PGP SL Eff Prod 1

Assistance

Routine Description Ð importFiles Import file(s) into H₂O ■ importSqlTable Import SQL table into H₂O Get a list of frames in H₂O ■ getFrames **X** splitFrame Split a frame into two or more frames mergeFrames Merge two frames into one Get a list of models in H₂O & getModels getGrids Get a list of grid search results in H₂O getPredictions Get a list of predictions in H₂O **Æ** getJobs Get a list of jobs running in H₂O ♣ runAutoML Automatically train and tune many models **♥** buildModel Build a model Import a saved model importModel predict Make a prediction

(Import Files

1 / 1 files imported.

Files C:\Users\ritwi\Desktop\ripik ai\Sri Lanka Efficiency Use Case\flat file 180ML DCSL LW HIP - outlier removed.csv

Actions Parse these files...

Setup Parse

Saarch	h)/ co	lumn	name
oearcii.	DV (.()		паше

	,							
1	Date	Time 🗸	16-Dec-21	17-Dec-21	18-Dec-21	19-Dec-21	06-Jan-22	07-Jan-22
2	Adj_eff	Numeric 🗸	86.78770036	85.3426893	88.30009807	81.12080103	84.57968192	88.35278426
3	P5_eff	Numeric 🗸	91.3	92	91.9	91.8	81.1	83.3
4	P5_sap_drav	Numeric 🗸	56.78	57.2	56.81	56.95	56.37	56.19
5	P5_actual_(Numeric 🗸	56.8	57.2	56.8	57	56.4	56.2
6	P5_seed	Numeric 🗸] 14	22	24	21	20	7
7	Total SAP I	Numeric 🗸	305.99	306.74	306.16	309.86	308.68	302.49
8	Adjusted D	Numeric 🗸	305.7	306.4	305.9	309.6	308.1	299.9
9	Total Cull	Numeric 🗸	30	30	30	30	31	31
10	Melting co	Numeric 🗸	10393	10285	10375	10359	10383	10617
11	Barrier Boo	Numeric 🗸	5989	5808	5562	6346	7706	6838
12	Capacitive	Numeric 🗸	30410	30526	31083	31047	31997	30786
13	Boosting (Numeric 🗸	36399	36334	36645	37393	39703	37624
14	Barrier Boo	Numeric 🗸	19.57	18.93	18.17	20.48	24.96	22.61
15	Capacitive	Numeric 🗸	99.38	99.52	101.53	100.2	103.66	101.78
(Previous page	→ Next page						

■ Parse

₹ Job

Run Time 00:00:00.36 Remaining Time 00:00:00.0

Type Frame

Key **Q** flat_file_180ML_DCSL_LW_HIP___outlier_removed.hex

Description Parse Status DONE Progress 100%

Done.

Actions Q View

flat_file_180ML_DCSL_LW_HIP___outlier_removed.hex

35 157 33KB **COLUMN SUMMARIES **Barrier Boosting (kWh) int 0 0 0 0 3922.0 8312.0 6586.1429 Capacitive Boosting (kWh) int 0 0 0 0 26403.0 31997.0 30741.4857 Boosting (kWh) int 0 0 0 0 31333.0 39703.0 37327.6286
Barrier o 0 0 0 3922.0 8312.0 6586.1429 Boosting (kWh) o 0 0 0 26403.0 31997.0 30741.4857 Boosting (kWh)
Barrier Boosting (kWh) Capacitive Boosting (kWh) O O O O O O O O O O O O O
Boosting (kWh) int 0 0 0 0 3922.0 8312.0 6586.1429 Capacitive int 0 0 0 0 26403.0 31997.0 30741.4857 Boosting (kWh)
Boosting (kWh)
Posting (MMA) int 0 0 0 0 21222 0 20702 0 27227 6206
5005ting (kwii) iiit 0 0 0 51555.0 59705.0 57527.0200
Barrier Boosting Per real 0 0 0 0 12.6000 26.7700 21.4617 ton (kWh/ton)

წმგნყrnace Consumption	<i>type</i> real	Missing 0	Zeros 0	+ <i>Inf</i> 0	- In∱	min 27.2310	max 28.9280	mean 28.3586	
(MT)									
F0-Furnace									-
Consumption (kg per MT)	real	0	0	0	0	90.4700	95.2900	92.3640	- 1
LPG -WE/FHs Consumption(kg)	int	0	0	0	0	5212.0	5874.0	5527.4571	10
Melting Energy -Kcal//Draw of glass	int	0	0	0	0	985.0	1037.0	1006.4000	:
Bottom Front (oC)	int	0	0	0	0	1212.0	1231.0	1221.7143	
4									>
← Previous 20 Columns → Next 20 Columns CHUNK COMPRESSION SUMMARY									
FRAME DISTRIBUTION SUMMARY									

X Split Frame

■ Split Frames

Туре	Key	Ratio
⊞	frame_0.750	0.75
⊞	frame 0.250	0.25

Build a Model

Select an algorithm: Distributed Random Forest

PARAMETERS

ignored_columns	Search	Names of columns to ig	
	Showing page 1 of 16154 ignored.	·	training.
	✓ Date	TIME	
	✓ Adj_eff	REAL	
	✓ P5_eff	REAL	
	☐ P5_sap_draw	REAL	
	☐ P5_actual_draw	REAL	
	☐ P5_seed	INT	
	☐ Total SAP Draw	REAL	
	☐ Adjusted Draw	REAL	
	☐ Total Cullet %	INT	
	☐ Melting cost-Rs/ton/Draw	INT	
	☑ All ☐ None	← Previous 10 → Next 10	
	Only show columns with more than 0	% missing values.	
ignore_const_cols	✓		Ignore constant column
ntrees	10		Number of trees.
max_depth	20		Maximum tree depth (0 unlimited).
min_rows	1		Fewest allowed (weight observations in a leaf.
nbins	20		For numerical columns
			build a histogram of (at this many bins, then spl best point
seed	-1		Seed for pseudo randor
			number generator (if ap
mtries	-1		Number of variables rai sampled as candidates a
			split. If set to -1, defaul
			sqrt{p} for classification for regression (where p of predictors
sample_rate	0.632		Row sample rate per tre
			0.0 to 1.0)
A D V A N C E D			
score_each_iteration			Whether to score durin iteration of model train
score_tree_interval	0		Score the model after e many trees. Disabled if
fold_column	(Choose)	~	Column with cross-valid
,5.55514.1111	(•	fold index assignment probservation.
offset_column	(Choose)	~	Offset column. This will
			added to the combinati
			columns before applyin function.

weights_column	(Choose)	~	Column with observation
			weights. Giving some observation a weight of
			equivalent to excluding
			the dataset; giving an
			observation a relative v 2 is equivalent to repea
			row twice. Negative we
			not allowed. Note: Wei
			per-row observation we and do not increase the
			the data frame. This is t
			the number of times a r
			repeated, but non-integ values are supported as
			During training, rows w
			higher weights matter r
			due to the larger loss fu pre-factor. If you set we
			for a row, the returned
			prediction frame at that
			zero and this is incorrec
			an accurate prediction, all rows with weight ==
nbins_top_level	1024		For numerical columns
			build a histogram of (at this many bins at the ro
			then decrease by factor
			per level
nbins_cats	1024		For categorical columns (factors), build a histogr
			this many bins, then spl
			best point. Higher value
			lead to more overfitting
r2_stopping	1.7976931348623157e+308		r2_stopping is no longe supported and will be is
			set - please use
			stopping_rounds,
			stopping_metric and stopping_tolerance inst
			Previous version of H20
			stop making trees wher
stanning rounds	0		metric equals or exceed Early stopping based or
stopping_rounds			convergence of
			stopping_metric. Stop it
			moving average of leng the stopping_metric do
			improve for k:=stopping
			scoring events (0 to dis
stopping_metric	AUTO 🗸		Metric to use for early :
			(AUTO: logloss for class deviance for regression
			anonomaly_score for Is
			Forest). Note that custo
			custom_increasing can used in GBM and DRF
			Python client.
stopping_tolerance	0.001		Relative tolerance for m
			based stopping criterio
			relative improvement is least this much)

