

Boundary value problems for general first-order elliptic operators

Christian Bär and Lashi Bandara

Institute of Mathematics, University of Potsdam, Germany

Setup

- M smooth manifold with smooth compact boundary $\Sigma = \partial M$;
- au interior co-vectorfield along ∂M ;
- ullet μ smooth volume measure on M and u induced smooth volume measure on Σ ;
- $(E, h^E), (F, h^F) \rightarrow M$ Hermitian vector bundles over M;
- D first-order elliptic differential operator from E to F;
- D and D^* complete i.e., $\mathrm{C}^\infty_\mathrm{c}(E;F)$ and $\mathrm{C}^\infty_\mathrm{c}(F;E)$ dense in $\mathrm{dom}(D_\mathrm{max})$ and $\mathrm{dom}(D_\mathrm{max}^*)$ respectively.

Adapted boundary operator

Principal symbol for D and D^* : $\sigma_D(x,\xi)$ and $\sigma_{D^*}(x,\xi)$, define $\sigma_0(x):=\sigma_D(x,\tau(x))$.

A and \tilde{A} are adapted boundary operators (to D or D^* respectively) on $E_{\Sigma}:=E|_{\Sigma}$ and $F_{\Sigma}:=F|_{\Sigma}$ respectively if their principal symbols are given by:

$$\sigma_A(x,\xi) = \sigma_D(x,\tau(x))^{-1} \circ \sigma_D(x,\xi) \quad \text{and} \quad \sigma_{\tilde{A}}(x,\xi) = \sigma_{D^*}(x,\tau(x))^{-1} \circ \sigma_{D^*}(x,\xi).$$

- Exists and are elliptic differential operators of order 1.
- Unique up to an operator of order zero.
- Discrete spectrum, generally non-orthogonal eigenspaces.
- No additional assumptions on A (i.e., self-adjointness) apart from ellipticity of D:

Admissible cut $r \in \mathbb{R}$: the line $l_r := \{\zeta \in \mathbb{C} : \operatorname{Re} \zeta = r\}$ is not in the spectrum of A (yields $A_r := A - r$ invertible bi-sectorial).

An admissible cut always exists.

 $\chi^{\pm}(A_r): \mathrm{L}^2(E_{\Sigma}) \to \mathrm{L}^2(E_{\Sigma})$ spectral projectors to the left and right of l_r -pseudos of order zero.

- Space: $\check{H}(A):=\chi^-(A_r)\mathrm{H}^{\frac{1}{2}}(E_\Sigma)\oplus\chi^+(A_r)\mathrm{H}^{-\frac{1}{2}}(E_\Sigma).$
- Norm: $||u||_{\check{H}(A)}^2 := ||\chi^-(A_r)u||_{\mathrm{H}^{\frac{1}{2}}}^2 + ||\chi^+(A_r)u||_{\mathrm{H}^{-\frac{1}{2}}}^2.$
- Norms corresponding to two different spectral cuts are comparable.

Theorem 1: Maximal domains and $\check{H}(A)$, $\check{H}(\widetilde{A})$ spaces

- $C_c^\infty(E)$ is dense in $dom(D_{max})$ and $dom((D^*)_{max})$ with respect to corresponding graph norms.
- The trace maps $C_c^{\infty}(E) \to C_c^{\infty}(E_{\Sigma})$ and $C_c^{\infty}(F) \to C_c^{\infty}(F_{\Sigma})$ given by $u \mapsto u|_{\Sigma}$ extend uniquely to surjective bounded linear maps $dom(D_{max}) \to \check{H}(A)$ and $dom(D^*)_{max} \to \check{H}(\tilde{A})$.
- The spaces

$$dom(D_{max}) \cap H^{1}_{loc}(E_{\Sigma}) = \left\{ u \in dom(D_{max}) : u|_{\Sigma} \in H^{\frac{1}{2}}(E_{\Sigma}) \right\} dom((D^{*})_{max}) \cap H^{1}_{loc}(F_{\Sigma}) = \left\{ u \in dom((D^{*})_{max}) : u|_{\Sigma} \in H^{\frac{1}{2}}(F_{\Sigma}) \right\}.$$

• For all $u \in \text{dom}(D_{\text{max}})$ and $v \in \text{dom}((D^*)_{\text{max}})$,

$$\langle D_{\max} u, v \rangle_{\mathrm{L}^2(F)} - \langle u, (D^*)_{\max} v \rangle_{\mathrm{L}^2(E)} = - \langle \sigma_0 u |_{\Sigma}, v |_{\Sigma} \rangle_{\mathrm{L}^2(F_{\Sigma})}.$$

Theorem 2: Higher regularity

$$\begin{split} \operatorname{dom}(D_{\max}) \cap \mathrm{H}^{\mathrm{k}+1}_{\mathrm{loc}}(E) \\ &= \left\{ u \in \operatorname{dom}(D_{\max}) : Du \in \mathrm{H}^{\mathrm{k}}_{\mathrm{loc}}(F) \text{ and } \chi^+(A_r)(u|_{\Sigma}) \in \mathrm{H}^{\mathrm{k}+\frac{1}{2}}(E_{\Sigma}) \right\}. \end{split}$$

Proof ingredients of Theorems 1 and 2:

- Identification of $dom(A_r) = dom(A_r^*)$ by elliptic pseudo-differential operator theory.
- H^{∞} functional calculus for the invertible sectorial operator $|A_r| := A_r \operatorname{sgn}(A_r)$.
- Semigroup theory and Kato square root problem methods: ellipticity via equivalent norm for which $|A_r|$ is maximal-accretive.
- Maximal regularity (via H^{∞} functional calculus) for higher regularity.

