Lógica Fuzzy

Alexandre Garcia Aguado, Marco André Cantanhede

Faculdade de Tecnologia – Univerdade Estadual de Campinas (UNICAMP) Rua Paschoal Marmo, 1888 – 13484-332 – Limeira – SP – Brazil

ale.garcia.aguado@gmail.com, marcoadc@br.ibm.com

Abstract. This article describes an introduction to Fuzzy Logic and its contributions to the Artificial Intelligence area, which is one of the evaluations of the discipline FT011 - Artificial Intelligence of Faculdade de Tecnologia of UNICAMP.

Resumo. Este artigo apresenta uma introdução a Lógica Fuzzy e suas contribuições para área de Inteligência Artifical, sendo este uma das avaliações da disciplina FT011 – Inteligência Artificial da Faculdade de Tecnologia da Unicamp.

1. Introdução

Considerando os problemas reais que cercam a sociedade hoje tanto nas indústrias, no comércio ou mesmo no dia a dia das pessoas, fica claro a ausência de certezas absolutas quanto a alguns aspectos. Heisenberg em 1927 já falava sobre o princípio da incerteza que serviu como alicerce principal da teoria quântica. Este príncipio mais tarde iria auxiliar no desenvolvimento da lógica *fuzzy*, onde sua forma de raciocinar é muito semelhante ao modelo de raciocío humano, baseado em aproximações e cercado de incertezas e suposições.

Esses algorítmos são amplamente utilizados atualmente em diversas áreas como: robótica, automação de linhas de produção, simulações financeiras entre outras.

O sistema lógico apresentado pela lógica *fuzzy* quando aplicado vai além do raciocínio booleano, pois busca atribuir graus para os elementos em questão de forma que a resposta *contido* ou *não contido* somente, não satisfaz e busca-se saber o quão contido ou o quão não contido esta determinado elemento.

2. Lógica Fuzzy

A lógica fuzzy, também conhecida como lógica nebulosa ou difusa se tornou conhecida

a partir de 1965 quando o professor Lofti Zadeh publicou o artigo *Fuzzy Sets* no *journal Information and Control*, porém como afirma Cox(1994) os princípios apresentados por esta lógica já existiam bem antes. Por volta de 1920 um polonês chamado Jan Luasiewicz (1878-1956) utilizando-se do principio da incerteza, apresentou pela primeira vez as noções da lógica dos conceitos vagos onde é admissível um conjunto com valores não precisos.

Segundo Cox(1994) o que diferencia a lógica *fuzzy* da lógica booleana é a capacidade desta de se aproximar do mundo real onde não existe somente respostas extremas. A lógica *fuzzy* da espaço ao meio termo apresentando ainda a possibilidade de mensurar o grau de aproximação da solução exata e assim inferir algo que seja necessário.

KLIR (1995) já apresenta que a principal diferença entre a lógica clássica e a lógica fuzzy esta no range que cada uma delas tem como valores verdadeiros ou valores respostas. Enquanto a lógica clássica propõe que esses valores seja verdadeiro ou falso a lógica fuzzy propõe que isso seja uma questão de grau.

Devido a esta adaptabilidade e proximidade com problemas do mundo real a lógica fuzzy foi crescendo com o passar dos anos e teve grande expansão durante a década de 80 tendo o Japão como um dos principais locais para seu crescimento. Segundo Von Altrock (1996) são diversas as áreas onde se encontram aplicações da lógica fuzzy como: controle de fluxo de caixa, análise de risco, controle de estoques, avaliações, controle de qualidade entre outros, ganhando maior espaço atualmente em otimizações e automação industrial devido sua facilidade de retratar a lógica da racionalidade humana ao resolver problemas.

Quando um determinado problema apresenta um grande grau de incerteza é necessário que para solução deste se utilize um modelo matemático que contemple essa especificidade e não desconsidere aspectos que possam ser ignorados na aplicação de lógicas tradicionais. Como afirma Cox(1994), para esses casos a lógica *fuzzy* é amplamente recomendada pois apresenta um modelo capaz de combinar a imprecisão associada aos eventos naturais e o poder computacional das máquinas produzindo assim sistemas de respostas inteligentes.

Segundo Von Altrock(1996) um dos grandes objetivos inerentes a lógica *fuzzy* é se aproximar em sua lógica, da forma com que o raciocínio humano relaciona as informações buscando respostas aproximadas aos problemas, por isso o grande foco desta lógica é a solução de problemas cuja as informações presentes sejam incertas.

