## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-042766

(43) Date of publication of application: 13.02.2003

(51)Int.CI.

G01C 17/38 G01C 17/30 G01R 33/02

(21)Application number: 2001-229966

(71)Applicant: JAPAN AVIATION ELECTRONICS

INDUSTRY LTD

(22)Date of filing:

30.07.2001

(72)Inventor: NONAKA SHOJI

HIGO TADASHI

## (54) AZIMUTH MEASURING INSTRUMENT

#### (57) Abstract:

PROBLEM TO BE SOLVED: To actualize a high-precision azimuth measuring instrument by correcting a fitting angle error between the direction of the input axis of a geomagnetic sensor and the direction of the reference axis of an attitude detecting device. SOLUTION: This device comprises the geomagnetic sensor 1 which outputs geomagnetic data (mx, my, mz), the attitude detecting device 5 which outputs attitude data (pitch angle  $\theta$ S, roll angle ϕS) on a vehicle, a fitting angle correcting circuit 3, and a fitting angle error computing circuit 4. The device is equipped with a fitting angle correction arithmetic part 2 which computes corrected geomagnetic data (mx, my, mz) by making fitting angle error corrections of the geomagnetic data (mx, my, mz), a coordinate converting circuit 6 which performs the coordinate conversion of the geomagnetic data (mx, my, mz) into local horizontal coordinates (X, Y, Z) and outputs the geomagnetic data (mX, mY, mZ), and an azimuth computing circuit 7 which computes the azimuth wc of the vehicle according to the geomagnetic data (mX, mY, mZ).



#### **LEGAL STATUS**

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

REST AVAILABLE COPY

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

#### (19)日本国特許庁(JP)

### (12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-42766 (P2003-42766A)

(43)公開日 平成15年2月13日(2003.2.13)

| (51) Int.Cl. <sup>7</sup> |       | - FI          | テーマコート・(参考) |
|---------------------------|-------|---------------|-------------|
| G01C                      | 17/38 | G 0 1 C 17/38 | K 2G017     |
|                           | 17/30 | 17/30         | A           |
| G01R                      | 33/02 | G 0 1 R 33/02 | <b>L</b>    |

#### 審査請求 未請求 請求項の数5 OL (全 9 頁)

|          |                             | 不能互供    | 不明心 明小头(yu 0 0 1 (至 0 以)     |
|----------|-----------------------------|---------|------------------------------|
| (21)出願番号 | 特願2001-229966(P2001-229966) | (71)出顧人 | 000231073                    |
|          |                             |         | 日本航空電子工業株式会社                 |
| (22)出顧日  | 平成13年7月30日(2001.7.30)       |         | 東京都渋谷区道玄坂1丁目21番2号            |
|          |                             | (72)発明者 | 野中 正二                        |
|          |                             |         | 東京都渋谷区道玄坂1丁目21番地2号 日         |
|          |                             |         | 本航空電子工業株式会社内                 |
| 1.       |                             | (72)発明者 | 肥後 正                         |
|          |                             |         | 東京都渋谷区道玄坂1丁目21番地2号 日         |
|          |                             |         | 本航空電子工業株式会社内                 |
|          |                             | (74)代理人 | 100087790                    |
| •        |                             |         | 弁理士 尾関 伸介                    |
|          |                             | Fターム(参  | 考) 20017 AA03 AA16 BA10 BA15 |
|          |                             |         |                              |

#### (54) 【発明の名称】 方位角計測装置

#### (57)【要約】

【課題】地磁気センサの入力軸の方向と、姿勢検出装置 の基準軸の方向との間の取付け角誤差を補正し、高精度 の方位角計測装置を実現する。

【解決手段】地磁気データ( $m_x$ ,  $m_v$ ,  $m_v$ )を出力する地磁気センサ1と、車輌の姿勢データ(ビッチ角 $\theta$ s, ロール角 $\phi$ s)を出力する姿勢検出装置5と、取付け角補正回路3 および取付け角誤差計算回路4でなり、地磁気データ( $m_x$ ,  $m_v$ ,  $m_z$ )に対し取付け角誤差補正を行い、補正された地磁気データ( $m_x$ ,  $m_v$ ,  $m_z$ )を演算する取付け角補正演算部2と、姿勢データ(ビッチ角 $\theta$ s, ロール角 $\phi$ s)を用いて、地磁気データ( $m_x$ ,  $m_v$ ,  $m_z$ )を局所水平座標(X,Y,Z)に座標変換し、地磁気データ( $m_x$ ,  $m_v$ ,  $m_z$ )を出力する座標変換回路6と、地磁気データ( $m_x$ ,  $m_v$ ,  $m_v$ )に基づき車両の方位角 $\phi$ 。を計算する方位角計算回路7とを備えて構成される。



#### 【特許請求の範囲】

【請求項1】移動体の方位角を検出する地磁気センサより得られる地磁気データと、その姿勢を検出する姿勢検出装置より得られる姿勢データを用いて、該移動体の方位角を演算出力する方位角計測装置において、