Boundary conditions and the associated operator

A closed linear subspace $B\subset \check{H}(A)$ is called a boundary condition for D. Associated operator domains:

$$\operatorname{dom}(D_{B,\max}) = \left\{ u \in \operatorname{dom}(D_{\max}) : u|_{\Sigma} \in B \right\}$$
$$\operatorname{dom}(D_B) = \left\{ u \in \operatorname{dom}(D_{\max}) \cap \operatorname{H}^1_{\operatorname{loc}}(E_{\Sigma}) : u|_{\Sigma} \in B \right\},$$

and similarly for the formal adjoint D^* with A replaced by \tilde{A} .

- For boundary condition B, the operator D_B closed and between D_{cc} (on $C_{cc}^{\infty}(E)$) and D_{max} .
- D_c closed extension of D_{cc} , then $B:=\left\{u|_{\Sigma}:u\in\mathrm{dom}(D_c)\right\}$ is a boundary condition and $D_c=D_{B,\mathrm{max}}$.
- Boundary condition $B \subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ if and only if $D_B = D_{B,\max}$.
- ullet Adjoint boundary condition $B^{
 m ad}$ so that $D_B^{
 m ad}=D_{B^{
 m ad}}^*$:

$$B^{\mathrm{ad}} := \left\{ v \in \check{H}(-\tilde{A}) : \langle \sigma_0 u, v \rangle_{\mathrm{L}^2(F_{\Sigma})} = 0 \quad \forall u \in B \right\}$$

Elliptic boundary conditions

 $B\subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ boundary condition is called *elliptic* if there exists an admissible cut $r\in\mathbb{R}$ and:

• W_{\pm} , V_{\pm} are mutually complementary subspaces such that

$$V_{\pm} \oplus W_{\pm} = \chi^{\pm}(A_r) L^2(E_{\Sigma}),$$

- ullet W_\pm are finite dimensional with $W_\pm,W_\pm^*\subset \mathrm{H}^{\frac12}(E_\Sigma)$, and
- $g:V_-\to V_+$ bounded linear map with $g(V_-^{\frac12})\subset V_+^{\frac12}$ and $g^*((V_+^*)^{\frac12})\subset (V_-^*)^{\frac12}$ such that

$$B = W_+ \oplus \left\{ v + gv : v \in V_-^{\frac{1}{2}} \right\}.$$

 $B\subset \mathrm{H}^{\frac{1}{2}}(E_{\Sigma})$ be a subspace, then the following are equivalent:

- ullet B a boundary condition and $B^{
 m ad}\subset {
 m H}^{rac{1}{2}}(F_\Sigma)$,
- ullet the definition is satisfied for any admissible spectral cut $r\in\mathbb{R}$,
- ullet B an elliptic boundary condition.

For elliptic boundary condition B, have B^{ad} elliptic boundary condition for D^* and

$$\sigma_0^*(B^{\mathrm{ad}}) = W_-^* \oplus \left\{ u - g^*u : u \in (V_+^*)^{\frac{1}{2}} \right\}.$$

Pseudo-local and local boundary conditions

ullet For classical pseudo-differential projector P of order zero (not necessarily orthogonal), the space

$$B=P(\mathrm{H}^{rac{1}{2}}(E_{\Sigma}))$$

is called a *pseudo-local boundary condition*.

• Boundary condition $B\subset H^{\frac12}(E_\Sigma)$ a local boundary condition if there exists a sub-bundle $E'\subset E_\Sigma$ such that

$$B=\mathrm{H}^{rac{1}{2}}(E').$$

Theorem 3: Characterisation of pseudo-local boundary conditions

Given a pseudo-local boundary condition $B=P(\mathrm{H}^{\frac{1}{2}}(E_{\Sigma}))$, the following are equivalent:

- ullet B an elliptic boundary condition,
- for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_{\Sigma}) \to L^2(E_{\Sigma})$$

is Fredholm,

• for admissible cut $r \in \mathbb{R}$, the operator

$$P - \chi^+(A_r) : L^2(E_{\Sigma}) \to L^2(E_{\Sigma})$$

is elliptic classical pseudo of order zero.

If B is a pseudo-local elliptic boundary condition and $D_B u$ is smooth, then u is smooth up to the boundary.