İstatistik: Z-Testi ile Hipotez Testi

1 Z-Testi Nedir?

Z-Testi, **popülasyon standart sapması** (σ) bilindiğinde ve örneklem büyüklüğü büyük olduğunda (n > 30) kullanılan bir hipotez testidir.

Matematiksel formülü:

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

Burada:

- $\bar{X} \to \ddot{\mathrm{O}}$ rneklem ortalaması
- $\mu \to \text{Popülasyon ortalaması}$
- $\sigma \to \text{Popülasyon standart sapması}$
- $n \to \ddot{\text{O}}$ rneklem büyüklüğü

2 Tek Kuyruklu (One-Tailed) ve Çift Kuyruklu (Two-Tailed) Testler

 $\operatorname{Z-Testi}$ tek kuyruklu (one-tailed) veya çift kuyruklu (two-tailed) olarak uygulanabilir.

Tek Kuyruklu Test (One-Tailed Test):

- Hipotez, belirli bir yönde değişiklik olup olmadığını test eder.
- Örnek: "Yeni makine eskiye göre daha hızlıdır" hipotezi.
- H_0 : Yeni makine eskisi kadar hızlıdır ($\mu \leq 60$ saniye).
- H_1 : Yeni makine eskisinden daha hızlıdır ($\mu < 60$ saniye).
- p-değeri sadece sol kuyruk için hesaplanır.

Çift Kuyruklu Test (Two-Tailed Test):

- Hipotez, herhangi bir yönde anlamlı bir fark olup olmadığını test eder.
- Örnek: "Yeni makine, eskisine göre farklıdır" hipotezi.

- H_0 : Yeni makine eskisiyle aynı hızdadır ($\mu = 60$ saniye).
- H_1 : Yeni makine eskisinden farklıdır ($\mu \neq 60$ saniye).
- p-değeri hem **sol** hem de **sağ** kuyruktaki kritik bölgelerin toplamı olarak hesaplanır.

_

3 Güven Aralığı (Confidence Interval) ile p-Değeri Arasındaki İlişki

Hipotez testlerinde kullanılan anlamlılık düzeyi α , güven aralığıyla doğrudan bağlantılıdır.

İlişkinin Temeli

- α : Hatalı bir şekilde H_0 hipotezini reddetme olasılığıdır.
- Güven düzeyi: 1α olarak tanımlanır.

Güven Düzeyi ve Anlamlılık Düzeyi İlişkisi

- %95 güven düzeyi $\Rightarrow \alpha = 0.05$
- %99 güven düzeyi $\Rightarrow \alpha = 0.01$
- %90 güven düzeyi $\Rightarrow \alpha = 0.10$

Güven Aralığı p-Değeriyle Nasıl İlişkilidir?

- Eğer H_0 hipotezindeki değer, güven aralığı **içindeyse** \to p-değeri $> \alpha \to H_0$ reddedilmez.
- Eğer H_0 hipotezindeki değer, güven aralığı **dışındaysa** \to p-değeri $< \alpha \to H_0$ reddedilir.

Örnek

Bir test sonucunda:

- $\bar{X} = 74$, $\mu_0 = 70$, $\sigma = 8$, n = 50
- %95 güven aralığı: [71.79, 76.21]
- p-değeri: p = 0.0004

Yorum:

- \bullet Güven aralığı 70 değerini içermiyor $\Rightarrow H_0$ reddedilir.
- p-değeri < 0.05 olduğundan $\Rightarrow H_0$ reddedilir.

Sonuç

p-değeri ve güven aralığı farklı yöntemlerle aynı karar noktasına ulaşır. Güven aralığı, ayrıca popülasyon parametresinin ne olabileceği hakkında bilgi de verir.

4 p-Değeri Nedir? Z Tablosu Neden Kullanılır?

 $\mathbf{p\text{-}de\mathbf{\breve{g}eri}},$ sıfır hipotezi doğruysa elimizdeki verinin bu kadar uç olma olasılığıdır.

- p küçükse (örneğin < 0.05): Tesadüfle açıklanması zordur $\Rightarrow H_0$ reddedilir.
- \bullet pbüyükse: Verinin rastlantı olması mümkündür $\Rightarrow H_0$ reddedilmez.

Z Tablosu Ne İşe Yarar?

Z tablosu, standart normal dağılım altında kalan alanları gösterir: $P(Z \le z)$

Z Tablosu Neden Hazır Kullanılır?

Standart normal dağılımın altında kalan alanı hesaplamak (integral) her zaman kolay değildir. Bu yüzden tüm z değerleri için olasılıklar önceden hesaplanıp tablolaştırılır.

5 Z Tablosu Nasıl Oluşturulur?

1. Standart normal dağılım fonksiyonu:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

2. $P(Z \le z)$ alanı sayısal olarak hesaplanır:

$$P(Z \le z) = \int_{-\infty}^{z} f(t)dt$$

3. Sayısal sonuçlar tabloya dökülür.

6 Z Tablosu Alan Hesabı Görseli

7 Örnek 1: Tek Kuyruklu Z-Testi (Makine Performansı)

Bir üretim tesisinde, eski makinelerin işlem süresi ortalama **60 saniye** olarak bilinmektedir. Yeni makinelerin ortalama işlem süresinin **daha kısa** olup olmadığını test etmek istiyoruz.

Veriler:

• Popülasyon ortalaması: $\mu = 60$

 $\bullet\,$ Yeni makinelerin ortalama işlem süresi: $\bar{X}=57$

• Standart sapma: $\sigma = 5$

 \bullet Örneklem büyüklüğü: n=40

Hesaplama:

$$Z = \frac{57 - 60}{5/\sqrt{40}} = \frac{-3}{0.79} = -3.80$$

Tablodan:

$$p = P(Z \le -3.80) = 0.00007$$

Sonuç: p < 0.05 olduğundan H_0 reddedilir. Yeni makineler anlamlı şekilde daha hızlıdır.

4

8 Örnek 2: Çift Kuyruklu Z-Testi (Yeni Eğitim Programı)

Bir üniversite, öğrencilerinin sınav puanlarının önceki yıllardaki ortalamadan **farklı olup olmadığını** test etmek istiyor.

Veriler:

- Popülasyon ortalaması: $\mu = 70$
- $\bullet\,$ Yeni öğrencilerin ortalama puanı: $\bar{X}=74$
- Standart sapma: $\sigma = 8$
- \bullet Örneklem büyüklüğü: n=50

Hesaplama:

$$Z = \frac{74 - 70}{8/\sqrt{50}} = \frac{4}{1.13} = 3.54$$

Tablodan:

$$p = 2 \times P(Z \ge 3.54) = 2 \times 0.0002 = 0.0004$$

Sonuç: p < 0.05 olduğundan H_0 reddedilir. Yeni eğitim programı, önceki yıllara göre anlamlı bir fark yaratmaktadır.

9 Sonuç

- \bullet Z-Testi, büyük örneklemler (n > 30) için kullanılır.
- Popülasyon standart sapması biliniyorsa tercih edilir.
- Tek kuyruklu test, yönlü hipotezleri test eder.
- Çift kuyruklu test, genel farklılıkları test eder.

10 Z-Testinin Görselleştirilmesi

Figure 1: Wikipedia Z Test Visual

Grafikten ne anlıyoruz?

- Eğri: Standart normal dağılımı gösterir.
- Kırmızı alan: Kritik bölge (örneğin, $\alpha = 0.05$ için Z > 1.64).
- $\bullet\,$ Eğer gözlenen Z değeri kırmızı alana düşerse, H_0 reddedilir.