令和2年度修士論文

End-to-End Robotic Reinforcement Learning based on Rank Temporal Difference

情報理工学研究科 情報学専攻

学籍番号 : 1830127

氏 名: Huang Sheng Kai

主任指導教員 : 工藤 俊亮 准教授

指導教員 : 末廣尚士教授

提出年月日 : 令和2年8月6日(木)

Contents

1	\mathbf{Intr}	oduction	4
	1.1	Background	4
	1.2	Previous Research	6
	1.3	Objectives	7
	1.4	Thesis Layout	7
2	PPC	O and Parallelize Rollout	8
	2.1	Background	8
		2.1.1 Reinforcement Learning	8
		2.1.2 Two difficulties in Robot Learning	9
	2.2	Proximal Policy Optimisation	10
	2.3	Parallelize Rollout	13
	2.4	Summary	16
3	Ran	k Temporal Difference	18
	3.1	Policy Invariance and Potential-Based Reward Shaping	18
	3.2	Mathematical Model of Rank-TD	19
	3.3	Summary	20
4	\mathbf{Exp}	eriment: Toy Tasks	21
	4.1	Toy Task Description	21
	4.9	Reward Setting	91

4.3	Bottleneck Issue	4
4.4	Summary	5
5 E	xperiment: Pick and Place Task 2	6
5.1	Environment	6
5.2	Task Description	6
5.3	Reward Setting	1
5.4	Implemention	1
5.5	Result	3
	5.5.1 Bad Case	6
5.6	Summary	6
5.7	Conclusion and Future work	8
	5.7.1 Conclusion	8
	5.7.2 Future work	8
Lis	st of Figures	
1.	1 Conventional Approach of Robotic Grasping System	5
1.	2 End-to-End learning-based approachs	5
2.	1 Taxonomy of model-free RL algorithms	9
2.	2 System Overview of OpenAI Five	5
2.	3 The parallelization solution for single machine single GPU	6
3.	1 Whether the reward shaping has the Policy Invariance guarantee? 1	8

4.1	Toy case: agent exists in a world with 21 discrete states spaces. The agent	
	can choose one from action space $\mathcal{A} = \{ \Leftarrow \Leftarrow, \Leftarrow, \circlearrowleft, \Rightarrow, \Rightarrow \Rightarrow \}$. The goal is to	
	arrive state 20	21
4.2	Toy task with Sparse, statdTD and RandTD reward setting solved by PPO.	
	RandTD reward setting has a faster convergence	24
4.3	More complex state transform of the task makes it more difficult for the agent	
	to explore. When applied in complex problems, if we fail to grasp the scale	
	or granularity of the rank function, agents are unable to learn the good policy.	25
5.1	Objects for Training and Testing Phase	27
5.2	Internal state and Observation	28
5.3	Vision-Based Robotic Grasping	30
5.4	${\rm Add}\ 0.5\ {\rm level\ random\ noise\ to\ camera\ and\ robot\ base-coordinate\ system\ during}$	
	training. Then test in different random level	34
5.5	The upper is the training curve, and the lower is the pre-grasp behavior, which	
	avoids hitting the pray	35
5.6	The illustration of the Embarrass Area and Legal Area	37
List	t of Tables	
4.1	Dynamic Transform Table	22
4.2	Narrower Version Dynamic Transform	24
5.1	rank function	32
5.2	PPO Hyperparameters of Pick and Place task	33

1 Introduction

1.1 Background

Intelligent robots are expected not only to sense their environment, but also to interact with it.

Humans have an good ability to manipulate objects, just as dexterously as our arms and hands. Among all these abilities, the mastery of objects is the most basic and important, because it will bring great productivity to the society. For example, industrial robots can pick up boxes from heavy human labor, and domestic robots can help disabled people with daily grasping tasks.

The importance of robotic grasping has been studied for a long time. This includes conventional approachs, recent End-to-End learning-based approachs, and the hybrid approachs, which learning-based approach replace some parts of the conventional approach.

The conventional manipulator grasping system consists of the following several sub-systems [5]: the grasp detection system, the grasp planning system and the control system. As Fig.1.1 illustrate, the grasp detection system is divided into three tasks: target object localization, pose estimation and grasp point detection. Each system is programmed separately, solved by different approachs.

Instead of using this pipeline of steps, one of the recent breakthroughs in robotics is leverage End-to-End learning-based approach, expecially Reinforcement Learning, where robotic could can reason a appropriate action directly from raw sensory observations, such as camera images. Typically as Fig.1.2 Sergey Levine lets a robot successfully complete some

Figure 1.1: Conventional Approach of Robotic Grasping System

complex tasks, by single system, which the input is an raw image, the output is the robot's joint torque.

Figure 1.2: End-to-End learning-based approachs

The most interesting thing is that this technique would allow the next generation of robots learn to accomplish new tasks directly, without hand-engineering steps to perform each subsystems. In other words, the robot would accept the raw data from sensors, such as RGB camera images and directly infer the low level action (e.g. motor velocities) by a task agnostic learning algorithm.

Compire with End-to-End learning-based approach conventional approach also have many issues, which is easy for End-to-End approach.

- * It is kind of error-prone, because the errors propagate from one step to another (e.g. inadequate grasp point results in poor or unsuccessful grasp).
- * It relaies on cumbersome and strict sensor calibration(e.g. camera calibration, point cloud registration). And sensor can not be moved after calibration, which makes it difficult to adapt to complex environments.
- * It requires different pipelines to deal with different tasks under different situations.

