1.	Ukupan broj poruka koje se razmijene (pošalju) u provedbi komunikacijske strukture binarnog stabla za 2D procesora iznosi >>> ${\bf 2}^d$ - ${\bf 1}$.
2.	Ako je učinkovitost 25%, a ubrzanje je 4, koliki je broj procesora? >>> 16? (S=P*E – S=ubrzanje, E=učinkovitost pa onda P=S/E tj 4/0.25 = 16)
3.	Pridruživanje se provodi ukoliko je broj veći od broja >>> zadataka procesora.
4.	Na APRAM računalu, unutar istog asinkronog odsječka, samo procesor smije pristupiti memorijskoj lokaciji. >>> jedan istoj globalnoj
5.	Koje dodatne parametre uvodi model APRAM u odnosu na model PRAM? >>> B (vrijeme potrebno za sinkronizaciju p procesora) i d – vrijeme za globalno čitanje/pisanje
6.	Ukupan broj poruka koji se razmjene(pošalju) u provedbi komunikacijske strukture hiperkocke za 2d procesa iznosi??.
7.	Povecanje zrnatosti može se postici tehnikama >>> Povećanje zadataka, uvišestručavanje računanja
8.	Ako je ubrzanje linearno, ucinkovitost je(kakvog iznosa?) >>> jednaka 1
9.	Navedite sve četiri vrste aPRAM instrukcija: >>> Globalno čitanje, Globalno pisanje, Lokalna operacija,Sinkronizacija / ograda.
10.	Faza pridruživanja se provodi ukoliko je broj Zadataka veći od broja _procesora
11.	Uvišestručavanje računanja je tehnika kojom se ukupna količina računanja kako bi se količina komunikacije. povećava smanjila
12.	Pojava zagušenja voditelja u modelu voditelj-radnik moguća je uz broj radnika. >>> prevelik
13.	MPI mehanizam dijeljenja komunikatora omogućava izvedbu paralelne kompozicije modula u paralelnom programu.
14.	MPI mehanizam modula u paralelnim programima omogućava izvedbu <i>slijedne i paralelne kompozicije modula</i>
15.	Povećanje zrnatosti možemo ostvariti tehnikama: _ <i>Povećanja zadataka i uvišestručavanja računanja</i>
16.	Prilikom istodobnog čitanja iste memorijske lokacije u CRCW PRAM računalu, svaki procesor će pročitati vrijednost. >>> istu/jednaku
17.	Zrnatost zadataka se može definirati kao količine računanja (lokalnog rada) i količine komunikacije (nelokalnog rada)

18.	U modelu raspodijeljene memorije, procesori mogu komunicirati jedino >>> <i>razmjenom poruka</i> .
19.	Složenost provedbe postupka scan niza duljine n elemenata na PRAM računalu uz p procesora gdje je p< $(n/2)$ iznosi >>> $O(n/p + log p)$.
20.	Prilikom izvođenja optimalno postupka +_reduciranja niza duljine n na PRAM računalu, ukupan broj operacija zbrajanja na svim procesorima iznosi n-1 .
21.	Na APRAM računalu, uz trajanje globalnog pristupa 4 vremenske jedinice, 2 uzastopna globalna pristupa trajat će >>> 5 (4 + 2 - 1 tj (d+k -1)).
22.	Prilikom prilagodbe PRAM algoritma za APRAM računalo uz (p/B) procesora, gdje jedan APRAM procesor izvodi instrukcije za B PRAM procesora, jedna EREW PRAM instrukcija izvodi se u koraka $>>> 2(d+n/p-1)+2B+n/p=2d+2n/p-2+2B+n/p=>n=p/B=>5B+2d-2$.
23.	Optimalna složenost algoritma reduciranja niza duljine n na APRAM računalu uz n procesora iznosi >>> O(B log n)
24.	Algoritam scan se odnosi na bilo koju operaciju. >>> binarnu asocijativnu
25.	Poželjna svojstva paralelnih programa s:(4) istodobnost, skalabilnost, lokalnost i modularnost.
26.	Vrste instrukcija na APRAM računalu su:(4) >>> globalno čitanje, globalno pisanje, lokalna operacija i sinkronizacija
27.	Na APRAM računalu, uz trajanje globalnog pristupa 3 vremenske jedinice, 4 uzastopna globalna pristupa trajat će: $>>> 6 (d + k - 1)$.
28.	Amdahlov zakon definira iznos najvećeg mogućeg u ovisnosti o >>> ubrzanja udjelu programa koji se može paralelizirati
29.	Vremenska složenost provedbe postupka scan niza duljine n elemenata na PRAM računalu uz p procesora gdje je $p < n/2$, iznosi >>> $O(n/p + log p)$
30.	Povratak iz blokirajuće MPI funkcije znači: >>> da je funkcija završila i može se pristupati memorijskoj lokaciji.
31.	Povratak iz neblokirajuće MPI funkcije znači: >>> da se može ponovno pristupiti toj memorijskoj lokaciji, ali ne i da je funkcija uspješno izvršena – to se mora naknadno provjeriti.
32.	Navedite sve podjele komunikacije u paralelnim algoritmima (4) >>> Lokalna/globalna komunkacija, strukturirana/nestrukturirana, statička/dinamička, sinkrona/asinkrona

