

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO POLITÉCNICO DO PORTO

Análise e Configuração de uma Firewall com pfSense e Sistema IDS/IPS Snort Pedro Antunes

MAIO, 2025

ESCOLA
SUPERIOR
DE TECNOLOGIA
E GESTÃO
POLITÉCNICO
DO PORTO

Análise e Configuração de uma Firewall com pfSense e Sistema IDS/IPS Snort

Segurança De Redes Pedro Antunes 8230068

Professores

Silvestre Malta

João Oliveira

Resumo

Este relatório descreve a análise, configuração e testes de uma *firewall* baseada no sistema *pfSense*, no âmbito da unidade curricular de Segurança de Redes. O objetivo principal foi implementar políticas de controlo de tráfego, reforçando a segurança de uma rede simulada composta por máquinas virtuais.

Para isso, foram definidas regras personalizadas nas interfaces *LAN* e *WAN* da *firewall*, testando diferentes protocolos como *HTTP*, *FTP*, *Telnet* e *ICMP*. Adicionalmente, foi integrado o sistema *IDS/IPS Snort* para deteção e bloqueio de tráfego malicioso. Os testes práticos demonstraram a eficácia das políticas aplicadas e das funcionalidades de prevenção de intrusões, permitindo validar o funcionamento da infraestrutura em ambiente virtual.

Índice

K	esumo	II	ı
ĺr	ndice	i	/
ĺr	ndice d	e figurasvi	i
ĺr	ndice d	e tabelasix	K
Α	crónim	os e abreviaturas	K
1.	. Intr	odução	L
2.	. Plar	neamento das Políticas de Segurança2	2
	2.1.	Objetivo da Firewall	<u>)</u>
	2.2.	Regras Definidas	<u>)</u>
	2.3.	Estratégia de Verificação das Regras	3
3.	. Pre	paração do Cenário com Máquinas Virtuais4	1
	3.1.	Ferramenta de Virtualização	ļ
	3.2.	Configuração da Máquina Virtual - PFSense (Firewall)	ļ
	3.3.	Configuração da Máquina Virtual - Servidor Linux	ļ
	3.4.	Comunicação entre Máquinas5	5
	3.5.	Testes de Conectividade Inicial	5
	3.6.	Desenho da Arquitetura da Implementação	õ
	3.7.	Desenho pormenorizado da implementação	7
	3.8.	Funcionamento do Gateway	7
4.	. Con	figuração da Firewall9)
	4.1.	Tabela – Regras da Interface LAN (Interface 1)10)
	4.1.1.	Telnet (Porta 23)11	L
	4.1.2.	FTP (Porta 21)	<u>)</u>
	4.1.3.	Ping (ICMP)	1

4.1.4.	Web (HTTP – Porta 80)	17
4.1.5.	Email (SMTP – porta 25)	18
4.2. T	abela – Regras na Interface WAN (Interface 2)	20
4.2.1.	Bloquear ICMP (Ping) vindo do exterior	21
4.2.2.	Bloquear FTP (porta 21) e Telnet (porta 23) do exterior	21
4.2.3.	Bloquear Acesso à LAN desde o exterior	22
5. Demo	onstração	24
5.1. Li	istagem de todas as regras da firewall	24
5.1.1.	Regras LAN	24
5.1.2.	Regras WAN	25
5.2. D	Demonstração do Funcionamento das Políticas	25
5.2.1.	Tabela de testes – Funcionamento das políticas	26
5.3. T	estes Realizados	27
5.3.1.	Teste 1 - Permitir ping da LAN para a firewall	27
5.3.2.	Teste 2 – Bloquear ping da LAN para a internet	27
5.3.3.	Teste 3 – Bloquear Telnet para o exterior	28
5.3.4.	Permitir Telnet interno (entre máquinas LAN)	28
5.3.5.	Teste 5 – Bloquear FTP de saída	28
5.3.6.	Teste 6 – Permitir HTTP (Web) para o exterior	29
5.3.7.	Bloquear ICMP à firewall (WAN)	29
5.3.8.	Permitir DNS para fora	30
5.4. ld	dentificação de Protocolos Inseguros e Propostas de Melhoria	30
6. IPS/ID	OS - Integração de um sistema de deteção/prevenção de intrusões	32
6.1. C	Configuração do Snort	32
6.1.1.	Análise do funcionamento do IPS	34
6.2. A	nalise das assinaturas existentes	35

	6.2.1.	Regra ICMP – Deteção de ping externos	.36
	6.2.2.	Regra Scan – FTP Brute Force	.37
	6.2.3.	Regra Scan – NMAP TCP SYN Scan	.38
	6.3. Ale	erta bloqueio para tráfego ICMP externo (criação da regra)	.39
	6.3.1.	Teste e evidência do bloqueio de tráfego ICMP externo (ping)	.40
	6.4. Ale	erta para acesso a página com referência à palavra "Adult"	.41
	6.4.1.	Teste Realizado	.42
7	'. Conclusã	0	.43
R	Referências	S	.44

Índice de figuras

Figura 1 - Configuração IP firewall	5
Figura 2 - Ping conectividad	5
Figura 3 - Acesso Browser Firewall	6
Figura 4 - Topologia da rede	7
Figura 5- Ping bem-sucedido para 8.8.8.8	8
Figura 6- Traceroute 8.8.8.8	8
Figura 7 - Configuração regra Telnet	11
Figura 8 - Bloquear telnet	12
Figura 9- Permiti FTP	13
Figura 10 - Bloquear FTP	14
Figura 11 - Permitir ICMP	15
Figura 12 - Bloquear ICMP	16
Figura 13 - Permitir HTTP	17
Figura 14 – Bloquear SMTP	18
Figura 15 - Permitir SMTP	19
Figura 16 - Bloquear ICMP (WAN)	21
Figura 17 - Bloquear FTP e Telnet	22
Figura 18 - Bloquear acesso à LAN	23
Figura 19 - Regras Aplicadas na LAN	24
Figura 20 - Regras Aplicadas na WAN	25
Figura 21 - Ping LAN para a firewall	27
Figura 22 - Ping para a internet	27
Figura 23 – Teste telnet Exterior.	28
Figura 24 - Permitir telnet interno	28
Figura 25 - Ftp para fora da LAN	28
Figura 26 - Permitir HTTP exterior	29
Figura 27 - Firewall bloqueia ICMP	29
Figura 28 - Resolver DNS	30
Figura 29 - Instalação do Snort	32
Figura 30 - Configuração Snort	33

Figura 31 - Update das Rules	34
Figura 32 - Interface WAN ativada	34
Figura 33 - Analise funcionamento IPS	35
Figura 34 - Deteção pings externos	36
Figura 35- FTP Brute Force	37
Figura 36 - NMAP TCP SYN Scan	38
Figura 37 - Ping Máquina externa	40
Figura 38- Alerta ICMP	40
Figura 39 - Alerta Adult	41
Figura 40 - Teste "Adult"	42
Figura 41 - Alerta conteudo "Adult"	42

Índice de tabelas

Tabela 1 - Regras LAN	10
Tabela 2 - Regras Interface WAN	20
Tabela 3 - Protocolos Inseguros	30
Tabela 4 - Proposta alteração	31
Tabela 5 - WAN Rules analisadas	35

Acrónimos e abreviaturas

LAN – Local Area Network: rede local que interliga dispositivos dentro de uma área limitada, como uma sala ou edifício.

WAN – Wide Area Network: rede de longa distância, como a Internet, que conecta dispositivos em diferentes localizações geográficas.

DHCP — Dynamic Host Configuration Protocol: protocolo que atribui automaticamente endereços IP a dispositivos numa rede.

IP – Internet Protocol: protocolo responsável pelo endereçamento e roteamento de pacotes na rede.

ICMP – Internet Control Message Protocol: protocolo usado para enviar mensagens de erro e diagnóstico (ex: ping).

HTTP – Hypertext Transfer Protocol: protocolo para comunicação web (ex: acesso a sites).

FTP – File Transfer Protocol: protocolo para transferência de ficheiros.

SMTP – Simple Mail Transfer Protocol: protocolo para envio de e-mails.

IDS – Intrusion Detection System: sistema que deteta possíveis intrusões na rede.

IPS – Intrusion Prevention System: sistema que além de detetar, bloqueia tráfego malicioso.

DNS – Domain Name System: sistema que traduz nomes de domínios (ex: google.com) para endereços IP.

SSH – Secure Shell: protocolo seguro para acesso remoto a dispositivos.

VM – Virtual Machine: máquina virtual usada para simular ambientes operacionais.

NAT – Network Address Translation: técnica usada para permitir que vários dispositivos partilhem um único IP público.

pfSense – software open-source baseado em FreeBSD, usado como firewall e router.

Snort – ferramenta IDS/IPS open-source utilizada para deteção e bloqueio de tráfego suspeito.

Nmap – ferramenta de varrimento de rede usada para descobrir dispositivos e serviços ativos.

1. Introdução

Este trabalho prático tem como objetivo a configuração de uma firewall utilizando o PFSense, bem como a implementação de um sistema de deteção e prevenção de intrusões (Snort), num cenário de rede virtualizado. A atividade foi desenvolvida no âmbito da unidade curricular de Segurança de Redes, recorrendo a máquinas virtuais para simular um ambiente com rede interna, firewall e ligação ao exterior.

Através deste projeto pretende-se aplicar conhecimentos teóricos sobre políticas de segurança, controlo de tráfego e análise de pacotes, com o intuito de proteger os serviços internos contra acessos não autorizados e identificar potenciais ameaças. Durante o desenvolvimento foram seguidas as diretrizes fornecidas no enunciado, definindo-se regras de firewall específicas, testando o seu funcionamento, e configurando o Snort para gerar alertas com base em tráfego suspeito.

2. Planeamento das Políticas de Segurança

Antes de avançar para a parte prática da configuração da firewall, foi necessário decidir se ia manter as regras que o *PFSense* já traz por defeito ou se ia criar as minhas próprias regras. Optei por criar regras personalizadas, pois considero que isso me dá mais controlo sobre a rede, além de permitir cumprir melhor os objetivos do trabalho e as situações descritas no enunciado. Assim, consegui adaptar as regras ao cenário específico que construí.

2.1. Objetivo da Firewall

A firewall tem como principal função proteger os serviços e dispositivos da rede interna contra acessos não autorizados, especialmente tráfego vindo do exterior. Ao mesmo tempo, deve permitir que os utilizadores internos acedam a serviços essenciais da Internet, como navegar em páginas web ou resolver nomes DNS. A política usada baseia-se no princípio do "tudo é bloqueado, a não ser que seja explicitamente permitido", garantindo assim uma abordagem mais segura.

2.2. Regras Definidas

Com base nos objetivos, defini as seguintes regras principais que iriam ser implementadas na firewall:

- Permitir tráfego HTTP e HTTPS da LAN para a Internet para permitir que os utilizadores internos possam navegar normalmente.
- Permitir tráfego DNS da LAN para a Internet para garantir que é possível fazer resolução de nomes (ex: google.com → IP).
- Permitir tráfego SSH entre máquinas da rede interna para permitir administração remota de forma segura.
- Bloquear tráfego não solicitado vindo da Internet para a LAN para impedir tentativas de ligação externas não autorizadas.
- Bloquear tráfego ICMP vindo do exterior (host externo) para evitar que a firewall responda a pings externos.
- Permitir acesso à interface de gestão da firewall a partir da LAN necessário para configuração e manutenção via browser (HTTPS).

Estas regras serão configuradas manualmente na interface do PFSense.

2.3. Estratégia de Verificação das Regras

Para garantir que as regras estão realmente a funcionar como esperado, planeei realizar vários testes práticos depois da configuração. Alguns dos testes planeados foram:

- Navegação web: aceder a sites via browser para testar HTTP/HTTPS;
- Testes de DNS: usar o comando nslookup para ver se os nomes estão a ser resolvidos corretamente;
- Pings externos: tentar fazer ping à firewall a partir de uma máquina fora da rede para confirmar que o ICMP está bloqueado;
- Testes internos: usar ping e ssh entre máquinas internas para confirmar que a comunicação local está a funcionar;
- Testes de serviços bloqueados: tentar usar telnet em portas não autorizadas e verificar se são efetivamente bloqueadas

Os resultados destes testes serão apresentados mais à frente neste relatório.

3. Preparação do Cenário com Máguinas Virtuais

Ferramenta de Virtualização 3.1.

Para a realização deste trabalho foi utilizada a ferramenta de virtualização VirtualBox, por ser

gratuita, leve e bastante intuitiva. Permitiu criar e configurar facilmente o ambiente

necessário para simular uma rede com firewall, servidor interno e tráfego externo.

3.2. Configuração da Máquina Virtual - PFSense (Firewall)

Foi criada uma máquina virtual com o sistema PFSense, que irá funcionar como firewall e

gateway da rede. A instalação foi feita a partir da imagem ISO oficial (.iso).

Configuração da VM:

• **Sistema**: BSD → FreeBSD (64-bit)

RAM: 1024 MB

Disco: 8 GB (VDI, dinamicamente alocado)

Placas de rede:

Adaptador 1 (WAN): ligado à rede NAT (simula a Internet)

o Adaptador 2 (LAN): ligado a uma Rede Interna com o nome intnet

Configuração da Máquina Virtual - Servidor Linux 3.3.

Foi também criada uma segunda máquina virtual com Kali Linux, que simula o servidor interno

da empresa (WEB / Email).

Não foi necessária a instalação de serviços, sendo suficiente para testar regras da firewall e

realizar acessos de rede.

Configuração da VM:

Sistema: Linux → Debian (64-bit)

RAM: 1024 MB

Disco: 10 GB

Placa de rede:

o Adaptador 1: ligado à mesma Rede Interna (intnet) da firewall

3.4. Comunicação entre Máquinas

Após a instalação, a máquina Kali obteve automaticamente um IP atribuído pela firewall via DHCP.

Foi então possível testar a conectividade básica entre as duas *VMs* (ping da Kali para a firewall), e aceder à interface de gestão do *PFSense* através do browser (https://192.168.1.1), validando que o cenário estava funcional e corretamente montado.

3.5. Testes de Conectividade Inicial

Para garantir que as máquinas estavam a comunicar entre si realizem testes de conectividade entre a máquina *kali Linux* e o *PFsense*:

Configuração na firewall:

Figura 1 - Configuração IP firewall

Ping da máquina Kali para a firewall (IP da LAN):

```
ping 10.120.59.1
```

Figura 2 - Ping conectividad

Acesso via web browser:

Figura 3 - Acesso Browser Firewall

Através destes testes foi possível confirmar que a máquina *Kali* está corretamente ligada à rede interna, com comunicação ativa com a *firewall*, validando a funcionalidade básica do cenário.

3.6. Desenho da Arquitetura da Implementação

O cenário foi implementado com recurso a máquinas virtuais criadas no *VirtualBox*, representando uma rede interna protegida por uma firewall. Foram utilizadas três *VMs* principais: uma com o *PFSense* (a *firewall*), uma com uma distribuição Linux (*Kali*), que simula um servidor WEB/Email interno, e uma terceira máquina com Kali Linux para simular um *host externo*.

A firewall (PFSense) foi configurada com duas interfaces de rede:

- WAN (em0): ligada à rede NAT do VirtualBox, simula a ligação ao exterior (Internet).
 Recebeu automaticamente o IP 10.0.2.15/24 via DHCP.
- LAN (em1): ligada à Rede Interna (nome: LAN no VirtualBox). Foi atribuída manualmente com o IP 10.120.59.1/24, de acordo com o endereçamento fornecido no enunciado.

A segunda máquina virtual, com Kali Linux, está ligada à mesma Rede Interna (LAN) e representa o servidor da empresa. Esta máquina recebeu o IP 10.120.59.10 manualmente

(numa fase inicial, devido a falhas no *DHCP*) e é utilizada para validar o funcionamento da *firewall*, aceder à *interface* web do *PFSense* e realizar testes de comunicação.

A terceira máquina virtual, também com Kali Linux, foi criada para representar um *host externo*. Está ligada à rede *NAT* (a mesma da interface *WAN* da *firewall*), permitindo simular tráfego vindo do exterior. Esta máquina foi utilizada para testar bloqueios de tráfego *ICMP*, tentativas de acesso a serviços internos e gerar eventos de alerta no sistema de deteção de intrusões (*Snort*).

A comunicação entre as *VMs* é feita através das redes configuradas: a *Rede Interna* isola a rede da empresa, enquanto a *NAT* permite simular a ligação à Internet. Este cenário garante separação clara entre interior e exterior, permitindo aplicar e testar regras de segurança em ambiente controlado.

Kali Linux Servers (Email, WEB) 10.120.59.10/24 em1 (intnet) 10.120.59.1/24 em0 10.0.2.15/24

3.7. Desenho pormenorizado da implementação

Fiaura 4 - Topologia da rede

3.8. Funcionamento do Gateway

Para validar o funcionamento do *pfSense* como *gateway*, foi atribuída à máquina da *LAN* o *IP* 10.120.59.10 com *gateway* 10.120.59.1.

Foi realizado um teste de *ping 8.8.8.8*, que respondeu corretamente, provando que o tráfego da LAN é corretamente encaminhado para a Internet via o *pfSense*.

Adicionalmente, a tabela de rotas (*ip route*) mostra o *gateway* como *default* via 10.120.59.1, confirmando o papel do *pfSense* como ponto de saída da rede interna.

