PCT WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Bür INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶: C07F 9/10, 9/09, A61K 9/127, C12N

A1

(11) Internationale Veröffentlichungsnummer: WO 99/09037

15/88

(43) Internationales Veröffentlichungsdatum:

25. Februar 1999 (25.02.99)

(21) Internationales Aktenzeichen:

PCT/EP98/05252

21) Internationales Aktenzeichen: PC1/EP98/05

(22) Internationales Anmeldedatum: 18. August 1998 (18.08.98)

(30) Prioritätsdaten:

197 35 776.8

18. August 1997 (18.08.97) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US); MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V. [DE/DE]; Hofgartenstrasse 2, D-80539 München (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): EIBL, Hans-Jörg [DE/DE];
Heinrich-Deppe-Ring 22, D-37120 Boyenden (DE).

(74) Anwälte: WEICKMANN, H., usw.; Kopemikusstrasse 9, D-81679 München (DE). (81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HF, HU, DI, LI, IS, DP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, FT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GR, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: PHOSPHOLIPID ANALOGUE COMPOUNDS

(54) Bezeichnung: PHOSPHOLIPIDANALOGE VERBINDUNGEN

(57) Abstract

The invention relates to novel phospholipid analogue compounds of general formula (I) wherein A represents (II), R1 and R12 ?being hydrogen, a saturated or an unsaturated acyl or alkyl radical independently of each other. Said radical can be optionally branched and/or substituted, the sum of the carbon atoms in acyl and alkyl being from 16 to 44 C-atoms. s represents a whole number from 0 to 8, c = and is a radical of a primary or secondary alcohol of formula RO-, R being a saturated or an unsaturated alkyl radical, mainly with a cis-double bond, of 12 to 30 carbon atoms. n represents a whole number from 2 to 8, and R3 represents the following:- a = and can be 1.2-dihydroxypropyl, b = and can be an alkyl with 1 to 3 C-atoms when z > 0 or c =and can be an alkyl with 1 to 3 C-atoms when n = 2 and z = 0. m = and is 1 or 2, x = and represents a wholenumber from 0 to 8, y =and is 1 for z = 1 to 5 or = and is 1 to 4 for z = 1, and z = and represents a whole number from 0 to 5. The novel compounds are suitable as liposome components, solutizers and medicaments.

$$A - PO_3 \cdot - \begin{bmatrix} CH_3 \\ (CH_2)_n & N^* \\ R_3 \end{bmatrix}_n \cdot \begin{bmatrix} (CH_2)_n \\ CH_2 \end{bmatrix} \cdot \begin{bmatrix} CH_2 \\ (CH) \\ OH \end{bmatrix}_y \cdot CH_2 - O \cdot CH_3 \cdot CH_3$$

OR

oder

CH, - O - R,

CH - 0 -

(CH₄), - H

REPRESENTS (II)

a = CH, - O - R.

CH. - 0 -

CH - O - R,

worin A

(CH₂), - H

BNSDOCID: <WO____ 9909037A1 1 >

(57) Zusammenfassung

Phospholipidanaloge Verbindungen der allgemeinenen Formel (I), worin A (II) ist, wobei R_1 und R_2 unabhängig voneinander Wasserstoff, einen gesättigten der ungesittigten Acyl— oder Alkylrest bedeuten, der gegebenenfalls verzweigt oder/und substituiert sein kann, wobei die Summe der Kohlenstoffatome in Acyl und Alkyl von 16 bis 44 C-Atomen legt; s eine gezätligten Alkylrest koffatten eine Kohlenstoffatomen in Acyl und Alkyl von 16 bis 44 C-Atomen legt; s eine gezätligten Alkylrest vorwiegend mit cis-Doppeblindung, von 12 bis 30 Kohlenstoffatomen bedeutet; n eine ganze Zahl von 0 bis 8 darstellt; R_1 , a = 1,2-Dihydroxypropyl sein kann oder b = Alkyl mit 1 bis 3 C-Atomen sein kann, wenn z > 0 ist oder z = 1 bis 5 bist oder z = 1 bis 5 bist oder z = 1 bis 5 bist oder z = 1 bis 6 bist für z = 1; z = 1 eine ganze Zahl von 0 bis 5 darstellt; sind neu und eigens sich als Liposomenbestandteile, Lösungsvermitter und Arzneimittel.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ΛL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litanen	SK	Slowakei
ΛT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
ΛZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	,	Republik Mazedonien	TR	Türkinenistan
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	
BJ	Benin	IE	Irland	MN	Mongolei	UA	Trinidad und Tobago Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	
BY	Belarus	IS	Island	MW	Malawi	US	Uganda
CA	Kanada	IT	Italica	MX	Mexiko	US	Vereinigte Staaten von
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Amerika
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Usbekistan
CH	Schweiz	KG	Kirgisistan	NO	Norwegen		Vietnam
Cı	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	YU	Jugoslawien
CM	Kamerun		Korea	PL	Polen	zw	Zimbabwe
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachsian	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG			
			anoonia .	30	Singapur		

10

15

20

25

30

Phospholipidanaloge Verbindungen Beschreibung

Die Erfindung betrifft neue phospholipidanaloge Verbindungen, die als Liposomenbestandteile zum Transport von Arzneimitteln, als Lösungsvermittler für in Wasser schlecht lösliche Arzneimittel und auch als Wirkstoffe selbst gegen Erkrankungen wie Krebs und Leishmaniose eingesetzt werden können, diese neuen Verbindungen enthaltende Liposomen, Arzneimittelzusammensetzungen, welche diese Liposomen enthalten, und Verfahren zur Herstellung von Arzneimitteln.

Insbesondere betrifft die Erfindung Phosphatidylverbindungen, die einen definierten hydrophilen Rest enthalten, sowie Liposomen, die eine verkürzte oder verlängerte Lebensdauer im Serum aufweisen und gezielt von bestimmten Zellen, beispielsweise Tumorzellen, aufgenommen werden können

Herkömmliche Liposomen weisen im Serum eine Verweilzeit von bis zu 5 Stunden auf. Insbesondere bei der Verwendung von Liposomen als Träger für pharmazeutische Wirkstoffe ist jedoch eine möglichst lange Verweilzeit von Liposomen im Blutkreislauf wünschenswert, insbesondere aber in Verbindung mit einer Aufnahme in ausgewählte Zielzellen.

Es wurden daraufhin die sogenannten "Stealth-Liposomen" entwickelt, die eine verlängerte Lebensdauer aufweisen. Diese "Stealth-Liposomen" sind auf der Basis von Phosphatidylverbindungen aufgebaut, die einen verlängerten Polyethylenglykolrest enthalten. Der Polyethylenglykolrest erwies sich für die angestrebte verlängerte Lebensdauer am wirksamsten bei Molekulargewichten zwischen 2000 und 3000. Ein wesentlicher Nachteil dieser "Stealth-Liposomen" bzw. der Phosphatidylverbindungen mit Polyethylenglykolrest liegt allerdings darin, dass es sich nicht um exakt definierte Verbindungen handelt, da die Polyethylenglykolreste

unterschiedliche Kettenlängen aufweisen. Die sogenannten "Stealth-Liposomen" besitzen infolge des Phosphatrestes jedoch immer eine negative Oberflächenladung in der Liposomenmembran. Aufgabe der eigenen älteren Patentanmeldung 196 22 224.9 war deshalb die Bereitstellung von Verbindungen, die die Lebensdauer von Liposomen erhöhen und eine exakt angebbare Zusammensetzung aufweisen, wobei ebenfalls Phosphatester und damit negative Ladungen verwendet wurden.

Aufgabe der vorliegenden Erfindung ist es dagegen, Verbindungen bereitzustellen, welche diese negative Oberflächenladung vermeiden und die Oligoglycerin- oder Zuckerreste über ein Stickstoffatom in die Struktur einbinden. Durch die positive Ladung am Stickstoffrest wird die negative Ladung am Phosphat ausgeglichen oder sogar überkompensiert, wenn 2 Stickstoffatome im Molekül verwendet werden. Diese Aufgabe wird erfindungsgemäß gelöst durch eine Verbindung einer allgemeinen Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n & N^* \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_Y & CH_2 - O \\ CH_2 - \begin{pmatrix} CH \\ OH \end{pmatrix}_Y & CH_2 - O \end{bmatrix} - H_2 - O_3 + O_3 +$$

worin A

5

10

15

20

ist, wobei R_1 und R_2 unabhängig voneinander Wasserstoff, einen gesättigten oder ungesättigten Acyl- oder Alkylrest bedeuten, der gegebenenfalls verzweigt oder/und substituiert sein kann, wobei die Summe der Kohlenstoffatome in Acyl und Alkyl 16 bis 44 C-Atome beträgt,

- 5 s eine ganze Zahl von 0 bis 8 darstellt,
 - ein Rest eines primären oder sekundären Alkohols der Formel RO- ist,
 wobei R einen gesättigten oder ungesättigten Alkylrest vorwiegend
 mit cis-Doppelbindung von 12 bis 30 Kohlenstoffatomen bedeutet,
 - n eine ganze Zahl von 2 bis 8 darstellt,

10 R₃

a = 1,2-Dihydroxypropyl sein kann oder

b = Alkyl mit 1 bis 3 C-Atomen sein kann, wenn z > 0 ist oder

 $c = Alkyl mit 1 bis 3 C-Atomen sein kann, wenn <math>n \neq 2$ und z = 0 ist,

m = 1 oder 2 ist,

x = eine ganze Zahl von 0 bis 8 darstellt,

y = 1 fürz = 1 bis 5 ist oder

= 1 bis 4 ist für z = 1

z = eine ganze Zahl von 0 bis 5 darstellt.

20 Es sind Verbindungen bevorzugt, bei denen nicht gleichzeitig

$$A = \begin{array}{ccc} CH_2 - O - R_1 & , \\ CH & - O - R_2 \\ CH_2 - O & - \end{array}$$

m = 1, n = 2, x = 0, $z \neq 0$ ist und R_3 einen Alkylrest darstellt.

Die in den hier beschriebenen Substanzen verwendeten Strukturelemente können beliebig variiert und maßgeschneidert der jeweiligen Verwendung angepasst werden.

30

Über den Strukturparameter A können vorwiegend die apolaren Anteile der Moleküle variiert werden, z.B. über die Kettenlänge der Fettsäuren und der WO 99/09037 - 4 - PCT/EP98/05252

Alkylreste. Eine Modifikation der polaren Anteile ist über die Phosphatgruppe, das Stickstoffatom und die damit verknüpften Oligoglycerine möglich.

- 5 Die durch die allgemeine Formel I erfassten Verbindungen besitzen hervorragende biologische Eigenschaften und finden Verwendung als
 - Liposomenbestandteile zur gezielten Anreicherung von Wirkstoffen in Zielzellen,
- Lösungsvermittler für schwer intravenös applizierbare Substanzen,
 wie z.B. Taxol,
 - 3) Wirkstoffe gegen Krebs und Protozoenerkrankungen.

15

20

25

30

Die Verbindungen, die in den verschiedenen Anwendungsbereichen besondere Bedeutung besitzen, werden nun im Detail beschrieben. Dabei gibt es Überschneidungen, da disubstituierte Glycerine mit dem Strukturmerkmal A sowohl membranstabilisierende Eigenschaften (R $_1$ + R $_2$ > 20 C-Atome) wie auch membrandestabilisierende Eigenschaften (R $_1$ + R $_2$ < 20 C-Atome) besitzen können. Insbesondere die Grenzbereiche zwischen Membran- und Mizellbildnern können hier von besonderem Interesse sein.

Allen Strukturen gemeinsam ist die einfache Herstellung der neuartigen Moleküle, die durch Umsetzung von primären oder sekundären Aminen mit Epoxiden erfolgen kann. So entsteht aus 1,2-Dipalmitoyl-sn-glycero-3-phospho-(N-methyl)-ethanolamin mit Benzylglycidol nach katalytischer Debenzylierung und Methylierung am Stickstoff ein Phospholipid mit lecithinartiger Struktur, das als Liposomenbestandteil verwendet wird.

Verbindungen mit nur einer langen Alkyl- oder Acylkette besitzen andere interessante Eigenschaften, wenn sie über primäre oder sekundäre Amine mit Epoxiden verknüpft werden, wie aus nachfolgender Beschreibung hervorgeht. Es sind ausgezeichnete Lösungsvermittler für schlecht

WO 99/09037 PCT/EP98/05252

intravenös applizierbare Wirkstoffe und sogar direkte Wirkstoffe gegen Krebs und Leishmaniose.

Der dieser Erfindung zugrundeliegende schrittweise Aufbau der hydrophilen Reste der Phosphatidylverbindungen der Formel I ermöglicht es, eine genau definierte Zusammensetzung der Verbindungen zu erhalten.

Es handelt sich also bei der erfindungsgemäßen Verbindung der Formel I nicht um ein Gemisch verschiedener Moleküle unbestimmter Zusammensetzung und Kettenlänge, sondern es kann gezielt eine gewünschte Struktur erhalten werden. Dies bedeutet, falls das gewünschte Produkt ein N,N-Dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-ammoniumderivat ist mit y=1 und z=2 in der Formel I, dass die Verbindung chemisch definiert ist und keine Anteile mit y=1 und z=1 oder y=1 und z=3 usw. enthält. Bevorzugt werden Hydroxypropylderivate einer ganz bestimmten Kettenlänge verwendet, die im wesentlichen frei von anderen Kettenlängen sind.

Erfindungsgemäß stellt die Verbindung der Formel I eine einheitliche Verbindung definierter Struktur dar. Bevorzugt ist die Verbindung hinsichtlich des Wertes von z größer als 99 % einheitlich. Es ist jedoch auch möglich, die Verbindung mit einer Einheitlichkeit von mehr als 99,9 % hinsichtlich des Wertes von z bereitzustellen

Bevorzugt handelt es sich bei der Verbindung um Hydroxypropylderivate am Stickstoff mit 1 bis 5 Hydroxypropyleinheiten, bevorzugt mit 1 bis 3 Hydroxypropyleinheiten. Es handelt sich dabei bevorzugt um 1,3-verknüpfte lineare Oligoglycerinreste, die über einen 2-Hydroxypropylrest mit dem Stickstoffatom verknüpft sind.

10

15

Der Rest für A=c mit der Formel RO- leitet sich von einem primären oder sekundären Alkohol ab. Wenn RO- von einem sekundären Alkohol stammt, sind solche Reste mit dem Sauerstoff am C_2 -, C_3 - oder C_4 -Atom bevorzugt.

Die Reste R¹ und R² stellen erfindungsgemäß bevorzugt unabhängig voneinander Wasserstoff, einen gesättigten oder ungesättigten Acyl- oder Alkylrest dar, der gegebenenfalls verzweigt oder/und substituiert sein kann, wobei die Summe der Kohlenstoffatome in Acyl und Alkyl zwischen 16 und 44 liegt.

10

25

30

- Ein weiterer Gegenstand der Erfindung sind Liposomen, die Phospholipide oder/und Alkylphospholipide, gegebenenfalls Cholesterin und 1 bis 50 Mol-% einer Verbindung der allgemeinen Formel I beinhalten.
- Die Phospholipide oder/und Alkylphospholipide k\u00f6nnen beispielsweise Diacylglycerophosphoverbindungen definierter Struktur sein. Allgemein k\u00f6nnen diese Bestandteile der Lipide als Verbindungen definierter Struktur eingesetzt werden.
- Im Falle y > 1 stammt der Rest $-CH_2(CHOH)_{\gamma}-CH_2-OH$ bevorzugt aus Zuckeralkoholen, die für y = 2, 3 Hydroxylgruppen, für y = 3, 4 Hydroxylgruppen und für y = 4, 5 Hydroxylgruppen aufweisen. Beispiele solcher Reste sind Mannitderivate für y = 4, Lyxitderivate für y = 3 und Threitderivate für y = 2.

Die erfindungsgemäßen Liposomen weisen eine deutlich veränderte Halbwertszeit in der Blutzirkulation auf. Die Liposomen mit m=1 sind nach außen neutral und zeigen erhöhte Verweilzeiten im Blut, während die Liposomen mit m=2 infolge der positiven Überschussladung in der Membran nur ganz kurz zirkulieren.

WO 99/09037 - 7 - PCT/EP98/05252

Ein weiterer Gegenstand der Erfindung ist eine pharmazeutische Zusammensetzung, die die oben beschriebenen Liposomen und in den Liposomen eingeschlossen einen oder mehrere pharmazeutische Wirkstoffe gegebenenfalls zusammen mit pharmazeutisch üblichen Verdünnungs-, Hilfs-, Träger- und Füllstoffen enthält.

Als Wirkstoffe können in der Regel alle Wirkstoffe verwendet werden, die sich mittels Liposomen überhaupt ins Plasma einbringen lassen. Bevorzugte Wirkstoffgruppen sind einerseits Cytostatika, insbesondere Anthracyclin-Antibiotika, wie etwa Doxorubicin, Epirubicin oder Daunomycin, wobei Doxorubicin besonders bevorzugt ist. Weitere bevorzugte Cytostatika sind Idarubicin, Hexadecylphosphocholin, 1-Octadecyl-2-methyl-rac-glycero-3-phosphocholin, 5-Fluoruracil, cis-Platinkomplexe wie Carboplatin und Novantron sowie Mitomycine.

Weitere bevorzugte Wirkstoffgruppen sind immunmodulierende Substanzen wie etwa Cytokine, wobei unter diesen wiederum die Interferone und insbesondere das a-Interferon besonders bevorzugt sind, antimykotisch wirksame Substanzen (z.B. Amphotericin B) und Wirkstoffe gegen Protozoenerkrankungen (Malaria, Trypanosomen- und Leishmanien-Infektionen). Ebenfalls bevorzugt ist Taxol als Wirkstoff.

Eine weitere bevorzugte Wirkstoffgruppe sind lytische Wirkstoffe, wie sie in der DE 41 32 345 A1 beschrieben sind. Bevorzugt sind Miltefosin, Edelfosin, Ilmofosin sowie SRI62-834. Insbesondere bevorzugt sind Alkylphosphocholine auch mit erweiterten Alkylketten, z.B. Erucylphosphocholin und Erucylphosphocholine mit erweitertem Phospho-Stickstoffabstand.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von erfindungsgemäßen Liposomen zur Herstellung eines Antitumormittels, wobei der Wirkstoff besonders bevorzugt Doxorubicin ist.

10

15

20

10

15

20

25

30

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Liposomen zur Herstellung eines Mittels zur Beeinflussung der Zellproliferation, wobei der Wirkstoff ein Cytokin, besonders bevorzugt σ -Interferon ist.

Die erfindungsgemäßen Liposomen werden nach an sich bekannten Methoden hergestellt mit hierfür gängigen Vorrichtungen. Typischerweise kann eine die verschiedenen Komponenten des Liposoms einschließlich 1 bis 50 Mol-% einer Verbindung der Formel I enthaltende Lösung in eine Lipidsuspension überführt werden, die dann unter hohem Druck durch Düsen oder durch Lochscheiben gepresst wird, wobei durch die Größe der Öffnungen in der Lochscheibe die Größe der erhaltenen Liposomen geregelt werden kann. Geeignete Maßnahmen zur Überführung einer Lipidsuspension in Liposomen sind dem Fachmann bekannt. Bevorzugt werden 5 bis 55 Mol-% einer Verbindung der allgemeinen Formel I mit 35 bis 60 Mol-% und 40 bis 60 Mol-% Phospholipiden Alkylphospholipiden in eine Lipidsuspension überführt, die dann durch geeignete Maßnahmen auf an sich bekannte Weise in Liposomen umgewandelt wird. Solch bekannte Verfahren können auch zur Herstellung einer pharmazeutischen Zubereitung, die die erfindungsgemäßen Liposomen und einen oder mehrere pharmazeutische Wirkstoffe enthält, verwendet werden. Zum Einschluss wasserunlöslicher Wirkstoffe wird der Wirkstoff dabei zusammen mit den Lipidbestandteilen gelöst, während zum Einschluss wasserlöslicher Wirkstoffe der Lipidfilm mit einer wässrigen Lösung versetzt wird, die den wasserlöslichen Wirkstoff enthält.

Die Ausgangsphospholipide werden nach in der Literatur beschriebenen Verfahren hergestellt (DE 31 30 867 A1; Eibl et al., Chem. Phys. Lipids <u>28</u> (1981), 1-5, <u>41</u> (1986), 53-63 und <u>47</u> (1988), 47-53. Insbesondere kann hier auf Verfahren zurückgegriffen werden, die in der PCT/EP97/00749-Anmeldung vom 17.02.1997 beschrieben worden sind. So können die

erfindungsgemäßen Verbindungen der Formel I auf folgende Weise hergestellt werden:

Beispiel (A = a; n = 2; m = 1; y = 1; z = 2)

5 (Reaktion von 1,2-Diplamitoyl-sn-glycero-3-phospho-(N-methyl)-ethanolamin mit 1,2-Isopropyliden-glycero-glycidol)

$$\begin{array}{c} \text{CH}_2 - \text{O} - \text{CO} - (\text{CH}_2)_{14} - \text{CH}_3 \\ \text{CH} - \text{O} - \text{CO} - (\text{CH}_2)_{14} - \text{CH}_3 \\ \text{CH}_2 - \text{O} - \text{PO}_3^- - \text{CH}_2 - \text{CH}_2 - \text{N} \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \\ \text{CH}_2 - \text{CH}_3 - \text{CH}_3 \\ \text{CH}_2 - \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 \\ \text{CH}_2 - \text{CH}_2 \\ \text$$

$$\begin{array}{c} \mathsf{CH}_2 - \mathsf{O} - \mathsf{CO} - (\mathsf{CH}_2)_{14} - \mathsf{CH}_3 \\ \mathsf{CH} - \mathsf{O} - \mathsf{CO} - (\mathsf{CH}_2)_{14} - \mathsf{CH}_3 \\ \mathsf{CH}_2 - \mathsf{O} - \mathsf{PO}_3^- - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \end{array} \begin{array}{c} \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_3 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 - \mathsf{CH}_2 \\ \mathsf{CH}_2 - \mathsf{CH}_2 -$$

30 Entsprechende Umsetzungen können durchgeführt werden, die Verbindungen mit n = 3 - 10; m = 1; y = 1; z = 1 - 5. Ausgangsverbindungen für x = 2 und 3 sind Kephaline und N-

10

15

20

25

Methylkephaline, deren Darstellung ausführlich beschrieben wurde. Die Umsetzungen mit den entsprechenden Glycidolen, deren Herstellung in der deutschen Patentanmeldung "Phosphatidyloligoglycerine" 19622224 beschrieben ist, führt zu den gewünschten Produkten, wobei die Addition in einem 2-Phasensystem THF - $\rm Na_2CO_3/NaHCO_3~1:1~(0,5~M~in~H_2O;~pH~9~10)$ durchgeführt wird. Bei diesen pH-Werten wird jedoch keine Hydrolyse der Fettsäureester beobachtet.

Zur Darstellung der Dioleoylverbindungen muss 1,2-Dioleyol-sn-glycero-3-phospho-(N-methyl)-ethanolamin hergestellt werden. Dies wird durch folgendes Reaktionsschema erreicht:

6) LiBr7) BOC ab

10

15

20

Analog werden allgemein ungesättigte Verbindungen hergestellt.

Entsprechend können Verbindungen mit n = 4 - 8 hergestellt werden, da die entsprechenden endständigen Alkanolamine käuflich erworben und in die N-BOC geschützten Verbindungen umgewandelt werden können.

In der Folge werden Beispiele zur Synthese von Liposomenbestandteilen beschrieben, die die experimentelle Breite der vorliegenden Anmeldung belegen. Es können, wie aus den Beispielen hervorgeht, beliebige Fettsäureester- und Alkyletherkombinationen hergestellt werden, die in Kettenlänge, Anzahl der cis-Doppelbindungen und Verzweigungsgrad variieren.

Die RF-Werte der Beispielsverbindungen 1 bis 279 wurden im System CHCl₃/CH₃OH (Eisessig/H₂O: 100/60/20/5 Volumentanteile bestimmt. Sie liegen gruppenweise sehr dicht beisammen und zwar wie folgt:

	RF	Verbindung Nr.:
	0,10-0,15	129-135
25	0,15-0,20	117-128; 167,172;209-216
	0,20-0,25	70-84; 98-116; 151-166; 197-208
	0,25-0,30	45-69; 136-150; 183-196; 262-272
	0,30-0,35	25-44; 173-182; 255-261; 273-279
	0,35-0,40	1-24
30	0,40-0,45	85-97
	0,30-0,40	217-240
	0,20-0,30	241-254

BEISPIELE

- A) Herstellung von Erucoyl-propandiol-(1,3)-phopsho-N,N,N-trimethylpropylammonium
- 5 (Beispiel 176)

10

20

Erucoyl-propandiol-(1,3)

Propandiol-(1,3), 153 g (MG 76,1; 2 MoI) wird in 1 i THF gelöst, mit 60 g Triethylamin (MG 101,2; 0,6 MoI) und 7,3 g 4-Dimethylaminopyridin (MG 122,2; 0,06 MoI) versetzt und in einem Wasserbad auf 20°C temperiert. Unter stetem Rühren werden 178 g Erucoylchlorid (MG 35,0; 0,5 MoI) in 500 ml THF langsam so zugetropft, daß die Temperatur 30°C im Re ktionsgemisch nicht übersteigt. Nach dem Eintropfen wird noch 30 Minuten auf 30°C erwärmt, mit 1,5 l Diisopropylether und 1,5 l 1N HCl versetzt. Nach gutem Schütteln und Phasenseparation wird die obere Etherphase nochmals mit 1 % NaCl-Lösung gewaschen und in Vakuum bei 45°C einrotiert. Der Rückstand wird in 2 l Hexan aufgenommen und auf -20°C gekühlt. Die weißen Kristalle werden abgesaugt und im Vakuum getrocknet. Die Ausbeute an reinem Erucoyl-propandiol-(1,3) beträgt 123 g (MG 396,7; 62 %). Die Substanz ist dünnschichtchromatographisch rein (Rf-Wert 0,3 in Ether/Petnan/Essigsäure 200/200/2; Volumenanteile).

Mikroanalyse

 $C_{25}H_{48}O_3$ - Ber.: C, 75,70; H, 12,20; O, 12,10 - Gef.: C, 75,81; H, 12,16; =, -

Erucoyl-propandiol-(1,3)-phospho-N-methyl-propylammonium

Phophoroxychlorid, 24,2 g (MG 153,33; 0,16 Mol) in 15 ml THF wird in einem Eisbad auf 0°C gekühlt. Man versetzt tropfenweise unter Rühren mit einer Lösung von Erucoyl-propandiol-(1,3), 60 g (MG 396,7; 0,15 Mol) und

15

20

25

30

17,2 g Triethylamin (MG 101,19; 0,17 Mol) in 250 ml THF, so daß die Temperatur im Reaktionsgemisch 15°C nicht übersteigt. Nach dem Eintropfen der Lösung wird die Temperatur des Reaktionsgemisches auf 20°C gebracht und 30 Minuten weitergerührt.

Die Umwandlung des gebildeten ErucovI-propandiol-(1,3)phosphorsäuredichlorids in das Zielprodukt erfolgt durch Umsetzung mit N-Methylpropanolamin über einen intermediären Sechsring. Dazu wird das Reaktionsgemisch unter Rühren mit einer Lösung von 16 g N-Methylpropanolamin (MG 89,14; 0,18 Mol) und 35,4 g Triethylamin (MG 101, 19; 035 Mol) in 250 ml THF tropfenweise so versetzt, daß die Temperatur 35°C nicht übersteigt. Nach dem Eintropfen wird das Reaktionsgemisch noch 30 Minuten bei 25°C gehalten. Das ausgefallene Triethylaminhydrochloird wird abfiltriert. Das Filtrat enthält das Zwischenprodukt (Rf 0,25 in CHCl₃/Essigester 1:1; Volumenanteile), das durch Zusatz von 60 ml 2 N HCl unter Ringöffnung in Erucoyl-propandiol-(1,3)-phospho-N-methyl-propylammonium (Rf 0,45 CHCl₃/CH₃OH/Eisessig/H₂O 100/80/10/5, Volumenteile) umgewandelt wird. Die THF-Lösung des Produkts wird mit 200 ml 0,2 Natriumphosphatlösung (pH ~ 8,0) versetzt und auf pH 6 - 7 gebracht. Man fällt das Produkt durch Zugabe von 1 I Aceton aus und isoliert die Kristalle durch Absaugen bei 4°C. Erucoyl-propandiol-(1.3)-phospho-Nmethyl-propylammonium ist manchmal leicht verunreinigt. Zur Reinigung kann eine Cromatographie an Kieselgel mit CHCl₂/CH₂OH/H₂O eingesetzt werden. Die Ausbeute an reinem Produkt - bezogen auf Erucoyl-propandiol-

Mikroanalyse

(1,3) - beträgt 65 g (MG 547,8; 79 %).

C₂₉H₅₈NO₆P - Ber.: C, 63,59; H, 10,67; N, 2,56; O, 17,53; P, 5,66 - Gef.: C, 63,34; H, 10,49; N, 2,49; O, - ; P, 5,59

Erucoyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-propylammonium

Erucoyl-propandiol-(1,3)-phospho-N-methyl-propylammonium, 54,8 g (MG 547,8; 0,1 MoI) werdenmit 800 ml THF und 83 g $\rm K_2CO_3$ (0,6 MoI) in 800 ml H₂O versetzt. Man erwärmt auf 50°C und erhält eine zweiphasige 5 Lösung. Man tropft unter starkem Rühren 74,5 g Toluolsulfonsäuremethylester (MG 186,23; 0,4 Mol) in 200 ml THF ein und kocht unter Rückfluß. Die Reaktion ist nach 60 Minuten beendet. Erucoylpropandiol-(1,3)-phospho-N,N,N-trimethyl-propylammonium als Produkt (Rf-Wert 0,1 in CHCl₃/CH₃OH/Eisessig/H₂O 100/80/10/5, Volumenanteile) wird aus der THF-Phase mit 1,2 I Aceton ausgefällt, der Niederschlag in 300 ml CHCl₃ aufgenommen, filtriert und nochmals mit 1,2 l Aceton gefällt. Ist das Produkt nicht ganz rein, kann zur Aufreinigung eine Chromatographie an Kieselgel mit CHCl₃/CH₃OH/H₂O eingesetzt werden. Die Ausbeute an reinem Produkt - bezogen auf die N-methyl-Verbindung - beträgt 49 g (MG 575,8M 85 %).

Mikroanalyse

 $C_{31}H_{62}NO_6P$ - Ber.: C, 64,66; H, 10,85; N, 2,43; O, 16,67; P, 5,38 20 - Gef.: C, 64,38; H, 10,81; N, 2,39; O, -; P. 5.27

Herstellung von Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-B) (hydroxypropyl-dihydroxypropyl)-propylammonium (Beispiel 155)

25

10

15

Zur Herstellung dieser Verbindung kann das Zwischenprodukt Erucoyl $propandiol \hbox{-} (1,3) \hbox{-} phospho-N-methyl-propylammonium eingesetz twerden. Es$ wird in einer Reaktion zuerst mit einem Epoxyd umgesetzt und direkt weiter zum Endprodukt methyliert.

Erucoyl-propandiol-(1,3)-phospho-N-methyl-propylammonium, 54,8 g (MG 30 547,8; 0,1 Mol) werdenmit 800 ml THF un d83 g K2CO3 (0,6 Mol) in 800 ml H₂O versetzt, man erwärmt auf 50°C und erhält eine zweiphasige

Lösung. Man tropft unter starkem Rühren eine Lösung aus 21 g 1,2-Isopropyliden-glycero-3,1-glycidol (MW 188,2; 0,11 Mol) in 200 ml THF ein und erhöht die Temperatur auf 60°C. Das Reaktionsgemisch wird 2 unter leichtem Rückfluß gekocht und mit Toluolsulfonsäuremethylester (MG 186,23; 0,2 Mol) in 100 ml THF versetzt. Nach 2 Stunden Kochen unter Rückfluß ist die Reaktion beendet. Die THF-Phase wird bei 45°C weitgehend einrotiert und der Rückstand zur Entfernung der Isopropylidenschutzgruppe mit 300 ml 70 % Essigsäure auf 60 - 65°C erhitzt. Man versetzt das Reaktionsgemisch mit einem Gemisch aus 1 | CHCl₂/1 | CH₂OH/1 | 1%ige NaCl-Lösung, schüttelt gut durch und entfernt das Lösungsmittel aus der unteren CHCl3-Phase im Vakuum. Der Rückstand wird in 400 ml CHCl₂ aufgenommen und mit 1,6 l Aceton gefällt. Reinigung kann eine Chromatographie an Kieselgel mit CHCl₃/CH₃OH/H₂O eingesetzt werden. Man erhält 46 g Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(hydroxypropyl-3,1-dihydroxypropyl)propylammonium (MG 709,94; 65 %).

Alle nachstehend aufgeführten Verbindungen können nach diesen allgemeinen Vorschriften zur Herstellung sowohl am Stickstoff hydroxylierter wie auch nicht hydroxylierter Verbindungen dargestellt werden.

Beispiele für zweikettige Glycero-phospho-N,N-dimethyl-N-dihydroxypropylalkylammonium-Verbindungen

$$(A = a; n = 2-6; R_3, CH_3; m = 1; x = 0; y = 1; z = 1)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n - N \\ F_3 \end{bmatrix}_m - (CH_2)_x \cdot \begin{bmatrix} CH_2 \cdot CH_2 \cdot CH_2 \cdot CH_3 - CH_2 \cdot CH_3 - CH_3 - CH_3 \cdot CH_3 - CH_3 - CH_3 \cdot CH_3 - CH_3$$

BNSDOCID: ≠WO 9909037A1 I >

10

15

20

15

20

25

 $\label{eq:condition} 1) \qquad 1, 2\text{-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium } (n=2)$

$$(R_1, R_2 = CO - (CH_2)_{14} - CH_3)$$

 $C_{42}H_{84}NO_{10}P$ (794,10)

 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium (n = 2)
 (R₁, R₂ = CO - (CH₂)_{1,e} - CH₂)

10 C₄₆H₉₂NO₁₀P (850,20)

 1,2-Dierucyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium (n = 2)

$$(R_1, R_2 = CO - (CH_2)_{11} - CH = CH - (CH_2)_7 - CH_3)$$

 $C_{54}H_{104}NO_{10}P$ (958,39)

5) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium (n = 2)

$$(R_1, R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

 $C_{46}H_{88}NO_{10}P$ (846.17)

6) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2) $(R_1 = CO - (CH_2)_{16} - CH_3; R_2 = CO - (CH_2)_{17} - CH = CH - (CH_2)_7 - CH_3)$

7) 1-Stearoyl-2-myristoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

$$(R_1 = CO - (CH_2)_{16} - CH_3; R_2 = CO - (CH_2)_{12} - CH_3)$$

 $C_{42}H_{84}NO_{10}P$ (794, 10)

5

8) 1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

$$(R_1 = CO - (CH_2)_{16} - CH_3; R_2 = CO - (CH_2)_{10} - CH_3)$$

 $C_{40}H_{80}NO_{10}P$ (766,04)

10

9) 1-Lauroyl-2-stearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

$$(R_1 = CO - (CH_2)_{10} - CH_3; R_2 = CO - (CH_2)_{16} - CH_3)$$

 $C_{40}H_{80}NO_{10}P$ (766,04)

15

10) 1-Erucoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

$$(R_1 = CO - (CH_2)_{11} - CH = CH - (CH_2)_7 - CH_3)$$

 $(R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$
 $C_{50}H_{96}NO_{10}P$ (902.28)

20

25

11) 1-Oleoyl-2-erucyl-sn-glycero-3-phospho-N,N-dimethyl-N-

dihydroxypropyl-ethylammonium (n = 2)

$$(R_1 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

 $(R_2 = CO - (CH_2)_1 - CH = CH - (CH_2)_7 - CH_3)$

C50H96NO10P

(902, 28)

12) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 3)

30
$$(R_1, R_2 = CI - (CH_2)_{14} - CH_3)$$

 $C_{43}H_{86}NO_{10}P$ (808.12)

. . .

