MATH20111 Cheat Sheet

Available at JTANG.DEV/RESOURCES

definitions

sequence: a function $\mathbb{N} \to \mathbb{R}$

value set: $\{a_n | n \in \mathbb{N}\}$

subsequence: $(a_{n_k})_{n \in \mathbb{N}}$ with $n_1 < n_2 < n_3 < \cdots$

converges to $r: \forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |a_n - r| < \epsilon$

divergent: not convergent

upper bound of S: $r \in \mathbb{R}$ with S < rlower bound of S: $r \in \mathbb{R}$ with $r \leq S$

S is bounded from above: S has an upper bound S is bounded from below: S has a lower bound **bounded**: bounded from above and from below

supremum: least upper bound, sup(S)

infimum: greatest lower bound, $\inf(S) = -\sup(-S)$

increasing: $a_1 \leq a_2 \leq a_3 \leq \cdots$

decreasing: $a_1 \ge a_2 \ge a_3 \ge \cdots$

strictly increasing: $a_1 < a_2 < a_3 < \cdots$ strictly decreasing: $a_1 > a_2 > a_3 > \cdots$ monotone: increasing or decreasing

strictly monotone: strictly increasing or decreasing

null sequence: sequence that converges to 0

1.2.5 uniqueness of limits

if $(a_n)_{n\in\mathbb{N}} \to r$ and $(a_n)_{n\in\mathbb{N}} \to s$ then r=s

1.2.6 finite modification rule

r and $(b_n)_{n\in\mathbb{N}}$ $(a_n)_{n\in\mathbb{N}}$ $(a_n)_{n\in\mathbb{N}}$ for all but finitely many n then $(b_n)_{n\in\mathbb{N}}\to r$

1.4.6 monotone convergence theorem

every monotone and bounded sequence has a limit

1.6.1 sandwich rule for sequences

if $(a_n)_{n\in\mathbb{N}}, (c_n)_{n\in\mathbb{N}} \to r$ and $a_n \leq b_n \leq c_n$ for all $n \in$ \mathbb{N} then $(b_n)_{n\in\mathbb{N}}\to r$

1.6.2 compatibility of limits and order

(i) if $a_n \leq b_n$ FABFM n then $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$

(ii) if $\lim_{n\to\infty} a_n < \lim_{n\to\infty} b_n$ then FABFM n $a_n < b_n$

1.6.3 algebra of limits

sum rule: $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} (a_n) + \lim_{n \to \infty} (b_n)$ multiplication rule: $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} (a_n) \cdot \lim_{n \to \infty} (b_n)$ division rule: $\lim_{n \to \infty} (\frac{a_n}{b_n}) = \lim_{n \to \infty} (a_n) \cdot \lim_{n \to \infty} (b_n)$ modulus rule: $\lim_{n \to \infty} |a_n| = |\lim_{n \to \infty} a_n|$ root rule: $\lim_{n \to \infty} \sqrt[p]{a_n} = \sqrt[p]{\lim_{n \to \infty} a_n}, \text{ for } p \in \mathbb{N}$

propositions and friends

1.2.7: every subsequence of a convergent sequence $(a_n)_{n\in\mathbb{N}}$ converges to $\lim_{n\to\infty} a_n$

1.4.2: every convergent sequence is bounded

1.4.3: completeness axiom of \mathbb{R} : every nonempty subset S of \mathbb{R} which has an upper bound, has a least upper bound.

properties of null sequences

Let $(a_n)_{n\in\mathbb{N}}$ be a null sequence.

