Proteomics Informatics – Protein identification I: searching protein sequence collections and significance testing (Week 4)

Peptide Mapping - Mass Accuracy

Identification - Peptide Mass Fingerprinting

ProFound - Search Parameters

ProFound - Protein Identification by Peptide Mapping

$$P(k \mid DI) \propto P(k \mid I) \frac{(N-r)!}{N!} \prod_{i=1}^{r} g_i \left(\frac{m_{\text{max}} - m_{\text{min}}}{2\sigma} \right)^r \exp \left| \frac{r}{2} - \frac{\sum_{i=1}^{r} (m_i - m_{i0})^2}{2\sigma^2} \right| F_{pattern}$$

ProFound Results

Protein Candidates

RESIDUE NUMBER

Measured Mass(M)	Avg/ Mono	Computed Mass	Error	•Resi		Misse Cut	d Peptide seque:
908.490	M	908.482	8	179	186	0	AGVEHQLR
938.503	M	938.497	6	151	158	0	FGNVYLAR
1064.593	M	1064.583	9	179	187	1	AGVEHQLRR
1079.618	M	1079.608	9	49	58	0	ILGPSNVPQR
1109.590	M	1109.582	7	188	196	0	EVEIQSHLR
1123.622	M	1123.613	7	149	158	1	GKFGNVYLAR
1190.687	M	1190.681	5	383	392	0	GVLEHPWIIK
1227.570	M	1227.567	2	203	212	0	LYGYFHDASR
1265.691	M	1265.683	6	187	196	1	REVEIQSHLR
1493.792	M	1493.794	- 2	174	186	1	SQLEKAGVEHQLR
1528.749	M	1528.742	5	279	292	0	IADFGWSVHAPSSR

ERR (PPM)

Peptide Mapping - Mass Accuracy

Peptide Mapping - Database Size

Expectation Values

Peptide mapping example:

S. Cerevisiae 4.8e-7

Fungi 8.4e-6

All Taxa 2.9e-4

Database size

Missed Cleavage Sites

Expectation Values

Peptide mapping example:

u=1 4.8e-7

u=2 1.1e-5

u=4 6.8e-4

Peptide Mapping - Partial Modifications

	Searched Without Modifications	Searched With Possible Phosphorylation of S/T/Y
DARPP-32	0.00006	0.01
CFTR	0.00002	0.005

Even if the protein is modified it is usually better to search a protein sequence database without specifying possible modifications using peptide mapping data.

Peptide Mapping - Ranking by Direct Calculation of the Significance

General Criteria for a Good Protein Identification Algorithms

The response to random input data should be random.

Maximum number of correct identification and minimum number of incorrect identifications for any data set.

Maximal separation between scores for correct identifications and the distribution of scores for random matching proteins for any data set.

The statistical significance of the results should be calculated.

The searches should be fast.

Response to Random Data

Peptide Fragmentation

Identification - Tandem MS

SGFLEEDELK

S G F E E D Ε K 88 145 534 292 405 778 663 907 1020 1166 b ions

	K	L	Е	D	Е	Е	L	F	G	S
b ions	1166	1020	907	778	663	534	405	292	145	88
y ions	147	260	389	504	633	762	875	1022	1080	1166

Amino acid masses

1-letter	3-letter	Chemical	Monois	Average
code	code	formula	otopic	Average
Α	Ala	C ₃ H ₅ ON	71.0371	71.0788
R	Arg	C ₆ H ₁₂ ON ₄	156.101	156.188
N	Asn	$C_4H_6O_2N_2$	114.043	114.104
D	Asp	$C_4H_5O_3N$	115.027	115.089
С	Cys	C ₃ H ₅ ONS	103.009	103.139
Е	Glu	C ₅ H ₇ O ₃ N	129.043	129.116
Q	Gln	$C_5H_8O_2N_2$	128.059	128.131
G	Gly	C ₂ H ₃ ON	57.0215	57.0519
Н	His	C ₆ H ₇ ON ₃	137.059	137.141
I	lle	C ₆ H ₁₁ ON	113.084	113.159
L	Leu	C ₆ H ₁₁ ON	113.084	113.159
K	Lys	$C_6H_{12}ON_2$	128.095	128.174
М	Met	C ₅ H ₉ ONS	131.04	131.193
F	Phe	C ₉ H ₉ ON	147.068	147.177
Р	Pro	C ₅ H ₇ ON	97.0528	97.1167
S	Ser	$C_3H_5O_2N$	87.032	87.0782
Т	Thr	C ₄ H ₇ O ₂ N	101.048	101.105
W	Trp	C ₁₁ H ₁₀ ON ₂	186.079	186.213
Υ	Tyr	C ₉ H ₉ O ₂ N	163.063	163.176
V	Val	C ₅ H ₉ ON	99.0684	99.1326

	260	292	389	405	504	534	633	663	762	778	875	907	1020	1022	1079
260		32	129	145	244	274	373	403	502	518	615	647	760	762	819
292			97	113	212	242	341	371	470	486	583	615	728	730	787
389				16	115	145	244	274	373	389	486	518	631	633	690
405					99	129	228	258	357	373	470	502	615	617	674
504						30	129	159	258	274	371	403	516	518	575
534							99	129	228	244	341	373	486	488	545
633								30	129	145	242	274	387	389	446
663									99	115	212	244	357	359	416
762										16	113	145	258	260	317
778											97	129	242	244	301
875												32	145	147	204
907													113	115	172
1020														2	59
1022															57

	260	292	389	405	504	534	633	663	762	778	875	907	1020	1022	1079
260		32	129	145	244	274	373	403	502	518	615	647	760	762	819
292			97	113	212	242	341	371	470	486	583	615	728	730	787
389				16	115	145	244	274	373	389	486	518	631	633	690
405					99	129	228	258	357	373	470	502	615	617	674
504						30	129	159	258	274	371	403	516	518	575
534							99	129	228	244	341	373	486	488	545
633								30	129	145	242	274	387	389	446
663									99	115	212	244	357	359	416
762										16	113	145	258	260	317
778											97	129	242	244	301
875												32	145	147	204
907													113	115	172
1020														2	59
1022															57

		260	292	389	405	504	534	633	663	762	778	875	907	1020	1022	1079
\longrightarrow	260		32	Œ	145	244	274	373	403	502	518	615	647	760	762	819
\longrightarrow	292			X		212	242	341	371	470	486	583	615	728	730	787
\longrightarrow	389				16		145	244	274	373	389	486	518	631	633	690
\longrightarrow	405					X	E	228	258	357	373	470	502	615	617	674
\rightarrow	504						30	E	159	258	274	371	403	516	518	575
\longrightarrow	534							X	E	228	244	341	373	486	488	545
\longrightarrow	633								30	E	145	242	274	387	389	446
\longrightarrow	663		SG	F(I/	L)EE	EDE	(I/L)			X	0	212	244	357	359	416
\rightarrow	762		1166	6 – 1	020	– 1 8	3 =	128			16		145	258	260	317
\longrightarrow	778			=	⇒K (or Q						X	E	242	244	301
\longrightarrow	875	,	SGF	(I/L)	EEC	DE(I/	'L)(<mark>K</mark>	(/Q)					32	145	F	204
\longrightarrow	907	L							┸					()		172
\longrightarrow	1020	L							_						2	59
\rightarrow	1022															G

Challenges in de novo sequencing

Neutral loss (-H₂O, -NH₃)

Modifications

Background peaks

Incomplete information

Tandem MS - Database Search

Algorithms

Comparing and Optimizing Algorithms

MS/MS - Parent Mass Error and Enzyme Specificity

Expectation Values

MS/MS example:

 Δ m=2, Trypsin 2.5e-5

 Δ m=100, Trypsin 2.5e-5

 Δ m=2, non-specific 7.9e-5

 Δ m=100, non-specific 1.6e-4

Sequest

X! Tandem - Search Parameters

http://www.thegpm.org/

X! Tandem - Search Parameters

X! Tandem - Search Parameters

spectra

sequences

Generic search engine

Test all cleavages, modifications, & mutations for all sequences

Conventional, single stage searching

Some hard problems in MS/MS analysis in proteomics

Allowing for unanticipated peptide cleavages

- e.g., chymotryptic contamination in trypsin
- calculation order ~ 200 × tryptic cleavage
- "unfortunate" coefficient

Determining potential modifications

- e.g., oxidation, phosphorylation, deamidation
- calculation order 2ⁿ
- NP complete

Detecting point mutations

- e.g., sequence homology
- calculation order 18^N
- NP complete

Multi-stage searching

Search Results

1 match for GPM33080001549,

Display: model 🗷 | metadata 🗷 | group 🖼 | peptide 🗷 | aaa 🗷 | gel | GO | BTO | path | snaps | mh | ζ | wiki

BRENDA cell culture: none BRENDA tissue: none CELL cell type: none GO subcellular: none

institution: University of Toronto

name: Kislinger Lab

project: In-depth Proteomic Analyses of Direct Expressed Prostatic Secretions

project comment: Prostatic secretion 4, Tranche ♥ Fluids that are proximal to organs contain a repertoire of secreted proteins and shed cells reflective of the physiological state of that tissue, and thus represent potential sources for biomarker discovery and investigation of tissue-specific biology. Proximal fluids of the prostate are seminal plasma and expressed prostatic secretions (EPS). MudPIT-based proteomics was applied to EPS obtained from men with prostate cancer and resulted in the identification of 916 proteins. J. Prot. Res. DOI 10.1021/pr1001498 (PubMed).

