Suponga que n es un número impar y L[1 ... n] es una lista de números enteros sin elementos repetidos.

Recuerde que usamos la notación L[1 ... n] para indicar que L es una lista con n elementos

Suponga que n es un número impar y L[1 ... n] es una lista de números enteros sin elementos repetidos.

Recuerde que usamos la notación L[1 ... n] para indicar que L es una lista con n elementos

L[i] es la mediana de L si:

$$|\{j \in \{1, \dots, n\} \mid L[j] < L[i]\}| = \lfloor \frac{n}{2} \rfloor$$

$$|\{k \in \{1, \dots, n\} \mid L[k] > L[i]\}| = \lfloor \frac{n}{2} \rfloor$$

Ejercicio

Construya un algoritmo que calcule la mediana de una lista L[1...n] y que en el peor caso sea $O(n \cdot \log_2(n))$

 Considere como la operación básica a contar la comparación de números enteros

Ejercicio

Construya un algoritmo que calcule la mediana de una lista L[1...n] y que en el peor caso sea $O(n \cdot \log_2(n))$

 Considere como la operación básica a contar la comparación de números enteros

Vamos a construir un algoritmo aleatorizado de tipo Las Vegas para este problema.

¡Este algoritmo funciona en tiempo lineal!

Un algoritmo aleatorizado para el cálculo de la mediana

Suponga que el procedimiento Mergesort(L) ordena una lista L utilizando el algoritmo Mergesort

Recuerde que las listas son pasados por referencia en este curso

Un algoritmo aleatorizado para el cálculo de la mediana

Suponga que el procedimiento Mergesort(L) ordena una lista L utilizando el algoritmo Mergesort

Recuerde que las listas son pasados por referencia en este curso

El siguiente procedimiento calcula la mediana de una lista de enteros L[1 ... n] (suponiendo que n es impar y L no tiene elementos repetidos):

```
 \begin{aligned}  & \textbf{CalcularMediana}(L[1\dots n]) \\ & \textbf{if } n < 2001 \textbf{ then} \\ & \textbf{Mergesort}(L) \\ & \textbf{return } L[\lceil \frac{n}{2} \rceil] \\ & \textbf{else} \\ & \text{sea } R \textbf{ una lista de } \lceil n^{\frac{3}{4}} \rceil \textbf{ números enteros escogido con} \\ & \textbf{ distribución uniforme y de manera independiente desde } L \\ & \textbf{ Mergesort}(R) \end{aligned}
```

Un algoritmo aleatorizado para el cálculo de la mediana

```
d := R[|\frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}}|]
u := R\left[\left\lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}}\right\rceil\right]
S := \emptyset
m_d := 0
m_{\nu} := 0
for i := 1 to n do
       if d \leq L[i] and L[i] \leq u then Append(S, [L[i]])
       else if L[i] < d then m_d := m_d + 1
       else m_u := m_u + 1
if m_d \geq \lceil \frac{n}{2} \rceil or m_u \geq \lceil \frac{n}{2} \rceil or
                  Length(S) > 4 \cdot |n^{\frac{3}{4}}| then return sin\_resultado
else
       Mergesort(S)
       return S[\lceil \frac{n}{2} \rceil - m_d]
```

El algoritmo es correcto y eficiente

Ejercicios

Demuestre lo siguiente:

- 1. Si Calcular Mediana (L) retorna un número entero m, entonces m es la mediana de L
- 2. Si se tiene un procedimiento **LanzarMoneda**() que retorna 0 ó 1 con probabilidad $\frac{1}{2}$, entonces existe un algoritmo para construir R que invoca a este procedimiento a los más $c \cdot n^{\frac{3}{4}} \cdot \log_2(n)$ veces, donde c es una constante fija y n es el largo de la lista de entrada
 - Podemos suponer que LanzarMoneda() en el peor caso es O(1)
- 3. CalcularMediana(L) en el peor caso es O(n), suponiendo que n es el largo de L y considerando todas las operaciones realizadas

¿Cuál es la probabilidad de no retornar un resultado?

La llamada Calcular Mediana(L) puede no retornar un resultado

► El procedimiento en este caso retorna *sin_resultado*

Para que **CalcularMediana** pueda ser utilizado en la práctica la probabilidad que no entregue un resultado debe ser baja

¿Cuál es la probabilidad de no retornar un resultado?

La llamada Calcular Mediana(L) puede no retornar un resultado

► El procedimiento en este caso retorna *sin_resultado*

Para que **CalcularMediana** pueda ser utilizado en la práctica la probabilidad que no entregue un resultado debe ser baja

Vamos a demostrar esto

Sea L[1...n] una lista de números enteros tal que $n \ge 2001$, n es impar y la mediana de L es m

Sea L[1...n] una lista de números enteros tal que $n \ge 2001$, n es impar y la mediana de L es m

Defina las siguientes variables aleatorias:

$$Y_1 = |\{i \in \{1, \dots, \lceil n^{\frac{3}{4}} \rceil\} \mid R[i] \le m\}|$$

 $Y_2 = |\{i \in \{1, \dots, \lceil n^{\frac{3}{4}} \rceil\} \mid R[i] \ge m\}|$

Sea L[1...n] una lista de números enteros tal que $n \ge 2001$, n es impar y la mediana de L es m

Defina las siguientes variables aleatorias:

$$Y_1 = |\{i \in \{1, \dots, \lceil n^{\frac{3}{4}} \rceil\} \mid R[i] \le m\}|$$

 $Y_2 = |\{i \in \{1, \dots, \lceil n^{\frac{3}{4}} \rceil\} \mid R[i] \ge m\}|$

Estas son variables aleatorias dado que R es construido escogiendo elementos de L con distribución uniforme (y de manera independiente)

Lema

CalcularMediana(*L*) retorna sin_resultado si y sólo si alguna de las siguientes condiciones se cumple:

1.
$$Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor$$

2.
$$Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil$$

3. Length(
$$S$$
) > $4 \cdot \lfloor n^{\frac{3}{4}} \rfloor$

Lema

CalcularMediana(*L*) retorna sin_resultado si y sólo si alguna de las siguientes condiciones se cumple:

1.
$$Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor$$

2.
$$Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil$$

3. Length(
$$S$$
) > $4 \cdot \lfloor n^{\frac{3}{4}} \rfloor$

Ejercicio

Demuestre el Iema.

Tenemos entonces que la probabilidad de que **CalcularMediana**(L) retorne $sin_resultado$ es igual a:

$$\Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor \lor$$

$$Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil \lor \text{Length}(S) > 4 \cdot \lfloor n^{\frac{3}{4}} \rfloor)$$

Tenemos entonces que la probabilidad de que **CalcularMediana**(L) retorne $sin_resultado$ es igual a:

$$\Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor \lor$$

$$Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil \lor \text{Length}(S) > 4 \cdot \lfloor n^{\frac{3}{4}} \rfloor)$$

Necesitamos entonces acotar superiormente $\Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor)$, $\Pr(Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil)$ y $\Pr(\text{Length}(S) > 4 \cdot \lfloor n^{\frac{3}{4}} \rfloor)$

Tenemos entonces que la probabilidad de que **CalcularMediana**(L) retorne $sin_resultado$ es igual a:

$$\Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor \lor$$

$$Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil \lor \text{Length}(S) > 4 \cdot \lfloor n^{\frac{3}{4}} \rfloor)$$

Necesitamos entonces acotar superiormente $\Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor)$, $\Pr(Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil)$ y $\Pr(\text{Length}(S) > 4 \cdot \lfloor n^{\frac{3}{4}} \rfloor)$

