

Università degli Studi dell'Insubria Dipartimento di Scienze Teoriche e Applicate

Architettura degli elaboratori

ALUUnità Aritmetica Logica

Unità Aritmetico-Logica (ALU)

- È un circuito combinatorio multifunzione
 - È capace di svolgere diverse funzioni, a comando!
- Un comando (opportunamente codificato) seleziona quale delle diverse funzioni deve essere prodotta in uscita
- Le funzioni sono di tipo logico e matematico (donde il nome)

Input:

- almeno due (su alcune ALU, tre) operandi, di n bit ciascuno
- un **codice comando**, che identifica quale operazione applicare (di k bit, se ho al più 2^k comandi diversi fra cui scegliere)
- (a volte): un bit extra, usato come riporto di ingresso (nelle somme)

Output

- ▶ il **risultato** dell'operazione richiesta (ancora di *n* bit)
- alcuni bit di esito (esempio: «c'è stato overflow)?
- Non tutti gli ingressi e le uscite sono rilevanti per tutte le operazioni

Unità Aritmetico-Logica (ALU)

Implementazione di una ALU: schema astratto

Esempio: Le funzioni di una semplice ALU

Codice comando	Comando	Uscita	Esiti
0	Add	A+B+C _{in}	Riporto
1	Sub	A-B-C _{in}	Prestito
2	Pass A	A	N/D
3	Pass B	В	N/D
4	Zero	0	N/D
5	One	1	N/D
6	Shift Left A	Bit[i] = A[i-1], LSB =0	MSB(A)
7	Shift Right A	Bit[i] = A[+1], MSB =0	LSB(A)
8	Null	N/D	A=0
9	Compare	N/D	A>B, A=B, A <b< td=""></b<>
10	Multiply	A*B	Riporto
•••			•••

