

FCC RF TEST REPORT

APPLICANT: Testo SE & Co. KGaA

PRODUCT NAME: WLAN data logger

MODEL NAME : testo 160 IAQ

TRADE NAME : Testo

BRAND NAME : Testo

FCC ID : WAF-05722014

STANDARD(S) : 47 CFR Part 15 Subpart C

ISSUE DATE : 2017-04-05

SHENZHEN MORLAB COMMUNICATIONS TECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

TEST	REPORT DECLARATION					4
<u>1.]</u>	FECHNICAL INFORMATION					5
1.1	APPLICANT INFORMATION					5
1.2	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	ON				5
1.2.1						
1.3	TEST STANDARDS AND RESULTS					
1.3.1	TEST ENVIRONMENT CONDITIONS					6
2. 4	17 CFR PART 15C REQUIREMENTS					7
QLAR	NORTH MO NE	QLAB	NORL	W.	No.	ZLAB TOR
2.1	ANTENNA REQUIREMENT ·····					7
2.1.1						7
2.1.2						7
2.2	PEAK OUTPUT POWER······					
2.2.1						
2.2.2						
2.2.3						
2.3	BANDWIDTH ·····					
2.3.1	REQUIREMENT					8
2.3.2						
2.3.3						
2.4	CONDUCTED SPURIOUS EMISSIONS AND BA	ND EDGE ······				9
2.4.1						
2.4.2	TEST DESCRIPTION		<u> </u>	·········		9
2.4.3	TEST RESULT······					9
2.5	POWER SPECTRAL DENSITY (PSD)					10
2.5.1						
2.5.2						
2.5.3						
2.1	RESTRICTED FREQUENCY BANDS					
2.1.1						
2.6.2						
2.6.3	TEST RESULT······					12

2.7	CONDUCTED EMISSION		 	 	20
2.7.1	REQUIREMENT		 	 	20
	TEST DESCRIPTION				
2.1.1	TEST RESULT······		 	 	21
2.8	RADIATED EMISSION		 	 	23
2.8.1	REQUIREMENT		 	 	23
	TEST DESCRIPTION ······				
2.8.3	TEST RESULT······	<u></u>	 	 	26
ANNE	X A GENERAL INFORMATION		 	 	36

	Change History							
Issue	Issue Date Reason for change							
1.0	2017-04-05 First edition							
O. O.	PLAB	MORE MO. SE CETTE MOSE, MO. SE I						

TEST REPORT DECLARATION

Applicant	Testo SE & Co. KGaA
Applicant Address	Testo-Str.1, 79853 Lenzkirch, Germany
Manufacturer Address	testo Instruments (Shenzhen) Co., Ltd
Manufacturer	Block A, B4 Building, China Merchants Guangming Sci&Tech Park, No.3009 Guan Guang Road, Guangming New District, Shenzhen City
Product Name	WLAN data logger
Model Name	testo 160 IAQ
Brand Name	Testo
HW Version	5.0
SW Version	1.22
Test Standards	47 CFR Part 15 Subpart C
Test Date	2016-11-07 to 2017-03-27
Test Result	PASS

"Ole W	(X·W	10
Reviewed by 🧠	- River V	1 (10

Qiu Xiaojun

Approved by :

Peng Huarui

1. TECHNICAL INFORMATION

Note: Provide by applicant.

1.1 Applicant Information

Company:	Testo SE & Co. KGaA	RLAB	MORL	4
Address	Testo-Str.1, 79853 Lenzkirch, Germany	Mo.	SE GLP	

1.2 Equipment under Test (EUT) Description

Brand Name:	Testo
Trade Name:	Testo
Model Name:	testo 160 IAQ
Frequency Range:	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
Channel Number:	802.11b/g/n-20MHz: 11
Modulation Type:	DSSS, OFDM
Antenna Type:	Copper tube antenna
Antenna Gain:	2 dBi

NOTE:

 The EUT is WLAN data logger, it's operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

- 2. The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT continuous transmission.
- 3. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2.1 Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version
A01	5.0	1.22

1.3 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

	No.	Identity	Document Title
5	1	47 CFR Part 15	Dadio Fraguerou Davisco
	QR1	(10-1-15 Edition)	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Result
1	15.203	Antenna Requirement	N.A	N/A
2 📀	15.247(b)	Peak Output Power	N/A	N/A
3	15.247(a)	Bandwidth	N/A	N/A
4	15.247(d)	Conducted Spurious Emission and Band Edge	N/A	<u>N/A</u>
5	15.247(d)	Restricted Frequency Bands	Mar 27, 2017	PASS
6	15.207	Conducted Emission	Mar 27, 2017	PASS
7	15.209 ,15.247(d)	Radiated Emission	Mar 26, 2017	PASS
8	15.247(e)	Power spectral density (PSD)	N.A	N/A

Note 1: The tests of Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013 and KDB558074 D01 v03r05 (04/08/2016).

