1 Single robot specs

$$G((battery_high_i) \rightarrow (X(\neg dock_i \land \neg go_to_charging_area_i \land \neg stop_offering_guidance_i))) \qquad (1)$$

$$G((\neg battery_high_i) \rightarrow (X(\neg undock_i \land ((\land_{e \in E_2} \neg e)Wcharging_i))) \qquad (2)$$

$$\text{where } E_2 = \{go_to_playing_area_i, offer_to_play_i, go_to_reception_area, offer_to_guide}\} \blacksquare$$

$$G((reached_playing_area_i) \rightarrow (X(\neg go_to_reception_area_iWoffer_to_play_i))) \qquad (3)$$

$$G((reached_reception_area_i) \rightarrow (X(\neg go_to_playing_area_iWoffer_guidance))) \qquad (4)$$

2 Coordination constraints

$$G((\neg at_least(\cup_i at_reception_i \wedge \cup_i going_to_reception_i, 1)) \rightarrow (X(\wedge_{e \in E_1} \neg e))$$

$$(5)$$
where $E_1 = \{go_to_playing_area_i, offer_to_play_i\}$
For each robot i ,
$$G(((battery_high_i \wedge at_least(\cup_i at_reception_i \wedge \cup_i going_to_reception_i, 1)) \rightarrow (X(\wedge_i \neg stop_offering_to_play_i))$$

$$(6)$$

$$G(at_most(\cup_i at_reception_i \land \cup_i going_to_reception_i, 2))$$
 (7)