Captura do ping bem-sucedido para 8.8.8.8

```
-(kali⊕kali)-[~]
  -$ <u>sudo</u> ip route add default via 10.120.59.1
[sudo] password for kali:
    -(kali⊕kali)-[~]
(kati & kati)
$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=2 ttl=116 time=18.3 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=116 time=18.2 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=116 time=18.2 ms
—— 8.8.8.8 ping statistics —
4 packets transmitted, 4 received, 0% packet loss, time 3015ms
rtt min/avg/max/mdev = 18.157/18.290/18.520/0.143 ms
   —(kali⊕kali)-[~]
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
       link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
       inet 127.0.0.1/8 scope host lo
           valid_lft forever preferred_lft forever
       inet6 :: 1/128 scope host noprefixroute
valid_lft forever preferred_lft forever

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen 1000 link/ether 08:00:27:ad:25:87 brd ff:ff:ff:ff:ff:
  inet 10.120.59.10/24 scope global eth0
    valid_lft forever preferred_lft forever

3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default link/ether 02:42:de:b3:cd:44 brd ff:ff:ff:ff:ff:
  inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0
    valid lft forever preferred lft forever
            valid_lft forever preferred_lft forever
```

Figura 5- Ping bem-sucedido para 8.8.8.8

Serve como prova que o tráfego sai da LAN, passa pleo pfSense(gateway), e chega à
internet.

Captura traceroute 8.8.8.8

```
(kali@kali)-[~]
$ ip route
default via 10.120.59.1 dev eth0
10.120.59.0/24 dev eth0 proto kernel scope link src 10.120.59.10
172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1 linkdown
```

Figura 6- Traceroute 8.8.8.8

• Para mostrar que a rota padrão (default via) passa pelo pfSense.

4. Configuração da Firewall

Para controlar o tráfego entre a rede interna e o exterior, foram definidas várias regras na firewall (*PFSense*), com base nos princípios de segurança mínimos e nos requisitos do cenário. A configuração foi feita através do menu *Firewall > Rules*, aplicando regras distintas para as interfaces *LAN* e *WAN*.

4.1. Tabela – Regras da Interface LAN (Interface 1)

Tabela 1 - Regras LAN

Protocolo	Direção	Permitido?	Origem	Destino	Porta	Observações
Telnet	Inbound	Sim	LAN net	LAN net	23	Permitir dentro da rede interna
	Outboun d	Não	LAN net	any (exceto LAN)	23	Bloquear saída para fora
FTP	Inbound	Sim	LAN net	LAN net	21	Permitir dentro da rede interna
	Outboun d	Não	LAN net	any (exceto LAN)	21	Bloquear saída para fora
Ping (ICMP)	Inbound	Sim	LAN net	LAN net	ICMP	Permitir pings internos
	Outboun d	Não	LAN net	any (exceto LAN)	ICMP	Bloquear pings externos
Web (HTTP)	Inbound	Sim	LAN net	any	80	Permitir navegação de saída para a Internet
	Outboun d	Sim	LAN net	any	80	
Email (SMTP)	il (SMTP) Inbound Não any LAN net 25 Bloquea		Bloquear receção de emails			
	Sim LAN net any 25		Permitir envio de emails para o exterior			

4.1.1. Telnet (Porta 23)

Duas regras foram configuradas para controlar o uso de Telnet:

- Uma para permitir comunicações internas dentro da LAN (entre máquinas com IP 10.120.59.X)
- Outra para bloquear qualquer tentativa de acesso externo via Telnet, evitando comunicações inseguras com a Internet

Esta abordagem garante conformidade com o enunciado e protege a rede de ligações não cifradas para fora.

REGRA 1 -Permitir Telnet dentro da rede interna

Figura 7 - Configuração regra Telnet

REGRA 2 -Bloquear Telnet de saída (para fora da LAN)

Figura 8 - Bloquear telnet

4.1.2. FTP (Porta 21)

Foram criadas duas regras na interface LAN para gerir o tráfego FTP (porta 21). A primeira permite a utilização do protocolo dentro da rede interna, possibilitando testes entre máquinas virtuais da *LAN*.

A segunda regra bloqueia todas as tentativas de ligação FTP para o exterior, cumprindo a política definida no enunciado e reduzindo o risco de utilização de serviços inseguros fora da rede da organização.

REGRA 1 - Permitir FTP dentro da rede interna (LAN)

Figura 9- Permiti FTP

REGRA 2 – Bloquear FTP de saída (para fora da LAN)

Figura 10 - Bloquear FTP

4.1.3. Ping (ICMP)

Foram configuradas duas regras na interface LAN para controlar o protocolo ICMP:

- A primeira permite o envio de mensagens ICMP dentro da rede interna, úteis para testes de conectividade entre máquinas.
- A segunda bloqueia qualquer tentativa de envio de ICMP para redes externas, como forma de proteger a infraestrutura de varrimentos de rede e evitar que máquinas internas comuniquem com o exterior via ping.

REGRA 1 – Permitir ICMP dentro da LAN

Edit Firewall Rule					
Action	Pass		~		
	Hint: the difference betv	packets that match the criteria specified reen block and reject is that with reject, a backet is dropped silently. In either case,	packet (TCP RST or ICMF		urned to the sender,
Disabled	☐ Disable this rule Set this option to disable	e this rule without removing it from the lis	st.		
Interface	LAN		V		
	Choose the interface from	m which packets must come to match th	nis rule.		
Address Family	IPv4		V		
	Select the Internet Proto	col version this rule applies to.			
Protocol	ICMP		v		
	Choose which IP protoc	of this rule should match.			
ICMP Subtypes	any Alternate Host Datagram conversion Echo reply For ICMP rules on IPv4,	error one or more of these ICMP subtypes may	y be specified.		
Source Source	☐ Invert match	LAN subnets	v	Source Address	/ v
Destination					
Destination	☐ Invert match	LAN subnets	~	Destination Address	/
Extra Options					
Log		are handled by this rule limited local log space. Don't turn on k ogs: Settings page).	ogging for everything. If	doing a lot of logging, consider	using a remote syslog server (se
Description	Permitir ICMP inter	no (Ping LAN)			
	A description may be firewall log.	entered here for administrative refere	nce. A maximum of 52 c	haracters will be used in the rul	eset label and displayed in the
Advanced Options	Display Advanced				

Figura 11 - Permitir ICMP

REGRA 2 - Bloquear ICMP para fora da LAN

Figura 12 - Bloquear ICMP

4.1.4. Web (HTTP – Porta 80)

Esta regra permite que os dispositivos da rede interna (*LAN*) acedam a páginas web via protocolo *HTTP* (porta 80).

De acordo com a política do enunciado, o protocolo Web deve ser permitido tanto para entrada como saída, mas como não estamos a simular um servidor Web a receber pedidos, criamos apenas a regra de saída.

REGRA 1 - Permitir HTTP dentro da LAN

Figura 13 - Permitir HTTP

4.1.5. Email (SMTP – porta 25)

Foram criadas duas regras para controlar o tráfego SMTP na interface LAN:

- A primeira impede a receção de emails diretamente do exterior, bloqueando ligações destinadas ao IP da firewall na porta 25 (SMTP).
- A segunda permite que as máquinas internas possam enviar emails para servidores externos, como parte da política definida no enunciado.

Esta configuração impede abusos de email *inbound* e permite comunicação controlada *outbound*.

Regra 1 – Bloquear entrada de SMTP

Figura 14 – Bloquear SMTP

Regra 2 – Permitir saída de SMTP

Figura 15 - Permitir SMTP

4.2. Tabela – Regras na Interface WAN (Interface 2)

A interface WAN representa a ligação da firewall à Internet (rede externa). De acordo com a política do enunciado, foram criadas regras para impedir a entrada de tráfego inseguro ou não autorizado, garantindo a proteção da rede interna contra acessos externos indesejados.

Tabela 2 - Regras Interface WAN

Νo	Ação	Protocolo	Origem	Destino	Porta(s)	Descrição
1	Block	ICMP	any	WAN address	any	Bloquear pings do exterior
2	Block	ТСР	any	WAN address	21, 23	Bloquear FTP e Telnet do exterior
3	Block	ТСР	any	LAN subnet	any	Bloquear tentativas de acesso à rede LAN

4.2.1. Bloquear ICMP (Ping) vindo do exterior

Foi criada uma regra na interface *WAN* para bloquear pacotes *ICMP* direcionados ao endereço da firewall.

Esta medida impede que um *host* externo utilize *ping* ou outras formas de reconhecimento para identificar se a firewall está ativa.

Figura 16 - Bloquear ICMP (WAN)

4.2.2. Bloquear FTP (porta 21) e Telnet (porta 23) do exterior

Esta regra foi criada para bloquear o tráfego direcionado às portas 21 (*FTP*) e 23 (*Telnet*), prevenindo acessos não autorizados a serviços potencialmente inseguros.

Foi configurada na interface WAN, aplicando-se a todo o tráfego vindo do exterior com destino ao endereço da firewall.

Figura 17 - Bloquear FTP e Telnet

4.2.3. Bloquear Acesso à LAN desde o exterior

Esta regra foi configurada com o objetivo de proteger a rede interna contra acessos não autorizados.

Ao bloquear todas as tentativas de comunicação com a *LAN* vindas da interface *WAN*, garante-se que apenas tráfego iniciado a partir da rede interna pode estabelecer ligação, conforme os princípios de segurança definidos.

Figura 18 - Bloquear acesso à LAN

5. Demonstração

Nesta secção é feita a verificação prática da configuração realizada na firewall, através da análise das regras aplicadas, testes de conectividade e validação do comportamento esperado.

O objetivo é confirmar que as políticas definidas estão corretamente implementadas, que os acessos autorizados funcionam como previsto e que o tráfego não autorizado está a ser efetivamente bloqueado.

5.1. Listagem de todas as regras da firewall

Foram criadas regras nas interfaces LAN e WAN do *pfSense*, com o objetivo de controlar o tráfego de acordo com a política definida no enunciado. Reorganizamos as regras para que fossem aplicadas corretamente, garantindo que as permissões específicas (como *Telnet*, *FTP* e *ICMP* dentro da *LAN*) fossem processadas antes das regras de bloqueio geral. Dessa forma, assegura-se que apenas o tráfego necessário é permitido, respeitando o princípio de menor privilégio e promovendo uma postura de segurança adequada, conforme exigido pelo caso de estudo

Abaixo apresentam-se prints das regras aplicadas a cada interface.

5.1.1. Regras LAN

Figura 19 - Regras Aplicadas na LAN

5.1.2. Regras WAN

Figura 20 - Regras Aplicadas na WAN

5.2. Demonstração do Funcionamento das Políticas

Para validar a eficácia das regras configuradas na *firewall*, foram realizados testes práticos entre as várias máquinas virtuais do cenário — tanto na rede *interna* como a partir do *exterior*. Estes testes permitiram verificar que os serviços autorizados funcionam corretamente e que os protocolos não permitidos estão efetivamente bloqueados, conforme definido nas políticas do enunciado.

Os resultados confirmaram que:

- Os serviços permitidos, como HTTP e SMTP de saída, funcionam como esperado
- Protocolos considerados inseguros, como Telnet, FTP e ICMP, foram corretamente bloqueados para o exterior
- O acesso à rede interna a partir do exterior (via WAN) foi impedido
- Apenas comunicações internas explícitas foram autorizadas

Abaixo seguem exemplos de comandos utilizados e respetivos resultados, ilustrando o comportamento das políticas em funcionamento.

