Раздел 4. Линейные уравнения с вполне непрерывным оператором в гильбертовом пространстве

Лекция 10 Нормальная разрешимость операторов и линейные уравнения с компактным симметричным оператором.

Необходимое условие разрешимости операторного уравнения и нормальная разрешимость оператора.

Рассмотрим операторное уравнение

$$Bx = y$$
,

где $B: H_1 \to H_2$ — линейный ограниченный оператор. Нас интересует вопрос о существовании решения этого уравнения (единственность сейчас не затрагиваем, но ответ мы знаем: решение единственно, если ядро оператора тривиально). Очевидный (и тавтологический) ответ такой: решение существует, если y принадлежит образу оператора. Однако как определить, принадлежит ли элемент y этому образу? В конечномерном случае (для \mathbb{R}^n , \mathbb{C}^n или \mathbb{K}^n , где \mathbb{K} — произвольное поле) у нас есть теорема Кронекера-Капелли: образ оператора — линейная оболочка столбцов его матрицы. В бесконечномерном случае хотелось бы иметь описание образа оператора в каких-то других терминах. К сожалению, в общем случае критерий (необходимое и достаточное условие) принадлежности элемента образу оператора сформулировать затруднительно, но можно получить необходимый признак такой принадлежности, который в ряде случаев оказывается и достаточным.

Итак, получим необходимое условие разрешимости операторного уравнения Bx=y. Пусть $z\in H_2$ ортогонален образу оператора $B\colon z\in Im^\perp B$. Это значит, что $\forall y\in Im\, B:y\bot z$, т.е. $(y,z)_2=0$. Поэтому необходимым условием принадлежности элемента y образу оператора B является следующее: $\forall z\in Im^\perp B:(y,z)_2=0$.

Что означает последнее соотношение? Оно означает, что $y\in (Im^\perp B)^\perp=[Im\,B]$. А это, вообще говоря, не совсем то же самое, что $y\in Im\,B$, поскольку $Im\,B$ может быть незамкнутым линеалом. В этом случае может оказаться, что элемент y, удовлетворяющий необходимому условию, принадлежит $[Im\,B]\backslash Im\,B$, и в этом случае уравнение Bx=y не будет иметь решений. Однако если $Im\,B$ замкнут, то в этом случае $(Im^\perp B)^\perp=Im\,B$, и тогда необходимое условие разрешимости становится также и достаточным.

Теперь разберёмся, что из себя представляет ортогональное дополнение к образу оператора. Если $z\bot Im\, B$, то $\forall x\in H_1:(Bx,z)_2=0$. Но это значит, что $\forall x\in H_1:(x,B^*z)_1=0$, откуда, в свою очередь, следует, что $B^*z=o$, т.е. $z\in Ker\, B^*$. Обратно, пусть $z\in Ker\, B^*$, тогда $B^*z=o$, откуда $\forall x\in H_1:(x,B^*z)_1=0$, или $\forall x\in H_1:(Bx,z)_2=0$, что означает, что $z\bot Im\, B$.

Таким образом, мы установили, что $Im^{\perp}B = Ker B^*$, и, в свою очередь,

 $Ker^{\perp}B^* = [Im B]$. Тогда, в силу теоремы Беппо Леви,

$$H_2 = [Im B] \oplus Ker B^*$$

(напомню, что ядро ограниченного оператора B^* – замкнутое подпространство).

Отсюда следует, что необходимое условие разрешимости уравнения Bx = y – ортогональность элемента y ядру сопряжённого оператора B^* (что означает, что $y \in [Im B]$). Если при этом образ оператора B замкнут (т.е. Im B = [Im B]), то условие $y \perp Ker B^*$ является и достаточным условием разрешимости уравнения.

Замечание. Если уравнение Bx=y разрешимо для $\forall y \in Ker^{\perp}B^*$, то оператор B называется нормально разрешимым. Здесь "нормально" – от слова "нормаль", т.е. перпендикуляр: для любого элемента y, перпендикулярного (ортогонального) ядру сопряжённого оператора, уравнение Bx=y имеет решение.

Теорема (Хаусдорф). Оператор B нормально разрешим тогда и только тогда, когда область его значений замкнута.

Мы эту теорему только что доказали (для гильбертовых пространств). Замечание. Ещё раз напоминаю: образ оператора – линеал. Если он замкнут, то это подпространство (а в частном случае – всё пространство).

