Theorie Relaxationsverhalten: Wergang eines System in seinen Grundzustoral PRelaxationsverhalten: Wergang eines System in seinen Grundzustoral PRelaxationsverhalten: Wergang eines System in seinen Grundzustoral Part diesen Versuch Auft & Badung a) The Erhlädung die Spannung DGL: do af - Ac O(t) - Enhlädung: O(t) - O(0) exp(tz) Auftladen: O(t) - Clo (1 - exp(tz)) Auftladen: O(t) - Clo (1 - exp(tz)) PC: Hars für Grschwindigheit, des Auffentiadens Pattladen: O(t) - Clo (1 - exp(tz)) PC: Hars für Grschwindigheit, des Auffentiadens Pattladen: O(t) - Clo (1 - exp(tz)) PC: Hars für Grschwindigheit, des Auffentiadens Pattladen: O(t) - Clo (1 - exp(tz)) PC: Hars für Grschwindigheit, des Auffentiadens Pattladen: O(t) - Clo (1 - exp(tz)) PC: Hars für Grschwindigheit, des Auffentiadens Pattladen: O(t) - Clo (1 - exp(tz)) Pattladen: O(t) - Clo (1 - exp(tz)) Pattladen: O(t) - Clo (1 - exp(tz)) Puttladen: O(t) - Clo		
> Relaxations verhalten: (ibergang eines System in seinen Grundzuskard) > für diesen Versuch Aut- & Erhlädung eines Kondensators > Uc = 2 (Kapazitat C & Badung Q) } I = R (R. Widerstand, der Badungsausgleich bewihlt) > DGL: dQ = -A (O(t) -> Erhlädung: Q(t) - Q(t) exp(-12) Autladen: (I(t) > Clo. (A - exp - 12) PC: Hars für Geschundigteit, obes Auf/Erhlädens > autren Periodi zität im Auslein: Korgeng aus ober Ruhelage - es gld: U(t) = Uo cossouth ist Erreges Fannung - ou 4 /Rc -> Uc = V(Ut) und Prasenverschiebung ve=0 wehn 1w => 1 Prasenverschiebung. wei Auf & Erhlädung länger dawert. wehn 1w => 1 Prasenverschiebung. wei Auf & Erhlädung länger dawert. vuc -> Uc t) = Alwi oslwh + v(w) nut Kirchhodischen Gesetz: v(w) = Britan(-wRC), Alw) - 14-1 ward w groß blw 20 > Integration: , wenn w >> /Rc -0 Uc ~ JUlt) dt Durch führung > Aufbaux: Schwinglungsgenerator mit Integriertem Tietpass, Oszilloskop - zwe sinusweiten: A ols Reisen? Erregesponung) A zeigh Kondensahorspannung - zwe sinusweiten: A ols Reisen? Erregesponung) A zeigh Kondensahorspannung - von site-6 kHz werden Amwilde der kondensahorspannung, Prosen versch. Periodelänge > Integration der Spannungstunktion - Spannungseingang auf zweitand-032i. - angelegte Frequenz gescher als //Re - vertikate fistion der kurven und angerasst Pussuartung > Bestimmung der Zeitkonskunke RC ba fector Frequenz - halblog Dioagramm t -> Ln (as) // Mineaver Fit aexp(Re) - Prosen verschiebung - habe Frequenzer -> Prasenverschiebung - kertschnung mit v(w) = archenit-overC) Prasenverschiebung - habe Frequenzer -> Prasenverschiebung - Bereschnung mit v(w) = archenit-overC)		Ziel Relaxationsverhalten eines RC-kreises untersuchen
> Relaxations verhalten: (ibergang eines System in seinen Grundzuskard) > für diesen Versuch Aut- & Erhlädung eines Kondensators > Uc = 2 (Kapazitat C & Badung Q) } I = R (R. Widerstand, der Badungsausgleich bewihlt) > DGL: dQ = -A (O(t) -> Erhlädung: Q(t) - Q(t) exp(-12) Autladen: (I(t) > Clo. (A - exp - 12) PC: Hars für Geschundigteit, obes Auf/Erhlädens > autren Periodi zität im Auslein: Korgeng aus ober Ruhelage - es gld: U(t) = Uo cossouth ist Erreges Fannung - ou 4 /Rc -> Uc = V(Ut) und Prasenverschiebung ve=0 wehn 1w => 1 Prasenverschiebung. wei Auf & Erhlädung länger dawert. wehn 1w => 1 Prasenverschiebung. wei Auf & Erhlädung länger dawert. vuc -> Uc t) = Alwi oslwh + v(w) nut