<u>Dashboard</u> / <u>Courses</u> / <u>Autumn 2022-23</u> / <u>BTech- CSE & Btech - IT Semester 3</u> / <u>EC-201 2022</u> / <u>EC-201-Test-I-08-10-2022 11am</u>

Started on	Saturday, 8 October 2022, 11:00 AM
State	Finished
Completed on	Saturday, 8 October 2022, 11:05 AM
Time taken	4 mins 58 secs
Marks	2.00/5.00
Grade	4.00 out of 10.00 (40 %)

Question **1**Complete

Mark 1.00 out of 1.00

The out Y of the circuit given below will perform the function of?

- a. X-OR Gate
- o b. X-NOR Gate
- oc. OR Gate
- od. AND Gate

What is the output of the circuit given below? If S1= A and S0= B $\,$

- a. A'B + ABC + AB'C'
- b. AB + A'BC + AB'C'
- o. A'B + A'BC + A'B'C'
- od. A'B' + A'BC + AB'C'

Choose the right option for the circuit given below?

- a. Octal to Hexadecimal Decoder
- O b. Decimal to BCD Decoder
- oc. Octal to Binary Decoder
- Od. Decimal to Binary Decoder

For the circuit given below choose the correct option?

- \odot a. S0 = A and I0 = I1 = B'
- \bigcirc b. S0 = A, I0= B' and I1=0
- \circ c. S0 = A, I0= B and I1=1
- \bigcirc d. S0 = A, I0= 0 and I1=1

Question **5**Complete

Mark 0.00 out of 1.00

Minimum numbers of NAND Gates requires to implements the X+XY'Z?

- O a. 1
- O b. 3
- O c. 0
- d. 2

Announcements

Jump to...