Давайте повторим всё доказательство ещё раз — кратко и более формально. Итак, для выполнения условия $y \in Im B$ необходимо $y \in [Im B]$, а если Im B замкнуто, но эти условия эквивалентны.

В свою очередь, $[Im\,B]=(Im^\perp B)^\perp$. Таким образом, $y\in Im\,B\Rightarrow y\perp Im^\perp B$. Докажем, что $Im^\perp B=Ker\,B^*$. Действительно,

$$z \perp Im B \Leftrightarrow \forall x \in H_1 : (Bx, z)_2 = 0 \Leftrightarrow \\ \Leftrightarrow \forall x \in H_1 : (x, B^*z)_1 = 0 \Leftrightarrow B^*z = o \Leftrightarrow z \in Ker B^*$$

Таким образом, $Im B \subset [Im B] = Ker^{\perp}B^*$ (т.е. $y \in Im B \Rightarrow y \perp Ker B^*$), а для операторов с замкнутой областью значений $Im B = Ker^{\perp}B^*$ (т.е. $y \in Im B \Leftrightarrow y \perp Ker B^*$).

Замечание. Если B – плотноопределённый оператор (возможно, неограниченный), то результат останется тем же: если равенство $(x, B^*z) = 0$ выполняется для любого x из всюду плотного множества, то $B^*z = o$.

Замечание. Если $B=B^*$, то необходимое условие разрешимости уравнения Bx=y – ортогональность y ядру самого оператора B.

Замечание. В конечномерном случае все линеалы замкнуты, все операторы нормально разрешимы. Необходимое и достаточное условие существования решения системы линейных алгебраических уравнений: вектор правых частей системы должен быть ортогонален всем решениям сопряжённой однородной системы. (Матрица системы, вообще говоря, прямоугольная, не обязательно квадратная. При стандартном скалярном произведении в E^n

сопряжённая однородная система – система с транспонированной матрицей и нулями в правой части.)

Замечание. Операторы конечного ранга в бесконечномерных пространствах также нормально разрешимы, поскольку их область значений – конечномерное подпространство.

Замечание. Ранее мы уже рассматривали вопрос о разрешимости операторых уравнений в банаховых пространствах, и мы могли бы просто воспользоваться полученными тогда результатами, поскольку гильбертовы пространства — частный случай банаховых. Тем не менее, специфика гильбертовых пространств позволяет провести доказательства быстрее и проще. Напомню, что роль элементов $z \in H_2$, ортогональных образу оператора, в банаховом пространстве играют элементы сопряжённого пространства — линейные ограниченные функционалы f, обращающиеся в нуль на этом образе. Соответственно, под ортогональным дополнением к образу оператора понималось подпространство в сопряжённом пространстве. В гильбертовом пространстве теорема Рисса-Фреше позволяет нам отождествить исходное пространство и сопряжённое. Соответственно, и сопрояжённый оператор теперь действует не из сопряжённого пространства в сопряжённое, а из H_2 в H_1 .

Наибольшие упрощения в случае гильбертовых пространств в сравнении с банаховыми происходят при доказательстве теоремы Хаусдорфа. В случае банаховых пространств нам пришлось специально доказывать, что для любого элемента, не принадлеждащего замыканию образа оператора, найдётся функционал из ортогонального дополнения к этому образу, не обращающийся в нуль на данном элементе. В случае же гильбертовых пространств теорема Хаусдорфа немедленно вытекает из равенства $Im^{\perp}B = Ker\,B^*$ и теоремы Беппо Леви об ортогональном разложении (или равенства $(Im^{\perp}B)^{\perp} = [Im\,B]$, вытекающего из этой теоремы).

Окончательные формулировки в случае банаховых и гильбертовых пространств совпадают практически дословно, но смысл их несколько различается, поскольку ортогональность в гильбертовом пространстве — это отношение между элементами самого пространства, а в банаховом — между элементами исходного пространства и сопряжённого.

В дальнейшем мы неоднократно будем обращаться как к необходимому условию разрешимости, так и к теореме Хаусдорфа при анализе разрешимости тех или иных операторных уравнений. При этом мы ограничимся операторами, действующими из гильбертова пространства в себя, т.е. $H_1=H_2=H$.

Операторное уравнение с компактным симметричным оператором.

Рассматриваем уравнение вида

$$\lambda x - Ax = y.$$

Оно называется уравнением первого рода, если $\lambda = 0$, и второго рода, если $\lambda \neq 0$. В последнем случае представляется в виде

$$\lambda x = Ax + y$$
.

