Ex-01_DS_Data_Cleansing

AIM

To read the given data and perform data cleaning and save the cleaned data to a file.

Explanation

Data cleaning is the process of preparing data for analysis by removing or modifying data that is incorrect, incompleted, irrelevant, duplicated or improperly formatted. Data cleaning is not simply about erasing data, but rather finding a way to maximize datasets accuracy without necessarily deleting the information.

ALGORITHM

STEP 1

Read the given Data

STEP 2

Get the information about the data

STEP 3

Remove the null values from the data

STEP 4

Save the Clean data to the file

```
# CODE FOR DATA 1:
```

```
import pandas as pd
df=pd.read_csv("Data_set.csv")
df.head(5)

df.info()

df.isnull()

df.isnull().sum()

df['show_name']=df['show_name'].fillna(df['aired_on'].mode()[0])

df['aired_on']=df['aired_on'].fillna(df['aired_on'].mode()[0])

df['original_network']=df['original_network'].fillna(df['aired_on'].mode()[0])

df[head()

df['rating']df['rating'].fillna(df['rating'].mean())

df['current_overall_rank']=df['current_overall_rank'].fillna(df['current_overall_rank'].mean())

df.head()
```

df.head()

df.info()

df.isnull().sum()

OUPUT FOR DATA 1:

DATA:

[5]	df.head(5)								
	show_name	country	num_episodes	aired_on	original_network	rating	current_overall_rank	lifetime_popularity_rank	watchers
	NaN	South Korea	16	Friday, Saturday	tvN	8.9	33.0		111706.0
	NaN	South Korea	16	Friday, Saturday	јтвс	8.7	89.0		100950.0
	Descendants of the Sun	South Korea	16	Wednesday, Thursday	KBS2	8.7	77.0		96318.0
	Boys Over Flowers	South Korea	25	Monday, Tuesday	KBS2	7.7	2249.0		94228.0
	w	South Korea	16	Wednesday, Thursday	мвс	8.5	201.0		92121.0
	•								

	show_name	country	num_episodes	aired_on	original_network	rating	current_overall_rank	lifetime_popularity_rank	watchers
	True	False	False	False	False	False	False	False	False
	True	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False
	False	False	False	False	False	False	False	False	False
95	False		False	False	False		False	False	Fals
96	False	False	False	False	False	False	False	False	Fals
97	False	False	False	False	False	False	False	False	
98	False	False	False	False	False	False	False	False	False
99	False	False	False	False	False	False	False	False	Fals

NON NULL BEFORE:

```
[8] df.isnull().sum()

show_name
country
num_episodes
aired_on
original_network
rating
current_overall_rank
lifetime_popularity_rank
watchers
dtype: int64
```

MODE:

MEAN:

[]			ng'].fillna(df ank']=df['curr		mean()) rank'].fillna(df['rating'].mean())		
	show_name	country	num_episodes	aired_on	original_network	rating	current_overall_rank	lifetime_popularity_rank	watchers
	Wednesday, Thursday	South Korea	16	Friday, Saturday	tvN	8.9	33.0		111706.0
	Wednesday, Thursday	South Korea	16	Friday, Saturday	јТВС	8.7	89.0		100950.0
	Descendants of the Sun	South Korea	16	Wednesday, Thursday	KBS2	8.7	77.0		96318.0
	Boys Over Flowers	South Korea	25	Monday, Tuesday	KBS2	7.7	2249.0		94228.0
	w	South Korea	16	Wednesday, Thursday	МВС	8.5	201.0		92121.0

MEDIAN:

'watchers']= head()	df['watch	ers'].fillna(d	lf['watchers].median())				
show_name	country	num_episodes	aired_on	original_network	rating	current_overall_rank	lifetime_popularity_rank	watche
Wednesday, Thursday	South Korea	16	Friday, Saturday	t∨N	8.9	33.0		11170€
Wednesday, Thursday	South Korea	16	Friday, Saturday	јтвс	8.7	89.0		100950
Descendants of the Sun	South Korea		Wednesday, Thursday	KBS2	8.7	77.0		96318
Boys Over Flowers	South Korea	25	Monday, Tuesday	KBS2	7.7	2249.0		94228
	South Korea		Wednesday, Thursday	мвс	8.5	201.0		92121

NON NULL AFTER:

CODE FOR DATA 2:

```
import pandas as pd
import numpy as np
import seaborn as sns
d = pd.read_csv("/content/Loan_data.csv")
d.head()
d.describe()
d.tail()
d.isnull().sum()
d.shape
d.columns
d.duplicated
#Using mode method to fill the data in columns as Object(String)
#mode()[0] - Takes the most reccuring value and fills the empty cells
d['Gender'] = d['Gender'].fillna(d['Gender'].mode()[0])
d['Dependents'] = d['Dependents'].fillna(d['Dependents'].mode()[0])
d['Self_Employed'] = d['Self_Employed'].fillna(d['Self_Employed'].mode()[0])
#Using mean method to fill the data
```

 $\label{eq:condit_History'} $$ d['Credit_History'].fillna(d['Credit_History'].mean()) $$ sns.boxplot(y="LoanAmount",data=d)$

#Checking the total no.of null values again d.isnull().sum()

#Checking info of the dataset to check all the columns have entries d.info()

d['LoanAmount'] = d['LoanAmount'].fillna(d['LoanAmount'].mean())

 $d['Loan_Amount_Term'] = d['Loan_Amount_Term'].fillna(d['Loan_Amount_Term'].mean())$

OUTPUT FOR DATA 2:

DATA:

NULL BEFORE:

MODE:

df df	'Dependent	s']=df['	Dependent	ts'].fillna(d]) s'].mode()[0]) f_Employed'].mo	de()[0])					
	Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area
	LP001015	Male	Yes		Graduate	No	5720		110.0	360.0	1.0	Urban
	LP001022	Male	Yes		Graduate	No	3076	1500	126.0	360.0	1.0	Urban
	LP001031	Male	Yes		Graduate	No	5000	1800	208.0	360.0	1.0	Urban
	LP001035	Male	Yes		Graduate	No	2340	2546	100.0	360.0	1.0	Urban
	LP001051	Male	No		Not Graduate	No	3276		78.0	360.0	1.0	Urban

MEDIAN:

NON NULL AFTER:

```
Loan_ID Ø
Gender Ø
Married Ø
Dependents Ø
Education Ø
Self_Employed Ø
ApplicantIncome Ø
CoapplicantIncome Ø
LoanAmount Ø
Loan_Amount_Term Ø
Credit_History Ø
Property_Area Ø
dtype: int64
```

RESULT:

Thus the given data is read, cleansed and cleaned data is saved into the file.

Ex02-Outlier

AIM:

You are given bhp.csv which contains property prices in the city of banglore, India. You need to examine price_per_sqft column and do following,

- (1) Remove outliers using IQR
- (2) After removing outliers in step 1, you get a new dataframe.
- (3) use zscore of 3 to remove outliers. This is quite similar to IQR and you will get exact same result
- (4) for the data set height_weight.csv find the following
- (i) Using IQR detect weight outliers and print them
- (ii) Using IQR, detect height outliers and print them

Explanation

An Outlier is an observation in a given dataset that lies far from the rest of the observations. That means an outlier is vastly larger or smaller than the remaining values in the set. An outlier is an observation of a data point that lies an abnormal distance from other values in a given population. (odd man out). Outliers badly affect mean and standard deviation of the dataset. These may statistically give erroneous results. Most machine learning algorithms do not work well in the presence of outlier. So it is desirable to detect and remove outliers. Outliers are highly useful in anomaly detection like fraud detection where the fraud transactions are very different from normal transactions.

ALGORITHM:

STEP 1: Read the given Data

STEP 2:Get the information about the data

STEP 3:Detect the Outliers using IQR method and Z score

STEP 4:Remove the outliers

STEP 5:Plot the datas using Box Plot

CODE:

df

(1) & (2) Examine price_per_sqft column and use IQR to remove outliers and create new dataframe import pandas as pd import numpy as np import seaborn as sns df = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Semester 3/19AI403 - Data Science/bhp.csv")

```
df.head()
df.describe()
df.info()
df.isnull().sum()
df.shape
sns.boxplot(x="price_per_sqft",data=df)
q1 = df['price_per_sqft'].quantile(0.25)
q3 = df['price_Aper_sqft'].quantile(0.75)
print("First Quantile =",q1,"\nSecond Quantile =",q3)
IQR = q3-q1
ul = q3+1.5*IQR
11 = q1-1.5*IQR
df1 =df[((df['price_per_sqft']>=ll)&(df['price_per_sqft']<=ul))]
df1
df1.shape
sns.boxplot(x="price_per_sqft",data=df1)
(3) Examine price_per_sqft column and use zscore of 3 to remove outliers.
from scipy import stats
z = np.abs(stats.zscore(df['price_per_sqft']))
df2 = df[(z<3)]
df2
print(df2.shape)
sns.boxplot(x="price_per_sqft",data=df2)
(4)(i) For the data set height_weight.csv detect weight outliers using IQR method
df3 = pd.read_csv("/content/drive/MyDrive/Colab Notebooks/Semester 3/19AI403 - Data
Science/height_weight.csv")
df3
df3.head()
df3.info()
df3.describe()
df3.isnull().sum()
df3.shape
sns.boxplot(x="weight",data=df3)
q1 = df3['weight'].quantile(0.25)
q3 = df3['weight'].quantile(0.75)
print("First Quantile =",q1,"\nSecond Quantile =",q3)
IQR = q3-q1
ul = q3+1.5*IQR
11 = q1-1.5*IQR
df4 = df3[((df3['weight']>=ll)&(df3['weight']<=ul))]
df4
df4.shape
sns.boxplot(x="weight",data=df4)
(4)(ii) For the data set height_weight.csv detect height outliers using IQR method
sns.boxplot(x="height",data=df3)
q1 = df3['height'].quantile(0.25)
q3 = df3['height'].quantile(0.75)
print("First Quantile =",q1,"\nSecond Quantile =",q3)
IQR = q3-q1
ul = q3+1.5*IQR
11 = q1-1.5*IQR
df5 = df3[((df3['height']>=ll)&(df3['height']<=ul))]
df5
df5.shape
sns.boxplot(x="height",data=df5)
```

