Discovering activation functions

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf

Senior Data Science Content Developer, DataCamp

Activation functions

- Activation functions add non-linearity to the network
 - Sigmoid for binary classification
 - Softmax for multi-class classification
- A network can learn more complex relationships with non-linearity
- "Pre-activation" output passed to the activation function

Mammal or not?

Mammal or not?

- Input:
 - o Limbs: 4
 - Eggs: 0
 - Hair: 1

Mammal or not?

Output to the linear layers is 6

Mammal or not?

 We take the pre-activation output (6) and pass it to the sigmoid function

Mammal or not?

- We take the pre-activation output (6) and pass it to the sigmoid function
- Obtain a value between 0 and 1
- If output is > 0.5, class label = 1 (mammal)
- If output is <= 0.5, class label = 0 (not mammal)

```
import torch
import torch.nn as nn

input_tensor = torch.tensor([[6]])
sigmoid = nn.Sigmoid()
output = sigmoid(input_tensor)
print(output)
```

```
tensor([[0.9975]])
```

Activation as the last layer

```
model = nn.Sequential(
    nn.Linear(6, 4), # First linear layer
    nn.Linear(4, 1), # Second linear layer
    nn.Sigmoid() # Sigmoid activation function
)
```

Sigmoid as last step in network of linear layers is equivalent to traditional logistic regression

 Takes three-dimensional as input and outputs the same shape

- Takes three-dimensional as input and outputs the same shape
- Outputs a probability distribution:
 - Each element is a probability (it's bounded between 0 and 1)
 - The sum of the output vector is equal to 1

- Takes N-element vector as input and outputs vector of same size
- Outputs a probability distribution:
 - Each element is a probability (it's bounded between 0 and 1)
 - The sum of the output vector is equal to 1

```
import torch
import torch.nn as nn
# Create an input tensor
input_tensor = torch.tensor(
    [[4.3, 6.1, 2.3]]
# Apply softmax along the last dimension
probabilities = nn.Softmax(dim=-1)
output_tensor = probabilities(input_tensor)
print(output_tensor)
```

```
tensor([[0.1392, 0.8420, 0.0188]])
```

- dim = −1 indicates softmax is applied to the input tensor's last dimension
- nn.Softmax() can be used as last step in nn.Sequential()

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Running a forward pass

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf Senior Data Science Content Developer, DataCamp

What is a forward pass?

- Input data flows through layers
- Calculations performed at each layer
- Final layer generates outputs

- Outputs produced based on weights and biases
- Used for training and making predictions

What is a forward pass?

Possible outputs:

- Binary classification
- Multi-class classification
- Regressions

Binary classification: forward pass

6 features

```
# Create binary classification model
model = nn.Sequential(
    nn.Linear(6, 4), # First linear layer
    nn.Linear(4, 1), # Second linear layer
    nn.Sigmoid() # Sigmoid activation function
)
```

Binary classification: forward pass

```
# Pass input data through model
output = model(input_data)
print(output)
```

```
tensor([[0.5188], [0.3761], [0.5015], [0.3718], [0.4663]],
grad_fn=<SigmoidBackward0>)
```

- Output: five probabilities between 0 and 1, one for each animal
- Classification (0.5 threshold):
 - Class = 1 (mammal) for values ≥ 0.5 (0.5188, 0.5015)
 - Class = 0 (not mammal) for values < 0.5 (0.3761, 0.3718, 0.4633)

Multi-class classification: forward pass

• Class 1 - mammal, class 2 - bird, class 3 - reptile

```
n classes = 3
# Create multi-class classification model
model = nn.Sequential(
  nn.Linear(6, 4), # First linear layer
  nn.Linear(4, n_classes), # Second linear layer
  nn.Softmax(dim=-1) # Softmax activation
# Pass input data through model
output = model(input_data)
print(output.shape)
```

torch.Size([5, 3])

Multi-class classification: forward pass

```
print(output)
```

probabilities for each class

- Each row sums to one
- Predicted label = class with the highest probability
- Row 1 = class 1 (mammal), row 2 = class 1 (mammal), row 3 = class 3 (reptile)

Regression: forward pass

```
# Create regression model
model = nn.Sequential(
  nn.Linear(6, 4), # First linear layer
  nn.Linear(4, 1) # Second linear layer
# Pass input data through model
output = model(input_data)
# Return output
print(output)
```

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Using loss functions to assess model predictions

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf Senior Data Science Content Developer, DataCamp

Why do we need a loss function?

