$https://ro-gut.github.io/turan3\ https://github.com/ro-gut/turan3\ https://ro-gut.github.io/turan3/docs$

Turán's Theorem Formalization

ro-gut

September 17, 2025

0.1 Concentrating support on a clique - Improve Operartion

Definition 1 (A better distribution). Better Given a weight function W, a choice of a weight function Better W with supp(Better W) \subseteq supp(W) and W.fw \le (Better W).fw.

Definition 2 (Single transfer). Improve Given distinct vertices $loose \neq gain$, the weight function Improve W loose gain moves a small amount from loose to gain.

Lemma 3 (Sum splitting along the partition). Improve_partition_sum_splitSummingvp over E splits as the sum over the gain-incidence, plus the loose-incidence, plus the complement.

Lemma 4 (Gain-incidence increases). Improve_gain_contribution_increaseThesumonthegain—incidenceincreasesbyW.w loose times the sum of the other-endpoint weights incident to 'gain'.

Lemma 5 (Loose-incidence becomes zero). $Improve_loose_contribution_zeroThesumontheloose-incidence is zero after Improve.$

inciaenceiszeroa jier **improve**.

Lemma 7 (Transfer does not decrease fw). $Improve_total_weight_nondeclem : <math>Improve_partition_sum_split, lem : I$ ($Improve\ W$ loose gain).fw.

Lemma 6 (Unchanged complement). $Improve_unchanged_edge_sumEdgesoutsidetheunion of gain/loosein cidene$

 $\textbf{Lemma 8} \ (\textbf{Improve} \ strictly \ reduces \ support). \ \textit{Improve} \ support_s trictly \ reduced def: Improve If the neighbourhood support suppo$

Theorem 9 (Support of Better is a clique). $Better_forms_cliquedef: Improve, lem: Improve_total_weight_nonder everytwodistinctvertices of positive weight are adjacent in <math>G$.

0.2 The Enhance Operation

Definition 10 (Enhance). Enhance Defines the operation of transferring weight from one vertex to another, provided the two vertices are non-adjacent. This operation is central to the second phase of the proof, where we later reduce the support size while ensuring the edge weight does not decrease.

 $\textbf{Lemma 11} \ (\textbf{Sum over support}). \ sum_over_support Expresses the total vertex weight as the sum of weight sover the sum of th$

Lemma 12 (Supported edge partition). $supported_e dge_p artition Splits the edge set into edges incident to the chosen$

 $\textbf{Lemma 13} \ (\textbf{Enhance gain sum}). \ \textit{Enhance} \\ \textit{gain sum} \\ \textit{Showsthat} \\ \textit{under \ref{eq:showsthat}}, \textit{the contribution of the gain vertex sedges and the showsthat the showst$

 $\textbf{Lemma 14} \ (\textbf{Enhance loose sum}). \ \textit{Enhance loose sum} Shows that under \ref{thm:enhance loose}, the contribution of the loose vertex sed graduation of the loose vertex sed graduation$

Definition 15 (Bijection inside the clique). the bij Provides a bijection between the supported incidence edges at 'le

Lemma 16 (Bijection preserves). $the_b ij_s ame Shows that the bijection preserves the "other" weight: for any edge from the supported incidence set of loose, the weight the "other" vertex equals that in its image une derivative that the support is a support of the support$

 $\textbf{Lemma 17} \ (\textbf{Loose/gain equality}). \ Enhance_sum_loose_qain_equal Shows that the total weight moved from the loose varieties of the properties of the$

Lemma 18 (Complement unchanged). $Enhance_sum_complement_unchangedShowsthatedgesnotincidenttogain$

Lemma 19 (Edge contribution increase). $Enhance_e dge_g ainloose_increase Provest hat the net contribution from <math>g$

 $\textbf{Lemma 20} \ (\textbf{Support edges unchanged}). \ \textit{Enhance}_{s} upport_{e} dges_{s} ame Shows that for vertices outside of gain and described the support of the support of$

 $\textbf{Theorem 21} \ (\textbf{Enhance increases edge weight}). \ \textit{Enhance}_total_weight_stricinclem: supported_edge_partition, lem$

0.3 Equalizing the weights on the clique - EnhanceD

Definition 22 (Carefully chosen ε). the $Define the <math>\varepsilon := \max -\frac{1}{|\text{supp}|}$.

Definition 23 (Maximising the number of uniform vertices). $\max_u niform_s upport Define the maximal machine to the support Define the support Defi$

Lemma 24 (Best uniform distribution exists). $exists_best_uniform def : max_uniform_supportThere exists a distribution exists). <math>exists_best_uniform def : max_uniform_supportThere exists a distribution exists).$

Definition 25 (UniformBetter). UniformBetter lem: exists $best_u$ niformAchoiceofamaximiser from??.

 $\begin{tabular}{ll} \textbf{Definition 26} (Enhanced). Enhanced def:Enhance, def:the}_eDefines the \verb"Enhanced" weight function: \\ transferring weight from the argmax vertex \verb"loose" to the argmin vertex \verb"gain", using \ref{tabular} with the amount the $\underline{\varepsilon}$. \\ \end{tabular}$

 $\textbf{Lemma 27.} \ Enhanced_unaffected def: Enhance, def: Enhanced Shows that under \texttt{Enhance} devery vertex that contains the property of the p$

 $\textbf{Lemma 28.} \ Enhanced_effect_argmax def: Enhance, def: Enhanced Shows that the weight at the argmax vertex and the properties of the p$

 $\textbf{Lemma 29.} \ Enhanced_inc_uniform_count def: Enhanced, lem: Enhanced_effect_argmax, lem: Enhanced_unaffect_argmax, lem:$

Lemma 30. def:UniformBetter The support of W forms a clique if and only if the support at UniformBetter also forms a clique.

Lemma 31 (Uniform weights on the support). $UniformBetter_constant_support def: UniformBetter, def: Enl$

 $\textbf{Lemma 32} \ (\text{Edge values under UniformBetter}). \ \textit{UniformBetter}_{e} \\ \textit{dges}_{v} \\ \textit{aluelem} : \textit{UniformBetter}_{c} \\ \textit{onstant}_{s} \\ \textit{upper}_{s} \\ \textit{upper}_{$

Lemma 33 (Edge count in a clique). $clique_sizelem: UniformBetter_factsIfthesupporthassizek, then the num 1)/2.$

Lemma 34 (A light computation). computation $(k(k-1)/2) \cdot (1/k)^2 = \frac{1}{2} (1 - 1/k)$ for k > 0.

Lemma 35 (Monotonicity of the bound). bound bound_realThefunctionk $\rightarrow \frac{1}{2}(1-\frac{1}{k})$ is nondecreasing in k (for $k \geq 1$).

Theorem 36 (Final bound inside a clique). $finale_boundlem : Better_non_decr, lem : Better_forms_clique, lem : U-limits to the contract of th$

W.fw
$$\leq \frac{1}{2} (1 - 1/(p - 1)).$$

p-1, then

Definition 37 (Uniform weights over all vertices). UnivFun The uniform vertex-weight function assigning 1/|V| to each vertex.

Lemma 38 (Total weight under UnivFun). $UnivFun_w eight def : UnivFun(UnivFun G).fw=\#E \cdot (1/|V|)^2$.

Theorem 39 (Turán's Theorem). $turans\ def: UnivFun,\ lem: UnivFun_weight,\ lem: finale_bound, lem: computationLet p \geq 2$ and let G be a p-clique-free graph. Then

$$\#E \le \frac{1}{2} \left(1 - \frac{1}{p-1}\right) (\#V)^2.$$