Lista de Exercícios módulos 7 e 8 – Processos Estocásticos

Questão 1 – Considere um processo randômico em tempo discreto X[n] definido como

$$X(t) = A\cos(\omega_0 n + \Phi)u(t)$$

onde u(t) é a função degrau unitário, a frequência digital $\omega_0 = 3\frac{\pi}{16}$ (radianos/amostra), A > 0, $A \in \mathbb{R}$ é uma constante e $\Phi \sim Uniform [0, 2\pi]$ (significa Φ tem distribuição de probabilidade uniforme e o espaço amostral de Φ é $(0, 2\pi)$.

- a) Encontre a função da expectância $\mu[n]$.
- b) Encontre a função de correlação de R[m, n].
- c) Este processo randômico e WSS? Justifique.

Questão 2 – Em um sistema de comunicação por modulação em frequência, o sinal de uma portadora com frequência de Ω_0 (radianos/segundo) em um receptor é modelado por

$$X(t) = cos(\Omega_0 t + \Theta)$$

onde $\Theta \sim$ uniforme $[-\pi, \pi]$ é um sinal randômico modulante.

- a) Encontre a função da expectância μ(t).
- b) Encontre a função de correlação de X(t).
- c) Este processo randômico e WSS? Justifique.

Questão 3 – Considere um processo randômico Y(t) definido por

$$Y(t) = X\cos(\Omega t)u(t)$$

onde u(t) é a função degrau unitário, a frequência analógica Ω (radianos/segundos) é uma constante e X é uma variável aleatória com distribuição de probabilidade uniforme e com espaço amostral [0, 1].

- a) Encontre E[Y(t)].
- b) Encontre $E[Y^2(t)]$.
- c) Encontre a função de autocorrelação $R_X(t_1, t_2)$ de Y(t).
- d) Encontre a função de autocovariância $C_X(t_1, t_2)$ de Y(t).
- e) Determine as PDF's de Y(t) em t = 0, $t = \frac{\pi}{4\Omega}$, $t = \frac{\pi}{2\Omega}$, $t = \frac{\pi}{\Omega}$, $t = \frac{3\pi}{4\Omega}$

Questão 4 – Seja X_0 , X_2 , X_3 , \cdots como uma sequência temporal de i.i.d. de variáveis randômicas com média $E[X_i] = \frac{\pi}{2} e \ Var(Y_i) = \pi$. Considere o processo aleatório em tempo discreto $\{X[n], \underline{n} \in \mathbb{N} \}$ como

$$Y[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_k, N \in \mathbb{N}$$

Determine

- a) $\mu_Y[n]$
- b) $R_{\nu}[m,n]$, para todo $m,n \in \mathbb{N}$

Questão 5 – Seja X(t) um processo WSS de média zero e com função de correlação $R_X(\tau)$. Seja

$$Y(t) = X\cos(\Omega_0 t + \Theta)$$

onde $\Theta \sim \text{uniforme } [-\pi, \pi] \in \Theta$ é independente do processo X(t).

- a) Encontre a função de correlação de Y(t).
- b) Encontre a função de correlação cruzada de X(t) e Y(t).
- c) Y(t) é WSS?

Questão 6 – O número de boletins de ocorrências policiais dentro do campus Darcy Ribeiro da UnB que chegam à delegacia da Asa Norte pode ser modelado por um processo de Poisson. Considere que a quantidade de ocorrências seja $\lambda = 12$ por dia.

- a) Encontre a probabilidade de haver 100 ocorrências na primeira semana do mês.
- b) Encontre a probabilidade de haver 10 ocorrências na última semana do mês.
- c) Encontre a probabilidade não haver nenhuma ocorrência no primeiro domingo do mês.
- d) Encontre a probabilidade de haver 50 ocorrências entre os dias 12 e 15, de haver 20 ocorrências entre os dias 17 e 19 e, de haver 40 ocorrências entre os dias 25 e 28 do mês.

Questão 7 – O número de pedidos que chegam a uma loja que comercializa produtor pela internet pode ser modelado por um processo de Poisson com $\lambda = 20$ pedidos/hora. A loja opera das 8:00 as 20:000.

- a) Encontre a probabilidade de haver 6 pedidos entre 8:30 e 10:30.
- b) Encontre a probabilidade de que não haja pedidos entre 14h e 17h.
- c) Encontre a probabilidade de haver 15 pedidos entre 9:30h e 11h e 20 pedidos entre 14:30 e 15:30.

Questão 8 – A quantidade de bytes que chegam a um dispositivo de monitoração de processos pode ser modelado por um processo de Poisson. Sabe-se que $\lambda = 32$ bytes/microssegundos. Este sistema fica em operação 24 horas por dia.

- a) Encontre a probabilidade de chegar 42 megabytes entre 08:30:00 e 08:30:02.
- b) Compute o valor da probabilidade de chegar 36 megabytes entre 00:00:00 e 00:00:01 **e**, de chegar 64 megabytes entre 05:29:10 e 05:29:12.
- c) Encontre a probabilidade de chegar 16 megabytes 18:30:00 e 18:30:01 e, não chegar nenhum byte no segundo seguinte.

Questão 9 – Construa o diagrama de transição de estados, $S = \{1, 2, 3\}$, para cadeia de Markov dada pela matriz de transição a seguir

$$P = \begin{bmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 3/4 & 0 \\ 1/4 & 3/4 & 0 \end{bmatrix}$$

Questão 10 – Para a cadeia de Markov mostrada na figura determine a sua respectiva matriz de transição de probabilidade

Questão 11 - Construa a matriz de transição de probabilidades para o diagrama de estado mostrado a seguir

Se soubermos que $P(X_0 = 0) = P(X_0 = 1) = P(X_0 = 2) = 1/3$.

- a) Encontre P $(X_0 = 2, X_1 = 2)$
- b) Encontre P $(X_0 = 0, X_1 = 1, X_2 = 2)$.
- c) Encontre P $(X_0 = 1, X_1 = 0, X_2 = 1)$.
- d) Encontre P $(X_0 = 1, X_1 = 0, X_2 = 2)$.
- e) Encontre P ($X_0 = 2$, $X_1 = 2$, $X_2 = 2$, $X_3 = 1$, $X_4 = 0$).

Questão 12 – Construa o diagrama de transição de estados $S = \{0, 1, 2\}$ para a cadeia de Markov cuja matriz de transição é

$$P = \begin{bmatrix} 1/2 & 1/2 & 0 \\ 1/4 & 0 & 3/4 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$

Se P $(X_0 = 0) = 0$, P $(X_0 = 1) = 1$, P $(X_0 = 2) = 0$.

a) Encontre P $(X_0 = 1, X_1 = 1, X_2 = 2)$.

b) Encontre P $(X_0 = 1, X_1 = 0, X_2 = 2)$.

Questão 13 – Considere a cadeia de Markov com três estados, $S = \{1, 2, 3\}$, que tem a seguinte matriz de transição

$$P = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\ \frac{2}{3} & 0 & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

- a) Construa o diagrama de transição de estado para esta cadeia de Markov.
- b) Se soubermos $P(X_0 = 1) = P(X_0 = 2) = 1/4$, encontre $P(X_0 = 3, X_1 = 2, X_2 = 1, X_3 = 1)$.

Questão 14 – Considere a cadeia de Markov com três estados $S = \{1, 2, 3\}$, que tem o diagrama de transição de estado mostrado na figura a seguir

Suponha que P $(X_0 = 1) = \frac{1}{2}$ e P $(X_0 = 2) = \frac{1}{4}$.

- a) Encontre a matriz de transição de estado para esta cadeia de Markov
- b) Determine $P(X_0 = 3, X_1 = 2, X_2 = 1)$.
- c) Encontre $P(X_0 = 3, X_1 = 1, X_2 = 1, X_3 = 3)$.