

19. 08. 2003

PRIORITY DOCUMENT
 SUBMITTED OR TRANSMITTED IN
 COMPLIANCE WITH
 RULE 17.1(a) OR (b)

REC'D 04 SEP 2003
 WIPO PCT

H2

**Prioritätsbescheinigung über die Einreichung
 einer Patentanmeldung**

Aktenzeichen: 102 33 736.5

Anmeldetag: 24. Juli 2002

Anmelder/Inhaber: N F T Nanofiltertechnik Gesellschaft mit beschränkter Haftung, München/DE

Bezeichnung: Wärmetauschervorrichtung

IPC: F 28 F 3/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 5. August 2003
Deutsches Patent- und Markenamt
Der Präsident
 Im Auftrag

Klostermeyer

Klostermeyer

PATENTANWALT
DR. TAM AXEL VON BÜLOW
DIPL.-ING., DIPL.-WIRTSCH.-ING.
EUROPEAN PATENT AND
TRADEMARK ATTORNEY

BÜLOW

PATENTANWALTSKANZLEI

MAILÄNDER STR. 13
D-81545 MÜNCHEN
TELEFON: +49 (0) 89 / 64 23 094
TELEFAX: +49 (0) 89 / 64 63 42
E-MAIL: buelow@vonbuelow.com

BÜLOW PATENTANWALTSKANZLEI · MAILÄNDER STR. 13 · D-81545 MÜNCHEN

Anmelder

N F T Nanofiltertechnik Gesellschaft mit beschränkter Haftung
Martiusstraße 5

D-80802 München

BANKVERBINDUNGEN

HypoVereinsbank AG
(BLZ 700 202 70)
Kto.Nr. 35 927 492
Dresdner Bank AG
(BLZ 700 800 00)
Kto.Nr. 520 788 500
Postbank
(BLZ 700 100 80)
Kto.Nr. 28 09 47-806

VAT-DE 129 631 694

Ihr Zeichen/Your Ref.

Unser Zeichen/Our Ref.

Datum/Date

H181-9-DE
vB/eb

24. Juli 2002

5

Wärmetauschervorrichtung

Beschreibung

10 Die vorliegende Erfindung bezieht sich auf eine Wärmetauschervorrichtung gemäß dem Oberbegriff des Patentanspruches
1.

15 Eine derartige Wärmetauschervorrichtung ist aus der
US 6,043,986 A bekannt.

20 Solche Wärmetauschervorrichtungen werden beispielsweise zur Kühlung von elektronischen Komponenten, wie Mikroprozessoren oder Chips, verwendet. Generell unterscheidet man aktive und passive Kühleinrichtungen. Bei aktiven Kühleinrichtungen werden Aggregate, wie z.B. Gebläse oder Ventilatoren, genutzt, um den Abtransport von Wärme mit Hilfe eines Fluidstromes zu unterstützen oder überhaupt erst zu ermöglichen. Der dabei erzeugte Fluidstrom strömt

über einen Kühlkörper, der mit einer Wärmequelle gekoppelt ist und von dieser Abwärme aufnimmt. Bekannte Kühlkörper haben beispielsweise eine Rippen- oder Säulenstruktur und sind teilweise an der Oberfläche aufgerauht. Das den Kühlkörper um- bzw. durchströmende Fluid nimmt dabei die Wärme auf. Meistens wird als Fluid bei der Kühlung von Prozessoren Luft genutzt. Da Luft ein sehr schlechter Wärmeleiter ist, müssen die Kühlkörper verhältnismäßig groß ausgelegt werden, um über eine im Verhältnis zur Wärmeeinleitungsfläche große Wärmeabgabefläche zu haben. Zu diesem Zwecke ist in der älteren, nicht vorveröffentlichten deutschen Patentanmeldung Nr. 100 41 829 vorgeschlagen, daß die Wärmeabgabefläche wesentlich größer als die Wärmeeinleitungsfläche ist, was durch eine vorgegebene Strukturierung in Form von Kanälen und in Form von Furchen, die in Strömungsverbindung mit den Kanälen stehen, erreicht wird.

Kühlvorrichtungen mit einem Substrat, durch welche sich Kanäle hindurcherstrecken, sind auch aus der DE 196 19 060 A1 und der EP 0 308 576 A2 bekannt. Die Kanäle können dabei rechteckig oder kreisförmig sein.

Die DE 92 14 061 U1 beschreibt einen Kühlkörper, dessen Wärmeeinleitungsfläche zur Oberflächenvergrößerung Rippen und Furchen aufweist.

Ein Problem bei aktiven Wärmetauschervorrichtungen ist neben den großen Abmessungen der Energiebedarf für die Einrichtung zur Erzeugung des Fluidstromes. Für einen effektiven Wärmeübergang ergibt sich daraus ein verhältnismäßig hoher Leistungsverbrauch und meist auch Platzbedarf für die entsprechende Einrichtung, wie z.B. ein Gebläse. Hinzukommt, daß eine gute Wärmeübertragung von der Wärmeabgabefläche an das Fluid dann erfolgt, wenn die Wärmeabgabefläche gegenüber dem Fluidstrom einen relativ hohen Strömungswiderstand hat. Dies aber bedingt wiederum ein stärkeres Gebläse.

Aufgabe der Erfindung ist es daher, eine Wärmetauschervorrichtung zu schaffen, die bei geringem Strömungswiderstand eine hohe Wärmetauschleistung bringt. Dabei soll die Wärmetauschervorrichtung einen geringen Platzbedarf haben und auch bei Verwendung von Luft als Fluid eine gute Wärmeübertragung ermöglichen.

Diese Aufgabe wird durch die im Patentanspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.

Das Grundprinzip der Erfindung besteht darin, daß von der Oberseite des Substrates abstehende Stege mit geringer Höhe vorgesehen sind, die quer zur Anströmrichtung des Fluides liegen.

Die Wärmeübertragung zwischen dem Fluid und dem Substrat erfolgt nur in einer dünnen Grenzschicht unmittelbar an der Oberfläche des Substrates. Zur Erhöhung der Wärmeübertragung wird das Fluid so geleitet, daß durch geometrische Merkmale des Substrates lokalisierte Turbulenzen erzeugt werden, die den Wärmeübertrag zwischen Fluid und Substrat erhöhen, ohne den Strömungswiderstand wesentlich zu erhöhen. Zur Erzeugung dieser Turbulenzen sind die regelmäßig angeordneten Stege, die als Mikrohindernisse wirken, vorgesehen sowie nach einer Weiterbildung der Erfindung regelmäßig angeordneten Kanäle, die sich durch das Substrat hindurch erstrecken. Das Substrat ist im wesentlichen eine dünne Platte, die in geringem Abstand oberhalb der zu kühlenden heißen bzw. zu erwärmenden kalten Oberfläche eines Objektes angebracht wird. An den regelmäßig angeordneten Mikrohindernissen bilden sich Turbulenzen aus, die auf der Anströmseite der Mikrohindernisse vor allem im Bereich der Kanäle durch den Aufprall auf die Mikrohindernisse erzeugt werden. Darüber hinaus tritt eine Art inverser Kamineffekt auf, d.h. ein Teil des anströmenden Fluids gelangt von oberhalb der Platte durch den Kanal hindurch in die Nähe oder direkt auf die heiße bzw. kalte Oberfläche des Objektes, wo ebenfalls

eine weitere effektive Kopplung von Wärme mit dem Fluid erfolgt.

Das Substrat muß in Strömungsrichtung nur wenige Kanäle und Stege (Mikrohindernisse) aufweisen. Vorzugsweise genügen drei in Strömungsrichtung hintereinanderliegende Kanäle und Stege, da Untersuchungen zeigten, daß der Wärmeübertrag im Bereich des zweiten und dritten Kanals in Strömungsrichtung maximal ist. In diesem Bereich nimmt das Fluid die meiste Wärme auf, was durch Expansion des Fluides auch dazu führt, daß es eine Beschleunigung erfährt, die den Abtransport des erwärmten Fluides unterstützt.

Das Substrat kann an der zu kühlenden heißen bzw. zu erwärmenden kalten Oberfläche des Objektes durch Abstandhalter angebracht werden, beispielsweise durch Schweißen, Kleben, Löten o.ä. Die Abstandhalter sind vorzugsweise ebenfalls Stege, die sich in Anströmrichtung längs des gesamten Substrates erstrecken, so daß sich zwischen dem Objekt und der Unterseite des Substrates ebenfalls Kanäle für das Fluid ergeben.

Vorzugsweise ist die Verbindung zwischen dem Substrat und der zu kühlenden bzw. zu erwärmenden Oberfläche aus wärmeleitendem Material. Das Substrat kann entweder aus wärmeleitendem Material, wie Aluminium, Kupfer o.ä., sein. Es kann aber auch aus anderem Material, wie z.B. Silizium, sein, das lediglich mit einer wärmeleitenden Schicht überzogen ist. Das Grundmaterial des Substrates braucht daher nicht selbst wärmeleitend zu sein.

Das Substrat mit den Stegen und ggf. den Kanälen kann durch herkömmliche Bearbeitungsverfahren, wie Fräsen oder Stanzen, beispielsweise bei Aluminiumplatten, hergestellt sein oder auch durch Ätz- oder Oberflächenbeschichtungsverfahren, wie im Falle von Silizium.

Bei einer Weiterbildung der Erfindung können am Anströmende

und/oder am Abströmende des Substrates Leitbleche vorgesehen sein, um die Einströmung des Fluids in den Kanal zwischen dem Substrat und der zu kühlenden bzw. zu erwärmenden Oberfläche des Objektes zu unterstützen.

5

Nach einer Weiterbildung der Erfindung ist oberhalb des Substrates für die Ausbildung eines nach oben ebenfalls geschlossenen Kanals eine dünne Platte angeordnet, die vorzugsweise an der dem Substrat zugewandten Seite aufgerauht ist oder ebenfalls Stege hat entsprechend den Stegen des Substrates. Diese als obere Abdeckung wirkende Platte verbessert die Abströmung des Fluids insbesondere im letzten Abschnitt vor dem Auströmende.

10

15 Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Zeichnung ausführlicher erläutert. Es zeigt:

20

Fig. 1 eine perspektivische Teilansicht einer Wärmetauschervorrichtung nach der Erfindung;

Fig. 2 eine Draufsicht auf die Wärmetauschervorrichtung;

Fig. 3 einen Querschnitt der Wärmetauschervorrichtung längs der Linie A-A der Fig. 2;

Fig. 4 ein Diagramm der Temperaturverteilung an der Wärmetauschervorrichtung; und

Fig. 5 ein Diagramm der Strömung des Fluides entlang der Wärmetauschervorrichtung.

25

30

Zunächst sei auf Fig. 1 Bezug genommen. Ein Substrat 1 mit einer Unterseite 2 und einer Oberseite 3 hat eine Vielzahl von regelmäßig angeordneten, sich durch das Substrat 1 hindurchstreckenden Kanälen 4, die hier rechteckig ausgebildet sind. Die Kanäle haben eine Längskante 5 und eine Querkante 6. Das Substrat 1 ist durch Abstandhalter 7 gegenüber der Oberfläche eines Objektes 11, mit dem Wärme ausgetauscht werden soll, gehalten, wobei sich die Abstandhalter 7 über die gesamte Länge des Substrates erstrecken. Es sind mehrere, parallel zueinander verlaufende Abstandhal-

35

ter 7 vorgesehen, die jeweils so angeordnet sind, daß sie zwischen den Kanälen 4 liegen. Hierdurch werden zwischen dem Substrat 1, dem Objekt 11 und den Abstandhaltern 7 weitere Kanäle 8 gebildet, die längs des Substrates 1 verlaufen. Eine Einrichtung 9, die beispielsweise ein Gebläse sein kann, erzeugt einen gerichteten Fluidstrom, der in Richtung des Pfeiles 10, im folgenden Anströmrichtung 10 genannt, sowohl durch die Kanäle 8 strömt und damit längs der Unterseite 2 als auch längs der Oberfläche 3 des Substrates 1 und dabei teilweise auch durch die Kanäle 4 hindurch, und zwar teilweise in beiden Richtungen, d.h. von oben nach unten und an anderer Stelle von unten nach oben.

