

Оглавление

0.1	Формализм. Логические часы Лампорта (свойства и алгоритм)	2
0.2	Формализм. Векторные часы (свойства и алгоритм)	3
0.3	Формализм. Часы с прямой зависимостью (свойства и алгоритм)	4
0.4	Взаимное исключение в распределенной системе. Централизован-	
	ный алгоритм	5
0.5	Взаимное исключение в распределённой системе. Алгоритм Лампорта	6
0.6	Взаимное исключение в распределённой системе. Алгоритм Рикарда	
	и Агравалы	7
0.7	Взаимное исключение в распределённой системе. Алгоритм обеда-	
	ющих философов	8
8.0	Алгоритм на основе токена	9
0.9	Взаимное исключение в распределённой системе. Алгоритмы на ос-	
	нове кворума (простое большинство, рушащиеся стены)	10

0.1 Формализм. Логические часы Лампорта (свойства и алгоритм)

Кратко опишем используемые далее обозначения.

Обозначение	Объект
$P,Q,R,\ldots\in\mathbb{P}$	Процессы
$a, b, c, \ldots \in \mathbb{E}$	События в процессах $proc(e) \in \mathbb{P}$
$m \in \mathbb{M}$	Сообщения, $snd(m)$, $rcv(m) \in \mathbb{E}$.

Таблица 1: Общие обозначения

Определение. Отношение *Произошло-до* (\rightarrow) – минимальный строгий частичный порядок на $\mathbb{E} \times \mathbb{E}$ такой, что

- $e \rightarrow f$, если e, f в одном процессе и e идет перед f.
- Если m сообщение, то $snd(m) \rightarrow rcv(m)$.

Определение. *Логические часы*. Определим функцию $C: \mathbb{E} \to N$ так, чтобы

$$\forall e, f \in \mathbb{E} \ e \to f \Longrightarrow C(e) < C(f).$$

Алгоритм. (Логические часы Лампорта)

- Каждый процесс хранит счетчик.
- Перед посылкой процесс увеличивает счетчик на единицу.
- При посылке дополнительно посылается счетчик.
- Получатель обновляет свое время следующим образом:

$$C \leftarrow \max(C, C_r) + 1$$
.

Свойства логических часов Лампорта:

- Время события не уникально.
- Являются логическими часами в смысле определения.

0.2 Формализм. Векторные часы (свойства и алгоритм)

Определение. Векторные часы. Определим функцию $VC: \mathbb{E} \to N^k$ так, чтобы

$$\forall e, f \in \mathbb{E} \ e \to f \iff VC(e) < VC(f).$$

Сравнение производится покомпонентно.

Алгоритм. (Векторное время)

- Каждый процесс хранит свой вектор-время (размер число процессов).
- Перед посылкой сообщения процесс увеличивает свою компоненту на единицу.
- При приеме сообщение берется покомпонентный максимум:

$$VC \leftarrow \max(VC, VC_r)$$
.

Свойства векторного времени:

- Векторное время уникально для каждого события.
- Векторное время полностью передает отношение произошло-до.

•

$$\forall e,f \in \mathbb{E} \colon \operatorname{proc}(\mathbf{e}) = P_i, \ \operatorname{proc}(\mathbf{f}) = P_j \Longrightarrow \bigg(e \to f \Longleftrightarrow \binom{VC(e)_i}{VC(e)_j} < \binom{VC(f)_i}{VC(f)_j} \bigg).$$

0.3 Формализм. Часы с прямой зависимостью (свойства и алгоритм)

Определение.

$$e \to_d f \iff e < f \lor \exists m \in \mathbb{M}: e \leq \operatorname{snd}(m) \land \operatorname{rcv}(m) \leq f.$$

Определение. Часы с прямой зависимостью. Определим функцию $VC_d\colon \mathbb{E} \to N^k$ так, чтобы

$$\forall e, f \in \mathbb{E} : e \rightarrow_d f \iff VC_d(e) < VC_d(f).$$

Алгоритм. (Часы с прямой зависимостью)

Алгоритм полностью повторяет алгоритм для векторных часов, за исключением того, что посылается только та компонента времени, которая соотвествует процессу-отправителю.

0.4 Взаимное исключение в распределенной системе. Централизованный алгоритм.

Обозначение	Объект
CS_i	Критическая секция с номером
$Enter(CS_i)$	Вход в критическую секцию
$Exit(CS_i)$	Выход из критической секции

Таблица 2: Общие обозначения

Определение. Взаимное исключение. Основное требование

$$Exit(CS_i) \rightarrow Enter(CS_{i+1}).$$

Определение. Требование прогресса:

- Каждое желание процесса попасть в критическую секцию будет рано или поздно удовлетворено
- Может быть гарантирован тот или иной уровень честности удовлетворения желания процессов о входе в критическую секцию

Алгоритм. (Централизованный алгоритм)

- Весь процесс контролируется выделенным координатором
- Общение происходит по следующему протоколу:

Вид запроса	Действие
request	Запрос разрешения у координатора
ok	Одобрение координатором входа в секцию
release	Освобождение пользователем критической секции