Kirchhodischen Gesetz: v(w) = Britan(-wRC), Alw) - 14-1 ward w groß blw 20 > Integration: , wenn w >> /Rc -0 Uc ~ JUlt) dt Durch führung > Aufbaux: Schwinglungsgenerator mit Integriertem Tietpass, Oszilloskop - zwe sinusweiten: A ols Reisen? Erregesponung) A zeigh Kondensahorspannung - zwe sinusweiten: A ols Reisen? Erregesponung) A zeigh Kondensahorspannung - von site-6 kHz werden Amwilde der kondensahorspannung, Prosen versch. Periodelänge > Integration der Spannungstunktion - Spannungseingang auf zweitand-032i. - angelegte Frequenz gescher als //Re - vertikate fistion der kurven und angerasst Pussuartung > Bestimmung der Zeitkonskunke RC ba fector Frequenz - halblog Dioagramm t -> Ln (as) // Mineaver Fit aexp(Re) - Prosen verschiebung - habe Frequenzer -> Prasenverschiebung - kertschnung mit v(w) = archenit-overC) Prasenverschiebung - habe Frequenzer -> Prasenverschiebung - Bereschnung mit v(w) = archenit-overC)		
Tietgrass Versuch Auf-R Enflädung eines Kondensators VLC= C (Ruparitat C & Badung O) 2 ba Enflädung die Spannung > DGL: do at = -RC O(t) -> Enflädung O(t) = QW exp(t) Aufläden: O(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) (A - exp(t) Rufläden: O(t) = C(t) = C(t) Rufläden: O(t) = C(t) Rufläden		
Durch fishrung Australia and the process of the pr		> Revolutions vernal ten: Uperglang eines system in seinen grundlzustand
Durch fishrung Australia and the process of the pr		> fur onesen versuch Aut- & entadung eines kondensators
Durch fishrung Australia and the process of the pr		The Figure of the Section of the Sec
> clurch Periodizität im Auslenk vorgang aus der Ruhelage - es gilt Ult) = Ulo cos (wt) ist Emeges pannung - w w * 1/2 ~ (U. ~ (U.) und Prasenverschiebung & =0 wenn 1 w > 7 Phasenverschiebung weil Aus & Enthalung länger clauert v (U. ~ (U.) = Alw) cos(wt + v(w)) mit Kirchhodschen gesetz: v(w) = arctan(-wRC), Alw) - 1/1+ twood w groß alw) *0 > Integration: , wenn w > 1/2 c ~ (U.) = 3 (U.) dt Durch fahrung > Hushaw: Schwingungsgeneration mit integriertem Tietpass, Oszilloskop > Enthade kurve: - Rechtectspannung angelett mit Frequens aoo Hz > Tietguenzabhangigheit von Prasenverschiebung - zwa sinuswellen: A als Rebenz (Emegenspannung) 1 zeigt Kondensationspannung - von SH2-6 kHz werden Ambitude der kondensationspannung, Phasenversch., Periodelänge > Integration der Spannungstwikton - Spannungseingang auf zweikunal-Oszi angelegte Frequenz gibler als 1/2c - verticale Abstition der kurven wird angepasst Phaswertung > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Resolitester Frequenz - potten f > alw > Extension nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 % Phasenverschiebung - hohe Frequenzen - Phasenverschiebung - Berechnung mit v(w) = archan(-wRC)		> Det extraordid gie spannand 2 + K IV. Miner Prantil new Mannand resultation