In Anströmrichtung 10 vor den Kanälen 4 sind quer zur Anströmrichtung 10 verlaufende Stege 12.1, 12.2 vorgesehen, die, wie am besten aus Fig. 5 zu erkennen ist, Turbulenzen erzeugen, die für den verbesserten Wärmeübertrag sorgen. Andererseits sind die Stege 12.1, 12.2 so niedrig, daß sie den Strömungswiderstand nur geringfügig erhöhen und deshalb auch als "Mikrohindernisse" bezeichnet werden.

Aus der Draufsicht der Fig. 2 ist zu erkennen, daß das Substrat 1 drei in Strömungsrichtung 10 hintereinanderliegende Reihen 4.1, 4.2 und 4.3 von Kanälen 4 aufweist sowie drei in Anströmrichtung hintereinanderliegende Stege 12.1, 12.2 und 12.3, die jeweils in Anströmrichtung 10 vor den Reihen von Kanälen liegen. Zwischen den Kanälen 4 sind in Anströmrichtung 10 die Abstandhalter 7 angeordnet, die sich über die gesamte Länge des Substrates erstrecken.

Aus der Schnittansicht der Fig. 3 ist zu erkennen, daß oberhalb des Substrates 1, also gegenüberliegend zu dessen Oberseite 3, eine Abdeckplatte 13 angeordnet sein kann, die in einem Abstand AP gegenüber der Oberseite 3 gehalten ist. Die der Oberseite 3 des Substrates 1 zugewandte Seite der Abdeckplatte 13 hat ebenfalls Stege 14, die für die Erzeugung von Turbulenzen wirksam sind. Statt der Stege oder zusätzlich hierzu kann auch die Fläche der Abdeckplatte

13, die dem Substrat 1 gegenüberliegt, aufgerauht sein. Der Abstand AP ist mindestens doppelt so groß wie die Höhe RH der Stege 12.

5 In einem konkreten Ausführungsbeispiel hat das Substrat in Anströmrichtung 10 eine Länge L von 16,5 mm und quer zur Anströmrichtung 10 eine Breite B (vgl. Fig. 2) von 58 mm. Die Kanäle 4 haben in Anströmrichtung eine Länge DL von 4 mm und quer dazu eine Breite von 2 mm. Die in 10 Anströmrichtung 10 gemessene Länge SL der Stege 12 beträgt 0,3 mm; die Dicke D des Substrates beträgt 1 mm. Der Abstand KH, d.h. die Höhe der Kanäle 8 zwischen dem Substrat 1 und dem zu kühlenden Objekt 11 beträgt 2 mm. Die Höhe der Stege 12 beträgt im konkreten Ausführungsbeispiel 0,3 mm und darf maximal die Hälfte der Länge DL der Kanäle 4 sein. Bei dieser Konfiguration wurde bei einer Anströmgeschwindigkeit von ca. 5 m/s und einer Temperatur des zu kühlenden Gegenstandes von ca. 340°K eine Kühlleistung von ca. 20 W erzielt.

20 Mit einer solchen Wärmetauschervorrichtung kann außerdem eine Flächenvergrößerung für den verbesserten Wärmeübertrag gegenüber einer ebenen Fläche mit einem Faktor von mindestens 2 erreicht werden, da auch die Innenwandungen der Kanäle 25 4 und die Außenflächen der Stege 12 als Fläche für einen Wärmeübertrag wirksam sind.

30 Aus den Figuren 2 und 3 ist noch zu erkennen, daß in Anströmrichtung vor dem Substrat 1 ein Leitblech 15 angeordnet sein kann, das hier gewellt ist und somit für eine definierte Verteilung des Fluidstromes längs der Ober- und der Unterseite des Substrates sorgt.

