Вероятностные алгоритмы тематического моделирования документов: Probabilistic Latent Semantic Analysis и Latent Dirichlet Allocation

УЧЕБНЫЙ КУРС "ТЕОРИЯ БАЙЕСОВСКИХ СЕТЕЙ"

Презентацию подготовил: Погорелов Петр Глебович, магистр математико-механического факультета СПбГУ

План

- Сформулировать постановку задачи тематического моделирования,
- сформулировать описание модели Probabilistic Latent Semantic Analysis, привести пример использования,
- сформулировать описание модели Latent Dirichlet Allocation, привести пример использования.

Задача тематического моделирования

Тематическое моделирование — одна из задач обработки естественных языков (NLP) без учителя, очень близкая к идее мягкой кластеризации.

Модели тематического моделирования

ESM

LSA

• • •

Не вероятностные модели (факторизация, information retrieval..) **PLSA**

LDA

ARTM

Вероятностные модели

Модель PLSA

Модель PLSA (общий вид)

В модели фигурируют 3 величины:

- $d \in D$ документ из корпуса D (величины)
- $w \in W$ слово из словаря W (величины)
- $z \in Z$ тематика из набора тематик Z (величины)

$$P\{d,w\} = \sum_{z}^{Z} P\{z\}P\{d \mid z\}P\{w \mid z\} = P\{d\} \sum_{z}^{Z} P\{z \mid d\}P\{w \mid z\}.$$

Модель PLSA (процесс порождения документов)

$$P\{d, w, z\} = P\{d\}P\{z \mid d\}P\{w \mid z\}$$

- Выбираем документ d_k с вероятностью $P\{d\}$,
- генерируем слово w_i для документа d , i=1..|W|:
 - выбираем тематику $z_i \sim p(z \mid d_k)$ мульт-е р-е.
 - ullet выбираем слово $w_i \sim p(w \mid z_i)$ мульт-е р-е.

Модель PLSA (пример использования)

Исходная информация об эксперименте:

- набор данных: 20 Nesgroups Dataset,
- документы взяты из категорий: религия, разработка под Windows,
- количество тем: 2
- количество документов: 1192

```
topic_0god edu can one will re people subject lines jesustopic_1com edu window can subject lines file organization use mit
```

Модель PLSA (недостатки)

Оцениваемые параметры в модели LDA — это матрицы вероятностей $P\{z \mid d\}$ и $P\{w \mid z\}$, общее число параметров: |Z|*(|W|+|D|). Их число линейно увеличивается при росте выборки. Более того, модель становится непригодной для новых данных.

Модель LDA

Модель LDA

Недостаток PLSA модели — большое количество параметров для оценки, что может привести к оверфиттингу. Эта проблема решается в подходе LDA, где число параметров = |Z|*(|W|+1).

Так же, модель отвязывается от понятия "документ" как некоторой самостоятельной единицы данных. Под документом теперь подразумевается некоторый набор слов.

Модель LDA (тематики слов распределы мультиномиально)

Модель LDA (тематики слов имеют сопряженное априорное распределение Дирихле)

Модель LDA (генеративный процесс)

$$P\{w,z,\theta\} = P\{\theta | \alpha\} \prod_{n=1}^{N} p(z_n | \theta) p(w_n | z_n, \beta)$$

- выбираем длину документа *N*
- генерируем вектор вероятностей $\theta \sim Dir(\alpha)$
- ullet генерируем слова для документа длины N :
 - выбираем тематику $z_i \sim Multinomial(\theta)$
 - выбираем слово $w_i \sim Multinomial(\beta_{Z_i})$

Модель LDA (пример использования)

Исходная информация об эксперименте:

- набор данных: 20 Nesgroups Dataset,
- документы взяты из категорий: религия, разработка под Windows,
- количество тем: 2
- количество документов: 1192

```
topic_0
        god
             edu can
                                        people
                                                subject
                                                                 re jesus
                                   will
                                                                           lines
                           one
topic_1
       edu com can window subject
                                          lines
                                                   file
                                                        organization
                                                                            mit
                                                                      use
```

Спасибо за внимание!