WRF-bPlume tutorial

Sudheer R Bhimireddy

UTSA (2015-2020)

email: fhl598@my.utsa.edu

Installing WRF-bPlume

- Get the latest link from the WRF-bPlume website (Link to be added here) or GitHub (https://github.com/sudheer-wrf/wrf-bplume)
- Follow usual WRF-ARW compiling steps
 - (https://www2.mmm.ucar.edu/wrf/OnLineTutorial/compilation_tutorial.php)
- Compile WRF in Large-eddy simulation mode
- A successful compilation for idealized cases will result in ideal.exe and wrf.exe executables in the main/ directory
- Start building cases using the test case available within WRF build
- For a quick CBL case, use /test/em_les/ present in the main WRF directory
- Key files modified for WRF-bPlume are present in Registry/ and dyn em/ directories

Useful WRF-ARW links

Technical guide https://opensky.ucar.edu/islandora/object/opensky:2898

WRF Dynamics guide https://www2.mmm.ucar.edu/wrf/users/docs/wrf-dyn.html

User guide https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/v4.0/contents.html

Tutorials page https://www2.mmm.ucar.edu/wrf/users/supports/tutorial.html

Best Practices https://www2.mmm.ucar.edu/wrf/users/namelist_best_prac_wrf.html

Type of flows to simulate using WRF-bPlume

New in WRF-bPlume

New variables added in WRF-bPlume are:

■ tke_heat_flux_hot — additional heat flux at the source location

heat_flux_wait_minsMinutes from simulation start to release the plume

heat_flux_run_mins
 Minutes from plume start to turn off the plume source

density current — Flag to simulate lock-exchange density current

lock length — density current lock length

lock_height — density current lock height

lock_mixture — density current lock fluid mixing ratio

axisymmetric_plume — flag to simulate axisymmetric plume at the center of the bottom boundary

plume_gas_constant– Gas constant of plume material

■ plume surface flux
 — Surface flux of plume mixing ratio

■ source dia — Plume source diameter

Files modified for WRF-bPlume

For WRF-bPlume following files are modified based on the default WRF-ARW framework (v 4.0.3):

- Registry/Registry.EM_COMMON
- /dyn_em/module_big_step_utilities.F
- /dyn_em/module_diffusion_em.F
- /dyn_em/module_em.F
- /dyn_em/module_initialize_ideal.F
- /dyn_em/solve_em.F
- /share/wrf_timeseries.F

Setting Simulation times

```
&time control
 run days
                                        = 0,
 run hours
                                        = 0,
 run minutes
 run seconds
                                        = 0,
                                        = 0001,
 start year
 start month
                                        = 01,
                                                            WRF stops running when either run_* or end_*
 start day
                                        = 01,
                                                            condition is fulfilled
 start_hour
                                        = 00,
                                        = 00,
 start minute
                                        = 00,
 start_second
                                        = 0001.
 end_year
 end month
                                        = 01,
 end_day
 end hour
                                        = 04,
 end minute
                                        = 00,
                                                            WRF writes the output for each domain.
 end_second
                                        = 00,
                                                            Minimum time step to write is 1s
 history_interval_m
                                        = 00,
history_interval_s
                                        = 10,<sup>4</sup>
                                        = 90,
 frames_per_outfile
                                                            Restart runs are half-completed runs
 restart
                                        = .false.,
                                                            The start time must match the time information in
 restart_interval_m
                                        = 15,
                                                            restart file (wrfrst_d01_*.nc)
 io_form_history
 io_form_restart
 io form input
                                        = 2
 io_form_boundary
 iofields_filename
                                        = "myoutfields.txt"
```

Contents of myoutfields.txt

- Useful in reducing the WRFOUT file size
- Many of the default variables written by WRF are unimportant for ideal cases
- -:h:0:LU INDEX,DZS,VAR SSO,NEST POS,FNM,FNP,RDNW,RDN,DNW,DN,CFN,CFN1,RDX,RDY,RESM
- -: h:0:ZETATOP, CF1, CF2, CF3, ITIMESTEP, XTIME, SHDMAX, SHDMIN, SNOALB, TSLB
- -:h:0:SMOIS,SH20,SEAICE,XICEM,SFR0FF
- -: h:0:UDROFF, IVGTYP, ISLTYP, VEGFRA, ACSNOM, SNOW, SNOWH, CANWAT, COSZEN, LAI, VAR
- -:h:0:MAPFAC M, MAPFAC U, MAPFAC V, MAPFAC MX, MAPFAC MY, MAPFAC UX, MAPFAC UY
- -:h:0:MAPFAC VX,MF VX INV,MAPFAC VY
- -:h:0:F,E,SINALPHA,COSALPHA,TISO,MAX_MSTFX,MAX_MSTFY,RAINC,RAINSH,RAINNC
- -:h:0:SNOWNC,GRAUPELNC,HAILNC,SWDOWN
- -: h:0:0LR,CLAT,ALBBCK,EMISS,NOAHRES,TMN,SNOWC,SR,C1H,C2H,C1F,C2F,C3H,C4H,C3F,C4F,PCB,PC
- -:h:0:LANDMASK,LAKEMASK
- -:h:0:HFX_FORCE_TEND,LH_FORCE_TEND,TSK_FORCE_TEND,HFX_FORCE,LH_FORCE,TSK_FORCE
- -:h:0:ZS,SSTSK,GLW,SWNORM
- -:h:0:ISEEDARR_SPPT,ISEEDARR_SKEBS,ISEEDARR_RAND_PERTURB,ISEEDARRAY_SPP_CONV
- -:h:0:ISEEDARRAY_SPP_PBL,ISEEDARRAY_SPP_LSM,THIS_IS_AN_IDEAL_RUN
- -:h:0:SAVE_TOPO_FROM_REAL,TLP,SST_INPUT
- -:h:0:CLDFRA, ALBEDO, ZNU, ZNW
- -:h:0:Q2,T2,TH2,U10,V10,GRDFLX,ACGRDFLX,HGT,P_STRAT,XLAT_U,XLONG_U,XLAT_V,XLONG_V
- +:h:0:PBLH,ACHFX,ACLHF,SST