max_runtime_secs	0	Maximum allowed runt seconds for model train 0 to disable.
checkpoint		Model checkpoint to re training with.
col_sample_rate_per_tree	1	Column sample rate per (from 0.0 to 1.0)
min_split_improvement	0.00001	Minimum relative impro in squared error reducti split to happen
histogram_type	AUTO 🗸	What type of histogram for finding optimal split
categorical_encoding	AUTO 🗸	Encoding scheme for ca features
distribution	AUTO 🗸	Distribution function
custom_metric_func		Reference to custom ev function, format: `language:keyName=fu
export_checkpoints_dir		Automatically export ge models to this directory
gainslift_bins	-1	Gains/Lift table number 0 means disabled Defa -1 means automatic bin
auc_type	AUTO 🗸	Set default multinomial type.
EXPERT		
build_tree_one_node		Run on one node only; network overhead but t cpus used. Suitable for datasets.
sample_rate_per_class		A list of row sample raticles (relative fraction for class, from 0.0 to 1.0), for tree
binomial_double_trees		For binary classification 2x as many trees (one p - can lead to higher acc
col_sample_rate_change_per_level	1	Relative change of the c sampling rate for every (must be > 0.0 and <= 2
calibrate_model		Use Platt Scaling to calc calibrated class probabi Calibration can provide accurate estimates of c probabilities.
calibration_frame	(Choose)	Calibration frame for PI Scaling
check_constant_response		Check if response colur constant. If enabled, the exception is thrown if t response column is a covalue. If disabled, then n will train regardless of t response column being constant value or not.

≆ Job

 Run Time
 00:00:00.133

 Remaining Time
 00:00:00.0

 Type
 Model

 Key
 Q drf-eb12b88c-f929-443f-9e22-aadee8ef0390

 Description
 DRF

 Status
 DONE

 Progress
 100%

 Done.

 Actions
 Q View

⊘ Model

Model ID: drf-eb12b88c-f929-443f-9e22-aadee8ef0390

Algorithm: Distributed Random Forest

▶ MODEL PARAMETERS

▼ SCORING HISTORY - DEVIANCE

▼ VARIABLE IMPORTANCES

► OUTPUT

COLUMN_TYPES

OUTPUT - MODEL SUMMARY

OUTPUT - SCORING HISTORY

OUTPUT - TRAINING_METRICS

OUTPUT - VALIDATION_METRICS

OUTPUT - VARIABLE IMPORTANCES

PREVIEW POJO

Preview POJO

Partial Dependence

≆ Job

CS

Run Time 00:00:00.135

Remaining Time 00:00:00.0

Type PartialDependence

Key Q pdp-b5496bf8-1a11-41c9-b28f-a0ed2ee61cf3

Description PartialDependence

Status DONE

Progress 100%

Done.

Actions Q View

⊞ Partial Dependence Summary

Model ID: drf-eb12b88c-f929-443f-9e22-aadee8ef0390

Frame ID: flat_file_180ML_DCSL_LW_HIP___outlier_removed.hex

Show PDP Data Table?

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'P5_SEED'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'TOTAL CULLET %'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'BARRIER BOOSTING (KWH)'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'BOOSTING (KWH)'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'BARRIER BOOSTING PER TON (KWH/TON)'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FO DENSITY (SPECIFIC GRAVITY)'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FO L/TON'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 1 BOTTOM TEMPERATURE'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 1 MIDDLE TEMPERATURE'.

♥ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 1 TOP TEMPERATURE'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 2 TEMPERATURE'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 3 TEMPERATURE'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 4 TEMPERATURE'.

Tot eneat e_eme_po_zone_ i_emper deat e

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FOREHEART LINE P5 ZONE 5 TEMPERATURE'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'DENSITY (G/CM3)'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'SIO2'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'AL2O3'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'FE2O3'.

♥ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'CAO'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'MGO'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'NA2O'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'K2O'.

▼ PARTIAL DEPENDENCE PLOT OF MODEL DRF-EB12B88C-F929-443F-9E22-AADEE8EF0390 ON COLUMN 'TIO2'.

4