Versuch Nr.V48

Dipolrelaxation in Ionenkristallen

Niklas Düser niklas.dueser@tu-dortmund.de

Benedikt Sander benedikt.sander@tu-dortmund.de

Durchführung: 16.05.2022 Abgabe: 27.05.2022

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1 Zielsetzung											
2	The	Theorie									
	2.1	Dipole in dotierten Ionenkristallen	3								
	2.2	Depolarisationseffekte	4								
	2.3	Polarisationsansatz	4								
	2.4	Stromdichtenansatz	5								
	2.5	Berechnung der Aktivierungsenergie W	5								
		2.5.1 Bestimmung mithilfe des Maximums	5								
		2.5.2 Verwendung des gesamten Kurvenverlaufs	6								
	2.6	Berechnung der charakteristischen Relaxationszeit	7								
3	Aufl	bau	8								
4	Dur	chführung	8								
5	Auswertung										
	5.1		10								
			12								
			14								
	5.2		14								
			17								
		5.2.2 Ausgleichsrechnung über den Integrationsansatz	17								
	5.3	Bestimmung von τ_0	18								
6	Disk	kussion	19								
7	Anhang										
		7.0.1 Messaufbau	21								
	7.1	Messwertfotos	21								

1 Zielsetzung

In einem Ionenkristall können durch Dotierung mit stärker geladenen Ionen, Dipole erzeugt werden. Durch Ausrichtung in die selbe Richtung, werden diese Dipole angeregt. In diesem Versuch, wird die Aktivierungsenergie und die charakteristische Relaxationszeit, der Relaxation dieser Dipole bestimmt.

2 Theorie

2.1 Dipole in dotierten Ionenkristallen

Der in diesem Versuch verwendete Ionenkrstall ist eine Kaliumbromid Probe mit einem Gitter aus Kalium-Kationen und Brom-Anionen. In Abbildung 1 ist eine Darstellung eines solchen Kristalles. Dieser Kristall wird nun mit Strontium Sr^{2-} dotiert, indem eines der

Abbildung 1: Schematischer Aufbau des KBr Ionenkristalls.

Kalium-Kationen ausgetauscht wird. Dies führt aber auch dazu, dass einer der anliegenden Kalium-Kationen so verschoben wird, dass an dessen Stelle eine Leerstelle entsteht. Die Leerstelle muss entstehen, damit der Kristall in Summe immer noch Ladungsneutral ist. Jedoch sind jetzt die vier nächsten Nachbarn negative Ladungen und die Leerstelle kann repräsentativ auch als negative Ladung betrachtet werden.

Somit bildet jetzt die zweifach positive Dotierung mit der negativen Ladung der Leerstelle einen Dipol. Ohne vorherige Anrgeung und bei Raumtemperatur sind diese Dipole jedoch statistisch im Raum verteilt und haben somit in Summe kein Gesamtdipolmoment.

2.2 Depolarisationseffekte

Ohne der Durchführung zu weit vorzugreifen, gehen wir davon aus, dass alle Dipole innerhalb des Kristalles durch eine äußere Kraft in die selbe Richtung ausgerichtet wurden und der Kristall stark abegkühlt wurde. Die Dipole stoßen sich aufgrund ihrer Ausrichtung gegenseitig ab. In dem Kristall ist jedoch nicht genug Energie um die Struktur des Gitters zu ändern. Durch Aufwärmen des Kristalls können die Leerstellen genug Energie bekommen, um ihre Position innerhalb des Kristall zu ändern und somit auch den Dipol zu reorientieren. Dises Strukturänderung innerhalb des Kristalls wird Leerstellendiffusion genannt und benötigt eine gewisse materialspezifische Aktivierungsenergie W. Da die Energieverteilung im Kristall durch die Boltzmann-Statistik $\approx \exp\left(-\frac{W}{k_{\rm B}T}\right)$ beschreiben wird, folgt für die Relaxationszeit:

$$\tau(T) = \tau_0 \exp\left(\frac{-W}{k_{\rm B}T}\right) \tag{1}$$

mit der charakteristischen Relaxationszeit $\tau_0=\tau(\infty).$

2.3 Polarisationsansatz

Die Dipole sind in ihrem angeregtem Zustand alle in dieselbe Richtung ausgerichtet. Dies bedeutet auch, dass durch die Relaxation im Mittel alle positiven Ladungen in die gleiche Richtung verschoben werden und somit einen Strom erzeugen. Der Strom wird Depolarisationsstrom genannt und ist somit gleich der Änderungsrate der gesamten Polarisation P(t):

$$I(T) = -\frac{\mathrm{d}P(t)}{\mathrm{d}t}.\tag{2}$$

Die Änderungsrate lässt sich auch mittels der Relaxationszeit darstellen und ergibt somit folgende Differentialgeleichung:

$$\frac{\mathrm{d}P(t)}{\mathrm{d}t} = \frac{P(t)}{\tau(T)}.\tag{3}$$

Das Lösen der Differentialgeleichung mittels Seperation der Variabeln ergibt dann:

$$P(t) = P_0 \exp\left(-\frac{t}{\tau(T)}\right). \tag{4}$$

Ableiten dieser Lösung ergibt wieder die Änderung der Polarisation und somit den Depolarisationsstrom.

$$I(T) = \frac{P_0}{\tau(T)} \exp\left(-\frac{t}{\tau(T)}\right) \tag{5}$$

Hier gibt t die Zeit an, die benötigt wurde um T zu erreichen, sie lässt sich auch als Integral schreiben:

$$I(T) = \frac{P_0}{\tau(T)} \exp\left(-\int_0^t \frac{\mathrm{d}t}{\tau(T)}\right) \tag{6}$$

mittels einer konstanten Heizrate

$$b := \frac{\mathrm{d}T}{\mathrm{d}t} = const \tag{7}$$

lässt sich der Depolarisationsstrom nun als

$$I(T) = \frac{P_0}{\tau(T)} \exp\left(\frac{-1}{b\tau_0} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right)$$
 (8)

ausdrücken.

2.4 Stromdichtenansatz

Ein weiterer Ansatz für den Depolarisationsstrom ergibt, sich mittels der Debeye-Polarisation

$$\bar{P}(T) = \frac{N}{N_V} \frac{p^2 E}{3k_B T},\tag{9}$$

mit dem Dipol
moment p, der elektrischen Feldstärke E, der Temperatur T und der Dipol
dichte N_V . Die Änderung der Anzahl der Dipole lässt sich auch hier wieder über die Relaxationszeit ausdrücken:

$$\frac{\mathrm{d}N(T)}{\mathrm{d}t} = -\frac{N}{\tau(T)}.\tag{10}$$

Und analog zum vorherigen Kapitel ergibt sich die Lösung der Differentialgelich zu:

$$N = N_{\rm p} \exp\left(\frac{-1}{b} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right) \tag{11}$$

Weiterhin gilt

$$I(T) = \bar{P}(T)\frac{\mathrm{d}N}{\mathrm{d}t}$$
 und $I(T) = -\bar{P}(T)\frac{N}{\tau(T)}$ (12)

Zusammensetzten aller dieser Terme egibt dann einen Ausdruck für den Depolarisationsstrom

$$I(T) = \frac{p^2 E}{3k_{\rm B}T} \frac{N_{\rm P}}{\tau_0} \exp\left(\frac{-1}{b\tau_0} \int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')}\right) \exp\left(-\frac{W}{k_{\rm B}T}\right). \tag{13}$$

2.5 Berechnung der Aktivierungsenergie W

2.5.1 Bestimmung mithilfe des Maximums

Aufgrund der endlichen Anzahl an Dipolen entsteht trotz konstanter Heizrate, in der Theorie und im Experiment bei einer gewissen Temperatur $T_{\rm max}$ ein Maximum des Depolarisationsstroms. Dies kann dazu genutzt werden um charakteristische Eigenschaften des Kristalles zu Bestimmen. Wird angenommen, dass die Aktivierungsenergie W groß

gegenüber der Energie $k_{\rm B}T$ und der Temperaturdifferenz $T-T_0,$ so wird das Integral in Gleichung 13

$$\int_{T_0}^T \frac{\mathrm{d}T'}{\tau(T')} \approx 0. \tag{14}$$

Somit ergibt sich dich der Strom dann zu

$$I(T) = \frac{P^2 E}{3k_{\rm B}T} \frac{N_{\rm P}}{\tau_0} \exp\left(-\frac{W}{k_{\rm B}T}\right). \tag{15}$$

Mittes des Logarithmus entsteht hieraus eine Geradengleichung

$$\ln(I(T)) = \left(\frac{P^2 E N_{\rm P}}{3k_{\rm B}T\tau_0}\right) - \frac{W}{k_{\rm B}}\frac{1}{T}.$$
 (16)

Die Steigung m dieser Geraden ist also $\frac{W}{k_{\mathrm{B}}}$ oder

$$W = m \cdot k_{\rm B}.\tag{17}$$

2.5.2 Verwendung des gesamten Kurvenverlaufs

Ein weiterer Ausdruck entsteht wenn der Verlauf der Gesamtpolarisation P(T) betrachtet wird:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{P(t)}{\tau(T(t))}.\tag{18}$$

Umstellen und mit $\frac{dT}{dT}$ erweitern liefert:

$$\tau(T) = P(T) \cdot \frac{\mathrm{d}T}{\frac{\mathrm{d}P}{\mathrm{d}t}} \mathrm{d}T \tag{19}$$

Auch hier ist die Änderung der Temperatur gleich der Heizrate b:

$$\tau(T) = \frac{P(t)}{b} \frac{\mathrm{d}T}{\mathrm{d}P}.$$
 (20)

Durch Erweitern mit $\frac{dt}{dt}$ ergibt sich

$$\frac{P(t)}{b} \frac{\frac{dT}{dt}}{\frac{dP}{dt}} \tag{21}$$

Die Änderung Polarisation entspricht dem Strom und mit $P = \int dP$ ist dann

$$\tau(T) = \frac{\int \frac{\mathrm{d}P}{\mathrm{d}t} \mathrm{d}T}{I(T)b} \tag{22}$$

Hier kann nun erneut der Depolarisationsstrom identifiziert und eingesetzt werden:

$$\tau(T) = \frac{\int_T^\infty I(T') dT'}{I(T)b}$$
 (23)

und somit ergibt sich für die Aktivierungsenergie W:

$$W = k_{\rm B} T B \left(\frac{\int_T^{\infty} I(T') dT'}{I(T) b \tau_0} \right)$$
 (24)

Die obere Grenze ist in der Praxis verschwindent da bei hohen Temperaturen keine Dipole mehr vorhanden sind, die noch relaxieren können.

