Stat 495 Lecture Notes Ch. 2 (Highlights from book notes Neyman-Pearson Review $\mathcal{H}_0: O = O_0$ $\mathcal{H}_1: O = O_1$ $X_1, ..., X_n RS f(x/O)$ $f_1(x)$ Let S denote a test. Power = 1-B $\alpha(S) = P(Reject Ho | 0 = 0_0)$ So αT , βJ , Pener $\beta(S) = P(D_0 \text{ not reject Ho} | 0 = 0_1)$ Suppose we fix a and went min B(8) Let S^* be a test with form: k > 0Reject H_0 if $\frac{f_1(\chi)}{f_0(\chi)} > k$, with $\infty(S^*) = \infty_0$. NP Lemma. If S is another test such that $\alpha(S) \leq \alpha(S^k)$ then B(8) = B(8"). (con remove =) St is most powerful @ & and uses likelihood rate! Ex. Bernoulli (p) ~(8) = 0.05 Ho: p = 0.2 HA: p = 0.4 $f_0(\chi) = (0.2)^{2 \times i} (0.8)^{n-2 \times i}$ and $f_1(\chi) = (0.4)^{2 \times i} (0.6)^{n-2 \times i}$ $\frac{f_{1}(\chi)}{f_{0}(\chi)} = \frac{(4/10)^{2} \times i}{(2/10)^{2} \times i} (\frac{6/10}{10})^{n-2} \times i} = \frac{(6)^{n}(4.8)^{2} \times i}{(8)^{n}(2.6)^{2}}$ $\left(\frac{3}{4}\right)^{n}\left(\frac{8}{3}\right)^{2\times i}$ is on likelihood ratio

f.(2) > k. ⇒ So, we reject 76 if K < (3/4) (8/3) EXi ⇒ $(4/3)^n k < (8/3)^{2} \times 10^{2}$ take logs n log 1/3 + log k < \ Xi log 8/3 Rightif ZXi > nlog 4/3 + log k _ k' lug 8/3 Now we apply the lemma. We wont $\alpha = 0.05$ and β to be a min. Under Ho, p = 0.2. EX: | p = 0,2 ~ Binomial (n, 0,2) Fix on n so we can examine cutoffs. n=10 $P(\xi X_i > 3 | p = 0.2) = 0.1209$ $P(\xi X_i > 4 | p = 0.2) = 0.0328$ > could use either of these No lest @ < = 0.05. Can develop firther to Uniformly Most Powerful tests
UMP's grist if dist has a menatene likelihood ratio
(MLR) In general, $f_n(\chi \mid 0)$ has a MLR in $\Gamma(\chi)$ if Y pairs of Y rathers $Q_1, Q_2 \in \Pi \ni Q_1 < Q_2$, $f_n(\chi \mid Q_2)$ depends on data only through $\Gamma(\chi)$ $f_n(\chi \mid Q_1)$ and is T as a $f_n(\chi)$ MLRs exist for dists in exponential family (more in Ch. 5)

Stat 495 Leetine Notes Chi2 Verify MLR for the Bernoulli example fn(x1p)=p=xi(1-p) Let p, <p2. fn(x | p2) = [p2 (1-p1)] = Xi (1-p2) depends on data only through $\Gamma(X) = ZXi$ and it is on I for of ZXi if 0 < p, < p, < 1So, we could return to our example to say Reject Ho if ZX: >4 ie. ZX: >5 is UMP@ $\alpha = 0.0328$ for Ho: p = 0.2 vs. Ha: p=0.4 =) 070.2 Pivotal Statistic Textbook shows 2-sample t example
Will show 1-sample t example for CI for u Suppose X,, Xn is RS N(U, 62) and note me $\overline{X}_n = \underline{Z}Xi$ and $S_n^2 = \underline{Z}_i(X_i - \overline{X}_n)^2$ Now we define Z = Jn (Xn-u)/6 and Y = Sn2/62 You can show that Yand Z must be I, and $Y \sim \chi^2(n-1)$ and $Z \sim N(0,1)$.

Now we construct $U = \frac{Z}{(\frac{1}{2}-1)^{1/2}}$ proven by Fisher $U = n^{1/2} \left(\overline{X}_n - u \right)$ $\left(\frac{S_n^2}{n-1} \right)^{1/2}$ $\Rightarrow pivot!$ Now, consider $z = \sqrt{n}(\bar{x}_n - u)$. If you don't know

Plug-in ex. 1

6, use plug-in MLE! B= (sn2/n)/2 -> so plugin. Nok: biased! this is a scalar $Z' = \sqrt{n(X_n - u)} = \left(\frac{n}{n-1}\right)^{1/2} U$ so Z n t (n-1) Plug-in ex. 2

Use $s = \delta' = \left[\frac{5n^2}{n-1}\right]^{1/2}$ instead of δ in \mathcal{E}_{i} .

The sult $\mathcal{E}'' = \int_{\mathcal{D}} (\overline{X}_n - u) \sim \mathcal{E}(n-1)$ proof. =) use to create a CI for 11. Let $c = t_{\alpha/2}$ upper the cutoff t(n-1)P(-c < Z" < c) = 1-a > helps solve for c P(-c < Jn(xn-u) 2c) = P(-cs < xn-u < cs) = P(Xn-c5/sn < u < x + c5/sn) = 1-x X = t = 5/2 s/m is (1-x)100% (I for u

0	Stat 495 Lecture Notes
Ch. 3	Boyesian Conjugate Family Example Poisson/Gamma
	Let X, , , Xn be a RS from a Poisson dist for which O is unknown (0>0), but has a prin dist. of Gamma (a, B) with a, B>0. Then the posterior dist of O Xi, i=1, , n is good with Gamma (a + \(\frac{2}{2}\tilde{X}i, \beta+n).
	Pf. Hint: Use proportionality. Let y = 2 Xi.
	$f_n(x 0) \propto e^{-n\theta} o y$ You may be used to $g(0) \propto 0^{\alpha-1}e^{-\beta\theta}$, $o>0$ reparemetery at $g(0) \propto g(0) \propto g(0) \propto f_n(x 0)g(0) \Rightarrow 2xi$.
	g(01x) \(\alpha \text{0"+y-1} e^{-\text{O}(n+\beta)} \) \(\alpha \text{Gamma}(\alpha + Y, \beta + n). \)
	Ex. Application
	You are simpling Poisson obs and you want posterior variance to be 0.01 or less. Suppose prior is Gamma($\alpha = 3$, $\beta = 6$).
	Then the posterior for O will be Gamma (Y+3, n+6).
	Next, reall raciones of Gamma is $\frac{\alpha}{B^2}$ \Rightarrow other parameteryalin
0	posterior variance is $V=y+3$ Sample sequentially (n+6) ² until $V \le 0.01$,
NAME AND ADDRESS OF THE PARTY O	

For hypothesis testing, can use Bayes Factors
- con find enidence in form of Ho For CIs, use cudible intervals, where you con say $P(_ < 0 < _) = 0.95$, etc. Gamma Dist. Textbook Gamma(r, 0)

$$f(x) = \frac{x^{-1} e^{-x/6}}{6^{\vee} \Gamma(x)} \qquad E(x) = 6^{\vee} V(x) = 6^{\vee} V(x)$$

Dobrow textbook: Gamma (r, 2) = Gamma (x, B)

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \times \frac{\alpha^{-1} e^{-\beta x}}{E(x) = \frac{\alpha}{\beta}}$$

$$V(x) = \frac{\alpha}{\beta^{2}}$$