置は、枚葉式の装置でもよいし、バッチ式の装置でもよい。また、同一の成膜室で大気に触れることなく下地絶縁膜と半導体膜とを連続成膜してもよい。

〔0130〕次いで、非晶質構造を有する半導体膜の表面を洗浄した後、オゾン水で表面に約2 nmの極薄い酸化膜を形成する。次いで、TFTのしきい値を制御するために微量な不純物元素（ボロンまたはリン）のドーピングを行う。ここでは、ジボラン（B₂H₆）を質量分離しないでプラズマ励起したイオンドープ法を用い、ドーピング条件を加速電圧15 kV、ジボランを水素で1%に希釈したガス流量30 sccm、ドーズ量 2×10^{12}

/cm²で非晶質シリコン膜にボロンを添加した

【0131】次いで、重量換算で10 ppmのニッケルを含む酢酸ニッケル塩溶液をスピナーで塗布する。塗布に代えてスパッタ法でニッケル元素を全面に散布する方法を用いてもよい。

【0132】次いで、加熱処理を行い結晶化させて結晶構造を有する半導体膜を形成する。この加熱処理は、電気炉の熱処理または強光の照射を用いればよい。電気炉の熱処理で行う場合は、500℃～650℃で4～24

10 時間で行えばよい。ここでは脱水素化のための熱処理（500℃、1時間）の後、結晶化のための熱処理（50℃、4時間）を行って結晶構造を有するシリコン膜を得る。なお、ここでは炉を用いた熱処理を用いて結晶化を行ったが、短時間での結晶化が可能なランプアーナー装置で結晶化を行ってもよい。なお、ここではシリコンの結晶化を助長する金属元素としてニッケルを用いた結晶化技術を用いたが、他の公知の結晶化技術、例えば固相成長法やレーザー結晶化法を用いてもよい。

【0133】次いで、結晶構造を有するシリコン膜表面の酸化膜を希フッ酸等で除去した後、結晶化率を高め、結晶粒内に残される欠陥を補修するためのレーザー光（XeCl：波長308nm）の照射を大気中、または酸素雰囲気中で行う。用いるレーザーは、連続発振またはパルス発振の固体レーザーまたは気体レーザーまたは金属レーザーが望ましい。なお、前記固体レーザーとしては、連続発振またはパルス発振のYAGレーザー、YVO₄レーザー、YLFレーザー、YAlO₃レーザー、ガラスレーザー、ルビーレーザー、アレキサンドライドレーザー、Ti：サファイアレーザー等があり、前記気体レーザーとしては、連続発振または、パルス発振のエキシマレーザー、Arレーザー、Krレーザー、CO₂レーザー等があり、前記金属レーザーとしては、連続発振またはパルス発振のヘリウムカドミウムレーザー、銅蒸気レーザー、金蒸気レーザーが挙げられる。また、レーザー光を非線形光学素子によって第2高調波、第3高調波に変換して用いてもよい。なお、パルス発振のレーザーを用いる場合には、繰り返し周波数10Hz～10KHz程度のパルスレーザー光を用い、当該レーザー光を光学系にて100～1500mJ/cm²に集光し、50～98%のオーバーラップ率をもって照射し、シリコン膜表面を走査させればよい。ここでは、繰り返し周波数30Hz、エネルギー密度393mJ/cm²でレーザー光の照射を大気中で行う。また、連続発振のレーザーを用いる場合には、エネルギー密度は0.01～100MW/cm²程度（好ましくは、0.1～10MW/cm²）が必要である。そして、0.5～2000cm/s程度の速度でレーザー光に対して相対的にステージを動かして照射すればよい。なお、大気中、または酸素雰囲気中で行うため、レーザー光の照射により表面に酸化膜が形成される。

【0134】また、レーザー光の照射により形成された酸化膜を希フッ酸で除去した後、第2のレーザー光の照射を窒素雰囲気、或いは真空中で行い、半導体膜表面を平坦化してもよい。その場合にも上述したような連続発振またはパルス発振の固体レーザーまたは気体レーザーまたは金属レーザーを用いることができる。このレーザー光（第2のレーザー光）も同様に非線形光学素子によって第2高調波、第3高調波に変換して用いてもよい。第2のレーザー光のエネルギー密度は、第1のレーザー光のエネルギー密度より大きくするのが好ましい。

【0135】なお、ここでのレーザー光の照射は、酸化膜を形成して後のスパッタ法による成膜の際、結晶構造を有するシリコン膜への希ガス元素の添加を防止する上でも、ゲッタリング効果を増大させる上でも非常に重要である。次いで、レーザー光の照射により形成された酸化膜に加え、オゾン水で表面を120秒処理して合計1～5nmの酸化膜からなるバリア層を形成する。

【0136】次いで、バリア層上にスパッタ法にてゲッタリングサイトとなるアルゴン元素を含む非晶質シリコン膜を膜厚150nmで形成する。本実施の形態のスパッタ法による成膜条件は、成膜圧力を0.3Paとし、ガス（Ar）流量を50（scm）とし、成膜パワーを3kWとし、基板温度を150℃とする。なお、上記条件での非晶質シリコン膜に含まれるアルゴン元素の原子濃度は、 $3 \times 10^{19} / \text{cm}^3 \sim 6 \times 10^{19} / \text{cm}^3$ 、酸素の原子濃度は $1 \times 10^{19} / \text{cm}^3 \sim 3 \times 10^{19} / \text{cm}^3$ である。その後、ランプアニール装置を用いて650℃、3分の熱処理を行いゲッタリングする。

【0137】次いで、バリア層をエッチングストッパーとして、ゲッタリングサイトであるアルゴン元素を含む非晶質シリコン膜を選択的に除去した後、バリア層を希フッ酸で選択的に除去する。なお、ゲッタリングの際、ニッケルは酸素濃度の高い領域に移動しやすい傾向があるため、酸化膜からなるバリア層をゲッタリング後に除去することが望ましい。

【0138】次いで、得られた結晶構造を有するシリコン膜（ポリシリコン膜とも呼ばれる）の表面にオゾン水で薄い酸化膜を形成した後、レジストからなるマスクを形成し、所望の形状にエッチング処理して島状に分離された半導体層を形成する。半導体層を形成した後、レジストからなるマスクを除去する。

【0139】また、半導体層を形成した後、TFTのしきい値（Vth）を制御するためにp型あるいはn型を付与する不純物元素を添加してもよい。なお、半導体に対してp型を付与する不純物元素には、ボロン（B）、アルミニウム（Al）、ガリウム（Ga）など周期律第13族元素が知られている。なお、半導体に対してn型を付与する不純物元素としては周期律15族に属する元素、典型的にはリン（P）または砒素（As）が知られている。

【0140】次いで、得られた結晶構造を有するシリコン膜（ポリシリコン膜とも呼ばれる）の表面にオゾン水で薄い酸化膜を形成した後、レジストからなるマスクを形成し、所望の形状にエッチング処理して島状に分離された半導体層602～605を形成する。半導体層を形成した後、レジストからなるマスクを除去する。

【0141】次いで、フッ酸を含むエッチャントで酸化膜を除去すると同時にシリコン膜の表面を洗浄した後、ゲート絶縁膜607となる珪素を主成分とする絶縁膜を形成する。本実施の形態では、プラズマCVD法により115nmの厚さで酸化窒化シリコン膜（組成比Si=32%、O=59%、N=7%、H=2%）で形成する。

【0142】次いで、図8（A）に示すように、ゲート絶縁膜607上に膜厚20～100nmの第1の導電膜608と、膜厚100～400nmの第2の導電膜609とを積層形成する。本実施の形態では、ゲート絶縁膜607上に膜厚50nmの窒化タンタル膜、膜厚3.70nmのタンクステン膜を順次積層する。

【0143】第1の導電膜及び第2の導電膜を形成する導電性材料としてはTa、W、Ti、Mo、Al、Cuから選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料で形成する。また、第1の導電膜及び第2の導電膜としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や、Ag：Pd：Cu合金を用いてもよい。また、2層構造に限定されず、例えば、膜厚50nmのタンクステン膜、膜厚500nmのアルミニウムとシリコンの合金（Al-Si）膜、膜厚30nmの窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、第1の導電膜のタンクステンに代えて窒化タンクステンを用いてもよいし、第2の導電膜のアルミニウムとシリコンの合金（Al-Si）膜に代えてアルミニウムとチタンの合金膜（Al-Ti）を用いてもよいし、第3の導電膜の窒化チタン膜に代えてチタン膜を用いてもよい。また、単層構造であってもよい。

【0144】次に、図8（B）に示すように光露光工程によりレジストからなるマスク610～613を形成し、ゲート電極及び配線を形成するための第1のエッチング処理を行う。第1のエッチング処理では第1及び第2のエッチング条件で行う。エッチングにはICP（Inductively Coupled Plasma：誘導結合型プラズマ）エッチング法を用いると良い。ICPエッチング法を用い、エッチング条件（コイル型の電極に印加される電力量、基板側の電極に印加される電力量、基板側の電極温度等）を適宜調節することによって所望のテーパー形状に膜をエッチングすることができる。なお、エッチング用ガスとしては、Cl₂、BCl₃、SiCl₄、CCl₄などを代表とする塩素系ガスまたはCF₄、SF₆、NF₃などを代表とするフッ素系ガス、またはO₂を適宜用い

ることができる。

【0145】本実施の形態では、基板側（試料ステージ）にも150WのRF（13.56MHz）電力を投入し、実質的に負の自己バイアス電圧を印加する。なお、基板側の電極面積サイズは、12.5cm×12.5cmであり、コイル型の電極面積サイズ（ここではコイルの設けられた石英円板）は、直径25cmの円板である。この第1のエッティング条件によりW膜をエッティングして第1の導電層の端部をテーパー形状とする。第1のエッティング条件でのWに対するエッティング速度は200.39nm/min、TaNに対するエッティング速度は80.32nm/minであり、TaNに対するWの選択比は約2.5である。また、この第1のエッティング条件によって、Wのテーパー角は、約26°となる。この後、レジストからなるマスク610～613を除去せずに第2のエッティング条件に変え、エッティング用ガスにCF₄とC₁を用い、それぞれのガス流量比を30/30（sccm）とし、1Paの圧力でコイル型の電極に500WのRF（13.56MHz）電力を投入してプラズマを生成して約30秒程度のエッティングを行った。基板側（試料ステージ）にも20WのRF（13.56MHz）電力を投入し、実質的に負の自己バイアス電圧を印加する。CF₄とC₁を混合した第2のエッティング条件ではW膜及びTaN膜とも同程度にエッティングされる。第2のエッティング条件でのWに対するエッティング速度は58.97nm/min、TaNに対するエッティング速度は66.43nm/minである。なお、ゲート絶縁膜上に残渣を残すことなくエッティングするためには、10～20%程度の割合でエッティング時間を増加させると良い。

【0146】上記第1のエッティング処理では、レジストからなるマスクの形状を適したものとすることにより、基板側に印加するバイアス電圧の効果により第1の導電層及び第2の導電層の端部がテーパー形状となる。このテーパー部の角度は15～45°とすればよい。

【0147】こうして、第1のエッティング処理により第1の導電層と第2の導電層から成る第1の形状の導電層615～618（第1の導電層615a～618aと第2の導電層615b～618b）を形成する。ゲート絶縁膜となる絶縁膜607は、10～20nm程度エッチングされ、第1の形状の導電層615～618で覆われない領域が薄くなったゲート絶縁膜620となる。

【0148】次いで、レジストからなるマスクを除去せずに第2のエッティング処理を行う。ここでは、エッティング用ガスにSF₆とC₁とO₂を用い、それぞれのガス流量比を24/12/24（sccm）とし、1.3Paの圧力でコイル型の電極に700WのRF（13.56MHz）電力を投入してプラズマを生成してエッティングを25秒行った。基板側（試料ステージ）にも10WのRF（13.56MHz）電力を投入し、実質的に

負の自己バイアス電圧を印加する。第2のエッティング処理でのWに対するエッティング速度は227.3nm/m in、TaNに対するエッティング速度は32.1nm/minであり、TaNに対するWの選択比は7.1であり、絶縁膜620であるSiONに対するエッティング速度は33.7nm/minであり、SiONに対するWの選択比は6.83である。このようにエッティングガス用ガスにSF₆を用いた場合、絶縁膜620との選択比が高いので膜減りを抑えることができる。本実施の形態では絶縁膜620において約8nmしか膜減りが起きない。

【0149】この第2のエッティング処理によりWのテーパー角は70°となった。この第2のエッティング処理により第2の導電層621b～624bを形成する。一方、第1の導電層は、ほとんどエッティングされず、第1の導電層621a～624aとなる。なお、第1の導電層621a～624aは、第1の導電層615a～618aとほぼ同一サイズである。実際には、第1の導電層の幅は、第2のエッティング処理前に比べて約0.3μm程度、即ち線幅全体で0.6μm程度後退する場合もあるがほとんどサイズに変化がない。

【0150】また、2層構造に代えて、膜厚50nmのタンクステン膜、膜厚500nmのアルミニウムとシリコンの合金（Al-Si）膜、膜厚30nmの窒化チタン膜を順次積層した3層構造とした場合、第1のエッティング処理における第1のエッティング条件としては、BC₁とC₁とO₂とを原料ガスに用い、それぞれのガス流量比を65/10/5（sccm）とし、基板側（試料ステージ）に300WのRF（13.56MHz）電力を投入し、1.2Paの圧力でコイル型の電極に450WのRF（13.56MHz）電力を投入してプラズマを生成して117秒のエッティングを行えばよく、第1のエッティング処理における第2のエッティング条件としては、CF₄とC₁とO₂とを用い、それぞれのガス流量比を25/25/10（sccm）とし、基板側（試料ステージ）にも20WのRF（13.56MHz）電力を投入し、1Paの圧力でコイル型の電極に500WのRF（13.56MHz）電力を投入してプラズマを生成して約30秒程度のエッティングを行えばよく、第2のエッティング処理としてはBC₁とC₁を用い、それぞれのガス流量比を20/60（sccm）とし、基板側（試料ステージ）には100WのRF（13.56MHz）電力を投入し、1.2Paの圧力でコイル型の電極に600WのRF（13.56MHz）電力を投入してプラズマを生成してエッティングを行えばよい。

【0151】次いで、レジストからなるマスクを除去した後、第1のドーピング処理を行って図9（A）の状態を得る。ドーピング処理はイオンドープ法、もしくはイオン注入法で行えば良い。イオンドープ法の条件はドーズ量を $1.5 \times 10^{14} \text{ atoms/cm}^2$ とし、加速電圧を60

~100 keVとして行う。n型を付与する不純物元素として、典型的にはリン(P)または砒素(As)を用いる。この場合、第1の導電層及び第2の導電層621~624がn型を付与する不純物元素に対するマスクとなり、自己整合的に第1の不純物領域626~629が形成される。第1の不純物領域626~629には $1 \times 10^{16} \sim 1 \times 10^{17}/\text{cm}^3$ の濃度範囲でn型を付与する不純物元素を添加する。ここでは、第1の不純物領域と同じ濃度範囲の領域をn'領域とも呼ぶ。

【0152】なお、本実施の形態ではレジストからなるマスクを除去した後、第1のドーピング処理を行ったが、レジストからなるマスクを除去せずに第1のドーピング処理を行ってもよい。

【0153】次いで、図9(B)に示すようにレジストからなるマスク631~633を形成し第2のドーピング処理を行う。マスク631は駆動回路のpチャネル型TFTを形成する半導体層のチャネル形成領域及びその周辺の領域を保護するマスクであり、マスク632は画素部のTFTを形成する半導体層のチャネル形成領域及びその周辺の領域とを保護するマスクである。

【0154】第2のドーピング処理におけるイオンドープ法の条件はドーズ量を $1.5 \times 10^{15} \text{ atoms/cm}^2$ とし、加速電圧を60~100 keVとしてリン(P)をドーピングする。ここでは、第2の導電層621bをマスクとして各半導体層に不純物領域が自己整合的に形成される。勿論、マスク631~633で覆われた領域には添加されない。こうして、第2の不純物領域634、635と、第3の不純物領域637が形成される。第2の不純物領域634、635には $1 \times 10^{16} \sim 1 \times 10^{17}/\text{cm}^3$ の濃度範囲でn型を付与する不純物元素を添加されている。ここでは、第2の不純物領域と同じ濃度範囲の領域をn'領域とも呼ぶ。

【0155】また、第3の不純物領域は第1の導電層により第2の不純物領域よりも低濃度に形成され、 $1 \times 10^{15} \sim 1 \times 10^{16}/\text{cm}^3$ の濃度範囲でn型を付与する不純物元素を添加されることになる。なお、第3の不純物領域は、テーパー形状である第1の導電層の部分を通過させてドーピングを行うため、テーパー部の端部に向かって不純物濃度が増加する濃度勾配を有している。ここでは、第3の不純物領域と同じ濃度範囲の領域をn'領域とも呼ぶ。また、マスク632で覆われた領域は、第2のドーピング処理で不純物元素が添加されず、第1の不純物領域638となる。

【0156】次いで、レジストからなるマスク631~633を除去した後、新たにレジストからなるマスク639、640を形成して図9(C)に示すように第3のドーピング処理を行う。

【0157】駆動回路において、上記第3のドーピング処理により、pチャネル型TFTを形成する半導体層および保持容量を形成する半導体層にp型の導電型を付与

する不純物元素が添加された第4の不純物領域641、642及び第5の不純物領域643、644を形成する。

【0158】また、第4の不純物領域641、642には $1 \times 10^{16} \sim 1 \times 10^{17}/\text{cm}^3$ の濃度範囲でp型を付与する不純物元素が添加されるようとする。尚、第4の不純物領域641、642には先の工程でリン(P)が添加された領域(n'領域)であるが、p型を付与する不純物元素の濃度がその1.5~3倍添加されていて導電型はp型となっている。ここでは、第4の不純物領域と同じ濃度範囲の領域をp'領域とも呼ぶ。

【0159】また、第5の不純物領域643、644は第2の導電層625aのテーパー部と重なる領域に形成されるものであり、 $1 \times 10^{16} \sim 1 \times 10^{17}/\text{cm}^3$ の濃度範囲でp型を付与する不純物元素が添加されるようとする。ここでは、第5の不純物領域と同じ濃度範囲の領域をp'領域とも呼ぶ。