2.6 Berechnung der charakteristischen Relaxationszeit

An dem Maximum der Stomstärke bei der Temperatur $T_{\rm max}$, ist dessen Ableitung verschwindend, dies lässt sich nutzen um die charakteristische Relaxationszeit zu bestimmen. Dazu wird Gleichung 13 nach der Temperatur abgeleitet:

$$\frac{\mathrm{d}I(T)}{\mathrm{d}T} \approx \frac{1}{\tau_0} \left(-\frac{1}{b\tau_0} \int_{T_0}^T \exp\left(\frac{W}{k_\mathrm{B}T}\right) \mathrm{d}T' - \frac{W}{k_\mathrm{B}T} \right) \cdot \left(\frac{W}{k_\mathrm{B}T^2} - \frac{1}{b\tau_0} \exp\left(-\frac{W}{k_\mathrm{B}T}\right)\right). \tag{25}$$

Dies lässt sich nun am Maximum nach der charakteristischen Relaxationszeit umstellen:

$$\tau_0 = \tau(T_{\text{max}}) \exp\left(-\frac{W}{k_{\text{B}}T_{\text{max}}}\right) = \frac{k_{\text{B}}T_{\text{max}}^2}{Wb} \exp\left(-\frac{W}{k_{\text{B}}T_{\text{max}}}\right)$$
(26)

3 Aufbau

Abbildung 2: Ein Bild des verwendeten Versuchsaufbau.

In Abbildung 2 ist eine Aufname des verwendeten Aufbaus. In dem Aufbau auf dem Tisch ist unten rechts ein Spannungsgenerator der bei Bedarf an den Kondensator angeschlossen wird. Auf diesem Spannungsgenerator steht ein Heizgerät welches permanent an der Probe angeschlossen ist. Auf den beiden Generatoren steht rechts eine Anzeige zum Ablesen des Druckes im Rezipienten und links ein Ampermeter. In der Mitte des Aufbaus steht der Rezipient, dieser kann durch einen Kühlfinger auf der Unterseite mit dem dadrunter Dewargefäß verbunden werden. Oberhalb des Rezipienten ist ebenfalls das Pirani Vakuummeter zu sehen. Auf der linken Seite des Rezipienten steht auf dem Tisch noch ein Gerät zum Ablesen der Temperatur. Auf dem Boden links neben dem Tisch steht eine Drehschieber Vakuumpumpe welche den Druck innerhalb des Rezipienten erzeugt. Rechts neben dem Tisch stehen zwei Gefäße mit flüssigem Stickstoff, welche zum Befüllen des Dewargefäßes genutzt werden.

4 Durchführung

Um die charakteristischen Größen der Dipol
relaxation zu bestimmen, werden zunächst die Dipole Ausgerichtet indem die Probe auf 50 °C aufgewärmt und dabei ein ein E-Feld mit einer Spannung
900 V angelegt wird. Sobald 50 °C in der Probe erreicht wurden, kann die Probe nun bei weiterhin angelschalte
tem E-Feld abgekühlt werden. Dazu wird das Dewargefäß mit flüssigem Stickstoff gefüllt, auf den Ständer gestellt und bis knapp unter der Probe hoch gedreht. Sobald die Probe auf $-50\,^{\circ}\mathrm{C}$ abgekühlt wurde, kann nun

das E-Feld abgeschalten werden, indem der Spannungsgenerator runter gedreht und abgeschalten wird. Nachdem die Spannung komplett abgefallen ist, wird der Kondensator noch einmal für 10 Minuten an die Erdung des Ampermeters angeschlossen, damit auch wirklich alle Ladungen abgeflossen sind. Nun wird der Kondensator am Ampermeter angeschlossen um den Depolarisationsstrom zu messen, und das Heizgerät eingeschalten. Für die erste Messreihe wird die Heizrate so eingestellt, dass sich die Temperatur der Probe um 1,5 °C pro Minute erhöht. Es wird im 30 s Takt die Temperatur und der Strom dokumentiert bis die Temperatur der Probe wieder 50 °C erreicht. Die zweite Messreihe wird nun vorbereitet in dem bei einer Probentemperatur von mindestens 50 °C, das E-Feld bei einer Spannung von 900 V für mindestens 15 Minuten eingeschalten bleibt. Die restliche Versuchsdurchführung ist nun exakt wie bei der ersten Messreihe, nur mit einer Heizrate von 2 °C pro Minute.

5 Auswertung

Es wurden im Abstand von einer Minute der Depolarisationsstrom und die Temperatur der Probe gemessen. Die Heizspule wurde dabei so eingestellt, dass sich für die beiden Messreihen unterschiedliche Heizraten b ergeben. Die Heizraten lassen sich über das Mitteln der Differenzen zwischen den Temperaturen bestimmen.

$$b = \frac{1}{n-1} \sum_{i=1}^{n} \frac{T_i - T_{i-1}}{1 \min}$$

Zum Berechnen der Heizraten für die einzelnen Messreihen werden die Werte aus der Tabelle 1 und der Tabelle 2 genutzt.

