Cross Entropy Method and BFGS for Optimization of 2-Dimensional Bonded-Molecule Clusters

Zaymon Foulds-Cook Griffith University School of ICT

Abstract-Experimental findings here

I. INTRODUCTION

A. Problem Statement

Linear polymers or chain molecules are molecules that exist in the natural world that are linear sequences of bonded atoms where each atom k within the molecule (excluding terminal atoms) is only bonded to atoms k_{k-1} and k_{k+1} . According to Valence-Shell Electron-Pair Repulsion Theory all atoms in a molecule interact with all other atoms regardless of whether the atoms are explicitly bound together through chemical bonds.

The energy of the interaction between two atoms is a function of the displacement between then and is given by the Lennard-Jones potential:

$$V = (\frac{1}{r^{12}} - \frac{2}{r^6})$$

where

$$r_{ij}^2 = x_{ij}^2 + y_{ij}^2$$

Figure 1. Energy as a function of displacement

The Lennard-Jones or "L-J potential" is simple mathematical approximation of the strength of interaction between a pair of neutrally charges atoms. As the distance between two neutrally charged similar atoms converges to 0 atoms experience Exchange Interaction or Pauli repulsion due to overlapping electron orbitals. The L-J Potential is

an effective approximation commonly used as it reliably approximates energies at short and long distances. The L-J Potential is also used due to the computational simplicity since r_{ij}^{12} can be expressed as the square of r_{ij}^{6} . For a molecule to be in a stable configuration it must

For a molecule to be in a stable configuration it must exist in a state of minimum energy. If the molecule is not in a configuration that results in minimum energy the configuration of that molecule would be transient as atom pairs throughout the molecule will be repelled and attracted. To calculate the total energy in a molecule configuration the summation of each atom pair's energy contribution is calculated. This is expressed by:

$$V = \sum_{i < j}^{N} (\frac{1}{r^{12}} - \frac{2}{r^6})$$

Designing computational methods for estimating and predicting molecule configurations has relevance to the study of: protein folding, molecular medicine, molecular physics, pharmacology and other fields examining the behavior and design of molecules and compounds.

B. Problem Representation

The problem can be represented by a vector of angles $\alpha_0...\alpha_{N-2}$ where each angle is relative to the previous angle and the angle's value ranges from $-\pi$ to π radians. This system is visualized in Figure 2. Each bond in the molecule is of length 1, ensuring the minimum energy between bonded molecules as demonstrated by the function plotted in Figure 1.

Figure 2. Problem configuration

There are several distinct advantages to this approach compared to using cartesian coordinates:

- 1) Specifying the angles removes the need to recalculate the positions of atoms after a change (as the angles are relative).
- 2) The cartesian coordinates can be obtained for any atom via trigonometry.
- 3) The vector of angles is a simpler representation of the problem and the change in energy for the cluster relative to the change in any α_i can be determined.

II. LITERATURE REVIEW

A. BFGS

The Broyden-Fletcher-Goldfarb-Shanno algorithm is an iterative method under the quasi-Newton class of hill climbing algorithms. "Quasi-Newton methods, like steepest descent, require only the gradient of the objective function to be supplied at each iteration" (Jorge Nocedal, 1999) The BFGS algorithm will never make a step in the 'uphill' direction. To effectively make use of BFGS in problem spaces with local minima BFGS needs to be used as the local optimization step in a higher level global optimization algorithm such as a genetic population based search.

B. Cross-Entropy Method

The Cross-Entropy method is a generic approach to solving complicated optimization problems such as Max Cut or the travelling salesman problem. "the CE method... defines a precise mathematical frame-work for deriving fast, and in some sense "optimal" updating/learning rules..." (Boer, Kroese, Mannor, & Rubinstein, 2005). The core algorithm of the CE method is quite a simple iterative process:

- 1) Generate a sample of random data according to some mechanism.
- 2) Score the sample and take an elite sub-sample of the resulting population.
- 3) Use the values of the elite sub sample to update the parameters of the random mechanism to produce a "better" sample on the next iteration.

The random mechanism can be as simple as specifying a random distribution for each element in the vector to be optimized (in this case the vector of angles) where the mean and standard deviation are changed to reflect the elite sample.

Specifying a smoothing parameter can be useful (Botev, Kroese, Rubinstein, & L'Ecuyer, n.d.). The smoothing parameter determines the ratio of blending between the old and new distribution parameters. This smoothing parameter λ can either be a static value $0 \le \lambda \le 1$ or dynamically changed as a function of time, score or another heuristic.

