

CCF 251 – Introdução aos Sistemas Lógicos

Aula 02 – Lógica Combinacional Prof. José Augusto Nacif – jnacif@ufv.br

Lógica combinacional

Lógica básica

- Álgebra booleana, prova por reescrita, prova por indução perfeita
- Funções lógicas, tabelas verdade, e chaves
- NOT, AND, OR, NAND, NOR, XOR, ..., conjunto mínimo

Realização lógica

- Dois níveis lógicos e formas canônicas
- Funções incompletamente especificadas

Simplificação

- Teorema de união
- Agrupamento dos termos em funções booleanas
- Representações alternativas de funções booleanas
 - Cubos
 - Mapa de Karnaugh

Funções lógicas possíveis de duas variáveis

- Existem 16 possíveis funções com 2 variáveis de entrada:
 - ► Em geral, existem 2**(2**n) funções de n entradas

Custo de diferentes funções lógicas

Diferentes funções são implementadas de maneira mais fácil ou difícil

- Cada uma tem um custo associado com o número de chaves necessárias
- 0 (F0) and I (F15): requerem 0 chaves, estão diretamente conectados as saídas baixo/alto
- X (F3) eY (F5): requerem 0 chaves, saída é uma das entradas
- X' (FI2) e Y' (FI0): requerem 2 chaves para o "inversor" ou a porta NOT
- X nor Y (F4) e X nand Y (F14): requerem 4 chaves
- X or Y (F7) e X and Y (F1): requerem 6 chaves
- $X = Y (F9) e X \oplus Y (F6)$: requerem 16 chaves
- Sendo assim, por que NOT, NOR, e NAND são mais baratas? Elas são funções que mais são implementamos na prática.

Conjunto mínimo de funções

- Nós podemos implementar todas as funções lógicas a partir das portas NOT, NOR, e NAND?
 - Por exemplo, a implementação de X and Y é igual a not (X nand Y)
- De fato, nós podemos apenas utilizar somente portas NOR ou NAND
 - NOT é somente uma NAND ou NOR com ambas entradas ligadas juntas

X	Υ	X nor Y	_	X	Υ	X nand Y
0	0	1	-	0	0	1
1	1	0		1	1	0

NAND e NOR são "duas". Isto é, fácil de implementar uma utilizando a outra.

$$X \underline{nand} Y \equiv \underline{not} ((\underline{not} X) \underline{nor} (\underline{not} Y))$$

 $X \underline{nor} Y \equiv \underline{not} ((\underline{not} X) \underline{nand} (\underline{not} Y))$

- Não vamos avançar muito rápido ...
 - Vamos olhar o fundamento matemático da lógica

Uma estrutura algébrica

Uma estrutura algébrica consiste de

- Um conjunto de elementos B
- Operações binárias { + , }
- ▶ E uma operação de união { ' }
- ▶ Tal que, se mantenha os seguintes postulados:
- I. o conjunto B contém no mínimo dois elementos: a, b
- 2. fechamento: a + b é em B a b é em B
- 3. comutativa: a + b = b + a $a \cdot b = b \cdot a$
- 4. associativa: a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 5. identidade: a + 0 = a $a \cdot I = a$
- 6. distributiva: $a + (b \cdot c) = (a + b) \cdot (a + c) \qquad a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
- 7. complementar: a + a' = I $a \cdot a' = 0$

Álgebra booleana

- Álgebra booleana
 - $B = \{0, 1\}$
 - Variáveis
 - + é OR lógico, é AND lógico
 - ' é NOT lógico
- ▶ Todas as afirmações dos postulados algébricos

Funções lógicas e álgebra booleana

 Qualquer função lógica que possa ser expressa como uma tabela verdade pode ser escrita como uma expressão de álgebra booleana utilizando os operadores: ', +, and •

X	Y	X ● Y
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	X'	X′ • Y
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	0

X	Y	X ′	Y'	X • Y	X′ • Y′	(X •	$Y) + (X' \bullet Y')$
0	0	1	1	0	1	1	
0	1	1	0	0	0	0	(
1	0	0	1	0	0	0	$(X \bullet Y) + (X' \bullet Y') \equiv X = Y$
1	1	0	0	1	0	1	,

X, Y são variáveis da álgebra booleana

Expressão Booleana que é Verdade, quando as variáveis X e Y tem o mesmo valor e falso, caso contrário.

