Note del corso di Calcolabilità e Linguaggi Formali - Lezione 11

Alberto Carraro

DAIS, Università Ca' Foscari Venezia http://www.dsi.unive.it/~acarraro

1 Il padding lemma

Per commpletezza, diamo un ultimo risultato riguardante la numerazione delle funzioni ricorsive parziali. È un risultato che abbiamo tenuto implicito, a volte nominato in maniera discorsiva: il fatto che nella numerazione dell'insieme \mathbf{PR} ogni funzione ha un numero infinito di indici. Il risultato non dovrebbe essere sorprendente poiché la numerazione delle funzioni p.r. è fatta in base alla loro definizione, cioè guardando ad esse come programmi. Ma è chiaro che dato un programma P si può modificare il suo sorgente aggiungendo istruzioni inutili. Si otterrà così un programma P' che rappresenta la stessa funzione di P, perchè fa le stesse cose a livello di input/output, ma ha un indice diverso.

Lemma 1 (Padding). Ogni funzione ricorsiva parziale ammette infiniti indici nella numerazione di Kleene.

Proof. Per ogni $m \in \mathbb{N}$ definiamo $\phi^{2+m}(x,z,\vec{y}) \simeq \varphi_x(\vec{y}) + z - z$, dove \vec{y} ha lunghezza m. Tale funzione è ricorsiva parziale, quindi esiste un indice e tale che $\varphi_e^{2+m} \simeq \phi^{2+m}$. Per il Teorema s-m-n esiste una funzione primitiva ricorsiva ed iniettiva $S_2^m(e,x,z)$ tale che

$$\varphi_e^{2+m}(x,z,\vec{y}) \simeq \varphi_{S_2^m(e,x,z)}(\vec{y})$$

per ogni $x, z \in \mathbb{N}$ ed ogni $\vec{y} \in \mathbb{N}^m$. Perciò per ogni funzione m-aria φ_a , la funzione $z \mapsto S_2^m(e, a, z)$ calcola inifniti indici diversi, al variare di z, ma tutti sono indici della funzione φ_a perché per ogni $z \in \mathbb{N}$ abbiamo

$$\varphi_{S_2^m(e,a,z)}(\vec{y}) \simeq \varphi_e(a,z,\vec{y}) \simeq \phi(a,z,\vec{y}) \simeq \varphi_a(\vec{y}) + z - z$$
 per ogni $\vec{y} \in \mathbb{N}^m$

2 Insiemi non ricorsivi e non r.e.

Facciamo notare che c'è un nuovo modo ammissibile per definire funzioni ricorsive parziali. Siano $P(\vec{x})$ e $\varphi(\vec{x})$ un predicato r.e. n-ario ed una funzione ricorsiva parziale, rispettivamente, e definiamo la funzione

$$\phi(\vec{x}) \simeq \begin{cases} \varphi(\vec{x}) & \text{se } P(\vec{x}) \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione ϕ così definita è ricorsiva parziale, perchè $\phi(\vec{x}) \simeq c_P(\vec{x}) \cdot \varphi(\vec{x})$. Si noti che nella definizione di ϕ nel caso "altrimenti" la funzione deve essere indefinita, altrimenti non potrebbe essere ricorsiva parziale.

Abbiamo visto molti risultati sulle funzioni ricorsive e sugli insiemi r.e. Indubbiamente ci sono molte proprietà ricorsive come l'essere pari, essere primo, essere potenza di due, ecc. Nel seguito usiamo le seguenti definizioni

```
\begin{array}{l} -\ \varSigma = \{A\subseteq \mathbb{N}: A \ \text{\`e r.e.}\ \} \\ -\ \varDelta = \{A\subseteq \mathbb{N}: A \ \text{\`e ricorsivo}\ \} \end{array}
```

In questa sezione andremo ad investigare il "lato oscuro", ovvero il mondo delle proprietà che non sono ricorsive o r.e. Prima di tutto un semplice argomento ci convince che tali proprietà devono esistere: il Teorema di Enumerazione degli insiemi r.e. ci dice che la famiglia $(W_n)_{n\in\mathbb{N}}$ enumera tutti gli insiemi r.e., ovvero $W_{(\cdot)}: \mathbb{N} \to \Sigma$ è una funzione suriettiva. Quindi la cardinalità di Σ è la stessa di \mathbb{N} , che sappiamo essere strettamente inferiore alla cardinalità di $\mathcal{P}(\mathbb{N})$, per il Teorema di Cantor.

