CS370 Operating Systems

Colorado State University Yashwant K Malaiya Fall 2016

Slides based on

- Text by Silberschatz, Galvin, Gagne
- Various sources

What do these terms mean?

- Operating Systems
- Virtual
- Concurrent

Topics covered in this lecture

- Course Overview
- Expectations
- Introduction

Course webpage

- All course materials will be on
 - the course webpage

http://www.cs.colostate.edu/~cs370

- canvas
- Schedule
- Lectures
- Assignments
- Announcements
- Grades will be posted on Canvas
- The course website and canvas are live now

Contacting us

Instructor

Yashwant Malaiya

Computer Science (CSB 364)

Office Hours: 1-2 PM Monday, 3-4 PM Thursday

GTA

Rejina Basnet

Office Hours in CSB 120: TBA, TBA

- UTAs: Leon Ang Li, Sam Maxwell
- All e-mail should be sent to cs370@cs.colostate.edu
- The subject should start as CS370: ...

Topics we will cover in CS 370

- Processes and Threads
- CPU Scheduling
- Process Synchronization and Deadlocks
- Memory Management
- File System interface and management
- Storage Management
- Virtualization

Textbook

- Operating Systems Concepts, 9th edition
 Avi Silberschatz, Peter Galvin, and Greg Gagne
 Publisher John Wiley & Sons, Inc.
 (The Dinosaur Book)
- May also use materials from other sources including
 - Andrew S Tanenbaum, Modern Operating Systems
 - Thomas Anderson and Michael Dahlin, Operating Systems
 Principles & Practice
 - S. Pallikara, R. Wakefield
 - Other sources

On the schedule page

- Topics that will be covered and the order in they will be covered
- Readings -chapters that I will cover
- May also see chapters mentions of other resources besides the textbook
- Schedule for when the assignments will be posted and when they are due
 - Subject to dynamic adjustment

Grading breakdown

- Assignments: 30%
- Programming & written
- Quizzes 10%
 - On-line, in-class
- Mid Term: 20%
- Project: 15%
- Final exam: 25%

Grading Policy I

 Letter grades will be based on the following standard breakpoints:

```
>= 90 is an A, >= 88 is an A-,
>=86 is a B+, >=80 is a B, >=78 is a B-,
>=76 is a C+, >=70 is a C,
>=60 is a D, and <60 is an F.
```

- I will not cut higher than this, but I may cut lower.
- There will be no make-up exams
 - Except for documented
 - required university event
 - acceptable family or medical emergency

Grading Policy II

- Plan: Every assignment will be posted about 2 weeks before the due date.
 - Every assignment will include information about how much it will count towards the course grade, and how it will be graded.
- Late submission penalty: 10%/day for the first 2 days and a ZERO thereafter.
- Detailed submission instructions posted on course website.
- Plan: Assignments will be graded within 2 weeks of submission

What will Quizzes and Tests include?

- I will only ask questions about what I teach or ask you to study
 - If I didn't teach it, I won't ask from that portion
- If the concepts were covered in my lectures/slides/assignments
 - You should be able to answer the questions
- I will try to avoid questions about arcane aspects of some esoteric device controller

Exams

- One mid-term (20%)
- The final exam is comprehensive, but more emphasis on the later part (25%)
- There will be 10-12 quizzes (in class or online) (10%)
 - we may convert some homework into on-line quizzes
- Programming/ writen assignments
 - 30% of your course grade
- If you walk into class more than 20 minutes late, there is an automatic 75% deduction on the quiz score.

Term paper and poster session

- Group based
 - Logistics to be determined
- A poster session where you will describe your work
- The term paper is a group assignment
 - More details later
- Tentative topics (to be determined later)
 - Multi-core Architectures
 - Reliability/Security
 - **—** ?

Electronic devices in lecture room

- Permitted only in the last row, with the pledge that you will
 - not distract others
 - use it only for class related use
 - turn off wireless

Be kind to everyone

- You will be courteous to fellow students, instructor and teaching assistants
 - Classroom, outside, discussion board
- Do not distract your peers
 - No chatting
 - No eating
 - No cellphone use

Help me help you

- Surveys at the end of a class
- You will provide a list of
 - 2 concepts you followed clearly
 - 2 concepts you had problems keeping up
 - Problem areas for the majority of the class will be addressed in the next class

ABOUT ME

Research

- Computer security
 - Vulnerability discovery
 - Risk evaluation
 - Impact of security breaches
 - Vulnerability markets
- Hardware and software
 - Testing & test effectiveness
 - Reliability and fault tolerance
- Results have been used by industry, researchers and educators

About me

Teaching

- Computer Organization (CS270)
- Computer Architecture (CS470)
- Operating systems (CS370)
- Fault tolerant computing (CS530)

Professional

- Organized international conferences on Microarchitecture,
 VLSI Design, Testing, Software Reliability
- Computer Science Accreditation: national & international
- Professional lectures

EXPECTATIONS

- You are expected to attend all classes
- Assignments have to be done individually
- Expect to work at least 6-8 hours per week outside of class
 - Coding and reviewing material from class
- If you miss a lecture?
 - Add about 3 hours per missed lecture

Expert view on How to fail this class?

- Believing that you can learn via osmosis
- Missing lectures
 - "If you don't have the discipline to show up, you will most likely not have the discipline to catch up"
 - Procrastinating
 - Get started on the assignments early

Interactions

- You ca have discussions with me, the GTA, UTAs, and your peers
- But note
 - No code can be exchanged under any circumstances
 - No one takes over someone else's keyboard
 - No code may be copied and pasted from anywhere, unless provided by us
- Bumps are to be expected along the way
 - But you should get over this yourself
 - It will help you with the next problem you encounter

Operator ...

Switchboard Operator

©UCB

Computer Operators

Technology Trends: Moore's Law

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful.

Colorado State University

Computer Performance Over Time

	1981	1997	2014	Factor (2014/1981)
Uniprocessor speed (MIPS)	1	200	2500	2.5K
CPUs per computer	1	1	10+	10+
Processor MIPS/\$	\$100K	\$25	\$0.20	500K
DRAM Capacity (MiB)/\$	0.002	2	1K	500K
Disk Capacity (GiB)/\$	0.003	7	25K	10M
Home Internet	300 bps	256 Kbps	20 Mbps	100K
Machine room network	10 Mbps (shared)	100 Mbps (switched)	10 Gbps (switched)	1000
Ratio of users to computers	100:1	1:1	1:several	100+

Anderson Dahlin 2014

People-to-Computer Ratio Over Time

- Today: Multiple CPUs/person!
 - Approaching 100s?

Storage Capacity

Retail hard disk capacity in GB

(source: http://www.digitaltonto.com/2011/our-emergent-digital-future/State University

What is an Operating System?

What is an Operating System?

Referee

- Manage sharing of resources, Protection, Isolation
 - Resource allocation, isolation, communication
- Illusionist
 - Provide clean, easy to use abstractions of physical resources
 - Infinite memory, dedicated machine
 - Higher level objects: files, users, messages
 - Masking limitations, virtualization

- Storage, Window system, Networking
- Sharing, Authorization
- Look and feel

A Modern processor: SandyBridge

- Package: LGA 1155
 - 1155 pins
 - 95W design envelope
- Cache:
 - L1: 32K Inst, 32K Data (3 clock access)
 - L2: 256K (8 clock access)
 - Shared L3: 3MB 20MB (not out yet)

- Transistor count:
 - 504 Million (2 cores, 3MB L3)
 - 2.27 Billion (8 cores, 20MB L3)
- Note that ring bus is on high metal layers above the Shared L3 Cache

Functionality comes with

