Heterogeneity-aware Twitter Bot Detection with Relational Graph Transformers

Shangbin Feng, Zhaoxuan Tan, Rui Li, Minnan Luo

Motivation

Numerous et al.

Yang et al.

and others

Twitter bot detection is an important task!

We propose handcrafted features.

Great, but feature-based approaches could not adapt to bot **evolution**.

Feng et al. CIKM 2021

Kudugunta et al. and others

We use RNN, GAN and other DL techniques.

Great, but individual analysis could not capture novel bot **communities**.

Feng et al. ASONAM 2021

Ours

GraphHist and others

How about graph-based approaches?

Combining with inherent **Twitter heterogeneities?**

Relational Graph Transformers

We propose **relational graph transformers**, a novel GNN architecture, which

- Split HINs into relational sub-graphs, learn relation-specific representations and aggregates with semantic attention networks
- Model relation and influence heterogeneities with relational subgraphs and graph transformers

Experiments and Results

Table 1: Characteristic and performance of different Twitter bot detection methods. Deep, interactive, representative, graphbased and heterogeneity-aware denotes whether the method involves deep learning, leverages user interactions, learns user representation, involves graph neural networks or leverages Twitter heterogeneity.

Method	Deep	Interactive	Representative	Graph-based	Heterogeneity-aware	Accuracy	F1-score
Lee et al.						0.7456	0.7823
Yang et al.						0.8191	0.8546
Cresci et al.						0.4793	0.1072
Kudugunta et al.	✓					0.8174	0.7515
Wei et al.	✓					0.7126	0.7533
Miller et al.		✓				0.4801	0.6266
Botometer		✓				0.5584	0.4892
SATAR	✓	✓	✓			0.8412	0.8642
Alhosseini et al.	✓	✓	✓	✓		0.6813	0.7318
BotRGCN	✓	✓	✓	✓		0.8462	0.8707
Ours	✓	✓	✓	✓	✓	0.8664	0.8821

Our relational graph transformers outperform feature, DL and graph-based Twitter bot detection baselines on a comprehensive benchmark TwiBot-20.

Table 3: Ablation study of our proposed GNN architecture. RT and SA denote relational transformers and semantic attention networks respectively.

Ablation Settings	Accuracy	F1-score
full model	0.8664	0.8821
remove transformer in RT	0.8521	0.8679
remove gated residual in RT	0.8478	0.8646
replace RT with GAT	0.8571	0.8726
replace RT with GCN	0.8444	0.8619
replace RT with SAGE	0.8546	0.8687
summation as SA	0.8512	0.8654
mean pooling as SA	0.8512	0.8663
max pooling as SA	0.8495	0.8629
min pooling as SA	0.8555	0.8704

- Ablation study examining relational graph transformers.
- Case study of correlation: botness and heterogeneities.
- Our approach learns great representations for users.

