

Precálculo - MACC

A continuación, se muestra cómo estarán constituidos los equipos de estudiantes para el primer este semestre.

Grupo	Integrante 1	Integrante 2
1	Santiago Arévalo	Santiago Aillón
2	Rafael Palacio	Ana Karina Pulido
3	Santiago Romero Lozano	Nicolas David Rogers
4	Laura Daniela Vargas	María Camila García
5	Carolina Rojano	Mariana Sánchez Enciso
6	Juan Daniel Casanova Prieto	Juan Sebastián Rodríguez
7	Andres Felipe Yañez	Nicolas Sarmiento Ospina
8	Gabriela Fonseca Encinales	Valentina Hernández
9	Julian David Tovar	Julian David Tovar
10	Laura Sofía Ortiz	

Instrucciones: La siguiente actividad se realizará en equipos de estudiantes. Cada equipo, entregará, vía Moodle, la solución de los problemas asignados, así:

- 1) Un PDF de la solución. Es clave que la presentación sea la mejor, de manera que lo propuesto por el equipo sea claramente entendible.
- 2) Un vídeo de no más de 7 minutos, en el que se evidencie una discusión entre los miembros del equipo presentando la solución a su problema. La idea es que todos expongan la solución. Para realizar este vídeo, realice una conversación grabada vía zoom, con sus usuarios institucionales. Para hacerlo, tenga en cuenta:
 - a. Uno de los miembros del equipo será anfitrión y generará la reunión virtual a grabar. Para ello, acceda a https://urosario.zoom.us/ y haga clic en anfitrión.
 - b. Una vez dentro de su "sala", haga clic en participantes y luego en invitar. Esto generará un *link* que debe enviarse a los demás miembros del equipo para que se unan a la conversación.
 - c. Una vez todos dentro, deben comenzar a grabar la discusión. Para ello, el anfitrión debe hacer clic en grabar y escoger grabar en PC, de manera que no quede en la nube, sino que guarde directamente en el computador.
 - d. Una vez finalicen la exposición y el archivo se guarde (automáticamente cuando se cierra la reunión), ubíquelo en su PC. Este será el archivo que subirá junto con el PDF descrito en 1).
- 3) El espacio de tarea estará disponible desde el 25-8-20 (05:00 pm) hasta el 29-8-20 (11:59 pm).
- 4) Solo un miembro del equipo debe subir el pdf y el vídeo. En ambos casos, debe estar marcado con los nombres de todos los integrantes.
- 5) La nota n de esta actividad es individual y resulta del siguiente cálculo: n = 0.5t + 0.5e, siendo t la calificación del vídeo y e la calificación individual de la exposición.

Sugerencia: Prueben el manejo en ZOOM, antes de grabar la discusión, de manera que todo lo logístico esté resuelto a priori.

Cada grupo deberá solucionar 3 ejercicios de la siguiente lista, así:

Equipos	Ejercicios
1, 5	1, 3, 5
2, 6, 9	2, 4, 5
3, 7, 10	1, 3, 5
4, 8	2, 4, 5

Actividad 1.1 (10 %)

- 1. Dados los intervalos A = [-4,1], B = (-3,0) y $C = \{x \in \mathbb{R} \mid -1 \le x \le 2\}$
 - a. Calcule $A \cap (B \cup C)$
 - b. Calcule $(A \cap B) \cup (A \cap C)$.
 - c. Con base en los literales a y b, ¿qué pueden conjeturar?
- 2. Dados los intervalos A = (-1.9), B = (0.8] y $C = \left\{ x \in \mathbb{R} \mid \frac{1}{2} < x < 9 \right\}$
 - a. Calcule $A \cap (B \cup C)$
 - b. Calcule $(A \cap B) \cup (A \cap C)$.
 - c. Con base en los literales a y b, ¿qué pueden conjeturar?
- 3. Dados los polinomios P(x) = -1 + x, $Q(x) = x^3 2x^2 + \frac{1}{2}x 1$ y $R(x) = -2x^2 5x + \frac{1}{3}$, calcule y simplifique $-2Q + \frac{1}{2}PR$.
- 4. Dados los polinomios P(x) = 3x + 2, $Q(x) = -x^3 \frac{5}{3}x + 3$ y $R(x) = 3x^2 + x 12$, calcule y simplifique P + Q PR.
- 5. Simplifique $\left(\frac{4x^2y^{-2}}{2x^{\frac{1}{2}}y^{-3}}\right)^{-\frac{1}{3}} \left(-3x^5y^{2/7}\right)(-2y^{-2})^{-1/4}$