Perfect Polish spaces

Alessandro Andretta

Dipartimento di Matematica Università di Torino

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-2025

1/16

Definition

- A point x of a topological space X is **isolated** if there is an open neighborhood U of it such that $U=\{x\}$.
- A space is **perfect** if it has no isolated point.
- A subset $P \subseteq X$ is **perfect in** X if it is closed and perfect with respect to the relative topology.

Remark

If x is not isolated in (X,d), then every open neighborhood U of x is infinite, as we can recursively define $(x_n)_{n\in\mathbb{N}}$ distinct points in U: fix $\varepsilon>0$ such that $\mathrm{B}_d(x,\varepsilon)\subseteq U$ and pick any $x_0\in\mathrm{B}_d(x,\varepsilon)\setminus\{x\}$. Then let x_{n+1} be any point in $\mathrm{B}_d(x,d(x,x_n))\setminus\{x\}$ (such x_n 's exist because x is not isolated in X).

 \mathbb{R}^n , $\mathbb{R}^\mathbb{N}$, \mathbb{C}^n , $\mathbb{C}^\mathbb{N}$, $[0;1]^n$, $[0;1]^\mathbb{N}$, $2^\mathbb{N}$, $\mathbb{N}^\mathbb{N}$, C(X) with X compact metrizable, . . . are perfect Polish spaces.

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 2 / 1

Theorem 1.4.3 [Kec95, Theorem 6.2]

Let X be a nonempty perfect completely metrizable space. Then $2^{\mathbb{N}}$ embeds into X, that is: there is a closed $C \subseteq X$ homeomorphic to $2^{\mathbb{N}}$.

Proof.

Fix a complete compatible metric $d \leq 1$ on X. By Lemma 1.3.6, it is enough to build a 2-scheme $\{B_s \mid s \in 2^{<\omega}\}$ such that

- $\bullet B_{s^{\smallfrown}i} \cap B_{s^{\smallfrown}j} = \emptyset \text{ if } i \neq j;$
- $2 B_s$ is open and nonempty;

Let B_\emptyset be nonempty open. Given B_s , define $B_{s^\smallfrown 0}$ and $B_{s^\smallfrown 1}$ as follows. Choose two distinct points $x_0, x_1 \in B_s$, let $\varepsilon_i > 0$ be small enough so that $\mathrm{B}_d(x_i, \varepsilon_i) \subseteq B_s$, and set $B_{s^\smallfrown i} = \mathrm{B}_d(x_i, \varepsilon)$ where $\varepsilon = \frac{1}{2} \min\{2^{-(\mathrm{lh}(s)+1)}, \varepsilon_0, \varepsilon_1, d(x_0, x_1)\}$. It is easy to check that such $B_{s^\smallfrown i}$ has the required properties.

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-2025

3 / 16

Corollary 1.4.4 [Kec95, Corollary 6.3]

Every nonempty perfect Polish space has the cardinality of the continuum 2^{\aleph_0} . The same is true for nonempty perfect subsets of a Polish space.

Proof.

By Theorem 1.4.3, a nonempty perfect (subset of a) Polish space X contains a copy of $2^{\mathbb{N}}$, and thus has cardinality $\geq 2^{\aleph_0}$. The fact that $|X| \leq 2^{\aleph_0}$ follows from the fact that by Theorem 1.3.17 the space $\mathbb{N}^{\mathbb{N}}$ surjects onto X, together with the fact that $\mathbb{N}^{\mathbb{N}}$ has has cardinality 2^{\aleph_0}

A. Andretta (Torino)

Perfect Polish spaces

Remark 1.4.5

One can directly show that $\mathbb{N}^{\mathbb{N}}$ surjects onto X as follows. Let $D=\{x_n\mid n\in\mathbb{N}\}$ be a countable dense subset of X. Then the map $f\colon\mathbb{N}^{\mathbb{N}}\to X$ defined by

$$f(y) = \begin{cases} \lim_{n \to \infty} x_{y(n)} & \text{if } (x_{y(n)})_{n \in \mathbb{N}} \text{ converges in } X \\ x_0 & \text{otherwise} \end{cases}$$

is clearly surjective. More generally, this argument shows that if a metrizable space X has a dense subset of cardinality κ , then there is a surjection of κ^{ω} onto X and thus X has cardinality $\leq \kappa^{\aleph_0}$.