1,2-Dierucyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-13) ethylammonium (n = 3)

$$(R_1, R_2 = CO - (CH_2)_{11} - CH = CH - (CH_2)_7 - CH_3)$$

 $C_{56}H_{106}NO_{10}P$ (972,413)

5

1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-14) ethylammonium (n = 3)

$$(R_1, R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

 $C_{47}H_{90}NO_{10}P$ (860,20)

10

15

1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-15) dihydroxypropyl-ethylammonium (n = 3)

$$(R_1 = CO - (CH_2)_{16} - CH_3; R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

C47H92NO10P

(862.21)

1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-16) dihydroxypropyl-ethylammonium (n = 3)

$$(R_1 = CO - (CH_2)_{16} - CH_3; R_2 = CO - (CH_2)_{10} - CH_3)$$

 $C_{41}H_{82}NO_{10}P$ (780.07)

20

25

(780.07)

1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-Ndihydroxypropyl-butylammonium (n = 4)

$$(R_1, R_2 = CO - (CH_2)_{14} - CH_3)$$

C44H88NO10P

(822.15)

1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-18) butylammonium (n = 4)

$$(R_1, R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

C48H92NO10P 30

(874.23)

20

25

30

 1,2-Dierucyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropylbutylammonium (n = 4)

$$(R_1, R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

 $C_{56}H_{108}NO_{10}P$ (986,44)

20) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-butylammonium (n = 4)

21) 1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-butylammonium (n = 4)
(R₁ = CO - (CH₂)₁₆ - CH₃; R₂ = CO - (CH₂)₁₀ - CH₃)

22) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-hexylammonium (n = 6)

$$(R_1, R_2 = CO - (CH_2)_{14} - CH_3)$$

 $C_{42}H_{84}NO_{10}P$ (794,10)

23) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropylhexylammonium (n = 6)

$$(R_1, R_2 = CO - (CH_2)_7 - CH = CH - (CH_2)_7 - CH_3)$$

 $C_{50}H_{96}NO_{10}P$ (902,28)

24) 1,2-Dierucyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropylhexylammonium (n = 6)

$$(R_1, R_2 = CO - (CH_2)_{11} - CH = CH - (CH_2)_7 - CH_3)$$
 $C_{69}H_{11},NO_{10}P$ (1014,49)

10

15

20

25

30

Beispiele für zweikettige Glycero-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-alkylammonium-Verbindungen

$$(A = a; n = 2-6; R_3, O_3; m = 1; x = 0; y = 1; z = 2)$$

Formel I

$$A - PO_{3} \cdot - \begin{bmatrix} CH_{3} \\ (CH_{2})_{n} \cdot N^{+} \\ R_{3} \end{bmatrix}_{m} \cdot (CH_{2})_{x} \cdot \begin{bmatrix} CH_{2} \cdot \begin{pmatrix} CH \\ I \\ OH \end{pmatrix}_{Y} \cdot CH_{2} \cdot O \\ z \end{bmatrix} \cdot H$$

25) 1, 2-Dipalmitoyl-sn-glycero-3-phospho-N, N-dimethyl-N-(2-hydroxypropyl-3, 1-0,0-dihydroxypropyl)-ethylammonium (n = 2) $(R_1;\ R_2\ =\ C0\ -\ (CH_2)_{14}\ -\ CH_3)$

 $C_{45}H_{90}NO_{12}P$ (868,18)

- 26) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-{2-hydroxypropyl-3,1-0,0-dihydroxypropyl)ethylammonium (n = 2) $(R_1, R_2 = CO (CH_2)_{16} CH_3)$ $C_{49}H_{98}NO_{12}P$ (924,28)
- 28) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-ethylammonium (n = 2)

 (R₁, R₂ = CO (CH₂)₇ CH = CH (CH₂)₇ CH₃)

 C₄₉H₉₄NO₁₂P (920,25)

(976,36)

- 32) 1-Oleoyl-2-erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-ethylammonium (n = 2)

 (R₁ = CO (CH₂)₇ CH = CH (CH₂)₇ CH₃;

 R₂ = CO (CH₂)₁₁ CH = CH (CH₂)₇ CH₃)

 C₅₂H₁₀₂NO₁₂P (976,36)
- 25 33) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium (n = 3) $(R_1,\,R_2\,=\,CO\,\cdot\,(CH_2)_{14}\,\cdot\,CH_3)$ $C_{46}H_{92}NO_{12}P \qquad (882,20)$

10

15

20

C53H102NO12P

10

15

20

- 34) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium (n = 3) $(R_1,\,R_2\,=\,CO\,\cdot\,(CH_2)_{16}\,\cdot\,CH_3) \\ C_{50}H_{100}NO_{12}P \qquad \qquad (938,31)$
- $\begin{array}{lll} 35) & 1,2\text{-}Dierucoyl\text{-}sn\text{-}glycero\text{-}3\text{-}phospho\text{-}N,N\text{-}dimethyl\text{-}N\text{-}}\{2\text{-}hydroxypropyl\text{-}3,1\text{-}0,0\text{-}dihydroxypropyl}\}\text{-}propylammonium} \; (n=3) \\ & (R_1,\;R_2=\text{CO}\text{-}(\text{CH}_2)_{11}\text{-}\text{CH}=\text{CH}\text{-}(\text{CH}_2)_{7}\text{-}\text{CH}_3}) \\ & C_{58}H_{112}NO_{12}P & (1046,49) \end{array}$
- 37) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)propylammonium(n = 3)
 (R₁ = CO (CH₂)₁₆ CH₃; R₂ = CO (CH₂)₇ CH = CH (CH₂)₇ CH₃)
 C₅₀H₉₈NO₁₂P (936,29)
- 39) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-butylammonium (n = 4) $(R_1, R_2 = CO (CH_2)_7 CH = CH (CH_2)_7 CH_3)$ 30 $C_{51}H_{98}NO_{12}P \qquad (948,30)$

10

15

20

25

- 40) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-{2-hydroxypropyl-3,1-0,0-dihydroxypropyl}-butylammonium (n = 4) (R₁, R₂ = CO (CH₂)₁₁ CH = CH (CH₂)₇ CH₃) $C_{59}H_{114}NO_{12}P$ (1060,52)
- 41) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-butylammonium (n = 4) (R₁ = CO (CH₂)₁₆ CH₃; R₂ = CO (CH₂)₇ CH = CH (CH₂)₇ CH₃) $C_{51}H_{100}NO_{12}P$ (950.32)
- $\begin{array}{lll} 43) & 1,2\text{-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-1,3-0,0-dihydroxypropyl)-hexylammonium (n=6)} \\ & (R_2,\ R_2=\text{CO} (\text{CH}_2)_7 \text{CH} = \text{CH} (\text{CH}_2)_7 \text{CH}_3)} \\ & C_{53}H_{102}\text{NO}_{12}\text{P} \\ & (976,358) \end{array}$
- 44) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-hexylammonium (n = 6) (R₁, R₂ = CO - (CH₂)₁₁ - CH = CH - (CH₂)₇ - CH₃) C₆₁H₁₁₈NO₁₂P (1088,57)

Beispiele für zweikettige Glycero-phospho-N,N-dimethyl-N-{2-hydroxypropyl-3,1-0,0-2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-alkylammonium-

Verbindungen

$$(A = a; n = 2-8; R_3, CH_3; m = 1; x = 0; y = 1; z = 3)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ I \\ R_3 \end{bmatrix}_m - \begin{bmatrix} CH_2 \\ I \\ CH_2 \end{bmatrix}_x - \begin{bmatrix} CH_2 \\ I \\ OH \end{bmatrix}_y - CH_2 - O \\ Z$$

10

15

451 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2hydroxypropyl-3,1-0,0-2-hydroxypropyl-3,1-dihydroxypropyl)ethylammonium (n = 2) $(im\,weiteren\,Text\,wird\,N-(2-hydroxypropyl-3,1-0,0-2-$ 3,1-dihydroxypropyl) abgekürzt als N-(HP₁-HP₂-diHP₃)

C48H96NO14P (942.25)

46) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP,HP,-diHP,)-20 ethylammonium (n = 2)

C52H104NO14P (998.36)

 $1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3)-1,2-Dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_2-diHP_3-diHP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-glycero-3-phospho-N-(HP_1-HP_3-dierucoyl-sn-gly$ 47) ethylammonium (n = 2)

25 C₆₀H₁₁₆NO₁₄P (1106.54)

> 48) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ ethylammonium (n = 2) C52H100NO.4P (994.33)

- 49) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N(HP₁-HP₂-diHP₃)-ethylammonium (n = 2)
 C₅₂H₁₀₂NO₁₄P (996.35)
- 5 50) 1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-ethylammonium (n = 2) $C_{46}H_{92}NO_{14}P$ (914.20)
- 51) 1-Palmitoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-ethylammonium (n = 2) $C_{44}H_{88}NO_{14}P$ (886,15)
 - 52) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-propylammonium (n = 3) $C_{49}H_{98}NO_{14}P$ (956,28)
 - 53) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-propylammonium (n = 3) $C_{53}H_{106}NO_{14}P$ (1012,39)
 - 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-propylammonium (n = 3) $C_{61}H_{118}NO_{14}P$ (1120.57)
- 25 55) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-propylammonium (n = 3) $C_{53}H_{102}NO_{14}P$ (1008,36)
- 56) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ -propylammonium (n = 3) $C_{53}H_{104}NO_{14}P$ (1010,37)

- 57) 1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-propylammonium (n = 3) $C_{47}H_{94}NO_{14}P$ (928.23)
- 5 58) 1-Palmitoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP $_1$ -HP $_2$ -diHP $_3$)-propylammonium (n = 3) $C_{45}H_{90}NO_{14}P \qquad (900,17)$
- 59) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ -butylammonium (n = 4) $C_{50}H_{100}NO_{14}P$ (970.31)
 - 60) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-butylammonium (n = 4)

15 C₅₄H₁₀₈NO₁₄P (1026,41)

61) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-butylammonium (n = 4)

C₆₂H₁₂₀NO₁₄P (1134,60)

- 62) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-butylammonium (n = 4) $C_{54}H_{104}NO_{14}P$ (1022,38)
- 25 63) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ -hexylammonium (n = 6) $C_{52}H_{104}NO_{14}P \qquad (998,36)$
- 64) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-hexylammonium (n = 6) $C_{56}H_{112}NOP_{14}P \qquad (1054,47)$

65) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ -hexylammonium (n = 6)

 $C_{64}H_{124}NO_{14}P$ (1162,65)

1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ -hexylammonium (n = 6)

(1050.44)

C56H108NO14P

 $\begin{tabular}{ll} 67) & 1,2-Distear oyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-10 & octylammonium (n = 8) \end{tabular}$

 $C_{58}H_{116}NO_{14}P$ (1082,52)

68) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ octylammonium (n = 8)

C₅₈H₁₁₂NO₁₄P (1078,49)

69) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-octylammonium (n = 8)

CscH138NO14P (1190,70)

Beispiele für zweikettige Glycero-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-3,1-0,0-dihydroxypropyl-alkylammonium-Verbindungen

$$(A = a; n = 2, 3; R_3, O_3; m = 1; x = 0; y = 1; z = 4)$$

Formel I

$$A - PO_{3} - \begin{bmatrix} CH_{3} \\ (CH_{2})_{n} - N^{*} \\ R_{3} \end{bmatrix}_{m} = (CH_{2})_{x} - \begin{bmatrix} CH_{2} - (CH_{2}) \\ OH \end{pmatrix}_{y} - CH_{2} - O = H$$

15

20

25

70) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(2hydroxypropyl-3,1-0,0-2-hydroxypropyl-3,1-0,0-hydroxypropyl-3,1dihydroxypropyl)-ethylammonium (n = 2) (im weiteren Text wird N[2-hydroxypropyl-3,1-0,0-2-hydroxypropyl-3,1-0,0-dihydroxypropyl-3,1-0,0-dihydroxypropyl} abgekürzt als N-(HP1-HP2-HP3-diHP4) angegeben.

C., H, 02 NO , 6P

(1016, 33)

- 71) 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP1-HP2-HP3 $diHP_{a}$)-ethylammonium (n = 2) 10 C55H110NO16P (1072.44)

 - 72) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-HP₃ $diHP_4$)-ethylammonium (n = 2) (1180.62)

15 C₆₃H₁₂₂NO₁₆P

> 73) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-HP₃ $diHP_4$)-ethylammonium (n = 2) C55H106NO16P (1068,41)

- 74) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂- HP_3 -di HP_4)-ethylammonium (n = 2) C₅₅H₁₀₈NO₁₆P (1070.42)
- 1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N, N-dimethyl-N-(HP1-HP2-75) 25 HP_3 -di HP_4)-ethylammonium (n = 2) C49H98NO16P (988.28)
- 1-Palmitoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP1-HP2-76) HP_3 -di HP_4)-ethylammonium (n = 2) 30 C47H94NO16P (960, 23)

- 77) 1,2-Dipalmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-HP₃-diHP₄)-propylammonium (n = 3)
 C₅₂H₁₀₄NO₁₅P (1030.36).
- 1,2-Distearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-HP₃-diHP₄)-propylammonium (n = 3) $C_{56}H_{112}NO_{16}P$ (1086.47)
- 79) 1,2-Dierucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-HP_3-10)$ diHP₄)-propylammonium (n = 3)
 - 80) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-HP_3-diHP_4\}$ -propylammonium (n = 3) $C_{56}H_{108}NO_{16}P$ (1082,43)
 - 81) 1-Stearoyl-2-lauroyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-HP₃-diHP₄)-propylammonium (n = 3) $C_{50}H_{100}NO_{16}P$ (1002.31):
- 20 82) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-HP_3-diHP_4\}$ -propylammonium (n = 3) $C_{56}H_{1.0}NO_{16}P$ (1084.45)
- 83) 1-Arachinoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-HP_3-HP_3-HP_4)$ -propylammonium (n = 3) $C_{58}H_{114}NO_{15}P$ (1112.50)
- 84) 1-Behenoyl-2-oleoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-HP_3-diHP_4\}$ -propylammonium (n = 3) $C_{60}H_{118}NO_{16}P \qquad (1140,56)$