Setting Simulation domain

```
&domains
 time_step
time_step_fract_num
 time_step_fract_den
max_dom
 s_we
e_we
 s_sn
e_sn
 s_vert
e_vert
 dx
 dy
 ztop
grid_id
 parent_id
 i_parent_start
 j parent start
 parent_grid_ratio
 parent_time_step_ratio
 feedback
 smooth option
```

```
Fractional timesteps are written as numerator
                       and denominator (here, dt = 1/6 sec)
  201,
= 201,
                          Indices within WRF code starts
                          at 1 rather than 0
= 301,
= 20,
= 20,
= 3000,
= 0,
= 0,
= 0
```

Setting Simulation physics

- For Large-eddy simulations, no need to use PBL or Cummulus schemes.
- mp_physics is the key that invokes which microphysics variables are to be considered
- Buoyant gas in bPlume model is part of such schemes

&physics

mp_physics	= ∅, -
ra_lw_physics	= 0,
ra_sw_physics	= 0, mp_physics = 0 tells WRF to resolve only water
radt	= 0, vapor ratios and plume mixing ratios
sf_sfclay_physics	= 1,
sf_surface_physics	= 0,
bl_pbl_physics	= 0,
bldt	= 0,
cu_physics	= 0,
cudt	= 0,
isfflx	= 2,
ideal_xland	= 1,
num_soil_layers	= 5,

Setting Simulation dynamics

Dynamics module is the place where all the plume related inputs are given

```
&dynamics
 hybrid_opt
                                         = 0,
                                         = 3,
 rk_ord
 diff_opt
 km_opt
 damp_opt
                                         = 0,
                                                               Tells which sub-grid scale model is to be used
 zdamp
                                         = 200.,
 dampcoef
                                         = 0.2,
 khdif
 kvdif
                                         = 0.18
 C_S
 c_k
                                         = 0.10
 mix_isotropic
 smdiv
                                         = 0.1,
 emdiv
                                         = 0.01,
                                         = 0.1,
 epssm
```

Setting Simulation dynamics

```
&dynamics
                                                               Used to control the heat-flux at plume source
 tke heat flux
                                          = 0.24,
                                                               Total source heat-flux = sum of both heat_flux*
                                          = 0.24,
 tke_heat_flux_hot
                                                               As long as it is 0, heat flux len will have no
 heat flux len
                                          = 1.,
                                                               effect
 heat_flux_wait_mins
                                          = 35.,
 heat flux run mins
                                          = 180.,
                                                               Tells when to start releasing the plume and how
 density current
                                          = 0.,
                                                               long to keep the source "ON"
 axisymmetric_plume
                                          = 1.,
                                                               Minutes are calculated from the simulation start
 lock length
                                          = 100.,
                                                               time (not the restart time)
                                          = 50.,
 lock height
                                          = 0.0,
 lock mixture
 plume_gas_constant
                                          = 488.92,
                                                                 Plume source details
 plume surface flux
                                          = -10., (g/kg m/s)
                                                                      -ve for buoyant gas and +ve for dense gas
 source dia
                                          = 400.
                                          = 6,
 time_step_sound
                                          = .false.,
 pert coriolis
                                                                 Trigger to turn Coriolis balance on/off
 use_theta_m
                                          = 1,
 sfs_opt
                                          = 1,
                                          = 1,
m_opt
 tke_drag_coefficient
                                          = 0.005,
 top_lid
                                          = .false.,
```

Setting boundary conditions

• For LES runs, periodic in horizontal boundary condition is used

```
&bdy_control
 periodic x
                                      = .true.,
 symmetric_xs
                                      = .false.,
                                      = .false.,
 symmetric_xe
                                      = .false.,
 open_xs
                                      = .false.,
 open_xe
periodic_y
                                      = .true.,
                                      = .false.,
 symmetric_ys
                                      = .false.,
 symmetric_ye
                                      = .false.,
 open_ys
                                      = .false.,
 open_ye
```

