Report Title:	Study of signal frequency, spectrum, bandwidth, bit rate, quantization using MATLAB		
Lab Report No:	02	Date of Submission:	08-06-2022
Submitted by:	Samira Kabir Rima	ID:	20-42406-1
Semester:	Summer 21-22	Program:	BSc. CSE
Course Code:	COE3103	Course Title:	Data Communication
Course Instructor:	Afsah Sharmin	Section:	В

Problem:

Performance Task for Lab Report: (your ID = AB-CDEFG-H)

**Generate a composite signal using two simple signals as,

$$x_1(t) = A_1 \cos(2\pi (C^*100)t)$$
 $x_2(t) = A_2 \cos(2\pi (F^*100)t)$

$$x_3(t) = x_1(t) + x_2(t)$$

- (a) Select the value of the amplitudes as follows: let $A_1 = GD$ and $A_2 = AF$.
- (b) Make a plot of x_3 over a range of t that will exhibit approximately 2 cycles. Make sure the plot starts at a negative time so that it will include t = 0, and make sure that you have at least 20 samples per period of the wave.
- (c) Plot x3 in frequency domain and calculate its bandwidth.
- (d) Quantize x_3 in 6 equally distributed levels and provide image for one cycle of the original signal and quantized signal.

Solution:

	MATLAB Code		Output
a		1 %AB-CDEFG-H 2 %20-42406-1 3 %A1=GD;A2=AF 4 A1=62 5 A2=20 6 C=4 7 F=0	A1 = 62 A2 = 20 C = 4 F = 0
b	8 9 10 11 12 13 14 15	<pre>fs=30e3; dur=0.003; t=-dur:1/fs:dur; x1=A1*cos(2*pi*C*100*t); x2=A2*cos(2*pi*F*100*t); x3=x1+x2; xlabel('Time(s)'); ylabel('Amplitude'); plot(t,x3);</pre>	100 50 0 -50 -3 -2 -1 0 1 2 3 ×10 ³
c	17 18 19 20 21 22 23 24 25 26	<pre>fs=1000; t=0:1/fs:1; x1=A1*cos(2*pi*C*100*t); x2=A2*cos(2*pi*F*100*t); x3=x1+x2; x=fft(x3); fx3=fftshift(x)/(fs/2); f=0:1/fs:1; plot(f,abs(fx3)); bandwith=obw(x,fs);</pre>	bandwith = 867.1120 50 40 30 20 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
d	%Pakage load Communication fs=30e3; t=0:1/fs:0.01; x1=A1*cos(2*pi*C*100*t); x2=A2*cos(2*pi*F*100*t); x3=x1+x2; f=6; partition=[-65.5,-35,0,35,65.5]; codebook=[-85,-50,-20,20,50,85]; [index,quants]=quantiz(x3,partition,codebook); plot(t,x3,'*',t,quants,'.'); legend('Original Signal','Quantized Signal')		50 O 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01