Épreuve de mise en perspective didactique.

Antonin Siciak

Cursus et parcours dans la recherche, Présentation des travaux de thèse, Activité didactique.

candidat admissible n°02445909719-001

Juin 2025

Cursus et parcours dans la recherche

La tension des raies ultra-fines ultra-intenses en astro

On observe depuis la fin des années 1960 des raies dites ultra-fines ($<0.1\mbox{Å}$) et ultra-intenses ($I_{\rm raie}>10.I_{\rm continuum}$) dans certains milieux interstellaires. Un pseudo-exemple d'une raie de ce type :

La tension des raies ultra-fines ultra-intenses en astro

Une liste non-exhaustive des systèmes produisant ces raies :

Longueur d'onde	Environnement astrophysique	Type d'émetteurs	Références	
micro-ondes	i) voisinage des jeunes étoiles	molécules	Weaver et al., 1965	
$18.5~\mathrm{cm}$	ii) enveloppe des géantes rouges	OH	Cheung et al., 1969	
$1.35~\mathrm{cm}$	iii) Zones de chocs des restes de supernova	H ₂ O	Townes, 1997	
sous-millimétrique	 i) voisinage des jeunes étoiles ii) enveloppe des géantes rouges iii) Zones de chocs des restes de supernova 	atomes H	Strel'nitskii <i>et al.</i> , 1996	
infrarouge	i) atmosphère de Mars ii) atmosphère de Venus	molécule CO ₂	Johnson <i>et al.</i> , 1976 Mumma <i>et al.</i> , 1981	
optique	"Weigelt blob B" de l'étoile Eta Carinæ	ion Fe II	Johansson, Letokhov, 2002, 2003 Johansson, Letokhov, 2005	

Digression sur le fonctionnement d'un laser astrophysique

Si un laser astrophysique existe, ce serait la diffusion multiple qui joue le rôle de la cavité et l'apport continu en rayonnement d'une étoile voisine qui ferait office de pompage :

La tension des raies ultra-fines ultra-intenses en astro

Supposons qu'une telle raie centrée sur λ_0 soit de type corps-noir, la densité énergétique spectrale suit la loi de Planck, et alors :

$$T_{\text{Planck}} = \frac{hc/\lambda_0}{k_B} \frac{1}{\ln\left(1 + \delta^2 P_0/\delta^2 P\right)},\tag{1}$$

où:

- $\delta^2 P_0$ a l'unité d'une puissance, et ne dépend que de différentielles géométriques impliquant la source et l'observateur, de la largeur spectrale $\Delta \lambda$ et de la vitesse de groupe c de la radiation, donc calculable.
- $\delta^2 P$ est la puissance rayonnée autour de λ_0 dans $\Delta \lambda$, mesurée.

Pour les mesures relatives à $\delta^2 P$ et $\delta^2 P_0$, on trouve :

$$T_{\mathrm{planck}} \in \left[10^{12} \mathrm{K}, 10^{15} \mathrm{K}\right]$$

La tension des raies ultra-fines ultra-intenses en astro

Or, la mesure du spectrale permet également de déterminer la température. Si le milieu des émetteurs est à l'équilibre thermodynamique (au sens de Boltzmann-Gibbs), en traduisant l'effet Doppler-Fizeau, on obtient dans le cas où les émetteurs de masse m sont non-relativistes :

$$T_{\rm cin} = \frac{mc^2}{k_B} \cdot \left(\frac{\Delta\lambda}{\lambda_0}\right)^2. \tag{2}$$

Pour les mesures relatives à $\Delta\lambda$ et λ_0 et les émetteurs en jeu :

$$T_{\rm cin} \in \left[10^2 \mathrm{K}, 10^5 \mathrm{K}\right].$$

Conclusion: $T_{\rm cin} \ll T_{\rm Planck}$, les deux hypothèses, d'une part l'équilibre thermodynamique canonique du milieu interstellaire en jeu [H1], et d'autre part la radiation de type corps noir [H0], ne sont pas compatibles.