1.2 Previous Research

Reinforcement learning (RL) has recently achieved widespread success in sequential decisionmaking problems in robot.

In some works, the input is raw data(images, joint-angle, etc.), and the output is a low-level, high-dimensional continuous action(joint-angle, joint-velocity, offset of end-effector, etc.).

Deirdre Quillen et al. [13] evaluate the performance of Vision-Based Robotic Grasping benchmark with many off-policy RL approachs. Jan Matas et al. [8] combine many state-of-the-art off-policy RL algorithms to solve the problem of deformable objects manipulation. Mel Vecerik et al. [19] leverage demonstrations with Deep Deterministic Policy Gradient (DDPG) algorithm, and realized deformable-clip insertion task in real robot setting.

Meanwhile, in some work, the output is a high-level, low-dimensional discrete action macro(push, grasp, retract etc.). such as Ameya Pore et al. [12] learn the pick and place task by behaviour-based reinforcement learning approach.

1.3 Objectives

In this thesis, we describe an RL method that can be applied to pick-and-place tasks, generally, the goal-orientation sequential decision making RL scenario, although there are several difficulties to apply RL methods to pick-and-place tasks, the details of which will be discussed in the later section.

The method we proposed called Rank Temporal-Difference (Rank-TD), which allows agents to explore by following the expert-roughly-designed state trajectory. Furthermore, it can combine with any model-free RL algorithm.

We build its mathematical model and prove the correctness of the Rank-TD based on policy invariance theory [9]. Then, We discuss some sensable and useful property by analyzing a toy case. Finally, we train an agent with an image-based policy on pick-and-place task. We employed domain randomization in simulation to guarantee the potential of policy transfer from simulation to the real world without further training.

1.4 Thesis Layout

The core part of this Thesis starts with Charpter 2, where Chapter 2 we briefly cover the basic concepts of RL in a limited space, and introduce Proximal Policy Optimisation (PPO) briefly, which adopt in final pick and place task. In Chapter 3, introduces the derivation process of the method and design a series of toy experiment to verify method. Then Chapter 4 is our main experiment, in which we train and evaluate a End-to-End image-based picking policy. Finally, in Chapter 5, we summarise the work we have done to achieve our results, and we follow up with a couple of suggestions for future work. in Chapter 6, we summarise our work and disscuss the future work.

2 PPO and Parallelize Rollout

2.1 Background

2.1.1 Reinforcement Learning

Deep reinforcement learning is a specific branch of machine learning applicable to robot operation tasks. In general, RL is based on behavioral psychology, which studies how to teach an agent to perform behaviors that bring the highest cumulative reward. In practice, it means that engineers would only have to define what the robot's goal was, and the robot would learn how to achieve it itself. This greatly reduces the amount of work compared to the traditional approach, in which engineers design and implement every subtask needed to achieve a goal.

In addition, robot learning is used for error-prone tasks because robots can learn how to recover from mistakes. By contrast, the traditional approach requires preparation in advance to hard-code every possible error. Otherwise, the goal will not be achieved.

Then, we briefly cover the basic concepts of RL in a limited space.

Optimize Objective of RL The classic RL setting that can be represented as a Markov Decision Process (MDP) defined as a 6-tuple (S, A, P, R, γ, O) , where S is the set of full states of the environment, A is the set of actions, $R: S \times A \times S \to \mathbb{R}$ is the reward function, γ is a discount factor, and $P: S \times A \to S$ is a deterministic state transition function. The decision process is partially observable and the agent receives observations o from the set of observations O, followed by a sample process $o \sim G(s)$.

The goal of optimization is to find a policy π , which maps states to actions to maximize the expectation of accumulated discounted reward η_{π} .

$$\eta_{\pi} = \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$
 (2.1)

Figure 2.1: Taxonomy of model-free RL algorithms

Model-Free RL Figure 2.1 shows a taxonomy of model-free RL algorithms (algorithms that do are not based on a dynamics model). At the top level, we have two different approaches for deriving RL algorithms: policy optimization and dynamic programming.

2.1.2 Two difficulties in Robot Learning

Sparse Reward and Reward Engineering A sparse reward signal is series of rewards produced by the agent interacting with the environment, where most of the rewards received are non-positive. This makes it extremely difficult for RL algorithms to connect a long series of actions to a distant future reward.

Thus, Designing a reward function that not only reflects the task goal but is also carefully shaped to avoid sparse reward is still a common challenge. For example, Popov et al. [11] used a reward function that consists of five complicated terms carefully weighed to get a stacking policy. It limits the applicability of RL because it takes much

time to shape an appropriate reward function. On the other hand, oversimplified reward functions such as a binary signal could cause serious sparse reward issues. Although there are some data augmentation methods such as Hindsight Experience Replay [2] that could solve the partial sparse reward issue, it, however, is not easy to apply in the high-dimension state, such as images.

Demonstration Dependency The other tricky issue is that current image-policy-based robot learning greatly depends on demonstrations, which is a frequently-used method of Imitation Learning (IL). Demonstrations that are generated by a human to initialize policy [8, 19] or make a replica of the demonstration policy such as behavioral cloning (BC).

BC or IL approaches, however, are limited because they do not consider the task or environment. Furthermore, human demonstrations can be suboptimal because humans also make mistakes or do some redundant actions. Moreover, agents will get into trouble when they encounter states that do not belong to the demonstration set.

2.2 Proximal Policy Optimisation

In this section, we brief introduce the basis of Proximal Policy Optimisation (PPO) [17] algorithm, which is adopted in our Toy task and Pick-Place task.

