Giochi di Banach-Mazur

Davide Peccioli

Università degli Studi di Torino

4 giugno 2025

Gioco Logico

Definizione 1.1

Un gioco logico è una quadrupla $\mathcal{G}\coloneqq (\Omega,f,W_{\mathsf{I}},W_{\mathsf{II}})$ dove:

- ullet Ω è un insieme, chiamato il dominio del gioco;
- $f: \Omega^{<\omega} \to \{\mathsf{I},\mathsf{II}\}$ è una funzione, chiamata <u>funzione di turno</u> o funzione del giocatore;
- $\overline{W_{\mathsf{I}},W_{\mathsf{II}}\subseteq\Omega^{<\omega}\cup\Omega^{\omega}}$ sono tali che

 - $oldsymbol{2}$ per ogni $oldsymbol{a} \in W_{ullet}$ e per ogni $oldsymbol{b} \in \Omega^{<\omega} \cup \Omega^{\omega}$:

$$a \subseteq b \implies b \in W_{\bullet}$$

Gli elementi di $\Omega^{<\omega}$ sono chiamati <u>posizioni del gioco</u> $\mathcal G$, mentre un elemento di Ω^ω è detto giocata di $\mathcal G$.

l giocatori l e Il giocano scegliendo a turno elementi di Ω . La funzione di turno f associa a ciascuna posizione uno dei due giocatori: se

$$f(a_0, a_1, \dots, a_n) = \mathsf{I}$$

allora l'elemento a_{n+1} sarà scelto dal giocatore I.

Si dirà che il giocatore I <u>vince la giocata a</u> se $a \in W_I$; si dirà che il giocatore II vince la giocata b se $b \in W_{II}$.

Definizione 1.2

Un gioco è detto totale se $\Omega^{\omega} \subseteq W_{\mathsf{I}} \cup W_{\mathsf{II}}$.

Strategia per un gioco logico

Una strategia per un giocatore è un insieme di regole che descrivono esattamente come un giocatore debba giocare, in base a tutte le mosse precedenti.

Una strategia è dettoa <u>vincente</u> per un giocatore se questo vince ogni giocata in cui ne fa uso, a prescindere dalle mosse dell'altro giocatore.

Definizione 1.4

Un gioco si dice determinato se esiste una strategia vincente per I o per II.

Giochi logici equivalenti

Definizione 1.5

Due giochi logici \mathcal{G} e \mathcal{G}' con giocatori I e II sono detti <u>equivalenti</u> se sono soddisfate entrambe le seguenti ipotsi:

- \bullet esiste una strategia vincente per l in ${\cal G}$ sse esiste una strategia vincente per l in ${\cal G}'$
- ② esiste una strategia vincente per II in $\mathcal G$ sse esiste una strategia vincente per II in $\mathcal G'$

Giochi di Gale-Stewart

Definizione 1.6

Sia A un insieme non vuoto, e sia $C\subseteq A^\omega$. Si definisce il gioco di Gale-Stewart associato ad C come il gioco logico seguente:

$$G(A,C) = G(A) := (A, \psi, C, A^{\omega} \setminus C)$$

dove la funzione $\psi:A^{<\omega} \to \{\mathsf{I},\mathsf{II}\}$ è così definita

$$\psi(s) \coloneqq \begin{cases} \mathsf{I} & \mathrm{lh}(s) \ \mathsf{\`e} \ \mathsf{pari} \\ \mathsf{II} & \mathrm{lh}(s) \ \mathsf{\`e} \ \mathsf{dispari} \end{cases}$$

Pertanto il gioco può essere codificato come segue:

e il giocatore I vince se e solo se $(a_n)_{n\in\omega}\in C$.

Strategia per un gioco di Gale-Stewart

Si specializza la definizione di strategia per un gioco logico al caso particolare di un gioco di Gale-Stewart.

Una strategia per un gioco G(A,C) è un albero $\sigma\subseteq A^{<\omega}$ tale che:

- \bullet sia potato e non vuoto;
- ② se $\langle a_0,\ldots,a_{2j}\rangle\in\sigma$ allora per ogni $a_{2j+1}\in A$: $\langle a_0,\ldots,a_{2j+1}\rangle\in\sigma$;
- \bullet se $\langle a_0,\ldots,a_{2j-1}\rangle\in\sigma$ allora esiste un unico $a_{2j}\in A$ tale che $\langle a_0,\ldots,a_{2j}\rangle\in\sigma$.

Una strategia è detta vincente se il suo corpo $[\sigma] \in A$.

Gioco di Gale-Stewart con posizioni ammissibili

Spesso è comodo considerare giochi in cui I e II non possano giocare ogni elemento di A, ma debbano seguire delle <u>regole</u>. Quindi, è necessario dare un alberto potato non vuoto $T\subseteq A^{<\omega}$, che determina le <u>posizioni</u> ammissibili.

In questa situazione I e II si alternano giocando $\langle a_0,\ldots,a_n,\ldots,\rangle$ in maniera tale che, ad ogni passo $n\in\omega$

$$\langle a_0, \dots, a_n \rangle \in T$$

Si scriverà, in questo caso, G(T,C).

Teorema di Gale-Stewart

Sia A uno spazio topologico discreto e sia A^ω dotato della topologia prodotto.

Teorema di Gale-Stewart 1.7

Sia T un albero potato non vuoto su A. Se $C \subseteq [T]$ è aperto o chiuso in [T], allora il gioco G(T,C) è determinato.

