0 Essentials	if A symmetric: $A = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\top}$ (Q orthogonal).	$(\mathbf{D}^{-1})_{i,i} = \frac{1}{\mathbf{D}_{i,i}}$ (don't forget to transpose)	EM for MLE for pLSA (NO global opt guarantee)
Matrix/Vector	Probability / Statistics	1. calculate $\mathbf{A}^{\top} \mathbf{A}$.	Context Model: $p(w d) = \sum_{z=1}^{K} p(w z)p(z d)$
Range, Kernel, Nullity: $range(A) = \{z \exists x : z = Ax\} = span(columns of A)$		2. calculate eigenvalues of A^TA , the square root of them, in descending order, are the dia-	Conditional independence assumption (*):
$rank(\mathbf{A}) = dim(range(\mathbf{A}))$	$Pr[X = x Y = y] := \frac{P(x,y)}{P(y)}, \text{if } P(y) > 0 \bullet \forall y \in$	gonal elements of D .	$p(w d) = \sum_{z} p(w,z d) = \sum_{z} p(w d,z)p(z d) \stackrel{?}{=}$
	$Y: \sum_{x \in X} P(x y) = 1$ (property for any fixed	3. calculate eigenvectors of $\mathbf{A}^{T}\mathbf{A}$ using the ei-	$\sum_{z} p(w z) p(z d)$
$nullity(\mathbf{A}) = dim(kernel(\mathbf{A}))$	$y) \bullet P(x,y) = P(x y)P(y) \bullet P(x y) = \frac{P(y x)P(x)}{P(y)}$	genvalues resulting in the columns of V.	Symmetric parameterization: $p(w,d) = \sum_{z} p(z)p(w z)p(d z)$
Kank-numity Theorem. um(kernei(A))	(Bayes' rule) • $P(x y) = P(x) \Leftrightarrow P(y x) = P(y)$ (iff	4. calculate the missing matrix: U = AVD ⁻¹ . 5. normalize each column of U and V .	Log-Likelihood: $L(\mathbf{U}, \mathbf{V}) = \sum_{i,j} x_{i,j} \log p(w_i d_i)$
$dim(range(\mathbf{A})) = n$ Orthogonal Matrix: $\mathbf{A}^{-1} = \mathbf{A}^{\top}$, $\mathbf{A}\mathbf{A}^{\top} = \mathbf{A}^{\top}\mathbf{A} = \mathbf{A}^{\top}$	$X, Y \text{ independent}) \bullet P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i)$	Low-Rank approximation	$= \sum_{(i,j)\in X} \log \sum_{z=1}^{K} p(w_j z) p(z d_i)$
I, $det(A) \in \{+1, -1\}$, $det(A^T A) = 1$, pre-	(iff IID) • Variance $Var[X] := E[(X - \mu_x)^2] :=$	Using only K largest eigenvalues and	$p(w_{j} z) = v_{zj}, p(z d_{i}) = u_{zi}, \sum_{i=1}^{N} v_{zj} = \sum_{z=1}^{K} u_{zi} = 1$
serves inner product, norm, distance, an-	$\sum_{x \in X} (x - \mu_x)^2 P(x) = E(X^2) - E(X)^2 \bullet \text{expectation}$	corresponding eigenvectors. $\tilde{\mathbf{A}}_{i,j}$ =	E-Step (optimal q: posterior of z over (d_i, w_i)):
gle, rank, matrix orthogonality	$\mu_x := E[X] := \sum_{x \in X} x P(x)$ • standard deviation	$\sum_{k=1}^K \mathbf{U}_{i,k} \mathbf{D}_{k,k} \mathbf{V}_{j,k} = \sum_{k=1}^K \mathbf{U}_{i,k} \mathbf{D}_{k,k} (\mathbf{V}^\top)_{k,j}.$	
Inner Product: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\top} \mathbf{y} = \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{y}_{i}$.	•	Echart-Young Theorem	$q_{zij} = \frac{p(w_j z)p(z d_i)}{\sum_{k=1}^K p(w_j k)p(k d_i)} := \frac{v_{zj}u_{zi}}{\sum_{k=1}^K v_{kj}u_{ki}}, \sum_z q_{zij} = 1$
• $\langle \mathbf{x} \pm \mathbf{y}, \mathbf{x} \pm \mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{x} \rangle \pm 2 \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle$ • $(\mathbf{u}_i^T \mathbf{v}_i) \mathbf{v}_i = (\mathbf{v}_i \mathbf{v}_i^T) \mathbf{u}_i$	Lagrangian Multipliers	$\mathbf{A}_k = \operatorname{argmin}_{rank(B)=k} \ \mathbf{A} - \mathbf{B}\ _F^2 \text{ (not convex)}$	M-Steps:
