CS267 Lecture 2

Single Processor Machines: Memory Hierarchies and Processor Features

Case Study: Tuning Matrix Multiply

Kathy Yelick

https://sites.google.com/lbl.gov/cs267-spr2020/

Motivation

- Parallel computing is about performance
- Most applications run at < 10% of the "peak" performance

- Much of the performance is lost on a single processor
- Most of that lost moving data

We need to look under the hood of modern processors

Possible conclusions from today's lecture

- "Computer architectures are fascinating!"
- "These optimized algorithms are fascinating!"
- "I hope that most of the time I can call libraries so I don't have to worry about this!"
- "I wish the compiler would handle everything for me."
- "I would like to write a compiler that would handle all of these details."
- "I want to understand how Meltdown/Spectre work"

Outline

- Costs in modern processors
 - Idealized models and actual costs
- Memory hierarchies
- Parallelism in a single processor
- Case study: Matrix multiplication

Idealized Uniprocessor Model

- Processor names variables:
 - Integers, floats, double, pointers, arrays, structures, etc.
- Processor performs operations on those variables:
 - Arithmetic, logical operations, etc.
- Processor controls the order, as specified by program
 - Branches (if), loops, function calls, etc.

- Idealized Cost
 - Each operation has roughly the same cost add, multiply, etc.

Slightly Less Idealized Uniprocessor Model

- Processor names variables:
 - Integers, floats, doubles, pointers, arrays, structures, etc.
 - These are really words, e.g., 64-bit doubles, 32-bit ints, bytes, etc.
- Processor performs operations on those variables:
 - Arithmetic, logical operations, etc.
 - Only performs these operations on values in registers
- Processor controls the order, as specified by program
 - Branches (if), loops, function calls, etc.

- Idealized Cost
 - Each operation has roughly the same cost add, multiply, etc.

Compilers and assembly code

- Compilers for languages like C/C++ and Fortran:
 - Check that the program is legal
 - Translate into assembly code
 - Optimizes the generated code

Compilers Manage Memory and Registers

 Compiler performs "register allocation" to decide when to load/store and when to reuse

dR3

Register allocation in first Fortran compiler in 1950s, graph coloring in 1980. JITs may use something cheaper

Compiler Optimizes Code

 The compiler manages operations (load/store) that are important to performance but we don't "see" in code.

Compiler performs a number of optimizations:

- Unrolls loops (because control isn't free)
- Fuses loops (merge two together)
- Interchanges loops (reorder)
- Eliminates dead code (the branch never taken)
- Reorders instructions to improve register reuse and more
- Strength reduction (turns expensive instruction, e.g., multiply by 2, into cheaper one, shift left)

Why is this your problem?

- Because sometimes it does the best thing possible
- But other times it does not...

01/23/2020 CS267 - Lecture 2 9

Outline

- Costs in modern processors
- Memory hierarchies
 - Temporal and spatial locality
 - Basics of caches
 - Use of microbenchmarks to characterize performance
- Parallelism in a single processor
- Case study: Matrix multiplication

Slightly Less Idealized Uniprocessor Model

- More realistic cost model
- Each arithmetic operation has roughly the same cost
 - add, multiply, etc. (refine later)
- Memory accesses (load / store) have two costs
 - Latency: cost to load or store 1 word
 - Bandwidth: Average cost per byte to load/store a large chunk

Latency vs Bandwidth

Memory systems and networks

Bandwidth

≈ data throughput (bytes/second)

Low Bandwidth

High Bandwidth

Latency

≈ delay due data travel time (secs)

Low Latency

High Latency

Memory Bandwidth Gap

Memory Bandwidth is Falling Behind: (GFLOP/s) / (GWord/s)

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Memory Latency Gap is Worse

Memory Latency is much worse: (GFLOP/s) / (Memory Latency)

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Memory Hierarchy

- Most programs have a high degree of locality
 - spatial locality: accessing things nearby previous accesses
 - temporal locality: reusing an item that was previously accessed
- Memory hierarchy use this to improve average case

