HABERMAN SURVIVAL DATASET

```
In [37]:
```

```
#At first import required packages..
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
#Load haberman.csv into a pandas dataFrame.
haberman = pd.read_csv("haberman.csv")
```

Here we retreive the haberman dataset using pandas.read_csv method as dataset is a csv file..

```
In [9]:
```

```
# no.of data-points and features
print (haberman.shape)
(306, 4)
```

Here we will find out no.of points,features,coloumns,rows... in the given dataset..

```
In [27]:
```

```
# column names of our dataset
print (haberman.columns)

Index(['age', 'year', 'nodes', 'status'], dtype='object')
```

In [28]:

 $\begin{tabular}{ll} \#We & describe the databse to observe values like mean, std etc and plot dataset according to those values \\ haberman.describe() \end{tabular}$

Out[28]:

	age	year	nodes	status
count	306.000000	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144	1.264706
std	10.803452	3.249405	7.189654	0.441899
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	60.750000	65.750000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

In [29]:

```
\# Here we check the datatypes of all features or coloumns to avoid confusion and gain clarity... haberman.dtypes
```

Out[29]:

```
age int64
year int64
```

```
المال المالية
```

```
In [30]:
```

In the above code we find no.of survivals and non-survivals those are denoted by 1 & 2...

This is 2D scatter plot

```
In [31]:
```

```
#2D scatter plot:
haberman.plot(kind='scatter', x='age', y='year',c='b');
plt.title('year vs age ')
plt.show()
```


Here we can see that nothing is clear, the data-points are widely spread, but we can say that most of operations are done on people with age 40 to 70 approximately.so let's try with ano ther features..

In [32]:

```
#2d scatter plot with nodes on y-axis and age on x-axis as features..
haberman.plot(kind='scatter', x='age', y='nodes',c='b');
plt.title('nodes vs age ')
plt.show()
```


Here we observe that majority of data points are found at axial nodes=0

```
In [33]:
```

```
haberman.plot(kind='scatter', x='year', y='nodes',c='g') ;
plt.title('nodes vs year ')
plt.show()
```


Here we can say that more number of operations are done between 1960-66.

In [34]:

```
# 2D Scatter plot with color-coding for each survival types.
sns.set_style("whitegrid");
sns.FacetGrid(haberman, hue="status", size=7) \
    .map(plt.scatter, "age", "nodes") \
    .add_legend();
plt.show()
```


Observation(s): 1.Using age and nodes features, we cannot distinguish 1 and 2... 2.Seperating 1 and 2 is much harder as they have humongous overlap. 3.But patients with age of 50 years are more likely to be survived..

```
In [35]:
```

```
sns.set_style("whitegrid");
sns.FacetGrid(haberman, hue="status", size=6) \
```


Observation(s): 1.Using age and years features, we cannot distinguish 1 and 2. 2.Seperating 1 and 2 is much harder as they have considerable overlap. 3.But we can observe that in 1965 more no.of operations are not successful..

3D SCATTER PLOT

pair plot

```
In [38]:
```

```
# pairwise scatter plot: Pair-Plot
#Here in the plot diagonal plots are called pdf's
plt.close()
sns.pairplot(haberman, hue="status", vars=["age", "year", "nodes"], size=5)
plt.show()

### pairwise scatter plot: Pair-Plot
### pairwise scatter plot: Pairwise scatter
### pairwis
```


Observations

- 1. age and nodes are the most useful features to identify various flower types.
- 2. We could find-out "if-else" conditions to build a simple model to classify the survival types.

Histogram, Pdf, Cdf

```
In [39]:
```

```
sns.FacetGrid(haberman, hue="status", size=5) \
    .map(sns.distplot, "age") \
    .add_legend();
plt.show();
```


Observations:- 1.Here we can observe that most of the patients between age 40-60 are likely to be dead. 2.We can also observe that patients are very proportionate to be survived before 40 age..

```
In [41]:
```

```
sns.FacetGrid(haberman, hue="status", size=5) \
   .map(sns.distplot, "year") \
   .add_legend();
plt.show();
```


Here we can observe that Large no.of patients are dead whose operation is done between year 1958-67

In [70]:

```
sns.FacetGrid(haberman, hue="status", size=5) \
   .map(sns.distplot, "nodes") \
   .add_legend();
plt.show();
```


we can observe that patients with axial nodes as 0 are more likely to be survived...

In [42]:

```
# Get the data elements having Survival status is 1
surv = haberman[haberman["status"] == 1]
# Get the data elements having Survival status is 2
non_surv = haberman[haberman["status"] == 2]
```

In [50]:

```
#Get the counts and bin edges of axillary nodes whose survival status is 1
#Reference for this code snippet is this link below..
#https://www.kaggle.com/ashteotia/eda-on-haberman-survival-dataset
cnts, bn_edgs = np.histogram(surv["nodes"], bins=30, density=True)
print (cnts)
print (bn_edgs)

#Get the counts and bin edges of axillary nodes whose survival status is 2
non_cnts, non_bn_edgs = np.histogram(non_surv["nodes"], bins=30, density=True)
print (non_cnts)
print (non_ents)
print (non_bn_edgs)

#PDF and CDF of survived
pdf_axilry_survd = cnts/sum(cnts)
cdf_axilry_survd = np.cumsum(pdf_axilry_survd)

#PDFand CDF of non survived
pdf_axilry_non_survd = non_cnts/sum(non_cnts)
```

```
plt.plot(bn_edgs[1:], pdf_axilry_survd)
plt.plot(bn_edgs[1:], cdf_axilry_survd)
plt.plot(non_bn_edgs[1:], pdf_axilry_non_survd)
plt.plot(non_bn_edgs[1:], cdf_axilry_non_survd)
plt.plot(non_bn_edgs[1:], cdf_axilry_non_survd)
#plt.xticks(np.linspace(0,50,13))
plt.xlabel("axillary node")
plt.legend(["survived greater than 5 years PDF", "survived greater than 5 years CDF", "survived not greater than 5 years PDF", "survived not greater than 5 years CDF"])
plt.show()
```

```
[0.43478261 0.08115942 0.02898551 0.0173913 0.01449275 0.02028986
0.0057971 \quad 0.0057971 \quad 0.00289855 \quad 0.0115942 \quad 0.00289855 \quad 0.00289855
0.00289855 0.00289855 0.0057971 0.
                                             0.00289855 0.
0.00289855 0.00289855 0.
                                                         0.
                                  0.
                                             0.
                                                         0.00289855]
0.
           0.
                      0.
                                  0.
                                             0.
[ 0.
             1.53333333 3.06666667 4.6
                                                  6.13333333 7.66666667
 9.2
             10.73333333 12.26666667 13.8
                                                 15.33333333 16.86666667
            19.93333333 21.46666667 23.
                                                 24.53333333 26.06666667
27.6
             29.13333333 30.66666667 32.2
                                                 33.73333333 35.26666667
36.8
            38.33333333 39.86666667 41.4
                                                  42.93333333 44.46666667
46.
           ]
[0.19230769 \ 0.08547009 \ 0.04985755 \ 0.02136752 \ 0.02849003 \ 0.03561254
0.02849003\ 0.02849003\ 0.02136752\ 0.00712251\ 0.01424501\ 0.00712251
0.01424501 0.02849003 0.
                                0.
                                             0.
                                                         0.
           0.
                       0.00712251 0.
                                             0.
0.
                       0.
                                  0.
                                             0.
                                                         0.00712251]
            1.73333333 3.46666667 5.2
                                                  6.93333333 8.66666667
[ 0.
             12.13333333 13.86666667 15.6
                                                 17.33333333 19.06666667
10.4
            22.53333333 24.26666667 26.
                                                 27.73333333 29.46666667
20.8
            32.93333333 34.66666667 36.4
                                                 38.13333333 39.86666667
31.2
41.6
            43.33333333 45.06666667 46.8
                                                 48.53333333 50.26666667
52.
           ]
```


In [44]:

```
# statistical description of the elements in data whose Survival status is 1
Non_Survived = haberman[haberman["status"] == 1]
print ("Summary of patients who are survived more than 5 yeras")
Non_Survived.describe()
```

Summary of patients who are survived more than $5\ \mathrm{yeras}$

Out[44]:

	age	year	nodes	status
count	225.000000	225.000000	225.000000	225.0
mean	52.017778	62.862222	2.791111	1.0
std	11.012154	3.222915	5.870318	0.0
min	30.000000	58.000000	0.000000	1.0
25%	43.000000	60.000000	0.000000	1.0
50%	52.000000	63.000000	0.000000	1.0

```
age vear nodes status
```

In [45]:

```
# statistical description of the elements in data whose Survival status is 2
Non_Survived = haberman[haberman["status"] == 2]
print ("Summary of patients who are not survived more than 5 yeras")
Non_Survived.describe()
```

Summary of patients who are not survived more than 5 yeras

Out[45]:

		age	year	nodes	status
cou	ınt	81.000000	81.000000	81.000000	81.0
me	an	53.679012	62.827160	7.456790	2.0
5	std	10.167137	3.342118	9.185654	0.0
n	nin	34.000000	58.000000	0.000000	2.0
2	5%	46.000000	59.000000	1.000000	2.0
50	0%	53.000000	63.000000	4.000000	2.0
75%	61.000000	65.000000	11.000000	2.0	
m	ax	83.000000	69.000000	52.000000	2.0

In [46]:

```
sns.boxplot(data=haberman, x="status", y="nodes")
plt.show()
```


Using this boxplot we can consider that as no.of nodes increases it is more likely to die..

In [47]:

```
sns.violinplot(data=haberman, x="status", y="age")
plt.show()
```


status

In [48]:

```
sns.violinplot(data=haberman, x="status", y="year")
plt.show()
```


It is hard to predict through above 2 violin plots..

In [49]:

```
\verb|sns.violinplot(data=haberman, x="status", y="nodes")| \\ \verb|plt.show()|
```


Observation:- 1.we can observe that if axial nodes=0 then patients are more likely to be alive. 2.we can observe that as axial nodes increases the pateints are more likely to die..

FINAL CONCLUSION

1.Here axial nodes are most recommendable feature in our dataset. 2.It is evident by showing that nodes>1 are very low likely to be survived. 3.It is also observed that if nodes=0 then patients are more likely to be survived.