Learning without training: The implicit dynamics of in-context learning (arxiv)

Key Highlights

問題

- 核心問題: 了解大型語言模型中情境學習 (In-Context Learning, ICL) 的機制。 在推理時,不需要權重更新,只需在提示中提供示例,模型就能學習新模式。
- 現有方法及其限制:
 - 。之前的理論工作需要限制性假設(線性注意力層、單頭注意力、僅限迴歸任 務)
 - 僅限於玩具模型,未反映實際的變壓器架構
 - 理論理解與實際變壓器實現之間存在差距

解決方案

- 提出的解決方案: 引入「情境塊」,一種變壓器塊的泛化,由一個情境層(泛化自我注意力)與多層感知機 (MLP) 堆疊而成
- 關鍵創新: 顯示情境通過低秩更新隱式地修改 MLP 的權重,而不需明確的權重變更
- 理論基礎: 證明了使用情境 C 的情境塊輸出等同於未使用情境的輸出,但使用隱式的秩-1 權重更新 $\Delta W(C)$ 到 MLP 層
- 數學框架: 提供明確的公式: $\Delta W(Y) = (W\Delta A(Y))A(C \setminus Y, x)^T / ||A(C \setminus Y, x)||^2$

實驗

- **性能**: 在線性函數學習任務上的實驗驗證表明,基於情境的預測與隱式權重更新預測 之間有顯著一致性
- 設置: 訓練變壓器模型學習線性函數, 驗證情境提示可以通過其公式轉換為權重更新
- 限制:
 - 。 僅適用於單一變壓器塊
 - 僅分析了第一個生成的標籤,未涵蓋完整的生成序列
 - 。 主要在簡化的線性函數任務上進行測試

創新

- 新發現:
 - 第一個不限制注意力層架構的 ICL 理論框架
 - 。表明 ICL 可以理解為對 MLP 權重的隱式梯度下降
 - 。 揭示了標籤消耗對應於迭代低秩權重更新
 - 。 提供了情境到權重轉換的明確數學公式

評論/批評

- 限制:
 - 分析僅限於單一的變壓器塊,而非完整的多層模型
 - 。 只涉及第一個標籤生成,缺乏自回歸方面
 - 實驗驗證僅限於玩具問題(線性函數)
 - 跳過連接需要額外的複雜性(補充材料中解決)
- **論點支持**: 論文為其核心論點提供了堅實的理論證明和實驗驗證,但範圍故意有所限制,以保持理論的可處理性。

Comprehensive Analysis

Abstract

摘要

- 本摘要提供了對大型語言模型(LLMs)中上下文學習的理論解釋。
- **主要貢獻**:本論文提出了在推理過程中,通過 transformer 模塊中的自注意力層和 多層感知機(MLP)層的組合,可以進行隱式的權重修改,從而解釋了 LLMs 如 何在不進行顯性參數更新的情況下從上下文中學習新的模式。
- **關鍵機制**:作者展示了當自注意力層和 MLP 層堆疊在一起時,自注意力層可以根據輸入的上下文有效地修改 MLP 層的權重,形成一種隱式學習。
- 理論框架:在某些簡化假設下,作者展示了 transformer 模塊如何將上下文信息轉換為 MLP 層的低秩權重更新,為理解上下文學習提供了數學基礎。
- **意義**:這項工作解釋了一個關於大型語言模型行為的基本謎題——這些模型如何在 推理時無需傳統的基於梯度的學習就能適應新的模式——通過識別出使這種能力成 為可能的具體架構機制。

Introduction

摘要

- 本篇介紹進行了一項理論研究,探討大型語言模型(LLMs)如何進行上下文學習 (ICL)——即在推論過程中不進行顯式權重更新的情況下,能夠從提供的提示中 學習新示例的能力。
- 關鍵問題:儘管LLMs展示了顯著的ICL能力,但其潛在機制仍然在理論上是神秘的,因為傳統機器學習依賴於訓練過程中的顯式權重更新,而ICL似乎在沒有這些更新的情況下也能工作。
- **研究假設**:作者提出,ICL涉及在推論過程中處理上下文信息時進行隱式權重更 新。
- 新穎方法:與以往研究簡化的玩具模型不同,作者採取了一種更高層次的抽象方法,引入了"上下文塊"——這是一種將上下文層與神經網絡結合的transformer塊的泛化。
- 主要發現:
 - 上下文塊隱式地將上下文轉化為神經網絡第一層的權重更新
 - 。這些隱式更新以秩-1矩陣的形式出現