Beispiele für zweikettige Glycero-phospho-Verbindungen, die nicht am Stickstoff hydroxyliert sind

$$(A = a; n = 2-6; m = 1; x = 1; z = 0)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ CCH_2 \\ N - N \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - (CH_2 - CH_3 - CH_2 - O) \\ CH_2 - (CH_3 - CH_3 - O) \\ CH_3 - (CH_3 - O) \\ CH_4 - (CH_3 - O) \\ CH_5 - (CH_3 - O) \\ CH_$$

10

5

- 85) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium $C_{45}H_{86}NO_8P$ (800,15)
- 15 86) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N,N-trimethyl-butylammonium C₄₆H₈₈NO₈P (814.17)
 - 1,2-Dioleoyl-sn-glycero-3-phospho-N,N,N-trimethyl-pentylammonium
 C₄₇H₉₀NO_P (828,20)

20

25

- 88) 1,2-Dioleoyl-sn-glycero-3-phospho-N,N,N-trimethyl-hexylammonium C₄₈H₉₂NO₈P (842,23)
- 89) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium

C₄₅H₈₈NO₈P (802,16)

90) 1-Stearoyl-2-oleoyl-sn-glycero-3-phospho-N,N,N-trimethyl-butylammonium

30 C₄₆H₉₀NO₈P (816,19)

 1-Palmitoyl-2-lauroyl-sn-glycero-3-phospho-N,N,N-trimethylpropylammonium

(691,97)

 92) 1-Oleoyl-2-lauroyl-sn-glycero-3_f phospho-N,N,N-trimethylpropylammonium

(718,00)

93) 1-Erucoyl-2-oleoyl-sn-glycero-3-phospho-N,N,N-trimethylpropylammonium

(856, 26)

94) 1-Erucoyl-2-oleoyl-sn-glycero-3-phospho-N,N,N-trimethylbutylammonium

(870,28)

95) 1-Erucoyl-2-oleoyl-sn-glycero-3-phospho-N,N,N-trimethylhexylammonium

(898,34)

20

96) 1-Nervonoyl-2-lauroyl-sn-glycero-3-phospho-N,N,N-trimethylpropylammonium

(802, 16)

25 97) 1-Nervonoyl-2-oleoyl-sn-glycero-3-phospho-N,N,N-trimethylpropylammonium

$$C_{51}H_{98}NO_8P$$

(884, 31)

WO 99/09037

5

10

15

25

- 32 -

PCT/EP98/05252

2) Lösungsvermittler

Es hat sich gezeigt, dass bestimmte Substanzen aus den hier vorgestellten Verbindungen insbesondere diejenigen, welche ethanollöslich sind, ausgezeichnete Lösungsvermittler für in Wasser schwerlösliche Substanzen sind. So kann man beispielsweise Taxol auf einfache Weise in eine intravenös applizierbare Form bringen. Ebenso erwiesen sich z.B. Taxoter, Cyclosporin, Cholesterin und deren Derivate, Steroide, Cortison und Analoga, Erucylphosphocholin (Auflösung der gelartigen Strukturen) als gut lösbar.

Insbesondere haben sich hier Substanzen bewährt, die zwischen Phosphat und Ammonium einen Abstand von 3 C-Atomen besitzen (n = 3 in der allgemeinen Formel I), z.B. die Substanzen aus den Beispielen 14, 85, 111, 139, 144, 176. Hervorragend geeignet für diese Zwecke ist eine einfache Substanz, 1-Erucoyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-propylammonium (176). Diese Substanz kann einfach in hohen Ausbeuten im Tonnenmaßstab hergestellt werden.

Bevorzugt handelt es sich bei den Lösungsvermittlern um einkettige Verbindungen, d.h. dass bei A = a einer von R₁ und R₂ Wasserstoff oder ein Alkyl mit 1 bis 3 C-Atomen darstellt.

Taxol zur intravenösen Anwendung

Man stelle eine Lösung von 0,3 g Taxol und 1,75 g Substanz Nr. 176 in 7,95 g absolutem Ethanol her. Die Lösung wird steril filtriert und bis zur Verwendung bei 4 °C aufbewahrt.

Für eine intravenöse Gase wird die Stammlösung 1:10 oder 1:100 mit physiologischer Kochsalzlösung verdünnt.

15

25

Beispiele für einkettige Glycero-phospho-N,N-dimethyl-N-dihydroxypropylalkylammonium-Verbindungen

$$(A = a; n = 2-6; R_3, CH_3; m = 1, x = 0, y = 1, z = 1)$$

 $A - PO_{3} - \begin{pmatrix} CH_{3} \\ (CH_{2})_{n} & N^{+} \\ R_{3} \end{pmatrix}_{m} - \begin{pmatrix} CH_{2})_{x} \\ CH_{2} & \begin{pmatrix} CH \\ I \\ OH \end{pmatrix}_{y} - CH_{2} \cdot O \end{pmatrix} = H$

 $\label{eq:constraints} \begin{array}{lll} \mbox{1-Palmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)-} \\ & \mbox{ethylammonium (n = 2)} \end{array}$

C₂₆H₅₄NO₉P (555,69)

99) 1-Stearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)-ethylammonium (n = 2)

C₂₈H₅₈NO₉P (583,74)

100) 1-Arachinoyl-sn-glycero-3-phospho-N, N-dimethyl-N-(diHP)ethylammonium (n = z)

20 C₃₀H₆₂NO₉P (611,79)

101) 1-Behenyol-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)- $ethylammonium \ (n = 2)$

C₃₂H₆₆NO₉P (639,85)

102) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)ethylammonium (n = 2)

C₃₂H₆₄NO₉P (637,83)

 $_{30}$ 103) 1-Nervonoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)-ethylammonium (n = 2)

C₃₄H₆₈NO₉P. (665,88)

WO 99/09037

5

15

25

30

- 104) 1-0-Hexadecyl-sn-glycero-3-phospho-N, N-dimethyl-N-(diHP)ethylammonium (n = 2)
- 105) 1-0-Octadecyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)-ethylammonium (n = 2) $C_{28}H_{60}NO_8P \qquad (569,76)$
 - 106) 1-0-Eicosanyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)-ethylammonium (n = 2)

10 C₃₀H₆₄NO₈P (597,81)

107) 1-0-Behenyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)-ethylammonium (n = 2) $C_{32}H_{68}NO_{8}P \qquad (625,86)$

108) 1-Palmitoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)propylammonium (n = 3) $C_{27}H_{56}NO_9P$ (569,71)

- 20 109) 1-Stearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)propylammonium (n = 3) $C_{29}H_{60}NO_{9}P \qquad (597.77)$
 - 110) 1-Behenoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)propylammonium (n = 3) $C_{33}H_{68}NO_9P$ (653.87)
 - 111) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)propylammonium (n = 3) $C_{33}H_{66}NO_{9}P$ (651,86)

15

20

25

112) 1-Nervonoyl-sn-glycero-3-phospho-N, N-dimethyl-N-(diHP)propylammonium (n = 3)

C35H70NO0P

(679.91)

113) 1-Stearoyl-sn-glycero-3-phospho-N, N-dimethyl-N-(diHP)butylammonium (n = 4)

C₃₀H₆₂NO₉P (611,79)

114) 1-Erucoyl-sn-glycero-3-phospho-N, N-dimethyl-N-(diHP)butylammonium (n = 4)

C34H68NO9P

115) 1-Stearoyl-sn-glycero-3-phospho-N, N-dimethyl-N-(diHP)hexylammonium (n = 6)

CasHeeNOoP

(639.85)

116) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(diHP)hexylammonium (n = 6)

C36H73NOoP (693.94)

Beispiele für einkettige Glycero-phospho-N, N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-alkylammonium-Verbindungen

$$(A = 0; n = 2-6; R_3, CH_3; m = 1; x = 0; y = 1; z = 2)$$

Formel I

 $A_1 - PO_3 - CH_2 - N_1 - N_2 - CH_2 - CH_2 - CH_2 - CH_2 - OH_2 - OH_$

117) 1-Stearoyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) -ethylammonium (n = 2)

C31H64NO11P

(657,82)

5 118) 1-Arachinoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 -di HP_2)-ethylammonium (n = 2)

C₃₃H₆₈NO₁₁P

(685, 87)

119) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1$ -di HP_2)ethylammonium (n = 2)

C35H70NO11P

(711,91)

120) 1-Nervonoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1$ -diHP_2)-ethylammonium (n = 2)

C37H74NO.1P

(739,96)

121) 1-0-Octadecyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-ethylammonium (n = 2)

C₃₁H₆₆NO₁₀P

(643,83)

20

30

15

122) 1-0-Behenyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) -ethylammonium (n = 2)

C35H74NOB

(699.94)

123) 1-Stearoyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) -propylammonium (n = 3)

C32H66NO11P

(671,84)

124) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) -propylammonium (n = 3)

C36H72NO.1P

(725.94)

125) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) butylammonium (n = 4)

C₃₇H₇₄NO₁₁P (739,98)

126) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-diHP_2\}$ -hexylammonium (n = 6)

 $C_{39}H_{78}NO_{11}P$ (768,04)

127) 1-Nervonoyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) 10 propylammonium (n = 3)

 $C_{38}H_{76}NO_{11}P$ (754,01)

128) 1-Nervonoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1$ -diHP_2)-butylammonium (n = 4)

15 C₃₉H₇₈NO₁₁P (768,04)

Beispiele für einkettige Glycero-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,10-0,0-2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-alkylammonium-Verbindungen

20 (A = a; n = 2-6;
$$R_3$$
, CH_3 ; n = 1; x = 0; y = 1; z = 3)

A - PO₃ - $\begin{bmatrix} CH_3 \\ (CH_2)_n - N^* \\ R_3 \end{bmatrix}_m$ $\begin{bmatrix} CH_2 \\ (CH_2)_x - CH_2 - CH_2 - CH_2 - O \\ (CH_2)_y - CH_2 - O \end{bmatrix}$ - H z

129) 1-Stearoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-ethylammonium (n = 2)

C34H70NO13P

(731,90)

5 130) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ -ethylammonium (n = 2)

C38H76NO,3P

(785,99)

131) 1-Nervonoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)ethylammonium (n = 2)

C40H80NO13P

(814,04)

132) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ -propylammonium (n = 3)

C₃₉H₇₈NO₁₃P

(800,01)

133) 1-Nervonoyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-propylammonium (n = 3)

C₄,H₈₂NO₁₃P

(828,07)

20

15

134) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ -butylammonium (n = 4)

C40H80NO,3P

(814.04)

135) 1-Erucoyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ -hexylammonium (n = 6)

C42H84NO13P

(842,09)

10

15

25

Beispiele für einkettige Glycero-phospho-Verbindungen, die nicht am Stickstoff hydroxyliert sind

$$(A = a; n = 3; R_3, CH_3; m = 1; x = 1; z = 0)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n & N^* \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 & CH_2 & CH_3 \\ (CH_2)_y & CH_2 & CH_3 \end{bmatrix} - CH_2 - O \begin{bmatrix} CH_3 & CH_3 & CH_3 \\ (CH_3)_y & CH_3 & CH_3 \end{bmatrix}$$

136) 1-Palmitoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium

$$(n = 3)$$

C₂₅H₅₂NO₇P (509,66)

137) 1-Stearoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3)

$$C_{27}H_{56}NO_7P$$
 (537,71)

138) 1-Behenoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3) $C_{31}H_{64}NO_7P \qquad (593,82)$

139) 1-Erucoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3) $C_{31}H_{82}NO_{7}P$ (591,81)

140) 1-Nervonoyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3)

30 C₃₃H₆₆NO₇P (619,86)

10

15

20

30

Beispiele für ω,ω' -Alkandiol-phospho-N,N-dimethyl-N-dihydroxypropylalkylammonium-Verbindungen

$$(A = b; n = 2-4; R_3, CH_3; m = 1; x = 0; y = 1; z = 1)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ ICH_2 \end{pmatrix}_n - \begin{bmatrix} CH_3 \\ IN \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - \begin{pmatrix} CH_2 \\ I \\ OH \end{pmatrix}_y - CH_2 - O \\ z \end{bmatrix}_z + H_z - H_z -$$

141) 1-Stearoyl-ethylenglykol-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium (n = 2)

142) 1-Behenoyl-propandiol-(1,3)-phospho-N,N-dimethyl-Ndihydroxypropyl-ethylammonium (n = 2)

$$C_{32}H_{66}NO_8P$$
 (623,85)