35 Fig. 4 zeigt die Temperaturverteilung an dem Substrat im Bereich der Kanäle 4 und der Stege 12 anhand von Isothermen t_{1-t9}, wobei in Anströmrichtung 10 am dritten Kanal (rechts in Fig. 4) kein Steg vorhanden ist, um die Wirkung der Stege zu verdeutlichen. Die Temperaturdifferenz zwischen

benachbarten Isothermen t_1-t_9 liegt bei ca. 4°K , wobei die höchste Temperatur t_1 bei ca. 342°K und die niedrigste Temperatur t_9 bei ca. 308°K liegt. In den Bereichen, in denen die Isothermen sehr eng beieinanderliegen, also der größte Temperaturgradient auftritt, ist der größte Wärmeübertrag vorhanden. Aus Fig. 4 ergibt sich deutlich, daß dieser gerade im Bereich der Stege auftritt sowie jeweils an der Kante des Substrates an der stromaufwärtigen Seite der Kanäle 4. An diesen beiden Stellen sowie an der Unterseite des Substrates tritt eine Verwirbelung der Strömung auf, was den besten Wärmeübertrag bringt. Auch ist erkennbar, daß der Wärmeübertrag im Bereich der ersten beiden Kanäle in Anströmrichtung am besten ist und dann in Anströmrichtung abnimmt, da das Fluid beim Passieren des Substrates erwärmt wird und damit eine schlechtere Kühlleistung bringt.

Fig. 5 zeigt den Strömungsverlauf des Fluides längs des Substrates. Es ist zu erkennen, daß in Anströmrichtung hinter den Stegen auch eine abwärts gerichtete Strömungskomponente vorhanden ist. Weiter ist zu erkennen, daß aufgrund der Expansion von erwärmer Luft eine Beschleunigung der Strömung auftritt.

Abschließend sei darauf hingewiesen, daß das Substrat mit den Kanälen und den Stegen allgemein als Wärmetauscher eingesetzt werden kann, also auch z.B. zum Erwärmen eines Objektes durch Anströmung mit einem heißen Medium oder zum gezielten Erwärmen eines Mediums (Fluid), z.B. eines Prozeßgases.

Weiter sei erwähnt, daß der Fluidstrom auch dadurch erzeugt werden kann, daß das Substrat und das zu kühlende oder zu erwärmende Objekt, an dem das Substrat angebracht ist, gegenüber einem Medium bewegt wird. Beispielsweise kann das Substrat an einem Fahrzeug, wie z.B. einem Auto oder einem Schiff, befestigt sein, bei dessen Fahrt der Fluidstrom entsteht.

Für die Dimensionierung der Kanäle und der Stege sowie der Abstandhalter lassen sich noch folgende allgemeine Regeln aufstellen:

5 Die Länge der Turbulenzzone TL (Fig. 3) in Anströmrichtung
10 nach den Stegen 12 hängt primär von der Höhe RH der
Stege 12 ab. Die Länge DL der Kanäle in Anströmrichtung
sollte daher mindestens doppelt so groß sein wie die Höhe
RH der Stege. Weiter soll die Höhe KH der Abstandhalter
10 7, d.h. der Abstand zwischen dem Substrat 1 und dem zu
kühlenden Objekt 11 größer oder maximal gleich der Höhe
SL der Stege sein. Auch soll die Höhe der Stege kleiner
sein als der Abstand von in Anströmrichtung (10) benachbarten
Stegen.

Patentansprüche

5 1. Wärmetauschervorrichtung mit einem Substrat, das eine Unterseite und eine Oberseite aufweist,

dadurch gekennzeichnet,

10 daß eine Einrichtung (9) zur Erzeugung eines gerichteten Fluidstromes mit einer Anströmrichtung (10) vorgesehen ist, der tangential zur Unterseite (2) und zur Oberseite (3) des Substrates (1) fließt,

15 daß von der Oberseite (3) des Substrates (1) abstehende, in Anströmrichtung (10) hintereinander liegende Stege (12) vorgesehen sind, deren Höhe kleiner ist als der Abstand (PL) von in Anströmrichtung (10) benachbarten Stegen, und

20 daß die Stege (12) quer zur Anströmrichtung (10) angeordnet sind.

25 2. Wärmetauschervorrichtung nach Anspruch 1, dadurch gekennzeichnet,

daß die Stege (12) sich durchgehend über die Breite (B) des Substrates (1) erstrecken.

