doi: 10.1038/nature09333 nature

SUPPLEMENTARY INFORMATION

1 Introduction

In this document we provide detailed proofs for the equations presented in the main text and discuss in more detail some of the underlying principles.

The derivation of hard performance bounds in the presence of noisy feedback has been extensively addressed by control theorists over the last century, with many results going back to the early work of Wiener, Bode and Kalman. In a biochemical reaction network, however, where the noise is associated with the spontaneous births and deaths of individual molecules, many of the more conventional methodologies¹ come to a halt, and need to be appropriately refined and extended. Our approach is to address such complications by quantifying the way these spontaneous fluctuations restrict the ability to transmit information reliably, i.e. they lead to communication channels with finite capacity in the sense of Shannon, which can be explicitly calculated. We show that such restrictions in information transmission fundamentally limit the ability to suppress fluctuations in molecular concentrations, thus leading to hard bounds for noise suppression that hold for *arbitrary* feedback policies.

More precisely, it follows from the law of total variance in probability theory, that for a random process x_t and a signal u_0^t , the variance of x_t is lower bounded by the estimation error $E\{[x_t - \hat{x}_t]^2\}$, where the conditional expectation $\hat{x} = E\{x_t | u_0^t\}$ is also the minimum mean squared error estimator of x_t given u_0^t . In our setting x_t is the molecule numbers of the controlled species x_1 , and u_0^t is the control signal that determines the rate of formation of x_1 , with any information about x_1 conveyed to u_0^t via an intermediate signaling species x_2 made in probabilistic birth events.

A central part of the paper is to treat signaling pathways as Poisson communication channels, and quantify restrictions in reliable information transmission by means of information theoretic notions: the 'mutual information' and its smallest upper bound known as the 'Shannon capacity'. A restricted mutual information between x_1 and x_2 , i.e. a bounded capacity of the 'Poisson channel' from x_1 to x_2 , is shown to fundamentally restrict the ability to reduce the estimation error and hence the x_1 variance.

¹Such as approaches that rely on diffusion approximations for the noisy feedback signals.

Such constraints in the channel capacity arise from the fact that the intensity of the x_2 births is not allowed to vary infinitely, due to restrictions in its maximum value or moments. In particular, if x_1 directly affects the rate of formation of x_2 , then a small x_1 variance can restrict the capacity of the channel from x_1 to x_2 ; i.e. a smaller variance makes it harder to transmit the information that is fundamentally needed to reduce it. This tradeoff leads to the quartic root hard limits discussed in the main text.

In order to be able to quantify these limits we derive an explicit expression for the capacity of the Poisson channel $x_2 \xrightarrow{f} x_2 + 1$, where the mean and variance of the intensity f are constrained (the derivation is also extended to channels with serial cascades, bursts and parallel reactions). The limits are derived in section 4 and are shown to hold for an arbitrary feedback control law by interpreting the latter as being part of a channel with feedback (i.e. a channel where its output can be used in the 'encoding' of the transmitted information). The analysis also makes use of Pinsker's nonanticipatory epsilon entropy, an information theoretic notion that takes into account the fact that information is transmitted in real time.

The document is organized as follows. To improve readability of the manuscript we start with a self contained discussion and leave more detailed derivations for the appendix. Section 2 gives an introduction to some basic concepts in the theory of information transmission that are used within the paper. In section 3 we discuss how signalling pathways can be treated as Poisson communication channels and derive expressions for the corresponding Shannon capacity under constraints that are relevant for the development that follows. In section 4 we derive hard bounds for the variance of the controlled species in terms of the Shannon capacity of the feedback channel. These are used to derive the hard limits that appear in the main text. In section 5 we show that analogous more restrictive bounds hold when feedback information is conveyed by means of multiple species, either in the form of a serial cascade or as the superposition of many parallel systems. Finally, section 6 discusses noise tradeoffs that arise in specific feedback mechanisms. The appendix gives an overview of Pinsker's nonanticipatory epsilon entropy, and also includes detailed proofs of the results on which the discussion in the previous sections is based.

2 Preliminaries

Notation. For a random variable X we denote its mean by $E\{X\}$ or $\langle X \rangle$, and its variance by $Var\{X\}$ or σ_X^2 . Random process $\{x_t : t_1 \le t \le t_2\}$ is denoted by $x_{t_1}^{t_2}$, where subscript t denotes time i.e. $x_t = x(t)$. For convenience in the presentation, natural numbers will be used as subscripts to denote species number, i.e. $x_1(t)$ denotes the number of molecules of species x_1 at time t (the time argument will often be omitted for simplicity).

This section gives an overview on some basic notions in the theory of information transmission that are used throughout the manuscript. Information theory is associated with the efficient and reliable transmission of information through channels that

can lead to its corruption. A key concept in this context is that of channel capacity, which quantifies the maximum rate with which information can be transmitted reliably through a channel. One of Shannon's fundamental contributions has been to relate this to the notion of mutual information, which we define in more detail below.

For two discrete random variables X,Y with probability mass function P_X,P_Y respectively and joint probability function P_{XY} , the *mutual information* I(X;Y) is defined as

$$I(X;Y) := \sum_{x,y} P_{XY}(x,y) \log \left[\frac{P_{XY}(x,y)}{P_X(x)P_Y(y)} \right]$$
$$= E \left\{ \log \left[\frac{P_{XY}}{P_X P_Y} \right] \right\}$$

a definition that can also be extended to continuous random variables and random processes².

Consider now a random process ξ_0^T , which is a message that needs to be transmitted through a noisy channel. For our purposes ξ is associated with the fluctuations in x_1 and will be defined in detail in section 4. The message ξ is first 'encoded' into signal f_0^T (meaning that f_0^T is an arbitrary function of the time series ξ_0^T) that is considered as the input to the channel and random process y_0^T denotes the output from the channel, which is a corrupted version of f_0^T . The channel is allowed to have feedback if f_0^T is a function of y_0^T in addition to the message ξ_0^T (see figure 1). The *capacity* of the channel is defined as

$$\sup \frac{1}{T} I(\xi_0^T; y_0^T)$$

where the supremum is taken over all distributions of ξ_0^T and all allowable input signals $^3f_0^T$.

Throughout the manuscript we concentrate on Poisson channels. In such channels the output is a Poisson process with intensity at any time t the input signal f_t . If, for example, information about a species x_1 is communicated via an intermediate species x_2 as in the main text, then y denotes the signalling species x_2 and its birth rate f is a function of x_1 .

Finally, a useful property of the mutual information that is used in the derivations in section 4 is the *data processing inequality*. Random variables Z, Y, X are said to form a Markov chain if Z conditioned on Y is independent of X. This is, for example, the case if Z = g(Y), i.e. Z follows from a 'processing' of Y. The data processing inequality states that if Z, Y, X form a Markov chain then then $I(X; Z) \leq I(X; Y)$, i.e. any processing cannot increase the mutual information.

 $I(X;Y) = E\left\{\log\left[\frac{d\mu_{XY}}{d(\mu_X \times \mu_Y)}\right]\right\}$

where $d\mu_{XY}/d(\mu_X \times \mu_Y)$ denotes the Radon-Nikodym derivative of μ_{XY} with respect to the product measure $\mu_Y \times \mu_Y$.

³Shannon [1] gave a physical interpretation to the capacity as the highest rate with which information can be transmitted, such that this can be recovered with an arbitrarily small probability of error from the channel output (an interpretation that also holds for Poisson channels [2]).

²For random variables X,Y with probability measure μ_X,μ_Y and joint measure μ_{XY} the mutual information is given by

Figure 1: Channel with feedback. Random process ξ_0^T is the message to be transmitted, f_0^T is the input to the channel which is an encoded version of ξ_0^T , y_0^T is the channel output, and η_0^T is the estimate of the transmitted message ξ_0^T .

In order to be able to derive the hard variance bounds presented in the main text, analytical expression are required for the channel capacity of Poisson channels. These are given in section 3 (and extended in section 5) under various kinds of constraints on the birth rate.

The variance limits are derived in section 4, where an appropriate transformation of the problem allows to interpret feedback control laws as being part of a channel with feedback. The limits then follow from a fundamental tradeoff we show between the variance of a species and the ability to communicate information about that species reliably through a Poisson channel.

