CS 201c, Tutorial 1: Asymptotic Analysis

Assumptions. n varies over natural numbers. f(n), $f_1(n)$, $f_2(n)$ and g(n), $g_1(n)$, $g_2(n)$ are strictly greater than 0 for every natural number n. \mathbb{N} denotes the set of natural numbers.

1. Show that if $f_1(n) = \Theta(g_1(n))$ and $f_2(n) = \Theta(g_2(n))$, then $f_1(n) \cdot f_2(n) = \Theta(g_1(n) \cdot g_2(n))$.

Can we also say that $\frac{f_1(n)}{f_2(n)} = \Theta\left(\frac{g_1(n)}{g_2(n)}\right)$?

- 2. (a) Show that if $f(n) \sim g(n)$, then $f(n) = \Theta(g(n))$.
 - (b) Show that the converse of the above statement is not always true.
- 3. Show that:

$$\log_2(1) + \log_2(2) + \dots + \log_2(n) = \Theta(n(\log_2(n))^2)$$

- 4. Show that $2^n = o(3^n)$.
- 5. Is $2^n \sim 2^{n + \log_2(n)}$? Is $2^n \sim 2^{n + \frac{1}{\log_2(n)}}$? Is $n^{(\log_2(n))^2} = o(2^n)$?
- 6. Show that:

$$\sqrt{1} + \sqrt{2} + \dots + \sqrt{n} = \Theta(n^{\frac{3}{2}})$$

In general, for any real number $\alpha > 0$, prove that:

$$1^{\alpha} + 2^{\alpha} + \dots + n^{\alpha} = \Theta(n^{1+\alpha})$$

7. For a positive real number T, let

$$f(T) = \max\{n \mid n \in \mathbb{N} \text{ and } n \log_2(n) \le T\}$$

Show that $f(T) \sim \frac{T}{\log_2(T)}$.