CSC 261/461 Database Systems

Eustrat Zhupa

October 24, 2018

Functional Dependency

- lacktriangleright X o Y holds if whenever two tuples have the same value for X, they must have the same value for Y
- For any two tuples t1 and t2 in any relation instance r(R): If t1[X] = t2[X], then t1[Y] = t2[Y]
- X → Y in R specifies a constraint on all relation instances r(R)
- ► FDs are derived from the real-world constraints on the attributes

Inferred FDs

If we denote by F the set of FDs that are specified on R.

- An FD X → Y is inferred from a set of dependencies F specified on R if X → Y holds in every legal relation state r of R.
- Given a set of FDs F, we can infer additional FDs that hold whenever the FDs in F hold.

EMP_DEPT						
Ename	<u>Ssn</u>	Bdate	Address	Dnumber	Dname	Dmgr_ssn
A		A	A	A	A	A

Armstrong's inference rules

- ▶ IR1. (Reflexive) If $Y \subseteq X$, then $X \to Y$
- ▶ IR2. (Augmentation) If $X \to Y$, then $XZ \to YZ$
- ▶ IR3. (Transitive) If $X \to Y$ and $Y \to Z$, then $X \to Z$
- ► IR1, IR2, IR3 form a sound and complete set of inference rules

Other Inference Rules

- ▶ Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- ▶ Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- ▶ Pseudotransitivity: If $X \to Y$ and $WY \to Z$, then $WX \to Z$
- ► The last three inference rules, as well as any other inference rules, can be deduced from IR1, IR2, and IR3 (completeness property)

- ► Closure of a set F of FDs is the set F⁺ of all FDs that can be inferred from F
- ► Closure of a set of attributes X with respect to F is the set X⁺ of all attributes that are functionally determined by X
- ► X⁺ can be calculated by repeatedly applying IR1, IR2, IR3 using the FDs in F.

Algorithm for X^+

▶ Input: A set F of FDs on a relation schema R, and a set of attributes X, which is a subset of R.

```
X^+:=X repeat old X^+:=X^+ for each functional dependency Y\to Z in F do if Y\subseteq X^+ then X^+:=X^+\cup Z until (X^+=old X^+);
```


Example

Consider the following relation schema about classes held at a university in a given academic year.

- ► CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity).
- ► Let F, the set of functional dependencies for the above relation include:
 - FD1: Classid → {Course#, Instr_name, Credit_hrs, Text, Publisher, Classroom, Capacity}
 - 2. FD2: Course# → Credit_hrs
 - 3. FD3: {Course#, Instr_name} \rightarrow {Text, Classroom}
 - 4. FD4: Text → Publisher
 - 5. FD5: Classroom → Capacity

Equivalent Sets

Two sets of FDs F and G are equivalent if:

- ► Every FD in F can be inferred from G, and
- Every FD in G can be inferred from F

Hence, F and G are equivalent if $F^+ = G^+$ Covers:

- ▶ F covers G if every FD in G can be inferred from F (if $G^+ \subseteq F^+$)
- ► F and G are equivalent if F covers G and G covers F

Minimal Set of FDs

- ► A set of FDs is minimal if it satisfies the following conditions
 - ▶ Every dependency in F has a single attribute for its RHS.
 - We cannot remove any dependency from F and have a set of dependencies that is equivalent to F.
 - We cannot replace any FD X → A in F with a dependency Y → A, where Y ⊂ X and still have a set of FDs that is equivalent to F.

Minimal Set of FDs

- ► A set of FDs is minimal if it satisfies the following conditions
 - ► A minimal set of FDs is a set of FDs in a standard or canonical form with no redundancies.
 - Condition 1 just represents every FD in a canonical form with a single attribute on the RHS.
 - ► Conditions 2 and 3 ensure there are no redundancies in the FDs either by having redundant attributes on the LHS of a dependency (Condition 2) or by having a dependency that can be inferred from the remaining FDs in F (Condition 3).
- ► A minimal cover of a set of FDs E is a minimal set of FDs that is equivalent to E.

