Blatt 4 - Gruppe: G1-07

Mike Lenz, Jonas Tesfamariam 20. Mai 2023

Aufgabe 1

a)

i)

$$\{x_{name} \mid \exists x_{ort} \text{ SpielStudio}(_, 1, 2022, x_{name}, x_{ort})\}$$

ii)

$$\begin{aligned} \{x_{name} \mid \exists x_t \exists x_q \exists x_j \exists x_{ort} \; \text{SpielStudio}(x_t, x_q, x_j, x_{name}, x_{ort}) \land \\ \exists y_t \exists y_q \exists y_j \; (\text{SpielStudio}(y_t, y_q, y_j, x_{name}, x_{ort}) \land y_j \geq 2010 \; \land \\ \forall z_{anz} \; (\text{Spiel}(y_t, _, y_q, y_j, _, z_{anz}) \land z_{anz} > 1)) \} \end{aligned}$$

b)

Anz. Spieler ist nicht null und speichert eine tatsächliche Anzahl an möglichen Spielern.

Zwei Spielstudios, welche nicht zusammengearbeitet haben, dürfen keine Spiele mit gleichem Namen im gleichen Zeitraum veröffentlichen.

Aufgabe 2

a)

```
 \{s.Chefentwickler \mid s \in Studio \land \exists sp \in SpielStudio(s.Name = sp.Name \land s.Ort = sp.Ort) \land \exists ld \in Spiel(sp.Titel = 'Left 4 Dead' \land sp.Genre = 'FPS' \land sp.Anz.Spieler = 4) \}
```

b)

```
\{spi.Titel \mid \exists s_1 \in Studio \land \exists s_2 \in Studio \land s_1.Name \neq s_2.Name \land s_1.Ort \neq s_2.Ort \land \exists sp_1 \in SpielStudio(s_1.Name = sp_1.Name \land s_1.Ort = sp_1.Ort) \land \exists sp_2 \in SpielStudio(s_2.Name = sp_2.Name \land s_2.Ort = sp_2.Ort) \land spi \in Spiel(sp_1.Titel = spi.Titel \land sp_2.Titel = spi.Titel \land sp_1.Quartal = spi.Quartal \land sp_2.Quartal = spi.Quartal \land sp_1.Jahr = spi.Jahr \land sp_2.Jahr = spi.Jahr)\}
```

Aufgabe 3

a)

 $\{x, z \mid R(x, 5) \lor R(10, z)\}$: Nicht sicher wegen der Veroderung (\lor) . Wenn ein Teil der Formel erfüllt ist, ist es egal was für einen Wert die Variable im anderen Teil annimmt. Somit gibt es unendlich Ergebnisse.

 $\{y \mid \exists x \ ((R(x,5,y) \lor R(x,8,y)) \land \neg R(x,10,y))\}$: Ist sicher, da bei der Veroderung die selben Variablen an den gleichen Stellen stehen. Im Endeffekt werden alle Reihen gefunden, bei denen die mittlere Spalte entweder 5 oder 8, aber nicht 10, ist. Von diesen Reihen muss es endlich viele geben.

 $\{z \mid \forall x \exists y \ (S(z,y) \land y < x)\}$: Nicht sicher falls Duplikate erlaubt sind, da x jegliche Zahl sein kann und einträge aus S somit unendlich gefunden werden. Wenn Duplikate nicht erlaubt sind, dann ist das Ergebnis endlich.

b)

Welche Schauspieler haben in höchstens zehn Filmen mitgespielt? Es ist möglich ein Prädikat zu erstellen, das testet, welche Schauspieler in *mindestens* 10 Filmen mitgespielt haben. Durch die Negation eines solchen Prädikats erhalten wir eine Anfrage, in welcher alle Schauspieler enthalten sind, die in *höchstens* 10 Filmen mitgespielt haben. Die Anfrage kann im Domänenkalkül ausgedrückt werden.

Welche Schauspieler haben in genau 5 Filmen mitgespielt? Es ist im Domänenkalkül nicht möglich zu zählen, genau wieviele verbundene Einträge das Prädikat erfüllen, weshalb die Anfrage nicht im Domänenkalkül ausgedrückt werden kann.

Aufgabe 4

SELECT name **FROM** professoren **WHERE** rang = 'C1';

SELECT DISTINCT rang FROM professoren;

SELECT titel FROM vorlesungen, hoeren WHERE hoeren.matrnr =
→ 378319 AND vorlesungen.vorlnr = hoeren.vorlnr;

SELECT name, studenten.matrnr FROM studenten, hoeren,

- → vorlesungen WHERE studenten.matrnr = hoeren.matrnr
- \hookrightarrow **AND** hoeren.vorlnr = vorlesungen.vorlnr **AND**
- → vorlesungen.titel = 'Information | Retrieval';