前記地磁気センサの磁東入力軸と前記姿勢検出装置の基準軸との間に介在する取付け角誤差を計算し、該計算値を参照して前記地磁気データに対する取付け角補正を行って第1の補正地磁気データを生成する取付け角補正演算手段を備え、前記姿勢データを参照し、前記第1の補 10 正地磁気データに対し姿勢補正を行って得られる第2の補正地磁気データを用いて、移動体の方位角を計算出力することを特徴とする方位角計測装置。

【請求項2】移動体の方位角を検出して地磁気データを出力する地磁気センサと、該移動体の姿勢を検出してその姿勢データを出力する姿勢検出装置と、前記地磁気データの入力を受けて、該地磁気データに対する取付け角補正を行って第1の補正地磁気データを生成する取付け角補正演算部と、前記第1の補正地磁気データの入力を受けて、前記姿勢データを介して、該第1の補正地磁気 20 データを座標変換することにより第2の補正地磁気データを生成する座標変換回路と、前記第2の補正地磁気データを生成する座標変換回路と、前記第2の補正地磁気データに含まれる方位角計測に関わる地磁気補正データを用いて、移動体の方位角を計算して出力する方位角計算回路とを備えて構成され、

前記取付け角補正演算部は、前記方位角計算回路から出力される前記方位角と、前記第2の補正地磁気データの鉛直方向成分とを用いて、前記地磁気センサの入力軸と前記姿勢検出装置の基準軸とのずれ角度である取付け角誤差を計算し、前記地磁気データに対する前記取付け角補正を該取付け角誤差に基づき行うことを特徴とする方位角計測装置。

【請求項3】前記取付け角補正演算部は、前記方位角計 算回路より出力される前記方位角と、前記第2の補正地 磁気データの鉛直方向成分とを用いて前記取付け角誤差\*

 $m_z = M_v + (\Delta \phi_x \sin \psi + \Delta \phi_y \cos \psi) M_h + \delta_z \cdot \cdot \cdot (11)$ 

算手段は、

なる計算式に、前記移動体の1回転中に検出される $m_z$ 及び $\phi$ を適用し、最小二乗法により前記 $\Delta \phi$ 、及び $\Delta \phi$ 、を計算することを特徴とする請求項4に記載の方位角計測装置。

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、方位角計測装置に 関し、特に方位角を計測する地磁気センサおよび姿勢検 出装置により、車両、航空機などの移動体の方位角を計 測する方位角計測装置に関する。

#### [0002]

【従来の技術】車両、航空機などの移動体に搭載される 方位角計測装置は、地磁気センサおよび姿勢検出装置を 備えている。車両に搭載される従来の方位角計測装置に 50

\*を計算する取付け角誤差計算回路と、前記地磁気センサより入力される前記地磁気データを該取付け角誤差で補正し、前記第1の補正地磁気データを生成する取付け角補正回路とを備えてなる請求項2に記載の方位角計測装置。

【請求項4】互いに直交するX、Y及びZで規定され、 Z軸が地球の重力方向にある直交座標系を局所水平座標 系と称するとき、車両等の移動体に搭載した3軸型地磁 気センサの出力を、該移動体に搭載した姿勢検出装置の 出力を参照して、座標変換手段により該局所水平座標系 に座標変換し、座標変換された該3軸型地磁気センサの 出力のX軸及びY軸成分から該移動体の方位角を計測す る装置において、

前記移動体をほぼ水平な平面上で1回転させ、X軸が 北、東、南および西を向いたときにおける座標変換され た前記3軸型地磁気センサの出力のZ軸成分から、前記 3軸型地磁気センサの入力軸と前記姿勢検出装置の基準 軸との取付け角誤差を取付け角補正演算手段により計算 し、該取付け角誤差に基づき前記3軸型地磁気センサの 出力を該取付け角補正演算手段により補正し、前記座標 変換手段は前記取付け角補正演算手段により補正された 該3軸型地磁気センサの出力を前記局所水平座標系に座 標変換することを特徴とする方位角計測装置。

【請求項5】前記座標変換手段で座標変換をされた前記 3 軸型地磁気センサの出力の 2 軸成分をm z 、計測地点で決まる地磁気の 2 軸成分をM v 、計測地点で決まる地磁気の水平方向成分をM b 、前記 3 軸型地磁気センサの出力の 2 軸成分の誤差を b z 、前記基準軸が前記姿勢検出装置に固定された x 軸、y 軸および z 軸の直交 3 軸であるとき、前記 3 軸型地磁気センサの入力軸と該姿勢検出装置の基準軸との x 軸に関する取付け角誤差を b c 、該 3 軸型地磁気センサの入力軸と該姿勢検出装置の基準軸との y 軸に関する取付け角誤差を b c を が ま で は で が ま で は で が ま で は で が ま で は で が ま で が ま で か ま で が ま で が ま で か ま で が ま で か ま で が ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま で か ま