Mit dem Fehler des Mittelwerts als Abweichung, ergibt sich dann für die Messreihe mit $\Delta T = 1.5 \,\mathrm{K}$ für die Heizrate

$$b_1 = (1.36 \pm 0.16) \frac{K}{\text{min}}$$

und für die Messreihe mit $\Delta T = 2 \, \mathrm{K}$

$$b_2 = (1.94 \pm 0.25) \, \frac{\mathrm{K}}{\mathrm{min}}$$
 .

5.1 Heizrate $b = 1.5 \, \text{K/min}$

Um aus dem Depolarisationsstrom die Relaxationszeit zu bestimmen, muss zuerst der Untergrund von den gemessenen Strömen entfernt werden. Dafür wird auf grafisch abgeschätzte Messwerte eine Exponentialfunktion der Form

$$I_{\text{Unter}}(T) = A \cdot \exp\left(\frac{-b}{T}\right)$$
 (27)

gefittet. Anschließend wird der Untergrund von den Messwerten abgezogen, um sie zu bereinigen

$$\tilde{I}_i = I_i - I_{\mathrm{Unter}}(T_i) \quad .$$

Für den Fit wurden die Messwerte aus den Zeitintervallen $t \in [0,4]$ min und $t \in [28,61]$ min genutzt. Als Fitparameter ergeben sich so

$$A = (0.15 \pm 0.98) \, \mathrm{A}$$

$$b = (6200.71 \pm 196.59) \, \mathrm{K} \quad .$$

Die zur Bestimmung des Untergrunds genutzten Messwerte sind, inklusive der gesamten Messwerte und des Fits, in Abbildung 3 grafisch dargestellt. Die genutzten Messwerte inklusive der vom Untergrund bereinigten Werte für den Strom sind in Tabelle 1 zu finden.

Der Depolarisationsstrom ohne Untergrund ist in Abbildung 4 grafisch dargestellt. Zusätzlich sind noch die Bereiche, die für die Auswertung über den Polarisations und über den Integrationsansatz hervorgehoben.

Abbildung 3: Die Messwerte für eine Heizrate von $b_1=1,36\,\mathrm{K/min}$. Außerdem sind die Werte, die für den Untergrundfit genutzt wurden, und der Untergrundfit eingezeichnet.

Abbildung 4: Die bereinigten Messwerte für eine Heizrate von $b_1=1,36\,\mathrm{K/min}$ mit den Bereichen, die für den Polarisations und den Integrationansatz genutzt werden, hervorgehoben.

. t	Temperatur	. I	$I_{\text{bereinigt}}$	t	Temperatur	. I	$ ilde{I}_{ ext{bereinigt}}$
in min	in K	in pA	in pA	in min	in K	in pA	in pA
0	229,15	$0,\!165$	0.162	35	$275,\!45$	$0,\!275$	0.020
1	$230,\!55$	0,210	0.206	36	$276,\!85$	0,31	0.025
2	$231,\!55$	0,280	0.276	37	$278,\!15$	$0,\!33$	0.013
3	$233,\!05$	$0,\!380$	0.375	38	$279,\!45$	$0,\!35$	-0.0004
4	$234,\!45$	$0,\!470$	0.465	39	280,75	$0,\!36$	-0.028
5	235,75	0,590	0.584	40	282,15	$0,\!42$	-0.013
6	237,15	0,710	0.703	41	$283,\!45$	$0,\!45$	-0.029
7	$238,\!55$	0,900	0.892	42	$284,\!65$	$0,\!49$	-0.035
8	239,95	1,150	1.140	43	$286,\!05$	$0,\!54$	-0.045
9	241,15	1,450	1.439	44	$287,\!35$	0,60	-0.045
10	$242,\!45$	1,850	1.838	45	288,75	$0,\!66$	-0.056
11	243,75	2,400	2.386	46	$290,\!15$	0,74	-0.054
12	$245,\!05$	3,200	3.184	47	$291,\!55$	0,81	-0.070
13	$246,\!35$	4,100	4.082	48	292,95	0,91	-0.064
14	$247,\!55$	5,400	5.379	49	$294,\!45$	1,05	-0.036
15	248,75	7,000	6.977	50	$295,\!85$	$1,\!15$	-0.049
16	249,95	8,700	8.674	51	$297,\!35$	1,30	-0.033
17	$251,\!25$	10,500	10.470	52	$298,\!85$	$1,\!45$	-0.030
18	$252,\!45$	12,500	12.467	53	$300,\!25$	1,65	0.018
19	$253,\!55$	14,000	13.963	54	$301,\!65$	1,85	0.054
20	254,75	15,000	14.959	55	$303,\!05$	2,05	0.075
21	$255,\!95$	12,500	12.454	56	$304,\!35$	$2,\!25$	0.095
22	$257,\!25$	$6,\!500$	6.448	57	$305,\!85$	$2,\!45$	0.069
23	$258,\!55$	5,400	5.341	58	$307,\!15$	2,65	0.055
24	259,75	4,000	3.934	59	$308,\!55$	$2,\!85$	0.007
25	261,05	3,200	3.126	60	310,05	3,00	-0.133
26	$262,\!55$	1,450	1.365	61	$311,\!45$	3,10	-0.327
27	263,95	$0,\!450$	0.354	62,5	$313,\!65$	$3,\!20$	-0.741
28	$265,\!35$	$0,\!305$	0.197	63	$314,\!45$	3,20	-0.944
29	266,75	$0,\!260$	0.138	64	315,75	3,10	-1.395
30	$268,\!25$	0,240	0.101	65	$317,\!25$	2,95	-1.982
31	269,75	$0,\!230$	0.072	66	318,75	2,75	-2.658
32	$271,\!25$	0,230	0.050	67	$320,\!25$	2,55	-3.374
33	$272,\!65$	0,240	0.038	68	321,75	$2,\!25$	-4.233
34	273,95	$0,\!255$	0.030	69	$323,\!25$	1,95	-5.140

