WifeyAlpha - Research Drop - 50 Indicators

Sir, this is houskeeping, we need to check the keys and make sure our vacuum cleaners are working correctly

```
In [1]: # Install a conda package in the current Jupyter kernel
        # This way you can solve any "ModuleNotFoundError: No module named 'ipympl'" Error by
        # putting the module name here where you found ipympl
        import sys
        #!conda install --yes --prefix {sys.prefix} libgcc
        #!conda install --yes --prefix {sys.prefix} fredapi
        #!conda update --yes -n base conda
        # amazing interactive charts # https://towardsdatascience.com/get-interactive-plots-dire
        !conda install --yes --prefix {sys.prefix} -c patrikhlobil pandas-bokeh
        !pip install multitasking
        # Yahoo Finance
        !pip install lxml
        # Error in YF
        !pip install pandas==1.3.5
        !pip install -i https://pypi.anaconda.org/ranaroussi/simple yfinance==0.1.62
        # Nasdag Data Link
        !pip install nasdaq-data-link
        !pip install matplotlib
        #!pip install fredapi
        !conda install --yes -c conda-forge fredapi
        Collecting package metadata (current_repodata.json): done
        Solving environment: done
        ## Package Plan ##
          environment location: /home/p/anaconda3
          added / updated specs:

    pandas-bokeh

        The following packages will be UPDATED:
                             conda-forge::ca-certificates-2022.6.1~ --> pkgs/main::ca-certificat
          ca-certificates
        es-2022.07.19-h06a4308 0
        The following packages will be SUPERSEDED by a higher-priority channel:
          conda
                             conda-forge::conda-4.14.0-py38h578d9b~ --> pkgs/main::conda-4.14.0-
        py38h06a4308_0
        Preparing transaction: done
        Verifying transaction: done
        Executing transaction: done
        Retrieving notices: ...working... done
        Requirement already satisfied: multitasking in /home/p/anaconda3/lib/python3.8/site-pack
        ages (0.0.11)
        Requirement already satisfied: lxml in /home/p/anaconda3/lib/python3.8/site-packages (4.
        Requirement already satisfied: pandas==1.3.5 in /home/p/anaconda3/lib/python3.8/site-pac
        kages (1.3.5)
        Requirement already satisfied: pytz>=2017.3 in /home/p/anaconda3/lib/python3.8/site-pack
        ages (from pandas==1.3.5) (2022.2.1)
```

```
Requirement already satisfied: python-dateutil>=2.7.3 in /home/p/anaconda3/lib/python3.
8/\text{site-packages} (from pandas==1.3.5) (2.8.2)
Requirement already satisfied: numpy>=1.17.3 in /home/p/anaconda3/lib/python3.8/site-pac
kages (from pandas==1.3.5) (1.23.2)
Requirement already satisfied: six>=1.5 in /home/p/anaconda3/lib/python3.8/site-packages
(from python-dateutil>=2.7.3->pandas==1.3.5) (1.16.0)
Looking in indexes: https://pypi.anaconda.org/ranaroussi/simple
Requirement already satisfied: yfinance==0.1.62 in /home/p/anaconda3/lib/python3.8/site-
packages (0.1.62)
Requirement already satisfied: numpy>=1.15 in /home/p/anaconda3/lib/python3.8/site-packa
ges (from yfinance==0.1.62) (1.23.2)
Requirement already satisfied: multitasking>=0.0.7 in /home/p/anaconda3/lib/python3.8/si
te-packages (from yfinance==0.1.62) (0.0.11)
Requirement already satisfied: lxml>=4.5.1 in /home/p/anaconda3/lib/python3.8/site-packa
