CS 224: Advanced Algorithms

Spring 2017

Lecture 22 — April 7, 2017

Prof. Jelani Nelson

using Newton's method, and start on "learn

Scribe: Noah Golowich

Today we will finish analysis of interior point methods using Newton's method, and start on "learning from experts."

1 Review of last time

Remember what we did on Tuesday: starting at some $x_0 \in \mathbb{R}^n$, by applying a number of updates like $x_{k+1} \leftarrow x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k)$, we hoped to get $f(x_k) \to f(x^*)$ as long as f satisfies certain conditions (which in fact imply f is strongly convex). More precisely, we proved:

Theorem 1 (Newton's method). Given $\alpha \in [0,1]$, and some x_k, x_{k+1} in the update step above, write $x_{\alpha} = \alpha x_{k+1} + (1-\alpha)x_k$. If, for all α , and for all x_k, x_{k+1} ,

$$(1 - \epsilon)\nabla^2 f(x_k) \le \nabla^2 f(x_\alpha) \le (1 + \epsilon)\nabla^2 f(x_k), \tag{1}$$

then $\delta(x_{k+1}) \leq (\epsilon/(1-\epsilon))^k \delta(x_1)$, where $\delta(x) = \|\nabla f(x)\|_{(\nabla^2 f(x))^{-1}}$.

By strong convexity, we are at the minimum of f if and only if the gradient is 0, which is true iff its norm is 0. Thus this theorem generalizes the fact that $x_k \to x^*$, where x^* is a minimizer of f.

Now we define the idea of being "awesome" and "good" solutions that were discussed last class:

Definition 2. We have fine centrality if $\delta_{\lambda_k}(x) \leq 1/100$, and coarse centrality if $\delta_{\lambda_k}(x) \leq 1/3$. And x is a perfectly central solution if $\delta_{\lambda}(x) = 0$.

2 IPM Analysis

Recall that the overall algorithm is as follows:

- 1. Start with $\tilde{x}(\lambda_0)$.
- $2. k \leftarrow 0.$
- 3. While λ_k isn't big enough, we let $\lambda_{k+1} \leftarrow (1+\alpha)\lambda_k$, do O(1) Newton steps on $\tilde{x}(\lambda_k)$ to get $\tilde{x}(\lambda_{k+1})$, and then $k \leftarrow k+1$.

To analyze this algorithm, we must address several questions:

- 1. Remember that we start at $\lambda \approx 0$ and want to stop at large λ . How large?
- 2. Verify that (1) holds when we apply Newton's method.

- 3. We need to understand the rate at which we can increase the λ s.
- 4. At the end of the day, we will end up with some finely central point for a large λ ; when why does $\delta_{\lambda}(x) \leq 1/100$ for large λ imply that we're done? This is a problem set problem. In today's lecture, we show that if x is perfectly central, then it gives a solution to the LP; on the pset, we relax this to finely central solutions.
- 5. We need a finely central point $\tilde{x}(\lambda_0)$ to get started, for small λ_0 .

Notation. $x(\lambda)$ is a minimizer for f_{λ} . $\tilde{x}(\lambda)$ is a finely central point for f_{λ} . For $n \in \mathbb{N}$, we let $J \in \mathbb{R}^n$ be the vector of all 1s, that is $J = [1, 1, ..., 1]^T$ (this was denoted using a slightly different symbol in lecture).

2.1 How large does λ need to be?

For $m, n \in \mathbb{N}, A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n, b \in \mathbb{R}^m, c \in \mathbb{R}^n$, remember the LP is $\min c^T x$, subject to $Ax \geq b$, and let an optimal point be x^* . Recall that $f_{\lambda}(x) = \lambda c^T x + p(s(x))$. Moreover, $p(s(x)) = \sum_{i=1}^m \ln(s(x_i))$, so that $\nabla f_{\lambda}(x) = \lambda c - A^T S_x^{-1} \cdot J$. Here J is the vector of 1s, and $S_x = diag(s_i(x), \ldots, s_m(x))$, with $s(x) = Ax - b \geq 0 \in \mathbb{R}^m$. Then $\nabla^2 f_{\lambda}(x) = A^T S_x^{-2} A$.