Таблица 3: Виды запросов

- При входе в критическую секцию узел шлёт запрос координатору, дожидается разрешения, затем входит в критическую секцию. При завершении работы узел посылает координатору сообщения, что секция свободна. Данный алгоритм всегда требует 3 сообщения для работы с критической секцией.
- Не масштабируется из-за необходимости иметь выделенного координатора

0.5 Взаимное исключение в распределённой системе. Алгоритм Лампорта

Вид запроса	Действие
request	От запрашивающего ко всем другим узлам
ok	Подтверждение получения (не даёт права входа в CS)
release	Освобождение узлом критической секции (всем узлам)

Таблица 4: Виды запросов алгоритма Лампорта

Алгоритм. (Алгоритм Лампорта)

- Координатор отсутствует, все узлы равны
- Сообщения request и release рассылаются всем другим узлам, всего 3n-3 сообщения на CS
- Используются логические часы лампорта. Для установления порядка "кто раньше". Обязательно требуется порядок FIFO на сообщениях
- Все узлы хранят у себя очередь запросов
- В критическую секцию можно войти, если
 - Мой запрос первый в очереди, т.е. его время меньше времени остальных запросов (при равенстве времен порядок определяется по номеру узла, который посылается вместе с часами)
 - Получен ok от всех других узлов, т.е. они знают о вашем запросе
- Если узел хочет войти в СS, то он посылает всем другим узлам request со своими часами и id. Ждёт от всех оk. Если других запросов не поступало, либо время нашего запроса меньше времени других запросов, то входим в критическую секцию. Иначе ждем release от всех узлов, которые раньше нас в очереди.

0.6 Взаимное исключение в распределённой системе. Алгоритм Рикарда и Агравалы

Вид запроса	Действие
request	От запрашивающего ко всем другим узлам
ok	После выхода из критической секции

Таблица 5: Виды запросов алгоритма Рикарда и Агравалы

Алгоритм. (Алгоритм Рикарда и Агравалы)

- Оптимизация алгоритма Лампорта
- Всего 2n-2 сообщений
- Если узел хочет войти в CS, то он шлет request всем узлам. Если узел получивший запрос не хочет войти в CS, либо его номерок запроса (в часах) больше, то он отсылает разрешение ок. Узел, который входит в CS, хранит в очереди какие ок-ответы он должен послать после выхода.

0.7 Взаимное исключение в распределённой системе. Алгоритм обедающих философов.

Определение. В частном случае ресурсы – вилки, процессы – философы, граф конфликтов – кольцо

Теорема 0.7.1. В ориентированном графе без циклов всегда есть исток

Теорема 0.7.2. Если у истока перевернуть все ребра, то граф останется ациклическим

Алгоритм. (Алгоритм обедающих философов)

- Философ владеет вилкой, если ребро в графе конфликтов исходит из его вершины
- Философ может принять пищу, если владеет обеими вилками, т.е. он исток
- После еды вилки надо отдать (ленивый способ):
 - После еды вилки помечаются грязными
 - Моем вилки и отдаём их по запросу, даже если сами хотим есть
 - Чистые вилки не отдаём, если сами хотим есть. Ожидаем все вилки, едим, отдаем, если был запрос

Алгоритм. (Обобщение алгоритма обедающих философов на произвольный граф)

- Взаимное исключение эквивалентно полному графу конфликтов (ребро между каждой парой процессов)
- При инициализации вилки раздаются в каком-то порядке (например, по порядку id процессов)

Замечание. (Результат)

- 0 сообщений на повторный заход в критическую секцию
- В худшем случае 2n-2 сообщения
- Количество сообщений пропорционально числу желающих попасть в критическую секцию

0.8 Алгоритм на основе токена.

Определение. Токен – некоторый объект, который даёт владельцу право на вход в критическую секцию.

Алгоритм. (Алгоритм на основе токена)

- В система существует один токен для конкретного ресурса (критической секции)
- Все узлы в системе объединены в кольцо
- Токен пересылается по кругу, и каждый процесс делает следующее:
 - Если нет желания войти в критическую секцию, то пересылаем токен дальше
 - Если желание есть, то входим (т.к у нас уникальное право). После завершения передаем токен дальше

Замечание. Количество сообщений в системе стабильно, но необходимо ждать, пока токен дойдет до тебя.

0.9 Взаимное исключение в распределённой системе. Алгоритмы на основе кворума (простое большинство, рушащиеся стены).

Определение. Кворум:

- Семейство подмножеств множества процессов $Q \subset 2^{\mathbb{P}}$
- Любые два кворума имеют непустое пересечение:

 $\forall A, B \in Q : A \cap B \neq \emptyset$

Примеры. Виды кворумов:

- Централизованный алгоритм как частный случай кворума
- Простое большинство (больше половины процессов) и взвешенное большинство
- Рушащиеся стены

Определение. Кворум «рушащиеся стены»

- Процессы образуют квадратную матрицу (приблизительно)
- Кворумом назовем набор процессов, состоящий из некоторого столбца целиком и представителей всех остальных столбцов
- Заметим, что пересечение любым двух таких множеств непусто, что удовлетворяет определению кворума

Замечание. Не все кворумы тривиальны и плохо мастурбируются. Например, «рушащиеся стены» имею размер порядка $2\sqrt{n}$

Замечание. При пересечении кворумов потенциально возможен deadlock. Решением служит *иерархическая блокировка*