Postulados e teoremas da álgebra booleana

Identidade

I.
$$X + 0 = X$$

ID.
$$X \cdot I = X$$

2.
$$X + I = I$$

2D.
$$X \cdot 0 = 0$$

Idempotência

3.
$$X + X = X$$

3D.
$$X \cdot X = X$$

Involução

4.
$$(X')' = X$$

Complementar

5.
$$X + X' = I$$

5D.
$$X \cdot X' = 0$$

Comutativa

6.
$$X + Y = Y + X$$

6D.
$$X \cdot Y = Y \cdot X$$

Associativa

7.
$$(X + Y) + Z = X + (Y + Z)$$
 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

7D.
$$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

Postulados e teoremas da álgebra booleana

Distributiva:

8.
$$\times \cdot (Y + Z) = (\times \cdot Y) + (\times \cdot Z)$$

8.
$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$
 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

União:

9.
$$\times \cdot Y + \times \cdot Y' = X$$

9D.
$$(X + Y) \cdot (X + Y') = X$$

Absorção:

$$10. X + X \cdot Y = X$$

 $11. (X + Y') \cdot Y = X \cdot Y$

IOD.
$$X \cdot (X + Y) = X$$

IID. $(X \cdot Y') + Y = X + Y$

Fatoração:

12.
$$(X + Y) \cdot (X' + Z) =$$

 $X \cdot Z + X' \cdot Y$

12D.
$$\times \cdot Y + X' \cdot Z =$$

(X + Z) \cdot (X' + Y)

Consenso:

13.
$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$$

13D.
$$(X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$$

Postulados e teoremas da álgebra booleana

deMorgan:

$$14.(X + Y + ...)' = X' \cdot Y' \cdot ...$$
 $14D.(X \cdot Y \cdot ...)' = X' + Y' + ...$

deMorgan genérico:

15.
$$f'(X_1, X_2, ..., X_n, 0, 1, +, \bullet) = f(X_1', X_2', ..., X_n', 1, 0, \bullet, +)$$

Estabelecer a relação entre • e +

Postulados e teoremas da álgebra booleana

Dualidade

- Um dual de uma expressão booleana é derivado pela substituição de por +, + por •, 0 por I, e I por 0. Deixando as variáveis alteradas.
- Qualquer teorema que possa ser provado é, portanto, também comprovado por dual!
- Um meta teorema (um teorema sobre teoremas)
- dualidade:

dualidade genérica:

17. f
$$(X_1, X_2, ..., X_n, 0, 1, +, \bullet) \Leftrightarrow f(X_1, X_2, ..., X_n, 1, 0, \bullet, +)$$

- Diferença da lei deMorgan
 - È uma afirmação sobre teoremas
 - Não é uma maneira de manipular (reescrever) expressões

Comprovando teoremas (reescrita)

Usando os postulados da álgebra booleana:

Ex., comprovar o teorema: $X \cdot Y + X \cdot Y' = X$

distributiva (8)
$$X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$$
 complementar (5) $X \cdot (Y + Y') = X \cdot (1)$ identidade (1D) $X \cdot (1) = X \checkmark$

 $X + X \cdot Y = X$

Ex., comprovar o teorema:

identidade (1D)
$$X + X \cdot Y = X \cdot 1 + X \cdot Y$$

distributiva (8) $X \cdot 1 + X \cdot Y = X \cdot (1 + Y)$
identidade (2) $X \cdot (1 + Y) = X \cdot (1)$
identidade (1D) $X \cdot (1) = X \cdot (1)$

Atividade

Comprovar a expressão abaixo usando as leis da álgebra booleana:

$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z$$

identidade complementar distributiva comutativa fatoração nulo identidade

$$(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z)$$

 $(X \cdot Y) + (1) \cdot (Y \cdot Z) + (X' \cdot Z)$
 $(X \cdot Y) + (X' \cdot X) \cdot (Y \cdot Z) + (X' \cdot Z)$
 $(X \cdot Y) + (X' \cdot Y \cdot Z) + (X \cdot Y \cdot Z) + (X' \cdot Z)$
 $(X \cdot Y) + (X \cdot Y \cdot Z) + (X' \cdot Y \cdot Z) + (X' \cdot Z)$
 $(X \cdot Y) \cdot (1 + Z) + (X' \cdot Z) \cdot (1 + Y)$
 $(X \cdot Y) \cdot (1) + (X' \cdot Z) \cdot (1)$
 $(X \cdot Y) + (X' \cdot Z)$

Comprovando teoremas (indução perfeita)

- Utilizando indução perfeita (tabela verdade completa):
 - Ex., de Morgan's:

$$(X + Y)' = X' \cdot Y'$$

NOR é equivalente para AND
com entradas complementadas

X	Υ	X'	Y'	(X + Y)'	X′ • Y′
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Um exemplo simples: somador binário de 1-bit

- ► Entradas: A, B, vai I (Carry-in)
- Saídas: Soma, vêm I (Carry-out)

Cout Cin							
	Α	A	Α	Α	Α		
	В	В	В	В	В		
	S	S	S	S	S		

Α	В	Cin	Cout	S	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

$$S = A' B' Cin + A' B Cin' + A B' Cin' + A B Cin$$

$$Cout = A' B Cin + A B' Cin + A B Cin' + A B Cin$$

Aplicar os teoremas para simplificar expressões

- Os teoremas de álgebra booleana podem simplificar expressões booleana
 - Ex., função vêm l (carry-out) somador completo (algumas regras são aplicadas para qualquer função)

```
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin +
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
                                               Adicionar termos
        = B Cin + A Cin + A B (Cin' + Cin)
                                                extras criando novas
        = B Cin + A Cin + A B (1)
                                                 oportunidades de
        = B Cin + A Cin + A B
                                                     fatoração
```


Atividade

 Preencher a tabela verdade para um circuito que verifique se um número de 4 bits é divisível por 2, 3, or 5

X8	X4	X2	X1	By2	ВуЗ	By5
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0

Escrever abaixo as expressões boolean para By2, By3, e By5

Atividade

X8	X4	X2	X1	By2	By3	By5	
70	0	0	<u> </u>	1	1	1 1	By2 = X8'X4'X2'X1' + X8'X4'X2X1'
0	0	0	4	-		_	DyZ - AOATAZAI + AOATAZAI
U	U	U	T	0	U	U	+ X8'X4X2'X1' + X8'X4X2X1'
0	0	1	0	1	0	0	
0	0	1	1	0	1	0	+ X8X4'X2'X1' + X8X4'X2X1'
0	1	0	0	1	0	0	+ X8X4X2'X1' + X8X4X2X1'
0	1	0	1	0	0	1	= X1'
0	1	1	0	1	1	0	— XI
0	1	1	1	0	0	0	
1	0	0	0	1	0	0	By3 = X8'X4'X2'X1' + X8'X4'X2X1
1	0	0	1	0	1	0	+ X8'X4X2X1' + X8X4'X2'X1
1	0	1	0	1	0	1	1 V0V4V2/V1/ 1 V0V4V2V1
1	0	1	1	0	0	0	+ X8X4X2'X1' + X8X4X2X1
1	1	0	0	1	1	0	
1	1	0	1	0	0	0	By5 = X8'X4'X2'X1' + X8'X4X2'X1
1	1	1	0	1	0	0	+ X8X4'X2X1' + X8X4X2X1
1	1	1	1	0	1	1	1 //0//1//2//1 1 //0//1//2//1

Expressões booleana para portas lógica

AND X ·Y XY X AY X

$$X \vee Y$$

Expressões booleana para portas lógica

NAND

▶ NOR

XOR

$$X \oplus Y$$

$$X \underline{xor} Y = X Y' + X' Y$$

 $X ou Y mas não ambas$
("desigualdade", "diferença")

XNOR

$$X = Y$$

$$\begin{array}{c|cccc} X & Y & Z \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$$

Expressões booleana para portas lógica

Mais de uma maneira de mapear expressões para portas

$$Arr$$
 Ex., $Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D)))$

Visão forma de ondas das funções lógicas

Apenas uma tabela verdade para os lados

- Mas observe como as bordas não se alinham exatamente
- È necessário um tempo para uma porta alterar sua saída!

