Project Design Phase-II Technology Stack (Architecture & Stack)

Date	20 October 2023
Team ID	PNT2022TMID591889
Project Name	Dog Breed Identification using Transfer
	Learning
Maximum Marks	4 Marks

Table-1: Components and Technologies:

Component	Description	Technology
Frontend Interface	HTML, CSS, JavaScript	User interface for uploading
		images and displaying
		results.
Backend Server	Python (Flask/Django)	Handles incoming requests,
		image processing, and
		communicates with the ML
		model.
Image Processing	OpenCV	T 11 C
		Library for image
		preprocessing tasks like
		resizing, normalization, and
		augmentation.
Doop Loorning Library	TensorFlow/Keras	Head for building training
Deep Learning Library	TellsofFlow/Relas	Used for building, training, and deploying the deep
		learning model.
Pre-trained Model	Dro trained CNN (a.g. VCC16	Utilized for feature extraction
Pre-trained Model	Pre-trained CNN (e.g., VGG16,	
	ResNet)	in transfer learning.
Model Training Data	Dog Breed Dataset	Dataset containing labeled
		dog breed images for fine-
		tuning (optional).
Model Deployment	TensorFlow Serving, Flask	TensorFlow Serving for
	API	efficient model serving. Flask
		for API endpoint creation

Version Control	Git	Manages codebase versions
		and facilitates collaborative
		development.
Monitoring/Logging	ELK Stack,	For monitoring user
	Prometheus/Grafana	interactions, model
		performance, and system
		health (optional).
Continuous	Jenkins, GitLab CI/CD, Travis	Automates testing, building,
Integration/Continuous	CI	and deploying the application.
Deployment (CI/CD)		

Table-2:Application Characteristics:

Characteristic	Description	Technology
Image Processing	Heavy reliance on image	OpenCV
Intensive	processing techniques for	
	data preparation.	
Machine Learning-Powered	Core functionality driven by	TensorFlow/Keras
	a machine learning model.	
Transfer Learning	Utilizes pre-trained models	Pre-trained CNN models
	for feature extraction.	
Real-Time Interaction	Provides instant feedback	JavaScript (for frontend
	to users upon image	updates)
	upload.	
User-Centric	Focuses on providing an	HTML, CSS, JavaScript
	intuitive, user-friendly	
	interface	
Feedback Loop	Incorporates a mechanism	Backend API for user
	for users to report	feedback
	incorrect predictions.	
Modular Architecture	Designed with modularity	Microservices architecture
	for potential future	
	updates.	
Scalability Considerations	Designed to handle	Cloud hosting (AWS, GCP,
	potential high user	Azure)
	volumes.	

Adaptability to Devices	Ensures a seamless	Responsive design
	experience across various	techniques
	devices.	
Security Measures	Implements measures to	Encryption, authentication,
	protect user data and	access controls
	ensure safe usage.	