Лабораторная работа №2

Система контроля версий Git

Яковлева Дарья Сергеевна

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Задание для самостоятельной работы	17
4	Выводы	21

Список иллюстраций

2.1	Рисунок 1. Настроика имени и эл. почты	6
2.2	Рисунок 2. Настройка UTF8 в выводе сообщений Git	6
2.3	Рисунок 3. Конфигурация имени начальной ветки	6
2.4	Рисунок 4. Настройка параметра autocrlf	6
2.5	Рисунок 5. Настройка параметра safecrlf	7
2.6	Рисунок 6. Генерация ssh ключа	7
2.7	Рисунок 7. Внешний вит сайта GitHub	8
2.8	Рисунок 8. Вкладка настроек GitHub	8
2.9	Рисунок 9. Раздел настроек "SSH and GPG keys"	9
2.10	Рисунок 10. Поле ввода ключа	9
2.11	Рисунок 11. Считывание и копирование публичного ключа	10
2.12	Рисунок 12. Заполнение необходимых полей для добавления ключа	10
2.13	Рисунок 13. создание каталога «Архитектура компьютера»	10
2.14	Рисунок 14. Страница шаблона на GitHub	11
2.15	Рисунок 15. Создание репозитория	11
2.16	Рисунок 16. Перемещение в необходимую папку	12
2.17	Рисунок 17. Ссылка на репозиторий	12
2.18	Рисунок 18. Использование команды "git clone"	13
	Рисунок 19. Переход в клонированный каталог	13
2.20	Рисунок 20. Удаление файла команды "rm"	13
2.21	Рисунок 21. Создание необходимых каталогов	14
	Рисунок 22. Добавление каталога для отправки на сервер	14
2.23	Рисунок 23. Сохранение изменений и комментарий	14
	Рисунок 24. Отправка репозитория на GitHub	15
2.25	Рисунок 25. Файлы на компьютере	15
2.26	Рисунок 26. Файлы на сервере	16
3.1	Рисунок 27. Начальный экран LibreOffice	17
3.2	Рисунок 28. Выбор места для хранения файла в расширении docx .	18
3.3	Рисунок 29. Проверка наличие отчёта в папке	18
3.4	Рисунок 30. Копирование отчёта по первой лабораторной в форма-	
	тах doc и pdf	19
3.5	Рисунок 31. Добавление каталога для отправки на сервер, сохране-	
	ние изменений и комментарий к ним	19
3.6	Рисунок 32. Загрузка файлов на GitHub	20
3 7	Рисунок 33 Обновлённый репозиторий на GitHub	20

Список таблиц

1 Цель работы

Целью работы является изучить идеологию и применение средств контроля версий. Приобрести практические навыки по работе с системой git.

2 Выполнение лабораторной работы

Сначала сделаем предварительную конфигурацию git. Откроем терминал и введём следующие команды, указав имя и email владельца репозитория. (рис. 1)

```
dsjakovleva@fedora:~$ git config --global user.name "WhiteNoise10" dsjakovleva@fedora:~$ git config --global user.email "dashah2017@gmail.com" dsjakovleva@fedora:~$
```

Рис. 2.1: Рисунок 1. Настройка имени и эл. почты

Настроим utf-8 в выводе сообщений git. (рис. 2)

```
dsjakovleva@fedora:~$ git config --global core.quotepath false
dsjakovleva@fedora:~$
```

Рис. 2.2: Рисунок 2. Настройка UTF8 в выводе сообщений Git

Зададим имя начальной ветки (будем называть её master). (рис. 3)

```
dsjakovleva@fedora:~$ git config --global init.defaultBranch master dsjakovleva@fedora:~$
```

Рис. 2.3: Рисунок 3. Конфигурация имени начальной ветки

Hacтроим параметр autocrlf и параметр safecrlf. (рис. 4 и рис. 5)

```
dsjakovleva@fedora:~$ git config --global core.autocrlf input dsjakovleva@fedora:~$
```

Рис. 2.4: Рисунок 4. Настройка параметра autocrlf

```
dsjakovleva@fedora:~$ git config --global core.safecrlf warn
dsjakovleva@fedora:~$
```

