Исследование магнитооптических свойств теллуритных стёкол

Работу выполнили:

Геликонова В.Г., Платонова М.В., Сарафанов Ф.Г.

Научный руководитель:

Яковлев А.И.

Нижний Новгород - 2017

Цели и актуальность

Цели

- 1 Исследовать магнитооптические свойства теллуритных стёкол
- 2 Определить материальную константу постоянную Верде
- 3 Обработать результаты

Актуальность

- Теллуритные стекла обладают оптической активностью и могут быть использованы в качестве магнитооптического материала в изоляторах и вращателях Фарадея
- 2 Теллуритные стекла обладают широким спектром пропускания
- 3 Из этого материала возможно изготовление образцов с большой апертурой
- 4 Теллулитные стекла позволяют изменять угол поворота плоскости поляризации вариацией состава

Понятие поляризации

Для электромагнитных волн вектора \vec{E} и \vec{B} перпендикулярны друг другу и вектору скорости распространения волны \vec{V}

Поляризация - явление направленного колебания вектора \vec{E} или \vec{B} в плоскости, перпендикулярной волновому вектору \vec{k}

$$\begin{cases} E_x = E_1 \cos(-kz + \omega t + \phi_1) \\ E_y = E_2 \cos(-kz + \omega t + \phi_2) \\ E_z = 0 \end{cases}$$
 (1)

Понятие поляризации

Если из уравнений вида

$$\begin{cases} E_x = E_1 \cos(-kz + \omega t) \\ E_y = E_2 \cos(-kz + \omega t + \delta) \\ E_z = 0 \end{cases}$$
 (2)

исключить время, то получится

$$\frac{(E_x)^2}{(E_1)^2} - \frac{2E_x E_y}{(E_1 E_2)} \cos(\delta) + \frac{(E_y)^2}{(E_2)^2} = \sin^2(\delta)$$
 (3)

А это уравнение эллипса.

Следовательно, поляризация в общем случае эллиптическая.

1 Если
$$\delta=0$$
, то $\frac{E_x^2}{E_1^2}-\frac{2E_xE_y}{E_1E_2}+\frac{E_y^2}{E_2^2}=0$ $\frac{E_x}{E_1}-\frac{E_y}{E_2}=0$

- линейная поляризация
- **2** Если $\delta = \frac{\pi}{2}$, то

$$\frac{E_x^2}{E_1^2} + \frac{E_y^2}{E_2^2} = 1$$

– эллиптическая поляризация, которая при $E_1=E_2\equiv E'$ переходит в круговую

$$E_x^2 + E_y^2 = E'^2$$

3 Если
$$\delta=\pi$$
, то $\frac{E_x^2}{E_1^2}+\frac{2E_xE_y}{E_1E_2}+\frac{E_y^2}{E_2^2}=0$

$$\frac{E_x}{E_1} + \frac{E_y}{E_2} = 0$$

- линейная поляризация

Понятие двулучепреломления

Эффект двулучепреломления наблюдается в анизотропных средах (в нашей работе - теллуритных стеклах). В связи с существованием эллипсоида преломления волна при прохождении через среду распадается на две: сферическую (обыкновенную) и эллипсоидальную (необыкновенную).

$$n_{1,2} = \frac{c}{V_{1,2}}$$

Вращатель и фильтр Фарадея

Вращатель Фарадея - устройство, способное вращать плоскость поляризации в магнитном поле. **Изолятор Фарадея** - устройство, поворачивающее плоскость поляризации на $\frac{\pi}{4}$.

1 – источник

2 – поляризатор

3 – вращательили изолятор Фарадея

Материальная константа: постоянная Верде

V – постоянная Верде – физическая величина, характеризующая угол, на который повернется плоскость поляризации при данных длине образца и магнитном поле:

$$\Theta = \phi_2 - \phi_1 = V \int B(x) dx \tag{4}$$

где Θ – угол, на который поворачивается плоскость поляризации.

Схема установки

- 1 диодный лазер
 - $\lambda_1=531$ нм,
 - $\lambda_2=658$ нм,
 - $\lambda_3=1064$ нм
- 2 поляризатор

- **3** магнит
- 4 призма Глана
- **5** фильтр
- **6** камера
- **7** образец

Аппроксимация распределения магнитного поля

Мы аппроксимировали экспериментально полученное распределение B(x) с помощью кривой нормального распределения:

$$B = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$$

где $\mu = -0.2581 \pm 0.03$, $\sigma = 17.72 \pm 0.05$

Результаты эксперимента

Оценка

$$\Theta=VBL$$
 $L=rac{\Theta}{VB}$ $B=3.5$ Тл $\Theta=rac{\pi}{4}$ $\lambda=1.8$ мкм $V=9.3$ $L=2$ см

L=2 см Для оценки был выбран образец с наибольшей материальной константой, так как он на наибольший угол поворачивает плоскость поляризации. Длина образца с составом TZNDy-236/4, при которой плоскость поляризации повернулась бы на $\frac{\pi}{4}-2$ см для волны 1,8мкм. При такой длине образца неоднородность магнитного поля сказываться не будет, следовательно, как изолятор Фарадея его эффективно применять при таком магнитном поле.

Выводы

В ходе этой работы мы

- 1 исследовали магнитооптические свойства теллуритных стекол
- 2 определили материальную константу постоянную Верде
- 3 оценили длину образца, при к-й теллуритное стекло стало бы изолятором Фарадея

Спасибо за внимание!

Презентация подготовлена в издательской системе LaTeX с использованием пакетов PGF/TikZ и Beamer