NTIN060 | Homework 05/5

Milan Wikarski (milan@wikarski.sk)

Zadanie

5. Pravděpodobnost. Každé spojení má pravděpodobnost úspěchu přenosu $0 \le p < sub > i < psub > i < pravděpodobnost úspěchu pro cestu <math>v < sub > 1 < psub > i < psub > i < psub > i < psub > i < pravděpodobnost úspěchu pro cestu <math>v < sub > 1 < psub > i < pravděpodobnost úspěchu pro cestu <math>v < sub > 1 < psub > i < psub >$

Riešenie a dôkaz správnosti

Majme graf G = (V, E) , zobrazenie E -> p , ktoré každej hrane priradí nejakú pravdepodobnosť $0 \le p \le b \le 1$ a nejaké vrcholy $v \le b \le 0 \le b \le 0 \le b \le 0 \le 1$ a nejaké vrcholy $v \le b \le 0 \le b \le 0 \le 0 \le 1$ a nejaké vrcholy $v \le b \le 0 \le 0 \le 1$ a nejaké vrcholy $v \le b \le 0 \le 1$ a nejaké vrcholy $v \le b \le 0 \le 1$ a nejaké vrcholy $v \le b \le 0 \le 1$ a nejaké vrcholy $v \le b \le 0 \le 1$ a nejaké vrcholy $v \le b \le 1$ a nejaké vrcholy $v \le 1$ a nejaké vrcholy $v \le b \le 1$ a nejaké vrcholy $v \ge 1$ a nejaké

Vytvoríme si pole s[v], kde budeme uchovávať pravdepodobnosť úspechu spojenia z vrcholu v < sub > 0 < / sub >

Vytvoríme si frontu, do ktorej budeme ukladať otvorené vrcholy. Na začiatku cyklu z fronty vyberieme jeden vrchol, preskúmame jeho susedov, prepočítame pravdepodobnosti prenosu a otvoríme 0 alebo viac vrcholov, ktoré pridáme na koniec fronty. Toto sa bude opakovať, dokým sa fronta úplne nevyprázdni. Po skončení výpočtu budú v poli s správne hodnoty pravdepodobnosti úspechu prenosu pre každý vrchol.

Výpočet pravdepodobnosti spojenia

Rozoberme hlavný cyklus. Na jeho začiatku z fronty vyberieme vrchol $\, v \,$. Pozrieme sa na všetky jeho susedné vrcholy. Uvažujme susedný vrchol $\, u \,$. Chceme zistiť, či pravdepodobnosť úspechu prenosu po ceste $\, (v < sub > 0 < / sub > 0 < sub > 0$

Predchodcovia vrcholov

Fázy výpočtu

Výpočet bude prebiehať vo fázach. Vo fáze F_o otvoríme vrchol v_o . Vo fáze F_{i+1} zatvárame vrcholy otvorené vo fáze F_i . Vo fáze F_i budeme už definitívne poznať hodnoty s[u] a P[u] pre všetky vrcholy u \in V , pre ktoré platí d(v_o, u) \leq i , kde d(v_o, u) je počet hrán medzi vrcholmi v_o a u (analogicky z Bellman-Fordova algoritmu; dá sa dokázať indukciou). Tým pádom po najviac o(n) fázach budeme poznať definitívne hodnoty s[v] a P[v] pre všetky v \in V .

Algoritmus

ALGORITMUS: PravdepodobnostUspechuPrenosu

INPUT: graf G = (V, E), zobrazenie E -> p a vrcholy v0, u0

OUTPUT: Cesta z v0 **do** u0 s najväčšou pravdepodobnosťou úspechu

```
1. queue <- new Queue()</pre>
                                           ⊲ vytvoríme si prázdnu frontu
 2. for \forall v \in V:
 3. S[v] < 0

⊲ Pravdepodobnosť úspechu cesty (v0, ..., v)

 4. P[v] <- null

⊲ Predchodca vrcholu v

 5. S[v0] <- 1
 queue.enqueue(v0)

⊲ Začneme vo v0

 7. while (queue is not empty):
8. v <- queue.dequeue()</pre>

⊲ Vyberieme v z fronty

9. for (\forall u; u \text{ is neighbour of } v):
                                          ⊲ Každý vrchol u spojený hranou s vrcholom v
10. if (S[u] < S[v] * p[(v, u)]): \triangleleft Ak sme našli lepšiu cestu
11.
          S[u] <- S[v] * p[(v, u)]
          P[u] <- v
12.
13.
          queue.enqueue(u)
14. path <- new List()
15. while (u0 != null):
16. path.append(u0)
17. u0 < -P[u0]
18. return path.reverse()
Poznámka: p[(v, u)] je pravdepodobnosť spojenia po hrane (v, u)
```

Časová a priestorová zložitosť

Označme si n = |V| počet vrcholov a m = |E| počet hrán.

Časová zložitosť

Rozdelme si algoritmus na 3 časti:

1. Inicializácia

Inicializácia prebehne v čase O(n), pretože inicializujeme hodnoty P[v] a S[v] pre všetky $v \in V$.

2. Výpočet

Vieme, že výpočet skončí po najviac O(n) fázach. Behom jedej fázy algoritmnus relaxuje každý vrchol najviac raz, takže celá fáza trvá O(m). Dokopy to je O(nm).

3. Budovanie cesty

Výsledná cesta môže byť poskladaná z najviac n vrcholov, takže jej poskladanie bude trvať najviac 0(n).

Všetky tri časti spolu budú trvať O(n + nm + n) = O(nm).

Priestorová zložitosť

Algoritmus pracuje s pomocnými poľami P a D, ktoré majú dĺžku n. Okrem toho potrebuje pamäť pre frontu, kde v jeden moment nemôže byť viac, ako n prvkov. Výslednú cestu vytvorí pomocou spojového zoznamu, ktorý bude mať najviac n prvkov. Spolu teda vyžaduje O(4n) = O(n) pamäte.

Alternatívny pohľad na problém

Alternatívne by sme sa na problém mohli dívať takto. Našou úlohou je násť cestu poskladanú z hrán e < sub > 1 < su

```
argmax {e1, e2, ..., ek} (p1 * p2 * ... * pk)
```

Čo je ekvivalentné s

```
argmax \{e1, e2, ..., ek\} (log(p1) + log(p2) + ... + log(pk))
```

Hľadáme minimum súčtu logaritmov. Vynásobme celý súčet hodnoutou (-1) a budeme hľadať

```
argmin {e1, e2, ..., ek} (-log(p1) - log(p2) - ... - log(pk))
```

Vieme, že platí $0 \le p < sub > i < fub > i 0 \le -\log(p < sub > i < fub > i < fub$