- 。 該過程類似於上下文驅動的隱式微調
- 標記處理對應於神經網絡權重上的隱式梯度下降動力學
- **主要貢獻**:該論文提供了一個理論框架(上下文塊)和數學公式(隱式權重更新的 顯性公式)來解釋注意力機制如何通過隱式神經網絡權重修改實現ICL。
- 沒有提供圖片摘要。

"However, in the case of In-Context-Learning (ICL), there is no immediate explicit weight update that could explain the emergent dynamical nature of trained LLMs that seem to re-organize or reconfigure themselves at the instruction of a user prompt."

然而,在上下文學習 (ICL) 的情況下,沒有立即的顯式權重更新能夠解釋訓練過的大型語言模型 (LLM) 在用戶提示的指示下重新組織或重新配置的動態性質。

"We show that layers with this contextual property, when stacked with standard neural networks, implicitly transform a context into a weight update of the very first layer of the stacked neural network. We provide an explicit formula for this implicit update, which turns out to be a rank 1 matrix."

我們展示了具有這種上下文特性的層在與標準神經網絡堆疊時,隱式地將上下文轉換為堆疊神經網絡的第一層的權重更新。我們提供了一個該隱式更新的明確公式,結果顯示這是一個秩為1的矩陣。

"We show that token consumption corresponds to an implicit gradient descent learning dynamics on the neural network weights."

我們展示了標記的消耗對應於神經網絡權重上的隱式梯度下降學習動力學。

Related work

摘要

- 本文的相關工作部分討論了 **上下文學習 (ICL)**——大型語言模型從提示中的範例學習而無需參數更新的能力的爭論。
- 主要爭議在於是否 ICL 代表:
 - 1. 推理過程中的真正學習,或
 - 2. 提取在預訓練期間學習的已有能力

之前工作的主要發現: - 早期研究表明 ICL 主要是檢索(即使帶有隨機標籤的範例仍然有效)。 - 然而,較大的模型和多樣化的預訓練數據使真正的推理時間學習成為可能。 - 在迴歸任務上的受控實驗表明,transformers 可以學習新的函數並作為"元優化器"運行。 - 幾篇理論性工作證明,ICL 可以等同於隱式梯度下降步驟。

現有理論的局限性: - 之前的理論工作依賴於限制性假設(線性注意力層、僅限於迴歸任務)。 - 批評者認為這些假設對於實際的 transformers 而言不切實際。

本文的貢獻: - 作者旨在彌補這一差距,通過發展 ICL 作為隱式學習動力學的理論,同時: - 消除線性注意力假設。 - 允許通用的提示(不僅僅是迴歸範例)。 - 將分析重點放在 MLP 層而非注意力層上。

• 這代表了使 ICL 理論更適用於現實世界 transformer 架構的嘗試。

"In [12] the authors pose the fundamental question as whether true learning at inference time actually occurs in ICL, or rather the examples in the context help the model retrieve capabilities already learned during pre-training, with no actual new learning taking place at inference time."

在 [12] 中,作者提出了一個根本問題,是否在推理時真正的學習實際上發生在 ICL 中,或者上下文中的例子幫助模型檢索在預訓練期間已經學會的能力,而在推理時沒有實際的新學習發生。

"Concurrently [7], [9], and [10] exhibit theoretical mechanisms through which example consumption through prompt at run time can be implicitly identified with gradient descent steps on a least-square loss, through implicit weight updates."

同時,[7],[9] 和 [10] 展示了理論機制,通過提示在運行時消耗例子可以隱式地識別為最小二乘損失上的梯度下降步驟,通過隱式權重更新。

"In this work, we pursue the idea of ICL being implemented by implicit weight updates corresponding to some form of implicit learning dynamics. However, we remove the limiting assumptions of the linear-attention layer and allow for completely generic prompts, bringing the theory much closer to the actual transformer blocks used in practice."

在這項工作中,我們追求 ICL 通過對應某種形式的隱式學習動態的隱式權重更新來實現的想法。然而,我們消除了線性注意層的限制性假設,允許完全通用的提示,使理論更加接近實際使用的 transformer 塊。

Contextual Blocks

這部分介紹了一個理論框架,用於理解 transformer 如何通過定義兩個關鍵概念來處理上下文信息: - 上下文層:對 transformer 自注意層的一種概括,可以僅作用於單個輸入向量 x(產生 A(x)),也可以作用於輸入向量與上下文 C 結合的情形(產生 A(C,x))。這些輸出之間的差異 $\Delta A(C)$ 捕捉到了上下文效果。 - 上下文塊:標準神經網絡與上下文層的組合 ($TW = MW \circ A$),概括了 transformer 塊。 - 主要理論結果(定理 2.2):論文證明了當上下文塊處理上下文信息時,它隱式地對神經網絡的權重執行 Tank-1 低秩更新。具體來說,任意部分 Y 的上下文 C 在數學上相當於在網絡的第一層權重 W 上添加一個權重更新 $\Delta W(Y)$ 。 - 關鍵的洞見在於上下文信息不僅僅影響前向傳播 ——它有效地以低秩的方式"加載"或更新網絡權重。這提供了一個數學解釋,即上下文如何作為一種隱式微調機制起作用,上下文信息被轉化為臨時的權重修改,而不僅僅是通過網絡激活流動。 - 該框架為上下文學習和 transformer 如何根據上下文信息調整其行為提供了一個新的視角。

"In this way, both A(C, x) and A(x) occupy the same output vector space. Contextual layers produce contextual vectors which we can use to define the difference $\Delta A(C) := A(C, x) - A(x)$ between the layer output with and without context."

以這種方式,A(C, x) 和 A(x) 佔據了相同的輸出向量空間。上下文層生成的上下文向量,我們可以用來定義層輸出有無上下文之間的差異 $\Delta A(C) := A(C, x) - A(x)$ 。

"The following theorem tells us that a contextual block transforms a part $Y \subset C$ of a context C into an implicit update of the neural network weights so that W becomes $W + \Delta W(Y)$ where the information contained in Y has been transferred to the weights through the update $\Delta W(Y)$."

以下定理告訴我們,一個上下文塊會將上下文 C 的一部分 Y $\subset C$ 轉換為神經網絡權重的 隱式更新,這樣 W 變成 W + $\Delta W(Y)$,其中 Y 中包含的信息已通過更新 $\Delta W(Y)$ 傳輸到權重中。

"Given a context C and an input x, the effect of some portion $Y \subset C$ of the context C on the output of the contextual block implicitly corresponds to a rank 1 weight update $W + \Delta W(Y)$ of the first layer of MW."

給定上下文 C 和輸入 x,上下文 C 的某部分 Y $\subset C$ 對上下文塊輸出的影響隱式地對應於 MW第一層的秩1權重更新 W + ΔW (Y)。

The implicit learning dynamics of ICL

- 本節揭示了上下文學習(In-Context Learning, ICL)隱式實現了一種類似於在線 梯度下降的學習過程。
- 主要發現有:
 - 。**主要發現**:當逐一將標記添加到上下文中時,神經網絡的權重會隱式更新,數學上類似於隨機梯度下降步驟。
 - 關鍵機制:
 - 每個上下文標記 ci 會導致權重更新 ΔW ,從而改變網絡行為。
 - 這些更新遵循以下模式: $Wi = W\{i-1\} h \nabla Li(W\{i-1\})$ 。
 - 學習速率 $h = 1/||A(x)||^2$,損失函數 Li 隨著每個標記改變。
 - 數學見解:添加每個新的上下文標記的效果可以表達為梯度更新,其中:
 - 標記如同訓練數據點。
 - 損失函數在每一步根據當前標記改變。
 - 當某個標記對輸出沒有影響時,對應的梯度消失。
 - **實際意涵**:這為理解transformers如何在推理期間從上下文中"學習"提供了 理論基礎——它們有效地進行了一種在線學習形式,每個上下文標記作為訓練 樣例,臨時更新模型的隱式權重。
- 作者還在附錄B中提到一種替代的表述,該表述在更新權重的同時保持輸出不變, 儘管這個版本不能表示為純粹的梯度下降。

"When the context $C = [c1, \ldots, cn]$ is a sequence of tokens, an iterative application of Corollary 2.3.1 uncovers an implicit learning dynamics generated by the effect of each context token on the contextual block output."

