Thesis presentation

Degree:

Joint Master of Science in Hydroinformatics and Water Management

Tampere, August 21st, 2019

Urban sanitary sewer modelling in cold climate

Test case using automatic calibration and precipitation forecast in Finland

Pedro Paulo Almeida Silva

Problem description

- Rainfall dependent Inflow and infiltration (RDII).
- Inflow roof or foundation drain connections. Infiltration pipe cracks, faulty manhole, etc.
- Overflows upstream caused by blockage or downstream by the WWTP bypass.
- Why model the RDII? Improve design, rehabilitation, operations.
- How can RDII be modeled in cold climates? Snow accumulation and snowmelt.

Objectives of the thesis

1. Use two different hydrological modeling approaches in SWMM to simulate RDII

2. Methodology for parameter estimation and calibration of the hydrological models.

3. Hydrological + hydraulic model for a case study of a town located in the south Finland.

4. Forecasted precipitation data and key aspects for a forecasting system.

Wet-weather flow components

Wet-weather flow components in a sanitary sewer network. Modified from [5]

Methodology

Hydrological model

- Generation
- Collection → **RDII**

Hydraulic model

- Collection **DWF**
- Transport
- Discharge to a disposal point

Division of the model set up

• Offline model set up

• Objectives 1, 2, and 3

- Choice of hydrological model
- Input data analysis
- Coupling with hydraulic model
- Parameter sensitivity and range
- Calibration and validation

• Online model set up

• Objective 4

- Routine for data acquisition
- Continuous simulation
- Routine for automatic calibration

Sewer model

• Methods to model the RDII *Bennett et al.* [5]

• Methods to model the RDII for a continuous simulation *Bennett et al.* [5]

Methods chosen to model RDII in this study

- Constant unit rate
- Percentage of stream flow
- Percentage of rainfall volume (R-value)
- Probabilistic methods

- Synthetic unit hydrograph
- Rainfall / flow regression (2 years of data)

RTK unit hydrograph

Physics-based model

SWMM

RTK unit hydrograph method

While precipitation = True

Introduction Methodology <u>Sewer model</u> Case study Results and conclusions

10

Physics-based model – conceptual adaptation for RDII Runoff

$$q = \frac{1.49 \cdot W \cdot S^{1/2}}{A \cdot n} \cdot (d - d_s)^{5/3} \underbrace{0.05}$$
 The other 95% is routed to the pervious area

Gauckler-Manning-Strickler formula

Physics-based model – conceptual adaptation for RDII Aquifer and groundwater flow

Introduction Methodology <u>Sewer model</u> Case study Results and conclusions

12

Losses

Losses relative to a sanitary sewer network

Topographic data and parameter estimation

- 6500 residents and 1550 DWF
- 3% average slope
- Delineated area of 1355 ha

- Soil type: Clay and sand (86%)
- Land use: ~ 30% impervious
- ~ 47 km of network

Meteorological and flow data

• Python script to treat the sanitary sewer flow data

EPA SSOAP tool to estimate RDII
 30% of RDII and 50% of RDII + GWI
 88% of annual RDII between January and May of 2018

• Historical meteorological data used: Precipitation, temperature, snow depth, evaporation, wind speed

• Python script to fetch and parse forecast data from FMI's and TMFG's APIs

Calibration

• Two seasons: Dormant and growth. One set of parameters calibrated for each season.

Physics-based

• Eight sensitive parameters found

Runoff: Percent routed

Width

Aquifer: Seepage rate

Hydraulic conductivity Hydr. Conduct. Slope A1 GWF coefficient

Snowpack: Min. melt coefficient

Max. melt coefficient

From ~51 to 8

Unit hydrograph

• Calibration using an optimization algorithm.

- Dormant and growth season:
 - Event-based calibration.
 - Calibrated parameters averaged for each season

Calibration PS2 PS1 Unit hydrograph 600 iterations JOKELA PUMPING STATION (PS1) NSE 0,86 80 20 4-Jul, 00:00 2-Jul, 00:00 2-Jul, 12:00 3-Jul, 00:00 3-Jul, 12:00 4-Jul, 12:00 5-Jul, 12:00 6-Jul, 00:00 6-Jul, 12:00 7-Jul, 00:00 5-Jul, 00:00 — Simulated — Observed - Adjusted — Observed - Raw TEHTAANTIE PUMPING STATION (PS2) NSE 0,86 60 50 **value** 30 20 10 2-Jul, 00:00 2-Jul, 12:00 3-Jul, 00:00 3-Jul, 12:00 4-Jul, 00:00 4-Jul, 12:00 5-Jul, 00:00 5-Jul, 12:00 6-Jul, 00:00 6-Jul, 12:00 7-Jul, 00:00

Introduction Methodology Sewer model Case study <u>Results and conclusions</u> 17

- Simulated - Observed - Adjusted - Observed - Raw

Dormant season – calibration and validation

Physics-based

Unit hydrograph

Table 5.8.: Season-based validation results of proposed hydrological models

model	season	event	NSE	volume error [%]
physics-	dormant	10, 11, 12; 13	0,20	+1,53
based	growth	7, 8, 9	0,40	+8,94
unit hydrograph	dormant	10, 11, 12, 13	0,12	(-8,40)
	growth	7, 8, 9	0,18	+6,51

Growth season – validation

e	vent	NSE	Volume Error [/%]	Peak Error[/%]	Peak shifted [h]
-S:	7	-1,79	+45,3	+46,0	0
Physics- based	8	0,64	+0,688	-5,93	0
Phy bas	9	0,55	-4,02	-40,92 ; -8,436	+3;+3
qc.	7	-4,24	+48,2	+56,2	0
graf	8	0,44	-4,74	+28,5	-1
Unit hydrograph	9	0,50	-10,6	+15,2;+6,04	-7 ; -2

- Event 7 overestimated
- Peak after event 7 underestimated
- Events 8 and 9 better simulated

Hypothesis with validation results

- Complete simulated snowmelt occurred even before than the observed
- Depth of snow measured different than the real snow cover within the catchment?
 Was the temperature the same?

Figure 5.5.: Observed snow depth versus simulated depth of water equivalent of 2019

Preliminary results with forecasted precipitation

Unit hydrograph

21

forecast rain gauge forecast update

observed —simulated - PB

- Six simulations with different initial conditions
- Snow storage and groundwater table

• For a forecasting system:
Use of a hot-start file or a routine updating the initial conditions

22

Conclusions

- Both hydrological models can be used to simulate RDII in cold climates. The physics-based model performed better than the RTK model proposed in this study during the dormant season.
- Methodology for estimation of parameters and their range seems to facilitate the model set up, calibration, and application for a near to real-time forecasting system.
- The proposed snowmelt routine for the unit hydrograph underestimates the snowmelt volume. Variable ratio of snow depth and depth of water equivalent should be introduced.
- The results are highly sensible to the meteorological inputs. Spatial distribution of the measurements affects the simulation results.
- Reducing the number of parameters to be calibrated in the physics-based model can be considered an important step towards the utilization of an optimization algorithm.
- Hot-start file or the update of initial conditions are also key aspects when implementing a forecasting system.

References

[1]	City of San Luis Obispo - CA. Sewer Lateral Pipe Material. URL https: //www.slocity.org/government/department-directory/utilitiesdepartment/wastewater/wastewater-collections/sewer-lateralpipe-material/.
[2]	Alan Cressler. Combined Stormwater/Sewage Overflow, Roswell, GA, Sept. 2009, 2009. URL https://www.usgs.gov/media/images/combined-stormwatersewageoverflow-roswell-ga-sept-2009.
[3]	Kimberly Davis. Solving Sewer Overflows Green Or Gray WERF Shows The Way, 2016. URL https://www.wateronline.com/doc/solving-sewer-overflowsgreen-or-gray-werf-shows-the-way-0001.
[4]	Kyung Sook Choi and James E. Ball. Parameter estimation for urban runoff modelling. <i>Urban Water</i> , 2002. ISSN 14620758. doi: 10.1016/S1462-0758(01)00072-3.
[5]	David Bennett, Reggie Rowe, Marie Strum, David Wood, Nancy Schultz, Kelly Roach, Mike Spence, and Virgil Adderley. Using ow prediction technologies to control sanitary sewer over-flows. Technical report, 1999.
[6]	Srinivas Vallabhaneni and Edward H Burgess. Computer Tools for Sanitary Sewer System Capacity Analysis and Computer Tools for Sanitary Sewer System. <i>Environmental Protection</i> , (October):1–104, 2007.

Thank you

Questions?