143) 1-Stearoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium (n = 2) C28H58NO8P (567,74)

$$C_{28}H_{58}NO_8P$$
 (567,74)

144) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-dihydroxypropyl-25 ethylammonium (n = 2)

145) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-dihydroxypropylpropylammonium (n = 3)

146) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-dihydroxypropylbutylammonium (n = 4)

5 <u>Beispiele für Alkandiol-{1,2}-phospho-N,N-dimethyl-N-dihydroxypropyl-alkylammonium-Verbindungen</u>

$$(A = b; n = 2-4; R_3, CH_3; m = 1; x = 0; y = 1; z = 1)$$

Formel I

$$A - PO_{3} - \begin{bmatrix} CH_{3} \\ (CH_{2})_{n} & N^{+} \\ R_{3} \end{bmatrix}_{m} - (CH_{2})_{x} - \begin{bmatrix} CH_{2} & (CH_{2})_{x} \\ (CH_{2})_{y} & CH_{2} & O \end{bmatrix} - H_{2}$$

15

25

10

147) 2-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

$$C_{32}H_{64}NO_8P$$
 (621,33)

20 148) 1-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

149) 2-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylpropylammonium

150) 1-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylbutylammonium

Beispiele für ω.ω'-Alkandiol-phospho-N.N-dimethyl-N-(2-hydroxypropyl)-3,1-O.O-dihydroxypropyl)-alkylammonium-Verbindungen

$$(A = b; n = 2 - 4; R_3, CH_3; m = 1, x = 0; y = 1; z = 2)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n - N^* \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - CH_2 - CH_2 - O \\ OH \end{pmatrix}_y - CH_2 - O \end{bmatrix}_z + H_2 + H_3 + H_$$

10

5

151) 1-Stearoyl-ethylenglykol-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-ethylammonium

15

152) 1-Behenoyl-propandiol-(1,3)-phospho-N, N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-ethylammonium
C₃₅H₇₂NO₁₀P (697,93)

20 1

25

153) 1-Stearoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(2-hydroxypropyl)-3,1-O,O-dihydroxypropyl-ethylammonium C₃₁H₆₄NO₁₀P (641,82)

154) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-O,O-dihydroxypropyl)-ethylammonium

$$C_{35}H_{70}NO_{10}P$$
 (695,91)

155) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium

$$C_{36}H_{72}NO_{10}P$$
 (709,94)

15

25

30

- 156) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-
 - $3, 1\hbox{-}0, 0\hbox{-}dihydroxypropyl)\hbox{-}butylammonium$

 $C_{37}H_{74}NO_{10}P$ (723,96)

 157) 1-Erucoyl-butandiol-(1,4)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium

 $C_{37}H_{74}NO_{10}P$ (723,96)

 $158) \quad 1\hbox{-}Erucoyl-hexandiol-(1,6)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-new phospho-N,N-dimethyl-N-(2-hydroxypropyl-new phospho-N,N-dimethyl-new phospho-N,N-dimethyl-N-(2-hydroxypropyl-new phospho-N,N-dimethyl-new phospho-N,N-dimethyl-N-(2-hydroxypropyl-new phospho-N,N-dimethyl-new phosph$

3,1-0,0-dihydroxypropyl)-propylammonium

 $C_{39}H_{78}NO_{10}P$ (752,02)

159) 1-Erucoyl-octandiol-(1,8)-phospho-N,N-dimethyl-N-(2-hydroxypropyl)-3,1-0,0-dihydroxypropyl)-propylammonium

 $C_{41}H_{82}NO_{10}P$ (780,07)

<u>Beispiele für Alkandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-alkylammonium-Verbindungen</u>

Formel I

$$A - PO_3 \cdot \cdot \left[(CH_2 \cdot CH_3) - (CH_2)_x - \left[CH_2 \cdot (CH_2 \cdot CH_2 \cdot O) - CH_2 \cdot O \right] \right]$$

- 160) 2-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-
 - 3,1-0,0-dihydroxypropyl)-ethylammonium

C₃₅H₇₀NO₁₀P (695,91)

20

161) 1-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-ethylammonium

$$(C_{35}H_{70}NO_{10}P$$
 (695,91)

162) 2-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-5 3,1-0,0-dihydroxypropyl)-propylammonium

163) 1-Erucoyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-butylammonium

$$C_{37}H_{74}NO_{10}P$$
 (723,96)

164) 1-Erucoyl-butandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium

165) 1-Erucoyl-hexandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium

166) 1-Erucoyl-octandiol-(1,2)-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-propylammonium C41H82NO10P

$$C_{41}H_{B2}NO_{10}P$$
 (780,07)

Beispiele für ω,ω' -Alkandiol-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-2-hydroxypropyl-3,1-0,0-dihydroxypropyl)-alkylammonium-Verbindungen

(Abkürzung: HP = 2-Hydroxypropyl

diHP = Dihydroxypropyl)

$$(A = b; n = 2 - 6; R, CH_3; m = 1; x = 0; y = 1; z = 3)$$

Formel I

$$A - PO_3 - \left[(CH_2)_n - N_1^* \right]_m - (CH_2)_x - \left[CH_2 - \left(CH_2 - C$$

167) 1-Oleoyl-ethylenglykol-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)ethylammonium

 $\begin{tabular}{ll} 168) & 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(HP_1-HP_2-diHP_3)-ethylammonium \\ \end{tabular}$

169) 1-Oleoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-propylammonium

170) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)propylammonium

171) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-butylammonium

15

20

25

172) 1-Erucoyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-(HP_1 - HP_2 _di HP_3)hexylammonium

Beispiele für Alkandiol-phospho-Verbindungen, die nicht am Stickstoff hydroxyliert sind

$$(A = b; n = 2 - 6; R, CH_3; m = 1; x = 1; z = 0)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n - N_1^* \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - CH_2 -$$

15

10

5

173) 1-Erucoyl-ethylenglykol-phospho-N,N,N-trimethyl-propylammonium C₃₀H₆₀NO₆P (561,78)

20 174) 1-Arachinoyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-

propylammonium C29H69NO6P (549.77)

175) 1-Stearoyl-propandiol-(1,3)-phospho-N,N,N-trimethylpropylammonium

(521,71)

176) 1-Erucoyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-propylammonium C21He2NO2P (575,81)

30

25

177) 1-Erucoyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-butylammonium C22He4NO4P (589.83)

178) 1-Erucoyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-pentylammonium

C₃₃H₈₆NO₆ (603,86)

- 179) 1-Erucoyl-propandiol-(1,2)-phospho-N,N,N-trimethyl-propylammonium

 Co. Hea NO P (575,81)
 - 180) 2-Erucoyl-propandiol-{1,2}-phospho-N,N,N-trimethyl-propylammonium

 C₃₁H₆₂NO₆P (575,81)
- $_{10}$ 181) 1-Erucoyl-propandiol-(1,2)-phospho-N,N,N-trimethyl-butylammonium $C_{32}H_{64}NO_{6}P \hspace{1cm} (589,83)$
 - 182) 1-Erucoyl-propandiol-(1,2)-phospho-N,N,N-trimethyl-hexylammonium C₁₄H₈₈NO₆P (617,92)

3) Wirkstoffe

5

15

20

25

30

In früheren Untersuchungen wurde festgestellt, dass Alkylphosphocholine nur dann antitumorale Wirksamkeit besitzen, wenn der Phosphat-Ammoniumabstand zwei C-Atome beträgt, also Phosphocholin (n = 2 in der allgemeinen Formel I) entspricht. Verbindungen mit dem Abstand n > 2 waren unwirksam. Bei diesen früheren Untersuchungen wurden die Wirkstoffe oral appliziert.

Überraschenderweise haben wir nun festgestellt, dass Erucylphospho-Verbindungen mit Phosphat-Ammoniumabständen > 2 exzellente, den Alkylphosphocholinen sogar überlegene Antitumorwirksamkeit besitzen, wenn diese Substanzen intravenös angewendet werden, wie folgender Vergleich zeigt: - 48 -

Erucylphosphocholin (n = 2 in allgemeiner Formel I)

Die Substanz bildet in Wasser gelartige Strukturen und ist deshalb in höheren Konzentrationen intravenös nur schwer anwendbar.

Eurcylphosphocholin besitzt im Tiermodell Methylnitrosoharnstoffinduziertes Mammakarzinom nur eine geringe Langzeitwirkung. Bereits 7 Tage nach Absetzen der Therapie wird wieder Tumorwachstum beobachtet.

Erucyl-phospho-N,N,N-trimethyl-propylammonium (n = 3)

Die Substanz ist in Wasser leicht löslich, bildet keine Gele und kann problemlos intravenös verabreicht werden. Sie kann deshalb uach als Lösungsvermittler Verwendung finden. Insbesondere auffällig und eindrucksvoll ist aber ihre Langzeitwirkung in obigem Tiermodell. Selbst 4 Wochen nach Absetzen der Therapie ist kein neues Tumorwachstum zu beobachten.

15

10

5

Beispiele für Alkyl-phospho-N,N-dimethyl-N-dihydroxypropylalkylammonium-Verbindungen

$$(A = c; n = 2 - 6; R_3, CH_3; m = 1; x = 0; y = 1; z = 1)$$

20

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n & N^* \\ R_3 \end{bmatrix}_m - (CH_2)_k - \begin{bmatrix} CH_2 & CH_2 & CH_2 \\ (CH_3)_y & CH_2 & O \\ (CH_3)_y & CH_3 \end{bmatrix} - H_2 + H_3 +$$

25

183) Hexadecyl-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium $C_{23}H_{50}NO_6P \qquad (467,62)$

30

184) Octadecyl-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium $C_{25}H_{54}NO_6P \hspace{1cm} (495,68) \\$

15

25

- 185) Erucyl-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium $C_{29}H_{60}NO_6P$ (549,77)
- 186) Erucyl-phospho-N,N-dimethyl-N-dihydroxypropyl-propylammonium

 C₃₀H₆₂,NO₆P (563,80)
 - 187) Erucyl-phospho-N,N-dimethyl-N-dihydroxypropyl-butylammonium $C_{31}H_{64}NO_6P$ (577,82)
- 10 188) Erucyl-phospho-N,N-dimethyl-N-dihydroxypropyl-hexylammonium $C_{33}H_{68}NO_6P \qquad (605,88)$
 - 189) Oleyl-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium C₂₆H₈₂NO₆P (493,66)
 - 190) Oleyl-phospho-N,N-dimethyl-N-dihydroxypropyl-propylammonium $C_{26}H_{54}NO_6P \qquad (507,69)$
- - $\begin{tabular}{ll} 192) & (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium \\ \end{tabular}$

 $C_{27}H_{56}NO_6P$ (521,21)

193) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-dihydroxypropyl-propylammonium

C₂₈H₅₈NO₆P (535,74)

30 194) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-dihydroxypropyl-butylammonium

 $C_{29}H_{60}NO_6P$ (549,77)

195) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-dihydroxypropyl-pentylammonium

$$C_{30}H_{62}NO_6P$$

 196) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-dihydroxypropylhexylammonium

Beispiele für Alkyl-phospho-N,N-dimethyl-N-(2-hydroxypropyl-1,2-dihydroxypropyl)-alkylammonium

$$(A = c; n = 2 - 6; R_3, CH_3; m = 1; x = 0; y = 1; z = 2)$$

Formel I

$$A - PO_{3} - \begin{bmatrix} CH_{3} \\ (CH_{2})_{n} - N^{+} \\ R_{3} \end{bmatrix}_{m} - (CH_{2})_{x} - \begin{bmatrix} CH_{2} - (CH_{2})_{y} - CH_{2} - O \\ OH \end{pmatrix}_{y} - CH_{2} - O$$

20

25

- 197) Hexadecyl-phospho-N,N-dimethyl-N- $(HP_1$ -diHP_2)-ethylammonium $C_{28}H_{68}NO_8P$ (541,70)
- 198) Octadecyl-phospho-N,N-dimethyl-N- $(HP_1$ -diHP_2)-ethylammonium $C_{28}H_{60}NO_6P$ (569,76)
- 199) Erucyl-phospho-N,N-dimethyl-N-(HP_1 -di HP_2)-ethylammonium $C_{32}H_{68}NO_8P$ (623,85)
- 30 200) Erucyl-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-propylammonium C₃₃H₆₆NO₆P (637,87)

- 201) Erucyl-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-butylammonium
 C₂₄H₂₆NO₄P (651,90)
- 202) Erucyl-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-hexylammonium

 5 C_{2n}H_{2d}NO_nP (679,95)
 - 203) Oleyl-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-ethylammonium $C_{2n}H_{5n}NO_8P \qquad (567,74)$
- 10 204) Oleyl-phospho-N,N-dimethyl-N-(HP_1 -di HP_2)-propylammonium $C_{2a}H_{60}NO_8P$ (581,77)
 - 205) Oleyl-phospho-N,N-dimethyl-N- $\{HP_1-diHP_2\}$ -butylammonium $C_{30}H_{62}NO_8P$ (595,79)
 - 206) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-{HP $_1$ -diHP $_2$ }-ethylammonium $C_{30}H_{62}NO_8P \qquad (595,79)$
- 207) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-(HP $_1$ -diHP $_2$)propylammonium $C_{30}H_{64}NO_8P \qquad (609.82)$
 - 208) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N-(HP $_1$ -diHP $_2$)-butylammonium $C_{32}H_{66}NO_8P \qquad (623,85)$

. . .