> clurch Periodizität im Auslenk vorgang aus der Ruhelage - es gilt Ult) = Ulo cos (wt) ist Emeges pannung - w w * 1/2 ~ (U. ~ (U.) und Prasenverschiebung & =0 wenn 1 w > 7 Phasenverschiebung weil Aus & Enthalung länger clauert v (U. ~ (U.) = Alw) cos(wt + v(w)) mit Kirchhodschen gesetz: v(w) = arctan(-wRC), Alw) - 1/1+ twood w groß alw) *0 > Integration: , wenn w > 1/2 c ~ (U.) = 3 (U.) dt Durch fahrung > Hushaw: Schwingungsgeneration mit integriertem Tietpass, Oszilloskop > Enthade kurve: - Rechtectspannung angelett mit Frequens aoo Hz > Tietguenzabhangigheit von Prasenverschiebung - zwa sinuswellen: A als Rebenz (Emegenspannung) 1 zeigt Kondensationspannung - von SH2-6 kHz werden Ambitude der kondensationspannung, Phasenversch., Periodelänge > Integration der Spannungstwikton - Spannungseingang auf zweikunal-Oszi angelegte Frequenz gibler als 1/2c - verticale Abstition der kurven wird angepasst Phaswertung > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Resolitester Frequenz - potten f > alw > Extension nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 % Phasenverschiebung - hohe Frequenzen - Phasenverschiebung - Berechnung mit v(w) = archan(-wRC)		$\frac{\partial \mathcal{L}}{\partial t} = -\frac{RC}{RC} \left(\frac{\partial \mathcal{L}}{\partial t} \right) - \frac{RC}{RC} \left(\frac{1}{RC} \right)$
> clurch Periodizität im Auslenk vorgang aus der Ruhelage - es gilt Ult) = Ulo cos (wt) ist Emeges pannung - w w * 1/2 ~ (U. ~ (U.) und Prasenverschiebung & =0 wenn 1 w > 7 Phasenverschiebung weil Aus & Enthalung länger clauert v (U. ~ (U.) = Alw) cos(wt + v(w)) mit Kirchhodschen gesetz: v(w) = arctan(-wRC), Alw) - 1/1+ twood w groß alw) *0 > Integration: , wenn w > 1/2 c ~ (U.) = 3 (U.) dt Durch fahrung > Hushaw: Schwingungsgeneration mit integriertem Tietpass, Oszilloskop > Enthade kurve: - Rechtectspannung angelett mit Frequens aoo Hz > Tietguenzabhangigheit von Prasenverschiebung - zwa sinuswellen: A als Rebenz (Emegenspannung) 1 zeigt Kondensationspannung - von SH2-6 kHz werden Ambitude der kondensationspannung, Phasenversch., Periodelänge > Integration der Spannungstwikton - Spannungseingang auf zweikunal-Oszi angelegte Frequenz gibler als 1/2c - verticale Abstition der kurven wird angepasst Phaswertung > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Resolitester Frequenz - potten f > alw > Extension nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 % Phasenverschiebung - hohe Frequenzen - Phasenverschiebung - Berechnung mit v(w) = archan(-wRC)		Outladen: Olt) - (1 - exp(===))
> clurch Periodizität im Auslenk vorgang aus der Ruhelage - es gilt Ult) = Ulo cos (wt) ist Emeges pannung - w w * 1/2 ~ (U. ~ (U.) und Prasenverschiebung & =0 wenn 1 w > 7 Phasenverschiebung weil Aus & Enthalung länger clauert v (U. ~ (U.) = Alw) cos(wt + v(w)) mit Kirchhodschen gesetz: v(w) = arctan(-wRC), Alw) - 1/1+ twood w groß alw) *0 > Integration: , wenn w > 1/2 c ~ (U.) = 3 (U.) dt Durch fahrung > Hushaw: Schwingungsgeneration mit integriertem Tietpass, Oszilloskop > Enthade kurve: - Rechtectspannung angelett mit Frequens aoo Hz > Tietguenzabhangigheit von Prasenverschiebung - zwa sinuswellen: A als Rebenz (Emegenspannung) 1 zeigt Kondensationspannung - von SH2-6 kHz werden Ambitude der kondensationspannung, Phasenversch., Periodelänge > Integration der Spannungstwikton - Spannungseingang auf zweikunal-Oszi angelegte Frequenz gibler als 1/2c - verticale Abstition der kurven wird angepasst Phaswertung > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Bestimmung der Zeitkonstrante RC be bester Trequenz - halbog. Diegramm t > ln(U.) Integration der Kurven wird angepasst Phaswertering > Resolitester Frequenz - potten f > alw > Extension nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 % Phasenverschiebung - hohe Frequenzen - Phasenverschiebung - Berechnung mit v(w) = archan(-wRC)		OC. Yak für Exechusindintoit dex Auf-/Entladons
-es gilt III = llo cos (wt) ist Erregus Farmung -b w 4 1/Rc -> (lc w 1/1t) (und Prasenverschiebung & =0 wenn 1 w > 7 Phasenverschiebung, weil Auß & Entladung länger dauert vllc -> (lclt) = A(w) (cos (wt) + v(w)) mit kirchhodischen Gesetz: (v(w) = archan (-wRC), A(w) - 1/M+lwPC)? vllc and weil a (w) a void and a void and a void a void and angepasst purch führung > Authau: Schwingungsgenerator mit integriertem Tietpass, Oscilloskop > Entlade kurve: - Rechtectspannung angelett mit Trequenz aoo Hz > Trequenzabhangighent von Prasenverschiebung - zwei Sinuswellen: 1/A als Reizenz (Erreguszpannung) - von Sitz - 6 kHz wenden Amiltude der kondensatorspannung, Prasenversch. Periodelänge > Integration der Spannungsfrunktern - Spannungseing ang auf zweikaral-Oszi. - angelegte Frequenz großer als 1/Rc - vertikale Position der Kurvan und angepasst Auswerteing > Bestimmung der Zeitkonstante RC be Gester Frequenz - halblog. Diagramm t -> ln(Tao) linearer Fit aexp(Tec) > bei variierter frequenz: - politen: f -> Alwi - RC sollte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1761 - Phasenverschiebung: - hobe Frequenzen -> Phasenverschiebung - Berechnung mit (p(w) = archanl-w7C)		re- rate for section of the section
wenn 1 w => 1 Phasenverschiebung, weil Auf & Entifiedung långer dawert vlic → Uclt = Alw coslut + v(w) mit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - Uo mit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - W+ (wec) nit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - W+ (wec) nit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - W+ (wec) vlic → Uclt all all all all all all all all all a		- es ail+ (1/+) = (10 ms (u)+) is+ Freeds panning
wenn 1 w => 1 Phasenverschiebung, weil Auf & Entifiedung långer dawert vlic → Uclt = Alw coslut + v(w) mit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - Uo mit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - W+ (wec) nit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - W+ (wec) nit Kirchhodischen Scsetz: velw) = Srcten (-wRC), Alw) - W+ (wec) vlic → Uclt all all all all all all all all all a		-> U & /RC -> (1 ~ Ult) und Prasenverschiebung 4=0
mit kirchhottschen gesetz: $\psi(w) = 3rctan(-wRC)$, $A(w) = \frac{1}{71+twech}$ w groß $A(w) \approx 0$ 7 Integration: , wenn $w > 7Rc \rightarrow Uc \sim Sultide$ Durch führung > Authau: Schwingungsgenerator mit integriertem Tietpass, Oszilloskop > Entlade kurve: - Rechteckspannung angolekt mit Trequenz soo itz > Trequenzabhangigheit von Prasenverschiebung - zwei Sinusweiten: A als Rebenz (Erregenspannung) 1 zeigt kondensatorspannung - von sitz - 6 kHz werden Amiliade der kondensatorspannung, Prasenversch. Periodelänge > Integration oter Spannungsfunktion - Spannungsfungsfunktion - Spannungsfung auf zweikaral - Oszi. - angelegte Trequenz größer als $7Rc$ - vertikale Assibon der kurren wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bes desker Trequenz - halblog. Diagramm $t \rightarrow ln(\frac{11c}{10c})$ Ameawer Fit $0exp(\frac{1}{0c}) \rightarrow -\frac{2}{6c}t + 15$ > Photen: $t \rightarrow liw$ > Phosenverschiebung: - hohe Trequenzer \rightarrow Phasenverschiebung - Berechnung mit $\psi(w) = arctan(-wRC)$		wenn îw => î Phasenverschiebung weil Aus- & Entladung langer dowert