Finding a Minimal Cover F for a Set of Functional Dependencies E

- ► Input: A set of FDs E.
 - 1. Set F = E.
 - 2. Replace FD $X \rightarrow \{A1, A2, ..., An\}$ in F by the n FDs $X \rightarrow A1, X \rightarrow A2, ..., X \rightarrow An$.
 - 3. For each functional dependency $X \to A$ in F for each attribute B that is an element of X if $\{\{F \{X \to A\}\} \cup \{(X \{B\}) \to A\}\}$ equiv. to F then replace $X \to A$ with $(X \{B\}) \to A$ in F.
 - 4. For each remaining FD $X \rightarrow A$ in F if $\{F \{X \rightarrow A\}\}$ equiv. to F then remove $X \rightarrow A$ from F.

Finding a Key K for R Given a set F of FDs

- ▶ Input: A relation R and a set of functional dependencies F on the attributes of R.
- Algorithm
 - 1. Set K = R.
 - 2. For each attribute A in K $\{ \text{ compute } (K - A)^+ \text{ with respect to F}$ if $(K - A)^+ \text{ contains all the attributes in R}$ then set $K = K - \{A\} \}$

Lossless Join Property

Lossless Join

- ▶ Let R be a relation schema
- ▶ Let F be a set of FDs on R.
- ▶ Let R_1 and R_2 form a decomposition of R.

The decomposition is a *lossless* decomposition if there is no loss of information by replacing R with two relation schemas R_1 and R_2 .

```
select *
from (select R1 from r)
    natural join
    (select R2 from r)
```


Nonadditive (Lossless) Join

Algorithm

Input: A universal relation R, a decomposition $D = R_1, R_2, \dots, R_m$ of R, and a set F of FD.

- 1. Create an initial matrix S with one row i for each R_i , and one column j for each attribute A_j in R.
- 2. Set $S(i,j) = b_{ij}$ for all matrix entries. (distinct symbols)
- 3. For each row i representing relation schema Ri {for each column j representing attribute A_j {if (relation R_i includes attribute A_j) then set $S(i,j) = a_i$ }} (distinct symbols).

Nonadditive (Lossless) Join

Algorithm

```
4. Repeat until no changes to S
           {for each FD X \rightarrow Y in F
                   {for all rows in S that have the same symbols in
                   the columns corresponding to attributes in X
                           {make the symbols in each column that
                           correspond to an attribute in Y be the
                           same in all these rows as follows:
                           If any of the rows has an a symbol for
                           the column, set the other rows to that same
                           a symbol in the column.
                           If no a symbol exists for the
                           attribute in any of the rows.
                           choose one of the b symbols that appears
                           in one of the rows for the attribute and set
                           the other rows to that same b symbol in the column } }
```

5. If a row is made up entirely of *a* symbols, then the decomposition has the nonadditive join property; otherwise, it does not.

Nonadditive Join Algorithm

Example

(a) $R = \{Ssn, Ename, Pnumber, Pname, Plocation, Hours\}$

 $D = \{R_1, R_2\}$

 $R_1 = \text{EMP_LOCS} = \{\text{Ename}, \text{Plocation}\}\$

 R_2 = EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

 $F = \{Ssn \rightarrow Ename; Pnumber \rightarrow \{Pname, Plocation\}; \{Ssn, Pnumber\} \rightarrow Hours\}$

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	b ₁₁	a ₂	b ₁₃	b ₁₄	a ₅	b ₁₆
R_2	a ₁	b ₂₂	a ₃	a ₄	a ₅	a ₆

(No changes to matrix after applying functional dependencies)

First Normal Form

(c) $R = \{Ssn, Ename, Pnumber, Pname, Plocation, Hours\}$

 $D = \{R_1, R_2, R_3\}$

 $R_1 = EMP = \{Ssn, Ename\}$

 $R_2 = PROJ = \{Pnumber, Pname, Plocation\}$

 $R_3 = WORKS_ON = \{Ssn, Pnumber, Hours\}$

F = {Ssn → Ename; Pnumber → {Pname, Plocation}; {Ssn, Pnumber} → Hours}

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	a ₁	a_2	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a ₁	b ₃₂	a ₃	b ₃₄	b ₃₅	a ₆

(Original matrix S at start of algorithm)

	Ssn	Ename	Pnumber	Pname	Plocation	Hours
R_1	a ₁	a ₂	b ₁₃	b ₁₄	b ₁₅	b ₁₆
R_2	b ₂₁	b ₂₂	a ₃	a ₄	a ₅	b ₂₆
R_3	a ₁	Ъ ₃₂ а ₂	a ₃	Ъ ₃₄ а ₄	Ъ _{35,} а ₅	a ₆

Questions?

