Universidade Federal de Minas Gerais Instituto de Ciências Exatas e da Terra Departamento de Estatística

MODELAGEM LINEAR GENERALIZADA COM EFEITO ESPACIAL: UM ESTUDO COM DADOS EDUCACIONAIS DO ESTADO DE MINAS GERAIS

Maria Luisa Gomes dos Reis

Orientador: Prof. Vinícius Diniz Mayrink

INTRODUÇÃO

- Aprimoramento do projeto de Iniciação Científica
 - Modelagem Linear Generalizada: um estudo com dados educacionais do estado de Minas Gerais
- Taxas de abandono escolar
 - Modelos Lineares Generalizados

- Estudo limitado a Minas Gerais
 - Estatística Espacial → Estatística Bayesiana

INTRODUÇÃO

Anos escolares agrupados em blocos de ensino

- Ensino Fundamental I (EFI): 1° ao 5° ano
- Ensino Fundamental II (EFII): 6° ao 9° ano
- Ensino Médio (EM): 1ª à 3ª série

- Taxa de escolas públicas e taxa de escolas na área urbana;
- Obtenção de covariáveis explicativas referentes à cada município.

Objetivo: avaliar quais fatores influenciam na taxa de abandono em Minas Gerais

ANÁLISE DESCRITIVA

- Considerou-se três anos ao longo da mesma década;
- Foram considerados municípios com pelo menos 3 escolas válidas;
 - Escolas válidas apresentam taxas para pelo menos metade das séries escolares do bloco de ensino correspondente

Ano	Ensino	Nº de municípios considerados	Nº médio de escolas por município	Nº médio de escolas válidas por município	Nº total de escolas	N° total de escolas válidas
	EFI	617	12,4	9,1	10.540	7.760
2020	EFII	419	12,4	5,4	10.540	4.647
	EM	272	12,4	2,8	10.540	2.417
	EFI	652	13,2	10,2	11.222	8.664
2015	EFII	425	13,2	5,5	11.222	4.714
8	EM	256	13,2	2,7	11.222	2.271
	EFI	692	14,8	11,9	12.608	10.186
2010	EFII	419	14,8	5,5	12.608	4.663
i	EM	243	14,8	2,5	12.608	2.101

ANÁLISE DESCRITIVA

EFI

EFII EM

METODOLOGIA

- Suporte dos dados sugere uso de MLGs Gama ou Beta
- Estudo simulado para decidir sobre qual modelo aplicar aos dados reais
- Reparametrização das distribuições sob estudo:

$$Y \sim Gamma(\boldsymbol{\alpha}, \boldsymbol{\delta}) \rightarrow \theta = \frac{\alpha}{\delta}$$

 $Y \sim Gamma(\boldsymbol{\theta}, \boldsymbol{\alpha})$

$$f(y,\theta) = \frac{\left(\frac{\alpha}{\theta}\right)^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\frac{\alpha}{\theta}y}, \quad y \ge 0,$$
$$E(Y) = \theta \quad Var(Y) = \frac{\theta^2}{\alpha}$$

$$Y \sim Beta(\alpha, \beta) \rightarrow \theta = \frac{\alpha}{\alpha + \beta}$$
 $\zeta = \alpha + \beta$
 $Y \sim Beta(\theta, \zeta)$
$$f(y, \theta) = \frac{\Gamma(\zeta)}{\Gamma(\theta\zeta)\Gamma[(1 - \theta)\zeta]} y^{\theta\zeta - 1} (1 - y)^{(1 - \theta)\zeta - 1},$$

$$0 \le y \le 1$$

$$E(Y) = \theta \qquad Var(Y) = \frac{\theta(1 - \theta)}{1 + \zeta}$$

METODOLOGIA - Distribuições a priori

Coeficientes → Normal multivariada

$$m_{\beta} = m_{\gamma} = 0$$
 $S_{\beta} = S_{\gamma} = \begin{pmatrix} 10 & 0 & \cdots & 0 \\ 0 & 10 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 10 \end{pmatrix}$