mit Kirchhodischen Gesetz: $9(w) = \operatorname{arctan}(-wRC)$, $A(w) = \frac{1}{14 + wec ^2}$ w groß $A(w) \approx 0$ 7 Integration: wenn $w \gg \%c \to U_c \sim Sultide$ Durch Fahrung > Außbau: Schwingungsgenerator mit integriertem Tietpass, Oszilloskop > Entlade kurve: - Rechteckspannung angelekt mit Trequenz soo litz > Trequenzabhangigteit von Phasenverschiebung - zwei sinuswellen: A als Resente (Erregunspannung) - Zeigt Kondensationspannung - von stez-6 kitz werden Ambitude der kondensationspannung, Phasen versch. Periodelänge > Integration der Spannungsfunktion - spannungseingang auf zweikanal Oszi. - angelegte Frequenz größer als $1/Rc$ - vertikale Abstron der Kurren wird angepasst Auswertung > Bestimmung der Zeitkonstante RC bei desler Frequenz - halblog. Diagramm $t \to ln(\frac{T}{To})$ American Fit $\frac{T}{To}$ > bei variierter Frequenz: - politen: $f \to A(w)$ - RC sollte sich nicht ändern, desuagen auch Theoriekurve plotten mit RC aus 1 killons Frequenzen – Phasenverschiebung - hohe Frequenzen – Phasenverschiebung - Berechnung mit $9(w) = \operatorname{arctan}(-wRC)$		1/1/2 -> 1/2/+)= A(u) (05/(u) + (a(u))
7 Integration:, wenn w > 1/RC -> Ue ~ Sultialt Durch Fahrung > Austrau: Schwingungsgenerator mit integriertem Tietpass, Oszilloskop > Enthade kurve: - Rechteckspannung angelekt mit Trequenz 200 Hz > Trequenzalohangigteit von Phasenverschiebung - zwei Sinuswellen: / als Rebenz (Erregusponnung) / Zeigt Kondensatorsponnung - von SHz-6kHz werden Amlutude der kondensatorsponnung, Phasen versch., Periodelönge > Integration der Sponnungsfunktion - Sponnungseingang auf zweikanal-Oszi. - angelegte Frequenz großer als 1/Rc - verikale Position der Kurren wird angepasst Auswertung > Bestimmung der Zeitkonstante RC bei fester Trequenz - halblog Diagramm - Ln (To) Lineauer Fit aexp(\frac{t}{tc}) -> -\frac{c}{ct} t + b > bei variierter Frequenz - polten: f -> alw - RC sollte sich nicht ändern , desuggen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Trequenzen -> Phasenverschiebung - Berechnung mit \(\psi \) warchan[- wRC)		mit Kirchhoffschen Gesetz: 4(w) = arctan (-wRC), A(w) = uo
> Integration: wenn w> 1/RC -> Uc ~ Sull of the properties of the pass of the		=> Tietpass
Durch fahrung > Aushau: Schwingungsgenerator mit integriertem Tietpass, Oszilloskop > Entlade kurve: - Rechtecksponnung angelett mit Trequenz 200 Hz > Trequenzabhängigteit von Phasenverschiebung - zwa Sinuswelten: 1 als Rebenz (Erregensponnung) 1 zeigt Kondensationsponnung - von strz-6 kHz werden Amutude der kondensationsponnung, Phasen versch. Periodelängz > Integration der Spannungsbunktion - Spännungseingang auf zweikanal-Oszi. - angelegte Frequenz größer als 1/Rc - vertikale Assition der kurven wird Angepasst Auswerteing > Bestimmung der Zeitkonstante RC bei bester Trequenz - halblog. Diagramm t -> ln (\(\frac{a}{a} \) \(\lambda \) \(\text{Ineaver} \) \(\text{Trequenz} \) > bei variierter Trequenz: - potten: f -> \(\frac{a}{a} \) \(\text{Lineaver} \) \(\text{Ineaver} \) \(\text{Trequenz} \) - RC solte sich nicht \(\text{Andern} \), des uegen auch Theoriekurve plotten mit RC aus 1 kill \) > Phasenverschiebung: - hohe Trequenzen -> Phasenverschiebung - Berechnung mit \(\text{Y}(w) = arctan(-wRC) \)		
