SOLVING SYSTEMS OF NONLINEAR EQUATIONS USING INTERVAL ARITHMETIC AND TERM CONSISTENCY

13

ABSTRACT

One embodiment of the present invention provides a computer-based system for solving a system of nonlinear equations specified by a vector function, **f**, wherein $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ represents $f_1(\mathbf{x}) = 0$, $f_2(\mathbf{x}) = 0$, $f_3(\mathbf{x}) = 0$, ..., $f_n(\mathbf{x}) = 0$, wherein **x** is a vector $(x_1, x_2, x_3, \dots x_n)$. The system operates by receiving a representation of an interval vector $\mathbf{X} = (X_1, X_2, ..., X_n)$, wherein for each dimension, i, the representation of X_i includes a first floating-point number, a_i , representing the left endpoint of X_i , and a second floating-point number, b_i , representing the right endpoint of X_i . For each nonlinear equation $f_i(\mathbf{x}) = 0$ in the system of equations f(x) = 0, each individual component function $f_i(x)$ can be written in the form $f_i(\mathbf{x}) = g(x'_i) - h(\mathbf{x})$ or $g(x'_i) = h(\mathbf{x})$, where g can be analytically inverted so that an explicit expression for x'_i can be obtained: $x'_i = g^{-1}(h(\mathbf{x}))$. Next, the system substitutes the interval vector element X_i into the modified equation to produce the equation $g(X'_j) = h(X)$, and solves for $X'_j = g^{-1}(h(X))$. The system then intersects X_j with X_j and replaces X_j in the interval vector **X** to produce a new interval vector \mathbf{X}^+ , wherein the new interval vector \mathbf{X}^+ contains all solutions of the system of equations f(x) = 0 within the interval vector X, and wherein the width of the new interval vector \mathbf{X}^{+} is less than or equal to the width of the interval vector \mathbf{X} .