10

20

Beispiele für Alkyl-phospho-N,N-dimethyl-N-(2-hydroxypropyl-3,1-0,0-hydroxypropyl-3,1-0,0-1,2-dihydroxypropyl)-alkylammonium-Verbindungen (A = c; n = 2 - 4; R₃, CH₃; m = 1; x = 0; y = 1; z = 3)

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ 1 \\ N \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - CH_2 - CH_2 - O \\ 1 \\ OH \end{pmatrix}_Y - CH_2 - O \\ z$$

209) Hexadecyl-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-ethylammonium $C_{29}H_{62}NO_{10}P$ (615,78)

- 15 210) Octadecyl-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-ethylammonium C₃₁H₆₆NO₁₀P (643.83)
 - 211) Oleol-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-ethylammonium $C_{31}H_{64}NO_{10}P$ (641,82)
 - 212) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N- $\{HP_1-HP_2-diHP_3\}$ -ethylammonium $C_{33}H_{68}NO_{10}P$ (669.87)
- 213) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ -propylammonium $C_{34}H_{70}NO_{10}P$ (683,90)
- 214) (Z-11)-Eicosenyl-phospho-N,N-dimethyl-N- $(HP_1-HP_2-diHP_3)$ 30 butylammonium $C_{35}H_{72}NO_{10}P$ (697.93)

15

20

25

- 215) Erucyl-phospho-N,N-dimethyl-N-(HP_1 - HP_2 -di HP_3)-ethylammonium $C_{26}H_{23}NO_{10}P$ (697,93)
- 216) Erucyl-phospho-N,N-dimethyl-N-(HP₁-HP₂-diHP₃)-propylammonium $C_{2e}H_{2e}NO_{1e}P \qquad (711,95)$

Beispiele für Alkylphospho-Verbindungen, die am Stickstoff keine Dihydroxyalkylreste tragen

$$A - PO_{3} - \begin{bmatrix} CH_{3} \\ (CH_{2})_{n} - N^{-} \\ R_{3} \end{bmatrix}_{m} + \begin{bmatrix} CH_{2})_{x} - \begin{bmatrix} CH_{2} - CH_{2} - CH_{2} - CH_{2} \\ OH \end{bmatrix}_{y} - CH_{2} - O \end{bmatrix} + H$$

- 217) Eurcyl-phospho-N,N,N-trimethyl-propylammonium

 C₂₈H₆₈NO₄P (503,74)
- 218) Erucyl-phospho-N,N-dimethyl-N-ethyl-propylammonium
 C20Hz0NO4P (517,77)
- 219) Erucyl-phospho-N,N-dimethyl-N-propyl-propylammonium $C_{30}H_{69}NO_4P$ (531,80)
- 220) Erucyl-phospho-N,N-dimethyl-N-allyl-propylammonium $C_{3n}H_{sn}NO_4P \qquad (529,78)$
- 30 Rf-Werte der Substanzen 217-240 im beschriebenen System: Rf 0,30-0,40

10

15

20

25

30

C27H56NO4P

. . . .

221) (Z)-10-Docosenyl-2-phospho-N,N,N-trimethyl-propylammonium C28H58NO4P (503.74)222) (Z)-10-Docosenyl-2-phospho-N,N-dimethyl-N-ethyl-propylammonium C20He0NO4P (517.77)223) Erucyl-phospho-N,N,N-trimethyl-butylammonium C₂₉H₆₀NO₄P (517,77)224) Erucyl-phospho-N,N-dimethyl-N-ethyl-butylammonium C30H62NO4P (531,80) 225) Erucyl-phospho-N,N-dimethyl-N-propyl-butylammonium C₃₁H₆₄NO₄P (545, 82)226) (Z)-10-Docosenyl-2-phospho-N,N,N-trimethyl-butylammonium C29H60NO4P (517.77)227) (Z)-11-Eicosenyl-phospho-N,N,N-trimethyl-propylammonium C26H54NO4P (475,69)228) (Z)-11-Eicosenyl-phospho-N,N-dimethyl-N-ethyl-propylammonium C₂₇H₅₆NO₄P (489.72)229) (Z)-11-Eicosenyl-phospho-N,N-diethyl-N-methyl-propylammonium C28HE8NOAP (503,74)230) (Z)-11-Eicosenyl-phospho-N,N-dimethyl-N-propyl-propylammonium C28H58NO4P (503.74)231) (Z)-11-Eicosenyl-phospho-N,N,N-trimethyl-butylammonium

(489.72)

232) (Z)-11-Eicosenyl-phospho-N,N-dimethyl-N-ethyl-butylammonium (503.74)C28H58NO4P 233) (Z)-11-Eicosenyl-phospho-N,N-dimethyl-N-propyl-butylammonium (517.77)C29H60NO4P 234) (Z)-11-Eicosenyl-phospho-N,N-dimethyl-N-alkyl-butylammonium (575.75)C29H58NO4P 235) Oleyl-phospho-N,N,N-trimethyl-propylammonium 10 C24H50NO4P (447.64)236) Oleyl-phospho-N,N-dimethyl-N-ethyl-propylammonium C25H52NO4P (461,66) 15 237) Oleyl-phospho-N,N-dimethyl-N-propylen-propylammonium (475,69)C25H54NO4P 238) Oleyl-phospho-N,N,N-trimethyl-butylammonium (461,66) CacHeaNO4P 20 239) Oleyl-phospho-N,N-dimethyl-N-ethyl-butylammonium C26H54NO4P (475,69)

240) Oleyl-phospho-N,N-dimethyl-N-propyl-butylammonium

(489,72)

25

C27H56NO4P

10

15

25

Wirkstoffe, die auf alkylierten (Ether)-Lysolecithinen aufgebaut und am Stickstoff hydroxyliert sind

$$(A = a; n = 2 - 4; R_3, CH_3; m = 1; x = 0; y = 1; z = 1, 2)$$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n & N^* \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 & CH_2 & CH_2 - O \\ OH & OH_2 \end{bmatrix} - CH_2 - O \begin{bmatrix} CH_2 & CH_2 & OH_2 - O \\ OH & OH_2 \end{bmatrix}$$

241) 1-0-Octadecyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

242) 3-0-Octadecyl-2-0-methyl-sn-glycero-1-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

243) 1-0-Octadecyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n=2)

244) 3-0-Octadecyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

245) 1-0-Octadecyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-propylammonium (n = 3)

246) 1-0-Octadecyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-butylammonium (n = 4)

C31H66NO8P

(611,84)

 $_{5}$ 247) 1-0-Erucyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium (n = 2)

C33H68NO8P

(637,87)

248) 1-0-Erucyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-dihydroxypropyl-propylammonium (n = 3)

C34H70NO8P

(651,90)

249) 1-0-Octadecyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-ethylammonium (n = 2)

C₃₂H₆₈NO₁₀P

15

20

(657,86)

250) 1-0-Octadecyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1\text{-}diHP_2)$ -ethylammonium (n = 2)

C35H74NO10P

(699.94)

251) 1-0-Octadecyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP $_1$ -diHP $_2$)-propylammonium (n = 3)

C33H70NO10P

(671,89)

25 252) 1-0-Octadecyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N-dimethyl-N- $(HP_1\text{-}diHP_2)\text{-propylammonium }(n=3)$

 $C_{36}H_{76}NO_{10}P$

(713,97)

253) 1-0-Octadecyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N-dimethyl-N- (HP_1-diHP_2) -butylammonium (n = 4)

C27H78NO10P

(727,99)

254) 1-0-Erucyl-2-0-methyl-sn-glycero-3-phospho-N,N-dimethyl-N-(HP₁-diHP₂)-butylammonium (n = 4) $C_{38}H_{78}NO_{10}P \qquad (739.01)$

Wirkstoffe, die auf alkylierten (Ether)-Lysolecithinen aufgebaut sind und am Stickstoff_nicht hydroxyliert sind

$$(A = a; n = 3, 4; R_3, CH_3; m = 1; x = 1; z = 0)$$

Formel I

 $A - PO_{3} \cdot - \begin{bmatrix} CH_{3} \\ (CH_{2})_{n} - N_{1}^{+} \\ R_{3} \end{bmatrix}_{m} \cdot (CH_{2})_{x} - \begin{bmatrix} CH_{2} - \begin{pmatrix} CH \\ I \\ OH \end{pmatrix}_{y} - CH_{2} - O \\ z \end{bmatrix}$

15

10

5

255) 1-0-Erucyl-2-0-methyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3)

20

256) 1-0-Erucyl-3-0-methyl-sn-glycero-2-phopsho-N,N,N-trimethyl-propylammonium (n = 3)

25

257) 1-0-(Z)-11-Eicosenyl-2-0-methyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3)

30

258) 1-0-(Z)-11-Eicosenyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3)

15

20

25

30

259) 1-0-Oleyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N,N-trimethyl-propylammonium (n = 3)

C31He4NO6P

(577,82)

5 260) 1-0-(Z)-11-Eicosenyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N,N-butylammonium (n = 4)

C34H70NO6P

(619,90)

261) 1-0-Oleyl-2-0-tert.butyl-sn-glycero-3-phospho-N,N,N-trimethyl-butylammonium (n = 4)

C₃₂H₆₆NO₆P

(591,85)

Wirkstoffe, die auf Alkandiolphospho-Verbindungen aufgebaut und am

Stickstoff hydroxyliert sind

 $(A = b; n = 2, 3; R_3, CH_3; m = 1; x = 0; y = 1; z = 1)$

Formel I

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n - N^* \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - CH$$

262) 1-0-Erucyl-ethylenglykol-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

C31H64NO7P

(593,82)

263) 1-0-Erucyl-propandiol-(1,3)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

C₃₂H₆₆NO₇P

(607,85)

264) 1-0-Erucyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

C32H66NO2P

(607,85)

 265) 2-0-Erucyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

C32H66NO7P

(607,85)

266) 1-0-(Z)-11-Eicosenyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium

C30H62NO7P

(579,49)

267) 2-0-(Z)-11-Eicosenyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium

C30H62NO7P

(579,49)

268) 1-0-Oleyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

C28H58NO2P

(551,74)

20

30

15

10

269) 2-0-Oleyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropylethylammonium

C28H58NO7P

(551,74)

25 270) 2-0-Octadecyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropyl-ethylammonium

C28H60NO7P

(553,76)

271) 1-0-Octadecyl-propandiol-(1,2)-phospho-N,N-dimethyl-N-dihydroxypropyl-propylammonium

 $\mathsf{C_{29}H_{62}NO_7P}$

(626, 24)

272) 2-0-Octadecyl-propandiol-(1,2)-phospho-N,N-dimethyl-Ndihydroxypropyl-propylammonium

Wirkstoffe, die auf Alkandiolphospho-Verbindungen aufgebaut und am Stickstoff nicht hydroxyliert sind

$$(A = b: n = 3: R_2, CH_2: m = 1: x = 1: z = 0)$$

Formel 1

 $A - PO_3 - \left| (CH_2)_n - N_1^* \right|_{R_3}^{CH_3} - (CH_2)_x - \left| CH_2 - \begin{pmatrix} CH \\ 0H \end{pmatrix}_y - CH_2 - O \right|_z + H_z$

15

5

10

273) 1-0-Erucyl-propandiol-(1,2)-phospho-N,N,N-trimethylpropylammonium

$$C_{31}H_{64}NO_5P$$

20

274) 1-O-Erucyl-propandiol-(1,2)-phospho-N,N,N-trimethylpropylammonium

275) 1-0-(Z)-11-Eicosenyl-propandiol-(1,3)-phospho-N,N,N-trimethyl-25

propylammonium

276) 1-0-Oleyl-propandiol-(1,2)-phospho-N,N,N-trimethyl-propylammonium C27H56NO5P 30

(505.72)

