Date											
Date			 								

NO.1 INSITITUTE FOR IAS/IFoS EXAMINATIONS

MATHEMATICS CLASSROOM TEST 2021-22

Under the guidance of K. Venkanna

MATHEMATICS

3-DIMENSIONAL GEOMETRY CLASS TEST

Date: 12 March-2021

Time: 03:00 Hours Maximum Marks: 250

INSTRUCTIONS

- 1. Write your details in the appropriate space provided on the right side.
- Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- 3. Candidates should attempt All Question.
- 4. The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 5. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 6. All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- 7. All rough work should be done in the space provided and scored out finally.
- 8. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

KEAD	INSIK	UCI	ONS C	
LEFT	SIDE	ΟF	THIS	PAGE
CARE	ULLY			

CAREFULLI
Name
Mobile No.
Email.: (In Block Letter)
Test Centre
Medium
I have read all the instructions and shall abide by them
Signature of the Candidate
I have verified the information filled by the candidate above
Signature of the invigilator

INDEX TABLE

Question	Page No.	Max. Marks	Marks Obtained
1.		18	
2.		16	
3.		16	
4.		20	
5.		10	
6.		15	
7.		10	
8.		15	
9.		20	
10.		15	
11.		10	
12.		15	
13.		15	
14.		10	
15.		16	
16.		15	
17.		14	

Total Marks

1.	(i) Find the surface generated by a line which intersects the lines $y = a = z$ and	nd				
	x + 3z = a = y + z and is parallel to the plane $x + y = 0$.					
	(ii) Find the equation of the right circular cylinder whose axis is $x - 2 = z$, $y = and passes through the point (3, 0, 0).$					
	and passes in ough the point (o, o, o).	1				

2.	The sections of the enveloping cone of the surface $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ whose
	vertex is $P(x_1, y_1, z_1)$ by the plane $z = 0$ is (i) rectangular hyperbola, (ii) a parabola and (iii) a circle. Find the locus of the
	vertex P. [16]

3.	Prove that the shortest distance between generators of the same s	system drawn
	at the ends of diameters of the principal elliptic section of the hyp	perbolloid (x²/
	a^2) + (y^2/b^2) - (z^2/c^2) = 1 lie on the surfaces whose eq	uations are
	$\frac{\text{cxy}}{\text{x}^2 + \text{y}^2} = \pm \frac{\text{abz}}{\text{a}^2 - \text{b}^2}$	[16]

4.	(i)	Show that the straight line whose direction cosines are given by the equations:
		ul + vm + wn = 0 al ² + bm ² + cn ² = 0 are (α) perpendicular if u ² (b +c) + v ² (c + a) +
		$w^2(a + b) = 0$ and (β) parallel, if $(u^2/a) + (v^2/b) + (w^2/c) = 0$.

(ii) Prove that the S. D. between the diagonals of rectangular parallelopiped and the edges not meeting it are

$$\frac{bc}{\sqrt{\left(b^2+c^2\right)}}, \frac{ca}{\sqrt{\left(c^2+a^2\right)}}, \frac{ab}{\sqrt{\left(a^2+b^2\right)}}$$

where a, b, c are the lengths of the edges.

[20]

5.	Find the equations of the tangent plane to the ellipsoid $2x^2 + 6y^2 + 3z^2 = 27$ which passes through the line $x - y - z = 0 = x - y + 2z - 9$. [10]

6.	Find the equation of the cylinder whose generators are parallel to the line	$\frac{x}{1} =$	$=\frac{y}{-2}$	$=\frac{z}{3}$
	and whose guiding curve is $x^2 + y^2 = 4$, $z = 2$.		[15	5]

7.	If the straight line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ represents one of a set of three mutually perpendicular generators of the cone $5yz - 8zx - 3xy = 0$, then find the equations of the other two
	generators. [10]

8.	Find the locus of the point of intersection of the perpendicular generators	of the
	hyperbolic paraboloid $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2z$.	[15]

9.	(i)	If the straight lines, joining the origin to the points of intersection of the curve
		$3x^{2} - xy + 3y^{2} + 2x - 3y + 4 = 0$ and the straight line $2x + 3y + k = 0$, are at right
		angles, then show the $6k^2 + 5k + 52 = 0$.

(ii) Prove that the angle between two straight lines whose direction cosines are given by $\ell + m + n = 0$ and fmn + gn $\ell + h\ell m = 0$ si $\frac{\pi}{3}$, if $\frac{1}{f} + \frac{1}{g} + \frac{1}{h} = 0$. (08+12=20)

10.	A point P moves on the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, which is fixed. The plane through P at perpendicular to OP meets the axes in A, B, C respectively. The planes through A, B, parallel to yz, zx and xy planes respectively intersect at Q. Prove that the locus of Q $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{ax} + \frac{1}{by} + \frac{1}{cz}$. [15]	, C g is

11. Prove that the circles $x^2 + y^2 + z^2 - 2x + 3y + 4z - 5 = 0$, $5y + 6z + 1$			
	$y^2 + z^2 - 3x - 4y + 5z - 6 = 0$, $x + 2y - 7z = 0$ lies on the same sphere and find its equation. Also find the value of a for which $x + y + z = a\sqrt{3}$ touches the sphere.		
	[10]		

- 12. (i) The plane x 2y + 3z = 0 is rotated through a right angle about its line of intersection with the plane 2x + 3y 4z 5 = 0, find the equation of the plane in its new position.
 - (ii) Find the S. D. between lines

$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
 and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$

Find also its equations and the points in which it meets the given lines.

[15]

13.	If the feet of the three normals from P to the ellipsoid $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$ lie		
10.	on the plane $x/a + y/b + z/c = 1$ prove that the feet of the other three lie on the		
	on the plane $x/a + y/b + z/c = 1$ prove that the feet of the other three lie on the		
	plane $x/a + y/b + z/c + 1 = 0$ and P lies on the line a $(b^2 - c^2) x = b (c^2 - a^2) y = c$		
	$(a^2 - b^2) z.$ [15]		

14.	Find the equation of the sphere that passes through the points $(4, 1, 0)$, $(2, -3, 4)$, $(1, 0, 0)$ and touches the plane $2x + 2y - z = 11$. [10]

15.	i) Find the equation of the plane which passes through the points (0,1 and(2,0,-1) and is parallel to the line joining the points (-1,1,-2), (3,-2,4). Find the distance between the line and the plane. ii) Find the equation of the tangent plane at point (1,1,1) to the conicoid 3x² - = 2z. [1:	$-\mathbf{y}^2$

16.	Show that the generators through any one of the ends of an equiconjugate	te diameter
	of the principal elliptic section of the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ are	inclined to
	each other at an angle of 60° if $a^2 + b^2 = 6c^2$. Find also the condit	ion for the
	generators to be perpendicular to each other.	[15]

Hence find the angle of intersection of the sphere $x^2 + y^2 + z^2 - 2x - 4y - 6z + 10 = 0$ with the sphere, the extremities of whose diameter are (1, 2, -3) and (5, 0, 1).

(ii) A variable plane is at a constant distance p from the origin and meets the axes in A, B and C. Show that the locus of the centroid of the tetrahedron OABC is $x^{-2} + y^{-2} + z^{-2} = 16p^{-2}$. [14]

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 🎒 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152