Eigenvalores y Eigenvectores

Teorema 1: Si A es una matriz triangular en bloques, entonces $\operatorname{spec}(A) = \bigcup_{i=1}^{m} \operatorname{spec}(A_{ii})$

$$\begin{bmatrix} A_{11} & \dots & \dots & a_{1n} \\ 0 & A_{22} & \ddots & \vdots \\ 0 & 0 & \dots & A_{nn} \end{bmatrix}$$

DFN 1 (Eigenpar dominante). Sea $A \in \mathbb{C}^{n \times n}$ con eigenvalores $\lambda_1, \ldots, \lambda_n$. El eigenvalor dominante es el valor λ_i que satisface $|\lambda_i| \geq |\lambda_j|$, $\forall j \neq i$. El eigenvector asociado a λ_i junto con el eigenvalor dominante forman el eigenpar dominante (λ_i, v_i) .

Teorema 2: Sea A diagonalizable (hipótesis por simplicidad) y sea (λ_1, v_1) su eigenpar dominante, y $q^0 = c_1v_1 + \cdots + c_nv_n$ con $c_1 \neq 0$. Entonces, la sucesión $q^i = \frac{1}{\lambda_1}Aq^{i-1}$ con $i = 1, 2, \ldots$ converge a c_1v_1 .

Algoritmo 1: Power iteration

$$\begin{array}{ll} \mathbf{1} & x^0 = \frac{q^0}{\|q^0\|} \\ \mathbf{2} & \text{for } \mathbf{k} = 1 \colon \text{max} \\ \mathbf{3} & v^k = Ax^{k-1} \\ \mathbf{4} & x^k = \frac{v^k}{\|v^k\|} \\ \mathbf{5} & \text{end} \end{array}$$

DFN 2 (Método de potencia inversa). Es una variante del método de potencia, y aproxima el eigenpar más chico de A. Se aplica el algoritmo 1 a la matriz A^{-1} .

DFN 3 (Método de potencia inversa con shift). El método de potencia inversa con shift introduce un shift s para que el método aproxime el eigenvalor más cercano a s. Es el el método de potencia (Alg. 1) aplicado a la matrix $(A - sI)^{-1}$.

DFN 4 (Orden de convergencia). Se dice que un método numérico converge con potencia α si

$$\lim_{i \to \infty} \frac{\|\operatorname{error}(i+1)\|}{\|\operatorname{error}(i)\|^{\alpha}} = c$$

Cálculo Numérico

Eigenvalores y Eigenvectores

Los métodos de potencia inversa y sus variantes convergen todos linealmente con tasa $\frac{|\lambda_1|}{|\lambda_2|}$ donde $|\lambda_1| > |\lambda_2| > \dots$ Es decir, λ_1 es el eigenvalor más grande y λ_2 el segundo más grande.

El shift óptimo para el método de potencia inversa con shift se calcula con el *shift de Rayleigh*

DFN 5 (Cociente de Rayleigh). Definimos el cociente de Rayleigh para q^0 como

$$\rho = \frac{\left\langle q^0, Aq^0 \right\rangle}{\left\| q_o \right\|_2^2}$$

El método de potencia inverso con shift dinámico de Rayleigh converge cuadráticamente.