ADS Part 3 - Slides

1 Sorting

1.1 General lower bound for comparison based sorting

For any comparison based sorting algorithm \mathcal{A} and any $n \in \mathbb{N}$ large enough there exists an input of length n that requires \mathcal{A} to perform $\Omega(n \log n)$ comparisons

1.2 Bucket Sort

- How/why does it work
 - Puts elements with key i into the ith bucket, then empties one bucket after another
- What is the running time
 - Running time is O(n + k) so if k is small the running time is $o(n \log n)$
- What are the assumptions?
- Do they "beat" the lower bound
 - Yes as bucket sort doesn't do any comparisons

1.3 Radix Sort

- How/why does it work
 - Like bucket sort, but looks at values "one level below", reduces number of buckets needed
- What is the running time
 - $-\Theta(d \cdot n)$ or $\Theta(n \cdot \log K)$
- What are the assumptions
- Does it "beat" the lower bound
 - Yes, doesn't do comparisons

2 Binary Search

- What does it do
 - Finds an element in a sorted list
- How does it work
 - Looks at the median, if the element is smaller, look at the left sublist, if bigger the right, recursively call on sublists until the median is the element you want
- How long does it take
 - $-O(\log n)$
- How is it analysed
 - $T(n) = T(n/2) + O(1) = O(\log n)$

3 Selection

3.1 QuickSelect

- What does it do
 - Finds an element in an unsorted list
- How does it work
 - Same as quicksort, choosing a pivot
 - Sublists discounted if they are known to not include the element to be found (either bigger/smaller than the pivot)
- How long does it take
 - In worst case $\Theta(n^2)$
 - Choose a random pivot and it will have the expectation of taking O(n)
- How is it analysed

$$-T(n) = T(n-1) + O(n) \Rightarrow T(n) = \Theta(n^2)$$

3.2 Median-of-Medians

- What does it do
 - Search for an element in an unsorted list
- How does it work
 - 0. If length(A) \leq 5 then sort and return ith smallest
 - 1. Divide n elements into $\lfloor n/5 \rfloor$ groups of 5 elements each, plus at most one group containing the remaining $n \mod 5$ elements
 - 2. Find median of each of the $\lceil n/5 \rceil$ groups by sorting each one, and then picking median from sorted group elements
 - 3. Call select recursively on set of $\lceil n/5 \rceil$ medians found above, giving median-of-medians, x
 - 4. Partition entire input around x. Let k be # of elements on low side plus one (simply count after partitioning)
 - x is the kth smallest element
 - there are n-k elements on high side of partition
 - 5. if i=k, return x. Otherwise use **select** recursively to find ith smallest element on low side if i < k, or (i-k)th smallest on high side if i > k
- How long does it take
 - -O(n)
- How is is analysed
 - This is horrible

3.3 Comparison

- QuickSelect is singly recursive, so less work in each iteration than Median of Medians
- QuickSelect can have more iterations than Median of Medians
- QuickSelect used when bad behaviour is tolerable if undesirable
- Median of Medians is used when guaranteed good behaviour is needed

4 Binary Search Trees

- What are they
 - * No node has more than two children
 - * A tree
- Properties
 - * All elements in left sub tree "smaller" than v
 - * All elements in right sub tree "bigger" than v
- Standard Operations
 - * Insertion
 - · Insert at the root
 - · Keep going down the tree until the correct location has been found
 - * Search
 - · Call at the root
 - · If want smaller, go left
 - · Otherwise, go right
 - * Deletion
 - · If a leaf, remove it
 - · If it has one child remove and replace with the child
 - · If two children
 - · Find smallest node v that's bigger
 - · Copy v's data into u
 - · Delete v
- Problems

5 RedBlack Trees

- What's the point
 - Ensure that a BST is balanced
 - All BST operations are O(h), where h is the height of the tree, so want to keep that as small as possible
- What are they
 - Every node is either red or black
 - The root is black
 - Every leaf (NULL) is black
 - Red nodes have black children
 - For all nodes, all paths from node to descendant leaves contain the same number of black nodes
- Key property
 - A red-black tree with n internal nodes has height at most $2 \log(n + 1)$

6 Heaps

- What are they
 - Trees typically assumed to be stored in a flat array
- Min-heap vs max-heap
 - MaxHeap For all nodes v in the tree v.parent.data >= v.data
 - MinHeap For all nodes v in the tree v.parent.data <= v.data</p>
- Heap Property

- A[v.parent.index]¿= A[v.index]
- Representation tree vs array
 - The root is in A[1]
 - parent(i)=A[i/2] integer division, rounds down
 - left(i)=A[2i]
 - right(i)=A[2i+1]
- Heapify (why? how? how long?)
 - Maintains heap property
 - Starting at the root, identify largest current node v and its children
 - Suppose largest element is in w
 - if $w \neq v$
 - * Swap A[w] and A[v]
 - * Recurse into w (contains now what root contained previously)
 - Runs linear in height of tree $O(\log n)$
- BuildHeap (why? how? how long?)
 - Initially build heap
 - Call heapify on all nodes
 - Runs in O(n)
- HeapSort (why? how? how long?)
 - Call buildheap on unsorted data
 - Repeatedly call HeapExtractMin until empty
 - Runs in time $O(n) + n \cdot O(\log n) = O(n \log n)$

7 Lower bounds

- What's the point
 - Can know when an algorithm optimally solves a problem
- Decision trees
 - What are they?
 - * A full binary tree
 - * Represents comparisons between elements performed by particular algorithm run on particular (size of) input
 - Proof for comparison based sorting
 - * Sufficient to determine minimum height of a decision tree in which each permutation appears as a leaf
 - * Consider decision tree of height h with ℓ leaves corresponding to a comparison sort on n elements
 - * Each of the n! permutations of input appears as some leaf: $\ell \ge n!$
 - * Binary tree of height h has at most 2^h leaves $\ell \leq 2^h$
 - * Together $n! \leq \ell \leq 2^h$
- Adversaries
 - What are they
 - * A second algorithm intercepting access to input
 - * Gives answers so that there's always a consistent input
 - * Tries to make original algorithm delay a decision by dynamically constructing a bad input for it

* Doesn't know what original algorithm will do in the future, must work for any original algorithm

- Proof for finding max
 - * After $\leq n 2$ comparisons, ≥ 2 elements never lost (a comp)
 - · Adversary can make any of them max and be consistent
 - · Not enough information for algorithm to make a decision
 - * Hence algorithm needs to make at least n-1 comparisons