Parâmetros de dispersão/ruído e variância do efeito espacial → Gamma

$$a_{\tau} = a_{\tau,\theta} = a_{\tau,\zeta} = b_{\tau} = b_{\tau,\theta} = b_{\tau,\zeta} = 0,1$$

Efeitos aleatórios espaciais → Normal multivariada

$$m_{\Delta}=m_{\Delta,\theta}=m_{\Delta,\zeta}=0$$
 $S_{\Delta},S_{\Delta,\theta}$ e $S_{\Delta,\zeta}=$ matrizes de vizinhança

METODOLOGIA

- Ajustou-se os dados de acordo com a estrutura que os gerou
- Modelos trocados para avaliar o impacto da má especificação do modelo:
 - beta zeta trocado → dados beta_zeta ajustados com o modelo beta_zeta_delta
 - o beta zeta delta trocado → dados beta_zeta_delta ajustados com o modelo beta_zeta

Modelo/dados	Estrutura da média com covariáveis	Estrutura da dispersão com covariáveis	Parâmetro ruído/dispersão	Efeito espacial na estrutura da média	Efeito espacial na estrutura da dispersão
gama	x		x	x	
beta	x		x	X	
beta_zeta	x	x		x	
beta_zeta_delta	x	x		X	x

ESTUDO SIMULADO

- Bom ajuste para os dados simulados;
- Aumento do tamanho amostral fornece estimativas mais acuradas;
- Ajustar dados trocados indicou que dados sem estrutura espacial podem ser modelados considerando essa estrutura.

ESTUDO SIMULADO

ESTUDO SIMULADO

 Ajustou-se os dados beta_zeta_delta sem qualquer estrutura espacial;

Amostra	Valor-p
N=50	< 0,01
N=100	< 0,01
N=200	< 0,01

 Teste I de Moran indicou associação espacial nos resíduos.

 Ajustar uma estrutura espacial n\u00e3o presente nos dados \u00e9 menos prejudicial que ignorar uma estrutura existente.

Optou-se por ajustar as taxas de abandono com o modelo beta zeta delta

APLICAÇÃO REAL - Amostras originais

- Coeficientes β_i significativos coincidiram para a maioria dos anos:
 - Taxa de escolas públicas contribui para o aumento da taxa de abandono;
- Coeficientes γ_i significativos não coincidiram:
 - Apenas em 2015 e 2020 a taxa de escolas na área urbana contribui significativamente para o aumento da dispersão.

Amostra original

Ano	Coeficiente	Variável	Média	D.P.	Intervalo HPD
	eta_i	Intercepto	-1,72	2,049	(-5,603; 2,492)
		Taxa urbana	-0,755	0,473	(-1,699; 0,136)
		Taxa pública	1,983	0,477	(1,068; 2,900)
		IDHM Renda	-2,11	2,426	(-6,733; 2,658)
		log(População)	0,052	0,144	(-0,212; 0,339)
2020		log(PIB per capita)	-0,167	0,258	(-0,659; 0,331)
2020		Intercepto	1,654	2,141	(-2,297; 5,940)
		Taxa urbana	1,675	0,536	(0,656; 2,766)
	820	Taxa pública	0,347	0,500	(-0,618; 1,319)
	γ_i	IDHM Renda	-1,435	2,579	(-6,314; 3,612)
		log(População)	0,096	0,164	(-0,242; 0,397)
		log(PIB per capita)	-0,035	0,289	(-0,577;0,545)

APLICAÇÃO REAL - Amostras sem taxa zero

- Na maioria dos anos, a taxa de escolas na área urbana contribui para diminuição da média da taxa de abandono;
- Taxa de escolas públicas contribui para o aumento da média da taxa de abandono;
- Coeficientes γ_i significativos não coincidiram, apresentando sinais opostos para as mesmas covariáveis.

