

Universidad Politécnica de Juventino Rosas

Freedom on wheels

Ingeniería en Redes y Telecomunicaciones

Presentado por:

- Mendoza Rodríguez Nidia Ileana
- Ramírez Cerritos Cristian Gabriel
- Rubio Padrón Alondra Milagros

Asesores:

- Ing. Villafuerte Lucio Diego Ángel
- Dr. Yáñez Vargas Juan Israel

Santa Cruz de Juventino Rosas, Gto. 6 de diciembre del 2024

Introduction

Figura 1. Representación del puente H.

Figura 2. Representación aplicación móvil.

Figura 3. Sensores ultrasónicos .

PowerBank

Metodología

Puente H doble

Motor DC

CP2102

Puente H doble

Módulo de control de potencia

Figura 5. Diseño esquemático puente H en Altium

Puente H doble

Figura 7. Estructura del puente H PCB en 2D

Figura 8. Estructura del puente H PCB en 3D

Sensores ultrasónicos

Los sensores ultrasónicos emiten ondas sonoras que rebotan en objetos cercanos y calculan la distancia a través del tiempo que tardan en regresar, esto ayuda al usuario proporcionar detección de obstáculos y asistencia para la navegación.

Figura 6. Sensores ultrasónicos ARD-350

ESP32 K

Crean un sistema de control para la comunicación y ejecución con una aplicación móvil.

Figura 7. convertidor USB a UART

Figura 8. Microcontrolador ESP32K

Aplicación movil

Control silla de ruedas

Figura 9. Interfaz gráfica de aplicación móvil

Presentación de métodos y controles

Cronograma

Actividades	Semanas												
	1	2	3	4	5	6	7	8	9	10	11	12	13
Planeación de proceso de actividades													
Investigación de metodos													
Simulación de metodos													
Ejecución de metodologias													
Investigacion de materiales para el control													
Adquisisión de materiales													
Construcción de circuitos													
Compra de transistores y material de potencia													
Desarrollo de circuito en altium													
Impresión y plancado de placa PCB													
Implementacion y soldadura de componentes en pcb													
Tiempo de pruebas y errrores del puente H en pcb													
Implementacion de softwares para la aplicación movil													
Implementacion de modulo bluetooth													
Cambio de modulo bluetooth por ESP32													
Creación de aplicación movil por botones													
Creación de aplicación movil por voz													
Tiempo de pruebas de aplicación movil													

Figura 10. Cronograma cuatrimestre Mayo - Agosto

Trabajo a futuro

- Implementar un módulo para la regulación de energía.
- Implementar los sistemas de control al chasis.
- Mejorar el movimiento de la silla con el control guiado por voz.
- Solucionar problemas presentados en el presente cuatrimestre.

Conclusions

During this period of progress of our integrative project, we focused on the software part and movement control methods of the electric chair. Likewise, we innovated the power stage in the sense of making it more efficient for the requirements that the electric wheelchair needs.

Referencias

- BECERRA, M. W. (2013). DISEÑO Y ANALISIS PRACTICO DE UN SISTEMA MOTORIZADO CON CONTROL ADAPTABLE A UNA SILLA DE RUEDAS ESTANDAR, PARA PERMITIR MAYOR FACILIDAD DE DESPLAZAMIENTO A PERSONAS DISCAPACITADAS. VALVIDIA, CHILE.
- FREIRE, J. E. (2011). DISEÑO, CONSTRUCCION E IMPLEMENTACIÓN DE UN SISTEMA DE CONTROL
 A TRAVES DE UN JOYSTICK PARA EL DESPLAZAMIENTO SEMIAUTOMATICO DE LA SILLA DE
 RUEDAS ELECTRICA MODELO XFG-103FL. CARRERA DE INGENIER IA ELECTRONICA E
 INSTRUMENTACI ON, ESCUELA POLITECNICA DEL EJERCITO.
- TABARES, J. E. (2014). DISEÑO E IMPLEMENTACION DE SISTEMA DE PROPULSION Y CONTROL PARA SILLA DE RUEDAS. UNIVERSIDAD TECNOLOGICA DE PEREIRA FACULTAD DE INGENIERIA MECATRONICA PEREIRA.
- HTTP://WWW.ELECHOUSE.COM/ELECHOUSE/IMAGES/PRODUCT/VR3/VRMANUAL.PDF.
 MONTOTO PAREDES, J. F. (2007). SILLA DE RUEDAS CONTROLADA POR VOZ. UNIVERSIDAD
 POLITECNICA DE PACHUCA INGENIERIA MECATRONICA, 9.