PPO [17] is a policy gradient RL methord, which follows the actor-critic architecture. It based on the trust-region policy optimisation(TRPO) [15] algorithm. This aims of policy gradient RL methord is to learn a stochastic policy $\pi_{\theta}(a_t \mid s_t)$. If action space is continue, $\pi_{\theta}(a_t \mid s_t)$ maps states with Diagonal Gaussian Distribution over actions, and if action space is discrete, $\pi_{\theta}(a_t \mid s_t)$ maps states with Categorical Probability Distribution over actions. In addition, the critic is a state value function $V_{\omega}(s_t)$ that outputs the expectation of accumulated return start in state s_t . PPO inherits the advantages of TRPO, but it is greatly simpler to

implement. The core idea of trust region-based optimization is that the output distribution cannot deviate too much from the original distribution each time the policy improvement updated.

Let $r_t(\theta)$ denote the probability ratio defined in Equation (2.2), so that $r(\theta_{old}) = 1$.

$$r_t(\theta) = \frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{old}}(a_t \mid s_t)}$$
(2.2)

 θ_{old} is the actor parameter before the update. The optimization objective of TRPO is to maximise the surrogate objective function $L\left(\theta\right)$ defined in Equation (2.3). Here, $\mathbb{E}\left[...\right]$ means the average over a finite batch of samples. The advantage \hat{A}_t is a kind of policy gradient estimator, which called $\text{GAE}-\lambda$ [16], was popularised by Schulman et al. it shows how good the current action w.r.t. to the average performance of every action. The way to compute the advantage is that, the agent executes a trajectory τ with T steps and computes them according to Equation (2.4). $\text{GAE}-\lambda$ has minimum bias and variance in current policy gradient estimator [16]. The t is the time index of [0,T]. The γ is the discount factor, and the T is the length of trajectory τ .

$$L(\theta) = \mathbb{E}\left[r_t(\theta)\,\hat{A}_t\right] \tag{2.3}$$

$$\hat{A}_{t} = -V_{\omega}(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V_{\omega}(s_{T})$$
(2.4)

At each policy update, good action will have a higher probability if its advantage is positive. On the contrary, bad action will have a lower probability because its advantage is negative.

If there is no any constraint, maximizing the objective function $L(\theta)$ could make policy updates very unstable at each update step. PPO laverage clip function in the objective function, which avoid radical changes of the policy. It keep $r_t(\theta)$ close to 1 in each training step.

There are two reasons of why must we maintain $r_t(\theta)$ near to 1.

1. Objective function $L(\theta)$, which also be called surrogate objective, is the First-Order Approximation of accumulated discounted reward η_{π} (Equation (2.1)). That is rough approximation, only if the $\Delta\theta$ small enough, improving $L(\theta)$ will also improve η_{π} .

$$\nabla_{\theta} L_{\theta_0}(\theta) \mid_{\theta=\theta_0} = \nabla_{\theta} \eta_{\theta_0}(\theta) \mid_{\theta=\theta_0}$$

2. According to J.Schulman's Phd thesis [14], trust-region based policy optimization is proposed based on Kakade and Langford's work [7], which call conservative policy iteration, the new policy was defined to be the following mixture:

$$\pi_{new}(a \mid s) = (1 - \alpha) \pi_{old}(a \mid s) + \alpha \pi'(a \mid s)$$
(2.5)

where $\pi' = \arg \max_{\pi'} L_{\pi_{old}}(\pi')$, with a critial Lower Bound is

$$\eta\left(\pi_{new}\right) \geqslant L_{\pi_{old}}\left(\pi_{new}\right) - \frac{2\epsilon\gamma}{\left(1 - \gamma\right)^2}\alpha^2$$
(2.6)

This Lower Bound tall us that if $\alpha \ll 1$, the policy update would have a monotonic improvement guarantee. It is a really attractive conclusion. However the mixture policy are rarely used in practice.

J.Schulman extends this imporvement guarantee to practical problems. The first principal modification is to replace α in Equation (2.5) with a measure between π_{old} and π_{new} , that is $D_{TV}^{max}(\pi_{old}, \pi_{new})$. where

$$D_{TV}^{max}(\pi, \tilde{\pi}) = \max_{s} D_{TV}(\pi(\cdot \mid s) \parallel \tilde{\pi}(\cdot \mid s))$$
(2.7)

Same as Kakade's Lower Bound, Equation (2.6), J.Schulman also deduces a Lower Bound that

$$\eta\left(\pi_{new}\right) \geqslant L_{\pi_{old}}\left(\pi_{new}\right) - \operatorname{CD}_{KL}^{max}\left(\pi_{old}, \pi_{new}\right)$$
(2.8)

where $C = \frac{2\epsilon\gamma}{(1-\gamma)^2}$, which γ is discount rate and usually set as 0.99 or 0.98. Thus, $\frac{\gamma}{(1-\gamma)^2}$ is a big number, it measures the horizon of agent. The farther the agent could see, the greater this value will be. Only if the $D_{KL}^{max}(\pi_{old}, \pi_{new})$ small enough, improving $L(\theta)$ could improve η_{π} .

That is why in trust-region based algorithms, the new policy distribution cannot diverge too much from the original policy distribution during each parameter update of the policy.

The objective function of PPO algorithm clip version is Equation (2.9), which is a trick version of Equation (2.3) by laveraging clip function. It greatly simplifies the implementation of TRPO, without performance lost.

$$L^{CLIP}(\theta) = \mathbb{E}\left[\min\left(r_t(\theta)\,\hat{A}, clip\left(r_t(\theta), 1 - \delta, 1 + \delta\right)\,\hat{A}\right)\right]$$
(2.9)

where the δ is a hyper-parameter that changes the clip range.

