2. Problem Statement

I decided to treat this as a classification problem by creating a new binary variable affair (did the woman have at least one affair?) and trying to predict the classification for each woman.

Dataset The dataset I chose is the affairs dataset that comes with Statsmodels. It was derived from a survey of women in 1974 by Redbook magazine, in which married women were asked about their participation in extramarital affairs. More information about the study is available in a 1978 paper from the Journal of Political Economy.

Description of Variables

The dataset contains 6366 observations of 9 variables:

- rate marriage: woman's rating of her marriage (1 = very poor, 5 = very good)
- · age: woman's age
- · yrs married: number of years married
- · children: number of children
- religious: woman's rating of how religious she is (1 = not religious, 4 = strongly religious)
- educ : level of education (9 = grade school, 12 = high school, 14 = some college, 16 = college graduate, 17 = some graduate school, 20 = advanced degree)
- occupation: woman's occupation (1 = student, 2 = farming/semi-skilled/unskilled, 3 = "white collar", 4 = teacher/nurse/writer/technician/skilled, 5 = managerial/business, 6 = professional with advanced degree)
- occupation husb: husband's occupation (same coding as above)
- affairs: time spent in extra-marital affairs

```
In [1]: ## Import modules

In [2]: import numpy as np
  import pandas as pd
  import statsmodels.api as sm
  import matplotlib.pyplot as plt
  from patsy import dmatrices
  from sklearn.linear_model import LogisticRegression
```

from sklearn import metrics
from sklearn.model_selection import cross_val_score
#from statsmodels.formula.api import logit, probit, poisson, ols

from sklearn.model_selection import train_test_split

C:\Users\prashant_gupta1\AppData\Local\Continuum\anaconda3\lib\site-packages\statsmodels\c
ompat\pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will
be removed in a future version. Please use the pandas.tseries module instead.
 from pandas.core import datetools

Data Pre-Processing

First, let's load the dataset and add a binary affair column. affair column will contain 1 and 0 values only. 1 represents having affairs, 0 represents not

```
In [3]: dta = sm.datasets.fair.load_pandas().data
# add "affair" column: 1 represents having affairs, 0 represents not
dta['affair'] = (dta.affairs > 0).astype(int)
```

In [4]: dta.head()

Out[4]:

	rate_marriage	age	yrs_married	children	religious	educ	occupation	occupation_husb	affairs	affair
0	3.0	32.0	9.0	3.0	3.0	17.0	2.0	5.0	0.111111	1
1	3.0	27.0	13.0	3.0	1.0	14.0	3.0	4.0	3.230769	1
2	4.0	22.0	2.5	0.0	1.0	16.0	3.0	5.0	1.400000	1
3	4.0	37.0	16.5	4.0	3.0	16.0	5.0	5.0	0.727273	1
4	5.0	27.0	9.0	1.0	1.0	14.0	3.0	4.0	4.666666	1

In [5]: # Additional Information print(sm.datasets.fair.SOURCE)

Fair, Ray. 1978. "A Theory of Extramarital Affairs," `Journal of Political Economy`, February, 45-61.

The data is available at http://fairmodel.econ.yale.edu/rayfair/pdf/2011b.htm (http://fairmodel.econ.yale.edu/rayfair/pdf/2011b.htm)

```
In [6]: # Additional Information
        print( sm.datasets.fair.NOTE)
        ::
            Number of observations: 6366
            Number of variables: 9
            Variable name definitions:
                rate marriage
                                : How rate marriage, 1 = very poor, 2 = poor, 3 = fair,
                                4 = good, 5 = very good
                age
                                : Age
                                : No. years married. Interval approximations. See
                yrs married
                                original paper for detailed explanation.
                children
                                : No. children
                                : How relgious, 1 = not, 2 = mildly, 3 = fairly,
                religious
                                4 = strongly
                educ
                                 : Level of education, 9 = grade school, 12 = high
                                 school, 14 = some college, 16 = college graduate,
                                17 = some graduate school, 20 = advanced degree
                                 : 1 = student, 2 = farming, agriculture; semi-skilled,
                occupation
                                or unskilled worker; 3 = white-colloar; 4 = teacher
                                counselor social worker, nurse; artist, writers;
                                technician, skilled worker, 5 = managerial,
                                administrative, business, 6 = professional with
                                advanced degree
                occupation_husb : Husband's occupation. Same as occupation.
                                 : measure of time spent in extramarital affairs
                affairs
```

See the original paper for more details.

In [7]: dta.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6366 entries, 0 to 6365
Data columns (total 10 columns):
rate_marriage
                  6366 non-null float64
age
                  6366 non-null float64
                6366 non-null float64
yrs married
children
                  6366 non-null float64
religious
                 6366 non-null float64
                  6366 non-null float64
educ
occupation
                  6366 non-null float64
occupation_husb
                  6366 non-null float64
affairs
                  6366 non-null float64
affair
                  6366 non-null int32
dtypes: float64(9), int32(1)
memory usage: 472.6 KB
```

In [8]: dta.describe()

Out[8]:

	rate_marriage	age	yrs_married	children	religious	educ	occupation	occupatior
count	6366.000000	6366.000000	6366.000000	6366.000000	6366.000000	6366.000000	6366.000000	6366.0
mean	4.109645	29.082862	9.009425	1.396874	2.426170	14.209865	3.424128	3.8
std	0.961430	6.847882	7.280120	1.433471	0.878369	2.178003	0.942399	1.3
min	1.000000	17.500000	0.500000	0.000000	1.000000	9.000000	1.000000	1.0
25%	4.000000	22.000000	2.500000	0.000000	2.000000	12.000000	3.000000	3.0
50%	4.000000	27.000000	6.000000	1.000000	2.000000	14.000000	3.000000	4.0
75%	5.000000	32.000000	16.500000	2.000000	3.000000	16.000000	4.000000	5.0
max	5.000000	42.000000	23.000000	5.500000	4.000000	20.000000	6.000000	6.0
4								>

Data Exploration

In [9]: dta.groupby('affair').mean()

Out[9]:

	rate_marriage	age	yrs_married	children	religious	educ	occupation	occupation_husb	aff
affair									
0	4.329701	28.390679	7.989335	1.238813	2.504521	14.322977	3.405286	3.833758	0.000
1	3.647345	30.537019	11.152460	1.728933	2.261568	13.972236	3.463712	3.884559	2.187
4									•

We can see that on average, women who have higher affairs rate their marriage rate is lower, which is to be expected. Let's take another look at the <code>rate_marriage</code> variable.

In [10]: dta.groupby('rate_marriage').mean()

Out[10]:

	age	yrs_married	children	religious	educ	occupation	occupation_husb	affairs	
rate_marriage									
1.0	33.823232	13.914141	2.308081	2.343434	13.848485	3.232323	3.838384	1.201671	0
2.0	30.471264	10.727011	1.735632	2.330460	13.864943	3.327586	3.764368	1.615745	0
3.0	30.008056	10.239174	1.638469	2.308157	14.001007	3.402820	3.798590	1.371281	0
4.0	28.856601	8.816905	1.369536	2.400981	14.144514	3.420161	3.835861	0.674837	0
5.0	28.574702	8.311662	1.252794	2.506334	14.399776	3.454918	3.892697	0.348174	0
4									•

Above analysis shows that, an increase in age , yrs_married , and children appears to correlated with a decline in marriage rate .

Data Visualization

```
In [12]: # histogram of affairs
    dta.affairs.hist()
    plt.title('Histogram of Affairs')
    plt.xlabel('Time spent in extra-marital affairs')
    plt.ylabel('Count')
```

Out[12]: Text(0,0.5,'Count')

Out[13]: Text(0,0.5,'Frequency')


```
In [14]: # histogram of marriage rating
    dta.rate_marriage.hist()
    plt.title('Histogram of Marriage Rating')
    plt.xlabel('Marriage Rating')
    plt.ylabel('Frequency')
```

Out[14]: Text(0,0.5,'Frequency')

Let's take a look at the distribution of marriage ratings for those having affairs versus those not having affairs.

```
In [15]: # barplot of marriage rating grouped by affair (True or False)
    pd.crosstab(dta.rate_marriage, dta.affair.astype(bool)).plot(kind='bar')
    plt.title('Marriage Rating Distribution by Affair Status')
    plt.xlabel('Marriage Rating')
    plt.ylabel('Frequency')
```

Out[15]: Text(0,0.5, 'Frequency')

Let's use a stacked barplot to look at the percentage of women having affairs by number of years of marriage.

```
In [16]: pd.crosstab(dta.yrs_married, dta.affair.astype(bool)).plot(kind='bar')
   plt.title('Affair Percentage by Years Married')
   plt.xlabel('Years Married')
   plt.ylabel('Frequency')
```

Out[16]: Text(0,0.5,'Frequency')


```
In [17]: dta.shape
Out[17]: (6366, 10)
```

Prepare Data for Logistic Regression

Looking at the information given by using following command

```
print( sm.datasets.fair.NOTE)
```

It looks like that occupation and occupation_husb, are the categorial variables. Here I would be using the dmatrices function from the <u>patsy module (http://patsy.readthedocs.org/en/latest/)</u> can do that using formula language.

```
In [19]: # fix column names of X
         X = X.rename(columns = {'C(occupation)[T.2.0]':'occ 2',
          'C(occupation)[T.3.0]':'occ_3',
          'C(occupation)[T.4.0]':'occ 4',
          'C(occupation)[T.5.0]':'occ 5',
          'C(occupation)[T.6.0]':'occ_6',
          'C(occupation husb)[T.2.0]':'occ husb 2',
         'C(occupation husb)[T.3.0]':'occ husb 3',
         'C(occupation_husb)[T.4.0]':'occ_husb_4',
          'C(occupation husb)[T.5.0]':'occ husb 5',
          'C(occupation husb)[T.6.0]':'occ husb 6'})
In [20]: # flatten y into a 1-D array
         y = np.ravel(y)
In [21]: # instantiate a logistic regression model, and fit with X and y
         model = LogisticRegression()
         model = model.fit(X, y)
         # check the accuracy on the training set
         model.score(X, y)
Out[21]: 0.7258875274897895
In [22]: # what percentage had affairs?
         y.mean()
Out[22]: 0.3224945020420987
In [23]: # evaluate the model by splitting into train and test sets
         X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=0)
         model2 = LogisticRegression()
         model2.fit(X_train, y_train)
Out[23]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                   penalty='12', random state=None, solver='liblinear', tol=0.0001,
                   verbose=0, warm_start=False)
In [24]: # predict class labels for the test set
         predicted = model2.predict(X_test)
         print(predicted)
         [1. 0. 0. ... 0. 0. 0.]
In [25]: probs = model2.predict proba(X test)
         print(probs)
         [[0.3514634 0.6485366]
          [0.90955084 0.09044916]
          [0.72567333 0.27432667]
          [0.55727385 0.44272615]
          [0.81207043 0.18792957]
          [0.74734601 0.25265399]]
```

```
In [26]: # generate evaluation metrics
          print (metrics.accuracy_score(y_test, predicted))
          print (metrics.roc_auc_score(y_test, predicted))
          0.7298429319371728
          0.6339179260634122
In [27]:
          print (metrics.confusion matrix(y test, predicted))
          print (metrics.classification_report(y_test, predicted))
          [[1169 134]
           [ 382 225]]
                        precision
                                       recall f1-score
                                                            support
                                         0.90
                   0.0
                              0.75
                                                    0.82
                                                               1303
                   1.0
                              0.63
                                         0.37
                                                    0.47
                                                                607
                                         0.73
                                                    0.71
                                                               1910
          avg / total
                              0.71
In [28]: # evaluate the model using 10-fold cross-validation
          scores = cross_val_score(LogisticRegression(), X, y, scoring='accuracy', cv=10)
          print (scores)
          print (scores.mean())
          [0.72100313 0.70219436 0.73824451 0.70597484 0.70597484 0.72955975
           0.7327044 0.70440252 0.75157233 0.75
                                                           1
          0.7241630685514876
          pd.DataFrame(list(zip(X.columns, np.transpose(model.coef_))))
Out[29]:
                        0
                                              1
            0
                              [1.489835891324933]
                   Intercept
            1
                     occ_2
                            [0.18806639024440983]
            2
                             [0.4989478668156914]
                     occ_3
            3
                            [0.25066856498524825]
                     occ 4
            4
                     occ 5
                             [0.8390080648117001]
            5
                     occ 6
                             [0.8339084337443315]
            6
                occ_husb_2
                             [0.1906359445867889]
            7
                occ_husb_3
                             [0.2978327129263421]
            8
                             [0.1614088540760616]
                occ_husb_4
                            [0.18777091388972483]
                occ_husb_5
           10
                occ husb 6
                            [0.19401637225511495]
                            [-0.7031233597323255]
           11
              rate_marriage
           12
                            [-0.05841777448168919]
                      age
           13
                yrs_married
                            [0.10567653799735635]
           14
                           [0.016919266970905608]
                   children
           15
                            [-0.3711362653137546]
                   religious
```

16

educ

[0.00401650319563816]

In [30]: model.predict_proba(np.array([[1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 3, 25, 3, 1, 4, 16]]))

Out[30]: array([[0.77472221, 0.22527779]])