Speed	1ns	10ns	100ns	10ms	10sec
Size	KB	MB	GB	ТВ	PB

Cache Basics

- Cache is fast (expensive) memory which keeps copy of data; it is hidden from software
 - Simplest example: data at memory address xxxxxxx10 is stored at cache location 10

Cache				
Addr Value				
xxxx00	'acgg'			
xxxx01	'wait'			
xxxx10	42			
xxxx11	29			

- Cache hit: in-cache memory access—cheap
- Cache miss: non-cached memory access—expensive
 - Need to access next, slower level of memory

Cache Basics

- Cache line length: # of bytes loaded together in one entry
 - Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are

- Associativity
 - direct-mapped: only 1 address (line) in a given range in cache

Data at address xxxxx1101 stored at cache location 1101 (Only 1 such value from memory)

• n-way associative: $n \ge 2$ lines can be stored

Up to n words with addresses xxxxx1101 can be stored at cache location 1101 (it has a list)

Why Have Multiple Levels of Cache?

- On-chip vs. off-chip
 - On-chip caches are faster, but limited in size
- A large cache has delays
 - Hardware to check longer addresses in cache takes more time
 - Associativity, which gives a more general set of data in cache, also takes more time
- Some examples:
 - Cray T3E eliminated one cache to speed up misses
 - Intel Haswell (Cori Ph1) uses a Level 4 cache as "victim cache"
- There are other levels of the memory hierarchy
 - Register, pages (TLB, virtual memory), ...
 - And it isn't always a hierarchy

Approaches to Handling Memory Latency

- Eliminate memory operations by saving values in small, fast memory (cache or registers) and reusing them (bandwidth filtering)
 - need temporal locality in program
- Take advantage of better bandwidth by getting a chunk of memory into cache (or vector registers) and using whole chunk
 - need spatial locality in program
- Take advantage of better bandwidth by allowing processor to issue multiple reads or writes with a single instruction
 - vector operations require access set of locations (typically neighboring), requires they are independent
- Take advantage of better bandwidth by allowing processor to issue reads/writes in parallel with other reads/writes/operations
 - prefetching issues read hint
 - delayed writes (write buffering) stages writes for later operation
 - both require that nothing dependent is happening (parallelism)

01/23/2020 CS267 - Lecture 2 19

How much concurrency do you need?

- To run at bandwidth speeds rather than latency
- Little's Law from queuing theory says:

concurrency = latency * bandwidth

For example:

```
latency = 10 sec
```

bandwidth = 2 Bytes/sec

- Requires 20 bytes in flight concurrently to reach bandwidth speeds
- That means finding 20 independent things to issue

More realistic example

Little's Law: illustration for 2005-era Opteron processor

60 ns latency, 6.4 GB/s (=10ns per 64B cache line)

- 60 ns * 6.4 GB/s = 384 Bytes = 6 cache lines
- To keep the pipeline full, there must always be 6 cache lines "in flight"
- Each request must be launched at least 60 ns before the data is needed

THE UNIVERSITY OF TEXAS AT AUSTIN

TEXAS ADVANCED COMPUTING CENTER

Stream benchmark for measuring bandwidth

- Stream benchmark (also due to McCalpin)
- Four kernels, all for i = 1 to N:

```
Copy: C[i] = A[i];
Scale: B[i] = scalar * C[i];
Add: C[i] = A[i] + B[i];
Triad: A[i] = B[i] + scalar * C[i];
```

- N chose so that array is much larger than cache
- Repeated ~10 times (ignoring first) to "warm cache
- Min/Av/Max timing report

Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
- Parallelism within single processors
 - Instruction Level Parallelism (ILP)
 - SIMD units
 - Special Instructions (FMA)
- Case study: Matrix Multiplication

01/23/2020 CS267 - Lecture 2 36

What is Pipelining?

Dave Patterson's Laundry example: 4 people doing laundry

Latency: wash (30 min) + dry (40 min) + fold (20 min) = 90 min

- In this example:
 - Sequential execution takes
 4 * 90min = 6 hours
 - Pipelined execution takes 30+4*40+20 = 3.5 hours
- Bandwidth = loads/hour
 - = 4/6 l/h w/o pipelining
 - = 4/3.5 I/h w pipelining
 - <= 1.5 l/h w pipelining

Pipelining doesn't change latency (90 min)

- Bandwidth limited by slowest pipeline stage
- Speedup <= # of stages

CS267 - Lecture 2 37

Laundry Bandwidth

- The system bandwidth is 1 load per 40 minutes (1.5 Loads / hour)
- How much of that you see depends on available "customers" ready to do laundry

Laundry Bandwidth

Example: 5 Steps of MIPS Datapath

- Pipelining is also used within arithmetic units
 - a fp multiply may have latency 10 cycles, but throughput of 1/cycle

CS267 - Lecture 2

SIMD: Single Instruction, Multiple Data

Scalar processing

- traditional mode
- one operation produces one result

- Sandy Bridge: AVX (256 bit)
- Haswell: AVX2 (256 bit w/ FMA)
- KNL: AVX-512 (512 bit)

http://www.nersc.gov/users/computational-systems/edison/programming/vectorization/

01/23/2020 CS267 - Lecture 2 40

SSE / SSE2 SIMD on Intel

SSE2 data types: anything that fits into 16 bytes, e.g.,

- Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel
- Challenges:
 - Need to be contiguous in memory and cache aligned
 - Some instructions to move data around from one part of register to another
- Similar on GPUs, vector processors (but many more simultaneous operations)

CS267 - Lecture 2 41

Data Dependencies Limit Parallelism

Parallelism can get the wrong answer if instructions execute out of order

Types of dependencies

- RAW: Read-After-Write
 - X = A ; B = X;
- WAR: Write-After-Read
 - A = X ; X = B;
- WAW: Write-After-Write
 - X = A; X = B;
- No problem / dependence for RAR: Read-After-Read

Special Instructions

- Arithmetic instructions don't all have the same cost
- Multiply followed by add is very common on programs

$$x = y + c * z$$

- Useful in matrix multiplication
- Fused Multiply-Add (FMA) instructions:
 - Performs multiply/add, at the same rate as + or * alone
 - And does so with a single rounding step

$$x = round(c * z + y)$$

What does this mean to you?

- In theory, the compiler understands all of this
 - It will rearrange instructions to maximizes parallelism, uses FMAs and SIMD
 - While preserving dependencies
- But in practice the compiler may need your help
 - Choose a different compiler, optimization flags, etc.
 - Rearrange your code to make things more obvious
 - Using special functions ("intrinsics") or write in assembly ☺

Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication
 - Simple cache model
 - Warm-up: Matrix-vector multiplication
 - Naïve vs optimized Matrix-Matrix Multiply
 - Minimizing data movement
 - Beating O(n³) operations
 - Practical optimizations (continued next time)

Why Matrix Multiplication?

- An important kernel in many problems
 - Appears in many linear algebra algorithms
 - Bottleneck for dense linear algebra, including Top500
 - One of the motifs of parallel computing
 - Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
 - And dominates training time in deep learning (CNNs)
- Optimization ideas can be used in other problems
- The best case for optimization payoffs
- The most-studied algorithm in high performance computing

Performance from Optimization

Graph from David Bindle (Cornell)

CS267 - Lecture 2 47

Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are "1-D"
- Conventions for matrix layout
 - by column, or "column major" (Fortran default); A(i,j) at A+i+j*n
 - by row, or "row major" (C default) A(i,j) at A+i*n+j

recursive (later)

Column major

	0	5	10	15
	1	6	11	16
\downarrow	2	7	12	17
	3	8	13	18
	4	9	14	19

Row major

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15
16	17	18	19

Column major matrix in memory

Column major (for now)

Using a Simple Model of Memory to Optimize

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory

 Computational
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation << t_m
 - q = f/m average number of flops per slow memory access
- Minimum possible time = $f * t_f$ when all data in fast memory
- Actual time

•
$$f * t_f + m * t_m = f * t_f * (1 + t_m/t_f) * 1/q)$$

- Larger q means time closer to minimum $f * t_f$
 - $q \ge t_m/t_f$ needed to get at least half of peak speed

