UW-Madison WRCCS

MELCOR Analysis of a Scaled NGNP Reactor Cavity Cooling System Experiment

Troy C. Haskin Michael Corradini Jae Oh Casy Tompkins

MELCOR Cooperative Assessment Program (MCAP)

September 17, 2015

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tank Nodalization

Heat Loss Considerations

Interphase friction

- 1 Motivation
- 2 Experiment
- 3 Modeling
 - Tank Nodalization
 Heat Loss Considerations
 Interphase friction
- 4 Conclusion

Motivation Experiment Modeling Conclusion

Reactor Cavity Cooling System (RCCS)

- Ultimate heat sink for reactor decay heat
- Most designed for passive cooling
- Two popular fluids: air and water

Table: List of RCCS designs from Experimental Studies of NGNP Reactor Cavity Cooling System With Water [pdf].

Reactor	Coolant	Mode	Country	Power [MW]
HTTR	Water	Forced	Japan	30
HTR-10	Water	Natural	China	10
PBMR	Water	Natural	South Africa	265
GT-MHR	Air	Natural	Russia	600
MHTGR	Air	Natural	USA	450

PBMR RCCS

Figure: From "PBMR Auxiliary Systems" [pdf], part of Summary of Public Meeting with PBMR (PTY) LTD [nrc.gov].

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tank Nodalization
Heat Loss Considerations
Interphase friction

WRCCS Purpose

 Characterize both single and two-phase behavior of a scaled-version of the Reactor Cavity Cooling System (RCCS) with water coolant operating via natural circulation.

WRCCS Facility

Motivation Experiment Modeling Conclusion

WRCCS Features

- \sim 330 gallon tank, rated for 2 atm
- Heater Array
 - maximum ∼40 kW radiant power
 - 34 heaters, 17×2 array
- Instrumentation
 - Flow meter (total system flow rate)
 - Numerous thermocouples
 - Differential and absolute pressure

Motivation Experiment Modeling Conclusion

WRCCS Features

- \sim 330 gallon tank, rated for 2 atm
- Heater Array
 - maximum ~40 kW radiant power
 - 34 heaters, 17×2 array (old)
 - 36 heaters, 9×4 array (new)
- Instrumentation
 - Flow meter (total system flow rate)
 - Numerous thermocouples
 - Differential and absolute pressure
 - Void mesh sensors (new)

Boiling Features

- A. Single-phase heat-up
 - B. Boiling incipience
- C. Boiling oscillations
- D. Continuous circulations
- E. Geysering

Figure: Source: "Influences of boil-off on the behavior of a two-phase natural circulation loop", 2014., *Int. J. of Multiphase Flow*, 60, 135-148.

Benchmark Test

- Chose the most mature test for benchmark modeling.
- Parameters
 - Initial tank fill: 60%
 - Power profile: Uniform
 - No active cooling

Figure: Energy balance and mass flow rate of benchmark

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tank Nodalization
Heat Loss Considerations
Interphase friction

Development

- Started from simple adiabatic design
- Investigated several other variations:
 - Tank Nodalization
 - Heat losses
 - Reduced power
 - Heater box losses and air infiltration
 - Heat box and network piping losses
 - Interphase friction

Base Nodalization: Network

Not to-scale

Motivation Experiment **Modeling** Conclusion

Base Nodalization: Heater Box

Top View

Not to-scale

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tank Nodalization

Heat Loss Considerations
Interphase friction

Variations

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tall Nodalization

Heat Loss Considerations

Interphase friction

Adiabatic

Energy losses

- \bullet Experiment is not adiabatic: \sim 4.5 kW lost in test section
- Two different paths were considered
 - Reduced power: artificially lower heater power
 - Heater box loss: add convective losses and air infiltration to heater box

Reduced Power (B)

Heater Box Loss (C)

Reduced Power/Convective Losses (D)

Piping Loss Comparison

- Additional network piping losses quantified: \sim 2 kW
- Doesn't affect temperature rise
- Does affect period and average mass flow rate

Piping Loss Comparison

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tank Nodalization

Heat Loss Considerations

Interphase friction

- MELCOR's interphase friction term was considered to account for period discrepancy
- Adjusted FL_LME in piping to examine any effects

Interphase friction

- 1 Motivation
- 2 Experiment
- 3 Modeling

Tank Nodalization
Heat Loss Considerations
Interphase friction

- MELCOR is able to qualitatively model the Heat-Up and Boiling Oscillation regimes
- Period/Amplitude discrepancies still exist
 - Experiment/Model peak-to-trough amplitude [kg/s]: 1 / 4
 - Experiment/Model peak-to-peak period [min]: 1.7 / 1
- Discrepancy may imply some two-phase dissipation terms are missing

Current and Future Work

- Installed Void Mesh Sensors in boiling region of experiment
- Use data to infer relationships among system variables (e.g., pressure losses, voiding, and mass flow rate).

Conclusion

Questions