30 3. Wärmetauschervorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet,

daß das Substrat (1) eine Vielzahl von regelmäßig angeordneten, sich durch das Substrat (1) hindurch erstreckenden Kanälen (4) aufweist und

35 daß die Stege (12) in Anströmrichtung (10) unmittelbar vor den Kanälen (4) angeordnet sind.

5 4. Wärmetauschervorrichtung nach einem der Ansprüche
 1 bis 3, dadurch gekennzeichnet,
 daß die Kanäle (4) rechteckige Form haben, wobei ihre
 längere Seite (5) parallel zur Anströmrichtung (10)
 ausgerichtet ist.

10 5. Wärmetauschervorrichtung nach einem der Ansprüche
 1 bis 4, dadurch gekennzeichnet,
 daß das Substrat (1) durch Abstandhalter (7) an einem
 Objekt (11) angebracht ist und daß die Höhe (KH) der
 Abstandhalter größer ist als die Höhe (RH) der Stege
 (12).

15 6. Wärmetauschervorrichtung nach Anspruch 5, dadurch
 gekennzeichnet,
 daß die Höhe (KH) der Abstandhalter (7) kleiner ist
 als die Länge (DL) der Kanäle (4) in Anströmrichtung
 (10) und vorzugsweise kleiner als 5 mm.

20 7. Wärmetauschervorrichtung nach Anspruch 5 oder 6,
 dadurch gekennzeichnet,
 daß mehrere Abstandhalter (7) vorgesehen sind, die
 jeweils zwischen den Kanälen (4) von der Unterseite
 (2) des Substrates (1) abstehen und sich zur Bildung
 von Längskanälen (8) über die gesamte Länge des Sub-
 strates (1) erstrecken.

25 8. Wärmetauschervorrichtung nach einem der Ansprüche
 5 bis 7, dadurch gekennzeichnet,
 daß die Abstandhalter (7) aus wärmeleitendem Material
 bestehen.

30 9. Wärmetauschervorrichtung nach einem der Ansprüche
 1 bis 8, dadurch gekennzeichnet,
 daß das Substrat (1) aus wärmeleitendem Material,
 insbesondere aus Metall besteht oder aus beliebigem
 Material, das mit wärmeleitendem Material beschichtet
 ist.

10. Wärmetauschervorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,
daß an der Anströmseite des Substrates (1) ein Leitblech (15) angeordnet ist.

5

11. Wärmetauschervorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,
daß im Abstand zur Oberseite (3) des Substrates (1)
eine Abdeckplatte (13) angeordnet ist, wobei der Abstand (AP) der Abdeckplatte (13) zur Oberseite (3)
des Substrates (1) mindestens das Doppelte der Höhe (RH) der Stege (12) ist.

10

12. Wärmetauschervorrichtung nach Anspruch 11, dadurch gekennzeichnet,
daß die der Oberseite (3) des Substrates (1) zugewandte Seite der Abdeckplatte (13) Strömungshindernisse und insbesondere Stege (14) aufweist, die den Stegen (12) auf der Oberseite des Substrates (1) entsprechen.

15

20

Zusammenfassung

5 Die Wärmetauschervorrichtung hat ein Substrat (1) mit einer
Vielzahl von regelmäßig angeordneten, sich durch das Substrat
(1) hindurcherstreckenden Kanälen (4) sowie von einer Ober-
seite (3) des Substrates (1) abstehende Stege (12), deren
Höhe (RH) maximal der Hälfte der Länge (DL) der Kanäle
(4) in Anströmrichtung (10) entspricht. Eine Einrichtung
10 (9) zur Erzeugung eines gerichteten Fluidstromes, vorzugswei-
se von Luft, sorgt dafür, daß beide Seiten (2, 3) des Sub-
strates (1) tangential angeströmt werden. Die als Strömungs-
hindernisse zur Erzeugung von Verwirbelungszonen (TL) dienen-
.5 den Stege (12) sind quer zur Anströmrichtung (10) ausgerich-
tet. (Fig. 1)

Fig. 1

Fig. 1

Fig. 3

Fig. 4

Fig. 5

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.