Оператор B, о котором шла речь в предыдущем разделе – это оператор $\lambda E - A$.

Если A – компактный (вполне непрерывный) симметричный оператор, то, согласно теореме об ортогональном разложении, он обладает конечной или счётной ортонормированной системой собственных векторов $\{e_j\}$, отвечающих ненулевым собственным числам $\{\lambda_j\}$, $\|A\|=|\lambda_1|\geq |\lambda_2|\geq \ldots$, и если система бесконечна, то $\lambda_m\to 0$. Система $\{e_j\}$ полна на ортогональном дополнении к ядру оператора.

Вектор y представляется в виде ортогональной суммы

$$y = \sum_{j} (y, e_j)e_j + h_y \,,$$

где $h_y = Pr_{KerA}y$ – ортогональная проекция элемента y на ядро оператора A. Если ядро KerA тривиально, то последнее слагаемое отсутствует (или, если угодно, равно o).

Вектор x – решение уравнения – если существует, то также представляется в виде ортогональной суммы

$$x = \sum_{j} \alpha_j e_j + h_x \,,$$

где числа $\alpha_j=(x,e_j)$ и элемент $h_x=Pr_{KerA}x\in KerA$ подлежат определению. При этом

$$Ax = \sum_{j} \alpha_{j} \lambda_{j} e_{j} .$$

Тогда операторное уравнение принимает вид

$$\lambda \left(\sum_{j} \alpha_{j} e_{j} + h_{x} \right) - \sum_{j} \alpha_{j} \lambda_{j} e_{j} = \sum_{j} (y, e_{j}) e_{j} + h_{y}.$$

Последовательно умножая левую и правую части уравнения на e_1, e_2, \ldots , мы получаем систему уравнений (конечную или бесконечную) относительно $\{\alpha_i\}$:

$$(\lambda - \lambda_j)\alpha_j = (y, e_j).$$

Спроецировав левую и правую части уравнения на KerA (если оно нетривиально), получим уравнение относительно h_x :

$$\lambda h_x = h_y$$
.

Проанализируем полученную систему для различных случаев взаимного разсположения значений λ и собственных чисел $\{\lambda_j\}$.

1. $\lambda \neq 0$, $\lambda \neq \lambda_j$: параметр λ не совпадает ни с нулём, ни с каким-либо из собственных чисел.

В этом случае система однозначно разрешима при любых правых частях,

$$\alpha_j = \frac{(y, e_j)}{\lambda - \lambda_j} \,,$$

И

$$h_x = \frac{h_y}{\lambda}$$

(в случае тривиального ядра $h_x = o$). Тогда решение исходного операторного уравнения, если оно существует, представляется в виде

$$x = \sum_{j} \frac{(y, e_j)e_j}{\lambda - \lambda_j} + \frac{h_y}{\lambda},$$

и нам осталось выяснить, представляет ли полученная сумма какойлибо элемент пространства (иначе говоря, сходится ли ряд), и если да, то действительно ли он удовлетворяет исходному уравнению.

Прежде всего, заметим, что множество значений знаменателей $\{\lambda-\lambda_j\}$ отделено от нуля: ни одно из этих чисел, по предположению, в нуль не обращается, и λ не является предельной точкой множества $\{\lambda_j\}$, поскольку последнее либо конечно, либо имеет единственную предельную точку нуль. Отсюда следует, что

$$d = \inf_{j} |\lambda - \lambda_{j}| > 0,$$

и тогда числовой ряд

$$\sum_{j} \frac{(y, e_j)^2}{|\lambda - \lambda_j|^2} \le \sum_{j} \frac{(y, e_j)^2}{d^2} = \frac{1}{d^2} \sum_{j} (y, e_j)^2 \le \frac{\|y\|^2}{d^2}$$

сходится, откуда следует и сходимость соответствующего ряда для элемента \boldsymbol{x} в гильбертовом пространстве.

Применив к элементу x оператор $\lambda E-A$, с учётом его линейности и непрерывности, убедимся, что результат действительно совпадает с y (проверить!). Таким образом, мы обнаружили, что при таких значениях λ операторное уравнение однозначно резрешимо при любой правой части.

Выражение, в котором x выражено через y, определяет оператор $R_{\lambda}(A)=(\lambda E-A)^{-1}$ – резольвенту оператора A. Это линейный ограниченный оператор, его норма равна 1/d, если ядро оператора A тривиально, и равна

$$\max\left(\frac{1}{d}, \frac{1}{|\lambda|}\right) \,,$$

если ядро A нетривиально (доказать). Таким образом, все значения λ , отличные от нуля и собственных чисел, принадлежат резольвентному множеству оператора A.

