### **LAPORAN TUGAS BESAR**

### IF-2123 Aljabar Linier dan Geometri Kelas Mahasiswa (K-1) / Kelompok bsm

Dosen: Dr. Judhi Santoso, M.Sc.



#### Anggota Kelompok:

Muhammad Hanan (13521041)

**Alex Sander** (13521061)

Shidqi Indy Izhari (13521097)

Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung 2022

# Daftar Isi

| Daftar Isi                              | 1  |
|-----------------------------------------|----|
| Bab 1: Deskripsi Masalah                | 2  |
| Bab 2: Teori Singkat                    | 3  |
| Bab 3: Implementasi pustaka dan program | 6  |
| Bab 4: Eksperimen                       | 11 |
| Bab 5: Kesimpulan, saran, dan refleksi  | 20 |
| Daftar Referensi                        | 21 |
| Lampiran                                | 22 |

# Bab 1: Deskripsi Masalah

#### 1.1 Deskripsi Masalah

Sistem persamaan linier (SPL) banyak ditemukan di dalam bidang sains dan rekayasa. Anda sudah mempelajari berbagai metode untuk menyelesaikan SPL, termasuk menghitung determinan matriks. Sembarang SPL dapat diselesaikan dengan beberapa metode, yaitu metode eliminasi Gauss, metode eliminasi Gauss-Jordan, metode matriks balikan ( $x = A^{-1}b$ ), dan kaidah Cramer (khusus untuk SPL dengan n peubah dan n persamaan). Solusi sebuah SPL mungkin tidak ada, banyak (tidak berhingga), atau hanya satu (unik/tunggal).

#### 1.2 Solusi Permasalahan

Pada Tugas Besar 1 ini, kami membuat beberapa *library* aljabar linier yang ditulis dalam bahasa pemrograman Java yang berisi fungsi-fungsi seperti eliminasi Gauss, eliminasi Gauss-Jordan, menentukan balikan matriks, menghitung determinan, kaidah Cramer (kaidah Cramer khusus untuk SPL dengan n peubah dan n persamaan). Fungsi-fungsi ini nantinya akan digunakan sebagai solusi dari berbagai macam persoalan yang dimodelkan dalam bentuk SPL, menyelesaikan persoalan interpolasi, hingga persoalan regresi.

# **Bab 2: Teori Singkat**

#### 2.1 Eliminasi Gauss

Untuk melakukan Eliminasi Gauss, kita perlu mengubah suatu matriks menjadi bentuk eselon baris dengan menggunakan OBE (operasi baris elementer). Bentuk matriks eselon baris adalah matriks yang memiliki 1 utama pada setiap baris, kecuali baris yang seluruhnya nol. Jika ada baris yang seluruhnya nol, maka semua baris itu dikumpulkan pada bagian bawah matriks. Berikut adalah beberapa contoh dari matriks eselon baris:

$$\begin{bmatrix} 1 & 4 & -3 & 7 \\ 0 & 1 & 6 & 2 \\ 0 & 0 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 2 & 6 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Setelah terbentuk matriks eselon baris, kita dapat melakukan substitusi balik untuk mendapatkan nilai-nilai yang dicari.

#### 2.2 Eliminasi Gauss-Jordan

Pada dasarnya, eliminasi merupakan versi matriks dari substitusi balik yang dilakukan pada Eliminasi Gauss. Jadi, untuk melakukan eliminasi ini, kita cukup melanjutkan Eliminasi Gauss dengan OBE hingga mendapatkan matriks eselon baris tereduksi. Matriks eselon baris tereduksi memiliki ciri-ciri berupa angka-angka yang terdapat pada setiap satu utama merupakan nol (0). Berikut adalah beberapa contoh dari matriks eselon baris tereduksi:

Dari matriks eselon baris tereduksi ini lah kita dapat menarik kesimpulan nilai dari suatu persamaan.

#### 2.3 Determinan

Determinan adalah nilai yang dapat dihitung dari unsur suatu matriks yang berbentuk persegi. Determinan matriks A ditulis dengan tanda  $\det(A)$ ,  $\det(A)$ , atau |A|. Determinan dapat dianggap sebagai faktor penskalaan transformasi yang digambarkan oleh matriks. Pada umumnya, untuk mencari determinan, dapat digunakan dua cara: ekspansi kofaktor dan matriks segitiga.

