Jointly Extracting Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based Argument Interaction

Feng Qian*, Lei Sha*, Baobao Chang, Zhifang Sui

Institute of Computational Linguistics, Peking University {nickgian, shalei, chbb, szf}@pku.edu.cn

November 29, 2017

- Introduction
- 2 Motivations
- Oependency bridges
- Tensor for various arg-arg relationships
- Experiments
- Conclusion

- Introduction
- 2 Motivations
- Open Dependency bridges
- Tensor for various arg-arg relationships
- Experiments
- 6 Conclusion

Introduction

- Event extraction is important for knowledge acquisition from large amounts of news text.
- The result of event extraction can be used to construct knowledge base, which can be applied to question answering, dialogue system, etc.
- Its paradigm is ubiquitous in our daily life:
 - Knowledge Graph
 - Structured summary of search engine
 - Wikipedia infobox

Applications of Event Extraction

The Google search result of *September 11 attacks*:

September 11 attacks

The September 11 attacks were a series of four coordinated terrorist attacks by the Islamic terrorist group al-Qaeda on the United States on the morning of Tuesday, September 11, 2001, Wikipedia

Date: September 11, 2001 Perpetrator: Al-Qaeda

Total number of deaths: 2,997 (2,978 victims + 19 hijackers)
Locations: New York City, Arlington County, Stonycreek Township

Attack types: Aircraft hijacking, Mass murder, Suicide attack

Applications of Event Extraction

The Wikipedia infobox of September 11 attacks:

World Trade Center burning
2nd row, left to right Collapsed section of
the Pentagon; Flight 175 crashes into 2 WTC;
3rd row, left to right: A firefighter requests
assistance at World Trade Center site;
Ground Zero; An engine
from Flight 79 is recovered
Bottom row. Flight 775 collision with the

Pentagon as captured by three

Location New York City, New York, U.S.: Arlington County, Virginia, U.S.; Stonycreek Township near Shanksville, Pennsylvania, U.S. Date September 11, 2001; 15 years ago 8:46 a.m. - 10:28 a.m. (EDT) Target World Trade Center (AA11 and UA 175) The Pentagon (AA77) White House or U.S. Capitol (UA 93; failed) Attack type Aircraft hijackings Suicide attacks Mass murder Terrorism Deaths 2.997 (2.978 victims + 19 hijackers) Non-fatal 6.000 +injuries Perpetrators Al-Oaeda[1] (see also responsibility and hijackers) No. of 19

participants

Applications of Event Extraction

- The extracted events can be transferred into triples and store in the knowledge graphs.
- The knowledge graphs can be leveraged by upper applications.

THE KNOWLEDGE GRAPH

LINKS TOGETHER BILLIONS OF ENTITIES, FACTS AND RELATIONSHIPS

Event Extraction

What's an event?

Event Type:	Business			
Trigger	Release			
Argument	Company	Microsoft		
	Product	Surface Pro		
	Place	USA		

Figure: Microsoft releases surface Pro in USA.

Event Extraction

What's an event?

Event Type:	Attack			
Trigger	Crash			
Argument	Attacker	Five hijackers		
	Target	World Trade Center's		
		North Tower		
	Instrument	American Airlines Flight 11		
	Time	September 11th		

Figure: On September 11th, five hijackers crashed American Airlines Flight 11 into the World Trade Center's North Tower.

What should we do?

- Extract trigger
- Identify arguments
- Classify roles

Event Type:	Die			
Trigger	Die			
Argument	Victim	cameraman		
	Place	Baghdad		
	Instrument	American tank		

- Motivations
- Tensor for various arg-arg relationships

Motivation

Challenges of event extraction by the previous solutions

- ullet V Using syntax information as feature
- X Using syntax information as architecture
- ullet $\sqrt{}$ Capture two kinds of argument-argument relationship (Pos & Neg)
- X Capture large amount of argument-argument relationship

- Introduction
- 2 Motivations
- Opendency bridges
- 4 Tensor for various arg-arg relationships
- Experiments
- Conclusion

Motivation 1:

- Dependency relation → Dependency bridge
- According to definition of dependency relation, dependency edges usually contain some information about temporal, consequence, conditional or purpose.