Замечание. Однозначная разрешимость уравнения $(\lambda E - A)x = y$ означает, в частности, что образ оператора $\lambda E - A$ – всё пространство H. Отсюда вытекает, что ядро оператора $(\lambda E - A)^* = (\lambda E - A)$ тривиально. Действительно, однородное уравнение (при y = o) имеет единственное решение x = o.

2. Значение λ – ненулевое собственное число оператора A и совпадает с одним или несколькими значениями λ_i .

В этом случае оператор $(\lambda E-A)^*=(\lambda E-A)$ имеет нетривиальное ядро – собственное подпространство оператора A, отвечающее собственному числу λ . Необходимое условие разрешимости уравнения $(\lambda E-A)x=y$ – ортогональность y этому подпространству, т.е. равенства

$$(y, e_j) = 0, \quad \lambda_j = \lambda.$$

Действительно, в уравнениях

$$(\lambda - \lambda_i)\alpha_i = (y, e_i)$$

коэффициенты при α_j в этом случае обращаются в нуль, так что необходимым условием их разрешимости является обращение в нуль правых частей. В последнем случае решениями таких уравнений являются любые значения α_j . Напомним, что таких значений j может быть лишь конечное число.

Что касается остальных номеров j, то сообветствующие им значения α_j по-прежнему определяются однозначно, равно как и последнее слагаемое h_x , принадлежащее ядру оператора A. В результате решения уравнения, если они существуют, определяются формулой

$$x = \sum_{j: \lambda_j \neq \lambda} \frac{(y, e_j)e_j}{\lambda - \lambda_j} + \frac{h_y}{\lambda} + \sum_{j: \lambda_j = \lambda} \alpha_j e_j.$$

Поскольку λ не является предельной точкой множества $\{\lambda_j\}$, найдётся некоторая окрестность λ , не содержащая элементов множества $\{\lambda_j\}$, отличных от самого λ . Это означает, что

$$d = \inf_{j: \lambda_j \neq \lambda} |\lambda - \lambda_j| > 0,$$

откуда следует сходимость ряда — первого слагаемого из формулы для x. Подстановка этой формулы в уравнение позволяет убедиться, что оно удовлетворяется при произвольных значениях α_j , отвечающих $\lambda_j=\lambda$.

Таким образом, установлена разрешимость операторного уравнения на ортогональном дополнении к $Ker(\lambda E-A)^*=Ker(\lambda E-A)$. Оператор $\lambda E-A$ нормально резрешим, его образ – замкнутое подпространство $(Ker(\lambda E-A))^{\perp}$. Решение уравнения, когда оно существует, не единственно и определяется с точностью до произвольного решения однородного уравнения, т.е. элемента $Ker(\lambda E-A)$. В этом смысле ситуация вполне аналогична конечномерному случаю.

Оператор $\lambda E-A$ не имеет обратного, собственные числа оператора A принадлежат его спектру.

3. $\lambda = 0$

В этом случае мы приходим к уравнению первого рода, имеющему вид

$$-Ax = y$$

или

$$Ax = -y$$
.

Здесь следует ожидать неожиданностей, поскольку, как было установлено ранее, компактный оператор в бесконечномерном пространстве не может иметь ограниченного обратного даже в случае, когда его ядро тривиально.

Необходимым условием разрешимости операторного уравнения является ортогональность правой части ядру оператора $A^*=A$, т.е. условие

$$h_u = o$$
.

Действительно, уравнение для проекции на KerA в этом случае принимает вид

$$0 \cdot h_x = h_y$$

и разрешимо только при обращении правой части в o. Если последнее условие выполнено, то $h_x \in KerA$ – произвольное решение однородного уравнения. Если значение 0 не является собственным числом A и ядро тривиально, то условие $h_y = o$ выполняется автоматически, и $h_x = o$.

Будем считать, что по тем или иным причинам $h_y = o$, и рассмотрим уравнения для коэффициентов α_j , принимающие вид

$$-\lambda_i \alpha_i = (y, e_i)$$
.

