

normalize input

Setting up your optimization problem

Normalizing inputs

Normalizing training sets X= [*1]

Why normalize inputs?

Unnormalized:

 $\frac{J(w,b) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})}{\text{malized:}}$ $\frac{1}{\text{minormalize}} + \text{feature of different scales}$ $\frac{1}{\text{minormalize}} + \frac{1}{\text{minormalize}} + \frac{1}{\text$

n't wormalize training & test set differently
want same transformerting

2 longated love for line
In pratice, whigher dim
they two-dim plot shows the
months tion

I teature similar scale, won't

be supportant but this won't

closury harm

vanish exploding gradient

bus big problem

Setting up your optimization problem

Vanishing/exploding gradients

numerical approx

Setting up your optimization problem

Numerical approximation of gradients

gradient check

deeplearning.ai

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}[b^{[1]}]$..., $W^{[L]}, b^{[L]}$ and reshape into a big vector θ . $\exists (w^{(n)}, y^{(n)}, \dots, w^{(n)}, y^{(n)}) \in \exists (\Theta)$

Take $\overline{dW^{[1]}}, \overline{db^{[1]}}, ..., \overline{dW^{[L]}}, \overline{db^{[L]}}$ and reshape into a big vector $\underline{d\theta}$.

Is 80 the graft of $\underline{\mathcal{I}}(\Theta)$?

Gradient checking implementation notes - Don't use in training – only to debug - If algorithm fails grad check, look at components to try to identify bug. - Remember regularization. - Doesn't work with dropout. - Run at random initialization; perhaps again after some training. - May had head after your Andrew Ng Andrew Ng	ag maizate Apple