3 The information capacity of molecular channels

Central to the development of the paper is the treatment of signalling pathways as Poisson communication channels. The birth rate f of the second species x_2 depends on the state of the first species x_1 , and possibly of x_2 itself. The question is how much information about x_1 can be inferred from x_2 under various different constraints on the intensity f.

$$x_2 \xrightarrow{f} x_2 + 1 \tag{1}$$

This channel has been studied in the optical communications literature, where it is known as the direct detection photon channel. Some of the known results are of use to us here, but we also need to determine the channel capacity under novel forms of constraints.

First, if f is simply constrained to lie between the values 0 and some maximum value f_{max} then it is known [3] that the capacity is⁴

$$C = f_{\text{max}}/e$$
,

If, in addition, the mean of the intensity f is constrained to be constant, it has been shown in [4] that the capacity is given by

$$C = K\langle f \rangle$$

⁴Constant *e* in the expression for the capacity denotes the base of the natural logarithm.

where

$$K = \log(f_{\text{max}}/\langle f \rangle).$$

In each of these cases, it is known that the capacity is realized by switching f between 0 and f_{max} at an infinitely fast rate.

Since our aim is to establish limits in the x_1 variance, we are particularly interested in the situation where x_1 directly modulates the channel and restrictions on statistical properties (such as mean and variance) of x_1 thus impose restrictions on the statistical properties of the intensity f. We show (Theorem 1 in appendix B) that when the first two moments of the intensity are fixed, the channel capacity is given by

$$C = \langle f \rangle \log \left(1 + \frac{\sigma_f^2}{\langle f \rangle^2} \right) \le \frac{\sigma_f^2}{\langle f \rangle}.$$

The idea, roughly speaking, behind the derivation is to apply Jensen's inequality on the Liptser-Shiryaev formula [5] for the mutual information, and then maximize over the distributions of the intensity f to get an upper bound for the capacity, which can then be shown to be achievable.

Note that all the capacities given above allow for feedback, that is they are not increased by allowing the intensity f to depend on x_2 .

4 The bounds

The main ideas behind the bounds we derive can be summarized as follows:

- 1. There is a bound on the variance in x_1 whenever there is a bound on the error with which x_1 can be estimated.
- 2. To achieve a sufficiently small estimation error, a minimal capacity is required for the channel through which information is conveyed about x_1 .
- 3. To achieve a certain capacity, a minimal variance in the reaction rates of intermediate species is required.
- 4. If these rates depend on x_1 , then a high variance of x_1 is needed to increase the channel capacity.

Steps 1-4 thus mean that reducing the variance reduces the channel capacity which in turn makes it harder to further reduce the variance. This eventually causes a hard bound beyond which no improvements can be made.

As indicated in the main paper, we consider now the following Stochastic Differential Equation for x_1

$$dx_1 = (u - x_1/\tau_1)dt + \sqrt{2\langle x_1 \rangle/\tau_1}dw$$
 (2)

where u is to be chosen to minimize fluctuations in x_1 about its stationary mean $\langle x_1 \rangle$, but with the constraint that any information about x_1 is only to be relayed to u via a

communication channel with feedback capacity C (in our case via another species x_2 ,

i.e. $x_2 \xrightarrow{f} x_2 + 1$ with f being a function of x_1). It is important to note here that we do not specify or linearize the feedback scheme, or make any diffusion approximations for the signaling system, where the discrete nature of individual events is key. This is, we will allow an *arbitrary* nonlinear feedback mechanism from x_2 to u (the first "control demon" of the paper)⁵.

We consider a decomposition of x_1 as $x_1 = \xi + \phi$, where ξ satisfies (2) when the control signal u is set to zero (i.e. $d\xi = -b\xi dt + \beta dw$ with $b = 1/\tau_1$ and $\beta^2 = 2\langle x_1 \rangle / \tau_1$) and ϕ satisfies

$$d\phi = (u - \phi/\tau_1)dt$$

i.e. it is a function of only the signal u.

Using now the law of total variance (the decomposition in (3)) we derive a lower bound for the variance of x_1 , which we then write in terms of ξ_t and its conditional mean, i.e.

$$Var\{x_{1}(t)\} = E\left\{ \left[x_{1}(t) - E\left\{ x_{1}(t) | u_{0}^{t} \right\} \right]^{2} \right\} + E\left\{ \left[E\left\{ x_{1}(t) | u_{0}^{t} \right\} - E\left\{ x_{1}(t) \right\} \right]^{2} \right\}$$

$$\geq E\left\{ \left[x_{1}(t) - E\left\{ x_{1}(t) | u_{0}^{t} \right\} \right]^{2} \right\}$$

$$= E\left\{ \left[\xi_{t} + \phi_{t} - E\left\{ \xi_{t} + \phi_{t} | u_{0}^{t} \right\} \right]^{2} \right\}$$

$$= E\left\{ \left[\xi_{t} - E\left\{ \xi_{t} | u_{0}^{t} \right\} \right]^{2} \right\}$$

$$(5)$$

Note that $E\left\{x_1(t)|u_0^t\right\}$ is the minimum mean squared error (MMSE) estimate of $x_1(t)$ given the feedback signal u_0^t , and the expression in (4) is the corresponding estimation error. Therefore inequality (4) captures the fact that the variance of $x_1(t)$ is restricted when there are lower bounds in the error with which it can be estimated⁷.

Let $\eta_t := E\left\{\xi_t | u_0^t\right\}$. A bound for the estimation error in (4) (and hence the x_1 variance) can be obtained in terms of the channel capacity by taking into account the fact that the latter restricts the mutual information rate $\frac{1}{t}I(\xi_0^t;\eta_0^t)$. This constraint on the mutual information follows from the data processing inequality, i.e. (we denote for

⁵At any time t, control signal u_t is an arbitrary function of $\{x_2(\tau): 0 \le x_2(\tau) \le t\}$, the history of x_2 up to time t.

⁶The importance of process ξ is that it quantifies the deviation of x_1 about its conditional mean, i.e. $x_1(t) - E\left\{x_1(t)|u_0^t\right\} = \xi_t - E\left\{\xi_t|u_0^t\right\}$. This will be exploited later in our analysis when we make use of the law of total variance.

⁷The limits derived in this section can still be deduced in an analogous way if in the conditional expectation in (3) we condition on both u_0^t and the channel output y_0^t . It should be noted in this case that if a gaussian approximation was used for the Poisson channel, then what is known as separation principle in optimal control theory holds. That is, the first term in (3) does not depend on u_0^t , and hence u_0^t can be chosen to make the second term equal to zero. Such a separation principle does not hold in the case of a Poisson channel, thus making the problem of minimizing the x_1 variance non trivial. Using, however, information theoretic concepts hard variance limits can be obtained, as we show in the remainder of the section.

convenience $y_t := x_2(t)$

$$\frac{1}{t}I(\xi_0^t; \eta_0^t) \le \frac{1}{t}I(\xi_0^t; u_0^t) \tag{6}$$

$$\leq \frac{1}{t}I(\xi_0^t; y_0^t) \tag{7}$$

$$\leq C$$
 (8)

where C is the feedback capacity of the Poisson channel⁸. We have used here in (6) the fact that ξ_0^t conditioned on u_0^t is independent of η_0^t . Similarly in (7) ξ_0^t conditioned on y_0^t is independent of u_0^t , since any information about x_1 is conveyed to signal u by means of x_2 .

To sum up, we have from (5) and (8) respectively

$$Var\{x_1(t)\} \ge E\{(\xi_t - \eta_t)^2\}$$
 and $\frac{1}{t}I(\xi_0^t; \eta_0^t) \le C$

Hence, for a constant variance of x_1 up to time T, minimizing over η_0^T the distortion $d(\xi_0^T, \eta_0^T) := \sup_{0 \le t \le T} E\{(\xi_t - \eta_t)^2\}$, under the mutual information constraint $\frac{1}{T}I(\xi_0^T; \eta_0^T) \le C$ gives a hard lower bound for the variance of x_1 ; that is,

$$Var\{x_1\} \ge \inf_{\eta_0^T} d(\xi_0^T, \eta_0^T) \tag{9}$$

such that
$$\frac{1}{T}I(\xi_0^T;\eta_0^T) \le C$$
 and $\eta_0^t, \xi_0^t, \xi_t^T \quad 0 \le t \le T$ form a Markov chain⁹ (10)

where (10) is a causality constraint that captures the natural ordering of the signals; i.e. estimator η_0^t carries no information about future ξ values other than information that can be inferred from the past of ξ .

