Aufgabe

Aufgabe 1 (Charakterisierung einer Algebra). (a) Zeigen Sie: Eine Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ lässt sich äquivalent charakterisieren durch die Axiome

```
(i)' \varnothing \in \mathcal{A};
```

(ii)'
$$A \in \mathcal{A} \Longrightarrow A^c \in \mathcal{A}$$
;

(iii)'
$$A, B \in \mathcal{A} \Longrightarrow A \cup B \in \mathcal{A}$$
.

oder

- (i)" $\varnothing, \Omega \in \mathcal{A}$;
- (ii)" $A, B \in \mathcal{A} \Longrightarrow A\Delta B \in \mathcal{A};$
- (iii)" $A, B \in \mathcal{A} \Longrightarrow A \cap B \in \mathcal{A}$.
- (b) Eine Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ bildet mit den Operationen \cup und \cap sowie der Negation A^c eine Boolesche Algebra.
- (c) Eine Algebra $\mathcal{A} \subset \mathcal{P}(\Omega)$ bildet mit der Addition Δ und der Multiplikation \cap einen kommutativen Ring mit Eins.

Lösung

Zunächst erinnern wir uns an die Standarddefinition einer Algebra: Eine Teilmenge $\mathcal{A} \subset \mathcal{P}(\Omega)$ heißt Algebra, wenn

- 1. $\Omega \in \mathcal{A}$,
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$ (Abgeschlossenheit unter Komplementbildung),
- 3. $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$ (Abgeschlossenheit unter endlicher Vereinigung).

Teil (a): Wir zeigen die Äquivalenz der verschiedenen Charakterisierungen. Standard ⇔ Erste Charakterisierung:

 $\overline{\text{Standard}} \Rightarrow \overline{\text{Erste Charakterisierung:}}$ Sei \mathcal{A} eine Algebra im Standardsinne.

- Da $\Omega \in \mathcal{A}$ und \mathcal{A} unter Komplementbildung abgeschlossen ist, folgt $\emptyset = \Omega^c \in \mathcal{A}$. Damit ist (i)' erfüllt.
- Die Axiome (ii)' und (iii)' sind identisch mit den Axiomen (ii) und (iii) der Standarddefinition.

Erste Charakterisierung \Rightarrow Standard: Sei \mathcal{A} eine Menge, die (i)', (ii)', (iii)' erfüllt.

- Da $\emptyset \in \mathcal{A}$ nach (i)' und \mathcal{A} unter Komplementbildung abgeschlossen ist nach (ii)', folgt $\Omega = \emptyset^c \in \mathcal{A}$. Damit ist (i) erfüllt.
- Die Axiome (ii) und (iii) sind identisch mit (ii)' und (iii)'.

Standard ⇔ Zweite Charakterisierung:

Standard \Rightarrow Zweite Charakterisierung: Sei \mathcal{A} eine Algebra im Standardsinne.

• Nach Definition gilt $\Omega \in \mathcal{A}$, und wie oben gezeigt $\emptyset = \Omega^c \in \mathcal{A}$. Damit ist (i)" erfüllt.

• Für $A, B \in \mathcal{A}$ müssen wir zeigen, dass $A\Delta B \in \mathcal{A}$. Die symmetrische Differenz lässt sich schreiben als

$$A\Delta B = (A \setminus B) \cup (B \setminus A) = (A \cap B^c) \cup (B \cap A^c).$$

Da \mathcal{A} unter Komplementbildung abgeschlossen ist, gilt $A^c, B^c \in \mathcal{A}$. Wir zeigen zunächst, dass \mathcal{A} auch unter Durchschnitt abgeschlossen ist. Für $A, B \in \mathcal{A}$ gilt nach De Morgan:

$$A \cap B = (A^c \cup B^c)^c$$
.

Da $A^c, B^c \in \mathcal{A}$, folgt $A^c \cup B^c \in \mathcal{A}$ nach (iii), und damit $A \cap B = (A^c \cup B^c)^c \in \mathcal{A}$ nach (ii). Also ist \mathcal{A} unter Durchschnitt abgeschlossen.

Nun können wir folgern: $A \cap B^c \in \mathcal{A}$ und $B \cap A^c \in \mathcal{A}$, und damit

$$A\Delta B = (A \cap B^c) \cup (B \cap A^c) \in \mathcal{A}.$$

Somit ist (ii)" erfüllt.

• (iii)" haben wir bereits im vorherigen Punkt gezeigt.

Zweite Charakterisierung \Rightarrow Standard: Sei \mathcal{A} eine Menge, die (i)", (ii)", (iii)" erfüllt.

- (i) ist erfüllt, da $\Omega \in \mathcal{A}$ nach (i)".
- Für $A \in \mathcal{A}$ zeigen wir $A^c \in \mathcal{A}$. Es gilt

$$A^c = A\Delta\Omega$$
.

Dies sieht man wie folgt: $A\Delta\Omega = (A\cap\Omega^c) \cup (\Omega\cap A^c) = (A\cap\varnothing) \cup A^c = \varnothing \cup A^c = A^c$. Da $A, \Omega \in \mathcal{A}$ und \mathcal{A} unter Δ abgeschlossen ist, folgt $A^c \in \mathcal{A}$. Damit ist (ii) erfüllt.

• Für $A, B \in \mathcal{A}$ zeigen wir $A \cup B \in \mathcal{A}$. Es gilt

$$A \cup B = (A\Delta B)\Delta(A \cap B).$$

Dies kann man durch elementare Mengenoperationen verifizieren: Sei $x \in \Omega$. Dann:

$$x \in (A\Delta B)\Delta(A \cap B) \Leftrightarrow x \in (A\Delta B) \text{ und } x \notin (A \cap B)$$
 (1)

oder
$$x \notin (A\Delta B)$$
 und $x \in (A \cap B)$ (2)

$$\Leftrightarrow (x \in A \text{ xor } x \in B) \text{ und } \neg (x \in A \text{ und } x \in B)$$

(3)

oder $\neg(x \in A \text{ xor } x \in B) \text{ und } (x \in A \text{ und } x \in B)$

(4)

$$\Leftrightarrow x \in A \text{ oder } x \in B \tag{5}$$

$$\Leftrightarrow x \in A \cup B. \tag{6}$$

Da $A, B \in \mathcal{A}$, folgt $A \cap B \in \mathcal{A}$ nach (iii)" und $A \Delta B \in \mathcal{A}$ nach (ii)". Damit auch $(A \Delta B) \Delta (A \cap B) = A \cup B \in \mathcal{A}$ nach (ii)". Somit ist (iii) erfüllt.

Teil (b): Wir zeigen, dass $(\mathcal{A}, \cup, \cap, \cdot^c)$ eine Boolesche Algebra bildet. Eine Boolesche Algebra ist eine Menge mit zwei binären Operationen und einer unären Operation, die folgende Axiome erfüllt:

1. Kommutativität: Für alle $A, B \in \mathcal{A}$ gilt:

$$A \cup B = B \cup A$$
 und $A \cap B = B \cap A$.

Dies folgt direkt aus der Kommutativität der Mengenoperationen.

2. Assoziativität: Für alle $A, B, C \in \mathcal{A}$ gilt:

$$(A \cup B) \cup C = A \cup (B \cup C)$$
 und $(A \cap B) \cap C = A \cap (B \cap C)$.

Dies folgt direkt aus der Assoziativität der Mengenoperationen.

3. Absorption: Für alle $A, B \in \mathcal{A}$ gilt:

$$A \cup (A \cap B) = A$$
 und $A \cap (A \cup B) = A$.

Dies sind bekannte Eigenschaften von Mengenoperationen.

4. **Distributivität:** Für alle $A, B, C \in \mathcal{A}$ gilt:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \tag{7}$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \tag{8}$$

Dies sind die Distributivgesetze für Mengenoperationen.

5. Komplementarität: Für jedes $A \in \mathcal{A}$ existiert ein Komplement $A^c \in \mathcal{A}$ mit:

$$A \cup A^c = \Omega$$
 und $A \cap A^c = \varnothing$.

Da \mathcal{A} eine Algebra ist, existiert für jedes $A \in \mathcal{A}$ das Komplement $A^c \in \mathcal{A}$, und die Eigenschaften folgen aus der Definition des Mengenkomplements.

6. Neutrale Elemente: Es existieren $0, 1 \in A$ mit:

$$A \cup 0 = A$$
 und $A \cap 1 = A$ für alle $A \in \mathcal{A}$.

Wir setzen $0 = \emptyset$ und $1 = \Omega$. Da \mathcal{A} eine Algebra ist, gilt $\emptyset, \Omega \in \mathcal{A}$, und die Eigenschaften folgen aus $A \cup \emptyset = A$ und $A \cap \Omega = A$.

Alle Axiome einer Booleschen Algebra sind erfüllt, und alle verwendeten Operationen sind in \mathcal{A} wohldefiniert, da \mathcal{A} eine Algebra ist.

Teil (c): Wir zeigen, dass (A, Δ, \cap) einen kommutativen Ring mit Eins bildet.

Ein kommutativer Ring mit Eins benötigt:

1. (A, Δ) ist eine abelsche Gruppe:

- Assoziativität: Für alle $A, B, C \in \mathcal{A}$ gilt $(A\Delta B)\Delta C = A\Delta(B\Delta C)$. Dies folgt aus der Assoziativität der symmetrischen Differenz. Wir können dies elementar zeigen: Ein Element x ist genau dann in $(A\Delta B)\Delta C$, wenn es in einer ungeraden Anzahl der Mengen A, B, C enthalten ist. Diese Eigenschaft ist symmetrisch in A, B, C, daher ist die Operation assoziativ.
- Neutrales Element: Es existiert $0 \in \mathcal{A}$ mit $A\Delta 0 = A$ für alle $A \in \mathcal{A}$. Wir setzen $0 = \emptyset$. Dann gilt $A\Delta \emptyset = A$ für alle $A \in \mathcal{A}$.
- Inverse Elemente: Für jedes $A \in \mathcal{A}$ existiert $-A \in \mathcal{A}$ mit $A\Delta(-A) = 0$.

Jedes Element ist sein eigenes Inverses: $A\Delta A = \emptyset$ für alle $A \in \mathcal{A}$.

• Kommutativität: Für alle $A, B \in \mathcal{A}$ gilt $A\Delta B = B\Delta A$. Dies folgt direkt aus der Symmetrie der Definition von Δ .

2. (A, \cap) ist ein kommutatives Monoid:

- Assoziativität: Für alle $A, B, C \in \mathcal{A}$ gilt $(A \cap B) \cap C = A \cap (B \cap C)$. Dies folgt aus der Assoziativität des Mengendurchschnitts.
- Neutrales Element: Es existiert $1 \in \mathcal{A}$ mit $A \cap 1 = A$ für alle $A \in \mathcal{A}$. Wir setzen $1 = \Omega$. Dann gilt $A \cap \Omega = A$ für alle $A \in \mathcal{A}$.
- Kommutativität: Für alle $A, B \in \mathcal{A}$ gilt $A \cap B = B \cap A$. Dies folgt aus der Kommutativität des Mengendurchschnitts.
- 3. **Distributivität:** Für alle $A, B, C \in \mathcal{A}$ gilt:

$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C).$$

Zum Beweis: Ein Element x ist genau dann in $A \cap (B\Delta C)$, wenn $x \in A$ und $x \in B\Delta C$, also wenn $x \in A$ und $(x \in B \text{ xor } x \in C)$. Dies ist äquivalent zu: $(x \in A \text{ und } x \in B) \text{ xor } (x \in A \text{ und } x \in C)$, was genau bedeutet $x \in (A \cap B)\Delta(A \cap C)$.

Damit haben wir gezeigt, dass (A, Δ, \cap) alle Axiome eines kommutativen Rings mit Eins erfüllt. Die Nullelement ist \emptyset und das Einselement ist Ω .