

Conclusion

1. La modélisation bayésienne:

1. Utile pour incorporer des connaissances a priori

2. ...surtout lorsqu'on a peu de données

3. ...ou lorsqu'on a plusieurs groupes et une modélisation hiérarchique est pertinente

4. Converge vers l'approche fréquentiste lorsque la quantité de données est grande

5. Utile en ML pour avoir des prédictions avec des intervalles de crédibilité (incertitude)

6. Est faite en pratique avec des algorithmes de simulation (Monte-Carlo / Markov-Chain Monte-Carlo)

7. ... qui sont lents en grande dimension (nombre de paramètres)

2. L'approche fréquentiste:

Donne des estimations ponctuelles (ne quantifie pas l'incertitude)

2. Repose sur des algorithmes d'optimisation

3. ... qui sont rapides (relativement) et parallélisables

4. Utile pour un déploiement rapide à grande échelle (large data)

Conclusion

1. La modélisation bayésienne:

- 1. Utile pour incorporer des connaissances a priori
- 2. ...surtout lorsqu'on a peu de données
- 3. ...ou lorsqu'on a plusieurs groupes et une modélisation hiérarchique est pertinente
- 4. Converge vers l'approche fréquentiste lorsque la quantité de données est grande
- 5. Utile en ML pour avoir des prédictions avec des intervalles de crédibilité (incertitude)
- 6. Est faite en pratique avec des algorithmes de simulation (Monte-Carlo / Markov-Chain Monte-Carlo)
- 7. ... qui sont lents en grande dimension (nombre de paramètres)

2. L'approche fréquentiste:

- 1. Donne des estimations ponctuelles (ne quantifie pas l'incertitude)
- 2. Repose sur des algorithmes d'optimisation
- 3. ... qui sont rapides (relativement) et parallélisables
- 4. Utile pour un déploiement rapide à grande échelle (large data)

What can you do next?