We have that since f_{λ} is strictly convex, its gradient is zero at its unique minimizer (the "perfectly central" point at λ) $x(\lambda)$. Hence

$$0 = \langle 0, x(\lambda) - x^* \rangle = \langle \nabla f_{\lambda}(x(\lambda)), x(\lambda) - x^* \rangle,$$

so using the form of ∇f_{λ} above,

$$\lambda c^{T}(x(\lambda) - x^{*}) = \langle A^{T} S_{x(\lambda)}^{-1} J, x(\lambda) - x^{*} \rangle,$$

and the RHS of the above is $J^T S_{x(\lambda)}^{-1} A(x(\lambda) - x^*)$. But, $A(x(\lambda) - x^*) = s(x(\lambda)) - s(x^*)$, since s(x) = Ax - b, and the b's cancel out. Therefore, since S_x is a diagonal matrix,

$$\lambda c^{T}(x(\lambda) - x^{*}) = \sum_{i=1}^{m} \frac{s(x(\lambda)) - s(x^{*})}{s(x(\lambda))} \le m.$$

The last inequality follows since each term in the sum is at most 1, meaning that

$$c^T x(\lambda) \le m/\lambda + OPT.$$

Therefore, if we set $\lambda > m/\epsilon$, meaning that $x(\lambda)$ gives cost at most $OPT + \epsilon$.

A few notes: If we want to solve the LP exactly, it is enough to take λ exponential in L (not shown here). Also, the number of steps to get accuracy ϵ is logarithmic in $1/\epsilon$.

2.2 Now we want to verify the Hessian Newton condition

To verify the Hessian condition necessary for convergence of Newton's method, we want to show that if we move from x to x' in a Newton iteration, then

$$(1 - \epsilon)A^T S_x^{-1} A \leq A^T S_{x_\alpha}^{-2} A \leq (1 + \epsilon)A^T S_x^{-1} A,$$

where we write $x_{\alpha} = x + \alpha(x' - x) = \alpha x' + (1 - \alpha)x$. This Loewner ordering $A \leq B$ means that for all $z \in \mathbb{R}^n$, $z^T A z \leq z^T B z$. We can drop all of the A's, by replacing z with A z. So, it suffices to show that

$$(1 - \epsilon)S_x^{-2} \leq S_{x_\alpha}^{-2} \leq (1 + \epsilon)S_x^{-2}.$$

It turns out to be true that $A \leq B \Rightarrow A^{-1} \leq B^{-1}$. Therefore, by this fact (we don't actually need it here, since S_x is diagonal), as well as taking the square root (which is certainly allowed since S_x is diagonal, we have that it suffices to show

$$\sqrt{1/(1+\epsilon)}S_x \leq S_{x_\alpha} \leq \sqrt{1/(1-\epsilon)}S_x.$$

By rescaling ϵ by at most a factor of 2, it suffices to show

$$(1-\epsilon)S_x \leq S_{x\alpha} \leq (1+\epsilon)S_x$$

or equivalently, by subtracting S_x an applying S_x^{-1} ,

$$-\epsilon I \leq S_x^{-1}(S_{x\alpha} - S_x) \leq \epsilon I,$$

meaning all eigenvalues of the matrix in the middle are of magnitude at most ϵ ; in other words, all of its diagonal entries have magnitude at most ϵ . Hence it suffices to show:

$$||S_x^{-1}(s(x_\alpha) - s(x))||_{\infty} \le \epsilon.$$

Remember for $v \in \mathbb{R}^n$, $||v||_{\infty}$ and $||v||_p = (\sum |a_i|^p)^{1/p}$. Minkowski's inequality shows that $||v||_p$ is indeed a norm. Also, $p \geq q$ implies that $||a||_p \leq ||a||_q$. We will bound the infinity norm by the 2 norm, so it suffices to bound:

$$||S_x^{-1}(s(x_\alpha) - s(x))||_2.$$

Now, since the b's cancel, remember that $s(x_{\alpha}) - s(x) = Ax_{\alpha} - Ax$, so we want to bound

$$||S_x^{-1}A(x_\alpha - x)||_2 = \alpha \cdot ||S_x^{-1}A(x' - x)||,$$

and using definition of x' in terms of x (just the Newton update step),

$$\alpha \cdot \|S_x^{-1} A(\nabla^2 f_\lambda(x))^{-1} \nabla f_\lambda(x)\|_2. \tag{2}$$

Now, $||v||_2 = ||v||_I$, with $||v||_A = \sqrt{x^T A x}$. Now, using shorthand for gradient and Hessian, the above norm squared is:

$$\nabla^T(\nabla^2)^{-T}A^TS_x^{-1}S_x^{-1}A(\nabla^2)^{-1}\nabla.$$

But $A^T S_x^{-2} A = \nabla^2$, and there is a $\nabla^{-2T} = \nabla^{-2}$ right next to it, so we get:

$$\nabla^T(\nabla^2)^{-1}\nabla,$$

so (2) is:

$$\alpha \cdot \|\nabla f_{\lambda}(x)\|_{(\nabla^{2} f_{\lambda}(x))^{-1}} = \alpha \cdot \delta_{\lambda}(x) \le \delta_{\lambda}(x) \le 1/3$$

if x is coarsely central for λ .

Therefore, as long as we start step k+1 with a solution x that is coarsely central for λ_{k+1} , we will have that the Newton Hessian condition is verified with $\epsilon = \delta_{\lambda_k}(x)$ at step k, so as long as we keep this below 1/3 (which we will), we will be good.

2.3 Rate at which we can increase λ ?

We want to figure out the largest increase of $\lambda_k \to \lambda_{k+1}$ to ensure that if $\tilde{x}(\lambda_k)$ is finely central, how big can we make λ_{k+1} while keeping $\tilde{x}(\lambda_k)$ coarsely central for $f_{\lambda_{k+1}}$. In particular, given $\delta_{\lambda_k}(\tilde{x}(\lambda_k)) \leq 1/100$, we want $\delta_{\lambda_{k+1}}(\tilde{x}(\lambda_k)) \leq 1/3$.

We will have $\lambda_{k+1} = (1+t)\lambda_k$; how big can we make t?

Look at

$$\delta_{\lambda_{k+1}}(\tilde{x}(\lambda_k)) = \|\nabla f_{\lambda_{k+1}}(\tilde{x}(\lambda_k))\|_{(\nabla^2 f_{\lambda_{k+1}}(\tilde{x}(\lambda_k)))^{-1}}.$$

Fortunately, since we are in an LP setting, the λ_{k+1} norm is the same as the λ_k norm: just look at the Hessian: it doesn't depend on λ ! So, this is

$$\|(1+t)\lambda_k c - A^T S_{\tilde{x}(\lambda_k)}^{-1} J\|_M$$

with $M = (\nabla^2 f_{\lambda_{k+1}}(\tilde{x}(\lambda_k)))^{-1}$. We want to make the stuff inside the norm look like the λ_k th centrality, plus extra additional stuff, then apply triangle inequality; in particular, add and subtract $tA^T S_{\tilde{x}(\lambda_k)}^{-1} J$, get

$$\|(1+t)(\lambda_k c - A^T S_{\tilde{x}(\lambda_k)}^{-1} J) + t A^T S_{\tilde{x}(\lambda_k)}^{-1} J\|_{M}$$

which by triangle inequality (which follows since this "matrix norm" is just a normal l_2 norm with a different basis), is at most:

$$(1+t)\|\lambda_k c - A^T S_{\tilde{x}}^{-1} J\|_M + t\|A^T S_{\tilde{x}}^{-1} J\|_M \le (1+t)\delta_{\lambda_k}(\tilde{x}(\lambda_k)) + t\|A^T S_{\tilde{x}}^{-1} J\|_M.$$

