```
import pandas as pd
import numpy as np
bn=pd.read_csv("bank_note_data.csv")
print (bn.head())
        Image.Var Image.Skew Image.Curt Entropy Class
                                  -2.8073 -0.44699
          3.62160
                       8.6661
          4.54590
                       8.1674
                                  -2.4586 -1.46210
                                                        0
          3.86600
                      -2.6383
                                   1.9242 0.10645
                                                        0
     3
          3.45660
                       9.5228
                                  -4.0112 -3.59440
                                                        0
          0.32924
                      -4.4552
                                   4.5718 -0.98880
                                                        0
print(bn['Class'].unique())
     [0 1]
bn.shape
     (1372, 5)
bn.describe(include='all')
                                                                             П
                                                      Entropy
                                                                    Class
              Image.Var Image.Skew Image.Curt
      count 1372.000000 1372.000000 1372.000000 1372.000000
      mean
                0.433735
                            1.922353
                                         1.397627
                                                     -1.191657
                                                                  0.444606
                            5.869047
       std
                2.842763
                                         4.310030
                                                     2.101013
                                                                  0.497103
       min
               -7.042100
                          -13.773100
                                        -5.286100
                                                     -8.548200
                                                                  0.000000
      25%
               -1.773000
                            -1.708200
                                        -1.574975
                                                     -2.413450
                                                                  0.000000
      50%
                0.496180
                            2.319650
                                         0.616630
                                                     -0.586650
                                                                  0.000000
      75%
                2.821475
                            6.814625
                                         3.179250
                                                     0.394810
                                                                  1.000000
                6.824800
                           12.951600
                                        17.927400
                                                     2.449500
                                                                  1.000000
      max
X=bn.drop('Class',axis=1)
y=bn['Class']
print(X.head(2))
print(y.head(2))
        Image.Var Image.Skew Image.Curt Entropy
     0
           3.6216
                       8.6661
                                  -2.8073 -0.44699
                                  -2.4586 -1.46210
           4.5459
                       8.1674
     1
          a
     a
     1
          0
     Name: Class, dtype: int64
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3)
print(X_train.shape)
print(y_test.shape)
     (960, 4)
     (412,)
from sklearn.neural_network import MLPClassifier
mlp=MLPClassifier(hidden_layer_sizes=(3,2),max_iter=500)
mlp
                           MLPClassifier
     MLPClassifier(hidden_layer_sizes=(3, 2), max_iter=500)
mlp.fit(X_train,y_train)
```

```
/usr/local/lib/python3.10/dist-packages/sklearn/neural_network/_multilayer_perceptro
                 warnings.warn(
                                                                  MIDClassifian
pred=mlp.predict(X_test)
pred
            array([0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 
                              0,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,
                              1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1,
                              0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0,
                              0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
                              1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,
                              1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,
                              1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1,
                              0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1,
                              1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0,
                              1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1,
                                           1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0,
                              1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0,
                              1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0,
                              0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
                              0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
                              1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1,
                              0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0,
                              1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0])
```

from sklearn.metrics import classification_report,confusion_matrix $confusion_matrix(y_test,pred)$

```
array([[230, 3],
[ 0, 179]])
```

print(classification_report(y_test,pred))

	precision	recall	f1-score	support
0 1	1.00 0.98	0.99 1.00	0.99 0.99	233 179
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	412 412 412

print(mlp.score(X_test,y_test)*100)

99.27184466019418

Colab paid products - Cancel contracts here

√ 0s completed at 11:28 AM