Álgebra Linear Douglas Smigly

MAT5730

2º semestre de 2019

Conteúdo

	Into	rmações da Disciplina	Ē		
1	Espaços vetoriais 7				
	1.1	Definições Iniciais	7		
	1.2	Base e Dimensão			
	1.3	Subespaços	12		
	1.4	Coordenadas	15		
2	Tra	nsformações Lineares	L7		
	2.1	Definições	17		
	2.2	Espaço Dual			
	2.3	Espaço Bidual			
	2.4	Anuladores			
	2.5	Transpostas			
	2.6	Espaços Quocientes			
3	Det	erminantes 2	25		
U	3.1	Formas Multilineares			
	3.2	Determinantes			
4	For	mas Canônicas	31		
4	4.1	Autovalores e Autovetores			
	4.1				
	4.2	Polinômio Minimal			
	_	Subespaços Invariantes			
	4.4	Subespaços Cíclicos			
	4.5	Teorema de Cayley-Hamilton			
	4.6	Decomposições Primárias			
	4.7	Critérios de Diagonalização			
	4.8	Triangularização de Matrizes			
	4.9	Decomposições Cíclicas	13		
5	Espaços com Produto Interno 4				
	5.1	Definições e Exemplos			
	5.2	Matriz de Gramm	5(
	5.3	Espaços Normados	51		
	5.4	Ortogonalidade	52		
	5.5	Funcionais Lineares	52		

CONTEÚDO

Informações da Disciplina

Informações Básicas

Essas são as notas de aula de Álgebra Linear(MAT5730), as aulas acontecem na sala B-134 às terças 10h e às quintas 8h.

Informações do Professor

O professor é o Ivan Shestakov, sua sala é a 290-A e o seu e-mail é shestak@ime.usp.br

Bibliografia

- [1] Flávio Coelho and Mary Lilian Lourenço. Um Curso de Álgebra Linear. Edusp, 2001.
- [2] Werner H. Greub. Multilinear Algebra. Springer, 1978.
- [3] Werner H. Greub. *Linear Algebra*. Springer, 1981.
- [4] Kenneth Hoffman and Ray Kunze. Linear Algebra. Prentice Hall, 1971.
- [5] Steven Roman. Advanced Linear Algebra. Springer, 2005.

Avaliação

A nota final da disciplina será a média aritimética de P1, P2, e P3. Todos os alunos poderão fazer a prova sub para substituir a menor das suas notas (Sub aberta). As datas das provas são as seguintes:

Prova	Data
P1	10-09
P2	15-10
P3	12-11
SUB	19-11

Outras Informações

- (i) Teremos listas, que não contarão para a nota
- (ii) As listas serão publicadas em
- (iii) Não haverá monitoria

BIBLIOGRAFIA BIBLIOGRAFIA

Capítulo 1

Espaços vetoriais

1.1 Definições Iniciais

Definição 1.1. Um grupo abeliano é um conjunto X munido do seguinte:

- \bullet +: X × X \rightarrow X,
- $0 \in X$,
- \bullet -: X \rightarrow X,

satisfazendo as seguintes propriedades:

- Para $x, y, z \in X$ então (x + y) + z = x + (y + z),
- Para $x, y \in X$ então x + y = y + x,
- Para $x \in X$ então x + 0 = x,
- Para $x \in X$ então x + (-x) = 0.

Definição 1.2. Um **corpo** é um grupo abeliano (K, +, 0, -) munido do seguinte:

- $\cdot: K \times K \to K$,
- $1 \in K$,
- $\bullet \ \cdot^{-1}: K\setminus \{0\} \to K,$

satisfazendo as seguintes propriedades:

- Para $x, y, z \in K$ então $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
- Para $x, y \in K$ então $x \cdot y = y \cdot x$,
- Para $x \in K$ então $x \cdot 1 = x$,
- Para $x \in K \setminus \{0\}$ então $x \cdot x^{-1} = 1$,
- Para $x, y, z \in K$ então $x \cdot (y + z) = (x \cdot y) + (x \cdot z)$.

Definição 1.3. Dado K um corpo, um **espaço vetorial sobre** K é um grupo abeliano (V, +, 0, -) munido do seguinte:

• $\cdot : K \times V \to V$,

satisfazendo as seguintes propriedades:

- Para $a, b \in K$ e $x \in V$ então $(a \cdot b) \cdot x = a \cdot (b \cdot x)$,
- Para $x \in V$ então $x \cdot 1 = x$,
- Para $a \in K$ e $x, y \in V$ então $a \cdot (x + y) = (a \cdot x) + (a \cdot y)$,
- Para $a, b \in K$ e $x \in V$ então $(a + b) \cdot x = (a \cdot x) + (b \cdot x)$.

1.2 Base e Dimensão

Durante o restante deste capítulo, sempre adotaremos K como sendo um corpo qualquer.

Definição 1.4. Seja V um espaço vetorial sobre um corpo K. Seja I um conjunto e $v: I \to V$ uma função. Uma **combinação linear** de v é um elemento $u \in V$ tal que existam um conjunto finito $J \subseteq I$ e uma função $\alpha: J \to K$ tais que:

$$\mathbf{u} = \sum_{\mathbf{i} \in \mathbf{J}} \alpha_{\mathbf{i}} \mathbf{v_i}.$$

Dizemos que v gera V se e só se todo elemento de V é combinação linear de v.

Definição 1.5. Seja V um espaço vetorial sobre um corpo K. Dizemos que um conjunto $S \subseteq V$ gera V se e só se a função $v : S \to V$ dada por $\forall s \in S : v_s = s$ gera V.

Proposição 1.6. Seja V um espaço vetorial sobre um corpo K e sejam I um conjunto e $v: I \to V$ uma função. Então v gera V se e somente se a imagem $S = \{v_i : i \in I\}$ gera V.

Demonstração. Temos o seguinte:

• Se v gera V, então para $x \in V$ existem um conjunto finito $J \subseteq I$ e uma função $\alpha : J \to K$ tais que:

$$\mathbf{x} = \sum_{\mathbf{i} \in \mathbf{I}} \alpha_{\mathbf{i}} \mathbf{v_i},$$

aí seja T = v[J], e seja:

$$\forall s \in T : J_s = \{i \in J : v_i = s\};$$

e seja $\beta: T \to K$ a função dada por:

$$\forall s \in T : \beta_s = \sum_{i \in I_s} \alpha_i,$$

então T é finito, aí temos:

$$x = \sum_{i \in J} \alpha_i v_i = \sum_{s \in T} \sum_{i \in J_s} \alpha_i v_i = \sum_{s \in T} \sum_{i \in J_s} \alpha_i s = \sum_{s \in T} \beta_s s;$$

logo S gera V.

• Se S gera V, então para $x \in V$ existem um conjunto finito $T \subseteq S$ e uma função $\beta: T \to K$ tais que:

$$\mathbf{x} = \sum_{\mathbf{s} \in \mathbf{T}} \beta_{\mathbf{s}} \mathbf{s},$$

aí existe uma função i : $T \rightarrow I$ tal que:

$$\forall s \in T : v_{i_s} = s,$$

aí seja J = Im(i), então J é finito e i é uma bijeção de T a J e sua inversa é $u = v \upharpoonright J$, aí seja $\alpha = \beta \circ u$, então:

$$x = \sum_{s \in T} \beta_s s = \sum_{i \in J} \beta_{u_j} u_j = \sum_{i \in J} \alpha_j u_j = \sum_{i \in J} \alpha_j v_j;$$

logo v gera V.

Definição 1.7. Seja V um espaço vetorial sobre um corpo K e seja I um conjunto e seja $v: I \to V$ uma função. Dizemos que v é **linearmente independente** se e só se para todo conjunto finito $J \subseteq I$ e toda função $\alpha: J \to K$, então temos a implicação:

$$\sum_{i \in J} \alpha_i v_i = 0 \quad \Rightarrow \quad \forall i \in J : \alpha_i = 0.$$

Dizemos que v é linearmente dependente se e só se v não é linearmente independente.

Definição 1.8. Seja V um espaço vetorial sobre um corpo K e seja $S \subseteq V$ um conjunto. Dizemos que S é **linearmente independente** se e só se a função $v:S \to V$ dada por $\forall s \in S: v_s = s$ é linearmente independente. Dizemos que S é **linearmente dependente** se e só se não é linearmente independente.

Exemplo 1.9. Se V é um espaço vetorial sobre um corpo K e $u \in V$ é um elemento não nulo, então a função $v : \{0,1\} \to V$ dada por $v_0 = u$ e $v_1 = u$ é linearmente dependente, mas o conjunto $\{v_0, v_1\} = \{u\}$ é linearmente independente.

Definição 1.10. Seja V um espaço vetorial sobre um corpo K e seja I um conjunto. Uma base de V ordenada por I é uma função $b: I \to V$ tal que:

- (i) b é linearmente independente.
- (ii) b gera V.

Definição 1.11. Seja V um espaço vetorial sobre um corpo K. Uma base de V é um conjunto $B \subseteq V$ tal que:

- (i) B é linearmente independente.
- (ii) B gera V.

Teorema 1.12. Seja V um espaço vetorial e sejam $I \subseteq V$ linearmente independente e $S \subseteq V$ gerador de V tais que $I \subseteq S$. Então existe uma base B de V tal que

$$I \subseteq B \subseteq S$$
.

Demonstração. Consideremos o conjunto:

$$\mathcal{M} := \{ M \subseteq S \mid M \text{ \'e linearmente independente e } I \subseteq M \}$$

Então (\mathcal{M}, \subseteq) é um conjunto parcialmente ordenado indutivo (ou seja, todo subconjunto totalmente ordenado possui uma cota superior). De fato, $I \in \mathcal{M}$, o que nos mostra que $\mathcal{M} \neq \emptyset$, e para subconjunto totalmente ordenado não vazio $\mathcal{C} \subseteq \mathcal{M}$ então $| \ | \ \mathcal{C} \in \mathcal{M}$.

Logo, pelo Lema de Zorn, \mathcal{M} possui um elemento maximal B. Vamos provar que esse elemento maximal é de fato uma base para V.

- (i) B é linearmente independente: segue da definição de \mathcal{M} .
- (ii) B gera V: Suponha por absurdo que B não gera V. Então existe $v \in S$ que não é combinação linear de elementos de B, aí $B \cup \{v\}$ é linearmente independente e $I \subseteq B \cup \{v\} \subseteq S$. Então $B \cup \{v\} \in \mathcal{M}$, uma contradição, pois B já é um elemento maximal de \mathcal{M} e obviamente $B \subseteq B \cup \{v\}$. Logo B gera V. Portanto, B é uma base de V e $I \subseteq B \subseteq S$.

O resultado acima mostra que todo espaço vetorial tem base, bastando para isso tomar $I=\emptyset$ e S=V.

Corolário 1.13. Seja V um espaço vetorial sobre um corpo K, seja $I \subseteq V$ um conjunto linearmente independente e seja $S \subseteq V$ um conjunto que gere V. Então

- (i) O espaço V tem uma base;
- (ii) Existe uma base B de V tal que $I \subseteq B$;
- (iii) Existe uma base B de V tal que $B \subseteq S$.

Lema 1.14. Seja V um espaço vetorial sobre um corpo K. Sejam $(v_i)_{i=1}^n$ uma sequência linearmente independente e $(u_i)_{i=1}^m$ uma sequência que gera V. Então $n \le m$.

Sublema 1.15. Seja V um espaço vetorial sobre um corpo K. Uma sequência $(v_i)_{i=1}^m$ é linearmente dependente se e somente se existem i e uma sequência $(\alpha_j)_{i=1}^{i-1}$ tais que

$$v_i = \sum_{j=1}^{i-1} \alpha_j v_j.$$

Demonstração do Sublema. Se $(v_i)_{i=1}^m$ é linearmente dependente, então existe uma sequência $(\alpha_i)_{i=1}^m$ não identicamente nula tal que:

$$\sum_{i=1}^{m} lpha_i v_i = 0.$$

Seja i o maior índice tal que $\alpha_i \neq 0$. Então segue que

$$\begin{split} &\alpha_1 v_1 + \ldots + \alpha_i v_i = 0 \\ &\iff \alpha_1 v_1 + \ldots + \alpha_{i-1} v_{i-1} = -\alpha_i v_i \\ &\iff v_i = -\sum_{i=1}^{i-1} \frac{\alpha_j}{\alpha_i} v_j. \end{split}$$

Demonstração do Lema. Primeiro, listamos os dois conjuntos de vetores: o conjunto gerador seguido do conjunto linearmente independente:

$$u_1, \ldots, u_m; v_1, \ldots, v_n$$

Então movemos o primeiro vetor v₁ para a esquerda da primeira lista:

$$v_1, u_1, \ldots, u_m; v_2, \ldots, v_n$$

Como u_1, \ldots, u_m gera V, v_1 é combinação linear dos u_i 's. Isso implica que podemos remover um dos s_i 's, que indexando se necessário pode ser u_1 , da primeira lista, e ainda temos um conjunto gerador:

$$v_1, u_2, \ldots, u_m; v_2, \ldots, v_n$$

Note que o primeiro conjunto dos vetores ainda gera V e o segundo conjunto ainda é linearmente independente.

Agora repetimos o processo, movendo v_2 da segunda lista para a primeira lista:

$$v_1,v_2,u_2,\dots,u_m;v_3,\dots,v_n$$

Como antes, os vetores na primeira lista são linearmente dependentes, já que eles geravam V antes da inclusão de v_2 . Entretanto, como os v_i 's são linearmente independentes, qualquer combinação linear não trivial dos vetores na primeira lista que valha 0 deve envolver pelo menos um dos u_i 's. Portanto, podemos remover este vetor, que novamente reindexando se necessário pode ser u_2 e ainda temos um conjunto gerador:

$$v_1, v_2, u_3, \ldots, u_m; v_3, \ldots, v_n$$

Mais uma vez, o primeiro conjunto dos vetores gera V e o segundo conjunto é linearmente independente.

Agora, if m < n, então este processo eventualmente esgotará os u_i 's e nos levará à lista

$$v_1, v_2, \ldots, v_m; v_{m+1}, \ldots, v_n$$

em que v_1, v_2, \ldots, v_m geram V, o que claramente não é possível pois v_n não é combinação linear dos v_1, v_2, \ldots, v_m . Portanto $n \leq m$.

Observação 1.16. Com o lema, também podemos mostrar que, se existe um conjunto gerador finito, então podemos mostrar que todo conjunto linearmente independente é finito.

De fato, se existirem uma sequência geradora $(u_j)_{j=1}^m$ e um conjunto linearmente independente infinito S, então podemos pegar m+1 vetores distintos e assim formar uma sequência linearmente independente $(v_i)_{i=1}^{m+1}$, contradizendo o lema 1.14.

Vamos relembrar o que fizemos até aqui com um exemplo:

Exemplo 1.17. Considere $V = \mathbb{R}^4$ um \mathbb{R} -espaço vetorial. Sejam os vetores:

$$\begin{array}{rcl} v_1 & = & (1,0,0,0) \\ v_2 & = & (0,1,0,-1) \\ v_3 & = & (0,0,1,-1) \\ v_4 & = & (1,-1,0,0) \\ v_5 & = & (1,2,1,0) \end{array}$$

Considere $I = \{v_1, v_2\}$ e $S = \{v_1, v_2, v_3, v_4, v_5\}$. Observe que I é LI; de fato,

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 = 0 \Rightarrow \alpha_1(1, 0, 0, 0) + \alpha_2(0, 1, 0, -1) = 0 \Rightarrow \begin{cases} \alpha_1 &= 0 \\ \alpha_2 &= 0 \\ -\alpha_2 &= 0 \end{cases} \Rightarrow \alpha_1 = \alpha_2 = 0$$

Ademais, tomando $v = (x, y, z, w) \in \mathbb{R}^4$, temos que

$$(x-z+w+y)v_1+(z-w-\varepsilon)v_2+(z-\varepsilon)v_3+(z-w-y+\varepsilon)v_4+\varepsilon_5=v$$

para todo $\varepsilon \in \mathbb{R}$. Logo, S gera V.

Então, existe uma base B de \mathbb{R}^4 tal que

$$\{v_1, v_2\} \subseteq B \subseteq \{v_1, v_2, v_3, v_4, v_5\}$$

De fato, esta base é $B = \{v_1, v_2, v_3, v_4\}$, pois percebe-se que

$$\mathbf{v}_5 = rac{5}{2}\mathbf{v}_1 + rac{1}{2}\mathbf{v}_2 - rac{1}{2}\mathbf{v}_3 - rac{3}{2}\mathbf{v}_4$$

Para trabalhar com a cardinalidade das bases, utilizaremos alguns fatos conhecidos, enunciados na próxima proposição:

Proposição 1.18. Se λ e μ são cardinais, então:

- Se $\lambda \leq \mu$ e $\mu \leq \lambda$, então $\lambda = \mu$. (Teorema de Cantor-Bernstein)
- Se λ e μ são infinitos, então

$$\lambda + \mu = \lambda \mu = \max{\{\lambda, \mu\}}.$$

Teorema 1.19. Seja V um espaço vetorial, então duas bases quaisquer têm o mesmo cardinal.

