CS-683 project presentation

Replacement policy using Machine Designing a Cost-Effective Cache learning

Team: Paradox Bits

Priyanshu Gupta 210070064@iitb.ac.in

Priyansh Jain 210070063@iitb.ac.in

Chinmay Jadhay 210020057@iitb.ac.in

introduction

work in progress

technicalities

about RLR policy

to do

\sim

introduction

- What this project is all about???
- →To design a robust and costeffective cache —replacement policy.
- How ??
- →By training a Learning Agent using MLP, by rewarding decisions close to Belady.
- →By observing MLP weights, the replacement policy is designed.

4

work in progress...

- Implementation of RLR policy in champSim for shared LLC cache.
- Finding benchmarks with a varied range of LLC MPKI values.
- Making tracefiles compatible to train the learning agent in python based cache simulator.

technicalities

BENCHMARKS CURRENTLY BEING USED:

459.GemsFDTD,

403.gcc,

429.mcf,

450.soplex,

470.lbm,

437.leslie3d,

471.omnetpp,

483.xalancbmk

FEATURES USED TO TRAIN MLP:

Feature	offset	preuse	access type	set number	set accesses	set accesses since miss	offset	dirty	preuse	age since insertion	age since last access	last access type	LD access count	RFO access count	PF access count	WB access count	hits since insertion	recency
---------	--------	--------	-------------	------------	--------------	-------------------------	--------	-------	--------	---------------------	-----------------------	------------------	-----------------	------------------	-----------------	-----------------	----------------------	---------

about RLR policy...

- cache lines. Cache lines with based on preuse distance of o reuse distance is predicted distance are protected. age less than predicted
- decision is made, the cache lines in the set are assigned o When a replacement priority levels.
- line with the lowest priority o On a cache miss, the cache will be evicted.

Demand hits-based Priority P_{pf} - Prefetch Priority P_{wb} - Writeback Priority P_{Id} - Load Priority P_{ro} - RFO Priority

HIT REGISTER - 1 if cache line was hit at least once, 0 otherwise AGE COUNTER - Set accesses since last access to the cache line

- Pa Age priority P_h - Hit priority
- $P_t Type priority (P_{ld} = P_{rfo} = P_{wb} = 1, P_{pf} = 0)$

things to do...

- Finishing off the work in progress.
- Implementing Deep
 Reinforcement Learning and
 matching our insights with
 the RLR replacement policy.
- If time permits, making modifications to RL model for better results.

thank you