To update the value function $V_{\omega}(s)$ (the critic), the squared-error loss function is used (Equation (2.10))

$$J(\omega) = (r_t + \gamma r_{t+1} + ... + \gamma^{T-t+1} r_{T-1} + \gamma^{T-t} V_{\omega}(s_T) - V_{\omega}(s_t))^2$$
 (2.10)

2.3 Parallelize Rollout

A rollout is a simulation of a policy in an environment. It alternates between choosing actions based (using some policy) and taking those actions in the environment. This part will introduce the parallelization techniques, which used currently, and focus on the method used in our research.

Algorithm 1 Proximal Policy Optimisation (PPO) with single worker.

for each $e \in episodes$ do

Run a trajectory τ , which length is T time-steps, following π_{old} ;

Compute advantage estimates $\hat{A}_1...\hat{A}_T$;

Optimise critic's loss function J w.r.t. ω ;

Optimise actor's loss function L^{CLIP} w.r.t. θ ;

end for

PPO is a on-policy RL Algorithm, that the data sampled from environment must be generated from current policy. it can't learn from too old or external sample data. That means on-policy RL Algorithm has the worst sample-efficiency.

A efficient, scalable distributed RL training framework(architecture) has become a kind of necessity of RL industry application. By analyzing the single worker version PPO above (Algorithm 1). we could see that if we just roll-out one trajectory τ , the variance of statistic variable A(a,s) would extremly huge. Although $GAE - \lambda$ help us soften the serious variance of the tail of the trajectory, it is never enough for algorithm to update policy just use one trajectory τ . Typically, a large number of workers are responsible for exploring the environment in the real practical application with PPO based algorithms. For example OpenAI trains a dexterous robot hand to solve Rubik 's Cube with 29,440 CPU cores(worker process) [1], and trains OpenAI Five, which has started to defeat amateur human teams at Dota 2 game [3] with 57,600 workers, which shown as Fig.2.2.

RL is inherently comprised of heterogeneous tasks: Running Environments, Model Inference, Model Training. Three parts depend on each other, usually locate in different hardware devices (CPU, GPU or TPU).

Running Environments The environment process (usually simulator) accepts an action a_t , then simulate out the next state s_{t+1} and reward r_{t+1} , based on environment transform $\mathcal{P}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ and reward function $R: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$. This part runs on the CPU.

Figure 2.2: System Overview of OpenAI Five

Model Inference Sample an action from the current policy π , which $a_{t+1} \sim \pi (\cdot \mid s_t)$. This part is the forward calculation of a NN model, which usually run on GPU, if the model is a large-scale neural network. As we all know, the overhead of data transform between Host(RAM) and Device(GPU) is expensive. In order to make CPU and GPU more effecient, we usually collect a batch of state then infer a batch of action at once, as Fig.2.3(a). Thus we have to synchronous every actors to get a big batch of state. The disadvantage is obvious the slowest worker would slow everyone down.

Model Training Training means forward calculate surrogate objective loss, and get the gardent w.r.t. policy network weight θ . Then update the weight by using Stochastic

gradient descent(SGD). This part is usually run on GPU.

Fig. 2.3 illustrates three kinds of calculate pattern. (a) and (b) are different in synchronous timing, (a) is synchronous every worker each step, and (b) is synchronous every worker after each trajectory. The advantage of pattern (a) is it has better use of bandwidth, however, the slowest worker would slow everyone down. The ideal computing pattern is (c), which is provided by a framework call IMPALA [6], both the CPU and GPU are fully utilized.

Figure 2.3: The parallelization solution for single machine single GPU

In Pick and Place task, we adope calculate pattern (a), which synchronous every worker after each step. we use MPI to generate subprocess and control subprocess, with the primitives such as fork, send, recv, etc.

Naturally, We have the multi-worker version of PPO (Algorithm 2).

2.4 Summary

In this chapter, we briefly cover the basic concepts of RL in a limited space, then introduce Proximal Policy Optimisation (PPO) algorithm. Then we analyze why policy should not be

Algorithm 2 Proximal Policy Optimisation (PPO) with Multi-Rollout worker.

```
for each e \in episodes do 

// Asynchronous every step of each worker 

for each w \in workers do 

Run a trajectory \tau_w, which length is T time-steps, following \pi_{old}; 

Compute advantage estimates \hat{A}_1...\hat{A}_T; 

end for 

Optimise critic's loss function J w.r.t. \omega; 

Optimise actor's loss function \mathcal{L}^{CLIP} w.r.t. \theta;
```

end for

change too large during each policy improvement phase. Finally, we introduce the importance of parallelization technology in RL, and we introduce the parallelization technology what we adopted.

3 Rank Temporal Difference

3.1 Policy Invariance and Potential-Based Reward Shaping

Figure 3.1: Whether the reward shaping has the Policy Invariance guarantee?

Andrew Y. Ng [9] proposed a formal of reward shaping:

For a MDP $M(S, A, P, R, \gamma)$, exists a transformed MDP $M'(S, A, P, R', \gamma)$, where R' = R + F. And $F: S \times A \times S \mapsto \mathbb{R}$ is a bounded real-valued function called the shaping reward function.

