PHY408

Lecture 3: Linear Systems and Convolution

January 25, 2023

Leaky Bucket Problem

Output y(t) is related to input p(t) by:

$$y(t) = \int_{-\infty}^{t} e^{-k(t-t')} p(t') dt' = \int_{0}^{\infty} e^{-k\tau} p(t-\tau) d\tau$$
 (1)

• at any given time t, current water level y(t) depends on the past precipitation $p(t-\tau)$, $\tau>0$, but with decreasing weight $e^{-k\tau}$ as τ increases.

Convolution

Convolution of w(t) and f(t) is defined as

$$g(t) = \int_{-\infty}^{\infty} w(\tau) f(t - \tau) d\tau = f(t) * w(t)$$
 (2)

- Commutative: g(t) = f(t) * w(t) = w(t) * f(t)
- ② w(t) also called system function: given any input signal f(t), the output g(t) is uniquely determined by f(t) * w(t)
- **3** causal: w(t) = 0, t < 0. g(t) only depends on past values of f(t)

Discretization

Sample continuous time series f(t) and w(t) both at equal time interval Δt (sometimes also denoted by Δ):

$$f_k = f(t_k) = f(k\Delta), \quad w_k = w(t_k) = w(k\Delta)$$
 (3)

Then the discrete convolution is given by:

$$g_n = \left[\sum_{k=-\infty}^{\infty} f_{n-k} w_k\right] \Delta \tag{4}$$

- Python g=numpy.convolve(f,w) only gives $\sum f_{n-k}w_k$; remember to multiply Δ !
- ② In practical implementation, f(t) and w(t) are of finite duration.

 $y_0 = 1$

 $y_0 = 1$

$$n = 0$$

 $y_0 = 1$

$$n=1$$

 $y_1 = 3$

$$n = 0$$

 $y_0 = 1$

$$n = 1$$

$$\begin{array}{c} h_{(1-k)} \\ \vdots \\ \vdots \\ h_{(1-k)} \\ \vdots \\ \vdots \\ h_{(1-k)} \\ \vdots \\ h_{(1-k)} \\ \vdots \\ \vdots \\ h_{(1-k)} \\ \vdots \\ h_{(1-k)} \\ \vdots \\ \vdots \\ h_{(1-k)} \\ \vdots \\ \vdots \\ h_{(1-k)} \\ \vdots \\ h_{(1-k)} \\ \vdots \\ \vdots \\ h_{(1-k)} \\ \vdots \\ h_{(1-k$$

 $y_1 = 3$

$$n = 2$$

$$y_0 = 1$$

$$n = 1$$

$$y_1 = 3$$

$$y_2 = 6$$

Figure: x_k , k = 1, 2, 3 and h_k , k = -1, 0, 1, then $y_k = 0, \dots 4$ of length 5.

Convolution

$$g(t) = \int_{-\infty}^{\infty} w(\tau) f(t - \tau) d\tau$$
 (5)

Suppose both w(t) and f(t) are of finite duration,

$$w(t) \neq 0, \ t_1 \leq t \leq t_2, \quad f(t) \neq 0, \ t_3 \leq t \leq t_4$$
 (6)

- ① It follows that $g(t) \neq 0$, $t_1 + t_3 \leq t \leq t_2 + t_4$
- for a particular t, the sum only needs to be performed for

$$max(t_1, t - t_4) \le \tau \le min(t_2, t - t_3)$$
 (7)

Question: how do you implement this in discrete form?

Discrete convolution

$$g_n = \left[\sum_{k=-\infty}^{\infty} f_{n-k} w_k\right] \Delta \tag{8}$$

Suppose $f_i \neq 0, 0 \leq i \leq N_f - 1$ has total N_f points, and $w_k \neq 0, 0 \leq k \leq N_w - 1$ has total N_w points, then for a particular index n:

$$0 \le n - k \le N_f - 1 \Rightarrow n - N_f + 1 \le k \le n$$

$$0 \le k \le N_w - 1$$
(9)

gives $max(0, n - N_f + 1) \le k \le min(n, N_w - 1)$. But if

$$max(0, n - N_f + 1) > min(n, N_w - 1)$$
 i.e., $n < 0, n > N_f + N_w - 2$, (10)

then no non-zero terms in the summation, $g_n = 0$, $(n < 0 \text{ or } n > N_f + N_w - 2)$. In other words

$$g_n \neq 0, \quad 0 \leq n \leq N_f + N_w - 2$$
 (11)

The convolved time series is of length $N_q = N_f + N_w - 1$.

Discretize step function H(t) and Delta function $\delta(t)$

• Heaviside function (step function) H(t)

$$H(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases} \tag{12}$$

step response: g(t) = H(t) * w(t)

- Oiscretization:

(13)

A special case

$$g(t) = \int_{-\infty}^{\infty} w(\tau) f(t - \tau) d\tau$$
 (14)

In many applications, both w(t) and f(t) are causal, and f(t) is of finite duration $(0 \le t \le t_4)$. However, w(t) may be of infinite duration with decreasing values at large time. For discrete implementation, w(t) has to be truncated $(0 \le t \le t_2)$, and according to the previous slide, the convolved time series g(t) is non-zero between 0 and $t_2 + t_4$.

• What is the effect of truncating w(t)? Are all the values of g(t) between 0 and $t_2 + t_4$ accurate?

Convolution with a boxcar

Given

- **1** $f(t) \neq 0, 0 \leq t \leq t_4$
- ② $w(t) \neq 0$, $0 \leq t < \infty$ but truncated between $[0, t_2]$

only $g(t) \neq 0$, $0 \leq t \leq t_2$ may be accurately computed by convolution.