, , , ,	Minimize $f(\mathbf{x})$ s.t. $g_i(\mathbf{x}) \leq 0$, $i = 1,,m$ (inequality constr.) and $h_i(\mathbf{x}) = \mathbf{a}_i^{T} \mathbf{x} - b_i =$	$\min_{rank(B)=K} A - B _F^2 = A - A_k _F^2 = \sum_{r=k+1}^{rank(A)} \sigma_r^2$	$p(z d_i) = \frac{\sum_j x_{ij} q_{zij}}{\sum_i x_{ii}}, p(w_j z) = \frac{\sum_i x_{ij} q_{zij}}{\sum_i x_{il} q_{zil}}$
Outer Product: $\mathbf{u}\mathbf{v}^{\top}$, $(\mathbf{u}\mathbf{v}^{\top})_{i,j} = \mathbf{u}_i\mathbf{v}_j$ Trace: $trace(\mathbf{X}\mathbf{Y}\mathbf{Z}) = trace(\mathbf{Z}\mathbf{X}\mathbf{Y})$	0, $i = 1,,p$ (equality constraint)	$\min_{rank(B)=K} A - B _2 = A - A_k _2 = \sigma_{k+1}$	<i>1 1</i>
Transpose: $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top}$, $(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$,		3 Matrix Approximation & Reconstruction	Latent Dirichlet Allocation To sample a new document, we need to extend
$(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top}$	1 Principal Component Analysis	$\min_{rank(B)=k} \left[\sum_{(i,j)\in I} (a_{ij} - b_{ij})^2 \right], I = \{(i,j): ob.\}$	X and U^T with a new row, s.t. $X = U^T V$.
Cross product: $\vec{a} \times \vec{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_3b_2, a_3b_1)$		Alternating Least Squares	(While pLSA fixes both dimensions)
$a_1b_3, a_1b_2 - a_2b_1)^{\top}$	1. Empirical Mean: $\overline{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$.	$f(U, v_i) = \sum_{(i,j) \in I} (a_{i,j} - \langle u_j, v_i \rangle)^2$	For each d_i sample topic weights
Cauchy-Schwarz inequality: $ \langle u, v \rangle \le u v $	2. Center Data: $\overline{X} = X - [\overline{x},, \overline{x}] = X - M$.	$f(u_i, V) = \sum_{(i,j) \in I} (a_{i,j} - \langle u_j, v_i \rangle)^2$	$\mathbf{u}_i \sim \text{Dirichlet}(\alpha)$: $p(u_i \alpha) = \prod_{z=1}^K u_{zi}^{\alpha_k-1}$, then
Norms	3. Cov.: $\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \overline{\mathbf{x}}) (\mathbf{x}_n - \overline{\mathbf{x}})^{\top} = \frac{1}{N} \overline{\mathbf{X}} \overline{\mathbf{X}}^{\top}$.	Convex when fixed one.	topic $z^t \sim \text{Multi}(u_i)$, word $w^t \sim \text{Multi}(v_{z^t})$
• $\ \mathbf{x}\ _0 = \ \{i x_i \neq 0\}\ $	4. Eigenvalue Decomposition: $\Sigma = \mathbf{U} \Lambda \mathbf{U}^{T}$.	Convex Optimization	Multinom. obsv. model on wc vec: $p(\mathbf{x} V,u) = \frac{1}{2} \sum_{x} \frac{1}{2} \sum$
• $\ \mathbf{x}\ _2 = \sqrt{\sum_{i=1}^N \mathbf{x}_i^2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$	5. Select $K < D$, inly keep U_K , λ_K .	Def.: $\{(x,t) x\in domf, f(x)\leq t\}, f:\mathbb{R}^D\to\mathbb{R}$	$\frac{l!}{\prod_j \mathbf{x}_j!} \prod_j \pi_j^{\mathbf{x}_j}$ where $\pi_j = \sum_z v_{zj} u_z$, $l = \sum_j x_j$
• $\ \mathbf{u} - \mathbf{v}\ _2 = \sqrt{(\mathbf{u} - \mathbf{v})^{\top} (\mathbf{u} - \mathbf{v})}$	6. Transform data onto new Basis: $\overline{\mathbf{Z}}_K = \mathbf{U}_K^{T} \overline{\mathbf{X}}$.	is convex, if $dom f$ is a convex set, and if	Bayesian averaging over u : $p(\mathbf{x} \mathbf{V},\alpha) =$
