Part A:

- Team Jarlsberg
 Siddhesh Madeshwar
 Zachary Noel
 Erin Dolson
- 2)
- a) Bernoulli similar to Multinomial but no count per document, binary per document (does that term exists there or it does not)
 - i) $P(X_{peony} = True \mid Class = 2)$ Occurs both times in both documents, laplace = 1, 2 documents in class 2, 2 binary (SUM(does it occur in doc in class) + 1)/((Num of docs in class) * (2 b/c binary) = $(2+1)/(2+2) = \frac{3}{4} = \frac{.75}{.75}$
 - ii) $P(X_{crocus} = True \mid Class = 2)$ Occurs in one document from class 2, laplace = 1, 2 documents in class 2, 2 for binary = (1+1)/(2+2) = 2/4 = .500
 - iii) $P(X_{peony} = True \mid Class = 1)$ Occurs in one document from class 1, laplace = 1, 1 document1 in class 1, 2 for binary = (1+1)/(1+2) = 2/3 = .667
- b) Multinomial NB model with LaPlace

$$\frac{T_{ct} + 1}{\left(\sum_{t' \in V} T_{ct'}\right) + |V|}$$

i) P(X = peony | Class = 2) = .1786
 T_{ct} = 4 (number of times peony shows up in the class)
 V = 14 (unique words in all)

V = 14 (unique words in all) $\Sigma_{t \text{ in } V} T_{ct} = 14$ (number of times t' (from V) shows up in training docs in C)

 $(T_{ct} + 1)/((\Sigma_{t'in} \vee T_{ct'}) + |V|) = (4+1)/(14+14) = 5/28 = .1786$

ii) P(X = crocus | Class = 2) = .0714 $T_{ct} = 1$

V = 14

 $\Sigma_{t' \text{ in V}} T_{ct'} = 14$

$$(T_{ct} + 1)/((\Sigma_{t'in} \lor T_{ct'}) + |V|) = (1+1)/(14+14) = 2/28 = .0714$$

iii) P(X = peony | Class = 1) = 0.0909

 $T_{ct} = 1$

V = 14

 $\Sigma_{t' \text{ in V}} T_{ct'} = 8$

$$(T_{ct} + 1)/((\Sigma_{t' \text{ in } V} T_{ct'}) + |V|) = (1+1)/(8+14) = 2/22 = 0.0909$$

```
P(Class = 1) = \frac{1}{4}
P(Class = 2) = \frac{1}{2}
P(Class = 3) = \frac{1}{4}
P(X_{daffodil} = True \mid Class = 1) = (0 + 1)/(1 + 2) = 1/3 = .333
P(X_{daffodil} = True \mid Class = 2) = (1 + 1)/(2 + 2) = 2/4 = .500
P(X_{daffodil} = True \mid Class = 3) = (0 + 1)/(1 + 2) = 1/3 = .333
P(X_{crocus} = True \mid Class = 1) = (0 + 1)/(1+2) = \frac{1}{3} = .333
P(X_{crocus} = True \mid Class = 2) = (1 + 1)/(2 + 2) = 2/4 = .500
P(X_{crocus} = True \mid Class = 3) = (0 + 1)/(1 + 2) = \frac{1}{3} = .333
P(X_{daisy} = True \mid Class = 1) = (0 + 1)/(1 + 2) = \frac{1}{3} = .333
P(X_{daisy} = True \mid Class = 2) = (0 + 1)/(2 + 2) = \frac{1}{4} = .25
P(X_{daisy} = True \mid Class = 3) = (1 + 1)/(1 + 2) = \frac{2}{3} = .667
P(X_{tulio} = True \mid Class = 1) = (1 + 1)/(1 + 2) = \frac{2}{3} = .667
P(X_{tulip} = True \mid Class = 2) = (0 + 1)/(2 + 2) = \frac{1}{4} = .25
P(X_{tulip} = True \mid Class = 3) = (1 + 1)/(1 + 2) = \frac{2}{3} = .667
P(X_{clemantis} = True \mid Class = 1) = (1 + 1)/(1 + 2) = \frac{2}{3} = .667
P(X_{clemantis} = True \mid Class = 2) = (2 + 1)/(2 + 2) = \frac{3}{4} = .75
P(X_{clemantis} = True \mid Class = 3) = (0 + 1)/(1 + 2) = \frac{1}{3} = .333
P(X_{peony} = True \mid Class = 1) = (1 + 1)/(1 + 2) = \frac{2}{3} = .667
P(X_{peonv} = True \mid Class = 2) = (2 + 1)/(2 + 2) = \frac{3}{4} = .75
P(X_{peoply} = True \mid Class = 3) = (0 + 1)/(1 + 2) = \frac{1}{3} = .333
P(c1 | "daffodil crocus daisy tulip clematis peony")
         = \frac{1}{4} * .333 * .333 * .333 * .667 * .667 * .667 = 0.002739
P(c2 | "daffodil crocus daisy tulip clematis peony")
         = 1/2 * .500 * .500 * .25 * .25 * .75 * .75 = 0.0043945
P(c3 | "daffodil crocus daisy tulip clematis peony")
         = 1/4 * .333 * .333 * .667 * .667 * .333 * .333 = 0.0013676
Predicted class: Class 2
d)
P(Class = 1) = \frac{1}{4}
P(Class = 2) = \frac{1}{2}
P(Class = 3) = \frac{1}{4}
P(X = daffodil \mid Class = 1) = (0 + 1)/(8 + 14) = 1/22 = 0.0455
P(X = daffodil \mid Class = 2) = (1 + 1)/(14 + 14) = 2/28 = 0.0714
P(X = daffodil \mid Class = 3) = (0 + 1)/(7 + 14) = 1/21 = 0.0476
```