As Fig.3.1 shows that, the core point is the reward function R in \mathcal{M} is too sparse for agent to find a optimal policy π^* , but it is easy in \mathcal{M}' with a shaped dense reward function R'. If there is a consistency guarantee between $\pi_{\mathcal{M}}^*$ and $\pi_{\mathcal{M}'}^*$, which calls Policy Invariance for

shaping reward function F. That means we could find $\pi_{\mathcal{M}}^*$ by solving $\pi_{\mathcal{M}'}^*$.

Fortunately, Andrew Y. Ng provides a important Theorem with a serise clear proofs.

If there exists a real-valued function $\Phi: S \mapsto \mathbb{R}$, that for all $s \in S - \{s_{goal}\}$, $a \in A$, $s' \in S$,

$$F(s; a; s') = \gamma \Phi(s') - \Phi(s)$$
(3.1)

Then, F is a potential-based shaping function, which is the **necessary and sufficient** condition of policy invariance.

In applications, Φ should of course be chosen using expert knowledge about the domain. According to chapter 5 of Andrew Y. Ng's paper [9], it is possible that for certain problems, it may be easier for an expert to propose a potential Φ for an "undiscounted" shaping function $\Phi(s') - \Phi(s)$, even when $\gamma \neq 1$.

Policy Invariance Theorem provides a solid theoretical foundation for the development of Rank-TD method.

3.2 Mathematical Model of Rank-TD

Following the policy invariance theorem, under the goal-orientation sequential decision making RL scenario, we assume MDP \mathcal{M} has a sparse reward function $R = \{0, 0^+\}$, which 0^+ is a very small positive number, only get if agent achieve the goal.

Then we build a transformed MDP \mathcal{M}' , which reward function R' = R + F with a potential-based shaping F. Because 0^+ is a very small positive number, for simplicity, we ignore R, then R' = F (the explain here is that the elimination of R is not allowed in theory, but it does not affect the numerical results.) $F : \operatorname{rank}(s_{t+1}) - \operatorname{rank}(s_t)$ has a formal as equation (3.1). Here the rank inherits the nature of the potential Φ , but it develop and extend with other limitation and practical sense.

The optimal policy π^* of \mathcal{M}' is consistent with \mathcal{M} , which is:

$$\pi^* \doteq \arg\max_{\pi} \Pr_{\tau \sim \pi} \left(s_T = \text{goal} \right) \tag{3.2}$$

where trajectory $\tau\left(s_0, o_0, a_0, s_1, o_1, a_1 \cdots s_t, o_t, a_t \cdots s_T\right)$ is generated under the policy $\pi\left(a_t \mid o_t\right)$.

Rank function is defined as a mapping rank : $S \to \mathbb{N}$, satisfied that if trajectory τ is generated under the optimal policy π^* , then

$$\operatorname{rank}(s_0) \leqslant \operatorname{rank}(s_1) \leqslant \cdots \leqslant \operatorname{rank}(s_t) \leqslant \cdots \leqslant \operatorname{rank}(s_T)$$

The difference between rank and potential Φ is that, too many times inverse rank transform is forbided during agent interact with the environment.

Finally, the reward R' defined as

$$r\left(s_{t}, s_{t+1}\right) \doteq \left\{ egin{array}{ll} -1, & s_{t+1} = ext{terminal condition} \\ ext{rank}\left(s_{t+1}\right) - ext{rank}\left(s_{t}\right), & ext{other} \end{array}
ight.$$

The objective of optimization is to find an a optimal policy $\pi^* (a_t \mid o_t)$.

$$\begin{array}{ll} \max & \Pr_{\tau \sim \pi} \left(s_T = \texttt{goal} \right) \\ \\ s.t. & \operatorname{cout}(\texttt{rank} \left(s_t \right) \! > \texttt{rank} \left(s_{t+1} \right) \right) \leqslant \varepsilon, \quad \varepsilon \in \mathbb{N} \end{array}.$$

 ε is a hyper-parameter that restricts the times of inverse rank transform during roll-out. When an episode arises more than ε times inverse rank transforms, the episode would be terminated.

3.3 Summary

In this chapter we introduce the Theorem of Policy Invariance, and we expand RankTD from potential-based reward shaping. We assume that RankTD has faster policy convergence.

4 Experiment: Toy Tasks

4.1 Toy Task Description

We design a toy task (Fig.4.1) to verify the idea of Rank TD.

Figure 4.1: Toy case: agent exists in a world with 21 discrete states spaces. The agent can choose one from action space $\mathcal{A} = \{\Leftarrow\Leftarrow, \Leftarrow, \circlearrowleft, \Rightarrow, \Rightarrow\Rightarrow\}$. The goal is to arrive state 20.

Assuming an agent exists in a world with state space $S = \{0, 1, ..., 20\}$ and action space $A = \{\Leftarrow \Leftarrow, \Leftarrow, \circlearrowleft, \Rightarrow, \Rightarrow \Rightarrow\}$ which means two steps backward, one step backward, stand still, one step forward, two steps forward. The agent initialized in 0 state each time, which $p(s_t = 0|t = 0) = 1$. The deterministic environment dynamic transform $s_{t+1} \leftarrow \mathcal{P}(s_t, a_t)$ defined as Table 4.1. Red "-1" means that the agent falls into a trap and terminates the episode. Green "20" is the goal state for the agent. In this toy case, observation o_t is equivalent to the internal full state s_t , which $o_t = s_t$.

4.2 Reward Setting

We prepared three kinds of reward functions. The first is that the agent gets a bonus of 1 only when it reaches the target state, or a penalty -1 when it falls into the trap, and 0 at other times (Equation 4.1).

