College of Informatics and Electronics

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MS4111 SEMESTER: Spring 2005-06

MODULE TITLE: Discrete Mathematics 1 DURATION OF EXAMINATION: 2 1/2 hours

LECTURER: E. MacAogáin PERCENTAGE OF TOTAL MARKS: 80%

EXTERNAL EXAMINER: Prof. J. King

INSTRUCTIONS TO CANDIDATES: Answer four questions. All questions are weighted equally. Give the reasoning for your answers.

1	1 (a) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$ and $B = \{-2, 0, 2, 4\}$. Find:		
	(i) $A \cap B$	2	
	(ii) $A - B$	2	
	(iii) $(A-B)\cup(B-A)$.	2	
	(b) Let $C = \{a, b\}$. Find its power set 2^C .	4	
	(c) Let D, E and F be three sets. Simplify: $\overline{D \cap (E - F)} \cup D$	5	
	(d) Prove that a set of order n has 2^n subsets.	5	
2	(a) Find:		
	(i) gcd(132,60)	2	
	(ii) lcm(105,42).	3	
	(b) Express in the form $\frac{p}{q}$ where $p, q \in \mathbf{Z}$, the set of integers, $q \neq 0$:		
	(i) 5.478	2	
	(ii) $4.\dot{2}\dot{1}$	3	
	(c) Expand: $(2x + y)^4$	5	
	(d) Prove, using mathematical induction, that:	5	
	$3 + 6 + 9 + \dots + 3n = \frac{3n(n+1)}{2}, \forall n \in \mathbf{N}$		
	(N: the set of positive integers)		
3	(a) For each of the following relations * on the given sets, which of the properties reflexivity, symmetry, transitivity do they have?		
	(i) set Z of integers: $x * y$ iff $x < y$	3	
	(ii) set \mathbf{Z} : $x * y$ iff $x + y$ is odd.	3	
	(b) Show that $x^2 + y^2 = 2007$ has no solution in integers. [Hint: look mod 4]	5	
	(c) Let $m \in \mathbb{N}$. Prove that $x \equiv y \pmod{m}$ is an equivalence relation on \mathbb{Z} .	5	
	(d) Find the set of all integers between -9 and 9 such that:		
	$2x \equiv 2 \; (mod \; 3)$		

4 (a) Write down the converse, inverse and contrapositive of the following proposition:

if he's old then he's wise.

6

- (b) For the following truth table:
 - (i) write down the disjunctive normal form of the function

2

(ii) simplify algebraically

3

(iii) simplify using Karnaugh maps.

3

P	Q	f(P,Q)
T	T	T
T	F	F
F	T	T
F	F	T

- (c) (i) Show that the following is a contradiction: $(P \land Q) \land (\sim P)$
 - (ii) Show that the following is a tautology: $(\sim Q) \lor (P \to Q)$
- 5 (a) Prove directly:

if x and y are odd integers then xy is an odd integer.

5

3

(b) Use the contrapositive to prove:

if the square of an integer is even then the integer is even.

7

- (c) Prove by contradiction (i.e. "reductio ad absurdum") that $\sqrt{3}$ is irrational.
- 8
- 6 (a) Find the general solution of the following recurrence relation:

$$a_n = 5a_{n-1} - 6a_{n-2}$$

7

(b) Find the particular solution of the above recurrence relation which satisfies the initial conditions:

$$a_0 = 2, \ a_1 = 5$$

Hence evaluate a_5 .

7

(c) Find the general solution of the following recurrence relation:

$$a_n = 5a_{n-1} - 6a_{n-2} + 10$$

[Hint: see part(a)]

6