Numericals on Sensors

- Q.1: Calculate the length of an iron rod which can be used to produce ultrasonic waves of 20 KHz. Given, Y= 11.6×10^{10} N/m² and ρ = 7.23×10^{3} kg/m³.
- Q.2: Calculate the natural frequency of a pure iron rod of 40 mm length. The density of pure iron is 7.25×10^3 kg/m³ and its Young modulus is 115×10^9 N/m². Can the magnetostriction oscillator produce ultrasonic waves with this rod? Comment on the result.
- Q.3: Find the natural frequency of vibrations of a quartz plate of thickness 1.8 mm. Given, $Y = 8x10^{10} \text{ N/m}^2$ and density =2650 kg/m3. Also calculate the change in the thickness required if the same plate is to be used to produce ultrasonic waves of frequency 2 MHz.
- Q.4: Certain piezoelectric crystal of thickness 4 mm produces ultrasonic waves of frequency 400 KHz. Calculate the thickness of this crystal to produce ultrasonic frequency of 500 KHz.
- Q.5: For Fe-Cu thermocouple, the neutral temperature is 285 $^{\circ}$ C when the cold junction temperature is 0 $^{\circ}$ C. Calculate the temperature of inversion if the cold junction temperature is -30 $^{\circ}$.
- Q.6: Calculate thermos emf of Sb-Au thermocouple whose junctions are at 0 °C and 100 °C. Given the Seebeck coefficients a and b for Sb and Au as, $a_{Sb-Pb}=35.58 \mu V/^{\circ}C$; $b_{Sb-Pb}=0.146 \mu V/^{\circ}C^{2}$; $a_{Au-Pb}=2.90 \mu V/^{\circ}C$; $b_{Au-Pb}=0.009 \mu V/^{\circ}C^{2}$.
- Q.7: The thermo emf of a Cu-Fe thermocouple of 2160 μ V when the cold junction is at 0 °C and the hot junction at 250 °C. Calculate the constants a and b if the neutral temperature is 330 °C.
- Q.8: The thermo- electric power of iron is 17.5 micro Volt/ degree C at 0 C and 5 micro Volt/ degree at 125 C. The thermo electric power of cadmium is 3 micro Volt/ degree C at 0 C and 15 micro Volt/ degree C at 150 C. Calculate the neutral temperature of Iron Cadmium junction.

