GBC053-Gerenciamento de Banco de Dados

Armazenamento de Dados

Hierarquia de Memórias e Desempenho de Discos

Ilmério Reis da Silva ilmerio arroba ufu.br

MS Teams: GBC053.2021.2

UFU/FACOM

Armazenamento de Dados - Roteiro

ROTEIRO

- Hiearquia de memórias e desempenho de discos
- RAID e Gerência de espaço em disco
- Gerência de buffer pool
- Formatos de registros e páginas
- Panorâmica de organização de arquivos e índices

Armazenamento de Dados - Hierarquia

Hiearquia de memórias e desempenho de discos

Armazenamento de Dados - Hierarquia de Memórias — Velocidade/Capacidade

1 - 2 ns	Registers	32 - 512 B
3 - 10 ns	On-chip cache	1 KB - 16 KB
25 - 50 ns	Off-chip cache (SRAM)	64 KB - 256 KB
60 - 250 ns	Main memory (DRAM)	1 MB - 1 GB
5-20 ms	Secondary memory (disk)	100 MB - 1 TB
100 - 500 ms	Tertiary memory (CD-ROM)	600 MB +
1 s - 10 m	Off-line memory (tape)	Unlimited
<u> </u>		Ţ

Cost/Unit, Density

Armazenamento de Dados- Hierarquia de Memórias (Classificação de Silberschatz)

Armazenamento de Dados - Hierarquia de

Memórias - Volatilidade

GBD

Armazenamento de Dados - Hierarquia de Memórias — SSD - História

Memórias Flash

- Origem em EEPROM(Electrically-Erasable Programmable Read-Only Memory), mas com regravação em blocos, o que a torna bem mais barata que as EEPROMs originais
- Criada em 1980 e comercializada a partir de 1988 a memória *Flash do tipo NOR* tem alta velocidade de leitura e baixa velocidade de gravação, e é usada principalmente em cartões de memória, BIOS e alguns *firmwares*
- A memória Flash do tipo NAND foi criada em 1989 tem maior velocidade de gravação, entretanto não faz acesso aleatório, mas somente leitura sequencial em grandes blocos. Seu custo é inferior à NOR.

Armazenamento de Dados - Hierarquia de Memórias — SSD - Vantagens/Desvantagens

Memórias Flash - Caraterísticas

VANTAGENS

- Não volátil
- Mais resistentes a choques do que discos
- Velocidade
 - leitura na ordem de 100 ns, entre RAM e DISCO
 - Latência é grande, mas menor que dos discos
 - Transferência de leitura/gravação da ordem de 100MBs (A DDR2-400 chega a 3,2GBs)

DESVANTAGENS

- Gravação por bloco
- Número limitado de ciclos de regravações (entre mil e um milhão de vezes)

GBD

Armazenamento de Dados Hierarquia de Memórias – SSD - Considerações Finais

Memórias Flash – Considerações finais (dados de 2008)

- Largamente utilizadas em dispositivos móveis como câmeras digitais, celulares, etc.
- Usada em substituição a HD em computadores móveis, aumentando ligeiramente o custo
- Principalmente pelo custo, em grandes banco de dados a solução atual ainda é o disco rígido

(Ver: (1)"E. Gal, S. Toledo, Algorithms and Data Structures for Flash Memories, ACM Computing Surveys, Vol. 37, No. 2, June 2005, pp. 138–163"; (2) Web)

Armazenamento de Dados - Discos

Motivações para uso de discos:

- Custo
- Capacidade
- Limitações de endereçamento em RAM
- Durabilidade

Armazenamento de Dados - Estrutura de Discos - Figura

Armazenamento de Dados - Estrutura de Discos - Descrição

- Setor é uma divisão física de acesso, analogamente, bloco (ou página) é divisão lógica definida por software
- Trilhas podem estar em superfícies de dupla face
- Cilindro é virtual, um conjunto de trilhas
- Cabeças de leitura/gravação movem-se conjuntamente por meio do braço

Armazenamento de Dados - Estrutura de Discos - Acesso

- Controladora de disco: interface entre o disco e a memória RAM
- Controle de erro por meio de "check sum" por setor, que é conferido na leitura.
- *Tempo acesso* = seek + atraso_rotacional + tempo_transferência

• OBS: seek e atraso dependem também do posicionamento atual do mecanismo, vamos considerar valores médios

Armazenamento de Dados – Desempenho de Discos – Alocação

- 10 em geral domina o custo
- Otimização depende de localização estratégica dos dados
- Acesso sequencial permite um seek por trilha (ou por cilindro), minimizando o tempo acesso
- Alocação Sequencial e Proximidade de blocos
 - Mesma trilha
 - Mesmo cilindro
 - Cilindros adjacentes
- Pré-fetching minimiza tempo médio de acesso

Armazenamento de Dados - Desempenho de Discos - Exemplo 1

EXEMPLO:

- tempo médio de seek = 8 ms
- rotação = 10.000 rpm
 - 1 rotação completa = 1/10000 minutos = 6 ms
 - média de atraso rotacional = 3 ms
- setores por trilha = 170 setores
- tamanho setor = 512 bytes
- transferência = 6 ms / 170 setores = 0,035 ms / setor
 LOGO:

tempo médio de acesso a um setor =
$$8 + 3 + 0.035 = 11.035$$
 ms

Armazenamento de Dados - Desempenho de Discos — Comparação Acesso COMPARANDO ACESSO ALEATÓRIO COM SEQUENCIAL

- DISCO: seek=8; rotação=10.000rpm; trilha com 170 setores de 512 bytes.
- ARQUIVO: 34.000 registros de 256 bytes ocupando 100 trilhas distribuídas aleatoriamente no disco (Alocação Aleatória)
- Tempo de leitura sequencial x aleatória

SEQUENCIAL: (seek+atraso+transferência) por trilha

Uma trilha = 8 + 3 + 6 = 17ms

O arquivo = 17 * 100 ms = 1.7 s

ALEATÓRIA: (seek+atraso+transf. setor) por registro

Um registro = 1 setor = 11,035 ms

O arquivo $34.000 \times 11,035 \text{ms} = 371,1 \text{ s}$

OBS: sequencial é 218 vezes mais rápido

• Com Alocação Sequencial podemos ter um seek por cilindro, além de atraso e transferência por trilha (recalcule).

Armazenamento de Dados - Desempenho de Discos - Exemplo 2

Exemplo 2: recalcule os tempos anteriores considerando um disco de 5 placas de dupla superfície e alocação ótima.

OBS: considere primeiramente Acesso Sequencial e depois Acesso Paralelo às trilhas de um mesmo cilindro.

Armazenamento de Dados - Desempenho de Discos - Exercício 1

EXERCÍCIO: Considere um arquivo contendo um registro para cada habitante do planeta com tamanho igual a 1 setor de um disco de exemplo (use as configuraçõe do HD de seu computador pessoal e faça as suposições de configuração que não conseguir localizar).

Calcule o tempo de leitura de todo o arquivo nas seguintes situações de Alocação / Acesso:

- 1) sequencial / aleatório;
- 2) sequencial/sequencial; e
- 3) ótima/paralelo.

Armazenamento de Dados

FIM – Hierarquia e Disco