LATTICES

Definition:

A lattice is a partially ordered set $\langle L, \leq \rangle$ in which every pair of elements $a, b \in L$ has a greatest lower bound and least upper bound.

The greatest lower bound of a subset $\{a,b\} \in L$ will be denoted by a * b and the least upper bound by $a \oplus b$.

Join or sum: The LUB of a subset $\{a,b\} \subseteq L$ is denoted by $a \oplus b$ (or $a \lor b$ or a+b) and is called the join or sum of a and b.

Meet or product: The GLB of a subset $\{a,b\} \subseteq L$ is denoted by a*b (or $a \cdot b$ or $a \wedge b$) is called the meet or product of a and b.

Example: $(\{1, 2, 4, 8\}, |)$, where | means 'divisor of '. The hasse diagram

$$LUB = 8$$
, $GLB = 1$

So, it is a lattice.

Example: ({1,2,3,4,5},|)

It is not a lattice, since LUB of the pair (2, 3) and (3, 5) do

Not exist.

Example:

It is a lattice since every pair of elements has LUB and GLB.

Example:

It is not a lattice since the pair (b, c) have no least upper bound.

Example: In the case of power set P(S) of any set $S, (P(S), \subseteq)$ is a lattice

Here $LUB = A \cup B$ and $GLB = A \cap B$, where A and B are any subsets of P(S).

Example: Is the poset $(Z^+, |)$ a lattice?

Solution: Let $a, b \in Z^+$, now, LUB of these two integers is the LCM (Least Common multiple) and GLB is the GCD (Greatest Common Divisor).

Principle of duality: If \leq is a partial ordering relation on a set S, the converse \geq is also a partial ordering relation on S.

Example: \leq denotes the 'divisor of' then \geq denotes 'multiple of'.

▶ The hasse diagram of (S, \ge) can be obtained from that of (S, \le) by simply turning it upside down.

Example: ({1, 2, 4, 8, 16}, *multiple of*)

The lattice $\{L, \leq\}$ and $\{L, \geq\}$ are called the duals of each other.

Axioms of Algebraic lattice:

If (L, \leq) is ordered lattice and let $a, b, c \in L$, then L will satisfy the following axioms:

- 1. $a \le b \Leftrightarrow a * b = a$
- 2. $a \le b \Leftrightarrow a \oplus b = b$
- 3. $a*b \le a$ and $a*b \le b$
- 4. $a \le a \oplus b$ and $b \le a \oplus b$
- 5. If $a \le c$, $b \le c$ then $a \oplus b \le c$
- 6. If $c \le a$, $c \le b$ then $c \le a * b$

Properties of Lattice:

We shall first list some of the properties of the two binary operations of meet and join denoted by * and \oplus on a lattice (L, \leq) .

For any $a, b, c \in L$, we have

Idempotent law

$$(L-1) a*a=a, (L-1)' a\oplus a=a$$

Commutative Law

$$(L-2) a*b = b*a, (L-2)' a \oplus b = b \oplus a$$

Associativity

$$(L-3) (a*b)*c = a*(b*c), (L-3)' (a \oplus b) \oplus c = a \oplus (b \oplus c),$$

Absorption Law

$$(L-4) \quad a*(a \oplus b) = a \qquad (L-4)' \quad a \oplus (a*b) = a$$

Theorem 1.: Let (L, \leq) be a lattice in which * and \oplus denote the operations of meet and join respectively. For any a, $b \in L$

$$a \le b \iff a * b = a \iff a \oplus b = b.$$

Proof:

First we will prove that $a \le b \iff a * b = a$.

Let us assume that $a \leq b$, since we know that $a \leq a$

$$\Rightarrow a \leq a * b$$
,

From the definition of a * b, $a * b \le a$

Hence,
$$a \le b \Rightarrow a * b = a$$

Next assume that a*b=a, but it is only possible if $a \leq b$, i.e.,

$$a * b = a \Rightarrow a \le b$$
 ... (2)

Combining (1) and (2), we have

$$a \le b \iff a * b = a.$$

Now, we will prove $a * b = a \iff a \oplus b = b$,

Let

$$a * b = a$$

We have

$$b \oplus (a * b) = b \oplus a$$
$$= a \oplus b$$

But,
$$b \oplus (a * b) = b$$

Thus, we have
$$a \oplus b = b$$
,

Take

We know that

i.e,
$$a * b = a \Rightarrow a \oplus b = b$$
,

$$a \oplus b = b \Rightarrow a * b = a$$

$$a \oplus b = b,$$

 $a * (a \oplus b) = a * b,$

$$a*(a \oplus b) = a$$

$$\Rightarrow a * b = a$$

Hence

$$a \oplus b = b \Rightarrow a * b = a$$

Combining these two, we have

$$a * b = a \iff a \oplus b = b,$$

Isotonic Property:

Let (L, \leq) be a lattice. For any a, b, c, $\in L$, the following properties hold

(i)
$$b \le c \Rightarrow a * b \le a * c$$

(ii)
$$b \le c \Rightarrow a \oplus b \le a \oplus c$$

Proof: From Theorem 1

$$b \le c \Leftrightarrow b * c = b$$

To show, $b \le c \Rightarrow a * b \le a * c$

We will show that

$$(a*b)*(a*c) = a*b$$

L.H.S

$$(a * b) * (a * c)$$

= $a * b * a * c$
= $(a * a) * b * c$
= $a * (b * c)$
= $a * b$

Hence, $b \le c \Rightarrow a * b \le a * c$

Proof (ii): To show, $b \le c \Rightarrow a \oplus b \le a \oplus c$

We will show that

$$(a \oplus b) \oplus (a \oplus c) = a \oplus c$$

L.H.S

$$(a \oplus b) \oplus (a \oplus c)$$

$$= a \oplus b \oplus a \oplus c$$

$$= (a \oplus a) \oplus b \oplus c$$

$$= a \oplus (b \oplus c)$$

$$= a \oplus c$$

Hence, $b \le c \Rightarrow a \oplus b \le a \oplus c$

Theorem 3. Let (L, \leq) be a lattice, then for any a, b, c, $\in L$, the following properties hold

(i)
$$a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$$

(ii)
$$a * (b \oplus c) \ge (a * b) \oplus (a * c)$$

Proof: Now $a \le a \oplus b$ and $a \le a \oplus c$ $\Rightarrow a \le (a \oplus b) * (a \oplus c)$

Again

$$b * c \le b \le a \oplus b$$
$$b * c \le c \le a \oplus c$$

$$\Rightarrow b * c \le (a \oplus b) * (a \oplus c)$$

$$\Rightarrow a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$$

Similarly, we can prove the second property.

Modular inequality

Theorem 4. Let (L, \leq) be a lattice, then for any a, b, c, \in L, the following properties hold

$$a \le c \iff a \oplus (b * c) \le (a \oplus b) * c$$

Proof:

We have
$$a \le c \Leftrightarrow (a \oplus c) = c$$

Now,

$$a \oplus (b * c) \le (a \oplus b) * (a \oplus c)$$

 $a \oplus (b * c) \le (a \oplus b) * c \qquad \dots (1)$

Now let,
$$a \oplus (b * c) \le (a \oplus b) * c$$

 $a \le a \oplus (b * c) \le (a \oplus b) * c \le c$

$$\Rightarrow a \leq c$$
 ... (2)

From (1) and (2),

$$a \le c \Leftrightarrow a \oplus (b * c) \le (a \oplus b) * c$$

Theorem 5: Let (L, \leq) is a lattice, then for any $a, b, c \in L$,. If $a \leq b, c \leq d$ Then $a \oplus c \leq b \oplus d$ and $a * c \leq b * d$.

Proof: Given
$$a \le b, c \le d$$

 $a \le b \Rightarrow c \oplus a \le c \oplus b$ (Using Isotonic Property)
 $a \oplus c \le b \oplus c$ (Using commutative Prop)(1)
 $c \le d \Rightarrow b \oplus c \le b \oplus d$ (Using Isotonic Property)(2)

$$a \oplus c \leq b \oplus d$$

Similarly, we can prove

$$a * c \leq b * d$$