Tabelle 1: Messwerte der Depolarisationsstrommessung und für die vom Untergrund bereinigten Depolarisationsströme, bei einer Heizrate von $b=1,5\,\mathrm{K}.$

5.1.1 Ausgleichsrechnung über den Polarisationsansatz

Um die Aktivierungsenergie W zu berechnen wird eine lineare Ausgleichsrechnung auf dem Intervall des Depolarisationsstroms vom Ende der genutzten Untergrundwerte bis zum Maximalwert der Termperatur, berechnet. Das Maximum liegt dabei bei $T(t_{\rm max}=20)=254,75\,{\rm K}.$ Zum Fitten werden die logarithmisch aufgetragenen Depolarisationsströme gegen das reziproke der Temperatur auf dem Intervall $t\in[5,20]$, mit einer linearen

Funktion der Form

$$y(T) = m \cdot \frac{1}{T} + n \quad , \tag{28}$$

genutzt. Für die Parameter ergibt sich dabei

$$m = (-10\,956,62 \pm 194,62) \,\mathrm{K}$$

 $n = (20,55 \pm 0,80)$.

Die Messwerte und die damit korrespondierende Ausgleichsgerade sind in Abbildung 5 grafisch dargestellt.

Nach Gleichung 17 lässt sich über $W=-m\cdot k_{\rm B},$ mit $k_{\rm B}[{\bf kb}]$ als Boltzmannkonstante, lässt sich die Aktivierungsenergie zu

$$W = (0.944 \pm 0.017) \,\mathrm{eV}$$

berechnen. Über den Zusammenhang

$$\tau_{\text{max}} = \frac{k_{\text{B}} \cdot T_{\text{max}}^2}{bW}$$

$$\tau_{\text{max}} = (4.34 \pm 0.53) \,\text{s}$$
(29)

mit b als Heizrate und $T_{\rm max}$ als der Temperaturwert, der mit dem maximalen Strom korrespondiert, lässt sich die maximale Relaxationszeit bestimmen. Damit wird in 5.3 die charakteristische Relaxationszeit τ_0 bestimmt.

Abbildung 5: Die Messwerte für eine Heizrate von $b_1=1,\!36\,\mathrm{K/min}$ logarithmisch gegen $\frac{1}{T}$ aufgetragen.

5.1.2 Ausgleichsrechnung über den Integrationsansatz

Um über den Integrationsansatz die Aktivierungsenergie zu bestimmen wird im Vergleich Gleichung 24 ein linearer Fit in $\frac{1}{T}$ gegen die nach Gleichung 24 integrierten Werte genutzt. Dabei wurden die bereinigten Depolarisationsstromwerte des Intervalls $t \in [4, 18]$ mit der Trapezregel numerisch von ihrem korrespondierenden T-Wert bis $\frac{1}{T(t=4)}$ aufintegriert.

Der Fit und die integrierten Werte sind in Abbildung 6 aufgetragen. Als Fitparameter ergeben sich

$$m = (-8480,55 \pm 998,64) \text{ K}$$

 $n = (36,10 \pm 4,01)$.

Über den Vergleich mit Gleichung 24 lässt sich die Energie, über $W=-mk_{\rm B},$ zu

$$W = (0.731 \pm 0.086) \,\mathrm{eV}$$

bestimmen. Damit ergibt sich nach Gleichung 29 für die maximale Relaxationszeit

$$\tau_{\rm max} = (5.61 \pm 0.95) \,\mathrm{s}$$

Abbildung 6: Die integrierten Messwerte für eine Heizrate von $b_1=1,36\,{\rm K/min}$ logarithmisch gegen $\frac{1}{T}$ aufgetragen.

5.2 Heizrate $\mathbf{b} = 2 \,\mathrm{K/min}$

Die Auswertung für die Messreihe mit $b_2=(1.94\pm0.25)\,\mathrm{K/min}$ ist analog zu der in Abschnitt 5.1. Auf die Messwerte des Depolarisationsstroms, die in Tabelle 2 zu finden

sind, wird nach Gleichung 27 ein Fit auf den Untergrund berechnet. Dafür werden die Messwerte aus den Zeitintervallen $t \in [0, 13]$ min und $t \in [33, 56]$ min gefittet. Die Parameter ergeben sich zu

$$A = (0.12 \pm 0.05) \text{ A}$$

$$b = (6110.98 \pm 134.22) \text{ K} \quad .$$

Der Untergrundfit inklusive der Messwerte aus Tabelle 2 sind in Abbildung 7 dargestellt. Die bereinigten Messwerte sind in Tabelle 2 zu finden, wo wie auch grafisch in Abbildung 8 zu finden. In der Abbildung sind ebenfalls wieder die Intervalle für die weiteren Auswertungschritte hervorgehoben.