Minimizing a distortion function under mutual information constraints lies within the context of a branch of information theory known as rate distortion theory. However, in order to additionally take into account causality constraint (10) we need to make use of Pinsker's nonanticipatory epsilon entropy [6], [7] (see appendix A).

The nonanticipatory epsilon entropy of ξ solves the 'inverse' problem of minimizing the mutual information $I(\xi_0^T; \eta_0^T)$ given an upper bound on the distortion $d(\xi_0^T, \eta_0^T)$ and causality constraint (10). This can be used to obtain a lower bound for the distortion in (9), as discussed in appendix A. In particular, for a first order process

$$d\xi = -b\xi dt + \beta dw \tag{11}$$

the distortion is lower bounded by

$$d(\xi_0^T, \eta_0^T) \ge \frac{\beta^2}{2(C+b)} \tag{12}$$

⁸The feedback control law is interpreted here as feedback around the channel from ξ to y, which is why we need the feedback capacity of the channel.

⁹Signal η_0^t conditioned on ξ_0^t , the past of ξ , is independent of its future ξ_t^T .

If ξ is a Wiener process $d\xi = \beta dw$ then (12) reduces to

$$d(\xi_0^T, \eta_0^T) \ge \frac{\beta^2}{2C} \tag{13}$$

Noting the way ξ is analogously defined in this section (i.e. it satisfies (11) with $b = 1/\tau_1$, $\beta^2 = 2\langle x_1 \rangle / \tau_1$)) we therefore have from (9), (12) that for a constant mean and variance of x_1

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle} \ge \frac{1}{C\tau_1 + 1} \tag{14}$$

This is a hard limit for the x_1 variance in terms of the capacity, which captures the fact that a large channel capacity is a fundamental requirement when we need to reduce variances.

The capacity expressions given in section 3 can therefore now be used to derive limits in the variance of x_1 under various settings. If we allow arbitrary encoding schemes 10 with the birth rate f of the second species x_2 constrained to have a mean $\langle f \rangle$ and maximum value f_{max} , it follows from [4] that the capacity of the channel from x_1 to x_2 is given by 11

$$C = K\langle f \rangle \tag{15}$$

where $K = \log \frac{f_{\text{max}}}{\langle f \rangle}$. Substituting in (14), we obtain

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \ge \frac{1}{N_1(KN_2 + 1)} \tag{16}$$

where $N_1 = \langle x_1 \rangle$ and $N_2 = \langle f \rangle \tau_1$. Therefore arbitrary encoding leads to a bound for the x_1 coefficient of variation that decreases with the square root of N_2 . As we show below if the encoding functions for f are linear then the bound becomes more restrictive decaying with the quartic root of N_2 .

We consider now the case where f is proportional to x_1 , i.e. (1) is replaced by

$$x_2 \xrightarrow{\alpha x_1} x_2 + 1 \tag{17}$$

This leads to explicit bounds for the variance of the controlled species x_1 , since the latter directly restricts the channel capacity. More precisely, for a given mean and variance of x_1 the first two moments of the intensity are also restricted. Hence as discussed

¹⁰That is, at any time t, the birth rate f_t of x_2 is an arbitrary function of $\{x_1(\tau): 0 \le \tau \le t\}$ with the mean and maximum value of f_t constrained. Such a setting is not relevant when the x_2 intensity depends proportionally on x_1 , i.e. $f_t = \alpha x_1(t)$. It should be noted that when arbitrary encoding is instead allowed, the use of a stochastic differential equation for x_1 also avoids extreme scenarios whereby an 'encoding demon' monitors both individual x_1 and x_2 events and induces x_2 events immediately after corresponding x_1 ones.

¹¹Note that the capacity of the Poisson channel does not increase with feedback, so this is also the capacity of the feedback channel from ξ to y.

in section 3 and proved in Theorem 1 in appendix B, the capacity is given by 12

$$C = \alpha \langle x_1 \rangle \log \left(1 + \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \right) \le \alpha \frac{\sigma_{x_1}^2}{\langle x_1 \rangle} = \frac{N_2}{\tau_1} \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2}$$
 (18)

This means that a large x_1 variance is needed to increase the channel capacity. There is therefore a fundamental limit on how much the variance can be decreased due to an increase in the capacity (as this was quantified in (14)). The limit follows by substituting (18) in (14) and then solving the corresponding quadratic inequality, thus giving

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \ge \frac{1}{\langle x_1 \rangle} \times \frac{2}{1 + \sqrt{1 + 4N_2/N_1}} \tag{19}$$

Analogous arguments can be used for the case where the birth rate of x_1 is given by ux_1 . The diffusion approximation of x_1 is now $dx_1 = u\langle x_1\rangle dt + \sqrt{2\langle x_1\rangle/\tau_1} dw$ and it follows from (9), (13), (18) that for linear encoding functions for f as in (17) we have

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \ge \frac{1}{\sqrt{N_1 N_2}} \tag{20}$$

Similarly for the case of arbitrary encoding, we use the variance limit in terms of the capacity that follows from (9) and (13), i.e. $\frac{\sigma_{x_1}^2}{\langle x_1 \rangle} \ge \frac{1}{\tau_1 C}$, and substitute in the latter the capacity expression (15). This therefore leads to the same lower bound as in (16) but without the +1.

4.1 Hill functions for nonlinear encoding

It should be noted that the variance bounds in (19) and (20), where a quartic root dependence of the σ_{x_1} limit on N_2 is featured, are based on an upper bound on the capacity of the form in (18). Analogous bounds for the variance can therefore be obtained in cases x_1 is affecting nonlinearly the birth rate of x_2 , i.e.

$$x_2 \xrightarrow{f(x_1)} x_2 + 1 \tag{21}$$

if upper bounds on the capacity of the same form can be obtained. In particular, for a Hill function

$$f(x_1) = v \frac{K_1 + x_1^h}{K_2 + x_1^h}$$

the capacity is bounded by

$$C \le \frac{\gamma N_{2 \max}}{\tau_1} \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \tag{22}$$

¹²Note that for the model setting to be well defined the birth rate f_t needs to be truncated so that it is always positive i.e. $f_t = \alpha x_1^+(t)$, where x_1^+ denotes the truncated process $x_1^+(t) = x_1(t)$ if $x_1(t) \ge 0$ and 0 otherwise. This does not affect the upper bound on the capacity given below since $\langle x_1^+ \rangle \ge \langle x_1 \rangle$ and $\sigma_{x_1^+}^2 \le \sigma_{x_1}^2$.

where $N_{2\,\mathrm{max}} := v \tau_1$ is the maximum average number of molecules that are made per x_1 lifetime, i.e. the average number when the Hill function is saturated; γ is a constant that depends on K_1/K_2 and the Hill coefficient h and can be determined by solving a corresponding optimization problem^{13,14}. Therefore comparing (22) with the capacity bound in (18), the same variance limits as in (19) and (20) hold but with N_2 now replaced by $\gamma N_{2\,\mathrm{max}}$. Parameter γ is shown in figure 2 for different values of K_1/K_2 and h.

Figure 2: Parameter γ in the capacity bound $C \leq \frac{\gamma N_{2\max}}{\tau_1} \frac{\sigma_x^2}{\langle x \rangle^2}$ for the Poisson channel in (21) with the x_2 birth rate being a Hill function $f(x_1) = v \frac{K_1 + x_1^h}{K_2 + x_1^h}$. (Inset) The quartic root of the same parameter γ .

For example, for a positive Hill function with $K_1=0$ and $0 \le h \le 4$ we have $\gamma < 2$, hence N_2 is replaced by $2N_{2\max}$ in the limits (19), (20). Similarly for a negative Hill function with $K_1/K_2=0.01$ and $-4 \le h \le 0$ we have that $\gamma < 4$, so N_2 is now replaced by $4N_{2\max}$.

4.2 Extrinsic noise

The methodology followed in section 4 also holds when the stochastic differential equation for x_1 in (2) is of higher order, with the noise source being correlated. This

¹³Parameter γ can be obtained by solving the optimization problem max $\frac{f}{v\sigma_{x_1}^2/\langle x_1\rangle^2}$, where \hat{I} is the upper bound on the mutual information rate that follows from (42) in appendix B, and the maximization is over all x_1 distributions. It follows from Hoeffding's theorem on the extrema of expectations [8] that the optimum distribution is that of a discrete random variable with at most four points. This is therefore a tractable optimization problem that involves only a finite number parameters and can hence be solved numerically. Note that analogous ideas have been used in the exact calculation of the capacity when $f(x_1)$ is linear in x_1 (Theorem 1 in appendix B).

