which means that $0 \in \rho({}^A|I_O)$. Since ${}^A|I_O$ generates a positive semigroup and $R(\lambda, {}^A|I_O) = {}^{R(\lambda, A)}|I_O$ is positive for $\lambda > 0$ it follows from Cor.1.3. that $s(A_O) = s({}^A|I_O) < 0$.

П

One can check the different steps of the proof by studying the following example. Consider the following matrix as generator on $\ \mathbb{C}^4$.

The result is summarized in the following diagram ($e_{j}:=(\delta_{jk})$):

		pole	order	Io	I ₁	12	¹ 3	
d=0, d>0,	f>0 f>0, f=0, e> f=0, e> f=0, e=	.0	3 2 2 2 2	<e1><e1><e1><e1><e1><e1><e1><e1><e1><e1></e1></e1></e1></e1></e1></e1></e1></e1></e1></e1>	<pre></pre>	<e1,'e2,'e3> c4 c4 c4 c4 c4</e1,'e2,'e3>	€4	

This example also shows that the operators Q_{k-1} , ..., Q_1 are not necessarily positive (e.g. a>0, b=c=0, d=e=f=2). A more general (and more interesting) example is the following:

Suppose that A_i (i = 1,...,n) are generators of positive semigroups on $C_O(X)$ such that $s(A_i) = 0$ is a first order pole of the resolvent. And let A_{ij} (1 \leq i \leq j \leq n) be positive bounded operators on $C_O(X)$.

is the generator of a positive semigroup on $C_O(X,\mathbb{C}^n)\cong C_O(X)\times C_O(X)\times \ldots\times C_O(X)$, and s(A)=0 is a pole of the resolvent of order k where $1\leq k\leq n$.

Theorem 2.9. Suppose A is the generator of a positive semigroup on $C_o(X)$ such that every point of $\sigma_b(A)$ is a pole of the resolvent. Then $P\sigma_b(A) = \sigma_b(A)$ is cyclic.