Università degli studi di Firenze

Architetture degli Elaboratori A.A. 2018/2019

A cura di Gioele Dimilta e Alberto Brogi

Indice

1. Introduzi	one	2
2. Descrizio	ne ad alto livello - C	2
2.1. Varia	abili globali	2
2.2. Strui	ture dati	3
2.3. Funz	rioni	3
2.3.1.	File	3
2.3.2.	Gestione	5
2.3.3.	Calcolo	6
2.3.4.	Algoritmi	7
2.4. Codi	ce sorgente	10
3. Descrizio	ne a basso Livello - Assembly MIPS	16
		_
3.1. Data	Segment	
	Segmentture dati	16
3.2. Strut	-	16 17
3.2. Strut 3.3. Prod	ture dati	16 17 17
3.2. Strut 3.3. Prod 3.3.1.	ture datiedure	16 17 17 17
3.2. Strut 3.3. Prod 3.3.1. 3.3.2.	ture datiedure	16 17 17 17
3.2. Strut 3.3. Proc 3.3.1. 3.3.2. 3.3.3.	ture dati edure File Gestione	16 17 17 19 20
3.2. Strut 3.3. Proc 3.3.1. 3.3.2. 3.3.3. 3.3.4.	ture dati edure File Gestione Calcolo	16 17 17 17 19 20 21

Data di consegna: 29/05/2019

1. Introduzione

Il progetto consiste nella realizzazione di un programma in linguaggio assembly MIPS che simuli la funzionalità di cifratura e decifratura di un messaggio di testo. In input vengono forniti due file, messaggio.txt e chiave.txt, che contengono rispettivamente la stringa da criptare e la sequenza di caratteri associati agli algoritmi di cifratura da applicare al messaggio. Il programma, dopo aver letto i file in input, cripterà il messaggio e memorizzerà il risultato in un file di output denominato messaggioCifrato.txt, e, successivamente, eseguirà la procedura inversa di decrittazione salvando il nuovo risultato in un altro file di output, ovvero messaggioDecifrato.txt. Di seguito è riportata una descrizione completa dell'implementazione del programma in linguaggio Assembly MIPS e C. Quest'ultimo, data la sua bassa astrazione, ha permesso uno sviluppo semplificato del programma, fornendo inoltre caratteristiche di leggibilità e convertibilità del codice.

2. Descrizione ad alto livello - C

2.1. Variabili globali

La variabile "size_message" contiene la lunghezza del messaggio corrente. È fondamentale preservare il numero di caratteri della stringa perché la molteplice applicazione di algoritmi che modificano il valore ASCII dei caratteri potrebbe trasformare alcuni di essi in '/0', ovvero il carattere NULL. La presenza di NULL all'interno del messaggio non permette di utilizzare tale valore come carattere di fine stringa. L'array "sizes_arrays_E", dall'indice 1 a 4, contiene le lunghezze degli array utilizzati come appoggio per criptare/decrittare il messaggio, mentre all'indice 0 è salvato il numero di interi contenuti in sizes_arrays_E. Tali lunghezze sono utilizzate per effettuare la decrittazione del messaggio tramite l'algoritmo E. Tutti i valori dell'array sono inizializzati a zero, ma ciò vale solo per l'implementazione in C. In Assembly, ogni indice del vettore contiene il valore della lunghezza massima raggiungibile dal messaggio (con tutti i caratteri diversi) dopo esser stato criptato tramite l'algoritmo E. I valori verranno utilizzati per la creazione di blocchi di memoria HEAP al fine di contenere la stringa criptata e in seguito modificati per contenere le lunghezze "reali" delle stringhe criptate.

ESEMPIO

key = "EEE", message = "This is a text string", sizes_arrays_E = {0, 0, 0, 0, 0}.

	sizes_array_E	size_message
1ª Esecuzione di algorithm_encrypt_E	{1, 21, 0, 0, 0}	76
2ª Esecuzione di algorithm_encrypt_E	{2, 21, 76, 0, 0}	283
3ª Esecuzione di algorithm_encrypt_E	{3, 21, 76, 283, 0}	987

	sizes_array_E	size_message
1ª Esecuzione di algorithm_decrypt_E	{2, 21, 76, 283, 0}	283
2ª Esecuzione di algorithm_decrypt_E	{1, 21, 76, 283, 0}	76
3ª Esecuzione di algorithm_decrypt_E	{0, 21, 76, 283, 0}	21

2.2. Strutture dati

Le stringhe lette dai file di input e le stringhe criptate tramite l'algoritmo E vengono memorizzate nella memoria HEAP. Le funzioni che permettono di gestire la memoria dinamica sono malloc() e realloc(), con cui è possibile rispettivamente allocare e riallocare blocchi di bytes, detti chunk. La prima chiamata di allocazione è eseguita tramite malloc(), che, dato un numero di bytes passati come argomento, ricerca un blocco di memoria libero e restituisce l'indirizzo di partenza del chunk allocato. Nel caso sia necessaria aumentare lo spazio di allocazione, una chiamata al metodo realloc() permette di avere a disposizione un nuovo indirizzo corrispondente ad un nuovo blocco di memoria. L'indirizzo del vecchio chunk ed il nuovo numero di bytes da allocare, passati entrambi come argomenti, permettono al metodo di ricercare un nuovo blocco di memoria della grandezza richiesta e copiare all'interno di esso le informazioni del vecchio chunk. Quando lo spazio allocato non serve più, è possibile eliminarlo logicamente tramite la funzione free(), in modo da renderlo disponibile per allocazioni successive. L'utilizzo dell'Heap ha come vantaggio principale un minor spreco di memoria poichè viene allocato dinamicamente il numero di byte necessari per l'esecuzione e, di conseguenza, non vi è la necessità di prevedere uno spazio in memoria di grandezza statica che potrebbe non essere sfruttato a pieno. In Assembly, tale implementazione non può essere totalmente rispettata perché le funzioni di malloc/realloc/free non sono disponibili. Pertanto, la dimensione di alcuni blocchi allocati sarà grande esattamente quanto abbastanza per poter gestire il caso pessimo, ma ovviamente ciò causerà spreco di memoria.

2.3. Funzioni

2.3.1. File

open_f

- Firma: FILE *open_f(const char *name, const char *type);
- Argomenti:
 - char *name = Indirizzo della stringa corrispondente al nome del file da leggere.
 - char *type = Carattere relativo alla modalità di apertura del file ("r" = lettura, "w" = scrittura).

- Return: File descriptor.
- <u>Descrizione</u>: Apertura di un file tramite la funzione fopen() dato un nome *name* ed una modalità di apertura *type*.

read f

- Firma: unsigned char *read_f(FILE *f, int *length);
- · Argomenti:
 - FILE *f = File descriptor
 - int *length = Indirizzo del blocco di memoria che, al termine della funzione, conterrà la lunghezza del file.
- Return: Indirizzo del chunk contenente la stringa letta da file.
- <u>Descrizione</u>: Lettura di un file carattere per carattere tramite la funzione fgetc() e memorizzazione dei dati in un chunk. Il valore di *length*, all'inizio della funzione, sarà 0 e verrà incrementato durante il ciclo di lettura del file. Al fine di evitare l'utilizzo di una struct per restituire sia l'indirizzo del chunk, sia la lunghezza del file, viene effetuato l'aggiornamento del valore della lunghezza tramite il puntatore *length*, anche se durante la lettura del file chiave.txt tale operazione non sia necessaria. Al termine del ciclo for, viene inserito il valore di fine stringa nell'ultimo bytes del chunk in modo da poter scorrere la stringa nelle funzioni in cui è richiesto. Tale operazione è strettamente necessaria solo per la lettura del file chiave.txt, dato che per la stringa di messaggio.txt è memorizzato il valore della lunghezza.

write f

- <u>Firma</u>: void write_f(FILE *f, unsigned char *output_text);
- Argomenti:
 - FILE *f = File descriptor
 - unsigned char *output_text = Indirizzo del chunk contenente la stringa da scrivere sul file.
- Return: /
- <u>Descrizione</u>: Scrittura su un file carattere per carattere della stringa *output_text* tramite la funzione fprintf().

close f

- Firma: void close_f(FILE *f);
- · Argomenti:
 - FILE *f = File descriptor
- Return: /
- Descrizione: Chiusura del file tramite la funzione fclose();

orc_f (open-read-close)

- Firma: unsigned char *orc_f(const char *name, int *length);
- Argomenti:
 - FILE *f = File descriptor
 - int *length = Indirizzo del blocco di memoria che, al termine della funzione, conterrà la lunghezza del file.
- Return: Indirizzo del chunk contenente la stringa letta da file.
- <u>Descrizione</u>: Apertura, lettura e chiusura di un file tramite le funzioni open_f(), read_f(), close_f().

owc_f (open-write-close)

- <u>Firma</u>: void owc_f(const char *name, unsigned char *input_text);
- Argomenti:
 - FILE *f = File descriptor
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da scrivere sul file.
- Return: /
- <u>Descrizione</u>: Apertura, scrittura e chiusura di un file tramite le funzioni open_f(), write_f(), close_f().

2.3.2. Gestione

encrypt_and_decrypt

- <u>Firma</u>: void encrypt_and_decrypt(unsigned char **input_text, char *key);
- Argomenti:
 - unsigned char **input_text = Indirizzo del puntatore alla stringa da criptare/decrittare.
 - char *key = Indirizzo del chunk contenente i caratteri letti dal file chiave.txt
- Return: /
- <u>Descrizione</u>: La funzione scorre i caratteri di *key* tramite un ciclo while e, ad ogni iterazione, richiama la procedura choose_algorithm() per applicare un determinato algoritmo a *input_text*. Data la necessità di eseguire algoritmi prima di criptazione e successivamente di decrittazione, i caratteri di *key* verranno visitati 2 volte. In particolare, una volta raggiunto il carattere di fine stringa '\0', il ciclo while dovrà scorrere i caratteri n direzione opposta, cambiando il valore di increase (da +1 a -1) per decrementare il contatore i. La scrittura sui file di output avviene dopo aver criptato o decrittato il messaggio con tutti gli algoritmi corrispondenti alla chiave, ovvero quando ci troviamo al termine di *key* oppure dopo il ciclo while. L'utilizzo di ***input_text* come indirizzo del puntatore al messaggio e non come indirizzo del messaggio (**input_text*) permette di non perdere il riferimento al messaggio e quindi di poter liberare la memoria al termine del programma.

choose_algorithm

- <u>Firma</u>: unsigned char *choose_algorithm(unsigned char *input_text, int encrypt, char character);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - int encrypt = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
 - char *character* = Carattere di chiave.txt relativo all'algoritmo da applicare alla stringa.
- <u>Return</u>: Indirizzo al chunk contenente la stringa criptata o decrittata.
- <u>Descrizione</u>: Un costrutto switch-case permette di applicare un algoritmo a *input_text* in base al valore di *character*. Ogni algoritmo utilizza una sola funzione per le operazioni di criptazione e decrittazione, tranne la E. Le lettere contenute nel file chiave.txt devono essere obbligatoriamente maiuscole altrimenti il valore ascii non verrà riconosciuto e nessun algoritmo verrà eseguito.

2.3.3. Calcolo

change_ascii_value

- Firma: void change_ascii_value(unsigned char *input_text, int encrypt, int remainder);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - int *encrypt* = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
 - int remainder = Intero che indica quale valore deve assumere il risultato dell'operazione di modulo tra la posizione di un carattere del messaggio ed il valore 2.
- Return: /
- <u>Descrizione</u>: La funzione aggiunge o sottrae 4 al valore ASCII dei caratteri di *input_text*. La variabile *encrypt* cambia il proprio valore in base all'operazione da effettuare, cioè criptazione (*encrypt* = 4) oppure decrittazione (*encrypt* = -4), mentre *remainder* consente di scegliere quali caratteri modificare secondo un determinato algoritmo (A, B oppure C). L'operazione di Shift left logico permette di moltiplicare per 4 il valore di *encrypt* e non sono necessari controlli di overflow aritmetico perchè il valore di *encrypt* può variare secondo 2 soli valori, ovvero +1 e -1. L'indirizzamento del MIPS è al byte ma il vincolo di allineamento (ogni word deve iniziare ad un indirizzo multiplo di 4) consente di avere un indirizzo multiplo di 4 ogni volta che viene allocato un nuovo byte dell'Heap con una syscall. Perciò, è possibile effettuare l'operazione di modulo direttamente sugli indirizzo dei caratteri senza l'uso di indici di scorrimento. In C il funzionamento è il medesimo. Infine, la funzione non utilizza l'operazione di modulo 256 perché la modifica del valore ASCII dei caratteri avviene su 1 byte senza estensione del segno (l'intervallo in cui il valore può variare è [0, 255]) e l'intervallo è già circolare, infatti 0xFF + 0x01 = 0x100 (signed/unsigned), 0x00 0x01 = 0xFF (unsigned), 0x00 0x01 =

0xFFFFFFF (signed). In ogni caso, la circolarità dell'intervallo è garantita perché consideriamo solo il byte meno significativo.