Abbildung 7: Die Messwerte für eine Heizrate von $b_2=1,94\,\mathrm{K/min}$. Außerdem sind die Werte, die für den Untergrundfit genutzt wurden, und der Untergrundfit eingezeichnet.

Abbildung 8: Die bereinigten Messwerte für eine Heizrate von $b_2=1,94\,\mathrm{K/min}$ mit den Bereichen, die für den Polarisations und den Integrationansatz genutzt werden, hervorgehoben.

t in min	Temperatur in K	I in pA	$I_{ m bereinigt} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	t in min	Temperatur in K	I in pA	$ ilde{I}_{ ext{bereinigt}} \ ext{in pA}$
0	205,35	0,015	0.015	32	267,65	0,510	0.359
1	206,35	0,015	0.015	33	269,75	0,400	0.219
2	207,95	-0007	-0.007	34	271,75	0,350	0.136
3	209,95	-0010	-0.010	35	273,75	0,320	0.068
4	211,95	-0080	-0.080	36	$275,\!65$	0,350	0.057
5	214,05	0,015	0.015	37	$277,\!55$	0,380	0.039
6	$216,\!15$	0,025	0.024	38	279,65	0,420	0.017
7	218,35	0,030	0.029	39	$281,\!25$	0,460	0.004
8	$220,\!55$	0,050	0.049	40	$283,\!25$	0,520	-0.010
9	$222,\!25$	0,060	0.059	41	$285,\!15$	0,590	-0.022
10	224,15	0,090	0.088	42	287,15	0,680	-0.031
11	225,95	$0,\!125$	0.123	43	289,15	0,780	-0.044
12	228,05	$0,\!160$	0.157	44	$291,\!05$	0,880	-0.066
13	$230,\!15$	0,220	0.216	45	293,05	1,000	-0.092
14	$232,\!65$	$0,\!290$	0.285	46	$294,\!85$	1,150	-0.090
15	$234,\!85$	$0,\!350$	0.344	47	296,75	1,350	-0.066
16	237,05	$0,\!450$	0.442	48	$298,\!55$	1,550	-0.053
17	$239,\!25$	0,600	0.590	49	$300,\!45$	1,800	-0.025
18	$241,\!25$	0,800	0.788	50	$302,\!65$	2,100	-0.016
19	243,15	1,000	0.985	51	304,85	2,500	0.051
20	244,95	1,400	1.381	52	306,85	2,950	0.159
21	$246,\!65$	1,800	1.778	53	$309,\!05$	3,400	0.185
22	$248,\!35$	2,400	2.374	54	310,85	3,600	-0.005
23	$250,\!15$	3,000	2.969	55	312,75	3,900	-0.162
24	$252,\!15$	3,400	3.363	56	314,75	4,000	-0.599
25	254,15	4,500	4.456	57	$316,\!55$	4,000	-1.136
26	256,15	5,200	5.146	58	318,35	3,900	-1.828
27	257,95	5,700	$\frac{5.140}{5.636}16$	59	$320,\!15$	3,500	-2.881
28	$259,\!85$	3,000	2.924	60	321,85	3,100	-3.958
29	261,65	3,200	3.111	61	323,65	2,600	-5.244
30	$263,\!45$	3,200	3.095	62	$325,\!35$	2,200	-6.457
31	$265,\!55$	1,000	0.874				

Tabelle 2: Messwerte der Depolarisationsstrommessung und für die vom Untergrund bereinigten Depolarisationsströme, bei einer Heizrate von $b=2\,\mathrm{K}.$

5.2.1 Ausgleichsrechnung über den Polarisationsansatz

Für den Polarisationsansatz wird analog wieder eine lineare Ausgleichsrechnung durchgeführt. Dafür werden Werte aus dem Intervall $t \in [13, 27]$ genutzt. Das Maximum der Messreihe liegt in diesem Intervall und bei $T(t_{\rm max}=27)=257,95\,{\rm K}.$

Der Fit der Messwerte nach Gleichung 28, auf dem logarithmierten Strom gegen $\frac{1}{T}$ aufgetragen, führt zu den Parametern

$$m = (-5602,33 \pm 745,37) \,\mathrm{K}$$

 $n = (24,71 \pm 3,00)$.

Das Ergebnis der Ausgleichsrechnung ist zusammen mit den beschriebenen Werten in Abbildung 10 grafisch dargestellt.

Abbildung 9: Die Messwerte für eine Heizrate von $b_1=1,94\,\mathrm{K/min}$ logarithmisch gegen $\frac{1}{T}$ aufgetragen.