當上下文C = [c1, ..., cn] 是一個序列標記時,反覆應用推論2.3.1揭示了由每個上下文標記對上下文塊輸出的影響所產生的隱式學習動態。

"The iterative process of weight updates can be realized as a form of stochastic gradient updates $Wi = Wi - 1 - h\nabla W \text{ Li}(Wi - 1)$ with learning rate given by $h = 1/\|A(x)\|^2$ and loss at step i given by $Li(W) = trace(\Delta T i W)$ "

權重更新的迭代過程可以實現為一種隨機梯度更新 $Wi = Wi-1 - h\nabla W Li(Wi-1)$,其中學習率h = 1/||A(x)||2,並且步驟 i 的損失 $Li(W) = trace(\Delta T i W)$ 。

" Δi measures the effect of the addition of context token ci+1 to the partial context $c1,\ldots,ci$. When ci has no effect on the output, that is, when $A(c1,\ldots,ci,x)$ $-A(c1,\ldots,ci+1,x)$ is zero, and the corresponding update ∇W $Li(W) = \Delta i$ vanishes."

 Δ i衡量將上下文標記ci+1添加到部分上下文c1, . . . , ci的效果。當ci對輸出沒有影響時,即當A(c1, . . . , ci, x) −A(c1, . . . , ci+1, x) 為零,對應的更新 ∇ W Li(W) = Δ i消失。

Experiments

摘要

- 本實驗部分描述了使用上下文學習線性函數來實際驗證定理2.2。
- 作者以先前的工作 [6, 22] 為基礎,該工作展示了transformer可以通過上下文示例學習線性函數,但使用了不同的目標。

主要目標: - 與研究對分布轉移的魯棒性不同,作者旨在驗證上下文提示可以有效地轉換為權重更新(通過方程8),使得修改後權重但沒有上下文提示的模型所產生的預測結果與原始模型有上下文提示時相同。

實驗設置: - 在包含輸入-輸出對 $(x_1, h(x_1), ..., x_n, h(x_n), x_{query})$ 的提示上訓練 transformer - 函數 h 是線性的:h(x) = (w, x),輸入和權重從正態分佈中取樣 - 每個 提示表示為包含上下文 C 和查詢 x 的嵌入矩陣 $E\tau$ - 模型使用單個transformer塊預測 x query 的輸出 - 訓練使用預測與真實線性函數輸出之間的均方誤差損失

• 此設置提供了一個受控環境來測試理論權重更新機制是否能在實踐中重現上下文學習行為。

"We verify that the prediction made by the trained model with an incontext prompt is identical to the prediction made by the model with MLP weights modified according to Equation (8) but without access to the in-context prompt."

我們驗證了,使用上下文提示的受訓模型所做的預測,與根據方程(8)修改了MLP權重但沒有使用上下文提示的模型所做的預測是相同的。

"In particular, we take H to be the class of linear functions so that $h(x) = \langle w, x \rangle$ and where xi, xquery, $w \sim N(0, Id)$. The goal of the in-context learner is to use the input-output pair prompt as above and to form a prediction by(xquery) so that by(xquery) $\approx h(xquery)$."

特別地,我們將H設定為線性函數的類別,使得 $h(x) = \langle w, x \rangle$,其中xi, xquery, $w \sim N(0, Id)$ 。上下文學習者的目標是使用如上所述的輸入-輸出對提示,並通過xquery形成預測by(xquery),使得 $by(xquery) \approx h(xquery)$ 。

"Note that, defined this way, the dimensionality of TW (C, x) and TW $+\Delta W$ (x) agree."

