Review on Operational Amplifiers

Q1 [Modified from Rizzoni Problem 8.4]

With reference to the Figure P8.4 that shows an ideal op amp model,

Figure P8.4

- a) What approximations are made about the values of r_i , μ , and r_o ?
- b) Find the value of I_1 and I_2 if a voltage source was applied across the input terminals.
- c) If the ideal op amp is connected in negative feedback, what would be the value of v_i ?

Source Follower

Q2 [Modified from Alexander Problem 5.27]

For the circuit shown in Figure 5.65, assuming the op amp is ideal,

- a) Determine I_1 and I_2 ;
- b) Find v_1 and v_2 ;
- c) Find v_o and I_4 .
- d) Determine I_3 .

Inverting Amplifier

Q3 [Modified from Alexander Problem 5.12]

For the circuit shown in Figure 5.51, assuming the op amp is ideal, and given $v_s = 1 \text{ V}$,

- a) Find I_1 and I_2 ;
- b) Find the voltage at the inverting and non-inverting inputs;
- c) Find I_S and I_F ;
- d) Find v_o ;

Problem Set 5-1

Q4 [Modified from Alexander Problem 5.19]

For the circuit shown in Figure 5.58, assuming the op amp is ideal,

- a) Find V_1 ;
- b) Find I_1 , I_2 , and I_3 ;
- c) Find v_o and i_o .
- d) Find the current supplied by the source and hence input resistance by the source.

Q5 [Modified from Alexander Problem 5.21]

For the circuit shown in Figure 5.60, assuming the op amp is ideal,

- a) Find the voltage at the inverting input;
- b) Find I_1 , I_2 and I_3 ;
- c) Find v_0 .

Figure 5.60

Non-inverting Amplifiers

Q6 [Modified from Alexander Problem 5.10]

For the circuit in Figure 5.49, assuming the op amp is ideal and letting $v_s = 1 \text{ V}$,

- a) Find I_1 and I_2 ;
- b) Determine the voltage at the inverting input;
- c) Find v_o and hence determine v_o/v_i ;
- d) Find I_3 ;
- e) If a 5 k Ω load is added across v_o , find the resulting I_3 ;
- f) Determine in the input resistance seen by the source v_s .

Q7 [Modified from Alexander Problem 5.13]

For the circuit in Figure 5.52, assuming the op amp is ideal,

- a) Find the voltages at the inverting and non-inverting inputs of the op amp;
- b) Find I_1 , I_2 , and I_3 ;
- c) Find v_o and i_o ;

Summing Amplifiers

Q8 [Modified from Alexander Problem 5.37]

For the circuit shown in Figure 5.74, assuming the op amp is ideal,

- a) Determine the voltage at the inverting input;
- b) Find currents I_1 , I_2 and I_3 ;
- c) Find current I_4 ;
- d) Hence find v_o .

Figure 5.74

Q9 [Modified from Alexander Problem 5.40]

For the circuit shown in Figure 5.77, assuming the op amp is ideal and $v_1 = 1$ V and $v_2 = 2$ V,

- a) Find currents I_1 and I_2 ;
- b) Find currents I_3 and I_4 ;
- c) Hence find V_o and I_o .
- d) If a 10 k Ω resistor was connected between the inverting input and ground, find the resulting value of V_o .

Numerical solutions

Q1 [Modified from Rizzoni Problem 8.4]

- a) Input resistance, $r_i \to \infty$, Open loop gain, $\mu \to \infty$, Output resistance, $r_o = 0$
- b) $I_1 = 0 \text{ A}, I_2 = 0 \text{ A}$
- c) In negative feedback, $v_i = 0$

Q2 [Modified from Alexander Problem 5.27]

- a) $I_1 = 0 A$, $I_2 = 0 A$
- b) $v_1 = 4.5 \text{ V}, v_2 = 4.5 \text{ V}$
- c) $v_0 = 2.7 \text{ V}, I_4 = 0.225 \text{ A}$
- d) $I_3 = 0.225 A$

Q3 [Modified from Alexander Problem 5.12]

- a) $I_1 = 0 A$, $I_2 = 0 A$
- b) $v^+ = 0 \text{ V}, v^- = 0 \text{ V}$
- c) $I_S = 0.2 \text{ mA}$, $I_F = 0.2 \text{ mA}$
- d) $v_0 = -5 \text{ V}$

Q4 [Modified from Alexander Problem 5.19]

- a) $V_1 = 375 \text{ mV}$
- b) $I_1 = 93.75 \mu A$, $I_2 = 0$, $I_3 = 93.75 \mu A$
- c) $v_0 = -0.9375 \text{ V}, i_0 = -0.5625 \text{ mA}$
- d) Source current = 0.1875 mA, Input resistance = $4 \text{ k}\Omega$

Q5 [Modified from Alexander Problem 5.21]

- a) $v^{-} = 1 V$
- b) $I_1 = 0.5 \text{ mA}$, $I_2 = 0 \text{ A}$, $I_3 = 0.5 \text{ mA}$
- c) $V_o = -4 V$

Q6 [Modified from Alexander Problem 5.10]

- a) $I_1 = 0 A$, $I_2 = 0 A$
- b) $v^{-} = 1 V$
- c) $v_0 = 2 V$, $v_0/v_i = 2$
- d) $I_3 = 0.1 \text{ mA}$
- e) With load added, $I_3 = 0.5 \text{ mA}$
- f) Input resistance seen by source is infinite

Q7 [Modified from Alexander Problem 5.13]

- a) $v^+ = 0.9 \text{ V}, v^- = 0.9 \text{ V}$
- b) $I_1 = 0 A$, $I_2 = -18 \mu A$, $I_3 = 18 \mu A$
- c) $v_0 = 2.7 \text{ V}, i_0 = 288 \,\mu\text{A}$

Q8 [Modified from Alexander Problem 5.37]

- a) $v^{-} = 0 V$
- b) $I_1 = 0.2 \text{ mA}$, $I_2 = -0.1 \text{ mA}$, $I_3 = -0.15 \text{ mA}$
- c) $I_3 = -0.05 \text{ mA}$
- d) $v_0 = 1.5 \text{ V}$

Q9 [Modified from Alexander Problem 5.40]

- a) $I_1 = 10 \mu A$, $I_2 = 20 \mu A$
- b) $I_3 = -20 \mu A$, $I_4 = 30 \mu A$ c) $V_0 = -4.8 \text{ V}$, $I_0 = -0.15 \text{ mA}$