Given a tree of N nodes, where each node is uniquely numbered in between [1, N]. Each node also has a value which is initially 0. You need to perform following two operations in the tree.

- 1. Update Operation
- 2. Report Operation

Update Operation

```
Urtab
```

Adds $a^b + (a+1)^b + (b+1)^a$ to all nodes in the subtree rooted at t, considering that tree is rooted at r (see explanation for more details).

Report Operation

```
Rrtm
```

Output the sum of all nodes in the subtree rooted at t, considering that tree is rooted at r. Output the sum modulo m (see explanation for more details).

Input Format

First line contains N, number of nodes in the tree.

Next N-1 lines contain two space separated integers x and y which denote that there is an edge between node x and node y.

Next line contains *Q*, number of queries to follow.

Next *Q* lines follow, each line will be either a report operation or an update operation.

Output Format

For each report query output the answer in a separate line.

Constraints

```
\begin{array}{l} 1 \leq N \leq 100000 \\ 1 \leq Q \leq 100000 \\ 1 \leq m \leq 101 \\ 1 \leq r, t, x, y \leq N \\ x \neq y \\ 1 \leq a, b \leq 10^{18} \end{array}
```

Notes

- 1. There will be at most one edge between a pair of nodes.
- 2. There will be no loop.
- 3. Tree will be completely connected.

Sample Input

```
4 1 2 2 3 3 4 4 4 U 3 2 2 2 U 2 3 2 2 R 1 2 8 R 4 3 9
```

Sample Output

2

Explanation

Initially Values in each node: [0,0,0,0]

The first query is U 3 2 2. Here, tree is rooted at 3. It looks like

For the sub tree rooted at 2 (nodes 2 and 1), we add $a^b + (a+1)^b + (b+1)^a = 2^2 + 3^2 + 3^2 = 22$. After first update operation, nodes 1, 2, 3, and 4 will have values 22, 22, 0 and 0 respectively.

The second query is U $_2$ 3 $_2$ 2. Here, tree is rooted at 2. It looks like

For the sub tree rooted at 3 (nodes 3 and 4), we add $a^b + (a+1)^b + (b+1)^a = 2^2 + 3^2 + 3^2 = 22$. After second update operation, nodes 1, 2, 3, and 4 each have values 22,22,22,22 respectively.

The first report query is R $\,$ 1 $\,$ 2 $\,$ 8 asks for the sum modulo 8 of the subtree rooted at 2, when the tree is rooted at 1. The tree looks like

The sum of the values of nodes 2, 3 and 4 are

$$(22 + 22 + 22) \% 8 = 2$$

The second report query is R 4 3 9 asks for the sum modulo 9 of the subtree rooted at 3 when the tree is rooted at 4. The tree looks like

The sum of the values of nodes 3, 2 and 1 are

$$(22 + 22 + 22) \% 9 = 3$$

Time Limits:

C, C++: $4s \mid Java$ and other JVM based languages: $10s \mid Python$, $Python3 = 45s \mid Other$ interpreted Language: $30s \mid C\#$, Haskell: $10s \mid Rest$: 3 times of default.