Machine
Balance:
Key to
machine
efficiency

Intensity (CI): Key to

algorithm efficiency

Warm up: Matrix-vector multiplication

{implements
$$y = y + A*x$$
}
for $i = 1:n$
for $j = 1:n$

$$y(i) = y(i) + A(i,j)*x(j)$$

Warm up: Matrix-vector multiplication

```
{read x(1:n) into fast memory}
{read y(1:n) into fast memory}
for i = 1:n
    {read row i of A into fast memory}
    for j = 1:n
        y(i) = y(i) + A(i,j)*x(j)
{write y(1:n) back to slow memory}
```

- m = number of slow memory refs = $3n + n^2$
- f = number of arithmetic operations = $2n^2$
- q = $f/m \approx 2$ (Low Computational Intensity)
- Matrix-vector multiplication limited by slow memory speed

Naïve Matrix Multiply

```
{implements C = C + A*B}
for i = 1 to n
for j = 1 to n
for k = 1 to n
C(i,j) = C(i,j) + A(i,k) * B(k,j)
```

Algorithm has $2*n^3 = O(n^3)$ Flops and operates on $3*n^2$ words of memory

Computational intensity (q) *potentially* as large as $2*n^3 / 3*n^2 = O(n)$

Naïve Matrix Multiply

```
 \begin{aligned} &\{\text{implements } C = C + A^*B\} \\ &\text{for } i = 1 \text{ to } n \\ &\{\text{read row } i \text{ of } A \text{ into } \text{fast memory}\} \\ &\text{for } j = 1 \text{ to } n \\ &\{\text{read } C(i,j) \text{ into } \text{fast memory}\} \\ &\{\text{read column } j \text{ of } B \text{ into } \text{fast memory}\} \\ &\text{for } k = 1 \text{ to } n \\ &C(i,j) = C(i,j) + A(i,k) * B(k,j) \\ &\{\text{write } C(i,j) \text{ back to slow memory}\} \end{aligned}
```


Naïve Matrix Multiply

Number of slow memory references on unblocked matrix multiply

- $m = n^3$ to read each column of B n times
 - + n² to read each row of A once
 - + 2n² to read and write each element of C once
 - $= n^3 + 3n^2$
- So $q = f/m = 2n^3 / (n^3 + 3n^2)$ computational intensity
 - ≈ 2 for large n, no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row i of A times B Similar for any other order of 3 loops

CS267 - Lecture 2 61

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where b=n / N is called the block size 3 nested for i = 1 to N cache does this loops inside automatically for j = 1 to N{read block C(i,j) into fast memory} block size = for k = 1 to N loop bounds {read block A(i,k) into fast memory} {read block B(k,j) into fast memory} $C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}$ {write block C(i,j) back to slow memory}

Tiling for registers or caches

Measuring Performance — Runtime

Image and paper by G. Ofenbeck, R. Steinman, V. Caparrós Cabezas, D. Spampinato, M. Püschel

CS267 - Lecture 2

Measuring Performance — Flops/Cycle

Image and paper by G. Ofenbeck, R. Steinman, V. Caparrós Cabezas, D. Spampinato, M. Püschel

CS267 - Lecture 2

Blocked (Tiled) Matrix Multiply

Recall:

m is amount memory traffic between slow and fast memory matrix has nxn elements, and NxN blocks each of size bxb f is number of floating point operations, $2n^3$ for this problem q = f / m is our measure of computational intensity

So:

```
m = N*n² read each block of B N³ times (N³ * b² = N³ * (n/N)² = N*n²)

+ N*n² read each block of A N³ times

+ 2n^2 read and write each block of C once (2N^2 * b^2 = 2n^2)

= (2N + 2) * n^2
```

```
So computational intensity q = f / m = 2n^3 / ((2N + 2) * n^2)
 \approx n / N = b for large n
```

So we can improve performance by increasing the blocksize b Can be much faster than matrix-vector multiply (q=2)

Theory: Communication lower bounds for Matmul

Theorem (Hong & Kung, 1981):

Any reorganization of matmul (using only associativity) has computational intensity $q = O((M_{fast})^{1/2})$, so

#words moved between fast/slow memory = Ω (n³ / (M_{fast})^{1/2})