As figuras 1, 2 e 3 foram baseadas em um dos exemplo citados por Cox(1994) para exemplificar a lógica *fuzzy* e sua aplicação. Em exemplos posteriores serão abordados o mesmo caso para que se identifique os conceitos básicos relacionados a lógica *fuzzy*.

Considerando então a figura 1, a questão relacionada a ela é a seguinte: *Os copos estão cheios ou vazios?* Considerando que não há nenhum líquido neles obviamente a resposta seria – *vazio*.

Figura 1. Exemplo de copos vazios

De maneira semelhante, observando a figura 2 se for repetida a mesma pergunta obviamente a resposta seria – cheios.

Figura 2. Exemplo de copos cheios

Considerando as duas figuras apresentadas até o momento não existe nenhuma incerteza quanto as respostas apresentadas ou algo que possa se opor a veracidade delas. Porém analisando a figura 3 não se pode afirmar com tanta precisão qual seria a resposta para a pergunta: Os copos estão cheios ou vazios?

Figura 3. Exemplo de copos com medida variada

Diante dessa dificuldade de se responder de forma exata a pergunta no caso da figura 3 surge a possibilidade de se fazer afirmações como: *O copo da esquerda esta meio cheio e meio vazio* enquanto *O copo da direita esta quase totalmente cheio*. Eis o ponto principal da lógica *fuzzy*. Através dessas afirmações incertas foram criadas linguisticamente escalas de valores que buscam quantificar a quantidade de água dos copos buscando uma aproximação dos estremos apresentados na Figura 1 e na Figura 2. Com essas duas afirmações o que acabou de ser feito foi a criação das chamadas variáveis linguísticas que diferentemente da lógica tradicional, para a lógica fuzzy são de extrema relevância pois possibilitam captar o grau de incerteza presente nessas variáveis e traduzir para um modelamento matemático. Esta possibilidade da lógica *fuzzy* é chamada grau de participação ou também conhecido como função de pertinência.

2.1 A lógica Fuzzy, raciocínio aproximado e as variáveis linguísticas

Existem algumas questões e problemas em que não é possível ou aplicável respostas determinísticas, abrindo espaço então para raciocínios aproximados que leve a um entendimento maior sobre o problema em questão. Este modelo de aproximação não e algo raro mas sim bastante presente no mundo real pois grande parte dos eventos de nosso cotidiano pode ser entendido de forma aproximada considerando os meio-termos cabíveis a cada fato.

Cox(1994) afirma que a lógica *fuzzy* traz consigo a ideia de medida, ou aplicação de uma métrica onde aparentemente a questão parece ser vaga. Essas métricas quando aplicadas aproxima a questão de algumas suposições possíveis.

Von Altrock(1996) apresenta as variáveis linguísticas como sendo o vocabulário da línguagem *fuzzy*, pois são expressões presentes na linguagem humana e que quando traduzidas ou interpretadas podem levar a conclusões importantes.

Considerando o mundo do futebol como exemplo, a afirmação abaixo é algo

bastante comum:

"O jogador Antonio esta jogando mal, o João esta jogando bem mas o Carlinhos esta jogando muito mal!"

Esta frase é uma típica frase que analisando-se através da lógica fuzzy é possível tomar algumas ações. Colocando-se no lugar do técnico do time em questão ao ter essa frase como matéria-prima para uma tomada de decisão e interferir na forma de jogar do time ele pode levantar a questão:

Tenho somente uma substituição, qual dos jogadores irei tirar?

Sem muitas cálculos ou dados exatos como posse de bola, chutes a gol ou algo do tipo o pensamento humano iria conduzir a reflexão de forma semelhante a esta:

"O Antônio é um candidato a sair do time, o João eu não posso tirar de forma alguma porém o Carlinhos também esta jogando muito mal. O Carlinhos esta jogando bem menos que o Antônio então vou tirar o Carlinhos."

Nota-se que neste exemplo não existem limites bem definidos quanto ao jogar bem ou mal porém através de abstrações e analogias é possível concluir algo. Os termos *mal*, *bem* e *muito mal* são as chamadas variáveis linguísticas pois possibilitam enumerar matematicamente qual a proximidade desses jogadores do *jogar totalmente bem* e do *jogar totalmente mal*.