Рис. 2.5: Рисунок 5. Настройка параметра safecrlf

Для того, чтобы сервер мог идентифицировать пользователя, необходимо сгенерировать несколько ssh ключей. Начнем с генерации открытого ключа. Для этого мы введем следующую команду, указав имя, фамилию пользователя и его адрес электронной почты в качестве аргумента. (рис. 6)

```
dsjakovleva@fedora:~$ ssh-keygen -C "WhiteNoise10 dashah2017@gmail.com"
Generating public/private ed25519 key pair.
Enter file in which to save the key (/home/dsjakovleva/.ssh/id_ed25519):
Created directory '/home/dsjakovleva/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/dsjakovleva/.ssh/id_ed25519
Your public key has been saved in /home/dsjakovleva/.ssh/id_ed25519.pub
The key fingerprint is:
SHA256:rnOmfT3aWB4tZCrxyOq043EGKgdapArs5E8sOQqNILE WhiteNoise10 dashah2017@gmail
.com
The key's randomart image is:
+--[ED25519 256]--+
|Eoo
|O=o. . + + + .
=*000 0 B 0.+ .
0 =0 .000..=00
|. . oB*..o.o.
 ----[SHA256]----+
dsjakovleva@fedora:~$
```

Рис. 2.6: Рисунок 6. Генерация ssh ключа

Зайдем на сайт GitHub. (рис. 7)

Рис. 2.7: Рисунок 7. Внешний вит сайта GitHub

Перейдём в пункт settings. (рис. 8)

Рис. 2.8: Рисунок 8. Вкладка настроек GitHub

Находим раздел SSH and GPG keys и нажимаем New SSH key. (рис. 9)

Рис. 2.9: Рисунок 9. Раздел настроек "SSH and GPG keys"

В предложенное поле "Кеу" необходимо вставить ключ, который мы только что сгенерировали. (рис. 10)

Рис. 2.10: Рисунок 10. Поле ввода ключа

Для того, чтобы скопировать ключ для последующей вставки, нам введём сле-

дующую команду. (рис. 11)

```
dsjakovleva@fedora:~$ cat ~/.ssh/id_ed25519.pub | xclip -sel clip
dsjakovleva@fedora:~$
```

Рис. 2.11: Рисунок 11. Считывание и копирование публичного ключа

Остается лишь вставить содержимое буфера обмена, то есть наш ключ, в предложенное поле "Key" и указать имя ключа в поле "Title". (рис. 12)

Add new SSH Key	
Title	
Key	
Key type	
Authentication Key \$	
Key	
ssh-ed25519 AAAAC3NzaC1lZDI1NTE5A	vAAAIO5lWHTir/pkmaBO9k8bXJI7fW+Ivq5s05IxNe88L9i3 WhiteNoise10 dashah2017@gmail.com
Add SSH key	

Рис. 2.12: Рисунок 12. Заполнение необходимых полей для добавления ключа

Откроем терминал и создадим каталог для предмета «Архитектура компьютера». (рис. 13)

```
dsjakovleva@fedora:~$ mkdir -p ~/work/study/2024-2025/"Архитектура компьютера"
dsjakovleva@fedora:~$
```

Рис. 2.13: Рисунок 13. создание каталога «Архитектура компьютера»

Создадим репозиторий. Будем создавать его на основе шаблона, который находится по следующему адресу: https://github.com/yamadharma/course-directorystudent-template (рис. 14)

Рис. 2.14: Рисунок 14. Страница шаблона на GitHub

Нажимаем на кнопку "Use this template", и в предложенных опциях выбираем "Create new repository". (рис. 15)

Рис. 2.15: Рисунок 15. Создание репозитория

Задаём имя репозитория. Он будет называться: study_2024-2025_arh-pc. Далее

нам нужно клонировать репозиторий на наш компьютер. Для этого перейдем в папку, в которую мы хотим скопировать репозиторий. В нашем случае это ранее созданная папка. (рис. 16)

```
dsjakovleva@fedora:~$ cd ~/work/study/2024-2025/"Архитектура компьютера" dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера$
```