#### 2.4 Matriks balikan (Inverse)

Secara bahasa, inverse berarti kebalikan. Inverse dari suatu matriks adalah sebuah balikan sedemikian mungkin matriks yang apabila dikalikan dengan matriks asalnya akan menghasilkan matriks identitas atau I. Terdapat dua cara yang umumnya dipakai untuk mencari inverse: penggunaan kofaktor dan eliminasi Gauss-Jordan. Matriks balikan kerap digunakan untuk mendapatkan solusi dari Sistem Persamaan Linear

#### 2.5 Matriks Kofaktor

Matriks kofaktor merupakan matriks yang terdiri dari kofaktor-kofaktor matriks itu sendiri. Jadi, misalkan terdapat suatu matriks katakanlah matriks A, maka matriks kofaktor A merupakan matriks yang terdiri dari kofaktor-kofaktor dari matriks A. Susunan elemen matriks kofaktor juga mengikuti susunan (letak) kofaktor-kofaktornya. Kofaktor itu sendiri merupakan hasil perkalian minor dengan suatu angka yang besarnya menuruti suatu aturan yaitu  $(-1)^{i+j}$  dimana i adalah baris dan j adalah kolom. Kofaktor suatu elemen baris ke-i dan kolom ke-j dari matriks A dilambangkan dengan Cij.

#### 2.6 Matriks Adjoin

Untuk mendapatkan matriks adjoin, kita dapat melakukan operasi transpose pada matriks kofaktor. Transpose adalah sebuah operasi matriks di mana kita menukarkan nilai i dan j pada setiap baris dan kolom di matriks awal.

#### 2.7 Kaidah Cramer

Kaidah atau Aturan Cramer merupakan cara yang diciptakan oleh Gabriel Cramer untuk menyelesaikan persoalan sistem persamaan linear dengan cara menggunakan determinan dari matriks yang terbentuk dari koefisien dan konstanta masing-masing persamaan di sistem tersebut

#### 2.8 Interpolasi Polinom

Interpolasi Polinom adalah suatu teknik interpolasi dengan cara mengasumsikan pola data yang dimiliki mengikuti pola polinomial berderajat satu atau lebih. Secara singkat, interpolasi polinom adalah pencarian nilai fungsi dari titik-titik yang diketahui. Teknik ini dapat diaplikasikan untuk berbagai macam hal seperti menghampiri fungsi rumit menjadi lebih sederhana dan menggambar kurva.

#### 2.9 Interpolasi Bicubic

Bicubic interpolation merupakan teknik interpolasi pada data 2D umumnya digunakan dalam pembesaran citra yang merupakan pengembangan dari interpolasi linear dan cubic yang telah dipelajari pada kuliah metode numerik di aljabar geometri.

### 2.10 Regresi Linear Berganda

Regresi linear adalah suatu pendekatan untuk mendapatkan hubungan nilai antara satu atau lebih variabel dependen dan variabel independen. Pada regresi linear berganda, terdapat lebih dari satu variabel independen. Bentuk umum dari regresi linear berganda adalah:

$$Y = a + b_1 X_1 + b_2 X_2 + .... + b_n X_n$$

# Bab 3: Implementasi pustaka dan program

### 1. Class ADT Matrix (Matrix.java)

### A. Kamus

| Nama                      | Keterangan                                  |
|---------------------------|---------------------------------------------|
| private int row           | Menyatakan jumlah baris dalam suatu matriks |
| private int col           | Menyatakan jumlah kolom dalam suatu matriks |
| private double[][] matrix | Menyatakan bentuk matriks                   |

| Nama                                  | Keterangan                                           |
|---------------------------------------|------------------------------------------------------|
| public Matrix(int row, int col)       | Membuat matriks dengan besar baris row dan kolom col |
| public double getElmt(int i, int j)   | Mengembalikan elemen matriks[i,j]                    |
| public int getRow                     | Mengembalikan besar baris pada sebuah matriks        |
| public int getCol                     | Mengembalikan besar kolom pada sebuah matriks        |
| public void setSize(int row, int col) | Mengatur besar kolom dan baris pada<br>matriks       |
| public int countElmt                  | Mengembalikan hasil kali baris dan kolom             |
| public Matrix copyMatrix              | Mengembalikan hasil "copy" dari suatu matriks        |
| public Matrix transpose               | Mengembalikan hasil transpose dari suatu matriks     |
| public int getFirstIdx                | Mencari kolom ke berapa yang nilainya bukan 0        |
| public int getFirstIdxRow             | Mencari baris ke berapa yang nilainya bukan 0        |