Considerando a incerteza presente nesses casos é extremamente válido lembrar que as incertezas somente podem ser levadas em consideração se for possível diante de uma determinada situação efetuar aproximações e cálculos que levem a alguma conclusão válida.

Diante deste contexto na lógica *fuzzy* existe algo chamado função de pertinência que vem a ser um mapeamento matemático de cada valor númeríco possível para as variáveis linguísticas. Nota-se neste momento a importância em aproximar a léxica do modelo matemático para que assim seja possível conclusões válidas sobre o problema.

Um exemplo clássico apresentado em grande parte das literaturas sobre lógica fuzzy é o exemplo da temperatura térmica. Para exemplificar as funções de pertinência, considere a figura 4, onde através de alguns gráficos são representadas quatro variáveis térmicas: *frio*, *conforto*, *relativamente quente* e *quente*. Estas variáveis são relativas a uma análise sobre temperatura e conforto.

Figura 4. Exemplo de função de pertinência de variáveis linguísticas

É bastante comum este tipo de representação ser apresentada em um único gráfico, conforme pode-se verificar na figura 5. Nota-se que o nebuloso limite entre as variáveis fica bem claro através deste exemplo.

Figura 5. Exemplo de função de pertinência de variáveis linguísticas

2.2 Sistema lógico fuzzy

O sistema lógico *fuzzy* consiste em três operações básicas. A figura 6 adaptada de Cox (1994) revela essas operações básicas.

Figura 6. Sistema lógico fuzzy. Fonte: Cox (1994)

2.2.1 Fuzzificação

Nesta primeira etapa do Sistema Lógico *fuzzy* o problema é analisado e os dados de entrada são transformados em variáveis linguísticas. Neste momento é de extrema importância que todos os dados de imprecisão e incerteza sejam considerados e transformados em variáveis linguisticas. Após esta transformação são determinadas também as funções de pertinência.

Para melhor exemplificar essa etapa do sistema lógico *fuzzy* será apresentado novamente o exemplo dos copos cheios e vazios. Considera-se a figura 7 como ponto de partida para esta reflexão.

Figura 7. Copos

Observando a figura 7 pode-se fazer as seguintes afirmações:

O copo A esta Muito Vazio;

O Copo B esta Muito Cheio;

O Copo B esta razoalmente cheio;

Considerando o volume dos copos a figura 8 apresenta as funções pertinência considerando as variáveis linguísticas Muito Vazio, Muito Cheio e Razoavelmente Cheio.

Figura 8. Funções de pertinência

Neste exemplo a variável linguística esta sendo representada com palavras mas esta atribuição de graus poderia também ser feita através de valores numéricos.

2.2 Inferência

Considerando que na etapa anterior os dados de entrada já foram transformados em variáveis linguísticas, nesta segunda etapa é o momento em que serão criadas as regras ou proposições através da associação das variáveis já criadas.

Conforme Cox (1994), as proposições são geradas do relacionamento entre as variáveis do modelo e a região *Fuzzy*. Essas regras resultantes das associações podem ser condicionais ou não condicionais.

Esta fase do sistema lógico *fuzzy* pode ser dividido em dois componentes: agregação e composição, conforme mostra a figura 9.

Figura 9. Inferência Fuzzy. Fonte: Jané (2004)

Enquanto a agregação define a validade de uma regra, a composição define o resultado obtido através de uma inferência. Considerando a realidade do gerenciamento de projeto, onde existem duas afirmações:

O projeto A é muito longo;

O risco do projeto é Alto;

Sabe-se através da experiência do especialista em projetos que quanto maior a duração do projeto, maior o risco. Imaginando que neste exemplo Duração do Projeto e Risco do Projeto são duas variáveis linguísticas com valores "Muito Longo" e "Alto" respectivamente, pode-se inferir que:

Se o projeto é MUITO LONGO Então o Risco do Projeto é ALTO.

Neste caso esta sendo apresentado a Agregação através da condição colocada e a composição através do resultado relacionado a condição.

2.2.3 Defuzzificação

Segundo Cox(1994) a desfuzzificação é a etapa em que os valores fuzzy são convertidos em números reais tendo assim um conjunto de saída matematicamente definido. Utilizando-se do exemplo apresentado por Cox(1994) considere os conjuntos fuzzy A, B e C produzindo uma variável de solução D.

