

Cisco Packet Tracer. Разделение на подсети. Сценарий 1

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
	G0/0	192.168.100.1	255.255.255.224	-
R1	G0/1	192.168.100.33	255.255.255.224	-
	S0/0/0	192.168.100.131	255.255.255.224	-
	G0/0	192.168.100.65	255.255.255.224	-
R2	G0/1	192.168.100.97	255.255.255.224	-
	S0/0/0	192.168.100.130	255.255.255.224	-
S1	VLAN 1	-	-	-
S2	VLAN 1	-	-	-
S3	VLAN 1	-	-	-
S4	VLAN 1	-	-	-
PC1	NIC	192.168.100.2	255.255.255.224	192.168.100.1
PC2	NIC	192.168.100.34	255.255.255.224	192.168.100.33
PC3	NIC	192.168.100.66	255.255.255.224	192.168.100.65
PC4	NIC	192.168.100.98	255.255.255.224	192.168.100.97

Задачи

Часть 1. Разработка схемы ІР-адресации

Часть 2. Назначение сетевым устройствам ІР-адресов и проверка подключения

Сценарий

В этом упражнении вам предоставляется сетевой адрес 192.168.100.0/24 для подсети, и вы должны составить схему IP-адресации сети, изображенной в топологии. Для каждой локальной сети (LAN) в сети требуется достаточно пространства для, по крайней мере, 25 адресов для оконечных устройств, коммутатора и маршрутизатора. Для соединения между маршрутизаторами R1 и R2 потребуется по одному IP-адресу на каждом конце канала.

Часть1: Разработка схемы IP-адресации

Шаг1: Разбейте сеть 192.168.100.0/24 на нужное количество подсетей.

- а. Сколько потребуется подсетей в соответствии с имеющейся топологией ? 5
- b. Сколько бит необходимо заимствовать для поддержки нескольких подсетей в таблице топологии? 3
- с. Сколько в результате этого создается подсетей? 8
- d. Сколько при этом в каждой подсети будет доступно узлов? 30

Примечание. Если ваш ответ — менее 25 узлов, значит, вы позаимствовали слишком много бит.

е. Рассчитайте двоичное значение для первых пяти подсетей. Первая подсеть уже показана.

Net	0:	192	•	168	•	100	•	0	0	0	0	0	0	0	0
Net	1:	192		168		100	•	0	0	1	0	0	0	0	0
Net	2:	192		168	•	100	•	0	1	0	0	0	0	0	0
Net	3:	192		168		100	•	0	1	1	0	0	0	0	0
Net	4:	192		168		100		1	0	0	0	0	0	0	0

f. Рассчитайте двоичное и десятичное значение новой маски подсети.

```
11111111.11111111.11111111.11100000
255 . 255 . 255 . 224
```

g. Заполните **Таблицу подсетей**, перечислив десятичные значения всех доступных подсетей, первый и последний используемый адрес узла и широковещательный адрес. Повторяйте эти действия до тех пор, пока все адреса не будут внесены в список.

Примечание. Возможно, потребуется заполнить не все строки.

Таблица подсетей

Номер подсети	Адрес подсети	Первый используемый адрес узла	Последний используемый адрес узла	Широковещательный адрес
0	192.168.100.0\27	192.168.100.1	192.168.100.30	192.168.100.31
1	192.168.100.32\27	192.168.100.33	192.168.100.62	192.168.100.63
2	192.168.100.64\27	192.168.100.65	192.168.100.94	192.168.100.95
3	192.168.100.96\27	192.168.100.97	192.168.100.126	192.168.100.127
4	192.168.100.128\27	192.168.100.129	192.168.100.168	192.168.100.169
5				
6				
7				
8				
9				
10				

Шаг2: Назначьте подсети для сети, показанной в топологии.

- а. Назначьте подсеть 0 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/0 маршрутизатора R1: 192.168.100.0\27
- b. Назначьте подсеть 1 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/1 маршрутизатора R1: 192.168.100.32\27
- с. Назначьте подсеть 2 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/0 маршрутизатора R2: 192.168.100.64\27
- d. Назначьте подсеть 3 локальной сети (LAN), подключенной к интерфейсу GigabitEthernet 0/1 маршрутизатора R2: 192.168.100.96\27
- е. Назначьте подсеть 4 каналу WAN между маршрутизаторами R1 и R2: 192.168.100.128\27

Шаг3: Задокументируйте схему адресации.

Заполните Таблицу подсетей в соответствии со следующими рекомендациями.

- а. Назначьте первые используемые IP-адреса маршрутизатору R1 для двух каналов локальной сети (LAN) и одного канала WAN.
- b. Назначьте первые используемые IP-адреса маршрутизатору R2 для каналов локальной сети (LAN). Последний из используемых IP-адресов назначьте каналу WAN.
- с. Второй из используемых ІР-адресов назначьте коммутаторам.
- d. Последний из используемых IP-адресов назначьте узлам.

Часть2: Назначение IP-адресов сетевым устройствам и проверка подключения

Основная часть параметров IP-адресации для данной сети уже настроена. Для завершения настройки адресации выполните следующие шаги.

- Шаг1: Настройте IP-адресацию на интерфейсах локальной сети маршрутизатора R1.
- Шаг2: Настройте IP-адресацию на коммутаторе S3, включая шлюз по умолчанию.
- **Шаг3:** Настройте IP-адресацию на компьютере PC4, включая шлюз по умолчанию.
- Шаг4: Проверьте подключение.

Подключение можно проверить только между маршрутизатором R1, коммутатором S3 и компьютером PC4. При этом необходимо отправлять эхо-запрос на каждый IP-адрес, перечисленный в **Таблице адресации**.