Security

by Spencer Tiberi

Introduction

(https://video.cs50.net/cscie1a/2017/fall/lectures/security?
t=0m1s)

Our data is under constant threat, but how can we defend ourselves?

Privacy

(https://video.cs50.net/cscie1a/2017/fall/lectures/security?
t=0m22s)

- Keeping people away from things you don't want them to see
- Computers are among the lease secure devices you own
 - Data or files are stored on them as 0s and 1s
 - Can be financial info, photos, etc.

Deleting Files

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=1m13s)

- What does it mean to delete a file off of a hard drive?
 - Visually, it disappears from a desktop or folder
- Files are stored on a computer as 0s and 1s
- Some space needs to be allocated for the file
- The operating system has a file that keeps track of files an their location on disk
- Graphically, when a file is deleted, it moves to the trash (or recycle bin)
 - It can still be easily revived from here, until you empty the trash
- However, an operating system doesn't actually delete it from the hard drive
 - It simply forgets the location and existence of the file!

- One can theoretically recover data by looking for familiar patterns of bits
- So how do we delete more securely?
 - Re-saving a file with overridden information actually could not override the old bits but rather create more 0s and 1s stored on a hard drive!
 - Special software can wipe data off of a hard drive
- Who do computers have this obvious flaw with deleting?
 - What if we accidentally delete a file?
 - This structure allows for recovery
 - Wiping data also takes a lot of time, so it's much faster to just forget locations of data

Cookies

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=7m30s)

- A feature supported by HTTP
- Little values a web server puts on a user's browser
- Used to remember if a user has visited a website before
 - Allows you to not have to log in every time you visit or refresh a page
 - When you log into a web server, a cookie is planted on your browser
 - Stored in a database
 - Browser will send value to web server to remind of previous login
- When we make a request we send:

```
GET / HTTP/1.1
Host: example.com
```

We receive:

```
HTTP/1.1 200 OK
Set-Cookie: session=29823bf3-075a-433a-8754-707d05c418ab
```

- The server gives us a cookie.
- A cookie is like an ink-based hand stamp for an amusement park or club
- Wireless information can be intercepted
 - What if a hacker could obtain the cookie
 - Session hijacking attack
 - If you have already logged in, hacker can pretend to be you
- Encryption scrambles this value so hackers cannot easily use it

- Browser history remembers everywhere you've been and everything you've done there
 - Convenient if you want to recall a website you've visited
 - But, so can anyone else with access to your browser
- Can clear browser history and cookies
 - History likely not securely scrubbed
 - Will protect you from nosey friends
 - Websites will forget you visited as the cookies will be deleted as well!

Incognito Mode

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=17m12s)

- Can open up a typically different colored browser window
- Use if you want history automatically removed
- Useful when building a website as sometimes you want a browser to forget old iterations of your website build

Authentication

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=18m41s)

- All of this assumes you log in
- If you don't use a passcode to protect your device, anyone can pretend to be you
 - What if you lose your phone or device?

Passwords

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=20m6s)

- On a phone could only be a few digits
 - Not super secure
 - __ __ __
 - With numbers, each space has 10 options
 - 10 x 10 x 10 x 10 = 10,000 possibilities

- **0000-9999**
- On many smartphones, you will have to wait for an amount of time if you have entered a bad passcode
 - Slows down the process of someone guessing
- Add more digits or letters of the alphabet
- Using a-z, A-Z, 0-9
- __ __ __
- Each space now has 62 options (26 + 26 + 10)
- 62 x 62 x 62 x 62 = 14,776,336 possibilities
- Maybe you're super secure and you have a 20-char password
 - You could forget it
 - Annoying to type in repetitively
- No one fits all
 - Short = bad, longer = good
 - Don't use popular words and phrases
 - Hackers will look for words or common phrases
- Most common Passwords
 - 1. 123456
 - 2. 123456789
 - 3. qwerty
 - 4. 12345678
 - 5. 111111
 - 6. 1234567890
 - 7. 1234567
 - 8. password
 - 9. 123123
 - 10. 987654321
- Hackers have dictionaries of bad passwords that they can search through and try
- Random passwords
 - Usually have to confirm so it can be hard to replicate
- Using numbers to represent letter is common
 - 1 for l
 - 4 for A
- It's suggested you mix uppercase, lowercase, and and throw in numbers
 - Good to use misspellengs

- Don't put your post-it with your password on your monitor!
- Constant password changes can be a net negative
 - Can encourage easier passwords to help with memorization

Password Resetting (https://video.cs50.net/cscie1a/2017/fall/lectures/security?t=30m49s)

- What if you forget your password?
 - Often can click on a link to reset your password
 - Asks you to type email address or username
 - Typically, you get an email with a link
 - Hopefully this goes back to the same website!
 - It likely has a random value in the URL
 - Once back at the website, you update your password
- The website has a database
 - It generated a random number and stored it with a note indicating password recovery
 - The website assumes that anyone who has access to this value and to the user's email is you
- Typically, tech staff can't tell you what your password is
 - Odds are your password is encrypted (scrambled) or, more technically, hashed in their database
- Getting a password in email means that the password are not hashed or encrypted!
 - Also, sending a password over email opens that email to interception
 - This is a red flag if a website does this

<u>Using The Same Password</u> (https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=35m52s)

- You may have a favorite password that you reuse
 - Upside is that it's convenient
- However, what if one of the websites are hacked?
 - A hacker may try to use the password on other websites to see what she or he can get into!

<u>Password Managers</u> (https://video.cs50.net/cscie1a/2017/fall/lectures/security?t=37m15s)

- Difficult to remember all these passwords
- Software called password managers exist that store on your phone or hard drive all usernames and passwords in an encrypted way
 - You have a master password that logs you into everywhere!
 - Store it physically in somewhere like a safety deposit box
- Password managers create long random passwords and will log in for you
 - All websites have different passwords!
- However, if you lose the master password, you cannot get the accounts back!

Two Factor Authentication (https://video.cs50.net/cscie1a/2017/fall/lectures/security?t=39m22s)

- First factor is a password
 - Historically, something "only" the user knows
 - Can be guessed
- Second factor should be fundamentally different
 - Should be something you have
 - An RSA device displays a unique value that is synced with a server

- This number needs to be typed in too!
- As long as this device isn't stolen by someone with your password, they can't get in as easily

- Phones now run software that allows you to get a code and type them in
- Should think about what websites you care about the most and enable two factor authentication
 - Some companies can use sms (text messages)

Network security (https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=43m31s)

- So many of our current networks are wireless
 - You probably been conditioned to look for free wifi
 - Sometimes still might not connect for various reasons
- If the wireless connection has not padlock (no password to log in) the connection is not secure
 - You may still visit https or secure websites
 - However, everything you do on http sites can be seen
- What to do?
 - Don't use that network
 - Use a VPN (Virtual Private Network)
 - Connection to internet is encrypted

With an unsecured connection, anyone can access your data

VPN

(https://video.cs50.net/cscie1a/2017/fall/lectures/security?
t=46m57s)

- First establish encrypted connection to a server and let this server communicate for you
 - The connection between the VPN server and website can still be insecure!
- Because we are encrypting data through an algorithm, using a VPN can slow down speed

Firewall

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=49m19s)

- A physical firewall is a wall between connected buildings that prevents the spread of fire
- In the world of computer science, a firewall is software that looks at IP addresses and helps keep bad guys out and user data inside
- Helps prevent people from accessing your computer

Encryption

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=51m4s)

- Suppose I want to send a secret message for "HI"
 - HI → IJ
 - Change each letter by 1
 - The recipient needs to know how it changed to revert
- Plaintext → Cyphertext → Plaintext
 - HI → II → HI
- This is called a caesar cypher
 - Rotational cyphers are not that secure
 - Can be guessed easily
 - Not used for internet encryption
 - For this to work, recipient needs the key
 - To know the key, we need to agree in advance
 - Can't send it encrypted as well as they need the key!

Public Key Cryptography

(https://video.cs50.net/cscie1a/2017/fall/lectures/security?
t=54m44s)

- The last example with a caesar cypher is secret-key cryptography
 - Only one key
- In public key cryptography there are two keys, one public and one private
 - Mathematical relationship between them
 - Use public key to encrypt, private key to decrypt

Bob's private key can undo the effects of his public key

When Bob responds...

- Bob sends a message using Alice's public key
- Your browser has its own public and private keys
 - So does websites like Google and Amazon
 - This allows them to communicate securely with you
- Often this processes is used to exchange a secret key

Phishing

(https://video.cs50.net/cscie1a/2017/fall/lectures/security?
t=58m28s)

These kind of attacks have become so prevent that the following has been posted around

Phishing attacks are when an adversary sends a somewhat official-looking email

- May contain a link asking for a password or account info
- The email may contain an elaborate backstory "justifying" the request
- The malicious email is trying to obtain information from you
- Odds are that the link provided doesn't go to the website being claimed
 - Can go to a website that looks legit
 - People can just copy HTML
- Results in giving up private information
- It's healthy to distrust most email you get
 - Don't follow links, type in the address for the company yourself
 - Sketchy emails may have typographical errors

Malware

(https://video.cs50.net/cscie1a/2017/fall/lectures/security?

t=1h2m10s)

- Malicious software can also be sent via email
- Windows is particularly vulnerable
- Software can be injected into your browser and your computer to erase your hard drive, make your computer send spam, or hold your data hostage
- Some malware encrypts your data and asks for large sums of money to get the key to decrypt it
 - Key could not even work!
 - This is called ransomware
- Malware can ultimately do anything on your computer

Trust

(https://video.cs50.net/cscie1a/2017/fall/lectures/security? t=1h3m53s)

- At the end of the day, all of security and privacy boils down to trust
 - People around you
 - Algorithms/software
 - Manufacturers
- We've downloaded software with trust that it will only do what it claims
 - Word could log your key strokes
 - Chrome could monitor you even when not on Google's website
 - Snapchat could not delete posts after being seen
- There have been cases where software was written to cover tracks of being monitored!
- Who's to say the software we're using is actually doing what we say?
- It's east to curl up into a ball and worry, but we need to decide who to trust
- Security measures make it more difficult for someone to be malicious, but ultimately they can't quarantee privacy
- You have to decide what data you're comfortable with storing, what you view on the internet, who to trust, and how much to trust them