CS553: Cryptography

Assignment 6: Solutions

Rohit Das (11910230)

November 6, 2019

1. Linear Approximation Table

Python code (Python 3): LAT s-box.py

```
from functools import reduce
from operator import xor
import numpy as np
sbox = \{0x0: 0x5, 0x1: 0x4, 0x2: 0xd, 0x3: 0x1, 0x4: 0x2,
       0x5: 0xf, 0x6: 0x6, 0x7: 0x0, 0x8: 0x8, 0x9: 0xc,
       0xa: 0xb, 0xb: 0x9, 0xc: 0x7, 0xd: 0xe, 0xe: 0xa,
       0xf: 0x3
def lat(sbox):
    lst1 = [format(i, 'x') for i, j in sbox.items()]
    \mathbf{print}("in \setminus out \mid ", ("\{:>3\}"*len(lst1[1:])).format(*lst1[1:]))
    print ( '-' *56)
    lat dict = \{\} \# to store count for each mask \}
    for alpha in range (1,16):
        for beta in range (1,16):
             lat dict[beta] = 0
             for x, sx in sbox.items():
                 x_arr = np.array([int(i) for i in # x . alpha)]
                          list('{:04b}'.format(x & alpha, 'b'))])
                 sx_arr = np.array([int(i)] for i in # sx . beta
                          list('{:04b}'.format(sx & beta, 'b'))])
                 if reduce(xor,x_arr) = reduce(xor,sx_arr):
                     lat dict[beta] += 1
```

lat(sbox)

$in \backslash out$	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
1		-2	-2		4	-2	2	•	•	-2	-2	-4		2	-2
2	2	•	2	-4	2		-2	•	-2		-2		2	-4	-2
3	-2	2		4	2	2		4	-2	-2			2	-2	
4	-2	6			-2	-2		-2			-2	-2			-2
5	-2		2		2		6	-2		2		2		-2	
6	4	2	2			-2	2	2	-2			-2	-2		4
7			-4			4		-2	-2	2	-2	-2	-2	-2	2
8		2	-2	-2	2			4	4	2	-2	2	-2		
9			-4	-2	-2	-2	2			-4		2	2	-2	2
a	-2	-2		2		-4	-2		2	2		-2		-4	2
b	2		-2	2		-2			-2	4	-2	2	4	2	
c	-2		-2	-2		-2		2	-4	2	4		-2		-2
d	-2	2		-2	4		-2	-2			2		2	2	4
e				-2	-2	2	2	2	2	2	2	-4	4		
f	-4	-2	2	-2	-2			2	-2 T. 1		-4			2	2

Linear Approximation Table

The LAT above is generated for the S-box given below:

x	0	1	2	3	4	5	6	7	8	9	a	b	c	d	е	f
S(x)	5	4	d	1	2	f	6	0	8	c	b	9	7	e	a	3

From the LAT generated, we can see that the characteristics $4 \xrightarrow{S} 2$ and $5 \xrightarrow{S} 7$ will have the highest probability of producing a linear approximation of the above Sbox with $p = \frac{1}{2} + \frac{6}{16}$.

2. Bi-directional LC of Sypher00C

```
16-bit key used = (6||f||e||c)
Python code (Python 3): LC_Sypher00C.py
```

```
from functools import reduce
from operator import xor
import numpy as np
sbox1 = \{0x0: 0xf, 0x1: 0xe, 0x2: 0xb, 0x3: 0xc, 0x4: 0x6,
        0x5: 0xd, 0x6: 0x7, 0x7: 0x8, 0x8: 0x0, 0x9: 0x3,
        0xa: 0x9, 0xb: 0xa, 0xc: 0x4, 0xd: 0x2, 0xe: 0x1,
        0xf: 0x5
keys = list('6fec') \# generated using opensal rand -hex 2
\mathrm{mask} = \mathrm{int}(\mathrm{'d'}, 16) \ \# \ mask \ d \ has \ highest \ bias
\mathbf{def} \operatorname{sbox}(p):
     if format(p, 'x') not in [format(i, 'x') for i in sbox1]:
         exit ("Invalid literal")
    return sbox1|p|
```

```
def sbox inv(c):
     for i, j in sbox1.items():
          if c = int(format(j, 'x'), 16):
               return int (format (i, 'x'), 16)
def Sypher00C(p,n):
     for i in range(n):
         p = sbox(p \hat{int}(keys[i], 16))
    return p \hat{} int (keys [-1],16)
def lin_crypt_k3():
    sum = [0]*16
    \mathbf{print}\,(\,{}^{\boldsymbol{\mu}}\mathbf{k}3\,=^{\boldsymbol{\mu}}\,,\mathrm{keys}\,[\,-1]\,)
     frmt = "{:>3}"*len(sum)
     print("Guesses", frmt.format(*[format(i, 'x')])
                                        for i in range (16)]))
     for p in range (16):
          c = Sypher00C(p,3)
          lst = []
          for k in range (16):
              y_{-} = sbox_inv(c^k)
              \# mask \& p and then changing to binary list
              p_{\underline{}} = np.array([int(i)])
                    for i in list('{:04b}'.format(p & mask, 'b'))])
              \# mask \& y' and then changing to binary list
              c_{-} = np.array([int(i)])
```

```
for i in list('{:04b}'.format(y_ & mask, 'b'))])
              \# (d.m) \ xor \ (d.y')
              xored = reduce(xor, p_) ^ reduce(xor, c_)
              lst.append(xored)
         sum = [i+j \text{ for } i, j \text{ in } zip(lst, sum)]
         print((format(p, 'x')+'-'+format(c, 'x')).ljust(5),
                 '| '.rjust(1), frmt.format(*lst))
    print ("T0----> ", frmt.format(*[16-i for i in sum]))
    print ("T1----> ", frmt.format (*sum))
    candidates = [i for i, j in enumerate(sum) if j == max(sum)]
    \mathbf{or} \ \mathbf{j} = \mathbf{min}(\mathbf{sum})
    candidates.sort()
    \mathbf{print}("Candidate keys:",*[\mathbf{format}(i, 'x') \mathbf{for} i \mathbf{in})
            candidates], '\n')
def lin_crypt_k0():
    sum = [0]*16
    print ("k0 =", keys [0])
    frmt = "{:>3}"*len(sum)
    print("Guesses", frmt.format(*[format(i, 'x')
                                       for i in range (16)]))
    for p in range (16):
         c = Sypher00C(p,3)
         lst = []
```

```
for k in range (16):
              v_{-} = sbox(p \hat{k})
              \# mask \& m' and then changing to binary list
             p_{-} = np.array([int(i)])
                   for i in list ('{:04b}'.format(v_ & mask, 'b'))])
              \# mask \& c and then changing to binary list
              c = np.array([int(i)])
                   for i in list('{:04b}'.format(c & mask, 'b'))])
              \# (d.v') xor (d.c)
              xored = reduce(xor,p_) ^ reduce(xor,c_)
              lst.append(xored)
         sum = [i+j \text{ for } i, j \text{ in } zip(lst, sum)]
         print ((format(p, 'x')+'-'+format(c, 'x')).ljust(5),
                '| '. rjust(1), frmt. format(*lst))
    \mathbf{print} ("T0---> ", \mathbf{frmt}. \mathbf{format} (*[16-i for i in sum]))
    print ("T1----> ", frmt.format (*sum))
    candidates = [i \text{ for } i, j \text{ in enumerate(sum)} if j = \max(\text{sum})
    or j = \min(sum)
    candidates.sort()
    print("Candidate keys:",*[format(i, 'x') for i in
           candidates])
lin_crypt_k3()
lin crypt k0()
```

k_3 p-c	0	1	2	3	4	5	6	7	8	9	a	b	c	d	е	f
0-d	0	1	0	1	1	0	0	0	1	0	1	1	0	1	0	1
1-b	1	1	0	1	1	0	1	0	1	0	1	0	0	0	0	1
2-е	1	0	1	0	0	0	0	1	1	1	0	1	1	0	1	0
3-1	1	0	1	0	0	1	0	0	0	1	1	1	1	0	1	0
4-c	0	1	0	1	1	0	1	1	1	0	0	0	0	1	0	1
5-7	1	1	1	0	0	1	0	1	0	1	0	1	0	0	1	0
6-2	0	1	0	1	0	0	1	0	1	1	1	0	0	1	0	1
7-3	0	1	0	1	1	1	1	0	0	0	1	0	0	1	0	1
8-9	0	1	1	1	1	0	1	0	1	0	1	0	0	1	0	0
9-4	0	1	1	1	1	0	1	0	1	0	1	0	0	1	0	0
a-a	1	1	1	0	0	1	0	1	0	1	0	1	0	0	1	0
b-8	0	1	0	0	1	0	1	0	1	0	1	0	0	1	1	1
c-f	0	1	0	1	0	0	1	0	1	1	1	0	0	1	0	1
d-0	0	1	0	1	1	0	0	0	1	0	1	1	0	1	0	1
e-6	1	1	0	1	1	0	1	0	1	0	1	0	0	0	0	1
f-5	0	1	0	0	1	0	1	0	1	0	1	0	0	1	1	1
$\overline{\sum T_0}$	10	2	10	6	6	12	6	12	4	10	4	10	14	6	10	6
$\sum T_1$	6	14	6	10	10	4	10	4	12	6	12	6	2	10	6	10

The table generated for guesses of k_3 .

From the table for k_3 we can observe that the probable candidates for k_3 are $\{1,c\}$ as their T_0 and T_1 values are the most imbalanced.

k_0 p-c	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0-d	0	1	1	1	0	0	1	0	1	0	1	0	0	1	0	1
1-b	0	1	0	0	1	1	1	0	1	0	1	0	0	1	0	1
2-e	0	0	1	0	0	1	1	1	0	1	0	1	1	0	1	0
3-1	1	1	1	0	0	1	0	0	0	1	0	1	1	0	1	0
4-c	1	1	0	1	1	0	0	0	1	0	1	0	0	1	0	1
5-7	1	1	1	0	0	1	0	0	0	1	0	1	1	0	1	0
6-2	0	1	1	1	0	0	1	0	1	0	1	0	0	1	0	1
7-3	0	1	0	0	1	1	1	0	1	0	1	0	0	1	0	1
8-9	0	1	0	1	1	0	1	0	1	0	0	0	1	1	0	1
9-4	0	1	0	1	1	0	1	0	1	0	1	1	0	0	0	1
a-a	1	0	1	0	0	1	0	1	1	1	0	1	1	0	0	0
b-8	0	1	0	1	1	0	1	0	1	1	1	0	0	1	0	0
c-f	0	1	0	1	1	0	1	0	0	0	1	0	0	1	1	1
d-0	0	1	0	1	1	0	1	0	1	1	1	0	0	1	0	0
e-6	0	1	0	1	1	0	1	0	1	0	0	0	1	1	0	1
f-5	0	1	0	1	1	0	1	0	1	0	1	1	0	0	0	1
$\sum T_0$	12	2	10	6	6	10	4	14	4	10	6	10	10	6	12	6
$\sum T_1$	4	14	6	10	10	6	12	2	12	6	10	6	6	10	4	10

The table generated for guesses of k_0 .

From the table for k_0 we can observe that the probable candidates for k_0 are $\{1,7\}$ as their T_0 and T_1 values are the most imbalanced. The guess of $k_0 = 6$, which is the exact value, does not have the most imbalanced sum as SNR is low for smaller bits.

To find k_1 and k_2 , since we can verify k_0 and k_3 from the above candidates, the cipher will be reduced to Sypher00A. Then we can perform linear cryptanalysis on them using the characteristic $\alpha \xrightarrow{S} \beta = p$. We can reuse d as the mask for both since it has the highest bias as seen in the LAT.

3. State-Meant (AES)

Plaintext to work on: "ROHIT DAS". Padding scheme used: ANSIX9.23 The initial state is derived as follows (padding already in HEX):

R	Т	S	00		82	84	83	00		52	54	53	00
О		00	00	Replacing	79	32	00	00	HEX code	4F	20	00	00
Н	D	00	00	with ASCII	72	68	00	00	of ASCII	48	44	00	00
Ι	A	00	07		73	65	00	07		49	41	00	07

3..1 ShiftRows

After applying ShiftRows, the state is as follows:

3..2 SubBytes

After applying SubBytes, the state is as follows:

52	54	53	00		00	20	ED	63
20	00	00	4F	Substituting	В7	63	63	63
00	00	48	44	bytes from S-Box	63	63	52	1B
07	49	41	00		C5	3B	83	63