

By Xinpeng Shan(Joy), Rui Miao(Amy), and Shiyuan Zhou(Eric)

Motivation

Ayesha ManzoorWattoo @ayeshamwattoo · Mar 29

Its the only way to keep yourself and your loved ones safe #WearAMask **
#WashYourHands ** frequently, #SocialDistancing

David Silvey @DavidSilveyTX · Mar 29

Take off the mask.

Go back to work.

Open the economy.

Free the people.

#Texas #TakeOffYourMask

Research Questions

Can we infer whether someone is supporting wearing a mask or not by analyzing the NLP of tweets related to masks?

What is the proportion of people who support wearing a mask?

Does individual who refuse to wear masks also refuse to take vaccine? (We assume that there are group of people refuse both)

Data Background

MASK ON!

MASK OFF!

#maskon 350 obs.

3000 obs. #wearamask

#wearmask 400 obs.

Attitude:1

#nomasks 400 obs.

#TakeOffYourMask

3000 obs.

#maskfree

40 obs.

Attitude:-1

(We labeled our data depending on the tags of the tweets)

Limitation of Data

- -Relative small size
- -Tags may not cover all opinions of the population → overrepresented
- -7-days restriction
- -Incorrect collected data

Data Processing

-Removed Duplicate Tweets

-Tokenization

-Removed URLs, tags, punctuations, and stop-words

-Lemmatization & Stemming

Our Machine Learning Model

- NLP (Nature Language Processing)
- Based on the Distributional Hypothesis, measure the similarities by vectorizing token collections using TF-IDF and fit our training data to a Naive Bayes Model to predict future data.
- Supervised model (with attitudes as labels)

Accuracy of Prediction - Mask Model

Test accuracy with simple Naive Bayes: 0.8400770712909441

- ROC Curve for measuring the accuracy of the model of the attitudes to wearing masks
- The accuracy is about 0.8401.
- Close to high

Locations of people support #maskon and #maskoff

#Maskon #MaskOff

• 1. USA 2. UK 3. India

1. USA 2. UK 3. India

There are too many missing location info for each tweets. Thus, the graph may be overrepresented.

#1 Can we infer whether someone is supporting wearing a mask or not by analyzing the NLP of tweets related to masks?

Predicting major media's attitude towards mask

-Picking 3 famous medias:

-Searching by word 'mask'

```
search_with_filter = "mask" + " from:@ABC"
```

-Concate the dataset and predict with mask model

```
full_X_new = np.concatenate([X, new_X])
```

-More 1 than -1, the media has a positive attitude

More -1 than 1, the media has a negative attitude

Equal number of -1 and 1, the media has a neutral attitude

Predicting major media's attitude towards mask

Prediction Result

-ABC news

Positive

-NBC news

Positive

-CNN news

#2 What is the proportion of people who support wearing a

mask?

Proportion of People who Support Wearing a Masks

- -Extract 2000 tweets mentioned both mask & covid search_words = '(covid.*mask|mask.*covid)|(covid.*mask.*covid)'
- -Concatenate with mask dataset full_X = np.concatenate([X, part2_X])
- -Data processing & Predict attitude by mask model
- -Reporting the proportion of 1s in column 'attitude' np.sum(part2_pred == 1)/2000
- -The proportion is **92.3%**

#3 Does individual who refuse to wear masks also refuse to

take vaccine?

Accuracy of Prediction - Vaccine Model

Test accuracy with simple Naive Bayes: 0.8432122370936902

- ROC curve for measuring the accuracy of the model of the attitudes to vaccinate
- The accuracy is about **0.8432**.
- Close to High

Cross Prediction - Mask to Vaccine

```
full_X = np.concatenate([X, X2]) Concatenating two dataset
```

-Data processing

```
nb.fit(X, y) Model fitting with mask dataset
```

pred = nb.predict(X2) Using tokens of vaccine to predict attitudes

accuracy_score(pred,y2) Accuracy Score

fpr, tpr, thresholds = roc_curve(y2,pred, pos_label = 1) Plotting ROC curve

Cross Prediction - Mask to Vaccine

- •ROC Curve for measuring the accuracy of using masks' model to predict attitude towards vaccines
- •The accuracy is about 0.7082

Cross Prediction - Vaccine to Mask

Test accuracy with simple Naive Bayes: 0.674373795761079

- •ROC Curve for measuring the accuracy of using vaccines' model to predict attitude towards masks
- •The accuracy is about 0.6744

Conclusion

- -#1 Attitude Prediction

 Medias tend to have positive attitudes towards masks.
- -#2 Proportion Result
 92.3% Support wearing mask
- -#3 Cross Prediction
 Predictive to some extent

Conclusion

Model	Mask	Vaccine	Mask predict Vaccine	Vaccine predict Mask
Accuracy	0.8401	0.8432	0.7082	0.6744
Strength	Close to high	Close to high	Moderate Close to weak	Weak (not predictive)

Strengths

- Use both Lemmatization and Stemming
- No duplicate tweets
- Remove the tags from tweets

Weaknesses for Model

- Data limitations mention before
- Dependence on Twitter data.
- Randomness of Tweets.
- Prediction only by wording

Discussion

Vaccine & Mask debate

Discussion

Mask Mandate

Discussion

Thank you