- Cost also depends on the number of "messages" (e.g., cache lines)
 - #messages = Ω (n³ / M_{fast}^{3/2})
- Tiled matrix multiply (with tile size = M_{fast} 1/2 / 3) achieves this lower bound
- Lower bounds extend to similar programs nested loops accessing arrays

CS267 - Lecture 2 69

Practice: Tile Size Selection for Cache-Aware Tiling

- Maximize b, but small enough to fit in cache (or in registers)
 - Avoid interference: depends on n, b, cache associativy, etc.
 - Not necessarily square block (row / column accesses different)

Hundreds of papers on this; above from [Mehtra, Beeraka, Yew, 2013] 70

CS267 - Lecture 2 01/23/2020

Tuning Code in Practice

- Tuning code can be tedious
 - Many optimizations besides blocking
 - Behavior of machine and compiler hard to predict
- Approach #1: Analytical performance models
 - Use model (of cache, memory costs, etc.) to select best code
 - But model needs to be both simple and accurate ②
- Approach #2: "Autotuning"
 - Let computer generate large set of possible code variations, and search for the fastest ones
 - Sometimes all done "off-line", sometimes at run-time

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned. (Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

 ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

What about more levels of memory?

- Need to minimize communication between all levels
 - Between L1 and L2 cache, cache and DRAM, DRAM and disk...
- The tiled algorithm requires finding a good block size
 - Machine dependent (cache aware block size matched to hardware)
 - Need to "block" b x b matrix multiply in inner most loop
 - 1 level of memory ⇒ 3 nested loops (naïve algorithm)
 - 2 levels of memory ⇒ 6 nested loops
 - 3 levels of memory ⇒ 9 nested loops ...
- Cache Oblivious Algorithms offer an alternative
 - Treat nxn matrix multiply as a set of smaller problems
 - Eventually, these will fit in cache
 - Will minimize # words moved between every level of memory hierarchy – at least asymptotically
 - "Oblivious" to number and sizes of levels

Recursive Matrix Multiplication (RMM) (1/2)

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = A \cdot B = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{bmatrix}$$

	(* *21 *	- 11 -	7 122 - 21	7 (21	12 -	A_{22} D_{22}	2)			
C ₁₁	C ₁₂		A ₁₁	A ₁₂		B ₁₁	B ₁₂		A _{11*} B ₁₁ + A _{12*} B ₂₁	A _{11*} B ₁₂ + A _{12*} B ₂₂
C ₂₁	C ₂₂	=	A ₂₁	A ₂₂		B ₂₁	B ₂₂	=	A _{21*} B ₁₁ + A _{22*} B ₂₁	A _{21*} B ₁₂ + A _{22*} B ₂₂

- True when each bock is a 1x1 or n/2 x n/2
- For simplicity: square matrices with n = 2^m
 - Extends to general rectangular case

Recursive Matrix Multiplication (2/2)

```
func C = RMM (A, B, n) if n=1, C = A * B, else  \{ C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2) \\ C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2) \\ C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2) \\ C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) \}  return
```

```
A(n) = # arithmetic operations in RMM(.,.,n)

= 8 \cdot A(n/2) + 4(n/2)^2 if n > 1, else 1

= 2n^3 ... same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(.,.,n)

= 8 \cdot W(n/2) + 4 \cdot 3(n/2)^2 if 3n^2 > M_{fast}, else 3n^2

= O(n^3 / (M_{fast})^{1/2} + n^2) ... same as blocked matmul

Don't need to know M_{fast} for this to work!
```

CS267 - Lecture 2 76

Experience with Cache-Oblivious Algorithms

- In practice, need to cut off recursion well before 1x1 blocks
 - Call "micro-kernel" on small blocks
 - Careful attention to micro-kernel is needed
- Pingali et al report that they never got more than 2/3 of peak.
 - Fully recursive approach with highly optimized recursive micro-kernel
 - (unpublished, presented at LACSI'06)
- Issues with Cache Oblivious (recursive) approach