OUTPUT:

(1)(2) Examine price_per_sqft column and use IQR to remove outliers and create new dataframe.

Dataset

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0		39.07		3699
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00		4615
2	Uttarahalli	з внк	1440.0		62.00		4305
3	Lingadheeranahalli	з внк	1521.0	3.0	95.00		6245
4	Kothanur	2 BHK	1200.0		51.00		4250
13195	Whitefield	5 Bedroom	3453.0		231.00		6689
13196	other	4 BHK	3600.0	5.0	400.00	4	11111
13197	Raja Rajeshwari Nagar	2 BHK	1141.0		60.00		5258
13198	Padmanabhanagar	4 BHK	4689.0	4.0	488.00	4	10407
13199	Doddathoguru	1 BHK	550.0		17.00		3090
3200 ro	ws × 7 columns						

Dataset Head

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07		3699
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615
2	Uttarahalli	з внк	1440.0	2.0	62.00		4305
3	Lingadheeranahalli	з внк	1521.0	3.0	95.00	3	6245
4	Kothanur	2 BHK	1200.0	2.0	51.00		4250

Dataset Info

Dataset Describe

	total_sqft	bath	price	bhk	price_per_sqft
count	13200.000000	13200.000000	13200.000000	13200.000000	1.320000e+04
mean	1555.302783	2.691136	112.276178	2.800833	7.920337e+03
std	1237.323445	1.338915	149.175995	1.292843	1.067272e+05
min	1.000000	1.000000	8.000000	1.000000	2.670000e+02
25%	1100.000000	2.000000	50.000000	2.000000	4.267000e+03
50%	1275.000000	2.000000	71.850000	3.000000	5.438000e+03
75%	1672.000000	3.000000	120.000000	3.000000	7.317000e+03
max	52272.000000	40.000000	3600.000000	43.000000	1.200000e+07

Null Values

```
location Ø
size Ø
total_sqft Ø
bath Ø
price Ø
bhk Ø
price_per_sqft Ø
dtype: int64
```

Dataset Shape

```
(11935, 7)
```

Box plot of price_per_sqft column with outliers

price_per_sqft - Dataset after removing outliers

Second	Quantile = 7317.0 location	size	total sqft	bath		bhk	
	TOCATION	size	total_sqrt	Dath	price	Dnk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07		3699
	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615
2	Uttarahalli	з внк	1440.0	2.0	62.00		4305
3	Lingadheeranahalli	з внк	1521.0	3.0	95.00		6245
4	Kothanur	2 BHK	1200.0	2.0	51.00		4250
13195	Whitefield	5 Bedroom	3453.0		231.00		6689
13196	other	4 BHK	3600.0	5.0	400.00	4	11111
13197	Raja Rajeshwari Nagar	2 BHK	1141.0		60.00		5258
13198	Padmanabhanagar	4 BHK	4689.0	4.0	488.00	4	10407
13199	Doddathoguru	1 BHK	550.0		17.00		3090
11935 rc	ws × 7 columns						

price_per_sqft - Shape of Dataset after removing outliers

(10953, 7)

Box Plot of price_per_sqft column without outliers

(3) Examine price_per_sqft column and use zscore of 3 to remove outliers.

Dataset after removal of outlier using z score

Shape of Dataset after removal of outlier using z score

```
(13195, 7)
```

price_per_sqft column after removing outliers

(4) For the data set height_weight.csv detect weight and height outliers using IQR method.

Dataset

	gender	height	weight
0	Male	73.847017	241.893563
1	Male	68.781904	162.310473
2	Male	74.110105	212.740856
3	Male	71.730978	220.042470
4	Male	69.881796	206.349801
9995	Female	66.172652	136.777454
9996	Female	67.067155	170.867906
9997	Female	63.867992	128.475319
9998	Female	69.034243	163.852461
9999	Female	61.944246	113.649103
10000	rows × 3 c	olumns	

Dataset Head

	gender	height	weight
0	Male	73.847017	241.893563
1	Male	68.781904	162.310473
2	Male	74.110105	212.740856
3	Male	71.730978	220.042470
4	Male	69.881796	206.349801

Dataset Info

Dataset Describe

	height	weight
count	10000.000000	10000.000000
mean	66.367560	161.440357
std	3.847528	32.108439
min	54.263133	64.700127
25%	63.505620	135.818051
50%	66.318070	161.212928
75%	69.174262	187.169525
max	78.998742	269.989699

Null Values

gender	Ø
height	Ø
weight	0
dtype:	int64

Dataset Shape

```
(10000, 3)
```

Weight - With outliers

Weight - Dataset after removing Outliers using IQR method.

		= 135.818	0513055015 952486868348
Jeco	gender	height	weight
0	Male	73.847017	241.893563
-	Male	68.781904	162.310473
2	Male	74.110105	212.740856
3	Male	71.730978	220.042470
4	Male	69.881796	206.349801
9995	Female	66.172652	136.777454
9996	Female	67.067155	170.867906
9997	Female	63.867992	128.475319
9998	Female	69.034243	163.852461
9999	Female	61.944246	113.649103
9999 rd	ows × 3 co	lumns	

Weight - Shape of Dataset after removing Outliers using IQR method

```
(9999, 3)
```

Weight - Without Outliers using IQR method

Height - With outliers

Height - Dataset after removing Outliers using IQR method

	Quantile Quantil	e = 63.5056 $e = 69.174$	20481218955 2617268347
	gender	height	weight
0	Male	73.847017	241.893563
1	Male	68.781904	162.310473
2	Male	74.110105	212.740856
3	Male	71.730978	220.042470
4	Male	69.881796	206.349801
9995	Female	66.172652	136.777454
9996	Female	67.067155	170.867906
9997	Female	63.867992	128.475319
9998	Female	69.034243	163.852461
9999	Female	61.944246	113.649103
9992 ro	ws × 3 co	lumns	

Height - Shape of Dataset after removing Outliers using IQR method

Height - Without Outliers using IQR method

RESULT:

The given datasets are read and outliers are detected and are removed using IQR and z-score methods.

Ex03-Univariate-Analysis

Aim

To read the given data and perform the univariate analysis with different types of plots.

Explanation

Univariate analysis is basically the simplest form to analyze data. Uni means one and this means that the data has only one kind of variable. The major reason for univariate analysis is to use the data to describe. The analysis will take data, summarise it, and then find some pattern in the data.

Algorithm

Step1:Read the given data.

Step2:Get the information about the data.

Step3:Remove the null values from the data.

Step4:Mention the datatypes from the data.

Step5:Count the values from the data.

Step6:Do plots like boxplots, countplot, distribution plot, histogram plot.

Program

Developed by: M Vignesh

Registration Number: 212220233002

import pandas as pd
import numpy as np
import seaborn as sns
df=pd.read_csv('superstore.csv')
df
df.head()
df.info()
df.describe()
df.isnull().sum()
df.dtypes
df['Postal Code'].value_counts()
sns.boxplot(x='Postal Code', data=df)
sns.countplot(x='Postal Code',data=df)
sns.distplot(df["Postal Code"])
sns.histplot(x='Postal Code',data=df)

OUTPUT:

DATA:

																↑ ¥ ® ■ ☆ (
	Row ID		Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment			Postal Code	Region			Sub- Category	Product Name	Sales
0									United States							Bush Somerset Collection Bookcase	261.9600
•					Second Class				United States							Hon Deluxe Fabric Uphoistered Stacking Chairs	
2		CA-2017- 138688		16-06- 2017	Second Class		Darrin Van Huff		United States				OFF-LA- 10000240	Office Supplies		Self-Adhesive Address Labels for Typewriters b	
а		US-2016- 108966	11-10- 2016	18-10- 2016	Standard Class		Sean O'Donnell		United States	Fort Lauderdale			FUR-TA- 10000577			Bretford CR4500 Series Slim Rectangular Table	
4		US-2016- 108966			Standard Class				United States	Fort Lauderdale			OFF-8T- 10000760	Office Supplies		Eldon Fold 'N Roll Cart System	

9795		CA-2017- 125920	21-05- 2017	28-05- 2017	Standard Class		Sally Hughsby		United States				OFF-BI- 10003429	Office Supplies		Cardinal HOLDitl Binder Insert Strips,Extra St	
9796		CA-2016- 128608		17-01- 2016	Standard Class		Cindy Schnelling		United States				OFF-AR- 10001374	Office Supplies		BIC Brite Liner Highlighters, Chisel Tip	
9797		CA-2016- 128608			Standard Class				United				TEC-PH- 10004977				
9798		CA-2016- 128608	12-01- 2016	17-01- 2016	Standard Class		Cindy Schnelling		United States				TEC-PH- 10000912			Anker 24W Portable Micro USB Car Charger	
9799		CA-2016- 128608					Cindy Schnelling		United States				TEC-AC- 10000487			SanDisk Cruzer 4 GB USB Flash Drive	
воо го	WB × 18	columns															

DATA HEAD

DATA INFORMATION

DATA DESCRIBE

DATA NULL VALUES

```
Row ID 0
Order ID 0
Order Date 0
Ship Date 0
Ship Mode 0
Customer ID 0
Customer Name 0
Segment 0
City 0
State 0
Postal Code 11
Region 0
Product ID 0
Category 0
Sub-Category 0
Product Name 0
Sales 0
dtype: int64
```

DATA'S DATATYPES

```
Row ID int64
Order ID object
Order Date object
Ship Date object
Ship Mode object
Customer ID object
Segment object
City object
City object
Postal Code float64
Region object
Category object
Category object
Sales float64
dtype: object
```

DATA'S VALUECOUNT

BOXPLOT

COUNTPLOT

DISTRIBUTION PLOT

HISTOGRAM PLOT

Result

Thus we have read the given data and performed the univariate analysis with different types of plots.

Ex-04-Multivariate-Analysis

AIM

To perform Multivariate EDA on the given data set.

Explanation

Exploratory data analysis is used to understand the messages within a dataset. This technique involves many iterative processes to ensure that the cleaned data is further sorted to better understand the useful meaning. The primary aim with exploratory analysis is to examine the data for distribution, outliers and anomalies to direct specific testing of your hypothesis.

ALGORITHM

STEP 1 Import the built libraries required to perform EDA and outlier removal.

STEP 2 Read the given csv file

STEP 3 Convert the file into a dataframe and get information of the data.

STEP 4 Return the objects containing counts of unique values using (value_counts()).

STEP 5 Plot the counts in the form of Histogram or Bar Graph.

STEP 6 Use seaborn the bar graph comparison of data can be viewed.

STEP 7 Find the pairwise correlation of all columns in the dataframe.corr()

STEP 8 Save the final data set into the file

CODE

```
Developed by: M Vignesh
Registration Number: 212220233002
import pandas as pd
import numpy as np
import seaborn as sbn
import matplotlib.pyplot as plt
df = pd.read_csv("/content/SuperStore.csv")
df.head(10)
df.info()
df.describe()
df.isnull().sum()
df['Postal Code'] = df["Postal Code"].fillna(df['Postal Code'].mode()[0])
df.isnull().sum()
df.dtypes
sbn.scatterplot(df['Postal Code'],df['Sales'])
states=df.loc[:,["State","Sales"]]
states=states.groupby(by=["State"]).sum().sort_values(by="Sales")
plt.figure(figsize=(17,7))
sbn.barplot(x=states.index,y="Sales",data=states)
```

```
plt.xticks(rotation = 90)
plt.xlabel=("STATES")
plt.ylabel=("SALES")
plt.show()
states=df.loc[:,["State","Postal Code"]]
states=states.groupby(by=["State"]).sum().sort_values(by="Postal Code")
plt.figure(figsize=(17,7))
sbn.barplot(x=states.index,y="Postal Code",data=states)
plt.xticks(rotation = 90)
plt.xlabel=("STATES")
plt.ylabel=("Postal Code")
plt.show()
states=df.loc[:,["Segment","Sales"]]
states=states.groupby(by=["Segment"]).sum().sort_values(by="Sales")
#plt.figure(figsize=(10,7))
sbn.barplot(x=states.index,y="Sales",data=states)
plt.xticks(rotation = 90)
plt.xlabel=("SEGMENT")
plt.ylabel=("SALES")
plt.show()
sbn.barplot(df['Postal Code'],df['Ship Mode'],hue=df['Region'])
df.corr()
sbn.heatmap(df.corr(),annot=True)
```

OUTPUT

EDA - SuperStore.csv

Importingor df =	t matple	as np n as sbn tlib.pyplot	es plt t/SuperStore.	csv")														
	Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer	Customer Name	Segment	Country	City	State	Postal Code	Region	Product ID	Category	Sub- Category	Product Name	Sales
0	1	CA-2017- 152155	08-11-2017	11-11- 2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson	Kentucky	42420.0	South	FUR-80- 10001798	Furniture	Bookcases	Bush Somerset Collection Bookcase	261.9600
1	2	CA-2017- 152156	08-11-2017	11-11- 2017	Second Class	CG-12520	Claire Gute	Consumer	United States	Handerson	Kentucky	42420 0	South	FUR-CH- 10000454	Furniture	Chairs	Hon Deluxe Fabric Upholstered Stacking Chairs,	731 9400
2	3	CA-2017- 138688	12-06-2017	16-06- 2017	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles	California	90036.0	West	OFF-LA- 10000240	Office Supplies	Labels	Self-Adhesive Address Labels for Typewriters b	14.6200
3	4	US-2016- 108965	11-10-2016	18-10- 2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	Florida	33311 0	South	FUR-TA- 10000577	Furniture	Tables	Bretford CR4500 Series Slim Rectangular Table	957 5775
4	5	US-2016- 108966	11-10-2016	18-10- 2016	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale	Florida	33311 0	South	OFF-ST- 10000760	Office Supplies	Storage	Eldon Fold 'N Roll Cart System	22.3680
5	6	CA-2015- 115812	09-06-2015	14-06- 2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles	California	90032.0	West	FUR-FU- 10001487	Fumilire	Furnishings	Elden Expressions Wood and Plastic Desk Access	
6	7	CA-2015- 115812	09-06-2015	14-06- 2015	Standard Class	BH-11710	Brosina Hoffman	Consumor	United States	Las Angeles	California	90032.0	West	OFF-AR- 10002633	Office Supplies	Art	Newell 322	7 2800
7	8	CA-2015- 115812	09-06-2015	14-06- 2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Las Angeles	California	90032.0	West	TEC-PH- 10002275	Technology	Phones	Mital 5320 IP Phone VoIP phone	907.1520
8	9	CA-2015- 115812	09-06-2015	14-06- 2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles	California	90032.0	West	OFF-BI-10003910	Office Supplies	Binders	DXL Angle-View Binders with Locking Rings by S	18.5040
9	10	CA-2015- 115612	09-06-2015	14-06- 2015	Standard Class	BH-11710	Brosina Hoffman	Consumer	United States	Los Angeles	California	90032.0	West	OFF-AP- 10002692	Office Supplies	Appliances	Balkin F5C206VTEL 6 Outlet Surge	114 9000

df.info()

```
<class 'pandas.core.frame.DataFrame
RangeIndex: 9800 entries, 0 to 9799
Data columns (total 18 columns):</pre>
                                               Non-Null Count
            Column
                                                9800 non-null
9800 non-null
9800 non-null
            Row ID
Order ID
Order Date
                                                                                        int64
                                                                                        object

        Ship Date
        9800 non-null

        Ship Mode
        9800 non-null

        Customer ID
        9800 non-null

        Customer Name
        9800 non-null

                                                                                        object
object
  3 4 5 6 7 8 9
                                                                                        object
                                                9800 non-null
9800 non-null
9800 non-null
            Segment
            Country
                                                                                        object
            City
                                                9800 non-null
            State
            Postal Code
                                                9789 non-null
9800 non-null
9800 non-null
            Region
Product ID
           Category
Sub-Category
Product Name
                                                9800 non-null
9800 non-null
9800 non-null
9800 non-null
                                                                                        object
object
  14
                                                                                        object
float64
  17
           Sales
dtypes: float64(2), int64(1), object(15) memory usage: 1.3+ MB
```

df.describe()

	Row ID	Postal Code	Sales
count	9800.00000	9789.000000	9800.000000
mean	4900.500000	55273.322403	230.769059
std	2829.160653	32041.223413	626.651875
min	1.000000	1040.000000	0.444000
25%	2450.750000	23223.000000	17.248000
50%	4900 500000	58103.000000	54.490000
75%	7350.250000	90008.00000	210.605000
max	9800.000000	99301.000000	22638.480000

Checking the null values and Cleaning it

```
## Additional Code | Co
```

Displaying datatypes of each features

```
df.dtypes
Row ID int64
Order ID object
Order Date object
Ship Date object
Ship Mode object
Customer ID object
Customer Name object
Segment object
Country object
City object
State object
 State
                                 object
 Postal Code
                            float64
                             object
object
 Region
Product ID
                               object
object
 Category
 Sub-Category
 Product Name
                                 object
                               float64
Sales
dtype: object
```

Multivariate Analysis - Scatterplot

Multivariate Analysis - Barplot

Correlation Coefficient Interpretation using HeatMap

RESULT

Thus the program to perform EDA on the given data set is successfully executed

EX-05-Feature-Generation

AIM

To read the given data and perform Feature Generation process and save the data to a file.

Explanation

Feature Generation (also known as feature construction, feature extraction or feature engineering) is the process of transforming features into new features that better relate to the target.

ALGORITHM

STEP 1:Read the given Data

STEP 2:Clean the Data Set using Data Cleaning Process

STEP 3:Apply Feature Generation techniques to all the feature of the data set

STEP 4:Save the data to the file

CODE

```
import pandas as pd
df=pd.read_csv("data.csv")
feature generation:
import category_encoders as ce
be=ce.BinaryEncoder()
ndf=be.fit_transform(df["bin_1"])
df["bin_1"] = be.fit_transform(df["bin_1"])
ndf2=be.fit transform(df["bin 2"])
df["bin_2"] = be.fit_transform(df["bin_2"])
ndf2
df1=df.copy()
from sklearn.preprocessing import LabelEncoder,OrdinalEncoder,OneHotEncoder
import category_encoders as ce
be=ce.BinaryEncoder()
ohe=OneHotEncoder(sparse=False)
le=LabelEncoder()
oe=OrdinalEncoder()
df1["City"] = ohe.fit_transform(df1[["City"]])
temp=['Cold','Warm','Hot','Very Hot']
oe1=OrdinalEncoder(categories=[temp])
df1['Ord_1'] = oe1.fit_transform(df1[["Ord_1"]])
edu=['High School','Diploma','Bachelors','Masters','PhD']
oe2=OrdinalEncoder(categories=[edu])
df1['Ord_2']= oe2.fit_transform(df1[["Ord_2"]])
df1
```

```
feature scaling:
from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
df2=pd.DataFrame(sc.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'City', 'Ord_1','Ord_2','Target'])
from sklearn.preprocessing import StandardScaler
sc1=StandardScaler()
df3=pd.DataFrame(sc1.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'City', 'Ord_1','Ord_2','Target'])
from sklearn.preprocessing import MaxAbsScaler
sc2=MaxAbsScaler()
df4=pd.DataFrame(sc2.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'City', 'Ord_1', 'Ord_2', 'Target'])
from sklearn.preprocessing import RobustScaler
sc3=RobustScaler()
df5=pd.DataFrame(sc3.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'City', 'Ord_1', 'Ord_2', 'Target'])
df5
Encoading.draw:
import pandas as pd
df=pd.read_csv("Encoding Data.csv")
df
feature generation:
import category_encoders as ce
be=ce.BinaryEncoder()
ndf=be.fit_transform(df["bin_1"])
df["bin_1"] = be.fit_transform(df["bin_1"])
ndf2=be.fit_transform(df["bin_2"])
df["bin_2"] = be.fit_transform(df["bin_2"])
ndf2
df1=df.copy()
from sklearn.preprocessing import LabelEncoder,OrdinalEncoder
le=LabelEncoder()
oe=OrdinalEncoder()
df1["nom_0"] = oe.fit_transform(df1[["nom_0"]])
temp=['Cold','Warm','Hot']
oe2=OrdinalEncoder(categories=[temp])
df1['ord_2'] = oe2.fit_transform(df1[['ord_2']])
df1
feature scaling:
from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
df0=pd.DataFrame(sc.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'nom_0','ord_2'])
from sklearn.preprocessing import StandardScaler
sc1=StandardScaler()
df2=pd.DataFrame(sc1.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'nom_0','ord_2'])
from sklearn.preprocessing import MaxAbsScaler
sc2=MaxAbsScaler()
df3=pd.DataFrame(sc2.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'nom_0','ord_2'])
from sklearn.preprocessing import RobustScaler
sc3=RobustScaler()
df4=pd.DataFrame(sc3.fit_transform(df1),columns=['id', 'bin_1', 'bin_2', 'nom_0','ord_2'])
```

```
df4
Titanic.csv:
import pandas as pd
df=pd.read_csv("titanic_dataset.csv")
#removing unwanted data
df.drop("Name",axis=1,inplace=True)
df.drop("Ticket",axis=1,inplace=True)
df.drop("Cabin",axis=1,inplace=True)
#data cleaning
df.isnull().sum()
df["Age"]=df["Age"].fillna(df["Age"].median())
df["Embarked"]=df["Embarked"].fillna(df["Embarked"].mode()[0])
df.isnull().sum()
df
feature encoding:
from category_encoders import BinaryEncoder
be=BinaryEncoder()
df["Sex"]=be.fit_transform(df[["Sex"]])
ndf=be.fit_transform(df["Sex"])
ndf
df1=df.copy()
from sklearn.preprocessing import LabelEncoder, OrdinalEncoder
embark=['S','C','Q']
e1=OrdinalEncoder(categories=[embark])
df1['Embarked'] = e1.fit_transform(df[['Embarked']])
df1
feature scaling:
from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
df2=pd.DataFrame(sc.fit_transform(df1),columns=['Passenger','Survived','Pclass','Sex','Age','SibSp','Parch','Fare
','Embarked'])
df2
from sklearn.preprocessing import StandardScaler
sc1=StandardScaler()
df3=pd.DataFrame(sc1.fit_transform(df1),columns=['Passenger','Survived','Pclass','Sex','Age','SibSp','Parch','Far
e', 'Embarked'])
df3
from sklearn.preprocessing import MaxAbsScaler
sc2=MaxAbsScaler()
df4=pd.DataFrame(sc2.fit_transform(df1),columns=['Passenger','Survived', Pclass','Sex','Age','SibSp','Parch','Far
e', 'Embarked'])
from sklearn.preprocessing import RobustScaler
sc3=RobustScaler()
df5=pd.DataFrame(sc3.fit_transform(df1),columns=['Passenger','Survived','Pclass','Sex','Age','SibSp','Parch','Far
e', 'Embarked'])
df5
```

OUTPUT:

	id	bin_1	bin_2	City	Ord_1	Ord_2	Target
0	0	F	7	Delhi	Hot	High School	0
1	1	F	~	Bangalore	Warm	Masters	1
2	2	M	7	Mumbai	Very Hot	Diploma	1
3	3	M	Y	Chennai	Cold	Bachelors	0
4	4	IV1	~	Delhi	Cold	Bachelors	1
5	5	F	7	Delhi	Very Hot	Masters	0
6	6	M	7	Chennai	Warm	PhD	1
7	7	F	N	Chennai	Hot	High School	1
8	8	M	N	Delhi	Very Hot	High School	0
9	9	F	~	Delhi	Warm	PhD	0

	bin_1_0	bin_1_1
0	0	-
-18	0	1
2	1	0
3	1	0
4	1	0
5	0	1
6	1	0
-	0	- 1
8	1	0
9	0	- 1

	bin_2_0	bin_2_1
0	0	- 12
-	-12	0
2	0	-18
3	- 1	0
-	-	0
5	0	-12
6	0	- 1
~	0	-1
8	0	- 1
9	-	0

	ici	bin_1	bin_2	City	Ord_1	Ord_2	Target
0	0.000000	0.0	0.0	0.0	0.000007	0.00	0.0
-10	0.111111	0.0	1.0	1.0	0.333333	0.75	1.0
2	0.222222	1.0	0.0	0.0	1.000000	0.25	1.0
3	0.333333	1.0	1.0	0.0	0.000000	0.50	0.0
4	0.444444	1.0	1.0	0.0	0.000000	0.50	1.0
5	0.555556	0.0	0.0	0.0	1.000000	0.75	0.0
6	0.666667	1.0	0.0	0.0	0.333333	1.00	1.0
7	0.777778	0.0	0.0	0.0	0.000007	0.00	1.0
8	0.888889	1.0	0.0	0.0	1.000000	0.00	0.0
9	1.000000	0.0	1.0	0.0	0.333333	1.00	0.0

	id	bin_1	bin_2	City	Ord_1	Ord_2	Target
0	-1.566699	-1.0	-0.816497	-0.333333	0.359211	-1.255555	-1.0
1	-1.218544	-1.0	1.224745	3.000000	-0.538816	0.726900	1.0
2	-0.870388	1.0	-0.816497	-0.333333	1.257237	-0.594737	1.0
3	-0.522233	1.0	1.224745	-0.333333	-1.436842	0.066082	-1.0
4	-0.174078	1.0	1.224745	-0.333333	-1.436842	0.066082	1.0
5	0.174078	-1.0	-0.816497	-0.333333	1.257237	0.726900	-1.0
6	0.522233	1.0	-0.816497	-0.333333	-0.538816	1.387719	1.0
7	0.870388	-1.0	-0.816497	-0.333333	0.359211	-1.255555	1.0
8	1.218544	1.0	-0.816497	-0.333333	1.257237	-1.255555	-1.0
9	1.566699	-1.0	1.224745	-0.333333	-0.538816	1.387719	-1.0

