Classroom Exercises

1. Complete the proof of Theorem 2-4: If two lines are perpendicular, then they form congruent adjacent angles.

Given: $l \perp n$

Prove: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are congruent angles.

Proof:

Statements

- 1. $l \perp n$
- 2. $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$ are 90° \angle .
- 3. $\angle 1$, $\angle 2$, $\angle 3$, $\angle 4$ are $\cong /$ s.

Reasons

- 1. ? 01/26
- 2. Definition of _? rect = the line | | |
- 3. Definition of _?
- 2. In the diagram, $\overrightarrow{AB} \perp \overrightarrow{CD}$ and $\overrightarrow{EF} \perp \overrightarrow{GH}$. Name eight right angles.

3. In the diagram, $\overrightarrow{OZ} \perp \overrightarrow{PQ}$, $\overrightarrow{OZ} \perp \overrightarrow{XY}$. and $\overrightarrow{PO} \perp \overrightarrow{XY}$. Name eight right angles.

In the diagram, $\overrightarrow{BE} \perp \overrightarrow{AC}$ and $\overrightarrow{BD} \perp \overrightarrow{BF}$. Find the measures of the following angles.

	$m \angle CBF$	$m \angle EBF$	m ∠ DBE	$m \angle DBA$	$m \angle DBC$
4.	40	. ? 👊	? ₩□	? 50	? (35)
5.	х	?	?	?	?

Name the definition or state the theorem that justifies the statement about the diagram.

- **6.** If $\angle 6$ is a right angle, then $\overrightarrow{RS} \perp \overrightarrow{TV}$.
- 7. If $\overrightarrow{RS} \perp \overrightarrow{TV}$, then $\angle 5$, $\angle 6$, $\angle 7$, and $\angle 8$ are right angles.
- 8. If $\overrightarrow{RS} \perp \overrightarrow{TV}$, then $\angle 8 \cong \angle 7$.
- **9.** If $\overrightarrow{RS} \perp \overrightarrow{TV}$, then $m \perp 6 = 90$.
- 10. If $\angle 5 \cong \angle 6$, then $\overrightarrow{RS} \perp \overrightarrow{TV}$.
- 11. If $m \angle 5 = 90$, then $\overrightarrow{RS} \perp \overrightarrow{TV}$.

