Wektory w R^n , Działania, Iloczyn skalarny

- 1. Naszkicuj następujące wektory:
 - (a) $\mathbf{u} + \mathbf{v}$
 - (b) 3**u**
 - (c) $\mathbf{u} \mathbf{v}$
 - (d) $\mathbf{u} + 2\mathbf{v}$
 - (e) 2u + 4v
 - (f) $-\mathbf{u} + 2\mathbf{v}$
 - (g) $3({\bf u} {\bf v})$
 - (h) $3\mathbf{u} \mathbf{v}$
- 2. Dane są punkty \mathbf{A} , \mathbf{B} , \mathbf{C} . Znajdź składowe oraz długości wektorów: $\overrightarrow{\mathbf{AB}}$, $\overrightarrow{\mathbf{AC}}$, $\overrightarrow{\mathbf{CB}}$. Sporządź rysunek:
 - (a) $\mathbf{A} = (-1, 2), \mathbf{B} = (1, 0), \mathbf{C} = (2, 2)$
 - (b) $\mathbf{A} = (1, -4), \mathbf{B} = (5, 3), \mathbf{C} = (2, 5)$
 - (c) $\mathbf{A} = (-4, 6), \mathbf{B} = (-3, -1), \mathbf{C} = (6, -4)$
 - (d) $\mathbf{A} = (7, -3), \mathbf{B} = (-2, 4), \mathbf{C} = (-4, 6)$
 - (e) $\mathbf{A} = (2,3), \mathbf{B} = (-6,0), \mathbf{C} = (3,2)$
 - (f) $\mathbf{A} = (-1, 3), \mathbf{B} = (1, 4), \mathbf{C} = (-2, 2)$
 - (g) $\mathbf{A} = (3, 2), \mathbf{B} = (1, 3), \mathbf{C} = (1, 2)$
 - (h) $\mathbf{A} = (-2, 2), \mathbf{B} = (3, 0), \mathbf{C} = (0, 2)$
- 3. Dane są wektory \mathbf{u} i \mathbf{v} . Znajdź wektory $\mathbf{u} + \mathbf{v}$, $\mathbf{u} \mathbf{v}$, $2\mathbf{u}$, $-\frac{1}{3}\mathbf{v}$, $3\mathbf{u} 2\mathbf{v}$, $\frac{1}{2}\mathbf{u} \frac{2}{3}\mathbf{v}$, $\frac{1}{3}\mathbf{u} \frac{2}{3}\mathbf{v}$ oraz oblicz ich długość:
 - (a) $\mathbf{u}^T = [2, -3], \mathbf{v}^T = [1, 4]$
 - (b) $\mathbf{u} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
 - (c) $\mathbf{u}^T = [-1, 2, 1], \mathbf{v}^T = [1, 0, 2]$
 - (d) $\mathbf{u} = \begin{bmatrix} 7 \\ -2 \\ -2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 5 \\ -4 \end{bmatrix}$
 - (e) $\mathbf{u} = 2 \begin{bmatrix} 6 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$
 - (f) $\mathbf{u} = -3\mathbf{i} + \mathbf{j}, \ \mathbf{v} = 3\mathbf{i} 5\mathbf{j}$

(g)
$$\mathbf{u} = 8\mathbf{j}, \ \mathbf{v} = (-3)(-2\mathbf{i} + \mathbf{j})$$

(h)
$$\mathbf{u}^T = -2[0, 7, 2], \mathbf{v}^T = 5[1, 2, 2]$$

(i)
$$\mathbf{u} = 3 \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
, $\mathbf{v} = -2 \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$

(j)
$$\mathbf{u} = -(4\mathbf{i} - \mathbf{j}), \mathbf{v} = 2(\mathbf{i} - 3\mathbf{j})$$

(k)
$$\mathbf{u} = 2\mathbf{i} - 3\mathbf{j}, \mathbf{v} = -6\mathbf{i} + 4\mathbf{k}$$

- 4. Oblicz iloczyn skalarny $\mathbf{u} \circ \mathbf{v}$ dla par wektorów z zadania 3.
- 5. Oblicz cosinus kąta między wektorami \mathbf{u} i \mathbf{v} (dla par wektorów z zadania 3).
- 6. Mając punkty \mathbf{P} , \mathbf{Q} i $\mathbf{R}=(x,y,z)$, dobierz wartości x,y i z tak, aby wektor $\vec{\mathbf{PR}}$ był ortogonalny do wektora $\vec{\mathbf{PQ}}$:

(a)
$$\mathbf{P} = (8, -3, 5), \mathbf{Q} = (6, 1, 7)$$

(b)
$$\mathbf{P} = (2, 1, 5), \mathbf{Q} = (8, 4, 6)$$

(c)
$$\mathbf{P} = (1, 0, 0), \mathbf{Q} = (0, 1, 0)$$

(d)
$$\mathbf{P} = (3, -5, 5), \mathbf{Q} = (2, 1, 6)$$

(e)
$$\mathbf{P} = (4, 0, -1), \mathbf{Q} = (2, 4, 2)$$

(f)
$$\mathbf{P} = (0, 1, 4), \mathbf{Q} = (5, 2, 1)$$

(g)
$$\mathbf{P} = (1, 2, 3), \mathbf{Q} = (2, 2, 2)$$