	id	bin_1	bin_2	City	Ord_1	Ord_2	Target
0	0.000000	0.0	0.0	0.0	0.666667	0.00	0.0
1	0.111111	0.0	1.0	1.0	0.333333	0.75	1.0
2	0.222222	1.0	0.0	0.0	1.000000	0.25	1.0
3	0.333333	1.0	1.0	0.0	0.000000	0.50	0.0
4	0.44444	1.0	1.0	0.0	0.000000	0.50	1.0
5	0.555556	0.0	0.0	0.0	1.000000	0.75	0.0
6	0.666667	1.0	0.0	0.0	0.333333	1.00	1.0
7	0.777778	0.0	0.0	0.0	0.666667	0.00	1.0
8	0.888889	1.0	0.0	0.0	1.000000	0.00	0.0
9	1.000000	0.0	1.0	0.0	0.333333	1.00	0.0

	icl	bin_1	bin_2	City	Ord_1	Ord_2	Target
0	-1.000000	-0.5	0.0	0.0	0.285714	-0.727273	-0.5
1	-0.777778	-0.5	1.0	1.0	-0.285714	0.363636	0.5
2	-0.555556	0.5	0.0	0.0	0.857143	-0.363636	0.5
3	-0.333333	0.5	1.0	0.0	-0.857143	0.000000	-0.5
4	-0.111111	0.5	1.0	0.0	-0.857143	0.000000	0.5
5	0.111111	-0.5	0.0	0.0	0.857143	0.363636	-0.5
6	0.333333	0.5	0.0	0.0	-0.285714	0.727273	0.5
7	0.555556	-0.5	0.0	0.0	0.285714	-0.727273	0.5
8	0.777778	0.5	0.0	0.0	0.857143	-0.727273	-0.5
9	1.000000	-0.5	1.0	0.0	-0.285714	0.727273	-0.5

ord 2	nom_0	DIN 2	Din 1	H-CS	
Hot	Red	P-8	-	0	0
warm	Blue	~	-	783	-
Cold	Blue	P-E		2	2
warm	Green	1.0	-	3	3
Cold	Red	1/4	-	-=	-
Hot	Green	1.2	-	5	5
Cold	Red	P-5		6	6
Cold	Red	10-2	-	~	-
warm	Blue	100	-	8	8
Hot	Red	~		-	9

	bin_1_0	bin_1_1
0	0	1
-	0	1
2	0	1
3	0	1
4	1	0
5	1	0
6	0	1
7	1	0
8	0	1
9	0	-

	bin_2_0	bin_2_1
0	0	1
-	1	0
2	0	1
3	0	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1
9	1	0

	id	bin_1	bin_2	nom_0	ord_2
0	0.000000	0.0	0.0	1.0	1.0
1	0.111111	0.0	1.0	0.0	0.5
2	0.222222	0.0	0.0	0.0	0.0
3	0.333333	0.0	0.0	0.5	0.5
4	0.444444	1.0	0.0	1.0	0.0
5	0.555556	1.0	0.0	0.5	1.0
6	0.666667	0.0	0.0	1.0	0.0
7	0.777778	1.0	0.0	1.0	0.0
8	0.888889	0.0	0.0	0.0	0.5
9	1.000000	0.0	1.0	1.0	1.0

	iicli	bin_1	bin_2	nom_0	ord_2
0	-1.566699	-0.654654	-0.5	0.917663	1.324244
1	-1.218544	-0.654654	2.0	-1.376494	0.120386
2	-0.870388	-0.654654	-0.5	-1.376494	-1.083473
3	-0.522233	-0.654654	-0.5	-0.229416	0.120386
4	-0.174078	1.527525	-0.5	0.917663	-1.083473
5	0.174078	1.527525	-0.5	-0.229416	1.324244
6	0.522233	-0.654654	-0.5	0.917663	-1.083473
7	0.870388	1.527525	-0.5	0.917663	-1.083473
8	1.218544	-0.654654	-0.5	-1.376494	0.120386
9	1.566699	-0.654654	2.0	0.917663	1.324244

	ici	bin_1	bin_2	nom_0	ord_2
0	0.000000	0.0	0.0	1.0	1.0
-	0.111111	0.0	1.0	0.0	0.5
2	0.222222	0.0	0.0	0.0	0.0
3	0.333333	0.0	0.0	0.5	0.5
4	0.444444	1.0	0.0	1.0	0.0
5	0.555556	1.0	0.0	0.5	1.0
6	0.666667	0.0	0.0	1.0	0.0
7	0.777778	1.0	0.0	1.0	0.0
8	0.888889	0.0	0.0	0.0	0.5
9	1.000000	0.0	1.0	1.0	1.0

	iicl	bin_1	bin_2	nom_0	ord 2
0	-1.000000	0.000000	0.0	0.285714	0.571429
1	-0.777778	0.000000	1.0	-0.857143	0.000000
2	-0.555556	0.000000	0.0	-0.857143	-0.571429
3	-0.333333	0.000000	0.0	-0.285714	0.000000
4	-0.111111	1.333333	0.0	0.285714	-0.571429
5	0.111111	1.333333	0.0	-0.285714	0.571429
6	0.333333	0.000000	0.0	0.285714	-0.571429
7	0.555556	1.333333	0.0	0.285714	-0.571429
8	0.777778	0.000000	0.0	-0.857143	0.000000
9	1 000000	0 000000	1.0	0.285714	0.571429

	Passengerid	Survived	Polass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53,1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s
-												
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211538	13.0000	NaN	S
887	888	1	1	Graham, Miss, Margaret Edith	female	19.0	0	0	112053	30.0000	842	s
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1.	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	0
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

PassengerId	0	PassengerId	0	PassengerId	0
Survived	0	Survived	0	Survived	0
Pclass	0	Pclass	0	Pclass	0
Sex	0	Sex	0	Sex	0
Age	177	Age	177	Age	0
SibSp	9	SibSp	0	SibSp	0
Parch	0	Parch	0	Parch	0
Fare	0	Fare	0	Fare	0
Embarked	2	Embarked	2	Embarked	0
dtype: int64		dtype: int64		dtype: int64	

	Passengerid	Survived	Polass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	male	22.0	1	0	7.2500	s
1	2	1	1	female	38.0	1	0	71.2833	C
2	3	1	3	female	26.0	0	0	7.9250	S
3	4	1	1	female	35.0	1	0	53.1000	s
4	5	0	3	male	35.0	0	0	8.0500	S
		***				4.00			-
886	887	0	2	male	27.0	0	0	13.0000	S
887	888	1	1	female	19.0	0	0	30.0000	S
888	889	0	3	female	28.0	1	2	23.4500	S
889	890	1	1	male	26.0	0	0	30.0000	C
890	891	0	3	male	32.0	0	0	7.7500	Q

891 rows × 9 columns

	Sex_0	Sex_1
0	0	- 1
-	- 1	0
2	- 1	0
3	-	0
4	0	1
-	-	
886	0	- 1
887	-	0
888	- 1	0
889	0	-1
890	0	- 1

891 rows × 2 columns

	Passengerid	Survived	Pelass	Sex	Age	SibSp	Parch	Fare	Embarked
0	1	0	3	0	22.0	1	0	7.2500	0.0
1	2	1	1	1	38.0	1	0	71.2833	1.0
2	3	1	3	1	26.0	0	0	7.9250	0.0
3	4	1	1	1	35.0	1	0	53.1000	0.0
4	5	0	3	0	35.0	0	0	8.0500	0.0
	***	***			***				
886	887	0	2	0	27.0	0	0	13.0000	0.0
887	888	1	1	1	19.0	0	0	30.0000	0.0
888	889	0	3	1	28.0	1	2	23.4500	0.0
889	890	1	1	0	26.0	0	0	30.0000	1.0
890	891	0	3	0	32.0	0	0	7.7500	2.0

	Passenger	Survived	Polass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0.000000	0.0	1.0	0.0	0.271174	0.125	0.000000	0.014151	0.0
1	0.001124	1.0	0.0	1.0	0.472229	0.125	0.000000	0.139136	0.5
2	0.002247	1.0	1.0	1.0	0.321438	0.000	0.000000	0.015469	0.0
3	0.003371	1.0	0.0	1.0	0.434531	0.125	0.000000	0.103644	0.0
4	0.004494	0.0	1.0	0.0	0.434531	0.000	0.000000	0.015713	0.0
		-	-		222				-
886	0.995506	0.0	0.5	0.0	0.334004	0.000	0.000000	0.025374	0.0
887	0.998829	1.0	0.0	1.0	0.233476	0.000	0.000000	0.058556	0.0
888	0.997753	0.0	1.0	1.0	0.346569	0.125	0.333333	0.045771	0.0
889	0.998876	1.0	0.0	0.0	0.321438	0.000	0.000000	0.058556	0.5
890	1.000000	0.0	1.0	0.0	0.396833	0.000	0.000000	0.015127	1.0

	Passenger	Survived	Polass	Sex	Age	SibSp	Parch	Fare	Embarked
0	-1.730108	-0.789272	0.827377	-0.737695	-0.565736	0.432793	-0.473674	-0.502445	-0.568837
-	-1.726220	1.266990	-1.566107	1.355574	0.663861	0.432793	-0.473674	0.786845	1.005181
2	-1.722332	1.255990	0.827377	1.355574	-0.258337	-0.474545	-0.473674	-0.488854	-0.568837
3	-1.718444	1.266990	-1.566107	1.355574	0.433312	0.432793	-0.473674	0.420730	-0.568837
4	-1.714556	-0.789272	0.827377	-0.737695	0.433312	-0.474545	-0.473674	-0.486337	-0.568837
				144					
886	1.714556	-0.789272	-0.369365	-0.737695	-0.181487	-0.474545	-0.473674	-0.386671	-0.568837
887	1.718444	1.255990	-1.566107	1.355574	-0.796286	-0.474545	-0.473674	-0.044381	-0.568837
888	1.722332	-0.789272	0.827377	1.355574	-0.104637	0.432793	2.008933	-0.176263	-0.568837
889	1.726220	1.266990	-1.588107	-0.737695	-0.258337	-0.474545	-0.473674	-0.044381	1.005181
890	1.730108	-0.789272	0.827377	-0.737695	0.202762	-0.474545	-0.473674	-0.492378	2.579199

	Passenger	Survived	Polass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0.001122	0.0	1.000000	0.0	0.2750	0.125	0.000000	0.014151	0.0
-1	0.002245	1.0	0.333333	1.0	0.4750	0.125	0.000000	0.139136	0.5
2	0.003367	1.0	1.000000	1.0	0.3250	0.000	0.000000	0.015469	0.0
3	0.004489	1.0	0.333333	1.0	0.4375	0.125	0.000000	0.103644	0.0
4	0.005612	0.0	1.000000	0.0	0.4375	0.000	0.000000	0.015713	0.0
		Orient	(1000)			Table 1	-	0.000	7.000
886	0.995511	0.0	0.000007	0.0	0.3375	0.000	0.000000	0.025374	0.0
887	0.996633	1.0	0.333333	1.0	0.2375	0.000	0.000000	0.058556	0.0
888	0.997755	0.0	1.000000	1.0	0.3500	0.125	0.333333	0.045771	0.0
889	0.998878	1.0	0.333333	0.0	0.3250	0.000	0.000000	0.058556	0.5
890	1.000000	0.0	1.000000	0.0	0.4000	0.000	0.000000	0.015127	1.0

	Passenger	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	-1.000000	0.0	0.0	0.0	-0.461538	1.0	0.0	-0.312011	0.0
1	-0.997753	1.0	-2.0	1.0	0.769231	1.0	0.0	2.461242	1.0
2	-0.995506	1.0	0.0	1.0	-0.153846	0.0	0.0	-0.282777	0.0
3	-0.993258	1.0	-2.0	1.0	0.538462	1.0	0.0	1.673732	0.0
4	-0.991011	0.0	0.0	0.0	0.538462	0.0	0.0	-0.277363	0.0
			(1889)				525	177.5	
886	0.991011	0.0	-1.0	0.0	-0.076923	0.0	0.0	-0.062981	0.0
887	0.993258	1.0	-2.0	1.0	-0.692308	0.0	0.0	0.673281	0.0
888	0.995506	0.0	0.0	1.0	0.000000	1.0	2.0	0.389604	0.0
889	0.997753	1.0	-2.0	0.0	-0.153846	0.0	0.0	0.673281	1.0
890	1.000000	0.0	0.0	0.0	0.307692	0.0	0.0	-0.290356	2.0

RESULT:

Feature Generation process and Feature Scaling process is applied to the given data frames sucessfully.

Ex-06-Feature-Transformation

AIM:

To read the given data and perform Feature Transformation process and save the data to a file.

EXPLANATION:

Feature Transformation is a technique by which we can boost our model performance. Feature transformation is a mathematical transformation in which we apply a mathematical formula to a particular column(feature) and transform the values which are useful for our further analysis.

ALGORITHM:

STEP 1: Read the given Data

STEP 2: Clean the Data Set using Data Cleaning Process

STEP 3: Apply Feature Transformation techniques to all the features of the data set

STEP 4: Save the data to the file

Developed by: M Vignesh

CODE:

Registration Number: 212220233002 Feature Transformation - Data_to_Transform.csv import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm import scipy.stats as stats df = pd.read_csv("/content/Data_to_Transform.csv") print(df) df.head() df.isnull().sum() df.info() df.describe() df1 = df.copy()sm.qqplot(df1.HighlyPositiveSkew,fit=True,line='45') plt.show() sm.qqplot(df1.HighlyNegativeSkew,fit=True,line='45') plt.show() sm.qqplot(df1.ModeratePositiveSkew,fit=True,line='45') plt.show() sm.qqplot(df1.ModerateNegativeSkew,fit=True,line='45') plt.show() df1['HighlyPositiveSkew'] = np.log(df1.HighlyPositiveSkew) sm.qqplot(df1.HighlyPositiveSkew,fit=True,line='45') plt.show() df2 = df.copy()df2['HighlyPositiveSkew'] = 1/df2.HighlyPositiveSkew sm.qqplot(df2.HighlyPositiveSkew,fit=True,line='45') plt.show() df3 = df.copy()

```
df3['HighlyPositiveSkew'] = df3.HighlyPositiveSkew**(1/1.2)
sm.qqplot(df2.HighlyPositiveSkew,fit=True,line='45')
plt.show()
df4 = df.copy()
df4['ModeratePositiveSkew_1'],parameters =stats.yeojohnson(df4.ModeratePositiveSkew)
sm.qqplot(df4.ModeratePositiveSkew_1,fit=True,line='45')
plt.show()
from sklearn.preprocessing import PowerTransformer
trans = PowerTransformer("yeo-johnson")
df5 = df.copy()
df5['ModerateNegativeSkew_1'] = pd.DataFrame(trans.fit_transform(df5[['ModerateNegativeSkew']]))
sm.qqplot(df5['ModerateNegativeSkew_1'],line='45')
from sklearn.preprocessing import QuantileTransformer
qt = QuantileTransformer(output distribution = 'normal')
df5['ModerateNegativeSkew_2'] = pd.DataFrame(qt.fit_transform(df5[['ModerateNegativeSkew']]))
sm.qqplot(df5['ModerateNegativeSkew_2'],line='45')
plt.show()
```

OUTPUT:

Feature Transformation - Data_to_Transform.csv

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import scipy.stats as stats
from sklearn.preprocessing import QuantileTransformer
 df = pd.read_csv("/content/Data_to_Transform.csv")
print(df)
          ModeratePositiveSkew
0.899990 HighlyPositiveSkew
2.895074
                                                                                 ModerateNegativeSkew
11.180748
 1 2 3
                               1.113554
                                                                 2.962385
                                                                                                     10.842938
                                                                                                     10.764570
 4
                               1.323914
                                                                 3.012109
 9995
9996
9997
9998
9999
                             14.749050
14.854474
15.262103
15.269983
16.204517
                                                               16.289513
16.396252
17.102991
17.628467
18.052331
                                                                                                     -2.980821
-3.147526
-3.517256
-4.689833
-6.335679
                           9.027485
9.027485
9.009762
9.006134
9.000125
8.981296
          HighlyNegati
 9996
 9997
 9999
                          -7.036091
 [10000 rows x 4 columns]
     ModeratePositiveSkew HighlyPositiveSkew ModerateNegativeSkew HighlyNegativeSkew
 0
                                                     2.895074
                       0.899990
                                                                                    11.180748
                                                                                                                  9.027485
 1
                        1.113554
                                                     2.962385
                                                                                    10.842938
                                                                                                                  9.009762
 2
                        1.156830
                                                     2.966378
                                                                                    10.817934
                                                                                                                  9.006134
 3
                        1 264131
                                                     3 000324
                                                                                    10 764570
                                                                                                                  9 000125
                        1.323914
                                                     3.012109
                                                                                    10.753117
                                                                                                                  8.981296
df.isnull().sum()
ModeratePositiveSkew
HighlyPositiveSkew
                                   0
ModerateNegativeSkew
                                   0
HighlyNegativeSkew
                                   0
```


Log Transformation

Reciprocal Transformation

SquareRoot Transformation

Power Transformation

Quantile Transformation

RESULT:

Thus the Feature Transformation for the given datasets had been executed successfully

Ex-07-Data-Visualization

AIM

To Perform Data Visualization on a complex dataset and save the data to a file.

Explanation

Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

ALGORITHM

STEP 1: Read the given Data

STEP 2: Clean the Data Set using Data Cleaning Process

STEP 3: Apply Feature generation and selection techniques to all the features of the data set

STEP 4: Apply data visualization techniques to identify the patterns of the data.

CODE

```
Developed by: M Vignesh
Registration Number: 212220233002
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv("Superstore.csv")
df1=df.loc[:,["Ship Mode","Sales"]]
df1=df.groupby(by=["Ship Mode"]).sum()
labels=[]
for i in df1.index:
  labels.append(i)
colors = sns.color_palette('bright')
plt.pie(df1["Sales"],labels=labels,autopct = '%0.0f%%')
plt.show
df.head()
df1
df1.info()
df1=df1.groupby(by=["Category"]).sum()
labels=[]
for i in df1.index:
  plt.pie(df1["Profit"],colors = colors,labels=labels,autopct='0.0f%%')
sates=df.loc[:,["State","Sales"]]
plt.figure(figsize=(10,10))
sns.barplot(x="State",y="Sales",data=states)
plt.xticks(rotation=90)
```

```
plt.xlabel=("STATE")
plt.ylabel=("SALES")
plt.show()
sns.set_style('whitegrid')
sns.countplot(x='Segment',data= df, palette='rainbow')
sns.set_style('whitegrid')
sns.countplot(x='Category',data=df, palette='rainbow')
sns.set_style('whitegrid')
sns.countplot(x='Sub-Category',data=df, palette='rainbow')
sns.set_style('whitegrid')
sns.countplot(x='Region',data=df, palette='rainbow')
sns.set_style('whitegrid')
sns.countplot(x='Ship Mode',data=df, palette='rainbow')
category_hist = sns.FacetGrid(df, col='Ship Mode', palette='rainbow')
category hist.map(plt.hist, 'Category')
category_hist.set_ylabels('Number')
subcategory_hist = sns.FacetGrid(df, col='Segment', height=10.5, aspect=4.6)
subcategory_hist.map(plt.hist, 'Sub-Category')
subcategory_hist.set_ylabels('Number')
grid = sns.FacetGrid(df, row='Category', col='Sub-Category', height=2.2, aspect=1.6)
grid.map(sns.barplot, 'Profit', 'Segment', alpha=.5, ci=None)
grid.add_legend()
```

OUTPUT

F	Row	Order	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	City	***	Postal Code	Region	Product ID	Category	Category	63
0	1	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420	South	FUR-BO- 10001798	Furniture	Bookcases	
1	2	CA- 2016- 152156	11/8/2016	11/11/2016	Second Class	CG-12520	Claire Gute	Consumer	United States	Henderson		42420	South	FUR-CH- 10000454	Furniture	Chairs	U
2	3	CA- 2016- 138688	6/12/2016	6/16/2016	Second Class	DV-13045	Darrin Van Huff	Corporate	United States	Los Angeles		90036	West	OFF-LA- 10000240	Office Supplies	Labels	T
3	4	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		33311	South	FUR-TA- 10000577	Furniture	Tables	S
4	5	US- 2015- 108966	10/11/2015	10/18/2015	Standard Class	SO-20335	Sean O'Donnell	Consumer	United States	Fort Lauderdale		33311	South	OFF-ST- 10000760	Office Supplies	Storage	E

	ROW ID	Postal Code	Sales	Quantity	Discount	Profit
Ship Mode						
First Class	7498535	84229511	3.514284e+05	5693	253.17	48969.8399
Same Day	2784998	31242093	1.283631e+05	1960	82.75	15891.7589
Second Class	9601997	108192588	4.591936e+05	7423	270.15	57446.6354
Standard Class	30059485	327908460	1.358216e+06	22797	955.02	164088.7875

class 'pandas.core.frame.DataFrame'>
Index: 4 entries, First Class to Standard Class
Data columns (total 6 columns):
Column Non-Null Count Dtype

0 Row ID 4 non-null int64
1 Postal Code 4 non-null int64
2 Sales 4 non-null float64
3 Quantity 4 non-null int64
4 Discount 4 non-null int64
5 Profit 4 non-null float64
5 Profit 4 non-null float64
dtypes: float64(3), int64(3)
memory usage: 224.0+ bytes

RESULT:

Data Visualization on a complex dataset and save the data to a file has been performed.

Ex-08-Data-Visualization

AIM

To Perform Data Visualization on a complex dataset and save the data to a file.

Explanation

Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

ALGORITHM

STEP 1: Read the given Data

STEP 2: Clean the Data Set using Data Cleaning Process

STEP 3: Apply Feature generation and selection techniques to all the features of the data set

STEP 4: Apply data visualization techniques to identify the patterns of the data.

CODE

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv("Superstore.csv")
df
removing unnecessary data variables:
df.drop('Row ID',axis=1,inplace=True)
df.drop('Order ID',axis=1,inplace=True)
df.drop('Customer ID',axis=1,inplace=True)
df.drop('Customer Name',axis=1,inplace=True)
df.drop('Country',axis=1,inplace=True)
df.drop('Postal Code',axis=1,inplace=True)
df.drop('Product ID',axis=1,inplace=True)
df.drop('Product Name',axis=1,inplace=True)
df.drop('Order Date',axis=1,inplace=True)
df.drop('Ship Date',axis=1,inplace=True)
print("Updated dataset")
df
df.isnull().sum()
detecting and removing outliers in current numeric data:
plt.figure(figsize=(12,10))
plt.title("Data with outliers")
df.boxplot()
plt.show()
plt.figure(figsize=(12,10))
```

```
cols = ['Sales', 'Quantity', 'Discount', 'Profit']
Q1 = df[cols].quantile(0.25)
Q3 = df[cols].quantile(0.75)
IQR = Q3 - Q1
df = df[\sim((df[cols] < (Q1 - 1.5 * IQR)) | (df[cols] > (Q3 + 1.5 * IQR))).any(axis=1)]
plt.title("Dataset after removing outliers")
df.boxplot()
plt.show()
data visualization
line plots:
import seaborn as sns
sns.lineplot(x="Sub-Category",y="Sales",data=df,marker='o')
plt.title("Sub Categories vs Sales")
plt.xticks(rotation = 90)
plt.show()
sns.lineplot(x="Category",y="Profit",data=df,marker='o')
plt.xticks(rotation = 90)
plt.title("Categories vs Profit")
plt.show()
sns.lineplot(x="Region",y="Sales",data=df,marker='o')
plt.xticks(rotation = 90)
plt.title("Region area vs Sales")
plt.show()
sns.lineplot(x="Category",y="Discount",data=df,marker='o')
plt.title("Categories vs Discount")
plt.show()
sns.lineplot(x="Sub-Category",y="Quantity",data=df,marker='o')
plt.xticks(rotation = 90)
plt.title("Sub Categories vs Quantity")
plt.show()
sns.barplot(x="Sub-Category",y="Sales",data=df)
plt.title("Sub Categories vs Sales")
plt.xticks(rotation = 90)
plt.show()
sns.barplot(x="Category",y="Profit",data=df)
plt.title("Categories vs Profit")
plt.show()
sns.barplot(x="Sub-Category",y="Quantity",data=df)
plt.title("Sub Categories vs Quantity")
plt.xticks(rotation = 90)
plt.show()
sns.barplot(x="Category",y="Discount",data=df)
plt.title("Categories vs Discount")
plt.show()
plt.figure(figsize=(12,7))
sns.barplot(x="State",y="Sales",data=df)
plt.title("States vs Sales")
plt.xticks(rotation = 90)
plt.show()
plt.figure(figsize=(25,8))
sns.barplot(x="State",y="Sales",hue="Region",data=df)
plt.title("State vs Sales based on Region")
plt.xticks(rotation = 90)
plt.show()
```

```
Histogram:
sns.histplot(data = df,x = 'Region',hue='Ship Mode')
sns.histplot(data = df,x = 'Category',hue='Quantity')
sns.histplot(data = df,x = 'Sub-Category',hue='Category')
plt.xticks(rotation = 90)
plt.show()
sns.histplot(data = df,x = 'Quantity',hue='Segment')
plt.hist(data = df, x = 'Profit')
plt.show()
count plot:
plt.figure(figsize=(10,7))
sns.countplot(x ='Segment', data = df,hue = 'Sub-Category')
sns.countplot(x = 'Region', data = df,hue = 'Segment')
sns.countplot(x ='Category', data = df,hue='Discount')
sns.countplot(x ='Ship Mode', data = df,hue = 'Quantity')
Barplot:
sns.boxplot(x="Sub-Category",y="Discount",data=df)
plt.xticks(rotation = 90)
plt.show()
sns.boxplot( x="Profit", y="Category",data=df)
plt.xticks(rotation = 90)
plt.show()
plt.figure(figsize=(10,7))
sns.boxplot(x="Sub-Category",y="Sales",data=df)
plt.xticks(rotation = 90)
plt.show()
sns.boxplot(x="Category",y="Profit",data=df)
sns.boxplot(x="Region",y="Sales",data=df)
plt.figure(figsize=(10,7))
sns.boxplot(x="Sub-Category",y="Quantity",data=df)
plt.xticks(rotation = 90)
plt.show()
sns.boxplot(x="Category",y="Discount",data=df)
plt.figure(figsize=(15,7))
sns.boxplot(x="State",y="Sales",data=df)
plt.xticks(rotation = 90)
plt.show()
KDE plot:
sns.kdeplot(x="Profit", data = df,hue='Category')
sns.kdeplot(x="Sales", data = df,hue='Region')
sns.kdeplot(x="Quantity", data = df,hue='Segment')
sns.kdeplot(x="Discount", data = df,hue='Segment')
violin plot:
sns.violinplot(x="Profit",data=df)
sns.violinplot(x="Discount",y="Ship Mode",data=df)
sns.violinplot(x="Quantity",y="Ship Mode",data=df)
point plot:
sns.pointplot(x=df["Quantity"],y=df["Discount"])
sns.pointplot(x=df["Quantity"],y=df["Category"])
sns.pointplot(x=df["Sales"],y=df["Sub-Category"])
df.groupby(['Category']).sum().plot(kind='pie', y='Discount',figsize=(6,10),pctdistance=1.7,labeldistance=1.2)
df.groupby(['Sub-Category']).sum().plot(kind='pie', y='Sales',figsize=(10,10),pctdistance=1.7,labeldistance=1.2)
```

```
df.groupby(['Region']).sum().plot(kind='pie', y='Profit',figsize=(6,9),pctdistance=1.7,labeldistance=1.2)
df.groupby(['Ship Mode']).sum().plot(kind='pie', y='Quantity',figsize=(8,11),pctdistance=1.7,labeldistance=1.2)
df1=df.groupby(by=["Category"]).sum()
labels=[]
for i in df1.index:
  labels.append(i)
plt.figure(figsize=(8,8))
colors = sns.color_palette('pastel')
plt.pie(df1["Profit"],colors = colors,labels=labels, autopct = '%0.0f%%')
plt.show()
df1=df.groupby(by=["Ship Mode"]).sum()
labels=[]
for i in df1.index:
  labels.append(i)
colors=sns.color palette("bright")
plt.pie(df1["Sales"],labels=labels,autopct="%0.0f%%")
plt.show()
HeatMap:
df4=df.copy()
encoding:
from sklearn.preprocessing import LabelEncoder,OrdinalEncoder,OneHotEncoder
le=LabelEncoder()
ohe=OneHotEncoder
oe=OrdinalEncoder()
df4["Ship Mode"]=oe.fit_transform(df[["Ship Mode"]])
df4["Segment"]=oe.fit_transform(df[["Segment"]])
df4["City"]=le.fit_transform(df[["City"]])
df4["State"]=le.fit_transform(df[["State"]])
df4['Region'] = oe.fit transform(df[['Region']])
df4["Category"]=oe.fit_transform(df[["Category"]])
df4["Sub-Category"]=le.fit_transform(df[["Sub-Category"]])
scaling:
from sklearn.preprocessing import RobustScaler
sc=RobustScaler()
df5=pd.DataFrame(sc.fit_transform(df4),columns=['Ship Mode', 'Segment', 'City', 'State', 'Region',
                             'Category', 'Sub-Category', 'Sales', 'Quantity', 'Discount', 'Profit'])
Heatmap:
plt.subplots(figsize=(12,7))
sns.heatmap(df5.corr(),cmap="PuBu",annot=True)
plt.show()
```

OUTPUT

Initial Dataset:

Cleaned Dataset:

Updated dataset												
	Ship Mode	Customer ID	Segment	City	State	Region	Category	Sub-Category	Sales	Quantity	Discount	Profi
0	Second Class	CG-12520	Consumer	Henderson	Kentucky	South	Furniture	Bookcases	261,9600	2	0.00	41.9136
-	Second Class	CG-12520	Consumer	Henderson	Kentucky	South	Furniture	Chairs	731.9400	3	0.00	219.5820
2	Second Class	DV-13046	Corporate	Los Angeles	California	West	Office Supplies	Labels	14.0200	2	0.00	0.8714
3	Standard Class	50-20335	Consumer	Fort Lauderdale	Florida	South	Furniture	Tables	957.5775		0.45	-383.0310
-4	Standard Class	50-20336	Consumer	Fort Lauderdale	Florida	South	Office Supplies	Storage	22.3680	2	0.20	2.5104
989	Second Class	TB-21400	Consumer	Miami	Florida	South	Furniture	Furnishings	25.2480	3	0.20	4.1028
9990	Standard Class	DB-13060	Consumer	Costa Mesa	California	West	Furniture	Furnishings	91.9600	2	0.00	15.6332
9991	Standard Class	DB-13060	Consumer	Costa Mesa	California	West	Technology	Phones	258.5760	2	0.20	19.3932
992	Standard Class	DB-13060	Consumer	Costa Mesa	California	West	Office Supplies	Paper	29.0000	4	0.00	13.3200
cee	Second Class	GG-12220	Consumer	Westminster	California	West	Office Supplies	Appliances	243.1600	2	0.00	72.9480

```
Ship Mode
Customer ID
Segment
City
State
Region
Colegory
Sub-Category
Sales
Quantity
Discount
Profit
```

Removing Outliers:

Line PLot:

Bar Plots:

Histograms:

Count plots:

Bar Charts:

KDE Plots:

Violin Plot:

Point Plots:

Pie Charts:

HeatMap:

Result:

Hence,Data Visualization is applied on the complex dataset using libraries like Seaborn and Matplotlib successfully and the data is saved to file

	47
MINI PROJECT	

Mini-Project

z=np.abs(stats.zscore(df))z

df1=df1[(z<3).all(axis=1)]df1

df2=df.copy()

Aim:

```
To implement data science techniques in weight-height dataset
 Methodologies:
 1.Importing Libraries
 2.Loading Data
 3.Performing Simple EDA
<sup>3</sup> 4.Feature Engineering & Selection
<sup>></sup> 5.Model Visulization
Program:
import numpy as np import pandas
as pdimport io
from scipy import stats
from google.colab import filesuploaded =
files.upload()
df = pd.read_csv(io.BytesIO(uploaded['weight-height.csv']))print(df)
df.head() df.isnull().sum()
df.drop("Gender",axis=1,inplace=True)
df.head() df1=df.copy()
df.boxplot() df.shape
```

```
49
```

```
\label{eq:df2.pdf2} $$ df2.quantile(0.25)$ $$ q3=df2.quantile(0.75)q1$ $$ q3$ $$ iqr=q3-q1iqr$ $$ df2_new=df2[((df2>=(q1-1.5*iqr))&(df2<=(q3+1.5*iqr))).all(axis=1)]$ df2_new.shape $$ df2_new.boxplot()$ $$ df2$ $$ $$ $$
```

Output:

```
df.head()
        Gender
                  Height
                             Weight
          Male 73.847017 241.893563
     0
         Male 68.781904 162.310473
         Male 74.110105 212.740856
     2
     3 Male 71.730978 220.042470
     4
         Male 69.881796 206.349801
    df.isnull().sum()
    Gender
              0
    Height
             0
    Weight
             0
    dtype: int64
[ ] df.drop("Gender",axis=1,inplace=True)
```

[] df.head() Height Weight **0** 73.847017 241.893563 **1** 68.781904 162.310473 **2** 74.110105 212.740856 3 71.730978 220.042470 4 69.881796 206.349801 [] df1=df.copy() [] df.boxplot() <matplotlib.axes._subplots.AxesSubplot at 0x7f939c474a50> φ 250 200 150 100 50 Height Weight

```
[ ] df.shape
    (10000, 2)
[ ] z=np.abs(stats.zscore(df))
           Height Weight
      0 1.944061 2.505797
      1 0.627537 0.027101
      2 2.012443 1.597806
      3 1.394060 1.825222
      4 0.913421 1.398750
     9995 0.050660 0.768151
     9996 0.181839 0.293631
     9997 0.649688 1.026730
     9998 0.693125 0.075127
     9999 1.149708 1.488507
    10000 rows × 2 columns
```

[] df1=df1[(z<3).all(axis=1)] df1</pre>

	Height	Weight				
0	73.847017	241.893563				
1	68.781904	162.310473				
2	74.110105	212.740856				
3	71.730978	220.042470				
4	69.881796	206.349801				
9995	66.172652	136.777454				
9996	67.067155	170.867906				
9997	63.867992	128.475319				
9998	69.034243	163.852461				
9999	61.944246	113.649103				
9993 rows × 2 columns						

```
[ ] df2=df.copy()
[ ] df2.head()
           Height Weight
     0 73.847017 241.893563
     1 68.781904 162.310473
     2 74.110105 212.740856
     3 71.730978 220.042470
     4 69.881796 206.349801
[ ] q1=df2.quantile(0.25)
[ ] q3=df2.quantile(0.75)
[ ] q1
    Height 63.505620
Weight 135.818051
    Name: 0.25, dtype: float64
[ ] q3
    Height
             69.174262
    Weight 187.169525
    Name: 0.75, dtype: float64
```


, Result:

Thus above program is required for weight-height was analyzed successfully