| public void simplifyRow(int i)                 | Membuat elemen pada posisi utama menjadi satu                   |
|------------------------------------------------|-----------------------------------------------------------------|
| public void swap(int i1, int i2)               | Menukar baris pada matriks                                      |
| public int findOneInCol(int j)                 | Mencari angka 1 pertama pada suatu kolom                        |
| public void addRow(int iP, int i2, double k)   | Menambahkan baris dengan kelipatan k<br>baris lainnya           |
| public double cofac(int r, int c)              | Mengembalikan nilai kofaktor dari<br>matriks                    |
| public double determinant                      | Mengembalikan nilai determinan dari<br>matriks                  |
| public void displayMatrix                      | Mencetak matriks pada output dengan bentuk matriks yang sesuai  |
| public boolean isSquare                        | Memeriksa apakah nilai baris sama dengan nilai kolom            |
| public boolean isIdentity                      | Memeriksa apakah matriks merupakan matriks identitas atau bukan |
| public Matrix gauss                            | Memproses matriks dengan metode Gauss                           |
| public Matrix gaussJordan                      | Memproses matriks dengan metode<br>Gauss-Jordan                 |
| public Matrix multiplyByConst(double x)        | Mengalikan semua baris pada matrix dengan x                     |
| public Matrix createIdentity(int x)            | Membuat matrix identitas                                        |
| public Matrix multiplyByRow(int row, double x) | Mengalikan baris dengan x                                       |
| public Matrix inverseGJ                        | Menghasilkan inverse matriks dengan metode Gauss-Jordan         |
| public Matrix inverseDet                       | Menghasilkan inverse matriks dengan meode determinan            |
| public Matrix swapColCre(int j)                | Fungsi untuk menukar kolom pada proses cramer                   |
| public Matrix hascreamer                       | (Maksudnya itu cramer, cuman udah                               |

|                                    | terlanjur). hascreamer adalah fungsi untuk<br>menghitung hasil dari proses cramer. |
|------------------------------------|------------------------------------------------------------------------------------|
| public double detGauss             | Mengembalikan nilai determinan dengan metode Gauss                                 |
| public Matrix mutiplyMat(Matrix M) | Mengalikan dua buah matrix                                                         |
| public Matrix inversSPL(Matrix M)  | Mengembalikan nilai SPL dengan dengan metode inverse                               |
| public boolean isRowZero(int i)    | Memeriksa apakah baris tersebut kosong                                             |
| public void hasilPara              | Menampilkan solusi persamaan matriks dalam bentuk parametrik                       |

### 2. Class Determinan (Determinan.java)

### A. Kamus

| Nama              | Keterangan                 |
|-------------------|----------------------------|
| public Determinan | Deklarasi class determinan |

# B. Daftar fungsi/prosedur

| Nama                 | Keterangan                                                                                |
|----------------------|-------------------------------------------------------------------------------------------|
| public void kofdet   | Menerima inputan matriks dan<br>memprosesnya menjadi determinan<br>dengan metode kofaktor |
| public void gaussdet | Menerima inputan matriks dan<br>memprosesnya menjadi determinan<br>dengan metode Gauss    |

# 3. Class Inverse (Inverse.java)

### A. Kamus

| Nama           | Keterangan              |
|----------------|-------------------------|
| public Inverse | Deklarasi class inverse |

| Nama Keterangan |
|-----------------|
|-----------------|

| public void invGJ     | Menerima inputan matriks dan<br>memprosesnya menjadi matriks inverse<br>dengan metode Gauss-Jordan        |
|-----------------------|-----------------------------------------------------------------------------------------------------------|
| public void invKofDet | Menerima inputan matriks dan<br>memprosesnya menjadi matriks inverse<br>dengan metode kofaktor-determinan |

# 4. Class Sistem Persamaan Linear (SPL.java)

### A. Kamus

| Nama       | Keterangan          |
|------------|---------------------|
| public SPL | Deklarasi class SPL |

# B. Daftar fungsi/prosedur

| Nama             | Keterangan                                                                                                 |
|------------------|------------------------------------------------------------------------------------------------------------|
| public void spl1 | Menerima inputan matriks dan<br>memprosesnya menjadi sistem persamaan<br>linear dengan metode Gauss        |
| public void spl2 | Menerima inputan matriks dan<br>memprosesnya menjadi sistem persamaan<br>linear dengan metode Gauss-Jordan |
| public void spl3 | Menerima inputan matriks dan<br>memprosesnya menjadi sistem persamaan<br>linear dengan metode inverse      |
| public void spl4 | Menerima inputan matriks dan<br>memprosesnya menjadi sistem persamaan<br>linear dengan metode kofaktor     |