P(X = crocus | Class = 1) = (0 + 1)/(8 + 14) = 1/22 = 0.0455

```
P(X = crocus | Class = 2) = (1 + 1)/(14 + 14) = 2/28 = 0.0714
P(X = crocus | Class = 3) = (0 + 1)/(7 + 14) = 1/21 = 0.0476
P(X = daisy | Class = 1) = (0 + 1)/(8 + 14) = 1/22 = 0.0455
P(X = daisy | Class = 2) = (0 + 1)/(14 + 14) = 1/28 = 0.0357
P(X = daisy | Class = 3) = (1 + 1)/(7 + 14) = 2/21 = 0.0952
P(X = tulip | Class = 1) = (1 + 1)/(8 + 14) = 2/22 = 0.0455
P(X = tulip | Class = 2) = (0 + 1)/(14 + 14) = 1/28 = 0.0357
P(X = tulip | Class = 3) = (2 + 1)/(7 + 14) = 3/21 = 0.14286
P(X = clematis | Class = 1) = (1 + 1)/(8 + 14) = 2/22 = 0.0909
P(X = clematis | Class = 2) = (4 + 1)/(14 + 14) = 5/28 = 0.17857
P(X = clematis | Class = 3) = (0 + 1)/(7 + 14) = 1/21 = 0.0476
P(X = peony | Class = 1) = (1 + 1)/(8 + 14) = 2/22 = 0.0909
P(X = peony | Class = 2) = (4 + 1)/(14 + 14) = 5/28 = 0.17857
P(X = peony | Class = 3) = (0 + 1)/(7 + 14) = 1/21 = 0.0476
P(c1 | "daffodil crocus daisy tulip clematis peony")
       = 1/4 * 0.0455 * 0.0455 * 0.0455 * 0.0455 * 0.0455 * 0.0455 * 0.0455 = 2.218e-9
P(c2 | "daffodil crocus daisy tulip clematis peony")
       = 1/2 * 0.0714 * 0.0714 * 0.0357 * 0.0357 * 0.17857 * 0.17857 = 1.036e-7
P(c3 | "daffodil crocus daisy tulip clematis peony")
       = 1/4 * 0.0476 * 0.0476 * 0.0952 * 0.14286 * 0.0476 * 0.0476 = 1.745e-8
Predicted class: Class 2
```

3)

a)

	cat	bat	rat	fat	mat	pat	sat
Doc 1	3	1	1	1	0	0	0
Doc 2	3	3	1	0	1	1	0
Doc 3	1	0	1	1	1	1	1

The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = \log(1 + tf_{t,d}) * \log_{10}(\frac{N}{df_t})$$

tf_{t,d}: Document frequencies of t (num of docs that contain t)

N: Num of documents

dft: Frequency of term t in doc d (num of times t occurs in d)

Term	d₁f _t	d ₂ f _t	d ₃ f _t	N	tf _{t,d}	W _{t,d1}	W _{t,d2}	W _{t,d3}
bat	1	3	0	3	2	.2276	0	
cat	3	0	1	3	2	0	-	.2276
fat	1	0	1	3	2	.2276		.2276
mat	0	1	1	3	2	-	.2276	.2276
pat	0	1	1	3	2	-	.2276	.2276
rat	1	1	1	3	3	.2873	.2873	.2873
sat	0	0	1	3	1			.1436

c) The term-document pairs with the highest TF-IDF values are (Rat, Doc1), (Rat, Doc2), and (Rat, Doc3).