Security and Privacy

Prof. Jingsha He School of Software Engineering Beijing University of Technology

Reading Material

- Matt Bishop
 - Chapter 12
 - Chapter 14
 - Chapter 10 (Section 10.2.2)

10/9/2019

Copyright © Jingsha He 2004-2019

Identity, Identification and Authentication

- Definitions
 - Identity
 - ◆ Representation of an entity inside a computer system
 - ◆ It often implies the use of a unique name for an entity
 - Identification
 - ◆ Presentation of an identity to a security system
 - Authentication
 - ♦ Verification of the identity of an entity
 - ◆A binding of an identity to an entity

Identity

- Purposes
 - For access control
 - For accountability
 - Logging & Auditing
- Identities in a security system
 - A data file (an object in general)
 - ◆ File name: for the human being
 - ◆ File descriptor: for a process
 - File allocation table entry: for the kernel
 - A user
 - Any name comprised of an arbitrary number of alphanumeric characters
 - May be constrained in some ways

Groups and Roles

- An identity may refer to an entity that is comprised of a group of entities
 - A convenient way of performing access control and other security functions to a set of entities at the same time
 - Models of groups
 - ◆ Static: alias to a set of entities
 - Dynamic: construct for grouping a set of entities
- An identity may refer to a role
 - To tie entities together
 - To represent rights or security functions to which entities are assigned or entitled

Identity and Trust

- Requirements
 - Identities should be unique
 - Identities should be bound to the right entities
- Truthfulness of identity
 - A trust issue
 - Certificate
 - ◆To bind an identity to an entity

Identity and Certificate

- Certificate issued by a CA
 - Class 1
 - ◆ Authentication of an e-mail address
 - Class 2
 - Verification of real name and address through an online database
 - Class 3
 - ◆ Background check by an investigative service

Trust of Identity

- Trust of a certificate
 - Depending on the trustworthiness of the CA
 - Depending on the level of trust indicated by the CA
 - ♦ High: a passport
 - ◆ Low: an unsworn statement
 - It's all relative
- The point
 - Identity has the trust issue
 - Certificate also has the trust issue

Authentication

Purpose

 To verify that a stated identity really belongs to the right entity

Methods

- What the entity knows
 - ◆ Password, PIN, DoB, mother's maiden name, etc.
- What the entity has
 - ◆ Badge, ID card, key, etc.
- What the entity is
 - → Fingerprints, personal characteristics, etc.
- Where the entity is
 - ◆ Particular gate, specific terminal, special access device, etc.

Authentication Components

- For creating and storing authentication information
 - Authentication information: A
 - For an entity to prove its identity
 - Complementary information: C
 - For a system to store authentication information along with the corresponding identity
 - For a system to verify authentication information
 - Complementary functions: F
 - For a system to generate the complementary information from the authentication information
 - ♦ For $f \in F$, $f: A \rightarrow C$

Authentication Components

- For performing authentication
 - Authentication functions: L
 - For the system to verify an identity
 - ♦ For $I \in L$, $I: A \times C \rightarrow \{true, false\}$
- For managing authentication information
 - For an entity to create or to alter the authentication and the corresponding complementary information

Passwords

- Purpose
 - To use information that an entity knows to verify that a stated identity really belongs to the entity
- Authentication method
 - What an entity knows
- Password protection
 - Passwords are not allowed to be transmitted without proper protection
 - For f ∈ F, f: A → C uses a one-way hash function

Password Attacks

- Dictionary attack
 - The guess of a password through repeated trial and error
- Types of attacks
 - Type 1: C and F are available
 - ◆ For each guessed password p, compute f(p) for each f∈F until the result matches the stored complementary information c for the same entity
 - Type 2: L is available
 - ◆ For each guessed password p, invoke each I∈L and, if "true" is returned, p is the correct password

Counter-Measures to Password Guessing

■ Goal

 To maximize the amount of time consumed before the password is correctly guessed

Calculation

- P: probability of correctly guessing a password in a specified period of time
 - ◆ In number of time units
- G: number of password guesses that can be carried out in one time unit
- T: number of time units for the calculation
- N: total number of possible passwords
- Anderson's Formula: P ≥ TG/N or N ≥ TG/P