請注意,這樣定義的TW (C, x)和TW $+\Delta W(x)$ 的維度是一致的。

Verifying Theorem 2.2

- 本節提供了對定理2.2的經驗驗證,該定理證明了在上下文學習(transformers)中學習可以在數學上等同於顯式權重更新。
- 作者展示了對於訓練在線性函數上的變壓器(transformers),處理上下文提示(方程左側)產生的結果與直接更新模型權重後再只處理查詢(方程右側)產生的結果相同。
- 這種等價性通過方程 $TW(C,x) = T\{W+\Delta W\}(x)$ 展示,其中 ΔW 表示基於上下文計算出的權重更新。
- 圖1通過比較不同訓練檢查點下的兩種方法的驗證損失進行了實驗驗證。
- 結果顯示兩種方法之間有"顯著一致性",證實了上下文學習可以被視為一種隱式的權重更新形式。
- 這一驗證支持了以下理論認識,即在上下文學習中,變壓器(transformers)可以通過其注意機制隱式地實現基於梯度的學習算法。

"Given a transformer trained on linear functions, we show that the incontext prompt can be transferred to a weight update as defined in Equation (8)."

給定一個在線性函數上訓練的transformer,我們展示了上下文提示可以轉換為方程(8)中定義的權重更新。

"TW $(C, x) = TW + \Delta W(x)$; or equivalently, TW \\ x\ta,1 \ti\ta,2 \cdot \cdot x\ta,N \\ x\ta,query \left(w\ta,x\ta,1\right) \left(w\ta,x\ta,2\right) \cdot \left(w\ta,x\ta,N\right) 0 = TW + \Delta W \\ x\ta,query 0 "

TW (C, x) = TW +ΔW (x); 或者,同等地,TW \forall xτ,1 xτ,2···xτ,N xτ,query \forall wτ, xτ,1 \forall (wτ, xτ,2)··· \forall wτ, xτ,N ∂ = TW +ΔW \forall xτ,query 0

"We can see that these losses are in remarkable agreement with each other, even on a zoomed-in version of the graph (right)."

我們可以看到,即使在放大版本的圖表(右邊)中,這些損失也是驚人的一致。

Convergence of ΔW

- 本節描述了設計用於分析轉換器權重在上下文學習中如何演變的實驗。
- 作者調查了隱含的學習動態。
- **主要目標**:確認梯度更新 (ΔW) 在模型處理更多上下文並在上下文學習中達到收斂 時逐漸減少。

• 實驗設置:

- \circ 隨著上下文長度的增加,創建一系列權重更新 $\{(\Delta W)i\}$ 。
- 每次更新都對應處理額外的上下文元素 (c1, c2, ..., ci)。
- ∘ 轉換器函數表示為 TW(Ci, x) = TW + (Δ W)i(x)。
- 。上下文 Ci 包含輸入-輸出對應的查詢向量及其相應的權重。
- **簡化**:實驗使用標準轉換器塊,但在 MLP 層中移除了跳躍連接以簡化分析(完整 處理推遲到附錄中)。
- 目標是通過展示在處理更多上下文時權重調整變得更小來實證驗證關於上下文學習如何收斂的理論預測。

'We conduct some experiments to understand how the weights adapt as the in-context prompt is processed by the model during the implicit learning dynamics described by Proposition 3.1.'

我們進行了一些實驗,以了解當上下文提示在模型中處理時,權重如何根據命題 3.1 中描述的隱式學習動態進行調整。

'In particular, we want to verify that the gradient updates vanish as context convergence is reached.'

特別是,我們想驗證當上下文收斂時,梯度更新是否消失。

'We create a sequence $\{(\Delta W)i\}N$ i=1 where each $(\Delta W)i$ is as described in Equations (10)-(13).'

