CIVIO2-STRUCTURES and MATERIALS

Topic: Design of Truss Members

$$|) \rho_{cr} = \frac{\pi^2 E I}{L^2}$$

- i) Estimate Self Weight
 ii) Calculate the Joint-Loads from Tributary Area
 iii) Calculate Reaction Forces
 iii) Solve for Member Internal Forces { Sections
 v) Size the Cross Sections of Each Member to Safely Carry the Load

Compression
$$F_{\text{fail}} = A \cdot f_y$$
 or $F_{\text{fail}} = \frac{\pi^2 E I}{L^2}$ Smaller will Govern

We Will Use HSS (Hollow Structural Section) Steel, E=200,000MPa fy=350MPa

Square HSS Rectangular HSS

HSS Designation

Circular HSS

HSS H×B×t

Example HSS 305 x 305 x 12.7

Why HSS?

Strong (High Second Moment of Area)

21 Design for Tension

Fsafe
$$\geq$$
 Fdemand

$$\frac{A.fy}{FOS} \ge F_{demand}$$

$$\frac{A \cdot f_{y}}{2} \ge F_{demand}$$

3) Design for Compression

esign for Compression

Use F05 of 2

against compression

fy

Tield

$$A \ge \frac{2|F_{demand}|}{fy}$$

Use F05 of 2

against compression

griefd

ii) Buckling
$$\rightarrow P_{cr} = \frac{\Pi^2 E I}{L^2}$$
 $P_{safe} = \frac{\pi^2 E I}{FOS L^2}$

For buckling
$$FOS = 3.0 \rightarrow I \ge \frac{FOS L^2 Fdemand}{\pi^2 E}$$

Stress at Buckling

$$\frac{P_{cr}}{A} = \frac{\pi^2 EI}{A \cdot L^2} \qquad r = \frac{\Xi}{A}$$

$$\sigma_{\text{Euler}} = \frac{\pi^2 E r^2}{L^2}$$

$$= \frac{\pi^2 E}{\left(\frac{L}{\Gamma}\right)^2} \qquad \frac{L}{\Gamma} = \text{Slenderness Ratio}$$

$$\frac{L}{\Gamma} \leq 200 \text{ always}$$

Member Tupe	Cross-Sectional Area, A	Second Moment of Area I	Radius of Gypation, r
Tension	> 2 Fedemand fy	N/A	≥ 1/200
Compression	> 2 Fdemand fy	> 3.0 Farmond L2 T 2 E	≥ <u>L</u> 200

Example $F_{\text{olemand}} = 250 \text{KN}$ Compression L = 5000 mm $\sigma_y = f_y = 350 \text{MPa}$

 $A \geq \frac{2 \cdot 250000}{350}$

≥1429mm²

 $T \ge \frac{3.0(250000)(5000^2)}{\pi^2(200000)}$ $\ge 9.5 \times 10^6 \text{ mm}^4$

Γ≥25mm

Select HSS 152 x 152 x 4.8