

NLP Programming Tutorial 8 - Phrase Structure Parsing

Graham Neubig
Nara Institute of Science and Technology (NAIST)

Interpreting Language is Hard!

I saw a girl with a telescope

• "Parsing" resolves structural ambiguity in a formal way

Two Types of Parsing

Dependency: focuses on relations between words

 Phrase structure: focuses on identifying phrases and their recursive structure

Non-Terminals, Pre-Terminals, Terminals

Parsing as a Prediction Problem

Given a sentence X, predict its parse tree Y

 A type of "structured" prediction (similar to POS tagging, word segmentation, etc.)

Probabilistic Model for Parsing

 Given a sentence X, predict the most probable parse tree Y

$$\underset{\mathbf{Y}}{\operatorname{argmax}} P\left(\mathbf{Y}|\mathbf{X}\right)$$

Probabilistic Generative Model

 We assume some probabilistic model generated the parse tree Y and sentence X jointly

The parse tree with highest joint probability given X also has the highest conditional probability

$$\underset{Y}{\operatorname{argmax}} P(Y|X) = \underset{Y}{\operatorname{argmax}} P(Y,X)$$

Probabilistic Context Free Grammar (PCFG)

How do we define a joint probability for a parse tree?

Probabilistic Context Free Grammar (PCFG)

PCFG: Define probability for each node

Probabilistic Context Free Grammar (PCFG)

PCFG: Define probability for each node

Parse tree probability is product of node probabilities

```
P(S \rightarrow NP \ VP) \ * \ P(NP \rightarrow PRP) \ * \ P(PRP \rightarrow "I") \\ * \ P(VP \rightarrow VBD \ NP \ PP) \ * \ P(VBD \rightarrow "saw") \ * \ P(NP \rightarrow DT \ NN) \\ * \ P(DT \rightarrow "a") \ * \ P(NN \rightarrow "girl") \ * \ P(PP \rightarrow IN \ NP) \ * \ P(IN \rightarrow "with") \\ * \ P(NP \rightarrow DT \ NN) \ * \ P(DT \rightarrow "a") \ * \ P(NN \rightarrow "telescope")
```


Probabilistic Parsing

· Given this model, parsing is the algorithm to find

$$\underset{\mathbf{Y}}{\operatorname{argmax}} P(\mathbf{Y}, \mathbf{X})$$

Can we use the Viterbi algorithm as we did before?

Probabilistic Parsing

· Given this model, parsing is the algorithm to find

$$\operatorname{argmax}_{Y} P(Y, X)$$

- Can we use the Viterbi algorithm as we did before?
 - Answer: No!
 - Reason: Parse candidates are not graphs, but hypergraphs.

Graph with all same edges + all nodes

Create graph with all same edges + all nodes

With the edges in the first trees:

With the edges in the second tree:

With the edges in the first and second trees:

Why a "Hyper" graph?

• The "degree" of an edge is the number of children

- The degree of a hypergraph is the maximum degree of all its edges
- A graph is a hypergraph of degree 1!

Weighted Hypergraphs

- Like graphs:
 - can add weights to hypergraph edges
 - use negative log probability of rule

Solving Hypergraphs

Parsing = finding minimum path through a hypergraph

Solving Hypergraphs

- Parsing = finding minimum path through a hypergraph
- We can do this for graphs with the Viterbi algorithm
 - Forward: Calculate score of best path to each state
 - Backward: Recover the best path

Solving Hypergraphs

- Parsing = finding minimum path through a hypergraph
- We can do this for graphs with the Viterbi algorithm
 - Forward: Calculate score of best path to each state
 - Backward: Recover the best path
- For hypergraphs, almost identical algorithm!
 - Inside: Calculate score of best subtree for each node
 - Outside: Recover the best tree

Review: Viterbi Algorithm (Forward Step)


```
best_score[0] = 0
for each node in the graph (ascending order)
  best_score[node] = ∞
  for each incoming edge of node
    score = best_score[edge.prev_node] + edge.score
    if score < best_score[node]
        best_score[node] = score
        best_edge[node] = edge</pre>
```


Example:

Initialize:

 $best_score[0] = 0$

Example:

Initialize:

best score[0] = 0

Check e₁:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5 best_edge[1] = e_1

Initialize:

best score[0] = 0

Check e₁:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5 best_edge[1] = e_1

Check e₂:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4 best_edge[2] = e_3

<u>Initialize:</u>

 $best_score[0] = 0$

Check e₁:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5best_edge[1] = e_1

Check e₂:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4best_edge[2] = e_3

Check e₃:

score = 2.5 + 4.0 = 6.5 (> 1.4) No change!

