ACH2002

Aula 5

Análise assintótica (parte 2)

Aula passada

 Comportamento assintótico de funções (quando n cresce)

-5 -4 -3 -2 -1 0 1 2 3 4 5

 Notação O: quando uma função domina outra assintoticamente

Notação O

- Definição: Conjunto de funções dominadas por g(n)
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0 \}$ funções assintoticamente não negativas
- Informalmente, dizemos que, se $f(n) \in O(g(n))$, então f(n) cresce no máximo tão rapidamente quanto

g(n).

cg é um limite superior de f

Ex:

• Quem aqui pertence a O(n²)?

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
n log n	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n ²	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$pprox 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Ex:

• Quem aqui pertence a O(n²)?

	n = 100	n = 1000	$n = 10^4$	$n = 10^{6}$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
$n \log n$	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Ex:

• Quem aqui pertence a O(n²)?

O certo é escrever $f(n) \in O(n^2)$

Mas é comum o "abuso de notação" $f(n) = O(n^2)$ (lemos f(n) é $O(n^2)$)

(f(n)	

	n = 100	n = 1000	$n = 10^{-1}$	$n = 10^{\circ}$	$n = 10^{\circ}$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
$n \log n$	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07\cdot 10^{301}$?	?	?

Operações com a notação O

$$f(n) = O(f(n))$$

$$c \times f(n) = O(f(n)), c \text{ \'e uma constante}$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n))) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Particularmente útil para analisar algoritmos (sequências de trechos de código)

Ex: InsertionSort é O(n²)

- Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução
- $T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{i=2}^n (t_j-1)+c_7\sum_{i=2}^n (t_j-1)+c_8(n-1)$
- Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com/cada elemento do subarranjo ordenado A[j... j-1] → t_i=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Também é $O(n^k)$ para k > 2...

Tempo de execução, neste caso, pode ser expresso como an² + bn + c para constantes a, b e c que dependem dos custos de instrução c_i → função quadrática de n

Definição:

Notação Ω

- $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que}$ • $0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$ • funções assintoticamente não negativas
- Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).
 - Note que se $f(n) \in O(g(n))$ define um limite superior para f(n), $\Omega(g(n))$ define um limite inferior

Notação Ω

Ex: Qualquer algoritmo de ordenação é Ω (n). Porque no mínimo tem que conferir cada posição do array...

Mas é sempre interessante dar uma avaliação mais precisa

Ex: InsertionSort é Ω (n²)

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

cada instrução

$$T(n)=c_{1}n+c_{2}(n-1)+c_{4}(n-1)+c_{5}\sum_{j=2}^{n}t_{j}+c_{6}\sum_{j=2}^{n}(t_{j}-1)+c_{7}\sum_{j=2}^{n}(t_{j}-1)+c_{8}(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com/cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Tempo de execução, neste caso, pode ser expresso como $an^2 + bn + c$ para constantes **a**, **b** e **c** que dependem dos custos de instrução $c_i \rightarrow função quadrática de <math>n$

Também é $\Omega(n)$

Mas um limitante

preciso (próximo

de f(n)) é mais

inferior mais

interessante

Definição:

f é "ensanduichada" por g

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais } que 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Aula de hoje

- "Revisão" da notação \varTheta
- Notações $o \in \omega$

•

Definição:

f é "ensanduichada" por g

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais } que 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Definição:

 $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) ?$$

夢???

Definição:

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \}$ tais que $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- $\frac{3}{2}n^2 2n \in \Theta(n^2) ?$
 - Fazendo $c_1 = 1/2$ e $c_2 = 3/2$ teremos $\left| \frac{1}{2} n^2 \right| \le \left| \frac{3}{2} n^2 2n \right| \le \left| \frac{3}{2} n^2 \right|$

para n ≥ 2

Note que o n₀ tem que valer para as duas desigualdades!!!

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \to \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \longrightarrow \left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \qquad \text{e } \dots$$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) \longrightarrow \left| \frac{1}{2}n^2 \right| \le \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

Será coincidência?

