

Webinar FFI

Introduksjon til sentrale metoder i statistisk modellering og maskinlæring

Martin Jullum

jullum@nr.no

Del 3

- Beslutningstrær
- Random forest
- XGBoost

Beslutningstrær (I)

- Verdens enkleste nyttige statistiske modell!
 - Hver forgrening er basert på et JA/NEI-spørsmål for én variabel
 - Fungerer både for kontinuerlig og binær respons, samt klassifisering
 - Modellkompleksitet styres ved dybden av tree, antall blader,...

Were you...

Beslutningstrær (II)

3 ulike visualiseringer av samme tre-modell

Kan skrives som en vektet sum av indikatorvariable over regionene:

$$f(x) = \sum_{j=1}^{I} \theta_j \, 1_{\{x \in R_j\}}$$

Trening av tre-modeller

Beregningsmessig svært tungt å finne optimal regionsoppdeling

► Bruker en grådig algoritme i stedet: Finner iterativt én variabel med ett splittpunkt for å minimere feilen/tapet

 $X_2 \le t_2$

 $X_1 \leq t_3$

- ► Stopper basert på
 - (Kryss)validering
 - Bestemt dybde/antall blader
 - Når tapsreduksjonen er liten ved videre splitt

Egenskaper med tre-modeller

Fordeler

- Enkle å tolke
- Enkle å trene
- Invariant til monotone transformasjoner av variablene
- Håndterer naturlig kontinuerlige og kategoriske data
- Kan håndtere manglende data
- Modellerer ikke-lineariteter og interaksjoner direkte
- Skalerer godt til store datamengder

Ulemper

- Fort gjort å overtilpasse
- Diskrete prediksjoner
- Begrenset prediksjonskraft

Bagging

- Bagging = Bootstrap aggregating, Breiman (1994)
 - Modellblandingsteknikk som øker prediksjonskraften til enkeltmodell ved å ta et gjennomsnitt av mange enkeltmodeller tilpasset på bootstrappede trekk fra treningssettet

$$\hat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(x)$$

Bootstrapping

Trekke tilfeldige sett av observasjonene **med tilbakelegging**

Noen observasjoner blir kopiert opp, mens andre blir slettet

Data: 1 2 3 4 5

1. trekk: 3 2 5 3 4

2. trekk: 1 3 2 2 2

3. trekk: 5 3 5 2 2

4. trekk: 4 2 5 1 1

5. trekk: 2 1 5 1 3

. . .

Random forest

► Bagging sikter på å redusere den totale variansen

$$Var(\frac{1}{2}(X+Y)) = \frac{1}{4}Var(X) + \frac{1}{4}Var(Y) + \frac{1}{2}Cov(X,Y)$$

- Bagging foretrekker modeller med lav bias og høy varians
- Random Forest, Breiman (2001)
 - Bagging med beslutningstrær
 - Ofte 100-1000 dype trær
 - Ekstra triks for å sikre ulike trær:
 - For hver splitt i hvert tre, trekk et tilfeldig utvalg av variabler som har lov til å være splittvariabel

Boosting: Prinsippet

- Modellblandingsteknikk som slår sammen mange enkle «basismodeller» $f_m(x)$, $m=1,\ldots,M$ (weak learners) til en avansert (strong learner) $f_{final}(x)$
- ► Trener iterativt en og en basismodell, hver og en med mål om å reparere feilene til tidligere trente modeller (og minimere empirisk tap)
- Endelig prediksjon = Sum av prediksjoner fra alle basismodellene

$$f_{final}(x) = f^{(M)}(x) = \sum_{m=1}^{M} f_m(x)$$

$$f_m = arg\min_{h \in \Phi} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

For modellklasse Φ og tapsfunksjon L(x,y)

Typiske tapsfunksjoner

Regresjon: $L(y, p) = (y - p)^2$

Binær klassifisering: $L(y, p) = y \log(p) + (1 - y) \log(1 - p)$

Eksempel boosting

Egenskaper med boosting

▶ Fordeler

 Arver typisk alle egenskapene til basismodellene, men gir en vilkårlig god prediksjonskraft i tillegg

Utfordringer

- Svært viktig å kontrollere overtilpasning for å få en god modell
- Boosting kan i seg selv ikke parallelliseres
- Generelt vanskelig å oppdatere med nye modeller via

$$f_m = argmin_{h \in \Phi} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$$

Gradient boosting (machine)

- Gradient descent
 - Iterativ metode for å finne minimum av multivariat funksjon s(x)
 - Tar steg langs den negative gradienten: $x_m = x_{m-1} - \rho_m s'(x_{m-1})$