Best models for GPM33080001549 Show all , or display as hgnc ▼ go

Search Results

```
■ ALB: albumin

log(e) = -2281.6 [Source: HGNC 399]

IPR001703 Alpha-fetoprotein

IPR000264 Serum albumin

IPR020858 Serum albumin-like

IPR020857 Serum albumin CS

IPR014760 Serum albumin N

IPR021177 Serum albumin subgroup
```

1	mkwvtfisl <mark>lf</mark> lfssaysrgvf <mark>r</mark> rdahksevah <mark>r</mark> fkdlgeenfkalvliafaqyl <mark>g</mark> qcpf	60
	MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPF	
61	edhvklvnevtefaktc <mark>v</mark> adesaenc <mark>d</mark> k <mark>sl</mark> htlfgdklctva <mark>t</mark> lretygemadccakqep	120
	EDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEP	
121	ernecfl <mark>g</mark> hkddnpnlp <mark>r</mark> lvrp <mark>e</mark> vd <mark>v</mark> mctaf <mark>h</mark> dneet <mark>f</mark> lkkyl <mark>y</mark> eiarrhpyfyapellf	180
	ERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLF	
181	fakrykaafteccqaadk <mark>a</mark> a <mark>c</mark> ll p kldel <mark>r</mark> deg <mark>ka</mark> ss <mark>a</mark> k <mark>q</mark> rlkcaslqkfgerafka <mark>w</mark> av	240
	FAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAV	
241	arlsqrfpkaefaevsklvtdltkvhtecchgdllecaddradlakyicengdsissklk	300
	ARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLK	
301	eccekpllekshciaevendempadlpslaadfveskdvcknyaeakdvflgmflyeyar	360
	ECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYEYAR	
361	rhpdysvvlllrlakty <mark>e</mark> ttl <mark>ek</mark> ccaa <mark>ad</mark> phe <mark>c</mark> ya <mark>k</mark> vf <mark>de</mark> fkplv <mark>e</mark> ep qn likqncelfe	420
	$\tt RHPD\underline{Y}SVVLLLR\underline{L}\underline{A}KTYETTLEKCCAAADPHEC\underline{Y}AKVFDEFKPLVEEPQNLIKQ\underline{N}CELFE$	
421	$qlge_{\underline{v}}$ $kfqnallv_{\underline{r}}$ $ytkkvpqvstptlvevsrn_{\underline{l}}$ $gkvgskcckhpeakrmpcae_{\underline{d}}$ $ylsvv$	480
	QLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVV	
481	lnqlcvlhektpvsdrvtkccteslvnrrpcfsalevdetyvpkefnaetftfhadictl	540
	LNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTL	
541	sekerqikkqtalve <mark>lv</mark> kh <mark>k</mark> pka <mark>tk</mark> eq <mark>lk</mark> avmddfaafvekcckaddketcfaeegkklv	600
	SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLV	
601	aas <mark>q</mark> aalgl	609
	AASQAALGL	

Sequence Annotations

show legend @ mydgp lower case sequence is the latest sequence from ENSEMBL for this accession number rekigee lower case transition from black to blue letters indicates an exon boundary; a red residue indicates a triplet shared between exons MVDOP upper case sequence is the protein sequence originally analyzed dydnas synonymous SNP with no residue change and non-synonymous SNP which changes the residue TIME residues part of at least one observed peptide domain TREEO residues predicted to be difficult to observe by standard techniques HFOL residue found is a single amino-acid polymorphism AYNG residue found is chemically modified Complete mods: Carbamidomethyl@C, Carbamidomethyl@U Potential mods: Oxidation@M, Label:+6 Da@K, Label:+6 Da@R Oxidation@M, Oxidation@W, Deamidated@N, Deamidated@Q iii. Dioxidation@M. Dioxidation@W Protein-specific PTMs: Phospho@S, Phospho@T, Phospho@Y

Ammonia-loss@Q, Ammonia-loss@C, Dehydrated@E (peptide)

ragged, Acetyl (protein).

N-terminal:

Search Results

■ Iden	tified	Peptides
--------	--------	-----------------

spectrum	log(e)	log(I)	m+h	delta	ζ	sequence	n
14014.1	-7.4	3.34	1149.5759	-0.0007	2/5	vfrr ²⁵ DAHKSEVAHR ³⁴ fkdl	(5097)
16362.1	-2.1	3.82	1006.5177	0.0018	2/5	rrda ²⁷ HKSEVAHR ³⁴ fkdl	(206)
6222.1	-5.4	4.10	1226.6052	0.0025	2/3	vahr ³⁵ FKDLGEENFK ⁴⁴ alvl	(55404)
3243.1	-2.8	5.80	1226.6052	0.0024	3/3	vahr ³⁵ FKDLGEENFK ⁴⁴ alvl	(55404)
18750.1	-8.6	3.73	2533.2908	-0.0002	2/3	enfk ⁴⁵ ALVLIAFAQY LQQ <mark>C</mark> PFEDHV K ⁶⁵ lvne	(84854)
						45 MUNITARA OVI LOOG DEED UNI	

Column notes.