¹⁴It should be noted that γ depends on the ratio K_1/K_2 , rather than the individual values of K_1 and K_2 , since the Hill function can be written as $f(x_1) = v(K_1/K_2 + \tilde{x}_1^h)/(1 + \tilde{x}_1^h)$, where $\tilde{x}_1 = x_1/K_2^{1/h}$, and note also that $\sigma_{\tilde{x}_1}^2/\langle \tilde{x}_1 \rangle^2 = \sigma_{x_1}^2/\langle x_1 \rangle^2$.

occurs when extrinsic noise is additionally included.

Consider, for example, the case where the birth rate of x_1 is given by ux_3 , where x_3 is a species with a constant birth rate and exponential decay, i.e. $x_3 \xrightarrow{k} x_3 + 1$

 $x_3 \xrightarrow{x_3/\tau_3} x_3 - 1$, with the x_3 fluctuations acting as extrinsic noise for x_1 . A corresponding diffusion approximation is given by

$$dx_{3} = (k - x_{3}/\tau_{3})dt + \sqrt{2\langle x_{3}\rangle/\tau_{3}}dw_{3}$$

$$dx_{1} = \left(\langle x_{3}\rangle u + \frac{\langle x_{1}\rangle}{\tau_{1}\langle x_{3}\rangle}(x_{3} - \langle x_{3}\rangle) - x_{1}/\tau_{1}\right)dt + \sqrt{2\langle x_{1}\rangle/\tau_{1}}dw_{1}$$
(23)

As in (2) u is an arbitrary feedback control law that is chosen to minimize the fluctuations in x_1 about its stationary mean $\langle x_1 \rangle$, but with any information relayed to u via a second species 15 x_2 .

Equation (23) is equivalent to a process

$$dx_1 = (\tilde{u} - x_1/\tau_1)dt + d\tilde{w} \tag{24}$$

where $\tilde{u} = \langle x_3 \rangle u$, and \tilde{w} is a correlated noise process that satisfies $d\tilde{w} = \frac{\langle x_1 \rangle}{\tau_1 \langle x_3 \rangle} (x_3 - \langle x_3 \rangle) dt + \sqrt{2 \langle x_1 \rangle / \tau_1} dw_1$.

Following the procedure described in this section, we use the decomposition $x_1 = \tilde{\xi} + \tilde{\phi}$, where $\tilde{\xi}$ satisfies $d\tilde{\xi} = -x_1/\tau_1 dt + d\tilde{w}$. Therefore a lower bound for the x_1 variance in terms of the capacity is given by the distortion rate function of $\tilde{\xi}$ as defined in (9), with $\tilde{\xi}$ in the place of ξ . This computation is possible if classical rate distortion theory is used, with causality constraint (10) relaxed 16,17. Combining as before this lower bound on the x_1 variance in terms of the capacity, together with the upper bound (18) on the capacity in terms of the x_1 variance, we get a system of equations for the x_1 variance limit that can be solved numerically.

In order to illustrate the effect of extrinsic noise we show in figure 3 the x_1 variance limit in the regime where the intrinsic noise is much smaller than the extrinsic noise¹⁸ (i.e. $N_1 \to \infty$ for given $\langle x_3 \rangle, \tau_1, \tau_3$). The limit in $\sigma_{x_1}^2/\langle x_1 \rangle^2$ is normalized by the corresponding value when the input u is constant, i.e. no feedback is present. N_2

$$D = \frac{1}{2\pi} \int_{-\infty}^{\infty} \min(S(\omega), S(\omega_c)) d\omega, \qquad C = \frac{1}{4\pi} \int_{-\infty}^{\infty} \log \max(S(\omega)/S(\omega_c), 1) d\omega$$
 (25)

where $S(\omega)$ is the power spectrum of $\tilde{\xi}$, and ω_c is a constant that depends on C.

¹⁵That is, $x_2 \xrightarrow{f(x_1)} x_2 + 1$ with u(t) being an arbitrary function of the x_2 history $\{x_2(\tau) : 0 \le \tau \le t\}$.

¹⁶The distortion rate function D of ξ for a given capacity constraint C, that is $D = \inf_{\eta_0^T} d(\xi^T, \eta_0^T)$ s.t. $\frac{1}{T}I(\xi_0^T; \eta_0^T) \le C$, can be derived at steady state by what is known as a water-filling argument (e.g. [9]), i.e.

¹⁷Note that this relaxation decreases the bounds in (19) and (20) by only a factor of at most $\pi/2$.

¹⁸The power spectrum of $\tilde{\xi}$ in this regime is $S(\omega) = \frac{2\tau_1 N_1^2/N_3}{(\tau_1^2 \omega^2 + 1)(\tau_3^2 \omega^2 + 1)}$, and from the first equation in (25) the normalized variance limit $(\sigma_{x_1}^2 \text{ limit})/(\sigma_{x_1}^2 \text{ open-loop})$ can be expressed in terms of ω_c and τ_3/τ_1 ($\sigma_{x_1}^2 \text{ open-loop}$ denotes the x_1 variance for constant u and is given by $\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} = \frac{1}{\langle x_3 \rangle} \frac{\tau_3}{\tau_1 + \tau_3}$). Similarly from the two equations in (25), and the capacity bound in (18) N_2/N_3 can also be expressed in terms of the ω_c and τ_3/τ_1 ; hence figure 3 can be generated by varying these parameters.

is normalized by $N_3 = (\langle x_3 \rangle / \tau_3) \tau_1$, the average number of x_3 molecules made per x_1 lifetime. Note also that N_2/N_3 is equal to the ratio of the average rates of formation of x_2 and x_3 respectively.

Figure 3: Lower limit on $\sigma_{x_1}^2/\langle x_1\rangle^2$ scaled by the value of $\sigma_{x_1}^2/\langle x_1\rangle^2$ when the control input u is constant, i.e. no feedback is present. N_2/N_3 is equal to the ratio of the average rates of formation of x_2 and x_3 respectively.

For either $\tau_1 \gg \tau_3$ or $\tau_3 \gg \tau_1$ the quartic root bound in σ_{x_1} still applies over a large range of relevant parameters, in the former case because the x_3 noise appears in the same way as intrinsic noise in the x_1 equation and in the latter case because x_1 simply follows the x_3 fluctuations, and the problem is then mathematically equivalent to suppressing the x_3 fluctuations. Note that, for large τ_3 , N_3 would be expected to be relatively small¹⁹ - so in absolute terms the noise could then be regarded as being easy to suppress. For $\tau_1 \approx \tau_3$, though, it is easier to suppress the noise in the sense that the limit in σ_{x_1} decreases with a higher rate with increasing N_2 , however this is always smaller than the square root of N_2 ($\sigma_{x_1}/\langle x_1 \rangle > \text{const} \times N_2^{-3/8}$ for large N_2).

It should be noted that the x_1 variance limits in (19) and (20) also increase when the x_1 molecules are made in bursts, i.e. $x_1 \xrightarrow{u} x_1 + b_1$ where constant $b_1 \ge 1$ denotes the x_1 burst size. The stochastic differential equation (2) for x_1 becomes in this case

$$dx_1 = (b_1 u - x_1/\tau_1)dt + \sqrt{2r\langle x_1 \rangle/\tau_1}dw$$
, where $r = (1 + b_1)/2 \ge 1$ (26)

Following the procedure in this section the x_1 variance bound in terms of the capacity (14) is now $\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \ge \frac{r}{\langle x_1 \rangle} \frac{1}{C\tau_1 + 1}$, and combining this with (18) we get the same bound as

¹⁹Parameter N_3 is proportional to $(1 + \tau_3/\tau_1)^{-1}$ for constant $(\sigma_{x_1}^2/\langle x_1 \rangle^2)_{\text{open loop}}$ ($(\sigma_{x_1}^2/\langle x_1 \rangle^2)_{\text{open loop}} = 1/(N_3(1 + \tau_3/\tau_1))$).

in (19), but with $\frac{1}{\langle x_1 \rangle}, \frac{1}{N_1}$ in the right hand side scaled by r, i.e.

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \ge \frac{r}{\langle x_1 \rangle} \times \frac{2}{1 + \sqrt{1 + 4rN_2/N_1}}$$

5 Serial and parallel cascades

We investigate here the case where information about x_1 is conveyed by means of a cascade of multiple molecular species, rather than a single species x_2 . We first consider a serial cascade where information is lost at each step, and then consider parallel signaling pathways where x_1 communicates with the control system through several parallel paths.