Demonstração. Sejam B e C bases de V.

- Se B ou C são finitos, então pela observação 1.16 podemos inferir que B e C são ambos finitos e assim aplicar o lema 1.14.
- Se B e C são infinitos. Para $u \in C$ existem um conjunto finito $I_u \subseteq B$ e uma função $\alpha_u : I_u \to K$ tais que $u = \sum_{i \in I_u} (\alpha_u)_i$ i. Seja $I \subseteq \bigcup_{u \in C} \subseteq B$. Então I gera V, assim I = C. Desse modo:

$$|B| = |I| = \left| \bigcup_{u \in C} I_u \right| \leq \sum_{u \in C} |I_u| \leq \aleph_0 \cdot |C| = |C|,$$

assim $|B| \le |C|$. Analogamente $|C| \le |B|$. Portanto |B| = |C|.

Definição 1.20. Dizemos que a dimensão de um espaço vetorial é a cardinalidade de sua base.

1.3 Subespaços

Definição 1.21. Seja V um espaço vetorial sobre um corpo K. Um **subespaço** de V é um conjunto $W \subseteq V$ tal que:

- $0 \in W$,
- Para $x, y \in W$ então $x + y \in W$,
- Para $a \in K$ e $x \in W$ então $ax \in W$.

Proposição 1.22. Seja V um espaço vetorial e seja \mathcal{W} um conjunto de subespaços. Então $\bigcap \mathcal{W}$ é um subespaço de V.

Definição 1.23. Se S é subconjunto de V, definimos:

$$\langle S \rangle = \left\{ \sum_{v \in I} \alpha_v v \mid I \subseteq S \text{ e I \'e finito e } \alpha \in K^I \right\}$$

e chamamos de **subespaço gerado** por S.

Proposição 1.24. Se S é subconjunto de V, então:

$$\langle S \rangle = \bigcap \{W \mid W \text{ \'e subespaço de } V \text{ e } S \subseteq W\}.$$

Demonstração. Seja:

$$T = \bigcap \{W \mid W \text{ \'e subespaço de } V \text{ e } S \subseteq W\}.$$

Para $x \in \langle S \rangle$, então existem um conjunto finito $I \subseteq S$ e uma função $\alpha : I \to V$ tal que:

$$\mathbf{x} = \sum_{\mathbf{v} \in \mathbf{I}} \alpha_{\mathbf{v}} \mathbf{v},$$

aí para todo subespaço W tal que $S \subseteq W$, então para todo $v \in I$ temos $v \in S$, aí $v \in W$; aí por indução finita temos $x \in W$; logo $x \in T$. Portanto $\langle S \rangle \subseteq T$.

Além disso, temos o seguinte:

• $\emptyset \subset S \in \emptyset$ é finito e $\emptyset \in K^{\emptyset}$ e:

$$0 = \sum_{\mathbf{v} \in \emptyset} \emptyset_{\mathbf{v}} \mathbf{v},$$

aí $0 \in \langle S \rangle$.

• Para $x,y \in \langle S \rangle$, então existem conjuntos finitos $I,J \subseteq S$ e funções $\alpha \in K^I$ e $\beta \in K^J$ tais que:

$$\mathbf{x} = \sum_{\mathbf{u} \in \mathbf{I}} \alpha_{\mathbf{u}} \mathbf{u}, \quad \mathbf{y} = \sum_{\mathbf{v} \in \mathbf{J}} \beta_{\mathbf{v}} \mathbf{v},$$

aí sendo $L=I\cup J$ então $L\subseteq S$ e L é finito, e também sendo $\tilde{\alpha},\tilde{\beta}:L\to K$ dadas por:

$$\tilde{\alpha}_l = \left\{ \begin{array}{l} \alpha_l & \mathrm{se} \ l \in I \\ 0 & \mathrm{se} \ l \notin I \end{array} \right., \quad \tilde{\beta}_l = \left\{ \begin{array}{l} \beta_l & \mathrm{se} \ l \in J \\ 0 & \mathrm{se} \ l \notin J \end{array} \right.,$$

e sendo $\gamma: L \to K$ dada por $\gamma_l = \tilde{\alpha}_l + \tilde{\beta}_l,$ então:

$$x + y = \sum_{l \in L} \gamma_l l,$$

aí $x + y \in \langle S \rangle$.

• Para $a \in K$ e $x \in \langle S \rangle$, então existem conjunto finito $I \subseteq S$ e $\alpha \in K^I$ tais que:

$$\mathbf{x} = \sum_{\mathbf{v} \in \mathbf{I}} \alpha_{\mathbf{v}} \mathbf{v},$$

aí sendo $\beta: I \to K$ dada por $\beta_v = a\alpha_v$, então:

$$\operatorname{ax} = \sum_{\mathbf{v} \in I} \beta_{\mathbf{v}} \mathbf{v},$$

aí ax $\in \langle S \rangle$.

• Para $s \in S$, então $\{s\} \subseteq S$ e $\{s\}$ é finito, e considerando a função $\alpha: \{s\} \to K$ dada por $\alpha_s = 1$, então:

$$s = \sum_{v \in \{s\}} \alpha_v v,$$

aí $S \subseteq \langle S \rangle$.

Logo $\langle S \rangle$ é um subespaço de V tal que $S \subseteq \langle S \rangle$, aí $T \subseteq \langle S \rangle$.

A intersecção de subsespaços sempre é um subespaço, mas o mesmo não acontece com a união de subespaços.

Proposição 1.25. Se A e B são subespaços de V tais que A \nsubseteq B e B \nsubseteq A, então A \cup B não é subespaço de V.

Demonstração. Nesse caso, existe $a \in A$ tal que $a \notin B$ e existe $b \in B$ tal que $b \notin A$. Seja c = a + b. Então:

- Se $c \in A$, $b = c a \in A$, o que é impossível.
- Se $c \in B$, $a = c b \in b$, o que é impossível.

Logo, concluímos que $c \notin A \cup B$, absurdo.

Portanto concluímos que $A \cup B$ é um subespaço se e somente se $A \subseteq B$ ou $B \subseteq A$.

Observação 1.26. Seja $K=F_2=\{0,1\},$ e tome $V=K^2.$ Então,

$$V = \langle (0,1) \rangle \cup \langle (1,0) \rangle \cup \langle (1,1) \rangle$$

Na verdade, V só pode ser escrito como união de um número finito de subespaços próprios se K for um corpo finito, conforme a seguinte proposição.

Proposição 1.27. Um espaço vetorial V sobre um corpo infinito K não pode ser escrito como união de um número finito de subespaços próprios.

Demonstração. Suponhamos que $V = S_1 \cup \cdots \cup S_n$, em que podemos assumir que:

$$S_1 \nsubseteq S_2 \cup \cdots \cup S_n$$

Seja $w \in S_1 \setminus (S_2 \cup \cdots \cup S_n)$ e seja $v \notin S_1$. Considere o conjunto infinito:

$$A = \{rw + v \mid r \in K\},\$$

que é a "reta" passando por v e paralela a w. Queremos mostrar que cada S_i contém no máximo um vetor do conjunto infinito A, o que será uma contradição ao fato de que $V = S_1 \cup \cdots \cup S_n$. Isto provará o teorema.

Se $rw + v \in S_1$ para algum $r \neq 0$, então $w \in S_1$ implicará $v \in S_1$, contrário às hipóteses. Agora, suponha que $r_1w + v \in S_1$ e $r_2w + v \in S_1$, para algum $i \geq 2$, em que $r_1 \neq r_2$. Então:

$$(r_1 - r_2)w = (r_1w + v) - (r_2w + v) \in S_i$$

aí $w \in S_i$, que também contradiz as hipóteses.

Apesar de não podermos trabalhar com a união, podemos realizar a soma de subespaços, e esta sim é um subespaço:

Definição 1.28. Sejam $W_i \subseteq V$, $i \in I$, subespaços de V. Definimos:

$$\sum_{i\in I}W_i=\{w_{i_1}+\ldots+w_{i_k}\mid k\in\mathbb{N},w_i\in W_i\}.$$

Pode-se mostrar que o conjunto:

$$\sum_{i \in I} W_i$$

é subespaço de V.

Definição 1.29. Uma soma:

$$\sum_{i \in I} W_i$$

é dita uma soma direta se para todo $i \in I$ tivermos:

$$W_i \cap \left(\sum_{j \neq i} W_j \right) = 0.$$

Teorema 1.30. Para subespaço A de V, então existe subespaço $B \subseteq V$ tal que $V = A \oplus B$.

Demonstração. Seja E uma base de A. Então existe uma base G de V tal que E \subseteq G, aí seja F = G \ E, e seja B o subespaço gerado por F. Então é fácil ver que V = A \oplus B.

Teorema 1.31.

$$\dim(A + B) + \dim(A \cap B) = \dim(A) + \dim(B).$$

Demonstração. Seja E base de $A \cap B$. Então existe F tal que $B \cap F = \emptyset$ e $E \cup F$ seja base de A e existe G tal que $A \cap G = \emptyset$ e $E \cup G$ seja base de B. Então $E \cup F \cup G$ é base de A + B. Daí:

$$\dim(A + B) + \dim(A \cap B) = |E| + |F| + |G| + |E| = |E| + |F| + |E| + |G| = \dim(A) + \dim(B)$$

Exemplo 1.32. Considere novamente $V = \mathbb{R}^4$. Sejam

$$\begin{split} W_1 &= \{(x,y,z,t) \in \mathbb{R}^4 | y+z+t = 0 \}, \\ W_2 &= \{(x,y,z,t) \in \mathbb{R}^4 | x+y = 0 \text{ e } z-2t = 0 \} \end{split}$$

Então W_1 e W_2 são subespaços de V. Assim, $W_1 + W_2$ e $W_1 \cap W_2$ são subespaços de V. Vamos encontrar bases para eles.

Note que:

$$\begin{array}{lll} W_1 &=& \{(x,y,z,t) \in \mathbb{R}^4 | y+z+t=0 \} \\ &=& \{(x,y,z,-y-z) \in \mathbb{R}^4 | x,y,z \in \mathbb{R} \} \\ &=& \{(x,0,0,0)+(0,y,0-y)+(0,0,z,-z): x,y,z \in \mathbb{R} \} \\ &=& \langle (1,0,0,0),(0,1,0-1),(0,0,1,-1) \rangle \end{array}$$

Verifica-se também que (1,0,0,0), (0,1,0-1), (0,0,1,-1) são linearmente independentes. Logo, $B_1 = \{(1,0,0,0), (0,1,0-1), (0,0,1,-1)\}$ é base para W_1 .

Analogamente, mostra-se que $B_2 = \{(1,-1,0,0),(0,0,2,1)\}$ é base para W_2 .

Agora, para determinar uma base de $W_1 + W_2$, podemos escalonar a matriz

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
1 & -1 & 0 & 0 \\
0 & 0 & 2 & 1
\end{pmatrix}
\rightarrow \cdots \rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Portanto, o conjunto

$$\mathcal{B} = \{(1,0,0,0), (0,1,0,-1), (0,0,1,-1), (1,-1,0,0)\}$$

é base de $W_1 + W_2$.

Para determinar uma base de $W_1 \cap W_2$, basta resolver o sistema

$$\begin{cases} y+z+t=0\\ x+y=0\\ z-2t=0 \end{cases}$$

Assim, $W_1 \cap W_2 = \langle (3, -3, 2, 1) \rangle$.

Observe que

$$\dim(W_1 \cap W_2) + \dim(W_1 + W_2) = 1 + 4 = 5 = 3 + 2 = \dim(W_1) + \dim(W_2).$$

Como dim $(W_1 + W_2) = 4$, temos que $W_1 + W_2 = V = \mathbb{R}^4$.

Observe também que, como $\dim(W_1 \cap W_2) = 1$, a soma $W_1 + W_2$ não é direta.

1.4 Coordenadas

Definição 1.33. Seja V um espaço vetorial de dimensão finita. Seja B uma base de V. Então para $v \in V$ existe um único $\alpha : B \to K$ tal que

$$v = \sum_{b \in B} \alpha_b b,$$

e chamamos esse α de [v]_B.

CAPÍTULO 1. ESPAÇOS VETORIAIS

1.4. COORDENADAS

Capítulo 2

Transformações Lineares

2.1 Definições

Definição 2.1. Sejam U e V espaços vetoriais sobre um corpo K. Uma transformação linear é uma função $T:U\to V$ tal que

$$T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$$

para quaisquer $\alpha, \beta \in K$ e u, $v \in V$. Além disso, denotamos o conjunto das transformações lineares de U a V por $\mathcal{L}(U, V)$.

Teorema 2.2. Sejam U e V espaços vetoriais sobre K, seja B uma base de U e f : B \rightarrow V uma função. Então existe uma única transformação linear $T \in \mathcal{L}(U, V)$ tal que $\forall b \in B : T(b) = f(b)$.

Definição 2.3. Seja $T \in \mathcal{L}(U, V)$. Definimos $Ker(T) = \{u \in U : T(u) = 0\}$. Definimos Rank(T) = dim(Im(T)).

Proposição 2.4. Seja $T \in \mathcal{L}(U, V)$. Então:

- \bullet Ker(T) é um subespaço de U.
- Im(T) é um subespaço de V.
- T é injetora se e só se Ker(T) = 0.
- Se T é bijetora, então $T^{-1} \in \mathcal{L}(V, U)$.

Teorema 2.5. Seja $\mathcal{L}(U, V)$, seja B uma base de Ker(T), e seja C um conjunto tal que T[C] seja base de Im(T). Então B \cup C é base V.

Demonstração. Para v \in V então $T(v)\in Im(T),$ então existem um conjunto finito $F\subseteq C$ e $\alpha:F\to K$ tais que:

$$T(v) = \sum_{w \in F} \alpha_w T(w),$$

assim:

$$\mathrm{T}\left(\mathrm{v}-\sum_{\mathrm{w}\in\mathrm{F}}lpha_{\mathrm{w}}\mathrm{w}
ight)=0,$$

aí:

$$v-\sum_{w\in F}\alpha_w w\in Ker(T),$$

assim existem um conjunto finito $E\subseteq B$ e função $\beta:B\to K$ tais que:

$$v - \sum_{w \in F} \alpha_w w = \sum_{u \in E} \beta_u u,$$

aí:

$$\mathbf{v} = \sum_{\mathbf{u} \in \mathbf{E}} \beta_{\mathbf{u}} \mathbf{u} + \sum_{\mathbf{w} \in \mathbf{F}} \alpha_{\mathbf{w}} \mathbf{w}.$$

Por outro lado, para subconjunto finito $E \subseteq B \cup C$ e função $\alpha : E \to K$ tais que:

$$\sum_{\mathbf{e} \in \mathbf{E}} \alpha_{\mathbf{e}} \mathbf{e} = 0,$$

então:

$$\sum_{e \in E \cap C} \alpha_e T(e) = 0,$$

aí:

$$\forall e \in E \cap C : \alpha_e = 0,$$

aí:

$$\sum_{\mathbf{e}\in E\backslash C}\alpha_{\mathbf{e}}\mathbf{e}=0,$$

aí:

$$\forall e \in E \setminus C : \alpha_e = 0,$$

portanto:

$$\forall e \in E : \alpha_e = 0.$$

Teorema 2.6 (Teorema do Núcleo-Imagem). Seja $T \in \mathcal{L}(U, V)$. Então

$$U = Ker(T) \oplus Im(T)$$

Corolário 2.7.

$$\dim V = \dim(Ker(T)) + \dim(Im(T)).$$

Definição 2.8. Se $T \in \mathcal{L}(U, V)$ é bijetora, dizemos que T é um **isomorfismo** de U a V.

Proposição 2.9. $T \in \mathcal{L}(U, V)$ é isomorfismo se e somente se T^{-1} também o é.

Proposição 2.10. Dois espaços vetoriais U e V são isomorfos se e somente se quaisquer duas bases B de U e C de V possuem a mesma cardinalidade.

Teorema 2.11. Para espaços vetoriais U e V, então U é isomorfo a V se e só se $\dim(U) = \dim(V)$.

2.2 Espaço Dual

Definição 2.12. Seja V um espaço vetorial sobre K. Denotamos $V^* = \mathcal{L}(V, K)$. O espaço V^* chama-se o **espaço dual** de V. Os elementos de V chamam-se **funcionais lineares**.

Se $\dim(V) = n$, então $\dim(V^*) = n \cdot 1 = n$, aí $V \in V^*$ são isomorfos.

Teorema 2.13. Seja V um espaço vetorial com $\dim(V) = n$ e $B = (v_i)_{i=1}^n$ uma base de V. Então existe uma base $B^* = (f_i)_{i=1}^n$ de V^* tal que $f_i(v_j) = \delta_{i,j}$ para quaisquer i, j. Além disso:

$$\forall v \in V : v = \sum_{i=1}^n f_i(v) v_i$$

e:

$$\forall f \in V^*: f = \sum_{i=1}^n f(v_i) f_i.$$

18

Demonstração. Para $i=1,\ldots,n$, existe uma única função linear $f_i:V\to K$ tal que:

$$f_i(v_j) = \left\{ \begin{array}{ll} 0, & i \neq j \\ 1, & i = j \end{array} \right.$$

Sejam $\alpha_1, \ldots, \alpha_n \in K$ tais que:

$$\sum_{i=1}^{n} lpha_{i} f_{i} = 0.$$

Para $j=1,\ldots,n,$ aplicando este funcional para o vetor $v_j\in B,$ então:

$$0 = 0(v_j) = \sum_{i=1}^n \alpha_i f_i(v_j) = \alpha_j,$$

ou seja, $\alpha_i = 0$. Portanto B* é linearmente independente.

