Mixture Models for Graph Clustering

Sofiane Ezzehi¹ Bastien Le Chenadec ¹ Theïlo Terrisse ¹

École des Ponts ParisTech

Graph Clustering

Graph clustering involves the identification of clusters within a graph, where nodes exhibit denser connections among themselves than with the rest of the network. This task is crucial for conducting comprehensive macro- and mesoscopic analyses of large complex systems, such as social networks. As exact graph clustering is recognized as an NP-hard problem, numerous clustering methods have been developed [2]. Notably, model-based approaches fit a mathematical model to a graph, providing an explanatory framework for observed connectivity patterns. In [1], J.-J. Daudin et al. investigate the renowned Stochastic Block Model (SBM), proposing a variational Expectation-Maximization (EM) algorithm to optimize model fit for a given graph.

The Stochastic Block Model

Stochastic Block Model: A mixture model for graphs where each node is assigned to a *class* and the edge probability between nodes are conditioned on their class memberships.

Formally, let \mathcal{G} be an undirected graph with nnodes and no self-loop, and X its adjacency matrix, i.e. $X_{ij} = 1$ if an edge exists between i and j, and $X_{ij} = 0$ otherwise.

Figure 1. Graphical model of the SBM

The model is parametrized by Q the number of classes, $\alpha \in [0,1]^Q$ the prior distribution on the classes, and $\pi \in [0,1]^{Q \times Q}$ the probability of an edge between two nodes of different classes. We also introduce the random variables $Z_i \in \{0,1\}^Q$ for $i \in [1,n]$, that represent the membership of node i to each class. The prior distributions on Z and X are given by :

$$\begin{cases} \forall i \in \llbracket 1, n \rrbracket, & \sum_{q=1}^{Q} Z_{iq} = 1 \quad \text{(unique class)} \\ \forall q \in \llbracket 1, Q \rrbracket, & \mathbb{P}(Z_{iq} = 1) = \alpha_q \quad \text{(class distribution)} \\ \forall q, l \in \llbracket 1, Q \rrbracket, & \forall i \neq j \in \llbracket 1, n \rrbracket, & \mathbb{P}(X_{ij} = 1 \mid Z_{iq} = 1, Z_{jl} = 1) = \pi_{ql} \quad \text{(edge probability)} \end{cases}$$

The variational Expectation-Maximization algorithm

In [1], Daudin et al. propose a variational EM algorithm to fit the SBM.

$$\log \mathcal{L}(X, Z) = \sum_{i} \sum_{q} Z_{iq} \log \alpha_q + \frac{1}{2} \sum_{i \neq j} \sum_{q, l} Z_{iq} Z_{jl} \log \left(\pi_{ql}^{X_{ij}} \left(1 - \pi_{ql} \right)^{1 - X_{ij}} \right)$$

⇒ No closed-form solution for the parameters of the model from the likelihood.

Problem: Using an EM algorithm, no closed-form solution for the E-step either.

Solution: Daudin et al. search for an approximated distribution R_X of Z given X, among the family of product of multinomial distributions, thus introducing the random variables $\tau_i \in [0,1]^Q$ for $i \in [1,n]$. This approximation leads to maximizing the following lower bound of $\log \mathcal{L}(X)$:

$$\mathcal{J}(R_X) = \log \mathcal{L}(X) - \text{KL}[R_X(\cdot), P(\cdot|X)]$$

The authors derive a closed form solution for the M-step, and a **fixed-point relation** for the E-step :

$$\begin{cases} \text{(E-step)} & \hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_l \left[\pi_{ql}^{X_{ij}} (1 - \pi_{ql})^{1 - X_{ij}} \right]^{\hat{\tau}_{jl}} \\ \text{(M-step)} & \hat{\alpha}_q = \frac{1}{n} \sum_i \tau_{iq} \quad \text{and} \quad \hat{\pi}_{ql} = \frac{\sum_{i \neq j} \tau_{iq} \tau_{jl} X_{ij}}{\sum_{i \neq j} \tau_{iq} \tau_{jl}} \end{cases}$$

Algorithm 1 Variational Expectation-Maximization Algorithm

- 1: **Input:** Adjacency matrix X, number of communities Q
- 2: Initialize: Initialize τ_{iq} for $i \in [1, n], q \in [1, Q]$
- 3: while not converged do
- E-step: for $i \in [1, n]$ do
- for $q \in [1, Q]$ do
- Fixed-point algorithm:

$$\hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_{l} \left[\pi_{ql}^{X_{ij}} (1 - \pi_{ql})^{1 - X_{ij}} \right]^{\hat{\tau}_{jl}}$$

$$\hat{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_{l} \left[\pi_{ql}^{-ij} (1 - \pi_{ql})^{1 - \Lambda_{ij}} \right]$$

$$q \propto \alpha_q \prod_{j \neq i} \prod_l \left[\pi_{ql}^{X_{ij}} (1 - \pi_{ql})^{1 - X_{ij}} \right]^{J}$$
 \triangleright Update class memberships

- M-step:
- for $q \in [1, Q]$ do 10: $\hat{\alpha}_q = \frac{1}{n} \sum_{i=1}^{n} \tau_{iq}$ 11:
- for $l \in \llbracket 1, Q \rrbracket$ do 12:
- 13:
- 14: **Return:** $\hat{\alpha}, \hat{\pi}, \hat{\tau}$
- > Update edge probabilities