$\bullet \mathbf{x} _p = \left(\sum_{i=1}^N x_i ^p\right)^{\frac{1}{p}}$	7. Reconstruct to original Basis: $\bar{\mathbf{X}} = \mathbf{U}_k \mathbf{Z}_K$.	$\forall \mathbf{x}, \mathbf{y} \in dom \ f$, and $\forall \alpha \in [0, 1]: f(\alpha \mathbf{x} + (1 - \alpha) \mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha) f(\mathbf{y})$. Convex \iff Hessian p.s.d	$\int p(\mathbf{x} \mathbf{V},\mathbf{u})p(\mathbf{u} \alpha)d\mathbf{u}$
`	8. Reverse centering: $\tilde{\mathbf{X}} = \overline{\mathbf{X}} + \mathbf{M}$.	$\iff local=global$	NMF Algorithm for quadratic cost function
• $\ \mathbf{M}\ _F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \mathbf{m}_{i,j}^2} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2} =$	For compression save $U_k, \overline{Z}_K, \overline{x}$.	Positive semi-definite: all principal minors	$\min_{\mathbf{U}, \mathbf{V}} J(\mathbf{U}, \mathbf{V}) = \frac{1}{2} \mathbf{X} - \mathbf{U}^{\top} \mathbf{V} _F^2 \text{ (non-negativity)}$
$\ \sigma(\mathbf{A})\ _2 = \sqrt{trace(\mathbf{M}^T\mathbf{M})}$	$\mathbf{U}_k \in \mathbb{R}^{D \times K}, \Sigma \in \mathbb{R}^{D \times D}, \overline{\mathbf{Z}}_K \in \mathbb{R}^{K \times N}, \overline{\mathbf{X}} \in \mathbb{R}^{D \times N}$ Iterative View	(same-indexed rows and columns) ≥ 0 Positive definite: leading principal minors > 0	s.t. $\forall i, j, z : u_{zi}, v_{zj} \ge 0$ Comparison with pLSA:
• $\ \mathbf{M}\ _G = \sqrt{\sum_{ij} g_{ij} x_{ij}^2}$ (weighted Frobenius)	Residual r_i : $x_i - \tilde{x}_i = I - uu^T x_i$	Convex Relaxation	1. sampling model: Gaussian vs multinomial 2.
• $\ \mathbf{M}\ _1 = \sum_{i,j} m_{i,j} $	Cov of $r: \frac{1}{n} \sum_{i=1}^{n} (I - uu^{T}) x_{i} x_{i}^{T} (I - uu^{T})^{T} =$	Replace non-convex rank constraints by con-	objective: quadratic vs KL divergence 3. cons-
• $\ \mathbf{M}\ _2 = \sigma_{\max}(\mathbf{M}) = \ \sigma((M))\ _{\infty}$	$(I - uu^{T})\Sigma(I - uu^{T})^{T} = \Sigma - 2\Sigma uu^{T} + uu^{T}\Sigma uu^{T} =$	vex norm constraints (superset). Then project	traints: not normalized Alternating least squares:
• $\ \mathbf{M}\ _p = \max_{\mathbf{v} \neq 0} \frac{\ \mathbf{M}\mathbf{v}\ _p}{\ \mathbf{v}\ _p}$	$\Sigma - \lambda u u^T$	optimum back (hopefully still optimal).	1. init: $\mathbf{U}, \mathbf{V} = rand(\hat{\mathbf{I}})$
· · · · · · · · · · · · · · · · · · ·	1. Find principal eigenvector of $(\Sigma - \lambda uu^T)$ 2. which is the second eigenvector of Σ	$\min_{\mathbf{B} \in P_k} \ \mathbf{A} - \mathbf{B}\ _G^2$, $P_k = \{\mathbf{B} : \ \mathbf{B}\ _* \le k\} \supseteq Q_k = \{\mathbf{B} : rank(\mathbf{B}) \le k\}$ (in fact tightest convex lower-	2. repeat 3~4 for maxIters:
• $\ \mathbf{M}\ _{\star} = \sum_{i=1}^{\min(m,n)} \sigma_i = \ \sigma(\mathbf{A})\ _1$ (nuclear)	3. iterating to get d principal eigenvector of Σ	bound $rank(\mathbf{B}) \ge \mathbf{B} _*$, $for \mathbf{B} _2 \le 1$	3. upd. $(\mathbf{V}\mathbf{V}^{\top})\mathbf{U} = \mathbf{V}\mathbf{X}^{\top}$, proj. $u_{zi} = \max\{0, u_{zi}\}$ 4. update $(\mathbf{U}\mathbf{U}^{\top})\mathbf{V} = \mathbf{U}\mathbf{X}$, proj. $v_{zj} = \max\{0, v_{zj}\}$
Derivatives	Power Method	SVD Thresholding	5 Word Embeddings