ついてまず述べる。この種の方位角計測装置においては、3軸型地磁気センサにより検出される地磁気成分を用いて車両の磁方位角を計測する際に、該車両が地球磁気に及ぼす影響、及び車両が傾いた場合の傾斜角による影響を補正することにより、方位角計測精度の改善が図

られている。従来の方位角計測装置の一例(以下、第1 の従来例と云う)の構成が、図2のブロック図に示される。

【0003】図2の従来例は、3軸型の地磁気センサ1と、姿勢検出装置5と、座標変換回路6と、方位角計算回路7とを備えてなる。3軸型地磁気センサ1は、互いに直交するx、軸、y、軸およびz、軸でなる座標系に関する地磁気を検出して、地磁気のx、軸成分(x、軸地磁気データという)m、、y、軸成分(y、軸地磁気

データという)m、及びz' 軸成分(z' 軸地磁気デー タという) mx. を出力する。x'軸、y'軸およびz' 軸は、地磁気センサーに固定されており、それぞれ地磁 気センサ1の入力軸である。姿勢検出装置5は、互いに 直交するX軸、Y軸およびZ軸でなる座標系に関する車 輌の傾斜角を検出し、ビッチ角 $\theta$ s-とロール角 $\phi$ s を含 む姿勢データを出力する。X軸、Y軸およびZ軸は、姿 勢検出装置5に固定されており、それぞれ姿勢検出装置 5の入力軸(基準軸と称される)である。座標変換回路 6は、地磁気データmx., mv.及びmx.並びにピッチ角 10  $\theta_s$  及びロール角 $\phi_s$  を入力し、地磁気センサ1 の各軸 の地磁気データ(mx·, mv·, mx·) を、姿勢検出装置 5の基準軸であるX軸及びY軸の成分に変換し、姿勢検 出装置5の基準座標系における地磁気データ(mx , m<sub>v</sub> )として出力する。方位角計算回路7は、座標変 換回路6の地磁気データ(mx, my)を入力し、車 両の方位角ゆ、を計算し、出力する。

【0004】図2の第1の従来例においては、車両の傾きに対応する方位角計測の補正は明らかに行われてはいる。その補正のためには、車両の傾斜角を計測する姿勢 20 検出装置5の基準軸の方向と地磁気センサ1の入力軸の方向とを正確に合致させること、即ち姿勢検出装置5と地磁気センサ1との取り付け誤差(ミスアライメント)をなくすることが必要である。図2の従来の方位角計測装置では、その取り付け誤差に関する補正は行われていない。

【0005】また、他の方位角計測手段の従来例として は、例えば、姿勢検出方法及び装置(以下、第2の従来 例と云う)が、特開平8-178687号公報に開示さ れており、また地磁気センサの補正装置(以下、第3の 30 従来例と云う)が、特開平9-304078号公報に開 示されている。前記第2の従来例は、高価な可動部を有 する測定器を用いることなく、車両等の移動体の姿勢が 傾いても、該移動体の正確な方位角を検出することを目 的とする。第2の従来例は、地磁気の磁束密度の変化に より仮方位角を検出する地磁気検出手段と、移動体がロ ーリングするとロール角を検出するロール角検出手段 と、移動体のピッチングするときのピッチ角を検出する ピッチ角検出手段と、前記仮方位角を補正し、前記ロー リングおよびピッチングによる影響が排除された方位角 を生成する地磁気方位補正手段とを備えて構成される。 地磁気方位補正手段においては、前記ピッチ角と所定の 第1係数を乗ずることにより、前記仮方位角に対するピ ッチ角による第1補正量が決定され、前記ロール角と所 定の第2係数を乗ずることにより、前記仮方位角に対す るロール角による第2補正量が決定されて、これらの第 1補正量および第2補正量に基づいて前記仮方位角が補

【0006】また、前記第3の従来例は、車両等の方位 角を検出する磁気センサのキャリブレーションを、振動 50

または外部磁界等の影響を最小限に止めて行うことができるようにし、これにより地磁気センサの計測精度を高めることを意図したキャリブレーション手段の提供を目的としている。本従来例においては、姿勢検出装置の基準軸の方向と、地磁気センサの入力軸の方向との間の取付け角誤差に対する補正処理に関わるキャリブレーションについては一切触れていない。

#### [0007]

【発明が解決しようとする課題】上述した第1の従来例 (図2) においては、前述したように、車両の傾きに対 応する方位角計測の補正は行われてはいる。しかし、第 1の従来例では、車両の傾斜角を計測する姿勢検出装置 の基準軸の方向と地磁気センサの入力軸との間の方向の 不一致度である取付け角誤差に対応する補正は行われて いない。一般に、車両等の移動体に取付けられる地磁気 センサの入力軸と姿勢検出装置の基準軸との間には、取 付け角誤差(ミスアライメント)が存在しており、この 取付け角誤差に対する補正なしでは、正確に車両等の方 位角を検出することは不可能である。即ち、第1の従来 例においては、地磁気センサの入力軸の方向と、車両等 の傾斜角を計測する姿勢検出装置の基準軸の方向との間 の取付け角誤差に対する補正処理が行われていない故 に、車両等の方位角を正確に検出することができないと いう欠点がある。