(i) if $c \in \mathbb{R}$ then $(c \cdot a_n)_{n \in \mathbb{N}}$

(ii) if $(b_n)_{n\in\mathbb{N}}$ is null, then $(a_n+b_n)_{n\in\mathbb{N}}$ is null

(iii) if $|b_n| \leq |a_n|$ FABFM n, then $(b_n)_{n \in \mathbb{N}}$ is null

(iv) if $(b_n)_{n\in\mathbb{N}}$ is bounded, then $(a_n\cdot b_n)_{n\in\mathbb{N}}$ is null

(v) if $a_n \geq 0$ for all $n, p \in \mathbb{R}$, then $(a_n^p)_{n \in \mathbb{N}}$ is null

 $(a_n)_{n\in\mathbb{N}}\to r\iff (a_n-r)_{n\in\mathbb{N}}$ is null $(a_n)_{n\in\mathbb{N}}$ is null \iff $(|a_n|)_{n\in\mathbb{N}}$ is null

standard list of null sequences

(i) $\lim_{n\to\infty} \frac{1}{n^p} = 0$ for every $p \in \mathbb{R}, p > 0$ (ii) $\lim_{n\to\infty} \frac{1}{c^n} = 0$ for every $c \in \mathbb{R}, |c| > 1$

(iii) $\lim_{n\to\infty} \frac{n^p}{c^n} = 0$ for every $p, c \in \mathbb{R}, |c| > 1$ (iv) $\lim_{n\to\infty} \frac{c^n}{n!} = 0$ for all $c \in \mathbb{R}$

definitions

n-th partial sum: $s_n = a_1 + \cdots + a_n$ the series $\sum_{n=1}^{\infty}$ converges: $(s_n)_{n \in \mathbb{N}}$ converges $\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$ absolutely convergent: $\sum_{n=1}^{\infty} |a_n|$ is convergent

2.1.2 geometric series

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$$
for $|x| < 1$

2.1.4 (2.1.7 alternating) harmonic series

$$\sum_{k=0}^{\infty} \frac{1}{k}$$
 is divergent

(alternating): $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k}$ is convergent

2.1.5 convergence of series with +ve terms

if $(a_n)_{n\in\mathbb{N}}$ is a sequence with $a_n\geq 0$ for all $n\in\mathbb{N}$ then

 $\sum^{\infty} a_n \text{ is convergent } \iff (s_n)_{n \in \mathbb{N}} \text{ is bounded}$

2.2.1 algebra of series

(i) for every
$$c \in \mathbb{R}$$
, $\sum_{n=0}^{\infty} (c \cdot a_n) = c \cdot \sum_{n=0}^{\infty} a_n$
(ii) $\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$

2.2.5 comparison test

if $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and $|b_n| \leq |a_n|$ for all $n \in \mathbb{N}$ then $\sum_{n=1}^{\infty} b_n$ is absolutely convergent

2.2.7 limit comparison test

if $a_n, b_n > 0$ for all $n \in \mathbb{N}$ and $(\frac{b_n}{a_n})_{n \in \mathbb{N}}$ is convergent with $\lim_{n\to\infty}\frac{b_n}{a_n}\neq 0$ then

$$\sum_{n=1}^{\infty} a_n \text{ is convergent } \iff \sum_{n=1}^{\infty} b_n \text{ is convergent}$$

2.2.9 ratio test

if $(a_n)_{n\in\mathbb{N}}$ if a sequence with $a_n\neq 0$ for all $n\in\mathbb{N}$ such that $(\left|\frac{a_{n+1}}{a_n}\right|)_{n\in\mathbb{N}}$ is convergent.

$$\lim_{n\to\infty}|\frac{a_{n+1}}{a_n}|<1\Rightarrow\sum_{n=1}^\infty a_n\,\text{is absolutely convergent}$$

$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ is divergent}$$

propositions and friends

2.1.3: if $\sum_{n=1}^{\infty} a_n$ converges, then $(a_n)_{n \in \mathbb{N}}$ is null

