1 | Intergration

Antiderivatives table

Function	Antidervative
x^n	$\frac{x^{n+1}}{n+1} + c, x \neq -1$
af(x)	a*(f(x)dx)
$\frac{1}{x}$	\(ln(\
$egin{array}{l} af(x) \ rac{1}{x} \ \mathbf{X} ackslash \end{array}$)\)
sin(at)	$-\frac{cos(t)}{}$
cos(at)	$\overline{sin(t)}^a$
e^a	e^{a}
$\frac{1}{1+(ax)^2}$	$tan^-1(ax)$
a	$sin^{-1}(\frac{ax}{k})$
$\sqrt{k^2-(ax)^2}$	· W
$\frac{\sqrt{k^2 - (ax)^2}}{\sqrt{1}}$ $\frac{-1}{\sqrt{k^2 - (ax)^2}}$	$\cos^-1(\frac{ax}{k})$
ln(x)	$xln(x) - x \le $ remember this
$\int f(x)g'(x)dx$	$f(x)g(x) - \int f'(x)g(x)dx$
Arc Length of function $f(x)$	$\sqrt{1+f'(x)^2}dx$
Arc length of polar function $x(t), y(t)$	$\sqrt{x'(t)^2 + y'(t)^2}(dt)$
r(heta)	$\int_{a}^{B} (r(\theta)^{2}) d\theta$
$\dot{sec^2}(x)$	tan(x)

Also, fun other things

Function	Other Function
$\cos 2\theta$	$1 - 2sin^2\theta$
$\cos 2\theta$	$2\cos^2\theta - 1$
$sec^2x - 1$	tan^2x

1.1 | Some Limits Too!

$$\lim_{\theta \to \infty} tan^{-1}(\theta) = \frac{\pi}{2}$$

With the reverse product rule, try to make f(x) the simpler derivative, and g(x) the simpler antiderivative Pasted image 20210328150621.png

1.2 | Useful thing

- Intergration by Parts (reverse product rule) (the f(x)g'(x) rule above)
- u-Substitution (reverse chain rule)
- Compleeting the Square + arcsin/arctan
- Long divide, then intergrate