[0008]また、第2の従来例の姿勢検出装置においては、移動体のローリングおよびビッチングに起因する前記地磁気センサの方位角検出誤差を補正する手段として、該移動体のロール角およびビッチ角を検出する手段と、これらのロール角とビッチ角の出力データを入力として、地磁気センサにより検出された方位角を補正する地磁気方位補正手段が設けられている。しかしながら、第2の従来例の姿勢検出装置では、第1の従来例の場合と同様に、地磁気センサの入力軸と姿勢検出装置の入力基準軸との間の取付け角誤差に対する補正は行われていないので、正確に車両等の方位角を検出することができない。この点に関しては、第3の従来例においても同様である。

【0009】本発明の目的は、方位角を検出する地磁気センサの入力軸の方向と、姿勢検出装置の基準軸の方向との間の取付け角誤差を補正し、車両、航空機などの移動体の方位角を正確に計測できる方位角計測装置を提供することにある。

#### [0010]

【課題を解決するための手段】前述の課題を解決するために本発明は次の手段を提供する。

【0011】[1]移動体の方位角を検出する地磁気センサより得られる地磁気データと、その姿勢を検出する姿勢検出装置より得られる姿勢データを用いて、該移動体の方位角を演算出力する方位角計測装置において、前記地磁気センサの磁束入力軸と前記姿勢検出装置の基準

軸との間に介在する取付け角誤差を計算し、該計算値を 参照して前記地磁気データに対する取付け角補正を行っ て第1の補正地磁気データを生成する取付け角補正演算 手段を備え、前記姿勢データを参照し、前記第1の補正 地磁気データに対し姿勢補正を行って得られる第2の補 正地磁気データを用いて、移動体の方位角を計算出力す ることを特徴とする方位角計測装置。

【0012】[2]移動体の方位角を検出して地磁気デ ータを出力する地磁気センサと、該移動体の姿勢を検出 してその姿勢データを出力する姿勢検出装置と、前記地 10 磁気データの入力を受けて、該地磁気データに対する取 付け角補正を行って第1の補正地磁気データを生成する 取付け角補正演算部と、前記第1の補正地磁気データの 入力を受けて、前記姿勢データを介して、該第1の補正 地磁気データを座標変換することにより第2の補正地磁 気データを生成する座標変換回路と、前記第2の補正地 磁気データに含まれる方位角計測に関わる地磁気補正デ ータを用いて、移動体の方位角を計算して出力する方位 角計算回路とを備えて構成され、前記取付け角補正演算 部は、前記方位角計算回路から出力される前記方位角 と、前記第2の補正地磁気データの鉛直方向成分とを用 いて、前記地磁気センサの入力軸と前記姿勢検出装置の 基準軸とのずれ角度である取付け角誤差を計算し、前記 地磁気データに対する前記取付け角補正を該取付け角誤 差に基づき行うことを特徴とする方位角計測装置。

【0013】[3]前記取付け角補正演算部は、前記方 位角計算回路より出力される前記方位角と、前記第2の 補正地磁気データの鉛直方向成分とを用いて前記取付け 角誤差を計算する取付け角誤差計算回路と、前記地磁気 センサより入力される前記地磁気データを該取付け角誤 差で補正し、前記第1の補正地磁気データを生成する取 付け角補正回路とを備えてなる前記 [2] に記載の方位\*

 $m_z = M_v + (\Delta \phi_z \sin \psi + \Delta \phi_y \cos \psi) M_h + \delta_z \cdot \cdot \cdot (11)$ 

なる計算式に、前記移動体の1回転中に検出されるmz 及びψを適用し、最小二乗法により前記△Φェ及び△Φ , を計算することを特徴とする前記 [4] に記載の方位 角計測装置。

#### [0016]

【発明の実施の形態】次に、本発明について説明する。 本発明の実施の形態は、移動体の方位角を検出する地磁 40 気センサの地磁気データと、その姿勢を検出する姿勢検 出装置の姿勢データを用いて、該移動体の方位角を演算 出力する方位角計測装置において、前記地磁気センサの 磁束入力軸と前記姿勢検出装置の基準軸との間の取付け 角誤差を計算し、前記地磁気データに対する取付け角補 正を行って第1の補正地磁気データを生成出力する取付 け角補正演算手段を必須構成要件として備えており、前 記第1の補正地磁気データに対し姿勢補正を行って得ら れる第2の補正地磁気データを用いて、移動体の方位角 を演算出力することを特徴としている。