Além disso, para $v \in V$ existem $\alpha_1, \dots, \alpha_n \in K$ tais que:

$$v = \sum_{i=1}^n \alpha_i v_i,$$

aí para $i=1,\ldots,n$ temos:

$$f_i(v) = \alpha_i f_i(v_i) = \alpha_i;$$

logo:

$$f(v) = \sum_{i=1}^n \alpha_i f(v_i) = \sum_{i=1}^n f(v_i) f_i(v). \qquad \qquad \Box$$

Definição 2.14. A base B* chama-se a base dual da base B.

Podemos estender o estudo do espaço dual para espaços vetoriais quaisquer.

Definição 2.15. Seja B uma base de V, então para cada $a \in B$ definimos a transformação linear $f_a \in V^*$ por $f_a(b) = \delta_{a,b}$.

Nesse caso, podemos adaptar facilmente o argumento na demonstração do teorema 2.13 para mostrar que $(f_a)_{a \in B}$ é linearmente independente em V^* e para todo $v \in V$ existe um conjunto finito $F \subseteq B$ tal que:

$$v = \sum_{b \in F} f_b(v)b.$$

2.3 Espaço Bidual

Definição 2.16. Seja V um espaço vetorial sobre K. O espaço $V^{**} = (V^*)^*$ chama-se o **espaço** bidual do espaço V.

Definição 2.17. Para $v \in V$, definamos $\varphi_v : V^* \to K$ assim:

$$\forall f \in V^* : \varphi_v(f) = f(v).$$

Então $\varphi_{\mathbf{v}} \in \mathbf{V}^{**}$.

Proposição 2.18. $\varphi \in \mathcal{L}(V, V^{**})$ e φ é injetora.

Demonstração. Seja B uma base de V. Para $v \in Ker(\varphi)$, então $\varphi_v = 0$, aí temos $\forall b \in B : f_b(v) = \varphi_v(f_b) = 0$, aí existe um conjunto finito $F \subseteq B$ tal que:

$$v = \sum_{b \in F} f_b(v)b,$$

aí $\mathbf{v} = \mathbf{0}$.

Corolário 2.19. Se dim(V) é finita, então $\varphi: V \to V^{**}$ é um isomorfismo.

Demonstração.

$$\dim(V) = \dim(V^*) = \dim(V^{**}).$$

Observação 2.20. Nesse caso φ é um isomorfismo natural, ou seja, não depende da escolha de uma base.

Corolário 2.21. Se dim(V) é finita, então toda base de V* é a base dual para uma base de V.

Demonstração. Seja $C=(f_i)_{i=1}^n$ uma base de $V^*.$ Consideremos a base dual $C^*=(g_i)_{i=1}^n$ de $V^{**}.$ Mas φ é sobrejetora, então existem $v_1,\ldots,v_n\in V$ tais que para todo i tenhamos $g_i=\varphi_{v_i}$, assim:

$$f_i(v_j) = \varphi_{v_j}(f_i) = g_j(f_i) = \delta_{j,i} = \delta_{i,j},$$

logo $C = (f_i)_{i=1}^n$ é base dual da base $(v_i)_{i=1}^n$ de V.

2.4 Anuladores

Definição 2.22. Seja V um espaço vetorial e seja $S \subseteq V$ um subconjunto. Então definimos:

$$S^0 = \{ f \in V^* \mid \forall s \in S : f(s) = 0 \}.$$

O conjunto S^0 chama-se o anulador de S.

Proposição 2.23. S⁰ é um subespaço de V.

Teorema 2.24. Seja V um espaço de dimensão finita e $W \subseteq V$ um subespaço. Então:

$$\dim(V) = \dim(W) + \dim(V^0).$$

 $\begin{array}{lll} \textit{Demonstração}. \ \ Seja \ \dim(V) = n \ e \ \dim(W) = m. \ Escolhemos \ uma \ base \ (v_1, \ldots, v_m) \ de \ W \ e \\ completemo-la até uma base \ (v_1, \ldots, v_m, v_{m+1}, \ldots v_n) \ de \ V. \ Consideremos \ a \ base \ dual \ (f_1, \ldots, f_n) \\ de \ V^*. \ \ Mostraremos \ que \ (f_{m+1}, \ldots, f_n) \ é \ uma \ base \ de \ W^0. \ É \ claro \ que \ para \ todo \ i = m+1, \ldots, n \\ temos \ f_i \in W^0. \ \ Seja \ f \in W^0, \ então: \end{array}$

$$f = \sum_{i=1}^{n} f(v_i) f_i = \sum_{i=m+1}^{n} f(v_i) f_i. \qquad \Box$$

Teorema 2.25. Se dim(V) é finita e $V = U \oplus W$, então $V^* = U^0 \oplus W^0$ e $U^0 \cong W^*$ e $W_0 \cong U^*$.

Demonstração. Seja $B = B_U \cup B_W$ base de V, em que B_U é base de U e B_W é base de W. Então a base dual é $B^* = B_U^* \cup B_V^*$, e pelo teorema anterior temos $\langle B_U^* \rangle = W^0$ e $\langle B_V^* \rangle = U^0$.

2.5 Transpostas

Definição 2.26. Sejam U e V espaços vetoriais sobre K, e $T \in \mathcal{L}(U, V)$. Então definimos a transposta de T como a função:

$$\begin{array}{ccc} T^t:V^t & \to & U^t \\ f & \mapsto & T^t(f) = f \circ T \end{array}$$

Proposição 2.27. Se dim(U) é finita e $T \in \mathcal{L}(U, V)$, então:

- a) $Ker(T^t) = (Im(T))^0$.
- b) $Rank(T^t) = Rank(T)$.
- c) $Im(T^t) = (Ker(T))^0$.

Demonstração. Temos o seguinte:

a) Temos:

$$\begin{split} \operatorname{Ker}(T^t) &= & \{ f \in V^* \mid T^t(f) = 0 \} \\ &= & \{ f \in V^* \mid f \circ T = 0 \} \\ &= & \{ f \in V^* \mid \forall u \in U : f(T(u)) = 0 \} \\ &= & \{ f \in V^* \mid f[\operatorname{Im}(T)] = 0 \} \\ &= & (\operatorname{Im}(T))^0. \end{split}$$

b) Temos $Rank(T^t) = dim(Im(T^t))$ e Rank(T) = dim(Im(T)). Além disso:

$$\dim(V^*) = \dim(\operatorname{Im}(T^t)) + \dim(\operatorname{Ker}(T^t))$$

$$\dim(V^*) = \dim(\operatorname{Im}(T)) + \dim(\operatorname{Im}(T))^0$$

 $\max\,\dim(V^*)=\dim(V)\,\,\mathrm{e}\,\dim(\mathrm{Ker}(T^t))+\dim(\mathrm{Im}(T))^0.$

c) Temos $\operatorname{Im}(T^t) \subseteq (\operatorname{Ker}(T))^0$. Seja $\varphi \in \operatorname{Im}(T^t)$, então existe $g \in V^*$ tal que $\varphi = T^t(g)$, aí para todo $u \in U$ nós temos $\varphi(u) = T^t(g)(u) = g(T(u))$. Se $u \in \operatorname{Ker}(T)$ então T(u) = 0, aí $\varphi(u) = 0$; logo $\varphi \in (\operatorname{Ker}(T))^0$. Além disso:

$$\dim(\mathbf{U}) = \dim(\mathrm{Ker}(\mathbf{T})) + \dim(\mathrm{Ker}(\mathbf{T}))^0$$

$$\dim(U) = \dim(Ker(T)) + \dim(Im(T))$$

aí $\dim(\operatorname{Ker}(T))^0 = \dim(\operatorname{Im}(T))$, aí $(\operatorname{Ker}(T))^0 = \operatorname{Im}(T)$.

Teorema 2.28. Sejam U e V espaços vetoriais de dimensão finita com bases B e C e bases duais B^* e C^* . Se $T \in \mathcal{L}(U, V)$, então:

$$[T]_{B,C}^t = [T^t]_{C^*,B^*}$$

Corolário 2.29. Se $A \in M_{m,n}(K)$, então:

$$RowRank(A) = ColumnRank(A)$$
.

Demonstração. Consideremos $T:K^n\to K^m$ dada por T(v)=Av. Sejam B e C as bases canônicas de K^n e K^m , então $[T]_{B,C}=A$. Temos:

$$Rank(T) = ColumnRank(A)$$

 $Rank(T^t) = ColumnRank(A^t) = RowRank(A).$

2.6 Espaços Quocientes

Definição 2.30. Seja V um espaço, $W \subseteq V$ um subespaço. Para $u, v \in V$, digamos que $u \sim v$ se e só se $u - v \in W$. Então \sim é uma relação de equivalência, ou seja:

- Reflexiva, ou seja, $v \sim v$ sempre.
- Simétrica, ou seja, se v \sim u então u \sim v.
- Transitiva, ou seja, se v \sim u e u \sim w, então v \sim w.

Seja V/W o conjunto das classes de equivalência relativamente a \sim . Para $v \in V$ seja \overline{v} a classe de equivalência de v.

- Definamos em V/W uma estrutura de espaço vetorial. Para $\overline{v}, \overline{w} \in V/W$ definamos $\overline{v} + \overline{w} = \overline{v + w}$.
- Para $\alpha \in K$ e $\overline{v} \in V$ definamos $\alpha \cdot \overline{v} = \overline{\alpha v}$. Então V/W é um espaço vetorial chamado **espaço** quociente.

Observação 2.31. As operações estão "bem definidas" pois:

- Se $\overline{v} = \overline{v'}$ e $\overline{u} = \overline{u'}$, então $v \sim v'$ e $u \sim u'$, aí v v', $u u' \in W$, aí $(v + u) (v' + u') = (v v') + (u u') \in W$, aí $\overline{v + u} = \overline{v' + u'}$, aí $\overline{v} + \overline{u} = \overline{v'} + \overline{u'}$.
- Analogamente para a outra propriedade.

Também verificaremos algumas propriedades, deixando o resto ao leitor.

- Temos a comutatividade da adição, pois $\overline{u} + \overline{v} = \overline{v} + \overline{u}$ equivale a $\overline{u+v} = \overline{v+u}$, que é verdade pois u+v=v+u.
- O que é o $\overline{0}$ de V/W? Temos $\overline{0} = W$, e também para todo $w \in W$ temos $w \sim 0$, aí $\overline{w} = \overline{0} = W$.

Também temos o seguinte:

- Se W = V, então $V/V = {\overline{0}}.$
- Se $W = \{0\}$, então $V/\{0\} \cong V$.

Proposição 2.32. Consideremos a aplicação:

$$\pi: V \to V/W, \quad v \mapsto \overline{v}.$$

Então $\pi \in \mathcal{L}(V, V/W)$, com Ker $(\pi) = W$.

Notação 2.33. π chama-se a projeção canônica de V para V/W.

Demonstração. Temos o seguinte:

- $\bullet \ \ \pi(\mathbf{v} + \mathbf{u}) = \overline{\mathbf{v} + \mathbf{u}} = \overline{\mathbf{v}} + \overline{\mathbf{u}} = \pi(\mathbf{v}) + \pi(\mathbf{u}).$
- $\pi(\alpha \mathbf{v}) = \overline{\alpha}\overline{\mathbf{v}} = \alpha\overline{\mathbf{v}} = \alpha\pi(\mathbf{v}).$

Além disso, se $w \in W$ então $\pi(w) = \overline{w} = W$

Proposição 2.34. Seja $T \in \mathcal{L}(U, V)$ e $W \subseteq U$ tal que $W \subseteq Ker(T)$. Então existe um único $\overline{T} \in \mathcal{L}(U/W, V)$ tal que para todo $u \in U$ tenhamos:

$$\overline{\mathrm{T}}(\overline{\mathrm{u}}) = \mathrm{T}(\mathrm{u}).$$

Demonstração. Temos o seguinte:

- 1) Mostraremos que \overline{T} está "bem definida". Se $\overline{u} = \overline{v}$, então $u v \in W \subseteq Ker(T)$, aí T(u v) = 0, aí T(u) = T(v).
- 2) Mostraremos que \overline{T} é uma transformação linear.
 - $\bullet \ \ \overline{T}(\overline{u}+\overline{v})=\overline{T}(\overline{u+v})=T(u+v)=T(u)+T(v)=\overline{T}(\overline{u})+\overline{T}(\overline{v}).$
 - $\bullet \ \overline{\mathrm{T}}(\alpha \overline{\mathrm{v}}) = \overline{\mathrm{T}}(\overline{\alpha} \overline{\mathrm{v}}) = \mathrm{T}(\alpha \mathrm{v}) = \alpha \mathrm{T}(\mathrm{v}) = \alpha \overline{\mathrm{T}}(\overline{\mathrm{v}}).$

Agora, para todo $T' \in \mathcal{L}(U/W, V)$ tal que para todo $u \in U$ tenhamos:

$$T'(\overline{u}) = T(u),$$

então para todo $v \in U/W$ existe um $u \in U$ tal que $v = \overline{u}$, aí:

$$T'(v) = T'(\overline{u}) = T(u) = \overline{T}(\overline{u}) = \overline{T}(v);$$

$$\log T' = \overline{T}.$$

Teorema 2.35. Sejam U e V espaços vetoriais sobre K, e seja $T \in \mathcal{L}(U, V)$. Então $U/Ker(T) \cong Im(T)$.

Demonstração. Pela proposição anterior, existe uma única $\overline{T}: U/Ker(T) \to V$ tal que para todo $u \in U$ tenhamos:

$$\overline{T}(\overline{u}) = T(u).$$

Observemos que $\operatorname{Im}(\overline{T}) = \operatorname{Im}(T) = \{T(u) \mid u \in U\}.$

Além disso, para $\overline{u} \in Ker(\overline{T})$, então $T(u) = \overline{T}(\overline{u}) = 0$, aí $u \in Ker(T)$, aí $\overline{u} = \overline{0}$, de modo que \overline{T} é injetora.

Teorema 2.36. Seja W subespaço de V. Então todos os complementos de W em V são isomorfos ao V/W.

Demonstração. Seja V = W \oplus U. Consideremos a projeção canônica:

$$\pi: V \to V/W$$
.

Seja $\overline{\pi} = \pi \upharpoonright U$. Então $\operatorname{Ker}(\overline{\pi}) = U \cap \operatorname{Ker}(\pi) = U \cap W = \{0\}$. Logo $\overline{\pi}$ é injetora.

Para $\overline{v} \in V/W$, seja v = w + u, com $w \in W$ e $u \in U$. Então $\pi(v) = \pi(w) + \pi(u) = \pi(u) = \overline{\pi}(u)$, aí $\overline{v} = \overline{\pi}(u)$, assim $\overline{\pi}$ é sobre V/W.

Corolário 2.37. Seja $W \subseteq V$ um subespaço. Então $\dim V = \dim W + \dim V/W$.

Demonstração. Seja V = W \oplus U, então dim V = dim W + dim U, mas U \cong V/W, aí dim U = dim V/W. $\hfill\Box$

Observação 2.38. Existem espaços vetoriais W e U e W' e U' tais que W \oplus U \cong W' \oplus U' e W \cong W', mas U \ncong U'. De fato podemos tomar:

$$W = \bigoplus_{i=0}^{\infty} Ke_{2i}, \quad U = \bigoplus_{i=0}^{\infty} Ke_{2i+1}, \quad W' = \bigoplus_{i=0}^{\infty} Ke_{i}, \quad U' = \{0\}.$$

CAPÍTULO 2. TRANSFORMAÇÕES LINEARES

2.6. ESPAÇOS QUOCIENTES

Capítulo 3

Determinantes

3.1 Formas Multilineares

Definição 3.1. Seja V um espaço vetorial e $V^r = V \times \cdots \times V$. Uma **forma** r-linear sobre V é uma função $F: V^r \to K$ que é linear em cada argumento, ou seja, para cada $i = 1, \dots, r$ temos:

$$F(v_1,\ldots,\alpha v_i+\beta v_i',\ldots,v_r)=\alpha F(v_1,\ldots,v_i,\ldots,v_r)+\beta F(v_1,\ldots,v_i',\ldots,v_r).$$

Denotamos por $L_r(V)$ o conjunto das formas r-lineares sobre V.

Exemplo 3.2. Seja $V = K^2$ e:

$$F((x_1, y_1), (x_2, y_2), (x_3, y_3)) = x_1y_2x_3 - x_1x_2x_3.$$

Então F é uma forma 3-linear.

Definição 3.3. Uma forma $F \in L_r(V)$ chama-se **alternada** se e só se para $(v_1, \ldots, v_r) \in V^r$ e i < j tais que $v_i = v_j$ então $F(v_1, \ldots, v_r) = 0$. Denotamos por $A_r(V)$ o conjunto das formas r-lineares alternadas.