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{\top}\mathbf{x}) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{b}) = \mathbf{b} \qquad \frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{x}) = 2\mathbf{x}$	Power iteration: $v_{t+1} = \frac{Av_t}{\ Av_t\ }$, $\lim_{t\to\infty} v_t = u_1$	$\mathbf{B}^* = shrink_{\tau}(\mathbf{A}) = \arg\min_{\mathbf{B}} \{ \ \mathbf{A} - \mathbf{B}\ _F^2 + \tau \ \mathbf{B}\ _* \}$	Distributional Model:
$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x}) = (\mathbf{A}^{\top} + \mathbf{A})\mathbf{x} \qquad \frac{\partial}{\partial \mathbf{x}}(\mathbf{b}^{\top}\mathbf{A}\mathbf{x}) = \mathbf{A}^{\top}\mathbf{b}$	Assuming $\langle u_1, v_0 \rangle \neq 0$ and $ \lambda_1 > \lambda_j (\forall j \geq 2)$	Then with SVD $\mathbf{A} = \mathbf{UDV_T}, \mathbf{D} = diag(\sigma_i)$, holds	$p_{\theta}(w w') = \Pr[w \text{ occurs in context of } w']$
$\frac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{\top}\mathbf{X}\mathbf{b}) = \mathbf{c}\mathbf{b}^{\top} \qquad \frac{\partial}{\partial \mathbf{X}}(\mathbf{c}^{\top}\mathbf{X}^{\top}\mathbf{b}) = \mathbf{b}\mathbf{c}^{\top}$	2 Singular Value Decomposition	$\mathbf{B}^* = \mathbf{U}\mathbf{D}_{\tau}\mathbf{V}^{T}, \mathbf{D}_{\tau} = diag(\max\{0, \sigma_i - \tau\})$	Log-likelihood:
767	$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^{\top} = \sum_{k=1}^{\mathrm{rank}(\mathbf{A})} d_{k,k} u_k (v_k)^{\top}$	Iteration: $\mathbf{B}_{t+1} = \mathbf{B}_t + \eta_t \Pi(\mathbf{A} - shrink_{\tau}(\mathbf{B}_t))$	$L(\theta; \mathbf{w}) = \sum_{t=1}^{T} \sum_{\Delta \in I} \log p_{\theta}(w^{(t+\Delta)} w^{(t)})$
$\frac{\partial}{\partial \mathbf{X}}(\ \mathbf{X}\ _F^2) = 2\mathbf{X} \frac{\partial}{\partial \mathbf{x}} \log(x) = \frac{1}{x}$	$\mathbf{A} \in \mathbb{R}^{N \times P}, \mathbf{U} \in \mathbb{R}^{N \times N}, \mathbf{D} \in \mathbb{R}^{N \times P}, \mathbf{V} \in \mathbb{R}^{P \times P}$	4 Non-Negative Matrix Factorization	Latent Vector Model: $w \to (\mathbf{x}_w, b_w) \in \mathbb{R}^{D+1}$
$\frac{\partial \chi}{\partial x} (x _F) = 2R \qquad \frac{\partial \chi}{\partial x} \log(x) - \frac{1}{x}$ Eigendecomposition	$\mathbf{U}^{T}\mathbf{U} = I = \mathbf{V}^{T}\mathbf{V}$ (U , V orthonormal)	$\mathbf{X} \in \mathbb{Z}_{\geq 0}^{N \times M}$, NMF: $\mathbf{X} \approx \mathbf{U}^{\top} \mathbf{V}, x_{ij} = \sum_{z} u_{zi} v_{zj} =$	$p_{\theta}(w w') = \frac{\exp[\langle \mathbf{x}_{w}, \mathbf{x}_{w'} \rangle + b_{w}]}{\sum_{v \in V} \exp[\langle \mathbf{x}_{v}, \mathbf{x}_{w'} \rangle + b_{v}]} \text{ (soft-max)}.$
$\mathbf{A} \in \mathbb{R}^{N \times N}$ then $\mathbf{A} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$ with $\mathbf{Q} \in \mathbb{R}^{N \times N}$.	U columns are eigenvectors of AA^{T} , V columns	$\langle \mathbf{u}_i \mathbf{v}_j \rangle$ Decompose object into features: topics,	Modifications:
if fullrank: $\mathbf{A}^{-1} = \mathbf{Q}\Lambda\mathbf{Q}^{-1}$ and $(\Lambda^{-1})_{i,i} = \frac{1}{\lambda_i}$.	are eigenvectors of A^TA , D diagonal elements are singular values.	face parts, etc u weights on parts, v parts (bases). More interpretable (PCA: holistic repre.).	$\log p_{\theta}(w w') = \langle y_w, x_{w'} \rangle + b_w$, word y_w , c'txt $x_{w'}$ use GloVe objective
$11 \text{ and } (11 - \sqrt{11}) = \sqrt{11} \cdot \sqrt$	are omgular varues.	ses, more interpretable (i ert. nonstie repre.).	use stove objective

