Fizyka układów złożonych Sieci Hopfielda

Małgorzata Krawczyk

Analizujemy układ składający się z N neuronów, dla którego wyznaczamy macierz wag o wymiarach $N \times N$ zgodnie z reguła Hebba dla P wzorów: $w_{ij} = \Sigma_p a_i * a_j$, gdzie a_i i a_j stany neuronów.

Zadanie 1: (40p) Wykonujemy uczenie sieci, dla N=25 neuronów, wykorzystując poniższe wzory: T :

 \mathbf{H} :

 \mathbf{A} :

Zadanie 2: (40p) Sprawdzamy, że wyuczona sieć rozpoznaje wzorce. W tym celu dla każdego elementu badanego wzoru obliczany: $s_i = sign(\Sigma_j w_{ij} s_j)$, aż wartości przestają się zmieniać. Obliczenia proszę wykonać dla "popsutych" wzorów:

T:

 \mathbf{H} :

 \mathbf{A} :

Zadanie 3: (20p) Sprawdzamy "pojemność" sieci, w tym celu do zbioru uczącego dodajemy jeszcze jeden wzór:

 \mathbf{E} :

i wykonujemy ponownie zadanie 2. Czy udało się odtworzyć wzorce? Czemu?