Definição 3.4. Uma forma F é chamada **antissimétrica** se para $v \in V^r$ e para i < j temos:

$$F(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_r) = -F(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_r).$$

Proposição 3.5. Toda forma alternada é antissimétrica.

Demonstração. Seja $F \in A_r(V)$. Sejam $v \in V^r$ e i < j, então:

$$\begin{array}{lll} 0 & = & F(v_1, \ldots, v_i + v_j, \ldots, v_i + v_j, \ldots, v_r) \\ & = & F(v_1, \ldots, v_i, \ldots, v_i, \ldots, v_r) + F(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_r) \\ & + & F(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_r) + F(v_1, \ldots, v_j, \ldots, v_j, \ldots, v_r) \\ & = & F(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_r) + F(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_r) \end{array}$$

Proposição 3.6. Se a característica do corpo $é \neq 2$, então toda forma antissimétrica é reflexiva.

Demonstração. Para F antissimétrica e $v \in V^r$ e i < j, se $v_i = v_i$, sendo $v = v_i$, então:

$$F(v_1, ..., v, ..., v, ..., v_1) = -F(v_1, ..., v, ..., v, ..., v_r),$$

aí:

$$2F(v_1,\dots,v,\dots,v,\dots,v_r)=0,$$

aí:

$$F(v_1, \ldots, v, \ldots, v, \ldots, v_r) = 0.$$

Definição 3.7. Seja $F \in L_r(V)$ e $\sigma \in S_r$ uma permutação. Para $(v_1, \dots, v_r) \in V^r$ definimos:

$$\left(\sigma F\right)\left(v_{1},\ldots,v_{r}\right)=F\left(v_{\sigma\left(1\right)},\ldots,v_{\sigma\left(r\right)}\right).$$

É fácil ver que $\sigma F \in L_r(V)$.

Observação 3.8. Para $F \in L_r(V)$, então F é antissimétrica se e somente se para toda transposição $\tau \in S_r$ tivermos $\tau F = -F$.

Proposição 3.9. Seja $F \in L_r(V)$ uma forma antissimétrica. Então para $\sigma \in S_r$, temos:

$$\sigma F = (\operatorname{sgn} \sigma) F$$
.

Demonstração. Para $\sigma \in S_r$, então σ pode ser escrita como um produto de transposições:

$$\sigma = \tau_1 \dots \tau_k,$$

aí σ é par se e só se k é par. Portanto:

$$\sigma \mathbf{F} = (\tau_1 \dots \tau_k) \mathbf{F} = (-1)^k \mathbf{F} = (\operatorname{sgn} \sigma) \mathbf{F},$$

pois sgn $\sigma = (-1)^k$.

Proposição 3.10. Toda forma r-linear determina uma forma r-linear alternada da seguinte maneira:

$$F \mapsto \varphi(F) = \sum_{\sigma \in S_r} (\operatorname{sgn} \, \sigma)(\sigma F).$$

Demonstração. Seja $v_i=v_j=v$ com i< j. Precisamos provar que $\varphi(F)(v)=0.$ Seja τ a transposição (i,j), então $S_r=A_r\cup A_r\tau$ e $A_r\cap A_r\tau=\emptyset$. Então temos o seguinte:

$$\begin{array}{lcl} \varphi(F)(v) & = & \sum_{\sigma \in S_r} (\operatorname{sgn} \, \sigma)(\sigma F(v)) \\ & = & \sum_{\sigma \in A_r} (\sigma F(v)) - \sum_{\sigma \in A_r} (\sigma \tau F(v)) \\ & = & \sum_{\sigma \in A_r} (\sigma F(v)) - \sum_{\sigma \in A_r} (\sigma F(v)) \\ & = & 0. \end{array}$$

Observação 3.11. Se $F \in A_r(V)$ e $v \in V^r$ é linearmente dependente, então:

$$F(v) = 0.$$

Lema 3.12. Seja $\dim V = n$ e $F \in A_n(V)$. Seja (e_1, \ldots, e_n) uma base de V, então F é completamente determinada pelo valor F(e).

Demonstração. Seja $(v_1, \ldots, v_n) \in V^n$. Então existe $(\alpha_{i,j}) \in M_n(K)$ tal que:

$$\mathbf{v_i} = \sum_{j=1}^{n} \alpha_{i,j} \mathbf{e_j}.$$

Assim:

$$\begin{split} F(v_1,\ldots,v_n) &= F\left(\sum_{j_1=1}^n \alpha_{1,j_1}e_{j_1},\ldots,\sum_{j_n=1}^n \alpha_{n,j_n}e_{j_n}\right) \\ &= \sum_{j_1,\ldots,j_n=1}^n \alpha_{1,j_1}\ldots\alpha_{n,j_n}F\left(e_{j_1},\ldots,e_{j_n}\right) \\ &= \sum_{\sigma\in S_n} \alpha_{1,\sigma_1}\ldots\alpha_{n,\sigma_n}F\left(e_{\sigma_1},\ldots,e_{\sigma_n}\right) \\ &= \left(\sum_{\sigma\in S_n} \alpha_{1,\sigma_1}\ldots\alpha_{n,\sigma_n}\mathrm{sgn}\ \sigma\right) F(e_1,\ldots,e_n). \end{split}$$

Note então que o valor

$$\sum_{\sigma \in S_n} \alpha_{1,\sigma_1} \dots \alpha_{n,\sigma_n} \operatorname{sgn} \sigma$$

determina F para qualquer $v \in V^n$. Chamaremos este valor de **determinante** de F.

Exemplo 3.13.

3.2 Determinantes

Seja K um corpo e consideremos o anel das matrizes $M_n(K)$. Identificaremos os elementos de $M_n(K)$ com os elementos de $(K^n)^n$ assim:

$$\begin{pmatrix} a_{1,1} & a_{1,n} \\ & \ddots & \\ a_{n,1} & a_{n,n} \end{pmatrix} \longleftrightarrow ((a_{1,1}, \dots, a_{1,n}), \dots, (a_{n,1}, \dots, a_{n,n})).$$

Portanto, uma função n-linear aqui é uma função n-linear nas linhas da matriz.

Definição 3.14. Uma função det : $M_n(K) \to K$ é dita uma função **determinante** se e só se det é n-linear alternada e det(I) = 1.

Pelo que vimos, existe e é única a função determinante: É a forma n-linear alternada que vale 1 na base canônica de K^n .

Logo, se $A = (a_{i,j}) \in M_n(K)$, então:

$$\det(A) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma_1} \dots a_{n,\sigma_n}.$$

Exemplo 3.15. Para n = 2, temos $S_2 = \{I, (1, 2)\}$, e assim, sendo:

$${
m A} = egin{pmatrix} {
m a}_{1,1} & {
m a}_{1,2} \ {
m a}_{2,1} & {
m a}_{2,2} \end{pmatrix},$$

então temos:

$$\det(A) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}.$$

Exemplo 3.16. Agora, se n = 3, então $S_3 = \{I, (1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3)\}$, e assim, sendo:

$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{1,1} & \mathbf{a}_{1,2} & \mathbf{a}_{1,3} \\ \mathbf{a}_{2,1} & \mathbf{a}_{2,2} & \mathbf{a}_{2,3} \\ \mathbf{a}_{3,1} & \mathbf{a}_{3,2} & \mathbf{a}_{3,3} \end{pmatrix},$$

então temos:

$$\det(A) = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - a_{1,2}a_{2,1}a_{3,3} - a_{1,3}a_{2,2}a_{3,1} - a_{1,1}a_{2,3}a_{3,2}.$$

Proposição 3.17. Temos as seguintes propriedades:

- 1) Para todo $A \in M_n(K)$ temos $det(A) = det(A^t)$.
- 2) Para $A, B \in M_n(K)$ vale det(AB) = det(A) det(B).
- 3) Para $A \in M_n(K)$, então A é inversível se e só se $\det(A) \neq 0$. Neste caso, temos $\det\left(A^{-1}\right) = (\det(A))^{-1}$.

Demonstração. Temos o seguinte:

1) Sendo $A = (a_{i,j}) \in M_n(K)$, então temos:

$$\begin{array}{lll} \det(A) & = & \sum\limits_{\substack{\sigma \in S_n \\ \sigma \in S_n}} & \mathrm{sgn}(\sigma) & a_{1,\sigma_1} \dots a_{n,\sigma_n} \\ & = & \sum\limits_{\substack{\sigma \in S_n \\ \tau \in S_n}} & \mathrm{sgn}(\sigma) & a_{\sigma_1^{-1},1} \dots a_{\sigma_n^{-1},n} \\ & = & \sum\limits_{\substack{\tau \in S_n \\ \tau \in S_n}} & \mathrm{sgn}(\tau^{-1}) & a_{\tau_1,1} \dots a_{\tau_n,n} \\ & = & \sum\limits_{\substack{\tau \in S_n \\ \tau \in S_n}} & \mathrm{sgn}(\tau) & a_{1,\tau_1}^t \dots , a_{n,\tau_n}^t \\ & = & \det\left(A^t\right). \end{array}$$

- 2) Seja $F_A: M_n(K) \to K$ tal que $\forall X \in M_n(K): F_A(X) = \det(AX)$. Então a função F_A é uma função n-linear alternada sobre as colunas, mas também $F_A(I) = \det(A)$, aí $F_A(B) = \det(A) \det(B)$, assim $\det(AB) = \det(A) \det(B)$
- 3) Se A é inversível, então existe a inversa A^{-1} , assim:

$$1=\det(I)=\det\!\left(AA^{-1}\right)=\det(A)\det(A)^{-1},$$

aí $\det(A) \neq 0$ e $\det(A^{-1}) = (\det(A))^{-1}$. Por outro lado, se $\det(A) \neq 0$, então $\det(A^t) \neq 0$, aí as colunas de A são linearmente independentes, aí consideremos $T: K^n \to K^n$ tal que $[T]_{can} = A$, então T é inversível, assim $A = [T]_{can}$ é inversível.

Assim lembremo-nos do seguinte: a função det é uma função n-linear e alternada nas linhas (ou nas colunas) da matriz, logo:

- 1) Trocar duas linhas (ou colunas) da matriz muda o sinal do determinante.
- 2) Somar a uma linha (ou coluna) uma combinação linear das demais linhas (colunas) não altera o valor do determinante.
- 3) Ao multiplicar uma linha (ou coluna) por um escalar, o determinante fica multiplicado por esse escalar.

Proposição 3.18. Temos o seguinte:

- 1) O determinante de uma matriz triangular é o produto dos elementos da diagonal da matriz.
- 2) Se:

$$\mathbf{A} = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} \end{pmatrix}$$

em que $B \in M_r(K)$ e $D \in M_{n-r}(K)$ e $C \in M_{n-r,r}(K)$ e $0 \in M_{r,n-r}(K)$, então:

$$det(A) = det(B) det(D).$$

Demonstração. Temos o seguinte:

1) Seja $A=(a_{i,j})\in M_n(K)$ uma matriz triangular inferior, então para i< j temos $a_{i,j}=0$, mas a única permutação $\sigma\in S_n$ tal que para todo $i=1,\ldots,n$ tenhamos $i\geq \sigma_i$ é a permutação identidade I, assim temos:

$$\begin{array}{rcl} \det(A) & = & \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma_1} \dots a_{n,\sigma_n} \\ & = & \operatorname{sgn}(I) a_{1,I_1} \dots a_{n,I_n} \\ & = & a_{1,1} \dots a_{n,n}. \end{array}$$

2) Seja $F: M_r(K) \to K$ tal que:

$$\mathrm{F}(\mathrm{X}) = \det egin{pmatrix} \mathrm{X} & 0 \ \mathrm{C} & \mathrm{D} \end{pmatrix}.$$

Então F é r-linear alternada nas linhas de X, assim $F(X) = F(I) \det(X)$.

Agora consideremos $G: M_{n-r}(K) \to K$ tal que:

$$\mathrm{G}(\mathrm{Y}) = \det egin{pmatrix} \mathrm{I} & 0 \ \mathrm{C} & \mathrm{Y} \end{pmatrix}$$

Então G é (n-r)-linear alternada nas colunas de Y, logo $G(Y) = G(I) \det(Y)$. Mas:

$$\mathrm{G}(\mathrm{I}) = \det egin{pmatrix} \mathrm{I} & 0 \ \mathrm{C} & \mathrm{I} \end{pmatrix} = 1,$$

assim G(Y) = det(Y), af F(I) = G(D) = det(D), assim F(X) = F(I) det(X) = det(X) det(D), af acaba.

Agora temos a regra de Laplace:

Teorema 3.19. Dada $A = (a_{i,j}) \in M_n(K)$, indicaremos por $M_{i,j}$ a matriz quadrada de tamanho n-1 obtida a partir de A eliminando a linha i e a coluna j.

Para cada i = 1, ..., n, então vale:

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \det(M_{i,j}).$$

Para cada j = 1, ..., n, então vale:

$$\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \det\Bigl(M_{i,j}\Bigr).$$

Demonstração. Provaremos a primeira afirmação pois a segunda é análoga.

AULA DE 19 DE AGOSTO (COLOCAREI ASSIM QUE CONSEGUIR)

FICOU FALTANDO A PROVA DA REGRA DE LAPLACE E A PARTE DE MATRIZES SOBRE ANEIS COMUTATIVOS

Bláa blá blá

Capítulo 4

Formas Canônicas

4.1 Autovalores e Autovetores

Definição 4.1. Seja V um espaço vetorial sobre um corpo K e seja $T \in \mathcal{L}(V)$.

- Para $\lambda \in K$, dizemos que λ é um **autovalor** de T se existe um $v \neq 0$ tal que $T(v) = \lambda v$.
- Para $\lambda \in K$, um **autovetor** associado a λ é um $v \in V$ tal que $T(v) = \lambda v$.
- Para $\lambda \in K$, chamamos de **autoespaço** associado a λ o conjunto $V_T(\lambda)$ dos autovetores associados a λ .

Exemplo 4.2. Seja $V = \mathbb{C}^1(\mathbb{R})$ e considere o operador linear $T \in \mathcal{L}(V)$ tal que T(v) = v' para cada $v \in V$. Considere $v = e^{\lambda x}$ com $\lambda \in K$. Então $T(v) = \lambda e^{\lambda x} = \lambda v$. Ou seja v é um autovetor associado a λ .

Definição 4.3. Seja V um espaço vetorial sobre um corpo K e seja $T \in \mathcal{L}(V)$. O **spectrum** do operador T é o conjunto:

$$Spec(T) := \{ \lambda \in K : \lambda \text{ \'e autovalor de } T \}.$$

No contexto da definição anterior, considere $\lambda \in \operatorname{Spec}(T)$. Então

$$\begin{split} v \in V_T(\lambda) &\iff T(v) = \lambda v \\ &\iff (T - \lambda I)(v) = 0 \\ &\iff v \in \operatorname{Ker}(T - \lambda I). \end{split}$$

Ainda no mesmo contexto, vamos assumir agora que $\dim(V) = n < \infty$. Então temos que

$$\lambda \in \operatorname{Spec}(T) \implies \operatorname{Ker}(T - \lambda I) \neq \{0\} \implies \det(T - \lambda I) = 0.$$

Reciprocamente, se $\det(T - \lambda I) = 0$ então $V_T(\lambda) = \text{Ker}(T - \lambda I) \neq \{0\}.$

Definição 4.4. Seja V um espaço vetorial sobre um corpo K e seja $T \in \mathcal{L}(V)$. O **polinômio** característico de T é o polinômio:

$$p_T(t) := \det(tI - T).$$

Note que $\lambda \in \operatorname{Spec}(T)$ se e só se λ é raiz de $p_T(\lambda)$. Além disso, note que se B e B' são bases V, então $p_T(\lambda) = p_{[T]_B}(\lambda)$. De fato, se P é a matriz de mudança da base B para a base B', então

$$[\lambda I - T]_{B'} = P^{-1}[\lambda I - T]_B P$$

Isso implica que

$$\det([\lambda I-T]_{B'})=\det(P^{-1})\det([\lambda I-T]_B)\det(P).$$

Ou seja,

$$\det([\lambda I - T]_{B'}) = \det([\lambda I - T]_{B}).$$

Exemplo 4.5. Seja $T \in \mathcal{L}(\mathbb{R}^2)$ tal que

$$[\mathrm{T}]_{\mathrm{can}} = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}.$$

Isto é, T(x,y)=(-y,x) para cada $(x,y)\in\mathbb{R}^2$. Então

$$egin{aligned} \mathbf{p_T}(\mathbf{x}) &= \det \begin{pmatrix} \mathbf{x} & \mathbf{1} \\ -\mathbf{1} & \mathbf{x} \end{pmatrix} \ &= \mathbf{x}^2 + \mathbf{1}. \end{aligned}$$

Dessa forma, $\operatorname{Spec}(T) = \emptyset$ pois $\operatorname{p}_T(x)$ não possui raízes em $K = \mathbb{R}$.