【0160】以上までの工程でそれぞれの半導体層にn型またはp型の導電型を有する不純物領域が形成され20る。導電層621~624はTFTのゲート電極となる。

【0161】次いで、ほぼ全面を覆う絶縁膜(図示しない)を形成する。本実施の形態では、プラズマCVD法により膜厚50 nmの酸化シリコン膜を形成した。勿論、この絶縁膜は酸化シリコン膜に限定されるものでなく、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。

【0162】次いで、それぞれの半導体層に添加された不純物元素を活性化処理する工程を行う。この活性化工程は、ランプ光源を用いたラピッドサーマルアニール法(RTA法)、或いはYAGレーザーまたはエキシマレーザーを裏面から照射する方法、或いは炉を用いた熱処理、或いはこれらの方のうち、いずれかと組み合わせた方法によって行う。

【0163】また、本実施の形態では、上記活性化の前に絶縁膜を形成した例を示したが、上記活性化を行った後、絶縁膜を形成する工程としてもよい。

【0164】次いで、窒化シリコン膜からなる第1の層間絶縁膜645を形成して熱処理(300~550°Cで1~12時間の熱処理)を行い、半導体層を水素化する工程を行う(図10(A))。この工程は第1の層間絶縁膜645に含まれる水素により半導体層のダングリングボンドを終端する工程である。酸化シリコン膜からなる絶縁膜(図示しない)の存在に関係なく半導体層を水素化することができる。ただし、本実施の形態では、第2の導電層としてアルミニウムを主成分とする材料を用いているので、水素化する工程において第2の導電層が耐え得る熱処理条件とすることが重要である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。

【0165】次いで、第1の層間絶縁膜645上有機絶縁物材料から成る第2の層間絶縁膜646を形成する。本実施の形態では膜厚1.6μmのアクリル樹脂膜を形成する。

【0166】さらに、第2の層間絶縁膜646上有層間絶縁膜の内部から発生する酸素などの脱ガスや水分等が放出されるのを防ぐためにバリア膜647を形成する。バリア膜647を形成する材料としては、具体的には窒化アルミニウム(A1N)、窒化酸化アルミニウム(A1NO)、酸化窒化アルミニウム(A1NO)、窒化珪素(SiN)、窒化酸化珪素(SiNO)等のアルミニウム又は珪素を含む絶縁膜を用いて、0.2~1μmの膜厚で形成することができるが、本実施の形態では、窒化珪素からなるバリア膜をスパッタリング法により0.3μmの膜厚で形成する。なお、ここで用いるスパッタリング法としては、2極スパッタ法、イオンビームスパッタ法、または対向ターゲットスパッタ法等がある。

【0167】次いで、各不純物領域に達するコンタクトホールを形成する。本実施の形態では複数のエッチング処理を順次行う。本実施の形態では第1の層間絶縁膜をエッチングストッパーとして第2の層間絶縁膜をエッチングした後、絶縁膜(図示しない)をエッチングストッパーとして第1の層間絶縁膜をエッチングしてから絶縁膜(図示しない)をエッチングする。

【0168】そして、各高濃度不純物領域634、635、641、642とそれぞれ電気的に接続する配線650~656と、陽極となる第1の電極657を形成する。本実施の形態では、遮光性の導電性材料を用いて形成する。具体的には、元素周期律の第4族、第5族または6族に属する元素からなる導電性の窒化物、酸化物、炭化物、ホウ化物、珪化物を用いることができるが、ここでは、窒化チタン(TiN)を用い、500nmの膜厚に成膜した後、これをバーニングして配線650~656および第1の電極(陽極)657を形成する。

【0169】なお、本実施の形態におけるバーニングの際のエッチング条件は、エッチング用ガスにCF₄とC₂F₆とを用い、それぞれのガス流量比を40/40(sccm)とし、1.2Paの圧力でコイル型の電極に450WのRF(13.56MHz)電力を投入してプラズマを生成して約30秒程度のエッチングを行う。基板側(試料ステージ)にも100WのRF(13.56MHz)電力を投入し、実質的に負の自己バイアス電圧を印加する。

【0170】なお、本実施の形態では、第1の電極(陽極)657は配線形成と同時に形成され、高濃度不純物領域642との配線を兼ねて形成される。

【0171】以上の様にして、nチャネル型TFT701、pチャネル型TFT702を有する駆動回路705と、nチャネル型TFTからなるスイッチング用TFT703、nチャネル型TFTからなる電流制御用TFT

704とを有する画素部706を同一基板上に形成することができる(図10(C))。本明細書中ではこのような基板を便宜上アクティブマトリクス基板と呼ぶ。

【0172】画素部706において、スイッチング用TFT703(nチャネル型TFT)にはチャネル形成領域503、ゲート電極を形成する導電層623の外側に形成される第1の不純物領域(n⁻領域)638とソース領域、またはドレイン領域として機能する第2の不純物領域(n'領域)635を有している。

10 【0173】また、画素部706において、電流制御用TFT704(pチャネル型TFT)にはチャネル形成領域504、ゲート電極を形成する導電層624の外側に形成される第4の不純物領域(n⁻領域)642とソース領域、またはドレイン領域として機能する第5の不純物領域(n'領域)644を有している。

【0174】また、駆動回路705において、nチャネル型TFT701はチャネル形成領域501、ゲート電極を形成する導電層621の一部と絶縁膜を介して重なる第3の不純物領域(n⁻領域)637とソース領域、またはドレイン領域として機能する第2の不純物領域(n'領域)634を有している。

【0175】また、駆動回路705において、pチャネル型TFT702にはチャネル形成領域502、ゲート電極を形成する導電層622の一部と絶縁膜を介して重なる第5不純物領域(p⁻領域)643と、ソース領域またはドレイン領域として機能する第4の不純物領域(p'領域)641を有している。

【0176】これらのTFT701、702を適宜組み合わせてシフトレジスタ回路、パッファ回路、レベルシフタ回路、ラッチ回路などを形成し、駆動回路705を形成すればよい。例えば、CMOS回路を形成する場合には、nチャネル型TFT701とpチャネル型TFT702を相補的に接続して形成すればよい。

【0177】なお、信頼性が最優先とされる回路には、ゲート絶縁膜を介してLDD(LDD:Lightly Doped Drain)領域をゲート電極と重ねて配置させた、いわゆるGOLD(Gate-drain Overlapped LDD)構造であるnチャネル型TFT701の構造が適している。

