36

- Q22. Construct a minimal DFA over {a,b} that accepts all strings having
- (i) At Least 2 a's and At Least 3 b's
- (ii) At Least 2 a's and At Most 3 b's
- (iii)At Most 2 a's and At Most 3 b's
- (iv)Exact 2 a's and Exact 3 b's

Q1: The no. of DFA that can be drawn over $\sum = \{a, b\}$ with 2 states q_0 and q_1 having q_0 as the initial state is ?

Q2: How many will accept \sum^*

Q3: How many will accept Φ

Q4: How many DFA neither accept Φ nor Σ^* .

Q5: The no. of DFA over $\{0,1\}$ with two states is ?

Q6: The no. of DFA over $\{0,1\}$ with three states is ?

Formula count no. of DFA:

Operation on Finite Automata:

- 1. Union
- 2. Cross Product
- 3. Subtraction

Example:
$$M_1 = A$$

A

B

$$M_2 =$$

Find:
$$M_1 \times M_2 = ?$$

$$M_1 + M_2 = ?$$

$$M_1 - M_2 = ?$$

NFA Designing: Simple Design as compared to DFA Q1. Construct NFA accepting a set of strings over {a, b} in which each string of the language start with abb.

Q2. Construct NFA accepting a set of strings over {a, b} in which each string of the language ends with 'abb'

Q3. Construction of NFA accepting a set of strings over {a, b} in which each string of the language containing 'abb' as the substring.

Q4. Design a NFA for 2nd symbol from LHS is a, over {a, b}

Q5. Design NFA for 2nd symbol from RHS is a, over {a, b}

Q6. Design NFA for 3rd symbol from RHS is a, over {a, b}

Conversion from NFA to DFA:

36

Q1. Convert the following NFA to DFA

Q2. Convert the following NFA to DFA

Q3. Design NFA for 3^{rd} symbol from RHS is 'a', over $\Sigma = \{a, b\}$ and convert to DFA

Note: If nth symbol from RHS is a, over $\Sigma = \{a, b\}$. Then number of states in the corresponding DFA = 2^n

ε - **NFA**: NFA with ε - moves

Conversion ε - NFA to NFA (or) Removal of ε - Move:

1-Find out all the ϵ - transitions from each state from Q. That will be called as ϵ - closur(q_i), where q_i \in Q

 ϵ - closure (q_i) : Set of all those states of the automata (NFA with ϵ - transition) which can be reached from q_i on a path labeled by ϵ i.e., without consuming any input symbol.

$$\varepsilon$$
 - closure $(q_0) = \{q_0, q_1, q_2\}$
 ε - closure $(q_1) = \{q_1, q_2\}$
 ε - closure $(q_2) = \{q_2\}$

2-Then δ ' transition can be obtained. The δ ' transition means a ϵ - closure on δ moves

 $δ'(q_i, x) = ε - closure [δ(ε - closure(q_i), x)]$

$$\epsilon$$
 - closure $(q_0) = \{q_0, q_1, q_2\}$

$$\varepsilon$$
 - closure $(q_1) = \{q_1, q_2\}$

$$\varepsilon$$
 - closure $(q_2) = \{q_2\}$

3. Repeat step 2 for each input symbol and each state of given NFA

4. Final State:

$$F' = \begin{cases} F \cup \{q\}, & \text{if } \epsilon \text{ - closure } (q) \text{ contains a state of } F \\ F & \text{otherwise} \end{cases}$$

Example: Convert the following NFA with ε to NFA without ε and DFA

Minimization of DFA: ϵ -NFA \rightarrow NFA \rightarrow DFA \rightarrow Minimize DFA

DFA minimization stands for converting a given DFA to its equivalent DFA with minimum number of states for minimum DFA.

- 1. Reduce Unreachable State
- 2. Reduce Equivalent State

```
Equivalent States: p and q are equivalent (p \approx q) state iff \delta(p, x) \in F and \delta(q, x) \in F (or) \delta(p, x) \notin F and \delta(q, x) \notin F
```

Two Method for Minimization of DFA:

- 1. Set Partition Method
- 2. Myhill Nerode Theorem

Set Partition Method:

Example: Minimize the following DFA

Example: Minimize the following DFA

Q /∑	0	1
\rightarrow q ₀	$\mathbf{q_1}$	\mathbf{q}_{5}
$\mathbf{q_1}$	\mathbf{q}_6	\mathbf{q}_2
$*q_2$	\mathbf{q}_0	\mathbf{q}_2
$\mathbf{q_4}$	\mathbf{q}_7	\mathbf{q}_{5}
\mathbf{q}_{5}	$\mathbf{q_2}$	\mathbf{q}_{6}
\mathbf{q}_{6}	\mathbf{q}_{6}	$\mathbf{q_4}$
\mathbf{q}_7	\mathbf{q}_{6}	\mathbf{q}_2

Finite Automata with output:

Machine

36

Moore Machine

"Output depends only present state"

Represented by 6 tuples

= $(Q, \sum, \delta, q_0, \Delta, \lambda)$, where

Q: Finite set of states

∑ : Input alphabet

 δ : transition function $\delta: Q \times \sum \rightarrow Q$

 q_0 : initial state $q_0 \in Q$

 Δ : Finite set of output

λ : Output function

 $\lambda : \mathbf{Q} \to \Delta$

Mealy Machine

"Output depends on the present state and input"

Represented by 6 tuples

= $(Q, \sum, \delta, q_0, \Delta, \lambda)$, where

Q: Finite set of states

 \sum : Input alphabet

 δ : transition function δ : Q x $\sum \rightarrow Q$

 q_0 : initial state $q_0 \in Q$

 Δ : Finite set of output

λ: Output function

 $\lambda: \mathbf{Q} \times \sum \rightarrow \Delta$

Representation of Moore and Mealy Machine:

Design Moore and Mealy Machine:

Q1: Design a mealy and moore m/c over $\{0,1\}$ that produces output A if the no. of 1's in the input string is even otherwise produce output B

Q2: Construct a mealy and moore m/c that takes set of all strings over {0, 1} and produce 'A' as O/P if input ends with '10' or produce 'B' as O/P if input ends with '11' otherwise produces 'C'

36

- Q1: Design mealy m/c for
 - (i) one's complement of binary no.
 - (ii) two's complement of binary no. (input read from LSB to MSB)

Design a mealy m/c which reads the input from $(0 + 1)^*$ and produces the following outputs.

- (i) if input ends in 101, output is A
- (ii) if input ends in 110, output is B
- (iii) for other inputs, output is C

Q2:

Conversion Moore to Mealy & Mealy to Moore m/c:

