例子

设
$$(X,Y)\sim f(x,y)=e^{-(x+y)}I_{(0,\infty)\times(0,\infty)}(x,y)$$
, 设区域G由

$$x + y \le 1$$
, $x \ge 0$, $y \ge 0$

围成. 求F(x,y), $P((X,Y) \in G)$.

例子: 二元正态分布

设 (X,Y) 的概率密度函数有形式

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-a)^2}{\sigma_1^2} -2\rho\frac{(x-a)(y-b)}{\sigma_1\sigma_2} + \frac{(y-b)^2}{\sigma_2^2}\right]\right\}$$

其中 $-\infty < a, b < \infty$, $0 < \sigma_1, \sigma_2 < \infty$, $-1 \le \rho \le 1$. 称 (X, Y) 服从 参数为 $a, b, \sigma_1, \sigma_2, \rho$ 的二元正态分布,记为 $N(a, b, \sigma_1^2, \sigma_2^2, \rho)$.

图 3.3: 二元正态密度函数图

$\sigma_x = \sigma_y, \ \rho = 0$

$$2\sigma_x=\sigma_y,\ \rho=0$$

$$\sigma_x = \sigma_y, \ \rho = 0.75$$

$$2\sigma_x=\sigma_y,~\rho=0.75$$

$$\sigma_x = \sigma_y, \ \rho = -0.75$$

$$2\sigma_x = \sigma_y, \ \rho = -0.75$$

设
$$\mathbf{X} = (X_1, X_2, \dots, X_n)', \mathbf{x} = (x_1, x_2, \dots, x_n)' \in \mathbb{R}^n, \,$$
称

$$F(\mathbf{x}) \equiv F(x_1, x_2, \dots, x_n) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n) \equiv \mathbb{P}(\mathbf{X} \le \mathbf{x})$$

为n维随机变量X的联合分布函数. 若存在非负的n元函数 $f(x_1, x_2, \ldots, x_n)$, 使得

$$F(\mathbf{x}) \equiv F(x_1, x_2, \cdots, x_n) = \int_{-\infty}^{x_1} \cdots \int_{-\infty}^{x_n} f(u_1, u_2, \cdots, u_n) du_1 du_2 \cdots du_n \equiv \int_{(-\infty)^n}^{\mathbf{x}} f(\mathbf{u}) d\mathbf{u}$$

则 $f(\mathbf{x}) \equiv f(x_1, x_2, \dots, x_n)$ 称为 \mathbf{X} 的联合密度函数, \mathbf{X} 称为连续型的 n 维随机变量, 对应的联合分布函数 $F(\mathbf{x}) \equiv F(x_1, x_2, \dots, x_n)$ 称为连续型的联合分布函数.

性质

- (1) $F(x_1,\dots,x_n)$ 对每个变元单调非降;
- (2) 对任意的 $1 \le j \le n$ 有, $\lim_{x_j \to -\infty} F(x_1, \dots, x_n) = 0$;
- (3) $\lim_{x_1 \to \infty, \dots, x_n \to \infty} F(x_1, \dots, x_n) = 1.$

- 多维联合分布函数含有丰富的信息:
 - ➢ 若干分量的分布,即边缘分布 → 2
 - ▶ 给定若干个分量时,其余分量的分布,即条件分布 → 3
 - > 分量之间的关联程度,即独立性、协方差和相关系数

2. 边缘(际)分布

设 $(X_1,...,X_n) \sim F$ 已知. 令 $(i_1,...,i_m) \subset (1,...,n)$, 则 $X_{i_1},...,X_{i_m}$ 的分布称为 $X_1,...,X_n$ 或 F 的一个m **维边缘分布**. 如何得到该分布?

- 从二维到n维
- 从离散到连续

边缘分布函数: 二维

定义 3.6 边缘 (际) 分布

设 (X,Y) 的联合分布函数为 F(x,y), 则其分量 X 和 Y 的分布函数 $F_1(x)$ 和 $F_2(y)$ 称为 (X,Y) 或 F 的边缘 (\mathbb{R}) 分布(marginal distribution).

由于
$$\{Y < +\infty\} = \Omega$$
,故
$$F_1(x) = \mathbb{P}(X \le x) = \mathbb{P}(\{X \le x\} \cap \Omega) = \mathbb{P}(X \le x, Y < +\infty)$$

$$= \lim_{y \to +\infty} F(x, y) \equiv F(x, +\infty)$$
 同理, $F_2(y) = \mathbb{P}(Y \le y) = F(+\infty, y)$.

由此知联合分布可以唯一确定边缘分布.

边缘分布函数: n维

• 假设
$$(i_1, ..., i_m) = (1, ..., m)$$
,则
$$F_{(X_1, ..., X_m)}(x_1, ..., x_m)$$

$$= P(X_1 \le x_1, ..., X_m \le x_m)$$

$$= P(X_1 \le x_1, ..., X_m \le x_m, X_{m+1} < +\infty, ..., X_n < +\infty)$$

$$= \lim_{x_{m+1} \to +\infty, ..., x_m \to +\infty} F(x_1, ..., x_m, x_{m+1}, ..., x_n)$$

$$\stackrel{:}{=} F(x_1, ..., x_m, +\infty, ..., +\infty)$$

- n维随机变量的边缘分布函数有 $2^n 2$ 个.

