Lecture 9

Dynamic Programming Methods for

- 1. Longest Common Subsequence
- 2. Shortest Common Supersequence
- 3. O-1 Knapsack Problem.

What we learned so far:

- 1. Euler Circuit Problem. Theorem and algorithm
- 2. Greedy Algorithms
 - Interval scheduling and interval partitioning problems. Algorithms, correctness, running time.
- 2 MST: Kruskal and Prim Algorithms, theorem, running times with different data structures.
- 3. Single-source shortest path: Dijkstra algorithm: algorithm, running time and correctness.
- 3. Divide and Conquer: divide, recur, and conquer
 - Merge sort: algorithm and running time
- Counting Inversions: algorithms and running: two jobs are easier than one.

Dynamic Programming

* Break problems into subproblems and combine their solutions into solutions to larger problems.

In contrast to divide-and-conquer, dynamic programming uses memorization: each sub-problem is solved only once and the result of each sub-problem is stored in a table

1. Longest common subsequence (LCS)

 $A \underline{string} : A = b a c a d$

A <u>subsequence</u> of A: deleting zero or more symbols from A (not necessarily consecutive) e.g. ad, ac, bac, acad, bacad, bcd.

Common subsequences of A = b a c a d and B = a c c b a d c b: ad, ac, bac, acad.

The longest common subsequence (LCS) of A and B: acad.

Longest common subsequence problem

Input: Two sequences $X=x_1x_2...x_m$, and $Y=y_1y_2...y_n$.

Output: a longest common subsequence of X and Y.

A brute-force approach:

Suppose that m≥n. Try all subsequence of X (There are 2^m subsequence of X), test if such a subsequence is also a subsequence of Y, and select the one with the longest length.

Charactering a longest common subsequence

Theorem (Optimal substructure of an LCS)

Let $X=x_1x_2...x_i$, and $Y=y_1y_2...y_j$ be two sequences, and Z= be a LCS of X and Y.

- 1. If $x_i = y_j$, $Z = LCS(x_1x_2...x_{i-1}, y_1y_2...y_{j-1}) + x_i$
- 2. If $x_i \neq y_j$, Z is the longer one among LCS($x_1x_2...x_{i-1}$, $y_1y_2...y_j$) and LCS($x_1x_2...x_i$, $y_1y_2...y_{i-1}$).

The recursive equation

Let c[i,j] be the length of an LCS of X[1...i] and Y[1...j]. c[i,j] can be computed as follows:

$$c[i,j] = \begin{cases} 0 & \text{if } i=0 \text{ or } j=0, \\ c[i-1,j-1]+1 & \text{if } i,j>0 \text{ and } x_i=y_j, \\ \max\{c[i,j-1],c[i-1,j]\} & \text{if } i,j>0 \text{ and } x_i\neq y_j. \end{cases}$$

Computing the length of an LCS

There are n×m c[i,j]'s. So we can compute them in a specific order.

The algorithm to compute an LCS

```
for i=1 to m do
               c[i, 0]=0;
     for j=0 to n do
               c[0, j]=0;
     for i=1 to m do
           for j=1 to n do
7.
8.
                   if x[i] ==y[j] then
                          c[i, j] = c[i-1, j-1] + 1;
                          b[i, j]=1;
10
                            if c[i-1, j]>=c[i, j-1] then
c[i, j]=c[i-1, j]
b[i, j]=2;
11.
                   else
12.
13.
                             else c[i, j]=c[i, j-1]
b[i, j]=3;
14.
15.
14
```

chapter25

9

2021/11/1

Example 3: X=BDCABA and Y=ABCBDAB.

	Yi	В	D	C	A	В	A
×i							
Α							
В							
С							
В							
D							
Α							
В							

chapter25

Example 3: X=BDCABA and Y=ABCBDAB.

	Yi	В	D	C	A	В	A
×i	0	0	0	0	0	0	0
Α	0	↑ o	1 O	↑ o	1	←1	~1
В	0	1	←1	←1	1	~2	←2
С	0	1 1	1	2	←2	1 2	1 2
В	0	~1	1	12	1 2	3	←3
D	0	1	₹2	1 2	2	13	1 3
Α	0	↑ 1	↑2	12	3	1 3	4
В	0	~1	1 2	12	1 ↑ 3	4	← 4

chapter25

Constructing an LCS (back-tracking)

We can find an LCS using b[i,j]'s. We start with b[n,m] and track back to some cell b[0,i] or b[i,0]. The algorithm to construct an LCS (backtracking)

2. Shortest common super-sequence

Shortest common supersequence

Definition: Let X and Y be two sequences. A sequence Z is a supersequence of X and Y if both X and Y are subsequences of Z.

Shortest common supersequence problem:

Input: Two sequences X and Y.

