Consistency Protocols

Why?

- Replication
 - Reliability
 - Improving Performance
- Introduces a consistency problem.
- Solving this leads to degradation of the system performance
- Solution: Not to solve this! #ConsistencyProtocols

Overview

- 7.1 Continuous Consistency
- 7.2 Primary Based Protocols
- 7.3 Replicated Write Protocols
- 7.4 Cache Coherence Protocols
- 7.5 Implementing Client Centric Cohrency

Bounding Numerical Deviation

- Writes to a single data item x : W(x).
- Weight(W): numerical value by which X is updated.
- origin(W): First write sent to a replica server(Out of N).
- **TW[i,j]** → writes executed by server Si that originated from Sj

$$TW[i,j] = \sum \{weight(W) | origin(W) = S_j & W \in L_i \}$$

• The goal is for any time t, to let the current value Vi at server Si deviate within bounds from the actual value v(t) of x.

$$v(t) = v(0) + \sum_{k=1}^{N} TW[k,k]$$
 $v_i = v(0) + \sum_{k=1}^{N} TW[i,k]$

Bounding Numerical Deviation

• I.e we impose an upper bound δi such that we need to enforce:

$$v(t) - v_i \leq \delta_i$$

Bounding Staleness Deviation

- Many ways,
- Simple Approach:
 - Each S_k has a Real time Vector Clock(RVC_k).
 - **RVCk[i] = T(i)**: S_k has seen all writes that have been submitted to S, up to time T(i).
 - o **T(i):** time local to Si.
 - When Clocks are loosely synchronised:
 - T(k) RVC_k[i] > n
 - Pull writes after RVC_k[i] from S_i
- Unlike BND: Pull Approach Better Approach.

Bounding Ordering Deviation

- Each server local queue of writes submitted to it.
- Needs an input called maximal length.
- Queue length > maximal Length.
- Stop taking in writes and start ordering them by communicating with local servers.

"Primary" - Based Protocols

- In the case of sequential consistency, PBP standout.
- Primary: Process responsible for coordinating read and write operations on a data item x.
- 2 types based on the position of primary.
 - Remote Write Protocol.
 - Local Write Protocol.

PBP: Remote Write Protocol

W1. Write request

W2. Forward request to primary

W3. Tell backups to update

W4. Acknowledge update

W5. Acknowledge write completed

R1. Read request

R2. Response to read

PBP: Local Write Protocol

- W1. Write request
- W2. Move item x to new primary
- W3. Acknowledge write completed
- W4. Tell backups to update
- W5. Acknowledge update

- R1. Read request
- R2. Response to read

RBP: Active Replication

- Write operations can be carried out at multiple replicas instead of only one.
- An operation/update is forwarded to all replicas
- And is propagated by means of the write operation that causes the update.
- Again there is an ordering problem.

References

- Andrew S. Tanenbaum and Van Steen "Distributed Systems", PHI, Second Edition, 2014
- http://www.netlib.org/utk/lsi/pcwLSI/text/node444.html.
- Google.

Resources

• https://github.com/it-h1/7sem/DistributedSystems