We claim:

	11 0 0.000
1	1. A method for antenna tracking, comprising:
2	determining complex weightings for matching a polarization of an incident signal on
3	a data channel; and
4	applying the complex weightings to a tracking channel such that an antenna system
5	polarization is matched to the polarization of the incident signal.
1	2. The method for antenna tracking of claim 1, wherein the complex weightings
2	are determined such that a signal power of the incident signal is maximized.
1	3. A method for antenna tracking, comprising:
2	deriving complex weighting values that match a polarization of an incident signal on
3	a data channel; and
4	applying the complex weighting values and time variations of the complex weighting
5	values to a tracking channel to replicate the polarization of the incident signal over time.
1	4. A system for antenna tracking, comprising:
2	means for measuring a polarization of an incident signal on a data channel and for
3	determining an amplitude and phase combination that matches the polarization; and
4	means for applying the amplitude and phase combination to a tracking channel
5	responding to variations in the polarization.
1	5. The system for antenna tracking of claim 4, wherein the means for measuring
2	a polarization of an incident signal on a data channel and for determining an amplitude and
3	phase combination that matches the polarization includes
4	a polarization-matching network.
1	6. The system for antenna tracking of claim 5, wherein the polarization
2	matching network includes a vector modulator.

1	7. The system for antenna tracking of claim 5, wherein the polarization
2	matching network includes a diversity combiner.
1	8. The system for antenna tracking of claim 4, wherein the means for applying
2	the amplitude and phase combination to a tracking channel responding to variations in the
3	polarization includes
4	a polarization-matching network.
1	9. The system for antenna tracking of claim 8, wherein the polarization
2	matching network includes a vector modulator.
1	10. The system for antenna tracking of claim 8, wherein the polarization
2	matching network includes a diversity combiner.
1	11. A method for antenna tracking, comprising:
2	processing orthogonally polarized tracking channel components of an incident signal
3	to make a determination as to which of the orthogonally polarized tracking channel
4	components is stronger; and
5	using the determination to select a polarization of a data channel to reduce a
6	polarization mismatch loss.
1	12. A method for antenna tracking, comprising:
2	determining which of two orthogonal polarization components of an incident signal
3	is a stronger signal component;
4	determining a polarization mismatch loss for two orthogonal polarization
5	components;

weighing a tracking response amplitude by the polarization mismatch loss; and

selecting a polarization of a data channel depending upon the stronger signal

6

7

8

component.

1	13. A system for antenna tracking, comprising:
2	means for detecting orthogonally polarized signals of a tracking channel, determining
3	which of the orthogonally polarized signals is stronger, and suppressing a cross polarization
4	response of the tracking channel; and
5	a controller configured to select a polarization of a data channel depending upon
6	which of the orthogonally polarized signals is stronger.
1	14. The system for antenna tracking of claim 13, wherein the means for detecting
2	orthogonally polarized signals of a tracking channel, determining which of the orthogonally
3	polarized signals is stronger, and suppressing a cross polarization response of the tracking
4	channel includes
5	means for combining the orthogonally polarized signals after the orthogonally
6	polarized signals are detected.
1	15. The system for antenna tracking of claim 13, wherein the means for detecting
2	orthogonally polarized signals of a tracking channel, determining which of the orthogonally
3	polarized signals is stronger, and suppressing a cross polarization response of the tracking
4	channel includes
5	two tracking receivers configured for detecting the orthogonally polarized signals,
6	respectively, and
7	means for matching tracking amplitude responses of the two tracking receivers.
1	16. The system for antenna tracking of claim 13, wherein the means for detecting
2	orthogonally polarized signals of a tracking channel, determining which of the orthogonally
3	polarized signals is stronger, and suppressing a cross polarization response of the tracking
4	channel includes
5	a tracking receiver configured to switch between tracking channel inputs for the
6	orthogonally polarized signals and to generate sequential outputs, and
7	a sequential summer configured to receive the sequential outputs and to generate a
8	summed output that is weighed by a polarization mismatch loss of the orthogonally
9	polarized signals.