Introduction to MATLAB

Sai Janani Ganesan Graduate Student Matysiak Lab

Outline

- Basics: How to get started, declare variables, basic commands, for loops, if statements
- Functions: What are functions; How to create and execute simple functions
- Solving ODEs: how to solve (a) 1 ODE, (b) system of ODEs
- Useful tips regarding solvers

Basics of MATLAB

```
Command Window
                                                                                                      ூ
New to MATLAB? Watch this <u>Video</u>, see <u>Examples</u>, or read <u>Getting Started</u>.
  A =
        5
  >> A=[2,3]
  A =
        2
           3
  >> A=[2;3]
  A =
        2
        3
  >> A = rand(2,2)
  A =
       0.8147
                  0.1270
       0.9058
                  0.9134
  >> A=zeros(2,3)
  A =
```

For Loops

For Loops

For loops require explicit values in order to function. These values can be predefined or stated within the loop.

The Matlab syntax is:

```
for value=start:counter:finish
  [do something]
end
```

For example:

```
for i = 1:10
  disp(['Hello I am the number ',int2str(i)]);
end
```

Plotting Data

```
x = 0:pi/30:2*pi; % x vector, 0 <= x <= 2*pi, increments of pi/3
y = sin(3*x); % vector of y values
plot(x,y,'r','linewidth',3)% create the plot, set color, set linewidth
xlabel('x (radians)','fontsize',20); % label the x-axis
ylabel('Sine function','fontsize',20); % label the y-axis
title('sin(3*x)'); % put a title on the plot
set (gca,'Linewidth',5); % set axis width
set(gca,'fontsize',20); % set fontsize of axis</pre>
```


For Loops

If Statements

if expression statements end

```
if expression1
statements1
elseif expression2
statements2
else
statements3
end
```

Given matrices A and B

Expression	Evaluates As	Because	
A < B	false	A(1,1) is not less than B(1,1).	
A < (B + 1)	true	Every element of A is less than that same element of B with 1 added.	
A & B	false	A(1,2) & B(1,2) is false.	
B < 5	true	Every element of B is less than 5.	

If statements

Functions

• Format:

```
function [outputs] = function_name (inputs)
```

- Functions make programming easy, your code reusable
- A function need not always output data
- A function can call another function and so on

Function: example 1

```
Editor – /Users/Psi/Box Sync/ex3.m
                                                                                  (1)
                                                                        ex3.m ×
+1
       submit.m ×
                   histo_poster.m ×
                                     untitled.m ×
                                                   ex1.m ×
                                                             ex2.m ×
                                                                                  +
     \Box function [x] = ex3 (r)
1
2

□% I don't have enough creativity to come up

      % with random functions that have no purpose
3
      % but then again, I have to show you how to write on
     -% this function computes sin times cos
5
     x = \sin(r) \cdot *\cos(r);
Command Window
New to MATLAB? Watch this Video, see Examples, or read Getting Started.
  >> help ex3
    I don't have enough creativity to come up
    with random functions that have no purpose
    but then again, I have to show you how to write on
    this function computes sin times cos
  >> ex3(3)
  ans =
     -0.1397
  >> ex3(rand(3,1))
  ans =
      0.4768
      0.0969
      0.2643
```

Function: example 2

```
+2
       histo_poster.m ×
                        untitled.m ×
                                       ex1.m ×
    \Box function [x] = ex4 (r,s)
    ⊟%function that takes two variables
    -% x can be a matrix or vector
     x(:,1) = s.^2 + r.^2;
    ^{\perp}x(:,2) = s.^3 + r.^3;
6
Command Window
New to MATLAB? Watch this Video, see Examples, or re
  >> ex4(2,3)
  ans =
      13
             35
  >> ex4([2,3],[3,4])
  ans =
      13
             35
       25
             91
```

Solving ODEs

 Matlab has several different functions (built-ins) for the numerical solution of ODEs. These solvers can be used with the following syntax:

- Ode45 is a MATLAB function that takes another function (dstate) as input
- You need to write a function dstate, and call ode45 (or other solvers)

Solving 1 ODE

 $\frac{dy}{dt} = y'(t) = \alpha y(t) - \gamma y(t)^2$

```
y(0) = 10
 Editor - /Users/Psi/Box Sync/ex51.m
+3
     ex1.m × ex2.m × ex3.m ×
                              ex4.m ×
                                       ex51.m ×
                                                ex52.m ×
                                                          untitled7 ×
   □ function dydt = ex51 (t,y)
   %define constants
     alpha=2; gamma=2;
     %dydt is v';
     dydt = alpha* y-gamma *y^2;
     end
Editor - /Users/Psi/Box Sync/ex52.m
                                                                               (7)
                                                                                   ×
 +3
                                              ex51.m
                                                                     untitled7
      ex1.m ×
                ex2.m × ex3.m ×
                                    ex4.m
                                                          ex52.m
                                                                 X
     \Box function [t,y] = ex52()
                                                                  Figure 1
 1
       tspan = [0 15]; % set time interval
 2 -
                                                     Fil Ed Vie Inst Tot Desk Winc He >
       v0 = 10E-5; % set initial condition
                                                                   13
       [t,v] = ode45(@ex51,[0 15],10E-5);
       plot(t,y,'r','linewidth',3);
       set (gca, 'Linewidth',5);
       set(gca, 'fontsize', 20);
 7 -
 8
       %set x and y labels
 9 -
       xlabel('Time in s','fontsize',20)
10 -
       vlabel('v','fontsize',20)
11 -
       end
                                                        0.5
                                                                       10
```

Solve Rate Equations: system of ODEs

$$A \leftrightarrow B \rightarrow C$$

- Rates: k1,k2 and k3
- Initial value: A0=1; B0=0; C0=0
- Rate values: k1=5; k2=2; k3=1

Solve Rate Equations: system of ODEs

Solver	Accuracy	Description
ode45	Medium	This should be the first solver you try
ode23	Low	Less accurate than ode45
ode113	Low to high	For computationally intensive problems
ode15s	Low to medium	Use if ode45 fails because the problem is stiff*

Runge-Kutta (4,5) formula

^{*}No precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution.