1 ДЗ-02

1.1 Задача 1.

1.1.1 Построение модели оценки за экзамен.

Во-первых, по имеющимся данным мы сможем оценить только их влияние на оценку за второй экзамен, так как данные агрегированы за весь семестр.

Во-вторых имеет смысл вместо суммы баллов за домашние задания использовать средний балл, так как он точнее отражает качество выполнения домашнего задания:

$$MHW_i = \frac{SHW_i}{NHW_i} \tag{1.1}$$

Для определения влияния различных факторов на оценки построим модель, включающую в себя все объективные характеристики, а также дамми на пол:

Source	SS	df	MS	Number of	obs =	223
				F(6, 216)	=	79.19
Model	70477.5036	6	11746.2506	Prob > F	-	0.0000
Residual	32041.2498	216	148.339119	R-squared	=	0.6875
				- Adj R-squ	ared =	0.6788
Total	102518.753	222	461.796186	Root MSE	=	12.179
exam2	Coef.	Std. Err.	t	P> t [9	95% Conf.	Interval]
NA	401993	.2116452	-1.90	0.0598	3191473	.0151612
NHW	1.216641	.3094121	3.93	0.000 .6	067875	1.826495
mean_SHW	.132852	.0594394	2.24	0.026 .0	156965	.2500076
exam1	.7557981	.0557075	13.57	0.000 .6	459982	.865598
f	5.693563	4.49672	1.27	0.207 -3.	169505	14.55663
f_mean_SHW	1110807	.066832	-1.66	0.098	242807	.0206457
_cons	2.456695	3.705912	0.66	0.508 -4.	847685	9.761074

Сразу заметим, что коэффициент при количестве посещенных семинаров значим и меньше 0. Можно подумать, что если не сходить 10 семинаров при прочих равных можно получить оценку на 4 балла выше, что очевидно не так. Причиной этому явлется тот факт, что в регрессии есть пропущенные переменные, отвечающая за знания эконометрики на момент начала курса и "талант", который позволяет студентов быстро готовиться за ночь до экзамена.

Можно предположить, что переменная Expect частично отражает эти факторы, так как высокую оценку будут ожидать только те, кто более-менее уверен в своих знаниях:

Source	SS	df	MS			= 223
Model Residual	82385.9846 20132.7688	7 215	11769.4264		> F	= 125.69 = 0.0000 = 0.8036
Residual	20132.7088	215	93.04078			= 0.8030 = 0.7972
Total	102518.753	222	461.79618	_	•	= 9.6768
exam2	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
NA	1452487	.1696905	-0.86	0.393	4797187	.1892213
NHW	.8366313	.2481328	3.37	0.001	.3475468	1.325716
mean_SHW	.0817556	.0474427	1.72	0.086	0117567	.1752679
exam1	.2489226	.0630816	3.95	0.000	.124585	.3732601
f	2.48884	3.584017	0.69	0.488	-4.575469	9.553148
f_mean_SHW	0552568	.0533296	-1.04	0.301	1603726	.0498589
Expect	.6905583	.0612357	11.28	0.000	.5698591	.8112575
_cons	-2.343719	2.975031	-0.79	0.432	-8.207682	3.520244

Действительно, добавив Expect в регрессию видим, что эта переменная значима, а количество посещенных семинаров NA — нет, также теперь нет различия во влиянии среднего балла на оценки в зависимости от пола. Все это позволяет сделать вывод, что из-за пропущенной переменной оценки были несостоятельными, а Expect из регрессии убирать не стоит.

Проверим с помощью F-теста гипотезу об одновременном равенстве коэффициентов при $NA,\,f,\,f*MHW$:

```
(1) NA = 0
(2) f = 0
(3) f_mean_SHW = 0
F(3, 215) = 0.77
Prob > F = 0.5133
```

Согласно результатам теста далее будем использовать короткую модель:

Source	SS	df	MS	Numb	er of obs		223
				F(4,	218)	=	220.08
Model	82170.3586	4	20542.5896	Prob	> F	-	0.0000
Residual	20348.3948	218	93.3412605	R-sq	uared	=	0.8015
				- Adj	R-squared	=	0.7979
Total	102518.753	222	461.796186	Root	MSE	=	9.6613
exam2	Coef.	Std. Err.	t	P> t	[95% (onf.	Interval]
NHW	.8185909	.2421921	3.38	0.001	.34125	531	1.295929
mean_SHW	.060276	.0386379	1.56	0.120	01587	758	.1364277
exam1	.2490318	.0625426	3.98	0.000	.12576	62	.3722973
Expect	.7039217	.0603514	11.66	0.000	.58497	747	.8228687
_cons	-2.513992	1.839057	-1.37	0.173	-6.1386	601	1.110616

Визуально и согласно критерию Шапиро-Уилка нет оснований предполагать что остатки не распределены нормально:

Также согласно тесту Бройша-Пагана гипотеза о гомоскедастичности ошибок не отвергается:

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of exam2

chi2(1) = 0.08

Prob > chi2 = 0.7812
```

У модели также достаточно высокий коэффициент детерминации. Поэтому можем считать модель "хорошей". Согласно полученным оценкам можно сделать вывод, что количество сданных домашних заданий, оценка за 1-ый экзамен и ожидания положительно влияют на оценку за 2-ой экзамен (менее чем на 1% уровне значимости), что согласуется с логикой.

1.1.2 Построение модели ожидаемой оценки за экзамен.

Далее определим, какие факторы могут влиять на ожидания. Построим модель, включающую в себя все объективные характеристики:

Source	SS	df	MS	Number	of obs	= 223
				F(6, 2	16)	= 71.22
Model	49772.0951	6	8295.34919	Prob >	F	- 0.0000
Residual	25157.3309	216	116.469125	R-squa	red	= 0.6643
				- Adj R-	squared	= 0.6549
Total	74929.426	222	337.519937	Root M	SE	= 10.792
Expect	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
NA	2438366	.2776303	-0.88	0.381	791048	.3033749
NHW	.5688303	.2750383	2.07	0.040	.0267278	1.110933
mean_SHW	.0324381	.0436314	0.74	0.458	0535597	.1184359
exam1	.730806	.0494148	14.79	0.000	.6334091	.8282028
f	.4944433	2.274476	0.22	0.828	-3.988566	4.977452
f_NA	1802905	.3448319	-0.52	0.602	8599568	.4993758
_cons	8.890677	2.913933	3.05	0.003	3.147293	14.63406

Вероятно, в этой модели есть пропущенные переменные такого же рода, однако их влияние должно быть не так критично, как в предыдущем случае, поскольку ожидания зависят не только от способностей экзаменуемого, но также и от особенностей экзамена.

Согласно тесту Бройша-Пагана ошибки в этой модели гетероскедастичны:

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of Expect

chi2(1) = 3.62
Prob > chi2 = 0.0570
```


Визуально можно определить, что причиной гетероскедастичности является переменная NHW, поскольку большинство студентов сдавали домашние задания, из-за чего у больших значений NHW больше разброс:

Поэтому имеет смысл взвесить регрессию по HNW, а также использовать робастные оценки ковариационной матрицы HC3:

. regress Expe (sum of wgt is		an_SHW exam1	f f_NA	[aweight :	= NHW],	vce(h	c3)
Linear regress	sion			Number o	of obs	-	208
				F(6, 20	1)	=	61.30
				Prob > F	F	-	0.0000
				R-square	ed	=	0.6524
				Root MS	E	=	11.144
Expect	Coef.	Robust HC3 Std. Err.	t	P> t	[95%	Conf.	Interval]
NA	2550786	.3915256	-0.65	0.515	-1.02	7103	.5169458
NHW	.6793886	.3477677	1.95	0.052	006	3526	1.36513
mean_SHW	.0497841	.0590341	0.84	0.400	0666	5215	.1661898
exam1	.7074181	.0571808	12.37	0.000	.594	5668	.8201693
f	.4954608	2.687069	0.18	0.854	-4.80	3001	5.793922
f_NA	2613373	.4377063	-0.60	0.551	-1.124	1423	.601748
_cons	7.507877	4.591814	1.64	0.104	-1.54	5429	16.56218

Согласно тесту Бройша-Пагана проблема гетероскедастичности частично решена:

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of Expect

chi2(1) = 2.15
Prob > chi2 = 0.1424
```

Поэтому теперь можно пользоваться t-статистиками для определения значимости коэффициентов регрессии.

Проверим с помощью F-теста одновременное равенство нулю коэффициентов при $MHW,\,f,\,f*NA$:

По результатам F-теста оценим ограниченную регрессию:

```
. regress Expect NA NHW exam1 [aweight = NHW], vce(hc3)
(sum of wgt is 1,877)
Linear regression
                                            Number of obs
                                                                     208
                                            F(3, 204)
                                                                 112.57
                                                                  0.0000
                                            Prob > F
                                            R-squared
                                                                  0.6499
                                            Root MSE
                                                                  11.102
                         Robust HC3
                                                     [95% Conf. Interval]
     Expect
                  Coef. Std. Err.
                                      t
                                            P> t
         NA
              -.4611818
                         .2169487
                                    -2.13 0.035
                                                     -.888931 -.0334326
                         .3059366
               .7729683
                                           0.012
        NHW
                                    2.53
                                                     .169765
                                                               1.376172
               .7258106
                         .0521346
                                    13.92
                                            0.000
                                                     .6230188
                                                                .8286024
      exam1
               10.00136 3.490756
                                    2.87 0.005
                                                                16.88395
      cons
                                                     3.11877
```


Ошибки нормальны и гомоскедастичны. R^2 достаточно большой. Поэтому по данной модели имеем положительну связь между числом выполненных заданий и оценкой за 2-ой экзамен (на 5% уровне значимости), положительну связь между оценкой за 1-ый экзамен и оценкой за 2-ой экзамен (менее, чем на 1% уровне значимости), отрицательную связь между

числом посещенных семинаров и оценкой за 2-ой экзамен (на 5% уровне значимости). Последнее, вероятно, можно объяснить тем, что из-за пропущенной переменной отвечающей за начальные эконометрические навыки студента, мы видим это влияние через переменную NA, которая на самом деле отражает не прямую связь между прогулами семинаров и ростом оценки за экзамен, а косвенную через тот факт, что те кто не ходят на семинары предполагают, что знают эконометрику, а соответственно и выше оценивают свои ожидания за экзамен.

1.1.3 Построение модели точности прогноза.

Чтобы определить, насколько точно предсказывают оценку за экзамен студенты, построим регрессию оценок за экзамен на ожидания студентов:

Source	SS	df	MS	Number	r of obs	-	223
Model Residual	76999.1843 25519.5691	1 221	76999.184 115.47316	3 R-squ	> F ared	=	666.81 0.0000 0.7511
Total	102518.753	222	461.79618	-	-squared MSE	-	0.7499 10.746
exam2	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
Expect _cons	1.013717 4.324701	.0392567 1.500415	25.82 2.88	0.000 0.004	.936351 1.36774	_	1.091083 7.281653

Можно заметить, что коэффициент при Expect примерно равен 1 (причем $t_{\{H_0:\beta=1\}}=\frac{\hat{\beta}-1}{se_{\beta}}=25.82$ - 1/0.0393 = 0.3466), а по метрике RMSE можно увидеть, что студенты в среднем ошибаются в своих расчетах на 10 баллов. То есть относительно точно прогнозируют свои оценки.

Для того, чтобы определить, какие факторы влияют на точность прогноза введем переменную ошибка прогноза в долях $PFE_i = \frac{exam_i - \widehat{exam}_i}{exam_i}$:

Так как для ответа на поставленный вопрос не важно, кто завысил, а кто занизил свои ожидания, возьмем этот показатель по модулю, а также возьмем логарифм от этой переменной (из-за взятия логарифма на 2 наблюдения меньше):

Source	SS	df	MS	Numb	er of obs	=	221
				F(5,	215)	=	8.22
Model	60.589434	5	12.1178868	Prob	> F	=	0.0000
Residual	316.932756	215	1.47410584	R-sq	uared	=	0.1605
				- Adj	R-squared	=	0.1410
Total	377.52219	220	1.71600999	Root	MSE	=	1.2141
log_pfe	Coef.	Std. Err.	t	P> t	[95% Cor	ıf.	Interval]
NA	0286377	.021196	-1.35	0.178	0704164	1	.013141
NHW	0573911	.0309412	-1.85	0.065	118378	3	.0035959
mean_SHW	0039223	.0049645	-0.79	0.430	0137076	5	.005863
exam1	0200552	.0055545	-3.61	0.000	0310034	1	0091071
f	2514773	.1682326	-1.49	0.136	5830738	3	.0801192
				0.544	8291364		.438109

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of log_pfe

chi2(1) = 0.06
Prob > chi2 = 0.8069
```

Ошибки гомоскедастичны (но на всякий случай будем использовать робастные оценки), поэтому воспользуемся F-тестом, чтобы проверить значимость коэффициентов при NA, $MHW,\,f$

```
( 1) NA = 0
( 2) mean_SHW = 0
( 3) f = 0
F( 3, 215) = 1.60
Prob > F = 0.1908
```

Согласно F-тесту можем перейти к ограниченной модели:

NHW exam1	0702157 0180826	.0250954	-2.80 -4.04	0.006 0.000	1196763 0269125	0207551 0092527
log_pfe	Coef.	Robust HC3 Std. Err.	t	P> t	[95% Conf.	Interval]
				Root MSE	=	1.2191
				R-square	d =	0.1418
				Prob > F	=	0.0000
				F(2, 218	=	24.14
inear regress.	sion			Number o	of obs =	221

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of log_pfe

chi2(1) = 1.72
Prob > chi2 = 0.1894
```

Ошибки гомоскедастичны (но на всякий случай будем использовать робастные оценки). В результате, чем чаще посещаются семинары, тем точнее прогнозы, чем выше результаты за 1-ый экзамен, тем точнее прогнозы.

1.1.4 Выводы:

- посещение семинаров не влияет на оценку за экзамен, однако влияет на ожидания;
- количество сданных домашних заданий влияет как на оценки, так и на ожидания;
- на ожидания влияют количество посещенных семинаров, количество сданных домашних заданий и оценка за 1-ый экзамен;
- фактор expect является значимым фактором для прогноза оценки $exam_2$;
- студенты ошибаются в среднем в своих прогнозах на 10 баллов; точнее свои оценки предсказывают те, кто сдавал больше домашних заданий и кто лучше написал экзамен.

1.1.5 Программа для STATA:

```
clear
set more off
cd C:\Users\kasyanova\Desktop\stata
log using homeass2_kasianova_shulyak.log, text replace
import excel data_HW_02.xlsx, clear sheet("Sheet1") firstrow
drop if missing(SHW)
drop if missing(Expect)
drop if Expect == "no"
drop if exam1=="n/a"
generate f:f = (man == "")
destring exam1 Expect exam2, replace
recast int NA NHW f exam1 exam2 Expect
generate mean_SHW:mean_SHW = SHW/NHW
replace mean_SHW = 0 if mean_SHW == .
generate f_mean_SHW:f_mean_SHW = f*mean_SHW
// part I
regress exam2 NA NHW mean_SHW exam1 f f_mean_SHW
regress exam2 NA NHW mean_SHW exam1 f f_mean_SHW Expect
predict res, resid
test NA f f_mean_SHW
regress exam2 NHW mean_SHW exam1 Expect
kdensity res, normal
```

```
swilk res
estat hettest
// part II
regress Expect NA NHW mean_SHW exam1 f f_NA
regress Expect NHW exam1
estat hettest
scatter Expect NHW
regress Expect NA NHW mean_SHW exam1 f f_NA [aweight = NHW], vce(hc3)
estat hettest
test NA mean_SHW f f_NA
test NA f f_NA
test mean_SHW f f_NA
regress Expect NA NHW exam1 [aweight = NHW], vce(hc3)
predict resexp, resid
kdensity resexp, normal
swilk resexp
estat hettest
// part III
regress exam2 Expect
predict fe, resid
generate afe:afe = abs(fe)
generate pfe = fe/exam2
generate log_pfe: log_pfe = log(abs(pfe))
scatter exam2 pfe
scatter exam2 log_pfe
```

```
regress afe NA NHW SHW exam1 f f_mean_SHW
estat hettest
regress afe NA NHW SHW exam1 f f_mean_SHW [aweight = NHW], vce(hc3)
estat hettest

regress log_pfe NA NHW mean_SHW exam1 f
test NA mean_SHW f
regress log_pfe NHW exam1
estat hettest

log close
```