Deep Reinforcement Learning amidst Lifelong non-stationarity

Arxiv

Kyeong Ryeol, Go M.S. Candidate of OSI Lab

Contents

- Levine, Sergey. "Reinforcement learning and control as probabilistic inference: Tutorial and review." *arXiv preprint arXiv:1805.00909* (2018).
- Haarnoja, Tuomas, et al. "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor." *International Conference on Machine Learning*. PMLR, 2018.
- Lee, Alex X., et al. "Stochastic latent actor-critic: Deep reinforcement learning with a latent variable model." *arXiv preprint arXiv:1907.00953* (2019).
- Xie, Annie, James Harrison, and Chelsea Finn. "Deep reinforcement learning amidst lifelong non-stationarity." *arXiv preprint arXiv:2006.10701* (2020).

Reinforcement learning

- Typical reinforcement learning
 - $\theta = argmax_{\theta} \sum_{t} E_{s_{t}, a_{t} \sim p(\tau)} [r(s_{t}, a_{t})]$
 - $p(\tau) = p(s_1, a_1, ..., s_T, a_T | \theta) = p(s_1) \prod_t p_{\theta}(a_t | s_t) p(s_{t+1} | s_t, a_t)$
- Most probable trajectory ≈ Trajectory from the optimal policy

Optimality

- Formulate PGM s.t. Inferring posterior ≈ optimal policy
- $p(\tau, O_{1:T} = \mathbf{1})$

$$= p(s_1) \prod_{t} p(O_t = 1|s_t, a_t) p(s_{t+1}|s_t, a_t)$$

$$= p(s_1) \prod_{t} \exp(r(s_t, a_t)) p(s_{t+1}|s_t, a_t)$$

$$= p(s_1) \prod_{t} p(s_{t+1}|s_t, a_t) \exp\left(\sum_{t} r(s_t, a_t)\right)$$

Approximate inference

- Variational distribution
 - $q(\tau) = p(s_1) \prod_t p(s_{t+1}|s_t, a_t) \pi_{\phi}(a_t|s_t)$
- Deriving ELBO
 - $\log p(O_{1:T} = 1) \ge E_{q(\tau)}[\log p(\tau, O_{1:T} = 1) \log q(\tau)]$ = $E_{q(\tau)}\left[\sum_{t} r(s_t, a_t) - \log \pi_{\phi}(a_t|s_t)\right]$
 - Initial state marginal and transition dynamics cancel out
 - Suffice to maximum entropy reinforcement learning

Soft Actor Critic (SAC)

- Goal : devise efficient and stable actor-critic deep RL
 - Baseline: (TRPO, PPO, A3C), (DDPG)
 - Based on maximum entropy reinforcement learning
- Soft policy iteration
 - 1. Soft policy evaluation
 - $V(s_t) \leftarrow E_{a_t}[Q(s_t, a_t) \log \pi(a_t|s_t)]$
 - $Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma E_{s_{t+1}}[V(s_{t+1})]$
 - 2. Soft policy improvement
 - $\pi_{new} = argmin_{\pi} D_{KL} \left(\pi(\cdot | s_t) \parallel \frac{\exp Q^{\pi}(s_t, \cdot)}{Z(s_t)} \right)$

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator \mathcal{T}^{π} in Equation 2 and a mapping $Q^0: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ with $|\mathcal{A}| < \infty$, and define $Q^{k+1} = \mathcal{T}^{\pi} Q^k$. Then the sequence Q^k will converge to the soft Q-value of π as $k \to \infty$.

Lemma 2 (Soft Policy Improvement). Let $\pi_{\mathrm{old}} \in \Pi$ and let π_{new} be the optimizer of the minimization problem defined in Equation 4. Then $Q^{\pi_{\mathrm{new}}}(\mathbf{s}_t, \mathbf{a}_t) \geq Q^{\pi_{\mathrm{old}}}(\mathbf{s}_t, \mathbf{a}_t)$ for all $(\mathbf{s}_t, \mathbf{a}_t) \in \mathcal{S} \times \mathcal{A}$ with $|\mathcal{A}| < \infty$.

Soft Actor Critic (SAC)

- Recap
 - Policy based
 - $\phi \leftarrow \phi + \alpha \nabla_{\phi} E_{p(\tau)} [\sum_{t} r(s_{t}, a_{t})]$
 - Value based
 - 1. $Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma E_{s_{t+1}}[V(s_{t+1})]$
 - 2. $\pi(a_t|s_t) = 1$ when $a_t = argmax_{a_t}Q(s_t, a_t)$
 - Actor critic
 - 1. $Q(s_t, a_t) \leftarrow r(s_t, a_t) + \gamma E_{s_{t+1}}[V(s_{t+1})]$
 - 2. $\phi \leftarrow \phi + \alpha \nabla_{\phi} E_{p(\tau)}[Q(s_t, a_t)]$

Overall training process

- Function approximator for both the Q-function and the policy
 - $V_{\psi}(s_t)$, $Q_{\theta}(s_t, a_t)$, $\pi_{\phi}(a_t|s_t)$
- Alternate between the networks with stochastic gradient descent

•
$$J_V(\psi) = E_{s_t} \left[\frac{1}{2} \left(V_{\psi}(s_t) - E_{a_t} \left[Q_{\theta}(s_t, a_t) - \log \pi_{\phi}(a_t | s_t) \right] \right)^2 \right]$$