A Scenario of Password Guessing

- The formula: P ≥ TG/N
- The scenario
 - R: number of bytes per minutes that can be sent over a communication line
 - E: number of characters for each log-in
 - S: length of a password
 - A: number of characters in the alphabet from which the characters of the password are drawn
 - M: number of months for the password guess
 - Then, N = A^S, G = R/E, T = 4.32×10^4 M P $\geq 4.32 \times 10^4$ M(R/E)/A^S or A^S $\geq 4.32 \times 10^4 \times$ M \times R/(P \times E)

An Example of Password Guessing

- The objective
 - To determine the minimum length of passwords in a system
- Parameters
 - A = 96 characters
 - $G = 10^4$ per second
 - P = 0.5
 - $T = 365 \text{ days} = 365 \times 24 \times 60 \times 60 \text{ seconds}$
- Assumptions
 - The length of time required to try out each password is constant
 - All passwords are equally like to be selected
- The result
 - $N \ge TG/P = 6.31 \times 10^{11}$
 - $N = \sum_{i=1}^{S} 96^{i} \ge 6.31 \times 10^{11} \Rightarrow S \ge 6$

Password Selection

- Theorem
 - When the selection of a password from a set of possible passwords is equally probable, the expected time that is needed for guessing a password is the longest
- In reality?
- Strong passwords
 - At least one digit
 - At least one letter
 - At least one punctuation character
 - At least one control character

Methods against Password Guessing

- Exponential back-off
 - Wait for tⁿ⁻¹ seconds before the next log-in when the nth authentication attempt fails
 - t is a system parameter
- Disconnection
 - Disconnect after a specified number of failed attempts
- Disabling
 - Disable after a specified number of failed attempts
- Jailing (honey pot)
 - Fool the attacker, then record all the activities that the attacker conducts

Challenge and Response

- Purpose
 - To fight against replay attacks
- Methods
 - Pass algorithm
 - ♦ Response calculation function is kept secret
 - One-time password
 - ◆ Password is invalidated as soon as it is used
 - Challenge and response
 - ◆ A challenge is generated and sent to the authenticating entity
 - A response is calculated based on the challenge and sent back to the authentication system for verification

Biometrics

Purpose

 The use of automated measurement of biological or behavioral features to characterize and, hence, identify an entity

Methods

- Fingerprints
- Voices
- Eyes
- Faces
- Keystrokes (pressure, interval, duration, position, etc.)
- Some combinations of the above

Kerberos Authentication

- Foundation
 - Needham-Schroeder protocol plus
 Denning and Sacco modification
- Kerberos application scenario
 - A system consists of a central authentication server AS, a ticketgranting server TS and one or more application servers S₁, ..., S_n
 - AS authenticates a user to the Kerberos system
 - TS issues tickets to the user to authenticate to the application servers
 - S₁, S₂, ..., S_n can be accessed by the user by presenting tickets issued by TS

Components of the Kerberos Protocol

- Secret key based cryptography
- The Authentication Server AS shares a secret key with each and every user and with the Ticket-Granting Server TS
 - Question: how to achieve the above?
- The Ticket-Granting Server TS shares a secret key with each and every of the applications servers S₁, ..., S_n

Components of the Kerberos Protocol

Ticket

- T_{Alice, Server} = {Alice || Alice's address || valid time || k_{Alice, Server}}k_{Server}
 - ♦ k_{Alice, Server} is the session key generated by the server that created the ticket to be shared between "Alice" and "Server" so as to access "Server"
 - k_{Server} is the secret key that "Server" shares with the server that created the ticket
- To be presented by Alice to Server for access

Authenticator

- A_{Alice, Server} = {Alice | t | k_t}k_{Alice, Server}
 - ♦ k_{Alice, Server} is the session key that is shared between "Alice" and "Server" so as to access "Server"
 - ◆ t is the timestamp when the authenticator is created
 - k_t is an alternative session key
- To prove to Server that Alice has the session key

The Kerberos Protocol

Significance of Kerberos

- Single sing-on
 - User only needs to log in once with the Authentication Server (AS)
 - ◆ Result: a <u>ticket-issuing ticket</u> is issued to the user to access the Ticket-Granting Server (TS)
 - TS issues tickets to the user to access the application servers
 - Result: logging-in to the application servers is transparent to the user
- Widely used in financial systems and large-scale e-commerce applications

Summary

- Identity
- Identification
- Authentication
 - Passwords and password attacks
 - Challenge and response
 - Biometrics
 - The Kerberos protocol

Thought of the Lecture

- Do you know how authentication works in your network?
- What scheme is used?
- How susceptible is it to attacks?
- If somebody points a gun at a user, the gunner could get any authentication desired.
- Do you know how reliable your data storage is?