Эти уравнения однозначно разрешимы:

$$\alpha_j = -\frac{(y, e_j)}{\lambda_j} \,,$$

и решения операторного уравнения, если они существуют, имеют вид

$$x = -\sum_{j} \frac{(y, e_j)e_j}{\lambda_j} + h_x.$$

Если оператор A имеет конечный ранг, то сумма в этой формуле конечна, и вопроса о сходимости не возникает. Подставив полученное выражение в уравнение, убеждаемся, что оно выполняется при любом $h_x \in KerA$. При этом KerA может быть (а может и не быть) тривиально в случае, когда само пространство H конечномерно, в противном случае оно заведомо нетривиально и бесконечномерно. Образ оператора — конечномерное замкнутое подпространство, линейная оболочка собственных векторов $\{e_j\}$. Оператор нормально разрешим, решение определяется с точностью до произвольного элемента KerA. Однозначная разрешимость возможна лишь в конечномерном случае, если ранг оператора совпадает с размерностью H. В этом случае значение $\lambda=0$ принадлежит резольвентному множеству, в противном случае – спектру оператора.

Рассмотрим теперь случай, когда система $\{e_j\}$ бесконечна. В этом случае $\lambda_j \to 0$, и нуль заведомо принадлежит спектру оператора — замкнутому множеству, содержащему все свои предельные точки.

Сходимость рассматриваемого ряда в гильбертовом пространстве в этом случае эквивалентна сходимости числового ряда

$$\sum_{j} \frac{(y, e_j)^2}{|\lambda_j|^2} \, .$$

Этот ряд может сходиться или расходиться в зависимости от того, каков элемент y. Если ряд сходится, элемент x при произвольном $h_x \in KerA$ является решением операторного уравнения (проверьте!), в противном случае уравнение решений не имеет.

Как мы видим, оператор A не является нормально разрешимым, множество его значений незамкнуто и состоит из таких элементов

$$y = \sum_{j} \beta_{j} e_{j} ,$$

что одновременно сходятся ряды

$$\sum_{j} |\beta_{j}|^{2}$$

И

$$\sum_{j} \left| \frac{\beta_{j}}{\lambda_{j}} \right|^{2}$$
.

Утверждение. Для любой числовой последовательности $\lambda_j \to 0$ найдётся последовательность $\{\beta_1,\beta_2,\dots\} \in l_2$ такая, что последовательность $\{\beta_1/\lambda_1,\beta_2/\lambda_2,\dots\} \notin l_2$. В этом случае $y=\sum_j \beta_j e_j$ не будет принадлежать образу оператора A.

Доказательство. Поскольку $\lambda_j \to 0$,

$$\forall n \in \mathbb{N} \,\exists j_n : |\lambda_{j_n}| < \frac{1}{n},$$

причём $j_n \neq j_m$ при $n \neq m$. Рассмотрим последовательность

$$\beta_j = \begin{cases} 0, & j \neq j_n, \\ \frac{1}{n}, & j = j_n. \end{cases}$$

Очевидно, $\beta \in l_2$, поскольку

$$\sum_{j=1}^{\infty} |\beta_j|^2 = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

В то же время $\{\beta_1/\lambda_1,\beta_2/\lambda_2,\dots\} \notin l_2$, поскольку эта последовательность содержит бесконечное число элементов вида $\beta_{j_n}/\lambda_{j_n}$, модуль которых превосходит единицу.

Замечание. Для некоторых $\beta \in l_2$ последовательность $\{\beta_j/\lambda_j\}$ не будет даже ограничена. Например, если выбрать в рассмотренном примере j_n из условия $|\lambda_{j_n}| < n^{-2}$, то $|\beta_{j_n}/\lambda_{j_n}| > n$.

Если решение операторного уравнения существует, то оно определено с точностью до произвольного решения однородного уравнения, т.е. до произвольного элемента KerA. Если ядро оператора A тривиально, то формула

$$x = -\sum_{j} \frac{(y, e_j)e_j}{\lambda_j}$$

определяет линейный оператор $-A^{-1}$, областью определения которого является область значений оператора A. Этот оператор неограничен, что следует из равенства

$$-A^{-1}e_j = -\frac{e_j}{\lambda_j} \,.$$

Пример. Интегральный оператор Фредгольма A на отрезке [a,b] с непрерывным симметричным ядром — симметричный компактный оператор в пространстве $L_2[a,b]$. Уравнение первого рода -Ax=y разрешимо заведомо не для всех $y\in L_2[a,b]$ хотя бы потому, что все функции из образа A непрерывны, а пространство $L_2[a,b]$ содержит в том числе и разрывные функции. В то же время уравнение второго рода $\lambda x = Ax + y$ однозначно разрешимо на всём $L_2[a,b]$ при всех ненулевых λ , не являющихся собственными числами оператора A.