- 277) 2-0-Oleyl-propandiol-(1,2)-phospho-N,N,N-trimethyl-propylammonium $C_{27}H_{56}NO_5P \qquad (505,72)$
- 278) 1-0-Octadecyl-propandiol-(1,2)-phospho-N,N,N-propylammonium

 C₂₇H₈₈NO₅P (507,73)
 - 279) 2-0-Octadecyl-propandiol-(1,2)-phospho-N,N,N-trimethylpropylammonium C₂₂H₅₈NO₅P (507,73)

10

15

20

25

Patentansprüche

1. Verbindung der allgemeinen Formel (I)

$$A - PO_3 - \begin{bmatrix} CH_3 \\ (CH_2)_n - N \\ N \\ R_3 \end{bmatrix}_m - (CH_2)_x - \begin{bmatrix} CH_2 - CH_2 - CH_2 - CH_2 - O \\ OH_2 - CH_2 - O \end{bmatrix}$$

worin A

oder

h -

ist, wobei $\rm R_1$ und $\rm R_2$ unabhängig voneinander Wasserstoff, einen gesättigten oder ungesättigten Acyl- oder Alkylrest bedeuten, der gegebenenfalls verzweigt oder/und substituiert sein kann, und die Summe der Kohlenstoffatome in Acyl und Alkyl 16 bis 44 C-Atome beträgt,

- s eine ganze Zahl von 0 bis 8 darstellt,
- c = ein Rest eines primären oder sekundären Alkohols der Formel
 RO- ist, wobei R einen gesättigten oder ungesättigten Alkylrest

vorwiegend mit cis-Doppelbindung, von 12 bis 30 Kohlenstoffatomen bedeutet.

n eine ganze Zahl von 2 bis 8 darstellt,

 R_3

a = 1,2-Dihydroxypropyl sein kann oder

b = Alkyl mit 1 bis 3 C-Atomen sein kann, wenn <math>z > 0 ist oder

c = Alkyl mit 1 bis 3 C-Atomen sein kann, wenn n \neq 2 und z = 0 ist.

m = 1 oder 2 ist.

x = eine ganze Zahl von 0 bis 8 darstellt,

y = 1 für z = 1 bis 5 ist oder

= 1 bis 4 ist für z = 1

z = eine ganze Zahl von 0 bis 5 darstellt.

- Verbindung nach Anspruch 1 mit m = 1.
 - 3. Verbindung nach Anspruch 2 mit

m = 1

x = 0

y = 1

z = 1.

Verbindung nach Anspruch 2 mit

m = 1

25

x = 0

y = 1

z = 2.

30 5. Verbindung nach Anspruch 2 mit

m = 1

x = 0

$$y = 1$$

$$z = 3$$
.

- 6. Verbindung nach Anspruch 2 mit
- 5 m = 1
 - x = 0
 - v = 1
 - z = 4.
- 10 7. Verbindung nach Anspruch 2 mit
 - m = 1
 - x = 1 3
 - z = 0.
- 15 8. Verbindung nach Anspruch 7 mit
 - m = 1
 - x = 1
 - z = 0.
- Verbindung nach einem der vorhergehenden Ansprüche mit
 n = 2 6.
 - 10. Verbindung nach Anspruch 9 mit

$$n = 2 - 4$$
.

- 25
- 11. Verbindung nach einem der vorhergehenden Ansprüche, worin R_3 einen CH_3 -Rest darstellt.
- 12. Verbindung nach einem der vorhergehenden Ansprüche,
- 30 dadurch gekennzeichnet,
 - daß A eine Gruppe der Formel a darstellt.

13. Verbindung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß A eine Gruppe der Formel a darstellt und einer von $\rm R_1$ und $\rm R_2$ H oder eine Alkylkette mit 1 - 3 C-Atomen ist.

5

14. Verbindung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß A eine Gruppe der Formel a darstellt und n = 3 - 6.

10

15. Verbindung nach Anspruch 14, dadurch gekennzeichnet, daß

n = 3.

15

20

16. Verbindung nach Anspruch 14, dadurch gekennzeichnet, daß n = 4.

- Verbindung nach einem der Ansprüche 1 bis 11, 17. dadurch gekennzeichnet, daß A eine Gruppe der Formel b darstellt.
- Verbindung nach Anspruch 14 oder 15, 25 18. dadurch gekennzeichnet, daß

n = 2.

 Verbindung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,

daß

n = 3.

5

 Verbindung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,

daß

n = 4.

10

 Verbindung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß A eine Gruppe der Formel c darstellt.

15 22. Verbindung nach Anspruch 21, dadurch gekennzeichnet, daß

n = 3.

23. Liposome, die Phospholipide oder/und Alkylphospholipide, gegebenenfalls Cholesterin und 1 bis 50 Mol-% einer Verbindung der allgemeinen Formel (I) von Anspruch 1 oder deren Salze enthalten, wobei das Cholesterin, die Phospholipide, die Alkylphospholipide und die Verbindung der Formel (I) zusammen 100 Mol-% ergeben.

- Verwendung einer Verbindung der allgemeinen Formel (I) von Anspruch 1 als Gentransportvehikel.
- Verwendung einer Verbindung der allgemeinen Formel (I) von
 Anspruch 1 als Lösungsmittel für wasserunlösliche Wirkstoffe.

 Verwendung nach Anspruch 25, dadurch gekennzeichnet, dass R¹ einen Erucasäurerest darstellt.

INTERNATIONAL SEARCH REPORT

thte onal Application No PCT/EP 98/05252

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07F9/10 C07F9/09 A61K9/127 C12N15/88

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C07F A61K C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Retevant to claim No.
	California document, with indication. Where appropriate, or the restrict passages	
X	EP 0 002 202 A (MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.) 13 June 1979 see the whole document	1-26
X	DD 240 020 A (KARL-MARX UNIVERSITÄT LEIPZIG) 15 October 1986 see example 5	1-22
А	MARUYAMA K ET AL: "PHOSPHATIDYL POLYGLYCEROLS PROLONG LIPOSOME CIRCULATION IN VIVO" INTERNATIONAL JOURNAL OF PHARMACOGNOSY, vol. 111, 1994, pages 103-107, XP000672277 -/	1-26

<u> </u>	
* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance. *E* earlier document but published on or after the international iting date. *U* document which may threw docton or priority claim(s) or categories of the control of the c	To later occurred nucleated after the international tiling data or shortly calls and not confid with the application but of lots to understand the principle or theory underlying the invention. **Y occument of particular relevance, the claimed invention carnot be considered novel or cannot be considered not involve an inventive step when the document is televance in the contract of particular relevance, the claimed step when the occument is televance in contract of particular relevance, the claimed is step when the occument is combined with one or more other such occuments is combined with one or more other such occuments in the contract of the c
Date of the actual completion of the international search	Date of mailing of the international search report
26 November 1998	08/12/1998
Name and mailing address of the ISA	Authorized officer
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (-31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Beslier, L

Form PCT/ISA/210 (second sheet) (July 1992)

Y Further documents are listed in the continuation of box C.

1

Y Patent family members are listed in annex.

INTERNATIONAL SEARCH REPORT

Inter mal Application No PCT/EP 98/05252

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter anal Application No
PCT/FP 98/05252

						,,, .,	90/ 03232
Pate cited i	ent document in search report		Publication date		Patent family member(s)		Publication date
EP :	2202	Α	13-06-1979	DE	2752553		31-05-1979
				AT	369382	В	27-12-1982
				AT	807678	Α	15-05-1982
				DK	518578	Α	25-05-1979
				JP	1473163	С	27-12-1988
				JP	54084530	Α	05-07-1979
				JP	63023197	В	16-05-1988
				UŞ	4749805	Α	07-06-1988
				US	4837340	Α	06-06-1989
DD :	240020	A	15-10-1986	NONE			
WO 9	9730058	Α	21-08-1997	DE	19622224	Α	21-08-1997
				AU	1791297	Α	02-09-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

BNSDOCID: <WO_____9909037A1_I_>

INTERNATIONALER RECHERCHENBERICHT

Inter oneles Aktenzeichen PCT/EP 98/05252

4 101 40	OLGANIA PARTIES			
TOLLAS	SIFTZIERUNG DES ANM	ELDUNGSGEGENSTAN		
IPK 6	C07F9/10	C07F9/09	A61K9/127	C12N15/88

Nach der Internationalen Patentklassitikation (IPK) oder nach der netionalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Minoestprüfstoff (Klassdikationssystem und Klessitiketionssymbole) IPK~6~~C07F~~A61K~~C12N

Recherchierte aber nicht zum Mindestprütstott gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete leiten Während der internationalen Recherche konsultierte eiektronische Datenbank (name der Datenbank und evit verwendete Suchbegniffe)

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teilie	Betr. Anspruch Nr.
x	EP 0 002 202 A (MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.) 13. Juni 1979 siehe das ganze Dokument	1-26
х	DD 240 020 A (KARL-MARX UNIVERSITÄT LEIPZIG) 15. Oktober 1986 siehe Beispiel 5	1-22
Α.	MARUYAMA K ET AL: "PHOSPHATIDYL POLYGLYCEROLS PROLONG LIPOSOME CIRCULATION IN VIVO" INTERNATIONAL JOURNAL OF PHARMACOGNOSY, Bd. 111, 1994, Seiten 103-107, XP000672277 -/	1-26

X Weitere Verortentlichungen sind der Fortsetzung von Feld C zu entnehmen	X Siehe Annang Patenttamilie
- Besondere Kategoren von engegebenen Veröffentlichungen: - "A' veröffentlichung die ein allgemenen Stand der Fische keilniert, die ein allgemenen Stand der Fische keilniert, die ein der nicht eils besondere bedeutsam anzusehen ist - "E alleres Dekument, das jedoch anz et am oder nach dem irternetionalen - "L' veröffentlichung die geeignet ist, ernen Piprifitiansnponte, zweisuben grusschienen zu sassen, ded aucht die das Veröffentlichungsdatum erner schienen zu sassen, ded aucht die das Veröffentlichungsdatum erner anderen im Recherchebencht genannsen Veroffentlichung beleigt werden ausgeütrigt, was einem enderen besonderen Grund angegeben ist eine ausgeütrigt, wie seinem der seine besonderen Grund angegeben ist eine ausgeütrigt, eine Benatzung nen Ausställung oder andere Merfanhamen bezieht mit der	17 Spatiern Veröffertlichung, die niech dem stematischen Annaldedatum oder dem Promitébatum werferteitet werden ist norm die den Anneldung nicht kollidert, sondern nur zum Verständins des der Erfflüchig zugundeligenden Fritzigs oder der zu zugundeligenden Prinzigs oder der zu zugundeligenden Vir Veröffentlichung von besondere Bedeutung; die beenspruchte Erfindung kann allein aufgrund dieser Veröffentlichung von der auf erflügenden von der auf erflügen der Veröffentlichung von besonderer Bedeutung; die Deenspruchte Erfindung von des der
	Absendedatum des internationalen Recherchenberichts
26. November 1998	08/12/1998
Name und Postanschnit der Internationalen Recherchenbehörde Europäisches Palentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Bevollmächtigter Bediensteter
Fex: (+31-70) 340-3016	Beslier, L

INTERNATIONALER RECHERCHENBERICHT

Inte onales Aktenzeichen
PCT/EP 98/05252

	PCT/EP	98/05252	
O. C	 L		

Categorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Tees	Betr. Anspruch Nr.
	ALLEN T M: "STEALTH LIPOSOMES: FIVE YEARS ON". JOURNAL OF LIPOSOME RESEARCH, Bd. 2, Nr. 3, 1. Januar 1992, Seiten 289-305, XP000303894	1-26
, X	WO 97 30058 A (MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSCHAFTEN E.V.) 21. August 1997 in der Anmeldung erwähnt siehe Ansprüche 1-48	1-26
		ý.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Inter nales Aktenzeichen PCT/FP 98/05252

Im Recherchenber angeführtes Patentdok		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 2202	A	13-06-1979	DE AT AT DK JP JP JP US US	2752553 A 369382 B 807678 A 518578 A 1473163 C 54084530 A 63023197 B 4749805 A 4837340 A	31-05-1979 27-12-1982 15-05-1982 25-05-1979 27-12-1988 05-07-1979 16-05-1988 07-06-1988
DD 240020	Α	15-10-1986	KEI	 NE	
W0 9730058	Α	21-08-1997	DE AU	19622224 A 1791297 A	21-08-1997 02-09-1997

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
\square image cut off at top, bottom or sides
\square faded text or drawing
\square blurred or illegible text or drawing
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
\square reference(s) or exhibit(s) submitted are poor quality
D

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

