中国科学院大学

2016 年招收攻读硕士学位研究生入学统一考试试题科目名称:高等代数

考生须知:

- 1. 本试卷满分为 150 分,全部考试时间总计 180 分钟;
- 2. 所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
- 一、 (20 分) 设 $a_i + b_i \neq 0$, 求以下矩阵的行列式值:

$$A = \begin{pmatrix} (a_1 + b_1)^{-1} & (a_1 + b_2)^{-1} & \cdots & (a_1 + b_n)^{-1} \\ (a_2 + b_1)^{-1} & (a_2 + b_2)^{-1} & \cdots & (a_2 + b_n)^{-1} \\ & \cdots & & \cdots & & \cdots \\ (a_n + b_1)^{-1} & (a_n + b_1)^{-1} & \cdots & (a_n + b_n)^{-1} \end{pmatrix}.$$

- 二、 (20 分) 已知二次型 $f(x_1, x_2, x_3) = 5x_1^2 + 5x_2^2 + \beta x_3^2 2x_1x_2 + 6x_1x_3 6x_2x_3$ 的秩为 2.
 - (1) 求 β 的值;
 - (2) 求一实正交变换, 将上述二次型化为标准型, 并求出标准型.
- 三、(12 分) 矩阵 A 的 n-1 阶子式不全为零, 给出齐次方程组 Ax=0 的一组解, 并求方程 所有的解, 其中

$$A = \begin{pmatrix} a_{11} & a_{11} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n} \end{pmatrix}.$$

四、 $(12 \, f)$ V 是 n 维线性空间, V_1 , V_2 是 V 的子空间, 且

$$\dim (V_1 + V_2) = \dim (V_1 \cap V_2) + 1.$$

求证: $V_1 + V_2 = V_1$, $V_1 \cap V_2 = V_2$ 或 $V_1 + V_2 = V_2$, $V_1 \cap V_2 = V_1$.

- 五、 (15 分) 设 A 是两个 n 阶复矩阵, 定义 $M_n(\mathbb{C})$ 上的线性变换 $\mathcal{T}(x) := AX XA$. A 的 特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$ (不考虑重根). 证明 \mathcal{T} 的特征值必可写成 $\lambda_i \lambda_j$ ($1 \le i, j \le n$) 的 形式.
- 六、 $(16\ 分)$ 证明与 n 阶若当块 $J=\begin{pmatrix}\lambda&1&&&\\&\lambda&\ddots&&\\&&\ddots&1&\\&&&\lambda\end{pmatrix}$ 可交换的矩阵必为 J 的多项式.
- 七、 $(12 \, f)$ n 阶方阵 A 的每行每列恰有一个元素为 1 或 -1, 其余元素均为零. 证明存在正整数 m 使得 $A^k = E$, 其中 E 为单位矩阵.
- 八、 (15 分) 设 A, B 是两个 n 阶复矩阵, 如果 AB BA = 2B. 证明:
 - (1) 存在 n 维列向量 u 和常数 u, 使得 $Au = \mu u$ 和 Bu = 0;
 - (2) A, B 同时可上三角化.

九、 $(15\ eta)$ 设多项式 $g(x)=p^k(x)g(x)(k\geq 1)$, 多项式 p(x) 与 g(x) 互素. 证明: 对任意多项式 f(x) 有

$$\frac{f\left(x\right)}{g\left(x\right)} = \frac{r\left(x\right)}{p^{k}\left(x\right)} + \frac{f_{1}\left(x\right)}{p^{k-1}\left(x\right)g_{1}\left(x\right)},$$

其中 r(x), $f_1(x)$ 都是多项式, r(x) = 0 或 r(x) 的次数小于 p(x).