Each species is proportionally affecting the birth rate of the next species in the cascade and each one is also decaying exponentially, i.e.

$$x_{1} \xrightarrow{u} x_{1} + 1 \qquad x_{n} \xrightarrow{\alpha_{n-1}x_{n-1}} x_{n} + 1 \qquad x_{n+1} \xrightarrow{\alpha_{n}x_{n}} x_{n+1} + 1$$

$$x_{1} \xrightarrow{x_{1}/\tau_{1}} x_{1} - 1 \qquad x_{n} \xrightarrow{x_{n}/\tau_{n}} x_{n} - 1$$

We denote N_i the average number of births of species x_i in time τ_1 , i.e. $N_1 = \langle u \rangle \tau_1$, $N_i = \alpha_{i-1} \langle x_{i-1} \rangle \tau_1$ for i = 2, ..., n+1 (note that $N_{i+1} = \alpha_i \tau_i N_i$ using the equilibrium relations $\alpha_{i-1} \langle x_{i-1} \rangle = \langle x_i \rangle / \tau_i$, $\langle u \rangle = \langle x_1 \rangle / \tau_1$).

We first note that linearity of the transition rates in the cascade means that each molecule of a species x_i decays exponentially and causes births of species x_{i+1} with fixed rates $1/\tau_i$ and α_i respectively. Therefore the birth of a particular x_2 molecule can be inferred at the channel output only from its x_{n+1} descendants. Now the probability q that an x_2 molecule will lead to the birth of at least one x_{n+1} molecule is fixed for given N_i , $i \ge 1$ (see Lemma 1). One the other hand, letting $\tau_i \to 0$ for $i = 2, \ldots, n$ will enable to recover the time of an x_2 birth from a corresponding x_{n+1} birth with arbitrarily small probability of error, since the x_{n+1} birth will occur in an arbitrarily small time after the x_2 birth (see Remark 4 in appendix C). We therefore calculate below the capacity of the channel with input x_1 and output x_{n+1} in the limit $\tau_i \to 0$ for $i = 2, \ldots, n$, which is the regime where the capacity is maximized for given N_i , $i \ge 1$.

The fact that in this limiting regime the birth of an x_{n+1} descendant occurs in an arbitrarily small time after the corresponding x_2 birth, also implies that the cascade will tend to a Poisson process with bursts

$$x_{n+1} \xrightarrow{\alpha_1 x_1} x_{n+1} + b$$

where $P(b > 0) = q = N_{\text{eff}}/N_2$ and

$$\frac{1}{N_{\text{eff}}} = \sum_{k=2}^{n+1} \frac{1}{N_k} \tag{27}$$

(see Lemma 1, Remark 4). As shown in Theorem 2 in appendix B, the capacity of this channel for a given mean and variance of x_1 is the same as the capacity of the

corresponding Poisson channel in Theorem 1 but scaled by q, i.e.

$$C = q\alpha_1 \langle x_1 \rangle \log \left(1 + \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \right) = q \frac{N_2}{\tau_1} \log \left(1 + \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \right)$$

Therefore the bound (18) for the capacity and also the lower bounds (19), (20) for the variance of x_1 remain the same but with N_2 replaced by N_{eff} .

Consider now the case of parallel signaling cascades where x_1 affects directly the birth rate of more than one signalling molecular species, with each of the n birth processes having an intensity $\alpha_i x_1$ for i = 1, ..., n respectively.

$$x_{2} \xrightarrow{\alpha_{1}x_{1}} x_{2} + 1$$

$$x_{3} \xrightarrow{\alpha_{2}x_{1}} x_{3} + 1$$

$$\vdots$$

$$x_{n+1} \xrightarrow{\alpha_{n}x_{1}} x_{n+1} + 1$$

This parallel channel is equivalent to a single birth process

$$y \xrightarrow{\lambda} y + 1$$

with intensity $\lambda = \sum_{i=1}^n \alpha_i x_1$ (a y birth represents a birth in one of the species at the channel output), followed by a process that determines the species each y birth corresponds to. This is an x_k birth with probability p_k proportional to the birth rate of the species, i.e., $p_k = \alpha_{k-1}/\sum_{i=1}^n \alpha_i$ depends only on the α_i 's and is independent of x_1 . Since this second process provides no further information about x_1 , the capacity of the parallel channel is equal to that of the channel with input x_1 and output y. For a given mean and variance of x_1 , this is equal to (Theorem 1)

$$C = \frac{N_{2\text{tot}}}{\tau_1} \log \left(1 + \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \right) \le \frac{N_{2\text{tot}}}{\tau_1} \frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2}$$
 (28)

where $N_{2\text{tot}} = \sum_{i=1}^{n} \alpha_i \langle x_1 \rangle \tau_1$ is the total number of birth events during the interval τ_1 affected directly by x_1 . Comparing with the capacity bound in (18) when x_1 affects directly only a single birth reaction, we see that the corresponding variance bounds (19), (20) in section 4 remain the same but with N_2 replaced by $N_{2\text{tot}}$.

Finally it should be noted that bursts do not increase the capacity, i.e. if in the signalling molecule x_2 births occur with bursts

$$x_2 \xrightarrow{\alpha_1 x_1} x_2 + b$$

with the increment b when a birth occurs being a random variable independent of x_1 , the capacity of the Poisson channel with output x_2 and input x_1 does not increase relative to the case where the increments are fixed (see Theorem 2). The capacity also remains unchanged if b > 0. This can be important, as many biological processes involve large bursts of transcription, signaling, or transport.

6 Tradeoffs

In this section we analyze the noise in molecular numbers when specific feedback mechanisms are present, and discuss tradeoffs in the suppression of fluctuations.

An overview of the chemical master equation and the corresponding moment equations is given first. These are then used to analyze the direct inhibition mechanism discussed in the main text.

Consider a biochemical system with n molecular species and m elementary reactions

$$x \xrightarrow{W_i(x)} x + r_i$$
, $i = 1, 2, \dots, m$

where $x = [x_1, x_2, \dots, x_n]^T$ is the vector of molecule number with x_j denoting the number of molecules of species j, $W_i(x)$ is the rate of reaction i, and the j'th element of $r_i \in \mathbb{Z}^n$ (this is denoted as r_i^j) gives the number of molecules by which species j changes due to reaction i. The master equation for the system is

$$\frac{dP(k,t)}{dt} = \sum_{i} W_i(k-r_i)P(k-r_i,t) - W_i(k)P(k,t)$$

where P(k,t) is the probability x takes value k at time t. This can be used to derive equations for the moments of x which can be explicitly calculated when the transition rates $W_i(x)$ are linear functions of x.

More precisely, defining the fluxes

$$\begin{split} J_j^+ &= \sum_{i:r_i^j > 0} r_i^j W_i(x), \quad J_j^- &= \sum_{i:r_i^j < 0} |r_i^j| W_i(x), \quad J_j^{\text{tot}} = J_j^+ - J_j^-, \\ J^{\text{tot}} &= [J_1^{\text{tot}}, \dots, J_m^{\text{tot}}]^T \quad \text{and} \quad B_{js} = \sum_i r_i^j r_i^s W_i(x) \end{split}$$

it can easily be shown [10] that

$$\frac{\partial \langle x \rangle}{\partial t} = \langle J^{\text{tot}} \rangle,
\frac{\partial \langle C \rangle}{\partial t} = \langle (J^{\text{tot}} - \langle J^{\text{tot}} \rangle) \times (x - \langle x \rangle)^T \rangle + \langle (x - \langle x \rangle) \times (J^{\text{tot}} - \langle J^{\text{tot}} \rangle)^T \rangle + \langle B \rangle$$

where C is the covariance matrix, i.e. $C = \langle xx^T \rangle - \langle x \rangle \langle x^T \rangle$. When transition rates $W_i(x)$ are nonlinear functions of x the equation for each moment will depend on higher moments and hence exact analytical solutions are not generally possible. A first order approximation that renders the problem analytically tractable is to linearize J^{tot} about $\langle x \rangle$, i.e. $J^{\text{tot}}(x) \approx J^{\text{tot}}(\langle x \rangle) + [\partial J^{\text{tot}}(\langle x \rangle)/\partial x](x - \langle x \rangle)$ where $\partial J^{\text{tot}}(\langle x \rangle)/\partial x$ is the Jacobian of J^{tot} evaluated at $\langle x \rangle$. This leads at steady state to a Lyapunov equation for the covariance matrix (a version of the Fluctuation Dissipation Theorem in physics), which can be interpreted by means of biological observables by introducing appropriate scaling in the equation parameters; i.e. , for $\eta_{ij} = C_{ij}/(\langle x_i \rangle \langle x_i \rangle)$ we have [11]

$$M\eta + \eta M^T = D, (29)$$

doi: 10.1038/nature09333

where

$$D_{ij} = \frac{\langle B_{ij} \rangle}{\langle x_i \rangle \langle x_j \rangle}, \quad M_{ij} = \frac{\langle J_i^- \rangle}{\langle x_i \rangle} H_{ij}, \quad H_{ij} = \frac{\partial \ln(J_i^- / J_i^+)}{\partial \ln x_j}$$
(30)

with the partial derivative in H_{ij} evaluated at $x = \langle x \rangle$. We also define $\tau_i = \frac{\langle x_i \rangle}{\langle J_i^- \rangle}$ as the average lifetime of species x_i .