Рис. 2.16: Рисунок 16. Перемещение в необходимую папку

Перейдем непосредственно к клонированию. Для этого воспользуемся командой git clone, в аргументе указав ссылку на репозиторий (рис. 17). Ссылку можно найти при нажатии на кнопку код на странице нашего репозитория (рис. 18)

Рис. 2.17: Рисунок 17. Ссылка на репозиторий

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера$ git clone --re
cursive git@github.com:WhiteNoise10/study_2024-2025_arh-pc.git
Клонирование в «study_2024-2025_arh-pc»...
The authenticity of host 'github.com (140.82.121.3)' can't be established.
ED25519 key fingerprint is SHA256:+DiY3wvvV6TuJJhbpZisF/zLDA0zPMSvHdkr4UvC0qU.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? y
Please type 'yes', 'no' or the fingerprint: yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
remote: Enumerating objects: 34, done.
remote: Counting objects: 100% (34/34), done.
remote: Compressing objects: 100% (33/33), done.
remote: Total 34 (delta 1), reused 18 (delta 0), pack-reused 0 (from 0)
Получение объектов: 100% (34/34), 19.59 КиБ | 19.59 МиБ/с, готово.
Определение изменений: 100% (1/1), готово.
Подмодуль «template/presentation» (https://github.com/yamadharma/academic-presen
tation-markdown-template.git) зарегистрирован по пути «template/presentation»
Подмодуль «template/report» (https://github.com/yamadharma/academic-laboratory-r
eport-template.git) зарегистрирован по пути «template/report»
Клонирование в «/home/dsjakovleva/work/study/2024-2025/Архитектура компьютера/st
udy_2024-2025_arh-pc/template/presentation»...
remote: Enumerating objects: 111, done.
```

Рис. 2.18: Рисунок 18. Использование команды "git clone"

Теперь перейдем к настройке клонированного каталога. Для начала перейдем в него с помощью команды "cd". (рис. 19)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера$ cd ~/work/stud y/2024-2025/"Архитектура компьютера"/study_2024-2025_arh-pc/dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$
```

Рис. 2.19: Рисунок 19. Переход в клонированный каталог

Удалим лишний файл с помощью команды "rm". (рис. 20)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025
_arh-pc$ rm package.json
```

Рис. 2.20: Рисунок 20. Удаление файла команды "rm"

Создадим необходимые каталоги. (рис. 21)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025
_arh-pc$ echo arch-pc > COURSE
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025
_arh-pc$ make
```

Рис. 2.21: Рисунок 21. Создание необходимых каталогов

Теперь нам остается отправить файлы на сервер. Для этого с помощью команды git add мы добавим каталоги, которые должны отправляться на сервер. (рис. 22)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git add .
```

Рис. 2.22: Рисунок 22. Добавление каталога для отправки на сервер

Теперь с помощью команды git commit мы сохраним изменения и укажем комментарий, в котором будет поясняться, какие изменения мы сделали. В данном случае в комментарии мы напишем, что создали структуру курса. (рис. 23)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git add .
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git commit -am "feat(main): make course structure"
[master 982a318] feat(main): make course structure
221 files changed, 53680 insertions(+)
create mode 100644 labs/README.md
create mode 100644 labs/README.ru.md
create mode 100644 labs/lab01/presentation/.projectile
create mode 100644 labs/lab01/presentation/.texlabroot
create mode 100644 labs/lab01/presentation/Makefile
create mode 100644 labs/lab01/presentation/image/kulyabov.jpg
create mode 100644 labs/lab01/presentation/presentation.md
create mode 100644 labs/lab01/report/Makefile
create mode 100644 labs/lab01/report/Makefile
create mode 100644 labs/lab01/report/bib/cite.bib
create mode 100644 labs/lab01/report/image/placeimg 800 600 tech.jpg
```