我們創建了一個序列 $\{(\Delta W)i\}N i=1$,其中每個 $(\Delta W)i$ 如公式(10)-(13)所述。

Comparison with Finetuning

這一部分描述了在transformer模型中,顯性微調(explicit fine-tuning)和隱性上下文學習(implicit in-context learning)這兩種學習方法之間的實驗比較。

實驗設置: - 一個transformer模型在具有輸入向量及其內積與權重向量的示例上進行預訓練。 - 為了進行比較,作者使用預訓練過程中未見過的新權重向量(ω test)創建測試場景。 - 他們逐步增加可供學習的示例數量(i=1 至 M)。

比較的兩種學習方法: 1. 微調方法(Fine-tuning approach):使用學習速率0.01 的梯度下降方法,僅更新MLP層的權重,依序處理示例。 2. **上下文學習方法(In-context learning approach)**:使用"權重轉移"機制(Δ W),通過上下文隱式更新模型行為,而不改變實際的權重。

關鍵發現:-作者證明了這兩種學習方法在測試查詢上實現了相似的損失減少模式,這表明transformer中的上下文學習在機制上可能類似於顯式的基於梯度的微調。這提供了證據,表明transformer可以通過其前向傳播實現隱式優化,這與傳統的梯度下降學習類似。

"We initialize the transformer with the pretrained weights, then finetune using stochastic gradient descent with learning rate 0.01 taking one example at a time in the same order that they are processed in-context. During finetuning we only update the weight matrix of the MLP layer."

我們使用預訓練的權重初始化轉換器,然後用隨機梯度下降法以學習率0.01逐個樣本依序 微調。在微調過程中我們僅更新MLP層的權重矩陣。

"Using the value of ΔW from the weight transfer formula, we compute the loss on (xtest, 0). We call this the ' ΔW test loss' for context length i."

使用從權重轉移公式中的 ΔW 值,我們計算在 (xtest, 0) 上的損失。我們稱這為上下文長度 i 的 ' ΔW 測試損失'。

"Although different, we see that the two learning processes (fine-tuning and implicit weight-update dynamics) minimize the loss in similar ways."

儘管有差異,我們看到這兩種學習過程(微調和隱性權重更新動態)以相似的方式最小化 損失。

Conclusion and Limitations

摘要

主要貢獻: - 作者提出了一種理論方法來理解Transformer中的上下文學習(ICL),該方法顯著改進了以往的工作,通過消除對自注意力層的架構限制。 - 與之前需要限制性假設(例如線性注意力或單頭注意力)的理論分析不同,他們的方法能夠在權重空間中提取隱式學習動態,而不論自注意力的架構。

主要見解: - 他們的結果不僅對自注意力層,還對其他上下文層(例如RNN)進行了推廣,這表明ICL本質上是關於神經網絡如何將輸入空間的修改轉移到權重結構,而不僅僅是自注意力機制的特性。 - 這與更廣泛的理論理解相關,即為什麼深度神經網絡具有良好的泛化能力。 - 由於假設的架構更少,該方法比之前的理論框架更現實。

局限性: - 作者承認他們仍在使用玩具模型,這表明他們的分析在捕捉現實世界中 Transformer行為的全部複雜性時有內在的局限性,儘管提供的文字中具體的局限性似 乎已被截斷。

'Our approach to the transformer block mechanics underpinning ICL improves over previous approaches in the sense that it does not put any restriction on the self-attention layer architecture in order to extract a form of implicit learning dynamics in weight space.'

我們對支撐ICL的transformer區塊機制的方法改進了之前的方法,因為它不對自注意層結構設置任何限制,以便在權重空間中提取一種隱含的學習動態。

'This is surprising because our analysis hints that ICL is less about the internals of self-attention, but rather about the fact that regular neural networks can transfer modification of input space to their weight structure.'

這令人驚訝,因為我們的分析暗示ICL與自注意內部結構的關係不大,而更多的是關於常規神經網絡可以將輸入空間的修改傳輸到其權重結構的事實。

'This is a deep property that has been noticed in a number of theoretical works, and helped understand why deep neural networks generalize so well.'

這是一種在許多理論研究中已經注意到的深層屬性,並幫助理解為什麼深度神經網絡能夠 如此良好地泛化。

Acknowledgments

結構化摘要

- 這是一個標準的致謝部分,作者藉此向十位在研究過程中通過討論、建議和反饋提供幫助的個人表達感謝。
- 致謝的貢獻者包括機器學習領域的知名研究者,如 Corinna Cortes、Sanjiv Kumar、Peter Bartlett 等人,他們提供了智力支持但未列為論文的合著者。

References

No references found.