【0178】なお、駆動回路705におけるTFT(nチャネル型TFT、pチャネル型TFT)は、高い駆動能力(オン電流:I_{on})およびホットキャリア効果による劣化を防ぎ信頼性を向上させることが要求されていることから本実施の形態では、ホットキャリアによるオン電流値の劣化を防ぐのに有効である構造として、ゲート電極がゲート絶縁膜を介して低濃度不純物領域と重なる領域(GOLD領域)を有するTFTを用いている。

【0179】これに対して、画素部706におけるスイッチング用TFT703は、低いオフ電流(I_{off})が要求されていることから、本実施の形態ではオフ電流を低減するためのTFT構造として、ゲート電極がゲー

ト絶縁膜を介して低濃度不純物領域と重ならない領域（LDD領域）を有するTFTを用いている。

【0180】次に絶縁膜を1μmの厚さに成膜する。なお、本実施の形態においては、絶縁膜を形成する材料として酸化珪素からなる膜を用いているが、場合によっては、空化珪素および酸化空化珪素といった珪素を含む絶縁膜の他、ポリイミド、ポリアミド、アクリル（感光性アクリルを含む）、BCB（ベンゾシクロブテン）といった有機樹脂膜を用いることもできる。

【0181】この絶縁膜の第1の電極（陽極）657と重なる位置に開口部を形成して、絶縁層658を形成する（図11（A））。

【0182】具体的には、感光性アクリルを用いて1μmの絶縁膜を形成し、フォトリソグラフィー法によりパターニングを行った後で、エッチング処理を行うことにより絶縁層658を形成する。

【0183】次に、絶縁層658の開口部において露出している第1の電極（陽極）657上有機化合物層659を蒸着法により形成する（図11（A））。なお、有機化合物層659は、実施の形態2で示した素子構造と同様の積層を行うことにより形成することができる。

【0184】ここでは、1画素しか示していないが、本実施の形態において画素部に複数形成される各画素には赤、緑、青の3種類の発光を示す有機化合物層のうちのいずれかが形成され、フルカラー化が可能となることから、3種類の発光色を示す有機化合物層を形成する有機化合物の組み合わせについて、図12により説明する。

【0185】なお、図12（A）に示す発光素子は、第1の電極（陽極）1201、有機化合物層1202、及び第2の電極（陰極）1203からなり、有機化合物層1202は、正孔輸送層1204、発光層1205、分離層I（ブロッキング層）1206、分離層II（電子輸送層）1207、および電子伝達層1208の積層構造を有している。なお、赤色発光を示す発光素子を構成する材料及び膜厚について図12（B）に示し、緑色発光を示す発光素子を構成する材料及び膜厚について図12（C）に示し、青色発光を示す発光素子を構成する材料及び膜厚について図12（D）にそれぞれ示す。

【0186】はじめに、赤色発光を示す有機化合物層を形成する。具体的には、正孔輸送層1204は、正孔輸送性の有機化合物である、 α -NPDを40nmの膜厚に成膜し、発光層1205は、発光性の有機化合物である、2, 3, 7, 8, 12, 13, 17, 18-オクタエチル-21H、23H-ポルフィリン-白金（以下、PtOEPと示す）をホストとなる有機化合物（以下、ホスト材料という）であるCBPと共に共蒸着させて30nmの膜厚に成膜し、分離層I（ブロッキング層）1206は、ブロッキング性の有機化合物であるBCPを10nmの膜厚に成膜し、分離層II（電子輸送層）1207は、電子輸送性の有機化合物である、Alq₃を4

0nmの膜厚に成膜し、電子伝達層1208をTMBとAlq₃と共に共蒸着して5nmの膜厚で形成することにより赤色発光の有機化合物層を形成する。

【0187】なお、ここでは赤色発光の有機化合物層として、5種類の機能の異なる有機化合物を用いて形成する場合について説明したが、本発明は、これに限られることはなく、赤色発光を示す有機化合物として公知の材料を用いることができる。

【0188】次に、緑色発光を示す有機化合物層を形成する。具体的には、正孔輸送層1204は、正孔輸送性の有機化合物である、 α -NPDを40nmの膜厚で成膜し、発光層1205は、正孔輸送性のホスト材料としてCBPを用い、発光性の有機化合物であるIr(ppy)₃と共に共蒸着することにより30nmの膜厚で成膜し、分離層I（ブロッキング層）1206は、ブロッキング性の有機化合物であるBCPを10nmの膜厚で成膜し、分離層II（電子輸送層）1207は、電子輸送性の有機化合物である、Alq₃を40nmの膜厚で成膜し、電子伝達層1208をTMBとAlq₃と共に共蒸着して5nmの膜厚で形成することにより緑色発光の有機化合物を形成することができる。

【0189】なお、ここでは緑色発光の有機化合物層として、4種類の機能の異なる有機化合物を用いて形成する場合について説明したが、本発明はこれに限られることはなく、緑色発光を示す有機化合物として公知の材料を用いることができる。

【0190】次に、青色発光を示す有機化合物層を形成する。具体的には、発光層1205は、発光性および正孔輸送性の有機化合物である、 α -NPDを40nmの膜厚で成膜し、分離層I（ブロッキング層）1206は、ブロッキング性の有機化合物である、BCPを10

nmの膜厚に成膜し、分離層II（電子輸送層）1207は、電子輸送性の有機化合物である、Alq₃を40nmの膜厚で成膜し、電子伝達層1208をTMBとAlq₃と共に共蒸着して5nmの膜厚で形成することにより青色発光の有機化合物層を形成することができる。

【0191】なお、ここでは青色発光の有機化合物層として、3種類の機能の異なる有機化合物を用いて形成する場合について説明したが、本発明はこれに限られることはなく、青色発光を示す有機化合物として公知の材料を用いることができる。

【0192】以上に示した有機化合物を第1の電極（陽極）上に形成することにより画素部において、赤色発光、緑色発光及び青色発光を示す有機化合物層を形成することができる。

【0193】次に、図11（B）に示すように有機化合物層659及び絶縁層658を覆って、第2の電極（陰極）660を形成する。なお、本実施の形態において陰極660は、透光性の導電膜により形成されている。具体的には、陰極660からの電子の注入性を向上させる