Table 4.1: Dynamic Transform Table

10010 1.1.	Dynai		11011	O	11 1001
$s_{t+1} \setminus a_t$ s_t	*	=	0	\Rightarrow	$\Rightarrow\Rightarrow$
0	0	0	0	1	2
1	0	0	1	2	3
2	0	1	2	3	4
3	-1	-1	-1	4	5
4	2	3	4	5	6
5	3	4	5	6	-1
6	4	5	6	7	8
7	5	6	7	8	9
8	6	7	-1	-1	-1
9	7	8	9	10	11
10	8	9	-1	-1	-1
11	9	10	11	12	13
12	10	11	12	13	14
13	11	12	-1	-1	-1
14	12	13	14	15	16
15	13	14	15	16	17
16	-1	-1	-1	17	18
17	15	16	17	18	19
18	16	-1	-1	-1	-1
19	17	18	19	20	20

$$r_{\text{sparse}}(s_t, s_{t+1}) \doteq \begin{cases} -1, & s_{t+1} = -1 \\ 0, & \text{other} \\ 1, & s_{t+1} = 20 \end{cases}$$
 (4.1)

The second reward is set as the temporal difference between the previous state and current state, and -1 when it falls into the trap (Equation 4.2).

$$r_{\text{stateTD}}(s_t, s_{t+1}) \doteq \begin{cases} -1, & s_{t+1} = -1 \\ s_{t+1} - s_t, & \text{other} \end{cases}$$

$$(4.2)$$

The 3th reward is set similar as the above setting (Equation 4.2), but we add a terminal condition: inverse rank transform more than twice (Equation 4.3).

We can imagine that the rank function is a sequence of waypoints, which also represents the completeness of a task, as defined by the expert according to the expert's understanding of the task.

$$r_{\mathbf{RankTD}}(s_t, s_{t+1}) \doteq \begin{cases} -1, & s_{t+1} = -1 \text{ or} \\ & \text{the times of inverse rank transform } > 2 \end{cases}$$
 (4.3)

We try to find a policy π ($a_t \mid o_t$) by the PPO Algorithm under 3 kinds of reward settings with same hyper-parameter, architecture, and random seed.

The result (Fig.4.2) shows that if the positive feedback signal is too sparse, the agent would learn nothing. On the contrary, the immediate feedback signal (state temporal difference) setting, which could reflect the change of completing the task, allows learning to be more smoothly. RankTD reward setting can reduce the scale of explorations and accelerate the convergence of policy.

Figure 4.2: Toy task with Sparse, statdTD and RandTD reward setting solved by PPO. RandTD reward setting has a faster convergence.

4.3 Bottleneck Issue

Secondly, we modify the toy case, get a useful conclusion.

If the state transitions between the adjacent ranks are not too complicated, it would difficult for agent to explore the path from one rank to a higher rank, in other words, when the path becomes narrower, learning will be blocked. We call it *bottleneck issue*. For example, if we change rows 2, 3, and 4 of the original state transform table, such as Table 4.2.

Table 4.2: Narrower Version Dynamic Transform

$s_{t+1} \setminus a_t$					
2	0	1	2 -1	3	-1
3	-1	-1	-1	4	-1
4	-1	-1	-1	5	-1

The result (Fig.4.3) shows that as the process of state transform becomes more complex and the ascending path becomes narrower, the difficulty of agent exploration increases.

Figure 4.3: More complex state transform of the task makes it more difficult for the agent to explore. When applied in complex problems, if we fail to grasp the scale or granularity of the rank function, agents are unable to learn the good policy.

4.4 Summary

In this chapter we design a series toy tasks to verify the idea of RankTD. From the comparison between **sparse setting**, **StateTD** and **RankTD** by PPO, we can see that **RankTD** is much easier to learn the optimal strategy, and has faster policy convergence. Then we disscuss the *bottleneck issue*, when state transform becomes more complex, or rank function is too rough, agent is difficult to find the optimal policy quickly.

5 Experiment: Pick and Place Task

In order to extend the theory to practical application. We design a **Pick and Place** robot task, where the robot-arm grasps an object and puts it in a basket.

5.1 Environment

The robot environment, which developed and published by Google Brain [13] is built on the PyBullet simulator. PyBullet [4] is a physical simulator developed for games, visual effects, robotics and reinforcement learning.

There are a lot of different scenarios for manipulator grasping. In learn-based fetching, one of the most important challenges is generalization: Can a agent learn grasping patterns and skills to successfully grasp new objects not seen in training? We prepared 90 different objects for the training phase and 10 for the testing phase. We want to know whether the agent can generalize various grasping strategies for different types of objects.

5.2 Task Description

Action \mathcal{A} : The robot-arm is 7DOF kuka-iiwa. Because this task does not need to change the orientation of the end-effector, thus the orientation is fixed vertically. The robot is controlled by 5-dimensional action. The first three dimensions are the relative change of cartesian coordinates $(\Delta x, \Delta y, \Delta z)$ of the end-effector, while the fourth dimension is the relative change of gripper's rotation angle $(\Delta \theta)$, and the last dimension is the instruction of the gripper open and closed (negative for closing and positive for opening).

(a) Objects for Training Phase

(b) Objects for Testing Phase

Figure 5.1: Objects for Training and Testing Phase

(a) internal state \mathcal{S}

(b) observe image \mathcal{O}

Figure 5.2: Internal state and Observation

Internal Full State S: The Internal Full States of the simulator as in Fig.5.2(a), which include

- 1. The distance between the gripper and object $d_{to obj}$;
- 2. The height of the object to be lifted h;
- 3. The distance between the gripper and basket $d_{to pray}$;
- 4. The collision detection of gripper-basket and gripper-object.