III. ALGORITHM DESCRIPTION

A. Cross Entropy Optimization

```
ALGORITHM CrossEntropy (sequenceLength):
   populationSize <- ALGORITHMPARAMETER
   parameterBlendRatio <- ALGORITHMPARAMETER
   eliteDistributionPercentage <- ALGORITHMPARAMETER
   epsilon <- ALGORITHMPARAMETER
   distributions <- [vector<normal distribution>] with default
           parameters
   population <- [vector<Sequence>] generatePopulation(
         → populationSize, distributions)
   lastBest <- infinity
   bestScore <- infinity
   bestSequence <- Sequence
   while True:
       # Sort Population by Cost
       scoredPopulation <- [vector<pair<cost, Sequence>>] sort(
             → population)
       diff <- lastBest - scorePopulation[0].cost
       lastBest <- scoredPopulation[0].cost
       if lastBest < bestScore:</pre>
          bestScore = lastBest
       # Update Distributions
       for angle in 0 <= angle < sequenceLength:
          values <- []
          for memberIndex in 0 <= memberIndex < populationSize *
                → eliteDistributionPercentage:
              values <+ scoredPopulation[memberIndex].Sequence[angle
                   → ]
          mean <- mean(values)
          stdDeviation <- stdDeviation(values)
          distributions[angle].updateParameters(mean, stdDeviation)
       # Check exit conditions
       if (diff < epsilon):
```

print bestScore break

Generate new Population population = generatePopulation(populationSize, distributions)

B. Cross Entropy Method to Generate Optimization Candidates for BFGS

An experiment to use the Cross Entropy Method as the global optimizer in order to generate optimization candidates for BFGS. Conceptually this method will allow the Cross Entropy Method to optimize the distribution vector to generate good candidates for BFGS optimization.

- 1) Generate Population using distribution vector.
- 2) Run BFGS on population members, generating an additional optimized population.
- Calculate the scores of the optimized population and sort.
- 4) Update the distribution vector based on the preoptimized sequences which correspond to the sequences in the elite sample of the optimized population.
- 5) Goto step 1.

The implementation of the algorithm is the same as the CE Method except the sequences generated are scored after a BFGS optimization step.

IV. PARAMETER TUNING

The three configurable parameters for this implementation of the CE Method are:

- · Population size
- · Parameter blending
- Elite sample percentage

To examine the effects of changing each of the configurable parameters a base set of control parameters are chosen:

- Population size: 1000
- Parameter blending: 0.9
- Elite sample percentage: 0.1

The size of the molecule is set to N=40.

A. Population Size

Figure 3. Population Size vs Score (Average over 3 runs)

Figure 3 shows how the change in population influences best score found by the optimizer. While there is no observable trend in the figure it is observed that population sizes below 300 result in very poor scores. The best scores are found in the range of 1300-3000 with no obvious determination as to which population values result in the best scores. Based on the data the optimal population size is determined to be 1300 as it is in the range of optimums and is not as computationally intensive as generating and processing larger populations.

B. Elite Sample Size

Figure 4. Elite Sample % vs Score (Average over 3 runs)

Figure 4 shows how the size of the elite sample influences the best scores found. It it clear from the graph that very small (5% or less) and very large (15% or greater) elite sample sizes have a detrimental effect to the effectiveness of the algorithm. The best scores clustering around the 11-12% mark suggests that the ideal value for the size of the elite sample is 11-12% of the population. Although if the size of the population is very large it may be advisable to reduce the size of the elite sample to increase selectivity.

C. Parameter Blending

Figure 5. Parameter Blending vs Score (Average over 3 runs)

Figure 5 shows a very clear downward trend which suggests that the ideal amount of parameter blending is minimal. Parameter blending in the range of 85-95% gives the best results.

D. Ideal Parameters - BFGS

After parameter optimization for the CE method the same parameters were used to achieve the best results when combining the CE Method with BFGS. The exception to this was population size, as the BFGS optimization step is computationally intensive due to the calculation of energy gradients the population size had to be decreased to 300 in order to speed up the algorithm and allow the global CE Optimizer to explore multiple minima without time constraint.

V. PARTIAL RESTARTING AND LOCAL MINIMA HOPPING METHODS

As the CE Method will slowly converge on a local minima different partial restart operators were tested in order to hop to other potentially better minima.