40

50

ために仕事関数の小さい材料で形成されることが望ましい。なお、本実施の形態において、第2の電極（陰極）660は、アルミニウムもしくは銀により形成する。

【0194】なお、本実施の形態において、第2の電極（陰極）660は発光素子において生じた光を透過させる電極であることから、透光性を有する必要がある。そのため、アルミニウム膜を20nmの膜厚で成膜して第2の電極（陰極）660を形成する。

【0195】このように極薄膜からなる第2の電極（陰極）660を形成することにより、光の透過性を有する電極を形成することができる。なお、仕事関数が小さく、かつ透光性の導電膜であれば、公知の他の材料を用いて第2の電極（陰極）660を形成することもできる。

【0196】こうして図11（B）に示すように、電流制御用TFT704に電気的に接続された第1の電極（陽極）657と、前記第1の電極（陽極）657と隣り合う電極（図示せず）との隙間に形成された絶縁層658と、第1の電極（陽極）657上に形成された有機化合物層659と、有機化合物層659及び絶縁層658上に形成された第2の電極（陰極）660からなる発光素子661を有する素子基板を形成することができる。

【0197】なお、本実施の形態において、TFTの駆動電圧は、1.2～10Vであり、好ましくは、2.5～5.5Vである。

【0198】また、画素部の表示が動作しているとき（動画表示の場合）には、発光素子が発光している画素により背景の表示を行い、発光素子が非発光となる画素により文字表示を行えばよいが、画素部の動画表示がある一定期間以上静止している場合（本明細書中では、スタンバイ時と呼ぶ）には、電力を節約するために表示方法が切り替わる（反転する）ようにしておくと良い。具体的には、発光素子が発光している画素により文字を表示し（文字表示ともいう）、発光素子が非発光となる画素により背景を表示（背景表示ともいう）するようにする。

【0199】ここで、本実施の形態において説明した発光装置の画素部の詳細な上面構造を図13（A）に示し、回路図を図13（B）に示す。図13（A）及び図13（B）は共通の符号を用いるので互いに参照すればよい。

【0200】図13において、基板上に設けられたスイッチング用TFT1300は図11のスイッチング用（nチャネル型）TFT703を用いて形成される。従って、構造の説明はスイッチング用（nチャネル型）TFT703の説明を参照すれば良い。また、1302で示される配線は、スイッチング用TFT1300のゲート電極1301（1301a、1301b）を電気的に接続するゲート配線である。

【0201】なお、本実施の形態ではチャネル形成領域が二つ形成されるダブルゲート構造としているが、チャネル形成領域が一つ形成されるシングルゲート構造もしくは三つ形成されるトリプルゲート構造であっても良い。

【0202】また、スイッチング用TFT1300のソースはソース配線1303に接続され、ドレインはドレン配線1304に接続される。また、ドレン配線1304は電流制御用TFT1305のゲート電極1306に電気的に接続される。なお、電流制御用TFT1305は図11の電流制御用（pチャネル型）TFT704を用いて形成される。従って、構造の説明は電流制御用（pチャネル型）TFT704の説明を参照すれば良い。なお、本実施の形態ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。

【0203】また、電流制御用TFT1305のソースは電流供給線1307に電気的に接続され、ドレインはドレン配線1308に電気的に接続される。また、ドレン配線1308は点線で示される第1の電極（陽極）1309に電気的に接続される。

【0204】また、1310で示される配線は、消去用TFT1311のゲート電極1312と電気的に接続するゲート配線である。なお、消去用TFT1311のソースは、電流供給線1307に電気的に接続され、ドレンはドレン配線1304に電気的に接続される。

【0205】なお、消去用TFT1311は図11の電流制御用（pチャネル型）TFT704と同様にして形成される。従って、構造の説明は電流制御用（pチャネル型）TFT704の説明を参照すれば良い。なお、本実施の形態ではシングルゲート構造としているが、ダブルゲート構造もしくはトリプルゲート構造であっても良い。

【0206】また、1313で示される領域には保持容量（コンデンサ）が形成される。コンデンサ1313は、電流供給線1307と電気的に接続された半導体膜1314、ゲート絶縁膜と同一層の絶縁膜（図示せず）及びゲート電極1306との間で形成される。また、ゲート電極1306、第1層間絶縁膜と同一の層（図示せず）及び電流供給線1307で形成される容量も保持容量として用いることが可能である。

【0207】なお、図13（B）の回路図で示す発光素子1315は、第1の電極（陽極）1309と、第1の電極（陽極）1309上に形成される有機化合物層（図示せず）と有機化合物層上に形成される第2の電極（陰極）（図示せず）からなる。本発明において、第1の電極（陽極）1309は、電流制御用TFT1305のソース領域またはドレン領域と接続している。

【0208】発光素子1315の第2の電極（陰極）には対向電位が与えられている。また電流供給線Vは電源

電位が与えられている。そして対向電位と電源電位の電位差は、電源電位が陽極に与えられたときに発光素子が発光する程度の電位差に常に保たれている。電源電位と対向電位は、本発明の発光装置に、外付けのIC等により設けられた電源によって与えられる。なお対向電位を与える電源を、本明細書では特に対向電源1316と呼ぶ。

【0209】[実施の形態6] 本実施の形態では、本発明のアクティブマトリクス型発光装置の外観図について図14を用いて説明する。なお、図14(A)は、発光装置を示す上面図、図14(B)は図14(A)をA-A'で切断した断面図である。点線で示された1401はソース側駆動回路、1402は画素部、1403はゲート側駆動回路である。また、1404は封止基板、1405はシール剤であり、シール剤1405で囲まれた内側は、空間になっている。

【0210】なお、1408はソース側駆動回路1401及びゲート側駆動回路1403に入力される信号を伝送するための配線であり、外部入力端子となるFPC

(フレキシブルプリントサーキット)1409からビデオ信号やクロック信号を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基盤(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。

【0211】次に、断面構造について図14(B)を用いて説明する。基板1410上には駆動回路及び画素部が形成されているが、ここでは、駆動回路としてソース側駆動回路1401と画素部1402が示されている。

【0212】なお、ソース側駆動回路1401はnチャネル型TFT1413とpチャネル型TFT1414とを組み合わせたCMOS回路が形成される。また、駆動回路を形成するTFTは、公知のCMOS回路、PMOS回路もしくはNMOS回路で形成しても良い。また、本実施の形態では、基板上に駆動回路を形成したドライバー一体型を示すが、必ずしもその必要はなく、基板上ではなく外部に形成することもできる。

