Работа 1.3.3 Определение вязкости воздуха по скорости течения через тонкие трубки

Иван Сладков

18 февраля 2022 г.

1 Аннотация

В данной работе проводится экспериментальное выявление участка сформировавшегося ламинарного течения; экспериментально определяются режимы ламинарного и турбулентного течения; проводится определение числа Рейнольдса.

2 Теоретические сведения

Характер движения газа по трубке определяется числом Рейнольдса:

$$Re = \frac{vr\rho}{\eta},\tag{1}$$

где v - скорость потока, r - радиус трубки, ρ - плотность жидкости, η - вязкость. Переход от ламинарного движения к турбулентному: $Re \sim 1000$.

Для ламинарного течения при постоянном удельном объёме верна формула Пуазейля:

$$Q_V = \frac{\pi r^4}{8l\eta} (P_1 - P_2),\tag{2}$$

где P_1-P_2 - разность давлений в двух сечениях, расстояние между которыми - l. Формула позволяет определить вязкость по расходу Q_V .

Ламинарное течение газа устанавливается на расстоянии

$$a \sim 0.2r * Re. \tag{3}$$

Градиент давления на участке с турбулентным течением больше, чем на участке с ламинарным, что позволяет разделить их экспериментально.

3 Оборудование и инструментальные погрешности

Газовый счётчик: $\Delta = \pm 0.1 \; \pi$ Микроманометр: $\Delta = \pm 1 * 10^{-5} \; \Pi a$

Секундомер: $\Delta = \pm 0.1 \text{ c}$

Установка, использованная в опыте, изображена на рисунке 1.

4 Результаты измерений и обработка данных

4.1 Подготовка к опыту

По формуле 3 определим расстояние при Re = 1000:

Радиус трубки, см	Длина уст. потока, см
0.29	58
0.15	30
0.205	41

Таблица 1: Длина установления ламинарного потока

Рис. 1: Установка для определения вязкости воздуха

Измерение вязкости воздуха

Зависимость $\Delta P(Q)$ выражается в виде таблицы 2 и графика 2.

Радиус трубки, см	Расход, см ³ /с	Разность давлений, Б
0.205	159	$4.35 \mathrm{E}{+03}$
	141	3.47E + 03
	121	2.57E + 03
	103	$1.71\mathrm{E}{+03}$
	66.2	922
0.29	301	$2.71\mathrm{E}{+03}$
	253	$1.98 \mathrm{E}{+03}$
	207	$1.39\mathrm{E}{+03}$
	150	628
	124	333

Таблица 2: Зависимость разности давлений от расхода

4.2.1 Расчёт чисел Рейнольдса

Оценим числа Рейнольдса для всех опытов. В формуле 1 возьмём табличное значение вязкости: $18*10^{-5}$ пуаз.

Из таблицы 4.2.1 и графика 2 видно, что ламинарность течения не достигнута. Попытаемся определить вязкость по небольшому линейному участку графика. См. рисунок 4.2.1 . Заметим, что на графике 2 $k=\frac{8l\eta}{\pi r^4}.$ Значит,

$$\eta = \frac{\pi r^4 k}{8l} \tag{4}$$

Определим вязкость.

Можно видеть, что значения вязкости не соответствуют действительности.

Выявление зависимости давления от расстояния до входного отверстия

По графику 4 можно видеть, что линейное распределение давления устанавливается на расстоянии, сопоставимом с расчитанным в таблице 1.

5 Вывод

Так как не было получено достаточно результатов, практически все измерения пришлись на турбулентный поток. Это видно по нелинейности графика $\Delta P = f(Q)$, а также по полученным числам Рейнольдса;

Рис. 2: График зависимости разности давлений от расхода

Радиус трубки, см	№ опыта	Число Рейнольдса
0.205	1	1649
	2	1462
	3	1255
	4	1067
	5	687.7
0.290	1	2213
	2	1860
	3	1521
	4	1103
	5	910.2

Таблица 3: Числа Рейнольдса в разных опытах

Радиус трубки, см	k	Вязкость, пуаз
0.205 ± 0.0025	21.5	$29.8 * 10^{-5}$
0.290 ± 0.0025	11.2	$62*10^{-5}$

Таблица 4: Значение η для двух трубок

Рис. 3: Определение k по участку с ламинарным течением

таким образом, достоверное вычисление вязкости воздуха по этим данным невозможно.

Рис. 4: График распределения давления вдоль трубки