Gioco di Choquet

Definizione 2.1

Sia (X,τ) uno spazio topologico non vuoto. Il gioco di Choquet G_X è un gioco di Gale-Stewart totale codificato come segue: i giocatori I e II si alternano scegliendo sottoinsiemi aperti non vuoti di X:

tali che $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$

Il giocatore II vince se

$$\bigcap_{n \in \omega} V_n = \bigcap_{n \in \omega} U_n \neq \emptyset.$$

Teorema 2.2

Uno spazio topologico X è uno spazio topologico di Baire se e solo se il giocatore I non ha una strategia vincente nel gioco di Choquet G_X .

Definizione 2.3

Uno spazio topologico X è detto spazio di Choquet se il giocatore II ha una strategia vincente in G_X .

DA TOGLIERE

In particolare, ogni spazio Polacco è uno spazio di Choquet.

Gioco di Banach-Mazur

Sia X uno spazio topologico non vuoto, e sia $A \subseteq X$.

Definizione 2.5

Il gioco di Banach-Mazur (o anche **-gioco) di A, denotato con $G^{**}(A)$ oppure con $G^{**}(A,X)$ è un gioco di Gale-Stewart codificato come segue: i giocatori I e II si alternano scegliendo sottoinsiemi aperti non vuoti di X

tali che $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$ Il giocatore II vince se

$$\bigcap_{n \in \omega} U_n = \bigcap_{n \in \omega} V_n \subseteq A.$$

Teorema 2.6

Sia X uno spazio topologico non vuoto, e sia $A\subseteq X$ un sottoinsieme qualsiasi. Allora A è comagro se e solo se il giocatore II ha una strategia vincente nel gioco di Banach-Mazur $G^{**}(A)$.

Teorema 2.7

Se X è uno spazio topologico di Choquet non vuoto ed esiste una distanza d su X le cui palle aperte sono aperti di X, allora:

A è magro in un aperto non vuoto se e solo se il giocatore I ha una strategia vincente nel gioco di Banach-Mazur $G^{**}(A)$.

Dimostrazione Teorema 2.6/2.7???

Lemma 2.8

Sia X uno spazio topologico di Choquet non vuoto tale che esista una distanza d su X le cui palle aperte sono aperti di X. Sia $A\subseteq X$. Se per ogni aperto $U\subseteq X$ il gioco $G^{**}\left((X\setminus A)\cup U\right)$ è determinato allora $A\subseteq X$ ha BP.

Definizione 2.9

Una base debole per uno spazio topologico (X,τ) è una collezione di aperti $\{A_{\alpha}\}_{\alpha\in\Omega}\subseteq \tau$ tali che, per ogni aperto non vuoto di X, $\emptyset\neq U\subseteq X$ esista $\alpha_0\in\Omega$ tale che

$$A_{\alpha_0} \subseteq U$$
.

Gioco di Banach-Mazur unfolded

Sia X uno spazio polacco non vuoto con una metrica fissata e sia $\mathcal W$ una base debole numerabile di X.

Definizione 2.10

Dato $F\subseteq X\times\omega^\omega$, il gioco di Banach-Mazur unfolded $G^{**}_{\rm u}(F)$ è il gioco di Gale-Stewart codificato come segue:

tali che:

- per ogni $i \in \omega$: $U_i, V_i \in \mathcal{W}$, $y_n \in \omega$;
- diam (U_n) , diam $(V_n) < 2^{-n}$;
- $U_0 \supset V_0 \supset U_1 \supset V_1 \supset \dots$

(continua...)

Definizione 2.10

Posto

$$\{x\} := \bigcap_{i \in \omega} \operatorname{Cl}_X(U_n) = \bigcap_{i \in \omega} \operatorname{Cl}_X(V_n)$$

e $y := (y_i)_{i \in \omega} \in \omega^{\omega}$, il giocatore II vince sse

$$(x,y) \in F \subseteq X \times \omega^{\omega}$$
.

Lemma 2.11

Se F è aperto o chiuso di $X \times \omega^{\omega}$, allora $G^{**}_{\mathrm{u}}(F)$ è determinato.

Teorema 2.12

Sia X uno spazio polacco con una metrica fissata e sia $\mathcal W$ una base debole di X.

Dato $F \subseteq X \times \omega^{\omega}$ si consideri il **-gioco: $G_{\mu}^{**}(F)$. Indicato con $A := \pi_X(F)$:

- se I ha una strategia vincente in $G_{\mu}^{**}(F)$, allora A è magro in un aperto non vuoto di $X \times \omega^{\omega}$;
- ② se II ha una strategia vincente in $G_{\mu}^{**}(F)$ allora A è comagro.

Dimostrazione teorema 2.12

Teorema di Lusin-Sierpiński

Teorema di Lusin-Sierpiński 2.13

Sia X uno spazio polacco. Allora ogni insieme analitico di X ha la Baire Property.

Dimostrazione.

Siccome $\mathrm{BP}(X)$ è una σ -algebra allora è chiusa per complementi, e pertanto se ogni insieme coanalitico ha BP allora si è dimostrata la tesi. Sia dunque C un insieme coanalitico e sia $U\subseteq X$ un aperto. Posto $A:=(X\setminus C)\cup U$, questo è un insieme analitico, e pertanto esiste un chiuso $F\subseteq X\times \omega^\omega$ tale che $A=\pi_X(F)$.

Per il Teorema di Gale-Stewart 1.7 (e per il Lemma 2.11), allora, il **-gioco $G_{\rm u}^{**}(F)$ è determinato, ed in particolare vale una tra le condizioni 1. e 2. del Teorema 2.12.

Per i Teoremi 2.26 e 2.27, allora, il gioco $G^{**}(A) = G^{**}\left((X \setminus C) \cup U\right)$ è determinato: per il Lemma 2.8, quindi C ha la BP.

Bibliografia minimale