Fisica per applicazioni di realtà virtuale

Anno Accademico 2022-23

Prof. Matteo Brogi

Dipartimento di Fisica, stanza B3, nuovo edificio

Lezione 6

Meccanica classica: lavoro ed energia (parte 1)

Sommario della unità

Concetti "derivati" dai principi della dinamica Concetti presenti nell'uso comune ma con accezione diversa Comprensione più "profonda" (ma anche più astratta) dei fenomeni osservati

- Lavoro in fisica
- Energia cinetica
- Teorema delle forze vive (lega lavoro ed energia)
- Forze conservative
- Segno del lavoro: lavoro "fatto su un corpo" / "subito da un corpo"
- Energia potenziale (elastica, gravitazionale)
- Energia meccanica (totale) e la sua conservazione
- Legame tra forza ed energia potenziale

Il lavoro in Fisica

Prodotto **scalare** tra forza e spostamento = modulo dello spostamento per componente parallela della forza

$$W = \overrightarrow{F} \cdot \overrightarrow{d}$$
 unità: N m = J (Joule) ("work")

Il lavoro in Fisica: esercizi di base

Esercizio 4.01: Una cassa di massa 55 kg viene trainata per un tratto lungo 40 m lungo un pavimento orizzontale mediante una forza costante di 100 N esercitata da una persona e agente con un angolo di 37°; il pavimento esercita una forza d'attrito costante di 50 N. Determinare:

- a) il lavoro compiuto da ciascuna forza agente sulla cassa;
- **b**) il lavoro totale compiuto sulla cassa.

Esercizio 4.02: Uno scalatore trasporta uno zaino di massa 15 kg a velocità costante su per una collina di altezza 10 m. Determinare:

- a) il lavoro compiuto dallo scalatore sullo zaino;
- b) il lavoro compiuto dalla gravità sullo zaino;
- c) il lavoro totale compiuto sullo zaino.

Il lavoro per forze non costanti

Intervalli finiti Δx su cui F = costante

Intervalli infinitesimi dx e uso F(x) (valore al punto x)

Legame tra lavoro ed energia

L'energia è la capacità di compiere lavoro

Applico una forza Compio (Fornisco energia

L'energia cinetica è la capacità di compiere lavoro dovuta allo stato di moto di un corpo

Energia cinetica (K - "kinetic")

Il teorema delle forze vive

Energia cinetica

$$K = \frac{1}{2}mv^2$$

Unità: J

L'energia cinetica è una quantità solo positiva

$$W = K_2 - K_1 = \Delta K$$

Teorema delle forze vive

Il lavoro compiuto su un corpo equivale al cambiamento della sua energia cinetica

Attenzione al **segno**: W > 0 se K aumenta

Confronta con il risultato dell'es. 5.02: $\Delta K = 0$ quindi W=0

Forze conservative e non conservative

Conservative

 $W_{AB} = W_{AC} + W_{CB}$ il lavoro non dipende dal percorso

Non conservative

 $W_{AB} \neq W_{AC} + W_{CB}$ il lavoro dipende dal percorso

Conservative

Il lavoro lungo un percorso chiuso è zero

gravitazionale, elastica

esempi:

Per es. quando agiscono forze "dissipative": parte del lavoro è convertita in calore

esempio: attrito

Il segno del lavoro: attenzione agli errori!

"Da cosa" vs. "su cosa" è compiuto il lavoro?

III principio

F (dal martello sul chiodo) =

-F (dal chiodo sul martello)

W_{MC} (sul chiodo / dal martello)

-W_{CM} (dal chiodo / sul martello)

ΔK aiuta: il martello **perde** energia cinetica, il chiodo la **guadagna**

Diventa più complesso quando si parla di "forze" invece di oggetti (per es. "il lavoro compiuto dalla forza di gravità")

Energia potenziale (gravitazionale)

L'energia **potenziale** (gravitazionale) è la capacità di compiere lavoro grazie alla **posizione** in un campo di forze conservative (nel campo gravitazionale)

Fase 1
Sollevo il mattone
molto lentamente
(v costante, a=0)

Fase 2
Lascio andare il
mattone sotto
gli effetti della gravità

Fase 3
Il mattone urta un
cuneo che si conficca
nel terreno

Verso la definizione dell'energia potenziale

Fase 1: sollevamento del mattone senza accelerazione (ideale)

$$\sum \overrightarrow{F} = m \overrightarrow{a}$$
 II principio $F_A - mg = 0$ a=0 $F_A = mg$

La forza applicata F_A bilancia la forza peso $F_G = mg$

$$W_A = F_A d \cos(0) = mg(h_2 - h_1) = mgh$$
 [lavoro della F_A sul mattone] $W_G = F_G d \cos(\pi) = -mg(h_2 - h_1) = -mgh$ [lavoro della F_G sul mattone]

La forza applicata FA "compie lavoro contro la forza di gravità"

Verso la definizione dell'energia potenziale

Fase 2: caduta libera del mattone

Lavoro della forza di gravità sul mattone è positivo
$$W_G = F_G \Delta h \cos(\pi) = -mg \left(h_{finale} - h_{iniziale} \right) = mgh$$

Moto uniformemente accelerato

$$v^2 = 0 + 2(-g)(h_{finale}-h_{iniziale}) = 2gh$$

 $K = (mv^2)/2 = mgh (>0)$

Coerente con il teorema delle forze vive: $\Delta K > 0$ quindi W > 0

Il mattone ha acquisito energia (cinetica) grazie alla sua posizione "sopraelevata" in un campo gravitazionale

Verso la definizione dell'energia potenziale

Fase 3: urto tra il mattone e il cuneo

Se il mattone ha acquisito energia, allora ha acquisito la capacità di compiere lavoro (per la definizione di energia) Verifichiamo che è vero

Usiamo il teorema delle forze vive

Il mattone **perde** en. cinetica: $\Delta K = K_{finale} - K_{iniziale} = 0 - mgh < 0$ $W_M = -mgh$ [della f. di reazione sul mattone]

Il chiodo **guadagna** energia cinetica: $\Delta K = mgh - 0 > 0$ $W_C = -W_M = mgh$ [del mattone sul chiodo]

Energia potenziale gravitazionale

Un corpo può compiere lavoro cambiando la sua posizione in un campo gravitazionale

Energia potenziale gravitazionale

$$U(h) = mgh + U_0$$

Unità: J

Definita a meno di una costante U_0 (per es. una quota di riferimento - il suolo)

$$W = -\Delta U = U_1 - U_2$$
 iniziale – finale

Questo è il lavoro della f. di gravità sul corpo (cfr. slide precedenti)

Lavoro +vo passando da una quota maggiore a una minore

Energia potenziale elastica

Estensione del concetto di energia potenziale ad altre forze conservative

$$\overrightarrow{F}_{\rm el} = -k(\overrightarrow{x} - \overrightarrow{x}_0) = -kx$$

$$W_{AB} = \int_A^B \overrightarrow{F}_{\rm el} \cdot d\overrightarrow{x} = -\int_A^B kx \, dx = -\frac{1}{2}kx^2 \bigg|_A^B$$
(area di un triangolo)
$$W_{AB} = U(A) - U(B) = -\Delta U$$

Energia potenziale
$$U(x) = \frac{1}{2}kx^2 + U_0$$
 Unità: J elastica

Conservazione dell'energia meccanica

Corpo lasciato "libero" di evolvere: conversione di energia potenziale in cinetica (lavoro **positivo** della forza che crea il potenziale)

È possibile "ripristinare" la posizione iniziale (aumentare l'energia potenziale) compiendo lavoro **contro** la forza (lavoro **negativo** della forza che crea il potenziale)

Conservazione dell'energia meccanica

La conversione tra U e K può avvenire in entrambi i sensi

Nessuna forza esterna compie lavoro per aumentare U, ma la K guadagnata da 1 a 2 viene persa e "convertita" nuovamente in U nel punto 3

In tale processo $\Delta U = -\Delta K$ (vero per tutti i percorsi, quindi $1\rightarrow 2$, $2\rightarrow 3$ ma anche $1\rightarrow 3$)

Conservazione dell'energia meccanica

Esiste un processo di **conversione** tra U e K In tale processo $\Delta U = -\Delta K$

$$E_{\text{tot}} = K + U = \text{costante}$$

Energia totale **meccanica** di un sistema si conserva Nota: $U = \sum U$ (somma di tutti i potenziali)

Vale per tutte le forze conservative: il lavoro non dipende dalla traiettoria. (riprova: contano solo le posizioni iniziale-finale nel potenziale)

Conservazione dell'energia meccanica: enunciato formale

L'energia meccanica (o totale) di un sistema isolato rimane costante se ogni corpo del sistema interagisce solo tramite forze conservative

Sistema = un insieme di corpi

Isolato = nessuna interazione esterna (situazione ideale)

Solo forze conservative = il lavoro non dipende dal percorso; Solo forze per cui è definito il potenziale (no attriti, etc.)

L'energia meccanica totale è un "integrale primo" del moto Non c'è dipendenza temporale Ignora stati intermedi - solo posizioni iniziale/finale