#### \* 角計測装置。

【0014】[4]互いに直交するX. Y及びZで規定 され、Z軸が地球の重力方向にある直交座標系を局所水 平座標系と称するとき、車両等の移動体に搭載した3軸 型地磁気センサの出力を、該移動体に搭載した姿勢検出 装置の出力を参照して、座標変換手段により該局所水平 座標系に座標変換し、座標変換された該3軸型地磁気セ ンサの出力のX軸及びY軸成分から該移動体の方位角を 計測する装置において、前記移動体をほぼ水平な平面上 で1回転させ、X軸が北、東、南および西を向いたとき における座標変換された前記3軸型地磁気センサの出力 の 2 軸成分から、前記 3 軸型地磁気センサの入力軸と前 記姿勢検出装置の基準軸との取付け角誤差を取付け角補 正演算手段により計算し、該取付け角誤差に基づき前記 3 軸型地磁気センサの出力を該取付け角補正演算手段に より補正し、前記座標変換手段は前記取付け角補正演算 手段により補正された該3軸型地磁気センサの出力を前 記局所水平座標系に座標変換することを特徴とする方位 角計測装置。

【0015】 [5] 前記座標変換手段で座標変換をされ た前記3軸型地磁気センサの出力の2軸成分をmz、計 測地点で決まる地磁気のZ軸成分をMv 、計測地点で決 まる地磁気の水平方向成分をM。、前記3軸型地磁気セ ンサの出力のZ軸成分の誤差を Sz、前記基準軸が前記 姿勢検出装置に固定されたx軸、y軸およびz軸の直交 3軸であるとき、前記3軸型地磁気センサの入力軸と該 姿勢検出装置の基準軸とのx軸に関する取付け角誤差を △φ、該3軸型地磁気センサの入力軸と該姿勢検出装 置の基準軸とのy軸に関する取付け角誤差を△φ、計 測された前記方位角をゆとするとき、前記取付け角補正 演算手段は、

【0017】以下においては、本発明なる方位計測装置 を車両に搭載する実施形態について図面を参照して説明 する。

【0018】図1は、本実施の形態の構成を示すブロッ ク図である。図1に示されるように、本実施の形態は、 3軸型の地磁気センサ1と、姿勢検出装置5と、取付け 角補正演算部2と、座標変換回路6と、方位角計算回路 7と、スイッチ8、9とを備えてなる。取付け角補正演 算部2は取付け角補正回路3および取付け角誤差計算回 路4から構成されている。

【0019】3軸型地磁気センサ1は、互いに直交する x'軸、y'軸およびz'軸でなる座標系に関する地磁 気を検出して、地磁気のx'軸成分(x'軸地磁気デー タという) m.、y' 軸成分(y' 軸地磁気データとい う) m、及びz、軸成分(z、軸地磁気データという) m. を出力する。x'軸、y'軸および2'軸は、地磁 気センサ1に固定されており、それぞれ地磁気センサ1

の入力軸である。姿勢検出装置5は、互いに直交するX軸、Y軸およびZ軸でなる局所水平座標系(Z軸が鉛直方向)に関する車輌の傾斜角を検出し、ピッチ角の。とロール角の。を含む姿勢データを出力する。x軸、y軸およびz軸は、姿勢検出装置5に固定されており、それぞれ姿勢検出装置5の入力軸(基準軸と称される)である。

【0020】取付け角補正演算部2は、地磁気センサ1の地磁気データ  $(m_x, m_y, m_z)$  に対する取付け角誤差補正を行い、前述のように、第1の補正地磁気データとして定義される地磁気データ  $(m_x, m_y, m_z)$ を出力する。

【0022】座標変換回路6から出力される第2の補正地磁気データの2軸成分m,は、スイッチ8を介して、取付け角誤差計算回路4に入力される。また、方位角計算回路7から出力される方位角ψ、は、スイッチ9を介して、取付け角誤差計算回路4に入力される。

【0023】取付け角誤差計算回路4においては、第2の補正地磁気データのZ軸成分 $m_z$ および方位角 $\psi$ 。の入力を受けて、地磁気センサ1の入力軸と姿勢検出装置 5の基準軸との間に存在する取付け角誤差に対する補正値 $\Delta \phi_{ex}$ 、 $\Delta \phi_{ev}$ および $\Delta \phi_{ex}$ が計算され、その取付け角誤差補正値の内の $\Delta \phi_{ex}$ なよび $\Delta \phi_{ev}$ が抽出されて、取付け角補正回路3に入力される( $\Delta \phi_{ex}$ は、本発明の\*

\*対象外)。取付け角補正回路3においては、との取付け角誤差補正値△φ、および△φ、の入力を受けて、前述のように、該補正値を介して地磁気センサ1より入力される地磁気データ(m、, m、) に対する取付け角誤差補正が行われ、地磁気データ(m、, m、, m、) が出力される。スイッチ8.および9は、方位角計測装置の運用状態によりオン/オフされるスイッチであり、地磁気センサ1の入力軸と姿勢検出装置5の基準軸との間の取付け角誤差を計算する場合以外は、これらのスイッチはオフに設定される。

