RC Low-pass

$$H(s) = \frac{1}{RCs+1}$$

$$\omega_c = \frac{1}{RC}$$

$$f_c = \frac{1}{2\pi RC}$$

Bode Plot Example

 $R=1 \text{ k}\Omega$, C=159 nF

RL High-pass

$$H(s) = \frac{\frac{L}{R}s}{\frac{L}{R}s+1}$$

$$\omega_c = \frac{R}{L}$$

$$f_c = \frac{R}{2\pi L}$$

Bode Plot Example

 $R=628 \Omega, L=100 \text{ mH}$

Series RLC Band-pass

$$H(s) = \frac{RCs}{LCs^2 + RCs + 1}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$X_L = 2\pi f L$$

$$Q = \frac{X_L}{R}$$

If Q>>10 these estimates are useful:

$$BW = \frac{f_r}{Q}$$

$$f_1 = f_r - \frac{1}{2}BW$$

are useful:
$$f_1 = f_r - \frac{1}{2}BW \qquad \qquad f_2 = f_r + \frac{1}{2}BW$$

Bode Plot Example

Series RLC Band-stop/Notch

$$H(s) = \frac{RCs}{LCs^2 + RCs + 1}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$X_L = 2\pi f L$$

$$Q = \frac{X_L}{R}$$

If Q>>10 these estimates are useful:

$$BW = \frac{f_r}{Q}$$

$$f_1 = f_r - \frac{1}{2}BW f_2 = f_r + \frac{1}{2}BW$$

$$f_2 = f_r + \frac{1}{2}BW$$

Bode Plot Example

Parallel RLC Band-stop/Notch

$$H(s) = \frac{RCs}{LCs^2 + RCs + 1}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$X_L = 2\pi f L$$

$$Q = \frac{R}{X_L}$$

If Q>>10 these estimates are useful:

$$BW = \frac{f_r}{Q}$$

$$f_1 = f_r - \frac{1}{2}BW$$

$$f_1 = f_r - \frac{1}{2}BW$$
 $f_2 = f_r + \frac{1}{2}BW$

Bode Plot Example

25

Parallel RLC Band-pass

$$H(s) = \frac{RCs}{LCs^2 + RCs + 1}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$X_L = 2\pi f L$$

$$Q = \frac{R}{X_L}$$

If Q>>10 these estimates are useful:

$$BW = \frac{f_r}{Q}$$

$$f_1 = f_r - \frac{1}{2}BW$$

$$f_1 = f_r - \frac{1}{2}BW$$
 $f_2 = f_r + \frac{1}{2}BW$

Bode Plot Example

Parallel RL High-pass

$$H(s) = \frac{\frac{L}{R}s}{\frac{L}{R}s+1}$$

$$\omega_c = \frac{R}{L}$$

$$f_c = \frac{R}{2\pi L}$$

Bode Plot Example

 $\overline{R=628 \Omega, L=100 \text{ mH}}$

$$H(s) = \frac{RCs}{LCs^2 + RCs + 1}$$

$$\omega_r = \frac{1}{\sqrt{LC}}$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$X_L = 2\pi f L$$

$$Q = \frac{R}{X_L}$$

If Q>>10 these estimates are useful:

$$BW = \frac{f_r}{Q}$$

$$f_1 = f_r - \frac{1}{2}BW$$

$$f_1 = f_r - \frac{1}{2}BW \qquad \qquad f_2 = f_r + \frac{1}{2}BW$$

Bode Plot Example

 $R=62.5 \Omega, L=700 \mu H, C=126 nF$