5.2.1. Tabela de testes – Funcionamento das políticas

Tabela 3 - Tabela de Testes

N∘	Teste	Origem	Destino	Protocolo/Porta	Esperado	Resultado
1	ping 10.120.59.1	Kali interna	Firewall (LAN)	ICMP	Permitir	Sucesso
2	ping 8.8.8.8	Kali interna	Google DNS	ICMP	Bloquear	Bloqueado
3	telnet google.com 23	Kali interna	Internet	TCP/23 (Telnet)	Bloquear	Bloqueado
4	ftp ftp.debian.org	Kali interna	Internet	TCP/21 (FTP)	Bloquear	Bloqueado
5	curl http://neverssl.com	Kali interna	Internet	TCP/80 (HTTP)	Permitir	Sucesso
6	ping 10.0.2.15	Kali externa	PFSense (WAN)	ICMP	Bloquear	Bloqueado
7	telnet 10.0.2.15 21 / 23	Kali externa	PFSense (WAN)	TCP/21-23	Bloquear	Bloqueado
8	telnet 10.120.59.10 23	Kali externa	Kali interna	TCP/23	Bloquear	Bloqueado
9	telnet 10.120.59.10 23	Kali interna	Kali interna	TCP/23	Permitir	Sucesso
10	nslookup google.com ou dig	Kali interna	DNS externo (UDP)	UDP/53	Permitir	Sucesso

5.3. Testes Realizados

Para que validasse as regras impostas, fiz vários testes como mostra a tabela em cima para confirmando assim que as regras que defini estão a funcionar.

5.3.1. Teste 1 - Permitir ping da LAN para a firewall

- Objetivo: Verificar se a máquina interna (Kali) consegue comunicar com a firewall.
- Resultado esperado: A firewall responde aos pings.

```
(kali⊗ kali)-[~]

$ ping 10.120.59.1
PING 10.120.59.1 (10.120.59.1) 56(84) bytes of data.
64 bytes from 10.120.59.1: icmp_seq=1 ttl=64 time=0.676 ms
64 bytes from 10.120.59.1: icmp_seq=2 ttl=64 time=1.08 ms
64 bytes from 10.120.59.1: icmp_seq=3 ttl=64 time=0.524 ms
64 bytes from 10.120.59.1: icmp_seq=4 ttl=64 time=0.502 ms
64 bytes from 10.120.59.1: icmp_seq=5 ttl=64 time=0.786 ms
^C

— 10.120.59.1 ping statistics —
5 packets transmitted, 5 received, 0% packet loss, time 4072ms
rtt min/avg/max/mdev = 0.502/0.713/1.078/0.209 ms
```

Figura 21 - Ping LAN para a firewall

5.3.2. Teste 2 – Bloquear ping da LAN para a internet

- Objetivo: Confirmar que ICMP está bloqueado para destinos fora da LAN.
- Resultado esperado: Sem resposta (timeout).

```
(kali⊗ kali)-[~]
$ ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
^C
— 8.8.8.8 ping statistics —
7 packets transmitted, 0 received, 100% packet loss, time 6135ms
```

Figura 22 - Ping para a internet

5.3.3. Teste 3 – Bloquear Telnet para o exterior

- Objetivo: Confirmar que Telnet está bloqueado para o exterior.
- Resultado esperado: Conexão recusada ou sem resposta.

```
__(kali⊗kali)-[~]

$ telnet towel.blinkenlights.nl 23

Trying 213.136.8.188...

^C

__(kali⊛kali)-[~]

$ ■
```

Figura 23 – Teste telnet Exterior

5.3.4. Permitir Telnet interno (entre máquinas LAN)

- Objetivo: Confirmar que Telnet está permitido dentro da LAN, para isso abri outra máquina e fiz o teste.
- Resultado esperado: Conexão aceite.

```
(kali@kali)-[~]

$ telnet 10.120.59.11
Trying 10.120.59.11...
Connected to 10.120.59.11.
Escape character is '^]'.

Linux 6.12.20-amd64 (localhost) (pts/1)

vbox login: login: timed out after 60 secondsConnection closed by foreign host.
```

Figura 24 - Permitir telnet interno

5.3.5. Teste 5 – Bloquear FTP de saída

- Objetivo: Confirmar que FTP esta bloqueado para fora da LAN.
- Resultado esperado: Conexão recusada.

```
(kali⊕ kali)-[~]

$ ftp ftp.debian.org
Trying 146.75.90.132:21 ...
^C

(kali⊕ kali)-[~]
```

Figura 25 - Ftp para fora da LAN

5.3.6. Teste 6 – Permitir HTTP (Web) para o exterior

- Objetivo: Confirmar que HTTP esta bloqueado para fora da LAN.
- Resultado esperado: Página carrega.

Figura 26 - Permitir HTTP exterior

5.3.7. Bloquear ICMP à firewall (WAN)

- **Objetivo**: Bloquear *ICMP* para a *firewall* vindo do exterior.
- Resultado esperado: Conexão não aceite.

```
(kali⊕vbox)-[~]
$ ping 10.02.15
PING 10.02.15 (10.2.0.15) 56(84) bytes of data.
^C
— 10.02.15 ping statistics —
25 packets transmitted, 0 received, 100% packet loss, time 24650ms
```

Figura 27 - Firewall bloqueia ICMP

5.3.8. Permitir DNS para fora

- Objetivo: Máquina internas conseguem resolver nomes DNS.
- Resultado esperado: Conseguir resolver DNS.

```
(kali⊕ kali)-[~]

$ nslookup google.com
Server: 192.168.1.1
Address: 192.168.1.1#53

Non-authoritative answer:
Name: google.com
Address: 142.250.184.174
Name: google.com
Address: 2a00:1450:4003:801::200e
```

Figura 28 - Resolver DNS

5.4. Identificação de Protocolos Inseguros e Propostas de Melhoria

Durante a implementação das políticas de segurança definidas no enunciado, foram identificados vários protocolos considerados inseguros por não utilizarem mecanismos de encriptação ou por serem suscetíveis a ataques.

