KEY

GENERAL & ANALYTICAL CHEMISTRY I CHMG-141 With Dr. Bailey

Nam	ρ		

Recitation Week11 Chemical Reactions

SOLUBLE COMPOUNDS

Almost all salts of Na+, K+, NH4+

Salts of nitrate, NO₃ = chlorate, ClO₃ = perchlorate, ClO₄ = acetate, CH₃CO₂ =

EXCEPTIONS

Almost all salts of Cl., Br., I-

Compounds containing F*

Salts of sulfate, 50_4^{2-}

Halides of Ag+, Hg₂²⁺, Pb²⁺

Fluorides of Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺

Sulfates of Ca²⁺, Sr²⁺, Ba²⁺, Pb²⁺

INSOLUBLE COMPOUNDS

EXCEPTIONS

Most salts of carbonate, CO₃²⁻ phosphate, PO₄³⁻ oxalate, C₂O₄²⁻ chromate, CrO₄²⁻

Most metal sulfides, 52-

Most metal hydroxides and oxides

Saits of $\mathrm{NH_4}^+$ and the alkali metal cations $\mathrm{Ba} \ (\mathrm{OH})_2 \ \mathrm{is} \ \mathrm{soluble}$

Rules for Assigning Oxidation States

In their compounds, <u>nonmetals</u> have oxidation states according to the table below

✓ nonmetals higher on the table take priority

Nonmetal	Oxidation State	Example
F	-L	CF ₄
H	-1	CH ₄
0	-2	CO ₂
Group 7A	-1	CCI
Group 6A	-2	CS ₂
Group 5A	-3	NH_3

Peoblem 1:
Complete and balance each of the following equations. If no reaction occurs, write NO REACTION:
a. NaNO₃(aq) + KCl(aq) → NO REACTION (all reactants and possible products are soluble)
Complete ionic equation $ \frac{Na NO_3(aq) + KCl(aq) \rightarrow NaCl(aq) + KNO_3(aq)}{Na^{\dagger}(aq) + NO_3(aq) + K^{\dagger}(aq) + Cl(aq) \rightarrow Na^{\dagger}(aq) + Cl(aq) + Cl(aq$
+ K tag)+NO2
b) $2K_3PO_4(aq) + 3NiCl_2(aq) \rightarrow 6KCl(aq)+Ni_3(PO_4)_2(s)$ REACTION OF PRECIPITATON
Complete ionic equation:
Net ionic equation: $\frac{6 \times \sqrt{n_4} + 2 \times p_4^{-3}(a_4) + 3 \times (a_4) + 6 \times (a_4)$
$ \frac{3N_i^{+2}(a_4) + 2 \cdot PO_4^{-3}(a_4)}{N_{i3}(PO_4)_2(s)} = \frac{1}{N_{i3}(PO_4)_2(s)} $
c. $NH_4Cl(aq) + AgNO_3(aq) \rightarrow NH_4NO_3(aq) + AgCl(s)$
REACTION OF PRECIPITATON
Complete ionic equation:
Clay + NHy (aq) + Ag (aq) + NOs(aq) -> NHy (aq) + NOs(aq) + AgCl(s)
$d_1 \text{ NaOH(aq)} + \text{HNO}_3(\text{aq}) \rightarrow \text{NaNO}_3(\text{aq}) + \text{H}_2\text{O(1)}$
(REACTION OF NEUTROLIZATION)
Complete ionic equation: $Nat(aq) + DH(aq) + H(aq) + NO_3(aq) \rightarrow Nat(aq) + NO_3(aq) + H_3O_3(aq)$ Net ionic equation:
OH (ag) + Hot(ag) -> H2O(e)
praction (e) K2 S(ag) +2HCe(ag) -> H2S(g) +2KCe(ag)

Proflem 2:

- Write Balanced complete ionic and net ionic equation for each of the following reactions:
 - a. $K_2SO_4(aq) + CaCl_2(aq) \rightarrow CaSO_4(s) + 2KCl(aq) Molecular$ Equation; REACTION OF PRECIPITATON

$$2K^{+}(aq) + SO_4^{2-}(aq) + Ca^{2+}(aq) + 2Cl^{-}(aq) \rightarrow CaSO_4(s) + 2K^{+}(aq) + 2Cl^{-}(aq)$$
- Complete Ionic Equation

$$Ca^{2+}(aq) + SO_4^{2-}(aq) \rightarrow CaSO_4(s)$$
 Net Ionic Equation

b. $HCl(aq) + LiOH(aq) \rightarrow H_2O(l) + LiCl(aq) - Molecular Equation;$ REACTION of NEUTROLIZATION

$$H^{+}(aq) + CP(aq) + LP(aq) + OH(aq) \rightarrow LP(aq) + CP(aq) + H_2O(I) -$$
Complete Ionic Equation

 $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I) - Net Ionic Equation$

b)
$$HCl(aq) + LiOH(aq) \rightarrow H_2O(l) + LiCl(aq)$$

Part B

<u>Problem 1</u>: Determine the oxidation number for each element in the following compounds:

HCIO₄ NaCIO CH₄ (NH₄)₃PO₄ CO₃²⁻
+1+7-2 +1+1-2 -4+1
$$x + 5 - 2$$
 +4-2 $x + 3 \cdot (-2) = -2$
NH₄ $x + 4 \cdot (+1) = +1$
 $x = -3$

<u>Problem 2:</u> Determine if any of the following reactions are redox reactions. If so, identify the substance being oxidized and which is being reduced. Identify the oxidizing agent and the reducing agent.