This is at most

$$\frac{1+t}{100} + t \|A^T S_{\tilde{x}}^{-1} J\|_{(A^T S_{\tilde{x}}^{-2} A)^{-1}}.$$
 (3)

The squared norm in the equation above is somewhat nasty; it is:

$$J^{T} S_{\tilde{x}}^{-1} A (A^{T} S_{\tilde{x}}^{-2} A)^{-1} A^{T} S_{\tilde{x}}^{-1} J \tag{4}$$

Now, in general, for $X \in \mathbb{R}^{m \times n}$, $v \in \mathbb{R}^m$, $X(X^TX)^{-1}X^Tv$ is the orthogonal projection of v on the column space of X, assuming that X has full column rank.¹ (This assumption implies that A has more constraints than variables.) Here, we have $X = S_{\tilde{x}(\lambda_k)}^{-1}A$.

This norm (4) is the inner product of the all-one's vector after projecting onto orthogonal subspace and the all-one's vector J itself. But, for a general vector $v \in \mathbb{R}^m$, $S \subseteq \mathbb{R}^m$ a subspace, if the orthogonal projection of v onto S is u, then we have $\langle v, u \rangle = \langle u, u + (v - u) \rangle = \langle u, u \rangle$, since $\langle u, v - u \rangle = 0$; but, projecting onto orthogonal subspace just decreases norms. So, the quantity (3) is at most

$$\frac{1+t}{100} + t||J||_2 = \frac{1+t}{100} + t\sqrt{m}.$$

So, if we increase λ_{k+1} by a (1+t) factor compared to λ_k , then the centrality for λ_{k+1} is $(1+t)/100 + t\sqrt{m} \le 1/3$ if $t = 1/(4\sqrt{m})$.

¹Assuming X is square, expand out the SVD of X, get that this thing is UU^T , where $X = U\Sigma V^T$. Here U actually refers to the $m \times n$ $(n \le m)$ matrix with orthogonal columns that "matters" in the SVD. It is now clear that UU^Tv gives the orthogonal projection of v onto the column space of U (which is the same as that of X, by what SVD is).

2.4 Finely central point for λ_0 ?

To get $\tilde{x}(\lambda_0)$, we need to make sure it has positive volume, so that there exists an interior point. In particular, we modify the LP to be:

$$\min c^T x + N z,$$

for $N = 10^L$, and z is a new variable, subject to

$$Ax + zJ \ge b$$
, $0 \le z \le 2^{L+1}$, $\forall i, -2^L \le x_i \le 2^L$.

Now, the point $x = 0, z = ||b||_{\infty}$ is an interior point (technically one can show that this is in the interior of the above polytope, but all we need is that it is finely central for λ_0). We also claim that an optimal solution to this modified LP gives us an optimal solution to the original one: in particular, in an optimal solution to this modified LP, you never place any mass on z whatsoever: assuming there's a feasible solution to the original LP, the individual x_i must be at most $O(2^L)$, meaning the objective has value at most $O(2^L)$, so in order to put mass on z and beat this objective we must have $z = O(1/2^L)$, which in turn implies that the new LP has optimum at z = 0 (this is not a complete proof; see the references for details).

To construct a finely central point, we define $\tilde{x} = (0, ||b||_{\infty})$, where $z = ||b||_{\infty}$. \tilde{x} is not necessarily finely central. Now, note that \tilde{x} is perfectly central for $\lambda = 1$ with cost function $c' = A^T S_{\tilde{x}}^{-1} J$. Instead of slowly increasing λ , we actually decrease λ by a factor of 1 - t, and repeating all of the analysis above gives a finely central point for this cost function c', for a very tiny λ . Once λ is super-tiny, a finely central point for this cost function is a finely central point for any other λ . Then, we just change the cost function to c, and we will still be finely central. Then, we can run everything forwards.