► Vamos a ver dos desigualdades muy útiles para acotar probabilidades

La desigualdad de Markov

Teorema

Sea X una variable aleatoria no negativa. Para cada $a \in \mathbb{R}^+$ se tiene que:

$$Pr(X \ge a) \le \frac{E(X)}{a}$$

Una demostración de la desigualdad de Markov

Suponemos que el recorrido de X es un conjunto finito $\Omega \subseteq \mathbb{R}_0^+$:

$$E(X) = \sum_{r \in \Omega} r \cdot \Pr(X = r)$$

$$= \left(\sum_{r \in \Omega : r < a} r \cdot \Pr(X = r)\right) + \left(\sum_{s \in \Omega : s \ge a} s \cdot \Pr(X = s)\right)$$

$$\geq \sum_{s \in \Omega : s \ge a} s \cdot \Pr(X = s)$$

$$\geq \sum_{s \in \Omega : s \ge a} a \cdot \Pr(X = s)$$

$$= a \cdot \left(\sum_{s \in \Omega : s \ge a} \Pr(X = s)\right)$$

$$= a \cdot \Pr(X \ge a)$$

Una demostración de la desigualdad de Markov

Suponemos que el recorrido de X es un conjunto finito $\Omega \subseteq \mathbb{R}_0^+$:

$$E(X) = \sum_{r \in \Omega} r \cdot \Pr(X = r)$$

$$= \left(\sum_{r \in \Omega : r < a} r \cdot \Pr(X = r)\right) + \left(\sum_{s \in \Omega : s \ge a} s \cdot \Pr(X = s)\right)$$

$$\geq \sum_{s \in \Omega : s \ge a} s \cdot \Pr(X = s)$$

$$\geq \sum_{s \in \Omega : s \ge a} a \cdot \Pr(X = s)$$

$$= a \cdot \left(\sum_{s \in \Omega : s \ge a} \Pr(X = s)\right)$$

$$= a \cdot \Pr(X \ge a)$$

Concluimos que $\Pr(X \ge a) \le \frac{E(X)}{a}$

La desigualdad de Chebyshev

Teorema

$$Pr(|X - E(X)| \ge a) \le \frac{Var(X)}{a^2}$$

La desigualdad de Chebyshev

Teorema

$$Pr(|X - E(X)| \ge a) \le \frac{Var(X)}{a^2}$$

Demostración. Utilizando la desigualdad de Markov obtenemos:

$$\Pr(|X - \mathsf{E}(X)| \ge a) = \Pr((X - \mathsf{E}(X))^2 \ge a^2)$$

$$\le \frac{\mathsf{E}((X - \mathsf{E}(X))^2)}{a^2}$$

$$= \frac{\mathsf{Var}(X)}{a^2}$$

Lema

$$Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor) \leq n^{-\frac{1}{4}}$$

Lema

$$Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor) \leq n^{-\frac{1}{4}}$$

Demostración: para cada $i \in \{1, ..., \lceil n^{\frac{3}{4}} \rceil \}$, definimos una variable aleatoria X_i de la siguiente forma:

$$X_i = \begin{cases} 1 & R[i] \le m \\ 0 & R[i] > m \end{cases}$$

Lema

$$Pr(Y_1 < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor) \leq n^{-\frac{1}{4}}$$

Demostración: para cada $i \in \{1, ..., \lceil n^{\frac{3}{4}} \rceil\}$, definimos una variable aleatoria X_i de la siguiente forma:

$$X_i = \begin{cases} 1 & R[i] \le m \\ 0 & R[i] > m \end{cases}$$

Tenemos que:

$$Y_1 = \sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} X_i$$

Dado que la lista L no contiene elementos repetidos tenemos que:

$$\Pr(X_i = 1) = \frac{\lceil \frac{n}{2} \rceil}{n} = \frac{\frac{n-1}{2} + 1}{n} = \frac{1}{2} + \frac{1}{2 \cdot n}$$

Dado que la lista L no contiene elementos repetidos tenemos que:

$$\Pr(X_i = 1) = \frac{\lceil \frac{n}{2} \rceil}{n} = \frac{\frac{n-1}{2} + 1}{n} = \frac{1}{2} + \frac{1}{2 \cdot n}$$

