Examenul de bacalaureat național 2013

Proba E. c)

Matematică *M_pedagogic*

Barem de evaluare și de notare

Model

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	1 1 1 12 2 3	3p
	$\frac{1}{3} - \frac{1}{18} + \frac{1}{12} = \frac{12}{36} - \frac{2}{36} + \frac{3}{36}$	Эþ
	Propoziția este adevărată	2p
2.	x = -1	2p
	$y = 1 \Rightarrow$ soluția sistemului este (-1,1)	3 p
3.	$x^2 + 2x - 3 = 0 \Rightarrow x_1 = 1, x_2 = -3$	3 p
	Finalizare: $x \in (-3,1)$	2p
4.	3-x>0	2p
	$x < 3 \Rightarrow D = (-\infty, 3)$	3p
5.	$\overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO}$	2p
	$\overrightarrow{AB} = -\overrightarrow{CD}, \overrightarrow{BO} = \frac{1}{2}\overrightarrow{BD}$	2p
	Finalizare	1p
6.	Triunghiul este isoscel	1p
	$(5\sqrt{2})^2 = 5^2 + 5^2$	2p
	Din reciproca teoremei lui Pitagora triunghiul este dreptunghic	2p

SUBIECTUL al II-lea (30 de puncte)

1.	$0 \circ 0 = \log_3(3^0 + 3^0 + 1) =$	2p
	$=\log_3 3 =$	2p
	=1	1p
2.	$x \circ y = \log_3(3^x + 3^y + 1)$, pentru orice $x, y \in \mathbb{R}$	2p
	$y \circ x = \log_3(3^y + 3^x + 1)$, pentru orice $x, y \in \mathbb{R}$	2p
	Finalizare	1p
3.	$x \circ 0 = x + 1 \Longrightarrow \log_3\left(2 + 3^x\right) = x + 1$	2p
	$2+3^x=3^{x+1} \Longrightarrow 3^x=1$	2 p
	x = 0	1p
4.	$3^x > 0, 3^y > 0$ pentru orice $x, y \in \mathbb{R}$	2p
	$3^x + 3^y + 1 > 1 \Rightarrow \log_3(3^x + 3^y + 1) > 0 \Rightarrow x \circ y > 0$, pentru orice $x, y \in \mathbb{R}$	3 p
5.	Dacă $e \in \mathbb{R}$ astfel încât $x \circ e = x \Longrightarrow \log_3(3^x + 3^e + 1) = x$	2p
	$3^e = -1$	1p

Probă scrisă la matematică M pedagogic

Barem de evaluare și de notare

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

Finalizare: legea nu admite element neutru	2p
$x \circ x = \log_3\left(2 \cdot 3^x + 1\right)$	2p
$(x \circ x) \circ x = \log_3(2 \cdot 3^x + 1 + 3^x + 1) =$	2p
$=\log_3(2+3^{x+1})$, pentru orice $x \in \mathbb{R}$	1p

SUBIECTUL al III-lea

(30 de puncte)

1.	(1 1 2)	
	$m=1 \Rightarrow A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	3 p
	$\det A = 3$	2p
2.		
2.	$\det A = -m + 4 + m + 2 - m^2 - 2 =$	3 p
	$=-m^2+4$	2p
3.	$\det(2A) = -16 \Rightarrow 2^3 \cdot (2-m)(2+m) = -16$	2p
	$4-m^2=-2 \Rightarrow m^2=6$	1p
	$m = \pm \sqrt{6} \Rightarrow m = \sqrt{6}$	2p
4.	$\int 3x + y + 2z = 1$	
		2 p
	$m = 3 \Rightarrow \begin{cases} 2x - y + 3z = 2\\ x + y + z = -1 \end{cases}$	
	· ·	
	Verificare: $\left(\frac{7}{5}, -\frac{8}{5}, -\frac{4}{5}\right)$ este soluție	3 p
5.	(x+y+2z=1	
	$m=1 \Rightarrow \begin{cases} 2x-y+z=2 \end{cases}$	_
	x + y + z = -1	2p
	x = -1, y = -2, z = 2	3р
6.		- P
0.	$\begin{cases} 2x + y + 2z = 1 \\ 2x + y + 2z = 1 \end{cases}$	2p
	$m = 2 \Rightarrow \begin{cases} 2x - y + 2z = 2\\ x + y + z = -1 \end{cases}$	-P
	x + y + z = -1	
	Scăzând primele 2 ecuații $\Rightarrow y = -\frac{1}{2}$	1p
	Înlocuind în prima și a treia ecuație \Rightarrow $\begin{cases} 2x + 2z = \frac{3}{2} \\ x + z = -\frac{1}{2} \end{cases}$, imposibil, deci sistemul nu are soluție	2р