VI. ALGORITHM PERFORMANCE

A. CE - Scores

4 -5.1 -5.07132 30 -77.2 -70.2578 5 -7.2 -7.15466 31 -79.5 -69.2296 6 -9.3 -9.29635 32 -82.8 -67.8379 7 -12.5 -12.427 33 -86.1 -75.3775 8 -14.7 -14.5394 34 -88.3 -77.1285 9 -16.9 -16.7548 35 -91.7 -81.6391 10 -20.1 -19.8421 36 -95.0 -82.3254 11 -22.3 -22.1631 37 -98.3 -89.7201 12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652	N	Optimal	Best Found	N	Optimal	Best Found
6 -9.3 -9.29635 32 -82.8 -67.8379 7 -12.5 -12.427 33 -86.1 -75.3775 8 -14.7 -14.5394 34 -88.3 -77.1285 9 -16.9 -16.7548 35 -91.7 -81.6391 10 -20.1 -19.8421 36 -95.0 -82.3254 11 -22.3 -22.1631 37 -98.3 -89.7201 12 -22.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404	4	-5.1	-5.07132	30	-77.2	-70.2578
7 -12.5 -12.427 33 -86.1 -75.3775 8 -14.7 -14.5394 34 -88.3 -77.1285 9 -16.9 -16.7548 35 -91.7 -81.6391 10 -20.1 -19.8421 36 -95.0 -82.3254 11 -22.3 -22.1631 37 -98.3 -89.7201 12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907	5	-7.2	-7.15466	31	-79.5	-69.2296
8 -14.7 -14.5394 34 -88.3 -77.1285 9 -16.9 -16.7548 35 -91.7 -81.6391 10 -20.1 -19.8421 36 -95.0 -82.3254 11 -22.3 -22.1631 37 -98.3 -89.7201 12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 <td>6</td> <td>-9.3</td> <td>-9.29635</td> <td>32</td> <td>-82.8</td> <td>-67.8379</td>	6	-9.3	-9.29635	32	-82.8	-67.8379
9 -16.9 -16.7548 35 -91.7 -81.6391 10 -20.1 -19.8421 36 -95.0 -82.3254 11 -22.3 -22.1631 37 -98.3 -89.7201 12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 <	7	-12.5	-12.427	33	-86.1	-75.3775
10 -20.1 -19.8421 36 -95.0 -82.3254 11 -22.3 -22.1631 37 -98.3 -89.7201 12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423	8	-14.7	-14.5394	34	-88.3	-77.1285
11 -22.3 -22.1631 37 -98.3 -89.7201 12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755	9	-16.9	-16.7548	35	-91.7	-81.6391
12 -25.5 -24.322 38 -100.5 -87.3879 13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764	10	-20.1	-19.8421	36	-95.0	-82.3254
13 -27.8 -27.5986 39 -103.8 -92.6629 14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81	11	-22.3	-22.1631	37	-98.3	-89.7201
14 -31.0 -29.7009 40 -107.1 -86.8567 15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132	12	-25.5	-24.322	38	-100.5	-87.3879
15 -33.2 -32.8739 41 -109.4 -90.8365 16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258	13	-27.8	-27.5986	39	-103.8	-92.6629
16 -36.5 -33.1633 42 -112.7 -95.9652 17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	14	-31.0	-29.7009	40	-107.1	-86.8567
17 -38.7 -35.2322 43 -116.0 -104.069 18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	15	-33.2	-32.8739	41	-109.4	-90.8365
18 -42.0 -39.5358 44 -119.3 -102.404 19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	16	-36.5	-33.1633	42	-112.7	-95.9652
19 -45.3 -42.1855 45 -121.6 -102.907 20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	17	-38.7	-35.2322	43	-116.0	-104.069
20 -47.5 -44.6016 46 -124.9 -104.417 21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	18	-42.0	-39.5358	44	-119.3	-102.404
21 -50.8 -47.1159 47 -128.6 -107.945 22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	19	-45.3	-42.1855	45	-121.6	-102.907
22 -53.0 -51.4069 48 -131.5 -109.423 23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	20	-47.5	-44.6016	46	-124.9	-104.417
23 -56.3 -48.5068 49 -133.8 -110.755 24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	21	-50.8	-47.1159	47	-128.6	-107.945
24 -59.6 -52.3969 50 -137.1 -114.764 25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	22	-53.0	-51.4069	48	-131.5	-109.423
25 -61.8 -53.2786 51 -140.5 -115.81 26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	23	-56.3	-48.5068	49	-133.8	-110.755
26 -65.1 -52.1118 52 -143.7 -116.132 27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	24	-59.6	-52.3969	50	-137.1	-114.764
27 -68.4 -61.5712 53 -146.0 -127.258 28 -70.0 -63.0996 54 -149.3 -124.026	25	-61.8	-53.2786	51	-140.5	-115.81
28 -70.0 -63.0996 54 -149.3 -124.026	26	-65.1	-52.1118	52	-143.7	-116.132
	27	-68.4	-61.5712	53	-146.0	-127.258
29 -74.0 -64.3941 55 -152.7 -130.41	28	-70.0	-63.0996	54	-149.3	-124.026
	29	-74.0	-64.3941	55	-152.7	-130.41