Observation \mathcal{O} : The agent gets RGB observation with dimensions $256 \times 128 \times 3$ as in Fig.5.4(b), captured by two cameras that the one is located at the top-left of the robot, and the other one is located at the shoulder of robot. The image obtained at this location contains the relative positions of the pray, object, and gripper. Furthermore, in order to train in headless mechine, we don't allow the GPU to render the shadow. To increase the robustness of the model, during the training phase, the position of the camera and the robot's base coordinate system will shake slightly.

Initial State Distribution: The gripper's initial position and the objects' scattered randomly in the legal region. The location of the basket is fixed and immovable.

Success Condition (goal): The object drops into the basket successfully.

Terminal Conditions:

- 1. The end-effector is outside the legal area;
- 2. The gripper collided with the basket;
- 3. Exceeds the maximum episode length (128).

The internal full state s_t is hard to measure or achieve in the real world but easy in the simulator. Thus, we could leverage the expert's prior knowledge to define a sequence

(a) The first line is the unrandomized observation sequence. The following two lines are the sequence of observation with randomization.

(b) Actor Net Architecture. The agent learns an actor model in the simulator that only depends on the observe image. We concatenate the last two layers of features for better using global features. Action a is sampled from a Diagonal Gaussian Distribution, the mean μ , and the diagonal standard deviation σ only depending on the input image.

Figure 5.3: Vision-Based Robotic Grasping

of waypoints by the simulator's internal full states, and then train an image-based policy, which could also work in the real world.

Training an end-to-end model in the real world requires too many samples. The current trend, therefore, is to learn an image-based policy in simulation and then transfer them to the real world, which is called sim2real.

For overcoming the *sim-real gap*, which is caused by a different sample process $o^{\text{sim}} \sim \mathcal{G}_{sim}(s)$ and $o^{\text{real}} \sim \mathcal{G}_{real}(s)$, we employed domain randomization [18] to facilitate a smooth domain transfer of the learned policy.

5.3 Reward Setting

The rank function defined is based on the expert's understanding of the task, as Tab.5.1, using the internal state of the simulator as in Fig.5.2(a).

- 1. First, the end-effector should move towards the object. The distance between the end-effector and the object d_{to_obj} is be used to measure and discribe the Rank function;
- 2. In the second step, the gripper should grasp the object at right condition in the right time. The state gripper open or not is be used to measure and discribe the Rank function;
- 3. Then, the agent needs to lift the object, The height of object from desktop h is be used to measure and discribe the Rank function;
- 4. After that, the gripper that holds the object needs to move towards the target. The distance between the end-effector and the basket d_{to_pray} is be used to measure and discribe the Rank function;
- 5. Finally, if the object drops into basket correctly, agent will get success, else fail in current episode.

If the times of inverse rank transform more than the threshold ε , which cout(rank $(s_t) > \text{rank}(s_{t+1})$) $> \varepsilon$, episode would be terminated.

5.4 Implemention

The policy is parameterized as a DNN θ . We adopt the PPO algorithm to find the optimal policy $\pi_{\theta} \to \pi^*$. The policy net is shown as (Fig.5.3(b)). The padding way of CNN is all valid. CNN extracts the features from high-dimensional images, and the full connection layer interprets and uses the CNN features. After the tanh active function, the mean, and the

Table 5.1: rank function

rank	Internal Full State		
0	$d_{to_obj} > 57cm$		
1	$37cm < d_{to_obj} \leq 57cm$		
2	$27cm < d_{to_obj} \leq 37cm$		
3	$18cm < d_{to_obj} \leq 27cm$		
4	$14cm < d_{to_obj} \le 18cm$		
5	$9cm < d_{to_obj} \leq 14cm$		
6	$5cm < d_{to_obj} \leq 9cm$		
7	gripper not open		
8	gripper open		
9	$h \leqslant 1cm$		
10	$1cm < h \leqslant 4cm$		
11	$4cm < h \leqslant 7cm$		
12	$7cm < h \leqslant 10cm$		
13	$10cm < h \leqslant 15cm$		
14	$d_{to_pray} > 57cm$		
15	$50cm < d_{to_pray} \le 57cm$		
16	$40cm < d_{to_pray} \le 50cm$		
17	$30cm < d_{to_pray} \le 40cm$		
18	$23cm < d_{to_pray} \leq 30cm$		
19	$d_{to_pray} \leq 23cm$		
20	object drop into pray		

standard deviation of the gaussian distribution were output by the full connecting layer, and action a was sampled from the gaussian distribution.

Input images are scaled in [0, 1] for stable training, and the last layer's weight of actor net initialized with 0 before training, which means the mean and standard deviation initialized with 0 before training.

During one training epoch, 40 Kuka workers roll-out episodes data that is based on current policy π_{θ_t} , and evaluate the policy, which updates the value function the same as the classic PPO algorithm. Then, they update the policy to $\pi_{\theta_{t+1}}$ based on the Trust Region policy optimization theory [15].

The discount γ in our experiment is 0.9; The inverse rank transform threshold ε is 3; max episode length is 128.

Table 5.2: PPO Hyperparameters of Pick and Place task

Parameter	Value
optimizer	Adam
learning rate	2.5e-4
discount (γ)	0.9
inverse rank transform threshold ε	3
max episode length	128

To enhance the robustness of the model, during the training, we added noise to camera and robot base-coordinate, as Fig.5.4. The noise come from a scaled uniform distribution, as Equation (5.1).