2.2.3: every absolutely convergent series is convergent

2.2.4: 2.2.1 also holds for absolutely convergent

2.2.6: if $\sum_{n=1}^{\infty} a_n$ is an absolutely convergent series and $(b_n)_{n\in\mathbb{N}}$ is bounded, then $\sum_{n=1}^{\infty} (a_n \cdot b_n)$ is absolutely con-

repertoire

$$\sum_{n=0}^{\infty} \frac{1}{n^k}$$
 is convergent for $k > 1$

$$\sum_{n=0}^{\infty} \frac{c^n}{n!} \text{ is convergent for every } c \in \mathbb{R}$$

definitions

continuous at x_0 : $S \in \mathbb{R}, f : S \to \mathbb{R}, x_0 \in S$, then $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in S(|x-x_0| < \delta \Rightarrow |f(x)-f(x_0)| < \epsilon)$ **f tends to** r **from above**: $S \in \mathbb{R}, f : S \to \mathbb{R}, a \in S$ with $(a, a+h) \in S$ for some h > 0. Let $r \in \mathbb{R}$ then $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in S \,(a < x < a + \delta \Rightarrow |f(x)-r| < \epsilon)$ **f tends to** r **from below**: $S \in \mathbb{R}, f : S \to \mathbb{R}, a \in S$ with $(a-h,a) \in S$ for some h > 0. Let $r \in \mathbb{R}$ then $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in S \,(a - \delta < x < a \Rightarrow |f(x)-r| < \epsilon)$

deleted neighbourhood of a: $(a - h, a) \cup (a, a + h)$

 $\lim_{x\to a} f(x) := \lim_{x\to a} f(x) = \lim_{x\to a} f(x)$ if equal

 $\lim_{x\to\infty} f(x) = r$: $f: S \to \mathbb{R}, (h, +\infty) \in S$. Then $\forall \epsilon > 0 \,\exists d \in \mathbb{R} \,\forall x \in S \,(x > d \Rightarrow |f(x) - r| < \epsilon)$

 $\lim_{x\searrow af(x)} = \infty$: $f: S \to \mathbb{R}, (a, a+h) \in S$ for some $a, h \in \mathbb{R}$. Then $\forall A > 0 \,\exists \delta \in \mathbb{R} \,\forall x \in S \, (a < x < a + \delta \Rightarrow f(x) > A)$

characterisation of continuity via sequences

let $S \in \mathbb{R}$, $x_0 \in S$, the following are equivalent:

- (i) f is continuous at x_0
- (ii) for every sequence $(a_n)_{n\in\mathbb{N}}$ in S, if $(a_n)_{n\in\mathbb{N}} \to x_0$ then $f((a_n))_{n\in\mathbb{N}} \to f(x_0)$
- (iii) for every monotone sequence $(a_n)_{n\in\mathbb{N}}$ in S, if $(a_n)_{n\in\mathbb{N}} \to x_0$ then $f((a_n))_{n\in\mathbb{N}} \to f(x_0)$

algebra of limits for continuity at a point

let S $\in \mathbb{R}$, $x_0 \in S$, $f, g : S \to \mathbb{R}$ which are continuous at x_0 then

- (i) f + g is continuous at x_0
- (ii) $f \cdot g$ is continuous at x_0
- (iii) if $g(x) \neq 0, \forall x \in S$, then $\frac{f}{g}$ is continuous at x_0

composite rule for continuous functions

let S, T $\subseteq \mathbb{R}$, $f: S \to \mathbb{R}$, $g: T \to \mathbb{R}$ with $f(S) \subseteq T$. if f is continuous at x_0 and g is continuous at $f(x_0)$ then $g \circ f: S \to \mathbb{R}$ is continuous at x_0

intermediate value theorem

if $f:[a,b]\to\mathbb{R}$ is continuous, then every number between f(a) and f(b) is attained by f. $\forall r$ between f(a) and f(b), $\exists c\in[a,b]$ with f(c)=r

the boundedness theorem

if $f:[a,b]\to\mathbb{R}$ is continuous, then f is bounded and f attains a global maximum and global minimum

algebra of limits of functions

let $S \subseteq \mathbb{R}$, $f,g: S \to \mathbb{R}$. let $a \in \mathbb{R}$ such that $(a,a+h) \in S$ for some h > 0. if $\lim_{x \searrow a} f(x)$ and $\lim_{x \searrow a} g(x)$ exists, then:

- (i) $\lim_{x \searrow a} (f+g)(x) = \lim_{x \searrow a} f(x) + \lim_{x \searrow a} g(x)$
- (ii) $\lim_{x\searrow a} (f\cdot g)(x) = (\lim_{x\searrow a} f(x)) \cdot (\lim_{x\searrow a} g(x))$
- (iii) if $\forall x \in S, g(x) \neq 0$ and $\lim_{x \searrow a} g(x) \neq 0$, then $\lim_{x \searrow a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \searrow a} f(x)}{\lim_{x \searrow a} g(x)}$

sandwich rule for limits of functions

let $S \in \mathbb{R}$, $f, g, h : S \to \mathbb{R}$. let $a \in \mathbb{R}$ such that (a, a + b) for some b > 0. if $f(x) \le h(x) \le g(x)$ in (a, a + b) and $\lim_{x \searrow a} f(x) = \lim_{x \searrow a} g(x) = r$ then $\lim_{x \searrow a} h(x) = r$

propositions and friends

- **3.2.3**: let $S\in\mathbb{R},\ f,g:S\to R$ be continuous then $f+g:S\to R, f\cdot g:S\to R$ and $\frac{f}{g}:S\to R$ are continuous
- **3.3.3**: let $f:[a,b]\to\mathbb{R}$ be a continuous and injective function. let $f^{-1}:f([a,b])\to[a,b]$ be the compositional inverse of f then:
- (i) f is strictly monotone
- (ii) f^{-1} is strictly monotone (precisely, f^{-1} is strictly increasing if f is strictly increasing and vice versa)
- (iii) f^{-1} is continuous
- **3.4.2**: all general statements regarding limits from above also hold for translated version from below
- **3.4.4**: let $S \subseteq \mathbb{R}$ and let $f: S \to \mathbb{R}$. let $a \in \mathbb{R}$ be such that $(a, a + h) \in S$ for some h > 0. let $r \in \mathbb{R}$. define \hat{f} by $\hat{f} = f(x)$ if a < x and $\hat{f} = r$ is x = a. then

$$\lim_{x \searrow a} f(x) = r \iff \hat{f} \text{ is continuous at a}$$

- **3.4.5**: let $S \subseteq \mathbb{R}$ and let $f: S \to \mathbb{R}$. let $a \in \mathbb{R}$ be such that $(a, a + h) \in S$ for some h > 0. let $r \in \mathbb{R}$. then $\lim_{x \to a} f(x) = r \iff$ for every (monotone) sequence $(a_n)_{n \in \mathbb{N}}$ in (a, a + h) that converges to a, $(f(a_n))_{n \in \mathbb{N}}$ converges to r
- **3.4.6**: let $S \subseteq \mathbb{R}$ and let $f: S \to \mathbb{R}$. let $a \in \mathbb{R}$ be such that $(a-h,a+h) \in S$ for some h > 0. then f is continuous at $a \iff \lim_{x \to a} f(x) = f(a)$
- **3.4.11**: $\lim_{x\to\infty} f(x) = \lim_{t\searrow 0} f(\frac{1}{t})$
- **3.4.13**: $\lim_{x\searrow a} f(x) = \infty \iff$ there is some h > 0 with f(x) > 0 for all $x \in (a, a+h)$ and $\lim_{x\searrow a} \frac{1}{f(x)} = 0$

definition

differentiable at x_0 : S open, $f: S \to \mathbb{R}$, $x_0 \in S$ then $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$ exists

differentiable: differentiable at each x_0 in S derivative of f at x_0 : $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

local maximum: $S \in \mathbb{R}$, $f : S \to \mathbb{R}$, $x_0 \in S$ then $\exists h > 0 \, \forall x \in S \, (x_0 - h < x < x_0 + h \Rightarrow f(x_0) \ge f(x))$ **local minimum**: $S \in \mathbb{R}$, $f : S \to \mathbb{R}$, $x_0 \in S$ then $\exists h > 0 \, \forall x \in S \, (x_0 - h < x < x_0 + h \Rightarrow f(x_0) \le f(x))$ **local extremum**: local minimum or local maximum

