Syzygies and singularities of tensor product surfaces

Alexandra Seceleanu joint with H. Schenck, J. Validashti

SIAM Applied AG 2013

Surface modeling

In Computer Aided Geometric Design

surface splines are made from patches defined parametrically by rational maps

$$\phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$\phi(x,y) = \left(\frac{p_1(x,y)}{p_0(x,y)}, \frac{p_2(x,y)}{p_0(x,y)}, \frac{p_3(x,y)}{p_0(x,y)}\right)$$

Tensor product surface

Instead of $\phi:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ or $\phi:\mathbb{P}^2\longrightarrow\mathbb{P}^3$ (triangular surface), a **tensor product surface** is the image of a **bi-homogeneous parametrization** map

$$\phi: \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

$$[(s:t),(u:v)] \mapsto [p_0(s,t,u,v):p_1(s,t,u,v):p_2(s,t,u,v):p_3(s,t,u,v)]$$
 with

$$\mathsf{deg}(s) = \mathsf{deg}(t) = (1,0) \text{ and } \mathsf{deg}(u) = \mathsf{deg}(v) = (0,1).$$

Tensor product surface

Instead of $\phi:\mathbb{R}^2\longrightarrow\mathbb{R}^3$ or $\phi:\mathbb{P}^2\longrightarrow\mathbb{P}^3$ (triangular surface), a **tensor product surface** is the image of a **bi-homogeneous parametrization** map

$$\phi: \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

$$[(s:t),(u:v)] \mapsto [p_0(s,t,u,v):p_1(s,t,u,v):p_2(s,t,u,v):p_3(s,t,u,v)]$$
 with

$$deg(s) = deg(t) = (1, 0)$$
 and $deg(u) = deg(v) = (0, 1)$.

- This is a special case of toric parametrization.
- ▶ We restrict to the case of a bidegree (2,1) parametrization (yields a surface ruled by lines and quadrics) w/o base locus.

Example

$$\phi: [(s:t), (u:v)] \longmapsto [s^2u: s^2v: t^2u: t^2v + stv]$$

Figure: Three double lines on a bidegree (2,1) surface

Example - continued

Let $I = (s^2u, s^2v, t^2u, t^2v + stv)$ be the parametrization ideal.

▶ I has a **linear syzygy** of bidegree (0, 1)

$$v(s^2u) - u(s^2v) = 0$$

• $X = Im(\phi)$ has the **implicit equation**:

$$X = \mathbf{V}(x_0x_1^2x_2 - x_1^2x_2^2 + 2x_0x_1x_2x_3 - x_0^2x_3^2).$$

▶ the reduced codimension one **singular locus** of *X* is:

$$V(x_0, x_2) \cup V(x_1, x_3) \cup V(x_0, x_1).$$

Example - continued

Let $I = (s^2u, s^2v, t^2u, t^2v + stv)$ be the parametrization ideal.

▶ I has a **linear syzygy** of bidegree (0, 1)

$$v(s^2u)-u(s^2v)=0:$$

• $X = Im(\phi)$ has the **implicit equation**:

$$X = \mathbf{V}(x_0x_1^2x_2 - x_1^2x_2^2 + 2x_0x_1x_2x_3 - x_0^2x_3^2).$$

▶ the reduced codimension one **singular locus** of *X* is:

$$V(x_0, x_2) \cup V(x_1, x_3) \cup V(x_0, x_1).$$

Linear syzygies & the Segre-Veronese $\Sigma_{2,1}$

Proposition (Schenck-S.-Validashti)

The ideal $I = (p_0, p_1, p_2, p_3)$

- 1. has a unique linear syzygy of bidegree (0,1) iff $\mathbb{P}\langle p_0, p_1, p_2, p_3 \rangle \cap \Sigma_{2,1}$, contains a \mathbb{P}^1 fiber of $\Sigma_{2,1}$. e.g. $Span\langle s^2u, s^2v \rangle$ is a \mathbb{P}^1 fiber
- 2. has a pair of linear syzygies of bidegree (0,1) iff $\mathbb{P}\langle p_0, p_1, p_2, p_3 \rangle \cap \Sigma_{2,1} = \Sigma_{1,1}$.
- 3. has a unique linear syzygy of bidegree (1,0) iff $\mathbb{P}\langle p_0, p_1, p_2, p_3 \rangle \cap Q$ contains a \mathbb{P}^1 fiber of Q.

Main result

Theorem (Schenck-S.-Validashti)

There are exactly 6 (families of) resolutions for ideals generated by four bidegree (2,1) forms without basepoints.

This uses

- the geometry of the Segre-Veronese variety (to determine how many linear and quadratic syzygies may exist)
- the Buchsbaum-Eisenbud exactness criterion (to write down an explicit resolution when linear syzygies exist)
- ▶ bigraded gins to determine the resolution in the generic case

Implicitization via the approximation complex

- ▶ Sederberg and Chen (1995) introduced for implicitization purposes a method termed as **moving curves** and surfaces.
- Cox realized they were using syzygies with several coauthors (Busé, Chen, D'Andrea, Goldman, Sederberg, Zhang).
- Jouanolou and Busé (2002) gave a sound theoretical basis for the method of Sederberg-Chen via approximation complexes, a tool in homological algebra developed by Herzog-Simis-Vasconcelos.

Implicitization via the approximation complex

- ▶ **Step 1:** Find the syzygies on p_0, p_1, p_2, p_3
- ▶ **Step 2:** Represent them as **linear combinations**

$$L_j = \alpha_0^{(j)} x_0 + \alpha_1^{(j)} x_1 + \alpha_2^{(j)} x_2 + \alpha_3^{(j)} x_3$$

▶ **Step 3:** Rewrite the syzygies of degree ν in terms of a monomial basis $\{m_{\beta}\}_{|\beta|=\nu}$ of $k[s,t,u,v]_{\nu}$

$$L_{j} = \sum_{i=0}^{3} \sum_{|\beta|=\nu} c_{i,\beta}^{(j)} m_{\beta} x_{i} = \sum_{|\beta|=\nu} \left(\sum_{i=0}^{3} c_{i,\beta}^{(j)} x_{i} \right) m_{\beta}$$

▶ Step 4: The implicit equation is the gcd of the maximal minors of the matrix $M = (\sum_{i=0}^{3} c_{i,\beta}^{(j)} x_i)_{\beta,j}$ for well-chosen ν .

Implicitization example: $\nu = (1,1)$

$$s^{2}x_{2} - t^{2}x_{0} = 0$$

$$s^{2}x_{3} - (st + t^{2})x_{1} = 0$$

$$tux_{3} - (sv + tv)x_{2} = 0$$

$$sux_{3} - svx_{2} - tvx_{0} = 0$$

$$\begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & x_2 & x_3 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & -x_1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & -x_0 & -x_1 & \cdot & \cdot \\ x_1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & x_3 \\ -x_0 & \cdot & \cdot & \cdot & \cdot & \cdot & -x_2 & -x_2 \\ \cdot & x_1 & \cdot & \cdot & \cdot & \cdot & x_3 & \cdot \\ \cdot & -x_0 & \cdot & \cdot & \cdot & \cdot & -x_2 & -x_0 \\ \cdot & \cdot & x_1 & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -x_0 & x_1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & -x_0 & x_1 & \cdot & \cdot & \cdot & \cdot \end{bmatrix}$$

Theorem (Schenck-S.-Validashti)

In fact the implicit equation is itself a smaller minor !

Relations between syzygies and singularity types

Type	Lin. Syz.	Emb. Pri.	Sing. Loc.	Example
1	none	m	T	$ (s^2u+stv, t^2u, s^2v+stu, t^2v+stv) $
2	none	\mathfrak{m}, P_1	$C \cup L_1$	$(s^2u, t^2u, s^2v + stu, t^2v + stv)$
3	1 type (1,0)	m	L_1	$(s^2u + stv, t^2u, s^2v, t^2v + stu)$
4	1 type (1,0)	\mathfrak{m}, P_1	L_1	$(stv, t^2v, s^2v - t^2u, s^2u)$
5a	1 type (0,1)	P_{1}, P_{2}	$L_1 \cup L_2 \cup L_3$	$(s^2u, s^2v, t^2u, t^2v + stv)$
5b	1 type (0,1)	P_1	$L_1 \cup L_2$	$(s^2u, s^2v, t^2u, t^2v + stu)$
6	2 type (0,1)	none	Ø	(s^2u, s^2v, t^2u, t^2v)

Table: The primary decomposition and singularities for the six Betti types

- ightharpoonup T = twisted cubic curve, C = smooth plane conic L_i = lines
- ▶ $\mathfrak{m} = \langle s, t, u, v \rangle$, $P_i = \langle I_i, s, t \rangle$, $I_i = \text{linear form of bidegree } (0,1)$