沒有想像中簡單的簡單分類器 KNN

kaggle-預測未來腳踏車租借數量

15/8/12 NCKU Tien Yang

先來瞭解一下 機器學習的方式 可分為這兩種

supervised learning

unsupervised learning

瞭解一下

supervised learning unsupervised learning

再來瞭解一下

classification

V.S

clustering

- · Labeled data points
- · Want a "rule" that assigns labels to new points
- Supervised learning
 - Pata is not labeled
 - · Group pointed that are "close" to each other
 - Unsupervised learning

知道了

supervised learning v.s unsupervised learning classification v.s clustering

知道了

supervised learning v.s unsupervised learning classification v.s clustering

那什麼是KNIN?

KININ

此演算法在2007年IEEE統計排名前十名資料採礦演算法之一,以目前來說是廣泛使用、非常有效而且是易於掌握的演算法。

KININ

此演算法在2007年IEEE統計排名前十名資料採礦演算法之一,以目前來說是廣泛使用、非常有效而且是易於掌握的演算法。

接下來給你看兩張圖你 就知道什麼是KNN了!

4勝

先

看起來簡單透了 但我要怎樣找出 最近的鄰居?

先來看一下資料

資料

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

體重

大隻

A

身高

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

體重

現在加入了一個日

身高190 體重100 他會

是哪一類?

身高

用膝蓋想都知道 [是屬於大隻!

大隻

現在我們來教機器如學習

- 1. 先找 K 個 最 近 鄰 居
- 2. 鄰居決定分類

先來找最近的K 所以最近的是什 蕨類 E就是哪一類

Euclidean distance

身高	100	四曲 舌	100
才同	130	阴豆里	100

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

 $\sqrt{(190-180)^2+(100-90)^2}$

Euclidean distance

$$\sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.$$

距離公式

坐標平面上兩點 $A(x_1, y_1)$, $B(x_2, y_2)$, 則 $\overline{AB} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ 。

誰最近呢?

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

$$\sqrt{\sum_{i=1}^{n} (q_i - p_i)^2}.$$

和 A 最近,所以A是大隻 那E也是大隻

你有想過剛剛是 怎樣找最近距離 的嗎?

是不是每個點指 要算距離然後找 最近的?

Brute Force

N samples in D dimensions $N = 4 \qquad D = 2$

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

找出所有距離 N*D

找出最近的點N

時間複雜度 0[DN2]

感覺還可以更快一個地微大量

K-D Tree

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

K-D Tree

165,50

190,100

比身高

160,45

180,90

	身高	體重	label
A	180	90	大隻
B	175	85	大隻
C	160	45	小支
D	165	50	小支

175,85

比體重

時間複雜度 O[DN logN]

KD-tree感覺頗威 但是當你的維度D 太高時,建樹會見 到哭出來

救星來了ball-tree

Where KD trees partition data along Cartesian axes, ball trees partition data in a series of nesting hyper-spheres.

問題來了?

什麼叫做最近?

為什麼算距離一定 要是Euclidean distance

Euclidean distance 的纸器

A房子: 200坪,用10年,10元的畫

B房子:50坪,用10年,10萬元的畫

C房子:199坪,用10年,9萬元的畫

Euclidean distance 的法共和的任务。

A房子: 200坪,用10年,10元的畫

B房子: 50坪, 用10年,100000元的畫

C房子:199坪,用10年,90000元的畫

C房子離B房子比較近,所以BC的房價一樣

A房子: 200坪,用10年,10元的畫

B房子:50坪,用10年,10萬元的畫

C房子:199坪,用10年,9萬元的畫

C房子離B房子比較近,所以BC的房價一樣

聽你在放屁,A,C的房價要差不多才對,因為坪數差不多

Euclidean distance 的缺點,不同維度會等同看待

Mahalanobis distance降臨

$$D_M(x) = \sqrt{(x - \mu)^T S^{-1}(x - \mu)}.$$

可以解決不同維度會等同看待的問題

Mahalanobis distance

旋轉座標軸

我覺得雖然?

有四票,但是他離藍色真的太近了 這樣很不公平

我覺得這樣不太公 平,應該要對距離 折的比較好一點力 業才

JII weights

weights:距離的反比

score: 1/1

score: (1/10)*4 = 2/5

終於可以開始玩 DATA了

kaggle

Completed • Knowledge • 3,252 teams

Bike Sharing Demand

Wed 28 May 2014 - Fri 29 May 2015 (2 months ago)

You must predict the total count of bikes rented during each hour

datetime	hourly date + timestamp	
season	1 = spring, 2 = summer, 3 = fall, 4 winter	
weather	1: Clear, Few clouds, Partly cloudy, Partly cloudy	
temp	temperature in Celsius	
humidity	relative humidity	
windspeed	wind speed	
holiday	whether the day is considered a holiday	
workingday	whether the day is neither a weekend nor holiday	

Agile Tools for Real World Data

資料分析

地表最強資料採勘&機器學習

DEMO

Github

https://github.com/wy36101299/knn-Bike-Sharing-Demand

reference

scikit-learn http://scikit-learn.org/stable/modules/neighbors.html

[Machine Learning] kNN分類演算法《Big O(1) http://enginebai.logdown.com/posts/241676/knn

pandas: powerful Python data analysis toolkit http://pandas.pydata.org/pandas-docs/stable/