PORTFOLIO DATA SCIENCE

NASSER CHAOUCHI

Summary

- 1. Who am I?
- 2. My work experience
- 3. My projects
 - a. The Movie Recommender System
 - b. Multiclass Classification for Diabetes Prediction
 - c. The CKD and Dialysis prediction
- 4. Summary of my skills & achievements

Who am I?

My academic journey

I'm Nasser, a French computer science engineer passionate about artificial intelligence, data, and innovation. I graduated from UTC (Université de Technologie de Compiègne) in 2025 with a major in AI and Data Science.

I completed:

- A dual-focused internship at Numberly as a Data Engineer and Project Manager, combining technical and management responsibilities.
- An exchange semester at the Escuela de Ingeniería y Arquitectura in Zaragoza (Spain), as part of a Data Science Master's program.
- My final-year internship at Ubisoft as a Data Scientist, working on real-world game data and predictive models.

Strengths

I would describe myself as: Curious, Rigorous, Positive & Patient.

Artificial Intelligence, Sports, Literature, and Chess.

My work experience

An **internship** at **Ubisoft** from **October 2024 to March 2025** as a **Data Scientist**, with the following missions:

Audiences Understanding

Segmentation Based on Players' Profiles

Player Behavior Prediction

I worked on the game **Avatar: Frontiers of Pandora**. My role was to understand the **game's underperformance** and to **identify and target** potential players within the **Ubisoft ecosystem** who would most likely acquire the game.

The project was divided into three main phases:

You can contact the team manager for a reference:

Nicolas Tatin, Associate Director, Data & Analytics

Data Analysis

Data Science

My projects - The Movie Recommender System

CONTEXT

- Dataset: MovieLens 32M
- Goal: Recommend movies users might like, based on behavior and content
- Type: Hybrid Recommendation System
 - Collaborative Filtering (ratings)
 - Content-Based Filtering (genres, titles)
- Size: 32M+ ratings, ~270k users, 62k movies

TOOLS USED

- Scikit-learn
- Pandas, NumPy
- Seaborn
- Matplotlib
- HuggingFace datasets
- Streamlit

Open the repository

Open the interface (with MovieLens 1M)

APPROACH

- Data Cleaning: Merged movies.csv and ratings.csv, extracted year, processed genres
- Collaborative Filtering: Built user-item matrix, applied cosine similarity
- Content-Based Filtering: Used TF-IDF/CountVectorizer on genres and titles
- Hybrid Strategy: Combined top recommendations from both approaches
- Implemented multiple strategies: Most rated movies, Top-rated by genre, Top-rated by year, User-user collaborative hybrid, Item-item collaborative hybrid
- Profile-Based Recommendation: Built a user profile from favorite movies to generate personalized suggestions

WHAT I LEARNED

- Designing and comparing recommender strategies
- Using similarity metrics (cosine) on sparse data
- Evaluating trade-offs between relevance and diversity

My projects - The Movie Recommender System

★ Popular Picks	
Choose a recommendation method:	
Select a genre:	
Action	~
Recommend by Genre	
Recommendations:	
≦ Star Wars: Episode IV - A New Hope	
■ 1977 V Action Adventure Fantasy Sci-Fi	

My projects - The Movie Recommender System

My projects - Multiclass Classification for Diabetes

CONTEXT

- Dataset: Multiclass Diabetes Dataset
- Goal: Classify patients into several diabetes stages
- Type: Supervised, Multiclass classification
- Size: 264 patients, 12 features

TOOLS USED

- Scikit-learn
- Pandas, NumPy
- Seaborn
- Matplotlib
- Streamlit

Open the repository

Open the interface

APPROACH

- EDA & Preprocessing: Analyzed feature distributions, handled missing values, balanced classes, and scaled data.
- Model tested: Logistic Regression, Random Forest and K-Nearest Neighbour
- Cross Validation: Ensured robust performance and avoided overfitting
- Evaluation: Confusion Matrix, Classification report (F1-Score, Accuracy, Recall)
 - Final model (Random Forest) → Accuracy: 97%
 - Macro F1-score (better suited to class imbalance): 0.98

WHAT I LEARNED

- How to handle imbalanced multiclass data
- The importance of feature engineering and model tuning
- Model explainability with SHAP or feature importance

My projects - Multiclass Classification for Diabetes

My projects - Chronic Kidney Disease Prediction

CONTEXT

- Dataset: <u>Kidney Disease Risk Dataset</u>
- Goal: Predict CKD status and dialysis need based on clinical and biological data
- Type: Supervised, Binary classification (2 targets: CKD_Status, Dialysis_Needed)
- Size: 2304 patients, 9 features

TOOLS USED

- Scikit-learn
- Pandas, NumPy
- Seaborn
- Matplotlib
- XGBoost
- Streamlit

Open the repository

Open the interface

APPROACH

- EDA & Preprocessing: Explored feature relationships, handled missing values, encoded categorical data, scaled numerical features.
- Model tested: Logistic Regression, Random Forest, Gradient Boosting, XGBoost and K-Nearest Neighbour
- Cross Validation: Ensured robustness and reduced overfitting risk.
- Evaluation Classification Report, ROC-AUC, F1-Score, Accuracy
 - Best model was Gradient Boosting, but due to class imbalance, Random Forest gave more reliable results for generalization.
 - → Accuracy: 100% for CKD_Status Accuracy 100% but a F1-Score 0.97 (class imbalance) for the Dialysis_Needed
 - → Separate models trained for each target

WHAT I LEARNED

- Managing dual target classification
- Handling noisy and medical data
- Improving interpretability with SHAP values

My projects - Chronic Kidney Disease Prediction

Evaluation on Test Set - CKD_Status

Class	Precision	Recall	F1-Score	Support
0	1.00	1.00	1.00	340
1	1.00	1.00	1.00	352

Accuracy			1.00	692
Macro avg	1.00	1.00	1.00	692
Weighted avg	1.00	1.00	1.00	692

Evaluation on Test Set - Dialysis_Needed

Class	Precision	Recall	F1-Score	Support
0	1.00	1.00	1.00	683
1	1.00	0.89	0.94	9

Accuracy			1.00	692
Macro avg	1.00	0.94	0.97	692
Weighted avg	1.00	1.00	1.00	692

Summary of my skills & achievements

- Built 3 real-world machine learning apps
- Deployed 3 Streamlit interfaces
- Experience with pipelines (Airflow), modeling (XGBoost), and explainability (SHAP)
- Strong understanding of recommender systems, classification, EDA

Don't hesitate to reach me out