Note 2: The WLAN data logger uses the WiFi module which FCC ID is N8NLSD4WF0459, the data of Peak Output Power(15.247(b)), Bandwidth(15.247(a)), Power Spectral Density(15.247(e)), Conducted Spurious Emission and Band Edge(15.247(d)) of the WLAN data logger is not different from wifi module, so these data of this report would reference the wifi module which report number is RKS160620001-00C and FCC ID is N8NLSD4WF0459.

1.3.1 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35	MC AE	RLAB	MORL
Relative Humidity (%):	30 -60	LAB	Mo.	B
Atmospheric Pressure (kPa):	86-106	NB 01	AP JORE	111

2. 47 CFR PART 15C REQUIREMENTS

2.1 Antenna requirement

2.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2 Peak Output Power

2.2.1 Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt.

2.2.2 Test Description

The measured output power was calculated by the reading of the USB Wideband Power Sensor and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is coupled to the USB Wideband Power Sensor; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3 Test Result

2.3 Bandwidth

2.3.1 Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.3.2 Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3 Test Result

2.4 Conducted Spurious Emissions and Band Edge

2.4.1 Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.4.2 Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 11.0 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3 Test Result

2.5 Power spectral density (PSD)

2.5.1 Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.5.2 Test Description

A. Test procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:

- a) Set analyzer center frequency to channel center frequency.
- b) Set the span to 30MHz
- c) Set the RBW to 3 kHz
- d) Set the VBW to 10KHz
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.

B. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

KDB 558074 Section 10.2 was used in order to prove compliance.

C. Equipments List:

Please reference ANNEX A(1.5).

2.5.3 Test Result

2.1 Restricted Frequency Bands

2.1.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.6.2 Test Description

A. Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

2.6.3 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $\label{eq:energy} E~[dB\mu V/m] = U_R + A_T + A_{Factor}~[dB];~A_T = L_{Cable~loss}~[dB] - G_{preamp}~[dB]$

A_T: Total correction Factor except Antenna

 U_R : Receiver Reading G_{preamp} : Preamplifier Gain A_{Factor} : Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.6.3.1 802.11b Test mode

The lowest and highest channels are tested to verify the band edge emissions

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Orianner	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdiet
1 ADRLAG	2384.22	PK	44.79	-33.63	32.56	43.72	74	Pass
1,,,,,,,	2384.22	AV	33.20	-33.63	32.56	32.13	54	Pass
11	2484.00	PK	46.99	-33.18	32.5	46.31	74	Pass
11	2484.00	AV	32.59	-33.18	32.5	31.91	54	Pass

(Plot A1: Channel = 1 PEAK @ 802.11b)

(Plot A2: Channel = 1 AVG @ 802.11b)

(Plot B1: Channel = 11 PEAK @ 802.11b)

(Plot B2: Channel = 11 AVG @ 802.11b)

2.6.3.2 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channal	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Vordict
Channel	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict
ORLA T	2385.79	PK	44.08	-33.63	32.56	43.01	74	Pass
MOTH AB	2385.79	AV	33.44	-33.63	32.56	32.37	54	Pass
11 1100	2484.00	PK	45.47	-33.18	32.5	44.79	74	Pass
11	2484.00	AV	32.61	-33.18	32.5	31.93	54	Pass

(Plot C1: Channel = 1 PEAK @ 802.11g)

(Plot C2: Channel = 1 AVG @ 802.11g)

(Plot D1: Channel = 11 PEAK @ 802.11g)

(Plot D2: Channel = 11 AVG @ 802.11g)

2.6.3.3 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
1 ₁₁₁ 0R	2387.14	PK	45.00	-33.63	32.56	43.93	74	Pass
RLA 1	2387.14	AV	33.56	-33.63	32.56	32.49	54	Pass
11	2484.00	PK	45.10	-33.18	32.5	44.42	74	Pass
11	2484.00	AV	32.63	-33.18	32.5	31.95	54	Pass

(Plot E1: Channel = 1 PEAK @ 802.11n-20)

(Plot E2: Channel = 1 AVG @ 802.11n-20)

(Plot F1: Channel = 11 PEAK @ 802.11n-20)

(Plot F2: Channel = 11 AVG @ 802.11n-20)

2.7 Conducted Emission

2.7.1 Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)				
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5 - 30	60	50			

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz

2.7.2 Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10 2013.

B. Equipments List:

Please reference ANNEX A(1.5).

