Продвинутая кластеризация

Виктор Китов

v.v.kitov@yandex.ru

Содержание

- Кластеризация, основанная на плотности объектов
 - Алгоритм DBScan

Продвинутая кластеризация - Виктор Китов
Кластеризация, основанная на плотности объектов
Алгоритм DBScan

- 1 Кластеризация, основанная на плотности объектов
 - Алгоритм DBScan

DBScan

 $k,\,arepsilon$ - параметры метода.

Разделим множество объектов на 3 категории:

- ullet основные точки: имеющие $\geq k$ точек внутри arepsilon-окрестности
- пограничные точки: не основные, но содержащие хотя бы одну основную внутри ε -окрестности
- шумовые точки: не основные и не пограничные

Алгоритм

ВХОД: выборка, параметры ε, k .

- 1) Определить основные/пограничные/шумовые точки, используя ε, k .
- 2) Создать граф: узлы-основные точки, связи если точки на расстоянии $\leq \varepsilon$ друг от друга.
- Определить компоненты связности в графе =кластеры (методом распространения).
- 4) Соотнести основные точки кластерам=компонентам связности, а пограничные-по основным в их ε окрестности.

ВЫХОД: разбиение на кластеры (основных и пограничных точек)

Пример работы DBScan¹

¹Источник иллюстрации.

Комментарии

- Соединение основных точек метод одиночной связи в аггломеративной кластеризации с остановкой $\rho > \varepsilon$.
- Преимущества: автоматически определяется # кластеров, устойчиво к выбросам.
- Недостаток: не работает с кластерами разной плотности
 - высокое k-пропустим C; низкое k-A и B объединяться:

Кластеризация, основанная на плотности объектов Алгоритм DBScan

Кластеризация сдвигом среднего значения

Кластеризация сдвигом среднего значения (mean shift): точки итеративно сдвигаются в направлении локального увеличения плотности по правилу

Пример сходимости для top-hat ядра
$$K = \mathbb{I}\left[rac{
ho(z,x)}{h} \leq 1
ight]$$

Кластер - итоговый локальный максимум плотности (отбрасываем максимумы с p(x) < au).

Комментарии

• Правило сдвига:

$$z_0 = x_n, \quad z = \frac{\sum_{k=1}^{N} K(\rho(z_i, x_k)/h) x_k}{\sum_{k=1}^{N} K(\rho(z, x_k)/h)}$$

- Ядро K(·) некоторая ↓ ф-ция (ядро).
- Пример: Гауссово ядро

$$K(\rho(x,x')/h) = e^{-\rho(x,x')^2/h^2}$$

- Преимущества:
 - автоматически определяется #кластеров, кластеры могут быть произвольной формы
- Недостаток: вычислительная сложность, нет фильтрации выбросов

Кластеризация mean shift

ВХОД: выборка $x_1,...x_N$, ядро $K(\cdot)$, ширина окна h.

ДЛЯ
$$n=1,...N$$
:

$$z_n := x_n$$

ПОВТОРЯТЬ до сходимости:

$$z_n := \frac{\sum_{k=1}^N K(\rho(z_n, x_k)/h) x_k}{\sum_{k=1}^N K(\rho(z, x_k)/h)}$$

ассоциировать x_n пику z_n

Объединить почти одинаковые расположения пиков $z_1,...z_N$.

ВЕРНУТЬ кластеры точек, отнесенных одинаковым пикам плотности.

Содержание

- Кластеризация, основанная на плотности объектов
- Иерархическая кластеризация
 - Иерархическая кластеризация сверху вниз
 - Иерархическая кластеризация снизу вверх
- 3 Оценка качества кластеризации

Мотивация иерархической кластеризации

- #кластеров K заранее неизвестно.
- Кластеризация обычно не плоская, а иерархическая с разными уровнями детализации:
 - сайты в интернете
 - книги в библиотеке
 - животные в природе
- Подходы к иерархической кластеризации:
 - сверху вниз
 - более естественное для людей
 - снизу вверху (аггломеративная кластеризация)

Иерархическая кластеризация сверху вниз

- 2 Иерархическая кластеризация
 - Иерархическая кластеризация сверху вниз
 - Иерархическая кластеризация снизу вверх

Иерархическая кластеризация сверху вниз

Алгоритм

ВХОД:

выборка объектов, алгоритм плоской кластеризации *А*, правила выбора листа и остановки

инициализировать дерево корнем, содержащим все объекты

ПОВТОРЯТЬ

выбрать лист *L* по правилу выбора листа используя *A* разбить *L* на кластеры *L*₁,...*L*_K добавить листы к *T*, соответствующие *L*₁,...*L*_K ПОКА выполнено условие остановки

Комментарии

- Алгоритм выбора листа:
 - ближайший к корню
 - => сбалансированное дерево по высоте
 - с максимальным числом элементов
 - => сбалансированное дерево по #объектов в листах

Иерархическая кластеризация снизу вверх

- 2 Иерархическая кластеризация
 - Иерархическая кластеризация сверху вниз
 - Иерархическая кластеризация снизу вверх

DENCLUE - иерахическое обобщение mean shift

- ① Производим кластеризацию методом mean shift.
- ② Объединяем кластеры с пиками, соединяемые цепочкой высоко вероятных значений плотности $p(x_{i(k)}) \ge h$.
 - ullet варьируя h получаем иерархическую кластеризацию

Аггломеративная кластеризация - идея

Иерархическая кластеризация снизу вверх

Аггломеративная кластеризация - алгоритм

инициализировать матрицу попарных расстояний $M \in \mathbb{R}^{N \times N}$ между кластерами из отдельных объектов $\{x_1\},...\{x_N\}$

ПОВТОРЯТЬ:

- 1) выбрать ближайшие кластеры i и j
- 2) объединить $i, j \rightarrow \{i+j\}$
- 3) удалить строки/столбцы i, j из M
- 4) добавить строку/столбец для нового $\{i+j\}$

ПОКА не выполнено условие остановки

ВЕРНУТЬ иерархическую кластеризацию

- Условие остановки:
 - Остался 1 кластер либо осталось $\leq K$ кластеров
 - расстояние между ближайшими кластерами > порога.
- Частичное обучение: если часть классов известна объединяем *i* и *j*, только если там представители одного класса.

Расстояние между кластерами

- Расстояние между объектами => расстояние между кластерами:
 - Метод одиночной связи (single linkage)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

• Метод полной связи (complete linkage)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

• Метод средней связи (group average link)

$$\rho(A,B) = \mathsf{mean}_{a \in A, b \in B} \rho(a,b)$$

 Центроидный метод (pair-group method using the centroid average)

$$ho(A,B)=
ho(\mu_A,\mu_B)$$

где $\mu_U=rac{1}{|U|}\sum_{x\in U} x$ или $m_U=\mathit{median}_{x\in U}\{x\}$

Свойства межкластерных расстояний³

- Метод одиночной связи
 - извлекает кластеры произвольной формы
 - может случайно объединить разные кластеры цепочкой выбросов
 - $\bullet \ M_{(i\cup j)k} = \min\{M_{ik}, M_{jk}\}$
- Метод полной связи
 - создает компактные кластеры
 - $\bullet \ M_{(i\cup j)k} = \max\{M_{ik}, M_{jk}\}$
- Метод средней связи² и центроидный метод-компромисс между одиночной и полной связью.

 $^{^{2}}$ Как $M_{(i \cup j)k}$ будет пересчитываться для него?

³Пусть мы модифицируем $\rho(x,x')$ монотонным преобразованием F: $\rho'(x,x')=F(\rho(x,x'))$. При каких межкластерных расстояниях результат не изменится?

Свойства межкластерных расстояний

Метод средней связи предпочтительнее центроидного, поскольку

- центроидный метод может приводить к немонотонной последовательности расстояний дендрограммы.
 - методы одиночной, полной и средней связи дают монотонную последовательность
- представление кластера его центром не учитывает структуру кластера
- центроидный метод предпочитает более крупные кластера, для которых центроиды получаются в среднем ближе

Комбинация К-средних и аггломеративной

- Сложность аггломеративной кластеризации K объектов: $O(K^2 \ln K)$
 - через алгоритм кучи
- Для снижения вычислений:
 - **1** применим K средних к N объектам (сложность O(N))
 - ② применим аггломеративную кластеризацию к найденным K кластерам
 - она позволяет выделять невыпуклые кластера

