Presentation Title

Samy Braik

April 29, 2025

We denote by p the target distribution and q an easy-to-sample distribution, for example a centered Gaussian.

Diffusion

Let $X_0 \sim p$. We want to add noise until we reach pure noise, and denoise it afterward. We choose an horizon of time $T \in \mathbb{N}^*$ and a noise schedule $\beta : [0, T] \to \mathbb{R}^*$, continuous and non decreasing.

Forward process

$$d\overrightarrow{X}_{t} = \frac{-\beta(t)}{2\sigma^{2}}\overrightarrow{X}_{t}dt + \sqrt{\beta(t)}dB_{t}, \quad \overrightarrow{X}_{0} \sim p$$

Backward process

$$d\overleftarrow{X}_{t} = \left(\frac{\beta(T-t)}{2\sigma^{2}}\overleftarrow{X}_{t} + \beta(T-t)\nabla\log p_{T-t}\left(\overleftarrow{X}_{t}\right)\right)dt + \sqrt{\beta(T-t)}dB_{t}, \quad \overleftarrow{X}_{0} \sim p_{T}$$

We learn the score by using score-matching techniques Score matching

$$\mathcal{L}_{\mathsf{score}}(heta) = \mathbb{E}\left[\left\| s_{ heta}\left(au, \overrightarrow{X}_{ au}
ight) - \log p_{ au}\left(\overrightarrow{X}_{ au}|X_{0}
ight)
ight\|^{2}
ight]$$

Plug it in the backward process and generate by discretizing the dynamics.

Normalizing flow

Let $X_0 \sim q$ and $X_1 \sim p$. We want to learn f_θ such that $X_1 \simeq f_\theta(X_0) = Z \sim p_Z$. To do that, we set a structure on f_θ , with f_1, \ldots, f_k simpler function (all parametrized by θ) such that

$$f_{\theta} = f_1 \circ f_2 \circ \ldots \circ f_k$$

We determine f_{θ} by minimizing

$$\mathcal{L}_{\mathsf{NF}}(\theta) = \mathbb{E}\left[-\log p_{\mathsf{Z}}(f_{\theta}(x)) - \log \left|\det \frac{\partial f_{\theta}}{\partial x}(x)\right|\right]$$

Flow

A flow is time dependant function $\phi_t : [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$. Using that we can define a flow model by applying a flow to (X_0, X_1)

$$X_t = \phi_t(X_0, X_1) \quad t \in [0, 1], X_0 \sim p, X_1 \sim q$$
 (1)

Alternatively, by introducing a velocity field $v_t:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ the flow can be defined with the following ODE

$$\begin{cases} \partial_t \phi_t(x) &= v_t(\phi_t(x)) \\ \phi_0(x) &= x \end{cases}$$
 (2)

Flow matching

Comparison

Models	Pros	Cons
Diffusion	1.2	
Normalizing flow	Exact density estimation	Computationaly inte
Flow matching	Exact density estimation Simulation free training	test
		Slow rate of converg
Kernel estimator	Flexible Easy to exploit	Hard to evaluate at new o
		Hard to choose tuning pa