

Ensemble simulations with IPSL model

<u>Arnaud Caubel (IPSL)</u>, Yann Meurdesoif (IPSL), OASIS team and Myriam Khodri (IPSL), Robin Noyelle (IPSL)

January, 19th 2023, Workshop on Coupling Technologies for Earth System Models

Context: IPSL-CM model

4 IPSL-CM6 (standard model)

- **4** Components
 - LMDZ : Atmosphere, lon-lat grid
 - ♣ ORCHIDEE : Land surface, routing
 - ♣ NEMO version 3 : Ocean
 - **↓** LIM3 : Sea-ice
 - ♣ PISCES : Biogeochemistry
 - OASIS3-MCT : ocean-atmosphere coupler
 - ♣ XIOS version 2: Input/Output server
 - **↓** libIGCM : running environment
- MPMD mode : LMDZ-ORCHIDEE, NEMO and XIOS server
- ♣ Hybrid parallelization MPI-OpenMP for LMDZ-ORCHIDEE and MPI only for NEMO and XIOS server.
- Participation in CMIP6 project with production of CMIP6 publication data ready files
- Paleoclimate to future projections
- ♣ Horizontal resolutions from 500 km to 50 km
- ♣ Vertical resolution with 79 levels
- Run on CPUs architecture (Intel and AMD computing cores)

Context: IPSL-CM model

↓ IPSL-CM7 (ongoing development)

- **4** Components
 - DYNAMICO-LMDZ : Atmosphere, icosaedral grid
 - **♣** ORCHIDEE : Land Surface, new routing model
 - **♣** NEMO version 4 : Ocean
 - **♣** SI3 : Sea-ice
 - **♣** PISCES : Biogeochemistry
 - **♣** OASIS3-MCT : ocean-atmosphere coupler
 - ♣ XIOS version 2: Input/Output server
 - **♣** libIGCM : running environment
- MPMD mode : DYNAMICO-LMDZ-ORCHIDEE, NEMO and XIOS server
- ♣ Hybrid parallelization MPI-OpenMP for DYANMICO-LMDZ-ORCHIDEE and MPI only for NEMO and XIOS server.
- ♣ Participation in CMIP6 HighResMIP project (atmosphere only) for 200 km to 25 km horizontal resolution
- Scientific validation in progress at low resolution
- ♣ Run on CPUs architecture (Intel and AMD computing cores). Work to target new architectures (GPUs): DYNAMICO already done (based on OpenACC), LMDZ, ORCHIDEE, OPA: work in progress

Context: Ensembles with IPSL model

Standard simulations: 1 instance of the model over a period, one trajectory with regard to a given score

Ensemble simulations

- ♣ consist in running several instances/members in parallel and periodically selecting and cloning (with perturbation) trajectories which go in the favored direction (measured by a score function) and killing the other ones.
- many possible protocoles with ensemble simulations to generate different members: initial conditions, parameters, forcing,...

Context: Ensembles with IPSL model

♣ One instance vs many instances

- ♣ Each member of actual IPSL model produces its own output files. If the number of members is big (i.e > 10) :
 - ♣ A lot of inodes on computing centres filesystems : problem with strong constraints on quotas of inodes
 - A post-processing step is needed to "pack" output files to reduce inode footprint...
- ♣ Handling of perturbation of initial state: no existing automatic functionality to do that in the actual model
 - ♣ High risk to make errors with many members

We have to adapt our model to be able to:

- Write out data from all members of a component into a single file (with ensemble dimension)
- Synchronize all members after a given period
- Use an external tool to determinate good/bad trajectories to extend with regard to scoring function
- Automatically perturbate initial state if needed
- Easily define the number of members, divided into pools by specifying the number of pools and the size of the pools in a parameter file

=> Modifications are needed in OASIS, XIOS, IPSL running environment (libIGCM)

4 Ensemble management into XIOS and OASIS for single output file

- ♣ Communication between models, OASIS and XIOS
 - **♣** The handling of MPI communicators is done by OASIS in IPSL model.
 - ▶ MPI local communicators of the models are created by Oasis at initialization phase of the coupling to allow internal communication of the models.
 - MPI inter-communicators between XIOS and the models are created by Oasis at initialization phase to allow communication between XIOS and the models => this functionality is only available for 2 models/components.

4 Ensemble management into XIOS and OASIS

- ♣ Output data from all members of a component into one single file with ensemble dimension
 - ♣ Need that XIOS server communicate with all members of a component
 - ♣ Need to have a MPI communicator containing all members process of a component in order that the calls to XIOS subroutines are collective to all members of a component
 - => Development of oasis_get_multi_intracomm and oasis_get_multi_intercomm by Oasis team in OASIS3-MCT_5.0
 - => Development of a new dimension "ensemble" in XIOS, handled as an axis.

Perturbation of initial state

- ♣ Fonctionality to perturbate starting state of LMDZ atmospheric model (dynamics part) based on a « white noise » on potential temperature on all points of the domain
- Perturbation specific to one member (different perturbation between members)

Adaptation of IPSL running environment

- ♣ Management of execution of all instances of IPSL-CM model over a period in the same computing Job
- ♣ Members are divided into pools. Use of ensembles parameters : number of pools, size of pool
- ♣ The members of a pool run at the same time, the pools run sequentially one after the other, in the same Job on a given period.
- ♣ Handling of restart files to allow the continuation or stop of a member
- Use of external tool for the selection
- 4 Handling of perturbation to be applied (or not) to a specific member

Development in IPSL model: ensembles workflow

2. Selection of « good » members by computing a function score on output data

3. Perturbation based on « white noise » into initial state of the « new » members

Applications: Paleoclimatology

♣ Reconstruction of 1500 years of paleoclimate (500 – 2014) (M. Khodri, IPSL)

- ♣ IPSL-CM very low resolution version : 200 km ocean, 400 km atmosphere
- ♣ 1 instance/member run on ~800 AMD Rome computing cores at 48 SYPD
- ♣ 80 members of IPSL-CM6 to run and synchronise after given period
- ♣ Use of data assimilation methods (SIR-LIM-Analogues) to select after every simulated year
- ♣ Output data aggregated on the fly by XIOS into one single file.
- Results
 - **♣** 8 pools of 10 members on 8 421 cpu cores
 - Gain of a factor 80 for number of inodes
 - ♣ Time to solution for one pool does not depend of the size of the pool
 - ♣ Time to solution of all members is depending of the number of pools (and size of pools). Ex: 4h with 8 pools, 10 members per pool, ~6 SYPD
 - ♣ Additionnal cost in time to be taken into account between 2 periods: handling of restart, selection, perturbation,...depending on the size of the pool
 - ♣ One single file : very useful for analysis
 - Useful for low resolution that uses few cores: allows to apply for calls to benefit from computing hours (ex: PRACE) that are usually reserved for applications using several thousands cores.

Number of pools	Size of one pool	Nb cores	Time to solution for 1 pool for 1 year period	SYPD for 1 pool	Time to solution for all members for 1 year period	SYPD for all members
40	2	1 685	30 min	48	20 h	1.2
16	5	4 211	30 min	48	8 h	3
10	8	6 737	30 min	48	5 h	4.8
8	10	8 421	30 min	48	4 h	6

Applications: Present and extreme events

♣ Reconstruction of last 130 years of historical period (1880 – 2014) (M. Khodri, IPSL)

- ♣ IPSL-CM low resolution version : 100 km ocean, 200 km atmosphere
- ♣ 1 instance/member run on 1 800 AMD Rome computing cores (28 SYPD)
- **♣** 80 members of IPSL-CM6 to run and synchronise after given period
- Same data assimilation method and protocol of selection for previous case
- ♣ Output data aggregated on the fly by XIOS into one single file
- Results
 - 4 10 pools of 8 members on 15 360 cpu cores
 - ♣ Gain of a factor 80 for number of inodes
 - ♣ Time to solution for one pool does not depend of the size of the pool
 - ♣ Time to solution of all members is depending of the number of pools (and size of pools). Ex : 8h with 10 pools, 8 members per pool, ~3 SYPD

Number of pools	Size of one pool	Nb cores	Time to solution for 1 pool for 1 year period	SYPD for 1 pool	Time to solution for all members for 1 year period	SYPD for all members
40	2	3714	50 min	28	33 h	0.7
20	4	7927	50 min	28	16 h	1.5
16	5	9473	50 min	28	13 h	1.8
10	8	15360	50 min	28	8 h	3

Lesson Extreme events (heat waves) : on going work (R. Noyelle, IPSL)

- IPSL-CM atmosphere-only configuration: 200 km horizontal resolution.
- ♣ Goal : simulate heat waves and therefore to select periodically the "best" trajectories that can cause heat waves
- ♣ Between 100 and 1000 members with selection every 4-5 simulated days

Conclusions - Perspectives

- Nice and effective example of collaboration between tools (and teams): OASIS and XIOS
- The contract has been fullfilled: no impact on the inodes created for output files when running ensembles...
- Very useful (especially for low resolution) to target allocations reserved for many thousands computing cores
- What about operations/reductions between members?
 - Functionality to allow reductions between members with XIOS has been already developped by NCAS Reading (but no output in one single file)
 - ♣ Actual version of IPSL model: possible to do some reductions/operations between members but only between members of a pool (and not between all members).
 - ♣ Reductions/operations between members could have an impact on the time to solution because they are performed on model/client side (synchronization of all members)
 - ♣ Modifications were needed into the components to handle ensemble parameters (number of pools, size of pool). Better to be less invasive in the components.
 - ♣ Ideal would be to have asynchroneous services in XIOS dedicated to such operations/reductions between different members
 - Not yet available but possible in new XIOS version: XIOS3 (see Yann Meurdesoif's talk tomorrow)

Thank you!