

Objetivo: tiene como propósito el diseño y construcción de un brazo robótico cilíndrico utilizando distintas herramientas de programación, mecánicas y electrónicas para completar una interfaz con la cual el robot sea capaz de cumplir instrucciones para que pueda desplazarse en distinta direcciones, alturas y tomar objetos de diferentes pesos.

Justificacion: reconocer las herramientas básicas que son necesarias para el armado y construcción de un robot; analizar los modelos matemáticos que son requeridos para utilizar los métodos geométricos necesarios para el desplazamiento y posicionamiento del robot dependiendo de los grados de libertad que este tenga.

Marco Teórico

El brazo cilíndrico es uno de los más sencillo de calcular. Si conocemos los ejes XYZ, tomamos las variables X e Y para saber el resto de parámetros; el eje Z no interviene en el cálculo porque es en sí mismo un resultado. Necesitamos calcular el ángulo de giro y el módulo (o también llamado radio). Esto nos recuerda

al "sistema polar" visto el brazo desde

arriba.

Robots de Configuración Cilíndrica (RPP)

La primera articulación es de tipo rotacional, produciendo por consiguiente rotación en torno a la

base; en tanto que la segunda y tercera articulación es prismáticas. Se utilizan en operaciones de ensamblaje, manejo de máquinas-herramientas, soldaduras por puntos, y manejo, vaciado y moldeado de metales.

Un brazo robótico es un tipo de brazo mecánico, normalmente programable, con funciones parecidas a las de un brazo humano; este puede ser la suma total del mecanismo o puede ser parte de un robot más complejo.

Robot cilíndrico: Empleado para operaciones de ensamblaje, manipulación de máquinas herramientas, soldadura por punto y manipulación en máquinas de fundición a presión. Es un robot cuyos ejes forman un sistema de coordenadas cilíndricas.

Es una clase de robots que tienen movimiento rotacional en la base y dos ejes lineales perpendiculares, el segundo de ellos paralelo al de la base.

Usualmente este tipo de robots tiene una base rotativa, su primer segmento es capaz de deslizarse o extenderse hacia abajo o hacia arriba y lleva en su parte horizontal un segmento telescópico. Esta clase de robots son muy fácil de graficar y su envolvente de trabajo es muy intuitiva, pero son muy difíciles de implementar de manera efectiva ya que se requieren dos segmentos con movimientos lineales. En lo que es su distribución básica el código para su manipulación es relativamente simple.

Tiene una configuración TLO

Sus movimientos los realiza mediante coordenadas cilíndricas (α , ρ , z), Cuando las tareas a desarrollar o las maquinas servidas se encuentran alrededor del robot esta clase de robots son de gran ventaja.

Espacio de trabajo específico.

Las coordenadas cilíndricas son un sistema de coordenadas para definir la posición de un punto del espacio mediante un ángulo, una distancia con respecto a un eje y una altura en la dirección del eje.

Funcionamiento: Esta configuración de este tipo puede ser de interés en una célula flexible, con el robot situado en el centro de la célula sirviendo a diversas máquinas dispuestas radialmente a su alrededor.

Coordenadas cilíndricas: Son un sistema de coordenadas para definir la posición de un punto del espacio mediante un ángulo, una distancia con respecto a un eje y una altura en la dirección del eje.

VENTAJAS:

- Pueden llegar alrededor de sí mismo
- > El eje de rotación es más fácil de sellar
- Amplia área de trabajo por tamaño
- La programación es relativamente fácil
- Tiene alcance y altura de los ejes rígidos
- Es lo suficientemente rígido para manejar cargas pesadas a través del espacio de trabajo grande.
- Tiene un buen acceso en las cavidades y máquinas abiertas

Desventajas

- No se puede llegar por encima de sí mismo
- En ejes lineales es difícil de sellar
- No tendrá alcance alrededor de los obstáculos
- Unidades expuestas son difíciles de cubrir de polvo y líquidos

Definición de tareas

Propuesta de materiales

Material	Precio
Tubo de aluminio de 2 in	\$134
Baleros; 2 pulgadas ½ pulgada, 1 pulgada	\$ 60 c/u
Esparrago	\$ 80 c/m
Pinza del brazo robótico	\$346
Motores	\$
Engranes	\$50
Raspberry	\$1500
Total=	\$2350

