

CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO NÚCLEO DE ENGENHARIA

ENGENHARIA ELÉTRICA

Projetos de Sistemas Elétricos

Projeto Final - Instalações Elétricas

Nome completo	RA
Carlos Henrique de Araújo	109640
Erick Henrique Gonçalves	108968
José Carlos Franchini Junior	109535
Paulo Ijano Motta Junior	109302

Araras

Junho 2025

1. INTRODUÇÃO

Este trabalho tem como objetivo desenvolver o projeto completo de uma subestação elétrica, desde o ponto de alimentação até a entrega final da energia, aplicando os conhecimentos adquiridos tanto nas aulas teóricas quanto nas atividades práticas. Foram considerados aspectos essenciais como: cálculos de curto-circuito (na entrada, na transmissão e na carga), dimensionamento dos cabos condutores nas diferentes áreas (subestação, QGF, área 1, área 2 e área 3), levando em conta fatores de potência, demanda e segurança, além da escolha adequada dos disjuntores de proteção, garantindo assim a confiabilidade e segurança da instalação.

A realização deste estudo contribuiu para uma compreensão mais profunda sobre o funcionamento e os passos necessários na elaboração de um projeto elétrico dessa escala, abordando também os desafios enfrentados, como a queda no fator de potência causada pelo uso de cargas indutivas (motores) e sua compensação através da instalação de bancos de capacitores.

Este documento se mostra relevante para a sociedade atual, especialmente diante do crescimento acelerado do consumo de energia e da evolução tecnológica dos equipamentos. Por isso, torna-se fundamental considerar sistemas de proteção modernos, condutores adequados, disjuntores corretos e, principalmente, a garantia da qualidade da energia fornecida.

Com base nos resultados obtidos, que foram compatíveis com o que se esperava, e validados por meio do uso de softwares especializados, é possível afirmar que o projeto foi bem-sucedido em alcançar os objetivos propostos.

2. DESENVOLVIMENTO

A elaboração deste projeto contou com o apoio de softwares especializados para atender às demandas técnicas da proposta. Foram utilizados: Microsoft Excel, Planilha de Curto Circuito, DCE, AutoCAD Plant 3D e Dialux, além da consulta às normas técnicas em vigor, como a ABNT NBR 5419, que trata da proteção contra descargas atmosféricas, e a catálogos de fabricantes reconhecidos, como motores WEG, cabos Prysmian, bancos de capacitores e disjuntores da Siemens.

O ponto de partida foi a definição dos motores que seriam instalados nas diferentes áreas da planta industrial. Após análise técnica, o modelo mais compatível com a demanda operacional foi o W22 IR3 Premium de 4 polos, conforme especificado no catálogo da WEG, destacando-se pelo elevado rendimento e eficiência energética.

Com os dados dos motores e demais cargas, foram feitos os cálculos de corrente usando o Excel. Esses cálculos consideraram a potência aparente de base (100 MVA) e as tensões do transformador, tanto no primário quanto no secundário. Para refletir melhor a realidade do funcionamento simultâneo dos equipamentos, foi aplicado um fator de demanda de 0,85 sobre a soma das correntes. Esse valor ajudou a obter uma estimativa mais próxima do consumo real do sistema.

Com base nesses resultados, foi possível dimensionar corretamente os bancos de capacitores, especialmente nas áreas com grande presença de cargas indutivas, garantindo a correção do fator de potência e a qualidade da energia distribuída.

2.1. LEVANTAMENTO DE DADOS

Os dados de Fator de Potência (FP) e Rendimento foram encontrados em catálogos da WEG, após as potências dos motores serem disponibilizadas pelo cliente (exercício).

Quadro 1 – Dados das cargas

Aréa	Carga	Potência	Fator de Potência	Rendimento	Potência Ativa
		Mecânica (CV)			(kW)
		60	0.05	0.05	4.5
	Motor 1	60	0.85	0.95	45
1	Motor 2	150	0.86	0.958	110
1	Motor 3	20	0.81	0.93	15
	Motor 4	150	0.86	0.958	110
	Motor 5	20	0.81	0.93	15
2	Motor 6	20	0.81	0.93	15
	Motor 7	30	0.81	0.936	22
	Auxiliar	-	0.92	-	80
	Auxiliar	-	0.92	-	80
3	Aquecimento 1	-	1	-	30
	Aquecimento 2	-	1	-	30
	Aquecimento 3	-	1	-	30
Total	-	-	-	-	582

2.2. DIMENSIONAMENTO DO TRANSFORMADOR DE POTÊNCIA

2.2.1. Dimensionamento

Com os dados obtidos foi possível determinar a potência aparente de cada carga e ao final, a soma de todas as cargas resultou em uma potência total de 643,74 kVA.

Quadro 2 – Cálculo de Potência Total Aparente

Aréa	Carga	Potência	FP	Rendimento	Potência		Potência	Potência
		Mecânica			Ativa (kW)	Ângulo	Reativa	Aparente
		(CV)				(°)	(kVAr)	(kVA)
	Motor 1	60	0.85	0.95	45	31.79	27.89	52.94
1	Motor 2	150	0.86	0.958	110	30.68	65.27	127.91
1	Motor 3	20	0.81	0.93	15	35.90	10.86	18.52
	Motor 4	150	0.86	0.958	110	30.68	65.27	127.91
	Motor 5	20	0.81	0.93	15	35.90	10.86	18.52
2	Motor 6	20	0.81	0.93	15	35.90	10.86	18.52
	Motor 7	30	0.81	0.936	22	35.90	15.93	27.16
	Auxiliar	-	0.92	-	80	23.07	34.08	86.96
	Auxiliar	-	0.92	-	80	23.07	34.08	86.96
3	Aquecimento 1	-	1	-	30	0.00	0.00	30.00
	Aquecimento 2	-	1	-	30	0.00	0.00	30.00
	Aquecimento 3	-	1	-	30	0.00	0.00	30.00
Total	-	-	-	-	582	-	275.10	643.74

Considerando um fator de demanda conservador de 0,85, a potência aplicada resultou em 574,21 kVA.

Quadro 3 – Dimensionamento do Transformador

Tensão de Entrada TF =	13800	V	
Tensão de Saída TF =	380	V	
Fator de demanda =	0.85	-	* Fator de demanda considerado conservador
Potência Aparente Minima do TF =	574.21	KVA	
Potência Aparente Corrigida do TF =	746.47	KVA	* Foi dimensionado com 30% a mais da corrente minima considerando futuras
			expansões

Fonte: o autor.

Tendo nossa potência de operação definida, consideramos um aumento de 30% em relação a ela para futuras instalações e dimensionamos um transformador. Como o valor calculado foi de 746,47 kVA, o próximo transformador tabelado acima era de 750 kVA.

2.2.2. Modelo de Transformador Escolhido

Transformador Seco 750.0kVA 13.8/0.38kV CST IP-23 NA.

2.2.3. Especificações Sumárias

Figura 1 – Folha de Dados do Transformador

FOLHA DE DADOS Transformador Seco Identificação Código do produto: 14543081 Tipo: Norma / Especificação: Transformador abaixador NBR 5356-11 Características do ambiente Instalação : Altitude máxima de instalação (m.s.n.m) : Abrigado 1000.0 Não agressiva Atmosfera : Temperatura máxima do ambiente (°C): 40.0 Características elétricas Frequência (Hz): 60.0 Fases: Trifásico Grupo de ligação: Dyn1 Potência (kVA) Enrolamento Tensão (kV) Comutação Ligação AN Triângulo Estrela Alta tensão 13.8 -4x0.6 kV CST 750.0 Baixa Tensão 100.0 Elevação de temperatura dos enrolamentos média (°C) Elevação de temperatura dos enrolamentos ponto mais quente (°C) 115.0 F (155 °C) Alta tensão Baixa Tensão Ensaios dielétricos Neutro Fase Neutro Nível de isolamento (kV) 15.0 Tensão de impulso (pleno) (kV) 95.0 0.0 0.0 Tensão de impulso (cortado) (kV) Tensão aplicada (kV) 105.0 3.0 3.0 34.0 Tensão induzida (kV) 2 x Vn 2xVn 2xVn Temperatura de Referência @ 120.0 °C - AN Perdas a vazio (kW) 100% 2.4 Perdas em carga (kW) Perda Total (kW) Corrente de excitação (%) Impedância @ 120.0 °C - AN (%) Potência (kVA) 750.0 Posição (kV) 13.8 / 0.38 Alta/Baixa tensão AN Nível de ruído (dB) 64.0 Descargas parciais (pC) Corrente de inrush (Apk) 10.0 Fator K K1 Regulação (100% de carga) Fator de Carga [%] AN AN (Φ = 0.9) AN 100 1.45 4.62 3.82

Fonte: Site da WEG.

2.3. CÁCULO DE CURTO-CIRCUITO

2.3.1. Valores Iniciais

Para iniciar o cálculo de nível de curto-circuito, é fundamental dispor de alguns valores iniciais que servem como base para todas as etapas subsequentes. No nosso caso, o exercício forneceu os seguintes dados:

- Tensão Primária (Vp): Esta é a tensão do lado de alta tensão do transformador ou do ponto de alimentação principal do sistema elétrico. Ela é geralmente especificada em kV (quilovolts) e representa o nível de tensão da rede antes da transformação ou do ponto de curto-circuito. No contexto de cálculos de curto-circuito, a tensão primária é crucial para determinar os valores base no lado primário do sistema e, consequentemente, as correntes de curto-circuito.
- Tensão Secundária (Vs): Refere-se à tensão do lado de baixa tensão do transformador ou do ponto onde o curto-circuito está sendo analisado, após a transformação. Também especificada em kV (quilovolts), a tensão secundária é essencial para estabelecer os valores base no lado secundário do sistema e para calcular as correntes de curto-circuito que fluirão nesse nível de tensão.
- Impedância de Sequência Positiva (Z1): A impedância de sequência positiva representa a oposição ao fluxo de corrente para correntes balanceadas em um sistema trifásico. É um valor fundamental para o cálculo de curto-circuito trifásico (simétrico), pois define a impedância do sistema para a corrente de curto-circuito que flui de forma equilibrada pelas três fases. É expressa em ohms (Ω) ou em pu (por unidade). Para equipamentos como transformadores, a impedância de sequência positiva é geralmente fornecida pelo fabricante. Para linhas de transmissão, é calculada com base nas características físicas da linha (resistência e reatância).
- Impedância de Sequência Zero (Z0): A impedância de sequência zero é utilizada para cálculos de curto-circuito assimétricos, como o curto-

circuito fase-terra. Ela representa a oposição ao fluxo de correntes de sequência zero, que são as correntes que fluem de forma desequilibrada e retornam pela terra ou por outros caminhos de retorno. Assim como a impedância de sequência positiva, é expressa em ohms (Ω) ou em pu. Seu valor é particularmente importante para transformadores e linhas de transmissão, e seu cálculo pode envolver considerações sobre o aterramento do sistema.

