

CENTRUL NAȚIONAL DE POLITICI ȘI EVALUARE ÎN EDUCAȚIE

V. Országos Magyar Matematikaolimpia

XXXII. EMMV

megyei szakasz, 2023. február 4.

XI. osztály

- 1. feladat (10 pont). Legyen \mathcal{M} azon $A = \begin{pmatrix} a & b \\ 1 & c \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z})$ alakú mátrixok halmaza, amelyek teljesítik a $\det(A^3 A^2) = 1$ összefüggést.
 - a) Határozd meg az \mathcal{M} halmaz elemeit!
 - b) Oldd meg az $A^3 = \begin{pmatrix} 5 & -22 \\ 2 & -9 \end{pmatrix}$ egyenletet az \mathcal{M} halmazon!

(***)

Megoldás. Hivatalból

(1 pont)

a) A $\det(A^3 - A^2) = 1$ feltétel egyenértékű a $(\det A)^2 \cdot \det(A - I_2) = 1$ egyenlőséggel. Mivel az A mátrix egész együtthatós, ezért $\det A$ és $\det(A - I_2)$ egész számok, így a $(\det A)^2 \cdot \det(A - I_2) = 1$ egyenlőségből adódik, hogy $\det A = \pm 1$ és $\det(A - I_2) = 1$. (1 pont)

Mivel $\det(A - I_2) = \begin{vmatrix} a - 1 & b \\ 1 & c - 1 \end{vmatrix} = (a - 1)(c - 1) - b = ac - a - c + 1 - b$, így a $\det(A - I_2) = 1$ összefüggés átírható ac - b = a + c alakba, ahol $ac - b = \det(A)$ a mátrix determinánsa és $a + c = \operatorname{Tr}(A)$ a mátrix nyoma. A $\det A = \pm 1$ összefüggést is figyelembe véve azt kaptuk, hogy $\det(A) = \operatorname{Tr}(A) = \pm 1$. (1 pont)

Két esetet különböztetünk meg. Ha $\det(A) = \operatorname{Tr}(A) = 1$, akkor a + c = 1 és ac - b = 1, ahonnan kapjuk, hogy c = 1 - a és $b = a - a^2 - 1$. Tehát ebben az esetben a keresett mátrixok $A = \begin{pmatrix} a & a - a^2 - 1 \\ 1 & 1 - a \end{pmatrix}$ alakúak, ahol $a \in \mathbb{Z}$. Ha $\det(A) = \operatorname{Tr}(A) = -1$, akkor a + c = -1 és ac - b = -1, ahonnan kapjuk, hogy c = -1 - a és $b = 1 - a - a^2$. Tehát ebben az esetben a keresett mátrixok $A = \begin{pmatrix} a & 1 - a - a^2 \\ 1 & -1 - a \end{pmatrix}$ alakúak, ahol $a \in \mathbb{Z}$. (2 pont)

b) A Cayley-Hamilton-tétel szerint $A^2 - \operatorname{Tr}(A) \cdot A + \det(A) \cdot I_2 = O_2$. Az előző alpont alapján az \mathcal{M} halmaz elemeire teljesül, hogy $\det(A) = \operatorname{Tr}(A) = \pm 1$. (1 pont) A $\det(A) = \operatorname{Tr}(A) = 1$ esetben a Cayley-Hamilton-tétel alapján $A^2 - A + I_2 = O_2$, tehát $A^2 = A - I_2$. Ezt szorozva az A mátrixszal kapjuk, hogy $A^3 = A^2 - A = (A - I_2) - A = -I_2$, ami nem lehetséges. (1 pont) A $\det(A) = \operatorname{Tr}(A) = -1$ esetben a Cayley-Hamilton-tétel alapján $A^2 + A - I_2 = O_2$, tehát $A^2 = -A + I_2$. Ezt szorozva az A mátrixszal kapjuk, hogy $A^3 = -A^2 + A = -(-A + I_2) + A = 2A - I_2$. (1 pont)

Innen
$$2A = A^3 + I_2 = \begin{pmatrix} 5 & -22 \\ 2 & -9 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 6 & -22 \\ 2 & -8 \end{pmatrix}$$
, így $A = \begin{pmatrix} 3 & -11 \\ 1 & -4 \end{pmatrix}$. (2 pont)

Megjegyzés. Az egész együtthatós mátrixok halmazán is megoldható az $A^3 = \begin{pmatrix} 5 & -22 \\ 2 & -9 \end{pmatrix}$ egyenlet. A $(\det A)^3 = \det(A^3) = -1$ alapján kapjuk, hogy $\det(A) = -1$. A Cayley-Hamiltontétel alapján $A^2 - t \cdot A - I_2 = O_2$, ahol $t = \operatorname{Tr}(A)$ a mátrix nyoma. Ezt az összefüggést szorozva A-val következik, hogy

$$A^{3} = tA^{2} + A = (t^{2} + 1)A + tI_{2}.$$
 (1)