【0213】また、画素部1402は電流制御用TFT1411とそのドレインに電気的に接続された第1の電極1412を含む複数の画素により形成される。

【0214】また、第1の電極1412の両端には絶縁層1413が形成され、第1の電極1412上には有機化合物層1414が形成される。さらに、有機化合物層1414上には第2の電極1416が形成される。これにより、第1の電極1412、有機化合物層1414、及び第2の電極1416からなる発光素子1418が形成される。

【0215】第2の電極1416は全画素に共通の配線としても機能し、接続配線1408を経由してFPC1

409に電気的に接続されている。

【0216】また、基板1410上に形成された発光素子1418を封止するためにシール剤1405により封止基板1404を貼り合わせる。なお、封止基板1404と発光素子1418との間隔を確保するために樹脂膜からなるスペーサを設けても良い。そして、シール剤1405の内側の空間1407には窒素等の不活性ガスが充填されている。なお、シール剤1405としてはエボキシ系樹脂を用いるのが好ましい。また、シール剤1405はできるだけ水分や酸素を透過しない材料であることが望ましい。さらに、空間1407の内部に酸素や水を吸収する効果をもつ物質を含有させても良い。

【0217】また、本実施の形態では封止基板1404を構成する材料としてガラス基板や石英基板の他、FRP(Fiberglass-Reinforced Plastics)、PVF(ポリビニルフロライド)、マイラー、ポリエステルまたはアクリル等からなるプラスチック基板を用いることができる。また、シール剤1405を用いて封止基板1404を接着した後、さらに側面(露呈面)を覆うようにシール剤で封止することも可能である。

【0218】以上のようにして発光素子を空間1407に封入することにより、発光素子を外部から完全に遮断することができ、外部から水分や酸素といった有機化合物層の劣化を促す物質が侵入することを防ぐことができる。従って、信頼性の高い発光装置を得ることができる。

【0219】なお、本実施の形態の構成は、実施の形態1～実施の形態5に示したいずれの構成と自由に組み合わせて実施することが可能である。

【0220】[実施の形態7] 本実施の形態では本発明の素子構造を有するパッシブ型(単純マトリクス型)の発光装置を作製した場合について説明する。説明には図15を用いる。図15において、1501はガラス基板、1502は金属化合物からなる第1の電極(陽極)である。本実施の形態では、金属化合物としてTiNをスパッタリング法により形成する。なお、図15では図示されていないが、複数本の陽極が紙面と平行にストライプ状に配列されている。なお、パッシブマトリクス型の発光装置においては、アクティブマトリクス型の発光装置よりも陽極材料に対して導電性が要求されるため、従来のITOよりも導電性の高い金属化合物を陽極に用いることは発光素子の駆動電圧を低下させる上で有効である。

【0221】また、ストライプ状に配列された第1の電極(陽極)1502と交差するように絶縁材料からなるバンク1503が形成される。バンク1503は第1の電極(陽極)1502と接して紙面に垂直な方向に形成されている。

【0222】次に、有機化合物層1504が形成される。有機化合物層1504を形成する材料としては、本

明細書中で示した材料の他、発光が得られる公知の材料を用いて形成することができる。

【0223】例えば、赤色発光を示す有機化合物層、緑色発光を示す有機化合物層及び青色発光を示す有機化合物層をそれぞれ形成することにより、3種類の発光を有する発光装置を形成することができる。なお、これらの有機化合物層1504はパンク1503で形成された溝に沿って形成されるため、紙面に垂直な方向にストライプ状に配列される。

【0224】次に、有機化合物層1504上に第2の電極（陰極）1505が形成される。なお第2の電極（陰極）1505は、メタルマスクを用いて蒸着法により形成する。

【0225】なお、本実施の形態では下側の第1の電極（陽極）1502が遮光性の材料で形成されているため、有機化合物層1504で発生した光は上側の第2の電極（陰極）1505から出射される。

【0226】次に、封止基板1507としてガラス基板を用意する。本実施の形態の構造では透光性の材料を用いる必要があることから、ガラス基板の他、プラスチックや石英からなる基板を用いることが可能である。

【0227】こうして用意した封止基板1507は、紫外線硬化樹脂からなるシール剤1508により貼り合わされる。なお、シール剤1508の内側1506は密閉された空間になっており、窒素やアルゴンなどの不活性ガスが充填されている。また、この密閉された空間1506の中に酸化バリウムに代表される吸湿剤を設けることも有効である。最後にFPC1511を取り付けてパッジ型の発光装置が完成する。

【0228】なお、本実施の形態は、実施の形態1～実施の形態6に示した素子構造（アクティブマトリクス型）に関連するもの以外の構成を自由に組み合わせて実施することが可能である。

【0229】[実施の形態8] 発光素子を用いた発光装置は自発光型であるため、液晶表示装置に比べ、明るい場所での視認性に優れ、視野角が広い。従って、本発明の発光装置を用いて様々な電気器具を完成させることができる。

【0230】本発明により作製した発光装置を用いて作製された電気器具として、ビデオカメラ、デジタルカメラ、ゴーグル型ディスプレイ（ヘッドマウントディスプレイ）、ナビゲーションシステム、音響再生装置（カーオーディオ、オーディオコンポ等）、ノート型パソコン、ゲーム機器、携帯情報端末（モバイルコンピュータ、携帯電話、携帯型ゲーム機または電子書籍等）、記録媒体を備えた画像再生装置（具体的にはデジタルビデオディスク（DVD）等の記録媒体を再生し、その画像を表示しうる表示装置を備えた装置）などが挙げられる。特に、斜め方向から画面を見る機会が多い携帯情報端末は、視野角の広さが重要視されるため、

発光素子を有する発光装置を用いることが好ましい。それら電気器具の具体例を図16に示す。

【0231】図16（A）は表示装置であり、筐体2001、支持台2002、表示部2003、スピーカー部2004、ビデオ入力端子2005等を含む。本発明により作製した発光装置をその表示部2003に用いることにより作製される。発光素子を有する発光装置は自発光型であるためバックライトが必要なく、液晶表示装置よりも薄い表示部とすることができる。なお、表示装置は、パソコン用、TV放送受信用、広告表示用などの全ての情報表示用表示装置が含まれる。

【0232】図16（B）はデジタルスチルカメラであり、本体2101、表示部2102、受像部2103、操作キー2104、外部接続ポート2105、シャッター2106等を含む。本発明により作製した発光装置をその表示部2102に用いることにより作製される。

【0233】図16（C）はノート型パソコンコンピュータであり、本体2201、筐体2202、表示部2203、キーボード2204、外部接続ポート2205、ポインティングマウス2206等を含む。本発明により作製した発光装置をその表示部2203に用いることにより作製される。

【0234】図16（D）はモバイルコンピュータであり、本体2301、表示部2302、スイッチ2303、操作キー2304、赤外線ポート2305等を含む。本発明により作製した発光装置をその表示部2302に用いることにより作製される。

【0235】図16（E）は記録媒体を備えた携帯型の画像再生装置（具体的にはDVD再生装置）であり、本体2401、筐体2402、表示部A2403、表示部B2404、記録媒体（DVD等）読み込み部2405、操作キー2406、スピーカー部2407等を含む。表示部A2403は主として画像情報を表示し、表示部B2404は主として文字情報を表示するが、本発明により作製した発光装置をこれら表示部A、B2403、2404に用いることにより作製される。なお、記録媒体を備えた画像再生装置には家庭用ゲーム機器なども含まれる。

【0236】図16（F）はゴーグル型ディスプレイ（ヘッドマウントディスプレイ）であり、本体2501、表示部2502、アーム部2503を含む。本発明により作製した発光装置をその表示部2502に用いることにより作製される。

【0237】図16（G）はビデオカメラであり、本体2601、表示部2602、筐体2603、外部接続ポート2604、リモコン受信部2605、受像部2606、バッテリー2607、音声入力部2608、操作キー2609、接眼部2610等を含む。本発明により作製した発光装置をその表示部2602に用いることにより作製される。

【0238】ここで図16(H)は携帯電話であり、本体2701、筐体2702、表示部2703、音声入力部2704、音声出力部2705、操作キー2706、外部接続ポート2707、アンテナ2708等を含む。本発明により作製した発光装置をその表示部2703に用いることにより作製される。なお、表示部2703は黒色の背景に白色の文字を表示することで携帯電話の消費電力を抑えることができる。

【0239】なお、将来的に有機材料の発光輝度が高くなれば、出力した画像情報を含む光をレンズ等で拡大投影してフロント型若しくはリア型のプロジェクターに用いることも可能となる。

【0240】また、上記電気器具はインターネットやCATV(ケーブルテレビ)などの電子通信回線を通じて配信された情報を表示するが多くなり、特に動画情報を表示する機会が増してきている。有機材料の応答速度は非常に高いため、発光装置は動画表示に好ましい。

【0241】また、発光装置は発光している部分が電力を消費するため、発光部分が極力少なくなるように情報を表示することが好ましい。従って、携帯情報端末、特に携帯電話や音響再生装置のような文字情報を主とする表示部に発光装置を用いる場合には、非発光部分を背景として文字情報を発光部分で形成するように駆動することが好ましい。

【0242】以上の様に、本発明により作製された発光装置の適用範囲は極めて広く、本発明の発光装置をあらゆる分野の電気器具に適用することが可能である。また、本実施の形態の電気器具は実施の形態1～実施の形態7を実施することにより作製された発光装置を用いることにより完成させることができる。

【0243】

【発明の効果】本発明では、有機化合物層の一部にドナー性分子を含む電子伝達層を形成し、これを陰極と接するように形成することで、陰極と有機化合物層の間にそれぞれのLUMO準位の中間に位置するドナー準位を形成し、陰極から注入された電子の伝達を効率良く行うことができるので、TFTを有するアクティブマトリクス型の発光装置の場合において、TFTの特性に影響を与えることなく発光素子の特性を向上させることができる。

【0244】さらに、有機化合物層に含まれる発光層と電子伝達層とを空間的に分離することにより、発光層においてキャリアの再結合により生じるエネルギーが、ドナー分子を含む電子伝達層で生じる電荷移動錯体へ移動

して発光素子が消光するのを防ぐことができ、発光効率の低下を防ぐことができる。

【図面の簡単な説明】

【図1】 本発明の発光装置の素子構造を説明する図。

【図2】 上方出射型の発光装置の素子構造を説明する図。

【図3】 上方出射型の発光装置の素子構造を説明する図。

10 【図4】 上方出射型の発光装置の素子構造を説明する図。

【図5】 上方出射型の発光装置の素子構造を説明する図。

【図6】 下方出射型の発光装置の素子構造を説明する図。

【図7】 下方出射型の発光装置の素子構造を説明する図。

【図8】 本発明の発光装置の作製工程を説明する図。

20 【図9】 本発明の発光装置の作製工程を説明する図。

【図10】 本発明の発光装置の作製工程を説明する図。

【図11】 本発明の発光装置の作製工程を説明する図。

【図12】 本発明の発光装置の素子構造を説明する図。

【図13】 本発明に用いることのできる回路構成を説明する図。

30 【図14】 本発明の発光装置の素子構造を説明する図。

【図15】 パッシブマトリクス型の発光装置を説明する図。

【図16】 電気器具の一例を示す図。

【符号の説明】

102 陽極

103 有機化合物層

104 陰極

111 正孔輸送層

40 112 発光層

113 分離層

114 電子伝達層

【図 1】

【図 2】

(B)

【図 3】

【図 4】

(A)

(B)

【図 6】

(A)

(B)

【図 5】

502
有機化合物層

【図 7】

【図 8】

【図 12】

(A) 素子構造 (B) 発光素子(O)
(C) 発光素子(S) (D) 発光素子(R)

【図 9】

626～628:第1の不純物領域 621～622:17'VLSI 634,625:第2の不純物領域 637:第3の不純物領域
638:第1の不純物領域 639,640:17'VLSI 641,642:第4の不純物領域 643,644:第5の不純物領域

【図 10】

【图11】

[図13]

[四 16]

【図14】

【図15】

1501電極, 1502第1の電極(陽極), 1503A'カ, 1504有機化合物層, 1505第2の電極(陰極), 1506空間, 1507対応基板,
1508S-A列, 1509FPC

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.