Se w é Y então D é A

Se x é X então O é B

Se y é Z então D é C

Para encontrar o valor atual e real correspondente a d é necessário que se encontre um valor que melhor represente a informação constante no conjunto D. Este é o processo chamado de defuzzificação, conforme apresentado na figura 10.

Figura 10. Processo de Defuzzificação Fonte: Cox(1994)

Existem algumas diferentes técnicas de desfuzzificação presentes nas literaturas sendo que Cox(1994) ao se referir a esta etapa e aos diferentes métodos afirma que este é mais próximo da própria heurística do que dos algorítmos baseados nos "Primeiros Princípios". Alguns dos métodos citados por Cox(1994) são:

Centroid, é o método onde a saída precisa a ser considerada é o centro de gravidade do conjunto fuzzy.

Maximum height, é o método onde a saída precisa se obtem tomando a média entre os dois elementos extremos no universo de discurso que correspondem aos maiores valores da função de pertinência do conjunto fuzzy de saída.

2.3 Aplicações da Lógica Fuzzy

São diversas as áreas onde a lógica *fuzzy* é aplicada atualmente devido sua característica de lhe dar com problemas reais em um raciocínio próximo do humano. Alguns exemplos de aplicações são:

BOVESPA, onde se faz controles financeiros.

NASA, onde se controla o aquecimento dos motores das espaçonaves.

Radares de Velocidades, para reconhecimento das placas.

Supervisão de Linhas de Produção, efetuando controles necessários e

Robôs, buscando processamentos próximos do humano.

3. Lógica Fuzzy e Inteligência Artificial

O comportamento apresentado pela lógica fuzzy tem grandes semelhanças a forma humana de processar as informações, não sendo booleana mas sim trazendo consigo inferências e aproximações. Esta característica faz com que a Lógica *Fuzzy* seja amplamente utilizada em modelos de Inteligência Artificial onde se busca sempre esta proximidade do comportamento humano.

Uma das grandes aplicações da lógica *fuzzy* na inteligência artificial é no controle automático de vôos de aviões. Conforme afirma Luo(1995) a princípio esta lógica não era bem vistas pelos engenheiros porém com o passar dos anos se tornou natural que a lógica *fuzzy* poderia efetivamente ser aplicada para o controle de vôos visto que esta operação tem uma grande gama de variações onde é necessária tomadas de decisões muitas vezes baseadas em aproximações.

Outro ponto apresentado por Luo(1995) que favorece a aplicação desta lógica no controle de vôos diz respeito a agilidade de seu processamento. A agilidade é um ponto

extremamente importante sendo que em experiências com lógicas lineares foram encontradas grandes dificuldades devido ao tempo de tomada de decisão por parte do sistema.

4. Conclusões

Este trabalho introduziu os conceitos inerentes a lógica *fuzzy* e sua aplicação na solução de problemas reais.

Após esses estudos conclui-se que a lógica *fuzzy* é amplamente indicada para solução de problemas reais onde é necessário soluçõe não necessariamente ótimas. A possibilidade de se gerar saídas reais quando as variáveis de entrada não necessariamente são reais e exatas permite fazer inferências que jamais seriam possíveis utilizando-se da lógica tradicional.

Outro ponto a se destacar é que a análise do problema é bastante importante para decidir se deve utilizar a lógica *fuzzy* ou uma lógica boolena, pois dependendo as características do problema a lógica booleana pode ser mais indicada.

Por fim, no que diz respeito a lógica *fuzzy* em Inteligência Artificial fica claro a grande aplicabilidade desta por se assemelhar a forma humana de raciocinar e tomar decisões.

5. Referencias

COX, Earl. The fuzzy systems handbook: a practitioner's guide to building, using, and maintaining fuzzy systems. New York: AP Professional, 1994.

KLIR, George J; YUAN, BO Fuzzy Sets and Fuzzy Logic: Theory and Applications . New Jersey: Prentice Hall PTR, 1995.

LUO, Jia; LAN, Edward. Fuzzy Logic Controllers For Aircraft Flight Control. Kansas: University of Kansas, 1995.

PINHO, Alexandre F. Uma contribuição para a resolução de problemas de programação de operações em sistemas de produção intermitentes flow-shop: A consideração de incertezas. 1999. Dissertação (Mestrado em Engenharia) — Universidade Federal de Itajubá, Itajubá, 1999.

VON ALTROCK, Constantin. Fuzzy logic and neuroFuzzy applications in busines and finance. New Jersey: Prentice Hall PTR, 1996.