Intégrales doubles

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Inte	égration sur un pavé	2
	1.1	Intégration de fonctions en escalier	2
	1.2	Intégration de fonctions continues	3
		1.2.1 Théorème d'approximation	3
		1.2.2 Définition et propriétés	
	1.3	Sommes de Darboux	
	1.4	Théorème de Fubini	
2	Fon	actions intégrables	7
	2.1	Fonctions bornées intégrables sur un rectangle	7
	2.2		
		2.2.1 Compacts élémentaires	
		2.2.2 Compacts simples	10
3	Cha	angements de variable	10
	3.1	Changements de variable affine	10
		3.1.1 Théorème (admis)	
	3.2	Changement de variable en coordonnées polaires	
4	Cor	nplément : intégrales triples	14
	4.1	Sur des pavés	14
	4.2	Sur une partie bornée	
	4.3	Changements de variable	
		4.3.1 Affine	
		4.3.2 Sphériques	
		4.3.3 Cylindriques	

1 Intégration sur un pavé

1.1 Intégration de fonctions en escalier

 \square Soient $a, b, c, d \in \mathbb{R}$ avec a < b, c < d. On pose $\mathcal{R} = [a, b] \times [c, d]$.

□ Une subdivision de \mathcal{R} est par définition un couple (σ, τ) où $\sigma = (x_0, x_1, \dots, x_m)$ est une subdivision de [a, b] et $\tau = (y_0, y_1, \dots, y_n)$ est une subdivision de [c, d]. Pour $(i, j) \in [0, m - 1] \times [0, n - 1]$, on pose $\mathcal{R}_{i,j} =]x_i, x_{i+1}[\times]y_j, y_{j+1}[$.

□ Soit $\varphi : \mathcal{R} \longrightarrow \mathbb{R}$, on dit que φ est en escalier sur \mathcal{R} si φ est bornée sur \mathcal{R} et s'il existe une subdivision $\left((x_i)_{i \in \llbracket 0, m \rrbracket}, (y_j)_{j \in \llbracket 1, n \rrbracket}\right)$ de \mathcal{R} telle que $\forall (i, j) \in \llbracket 0, m - 1 \rrbracket \times \llbracket 0, n - 1 \rrbracket$, φ est constante sur $\mathcal{R}_{i,j}$. Une telle subdivision est dite adaptée à f. On note $\mathcal{E}(\mathcal{R})$ l'ensemble des fonctions en escalier sur \mathcal{R} .

Proposition Si $\varphi, \psi \in \mathcal{E}(\mathcal{R})$ et $\alpha \in \mathbb{R}$, alors $\alpha \varphi + \psi, \varphi \psi \in \mathcal{E}(\mathcal{R})$.

Pour le démontrer, il suffit de prendre une subdivision s_1 adaptée à φ et une subdivision s_2 adaptée à ψ , et remarquer que si s est plus fine que s_1 et s_2 , alors s est adaptée à φ et ψ^a .

Intégrale d'une fonction en escalier

Soit $\varphi \in \mathcal{E}(\mathcal{R})$, $s = \left((x_i)_{i \in \llbracket 0, m \rrbracket}, (y_j)_{j \in \llbracket 1, n \rrbracket}\right)$ une subdivision de \mathcal{R} adaptée à φ . Pour $(i, j) \in \llbracket 0, m - 1 \rrbracket \times \llbracket 0, n - 1 \rrbracket$, notons $C_{i,j}$ la valeur de φ sur $\mathcal{R}_{i,j}$. On pose alors

$$\iint_{\mathcal{R}} \varphi = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} C_{i,j} (x_{i+1} - x_i) (y_{j+1} - y_j)$$

On peut vérifier que cette définition est cohérente et que $\iint_{\mathcal{R}} \varphi$ ne dépende pas du choix de s.

Propriétés

(1) Si $\varphi, \psi \in \mathcal{E}(\mathcal{R})$ et $\alpha \in \mathbb{R}$, alors

$$\iint\limits_{\mathcal{R}}\left(\alpha\varphi+\psi\right)=\alpha\iint\limits_{\mathcal{R}}\varphi+\iint\limits_{\mathcal{R}}\psi$$

a. On définit le pas $\delta\left(\sigma\right)$ d'une subdivision σ par

$$\delta\left(\sigma\right) = \max\left(\max_{i \in \llbracket 0, m-1 \rrbracket} \left(x_{i+1} - x_i\right), \max_{j \in \llbracket 0, n-1 \rrbracket} \left(y_{j+1} - y_j\right)\right)$$

Une subdivision τ est dite plus fine que σ si $\delta(\tau) \leq \delta(\sigma)$. Toute ces notions sont définies dans la section 17.1.1.1 du cours complet page 263.

(2) Si
$$\varphi \in \mathcal{E}(\mathcal{R})$$
, $\varphi \geqslant 0 \Rightarrow \iint_{\mathcal{R}} \varphi \geqslant 0$ d'où pour $\psi \in \mathcal{E}(\mathcal{R})$, $\varphi \leqslant \psi \Rightarrow \iint_{\mathcal{R}} \varphi \leqslant \iint_{\mathcal{R}} \psi$ et $\left| \iint_{\mathcal{R}} \varphi \right| \leqslant \iint_{\mathcal{R}} |\varphi|$.

(3) Si $\lambda \in [a, b]$ et $\mu \in [c, d]$,

$$\iint\limits_{\mathcal{R}} \varphi = \iint\limits_{[a,\lambda]\times[c,d]} \varphi + \iint\limits_{[\lambda,b]\times[c,d]} \varphi = \iint\limits_{[a,b]\times[c,\mu]} \varphi + \iint\limits_{[a,b]\times[\mu,d]} \varphi$$

1.2 Intégration de fonctions continues

1.2.1 Théorème d'approximation

Soit
$$f: \mathcal{R} = [a, b] \times [c, d] \longrightarrow \mathbb{R}$$
 continue, $\varepsilon > 0$. Alors $\exists \varphi, \psi \in \mathcal{E}(\mathcal{R})$ telles que $\varphi \leqslant f \leqslant \psi$ et $\psi - \varphi \leqslant \varepsilon$.

Démonstration \mathcal{R} est un compact de \mathbb{R}^2 car fermé borné, f est continue sur \mathcal{R} donc elle est uniformément continue : $\exists \alpha > 0$ tel que $\forall (x,y) \in \mathcal{R}$, $N_{\infty}(x,y) \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \frac{\varepsilon}{2}$.

