

KATEDRA ELEKTRONIKI AGH LABORATORIUM

Podstawy Elektroniki dla **Informatyki**

Temat éwiczenia:		Nr ćwiczenia:
		Data wykonania:
Grupa:	Wykonawca:	Ocena konspektu: Ocena raportu:

Sprawdzenie działania prawa Ohma i praw Kirchhoffa na przykładzie obwodów rezystancyjnych.

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie z podstawowymi funkcjami programu NI MultiSim 13 na podstawie prostych obwodów rezystancyjnych.

Obwód elektroniczny

Na pulpicie programu ustawiłem źródło napięcia stałego V_1 o wartości U=12V, opornik R_1 o rezystancji $R_1=1k\Omega$ oraz potencjometr R_2 o wartości oporu ustawionej na $R_2=60\%\cdot 1k\Omega=600\Omega$. Następnie podłączyłem dwa multimetry (na rysunku 1: XMM1 oraz XMM2). Pierwszy pełnił funkcję amperomierza i mierzył napięcie płynące w obwodzie. Drugi pełnił funkcję woltomierza i mierzył napięcie U_2 na potencjometrze R_2 .

Rys. 1: Schemat obwodu rezystancyjnego z podłączonymi multimetrami

Przebieg ćwiczenia

Po uruchomieniu symulacji obwodu odczytałem wartości wskazywane przez multimetry.

Rys. 2: Wartości wskazywane przez multimetry

Ponadto skorzystałem z analizy stałoprądowej (DC Operating Point) w celu zmierzenia napięcia U_2 oraz natężenia I i porównania wyników z odczytami multimetrów oraz własnymi obliczeniami.

Wyniki ćwiczenia

Wartości wskazywane przez multimetry zgadzają się z obliczeniami wynikającymi z prawa Ohma oraz 1. prawa Kirchhoffa.

	Pomiary	Obliczenia
I [mA]	7,5	7,5
U ₂ [V]	4,5	4,5

Wyniki analizy stałoprądowej przedstawione są na rys. 3.

Rys. 3: wyniki analizy stałoprądowej

Wnioski

Na podstawie przeprowadzonego ćwiczenia można stwierdzić, że program NI Multisim 13 prawidłowo symuluje obwód rezystancyjny, co wynika z porównania wyników obliczeń z wskazaniami multimetrów. Ponadto program pozwala na różne sposoby odczytać wartości napięć i natężeń w obwodzie, miedzy innymi za pomocą analizy stałoprądowej, która wyniki prezentuje w formie przejrzystej tabelki.

Analiza w dziedzinie czasu obwodów RC

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie z analizą obwodów RC w dziedzinie czasu, a w szczególności wyznaczenie stałych ładowania i rozładowywania kondensatora.

Obwód elektryczny

Na pulpicie programu ustawiłem źródło napięcia prostokątnego V_2 o napięciu U=5V oraz częstotliwości f=200Hz, opornik R_2 o rezystancji $R_2=1k\Omega$ i potencjometr R_1 o rezystancji $R_1=60\%\cdot 1k\Omega=600\Omega$. Ponadto do układu podłączyłem kondensator C_1 o pojemności $1\mu F$. Aby przeprowadzić ćwiczenie, podłączyłem również oscyloskop tak, jak pokazane na rys. 4.

Rys. 4: obwód RC z podłączonym oscyloskopem

Przebieg ćwiczenia

Przed przeprowadzeniem obserwacji zmieniłem kolor obwodu wchodzącego do kanału A, by napięcie wejściowe łatwiej było odróżnić na wykresie przedstawianym przez oscyloskop*. Ze względu na dokładność analizy lepiej jest jednak użyć tzw. Transient Analysis, co też zrobiłem. Wyniki przedstawione są na rys. 5.

^{*}w tym miejscu popełniłem błąd – nie przełączyłem koloru tła na biały. Przez to czytelność wykresu jest mała, a ponadto zmarnowałbym dużo tuszu. Przez to nie załączyłem tutaj wykresu z oscyloskopu, za co przepraszam. Na przyszłość będę pamiętał, by zmienić kolor tła.

Rys. 5: Transient Analysis.

Aby obliczyć stałą czasową ładowania i rozładowania, skorzystałem z opcji kursorów. Jeden ustawiłem w chwili 2,5 ms, gdzie napięcie na kondensatorze było największe i wynosiło $U_0=1,8727~V$. Drugi ustawiłem tak, by napięcie na kondensatorze wynosiło $0,63U_0=1,1798~V$. Czas wskazywany przez drugi kursor (był to czas równy stałej czasowej ładowania kondensatora) wynosił $375\mu s$. Analogicznie wyznaczyłem stałą czasową rozładowania kondensatora równą $370\mu s$, ustawiając drugi kursor w miejscu, gdzie napięcie na kondensatorze wynosi $0,37U_0=0,6929~V$.

Wyniki pomiarów

	Stała czasowa τ[μs]
Ładowanie kondensatora	375
Rozładowanie kondensatora	370

Wnioski

Analiza Transient umożliwia na dokładne wyznaczenie parametrów czasu w obwodzie. Ponadto prezentuje dane w postaci przejrzystego grafu. Uzyskane stałe czasowe mają podobne wartości (różnią się jedynie o 5µs). Różnice wynikają z dokonanych przybliżeń oraz niedokładności wynikających z ustawienia kursorów na wykresie.

Dzielnik napięciowy

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie z dzielnikiem napięciowym oraz sprawdzenie poprawności działania multimetrów na przykładzie oporników połączonych równolegle.

Obwód elektroniczny

Obwód skonstruowałem ze źródła napięcia V_1 o napięciu U_{we} = 30V oraz trzech oporników: R_1 o rezystancji R_1 = $56k\Omega$, R_2 o rezystancji R_2 = $100k\Omega$ oraz R_3 o rezystancji R_3 = $10k\Omega$. Oporniki R_2 i R_3 zostały podłączone do układu równolegle, natomiast opornik R_1 został podłączony do pozostałych dwóch szeregowo. Ponadto do układu został podłączony multimetr XMM1, pełniący funkcję woltomierza. Posłużył do pomiaru napięcia na opornikach podłączonych równolegle. Całość układu przedstawiona jest na rysunku 6.

Rys. 6: układ dzielnika napięciowego.

Przebieg ćwiczenia

Po włączeniu symulacji multimetr XMM1 wskazał napięcie 4,19V (rys. 7).

Rys. 7: wyniki pomiaru napięcia.

Wyniki ćwiczenia

	Pomiary	Obliczenia
Uwy [V]	4,19	4,19

Wnioski

Dzięki dzielnikowi napięciowemu możemy uzyskać mniejsze napięcie wyjściowe. Może być przydatny w układach, gdzie potrzebne jest napięcie mniejsze od zapewnianego przez źródło napięcia. Ponadto multimetr poprawnie przybliża napięcie na opornikach połączonych równolegle.

Podsumowanie

Program NI Multisim 13 jest bardzo przydatnym narzędziem, służącym do projektowania obwodów elektrycznych. Zapewnia wszystkie podstawowe narzędzia do badania przepływu prądu oraz innych parametrów układu, jak i ich analizy.