【0024】次に、本実施の形態において、各部においっ て行われる演算処理の内容を数式を用いて説明する。本 実施の形態の方位角計測装置を搭載する車両において は、方位の基準を磁北とし、磁北の方位角ψは0であ る。姿勢検出装置5の姿勢は、方位角がゆ、ビッチ角が θ、ロール角がφであるとする。姿勢検出装置5に固定 された座標系(x,y,z)の各軸を車両の基準軸とす る。したがって、車両の方位角ψ、ピッチ角θ及びロー ル角 φ はそれぞれ姿勢検出装置 5 の方位角 φ、ピッチ角 θ及びロール角φである。地磁気センサ1は、その基準 軸(x, y, z)に対して、それぞれx軸回りに△  $\phi_{\star}$ 、y軸回りに $\Delta \phi_{\star}$ 、z軸回りに $\Delta \phi_{\star}$ の取付け角 誤差が存在する状態で取付けられているものとする。と の取付け状態における地磁気センサ1の入力軸の座標系 (x', y', z')と、姿勢検出装置5の基準軸の座 標系(x, y, z)との間の取付け角誤差を定義する図 が、図3に示される。

【0025】図1において、地磁気センサ1から出力される地磁気データ( $m_{\star\star}$ ,  $m_{\star\star}$ ,  $m_{\star\star}$ )は、 $M_{\star\star}$  および  $M_{\star\star}$  を計測点における地磁気の水平成分および鉛直成分とし、 $\delta_{\star\star}$ 、 $\delta_{\star\star}$  および $\delta_{\star\star}$  を外部磁界の影響等による地磁気センサ1の各軸の誤差とし、 $C^{\dagger}$  を行列Cの転置行列として、次式のように表わすことができる(地磁気センサのスケールファクタは、予め調整されていて誤差は無視できるものとする)。

$$\begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix} = \Delta C C^T \begin{bmatrix} M_h \\ 0 \\ M_v \end{bmatrix} + \begin{bmatrix} \delta_x \\ \delta_y \\ \delta_z \end{bmatrix} \dots$$
(1)

20

mx', my', mz':地磁気センサ各軸出力

Mn:計測点における地磁気の水平成分 Mv:計測点における地磁気の鉛直成分

 $\delta$  x',  $\delta$  y',  $\delta$  z': 地磁気センサ各軸誤差(外部磁界の影響等)

CT:Cの転置行列

c =

cosθcosψ -cosφsinψ+sinφsinθcosψ sinφsinψ+cosφsinθcosψ cos θ sinψ cos φ cos ψ + sin φ sin θ sinψ - sin θ cos ψ + cos φ sin φ sin ψ cos φ cos θ

·······(1-a-)

φ:姿勢検出装置の実際のロール角

8:姿勢検出装置の実際のピッチ角

サ:姿勢検出装置の実際の磁北基準方位角

△φx, △φy, △φz:姿勢検出装置に対する 地磁気センサの取付け角誤差 (姿勢検出装置のx,y,z軸回り)

される地磁気データ (mx , mv , mz ) は、地磁気セ x , mv , mz ) が出力される。 ンサ1より出力される地磁気データ(mx·, mv·,

【0026】地磁気センサ1と姿勢検出装置5の取付け \*m.·) に等しい。従って、座標変換回路6においては、 角誤差が計算される前の状態においては、該取付け角誤 20 これらの地磁気データに対する座標変換が次式によって 差による補正値は0であり、このときの座標変換に使用 行われ、方位角 $\phi$ 。を計算するための地磁気データ(m

$$\begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix} = C s \begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix} = C s \begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix}$$
.....(2)

$$Cs = \begin{bmatrix} \cos \theta s & \sin \phi s \sin \theta s & \cos \phi s \sin \theta s \\ 0 & \cos \phi s & -\sin \phi s \\ -\sin \theta s & \sin \phi s \cos \theta s & \cos \theta s \end{bmatrix} \dots (2a)$$

φs: 姿勢検出装置から出力されるロール角

θs:姿勢検出装置から出力されるピッチ角

【0027】車両の方位角ψ。は、方位角計算回路7に おいて、(2)式によって得られる地磁気データ(m ※

 $\psi c = tan^{-1} (-m_Y/m_X)$ 

【0028】地磁気センサ1において、外部磁界の影響 等に起因して生じるバイアス誤差は、別の方法により補 される姿勢データ (φ. , θs ) にも誤差が存在せず、★

$$m_X = M_h \cos \psi$$
  
 $m_Y = -M_h \sin \psi$ 

[0029] との (4) 式から、方位角 $\psi$ 、は、 $\psi$ 。= **业として求められるが、取付け角誤差が存在する場合に** は、必然的に方位角計算回路7における方位角計算値に 誤差が含まれるととになる。そこで、取付け角補正演算 部2 において、地磁気センサ1 の地磁気データ (m,... mv·, m.·) に対して、以下のように取付け角誤差補正 50

