3. Лабораторная работа № 3 « Использование виртуальной памяти в приложениях»

3.1. Цель работы

Целью данной работы является: получение практического опыта работы с виртуальной памятью; использование механизма работы с виртуальной памятью для решения прикладных задач; исследование адресного пространства процесса с помощью функций работы с виртуальной памятью.

3.2. Пример использования механизма выделения виртуальной памяти для конкретных задач

Процедура выполняет действия:

- выделение региона в виртуальном адресном пространстве процесса;
- запись в регион результатов вычисления (в данном случае вычисление суммы чисел от 1 до 10);
- вывод на экран содержимого выделенного региона адресного пространства.

```
VAR p,p1:^Integer; i,s:Integer;
begin
S:=0;
p:=VirtualAlloc(nil,4096,MEM_COMMIT,PAGE_READWRITE);
```

//Сохранение начального адреса региона

```
переменной р1
       p1:=p:
// Запись в регион результатов вычисления
       For i=1 to 10 do
    Begin s:=s+i; p^*:=s; Inc(p); end;
// Восстановление начального адреса региона
    p:=p1;
// Чтение содержимого виртуальной памяти, вывод на
экран
    S:=0;
    For i:=1 to 10 do
    begin
    s:=p^*;
    memo1.Lines.Add(IntToStr(s));
    Inc(p);
    end;
              end;
```

3.3. Задания для самостоятельной работы

С помощью функций VirtualAlloc, VirtualQuery и VirtualFree выполнить следующие задачи:

- 1. Введите натуральное n и вычислите n!.
- 2. Введите диапазон адресов и выведите информацию о состоянии регионов виртуального адресного пространства в данном диапазоне (свободен, зарезервирован или выделен).

Вариант 2

- 1. Вычислите $(1+\frac{1}{1^2})....(1+\frac{1}{n^2})$
- 2. Введите диапазон адресов и выведите на экран информацию о состоянии страниц виртуальной памяти в данном регионе (нет доступа, только чтение, чтение и запись).

Вариант 3

- 1. Вычислите a^n (а действительное, n натуральное).
- 2. Введите диапазон адресов и выведите на информацию о количестве регионов в данном диапазоне адресов.

Вариант 4

- 1. Введите действительное число а и натуральное число n. Вычислите: a(a+1).....(a+n-1)
- 2. Введите любой адрес и, если по этому адресу выделена физическая память, выведите на экран содержимое страницы, соответствующей введенному адресу.

- 1. Введите действительное число а и натуральное число n. Вычислите: $a(a-n)(a-2n)...(a-n^2)$
- 2. Выведите на экран карту памяти данного процесса (информацию о каждом регионе в виртуальном адресном пространстве текущего процесса).

Вариант 6

- 1. Введите действительное число а и натуральное число n. Вычислите: 1 1
- 2. Подсчитайте количество $\frac{1}{a} + \frac{1}{a^2} + \dots + \frac{1}{a^{2^n}}$ страниц в виртуальном адресном пространстве вашего процесса, имеющих атрибут РАGE READONLY.

Вариант 7

- 1. Введите действительное число x и натуральное число n. Вычислите: $Sin(x) + + Sin^n(x)$
- 2. Введите диапазон адресов и выведите на экран информацию о состоянии регионов виртуального адресного пространства в данном диапазоне (свободен, зарезервирован или выделен).

Вариант 8

- 1. Введите действительное число x и натуральное число n. Вычислите: $Sin(x)+....+Sin(x^n)$
- 2. Введите диапазон адресов и выведите на экран информацию о состоянии страниц виртуальной памяти в данном регионе (нет доступа, только чтение, чтение и запись).

- 1. Вычислите значение функции $y=4x^3-2x^2+5$ для значений x, изменяющихся от -3 до 1 с шагом 0.1.
- 2. Введите диапазон адресов и выведите на экран информацию о количестве регионов в данном диапазоне адресов.

Вариант 10

1. Дано натуральное число n. Вычислить

значения функции
$$y = \frac{x^2 - 3x + 2}{\sqrt{2x^3 - 1}}$$
 для x=1, 1.1,,

1+0.1*n

- 2. Введите любой адрес и выведите на экран и, если по этому адресу выделена физическая память, выведите на экран содержимое страницы, соответствующей введенному адресу.
- 1. Введите любой адрес и, если по этому адресу выделена физическая память, выведите на экран содержимое страницы, соответствующей введенному адресу в десятичной форме.

Вариант 11

- 1. Вычислить значения функции z для $\alpha \in [0.1,1]$ с шагом $z = \frac{\cos \alpha + \sin \alpha}{\cos \alpha \sin \alpha}$ 0.1.
- 2. Введите любой адрес и, если по этому адресу выделена физическая память, выведите на экран содержимое первых ста байт, от начала страницы, соответствующей введенному адресу.

Вариант 12

1. Вычислить значения функции z, α изменяется

$$z = 4\cos\frac{\alpha}{2} * \cos\frac{5}{2} \alpha * \cos4\alpha$$
 от -1 до 1 с

шагом 0.2.

2. Введите любой адрес и, если по этому адресу выделена физическая память, выведите на экран содержимое последних ста байт, от начала страницы, соответствующей введенному адресу.

Вариант 13

1. Вычислить значения функции, α изменяется $z=\frac{1}{4}-\frac{1}{4}\sin(\frac{5}{2}\pi-8\alpha)$ от -1 до 1 с шагом

0.2.

2. Введите диапазон адресов и выведите на экран информацию о состоянии страниц виртуальной памяти в данном регионе (нет доступа, только чтение, чтение и запись).

Вариант 14

- 1. Вычислить значения функции $z = \sqrt{\frac{x+3}{x-3}}$ для x, изменяющегося от 5 до 7 с шагом 0.1.
- 2. Введите диапазон адресов и выведите на экран информацию о количестве регионов в данном диапазоне адресов и количестве страниц в каждом регионе.

- 1. Вычислить значения функции $z=-\sqrt{m}$ для m, изменяющегося от 0 до 100 с шагом 2.
- 2. Подсчитайте количество страниц в виртуальном адресном пространстве вашего процесса, имеющих атрибут PAGE_READWRITE.

3.4. Контрольные вопросы

- 1. Объясните различие между такими параметрами, как «Регион адресного пространства», «Блок в регионе адресного пространства» и «страница виртуального адресного пространства»?
- 2. Объясните алгоритм преобразования виртуального адреса в физический?
- 3. Как подсчитать количество регионов в адресном пространстве процесса?
- 4. Как подсчитать количество блоков в регионе, имеющих один и тот же тип физической памяти?