> Austrau: Schwingungsgenerator mit integriertem Tietpass, Oszilloskop > Entlade kurve: - Rechteckspannung angelekt mit Trequenz 200 Hz > Trequenzalbhangigteit von Phasenverschiebung - zwei Siruswellen: 1 als Reseanz (Erregenspannung) - zwei Siruswellen: 1 als Reseanz (Erregenspannung) - von Stiz-6 kHz werden Ambitude der kondensatorspannung, Phasen versch., Periodellänge > Integration ober Spannungsfunktion - Vertikale Position der kurven wird angepasst Auswertung > Bestirmung der Zeitkonstante RC bei sester Trequenz - halblog. Diagramm - L m (Tab) Linearer Fit alexp(Tab) - 2 t + 15 > bei variierter Trequenz: - plotten: f -> Alwo - RC sollte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Trequenzen - Phasenverschiebung - Berechnung mit \(\psi \) (w) = arctan(- wRC)		
> Enthale kurve: - Rechteckspannung angelekt mit Trequenz 200 Hz > Trequenzalbhangigkett von Phasenverschiebung - zwei Sinuswellen: 1 als Rebenz (Erregenspannung) - zwei Sinuswellen: 1 als Rebenz (Erregenspannung) - von Stz-6kHz werden Ambitude der kondensatorspannung, Phasen versch., Periodelänge - von Stz-6kHz werden Ambitude der kondensatorspannung, Phasen versch., Periodelänge - Integration ober Spannungsbunktion - Spannungseingang auf zweikanal-Oszi angelegte Frequenz größer als 1/rc - vertikale Position der kurven wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bei bester Trequenz - halblog. Diagramm t -> ln(\overline{a}_{\overline{a}}) linearer Fit \overline{a}exp(\overline{a}_{\overline{a}}) \rightarrow \overline{e}_{\overline{a}} t + b > bei variierter Frequenz: - pohten: f -> \overline{a}_{\overline{a}} - RC solte sich nicht \overline{a}ndern, deswegen auch Theoriekurve plotten mit RC aus 1 rei - Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Benechnung mit \(v(w) = \overline{a}rctan(-wzC) \)		
- Rechteckspanning anglekt mit Trequens 200 Hz > Trequenzalothongigteit von Prasenverschiebung - zwa Sinuswellen: 1 als Rebenz (Erregensponnung) 1 zeigt Kondensatorsponnung - von Stz-6 kltz werden Amwulude der Kondensatorsponnung, Prasenversch. Perio delänge > Integration der Spannungsbunktion - spannungseingang auf zweikaral-0szi angelegte Trequenz größer als 1/rc - vertikale Position der kurven wird angepasst Puswerteung > Bestimmung der Zeitkonstante RC bei bester Trequenz - halblog. Diagramm t -> ln(\frac{u_0}{u_0}) linearer Tit \text{ aexp(\frac{t_0}{t_0})} -> \frac{t_0}{t_0}t + \text{ bei variierter Trequenz: - plotten: f -> \frac{u_0}{u_0} - RC sollte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 7kl > Phasenverschiebung: - hohe Trequenzen -> Phasenverschiebung - Berechnung mit \(\psi \w) = arctan(-\widenize())		> Ausbau: Schwingungsgenerator mit integriertem Tietpass, Oszilloskop
> trequenzationanging test from Phasenversameoung - zwa Sinuswellen: 1/ als Resears (Erregersponnung) 1 zeigt Kondensatorsponnung - von Stz-6 kHz werden Ambitude der kondensatorsponnung, Phasen versch. Perio delänge > Integration oler Spannungsfunktion - Sponnungseing ang auf zweikanal-Oszi angelegte Frequenz größer als 1/rc - vertikale Position der kurven wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bei sester Frequenz - halblog. Diagramm - t -> ln (Tab) Linearer Fit aexp(Tab) - RC sollte sich nicht ändern, des wegen auch Theorie kurve plotten mit RC aus 1 ki > Phasenverschiebung: - hote Frequenzen - Phasenverschiebung - Berechnung mit y(w) = arctan(-wRC)		