Bosquejo

Denavit-Hatemberg

Se trata de un procedimiento sistemático para describir la estructura cinemática de una cadena articulada constituida por articulaciones con. Un solo grado de libertad. Para ello, a cada articulación se le asigna un Sistema de Referencia Local con origen en un punto Qi y ejes ortonormal es { X Y Z i i , , } , comenzando con un primer S.R fijo e inmóvil dado por los ejes { X Y Z 0 0 0 , , } , anclado a un punto fijo Q0 de la Base sobre la que está montada toda la estructura de la cadena. Este Sistema de Referencia no tiene por qué ser el Universal con origen en (0,0,0) y la Base canónica.

Los pasos del algoritmo genérico para la obtención de los parámetros DH se detallan a continuación (ver [1]):

- 1. Numerar los eslabones: se llamará "0" a la "tierra", o base fija donde se ancla el robot. "1" el primer eslabón móvil, etc.
- 2. Numerar las articulaciones: La "1" será el primer grado de libertad, y "n" el último.
- 3. Localizar el eje de cada articulación: Para pares de revolución, será el eje de giro. Para prismáticos será el eje a lo largo del cuál se mueve el eslabón.
- 4. Ejes Z: Empezamos a colocar los sistemas XYZ. Situamos los Zi-1 en los ejes de las articulaciones i, con i=1,...,n. Es decir, Z₀ va sobre el eje de la 1ª articulación, Z₁ va sobre el eje del 2º grado de libertad, etc.
- 5. Sistema de coordenadas 0: Se sitúa el punto origen en cualquier punto a lo largo de Zo. La orientación de Xo e Yo puede ser arbitraria, siempre que se respete evidentemente que XYZ sea un sistema dextrógiro.
- 6. Resto de sistemas: Para el resto de sistemas i=1,...,N-1, colocar el punto origen en la intersección de Zi con la normal común a Zi y Zi+1. En caso de cortarse los dos ejes Z, colocarlo en ese punto de corte. En caso de ser paralelos, colocarlo en algún punto de la articulación i+1.
- 7. Ejes X: Cada Xi va en la dirección de la normal común a Zi-1 y Zi, en la dirección de Zi-1 hacia Zi.
- 8. Ejes Y: Una vez situados los ejes Z y X, los Y tienen su direcciones determianadas por la restricción de formar un XYZ dextrógiro.
- **9.** Sistema del extremo del robot: El n-ésimo sistema XYZ se coloca en el extremo del robot (herramienta), con su eje Z paralelo a Z_{n-1} y X e Y en cualquier dirección válida.
- 10. Ángulos teta: Cada θi es el ángulo desde Xi-1 hasta Xi girando alrededor de Zi.
- **11. Distancias d**: Cada di es la distancia desde el sistema XYZ i-1 hasta la intersección de las normales común de Zi-1 hacia Zi, a lo largo de Zi-1.
- 12. Distancias a: Cada ai es la longitud de dicha normal común.
- 13. Ángulos alfa: Ángulo que hay que rotar Zi-1 para llegar a Zi, rotando alrededor de Xi.
- 14. Matrices individuales: Cada eslabón define una matriz de transformación:

$$egin{aligned} egin{aligned} i_{-1}\mathbf{A}_i &= egin{pmatrix} \cos heta_i & -\coslpha_i\sin heta_i & \sinlpha_i\sin heta_i & a_i\cos heta_i \ \sin heta_i & \coslpha_i\cos heta_i & -\sinlpha_i\cos heta_i & a_i\sin heta_i \ 0 & \sinlpha_i & \coslpha_i & d_i \ \hline 0 & 0 & 0 & 1 \ \end{pmatrix} \end{aligned}$$

15.Transformación total: La matriz de transformación total que relaciona la base del robot con su herramienta es la encadenación (multiplicación) de todas esas matrices: $T=0A_{11}A_2\cdots n-1A_n$

Eslabon	$\alpha i - 1$	$\propto i-1$	di	θi
1	0	360°	0	θ 1
2	L	0	d1	0
3	40 L	0	d2	0

Multiplicacion de matrices de los parametros D-H realizados en Matlab

Project

First Saved	Sunday, February 3, 2019
Last Saved	Sunday, February 3, 2019
Product Version	19.2 Release
Save Project Before Solution	No
Save Project After Solution	No

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4)

Geometry

TABLE 2
Model (A4) > Geometry

Model (A4) > Geometry		
Geometry		
Fully Defined		
Definition		
C:\Users\pedro\Desktop\piezas listas\Brazo esfuerzos en Ansys\Simulación de Brazo Cilíndrico_files\dp0\SYS\DM\SYS.scdoc		
SpaceClaim		
Meters		
Program Controlled		
Body Color		
Bounding Box		
459,49 mm		
505,31 mm		
585,11 mm		
Properties		
2,63e+006 mm³		
7,2851 kg		
1,		
Statistics		
7		

Active Bodies	4
Nodes	17185
Elements	8215
Mesh Metric	None
	Update Options
Assign Default Material	No
	Basic Geometry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	Yes
Parameters	Independent
Parameter Key	
Attributes	Yes
Attribute Key	
Named Selections	Yes
Named Selection Key	
Material Properties	Yes
	Advanced Geometry Options
Use Associativity	Yes
Coordinate Systems	Yes
Coordinate System Key	
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D

Mixed Import Resolution	None
Clean Bodies On Import	No
Stitch Surfaces On Import	No
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

TABLE 11
Model (A4) > Static Structural (A5) > Loads

	WICH	71 (M4) > Old	atic Structurai (<i>F</i>	13 <i>) ></i> Luaus		
Object Name	Pressure	Fixed Support	Pressure 2	Fixed Support 2	Fixed Support 3	Fixed Support 4
State			Fully Defir	ned		
			Scope			
Scoping Method	Geometry Selection					
Geometry	3 Faces		2 Faces	4 Faces	2 Faces	6 Faces
			Definition			
Туре	Pressure Fixed Support Press		Pressure	ı	ixed Suppor	t
Define By	Normal To	Normal To Nor				
Applied By	Surface Effect		Surface Effect			
Magnitude	5,e-006 MPa (ramped)		1,e-005 MPa (ramped)			
Suppressed	Suppressed No					

FIGURE 1 Model (A4) > Static Structural (A5) > Pressure

FIGURE 2 Model (A4) > Static Structural (A5) > Pressure 2

Solution (A6)

TABLE 12 Model (A4) > Static Structural (A5) > Solution

der (A4) > otatie off detail		
Object Name	Solution (A6)	
State	Solved	
Adaptive Mesh Refi	nement	
Max Refinement Loops	1,	
Refinement Depth	2,	
Information		
Status	Done	
MAPDL Elapsed Time	7, s	
MAPDL Memory Used	343, MB	
MAPDL Result File Size	27,625 MB	
Post Processing		
Beam Section Results	No	
On Demand Stress/Strain	No	

TABLE 13
Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

Object Name	Solution Information	
State	Solved	
Solution Inform	ation	
Solution Output	Solver Output	
Newton-Raphson Residuals	0	
Identify Element Violations	0	
Update Interval	2,5 s	
Display Points	All	
FE Connection Visibility		
Activate Visibility	Yes	
Display	All FE Connectors	
Draw Connections Attached To	All Nodes	
Line Color	Connection Type	

Visible on Results	No
Line Thickness	Single
Display Type	Lines

TABLE 14
Model (A4) > Static Structural (A5) > Solution (A6) > Results

Object Name	Total Deformation	
State	Solved	
:	Scope	
Scoping Method Geometry Selection		
Geometry	All Bodies	
De	efinition	
Туре	Total Deformation	
Ву	Time	
Display Time	Last	
Calculate Time History	Yes	
Identifier		
Suppressed	No	
F	Results	
Minimum	0, mm	
Maximum	5,094e-009 mm	
Average	4,9193e-011 mm	
Minimum Occurs On	SYS\Base cuadrada\Sólido1	
Maximum Occurs On	SYS\Base cuadrada\Sólido1	
Minimum Value Over Time		
Minimum	0, mm	
Maximum	0, mm	
Maximum Value Over Time		
Minimum	1,0188e-009 mm	
Maximum	5,094e-009 mm	

Information	
Time	2,e-004 s
Load Step	1
Substep	4
Iteration Number	5

FIGURE 3
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

TABLE 15
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation

Time [s]	Minimum [mm]	Maximum [mm]	Average [mm]
4,e-005		1,0188e-009	9,8392e-012
8,e-005	0,	2,0376e-009	1,9678e-011
1,4e-004		3,5658e-009	3,4435e-011
2,e-004		5,094e-009	4,9193e-011

FIGURE 4
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation > Figure

FIGURE 5
Model (A4) > Static Structural (A5) > Solution (A6) > Total Deformation > Figure 2

Material Data

Aluminum Alloy NL

TABLE 16
Aluminum Alloy NL > Constants

Aluminum Andy NE > Constants	
Density	2,77e-006 kg mm^-3
Specific Heat	8,75e+005 mJ kg^-1 C^-1

TABLE 17
Aluminum Alloy NL > Isotropic Elasticity

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
71000	0,33	69608	26692	

TABLE 18
Aluminum Alloy NL > Bilinear Isotropic Hardening

Yield Strength MPa	Tangent Modulus MPa	Temperature C
280,	500,	

TABLE 19 Aluminum Alloy NL > Color

Red	Green	Blue
130,	181,	143,

Structural Steel

TABLE 20 Structural Steel > Constants

Oti dotai di Otoci >	Outlotaillo
Density	7,85e-006 kg mm^-3
Coefficient of Thermal Expansion	1,2e-005 C^-1
Specific Heat	4,34e+005 mJ kg^-1 C^-1
Thermal Conductivity	6,05e-002 W mm^-1 C^-1
Resistivity	1,7e-004 ohm mm

TABLE 21 Structural Steel > Color

Red	Green	Blue
132,	139,	179,

TABLE 22

Structural Steel > Compressive Ultimate Strength

Compressive Ultimate Strength MPa
0,

TABLE 23 Structural Steel > Compressive Yield Strength

_	
	Compressive Yield Strength MPa
	250,

TABLE 24 Structural Steel > Tensile Yield Strength

Tensile Yield Strength MPa
250,

TABLE 25 Structural Steel > Tensile Ultimate Strength

Tensile Ultimate Strength MPa
460,

TABLE 26

Structural Steel > Isotropic Secant Coefficient of Thermal Expansion

Zero-Therma	Strain Reference Temperature C
	22,

TABLE 27 Structural Steel > S-N Curve

Structural Steel > 3-N Curve							
Alternating Stress MPa	Cycles	Mean Stress MPa					
3999,	10,	0,					
2827,	20,	0,					
1896,	50,	0,					
1413,	100,	0,					
1069,	200,	0,					
441,	2000,	0,					
262,	10000	0,					
214,	20000	0,					
138,	1,e+005	0,					
114,	2,e+005	0,					
86,2	1,e+006	0,					

TABLE 28 Structural Steel > Strain-Life Parameters

Strength Coefficient MPa	_	· ·	,	Cyclic Strength Coefficient MPa	Cyclic Strain Hardening Exponent
920,	-0,106	0,213	-0,47	1000,	0,2

TABLE 29 Structural Steel > Isotropic Elasticity

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2,e+005	0,3	1,6667e+005	76923	

Propuesta de control

Control ON/OFF o Todo/Nada

Este tipo de controlador, también llamado Todo o Nada, usa un algoritmo simple para solamente revisa si la variable de proceso está por encima o por debajo de un setpoint determinado. En términos prácticos, la variable manipulada o la señal

fase de

de control del controlador cambian entre "totalmente ON" o totalmente OFF, sin estados intermedios. Este tipo de accionamiento provoca un control muy impreciso de la variable de proceso, un ejemplo muy común es el control de temperatura con termostatos en aires acondicionados. El termostato activa el aire frio si (ON) la temperatura es mayor a la de referencia o setpoint y lo desactivan (OFF) cuando la temperatura es menor (o igual) al setpoint.

potencia se utilizará relevadores, para poder realizar los cambios de giro con los motores, evitando una posible falla o daño a la Raspberry pi 3 B+.

Applications

- Al controlar un Relé con Raspberry Pi, puede controlar diferentes cargas eléctricas como:
 - Luces
 - Aficionados
 - Tiras de LED
- Además, puede implementar un proyecto de automatización del hogar utilizando

Circuito

