

Pulse Shape Discrimination Using a Regular Silicon Detector

Anthony Lestone

Motivation

- TexNAAM detector
 - Targeting (α,d)
 transfer reactions
- Looking for coincidences between γ and d

Particle ID will be needed to distinguish between produced deuterons and scattered protons

Particle Identification

$\Delta E, E$

- Uses a thin and thick detector
- Requires punchthrough
 - Need very thin detector at low energies
 - 100 μm silicon has deuteron punch-through of ~4.2 MeV

Pulse Shape Discrimination (PSD)

- Single detector
- Works best with Neutron Transmutation Doped (NTD) detectors
 - Expensive
 - Maximum thickness
- We can use ordinary silicon instead

We will demonstrate that PSD with an ordinary silicon detector can distinguish protons and deuterons down to 6 MeV

Silicon Detectors

- Charged particles produce electron-hole pairs in the silicon detector
- Applied voltage drifts electrons and holes in opposite directions

Silicon Detectors

- As charges collect, a voltage signal is produced
- PSD requires that particles enter on the rear (electrically negative) side
- Pulse height ⇒ energy
- Pulse shape ⇒ range

Silicon Detectors

For a given energy, different particles have different ranges, resulting in distinct pulse shapes

Rise Time and I_{max}

Both rise time and maximum current (I_{max}) correlate to particle range

Voltage Signal Processing

Experimental Setup

- K150
- In air
- 10 MeV protons and deuterons

Micron MSD026-1500

Rise Time

- Very clear separation above 6 MeV
- Large noise in 5 MeV run kills separation
- Some separation still visible at 4 MeV

Rise Time Figure of Merit

Figure of Merit quantifies the separation of two peaks

Figure of Merit vs Energy

Maximum Current (I_{max})

Future Steps

Current Performance

- No NTD silicon necessary
 - Cheap
 - Large thickness
- Middle energy ranges
 - 5 MeV < E < 10 MeV

Future Improvements

- Algorithm adjustments could improve resolution
 - Polynomial smoothing
- Vacuum chamber
 - Shields from noise
- Lower bias voltage
 - Decrease drift velocity leading to better pulse shapes

Thank you!

Special thanks to Dr. Rogachev, Marina, and Yevgen

Questions?

Backup Slides

Alpha Particles?

Taken from Marina's slides

Comparing with Papers

Digital pulse-shape analysis with a TRACE early silicon prototype

D. Mengoni ^{a,b,*}, J.A. Dueñas ^c, M. Assié ^d, C. Boiano ^e, P.R. John ^{a,b}, R.J. Aliaga ^f, D. Beaumel ^d, S. Capra ^e, A. Gadea ^g, V. Gonzáles ^h, A. Gottardo ⁱ, L. Grassi ^{a,b}, V. Herrero-Bosch ^f, T. Houdy ^j,

I. Martel , V.V. Parkar , R. Perez-Vidal , A. Pullia , E. Sanchis ,

A. Triossi ⁱ, J.J. Valiente Dobón ⁱ

Mengoni et al. were able to get proton, deuteron, triton, and alpha separation at 4 MeV

Comparing with Papers

Isotopic identification using Pulse Shape Analysis of current signals from silicon detectors: Recent results from the FAZIA collaboration

Cover Image