Recursive Data Layouts

- A related idea is to use a recursive structure for the matrix
 - Improve locality with machine-independent data structure
 - Can minimize latency with multiple levels of memory hierarchy
- There are several possible recursive decompositions depending on the order of the sub-blocks
- This figure shows Z-Morton Ordering ("space filling curve")
- See papers on "cache oblivious algorithms" and "recursive layouts"
 - Gustavson, Kagstrom, et al, SIAM Review, 2004

Advantages:

 the recursive layout works well for any cache size

Disadvantages:

- The index calculations to find A[i,j] are expensive
- Implementations switch to column-major for small sizes

CS267 - Lecture 2 79

Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named "register" variables
- Tiling for multiple levels of cache and TLB
- Exploiting fine-grained parallelism in processor
 - superscalar; pipelining
- Complicated compiler interactions (flags)
- Hard to do by hand (but you'll try)
- Automatic optimization an active research area
 - ASPIRE: aspire.eecs.berkeley.edu
 - BeBOP: bebop.cs.berkeley.edu
 - Weekly group meeting Mondays 1pm
 - PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas

Removing False Dependencies

 Using local variables, reorder operations to remove false dependencies

With some compilers, you can declare a and b unaliased.

- Done via "restrict pointers," compiler flag, or pragma
- In Fortran, can use function calls (arguments assumed unaliased, maybe).

Exploit Multiple Registers

• Reduce demands on memory bandwidth by pre-loading into local variables signal

```
filter
while( ... ) {
   *res++ = filter[0]*signal[0]
             + filter[1]*signal[1]
             + filter[2]*signal[2];
   signal++;
}
                            also: register float f0 = ...;
float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( ... ) {
                               Example is a convolution
    *res++ = f0*signal[0]
              + f1*signal[1]
              + f2*signal[2];
    signal++;
```

82

Loop Unrolling

Expose instruction-level parallelism

```
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
   signal += 3;
   s0 = signal[0];
   res[0] = f0*s1 + f1*s2 + f2*s0;
   s1 = signal[1];
   res[1] = f0*s2 + f1*s0 + f2*s1;
   s2 = signal[2];
   res[2] = f0*s0 + f1*s1 + f2*s2;
   res += 3;
} while( ... );
```

Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality
 - Alternative: use different data structures from start (if users willing)
 - Recall recursive data layouts

Original matrix (numbers are addresses)

	0	4	8	12
	1	5	9	13
	2	6	10	14
	3	7	11	15

Reorganized into 2x2 blocks

0	2	8	10
1	3	9	11
4	6	12	13
5	7	14	15

Strassen's Matrix Multiply

- The traditional algorithm (with or without tiling) has O(n³) flops
- Strassen discovered an algorithm with asymptotically lower flops
 O(n^{2.81})
- Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
 - Strassen does it with 7 multiplies and 18 adds

```
Let M = \begin{pmatrix} m11 & m12 \\ m21 & m22 \end{pmatrix} = \begin{pmatrix} a11 & a12 \\ a21 & a22 \end{pmatrix} \begin{pmatrix} b11 & b12 \\ b21 & b22 \end{pmatrix}

Let p1 = (a12 - a22) * (b21 + b22)

p2 = (a11 + a22) * (b11 + b22)

p3 = (a11 - a21) * (b11 + b12)

p4 = (a11 + a12) * b22

Then m11 = p1 + p2 - p4 + p6

m12 = p4 + p5

m12 = p6 + p7

m22 = p2 - p3 + p5 - p7

Extends to nxn by divide&conquer
```

Strassen (continued)

T(n) = Cost of multiplying nxn matrices
=
$$7*T(n/2) + 18*(n/2)^2$$

= $O(n \log_2 7)$
= $O(n 2.81)$

- Asymptotically faster
 - Several times faster for large n in practice
 - Cross-over depends on machine
 - "Tuning Strassen's Matrix Multiplication for Memory Efficiency",
 M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing '98
- Possible to extend communication lower bound to Strassen
 - #words moved between fast and slow memory = $\Omega(n^{\log 2 7} / M^{(\log 2 7)/2 1}) \sim \Omega(n^{2.81} / M^{0.4})$ (Ballard, D., Holtz, Schwartz, 2011, **SPAA Best Paper Prize**)
 - Attainable too, more on parallel version later