Notação Θ

Mas, já vimos que:

$$\frac{3}{2}n^{2} - 2n \in O(n^{2}) \to \left| \frac{3}{2}n^{2} - 2n \right| \le \left| \frac{3}{2}n^{2} \right|$$

$$\frac{3}{2}n^{2} - 2n \in \Omega(n^{2}) \to \left| \frac{1}{2}n^{2} \right| \le \left| \frac{3}{2}n^{2} - 2n \right|$$

$$\frac{3}{2}n^{2} - 2n \in \Theta(n^{2}) \to \left| \frac{1}{2}n^{2} \right| \le \left| \frac{3}{2}n^{2} - 2n \right| \le \left| \frac{3}{2}n^{2} \right|$$

Será coincidência?

- # Não!

- Mas:
 - Será coincidência?
 - Não!
 - Se $f(n) \in O(g(n))$ e $f(n) \in \Omega(g(n))$, então $f(n) \in \Theta(g(n))$

Ex: InsertionSort é @(n2)

Tempo de execução do algoritmo = soma dos tempos de execução para (por conta do pior caso) cada instrução

cada instrução
$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j + c_6\sum_{j=2}^n (t_j-1) + c_7\sum_{j=2}^n (t_j-1) + c_8(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Tempo de execução, neste caso, pode ser expresso como *an*² + *bn* + *c* para constantes **a**, **b** e **c** que dependem dos custos de instrução c_i → **função quadrática** de *n*

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f_1	f ₂	f ₃	f ₄	f ₅	<i>f</i> ₆	f ₇	f ₈
<i>f</i> ₁	Θ							
f ₂		Θ						
f ₂ f ₃ f ₄			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

$$f_1(n) = 2^{\pi}$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f ₂ f ₃		Θ						
f ₃			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f ₂		Θ						
f ₂ f ₃ f ₄ f ₅			Θ					
f ₄				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ					
f_4				Θ				
f ₄ f ₅					Θ			
f ₆						Θ		
f ₆							Θ	
f ₈								Θ

Prove que $2^{\pi} = \Theta(2^{\pi})$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ					
f ₄				Θ				
f ₄					Θ			
f ₆						Θ		
f ₆							Θ	
f ₈								Θ

Prove que $2^{\pi} = \Theta(2^{\pi})$

Existem c1, c2 e n0 constantes positivas tal que

$$0 \le c_1 2^{\pi} \le 2^{\pi} \le c_2 2^{\pi}$$
 para $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f_2		Θ						
f ₃			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Prove que $2^{\pi} = \Theta(2^{\pi})$

Existem c1, c2 e n0 constantes positivas tal que

$$0 \le c_1 2^{\pi} \le 2^{\pi} \le c_2 2^{\pi}$$
 para $n \ge n_0$

Ex:
$$c_1 = c_2 = n_0 = 1$$

$$c_1 = 0.5$$
, $c_2 = 2$, $n_0 = 0.1$ (não podem ser 0...)

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

n logn = ? (n^2) – Prove

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f ₂		Θ						
f ₃			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f ₂		Θ						
f ₃			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $n \log n = ? (n^2) - Prove$

n logn = $O(n^2)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le n \log n \le cn^2$, para todo $n \ge n_0$

Isso vale para c = ?, $n_0 = ?$

 $0 \le \log n \le cn$, para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante!!!}$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ				0	
f ₄				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $\frac{f_0(n)-n}{f_0(n)}$

 $n \log n = ? (n^2) - Prove$

n logn = $O(n^2)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le n \log n \le cn^2$, para todo $n \ge n_0$

Isso vale para c = 1, $n_0 = 1$

 $0 \le \log n \le cn$, para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$
Será

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₂ f ₃ f ₄ f ₅ f ₆ f ₇			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Será que n logn é $\Omega(n^2)$?

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$
Será

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f_1	Θ							
f ₂		Θ						
f ₂ f ₃ f ₄ f ₅			Θ				0	
f_4				Θ				
					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Será que n logn é $\Omega(n^2)$?

Se fosse, então existiriam constantes positivas c e n₀ tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f ₄	f ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				0	
f ₄ f ₅				Θ				
<i>f</i> ₅					Θ			
<i>f</i> ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Será que n logn é $\Omega(n^2)$?

Se fosse, então existiriam constantes positivas c e n₀ tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Se fosse verdade, quem poderia ser esse c e n₀?

 $f_8(n) = n$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				0	
f ₄ f ₅				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $f_8(n) = n$ Será que n logn é $\Omega(n^2)$?

Se fosse, então existiriam constantes positivas c e n₀ tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Se fosse verdade, $0 \le cn \le \log n > c \le \log n / n$ para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$ Será

	f ₁	f_2	f ₃	f_4	f ₅	<i>f</i> ₆	f ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₂ f ₃ f ₄ f ₅ f ₆ f ₇			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Será que n logn é $\Omega(n^2)$?

Se fosse, então existiriam constantes positivas c e no tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Se fosse verdade, $0 \le cn \le \log n = c \le \log n / n$ para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$ Será

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f ₂		Θ						
f ₂ f ₃ f ₄ f ₅ f ₆ f ₇			Θ				O	
f ₄				Θ			†	
f ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ
								~

Será que n logn é $\Omega(n^2)$?

Então n logn também NÃO é $\Theta(n^2)$, então aqui é só o

Se fosse, então existiriam constantes positivas c e no tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Se fosse verdade, $0 \le cn \le \log n = c \le \log n / n$ para todo $n \ge n_0$

Mas $\lim_{n\to\infty} \log n / n = 0$, MAS c deve ser positiva! CONTRADIÇÃO

mesmo....

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$
 $n^2 = ? (n \log n) - \text{Prove}$
 $n^2 = \Omega(n \log n), \text{ pois}$

	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₂ f ₃ f ₄ f ₅ f ₆ f ₇			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f ₂		Θ						
f ₃			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $f_7(n)=n^2$

$$f_8(n) = n$$

 $n^2 = ? (n logn) - Prove$

 $n^2 = \Omega(n \log n)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le c \cdot n \cdot \log n \le n^2$, para todo $n \ge n_0$

Isso vale para c = ?, $n_0 = ?$

$$0 \le c \log n \le n$$
, para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				0	
f ₄				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

 $f_7(n)=n^2$

$$n^2 = ? (n logn) - Prove$$

 $n^2 = \Omega(n \log n)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le c \cdot n \cdot \log n \le n^2$, para todo $n \ge n_0$

Isso vale para c = 1, $n_0 = 1$

$$0 \le c \log n \le n$$
, para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f ₁	f ₂	f ₃	f ₄	f ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃ f ₄ f ₅			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

FAÇAM AS PROVAS FORMAIS PARA OS DEMAIS!!!!

(Inclusive para o que NÃO É)

Material extra sobre O, Ω , Θ

https://www.ime.usp.br/~pf/analise_de_algoritmos/aulas/Oh.html

Além de explicações, há 3 listas de exercícios. FAÇAM! (Cai na prova...)

Relembrando notação O

- Definição: Conjunto de funções dominadas por g(n)
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0 \}$ funções assintoticamente não negativas
- Informalmente, dizemos que, se f(n) ∈ O(g(n)), então f(n) cresce no máximo tão rapidamente quanto

g(n).

cg é um limite superior de f

- Definição:
 - $o(g(n)) = \{f(n): para toda constante positiva <math>c$, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se $f(n) \in o(g(n))$, então f(n) cresce mais lentamente que g(n), ou f(n) é **assintoticamente menor** que g(n).
 - Intuitivamente, na notação o, a função f(n) tem crescimento muito menor que g(n) quando n tende para o infinito

- $1000 n^2 \in o(n^3)$?
 - 333

Quem será o n_0 ? É de se esperar que ele dependa do c...

O que aconteceria se
$$n_0 = 1/c$$
?

$$0 \le f(n) \le cg(n)$$

 $0 \le |1000n^2| \le |cn^3|$

- $1000 n^2 \in o(n^3)$?
 - 333

Quem será o n₀?

É de se esperar que ele dependa do c...

O que aconteceria se $n_0 = 1/c$?

O que aconteceria se $n_0 = 1000/c$?

$$0 \le f(n) \le cg(n)$$

$$0 \le |1000n^2| < |cn^3|$$

■ $1000 n^2 \in o(n^3)$?

Quem será o n_0 ? É de se esperar que ele dependa do c...

• Para todo valor de c (positivo), um n_0 que satisfaz a definição é:

$$n_0 = \left| \frac{1000}{c} \right| + 1$$

Valor que igualaria a inequação

$$0 \le f(n) \le cg(n)$$

$$0 \le |1000n^2| < |cn^3|$$

- Qual a diferença entre *O* e *o*?
 - *O*: <u>existem</u> constantes positivas $c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) \le cg(n)$ é válida para <u>alguma</u> constante c>0
 - o: para toda constante positiva c, existe uma constante $n_0 > 0$ tal que $0 \le f(n) < cg(n)$, para todo $n \ge n_0$
 - A expressão $0 \le f(n) < cg(n)$ é válida para toda constante c>0

Definição:

- $\omega(g(n)) = \{f(n): \text{ para toda constante positiva } c$, existe uma constante $n_0 > 0$ tal que $0 \le cg(n) < f(n)$, para todo $n \ge n_0$
- Informalmente, dizemos que, se $f(n) \in \omega(g(n))$, então f(n) cresce mais rapidamente que g(n), ou f(n) é assintoticamente maior que g(n).
 - Intuitivamente, na notação ω , a função f(n) tem crescimento muito maior que g(n) quando n tende para o infinito

• ω está para Ω , da mesma forma que o está para O

$$0 \le cg(n) \le f(n)$$

$$|\frac{1}{1000}n^2| \in \omega(n) ?$$

• ω está para Ω , da mesma forma que o está para O

$$|\frac{1}{1000}n^2| \in \omega(n) ?$$

$$0 \le cg(n) \le f(n),$$

$$0 \le cn < |1/1000 n^2|$$

• ω está para Ω , da mesma forma que σ está para Ω

$$|\frac{1}{1000}n^2| \in \omega(n) ?$$

$$0 \le cg(n) \le f(n)$$

 $0 \le cn \le |1/1000 \text{ n}^2|$
 $0 \le c \le |1/1000 \text{ n}|$

$$0 \le c < |1/1000 \text{ n}|$$

• ω está para Ω , da mesma forma que o está para O

$$|\frac{1}{1000}n^2| \in \omega(n) ?$$

Procuro o n que iguala...

$$0 \le cg(n) \le f(n)$$

$$0 \le cn < |1/1000 n^2|$$

$$0 \le c < |1/1000 \text{ n}|$$

• ω está para Ω , da mesma forma que o está para O

$$|\frac{1}{1000}n^{2}| \in \omega(n) ?$$
Procuro o n que iguala...
E somo 1
$$0 \le cg(n) < f(n);$$

$$0 \le cn < |1/1000 \ n^{2}|$$

$$0 \le c < |1/1000 \ n|$$

Para todo valor de c, um n_o que satisfaz a definição é: $n_o = |1000 \, c| + 1$

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

$$f(n) \in o(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Pois o denominador é sempre maior que o numerador, e aumenta cada vez mais em relação ao numerador

$$f(n) \in O(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

$$f(n) \in O(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

Para ser infinito, o numerador deveria ser crescer mais rápido (ser maior) que o denominador

O que não acontece porque g (denominador) é um limite superior de f (f <= g) Como g >= f (nas condições de c e n_0), a razão f/g pode ser:

- 0 (quando g » f (g é muito maior que f))
- 1 (se g = f)
- algum valor positivo menor que o infinito (g parecida com f, ligeiramente menor)

$$f(n) \in \Omega(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$

(completem...)

$$f(n) \in \Theta(g(n))$$
 se $0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$

(completem...)

$$f(n) \in \omega(g(n))$$
 se $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

(completem...)

$$f(n) \in o(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

$$f(n) \in O(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) \in \Theta(g(n)) \quad \text{se} \quad 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

$$f(n) \in \Omega(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} > 0$$

$$f(n) \in \omega(g(n)) \quad \text{se} \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Propriedades das Classes

Reflexividade:

```
f(n) \in O(f(n)).

f(n) \in \Omega(f(n)).

f(n) \in \Theta(f(n)).
```

Simetria:

 $f(n) \in \Theta(g(n))$ se, e somente se, $g(n) \in \Theta(f(n))$.