Definition

A point x in a topological space X is a **condensation point** if every open neighborhood of x is uncountable.

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-2025

5 / 16

Theorem 1.4.7 (Cantor-Bendixson) [Kec95, Theorem 6.4]

A separable metrizable X can be written as a disjoint union $X = P \cup C$ with P perfect and C a countable open set. If X is Polish, then such a decomposition is unique.

If $X = \mathbb{Q}$, then we could set $P = \mathbb{Q}$ and $C = \emptyset$, or $P = \emptyset$ and $C = \mathbb{Q}$. When X is Polish, the perfect subset P above is the **perfect kernel** of X.

Proof

Let $X^* = \{x \in X \mid x \text{ is a condensation point of } X\}$. Set $P = X^*$ and $C = X \setminus P$. We claim that P and C are as required. First observe that if \mathcal{B} is a countable basis for X then $C = \bigcup \{U \in \mathcal{B} \mid U \text{ is countable}\}$, thus C is open and countable and P is closed. To show that P has no isolated point (with respect to its relative topology!), let $x \in P$ and U be an open neighborhood of x. Then U is uncountable because x is a condensation point, and since C is countable this implies that there is some (in fact, uncountably many) $y \in U \cap P$ witnessing that $U \cap P \neq \{x\}$.

(continues)

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 6 / 16

Proof (continued).

To prove uniqueness, suppose that X is Polish and that $X=P_1\cup C_1$ is another decomposition as in the statement of the theorem. Notice that if Y is a perfect Polish space then $Y^*=Y$. Indeed, if $y\in Y$ and U is an open neighborhood of y, then $U\cap Y$ is a perfect nonempty Polish space, and thus has cardinality 2^{\aleph_0} by Corollary 1.4.4. Thus $P_1^*=P_1$, whence $P_1=P_1^*\subseteq X^*=P$ because $Y\subseteq Z$ implies $Y^*\subseteq Z^*$. Moreover, if $x\in C_1$ then $x\in C$, as witnessed by the countable open set C_1 itself: therefore $C_1\subseteq C$. It follows that $P_1=P$ and $C_1=C$.

Remark

In the proof above we actually showed that if P_1 is a perfect subset of a Polish space X, then $P_1 \subseteq P$, where $P = X^*$ is the perfect kernel of X. Thus the perfect kernel of a Polish space can also be characterized as the largest (with respect to inclusion) perfect subset of it.

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-2025

7 / 16

Corollary 1.4.9 [Kec95, Corollary 6.5]

Any uncountable Polish space contains a (necessarily closed) homeomorphic copy of $2^{\mathbb{N}}$ and has cardinality 2^{\aleph_0} .

Proof.

Let P be the perfect kernel of the Polish space X. Since $C = X \setminus P$ is a countable open set, if X is uncountable then $P \neq \emptyset$, and thus P itself is a nonempty perfect Polish space. Thus the result follows from Theorem 1.4.3 and Remark 1.4.5.

There is an algorithmic way to find the perfect kernel of a Polish space X. The following construction is due to Cantor and it is the reason behind the introduction of ordinals.

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 8 / 10

Definition

For any topological space X, let

$$X' = \{x \in X \mid x \text{ is not isolated in } X\}.$$

We call X' the **Cantor-Bendixson derivative** of X. Clearly, X' is closed and X is perfect if and only if X = X'.

