A jump-start into machine-learning

Dahvyd Wing

Regression for computational chemistry

Most applications: lots of noisy data

0.6 training data model prediction 0.5 0.4 0.3 0.2 0.1 0.0

Our case: few data points with almost no noise

1. Data: (*X*, *y*)

- 2. Model: $f(x; \theta)$ $f: x \to y$ θ are trainable parameters
- 3. Cost function: $C(\mathbf{y}, f(\mathbf{X}; \boldsymbol{\theta}))$ mean squared error (MSE) = $\frac{1}{N} \sum_{i} (\mathbf{y}_{i} - f(\mathbf{x}_{i}, \boldsymbol{\theta}))^{2}$
- 4. Find $\min_{\theta} C(\mathbf{y}, f(\mathbf{X}; \boldsymbol{\theta}))$ using gradient descent

Hutson, Science 2018

Pytorch example lj_1_overfit.py

- 1. Open anaconda prompt
- conda activate ml_tutorial
- 3. Go to ml_tutorial folder
- 4. spyder &
- 5. In spyder open lj_1_overfit.py

- 1. Data: (*X*, *y*)
 - Instance/object of a customized dataset class
 - Implement 3 functions: __init__, __len__, and __get_item__
 - dataloader pulls random batches of data from the dataset

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \end{pmatrix} \qquad y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \end{pmatrix}$$

- 1. Data: (*X*, *y*)
- 2. Model: $f(x; \theta)$
 - Instance/object of a customized nn.module class
 - Implement 2 functions: __init__ and __forward__

- 1. Data: (*X*, *y*)
- 2. Model: $f(x; \theta)$
 - Instance/object of a customized nn.module class
 - Implement 2 functions: __init__ and __forward__
 - Descriptor:

$$H = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$$

One hot encoding: C

$$C = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$$

$$0 = (0 \ 0 \ 1)$$

Continuous data: x = 3.1 (0.1 0.5 0.3 0.01 0 0)

- 1. Data: (*X*, *y*)
- 2. Model: $f(x; \theta)$
 - Instance/object of a customized nn.module class
 - Implement 2 functions: __init__ and __forward__
 - Descriptor
 - Neural network:

$$y_1 = \sigma(W_0 x + b_0)$$

$$y_2 = \sigma(W_1 y_1 + b_1)$$

$$y_3 = \sigma(W_2 y_2 + b_2)$$

$$y_{\text{pred}} = \boldsymbol{w_3} \cdot \boldsymbol{y_3} + b_3$$

 $\sigma(x)$ is the nonlinear activation function: GELU

Use a continuously differentiable activation function

- 1. Data: (*X*, *y*)
- 2. Model: $f(x; \theta)$
- 3. Cost function: $C(y, f(X; \theta))$
 - Mean squared error

- 1. Data: (*X*, *y*)
- 2. Model: $f(x; \theta)$
- 3. Cost function: $C(y, f(X; \theta))$
- 4. Find $\min_{\boldsymbol{\theta}} C(\mathbf{y}, f(\mathbf{X}; \boldsymbol{\theta}))$

Batch 1
$$(x_1, y_1), (x_3, y_3), (x_8, y_8)$$

$$\theta' = \theta - \nabla_{\theta} C(\mathbf{y}, f(\mathbf{X}; \theta))$$

Batch 2
$$(x_2, y_2), (x_5, y_5), (x_6, y_6)$$

$$\boldsymbol{\theta}' = \boldsymbol{\theta} - \nabla_{\boldsymbol{\theta}} C(\mathbf{y}, f(\mathbf{X}; \boldsymbol{\theta}))$$

Batch 2 Batch 3
$$(x_2, y_2), (x_5, y_5), (x_6, y_6)$$
 $(x_4, y_4), (x_7, y_7), (x_9, y_9)$

$$\boldsymbol{\theta}' = \boldsymbol{\theta} - \nabla_{\boldsymbol{\theta}} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \boldsymbol{\theta}))$$

Overfitting

- NNs often have many more parameters than samples in the training data
- Run lj_1_overfit.py several times
 - 311 trainable parameters, 10 data points

- Each model perfectly fits the training points, but doesn't do a great job in the interpolation region
- You measure a model by testing on data it has never seen
- The models do terrible in the extrapolation regime

Validation and test sets

- Separate your data into a training set, a validation set, and a test set
- Validation set used to measure overfitting and tune hyperparameters
- Test set is only used for the final model to get a final estimate of how accurate the model really is

- Run lj_2_overfit_with_validation.py
 - The main change in the code is lines 56-58

Validation and test sets

- Separate your data into a training set, a validation set, and a test set
- Validation set used to measure overfitting and tune hyperparameters
- Test set is only used for the final model to get a final estimate of how accurate the model really is

- Run lj_2_overfit_with_validation.py
 - The main change in the code is lines 56-58

 To get the best performance model stop when there is a steady increase in validation loss and decrease in training loss (early stopping)

• With enough data the validation loss and training loss should converge

- With enough data the validation loss and training loss should converge
- Variance: a models trained with different, but equal number of points yield different results
 - The more parameters, the more variance in the model

- With enough data the validation loss and training loss should converge
- Variance: a models trained with different, but equal number of points yield different results
 - The more parameters, the more variance in the model

- With enough data the validation loss and training loss should converge
- Variance: a models trained with different, but equal number of points yield different results
 - The more parameters, the more variance in the model
- Large high variance models overfit

- With enough data the validation loss and training loss should converge
- Variance: a models trained with different, but equal number of points yield different results
 - The more parameters, the more variance in the model
- Large high variance models overfit

- Enough data lowers variance
- However, we are always working in the low data regime

Bias variance tradeoff

• There is an optimum size of your model for a given amount of data.

Bias variance tradeoff

• There is an optimum size of your model for a given amount of data.

- L2 regularization (also known as weight decay):
 - lowers variance/prevents overfitting
 - Allows you to use larger models while getting lower errors

Use the right amount of regularization

Find $\min_{\boldsymbol{\theta}} C(\mathbf{y}, f(\mathbf{X}; \boldsymbol{\theta}))$: Gradient descent

$$v_t = -\eta \nabla_{\boldsymbol{\theta}} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \boldsymbol{\theta}))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

 η step size v_t update to weights

Find $\min_{\theta} C(\mathbf{y}, f(\mathbf{X}; \boldsymbol{\theta}))$: Gradient descent

$$\boldsymbol{v}_t = -\eta \nabla_{\boldsymbol{\theta}} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \boldsymbol{\theta}))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

- Momentum algorithms
 - Build up speed in shallow directions

$$v_t = \gamma v_{t-1} - \eta \nabla_{\theta} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \theta))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

Momentum

$$\boldsymbol{v}_t = -\eta \nabla_{\boldsymbol{\theta}} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \boldsymbol{\theta}))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

- Momentum algorithms
 - Build up speed in shallow directions
 - Can get out of local minima

$$v_t = \gamma v_{t-1} - \eta \nabla_{\theta} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \theta))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

Use stochasticity to get out of local minima

$$\boldsymbol{v}_t = -\eta \nabla_{\boldsymbol{\theta}} C(\mathbf{y}, \mathbf{f}(\mathbf{X}; \boldsymbol{\theta}))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

Only compute v_t on a subset of X and y

$$\boldsymbol{v}_t = -\eta \nabla_{\boldsymbol{\theta}} C(\mathbf{y}_{\text{batch}}, f(\mathbf{X}_{\text{batch}}; \boldsymbol{\theta}))$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \boldsymbol{v}_t$$

A model to play with

Run lj_3_hyperparameters.py

 Change hyperparameters at the top of the script and see how the training progression changes

- Tensorboard to plot training progression
 - Using the anaconda prompt, in the ml_tutorial folder run: tensorboard --logdir=runs --reload multifile True
 - Go to http://localhost:6006/ in your browser

Best practices when developing an NN

- Try to memorize a few data points first
- Try also using fake simple data
- Check your descriptors and targets to make sure you are feeding the NN what you think you are
- Hyperparameter tuning on even just a few epochs to screen out unpromising parameter values
- Use grid search/random search of hyperparameters

Acknowledgements

Theoretical Chemical Physics Group University of Luxembourg

Prof. Alexandre Tkatechnko

Artem Kokorin