Содержание

- Кластеризация, основанная на плотности объектов
- 2 Иерархическая кластеризация
- Оценка качества кластеризации
 - Оценки не использующие разметку
 - Оценки, использующие разметку

Оценка качества кластеризации

Оценка качества кластеризации:

- <u>если кластеризация-промежуточный этап</u>: по качеству итоговой задачи
- если нет разметки:
 - используют идею, что кластеризация хороша, если:
 - объекты одного кластера похожи
 - объекты разных кластеров непохожи
- если есть разметка:
 - учитывать инвариантность к переименованию
 - имеет смысл для малого #размеченных объектов
 - иначе классификация

Продвинутая кластеризация - Виктор Китов Оценка качества кластеризации

Оценки не использующие разметку

- 3 Оценка качества кластеризации
 - Оценки не использующие разметку
 - Оценки, использующие разметку

Метрики качества⁴

- Пусть z_n номер кластера для x_n .
- Среднее внутрикластерное расстояние:

$$F_{0} = \frac{\sum_{i < j} \mathbb{I} [z_{i} = z_{j}] \rho(x_{i}, x_{j})}{\sum_{i < j} \mathbb{I} ||z_{i} = z_{j}||}$$

• Среднее межкластерное расстояние:

$$F_1 = \frac{\sum_{i < j} \mathbb{I} \left[z_i \neq z_j \right] \rho \left(x_i, x_j \right)}{\sum_{i < j} \mathbb{I} \left\| z_i \neq z_j \right\|}$$

• Композитные метрики:

$$F_0/F_1$$
, $F_1 - F_0$

 $^{^4}$ Какие метрики нужно максимизировать, а какие - минимизировать? $^{27/44}$

Индекс Дэвиса-Болдуина

- $s_i = \frac{1}{|C_i|} \sum_{n \in C_i} \rho(\mu_i, x_n)$ диаметр кластера i.
- $d_{ij} =
 ho\left(\mu_i, \mu_j
 ight)$ расстояние между центроидами i и j.
- Качество разделения кластеров і и ј:

$$R_{ij} = \frac{s_i + s_j}{d_{ij}}$$

• Индекс Дэвиса-Болдуина:

$$DB = \frac{1}{K} \sum_{k=1}^{K} \max_{i \neq k} R_{ik}$$

- : Быстро вычисляется.
- ⊖ : Поощряет выпуклые кластера
- ⊖ : Из-за центроидов завязано на Евклидово расстояние

Коэффициент силуэта⁵

Качество кластеризации каждого объекта x_i определим по формуле:

$$Silhouette_i = \frac{d_i - s_i}{\max\{d_i, s_i\}}$$

где среднее расстояние от x_i до объектов

- s_i того же кластера
- d_i ближайшего чужого кластера

Общее качество классификации (коэффициент силуэта):

$$Silhouette = \frac{1}{N} \sum_{i=1}^{N} \frac{d_i - s_i}{\max\{d_i, s_i\}}$$

⁵Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53–65.

Оценки не использующие разметку

Обсуждение

- Преимущества
 - Интерпретируемость: Silhouette $\in [-1,1],$
 - 1: идеальная кластеризация
 - 0: случайная кластеризация
 - -1:полностью некорректная (инвертированная) кластеризация
- Недостатки
 - сложность $O(N^2D)$
 - можно рассчитывать по случайной подвыборке
 - поощряет выпуклые кластеры

Оценки не использующие разметку

- Отсортируем объекты в каждом кластере по коэффициенту силуэта.
- Качество кластеризации среднее значение коэффициента и отсутствие отрицательных значений.

⁶Эксперимент в sklearn.

- Отсортируем объекты в каждом кластере по коэффициенту силуэта.
- Качество кластеризации среднее значение коэффициента и отсутствие отрицательных значений.

⁶Эксперимент в sklearn.

- Отсортируем объекты в каждом кластере по коэффициенту силуэта.
- Качество кластеризации среднее значение коэффициента и отсутствие отрицательных значений.

⁶Эксперимент в sklearn.

Оценки не использующие разметку

- Отсортируем объекты в каждом кластере по коэффициенту силуэта.
- Качество кластеризации среднее значение коэффициента и отсутствие отрицательных значений.

