Mathematical Notations for Learning from Data Course

Islem Rekik*

Istanbul Technical University

Abstract. Inspiring quotes. "You'll need to set small, specific goals to master a skill, but first you'll want to be sure of the basics." Source: Learn better by Ulrich Boser.

"Learning is an iterative process that requires that you revisit what you have learnt." Source: Make it stick by Henry L. Roediger III and Mark A. McDaniel.

"The good news is that we now know of simple and practical strategies that anybody can use; at any point in life, to learn better and remember longer: various forms of retrieval practice, such as low-stakes quizzing and self-testing, spacing out practice, interleaving the practice of different but related topics or skills, trying to solve a problem before being taught the solution, distilling the underlying principles or rules that differentiate types of problems, and so on." Source: Make it stick by Henry L. Roediger III and Mark A. McDaniel.

Pre-requisites: Linear algebra. To refresh your memory, you can check 3blue1brown YouTube playlist^a.

Machine Learning Blinks. Check the YouTube link below to watch the lectures^b.

^{*} Corresponding author: irekik@itu.edu.tr; http://basira-lab.com

a https://www.youtube.com/watch?v=fNk_zzaMoSs&list= PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab

b https://www.youtube.com/watch?v=HyWmnlahXAA&list= PLug43ldmRSo1LDlvQOPzgoJ6wKnfmzimQ

Table 1: Major mathematical notations used in lecture 1.

Mathematical notation	Definition
${\cal D}$	$\operatorname{dataset}$
n	number of samples in a dataset \mathcal{D}
d	number of features
$\mathbf{x} \in \mathbb{R}^{d imes 1}$	feature vector or data point (sample)
$\mathbf{x}_{feature}^{sample}$	
$\mathbf{x}^i \in \mathbb{R}^{d imes 1}$	i^{th} sample in the population
$\mathbf{x}_i^i \in \mathbb{R}$	j^{th} feature of i^{th} sample in the population
$\mathcal{D} = \{\mathbf{x}^i, y^i\}_{i=1}^n$	training dataset where $\mathbf{x}^i \in \mathbb{R}^d$ denotes the feature vector for the i^{th} sample
	and $y^i \in \mathbb{R}$ denotes its score
$\mathbf{X} \in \mathbb{R}^{d imes n}$	data matrix stacking all samples vertically
r	
J L ID ID	mapping or transformation function to learn
$f: \mathbb{R} {\mapsto} \mathbb{R}$	one-to-one mapping
$f:\mathbb{R}{\mapsto}\mathbb{R}^m$	one-to-many mapping
$f:\mathbb{R}^p{\mapsto}\mathbb{R}$	many-to-one mapping
$f: \mathbb{R}^p {\mapsto} \mathbb{R}^m$	many-to-many mapping

Table 2: Major mathematical notations used in lecture 3.

Mathematical notation	Definition
$\mathcal D$	dataset
n	number of samples in a dataset \mathcal{D}
d	number of features
$\mathbf{x} \in \mathbb{R}^{d imes 1}$	feature vector or data point (sample)
$egin{aligned} \mathbf{x}_{feature}^{sample} \ \mathbf{x}^i \in \mathbb{R}^{d imes 1} \end{aligned}$	
$\mathbf{x}^i \in \mathbb{R}^{d imes 1}$	i^{th} sample in the population
$\mathbf{x}^i_j \in \mathbb{R}$	j^{th} feature of i^{th} sample in the population
$oldsymbol{\Sigma} \in \mathbb{R}^{d imes d}$	covariance matrix of data population $\{\mathbf{x}^i\}_{i=1}^n$
$ \mathbf{A} \in\mathbb{R}$	determinant of matrix A
$p(x) = \frac{1}{\sqrt{2\pi}\sigma} exp(\frac{-1}{2} \frac{ x-\mu _2^2}{\sigma^2})$	probability density function of a variable $x \in \mathbb{R}$
$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} \mathbf{\Sigma} ^{1/2}} exp\left[\frac{1}{2} (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu)\right]$	probability density function of a multidimensional variable $\mathbf{x} \in \mathbb{R}^{d \times 1}$
$u \in \mathbb{R}^{d \times 1}$	sample mean $\mu = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}^{i}$
$ \mathbf{x} - \mu _{\mathbf{\Sigma}^{-1}} = (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) \in \mathbb{R}$	Mahalanobis distance between ${\bf x}$ and μ
$ \mathbf{x} - \mu _{\mathbf{\Sigma}^{-1}} = (\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) \in \mathbb{R}$ $\mathbf{I}_{d \times d} \in \mathbb{R}^{d \times d}$	identify matrix of size $d \times d$
$ \mathbf{x} - \mu _{\mathbf{I}_{d \times d}} = (\mathbf{x} - \mu)^T (\mathbf{x} - \mu) \in \mathbb{R}$	Euclidean distance between ${\bf x}$ and μ
	also noted as L_2 norm $ \cdot _2$
$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$	discriminant Bayes function for class i when $\Sigma_i = \sigma_i^2 \mathbf{I}$
	general case: when $\sigma_i^2 \neq \sigma_j^2$ for classes i and j (i.e., different means $\mu_i \neq \mu_j$
	but constant variance for all data features in each class)
	special case: when $\sigma_i^2 = \sigma_j^2$ for classes i and j (i.e., different means $\mu_i \neq \mu_j$
	but constant variances across all classes)
	(i.e., lines connecting means of different classes are perpendicular to decision boundaries)
T	$\text{if } ln(p(c_i)) = ln(p(c_j)), \ g_i(\mathbf{x}) = - \mathbf{x} - \mu_i _2^2$
$g_i(\mathbf{x}) = \mathbf{w}_i^T\mathbf{x} + \mathbf{w}_{i0}$	discriminant Bayes function for class i when $\Sigma_i = \Sigma_j = \Sigma$
	(i.e., constant data feature covariance Σ across classes)
	(i.e., lines connecting means of different classes are not perpendicular to decision boundaries)
$g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$	if $ln(p(c_i)) = ln(p(c_j))$, $g_i(\mathbf{x}) = -\frac{1}{2} \mathbf{x} - \mu_i _{\mathbf{\Sigma}^{-1}}^2$ quadratic discriminant function (decision boundaries are nonlinear)
$g_i(\mathbf{x}) = \mathbf{x} \cdot \mathbf{v} \mathbf{x} + \mathbf{w}_i \mathbf{x} + \mathbf{w}_{i0}$	quadratic discriminant function (decision boundaries are nonlinear)

Definition Mathematical notation $arg \ min_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \frac{1}{n} \sum_{(\mathbf{x}^i, y^i) \in \mathcal{D}} E(f_{\mathbf{w}}(\mathbf{x}^i), y^i) + R(\dots)$ supervised learning energy cost (loss function) the mapping function to learn from $\mathbf{x}^i \to y^i$ the error function between the predicted target by f and the ground truth observation regularization term to avoid overfitting and control model complexity optimization parameters (weight vector) set of parameters that minimize the loss function $\mathcal{L}(\mathbf{w})$ h(w) = l(v) + l'(v)(w - v)first-order Taylor approximation of the loss function l at point w (in 1-dimensional space) first derivative of function l evaluated at point w $h(w) = l(v) + l'(v)(w - v) + \frac{1}{2}l''(v)(w - v)^{2}$ l''(w)second-order Taylor approximation of the loss function l at point w (in 1-dimensional space) second derivative of function l evaluated at point w $h(\mathbf{w}) = l(\mathbf{v}) + \nabla l(\mathbf{w})(\mathbf{w} - \mathbf{v})$ first-order Taylor approximation of high-dimensional loss function l at vector point $\mathbf{w} \in \mathbb{R}^d$ $\mathbf{w} = \begin{bmatrix} w_1 \ w_2 \dots w_N \end{bmatrix} \in \mathbb{R}^d$ $\nabla l(\mathbf{w}) \in \mathbb{R}^{d \times 1}$ weight vector to learn gradient vector of the multivariate loss function l at location \mathbf{w} note that $\nabla l(\mathbf{w})^T$ is $\in \mathbb{R}^{1 \times d}$ (row vector) $\nabla l(\mathbf{v}) = \left[\frac{\partial}{\partial w_1} l(\mathbf{v}) \frac{\partial}{\partial w_2} l(\mathbf{v}) \dots \frac{\partial}{\partial w_d} l(\mathbf{v})\right]^T$ $h(\mathbf{w}) = l(\mathbf{v}) + \nabla l(\mathbf{w}) (\mathbf{w} - \mathbf{v}) + \frac{1}{2} (\mathbf{w} - \mathbf{v})^T \nabla^2 l(\mathbf{w}) (\mathbf{w} - \mathbf{v}) \text{ second-order Taylor approximation of high-dimensional loss function } l \text{ at vector point } \mathbf{w} \in \mathbb{R}^d$ Hessian symmetric matrix of second derivatives of l along all its dimensions (variables) l is many times differentiable at the vector valued input \mathbf{w} l'(w) = 0stationary point (min, max or saddle) for a 1-dimensional function $\nabla l(\mathbf{w}) = \mathbf{0}_{d \times 1}$ stationary point (min, max or saddle) for an N-dimensional function (all elements of the gradient are zero) $\mathbf{Q} = \mathbf{Q}^T$ **Q** is symmetric matrix cookbook^a (also check^b) matrix cookbook l''(w) > 0convex function (facing upward) l''(w) < 0concave function (facing downward) matrix cookbook is the Hessian matrix of l equal to $l(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{Q}\mathbf{w} + \mathbf{r}^T\mathbf{w} + d$ $d \in \mathbb{R}$ and $\mathbf{r} \in \mathbb{R}^{d \times 1}$ $\nabla^2 l(\mathbf{w}) = \frac{1}{2} (\mathbf{Q}^T + \mathbf{Q}) \in \mathbb{R}^{d \times d}$ $\nabla l(\mathbf{w}) = \mathbf{Q}\mathbf{w} + \mathbf{r} \in \mathbb{R}^{d \times 1}$ $\mathbf{w}^k = \mathbf{w}^{k-1} - \alpha_k \nabla l(\mathbf{w}^{k-1})$ is the gradient vector of l equal to $l(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T\mathbf{Q}\mathbf{w} + \mathbf{r}^T\mathbf{w} + d$ gradient descent for finding the optimal w

a https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

 $[^]b$ https://ninova.itu.edu.tr/en/courses/institute-of-science-and-technology/1580/blg-527e/ekkaynaklar?g179937