Рис. 2.23: Рисунок 23. Сохранение изменений и комментарий

Теперь нам осталось окончательно загрузить изменения на сервер. Для этого мы воспользуемся командой git push. (рис. 24)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git push
Перечисление объектов: 36, готово.
Подсчет объектов: 100% (36/36), готово.
При сжатии изменений используется до 8 потоков
Сжатие объектов: 100% (29/29), готово.
Запись объектов: 100% (35/35), 341.39 Киб | 919.00 КиБ/с, готово.
Total 35 (delta 4), reused 1 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (4/4), completed with 1 local object.
To github.com:WhiteNoise10/study_2024-2025_arh-pc.git
   lec0067..982a318 master -> master
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$
```

Рис. 2.24: Рисунок 24. Отправка репозитория на GitHub

Проверим, сохранились ли файлы на сервере. Сравним файлы, которые находятся на GitHub с теми файлами, что находятся на нашем компьютере (рис. 25 и рис. 26)

Рис. 2.25: Рисунок 25. Файлы на компьютере

Рис. 2.26: Рисунок 26. Файлы на сервере

Файлы совпали

3 Задание для самостоятельной работы

Теперь приступим к выполнению самостоятельной работы. Для начала мы создадим файл отчета для нашей лабораторной работы в папке labs/lab02/report с помощью LibreOffice (рис. 27, рис. 28 и рис. 29).

Рис. 3.1: Рисунок 27. Начальный экран LibreOffice

Рис. 3.2: Рисунок 28. Выбор места для хранения файла в расширении docx

Рис. 3.3: Рисунок 29. Проверка наличие отчёта в папке

После этого скопируем отчет по нашей предыдущей лабораторной работе в соответствующую папку созданного нами рабочего пространства, то есть в папку labs/lab01/report. Для копирования воспользуемся командой "ср" (рис. 30)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025 
_arh-pc$ cp ~/Документы/ЛО1_Яковлева_отчёт.doc labs/lab01/report/ 
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025 
_arh-pc$ cp ~/Документы/ЛО1_Яковлева_отчёт.pdf labs/lab01/report/ 
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025 
_arh-pc$
```

Рис. 3.4: Рисунок 30. Копирование отчёта по первой лабораторной в форматах doc и pdf

Теперь нам осталось лишь загрузить изменения на GitHub. Воспользуемся командой "git add ." для того, чтобы указать, что мы хотим сохранить изменения во всех файлах, находящихся в нашем каталоге. После этого с помощью команды "git commit" мы укажем комментарий и сохраним изменения. (рис. 31)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git add .
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git commit -am "feat(main): added first 2 labs"
[master 151f339] feat(main): added first 2 labs
3 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 labs/lab01/report/ЛО1_Яковлева_отчёт.doc
create mode 100644 labs/lab01/report/ЛО1_Яковлева_отчёт.pdf
create mode 100644 labs/lab02/report/ЛО2_Яковлева_отчёт.docx
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$
```

Рис. 3.5: Рисунок 31. Добавление каталога для отправки на сервер, сохранение изменений и комментарий к ним

После этого введём команду "git push" для того, чтобы загрузить файлы на GitHub (рис. 32)

```
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$ git push
Перечисление объектов: 16, готово.
Подсчет объектов: 100% (14/14), готово.
При сжатии изменений используется до 8 потоков
Сжатие объектов: 100% (10/10), готово.
Запись объектов: 100% (10/10), 5.89 МиБ | 1.53 МиБ/с, готово.
Total 10 (delta 3), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (3/3), completed with 2 local objects.
To github.com:WhiteNoise10/study_2024-2025_arh-pc.git
    982a318..151f339 master -> master
dsjakovleva@fedora:~/work/study/2024-2025/Архитектура компьютера/study_2024-2025_arh-pc$
```

Рис. 3.6: Рисунок 32. Загрузка файлов на GitHub

Остается лишь проверить, правильно ли мы все загрузили. Для этого посмотрим время обновления файлов в папке labs в GitHub. (рис. 33)

Рис. 3.7: Рисунок 33. Обновлённый репозиторий на GitHub

4 Выводы

В результате выполнения лабораторной работы появились практические навыки работы с системой контроля версий Git, была произведена её первоначальная настройка в linux. Было изучено, как создавать репозитории, сохранять изменения и добавлять к ним комментарии, а также как выгружать файлы на сервер. Были приобретены навыки работы с платформой GitHub.