ges (from yfinance==0.1.62) (4.9.1)
Requirement already satisfied: requests>=2.20 in /home/p/anaconda3/lib/python3.8/site-pa
ckages (from yfinance==0.1.62) (2.28.1)
Requirement already satisfied: pandas>=0.24 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from yfinance==0.1.62) (1.3.5)
Requirement already satisfied: python-dateutil>=2.7.3 in /home/p/anaconda3/lib/python3.
8/\text{site-packages} (from pandas>=0.24->yfinance==0.1.62) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from pandas>=0.24->yfinance==0.1.62) (2022.2.1)
Requirement already satisfied: idna<4,>=2.5 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from requests>=2.20->yfinance==0.1.62) (3.3)
Requirement already satisfied: certifi>=2017.4.17 in /home/p/anaconda3/lib/python3.8/sit
e-packages (from requests>=2.20->yfinance==0.1.62) (2022.6.15)
Requirement already satisfied: charset-normalizer<3,>=2 in /home/p/anaconda3/lib/python
3.8/site-packages (from requests>=2.20->yfinance==0.1.62) (2.1.1)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/p/anaconda3/lib/python3.8/
site-packages (from requests>=2.20-yfinance==0.1.62) (1.26.12)
Requirement already satisfied: six>=1.5 in /home/p/anaconda3/lib/python3.8/site-packages
(from python-dateutil>=2.7.3->pandas>=0.24->yfinance==0.1.62) (1.16.0)
Requirement already satisfied: nasdaq-data-link in /home/p/anaconda3/lib/python3.8/site-
packages (1.0.4)
Requirement already satisfied: inflection>=0.3.1 in /home/p/anaconda3/lib/python3.8/site
-packages (from nasdaq-data-link) (0.5.1)
Requirement already satisfied: numpy>=1.8 in /home/p/anaconda3/lib/python3.8/site-packag
es (from nasdaq-data-link) (1.23.2)
Requirement already satisfied: six in /home/p/anaconda3/lib/python3.8/site-packages (fro
m nasdag-data-link) (1.16.0)
Requirement already satisfied: requests>=2.7.0 in /home/p/anaconda3/lib/python3.8/site-p
ackages (from nasdaq-data-link) (2.28.1)
Requirement already satisfied: python-dateutil in /home/p/anaconda3/lib/python3.8/site-p
ackages (from nasdaq-data-link) (2.8.2)
Requirement already satisfied: more-itertools in /home/p/anaconda3/lib/python3.8/site-pa
ckages (from nasdaq-data-link) (8.14.0)
Requirement already satisfied: pandas>=0.14 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from nasdaq-data-link) (1.3.5)
Requirement already satisfied: pytz>=2017.3 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from pandas>=0.14->nasdaq-data-link) (2022.2.1)
Requirement already satisfied: certifi>=2017.4.17 in /home/p/anaconda3/lib/python3.8/sit
e-packages (from requests>=2.7.0->nasdaq-data-link) (2022.6.15)
Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/p/anaconda3/lib/python3.8/
site-packages (from requests>=2.7.0->nasdaq-data-link) (1.26.12)
Requirement already satisfied: idna<4,>=2.5 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from requests>=2.7.0->nasdaq-data-link) (3.3)
Requirement already satisfied: charset-normalizer<3,>=2 in /home/p/anaconda3/lib/python
3.8/site-packages (from requests>=2.7.0->nasdaq-data-link) (2.1.1)
Requirement already satisfied: matplotlib in /home/p/anaconda3/lib/python3.8/site-packag
es (3.5.3)
Requirement already satisfied: pillow>=6.2.0 in /home/p/anaconda3/lib/python3.8/site-pac
kages (from matplotlib) (9.2.0)
Requirement already satisfied: cycler>=0.10 in /home/p/anaconda3/lib/python3.8/site-pack
ages (from matplotlib) (0.11.0)
```

Requirement already satisfied: packaging>=20.0 in /home/p/anaconda3/lib/python3.8/site-p

```
Requirement already satisfied: fonttools>=4.22.0 in /home/p/anaconda3/lib/python3.8/site
        -packages (from matplotlib) (4.37.1)
        Requirement already satisfied: numpy>=1.17 in /home/p/anaconda3/lib/python3.8/site-packa
        ges (from matplotlib) (1.23.2)
        Requirement already satisfied: pyparsing>=2.2.1 in /home/p/anaconda3/lib/python3.8/site-
        packages (from matplotlib) (3.0.9)
        Requirement already satisfied: kiwisolver>=1.0.1 in /home/p/anaconda3/lib/python3.8/site
        -packages (from matplotlib) (1.4.4)
        Requirement already satisfied: python-dateutil>=2.7 in /home/p/anaconda3/lib/python3.8/s
        ite-packages (from matplotlib) (2.8.2)
        Requirement already satisfied: six>=1.5 in /home/p/anaconda3/lib/python3.8/site-packages
        (from python-dateutil>=2.7->matplotlib) (1.16.0)
        Collecting package metadata (current_repodata.json): done
        Solving environment: done
        ## Package Plan ##
          environment location: /home/p/anaconda3
          added / updated specs:
            - fredapi
        The following packages will be SUPERSEDED by a higher-priority channel:
          ca-certificates
                             pkgs/main::ca-certificates-2022.07.19~ --> conda-forge::ca-certific
        ates-2022.6.15-ha878542_0
          conda
                             pkgs/main::conda-4.14.0-py38h06a4308_0 --> conda-forge::conda-4.14.
        0-py38h578d9bd_0
        Preparing transaction: done
        Verifying transaction: done
        Executing transaction: done
        Retrieving notices: ...working... done
In [2]: from fredapi import Fred
        # importing matplotlib module
        import pandas as pd
        # for interactive plots
        import pandas_bokeh
        # for static plots
        import matplotlib.pyplot as plt
        # initalize bohek interactive
        pandas_bokeh.output_notebook()
        # personal use only! Yahoo finance
        import yfinance as yf
        # nasdaq data link! Todo: Check for usages under commercial
        import nasdaqdatalink
        import datetime
        # here are the tweets
        # Part 1:
        # https://twitter.com/wifeyalpha/status/1563608271310622720?s=21&t=oLpOLjdycNyKnM_c6kcJW
        # Part 2:
        # https://twitter.com/wifeyalpha/status/1565058274294104066?s=21&t=oLpOLjdycNyKnM_c6kcJW
        # Part 3:
        # https://twitter.com/wifeyalpha/status/1566093228142743554?s=21&t=oLpOLjdycNyKnM_c6kcJW
           BokehJS 2.4.3 successfully loaded.
```

