Course Notes

EECS 445

Introduction to Machine Learning

Honglak Lee - Fall 2015

Contributors: Max Smith

Latest revision: September 10, 2015

Contents

1	Introduction	1
	1.1 Supervised Learning	1
	1.2 Unsupervised Learning	
A	Linear Algebra Review	2

Abstract

Theory and implementation of state-of-the-art machine learning algorithms for large-scale real-world applications. Topics include supervised learning (regression, classification, kernel methods, neural networks, and regularization) and unsupervised learning (clustering, density estimation, and dimensionality reduction).

1 Introduction

- Formal definition: A computer program A is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E
- Informal definition: Algorithms that improve their prediction performance at some task with experience (or data)
- e.g., spam filtering, handwritten digit recognition
- Training: given some example data you update parameters of your machine learning algorithm
- **Testing**: evaluating how well your algorithm performs on new data
- Machine learning tasks:
 - Supervised learning:
 - * Classification
 - * Regression
 - Unsupervised learning:
 - * Clustering
 - * Density estimation
 - * Dimensionality reduction
 - Reinforcement Learning
 - * Learning to act

1.1 Supervised Learning

- Goal:
 - Given data X in feature space and the labels Y
 - Learn to predict Y from X
- Labels could be discrete or continuous
 - Discrete labels: classification
 - Continuous labels: regression
- Classification:
 - Given a feature space (e.g., words in a document)
 - Predict a label space (e.g., topic of document)
- Regression:
 - Given a continuous feature space (e.g., market infromation up to time t)
 - Predict a label space (e.g., shapre price "\$24.50")

1.2 Unsupervised Learning

- Goal:
 - Given data X without any labels
 - Learn the structures of the data
- "Learning without teacher"
- Clustering:
 - "Grouping into similar examples"
 - TODO: Image
- Lecture cut early, possibly add skipped here.

A Linear Algebra Review