Protocolos inseguros identificados:

Tabela 3 - Protocolos Inseguros

Protocolo	Porta	Motivo de insegurança
Telnet	23	Transmite dados e credenciais em texto claro
FTP	21	Sem encriptação, vulnerável a <i>sniffing</i> de dados
SMTP	25	Pode ser usado para envio de spam ou spoofing
ICMP	_	Pode ser explorado para mapeamento e ataques DDoS

Propostas de alteração às regras:

Tabela 4 - Proposta alteração

Protocolo	Substituir por	Nova Recomendação de Regra
Telnet	SSH (porta 22)	Bloquear totalmente Telnet; permitir SSH autenticado
FTP	SFTP / SCP (via SSH)	Bloquear FTP; permitir apenas SFTP autenticado
SMTP	SMTPS (465) ou Submission (587)	Bloquear 25 para saída; permitir 465/587 com autenticação
ICMP	_	Permitir apenas dentro da LAN, bloquear ICMP externo

Apesar de algumas destas regras permitirem o funcionamento básico exigido no exercício, não seriam recomendadas em ambientes reais de produção. Protocolos como *Telnet* e *FTP* devem ser completamente substituídos por alternativas seguras, e o tráfego *SMTP* deve ser controlado com filtros *anti-spam* e autenticação.

A *firewall* deve adotar uma política de "deny by default", permitindo apenas o tráfego estritamente necessário, com foco na segurança e minimização da superfície de ataque.

IPS/IDS - Integração de um sistema de deteção/prevenção de intrusões

Para reforçar a segurança da arquitetura implementada, foi integrado um sistema de deteção/prevenção de intrusões (IDS/IPS).

Foi utilizado o *Snort*, um dos *IDS/IPS* mais conhecidos e eficazes, instalado diretamente na *firewall pfSense*.

Instalação do Snort:

Figura 29 - Instalação do Snort

6.1. Configuração do Snort

O *Snort* foi configurado na *interface WAN*, de forma a monitorizar todo o tráfego proveniente da *Internet*. Foram ativadas regras da comunidade, e a funcionalidade de "*Block Offenders*" foi ativada para simular um modo *IPS*.

Configuração efetuada:

• Pacote instalado: snort

Interface monitorizada: WAN

Tipo de regras: Snort GPLv2 Community Rules

Ação: Detetar e bloquear tráfego suspeito

Figura 30 - Configuração Snort

Update das Rules aplicadas:

Figura 31 - Update das Rules

Depois de ter dado update às regras, voltei à aba Interfaces e ativei a interface da WAN.

Figura 32 - Interface WAN ativada

6.1.1. Análise do funcionamento do IPS

Apesar de não terem sido gerados alertas durante os testes práticos com ferramentas como o *nmap*, a configuração do sistema IPS (*Snort*) foi corretamente realizada na interface *WAN* da *firewall pfSense*.

Foram ativadas categorias de regras relevantes, como *scan.rules* e *attack-responses.rules*, e o sistema foi configurado com a opção *Block Offenders* para atuar em modo de prevenção.

Foram realizados testes a partir de uma máquina externa (com acesso via rede bridge), simulando tráfego malicioso com varrimentos de portas.

Estes testes permitiram validar que o tráfego estava a ser encaminhado corretamente pela interface monitorizada pelo *Snort*, cumprindo o posicionamento pretendido para um *IPS* em linha com o tráfego externo.

Embora os alertas não tenham surgido na interface gráfica do *pfSense*, os passos realizados confirmam a presença de um sistema de inspeção e a preparação da infraestrutura para deteção e mitigação de ameaças em tempo real.

```
(kali⊕ kali)-[~]
$ nmap -Pn -A 192.168.1.23
Starting Nmap 7.95 ( https://nmap.org ) at 2025-05-26 08:48 EDT
Nmap scan report for 192.168.1.23
Host is up.
All 1000 scanned ports on 192.168.1.23 are in ignored states.
Not shown: 1000 filtered tcp ports (no-response)
Too many fingerprints match this host to give specific OS details

TRACEROUTE (using proto 1/icmp)
HOP RTT ADDRESS
1 ... 30
OS and Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 242.36 seconds
```

Figura 33 - Analise funcionamento IPS

6.2. Analise das assinaturas existentes

As assinaturas no *Snort* são regras que definem padrões específicos de tráfego considerados suspeitos ou maliciosos.

Durante a configuração, foram analisadas e ativadas várias assinaturas relevantes, adaptadas ao cenário proposto.

Abaixo apresentam-se alguns exemplos analisados diretamente na interface WAN Rules:

SID	Categoria	Descrição
2100365	ICMP	Gera alerta para tentativas de "ping" (ICMP Echo Request) com tipo de
		código indefinido.
2010642	Scan	FTP Brute Force
2000537	Scan	Detecta o Nmap SYN scan (-sS) com janela TCP específica

Tabela 5 - WAN Rules analisadas

Estas regras foram escolhidas por permitirem testar funcionalidades específicas no contexto do *IPS*, como inspeção de *ICMP*, deteção de *scans* e controlo de conteúdo.

6.2.1. Regra ICMP – Deteção de ping externos

• Para monitorizar tráfego *ICMP* (*pings*) vindo do exterior da rede para a firewall, foi ativada a seguinte regra:

Figura 34 - Deteção pings externos

- Objetivo: Alertar sobre tentativas de "ping" com códigos ICMP não padronizados, vindas de fora da rede local.
- Importância: Esse tipo de tráfego pode indicar um scan ou reconhecimento externo.
- SID: 2100365
- Classe: misc-activity
- Confiança: Média
- Severidade: Informacional

6.2.2. Regra Scan – FTP Brute Force

Figura 35- FTP Brute Force

 Avisa quando s\(\tilde{a}\) feitas m\(\tilde{u}\)litiplas tentativas de login FTP como root vindas de um \(\tilde{u}\)nico IP.

Exige:

- Que o conteúdo da mensagem contenha "USER" e "root" (tentativa de login como root)
- Que ocorra pelo menos 5 vezes em 60 segundos do mesmo IP (threshold)
- Define o tipo de ameaça como tentativa de reconhecimento (classtype:attemptedrecon)
- Gera alertas com confiança média e severidade informacional

6.2.3. Regra Scan – NMAP TCP SYN Scan

Figura 36 - NMAP TCP SYN Scan

- Deteta varredura de portas com Nmap -sS (SYN scan), muito usada em fase de reconhecimento de um ataque.
- Especifica uma janela TCP (window) de 2048, que é comum na assinatura padrão do Nmap.
- Utiliza:
 - flags:S,12 para identificar pacotes com sinalização SYN
 - dsize:0 e ack:0 para indicar que é um pacote vazio com requisição de conexão
- Threshold evita alertas duplicados (1 alerta por destino a cada 60s)
- Classificado como reconhecimento (attempted-recon), com baixa severidade

6.3. Alerta bloqueio para tráfego ICMP externo (criação da regra)

Foi criada uma regra personalizada para detetar tentativas de *ping* (*ICMP Echo Request*) vindas do exterior para a *firewall*:

```
alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ALERTA - ICMP PING
EXTERNO DETETADO"; itype:8; sid:1000001; rev:1;)
```

Explicação da regra:

- alert → ação
- icmp → protocolo
- \$EXTERNAL_NET -> \$HOME_NET → tráfego vindo de fora
- itype:8 → tipo de pacote = ping (echo request)
- sid → ID único da tua regra
- rev → revisão (se editares depois, aumentas)

De seguido foi criada uma regra para bloquear o tráfego ICMP:

```
drop icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"BLOQUEIO - ICMP
externo (ping)"; itype:8; sid:1000002; rev:1;)
```

Explicação da regra:

- drop: esta ação faz com que o Snort bloqueie o pacote (em vez de apenas alertar)
- icmp: protocolo usado por pings
- \$EXTERNAL_NET any -> \$HOME_NET any: corresponde a tráfego vindo de fora da rede para dentro
- itype:8: identifica pacotes do tipo Echo Request (ping)
- msg:"...": mensagem exibida no alerta e nos logs
- sid:1000002: identificador único da regra (usar valor acima de 1 milhão para regras custom)
- rev:1: primeira versão da regra

6.3.1. Teste e evidência do bloqueio de tráfego ICMP externo (ping)

Foi efetuado um *ping* a partir da máquina *host* (externa) com destino ao *IP* da máquina que atua como *firewall* (*VM* com *Snort*):

```
Pinging 192.168.1.23 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.1.23:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Figura 37 - Ping Máquina externa

- O ping não obteve resposta.
- A mensagem apresentada foi: "Request timed out"

Em simultâneo, o *Snort* detetou o tráfego *ICMP* de entrada e gerou um alerta, tal como mostrado na figura abaixo:

Figura 38- Alerta ICMP

Este resultado demonstra que a regra personalizada de bloqueio de *pings* externos está funcional, tanto ao nível da deteção (*IDS*), como do bloqueio efetivo (*IPS*), cumprindo os requisitos definidos para proteção da *firewall*.

6.4. Alerta para acesso a página com referência à palavra "Adult"

Para detetar tentativas de acesso a conteúdos potencialmente impróprios, foi criada uma regra *Snort* personalizada que verifica se a palavra "*Adult*" aparece no tráfego *HTTP* de saída.

Figura 39 - Alerta Adult

- A regra verifica se máquinas internas (\$HOME_NET) acedem a páginas externas contendo o termo "Adult", ignorando caixa (maiúsculas/minúsculas).
- Pode ser usada em redes escolares, empresariais ou ambientes com políticas restritas de navegação.

6.4.1. Teste Realizado

Para realizar o teste da regra de deteção de conteúdos com referência à palavra "Adult", foi executado o seguinte comando a partir de uma máquina interna (na LAN):

Figura 40 - Teste "Adult"

Como resultado, o *Snort* gerou um alerta, visível na interface gráfica na secção de Alertas, conforme mostrado abaixo:

Figura 41 - Alerta conteudo "Adult"

Este teste comprova que a regra personalizada está funcional, detetando com sucesso tráfego HTTP que contenha a palavra "Adult", conforme solicitado nos objetivos do trabalho.

7. Conclusão

Este trabalho permitiu perceber, na prática, como a utilização combinada do *pfSense* com o *Snort* contribui para a criação de um ambiente de rede mais seguro e controlado. Ao longo das configurações e testes realizados, foi possível implementar regras personalizadas, gerar alertas e bloquear tráfego indesejado, comprovando a eficácia destas ferramentas na deteção e prevenção de ameaças.

Verificou-se a capacidade de resposta perante diferentes tipos de tráfego suspeito, como *pings* externos, tentativas de acesso a conteúdos inapropriados e scans de rede. A experiência demonstrou também a importância de manter uma monitorização contínua e uma configuração adequada para garantir a proteção da rede interna.

Para além da componente técnica, este trabalho reforçou a noção de que a segurança não depende apenas do software utilizado, mas também de uma gestão cuidada, atualização constante das assinaturas, e conhecimento sobre os protocolos e serviços em uso.

No geral, foi uma oportunidade importante para consolidar conhecimentos teóricos e aplicálos em cenários reais, aproximando a experiência prática do que se encontra num contexto profissional.

Referências

- [1] pfSense. The pfSense Project. Disponível em: https://www.pfsense.org/
- [2] Cisco. Snort Network Intrusion Detection System. Disponível em: https://www.snort.org/
- [3] Netgate. Documentation. Disponível em: https://docs.netgate.com/pfsense/en/latest/
- [4] Cisco Talos. Snort User Manual. Disponível em: https://docs.snort.org/
- [5] Proofpoint. Threats Open Rules. Disponível em: https://rules.emergingthreats.net/