More precisely:

- \tilde{x} is perfectly central for $\lambda = 1, c' = A^T S_{\tilde{x}}^{-1} J$.
- Let $\tilde{x}(1) \leftarrow (0, ||b||_{\infty}), \lambda \leftarrow 1$.
- For $\lambda > \lambda_0 = 2^{-\Theta(L)}$, let $\lambda \leftarrow (1 1/\sqrt{m})\lambda$, and run O(1) Newton steps on \tilde{x} to get a new $\tilde{x}(\lambda)$. This will be finely central for the new λ , and also coarsely central for the next λ (namely, $(1 t)\lambda$) by the exact same analysis as was used above.
- Then output \tilde{x} as $\tilde{x}(\lambda_0)$, use the forward algorithm for IPM.

2.5 Overview

How many iterations do we need in the outer loop? We start at λ_0 , and end at $\lambda_t = m/\epsilon = (1+1/\sqrt{m})^T \lambda_0$. So, we want

$$(1 + 1/\sqrt{m})^T \lambda_0 > m/\epsilon,$$

with $\lambda_0 = 2^{-\Theta(L)}$, so taking logs gives us that

$$T\ln(1+1/\sqrt{m}) > L + \ln(m/\epsilon),$$

$$T \ge \sqrt{m}(L + \ln(m/\epsilon)).$$

Also, a bit of history:

- The first IPM for LP was given in [Kar84]; it was an iterative approach with an outer loop and inner loop. It needed $T = \Omega(mL)$.
- More recently, [Ren88], showed how to get $T = \tilde{O}(\sqrt{m}L)$.
- State-of-the-art: [LS14], get $T = \tilde{O}(\sqrt{rank(A)}L)$.

Throught this analysis, we assumed that the Hessian is invertible, and to get this, we need $n \leq m$ (this is necessary, not sufficient). (In fact, these full-rank conditions don't matter too much, since we can use the Moore-Penrose pseudoinverse instead.) But, there is a simple trick to make sure that the Hessian is invertible (this is a pset problem).

The fastest methods for lots of common problems nowadays (e.g. instead of Edmonds-Karp, Ford-Fulkerson), go through LP and use interior point methods.

3 Preview: Learning from Experts

Suppose some event will happen today (either it will rain or not rain ²), or some stock will go up or down).

Based on what experts say, you want to figure out what to do. Say there are T days; each day, it will rain or not; there are n experts. Over time, you start to learn who the right people are. On day 1, you have no clue who is right. So, what to do?

- For t = 1, ..., T:
- Predict the majority vote amongst the experts who are alive.
- At the end of the day, "kill" (not actually; just ignore) all experts who were wrong that day.

Lemma 3. If there exists a perfect expert, then we make at most $\lceil \log_2 n \rceil$ mistakes.

Proof. Each time we make a mistake, the number of alive experts gets cut by a factor of at least 2; we can cut people like this at most $\log_2 n$ times.

What if the best expert makes at most E errors? We may kill him/her accidentally. So, if all experts are dead, we just revive them all.

Lemma 4. We make at most $(E+1)\lceil \log_2 n \rceil$ errors.

Proof. Break up time into phases; each phase is one mistake of the best expert: inside of each phase, we have at most $\log_2 n$ mistakes, by the same analysis. This gives the bound immediately.

²Today, it is *definitely* raining.

Next time: for all $\eta \in (0,1)$, we can get at most $(2+\eta)E + \frac{2\log n}{\eta}$ mistakes. This gives us a 2-competitive ratio with an *additive* $\log n$. The idea is that when someone is wrong, decrease your "confidence" in them, and take a weighted majority vote based on confidences. This is related to regret minimization.

References

- [Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. *Combinatorica*, 4(4):373–395, December 1984.
- [LS14] Yin Tat Lee and Aaron Sinford. Path Finding Methods for Linear Programming: Solving Linear Programs in \sqrt{rank} Iterations and Faster Algorithms for Maximum Flow, 2014.
- [Ren88] James Renegar. A polynomial-time algorithm, based on Newton's method, for linear programming. *Mathematical Programming*, 40(1-3):59–93, January 1988.