Exemplo 4.6. Seja $T \in \mathcal{L}(\mathbb{R}^3)$ tal que

$$[T]_{\text{can}} = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{pmatrix}.$$

Então:

$$\begin{aligned} p_T(x) &= \det \begin{pmatrix} x - 3 & -1 & 1 \\ -2 & x - 2 & 1 \\ -2 & -2 & x \end{pmatrix} \\ &= (x - 1)^2 (x - 2). \end{aligned}$$

Isso implica que $\operatorname{Spec}(T)=\{1,2\}$. Além disso, temos que

$$\mathrm{V}_{\mathrm{T}}(1)=\mathrm{Ker}(\mathrm{T}-\mathrm{I})=\mathrm{Ker}egin{pmatrix} 2&1&-1\ 2&1&-1\ 2&2&-1 \end{pmatrix}=\langle(1,0,2)
angle.$$

e ainda

$$\mathrm{V}_{\mathrm{T}}(2)=\mathrm{Ker}(\mathrm{T}-2\mathrm{I})=\mathrm{Ker}egin{pmatrix}1&1&-1\2&0&-1\2&2&-2\end{pmatrix}=\langle(1,1,2)
angle$$

Exemplo 4.7. Seja $T \in \mathcal{L}(\mathbb{R}^3)$ tal que

$$[T]_{can} = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & -1 \\ 2 & 2 & -2 \end{pmatrix}.$$

Neste caso temos que

$$p_T(x) = \det \begin{pmatrix} x-1 & -2 & 1 \\ 2 & x+3 & 1 \\ -2 & -2 & x+2 \end{pmatrix}$$

$$= (x+1)^2(x+2).$$

Isso implica que $Spec(T) = \{-1, -2\}$ e ainda

$$V_T(-1) = \langle (1,0,2), (0,1,2) \rangle$$

е

$$V_{T}(-2) = \langle (1, -1, 1) \rangle.$$

Uma vez que os autovetores acima são L.I, eles formam uma base B de \mathbb{R}^3 e

$$[T]_{B} = \begin{pmatrix} -1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -2 \end{pmatrix}$$

é uma matriz diagonal.

Teorema 4.8. Seja V um espaço vetorial sobre um corpo K tal que $\dim(V) = n < \infty$ e seja $T \in \mathcal{L}(V)$, e sejam $\lambda_1, \ldots, \lambda_k$ os autovalores distintos, e para $i = 1, \ldots, k$ seja $n_k = \dim V_T(\lambda_i)$. São equivalentes:

- 1. T é diagonalizável.
- $2. \ p_T(t) = (t-\lambda_1)^{n_1} \dots (t-\lambda_k)^{n_k}.$
- 3. $n_1 + \ldots + n_k = n$.

Lema 4.9. Sejam $\lambda_1, \ldots, \lambda_k \in K$ distintos. Então:

- 1. Se $v_i \in V_T(\lambda_i)$ para cada $i=1,\ldots,k$ e $v_1+\ldots+v_k=0,$ então $v_1=\ldots=v_k=0.$
- 2. Se $B_i\subseteq V_T(\lambda_i)$ é L.I para cada $i=1,\dots,k,$ então $B_1\cup\dots\cup B_k$ é L.I.

Demonstração do Lema.

1. Vamos provar essa afirmação por indução em k. Primeiro note que o resultado é trivial quando k=1. Agora seja $k\in\mathbb{N}$ e assuma que o resultado vale para cada natural i< k. Sejam v_1,\ldots,v_k tais que $v_i\in V_T(\lambda_i)$ para cada $i=1,\ldots,k$ e $v_1+\ldots+v_k=0$. Então:

$$0 = \lambda_1 0 = \lambda_1 (v_1 + v_2 + \dots + v_k) = \lambda_1 v_1 + \lambda_1 v_2 + \dots + \lambda_1 v_k. \tag{4.1}$$

Além disso, é claro que:

$$0 = T(0) = T(v_1 + v_2 + \dots + v_k) = \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_k v_k. \tag{4.2}$$

Subtraindo a Equação 4.1 de 4.2, obtemos:

$$(\lambda_2 - \lambda_1)\mathbf{v}_2 + \ldots + (\lambda_k - \lambda_1)\mathbf{v}_k = 0. \tag{4.3}$$

Agora notamos que cada termo $(\lambda_i - \lambda_1)v_i$ no lado esquerdo é um autovetor de T associado a λ_i e aplicamos a hipótese de indução para concluir que $v_2 = \ldots = v_k = 0$. Finalmente, como sabemos que $v_1 + \ldots + v_k = 0$ e $v_2 = \ldots = v_k = 0$, obtemos que $v_1 = 0$ também, o que conclui nossa prova.

2. Seja $S \subseteq B_1 \cup \cdots \cup B_k$ finito e seja $\alpha \colon S \to \mathbb{R}$ tal que:

$$\sum_{\mathbf{v} \in \mathbf{S}} \alpha_{\mathbf{v}} \mathbf{v} = 0.$$

Note que $V_T(\lambda_i) \cap V_T(\lambda_i) = \{0\}$ sempre que e $i \neq j$ e então podemos escrever

$$\sum_{v \in S} \alpha_v v = \sum_{v \in S_1} \alpha_v v + \ldots + \sum_{v \in S_k} \alpha_v v,$$

onde $S_i\subseteq B_i$ é finito para cada $i=1,\dots,k.$ Utilizando o fato de que:

$$\sum_{v \in S_i} \alpha_v v \in V_T(\lambda_i)$$

para cada i = 1, ..., k e aplicando o item anterior, obtemos que

$$\sum_{v \in S_1} \alpha_v v = \ldots = \sum_{v \in S_k} \alpha_v v = 0.$$

Finalmente como como $S_i \subseteq B_i$ para cada $i=1,\ldots,k$ e B_i é sempre L.I por hipótese segue que a restrição de α a cada S_i é identicamente nula. Como $S=S_1\cup\cdots\cup S_k$, segue que α é indenticamente nula.

Demonstração. Temos o seguinte:

• (i)⇒(ii): Seja B uma base tal que:

$$[T]_B = egin{pmatrix} \lambda_1 I_{m_1} & & & \\ & \ddots & & \\ & & \lambda_k I_{m_k} \end{pmatrix},$$

em que m_1, \ldots, m_k são inteiros positivos. Então o polinômio característico de T é:

$$p_T(t) = (t-\lambda_1)^{m_1} \dots (t-\lambda_k)^{m_k}.$$

Além disso, para i = 1, ..., k, então a matriz de $T - \lambda_i I$ é igual a:

$$\begin{pmatrix} (\lambda_1-\lambda_i)I_{m_1} & & & & \\ & \ddots & & & \\ & & 0_{m_i} & & \\ & & & \ddots & \\ & & & (\lambda_k-\lambda_i)I_{m_k} \end{pmatrix},$$

aí é fácil ver que:

$$n_i = \dim V_T(\lambda_i) = \dim Ker(T - \lambda_i I) = m_i$$

ou seja, $n_i = m_i$; assim:

$$p_T(t) = (t - \lambda_1)^{n_1} \dots (t - \lambda_k)^{n_k}.$$

• (ii)⇒(iii): O polinômio característico de T tem grau n, aí:

$$n_1 + \ldots + n_k = \deg(p_T(t)) = n.$$

• (iii) \Rightarrow (i): Para cada $i=1,\ldots,k$ considere uma base B_i de $V_T(\lambda_i)$. Seja $B=B_1\cup\cdots\cup B_k$. Pelo Lema 4.9, temos que B é L.I. Como |B|=n segue que B é uma base de V. Além disso, B é uma base de autovetores de T. Logo, T é diagonalizável.

4.2 Polinômio Minimal

Definição 4.10. Seja V um espaço sobre K, dim $V = n < \infty$, $T \in \mathcal{L}(V)$. Definamos por recursão $T^0 = I$ e $T^{k+1} = T^k \circ T$. Se $p(t) \in K[t]$, $p(t) = a_0 + a_1t + \cdots + a_mt^m$, então está bem definido o operador $p(T) = a_0 \cdot I + a_1 \cdot I + \cdots + a_m \cdot T^m \in \mathcal{L}(V)$.

Lembremo-nos de que, se $\dim(U)=m$ e $\dim(V)=n$, então $\dim\mathcal{L}(U,V)=mn$. Assim, se V é um espaço vetorial tal que $\dim(V)=n<\infty$, então $\dim\mathcal{L}(V)=n^2$, de modo que existe $m\leq n^2+1$ tal que os operadores I,T,T^2,\ldots,T^m sejam linearmente dependentes. Seja m o menor deles. Então existem $a_0,\ldots,a_{m-1}\in K$ tais que:

$$T^m + a_{m-1}T^{m-1} + \dots + a_1T + a_0I = 0.$$

Seja:

$$m_T(t) = t^m + a_{m-1}t^{m-1} + \dots + a_1t + a_0,$$

então $m_T(T) = 0$, e $m_T(t)$ é um polinômio mônico de grau mínimo tal que $m_T(T) = 0$.

Definição 4.11. Um polinômio mônico de grau mínimo tal que $m_T(t) \in K[t]$ tal que $m_T(t) = 0$ chama-se um **polinômio minimal** do operador T.

Lema 4.12. Seja $f(t) \in K[t]$ tal que f(T) = 0. Então $m(t) \mid f(t)$.

Demonstração. Dividimos f(t) por m(t) (com resto):

$$f(t) = m_T(t) \cdot q(t) + r(t), \qquad \deg(r(t)) < \deg(m_T(t)) \text{ ou } r(t) = 0.$$

Como
$$f(T) = 0$$
 e $m_T(t) = 0$, então $r(T) = 0$, aí $r(t) = 0$.

Corolário 4.13. O polinômio $m_T(t)$ é único.

Se V é um espaço vetorial e $T \in \mathcal{L}(V)$, então V tem uma estrutura de K[t] módulo à esquerda: Se $f(t) \in K[t]$, para $v \in V$ definimos:

$$f(t) \cdot v = f(T)(v)$$
.

Além disso, se considerarmos:

$$\varphi: K[t] \to End(V)$$
$$f(t) \mapsto f(T),$$

então φ é um homomorfismo de K-álgebras e portanto $Ker(\varphi)$ é um ideal de K[t].

Teorema 4.14. Os polinômios $p_T(t)$ e $m_T(t)$ têm as mesmas raízes em K (a menos de multiplicidade). Em outras palavras, $m_T(\lambda) = 0 \Leftrightarrow \lambda \in \operatorname{Spec}(T)$.

Demonstração. Se $m_T(\lambda) = 0$, então $m_T(t) = (t - \lambda)q(t)$. Por minimalidade de $m_T(t)$, $q(T) \neq 0$, então existe $w \in V$ tal que $q(T)(w) \neq 0$, aí seja v = q(T)(w), então $v \neq 0$ e:

$$\begin{array}{lcl} (T-\lambda I)(v) & = & (T-\lambda I)q(T)(w) \\ & = & m_T(t)(w) = 0, \end{array}$$

aí $T(v) = \lambda v$, aí $\lambda \in Spec(T)$.

Por outro lado, se $\lambda \in \operatorname{Spec}(T)$, seja $v \in V$ tal que $v \neq 0$ e $T(v) = \lambda v$, então:

$$T(T(v)) = \lambda^2 v, \dots, T^m(v) = \lambda^m v, \dots,$$

aí para $f(t) \in K[t]$ temos $f(T)(v) = f(\lambda) \cdot v$, aí $0 = m_T(T)(v) = m_T(\lambda) \cdot v$, aí $m_T(\lambda) = 0$.

Corolário 4.15. Se T é diagonalizável e $Spec(T) = \{\lambda_1, \dots, \lambda_r\}$, então:

$$m_T(t) = (t - \lambda_1) \dots (t - \lambda_r).$$

Demonstração. Já sabemos que:

$$m_T(t) = (t - \lambda_1)^{k_1} \dots (t - \lambda_r)^{k_r} q(t)$$

em que q(t) não tem raízes em K. Seja

$$f(t) = (t - \lambda_1 I) \dots (t - \lambda_r I).$$

Seja $v \in V$, então $v = v_1 + \cdots + v_r$ para alguns $v_i \in V_T(\lambda_i)$, aí temos $(T - \lambda_i I)(v_i) = 0$, aí $f(T)(v_i) = 0$; logo f(T)(v) = 0. Portanto f(T) = 0, aí $m_T \mid f$, aí $m_T = f$.

4.3 Subespaços Invariantes

Definição 4.16. Seja $T \in \mathcal{L}(V)$. Um subespaço $W \subseteq V$ chama-se T-invariante se $T(W) \subseteq W$.

Observação 4.17. Um subespaço é T-invariante se e só se é um K[t]-submódulo.

Exemplo 4.18. Seja $V = \mathbb{C}(\mathbb{R})$ e considere o operador D: $f \to f'$. Então o subespaço

$$P_n := \{f(t) \in \mathbb{R}[t] : \deg(f) \le n\}$$

é D-invariante.

Proposição 4.19. Seja V um espaço vetorial de dimensão finita sobre um corpo K, seja $T \in \mathcal{L}(V)$ e seja W um subespaço T-invariante de V. Seja B_1 uma base de W e seja B uma base de V tal que $B_1 \subseteq B$. Então $B_2 = \{\overline{b} : b \in B \setminus B_1\}$ é uma base de V/W e, sendo $\overline{T} \in L(V/W)$ o operador induzido, temos:

$$[T]_{B} = \begin{pmatrix} [T\upharpoonright_{W}]_{B_{1}} & * \\ 0 & [\overline{T}]_{B_{2}} \end{pmatrix},$$

 $\begin{array}{l} \textit{Demonstração}. \ \ Seja \ dim(V) = n \ e \ T \in \mathcal{L}(V), e \ seja \ W \subseteq V \ um \ subespaço \ T-invariante. \ Escolhemos uma base \ B_1 = \{v_1, \ldots, v_m\} \ de \ W \ e \ completemos uma base \ B = \{v_1, \ldots, v_m, v_{m+1}, \ldots, v_n\} \ do \ espaço \ V. \ Qual \ é \ a \ matriz \ [T]_B? \end{array}$

Vamos começar notando que T é W-invariante e então:

$$\begin{array}{lll} T(v_1) & = & \sum\limits_{i=1}^{m} \alpha_{1,i} v_i \\ T(v_2) & = & \sum\limits_{i=1}^{m} \alpha_{2,i} v_i \\ & \vdots & & \\ T(v_m) & = & \sum\limits_{i=1}^{m} \alpha_{m,i} v_i \\ T(v_{m+1}) & = & \sum\limits_{i=1}^{n} \alpha_{m+1,i} v_i \\ & \vdots & & \\ T(v_n) & = & \sum\limits_{i=1}^{n} \alpha_{n,i} v_i. \end{array}$$

Dessa forma segue que:

$$[T]_B = \begin{pmatrix} \alpha_{1,1} & \dots & \alpha_{1,m} & \alpha_{1,m+1} & \dots & \alpha_{1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \alpha_{m,1} & \dots & \alpha_{m,m} & \alpha_{m,m+1} & \dots & \alpha_{m,n} \\ 0 & \dots & 0 & \alpha_{m+1,m+1} & \dots & \alpha_{m+1,n} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \alpha_{n,m+1} & \dots & \alpha_{n,n} \end{pmatrix}.$$

Isto é, a matriz de T na base B tem a forma:

$$[T]_{\mathrm{B}} = \begin{pmatrix} \mathrm{X} & * \ 0 & \mathrm{Y} \end{pmatrix},$$

onde $X \in M_m(K)$ e $Y \in M_{n-m}(K)$. Note que X é a matriz da restrição de T a W na base B_1 . Além disso, temos o seguinte:

$$\begin{array}{lll} \bar{T}(\bar{v}_{m+1}) & = & \sum\limits_{i=m+1}^{n} \alpha_{m+1,i} \bar{v}_i \\ & \vdots & \\ \bar{T}(\bar{v}_n) & = & \sum\limits_{i=m+1}^{n} \alpha_{n,i} \bar{v}_i. \end{array}$$

Portanto Y é a matriz da transformação \bar{T} na base $\{\bar{v}_{m+1}, \dots, \bar{v}_n\}$.

Lema 4.20. Seja $\dim(V) = n, T \in \mathcal{L}(V)$ e $W \subseteq V$ um subsepaço T-invariante. Então:

$$p_T(t) = p_{T \upharpoonright_W}(t) \cdot p_{\bar{T}}(t)$$

em que \bar{T} é o operador induzido em V/W.

Demonstração. Escolhamos B_1 e B como bases de W e V tais que $B_1 \subseteq B$, então, considerando $B_2 = \{\bar{b} : b \in B \setminus B_1\}$, a matriz de T na base B tem a forma:

$$Z = \begin{pmatrix} X & * \\ 0 & Y \end{pmatrix},$$

onde X é a matriz de T \upharpoonright_W em relação a B_1 e Y é a matriz de \bar{T} em relação a B_2 , assim:

$$\begin{split} p_T(t) &= p_Z(t) \\ &= \det(tI - Z) \\ &= \det \begin{pmatrix} tI_m - X & * \\ 0 & tI_{n-m} - Y \end{pmatrix} \\ &= \det(tI_m - X)\det(tI_{n-m} - Y) \\ &= p_X(t)p_Y(t) \\ &= p_T {\upharpoonright}_W(t)p_{\bar{T}}(t) \end{split}$$

Observação 4.21. O mesmo não ocorre para polinômios minimais. De fato, seja $T = I_V$ e seja W um subespaço T-invariante (De fato, quando T é a identidade, todo subespaço de V é T-invariante), então $T_1 = I_W$ e $T_2 = I_{V/W}$ e aí $m_T(t) = m_{T_1}(t) = m_{T_2}(t) = t - 1$. Não obstante, ainda temos um resultado interessante para isso.

