PUBLICATION LIST

1 MAJOR REFEREED PUBLICATIONS

- 8. Mazoyer, J.; Pueyo, L.; N'Diaye, M. et al. (2018), Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. II. Optimization for Future Missions, The Astronomical Journal, 155, 8, DOI Link, 8 citations
- Mazoyer, J.; Pueyo, L.; N'Diaye, M. et al. (2018), Active Correction of Aperture Discontinuities-Optimized Stroke Minimization. I. A New Adaptive Interaction Matrix Algorithm, The Astronomical Journal, 155, 7, DOI Link, 6 citations
- 6. Fogarty, K.; Pueyo, L.; **Mazoyer, J.** et al. (2017), Polynomial Apodizers for Centrally Obscured Vortex Coronagraphs, The Astronomical Journal, 154, 240, DOI Link, 6 citations
- 5. Mazoyer, J.; Pueyo, L.; Norman, C. et al. (2016), Active compensation of aperture discontinuities for WFIRST-AFTA: analytical and numerical comparison of propagation methods and preliminary results with a WFIRST-AFTA-like pupil, Journal of Astronomical Telescopes, Instruments, and Systems, 2, 011008, DOI Link, 7 citations
- 4. Mazoyer, J.; Boccaletti, A.; Choquet, É. et al. (2016), A Symmetric Inner Cavity in the HD 141569A Circumstellar Disk, The Astrophysical Journal, 818, 150, DOI Link, 10 citations
- 3. Mazoyer, J.; Boccaletti, A.; Augereau, J.-C. et al. (2014), Is the HD 15115 inner disk really asymmetrical?, Astronomy and Astrophysics, 569, A29, DOI Link, 28 citations
- 2. Mazoyer, J.; Baudoz, P.; Galicher, R. et al. (2014), High-contrast imaging in polychromatic light with the self-coherent camera, Astronomy and Astrophysics, 564, L1, DOI Link, 26 citations
- 1. Mazoyer, J.; Baudoz, P.; Galicher, R. et al. (2013), Estimation and correction of wavefront aberrations using the self-coherent camera: laboratory results, Astronomy and Astrophysics, 557, A9, DOI Link, 27 citations

2 OTHER REFEREED PUBLICATIONS

- 17. Ertel, S.; Defrère, D.; Hinz, P. et al. (2020), The HOSTS Survey for Exozodiacal Dust: Observational Results from the Complete Survey, The Astronomical Journal, 159, 177, DOI Link
- 16. Bruzzone, J. S.; Metchev, S.; Duchêne, G. et al. (2020), Imaging the 44 au Kuiper Belt Analog Debris Ring around HD 141569A with GPI Polarimetry, The Astronomical Journal, 159, 53, DOI Link
- 15. Hom, J.; Patience, J.; Esposito, T. M. et al. (2020), First Resolved Scattered-light Images of Four Debris Disks in Scorpius-Centaurus with the Gemini Planet Imager, The Astronomical Journal, 159, 31, DOI Link
- 14. Bhowmik, T.; Boccaletti, A.; Thébault, P. et al. (2019), Spatially resolved spectroscopy of the debris disk HD 32297. Further evidence of small dust grains, Astronomy and Astrophysics, 630, A85, DOI Link, 7 citations

- 13. Ren, B.; Choquet, É.; Perrin, M. D. et al. (2019), An Exo-Kuiper Belt with an Extended Halo around HD 191089 in Scattered Light, The Astrophysical Journal, 882, 64, DOI Link, 3 citations
- 12. Stark, C. C.; Belikov, R.; Bolcar, M. R. et al. (2019), ExoEarth yield landscape for future direct imaging space telescopes, Journal of Astronomical Telescopes, Instruments, and Systems, 5, 024009, DOI Link, 2 citations
- 11. Engler, N.; Boccaletti, A.; Schmid, H. M. et al. (2019), Investigating the presence of two belts in the HD 15115 system, Astronomy and Astrophysics, 622, A192, DOI Link, 6 citations
- Esposito, T. M.; Duchêne, G.; Kalas, P. et al. (2018), Direct Imaging of the HD 35841 Debris Disk: A Polarized Dust Ring from Gemini Planet Imager and an Outer Halo from HST/STIS, The Astronomical Journal, 156, 47, DOI Link, 5 citations
- 9. Leboulleux, L.; Sauvage, J.-F.; Pueyo, L. A. et al. (2018), Pair-based Analytical model for Segmented Telescopes Imaging from Space for sensitivity analysis, Journal of Astronomical Telescopes, Instruments, and Systems, 4, 035002, DOI Link, 2 citations
- 8. Poteet, C. A.; Chen, C. H.; Hines, D. C. et al. (2018), Space-based Coronagraphic Imaging Polarimetry of the TW Hydrae Disk: Shedding New Light on Self-shadowing Effects, The Astrophysical Journal, 860, 115, DOI Link, 4 citations
- Jensen-Clem, R.; Mawet, D.; Gomez Gonzalez, C. A. et al. (2018), A New Standard for Assessing the Performance of High Contrast Imaging Systems, The Astronomical Journal, 155, 19, DOI Link, 13 citations
- Perrot, C.; Boccaletti, A.; Pantin, E. et al. (2016), Discovery of concentric broken rings at sub-arcsec separations in the HD 141569A gas-rich, debris disk with VLT/SPHERE, Astronomy and Astrophysics, 590, L7, DOI Link, 25 citations
- 5. Delorme, J. R.; Galicher, R.; Baudoz, P. et al. (2016), Focal plane wavefront sensor achromatization: The multireference self-coherent camera, Astronomy and Astrophysics, 588, A136, DOI Link, 10 citations
- 4. Choquet, É.; Perrin, M. D.; Chen, C. H. et al. (2016), First Images of Debris Disks around TWA 7, TWA 25, HD 35650, and HD 377, The Astrophysical Journal, 817, L2, DOI Link, 44 citations
- 3. Debes, J. H.; Ygouf, M.; Choquet, E. et al. (2016), Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets coronagraphic operations: lessons learned from the Hubble Space Telescope and the James Webb Space Telescope, Journal of Astronomical Telescopes, Instruments, and Systems, 2, 011010, DOI Link, 9 citations
- 2. Wiens, R. C.; Maurice, S.; Lasue, J. et al. (2013), Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover, Spectrochimica Acta, 82, 1, DOI Link, 125 citations
- 1. Cousin, A.; Forni, O.; Maurice, S. et al. (2011), Laser induced breakdown spectroscopy library for the Martian environment, Spectrochimica Acta, 66, 805, DOI Link, 44 citations

3 PHD THESIS

• Mazoyer, J. (2014), High-Contrast Direct Imaging of Exoplanets and Circumstellar Disks: From the Self-Coherent Camera to NICI Data Analysis, Ph.D. Thesis, DOI Link, 2 citations

4 MAJOR CONFERENCE PROCEEDINGS

- 19. Fogarty, K.; Mazoyer, J.; St. Laurent, K. et al. (2018), Optimal deformable mirror and pupil apodization combinations for apodized pupil Lyot coronagraphs with obstructed pupils, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698, 106981J, DOI Link, 1 citation
- 18. Ruane, G.; Riggs, A.; **Mazoyer, J.** et al. (2018), Review of high-contrast imaging systems for current and future ground- and space-based telescopes I: coronagraph design methods and optical performance metrics, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698, 106982S, DOI Link, 2 citations
- 17. Mazoyer, J.; Pueyo, L.; N'Diaye, M. et al. (2017), Capabilities of ACAD-OSM, an active method for the correction of aperture discontinuities, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10400, 104000G, DOI Link, 2 citations
- Mazoyer, J.; Pueyo, L. (2017), Fundamental limits to high-contrast wavefront control, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10400, 1040014, DOI Link, 1 citation
- 15. Leboulleux, L.; N'Diaye, M.; **Mazoyer, J.** et al. (**2017**), Comparison of wavefront control algorithms and first results on the high-contrast imager for complex aperture telescopes (hicat) testbed, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10562, 105622Z, DOI Link
- 14. Fogarty, K.; Pueyo, L.; **Mazoyer, J.** et al. (2017), *Tip/tilt optimizations for polynomial apodized vortex coronagraphs on obscured telescope pupils*, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10400, 104000T, DOI Link, 2 citations
- 13. Mazoyer, J.; Pueyo, L.; N'Diaye, M. et al. (2016), Correcting for the effects of pupil discontinuities with the ACAD method, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 9904, 99044T, DOI Link, 1 citation
- 12. Mazoyer, J.; Pueyo, L.; Norman, C. et al. (2015), Active correction of aperture discontinuities (ACAD) for space telescope pupils: a parametric analysis, Techniques and Instrumentation for Detection of Exoplanets VII, 9605, 96050M, DOI Link, 9 citations
- 11. N'Diaye, M.; **Mazoyer, J.**; Choquet, É. et al. (2015), High-contrast imager for complex aperture telescopes (HiCAT): 3. first lab results with wavefront control, Techniques and Instrumentation for Detection of Exoplanets VII, 9605, 96050I, DOI Link, 7 citations
- 10. Mazoyer, J.; Boccaletti, A.; Augereau, J.-C. et al. (2014), Is the HD 15115 circumstellar disk really asymmetrical?, Thirty years of Beta Pic and Debris Disks Studies, 47
- 9. Mazoyer, J.; Galicher, R.; Baudoz, P. et al. (2014), Deformable mirror interferometric analysis for the direct imagery of exoplanets, Adaptive Optics Systems IV, 9148, 914846, DOI Link, 1 citation
- 8. Mazoyer, J.; Baudoz, P.; Galicher, R. et al. (2013), Direct detection of exoplanets in polychromatic light with a Self-coherent camera, Proceedings of the Third AO4ELT Conference, 97, DOI Link
- 7. Baudoz, P.; Mazoyer, J.; Galicher, R. (2013), Laboratory tests of planet signal extraction in high contrast images, Proceedings of the Third AO4ELT Conference, 109, DOI Link, 1 citation

