Neural Networks for Binary Classification Using Softmax

Qingfeng Liu

Hosei University

August 3, 2025

Practical Application Example: Spam Email Classification

System Design

- Input: Email text feature vector (word frequencies, etc.)
- Output:
 - Class 0: Normal email (probability P0)
 - Class 1: Spam email (probability P1)

Practical Application Example: Spam Email Classification

Example Calculation

For email containing "free", "prize":

- Output scores: [2.3, 5.1] (normal vs spam)
- Calculations:

$$e^{2.3} \approx 9.9742$$
 $e^{5.1} \approx 164.022$
 $P0 = \frac{9.9742}{9.9742 + 164.022} \approx 0.0573$
 $P1 = \frac{164.022}{9.9742 + 164.022} \approx 0.9427$

• Decision: Spam (P1 > 0.5)

Network Architecture

Core Features

- Dual-output design: Two neurons for two classes
- Probability normalization: $\sum P_i = 1$
- Symmetric optimization: Learns both decision boundaries

Mathematical Formulation

Softmax Function

For output scores $\mathbf{s} = [s_1, s_2]$:

$$P(y=1) = \frac{e^{s_1}}{e^{s_1} + e^{s_2}}$$
 $P(y=2) = \frac{e^{s_2}}{e^{s_1} + e^{s_2}}$

Cross-Entropy Loss

$$L = -\sum_{c=1}^{2} y_c \log(p_c)$$

Where:

- y: One-hot encoded true label
- p: Predicted probability

Calculation Example: Correct Prediction

Parameters

- Output scores: [3.0, -1.0]
- True label: Class 0 (y=[1,0])

Calculation Example: Correct Prediction

Step-by-Step Calculation

Compute exponents:

$$e^{3.0} \approx 20.0855$$
 $e^{-1.0} \approx 0.3679$

2 Compute probabilities:

$$P(y = 0) = 20.0855/(20.0855 + 0.3679) \approx 0.9820$$

 $P(y = 1) = 0.3679/(20.0855 + 0.3679) \approx 0.0180$

Cross-entropy loss:

$$L = -[1 \times \log(0.9820) + 0 \times \log(0.0180)] \approx 0.0182$$

Calculation Example: Incorrect Prediction

Parameters

- Output scores: [-2.0, 1.0]
- True label: Class 0 (y=[1,0])

Step-by-Step Calculation

Compute exponents:

$$e^{-2.0} \approx 0.1353, e^{1.0} \approx 2.7183$$

$$P(y = 0) = 0.1353/(0.1353 + 2.7183) \approx 0.0474$$

 $P(y = 1) = 2.7183/(0.1353 + 2.7183) \approx 0.9526$

② Cross-entropy loss:

$$L = -[1 \times \log(0.0474) + 0 \times \log(0.9526)] \approx 3.0486$$

Sigmoid vs. Softmax Comparison

Characteristic	Sigmoid	Softmax
Output dimension	1	2
Loss calculation	$-y\log(p)-(1-y)\log(1-p)$	$-\sum y_c \log(p_c)$
Example 1 loss	0.018	0.018
Example 2 loss	3.05	3.05
Gradient calculation	p-y	$p_i - y_i$

Table: Comparison between Sigmoid and Softmax approaches

Application Scenarios

Medical	Industrial	
 Disease diagnosis 	 Quality control 	
Medical imaging	Predictive maintenance	
	ALD COL	

Financial

- Fraud detection
- Risk assessment

NLP/CV

- Spam detection
- Object recognition

Recommendations

- Softmax: Better for multi-class extension
- Sigmoid: When single output suffices

Implementation Notes

Practical Considerations

- PyTorch's CrossEntropyLoss combines Softmax + NLL
- Numerical stability: Built-in log-softmax optimization
- Class imbalance: Use weighted loss

Training Tips

- Monitor both classes' accuracy
- Check gradient magnitudes
- Visualize decision boundaries