

دانشگاه صنعتی امیر کبیر Amirkabir University

of Technology

پروژه- یادگیری ماشین کاربردی

استاد مربوطه: دکتر ناظرفرد

نام: زهرا اخلاقی

شماره دانشجویی: ۴۰۱۱۳۱۰۶۴

ایمیل: zahra.akhlaghi@aut.ac.ir

فهرست مطالب

Problem 1: Price Predictor	3
1- Create Dataset	3
2- Preprocessing	4
3- Data Visualization	5
4- Model Training	7
5- Model Evaluation	8
Problem 2: Hamshahri Newspaper	10
Step 1 - Introduction to the Dataset	10
Step 2 - Data Loading	10
Step 3 - Data Visualization	10
Step 4 – Preprocessing	12
Step 5 - Feature Engineering	12
Step 6 - Dimensionality Reduction	13
Step 7 - Clustering In this section	14
Step 8 - Storage	15
Step 9 - Classification (Model Building)	16
Step 10 - Preprocessing on Data	16
Step 11 - Model Training	17
Step 12 - Model Evaluation	17
Problem 3: Face Recognition	20
1- Create Dataset	20
2- Preprocessing	21
3- Split the data into training and testing	21
4- Model Training	21

Problem 1: Price Predictor

1- Create Dataset

برای ساختن دیتاست در این سوال از کتابخانه selenium استفاده شده است، این کتابخانه میتواند امکان تعامل با مرورگر را فراهم کند و اجازه میدهد به صورت تعاملی با صفحات وب کار کرده و داده هایی که مورد نیاز پروژه هست را از صفحات وب جمع آوری کرده و دیتاست بسازیم.

```
from urllib.parse import urljoin

for i in range(1500):

# scroll one screen height each time
    driver.execute_script(
        "window.scrollTo(0, {screen_height}*{i});".format(screen_height=s_height, i=i))
    time.sleep(1)

for each_div in driver.find_elements(
        By.CSS_SELECTOR, '.post-card-item-af972.kt-col-6-bee95.kt-col-xxl-4-e9d46'):
    if each_div == None:
        continue
    url = ''

# find a tag
    a_tag = each_div.find_element(By.TAG_NAME,'a'))

if a_tag != None :
    url = urljoin('https://divar.ir', a_tag.get_attribute('href'))
    # find the rent_urls_and save_in_the text_file
    with open(file, 'a+', newline='', encoding='utf-8') as write_file:
        write_file.writelines(url + '\n')
```

با استفاده از کد بالا، ۱۵۰۰ مرتبه صفحه حاصل از جستجو پیمایش میشود و لینک خودرو ها در فایل Url.txt ذخیره میشود.

```
]: data = []
    for link in links:
        try:
             driver.get(link)
             details = {}
             description_elements = driver.find_elements(
    By.CSS_SELECTOR, '.kt-group-row-item--info-row')
             if description elements != None:
                 for element in description elements:
                      title = element.find element(
                           By.CLASS NAME, 'kt-group-row-item title').text
                      value = element.find element(
                          By.CLASS_NAME, 'kt-group-row-item__value').text
                      details[title] = value
                 second_set_elements = driver.find_elements(
    By.CSS_SELECTOR, '.kt-unexpandable-row')
                  for element in second_set_elements:
                      title = element.find_element(
    By.CLASS_NAME, 'kt-unexpandable-row_title').text
                      value = element.find element(
                          By.CLASS_NAME, 'kt-unexpandable-row_value-box').text
                      details[title] = value
                 data.append(details)
        except Exception:
             continue
```

با استفاده از کد بالا، اطلاعات خودرو هایی که لینک آنها در فایل ذخیره شده بود استخراج شده و در لیست data ذخیره میشود. دیتاست به دست آمده حاصل از جستجوی بالا به صورت زیر می باشد. این دیتاست شامل ۲۰ ستون (مدل، کارکرد، رنگ، برند و تیپ، نوع سوخت، وضعیت شاسی، وضعیت موتور، وضعیت بدنه، مهلت بیمه، گیربکس، قیمت پایه، شاسی جلو، شاسی عقب، نمایشگاه، نوع آگهی، معاوضه، پیش پرداخت، اقساط و فروشنده) و ۱۶۹۱ ردیف میباشد.

rows × 20 columns 1691

2- Preprocessing

همه داده های جدول بالا ممکن است برای تخمین قیمت مناسب نباشد و مقادیر بسیاری از ستون ها null است و نیاز به پیش پردازش دارد. برای پیش پردازش کارهای زیر انجام شده است:

- ستون های برند و نوع سوخت به دلیل اینکه همه ی آنها دارای یک مقدار میباشند، حذف شده.
- ستون های حداقل مبلغ پیشپرداخت، مبلغ هر قسط، تعداد اقساط حذف شده و ستون قسطی اضافه شده که
 براساس این سه ستون نشان میدهد این ماشین فروش قسطی دارد یا خیر.
 - ستون نوع آگهی به دلیل اینکه تنها دارای مقدار فروش میباشد و در خروجی تاثیری ندارد حذف شده است.
 - ردیف های دارای مقادیر null در ستون های وضعیت بدنه و شاسی و موتور حذف شده اند.
 - مقدار نال در ستون گیربکس با "دنده ای" جایگزین شده است.
- مقادیر نال در ستون مهلت بیمه با صفر جایگذاری شده و در نهایت به دلیل تاثیر کم آن بر روی قیمت حذف شد.
 - ستون مایل به معاوضه به دلیل عدم تاثیر آن بر قیمت حذف شده

- ستون نمایشگاه دارای اسم نمایشگاه است که با دو مقدار شخصی یا نمایشگاهی مقدار دهی شده
- ستون های شاسی عقب، شاسی جلو، مبلغ هر قسط، حداقل مبلغ پیش پرداخت، تعداد اقساط، فروشنده، مایل
 به معاوضه و مهلت بیمه حذف شده
 - ردیف هایی که دارای قیمت توافقی هستند حذف شده اند
 - ردیف هایی که کارکرد آنها کوچکتر از صفر است حذف شده اند.
 - قیمت پایه بر مبنای ۱۰ میلیون قرار گرفته است

دیتاست نهایی به صورت زیر میباشد:

قیمت پایه(۱۰ ملیون)	قسط	نمایشگاه	گيرپکس	وضعيت بدنه	وضعيت شاسىها	وضعيت موتور	رنگ	مدل (سال توليد)	كاركرد	
18.6	True	شخصى	دندهای	رنگشدگی	سالم و پلمپ	سالم	نقر های	1383	300000	0
43.2	True	شخصىي	دندهای	سالم و بيخط و خش	سالم و پلمپ	سالم	سفيد	1399	18600	2
26.8	True	شخصى	دندهای	خط و خش جزیی	سالم و پلمپ	سالم	سفيد	1388	251000	3
29.0	True	شخصىي	دندهای	رنگشدگی، در ۲ ناحیه	سالم و پلمپ	سالم	سفيد	1390	200000	4
44.5	True	شخصىي	دندهای	سالم و بيخط و خش	سالم و پلمپ	سالم	سفيد	1400	31000	5
40.5	True	شخصى	دندمای	سالم و بيخط و خش	سالم و پلمپ	سالم	سفيد	1398	29000	1684
24.5	True	شخصى	دندمای	رنگشدگی	سالم و پلمپ	سالم	خاكسترى	1387	300000	1685
42.5	True	شخصى	دندهای	خط و خش جزیی	سالم و پلمپ	سالم	سفيد	1400	40000	1686
49.0	True	نمایشگاهی	دندهای	سالم و بيخط و خش	سالم و پلمپ	سالم	سفيد	1401	0	1687
28.0	True	شخصىي	دندمای	رنگشدگی	سالم و پلمپ	سالم	سفيد	1391	120000	1688

3- Data Visualization

شکل زیر نمودار توزیع قیمت را نشان میدهد:

شکل زیر نمودار توزیع کارکرد را نشان میدهد

نمودار زیر نشان دهنده تاثیر وضعیت بدنه بر قیمت خودرو میباشد و جدول میانگین قیمت برای هر رنگ را نشان میدهد

شکل زیر نشان دهنده تعداد خودرو ها در هر سال می باشد:

شکل زیر میانگین قیمت خودرو های نمایشگاهی و شخصی را نشان میدهد:

4- Model Training

برای آموزش مدل همه ستون های categorical به مقدار عددی تبدیل شدند و پیش بینی قیمت بر اساس کارکرد، وضعیت شاسی، وضعیت بدنه، وضعیت موتور، مدل، رنگ، گیربکس، نمایشگاهی و قسطی میباشد. دیتاست نهایی به صورت زیر است:

	كاركرد	مدل (سال توليد)	رنگ	وضعيت موتور	وضعيت شاسىها	وضعيت بدنه	گيريکس	نمایشگاه	قسط	قیمت پایه(۱۰ ملیون)
0	300000	1383	2	0	0	2	0	0	0	18.6
2	18600	1399	0	0	0	0	0	0	0	43.2
3	251000	1388	0	0	0	1	0	0	0	26.8
4	200000	1390	0	0	0	6	0	0	0	29.0
5	31000	1400	0	0	0	0	0	0	0	44.5
1684	29000	1398	0	0	0	0	0	0	0	40.5
1685	300000	1387	1	0	0	2	0	0	0	24.5
1686	40000	1400	0	0	0	1	0	0	0	42.5
1687	0	1401	0	0	0	0	0	1	0	49.0
1688	120000	1391	0	0	0	2	0	0	0	28.0

برای آموزش مدل در ابتدا مقادیر بهینه برای مدل های Ridge, Lasso, Elastic Net با تقسیم کردن داده های آموزش به آموزش و ارزیابی به دست آورده شده:

```
{'Ridge': {'alpha': 100}, 'Lasso': {'alpha': 0.1}, 'Elastic Net': {'alpha': 0.1, 'l1_ratio': 0.1}}
{'Ridge': 0.135339761871767, 'Lasso': 0.13491736806015364, 'Elastic Net': 0.13530307947549958}
```

5- Model Evaluation

در نهایت ۷ مدل آموزش دیده شده (Decision Tree Regressor, RandomForest Regressor) که نتایج آنها به صورت زیر است:

Explained Variance Score of OLS model is 0.04433804941354569

```
Explained Variance Score of Ridge model is 0.04145760699079504
Explained Variance Score of Lasso model is 0.04059413821273772
Explained Variance Score of Bayesian model is 0.04047708541413131
Explained Variance Score of ElasticNet is 0.04126131077235573
Explained Variance Score of DecisionTreeRegressor model is -0.10061108037169464
Explained Variance Score of RandomForestRegressor is 0.017616892715087595
  R-Squared of OLS model is 0.04262536683180529
  R-Squared of Ridge model is 0.03976230771765399
  R-Squared of Lasso model is 0.03888920005673091
  R-Squared of Bayesian model is 0.03879640444061416
  R-Squared of ElasticNet is 0.03956685998647613
  R-Squared of DecisionTreeRegressor model is -0.10177712993258403
  R-Squared of RandomForestRegressor model is 0.01572342009294414
  MSE of OLS model is 3718.0139058641757
  MSE of Ridge model is 3729.132744018994
   MSE of Lasso model is 3732.523502779633
   MSE of Bayesian model is 3732.883879354458
  MSE of ElasticNet is 3729.891775392098
  MSE of DecisionTreeRegressor model is 4278.808470928846
  MSE of RandomForestRegressor model is 3822.4890074645864
```

با مقایسه نتایج بالا Linear Regression دارای خطا کمتری است و عملکرد بهتری دارد و به عنوان مدل نهایی انتخاب و ذخیره میشود.

پژو 206 تیپ ۲، مدل ۱۳۸۹

یک ربع پیش در تهران، یافتآباد

پژو 206 تیپ ۲، مدل ۱۳۹۸

نیم ساعت پیش در تهران، اقدسیه

Problem 2: Hamshahri Newspaper

Step 1 - Introduction to the Dataset

همشهری یکی از پرمخاطب ترین روزنامه های ایران است. دیتاست همشهری یک مجموعه آزمایشی فارسی است که شامل 345 مگابایت متن خبری این روزنامه از سال 1375 تا 1381 میباشد (حجم پیکره با برچسب ها 564 مگابایت است). این مجموعه شامل بیش از 160000 مقاله خبری در مورد موضوعات مختلف و شامل نزدیک به 417000 کلمه مختلف است.

Step 2 - Data Loading

نتیجه تبدیل فایل متنی به فرمت جدول، به صورت زیر است. این دیتاست، از ۴ ستون تشکیل شده است که شامل متن خبری، دسته بندی آن، تاریخ خبر و آیدی میباشد.

	DID	Date	Cat	Text
0	151	75\04\02	adabh	جاودانگي در زندگي گروهي از طريق هنر نگاهي به ن
1	2S1	75\04\02	adabh	رويدادهاي هنري جهان نمايشگاه هنر در خدمت ديكتا
2	3S1	75\04\02	adabh	برديوار نگارخانه ها گالري گلستان: نمايشگاه طرح
3	451	75\04\02	ejtem	بازي را جدي بگيريم مطالعه اي مقدماتي پيرامون ن
4	5S1	75\04\02	elmfa	تخته سیاه و غباري که سترده نمي شود اشاره; ب
165220	60055S2	81\11\20	vrzsh	نماينده فدراسيون جهاني واليبال از ايران هر نظر
165221	60055S3	81\11\20	vrzsh	شکست نامداران تکواندودر پیکارهاي برتر لیگ گروه
165222	60055S4	81\11\20	vrzsh	ورزشگاه بزرگ دانشگاه آزاد در تهران ساخته مي شو
165223	60055S5	81\11\20	vrzsh	رئيس فدراسيون پزشكي انتخاب شد گروه ورزشي: مجمع
165224	60055S6	81\11\20	vrzsh	نتايج هفته يازدهم وزنه برداري باشگاهها گروه ور

165225 rows × 4 columns

Step 3 - Data Visualization

شکل زیر نمودار دایره ای میباشد، که تعداد داده ها در ۵ دسته بندی پرتکرار را نشان می دهد و برای مقایسه دسته بندی ها کاربرد دارد، این دستهها تقریبا درصد نزدیک به یکدیگری دارند و siasi پرتکرارترین دسته بندی است.

شکل زیر تعداد متن خبری به ازای هر دسته بندی را نشان میدهد (با توجه به اینکه ۱۰۵ دسته بندی وجود دارد امکان نشان دادن همه آنها وجود ندارد) بیشترین تعداد خبر برای دسته بندی سیاسی با تعدادی حدود ۱۷ هزار میباشد.

شکل زیر تعداد متن خبری در هر سال را نشان میدهد، سال ۱۳۸۱ دارای بیشترین تعداد خبر و سال۱۳۵ دارای کمترین تعداد خبر میباشد، و از سال ۱۳۷۶ تا ۱۳۷۷ تعداد اخبار کاهش یافته است.

Step 4 – Preprocessing

پیش پردازش روی این داده ها شامل موارد زیر میباشد:

- چک کردن تعداد مقادیر null در هر ستون، در این جدول مقدار null برای حذف کردن وجود نداشت.
 - با استفاده از تابع remove_tag تگ های url , html موجود در متن حذف شده.
- فایل PersianStopWords شامل حروف اضافی، کاراکتر ها، حروف اشاره و … است. وجود این حروف در متن خبر ها بررسی شده و در صورت وجود حذف شده.
 - \n و\r از متن حذف شده
 - حروف عربی موجود در متن با معادل فارسی جایگذاری شده
 - اسپیس های اضافی موجود در متن حذف شده
 - با استفاده از کتابخانه هضم lemmatize، stemming روی متن اعمال شد
 - تعداد کلمات هر متن بررسی شده و متن های خبری با تعداد کلمه کمتر از ۱۰۰ حذف شده اند
- دسته بندی ها و تعداد آنها بررسی شده و دسته بندی هایی که تعداد اخبار آنها کمتر از ۵ درصد کل داده ها
 است، حذف شده و در نهایت ۱۰ دسته بندی استخراج شده.

دیتاست نهایی:

	DID	Date	Cat	Text	text_len_by_words
0	4S1	75\04\02	ejtem	بازی جدی بگیریم مطالعه ای مقدماتی پیرامون نقش	1153.0
1	1151	75\04\02	eqtes	رشد اقتصادی کشورهای صنعتی سال آینده سازمان همک	87.0
2	1251	75\04\02	eqtes	تن مدیران ارشد کشور تهران آموزش دیدند سرویس اق	150.0
3	1351	75\04\02	eqtes	کمیته راهنمایی سرمایه گذاران ایرانی تشکیل می ت	144.0
4	1451	75\04\02	eqtes	هفته صرفه جویی مصرف آب آغاز سرویس اقتصادی هفته	87.0
116631	59437S6	81\10\14	eqtes	منطقه آزاد کیش تالار فرعی معاملات ارزی کشور تب	130.0
116632	5943757	81\10\14	eqtes	روغن موتور سطح کیفیت جهانی ایران تولید گروه اق	103.0
116633	5943758	81\10\14	eqtes	یادداشت احزاب سیاسی بودجه محمدصادق جنان صفت بر	135.0
116634	59437S9	81\10\14	eqtes	خبرها نكته شهامت یک مدیر خبر سال پیش وسیعی شرق	109.0
116635	59437S10	81\10\14	eqtes	یادآوری دقت معاون اقتصادی سازمان مدیریت برنامه	114.0
116636 ro	ws × 5 colui	mns			

Step 5 - Feature Engineering

TF-IDF، یک آمار عددی، جهت نشان دادن اهمیت یک کلمه برای یک سندی که در مجموعه ای واقع شده است. عموما مقدار tf-idf, متناسب با تعداد تکرار یک کلمه در یک سند (document) افزایش می یابد و تعدادی از سندها که در بدنه خود دارای این کلمه هستند را متعادل می کند. هدف استفاده از این روش، تنظیم کردن و یکدست کردن کلماتی است که در یک متن، مدام تکرار می شوند.

از تابع TfidfVectorizer برای به دست آوردن tfidf استفاده میشود و با توجه به حجم زیاد داده ها در صورت استفاده از همه اطلاعات، مشکل crash حافظه وجود دارد، بنابراین ۵۰۰۰ بهترین ویژگی ها استخراج شده است.

```
# TF-IDF Matrix for top 5000 words
vectorizer = TfidfVectorizer(ngram_range=(1,1), max_features=5000)
# Fit and transform the 'Text' column using TF-IDF
tfidf_matrix = vectorizer.fit_transform(df['Text'])
```

شکل زیر تعداد تکرار کلمه ناتو را در سال های مختلف نشان میدهد

در سال ۱۳۸۱ که معادل با ۲۰۰۲ میلادی است، شامل بیشترین تعداد تکرار این کلمه است زیرا درنشست پراگ که در سال ۲۰۰۲ میلادی دایر گردید، رهبران ناتو اصلاحات گسترده را معرفی نمودند که به شکل دراماتیک دارایی های نظامی ناتو را دوباره شکل داد. آنها ساحات مشخصی را برای بهتر ساختن معرفی نمودند، نیروی پاسخگوی ناتو را ایجاد نمودند و ساختار قومنده نظامی را سریعتر ساختند، که این تغییرات باعث شد اخبار زیادی درباره آن وجود داشته باشد.

Step 6 - Dimensionality Reduction

برای کاهش بعد به صورت زیر از PCA استفاده شده است.

```
pca_reducer_2 = PCA(n_components = 2)
reduced_features = pca_reducer_2.fit_transform(tfidf_array)
sum(pca_reducer_2.explained_variance_ratio_)

□ 0.02542951748377438
```

نتیجه کاهش بعد به صورت زیر میباشد:

Step 7 - Clustering In this section

خوشه بندی:

```
from sklearn.cluster import KMeans
num_clusters = 10
kmeans = KMeans(n_clusters=num_clusters, random_state=42)
# Fit the K-means model to the reduced data
kmeans.fit(reduced_df)
# Get the cluster labels assigned by K-means
cluster_labels = kmeans.labels_
```

با توجه به اینکه داده ها دارای ۱۰ دسته بندی میباشد، تعداد خوشه انتخاب شد برابر با ۱۰ میباشد. نتیجه (شکل زیر) نشان می دهد کاهش بعد نتوانسته به درستی داده ها را مدل کند زیرا این تعداد دسته بندی برای این داده ها مناسب نیست و به درستی نتوانسته داده ها را از یکدیگر جدا کند.

Step 8 - Storage

کاهش بعد با تعداد ابعاد ۵:

```
pca_reducer_5 = PCA(n_components = 5)
reduced_features = pca_reducer_5.fit_transform(tfidf_array)
sum(pca_reducer_5.explained_variance_ratio_)
```

0.05106137341931134

خوشه بندی و ذخیره نتایج:

```
from sklearn.cluster import KMeans
num_clusters = 10
kmeans = KMeans(n_clusters=num_clusters, random_state=42)

# Fit the K-means model to the reduced data
kmeans.fit(reduced_df)

# Get the cluster labels assigned by K-means
cluster_labels = kmeans.labels_
```

نتیجه خوشه بندی با کاهش بعد ۵

result_df.sample(7)									
	DID	Date	Cat	Text	Cluster Labels				
50099	45129S7	78\04\14	elmif	شناسنامه اشیای تاریخی فرهنگی کشور صادر می گروه	4				
73473	49187S3	79\06\02	akhar	مناسبت سال اميرالمومنين مسابقه كتابخواني استان	0				
34763	42503S5	77\06\24	vrzsh	تیم تکواندو نوجوانان ایران جهان هفتم گروه ورزش	2				
89145	51588S9	80\03\13	vrzsh	خبرهایی فوتبال جهان دومین پیروزی تیم ملی ژاپن	2				
110641	57123S4	81\06\03	kharj	وزیر خارجه قطر بغداد می رود حمد بن جاسم آل ثان	8				
70647	48719S6	79\04\19	kharj	مذاكرات صلح شاخ آفريقا آمريكا پايان يافت گوى س	8				
70574	48706S2	79\04\18	kharj	عفو بين الملل عربستان حقوق مهاجران غيرقانوني م	8				

متن هایی با cat یکسان تقریبا در یک دسته بندی قرار گرفته اند. نتایج خوشه بندی در فایل زیر ذخیره شده است:

https://drive.google.com/file/d/1-6ILwwCLmTS3mn4gsMkn_OEQt0RY2oSH/view?usp=d rive link

Step 9 - Classification (Model Building)

ساخت مدل ها:

```
from sklearn.neighbors import KNeighborsClassifier
# Create a KNN classifier with k=7
knn = KNeighborsClassifier(n neighbors=7)
from sklearn.linear_model import LogisticRegression
# Create a Logistic Regression classifier
logreg = LogisticRegression()
from sklearn.naive bayes import GaussianNB
# Create a Naïve Bayes classifier
nb = GaussianNB()
from sklearn.ensemble import RandomForestClassifier
# Create a Random Forest classifier with 100 trees
rf = RandomForestClassifier(n_estimators=100)
from sklearn.ensemble import VotingClassifier
# Create the ensemble model with voting
ensemble_model = VotingClassifier(estimators=[
     ('knn', knn),
    ('logreg', logreg),
    ('nb', nb),
    ('rf', rf)
], voting='hard') # 'hard' voting for majority vote, 'soft' voting for weighted average
```

ساخت مدل ensemble با استفاده از مدل های بالا:

Step 10 - Preprocessing on Data

در پیش پردازش داده ها در این مرحله، کارهای زیر انجام شده:

• از LabelEncoder برای ستون Cat استفاده شده،

```
from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
encoded_labels = label_encoder.fit_transform(df['Cat'])
```

- داده ها به دو دسته تست و آموزش تقسیم شده اند.
- روی داده های تست و آموزش از tf-idf استفاده شده است

```
from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer(ngram_range=(1,1), max_features=4000)

X_train = vectorizer.fit_transform(X_train).toarray()
X_test = vectorizer.fit_transform(X_test).toarray()
```

Step 11 - Model Training

در این مرحله آموزش مدل ها انجام شده است.

Step 12 - Model Evaluation

نتایج accuracy روی داده آموزش:

KNN Accuracy on Training Data: 0.8073155570797788
Logistic Regression Accuracy on Training Data: 0.8860440691044712
Naïve Bayes Accuracy on Training Data: 0.7203348051614009
Random Forest Accuracy on Training Data: 0.9999571312213315
Ensemble Model Accuracy on Training Data: 0.9076713679427273

نتایج accuracy روی داده تست:

KNN Accuracy on Testing Data: 0.26727537722908096 Logistic Regression Accuracy on Testing Data: 0.2808641975308642 Naïve Bayes Accuracy on Testing Data: 0.13473079561042525 Random Forest Accuracy on Testing Data: 0.2069187242798354 Ensemble Model Accuracy on Testing Data: 0.23563957475994513

نتایج precision روی داده تست:

KNN Precision: 0.26727537722908096

Logistic Regression Precision: 0.2808641975308642

Naïve Bayes Precision: 0.13473079561042525 Random Forest Precision: 0.2069187242798354 Ensemble Model Precision: 0.23563957475994513

روی داده های تست Confusion Matrix:

```
KNN Confusion Matrix:
                                                 [[711 348 242 212 187
                                                                         75 135 86 235 341]
                                                  [149 431 126 171 203 82 157 101 127 61]
Logistic Regression Confusion Matrix:
[[1998
           28
                42 177
                                                  [209 178 647 151 171 49 83 76 96 85]
                                                  [279 585 212 830 370 136 165 143 340 157]
  861 311
                             37
                58
                                  13
 [1079
       93
          287
                23
                    33
                         47
                                 14
                                     143
                                          12]
                                                  [191 331 121 409 884 147 201 90 363 109]
 [1658
      419
               300
                   142
                       159
           13
                             61
                                109
                                     321
                                          351
                                                  [175 189 161 247 168 142 220 109 153 86]
 [1182
                78 1013
      133
            12
                        100
                             26
                                     273
                                          22]
                                                  [136 236 152 272 167 122 499 105 153
                                                                                           711
       116
                65 101
                            119
  789
      111
            24
                    45
                        248
                                  60
                            415
                                     146
                                          21]
                                                  [231 166 164 265 117 80 149 199 180
  645
      216
            20
                96
                    68
                        138
                             80
                                124
                                    212
                                          28]
                                                  [272 660 230 440 428 148 209 115 931 141]
 1901
      291
            36
                84 212
                        104
                             69
                                 40
                                    822
                                          151
                                                  [137 367 176 258 176 80 210 39 172 961]]
 959
                                  6 223 1025]]
```

Naïve	Bayes	Confi	ısion	Matri	x :				
[[95	-	268	59	3	314	238	74	281	33]
[43		101	18	0	212	83	10	347	7]
[53		211	10	0	286	94	13	344	7]
[119		174	29	2	584	205	16	578	17]
[69		257	28	2	480	223	19	734	18]
[69	6 96	45	35	0	522	46	4	194	12]
[44	1 307	194	62	1	363	298	16	218	13]
[40	7 261	146	20	0	352	173	38	216	14]
[124	5 520	206	30	1	692	178	16	675	11]
[103	7 420	117	5	2	512	90	6	363	24]]
Random	Fores	t Con	fusi	on Mat	rix:				
[[2325	3	9	40	23	37	6	3	10	116]
[1180	16	50	109	19	21	5	2	35	171]
[1439	3	134	24	9	12	4	1	23	96]
[2576	36	13	213	170	17	6	45	35	106]
[1819		1	251	515	19	3	1	11	138]
[1302		25	62	32	38	12	6	14	148]
[1396		20	102	25	86	84	20	21	149]
[1238		20	107	49	46	10	10	30	114]
[2369		52	261	161	36	16	6	349	240]
[1278		5	54	76	10	Θ	0	2	1143]]
Ensembl	o Mode	1 Co	nfuci	on Ma	+=iv				
									241
[[2278	63	23	20	33	52	22	2		_
[1096	241	26	37	33	37	23		1 99	_
[1341	59	196	11	19	29	7		5 58	_
[2319	204	19	227	88	76	44	45		_
[1642	120	29	89	666	62	24	2	2 188	3 24]
[1220	58	20	41	28	141	51	13	L 51	L 29]
[1167	83	43	58	26	127	312	13	L 55	31]
[1088	119	29	82	34	80	53	29	88	3 25]
[2358	243	32	96	128	67	44		3 577	
[1414	104	17	37	34	34	22		84	
							•	_	11

برای داده های آموزش Random Forest دارای بهترین عملکرد میباشد،در داده های تست Random Forest دارای بهترین عملکرد را دارد. دارای بهترین عملکرد میباشد و Naive Bayes در هر دو داده تست و آزمایش بدترین عملکرد را دارد.

What is the reason for its better performance?

رگرسیون لجستیک یک مدل خطی است که از یک مرز تصمیم گیری خطی برای جداسازی کلاس های مختلف استفاده می کند , رگرسیون لجستیک یک الگوریتم نسبتا ساده و قابل تفسیر در مقایسه با مدل های پیچیده تر مانند جنگل تصادفی است. از یک الگوریتم بهینه سازی ساده برای تخمین پارامترها استفاده می کند و هایپر پارامترهای کمتری برای تنظیم دارد. این سادگی می تواند منجر به عملکرد خوب با خطر کمتری برای بیش از حد نصب شود.

رگرسیون لجستیک اهمیت هر ویژگی را با تعیین وزن به آنها تخمین می زند. در مورد ویژگیهای TF-IDF، رگرسیون لجستیک میتواند به طور موثر به کلمات یا اصطلاحاتی که برای دستههای هدف متمایزتر هستند، وزن اختصاص دهد. این مکانیسم انتخاب ویژگی به رگرسیون لجستیک کمک میکند تا روی آموزندهترین ویژگیها تمرکز کند و به طور بالقوه منجر به عملکرد بهتر شود. مدیریت ویژگیهای نامربوط: در وظایف طبقهبندی متن، داشتن تعداد زیادی ویژگی (کلمات یا اصطلاحات) که ممکن است برای طبقهبندی مرتبط نباشد، معمول است. رگرسیون لجستیک این توانایی را

دارد که وزنهای کمتر یا نزدیک به صفر را به این ویژگیهای نامربوط اختصاص دهد و تأثیر آنها را در تصمیمگیری طبقهبندی کماهمیت جلوه دهد. این قابلیت انتخاب ویژگی می تواند عملکرد را با کاهش نویز در داده ها بهبود بخشد.

If we used the Linear Regression model:

استفاده از رگرسیون خطی برای یک کار طبقه بندی متن یک رویکرد رایج نیست، زیرا رگرسیون خطی در درجه اول برای کارهای رگرسیونی که متغیر هدف پیوسته است استفاده می شود. با این حال، اگر از رگرسیون خطی برای طبقهبندی متن استفاده کنید، نتایج به احتمال زیاد رضایت بخش نخواهد بود.

مدل های رگرسیون خطی با هدف تخمین یک متغیر خروجی پیوسته بر اساس یک رابطه خطی با ویژگی های ورودی است. در مورد طبقهبندی متن، متغیر هدف نشاندهنده دستههای گسسته است.

رگرسیون خطی فرض می کند که رابطه بین ویژگی های ورودی و متغیر هدف خطی است. با این حال، در وظایف طبقهبندی متن، رابطه معمولاً غیرخطی و پیچیده تر است. رگرسیون خطی ممکن است الگوهای پیچیده و غیرخطی بودن موجود در داده های متنی را نشان ندهد که منجر به عملکرد ضعیف می شود.

رگرسیون خطی فرض می کند که باقیمانده ها (تفاوت بین مقادیر پیش بینی شده و واقعی) از توزیع نرمال با واریانس ثابت پیروی می کنند. در طبقهبندی متن، به دلیل ماهیت دادههای متنی، ممکن است پرت و ناهمسانی (واریانس خطای متغیر) وجود داشته باشد. این نقض مفروضات می تواند بر عملکرد مدل و قابلیت اطمینان پیش بینی های آن تأثیر منفی بگذارد.

Problem 3: Face Recognition

1- Create Dataset

برای ایجاد کردن دیتاست از fetch_lfw_people در کتابخانه sklearn استفاده شده و از هر شخص ۱ عکس انتخاب شده و حداکثر تعداد این عکس ها ۷۰۰ در نظر گرفته شده، در نهایت صورت هر شخص در عکس ها استخراج شده و در فولدر Other ذخیره شده.

```
os.makedirs(destination_dir, exist_ok=True)
# Iterate through the folders in the source directory for folder_name in os.listdir(source_dir):
    folder_path = os.path.join(source_dir, folder_name)
    # Skip any non-directory items
    if not os.path.isdir(folder_path):
         continue
    # Iterate through the image files in each folder
for file_name in os.listdir(folder_path):
    file_path = os.path.join(folder_path, file_name)
         # Skip anv non-image files
         if not file_name.lower().endswith(('.jpg', '.jpeg', '.png', '.gif')):
              continue
         image = cv2.imread(file_path)
         gray = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
         faces = faceCascade.detectMultiScale(gray,scaleFactor=1.1, minNeighbors=10, minSize=(40, 40))
           for i, (x,y,w,h) in enumerate(faces):
                 # To draw a rectangle in a face
               face = image[y:y*h, x:x*w]
image_file = os.path.join(destination_dir, f"image_{count}.jpg")
               cv2.imwrite(image_file, face)
         break
    if count > 700:
         break
print("Images copied successfully!")
Images copied successfully!
```

پوشه ای از عکس های خودم ایجاد کردم و همهی آن عکس ها را خوانده و صورت را استخراج کرده و در پوشه Zahra ذخیره کردم.

2- Preprocessing

صورت های استخراج شده از تصاویر از فایل Other , Zahra خوانده شده و پیش پردازش های زیر روی تصاویر انجام شده:

• اندازه هر تصویر به (128,128) تغییر میکند. تصویر به آرایه تبدیل شده و به ۱ بعد کاهش می یابد

● برای تصاویر خوانده شده برای zahra برچسب ۱ و برای Other برچسب صفر در نظر گرفته میشود.

3- Split the data into training and testing

۰.۲ داده ها برای آزمایش مدل در نظر گرفته میشود

```
from sklearn.model_selection import train_test_split
import numpy as np
images = np.array(images)
labels = np.array(labels)
train_images, test_images, train_labels, test_labels = train_test_split(images, labels, train_size=0.8, random_state=
```

4- Model Training

مدل های Random Forest Classifier و SVC و Random Forest Classifier برای آموزش انتخاب شده و نتایج آنها مقایسه شده و در نهایت بهترین انتخاب شده است.

```
Accuracy: 0.9726027397260274
Precision: 1.0
Recall: 0.9310344827586207
F1 score: 0.9642857142857143
confusion_matrix:
[[132 0]
[ 6 81]]
```

: Random Forest Classifier نتایج حاصل از

```
Accuracy: 0.9497716894977168
confusion_matrix:
[[125 7]
[ 4 83]]
```

نتایج حاصل از SVC:

```
Accuracy: 0.9726027397260274
Precision: 0.9550561797752809
Recall: 0.9770114942528736
F1 score: 0.9659090909090908
confusion_matrix:
[[128 4]
[ 2 85]]
```

: Logistic Regression نتايج

با توجه به نتایج بالا Random Forest Classifier و Random Forest Classifier دارای بهترین نتایج و دقت شبیه به یکدیگر می باشند، در نهایت Random Forest به عنوان مدل نهایی انتخاب و ذخیره شده است. با استفاده از cv2.VideoCapture وجود دارد، همانطور که در کد زیر مشخص است، در هنگام اجرا ۲۰ فریم دریافت شده و صورت موجود در این فریم ها ذخیره شده است.

```
try:
    while True:
       ret, frame = cap.read()
       if not ret:
           break
       gray = cv2.cvtColor(frame, cv2.COLOR BGR2GRAY)
       faces = face cascade.detectMultiScale(gray,scaleFactor=1.1, minNeighbors=10, minSize=(40, 40))
       if len(faces) > 0:
         for i, (x,y,w,h) in enumerate(faces):
            # To draw a rectangle in a face
            face = frame[y:y+h, x:x+w]
            frames.append(face)
       if forms_started >= max_forms:
          who = frame
who_faces = faces
          break
       forms started+=1
except:
  print(f'Video has ended..')
```

در نهایت بعد از ۲۰ فریم با استفاده از cap.release و cv2.destroyAllWindows وب کم خاموش میشود. صورت های موجود در ۲۰ فریم، برای پیش بینی به مدل داده میشود و اگر ۵ فریم پیش بینی ۱ باشد، hello zahra و عکس فریم آخر نمایش داده میشود. عکس فریم آخر نمایش داده میشود و در غیر این صورت can not login و عکس فریم آخر نمایش داده میشود. در Prob درصد حضور و یا عدم حضور میان صورت فریم ها محاسبه میشود

```
total = 0
for img in frames:
    img = cv2.resize(img,(128, 128))
img_array = np.array(img).flatten()
    predict = model.predict(img_array.reshape(1, -1))
     total+=1
    if predict ==1 :
         consecutive_recognitions +=1
if consecutive_recognitions > required_recognitions :
    color = (0, 255, 0)
prob = (consecutive_recognitions / total)*100
     label = f'Hello Zahra {prob}%'
else:
    color = (0, 0, 255)
    prob = (1- (consecutive_recognitions / total))*100
label = f'can not login {prob}%'
if len(who_faces) > 0:
   for i, (x,y,w,h) in enumerate(faces):
       # To draw a rectangle in a face
       cv2.rectangle(who,(x,y),(x+w,y+h),color,2)
cv2.putText(who, label, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
   cv2.imshow("image",who)
   cv2.waitKey(0)
cv2.destroyAllWindows()
```