### 5. Class Interpolasi Polinom (Interpolasi Polinom.java)

#### A. Kamus

| Nama                      | Keterangan                          |  |  |
|---------------------------|-------------------------------------|--|--|
| public InterpolasiPolinom | Deklarasi class Interpolasi Polinom |  |  |

| Nama | Keterangan |
|------|------------|
|------|------------|

| public double cekOuput(double x)                         | Memeriksa hasil koefisien positif atau negatif                                      |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|
| public double nilaiTaksiran(int n, Matrix rix, double x) | Mencari nilai taksiran dari fungsi<br>interpolasi yang didapat                      |  |  |  |
| public void InpolPolinom                                 | Prosedur untuk menerima inputan matriks<br>dan memproses fungsi interpolasi polinom |  |  |  |

# 6. Class Interpolasi Bikubik (InterpolasiBikubik.java)

### A. Kamus

| Nama                      | Keterangan                          |  |  |
|---------------------------|-------------------------------------|--|--|
| public InterpolasiBikubik | Deklarasi class Interpolasi Bikubik |  |  |

# B. Daftar fungsi/prosedur

| Nama | Keterangan                                                                          |  |  |
|------|-------------------------------------------------------------------------------------|--|--|
|      | Prosedur untuk menerima inputan matriks<br>dan memproses fungsi interpolasi bikubik |  |  |

# 7. Class Regresi Linear Berganda

### A. Kamus

| Nama                      | Keterangan                          |  |  |
|---------------------------|-------------------------------------|--|--|
| public InterpolasiBikubik | Deklarasi class Interpolasi Bikubik |  |  |

| Nama                     | Keterangan                                             |  |  |
|--------------------------|--------------------------------------------------------|--|--|
| public void InpolBikubik | Prosedur untuk memproses fungsi<br>interpolasi bikubik |  |  |

# **Bab 4: Eksperimen**

# 1. SPLAx = B

| a.                                                                                                                                                               | Solusi                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $A = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 5 & -7 & -5 \\ 2 & -1 & 1 & 3 \\ 5 & 2 & -4 & 2 \end{bmatrix},  b = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 6 \end{bmatrix}$ | 1.0 0.0 0.0 0.666666666666667 1.0 0.0 1.0 0.0 -2.66666666666666667 3.0 0.0 0.0 1.0 -1.0 2.0 0.0 0.0 0.0 0.0 1.0 Tidak ada nilai x yang memenuhi |

| b.                                                                                                                                                                                | Solusi                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| $A = \begin{bmatrix} 1 & -1 & 0 & 0 & 1 \\ 1 & 1 & 0 & -3 & 0 \\ 2 & -1 & 0 & 1 & -1 \\ -1 & 2 & 0 & -2 & -1 \end{bmatrix},  b = \begin{bmatrix} 3 \\ 6 \\ 5 \\ -1 \end{bmatrix}$ | 1.00x1 + -1.00x5 = 3.00<br>1.00x2 + -2.00x5 = 0.00<br>1.00x4 + -1.00x5 = -1.00 |

| c.                                                                                                                                                           | Solusi                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix},  b = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ | 1.00x5 + -1.00x6 = 1.00<br>1.00x2 + 1.00x6 = 1.00<br>1.00x4 + 1.00x5 = -1.00 |

d.a. Solusi 
$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} \\ \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} & \frac{1}{1} \\ \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} & \frac{1}{10} & \frac{1}{11} \end{pmatrix}$$

$$b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
\*Keterangan: konversi pecahan menjadi desimal menggunakan 10 angka di belakang koma menggunakan 10 angka di belakang koma

