(X, a, m) a measure space.

Riesz-Fischer Theorem: L2(µ) is complete.

Propri Suppose $f_n \to f$ in $L^2(\mu)$. Then (f_n) has a subsequence (f_{n_k}) s.t. $f_{n_k} \to f$ a.e.

 $\text{If } -f_n|^2 d_n = \|f -f_n\|_2^2 \longrightarrow 6. \text{ Hence } \exists \text{ natural numbers}$

 $n_1 < n_2 < n_3 < \dots$ Such that $\forall k$, $\forall n \ge n_k$, $\iint f - f_n |^2 d\mu \le 2^{-\kappa}$.

In particular, for each K, $\int |f-f_{n_k}|^2 d\mu \leq 2^{-\kappa}$.

 $\int_{\kappa=1}^{\infty} \left| f - f_{n_{\kappa}} \right|^{2} d\mu = \sum_{\kappa=1}^{\infty} \int_{\kappa=1}^{\infty} \left| f - f_{n_{\kappa}} \right|^{2} d\mu \leq \sum_{\kappa=1}^{\infty} 2^{-\kappa} = 1 < \infty,$

So $\sum_{k=1}^{\infty} |f - f_{nk}|^2$ is finite a.e.

Then $\mu(X \setminus X_1) = 0$, and $\forall x \in X_1$,

 $|f(x)-f_{n_k}(x)|^2 \longrightarrow 0$, so $f_{n_k}(x) \longrightarrow f(x)$, so $f_{n_k} \longrightarrow f$ a.e.

Corollary of Proof: Let f f f E12/11 Sugar 5 110.12.

Corollary of Proof: Let $f, f_1, f_2, ... \in L^2(n)$. Suppose $\sum_{n} \int |f - f_n|^2 d\mu < \infty$.

Then $f_n \longrightarrow f$ a.e.

Propri Suppose $f_n o f$ in $L^2(\mu)$ and $f_n o g$ a.e. Then f = g a.e.

Pf Since $f_n o f$ in $L^2(\mu)$, (f_n) has a subsequence $(f_{n\kappa})$ s.t. $f_{n\kappa} o f$ a.e. but $f_{n\kappa} o g$ a.e. too, so f = g a.e.

(Since the union of two μ -null sets is μ -null).

Proper Let (f_n) be an orthogonal sequence in $L^2(\mu)$.

Suppose $\sum_{n=1}^{\infty} \|f_n\|_2^2 < \infty$, and $\sum_{n=1}^{\infty} f_n$ converges a.e. to f.

Then $f \in L^2(\mu)$, $\sum_{n=1}^{\infty} f_n$ converges to f in $L^2(\mu)$, and $\sum_{n=1}^{\infty} \|f_n\|_2^2 = \|f\|_2^2$.

If Let $g_n = \sum_{k=1}^n f_k$. We have $g_n \to f$ a.e., by assumption.

For m < n, we have $\|g_m - g_n\|_2^2 = \|\sum_{k=m+1}^n f_k\|_2^2 = \sum_{k=m+1}^n \|f_k\|_2^2 \xrightarrow{m_n m \to \infty} 0$ be cause $\sum_{k=1}^\infty \|f_k\|_2^2 < \infty$. Thus the sequence (g_n) is Cauchy in $L^2(n)$. Hence, by the Riesz-Fischer Theorem, $\exists g \in L^2(n)$ s.t. $g_n \to g$ in $L^2(n)$.

But, by assumption, $g_n op f$ a.e. So J = f a.e. by the previous proposition. Hence $f \in L^2(\mu)$ and $g_n op f$ in $L^2(\mu)$,

For each η , $\|g_{\kappa}\|_{2}^{2} = \|\sum_{k=1}^{N} f_{k}\|_{2}^{2} = \sum_{k=1}^{N} \|f_{k}\|_{2}^{2}$.

So $\|g_n\|_2^2 \longrightarrow \|f\|^2$, and so $\sum_{\kappa=1}^{\infty} \|f_{\kappa}\|_2^2 \longrightarrow \|f\|_2^2$.