negative sampling (logistic classification)

GloVe (Weighted Square Loss) Co-occurence Matrix:

 $\mathbf{N} = (n_{ij}) \in \mathbb{R}^{|V| \times |C|} = \#ofwordw_i \text{ in context } w_i$

Objective:
$$H(\theta; \mathbf{N})$$

= $\sum_{n_{i,i}>0} f(n_{ij}) (\log n_{ij} - \log \exp[\langle \mathbf{x}_i, \mathbf{y}_i \rangle + b_i + d_j])^2$

with
$$f(n) = \min\{1, (\frac{n}{n_{max}})^{\alpha}\}, \alpha \in (0; 1].$$

unnormalized distr. $\rightarrow 2$ -sided loss function 1. sample $(i, j)u.a.r, s.t. n_{ij} > 0$

2.
$$\mathbf{x}_{i}^{new} \leftarrow \mathbf{x}_{i} + 2\eta f(n_{ij})(\log n_{ij} - \langle \mathbf{x}_{i}, \mathbf{y}_{j} \rangle)\mathbf{y}_{j}$$

3. $\mathbf{y}_{i}^{new} \leftarrow \mathbf{y}_{j} + 2\eta f(n_{ij})(\log n_{ij} - \langle \mathbf{x}_{i}, \mathbf{y}_{j} \rangle)\mathbf{x}_{i}$

Discussion

Word embeddings can model analogies and relatedness, but antonyms are usually not well

6 Data Clustering & Mixture Models

Target: $\min_{\mathbf{U},\mathbf{Z}} J(\mathbf{U},\mathbf{Z}) = \|\mathbf{X} - \mathbf{U}\mathbf{Z}\|_F^2$ $=\sum_{n=1}^{N}\sum_{k=1}^{K}\mathbf{z}_{k,n}||\mathbf{x}_{n}-\mathbf{u}_{k}||_{2}^{2}$

1. **Initiate:** choose
$$K$$
 centroids $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$
2. **Cluster Assign:** data points to clusters.

 $k^{\star}(\mathbf{x}_n) = \operatorname{arg\,min}_k\{||\mathbf{x}_n - \mathbf{u}_k||_2\} \text{ returns cluster } k^{\star},$ whose centroid \mathbf{u}_{k^*} is closest to data point \mathbf{x}_n . Set $\mathbf{z}_{k^*,n} = 1$, and for $l \neq k^* \mathbf{z}_{l,n} = 0$.

3. Update centroids: $\mathbf{u}_k = \frac{\sum_{n=1}^{N} z_{k,n} \mathbf{x}_n}{\sum_{n=1}^{N} z_{k,n}}$.

4. Repeat from step 2, stops if $\|\mathbf{Z} - \mathbf{Z}^{\text{new}}\|_{0} =$ $\|\mathbf{Z} - \mathbf{Z}^{\text{new}}\|_F^2 = 0.$

Computational cost: $O(k \cdot n \cdot d)$

Gaussian Mixture Models (GMM)

Gaussian $p(x) = \frac{1}{\sqrt{2\pi}\sigma} exp(-\frac{(x-\mu)^2}{2\sigma^2})$ Multivariate $p(x; \mu; \Sigma) = \frac{1}{|\Sigma|^{\frac{1}{2}} (2\pi)^{\frac{D}{2}}} exp[-\frac{1}{2} (x - \mu)^{T} \Sigma^{-1} (x - \mu)]$

For GMM let $\theta_k = (\mu_k, \Sigma_k)$; $p_{\theta_k}(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$

Mixture Models: $p_{\theta}(\mathbf{x}) = \sum_{k=1}^{K} \pi_k p_{\theta_k}(\mathbf{x})$

Assignment variable (generative model):

 $z_{ij} \in \{0,1\}, \sum_{i=1}^k z_{ij} = 1$

 $\Pr(z_k = 1) = \pi_k \Leftrightarrow p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$ Complete data distribution:

 $p_{\theta}(\mathbf{x}, \mathbf{z}) = \prod_{k=1}^{K} (\pi_k p_{\theta_k}(\mathbf{x}))^{z_k}$

Posterior Probabilities:

 $\Pr(z_k = 1 | \mathbf{x}) = \frac{\Pr(z_k = 1) p(\mathbf{x} | z_k = 1)}{\sum_{l=1}^{K} \Pr(z_l = 1) p(\mathbf{x} | z_l = 1)} = \frac{\pi_k p_{\theta_k}(\mathbf{x})}{\sum_{l=1}^{K} \pi_l p_{\theta_l}(\mathbf{x})}$ $posterior p(A|B) = \frac{prior p(A) \times likelihood p(B|A)}{evidence p(B)}$

Likelihood of observed data X: $p_{\theta}(\mathbf{X}) = \prod_{n=1}^{N} p_{\theta}(\mathbf{x}_n) = \prod_{n=1}^{N} \left(\sum_{k=1}^{K} \pi_k p_{\theta_k}(\mathbf{x}_n) \right)$

Max. Likelihood Estimation (MLE): $\arg \max_{\theta} \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k p_{\theta_k}(\mathbf{x}_n) \right)$

 $\geq \sum_{n=1}^K \sum_{k=1}^K q_k [\log p_{\theta_k}(\mathbf{x}_n) + \log \pi_k - \log q_k]$ with $\sum_{k=1}^{K} q_k = 1$ by Jensen Inequality. **Generative Model**

1. sample cluster index $j \sim Categorical(\pi)$ 2. given j, sample data $x \sim \text{Normal}(\mu_i, \Sigma_i)$

Expectation-Maximization (EM) for GMM E-Step: $Pr[z_{k,n} = 1|\mathbf{x}_n] = q_{k,n}$ $\boldsymbol{\pi}_k^{(t-1)} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k^{(t-1)}, \boldsymbol{\Sigma}_k^{(t-1)})$

 $\frac{\sum_{j=1}^{K} \boldsymbol{\pi}_{j}^{(t-1)} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}^{(t-1)}, \boldsymbol{\Sigma}_{i}^{(t-1)})}{\sum_{j=1}^{K} \boldsymbol{\pi}_{j}^{(t-1)} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{i}^{(t-1)}, \boldsymbol{\Sigma}_{i}^{(t-1)})}$ M-Step: $\mu_k^{(t)} := \frac{\sum_{n=1}^N q_{k,n} \mathbf{x}_n}{\sum_{n=1}^N q_{k,n}}$, $\pi_k^{(t)} := \frac{1}{N} \sum_{n=1}^N q_{k,n}$ $\Sigma_{k}^{(t)} = \frac{\sum_{n=1}^{N} q_{k,n} (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{(t)})^{\top}}{\sum_{n=1}^{N} q_{k,n}}$

Discussion K-means vs. EM

hard assignment vs soft. spherical clusters shapes vs covariance matrix. fast vs slow and more iteration. K-means can be used as initialization K-means as a special case of GMM with cova-

riances $\Sigma_i = \sigma^2 I$. in the limit of $\sigma \to 0$, recover K-means (hard assignments). Model Order Selection (AIC / BIC for GMM)

Trade-off between data fit (i.e. likelihood $p(\mathbf{X}|\theta)$) and complexity (i.e. # of free parameters $\kappa(\cdot)$). For choosing K: Akaike Information Criterion: $AIC(\theta|X) =$ $-\log p_{\theta}(\mathbf{X}) + \kappa(\theta)$

Bayesian Information Criterion: $BIC(\theta|\mathbf{X}) =$ $-\log p_{\theta}(\mathbf{X}) + \frac{1}{2}\kappa(\theta)\log N$ # of free params, fixed covariance matrix: $\kappa(\theta) = K \cdot D + (K-1)$ (K: # clusters, D:

 $dim(data) = dim(\mu_i)$, K - 1: π of # free clusters),

full covariance matrix: $\kappa(\theta) = K(D + \frac{D(D+1)}{2}) +$

(K-1). Compare AIC/BIC for different *K* – the smaller the better. BIC penalizes complexity more.

7 Sparse Coding

Orthogonal Basis

Pros: fast inverse; preserves energy. For x and orthog. mat. U compute $z = U^{\dagger}x$. Approx $\hat{\mathbf{x}} = \mathbf{U}\hat{\mathbf{z}}, \hat{z}_i = z_i \text{ if } |z_i| > \epsilon \text{ else } 0. \text{ Reconstruction}$

Error $\|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \sum_{d \neq \sigma} \langle \mathbf{x}, \mathbf{u}_d \rangle^2$. Choice of base depends on signal. Fourier for global, wavelet for local support. PCA basis optimal for given Σ . Stripes & check patterns: hi-freq in Fourier. Haar Wavelets (form orthogonal basis)

scaling fcn $\phi(x) = [1, 1, 1, 1]$, mother W(x) =[1,1,-1,-1], dilated W(2x) = [1,-1,0,0], translated W(2x-1) = [0,0,1,-1]

Overcomplete Basis

 $\arg\min_{\mathbf{z}} \|\mathbf{z}\|_0$ s.t. $\mathbf{x} = \mathbf{U}\mathbf{z}$. NP-hard \to approxion: $\mathbf{x}^l = \sigma^l(\mathbf{W}^{(l)}\mathbf{x}^{(l-1)})$. L-layer network: mate with 1-norm (convex) or with MP. Coherence • $m(\mathbf{U}) = \max_{i,j:i\neq j} |\mathbf{u}_i^\top \mathbf{u}_j| \bullet m(\mathbf{B}) =$

Backpropagation 0 if **B** orthogonal matrix • $m([\mathbf{B},\mathbf{u}]) \geq \frac{1}{\sqrt{D}}$ if Layer-to-layer Jacobian: $\mathbf{x} = \text{prev. layer acti-}$

atom **u** is added to orthogonal basis **B** (o.n.b. = orthonormal base) Matching Pursuit (MP) approximation of **x** onto **U**, using K entries. Objective: $\mathbf{z}^{\star} \in$ $\underset{\mathbf{z}}{\operatorname{arg\,min}} \|\mathbf{x} - \mathbf{U}\mathbf{z}\|_2$, s.t. $\|\mathbf{z}\|_0 \leq K$ 1. init: $z \leftarrow$

