Homework

姓名: 学生名字 专业: 计算数学 学号: 123002584

日期: 2021 年 X 月 X 日

问题 1. 证明: 范数 ||.|| 的对偶范数满足范数的定义

$$||z||_* = \sup\{z^T x : ||x|| \le 1\} = \sup\{z^T x : ||x|| = 1\}$$

证明.

$$||z||_* = \max_{||x|| \le 1} \sum z_i x_i$$

- 1. 正定性: 如果 z = 0, 显然 $||0||_* = 0$.
- 2. 非负性: 如果 $z \neq 0$, 则 $||x|| \neq 0$. 由于 $x = \frac{z}{||z||}$, 有 $||z||_* \leq \frac{||z||_2^2}{||z||} > 0$. 特别的,如果 $||z||_* = 0$,则必有 z = 0.
- 3. 齐次性: 由范数定义,有:

$$||tz||_* = \max_{||x|| \le 1} |z^T tx| = \max_{||x|| \le 1} |t||z^T x| = |t| \max_{||x|| \le 1} |z^T x| = |t| ||z||_*$$

问题 2. 这里是一个问题。

解. 这里是问题的解答。

Homework 2

表格

表 1 表格名字

A	N=3	N=5	N=7	N=9	N=11	N=13
В	1.5789	1.3478	1.0645	0.8780	0.7222	0.5942
C	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
D	7.2632	14.3913	21.0323	27.3171	30.9630	34.0870

图片

图 1 Euler 方法的误差

图 2 Euler method

图 3 Runge-Kutta method

Homework 3

MATLAB 代码

Euler method

```
% Euler method for the ODE model
% u'(t)=t^2+t-u, t in [0,1]
% Initial condition: u(0)=0;
% Exact solution: u(t) = -exp(-t) + t^2 - t + 1.
clear all; clf
h=0.1;
                               % function interval
x=0:h:1;
n=length(x)-1;
                               % initial value
u(1)=0;
fun=@(t,u) t.^2+t-u;
                               % RHS
for i=1:n
    u(i+1)=u(i)+h.*fun(x(i),u(i));
end
ue=-exp(-x)+x.^2-x+1;
                                % exact solution
plot(x,ue,'b-',x,u,'r+','LineWidth',1)
xlabel('x','fontsize', 16), ylabel('y','fontsize',16,'Rotation',0)
set(gca,'fontsize',14)
```

Runge-Kutta method

```
% Runge-Kutta method for the ODE model
% u'=t^2+t-u, t \in [0,1]
% Initial condition : u(0)=0
% Exact : u(t) = -exp(-t) + t^2 - t + 1.
clear all; clf
h=0.1;
x=0:h:1;
                             % function interval
n=length(x)-1;
u(1)=0;
                             % initial value
fun=@(t,u) t.^2+t-u;
                             % RHS
for i=1:n
    k1=fun(x(i),u(i));
    k2=fun(x(i)+h./2,u(i)+h.*k1/2);
    k3=fun(x(i)+h./2,u(i)+h.*k2/2);
    k4=fun(x(i)+h,u(i)+h.*k3);
    u(i+1)=u(i)+h.*(k1+2.*k2+2.*k3+k4)./6;
end
ue=-exp(-x)+x.^2-x+1;
                             % exact solution
plot(x,ue,'b-',x,u,'r+','LineWidth',1)
xlabel('x', 'fontsize', 16), ylabel('y', 'fontsize', 16)
set(gca,'fontsize',14)
```