Компьютерное Зрение Лекция №3, осень 2024

Глубокое обучение

План лекции

- Введение в сверточные сети
- Обзор основной идеи
- Базовые операции
- Обзор базовых архитектур

Обзор задач

- Классификация изображений
- Обнаружение объектов
- Сегментация изображений
- Генерация изображений
- Повышение разрешения изображений
- Реконструкция изображений
- Трекинг объектов

Сверточные нейронные сети - основная идея

Строение зрительной коры головного мозга

Вспоминаем что такое свертка

Сверка

$$f[n, m] \leftarrow h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n-k, m-l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Сверка

$$f[n, m] \leftarrow h[n, m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] h[n-k, m-l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Сверка

$$f[\textit{n, m}] \leftarrow \textit{h[n, m]} = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k, l] \, h[n-k, m-l]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Функции активации

$$\sigma(x) = rac{1}{1+e^{-x}}$$

$$ReLU(x) = max(0, x)$$

$$Leaky\ Relu(x) = max(\alpha*x,x)$$

$$Softmax(z_i) = rac{e^{z_i}}{\sum_{j=1}^k e^{z_k}}$$

Функции активации

$$\mathrm{ELU}(x) = egin{cases} x, & ext{if } x > 0 \ lpha(\mathrm{e}^x - 1), & ext{if } x \leq 0 \end{cases}$$

$$SiLU(x) = x \cdot \sigma(x),$$

$$tanh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

Сверточный слой

Понижение размерности

Фильтры

Карты признаков

$$z_{i,j,k} = b_k + \sum_{u=0}^{f_h-1} \sum_{v=0}^{f_{w}-1} \sum_{k'=0}^{f_{m'}-1} x_{i',j',k'} \cdot w_{u,v,k',k} \qquad c \begin{cases} i' = i \times s_h + u \\ j' = j \times s_w + v \end{cases}$$

- $z_{i, j, k}$ выход нейрона, расположенного в строке i и столбце j в карте признаков k сверточного слоя (слоя l).
- Как объяснялось ранее, s_h и s_w вертикальный и горизонтальный страйды, f_h и f_w высота и ширина рецепторного поля, а $f_{n'}$ количество карт признаков в предыдущем слое (слое l-1).
- $x_{i',j',k'}$ выход нейрона, расположенного в слое l-1, строка i', столбец j', карта признаков k' (или канал k', если предыдущий слой является входным).
- b_k член смещения для карты признаков k (в слое l). Вы можете думать об этом как о ручке управления, которая регулирует общую яркость карты признаков k.
- $w_{u, v, k', k}$ вес связи между любым нейроном в карте признаков k слоя l и его входом, расположенным в строке u, столбце v (относительно рецепторного поля нейрона) и карте признаков k'.

Требования к памяти

Объединяющий слой

Базовая архитектура сверточной сети

Архитектура LeNet-5

Слой	Тип	Карты	Размер	Размер ядра	Страйд	Активация
Out (выходной)	Полносвязный	-	10	-	-	RBF
F6	Полносвязный	-	84	- E	-	tanh
C5	Сверточный	120	1×1	5 × 5	1	tanh
S4	Объединение по среднему	16	5 × 5	2 × 2	2	tanh
G	Сверточный	16	10 × 10	5 × 5	1	tanh
S2	Объединение по среднему	6	14 × 14	2 × 2	2	tanh
C 1	Сверточный	6	28 × 28	5 × 5	1	tanh
In (входной)	Входной	1	32 × 32	_	_	_

Архитектура AlexNet

Слой	Тип	Карты	Размер	Размер ядра	Страйд	Допол- нение	Активация
Out (выходной)	Полносвязный	-	1 000	-	-	-	Многопеременная
F9	Полносвязный)—))	4 096	-	-	-	ReLU
F8	Полносвязный	-	4 096	-	-3	_	ReLU
C7	Сверточный	256	13 × 13	3×3	1	SAME	ReLU
C6	Сверточный	384	13 × 13	3×3	1	SAME	ReLU
C5	Сверточный	384	13 × 13	3×3	1	SAME	ReLU
S4	Объединение по максимуму	256	13 × 13	3 × 3	2	VALID	-
C3	Сверточный	256	27 × 27	5 × 5	1	SAME	ReLU
S2	Объединение по максимуму	96	27 × 27	3 × 3	2	VALID	-
C1	Сверточный	96	55 × 55	11 × 11	4	SAME	ReLU
In (входной)	Входной	3 (RGB)	224×224	-	-	-	-

Модуль начала

Архитектура GoogleNet

Остаточное обучение

Архитектура ResNet

Обходящая связь

Архитектура современной сети

	from	n	params	module	arguments
0	-1	1	464	ultralytics.nn.modules.conv.Conv	[3, 16, 3, 2]
1	-1	1	4672	ultralytics.nn.modules.conv.Conv	[16, 32, 3, 2]
2	-1	1	6640	ultralytics.nn.modules.block.C3k2	[32, 64, 1, False, 0.25
3	-1	1	36992	ultralytics.nn.modules.conv.Conv	[64, 64, 3, 2]
4	-1	1	26080	ultralytics.nn.modules.block.C3k2	[64, 128, 1, False, 0.2
5	-1	1	147712	ultralytics.nn.modules.conv.Conv	[128, 128, 3, 2]
6	-1	1	87040	ultralytics.nn.modules.block.C3k2	[128, 128, 1, True]
7	-1	1	295424	ultralytics.nn.modules.conv.Conv	[128, 256, 3, 2]
8	-1	1	346112	ultralytics.nn.modules.block.C3k2	[256, 256, 1, True]
9	-1	1	164608	ultralytics.nn.modules.block.SPPF	[256, 256, 5]
10	-1	1	249728	ultralytics.nn.modules.block.C2PSA	[256, 256, 1]
11	-1	1	0	torch.nn.modules.upsampling.Upsample	[None, 2, 'nearest']
12	[-1, 6]	1	0	ultralytics.nn.modules.conv.Concat	[1]
13	-1	1	111296	ultralytics.nn.modules.block.C3k2	[384, 128, 1, False]
14	-1	1	0	torch.nn.modules.upsampling.Upsample	[None, 2, 'nearest']
15	[-1, 4]	1	0	ultralytics.nn.modules.conv.Concat	[1]
16	-1	1	32096	ultralytics.nn.modules.block.C3k2	[256, 64, 1, False]
17	-1	1	36992	ultralytics.nn.modules.conv.Conv	[64, 64, 3, 2]
18	[-1, 13]	1	0	ultralytics.nn.modules.conv.Concat	[1]
19	-1	1	86720	ultralytics.nn.modules.block.C3k2	[192, 128, 1, False]
20	-1	1	147712	ultralytics.nn.modules.conv.Conv	[128, 128, 3, 2]
21	[-1, 10]	1	0	ultralytics.nn.modules.conv.Concat	[1]
22	-1	1	378880	ultralytics.nn.modules.block.C3k2	[384, 256, 1, True]
23	[16, 19, 22]	1	431647	ultralytics.nn.modules.head.Detect	[5, [64, 128, 256]]
YOLO11n	summary: 319 lay	ers,	2,590,81	5 parameters, 2,590,799 gradients, 6.4 GFLOPs	