Simetria Transposta:

 $f(n) \in O(g(n))$ se, e somente se, $g(n) \in \Omega(f(n))$. $f(n) \in o(g(n))$ se, e somente se, $g(n) \in \omega(f(n))$.

Propriedades das Classes

Transitividade:

```
Se f(n) \in O(g(n)) e g(n) \in O(h(n)), então f(n) \in O(h(n)).
Se f(n) \in \Omega(g(n)) e g(n) \in \Omega(h(n)), então f(n) \in \Omega(h(n)).
Se f(n) \in \Theta(g(n)) e g(n) \in \Theta(h(n)), então f(n) \in \Theta(h(n)).
Se f(n) \in o(g(n)) e g(n) \in o(h(n)), então f(n) \in o(h(n)).
Se f(n) \in \omega(g(n)) e g(n) \in \omega(h(n)), então f(n) \in \omega(h(n)).
```


Inclua o (o-pequeno) e ω nas análises

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$ $n \log n = ? (n^2) - Prove$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	f ₆	f ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₃			Θ				0,?	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

Inclua o (o-pequeno) e ω nas análises

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				0,?	
f_4				Φ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

 $f_8(n) = n$ n logn = ? (n²) – Prove

n logn = $o(n^2)$, pois para toda constante positiva c, existe $n_0 > 0$ tais que:

 $0 \le n \log n \le cn^2 = cnn para todo n >= n_0$

Independente de c,

Inclua o (o-pequeno) e ω nas análises

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₂ f ₃ f ₄ f ₅ f ₆			Θ				0,0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

 $f_8(n) = n$ n logn = ? (n²) – Prove

n logn = $o(n^2)$, pois para toda constante positiva c, existe $n_0 > 0$ tais que:

 $0 \le n \log n \le cn^2 = cnn para todo n >= n_0$

Independente de c, $\log n < n$ para todo $n_0 > 1$

Inclua o (o-pequeno) e ω nas análises

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	f ₆	f ₇	f ₈
f_1	Θ							
f ₂		Θ						
f ₃			Θ				0,0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

 $f_0(n) = n$

Obs: Prove que f5 NÃO é o(f7)

Inclua o (o-pequeno) e ω nas análises

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₃			Θ				0,0	
f_4				Φ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

Obs: Prove que f5 NÃO é o(f7)

Se fosse, para toda constante c > 0, existiria $n_0 > 0$ tal que:

 $0 \le 100n^2 + 150000n < cn^2$ para todo $n \ge n_0$

Se fosse verdade, 100 + 150000/n < c para todo $n >= n_0$, (mas por maior que seja n_0 , toda constante c positiva deveria ser pelo menos 100???)

UST

ABSURDO... Logo, f5 NÃO é o(f7)

Inclua o (o-pequeno) e nas análises

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f ₂		Θ						
f ₂ f ₃ f ₄ f ₅			Θ				O	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

FAÇAM AS PROVAS FORMAIS PARA OS DEMAIS!!!!

(Inclusive para o que NÃO É)

Para que serve tudo isso?

Ex: O que podemos falar do InsertionSort?

• O(?)

- $\Omega(?)$
- o(?):
- W(?)
- 0(?):

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

T(n)=
$$c_1$$
n + c_2 (n-1) + c_4 (n-1) + $c_5 \sum_{j=2}^{n} t_j$ + $c_6 \sum_{j=2}^{n} (t_j - 1)$ + $c_7 \sum_{j=2}^{n} (t_j - 1)$ + c_8 (n-1)

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

elemento do subarranjo ordenado A[j... j-1] → t_i=j para j=2,3,...,n)

Tempo de execução, neste caso, pode ser expresso como an² + bn + c para constantes a, b e c que dependem dos custos de instrução c, -> função quadrática de *n*

Para que serve tudo isso?

Vamos simplificar nossas análises !!!!

• O(?)

