On the Impact Map Calculation

You will be using the conservation of angular momentum for calculation of the impact map.

Before impact:

After impact:

Note that $m_1=m_2$ but m_1 is used to denote the mass on the stance leg and m_2 to denote the mass on the swing leg, so after the impact I have switched the indices.

Angles

The above two figures show the robot right before and after impact. Comparing the two configurations, we have:

$$egin{bmatrix} q_1^+ \ q_2^+ \ q_3^+ \end{bmatrix} = egin{bmatrix} q_2^- \ q_1^- \ q_3^- \end{bmatrix}$$

This is part of the transition map $(q^+,\dot{q}^+)=\Delta(q^-,\dot{q}^-)$.

Angular velocities

Calculation of the angular velocities after impact (i.e., \dot{q}^+) involves some physics. As discussed in class we use the method of conservation of angular momentum (as in McGeer 1998) to calculate the angular velocities after impact. Here I explain how to calculate H_a^- , that is, the angular momentum of the **whole system** about the point of impulse (denoted by o) before impact and after impact, H_a^+ .

Based on the definition of angular momentum and the figures above:

$$H_{ar{a}} = m r_{ar{o}m_1} imes \dot{r}_1^- + m r_{ar{o}m_2} imes \dot{r}_2^- + m_3 r_{ar{o}m_3} imes \dot{r}_3^-$$

and

$$H_a^+ = m r_{om_1}^+ imes \dot{r}_1^+ + m r_{om_2}^+ imes \dot{r}_2^+ + m_3 r_{om_3}^+ imes \dot{r}_3^+$$

where \dot{r}_i is the the velocity of the mass m_i in the inertial frame x-z. Note that I have substituted m for $m_1=m_2$.

Note: You can calculate $r_{\overline{o}m_i}$ as a function of q^- and $r_{om_i}^+$ as a function of q^+ based on the generate_kinematics.mlx results.

Other than H_a^+ and H_a^- you need to calculate H_b , H_c before and after impact as discussed in class. Recall that $H_{\bar{b}}^+$ is the angular momentum of the **stance** leg before the impact about the hip joint and H_b^+ is its angular momentum about the hip joint after the impact. Similarly, $H_{\bar{c}}^-$ is the angular momentum of the **torso** about the hip joint before the impact and H_c^+ is its angular momentum about the hip joint after the impact. Look at the following two figures and write down the equations for H_b and H_c before and after impact.

Before impact:

After impact:

You can then calculate the impact map from the conservation of angular momentum. Letting $H^-=[H_{\overline{a}}^-;H_{\overline{b}}^-;H_{\overline{c}}^-]$ and $H^+=[H_a^+;H_b^+;H_c^+]$, we have:

$$H^+=H^-$$

You can write the left side as $A^+\dot{q}^+$ and the right hand side as $A^-\dot{q}^-$, thus:

$$\dot{q}^{\,+} = (A^+)^{-1} A^- \dot{q}^{\,-}$$