Soit $\sigma=(x_0,x_1,\ldots,x_m)$ une subdivision de [a,b] de pas plus petit que α et $\tau=(y_0,y_1,\ldots,y_n)$ une subdivision de [c,d] de pas plus petit que α . Soit $(i,j)\in [0,m-1]\times [0,n-1]$, si $x=(\lambda,\mu)\in \mathcal{R}_{i,j}$, alors

$$N_{\infty}((\lambda, \mu) - (x_i, y_j)) = \max(\lambda - x_i, \mu - y_j)$$

$$\leq \max(x_{i+1} - x_i, y_{j+1} - y_i)$$

$$\leq \alpha$$

donc $|f(\lambda,\mu)-f(x_i,y_j)| \leq \frac{\varepsilon}{2}$. Soit donc $\varphi \in \mathcal{E}(\mathcal{R})$ définie par $\forall x \in \mathcal{R}_{i,j}, \ \varphi(x) = f(x_i,y_j) - \frac{\varepsilon}{2}$ et pour $t \in [a,b]$ ou $t \in [c,d], \ \varphi(x_i,t) = f(x_i,t)$ et $\varphi(t,y_j) = f(t,y_j)$. De même, soit $\psi \in \mathcal{E}(\mathcal{R})$ définie par $\forall x \in \mathcal{R}_{i,j}, \ \psi(x) = f(x_i,y_j) + \frac{\varepsilon}{2}$ et pour $t \in [a,b]$ ou $t \in [c,d], \ \psi(x_i,t) = f(x_i,t)$ et $\psi(t,y_j) = f(t,y_j)$. φ est ψ sont en escalier, et on a bien $\varphi \leq f \leq \psi$ et $\varphi - \psi \leq \varepsilon$.

1.2.2 Définition et propriétés

Soit
$$f: \mathcal{R} = [a,b] \times [c,d] \longrightarrow \mathbb{R}$$
 continue, alors l'ensemble $\Lambda^- = \left\{ \iint_{\mathcal{R}} \varphi | \varphi \in \mathcal{E}(\mathcal{R}), \varphi \leqslant f \right\}$ est majoré, l'ensemble $\Lambda^+ = \left\{ \iint_{\mathcal{R}} \psi | \psi \in \mathcal{E}(\mathcal{R}), \psi \geqslant f \right\}$ est minoré et

$$\sup \Lambda^- = \inf \Lambda^+$$

Par définition, on pose
$$\iint_{\mathcal{R}} f = \inf \Lambda^+ = \sup \Lambda^-$$
, que l'on note aussi $\iint_{[a,b]\times[c,d]} f(x,y) dxdy$.

Propriétés Soient $f, g \in \mathcal{C}(\mathcal{R}, \mathbb{R})$.

(1)
$$\iint_{\mathcal{R}} (\alpha + fg) = \alpha \iint_{\mathcal{R}} f + \iint_{\mathcal{R}} g.$$

(2)
$$f \ge 0 \Rightarrow \iint_{\mathcal{R}} f \ge 0 \text{ et } f \le g \Rightarrow \iint_{\mathcal{R}} f \le \iint_{\mathcal{R}} g, \left| \iint_{\mathcal{R}} f \right| \le \iint_{\mathcal{R}} |f|.$$

(3) Si $\lambda \in [a, b]$ et $\mu \in [c, d]$,

$$\iint\limits_{\mathcal{R}} f = \iint\limits_{[a,\lambda]\times[c,d]} f + \iint\limits_{[\lambda,b]\times[c,d]} f = \iint\limits_{[a,b]\times[c,\mu]} f + \iint\limits_{[a,b]\times[\mu,d]} f$$

1.3 Sommes de Darboux

Soit $f:[a,b]\times[c,d]\longrightarrow\mathbb{R}$ continue, $\varepsilon>0$. Alors $\exists \alpha>0$ tel que pour toute subdivision $\sigma=(x_0,x_1,\ldots,x_m)$ de [a,b] de pas plus petite que α , pour toute subdivision $\tau=(y_0,y_1,\ldots,y_n)$ de [c,d] de pas plus petit que α et pour tout choix de points $\xi=(\xi_{i,j})_{(i,j)\in[0,m-1]\times[0,n-1]}$, on a

$$\left| \iint\limits_{\mathcal{R}} f - \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (x_{i+1} - x_i) (y_{j+1} - y_j) f(\xi_{i,j}) \right| \le \varepsilon$$

a. On a donc $\forall (i, j) \in [0, m-1] \times [0, m-1], \xi_{i,j} \in [x_i, x_{i+1}] \times [y_j, y_{j+1}].$

Démonstration Soit $\varepsilon > 0$, f est continue sur le compact \mathcal{R} donc elle est uniformément continue : $\exists \alpha > 0$ tel que $\forall M, P \in \mathcal{R}$, $N_{\infty}(M-P) \leqslant \alpha \Rightarrow |f(M)-f(P)| \leqslant \frac{\varepsilon}{(b-a)(d-c)}$. Soit $\sigma = (x_0, x_1, \ldots, x_m)$ une subdivision de [a,b] de pas plus petit que α , $\tau = (y_0, y_1, \ldots, y_n)$ une subdivision de [c,d] de pas plus petit que α , pour $(i,j) \in [0,m-1] \times [0,n-1]$ on choisit $M_{i,j} \in [x_{i+1}-x_i] \times [y_{i+1}-y_i]$. Soit

$$\Delta = \iint_{\mathcal{R}} f - \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (x_{i+1} - x_i) (y_{j+1} - y_j) f(M_{i,j})$$

$$= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \iint_{\mathcal{R}_{i,j}} f - \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \iint_{\mathcal{R}_{i,j}} f(M_{i,j})$$

$$= \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \iint_{\mathcal{R}_{i,j}} (f(x,y) - f(M_{i,j})) dxdy$$

Ainsi,

$$|\Delta| \leq \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \iint_{\mathcal{R}_{i,j}} |f(x,y) - f(M_{i,j})| \, \mathrm{d}x \, \mathrm{d}y$$

Or, si $M, P \in \mathcal{R}_{i,j}$, alors $N_{\infty}(P - M) \leq \alpha \Rightarrow |f(P) - f(M)| \leq \frac{\varepsilon}{(b - a)(d - c)}$ d'où

$$|\Delta| \leq \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \iint_{\mathcal{R}_{i,j}} \frac{\varepsilon}{(b-a)(d-c)} dxdy$$

$$\leq \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} (x_{i+1} - x_i) (y_{j+1} - y_j) \frac{\varepsilon}{(b-a)(d-c)}$$

$$\leq \frac{\varepsilon}{(b-a)(d-c)} \sum_{i=0}^{m-1} (x_{i+1} - x_i) \sum_{j=0}^{n-1} (y_{j+1} - y_j)$$

$$\leq \varepsilon$$

1.4 Théorème de Fubini

Lemme Soit $f:[a,b]\times[c,d]\longrightarrow\mathbb{R}$ continue, alors :

- (1) $x \in [a, b] \longrightarrow \int_{c}^{d} f(x, y) dy$ est bien définie et continue;
- (2) $y \in [c, d] \longrightarrow \int_a^b f(x, y) dx$ est bien définie et continue.

Montrons la première assertion, la deuxième s'en déduisant par symétrie des rôles de x et y. soit $x \in [a,b]$.

- □ Montrons d'abord que $f(x, \cdot)$: $y \in [c, d] \longrightarrow f(x, y)$ est continue. Soit $\varepsilon > 0$, $y_0 \in [c, d]$, f est continue en (x, y_0) donc $\exists \alpha > 0$ tel que $\forall (s, t) \in [a, b] \times [c, d]$, $N_{\infty}((s, t) (x, y_0)) \leq \alpha \Rightarrow |f(s, t) f(x, y_0)| \leq \varepsilon$. Pour $y \in [c, d] \cap [y_0 \alpha, y_0 + \alpha]$, on a $N_{\infty}((x, y) (x, y_0)) = |y y_0| \leq \alpha$ donc $|f(x, y) f(x, y_0)| \leq \varepsilon$ donc $f(x, \cdot)$ est continue en y_0 donc sur [c, d]. On en déduit que $\int_{c}^{df} f(x, y) \, dy$ est bien définie.
- □ Posons donc pour $x \in [a,b]$ $\varphi(x) = \int_{c}^{d} f(x,y) \, dy$. f est continue sur la compact \mathcal{R} donc elle est uniformément continue : soit $\varepsilon > 0$, $\exists \beta > 0$ tel que $\forall (s,t), (u,v) \in \mathcal{R}$, $N_{\infty}((s,t) (u,v)) \leqslant \beta \Rightarrow |f(s,t) f(u,v)| \leqslant \frac{\varepsilon}{d-c}$. Soient alors $x, x' \in [a,b]$ tels que $|x x'| \leqslant \beta$, alors

$$\left| \varphi(x) - \varphi(x') \right| = \left| \int_{c}^{d} f(x, y) \, dy - \int_{c}^{d} f(x', y) \, dy \right|$$

$$\leq \int_{c}^{d} \left| f(x, y) - f(x', y) \right| \, dy$$

Or $\forall y \in [c, d], N_{\infty}((x, y) - (x', y)) = |x - x'| \leq \beta \text{ donc } |f(x, y) - f(x', y)| \leq \frac{\varepsilon}{d - c} \text{ donc}$

$$\left|\varphi\left(x\right) - \varphi\left(x'\right)\right| \leqslant \int_{c}^{d} \frac{\varepsilon}{d-c} \, \mathrm{d}y \leqslant \varepsilon$$

Ainsi, φ est continue sur [a,b] et considérer $\int_{a}^{b}\varphi\left(x\right)\,\mathrm{d}x$ est légitime.

Théorème

Soit $f: \mathcal{R} = [a, b] \times [c, d] \longrightarrow \mathbb{R}$ continue, alors

$$\iint\limits_{\mathcal{R}} f(x,y) \, \mathrm{d}x \mathrm{d}y = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_{c}^{d} \left(\int_{a}^{b} f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y$$

Démonstration Soit $\varepsilon > 0$, d'après le théorème de DARBOUX il existe $\alpha > 0$ tel que pour toute subdivision $\sigma = (x_0, x_1, \dots, x_m)$ de [a, b] de pas plus petit que α , pour toute subdivision $\tau = (y_0, y_1, \dots, y_n)$ de [c, d] de pas plus petit que α et pour tout choix de point $(M_{i,j})_{(i,j)\in [0,m-1]\times[0,n-1]}$, on a

$$\left| \iint\limits_{\mathcal{R}} f - \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} (x_{i+1} - x_i) (y_{j+1} - y_j) f (M_{i,j}) \right| \leqslant \varepsilon$$

Soit $m, n \in \mathbb{N}^*$ tels que $\frac{b-a}{m} < \alpha$ et $\frac{d-c}{n} < \alpha$, on pose pour $(i,j) \in [0,m] \times [0,n]$ $x_i = a + k \frac{b-a}{m}$ et $y_j = c + k \frac{d-c}{n}$. (x_0, x_1, \dots, x_m) et (y_0, y_1, \dots, y_n) sont deux subdivision de [a, b] et [c, d] respectivement de

pas plus petits que α donc, en prenant $\forall (i,j) \in [0,m-1] \times [0,n-1], M_{i,j} = f(x_i,y_j)$, on a

$$\left| \iint\limits_{\mathcal{R}} f - \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \frac{b-a}{m} \frac{d-c}{n} f(x_i, y_j) \right| \leqslant \varepsilon$$

Fixons m et considérons n variable. On a alors, en réarrangeant l'expression, $\forall n \in \mathbb{N}^*$ tel que $\frac{d-c}{n} < \alpha$,

$$\left| \iint\limits_{\mathcal{R}} f - \sum_{i=0}^{m-1} \frac{b-a}{m} \left(\frac{d-c}{n} \sum_{j=0}^{n-1} f\left(x_i, c+j \frac{d-c}{n}\right) \right) \right| \leqslant \varepsilon \quad (*)$$

Pour $i \in [0, m-1]$, on remarque que $\frac{d-c}{n} \sum_{j=0}^{n-1} f\left(x_i, c+j\frac{d-c}{n}\right)$ est une somme de RIEMANN a associée à la fonction continue $f\left(x_i, \cdot\right)$. Ainsi,

$$\frac{d-c}{n} \sum_{i=0}^{n-1} f\left(x_i, c+j\frac{d-c}{n}\right) \underset{n\to+\infty}{\longrightarrow} \int_c^d f\left(x_i, y\right) dy$$

En faisant tendre dans (*) $n \to +\infty$ toujours à m fixé on obtient

$$\left| \iint_{\mathcal{P}} f - \frac{b - a}{m} \sum_{i=0}^{m-1} \int_{c}^{d} f(x_{i}, y) \, dy \right| \leqslant \varepsilon \quad (**)$$

Or $\frac{b-a}{m}\sum_{i=0}^{m-1}\int_{c}^{d}f\left(x_{i},y\right)y\,\mathrm{d}y$ est une somme de RIEMANN associée à la fonction continue $x\in\left[a,b\right]\longmapsto\int_{c}^{d}f\left(x_{i},y\right)\,\mathrm{d}y$ donc

$$\frac{b-a}{m} \sum_{i=0}^{m-1} \int_{c}^{d} f(x_{i}, y) y \, dy \xrightarrow[m \to +\infty]{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx$$

En faisant tendre $m \to +\infty$ et $\varepsilon \to 0$ dans (**), on a bien

$$\left| \iint\limits_{\mathcal{R}} f - \int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) \, dx \right| = 0$$

d'où le résultat. On aurait obtenu de même la deuxième inégalité en permutant les deux sommes.

Exemples

(1) Soit $f:(x,y) \in \mathcal{R} = [a,b] \times [c,d] \longrightarrow g(x) h(y)$ avec $g \in \mathcal{C}([a,b],\mathbb{R})$ et $h \in \mathcal{C}([c,d],\mathbb{R})$. Alors f est continue sur \mathcal{R} et on retrouve un résultat utilisé en physique :

$$\iint_{\mathcal{R}} f(x, y) dxdy = \int_{a}^{b} \left(\int_{c}^{d} g(x) h(y) dy \right) dx$$
$$= \int_{a}^{b} g(x) \left(\int_{c}^{d} h(y) dy \right) dx$$
$$= \int_{a}^{b} g(x) dx \times \int_{c}^{d} h(y) dy$$

a. Voir la section 17.5.1 du cours complet page 274.

(2) Calculons:

$$\iint_{[0,1]^2} \frac{\mathrm{d}x \mathrm{d}y}{1+x+y} = \int_0^1 \left(\int_0^1 \frac{1}{1+x+y} \, \mathrm{d}x \right) \, \mathrm{d}y$$
$$= \int_0^1 \left(\ln\left(2+y\right) - \ln\left(1+y\right) \right) \, \mathrm{d}y$$

Or pour a > 0,

$$\int_0^1 \ln(a+x) \, dx = \left[x \ln(a+x) \right]_0^1 - \int_0^1 \frac{x}{a+x} \, dx$$

$$= \ln(a+1) - \int_0^1 \left(1 - \frac{a}{x+a} \right) \, dx$$

$$= \ln(a+1) - 1 + a \left(\ln(a+1) - \ln(a) \right)$$

$$= (1+a) \ln(a+1) - 1 - a \ln a$$

Ainsi,

$$\iint_{[0,1]^2} \frac{\mathrm{d}x \mathrm{d}y}{1+x+y} = 3\ln 3 - 2\ln 2 - 2\ln 2$$
$$= \ln \left(\frac{27}{16}\right)$$

2 Fonctions intégrables

2.1 Fonctions bornées intégrables sur un rectangle

Soit $\mathcal{R} = [a,b] \times [c,d]$ un rectangle, $f: \mathcal{R} \longrightarrow \mathbb{R}$ bornée : $\exists m, M \in \mathbb{R}$ tels que $\forall P \in \mathcal{R}, m \leqslant f(P) \leqslant M$. L'ensemble $\mathcal{E}^+ = \{\psi \in \mathcal{E}(\mathcal{R}) | \psi \geqslant f\}$ n'est pas vide et $\forall \psi \in \mathcal{E}^+, \psi \geqslant m \Rightarrow \iint_{\mathcal{R}} \psi \geqslant m(b-a)(d-c)$. Ainsi,

$$\left\{ \iint_{\mathcal{R}} \psi | \psi \in \mathcal{E}^+ \right\} \text{ est minorée et admet une borne inférieure notée } \iint_{\mathcal{R}} f.$$

De même, $\mathcal{E}^{-} = \{ \varphi \in \mathcal{E}(\mathcal{R}) | \varphi \leqslant f \}$ n'est pas vide et $\forall \varphi \in \mathcal{E}^{-}, \forall \psi \in \mathcal{E}^{+}, \varphi \leqslant f \leqslant \psi \text{ donc } \iint_{\mathcal{R}} \varphi \leqslant \iint_{\mathcal{R}} f \leqslant \iint_{\mathcal{R}} \psi$

donc l'ensemble $\left\{ \iint_{\mathcal{R}} \varphi | \varphi \in \mathcal{E}^- \right\}$ est majoré et on note $\iint_{\mathcal{R}} f$ sa borne supérieure. On a donc toujours

$$\iint\limits_{\mathcal{R}} f \leqslant \iint\limits_{\mathcal{R}} f$$

$$f$$
 est dite intégrable si $\iint_{\mathcal{R}} f = \iint_{\mathcal{R}} f$, on pose alors $\iint_{\mathcal{R}} f = \iint_{\mathcal{R}} \inf f = \iint_{\mathcal{R}} f$.

Par exemple, toute les fonctions en escalier et toutes les fonctions continues sur \mathcal{R} sont intégrables sur \mathcal{R} .

Petite histoire Donnons nous A une partie bornée de \mathbb{R}^{2a} , soit $f:A\longrightarrow \mathbb{R}$ bornée, \mathcal{R} un rectangle tel que $A\subset \mathcal{R}$.

On définit

$$\widetilde{f}: \mathcal{R} \longrightarrow \mathbb{R}$$

$$(x,y) \mapsto \begin{cases} f(x,y) & \text{si } (x,y) \in A \\ 0 & \text{si } (x,y) \notin A \end{cases}$$

On remarque que $\widetilde{f} = f \times \chi_A$ où χ_A est la fonction caractéristique de A: pour $(x,y) \in \mathcal{R}$, $\chi_A(x,y) = \begin{cases} 1 & \text{si } (x,y) \in A \\ 0 & \text{si } (x,y) \notin A \end{cases}$. Il est clair que \widetilde{f} est bornée.

On dit que f est intégrable sur A et \widetilde{f} est intégrable sur \mathcal{R} . Dans ce cas, on pose $\iint_{\mathcal{R}} f = \iint_{\mathcal{R}} \widetilde{f}$.

On dit que A est mesurable si la fonction constante égale à 1 est intégrable sur A. Si c'est le cas, l'aire de A est $\iint \mathrm{d}x\mathrm{d}y.$

On peut vérifier que la définition ne dépend pas du rectangle $\mathcal R$ choisi.

2.2 Compacts élémentaires, compacts simples

2.2.1 Compacts élémentaires

□ Un compact élémentaire de type 1 est une partie de \mathbb{R}^2 du type $\{(x,y) \in \mathbb{R}^2 | x \in [a,b] \text{ et } y \in [h(x),g(x)]\}$ avec $a < b \text{ et } g,h \in \mathcal{C}([a,b],\mathbb{R}), h \ge g$.

□ Un compact élémentaire de type 2 est une partie de \mathbb{R}^2 du type $\{(x,y) \in \mathbb{R}^2 | y \in [c,d] \text{ et } x \in [\varphi(y), \psi(y)]\}$ où $c < d \text{ et } \varphi, \psi \in \mathcal{C}([c,d],\mathbb{R}), \varphi \leqslant \psi$.

Par exemple, le disque unité $\overline{\mathcal{D}}$ est l'ensemble

$$\begin{split} \overline{\mathcal{D}} &= \left\{ (x,y) \in \mathbb{R}^2 | x^2 + y^2 \leqslant 1 \right\} \\ &= \left\{ (x,y) \in \mathbb{R}^2 | x \in [-1,1] \text{ et } y \in \left[-\sqrt{1-x^2}, \sqrt{1-x^2} \right] \right\} \\ &= \left\{ (x,y) \in \mathbb{R}^2 | y \in [-1,1] \text{ et } x \in \left[-\sqrt{1-y^2}, \sqrt{1-y^2} \right] \right\} \end{aligned}$$

a. En pratique, A est un compact.

Théorème (admis)

☐ Soit A un compact élémentaire de type $1: \exists a,b \in \mathbb{R}$ avec $a < b, \exists g,h \in \mathcal{C}([a,b],\mathbb{R})$ avec $g \leqslant h$ tels que $A = \{(x,y) \in \mathbb{R}^2 | x \in [a,b] \text{ et } y \in [g(x),h(x)]\}$. Soit $f: A \longrightarrow \mathbb{R}$ continue, alors f est intégrable sur A et

$$\iint_{A} f(x,y) dxdy = \int_{a}^{b} \left(\int_{g(x)}^{h(x)} f(x,y) dy \right) dx$$

En particulier, A est mesurable et l'aire de A est $\int_{a}^{b} (h(x) - g(x)) dx$.

□ Soit A un compact élémentaire de type $2: \exists c, d \in \mathbb{R}$ avec $c < d, \exists \varphi, \psi \in \mathcal{C}([c, d], \mathbb{R})$ avec $\varphi \leqslant \psi$ tels que $A = \{(x, y) \in \mathbb{R}^2 | y \in [c, d] \text{ et } x \in [\varphi(y), \psi(y)] \}$. Soit $f: A \longrightarrow \mathbb{R}$ continue, alors f est intégrable et

$$\iint_{A} f = \int_{c}^{d} \left(\int_{\varphi(y)}^{\psi(y)} f(x, y) \, dx \right) \, dy$$

En particulier, A est mesurable et son aire est $\int_{c}^{d} (\psi(y) - \varphi(y)) dy$.

Exemples

(1) Posons $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 | x, y \in \mathbb{R}_+ \text{ et } x^2 + y^2 \leq 1\}$ le quart de cercle unité. Calculons $\iint_{\mathcal{D}} \frac{y}{1+x^2} dx dy$, pour cela on remarque que $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 | x \in [0,1] \text{ et } y \in [0,\sqrt{1-x^2}]\}$ est un compact élémentaire de type 1 et donc, d'après le théorème précédent,

$$\iint_{\mathcal{D}} \frac{y}{1+x^2} dx dy = \int_0^1 \left(\int_0^{\sqrt{1-x^2}} \frac{y}{1+x^2} dy \right) dx$$

$$= \int_0^1 \frac{1}{1+x^2} \left(\int_0^{\sqrt{1-x^2}} y dy \right) dx$$

$$= \int_0^1 \frac{1}{1+x^2} \left[\frac{y^2}{2} \right]_0^{\sqrt{1-x^2}} dx$$

$$= \int_0^1 \frac{1-x^2}{1+x^2} dx$$

$$= \frac{1}{2} \int_0^1 \frac{2-(1+x^2)}{1+x^2} dx$$

$$= \frac{1}{2} [2 \arctan x - x]_0^1$$

$$= \frac{\pi}{4} - \frac{1}{2}$$

(2) Calculons l'aire de l'ellipse :

$$\mathcal{E} = \left\{ (x,y) \in \mathbb{R}^2 \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\} = \left\{ (x,y) \in \mathbb{R}^2 \middle| x \in [-a,a] \text{ et } y \in \left[-b\sqrt{1 - \frac{x^2}{a^2}}, b\sqrt{1 - \frac{x^2}{a^2}} \right] \right\}$$

D'après le théorème,

$$\mathcal{A}(\mathcal{E}) = \int_{-a}^{a} \left(\int_{-b\sqrt{1-\frac{x^2}{a^2}}}^{b\sqrt{1-\frac{x^2}{a^2}}} dy \right) dx$$
$$= 2b \int_{-a}^{a} \sqrt{1-\frac{x^2}{a^2}} dx$$
$$= 4b \int_{0}^{a} \sqrt{1-\frac{x^2}{a^2}} dx$$

car $x \mapsto \sqrt{1 - \frac{x^2}{a^2}}$ est paire. En posant $x = a \sin u$, $dx = a \cos u du$, on obtient

$$\mathcal{A}(\mathcal{E}) = 4ab \int_0^{\frac{\pi}{2}} |\cos u| \cos u \, du$$

$$= 4ab \int_0^{\frac{\pi}{2}} \frac{1 + \cos(2u)}{2} \, du \, \text{car } \forall u \in \left[0, \frac{\pi}{2}\right], \, \cos u \geqslant 0$$

$$= 4ab \left[\frac{1}{2}u - \frac{\sin(2u)}{4}\right]_0^{\frac{\pi}{2}}$$

$$= \pi ab$$

2.2.2 Compacts simples

Un compact simple est une réunion finie de compacts élémentaires.

Théorème (admis)

Soit $L = \bigcup_j K_j$ où $\forall j, K_j$ est un compact élémentaire tel que si $i \neq j, K_i \cap K_j$ est d'aire nulle. Si $f: L \longrightarrow \mathbb{R}$ continue, alors f est intégrable et

$$\iint\limits_L f = \sum\limits_j \iint\limits_{K_j} f$$

Remarque

– Le graphe d'une fonction continue $\varphi:[a,b] \longrightarrow \mathbb{R}$ est un compact élémentaire d'aire nulle : si $K = \{(x,y) \in \mathbb{R}^2 | x \in [a,b] \text{ et } y \in [\varphi(x),\varphi(x)] \}.$

3 Changements de variable

3.1 Changements de variable affine

Soit $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ affine : $\forall (u, v) \in \mathbb{R}^2$, $T(u, v) = (x_0, y_0) + \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$ où $\begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$ est la matrice de la partie linéaire de T.

3.1.1 Théorème (admis)

Soit K une partie bornée de \mathbb{R}^{2} , $f:T\left(K\right)\longrightarrow\mathbb{R}$ intégrable, alors $f\circ T$ est intégrable et

$$\iint\limits_{T(K)} f = \iint\limits_{K} \left| \det T \right| f \circ T$$

En particulier, si K est une partie mesurable, alors T(K) aussi et $\mathcal{A}(T(K)) = |\det T| \mathcal{A}(K)$.

Exemples

- Retrouvons l'aire de l'ellipse. $A = \left\{ (x,y) \in \mathbb{R}^2 \middle| \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}$ avec 0 < b < a est l'image du disque $\overline{\mathcal{D}}(0,a)$ par l'affinité orthogonale T d'axe (Ox) et de rapport $\frac{b}{a}: T: (x,y) \in \mathbb{R}^2 \longrightarrow \left(x, \frac{b}{a} y \right)$. En effet, si $M(x,y) \in \mathbb{R}^2$ et M'(x',y') = T(M), alors

$$\begin{split} M \in \overline{\mathcal{D}} \left(0, a \right) &\iff x^2 + y^2 = a^2 \\ &\Leftrightarrow x'^2 + \frac{a^2}{b^2} y'^2 = a^2 \\ &\Leftrightarrow M' \in A \end{split}$$

On a de plus det $T = \begin{vmatrix} 1 & 0 \\ 0 & \frac{b}{a} \end{vmatrix} = \frac{b}{a}$ donc $\mathcal{A}(A) = \frac{b}{a} \mathcal{A}(\overline{\mathcal{D}}(0, a)) = \pi ab$.

- Une isométrie affine conserve l'aire, une similitude de rapport k > 0 multiplie l'aire par k^2 .

- Soit
$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 | 0 \le x - y \le 3 \text{ et } -2 \le x + 2y \le 1\}$$
. Il s'agit de calculer $\iint_D xy dx dy$.
Posons $\varphi(x,y) = (x-y,x+2y)$. φ est affine (car linéaire) et $\operatorname{Mat}_{BC_2}(\varphi) = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}$, $\varphi \in \operatorname{GL}(\mathbb{R}^2)$ et $\operatorname{Mat}_{BC_2}(\varphi^{-1}) = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$. Soit $\mathcal{R} = [0,3] \times [-2,1]$, alors $\mathcal{D} = \varphi^{-1}(\mathcal{R})$ et $\forall (u,v) \in \mathbb{R}^2$, $\varphi^{-1}(u,v) = 1$

 $\frac{1}{3}(2u+v,-u+v)$ donc d'après le théorème précédent,

$$\iint_{\mathcal{D}} xy dx dy = \iint_{\mathcal{R}} \frac{2u + v - u + v}{3} \left| \det \varphi^{-1} \right| du dv$$

$$= \frac{1}{27} \int_{0}^{3} \left(\int_{-2}^{1} \left(-2u^{2} + uv + v^{2} \right) dv \right) du$$

$$= \frac{1}{27} \int_{0}^{3} \left[-2u^{2}v + \frac{uv^{2}}{2} + \frac{v^{3}}{3} \right]_{-2}^{1} du$$

$$= \frac{1}{27} \int_{0}^{3} \left(-2u^{2} + \frac{u}{2} + \frac{1}{3} - 4u^{2} - 2u + \frac{8}{3} \right) du$$

$$= \frac{1}{27} \int_{0}^{3} \left(-6u^{2} - \frac{3}{2}u + 3 \right) du$$

$$= \frac{1}{27} \left[-2u^{3} - \frac{3}{4}u^{2} + 3u \right]_{0}^{3}$$

$$= \frac{1}{27} \left(-2 \times 27 - \frac{27}{4} + 9 \right)$$

$$= -2 - \frac{1}{4} + \frac{1}{3}$$

$$= -\frac{23}{12}$$

3.2 Changement de variable en coordonnées polaires

Théorème (admis)

Soit A un compact de $\mathbb{R}_+ \times [a, a+2\pi]$ avec $a \in \mathbb{R}$. Pour $(r, \theta) \in \mathbb{R}_+ \times [a, a+2\pi]$ on pose $\varphi(r, \theta) = (r \cos \theta, r \sin \theta)$. φ est continue donc $\varphi(A)$ est un compact. Soit f une fonction intégrable sur $K = \varphi(A)^a$, alors $f \circ \varphi$ est intégrable $\operatorname{sur} A$ et

$$\iint_{\varphi(A)} f(x, y) dxdy = \iint_{A} f \circ \varphi(r, \theta) r dr d\theta$$

a. En pratique, $\varphi(A)$ est un compact simple et f est continue donc intégrable sur $\varphi(A)$.

Exemples

(1) Soit $\mathcal{D} = \overline{\mathcal{D}}(0,R)$, alors $\mathcal{D} = \varphi(A)$ où $A = [0,R] \times [0,2\pi]$. Pour toute fonction continue $f: \mathcal{D} \longrightarrow \mathbb{R}$ on a donc

$$\iint_{\mathcal{D}} f(x, y) \, \mathrm{d}x \mathrm{d}y = \iint_{A} f(r \cos \theta, r \sin \theta) r \mathrm{d}r \mathrm{d}\theta$$

$$= \int_{0}^{R} r \left(\int_{0}^{2\pi} f(r \cos \theta, r \sin \theta) \, \mathrm{d}\theta \right) \, \mathrm{d}r$$

En particulier, $\mathcal{A}(\mathcal{D}) = \int_{0}^{R} r\left(\int_{0}^{2\pi} d\theta\right) dr = \pi R^{2}$.

(2) Soit $A = [r_1, r_2] \times [\theta_1, \theta_2]$ avec $0 \leqslant r_1 \leqslant r_2$ et $0 \leqslant \theta_2 - \theta_1 \leqslant 2\pi$, $\mathcal{D} = \varphi(A)$.

Si $f: \mathcal{D} \longrightarrow \mathbb{R}$ est continue, alors $\iint_{\mathbb{R}} f = \int_{r_1}^{r_2} r \left(\int_{\theta_1}^{\theta_2} f(r\cos\theta, r\sin\theta) \ d\theta \right) dr$. En particulier,

$$\mathcal{A}(\mathcal{D}) = \int_{r_1}^{r_2} r \left(\int_{\theta_1}^{\theta_2} d\theta \right) dr$$
$$= \frac{(\theta_2 - \theta_1) (r_2^2 - r_1^2)}{2}$$

(3) Soient $\alpha, \beta \in \mathbb{R}$ tels que $0 \leq \beta - \alpha \leq 2\pi$, $\rho_1, \rho_2 \in \mathcal{C}([\alpha, \beta], \mathbb{R})$ avec $\rho_1 \leq \rho_2$. On pose

$$A = \left\{ (r, \theta) \in \mathbb{R}^2 \middle| \theta \in [\alpha, \beta] \text{ et } \rho_1(\theta) \leqslant r \leqslant \rho_2(\theta) \right\}$$

Pour toute fonction f continue sur \mathcal{R} , on a

$$\iint\limits_{\mathcal{D}} f\left(x,y\right) \mathrm{d}x \mathrm{d}y = \int_{\alpha}^{\beta} \left(\int_{\rho_{1}(\theta)}^{\rho_{2}(\theta)} r f\left(r\cos\theta, r\sin\theta\right) \, \mathrm{d}r \right) \, \mathrm{d}\theta$$

En particulier, $\mathcal{A}(\mathcal{D}) = \int_{\alpha}^{\beta} \frac{\rho_2^2(\theta) - \rho_1^2(\theta)}{2} d\theta$ et si $\rho \in \mathcal{C}([\alpha, \beta], \mathbb{R})$ est positive et $\mathcal{D} = \varphi(A)$ où

$$A = \left\{ (r, \theta) \in \mathbb{R}^2 \middle| \theta \in [\alpha, \beta] \text{ et } r \in [0, \rho(\theta)] \right\}$$

alors
$$\mathcal{A}(\mathcal{D}) = \frac{1}{2} \int_{0}^{\beta} \rho^{2}(\theta) d\theta$$
.

(4) Calculons l'aire de la cardioïde a $\rho = a (1 + \cos \theta)$ avec a > 0 et $\theta \in [-\pi, \pi]$. On pose $\mathcal{D} = \varphi(A)$ avec

$$A = \{(r, \theta) \in \mathbb{R}^2 | \theta \in [-\pi, \pi] \text{ et } r \in [0, a (1 + \cos \theta)] \}$$

Alors

$$\mathcal{A}(\mathcal{D}) = \frac{1}{2} \int_{-\pi}^{\pi} a^2 (1 + \cos \theta)^2 d\theta$$

$$= a^2 \int_{0}^{\pi} (1 + 2\cos \theta + \cos^2 \theta) d\theta \text{ car cos est paire}$$

$$= a^2 \left(\pi + 2 \left[-\sin \theta\right]_{0}^{\pi} + \left[\frac{1}{2}\theta + \frac{\sin(2\theta)}{4}\right]_{0}^{\pi}\right)$$

$$= \frac{3\pi}{2} a^2$$

(5) Calculons l'aire de la surface de GAUSS : $L = \lim_{r \to +\infty} I(r) = \int_0^r e^{-x^2} dx$. Posons pour $(x, y) \in \mathbb{R}^2_+$ $f(x, y) = e^{-(x^2+y^2)}$, $\mathcal{D}_1 = \overline{\mathcal{D}}(0, r)$, $\mathcal{D}_2 = [0, r]^2$ et $\mathcal{D}_3 = \overline{\mathcal{D}}(0, r\sqrt{2})$. On a tout de suite $\mathcal{D}_1 \subset \mathcal{D}_2 \subset \mathcal{D}_3$.

a. Voir section 29.2.3.2 du cours complet page 586 pour le tracé de cette courbe

$$f$$
 est positive donc $0 \leqslant \iint_{\mathcal{D}_1} f \leqslant \iint_{\mathcal{D}_2} f \leqslant \iint_{\mathcal{D}_3} f$ or

$$\iint_{\mathcal{D}_2} f = \iint_{[0,1]^2} e^{-x^2} e^{-y^2} dx dy$$

$$= \left(\int_0^1 e^{-x^2} dx \right) \times \left(\int_0^1 e^{-y^2} dy \right)$$

$$= I^2(r)$$

$$\iint_{\mathcal{D}_1} f = \int_0^1 \left(\int_0^{\frac{\pi}{2}} \rho e^{-\rho^2} d\rho \right) d\theta$$

$$= \frac{\pi}{2} \left[-\frac{1}{2} e^{-\rho^2} \right]_0^r$$

$$= \frac{\pi}{2} \left(\frac{1}{2} - \frac{1}{2} e^{-r^2} \right) \xrightarrow[r \to \infty]{\pi} \frac{\pi}{4}$$

$$\iint_{\mathcal{D}_3} f = \frac{\pi}{2} \left(\frac{1}{2} - \frac{1}{2} e^{-2r^2} \right) \xrightarrow[r \to \infty]{\pi} \frac{\pi}{4}$$

 $\lim I(r)$ existe car $r \longmapsto I(r)$ est croissante est majorée a, alors $I(r) \underset{r \to +\infty}{\longrightarrow} \frac{\sqrt{\pi}}{2}$ par encadrement.

4 Complément : intégrales triples

4.1 Sur des pavés

 \square Un pavé a est une partie de \mathbb{R}^3 du type $\mathcal{P} = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ avec $\forall i \in [1, 3], a_i < b_1$.

 \square Une subdivision de P est la donnée de $(\sigma_1, \sigma_2, \sigma_3)$ où $\forall i \in [1, 3], \sigma_i$ est une subdivision de $[a_i, b_i]$.

On définit les fonctions en escalier sur un pavé : $\varphi : \mathcal{P} \longrightarrow \mathbb{R}$ est en escalier si φ est bornée et s'il existe une subdivision $\sigma = \left((x_i)_{i \in \llbracket 0,n \rrbracket}, (y_j)_{j \in \llbracket 0,m \rrbracket}, (z_k)_{k \in \llbracket 0,l \rrbracket}\right)$ de \mathcal{P} telle que $\forall (i,j,k) \in \llbracket 0,n-1 \rrbracket \times \llbracket 0,m-1 \rrbracket \times \llbracket 0,l-1 \rrbracket$, φ est constante sur $\mathcal{P}_{i,j,k} =]x_i, x_{i+1}[\times]y_j, y_{j+1}[\times]z_k, z_{k+1}[$. On note $\mathcal{E}(\mathcal{P})$ l'ensemble des fonctions en escalier sur \mathcal{P} .

a. « $Il\ y$ a deux manières de définir un pavé : soit c'est ce que vous jetez sur les flics quand vous êtes étudiant en colère, soit c'est un parallélépipède rectangle. »

Théorèmes

a. « Left to the reader! »

- $\square \text{ Soit } \varepsilon > 0. \text{ Si } f: \mathcal{P} \longrightarrow \mathbb{R}, \text{ alors } \exists \varphi, \psi \in \mathcal{E} \left(\mathcal{P} \right) \text{ telles que } \varphi \leqslant f \leqslant \psi \text{ et } \psi \varphi \leqslant \varepsilon.$
- \square Si φ est en escalier sur \mathcal{P} alors, avec les notations de la définition, on pose

$$\iiint_{\mathcal{D}} \varphi = \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} \sum_{z=0}^{l-1} (x_{i+1} - x_i) (y_{j+1} - y_j) (z_{k+1} - z_k) \lambda_{i,j,k}$$

où $\lambda_{i,j,k}$ est la valeur de φ sur $\mathcal{P}_{i,j,k}$.

- \square Si f est une fonction continue sur \mathcal{P} , alors l'intégrale triple de f est définie comme :
- la borne supérieure de $\left\{ \iiint_{\mathcal{P}} \varphi | \varphi \in \mathcal{E} (\mathcal{P}) \text{ et } \varphi \leqslant f \right\};$
- la borne inférieure de $\left\{ \iiint_{\mathcal{P}} \psi | \psi \in \mathcal{E} \left(\mathcal{P} \right) \text{ et } \psi \geqslant f \right\}$.

Ces deux quantités étant égales.

Propriétés On a tout de suite la linéarité, positivité et additivité par rapport au domaine de la triple intégrale.

Théorème de Fubini

Soit $f: \mathcal{P} \longrightarrow \mathbb{R}$ continue, alors

$$\iiint\limits_{\mathcal{P}} f = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \left(\int_{a_3}^{b_3} f(x, y, z) \, \mathrm{d}z \right) \, \mathrm{d}y \right) \, \mathrm{d}x$$

Et l'ordre des intégrations est indifférent.

4.2 Sur une partie bornée

Soit A une partie bornée de \mathbb{R}^3 , $f:A\longrightarrow \mathbb{R}$, \mathcal{P} un pavé tel que $A\subset \mathcal{P}$. On dit que f est intégrable sur A si $f\chi_A$ est intégrable sur \mathcal{P}^a .

a. Pour la définition de χ_A , voir la section 2.1 page 8.

Proposition Il y a des façons simples de calculer des intégrales sur certains domaines. Pour

$$A = \left\{ \left(x, y, z \in \mathbb{R}^3 \right) | x \in [a, b], \ y \in [c, d] \ \text{ et } z \in \left[\varphi \left(x, y \right), \psi \left(x, y \right) \right] \right\}$$

où $\varphi, \psi \in \mathcal{C}([a, b] \times [c, d], \mathbb{R}), f$ est intégrable et

$$\iiint_A f = \int_a^b \left(\int_c^d \left(\int_{\varphi(x,y)}^{\psi(x,y)} f(x,y,z) \, dz \right) \, dy \right) \, dx$$

Donc A est mesurable si et seulement si χ_A est intégrable et, si on note $\mathcal{V}(A)$ le volume de A, alors

$$\mathcal{V}(A) = \iiint_{A} \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

Exemple Prenons

$$A = \overline{\mathcal{B}}(0, R) = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \leqslant R^2 \}$$

= \{(x, y, z) \in \mathbb{R}^3 | z \in [-R, R] \text{ et } x^2 + y^2 \le R^2 - z^2 \}

Alors

$$\iiint_{A} dx dy dz = \int_{-R}^{R} \left(\iint_{\overline{D}(0,\sqrt{R^{2}-z^{2}})} dx dy \right) dz$$
$$= \int_{-R}^{R} \pi \left(R^{2} - z^{2} \right) dz$$
$$= \pi \left[R^{2}z - \frac{1}{3}z^{3} \right]_{-R}^{R}$$
$$= \frac{4}{3}\pi R^{3}$$

4.3 Changements de variable

4.3.1 Affine

Soit A une partie bornée, T une transformation affine et $f:T(A)\longrightarrow \mathbb{R}$ intégrable, alors

$$\iiint\limits_{T(A)} f(x, y, z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \left| \det T \right| \iiint\limits_{A} f \circ T(u, v, w) \, \mathrm{d}u \mathrm{d}v \mathrm{d}w$$

En particulier, le volume de T(A) est $\mathcal{V}(T(A)) = |\det T| \mathcal{V}(A)$

4.3.2 Sphériques

On pose pour $(r, \theta, \varphi) \in \mathbb{R}_+ \times [0, \pi] \times [0, 2\pi] \psi(r, \theta, \varphi) = (r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta)$. La matrice jacobienne ^a de ψ en (r, θ, φ) est alors

$$\begin{pmatrix}
\sin\theta\cos\varphi & r\cos\theta\cos\varphi & -r\sin\theta\sin\varphi \\
\sin\theta\sin\varphi & r\cos\theta\sin\varphi & r\sin\theta\cos\varphi \\
\cos\theta & -r\sin\theta & 0
\end{pmatrix}$$

d'où, en prenant le déterminant,

$$\begin{aligned} \operatorname{Jac} \psi \left(r, \theta, \varphi \right) &= r^2 \begin{vmatrix} \sin \theta \cos \varphi & \cos \theta \cos \varphi & -\sin \theta \sin \varphi \\ \sin \theta \sin \varphi & \cos \theta \sin \varphi & \sin \theta \cos \varphi \\ \cos \theta & -\sin \theta & 0 \end{vmatrix} \\ &= r^2 \left[\left(-1 \right)^4 \cos \theta \begin{vmatrix} \cos \theta \cos \varphi & -\sin \theta \sin \varphi \\ \cos \theta \sin \varphi & \sin \theta \cos \varphi \end{vmatrix} + \left(-\sin \theta \right) \left(-1 \right)^5 \begin{vmatrix} \sin \theta \cos \varphi & -\sin \theta \sin \varphi \\ \sin \theta \sin \varphi & \sin \theta \cos \varphi \end{vmatrix} \right] \\ &= r^2 \left[\cos \theta \left(\cos \theta \sin \theta \right) + \sin \theta \left(\sin^2 \theta \right) \right] \\ &= r^2 \sin \theta \end{aligned}$$

a. Voir section 31.2.3.1 du cours complet page 634.

Théorème

Soit A un compact de $\mathbb{R}_+ \times [0, \pi] \times [0, 2\pi]$, si $f : \psi(A) \longrightarrow \mathbb{R}$ est intégrable, alors

$$\iiint\limits_{\psi(A)} f\left(x,y,z\right) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint\limits_{A} r^2 \sin\theta f\left(r\sin\theta\cos\varphi,r\sin\theta\sin\varphi,r\cos\theta\right) \mathrm{d}r \mathrm{d}\theta \mathrm{d}\varphi$$

En particulier,

$$\mathcal{V}\left(\psi\left(A\right)\right) = \iiint_{A} r^{2} \sin\theta dr d\theta d\varphi$$

Exemple Recalculons le volume de la sphère : $\overline{\mathcal{B}}(0,R) = \psi([0,R] \times [0,\pi] \times [0,2\pi])$ donc

$$\mathcal{V}\left(\overline{\mathcal{B}}\left(0,R\right)\right) = \int_{0}^{R} \left(\int_{0}^{\pi} \left(\int_{0}^{2\pi} r^{2} \sin\theta \, d\varphi\right) \, d\theta\right) dr$$

$$= \left(\int_{0}^{R} r^{2} \, dr\right) \times \left(\int_{0}^{2\pi} \, d\varphi\right) \times \left(\int_{0}^{\pi} \sin\theta \, d\theta\right)$$

$$= \frac{1}{3} R^{3} \left[-\cos\theta\right]_{0}^{\pi} 2\pi$$

$$= \frac{4}{3} \pi R^{3}$$

4.3.3 Cylindriques

Soit $\psi:(r,\theta,z)\in\mathbb{R}_+\times[0,2\pi]\times\mathbb{R}\longrightarrow(r\cos\theta,r\sin\theta,z)$. La jacobienne de ψ en (r,θ,z) est

$$\begin{pmatrix} \cos \theta & -r \sin \theta & 0 \\ \sin \theta & r \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \operatorname{Jac} \psi \left(r, \theta, z \right) = r$$

Théorème

Soit A un compact de $\mathbb{R}_+ \times [0, 2\pi] \times \mathbb{R}$, $f : \psi(A) \longrightarrow \mathbb{R}$ intégrable, alors

$$\iiint_{\psi(A)} f(x, y, z) dxdydz = \iiint_{A} rf(r\cos\theta, r\sin\theta, z) drd\theta dz$$

En particulier, si $\psi(A)$ est mesurable, alors

$$\mathcal{V}\left(\psi\left(A\right)\right) = \iiint_{A} r dr d\theta dz$$

Exemple Soit \mathcal{C} le cylindre $\{(x,y,z) \in \mathbb{R}^3 | z \in [0,h] \text{ et } x^2 + y^2 \leq R^2\}$. $\mathcal{E} = \psi(A)$ où $A = [0,R] \times [0,2\pi] \times [0,h]$ donc

$$\mathcal{V}(\mathcal{E}) = \int_0^R \left(\int_0^{2\pi} \left(\int_0^h r \, \mathrm{d}z \right) \, \mathrm{d}\theta \right) \, \mathrm{d}r$$
$$= \left(\int_0^R r \, \mathrm{d}r \right) \left(\int_0^{2\pi} \, \mathrm{d}\theta \right) \left(\int_0^h \, \mathrm{d}z \right)$$
$$= \pi R^2 h$$