

Cryptography (CS-501)

Asymmetric-Key Cryptography

Dr Samayveer Singh Assistant Professor Department of Computer Science & Engineering National Institute Technology Jalandhar, Punjab, India samays@nitj.ac.in

10-1 INTRODUCTION

Symmetric and asymmetric-key cryptography will exist in parallel and continue to serve the community. We actually believe that they are complements of each other; the advantages of one can compensate for the disadvantages of the other.

Symmetric-key cryptography is based on sharing secrecy; Asymmetric-key cryptography is based on personal secrecy.

10.1.1 Keys

Asymmetric key cryptography uses two separate keys: one private and one public.

Figure 10.1 Locking and unlocking in asymmetric-key cryptosystem

Copyright © 2015 by McGraw Hill Education (India) Private Limited. All rights reserved.

10.1.2 General Idea

10.1.2 Continued

Plaintext/Ciphertext

Unlike in symmetric-key cryptography, plaintext and ciphertext are treated as integers in asymmetric-key cryptography.

Encryption/Decryption

$$C = f(K_{public}, P)$$
 $P = g(K_{private}, C)$

10-2 RSA CRYPTOSYSTEM

The most common public-key algorithm is the RSA cryptosystem, named for its inventors (Rivest, Shamir, and Adleman).

Topics discussed in this section:

- **10.2.1** Introduction
- 10.2.2 Procedure
- **10.2.3** Some Trivial Examples
- 10.2.4 Attacks on RSA

10.2.1 Procedure

Figure 10.3 Encryption, decryption, and key generation in RSA

Two Algebraic Structures

Encryption/Decryption Ring:

$$R = \langle Z_n, +, \times \rangle$$

Key-Generation Group:
$$G = \langle Z_{\phi(n)} *, \times \rangle$$

RSA uses two algebraic structures: a public ring $R = \langle Z_n, +, \times \rangle$ and a private group $G = \langle Z_{\phi(n)} *, \times \rangle$.

In RSA, the tuple (e, n) is the public key; the integer d is the private key.

Algorithm 10.2 RSA Key Generation

```
RSA_Key_Generation
   Select two large primes p and q such that p \neq q.
   n \leftarrow p \times q
   \phi(n) \leftarrow (p-1) \times (q-1)
   Select e such that 1 < e < \phi(n) and e is coprime to \phi(n)
   d \leftarrow e^{-1} \mod \phi(n)
                                                            // d is inverse of e modulo \phi(n)
   Public_key \leftarrow (e, n)
                                                             // To be announced publicly
   Private_key \leftarrow d
                                                              // To be kept secret
   return Public_key and Private_key
```

Encryption

Algorithm 10.3 RSA encryption

```
RSA_Encryption (P, e, n)  // P is the plaintext in \mathbb{Z}_n and \mathbb{P} < n {
\mathbb{C} \leftarrow \mathbf{Fast\_Exponentiation} \ (P, e, n)   // Calculation of \mathbb{P}^e \mod n)
\mathbb{C} \leftarrow \mathbb{C}
return \mathbb{C}
```

In RSA, p and q must be at least 512 bits; n must be at least 1024 bits.

Decryption

Algorithm 10.4 RSA decryption

```
RSA_Decryption (C, d, n)  //C is the ciphertext in \mathbb{Z}_n {
 P \leftarrow \textbf{Fast\_Exponentiation} (C, d, n)  // Calculation of (C^d \bmod n) 
 \text{return P} 
}
```

- 1. Select two prime numbers, p = 17 and q = 11.
- 2. Calculate $n = pq = 17 \times 11 = 187$.
- 3. Calculate $\phi(n) = (p-1)(q-1) = 16 \times 10 = 160$.
- 4. Select e such that e is relatively prime to $\phi(n) = 160$ and less than $\phi(n)$; we choose e = 7.
- 5. Determine d such that $de \equiv 1 \pmod{160}$ and d < 160. The correct value is d = 23, because $23 \times 7 = 161 = (1 \times 160) + 1$; d can be calculated using the extended Euclid's algorithm

The resulting keys are public key $PU = \{7, 187\}$ and private key $PR = \{23, 187\}$. The example shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate $C = 88^7 \mod 187$. Exploiting the properties of modular arithmetic, we can do this as follows.

```
88^7 \mod 187 = [(88^4 \mod 187) \times (88^2 \mod 187)]
                       \times (88<sup>1</sup> mod 187)] mod 187
      88^1 \mod 187 = 88
      88^2 \mod 187 = 7744 \mod 187 = 77
      88^4 \mod 187 = 59,969,536 \mod 187 = 132
      88^7 \mod 187 = (88 \times 77 \times 132) \mod 187 = 894,432 \mod 187 = 11
For decryption, we calculate M = 11^{23} \mod 187:
      11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187)]
                        \times (118 mod 187) \times (118 mod 187)] mod 187
      11^1 \mod 187 = 11
      11^2 \mod 187 = 121
      11^4 \mod 187 = 14,641 \mod 187 = 55
      11^8 \mod 187 = 214,358,881 \mod 187 = 33
      11^{23} \mod 187 = (11 \times 121 \times 55 \times 33 \times 33) \mod 187
                     = 79,720,245 \mod 187 = 88
```

Example 10. 5

Bob chooses 7 and 11 as p and q and calculates n = 77. The value of $\phi(n) = (7 - 1)(11 - 1)$ or 60. Now he chooses two exponents, e and d, from $Z_{60}*$. If he chooses e to be 13, then d is 37. Note that $e \times d \mod 60 = 1$ (they are inverses of each Now imagine that Alice wants to send the plaintext 5 to Bob. She uses the public exponent 13 to encrypt 5.

Plaintext: 5

 $C = 5^{13} = 26 \mod 77$

Ciphertext: 26

Bob receives the ciphertext 26 and uses the private key 37 to decipher the ciphertext:

Ciphertext: 26

 $P = 26^{37} = 5 \mod 77$

Plaintext: 5

Example 10. 6

Now assume that another person, John, wants to send a message to Bob. John can use the same public key announced by Bob (probably on his website), 13; John's plaintext is 63. John calculates the following:

Plaintext: 63

$$C = 63^{13} = 28 \mod 77$$

Ciphertext: 28

Bob receives the ciphertext 28 and uses his private key 37 to decipher the ciphertext:

Ciphertext: 28

$$P = 28^{37} = 63 \mod 77$$

Plaintext: 63

Example 10.7

Jennifer creates a pair of keys for herself. She chooses p = 397 and q = 401. She calculates n = 159197. She then calculates $\phi(n) = 158400$. She then chooses e = 343 and e = 12007. Show how Ted can send a message to Jennifer if he knows e and e.

Suppose Ted wants to send the message "NO" to Jennifer. He changes each character to a number (from 00 to 25), with each character coded as two digits. He then concatenates the two coded characters and gets a four-digit number. The plaintext is 1314. Figure 10.7 shows the process.

Figure 10.4 Encryption and decryption in Example 10.7

10.2.3 Introduction

Figure 10.5 Complexity of operations in RSA

RSA uses modular exponentiation for encryption/decryption; To attack it, Eve needs to calculate $\sqrt[e]{C}$ mod n.

10.2.4 Attacks on RSA

Figure 10.8 Taxonomy of potential attacks on RSA

Copyright © 2015 by McGraw Hill Education (India) Private Limited. All rights reserved.

10-4 ELGAMAL CRYPTOSYSTEM

After RSA another public-key cryptosystem is ElGamal. ElGamal is based on the discrete logarithm problem.

Topics discussed in this section:

- **10.4.1 ElGamal Cryptosystem**
- 10.4.2 Procedure
- **10.4.3 Proof**

10.4.1 Procedure

Figure 10.6 Key generation, encryption, and decryption in ElGamal

Key Generation

Algorithm 10.9 ElGamal key generation

Algorithm 10.10 ElGamal encryption

```
ElGamal_Encryption (e_1, e_2, p, P)  // P is the plaintext {

Select a random integer r in the group \mathbf{G} = \langle \mathbf{Z}_p^*, \times \rangle

C_1 \leftarrow e_1^r \mod p

C_2 \leftarrow (P \times e_2^r) \mod p  // C_1 and C_2 are the ciphertexts return C_1 and C_2
```

Algorithm 10.11 ElGamal decryption

Note

The bit-operation complexity of encryption or decryption in ElGamal cryptosystem is polynomial.

Example 10. 10

Here is a trivial example. Bob chooses p = 11 and $e_1 = 2$. and d = 3 $e_2 = e_1^d = 8$. So the public keys are (2, 8, 11) and the private key is 3. Alice chooses r = 4 and calculates C1 and C2 for the plaintext 7.

Plaintext: 7

 $C_1 = e_1^r \mod 11 = 16 \mod 11 = 5 \mod 11$ $C_2 = (P \times e_2^r) \mod 11 = (7 \times 4096) \mod 11 = 6 \mod 11$ **Ciphertext:** (5, 6)

Bob receives the ciphertexts (5 and 6) and calculates the plaintext.

$$[C_2 \times (C_1^d)^{-1}] \mod 11 = 6 \times (5^3)^{-1} \mod 11 = 6 \times 3 \mod 11 = 7 \mod 11$$

Plaintext: 7

Example 10. 11

Instead of using $P = [C_2 \times (C_1^d)^{-1}] \mod p$ for decryption, we can avoid the calculation of multiplicative inverse and use $P = [C_2 \times C_1^{p-1-d}] \mod p$ (see Fermat's little theorem in Chapter 9). In Example 10.10, we can calculate $P = [6 \times 5^{-11-1-3}] \mod 11 = 7 \mod 11$.

Note

For the ElGamal cryptosystem, *p* must be at least 300 digits and *r* must be new for each encipherment.

Example 10. 12

Bob uses a random integer of 512 bits. The integer p is a 155-digit number (the ideal is 300 digits). Bob then chooses e_1 , d, and calculates e_2 , as shown below:

<i>p</i> =	115348992725616762449253137170143317404900945326098349598143469219 056898698622645932129754737871895144368891765264730936159299937280 61165964347353440008577
$e_1 =$	2
<i>d</i> =	1007

Example 10. 10

Alice has the plaintext P = 3200 to send to Bob. She chooses r = 545131, calculates C1 and C2, and sends them to Bob.

P =	3200
r =	545131
C ₁ =	887297069383528471022570471492275663120260067256562125018188351429 417223599712681114105363661705173051581533189165400973736355080295 736788569060619152881
C ₂ =	708454333048929944577016012380794999567436021836192446961774506921 244696155165800779455593080345889614402408599525919579209721628879 6813505827795664302950

Bob calculates the plaintext $P = C_2 \times ((C_1)^d)^{-1} \mod p = 3200 \mod p$.

P =	3200
-----	------

10-5 Diffie Hellman Key Exchange Algorithm

The purpose of the algorithm is to enable two users to securely exchange a key that can then be used for subsequent asymmetric encryption of messages.

10.5 Procedure

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key YB in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key *Y*_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

10.5 Procedure

Key exchange is based on the use of the prime number q = 353 and a primitive root of 353, in this case $\alpha = 3$. A and B select private keys $X_A = 97$ and $X_B = 233$, respectively. Each computes its public key:

A computes $Y_A = 3^{97} \mod 353 = 40$.

B computes $Y_B = 3^{233} \mod 353 = 248$.

After they exchange public keys, each can compute the common secret key:

A computes $K = (Y_B)^{X_A} \mod 353 = 248^{97} \mod 353 = 160$.

B computes $K = (Y_A)^{X_B} \mod 353 = 40^{233} \mod 353 = 160$.

We assume an attacker would have available the following information:

$$q = 353$$
; $\alpha = 3$; $Y_A = 40$; $Y_B = 248$