Fonctions de corrélations et signature quantique

Il faut donc tester [H0] et [H1], si possible de manière simultanée. La mesure du spectre (:= TF $\left\{g^{(1)}\right\}$) ne suffit pas pour tester [H0], c'est l'expérience de pensée de Glauber :

Fonctions de corrélations et signature quantique

Pour trancher sur la nature classique ou quantique de la raie, il faut accéder à sa statistique des photons. On peut actuellement mesurer des moments du champ d'ordre supérieur à celui du spectre (ordre 2) :

ordre 3
$$\rightarrow$$
 h , et ordre 4 \rightarrow $g^{(2)}$.

Théorème (optique quantique)

état du champ = distribution de photons

État du champ \fonction de corrélation	$g^{(1)}(au)$	$g^{(2)}(au)$	h(au)
chaotique VS cohérent	non	oui	oui
chaotique VS chaotique comprimé	non	non	oui

De plus, pour un état cohérent (laser idéal) : $g^{(2)}(0) = 1$, alors que pour un état chaotique (source thermique) : $g^{(2)}(0) = 2$.

Digression : qu'est-ce qu'un état chaotique comprimé?

Contributions originales

- Travail expérimental : caractérisation du corrélomètre photonique et de son module (instrument accordable à un télescope permettant de mesurer un $g^{(2)}(0)$ sur une raie astro UF & UI), puis mesure sur le ciel (raie H α de P-cygni) et sur un type de laser aléatoire en laboratoire.
- Travail de modélisateur (analytique et numérique) : examiner s'il existe une quantité plus pertinente que $g^{(2)}$ pour tester [H1], et [H0]. Transposition de h dans notre référentiel de mesure semi-classique :

$$h$$
 (quantique) $\rightarrow g^{(3/2)}$ (classique).

Construction d'un modèle analytique permettant de : 1-comparer $g^{(2)}$ et $g^{(3/2)}$, 2-considérer des processus de transport anormaux pertinents en astro et comparer ce qu'en capturent $g^{(2)}$ et $g^{(3/2)}$.

Contributions originales : zoom sur mon modèle

Le système d'intérêt (suspect n°1) sous jacent à mon travail est le "Weigelt blob B" de l'étoile Eta Carinæ :

Contributions originales : zoom sur mon modèle

Modèle analytique et numérique le plus simple possible permettant d'implémenter différent processus de transport des émetteurs dans un gaz support de neutres :

Digression sur les degrés de liberté du modèle

On utilise le modèle des cubes durs de la théorie cinétique, avec deux populations : un gaz support (m_0) dense, et des émetteurs (m) rares. On montre qu'on peut décrire la vitesse v d'un émetteur via un processus de markov à saut : v change d'état (j, pour jump, de densité P_{JIW}) à cause d'une collision avec un cube du gaz support au bout d'une durée d'attente (w, pour waiting time, de densité P_W). Les densités P_{J|W} et P_W déterminent univoquement la densité de transition markovienne T qui permet alors de calculer les quantités capturées dans les $q^{(n)}$: la durée moyenne entre deux collisions τ_c et l'élargissement Doppler $\Delta \lambda$. Les densités P_{IIW} et P_W quant à elles sont déduites de leur densité jointe qui s'écrit :

$$\mathsf{P}_{\mathsf{WJ}} = \frac{|j|}{\ell_m \mu^2}.\mathsf{P}_{\mathsf{u}}(v+j/\mu),$$

où ℓ_m est le libre parcours moyen (géométrique), $\mu=2m^*/m, \ m^*$ la masse réduite, j le changement de v, et P_u la distribution d'équilibre du gaz support.

Activité didactique

J'ai proposé un DM adapté à la filière MP dont la finalité est de répondre à la question : vaut-il mieux mesurer $g^{(2)}$ ou $g^{(3/2)}$ pour dévoiler une raie astro cohérente et/ou caractériser le mouvement brownien des émetteurs ? (sans discuter des définitions de $g^{(2)}$ ou $g^{(3/2)}$.)

DM : Laser astrophysique ? (Durée estimée 6heures)

Le milieu interstellaire Weigelt Blob B dans le voisinage du système stellaire η Carinæ peut en toute première approximation être modélisé en deux zones distinctes. Une première zone Z_1 , comporte des ions Fe II maintenus dans un état excité d'intérêt noté E_e . Ces ions sont en mouvement brownien non-relativiste dans un gaz d'hydrogène atomique H I. Dans Z_1 les ions Fe II dans E_e sont minoritaires devant les atomes d'hydrogène.