Escolhendo diferentes formas de implementar uma função

Α	В	C	Z
0	0	0	0
0	0	1	1
0	1	0	Ō
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Qual forma de implementação é melhor?

Reduzir o número de entradas

- literal: variável de entrada (complementada ou não)
 - Podemos aproximar o custo das portas lógicas com 2 transistores por literal
 - Por que não contar inversores?
- Menos literais significa menos transistores
 - Circuitos menores
- Menos entradas implica em portas rápidas
 - Portas são menores e portanto mais rápidas
- Número de entradas de portas (fanin) são limitados em algumas tecnologias

Reduzir o número de portas

- Menos portas significa um circuito menor
 - Influencia diretamente no custo da fabricação, pois afeta o encapsulamento

Qual forma de implementação é melhor?

- Reduzir o número dos níveis das portas
 - Menos níveis das portas implica em reduzir o atraso do sinal de propagação
 - Configuração do atraso mínimo tipicamente requer mais portas
 - Mais ampla, circuitos menos profundos
- Como nós exploramos compensações entre o aumento no atraso do circuito e o tamanho?
 - Ferramentas automatizadas para geração de soluções diferentes
 - Minimização lógica: reduzir o número de portas e complexidade
 - Dtimização lógica: redução enquanto negociações contra atraso

Todas as formas de implementação são equivalentes?

- De acordo com os mesmos estímulos de entrada, as três implementações alternativas têm quase o mesmo comportamento de forma de onda
 - Atrasos são diferentes
 - ▶ Falhas podem surgir isto pode ser ruim, depende
 - Variações devido as diferenças no número dos níveis das portas e estrutura
- As três implementações são funcionalmente equivalentes

Tecnologia independente

- Formas canônicas
- Formas de dois níveis
- Formas de multi níveis

Escolhas tecnológicas

- Encapsulamento para poucas portas
- Lógica regular
- Dois níveis de lógica programável
- Multi níveis de lógica programável

Formas canônicas

- Tabela verdade é a assinatura única de uma função booleana
- A mesma tabela verdade pode ter muitas formas de implementação com portas
- Formas canônicas
 - Formas padrão para expressão booleana
 - Fornece uma assinatura algébrica única

Forma canônica Soma de produtos

- ▶ Também conhecida como forma normal disjunta
- ▶ Também conhecida como expansão mintermo

Forma canônica Soma de produtos

- Termo produto (ou mintermo)
 - Soma de produtos de literais combinação da entrada para qual saída é verdadeiro
 - Cada variável aparece exatamente uma vez, verdadeiro ou invertido (mas não ambos)

Α	В	C	minter	mos
0	0	0	A'B'C'	m0
0	0	1	A'B'C	m1
0	1	0	A'BC'	m2
0	1	1	A'BC	m3
1	0	0	AB'C'	m4
1	0	1	AB'C	m5
1	1	0	ABC'	m6
1	1	1	ABC	m7

Notação abreviada para / mintermos de 3 variáveis F na forma canônica:

F(A, B, C) =
$$\Sigma$$
m(1,3,5,6,7)
= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + ABC' + ABC'

Forma canônica ≠ forma mínima

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $ABC' + C$

Forma canônica produto de somas

- ▶ Também conhecida como forma normal conjuntiva
- ▶ Também conhecida como expansão maxtermo

$$F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$$

Forma canônica produto de somas

- Termo soma (ou maxtermos)
 - Produto de soma de literais combinação da entrada para qual saída é falsa
 - Cada variável aparece exatamente uma vez, verdadeiro ou invertido (mas não ambas)

Α	В	С	maxtermos	5
0	0	0	A+B+C	M0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	M3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	M7