89

Other Fast Matrix Multiplication Algorithms

- World's record was O(n ^{2.37548...})
 - Coppersmith & Winograd, 1987
- New Record! 2.37<u>548</u> reduced to 2.37<u>293</u>
 - Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011
- Newer Record! 2.372*93* reduced to 2.372*86*
 - Francois Le Gall, 2014
- Lower bound on #words moved can be extended to (some) of these algorithms (2015 thesis of Jacob Scott)
- Possibility of O(n^{2+ε}) algorithm!
 - Cohn, Umans, Kleinberg, 2003
- Can show they all can be made numerically stable
 - Demmel, Dumitriu, Holtz, Kleinberg, 2007
- Can do rest of linear algebra (solve Ax=b, Ax=λx, etc) as fast, and numerically stably
 - Demmel, Dumitriu, Holtz, 2008
- Fast methods (besides Strassen) may need unrealistically large n

CS267 - Lecture 2 90

Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
 - www.netlib.org/blas, www.netlib.org/blas/blast--forum
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s): 15 different operations
 - vector operations: dot product, saxpy ($y=\alpha^*x+y$), root-sum-squared, etc
 - m=2*n, f=2*n, q = f/m = computational intensity ~1 or less
 - BLAS2 (mid 1980s): 25 different operations
 - matrix-vector operations: matrix vector multiply, etc
 - m=n², f=2*n², q², less overhead
 - somewhat faster than BLAS1
 - BLAS3 (late 1980s): 9 different operations
 - matrix-matrix operations: matrix matrix multiply, etc
 - m <= 3n^2, f=O(n^3), so q=f/m can possibly be as large as n, so BLAS3 is potentially much faster than BLAS2
- Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
 - See www.netlib.org/{lapack,scalapack}
 - More later in the course

CS267 - Lecture 2 91

BLAS speeds on an IBM RS6000/590

Peak speed = 266 Mflops

Matrices start in DRAM Memory

> BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

Some reading for today

- Sourcebook Chapter 3, (note that chapters 2 and 3 cover the material of lecture 2 and lecture 3, but not in the same order).
- "Performance Optimization of Numerically Intensive Codes", by Stefan Goedecker and Adolfy Hoisie, SIAM 2001.
- Web pages for reference:
 - BeBOP Homepage
 - ATLAS Homepage
 - <u>BLAS</u> (Basic Linear Algebra Subroutines), Reference for (unoptimized) implementations of the BLAS, with documentation.
 - <u>LAPACK</u> (Linear Algebra PACKage), a standard linear algebra library optimized to use the BLAS effectively on uniprocessors and shared memory machines (software, documentation and reports)
 - <u>ScaLAPACK</u> (Scalable LAPACK), a parallel version of LAPACK for distributed memory machines (software, documentation and reports)
- Tuning Strassen's Matrix Multiplication for Memory Efficiency Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck in Proceedings of Supercomputing '98, November 1998 postscript
- Recursive Array Layouts and Fast Parallel Matrix Multiplication" by Chatterjee et al. IEEE TPDS November 2002.
- Many related papers at bebop.cs.berkeley.edu

Summary of Lecture 2

- Details of machine are important for performance
 - Processor and memory system (not just parallelism)
 - Before you parallelize, make sure you're getting good serial performance
 - What to expect? Use understanding of hardware limits
- There is parallelism hidden within processors
 - Pipelining, SIMD, etc
- Machines have memory hierarchies
 - 100s of cycles to read from DRAM (main memory)
 - Caches are fast (small) memory that optimize average case
- Locality is at least as important as computation
 - Temporal: re-use of data recently used
 - Spatial: using data nearby to recently used data
- Can rearrange code/data to improve locality
 - Goal: minimize communication = data movement
 CS267 Lecture 2

Class Logistics

- Make sure you're set up in bcourses
 - https://bcourses.berkeley.edu/courses/1480197/
- Piazza:
 - piazza.com/berkeley/spring2019/cs267
- Homework 0 and 1 posted on web site
 - HW0 due Wednesday Jan 30 (9am)
- Fill in on-line class survey by midnight tonight
 - We need this to assign teams for Homework 1