※、、m、)を用いて次式により計算される。

. . . . . . . . . (3)

 $\star$   $\phi$ 。 =  $\phi$ 、 $\theta$ 。 =  $\theta$  であるものとすると、取付け角誤差 がない場合には、方位角ψ、を計算するための地磁気デ 正されているものとして、姿勢検出装置5 において検出 40 ータ(mx, mv)は、上記(3)式の関係より次式に よって表わされる。

. . . . . . . . (4)

行列を掛けることにより、取付け角誤差の影響を除くこ とができる。

【0030】取付け角誤差がある場合には、地磁気セン サ1の地磁気データ (m, , m, , m, ) は、下記の (5) 式のように表わされる。

【0031】上式の地磁気データ(mx, mv, mz, ) \* (mx, mv, mx)は、次式のように表わされ、取付 に、補正行列C、を掛けた結果得られる地磁気データー\*----け角補正回路3で演算される。

$$\begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix} = Cc \begin{bmatrix}
m_x \\
m_y \\
m_z
\end{bmatrix}$$

ととで、上式の補正行列C。を取付け誤差補正行列とし ※【0032】 て、以下のように構成する。

$$C c = \begin{bmatrix} 1 & \Delta \phi_{cz} & -\Delta \phi_{ty} \\ -\Delta \phi_{cz} & 1 & \Delta \phi_{ez} \\ \Delta \phi_{ey} & -\Delta \phi_{tx} & 1 \end{bmatrix} \cdot \cdot \cdot \cdot \cdot \cdot \cdot (7)$$

△ Φ α α . △ Φ α α . 取付け角誤差計算により計算される補正値 (△φωの算出方法は、本発明に含まれない)

【0033】上式において、△Φ.\*、△Φ.、および△Φ ★乗項を微小値として無視するものとすれば、近似的に下 の補正値が正しく計算されると、 $\triangle \phi_{cx} = \triangle \phi_{x}$ 、 $\triangle \phi$  , m, D, が生成されて出力される。  $_{cv} = \triangle \phi_v$  、 $\triangle \phi_{cv} = \triangle \phi_v$  となり、取付け角誤差の $2 \bigstar$ 

よは、前述のように、取付け角誤差計算回路4において 20 記の(8)式が得られて、取付け角補正回路3からは、 計算された取付け角誤差に対する補正値である。とれら 取付け角誤差の影響が除かれた地磁気データ(m. m

$$\begin{bmatrix} m_x \\ m_y \\ m_z \end{bmatrix} = C^T \begin{bmatrix} M_h \\ 0 \\ M_V \end{bmatrix}$$

【0034】以下においては、取付け角誤差計算回路4 において行われる取付け角誤差補正値△Φ、、および△Φ け角誤差が存在する状態で、誤差補正をしないで姿勢検 出装置5の姿勢データ(誤差はないものとする)を参照☆

☆し、地磁気センサの地磁気データ(mx·, mv·, mx·) を座標変換すると、方位角ψ。を計算するための地磁気 、、の計算方法について説明する。前述したように、取付 30 データ(mx , mv , mz )は、次式のように表わされ

【0035】上式を展開して、取付け角誤差計算回路4 に入力される Z 軸成分m2 を表わすと次式のようにな ◆40

 $m_z = M_v + \{ \Delta \phi_z \cos \theta \sin \psi + \Delta \phi_y (\cos \phi \cos \psi + \sin \phi \sin \theta \sin \psi ) \}$ + Δφz (-sinφcosψ + cosφsinθsinψ) } Mh – δx sinθ + δy sinφcosθ + δz cosφcosθ · · · · · (10)

【0036】取付け角誤差計算回路4において、補正値 を計算する際のZ軸成分m、の計測を、ロール角 $\phi$ 、ビ ッチ角θがゼロに近い水平面内で行うものとすると、上\* に表わされる。

\*式において、 sinφと sinθは共化ゼロとなり、 cosφ と  $\cos\theta$  は共に 1 となって、Z 軸成分m は次式のよう

 $m_z = M_v + (\Delta \phi_z \sin \psi + \Delta \phi_y \cos \psi) M_h + \delta z \cdot \cdot \cdot (1 1)$ 

,、およびmz。とすると、これらの値は次式によって与え 【0037】そして、北、東、南および西の各方位を向 いた時のZ軸成分mzの値を、それぞれmza、mze、m 50 られる。

