1. [chocolate] ช็อคโกแลต

มีช็อคโกแลต อยู่ในชามที่วางเรียงกันเป็นแถว ให้เลือกหยิบช็อคโกแลตให้มากที่สุดเท่าที่จะหยิบได้ โดยมีเงือนไขคือ ห้ามหยิบช็อคโกแลตในชามที่วางติดกัน ถ้าหยิบชามใดชามหนึ่งแล้วต้องเว้นไปอย่างน้อยหนึ่ง ชามก่อนจะหยิบอีกชามได้

จงเขียนโปรแกรมเลือกหยิบซ็อคโกแลตให้ได้มากที่สุด

ข้อมูลนำเข้า

บรรทัดแรกรับค่าข้อมูลจำนวนเต็ม N เมื่อ N คือ จำนวนชาม โดยที่ N <= 100,000 บรรทัดที่ 2 เป็นจำนวนซ็อคโกแลต ในชาม

ข้อมูลส่งออก

จำนวนช็อคโกแลตมากที่สุดที่หยิบได้

ตัวอย่างผลลัพธ์

ข้อมูลนำเข้า	ข้อมูลส่งออก
10	95
<u>30</u> 10 8 <u>20</u> 11 12 <u>25</u> 13 <u>20</u> 19	

2. เส้นตรง (line) ประกอบไปด้วยจุดเริ่มต้น xi และจุดสิ้นสุด xj [xi, xj] โดยที่ xi <= xj หากมีเส้นตรงทั้งหมด n เส้น และต้องการรวมเป็นเส้นตรงเส้นเดียวที่มีความยาวเท่ากับ [xa, xb] โดยใช้เส้นตรงเหล่านี้น้อยที่สุด ตัวอย่างเช่น สมมติมีเส้นตรง n เส้น ได้แก่ [1,2], [3,5], [1,5], [2,4], [4,5], [3,6], [2,7], [7,9], [4,8], [1,3] หากต้องการรวมเป็นเส้นตรง [1, 9] คำตอบที่น้อยที่สุดคือ 3 ได้แก่ [1,5], [4,8], [7,9]</p>

ข้อมูลนำเข้า

บรรทัดแรก N แทนจำนวนเส้นตรง

N บรรทัดถัดไป แต่ละบรรทัดประกอบไปด้วยคู่ลำดับ xi, xj แสดงจุดเริ่มต้นและจุดสิ้นสุดของเส้นตรง บรรทัดสุดท้าย แทน เส้นตรงที่ต้องการ

ข้อมูลส่งออก

จำนวนเส้นตรงที่<u>น้อยที่สด</u>ุที่ถูกเลือก

	•	
ตัวอย่างข้อมูลนำเข้า	0	ตัวอย่างข้อมูลส่งออก
1 2		3
3 5		
1 5		
2 4		
4 5		
3 6		
2 7		
7 9		
4 8		
1 3		

3. [NoGDm2Array] จงเขียนโปรแกรม check ว่าทุกคู่ของจำนวน 2 จำนวนที่อยู่คนละ array สามารถ บวกกันได้มากกว่าหรือเท่ากับ K โดย input รับอาร์เรย์ตัวเลขบวกที่ซ้ำกันได้และค่าใน array สามารถว่างสลับตำแหน่งได้ ตัวอย่างเช่น A[5] = { 1, 2, 4, 4, 3} , B[5] = { 5, 2, 3, 1, 9 }, K = 5 ผลลัพธ์ คือ Yes

ข้อมูลนำเข้า

บรรทัดที่ 1	จำนวนค่าข้อมูล m โดย m คือชุดทดสอบ 1 <m<10< th=""></m<10<>
บรรทัดที่ 2	จำนวนค่าข้อมูล n โดย n คือขนาดของอาร์เรย์ และ 1 <n<1,000,000< td=""></n<1,000,000<>
บรรทัดที่ 3	จำนวนค่าข้อมูล n จำนวนของ array A ขั้นด้วยช่องว่าง
บรรทัดที่ 4	จำนวนค่าข้อมูล n จำนวนของ array B ขั้นด้วยช่องว่าง
บรรทัดที่ 5	จำนวน K
บรรทัดที่ 6-9	input ข้อมลของชดทดสอบที่ 2 โดยมีการทำงานเหมือนบรรทัดที่ 2-5

ข้อมูลส่งออก

ผลลัพธ์มีจำนวนบรรทัดเท่ากับ m

แสดง Yes ถ้าทุกคู่ของจำนวน 2 จำนวนที่อยู่คนละ array สามารถบวกกันได้มากกว่าหรือเท่ากับ K No ในทางตรงข้ามกับ Yes

ตัวอย่าง

Input	Output
2	Yes
5	No
1 2 4 4 3	
5 2 3 1 9	
5	
5	
1 2 4 4 3	
5 2 3 1 9	
15	
2	Yes
8	Yes
35 70 79 63 6 82 62 96	
1 25 59 65 46 28 92 43	
28	
7	
92 3 93 22 19 48 72	
5 54 83 17 96 27 39	
70	

4.

หากต้องการจัดเก็บไฟล์ข้อมูลจำนวน N ไฟล์ซึ่งมีความยาวแตกต่างกันได้แก่ l1, l2, l3, ..., ln บนเทป (tape) จงหาวิธีการจัดเก็บไฟล์เหล่านี้ให้เวลาค้นหาเฉลี่ย (Mean Retrieval Time) มีค่าน้อยที่สุด ตัวอย่างเช่น (f1, f2, f3) = (5, 10, 3)

- หากจัดเก็บไฟล์ f1 ตามด้วย f2 และ f3 จะได้เวลาเฉลี่ยในการค้นหาคือ (5 + (5+10) + (5+10+3))/3 = 12.667
- หากเก็บไฟล์ f2 ก่อนตามด้วย f1 และ f3 จะมีค่าเท่ากับ (10 + (10+5) + (10+5+3)) / 3 = 14.33

ข้อมูลนำเข้า

บรรทัดแรก N แทนจำนวนไฟล์ N บรรทัดถัดไป แต่ละบรรทัดเป็นเลขจำนวนเต็มบวกแทนความยาวของไฟล์

ข้อมูลส่งออก

เวลาค้นหาเฉลี่ยที่น้อยที่สุดในการค้นหา N ไฟล์

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก	
6	28.16	
15		
12		
8		
7		
6		
9		