ComS 573 Machine Learning – HW3 solution

Problem 1:

(a) Rules: Using three rules in the slides to determine if some path is closed or open.

True: All paths should be closed.

False: At least one path should be open

I. dsep(T, \emptyset , B): True, $(T \to P \to C \to S \to B)$ is close.

II. dsep(A, {D, C}, B): False, $A \rightarrow T \rightarrow P \rightarrow D \rightarrow B$ is open.

III. dsep(A, P, {X, D}): False, $(A \rightarrow T \rightarrow P \rightarrow C \rightarrow S \rightarrow B \rightarrow D)$ is open.

IV. dsep($\{A, X\}, \{P, S\}, \{C, D\}$): False, $(A \rightarrow T \rightarrow P \rightarrow C)$ is open.

(b)(3 pts.) Express P(a, s, t, c, p, b, x, d) in factored form (the chain rule for BNs).

$$P(X1,X2,\ldots,Xn) = \prod_{i}^{n} P(X_i \mid Pa(X_i))$$

Therefore,

 $P(a,\, s,\, t\,\, ,c,p,b,x,d) = \,\, P(a)\,\, P(s)\,\, P(t\,\,|\,\, a)\,\, P(c\,\,|\,\, s)\,\, P(p\,\,|\,\, t\,\, ,c)\,\, P(b\,\,|\,\, s)\,\, P(x\,\,|\,\, p)\,\, P(d\,\,|\,\, p,b)$

Problem: 2

Using the theorem to get the equivalent Graphs (include the original one)

Problem 3:

Solution:

(20 pts.) Jack has three coins C₁, C₂, and C₃ with p₁, p₂, and p₃ as their corresponding probabilities of landing heads. Jack flips coin C₁ twice and then decides, based on the outcomes, whether to flip coin C₂ or C₃ next: if the two C₁ flips come out the same, Jack flips coin C₂ three times; if the two C₁ flips come out different, Jack flips coin C₃ three times. Given the outcome of Jack's last three flips as: tails, heads, tails, we want to know whether his first two flips came out the same. Describe a Bayesian network and a corresponding query that solves this problem.

Bayesian network and CPTs.

Random variables:

 $X1 \in \{H, T\} // \text{ First flip of C1}$

 $X2 \in \{H, T\} // \text{ Second flip of C1}$

 $X3 \in \{Same, Different\} // X3 = Same if X1 = X2 else X3 = Different$

Fi $\in \{H, T\} // I^{th}$ flip of C2 if X3 = Same or I^{th} flip of C3 if X3 = Different, $i \in \{1, 2, 3\}$

Query: P(X3 = Same | F1 = T; F2 = H; F3 = T) ?

P(X3 = Different | F1 = T; F2 = H; F3 = T)?