| db.                                                                                                                                                                           |                                                      |                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                       |                                                                                                                                                                                                               |                                                                | Solusi                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H = \begin{bmatrix} 1 \\ \frac{1}{2} \\ \frac{1}{3} \\ \frac{1}{4} \\ \frac{1}{5} \\ \frac{1}{6} \\ \frac{1}{7} \\ \frac{1}{8} \\ \frac{1}{9} \\ \frac{1}{10} \end{bmatrix}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\frac{1}{12}$ | $   \begin{array}{c}     \frac{1}{5} \\     \frac{1}{6} \\     \frac{1}{7} \\     \frac{1}{8} \\     \frac{1}{9} \\     \frac{1}{100} \\     \frac{1}{11} \\     \frac{1}{12} \\     \frac{1}{13} \\     \frac{1}{14}   \end{array} $ | $   \begin{array}{c}     \frac{1}{6} \\     \frac{1}{7} \\     \frac{1}{8} \\     \frac{1}{9} \\     \frac{1}{10} \\     \frac{1}{11} \\     \frac{1}{12} \\     \frac{1}{13} \\     \frac{1}{14} \\     \frac{1}{15}   \end{array} $ | $\begin{array}{c} \frac{1}{7} \\ \frac{1}{8} \\ \frac{1}{9} \\ \frac{1}{10} \\ \frac{1}{11} \\ \frac{1}{12} \\ \frac{1}{13} \\ \frac{1}{14} \\ \frac{1}{15} \\ \frac{1}{16} \\ \end{array}$ | $\begin{array}{c} \frac{1}{8} \\ \frac{1}{9} \\ \frac{1}{10} \\ \frac{1}{11} \\ \frac{1}{12} \\ \frac{1}{13} \\ \frac{1}{14} \\ \frac{1}{15} \\ \frac{1}{16} \\ \frac{1}{17} \end{array}$ | $\begin{array}{c} \frac{1}{9} \\ \frac{1}{100} \\ \frac{1}{111} \\ \frac{1}{112} \\ \frac{1}{133} \\ \frac{1}{144} \\ \frac{1}{155} \\ \frac{1}{166} \\ \frac{1}{177} \\ \frac{1}{18} \\ \end{array}$ | $ \begin{array}{c} \frac{1}{10} \\ \frac{1}{10} \\ \frac{1}{11} \\ \frac{1}{12} \\ \frac{1}{13} \\ \frac{1}{14} \\ \frac{1}{15} \\ \frac{1}{16} \\ \frac{1}{17} \\ \frac{1}{18} \\ \frac{1}{19} \end{array} $ | $b = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ | 1.00x1 = 100.00<br>1.00x2 = -4949.68<br>1.00x3 = 79193.21<br>1.00x4 = -600538.14<br>1.00x5 = 2522224.26<br>1.00x6 = -6305485.55<br>1.00x7 = 9608261.78<br>1.00x8 = -8750305.21<br>1.00x9 = 4375119.57<br>1.00x10 = -923630.23<br>*Keterangan: konversi pecahan menjadi desimal menggunakan 32 angka di belakang koma |

# 2. SPL berbentuk augmented matrix

| a.                                                                                                                          | Solusi                                             |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $\begin{bmatrix} 1 & -1 & 2 & -1 & -1 \\ 2 & 1 & -2 & -2 & -2 \\ -1 & 2 & -4 & 1 & 1 \\ 3 & 0 & 0 & -3 & -3 \end{bmatrix}.$ | 1.00x1 + -1.00x4 = -1.00 $1.00x2 + -2.00x3 = 0.00$ |

| b.                                                                                                                                                                | Solusi                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| $\begin{bmatrix} 2 & 0 & 8 & 0 & 8 \\ 0 & 1 & 0 & 4 & 6 \\ -4 & 0 & 6 & 0 & 6 \\ 0 & -2 & 0 & 3 & -1 \\ 2 & 0 & -4 & 0 & -4 \\ 0 & 1 & 0 & -2 & 0 \end{bmatrix}.$ | 1.00x1 = 0.00<br>1.00x2 = 2.00<br>1.00x3 = 1.00<br>1.00x4 = 1.00 |

### 3. SPL berbentuk

| a.                                                                            |                                                                                                                                  | Solusi                                                          |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| $\mathbf{A} = \begin{bmatrix} 8 & 1 \\ 2 & 9 \\ 1 & 3 \\ 1 & 0 \end{bmatrix}$ | $\begin{bmatrix} 3 & 2 \\ -1 & -2 \\ 2 & -1 \\ 6 & 4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$ | 1.00x1 = -0.22 $1.00x2 = 0.18$ $1.00x3 = 0.71$ $1.00x4 = -0.26$ |

| b.  |                                                                                   |                                                                         |                                                                        |                                                            |                                                                                              |                                                                 |                                                                                  |                                                                 |                                                                             |              |                                                                                     | Solusi                                                                                                                                                  |
|-----|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| A = | 0<br>0<br>1<br>0<br>0<br>0.61396<br>0<br>0<br>1<br>0.04289<br>0.91421<br>-0.04289 | 0<br>0<br>1<br>0<br>0.25<br>0.75<br>0<br>1<br>0<br>0.75<br>0.25<br>0.25 | 0<br>0<br>1<br>0.04289<br>0.91421<br>0.04289<br>1<br>0<br>0.61396<br>0 | 0<br>1<br>0<br>0.25<br>0.75<br>0<br>1<br>0<br>0.25<br>0.75 | 0<br>1<br>0<br>0.04289<br>0.91421<br>0.04289<br>0<br>1<br>0<br>0.04289<br>0.91421<br>0.04289 | 0<br>1<br>0<br>0.75<br>0.25<br>0<br>1<br>0<br>0.75<br>0.25<br>0 | 1<br>0<br>0<br>0.04289<br>0.91421<br>0.04289<br>0<br>0<br>1<br>0<br>0<br>0.61396 | 1<br>0<br>0<br>0.75<br>0.25<br>0<br>0<br>1<br>0<br>0.25<br>0.75 | 1<br>0<br>0<br>0.61396<br>0<br>0<br>1<br>0<br>0.04289<br>0.91421<br>0.04289 | , <b>b</b> = | 13<br>15<br>8<br>14.79<br>14.31<br>83.81<br>18<br>12<br>6<br>10.51<br>16.13<br>7.04 | 1.00x1 = 3.00<br>1.00x2 = -1.01<br>1.00x3 = 6.00<br>1.00x4 = 3.00<br>1.00x5 = 5.01<br>1.00x6 = 7.00<br>1.00x7 = -0.00<br>1.00x8 = 8.00<br>1.00x9 = 5.00 |

### 4. Studi kasus interpolasi

a. Gunakan tabel di bawah ini untuk mencari polinom interpolasi dari pasangan titik-titik yang terdapat dalam tabel. Program menerima masukan nilai x yang akan dicari nilai fungsi f(x).

| х    | 0.4   | 0.7   | 0.11  | 0.14  | 0.17 | 0.2  | 0.23  |
|------|-------|-------|-------|-------|------|------|-------|
| f(x) | 0.043 | 0.005 | 0.058 | 0.072 | 0.1  | 0.13 | 0.147 |

f(x) adalah:

f(x) = 0.18438343108060185 + 10.270420325691873(x^1) - 163.8335638747135( c^2) + 1220.2693625963375(x^3) - 4344.037596069593(x^4) + 7097.8428079872 52(x^5) - 4208.789448197159(x^6)

### Pengujian nilai-nilai f(x):

| f(0.2)  | Masukkan nilai $x = 0.2$<br>f(0.2) = 0.129999999988954   |
|---------|----------------------------------------------------------|
| f(0.55) | Masukkan nilai x = 0.55<br>f(0.55) = 2.141769567345378   |
| f(0.85) | Masukkan nilai x = 0.85<br>f(0.85) = -66.0334696938537   |
| f(1.28) | Masukkan nilai x = 1.28<br>f(1.28) = -3479.7595146313033 |

b. Jumlah kasus positif baru Covid-19 di Indonesia semakin fluktuatif dari hari ke hari. Di bawah ini diperlihatkan jumlah kasus baru Covid-19 di Indonesia mulai dari tanggal 17 Juni 2022 hingga 31 Agustus 2022:

| Tanggal    | Tanggal (desimal) | Jumlah Kasus Baru |
|------------|-------------------|-------------------|
| 17/06/2022 | 6,567             | 12.624            |
| 30/06/2022 | 7                 | 21.807            |
| 08/07/2022 | 7,258             | 38.391            |
| 14/07/2022 | 7,451             | 54.517            |
| 17/07/2022 | 7,548             | 51.952            |
| 26/07/2022 | 7,839             | 28.228            |
| 05/08/2022 | 8,161             | 35.764            |
| 15/08/2022 | 8,484             | 20.813            |
| 22/08/2022 | 8,709             | 12.408            |
| 31/08/2022 | 9                 | 10.534            |

# f(x) adalah:

```
a[1] = -9.346993679173157E9
a[2] = 5.334283855248181E9
a[3] = -1.7568181863613358E9
a[4] = 3.68558087175524E8
a[5] = -5.113187676013151E7
a[6] = 4695386.31542869
a[7] = -275474.539429636
a[8] = 9.977.849239101135
a[9] = -146.99371224663327
f(x) = 7.187666971666194E9 = 9.346993079173157E9(x^1) + 5.334283655240181E9(x^2) - 1.7568101863613358E9(x^3) + 3.68558807175524E8(x^4) - 5.113187676013151E7(x^5) + 4695896.315428689(x^6) - 275474.5394206636(x^7) + 9377.849239101135(x^8) - 146.99371224863327(x^9)
```

### Pengujian nilai-nilai f(x):

| Tanggal    | Tanggal (desimal) | Jumlah Kasus Baru (f(x))                                  |
|------------|-------------------|-----------------------------------------------------------|
| 16/07/2022 | 7,516             | Masukkan nilai x = 7.516<br>f(7.516) = 53.53780555725098  |
| 10/08/2022 | 8,323             | Masukkan nilai x = 8.322<br>f(8.322) = 36.34363555908203  |
| 05/09/2022 | 9,167             | Masukkan nilai x = 9.167<br>f(9.167) = -667.6931457519531 |

| 28/02/2022 | 3 | Masukkan nilai x = 3         |
|------------|---|------------------------------|
|            |   | f(3.0) = 2.710869890585276E7 |

#### c. Sederhanakan fungsi

$$f(x) = \frac{x^2 + \sqrt{x}}{e^x + x}$$

dengan polinom interpolasi derajat n di dalam selang [0, 2]. Sebagai contoh, jika n = 5, maka titik-titik x yang diambil di dalam selang [0, 2] berjarak h = (2 - 0)/5 = 0.4. Ini berarti terdapat 5 titik: 0.4, 0.8, 1.2, 1.6, 2.0.

