Math 501-1/26/2021 Probability

Office hours: Thursday 9-10p Saturday 4-5p Textbook: Available on Amazon and GU library.

Most contents on discord.

Grading! Weelely Homeworks: 65%. Final: 35%. -> Depands on Quarantin status. could be in person or changed.

> submit as a single polf, must be polf. Can be submitted to LATEX or hadwritten. Communication on homework is fine, questions should go to Discord. Posted on wednesday, due the following Wednesday.

lopics for loday

- 1. Probability Spaces
- 2. Conditional Probabilities
- 3. Independence
- 4. Set Theory (countability vs. uncountabilitys)

1. Probability Space = (SL, F, P) Monds these sample space set of Probability things.

Events Maasure things. Sample Space St. Experiment or trial with different outron and I = { 911 possible outcomes } = sample space. ex: die 1011 => 1 = {1,2,3,4,5,6} = Finite

Discrete days until => 12 = {1,2,3,...} N infinite Note: the tood hind of sample space are not necessarily numbers, are climents abstractly, e.g. day of = {M, T, w, Th, F, Sa, Su} Two types of Sample Spaces: Discrete or the Continuous. ex: 12 = (20°F,50°F)= (20,50) > 5015et of Note: sample spaces can he of "larger" continuous (00,00)
objects like vectors of functions ex: temperatures tomorrow across the whole day => I = { all functions } f: [0,12] -> (-50, 120)} \$AM 12AM f: [0,12] -> (-50,120) this is much "bigger" apro

Set of Events, 5

Def: An event is a subset of I to which we can assign = a probability.

Ex: Dir Roll 1 = {1,2,3,4,5,6} => Set of = 5 =

How many possible sets ?

set of = f = {\psi, \lambda 13, \lambda 23, \lambda 43, \lambda 53, \lambda 63, \lambda 545, \lambda 53, \lambda 63, {1,23, {1,33, ...)

{1,2,33, ... {1,2,3,4,5,63} => 2 5cts.

Fir a set of sets

Not puito Note: event HEF such that ACIL + =) An event A is a subset of SL. f is the set of all events, por the set of all subsets of A.

Def: The power set of IL is the set of all subsite of SL, is notated B(SL).

9: Is F = 3(2)?

些: Flip two coins. => SL= {HH, HT, TH, TT} F = B(2) = { \$, {HH}}, {HT}, ... {HH, HT}, {HH, TH}, ..., & HH, HT, TH, TT 35.

4: What do we require of 5? can we alsways choose f = 3(52)? we require of f: 1. AEF, BEF => AUBEF 2. AES => AGES 3. A, Az, ..., An & F => A, UA2 U... UAn & F If A :s finite and discrete than 5 = 8(52). If Ω is continuous then $F = B(\Omega)$ => F= P(1) Probability Measure P: A function that maps events to [0,1] P: 5 -> [0,1] Ex: 12 = {1,2,3,4,5,6} F= B(sc) = { \$, 2, 3 , 2, 3 , 2, 3 } , ... , 81,33,4,5,6 }. we have to assign a probability to all elements of 5. Def: we say an event Accounted if the experiment resulted in an outcome that is in A. For this example we can P(Ø) = Prohability I fill these in, but that P (213) = that each is not vacessarily evan+ P(21,333) = occurred true for all (SE, F, P)

P(8, 2, 3, 4, 5, 63) =

What rules must P: 5 -> [0,1] satisfy! 4 non trivial to discover, took 200 years to write down. Axioms of Probability:

1. P(A) ≥ O for all A, A ∈ F

2. P(p) = 0, P(s2) = 1

3. A, Az, Az, ..., An E 5, each A; is an event and A; NA; = \$ then

P(A, VA2V ... VA, 3 = P(A,) +P(A)+ ... +P(A).

Ex: A = 213, Az= 25,63, A3 = 233

P(A,UAZUAZ) = P(51,3,5,63) = P(\(\xi\)) + P(\(\xi\)) + P(\(\xi\)).

Recall: Probabilities

I = {ontcomes}

F = set of events event AEF, ASSL

P(A) = the likelihood/chance P(A) = 1/2

D= {1,2,3,4,5,6}

A = { 1, 3, 5}

what are the rules for all the things above?

of can be anything.

JENING ABEF => AUBEF ex: A = 21,3,53, A = 23,4,6; A = 21,23, 13 = 233 AUB = 21,2,73

Provide $P(A) \in [0,1]$ $P(\emptyset) = [0,1]$ P(A) = [0,1] P(A) = [0,1] P(A) = [0,1]P(A) = [0,1]

Q: How can we brild & F, P if Dis discrete?

Suppose $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$. Then $S = B(\Omega)$

Assign $P(\omega_{3}) = a_{1}$ $P(\omega_{3}) = a_{2}$ $a_{1} \ge 0$ \vdots $a_{1} + a_{2} + \dots + a_{n} = 1$ $P(\omega_{3}) = a_{n}$

example: $\Omega = \{1, 2, 3, 4, 5, 6\}$ $P(\{13\}) = \frac{1}{6} \text{ or } a_1$ $P(\{23\}) = \frac{1}{6} \text{ or } a_2$ \vdots $P(\{6\}) = \frac{1}{6} \text{ or } a_6$

Then we can define the pohability of any event AEF.

e.g. $P(\{w_1, w_2, w_3\}) = P(\{w_3\}) + P(\{w_3\}) + P(\{w_3\}) + P(\{w_3\}) + P(\{w_3\}) + P(\{\{w_3\}\}) + P(\{\{a_3\}\}) + P(\{\{a_3\}\}) + P(\{\{a_4\}\}) +$

Conditional Probability

Def: Let A, B be events. The conditional probability of A given B P(AIB) = P(ANB) where P(B) \$\neq 0\$.

P(B)

<u>Intuition</u>: Probability of A assuming un outcome in B occurred.

Ex: A= {13, B= {13,5} Polling adic.

In other words, if you assign probabilities to the atoms" or single outcomes with the above conditions, you can build up the rest of & for all &, for discrete SL.

For discrete sample space $\Omega = \{w_1, ... w_n\}$ f = P(SL) $P(\{w_i\}) = \alpha_i \le \alpha_i + ... + \alpha_n = 1$ $\alpha_i \ge 0$.

What about continuous sample spaces?

e.g. $\Omega = \mathbb{R} \text{ or } \Omega = (0,10)$ $S = S(\Omega) \text{ is big.}$

How do we define P(A) for AEF, AESL

Fact: There is no P: S(12) -> [0,1] that satisfies the axioms of probability.

Let's compute the probabilities of some events.

EX1: I flip 3 coins. What is the probability that 2

S= 8(s2), an event A can be any subset of S2.

P(EHHH) = 1/8, P(EHHT) = 1/8, ..., P(ETT) = 1/8

A = {I flip wactly 2 hands} = {HHT, HTH, THH} = {HHT}U

=> P(A) = P({HHT}) + P({HTH}) + P({THH})

= 1/8 + 1/8 + 1/8 = 3/8