ECE 342: Electronic Circuits (Spring 2020)

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Instructors: Kani, Zhou TAs: Seo, Huang, Shangguan

Homework 11 (Assigned: 4/24/2020; Due: 5/6/2020, 11:59pm)

1. Plot the loop gain Bode plot for the feedback systems with the following open-loop gain $H_{OL}(s)$ and feedback factor f. Determine loop-gain phase margin for all parts.

(a)
$$H_{OL}(s) = \frac{100}{1 + \frac{s}{10^5}}$$
; $f = 1$

(b)
$$H_{OL}(s) = \frac{200}{(1 + \frac{s}{10^4})(1 + \frac{s}{10^6})}$$
; $f = 1$

- (c) $H_{OL}(s)$ same as (b); but with f = 1/2
- (d) $H_{OL}(s)$ same as (b); but with f = 1/4

(e)
$$H_{OL}(s) = \frac{1000}{s(1 + \frac{s}{100})}$$
; $f = 1/10$

- (f) $H_{OL}(s)$ same as (e); but with f = 1/2
- (g) $H_{OL}(s)$ same as (e); but with f = 1

2. Design the CMOS realization of the boolean expressions shown below.

(a)
$$Y = \overline{A \cdot (B + C)}$$

(b)
$$Y = \overline{(A + (B \cdot C))}$$

(c)
$$Y = A \cdot B$$

(d)
$$Y = A \cdot \overline{B + C}$$

(e)
$$Y = \overline{A \cdot B + B \cdot C + C \cdot A}$$

(f)
$$Y = \overline{((A \cdot B) + C) \cdot (D + E)}$$

(g)
$$Y = \overline{((A+B)\cdot C + D\cdot E)}$$

(h)
$$Y = \overline{A + B + C}$$

ECE 342: Electronic Circuits (Spring 2020)

Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign

Instructors: Kani, Zhou

TAs: Seo, Huang, Shangguan

3. Consider the Inverter chain below:

Each inverter is identical to the others with $V_{OH} = 1V$, $V_{OL} = 0V$, $NM_L = 0.3V$, $NM_H = 0.5V$.

- (a) Sketch a piecewise linear plot of the VTC(Voltage Transfer Function).
- (b) True of False: if $V_i = V_{OL} + v_n$ with $|v_n| < NM_L$, then output $V_3 = V_{OH}$.
- (c) Determine V_3 if $V_i = V_{OL} + 0.4V$. Is the output V_3 correct? Does $V_3 \in \{V_{OH}, V_{OL}\}$?
- (d) Determine V_3 if $V_i = V_{OL} + 0.45V$. Is the output V_3 correct? Does $V_3 \in \{V_{OH}, V_{OL}\}$?
- (e) Which of the parts (b), (c), (d) demonstrate the noise-immunity property of the digital gates?
- (f) Which of the parts (b), (c), (d) demonstrate the restorative property of the digital gates?

4. Consider the CMOS inverter below:

Assume $V_{DD}=5V,\,k'_n=150\mu A/V^2$, $k'_p=75\mu A/V^2$, $(W/L)n=1,\,V_{THp}=-0.5V,\,V_{THn}=0.7V,\,C_L=0.5pF.$

- (a) Determine the values of (W/L)p such that V_M is 2.5V, 1.5V and 3.5V.
- (b) If (W/L)p = 2, determine V_M , t_{PLH} , t_{PHL} , and the dynamic power dissipation P_D when operating at maximum switching frequency (P_{Dmax}) .
- (c) If (W/L)p = 4 and (W/L)n = 2, then relative to your answer in part (b), how will V_M , t_{PLH} , t_{PHL} and P_{Dmax} change?