Define the **iterated Cantor-Bendixson derivative** by recursion on the ordinals as follows:

$$\begin{split} X^{(0)} &= X \\ X^{(\alpha+1)} &= (X^{(\alpha)})' \\ X^{(\lambda)} &= \bigcap_{\alpha < \lambda} X^{(\alpha)}, \qquad \text{if λ is limit.} \end{split}$$

Arguing by induction on α , one can check that the $X^{(\alpha)}$'s form a decreasing sequence of closed subsets of X, and that if X is second-countable and $\alpha < \omega_1$ then $X \setminus X^{(\alpha)}$ is a countable open set.

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-2025

9 / 16

Lemma [Kec95, Theorem 6.9]

Let X be a second countable topological space and $(F_{\alpha})_{\alpha<\rho}$ be a strictly decreasing transfinite sequence of closed sets (i.e. $F_{\beta}\subset F_{\alpha}$ for all $\alpha<\beta$). Then ρ is a countable ordinal.

This holds similarly for strictly increasing transfinite sequences of closed sets (and thus for strictly decreasing or incresing transfinite families of opens sets).

Proof.

Let $\mathcal{B}=\{U_n\mid n\in\mathbb{N}\}$ be a countable basis for X. For $F\subseteq X$ closed, let $N(F)=\{n\in\mathbb{N}\mid U_n\cap F\neq\emptyset\}$. Notice that if $F\subseteq G$ then $N(F)\subseteq N(G)$, and that $F\subset G$ implies $N(G)\setminus N(F)\neq\emptyset$. (Indeed, if $x\in G\setminus F$ then $x\in U_n\subseteq X\setminus F$ for some $n\in\mathbb{N}$, so that $n\in N(G)\setminus N(F)$.) For each $\alpha<\rho$, pick some $n_\alpha\in N(F_\alpha)\setminus N(F_{\alpha+1})$: since the map $\alpha\mapsto n_\alpha$ is an injection between ρ and \mathbb{N} , we must conclude that ρ is a countable ordinal.

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 10 / 16

Thus if X is Polish there is $\alpha_0 < \omega_1$ such that $X^{(\alpha)} = X^{(\alpha_0)}$ for all $\alpha \geq \alpha_0$ (the countable ordinal α_0 is called the **Cantor-Bendixson rank** of X). Then $X^{(\alpha_0)}$, also denoted by X^{∞} , is the perfect kernel of X, and X is countable if and only if $X^{\infty} = \emptyset$.

Remark

Notice that the decomposition given by the proof of Theorem 1.4.7 and the one given by the iterated Cantor-Bendixson derivatives can give different decompositions if applied to non-Polish separable metrizable spaces: indeed, if $X=\mathbb{Q}$ then the former gives $P=\emptyset$ and $C=\mathbb{Q}$, while the latter gives $P=\mathbb{Q}$ and $C=\emptyset$.

The results above imply that there is no simple counterexample to the Continuum Hypothesis, but they actually show more.

A. Andretta (Torino)

Perfect Polish spaces

AA 2024–2025

11 / 16

Definition

A subset A of a topological space X has the **Perfect Set Property** (PSP for short) if either it is countable or there is an embedding of $2^{\mathbb{N}}$ into A.

Clearly, if X is separable and A has the PSP then A satisfies the Continuum Hypothesis: either A is countable, or has cardinality 2^{\aleph_0} . However, the PSP is a stronger property: while it is independent of ZFC that all subsets of $\mathbb R$ are either countable or of size 2^{\aleph_0} (i.e. that the Continuum Hypothesis CH holds), it can be proved in ZFC that there is a set without the PSP.

Proposition 1.4.14 [Kec95, Example 8.24]

If X is an uncountable Polish space, then there is $A \subseteq X$ without the PSP.

Sets A as above are called **Bernstein sets**.

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 12 / 16

Proof of Proposition 1.4.14

There are exactly 2^{\aleph_0} perfect subsets of X.

Proof.

If $\mathcal{B}=\{U_n\mid n\in\mathbb{N}\}$ is a countable basis for X, then the map sending $x\in\mathbb{N}^\mathbb{N}$ to $X\setminus\bigcup_{n\in\mathbb{N}}U_{x(n)}$ is a surjection of $\mathbb{N}^\mathbb{N}$ onto the closed subsets of X, whence there are at most 2^{\aleph_0} perfect subset of X.

To show that there are at least 2^{\aleph_0} such sets, it is enough to consider the case $X=2^{\mathbb{N}}$ (the general case easily follows from the fact that every uncountable Polish space X contains a closed set homeomorphic to $2^{\mathbb{N}}$ by Corollary 1.4.9). For each $x\in 2^{\mathbb{N}}$, let $P_x=\{x\}\times 2^{\mathbb{N}}\subseteq 2^{\mathbb{N}}\times 2^{\mathbb{N}}$. It is immediate to check that P_x is perfect in $2^{\mathbb{N}}\times 2^{\mathbb{N}}$ and that the map $x\mapsto P_x$ is injective. Since $2^{\mathbb{N}}\times 2^{\mathbb{N}}$ is homeomorphic to $2^{\mathbb{N}}$ we are done.

(continues)

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-202

13 / 16

Proof of Proposition 1.4.14

Fix a transfinite enumeration $(P_\xi)_{\xi<2^{\aleph_0}}$ of the nonempty perfect subsets of X. Find by transfinite recursion on $\xi<2^{\aleph_0}$ distinct point $a_\xi,b_\xi\in P_\xi$: this is possible because each P_ξ , being a perfect Polish space, has cardinality 2^{\aleph_0} by Corollary 1.4.4, while the collection of points $\{a_\nu,b_\nu\mid \nu<\xi\}$ constructed so far has cardinality $|\xi|<2^{\aleph_0}$. Setting $A=\{a_\xi\mid \xi<2^{\aleph_0}\}$ we obtain an uncountable set that does not contain any nonempty perfect subset P (and thus $2^{\mathbb{N}}$ cannot be embedded into A). Indeed, if P is perfect nonempty then $P=P_\xi$ for some $\xi<2^{\aleph_0}$, whence $b_\xi\in P\setminus A$ by construction.

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 14

Remark

The proof of Proposition 1.4.14 heavily uses the Axiom of Choice AC. In contrast, it can be shown via a forcing argument that it is consistent with ZF + DC (where DC is the Axiom of Dependent Choice) that all subsets of \mathbb{R} have the PSP.

The existence of a Bernstein set under ZFC naturally leads to the problem of understanding how much complicated such a set must be: the last result of this section shows that simple sets are immune from this "pathological" behaviour.

A. Andretta (Torino)

Perfect Polish spaces

AA 2024-2025

15 / 16

Theorem 1.4.16

Every \mathbf{F}_{σ} or \mathbf{G}_{δ} subset A of a Polish space X has the PSP, and thus satisfies the Continuum Hypothesis. The same is true for $\mathbf{G}_{\delta\sigma}$ subsets (i.e. countable unions of \mathbf{G}_{δ} sets) of X.

Proof.

If A is G_{δ} , then it is Polish by Proposition 1.1.8. If it is uncountable, then its perfect kernel P is nonempty, and thus $2^{\mathbb{N}}$ can be emebedded into $P\subseteq A$ by Theorem 1.4.3.

If now $A = \bigcup_{n \in \mathbb{N}} A_n$ with each A_n a G_δ set, we distinguish two cases:

- ullet Every A_n is countable. Then A is countable as well and we are done.
- There is $n \in \mathbb{N}$ such that A_n is uncountable. Then $2^{\mathbb{N}}$ embeds into $A_n \subseteq A$ by the first part of this proof, and we are done again.

A. Andretta (Torino) Perfect Polish spaces AA 2024–2025 16 / 16

^aObserve that this includes the case of an \mathbf{F}_{σ} set A because in a metrizable space all closed sets are \mathbf{G}_{δ} — see Proposition 3.6.2.