This tres up the loose end in our proof of Wald's 2nd Equation.

Martingales

Let (Fn) be a filtration.

To Say $(M_n)_{n\geq 0}$ is a martingale wr.t. (\mathcal{T}_n) means

Page 3

that (M_n) is an (T_n) -adapted sequence of \int_{-ble}^{-ble} real RVs such that for each n, for each $A \in T_n$, $E(M_n, jA) = E(M_n, jA)$

Remark If (M_n) is a mtgle with a filtration (\mathcal{F}_n) , turn for each $n \ge 0$ and for each $k \ge 1$ and for each $A \in \mathcal{F}_n$, $E(M_{n+k}; A) = E(M_n; A)$

I Let (S_n) be a RW in R wet a filtration (T_n) . Suppose $E(|S_i|) < \infty$ and $E(S_i) = 0$. Then (S_n) is a newtingule wet (T_n)

If Let $A \in \mathcal{F}$. Then $E(S_{n+1} - S_n; A) = E(S_{n+1} - S_n) \cdot P(A) = O$.

eg A Symetrio Siriple RW on Z is a mtgle.

eg let $X_1, X_2, X_3, ...$ be integrable real RVs adapted to a filtration (\mathcal{F}_n) . Suppose for each $n \geqslant 1$, X_n is indep of \mathcal{F}_{n-1} .

(a) Suppose $\forall n \geqslant 1$, $E(X_n) = 0$. Let $S_n = \sum_{k \in n} X_k$ for n = 0, 1, 2, Then (S_n) is a martingula wet (T_n) .

- (b) Suppose instead that $\forall n \ge 1$, $E(X_n) = 1$. Let $M_n = \prod_{k \in n} X_k$ for n = 0, 1, 2, Then M_n is a martingle wet (\mathcal{F}_n) .
- of (a) essentially already done, see last example
 - (b) X,,..., Xn are independent.

So
$$E(|M_n|) = E(|X_1| \cdot |X_n|) = E(|X_1|) \cdot \cdot \cdot E(|X_n|) = 1 < \infty$$

SO Mn is integrable. Let $A \in \mathcal{F}_n$.

$$E\left(M_{n+1};A\right) = E\left(X_{n+1}, \frac{M_{n} 1_{A}}{T_{n}}\right) = E\left(X_{n+1}\right) \cdot E\left(M_{n} 1_{A}\right) = E\left(M_{n};A\right).$$

If let (S_n) be an asymmetric simple RW on \mathbb{Z} , and let $\mathfrak{F}_n=S_n-S_{n_1}$. Let $p=P(\xi_i=1)$, $q=P(\xi_i=-1)$. Then p+q=1.

Assume $\frac{1}{2} . Define <math>\varphi$ on \mathbb{Z} by $\varphi(x) = \left(\frac{q}{p}\right)^x$.

Then the sequence $(P(S_n))$ is a martingule with the filtration $(F_n = \sigma(S_n, ..., S_n) = \sigma(\overline{S}_1, ..., \overline{S}_n))$.

Pf
$$\varphi(S_n) = \prod_{k \in n} \chi_k$$
 where $\chi_k = \left(\frac{q}{p}\right)^{\xi_k}$.

$$\mathbb{E}\left(X_{\kappa}\right) = \frac{q}{p} \cdot P(\xi_{\kappa=1}) + \frac{p}{2} \cdot P(\xi_{\kappa=-1}) = q + p = 1.$$

Martingle Transforms

Let (Fin) no be a filtration.

Let $(M_n)_{n\gg 0}$ be a notyle wrt (\mathcal{F}_n) .

Let (Hn) no be a predictable process

Where for each n, Hn is a banded real RV.

(Predictable means for each no, Hn is The, -mble)

By defn,

$$\left(\begin{array}{c} H \circ M \right)_{n} = \begin{cases} \sum_{\kappa=1}^{n} H_{\kappa} \left(M_{\kappa} - M_{\kappa-1} \right) & \text{if } n > 1 \\ O & \text{if } n = 0 \end{cases}$$