ESEMPIO

	Signed (HEX, DEC)	Unsigned (HEX, DEC)
i	0x0000007F, 127	0x0000007F, 127
i = i + 2	0xFFFFFF81, -127	0x00000081, 129
i = i + 2	0xFFFFFF83, -125	0x00000083, 131

Signed char i = 127, unsigned char j = 127;

insert index

- Firma: unsigned char *insert_index(unsigned char *input_text, int *length, int index);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa criptata.
 - int *length = Numero di caratteri di input_text.
 - int *index* = Indice da inserire in *input_text*.
- Return: Indirizzo del chunk contenente la stringa criptata.
- <u>Descrizione</u>: Inserimento dell'indice *index* in *input_text*. Il primo ciclo while conta il numero di cifre dell'indice incrementando il valore di *length*. La chiamata alla funzione realloc permette di allocare i bytes necessari per memorizzare le cifre di *index*. Il ciclo for inserisce *index* in end_text (cioè l'indirizzo dell'ultimo byte allocato) cifra per cifra partendo dalla meno significativa sfruttando l'operazione di modulo 10 e ad ogni cifra viene sommato il valore ascii di zero per trasformarla in un carattere. Successivamente, viene aggiornato il valore di *index* in modo da eliminare la cifra meno significativa.

insert_character

- <u>Firma</u>: unsigned char *insert_character(unsigned char *input_text, int *length, unsigned char character);
- · Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa criptata.
 - int *length = Numero di caratteri di input text.
 - unsigned char *character* = Carattere da inserire in *input_text*.
- Return: Indirizzo del chunk contenente la stringa criptata.
- <u>Descrizione</u>: Alloca nuovo spazio, inserisce il carattere alla posizione *length-*1 e incrementa la lunghezza di *input_text*.

2.3.4. Algoritmi

algorithm_A

- Firma: void algorithm_A(unsigned char *input_text, int encrypt);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - int *encrypt* = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
- · Return: /
- <u>Descrizione</u>: La funzione richiama il metodo change_ascii_value() per applicare l'algoritmo A. L'algoritmo prevede la modifica del valore ascii di tutti i caratteri di input_text. Dato che, per convenzione matematica, il resto non può essere negativo, verrà passato come valore dell'argomento remainder l'intero -1 in modo da modificare tutti i caratteri di input_text.

algorithm_B

- <u>Firma</u>: void algorithm_B(unsigned char *input_text, int encrypt);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - int encrypt = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
- Return: /
- <u>Descrizione</u>: La funzione richiama il metodo change_ascii_value() per applicare l'algoritmo B. L'algoritmo prevede la modifica del valore ascii dei caratteri di *input_text* in posizione pari, ovvero i caratteri per cui vale la condizione posizione%2 = 0.

algorithm_C

- Firma: void algorithm_C(unsigned char *input_text, int encrypt);
- · Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - int encrypt = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
- Return: /
- <u>Descrizione</u>: La funzione richiama il metodo change_ascii_value() per applicare l'algoritmo C. L'algoritmo prevede la modifica del valore ascii dei caratteri di *input_text* in posizione dispari, ovvero i caratteri per cui vale la condizione posizione%2 = 1.

algorithm_D

- Firma: void algorithm_D(unsigned char *input_text);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare/decrittare.
- Return: /
- <u>Descrizione</u>: La funzione scambia i caratteri di *input_text* appartenenti a posizioni opposte. Due puntatori al primo (*input_text*) e all'ultimo (end_text) carattere scorrono la stringa in direzioni opposte e i caratteri vengono invertiti finché i puntatori non si incontrano.

algorithm_encrypt_E

- Firma: unsigned char *algorithm_encrypt_E(unsigned char *input_text);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da criptare.
- <u>Return</u>: Indirizzo del chunk contenente la stringa criptata.
- Descrizione: La funzione fissa un carattere di indice i nella variabile character e scorre input_text per ricercare possibili occorrenze. I valori inseriti in output_text vengono modificati con il primo carattere di *input text*, in modo da contrassegnare i valori già processati. Ciò significa che, se character è uguale a input_text[0], fatta eccezione per la prima iterazione (j==0), non deve essere inserito in output_text. Quando j==0, il carattere input_text[j] è sicuramente uguale a input_text[0], perciò, se non ci fosse tale condizione, la prima iterazione non inserirebbe nessun carattere e nessun indice in output_text. Dopo aver inserito tutti gli indici delle occorrenze di character, viene richiamata la funzione insert character per inserire il carattere spazio in output_text, in modo da separare gli indici appartenenti a caratteri differenti. Al termine dei cicli for, la funzione incrementa sizes arrays E[0] per far corrispondere tale valore all'indice della nuova lunghezza da inserire, per poi effettuare l'inserimento di size_message e aggiornare quest'ultimo alla lunghezza di output_text. Il valore di length viene decrementato prima di essere assegnato a size message perché nell'ultima operazione viene inserito un carattere di spazio alla fine di output text, ma tale carattere deve essere ignorato. Dopo aver liberato lo spazio allocato da input_text, la procedura restituisce l'indirizzo del nuovo chunk contenente la stringa criptata.

algorithm_decrypt_E

- <u>Firma</u>: unsigned char *algorithm_decrypt_E(unsigned char *input_text);
- Argomenti:
 - unsigned char *input_text = Indirizzo del chunk contenente la stringa da decrittare.
- <u>Return</u>: Indirizzo del chunk contenente la stringa decrittata.
- <u>Descrizione</u>: La funzione scorre i caratteri di *input_text* ed effettua delle operazioni in base a 3 casi:

Se *input_text*[i-1] == ' ' && *input_text*[i+1] == '-', significa che *input_text*[i] è la prima occorrenza di un carattere;

Se *input_text*[i] == ' ' || *input_text*[i] == '-', significa che è stato calcolato un indice e il valore di character deve essere salvato in output_text esattamente alla posizione index. Fa eccezione il primo carattere '-' dopo la prima occorrenza perchè non segue a nessun indice;

Se le due condizioni precedenti non sono soddisfatte, significa che il carattere corrente è in realtà una cifra dell'indice. La moltiplicazione per 10 permette di scalare ogni cifra di una unità di grandezza, così da lasciare libera la cifra meno significativa per inserire input_text[i]. L'operazione input_text[i]-'0' permette di convertire un carattere nel valore ascii corrispondente alla cifra che rappresenta. La variabile *output_text contiene l'indirizzo al chunk che memorizzerà i caratteri della stringa decrittata. La lunghezza del chunk dipende dalle precedenti esecuzioni di algorithm_encrypt_E(). Al termine del ciclo for, la funzione inserisce character in output_text alla posizione index, ovvero l'ultimo indice calcolato, aggiorna il valore di size_message con la lunghezza di output_text (la stessa utilizzata per settare output_text), decrementa sizes_arrays_E[0] per far corrispondere tale valore all'indice della lunghezza da utilizzare alla prossima esecuzione del metodo algorithm_decrypt_E(). Dopo aver liberato lo spazio allocato da input_text, la procedura restituisce l'indirizzo del nuovo chunk contenente la stringa decrittata.

2.4. Codice sorgente

```
#include <stdio.h>
#include <stdlib.h>
FILE *open f(const char *name, const char *type);
unsigned char *read f(FILE *f, int *length);
void write_f(FILE *f, unsigned char *output_text);
void close f(FILE *f);
unsigned char *orc f(const char *name, int *length);
void owc_f(const char *name, unsigned char *input_text);
void encrypt and decrypt(unsigned char **input text, char *key);
unsigned char *choose_algorithm(unsigned char *input_text, int encrypt, char character);
void change ascii value(unsigned char *input text, int encrypt, int remainder);
unsigned char *insert index(unsigned char *input text, int *length, int index);
unsigned char *insert character(unsigned char *input text, int *length, unsigned char
character);
void algorithm A(unsigned char *input text, int encrypt);
void algorithm B(unsigned char *input text, int encrypt);
void algorithm_C(unsigned char *input_text, int encrypt);
void algorithm D(unsigned char *input text);
unsigned char *algorithm_encrypt_E(unsigned char *input_text);
unsigned char *algorithm_decrypt_E(unsigned char *input_text);
void print text(char name, unsigned char *input text, int length);
```

```
int size_message = 0;
int sizes_arrays_E[5] = {0, 0, 0, 0, 0};
int main(int argc, const char *argv[]) {
  int length = 0;
  unsigned char *message = orc f("messaggio.txt", &size message);
  printf("OUTPUT MESSAGE: %s \n\n", message);
  char *key = (char*) orc_f("chiave.txt", &length);
  printf("OUTPUT KEY: %s \n\n", key);
  encrypt_and_decrypt(&message, key);
  free(key);
  free(message);
  return 0;
}
FILE *open f(const char *name, const char *type) {
  FILE *f = fopen(name, type);
  if(f == NULL)  {
     exit(EXIT_FAILURE);
  return f;
unsigned char *read f(FILE *f, int *length) {
  char character;
  unsigned char *input_text = malloc(sizeof(unsigned char));
  for(*length=1; (character = fgetc(f)) != EOF; (*length)++) {
     input_text[*length-1] = character;
     input_text = realloc(input_text, sizeof(unsigned char)*(*length+1));
  (*length)--;
  input_text[*length] = '\0';
  return input_text;
void write f(FILE *f, unsigned char *intput text) {
  for(int i=0; i<size message; i++) {
     fprintf(f, "%c", intput_text[i]);
}
```

```
void close_f(FILE *f) {
  fclose(f);
unsigned char *orc_f(const char *name, int *length) {
  FILE *f = open f(name, "r");
  unsigned char *input text = read f(f, length);
  close f(f);
  return input text;
void owc f(const char *name, unsigned char *input text) {
  FILE *f = open f(name, "w");
  write f(f, input text);
  close f(f);
void encrypt_and_decrypt(unsigned char **input_text, char *key) {
  int i=0:
  int increase = 1;
  while(i \ge 0) {
     if(key[i] == '\0') {
       owc_f("messaggioCifrato.txt", *input_text);
       i += (increase = -1);
    }
     *input text = choose algorithm(*input text, increase, key[i]);
     print_text(key[i], *input_text, size_message);
     i += increase;
  owc_f("messaggioDecifrato.txt", *input_text);
unsigned char *choose_algorithm(unsigned char *input_text, int encrypt, char character) {
  switch(character) {
     case 'A': {
       algorithm_A(input_text, encrypt);
       break;
    }
     case 'B': {
       algorithm_B(input_text, encrypt);
       break:
     }
```

```
case 'C': {
       algorithm_C(input_text, encrypt);
       break:
    }
     case 'D': {
       algorithm_D(input_text);
       break;
    }
     case 'E': {
       input_text = (encrypt == 1)
        ? algorithm encrypt E(input text)
       : algorithm_decrypt_E(input_text);
       break;
    }
  }
  return input_text;
void change_ascii_value(unsigned char *input_text, int encrypt, int remainder) {
  unsigned char *end text = input text+size message;
  encrypt <<= 2;
  while(input_text != end_text) {
     if(remainder == -1 || ((int) input text)%2 == remainder) {
        *input_text += encrypt;
     input_text++;
  }
}
unsigned char *insert_index(unsigned char *output_text, int *length, int index) {
  int temp = index;
  unsigned char *end_text;
  do {
     temp = temp/10;
     (*length)++;
  } while(temp != 0);
  output_text = realloc(output_text, sizeof(unsigned char)*(*length));
  if(output text == NULL) {
     exit(EXIT_FAILURE);
```

```
}
  end_text = &output_text[*length-1];
  do {
     *end_text = index%10 + '0';
     index /= 10;
     end text--;
  } while(index != 0);
  return output_text;
}
unsigned char *insert character(unsigned char *output text, int *length, unsigned char
character) {
  (*length)++;
  output text = realloc(output text, sizeof(unsigned char)*(*length));
  if(output_text == NULL) {
     exit(EXIT_FAILURE);
  output_text[(*length)-1] = character;
  return output_text;
void algorithm_A(unsigned char *input_text, int encrypt) {
  change ascii value(input text, encrypt, -1);
void algorithm_B(unsigned char *input_text, int encrypt) {
  change_ascii_value(input_text, encrypt, 0);
}
void algorithm_C(unsigned char *input_text, int encrypt) {
  change_ascii_value(input_text, encrypt, 1);
void algorithm_D(unsigned char* input_text) {
  unsigned char temp, *end_text = input_text + (size_message-1);
  while(input_text < end_text) {
     temp = *input_text;
     *input text = *end text;
     *end_text = temp;
     input_text++;
```

```
end_text--;
}
unsigned char *algorithm encrypt E(unsigned char *input text) {
  int length = 0;
  unsigned char character, *output_text = malloc(sizeof(unsigned char));
  if(output text == NULL) {
     exit(EXIT_FAILURE);
  for(int j=0; j<size_message; j++) {
     character = input_text[j];
     if(j==0 || character != input text[0]) {
        output_text = insert_character(output_text, &length, character);
       for(int i=j; i<size_message; i++) {
          if(character == input_text[i]){
             output_text = insert_character(output_text, &length, '-');
             output_text = insert_index(output_text, &length, i);
             input_text[i] = input_text[0];
       }
        output text = insert character(output text, &length, '');
    }
  }
  sizes_arrays_E[0]++;
  sizes_arrays_E[sizes_arrays_E[0]] = size_message;
  size_message = length-1;
  free(input_text);
  return output_text;
unsigned char *algorithm_decrypt_E(unsigned char *input_text) {
  int\ index = 0;
  unsigned char *output_text = malloc(sizeof(char)*sizes_arrays_E[sizes_arrays_E[0]]),
  character = output_text[0] = input_text[0];
  if(output_text == NULL) {
     exit(EXIT_FAILURE);
  for(int i=1; i<size_message; i++) {
     if(input_text[i-1] == ' ' && input_text[i+1] == '-') {
```

```
character = input text[i];
     }
     else if((input_text[i] == ' ' || input_text[i] == '-')) {
       if(index) {
          output_text[index] = character;
          index = 0;
     }
     else {
       index = index*10 + ((int) input_text[i]-'0');
  }
  output text[index] = character;
  size_message = sizes_arrays_E[sizes_arrays_E[0]];
  sizes arrays E[0]--;
  free(input text);
  return output_text;
void print text(char name, unsigned char *input text, int length) {
  printf("OUTPUT_%c: ", name);
  for(int i=0; i<length; i++) {
     printf("%c", input_text[i]);
  printf("\n\n");
```