Figure: Example of dependency parse tree.

- We add dependency bridges to conventional LSTM-RNN architecture.
- Bidirectionality:
 - Forward: Set all dependency bridges as forward.
 - Backward: Set all dependency bridges as backward.

Figure: Dependency bridge on LSTM. Apart from the last LSTM cell, each cell also receives information from former syntactically related cells.

Details of dependency bridge

- We add a new gate d_t and change the calculation of hidden state.
- $ullet h_t = o_t \odot anh(c_t) + d_t \odot \left(rac{1}{|S_{in}|} \sum_{(i,p) \in S_{in}} a_p h_i
 ight)$

Figure: The calculation detail of dependency bridge.

- Introduction
- 2 Motivations
- Opendency bridges
- Tensor for various arg-arg relationships
- Experiments
- 6 Conclusion

Motivation 2:

- We represent each arg-arg relationship by a vector
- We use a tensor to represent all kinds of arg-arg relationships in a sentence

Figure: The calculation detail of tensor layer.

The whole architecture ...

- Tensor layer is applied to the hidden layer of the dependency bridge RNN
- Then we apply max-pooling over arguments to find the most important "interactive features" for the arguments

- Introduction
- 2 Motivations
- Opendency bridges
- Tensor for various arg-arg relationships
- Experiments
- 6 Conclusion

Weights of each dependency relation

Figure: The visualization of trained weights of each dependency relations.

Overall performance

	Trigger Identification		Argument		Argument				
Method	+Cla	ssificati	on (%)	Identification (%)		Role (%)			
	P	R	F_1	P	R	F_1	P	R	F_1
Cross-Event	68.7	68.9	68.8	50.9	49.7	50.3	45.1	44.1	44.6
Cross-Entity	72.9	64.3	68.3	53.4	52.9	53.1	51.6	45.5	48.3
JointBeam	73.7	62.3	67.5	69.8	47.9	56.8	64.7	44.4	52.7
DMCNN	75.6	63.6	69.1	68.8	51.9	59.1	62.2	46.9	53.5
RBPB	70.3	67.5	68.9	63.2	59.4	61.2	54.1	53.5	53.8
JRNN	66.0	73.0	69.3	61.4	64.2	62.8	54.2	56.7	55.4
dbRTN	74.1	69.8	71.9	78.3	54.7	64.4	64.2	51.5	57.2

Figure: Performances of various approaches on ACE 2005 dataset.

Ablation tests – dependency bridge

- Binary DB: The weight of DB belongs to 0,1
- Typed DB: The weight of DB can be any float numbers

Method	Trigger	Argument	Argument
Method	id+cl	id	id+cl
Our model without DB	69.0	62.7	54.6
+ binary DB	71.2	63.9	56.8
+ typed DB (full)	71.9	64.4	57.2

Table: Comparison after adding dependency bridges (DB). The numbers are F_1 scores. We compare with two baselines: no dependency bridges considered and only binary dependency bridges.

Ablation tests – Tensor layer

- dbRNN-SMA: only cast SMA away from the whole model
- dbRNN-MP: means cast the max-pooling feature matrix away
- dbRNN-TL: dbRNN without tensor layer
- dbRNN full model

	Method	1/1	1/N	All
	dbRNN-SMA	59.5	67.0	64.1
Argument	dbRNN-MP	59.7	64.8	62.0
Identification	dbRNN-TL	59.6	55.8	58.2
	dbRNN	59.9	69.5	67.7
	dbRNN-SMA	54.6	56.5	56.0
Argument Role	dbRNN-MP	54.7	55.8	55.2
Classification	dbRNN-TL	54.9	52.3	53.1
	dbRNN	54.6	60.9	58.7

Table: Comparison between different models. Here, we report the argument performance since the tensor layer is only applied to argument extraction.

- Tensor for various arg-arg relationships
- 6 Conclusion

Conclusion

In this paper:

- We propose to add dependency bridges to sequential architecture
- We propose to add tensor layer for capturing various of argument relationships
- The weights of dependency bridges after training illuminates the importance of each dependency type in event extraction task
- The full model achieves high performance in all the three evaluation metrics, trigger classification, argument identification and role classification

Thank you. Any questions?