Oxidation - Ox. State increases
Reduction - Ox. State decreases

$$(CH_4)$$

$$X + 4(+1) = 0$$

$$X = -4$$

$$(CO_2)$$

$$X + 2(-2) = 0$$

$$X - + 1$$

KEY

GENERAL & ANALYTICAL CHEMISTRY I CHMG-141

With Dr. Bailey

Nome		
Name		

Part C

Week 11 Balancing Ox/Red Reactions

Recitation

Step 1. Write the unbalanced net ionic equation.

- **Step 2.** Decide which atoms are oxidized and which are reduced, and write the two unbalanced half-reactions.
- Step 3. Balance both half-reactions for all atoms except O and H.
- **Step 4.** Balance each half-reaction for O by adding water to the side with less O, and balance for H by adding H⁺ to the side with less H.
- Step 5. Balance each half-reaction for charge by adding electrons to the side with greater positive charge, and then multiply by suitable factors to make the electron count the same in both half-reactions.
- **Step 6.** Add the two balanced half-reactions together, and cancel electrons and other species that appear on both sides of the equation.

Check your answer by making sure the equation is balanced both for atoms and for charge.

Problem A:

Balance the following reaction in (a) acidic solution and (b) basic solution

1. Split the reaction into two half-reactions.

2. Consider the following half reaction:

Balance everything but oxygen and hydrogen atoms.

3. Take your answer to (2) and balance the oxygen by adding a water to add oxygen where needed.

4. Take your answer to (3) and balance the hydrogen by adding in H⁺ where needed (do not forget the charge on the H⁺!).

5. Take your answer to (4) and balance the charges by adding electrons to the more positive side of the reaction until the charges are equal.

6. Balance the other half reaction in the same way

H_3AsO_3 (aq) -> H_3AsO_4 (aq)

And
$$H_2O$$
 the O $H_3ASO_3(a_4) + H_2O(e) -> H_3ASO_4(a_q)$

add H^* to belong $H_3ASO_3(a_q) + H_2O(e) -> H_3ASO_4(a_q) + (2H)$

the H .

Balance \to $H_3ASO_3(a_q) + H_2O(e) -> H_3ASO_4(a_q) + 2H^* + (2e)$

adding E

7. Combine the half reactions to eliminate the electrons

$$H_3 As O_3(cq) + H_2 O(e) \longrightarrow H_3 As O_4(cq) + 2H + 2\bar{e}$$
 $M_n O_2(s) + 4H^{\dagger}(cq) + 2\bar{e} \longrightarrow M_n^{2\dagger}(cq) + 2H_2 O(e)$
 $H_3 As O_3(cq) + H_2 O(e) + M_n O_2(s) + 4H^{\dagger} + 2\bar{e} \longrightarrow M_n^{2\dagger}(cq) + 2H^{\dagger} + 2\bar{e}$
 $+ 2H_2 O(e) + H_3 As O_4(cq) + 2H^{\dagger} + 2\bar{e}$

8. "Clean up": cancel other species that appear on both sides of the equation.

$$M_3 As O_3(aq) + M_n O_2(s) + 2H(aq) \rightarrow M_n (aq) + H_2 O(e) + 1$$

+ $H_3 As O_4(aq)$ _

(b) Basic solution

Add OH- to both sides of the equation to neutralize H+

$$H_{3}ASO_{3}(a_{4}) + M_{1}O_{2}(s) + 2H^{\dagger}(a_{4}) + 2OH^{\dagger}(a_{4}) \longrightarrow M_{1}^{2}(a_{4}) + M_{2}OH^{\dagger}(a_{4}) + M_{3}ASO_{4}(a_{4}) + 2OH^{\dagger}(a_{4}) + M_{1}O^{\dagger}(a_{4}) + M_{2}O^{\dagger}(a_{4})$$

$$H_{3}ASO_{3}(a_{4}) + M_{1}O_{2}(s) + H_{2}O(e) \longrightarrow M_{1}^{2}(a_{4}) + H_{3}ASO_{4}(a_{4}) + 2OH^{\dagger}(a_{4})$$

Problem B (additional, for your practice):

Balance the following reaction in basic solution

$$CrO_4^{2-}$$
 (aq) + I_2 (s) -> $Cr(OH)_3$ (s) + IO_3^{--} (aq)