Output: a shortest common supersequence of X and Y

Example: X=abc and Y=abb. Both abbc and abcb are the shortest common supersequences for X and Y.

SCS(X, Y)=human

Recursive Equation:

Let c[i,j] be the length of an SCS of X[1...i] and Y[1...j]. c[i,j] can be computed as follows:

$$c[i,j] = \begin{cases} j & \text{if } i = 0 \\ if j = 0, \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ min\{c[i,j-1] + 1,c[i-1,j] + 1\} & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

$$y_i$$
 B D C A B A
 x_i 0 1 2 3 4 5 6
A 1 +2 +3 +4 \times 4 +5 \times 6
B 2 \times 2 +3 +4 +5 \times 5 +6
C 3 +3 +4 \times 4 +5 +6 +7
B 4 \times 4 +5 +5 +6 \times 6 +7
D 5 +5 \times 5 +6 +7 \times 7 +8
A 6 +6 +6 +7 \times 7 +8 \times 8
B 7 \times 7 +7 +8 \times 8

The pseudo-codes

```
for i=0 to n do
    c[i, 0]=i;
for j=0 to m do
c[0,j]=j;
for i=1 to n do
    for j=1 to m do
         if'(xi_j == yj) c[i_j] = c[i-1, j-1] + 1; b[i.j] = 1;
         else {
                     c[i,j]=min\{c[i-1,j]+1, c[i,j-1]+1\}.
if (c[i,j]=c[i-1,j]+1 then b[i,j]=2;
else b[i,j]=3;
p=n, q=m; / backtracking
while (p\neq0 or q\neq0)
{ if (b[p,q]==1) then {print x[p]; p=p-1; q=q-1}
if (b[p,q]==2) then {print x[p]; p=p-1}
if (b[p,q]==3) then {print y[q]; q=q-1}
```

Example SCS for X=BDCABA and Y=ABCBDAB.

	Yi	В	D	C	A	В	A
×i	0	1	2	3	4	5	6
Α							
В							
С							
В							
D							
Α							
В							

Example SCS for X=BDCABA and Y=ABCBDAB.

	Yi	В	D	С	A	В	A
×i	0	1	2	3	4	5	6
Α	1	← 2	← 3	4	~4	←5	6
В	2	~ 2	←3	←4	← 5	5	←6
С	3	↑ 3	←4	4	←5	←6	←7
В	4	4	← 5	↑ 5	← 6	6	←7
D	5	↑ 5	5	1 6	← 7	17	8
Α	6	↑ 6	↑6	← 6	7	~8	8
В	7	~7	↑7	1 7	↑ 8	8	← 9

Dynamic Programming

- **Step 1:** Structure and subproblem definition:
- find a relation between the original problem and the smaller problems.
- **Step 2:** Bottom-up computation: Compute an optimal solution in a bottom-up fashion by using a table structure.
- **Step 3:** Construction of optimal solution: Construct an optimal solution from computed information.

3. 0-1 Knapsack Problem

Knapsack Problem 0-1 version

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Greedy: repeatedly add item with maximum ratio v_i / w_i .

Ex: $\{5, 2, 1\}$ achieves only value = $35 \Rightarrow$ greedy not optimal.

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \left\{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \right\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
   M[0, w] = 0

for i = 1 to n
   for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
   else
        M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack Algorithm

W + 1

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
+	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Chanllenge Q1: Billboard placement (Not Required)

You are trying to decide where to place billboards on a highway that goes East-West for M miles. The possible sites for billboards are given by numbers $x_1, ..., x_n$ each in the interval [0, M]. If you place a billboard at location x_i , you get a revenue r_i .

You have to follow a regulation: no two of the billboards can be within less than or equal to 5 miles of each other.

You want to place billboards at a subset of the sites so that you maximize your revenue subject to this constraint.

How?

O. x_1 x_2 x_n M

Solution:

Two sites are compatible if their distance are larger than 5km.

Def: P(i) is the largest index such that P(i) and sites i and P(i) are compatible. If no such index, define P(i)=0.

Let M(i) be the optimal revenue if only the first i sites $x_1, ..., x_i$ are considered.

$$M(0)=0,$$

$$M(i) = \max\{M(i-1), r_i + M(P(i))\}\ for\ i = 1, ..., n$$

Dynamic Program Method:

$$M(0)=0$$

For i=1 to n, do

If
$$M(i-1) > r_i + M(P(i))$$

$$B(i)=0, M(i)=M(i-1)$$

Otherwise

B(i)=1,
$$M(i) = r_i + M(P(i))$$

Backtracking:

```
p=n
While{p isn't 0} do
{If B(p)=1,
    select site p, and p=P(n),
    Otherwise,
    p=p-1,
}
```