We consider now the feedback system discussed in the main text, where two species x_1 and x_2 are in a negative feedback interconnection by means of a direct inhibition mechanism.

$$x_1 \xrightarrow{x_1 u(x_2)} x_1 + 1$$
 $x_2 \xrightarrow{x_1 R_2^+(x_2)} x_2 + 1$
 $x_1 \xrightarrow{x_1/\tau_1} x_1 - 1$ $x_2 \xrightarrow{R_2^-(x_2)} x_2 - 1$

It should be noted that $u(x_2)$ at time t is a static function of $x_2(t)$ rather than an arbitrary function of the history of x_2 up to time t, as in the bounds derived in the previous sections. Applying the approximate fluctuation dissipation theorem (29) we get the following expression for the variance of x_1

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} = \underbrace{\frac{1}{\langle x_1 \rangle} \left(\frac{H_{22}}{H_{12}} + \frac{\tau_2}{\tau_1} \frac{1}{H_{22}} \right)}_{\text{noise from } x_1} + \underbrace{\frac{1}{\langle x_2 \rangle} \frac{H_{12}}{H_{22}} \frac{\tau_2}{\tau_1}}_{\text{noise from } x_2}$$
(31)

Note that there is a tradeoff in the suppression of the two noise terms by varying H_{11} and H_{22} . The x_1 variance is minimized by letting $H_{22} \rightarrow \infty$ and setting $H_{12}/H_{22} = \sqrt{N_2/N_1}$ where $N_1 = \langle x_1 \rangle$, $N_2 = \langle x_2 \rangle \tau_1/\tau_2$, thus giving

$$\frac{\sigma_{x_1}^2}{\langle x_1 \rangle^2} \ge \frac{2}{\sqrt{N_1 N_2}}$$

APPENDIX

In the appendix we provide detailed derivations of results discussed in sections 3-5. Appendix A gives on overview of Pinker's nonanticipatory epsilon entropy. In appendix B we provide a detailed proof for the capacity of a Poisson channel under mean and variance constraints. This is also derived for channels with bursts, and further extended in appendix C to cascades of multiple birth death processes.

A Causality constraints: the nonanticipatory epsilon entropy

A major plank to our development is Pinsker's notion of nonanticipatory epsilon entropy [6], [7]. This is a rate distortion function which takes into account a causality constraint.

Rate distortion theory becomes relevant when transmitted signals are not exactly recovered, but rather have a certain recovery error, called distortion. This leads to the notion of a rate distortion function (or Kolmogorov's epsilon entropy [12]). For a random process ξ_0^T and an allowable distortion ε , the rate distortion function $R(\varepsilon; \xi_0^T)$ is defined as

$$R(\varepsilon; \xi_0^T) := \inf_{\eta_0^T} I(\xi_0^T; \eta_0^T) \quad \text{ such that } \quad d(\xi_0^T, \eta_0^T) \le \varepsilon$$
 (32)

where random process η_0^T is the estimate of the transmitted message ξ_0^T and $d(\xi_0^T,\eta_0^T)$ is the distortion measure²⁰, i.e., $R(\varepsilon;\xi_0^T)$ is the minimum mutual information that needs to be transmitted in order to reproduce ξ_0^T within a distortion ε . ²¹

It should be noted that causality is often not a constraint when information theory is traditionally used to study communication systems, as is the case with the notion of a rate distortion function defined in (32). By this we mean that at any time t the signal estimate η_0^t in (32), contains also information about ξ_t^T , the future values of the transmitted message, rather than just its past values ξ_0^t . In practice, this refers to the fact that we wait to observe the whole of the signal ξ_0^T before we encode it and transmit it through the channel, thus introducing a delay of at least T, before the estimate η becomes available. Such delays might sometimes not be an issue in communication systems. They cannot, however, be tolerated when any inference about the transmitted message is needed in real time within a feedback control loop.

$$D(r; \xi_0^T) := \inf_{\eta_0^T} d(\xi_0^T, \eta_0^T) \quad \text{ such that } \quad I(\xi_0^T; \eta_0^T) \le r$$

i.e. the minimum distortion achievable for a given mutual information constraint between the transmitted signal ξ_0^T and its estimate. It can be shown that the distortion rate function is the inverse of the rate distortion function, i.e. $R(D(r; \xi_0^T); \xi_0^T) = r$.

²⁰In our analysis we will be using a distortion measure of the form $d(\xi_0^T, \eta_0^T) = \sup_{0 \le t \le T} E\{(\xi_t - \eta_t)^2\}$. Similarly, the distortion rate function $D(r; \xi_0^T)$ of signal ξ_0^T is defined as

Causality becomes here a very real physical constraint that cannot be violated. At any time t the message estimate η_0^t carries no information about the future of the transmitted message ξ , other than information that can be inferred from its past ξ_0^t . This time ordering of the signals can be imposed by requiring η_0^t , ξ_0^t , ξ_t^T to form a Markov chain, i.e. for all $t \in [0,T]$, signal η_0^t conditioned on ξ_0^t , the past of ξ , is independent of its future ξ_t^T .

The nonanticipatory epsilon entropy H_{ε} of a stochastic process ξ_0^T is defined as the smallest mutual information between it and any other stochastic process η_0^T under the constraints that the distortion between ξ and η is sufficiently small and that η can only depend causally on ξ . To be specific

$$H_{\varepsilon}(\xi_0^T) := \inf I(\xi_0^T; \eta_0^T)$$

where the infimum is taken over stochastic processes η_0^T s.t.

$$d(\xi_0^T, \eta_0^T) \le \varepsilon \tag{33}$$

$$\eta_0^t, \xi_0^t, \xi_t^T \quad 0 \le t \le T \text{ form a Markov chain}$$
 (34)

with distortion $d(\xi_0^T, \eta_0^T)$ defined as $d(\xi_0^T, \eta_0^T) := \sup_{0 \le t \le T} E\left\{(\xi_t - \eta_t)^2\right\}$

i.e., it corresponds to a rate distortion function with causality constraint (34).

This has been calculated in [7] for the case of a Markov Gaussian source. In the special case of a Wiener process ξ satisfying

$$d\xi_t = \beta dw_t$$

where $\{w_t : t \ge 0\}$ is a standard Brownian motion we have²²

$$\lim_{T \to \infty} \frac{1}{T} H_{\varepsilon}(\xi_0^T) = \frac{\beta^2}{2\varepsilon}$$
 (35)

A distortion rate function with causality constraints can similarly be defined as

$$D_r(\xi_0^T) := \inf_{\eta_0^T} d(\xi_0^T, \eta_0^T) \quad \text{such that } \frac{1}{T} I(\xi_0^T; \eta_0^T) \le r$$
(36)

Making use of the fact that the distortion rate function is the inverse of the rate distortion function, solving for ε in (35) we get a lower bound on the distortion for an upper bound C on the mutual information rate²³, i.e.²⁴

$$d(\xi_0^T, \eta_0^T) \ge \frac{1}{2C}\beta^2 \tag{37}$$

²²The equality below is also a lower bound for any finite time i.e. $\frac{1}{T}H_{\mathcal{E}}(\xi_0^T) \geq \frac{\beta^2}{2\varepsilon}$ if $E\{(\xi_t)^2\} \geq \varepsilon$ at t=0.

²³This can be seen here as follows. Since $D_r(\xi_0^T)$ is the infimum distortion under constraints (36), (34), then for all $\delta > 0$ there exists η_0^T such that (34) holds, $\frac{1}{T}I(\xi_0^T;\eta_0^T) \leq r$ and $d(\xi_0^T,\eta_0^T) \leq D_r(\xi_0^T) + \delta$. Hence $\frac{1}{T}H_{D_r(\xi_0^T)+\delta}(\xi_0^T) \leq \frac{1}{T}I(\xi_0^T;\eta_0^T) \leq r$.

²⁴Note that without the causality constraint (34), the lower bound for the distortion in (37) would be reduced by a factor of $4/\pi^2$ (see [12], [13]).

Similar arguments for the first order source

$$d\xi_t = -b\xi_t + \beta dw_t, \tag{38}$$

yield the lower bound

$$d(\xi_0^T, \eta_0^T) \ge \frac{1}{2(C+b)} \beta^2. \tag{39}$$

B On the Capacity of the Poisson channel

Consider a Poisson process n_t , $t \in [0,T]$ with its intensity λ_t being a function of the input signal to be transmitted θ_0^t , and also the past values n_0^t of the Poisson process, i.e.

 $n_t \xrightarrow{\lambda_t} n_t + 1$ with $\lambda_t = \lambda(t, \theta_0^t, n_0^t)$. Then the capacity of the Poisson channel with output n_t is defined as

$$C := \sup_{\theta \lambda} \frac{1}{T} I(\theta_0^T; n_0^T) \tag{40}$$

This is finite if appropriate constraints are imposed on the moments of the intensity λ_t .

Theorem 1. The capacity of a Poisson channel with intensity λ_t s.t. $E\{\lambda_t\} = m$, $Var\{\lambda_t\} \leq \sigma^2$ is given by

$$C = m \log \left(1 + \frac{\sigma^2}{m^2} \right)$$

Remark 1. The capacity with a maximum value constraint $0 \le \lambda_t \le c$ instead of a variance constraint was calculated in [4], [3]. This is equal to C = c/e if the mean is unconstrained and $m\log(c/m)$ if the mean is also constrained as in Theorem 1.

Remark 2. Noting the inequality $\log(1+x) \le x$, a simple upper bound for the capacity is given by σ^2/m .

Proof. From the Liptser/Shiryaev formula [5] we have

$$I(\theta_0^T; n_0^T) = E\left\{ \int_0^T \left[\phi(\lambda_t) - \phi(\hat{\lambda}_t) \right] dt \right\}$$
 (41)

where $\phi(x) := x \log(x)$, $\hat{\lambda}_t = E\{\lambda_t/n_0^t\}$. Since ϕ is a convex function, Jensen's inequality gives

$$I(\theta_0^T; N_0^T) \le \int_0^T \left[E\{\phi(\lambda_t)\} - \phi(E\{\hat{\lambda}_t\}) \right] dt \tag{42}$$

Since $E\{\hat{\lambda}_t\} = m$ an upper bound is obtained by maximizing $\int_0^T E\{\phi(\lambda_t)\}dt$ under the two moment constraints specified in the Theorem. According to Hoeffding's theorem on the extrema of expectations [8] the maximum is achieved with a cumulative distribution that is a step function with 3 steps, i.e. the optimum distribution of λ_t is that

of a discrete random variable that is nonzero at at most three points. Therefore an upper bound for $E\{\phi(\lambda_t)\}$ is obtained from the maximization problem below, where p_i denotes the probability that λ_t takes value k_i

$$\sup_{p_i, k_i} \sum_{i=1}^{M} p_i \phi(k_i)$$
s.t.
$$\sum_{i} p_i k_i = m$$
(43)

$$\sum_{i} p_i k_i^2 \le \sigma^2 + m^2 =: Q^2 \tag{44}$$

$$\sum_{i}^{l} p_{i} k_{i}^{2} \leq \sigma^{2} + m^{2} =: Q^{2}$$

$$\sum_{i}^{l} p_{i} = 1, \quad p_{i} \geq 0, k_{i} \geq 0 \quad \forall i$$
(44)

The Lagrangian for the problem is

$$L = \sum_{i} \phi(k_i) p_i + \mu(\sum_{i} p_i k_i^2 - Q^2) + \nu(\sum_{i} k_i p_i - m) + \xi(\sum_{i} p_i - 1) - \sum_{i} \rho_i k_i - \sum_{i} \psi_i p_i$$

The Karush-Kuhn-Tucker conditions give necessary conditions for optimality, and these take the form

$$\frac{\partial L}{\partial p_i} = 0, \frac{\partial L}{\partial k_i} = 0, \ \mu \le 0, \rho_i \le 0, \psi_i \le 0 \ \forall i,$$
$$\mu(\sum p_i k_i^2 - Q^2) = 0, \rho_i k_i = 0, \psi_i p_i = 0 \ \forall i$$

in addition to the primal feasibility constraints (43-45). Since $\phi(k_i)$ is not differentiable at $k_i = 0$ we consider the maximization problem above with $\phi(x)$ defined as $\phi(x) = 0$ $(\alpha + x)\log(\alpha + x)$, for some $\alpha > 0$, and then take the limit $\alpha \to 0$.

$$\frac{\partial L}{\partial p_i} = 0 \text{ gives } \phi(k_i) + \mu k_i^2 + \nu k_i + \xi - \psi_i = 0.$$
 (46)

For $p_i > 0$ we have $\psi_i = 0$ and hence (46) reduces to

$$(\alpha + k_i)\log(\alpha + k_i) + \mu k_i^2 + \nu k_i + \xi = 0$$
 (47)

$$\frac{\partial L}{\partial k_i} = 0 \text{ gives } p_i(\log(\alpha + k_i) + 1) + 2\mu p_i k_i + \nu p_i - \rho_i = 0$$
 (48)

For $k_i > 0$ then $\rho_i = 0$ hence for $p_i > 0$ we get

$$\log(\alpha + k_i) + 2\mu k_i + \nu + 1 = 0 \tag{49}$$

Also combining (47), (49) we get

$$\mu k_i^2 + k_i - \xi - \alpha \log(\alpha + k_i) = 0 \tag{50}$$

The system of equations (49), (50) has at most one solution when solved for k_i . To see this note that if k_1 and k_2 are two distinct solutions then, substituting these into (49),

(50) one can deduce that $\log x = 2\frac{x-1}{x+1}$ for $x = \frac{k_1+\alpha}{k_2+\alpha}$, which has a unique solution x=1, i.e. $k_1=k_2$. Hence k_i is constant for all i such that $k_i>0$ and $p_i>0$. We denote this value as k_u and let $p_u:=\sum_{i:k_i>0}p_i$. Note that a $k_i>0$ with $p_i>0$ will always exist unless m=0, in which case the maximum value of the cost function is zero. In order to satisfy the primal constraints on the mean and variance, p_i needs to be positive also for i s.t. $k_i=0$ (unless $Q^2=m^2$, i.e. the variance is zero, in which case the solution is trivial). Substituting $k_i=0$ in (47) we get $\xi+\alpha\log(\alpha)=0$, and hence for $k_i>0$ we get from equation (50) that as $\alpha\to0$ then $\mu\to-1/k_u<0$ i.e. the variance constraint is active. Therefore from the mean and variance constraints we get

$$p_u k_u = m, \quad p_u k_u^2 = \sigma^2 + m^2$$

So $k_u = (\sigma^2 + m^2)/m$. Now letting $\alpha \to 0$ the upper bound on the capacity in (42) is

$$E\{\phi(\lambda_t)\} - \phi(E\{\hat{\lambda}_t\}) = k_u p_u log(k_u) - m log m$$
$$= m log\left(1 + \frac{\sigma^2}{m^2}\right)$$

It is shown in [4], [3] that this bound is achievable arbitrarily closely without feedback, by means of a random telegraph signal with sufficiently fast transitions between 0 and k_u .

Consider now a Poisson channel as the one considered in Theorem 1, but when a birth occurs in point process n_t the increment size is given by a discrete, non-negative, integer valued random variable b, i.e.

$$n_t \xrightarrow{\lambda_t} n_t + b$$
 (51)

with *b* having a probability mass function $p_k = P(b = k)$. The capacity of the Poisson channel with output n_t and input λ_t is defined as in (40), but with n_t being now the point process (51).