3. Descrizione a basso Livello - Assembly MIPS

3.1. Data Segment

Il segmento dati contiene i dati statici utilizzati durante l'esecuzione del programma. Di seguito sono elencati i nomi delle etichette e i dati a cui esse corrispondono:

- size_message = Etichetta associata all'indirizzo della lunghezza del messaggio corrente. Un intero è formato da 4 bytes, perciò viene allocata una word per contenere il valore della lunghezza.
- sizes_arrays_E = Etichetta associata all'indirizzo di partenza dell'array contenente le lunghezze dei vettori utilizzati per memorizzare il messaggio criptato/decrittato con l'algoritmo E. A differenza dell'implementazione in C, l'array è inizializzato con le lunghezze massime raggiungibili dal messaggio con

- 128 caratteri (tutti differenti) criptato con l'algoritmo E. Ogni indice corrisponde al numero di applicazioni dell'algoritmo effettuate sul messaggio.
- jump_table = Etichetta associata all'indirizzo di partenza dell'array contenente gli indirizzi dei CASE implementati nel costrutto switch/case del metodo choose_algorithm(). Ogni CASE è rappresentato con un' etichetta denominata con la lettera dell'algoritmo a cui è associata preceduta da una L (LABEL), e occupa uno spazio di 4 bytes perchè gli indirizzi sono a 32 bit.
- file_not_found = Etichetta associata all'indirizzo di partenza della stringa utilizzata per comunicare un errore di FILE NOT FOUND durante l'esecuzione.
 Termina con un carattere di fine stringa.
- sbrk_error = Etichetta associata all'indirizzo di partenza della stringa utilizzata per comunicare un errore di relativo all'allocazione di nuova memoria nell'heap.
 Termina con un carattere di fine stringa.
- chiave = Etichetta associata all'indirizzo di partenza della stringa contenente il path del file chiave.txt Termina con un carattere di fine stringa.
- messaggio = Etichetta associata all'indirizzo di partenza della stringa contenente il path del file messaggio.txt Termina con un carattere di fine stringa.
- messaggioCifrato = Etichetta associata all'indirizzo di partenza della stringa contenente il path del file messaggioCifrato.txt Termina con un carattere di fine stringa.
- messaggioDecifrato = Etichetta associata all'indirizzo di partenza della stringa contenente il path del file messaggioDecifrato.txt Termina con un carattere di fine stringa.

3.2. Strutture dati

Le stringhe lette dai file di input e le stringhe criptate tramite l'algoritmo E vengono memorizzate nella memoria HEAP. A differenza del linguaggio C, non sono disponibili funzioni per allocare e riallocare dinamicamente la memoria, bensì è presente solo una chiamata a sistema SBRK di allocazione che restituisce l'indirizzo del blocco di bytes richiesto. Ciò significa che, non essendoci una procedura per riallocare i dati, l'indirizzo restituito dalla syscall SBRK corrisponderà alla prima word libera nell'HEAP. In generale, però, non è possibile assumere che chiamate successive di allocazione restituiscano indirizzi consecutivi, perciò non è possibile sfruttare al massimo la potenzialità della memoria dinamica. I blocchi utilizzati avranno una dimensione tale da poter contenere stringhe di lunghezza massima possibile e perciò ci sarà inevitabilmente spreco di memoria. Il contenuto dei registri permanenti e del registro \$ra verrà preservato temporaneamente nello stack nel caso in cui una procedura faccia uso di questi registri, o, nel caso di \$ra, se richiamerà un'altra procedura.

3.3. Procedure

L'implementazione delle procedure segue il corrispondente codice C, ma per alcune funzioni ci sono delle differenze, soprattutto riguardo all'allocazione dinamica di bytes nella memoria HEAP.

3.3.1. File

open_f

· Argomenti:

```
#$a0 = Indirizzo di partenza del nome del file.
#$a1 = Flag di modalità (0 = lettura, 1 = scrittura).
```

Return:

\$v0 = File descriptor.

• <u>Descrizione</u>: Apertura del file \$a0 tramite la syscall 13. In caso di errore, il branch richiama la procedura di errore.

read f

· Argomenti:

```
#$a0 = File Descriptor.
```

#\$a1 = Numero massimo di bytes da leggere dal file.

Return:

#\$v0 = Indirizzo di partenza del messaggio letto dal file.

\$v1 = Numero di bytes effettivamente letti da file.

• <u>Descrizione</u>: Lettura del file \$a0 tramite la syscall 14 e memorizzazione dei dati in un chunk allocato con una syscall 9. A differenza dell'implementazione in C, la procedura ha due valori di ritorno, uno dei quali è la lunghezza del messaggio letto \$v1, perciò non è necessario utilizzare un puntatore al blocco di memoria della lunghezza come argomento della procedura. Il valore della lunghezza viene memorizzato durante la chiamata di orc_f() del file messaggio.txt, mentre per quanto riguarda il file chiave.txt, semplicemente viene ignorato il valore di ritorno del registro \$v1. In caso di errore durante l'allocazione di memoria, il branch richiama la procedura di errore.

write f

Argomenti:

```
#$a0 = File Descriptor.
```

#\$a1 = Indirizzo di partenza del messaggio da scrivere nel file.

- Return: /
- Descrizione: Scrittura del messaggio \$a1 sul file \$a0 tramite la syscall 15.

close f

Argomenti:

\$a0 = File Descriptor

- Return: /
- Descrizione: Chiusura del file \$a0 tramite la syscall 16.

orc_f (open-read-close)

Argomenti:

#\$a0 = Indirizzo di partenza del nome del file.

#\$a1 = Numero massimo di byte da leggere dal file.

Return:

#\$v0 = Numero di bytes effettivamente letti da file.

\$v1 = Indirizzo di partenza del messaggio letto dal file.

• <u>Descrizione</u>: Apertura, lettura e chiusura del file \$a0 tramite le procedure open_f(), read_f(), close_f(). L'utilizzo di sotto-procedure obbliga a memorizzare alcune informazioni per fare in modo che non vengano sovrascritte, come il file descriptor, in registri permanenti \$s che, per convenzione, mantengono il valore impostato dal chiamante di una procedura. Per questo, orc_f(), essendo anch'essa una procedura, ha l'obbligo di preservare il contenuto dei registri permanenti prima di utilizzarli. Inoltre, è necessario salvare anche il valore del registro \$ra perché l'uso di sotto-procedure compromette il contenuto di tale registro, che viene usato per ritornare alla procedura chiamante dopo aver eseguito tutte le istruzioni. Le prime istruzioni memorizzano nella memoria Stack il contenuto dei registri \$s e \$ra che verranno utilizzati successivamente, mentre le ultime istruzioni ne ripristinano il valore.

owc_f (open-write-close)

Argomenti:

#\$a0 = Indirizzo di partenza del nome del file.

#\$a1 = Indirizzo di partenza del messaggio memorizzato nell'Heap.

- Return: /
- <u>Descrizione</u>: Apertura di \$a0, scrittura del messaggio \$a1 nel file \$a0 e chiusura di \$a0 tramite le procedure open_f(), write_f(), close_f(). Anche in questo caso, i valori dei registri \$s e \$ra vengono memorizzati e poi ripristinati per poter richiamare sotto-procedure.

3.3.2. Gestione

encrypt_and_decrypt

· Argomenti:

#\$a0 = Indirizzo della stringa da criptare/decrittare.

#\$a1 = Indirizzo del chunk contenente i caratteri letti dal file chiave.txt

- Return: /
- <u>Descrizione</u>: La funzione scorre i caratteri di \$a1 tramite un ciclo while e, ad ogni iterazione, richiama la procedura choose_algorithm() per applicare un determinato algoritmo a \$a0. Il costrutto while è stato convertito in un ciclo do-while perchè, sapendo che il file chiave.txt è ben formato (quindi non vuoto), ci sarà almeno un carattere che corrisponderà ad uno degli algoritmi del programma, quindi sicuramente sarà necessario eseguire almeno una iterazione del ciclo. Non essendoci una procedura per liberare la memoria Heap, non è necessario usare l'indirizzo del puntatore al messaggio come nel codice C, perciò \$a0 contiene l'indirizzo del messaggio. Come nelle procedure della sezione 3.3.1, i valori dei registri \$s e \$ra vengono memorizzati e poi ripristinati per poter richiamare sotto-procedure.

choose algorithm

· Argomenti:

```
# $a0 = Indirizzo del chunk contenente la stringa da criptare/decrittare.
# $a1 = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
```

\$a2 = Carattere di chiave.txt relativo all'algoritmo da applicare alla stringa.

Return:

\$v0 = Indirizzo al chunk contenente la stringa criptata o decrittata.

• <u>Descrizione</u>: Un costrutto switch-case permette di applicare un algoritmo ad \$a0 in base al valore di \$a2. Lo switch/case viene tradotto in quanto in MIPS non è presente tale costrutto. Nel segmento dati è presente un array il cui indirizzo di partenza è associato all'etichetta jump_table. Ogni word dell'array contiene un indirizzo che rappresenta un case dello switch. Per saltare alla porzione di codice desiderata (cioè entrare in un case), è necessario sommare all'indirizzo di jump_table l'indice della posizione moltiplicato per 4 (gli indirizzi di jump_table occupano 4 bytes). L'operazione di shif left logico permette di moltiplicare per 2 il valore dell'indice ed è utilizzabile al posto della normale moltiplicazione perchè viene eseguita più velocemente dal processore ed il controllo di overflow non è necessario. I case si differenziano per il carattere dell'algoritmo a cui corrispondono, perciò basterà sommare a jump_table un numero sapendo che:

```
jump_table[0] = case 'A';
jump_table[1] = case 'B';
jump_table[2] = case 'C';
jump_table[3] = case 'D';
jump_table[4] = case 'E';
```

3.3.3. Calcolo

change_ascii_value

• Argomenti:

```
#$a0 = Indirizzo del chunk contenente la stringa da criptare/decrittare.
```

#\$a1 = Intero che indica quale operazione effettuare tra criptazione (+1)

- o decrittazione (-1).
- # \$a2 = Intero che indica quale valore deve assumere il risultato dell'operazione di modulo tra la posizione di un carattere del messaggio ed il valore 2.
- Return: /
- <u>Descrizione</u>: La funzione aggiunge o sottrae 4 al valore ASCII dei caratteri di \$a0. Dato che per le specifiche del progetto il file messaggio.txt è ben formato, è possibile tradurre il ciclo while in un do-while perché il messaggio avrà almeno un carattere da criptare. Per il resto, il codice segue l'implementazione di C.

insert index

• Argomenti:

#\$a0 = Indirizzo dell'ultimo carattere della stringa criptata.

#\$a1 = Numero di caratteri di \$a0.

\$a2 = Indice da inserire in \$a0.

Return:

#\$v0 = Indirizzo dell'ultimo carattere della stringa criptata.

\$v1 = Numero di caratteri di \$v0.

• <u>Descrizione</u>: Inserimento dell'indice \$a2 in \$a0. All'interno del primo loop, viene incrementato il valore di una variabile che non è presente nel codice C, che chiameremo digits_index. La variabile contiene il numero di cifre di \$a2 e viene utilizzata per poter calcolare end_text. A differenza dell'implementazione in C, \$a0 contiene l'indirizzo dell'ultimo carattere della stringa criptata invece dell'indirizzo iniziale poichè quest'ultimo, dato che in Assembly non è presente la funzione di deallocazione dell'HEAP, non verrà utilizzato alla fine della procedura di algorithm_encrypt_E. L'uso dell'indirizzo dell'ultimo carattere permette di calcolare end_text senza necessità di una istruzione di load word per estrarre dalla memoria il valore della lunghezza. Inoltre, la procedura restituisce anche la lunghezza del chunk criptato, a differenza del C in cui viene modificato il valore del puntatore length passato come argomento.

insert_character

Argomenti:

#\$a0 = Indirizzo dell'ultimo carattere della stringa criptata.