Definition 1. Definiamo l'insieme $\mathcal{K} = \{x \in \mathbb{N} : \varphi_x(x) \downarrow \}.$

Theorem 1. L'insieme K è r.e. ma non ricorsivo.

Proof. Osserviamo subito che la funzione $x \mapsto \varphi_x(x)$ è ricorsiva parziale e quindi ha un indice b e siccome $\mathcal{K} = \mathsf{dom}(\varphi_b)$, allora \mathcal{K} è r.e.

Supponiamo per assurdo che \mathcal{K} sia ricorsivo. Allora anche \mathcal{K}^c è ricorsivo e quindi funzione

$$f(x) \simeq \begin{cases} 0 & \text{se } x \in \mathcal{K}^c \\ \uparrow & \text{altrimenti} \end{cases}$$

è ricorsiva parziale ed ammette un indice b. Allora abbiamo che $b \in \mathcal{K} \Leftrightarrow \varphi_b(b) \downarrow \Leftrightarrow b \in \mathcal{K}^c$ e questo è assurdo.

Corollary 1. L'insieme K^c non è r.e.

Proof. Se \mathcal{K}^c fosse r.e. allora \mathcal{K} sarebbe ricorsivo, ma questo è assurdo perché contraddice il Teorema ??.

Definition 2 (Riducibilità). Siano $A, B \subseteq \mathbb{N}$ due insiemi. Diciamo che $A \in \mathbb{N}$ riducibile $A \in \mathbb{N}$ notazione $A \subseteq \mathbb{N}$ sse esiste una funzione ricorsiva totale $A \in \mathbb{N}$ tale che $A \in A \Leftrightarrow f(x) \in B$.

Theorem 2. Siano A, B tali che $A \leq_T B$. Allora

- (i) Se B è ricorsivo, allora anche A è ricorsivo.
- (ii) Se B è r.e., allora anche A è r.e.

Proof. Basta osservare che $A = f^{-1}(B)$ ed usare due risultati dimostrati in precedenza.

Notiamo che se $A \in \Delta$ e A è non-triviale, allora $A \leq_T B$ per ogni $B \subseteq \mathbb{N}$.

Ora vediamo che si può dare una ulteriore (sorprendente) caratterizzazione degli insiemi r.e.

Theorem 3. Un insieme $A \subseteq \mathbb{N}$ è r.e. sse $A \leq_T \mathcal{K}$.

Proof. (\Leftarrow) Se $A \leq_T \mathcal{K}$ allora banalmente A è r.e. per il Teorema ??. (\Rightarrow) Supponiamo A sia r.e. Dobbiamo esibire una funzione ricorsiva totale f tale che $x \in A \Leftrightarrow f(x) \in \mathcal{K}$. La funzione

$$\phi(x,y) \simeq \begin{cases} 1 & \text{se } x \in A \\ \uparrow & \text{altrimenti} \end{cases}$$

è ricorsiva ricorsiva parziale e quindi per il Teorema s-m-n esiste una funzione primitiva ricorsiva unaria S tale che $\varphi_{S(x)}(y) \simeq \phi(x,y)$ per ogni $x,y \in \mathbb{N}$.

Se $S(x) \in \mathcal{K}$, allora $\varphi_{S(x)}(S(x)) \downarrow$, cioè $\phi(S(x),S(x)) \downarrow$, e questo implica $S(x) \in A$.

Se $x \in A$, allora $\phi(x, S(x)) \downarrow$, cioè $\varphi_{S(x)}(S(x)) \downarrow$, e questo implica $S(x) \in \mathcal{K}$.

Exercise 1. Dimostrare che l'insieme $I=\{x\in\mathbb{N}: \forall y\in\mathbb{N}.\ \varphi_x(y)=0\}$ non è ricorsivo.

Solution 1. Dimostriamo che I^c non è r.e. per via di una riduzione di \mathcal{K}^c a I^c . La funzione

$$\phi(x,y) \simeq \begin{cases} 0 & \text{se } x \in \mathcal{K} \\ \uparrow & \text{altrimenti} \end{cases}$$

è ricorsiva parziale. Per il Teorema s-n-m esiste una funzione primitiva ricorsiva S unaria tale che $\varphi_{S(x)}(y) \simeq \phi(x,y)$ per ogni $x,y \in \mathbb{N}$.

Se $x \in \mathcal{K}^c$, allora $\varphi_{S(x)}(y) \uparrow$ per ogni $y \in \mathbb{N}$, ovvero S(x) è un indice della funzione completamente indefinita. Pertanto $S(x) \in I^c$.

Se $S(x) \in I^c$, allora deve esistere un $y \in \mathbb{N}$ tale che $\phi(x,y)$ non è uguale a 0 e ciò è possibile solo se $\phi(x,y) \uparrow$, che implica $x \in \mathcal{K}^c$.

Siccome S è ricorsiva totale e soddisfa $x \in \mathcal{K}^c \Leftrightarrow S(x) \in I^c$, abbiamo dimostrato che $\mathcal{K}^c \leq_T I^c$. Se I^c fosse r.e. allora anche \mathcal{K}^c lo sarebbe, ma questo è assurdo.

Exercise 2. Dimostrare che l'insieme K non rispetta le funzioni.

Solution 2. Dobbiamo dimostrare che esistono due numeri $x_0, x_1 \in \mathbb{N}$ tali che $x_0 \in \mathcal{K}, x_1 \in \mathcal{K}^c$ e $\varphi_{x_0} \simeq \varphi_{x_1}$.

Scegliamo $x_0 = n$ dove n è tale che $\mathsf{dom}(\varphi_n) = \{n\}$. Chiaramente la funzione φ_n ha infiniti indici, per cui possiamo scegliere $x_1 = m$, dove m è un indice di φ_n diverso da n. Ora abbiamo che $\varphi_n(n) \downarrow e \varphi_m(m) \uparrow$, il che ci dice che $n \in \mathcal{K}$ e $m \in \mathcal{K}^c$.

Exercise 3. Dimostrare che l'insieme $I = \{x \in \mathbb{N} : 0 \in \mathsf{dom}(\varphi_x)\}$ non è ricorsivo.

Solution 3. L'insieme I è non-triviale e rispetta le funzioni. Quindi per il Teorema di Rice non è ricorsivo.

Exercise 4. Dimostrare che l'insieme $I = \{x \in \mathbb{N} : \varphi_x \text{è totale }\}$ non è ricorsivo.

Solution 4. L'insieme I è non-triviale e rispetta le funzioni. Quindi per il Teorema di Rice non è ricorsivo.

Exercise 5. Dimostrare che l'insieme $I = \{x \in \mathbb{N} : \varphi_{x,x}(x) \downarrow \}$ è ricorsivo. Dare almeno due numeri n, m tali che $n, m \notin I$ e $\varphi_n \not\simeq \varphi_m$.

Solution 5. L'insieme I è ricorsivo perché il predicato $\exists y < x. \mathcal{T}_1(x, x, y)$ è ricorsivo. La funzione totalmente indefinita è ricorsiva parziale e quindi ha un indice n. Sicuramente $\varphi_{n,n}(n) \uparrow$, e questo ci dice che $n \notin I$.

Definiamo una funzione

$$t(x,y) \simeq \begin{cases} x & \text{se } x \neq y \\ \uparrow & \text{altrimenti} \end{cases}$$

La funzione t è ricorsiva parziale, per cui possiamo applicare il II Teorema di Ricorsione che ci da un indice m tale che $\varphi_m(y) \simeq t(m,y)$, per ogni $y \in \mathbb{N}$. Per cui $\varphi_m(m) \simeq t(m, m)$, da cui $\varphi_m(m) \uparrow$. Quindi $m \notin I$

Concludiamo osservando che φ_m non è completamente indefinita e quindi $\varphi_m \not\simeq \varphi_n$.

Exercise 6. Dimostrare che l'insieme dei numeri pari non rispetta le funzioni.

Solution 6. Segue da Teorema di Rice, perché l'insieme dei pari è ricorsivo e non-triviale.

3 Funzioni non ricorsive

In questa sezione dimostriamo l'esistenza di funzioni che non sono ricorsive: si tratta quindi di individuare alcuni limiti teorici della capacità di calcolo espressa tramite il formalismo della ricorsività, e quindi anche della Turing-calcolabilità.

