C3 linearization algorithm

Miguel Cid Flor

April 30, 2025

Ingredients

Let \mathcal{C} be a finite set of symbols, ranged over by C_0, C_1, \ldots, C_n , possibly primed, which we refer to as *classes*, and let $(\mathcal{C}, <_c)$ be an ordered set of classes. Consider $\mathcal{P} \subseteq (\mathcal{C}, <_c)$ and $\mathcal{D} \subseteq \mathcal{C} \times \wp(\mathcal{P})$.

The purpose of this document is to present the MRO algorithm¹, which maps each \mathcal{C} with an ordered set of classes, \mathcal{P} . We show first the envisaged properties, then define it, and finally prove the definition ensures those properties.

Properties

Let
$$D = \langle C, \{P_1, \dots, P_n\} \rangle \in \mathcal{D}$$
, with $n \in \mathbb{N}_0$.
Let $MRO(\mathcal{C}) = \{C_0, \dots, C_m\}$, with $m \in \mathbb{N}_0$.

Consistency with the hierarchy of classes

This property requires that $C_0 = C$ where $\{P_0, P_1, \dots, P_n\} \subseteq \{C_1, \dots, C_m\}$.

Consistency with the local precedence order

Let A and B be classes, for $m, n \geq 2$.

$$\forall i, j \ (0 \le i < j \le n \implies \exists p, q \ (0 \le p < q \le m \land C_p = P_i \land C_q = P_j)).$$

Consistency with the local precedence graph

Let
$$D', D'' \in \mathcal{D}$$

If $C \in \pi_2(D') \setminus \pi_2(D'')$, then $\exists p, q, 0 , where $C_p = C$, $C_q = \pi_1(D'')$.$

 $^{^{1}}M$ ethod Resolution Order

Functions

Let $(\mathcal{C}, <_c)^*$ be a sequence of ordered sets of classes. Let $L = [L_1; \ldots; L_n], L \in (\mathcal{C}, <_c)^*$ Let $C \in \mathcal{C}$

Remove

$$\mathtt{remove}: (\mathcal{C}, <_c)^* \times \mathcal{C} \Rightarrow (\mathcal{C}, <_c)^*$$

$$remove(L, C) = [l/C \mid l \in L]$$

Merge

merge:
$$(\mathcal{C}, <_c)^* \Rightarrow (\mathcal{C}, <_c)$$

$$\mathtt{merge}(L) = \begin{cases} \{C\} \cup \mathtt{merge}(\mathtt{remove}(L,C)), & \text{if } (\exists k \in \llbracket 1,n \rrbracket, L_k \neq \emptyset \land C = \mathtt{head}(L_k)) \land \\ & (\forall j < k, C \neq \mathtt{head}(L_j)) \land \\ & (\forall i \in \llbracket 1,n \rrbracket, C \notin \mathtt{tail}(L_i)) \end{cases}$$

$$\text{otherwise}$$

C3 Linearization

c3linearization:
$$\mathcal{D} \Rightarrow (\mathcal{C}, <_c)$$

Let $D = \langle C, P \rangle$ where $D \in \mathcal{D}$
 $\forall P_i \in P, \exists D_i \in \mathcal{D} \text{ such that } D_i = \langle P_i, P' \rangle$
Let $D' = [D_i \mid i \in [\![1, |P|]\!]]$

$$\mathtt{c3linearization}(D) = \begin{cases} \{C\} & \text{if } P = \emptyset \\ \{C\} \cup \mathtt{merge}([\mathtt{c3linearization}(d) \mid d \in D'] \cdot [P]) & \text{otherwise} \end{cases}$$