Lema 4.22. Seja dim $(V) = n, T \in \mathcal{L}(V)$ e $W \subseteq V$ um subsepaço T-invariante. Então:

$$m_{T \upharpoonright_W}(t) \mid m_T(t), \quad m_{\bar{T}}(t) \mid m_T(t),$$

em que \bar{T} é o operador induzido em V/W.

Demonstração. Escolhamos B_1 e B como bases de W e V tais que $B_1 \subseteq B$, então, considerando $B_2 = \{\bar{b} : b \in B \setminus B_1\}$, a matriz de T na base B tem a forma:

$$\mathrm{Z} = egin{pmatrix} \mathrm{X} & * \ 0 & \mathrm{Y} \end{pmatrix},$$

onde X é a matriz de $T \upharpoonright_W$ em relação a B_1 e Y é a matriz de \bar{T} em relação a B_2 , assim é fácil de mostrar por indução que para todo $k \geq 0$ então temos uma matriz da forma:

$$\mathrm{Z}^{\mathrm{k}} = egin{pmatrix} \mathrm{X}^{\mathrm{k}} & * \ 0 & \mathrm{Y}^{\mathrm{k}} \end{pmatrix},$$

assim temos uma matriz é da forma:

$$\mathrm{m}_{\mathrm{T}}(\mathrm{Z}) = egin{pmatrix} \mathrm{m}_{\mathrm{T}}(\mathrm{X}) & * \ 0 & \mathrm{m}_{\mathrm{T}}(\mathrm{Y}) \end{pmatrix},$$

mas sabemos que $m_T(Z) = 0$, aí $m_T(X) = 0$ e $m_T(Y) = 0$, aí a conclusão segue.

4.4 Subespaços Cíclicos

Definição 4.23. Seja V um espaço vetorial e $T \in \mathcal{L}(V)$. Para $v \in V$, definimos o **subespaço** T-cíclico gerado por v como o conjunto Z(v,T) de todos os vetores da forma p(T)(v) em que $p \in K[x]$. Dizemos que v é um **vetor cíclico** para T se e só se Z(v,T) = V.

Proposição 4.24. Seja V um espaço vetorial e seja $T \in \mathcal{L}(V)$. Para $v \in V$, então Z(v,T) é o subespaço gerado pelo conjunto $\{T^n(v) : n \in \mathbb{N}\}$.

Definição 4.25. Dado $v \in V$, um polinômio mônico de grau mínimo $m_{T,v}(t) \in K[t]$ tal que $m_{T,v}(T)(v) = 0$ chama-se um **polinômio** T-anulador do vetor v.

Lema 4.26. Seja $f(t) \in K[t]$ tal que f(T)(v) = 0. Então $m_{T,v}(t) \mid f(t)$.

Demonstração. Dividimos f(t) por $m_{T,v}(t)$ (com resto):

$$f(t) = m_{T,v}(t) \cdot q(t) + r(t), \qquad \deg(r(t)) < \deg(m_{T,v}(t)) \text{ ou } r(t) = 0.$$

Como
$$f(T)(v) = 0$$
 e $m_{T,v}(T)(v) = 0$, então $r(T)(v) = 0$, aí $r(t) = 0$.

Corolário 4.27. O polinômio $m_{T,v}(t)$ é único.

Teorema 4.28. Seja V um espaço vetorial e $T \in \mathcal{L}(V)$. Seja $v \in V$ que possua um polinômio T-anulador, e consideremos o polinômio $m_{T,v}$. Então:

- \bullet O grau de $m_{T,v}$ é igual à dimensão de Z(v,T).
- Se o grau de $m_{T,v}$ é k, então $v, T(v), \ldots, T^{k-1}(v)$ formam uma base de Z(v,T).
- Se W = Z(v, T), então $m_{T \upharpoonright w} = m_{T,v}$.

O teorema seguinte mostra como subespaços cíclicos podem ser compostos e decompostos.

Teorema 4.29. Seja V um espaço vetorial e $T \in \mathcal{L}(V)$.

• (Compondo subespaços cíclicos) Se $u_1, \ldots, u_n \in V$ tem T-anuladores mutuamente primos entre si, então o T-anulador de $u = u_1 + \cdots + u_n$ é:

$$\mathbf{m}_{\mathrm{T,u}} = \mathbf{m}_{\mathrm{T,u_1}} \dots \mathbf{m}_{\mathrm{T,u_n}}$$

e também:

$$Z(u,T)=Z(u_1,T)\oplus\cdots\oplus Z(u_n,T).$$

 \bullet (Decompondo subespaços cíclicos) Se $m_{T,u}=f_1\dots f_n$ com f_1,\dots,f_n mutuamente primos entre si, então u tem a forma:

$$\mathbf{u} = \mathbf{u}_1 + \cdots + \mathbf{u}_n,$$

em que $m_{T,u_i} = f_i$, e também:

$$Z(u,T)=Z(u_1,T)\oplus\cdots\oplus Z(u_n,T).$$

4.5 Teorema de Cayley-Hamilton

Teorema 4.30 (Teorema da Cayley-Hamilton). Seja V um espaço vetorial de dimensão finita sobre um corpo K, e seja $T \in \mathcal{L}(V)$. Então $p_T(T) = 0$, onde $p_T(t) \in K[t]$ é um polinômio característico de T.

Demonstração. Basta provar que $\forall v \in V : p_T(T)(v) = 0$. Seja $v \in V$. Consideremos:

$$m_{T,v}(t) = t^m + \alpha_{m-1}t^{m-1} + \cdots + \alpha_1t + \alpha_0$$

o polinômio mônico de menor grau tal que $m_{T,v}(T)(v) = 0$. Então $B_1 = \{v, T(v), \dots, T^{m-1}(v)\}$ é linearmente independente. Seja W o subespaço gerado por ele. Note que W é T-invariante e ainda:

$$[T \upharpoonright_{W}]_{B_{1}} = \begin{pmatrix} 0 & 0 & \dots & 0 & -\alpha_{0} \\ 1 & 0 & \dots & 0 & -\alpha_{1} \\ 0 & 1 & \dots & 0 & -\alpha_{2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & -\alpha_{m-1} \end{pmatrix}$$

Então, pelo Exercício 18 da lista 1, segue que:

$$p_{T\upharpoonright_W}(t) = t^m + \alpha_{m-1}t^{m-1} + \ldots + \alpha_1t + \alpha_0.$$

Aplicando essa função a v segue:

$$p_{T\upharpoonright_W}(T)(v)=m_{T,v}(T)(v)=0.$$

Para concluir que $p_T(T)(v)=0$, notamos que $p_T(t)=p_{T\upharpoonright W}(t)\cdot p_{\bar{T}}(t)$, em que \bar{T} é o operador induzido em V/W.

Corolário 4.31. Se $A \in M_n(K)$ então $p_A(A) = 0$, onde $p_A(t) = det(tI - A)$.

Exemplo 4.32. Considere a matriz

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

Então temos que $p_A(t) = t^2 - (a+d)t + (ad-bc)$ e também

$$\begin{split} P_A(A) &= A^2 - (a+d)A + (ad-bc)I \\ &= \begin{pmatrix} a^2 + bc & ab + ad \\ ac + dc & bc + d^2 \end{pmatrix} - \begin{pmatrix} a^2 + ad & ab + bd \\ ac + dc & ad + d^2 \end{pmatrix} + det(A)I \\ &= \begin{pmatrix} bc - ad & 0 \\ 0 & bc - ad \end{pmatrix} + \begin{pmatrix} ad - bc & 0 \\ 0 & ad - bc \end{pmatrix} = 0. \end{split}$$

Teorema 4.33 (Teorema da Cayley-Hamilton ao Avesso). Se V é espaço de dimensão finita e $T \in L(V)$, então todo polinômio irredutível que divide p_T também divide m_T .

Demonstração. Faremos a demonstração por indução na dimensão de V. Suponhamos o lema válido para $\dim(V) < n$. Seja V espaço vetorial tal que $\dim(V) = n$ e seja $T \in L(V)$ e seja p um polinômio irredutível que divide p_T . Se V = 0, é fácil. Senão, então tome um $v \neq 0$ qualquer. Consideremos:

$$\mathbf{m_{T,v}}(\mathbf{t}) = \mathbf{t^m} + \alpha_{\mathrm{m-1}}\mathbf{t^{\mathrm{m-1}}} + \cdots + \alpha_{1}\mathbf{t} + \alpha_{0},$$

o polinômio mônico de menor grau tal que $m_{T,v}(T)(v) = 0$. Então $B_1 = \{v, T(v), \dots, T^{m-1}(v)\}$ é linearmente independente. Seja W o subespaço gerado por ele. Note que W é T-invariante e ainda:

$$[T \upharpoonright_{W}]_{B_{1}} = \begin{pmatrix} 0 & 0 & \dots & 0 & -\alpha_{0} \\ 1 & 0 & \dots & 0 & -\alpha_{1} \\ 0 & 1 & \dots & 0 & -\alpha_{2} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & -\alpha_{m-1} \end{pmatrix}$$

Então, pelo Exercício 18 da lista 1, segue que:

$$\mathrm{p_{T}}_{\mathsf{I}_{\mathbf{W}}}(\mathsf{t}) = \mathsf{t}^{\mathsf{m}} + lpha_{\mathsf{m}-1}\mathsf{t}^{\mathsf{m}-1} + \ldots + lpha_{1}\mathsf{t} + lpha_{0}.$$

Além disso, vendo a definição de m_{T,v}, é fácil ver que:

$$m_{T \upharpoonright_W}(t) = t^m + \alpha_{m-1}t^{m-1} + \ldots + \alpha_1t + \alpha_0.$$

Sendo $\overline{T} \in L(V/W)$ o operador induzido, temos $p_T = p_{T \upharpoonright_W} p_{\overline{T}}$ e $m_{T \upharpoonright_W} \mid m_T$ e $m_{\overline{T}} \mid m_T$. Assim, como $p \mid p_T$, então $p \mid p_{T \upharpoonright_W}$ ou $p \mid p_{\overline{T}}$.

- Se p | $p_{T \upharpoonright W}$, como $p_{T \upharpoonright W} = m_{T \upharpoonright W}$, então p | $m_{T \upharpoonright W}$, aí p | m_{T} .
- Se p | $p_{\overline{T}}$, então, por hipótese de indução, temos p | $m_{\overline{T}}$, aí p | $m_{\overline{T}}$.

4.6 Decomposições Primárias

Teorema 4.34 (Decomposição Primária Geral). Seja V um espaço vetorial sobre um corpo K tal que $\dim(V) = n < \infty$ e seja $T \in \mathcal{L}(V)$. Suponhamos que f(T) = 0 e também:

$$f = f_1 \dots f_r$$

com f_1, \ldots, f_r mutuamente primos entre si. Para cada i seja $V_i = \operatorname{Ker} \ f_i(T)$. Então:

- Cada V_i é T-invariante.
- $V = V_1 \oplus \cdots \oplus V_r$.
- \bullet Cada projeção canônica $P_i:V\to V_i$ é um polinômio de T.

Lema 4.35 (Identidade de Bézout). Se $mdc(f_1, ..., f_r) = 1$ então existem $g_1, ..., g_r \in K[t]$ tais que:

$$f_1g_1 + \cdots + f_rg_r = 1.$$

Demonstração do Teorema. Para cada i, então para $v \in V_i$ temos $f_i(T)(v) = 0$, aí $Tf_i(T)(v) = 0$, aí $f_i(T)T(v) = 0$, aí $T(v) \in V_i$; logo V_i é T-invariante. Agora para cada i seja:

$$h_i = \frac{f}{f_i}$$
.

Então $mdc(h_1,\ldots,h_r)=1,$ assim existem $g_1,\ldots,g_r\in K[t]$ tais que:

$$h_1g_1 + \cdots + h_rg_r = 1,$$

aí:

$$h_1(T)g_1(T) + \dots + h_r(T)g_r(T) = I.$$

Para $v_1, \ldots, v_r \in V$, se para todo i tivermos $v_i \in V_i$ e:

$$v_1+\cdots+v_r=0,$$

então para cada i temos:

$$h_i(T)(v_1) + \cdots + h_i(T)(v_r) = 0,$$

mas para cada j \neq i então $f_i \mid h_i$, aí $h_i(T)(v_i) = 0$; assim:

$$h_{i}(T)(v_{i}) = 0,$$

mas:

$$v_i = h_1(T)g_1(T)(v_i) + \dots + h_r(T)g_r(T)(v_i),$$

e para cada $j \neq i$ temos $f_i \mid h_i$, aí $h_i(T)(v_i) = 0$; assim:

$$v_{i} = h_{i}(T)g_{i}(T)(v_{i}) = 0;$$

portanto:

$$v_1 = \cdots = v_r = 0.$$

Para todo $v \in V$ então:

$$v = h_1(T)g_1(T)(v) + \cdots + h_r(T)g_r(T)(v),$$

e para cada i temos:

$$f_i(T)h_i(T)g_i(T)(v) = f(T)g_i(T)(v) = 0,$$

aí:

$$h_i(T)g_i(T)(v) \in V_i;$$

logo:

$$V = V_1 \oplus \cdots \oplus V_r$$

e, para cada i, a função $h_i(T)g_i(T)$ é a projeção canônica de V em V_i .

Teorema 4.36 (Decomposição Primária para Minimais). Seja V um espaço vetorial sobre um corpo K tal que $\dim(V) = n < \infty$ e seja $T \in \mathcal{L}(V)$, e seja:

$$\mathbf{m}_T = \mathbf{p}_1^{k_1} \dots \mathbf{p}_r^{k_r},$$

 $\operatorname{com} p_1 \dots, p_r$ irredutíveis e mutuamente primos entre si. Para cada i seja $V_i = \operatorname{Ker} \ p_i(T)^{k_i}$. Então:

- $\bullet \ {\rm Cada} \ {\rm V_i}$ é T-invariante.
- $V = V_1 \oplus \cdots \oplus V_r$.
- \bullet Cada projeção canônica $P_i:V\to V_i$ é um polinômio de T.
- Para cada i então $m_{T \upharpoonright V_i} = p_i^{k_i}$.

Demonstração. Por definição temos $m_T(T)=0.$ Logo, pelo teorema da decomposição primária geral, temos os três primeiros itens. Agora considere $T_i \coloneqq T \upharpoonright_{V_i}$ para cada $i=1,\ldots,r$. Temos que $p_i(T_i)^{k_i}=0.$ Então segue que $m_{T_i} \mid p_i^{k_i}$, ou seja, $m_{T_i}=p_i^{m_i}$, onde $m_i \le k_i$. Consideremos:

$$g=p_1^{k_1}\dots p_i^{m_i}\dots p_r^{k_r}.$$

Para $j \neq i$ e para $v \in V_j$, então $p_j^{k_j}(v) = 0$ e portanto g(T)(v) = 0. Se $v \in V_i$ então $p_i^{m_i}(T)(v) = 0$ e g(T)(v) = 0. Assim, como $V = V_1 \oplus \cdots \oplus V_r$, concluímos que g(T) = 0. Isso implica que $m_T \mid g$, aí $p_i^{k_i} \mid p_i^{m_i}$, aí $k_i \leq m_i$, assim $m_i = k_i$, aí $m_{T_i} = p_i^{k_i}$.

Teorema 4.37 (Decomposição Primária para Característicos). Seja V um espaço vetorial sobre um corpo K tal que $\dim(V) = n < \infty$ e seja $T \in \mathcal{L}(V)$, e seja:

$$p_T=p_1^{k_1}\dots p_r^{k_r},$$

 $com\ p_1\dots,p_r\ irredutíveis\ e\ mutuamente\ primos\ entre\ si.\ Para\ cada\ i\ seja\ V_i=Ker\ p_i(T)^{k_i}.\ Ent\~ao:$

- Cada V_i é T-invariante.
- $\bullet \ V = V_1 \oplus \cdots \oplus V_r.$
- Cada projeção canônica $P_i: V \to V_i$ é um polinômio de T.
- $\bullet \,$ Para cada i então $p_{T \upharpoonright_{V_i}} = p_i^{k_i}.$

Demonstração. Pelo teorema de Cayley-Hamilton temos $p_T(T)=0$. Portanto, pelo teorema da decomposição primária geral, temos os três primeiros itens. Agora considere $T_i:=T\upharpoonright_{V_i}$ para cada $i=1,\ldots,r$. Temos que $p_i(T_i)^{k_i}=0$. Então segue que $m_{T_i}\mid p_i^{k_i}$, aí, pelo teorema de Cayley-Hamilton ao avesso (Teorema 4.33), todo fator irredutível de p_{T_i} deve dividir m_{T_i} , logo ser igual a p_i . Assim $p_{T_i}=p_i^{l_i}$ para algum l_i . Entretanto, considerando bases B_i de V_i , e juntando numa base B_i de B_i 0, é fácil ver que B_i 1, B_i 2, assim B_i 3, assim B_i 4, assim B_i 5, aí pela fatoração única devemos ter B_i 6, para todo i, concluindo a demonstração.