De esto se deduce que:

$$E(X_i) = \frac{1}{2} + \frac{1}{2 \cdot n}$$

$$Var(X_i) = \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right) \cdot \left(1 - \frac{1}{2} - \frac{1}{2 \cdot n}\right)$$

$$= \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right) \cdot \left(\frac{1}{2} - \frac{1}{2 \cdot n}\right)$$

$$= \frac{1}{4} - \frac{1}{4 \cdot n^2}$$

Por lo tanto tenemos que:

$$E(Y_1) = E(\sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} X_i)$$

$$= \sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} E(X_i)$$

$$= \sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right)$$

$$= \lceil n^{\frac{3}{4}} \rceil \cdot \left(\frac{1}{2} + \frac{1}{2 \cdot n}\right)$$

Para $i, j \in \{1, \dots, \lceil n^{\frac{3}{4}} \rceil\}$ tal que $i \neq j$ se tiene que X_i es independiente de X_j

Para $i, j \in \{1, \dots, \lceil n^{\frac{3}{4}} \rceil\}$ tal que $i \neq j$ se tiene que X_i es independiente de X_j

Concluimos entonces que:

$$Var(Y_1) = Var(\sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} X_i)$$

$$= \sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} Var(X_i)$$

$$= \sum_{i=1}^{\lceil n^{\frac{3}{4}} \rceil} \left(\frac{1}{4} - \frac{1}{4 \cdot n^2}\right)$$

$$= \lceil n^{\frac{3}{4}} \rceil \cdot \left(\frac{1}{4} - \frac{1}{4 \cdot n^2}\right)$$

$$\leq \frac{1}{4} \cdot \lceil n^{\frac{3}{4}} \rceil$$

Tenemos que:

$$\begin{array}{lll} \Pr(Y_{1} < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor) & \leq & \Pr(Y_{1} < \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}}) \\ & \leq & \Pr(Y_{1} < \frac{1}{2} \cdot \lceil n^{\frac{3}{4}} \rceil - n^{\frac{1}{2}}) \\ & \leq & \Pr(Y_{1} < \lceil n^{\frac{3}{4}} \rceil \cdot (\frac{1}{2} + \frac{1}{2 \cdot n}) - n^{\frac{1}{2}}) \\ & = & \Pr(Y_{1} < \mathsf{E}(Y_{1}) - n^{\frac{1}{2}}) \\ & = & \Pr(n^{\frac{1}{2}} < \mathsf{E}(Y_{1}) - Y_{1}) \\ & \leq & \Pr(|Y_{1} - \mathsf{E}(Y_{1})| > n^{\frac{1}{2}}) \\ & < & \Pr(|Y_{1} - \mathsf{E}(Y_{1})| > n^{\frac{1}{2}}) \end{array}$$

Por lo tanto, utilizando la desigualdad de Chebyshev concluimos que:

$$\Pr(Y_{1} < \lfloor \frac{1}{2} \cdot n^{\frac{3}{4}} - n^{\frac{1}{2}} \rfloor) \leq \Pr(|Y_{1} - E(Y_{1})| \geq n^{\frac{1}{2}})$$

$$\leq \frac{\text{Var}(Y_{1})}{n}$$

$$\leq \frac{1}{4} \cdot \frac{\lceil n^{\frac{3}{4}} \rceil}{n}$$

$$\leq \frac{1}{4} \cdot \frac{n^{\frac{3}{4}} + 1}{n}$$

$$\leq \frac{1}{4} \cdot \frac{2 \cdot n^{\frac{3}{4}}}{n}$$

$$= \frac{1}{2} \cdot n^{-\frac{1}{4}}$$

$$< n^{-\frac{1}{4}}$$

Utilizando nuevamente la desigualdad de Chebyshev

Lema

$$Pr(Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil) \leq n^{-\frac{1}{4}}$$

Utilizando nuevamente la desigualdad de Chebyshev

Lema

$$Pr(Y_2 \leq \lceil n^{\frac{3}{4}} \rceil - \lceil \frac{1}{2} \cdot n^{\frac{3}{4}} + n^{\frac{1}{2}} \rceil) \leq n^{-\frac{1}{4}}$$

Ejercicio

Demuestre el lema utilizando las ideas en la demostración del lema anterior.