Une deuxième zone Z_2 est supposée comporter des ions Fe II également maintenus dans E_a . Cependant, ils sont cette fois en grande majorité devant les atomes H I. II est de plus supposé que dans Z_2 , et dans Z_2 seulement, la radiation émise par les ions Fe II est de nature cohérente (laser idéal). Par abus de langage on la qualifiera de κ laser κ .

Que ce soit dans Z_1 ou dans Z_2 les ions Fe II se désexcitent depuis E_o vers un même état E_1 , engendrant un photon $h\nu_e$ correspondant à une fréquence ν_e . Le mécanisme réexcitant continument les ions Fe II dans E_o n'est pas discuté ici. Le référentiel barycentrique de l'ensemble des particules de Z_2 est noté R_{ob} . II est supposé galiléen pour notre étude et est considéré comme le référentiel attaché au millieu interstellaire.

Activité didactique : vaut-il mieux mesurer $g^{(2)}$ ou $g^{(3/2)}$?

Q41. Avec $\theta=\phi$, et vues les expressions obtenues pour $g^{(2)}(\tau)$ ou $g^{(3/2)}(\tau)$:

$$g^{(3/2)}(0) = 2 - \frac{1}{1+s}$$
, et: $g^{(2)}(0) = 2 - \frac{1}{(1+s)^2}$. (3)

Si on note : $\Delta g^{(n/2)} \coloneqq g^{(n/2)}(0) - g^{(n/2)}(\infty)$, puisque : $g^{(n/2)}(\infty) = 1$, on souhaite savoir lequel de $\Delta g^{(3/2)}$ ou $\Delta g^{(2)}$ est le plus faible en fonction de s, $\Delta g^{(n/2)}$ est l'inverse de la sensibilité à la composante cohérente $(s=+\infty$ s'il y en a aucune).

ullet Cas $s\ll 1$ (raie laser UI). Après un DL au premier ordre en s :

$$\Delta g^{(3/2)} = \Delta g^{(2)}/2 < \Delta g^{(2)}$$

 \bullet Cas $s\gg 1$ (raie laser cachée). Après un DL au premier ordre en 1/s :

$$\Delta g^{(3/2)} = \Delta g^{(2)} \cdot \frac{s-1}{s} < \Delta g^{(2)}$$

Activité didactique : vaut-il mieux mesurer $g^{(2)}$ ou $g^{(3/2)}$?

Cas
$$s = 1$$
. $\Delta g^{(3/2)} \simeq 0.86. \Delta g^{(2)}$

Où $s \coloneqq \text{intensit\'e continuum/intensit\'e raie coh\'erente}.$

Activité didactique : vaut-il mieux mesurer $g^{(2)}$ ou $g^{(3/2)}$?

Conclusion : Q39. $g^{(3/2)}$ offre une résolution temporelle supérieure pour accéder à τ_c (facteur 2) et $\Delta\lambda$ (facteur $\sqrt{2}$)

Q41. $g^{(3/2)}$ est plus sensible à la composante cohérente de la raie ultra intense, d'autant plus que la composante cohérente est intense.

 \Rightarrow il vaut mieux mesurer $g^{(3/2)}$!

Le corrélomètre stellaire hybride photonique

Permet de mesurer $g^{(3/2)}(\tau) \equiv$ moment d'ordre 3 du champ :

Difficultés pratiques, techniques, et coût de l'instrument... :(

Le corrélomètre stellaire photonique

Permet de mesurer $g^{(2)}(\tau) \propto \langle I(t)I(t+\tau) \rangle$

Limitation de la mesure

Avec les technologies photoniques actuelles, la réponse temporelle R_{δ} d'un corrélomètre est telle que le signal est de faible amplitude!

Mesure de $g^{(2)}(\tau)$ avec une source thermique

On mesure bien $g^{(2)}(0) = 1,002!$

Mesure de $g^{(2)}(\tau)$ sur la raie $\mathrm{H}\alpha$ de P Cygni

Cette raie sub-nanométrique présente toutes les caractéristiques d'un système suspecté d'être un laser astrophysique pour lequel on aurait $g^{(2)}(0)=1\ldots$

Mesure de $g^{(2)}(\tau)$ sur la raie $\mathrm{H}\alpha$ de P Cygni

...La mesure de $g^{(2)}(au)$ montre que la raie Hlpha de P Cygni ne lase pas!

Observatoire de Calern

