Machine Learning

Lecture 3.1: Sparsity in Convex Optimization for Supervised Machine Learning

Marc Sebban and Amaury Habrard

LABORATOIRE HUBERT CURIEN, UMR CNRS 5516 University of Jean Monnet Saint-Étienne (France)

Some materials used for this lecture:

- F. Bach "Sparse methods for Machine Learning Theory and Algorithms" Tutorial at NIPS'2009 and at ECML'2010.
- Y. Grandvalet "Sparsity in Learning Tutorial at CAP'2013.
- G. Obozinski "Sparse Methods in Statistical Learning Theory" 2010.
- F. Bach "Learning with sparsity-inducing norms" MLSS 2008.

Outline

- Why do we need sparsity?
- Regularization and Norms
 - Problem with the ℓ_0 -norm
 - Regularizing with the ℓ_2 -norm does not lead to sparsity
 - Why does ℓ_1 -norm lead to sparsity?
 - Optimization methods
 - Group Sparsity in Linear Regression
 - ℓ_1/ℓ_2 -norm
- Sparse Methods for Matrices
 - Rank minimization
 - Convex relaxations: Trace-norm, logdet

Regularized (penalized) supervised learning problem

Training data: a set of $S = \{z_i = (x_i, y_i)\}_{i=1}^m$ of m training data i.i.d. from an unknown joint distribution $\mathcal{D}_{\mathcal{Z}}$ over a space $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$.

$$\min_{h} \sum_{i=1}^{m} \ell(y_i, h(x_i)) + \lambda ||h||$$

where $\lambda ||h||$ is a regularization term which prevents the algorithm from overfitting.

The previous **penalized problem** can be rewritten as a **constrained problem**.

$$\min_{h} \sum_{i=1}^{m} \ell(y_i, h(x_i)) \text{ s.t. } ||h|| < c$$

Indeed, for any c in the constrained setting, there is a corresponding λ for which one can penalize the objective function.

Sparsity: a parsimonious use of data

What about sparsity?

We consider the set S composed of m examples in \mathbb{R}^d :

$$S = \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_i \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot \\ x_m \end{pmatrix} = \begin{pmatrix} x^1 & \dots & x^j & \dots & x^d \end{pmatrix}$$
 duced:

This set can be reduced:

- in columns \Rightarrow deletion of features useful when d is large compared to n.
- in rows \Rightarrow deletion of examples (e.g. ℓ_1 -SVM, CNN).
- in rank (e.g. PCA, LSA) ⇒ Find the embedding space.

Why ignoring some variables?

- Prevent from overfitting curse of dimensionality Occam's razor principle.
- Computational efficiency
 - Fast evaluation at test time.
- Interpretability
 - Understanding the underlying phenomenon.

Three categories of methods

- Filter approach
 - Variables "filtered" by a criterion (e.g. Fisher, Wilks, Mutual Information).
 - Learning proceeds after the treatment.
- Wrapper approach
 - Heuristic search of subsets of variables.
 - Subset selection is done w.r.t. the learning algorithm performance.
- Embedded approach: use of sparsity-inducing norms
 - Feature selection is part of the learning algorithm
 - All features processed during learning, only some influence the solution.
 - Example: LASSO in Linear Regression

$$\min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (y_i - \theta^T x_i)^2 + \lambda ||\theta||_1$$

Note that we would prefer to use directly the ℓ_0 -norm to induce sparsity.

"Hard" subset selection with the ℓ_0 -norm and Relaxation

ℓ_0 Norms in Linear Models

$$h(x) = \theta^T x$$

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, h(x_i)) + \lambda ||\theta||_0$$

NP-hard problem

Relaxation

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, h(x_i)) + \lambda ||\theta||_{p}$$

Convex relaxation (if ℓ convex) for $p \geq 1$ Sparse solution for $0 <math>\Rightarrow \ell_1$ -norm is a good trade-off

ℓ₂-norms

Regularization with ℓ_2 -norm does not mean sparsity

Example: Let us consider the following problem:

$$\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta} - \boldsymbol{\theta}^T \mathbf{x} + \lambda ||\boldsymbol{\theta}||_2^2.$$

$$\frac{\partial \frac{1}{2} \theta^T \theta - \theta^T \mathbf{x} + \lambda ||\theta||_2^2}{\partial \theta_j} = 0 \Leftrightarrow \forall j = 1..d, \ \theta_j^* = \frac{x_j}{1 + 2\lambda}$$

The ℓ_2 norm penalizes the larger components first

The gradient is linear in the magnitude of each component of the vector (indeed, $\frac{\partial x^2}{\partial x} = 2x$). Thus, small values are favored, but **it's more** favorable to decrease a large value than a small one.

Example

- The ℓ_2 norm of $\theta = (1,3)$ is $||\theta||_2 = \sqrt{10}$.
- Decreasing the first component by 1 results in a vector $\theta = (0,3)$ with $||\theta||_2 = \sqrt{9} = 3$.
- But decreasing the second component by 1 results in $\theta = (1,2)$ with $||\theta||_2 = \sqrt{5} < 3$.
- Thus, its more favorable to decrease the larger components of the vector to minimize the norm of w. The ℓ_2 regularization is also called "weight decay"

(see demo)

ℓ_1 -norm Regularization

 ℓ_1 -norm Regularization performs **regularization** as well as feature selection.

ℓ_1 -norm regularization results in sparse models

$$\min_{\theta} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, h(x_i)) + \lambda ||\theta||_1$$

Increasing λ will cause more and more of the parameters of θ to be **driven** to zero.

Impact of λ on the sparsity: an example

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{2} \theta^T \theta - \theta^T \mathbf{x} + \lambda ||\theta||_1.$$

• If $\lambda = 0$ (i.e. no penalization) the zero gradient gives:

$$\theta^* = \mathbf{x} \Rightarrow \theta_i = 0$$
 (i.e. sparsity) if and **only if** $\mathbf{x}_i = 0$.

- If $\lambda \neq 0$, let us consider the partial derivative at $\theta_j = 0^+ : g_+^j = \lambda \mathbf{x}_j$ and at $\theta_j = 0^- : g_-^j = -\lambda \mathbf{x}_j$. The solution is
 - $\theta_j^* = 0$ iff $g_+^j \ge 0$ and $g_-^j \le 0$.
 - So if $|\mathbf{x}_i| \leq \lambda$, the set of situations inducing sparsity is expanded!

Optimization methods

ℓ_2 versus ℓ_1 - Gaussian hare versus Laplacian tortoise

ℓ_1 is cool but ... which one is faster? ℓ_1 or ℓ_2 ?

- Gauss is in favor of ℓ_2 while Laplace is in favor of ℓ_1 .
- Since ℓ_1 is not differentiable, it might look that it is harder to optimize. This is the tortoise.
- Since ℓ_2 usually leads to nice smooth convex optimization problem, it is supposed to be easier. This is the hare.

Optimization Methods

•
$$\min_{\mathbf{w}} \frac{1}{2m} \sum_{i=1}^{m} (y_i - \mathbf{w}^T x_i)^2 + \lambda \sum_{j=1}^{d} (\mathbf{w}_j^+ + \mathbf{w}_j^-)$$
 such that

$$\mathbf{w} = \mathbf{w}_j^+ - \mathbf{w}_j^-$$

$$\mathbf{w}_{j}^{+} \geq 0$$
 and $\mathbf{w}_{j}^{-} \geq 0$

- \Rightarrow very slow.
- Generic methods: Interior points.
- Active set methods: LARS algorithm.

- η-trick (Micchelli and Pontil, 2006; Rakotomamonjy et al. 2008)
 - $\bullet \ \ \text{Notice that} \ ||\mathbf{w}||_1 = \sum_{j=1}^d |\mathbf{w}_j| = \min_{\eta \geq 0} \frac{1}{2} \sum_{j=1}^d \left\{ \frac{{\mathbf{w}_j}^2}{\eta_j} + \eta_j \right\}$
 - Alternating minimization w.r.t. η (close-form) and **w** (weighted squared ℓ_2 -norm regularized problem).

