Programação Gráfica

Professor Rodrigo Piva

Visualização Tridimensional, Camera Sintética, Projeções Ortográficas e Projeções Perspectiva ou Cônica

Quando se trabalha em três dimensões, O SRU (Sistema de Referência do Universo) passa a ser composto por três eixos ortogonais entre si (x,y e z) e pela origem (0.0,0.0,0.0)

Mas o que são eixos ortogonais?

Eixos Ortogonais

Ortogonal: Vem do Grego "orthos" que significa

"justo, reto" e "gonia" que significa "ângulo"

Resumindo: Que forma ângulos retos (90°)

Em openGL:
glBegin(GL_POINTS);
glVertex3i(3,1,3);
glEnd();

- Para trabalhar com imagens tridimensionais, primeiramente tem que se ter em mente que dispositivos de saída como monitores, televisores, impressoras e etc, possuem somente saídas 2D ou seja em relação ao PLANO.
- Para isso, existem algumas técnicas que são utilizadas pela OpenGL para poder transpor todo o cenário tridimensional em uma saída bidimensional.

Câmera Sintética

Passagem do espaço 3D para o plano 2D

A primeira etapa do processo de visualização 3D é a definição da cena 3D.

O próximo passo consiste em simular uma câmera ou um observador a uma determinada cena.

Projeções

Qual das duas imagens se parece mais com nossa realidade?

Projeções Paralelas Ortográficas

Projeção Perspectiva ou Cônica

Projeções Ortográficas

As projetantes (raios de projeção) são paralelas entre si, não há alteração na medida do objeto e não abrange muito a realidade.

Projeções Ortográficas

Projeção Perspectiva ou Cônica

As projetantes partem de um único ponto o que pode representar melhor o que acontece na realidade. Ela dá a sensação de profundidade entre os objetos mesmo que estes sejam de tamanhos iguais, o que conta neste caso são as relações em distância.

Projeção Perspectiva ou Cônica

Cor

Definição:

Cor é o que o olho humano interpreta da reemissão da luz refletida de um objeto, que foi emitida por uma fonte de luz, por meio de ondas eletromagnéticas/partículas, do espectro visível.

Em Computação Gráfica

- Melhora a legibilidade da informação;
- Possibilita gerar imagens realistas;
- Permite indicar mecanismos de segurança;
- Permite focar a atenção do observador;
- > Permite passar emoções;
- > entre outros.

Em Computação Gráfica

- Melhora a legibilidade da informação;
- Possibilita gerar imagens realistas;
- Permite indicar mecanismos de segurança;
- Permite focar a atenção do observador;
- > Permite passar emoções;
- > entre outros.

Colorimetria

Definição:

É o conjunto de técnicas que permite definir e comparar cores. Ela baseia-se na premissa de que qualquer cor pode sempre ser definida por três parâmetros:

- intensidade: mede a luminância da superfície examinada. Em caso de superfície for emissora ou refletora também pode-se chamar esse parâmetro de brilho ou claridade.
- tonalidade cromática: caracteriza o comprimento de onda dominante de cor, ou a matiz da cor como também pode-se chamar.
- saturação: mede a pureza da cor. Quanto uma cor é saturada de um só tom. No caso de cores originárias de objetos eminentes (luzes), como a mistura de todas as cores puras resulta em um luz branca, pode-se caracterizar a saturação como a quantidade de branco da cor.

Descrição da Cor de uma Luz:

O que vemos como cores em um luz são diferenças de comprimento de onda. Muitas cores podem ser geradas por um único comprimento de onda, como as luzes verde e vermelha puras. Outras cores são compostas por diversos comprimentos de luzes, como o roxo e o rosa.

As cores podem ser representadas através de um gráfico que demonstra a sua curva espectral. Veja a figura abaixo.

Descrição da Cor de uma Luz:

Luz é irradiação eletromagnética

- Diferentes cores correspondem a diferentes comprimentos de ondas.
- Intensidade de cada comprimento de onda é especificada pela amplitude de onda.

Descrição da Cor de um objeto:

A cor de um objeto é determinada pela frequência da onda que ele reflete. Um objeto terá determinada cor se não absorver os comprimentos de onda que correspondem àquela cor.

Descrição da Cor de um objeto:

Assim, um objeto é azul se absorve preferencialmente as frequências fora do azul.

Descrição da cor vista pelo ser humano:

As diferentes cores (espectros luminosos) podem ser percebidas pelo Sistema Visual Humano (SVH) correspondem a uma pequena faixa de frequências do espectro eletromagnético que inclui diversos tipos de ondas. Veja na figura.

Descrição da cor vista pelo ser humano:

Cores primárias:

- As cores primárias são as cores básicas que podem ser usadas para produzir outras cores.
- As cores podem ser produzidas a partir da combinação das cores primárias e também da combinação das combinações.
- Não existe um conjunto de números finitos de cores primarias capaz de produzir todas as cores. Contudo, grande parte das cores podem ser reproduzidas a partir de 3 cores primárias. São elas: Vermelho, Verde e o Azul. (RGB, em inglês)
- A razão para utilizar essas 3 cores é por que os olhos humanos possuem três tipos de sensores coloridos diferentes. Eles são chamados de foto-pigmentos azul, verde e vermelho.

Cores primárias:

Um sistema de cores é um modelo que explica as propriedades ou comportamento das cores num contexto particular. Não existe nenhum sistema de cores que explique todos os aspectos relacionados à cor. Dessa forma, são utilizados diferentes tipos de sistema de cores para atender características específicas. Alguns deles são:

- RGB
- RGBA
- CMYK
- HSV
- HLS
- XYZ
- YUV

RGB - Red Green Blue:

Um Sistema utilizado nos monitores de vídeo e televisão, no qual a cor é gerada pela mistura de vários comprimentos de onda luminosa provocando uma sensação de cor quanto atinge e sensibiliza o olho. As cores primárias aditivas do sistema RGB são: vermelho, verde e

azul.

RGB - Red Green Blue:

No processo aditivo, o preto é gerado pela ausência de qualquer cor, indicando que nenhuma luz está sendo transmitida; o branco é a mistura de todas elas, o que indica que uma quantidade máxima de vermelho, verde e azul está sendo transmitida.

Exemplo de RGB:

Branco	RGB (255, 255, 255)
Azul	RGB (0,0,255)
Vermelho	RGB (255, 0, 0)
Verde	RGB (0, 255, 0)
Amarelo	RGB (255, 255, 0)
Magenta	RGB (255, 0, 255)
Ciano	RGB (0, 255, 255)
Preto	RGB(0,0,0)

RGBA - Red Green Blue Alpha:

O sistema permite exibir todas as cores do sistema RGB e a utilização da transparência de imagem, artifício amplamente usado em softwares de edição de imagem com camadas.

RGBA - Red Green Blue Alpha:

As imagens no formato PNG utilizam o padrão RGBA.

Exemplo de Imagem PNG

CMYK - Cyan Magenta Yellow black :

- Processo utilizado nas impressoras e pinturas.
- Uma pintura é diferente de um monitor que, por ser uma fonte de luz, pode criar cores.
- As cores primárias do sistema CMYK para objetos em luz própria são: ciano, magenta, amarelo e preto.
- São cores primárias subtrativas, pois seu efeito é subtrair, isto é, absorver alguma cor da luz branca.
- Quando a luz branca atinge um objeto, ela é parcialmente absorvida pelo objeto.
- A parte que não é absorvida é refletida, e eventualmente atinge o olho humano, determinando assim a cor do objeto.

CMYK - Cyan Magenta Yellow black :

Vimos que a luz branca é a soma das cores azul, verde e vermelho.

- Ciano: Caso retire todo o componente vermelho da luz branca refletida, sobrando verde e azul. Em termos de cores aditivas, ciano é a soma de verde e azul;
- Magenta: Caso retire todo o componente verde da luz branca refletida, sobrando o vermelho e azul. Em termos de cores aditivas, magenta é a soma de vermelho e azul;
- Amarelo: Caso retire todo o componente azul da luz branca refletida, sobrando verde e vermelho. Em termos de cores aditivas, amarelo é a soma de verde e vermelho.

CMYK - Cyan Magenta Yellow black :

- Cores Secundárias: obtidas pela combinação das primárias, duas a duas em proporções iguais;
- Cores Terciárias: obtidas pela combinação de duas primárias em proporções diferentes.

Exemplo de CMYK:

HSV - Hue Saturation Value :

O modelo de cor HSV é mais intuitivo que os modelos RGB e CMYK.

Modelo de representação de cores baseado em:

- Hue (Cor, Matiz);
- Saturation (Saturação);
- Value (Valor).

HSV - Hue Saturation Value :

- O matiz (H) é dado pelo ângulo ao redor do eixo vertical, tomando a cor vermelha como origem;
- A saturação (S) de uma cor corresponde à quantidade de cor branca que a cor apresenta. Uma saturação de 1 significa que a cor é pura (está na periferia), enquanto uma saturação de 0 significa que a cor é totalmente branca e, neste caso, o valor do parâmetro H é irrelevante;
- O parâmetro V (valor) corresponde à intensidade da cor e varia entre 0 (intensidade nula, ou seja, cor negra em que os valores de H e S são irrelevantes) e 1 (intensidade máxima).

HSV - Hue Saturation Value:

HLS - Hue Lightness Saturation:

O modelo de cor HLS é tão intuitivo quanto o HSV.

Modelo de representação de cores baseado em:

- Hue (Cor, Matiz);
- Lightness (Luminosidade);
- Saturation (Saturação).

HLS - Hue Lightness Saturation:

- O matiz (H) é dado pelo ângulo ao redor do eixo vertical, tomando a cor vermelha como origem;
- A saturação (S) de uma cor corresponde à quantidade de cor branca que a cor apresenta. Uma saturação de 1 significa que a cor é pura (está na periferia), enquanto uma saturação de 0 significa que a cor é totalmente branca e, neste caso, o valor do parâmetro H é irrelevante;
- A luminosidade (L) pode variar entre 0, a que corresponde uma luminosidade nula, e 1 que equivale à luminosidade máxima que só é possível para a cor branca. Note-se que as cores puras apresentam uma luminosidade de 0,5.

HLS - Hue Lightness Saturation:

