BIST P8157:

Analysis of Longitudinal Data

Fall 2023

Columbia Mailman School of Public Health

Basic information:

Instructor: Zhonghua Liu

zl2509@cumc.columbia.edu

Lectures: Tue & Wed 8:30 - 9:50 a.m.

Mailman 8th Floor Auditorium

Office hours: By appointment

TA: Ruiyang Li and Anja Shahu

rl3034@cumc.columbia.edu;

as6798@cumc.columbia.edu

Office hours: TBD

TBD

Course webpage: https://courseworks2.columbia.edu/courses/184521

- course handouts/slides
- lab materials
- homework assignments
- datasets
- code

Computing: Majority (if not all) will be in R

Important dates:

- November 7th (Tuesday): Election day
- November 22th (Wednesday): Fall break
- December 13th (Wednesday): Last day of class

Recommended texts:

- Diggle P, Heagerty P, Liang KY, Zeger S. Analysis of Longitudinal Data.
 2nd Edition. Oxford University press, 2013.
- Garrett M Fitzmaurice, Nan M Laird, and James H Ware. *Applied longitudinal analysis*. Wiley; 2nd edition
- Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning.
 2nd Edition. Springer, 2009.

BIST P8157: Overview

Analysis of longitudinal data, with an emphasis on regression modeling.

- I. Introductory topics in longitudinal data analysis
- II. General linear models for dependent data
- III. Linear mixed-effects models
- IV. Marginal models
- V. Generalized linear mixed-effects models
- VI. Missing data
- VII. Time-dependent covariates

Comments

- This course considers settings where responses are multivariate and/or exhibit (residual) dependence
- Questions:
 - * what do we mean by a 'multivariate' response?
 - ★ what does it mean for responses to be 'dependent'?
- At the outset, we'll find that naïve application of methods from generalized linear regressions results in incorrect inference
 - * standard errors will be typically be too small
 - ★ intuitively, when we naïvely assume the responses to be independent we think we have more 'information' than we really do have

- Eventually we'll find that in trying to fix problems of inference, we add complexity
 - ★ choice of model
 - ★ choice of strategy for estimation/inference
- Throughout, a number of themes will be emphasized
 - ★ the importance of model interpretation
 - ★ the importance of understanding operating characteristics
 - ★ the use of simulation as a means to evaluating operating characteristics
- Estimation and inference will be approached primarily within the frequentist paradigm
- There'll be plenty of technical detail but an important goal should be to develop an intuition
 - ★ at some point in your career you'll faced with explaining these ideas to non-statisticians!

• Grades in the class will be based on the following:

Homework 40%

Mid-term exam 30%

Final project 30%

- There'll be 4 homework assignments during the semester
 - ★ usually take 1 or 2 weeks
- The midterm will be in the form of a one-week take-home exam
- The final will consist of a 3-4 week project
 - ★ topic that is not covered in class
 - ★ 10-page written report that will, in part, serve as resources to everyone in the class

- Topics might include:
 - ★ Bayesian estimation/inference, including variational Bayes
 - * correlated survival outcomes
 - ★ joint modeling of longitudinal and survival data
 - ★ genome-wide association studies
 - ★ mediation in the longitudinal context
 - * networks
 - ★ outcome-dependent sampling
 - ⋆ principal components analysis
 - ★ spatial modeling and prediction
 - ★ informative cluster sizes
 - ★ asymptotics for GEE
 - ★ small-sample bias corrections
 - * cluster-randomized trials
 - ★ resampling procedures (e.g. the bootstrap)
 - ★ clustering methods

- For the projects in this class, there are a number of options:
 - ★ choose one from a list that I will compile and make available closer to the time the projects will start
 - ★ a topic of your choice
 - ★ a detailed analysis of an interesting dataset