•
$$J_Q(\theta) = E_{s_t, a_t} \left[\frac{1}{2} \left(Q_{\theta}(s_t, a_t) - r(s_t, a_t) - \gamma E_{s_{t+1}} \left[V_{\widetilde{\psi}}(s_{t+1}) \right] \right) \right]$$

•
$$J_{\pi}(\phi) = E_{s_t,a_t} \left[D_{KL} \left(\pi_{\phi}(a_t|s_t) \parallel \frac{\exp Q_{\theta}(s_t,a_t)}{Z(s_t)} \right) \right]$$

$$\approx E_{s_t,a_t} \left[\log \pi_{\phi}(a_t|s_t) - Q_{\theta}(s_t,a_t) \right]$$

Soft Latent Actor Critic (SLAC)

- Goal: devise efficient and stable actor-critic deep RL with high dim.
 - 1. Acquire the explicit latent representations
 - 2. Train RL agent in that latent space

 $z \rightarrow x$: Work on low-dim. latent space + Handle partial observability

- Sequential latent variable model
 - Variational distribution
 - $q(z_1|x_1)$ for $p(z_1)$ and $q(z_{t+1}|x_{t+1},z_t,a_t)$ for $p(z_{t+1}|z_t,a_t)$
 - $\log p(x_{1:\tau+1}|a_{1:\tau}) \ge E_{z_{1:\tau+1}}[\sum_{t=0}^{\tau} \log p(x_{t+1}|z_{t+1}) D_{KL}(q(z_{t+1}|x_{t+1},z_t,a_t) \parallel p(z_{t+1}|z_t,a_t))]$

Soft Latent Actor Critic (SLAC) a_1 a_7 a_7 a

- Augment the idea with maximum entropy RL? Optimality!
- Evidence : $\log p(O_{1:T} = 1) \rightarrow \log p(O_{\tau+1:T} = 1, x_{1:\tau+1} | a_{1:\tau})$
 - Likelihood of the observed data from the past $\tau+1$ steps
 - Optimality of the agent's actions for future steps
 - Enable joint learning of "representation learning" and "optimal control"

Soft Latent Actor Critic (SLAC)

- Variational distribution
 - $q(z_{1:T}, a_{\tau+1:T}|x_{1:\tau+1}, a_{1:\tau}) = \prod_{t=0}^{\tau} q(z_{t+1}|x_{t+1}, z_t, a_t) \prod_{t=\tau+1}^{T-1} p(z_{t+1}|z_t, a_t) \prod_{t=\tau+1}^{T} \pi(a_t|x_{1:t}, a_{1:t-1})$
- Deriving ELBO
 - $\log p(O_{\tau+1:T} = 1, x_{1:\tau+1} | a_{1:\tau})$

$$\geq E_{Z_{1:\tau+1}} \left[\sum_{t=0}^{\tau} \log p(x_{t+1}|z_{t+1}) - D_{KL}(q(z_{t+1}|x_{t+1},z_t,a_t) \parallel p(z_{t+1}|z_t,a_t)) \right]$$

$$+ E_{Z_{\tau+1:T},a_{\tau+1:T}} \left[\sum_{t=\tau+1}^{T} r(z_t,a_t) - \log \pi(a_t|x_{1:t},a_{1:t-1}) \right]$$

Overall training process

- Function approximator for both the Q-function and the policy
 - $(p_{\psi}(x_{t+1}|z_{t+1}), p_{\psi}(z_{t+1}|z_t, a_t), q_{\psi}(z_{t+1}|x_{t+1}, z_t, a_t)), Q_{\theta}(s_t, a_t), \pi_{\phi}(a_t|s_t)$
- Alternate between the networks with stochastic gradient descent
 - $J_M(\psi) = E_{z_{1:\tau+1}} \left[\sum_{t=0}^{\tau} -\log p_{\psi}(x_{t+1}|z_{t+1}) + D_{KL} \left(q_{\psi}(z_{t+1}|x_{t+1}, z_t, a_t) \parallel p_{\psi}(z_{t+1}|z_t, a_t) \right) \right]$
 - $J_Q(\theta) = E_{z_t,a_t} \left[\frac{1}{2} \left(Q_{\theta}(z_t, a_t) r(z_t, a_t) \gamma E_{z_{t+1}} \left[V_{\widetilde{\theta}}(z_{t+1}) \right] \right) \right]$
 - $V_{\theta}(z_{t+1}) = E_{a_{t+1}}[Q_{\theta}(z_{t+1}, a_{t+1}) \log \pi_{\phi}(a_{\tau+1}|x_{1:\tau+1}, a_{1:\tau})]$
 - $J_{\pi}(\phi) = E_{z_{1:\tau+1},a_{\tau+1}} \left[D_{KL} \left(\pi_{\phi}(a_{\tau+1}|x_{1:\tau+1},a_{1:\tau}) \parallel \frac{\exp Q_{\theta}(z_{\tau+1},a_{\tau+1})}{Z(z_{\tau+1})} \right) \right]$ $\approx E_{z_{1:\tau+1},a_{\tau+1}} \left[\log \pi_{\phi}(a_{\tau+1}|x_{1:\tau+1},a_{1:\tau}) - Q_{\theta}(z_{\tau+1},a_{\tau+1}) \right]$