2.1.1 Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

(Plot A: L Phase)

NO.	Fre.	Emission Level (dBµV)		Limit (c	βμV)	Power-	Verdict
110.	(MHz)	Quai-peak	Average	Quai-peak	Average	line	vordiot
1	0.15	50.16	17.77	66	56	, all	PASS
2	0.485	26.32	-5.84	56.43	46.43	MORL	PASS
3	3.815	30.41	22.06	56	46	Lina	PASS
4	5.96	21.48	12.43	60	50	Line	PASS
5	7.54	20.79	10.63	60	50	-QLAB	PASS
6	8.80	24.53	17.67	60	50	0.	PASS

(Plot B: N Phase)

Verdict	
Voluiot	
PASS	

2.8 Radiated Emission

2.8.1 Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3 781.8
88 - 216	150	3 LAB OFFLE
216 - 960	200	3 110
Above 960	500	3 DRL MO

Note:

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.8.2 Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of

the site as factors are calculated to correct the reading

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3 Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2.8.3.1 802.11b Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

2.8.3.2 802.11g Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

2.8.3.3 802.11n-20MHz Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 6

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 11

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

ANNEX A GENERAL INFORMATION

1.1 Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

1.2 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

1.3 Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2013 and CISPR Publication 22; the FCC registration number is 695796.

1.4 Maximum measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty		
Peak Output Power	±2.22dB		
Power spectral density (PSD)	±2.22dB		
Bandwidth	±5%		
Conducted Spurious Emission	±2.77 dB		
Restricted Frequency Bands	±5%		
Radiated Emission	±2.95dB		
Conducted Emission	±2.44dB		

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

1.5 Test Equipments Utilized

1.5.1 Conducted Test Equipments

Cond	ducted Test Equipme	nt More	' We	AB CRLAI	NORT INC	A.B
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
1, 3	Spectrum Analyzer	MY45101810	E4407B	Agilent	2016.06.02	2017.06.01
2	Power Splitter	NW521	1506A	Weinschel	2016.06.02	2017.06.01
3	Attenuator 1	(N/A.)	10dB	Resnet	2016.06.02	2017.06.01
4	Attenuator 2	(N/A.)	3dB	Resnet	2016.06.02	2017.06.01
5	EXA Signal Analzyer	MY53470836	N9010A	Agilent	2015.12.07	2016.12.06
5'	EXA Signal Analzyer	MY53470836	N9010A	Agilent	2016.12.07	2017.12.06
6	RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
7	Coaxial cable	CB02	RF02	Morlab	N/A	N/A
8	SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A

1.5.2 Conducted Emission Test Equipments

Cond	ducted Emission Tes	Equipments	ORLL	MOLEN	LAB	ORLA NIC
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due
1	Receiver	US44210471	E7405A	Agilent	2016.06.02	2017.06.01
2	LISN	812744	NSLK 8127	Schwarzbeck	2016.06.02	2017.06.01
3	Service Supplier	100448	CMU200	R&S	2016.06.02	2017.06.01
4	Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2016.06.02	2017.06.01
5	Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A

1.5.3 Auxiliary Test Equipment

Auxil	iary Test Equipmen	ALAE MORE	NIC AE	RLAL	MORE	NO. O.B
No.	Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
1	Computer	T430i	Think Pad	Lenovo	N/A	N/A

1.5.4 Radiated Test Equipments

Radiated Test Equipments						
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
1,3	System Simulator	GB45360846	8960-E5515C	Agilent 2016.06.02		2017.06.01
2	Receiver	MY54130016	N9038A	Agilent	2016.06.02	2017.06.01
3	Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.07.05	2017.07.04
4	Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2016.07.05	2017.07.04
5	Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	chwarzbeck 2016.07.05	
6	Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2016.07.05	2017.07.04
7.0	Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
8	Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
9	Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab N/A		N/A
10	1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2016.07.05	2017.07.04
11	18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& 2016.07.05		2017.07.04

1.5.5 Climate Chamber

Climate Chamber					NIC AB	RLAL
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Climate Chamber	2004012	HL4003T	Yinhe	2016.01.11	2017.01.10
1'	Climate Chamber	2004012	HL4003T	Yinhe	2017.01.11	2018.01.10

1.5.6 Vibration Table

Vibra	ation Table	OLAB .C	PEL MORE	E NI SLAE	ORLA	MON. B W.
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Vibration Table	N/A	ACT2000-S015L	CMI-COM	2016.01.11	2017.01.10
1'	Vibration Table	N/A	ACT2000-S015L	CMI-COM	2017.01.11	2018.01.10

1.5.7 Anechoic Chamber

Anec	hoic Chamber	ORLAS M	Oke We	AB OR	LAL	Mr. D.
No.	Equipment Name	Serial No.	Type	Manufacturer	Cal.Date	Cal.Due Date
1	Anechoic Chamber	N/A	9m*6m*6m	Changning	2016.01.11	2017.01.10
1'	Anechoic Chamber	N/A	9m*6m*6m	Changning	2017.01.11	2018.01.10

**** END OF REPORT ****