⁶Эксперимент в sklearn.

- Отсортируем объекты в каждом кластере по коэффициенту силуэта.
- Качество кластеризации среднее значение коэффициента и отсутствие отрицательных значений.

⁶Эксперимент в sklearn.

Индекс Калинского

• Внутрикластерная (within cluster) ковариационная матрица

$$W = \frac{1}{N - K} \sum_{k=1}^{K} \sum_{x \in C_k} (x - \mu_k) (x - \mu_k)^T$$

Межкластерная (between cluster) ковариационная матрица

$$B = \frac{1}{K-1} \sum_{k=1}^{K} N_k (\mu_k - \mu) (\mu_k - \mu)^T$$

Индекс Калинского:

$$I = \frac{\operatorname{tr} B}{\operatorname{tr} W} = \frac{N - K}{K - 1} \frac{\operatorname{tr} \left\{ \sum_{k=1}^{K} N_k \left(\mu_k - \mu \right) \left(\mu_k - \mu \right)^T \right\}}{\operatorname{tr} \left\{ \sum_{k=1}^{K} \sum_{x \in C_k} \left(x - \mu_k \right) \left(x - \mu_k \right)^T \right\}}$$

⁷https://www.researchgate.net/publication/233096619_A_Dendrite_Method_for

Индекс Калинского

• Используем свойства

$$\sum_{i} \operatorname{tr} \left\{ \alpha_{i} A_{i} \right\} = \sum_{i} \alpha_{i} \operatorname{tr} A_{i}$$

$$\operatorname{tr} \left\{ AB \right\} = \operatorname{tr} \left\{ BA \right\}, \ \operatorname{tr} a = a \ \forall a \in \mathbb{R}$$

$$I = \frac{\operatorname{tr} B}{\operatorname{tr} W} = \frac{N - K}{K - 1} \frac{\operatorname{tr} \left\{ \sum_{k=1}^{K} N_{k} (\mu_{k} - \mu) (\mu_{k} - \mu)^{T} \right\}}{\operatorname{tr} \left\{ \sum_{k=1}^{K} \sum_{x \in C_{k}} (x - \mu_{k}) (x - \mu_{k})^{T} \right\}}$$

$$= \frac{N - K}{K - 1} \frac{\sum_{k=1}^{K} N_{k} \operatorname{tr} \left\{ (\mu_{k} - \mu)^{T} (\mu_{k} - \mu) \right\}}{\sum_{k=1}^{K} \sum_{x \in C_{k}} \operatorname{tr} \left\{ (x - \mu_{k}) (x - \mu_{k})^{T} \right\}} = \frac{N - K}{K - 1} \frac{\sum_{k=1}^{K} N_{k} \|\mu_{k} - \mu\|^{2}}{\sum_{k=1}^{K} \sum_{x \in C_{k}} \|x - \mu_{k}\|^{2}}$$

 Измеряем отношение межкластерного к внутрикластерному разбросу.

Ограничение для невыпуклого кластера

• Сложность O(ND), но поощряет выпуклые кластеры.

- Из-за невыпуклости синего кластера коэффициент силуэта и индекс Калинского будут занижать хорошее качество кластеризации, т.к.
 - s_i велико, а d_i мало

$$ullet$$
 $\sum_{k=1}^K \mathsf{N}_k \left\| \mu_k - \mu \right\|^2$ мало, а $\sum_{k=1}^K \sum_{x \in \mathcal{C}_k} \left\| x - \mu_k \right\|^2$ велико

Продвинутая кластеризация - Виктор Китов Оценка качества кластеризации Оценки, использующие разметку

3 Оценка качества кластеризации

- Оценки не использующие разметку
- Оценки, использующие разметку

Перекрестная таблица

• Пример перекрестной таблицы (contingency matrix):

	кластер 1	кластер 2	кластер 3
класс 1	5	2	0
класс 2	0	3	4

- Определяем разброс каждого класса по кластерам и разброс кластера по классам.
- ⊖ : Сложно анализировать для большого числа кластеров/классов. Не числовая метрика качества.

