МАССА И ПРОБЕГ ОСКОЛКОВ ДЕЛЕНИЯ ПЛУТОНИЯ

Пробег осколков деления ядер можно определять при номощи различных методов. Для этого применяется камера Вильсона и ионизационная камера переменного давления или исследуется активность алюминиевой фольги различной толщины, окружающей вещество, подвергающееся делению.

В реферируемой работе ¹ авторы использовали устройство, которое состояло из бериллиевой трубки длиной 225 мм, диаметром 25 мм. На одном конце трубки перпендикулярно к ее оси помещалась плутониевая фольги толшиной около 0,1 мг/см². На расстоянии 100 мм от плутониевой фольга в интервалах 3 мм друг от друга, перпендикулярно к оси трубки, помещалось 14 одинаковых плёнок из цапон-лака. Толщина плёнок была равна 8 рг/см². Трубка заключалась в неопреновую оболочку и наполнялась сухим воздухом при давлении 120 и 140 мм ртутного столба. Облучение нейтронами производилось на Лос-Аламосском котле в продолжение 30 минут или 14 часов. После облучения плёнки, за исключением первой и последней, растворялись в ацетоне и подвергались радиохимическому анализу. Почти всё торможение осколков деления плутония вызывалось воздухом и после остановки они осаждались на ближайшей плёнке. Активность каждой плёнки исследовалась на один или два периода полураспада. В некоторых случаях кривые полураспада исследовались на две компоненты. Исследования производились для 20 различных изотопов осколков деления с массами от 83 до 157. Активность каждой плёнки для данного изотопа давала кривую дифференциальных пробегов. Общая активность всех плёнок после данной давала кривую интегральных пробегов. С помощью этой кривой определялся экстраполированный пробег. В группе лёгких масс от 83 до 117 экстраполированный пробег менялся от 2,9 см воздуха (при нормальных условиях) до 2,26 см. В группе тяжёлых масс от 127 до 157 экстраполированный пробег менялся от 2,25 см до 1,95 см. График даёт пробег осколков в зависимости от их массы,

Вначале 2 осколки деления имеют кратность ионизации около 20 и, таким образом, удерживают основную часть атомных электронов. Падение скорости осколков почти линейно, что является следствием уменьшения заряда при торможении. Наблюдаемый разброс в пробегах осколков одной массы зависит от вариаций начального заряда и энергии, статистических флуктуаций в столкновениях осколков с электронами и ядрами и экспериментальных условий. Ни одна из полученных кривых дифференциальных пробегов не является гауссовой. Все они имеют более крутой наклон на расстояниях, близких к плутониевой фольге. Указывается, что метод может быть использован для изучения короткоживущих продуктов деления.

К. Д. Толстов

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

S. Katcoff, J. Miskel and C. Stanley, Phys. Rev. 74, 631 (1948).
N. O. Lassen, Phys. Rev. 69, 137 (1946).