Темы урока

Базы Данных и Системы Управления Базами Данных	2
Термины "БД" и "СУБД"	2
База Данных (БД)	2
Система Управления Базами Данных (СУБД)	2
Типы БД	2
Классификация по месту постоянного хранения данных	2
Классификация по модели данных	3
Классификация по степени распределённости	3
Наиболее популярные СУБД и их SQL	3
SQL — структурированный язык запросов	4
Зачем изучать SQL если есть ORM?	4
Реляционная база данных	4
СУБД SQL Server 2017 Express Edition	5
Преимущества	5
Установка инструментов	5
MS SQL Server Express	5
Microsoft SQL Management Studio	5
Термины	5
Работа в с базой данных	6
Работа в Microsoft Visual Studio	6
Работа в Microsoft SQL Management Studio	6
Интерфейс	6
Создание базы данных через UI	6
Создание базы данных с помощью SQL-команд:	6
Создание новой таблицы	7
Заведение значений через UI	7
Генерация запросов	7
Создание таблицы	7
Вставка единичной записи	7
Выборка записей из таблиц	7
Типы данных	7
Самостоятельная работа	8
Домашнее задание	8

Базы Данных и Системы Управления Базами Данных

В самом начале разговора о БД важно провести черту между двумя терминами, часто использующимися рядом:

- База Данных
- Система Управления Базами Данных

Иногда их путают. Иногда, когда говорящие в одном контексте, это выглядит нормально. Иногда это выглядит как в классической ситуации, когда системный блок называют "Процессор", поэтому давайте разберёмся, что есть что?

Термины "БД" и "СУБД"

База Данных (БД)

В википедии можно прочитать универсальное определение термина База Данных.

Если его немного упростить, то получится, что БД — это совокупность информационных материалов, систематизированных для удобного поиска и обработки с помощью компьютера.

Если ещё упростить, **БД — это структурно хранящаяся информация / структурно хранящиеся данные**.

Система Управления Базами Данных (СУБД)

СУБД — программный комплекс, обеспечивающий управление созданием и использованием баз данных.

Типы БД

Есть много критериев, по которым можно классифицировать базы данных, однако, наиболее интересны в практическом смысле 3 критерия:

Классификация по месту постоянного хранения данных

- Оперативная память, так называемые in-memory хранилища,
- **Вторичная память**, здесь средой постоянного хранения является периферийная энергонезависимая память (вторичная память) как правило жёсткий диск.
- Третичная память, здесь мы говорим об оптических носителях и магнитных лентах.

Классификация по модели данных

• *Иерархическая* — данные представляют собой объекты связаны между собой иерархическими связями с единственным предком у потомка.

- *Сетевая* является расширением сетевой, с той разницей, что в иерархических структурах потомок должен иметь в точности одного предка, а в сетевой у потомка может иметься любое число предков.
- *Объектная* информация представлена в виде объектов, как в объектно-ориентированных языках программирования.
- **Реляционная** данные в базе данных представляют собой набор отношений. Эти отношения отвечают определённым условиям целостности. Данные могут быть нормализованы.
 - ► Про реляционную модель данных написано наиболее загадочно, нужно акцентировать внимание, что здесь мы только определяем словарь, говорим, что объясним их чуть позже, так как именно реляционными базами данных мы и будем заниматься детально!

Классификация по степени распределённости

- **Централизованная**, или **сосредоточенная**—, полностью поддерживаемая на одном компьютере.
- *Распределённая* составные части которой размещаются в различных узлах компьютерной сети в соответствии с каким-либо критерием.

Наиболее популярные СУБД и их SQL

- MS SQL
 - Использует Transact-SQL или T-SQL процедурное расширение языка SQL, созданное компанией Microsoft (для Microsoft SQL Server) и Sybase (для Sybase ASE).
- Oracle
 - Использует PL/SQL: Procedural Language / Structured Query Language язык программирования, процедурное расширение языка SQL, разработанное корпорацией Oracle.
- MvSQL
 - Использует SQL/PSM: Structured Query Language / Persistent Stored Modules стандарт, разработанный Американским национальным институтом стандартов (ANSI) в качестве расширения SQL.
- PostgreSQL
 - о Использует PL/pgSQL: Procedural Language/PostGres Structured Query Language процедурное расширение языка SQL, используемое в СУБД PostgreSQL.
- SQLite
 - Использует SQL As Understood By SQLite собственный синтаксис, поддерживает большинство стандартных команд SQL, что-то отсутствует, что-то добавлено.

SQL — структурированный язык запросов

Как видно из слайда с популярными СУБД, везде присутствует одна и та же аббревиатура — SQL. При этом почти везде к ней приписаны дополнительные аббревиатуры.

SQL — Structured Query Language, структурированный язык запросов, как правило, использующийся для общения с СУБД. С помощью команд на этом языке можно:

- Управлять практически всеми аспектами работы базы данных,
- Производить тонкую настройку производительности под конкретные задачи.

Как правило, каждая СУБД использует свой диалект языка SQL. Основные конструкции работают одинаково, однако тонкие настройки запросов, как правило, различны.

Показываем пример T-SQL-запроса на слайде.

Зачем изучать SQL если есть ORM?

Рассказываем, что есть ORM - Object-Relational Mapping, объектно-реляционное преобразование. Это технология, которая связывает базы данных с концепциями объектно-ориентированных языков программирования, создавая «виртуальную объектную базу данных».

ORM значительно упрощает и ускоряет разработку простых задач, однако для сложных сценариев может строить неоптимальные запросы, что может приводить потерям производительности при обращениях к БД.

► Умение анализировать сгенерированные запросы, оптимизировать ихи предлагать собственные более производительные альтернативы — вот чем интересно изучение возможностей языка SQL.

Реляционная база данных

Реляционная база данных опирается на два ключевых понятия

- Отношения между данными, описывающими некие сущности, хранящиеся в базе
- Нормализация хранящихся данных

Мы рассмотрим эти понятия сегодня на практике.

СУБД SQL Server 2017 Express Edition

Преимущества

 Содержит необходимый для среды разработки набор программных средств для создания полноценной базы данных, ограниченной лишь по размерам и используемым ресурсам компьютера

- "Из коробки" обеспечивает разработчика необходимым набором компонентов для интеграции с программами, использующими базы данных
- Официально разрешена для использования в производственной среде без необходимости дополнительного лицензирования

Установка инструментов

MS SQL Server Express

Скачиваем с официального сайта MS SQL Server Express

https://www.microsoft.com/ru-ru/sql-server/sql-server-editions-express и устанавливаем.

Стараемся не ставить лишнего (см. слайд по настройкам установки)

Microsoft SQL Management Studio

Скачиваем и устанавливаем MS SQL Server Management Studio:

https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-2 017

или прямая ссылка на английскую версию thttps://go.microsoft.com/fwlink/?linkid=2088649&clcid=0x409 и на русскую https://go.microsoft.com/fwlink/?linkid=2088649 и на русскую https://go.microsoft.com/fwlink/?linkid=2088649

Термины

- Таблица / Table таблица БД :)
- Поле / Field столбец таблицы БД
- Запись / Record строка таблицы БД
- Ячейка / Cell Пересечение столбца и таблицы

Работа в с базой данных

Работа в Microsoft Visual Studio

- 1. Открываем Microsoft Visual Studio,
- 2. View > SQL Server Object Explorer > Add SQL Server > Local > XXXSQLEXPRESS,
- 3. Показываем, что объекты БД также видны и здесь,
- 4. Закрываем Microsoft Visual Studio.

Это удобно, чтобы посмотреть имена объектов во время написания кода, однако для работы с БД есть специализированные инструменты.

Работа в Microsoft SQL Management Studio

Интерфейс

- Дерево объектов СУБД слева
- Документы с запросами к БД справа
 - о Сверху запрос
 - Снизу результат

Создание базы данных через UI

В дереве объектов

- Правый щелчок на Databases
- Выбираем пункт New Database...

В диалоговом окне

- Вводим имя БД "Lesson26"
- Смотрим на настройки, но ничего не меняем
- Нажимаем ОК

В дереве объектов

- Правый щелчок на Databases
- Выбираем пункт Refresh
- Наблюдаем нашу новую БД Lesson26

Удаляем нашу БД (пункт Delete в контекстном меню нашей базы в дереве объектов)

Создание базы данных с помощью SQL-команд:

```
CREATE DATABASE Banking;
```

Можно показать файлы на диске (вспоминаем_путь_куда_ставили/Data)

DROP DATABASE Banking;

Можно показать, что файлы пропали.

▶ Обращаем внимание, что мы написали простые SQL-запросы. Вся работа с СУБД от обслуживания БД до чтения логов может происходить с помощью SQL-запросов. Т.е. запросы бывают не только для работы с данными приложения, но и для настройки хранилища этих данных и сбора статистики по этим данным.

Создаём базу запросом ещё раз. Выделяем слова CREATE DATABASE и нажимаем F1, демонстрируем контекстную справку.

Создание новой таблицы

* по слайду

Заведение значений через UI

Контекстное меню таблицы > Edit Top 200 Rows

Вставляем запись

Генерация запросов

Создание таблицы

По слайду показать вживую, как генерируется скрипт на создание таблицы.

Вставка единичной записи

По слайду показать вживую, как генерируется заготовка скрипта на вставку записи в таблицу.

Выборка записей из таблиц

По слайду показать вживую, как генерируется скрипт на извлечение данных из таблицы.

Типы данных

Как и в C# у переменных, в SQL Server у каждого столбца (на самом деле, также и у локальной переменной, выражения и параметра) есть определенный тип данных.

Тип данных — атрибут, определяющий, какого рода данные могут храниться в объекте: целые числа, символы, данные денежного типа, метки времени и даты, двоичные строки и так далее.

B SQL Server значительно больше базовых типов данных, чем, например, в С#.

Мы рассмотрим наиболее интересные для нас с точки зрения их соответствия тем или иным типам данных С#

Типы данных в SQL Server объединены в следующие категории: (https://docs.microsoft.com/ru-ru/sql/t-sql/data-types/data-types-transact-sql?view=sql-server-2017)

Точные числа

- bigint
- bit
- decimal
- int
- money
- numeric
- smallint
- smallmoney
- tinyint

Приблизительные числа

- float
- real

Дата и время

- date
- datetime2
- datetime
- datetimeoffset
- smalldatetime
- time

Символьные строки

- char
- text
- varchar

Символьные строки в Юникоде

- nchar
- ntext
- nvarchar

Двоичные данные

- binary
- image
- varbinary

Прочие типы данных

- cursor
- hierarchyid
- sql_variant
- table
- rowversion
- uniqueidentifier
- xml
- Типы пространственной геометрии
- Типы пространственной географии

Сопоставления типов данных SQL Server типам данных .NET:

https://docs.microsoft.com/ru-ru/dotnet/framework/data/adonet/sql-server-data-type-mappings.

Самостоятельная работа

• Спроектировать и написать SQL-скрипты для создания БД PostOffice из одной таблицы PostalSending, содержащую следующую информацию:

ФИО отправителя
ФИО получателя
Название документа
Количество страниц
Дата отправки
SenderName
ReceiverName
DocumentTitle
NumberOfPages
SendingDate

• Ожидаемая дата доставки ExpectedReceivingDate

- Написать SQL-скрипты для вставки двух записей.
- Написать SQL-скрипты для выборки всех полей всех записей таблицы.
- Написать SQL-скрипты для удаления таблицы и БД.

Домашнее задание

Предоставить SQL-скрипты, которые

- 1. Создадут базу данных AirportInfo
- 2. В ней создадут <u>одну</u> таблицу DepartureBoard (табло вылетов) чтобы в каждом поле хранилась следующая информация (*имена полей и типы данных подбираем самостоятельно*):
 - номере рейса
 - город и страна вылета и прилёта
 - дата и время вылета и прилёта (везде местное)
 - время в полёте
 - авиакомпания
 - модель самолёта
- 3. Вставят 2 записи в таблицу
- 4. Вернут все поля всех строк таблицы
- 5. Удалят базу данных AirportInfo