CODIFICACION DE MODULOS DE SOFTWARE SEGÚN REQUERIMIENTOS DEL PROYECTO

GA7-220501096-AA2-EV01

PRESENTADO POR:

Sergio Andrés Palomino Silva.

PRESENTADO A:

Milton Iván Barbosa Gaona.

Tecnólogo en Análisis y Desarrollo de Software.

No. De ficha: 2977481

Centro de la Tecnología del Diseño y la Productividad Empresarial.

16 de septiembre de 2025

TABLA DE CONTENIDO

Introducción	3
Objetivos	4
Informe técnico del plan de trabajo para construcción del software	6
TABLA DE IMÁGENES	
Diagrama de casos de uso del proyecto de software	5
Diagrama de clases del proyecto de software	5

INTRODUCCION

Realizaremos la codificación a partir del programa o lenguaje seleccionado que incluya nombramiento de variable, clases, método y funciones... además, la instalación de paquetes (pip), conexión a la base de datos, realización CRUD (INSERCION, ACTUALIZAR, ELIMINAR Y CONSULTAR) la base de datos.

Herramientas para utilizar:

- MySQL Worbench (DB)
- Visual Studio Code
- Extensión Python

Variables

Las variables son datos con nombre cuyos valores cambian durante la ejecución del programa, los nombres de las variables deben seguir las convenciones de PEP8.

➤ Clases

Las clases proporcionan una manera de agrupar datos y funcionalidades. Al crear una nueva clase crea un objeto de un nuevo tipo y le permite crear nuevas instancias de ese tipo también se puede adjuntar atributos a cada instancia de clase para mantener su estado.

Métodos

Los métodos pueden hacer referencia a nombres globales de la misma manera que las funciones generales. El alcance global asociado con un método es el módulo que contiene su definición.

Functiones

Las funciones te permiten definir bloques de código reutilizables y estas pueden ejecutarse varias veces dentro de un programa.

OBJETIVOS

Objetivo general:

Elaborar por medio de diversos aplicativos la codificación de los módulos del proyecto de software.

Objetivos específicos:

- Instalar y configurar el paquete de mysql installer 8.0.
- Elaborar las tablas (módulos) en la BD de Workbench.
- Codificar los módulos en netbeans.
- Realizar el código que permita la conexión entre Workbench y netbeans.

1. Diagrama de casos de uso del proyecto de software:

Diagrama 1 Casos de uso Triage

Nota: Diagrama creado por Sergio Andrés Palomino Silva.

2. Diagrama de clases del proyecto de software:

Diagrama 2 Diagrama de clases sistema Triage

Nota: Diagrama creado por Sergio Andrés Palomino Silva.

3. INFORME TECNICO DE PLAN DE TRABAJO PARA CONSTRUCCION DE SOFTWARE

3.1 Control de Versiones Centralizado

3.1.1 Subversión (SVN)

Descripción: Subversión es un sistema de control de versiones centralizado ampliamente utilizado. Permite rastrear cambios en archivos y directorios a través de un servidor central, lo que facilita la colaboración.

Ventajas:

- Soporte para versionamiento de directorios completos.
- Seguimiento de cambios en binarios.
- Acceso a revisiones anteriores.

Desventajas:

- Requiere conexión constante al servidor central.
- Menos eficiente en la gestión de ramas.

3.2 Control de Versiones Distribuido

3.2.1 Git

Descripción: Git es un sistema de control de versiones distribuido ampliamente utilizado. Cada desarrollador tiene una copia completa del repositorio, lo que permite un trabajo sin conexión y una gestión eficiente de ramas.

Ventajas:

- Alta velocidad y eficiencia.
- Facilita la colaboración y la gestión de ramas.
- Ampliamente adoptado en la industria.

Desventajas:

- Curva de aprendizaje pronunciada para principiantes.
- No es ideal para gestionar grandes archivos binarios.

4. Plataformas de Hospedaje de Repositorios

4.1 GitHub

Descripción: GitHub es una plataforma de desarrollo colaborativo que utiliza Git como sistema de control de versiones. Ofrece características como seguimiento de problemas, solicitudes de extracción y una amplia comunidad de desarrolladores.

Ventajas:

- Facilita la colaboración entre equipos.
- Integración con numerosas herramientas y servicios.
- Amplia comunidad y recursaos de aprendizaje.

Desventajas:

• Algunas funciones avanzadas requieren una suscripción de pago.

4.2 GitLab

Descripción: GitLab es una plataforma similar a GitHub que proporciona una gestión completa de ciclo de vida del desarrollo de software. Puede ejecutarse en servidores propios o en la nube.

Ventajas:

- Ofrece opciones tanto en la nube como en instalaciones locales.
- Gestión de CI/CD integrada.
- Herramientas de gestión de proyectos y seguridad.

Desventajas:

- Menos usuarios y proyectos en comparación con GitHub.
- 5. Control de Versiones para Datos

5.1 DVC (Data Version Control)

Descripción: DVC es una herramienta de control de versiones diseñada específicamente para datos y modelos de aprendizaje automático. Permite rastrear cambios en archivos de datos y modelos de manera eficiente.

Ventajas:

- Gestión de datos y modelos de manera eficiente.
- Integración con sistemas de almacenamiento en la nube.
- Control de versiones sin duplicidad de datos.

Desventajas:

• Enfoque específico para proyectos de datos y ML.

CONCLUSIONES

SVN y Git tienen sus propias ventajas y desventajas en función de las necesidades del proyecto. GitHub y GitLab facilitan la colaboración y la gestión de desarrollo de software, pero la elección depende de las necesidades específicas del equipo.

La codificación de los módulos es fundamental para el desarrollo del proyecto de software y poder culminar el proyecto de la mejor manera.