Aus den Parametern des Fits lässt sich über die Gleichungen $W = -k_{\rm B}m$ und Gleichung 29 die Aktivierungsenergie und die maximale Relaxationszeit bestimmen. Dies führt zu

$$W = (0.65 \pm 0.02) \, \mathrm{eV}$$

$$\tau_{\mathrm{max}} = (4.58 \pm 0.59) \, \mathrm{s} \quad .$$

5.2.2 Ausgleichsrechnung über den Integrationsansatz

Die Aktivierungsenergie bestimmt sich hier über das aufintegrieren der bereinigten Messwerte für den Strom. Dies geschieht analog zu der in Abschnitt 5.1.2 durchgeführten Rechnung. Dabei werden die Messwerte aus dem Intervall $t \in [13, 33]$ verwendet. Als

Parameter für die lineare Funktion ergeben sich damit die Werte

$$m = (-5602,33 \pm 745,37) \text{ K}$$

 $n = (24,71 \pm 3,00)$.

Daraus lassen sich dann die Werte

$$W = (0.49 \pm 0.06) \text{ eV}$$

 $\tau_{\text{max}} = (6.14 \pm 1.13) \text{ s}$

bestimmen.

5.3 Bestimmung von τ_0

Um die charakteristische Relaxationszeit τ_0 zu bestimmen, wird die Gleichung 1 genutzt und nach τ_0 umgefortmt. Dies führt für die Temperatur $T_{\rm max}$ zu

$$\tau_0 = \tau(T_{\rm max}) {\rm exp} \left(\frac{W}{k_{\rm B} T_{\rm max}} \right) \quad . \label{eq:tau_0}$$

Die maximalen Temperaturen sind dabei für die erste Messreihe $254,75\,\mathrm{K}$ und $257,95\,\mathrm{K}$ für die zweite. Die einzusetzenden Werte und die dazugehörigen Ergebnisse sind in Tabelle 3 abgebildet.

Auswertungsverfahren	W / eV	$ au_{max}$ / s	τ_0 / as
Polarisation 1,36 K	0.9442 ± 0.0168	4.3432 ± 0.5285	(0.91 ± 0.72)
Polarisation 1,94 K	$0.7308\ \pm0.0861$	5.6113 ± 0.9450	$(19,57 \pm 79,05) \cdot 10^3$
Integration $1,36\mathrm{K}$	0.6467 ± 0.0153	4.5810 ± 0.5918	$(1.06 \pm 0.77) \cdot 10^6$
Integration 1,94 K	$0.4828\ \pm0.0642$	6.1364 ± 1.1287	$(2,27\pm0,69)\cdot10^9$

Tabelle 3: Messwerte, die für die Bestimmung der charakteristischen Relaxationszeit benötigt werden und die charakteristischen Relaxationszeiten.

Grafisch aufgetragen finden sich die Funktionen $\tau(T)$ für die einzelnen errechneten Werte in der Abbildung ??. Dabei wurde eine halblogarithmisch Darstellung gewählt. Die Funktionen wurden dabei nur für die Temperaturwerte der einzelnen Messreihen eingezeichnet.

Abbildung 10: $\tau(T)$, für die in den einzelnen Auswertungsschritten berechneten Parameter, geplottet. Dabei wurden nur die Werte für T aus den Messreihen genutzt.

6 Diskussion

Insgesamt lief der Versuch bis auf ein paar kleine Probleme bei der Durchführung sehr gut. Einmal ist das Thermometer ausgefallen so, dass ein Messwert erst verspätet aufgenommen wurde.

Bei der Messung für die größere Heizrate musste eine Messung abgebrochen werden, da die Probe nicht genug magnetisiert war. Außerdem wurde das Ziel von einer Heizrate von $b=1.5\,\mathrm{K/min}$ mit $b_1=1.36\,\mathrm{K/min}$ etwas stärker verfehlt. Dies sollte aber keinen besonderen Einfluss auf die Auswertung haben, da so immer noch genügend Messwerte existieren und der Abstand zwischen den beiden Heizraten so sogar noch größer ist. Abgesehen davon gab es keine Probleme bei der Durchführung.

Bei den Messwerten lässt sich, wie in den Abbildungen ?? und ?? ein Hauptmaximum, welches für die Auswertung genutzt wird, und ein Nebenmaximum für höhere Temperaturen erkennen. Dies ist wie zu erwarten. Der Unterschied in der Größe des maximalen Stroms lässt sich über die unterschiedlichen Heizraten und damit unterschiedlichen Relaxationszeitenerklären.

Die relevanten bestimmten Größen sind in Tabelle 4 aufgetragen. Dort ist auch zu erkennen, dass die einzelnen Aktivierungsenergien sich in derselben Größenordung befinden. Der Vergleich mit dem Literaturwert der Aktivierungsenergie, von KBr mit $W_{\rm theo}=0,66\,{\rm eV}[{\bf lit}],$ lässt sich erkennen, dass die Werte sich zwar nicht immer im Rahmen ihrer Abweichungen mit der Literatur überschneiden, sich aber doch in der richtigen

Größenordnung bewegen. Die relative Abweichung, die über die Formel

$$\Delta x = \left| \frac{x - x_{\text{theo}}}{x_{\text{theo}}} \right|$$

bestimmt wird, zeigt auch das die bestimmten Werte insgesamt gut sind. Die Ergebnisse der Rechnungen sind auch in Tabelle 4 zu finden.