ackages (from matplotlib) (21.3)

```
!pip install requests
In [3]:
        import requests
        imf_url = 'http://dataservices.imf.org/REST/SDMX_JSON.svc/'
        Requirement already satisfied: requests in /home/p/anaconda3/lib/python3.8/site-packages
        Requirement already satisfied: charset-normalizer<3,>=2 in /home/p/anaconda3/lib/python
        3.8/site-packages (from requests) (2.1.1)
        Requirement already satisfied: certifi>=2017.4.17 in /home/p/anaconda3/lib/python3.8/sit
        e-packages (from requests) (2022.6.15)
        Requirement already satisfied: urllib3<1.27,>=1.21.1 in /home/p/anaconda3/lib/python3.8/
        site-packages (from requests) (1.26.12)
        Requirement already satisfied: idna<4,>=2.5 in /home/p/anaconda3/lib/python3.8/site-pack
        ages (from requests) (3.3)
In [4]: # Make an account with fred and get a free key!
        fred = Fred(api_key='')
        Wifey Data Download
In [5]: # Wifey Download
        # get data from fred
        # 1. GDP deflator
        gdp_deflator=fred.get_series('GDPDEF')
        # 2. Gold price
        data_gold_futures=yf.download('GC=F', period='max')
        # 3. Misery Index
        # Misery Index is based on two timeseries which you need to add
        us_unemployment=fred.get_series('UNRATE')
        # this series is not posted as delta
        us_inflation=fred.get_series('CPIAUCSL')
        # 4. PPI
        us_ppi=fred.get_series('PPIACO')
        In [6]: # 5. Retail investment activity
        # No direct link given, here is an example
        # https://data.nasdaq.com/databases/RTAT/documentation?anchor=product-overview
        # Premium + Sample
        # nasdaq_top_10_retail_flow=nasdaqdatalink.get_table('NDAQ/RTAT10', date='2022-09-02', t
In [7]: # Here is the link to the data https://www.theia.org/industry-data/fund-statistics/retai
        # 6. Credit spreads
        # here some data, divide and conquer
        y30tips=fred.get_series('DFII30')
        y20tips=fred.get_series('DFII20')
        y10tips=fred.get_series('DFII10')
        y7tips=fred.get_series('DFII7')
        y5tips=fred.get_series('DFII5')
        y30=fred.get_series('DGS30')
        y20=fred.get_series('DGS20')
        y10=fred.get_series('DGS10')
        y7=fred.get_series('DGS7')
        y5=fred.get_series('DGS5')
        y3=fred.get_series('DGS3')
```

y2=fred.get_series('DGS2')
y1=fred.get_series('DGS1')
m6=fred.get_series('DGS6MO')
m3=fred.get_series('DGS3MO')
m1=fred.get_series('DGS1MO')

fedfund=fred.get_series('FEDFUNDS')

aaa_credit_effective=fred.get_series('BAMLCOA1CAAAEY')
bbb_credit_effective=fred.get_series('BAMLCOA4CBBBEY')

```
# 7. TED Spread
        # you could go libor vs 10y or you take the fed funds rate
In [8]: # 8. Texas Zombie Bank Ratio
        # api specs https://banks.data.fdic.gov/docs/#/Historical/getHistorical
        # For simplicity, we just download the xlsx and parse it
        # not working any more xlrd stopped support
        # texas_zombi_bank_ratio=pd.read_excel("https://www.fdic.gov/analysis/quarterly-banking-
        # 9. TIPS spread
        # y10tips - fedfund
        # 10. VIX Index
        data_vix_total=yf.download("^VIX", period="max")
        # 11. VIXEN Index - Hot waitresses - or maybe nasdaq 100 vol?
        data_vixen_total=yf.download("^VXN", period="max")
        In [9]: # Round 2 Wifey
        \# GDP = C + I + G + NX
        # CONSUMPTION (C)
        # 12. Automobile sales
        # Wifey goes to a dead link (for me) here are total vehicle sales from fred, sir
        auto_sales=fred.get_series('TOTALSA')
        # 13. Chain Store Sales
        # Redbook - I am sorry sir, this data is premium
        #nasdaq_redbook=nasdaqdatalink.get('SGE/USARDBK')
        # 14. Consumer Sentiment
        umcsics=fred.get_series('UMCSENT')
        # 15. Existing Home Sales
        existing_home_sales=fred.get_series('EXHOSLUSM495S')
        existing_home_sales_inventory=fred.get_series('HOSINVUSM495N')
        # 16. Underemployment
        slack=fred.get_series('LNS12032195')
        # INVESTMENT (I)
        # 17. Book-To-Bill
        # premium
        # 18. Copper
        copper_comex=yf.download("HG=F", period="max")
        # lme is premium copper_lme https://www.lme.com/en/metals/non-ferrous/lme-copper#Trading
        copper_lme_spot_usd=nasdaqdatalink.get('ODA/PCOPP_USD') # should be free
        imf_key_copper = ''
        # TODO: IMF Calls
        #copper_imf=(requests.get(f'{imf_url}{imf_key_copper}').json()['CompactData']['DataSet']
        # 19. Durable Goods Orders
        durable_goods_orders=fred.get_series('DGORDER')
        # 20. Housing Permits and Starts
        building_permits=fred.get_series('PERMIT')
        housing_starts=fred.get_series('HOUST')
        # 21. Industrial Production and Capacity Utilization
        indu_prod=fred.get_series('INDPRO')
        capacity_util=fred.get_series('TCU')
```

