CSCI 301 HW 3

Isaac Boaz

April 25, 2023

Proposition. If A, B, and C are sets, then $A - (B \cap C) = (A - B) \cup (A - C)$

Proof. By definition of set equality, $A = B \iff A \subseteq B \land B \subseteq A$.

Proving $A - (B \cap C) \subseteq (A - B) \cup (A - C)$

Suppose $x \in A - (B \cap C)$

By definition of complement, $x \in A \land x \notin (B \cap C)$

Thus $x \in (A - B) \cup (A - C)$

Therefore $A - (B \cap C) \subseteq (A - B) \cup (A - C)$

Proving $(A - B) \cup (A - C) \subseteq A - (B \cap C)$

Suppose $y \in (A - B) \cup (A - C)$

By definition of union, $y \in (A - B) \lor y \in (A - C)$

WLOG suppose $y \in (A - B)$

By definition of complement, $y \in A \land y \notin B$

Thus $y \in A \land y \notin (B \cap C)$

Thus by definition of complement $y \in A - (B \cap C)$

Therefore $(A - B) \cup (A - C) \subseteq A - (B \cap C)$

Therefore $A - (B \cap C) = (A - B) \cup (A - C)$

Proposition. If $n \in \mathcal{Z}$, then $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$

Note: $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = \sum_{i=1}^{i} \frac{i}{(i+1)!}$ Basis Step: Observe at n = 1, $\frac{1}{2!} = 1 - \frac{1}{2!}$ is true. Inductive Step: Suppose $\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \cdots + \frac{n}{(n+1)!} = 1 - \frac{1}{(n+1)!}$ Then $\sum_{i=1}^{n} \frac{i}{(i+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+1)!} + \frac{n+1}{(n+2)!}$ $= 1 - \frac{(n+2)!}{(n+1)!(n+2)!} + \frac{(n+1)(n+1)!}{(n+1)!(n+2)!}$ $= 1 - \frac{(n+1)!(n+2)!}{(n+1)!(n+2)!} + \frac{(n+1)(n+1)!}{(n+1)!(n+2)!}$ $= 1 - \frac{(n+1)!((n+2)-(n+1))}{(n+1)!(n+2)!} = 1 - \frac{(n+2)-(n+1)}{(n+2)!}$ $= 1 - \frac{1}{(n+2)!}$ Therefore $\sum_{i=1}^{n} \frac{i}{(i+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+2)!}$

Therefore $\sum_{i=1}^{n} \frac{i}{(i+1)!} + \frac{n+1}{(n+2)!} = 1 - \frac{1}{(n+2)!}$