 $0, r \leftarrow x$ 2. while $\|\mathbf{z}\|_0 < K$ do 3. select atom with smallest angle $i^* = \operatorname{argmax}_i |\langle \mathbf{u}_i, \mathbf{r} \rangle| \mathbf{4}$. update coefficients: $z_{i\star} \leftarrow z_{i\star} + \langle \mathbf{u}_{i\star}, \mathbf{r} \rangle$ 5. update residual: $\mathbf{r} \leftarrow \mathbf{r} - \langle \mathbf{u}_{i^*}, \mathbf{r} \rangle \mathbf{u}_{i^*}$. **Exact recovery** when: $K < 1/2(1 + 1/m(\mathbf{U}))$

Compressive Sensing: Compress data while gathering: • $\mathbf{x} \in \mathbb{R}^D$, K-sparse in o.n.b. U. $\mathbf{y} \in$ \mathbb{R}^M with $y_i = \langle \mathbf{w}_i, \mathbf{x} \rangle$: M lin. combinations of signal; $\mathbf{y} = \mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{U}\mathbf{z} = \mathbf{\Theta}\mathbf{z}, \, \boldsymbol{\Theta} \in \mathbb{R}^{M \times D} \bullet \text{Recon-}$ struct $\mathbf{x} \in \mathbb{R}^D$ from \mathbf{y} ; find $\mathbf{z}^* \in \operatorname{arg\,min}_{\mathbf{z}} ||\mathbf{z}||_0$,

s.t. $\mathbf{y} = \mathbf{\Theta} \mathbf{z}$ (e.g. with MP, or convex it with 1-

norm: canbe eq!). Given \mathbf{z} , reconstruct $\mathbf{x} = \mathbf{U}\mathbf{z}$

Any orthogonal U sufficient if: • W = Gaussian random projection, i.e. $w_{ij} \sim \mathcal{N}(0, \frac{1}{D}) \cdot M$ $\geq cKlog(\frac{D}{V})$, where c is some constant 8 Dictionary Learning

Adapt the dictionary to signal characteristics. Objective: $(\mathbf{U}^{\star}, \mathbf{Z}^{\star}) \in \operatorname{arg\,min}_{\mathbf{U}, \mathbf{Z}} \|\mathbf{X} - \mathbf{U} \cdot \mathbf{Z}\|_F^2$ not jointly convex but convex in 1 argument.

Matrix Factorization by Iter Greedy

 $\underset{\mathbf{Z}}{\operatorname{arg\,min}} \|\mathbf{X} - \mathbf{U}^t \mathbf{Z}\|_F^2$ subject to **Z** being sparse $(\mathbf{z}_n^{t+1} \in \operatorname{arg\,min}_{\mathbf{z}} \|\mathbf{z}\|_0 \text{ s.t.} \|\mathbf{x}_n - \mathbf{U}^t \mathbf{z}\|_2 \le \sigma \|\mathbf{x}_n\|_2)$ 2. Dict update step: $\mathbf{U}^{t+1} \in \operatorname{arg\,min}_{\mathbf{U}} \| \mathbf{X} - \mathbf{U}^{t+1} \| \mathbf{X} - \mathbf{U$

Minimization 1. Coding step: \mathbf{Z}^{t+1}

 $\|\mathbf{U}\mathbf{Z}^{t+1}\|_{\mathbb{F}}^{2}$, subj to $\forall l \in [L] : \|\mathbf{u}_{l}\|_{2} = 1$. (set $\mathbf{U} = [\mathbf{u}_1^t \cdots \mathbf{u}_l \cdots \mathbf{u}_l^t], \quad \min_{u_l} ||\mathbf{X} - \mathbf{U}\mathbf{Z}^{t+1}||_F^2 =$

 $\min_{u_l} \|\mathbf{R}_l^t - \mathbf{u}_l(\mathbf{z}_l^{t+1})^\top\|_F^2 \text{ with } \mathbf{R}_l^t = \tilde{\mathbf{U}} \Sigma \tilde{\mathbf{V}}^\top \text{ by}$

9 Neural Networks **Activation:** $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ sigmoid s(x) =

 $\frac{1}{1+e^{-x}}$, s'(x) = s(x)(1-s(x)), ReLU max(0, x)

Neurons: $F_{\sigma}(\mathbf{x}; \mathbf{w}) = \sigma(w_0 + \sum_{i=1}^{M} x_i w_i)$. **Output**: linear regression $\mathbf{y} = \mathbf{W}^L \mathbf{x}^{L-1}$, binary