Setting initial conditions

- For LES runs, initial sounding profiles are required as initial conditions
- These are given through input_sounding file in the same directory

1000.00 25.00 75.00 125.00 175.00 225.00 275.00 325.00 375.00 1725.00 1975.00 2025.00	305.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	14.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 4.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	First line gives the temperature and moisture mixing ratio at the surface level (1000 corresponds to pressure) Required inputs are temperature, moisture, U and V wind components This example has no mean wind
1975.00	302.43	10.00	10.00	0.00	This example has no mean wind
2075.00 2125.00 2175.00	308.05 308.20 308.35	4.00 4.00 4.00	10.00 10.00 10.00	0.00 0.00 0.00	
2225.00	308.50	4.00	10.00	0.00	

Setting Convective Boundary Cases

For practice with CBL runs, a good place to start - /Build_WRF/WRF-4.0.3/test/em_les/

 Initialize domain with surface heat-flux and soundings

- Run until boundary layer develops
- Write restart files

 Restart the simulation and start releasing the plume using heat_flux_wait_mins

Setting Simulation times – Plume + CBL

```
&time control
 run days
                                        = 0,
 run hours
 run minutes
                                        = 0,
 run seconds
                                        = 0,
 start_year
                                        = 0001,
 start month
                                        = 01,
                                                           This is a restart run.
 start day
                                        = 01,
                                                           Lets say, CBL simulation took 2 hr to build and we
 start hour
                                                           have WRF restart files written every 15min.
 start minute
                                        = 00,
 start_second
                                        = 00,
                                                           So now we want to start the plume, so
 end_year
                                        = 0001,
                                                           start_hour is set to 2 and make sure respective
 end month
                                        = 01,
                                                           wrfrst d01 * file is available in the same folder
 end_day
                                        = 01,
 end hour
                                        = 04,
 end minute
                                        = 00,
 end second
                                        = 00,
 history_interval_m
                                        = 00,
history_interval_s
                                        = 10,
                                        = 90,
 frames per outfile
 restart
                                        = .true.,
 restart_interval_m
                                        = 15,
 io_form_history
 io_form_restart
 io form input
                                        = 2
 io_form_boundary
 iofields_filename
                                        = "myoutfields.txt"
```

Writing high-frequency data

- High-frequency (HF) data = data written at every timestep
- By default, WRF does not write any HF data
- Only way to get HF data is through tslist input
- For LES cases, grid indices are required

#					#
# 24 characters for name	pfx	I		J 	#
center001	c0001	150		50	11
left0001	i0001	151		50	
left0002	i0002	152		50	
left0003	i0003	153		50	
left0004	i0004	154		50	
left0005	i0005	155		50	

Reading WRFOUT data

- WRF writes its output in NetCDF format
- Easiest and quickest way to read WRFOUT files is to use 'ncl' scripts
- Alternative way is to use netcdf reader present in MATLAB

* I use ncl script to write Eulerian data as a 1d array in csv files, then use MATLAB to read csv and build mat files

Reading High-frequency data

- WRF writes high-frequency data as ASCII files or log files
- Any ASCII reader should work to read the high-frequency data

Reading WRFOUT data

MATLAB script to read Eulerian data written by WRF

```
% Specify domain size and output frequency used when writing the WRFOUT files
nt = 90;
nz = 700;
nx = 45;
ny = 45;
% Read T
data1 = csvread('LES_3D_T_NBL_7km_HFX_150_case3_1.csv',1,0);
data1 = reshape(data1,[nx ny nz nt]);
data = data1;
% If reading more than 1 csv written from WRFOUT files, concatenate time dimension
%data = cat(4,data1,data2,data3,data4,data5,data6);
clear data1 data2 data3 data4 data5 data6
save(strcat('NBL 3D T F', HFX, '.mat'), 'data', '-v7.3');
```

Reading High-frequency data

MATLAB script to read high-frequency files written by WRF

```
% Specify directory where all the high-frequency files are stored
Files directory = './Instantaneous/';
fileslist = dir(Files_directory);
nFiles = size(fileslist,1);
for iFile = 3:nFiles % Check this, usually on Stampede system, actual files start from 3<sup>rd</sup> index
    filename = fileslist(iFile).name;
    fileData = strcat(Files_directory, filename);
    temp0 = importdata(fileData);
    totalRows = size(temp0,1); k = 1;
    for kk = 2:totalRows
        temp1 = temp0{kk,1};
        temp2 = strsplit(temp1, ' ');
              = 1;
        for i = 2:size(temp2,2)
            data(k,j) = str2double(temp2{1,i});
                      = i + 1;
        end
        k = k + 1;
    end
    saveFile = strcat('./Instantaneous_MAT_Files/',filename,'.mat');
    save(saveFile, 'data');
    clear data
```