Kiszámítjuk, hogy

$$\operatorname{Tr}[(t^{2}+1)A + tI_{2}] = \operatorname{Tr}[(t^{2}+1)A] + \operatorname{Tr}(tI_{2}) = (t^{2}+1)\operatorname{Tr}(A) + t\operatorname{Tr}(I_{2})$$
$$= (t^{2}+1) \cdot t + t \cdot 2 = t^{3} + 3t,$$

így az (1) alapján a t = Tr(A) nyom teljesíti a $t^3 + 3t + 4 = 0$ egyenletet. Ennek az egyenletnek t = -1 az egyetlen egész gyöke. Az (1) összefüggés alapján $A^3 = 2A - I_2$, ahonnan

$$A = \frac{1}{2}(A^3 + I_2) = \begin{pmatrix} 3 & -11 \\ 1 & -4 \end{pmatrix}.$$

2. feladat (10 pont). Adott az $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ mátrix. Határozd meg az $(a_n)_{n\geq 1}$ és $(b_n)_{n\geq 1}$ sorozatokat úgy, hogy teljesüljön az $A^n = a_n A + b_n I_3$ egyenlőség, minden $n \geq 1$ esetén!

Első megoldás. Hivatalból (1 pont) Ha léteznek az $(a_n)_{n\geq 1}$ és $(b_n)_{n\geq 1}$ számsorozatok, akkor egyértelműek, mivel az A nem az I_3 mátrix többszöröse. Észrevesszük, hogy $A^1=1\cdot A+0\cdot I_3$ és $A^2=1\cdot A+2\cdot I_3$, ahonnan $a_1=1,\ a_2=1$ és $b_1=0,\ b_2=2.$ (1 pont) Az $A^{n+1}=A^n\cdot A=(a_nA+b_nI_3)\cdot A=(a_n+b_n)A+2a_nI_3$ és $A^{n+1}=a_{n+1}A+b_{n+1}I_3$ alapján $a_{n+1}=a_n+b_n$ és $b_{n+1}=2a_n$, minden $n\geq 1$ esetén. (2 pont) Innen az $(a_n)_{n\geq 1}$ sorozatra az

$$a_1 = 1$$
, $a_2 = 1$, $a_{n+2} = a_{n+1} + 2a_n$, $\forall n \ge 1$

rekurzió írható fel. (1 pont) Ez a rekurzió átírható $a_{n+2}-a_{n+1}-2a_n=0$ alakba, melynek karakterisztikus egyenlete $r^2-r-2=0$.

A karakterisztikus egyenlet gyökei -1 és 2, (2 pont) tehát az $(a_n)_{n\geq 1}$ sorozat általános tagja $a_n = \alpha \cdot (-1)^n + \beta \cdot 2^n$ alakú, minden $n\geq 1$ esetén, ahol $\alpha, \beta \in \mathbb{R}$. Az $a_1 = 1$, $a_2 = 1$ tagok segítségével kiszámolható, hogy $\alpha = -\frac{1}{3}$ és $\beta = \frac{1}{3}$. (2 pont) Innen

$$a_n = -\frac{1}{3} \cdot (-1)^n + \frac{1}{3} \cdot 2^n = \frac{2^n + (-1)^{n-1}}{3} \text{ és } b_n = 2a_{n-1} = 2 \cdot \frac{2^{n-1} + (-1)^{n-2}}{3} = \frac{2^n + 2 \cdot (-1)^n}{3},$$
minden $n \ge 1$ esetén. (1 pont)

Második megoldás. Hivatalból

(1 **pont**)

Ha léteznek az $(a_n)_{n\geq 1}$ és $(b_n)_{n\geq 1}$ számsorozatok, akkor egyértelműek, mivel az A nem az I_3 mátrix többszöröse. Az A mátrixot hatványozva észrevesszük, hogy

$$A^{1} = 1 \cdot A + 0 \cdot I_{3},$$
 $A^{2} = 1 \cdot A + 2 \cdot I_{3},$
 $A^{3} = 3 \cdot A + 2 \cdot I_{3},$
 $A^{4} = 5 \cdot A + 6 \cdot I_{3},$
 $A^{5} = 11 \cdot A + 10 \cdot I_{3}.$
(1 pont)

Általánosítjuk a kapott eredményt:

$$A^{n} = \frac{2^{n} + (-1)^{n-1}}{3} \cdot A + \frac{2^{n} + 2 \cdot (-1)^{n}}{3} \cdot I_{3}, \tag{2}$$

minden $n \ge 1$ esetén. (**2** pont)

Ezt az egyenlőséget matematikai indukcióval igazoljuk. Az n=1 esetben

$$A^{1} = \frac{2^{1} + (-1)^{1-1}}{3} \cdot A + \frac{2^{1} + 2 \cdot (-1)^{1}}{3} \cdot I_{3} = \frac{3}{3} \cdot A + \frac{0}{3} \cdot I_{3},$$

tehát ebben az esetben a képlet helyes.