Random Noise
$$\sim$$
 random level * $U[-5\text{cm}, 5\text{cm}]$ (5.1)

5.5 Result

We experiment on a platform with Intel i7-8700k, 32Gb RAM, GTX 1080Ti, with 48 workers and cost 72 hours for 3 000 000 times environment interaction.

The result shows that the agent can act following the expert expected manner.

The learning curve is shown in the upper of Fig.5.5(b). An interesting phenomenon is that because there is a penalty for hitting the pray, the agent knows to avoid hitting the pray before grasping the object.

We evaluate our model on the test scenario. The object is never encountered during training. The success rate for the complete process was 83.14% (2993/3600).

(a) Add 0.5 level random noise to camera and robot base-coordinate system during training

(b) Then test in different level Random Noise

Figure 5.4: Add 0.5 level random noise to camera and robot base-coordinate system during training. Then test in different random level.

Figure 5.5: The upper is the training curve, and the lower is the pre-grasp behavior, which avoids hitting the pray.

5.5.1 Bad Case

Because the orientation of the end-effector is fixed vertically, it is hard for robot to grasp object near the base, where called Embarrass Area, as Fig.5.6(a).

5.6 Summary

In this chapter, we design a **Pick and Place** robot task and train a image-based policy under RankTD reward setting. we design the rank function by human priori knowledge of task. Finally, we test our model in test scenario, which the object is never be seen in train phase, and we get 80% success rate.

(a) Because the orientation of the end-effector is fixed vertically, it is hard for robot to grasp object near the base, where called Embarrass Area.

(b) Embarrass Area and Legal Area of Ene-Effector

Figure 5.6: The illustration of the Embarrass Area and Legal Area.

5.7 Conclusion and Future work

5.7.1 Conclusion

In the begin of thesis, we address two issues of the conventional approach of robotic grasping system, And we discusses an method, by which shaping a reward function much more efficiently, under the goal-orientation sequential decision making RL scenario.

In chapter 2, we briefly cover the basic concepts of RL in a limited space, then introduce Proximal Policy Optimisation (PPO) algorithm. Then we analyze why policy should not be change too large during each policy improvement phase. Finally, we introduce the importance of parallelization technology in RL, and we introduce the parallelization technology what we adopted.

In chapter 3, we introduce the Theorem of Policy Invariance, and we expand RankTD from potential-based reward shaping. We assume that RankTD has faster policy convergence.

In chapter 4, we design a series toy tasks to verify the idea of RankTD. From the comparison between **sparse setting**, **StateTD** and **RankTD** by PPO, we can see that **RankTD** is much easier to learn the optimal strategy, and has faster policy convergence. Then we disscuss the *bottleneck issue*, when state transform becomes more complex, or rank function is too rough, agent is difficult to find the optimal policy quickly.

In chapter 5, we design a **Pick and Place** robot task and train a image-based policy under RankTD reward setting. we design the rank function by human priori knowledge of task. Finally, we test our model in test scenario, which the object is never be seen in train phase, and we get 80% success rate.

5.7.2 Future work

There are still some parts could be improved. One is the representation of ovservation. We can deduct high-dimensional observation to low-dimensional state vectors by some unsuper-

vised approach such as the AutoEncoder. Another is reducing the length of rank functions. It is difficult to construct the rank function of a complex task using single internal state variables. And if the rank is defined too long, it is hard to explore a high-rank state. One way to relieve this problem is to modify initial state distribution $p(s_0)$, proposed in DeepMimic [10], which makes high-rank state could aslo be fully explored.

Thanks

I would like to thank:

- Shunsuke Kudoh and Takashi Suehiro for their invaluable advice and encouragement with regards to all aspects of my Master curriculum.
- Masaru Takizawa for his help with redacting the final ROBOMECH2020 publication and many discussions of the project progress.
- Every member of Kudoh Suehiro lab for warmly welcoming me in their workspace and sharing the compute resources without which this project would not be possible.
- My family, for their love and support.

Bibliography

- [1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik's cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.
- [2] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In Advances in neural information processing systems, pp. 5048–5058, 2017.
- [3] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.
- [4] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and machine learning. http://pybullet.org, 2016–2019.
- [5] Guoguang Du, Kai Wang, and Shiguo Lian. Vision-based robotic grasping from object localization, pose estimation, grasp detection to motion planning: A review. arXiv preprint arXiv:1905.06658, 2019.
- [6] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

- [7] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In *ICML*, Vol. 2, pp. 267–274, 2002.
- [8] Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning for deformable object manipulation. arXiv preprint arXiv:1806.07851, 2018.
- [9] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *ICML*, Vol. 99, pp. 278–287, 1999.
- [10] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills, 2018. cite arxiv:1804.02717.
- [11] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Riedmiller. Data-efficient deep reinforcement learning for dexterous manipulation. arXiv preprint arXiv:1704.03073, 2017.
- [12] Ameya Pore and Gerardo Aragon-Camarasa. On simple reactive neural networks for behaviour-based reinforcement learning. arXiv preprint arXiv:2001.07973, 2020.
- [13] Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, Julian Ibarz, and Sergey Levine.

 Deep reinforcement learning for vision-based robotic grasping: A simulated comparative evaluation of off-policy methods. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 6284–6291. IEEE, 2018.
- [14] John Schulman. Optimizing expectations: From deep reinforcement learning to stochastic computation graphs. PhD thesis, UC Berkeley, 2016.

- [15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pp. 1889–1897, 2015.
- [16] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.
- [17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
- [18] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE, 2017.
- [19] Mel Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess, Thomas Rothörl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.