Dimensioni di sottospazi, teorema riassuntivo su dimensione di basi #GAL

Proposizione: sia H ⊆V sottospazio

- 1. $dimH \leq dimV$
- 2. dimH = dimV <=> H = V

Dimostrazione:

fissiamo una base $\{v_1, ..., v_n\}$ di H quindi dimH = n

- 1. $v_1, ..., v_n \subseteq V$ sono LI => $n \le max\{numero\ vettori\ LI\ in\ V\}\ dimH \le dimV$
- 2. <= ovvio

=> supponiamo dimV = dimH = n
supponiamo per assurdo H
$$\neq$$
 V, cioè H = Span $\{v_1, ..., v_n\} \subseteq V$
per il lemma di aggiunta $\exists v_{n+1} \in V$ t.c. $v_1, ..., v_n, v_n, v_{n+1}$ sono LI
=> n+1 \leq max $\{$ numero vettori LI in V $\}$ = dimV = n ASSURDO $\{$ max $\{$ vettori LI in V $\}$ = n, non viene rispettato il lemma $\}$

Teorema (riassuntivo su dimensione di base):

sia V uno spazio vettoriale con dimV = n sia C = $\{v_1, ..., v_p\} \subseteq V$ un insieme di vettori

- 1. Supponiamo v₁, ..., v_p LI allora
 - a) $p \le n$
 - b) p = n <=> C è una base di V
- c) se p < n => C può essere completato a una base di V $\exists C' = \{\underline{v_{p+1'}},...,\underline{v_n}\}$ t.c. C U C' è una base
 - 1. Supponiamo C = $\{v_1, ..., v_p\} \subseteq V$ un insieme di generatori di V allora
 - a) $p \ge n$
 - b) p = n <=> C è una base di V
- c) p > n => applico lemma di scarto estraendo da C una base di V $\exists C'' \leq C \ t.c. \ C''$ è una base di V

Proposizione:

sia A una matrice a scala, le righe non nulle di A formano una base di row(A)

Esempio:

 $A \in Mat(5,6)$ con ultime due righe nulle = $(R_1, R_2, R_3, R_4, R_5)$

$$row(A) = Span(R_1, R_2, R_3, R_4, R_5) \subseteq R^6 = lemma di scarto = (R_1, R_2, R_3)$$

- Le tre righe non nulle R₁, R₂, R₃ generano row(A)
- Sono anche LI supponiamo $c_1R_1 + c_2R_2 + c_3R_3 = \underline{0}$ facendo i calcoli si dimostra che sono LI

$$c_1 = c_2 = c_3 = 0 \Rightarrow R_1, R_2, R_3 LI \Rightarrow base$$

Corollario:

A matrice qualsiasi dimRow(A) = rk(A)

Dimostrazione:

sia A -> A' riduzione a scala rk(A) = rk(A') ma anche => row(A) = row(A') => dimRow(A) = dimRow(A')

dalla proposizione segue dimRow(A') = numero righe non nulle di A' = rk(A') = rk(A)

Concretamente:

dato $H \subseteq \mathbb{R}^{n}$ sottospazio in forma parametrica possiamo scrivere come H = row(A) (se necessario, trasponendo colonne->righe)

ridurre A a scala => troviamo una base di H, dimH

Corollario:

dati
$$\underline{v_1}, ..., \underline{v_m} \in \mathbb{R}^n$$
 vettori riga $\underline{v_1}, ..., \underline{v_m}$ sono LI <=> $\text{rk}(\underline{v_1}, ..., \underline{v_m}) = m$

Dimostrazione:

sicuramente v_1 , ..., v_m generano row(A)

Quindi
$$v_1$$
, ..., v_m LI $\stackrel{<}{=}$ $\{v_1, ..., v_m\}$ base di row(A)

(Teorema riassuntivo) 2.b <=> $dimSpan(v_1, ..., v_m) = m <=> rk(A) = m$

Nota: trasponendo, possiamo applicare il risultato a vettori colonna)

Teorema:

$$dimCol(A) = rk(A)$$

Corollario:

$$rk(A) = rk(A^{t})$$

Teorema (nullità + rango):

$$A \in Mat(m,n) => dimKer(A) + rk(A) = n$$

Dimostrazione:

metodo di Gauss-Jordan: l'insieme delle soluzioni di $A\underline{x}=\underline{0}$ è $\ker(A)=\operatorname{Span}(v_1,...,v_s)$ dove $s=n-\operatorname{rk}(A)=\operatorname{numero}$ variabili libere

Siano x_{i1} , ..., x_{ii} le variabili libere => ogni v_j è ottenuto ponendo x_j = 1, le altre variabili libere a 0

Analizzando le posizioni 1 e 0 nelle variabili libere segue che $\underline{v_1}$, ..., $\underline{v_s}$ sono LI => dimSpan($\underline{v_1}$, ..., $\underline{v_s}$) = s