(1 pont)

Feltételezzük, hogy n=k esetén is helyes a képlet, vagyis $A^k=\frac{2^k+(-1)^{k-1}}{3}\cdot A+\frac{2^k+2\cdot(-1)^k}{3}$ Bizonyítjuk, hogy n = k + 1 esetén helyes a képlet:

$$A^{k+1} = A \cdot A^{k} = A \cdot \left(\frac{2^{k} + (-1)^{k-1}}{3} \cdot A + \frac{2^{k} + 2 \cdot (-1)^{k}}{3} \cdot I_{3}\right)$$

$$= \frac{2^{k} + (-1)^{k-1}}{3} \cdot A^{2} + \frac{2^{k} + 2 \cdot (-1)^{k}}{3} \cdot A$$

$$= \frac{2^{k} + (-1)^{k-1}}{3} \cdot (A + 2I_{3}) + \frac{2^{k} + 2 \cdot (-1)^{k}}{3} \cdot A$$

$$= \left(\frac{2^{k} + (-1)^{k-1}}{3} + \frac{2^{k} + 2 \cdot (-1)^{k}}{3}\right) \cdot A + 2 \cdot \frac{2^{k} + (-1)^{k-1}}{3} \cdot I_{3}$$

$$= \frac{2^{k+1} + (-1)^{k}}{3} \cdot A + \frac{2^{k+1} + 2 \cdot (-1)^{k+1}}{3} \cdot I_{3}.$$
(3 pont)

(1 pont)

A matematikai indukció módszere alapján a (2) egyenlőség igaz, minden $n \ge 1$ esetén. Tehát a keresett sorozatok $a_n = \frac{2^n + (-1)^{n-1}}{3}$ és $b_n = \frac{2^n + 2 \cdot (-1)^n}{3}$, minden $n \ge 1$ esetén. (1 pont)

Harmadik megoldás. Hivatalból

(1 pont)

Ha léteznek az $(a_n)_{n\geq 1}$ és $(b_n)_{n\geq 1}$ számsorozatok, akkor egyértelműek, mivel az A nem az I_3 mátrix többszöröse. Kiszámoljuk, hogy $A^2 = A + 2I_3$, ahonnan $B = A + I_3$ jelöléssel kapjuk, hogy $B^2 = 3B$.

(**2** pont)

Innen adódik, hogy $B^n = 3^{n-1}B$, minden $n \ge 1$ esetén. (1 pont) Mivel a B és I_3 mátrixok szorzása felcserélhető, a Newton binomiális tétele alapján

$$A^n = (B - I_3)^n \tag{1 pont}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} C_n^k B^k$$
 (1 pont)

$$= \sum_{k=1}^{n} (-1)^{n-k} C_n^k B^k + (-1)^n I_3 = \sum_{k=1}^{n} (-1)^{n-k} C_n^k 3^{k-1} B + (-1)^n I_3$$
 (1 pont)

$$= \frac{1}{3} \left(\sum_{k=0}^{n} (-1)^{n-k} C_n^k 3^k \right) B - \frac{(-1)^n}{3} B + (-1)^n I_3$$

$$= \frac{(3-1)^n}{3}B - \frac{(-1)^n}{3}B + (-1)^n I_3$$
 (1 pont)

$$=\frac{2^{n}-(-1)^{n}}{3}B+(-1)^{n}I_{3}=\frac{2^{n}-(-1)^{n}}{3}(A+I_{3})+(-1)^{n}I_{3}$$

$$=\frac{2^n-(-1)^n}{3}A+\frac{2^n+2(-1)^n}{3}I_3,$$
(1 pont)

minden
$$n \ge 1$$
 esetén. Innen $a_n = \frac{2^n + (-1)^{n-1}}{3}$ és $b_n = \frac{2^n + 2 \cdot (-1)^n}{3}$, minden $n \ge 1$ esetén. (1 pont)

3. feladat (10 pont). Adott a síkban hat pont, melyek közül bármely három nem kollineáris. A hat pont által meghatározott szakaszokból tízet megrajzolunk. Bizonyítsd be, hogy a hat pont között van három olyan pont, amelyeket összekötő szakaszok meg vannak rajzolva! Igaz-e az állítás, ha csak kilenc szakaszt rajzolunk meg? Indokold a válaszod!

(***)

Megoldás. Hivatalból

(1 pont)

Jelöljük a pontokat A, B, C, D, E és F betűkkel. Ha az adott pontok mindegyike legfeljebb másik három ponttal lenne összekötve, akkor legfeljebb $C_6^2 = \frac{6\cdot 3}{2} = 9$ szakasz lenne megrajzolva.

