<u>Definition</u> 2.8. Let A be the generator of a positive semigroup $(T(t))_{t\geq 0}$ with spectral bound $s(A) > -\infty$. The resolvent is said to <u>grow slowly</u> if one of the following (equivalent) conditions is satisfied:

- (2.15a) $\{(\lambda-s(A))R(\lambda,A) : \lambda > s(A)\}$ is bounded in L(E).
- (2.15b) $\{\frac{1}{t}\int_{0}^{t} \exp(-\tau s(A))T(\tau) d\tau : t > 0\}$ is bounded in L(E).

Before proving the equivalence of the two assertions we make some remarks.

- (a) Since one always has $\lambda R(\lambda,A) \to \mathrm{Id}$ for $\lambda \to \infty$ $\{(\lambda-s(A))R(\lambda,A): \lambda > s(A)+_{\epsilon}\}$ is bounded for every $\epsilon > 0$. Thus in (2.15a) the essential fact is boundedness near s(A). On the other hand , $\{\frac{1}{t}\int_0^t \exp(-\tau s(A))T(\tau)\ d\tau: 0 \le t \le T\}$ is bounded for every $T \ge 0$, hence in (2.15b) the boundedness for $t \to \infty$ is important.
- (b) By Cor.1.4 we have $\|R(\lambda,A)\| \ge r(R(\lambda,A)) = (\lambda-s(A))^{-1}$. Hence $\|R(\lambda,A)\|$ grows at least as fast as $(\lambda-s(A))^{-1}$. Thus if (2.15a) is satisfied the resolvent grows as slowly as it possibly can for $\lambda+s(A)$.
- (c) We do not assume in Def.2.8 that spectral bound and growth bound coincide. A slight modification of A-III,Example 1.3 shows that there are semigroups with slowly growing resolvent and s(A) < ω (A).

To prove equivalence of (2.15a) and (2.15b) we assume s(A)=0 and write $C(t):=\frac{1}{t}\int_0^t T(\tau)\ d\tau$.

(2.15a) + (2.15b): Consider $\lambda > 0$, t > 0 such that $\lambda t = 1$.

Then we have

$$\lambda \cdot \exp(-\lambda s) \ge \begin{cases} (et)^{-1} & \text{if } s \le t \\ 0 & \text{if } s > t \end{cases}$$

Now (1.1) implies $\lambda R(\lambda,A) = \int_0^\infty \lambda \exp(-\lambda s) T(s) ds \ge e^{-1} C(t) = e^{-1} \cdot C(\frac{1}{\lambda})$ ≥ 0 . Thus C(t) is bounded for $t \to \infty$ whenever $\lambda R(\lambda,A)$ is bounded for $\lambda \downarrow 0$.

(2.15b) + (2.15a): Let M := $\sup\{\|C(t)\| : t > 0\}$. Given f $\in E$,

 λ > 0 , r > 0 then integration by parts yields :

$$\begin{split} &\lambda \int_0^r e^{-\lambda s} T(s) \, f \, \, ds = \lambda e^{-\lambda r} \int_0^r T(\sigma) \, f \, \, d\sigma \, + \, \lambda^2 \int_0^r s e^{-\lambda s} \left(\frac{1}{s} \int_0^s T(\sigma) \, f \, \, d\sigma\right) ds \\ &\text{It follows that} \quad \left\|\lambda \int_0^r e^{-\lambda s} T(s) \, f \, \, ds\right\| \leq \left(r\lambda e^{-r} \, + \, \lambda^2 \int_0^r s e^{-\lambda s} \, \, ds\right) M \|f\| \\ &= \left(1 \, - \, e^{-\lambda r}\right) M \|f\| \quad \text{Letting} \quad r \, + \, \infty \quad \text{we obtain by} \quad \text{(1.1)} \\ &\|\lambda R(\lambda,A) \, f\| \leq M \|f\| \quad \text{$(f \in E \, , \, \lambda \, > \, 0)$} \quad \text{hence} \quad \|\lambda R(\lambda,A)\| \leq M \end{split}$$