A decomposição primária para minimais também goza de uma propriedade muito importante para o estudo da álgebra linear.

Teorema 4.38 (Unicidade da Decomposição Primária para Minimais). Seja V um espaço vetorial e seja $T \in \mathcal{L}(V)$. Suponhamos que:

$$V=U_1\oplus\cdots\oplus U_m$$

em que U_i é um subespaço T-invariante tal que $m_{T \upharpoonright U_i} = p_i^{e_i}$ e p_1, \ldots, p_m são polinômios mônicos irredutíveis distintos, e suponhamos que:

$$V=W_1\oplus\cdots\oplus W_n$$

em que W_j é um subespaço T-invariante tal que $m_{T \upharpoonright W_j} = q_j^{f_j}$ e q_1, \ldots, q_n são polinômios mônicos irredutíveis distintos. Então m=n e, depois de uma reindexação adequada, $U_k=W_k$ para todo k. Portanto $p_k=q_k$ e $e_k=f_k$ para todo k.

 $\begin{array}{ll} \textit{Demonstração}. \ \ Para \ todo \ i, \ então \ U_i \ contém \ um \ elemento \ u_i \ tal \ que \ m_{T,u_i} = p_i^{e_i}; \ assim, \ definindo \ a \ soma \ u = u_1 + \dots + u_m, \ então \ m_{T,u} = p_1^{e_1} \dots p_m^{e_m}. \ Logo \ m_T = p_1^{e_1} \dots p_m^{e_m}. \ Analogamente \ temos \ m_T = q_1^{f_1} \dots q_n^{f_n}. \end{array}$

Portanto, pela fatoração única em K[t], então m=n e, depois de uma reindexação apropriada, temos $p_k=q_k$ e $e_k=f_k$ para todo k. Para todo k, temos:

$$U_k \subseteq Ker p_k(T)^{e_k},$$

mas pela decomposição primária geral temos:

$$U_1 \oplus \cdots \oplus U_m = (\text{Ker } p_1(T)^{e_1}) \oplus \cdots \oplus (\text{Ker } p_m(T)^{e_m}),$$

aí para todo k temos $U_k={\rm Ker}\ p_k(T)^{e_k}.$ Analogamente temos $W_k={\rm Ker}\ q_k(T)^{f_k}$ para todo k. $\ \square$

4.7 Critérios de Diagonalização

Teorema 4.39. Um operador $T \in \mathcal{L}(V)$ é diagonalizável se, e somente se:

$$m_T(t) = (t - \lambda_1) \dots (t - \lambda_r)$$

com $\lambda_i \neq \lambda_i$ sempre que $i \neq j$.

Demonstração. A ida já foi provada no corolário 4.15, então vamos mostrar apenas a volta. Pelo teorema da decomposição primária geral, sendo $V_i = \operatorname{Ker} (T - \lambda_i I)$ para todo i, então cada V_i é T-invariante e $V = V_1 \oplus \ldots \oplus V_r$, aí para todo i temos $T \upharpoonright_{V_i} = \lambda_i I$, aí $V_i \subseteq V_T(\lambda_i)$; logo T é diagonalizável.

Considere $\{T_i: i \in I\} \subseteq \mathcal{L}(V)$. Em que condições os operadores T_i podem ser diagonalizados simultaneamente, ou seja, existe base B de V tal que para todo $i \in I$ a matriz $[T_i]_B$ seja diagonal?

Teorema 4.40. Um conjunto $\{T_i: i \in I\}$ pode ser diagonalizado simultaneamente se, e somente se cada T_i é diagonalizável e $T_iT_j=T_jT_i$ para todo $i,j \in I$.

Demonstração. Mostraremos por indução na dimensão. Suponhamos que o teorema é válido para espaços de dimensão menor que n. Seja V um espaço tal que dim(V) = n e seja $\mathcal F$ um conjunto de operadores que comutam um com outro. Se todo elemento de $\mathcal F$ é múltiplo da identidade, então acaba. Caso contrário, existe um $T \in \mathcal F$ que não é múltiplo da identidade. Sejam c_1, \ldots, c_k os autovalores de T. Para i seja $W_i = \mathrm{Ker}(T-c_iI)$. Então, como os elementos de $\mathcal F$ comutam um com outro, então W_i é invariante para todo elemento de $\mathcal F$. Para cada $U \in \mathcal F$, então m_U é produto de fatores lineares distintos, aí, como $m_{U \upharpoonright W_i} \mid m_U$, então $m_{U \upharpoonright W_i}$ é produto de fatores lineares distintos, aí $U \upharpoonright W_i$ é diagonalizável. Como $\dim(W_i) < n$, então existe uma base B_i tal que para todo $U \in \mathcal F$ a matriz $[U \upharpoonright W_i]_{B_i}$ seja diagonal. Portanto $B = B_1 \cup \cdots \cup B_k$ é a base que buscamos. \square

4.8 Triangularização de Matrizes

4.9 Decomposições Cíclicas

O seguinte teorema mostra como podemos decompor um espaço vetorial anulável por uma potência de polinômio irredutível em subespaços cíclicos.

Teorema 4.41 (Decomposição Cíclica de Espaços Primários). Seja V um espaço vetorial com dimensão finita e seja $T \in \mathcal{L}(V)$ tal que $m_T = p^e$, em que p é um polinômio irredutível. Então V é uma soma direta:

$$V = Z(v_1, T) \oplus \cdots \oplus Z(v_n, T)$$

de subespaços cíclicos com anuladores $m_{T,v_i}=p^{e_i}$, que podem ser arranjados em ordem decrescente:

$$e=e_1\geq e_2\geq \cdots \geq e_n.$$

Demonstração. Seja $v_1 \in V$ um vetor com anulador igual a polinômio minimal de T, ou seja:

$$m_{T,v_1} = m_T = p^e$$
.

Tal elemento deve existir pois $m_{T,v} \mid m_T$ para todo $v \in V$ e se ninguém tiver anulador igual a $p(t)^e$, então $p(t)^{e-1}$ anulará V.

Se mostrarmos que $Z(v_1,T)$ possui complemento T-invariante, ou seja, $V=Z(v_1,T)\oplus S_1$ para algum subespaço T-invariante S_1 , então, como S_1 tem dimensão finita sobre K, ao considerarmos $T\upharpoonright_{S_1}$, podemos repetir o processo para obter:

$$V = Z(v_1, T) \oplus Z(v_2, T) \oplus S_2$$

em que $m_{T,v_i} = p^{e_i}$. Podemos continuar esta decomposição:

$$V = Z(v_1,T) \oplus Z(v_2,T) \oplus \cdots \oplus Z(v_n,T) \oplus S_n$$

enquanto $S_n \neq 0$. Mas a sequência ascendente de subespaços T-invariantes:

$$Z(v_1,T) \subseteq Z(v_1,T) \oplus Z(v_2,T) \subseteq \dots$$

deve terminar pois a sequência das dimensões é estritamente crescente e V tem dimensão finita, assim existe um inteiro n tal que $S_n=0$, fornecendo-nos a decomposição buscada.

Seja $v=v_1$. A soma direta de subespaços T-invariantes $V_1=Z(v,T)\oplus 0$ claramente existe. Suponhamos que a soma direta de subespaços T-invariantes:

$$V_k = Z(v,T) \oplus W_k$$

exista. Afirmamos que, se $V_k \neq V$, então é possível encontrar um subespaço T-invariante W_{k+1} que contenha propriamente W_k e para o qual a soma direta $V_{k+1} = Z(v,T) \oplus W_{k+1}$ exista. Esta processo deve também terminar após um número finito de passos, fornecendo-nos uma decomposição em soma direta de subespaços T-invariantes:

$$V = Z(v, T) \oplus W$$

como desejado.

Se $V_k \neq V$, então seja $u \in V \setminus V_k$, aí o polinômio de menor grau r tal que $r(T)(u) \in V_k$ deve ser p^f para algum $f \leq e$. Além disso, como $u \notin V_k$, então f > 0. Assim existem $a(t) \in K[t]$ e $w \in W_k$ tais que:

$$p(T)^f(u) = a(T)(v) + w.$$

Logo:

$$0 = p(T)^e(u) = p(T)^{e-f}p(T)^f(u) = p(T)^{e-f}(a(T)(v) + w) = p(T)^{e-f}a(T)(v) + p(T)^{e-f}(w).$$

Como $Z(v,T) \cap W_k = 0$ então $p(T)^{e-f}a(T)(v) = 0$, aí $p^e \mid p^{e-f}a$, aí $p^f \mid a$, aí existe $\alpha(t) \in K[t]$ tal que $a = p^f \alpha$, assim:

$$p(T)^f(u) = a(T)(v) + w = p(T)^f\alpha(T)(v) + w,$$

aí:

$$p(T)^f(u - \alpha(T)(v)) \in W_k.$$

Assim seja:

$$W_{k+1} = W_k + Z\left(u - \alpha(T)(v), T\right).$$

Para $x \in Z(v,T) \cap W_{k+1}$, então existem $f(t) \in K[t]$ e $g(t) \in K[t]$ e $w \in W_k$ tais que:

$$x = f(T)(v) = w + g(T)(u - \alpha(T)(v)),$$

aí:

$$g(T)(u) = (f - g\alpha)(T)(v) - w \in V_k$$

aí $p^f \mid g$, aí:

$$g(T)(u - \alpha(T)(v)) \in W_k$$

aí:

$$x\in Z(v,T)\cap W_k,$$

aí x = 0. Logo a soma direta de subespaços T-invariantes:

$$V_{k+1} = Z(v,T) \oplus W_{k+1}$$

existe.

A decomposição cíclica de espaços primários, assim como a decomposição primária para minimais, goza da propriedade da unicidade.

Teorema 4.42 (Unicidade da Decomposição Cíclica de Espaços Primários). Seja V um espaço vetorial e seja $T \in \mathcal{L}(V)$. Suponhamos que V é uma soma direta:

$$V = Z(u_1, T) \oplus \cdots \oplus Z(u_m, T),$$

em que $m_{T,u_i} = p_i^{e_i}$ e também:

$$e_1 \ge e_2 \ge \cdots \ge e_m$$

e também suponhamos que V é uma soma direta:

$$V = Z(v_1, T) \oplus \cdots \oplus Z(v_n, T),$$

em que $m_{T,v_j}=q_i^{f_j}$ e também:

$$f_1 \ge f_2 \ge \cdots \ge f_n$$
.

Então $\mathbf{m}=\mathbf{n}$ e
 $\mathbf{p}=\mathbf{q}$ e $\mathbf{e}_{\mathbf{k}}=\mathbf{f}_{\mathbf{k}}$ para todo k.

Lema 4.43. Seja V um espaço vetorial e $T \in \mathcal{L}(V)$ e seja p(t) um polinômio irredutível.

• Se p(T) = 0, então V é um espaço vetorial sobre o corpo K[t]/p(t)K[t] com a multiplicação definida por:

$$\overline{\mathbf{r}}(\mathbf{v}) = \mathbf{r}(\mathbf{T})\mathbf{v}$$

para quaisquer $r(t) \in K[t]$ e $v \in V$.

• Para qualquer subespaço T-invariante W de V o conjunto:

$$W \cap Ker \ p(T) = \{v \in W : p(T)(v) = 0\}$$

é um subespaço T-invariante de V e se $V = U \oplus W$, então:

$$Ker p(T) = (U \cap Ker p(T)) \oplus (W \cap Ker p(T)).$$

Demonstração do Teorema. Primeiro notemos que $m_T = p_1^{e_1}$ e $m_T = q_1^{f_1}$. Assim p = q e $e_1 = f_1$. Agora mostraremos que m = n. De acordo com o lema anterior, sendo W = Kerp(T), então:

$$W = (W \cap Z(u_1, T)) \oplus \cdots \oplus (W \cap Z(u_m, T))$$

e também:

$$W = \left(W \cap Z(v_1, T)\right) \oplus \cdots \oplus \left(W \cap Z(v_n, T)\right).$$

Como p(T)[W] = 0, então W é um espaço vetorial sobre o corpo L = K[t]/p(t)K[t] e aí cada uma das duas decomposições expressa W como uma soma direta de subespaços de dimensão 1. Logo $m = \dim_L(W) = n$.

Finalmente mostraremos que os expoentes e_i e f_i são iguais usando indução em e_1 . Se $e_1=1$, então $e_i=1$ para todo i e como $f_1=e_1$, temos também $f_i=1$ para todo i. Suponhamos que o resultado seja válido para $e_1 \leq k-1$ e seja $e_1=k$. Escreva:

$$(e_1, \ldots, e_n) = (e_1, \ldots, e_s, 1, \ldots, 1), \quad e_s > 1$$

e

$$(f_1,\ldots,f_n)=(f_1,\ldots,f_t,1,\ldots,1),\quad f_t>1.$$

Então:

$$p(T)[V] = p(T)[Z(u_1, T)] \oplus \cdots \oplus p(T)[Z(u_m, T)]$$

e

$$p(T)[V] = p(T)[Z(v_1, T)] \oplus \cdots \oplus p(T)[Z(v_n, T)],$$

mas $p(T)[Z(v_1, T)]$ é um subespaço cíclico anulável por $p(T)^{e_1-1}$, aí pela hipótese de indução temos:

$$s = t e e_1 = f_1, \dots, e_s = f_s,$$

concluindo assim a demonstração da unicidade.

Agora podemos juntar a decomposição primária para minimais e a decomposição cíclica para espaços primários e obter a decomposição cíclica em divisores elementares.

Teorema 4.44 (Decomposição Cíclica em Divisores Elementares). Seja V um espaço vetorial de dimensão finita e seja $T \in \mathcal{L}(V)$. Se o polinômio minimal é dado por:

$$\mathrm{m}_T=\mathrm{p}_1^{e_1}\ldots\mathrm{p}_n^{e_n},$$

em que os p_i são polinômios irredutíveis mônicos distintos sobre K, então V pode ser decomposto em uma soma direta:

$$V = V_1 \oplus V_n$$
,

em que:

$$V_i = \operatorname{Ker} \ p_i(T)^{e_i}$$

é um subespaço T-invariante tal que $m_{T \upharpoonright V_i} = p_i^{e_i}$. Finalmente, cada subespaço T-invariante V_i pode ser escrito como uma soma direta de submódulos cíclicos, de modo que:

$$V = \left(Z(v_{1,1},T) \oplus \cdots \oplus Z(v_{1,k_1},T)\right) \oplus \left(Z(v_{n,1},T) \oplus \cdots \oplus Z(v_{n,k_n},T)\right),$$

em que $m_{T,v_{i,j}} = p_i^{e_{i,j}}$ e os termos de cada decomposição cíclica podem ser arranjados de modo que para cada i tenhamos:

$$e_i = e_{i,1} \ge e_{i,2} \ge \cdots \ge e_{i,k_i}$$

Além disso, juntando os teoremas das unicidades da decomposição primária para minimais e da decomposição cíclica para espaços primários, então temos a unicidade da decomposição cíclica em divisores elementares.

Teorema 4.45 (Unicidade da Decomposição Cíclica em Divisores Elementares). Seja V um espaço vetorial e seja $T \in \mathcal{L}(V)$. Suponhamos que V possa ser escrito como uma soma direta:

$$V = \left(Z(u_{1,1},T) \oplus \cdots \oplus Z(u_{1,k_1},T)\right) \oplus \cdots \oplus \left(Z(u_{m,1},T) \oplus \cdots \oplus Z(u_{m,k_m},T)\right)$$

em que $m_{T,u_{i,i}} = p_i^{e_{i,j}}$ e:

$$e_{i,1} \geq e_{i,2} \geq \cdots \geq e_{i,k_i},$$

e suponhamos que V possa ser escrito como uma soma direta:

$$V = \Big(Z(v_{1,1},T) \oplus \cdots \oplus Z(v_{1,l_1},T)\Big) \oplus \cdots \oplus \Big(Z(v_{n,1},T) \oplus \cdots \oplus Z(v_{n,l_n},T)\Big)$$

em que $m_{T,v_{i,j}} = q_i^{f_{i,j}}$ e:

$$f_{i,1} \geq f_{i,2} \geq \cdots \geq f_{i,l_i}.$$

Então:

- ullet O número de somandos é o mesmo em ambas as decomposições; de fato, m=n e, depois de uma reindexação apropriada, $k_u=l_u$ para todo u.
- ullet Os subespaços primários são os mesmos; isto é, depois de uma reindexação apropriada, para todo i temos $p_i=q_i$ e:

$$Z(u_{i,1},T)\oplus\cdots\oplus Z(u_{i,k_i},T)=Z(v_{i,1},T)\oplus\cdots\oplus Z(v_{i,l_i},T).$$

Definição 4.46. O multiconjunto dos polinômios $p_i^{e_{i,j}}$ é unicamente determinado pela decomposição cíclica em divisores elementares, assim ele é chamado o multiconjunto dos **divisores elementares**.

A forma mais usual de se apresentar uma decomposição em subespaços cíclicos é a decomposição cíclica em fatores invariantes.