Перекрестная таблица

• Пример перекрестной таблицы (contingency matrix):

	кластер 1	кластер 2	кластер 3
класс 1	5	2	0
класс 2	0	3	4

- Определяем разброс каждого класса по кластерам и разброс кластера по классам.
- ⊖ : Сложно анализировать для большого числа кластеров/классов. Не числовая метрика качества.
 - Числовая мера качества Unsupervised Clustering Accuracy:
 - П все возможные перенумеровки результатов кластеризации

$$ACC(\boldsymbol{c}, \boldsymbol{z}) = \max_{\pi \in \Pi} \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\left[c_n = \pi\left(z_n\right)\right]$$

Матрица сочетаемости

• Матрица сочетаемости $\in \mathbb{R}^{2 \times 2}$ вычисляет счётчики #пар (x_i, x_j) .

	$z_i = z_j$	$z_i \neq z_j$
$y_i = y_j$	n ₁₁	n ₁₂
$y_i \neq y_j$	n ₂₁	n ₂₂

• Как понять по матрице качество кластеризации?

Матрица сочетаемости

• Матрица сочетаемости $\in \mathbb{R}^{2 \times 2}$ вычисляет счётчики #пар (x_i, x_j) .

	$z_i = z_j$	$z_i \neq z_j$
$y_i = y_j$	n ₁₁	n ₁₂
$y_i \neq y_j$	n ₂₁	n ₂₂

- Как понять по матрице качество кластеризации?
- Определяем сочетаемость разбиения по классам-кластерам.
- ⊖ : Не даёт единой метрики качества.

Rand index

- Rand index единая метрика по матрице сочетаемости.
- ullet Пусть $y_1,...y_N$ истинная разметка. Обозначим 8

$$n_{11} = |\{(x_i, x_j) : z_i = z_j \& y_i = y_j\}|$$

$$n_{22} = |\{(x_i, x_j) : z_i \neq z_j \& y_i \neq y_j\}|$$

$$RandInd = RI = \frac{n_{11} + n_{22}}{C_2^N} = \frac{n_{11} + n_{22}}{n_{11} + n_{12} + n_{21} + n_{22}} \in [0, 1]$$

• В чем недостаток?

⁸Это loss или score?

⁹ J-близость Жаккарда между множеством пар, у которых совпали классы и множеством пар, у которых совпали кластеры.

Rand index

- Rand index единая метрика по матрице сочетаемости.
- ullet Пусть $y_1,...y_N$ истинная разметка. Обозначим 8

$$n_{11} = |\{(x_i, x_j) : z_i = z_j \& y_i = y_j\}|$$

$$n_{22} = |\{(x_i, x_j) : z_i \neq z_j \& y_i \neq y_j\}|$$

$$RandInd = RI = \frac{n_{11} + n_{22}}{C_2^N} = \frac{n_{11} + n_{22}}{n_{11} + n_{12} + n_{21} + n_{22}} \in [0, 1]$$

ullet В чем недостаток? $\uparrow RI$ с $\uparrow \#$ кластеров. Лучше 9

AdjustedRandInd
$$= \frac{RI - \mathbb{E}\left\{RI\right\}}{\max\left(RI\right) - \mathbb{E}\left\{RI\right\}}$$
 либо $\mathsf{J} = \frac{n_{11}}{n_{11} + n_{12} + n_{21}}$

⁸Это loss или score?

⁹ J-близость Жаккарда между множеством пар, у которых совпали классы и множеством пар, у которых совпали кластеры.

Гомогенность¹⁰

• Обозначим N=#объектов, $n_k=\#$ объектов в кластере k, $m_c=\#$ объектов в классе c, $n_{ck}=\#$ объектов класса c в кластере k.

$$H_{class} = -\sum_{c=1}^{C} \frac{m_c}{N} \log \frac{m_c}{N}$$

$$H_{clust} = -\sum_{k=1}^{K} \frac{n_k}{N} \log \frac{n_k}{N}$$

$$H_{class|clust} = -\sum_{k=1}^{K} \frac{n_k}{N} \sum_{c=1}^{C} \frac{n_{ck}}{n_k} \log \frac{n_{ck}}{n_k}$$

 $H_{class|clust} = 0$ при полном объяснении, $H_{class|clust} = 1$ нет связи

¹⁰ https://aclanthology.org/D07-1043.pdf

Гомогенность

$$\mathsf{Homogeneity} = 1 - \frac{\textit{H(class|clust)}}{\textit{H(class)}}$$

- Гомогенность показывает долю информации о классах, объясненной кластеризацией.
 - 1: в кластерах представители только 1 класса
 - 0: в кластерах распределение классов=априорному распределению
- Какой недостаток?