(3 pont)

Ezért ha 10 szakaszt rajzoltunk be, akkor a skatulyaelv alapján lesz olyan pont, tegyük fel az A pont, amely négy másik ponttal van összekötve. Ezek a pontok legyenek B, C, D, E. (1 pont)

Ha a B, C, D és E pontok közül kettőt összeköt még egy megrajzolt szakasz, akkor ez a két pont az A-val együtt egy megrajzolt háromszög csúcsai. (1 pont)

Ha a B, C, D és E pontokat összekötő szakaszok nincsenek megrajzolva, akkor a fennmaradó 6 szakasz egyik végpontja biztosan az F pont. Ez viszont nem lehetséges, mert az F pontból csak 5 pontba tudunk szakaszt rajzolni. (1 pont)

Tehát ha 10 szakasz van megrajzolva, akkor biztosan találunk háromszöget melynek csúcsai az adott pontok. (1 pont)

Ha csak 9 szakaszt kell megrajzoljunk, akkor ki tudjuk küszöbölni a háromszög keletkezését, ahogy az alábbi ábrán látható. (2 pont)

4. feladat (10 pont). Adott az $(a_n)_{n\geq 1}$ sorozat úgy, hogy $a_1>0$ és $a_{n+1}=\frac{a_n}{1+na_n^2}$, minden $n\geq 1$ esetén. Tanulmányozd az $(a_n)_{n\geq 1}$ és $(na_n)_{n\geq 1}$ sorozatok konvergenciáját, és ha konvergensek, akkor számítsd ki a határértéküket!

Matlap 10/2022, L:3524

Megoldás. Hivatalból

(1 pont)

Mivel $a_1 > 0$, következik, hogy $a_2 = \frac{a_1}{1+a_1^2} > 0$. Matematikai indukció módszerével igazoljuk, hogy $a_n > 0$, minden $n \in \mathbb{N}^*$ esetén. (1 pont)

 $a_n > 0$, minden $n \in \mathbb{N}^*$ esetén. (1 pont) Mivel $a_{n+1} - a_n = -\frac{na_n^3}{1+na_n^2} < 0$, minden $n \ge 1$ esetén, következik, hogy az $(a_n)_{n \ge 1}$ sorozat szigorúan csökkenő és alulról korlátos, ahonnan következik, hogy az $(a_n)_{n \ge 1}$ sorozat konvergens. (2 pont) Legyen $\lim_{n \to \infty} a_n = l$ a sorozat határértéke. Feltételezzük, hogy $l \ne 0$. Ekkor a rekurziós képletben határértékre térve, kapjuk, hogy l = 0, ami ellentmondáshoz vezet. Tehát $\lim_{n \to \infty} a_n = 0$. (1 pont)

Legyen
$$b_n = na_n, n \ge 1$$
. Ekkor $b_1 = a_1$ és $b_2 = 2a_2 = \frac{2a_1}{1+a_1^2} \le 1$. (1 pont)

A $b_{n+1}-1=\frac{(n+1)b_n}{b_n^2+n}-1=\frac{(1-b_n)(b_n-n)}{b_n^2+n}$ összefüggésből matematikai indukcióval igazoljuk, hogy $b_n\leq 1$, minden $n\geq 2$ esetén. (1 pont)

A $0 < b_n \le 1$ alapján $b_{n+1} - b_n = \frac{b_n(1-b_n^2)}{b_n^2+n} \ge 0$, minden $n \ge 2$ esetén, ahonnan következik, hogy a $(b_n)_{n\ge 2}$ sorozat növekvő. Ezenkívül a sorozat felülről korlátos, ezért konvergens. Tehát létezik a $\lim_{n\to\infty} b_n = b \in (0,\infty)$ határérték. (1 pont)

Mivel $b_n = na_n = \frac{n}{\frac{1}{a_n}}$, ahol az $\left(\frac{1}{a_n}\right)_{n \geq 1}$ sorozat szigorúan növekvő és $\lim_{n \to \infty} \frac{1}{a_n} = \infty$, ezért teljesülnek a Stolz–Cèsaro-tétel feltételei. De

$$\lim_{n \to \infty} \frac{n+1-n}{\frac{1}{a_{n+1}} - \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{\frac{1+na_n^2}{a_n} - \frac{1}{a_n}} = \lim_{n \to \infty} \frac{1}{na_n} = \frac{1}{b}.$$

Ez a határérték létezik és a Stolz–Cèsaro-tétel alapján megegyezik a $b = \lim_{n \to \infty} na_n$ határértékkel, így azt kapjuk, hogy $b = \frac{1}{b}$, ahonnan b = 1. Tehát $\lim_{n \to \infty} na_n = 1$. (2 pont)