BERT for Joint Intent Classification and Slot Filling

郭成凯

▶ BERT for Joint Intent Classification and Slot Filling.

NLU -> Dialog State Tracking -> Policy Learning -> NLG

CV项目

- ▶ 多相机
- ▶ 全场景
- ▶ Re-ID
- ▶ 视频分析
- ▶ 人脸识别

语音识别/合成

▶ 语音合成

https://www.parrottt.com/

- ▶ 语音识别 LM Bert
- ▶ OCR

Joint Intent cls & slot filling

Query	Find me a movie by Steven Spielberg				
Frame	Intent	find_movie			
	Slot	genre = movie directed_by = Steven Spielberg			

Model

实现

```
self. hidden size = hidden size
    self. num intents = num intents
    self. num slots = num slots
    self. dropout = nn. Dropout (dropout)
    self. intent dense = nn. Linear (self. hidden size, self. hidden size)
    self.intent classifier = nn.Linear(self.hidden size, self.num intents)
    self.slot_dense = nn.Linear(self.hidden_size, self.hidden_size)
    self. slot classifier = nn. Linear(self. hidden size, self. num slots)
    self.apply(
        lambda module: transformer weights init(module, xavier=False))
    self. to(self. device)
def forward (self, hidden states):
    hidden states = self.dropout(hidden states)
    intent states = self.intent dense(hidden states[:, 0])
    intent_states = torch.relu(intent_states)
    intent logits = self.intent classifier(intent states)
    slot states = self. slot dense(hidden states)
    slot states = torch.relu(slot states)
    slot logits = self. slot classifier(slot states)
    return intent_logits, slot_logits
```

Results

Models	Snips			ATIS		
Models	Intent	Slot	Sent	Intent	Slot	Sent
RNN-LSTM (Hakkani-Tür et al., 2016)	96.9	87.3	73.2	92.6	94.3	80.7
AttenBiRNN (Liu and Lane, 2016)	96.7	87.8	74.1	91.1	94.2	78.9
Slot-Gated (Goo et al., 2018)	97.0	88.8	75.5	94.1	95.2	82.6
Joint BERT	98.6	97.0	92.8	97.5	96.1	88.2
Joint BERT + CRF	98.4	96.7	92.6	97.9	96.0	88.6

ATIS Test

```
Restoring JointIntentSlotClassifier
Query: show flights tomorrow evening from milwaukee to st. louis
Predicted intent: 14 flight
show
flights
             B-depart date. day name
tomorrow
             B-depart time. period of day
evening
from
milwaukee
             B-fromloc.city name
to
             B-toloc.city_name
st.
louis
              I-toloc.city_name
```

SNIPS Test

```
Query: i'd like to listen to bingo.
Predicted intent: 4 PlayMusic
i'd 0
like 0
to 0
listen 0
to 0
bingo. song_name
```

```
Query: its pretty dark here , why didnt you turn the lights up Predicted intent: 2 IncreaseBrightness its 0 pretty 0 dark 0 here 0 , 0 why 0 didnt 0 you 0 turn 0 the 0 lights 0 up 0
```

Another Method:

- ▶ Sentence-BERT
- Sentence Embeddings using Siamese BERT-Networks

Model

Objective Function:

► Classification Objective Function softmax(Wt(u,v,|u-v|))

- ▶ Regression Objective Function
- ▶ Triplet Objective Function

```
max(| | sa -sp | | - | | sa -sn | | + 1,0)
```

Test

```
A man is eating pasta.
[0. 21805185 0. 1520233 1. 04767424 0. 89392382 0. 9602672 0. 79048638
0. 84144169 0. 8055068 0. 90363041]
A man is eating a piece of bread.
Someone in a gorilla costume is playing a set of drums.
[0.8083395 0.80898171 0.76493328 0.7976688 0.92636555 0.8432147
0. 80365474 0. 20152867 0. 71403485]
A monkey is playing drums.
A cheetah chases prey on across a field.
[0. 97539466 0. 95483547 0. 87328054 0. 70701568 0. 94015299 0. 63376351
0. 72819956 0. 69392715 0. 09933376
A cheetah is running behind its prey.
```

谢谢您的聆听。