- Tells us how good our model is during training
- ullet Takes a model **prediction** \hat{y} and **ground truth** y
- Outputs a float

Why do we need a loss function?

• Class 0 - mammal, class 1 - bird, class 2 - reptile

Hair	Feathers	Eggs	Milk	Fins	Legs	Tail	Domestic	Catsize	Class
1	0	0	1	0	4	0	0	1	0

- Predicted class = 0 -> correct = low loss
- Predicted class = 1 -> wrong = high loss
- Predicted class = 2 -> wrong = high loss

• Our goal is to minimize loss

One-hot encoding concepts

- $loss = F(y, \hat{y})$
- y is a single integer (class label)
 - \circ e.g. y=0 when y is a mammal
- \hat{y} is a **tensor** (prediction before softmax)
 - \circ If N is the number of classes, e.g. N = 3
 - \circ \hat{y} is a tensor with N dimensions,
 - e.g. $\hat{y} = [-5.2, 4.6, 0.8]$

One-hot encoding concepts

• Convert an integer y to a tensor of zeros and ones

Transforming labels with one-hot encoding

```
import torch.nn.functional as F
print(F.one_hot(torch.tensor(0), num_classes = 3))
tensor([1, 0, 0])
print(F.one_hot(torch.tensor(1), num_classes = 3))
tensor([0, 1, 0])
print(F.one_hot(torch.tensor(2), num_classes = 3))
tensor([0, 0, 1])
```


Cross entropy loss in PyTorch

```
from torch.nn import CrossEntropyLoss

scores = torch.tensor([-5.2, 4.6, 0.8])
one_hot_target = torch.tensor([1, 0, 0])

criterion = CrossEntropyLoss()
print(criterion(scores.double(), one_hot_target.double()))
```

```
tensor(9.8222, dtype=torch.float64)
```


Bringing it all together

Loss function takes:

- scores model predictions before the final softmax function
- one_hot_target one hot encoded ground truth label

Loss function outputs:

• loss - a single float

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Using derivatives to update model parameters

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

Jasmin Ludolf Senior Data Science Content Developer, DataCamp

An analogy for derivatives

Derivative represents the slope of the curve

- Steep slopes (red arrows):
 - Large steps, derivative is high
- Gentler slopes (green arrows):
 - Small steps, derivative is low
- Valley floor (blue arrow):
 - Flat, derivative is zero

Convex and non-convex functions

This is a convex function

This is a non-convex function

Connecting derivatives and model training

Compute the loss in the forward pass during training

Connecting derivatives and model training

- Gradients help minimize loss, tune layer weights and biases
- Repeat until the layers are tuned

Backpropagation concepts

- Consider a network made of three layers:
 - \circ Begin with loss gradients for L2
 - \circ Use L2 to compute L1 gradients
 - \circ Repeat for all layers (L1,L0)

Backpropagation in PyTorch

```
# Run a forward pass
model = nn.Sequential(nn.Linear(16, 8),
                      nn.Linear(8, 4),
                      nn.Linear(4, 2))
prediction = model(sample)
# Calculate the loss and gradients
criterion = CrossEntropyLoss()
loss = criterion(prediction, target)
loss.backward()
```

```
# Access each layer's gradients
model[0].weight.grad
model[0].bias.grad
model[1].weight.grad
model[1].bias.grad
model[2].weight.grad
model[2].weight.grad
```

Updating model parameters manually

```
# Learning rate is typically small
lr = 0.001
# Update the weights
weight = model[0].weight
weight_grad = model[0].weight.grad
weight = weight - lr * weight_grad
# Update the biases
bias = model[0].bias
bias_grad = model[0].bias.grad
bias = bias - lr * bias_grad
```

- Access each layer gradient
- Multiply by the learning rate
- Subtract this product from the weight

Gradient descent

- For non-convex functions, we will use gradient descent
- PyTorch simplifies this with optimizers
 - Stochastic gradient descent (SGD)

```
import torch.optim as optim

# Create the optimizer
optimizer = optim.SGD(model.parameters(), lr=0.001)

# Perform parameter updates
optimizer.step()
```

Let's practice!

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