Group Sparsity in Linear Regression

Ball Crafting

Group Sparsity in Linear Regression

How to remove groups of features?

 \rightarrow based on the assumption that a group structure is known.

Group Lasso

$$\ell_1/\ell_2\text{-norm} = \sum_{g \in \mathcal{G}} ||\mathbf{w}_g||_2 = \sum_{g \in \mathcal{G}} \left(\sum_{j \in g} \mathbf{w}_j^2\right)^{\frac{1}{2}}$$

where $\{\mathcal{G}_k\}_{k=1}^K$ forms a partition of $\{1,\ldots,d\}$.

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \mathbf{w}^T x_i) + \lambda \sum_{g \in \mathcal{G}} ||\mathbf{w}_g||_2$$

Sparse solution groupwise

- Proximal methods.
- Blockwise coordinate descent.

Sparse Methods for Matrices

Learning on Matrices (1/2)

Multivariate Linear Regression

$$\min_{\mathbf{W}} \frac{1}{2} || \mathbf{Y} - \mathbf{X} \mathbf{W} ||_{\mathcal{F}}^2 + \lambda || \mathbf{W} ||_{\mathcal{F}}^2$$

Learning on Matrices (2/2)

Metric Learning

Mahalanobis Distance Learning: $\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^d$,

$$d_{\mathbf{M}}(\mathbf{x}, \mathbf{x}') = \sqrt{(\mathbf{x} - \mathbf{x}')^T \mathbf{M}(\mathbf{x} - \mathbf{x}')},$$

where $\mathbf{M} \in \mathbb{R}^{d \times d}$ is a symmetric PSD matrix $(\mathbf{M} \succeq 0)$.

Two Types of Sparsity for matrices

• Directly on the elements of **M** using the ℓ_1 -norm or the ℓ_1/ℓ_2 -norm.

• Through a factorization of $\mathbf{M} = \mathbf{U}\mathbf{V}^T$ with low rank (k small), where $\mathbf{U} \in \mathbb{R}^{m \times k}$ and $\mathbf{V} \in \mathbb{R}^{d \times k}$ and $\mathbf{M} \in \mathbb{R}^{m \times d}$.

$$M = U$$

Rank constrained learning

Rank constrained learning

Given a matrix $\mathbf{M} \in \mathbb{R}^{m \times d}$

- $Rank(\mathbf{M}) = ||s||_0$ (non convex function) where $s \in \mathbb{R}_+^m$ are singular values.
- The rank of **M** is the minimum size m of all factorizations of **M** into $\mathbf{M} = \mathbf{U}\mathbf{V}^T$, $\mathbf{U} \in \mathbb{R}^{m \times k}$ and $\mathbf{V} \in \mathbb{R}^{d \times k}$

$$\min_{\mathbf{M} \in \mathbb{R}^{m imes p}} \ell(\mathbf{M}) \text{ s.t. } rank(\mathbf{M}) \leq m.$$

In general, NP-Hard

Solution: Convex Relaxation

Replace (relax) the rank objective function by a convex norm.

Trace Norm also known as Nuclear Norm or ... Ky-Fan-n-norm

Trace Norm $||\mathbf{M}||_{tr}$

- $Rank(\mathbf{M}) = ||s||_0 \xrightarrow{relax} ||s||_1 = ||\mathbf{M}||_{tr}$
- Relaxation of the problem:

$$\min_{\mathbf{M}\in\mathbb{R}^{m\times p}}\ell(\mathbf{M})+\lambda||\mathbf{M}||_{tr}.$$

- → Leads to convex optimization problems.
- \rightarrow Algorithms
 - Proximal methods.
 - Iterated reweighted Least-Square (Argyriou et al., 2009)
 - Common bottleneck: requires iterative SVD.

Other convex relaxation

- Log-det heuristic [Fazel et al. 2003]
 - Uses the logarithm of the determinant as a smooth approximation for rank.

$$\min_{\mathbf{M}\succ 0}\ell(\mathbf{M}) + logdet(\mathbf{M} + \lambda I).$$

• **Interpretation**: the logdet corresponds to the log of the volume of an ellipsoid as the product of the eigenvalues of **M**.