

1

Bioinformatic Methods I

Week	Topic
1	NCBI/Blast I
2	Blast II/Comparative Genomics
3	Multiple Sequence Alignments
4	Phylogenetics
5	Selection Analysis
6	NGS Analysis / Metagenomics

Why identify similar sequences?

- · Similarity is the primary predictor of homology.
- Homology is the primary computational predictor of function.
- Sequence alignments allow us to identify similar sequences:

Sequence 1: **HEAGAWGHEE**

Sequence 2: PAWHEAE

Sequence 1: **HEAGAWGHE-E**

. ++ ++ +

Sequence 2: --P-AW-HEAE

N. Provart · Intro for Lab 2 · Slide 3

3

Overview

Substitution Matrices

Alignment Methods

- Dot Matrix
- Dynamic Programming
 - Global Alignment
 - Local Alignment
- Hidden Markov Models
- Heuristic Alignment k-tuple
 - **BLAST**
 - FASTA

Evaluation of Significance Comparative Genomics

N. Provart · Intro for Lab 2 · Slide 4

Substitution matrices

Scoring systems

· model sequence change over evolutionary time

Realistic models of sequence evolution

- substitution biases
- mutational saturation

N. Provart · Intro for Lab 2 · Slide 5

5

Substitution matrices - substitution biases

From https://en.wikipedia.org/wiki/DNA_codon_table

From Livingstone & Barton, CABIOS 9: 745-56, 1993

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 6

Substitution matrices - mutational saturation

🗯 Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 7

7

Substitution matrices - theory

- Need scoring systems that models sequence change over evolutionary time
- Favour matching identical or related amino acids
- Penalize poorly matched amino acids or gaps
- Take into consideration the relative abundance of amino acids in proteins

Bioinformatic Methods I

Amino acid substitution matrices

- PAM = Point Accepted Mutations (accepted point mutations) derived from trusted alignments between closely related sequences
- BLOSUM = Blocks Amino Acid Substitution Matrices
 derived from the BLOCKS database (Pietrokovski et al., 1997; doi: 10.1093/nar/24.1.197)
 ungapped multiple alignments of segments (3 60aa in length) of most
 conserved regions of related proteins.

9

Amino acid substitution matrices - PAM v. BLOSUM

PAM numbers

- evolutionary time
- greater number = greater time since common ancestry for sample

BLOSUM numbers

- sequence similarity
- greater number = greater level of sequence similarity for sample

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 0

How to generate an alignment?

EMBOSS Dotmatcher

11

Dot Matrix Alignment

EMBOSS Dotmatcher

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 2

Heuristic methods for aligning sequences

- Heuristic method exploratory problem solving in which feedback from current result guides future analytical direction.
- Heuristic alignment methods search only a small fraction of the cells in possible search space, while still looking at all the high scoring alignments.
- Heuristic methods are not guaranteed to find the optimal solution, but are much faster (>>50x; necessary if we want to search against the NCBI nr/nt sequence database of more than 388 billion nucleotides...).
- 2 best known approaches:
 - **BLAST**
 - FASTA

N. Provart · Intro for Lab 2 · Slide 13

13

Basic Local Alignment Search Tool (BLAST)

- Program for heuristically finding High Scoring Segment Pairs (HSPs) between a query sequence and a target database.
- Concept
 - o true matches very likely contain short stretches of identities
 - $_{\circ}\,$ short stretches can be seeds for extending the alignment
 - o short seed sequences permit preprocessing of queries
- Trade off sensitivity for speed.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 215:403

BLAST algorithm – concept

BLAST algorithm - list step

Extract words from query sequence and make expanded list of related words

BLAST algorithm - seed step

Scan the selected database for matches to the expanded word list

17

mign-scoring Segment Pair

BLAST algorithm - extend step

BLAST algorithm - gaps

Altschul, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25: 3389-3402

🔓 Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 9

19

BLAST - programs

Program	Query	Database	Alignment	# Searches	Uses
blastn	DNA	DNA	DNA	1	find homologous DNA sequences
tblastx	DNA	DNA	protein	36	find homologous proteins from unannotated query and db sequences
blastx	DNA	protein	protein	6	identify proteins in query DNA sequence
tblastn	protein	DNA	protein	6	find homologous proteins in unannotated DNA DB
blastp	protein	protein	protein	1	find homologous proteins

```
5'-GTCACGTTACCGGTGGCCGAACAGGCCCGTCATGAAGT-3'

1st reading frame → V T L P V A E Q A R H E V

2nd reading frame → S R Y R W P N R P V M K X

3rd reading frame → H V T G G R T G P S * S

5'-GTCACGTTACCGGTGGCCGAACAGGCCCGTCATGAAGT-3'

3'-CAGTGCAATGGCCACCGGCTTGTCCGGGCAGTACTTCA-5'

T V N G T A S C A R * S T ← 4th reading frame

X * T V P P R V P G D H L ← 5th reading frame

D R * R H G F L G T M F ← 6th reading frame

N. Provart · Intro for Lab 2 · Slide 20
```

