

Education evenings 2018

Practical introduction to groundwater modelling

Computer exercises
03 03 Solute transport simulation

Purpose

We will now use the same example model as in the last exercise, but instead of forward particle tracking, we will perform

✓ solute transport simulation accounting for advection, dispersion and diffusion.

Copy example model

- ✓ Copy the model "03-02_particletracking-rma-examplemodel.mmZLib" in folder "03-02_particle-tracking",
- ✓ to folder "03-03_solute-transportsimulation" and rename the copied file to "03-03_solute-transportsimulation.mmZLib".
- ✓ Double click the new file to open ModelMuse.

Enable MT3DMS packages

- ✓ Select Model | MODFLOW Packages and Programs...,
- expand MT3DMS or MT3D-USGS, and select the BTN, ADV, DSP, SSM, and GCG packages.
- ✓ Also fill in the Mobile Species name, e.g. "Cl".
- ✓ Then press **OK**,
- ✓ and once more OK, in the appearing information dialog box.

Set the MT3DMS program location

- ✓ Select Model | MODFLOW Program Locations..., and
- ✓ fill in the path to the MT3D-USGS
 executable "mt3d-usgs_64-bit.exe"
 or "*_32-bit.exe" (depending on
 your machine architecture) in folder
 "/05_software/mt3d-usgs/".
- ✓ Then press **OK**.

Check mass unit

- ✓ Select Model | MODFLOW Options...,
- ✓ go to the Options tab, and
- ✓ note that by default, the Mass unit is set to grams.
- ✓ Just leave the settings as they are,
- ✓ and press OK to close theMODFLOW Options dialog box.

Set dispersion and diffusion parameters

- ✓ Select Model | MODFLOW Layer Groups...,
- ✓ and go to the Dispersion tab.
- ✓ Leave the dispersivities unchanged, but adjust the **Diffusion coefficient** to 1E-9.
- ✓ Then click **OK**.

Set the source concentration

- Double click the disposal pond object and go to the MODFLOW Features tab in the Object Properties dialog box.
- ✓ Select the **SSM** package, and set the **Number of times** to 1.
- ✓ Set the **Starting time**, **Ending time**, and **Cl concentration** to respectively 0, 1E9, and 1000.
- ✓ Then press **OK**.

Change output frequency

- ✓ Select Model | MODFLOW Output Control...,
- ✓ and choose MT3DMS.
- ✓ Change When to print and save data to every N transport steps,
- ✓ and set **N** equal to 5.
- ✓ Then click **OK**.

Run MT3DMS

- ✓ First run MODFLOW again,
- ✓ then select File | Export |
 MT3DMS Input Files,
- ✓ and press Save in the SaveMT3DMS input files dialog box.
- ✓ After MT3DMS has finished, close the text and command line windows.

Import MT3DMS results (1/2)

- ✓ Select File | Import | Model Results,
- ✓ and choose the "_03_03_solute_transport_simula tion Cl.ucn" file.
- ✓ Then press **Open**.

Import MT3DMS results (2/2)

- ✓ In the Select Model Results to Import dialog box, select all data sets, and
- ✓ click **OK**.

This is what you should get

Animate MT3DMS contours (1/3)

- ✓ Go to the **Data Visualization** dialog box,
- ✓ and set the **Color Grid Data set** to none.
- Then go to **Contour Data** and
- select the first concentration Data set.
- ✓ Set the **Contour Interval** to 50, and click **Apply**.
- ✓ Then check **Specify contours**, click the **Edit contours** button and remove the 0 and 1000 contours.
- ✓ Finally, select Retain limits and legend, and press Apply again.

Animate MT3DMS contours (2/3)

- ✓ Next, move the grid to the left of the Top view pane.
- ✓ Select File | Export | Image, or use the corresponding button.

Animate MT3DMS contours (3/3)

- ✓ In the View pane, adjust the Model image height and Model image width, so the entire grid is visible.
- ✓ In the **Text** pane, add "Transport Step: %TrS Elapsed Time: %ET" as title.
- ✓ In the Animation pane, select Data Sets | Optional | Model Results | 3D Data,
- ✓ and press Preview.

This is what you should get

Education evenings 2018

Practical introduction to groundwater modelling

Computer exercises
03 03 Solute transport simulation

Questions? Found an error?
Please contact B. Rogiers at brogiers@sckcen.be.