DM 14

Vendredi 5 Février 2021

Mesure du rayon de courbure d'un miroir par une méthode interférentielle

Dispositif interférentiel

Le dispositif interférentiel est représenté ci-dessous. Son principe de fonctionnement est similaire à celui de l'interféromètre de Michleson. Il est composé d'un séparateur de faisceau constitué de deux prismes droits de section rectangle isocèle identiques accolés par leurs bases et de deux miroirs plan M_1 et M_2 , de centre respectifs O_1 et O_2 . Il est éclairé par une source ponctuelle S_L obtenue grâce à un faisceau de lumière parallèle monochromatique de longueur d'onde $\lambda=500$ nm provenant d'un laser ; le faisceau laser est expansé grâce à une lentille de focale image f'=1 cm placée entre le faisceau laser et la face d'entrée du séparateur. Le séparateur de faisceau se comporte comme une lame séparatrice L_p , unique d'épaisseur nulle (face commune aux deux prismes) qui transmet 50% de l'intensité lumineuse, l'autre partie étant réfléchie.

On note $L = O_p O = 70$ cm la distance entre la séparatrice et l'écran (E) et $l = S_p O_p = 10$ cm la distance entre la source (S_p) et la séparatrice.

Les deux miroirs sont mobiles et peuvent pivoter autour de leur axes O_1y et O_2y . On note α_1 et α_2 les angles de rotation de chacun des miroirs, pris respectivement entre $(O_1z$ et $M_1)$ et $(O_2x$ et $M_2)$.

On se place dans le cas où les deux miroirs M_1 et M_2 sont orthogonaux (M_1 est dans le plan yO_1z et M_2 dans le plan xO_2y). Les positions des miroirs sont données par les distances $d_1 = O_pO_1$ et $d_2 = O_pO_2$ avec $d_2 \ge d_1$.

- 1. En vous aidant d'un schéma clair, déterminer les coordonnées dans le repère (O, xyz) des sources secondaires S_1 et S_2 créées par l'interféromètre en fonction de l, L, d_1 et d_2 . S_1 est l'image de la source S_2 issue des réflexions sur L_p et M_1 ; S_2 est l'image de S_L issue des réflexions sur M_2 et L_p .
 - En déduire la distance a qui sépare les sources S_1 et S_2 et la distance d de leur milieu S à l'écran en fonction de l, L, d_1 et d_2 .
- 2. Le miroir M_1 réglé à $d_1=l$ restant fixe, le miroir M_2 est translaté de façon à obtenir un éclairement uniforme de l'écran. Donner dans ces conditions la valeur de a.

A partir de la position précédente, le miroir M_2 est déplacé parallèlement à l'axe Oz d'une distance e, telle que $d_2 - d_1 = e > 0$ avec $e \ll d_1$ et $e \ll d_2$.

- 3. Décrire la figure d'interférence observée sur l'écran.
- 4. Le centre de la figure d'interférence est brillant. La première frange brillante, hors de l'axe, est situé à $20~\rm mm$ du centre de la figure. Calculer la distance e.
 - Calculer l'ordre d'interférence au centre de la figure d'interférence.

A partir de la position des miroirs obtenus question 2, on fait subir à chaque miroir une très faible rotation, dans le même sens et du même angle α ($\alpha_1 = \alpha_2 = \alpha$).

5. Montrer, en vous aidant d'un schéma, que les sources secondaires S_1 et S_2 créées par l'interféromètre sont situées sur un axe parallèle à Oz, le milieu S de S_1S_2 étant sur l'axe Oz.

- 6. Déterminer la distance a entre les deux sources et la distance d du milieu des sources à l'écran en fonction de α , l et d_1 ou d_2 .
 - Décrire la figure d'interférence observée sur l'écran.
- 7. La distance entre deux franges brillantes consécutives est égale à $d_i=5$ mm. Calculer l'angle α en radians.
 - Comment varie la distance entre les franges si on augmente l'angle α ?

Bonus : Mesure du rayon de courbure d'un miroir

L'interféromètre de la question précédente est initialement réglé en plaçant les deux miroirs orthogonalement et à la même distance de la séparatrice $(d_1 = d_2 = l)$. Le miroir M_1 est un miroir de référence parfaitement plan. Le miroir M_2 est alors remplacé par un miroir sphérique convexe M_2 , dont le sommet est positionné en O_2 et de centre C_2 . L'axe $O_p z$ est l'axe optique du miroir M_2 et $R_2 = \overline{O_2 C_2}$ son rayon.

- 8. Déterminer la position $O_2S'_L$ de S'_L , image de S_L par M'_2 en l'absence du séparateur de faisceau en fonction de R_2 et l.
- 9. Déterminer les coordonnées dans le repère (O, xyz) des sources secondaires S_1 et S_2 créées par l'interféromètre en fonction de l, L et R_2 .
- 10. Montrer que, dans le cas où $R_2 \gg l$, la distance a entre les deux sources se met sous la forme $a \approx \frac{8l^2}{R_2}$ et que la distance d du milieu des sources à l'écran est voisine de $d \approx L + 3l$.
- 11. En déduire l'aspect de la figure d'interférence observée sur l'écran.
- 12. Le centre de la figure d'interférence est un point brillant. La cinquième frange brillante est située à 12,5 mm du centre. Calculer la valeur du rayon R_2 du miroir M'_2 .