Outline

- Petri Nets
- Situation Calculus
- SCOPE (Situation Calculus Ontology of PEtri Nets)

Petri nets: Concepts

- **Petri net** a triple (P, T, F) such that
 - P is a finite set of node elements called places (represented by "○");
 - T is a finite set of node elements called transitions (represented by "□");
 - – and $F \subseteq (P \times T) \cup (T \times P)$ consists of ordered pairs (" \longrightarrow ").
- Marking a mapping in the form $M: P \to \mathcal{N}$, indicating the assignment of k tokens (a token is represented by a "•"), to each place p in P. M_0 is the initial marking.
- Enabled Transition A transition t is enabled in a marking M
 if all input places of t is marked in M.
- Marking Transition A marking transition from M to M' due to the firing of enabled t, for each place p, is defined by

$$M'(p) = \left\{ egin{array}{ll} M(p) - 1 & ext{if } p \in {}^b t ext{ and } p
otin t^a \\ M(p) + 1 & ext{else if } p
otin t^b t ext{ and } p \in t^a \\ M(p) & ext{otherwise.} \end{array}
ight.$$

Petri nets: Dynamical Properties

- **Reachability:** Given a Petri net (N, M_0) and a marking M, the problem involves finding an actual sequence of transition firing that leads to M from M_0 .
- **k-boundedness:** The number of tokens in each place of any marking M, reachable from M_0 , does not exceed the integer k.
- **Liveness:** A Petri net (N, M_0) is live if, for any marking M that can be reached by M_0 , there exists another marking M', such that can be reached by M. In other words, at any reachable marking, some transition is enabled to fire.
- **Reversibility:** A Petri net (N, M_0) is reversible if M_0 is reachable from each M that is reachable from M_0 .

Petri nets: Remarks

- Petri nets are used to describe dynamical systems. The formalism of Petri nets is simple. However a petri-net system can be complicated.
- As the complexity of a Petri-net system increases, traditional approaches (such as simulation and testing) are usually unable to explore all behaviors of the system, thus unable to theoretically validate claims on correctness.
- Major merits of ontological approach to Petri-net analysis can be two folds:
 - it enables deductive verification, guarantee on the correctness;
 - eventually it would enable automated deductive verification.

Outline

- Petri Nets
- Situation Calculus
- SCOPE (Situation Calculus Ontology of PEtri Nets)
- TESCOPE
- SCAD
- Remarks

Situation Calculus: the Book

Knowledge In Action: *logical foundations for specifying and implementing dynamical systems*, Ray Reiter, MIT Press, 2001

Situation Calculus: Concepts

- **Situation Calculus:** A logical language for representing changes upon actions in a dynamical domain.
- Three disjoint sorts:
 - action: actions in the domain, e.g., rain, putdown(x; y);
 - situations: S_0 , the empty sequence of actions; do(a; s), a sequence of actions, e.g., do(sunshine; do(rain; s)).
 - object: everything else in the specified domain.
- \sqsubset the order between situations, e.g., $s \sqsubset s'$.
- Poss(a; s): the executability of performing action a in situation s, e.g., Poss(rain; s) ⊃ cloudy(s).
- Situation independent relations and functions e.g., confLocation(Toronto), area(Room2) = 850.
- **Relation fluent** e.g., *captain*(*John*; *do*(*catchFever*; *S*₀)).
- Function fluent e.g., weight(John; do(recover; s)) = 175.

Situation Calculus: Foundational Axioms

The set \mathcal{D}_f consists of four foundational axioms:

$$egin{aligned} do(a_1,s_1) &= do(a_2,s_2) \supset a_1 = a_2 \land s_1 = s_2, \ (orall P).P(S_0) \land (orall a,s)ig(P(s) \supset P(do(a,s))ig) \supset (orall s)P(s), \
onumber \neg s \sqsubset S_0, \
onumber s \sqsubseteq do(a,s') \equiv s \sqsubseteq s'. \end{aligned}$$

Situation Calculus: A Model of the Foundational Axioms¹

¹Source: Figure 4.1 of "Knowledge in action: logical foundations for specifying and implementing dynamical systems", Ray Reiter, MIT Press, 2001.

Golog (alGOI in LOGic)

- Golog, a logic programming language for description and execution of complex actions using domain-specific Situation Calculus primitive actions as components for these complex actions.
- Additional symbols in Golog (If, then, else, while, etc) enable abbreviated expression of complex actions in the system through defining macros on top of the primitive actions in the theory.
- Golog Imperative programming constructs include
 - a, a primitive action;
 - α ; β , action α is followed by action β ;
 - p?, test action on the condition p;
 - $\alpha | \beta$, nondeterministic choice of action α or action β ;
 - $(\pi x)\alpha(x)$, nondeterministic choice of arguments;
 - α^* , nondeterministic iteration;
 - Conditionals, while-loops;
 - Procedures.

SCOPE: the ontology

fire(t)	the firing of the transition t
Tkns(p, s)	the number of tokens of place p at situation s
pre(p, t)	the place p is the input of the transition t
post(p, t)	the place p is the output of the transition t

SCOPE is defined as a basic action theory S, which consists of several sets of axioms:

$$\mathcal{S} = \mathcal{D}_{\mathit{f}} \cup \mathcal{S}_{\mathit{ap}} \cup \mathcal{S}_{\mathit{ss}} \cup \mathcal{S}_{\mathit{una}} \cup \mathcal{S}_{\mathcal{S}_{0}}$$

where

- \mathcal{D}_f is the foundational axioms;
- S_{ap} (The Action Precondition Axiom for the action "fire")
- S_{ss} (The Successor State Axiom for the fluent "Tkns")
- \mathcal{S}_{una} (The Unique Name Axiom) $\mathit{fire}(t_1) = \mathit{fire}(t_2) \supset (t_1 = t_2)$
- S_{S_0} (Initial Situation Axioms)
- for each arc from transition t to place p, define pre(p, t); similarly, define pre(t, p);
- for each place p with initial marking k, define $Tkns(k, S_0) = k$.

SCOPE: the Action Precondition/Effect Axioms

$$Poss(\mathit{fire}(t),s)) \equiv \mathit{pre}(p,t) \supset \mathit{Tkns}(p,s) \geq 1,$$
 $\mathit{pre}(t,p) \land \neg \mathit{post}(t,p) \supset \mathit{Tkns}(p,\mathit{do}(\mathit{fire}(t),s)) = \mathit{Tkns}(p,s) + 1,$ $\mathit{pre}(p,t) \land \neg \mathit{post}(p,t) \supset \mathit{Tkns}(p,\mathit{do}(\mathit{fire}(t),s)) = \mathit{Tkns}(p,s) - 1$

SCOPE: the Action Precondition/Effect Axioms

$$Poss(\mathit{fire}(t),s)) \equiv \mathit{pre}(p,t) \supset \mathit{Tkns}(p,s) \geq 1,$$
 $\mathit{pre}(t,p) \land \neg \mathit{post}(t,p) \supset \mathit{Tkns}(p,\mathit{do}(\mathit{fire}(t),s)) = \mathit{Tkns}(p,s) + 1,$ $\mathit{pre}(p,t) \land \neg \mathit{post}(p,t) \supset \mathit{Tkns}(p,\mathit{do}(\mathit{fire}(t),s)) = \mathit{Tkns}(p,s) - 1$

SCOPE: the Action Precondition/Effect Axioms

$$Poss(\mathit{fire}(t),s)) \equiv \mathit{pre}(p,t) \supset \mathit{Tkns}(p,s) \geq 1,$$
 $\mathit{pre}(t,p) \land \neg \mathit{post}(t,p) \supset \mathit{Tkns}(p,\mathit{do}(\mathit{fire}(t),s)) = \mathit{Tkns}(p,s) + 1,$ $\mathit{pre}(p,t) \land \neg \mathit{post}(p,t) \supset \mathit{Tkns}(p,\mathit{do}(\mathit{fire}(t),s)) = \mathit{Tkns}(p,s) - 1$

SCOPE: The Successor State Axiom

$$Tkns(p, do(a, s)) = n \equiv$$
$$\gamma_f(p, t, n, a, s) \lor (Tkns(p, s) = n \land \neg(\exists n') \gamma_f(p, t, n', a, s)),$$

where

$$\gamma_f(p,t,n,a,s) \stackrel{\textit{def}}{=} \gamma_{f_a}(p,t,n,a,s) \vee \gamma_{f_b}(p,t,n,a,s)$$

are simply abbreviations:

• $\gamma_{f_a}(p, t, n, a, s)$ is defined as

$$(\exists t).pre(t,p) \land \neg post(t,p) \land n = Tkns(p,s) + 1 \land a = fire(t)$$

• $\gamma_{f_b}(p, t, n, a, s)$ is defined as

$$(\exists t).pre(p,t) \land \neg post(p,t) \land n = Tkns(p,s) - 1 \land a = fire(t)$$

SCOPE: Subclasses

abbreviation

$$exec(s) \stackrel{def}{=} (\forall a, s^*).do(a, s^*) \sqsubseteq s \supset Poss(a, s^*)$$

• Reachability Given a marking M_n , we have

$$(\exists s).\ exec(s) \land Tkns(p_0,s) = n_0 \land \dots Tkns(p_i,s) = n_i,$$

where n_i is the number of tokens at the place p_i in M_n .

K-Boundedness

$$exec(s) \supset Tkns(p, s) \leq k$$

Liveness

$$exec(s) \supset (\exists s_1). \ s \sqsubset s_1 \land exec(s_1)$$

Reversibility

$$exec(s) \supset (\exists s_1). \ s \sqsubseteq s_1 \land exec(s_1) \land Tkns(p, s_1) = Tkns(p, S_0)$$

SCOPE Example Procedures

The procedure handleCurrentCoin is defined w.r.t. insertOneCoin:

```
proc insertOneCoin
    fire(ICn)
endProc
proc handleCurrentCoin
    insert(ICn); fire(ACn) | fire(RCn)
endProc
```

2) Keep inserting a coin until one is accepted to the machine: