Given field ext. K/Q, offine $\chi(K) := G(K) \setminus Hom(G_{m,K}, G_K)$. Picking some $x \in X$ gives μ_X which determines $\mu_X \in \chi(C)$ independent of χ .

Observation: $K \hookrightarrow K'$ determines $\chi(K) \to \chi(K')$. So, Aut(C) acts on $\chi(C)$.

Def: let $H \leq Aut(C)$ be stabilized of $\mu \in \chi(C)$ and define after field $E(G,\chi) := C^H \subseteq C$.

So, TEAN(C) trivial on E(G, X) iff my and my are G(C) - conjugate.

Warning: There may be no $x \in X$ s.t. μ_X is defined over E(G,X). [Should not depend on k, so we can wary the level structure.] We seek "caron. model" of $Sh_k(G,X) = G(Q) \setminus X \times G(A_F) / k$ over E(G,X).

Def: Torus T is split if T= Gmx...xGm. Reductive gop. G is split if it contains maximal torus which is split.

Example: . Gln, Sp2n, GSp2n, SLn split over any field.

- · EIF quadratic ext. " V hermitian space ⇒ U(V), SU(V), GU(V) non-split.
- V quadratic space over $F \Rightarrow SO(V)$ is reductive group over F. Define n by $dimV = \begin{cases} 2n & dimVeven, \\ 2nH & dimVed \\ \end{cases}$.

 Then, SO(V) split iff V contains totally isotropic subspace of dim n.

Prop: (1) Every torus splits over a finite ext.

1 F

- (2) T split torus over F and F (> F' => Ham (Gm, T) => Ham (Gm, F, T').
- (3) G split over F and TEG split maximal boxes \Rightarrow W_T \Hom(G_m, T) $\xrightarrow{\sim}$ G(F)\Hom(G_m, G).

 W_T = Weyl gcorp = N_G(T)/C_G(T) [normalizer mod centralizer].

Cor: (G_1X) Shimura datum and $F \subseteq C$ s.t. G_F split \Rightarrow $E(G_1X) \subseteq F$. In particular, $E(G_1X)$ is f field and G split $(e.g., G=GSp) \Rightarrow E(G_1X) = Q$.

ef: TEGF split maximal torus . W_ \ Hom(Gm, C, Tc) = G(C) \ Hom(Gm, C, Gc) = X(C)

W_ Hom (Bmg, T) are all Aut (C/F) - equivaciant.

(Done since Aut (C/F) acts trivially on Hom (&m, F, T).)

Example: Let (V,Q) quad. space/Q of signature (n,2). Recall:

 $X:=\{isotrophic lines Cv \subseteq V_C: [v,v]<03. Set G:= {0}(v).$ We need to realize these in terms of a

Shimura desture. X = Hom(\$, GR) as follows. Given Cv & X, weight O Hodge structure on V given by

 $V_{\mathbb{C}} = V^{(1,-1)} \oplus V^{(0,0)} \oplus V^{(-1,1)}$. This determines $\mathfrak{S}(\mathbb{C}) = \mathbb{C}^{\times} \times \mathbb{C}^{\times} \xrightarrow{\mathcal{R}} \mathfrak{Solv}$ via \mathbb{C}_{V} $(\mathbb{C}_{V} \oplus \mathbb{C}_{V})^{\perp}$ \mathbb{C}_{V}

h(z,w):= { z/w, V(1,-1), V(0,0), Hodge cochar. is µ: (x→ SO(V_C), z → { z, (cv⊕cv)¹, (cv⊕cv)¹, √(-1,1).

Let $\sigma \in Aut(C)$ (whose action commutes $\gamma = 0$). $\mu^{\sigma}(z) = 0$ $\nu^{\sigma}(z) = \sigma(\mu(\sigma^{-1}(z)))$.

Now check by hand: all decompositions $V_C = l \oplus W \oplus l' \ M \ l, l' = isotropic lines, [l,l'] \neq 0, W = (l+l')^{\perp} form$ a single $SO(V_C)$ -orbit.