Half reactions:

$$\begin{cases} GO_4^2(a_4) \longrightarrow G(\rho H)_3(s) \\ I_2(s) \longrightarrow \text{Ollowlys} IO_3(a_4) \end{cases}$$

$$CrO_4^2$$
 (aq) + I_2 (s) \rightarrow $Cr(OH)_3$ (s) + IO_3 (aq)

1. Separate into half reactions:

$$CrO_4^2 \cdot (aq) \rightarrow Cr(OH)_3 \cdot (s)$$
 $f \in \mathbb{R}$
 $CrO_4^2 \cdot (aq) \rightarrow Cr(OH)_3 \cdot (s)$
 $CrO_4 \cdot (aq) \rightarrow Cr(OH)_3 \cdot (s)$
 $CrO_4 \cdot (aq) \rightarrow Cr(OH)_3 \cdot (s)$
 $CrO_4 \cdot (aq) \rightarrow Cr(OH)_3 \cdot (aq)$
 $CrO_4 \cdot (aq) \rightarrow Cr(OH)_4 \cdot (aq)$
 $CrO_4 \cdot (aq) \rightarrow Cr(OH)_4$

2. Balance everything but H and O

$$CrO_4^2$$
 (aq) \rightarrow $Cr(OH)_3$ (s)
 I_2 (s) \rightarrow 2 IO_3 (aq)

3. Balance O with H₂O

$$CrO_4^{2}$$
 (aq) $\rightarrow Cr(OH)_3$ (s) + H_2O (l)

$$I_2(s) + 6 H_2O(I) \rightarrow 2 IO_3^-(aq)$$

4. Balance H with H+

$$CrO_4^{2^+}(aq) + 5 H^+ \rightarrow Cr(OH)_3 (s) + H_2O (l)$$

$$I_2(s) + 6 H_2O(l) \rightarrow 2 IO_3^*(aq) + 12 H^*$$

5. Balance charge with e-

$$GO_{4}^{2-}$$

$$X + 4(-2) = -2$$

$$X = 8-2 = (-6)$$

$$X = (-2) + 3(-1)$$

$$10_{3}^{-} \times + 3(-2) = -1$$

$$10_{3}^{-} \times + 3(-2) = -1$$

		· · ·

$$CrO_4^{2^{-}}(aq) + 5 H^{+} + 3 e^{-} \rightarrow Cr(OH)_3 (s) + H_2O (l)$$
+6
+3
 $I_2 (s) + 6 H_2O (l) \rightarrow 2 IO_3^{-}(aq) + 12 H^{+} + 10e^{-}$
 $I_3 (s) + 6 H_2O (l) \rightarrow 2 IO_3^{-}(aq) + 12 H^{+} + 10e^{-}$

6. Combine to get rid of e-

$$10x(CrO_4^{2-}(aq) + 5 H^* + 3 e^- \rightarrow Cr(OH)_3 (s) + H_2O (l)]$$

$3x(1_2 (s) + 6 H_2O (l) \rightarrow 2 IO_3^* (aq) + 12 H^* + 10e-1$

 $10~CrO_4{}^{2_{\circ}}(aq) + 50~H^{\circ} + 30~e- + 3~I_2~(s) + 18~H_2O~(l) \longrightarrow 10~Cr(OH)_3~(s) + 10~H_2O~(l) + 6~IO_3{}^{\circ}~(aq) + 36~H^{\circ} + 30~e-$

Let's clean up a little bit:

10 CrO_4^{2+} (aq) + 14 $\frac{50}{50}$ H⁺ + $\frac{30}{50}$ e- + 3 I_2 (s) + 8 $\frac{18}{10}$ H₂O (l) \rightarrow 10 $Cr(OH)_3$ (s) + $\frac{10}{10}$ H₂O (l) + 6 IO_3^+ (aq) + $\frac{36}{10}$ H⁺ + $\frac{30}{10}$ e-

10 CrO₄²⁻ (aq) + 14 H⁺ + 3 I₂ (s) + 8 H₂O (I)→ 10 Cr(OH)₃ (s) + 6 IO₃ (aq)

In acidic Solution

In Basic Solution:

7. (Add OH- to neutralize H+) for both Sides of the reaction:

10 CrO₄² (aq) + 14 H⁺ + 3 I₂ (s) + 8 H₂O (I) 14 OH- 10 Cr(OH)₃ (s) + 6 IO₃ (aq) + 14 OH

10 CrO42 (aq) + 14 H2O + 3 I2 (s) + 8 H2O (l) - → 10 Cr(OH)3 (s) + 6 IO3 (aq) + 14 OH-

10 CrO_4^2 (aq) + 22 H_2O + 3 I_2 (s) \rightarrow 10 $Cr(OH)_3$ (s) + 6 IO_3 (aq) + 14 OH_2