ccc_credit_effective=fred.get_series('BAMLH0A3HYCEY')

```
# 22. ISM Manufacturing
         # This is not allowed to be published and they made this very clear, however there is so
         # !!! DATA ONLY TILL 05.2016 !!!
         ism_pmi=nasdaqdatalink.get('FRED/NAPM')
         # 23. ISM Non Manufacturing
         # This is not allowed to be published and they made this very clear, however there is so
         # !!! DATA ONLY TILL 05.2016 !!!
         ism_nmi=nasdaqdatalink.get('FRED/NMFCI')
         # 24. JoC-ECRI Industrial Price Index
         # Premium
         # 25. London Metal Exchange Inventories
         # https://www.lme.com/en/market-data/accessing-market-data/historical-data # Premium
         # https://www.cmegroup.com/ftp/bulletin/ # Premium
         # https://www.shfe.com.cn/en/products/Copper/
         # 26. Personal Saving Rate
         personal_savings_rate=fred.get_series('PSAVERT')
         # 27. Unit Labor Costs
         unit_labor_cost=fred.get_series('ULCNFB')
         # GOVERNMENT (G)
         # 28. Federal Govenment Budget Deficits and the National Debt
         federal_debt=fred.get_series('GFDEBTN')
         federal_surplus_deficit=fred.get_series('MTSDS133FMS')
         # NET EXPROTS (NX)
         # 29. Baltic Dry Index
         # maybe possible through https://eodhistoricaldata.com/financial-summary/BDIY.INDX
         # 30. Big Mac Index
         # https://data.nasdag.com/data/ECONOMIST-the-economist-big-mac-index # A lot of free ind
         big_mac_index_switzerland=nasdaqdatalink.get('ECONOMIST/BIGMAC_CHE')
         big_mac_index_china=nasdaqdatalink.get('ECONOMIST/BIGMAC_CHN')
         # 31. Current Account Deficit
         current_account=fred.get_series('IEABC')
         In [10]: # 32. Oil Inventories
         #oil_inventory=pd.read_excel("https://www.eia.gov/dnav/pet/hist_xls/WTTSTUS1w.xls","Data
         # 33. Tankan Survey
         #https://www.boj.or.jp/en/statistics/tk/index.htm/
         # A mother load of data in excel files. See above
         # 34. TIC Data
         tic_data=pd.read_csv("https://treasury.gov/resource-center/data-chart-center/tic/Documen
In [34]: # Round 3 Wifey
         # 35. Beige Book
         # goodread: https://www.federalreserve.gov/monetarypolicy/beige-book-default.htm
         # 36. Crack Spread
         oil_futures=yf.download("CL=F", period="max")
         gasoline_futures=yf.download("RB=F", period="max")
         # 37. Credit Availability Oscillator
```

```
# Prop: https://sec.report/CIK/0001329948
        # 38. Federal Funds Rate
        fedfund=fred.get_series('FEDFUNDS')
        # 39. Fertility Rates
        # https://data.nasdaq.com/data/FRED-federal-reserve-economic-data?keyword=fertility%20ra
        fertility_ger=nasdagdatalink.get('FRED/SPADOTFRTDEU')
        # 40. Gross Domestic Product per Capita
        real_gdp_per_capita=fred.get_series('A939RX0Q048SBEA')
        # 41. Libor
        libor=fred.get_series('LIOR3M')
        # 42. M2 Money Supply
        m2=fred.get_series('M2SL')
        data_spx_total=yf.download("SPY", start="1955-01-01", end="2023-01-01")
        # ^SPX is buggy
        #data_spx_total=yf.download("^SPX", start="1923-01-01", end="2023-01-01")
        # 43. New Home Sales
        median_sales_price_of_houses_sold_for_the_united_states=fred.get_series('MSPUS')
        # 44. The Aruoba-Diebold-Scotti Business Conditiona Index
        # XLSX is no longer supported
        #ads_bc_index=pd.read_excel('https://www.philadelphiafed.org/-/media/frbp/assets/surveys
        # 45. Business Outlook Survey
        business_index_philly=pd.read_csv('https://www.philadelphiafed.org/-/media/frbp/assets/s
        # 46. Real Interest Rates
        nominal_rate=y1
        cpi_ex_food_energy=fred.get_series('CORESTICKM159SFRBATL')
        ppi=fred.get_series('PPIACO')
        gdp_pce_deflator=fred.get_series('A191RI1Q225SBEA')
        # 47. Short Interest
        # premium https://data.nasdaq.com/databases/NSIR/documentation and https://shortsqueeze.
        # 48. Russel 2000
        rut=yf.download("^RUT", period="max")
        # 49. Weekly Leading Index
        # Premium
        # 50. Yield Curve
        # see top rate download
        [********* 100%********** 1 of 1 completed
        In [13]:  # Round 3 Wifey
        # 35. Beige Book
        # goodread: https://www.federalreserve.gov/monetarypolicy/beige-book-default.htm
        # 36. Crack Spread
        oil_futures=yf.download("CL=F", period="max")
        gasoline_futures=yf.download("RB=F", period="max")
        # 37. Credit Availability Oscillator
        # Prop: https://sec.report/CIK/0001329948
        # 38. Federal Funds Rate
        fedfund=fred.get_series('FEDFUNDS')
```

```
# 39. Fertility Rates
# https://data.nasdag.com/data/FRED-federal-reserve-economic-data?keyword=fertility%20ra
#### LimitExceededError: (Status 429) (Nasdaq Data Link Error QELx04) You have exceeded
fertility_ger=nasdaqdatalink.get('FRED/SPADOTFRTDEU')
# 40. Gross Domestic Product per Capita
real_gdp_per_capita=fred.get_series('A939RX0Q048SBEA')
# 41. Libor
libor=fred.get_series('LIOR3M')
# 42. M2 Money Supply
m2=fred.get_series('M2SL')
#data_spx_total=yf.download("^SPX", start="1923-01-01", end="2023-01-01")
# 43. New Home Sales
median_sales_price_of_houses_sold_for_the_united_states=fred.get_series('MSPUS')
# 44. The Aruoba-Diebold-Scotti Business Conditiona Index
# XLSX is no longer supported
#ads_bc_index=pd.read_excel('https://www.philadelphiafed.org/-/media/frbp/assets/surveys
# 45. Business Outlook Survey
business_index_philly=pd.read_csv('https://www.philadelphiafed.org/-/media/frbp/assets/s
# 46. Real Interest Rates
nominal_rate=y1
cpi_ex_food_energy=fred.get_series('CORESTICKM159SFRBATL')
ppi=fred.get_series('PPIACO')
gdp_pce_deflator=fred.get_series('A191RI1Q225SBEA')
# 47. Short Interest
# premium https://data.nasdaq.com/databases/NSIR/documentation and https://shortsqueeze.
# 48. Russel 2000
rut=yf.download("^RUT", period="max")
# 49. Weekly Leading Index
# Premium
# 50. Yield Curve
# see top rate download
Γ******* 100%********** 1 of 1 completed
1 Failed download:
- ^SPX: 1d data not available for startTime=-2208988800 and endTime=1662589918. Only 100
years worth of day granularity data are allowed to be fetched per request.
1 of 1 completed
```

Leading Indicator Dashboard

US Leading Indicators

Money Markets

Real Interest Rates

```
In [15]: pd.set_option('plotting.backend', 'pandas_bokeh')
# now everything must be in one dataframe
```

```
y30tipsdf = pd.DataFrame(y30tips)
In [16]:
          y20tipsdf = pd.DataFrame(y20tips)
          y10tipsdf = pd.DataFrame(y10tips)
          y7tipsdf = pd.DataFrame(y7tips)
          y5tipsdf = pd.DataFrame(y5tips)
          y30tipsdf.columns = ["30y Tips"]
          y20tipsdf.columns = ["20y Tips"]
          y10tipsdf.columns = ["10y Tips"]
          y7tipsdf.columns = ["7y Tips"]
          y5tipsdf.columns = ["5y Tips"]
          y30df = pd.DataFrame(y30)
          y20df = pd.DataFrame(y20)
          y10df = pd.DataFrame(y10)
          y7df = pd.DataFrame(y7)
          y5df = pd.DataFrame(y5)
          y3df = pd.DataFrame(y3)
          y2df = pd.DataFrame(y2)
          y1df = pd.DataFrame(y1)
          m6df = pd.DataFrame(m6)
          m3df = pd.DataFrame(m3)
          m1df = pd.DataFrame(m1)
          fedfunddf = pd.DataFrame(fedfund)
          y30df.columns = ["30y"]
          y20df.columns = ["20y"]
          y10df.columns = ["10y"]
          y7df.columns = ["7y"]
          y5df.columns = ["5y"]
          y3df.columns = ["3y"]
          y2df.columns = ["2y"]
          y1df.columns = ["1y"]
          m6df.columns = ["6m"]
          m3df.columns = ["3m"]
          m1df.columns = ["1m"]
          fedfunddf.columns = ["Fed Fund Rate"]
          out_join_rates=(fedfunddf.join(m1df,how='outer').join(m3df,how='outer').join(m6df,how='o
In [17]:
               .join(y1df,how='outer').join(y2df,how='outer').join(y3df,how='outer').join(y5df,how=
              .join(y7df,how='outer').join(y10df,how='outer').join(y20df,how='outer').join(y30df,h
              .join(y5tipsdf,how='outer').join(y7tipsdf,how='outer').join(y10tipsdf,how='outer').j
               .join(y30tipsdf,how='outer'))
          out_join_rates=out_join_rates.fillna(method="ffill")
In [18]:
          print_out_join_rates=out_join_rates.tail(30)
          print_out_join_rates = print_out_join_rates.iloc[::-1]
          print_out_join_rates.tail(30)
                  Fed
Out[18]:
                                                                                         10y
                                                                                              20y
                                                                                5y
                                                                                     7у
                                                                                                   30y
                 Fund
                                                                         30y
                       1m
                            3m
                                 6m
                                       1y
                                            2y
                                                 3y
                                                      5y
                                                               10y
                                                                    20y
                                                                              Tips
                                                                                   Tips
                                                                                        Tips
                                                                                             Tips
                                                                                                   Tips
                 Rate
          2022-
                  2.33
                      2.44
                           3.04
                                3.40
                                     3.61
                                          3.50
                                               3.55 3.43
                                                         3.41
                                                              3.33
                                                                   3.74
                                                                         3.49
                                                                              0.87
                                                                                    0.86
                                                                                         0.85
                                                                                              0.99
                                                                                                   1.11
          09-06
          2022-
                                                                                              0.89
                      2.49
                           2.94
                                3.33
                                     3.47
                                          3.40
                                               3.44
                                                    3.30
                                                          3.29
                                                              3.20
                                                                   3.61
                                                                        3.35
                                                                              0.75
                                                                                   0.74
                                                                                         0.73
                                                                                                   1.01
          09-05
          2022-
                      2.49
                           2.94
                                3.33
                                     3.47
                                          3.40
                                               3.44
                                                     3.30
                                                          3.29
                                                               3.20
                                                                    3.61
                                                                         3.35
                                                                              0.75
                                                                                   0.74
                                                                                        0.73
                                                                                              0.89
                                                                                                   1.01
          09-02
          2022-
                           2.97
                                3.34
                                     3.51 3.51 3.54
                                                    3.39
                                                          3.36
                                                              3.26
                                                                   3.64
                                                                        3.37
                                                                              0.87
                                                                                   0.84
                                                                                         0.81
                                                                                              0.95
                  2.33
                      2.53
                                                                                                   1.07
          09-01
```

3.46

3.30

3.45

3.15

3.53

3.27

0.72

0.60

0.69

0.58

0.67

0.56

0.82

0.73

0.96

0.87

3.25

2022-

08-31 2022-

08-30

2.33

2.40 2.96

3.32

3.50

2022- 08-29	2.33	2.45	2.97	3.32	3.43	3.42	3.45	3.27	3.21	3.12	3.50	3.25	0.56	0.55	0.54	0.74	0.90
2022- 08-26	2.33	2.39	2.89	3.26	3.36	3.37	3.40	3.20	3.14	3.04	3.44	3.21	0.47	0.47	0.47	0.68	0.85
2022- 08-25	2.33	2.42	2.88	3.25	3.33	3.35	3.37	3.15	3.11	3.03	3.47	3.25	0.38	0.39	0.43	0.68	0.87
2022- 08-24	2.33	2.29	2.82	3.28	3.35	3.36	3.40	3.20	3.20	3.11	3.55	3.32	0.41	0.44	0.49	0.74	0.92
2022- 08-23	2.33	2.28	2.80	3.21	3.29	3.29	3.35	3.18	3.14	3.05	3.49	3.26	0.41	0.43	0.47	0.71	0.89
2022- 08-22	2.33	2.27	2.82	3.23	3.32	3.32	3.36	3.17	3.12	3.03	3.48	3.24	0.43	0.43	0.46	0.70	0.88
2022- 08-19	2.33	2.23	2.74	3.16	3.26	3.25	3.28	3.11	3.06	2.98	3.44	3.22	0.39	0.40	0.43	0.68	0.87
2022- 08-18	2.33	2.23	2.71	3.12	3.24	3.22	3.23	3.02	2.97	2.88	3.35	3.14	0.32	0.33	0.36	0.64	0.86
2022- 08-17	2.33	2.22	2.68	3.15	3.27	3.28	3.27	3.04	2.99	2.89	3.37	3.15	0.39	0.40	0.43	0.71	0.92
2022- 08-16	2.33	2.26	2.70	3.12	3.26	3.25	3.19	2.95	2.90	2.82	3.31	3.11	0.34	0.35	0.38	0.67	0.89
2022- 08-15	2.33	2.27	2.72	3.13	3.23	3.20	3.14	2.91	2.86	2.79	3.31	3.10	0.29	0.31	0.35	0.66	0.89
2022- 08-12	2.33	2.23	2.63	3.13	3.26	3.25	3.18	2.97	2.92	2.84	3.34	3.12	0.30	0.33	0.37	0.67	0.89
2022- 08-11	2.33	2.24	2.62	3.08	3.25	3.23	3.16	2.98	2.94	2.87	3.38	3.15	0.31	0.34	0.40	0.69	0.90
2022- 08-10	2.33	2.24	2.65	3.13	3.26	3.23	3.13	2.93	2.86	2.78	3.27	3.04	0.32	0.33	0.35	0.61	0.82
2022- 08-09	2.33	2.23	2.67	3.16	3.33	3.28	3.20	2.97	2.89	2.80	3.24	3.01	0.31	0.32	0.33	0.58	0.78
2022- 08-08	2.33	2.23	2.65	3.15	3.30	3.21	3.14	2.91	2.85	2.77	3.22	3.00	0.26	0.27	0.29	0.55	0.74
2022- 08-05	2.33	2.21	2.58	3.10	3.29	3.24	3.18	2.97	2.91	2.83	3.27	3.06	0.33	0.34	0.37	0.62	0.81
2022- 08-04	2.33	2.19	2.50	2.98	3.11	3.03	2.95	2.76	2.73	2.68	3.15	2.97	0.12	0.16	0.22	0.53	0.74
2022- 08-03	2.33	2.20	2.52	3.00	3.14	3.10	3.04	2.86	2.81	2.73	3.17	2.96	0.14	0.18	0.23	0.51	0.72
2022- 08-02	2.33	2.22	2.56	3.00	3.09	3.06	3.02	2.85	2.82	2.75	3.22	3.00	0.16	0.20	0.27	0.57	0.79
2022- 08-01	2.33	2.22	2.56	2.96	2.98	2.90	2.82	2.66	2.64	2.60	3.12	2.92	-0.06	0.00	0.09	0.43	0.67
2022- 07-29	1.68	2.22	2.41	2.91	2.98	2.89	2.83	2.70	2.70	2.67	3.20	3.00	-0.03	0.04	0.14	0.47	0.71
2022- 07-28	1.68	2.20	2.42	2.90	2.93	2.85	2.81	2.69	2.69	2.68	3.23	3.02	0.02	0.09	0.20	0.53	0.75
2022- 07-27	1.68	2.14	2.44	2.93	3.00	2.96	2.93	2.82	2.83	2.78	3.26	3.03	0.21	0.27	0.36	0.62	0.80

1 January 1960 January 1970 January 1980 January 1990 January 2000 January 2010 January 2020

```
Out[19]: Figure(id = '1003', ...)
```

The Yield Curve

IG, HY / Junk Spreads over 10 years

1 January 1960 1 January 1970 1 January 1980 1 January 1990 1 January 2000 1 January 2010 1 January 2020

Out[21]: **Figure**(id = '2176', ...)

```
In [22]: # add spreads
  out_join_spreads=pd.DataFrame()
  out_join_spreads['AAA-BBB']=out_join_yields['AAA']-out_join_yields['BBB']
  out_join_spreads['AAA-CCC']=out_join_yields['AAA']-out_join_yields['CCC']
  out_join_spreads['BBB-CCC']=out_join_yields['AAA']-out_join_yields['CCC']
  out_join_spreads['10y-AAA']=out_join_yields['10y']-out_join_yields['AAA']
  out_join_spreads['10y-BBB']=out_join_yields['10y']-out_join_yields['BBB']
  out_join_spreads['10y-CCC']=out_join_yields['10y']-out_join_yields['CCC']
  #out_join_yields['AAA-BBB', 'AAA-CCC', 'BBB-CCC', '10y-AAA', '10y-BBB', '10y-CCC'].plot(kind=
```

In [23]: out_join_spreads.plot(kind='line',ylabel='yield delta')

Out[23]: **Figure**(id = '2570', ...)

2022-08-03

In [24]: out_join_spreads.tail(30)

Out[24]:		AAA-BBB	AAA-CCC	BBB-CCC	10y-AAA	10y-BBB	10y-CCC
	2022-07-28	-1.26	-10.50	-10.50	-0.84	-2.10	-11.34
	2022-07-29	-1.26	-10.20	-10.20	-0.80	-2.06	-11.00
	2022-07-31	-1.26	-10.24	-10.24	NaN	NaN	NaN
	2022-08-01	-1.24	-10.22	-10.22	-0.86	-2.10	-11.08
	2022-08-02	-1.23	-9.94	-9.94	-0.85	-2.08	-10.79

