Spectral Clustering

What is Spectral Clustering?

- Easy to implement
- Reasonably fast especially for sparse data
- Spectral clustering treats the data clustering as a graph partitioning problem without making any assumption on the form of the data clusters using the spectrum of the Laplacian matrix

Graph Bipartitioning

Graph Bipartitioning

- Affinity matrix $W = [W_{ij}] \in \mathbb{R}^{n \times n}$
- Degree of nodes $d_i = \sum_j W_{ij}$
- Volume $vol(S_1) = d_{S_1} = \sum_{i \in S_1} d_i$

Graph Bipartitioning

$$x^{T}Lx = x^{T}Dx - x^{T}Wx$$

$$= \sum_{i=1}^{n} d_{i}x_{i}^{2} - \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}x_{i}x_{j}$$

$$= \frac{1}{2} \left(\sum_{i} d_{i}x_{i}^{2} - 2 \sum_{i} \sum_{j} W_{ij}x_{i}x_{j} + \sum_{j} d_{j}x_{j}^{2} \right)$$

$$= \frac{1}{2} \sum_{i} \sum_{j} W_{ij}(x_{i} - x_{j})^{2}.$$

Algorithm

1 Construct affinity matrix

$$W_{ij} = \begin{cases} \exp\{-\beta ||v_i - v_j||^2\} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

- ② Calculate graph Laplacian L=D-W where $D=\operatorname{diag}\{d_1,\ldots,d_n\}$ and $d_i=\sum_j W_{ij}$ is the degree of node V_i
- ③ Compute second smallest eigenvector of graph Laplacian (denoted by $u = [u_1 \cdots u_n]^\top$, Fiedler vector)
- 4 Partition u_i 's by pre-specified threshold value and assign data point to cluster v_i