BLAST - databases

otein Databases					
nr	Non-redundant GenBank CDS translations + PDB + SwissProt + PIR + PRF				
swissprot	Last major release of the SWISS-PROT protein sequence database				
pat	Proteins from the Patent division of GenBank.				
month	All new or revised GenBank CDS translations + PDB + SwissProt + PIR + PRF released in the last 30 days.				
pdb	Sequences derived from the 3-dimensional structure records from the Protein Data Bank				
cleotide Databases					
nr/nt	All GenBank + EMBL + DDBJ + PDB + RefSeq sequences (but no EST, dbSTS, GSS, WGS,TSA or phase 0, 1 or 2 HTGS sequences				
est	Database of GenBank + EMBL + DDBJ sequences from EST division				
refseq_rna	NCBI transcript reference sequences				
refseq_representat ive_genomes	Reference and representative genomes selected from the NCBI Refseq Genomes database				
gss	Genome Survey Sequence, includes single-pass genomic data, exon-trapped sequences, and Alu PCR sequences.				
htgs	Unfinished High Throughput Genomic Sequences: phases 0, 1 and 2. Finished, phase 3 HTG sequences are in nr.				
pat	Nucleotides from the Patent division of GenBank.				
pdb	Sequences derived from the 3-dimensional structure records from Protein Data Bank.				
tsa	Transcriptome Shotgun Assembly (TSA) database is an archive of computationally assembled mRNA sequences				
sra	Search for sequences associated with a particular SRA (sequence read archive) accession, scientific name, or taxonomic identifier				
dbsts	Database of Sequence Tag Site entries from the STS division of GenBank + EMBL + DDBJ.				
refseq_genomes	NCBI Refseq genomes across all taxonomy groups. Contains only the top-level sequences, i.e. chromosomal sequences where available (but not the contigs used to assemble them)				
wgs	Assemblies of Whole Genome Shotgun sequences				

N. Provart · Intro for Lab 2 · Slide 21

21

PSI-BLAST – position-specific iterated-BLAST

Motif or profile search methods are often more sensitive than pairwise comparisons at detecting distant relationships.

Most useful for finding protein families.

Process

- Create a multiple sequence alignment from BLAST output
- Use the MSA to automatically create a position-specific scoring matrix (PSSM)
 - $_{\circ}\,$ generated by identifying conserved columns in MSA
- Use PSSM to score BLAST search
- Iterate

PSI-BLAST

Evaluation of BLAST results

Is a DB sequence homologous to the query?

- significant expect values
- reciprocal best hit
- similar sizes
- common motifs
- reasonable multiple sequence alignment
- similar 3D structures

Is one DB hit better than another?

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 24

Statistical evaluation - sequence identity?

Why not use sequence identity?

- · distribution not well understood
- difficulty with shared domains that do not stretch over length of sequence
- false positive rate
- ignores gaps and conservative vs. radical substitutions

Brenner et al. 1998 PNAS 95:6073

🌡 Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 25

a, b defaults are 1,

-2 for Blastn; a slightly different formula and substitution

matrices are used for protein bit

scores

25

Statistical evaluation - bit score

BLAST reports two bit scores, S and R

Raw bit scores (R)

R = aI + bX - cO - dG

a = reward for each identity

b = 'reward' for each mismatch

c = gap opening penalty

d = penalty for each '-'

Can be adjusted manually in Blast

I = # identities in the alignment
X = # mismatched residues
O = # gaps
G = # of '-' (length of gap)

Bioinformatic Methods I

Statistical evaluation - bit score

Normalized bit scores (S)

$$S = (\lambda R - \ln K) / (\ln 2)$$

 λ and K are normalizing parameters

 λ is a scale factor which converts pairwise match scores to probabilities

K is a proportionality constant to correct for the number of sequence $\$ comparisons

Makes bits scores (and E-values) independent of the scoring system

Available from Blast Search Summary

N. Provart · Intro for Lab 2 · Slide 27

27

Statistical evaluation - E value

Expect (E) values – best measure of significance

Converts a bit score into a probability

Depend upon

- Bit Score (S)
- Effective length of query (m)
- Effective length of database (n)

 $E = mn2^{-S}$

Probability of finding a database match as good as or better than your query by chance.