<u>Initialize:</u>

best score[0] = 0

Check e₁:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5

 $best_edge[1] = e_1$

Check e₂:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4 best_edge[2] = e_3

Check e₃:

score = 2.5 + 4.0 = 6.5 (> 1.4) No change!

Check e₄:

score = $2.5 + 2.1 = 4.6 (< \infty)$ best_score[3] = 4.6best_edge[3] = e_4

Initialize:

best score[0] = 0

Check e₁:

score = $0 + 2.5 = 2.5 (< \infty)$ best_score[1] = 2.5

 $best_edge[1] = e_1$

Check e₂:

score = $0 + 1.4 = 1.4 (< \infty)$ best_score[2] = 1.4 best_edge[2] = e_2

Check e₃:

score = 2.5 + 4.0 = 6.5 (> 1.4) No change!

Check e₄:

score = $2.5 + 2.1 = 4.6 (< \infty)$

 $best_score[3] = 4.6$

best_edge[3] $-e_4$

Check e₅:

score = 1.4 + 2.3 = 3.7 (< 4.6)

40

 $best_score[3] = 3.7$

best_edge[3] = e_5

Result of Forward Step

best_score = (0.0, 2.5, 1.4, 3.7)
best_edge = (NULL,
$$e_1$$
, e_2 , e_5)

Review: Viterbi Algorithm (Backward Step)


```
best_path = []
next_edge = best_edge[best_edge.length - 1]
while next_edge != NULL
   add next_edge to best_path
   next_edge = best_edge[next_edge.prev_node]
reverse best_path
```


Initialize:

```
best_path = []
next_edge = best_edge[3] = e_5
```


Initialize:

```
best_path = []
next_edge = best_edge[3] = e_5
```

Process e₅:

```
best_path = [e_5]
next_edge = best_edge[2] = e_2
```


Initialize:

best_path = [] next_edge = best_edge[3] = e_5

Process e₅:

best_path = $[e_5]$ next_edge = best_edge[2] = e_2

Process e₂:

best_path = $[e_5, e_2]$ next edge = best edge[0] = NULL

Initialize:

best_path = [] next_edge = best_edge[3] = e_5

Process e₅:

best_path = $[e_5]$ next_edge = best_edge[2] = e_2

Process e₅:

best_path = $[e_5, e_2]$ next_edge = best_edge[0] = NULL

Reverse:

best_path = $[e_2, e_5]$

• Find the score of best subtree of VP1,7

Find the score of best subtree of VP1,7


```
score(e<sub>1</sub>) =
  -log(P(VP → VBD NP PP)) +
  best_score[VBD1,2] +
  best_score[NP2,4] +
  best_score[NP2,7]

score(e<sub>2</sub>) =
  -log(P(VP → VBD NP)) +
```

best score[VBD1,2] +

best score[VBD2,7]

Find the score of best subtree of VP1,7


```
-log(P(VP \rightarrow VBD NP PP)) +
 best score[VBD1,2] +
 best score[NP2,4] +
 best score[NP2,7]
 -log(P(VP \rightarrow VBD NP)) +
 best score[VBD1,2] +
 best score[VBD2,7]
best_edge[VB1,7] = argmin_e1.e2 score
```


Find the score of best subtree of VP1,7

. . .