F na forma canônica:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

Forma canônica ≠ forma minima

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

Notação abreviada para / maxtermos de 3 variáveis

S-o-P, P-o-S, e teorema de deMorgan's

- Soma de produtos (Sum-of-products)
 - F' = A'B'C' + A'BC' + AB'C'
- Aplicar deMorgan's
 - (F')' = (A'B'C' + A'BC' + AB'C')'
 - F = (A + B + C) (A + B' + C) (A' + B + C)
- Produto de somas (Product-of-sums)
 - F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')
- Aplicar deMorgan's
 - (F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 - F = A'B'C + A'BC + AB'C + ABC' + ABC

Quatro alternativas de implementações dois níveis de F = AB + C

Formas de onda para as quarto alternativas

Formas de onda são essencialmente idênticas

- Exceto para temporização de dependências (falhas)
- Atrasos quase idênticos (modelado como um atraso por nível, não o tipo de porta ou o número das entradas para porta)

Mapeamento entre formas canônicas

- Conversão mintermo para maxtermo
 - Utiliza maxtermos, cujo os índices não aparecem na expansão mintermo
 - \triangleright Ex., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Conversão maxtermo para mintermo
 - Utiliza mintermos, cujo índices não aparecem na expansão maxtermo
 - \blacktriangleright Ex., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Expansão mintermo de F para expansão mintermo de F'
 - Utiliza mintermos, cujo índices não aparecem
 - Ex., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Expansão maxtermo de F para expansão maxtermo de F'
 - Utiliza maxtermos, cujo índices não aparecem
 - Ex., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

Funções incompletamente especificadas

- Exemplo: código binário decimal incrementado por I
 - ▶ Dígitos BCD codificados em dígitos decimais de 0 9 nos padrões de bits 0000 – 1001

Notação para Funções incompletamente especificadas

- Don't cares e formas canônicas
 - Até agora, somente representamos on-set e off-set
 - Também temos que representar os don't-care-set
- ▶ Representações canônicas da função BCD incrementado por 1:
 - Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15
 - $Z = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
 - Z = MI M3 M5 M7 M9 DI0 DII DI2 DI3 DI4 DI5
 - $Z = \Pi [M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

Simplificação de dois níveis lógica combinacional

- Encontrar uma realização mínima de soma de produtos ou produto de somas
 - Explorar informações don't care no processo
- Simplificação algébrica
 - Nenhum procedimento algorítmico/sistemático
 - Como você sabe quando a realização mínima foi encontrada?
- Ferramentas projeto Computer-aided
 - Soluções precisas requerem longo tempo computacional, especialmente para funções com muitas entradas (> 10)
 - Métodos heurísticos empregados "palpites" para reduzir a quantidade de processamento e não são as melhores soluções
- Métodos manuais ainda relevantes
 - Para entender ferramentas automatizadas e seus pontos positivos e negativos
 - Capacidade para verificar resultados (em exemplos pequenos)

O teorema de união

- Ferramenta chave para a simplificação: A (B' + B) = A
- Essência da simplificação de dois níveis lógicos
 - Encontrar dois subconjuntos de elementos em ON-set, tal que, o valor de uma variável é alterado. Esta simples variação da variável pode ser eliminado e um simples termo de produto utilizado para representar ambos elementos

$$F = A'B' + AB' = (A' + A)B' = B'$$

Cubos booleanos

- Técnica visual para identificar quando o teorema de união pode ser aplicado
- n variáveis de entrada = n-"cubos" dimensionais

Mapeando tabelas verdade em cubos booleana

- Teorema de união combina em duas "faces" de um cubo em uma grande "face"
- Exemplo:

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

ON-set = nós sólidos OFF-set = nós vazios DC-set = nós ×'d

Exemplo três variáveis

Somador completo binário lógica vêm I (carry-out)

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

On-set é completamente coberta pela combinação (OR) dos sub cubos de baixa dimensionalidade – observe que "111" é coberto por três vezes

$$Cout = BCin + AB + ACin$$

Cubos dimensionais superiores

Sub cubos de dimensão superior a 2

 $F(A,B,C) = \Sigma m(4,5,6,7)$

Formas on-set de um quadrado iEx., um cubo de dimensão 2

Representa uma expressão em uma variável Ex., 3 dimensões — 2 dimensões

A é uma afirmação (verdade), B inalterado e C varia

Este sub cubo representa o literal A

m-cubos dimensionais em um espaço booleano n-dimensional

▶ Em 3-cubos (três variáveis):

- 0-cubo, Ex., um nó simples, produz um termo em 3 literais
- I-cubo, Ex., uma linha de dois nós, produz um termo em 2 literais
- 2-cubos, Ex., um plano de 4 nós, produz um termo em 1 literal
- > 3-cubos, Ex., um cubo de 8 nós, produz um termo constante "1"

Em geral,

▶ Um m-sub cubo dentro de um n-cubo (m < n) produz um termo com n – m literais

Mapa de Karnaugh

- Mapa de plano de cubos booleanos
 - Agrupamento próximo das bordas
 - Difícil para desenhar e visualizar para mais de 4 dimensões
 - Virtualmente impossível para mais de 6 dimensões
- Alternativa para tabelas verdade, para ajudar visualizar adjacências
 - Guia para a aplicação do teorema de união
 - Elementos on-set com apenas uma variável de valor alterado são adjacentes, ao contrário da situação de uma tabela verdade linear

BA	0	1
0	0 1	2 1
1	1 0	3 0

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

Mapa de Karnaugh

- Esquema de numeração baseado na codificação Gray
 - Ex., 00, 01, 11, 10
 - Apenas um simples bit alterado no código para células do mapa adjacente

				<u> </u>
	0	2	6	4
С	1	3	7	5
•			3	

			A		
	0	4	12	8	
	1	5	13	9	D
	3	7	15	11	
С	2	6	14	10	
			3		ı

13 = 1101 = ABC'D

Adjacência no Mapa de Karnaugh

- Agrupamento a partir da primeira para última coluna
- Agrupamento da linha do topo para a linha abaixo

Exemplos Mapa de Karnaugh

com sub cubos

Mais exemplos Mapa de Karnaugh

G(A,B,C) = A

 $F(A,B,C) = \sum m(0,4,5,7) = AC + B'C'$

F' substituição simples de 1's com 0's e vice versa $F'(A,B,C) = \sum_{i=1}^{n} m(1,2,3,6) = BC' + A'C$

Mapa de Karnaugh: Exemplo 4variáveis

 $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$

$$F = C + A'BD + B'D'$$

Encontrar o menor número dos maiores sub cubos possíveis para cobrir o ON-set (menos termos com menos entradas por termo)

Mapa de Karnaugh: don't cares

- $f(A,B,C,D) = \sum m(1,3,5,7,9) + d(6,12,13)$
 - Sem don't cares

$$f = A'D + B'C'D$$

		A			
	0	0	X	0	
-		1	X	1	D
	1	1	0	0	
С	0	X	0	0	
			3	-	1

Mapa de Karnaugh: don't cares (cont'd)

•
$$f(A,B,C,D) = \sum m(1,3,5,7,9) + d(6,12,13)$$

$$f = A'D + B'C'D$$

$$f = A'D + C'D$$

sem don't cares

com don't cares

				Α	
	0	0	X	0	
·	1	1	X	1	D
	1	1	0	0	
С	0	X	0	0	
			3		!

Usando don't care como "1"
2-cubos podem ser formados
ao invés de 1-cubo por cobertura

don't cares podem ser tratados como 1s ou 0s dependendo de qual é mais vantajoso

Atividade

• Minimizar a função $F = \sum m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)$

Resumo lógica combinacional

- Funções lógicas, tabelas verdade, e chaves
 - NOT, AND, OR, NAND, NOR, XOR, . . ., conjunto mínimo
- Postulados e teoremas de álgebra booleana
 - Comprovar por reescrita e indução perfeita
- Portas lógicas
 - Redes de funções booleanas e seus comportamentos de tempo
- Forma canônica
 - Dois níveis e funções incompletamente especificadas
- Simplificação
 - Começar a entender simplificação dois níveis
- Mais tarde
 - Automatização de simplificação
 - Lógica multi níveis
 - Comportamento de tempo
 - Linguagem descrição de hardware
 - Projeto estudo de casos