\$a1 = Numero di caratteri di input_text.

\$a2 = Carattere da inserire in *input text*.

Return:

#\$v0 = Indirizzo dell'ultimo carattere della stringa criptata.

\$v1 = Numero di caratteri di \$v0.

• <u>Descrizione</u>: Alloca nuovo spazio, inserisce il carattere \$a2 all'indirizzo \$a0+1 e incrementa \$a1. Come già spiegato precedentemente per la procedura insert_index, \$a0 contiene l'indirizzo dell'ultimo carattere della stringa criptata invece dell'indirizzo iniziale data l'impossibilità di deallocare. Inoltre, la procedura restituisce anche la lunghezza del chunk criptato, a differenza del C in cui viene modificato il valore del puntatore length passato come argomento.

3.3.4. Algoritmi

algorithm_A

- Argomenti:
 - #\$a0 = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - # \$a1 = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
- Return: /
- <u>Descrizione</u>: La procedura richiama il metodo change_ascii_value() per applicare l'algoritmo A. Il valore del registro \$ra viene memorizzati e poi ripristinato per poter richiamare sotto-procedure.

algorithm_B

- · Argomenti:
 - #\$a0 = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - # \$a1 = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
- Return: /
- <u>Descrizione</u>: La funzione richiama il metodo change_ascii_value() per applicare l'algoritmo B. Il valore del registro \$ra viene memorizzati e poi ripristinato per poter richiamare sotto-procedure.

algorithm_C

- · Argomenti:
 - #\$a0 = Indirizzo del chunk contenente la stringa da criptare/decrittare.
 - # \$a1 = Intero che indica quale operazione effettuare tra criptazione (+1) o decrittazione (-1).
- Return: /
- <u>Descrizione</u>: La funzione richiama il metodo change_ascii_value() per applicare l'algoritmo C. Il valore del registro \$ra viene memorizzati e poi ripristinato per poter richiamare sotto-procedure.

algorithm_D

- Argomenti:
 - #\$a0 = Indirizzo del chunk contenente la stringa da criptare/decrittare.
- Return: /
- <u>Descrizione</u>: La funzione scambia i caratteri di \$a0 appartenenti a posizioni opposte. Dato che per le specifiche del progetto il file messaggio.txt è ben formato, è possibile tradurre il ciclo while in un do-while perché il messaggio avrà almeno un carattere da criptare.

algorithm_encrypt_E

- Argomenti:
 - #\$a0 = Indirizzo del chunk contenente la stringa da criptare.
- Return:
 - # \$v0 = Indirizzo del chunk contenente la stringa criptata.
 - # \$v1 = Numero di caratteri di \$v0.
- Descrizione: La procedura fissa un carattere di indice i nella variabile character e scorre \$a0 per ricercare possibili occorrenze. Il messaggio cifrato verrà memorizzato nel chunk allocato all'inizio della procedura. La lunghezza del blocco viene prelevata dall'array sizes array E ed è determinata da quante esecuzioni dell'algoritmo E sono già state effettuate. Infatti, il primo valore di sizes array E identifica l'indice della lunghezza da prelevare. Questa implementazione differisce dal codice C a causa della mancanza di funzioni di gestione della memoria dinamica. All'interno dei loop vengono sfruttati direttamente i registri \$v0 e \$v1 per memorizzare rispettivamente l'indirizzo del messaggio e la lunghezza di \$v0 perché i valori di ritorno di una procedura sono gli argomenti della procedura successiva, quindi le convenzioni sui registri temporanei sono garantite. A differenza dell'implementazione in C, in cui output text contiene l'indirizzo di partenza della stringa criptata, in MIPS il suo valore viene modificato ad ogni inserimento di carattere o indice, in modo da contenere sempre l'indirizzo dell'ultimo carattere inserito. Ciò permette di non dover eseguire in ogni procedura di inserimento una istruzione di load word per ottenere il valore della lunghezza e la somma output_text + length per trovare l'indirizzo della prima posizione libera. L'incremento continuo del valore di output text però comporta la necessità di eseguire una differenza (output_text - (length + 1)) per riportare output_text all'inizio della stringa criptata e restituire il suo valore tramite \$v0. Inoltre, nella sezione iniziale della procedura viene decrementato l'indirizzo della stringa criptata perché altrimenti la prima istruzione della procedura insert_character non permetterebbe di inserire caratteri nel primo byte del chunk. Come nelle procedure della sezione 3.3.1, i valori dei registri \$s e \$ra vengono memorizzati e poi ripristinati per poter richiamare sotto-procedure. Infine, dato che per le specifiche del progetto il file messaggio.txt è ben formato, è possibile tradurre il ciclo while in un do-while perché il messaggio avrà almeno un carattere da criptare.

algorithm_decrypt_E

- Argomenti:
 - #\$a0 = Indirizzo del chunk contenente la stringa da decrittare.
- Return:
 - # \$v0 = Indirizzo del chunk contenente la stringa decrittata.
- <u>Descrizione</u>: La procedura esegue la decrittazione dell'algoritmo E della stringa criptata e segue fedelmente l'implementazione del C. Dato che per le specifiche del progetto il file messaggio.txt è ben formato, è possibile tradurre il ciclo while in un dowhile perché il messaggio avrà almeno un carattere da decrittare.

3.4. Test

```
PC
            4000b4
EPC
            0
Cause
BadVAddr
            0
Status
            3000ff10
ΗI
          =
            0
    [r0] = 0
RO
            10010000
R1
    [at]
R2
    [voj
            12
          = 0
    [a0]
         = 10010099
R5
    [a1]
         = 0
          = 0
    [a2]
```

orc_f (open_f)

\$a0 = 0x10010099 -> Indirizzo di partenza del nome di chiave.txt.

\$a1 = 0 -> Flag di modalità lettura.

v0 = 0x12 -> File descriptor di chiave.txt

Sinistra: registri, in basso: path del file a partire dall'indirizzo di \$a0

[10010090]	72652067	2e726f72	65735500	672f7372	g	е	r	r	0	r		. t	8	е	r	8	7	q
[100100a0]	6c656f69	6d696465	61746c69	7365442f	íо													
[100100b0]	706f746b	6573452f	7a696372	63732069	k t	0	р	/	Е	S	e	r c	i	Z	i		8	c
[100100c0]	616c6f75	7373412f	6c626d65	74512f79	u o	1	a	/	Α	s	s	e n	ı b	1	У	/	Q	t
[100100d0]	6d697053	6f72502f	74746567	68632f6f	S p	i	m	/	Ρ	r	0	gε	t	t	0	/	C	h
[100100e0]	65766169	7478742e	65735500	672f7372	i a	v	е		t	х	t	. t	s	е	r	s	/	g

```
PC
EPC
             4000ec
Cause
BadVAddr
          =
             3000ff10
Status
ΗI
LO
          =
            0
    [r0] = 0
RO
             10010000
     [at]
R2
     [v0]
             10040000
R4
     [a0]
          = 12
          = 10040000
R5
     [a1]
R6
     [a2]
R7
     [a3]
     įtoj
          = 12
R9
          = 10040000
R10
    [t2]
```

orc f (read f)

\$t0 = 0x12 -> File descriptor di chiave.txt

\$t1 = 5 -> Numero massimo di byte da leggere dal file chiave.txt \$t2 = 0x10040000 -> Indirizzo di partenza del chunk allocato nell'Heap. L'indirizzo di partenza della memoria dinamica è proprio 0x10040000, infatti è il primo inserimento di dati che viene effettuato nell'Heap.

\$v0 = 1 -> Numero di bytes effettivamente letti da file

\$v1 = 0x10040000 -> Indirizzo del messaggio letto dal file chiave.txt.

A sinistra: registri, in basso: primo carattere di chiave.txt.

```
[10040000] 00000041 00000000 A.....
```

EPC = 0Cause = 0BadVAddr 0 3000ff10 Status ΗI 0 LO RO [r0] = 0= 10010000 [at] R1 R2 [voj = 1 = 10040000 R3 [v1] R4 [a01

orc f (close f)

Il valore di PC corrisponde all'istruzione "jr \$ra" della procedura close f.

\$a0 = 0x12 -> File descriptor di chiave.txt

\$v0 = 1 -> Numero di bytes effettivamente letti dal file chiave.txt

\$v1 = 0x10040000 -> Indirizzo di partenza della stringa di chiave.txt

A sinistra: registri.

```
40021c
EPC
             24
Cause
BadVAddr
             3000ff10
HI
             Ω
             0
LO
    [at]
[v0]
             10010000
R1
R3
     įv1j
          = 10040008
     [a0] =
R4
             10040008
     [a1]
R7
     [a3] = 0
R8
     [t0] = 10040000
R9
     [t1]
     [t2]
          = 10040008
    [t3]
[t4]
R11
    [t5]
[t6]
[t7]
R13
R14
    [s0]
[s1]
             10040008
R16
          = 10040000
    [s2]
          =
             0
    [83]
```

encrypt_and_decrypt (criptazione)

\$s0 = 0x10040008 -> Indirizzo della stringa di messaggio.txt. L'intervallo [0x10040000, 0x10040007] è occupato dai caratteri di chiave.txt (4 caratteri MAX + '\0' + 3 bytes per il vincolo di allineamento).

\$s1 = 0x10040000 -> Indirizzo del chunk contenente i caratteri letti dal file chiave.txt

\$s2 = 0 -> Contatore i. È la prima iterazione del ciclo, quindi i non è stata ancora incrementata.

\$s3 = 1 -> Variabile increase usata per modificare il contatore i e per assegnare un valore a encrypt.

t1 = 0x41 = A' -> key[i]

\$a0 = \$s0, \$a1 = \$s3, \$a2 = \$t1

A sinistra: registri.

```
= 400294
EPC
            40021c
          = 24
Cause
BadVAddr = 0
Status
          = 3000ff10
ΗI
          = 0
          = 0
RO
    [r0] = 0
          = 10010000
R1
    [at]
         = 15
R2
    [ VO ]
         = 10040008
R3
    [v1]
R4
    [a0] = 10040008
    [a1] = 1
R5
         = 41
R6
    [a2]
R7
    [a3] = 0
    [t0] = 10010018
R8
         = 400294
R9
    [t1]
```

Choose algorithm

```
a2 = 0x41 = A' - key[i] (i = 0)
```

\$t0 = 0x10010018 -> &(jump_table[0]), ovvero l'indirizzo della word che contiene l'indirizzo del case 'A'.

```
jump table + (\$a2 - `A') = 0x10010018 + 0 = 0x10010018.
```

\$t1 = 0x400294 -> jump_table[0], ovvero l'indirizzo del case 'A'. In questo caso, il PC corrisponde a jump_table[0] perché stiamo eseguendo la prima istruzione del case 'A'.

\$a0 = 0x10040008 -> Indirizzo del chunk contenente la stringa di messaggio.txt

 $$a1 = 1 \rightarrow valore di encrypt.$

A sinistra: registri, in basso: indirizzi contenuti in jump_table.

[10010000]	00000015	00000000	00000000	00000000										
[10010010]	00000000	00000000	00400294	0040029c						e			e	
[10010020]	004002a4	004002ac	004002b4	63657845		e		e		e	Е	х	е	С

```
= 400314
EPC
          = 40021c
Cause
          = 24
BadVAddr = 0
Status
         = 3000ff10
ΗI
          = 0
          = 8020004
LO
    [r0] = 0
RO
         = ffffffff
R1
    [at]
    [v0] = 15
R2
    [v1] = 10040008
R3
R4
    [a0]
         = 10040008
    [a1] = 4
R5
         = ffffffff
R6
    [a2]
R7
    [a3]
         = 0
R8
    [t0] = 1004001d
    rt11
```

Change_ascii_value

\$a0 = 0x10040008 -> Indirizzo del chunk contenente la stringa di messaggio.txt

 $$a1 = 4 \rightarrow valore di encrypt << 2$

 $t0 = 0x1004001d -> end_text$

t1 = 0x58 = 0x54 + 4 = T' + 4 = X'

Prima iterazione del ciclo della procedura, quindi viene processato il primo carattere del messaggio ('T') all'indirizzo 0x10040008. A sinistra: registri, in basso: messaggio con il primo carattere criptato.

Н	[10040000]	i .	00000041	00000000	73696858	20736920	Α.						Х	h	i	8		i	s	
Н	[10040010]	i	65742061	73207478	6e697274	00000067	a	t	е	х	t	s	t	r	i	n	g			٠.

```
PC
         = 4003f8
EPC
         = 40031c
Cause
         = 24
BadVAddr = 0
         = 3000ff10
Status
HI
         = 802000e
LO
RO
    [r0] = 0
         = ffffffff
R1
    [at]
R2
    [v0] = 15
    [v1] = 10040008
R3
         = 1004001d
R4
    [a0]
         = 4
R5
    [a1]
    [a2] = ffffffff
    [a3] = 0
R7
    [t0] = 1004001d
R8
         = 6b
    [t1]
```

Algorithm_A (criptazione)

\$a0 = 0x1004001d -> L'indirizzo di partenza del messaggio è stato incrementato durante il ciclo per processare ogni carattere, quindi adesso equivale al valore di end_text.