- 33. Ako su ostali parametri isti i povećavamo broj procesora >>> učinkovitost monotono pada, a ubrzanje raste do neke točka pa nakon tog pada 34. Zrnatost zadataka se može definirati kao omjer između ____ i ___ >>> količine računanja (lokalnog rada) i količine komunikacije (nelokalnog rada). Koje tvrdnje su istinite: a) u modelu raspodijeljene memorije procesori nemaju vlastiti spremnik b) u modelu zajedničke memorije komunikacija je moguća jedino razmjenom poruka c) u modelu raspodijeljene memorije više procesora koristi isti spremnik d) u modelu raspodijeljene memorije programer je odgovoran za dijeljenje podataka >>> c) i d) Nedostaci MIMD modela paralelnog računala su: (a) odvojene su instrukcije za skalarne i vektorske operande (b) sva grananja se primjenjuju na sve procesore (c) općenito teže za programirati (d) procesori su sinkronizirani po instrukcijama >>> b) i c) Prednosti MIMD modela paralelnog računala su: (a) moguće je izvoditi različite nizove instrukcija (b) jednom instrukcijom paralelno obrađujemo više podataka (c) sva grananja se primjenjuju na sve procesore (d) procesori su sinkronizirani po instrukcijama
- 1.) T/N: Kako bi ubrzanje bilo veće od 1, trajanje komunikacije i čekanja mora biti kraće od trajanja računanja na pojedinom procesoru.
- TOČNO

>>> a) i b)

- 2.) T/N: Ukupno trajanje računanja (TR) paralelnog programa može ovisiti o raspodijeli zadataka po procesorima.
- TOČNO -
- 4.) T/N: Trajanje izvođenja paralelnog programa ne ovisi o promatranom procesoru iz skupa svih procesora koji izvode paralelni program.

- TOČNO

- 5.) T/N: Sitnozrnata podjela posla podrazumijeva malu količinu komunikacije u odnosu na veću količinu računanja.
- **NETOČNO** sitnozrnata znači puno zadataka od kojih je svaki malen, tj malo računanja, puno komunikacije
- 6.) T/N: Trajanje izvođenja paralelnog programa ovisi o promatranom procesoru iz skupa svih procesora.

NETOČNO - ovo je druga verzija 4. pitanja

- 7.) T/N: Prilikom pridruživanja zadataka procesorima, zadatke koji se izvode neovisno poželjno je pridružiti istom procesoru.
- **NETOČNO** to je osnova za paralelizaciju neovisni zadaci na razlicitim procesorima.
- 8.) T/N: Jednom procesoru može biti dodijeljeno više MPI procesa.

- TOČNO

- 9.) T/N: Trajanje izvođenja paralelnog programa je po definiciji neovisno o promatranom procesoru.
- TOČNO
- 10.) T/N: Kako bi ubrzanje bilo vece od 1 trajanje komunikacije i cekanja mora biti krace od racunanja na pojedinom procesu.
- TOČNO isti prvi zadatak
- 12.) T/N: Trajanje racunanja(Tr) paralelnog programa može ovisiti o raspodjeli zadataka po procesorima.

TOČNO

Navedite i ukratko opišite barem 3 primjene (pre)scan algoritma:

- a. **Najveći element u nizu** na zadanom nizu izvedemo postupak reduciranja uz operator max() koji prima dva argumenta i vraća većega: max-reduciranje
- b. **Provjera uređenosti niza** -pridijelimo procesor svakom elementu niza i svaki procesor provjerava je li njegov element manji ili jednak sljedećemu i rezultat zapisuje kao 1 ili 0. Na dobivenom vektoru izvedemo and-prescan i provjerimo vrijednost zadnjeg elementa (zapravo je dovoljno i and-reduciranje)
- **c. Alokacija procesora** npr. imamo zadan vektor zahtjeva za memorijom za tri procesa (element vektora govori koliko memorije traži određeni proces): [4 1 3]

Kako odrediti početne adrese memorijskih segmenata? Rješenje se dobiva +_prescan postupkom:

[045]

Navedite i opišite dodatne parametre koji definiraju svojstva APRAM računala (u odnosu na PRAM računalo).

- i. d- odnos vremena globalnog i lokalnog pristupa memoriji
- ii. B=B(p)- vrijeme potrebno za sinkronizaciju svih p procesora