Hierarchical Clustering

Machine Learning
Dr. Adnan Abid

NOTE: Agglomerative & Divisive

HC Intuition: How Do Dendograms Work?

Agglomerative Hierarchical Clustering Solved Example

- · Consider the following set of 6 one dimensional data points:
- 18, 22, 25, 42, 27, 43
- Apply the agglomerative hierarchical clustering algorithm to build the hierarchical clustering dendogram.
- Merge the clusters using Min distance and update the proximity matrix accordingly.
- Clearly show the proximity matrix corresponding to each iteration of the algorithm.

• Step – 3					
		18	22	25, 27	42, 43
	18	0	4	7	24
	22	4	0	8	20
	25, 27	7	3	0	15
	42, 43	24	20	15	0
	(42	2, 43), ((25, 27)), 22)	


```
5# Importing the libraries
6 import numpy as np
7 import matplotlib.pyplot as plt
8 import pandas as pd
9
10 # Importing the mall dataset with pandas
11 dataset = pd.read_csv('mall.csv')
12 X = dataset.iloc[:, [3, 4]].values
13
14 # Using the dendrogram to find the optimal number of clusters
15 import scipy.cluster.hierarchy as sch
16 dendrogram = sch.dendrogram(sch.linkage(X, method = 'ward'))
17 plt.title('Dendrogram')
18 plt.xlabel('Customers')
19 plt.ylabel('Euclidean distances')
20 plt.show()
21
22 # Fitting hierarchical clustering to the mall dataset
23 from sklearn.cluster import AgglomerativeClustering
24 hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', linkage = 'ward')
25 y_hc = hc.fit_predict(X)| I
```