Pemasukan dari ke-5 titik ini pada program:

```
Masukkan jumlah titik yang ingin dimasukkan: 5
Masukkan x[0] y[0] = 0.4 0.419
Masukkan x[1] y[1] = 0.8 0.507
Masukkan x[2] y[2] = 1.2 0.561
Masukkan x[3] y[3] = 1.6 0.584
Masukkan x[4] y[4] = 2 0.577
```

#### Nilai f(x) adalah:

#### Uji coba fungsi f(x) dengan x = 2.4:

```
Masukkan nilai x = 2.4
f(2.4) = 0.5390000000000011
```

# 5. Studi kasus interpolasi Bikubik

Diberikan matriks input:

| 153 | 59  | 210 | 96 |
|-----|-----|-----|----|
| 125 | 161 | 72  | 81 |
| 98  | 101 | 42  | 12 |
| 21  | 51  | 0   | 16 |

Tentukan nilai dari f(0,0), f(0.5, 0.5), f(0.25, 0.75), f(0.1, 0.9)! Pengujian nilai-nilai:

| f(0, 0)       | Masukkan nilai x dan y = 0 0<br>f(0.0,0.0) = 161.0                     |
|---------------|------------------------------------------------------------------------|
| f(0.5, 0.5)   | Masukkan nilai x dan y = $0.5 \ 0.5$<br>f( $0.5, 0.5$ ) = $97.7265625$ |
| f(0.25, 0.75) | Masukkan nilai x dan y = 0.25 0.75<br>f(0.25,0.75) = 82.5020751953125  |
| f(0.1, 0.9)   | Masukkan nilai x dan y = 0.1 0.9<br>f(0.1,0.9) = 74.6961185            |

#### 6. Studi Kasus Regresi Linear Berganda

Diberikan sekumpulan data sesuai pada tabel berikut ini:

Table 12.1: Data for Example 12.1

| Nitrous    | Humidity, | Temp., | Pressure, | Nitrous    | Humidity, | Temp., | Pressure, |
|------------|-----------|--------|-----------|------------|-----------|--------|-----------|
| Oxide, $y$ | $x_1$     | $x_2$  | $x_3$     | Oxide, $y$ | $x_1$     | $x_2$  | $x_3$     |
| 0.90       | 72.4      | 76.3   | 29.18     | 1.07       | 23.2      | 76.8   | 29.38     |
| 0.91       | 41.6      | 70.3   | 29.35     | 0.94       | 47.4      | 86.6   | 29.35     |
| 0.96       | 34.3      | 77.1   | 29.24     | 1.10       | 31.5      | 76.9   | 29.63     |
| 0.89       | 35.1      | 68.0   | 29.27     | 1.10       | 10.6      | 86.3   | 29.56     |
| 1.00       | 10.7      | 79.0   | 29.78     | 1.10       | 11.2      | 86.0   | 29.48     |
| 1.10       | 12.9      | 67.4   | 29.39     | 0.91       | 73.3      | 76.3   | 29.40     |
| 1.15       | 8.3       | 66.8   | 29.69     | 0.87       | 75.4      | 77.9   | 29.28     |
| 1.03       | 20.1      | 76.9   | 29.48     | 0.78       | 96.6      | 78.7   | 29.29     |
| 0.77       | 72.2      | 77.7   | 29.09     | 0.82       | 107.4     | 86.8   | 29.03     |
| 1.07       | 24.0      | 67.7   | 29.60     | 0.95       | 54.9      | 70.9   | 29.37     |

Source: Charles T. Hare, "Light-Duty Diesel Emission Correction Factors for Ambient Conditions," EPA-600/2-77-116. U.S. Environmental Protection Agency.

Dapatkan nilai regresi linear berganda dari data-data tersebut dan estimasikan nilai Nitrous Oxide apabila Humidity bernilai 50%, temperatur 76°F, dan tekanan udara sebesar 29.30 y = f(x1, x2, x3) =

$$y = (-3.5078) + (-0.0026)x1 + (0.0008)x2 + (0.1542)x3$$

$$f(50, 76, 29.3) = x1 = 50$$
  
 $x2 = 76$   
 $x3 = 29.3$   
 $y = 0.9384$ 

# Bab 5: Kesimpulan, saran, dan refleksi

Matrix dapat digunakan dan diimplementasi untuk berbagai macam hal; mulai dari mencari solusi dari sistem persamaan linear, mendapatkan fungsi interpolasi polinom, menaksir fungsi interpolasi bikubik, hingga mencari nilai regresi linear berganda. Untuk dapat melakukan hal-hal tersebut, diperlukan pengetahuan dasar tentang matriks beserta metode-metode yang digunakannya. Pada tugas besar ini, metode utama yang digunakan terdiri dari determinan, kofaktor. Metode Gauss, Metode Gauss-Jordan, dan Metode Pengimplementasian tadi dapat diaplikasikan dalam kehidupan nyata. Yang pertama, interpolasi polinom dapat digunakan untuk memprediksi bentuk fungsi suatu garis. Selanjutnya, interpolasi bikubik dapat difungsikan sebagai algoritma memperbesar gambar. Dan yang terakhir, Regresi linear berganda dapat dipakai untuk memprediksi suatu nilai dari berbagai macam variabel yang tersedia.

Untuk saran kedepannya, kami berharap tugas besar dapat disertakan dengan asistensi untuk mempermudah mahasiswa dalam mengerjakan dan memastikan apakah hal yang sudah dikerjakan berjalan dengan baik atau tidak. Selain itu, kami juga berharap referensi untuk file panduan tugas besar ditambahkan agar memperjelas proses pengerjaan.

Pada tugas besar pertama ini, kami merasa masih kurang cekatan dan kurang taktis dalam mengerjakan tugas besar ini sehingga tidak sempat membuat GUI dan bonus yang diberikan. Tetapi, kami tetap mengapresiasi teman-teman sekelompok yang tidak menghilang ketika diajak mengerjakan tugas besar.

### **Daftar Referensi**

- https://www.profematika.com/eliminasi-gauss-dan-contoh-penerapannya/
   September 2022)
- 2. <a href="https://www.profematika.com/eliminasi-gauss-jordan-beserta-contoh-penerapannya/">https://www.profematika.com/eliminasi-gauss-jordan-beserta-contoh-penerapannya/</a> (Diakses 27 September 2022)
- 3. <a href="https://jagostat.com/aljabar-linear/bentuk-eselon-baris-dan-eselon-baris-tereduksi">https://jagostat.com/aljabar-linear/bentuk-eselon-baris-dan-eselon-baris-tereduksi</a> (Diakses 27 September 2022)
- 4. <a href="https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2020-2021/Algeo-04-Tiga-K">https://informatika.stei.itb.ac.id/~rinaldi.munir/AljabarGeometri/2020-2021/Algeo-04-Tiga-K</a> <a href="mailto:emungkinan-Solusi-SPL.pdf">emungkinan-Solusi-SPL.pdf</a> (Diakses 27 September 2022)
- 5. <a href="https://id.wikipedia.org/wiki/Determinan">https://id.wikipedia.org/wiki/Determinan</a> (Diakses 27 September 2022)
- 6. <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont">https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont</a> <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont">https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont</a> <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont">https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont</a> <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont">https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont</a> <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont">https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont</a> <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont">https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont</a> <a href="https://akupintar.id/info-pintar/-/blogs/matriks-pengertian-operasi-determinan-invers-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-cont-dan-
- 7. <a href="https://mathworld.wolfram.com/Adjoint.html">https://mathworld.wolfram.com/Adjoint.html</a> (Diakses 27 September 2022)
- 8. <a href="https://mathcyber1997.com/materi-soal-dan-pembahasan-aturan-cramer/">https://mathcyber1997.com/materi-soal-dan-pembahasan-aturan-cramer/</a> (Diakses 27 September 2022)
- 9. <a href="https://bookdown.org/moh\_rosidi2610/Metode\_Numerik/interpolation.html">https://bookdown.org/moh\_rosidi2610/Metode\_Numerik/interpolation.html</a> (Diakses 27 September 2022)
- 10. https://en.wikipedia.org/wiki/Bicubic interpolation (Diakses 27 September 2022)
- 11. <a href="https://www.youtube.com/watch?v=zX1e4YDCVs0">https://www.youtube.com/watch?v=zX1e4YDCVs0</a> (Diakses 3 Oktober 2022)

# Lampiran

Link Repository Github: <a href="https://github.com/shidqizh/Algeo01-21041/">https://github.com/shidqizh/Algeo01-21041/</a>