RSA Encryption

RSA

- Most popular function in public key cryptography
 - Invented in 1977 by Rivest, Shamir, and Adleman
 - Widely used in internet protocol like TLS, PKI

Textbook RSA scheme

- Three Algorithms (Gen, Enc, Dec)
 - Gen: on input a security parameter λ .
 - Generate two distinct primes p and q of same bit-size λ
 - Compute N = pq and $\phi(N) = (p-1)(q-1)$
 - Choose at random an integer e $(1 < e < \phi(N))$ such that $\gcd(e, \phi(N)) = 1$
 - Let $\mathbb{Z}_{N}^{*} = \{x \mid 0 < x < N \text{ and } gcd(x,N)=1\}$
 - Compute d such that $e \cdot d \equiv 1 \pmod{\phi(N)}$
 - Public key PK = (e, N). The private key SK = e, d, N

Textbook RSA scheme

- Enc(PK, m): On input an element $m \in \mathbb{Z}_N^*$ and the public key PK = (e, N) compute
 - $c = m^e \pmod{N}$

- Dec(SK, c): On input an element $c \in \mathbb{Z}_N^*$ and the private key SK = (e, d, N) compute
 - $m = c^d \pmod{N}$

Example

Generate two distinct primes p and q of same bit-size λ

Compute
$$N = pq$$
 and $\phi(N) = (p-1)(q-1)$

Choose at random an integer e $(1 < e < \phi(N))$ such that $\gcd(e, \phi(N)) = 1$

Compute d such that $e \cdot d \equiv 1 \pmod{\phi(N)}$

Public key PK = (e, N). The private key SK = e, d, N

•
$$p = 3$$
, $q = 11$

•
$$N = 33$$
, $\phi(N) = 2 \cdot 10 = 20$

• Let
$$e = 7$$

• Note
$$gcd(7,20) = 1$$

• We find
$$d = 3$$
 as $7 \cdot 3 + (-1) \cdot 20 = 1$

•
$$PK = (e = 7, N = 33)$$

•
$$SK = (e = 7, d = 3, N = 33)$$

Example

- Enc(PK, m): On input an element $m \in \mathbb{Z}_N^*$ and the public key PK = (e, N) compute
 - $c = m^e \pmod{N}$

- Dec(SK, c): On input an element $c \in \mathbb{Z}_N^*$ and the private key SK = (e, d, N) compute
 - $m = c^d \pmod{N}$

- $\mathbb{Z}_N^* = \{1,2,4,5,7,8,10,13,14,16,17,19,20,23,25,26,28,29,31,32\}$
- Let m = 4
- $c = m^e \pmod{N} = 4^7 \pmod{33} = 16 \pmod{33}$
- We recover $m = c^d \pmod{N}$
 - $m = c^d \pmod{N} = 16^3 \pmod{33} = 4 \pmod{33}$