In the Claims

Amend the claims as follows:

1. (currently amended) A process for preparing compounds of the formula (II),

where the substituents R^1 to R^5 are each independently H, CH_3 , straight-chain or branched C_1 - C_8 -alkyl, $CH(OC_1$ - C_5 -alkyl)₂, $CH(C_1$ - C_5 -alkyl)(OC_1 - C_5 -alkyl), $CH_2(OC_1$ - C_5 -alkyl), $CH(CH_3)(OC_1$ - C_5 -alkyl), C_1 - C_8 -alkoxy, $N(C_1$ - C_5 -alkyl)₂, phenyl, substituted phenyl, aryl, heteroaryl, $S(C_1$ - C_5 -alkyl) or a radical $C_{aryl, alkyl}$, and

the symbols $X^{1 \text{ to } 5}$ are each carbon or <u>with a maximum of two</u> neighboring X^{1-5} are nitrogen or X^1R^1 and X^2R^2 together are O, NH, N(C₁-C₅-alkyl), N(C=O-C₁-C₅-alkyl), N(SiR₃)₂ or S,

or where neighboring radicals R¹ to R⁵ form the following structural unit,

where X^6 to X^9 and R^6 to R^9 have the same meaning as X^1 to X^5 and R^1 to R^5 and

the radical C_{aryl, alkyl} is straight-chain or branched, substituted or unsubstituted C₁-C₈-alkyl, 1-hydroxyalkyl having from 1 to 8 carbon atoms, CN, 2-hydroxyalkyl having from 2 to 5 carbon atoms, 3-hydroxyalkyl having from 3 to 5 carbon atoms, 1-NHR-alkyl having from 1 to 5 carbon atoms, CH(OC₁-C₅-alkyl)₂, C(C₁-C₅-alkyl)(OC₁-C₅-alkyl), CH₂(OC₁-C₅-alkyl), CH(CH₃)(OC₁-C₅-alkyl), C₁-C₅-alkoxy, N(C₁-C₅-alkyl)₂, phenyl, substituted phenyl, aryl, heteroaryl, CO₂H, CO₂alkyl, (C=O)_{0.5}, substituted 1-vinylalkyls, CH₃-C(=O), R-C(=O) or CHO, which comprises reacting chloro- or fluoroaromatics of the formula (I) with carbon electrophiles and lithium metal.

2. (Original) The process as claimed in claim 1, wherein the carbon electrophile is selected from the group consisting of:

```
aryl or alkyl cyanates (Carylalkyl = CN)
oxirane, substituted oxiranes (Caryl,alkyl = CH2CH2OH, substituted
CR<sub>2</sub>CR<sub>2</sub>OH)
azomethines (C<sub>arvl.alkvl</sub> = CR<sup>1</sup><sub>2</sub>-NR'H)
nitroenolates (Caryl,alkyl = oximes)
immonium salts (C_{aryl,alkyl} = amines)
haloaromatics, aryl triflates, other arylsulfonates (Carvl,alkyl = aryl,
heteroaryl)
carbon dioxide (Caryl,alkyl = COOH)
carbon monoxide (C_{aryl,alkyl} = (-CO-)_{0.5})
aldehydes, ketones (C<sub>aryl,alkyl</sub> = CHR<sup>1</sup>-OH, CR<sup>1</sup><sub>2</sub>-OH)
\alpha,\beta-unsaturated aldehydes/ketones (C<sub>aryl,alkyl</sub> = CH(OH)-vinyl, CR<sup>1</sup>(OH)-
vinyl)
ketenes (C_{aryl,alkyl} = C(=O)CH_3 in ketene, C(=O)-R in substituted ketenes)
 alkali metal and alkaline earth metal salts of carboxylic acids (Caryl,alkyl =
 CHO in formates, COCH<sub>3</sub> in acetates, R<sup>1</sup>CO in R<sup>1</sup>COOMet)
 aliphatic nitriles (C<sub>aryl,alkyl</sub> = COCH<sub>3</sub> in acetonitrile, R<sup>1</sup>CO in R<sup>1</sup>CN)
 aromatic nitriles (C<sub>aryl,alkyl</sub> = COAr')
 amides (C<sub>aryl,alkyl</sub> = CHO in HCONR<sup>1</sup><sub>2</sub>, C(=O)R<sup>1</sup> in R<sup>1</sup>CONR<sup>′</sup><sub>2</sub>)
 esters (C_{aryl,alkyl} = [C(OH)R^1]_{0.5}) or
 alkylating agents (C_{aryl,alkyl} = alkyl).
```

- 3. (original) The process as claimed in claim 1, wherein the reaction is performed at a temperature in the range from -100 to +80°C.
- 4. (original) The process as claimed in claim 1, wherein lithium is used in the form of a dispersion, powder, turnings, sand, granules, pieces or in the form of bars.
- 5. (currently amended) The process as claimed in claim 1, wherein the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether, more preferably toluene, THF or diisopropyl ether.
- 6. (original) The process as claimed in claim 1, wherein the process is performed as a one-pot process.
- 7. (original) The process as claimed in claim 1, wherein the organolithium compound is first generated and then reacted with the carbon electrophile at the same or a slightly different temperature.

Art Unit 1625

(original) The process as claimed in claim 1, where the straight-8. chain or branched C₁-C₈-alkyl is a C₁-C_v-alkyl and the C₁-C₈-alkoxy is a C_1 - C_y -alkoxy.

- (original) The process as claimed in claim 2, wherein the reaction 9. is performed at a temperature in the range from -100 to +80°C.
- (original) The process as claimed in claim 2, wherein lithium is 10. used in the form of a dispersion, powder, turnings, sand, granules, pieces or in the form of bars.
- (currently amended) The process as claimed in claim 2, wherein 11. the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether , more preferably toluene, THF or diisopropyl ether.
- (original) The process as claimed in claim 2, wherein the process 12. is performed as a one-pot process.

- 13. (original) The process as claimed in claim 2, wherein the organolithium compound is first generated and then reacted with the carbon electrophile at the same or a slightly different temperature.
- 14. (original) The process as claimed in claim 3, wherein lithium is used in the form of a dispersion, powder, turnings, sand, granules, pieces or in the form of bars.
- 15. (currently amended) The process as claimed in claim 3, wherein the solvent used is an aliphatic or aromatic ether, a hydrocarbon or an amine which does not carry a hydrogen on the nitrogen atom, preferably triethylamine, diethyl ether, tetrahydrofuran, toluene, toluene-THF mixtures, anisole and diisopropyl ether, more preferably toluene, THF or diisopropyl ether.
- 16. (original) The process as claimed in claim 3, wherein the process is performed as a one-pot process.
- 17. (original) The process as claimed in claim 3, wherein the organolithium compound is first generated and then reacted with

Art Unit 1625

the carbon electrophile at the same or a slightly different

temperature.

18. (currently amended) The process as claimed in claim 4, wherein

the solvent used is an aliphatic or aromatic ether, a hydrocarbon

or an amine which does not carry a hydrogen on the nitrogen

atom, preferably triethylamine, diethyl ether, tetrahydrofuran,

toluene, toluene-THF mixtures, anisole and diisopropyl ether,

more preferably toluene, THF or diisopropyl ether.

19. (original) The process as claimed in claim 4, wherein the process

is performed as a one-pot process.

20. (original) The process as claimed in claim 4, wherein the

organolithium compound is first generated and then reacted with

the carbon electrophile at the same or a slightly different

temperature.

10