-9.77

-9.77

-0.87

-2.10

-10.64

-1.23

2022-08-04	-1.21	-9.65	-9.65	-0.87	-2.08	-10.52
2022-08-05	-1.20	-9.55	-9.55	-0.88	-2.08	-10.43
2022-08-08	-1.21	-9.46	-9.46	-0.87	-2.08	-10.33
2022-08-09	-1.22	-9.47	-9.47	-0.88	-2.10	-10.35
2022-08-10	-1.19	-9.25	-9.25	-0.87	-2.06	-10.12
2022-08-11	-1.17	-9.07	-9.07	-0.84	-2.01	-9.91
2022-08-12	-1.16	-9.10	-9.10	-0.84	-2.00	-9.94
2022-08-15	-1.13	-8.93	-8.93	-0.86	-1.99	-9.79
2022-08-16	-1.13	-8.94	-8.94	-0.85	-1.98	-9.79
2022-08-17	-1.14	-9.04	-9.04	-0.85	-1.99	-9.89
2022-08-18	-1.14	-9.07	-9.07	-0.84	-1.98	-9.91
2022-08-19	-1.14	-9.15	-9.15	-0.84	-1.98	-9.99
2022-08-22	-1.17	-9.40	-9.40	-0.84	-2.01	-10.24
2022-08-23	-1.16	-9.45	-9.45	-0.83	-1.99	-10.28
2022-08-24	-1.15	-9.34	-9.34	-0.82	-1.97	-10.16
2022-08-25	-1.15	-9.37	-9.37	-0.83	-1.98	-10.20
2022-08-26	-1.15	-9.44	-9.44	-0.83	-1.98	-10.27
2022-08-29	-1.17	-9.68	-9.68	-0.82	-1.99	-10.50
2022-08-30	-1.19	-9.82	-9.82	-0.83	-2.02	-10.65
2022-08-31	-1.18	-11.06	-11.06	-0.85	-2.03	-11.91
2022-09-01	-1.21	-11.19	-11.19	-0.86	-2.07	-12.05
2022-09-02	-1.19	-11.15	-11.15	-0.85	-2.04	-12.00
2022-09-05	-1.19	-11.15	-11.15	NaN	NaN	NaN
2022-09-06	-1.19	-11.05	-11.05	-0.87	-2.06	-11.92

M2 Money Supply

```
In [35]: m2_df=pd.DataFrame(m2)
    out_join_m2=m2_df.join(data_spx_total['Close'],how="outer") #we outer join here, else we
    out_join_m2.columns=['M2','SPX']

# we fill up the daily closes vs the monthly data
    out_join_m2['SPX']=out_join_m2['SPX'].fillna(method='ffill')

# we remove the datapoints where we don't have a M2 datapoint
    out_join_m2=out_join_m2.dropna()
    # plotting
    out_join_m2.plot(kind='line',ylabel='M2')
```



```
Out[35]: Figure(id = '3097', ...)
In [26]:
                               **100%****
                                                               1 of 1 completed
          # Get VIX data - compare to spx
In [36]:
          vix=data_vix_total['Close']
          vix_df=pd.DataFrame(vix)
          vix_df.columns=['VIX']
          vix_df.tail()
          output_data_vix_total_df=vix_df.join(data_spx_total['Close'], how="outer") #we outer join
          output_data_vix_total_df.columns=['VIX','SPX']
          output_data_vix_total_df.tail()
          output_data_vix_total_df.plot(kind='line',ylabel='Close')
            500
                                                                               VIX
                                                                                SPX
            400
            300
            200
                                                                                      100
              0
```

1 January 1990 January 1995 January 2000 January 2005 January 2010 January 2015 January 2020

Date

Out[36]: **Figure**(id = '3451', ...)

Surveys

ISM Manufactoring PMI©

```
In [37]:
          # here comes the ism - we need to add manually the data, api requests will only return t
          output_ism_pmi=ism_pmi
          #ism_pmi_all[datetime.datetime(2000,1,10):]
          output_ism_pmi.tail()
                    VALUE
Out[37]:
              DATE
          2016-01-01
                      48.2
          2016-02-01
                      49.5
          2016-03-01
                      51.8
          2016-04-01
                      50.8
          2016-05-01
                      51.3
In [38]:
          # here comes the ism - we need to add manually the data, api requests will only return t
          output_ism_nmi=ism_nmi
          #ism_pmi_all[datetime.datetime(2000,1,10):]
          output_ism_nmi.tail()
                    VALUE
Out[38]:
              DATE
          2016-01-01
                      53.5
          2016-02-01
                      53.4
          2016-03-01
                      54.5
          2016-04-01
                      55.7
          2016-05-01
                      52.9
          UMCSI
          # UMCSI direct data links to csv's
In [39]:
          tbmics = pd.read_csv("http://www.sca.isr.umich.edu/files/tbmics.csv")
          tbmiccice = pd.read_csv("http://www.sca.isr.umich.edu/files/tbmiccice.csv")
          tbmpx1px5 = pd.read_csv("http://www.sca.isr.umich.edu/files/tbmpx1px5.csv")
          tbmics.tail()
In [40]:
Out[40]:
               Month YYYY ICS_ALL
          623
                      2022
                April
                               65.2
          624
                May
                      2022
                               58.4
          625
                      2022
                               50.0
                June
          626
                      2022
                 July
                               51.5
          627 August
                      2022
                               58.2
          Building Permits
In [41]:
          building_permits.plot(kind='line')
```


1 January 19601 January 19701 January 19801 January 19901 January 20001 January 20101 January 2020

Out[41]: **Figure**(id = '3828', ...)

.... to be continued

In []: