

Overview

- ◆ Role Allocation
- **♦** Reference
- ◆Algorithm details
- **♦** Performance

ROLE ALLOCATION

- 김현규
- 이근희
- 이완해
- 정진용
- 정효찬

- **♦** Compare Algorithm Development
- **♦** Compare Algorithm Development
- **♦** Static Finding Algorithm Development
- ◆ Documenting & Statistical Algorithm Analysis
- **♦** Documenting & Visualizing Algorithm

Reference

- **◆**TED
 - ◆ "Can you solve the counterfeit coin riddle?"
- ◆On two problems of information theory
 - Erdgs, Paul and Alfrjd Rgnyi. (2001).
- ◆ Counting Counterfeit Coins: A New Coin Weighing Problem
 - ◆ Diaco, Nicholas. (2016).

OUTCOME 3 OUTCOME 1 WEIGH 2 OUTCOME 2 WEIGH 3 WEIGH 1 IMBALANCE AA BALANCE BALANCE AA BALANCE IMBALANCE BALANC IMBALANCE IMBALANCE Reference IMBALANCE BALANCE • TED "Can you solve the counterfeit coin riddle?" IMBALANCE. BALANCE IMBALANCE AA BALANCE The problem of finding fake coin IMBALANCE out of 12 coins by three comparisons. MBALANCE IMBALANCE AA BALANCE IMBALANCE IMBALANCE BALANCE BALANCE IMBALANCE A BALANCE

Reference

- On two problems of information theory by Paul Erdos and Alfred Renyi
- Seeking counterfeit coins among N number of coins.
- Scale show total weight of coins (not compare).

Unknown sequence of N digits divided into test sequences to identify counterfeit coins.

Upper bounds : $(1 + \delta) \frac{n\log_2 9}{\log_2 n}$

Lower bounds : $\lim \frac{A(n) \log_2 n}{2} \ge 2$

We do **not** apply this paper to our problem because it assumes that the specific weight of the coins is known.

- N is number of coin
- ❖ A(n) is number of weighing

Reference

- Counting Counterfeit Coins
 : A New Coin Weighing Problem by Nicholas Diaco
- This paper has compiled the papers on the Coin Weighing Problem

Assuming that it is related to *log3(X)*, this paper looked up the correlation in another paper.

But there were only similar alternatives, no formal relation to log3(X) has yet been discerned.

"

With n specifically defined, we created a decision tree associated with log3(X) !! (See Static Finding) We planned this in the last presentation.

With P

Worst case improvement

Stable result

Regardless of P Optimization

Hybrid

Adjusting the optimal method according to P

Improved!

Improved worst-case,

powerful average performance

Identifies 11 coins in 7 balance,

regardless of the probability!

Guess the probability

and select the function that matches it.

Algorithm details

- **♦**Main
- ◆Compare with 3 coins
- ◆Compare with 5 coins
- ◆ Static Finding

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding
- * **U** is the number of Unknown coins
- * EP is Estimate Probability

(The number of fake coins found /

The number of all coins found.)

The RVS function is a reversal of the standard coin from a real coin to a fake coin.

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

	06	?					
p-Value	Best-fit	25%	50%(avg.)	75%	90%	95%	99%
1	CmpBy5	37.4704738	48.7189749	59.9674761	71.2159772	71.2159772	71.2159772
2	CmpBy5	33.0880402	38.5371627	49.4354078	60.3336529	65.78277542	71.2318979
3	CmpBy5	29.0494102	34.3242022	44.87378619	50.1485781	55.42337019	65.97295418
4	CmpBy5	30.4520724	35.5535017	40.65493094	45.75636019	50.8577894	61.06064794
5	CmpBy5	31.8455737	36.7747725	41.7039712	46.63317	51.5623687	56.4915675
6	CmpBy5	33.2286303	33.2286303	37.9868895	42.7451487	47.5034078	52.26166704
7	CmpBy5	34.6000055	34.6000055	39.1887689	43.7775322	48.36629563	52.95505899
8	CmpBy5	35.9585095	35.9585095	40.37936794	44.8002263	44.8002263	49.2210846
9	CmpBy5	37.3029996	37.3029996	41.55768508	45.8123705	45.8123705	50.0670559
10	CmpBy5	38.63238	38.63238	42.72276	46.81314	46.81314	50.90352
How	did we div	ide	the	bot	ında	aries	?017452
		41.2416634	41.2416634	41.2416634	45.0095477	45.0095477	48.7774320
13	CmpBy5	42.5196100	42.5196100	42.5196100	46.1295458	46.1295458	49.7394817
14	CmpBy5	43.7785337	43.7785337	43.77853373	47.2328722	47.23287226	50.68721078
15	As our calcul	45.0175737. ation	"COM	145.01757375 nare 1	48.3187725 with 5	48.3187725	51.61997125
16							52.53715046 DO /
17	more powerf						
18	CmpBy5		48.6074886				
19	CmpBy5		49.7593257	49.7593257	49.7593257	52.47446524	52.47446524
20	CmpBy5	50.88768	50.88768	50.88768	50.88768	53.46336	53.46336
21	CmpBy5	51.9919726	51.9919726	51.9919726	51.9919726	54.431167	54.431167
22	CmpBy5	53.0716716	53.0716716	53.0716716	53.0716716	55.3774201	55.3774201
23	CmpBy5	54.1262922	54.1262922	54.1262922	54.1262922	54.12629228	56.3016943
24	CmpBy3	55.0191786	55.0191786	55.0191786	55.0191786	55.0191786	57.084224
25	CmpBy3	55.671875	55.671875	55.671875	55.671875	55.671875	57.65625

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

Gambling case 1

: Real

: Fake

Let's assume..

If it's not correct answer, then..

- If our hypothesis is true -> 1 time calling balance function
- If our hypothesis is false -> 2 times calling balance function

Can reduce total call, same for worst case

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

Gambling case 2

: Real

: Fake

- If it's correct, We can reduce 2 function call! Yeah!! (Gamble success)
- If it's not correct answer, then..

- IF U1 万 U2, Even the number of function calls increases. (Gamble Fail..)

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

Compare with 2 real coins and 1 fake coin

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

In this case, there is less than 1 fake coin => No fake coin

77

- •LARGE
- •EQUAL
- •SMALL

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

In this case, there is just 1 fake coin

- Main
- Compare with 3 coins
- Compare with 5 coins

•SMALL

Static finding

In this case, there are 2 or more fake coins => 1 or no real coin U1 U2 U3 " [R, F, F] or [F, F, F] U2 U1 U3 " U 3 •LARGE •EQUAL

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

If Case is Large, all coins on the left become real coins.

- •LARGE
- •EQUAL
- •SMALL

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

If case is Equal, There is only one fake coin, so compare one by one.

Four are real coins
One is fake coin

"

- Compare 1 and 2, if case is Small or Large, No further comparison is necessary.
- If case is Equal, compare 3 and 4.

•LARGE

•EQUAL

•SMALL

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

• If case is small, compare 1, 2 and compare 3,4

U2

U1

ArrayCase[0]

[R, R, R, F, F] or [R, R, F, F, F] or [R, F, F, F, F] or [F, F, F, F, F]

"

ArrayCase[1]

•LARGE

•EQUAL

•SMALL

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

Possible status in case of comparing 1 and 2, or 3 and 4.

Compare 1,2 3,4	Large	Equal	Small	
Large	real 1,3	Compare	real 2,3	
	fake 2,4	1,5	fake 1,4	
Equal	Compare	Compare	Compare	
	3,5	1,3	3,5	
Small	real 1,4	Compare	real 2,4	
	fake 2,3	1,5	fake 1,3	

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

Make 10 decision trees, and hard coded.

```
⊡int | list11[][11] = {
6124
         {1, 2, 0
{2, 0, 2
6125
                                         0},
                   int list11[3280][11]
6126
                                         0},
         {2, 0, 2 온라인 검색
                                         0},
6127
6128
         {2, 0, 2, 2, 0, 1, 1, 0, 0, 1, 0},
6129
         {2, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0},
6130
          {2, 1, 2, 2, 2, 1, 0, 1, 1, 0, 0},
         {2, 0, 0, 1, 1, 1, 2, 2, 0, 0, 0},
6131
6132
         {1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0},
6133
         {0, 2, 0, 0, 0, 1, 0, 2, 2, 1, 1},
6134
         |{1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0},
6135
         {2, 0, 0, 1, 1, 1, 2, 0, 2, 0, 0},
6136
         {2, 1, 2, 2, 2, 1, 0, 1, 1, 0, 0},
6137
         {2, 0, 0, 1, 2, 1, 1, 0, 0, 2, 0},
6138
         {1, 2, 1, 2, 0, 0, 0, 1, 2, 1, 2},
6139
         {2, 1, 2, 1, 2, 0, 0, 1, 1, 0, 2},
6140
          {2, 1, 1, 0, 0, 1, 0, 2, 2, 1, 2},
6141
         {0, 0, 1, 1, 2, 0, 0, 2, 0, 1, 2},
6142
         {0, 0, 1, 1, 2, 2, 0, 1, 0, 0, 2},
6143
         {0, 0, 1, 2, 2, 0, 2, 1, 1, 1, 2},
6144
         {0, 2, 0, 0, 0, 2, 0, 2, 1, 1, 1},
6145
          {2, 1, 1, 0, 0, 1, 2, 0, 2, 1, 2},
6146
         {2, 0, 2, 2, 0, 2, 0, 1, 1, 1, 1},
6147
         |{1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0},
6148
         {1, 2, 1, 2, 2, 0, 2, 1, 0, 0, 1},
6149
         {2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 0},
6150
         {1, 2, 0, 0, 0, 0, 1, 1, 2, 0, 2},
         {0, 0, 1, 2, 2, 1, 0, 2, 1, 1, 2},
6151
6152
         {1, 2, 0, 0, 0, 0, 1, 0, 0, 0, 2},
         {2, 1, 1, 0, 0, 1, 2, 2, 2, 1, 0},
6153
         {1, 2, 1, 2, 2, 0, 2, 1, 0, 0, 1},
6154
         {0, 2, 0, 0, 0, 1, 0, 2, 2, 1, 1},
6155
```

Total 9,405 lines

- Main
- Compare with 3 coins
- Compare with 5 coins
- Static finding

It can find whatever the number of fake coins is among X coins just in Y times!

Χ	Υ
2	1
3	2
4	3
5	3~4
6	4
7	5
8	5~6
9	6
10	6~7
11	7

Performance

- ◆Compare with 3 coins
- ◆Compare with 5 coins
- ◆ Static Finding
- ◆Our method

- Compare with 3 coins
- Compare with 5 coins
- Static Finding
- Our method

- * P is probability
- * Result is sum of balance counts

- Max 71, min 40
- It has the best performance where there are more than 23 and less than 78 fake coins,

	result								
	count	mean	std	min	25%	50%	75%	max	
р									
10	20.0	43.85	3.166851	40.0	42.00	43.0	45.00	54.0	
20	20.0	50.85	2.758241	44.0	49.75	51.0	53.00	56.0	
30	20.0	56.25	3.058637	51.0	54.75	56.5	58.00	65.0	
40	20.0	61.05	2.523052	55.0	59.00	62.0	62.00	65.0	
50	20.0	65.25	2.593007	61.0	64.00	65.0	67.00	71.0	
60	20.0	59.80	3.088178	53.0	59.00	59.5	61.25	66.0	
70	20.0	56.25	2.268201	53.0	54.75	56.0	58.00	60.0	
80	20.0	49.45	3.284333	44.0	46.75	49.5	51.25	55.0	
90	20.0	46.45	3.940011	40.0	44.00	45.5	48.75	55.0	

- Compare with 3 coins
- Compare with 5 coins
- Static Finding
- Our method

- * P is probability
- * Result is sum of balance counts

- Max 80, min 28
- It has the best performance where there are less than 23 or more than 78 fake coins,

	result								
	count	mean	std	min	25%	50%	75%	max	
р									
10	20.0	39.95	6.219452	29.0	35.00	40.0	44.00	55.0	
20	20.0	50.20	2.912767	46.0	48.00	50.0	52.25	56.0	
30	20.0	58.65	3.543341	53.0	56.00	58.0	61.00	66.0	
40	20.0	65.60	5.888436	52.0	63.75	65.0	68.25	76.0	
50	20.0	71.15	4.246051	61.0	68.75	71.5	73.25	80.0	
60	20.0	65.35	4.270770	57.0	61.75	65.5	69.00	71.0	
70	20.0	57.75	4.265837	50.0	55.00	58.0	61.00	65.0	
80	20.0	49.40	5.452184	42.0	46.75	48.0	52.00	66.0	
90	20.0	39.90	6.172093	28.0	36.00	38.0	45.00	52.0	

- Compare with 3 coins
- Compare with 5 coins
- Static Finding
- Our method

- * P is probability
- * Result is sum of balance counts

- Almost always 64 times
- It has best worst performance.

	result								
	count	mean	std	min	25%	50%	75%	max	
р									
10	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
20	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
30	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
40	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
50	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
60	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
70	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
80	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	
90	20.0	64.0	0.0	64.0	64.0	64.0	64.0	64.0	

- Compare with 3 coins
- Compare with 5 coins
- Static Finding
- Our method

- * P is probability
- * Result is sum of balance counts

Max 69, min 28

	result									
	count	mean	std	min	25%	50%	75%	max		
р										
10	100.0	41.08	4.749652	28.0	38.75	41.0	44.25	53.0		
20	100.0	52.85	4.953063	38.0	51.00	53.0	56.00	62.0		
30	100.0	60.34	3.593541	47.0	58.00	61.0	63.00	68.0		
40	100.0	65.13	1.967694	60.0	64.75	65.0	66.00	68.0		
50	100.0	65.55	0.783349	65.0	65.00	65.0	66.00	69.0		
60	100.0	64.87	2.158633	55.0	65.00	65.0	66.00	69.0		
70	100.0	60.58	3.188299	50.0	58.75	60.5	63.00	67.0		
80	100.0	53.40	4.465355	39.0	50.00	54.5	57.00	61.0		
90	100.0	40.49	4.421013	29.0	37.00	40.0	43.25	53.0		

Three advantages are combined!

アストロロ Ch