Amostra sem taxas zero

Ano	Coeficiente	Variável	Média	D.P.	Intervalo HPD
	eta_i	Intercepto	-2,841	1,835	(-6,44; 0,711)
		Taxa urbana	-0,988	0,342	(-1,732; -0,352)
		Taxa pública	0,333	0,411	(-0,432; 1,137)
		IDHM Renda	0,672	2,321	(-4,003; 5,083)
		log(População)	-0,053	0,106	(-0,251;0,151)
2020		log(PIB per capita)	0,015	0,206	(-0,368; 0,42)
2020	γ_i	Intercepto	0,87	2,315	(-3,784; 5,085)
		Taxa urbana	0,54	0,56	(-0,501; 1,669)
		Taxa pública	1,06	0,542	(0,044; 2,129)
		IDHM Renda	-0,195	2,857	(-5,653; 5,48)
		log(População)	0,165	0,169	(-0,158; 0,501)
		log(PIB per capita)	-0,056	0,312	(-0,694; 0,514)

APLICAÇÃO REAL

- A variabilidade dos efeitos aleatórios espaciais diminuiu para as amostras sem as taxas zero.
 - \circ Quanto maior os valores $au_{ heta}$ e au_{ζ} estimados, maior dispersão e variabilidade dos efeitos aleatórios espaciais estimados.

Amostras originais

Ano	Parâmetro	Média	D.P.
2020	τ_{θ}	0,140	0,191
2020	$ au_{\zeta}$	1,019	0,964
2015	τ_{θ}	0,175	0,178
2015	$ au_{\zeta}$	2,896	1,028
2010	τ_{θ}	0,060	0,084
2010	$ au_{\zeta}$	0,174	0,296

Amostras sem taxas zero

Ano	Parâmetro	Média	D.P.
2020	τ_{θ}	0,115	0,217
2020	$ au_{\zeta}$	0,106	0,397
2015	τ_{θ}	1,151	0,852
2015	$ au_{\zeta}$	0,602	1,118
2010	τ_{θ}	0,172	0,191
2010	$ au_{\zeta}$	0,391	0,672

APLICAÇÃO REAL - Resíduos

APLICAÇÃO REAL - Resíduos

- Teste I de Moran foi aplicado aos resíduos de Pearson dos modelos;
- Não há evidência de associação espacial nos resíduos:
 - Modelos foram capazes de modelar a estrutura espacial dos dados.

Amostra	Valor-p
EM 2020	0,877
EM 2015	0,316
EM 2010	0,202
EM 2020 (sem zeros)	0,736
EM 2015 (sem zeros)	0,382
EM 2010 (sem zeros)	0,598

CONCLUSÃO

- Ao longo da década passada, os fatores que influenciaram na média da taxa de abandono escolar para o Ensino Médio dos municípios de Minas Gerais foram:
 - Taxa de escolas na rede pública de ensino → aumenta a taxa de abandono;
 - Taxa de escolas na área urbana do município → diminui a taxa de abandono.

 Fatores influentes nas taxas de abandono escolar em Minas Gerais não mudaram drasticamente ao longo dos anos estudados.

REFERÊNCIAS

Bolstad, W. M. (2007) Introduction to Bayesian Statistics, 2ed. John Wiley and Sons.

Banerjee, S., Carlin, B.P., Gelfand, A.E. (2014) **Hierarchical Modeling and Analysis for Spatial Data**. 2 ed. Chapman and Hall/CRC.

Dobson, A. J., Barnett, A. G. (2008) **An Introduction to Generalized Linear Models**, 3rd ed., Boca Raton: Chapman & Hall/CRC.

Ferrari, S., & Cribari-Neto, F. (2004). **Beta regression for modelling rates and proportions**. *Journal of applied statistics*, *31*(7), 799-815.

R Core Team (2021). **R: A language and environment for statistical computing**. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Stan Development Team (2021). **Stan Modeling Language Users Guide and Reference Manual**, 2.18. https://mc-stan.org.

Getis, A., Ord, K. (1992). **The Analysis of Spatial Association by Use of Distance Statistics**. Geographical Analysis. 24. 189 - 206.

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. http://mc-stan.org/.

Jonah Gabry and Rok Cesnovar (2021). **cmdstanr: R Interface to 'CmdStan'**. https://mc-stan.org/cmdstanr, https://discourse.mc-stan.org.