

Universitat de les Illes Balears

DOCTORAL THESIS

Theoretical and data-driven models in Ecology

Àlex Giménez Romero

DOCTORAL THESIS 2024

Doctoral programme in Physics

Theoretical and data-driven models in Ecology

Àlex Giménez Romero

Thesis Supervisor: Manuel A. Matías Thesis Tutor: Cristóbal López Sánchez

Supervisors: Manuel Matías

Àlex Giménez Romero. Theoretical and data-driven models in Ecology. © Palma de Mallorca, July 2024

A en Manuel Miranda pel seu suport i ajuda durant tots aquests anys. Sempre estaràs amb mi. i recordare sempre el que em vas ensenyar.

Dr Manuel A. Matías of the Consejo Superior de Investigaciones Científicas (CSIC)
I DECLARE:
That the thesis title <i>Theoretical and data-driven models in Ecology</i> , presented by Àlex Giménez Romero to obtain a doctoral degree, has been completed under my supervision and meets the requirements to opt for an International Doctorate.
For all intents and purposes, I hereby sign this document.
Signature
Dr. Manuel A. Matías Thesis Supervisor
Palma de Mallorca, July 2024

Acknowledgements

Acknowledgements go here.

Resum

El resum va aquí.

Resumen

El resumen va aquí.

Abstract

Abstract goes here.

Contents

	L	iniloduction
1	T	he global biodiversity crisis
2	٧	Vhy do we need models?
3	N	Main original contributions of this thesis
	II	Realistic models for vector-borne plant diseases
4		/ector-borne diseases with non-stationary vector populations: the case of growing and decaying populations
5		A compartmental model for <i>Xylella fastidiosa</i> diseases with explicit vector easonal dynamics
6		Degree-day-based model to predict egg hatching of Philaenus spumarius Hemiptera: Aphrophoridae), the main vector of <i>Xylella fastidiosa</i> in Europe 1
-1	Ш	Modelling the risk of vector-borne plant diseases
7		Flobal predictions for the risk of establishment of Pierce's disease of grapevines
8		Slobal warming significantly increases the risk of Pierce's disease epidemics n European vineyards

9	High-resolution climate data reveals increased risk of Pierce's Disease for grapevines worldwide
\	Data-driven methods for global ecological problems
10	A comprehensive dataset on global coral reefs size and geometry 43
11	Universal spatial properties of coral reefs
12	Mapping the distribution of seagrass meadows from space with deep convolutional neural networks

List of publications

- 1. Àlex Giménez-Romero, Rosa Flaquer-Galmés, and Manuel A. Matías. "Vector-borne diseases with nonstationary vector populations: The case of growing and decaying populations". In: *Phys. Rev. E* 106 (5 Nov. 2022), page 054402. DOI: 10.1103/PhysRevE.106.054402. URL: https://link.aps.org/doi/10.1103/PhysRevE.106.054402
- 2. Alex Giménez-Romero et al. "Global predictions for the risk of establishment of Pierce's disease of grapevines". In: *Communications Biology* 5.1 (Dec. 2022), page 1389. ISSN: 2399-3642. DOI: 10.1038/s42003-022-04358-w. URL: https://doi.org/10.1038/s42003-022-04358-w
- 3. Àlex Giménez-Romero, Eduardo Moralejo, and Manuel A. Matías. "A Compartmental Model for Xylella fastidiosa Diseases with Explicit Vector Seasonal Dynamics". In: *Phytopathology®* 113.9 (2023). PMID: 36774557, pages 1686–1696. DOI: 10.1094/PHYT0-11-22-0428-V. URL: https://doi.org/10.1094/PHYT0-11-22-0428-V. URL: https://doi.org/10.1094/PHYT0-11-22-0428-V.
- 4. Clara Lago et al. "Degree-day-based model to predict egg hatching of Philaenus spumarius (Hemiptera: Aphrophoridae), the main vector of Xylella fastidiosa in Europe". In: Environmental Entomology 52.3 (Apr. 2023), pages 350–359. ISSN: 0046-225X. DOI: 10.1093/ee/nvad013. eprint: https://academic.oup.com/ee/article-pdf/52/3/350/50615564/nvad013.pdf. URL: https://doi.org/10.1093/ee/nvad013
- 5. Idealista spatial segmentation of the real state market

Introduction

ı	The global biodiversity crisis	19
2	Why do we need models?	21
3	Main original contributions of this thesis	23

Realistic models for vector-borne plant diseases

4	Vector-borne diseases with non-stationary vector populations: the case of growing and decaying populations 27
5	A compartmental model for <i>Xylella fastidiosa</i> diseases with explicit vector seasonal dynamics . 29
6	Degree-day-based model to predict egg hatching of Philaenus spumarius (Hemiptera:

Modelling the risk of vector-borne plant diseases

7	Slobal predictions for the risk of establishment o	f
	Pierce's disease of grapevines 3	5

- 8 Global warming significantly increases the risk of Pierce's disease epidemics in European vineyards 37
- 9 High-resolution climate data reveals increased risk of Pierce's Disease for grapevines worldwide . . 39

Data-driven methods for global ecological problems

0	A comprehensive dataset on global coral reefs size and geometry
1	Universal spatial properties of coral reefs 45
2	Mapping the distribution of seagrass meadows from space with deep convolutional neural net-

Bibliography

Bibliography

- [1] Alex Giménez-Romero et al. "Global predictions for the risk of establishment of Pierce's disease of grapevines". In: *Communications Biology* 5.1 (Dec. 2022), page 1389. ISSN: 2399-3642. DOI: 10.1038/s42003-022-04358-w. URL: https://doi.org/10.1038/s42003-022-04358-w (cited on page 15).
- [2] Àlex Giménez-Romero, Rosa Flaquer-Galmés, and Manuel A. Matías. "Vector-borne diseases with nonstationary vector populations: The case of growing and decaying populations". In: *Phys. Rev. E* 106 (5 Nov. 2022), page 054402. DOI: 10.1103/PhysRevE.106.054402. URL: https://link.aps.org/doi/10.1103/PhysRevE.106.054402 (cited on page 15).
- [3] Àlex Giménez-Romero, Eduardo Moralejo, and Manuel A. Matías. "A Compartmental Model for Xylella fastidiosa Diseases with Explicit Vector Seasonal Dynamics". In: *Phytopathology*® 113.9 (2023). PMID: 36774557, pages 1686–1696. DOI: 10.1094/PHYT0-11-22-0428-V. eprint: https://doi.org/10.1094/PHYT0-11-22-0428-V. URL: https://doi.org/10.1094/PHYT0-11-22-0428-V (cited on page 15).
- [4] Clara Lago et al. "Degree-day-based model to predict egg hatching of Philaenus spumarius (Hemiptera: Aphrophoridae), the main vector of Xylella fastidiosa in Europe". In: *Environmental Entomology* 52.3 (Apr. 2023), pages 350–359. ISSN: 0046-225X. DOI: 10.1093/ee/nvad013. eprint: https://academic.oup.com/ee/article-pdf/52/3/350/50615564/nvad013.pdf. URL: https://doi.org/10.1093/ee/nvad013 (cited on page 15).