A Cover for an Umbrella

Group members:

E/19/265

E/19/256

E/19/248

E/19/239

E/19/235

Figure 04: Chip, lock and chip rail

Figure 05: Chip

Figure 07: Cover

Chip rail lock system

Table 01: Failure Modes of Components

Component	Type of loading	Modes of failures
Chip	Tension	Tensile
		Shearing
Chip Rail	Tension	Tensile
		Shearing
Covering Cloth	-	-
Lock of the Chip Rail	Tension	Tensile
_	Shear	Shear

4. Data:

- Density of air is 1.225 kg/m³
- The height of the cover is 1m
- Average wind speed is 5 m/s
- The maximum tension appear on chip rail is 5N
- The diameter of an umbrella is 0.92m.
- The height of the chip rail is 25mm.

5. Assumptions:

- No friction between attaching parts

6 & 7.

Table 02: Material Properties Of components

Component	Matarial	Strengths (MPa)		Eas	
Component Mater	Material	Yield	Shear	Bearing	F.o.s.
Chip	PVC	60	50	80	4
Chip Rail	Flexible	30	30	60	4
	PVC				
Covering Cloth	Polyester	-	_	-	-
Lock of the Chip	PVC	60	50	80	4
Rail					

Design chip

Figure 09: chip breaking due to tension

Average wind speed(v) = 5 m5 l

Density of Air (3) = 1.225 kgm3

Area subjected to force = 2RxH

= 2x0.46×1

 $= 0.92 \text{ m}^2$

force, = Adv2

 $= 0.92 \times 1.225 \times (5)^{2}$

= 28.175

Allonable tensilez = 60 Stress, Zall = 4

= 15 mpa

Zall \(\frac{F}{A}

 $15\times10^{6} \geq \frac{28\cdot175}{\frac{\pi}{4}(D_{1})^{2}}$

DI > 1.546×153 m

Chip breaking due to shear

$$7a11 \ge \frac{F}{A}$$
 $12.5 \times 10^6 \ge \frac{28.175}{7.00}$
 $7.00 \times 1.694 \times 10^3$

: Selected
$$D_1 \cdot = 3 \text{ mm}$$

Allowable shear stress =
$$\frac{50}{4}$$
 Mpa

$$12.5 \times 10^6 \ge 28.175 \over 7(3 \times 10^3) + 3$$

Allowable shear stress =
$$\frac{50}{4}$$
 Mpa

Allowable shear stress,
$$Zall = \frac{30}{4}$$

= 7.5 Mpa

force = 28.175N

$$7.5 \times 10^{6} \ge 28.175$$
 $2 \times 1 \times 3 \times 10^{3}$

Area =
$$\frac{2\mathbf{b}_1\mathbf{l}}{2\mathbf{t}_1\mathbf{l}}$$

$$7.5 \times 10^6 \ge \frac{28.175}{2 t_{1} \times 25 \times 15^3}$$

considering the shear force,

Allowable Shear stress =
$$\frac{30}{4}$$

$$z_{all} \ge \frac{F}{A}$$

considering tensile force,

$$7.5\times10^{6} \ge \frac{f}{A}$$

$$7.5\times10^{6} \ge \frac{28.175}{2\times b_{1}\times25\times10^{3}}$$

$$h_2 = 25 \text{ mm},$$

$$h_1 = h_2 - 2b,$$

Figure 16 : Lock of the chip rail

considering the Tensile Strength, for parts

Figure 17

Allowable tensile stress, =
$$\frac{60}{4}$$

= 15 Mpa

Tensile force = $5N$

Area = axh_2

= $25x10^3 a$
 $75x10^6 \ge \frac{5}{25x10^3} a$

considering the Shear strength, for part B,

Figure 18

Allowable shear stress =
$$\frac{50}{4}$$

= 12.5 Mpa
shear Force = $5 N$
Area = $a \times l' \times 2$
 $7a_{11} \ge \frac{F}{A}$
 $12.5 \times 10^6 \ge \frac{5}{2 l'a}$
 $l' \ge \frac{5}{2 \times 3 \times 10^3 \times 12.5 \times 10^6}$
 $l' \ge \frac{5}{6.667 \times 10^5 m}$
 $l' = 5 mm$

Allowable shear stress =
$$\frac{50}{4}$$
= 12.5 Mpa

Area =
$$a' \times a'$$

 $z_{ai} \ge F/A$

Table 03: Results

Component	Symbol	Value (mm)
Chip	D ₁	303
	t ₃	03
	t ₄	03
	tı	03
	h	15
Chip rail	h ₂	25
	Ы	05
	1	25
lock	a	03
	L'	05
	a'	10
covering cloth	Н	01
	D	920

Figure 22: Polyester cloth

Figure 23: Polyester cloth with attached chips

Figure 24: Polyester cloth, when not in use

Figure 25: Assembled parts

Figure 26: Lock

Figure 27: Covered Umbrella