- 6. Mazoyer, J.; Galicher, R.; Baudoz, P. et al. (2013), Speckle correction in polychromatic light with the self-coherent camera for the direct detection of exoplanets, Techniques and Instrumentation for Detection of Exoplanets VI, 8864, 88640N, DOI Link, 1 citation
- Galicher, R.; Mazoyer, J.; Baudoz, P. et al. (2013), High-contrast imaging with a self-coherent camera, Techniques and Instrumentation for Detection of Exoplanets VI, 8864, 88640M, DOI Link
- 4. Baudoz, P.; Mazoyer, J.; Mas, M. et al. (2012), Dark hole and planet detection: laboratory results using the self-coherent camera, Ground-based and Airborne Instrumentation for Astronomy IV, 8446, 84468C, DOI Link, 10 citations
- 3. Mas, M.; Baudoz, P.; **Mazoyer, J.** et al. (2012), Experimental results on wavefront correction using the self-coherent camera, Ground-based and Airborne Instrumentation for Astronomy IV, 8446, 844689, DOI Link, 4 citations
- 2. Mazoyer, J.; Baudoz, P.; Mas, M. et al. (2012), Experimental parametric study of the self-coherent camera, Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, 8442, 844250, DOI Link, 2 citations
- Gasnault, O.; Mazoyer, J.; Cousin, A. et al. (2012), Deciphering Sample and Atmospheric Oxygen Contents with ChemCam on Mars, Lunar and Planetary Science Conference, 2888, 1 citation

5 OTHER CONFERENCE PROCEEDINGS

- 13. Stark, C. C.; Belikov, R.; Bolcar, M. R. et al. (2019), The Exoplanet Yield Landscape for Future Direct Imaging Space Telescopes, The Space Astrophysics Landscape for the 2020s and Beyond, 2135, 5001
- 12. N'Diaye, M.; Fogarty, K.; Soummer, R. et al. (2018), Apodized Pupil Lyot coronagraphs with arbitrary aperture telescopes: novel designs using hybrid focal plane masks, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698, 106986A, DOI Link
- 11. Soummer, R.; Brady, G. R.; Brooks, K. et al. (2018), High-contrast imager for complex aperture telescopes (HiCAT): 5. first results with segmented-aperture coronagraph and wavefront control, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698, 106981O, DOI Link
- Snik, F.; Absil, O.; Baudoz, P. et al. (2018), Review of high-contrast imaging systems for current and future ground-based and space-based telescopes III: technology opportunities and pathways, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation III, 10706, 107062L, DOI Link, 2 citations
- 9. St. Laurent, K.; Fogarty, K.; Zimmerman, N. T. et al. (2018), Apodized pupil Lyot coronagraphs designs for future segmented space telescopes, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698, 106982W, DOI Link
- 8. Jovanovic, N.; Absil, O.; Baudoz, P. et al. (2018), Review of high-contrast imaging systems for current and future ground-based and space-based telescopes: Part II. Common path wave-front sensing/control and coherent differential imaging, Adaptive Optics Systems VI, 10703, 107031U, DOI Link, 4 citations

- Leboulleux, L.; Pueyo, L.; Sauvage, J.-F. et al. (2018), Sensitivity analysis for high-contrast imaging with segmented space telescopes, Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave, 10698, 106986H, DOI Link
- Egron, S.; Soummer, R.; Lajoie, C.-P. et al. (2017), James Webb Space Telescope optical simulation testbed IV: linear control alignment of the primary segmented mirror, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10398, 1039811, DOI Link
- 5. Pueyo, L.; Zimmerman, N.; Bolcar, M. et al. (2017), The LUVOIR architecture "A" coronagraph instrument, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 10398, 103980F, DOI Link, 6 citations
- 4. Leboulleux, L.; N'Diaye, M.; Riggs, A. J. E. et al. (2016), High-contrast imager for Complex Aperture Telescopes (HiCAT). 4. Status and wavefront control development, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave, 9904, 99043C, DOI Link
- 3. Galicher, R.; Baudoz, P.; Delorme, J. R. et al. (2014), *High contrast imaging on the THD bench: progress and upgrades*, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, 9143, 91435A, DOI Link, 1 citation
- 2. Delorme, J. R.; Galicher, R.; Baudoz, P. et al. (2014), High-contrast imaging in wide spectral band with a self-coherent camera and achromatic coronagraphs, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation, 9151, 91515Q, DOI Link, 1 citation
- 1. Galicher, R.; Delorme, J. R.; Baudoz, P. et al. (2013), Focal Plane Wavefront Sensing with a self-coherent camera, Proceedings of the Third AO4ELT Conference, 123, DOI Link