MATLAB/GNU Octave quick reference sheet

Last revision: February 21, 2013

By Anders Damsgaard Christensen,

 ${\tt anders.damsgaard@geo.au.dk}, \, {\tt http://cs.au.dk/~adc}.$

The <> symbols denote required arguments, [] args. are optional. The bracketing symbols should not be written.

General session control

whos	List all defined variables
clear	Delete all defined variables
clc	Clear home screen
edit <file>[.m]</file>	edit file, create if it doesn't
	already exist
<pre>save '<filename>'</filename></pre>	Save all variables to <file-< td=""></file-<>
	name>.mat
<pre>load '<filename>'</filename></pre>	Load variables from <file-< td=""></file-<>
	name>.mat
help <command/>	Quick help on command
doc <command/>	Extensive help on command

Variables

When assigning variables, the values will be displayed. This can be suppressed by adding the suffix; Value of last calculation ans Define variable x to be a scalar x = 1with value 1 Set x equal to yx = yv = [1,2,3]Define variable v to be a row vector with values (123) v = [1;2;3]Define variable v to be a column vector Define variable M to be a M = [1,2,3;4,5,6]matrix with values $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ v = <s>[:st]:<e>Create a row vector with values from s to e with a step size of st. $v = linspace(\langle s \rangle, \langle e \rangle[, st])$ Create a row vector with values from s to e with st intermediate values

A = zeros(<n>[,M])</n>	Create a $N \times M$ matrix with
A = ones(<n>[,M])</n>	values 0 Create a $N \times M$ matrix with
A = rand(<n>[,M])</n>	values 1 Create a $N \times M$ matrix with
A = randn(<n>[,M])</n>	uniformly distr. values in $[0,1[$ Create a $N \times M$ matrix
	with normal (Gaussian) distr. values with $\mu = 0, \sigma = 1$

Arithmetic and standard functions

In general, the number of elements returned equal the dimensions of the input variables. a*b = ab, $a/b = \frac{a}{b}$, $a**b = a^b$, a%: remainder, $\operatorname{sqrt}(a) = \sqrt{a}$, $a**(1/b) = \sqrt[b]{a}$, $\operatorname{abs}(a) = |a|$, $\log(a,b) = \log_b(a) \sin(a) = \sin(a)$, M.*N: element-wise multiplication of two vectors/matrices M*N: multiplication of two vectors/matrices A(:): show matrix as vector A': Transpose of vector/matrix

C=[A;B]: Concentrate two vectors/matrices size(A): Dimensions of vector/matrix sum(A): Column sum of vector/matrix

inv(A): Inverse of matrix
det(A): Determinant of matrix

A\b: For a matrix A and col. vector b find solution x to Ax = b Constants: $pi = \pi$, e = e, i = i, $inf = \infty$

Vector/matrix slicing

In the following, n and m can be single values or vectors. v(<n>) The n-th value of vector vv(1,<n>) The 1st to n-th value of vector vv(< n>, end)The n-th value to the end of vector v $M(\langle n \rangle, \langle m \rangle)$ The n, m-th value of matrix M $M(\langle n \rangle, :)$ The n-th row of matrix M $M(\langle n \rangle, :)$ The n-th row of matrix MI = find(X > 2)Find indexes in X where the value is greater than 2

Plotting and visualization

In the following, n	and m can be single values or vectors.
figure	Create new figure window
plot(x,y)	Plot vector y as a function of x with a line
plot(x,y,'*')	Plot vector y as a function of x with points
plot(x,y,'*-')	Plot vector y as a function of x with a line and points
semilogx(x,y)	Plot vector y as a function of x , with x on a log scale
semilogy(x,y)	Plot vector y as a function of x , with y on a log scale
loglog(x,y)	Plot vector y as a function of x , on a loglog scale
hist(x)	Plot a histogram of values in x
grid	Show numeric grid in the plot background
axes equal	Set a 1:1 aspec ratio on the plot axes
title('bla')	Set a plot title
<pre>xlabel('bla')</pre>	Set x-axis label

Custom functions

```
elations: ==, ~=, >, <, <=, >=
Conditional structures:
if expr ...[elseif ...] [else ...] end
Iteration structures: for var=expr ... end
Function syntax:
function [out1, ...] = name (par1, ...)
...
end
```

MATLAB reference manual

http://www.mathworks.se/help/matlab/index.html

GNU Octave reference manual

https://www.gnu.org/software/octave/doc/interpreter/

MATLAB/GNU Octave wikibook

https://en.wikibooks.org/wiki/MATLAB_ Programming/GNU_Octave

Introduction to MATLAB

www.mathworks.com/moler/intro.pdf