- Gradient boosting = Gradient descent for funksjoner/modeller
- VI VII minimere $f_m = \underset{h \in \Phi}{argmin} \sum_{i=1}^n L(y_i, f^{(m-1)}(x_i) + h(x_i))$ La $s_i(z) = L(y_i, z)$, $i = 1, \dots, n$
- Bruk gradient descent på hver s_i
- Finn nærmeste modell ved å minimere

$$arg\min_{\rho,h\in\Phi}\sum_{i=1}^{n}\left(s_{i}'\left(f^{(m-1)}(x_{i})\right)-\rho h(x_{i})\right)^{2}$$

Gradient boosting machine = Gradient boosting med tre-modeller

Bagging vs boosting med tre-modeller

- Bagging
 - Sikter mot å redusere total varians.
 - Foretrekker modeller med lav bias (+ høy varians)
 - Trener uavhengige modeller enkelt å parallellisere
- Boosting
 - Sikter mot å redusere total bias (weak learner -> strong learner)
 - Foretrekker modeller med lav varians (+ high bias)
 - Trener avhengige modeller sekvensielt
- Dype (bagging) and korte (boosting) trær er godt egnet pga dere fordelaktige egenskaper
 - Ulempene med beslutningstrær reduseres når mange kombineres

XGBoost = eXtreme Gradient Boosting

- Et open souce bibliotek bygget rundt en effektiv implementering av gradient boosting med tre-modeller som basismodeller
 - Utviklet av Tianqi Chen (Uni. Washington) i 2014
- Implementasjon
 - Grensesnitt for mange språk/plattformer: C++, Python, R, Julia, Java, Apache Spark etc.
 - Parallelliserbar trening av trærne, minnegjerrig og skalerbar
 - Kjører både på CPU og GPU
- Metodiske nyvinninger
 - 2.ordens approksimasjon av tapsfunksjonen mer presis/effektiv enn ordinær gradient boosting
 - Legger til regularisering på toppen av original tapsfunksjon
- Praktisk bruk
 - Veldig mange parametere som <u>kan</u> skrus på, må gjøres manuelt
 - Kan ta lang tid å optimalisere/tune, men brukbare defaultparametere
 - «The Kaggle game killer»

Funksjonalitet i XGBoost

- Håndterer både kryssvalidering og ferdigoppdelt trening/validering/testsett
- Kan definere egne tapsfunksjoner og valideringsmål (mange allerede implementert).
- Kan følge valideringsresultater mens modellen kjører (f.eks. AUC på trening, validering og testsett)
- «Early stopping» (stopper å legge til nye trær når valideringsresultater ikke forbedres lenger)
- Mange tilgjengelige måter å håndtere overtilpasning på
- ► Ingen pre-prosessering/skalering/standardisering nødvendig
- Håndterer manglende data automatisk (lærer default retning i hver splitt)
- ► Effektiviserer trening av trær ved å forhåndsdefinere en begrenset mengde splittpunkter (histogram-metoden)

XGBoost – diverse

- Konkurrenter
 - LightGBM (Microsoft)
 - Har drevet/motivert mye av utviklingen av XGBoost
 - Mye likt, men ikke like modent og mangler noe funksjonalitet
 - Fortsatt noe raskere enn XGBoost?
 - CatBoost (Yandex)
 - Lignende, men håndtere også kategoriske variable direkte
 - Var langt treigere, men har blitt vesentlig bedre
 - Begrenset dokumentasjon
- Jeg har enda til gode å se et eksempel der Random Forest gjør det bedre enn en tunet XGBoost model!
- Hovedutfordringer:
 - Vanskelig/tidkrevende å finne optimal modell
 - Takler kun numerisk input: Ikke så god når det er mange kategoriske variable med mange klasser.

Ressurser

- Didrik Nielsen, Masteroppgave NTNU, 2016: https://brage.bibsys.no/xmlui/handle/11250/2433761
- Chen & Guestrin (2016), XGBoost: A Scalable Tree Boosting System: https://arxiv.org/abs/1603.02754
- ► Hastie et al. (2009), Elements of Statistical Learning, Ch 9.2 + 10
- XGBoost GitHub: https://github.com/dmlc/xgboost
- XGBoost dokumentasjon: http://xgboost.readthedocs.io
- ► Slides fra foredrag med Tianqi Chen:

 http://datascience.la/xgboost-workshop-and-meetup-talk-with-tianqi-chen/

