Wafer Defect Analysis Report

Author: Devin Richmond

Date: June 2025

Executive Summary

This report summarizes the analysis of wafer inspection data from a semiconductor manufacturing process. We cleaned and prepared data for 25,000+ wafer inspections, then examined key quality metrics. Our findings highlight:

- An overall failure rate of 41.9% and average defects of 2.95 per wafer
- A monthly failure rate stable around 42%, with a peak of 44% in July 2024 and a dip to 40% in May 2025
- Tools **DUV-2100** and **ETCH-V9** showing the highest failure rates (43% and 42%) and defect counts
- Batches **BAT022**, **BAT004**, and **BAT008** having the worst performance (44% failure)
- Particle contamination and overlay misalignment as the top defect types, accounting for 62% of all failures

Recommendations include focusing on contamination control, tool maintenance for DUV-2100, and root cause analysis for high-failure batches.

1. Introduction

Semiconductor wafers undergo multiple process steps that can introduce defects. Monitoring wafer quality is critical to yield and customer satisfaction. This project uses a simulated but realistic dataset to demonstrate how a data analyst would: 1) clean raw inspection data, 2) calculate quality metrics, and 3) build a clear dashboard with actionable insights.

Project Goal: Provide a snapshot of wafer quality and identify the main areas for process improvement in a semiconductor fab.

2. Data & Methodology

2.1 Data Description

- **Source:** Simulated wafer inspection records (25,000+ rows)
- **Key columns:** wafer_id, batch_id, tool_id, defect_type, defect_count, inspection_result (Pass/Fail), inspection_date

2.2 Data Cleaning Highlights

- Removed or flagged rows with missing wafer IDs, tool IDs, defect counts, and dates
- Corrected logical errors: 113 rows with no defect but marked Fail were set to Pass with defect count = 0
- Excluded outliers: defect counts above 50 were flagged and removed from analysis
- Excluded rows with invalid dates (error_date)
- Ensured no duplicate rows remained

A final cleaned data sheet contains only valid, analysis-ready records.

3. Key Performance Indicators (KPIs)

Value
24,697
58.1%
41.9%
2.95
50
Particle contamination (4,999)

These KPIs provide a quick overview of overall process quality.

4. Monthly Trend Analysis

A line chart of monthly failure rates shows:

- **July 2024:** Highest failure rate at 44%
- May 2025: Lowest failure rate at 40%
- Overall trend stable around 42%

5. Tool Performance

5.1 Failure Rate by Tool

Tool ID Failure Rate
DUV-2100 43.0%
ETCH-V9 42.0%
CVD-Z5 42.0%
CMP-X7 41.9%
EUV-3000 41.0%

DUV-2100 shows the highest failure rate and should be reviewed for calibration and maintenance.

5.2 Average Defects by Tool

Tool ID Avg Defects
DUV-2100 3.00
ETCH-V9 2.98
CVD-Z5 2.95
CMP-X7 2.91
EUV-3000 2.88

High defect counts on DUV-2100 and ETCH-V9 align with their failure rates.

6. Batch Performance

Top 10 batches by failure rate:

Batch ID Failures Passes Failure Rate

BAT022 352 440 44.0% 44.0% BAT004 339 425 BAT008 350 442 44.0% BAT012 369 470 44.0% BAT006 362 467 44.0% 43.0% BAT011 353 464

BAT015 344	455	43.0%
BAT007 349	462	43.0%
BAT017 350	464	43.0%
BAT010 351	467	43.0%

These batches may have had local process issues or material variability and warrant further root cause analysis.

7. Defect Type Analysis

Defect Type Fail Count
Particle contamination 3,825
Overlay misalignment 2,873
Etch residue 1,497
Scratches 1,230
Photoresist peeling 922

Particle contamination and overlay misalignment account for nearly 62% of all failures, indicating a strong need to improve cleanroom controls and overlay accuracy.

8. Business Recommendations

- 1. **Contamination Control:** Enhance cleanroom protocols and filter maintenance to reduce particle contamination.
- 2. **Tool Maintenance:** Schedule detailed calibration and preventive maintenance for DUV-2100 and ETCH-V9.
- 3. **Batch Process Review:** Investigate high-failure batches (e.g., BAT022) for process deviations, material lots, or operator practices.
- 4. **Alignment Procedures:** Review overlay alignment procedures and tool settings to lower misalignment defects.

Appendix

- Detailed cleaning log and intermediate flag columns are available in the Cleaning_Log sheet.
- All PivotTables and charts used for analysis are on separate sheets for transparency.