

AI Enterprise Workflow Study Group

Course 3, Week 1

3/21/2020

Agenda

- Check in
- Discussion
- Next steps

Course & Study Group Schedule

Al Enterprise Workflow Study Group							
Session	Topic	Date					
Overview Webinar	Webinar with instructor, Ray Lopez	15-Feb					
Course 1 Week 1	Course intro	22-Feb					
Course 1 Week 2	Data ingestion, cleaning, parsing, assembly	29-Feb					
Course 2 Week 1	Exploratory data analysis & visualization	7-Mar					
Course 2 Week 2	Estimation and NHT	14-Mar					
Course 3 Week 1	Data transformation and feature engineering	21-Mar					
Course 3 Week 2	Pattern recognition and data mining best practices	28-Mar					
Course 4 Week 1	Model evaluation and performance metrics	4-Apr					
Course 4 Week 2	Building machine learning and deep learning models	11-Apr					
Course 5 Week 1	Deploying models	18-Apr					
Course 5 Week 2	Deploying models using Spark	25-Apr					
Course 6 Week 1	Feedback loops and monitoring	2-May					
Course 6 Week 2	Hands on with OpenScale and Kubernetes	9-May					
Course 6 Week 3	Captsone project week 1	16-May					
Course 6 Week 4	Captsone project week 2	23-May					

Course 3 Week 1 learning objectives

- 1. Discuss feature engineering and transformations in the context of the AI workflow
- 2. Employ the tools that help address class and class imbalance issues
- 3. Explain the ethical considerations regarding bias in data
- 4. Employ dimension reduction techniques for both EDA and transformations stages
- 5. Describe topic modeling techniques in natural language processing
- 6. Use topic modeling and visualization to explore text data

Feature Engineering and Transformation

sklearn Interfaces:

Transformer: Convert data from one form to another

Estimator: Build and fit models

Predictor: Make predictions

Class Imbalance

True condition						
	Total population	Condition positive	Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma}{\Gamma}$ False positive $\frac{\Sigma}{\Gamma}$ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, $Power = \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\sum False\ positive}{\sum Condition\ negative}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio	F ₁ score = 2 · <u>Precision · Recall</u> Precision + Recall
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	

Class Imbalance

Choosing appropriate loss function:

Accuracy vs precision/recall or F1

Adjusting training data by up/over sampling or down/under sampling

- Downsampling easiest but lose data
- Many flavors of techniques for upsampling: SMOTE, ADASYN, SMOTENC, etc.
- NOTE: Split train/test sets first!

Neural nets very sensitive to imbalance. SVMs and tree methods more resilient.

Dimensionality Reduction

- Enable EDA visualization in high dimensional data
- Remove collinearity
- Remove redundant features
- Deal w/ curse of dimensionality (statistical significance doesn't like sparsity, as the amount of data needed to support the result often grows exponentially with the dimensionality)
- Identify structure for supervised learning
 - Non-negative matrix factorization,
 - Autoencoders
 - Self-organizing maps

Applications: image analysis, text analysis, signal processing, astronomy, medicine, etc.

Fashion MNIST Example

Topic Modeling Case Study

Additional Discussion

What did you learn?

What stumbling blocks did you run into?

How do these lessons relate to your experience?

What did you learn/find interesting in this week's lesson?

What are you doing as homework?

What interesting resources have you found?

Other?

Next steps

Next week we move on to week 2 of Course 3, which continues the discussion of feature engineering with a focus on outlier detection and clustering.

Chime in on Slack if you run into any issues or want to share any observations

Prepare your questions, discussion points, etc. for next week's meetup