> Update class proportions

Some alternative algorithms

• Newman et al. [3] use a finer definition for clusters. While the SBM deals with a cluster-cluster affinity (nodes belonging to the same cluster behave the same way), the model of Newman introduces a clusternode affinity. Therefore, edges between different nodes of the same two clusters are not necessarily equivalent. $\implies \Pi_{q,i}$ denotes the probability of an edge between a node in cluster q and node i. The expected log-likelihood (with respect to Z) is

$$\mathcal{L}(X) = \sum_{i=1}^n \sum_{q=1}^Q \tau_{iq} \left[\log(\alpha_q) + \sum_{j=1}^n X_{ij} \log(\Pi_{q,j}) \right] \quad \text{where} \quad \tau_{iq} = \mathbb{P}(Z_{iq} = 1 | X, \alpha, \Pi).$$

Denoting k_i the degree of node $i \in [1, n]$, the EM updates are

(E-step)
$$\hat{\tau}_{iq} = \frac{\alpha_q \prod_{j=1}^N \Pi_{qj}^{X_{ij}}}{\sum_{s=1}^Q \alpha_s \prod_{j=1}^N \Pi_{sj}^{X_{ij}}};$$
 (M-step) $\hat{\alpha}_q = \frac{1}{n} \sum_{i=1}^n \tau_{iq} \text{ and } \hat{\Pi}_{qj} = \frac{\sum_{i=1}^n X_{ij} \tau_{iq}}{\sum_{i=1}^n k_i \tau_{iq}}$

The update of τ (E-step) is now **deterministic**, with no resort to fixed-point methods.

• Spectral clustering [4] uses the eigenvectors of the Laplacian matrix of the graph to cluster the nodes. The k first eigenvectors of L = D - X are stacked in a matrix $U \in \mathbb{R}^{n \times k}$ and a k-means clustering is performed on the rows of U.

References

[1] J.-J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs. Statistics and Computing, 18(2):173-183, June 2008.

- [2] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75-174, February 2010.
- [3] M. E. J. Newman and E. A. Leicht. Mixture models and exploratory analysis in networks. PNAS, 104, 2007.
- [4] Andrew Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In Advances in Neural Information Processing Systems, 2001.

Experiments: SBM dataset

Algorithm 1 is implemented in PyTorch. To test it, a first dataset is created by sampling the SBM for parameters given in **Table 1**. For each experiment, 10 graphs are generated and the algorithm is run for 100 iterations on each graph.

Figure 2 shows the results.

	Experiment	Hyper-pa	rameters	Parameters					
#	Name	n	Q	α	π				
1	Random	500	3	$\alpha \sim \text{Dir}(1.5)$	$\pi_{ij} \sim \mathcal{U}([0,1))$				
2	Homophilic	150	5	$\alpha_i = (\frac{1}{Q})_i$	$\pi_{ii} \sim \mathcal{U}([0.5, 1)), \ \pi_{ij} = 0.01$				
3	Heterophilic	150	3	$\alpha_i = (\frac{1}{Q})_i$	$\pi_{ii} = 0.01, \ \pi_{ij} = 0.9$				
4	Dense minority	150	2	$\alpha^T = \left(\frac{9}{10}, \frac{1}{10}\right)$	$\pi = \begin{pmatrix} 0.01 & 0.7 \\ 0.7 & 0.8 \end{pmatrix}$				

Table 1. Parameters for generating the SBM dataset.

Dir is the Dirichlet law. In experiment 1, π is scaled and made symmetric.

• Metric for model-fitting capacity: Sum of (cluster-permutation-invariant) Euclidean distances between predicted (α, π) and the ground truth of Table 1. The result is normalized by the number of classes. • Metric for clustering capacity: Normalized Mutual information (NMI) and Rand Index (RI). **NB**: The fixed-point algorithm does not always converge within 1000 iterations for all graphs.

(a) Experiment 1: 8/10 graphs passed

(c) Experiment 3: 9/10 graphs passed Param.dist. = 0.18 ± 0.08 , NMI = 0 ± 0 , RI = 0.33 ± 0

(d) Experiment 4: 10/10 graphs passed Param.dist. = 0.02 ± 0.01 , NMI = 1 ± 0 , RI = 1 ± 0

Figure 2. Results for the SBM dataset experiments. Left: sample graph; right: associated prediction.

Experiments: Cora dataset

All three methods are tested on the Cora citation network: an undirected graph of 2708 nodes (i.e., scientific papers) connected by 5429 edges (i.e., citations). Nodes are labeled into 7 different classes: 1: Cases -2: Genetic Alg. -3: Neural Net. -4: Prob. Methods -5: Reinforcement Learning -6: Rule Learning -7: Theory

results as Newman-EM for the supervised metrics.

Daudin-EM yields similar

- Daudin-EM reveals some good-quality clusters (2, 4) while other clusters have a clustering coefficient of 0.
- Newman-EM predicts the closest clustering coefficients to the ground truth.
- Spectral clustering percomparatively forms poorly.
- Figure 3. Dot-plot of the clustering of Cora for all 3 methods

Mothod	Time (s)	NMI	RI	М	СС	CC (per cluster)						
Method 						1	2	3	4	5	6	7
Ground truth	_	_	-	0.64	0.09	0.19	0.06	0.12	0.23	0.10	0.22	0.16
Daudin-EM	3802					0						
Newman-EM	27	0.18	0.76	0.53	-	0.25	0.06	0.16	0.28	0.12	0.29	0.18
Spectral	1	0.01	0.21	0.02	-	0	0	0.09	Ο	Ο	0.66	0

Table 2. Results on the Cora dataset. M: Modularity; CC: Clustering Coefficient.

Discussion

- While Daudin-EM [1] can reveal both homophilic and heterophilic properties of a graph, it is not as powerful as Newman's variant (cf. Cora experiments).
- The algorithm is sensitive to the distribution of node degrees (cf. SBM experiments).
- Lack of guarantee of convergence of the fixed-point algorithm (see opposite figure: out of 50 runs of E-step with different initializations of $(\hat{\alpha}, \hat{\pi})$, only 40 runs converge within 100 iterations).

