# Using Past Speaker Behavior to Better Predict Turn Transitions

Tomer Meshorer Peter A Heeman

Center for Spoken Language Understanding Oregon Health & Science University, Portland, Oregon,USA

Interspeech, 2016

- Motivation
- 2 Summary Features
- 3 Evaluation
- Results and Discussion
- Summary

#### Problem

- For a natural conversation between human and machine, we want to conform to human to human turn taking system (Sacks et al, 1978)
- In Human-Human conversations conversant predict (Sacks et al, 1978) or signal (Duncan 1972) each other on coming turn transition
- Timeouts leads to poor user interaction(Arsikere et al, 2015)
  - Not effective in noisy environment
  - too little machine barge in during intra turn pause.
  - too much user waiting for the machine.
- Turn transition prediction based on local features improve turn taking but still do not match human performance.
  - Syntactic (Sacks et al 1978, De Ruiter et al. 2006)
  - Prosodic (Ford 1996, Stolcke 2002, Ferrer 2003)
  - Pragmatic (Ford 2001)



#### Goal of the work

Conversant's past behavior can help predict turn transitions

Past behavior represented by Summary features

- Motivation
- Summary Features
- 3 Evaluation
- 4 Results and Discussion
- Summary

#### Conversation



#### Conversation

... A, DA1, A, DA2, B, DA3, B, DA4, A, DA5...

#### Conversation with turn change

... DA1, 0, DA2, 1, DA3, 0, DA4, 1, DA5...



# Relative Turn Length

Measure ratio of current turn length relative to average turn length.



# Relative Turn Length

Measure ratio of current turn length relative to average turn length.



# Relative Turn Length

Measure ratio of current turn length relative to average turn length.



### Relative Floor Control

Measure ratio that current speaker held the floor. How dominate current speaker is.

### Relative Floor Control

Measure ratio that current speaker held the floor. How dominate current speaker is.

| ©<br>C        | DA |    |    |        |     |              |
|---------------|----|----|----|--------|-----|--------------|
| <b>©</b><br>B | DA |    |    |        |     |              |
| <b>©</b><br>A | DA |    | DA |        |     |              |
| <b>©</b><br>B | DA |    |    | ©<br>A | 65% | <b>©</b> 35% |
| <b>©</b><br>A | DA |    |    |        |     |              |
| 9             |    | DA |    |        |     |              |

- Motivation
- 2 Summary Features
- 3 Evaluation
- 4 Results and Discussion
- Summary

Motivation Summary Features **Evaluation** Results and Discussion Summary

# Preprocessing

- Removed 11 dialogue acts that were coded as 'other' in switchboard.
- Skip the first 120 seconds of the conversation.
  - Gives time for conversant to form the conversional image.
  - Reduces the dialogue acts from 50633 to 37508.
- Reduce data sparsity by collapsing 65 dialog acts into 9.

| Switchboard dialog acts | Dialog act classes  |  |  |
|-------------------------|---------------------|--|--|
| sd,h,bf                 | statement           |  |  |
| sv,ad,sv@               | statement - opinion |  |  |
| aa,aar̂                 | agree accept        |  |  |
| %.%-,%@                 | abandon             |  |  |
| b,bh                    | backchannel         |  |  |
| qy,qo,qh                | question            |  |  |
| no,ny,ng,arp            | answer              |  |  |
| +                       | +                   |  |  |
| 0@,+@                   | NA                  |  |  |

#### **ML** Classifiers

- Used random forests (N=200) to train and test the following models
  - Baseline 1: current dialog act label.
  - Baseline 2: current and previous dialog acts.
  - Summary model: just the summary features.
  - Full model: summary features and current and previous dialog acts.
- Evaluation was done using 10 fold cross validation.
- Run grid search to find the optimal hyper parameters.

- Motivation
- 2 Summary Features
- 3 Evaluation
- 4 Results and Discussion
- 5 Summary

# Accuracy

| Model      | Accuracy | AUC  | hyper parameters               |
|------------|----------|------|--------------------------------|
| Baseline 1 | 60.26%   | 0.63 | max_features=sqrt, max_depth=7 |
| Baseline 2 | 74.43%   | 0.79 | max_features=log2, max_depth=9 |
| Summary    | 66.14%   | 0.65 | max_features=sqrt, max_depth=5 |
| Full       | 76.05%   | 0.82 | max_features=10, max_depth=9   |

Table: Accuracy, Area under the curve

- The Summary model is more accurate than Baseline 1.
- The Full model is more accurate than Baseline 2.

#### ROC curves and AUC of the different models





## Precision & Recall

| Model      | Precision | Recall | F1     |
|------------|-----------|--------|--------|
| Baseline 1 | 69.49%    | 45.52% | 54.97% |
| Baseline 2 | 80.38%    | 68.80% | 74.08% |
| Summary    | 64.55%    | 68.88% | 66.42% |
| Full       | 76.17%    | 77.25% | 74.87% |

Table: Precision, recall and F1 results

- Summary model makes more mistakes vs Baseline 1, however it detects more turn transition.
- Summary model makes more mistakes vs Baseline 2
- Full model makes slightly more mistakes vs Baseline 2, however it detects more turn transitions.
  Overall F1 is slightly better.



- Motivation
- 2 Summary Features
- 3 Evaluation
- 4 Results and Discussion
- **5** Summary

#### Conclusion and Future Work

- Conclusion
  - Experiment proved that summary features improve turn transition prediction
- Future Work
  - Combine summary features with other local features: syntax, prosody.
  - Test simple moving average windows (5,10,20 turns)
  - Test exponential moving average.
  - Convert other local features to summary feature.