Auswertungsverfahren	τ_0 / as	W / eV	relative Abweichung $/$ %
Polarisation 1,36 K	(0.91 ± 0.72)	0.9442 ± 0.0168	43.06
Polarisation 1,94 K	$(19,57 \pm 79,05) \cdot 10^3$	0.7308 ± 0.0861	10.73
Integration 1,36 K	$(1.06 \pm 0.77) \cdot 10^6$	0.6467 ± 0.0153	2.02
Integration 1,94 K	$(2,27\pm0,69)\cdot10^9$	0.4828 ± 0.0642	26.85

Tabelle 4: Die wichtigsten bestimmten Werte und die relative Abweichung der Aktivierungsenergien vom Literaturwert von $W=0.66\,\mathrm{eV}$. Für die relativen Abweichungen sind keine Fehler angegeben, da sie nicht für die ersten fünf Stellen auftreten.

Der große Unterschied der charakteristischen Relaxationszeiten τ_0 lässt sich damit erklären, dass $\tau_0 \propto \frac{T_{\rm max}^2}{W} \exp\left(\frac{W}{T_{\rm max}}\right)$ gilt. Kleine Änderungen in W und $T_{\rm max}$ führen durch den exponentiellen Zusammenhang dann zu großen Änderungen in der charakteristischen Relaxationszeit.

In der Abbildung ?? lässt sich auch erkennen, dass die einzelnen Kurtven für $\tau(T)$ halblogarithmisch aufgetragen ähnliche Verläufe haben, was dafür spricht, dass die Größenordnungsunterschiede gerechtfertgt sind.

Insgesamt lässt sich also sagen, dass die Messungen gute Ergebnisse geliefert haben.

7 Anhang

7.0.1 Messaufbau

 ${\bf Abbildung\ 11:}$ Der Aufbau des Versuchs Dipol
relaxation.

7.1 Messwertfotos

	17:00	volatotion			
Tstart =					
PE	5.10 Tour		506		
tin mi	- 1 in 0(- 44 - 44-6 - 47-6 - 47-6 - 38, 7 - 36, 0 - 34, 6 - 53, 2 - 52, 0 - 24, 9 - 28, 1 - 26, 8 - 25, 6	1 In 10-11 A	ting min	IT in oc	VI 120-17
	-44	0.265		21.3 22.7 24.2 25.7	
2	-47-6	827 0-28	49	21.3	1-05
73	40. 40 2 16 141	14 6/2 10-38	50	22, +	1.15
2 %	-37.4	0.54	52	25/7	1.45
# 7	-36.0	0-71	53	28.5	1.85
8	- 53, Z	1.15	55	29.9	2.05
73 & 5 6 \$7 8 4 9 10	-32.0	7.45	56	24, 2 25, 7 25, 7 26, 5 29, 9 31, 2 32, 7	2.45
97-11	-27.4	1 in 10 1 A 0.10 10 10 10 10 10 10 10 10 10 10 10 10 1	47 50 51 52 53 55 55 57 58 59 60 7		1-05 1.15 1.30 1.45 1.65 1.85 1.85 2.25 2.25 2.25 2.45 2.45 2.45 2.45 2.45 2.45 2.25
92	-28.7	4.10	5 9	36-9	3-00
12 13 14 175 16	-25.0	4.10 5.40 7.00	67	35, 4 36-9 38.3 40-5	3.40
175	+ 24.4	7.00	62,5	41.3	3.20
817	-23, 2 -21, 9 -20,7	8.70	64	42-6	3.10
7 8	- 20,7	14,00	66	45.6	2.75
20	- 18, 4	15.00	67	47.1	2,55
1021	- 18, 4 - 17.2 - 15, y	12-50	6 8	48.6	1.95
919 2009 1027 1224 224 2266 237 239 237 239 239 239 239 239 249 256 256 256 256 256 257 257 257 257 257 257 257 257		15.00 12-50 0.250 5.40 4.00 3.20 1.45 0.45 0.305 0.26 0.26 0.23 0.24 0.23 0.24 0.25 0.275 0.35	7-0		
24	- 73.4	4,00	77		
26	1-10.6	1,45	23		BUSDEE
247	14.6 12.1 -12.1 -14.6 -2.8 -2.4 -4.9 -3.4 -1.9 -0.5 0.09 2.3 5.0 6.3 0.83 7.6	0.45	7 4		
289	-6.4	0.305	76		1
30	-4.9	0.24	77		
31	-3.9	0,23	79		
33	- 0,5	0.24	80		
34	0.09	0.255	81		
346	3.7	0,31	8 3		
307	5.0	0-33	8 4		
378	0-3	GANG 0,366	86		
3 P J	9.0	0.42	87		
461	10-3	0-45	88		
42	17-5	0-54	90		
44	11-5	0-60	91		
45	15.6	0.66	92		14
4 56	18.84	0.87	94		185
4 4 4 4 4 4 4 4 4 4 4 4 4 8 4 4 4 8	15.6 17.0 18.44 19.8	0.66	12,5 6,4 6,4 6,6 6,4 6,6 6,4 6,6 6,6 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7		
4 70	170		96		

Abbildung 12: Die Messwerte des Versuchs Dipolrelaxation.

Abbildung 13: Die Messwerte des Versuchs Dipolrelaxation.

Abbildung 14: Die Messwerte des Versuchs Dipolrelaxation.