\$t1 = 0x6b = 0x67 + 4 = 'g' + 4 = 'k'

Ogni carattere del messaggio è stato criptato con la stessa operazione di somma, infatti si può notare che i caratteri che si ripetono all'interno della stringa rimangono uguali. Ad esempio, gli spazi sono diventati '\$', le lettere 'i' sono diventate 'm', etc.

A sinstra: registri, in basso: messaggio criptato con l'algoritmo A.

[10040000]	00000041	00000000	776d6c58	24776d24	Α.					Х	1	m	W	\$	m	W	\$
[10040010]	69782465	7724787c	726d7678	0000006b	e \$	х	i	х	\$ W	х	v	m	r	k			

```
= 4001f8
EPC
         = 40031c
Cause
         = 24
BadVAddr =
           0
           3000ff10
Status
         = 0
LO
         = 802000e
    [r0] = 0
           10010000
    [at]
R2
    [voj
           10040008
R3
    [V1]
           10040008
         = 1001013c
R4
    [a0]
         = ffffffff
    [a2]
    [a3]
    [t0]
R8
         = 10040001
R9
    [t1]
           0
R10
           10040008
   [t2]
R11
    [t3]
    [t4]
   [t5]
R13
R14
    [t6]
           0
R15 [t7]
           0
           10040008
R16
   [s0]
           10040000
R17
   [81]
R18 [s2]
R19 [s3]
```

encrypt_and_decrypt (scrittura su messaggioCifrato.txt)

\$s1 = 0x10040000 -> Indirizzo del chunk contenente i caratteri letti dal file chiave.txt

\$s2 = 1 -> Contatore i. È la seconda iterazione del ciclo.

\$s3 = 1 -> Variabile increase usata per modificare il contatore i e per assegnare un valore a encrypt.

t1 = 0 -> key[i]

\$a0 = 0x1001013c -> Indirizzo di partenza del nome di messaggioCifrato.txt

\$a1 = 0x10040008 -> Indirizzo di partenza del messaggio criptato.

A sinistra: registri, in basso: path di messaggioDecifrato.txt e messaggio cifrato.

e6f6967 00747874	72657355 s	s	a	g	g	ic		t	х	t		U	s	e	r
56c656f 696d6964															
f706f74 72657345	697a6963 D	e	8	k	t	o p	/	E	8	е	r	C	i	Z	i
f616c6f 65737341	796c626d	s	C	u	0	1 a	١/	A	s	s	e	m	b	1	y
f6d6970 676f7250	6f747465 /	Q	t	S	p	i n	۱/	P	r	0	g	e	t	t	0
7676173 69436f69	74617266 /	m	е	s	s	a g	g	i	0	C	i	f	r	a	t
3550074 2f737265	656f6967 o		t	х	t	. t	8	e	r	8	/	g	i	0	e
46c696d 65442f61	6f746b73 1	e	d	i	m	i 1	t	a	1	D	e	s	k	t	0
9637265 7320697a	6c6f7563 p	/	Е	8	e	r c	: i	2	i		8	C	u	0	1
26d6573 512f796c	69705374 a	/	A	s	S	e n	ı b	1	У	/	Q	t	S	p	i
465676f 6d2f6f74	61737365 m	/	Ρ	r	0	gε	t	t	ō	/	m	е	8	8	a
9636544 74617266	78742e6f g	g	i	0	D	e c	: i	f	r	а	t	0		t	х
00000000 00000000	000000000 t														
0000000															
0000000 776d6c58	24776d24 A							Х	1	m	W	\$	m	W	\$
724787c 726d7678	0000006b e	\$	х	i		x \$	W	Х	v	m	r	k			
	86c656f 696d6964 7706f74 72657345 5616c6f 65737341 56d6970 676f7250 6676f73 69436f69 3550074 2f737265 3656096d 65442f61 3637265 7320697a 3646573 512f796c 365676f 642f6f74 3636544 74617266 30000000 00000000000000000000000000000	86c656f 696d6964 2f61746c 8 8706f74 72657345 697a6963 D 8616c6f 65737341 796c626d 86d6970 676f7250 6f747465 / 87676173 69436f69 74617266 / 87550074 2f737265 656f6967 0 86c696d 65442f61 6f746b73 1 8737265 7320697a 6c6f7563 p 86d6573 512f796c 69705374 a 865676f 6d2f6f74 61737365 m 87636544 74617266 78742e6f g 870000000 00000000 00000000 t 876d658 24776d24 A	## 1866656f 696d6964 2f61746c s / ## 1706f74 72657345 697a6963 D e ## 1616c6f 65737341 7966626d s ## 1616c6f 65737341 7966626d s ## 1616c6f 65737341 7966626d / m ## 1706666 67647250 6f747465 / Q ## 1706666 674669 74617266 / m ## 1706666 65442f61 6f746b73 L e ## 1706666 67462f61 6f746b73 D / ## 170666573 512f796c 69705374 a / ## 170666574 74617266 78742e6f g g ## 170666574 7766658 24776d24 A .	86c656f 696d6964 2f61746c s / g 8706f74 72657345 697a6963 De s 8616c6f 65737341 796c626d s c 86d6970 676f7250 6f747465 / Q t 87676173 69436f69 74617266 / m e 87550074 2f737265 656f6967 o t 86c696d 65442f61 6f746b73 l e d 8737265 7320697a 6c6f7563 p / E 86d6573 512f796c 69705374 a / A 876864 74617266 78742e6f g g i 87786664 78742e6f g g i 877866678 24776d24 A	86c656f 696d6964 2f61746c s / g î 8706f74 72657345 697a6963 D e s k 86c16c6f 65737341 796c626d s c u 86c16c970 676f7250 6f747465 / Q t s 87676173 69436f69 74617266 / m e s 87550074 2f737265 656f6967 o t x 86c696d 65442f61 6f746b73 l e d i 87676767 7320697a 6c6f7563 p / E s 87666573 512f796c 69705374 a / A s 87666574 74617266 78742e6f g g i o 8767676 9705374 a / S 87676576 9705374 a / A s 8767676 9705374 a	## 1606656f 696d6964 2f61746c	86c656f 696d6964 2f61746c s/gioel 8706f74 72657345 697a6963 Desktop 86d6970 676f7250 6f747465 /QtSpin 86d6970 676f7250 6f747465 /QtSpin 87676173 69436f69 74617266 /messag 87550074 2f737265 656f6967 o.txt.U 86c696d 65442f61 6f746b73 ledimil 8637265 7320697a 6c6f7563 p/Eserc 86d6573 512f796c 69705374 a/Assen 87666677 6d2f6f74 61737365 m/Proge 87636544 74617266 78742e6f ggioDec 87636544 74617266 78742e6f ggioDec 87636544 74617266 78742e6f ggioDec 87636544 74617266 78742e6f ggioDec	## 1606656f 696d6964 2f61746c	## 1606656f 696d6964 2f61746c	## 1606656f 696d6964 2f61746c	36c656f 696d6964 2f61746c s / gioeledim r706f74 72657345 697a6963 Desktop/Ese 6516c6f 65737341 796c626d scuola/Ass 76c66670 676f7250 6f747465 / Qtspim/Pro 676f173 69436f69 74617266 / messaggioC 74617266 / mes	10 10 10 10 10 10 10 10	36c656f 696d6964 2f61746c s / g i o e l e d i m i l 2706f74 72657345 697a6963 D e s k t o p / E s e r c 616c6f 65737341 796c626d s c u o l a / A s s e m 676f173 69436f69 74617266 / Q t s p i m / P r o g e 7676173 69436f69 74617266 / m e s s a g g i o C i f 7666964 65442f61 6f746b73 l e d i m i l t a / D e s 7666673 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d i m i l t a / D e s 7666674 1 e d	36c656f 696d6964 2f61746c s / g i o e l e d i m i l t c c c c c c c c c	1066656f 696d6964 2f61746c s / g i o e l e d i m i l t a

```
400100
PC
EPC
          = 4000fc
Cause
BadVAddr = 0
         = 3000ff10
Status
         = 802000e
RO
    [r0] =
    [at]
         = 10010000
R1
    [voj
         = 15
R3
    [v1]
         = 10040008
R4
    [a0]
         = 10040008
R5
    [a1]
```

owc_f (write_f)

\$a0 = 0xe -> File Descriptor di messaggioCifrato.txt

\$a1 = 0x10040008 -> Indirizzo di partenza del messaggio cifrato.

\$a2 = 0x15 -> Numero di caratteri della stringa da scrivere sul file.

A sinitra: registri, in basso: messaggio cifrato (messaggioCifrato.txt e data segment)

Xlmw\$mw\$e\$xi|x\$wxvmrk

ш	[10040000]	00000041	00000000	776d6c58	24776d24	Α				Х	1	m	W	\$	m	W	\$
ш	[10040010]	69782465	7724787c	726d7678	0000006b	e \$ 3	κi	x \$	W	х	v	m	r	k			

= 40021cEPC = 4001b0 = 24Cause BadVAddr = 3000ff10 ΗI = 802000e LO RO [r0] = 0= ffff0000 R1 [at] R2 (voj [v1] 10040008 [a0j = 10040008 = ffffffff R5 [a1] R7 [a31 [t0] = 10040000 R8 = 41 [t1] [t2] R10 = 10040008R11 [t3] = O 0 R12 [t4] [t5] = R13 [t6] [t7] R14 [s0] 10040008 R16 = R17 [s1] 10040000 [s2] = R18 0 = ffffffff [s3]

encrypt and decrypt (decrittazione)

\$s0 = 0x10040008 -> Indirizzo della stringa da decifrare

\$s1 = 0x10040000 -> Indirizzo del chunk contenente i caratteri letti dal file chiave.txt

\$s3 = -1 -> increase.

\$s2 = 0 -> Contatore i. Durante la scrittura su file i = 1, ma è stato modificato il valore di increase da +1 a -1, perciò: i - 1 = 1 - 1 = 0 \$t1 = 0x41 = A' -> key[i]

a0 = s0, a1 = s3, a2 = t1

A sinistra: registri.

Algorithm_A (decrittazione)

La stringa del messaggio è stata decifrata e corrisponde al messaggio letto all'inizio dell'esecuzione. In basso: messaggio decifrato (messaggioDecifrato.txt e data segment)

[10040000]																	
[10040010]	65742061	73207478	6e697274	00000067	a	t	е	х	t	8	t	r	i	n	g		.

encrypt_and_decrypt (scrittura su messaggioDecifrato.txt)

La chiamata alla procedura owc_f() ha permesso la scrittura su messaggioDecifrato.txt della stringa decifrata.

This is a text string

Algorithm_B (criptazione)

La stringa letta dal file messaggio.txt è "This is a text string" e di seguito sono riportati tutti gli indici e le codifiche in esadecimale dei singoli caratteri. Le posizioni di indice pari sono contrassegnate con il colore rosso.

54	68	69	73	20	69	73	20	61	20	74	65	78	74	20	73	74	72	69	6e	67
Т	h	i	s		i	S		а		t	е	х	t		s	t	r	i	n	g
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Dopo la criptazione tramite l'algoritmo B, che modifica il valore ascii dei caratteri in posizione pari, la stringa appare come segue (In basso: messaggioCifrato.txt e data segment):

Xhms\$iw e xe|t\$sxrmnk

[10040000]	00000042	00000000	736d6858	20776924	в.						Х	h	m	s	\$	i	W	
[10040010]		7324747c	6e6d7278	0000006b	e	х	е	1	t Ş	8	X	r	m	n	k			

Algorithm_B (decrittazione)

La stringa convertita risulta essere uguale alla stringa iniziale, perciò l'algoritmo di decrittazione è corretto (In basso: messaggioCifrato.txt e data segment).

This is a text string

[10040000] 00000042 00000000 73696854 20736920 B......This is
[10040010] 65742061 73207478 6e697274 00000067 a text string...

Algorithm_C (criptazione)

La stringa letta dal file messaggio.txt è "This is a text string" e di seguito sono riportati tutti gli indici e le codifiche in esadecimale dei singoli caratteri. Le posizioni di indice dispari sono contrassegnate con il colore blu.

54	68	69	73	20	69	73	20	61	20	74	65	78	74	20	73	74	72	69	6e	67
Т	h	i	S		i	s		а		t	е	х	t		S	t	r	i	n	g
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

Dopo la criptazione tramite l'algoritmo C, che modifica il valore ascii dei caratteri in posizione dispari, la stringa appare come segue (In basso: messaggioCifrato.txt e data segment):

Tliw ms\$a\$tixx wtvirg

[10040000]	00000043	00000000	77696c54	24736d20	с.						\mathbf{T}	1	i	W	1	m	s	\$
[10040010]	69742461	77207878	72697674	00000067	a \$	t	i	х	х	W	t	v	i	r	g			

Algorithm C (decrittazione)

La stringa convertita risulta essere uguale alla stringa iniziale, perciò l'algoritmo di decrittazione è corretto (In basso: messaggioDecifrato.txt e data segment).

This is a text string

[10040000]	00000043	00000000	73696854	20736920	с.			T	h	i	s	i	s	
[10040010]														

Algorithm_D (criptazione)

PC		=	400464
EPC		=	400460
Caus	ie.	=	24
Bady	Addr	=	0
Stat	us	=	3000ff10
ні		=	0
			_
LO		=	0
RO	[r0]	=	0
R1	[at]	=	10010000
R2	[0V]	=	15
R3	[v1]	=	10040008
R4		=	
R5	[a1]	=	1
R6	[a2]	=	44
R7	[a3]	=	0
R8	[t0]		
R9	[t1]	=	54
R10	[t2]	=	67

La stringa letta dal file messaggio.txt è "This is a text string". Lo stato dei registri è relativo alla prima iterazione del ciclo. \$a0 = 0x10040008 -> Indirizzo del secondo carattere della stringa di messaggio.txt

\$t0 = 1004001b -> end_text

\$t1 = 0x54 -> Codice ascii in esadecimale del carattere 'T' \$t2 = 0x67 -> Codice ascii in esadecimale del carattere 'g' Il primo e l'ultimo carattere della stringa sono stati cambiati di posizione e sono stati modificati i valori di \$a0 e \$t0 per poter invertire, al ciclo successivo, il secondo con il penultimo carattere del messaggio.

A sinistra: registri, in basso: messaggio con primo e ultimo carattere criptati.

[10040000] [10040010]	00000044	00000000	73696867	20736920	D .						CT.	h	4	9		1		
[[20040000]	00000044	0000000	,505000,	20,30320		•		•	•	•	9	••	-	-		-	-	- 1
11100400101	65742061	73207478	60697274	00000054		-	•	*			-		4	77				- 1
[[10040010]	03/42001	/320/4/0	00037274	00000034	α.	-	-	^	-	-		-	-	**	-	•	•	

```
PC
         = 40046c
         = 400468
Cause
         = 24
BadVAddr =
Status
         = 3000ff10
HI
LO
RO
    [r0]
R1
R2
         = 15
         = 10040008
R3
R4
           10040012
R5
         = 44
R6
R7
         = 10040012
R8
    [t0]
R9
    [t1]
           20
         = 65
R10 [t2]
```

Il ciclo di criptazione è terminato, infatti \$a0 = 0x10040012 non è più strettamente minore di \$t0 = 10040012.

\$t1 = 0x20 -> Codice ascii in esadecimale del carattere spazio \$t2 = 0x65 -> Codice ascii in esadecimale del carattere 'e'

La stringa ha un numero dispari di carattere, perciò nell'ultima iterazione i registri \$a0 e \$t0 contengono lo stesso valore, ovvero l'indirizzo del carattere che sta tra 0x20 e 0x65 (0x74 = 't').

A sinistra: registri, in basso: messaggio criptato (messaggioCifrato.txt e data segment).

gnirts txet a si sihT

[10040000]	00000044	00000000	72696e67	74207374	D						g	n	i	r	t	S	t	:
[10040010]	20746578	69732061	68697320	00000054	х	е	t	a	s	i		s	i	h	T			٠

Algorithm_D (decrittazione)

Al termine dell'esecuzione del programma, la stringa risulta essere uguale al messaggio iniziale, perciò l'algoritmo di decifratura funziona correttamente.

This is a text string

[10040000]	00000044	00000000	73696854	20736920	D.					. 1	r)	1	i	s		i	s	
[10040010]	65742061	73207478	6e697274	00000067	a	t	е	х	t	s t	: :	r :	i	n	g			

Algorithm_encrypt_E

La stringa letta dal file messaggio.txt è "This is a text string". La criptazione del messaggio tramite l'algoritmo E fa uso di sue sotto-procedure, ovvero insert character e insert index.

```
PC
         = 400378
EPC
           400374
Cause
         = 24
BadVAddr = 0
         = 3000ff10
Status
HI
         = 0
LO
         = 0
RO
    [r0] = 0
    [at] = 10010000
R1
R2
         = 10040088
    [ v0]
R3
         = 1
    [a0] = 10040088
R4
    [a1] = 1
    [a2] = 54
R6
```

Insert character

\$a0 = 0x10040088 -> indirizzo dell'ultimo carattere inserito in output_text.

\$a1 = 1 -> Numero di caratteri di output_text, che dopo un l'inserimento di \$a2 ha lunghezza 1.

\$a2 = 0x54 = 'T' -> Primo carattere del messaggio.

\$v0 = 0x10040088 -> Indirizzo dell'ultimo carattere inserito in output text.

\$v1 = 1 -> Numero di caratteri di output_text.

A sinistra: registri, in basso: primo carattere del messaggio cifrato.

	[10040000] 00000045	00000000	73696854	20736920	Е.						. 5	r h	i	s		i	8	
	[10040010] 65742061			00000067	a.	t	е	х	t		s t	r	i	n	g			
	[10040020][10040087]																	
ı	[10040088] 00000054	00000000			т.	•	•	•	•	•	•							

Insert index

PC = 400360= 40035c EPC Cause = 24BadVAddr = 0= 3000ff10 Status ΗI = 0LO = 0[r0] RO = 0 R1 = a [at] [v0] = 1004008a R2 = 3 R3 [v1] 1004008a R4 [a0] R5 [al] **R6** [a21 R7 [a3] = 0R8 [t0] = 10040089 R9 [t1] R10 [t2] R11 [t3] = 30

\$a0 = 0x1004008a -> Indirizzo dell'ultimo carattere di output_text. Prima di inserire l'indice, sono stati effettuati 2 inserimenti, uno dei quali è stato menzionato nella descrizione della procedura insert_character. L'indirizzo di partenza di output_text è 0x10040088 ('T'), il secondo byte è 0x10040089 ('-'). Il contenuto di \$a0 inizialmente era 0x10040089 ed è stato modificato durante l'esecuzione della procedura per calcolare end_text.

\$a1 = 2 -> Numero di caratteri di output_text prima dell'inserimento dell'indice.

\$a2 = 0 -> Contiene la codifica dell'indice da inserire in output text.

 $t0 = 0x10040089 -> end_text decrementato.$

\$t1 = 1 -> Numero di cifre che compongono l'indice (digits index).

\$t2 = a = 10 -> Numero utilizzato per l'operazione di modulo.

\$t2 = 0x30 -> Codifica dell'indice inserito in output text.

\$v0 = 0x1004008a -> Indirizzo dell'ultimo carattere di output_text dopo l'inserimento dell'indice.

\$v1 = 3 -> Lunghezza di output_text dopo l'inserimento dell'indice. A sinistra: registri, in basso: messaggio criptato parzialmente.

	45 00000000														
[10040010] 65742		00000067	a	t	е	х	t	s	t:	r	i	n	g		
[10040020][100400															
[10040088] 00302	154 00000000		Т -	- 0	•	•		•							

Dopo l'esecuzione dell'algoritmo di criptazione E, ogni carattere del messaggio [0x10040008, 0x1004001c] è stato sostituito con il primo carattere del messaggio stesso. Il messaggio criptato è stato memorizzato a partire dall'indirizzo 0x10040088 (in basso: messaggioCifrato.txt e data segment).

T-0 h-1 i-2-5-18 s-3-6-15 -4-7-9-14 a-8 t-10-13-16 e-11 x-12 r-17 n-19 g-20

[10040000]	00000045	00000000	54545454	54545454	Е								т	Т	т	т	Т	т	т	T
[10040010]	54545454	54545454	54545454	00000054	T	T	\mathbf{T}	Т			.									
[10040020]	[10040087]	00000000																		
[10040088]	20302d54	20312d68			T	-	0		h	-	1									
[10040090]	2d322d69	38312d35	332d7320	312d362d	i	-	2	-	5	-	1	8		8	-	3	-	6	-	1
[100400a0]	2d202035	2d372d34	34312d39	382d6120	5			-	4	-	7	-	9	-	1	4		а	-	8
[100400b0]	312d7420	33312d30	2036312d	31312d65		t	-	1	0	-	1	3	-	1	6		е	-	1	1
[100400c0]	312d7820	2d722032	6e203731	2039312d		х	-	1	2		r	-	1	7		n	-	1	9	
[100400d0]	30322d67	00000020				g	-	2	0											

Algorithm_decrypt_E

Il valore di PC corrisponde all'istruzione "jr \$ra" della procedura algorithm_decrypt_E. Dopo aver allocato un chunk di dimensione equivalente al messaggio iniziale [0x100400d8, 0x100400ec], l'algoritmo di decifratura E traduce il messaggio cifrato e riporta la stringa al suo stato iniziale.

This is a text string

[10040000]	00000045	00000000	54545454	54545454	Е							T	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	T	T
[10040010] 5	54545454	54545454	54545454	00000054	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	Т	T 7	1	T	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}			
[10040020][10	0400871	00000000																	
100400881 2	20302d54	20312d68			\mathbf{T}	_	0		h	- 1									
100400901 2	2d322d69	38312d35	332d7320	312d362d	i	_	2	_	5	- 1	. 8		8	_	3	_	6	_	1
[100400a01 2	d202035	2d372d34	34312d39	382d6120	5			_	4	- 7	_	. 9	_	1	4		a	_	8
	312d7420	33312d30	2036312d							- 1									
	312d7820	2d722032	6e203731	2039312d					_	,	_			_					-
	30322d67	00000020	00000000	00000000				_	_			_			-				_
[100400e0][10		00000000			9		-					•	•	•	•	•	•	•	•
	73696854	00000000			T	h	4												
	0736920	65742061	73207478	6e697274											_				
		03/42001	/320/4/0	0009/2/4								×	-		8	-	1	_	11
[10040330]	00000067					g	•	•	•										

3.5. Codice Sorgente

PROGETTO MIPS ASSEMBLY PER IL CORSO DI ARCHITETTURE DEGLI ELABORATORI # - A.A. 2018/2019 -

```
# Title: Messaggi Cifrati
```