> trequenzationanging test from Phasenversameoung - zwa Sinuswellen: 1/ als Resears (Erregersponnung) 1 zeigt Kondensatorsponnung - von Stz-6 kHz werden Ambitude der kondensatorsponnung, Phasen versch. Perio delänge > Integration oler Spannungsfunktion - Sponnungseing ang auf zweikanal-Oszi angelegte Frequenz größer als 1/rc - vertikale Position der kurven wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bei sester Frequenz - halblog. Diagramm - t -> ln (Tab) Linearer Fit aexp(Tab) - RC sollte sich nicht ändern, des wegen auch Theorie kurve plotten mit RC aus 1 ki > Phasenverschiebung: - hote Frequenzen - Phasenverschiebung - Berechnung mit y(w) = arctan(-wRC)		- Rechteckspannung angelekt mit Frequenz 200 Hz
- zwei Sinuswellen: 1 als Rebent (Erregersponnung) 1 zeigt Kondensatorsponnung - von stiz-6 kHz werden Ambitude der kondensatorsponnung, Phasen versch. Perio delänge > Integration der Spannungsfunktion - sponnungseingang auf zweikanal-Oszi. - angelegte Frequenz größer als 1/re - vertikale Position der kurnon wird angepasst Auswerteing > Bestimmung der Zeitkonstante RC bei lester Frequenz - halblog. Diagramm t -> ln (uc) linearer Fit aexp(vc) -> - vc t t to > bei variierter Frequenz: - plotten: f -> alw - RC solte sich nicht ändern, desuggen auch Theoriekurve plotten mit RC aus 1 mi > Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Berechnung mit 9(w) = arctan(-wRC)		> treduction and a reit non that sent erachiebung generator in the sent erachiebung
- von Stiz-6 kHz werden Ambitude der kondensatorspannung, Phasen versch., Perio delänge > Integration der Spannungsbunktion - Spannungseingung auf zweikaral-Oszi. - angelegte Frequenz größer als 1/rec - vertikale Position der kurven wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bei Gester Frequenz - halblog. Diagramm t -> ln (To) linearer Fit aexp(To) -> - To) t t b) > bei variierter Frequenz: - potten: f -> Alw (To) - RC soltte sich nicht ändern, deswagen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Berechnung mit 4(w) = arctan(-wRC)		- zwei Sinuswellen: 1 als Reserre (Erregersponnung)
> Integration der Spammingsfunktion - Spannungseinglang auf zweikaral-Oszi angelegte Frequenz größer als 1/RC - vertikale Position der Kurvon wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bei Gester Frequenz - halblog. Diagramm t > ln(\overline{u_0}) linearer Fit aexp(\overline{v_0}) \rightarrow \overline{v_0} \rightarrow \o		1 zeigt Kondensatorspannung
- Spannungseing and auf zweikanal-Oszi. - angelegte Frequenz großer als 1/RC - vertikale Position der kurren wird angepasst Puswerteing > Bestimmung der Zeitkonstante RC bei dester Frequenz - halblog. Diagramm t -> ln (\overline{u}_0) linearer Fit aexp(\overline{v}_0) -> \overline{v}_0 t t t b > bei variierter Frequenz: - plotten: f -> \overline{u}_0 - RC sollte sich nicht \overline{a}ndern, des wegen auch Theoriekurve plotten mit 2C aus 1 kills > Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Berechnung mit \(\psi \widetilde{w} \)) = arctan(- \widetilde{w} \text{RC})		- von 542-6 kHZ Werden Amlitude der Kondensatorspannung, Phasen versch. Periodelänge
- angelegte trequenz größer als MRC - vertikale Position der Kurvon wird angepasst - vertikale Position der Kurvon wird angepasst - huswerteung > Bestimmung der Zeitkonstante RC bei dester Trequenz - halblog. Diagramm t -> ln (uo) lineauer Fit aexp(vertien) -> - vertikale > bei variierter Trequenz: - plotten: f -> Alwo - RC sollte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Trequenzen -> Phasenverschiebung - Berechnung mit 4 w = arctan(-wRC)		> Integration der Spannungsdunktion
- vertikale Position der Kurven wird angepasst Auswerteung > Bestimmung der Zeitkonstante RC bei Sester Trequenz - halblog. Diagramm t -> ln(Uo) linearer Fit aexp(zc) -> - zct t b > bei variierter Frequenz: - plotten: f -> \frac{Alwi)}{Uo} - RC soltte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Berechnung mit 9(w) = arctan(-wRC)		- Spannungseing and aut zweikanal - Osti. Frequenz
Auswerteung > Bestimmung der Zeitkonstante RC bei Gester Trequenz - halblog. Diagramm t -> ln (\frac{uc}{uo}) linearer Fit aexp(\frac{t}{zc}) -> -\frac{c}{zc}t t b > bei variierter Frequenz: - plotten: f -> \frac{A(w)}{uo} - RC sollte sich nicht \handern, desuggen auch Theoriekurve plotten mit RC aus 1.76i > Phasenverschiebung: - hahe Frequenzen -> Phasenverschiebung - Berechnung mit \(\text{p(w)} = \text{arctan(-wRC)} \)		
> Bestimmung der Zeitkonstante RC bei Gester Trequenz - halblog. Diagramm t -> ln (uo) lineaver Fit aexp(zc) -> zcttb > bei variierter Frequenz: - plotten: f -> alwo - RC soltte sich nicht ändern, des wegen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Berechnung mit ylw) = arctan(-wRC)		- verticale tosition der kurven wird angerasst
> Bestimmung der Zeitkonstante RC bei Gester Trequenz - halblog. Diagramm t -> ln (uo) lineaver Fit aexp(zc) -> zcttb > bei variierter Frequenz: - plotten: f -> alwo - RC soltte sich nicht ändern, des wegen auch Theoriekurve plotten mit RC aus 1 ki > Phasenverschiebung: - hohe Frequenzen -> Phasenverschiebung - Berechnung mit ylw) = arctan(-wRC)	_	Dustivalence
> bei variierter Frequenz: - plotten: f -> A(w) - RC sollte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 761 > Phasenverschiebung: - hahe Frequenzen -> Phasenverschiebung - Berechnung mit 4(w) = arctan(-wRC)		> Booking dor Zeithanstruse DC bei docter Frances
> bei variierter Frequenz: - plotten: f -> A(w) - RC sollte sich nicht ändern, deswegen auch Theoriekurve plotten mit RC aus 1 761 > Phasenverschiebung: - hahe Frequenzen -> Phasenverschiebung - Berechnung mit 4(w) = arctan(-wRC)		- bulblow Diggerman + > On (The) linewer Fit Mexples - = = = + + b
- plotten: f -> Alwa - RC soltte sich nicht ändern des wegen auch Theoriekurve plotten mit RC aus 1 761 > Phasenverschiebung: - hohe Trequenzen -> Phasenverschiebung - Berechnung mit 4(w) = arctan(-wRC)		
- RC sollte sich nicht ändern, desuggen auch Theoriekurve plotten mit RC aus 1. Tei >Phasenverschiebung: -hohe Trequenzen -> Phasenverschiebung - Berechnung mit 4(w) = arctan(-wRC)		- plotten : f > A(w)
>Phasenverschiebung: -hohe Trequenzen -> Phasenverschiebung - Berechnung mit 4(w) = arctan(-wzc)		
-hohe Frequenzen -> Phasenverschiellung -Berechnung mit 4(w) = arctan(-wRC)		
- Berechnung mit y(w) = arctan(-wzc)		
		>RC-Kreis als Integrator: 3 versch. Schwingunsformen, sowie Stammfkt auf Oszi anzeigen