chain (composite) rule

let $f: S \to \mathbb{R}$ be differentiable at $x_0, f(S) \subseteq T$ and let $g: T \to \mathbb{R}$ be differentiable at $f(x_0)$, then also $g \circ f: S \to \mathbb{R}$ is differentiable at x_0 and $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

algebra of differentiable functions

let $f, g: S \to \mathbb{R}$ be differentiable at x_0 , then:

- (i) $(f+g)'(x_0) = f'(x_0) + g'(x_0)$
- (ii) $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$
- (iii) if $g(x) \neq 0$ for all $x \in S$ then

$$\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) - g'(x_0)f(x_0)}{g^2(x_0)}$$

some theorem

let $f: S \to \mathbb{R}$ be a continuous function and differentiable at $x_0 \in S$. if f is injective with $f'(x_0) \neq 0$, then f^{-1} defined on T = f(s) is differentiable at $y_0 := f(x_0)$ and

$$(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

some other theorem

if $f: S \to \mathbb{R}$ is differentiable at $x_0 \in S$ and x_0 is a local extremum of f, then $f'(x_0) = 0$

rolle's theorem

let $f:[a,b]\to\mathbb{R}$ be a continuous function which is differentiable in (a,b). if f(a)=f(b), then there is some $\xi\in(a,b)$ with $f'(\xi)=0$.

and another theorem

let $f,g:[a,b]\to\mathbb{R}$ be continuous functions which are differentiable in (a,b). then there is some $\xi\in(a,b)$ with $f(\xi)\cdot(g(b)g(a))=g(\xi)\cdot(f(b)f(a))$

mean value theorem

let $f:[a,b]\to\mathbb{R}$ be a continuous function which is differentiable in (a,b), then there is some $\xi\in(a,b)$ with $f'(\xi)=\frac{f(b)-f(a)}{b-a}$

cauchy mean value theorem

let $f,g:[a,b]\to\mathbb{R}$ be a continuous functions which are differentiable in (a,b). then there is some $\xi\in(a,b)$ with $\frac{f'(\xi)}{g'(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}$

l'hopital's rule

let $f, g : [a, b) \to \mathbb{R}$ be continuous functions which are differentiable in (a, b), suppose

- (i) $g'(x) \neq 0$ for all $x \in (a, b)$
- (ii) f(a) = g(a) = 0
- (iii) $\lim_{x\searrow a} \frac{f'(x)}{g'(x)}$ exists

then

$$\lim_{x \searrow a} \frac{f(x)}{g(x)} = \lim_{x \searrow a} \frac{f'(x)}{g'(x)}$$

propositions and friends

- **4.1.2**: if $f: S \to \mathbb{R}$ is differentiable at $x_0 \in S$, then f is continuous at x_0
- **4.1.3**: let $f: S \to \mathbb{R}$ be differentiable at x_0 , then (i) if $f'(x_0) > 0$, then these is some h > 0 such that for

all $x_1, x_2 \in (x_0 - h, x_0 + h)$, we have

$$x_1 < x_0 < x_2 \Rightarrow f(x_1) < f(x_0) < f(x_2)$$

(ii) if $f'(x_0) < 0$, then these is some h > 0 such that for all $x_1, x_2 \in (x_0 - h, x_0 + h)$, we have

$$x_1 < x_0 < x_2 \Rightarrow f(x_1) > f(x_0) > f(x_2)$$

4.2.2: let $S,T\subseteq\mathbb{R}$ be open intervals and let $f:S\to T,g:T\to\mathbb{R}$ be functions. if f and g are differentiable, then also $g\circ f:S\to\mathbb{R}$ is differentiable and

$$(g \circ f)' = (g' \circ f) \cdot f'$$