- spectrum: written in the form "X.Y", where X is a unique identifier for a
 particular tandem mass spectrum in this data set and Y is an identifier for this
 particular sequence solution.
- log(e): the base-10 log of the expectation that any particular peptide assignment was made at random (E-value).
- log(I): the base-10 log of the sum of the fragment ion intensities in the tandem mass spectrum used to make this assignment.
- m+h: the calculated mass of the protonated parent ion for this sequence assignment.
- delta: the difference between the measured and calculated protonated parent ion masses.
- ζ: the ratio of the measured charge of the parent ion to the number of basic sites in the assigned peptide sequence.
- sequence: the sequence of the assigned peptide sequence. The sequences immediately N-terminal and C-terminal to the assigned peptide in the protein sequence are also shown.
- 8. n: the number of observations of this peptide sequence in GPMDB.
- o: the frequency of observation for this peptide in this protein (only available for some species).

Display modes:

- best: the peptide assignment with the best expectation value for a particular sequence and parent ion charge is shown.
- 2. all: all peptide assignments are shown.
- modified: all peptide assignments that have at least one modified residue are shown.
- homologues: all peptides assignments unique to this protein sequence are shown.

nfk	K ⁶⁵ lvne	(84854)
fk ⁴⁵	ALVLIAFAQY LQQ <mark>C</mark> PFEDHV	(84854)
al ⁴⁷	VLIAFAQYLQ QCPFEDHVK ⁶⁵ lvne	(1004)
lv ⁴⁸	LIAFAQYLQQ CPFEDHVK 65 lvne	(1537)
lvl ⁴⁹	IAFAQYLQQC PFEDHVK 65lvne	(2586)
vli ⁵⁰	AFAQYLQQCP FEDHVK 65lvne	(1886)
lia ⁵¹	FAQYLQQCPF EDHVK 65Ivne	(1377)
lia ⁵¹	FAQYLQQCPF EDHVK 65Ivne	(1377)
af ⁵²	AQYLQQCPFE DHVK 65 lvne	(3958)
af ⁵²	AQYLQQCPFE DH 63vklv	(30)
fa ⁵³	QYLQQCPFED HVK 65 lvne	(777)
aq ⁵⁴	YLQQCPFEDH VK 65 lvne	(1701)
aq ⁵⁴	YLQQCPFEDH VK 65 lvne	(1701)
aq ⁵⁴	YLQQCPFEDH ⁶³ vklv	(24)
ду ⁵⁵	LQQCPFEDHV K 65Ivne	(1287)

Search Results

130.086 129.102 +1,21616,716 1599.690 1598.706

 V_{13}

147.113

Steps in making an Annotated Spectrum Library (ASL):

- 1. Find the best 10 spectra for a particular sequence, with the same PTMs and charge.
- 2. Add the spectra together and normalize the intensity values.
- 3. Assign a "quality" value: the median expectation value of the 10 spectra used.
- 4. Record the 20 most intense peaks in the averaged spectrum, it's parent ion z, m/z, sequence, protein accessions & quality.

Spectrum Library Characteristics - Peptide Length

Spectrum Library Characteristics - Protein Coverage

Results: 4 peaks selected, 1 peak missed

Apply a hypergeometric probability model:

- 25 possible m/z values;
- 5 peaks in the library spectrum; and
- 4 selected by the test spectrum.

Matches	Probability
1	0.45
2	0.15
3	0.016
4	0.00039
5	0.0000037

If you have 1000 possible m/z values and 20 peaks in test and library spectrum?

Experimental Mass Spectrum

Best search result

Library of Assigned Mass Spectra

X! Hunter

- X! Tandem 2013.02.01 successfully passes on-line tests
 The testing phase of the most recent X! Tandem release is complete.
- Update of human sequences
 The human protein sequences used for the public GPM have been updated to ENSEMBL v.70 and dbSNP v.137

X! Hunter algorithm:

- 1. Use dot product to find a library spectrum that best matches a test spectrum.
- 2. Calculate p-value with hypergeometric distribution.
- 3. Use p-value to calculate expectation value, given the identification parameters.
- 4. If expectation value is less than the median expectation value of the library spectrum, report the median value.

X! Hunter Result

Significance Testing

False protein identification is caused by random matching

Significance Testing - Expectation Values

The majority of sequences in a collection will give a score due to random matching.

Significance Testing - Expectation Values

List of Candidates With Expectation Values

Proteomics Informatics – Protein identification I: searching protein sequence collections and significance testing (Week 4)