Building Hypergraphs from Grammars

Ok, we can solve hypergraphs, but what we have is:

<u>A Grammar</u>

A Sentence

```
P(S → NP VP) = 0.8

P(S → PRP VP) = 0.2

P(VP → VBD NP PP) = 0.6

P(VP → VBD NP)= 0.4

P(NP → DT NN) = 0.5

P(NP → NN) = 0.5

P(PRP → "I") = 0.4

P(VBD → "saw") = 0.05

P(DT → "a") = 0.6
```

I saw a girl with a telescope

How do we build a hypergraph?

- The CKY (Cocke-Kasami-Younger) algorithm creates and solves hypergraphs
- Grammar must be in Chomsky normal form (CNF)
 - All rules have two non-terminals or one terminal on right

<u>OK</u>	<u>OK</u>	Not OK!
$S \rightarrow NP VP$ $S \rightarrow PRP VP$ $VP \rightarrow VBD NP$	PRP → "I" VBD → "saw" DT → "a"	VP → VBD NP PP NP → NN NP → PRP

Can convert rules into CNF

```
VP \rightarrow VBD NP PP \rightarrow VP \rightarrow VBD VP' VP' \rightarrow NP PP \downarrow NP \rightarrow PRP + PRP \rightarrow "I" \rightarrow NP\_PRP \rightarrow "I"
```


Start by expanding all rules for terminals with scores

Expand all possible nodes for 0,2

Expand all possible nodes for 1,3

Expand all possible nodes for 0,3

 Find the S that covers the entire sentence and its best edge

Printing Parse Trees

Standard text format for parse tree: "Penn Treebank"

Printing Parse Trees

Hypergraphs printed recursively, starting at top:

Pseudo-Code

CKY Pseudo-Code: Read Grammar

```
# Read a grammar in format "lhs \t rhs \t prob \n"

make list nonterm # Make list of (lhs, rhs1, rhs2, prob)

make map preterm # Make a map preterm[rhs] = [ (lhs, prob) ...]

for rule in grammar_file

split rule into lhs, rhs, prob (with "\t") # Rule P(lhs → rhs)=prob

split rhs into rhs_symbols (with " ")

if length(rhs) == 1: # If this is a pre-terminal

add (lhs, log(prob)) to preterm[rhs]

else: # Otherwise, it is a non-terminal

add (lhs, rhs[0], rhs[1], log(prob)) to nonterm
```


CKY Pseudo-Code: Add Pre-Terminals

```
split line into words
make map best_score # index: sym_i, value = best log prob
make map best_edge # index: sym_i, value = (lsym_i, rsym_k,)
# Add the pre-terminal sym
for i in 0 .. length(words)-1:
    for lhs, log_prob in preterm where P(lhs → words[i]) > 0:
        best_score[lhs_i,i+1] = [log_prob]
```


CKY Pseudo-Code: Combine Non-Terminals

```
for j in 2 .. length(words): # j is right side of the span
                   # i is left side (Note: Reverse order!)
 for i in j-2 .. 0:
  for k in i+1 .. j-1: # k is beginning of the second child
    # Try every grammar rule log(P(sym → lsym rsym)) = logprob
    for sym, Isym, rsym, logprob in nonterm:
     # Both children must have a probability
     if best\_score[lsym_{i,k}] > -\infty and best\_score[rsym_{k,i}] > -\infty:
      # Find the log probability for this node/edge
      my_lp = best_score[lsym; ] + best_score[rsym; ] + logprob
      # If this is the best edge, update
      if my_lp > best_score[sym;;]:
        best_score[sym<sub>i,i</sub>] = my_lp
        best\_edge[sym_{ij}] = (lsym_{ik}, rsym_{ki})
```


CKY Pseudo-Code: Print Tree

PRINT(S_{0,length(words)}) # Print the "S" that spans all words

Exercise

Exercise

- Write cky.py
- Test the program
 - Input: test/08-input.txt
 - Grammar: test/08-grammar.txt
 - Answer: test/08-output.txt
- Run the program on actual data:
 - data/wiki-en-test.grammar, data/wiki-en-short.tok
- Visualize the trees
 - script/print-trees.py < wiki-en-test.trees
 - (Requires NLTK: http://nltk.org/)
- Challenge: think of a way to handle unknown words

Thank You!