Гомогенность

$$\mathsf{Homogeneity} = 1 - \frac{\textit{H(class|clust)}}{\textit{H(class)}}$$

- Гомогенность показывает долю информации о классах, объясненной кластеризацией.
 - 1: в кластерах представители только 1 класса
 - 0: в кластерах распределение классов=априорному распределению
- Какой недостаток? Гомогенность поощряет †#кластеров
 - =1, когда каждый объект в своём кластере

Полнота11

 Нужна доп. мера полноты (насколько объекты одного класса оказываются в одном кластере)

$$\mathsf{Completeness} = 1 - \frac{H\left(\mathit{clust}|\mathit{class}\right)}{H\left(\mathit{clust}\right)}$$

- Полнота =1, если класс полностью определяет кластер (все объекты класса-в одном кластере)
- Какой недостаток?

https://aclanthology.org/D07-1043.pdf

Полнота11

 Нужна доп. мера полноты (насколько объекты одного класса оказываются в одном кластере)

$$\mathsf{Completeness} = 1 - \frac{H(\mathit{clust}|\mathit{class})}{H(\mathit{clust})}$$

- Полнота =1, если класс полностью определяет кластер (все объекты класса-в одном кластере)
- Какой недостаток? Полнота поощряет ↓#кластеров
 - ullet =1, когда все объекты в одном кластере

 $[\]overline{\text{https://aclanthology.org/D07-}1043.pdf}$

V-мера¹²

 V-мера - среднее гармоническое от гомогенности и полноты.

$$V = \frac{1}{\frac{1}{2}\mathsf{Homogeniety} + \frac{1}{2}\mathsf{Completeness}}$$

• Взвешенный учёт гомогенности и полноты:

$$V_{eta} = rac{1}{\left(rac{eta}{1+eta}
ight) ext{Homogeniety} + rac{1}{1+eta} ext{Completeness}}$$

• $V = V_{\beta}$ при $\beta = 1$.

 $[\]overline{^{12}}$ https://aclanthology.org/D07-1043.pdf

Нормализованная взаимная информация

• Взаимная информация - степень связи сл. вел. X, Y:

$$MI(X,Y) = KL(P(X,Y)||P(X)P(Y))$$

$$= \sum_{x \in dom(X)} \sum_{y \in dom(Y)} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$MI(X, Y) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

• Нормализованная взаимная информация $(\mathit{NMI} \in [0,1])^{13}$ - др. вариант агрегации полноты и гомогенности:

$$\begin{split} NMI\left(\textit{clust}, \textit{class}\right) &= \frac{\textit{MI}\left(\textit{clust}, \textit{class}\right)}{\max\left\{H_{\textit{clust}}, H_{\textit{class}}\right\}} \\ &= \frac{\textit{H}\left(\textit{clust}\right) - \textit{H}\left(\textit{clust}|\textit{class}\right)}{\max\left\{H_{\textit{clust}}, H_{\textit{class}}\right\}} = \frac{\textit{H}\left(\textit{class}\right) - \textit{H}\left(\textit{class}|\textit{clust}\right)}{\max\left\{H_{\textit{clust}}, H_{\textit{class}}\right\}} \end{split}$$

¹³Это loss или score?

Заключение

- Плоская кластеризация:
 - К представителей
 - μ_k вычисляемый (среднее: K-means [доступно ядерное обобщение], медиана: K medians)
 - μ_k существующий объект
 - Основанная на плотности
 - DB-scan, mean-shift, DENCLUE
- Иерархическая кластеризация
 - сверху-вниз: рекурсивная плоская кластеризация
 - снизу-вверх (аггломеративная)
- Оценка качества кластеризации:
 - размеры кластеров vs. межкластерные расстояния
 - сопостравление кластеров с истинными метками
 - важна инвариантность к перенумеровке кластеров