Theorem 2. The capacity of the Poisson channel (51) with intensity λ_t s.t. $E\{\lambda_t\} = m$, $Var\{\lambda_t\} < \sigma^2$ is given by

$$C = qm \log \left(1 + \frac{\sigma^2}{m^2} \right) \tag{52}$$

where $q = \sum_{k>0} p_k$ is the probability the increment b is positive.

Proof. The point process in (51) is equivalent to the superposition of point processes with fixed increments, equal to the various values k random variable b can take, i.e.,

 $n_t = \sum_k n_k(t)$ where $n_k(t)$ is a birth processes of the form $n_k(t) \xrightarrow{p_k \lambda_t} n_k(t) + k$. Since having no births, or having a birth with the increment b = 0, have the same effect on n_t in (51), the point process is equivalent to one with strictly positive increments \bar{b} and with the birth rate λ_t scaled by q, i.e.

$$n_t \xrightarrow{q\lambda_t} n_t + \bar{b}$$
 (53)

where for k > 0, $P(\bar{b} = k) = P(b = k|b > 0) = p_k/q$. As \bar{b} is independent of the input λ_t the capacity of the channel from λ_t to n_t in (53) is equal to that of a Poisson channel with the same rate $q\lambda_t$ but unit increments, which is given from Theorem 1 by (52). \Box

C **Cascades**

Consider now the case where instead of a single Poisson process we have a cascade of birth/death processes as shown below

$$x_{2} \xrightarrow{\lambda} x_{2} + 1 \qquad \dots \qquad x_{n} \xrightarrow{\alpha_{n-1}x_{n-1}} x_{n} + 1 \qquad x_{n+1} \xrightarrow{\alpha_{n}x_{n}} x_{n+1} + 1$$

$$x_{2} \xrightarrow{x_{2}/\tau_{2}} x_{2} - 1 \qquad x_{n} \xrightarrow{x_{n}/\tau_{n}} x_{n} - 1$$

$$(54)$$

This is equivalent to each molecule of species x_i , i = 2, ..., n decaying exponentially and giving birth to molecules of species x_{i+1} with fixed rates $1/\tau_i$ and α_i respectively. Note that a molecule x_2 will cause the birth of a molecule x_{n+1} only with a certain probability which is less than 1, since it is likely that intermediate molecules decay before a birth occurs in x_{n+1} . This probability is calculated below.

Lemma 1. Consider the cascade in (54). The probability P_{n+1} that a particular molecule of species x_2 will cause the birth of at least one molecule of species x_{n+1} is given by

$$\frac{1}{P_{n+1}} = N_2 \sum_{k=2}^{n+1} \frac{1}{N_k}$$

where for $k \geq 2$, $N_{k+1} = N_2 \prod_{i=1}^k \alpha_k \tau_k$.

Remark 3. Note that P_{n+1} for a particular molecule of species x_2 does not change in the presence of other x_2 molecules since each molecule x_i decays and causes births of x_{i+1} molecules with fixed rates that do not depend on other molecules.

Proof. Let P_{n-k+3} , for $k=2,\ldots,n$ denote the probability that a particular molecule x_k will cause the birth of at least one molecule x_{n+1} . We evaluate P_n by deriving a recursion in k for P_{n-k+3} . Note that

$$P_{n+1} = \sum_{r=1}^{\infty} P_{3,r} [1 - Q_{3,r}]$$
 where

 $P_{3,r} = P(x_2 \text{ causes the birth of } r x_3 \text{ before it decays})$

 $Q_{3,r} = P(\text{none of the } r x_3 \text{ leads to a birth of } x_{n+1})$

We have

$$P_{3,r} = \int_0^\infty \underbrace{\frac{1}{\tau_2} e^{-t/\tau_2}}_{\text{pdf of } x_2 \text{ decay time } t} \times \underbrace{e^{-\alpha_2 t} \frac{(\alpha_2 t)^r}{r!}}_{P(r x_3 \text{ in time } t)} dt$$

$$= \frac{(\alpha_2 \tau_2)^r}{(1 + \alpha_2 \tau_2)^{1+r}}$$
(55)

(56)

and $Q_{3,r} = (1 - P_n)^r$. So

$$P_{n+1} = \sum_{r=1}^{\infty} \frac{(\alpha_2 \tau_2)^r}{(1 + \alpha_2 \tau_2)^{1+r}} [1 - (1 - P_n)^r]$$
$$= \frac{\alpha_2 \tau_2 P_n}{1 + \alpha_2 \tau_2 P_n}$$

Also in general for k = 2, ..., n

$$P_{n-k+3} = \frac{\alpha_k \tau_k P_{n-k+2}}{1 + \alpha_k \tau_k P_{n-k+2}} \quad \text{or} \quad \frac{1}{P_{n-k+3}} = 1 + \frac{1}{\alpha_k \tau_k P_{n-k+2}}$$
 (57)

It can easily be shown using the arguments above that $1/P_3 = 1 + 1/(\alpha_n \tau_n)$ hence P_{n+1} follows from the recursion (57).

Remark 4. Note that if a birth in x_{n+1} occurs due to an x_2 molecule formed at time t_1 , the x_{n+1} birth takes place in an infinitesimally small time after t_1 , in the limit where $\tau_i \rightarrow 0$ for $i=2,\ldots,n$. This is because the integrand in (55) tends to a δ -function centered arbitrarily close to 0. Therefore the number of molecules in the last species x_{n+1} in the cascade will tend to satisfy a birth process $x_{n+1} \xrightarrow{\lambda} x_{n+1} + b$ with P(b > 0), the probability of a positive increment given that a birth occurs, given by P_{n+1} .

As discussed in section 5, it follows from Remarks 3, 4 that for given $N_i/N_2, i=2,\ldots,n+1$, the capacity of the channel from λ to x_{n+1} is maximized by letting $\tau_i \to 0$ for $i=2,\ldots,n$. This is because the probability P_{n+1} of detecting an x_2 birth at the channel output remains unchanged, whereas, letting $\tau_i \to 0$ enables to recover the time of an x_2 birth with an arbitrarily small probability of error. Therefore the capacity of the Poisson channel with bursts discussed in Remark 4 gives an upper bound for the capacity of the cascade. For a given mean and variance of λ , this can be calculated from Theorem 2 and Lemma 1, and is given by (52) with $q=P_{n+1}$.

References

- [1] C. Shannon. A Mathematical Theory of Communication. *Bell System Technical Journal*, 27:379–423, 623–656, 1948.
- [2] A. D. Wyner. Capacity and error exponent for the direct detection photon channel-Part I, II. *IEEE Transactions on Information Theory*, 34:1449–1471, 1988.
- [3] YU. M. Kabanov. The capacity of a channel of the Poisson type. *Theory of Probability and its Applications*, 23(1):143–147, 1978.
- [4] M. H. A. Davis. Capacity and Cutoff Rate for Poisson-Type Channels. *IEEE Transactions on Information Theory*, 26(6):710–715, 1980.
- [5] R. S. Liptser and A. N. Shiryaev. *Statistics of Random Processes II: Applications*. Berlin, Germany: Springer-Verlang, 2nd edition, 2001. Original Russian edition published by Nauka, Moscow, 1974.

- [6] A. K. Gorbunov and M. S. Pinsker. Nonanticipatory and prognostic epsilon entropies and message generation rates. *Problems of Information Transmission*, 9(3):184–191, 1973. A translation from Problemy Peredachi Informatsii.
- [7] A. K. Gorbunov and M. S. Pinsker. Prognostic epsilon entropy of a gaussian message and a gaussian source. *Problems of Information Transmission*, 10(2):93–99, 1974. A translation from Problemy Peredachi Informatsii.
- [8] W. Hoeffding. The extrema of the expected value of a function of independent random variables. *The Annals of Mathematical Statistics*, 26(2):268–275, 1955.
- [9] S. Ihara. *Information theory for continuous systems*. World Scientiifc Publishing, Singapore, 1993.
- [10] M. Lax. Fluctuations from nonequilibrium steady state. *Reviews of Modern Physics*, 32(1):25–64, 1960.
- [11] J. Paulsson. Summing up the noise in gene networks. Nature, 427:415–418, 2004.
- [12] A. Kolmogorov. On the Shannon theory of information transmission in the case of continuous signals. *IRE Transactions on Information Theory*, 2(4):102–108, 1956.
- [13] T. Berger. Information Rates of Wiener Processes. *IEEE Transactions on Information Theory*, 16(2):134–139, 1970.