Il Teorema di Enumerazione delle funzioni ricorsive parziali ci dice che la famiglia $(\varphi_n)_{n\in\mathbb{N}}$ enumera tutto l'insieme **PR**, cioè $\varphi_{(\cdot)}:\mathbb{N}\to\mathbf{PR}$ è una funzione suriettiva. Quindi la cardinalità di PR è la stessa di N, che sappiamo essere strettamente inferiore alla cardinalità di $\mathcal{P}(\mathbb{N})$, per il Teorema di Cantor. D'altra parte l'insieme delle funzioni dai naturali in $\{0,1\}$ ha la stessa cardinalità di $\mathcal{P}(\mathbb{N})$, come si può facilmente dimostrare. Quindi devono esistere delle funzioni da N in N che non sono né ricorsive né ricorsive parziali.

Lemma 2 (Halting problem). La funzione $f(x,y) = \begin{cases} 1 & se \ \varphi_x(y) \downarrow \\ 0 & altrimenti \end{cases}$ non è ricorsiva.

Proof. Supponiamo per assurdo che f sia ricorsiva. Allora anche la funzione $h(x) = \begin{cases} 1 & \text{se } \varphi_x(x) \downarrow \\ 0 & \text{altrimenti} \end{cases}$ è ricorsiva, perché h(x) = f(x,x) per ogni $x \in \mathbb{N}$. Notiamo che h è la funzione caratteristica di \mathcal{K} , per cui \mathcal{K} sarebbe ricorsivo. Questa è una contraddizione del Teorema $\ref{eq:contraction}$?

Exercise 7. La funzione
$$f(x) = \begin{cases} 1 & \text{se } \varphi_x \text{ è costante} \\ 0 & \text{altrimenti} \end{cases}$$
 non è ricorsiva.

Solution 7. Osserviamo che f è la funzione caratteristica dell'insieme $I = \{x \in \mathbb{N} : \varphi_x \text{ è costante}\}$. Tale insieme è non-triviale e rispetta le funzioni, quindi per il Teorema di Rice non è ricorsivo. Pertanto f non può essere riccorsiva.

Exercise 8. La funzione
$$f(x, y, z) = \begin{cases} 1 & \text{se } \varphi_x(y) \downarrow \text{e } \varphi_x(y) = z \\ 0 & \text{altrimenti} \end{cases}$$
 non è ricorsiva.

Solution 8. Supponiamo per assurdo che f sia ricorsiva. Allora la funzione $x\mapsto f(x,0,0)$ sarebbe ricorsiva totale. Ma essa è la funzione caratteristica dell'insieme $I=\{x\in\mathbb{N}:\varphi_x(0)\downarrow,\ \varphi_x(0)=0\}$ e quindi l'insieme I sarebbe ricorsivo. Ma ciò contraddice il Teorema di Rice, perché I è non-triviale e rispetta le funzioni. \square

Exercise 9. La funzione
$$f(x,y) = \begin{cases} 1 & \text{se } \varphi_x \simeq \varphi_y \\ 0 & \text{altrimenti} \end{cases}$$
 non è ricorsiva.

Solution 9. Supponiamo per assurdo che f sia ricorsiva. Sia e un indice della funzione $x\mapsto 0$ e definiamo la funzione g(x)=f(x,e), per ogni $x\in\mathbb{N}$. La funzione g allora sarebbe ricorsiva, ed essendo la funzione caratteristica dell'insieme $I=\{x\in\mathbb{N}:\varphi_x\ \text{è costante a valore 0}\}$, quest'ultimo sarebbe ricorsivo. Ma ciò contraddice il teorema di RIce perché I è non-triviale e rispetta le funzioni. \square

Exercise 10. La funzione
$$f(x) = \begin{cases} \varphi_x(x) + 1 & \text{se } \varphi_x \text{ è totale} \\ 0 & \text{altrimenti} \end{cases}$$
 non è ricorsiva.

Solution 10. Supponiamo per assurdo che f sia ricorsiva. Allora ammette un indice n. Poicé f è totale, abbiamo che $\varphi_n(n) \downarrow$ e quindi $\varphi_n(n) = f(n) = \varphi_n(n) + 1$. Questo è assurdo.