Bioinformatic Methods I

How Good is My Hit?

Use identity? No! Use bit score: better Use E value: best

- The E value is a probability value that is based on the number of different alignments with scores at least as good as that observed, which are expected to occur simply by chance.
- The lower the E value, the more significant the score. This is by far the best metric to use since results of different searches in the same database can be readily compared.
- Note that E value is dependent on the size of the database (n) and the length of the query sequence (m). The same sequence searched on different databases containing identical hit sequences would result in different E values being reported for those sequences.

N. Provart · Intro for Lab 2 · Slide 29

29

What is a good E value?

From Mount, Bioinformatics (2001), p. 497

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 30

Orthology and Paralogy

- Orthology can be used to identify conserved residues within genes and proteins
- In addition, comparative genomic methods can be applied to intron sequences and promoters to identify parts of these that are conserved and hence potentially functionally important

 $from \ http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Orthology.html$

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 31

31

Methods for determining orthology in genomic sequences

- TBLASTX or BLASTP take reference genome and blast against other genomes, and take region (gene) with best e-value (above a threshold) as orthologous region. Problem: what if blasting in other direction identifies a match in reference genome that is better? Which is the ortholog?
- Reciprocal Best Hit (RBH) method addresses the above issue but can get confounded by rampant domain swapping that has occurred, esp. in eukaryotic genomes → lots of false negatives
- Phlyogenetic-based methods such as RIO, Orthostrapper and RSD
- BLASTP-based methods, such as InParanoid, OrthoMCL, KOG: these use BLASTP followed by Markov or other Clustering methods

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 32

Overview of the methods: which is best?

from Chen et al., 2007, PLoS One 2(4): e383

Other tools are available, e.g. OrthoFinder2 (Emms & Kelly, 2019, https://dx.doi.org/10.1186/s13059-019-1832-y)

→ what are FP and FN rates for any tool you might want to use?

N. Provart · Intro for Lab 2 · Slide 33

33

Ortholog databases

Clusters of Orthologous Groups (COG) and euKaryotic Orthologous (KOG)

Groups: http://www.ncbi.nlm.nih.gov/COG/ *several species, older

HieranoiDB: http://hieranoidb.sbc.su.se/ *66 species, slightly older Kaduk M, Riegler C, Lemp O, Sonnhammer EL. HieranoiDB: a database of orthologs inferred by Hieranoid. Nucleic Acids Res. 2017, 45(Database issue), D687-D690. PMID: 27742821.

OrthoMCL DB: http://www.orthomcl.org/ *many species, slightly out-of-date
Feng Chen, Aaron J. Mackey, Christian J. Stoeckert, Jr and David S. Roos. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research 2006 34(Database Issue):D363-D368

InParanoid DB: http://inparanoid.sbc.su.se/cgi-bin/index.cgi *273 species, from 2013 Remm M, Storm CEV and Sonnhammer ELL (2001). Automatic Clustering of Orthologs and In-paralogs from Pairwise Species Comparisons. JMB, 314:1041-1052.

CoGe: http://genomeevolution.org/ 50,000+ genomes, up-to-date; syntenty tools!

Lyons E ~ Lisch D (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar and grape: CoGe with rosids, Plant Phys 148, pp. 1772–1781.

You may find others → how up-to-date are these, genome versions, etc.?

Bioinformatic Methods I

Tools for comparative genomics & genome browsing

GBrowse/JBrowse is standard for many model organisms

ACT (Artemis Comparison Tool) standalone tool that allows cross-genome comparisons

http://www.sanger.ac.uk/science/tools/artemis allows rearrangements and syntenic blocks to be easily visualized

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 35

35

Genome comparisons and synteny

- Synteny is the preservation of gene order on chromosomes of related species
- During evolution, genomic rearrangements can separate two loci
 → result is a loss of synteny between them
- Translocations can also join two previously separate pieces of chromosomes (rare event)
 → results in a gain of synteny between loci
- Synteny can be useful in the case of many-to-many or one-to-many ortholog mappings, for determining the "true" ortholog, and also identifying translocations/ inversions – these show up as blocks which cross other blocks, and as "X" shaped figures in e.g. ACT

N. Provart · Intro for Lab 2 · Slide 36

Bioinformatic Methods I

Overview

Substitution Matrices

Alignment Methods

- Dot Matrix
- Dynamic Programming
 - Global Alignment
 - Local Alignment
- Hidden Markov Models
- Heuristic Alignment k-tuple
 - $_{\circ}$ BLAST
 - ∘ FASTA

Evaluation of Significance Comparative Genomics

Bioinformatic Methods I

N. Provart · Intro for Lab 2 · Slide 37