(logistic) $y_1 = P[Y = 1|x] = \frac{1}{1 + \exp(-w^T x^{L-1})}$, multiclass (soft-max) $y_k = P[Y = k | \mathbf{x}] =$ $\frac{\exp(\mathbf{w}_k \, \mathbf{x}^{\omega_{-1}})}{\sum_{m=1}^K \exp(\mathbf{w}^T \mathbf{x}^{L-1})}. \ \ \textbf{Loss function} \ \ l(y, \hat{y}) \text{: squa-}$

red loss $\frac{1}{2}(y - \hat{y})^2$, cross-entropy loss

 $\mathbf{U} \in \mathbb{R}^{D \times L}$ for # atoms = $L > D = \dim(\operatorname{data})$. $-y \log \hat{y} - (\tilde{1} - y) \log(1 - \hat{y})$. Units and Decoding involved \rightarrow add constraint $z^* \in Layers$: layer-to-layer fwd. prop. notati-

 $\mathbf{y} = \sigma^{(L)} \left(\mathbf{W}^{(L)} \sigma^{(L-1)} \left(\cdots \left(\sigma^{(1)} \left(\mathbf{W}^{(1)} \mathbf{x} \right) \cdots \right) \right) \right)$

vation, \mathbf{x}^+ = next layer activation. Jacobian matrix $\mathbf{J} = J_{ii}$ of mapping $\mathbf{x} \to \mathbf{x}^+$, $\mathbf{x}_i^+ = \sigma(\mathbf{w}_i^\top \mathbf{x})$, $J_{ij} = \frac{\sigma \mathbf{x_i}}{\partial \mathbf{x_i}} = w_{ij} \cdot \sigma'(\mathbf{w_i}^\top \mathbf{x})$. Across multiple layers:

 $\tfrac{\partial \mathbf{x}^{(l)}}{\partial \mathbf{x}^{(l-n)}} \, = \, \mathbf{J}^{(l)} \cdot \tfrac{\partial \mathbf{x}^{(l-1)}}{\partial \mathbf{x}^{(l-n)}} \, = \, \mathbf{J}^{(l)} \cdot \mathbf{J}^{(l-1)} \cdots \mathbf{J}^{(l-n+1)} \, \text{ and } \,$ then back prop. $\nabla_{\mathbf{v}^{(l)}}^{\top} \ell = \nabla_{\mathbf{v}}^{\top} \ell \cdot \mathbf{J}^{(L)} \cdots \mathbf{J}^{(l+1)}$ Weights: $\frac{\partial l}{\partial w_{ii}^{(l)}} = \frac{\partial l}{\partial x_i^{(l)}} \frac{\partial x_i^{(l)}}{\partial w_{ij}^{(l)}}, \frac{\partial x_i^{l}}{\partial w_{ij}^{l}}$

 $\sigma'([\mathbf{w}_i^{(l)}]^T \mathbf{x}^{(l-1)}) \cdot x_i^{(l-1)}$ (sensitivity of downstream unit · activation of up-stream unit) **Gradient Descent (or Deepest Descent)**

Gradient: $\nabla f(\mathbf{x}) := \left(\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_D}\right)^{\mathsf{T}}$ 1. init: $\mathbf{x}^{(0)} \in \mathbb{R}^D$

2. for t = 0 to maxIter: 3. $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \gamma \nabla f(\mathbf{x}^{(t)})$, usually $\gamma \approx \frac{1}{t}$ Stochastic Gradient Descent (SGD) Assume Additive Objective:

 $f(x) = \frac{1}{N} \sum_{n=1}^{N} f_n(x)$ 1. init: $\mathbf{x}^{(0)} \in \mathbb{R}^D$ 2. for t = 0 to maxIter:

3. sample $n \in_{u,a,r} \{1,...,N\}$ 4. $\mathbf{x}^{(t+1)} = \mathbf{x}^{(t)} - \gamma \nabla f_n(\mathbf{x}^{(t)})$, typically $\gamma \approx \frac{1}{t}$.

Neural Networks for Images (CNN) Translation invariance of images → neu-

rons compute same fct, shift invariant filters; weights defined as filter masks, e.g. convolution: $F_{n,m}(\mathbf{x}; \mathbf{w}) = \sigma(b + \sum_{k=-2}^{2} \sum_{l=-2}^{2} w_{k,l} x_{n+k,m+l}).$ To reduce dimension of convolution, use {max, avg}-pooling

10 Deep Unsupervised Learning Autoregressive Image $p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1})$

Variational Autoencoder

 $D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)} = \mathbb{E}_{i} \left[\frac{\log P_{i}}{\log Q_{i}} \right]$ (0:simi-

Elbo $\mathbb{E}_{x \sim P_{\mathbf{X}}} [\mathbb{E}_{z \sim O} \log P_{g}(x|z) - D^{KL}(Q(z|x)||P(z))]$ Q enc. posterior distr., P(z) prior distr. on latent var z, P_{σ} likelihood of dec. generated x Jointly trained: enc. optimize regularizer term,

sample $\mathbf{z} \sim Q$, feed to dec., produce \hat{x} to max. reconstruction quality. Both terms diff'able, can use SGD to train end-to-end.