Author: Gioele Dimilta - Alberto Brogi

Email: gioele.dimilta@stud.unifi.it - alberto.brogi@stud.unifi.it

Description: Progetto MIPS Assembly - Architetture degli Elaboratori

Input: messaggio.txt, chiave.txt

Output: messaggioDecifrato.txt, messaggioCifrato.txt

Filename: Progetto AE.asm

Date: 29/05/2019

```
- line 120 #
# open f
                              - line 132 #
# read f
                              - line 154 #
# write f
# close f
                              - line 164 #
                              - line 172 #
# orc f
# owc_f
                              - line 207 #
# encrypt and decrypt
                              - line 243 #
                              - line 296 #
# choose_algorithm
                              - line 359 #
# change ascii value
# insert index
                              - line 387 #
# insert_character
                              - line 421 #
                              - line 440 #
# algorithm A
                              - line 457 #
# algorithm B
                              - line 473 #
# algorithm C
# algorithm D
                              - line 489 #
# algorithm_encrypt_E
                              - line 509 #
# algorithm_decrypt_E
                              - line 619 #
###########################
########################
           DATA SEGMENT
######################
.data
size message:
                      .word
                      .word 0 657 2773 13010 67205
sizes arrays E:
                      .word L_A, L_B, L_C, L_D, L_E
jump table:
file_not_found:
                      .asciiz "Execution terminated with errors - File not found."
sbrk_error:
                      .asciiz "Execution terminated with errors - Heap allocating error."
chiave:
                      .asciiz "BRO-DIM-2019-05-29/chiave.txt"
                      .asciiz "BRO-DIM-2019-05-29/messaggio.txt"
.asciiz "BRO-DIM-2019-05-29/messaggioCifrato.txt"
messaggio:
messaggioCifrato:
                      .asciiz "BRO-DIM-2019-05-29/messaggioDecifrato.txt"
messaggioDecifrato:
######################
        CODE SEGMENT
######################
.text
.globl main
main:
                                     #############
       addi $sp. $sp. -8
                                     # Memorizzo il valore #
       sw $s0, 4($sp)
                                     # dei registri permanenti #
       sw $ra, 0($sp)
                                     # e del registro $ra
                                     #############
       la $a0, chiave
                                     # $a0 = &(chiave)
                                     # La chiave ha un massimo di 4 caratteri ma allocando 5 bytes
       li $a1, 5
                                     # sono sicuro che la stringa terminerà con il carattere '\0'
       jal orc f
       move $s0, $v1
                                     # $s0 = kev
                                     # $v0 = lunghezza dell'array chiave
                                     # $a0 = &(chiave)
       la $a0, messaggio
       li $a1, 128
                                     # II messaggio ha un massimo di 1
                                     # 28 caratteri
```

```
ial orc f
       sw $v0, size message
                                       #*size message = $v0
                                       #$v1 = input text
       move $a0, $v1
                                       #$a0 = input text
       move $a1, $s0
                                       # $a1 = kev
       jal encrypt and decrypt
end program:
                                       ############
       Iw $ra, 0($sp)
                                       # Ripristino il contenuto #
       lw $s0, 4($sp)
                                       # dei registri permanenti #
       addi $sp, $sp, 8
                                       # e del registro $ra #
                                       ############
       li $v0. 10
                                       # L'intero 10 identifica l'operazione di chiusura del programma
        syscall
######################
              ERRORI
#####################
error:
                                       # $a0 = Indirizzo della stringa da stampare
       li $v0, 4
                                       # L'intero 4 identifica l'operazione di stampa su stdin di una stringa
       syscall
       j end_program
#####################
                FILE
######################
open f:
                                       # $a0 = Indirizzo di partenza del nome del file
                                       #$a1 = Flag di modalità (0 = lettura, 1 = scrittura)
       li $v0. 13
                                       # L'intero 13 identifica l'operazione di apertura del file
       li $a2. 0
                                       # Nel caso di creazione automatica di un file.
                                       # $a2 contiene i permessi da attribuire a tale file
       syscall
                                       # $v0 = File descriptor
       la $a0, file not found
                                      # $a0 = Indirizzo della stringa di errore da stampare
                                       # In caso di errore durante l'apertura del file, la syscall restituisce -1
       bltz $v0, error
       jr $ra
read f:
       move $t0. $a0
                                       # $t0 = File Descriptor
                                       # $t1 = Numero massimo di bytes da leggere dal file
       move $t1, $a1
               $v0.9
                                       # L'intero 9 identifica l'operazione di allocazione di bytes nell'Heap
                                       # Numero di bytes da allocare
       move
               $a0, $t1
       syscall
       la $a0, sbrk_error
                                       # $a0 = Indirizzo della stringa di errore da stampare
                                       # Se $v0 = -1, significa che c'è stato un errore durante
       bltz $v0, error
                                       # l'allocazione di memoria
       move $t2, $v0
                                       # $t2 = Indirizzo di partenza del chunk allocato nell'Heap
               $v0. 14
                                       # L'intero 14 identifica l'operazione di lettura da file
                                       # $a0 = File Descriptor
       move $a0, $t0
```

```
# $a2 = Numero massimo di byte da leggere dal file
       move
               $a2, $t1
       syscall
                                       # $v0 = Numero di bytes effettivamente letti da file
       move $v1, $t2
                                       # $v1 = Indirizzo di partenza del messaggio letto dal file
       ir $ra
write f:
                                       # $a0 = File Descriptor
                                       # $a1 = Indirizzo di partenza del messaggio da scrivere nel file
       li $v0, 15
                                       # L'intero 15 identifica l'operazione di scrittura su file
       Iw $a2, size message
                                       # Numero di bytes da estrapolare dall'Heap e scrivere nel file
       syscall
       jr $ra
close f:
                                       # $a0 = File Descriptor
       li $v0. 16
                                       # L'intero 16 identifica l'operazione di chiusura del file
       syscall
       jr $ra
orc f:
                                       ############
       addi $sp, $sp, -16
                                       # Memorizzo il valore #
       sw $s2, 12($sp)
       sw $s1, 8($sp)
                                       # dei registri permanenti #
                                       # e del registro $ra #
       sw $s0, 4($sp)
                                       ##############
       sw $ra, 0($sp)
                                       # $a0 = Indirizzo di partenza del nome del file
       move $s0. $a1
                                       # $a1 = Numero massimo di byte da leggere dal file
       move $a1, $zero
                                       # Flag di modalità (0 = lettura, 1 = scrittura)
       jal open f
       move $s1, $v0
                                       # Memorizzo temporaneamente il valore del File Descriptor
                                       # perchè servirà più avanti per chiudere il file
       move $a0, $s1
                                       # $a0 = File Descriptor
       move $a1, $s0
                                       # $a1 = Numero massimo di byte da leggere dal file
       jal read f
       move $s2, $v0
                                       # $s2 = Numero di bytes effettivamente letti da file
       move $s0, $v1
                                       # $s0 = Indirizzo di partenza del messaggio letto dal file
       move $a0. $s1
                                       # $a0 = File Descriptor
       jal close f
       move $v0, $s2
                                       # $v0 = Numero di bytes effettivamente letti da file
       move $v1, $s0
                                       # $v1 = Indirizzo di partenza del messaggio letto dal file
                                       #############
       Iw $ra, 0($sp)
       Iw $s0, 4($sp)
                                       # Ripristino il contenuto #
       Iw $s1, 8($sp)
                                       # dei registri permanenti #
       lw $s2, 12($sp)
                                       # e del registro $ra
                                       ###############
       addi $sp, $sp, 16
       jr $ra
```

\$a1 = Indirizzo di partenza del chunk allocato nell'Heap

move

\$a1. \$t2

```
owc f:
       addi $sp, $sp, -12
                                     ##############
                                     # Memorizzo il valore #
       sw $s1, 8($sp)
                                     # dei registri permanenti #
       sw $s0, 4($sp)
       sw $ra, 0($sp)
                                     # e del registro $ra
                                     #############
                                     # $a0 = Indirizzo di partenza del nome del file
                                     # $s0 = Indirizzo di partenza del messaggio memorizzato nell'Heap
       move $s0, $a1
       li $a1. 1
                                     # Flag di modalità (0 = lettura, 1 = scrittura)
       ial open f
       move $s1, $v0
                                     # Memorizzo temporaneamente il valore del File Descriptor
                                     # perchè servirà più avanti per chiudere il file.
       move $a0, $s1
                                     # $a0 = File Descriptor
       move $a1, $s0
                                     # $a1 = Indirizzo di partenza del messaggio da scrivere nel file
       jal write f
       move $a0, $s1
                                     # $a0 = File Descriptor
       ial close f
                                     ##############
       Iw $ra. 0($sp)
                                     # Ripristino il contenuto #
       Iw $s0, 4($sp)
                                     # dei registri permanenti #
       lw $s1, 8($sp)
                                     # e del registro $ra #
                                     ###############
       addi $sp, $sp, 12
       jr $ra
######################
            GESTIONE
######################
encrypt and decrypt:
       addi $sp, $sp, -20
                                                     ##############
       sw $s3, 16($sp)
       sw $s2, 12($sp)
                                                     # Memorizzo il valore #
       sw $s1, 8($sp)
                                                     # dei registri permanenti #
       sw $s0, 4($sp)
                                                         e del registro $ra
                                                     #
       sw $ra, 0($sp)
                                                     #############
       move $s0, $a0
                                                    # $s0 = input_text
       move $s1, $a1
                                                    # $s1 = key
       move $s2, $zero
                                                    # $s2 = i
       li $s3, 1
                                                     # $s3 = increase
       loop__encrypt_and_decrypt:
               add $t0, $s1, $s2
                                                     # $t0 = key + i
               Ib $t1, O($t0)
                                                     #$t0 = key[i]
               bnez $t1, else__encrypt_and_decrypt
                                                    # IF (key[i] != '\0')
                                                     # $a0 = &(messaggioCifrato)
               la $a0, messaggioCifrato
                                                    # $a1 = input_text
               move $a1, $s0
               jal owc_f
               li $s3, -1
                                                    # increase = -1
                                                    #i = i + increase
               add $s2, $s2, $s3
               else encrypt and decrypt:
                                                    # $t0 = key + i
               add $t0, $s1, $s2
               Ib $t1, 0($t0)
                                                    #$t1 = key[i]
```

```
move $a0, $s0
                                                       #$a0 = input text
               move $a1, $s3
                                                       #$a1 = encrypt
               move $a2, $t1
                                                       # a2 = key[i]
               jal choose_algorithm
               move $s0, $v0
                                                       #$v0 = input text
                                                       #i = i + increase
               add $s2, $s2, $s3
               bgez $s2, loop__encrypt_and_decrypt
                                                      # while(i \ge 0)
                                                       # $a0 = &(messaggioDecifrato)
       la $a0, messaggioDecifrato
       move $a1, $s0
                                                       #$a1 = input text
       ial owc f
                                                       ############
       Iw $ra, 0($sp)
                                                       # Ripristino il contenuto #
       lw $s0, 4($sp)
                                                       # dei registri permanenti #
       Iw $s1, 8($sp)
       Iw $s2, 12($sp)
                                                          e del registro $ra
       lw $s3, 16($sp)
       addi $sp, $sp, 20
                                                       #############
       ir $ra
choose_algorithm:
                                                       #############
       addi $sp, $sp, -8
                                                       # Memorizzo il valore #
                                                       # dei registri permanenti #
       sw $s0, 4($sp)
       sw $ra, 0($sp)
                                                       # e del registro $ra
                                                       ##############
                                                       # $a0 = input_text
                                                       # $a1 = encrypt
                                                       # $a2 = character
       blt $a2, 'A', exit_switch
                                                       # IF (character < 'A')
       bgt $a2, 'E', exit_switch
                                                       # IF (character > 'E')
       addi $t0, $a2, -0x41
                                                       # $t0 = character - 'A'
                                                       # $t0 = (character - 'A') * 4 (without overflow)
       sll $t0, $t0, 2
       la $t1, jump_table
                                                       # $t1 = &(jump\_table)
                                                       # $t0 = ((character - 'A') * 4) + &(jump_table)
       add $t0, $t1, $t0
                                                       # $t1 = jump_table[(character - 'A')]
       Iw $t1, O($t0)
       move $s0, $a0
                                                       # $s0 = input_text
       jr $t1
       L_A:
                                                       \# L_A = jump\_table[0]
               jal algorithm A
               j exit_switch
       L B:
                                                       \# L_B = jump\_table[1]
               jal algorithm B
               j exit_switch
       L_C:
                                                       \# L_C = jump\_table[2]
               jal algorithm_C
               j exit_switch
       L_D:
                                                       \# L_D = jump\_table[3]
               jal algorithm_D
               j exit_switch
       L_E:
                                                       \# L_E = jump\_table[4]
               bltz $a1, L_E_decrypt
                                                       # IF (encrypt < 0)
               jal algorithm_encrypt_E
               j end_L_E
```

```
L E decrypt:
                       jal algorithm decrypt E
               end_L_E:
                       move $s0, $v0
                                                      #$s0 = input text
       exit switch:
                                                      # $v0 = input_text
       move $v0. $s0
                                                      ############
       Iw $ra, 0($sp)
                                                      # Ripristino il contenuto #
       Iw $s0, 4($sp)
                                                      # dei registri permanenti #
       addi $sp. $sp. 8
                                                      # e del registro $ra #
                                                      #############
       ir $ra
######################
             CALCOLO
######################
change_ascii_value:
                                                              #$a0 = input text
                                                              #$a1 = encrypt
                                                              # $a2 = reminder
                                                              # $t0 = *size_message
       lw $t0, size message
       add $t0, $a0, $t0
                                                              # end_text = input_text + *size_message
                                                              # encrypt = encrypt * 4
       sll $a1, $a1, 2
       loop__change_ascii_value:
               li $t1, 2
                                                              # $t1 = 2
               div $a0, $t1
                                                              # input_text / 2
               mfhi $t1
                                                              # $t1 = input_text % 2
                                                              # IF ((input_text % 2) == reminder)
               beq $t1, $a2, true_if__change_ascii_value
               bne $a2, -1, end_loop__change_ascii_value
                                                              # IF (remainder != -1)
               true_if__change_ascii_value:
lbu $t1, 0($a0)
                                                              # $t1 = *input_text
               add $t1, $t1, $a1
                                                              # $t1 = $t1 + encrypt
               sb $t1, 0($a0)
                                                              # *input_text = $t1
    end_loop__change_ascii_value:
    addi $a0, $a0, 1
                                                              # input_text = input_text + 1
    bne $a0, $t0, loop__change_ascii_value
                                                              # IF (input_text != end_text)
       jr $ra
insert index:
                                                      #$a0 = &(output_text[length-1])
                                                      # $a1 = length
                                                      # $a2 = index
                                                      # temp = index
       move $t0, $a2
                                                      # digits_index = 0
       move $t1, $zero
       count_digits__insert_index:
               div $t0, $t0, 10
                                                      # temp = temp / 10;
                                                      # digits_index = digits_index + 1
               add $t1, $t1, 1
               bnez $t0, count digits insert index
                                                      # WHILE (temp != 0)
```

```
add
               $a0, $a0, $t1
                                                     # $a0 = &(output text[length-1]) + digits index =
                                                     # &(output text[(length-1) + digits index])
       move $t0, $a0
                                                     # end_text = &(output_text[(length-1) +
                                                     # digits index])
       li
               $t2. 10
                                                     # $t2 = 10
       loop insert index:
               div $a2. $t2
                                                     # index / 10
               mflo $a2
                                                     # index = index / 10
               mfhi $t3
                                                     # $t3 = index \% 10
                                                     # $t3 = (index \% 10) + '0'
               add $t3, $t3, '0'
               sb $t3, 0($t0)
                                                     # *output_text = (index % 10) + '0'
                                                     # end text = end text - 1
               sub $t0, $t0, 1
                                                     # WHILE (index != 0)
               bnez $a2, loop insert index
       move $v0, $a0
                                                     # $v0 = &(output_text[(length-1) + digits_index])
       add $v1, $a1, $t1
                                                     # $v1 = length + digits index
       ir $ra
insert character:
                                                     #$a0 = &(output_text[length-1])
                                                     # $a1 = length
                                                     # $a2 = character
                                                     # $a0 = &(output_text[(length-1) + 1]) =
       addi $a0, $a0, 1
                                                     # &(output_text[length])
       sb $a2, 0($a0)
                                                     # output_text[length] = character
       addi $a1, $a1, 1
                                                     # length = length + 1
       move $v0. $a0
                                                     # $v0 = output_text[length - 1]
       move $v1, $a1
                                                     #$v1 = length
       jr $ra
######################
            ALGORITMI
######################
algorithm_A:
                                             ############
       addi $sp, $sp, -4
                                             # Memorizzo il valore #
       sw $ra, 0($sp)
                                             # del registro $ra.
                                             ##############
                                             # $a0 = input_text
                                             # $a1 = encrypt
       li $a2, -1
                                             # $a2 = reminder
       jal change_ascii_value
                                             ############
                                             # Ripristino il contenuto #
       Iw $ra, 0($sp)
       addi $sp, $sp, 4
                                             # del registro $ra. #
                                             ##############
    jr $ra
```

algorithm B:

```
##############
                                            # Memorizzo il valore #
       addi $sp, $sp, -4
                                            # del registro $ra.
       sw $ra, 0($sp)
                                            ##############
                                            #$a0 = input text
                                            # $a1 = encrypt
                                            # $a2 = reminder
       li $a2. 0
       jal change_ascii_value
                                            ############
                                            # Ripristino il contenuto #
       Iw $ra, 0($sp)
       addi $sp, $sp, 4
                                                del registro $ra.
                                            ##############
       ir $ra
algorithm_C:
                                            ##############
       addi $sp, $sp, -4
                                            # Memorizzo il valore #
       sw $ra, 0($sp)
                                                del registro $ra.
                                            ##############
                                            # $a0 = input_text
                                            # $a1 = encrypt
       li $a2, 1
                                            # $a2 = reminder
       jal change ascii value
                                            #############
       Iw $ra, 0($sp)
                                            # Ripristino il contenuto #
                                               del registro $ra.
       addi $sp, $sp, 4
                                            ##############
       jr $ra
algorithm D:
                                            # $a0 = input_text
       lw $t0, size_message
                                            # $t0 = *size_message
       addi $t0, $t0, -1
                                            # $t0 = *size_message - 1
       add $t0, $a0, $t0
                                            # end_text = input_text + (*size_message - 1)
       loop D:
              Ibu $t1, 0($a0)
                                            # temp = *input_text
              Ibu $t2, 0($t0)
                                            # $t2 = *end_text
              sb $t2, 0($a0)
                                            # *input_text = *end_text
              sb $t1, 0($t0)
                                            # *end_text = temp
              addi $a0, $a0, 1
                                            # input_text = input_text + 1
                                            # end_text = end_text - 1
              addi $t0, $t0, -1
              blt $a0, $t0, loop__D
                                            # IF (input_text < end_text)
       jr $ra
algorithm encrypt E:
                                                           #############
       addi $sp, $sp, -24
       sw $s4, 20($sp)
                                                           #
       sw $s3, 16($sp)
                                                           # Memorizzo il valore #
                                                           # dei registri permanenti #
       sw $s2, 12($sp)
                                                               e del registro $ra. #
       sw $s1, 8($sp)
       sw $s0, 4($sp)
                                                           #
                                                                                 #
```

```
sw $ra. 0($sp)
                                                         #############
                                                         #$a0 = input text
move $s0, $a0
                                                         #$s0 = input text
move $s1, $zero
                                                         # $s1 = i
move $s2, $zero
                                                         # $s2 = j
Iw $s3, size message
                                                         #$s3 = *size message
move $s4, $zero
                                                         # $s4 = character
move $v1, $zero
                                                         #$v1 = length
la $t0, sizes arrays E
                                                         #$t0 = sizes arrays E
Iw $t1, 0($t0)
                                                         # $t1 = sizes arrays E[0]
addi $t1, $t1, 1
                                                         # $t1 = sizes \ arrays \ E[0] + 1
                                                         # $t1 = (sizes\_arrays\_E[0] + 1) * 4
sll $t1, $t1, 2
                                                         # $t1 = sizes \ arrays \ E +
add $t1, $t0, $t1
                                                         \# ((size \ arrays \ E[0] + 1) * 4) =
                                                         # sizes_arrays_E[size_arrays_E[0] + 1]
                                                         # $t2 = sizes_arrays_E[size_arrays_E[0]+1]
Iw $t2, 0($t1)
li $v0. 9
                                                         # L'intero 9 identifica l'operazione di
                                                         # allocazione di bytes nell'Heap
move $a0, $t2
                                                         # Numero di bytes da allocare
syscall
la $a0, sbrk_error
                                                         # $a0 = Indirizzo della stringa di errore da
                                                         # stampare
                                                         # Se $v0 = -1, significa che c'è stato un
bltz $v0, error
                                                         # errore durante l'allocazione di memoria
addi $v0, $v0, -1
                                                         # output_text = output_text - 1
loop_1__encrypt_E:
        Ibu $t0, 0($s0)
                                                         # $t0 = input_text[0]
        add $t1, $s0, $s2
                                                         # $t1 = &(input\_text[j])
        Ib $s4, 0($t1)
                                                         # character = input_text[j]
        begz $s2, true if encrypt E
                                                         # IF (i == 0)
        beq $s4, $t0, end_loop_1__encrypt_E
                                                         # IF (character == input_text[0])
        true if encrypt E:
        move $a0, $v0
                                                         # $a0 = output_text
        move $a1, $v1
                                                         # $a1 = length
        move $a2, $s4
                                                         # $a2 = character
        jal insert_character
        move $s1, $s2
                                                         \# i = j
        loop_2__encrypt_E:
                                                         # $t0 = &(input_text[i])
                add $t0, $s0, $s1
                Ib $t1, 0($t0)
                                                         #$t1 = input text[i]
                bne $s4, $t1, end_loop_2_encrypt_E # IF (character != input_text[i])
                move $a0, $v0
                                                         # $a0 = output_text
                move $a1, $v1
                                                         # $a1 = length
                li $a2, '-'
                                                         # $a2 = '-'
                jal insert_character
                                                         # $a0 = output_text
                move $a0, $v0
                                                         # $a1 = length
                move $a1, $v1
                move $a2, $s1
                                                         # $a2 = i
                jal insert index
                Ibu $t0, 0($s0)
                                                         #$t0 = input text[0]
                add $t1, $s0, $s1
                                                         # $t1 = &(input_text[i])
```

```
sb $t0. 0($t1)
                                                                # input_text[i] = input_text[0]
                end loop 2 encrypt E:
                        addi $s1, $s1, 1
                                                                 #i = i + 1
                        blt $s1, $s3, loop_2_encrypt_E
                                                                # IF (i < *size_message)
                        move $a0, $v0
                                                                #$a0 = output_text
                        move $a1, $v1
                                                                # $a1 = length
                        li $a2, ''
                                                                # $a2 = '-'
                        jal insert_character
        end loop 1 encrypt E:
                addi $s2, $s2, 1
                                                                #i = i + 1
                blt $s2, $s3, loop 1 encrypt E
                                                                # IF (j < *size_message)
                                                                 # $t0 = size_arrays_E
        la $t0, sizes arrays E
                                                                 # $t1 = size \ arrays \ E[0]
        Iw $t1, 0($t0)
                                                                 # $t1 = size_arrays_E[0] + 1
        add $t1, $t1, 1
                                                                 # size arrays E[0] = $t1
        sw $t1, 0($t0)
        sll $t1, $t1, 2
                                                                 # $t1 = size_arrays_E[0] * 4
        add $t0, $t0, $t1
                                                                 # sizes_arrays_E = sizes_arrays_E + $t1
                                                                 # sizes_arrays_E + $t1 = size_message
        sw $s3, 0($t0)
       la $t0, size message
                                                                #$t0 = &(size message)
        addi $t1, $v1, -1
                                                                 # $t1 = length - 1
        sw $t1, 0($t0)
                                                                # *size message = length - 1
        sub $v0, $v0, $v1
                                                                 # output_text = output_text - length
                                                                 # output text = output text + 1
        addi $v0, $v0, 1
                                                                #############
       Iw $ra, 0($sp)
       Iw $s0, 4($sp)
       Iw $s1, 8($sp)
                                                                # Ripristino il contenuto #
       Iw $s2, 12($sp)
                                                                 # dei registri permanenti #
       Iw $s3, 16($sp)
                                                                     e del registro $ra.
       Iw $s4, 20($sp)
        addi $sp, $sp, 24
                                                                ##############
       jr $ra
algorithm decrypt E:
                                                                # $a0 = input_text
        move $t0, $a0
                                                                # $t0 = input_text
        li $t1, 1
                                                                # $t1 = i
                                                                # $t2 = *size_message
        lw $t2, size_message
        li $t3, 0
                                                                #$t3 = index
        la $t4, sizes arrays E
                                                                #$t4 = &(sizes arrays E)
       Iw $t5, 0($t4)
                                                                 # $t5 = sizes_arrays_E[0]
        sll $t5, $t5, 2
                                                                 # $t5 = sizes_arrays_E[0] * 4
        add $t4, $t4, $t5
                                                                # $t4 = &(sizes\_arrays\_E) +
                                                                 # (sizes_arrays_E[0] * 4)
                                                                 # $t5 = sizes_arrays_E[sizes_arrays_E[0]]
       Iw $t5, 0($t4)
       li $v0, 9
                                                                 # L'intero 9 identifica l'operazione di
                                                                 # allocazione di bytes nell'Heap
        move $a0, $t5
                                                                 # Numero bytes da allocare
        syscall
```

\$a0 = Indirizzo della stringa di errore da

la \$a0, sbrk error

```
# stampare
bltz $v0, error
                                                           # Se $v0 = -1, significa che c'è stato un
                                                           # errore durante l'allocazione di memoria
move $t4, $v0
                                                           #$t4 = output text
Ibu $t5, 0($t0)
                                                           # character = input text[0]
sb $t5, 0($t4)
                                                           # output text[0] = character
loop decrypt E:
        add $t6, $t0, $t1
                                                          #$t6 = input text + i
        addi $t7. $t6. -1
                                                          # $t7 = (input text + i) - 1
        Ibu $t8, 0($t7)
                                                          # $t8 = input text[i-1]
                                                          # IF (input_text[i-1] != ' ')
        bne $t8, '', else_if__decrypt_E
        addi $t7, $t6, 1
                                                          # $t7 = (input text + i) + 1
                                                          # $t8 = input_text[i+1]
        Ibu $t8, 0($t7)
        bne $t8, '-', else if decrypt E
                                                          # IF (input_text[i+1] != '-')
        Ibu $t5, 0($t6)
                                                          # $t5 = input_text[i]
        j end loop decrypt E
        else if decrypt E:
                 Ibu $t7, 0($t6)
                                                          # $t7 = input_text[i]
                 beq $t7, '', if_true__decrypt_E
                                                           # IF (input text[i] == ' ')
                 bne $t7, '-', else__decrypt_E
                                                          # IF (input_text[i] != '-') != 0)
                 if true decrypt E:
                 begz $t3, end loop decrypt E
                                                          #IF (index == 0)
                 add $t7, $t4, $t3
                                                           # $t7 = output_text + index
                                                           # output text[index] = character
                 sb $t5, 0($t7)
                 move $t3, $zero
                                                          # index = 0
                j end_loop__decrypt_E
        else decrypt E:
                Ibu $t7, 0($t6)
                                                          # $t7 = input_text[i]
                 addi $t7, $t7, -48
                                                          # $t7 = input_text[i] - '0'
                 mul $t8, $t3, 10
                                                          # $t8 = index * 10
                 add $t3, $t8, $t7
                                                           # index = (index * 10) +
                                                           # (input_text[i] - '0')
end_loop__decrypt_E:
        addi $t1, $t1, 1
                                                           \#i = i + 1
                                                          # IF (i < *size_message)
        blt $t1, $t2, loop__decrypt_E
add $t0, $t4, $t3
                                                           # $t0 = output_text + index
sb $t5, 0($t0)
                                                           # output_text[index] = character;
la $t0, sizes arrays E
                                                           # $t0 = &(size\ message)
Iw $t1, 0($t0)
                                                           # $t1 = size\_message[0]
                                                           # $t2 = size_message[0] * 4
sll $t2, $t1, 2
add $t2, $t0, $t2
                                                           # $t2 = &(size\_message) +
                                                           # (size_message[0] * 4)
Iw $t3, 0($t2)
                                                           # $t3 = sizes_arrays_E[sizes_arrays_E[0]]
sw $t3, size_message
                                                           # *size message =
                                                           # sizes_arrays_E[sizes_arrays_E[0]]
addi $t1, $t1, -1
                                                           # $t1 = sizes_arrays_E[0] - 1;
sw $t1, 0($t0)
                                                           # sizes_arrays_E[0] = sizes_arrays_E[0] - 1
move $v0, $t4
                                                           # $v0 = output_text
jr $ra
```