COORDINATE-BASED NEURAL REPRESENTATIONS

Jan Schlüter

38th Vienna Deep Learning Meetup

2021-02-17

GENERAL IDEA

- Define a continuous function mapping 1D/2D/3D coordinates to values $f(x,y; \theta) = (r, g, b)$ $x, y, r, g, b \in [0,1]$
- Fit this function to a discrete 1D/2D/3D signal
- Profit!

J⊻U

https://yinboc.github.io/liif/

CONTRAST: VAE DECODER OR GAN GENERATOR

- Define a continuous function mapping some latent space to a discrete signal $f(z; \theta) = X$ $z \in \mathbb{R}^n, X \in \mathbb{R}^{h \times w}$
- Fit this function to a set of discrete signals
- profit!

https://arxiv.org/abs/1707.05776

RANDOM WEIGHTS

For artistic purposes:
 Define a neural network for f(x,y; θ) = (r, g, b) and set θ randomly, render image.

EVOLUTION

- For artistic purposes:
 Define a neural network for f(x,y; θ) = (r, g, b)
 and evolve θ with user feedback.
- This was the original idea, from a 2007 paper: http://eplex.cs.ucf.edu/papers/ stanley_gpem07.pdf Complex Pattern Producing Networks (CPPNs)

PERIODIC PATTERNS

http://eplex.cs.ucf.edu/papers/ stanley_gpem07.pdf

FITTING AN EXISTING IMAGE

- Define a continuous function mapping 1D/2D/3D coordinates to values
 f(x,y; θ) = (r, g, b) x, y, r, g, b ∈ [0,1]
- Fit this function to a discrete 1D/2D/3D signal
- Live demo (Kaparthy, 2014):
 https://cs.stanford.edu/people/karpathy/convnetjs/demo/
 image regression.html

FITTING A CPPN TO VISUALIZE A CNN'S FEATURES

• https://distill.pub/2018/differentiable-parameterizations/#section-xy2rgb

FOURIER FEATURES

https://bmild.github.io/fourfeat/img/lion_none_gauss_v1.mp4

Encode coordinates v in a high-dimensional feature space (with random B):

$$\gamma(\mathbf{v}) = [\cos(2\pi \mathbf{B}\mathbf{v}), \sin(2\pi \mathbf{B}\mathbf{v})]^{\mathrm{T}}$$

PERIODIC NONLINEARITIES

- https://vsitzmann.github.io/siren/
- Use sin() as the nonlinearity in every layer
- Outperforms positional encoding

PERIODIC NONLINEARITIES

- https://vsitzmann.github.io/siren/
- Use sin() as the nonlinearity in every layer
- Outperforms positional encoding, can also model image derivatives

Image 1

Image 2

Composite gradients GT

Poisson

SIREN, https://arxiv.org/abs/2006.09661

PERIODIC NONLINEARITIES

- https://vsitzmann.github.io/siren/
- Use sin() as the nonlinearity in every layer
- Can also model audio signals

GENERATIVE ADVERSARIAL CPPNS

https://blog.otoro.net/2016/04/01/generating-large-images-from-latent-vectors/

GENERATIVE ADVERSARIAL CPPNS

https://arxiv.org/abs/2011.12026

GENERATIVE ADVERSARIAL CPPNS

https://arxiv.org/abs/2011.12026

- https://autonomousvision.github.io/occupancy-networks/
- Voxels: memory-expensive or blocky

- https://autonomousvision.github.io/occupancy-networks/
- Point clouds: Lack connectivity information

- https://autonomousvision.github.io/occupancy-networks/
- Meshes: Easy to get wrong

- https://autonomousvision.github.io/occupancy-networks/
- Define mapping from x,y,z to [0,1] (= is this position occupied or empty)

REPRESENTING 3D TEXTURE

- https://autonomousvision.github.io/texture-fields/
- Define mapping from x,y,z to r,g,b

NERF: NEURAL RADIANCE FIELDS

- https://www.matthewtancik.com/nerf
- Define mapping from x,y,z (location) and θ,φ (view direction) to r,g,b (color) and σ (density)

 $(x,y,z,\theta,\phi) \to \bigcirc (RGB\sigma)$ F_{Θ}

NERF: NEURAL RADIANCE FIELDS

- https://www.matthewtancik.com/nerf
- Define mapping from x,y,z (location) and θ , ϕ (view direction) to r,g,b (color) and σ (density) $(x,y,z,\theta,\phi) \rightarrow (RGB\sigma)$

Optimize it using multiple 2D views of an object

NERF: NEURAL RADIANCE FIELDS

- https://www.matthewtancik.com/nerf
- Can then synthesize novel views of an object or scene

https://storage.googleapis.com/nerf_data/website_renders/

- https://nerf-w.github.io/
- NERF has view-dependent appearance, but what if there are other factors that change appearance?

- https://nerf-w.github.io/
- NERF has view-dependent appearance, but what if there are other factors that change appearance?
- NeRF-W adds an appearance embedding

https://nerf-w.github.io/

(a) Static

(b) Transient

(e) Uncertainty

(c) Composite

(d) Image

- https://nerf-w.github.io/
- NERF has view-dependent appearance, but what if there are other factors that
 - change appearance?
- ⇒ NeRF-W adds an appearance embedding
- and can be trained on unconstrained image collections!
- https://youtu.be/ mRAKVQj5LRA?t=47

(a) Photos

(b) Renderings

MORE SOURCES

- https://github.com/vsitzmann/awesome-implicit-representations
- https://github.com/yenchenlin/awesome-NeRF