Table I

BEST SCORES FROM CROSS ENTROPY METHOD

B. CE Method with BFGS

VII. RESULTS

VIII. CONCLUSION

N	Optimal	Best Found	N	Optimal	Best Found
4	-5.1	-5.0717	30	-77.2	-64.042
5	-7.2	-7.16219	31	-79.5	-66.6319
6	-9.3	-9.34017	32	-82.8	-70.008
7	-12.5	-12.465	33	-86.1	-70.969
8	-14.7	-14.6329	34	-88.3	-72.8008
9	-16.9	-16.6597	35	-91.7	-78.7509
10	-20.1	-18.9354	36	-95.0	-77.1246
11	-22.3	-21.4258	37	-98.3	-80.0404
12	-25.5	-24.3834	38	-100.5	-79.7988
13	-27.8	-26.918	39	-103.8	-85.7043
14	-31.0	-29.6838	40	-107.1	-85.4764
15	-33.2	-32.6135	41	-109.4	-88.7995
16	-36.5	-33.9053	42	-112.7	-91.8655
17	-38.7	-36.9939	43	-116.0	-88.4889
18	-42.0	-38.1547	44	-119.3	-88.7862
19	-45.3	-41.6245	45	-121.6	-91.8972
20	-47.5	-44.8945	46	-124.9	-99.764
21	-50.8	-46.4786	47	-128.6	-98.9701
22	-53.0	-48.0152	48	-131.5	-102.948
23	-56.3	-51	49	-133.8	-97.7711
24	-59.6	-52.6622	50	-137.1	-103.551
25	-61.8	-54.948	51	-140.5	-105.572
26	-65.1	-57.8007	52	-143.7	-107.815
27	-68.4	-56.8625	53	-146.0	-106.928
28	-70.0	-60.2806	54	-149.3	-109.118
29	-74.0	-62.7181	55	-152.7	-118.146

Table II
BEST SCORES FROM COMBINATION OF BFGS AND CROSS ENTROPY METHOD

REFERENCES

- Boer, P.-T. B., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. *Annals of Operations Research, 134*, 19-67. Retrieved from https://people.smp.uq.edu.au/DirkKroese/ps/aortut.pdf
- Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., & L'Ecuyer, P. (n.d.). The cross-entropy method for optimization. Retrieved from https://people.smp.uq.edu.au/DirkKroese/ps/CEopt.pdf
- Jorge Nocedal, S. J. W. (1999). Numerical optimization.
 New York: Springer-Verlag. Retrieved from
 http://www.bioinfo.org.cn/ wangchao/maa/Numerical_Optimization.pdf

APPENDIX A GRADIENT CALCULATION

The total energy of the system is given by:

$$V = \sum_{i < j}^{N} (\frac{1}{r_{ij}^{12}} - \frac{2}{r_{ij}^{6}})$$

where

$$r_{ij}^2 = x_{ij}^2 + y_{ij}^2$$

Let

$$\Psi_k = \sum_{i=1}^k \alpha_i$$

and $(x_0, y_0) = (0, 0)$ and $\Psi_0 = 0$ then

$$x_i = \sum_{k=0}^{i-1} \cos \Psi_k$$
$$y_i = \sum_{k=0}^{i-1} \sin \Psi_k$$

Now

$$V_{\alpha m} = \frac{-12\sum_{i < j} (\frac{1}{r_{ij}^{13}} - \frac{1}{r_{ij}^{7}})}{r_{ij}}$$

and

$$(r_{ij})_{\alpha m} = \frac{((x_i - x_j)(x_i - x_j)_{\alpha m} + (y_i - y_j)(y_i - y_j)_{\alpha m}}{r_{ij}}$$

assuming that j > i we have

$$(x_i - x_j)_{\alpha m} = -\sum_{k=i}^{j-1} (\cos \Psi_k)_{\alpha m} = \sum_{k=max(i,m)}^{j-1} \sin \Psi_k$$
$$(y_i - y_j)_{\alpha m} = -\sum_{k=i}^{j-1} (\sin \Psi_k)_{\alpha m} = \sum_{k=max(i,m)}^{j-1} \cos \Psi_k$$

Therefore

$$(r_{ij})_{\alpha m} = ((x_i - x_j)(\sum_{k=max(i,m)}^{j-1} \sin \Psi_k) + (y_i - y_j)(-\sum_{k=max(i,m)}^{j-1} \cos \Psi_k))/r_{ij}$$

which is zero when $m \le i$. Assuming m > i

$$-\sum_{k=m}^{j-1}\cos\Psi_k = x_j - x_m$$
$$-\sum_{k=m}^{j-1}\sin\Psi_k = y_m - y_j$$

and

$$(r_{ij})_{\alpha m} = \frac{((x_i - x_j)(y_m - y_j) + (y_i - y_j)(x_j - x_m)_{\alpha m}}{r_{ij}}$$

Combining the terms we have

$$\frac{\partial V}{\partial \alpha m} = -12 \sum_{i=0}^{m-1} \sum_{j=m+1}^{n} (\frac{1}{r_{ij}^{14}} - \frac{1}{r_{ij}^{8}})((x_i - x_j)(y_m - y_i) + (y_i - y_j)(x_j - x_m))$$