边缘分布律 (离散型)

边缘密度函数 (连续型)

边缘分布率(离散型): 二维

设二维离散型随机变量 (X,Y) 的联合分布律为

$$\mathbb{P}(X = x_i, Y = y_j) = p_{ij}, \quad i, j = 1, 2, \dots,$$

则随机变量 X 的边际分布律 (概率质量函数) 为

$$\mathbb{P}(X = x_i) = \sum_{j=1}^{\infty} \mathbb{P}(X = x_i, Y = y_j) = \sum_{j=1}^{\infty} p_{ij}$$

$$\equiv p_{i\cdot}, \quad i = 1, 2, \dots$$

同理随机变量 Y 的边缘分布律为

$$\mathbb{P}(Y = y_j) = \sum_{i=1}^{\infty} p_{ij} \equiv p_{\cdot j}, \quad j = 1, 2, \dots$$

Y\ X	x_1	x_2		x_n		$P(Y=y_j)$
y_1	p_{11}	p_{21}		p_{n1}		$p_{\cdot 1}$
y_2	p_{12}	p_{22}		p_{n2}	• • •	$p_{\cdot 2}$
:	:	÷	÷	÷	÷	:
y_m	p_{1m}	p_{2m}	÷	p_{nm}	÷	$p_{\cdot m}$
:	:	:	÷	:	÷	i i
$P(X=x_i)$	p_1 .	p_2 .		p_n .		1

边缘分布率(离散型): n维

类似地,可对n (n > 2) 维的随机变量定义边缘分布. 设 $X_1,...,X_n$ 为n 维随机变量, 其概率分布F已知. 令 $i_1 < \cdots < i_m$ 为1,...,n的任一子集,则 $X_{i_1},...,X_{i_m}$ 的概率函数为

$$p_{i_{1}...i_{m}}(j_{i_{1}},...,j_{i_{m}}) = P(X_{i_{1}} = a_{i_{1}j_{i_{1}}},...,X_{i_{m}} = a_{i_{m}j_{i_{m}}})$$

$$= P(X_{i_{1}} = a_{i_{1}j_{i_{1}}},...,X_{i_{m}} = a_{i_{m}j_{i_{m}}})$$

$$= \sum_{j_{i_{m+1}},...,j_{i_{n}}} P(X_{1} = a_{1j_{1}},...,X_{i_{1}} = a_{i_{1}j_{i_{1}}},...,X_{i_{m}} = a_{i_{m}j_{i_{m}}},$$

$$X_{i_{m+1}} = a_{i_{m+1}j_{i_{m+1}}},...,X_{n} = a_{nj_{n}})$$

$$= \sum_{j_{i_{1}},...,j_{i_{m}}} p(j_{1},...,j_{n}).$$

$$\Leftrightarrow j_{i_{1}},...,j_{i_{m}}} \Leftrightarrow f$$

其中和是对除 $X_{i_1},...,X_{i_m}$ 之外的所有变量来求和.

• 口袋中有5张外形相同的卡片,其中3张写上数字"0",2张写上数字"1"。现从中任取两张卡片,分别以X,Y表示第一张和第二张卡片上的数字,分别在有放回和不放回的情形下,试求(X,Y)的联合分布律和边缘分布律。

$Y \setminus X$	0	1	$p_{\cdot j}$
0	9/25	6/25	3/5
1	6/25	4/25	2/5
p_i .	3/5	2/5	1

Y\ X	0	1	$p_{\cdot j}$
0	6/20	6/20	3/5
1	6/20	2/20	2/5
p_i .	3/5	2/5	1

边缘分布律不能决定联合分布律!

边缘密度函数(连续型): 二维

设二维随机变量 $(X,Y) \sim f(x,y)$, 由于

$$F_1(x) = F(x, +\infty) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(u, y) du dy$$

右边在积分号下对x求导,得X的边缘密度函数为

$$f_1(x) = \int_{\mathbb{R}} f(x, y) dy,$$

联合密度f(x,y)对另一变量求积分

同理, Y 的边缘密度函数为

$$f_2(y) = \int_{\mathbb{R}} f(x, y) dx.$$

定义 3.7 边缘密度

X 和 Y 的概率密度函数 $f_1(x)$ 和 $f_2(y)$ 称为二维随机变量 (X,Y) 或者联合概率密度函数 f(x,y) 的边缘概率密度函数 (marginal pdf).

边缘密度函数(连续型): n维

当 n > 2 时,令 $f(x_1,...,x_n)$ 为 n 维连续型随机变量 $(X_1,...,X_n)$ 的概率密度函数.设 $(i_1, ..., i_m)$ 为 (1,2,...,n) 的一个子集.则同上可证,则 $(X_{i_1},...,X_{i_m})$ 的概率密度函数是联合密度函数 $f(x_1,...,x_n)$ 对除 $X_{i_1},...,X_{i_m}$ 之外的所有变量求积分.

设 (X,Y) 的联合概率密度有形式 $(∀(x,y) \in \mathbb{R}^2)$

$$f(x,y) = rac{1}{2\pi\sigma_1\sigma_2\sqrt{1-
ho^2}}exp\left\{-rac{1}{2(1-
ho^2)}\left[rac{(x-a)^2}{\sigma_1^2}
ight] -2
horac{(x-a)(y-b)}{\sigma_1\sigma_2} + rac{(y-b)^2}{\sigma_2^2}
ight]
ight\}$$

其中 $-\infty < a, b < \infty; 0 < \sigma_1, \sigma_2 < \infty; -1 \le \rho \le 1$. 则称 (X, Y) 服 从参数为 $a, b, \sigma_1, \sigma_2, \rho$ 的二元正态分布,记为 $N(a, b, \sigma_1^2, \sigma_2^2, \rho)$. 试计算 X 和 Y 的边际概率密度。

考虑两个概率密度函数

$$p(x,y) = x + y, \quad 0 < x, y < 1$$

$$q(x,y) = (x + \frac{1}{2})(y + \frac{1}{2}), \quad 0 < x, y < 1$$

试求边际概率密度。

边缘概率密度函数不能决定联合概率密度函数!