- Potência Base (Sbase): Uma potência de referência escolhida arbitrariamente para o sistema, utilizada para converter valores de ohms para por unidade (pu) e vice-versa.
- Corrente Base Primária (Ibase,p): A corrente de referência no lado primário do sistema, correspondente à potência base e à tensão primária.

$$I_{base,p}=rac{S_{base}}{\sqrt{3} imes V_p}$$
 (para sistemas trifásicos, onde V_p é a tensão de linha-linha).

 Corrente Base Secundária (Ibase,s): A corrente de referência no lado secundário do sistema, correspondente à potência base e à tensão secundária.

$$I_{base,s} = rac{S_{base}}{\sqrt{3} imes V_s}$$
 (para sistemas trifásicos, onde V_s é a tensão de linha-linha).

 Impedância Base Primária (Zbase,p): Representa: A impedância de referência no lado primário do sistema.

$$Z_{base,p} = rac{V_p^2}{S_{base,p}}$$
 (onde V_p é a tensão de linha-linha).

 Impedância Base Secundária (Zbase,s): Representa: A impedância de referência no lado secundário do sistema.

$$Z_{base,s}=rac{V_s^2}{S_{base}}$$
 (onde V_s é a tensão de linha-linha).

Quadro 4 - Resumo de Valores Iniciais para Cálculo de Curto-Circuito

	ETAPAS	VALOR	UNIDADE	OBSERVAÇÃO
		VALORES	BASE	
	Tensão base - MT - VB	13800	V	13,8 kV
	Potência base	100000000	VA	100 MVA
	Impedância base - Zb	1.9044	Ohms	
	Corrente base - Ib	4183.697603	A	4,18 kA
VALORES INICIAIS	tensão base - BT - Vbbt	380	V	
VALC	Corrente base - Ibbt	151934.2814	A	151,93kA
		IMPEDÂ	NCIA	
	Seq positiva - Zps	0.1+0.5j		
	Rps	0.1	PU NA BAS	E DE 100MVA e 13,8kV
	Xps	0.5		
	Seq zero - Zps	0.2+0.8j		
	Rp0	0.2	PU NA BAS	E DE 100MVA e 13,8kV
	Xp0	0.8		_

2.3.2. Tipos de Curto-Circuito

• Curto-Circuito Trifásico (Simétrico): O tipo de curto-circuito mais grave e geralmente o que resulta nas maiores correntes. Ocorre quando as três fases de um sistema trifásico são conectadas simultaneamente. É considerado "simétrico" porque as correntes nas três fases mantêm uma relação de magnitude e defasagem de 120 graus, como em condições normais, mas com valores muito elevados.

$$Icc3\emptyset = \frac{VLL}{\sqrt{3}xZ1total}$$

VLL é a tensão de linha-linha nominal no ponto de entrega.

Z1,total é a soma das impedâncias de sequência positiva de todos os componentes (fonte, transformadores, linhas, etc.) desde a fonte até o ponto de entrega, tudo referido à mesma base de tensão (ou impedância base, se estiver em pu).

 Curto-Circuito Monofásico Assimétrica(fase-terra): O tipo de curtocircuito mais comum em sistemas elétricos. Ocorre quando uma fase entra em contato com o "terra". É "assimétrico" porque as correntes nas três fases não são balanceadas.

$$Icc1\emptyset = \frac{3xVLL}{Z1total + Z2total + Z0total}$$

VLN é a tensão de fase-neutro nominal no ponto de entrega.

Z1,total, Z2,total, Z0,total são as impedâncias de sequência positiva, negativa e zero totais, respectivamente, de todos os componentes desde a fonte até o ponto de entrega.

 Curto-Circuito Monofásico Assimétrica(fase-fase): A corrente de curtocircuito fase-fase assimétrica ocorre quando duas fases de um sistema trifásico entram em contato uma com a outra, sem envolvimento direto com o terra.

$$Icc2\emptyset. pu = \frac{\sqrt{3}xVpre - falta.pu}{Z1total + Z2total}$$

2.3.3. Cálculos de Curto-Circuito realizados em Excel

Quadro 5 – Resumo de Valores Iniciais para Cálculo de Curto-Circuito

		CURTO CIRCUITO		
		TRIFÁSICO		
	Ics	1609.114462624378045.57231312187j	A (cartesiano)	
	Módulo de Ics	8.20	KA	
	Fase de Ics	-78.69	Graus	
		MONOFÁSICO		
	Zeq até este ponto (até lado de alta do trafo)	0.4+1.8j		
	Icft	1476.599153937666644.69619271948j	A (cartesiano)	
	Módulo de Icft	6.81	KA	
	Fase de Icft	-77.47	Graus	
		POTÊNCIA CURTO CIRCUITO		
PONTO DE ENTREGA	Pcc	0.20 ASSIMÉTRICO	MVA	
	relação X/R	-5.00		
	Fator de assimetria	2.18	tabelado (aproximado)	*Não tem valor tabelado *Valor utilizado é o mesmo que o calculado

corrente de curto	17.89		
circuito assimétrico - Ics	17.07		
Impulso da corrente de	25.30		
curto circuito	23.50		
Cálculo do fator de	2.18	Valor real	
assimetria	2.10	, with 1 2 with	
Tau	-0.013262912		
Corrente de curto	17.87		
circuito assimétrico - Ica			
Impulso da corrente de	25.28		
curto circuito - Icim	25.20		

Quadro 6 – Resumo de Valores Iniciais para Cálculo de Curto-Circuito

	IMPEDÂNCIA		
Pot nominal do trafo	750	kVA	1000 Kva
Perdas cobre	12000	W	12kW
Res. percentual Rpt	1.6	%	0.12%
Res. pu Rut	0.016	pu	na base de 100 MVA
Res. pu Rut	1.6	pu	na base de 100 MVA
Imp. percentual Zpt	0.06	pu	6% - dado de placa
Imp. p.u. Zut	8	pu	na base de 100 MV
Reatância pu Xut	7.838367177	pu	na base de 100 MV
Imp. Dotrafo	1.6+7.83836717690617j	pu	1,6 + j7,84 pu
	TRIFÁSICO		
zeq até o ponto -			
APENAS SEQ	1.7+8.33836717690617j		
POSITIVA			
Ics	3566.6128413351117493.9573228946j	A (cartesiano)	
Módulo de Ics	17.85383068	KA	
Fase de Ics	-78.47664407	Graus	
	MONOFÁSICO		

SECUNDÁRIO DO TRANSFORMADOR

Zeq até este ponto - Lado			
de			
ВТ	5.2+25.3151015307185j		
Icft	3548.7270318456-	A (soutosion a)	
icit	17276.2279069186j	A (cartesiano)	
Módulo de Icft	17.63693608	KA	
Fase de Icft	-78.39227745	Graus	
	ASSIMÉTRICO		
relação X/R	4.90		
reiação A/R	4.90		
		tabelado	
Fator de assimetria	1.43		
		(aproximado)	
corrente de curto circuito	25.53		
assimétrico - Ics			
Impulso da corrente de	36.11		
curto circuito			
Cálculo do fator de	1.43	Valor real	
assimetria			
Tau	0.013010709		
Corrente de curto			
circuito assimétrico - Ica	25.59		
Impulso da corrente de	36.20		
curto circuito - Icim			
Fonte: o autor.			

Quadro 7 – Curto-Circuito no QGF

	IMPEDÂNCL	A	
Lc	10	M	Comprimento dos cabos
Nc	2		Condutores por fase
Sc	240	mm²	Seção dos condutores
	Sequência positiva		
R_Cabo	0.0801	mOhms/m	Tabelado
R_CaboPos_ohm	0.0004005	Ohms	
R_CaboPos_pu	0.277354571	pu	
X_Cabo	0.1099	mOhms/m	Tabelado
X_CaboPos_ohm	0.0005495	Ohms	
X_CaboPos_pu	0.380540166	pu	
Z_CaboPos_pu	0.277354570637119+0.3805 40166204986j	pu	
	Sequência zero		
R_Cabo	0.0801	mOhms/m	Tabelado
R_CaboPos_ohm	0.0004005	Ohms	
R_CaboPos_pu	0.277354571	pu	
X_Cabo	0.1099	mOhms/m	Tabelado
X_CaboPos_ohm	0.0005495	Ohms	
X_CaboPos_pu	0.380540166	pu	
Z_CaboPos_pu	0.277354570637119+0.3805 40166204986j	pu	
	CURTO CIRCUI	ITO	
	TRIFÁSICO		
zeq até o ponto - APENAS SEQ	1.97735457063712+8.71890 734311116j		
POSITIVA	3758.6721585926216573.4131705784j	A (cartesiano)	
Módulo de Ics	16.99	KA	

Fase de Ics	-77.22	Graus	
rase de les	-11.22	Graus	
	MONOFÁSICO		
Zeq até este ponto - Lado	5.75470914127424+26.0761		
de	818631285j		
ВТ	,		
	2670 4067025415116667 0004011552		
Icft	3678.4067825415116667.8804911553j	A (cartesiano)	
Módulo de Icft	17.07	A	
Fase de Icft	-77.55	Graus	
	ASSIMÉTRICO)	
relação X/R	4.41		
Fator de assimetria	1.4	tabelado	
rator de assimetria	1.4	tabelado	
corrente de curto circuito	23.79	(aproximado)	
assimétrico - Ics	_5,,,		
Impulso da corrente de			
curto circuito	33.65		
Cálculo do fator de			
	1.41	Valor real	
assimetria			
Tau	0.011696243		
Corrente de curto	22.02		
circuito assimétrico - Ica	23.92		
Impulso da corrente de			
	33.84		
curto circuito - Icim			

Quadro 8 – Curto-Circuito no QGF

		IMPEDÂNCIA	V	
	Lc	25	m	Comprimento dos cabos
	Nc	1		Condutores por fase
	Sc	185	mm²	Seção dos condutores
		Sequência positiv	a	
	R_Cabo	0.106	mOhms/m	Tabelado
	R_CaboPos_ohm	0.00265	Ohms	
	R_CaboPos_pu	1.835180055	pu	
	X_Cabo	0.141	mOhms/m	Tabelado
	X_CaboPos_ohm	0.003525	Ohms	
	X_CaboPos_pu	2.441135734	pu	
	Z_CaboPos_pu	1.83518005540166+2.44113 573407202j	pu	
		Sequência zero		
	R_Cabo	0.106	mOhms/m	Tabelado
	R_CaboPos_ohm	0.00265	Ohms	
-	R_CaboPos_pu	1.835180055	pu	
-	X_Cabo	0.141	mOhms/m	Tabelado
	X_CaboPos_ohm	0.003525	Ohms	
	X_CaboPos_pu	2.441135734	pu	
	Z_CaboPos_pu	1.83518005540166+2.44113 573407202j	pu	
		CURTO CIRCUI	ТО	
		TRIFÁSICO		
Н	zeq até o ponto -	3.81253462603878+11.1600		
0	APENAS SEQ	430771832j		
BARRAMENTO 1	POSITIVA			
BAR				

	<u> </u>		
Ics	4164.8436502103612191.3212875847j	A (cartesiano)	
Módulo de Ics	12.88	KA	
Fase de Ics	-71.14	Graus	
	MONOFÁSICO		
Zeq até este ponto -	7.86724376731302+28.8978		
ССМ	J		
Ieft	Icft 3997.7627733719614684.5303658612j		
Módulo de Icft	15.22	KA	
Fase de Icft -74.77		Graus	
	ASSIMÉTRICO		
relação X/R	2.93		
Fator de assimetria	1.3	tabelado (aproximado)	
corrente de curto circuito assimétrico - Ics	16.75		
Impulso da corrente de curto circuito	23.69		
Cálculo do fator de assimetria	1.36	Valor real	
Tau	0.009743431		
Corrente de curto circuito assimétrico - Ica	17.53		
Impulso da corrente de curto circuito - Icim	24.79		

Quadro 9 – Curto-Circuito no QGF

		IMPEDÂNCIA	\				
	Lc	35	m	Comprimento dos cabos			
	Nc	1		Condutores por fase			
	Sc	25	mm²	Seção dos condutores			
		Sequência positiva	a				
	R_Cabo	0.554	mOhms/m	Tabelado			
	R_CaboPos_ohm	0.01939	Ohms				
	R_CaboPos_pu	13.42797784	pu				
	X_Cabo	0.707	mOhms/m	Tabelado			
	X_CaboPos_ohm	0.024745	Ohms				
	X_CaboPos_pu	17.13642659	pu				
	Z_CaboPos_pu	13.4279778393352+17.1364 265927978j	pu				
		Sequência zero					
	R_Cabo	0.554	mOhms/m	Tabelado			
	R_CaboPos_ohm	0.01939	Ohms				
	R_CaboPos_pu	13.42797784	pu				
	X_Cabo	0.707	mOhms/m	Tabelado			
	X_CaboPos_ohm	0.024745	Ohms				
	X_CaboPos_pu	17.13642659	pu				
	Z_CaboPos_pu	13.4279778393352+17.1364 265927978j	pu				
		CURTO CIRCUI	ТО				
	_	TRIFÁSICO	_	_			
2 2	zeq até o ponto -	15.4053324099723+25.8553					
BARRAMENTO 2	APENAS SEQ POSITIVA	33935909j					
RAM							
BAE							

Ics	2583.947688324974336.7340980786j	A (cartesiano)	
Módulo de Ics	5.05	A	
Fase de Ics	-59.21	Graus	
	MONOFÁSICO		
Zeq até este ponto -	19.4600415512466+43.5931		
CCM	486221313j		
Icft	3891.937262802228718.47056844951j	A (cartesiano)	
Módulo de Icft	9.55	A	
Fase de Icft	-65.94395	Graus	
	ASSIMÉTRICO		
relação X/R CCM	1.68		
Fator de assimetria	1.13	Tabelado	
corrente de curto circuito assimétrico - Ics	5.70	(aproximado)	
Impulso da corrente de curto circuito	8.07		
Cálculo do fator de assimetria	1.14	Valor real	
Tau	0.004451926225		
Corrente de curto circuito assimétrico - Ica	5.77		
Impulso da corrente de curto circuito- Icim	8.17		

Quadro 10 – Resumo do Cálculo de Corrente de Curto-Circuito

		IMPEDÂNCI	A						
	Lc	30	m	Comprimento dos cabos					
	Nc	1		Condutores por fase					
	Sc	150	mm²	Seção dos condutores					
		Sequência positiv	va						
	R_Cabo	0.129	mOhms/m	Tabelado					
	R_CaboPos_ohm	0.00387	Ohms						
	R_CaboPos_pu	2.680055402	pu						
	X_Cabo	0.169	mOhms/m	Tabelado					
	X_CaboPos_ohm	0.00507	Ohms						
	X_CaboPos_pu	3.511080332	pu						
		2.68005540166205+3.51108							
	Z_CaboPos_pu		pu						
		033240997j							
	Sequência zero								
	R_Cabo	0.129	mOhms/m	Tabelado					
	R_CaboPos_ohm	0.00387	Ohms						
	R_CaboPos_pu	2.680055402	pu						
	X_Cabo	0.169	mOhms/m	Tabelado					
	X_CaboPos_ohm	0.00507	Ohms						
	X_CaboPos_pu	3.511080332	nu nu						
	A_Cabbi os_pu	3.311000332	pu						
		2.68005540166205+3.51108							
	Z_CaboPos_pu	033240997j	pu						
		CURTO CIRCUI	ITO						
		TRIFÁSICO							
		TRIFASICO							
m	zeq até o ponto -	4.65740997229917+12.2299							
9	APENAS SEQ	876755211j							
Z	POSITIVA	-							
Æ									
4									
BARRAMENTO 3									
A									

Ics	4131.7496010360310849.6454036802j	A (cartesiano)	
Módulo de Ics	11.61	KA	
Fase de Ics	-69.15	Graus	
	MONOFÁSICO		
Zeq até este ponto -	8.71211911357341+29.9678		
ССМ	023617434j		
Icft	4077.1357058761214024.4635596571j	A (cartesiano)	
Módulo de Icft	14.61	KA	
Fase de Icft	-73.79	Graus	
relação X/R CCM	ASSIMÉTRICO 2.63		
T	100	Tabelado	
Fator de assimetria	1.26	(aproximado)	
corrente de curto circuito assimétrico - Ics	14.63		
Impulso da corrente de curto circuito	20.69		
Cálculo do fator de assimetria	1.27	Valor real	
Tau	0.00696547009350		
Corrente de curto circuito assimétrico - Ica	14.71		
Impulso da corrente de curto circuito - Icim	20.81		

2.3.4. Resumo dos Cálculos de Curto-Circuito

Quadro 11 – Resumo do Cálculo de Corrente de Curto-Circuito

G .	Corrente de curto-circuito
Setor	

	Trifásico (Ics) - kA	Monofásico franco (Icft) - kA	Fator de assimetria	Corrente de curto assimétrica (Ica) - kA
Ponto de entrega	8.20	6.81	2.18	17.87
Secundário do transformador	17.85	17.64	1.43	25.59
QGF	16.99	17.07	1.41	23.92
Barramento área 1	12.88	15.22	1.36	17.53
Barramento área 2	5.05	9.55	1.14	5.77
Barramento área 3	11.61	14.61	1.27	14.71

2.4. DIMENSIONAMENTO DOS CONDUTORES E DISJUNTORES DE BT

Os dados levantados referem-se especificamente aos níveis de curto-circuito no transformador, tanto no lado primário (rede de média tensão) quanto no lado secundário (rede de baixa tensão). Esses valores foram inicialmente calculados com o auxílio do Excel, onde se consideraram as características do sistema e os parâmetros de base do projeto.

A partir desses resultados, foi possível iniciar o dimensionamento dos condutores elétricos. Para essa etapa, utilizou-se o DCE, software desenvolvido pela Prysmian, reconhecido no setor elétrico pela precisão e confiabilidade, além de ser uma ferramenta gratuita amplamente adotada em projetos profissionais. O programa permitiu simular a instalação dos cabos conforme as configurações específicas da rede de média e baixa tensão do projeto.

Vale destacar que, por medida de segurança, o valor de corrente de curto-circuito inserido no DCE foi ligeiramente superior ao calculado no Excel. Enquanto o cálculo realizado para o QGF indicava uma corrente de 17,85kA, no DCE foi adotado um valor de 18 kA, incorporando assim um fator de segurança ao projeto.

Para o projeto de distribuição elétrica, foi adotado um critério de limite máximo de queda de tensão conforme estabelece a norma ABNT NBR 5410, que recomenda uma queda total não superior a 7% entre a origem da instalação e os pontos de consumo final em instalações alimentadas por rede pública.

O projeto foi dividido em trechos distintos, sendo atribuída uma margem de queda específica para cada um:

- 2% de queda de tensão do transformador até o QDF (Quadro de Distribuição Final);
- 2% de queda entre o QDF e as áreas internas da planta industrial (Áreas 1, 2 e 3);
- 3% de queda de tensão até o campo externo, onde estão instalados os motores e aquecedores.

A soma desses valores totaliza **7% de queda de tensão admissível**, atendendo integralmente os limites estabelecidos pela norma e garantindo o funcionamento adequado dos equipamentos, com eficiência energética e segurança operacional.

Figura 2 – Dados do circuito DCE

No projeto dos circuitos, escolhemos dispor os cabos de forma contígua e em apenas uma camada sobre os leitos. Essa escolha foi feita pensando numa melhor organização dos condutores, facilitando tanto a instalação quanto futuras manutenções.

Além de deixar o layout mais limpo e bem distribuído, essa configuração também ajuda na **dissipação do calor** gerado pelos cabos durante o funcionamento, o que contribui para a segurança e o bom desempenho do sistema. Essa prática segue as recomendações técnicas e ainda garante mais eficiência na hora de distribuir a fiação pelos caminhos definidos no projeto.

Dados do circuito Dados do circuito TR QGF Circuito: TR_QGF Maneira de instalar: Leito --Maneira de instalar eleção de dados Seleção de dados Disposição dos cabos Número de camadas de cabos Trifólio árias Espaçados Cancelar OK Cancelar

Figura 3 – Dados do circuito DCE

Fonte: o autor.

Todos os cálculos realizados levaram em consideração o fator de agrupamento, garantindo que o dimensionamento dos circuitos fosse feito de forma correta e segura. Essa prática é fundamental para assegurar que os condutores suportem as condições reais de instalação, evitando sobreaquecimento e possíveis falhas, especialmente quando vários cabos estão instalados juntos em leitos ou eletrocalhas.

Figura 4 – Dados do circuito DCE

A seguir, são apresentados os cálculos de dimensionamento dos condutores aplicados aos principais circuitos do projeto elétrico, abrangendo o Quadro de Distribuição Final (QDF), os motores, os circuitos auxiliares e os aquecedores. Todos os cálculos foram realizados considerando os parâmetros definidos em projeto e seguindo as exigências das normas técnicas vigentes, em especial a ABNT NBR 5410.

Figura 5 – Dados do circuito DCE

Página:1

03/06/2025

Projeto: CABOS ALIMENTADORES DOS BARRAMENTOS

Circuito: TR_QGF

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra(3F+N+T)(Equil)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV unipolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor imposta :
 240 mm2

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 10.0 m Queda de tensão máxima admitida : 2.00 % Tensão fase/fase : 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 18.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 1 Disposição dos cabos Contíguos 872.5 A

Corrente do circuito : 872.5
Fator de potência do circuito : 0.91
Fator de demanda : 1.00

Valores calculados

Seção nominal dos condutores : $2 \times 240 \text{ mm2}$

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 2 x 529.5 A
Fator de correção de agrupamento : 0.87
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.0978 ohm/km Reatância indutiva de cada condutor : 0.1673 ohm/km Queda de tensão efetiva : 0.31 % 6.24e+004 A Icc presumida mínima ponto extremo (Ikmin): I2t de cada condutor para Ikmax : 1.24e+009 A 12t de cada condutor para Ikmin : 1.19e+009 A Tempo máximo para atuação da proteção para Ikmax : 3.82e+000 s Seção nominal do condutor neutro : 2 x 120 mm2

Figura 7 – Dimensionamento de Cabos QGF-AREA 1

Página:1 DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0 03/06/2025 CABOS ALIMENTADORES DOS BARRAMENTOS Circuito: QGF_AREA1 Dados de entrada Maneira de instalar: Leito Sistema: Trifásico+Terra(3F+N+T)(Equil) Cabo: Cabo GSETTE IRISTECH 0,6/1kV unipolar Número de condutores por fase : Automático Seção nominal do condutor : Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 35 oC Conteúdo de harmônicas: 0 % Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga Comprimento do circuito 25.0 m Queda de tensão máxima admitida : 2.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 1 Disposição dos cabos Contíguos Corrente do circuito: 520.9 A Fator de potência do circuito: 0.86 Fator de demanda: 1.00 Valores calculados 1 x 240 mm2 Seção nominal dos condutores : Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 608.6 A Fator de correção de agrupamento : 1.00

Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.0978 ohm/km Reatância indutiva de cada condutor : 0.1673 ohm/km

Queda de tensão efetiva: 1.01 % Icc presumida mínima ponto extremo (Ikmin): 2.50e+004 A 12t de cada condutor para Ikmax : 1.24e+009 A I2t de cada condutor para Ikmin : 1.22e+009 A Tempo máximo para atuação da proteção para Ikmax : 4.29e+000 s Seção nominal do condutor neutro : 1 x 120 mm2

Figura 8 – Dimensionamento de Cabos QGF-AREA 2

	DIMENSIONAMENTO DE C	CIRCUITOS ELÉTRICOS 4.0	Página:1 03/06/2025	
Projeto :	CABOS ALIMENTADORES DOS BARRAMENTOS			
Circuito :	QGF_AREA2			
Dados de	e en trada			
Maneir	a de instalar:	Leito		
Sistem	a:	Trifásico+Terra(3F+N+T)(Equil)		
Cabo:		Cabo GSETTE IRISTECH 0,6/1kV unipolar		
Númer	o de condutores por fase :	Automático		
Seção	nominal do condutor :	Automática		
Seção	mínima de cada condutor:	2.5 mm2		
Tempe	eratura ambiente:	35 oC		
Conteú	ido de harmônicas:	0 %		
Dispen	sada verificação contra contatos indiretos			
Dispen	sada verificação contra sobrecarga			
Compr	imento do circuito	35.0 m		
Queda	de tensão máxima admitida :	2.00 %		
Tensão	fase/fase :	380 V		
Tensão	fase/neutro:	219.39 V		
Fator	de correção de agrupamento :	Automático		
Corren	te c.c. presumida (Ikmax):	17.0 kA		
Númer	o de camadas de cabos	Uma		
Númer	o de circuitos ou de cabos multipolares	1		
Dispos	ição dos cabos	Contíguos		
Corren	te do circuito :	104.5 A		
Fator	de potência do circuito :	0.81		
Fator	de demanda :	1.00		
Valores o	calculados			
	nominal dos condutores :	1 x 25 mm2		
100 m 245 (415	o de dimensionamento:	Capacidade de corrente		
Capaci	dade de condução de corrente :	1 x 135.4 A		
	de correção de agrupamento :	1.00		
	de correção de temperatura :	0.96		
Resisté	encia em CA de cada condutor :	0.9272 ohm/km		
Reatâr	ncia indutiva de cada condutor :	0.1854 ohm/km		
Queda	de tensão efetiva :	1.43 %		
Icc pre	esumida mínima ponto extremo (Ikmin) :	2.32e+003 A		
	cada condutor para Ikmax :	1.30e+007 A		
	cada condutor para Ikmin :	1.45e+007 A		
Tempo	máximo para atuação da proteção para Ikmax :	4.49e-002 s		
	nominal do condutor neutro :	1 x 25 mm2		

Figura 9 – Dimensionamento de Cabos QFG-AREA 3

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DOS BARRAMENTOS

Circuito: QGF_AREA3

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra(3F+N+T)(Equil)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV unipolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 30.0 m Queda de tensão máxima admitida : 2.00 % Tensão fase/fase : 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 1 Disposição dos cabos Contíguos

Corrente do circuito : 401.0 A
Fator de potência do circuito : 0.95
Fator de demanda : 1.00

Valores calculados

Seção nominal dos condutores : 1 x 150 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : $1 \times 445.4 \text{ A}$ Fator de correção de agrupamento : 1.00 Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.1591 ohm/km Reatância indutiva de cada condutor : 0.1694 ohm/km Queda de tensão efetiva : 1.12 % Icc presumida mínima ponto extremo (Ikmin): 1.41e+004 A I2t de cada condutor para Ikmax : 4.79e+008 A I2t de cada condutor para Ikmin : 4.83e+008 A Tempo máximo para atuação da proteção para Ikmax : 1.66e+000 s Seção nominal do condutor neutro: 1 x 70 mm2

Figura 10 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 1

Página:1

03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 1

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime : 3.00 %

Queda de tensão máxima admitida na partida : 10.00 %

Tensão fase/fase : 380 V

Fator de correção de agrupamento : Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	84,70	0,85	SIM	60,00	635,00	0,30

Corrente do circuito em regime: 84.7 A
Fator de potência do circuito em regime: 0.85
Corrente do circuito na partida: 635.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 25 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 97.5 A
Fator de correção de agrupamento : 0.80
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.9274 ohm/km
Reatância indutiva de cada condutor : 0.0978 ohm/km

Figura 11 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 2

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor :
 2.5 mm2

 Temperatura ambiente :
 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime : 3.00 %

Queda de tensão máxima admitida na partida : 10.00 %

Tensão fase/fase : 380 V

Fator de correção de agrupamento : Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	203,00	0,86	SIM	150,00	1.603,00	0,30

Corrente do circuito em regime: 203.0 A
Fator de potência do circuito em regime: 0.86
Corrente do circuito na partida: 1603.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 95 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 228.9 A
Fator de correção de agrupamento : 0.80
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.2479 ohm/km
Reatância indutiva de cada condutor : 0.0903 ohm/km

Figura 12 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 3

Página:1 03/06/2025

CABOS ALIMENTADORES DAS CARGAS Projeto:

Circuito: AREA1_MOTOR 3

Dados de entrada

Leito

Maneira de instalar:

Sistema: Trifásico+Terra (3F+T)

Cabo GSETTE IRISTECH 0,6/1kV tetrapolar Cabo:

Número de condutores por fase : Automático Seção nominal do condutor: Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % Tensão fase/fase : 380 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares

Motores considerados

Quantidade de	corrente nominal (A)	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais		em regime	partida ?	(ev)	(A)	na partida
1	30,20	0,81	SIM	20,00	257,00	0,30

Corrente do circuito em regime: 30.2 A Fator de potência do circuito em regime: 0.81 Corrente do circuito na partida: 257.0 A Fator de potência do circuito na partida: 0.30 Fator de demanda: 1.00

Valores calculados

Secão nominal dos condutores : 1 x 4 mm2

Capacidade de corrente Critério de dimensionamento:

Capacidade de condução de corrente : 1 x 32.3 A Fator de correção de agrupamento : 0.80 Fator de correção de temperatura : 0.96

5.8782 ohm/km Resistência em CA de cada condutor : Reatância indutiva de cada condutor : 0.1153 ohm/km

Figura 13 – Dimensionamento de Cabos - ÁREA 1 - MOTOR 4

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA1_MOTOR 4

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

Número de condutores por fase : Automático
Seção nominal do condutor : Automática
Seção mínima de cada condutor: 2.5 mm2
Temperatura ambiente: 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m

Queda de tensão máxima admitida em regime : 3.00 %

Queda de tensão máxima admitida na partida : 10.00 %

Tensão fase/fase : 380 V

Fator de correção de agrupamento : Automático

Corrente c.c. presumida (Ikmax): 17.0 kA

Número de camadas de cabos Uma

Número de circuitos ou de cabos multipolares 4

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(ev)	(A)	na partida
1	203,00	0,86	SIM	150,00	1.603,00	0,30

Corrente do circuito em regime: 203.0 A
Fator de potência do circuito em regime: 0.86
Corrente do circuito na partida: 1603.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 95 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : $1 \times 228.9 \text{ A}$ Fator de correção de agrupamento : 0.80 Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.2479 ohm/km
Reatância indutiva de cada condutor : 0.0903 ohm/km

Figura 14 – Dimensionamento de Cabos - ÁREA 2 - MOTOR 5

Página:1 DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0 03/06/2025 CABOS ALIMENTADORES DAS CARGAS Circuito: AREA2_MOTOR 5 Dados de entrada Maneira de instalar: Leito Sistema: Trifásico+Terra (3F+T) Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar Número de condutores por fase : Automático Seção nominal do condutor : Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 35 oC Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % 380 V Tensão fase/fase: Fator de correção de agrupamento: Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3 Motores considerados Quantidade de Fator de potência Considera na Potência Fator de potência corrente nominal Corrente na partida motores iguais (A) partida? (A) na partida em regime (cv) 20,00 30,20 0,81 257,00 0,30 1 SIM Corrente do circuito em regime: 30.2 A Fator de potência do circuito em regime: 0.81 Corrente do circuito na partida: 257.0 A Fator de potência do circuito na partida: 0.30 Fator de demanda: 1.00 Valores calculados Seção nominal dos condutores : 1 x 4 mm2 Critério de dimensionamento: Capacidade de corrente Capacidade de condução de corrente : 1 x 33.1 A Fator de correção de agrupamento: 0.82 Fator de correção de temperatura : 0.96 Resistência em CA de cada condutor : 5.8782 ohm/km Reatância indutiva de cada condutor : 0.1153 ohm/km

Figura 15 – Dimensionamento de Cabos - ÁREA 2 - MOTOR 6

11

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA2_MOTOR 6

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

Número de condutores por fase : Automático
Seção nominal do condutor : Automática
Seção mínima de cada condutor: 2.5 mm2
Temperatura ambiente: 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % 380 V Tensão fase/fase: Fator de correção de agrupamento: Automático 17.0 kA Corrente c.c. presumida (Ikmax): Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(cv)	(A)	na partida
1	30,20	0,81	SIM	20,00	257,00	0,30

Corrente do circuito em regime: 30.2 A
Fator de potência do circuito em regime: 0.81
Corrente do circuito na partida: 257.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 4 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 33.1 A
Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 5.8782 ohm/km
Reatância indutiva de cada condutor : 0.1153 ohm/km

Figura 16 – Dimensionamento de Cabos - ÁREA 2 - MOTOR 7

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA2_MOTOR 7

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico+Terra (3F+T)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 35 oC

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida em regime : 3.00 % Queda de tensão máxima admitida na partida : 10.00 % Tensão fase/fase: 380 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3

Motores considerados

Quantidade de	corrente nominal	Fator de potência	Considera na	Potência	Corrente na partida	Fator de potência
motores iguais	(A)	em regime	partida ?	(cv)	(A)	na partida
1	44,10	0,81	SIM	30,00	353,00	0,30

Corrente do circuito em regime: 44.1 A
Fator de potência do circuito em regime: 0.81
Corrente do circuito na partida: 353.0 A
Fator de potência do circuito na partida: 0.30
Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 59.0 A

Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 2.3336 ohm/km
Reatância indutiva de cada condutor : 0.1041 ohm/km

Figura 17 – Dimensionamento de Cabos - ÁREA 3 - AUXILIAR 1

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página: 1 23/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AUXILIAR 1

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor :
 2.5 mm2

 Temperatura ambiente :
 35 oC

 Conteúdo de harmônicas :
 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida: 3.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares Corrente do circuito: 132.2 A Fator de potência do circuito: 0.92 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : $1 \text{ x} \quad 50 \text{ mm2}$

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 160.4 A
Fator de correção de agrupamento : 0.87
Fator de correção de temperatura : 0.96

Resistência em CA de cada condutor : 0.4983 ohm/km Reatância indutiva de cada condutor : 0.0943 ohm/km Queda de tensão efetiva: 0.15 % Icc presumida mínima ponto extremo (Ikmin): 3.25e+004 A I2t de cada condutor para Ikmax : 5.23e+007 A 12t de cada condutor para Ikmin: 5.17e+007 A Tempo máximo para atuação da proteção para Ikmax : 1.81e-001 s Seção nominal do condutor neutro: 1 x 50 mm2

Ver condições nara redução do condutor neutro

Figura 18 – Dimensionamento de Cabos - ÁREA 3 - AUXILIAR 2

||

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AUXILIAR 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo : Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 30 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento: Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 2 Corrente do circuito: 132.2 A Fator de potência do circuito: 0.92 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 35 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 137.5 A

Fator de correção de agrupamento : 0.87
Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 0.6688 ohm/km
Reatância indutiva de cada condutor : 0.0943 ohm/km
Queda de tensão efetiva : 0.20 %

Icc presumida mínima ponto extremo (Ikmin):

2.28e+004 A

I2t de cada condutor para Ikmax:

2.55e+007 A

I2t de cada condutor para Ikmin:

2.54e+007 A

Tempo máximo para atuação da proteção para Ikmax:

8.84e-002 s

Seção nominal do condutor neutro:

1 x 35 mm2

Ver condições para redução do condutor neutro

Figura 19 – Dimensionamento de Cabos - ÁREA 3 – AQUECIMENTO 1

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AQUECIMENTO 1

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

 Número de condutores por fase :
 Automático

 Seção nominal do condutor :
 Automática

 Seção mínima de cada condutor:
 2.5 mm2

 Temperatura ambiente:
 30 oC

 Conteúdo de harmônicas:
 0 %

Dispensada verificação contra contatos indiretos Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V Tensão fase/neutro: 219.39 V Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3 Corrente do circuito: 45.6 A

Fator de potência do circuito : 1.00
Fator de demanda : 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 61.5 A
Fator de correção de agrupamento : 0.82
Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 2.3336 ohm/km Reatância indutiva de cada condutor : 0.1041 ohm/km Queda de tensão efetiva: 0.24 % Icc presumida mínima ponto extremo (Ikmin): 6.50e+003 A I2t de cada condutor para Ikmax : 2.07e+006 A 12t de cada condutor para Ikmin : 2.10e+006 A Tempo máximo para atuação da proteção para Ikmax : 7.15e-003 s Seção nominal do condutor neutro : 1 x 10 mm2

Ver condições para redução do condutor neutro

Figura 20 – Dimensionamento de Cabos - ÁREA 3 – AQUECIMENTO 2

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AQUECIMENTO 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo: Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

Número de condutores por fase : Automático Seção nominal do condutor : Automática Seção mínima de cada condutor: 2.5 mm2 Temperatura ambiente: 30 oC Conteúdo de harmônicas: 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V 219.39 V Tensão fase/neutro: Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma Número de circuitos ou de cabos multipolares 3 Corrente do circuito: 45.6 A Fator de potência do circuito: 1.00 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

2.3336 ohm/km

Capacidade de condução de corrente : 1 x 61.5 A

Fator de correção de agrupamento : 0.82 Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : Reatância indutiva de cada condutor : 0.1041 ohm/km Queda de tensão efetiva: 0.24 % Icc presumida mínima ponto extremo (Ikmin): 6.50e+003 A I2t de cada condutor para Ikmax : 2.07e+006 A I2t de cada condutor para Ikmin : 2.10e+006 A Tempo máximo para atuação da proteção para Ikmax : 7.15e-003 s Seção nominal do condutor neutro: 1 x 10 mm2

Ver condições para redução do condutor neutro

Figura 20 – Dimensionamento de Cabos - ÁREA 3 – AQUECIMENTO 3

11

DIMENSIONAMENTO DE CIRCUITOS ELÉTRICOS 4.0

Página:1 03/06/2025

Projeto: CABOS ALIMENTADORES DAS CARGAS

Circuito: AREA3_AQUECIMENTO 2

Dados de entrada

Maneira de instalar: Leito

Sistema: Trifásico (3F+N)(Equilibrado)

Cabo GSETTE IRISTECH 0,6/1kV tetrapolar

Número de condutores por fase : Automático
Seção nominal do condutor : Automática
Seção mínima de cada condutor: 2.5 mm2
Temperatura ambiente: 30 oC
Conteúdo de harmônicas: 0 %

Dispensada verificação contra contatos indiretos

Dispensada verificação contra sobrecarga

Comprimento do circuito 5.0 m Queda de tensão máxima admitida : 3.00 % Tensão fase/fase: 380 V 219.39 V Tensão fase/neutro: Fator de correção de agrupamento : Automático Corrente c.c. presumida (Ikmax): 17.0 kA Número de camadas de cabos Uma 3 Número de circuitos ou de cabos multipolares Corrente do circuito: 45.6 A Fator de potência do circuito: 1.00 Fator de demanda: 1.00

Valores calculados

Seção nominal dos condutores : 1 x 10 mm2

Critério de dimensionamento: Capacidade de corrente

Capacidade de condução de corrente : 1 x 61.5 A
Fator de correção de agrupamento : 0.82

Fator de correção de temperatura : 1.00

Resistência em CA de cada condutor : 2.3336 ohm/km Reatância indutiva de cada condutor : 0.1041 ohm/km Queda de tensão efetiva : 0.24 % Icc presumida mínima ponto extremo (Ikmin) : 6.50e+003 A I2t de cada condutor para Ikmax : 2.07e+006 A I2t de cada condutor para Ikmin : 2.10e+006 A Tempo máximo para atuação da proteção para Ikmax : 7.15e-003 s Seção nominal do condutor neutro : 1 x 10 mm2

Ver condições para redução do condutor neutro

Figura 21 – Resumo do Dimensionamento de Cabos

			Cabo (n	nm²)		Capacidade de	Modelo de disjuntor Sugerido	Disjuntor
Aréa	Carga	3F+N	PE	Cabo Gsette VFD (Inversor)	Corrente(A)	Corrente do cabo (A)	(Siemens)	(A)
	Motor 1	-	-	1x(3x25+16)	84,70	97,5	3VM1116-3ED32-0AA0	80 - 160
1	Motor 2	-	-	1x(3x95+50)	203,00	228,9	3VM1216-3ED32-0AA0	160 - 250
1	Motor 3	-	-	1x(3x4+4)	30,20	32,3	3VM1016-3ED32-0AA0	16 - 63
	Motor 4	-	-	1x(3x95+50)	203,00	228,9	3VM1216-3ED32-0AA0	160 – 250
	Motor 5	-	-	1x(3x4+4)	30,20	32,3	3VM1016-3ED32-0AA0	16 - 63
2	Motor 6	-	-	1x(3x4+4)	30,20	32,3	3VM1016-3ED32-0AA0	16 – 63
	Motor 7	-	-	1x(3x6+6)	44,10	59	3VM1016-3ED32-0AA0	16 - 63
	Auxiliar	1x(4x35,0mm ²)	1x16,0mm ²		132,12	137,5	3VM1116-3ED32-0AA0	80 - 160
	Auxiliar	1x(4x35,0mm ²)	1x16,0mm ²	-	132,12	137,5	3VM1116-3ED32-0AA0	80 - 160
3	Aquecimento 1	1x(4x10,0mm ²)	1x10,0mm ²	-	45,58	61.5	3VM1016-3ED32-0AA0	16 - 63
	Aquecimento 2	1x(4x10,0mm ²)	1x10,0mm ²	-	45,58	61.5	3VM1016-3ED32-0AA0	16 - 63
	Aquecimento 3	1x(4x10,0mm ²)	1x10,0mm ²	-	45,58	61.5	3VM1016-3ED32-0AA0	16 – 63
Total	-	-	-	-	1026,37	-	-	

Aréa	Carga		Cabo (m	ım²)	Corrente(A)	Capacidade de	Modelo de disjuntor Sugerido	Disjuntor
Aiea	Carga	3F+N	PE	Cabo Gsette VFD (Inversor)	Corrente(A)	Corrente do cabo (A)	(Siemens)	(A)
-	TRAFO_QGF	8x(1x240,0mm ²)	2x(1x120,0mm ²)	-	872,42	2 x 529,5	3VA2612-6HN32-0AA0	500 - 1250
1	QGF_Area1	4x(1x240,0mm ²)	1x120,0mm ²	-	520,90	608,6	3VM1463-5EE32-0AA0	441 – 630
2	QGF_Area2	1x(4x25,0mm ²)	1x16,0mm ²	-	104,50	135,4	3VM1112-3EE32-0AA0	88 – 125
3	OGF Area2	1x(4x150,0mm ²)	1x95,0mm ²	_	400.97	445.4	3VM1450-4EE32-0AA0	350 - 500

2.5. METODO DE PARTIDA DOS MOTORES

No projeto, foi adotado o inversor de frequência como método de partida dos motores por oferecer maior controle, segurança e eficiência. Diferente da partida direta, o inversor realiza a aceleração de forma suave, evitando picos de corrente e reduzindo o desgaste mecânico.

Comparando com o soft starter, ambos oferecem partida suave, mas o inversor se destaca por controlar a velocidade durante toda a operação, enquanto o soft starter atua apenas na partida e parada. Além disso, o inversor permite ajustes finos de velocidade conforme a demanda, gerando economia de energia e mais flexibilidade no processo.

O inversor também possui mais funções de proteção integradas, garantindo maior segurança ao sistema. Por isso, sua escolha representa uma solução mais completa e eficiente para aplicações que exigem controle contínuo e desempenho otimizado.

Utilizei o inversor CFW110024T4SZ no meu projeto porque ele oferece controle eficiente de motores trifásicos de até 2,2 kW (3 CV), possui interface de operação simples, comunicação via Modbus, e é ideal para aplicações industriais de pequeno e médio porte. Além disso, seu tamanho compacto e boa relação custo-benefício o tornam adequado para otimizar o desempenho e a economia de energia do sistema.

Foram utilizados dois modelos de inversores de frequência da linha CFW11 da WEG. O primeiro, aplicado ao motor de menor potência (20 CV – 15 kW), possui corrente nominal de 30,2 A, e por isso foi utilizado um modelo da linha compatível com essa corrente, como o CFW110036T4SZ, que suporta até 36 A. O segundo, destinado ao motor de maior potência (150 CV – 110 kW), foi o CFW110180T4ODBZ, com capacidade para até 180 A.

A escolha desses inversores foi baseada na compatibilidade com a corrente nominal dos motores, garantindo funcionamento seguro e eficiente. Os inversores CFW11 oferecem controle vetorial e escalar, com ajuste automático de parâmetros, partida suave, proteção contra sobrecargas e integração com sistemas de automação via protocolos como Modbus, Profibus e DeviceNet.

A escolha da marca WEG se justifica por sua reconhecida qualidade no mercado nacional e internacional, ampla rede de suporte técnico, disponibilidade de peças de reposição e facilidade de integração com outros equipamentos industriais. Além disso, a padronização de soluções com equipamentos da mesma marca facilita a manutenção, operação e confiabilidade do sistema como um todo.

2.6. CORREÇÃO DO FATOR DE POTÊNCIA

2.6.1. Dimensionamento dos Capacitores

Potência Ativa (kW): Esta é a potência ativa da carga, que é consumida pelo equipamento para realizar trabalho. Este valor é geralmente conhecido ou medido para cada "Área".

Potência Aparente (kVA): Esta é a potência total, incluindo tanto a potência ativa quanto a reativa. É calculada a partir da potência ativa e do fator de potência inicial (ou ângulo).

Potência Reativa (kVAr): Esta é a potência reativa inicial da carga. É a potência que circula entre a fonte e a carga, não realizando trabalho útil, mas necessária para a operação de cargas indutivas (como motores, transformadores). Este valor é calculado utilizando a potência ativa e o fator de potência inicial.

Fator de Potência Antigo: Este é o fator de potência inicial do sistema para cada área antes da correção. É o cosseno do "Ângulo antigo (°)".

Ângulo antigo (°): Este é o ângulo de fase entre a tensão e a corrente antes da correção do fator de potência. É derivado do "Fator de Potência Antigo" utilizando a função arco cosseno (cos-1(FPantigo)).

Ângulo novo (°): Este é o ângulo de fase alvo após a correção do fator de potência. É derivado do "Novo Fator de Potência" utilizando a função arco cosseno (cos-1(FPnovo)). O "Novo Fator de Potência" é o fator de potência desejado, geralmente próximo de 0,92 ou 0,95, conforme regulamentações ou metas de eficiência.

Multiplicador do Fator de Potência: Este é um fator utilizado nos cálculos para determinar a potência reativa necessária. Ele é derivado das tangentes dos ângulos antigo e novo:

Quadro 12 – Resumo de Correção de Fator de Potência

						BANCO DE						
	CAPACITORES											
	Ângulo antigo (°)	Ângulo novo (°)	Potência Ativa (kW)	Potência Aparente (kVA)	Potência Reativa (kVAr)	Fator de Potência Antigo	Multiplicado r do Fator de Potência	Potência Necessária Nova (kVAr) - Tabelada	Potência Necessária Nova (kVAr) - Calculada	Novo Fator de Potência		
Área 1	31.18	23.07	280.00	327.27	169.43	0.86	0.198	55.44	50.15	0.92		
Área 2	35.90	23.07	52.00	64.20	37.65	0.81	0.298	15.50	15.50	0.92		
Área 3	18.69	-	250.00	263.91	84.56	0.95	-	-	-	-		
Total	24.49	19.95	582.00	643.74	275.10	0.91	0.093	54.13	63.86	0.94		

Fonte: o autor.

Potência Necessária Nova (kVAr) - Calculada: Esta é a parte mais crucial. A nova potência reativa necessária do banco de capacitores para corrigir o fator de potência é calculada multiplicando a potência ativa pelo "Multiplicador do Fator de Potência":

$$Q_c = P \times (tan(\theta_{antigo}) - tan(\theta_{novo}))$$

- Qc é a potência reativa necessária do banco de capacitores (Potência Necessária Nova).
 - P é a potência ativa (Potência Ativa).
 - θantigo é o ângulo antigo.
 - θnovo é o novo (alvo) ângulo.

2.6.2. Capacitores Escolhidos

Figura 22 – Dimensionamento dos Bancos de Capacitores

2) (3)	BANCO DE CAPACITORES							
	Capacitor (Siemens)							
Área 1	2x 5kVar - B32343 - C3051 - Z080 / 2x 10kVar - B32344 - E3101 - Z080 / 2x 15kVar - B32344 - E3151 - Z080							
Área 2	4x 2,5kVar - B32343 - C3021 - Z580 / 2x 5kVar - B32343 - C3051 - Z080							
Total	2x 5kVar - B32343 - C3051 - Z080 / 2x 10kVar - B32344 - E3101 - Z080 / 2x 20kVar - B32344 - E3201 - Z080							

Fonte: o autor.

Na tabela de capacitores escolhidos, vemos apenas o dimensionamento dos bancos de capacitores apenas para as áreas 1 e 2, pois a área 3 já possui um fator de potência aceitável (mais próximo de 1). Como uma solução mais viável financeiramente para o cliente na linha "Total" está sendo dimensionado um painel de banco de capacitores para o seu sistema como um todo, se acaso cliente deseje realizar a correção de fator de potência em um único painel, o qual será localizado ao lado do transformador, em vez de fazer a correção individualmente por área.

Com o intuito de facilitar a correção do fatore de potência e melhorar a eficiência e a vida útil dos bancos de capacitores, nos estamos considerando a aplicação de um controlador de fator de potência, o qual tem a função de analisar o fator de potência atual em que seu sistema se encontra e tomar a decisão de quais estágios serão acionados para suprir a correção deste fator de potência. O modelo considerado é o BR6000 do fabricante Siemens (código: B44066 - R6012 S221) o qual possui a capacidade de controlar até 12 estágios de capacitores, fazendo a alternância entre estágios iguais para possa prolongar a vida útil dos estágios sem sobrecarregar nenhum mais que o outro.

2.7. PROJETO LUMINOTÉCNICO

De acordo com a NBR ISO/CIE 8995-1:2013, que estabelece os requisitos de iluminância para ambientes de trabalho interiores, foi adotado o valor de 300 lux como iluminância média mantida no plano de trabalho, considerando as atividades desempenhadas no setor industrial de papel. O

ambiente em estudo trata-se de um galpão com dimensões de 20x15 metros e pé-direito de 3,5 metros.

As luminárias foram instaladas a 0,8 metro abaixo do teto, com o objetivo de garantir uma distribuição uniforme da luz e evitar ofuscamentos diretos ou reflexos indesejados. A superfície de cálculo luminotécnico foi definida a 0,75 metro do piso, conforme recomendado pela norma para postos de trabalho em pé ou sentados, representando a zona visual relevante das atividades operacionais.

Foram realizados dois estudos distintos: um utilizando luminárias fluorescentes com 4 lâmpadas de 32W, cujo cálculo foi realizado manualmente com base nos métodos tradicionais da engenharia luminotécnica; e outro com luminárias LED de 75W da marca OplusLED, modelo Suriname, calculado por meio do software DIALux, permitindo simulação tridimensional e análise conforme os critérios técnicos da norma vigente.

Estudo 01:

Indice local

$$hm = \text{P\'e direiro} - (\text{hluminaria} + \text{Area de Trabalho})$$
 $hm = 3.5 - (0.8 + 0.75)$ $hm = 1.95$

$$K = \frac{lc}{hm(l+c)} = K = \frac{20x15}{1,95(20+15)}$$
$$K = 4,35$$

• Teto branco = 7

• Parede Clara = 5

• Piso Escuro = 1

Refletância: 751

• Coeficiente: 0,72

Figura 23 – Tabela 13.8 – Livro Instalações Eletricas - Helio Creder - 15 edição

Tabela 13.8 Índice de reflexão típica

Índice	Reflexão	Significado
1	10 %	Superficie escura
3	30 %	Superficie média
5	50 %	Superficie clara
7	70 %	Superficie branca

Fonte: Livro Instalações Eletricas - Helio Creder - 15 edição

Fator de depreciação: 0,67

Figura 24 – Tabela D.2 – ABNT NBR ISO/CIE 8995-1:2013

Tabela D.2 – Exemplos de fatores de manutenção para sistemas de iluminação de interiores com lâmpadas fluorescentes

Fator de manutenção	Exemplo					
0,80	Ambiente muito limpo, ciclo de manutenção de um ano, 2.000 h/ano de vida até a queima com substituição da lâmpada a cada 8.000 h, substituição individual, luminárias direta e direta/indireta com uma pequena tendência de coleta de poeira, FMFL = 0,93; FSL = 1,00; FML = 0,90; FMSS = 0,96					
0,67	Carga de poluição normal no ambiente, ciclo de manutenção de três anos, 2.000 h/ano de vida até a queima com substituição da lâmpadaa cada 12.000 h, substituição individual, luminárias direta e direta/indireta com uma pequena tendência de coleta de poeira, FMFL = 0,91; FSL = 1,00; FML = 0,80; FMSS = 0,90					
0,57	Carga de poluição normal no ambiente, ciclo de manutenção de três anos, 2.000 h/ano de vida até a queima com substituição da lâmpada a cada 12.000 h, substituição individual, luminárias com uma tendência normal de coleta de poeira, FMFL = 0,91; FSL = 1,00; FML = 0,74; FMSS = 0.83					
0,50	Ambiente sujo, ciclo de manutenção de três anos, 8.000 h/ano de vida até a queima com substituição da lâmpada a cada 8.000 h, LLB, substituição em grupo, luminárias com uma tendência normal de coleta de poeira, FMFL = 0,93; FSL = 0,93; FML = 0,65; FMSS = 0,94					

Fonte: ABNT NBR ISO/CIE 8995-1:2013

Figura 25 – Tabela 5.5 – Livro Instalações Eletricas - Helio Creder - 15 edição

Fonte: Livro Instalações Eletricas - Helio Creder - 15 edição

Figura 26 – Pagina 14 – ABNT NBR ISO/CIE 8995-1:2013

Tipo de ambiente, tarefa ou atividade	E _m	UGRL	Ra	Observações
Processamento da madeira ou fibra, moagem	200	25	80	Para montagem alta: ver também 4.6.2.
Processo e fabricação de papel, máquinas de papel, papel canelado, fábrica de papelão	300	25	80	Para montagem alta: ver também 4.6.2.
Trabalho de encardenação de livros padrões, por exemplo: dobra, triagem, colagem, corte, gravação em relevo, costura	500	22	60	

Fonte: ABNT NBR ISO/CIE 8995-1:2013

Quantidade de Lumens:

$$\emptyset = \frac{SEm}{coefxdepreciação} =$$

$$\emptyset = \frac{20x15x300}{0,72x0,67} = 194678,78 lumens$$

Usando lâmpadas de 32 W com fluxo luminoso de 2 950 lumens (Tabela 5.3)

Figura 27 – Página 16 – Vista lateral da iluminação

$$\varphi=4\times2~950=11~800$$
 lumens por luminária
$$n=\frac{194678,78}{11~800}=15,81~Luminarias=\frac{16~luminarias}{16~luminarias}$$

Detalhamento de medidas da planta de iluminação:

Figura 28 – Página 16 – Vista lateral da iluminação

Estudo 2: Cálculo DIALux

Figura 29 – Simulação DIAlux

Figura 30 – Estudo Luminotécnico

Figura 31 – Estudo Luminotécnico (Mapa de Calor)

A imagem apresentada corresponde a uma simulação luminotécnica realizada no software DIALux, onde é possível visualizar o mapa de isolinhas de iluminância do ambiente projetado. Esse recurso gráfico permite analisar a distribuição da luz no espaço, indicando os níveis de iluminância (medidos em lux) através de uma escala de cores. As áreas em tons de vermelho e amarelo representam os pontos com maior intensidade luminosa, geralmente localizados abaixo das luminárias, enquanto as tonalidades em verde e laranja indicam regiões com níveis intermediários de luz, próximas aos valores médios estipulados no projeto. A análise desse mapa é fundamental para verificar se a iluminação atende aos parâmetros normativos, como os definidos pela NBR ISO/CIE 8995, garantindo conforto visual, segurança e eficiência no ambiente. Além disso, a representação auxilia na identificação de possíveis excessos ou deficiências de luz, permitindo realizar os ajustes necessários no posicionamento, quantidade e potência das luminárias. Dessa forma, essa simulação é uma etapa indispensável no desenvolvimento de projetos luminotécnicos, assegurando que a iluminação esteja adequada às atividades desenvolvidas no local.

Figura 32 – Estudo Luminotécnico (ponto a ponto)

Figura 33 – Estudo Luminotécnico (Industrial)

- Teto branco = 7
- Parede Clara = 5
- Piso Escuro = 1

Figura 34 – Estudo Luminotécnico (Graus de Reflexão)

Figura 35 – Estudo Luminotécnico (posições das luminárias)

Fonte: o autor.

Após a realização dos dois estudos luminotécnicos, foi possível comprovar que, independentemente do tipo de luminária utilizada, ambos os projetos exigiram a instalação de 16 luminárias para alcançar o nível de 300 lux no ambiente, conforme determinado pela NBR ISO/CIE 8995-1:2013.Com as informações dos dois estudos finalizados, realizamos uma representação em 3D utilizando o AutoCAD Plant 3D. O

modelo inclui o leito aramado e as descidas dos interruptores em paralelo, proporcionando uma visualização mais clara e realista do projeto luminotécnico, facilitando o entendimento da disposição das luminárias e da instalação elétrica.

Figura 36 – Instalação Elétrica Maquete 3D

Fonte: o autor.

Figura 37 – Instalação Elétrica Maquete 3D

Fonte: o autor.

Para a representação em 3D, utilizamos as luminárias OplusLED modelo Suriname. Além disso, foi prevista a instalação de uma tomada em cada circuito, facilitando futuras manutenções e garantindo praticidade no serviço.

Figura 38 – Instalação Elétrica Maquete 3D

DIAGRAMA UNIFILAR

O diagrama unifilar mostra, de forma simples, como a parte elétrica do projeto está ligada, desde a entrada de energia até os circuitos finais. Ele ajuda a entender o caminho da energia, os equipamentos usados e onde estão as proteções. Esse desenho facilita a montagem e a manutenção da instalação elétrica, seguindo as normas técnicas.

Figura 39 – Instalação Elétrica Maquete 3D

2.8. ESPECIFICAÇÃO DA SUBESTAÇÃO

2.8.1. ALIMENTAÇÃO EM MÉDIA TENSÃO, CABOS, TC, TP E ESTRUTURA

Cálculo e as escolhas técnicas referentes à alimentação em média tensão (MT) para o projeto de uma indústria de papel, abordando a seleção do transformador, dimensionamento dos cabos, corrente do sistema, bem como a escolha dos transformadores de corrente (TC) e de potencial (TP), com respectivas fontes e justificativas.

2.8.2. DADOS BÁSICOS DO SISTEMA

Quadro 13 – Dodos do Sistema

Parâmetro	Valor	Fonte
Tensão de fornecimento (MT)	13,8 kV	Normas da Energisa Paraíba
Tensão de uso (BT)	380 V	Projeto
Potência do transformador	750 kVA	Definido pelo grupo
Impedância do transformador	6% (0,06 pu)	Definido pelo grupo
Fator de demanda	0,85	Definido pelo grupo (conservador)
Potência corrigida (S)	724,2 kVA	Cálculo: 582 / 0,85

Fonte: cliente.

2.8.3. CÁLCULO DAS CORRENTES

• Corrente no lado de média tensão (MT):

$$I_{MT} = \frac{S}{\sqrt{3} \cdot V} = \frac{750000}{\sqrt{3} \cdot 13800} \approx 31,4A$$

• Corrente no lado de baixa tensão (BT):

$$I_{BT} = \frac{750000}{\sqrt{3} \cdot 380} \approx 1139, 5A$$

Fonte: Fórmula padrão trifásica; confirmada em catálogos e normas ABNT (ex. NBR 14039).

2.8.4. CABO DE MÉDIA TENSÃO - SELEÇÃO E AMPACIDADE

Para o atendimento do circuito de média tensão, foi selecionado o cabo de alumínio, seção nominal de 50 mm², isolação em XLPE, classe de tensão 15 kV, adequado para redes compactas aéreas protegidas, conforme estrutura padrão CE3-TR. A escolha do condutor considerou critérios de

capacidade de condução de corrente, desempenho térmico, resistência mecânica e atendimento às normativas aplicáveis. De acordo com as tabelas de ampacidade, o cabo selecionado possui uma capacidade máxima de condução de corrente de 179 A, considerando as condições normais de instalação para redes compactas aéreas. A corrente calculada para o circuito, conforme as demandas do projeto, é de 31,4 A, estando significativamente abaixo da capacidade nominal do condutor, garantindo assim ampla margem de segurança térmica, operacional e assegurando a longevidade dos componentes do sistema elétrico.

Figura 40 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p.122).

Ramal de Ligação e Ramal de Entrada - Cabo Protegido

ب ب	CAPACIDADE DE MÁXIMA	kva máximo admissível					
SEÇÃO VOMINAL (mm2)	DE CORRENTE (A)	11,4 kV	13,8 kV	22 kV	34,5 kV XLPE		
S & E	XLPE	XLPE	XLPE	XLPE			
50	179	3.534	4.279	6.821	10.696		
120	317	6.259	7.577	12.079	18.942		
185	416	8.214	9.943	15.852	24.858		

Fonte: NDU 002.

2.8.5. ELO FUSÍVEL

Conforme os critérios estabelecidos na tabela da concessionária Energisa (NDU 002), para transformadores com potência nominal de 750 kVA, operando na tensão de 13,8 kV, a corrente nominal é de 31,4 A. Com base nesses dados e nas recomendações da concessionária, o dispositivo de proteção a ser utilizado no lado de média tensão é um elo fusível de 30K, que proporciona proteção adequada contra curto-circuito e sobrecargas, garantindo a seletividade e a integridade do sistema. Dessa forma, adota-se o elo fusível 30K para a proteção do transformador, atendendo plenamente aos critérios técnicos e operacionais exigidos pela concessionária e assegurando a proteção adequada do equipamento frente às condições de operação previstas.

Figura 41 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p.29).

Elos-fusíveis para transformadores trifásicos

pozěveu su	ELO- FUSÍVEL									
POTÊNCIA EM kVA	11,4 kV		13,8 kV		22 kV		34,5 kV			
	IN (A)	ELO	IN (A)	ELO	IN (A)	ELO	IN (A)	ELO		
15	0,76	1H	0,63	0,5H	0,39	0,5H	0,25	0,5H		
30	1,52	2H	1,26	1H	0,79	1H	0,50	0,5H		
45	2,28	2H	1,88	2H	1,18	1H	0,75	1H		
75	3,80	3H	3,14	3H	1,97	2H	1,26	1H		
112,5	5,70	5H	4,71	5H	2,95	3H	1,88	2H		
150	7,60	8K	6,28	6K	3,94	5H	2,51	3H		
225	11,40	12K	9,41	10K	5,90	5H	3,77	5H		
300	15,19	15K	12,55	12K	7,87	8K	5,02	5H		
400	19,26	20K	16,73	15K	10,50	10K	6,69	6K		
500	25,32	25K	19,92	25K	13,12	12K	8,37	10K		
750	37,98	40K	31,38	30K	19,68	20K	12,55	12K		
1000	x	×	41,84	40K	26,24	25K	16,73	15K		

Fonte: NDU 002.

2.8.6. TRANSFORMADORES DE MEDIÇÃO (TC E TP) 2.8.7. ESTRUTURA DA SUBESTAÇÃO – TRANSFORMADOR EM BASE DE CONCRETO

A estrutura da subestação foi projetada para instalação do transformador de 750 kVA em base de concreto (subestação tipo externa), seguindo a NBR 14039 e as práticas técnicas da Energisa Paraíba. A configuração adotada proporciona robustez, segurança operacional e atende integralmente aos requisitos normativos para fornecimento em média tensão.

2.8.7.1. Estrutura Física da Subestação:

A subestação será do tipo abrigada, atendendo às recomendações da norma NBR 14039 - Instalações Elétricas em Média Tensão de 1,0 kV a 36,2 kV. O

transformador será instalado em ambiente interno, devidamente protegido contra intempéries e acesso não autorizado. A sala da subestação contará com portas metálicas com abertura para fora, equipadas com dispositivos de travamento, e sinalização de segurança conforme normas vigentes. O piso será revestido com brita ou material isolante, com inclinação e sistema de drenagem para contenção de possíveis vazamentos de óleo do transformador. Além disso, a edificação contará com ventilação natural ou forçada, de modo a garantir a dissipação térmica adequada dos equipamentos. Serão também previstos dispositivos de proteção contra incêndio, como extintores e sistema corta-fogo entre compartimentos, quando aplicável. Toda a infraestrutura civil será projetada considerando os requisitos de acessibilidade para manutenção, segurança operacional e atendimento às exigências das concessionárias e normas técnicas.

2.8.7.2. Equipamentos da Subestação:

A subestação foi projetada em conformidade com as especificações estabelecidas nas normas técnicas da concessionária Energisa (principalmente NDU 002, NDU 005 e NDU 004), bem como as normas da ABNT NBR 14039 e NBR 5410, e contará com os seguintes componentes principais:

- Transformador trifásico de 750 kVA, com tensão primária de 13,8 kV e secundária de 380/220 V, adequado para o atendimento das cargas previstas no projeto. O equipamento atenderá aos critérios de desempenho, segurança e especificações construtivas exigidos pela concessionária.
- Painel de média tensão (cubículo de proteção, seccionamento e manobra), projetado segundo os requisitos da NDU 002 da Energisa, responsável pelas funções de proteção, seccionamento e manobra elétrica, garantindo segurança operacional, continuidade do fornecimento e permitindo intervenções seguras no sistema.
- Sistema de medição indireta, composto por transformadores de corrente (TCs) e transformadores de potencial (TPs), conforme os critérios estabelecidos na NDU 005 da Energisa, que regulamenta os requisitos de medição para clientes atendidos em média tensão. Esse sistema possibilita medições precisas de

energia elétrica, além de alimentar os sistemas de proteção, assegurando a correta atuação dos dispositivos de segurança.

- Sistema de aterramento, projetado segundo os parâmetros da NDU 004 da Energisa, da NBR 5410 e da NBR 14039, utilizando uma malha de aterramento em cobre nu, interligada a hastes de aço-cobre 5/8", devidamente conectada aos componentes metálicos da subestação. Esse sistema garante o correto escoamento de correntes de fuga, descargas atmosféricas e correntes de falta, assegurando a integridade dos equipamentos e a segurança das pessoas.
- Infraestrutura física da subestação, dimensionada para garantir os afastamentos mínimos de segurança operacional, conforme os critérios estabelecidos na NDU 002 da Energisa e na NBR 14039, proporcionando circulação adequada para inspeções, manutenções e manobras operacionais. A edificação conta com ventilação natural ou forçada, portas metálicas com abertura para fora, sinalização de segurança, iluminação de emergência e todos os requisitos necessários para garantir a operação segura e eficiente dos equipamentos.

2.8.7.3. Ramal de Ligação em Média Tensão:

O ramal de ligação é aéreo, com aproximadamente 10 metros de extensão, interligando o ponto de entrega da Energisa (poste com chave fusível tipo E-9 e pararaios tipo E-29) até a entrada da subestação. Será utilizado cabo de alumínio com isolação XLPE para 15 kV, seção de 50 mm², conforme Catálogo Prysmian. A capacidade do cabo excede 120 A, suficiente para suportar com folga a corrente nominal do transformador. O ramal será devidamente identificado, instalado com isoladores apropriados e contará com aterramento em ambas as extremidades, conforme NDU 002 e NBR 14039.

Justificativa:

A escolha por transformador em base ao tempo é tecnicamente válida, conforme a NBR 14039, desde que respeitadas as condições de acesso, distanciamento, proteção contra incêndio e segurança. A mureta corta-fogo foi incluída por precaução e com base na NDU 054.2, que exige barreira física quando a distância entre o transformador e o eletrocentro for inferior a

15 metros. O distanciamento mínimo de 0,5 m entre o transformador e a mureta segue a mesma norma. Essas escolhas garantem conformidade com a ABNT e viabilidade junto à Energisa Paraíba.

Figura 42 – Subestação Abrigada acima de 300 kVA Ramal Aéreo

Figura 43 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p. 188).

Figura 4 – Subestação Abrigada acima de 300 kVA Ramal Aéreo 50cm

Figura 45 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p. 187).

Fonte: NDU 002.

Figura 46 – NDU 002 - Fornecimento de energia elétrica em tensão primária (2024, p. 38).

Fonte: NDU 002.

3. CONCLUSÃO

A realização deste projeto possibilitou a consolidação dos conhecimentos teóricos e práticos adquiridos ao longo da disciplina, por meio da aplicação efetiva das etapas envolvidas na elaboração de uma instalação elétrica industrial de média e baixa tensão. Desde o levantamento das cargas, passando pelo cálculo da potência total, dimensionamento do transformador, escolha de condutores, disjuntores, correção do fator de potência e projeto luminotécnico, todas as fases foram conduzidas com base nas normas técnicas vigentes, especialmente a ABNT NBR 5410, NBR 14039 e ISO/CIE 8995-1.

Os resultados obtidos demonstraram a eficiência das metodologias adotadas e a viabilidade técnica das soluções propostas. A escolha do transformador de 750 kVA mostrou-se adequada tanto para a demanda atual quanto para possíveis expansões futuras. O dimensionamento dos cabos e disjuntores foi realizado com margens de segurança apropriadas, garantindo a proteção do sistema contra sobrecargas e curtos-circuitos, conforme os valores calculados e os critérios normativos. A utilização de softwares como Excel, DCE, AutoCAD e DIALux contribuiu significativamente para a precisão dos cálculos e a representação fiel do sistema projetado.

Além disso, o projeto contemplou aspectos essenciais para o bom desempenho e a eficiência da instalação, como a correção do fator de potência através da instalação de bancos de capacitores, que minimizaram o impacto das cargas indutivas, e o estudo luminotécnico, que garantiu níveis adequados de iluminância nos ambientes de trabalho, promovendo conforto visual e segurança operacional.

Conclui-se, portanto, que os objetivos propostos foram plenamente alcançados. O projeto foi capaz de integrar teoria e prática de forma coerente e técnica, desenvolvendo competências essenciais para a atuação profissional em engenharia elétrica. A experiência proporcionou não apenas a aplicação de ferramentas de dimensionamento e simulação, mas também a reflexão crítica sobre as boas práticas e as exigências normativas que regem os

sistemas de fornecimento e distribuição de energia elétrica em ambientes industriais.

4. REFERÊNCIAS

ABNT. **NBR ISO/CIE 8995-1:2013** – Iluminação de ambientes de trabalho – Parte 1: Interior. Rio de Janeiro: ABNT, 2013.

ABNT. **NBR 14039:2005** – Instalações elétricas de média tensão. Rio de Janeiro: ABNT, 2005.

ABNT. NBR 5410 – Instalações elétricas de baixa tensão. Rio de Janeiro: ABNT, 2004.

ABNT. **NBR IE**C **60947** – Dispositivos de manobra e comando de baixa tensão. Rio de Janeiro: ABNT, 2011.

ABNT. **NBR 8995** – Iluminação de ambientes de trabalho – Parte 1: Internos. Rio de Janeiro: ABNT, 2013.

ABNT. **NDU 002** – Fornecimento de energia elétrica em tensão primária. Rio de Janeiro: ABNT, 2001.

ABNT. **NDU 054.2** – Critérios para elaboração de projetos de subestações tipo 02. Rio de Janeiro: ABNT, 2003.

BRASIL. **NR 10** – Segurança em Instalações e Serviços em Eletricidade. Ministério do Trabalho e Emprego. Brasília, 2004.

ABNT. **004.1** – Instalações básicas para construção de redes compactas de média tensão de distribuição. Rio de Janeiro: ABNT, 2008.