【0038】cの(12)式を用いて、取付け角誤差A \*\*できる。 φ\* および△φ\* は、次式のようにして計算することが\*

$$\triangle \phi_{x}=1/2 (m_{z_{e}}-m_{z_{w}})/Mh$$

$$\triangle \phi_{y}=1/2 (m_{z_{n}}-m_{z_{n}})/Mh$$

た、各方位ψ1 , ψ2 , ………, ψ における Ζ軸成 分mz の値をmzi , mzz , ...... , mz, とする

【0039】また、車両の方位を1回転させた際に向い ※と、これらの両者間の関係は次式の行列式によって表わ すことができる。

$$\begin{bmatrix}
\mathbf{m}_{z_1} \\
\mathbf{m}_{z_2} \\
\vdots \\
\mathbf{m}_{z_n}
\end{bmatrix} = \begin{bmatrix}
\sin \phi_1 & \cos \phi_1 & 1 \\
\sin \phi_2 & \cos \phi_2 & 1 \\
\vdots & \vdots & \vdots \\
\sin \phi_n & \cos \phi_n & 1
\end{bmatrix} \begin{pmatrix}
\Delta \phi_2 \cdot M h \\
\Delta \phi_2 \cdot M h \\
\Delta \phi_2 \cdot M h \\
\Delta \phi_3 \cdot M h \\
M v + dz
\end{bmatrix} \cdot \cdot \cdot (14)$$

【0040】上式を、M=HEの式に当てはめると、取 20★記の(15)式および(16)式を用いて求めることが 付け角誤差 $\triangle \phi x$  および $\triangle \phi y$  は、最小二乗法により下 $\star$  できる。

【0041】以上に説明した本実施の形態の方位角計測 装置において、地磁気センサ1の入力軸と姿勢検出装置 5の基準軸との間に取付け角誤差が存在する状態におい ても、該取付け角誤差を補正することにより、その影響 を受けることなく正確に車両の方位を計測することがで きる。との実施の形態では、車両の傾斜を計測する姿勢 検出装置(姿勢角センサ等)の基準軸と地磁気センサの 入力軸の方向を機械的に正確に合わせなくても、取付け 角補正演算部2における補正により正確な方位角を計算 できる。また、との補正においては、車両をジャッキア ップ等により傾けることなく、取付け角誤差を演算でき る。さらに、この補正は、車両が磁気を帯びている等に より地磁気センサ1の出力に誤差があっても、取付け角 誤差は演算できる。また、最小二乗法により地磁気セン 40 サの出力を処理すれば、地磁気センサの出力にノイズが あっても、ノイズの影響を受けることなく、取付け角誤 差を演算できる。

【0042】なお、実施の形態を挙げ本発明を具体的に 説明したが、本発明がとの実施の形態に限定されないと とは勿論である。また、実施の形態は車両に搭載する方 位角計測装置であったが、本発明の方位角計測装置は、 航空機や船舶といった他の移動体にも搭載できる。

[0043]

【発明の効果】以上説明したように、本発明によれば、

移動体に搭載され、方位角を計測する地磁気センサと姿 勢を検出する姿勢検出装置により、該移動体の方位角を 計測する方位角計測装置に適用されて、移動体の傾斜度 に対応する補正に加えて、地磁気センサの入力軸の方向 と、姿勢検出装置の基準軸の方向との間の取付け角誤差 を演算処理を介して補正することにより、移動体の方位 角を高精度で計測できるという効果が得られる。

【図面の簡単な説明】

【図1】本発明の一実施の形態を示すブロック図であ

【図2】従来例を示すブロック図である。

【図3】地磁気センサと姿勢検出装置の取付け角誤差を 定義する図である。

【符号の説明】

- 地磁気センサ 1
- 取付け角補正演算部 2
- 3 取付け角補正回路
- 取付け角誤差計算回路 4
- 姿勢検出装置
- 座標変換回路
- 7 方位角計算回路
- スイッチ

x', y', z' 3軸型地磁気センサ1に固定され

50 た直交座標軸

16

m、 x'軸地磁気データ

m, y<sup>'</sup> 軸地磁気データ m, z<sup>'</sup> 軸地磁気データ

x. y. z 姿勢検出装置5に固定された直交座標軸

15

mx 姿勢検出装置5の基準軸座標系のX軸における

地磁気データ

mx 姿勢検出装置5の基準軸座標系のY軸における

地磁気データ

\* m z 姿勢検出装置5の基準軸座標系の Z 軸における 地磁気データ

θs 姿勢検出装置5で検出されたピッチ角

φ<sub>s</sub> 姿勢検出装置5で検出されたロール角

ψ<sub>c</sub> 方位角計算回路7で計算された車両の方位角

X. Y. Z 局所水平座標系 ( Z 軸を鉛直方向とす

る)

【図1】

【図2】



【図3】



x。 y。 z : 姿勢検出装置基準箱 x', y', z': 地磁気センサ入力箱

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS                                           |
|---------------------------------------------------------|
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                 |
| ☐ FADED TEXT OR DRAWING                                 |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                    |
| ☐ SKEWED/SLANTED IMAGES                                 |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS                  |
| ☐ GRAY SCALE DOCUMENTS                                  |
| LINES OR MARKS ON ORIGINAL DOCUMENT                     |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY |
| □ OTHER:                                                |

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.