Teorema 4.47 (Decomposição Cíclica em Fatores Invariantes). Seja V um espaço vetorial de dimensão finita e seja $T \in \mathcal{L}(V)$. Então V pode ser escrito como uma soma direta:

$$V = Z(v_1,T) \oplus \cdots \oplus Z(v_r,T)$$

em que $m_{T,v_i} = p_i$ e também:

$$p_r | p_{r-1} | \cdots | p_2 | p_1.$$

Por causa da unicidade da decomposição cíclica em divisores elementares, então temos a unicidade da decomposição cíclica em fatores invariantes

Teorema 4.48 (Unicidade da Decomposição Cíclica em Fatores Invariantes). Seja V um espaço vetorial e seja $T \in \mathcal{L}(V)$. Suponhamos que V possa ser escrito como uma soma direta:

$$V = Z(u_1,T) \oplus \cdots \oplus Z(u_r,T)$$

em que $m_{T,u_i} = p_i$ e também:

$$p_r \mid p_{r-1} \mid \cdots \mid p_2 \mid p_1,$$

e que V possa ser escrito como uma soma direta:

$$V = Z(v_1,T) \oplus \cdots \oplus Z(v_s,T)$$

em que $m_{T,v_i} = q_j$ e também:

$$q_s \mid q_{s-1} \mid \cdots \mid q_2 \mid q_1.$$

Então m=n e também $p_k=q_k$ para todo k.

Definição 4.49. A sequência dos polinômios p_i é unicamente determinado pela decomposição cíclica em fatores invariantes, assim ela é chamada a sequência dos **fatores invariantes**.

CAPÍTULO 4. FORMAS CANÔNICAS

4.9. DECOMPOSIÇÕES CÍCLICAS

Capítulo 5

Espaços com Produto Interno

Neste capítulo, convencionaremos que K é \mathbb{R} ou \mathbb{C} .

5.1 Definições e Exemplos

Definição 5.1. Um espaço vetorial V é dito um **espaço com produto interno** se estiver munida com uma função:

$$\begin{array}{ccc} V \times V & \to & K \\ (u,v) & \mapsto & \langle u,v \rangle \end{array}$$

tal que:

- $\langle \alpha \mathbf{u} + \beta \mathbf{v}, \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle + \beta \langle \mathbf{v}, \mathbf{w} \rangle$ para quaisquer $\alpha, \beta \in \mathbf{K}$ e $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{V}$.
- $\overline{\langle u,v\rangle}=\langle v,u\rangle$ para quaisquer $u,v\in V.$
- $\langle v, v \rangle \ge 0$ para $v \in V$.
- $\langle v, v \rangle = 0 \Rightarrow v = 0 \text{ para } v \in V.$

Exemplo 5.2. O exemplo principal é $V=K^n$, em que, tomando $u=(\alpha_1,\ldots,\alpha_n)$ e $v=(\beta_1,\ldots,\beta_n)$, definimos:

$$\langle u,v\rangle=\alpha_1\overline{\beta_1}+\cdots+\alpha_n\overline{\beta_n}.$$

Exemplo 5.3. Podemos considerar $V = \mathcal{M}_n(K) \cong K^{n^2}$. Com base no exemplo anterior, definimos:

$$\langle A,B\rangle = \sum_{i,j} a_{i,j} \overline{b_{i,j}}.$$

Para toda $A = (a_{i,j}) \in \mathcal{M}_n(K)$, definimos:

$$A^* = (\overline{a_{i,i}}),$$

e

$$\operatorname{tr}(A) = a_{1,1} + \dots + a_{n,n},$$

então podemos ver que:

$$\langle A, B \rangle = tr(AB^*).$$

Exemplo 5.4. Podemos tomar $V = \mathcal{C}[a, b]$, o conjunto das funções contínuas de [a, b] em \mathbb{C} , e para $f, g \in V$ definirmos:

$$\langle f, g \rangle = \int_a^b f(t) \overline{g(t)} \, dt.$$

Exemplo 5.5. Seja $T \in \mathcal{L}(U, V)$ bijetora. Suponhamos que V tenha um produto interno. Se $u_1, u_2 \in U$, definimos:

$$\langle \mathbf{u}_1, \mathbf{u}_2 \rangle_{\mathbf{U}} = \langle \mathbf{T}(\mathbf{u}_1), \mathbf{T}(\mathbf{u}_2) \rangle_{\mathbf{V}}.$$

Suponhamos que U tenha uma base $B=(e_1,\ldots,e_n).$ Então existe uma $T:U\to K^n$ tal que:

$$T(e_i) = (0, \dots, 1, \dots, 0),$$

em que a entrada i vale 1 e as outras valem 0. Sendo:

$$\mathbf{u} = \alpha_1 \mathbf{e}_1 + \dots + \alpha_n \mathbf{e}_n, \quad \mathbf{v} = \beta_1 \mathbf{e}_1 + \dots + \beta_n \mathbf{e}_n,$$

então:

$$\langle u,v\rangle_U=\langle T(u),T(v)\rangle_V=\sum_{i=1}^n\alpha_i\overline{\beta_i}.$$

Definição 5.6. Se $\dim(V) = n < \infty$ e $K = \mathbb{R}$, então chamamos V de **euclidiano**.

Se $\dim(V) = n < \infty$ e $K = \mathbb{C}$, então chamamos V de **unitário**.

Definição 5.7. Se V é um espaço com produto interno e V é um espaço completo em relação à norma $\|v\| = \sqrt{\langle v, v \rangle}$, então V se chama um **espaço de Hilbert**.

5.2 Matriz de Gramm

Definição 5.8. Seja V um espaço com produto interno. Sejam $v_1, \ldots, v_k \in V$. Definimos:

$$\mathrm{G}(\mathrm{v}_1,\ldots,\mathrm{v}_\mathrm{n}) = egin{pmatrix} \langle \mathrm{v}_1,\mathrm{v}_1
angle & \ldots & \langle \mathrm{v}_1,\mathrm{v}_\mathrm{n}
angle \\ \ldots & \ldots & \ldots \\ \langle \mathrm{v}_\mathrm{n},\mathrm{v}_1
angle & \ldots & \langle \mathrm{v}_\mathrm{n},\mathrm{v}_\mathrm{n}
angle \end{pmatrix}.$$

Nesse caso temos:

$$G(v_1, ..., v_n)^* = G(v_1, ..., v_n).$$

Toda matriz A que satisfaz $A^* = A$ é chamada **Hermitiana**.

Proposição 5.9. Seja $B=(e_1,\ldots,e_n)$ uma base de V. Então $G(e_1,\ldots,e_n)$ é inversível.

Demonstração. Primeiro observemos que para quaisquer $u, v \in V$, com:

$$[\mathbf{u}]_{\mathbf{B}} = (\alpha_1, \dots, \alpha_n), \quad [\mathbf{v}]_{\mathbf{B}}^* = (\beta_1, \dots, \beta_n)$$

então:

$$\langle \mathbf{u}, \mathbf{v} \rangle = [\mathbf{u}]_{\mathbf{B}} \mathbf{A}[\mathbf{v}]_{\mathbf{B}}^*.$$

De fato:

$$\langle u,v\rangle = \sum_{i,j} \alpha_i \overline{\beta_j} \langle e_i,e_j\rangle,$$

aí:

$$\begin{split} [u]_B A [v]_B^* &= & (\alpha_1, \ldots, \alpha_n) \begin{pmatrix} \langle e_1, e_1 \rangle & \ldots & \langle e_1, e_n \rangle \\ \ldots & \ldots & \ldots \\ \langle e_n, e_1 \rangle & \ldots & \langle e_n, e_n \rangle \end{pmatrix} \begin{pmatrix} \overline{\beta_1} \\ \vdots \\ \overline{\beta_n} \end{pmatrix} \\ &= & \begin{pmatrix} \alpha_1 \langle e_1, e_1 \rangle + \cdots + \alpha_n \langle e_n, e_1 \rangle \\ \vdots \\ \alpha_1 \langle e_1, e_n \rangle + \cdots + \alpha_n \langle e_n, e_n \rangle \end{pmatrix} \begin{pmatrix} \overline{\beta_1} \\ \vdots \\ \overline{\beta_n} \end{pmatrix} \end{split}$$

Se A não for inversível, então existe $u \neq 0$ tal que $[u]_B A = 0$. Neste caso, $\langle u, u \rangle = [u]_B A[u]_B^* = 0$, aí u = 0, contradição.

П

Se $B=(e_1,\ldots,e_n)$ é uma base de V e $A=G(e_1,\ldots,e_n)$ então para todo $v\in V$ temos:

$$[v]_B A [v]_B^* \geq 0$$

e a igualdade ocorre se e somente se v = 0.

Definição 5.10. Uma matriz Hermitiana A é dita:

- Positiva semidefinitiva se e só se para todo $x \in K^n$ temos $xAx^* \ge 0$.
- Positiva definitiva se e só se para todo $x \in K^n$ tal que $x \neq 0$ temos $xAx^* > 0$.

Proposição 5.11. Seja $A \in \mathcal{M}_n(K)$ uma matriz Hermitiana positiva definitiva. Seja V um espaço vetorial com base $B = (e_1, \dots, e_n)$. Definamos, para $u, v \in V$, o seguinte:

$$\langle \mathbf{u}, \mathbf{v} \rangle = [\mathbf{u}]_{\mathbf{B}} \mathbf{A}[\mathbf{v}]_{\mathbf{B}}^*.$$

Então $\langle u, v \rangle$ é um produto interno.

5.3 Espaços Normados

Definição 5.12. Um espaço vetorial V é dito um **espaço normado** se estiver munido com uma função:

$$\begin{array}{ccc} V & \to & \mathbb{R} \\ v & \mapsto & \|v\| \end{array}$$

que satisfaça as seguintes propriedades:

- $\|\mathbf{v}\| \ge 0$ para $\mathbf{v} \in \mathbf{V}$.
- $\|\mathbf{v}\| = 0 \Rightarrow \mathbf{v} = 0$ para $\mathbf{v} \in \mathbf{V}$.
- $\|\alpha v\| = |\alpha| \|v\|$ para $\alpha \in K$ e $v \in V$.
- $\|u + v\| < \|u\| + \|v\|$ para $u, v \in V$.

Proposição 5.13 (Desigualdade de Cauchy-Bunyakovski-Schwarz). Seja V um espaço com produto interno. Então para quaisquer $u, v \in V$ temos:

$$|\langle u, v \rangle| \le ||u|| \cdot ||v||.$$

Demonstração. Se v=0, então é fácil. Se $v\neq 0$, então ||v||>0, aí para quaisquer $\alpha,\beta\in K$ temos:

$$\begin{array}{lcl} 0 & \leq & \langle \alpha u - \beta v, \alpha u - \beta v \rangle \\ & = & \alpha \overline{\alpha} \langle u, u \rangle + \beta \overline{\beta} \langle v, v \rangle - \alpha \overline{\beta} \langle u, v \rangle - \beta \overline{\alpha} \langle v, u \rangle \\ & = & |\alpha|^2 \|u\|^2 + |\beta|^2 \|v\|^2 - \left(\alpha \overline{\beta} \langle u, v \rangle + \overline{\alpha} \overline{\beta} \langle u, v \rangle\right). \end{array}$$

Em particular, fazendo $\alpha = \|\mathbf{v}\|$ e $\beta = \langle \mathbf{u}, \mathbf{v} \rangle$, então:

$$\begin{split} & \left\|v\right\|^4 \!\left\|u\right\|^2 + \left|\langle u,v\rangle\right|^2 \!\left\|v\right\|^2 - 2 \|v\|^2 \langle u,v\rangle^2 \geq 0 \\ \Rightarrow & \left\|v\right\|^2 \!\left\|u\right\|^2 - \left|\langle u,v\rangle\right|^2 \geq 0 \\ \Rightarrow & \left(\left\|v\right\| \left\|u\right\|\right)^2 \geq \left|\langle u,v\rangle\right|^2. \end{split}$$

Proposição 5.14. Seja V um espaço com produto interno e definamos $\|v\| = \sqrt{\langle v, v \rangle}$. Então $\|v\|$ é uma norma.

Demonstração. Provaremos apenas a última propriedade requerida para espaço normado, deixando as outras para o leitor. Sabemos que para $z \in \mathbb{C}$ então $z + \overline{z} \le 2|z|$. De fato, sendo z = a + bi, então $|z| = \sqrt{a^2 + b^2} \ge a$, aí $z + \overline{z} = 2a \le 2|z|$. Agora temos:

$$\begin{aligned} \left| u + v \right|^2 &= \left| \langle u + v, u + v \rangle \right| \\ &= \left\| u \right\|^2 + \left\| v \right\|^2 + \left(\langle u, v \rangle + \overline{\langle u, v \rangle} \right) \\ &\leq \left\| u \right\|^2 + \left\| v \right\|^2 + 2 \left| \langle u, v \rangle \right| \\ &\leq \left\| u \right\|^2 + \left\| v \right\|^2 + 2 \|u\| \cdot \|v\| \\ &= \left(\|u\| + \|v\| \right)^2. \end{aligned}$$

5.4 Ortogonalidade

Definição 5.15. Dois vetores $u, v \in V$ são ditos **ortogonais** se e só se $\langle u, v \rangle = 0$.

Uma família $(v_i)_{i \in I}$ de vetores é chamado **ortogonal** se e só se para quaisquer $i, j \in I$ tais que $i \neq j$ os vetores v_i e v_j forem ortogonais.

Uma família $(v_i)_{i \in I}$ de vetores é chamado **ortonormal** se e só se é ortogonal e para todo $i \in I$ temos $||v_i|| = 1$.

Proposição 5.16. Se $(v_i)_{i \in I}$ é uma família ortogonal de vetores $n\tilde{a}o$ nulos, então a família é L.I.

Demonstração. Para conjunto finito $J \subseteq I$ e para $\alpha : J \to I$, se:

$$\sum_{i \in J} \alpha_i v_i = 0,$$

então para $j \in J$ temos:

$$0 = \left\langle \sum_{\mathbf{i} \in J} lpha_{\mathbf{i}} v_{\mathbf{i}}, v_{\mathbf{j}} \right
angle = \sum_{\mathbf{i} \in J} lpha_{\mathbf{i}} \langle v_{\mathbf{i}}, v_{\mathbf{j}}
angle = lpha_{\mathbf{j}} \left\| v_{\mathbf{j}} \right\|^2,$$

mas
$$v_j \neq 0,$$
 aí $\left\|v_j\right\|^2 \neq 0,$ aí $\alpha_j = 0.$

Proposição 5.17 (Ortogonalização de Gramm-Schmidt). Para toda sequência linearmente independente (v_1, \ldots, v_k) de vetores, existe uma sequência ortogonal (u_1, \ldots, u_k) tal que $\langle v_1, \ldots, v_k \rangle = \langle u_1, \ldots, u_k \rangle$.

Demonstração. Indução sobre k.

Corolário 5.18. Todo espaço com produto interno de dimensão finita tem uma base ortonormal.

5.5 Funcionais Lineares

Proposição 5.19. Seja V um espaço com produto interno. Para $u \in V$, definimos $\varphi_u : V \to K$ assim:

$$\varphi_{\mathbf{u}}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u} \rangle.$$

Então $\varphi_{\rm u}$ é um funcional linear.

Teorema 5.20 (Teorema de Riesz). Se $\dim(V) < \infty$, então para todo $f \in V^*$ existe $u \in V$ tal que $f = \varphi_u$.

CAPÍTULO 5. ESPAÇOS COM PRODUTO INTERNO

5.5. FUNCIONAIS LINEARES

Demonstração. Seja $f \in V^*$. Escolhemos uma base ortonormal $B=(e_1,\ldots,e_n)$ em V e seja $\alpha_i=f(e_i)\in K$ para $i=1,\ldots,n$. Consideremos $u=\overline{\alpha_1}e_1+\cdots+\overline{\alpha_n}e_n$. Então para $k=1,\ldots,n$ temos:

$$\begin{array}{lcl} \varphi_u(e_k) = \langle e_k, u \rangle & = & \langle e_k, \overline{\alpha_1}e_1 + \dots + \overline{\alpha_n}e_n \rangle \\ & = & \alpha_k \langle e_k, e_k \rangle = \alpha_k = f(e_k), \end{array}$$

ou seja,
$$\varphi_u(e_k) = f(e_k)$$
; logo $\varphi_u = f$.

Observação 5.21. O teorema de Riesz não é válido para espaços com produto interno de dimensão finita. De fato, se $V = \mathcal{C}[a, b]$, então seja $x_0 \in [a, b]$ e seja $\varphi \in V^*$ dada por:

$$\varphi(\mathbf{f}) = \mathbf{f}(\mathbf{x}_0).$$

CAPÍTULO 5. ESPAÇOS COM PRODUTO INTERNO

5.5. FUNCIONAIS LINEARES

Índice

Espaço Vetorial

Base, 9

Base dual, 19

Base ordenada, 9

Dimensão, 12

Soma direta, 14

Teorema do Núcleo-Imagem, 18 Transformações Lineares, 17

Teorema de Cantor-Bernstein, 11 Transformações Lineares Isomorfismos, 18