Tópicos de Matemática Discreta

exame de recurso — 6 de fevereiro de 2015 — duração: 2 horas — — — —

- 1. Diga, justificando, se cada uma das seguintes afirmações é verdadeira:
 - (a) As fórmulas proposicionais $\neg(\neg p_0 \to p_1)$ e $\neg p_0 \land \neg p_1$ são logicamente equivalentes.
 - (b) Para quaisquer proposições p e q, para provar que $p \lor q$ é verdadeira, basta provar que se p é falsa, então q é verdadeira.
- 2. Considere os conjuntos $A = \{2, \{1, 2\}\}$ e $B = \{2n \mid n \in \mathbb{N} \land n^2 < 5\}$. Justificando,
 - (a) determine $A \times B$;
 - (b) determine $\mathcal{P}(A \setminus B)$.
- 3. (a) Dê um exemplo de conjuntos A, B e C tais que $A \cup C \subseteq B \cup C$ e $A \not\subseteq B$. Justifique.
 - (b) Prove que, para quaisquer conjuntos $A, B \in C$, se $A \subseteq B$, então $A \cup C \subseteq B \cup C$.
- 4. Prove, por indução nos naturais, que $2^n \ge 2n$, para todo $n \in \mathbb{N}$.
- 5. Considere a função $f: \mathbb{Z} \to \mathbb{Z}$ definida da seguinte forma

$$f(n) = \left\{ \begin{array}{ll} n^2 |n| & \text{se} \quad -3 \le n \le 3 \\ n & \text{se} \quad n < -3 \quad \text{ou} \quad n > 3 \end{array} \right. .$$

- (a) Indique, sem justificar, $f(n \in \mathbb{Z} \mid n \ge 2)$ e $f^{\leftarrow}(\{8\})$.
- (b) Diga, justificando, se f é sobrejetiva.
- 6. Seja R a relação de equivalência em $A=\{-1,0,1,2,3,4\}$ definida por: xRy se e só se |x-2|=|y-2|, para quaisquer $x,y\in A$.
 - (a) Indique, sem justificar, $[1]_R$ e A/R.
 - (b) Mostre que, de facto, R é uma relação transitiva.
- 7. Sejam $A = \{a, b, c, d, e\}$ e $X = \{c, e\}$. Considere o c.p.o. (A, \leq) em que

$$\leq = \{(a, a), (b, a), (b, b), (b, c), (b, e), (c, a), (c, c), (c, e), (d, d), (e, e)\}.$$

- (a) Represente o c.p.o. (A, \leq) através de um diagrama de Hasse.
- (b) Indique, sem justificar, o conjunto dos minorantes de X.
- (c) Dê exemplo, caso exista, de um subconjunto próprio Y de A tal que (Y, \leq) não seja um reticulado. Justifique a sua resposta.
- 8. Seja G = (V, E) um grafo que admite

$$A = \left[\begin{array}{cccccc} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{array} \right]$$

como matriz de incidência.

- (a) Desenhe G.
- (b) Indique, sem justificar, o grau de cada um dos vértices de G.
- (c) Diga, justificando, se a afirmação "G é uma árvore" é verdadeira.

Cotações	1.	2.	3.	4.	5.	6.	7.	8.
	1,75+1,75	1 +1	1,5 + 1,5	1,75	1+1	1,25+1	1+0.75+1	1+0.75+1