10 fim para

```
1 para j = 2 até tamanho[A] faça
   chave = A[j]
3 // ordenando elementos à esquerda
  i = j - 1
   enquanto i > 0 e A[i] > chave faça
      A[i+1] = A[i]
    i = i -1
    fim enquanto
    A[i+1] = chave
```

custo vezes

c_1	n	→ O(n)
C ₂	n-1	→ O(n)
0	n-1	→ O(n)
C_4	n-1	→ O(n)
C ₅	$\sum_{j=2}^{n} t_{j}$	\rightarrow O(n ²)
C ₆	$\sum_{j=2}^{n} (t_j - 1)$	\rightarrow O(n ²)
C ₇	$\sum_{j=2}^{n} (t_j - 1)$	$\rightarrow O(n^2)$

n-1

=> max de tudo isso = $O(n^2)$

EACH

Para que serve tudo isso?

Ex: O que podemos falar do InsertionSort?

• O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?

Aí é importante saber se o InsertionSort é especificamente O(n logn) também, ou não... e é?

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- $\Omega(?)$:

no O(n logn)? Mas sabemos que não é, vejamos o próximo

InsertionSort é

Aí é importante saber se o

especificamente O(n logn)

também, ou não... e é?

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?

- Aí é importante saber se o InsertionSort é especificamente O(n logn) também, ou não...
- E se eu falar que existe um outro algoritmo O(n logn)?
- $\Omega(?)$: Ω (n²), Ω (n logn), Ω (n), Ω (1), ...

Ou seja, InsertionSort já "perdeu" desse novo algoritmo...

De fato... n² é o melhor que o InsertionSort consegue fazer (lembrando que nos baseamos na análise de pior caso...)

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- Ω (?): Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- Θ(?):

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- $\Omega(?)$: Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$

Em que situação essa informação ajuda?

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- Ω (?): Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$

Em que situação essa informação ajuda?

Se um outro algoritmo B for $\Omega(n^3)$?

Ou outro algoritmo C for O(n lgn)?

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- Ω (?): Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$

Em que situação essa informação ajuda?

Se um outro algoritmo B for $\Omega(n^3)$?

Ou outro algoritmo C for O(n lgn)?

InsertionSort será mais eficiente que B, e menos que C

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- Ω (?): Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$
- ω(?):

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- $\Omega(?)$: Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$

O que significa?

• $\omega(?)$: $\omega(n \log n)$, $\omega(n)$, $\omega(1)$, ...

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- Ω (?): Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$
- $\omega(?)$: $\omega(n \log n)$, $\omega(n)$, $\omega(1)$, ...

De fato... InsertionSort não consegue nem se **equiparar** a um algoritmo que roda em O(n logn)

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- $\Omega(?)$: Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$
- ω(?): ω(n logn), ω(n), ω(1), ...

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- Ω (?): Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$
- ω(?): ω(n logn), ω(n), ω(1), ...

O que significa?

• o(?): o(n^2 logn), o(n^3), O(n^k) k >= 3, O(2^n), ...

Ex: O que podemos falar do InsertionSort?

- O(?): O(n^2), O(n^k) k >= 2, O(2^n), ...
 - Para que serve?
 - E se eu falar que existe um outro algoritmo O(n logn)?
- $\Omega(?)$: Ω (n²), Ω (n logn), Ω (n), Ω (1), ...
- $\Theta(?)$: $\Theta(n^2)$
- $\omega(?)$: $\omega(n \log n)$, $\omega(n)$, $\omega(1)$, ...

Ele será mais rápido que quaisquer outros algoritmos que rodem em Ω de um desses tempos...

• o(?): o(n^2 logn), o(n^3), O(n^k) k >= 3, O(2^n), ...

Observações

- O(1): complexidade **constante**
- O(log n): complexidade logarítmica
- O(n): complexidade linear
- O(n²): complexidade quadrática
- O(n³): complexidade cúbica
- O(2ⁿ): complexidade **exponencial**

Mais exercícios?

• Tem também no cap. 3 do livro do Cormen

Plantão de Dúvidas

- Todas as quintas das 13:30 às 14:15
 - Sala 210N do A1

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. Algoritmos - Tradução da 2a. Edição Americana. Editora Campus, 2002 (Capítulos 2 e 3).
- Michael T. Goodrich & Roberto Tamassia. Estruturas de Dados e Algoritmos em Java. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).
- Notas de aula dos professores Marcos Chaim, Cid de Souza, Cândida da Silva e Delano M. Beder.
- Notas de aula dos professores Fátima L. S. Nunes e Norton T. Roman

