

Michele Fontana, Francesca Naretto,

Francesca Naretto, Anna Monreale

University of Pisa michele.fontana@phd.unipi.it

TABLE OF CONTENTS

Federated Learning (FL)

HOLDA: FL Training algorithm

Privacy Risk Assessment of FL models

A (simple?) ML Problem

Challenge: Train a ML classifier on clinical data distributed over a set of hospitals to determine the best therapy for a given patient.

Possible Solution: (Distributed Learning)

- Send data to a central server
- Privacy issue:
 - Clinical data are sensitive!
 - They must be kept private

A (simple?) ML Problem

Challenge: Train a ML claudistributed over a set of the best therapy for a given

Possible Solution: (Dist

Send data to a ce

• Privacy issue:

- Clinical data are sensitive!
- They must be kept private

Federated Learning

"Federated Learning is a ML setting where multiple distributed parties, called clients, under the orchestration of a main server, cooperate to train a shared global model, while keeping their data private"

- Just the model parameters are transmitted
- The overall architecture is called federation

https://blog.ml.cmu.edu/category/federated-learning/

Our setting

We focus on a specific FL setting

Cross-Silo:

- Clients are organizations (hospitals, banks)
- Private ICT infrastructures
- Unlimited resources

Hierarchical

 Layers of proxies between clients and server

HOLDA: A new FL Training Algorithm

Hierarchical crOss siLo feDerated Averaging

- Train Neural Networks in a cross-silo hierarchical setting
- Handles any hierarchical architecture
 - No **assumptions** about the structure of the federation
- Cross-silo -> The participants are stateful

What about the internal state?

- One state per node
- Best generalizing model parameters : W_{best}
- **Score** obtained by the best model on the validation data : **M**_{best}

Final Remarks

When the global server ends its training process each node of the federation:

 Has the best model stored into its internal state → personalized model

Once the models are public an external adversary can attack the models to get personal information about the users in the training data

Membership Inference Attack

Black-box Attack

Target Model:

- Solves a classification problem with *n* classes.
- Output : Probability vector of length *n*

Attack Model:

- Supervised Binary Classifier
- Output : "in" / "out"

MIA in a Federated Scenario

D_c := Local Dataset of client c

 T_{v} := Training data of node v

- T_v := union of the training sets stored into the clients in the subtree of node v
- MIA has to detect the membership w.r.t. T_{ν}

MIA in a Federated Scenario

D_c := Local Dataset of client c

 T_{v} := Training data of node v

- MIA has to detect the membership w.r.t. T_v
- The adversary acquires
 different information
 according to the model he
 is attacking

Dataset

- Publicly available Texas-100 (Over 5,000,000 records)
- **Tabular** Dataset
- Hospitalizations in over 200 Texas hospitals between 2006 and 2009
- **Model**: Feed-forward NN with 2 hidden layers
- Clients grouped on a geographical basis

Results : HOLDA

Kind	Model	Metric	Training	Validation	Kind	Model	Metric	Training	Validation
	1.11	F ₁	0.80 (0.04)	0.78 (0.00)			F_1	0.83 (0.01)	0.80 (0.00)
G	All	Prec	0.82 (0.00)	0.80 (0.00)		C	Prec	0.85 (0.01)	0.82 (0.00)
		Rec	0.79 (0.00)	0.77 (0.00)			Recall	0.83 (0.01)	0.79 (0.00)
100		F_1	0.83 (0.01)	0.79 (0.00)	1	S	F_1	0.86 (0.01)	0.82 (0.00)
1	E	Prec	0.85 (0.01)	0.81 (0.00)			Prec	0.87 (0.01)	0.83 (0.00)
		Rec	0.83 (0.01)	0.79 (0.00)			Rec	0.86 (0.01)	0.81 (0.00)
		F_1	0.89 (0.01)	0.81 (0.00)			F_1	0.88 (0.01)	0.84 (0.00)
1	NW	Prec	0.89 (0.01)	0.82 (0.00)	L	Reg1-NW	Prec	0.89 (0.01)	0.84 (0.00)
		Rec	0.90 (0.01)	0.80 (0.01)			Rec	0.88 (0.01)	0.83 (0.00)
	Reg2-C	F_1	0.93 (0.01)	0.85 (0.00)	L	Reg3-C	F_1	0.86 (0.01)	0.82 (0.00)
L		Prec	0.93 (0.01)	0.86 (0.00)			Prec	0.87 (0.01)	0.83 (0.00)
		Rec	0.93 (0.01)	0.85 (0.00)			Rec	0.86 (0.01)	0.82 (0.00)
	Reg4-E	F_1	0.89 (0.01)	0.84 (0.00)	L	Reg5-E	F_1	0.91 (0.01)	0.84 (0.00)
L		Prec	0.90 (0.01)	0.85 (0.00)			Prec	0.92 (0.01)	0.85 (0.00)
		Rec	0.89 (0.01)	0.84 (0.00)			Rec	0.91 (0.01)	0.84 (0.00)
	Reg6-E	F_1	0.86 (0.01)	0.82 (0.00)	L	Reg7-C	F_1	0.86 (0.01)	0.82 (0.00)
L		Prec	0.88 (0.01)	0.83 (0.00)			Prec	0.88 (0.01)	0.84 (0.00)
		Rec	0.86 (0.01)	0.81 (0.00)			Rec	0.85 (0.01)	0.82 (0.00)
	Reg8-S	F ₁	0.89 (0.01)	0.84 (0.00)	L	Reg9-NW	F_1	0.88 (0.00)	0.84 (0.00)
L		Prec	0.90 (0.01)	0.85 (0.00)			Prec	0.88 (0.00)	0.85 (0.00)
		Rec	0.88 (0.01)	0.83 (0.00)			Rec	0.89 (0.00)	0.84 (0.00)
		F ₁	0.88 (0.01)	0.84 (0.00)			F_1	0.88 (0.01)	0.84 (0.00)
L	Reg10-NW	Prec	0.89 (0.01)	0.85 (0.00)	L	Reg11-S	Prec	0.90 (0.01)	0.85 (0.00)
		Rec	0.87 (0.01)	0.83 (0.00)	51/8/2		Rec	0.88 (0.01)	0.83 (0.00)

Results : Privacy Risk

Results of the "in" class → how many users in the training data are correctly identified

Kind	Model	Metric	RF	Kind	Model	Metric	RF
G	AII	Prec	0.72	T T	С	Prec	0.71
G	All	Rec	0.76		C	Recall	0.75
	Е	Prec	0.72	ı	S	Prec	0.81
	L	Rec	0.76		3	Rec	0.75
	NW	Prec	0.78	L	Reg1-NW	Prec	0.83
	INVV	Rec	0.76		Regi-IVV	Rec	0.80
L	Reg2-C	Prec	0.82		Reg3-C	Prec	0.74
<u> </u>	Reg2-C	Rec	0.80	L	Reg3-C	Rec	0.78
L	Reg4-E	Prec	0.83	10	Reg5-E	Prec	0.82
	Neg4-L	Rec	0.85		Rego-L	Rec	0.87
L	Reg6-E	Prec	0.75		Reg7-C	Prec	0.83
_	Rego-L	Rec	0.76	<u> </u>	Reg1-C	Rec	0.77
-	Reg8-S	Prec	0.82	-	Reg9-NW	Prec	0.83
	ivego-2	Rec	0.76	L	ivega-ivv	Rec	0.88
9	Reg10-NW	Prec	0.83		Reg11-S	Prec	0.83
L	I/egTO-IAAA	Rec	0.81	L	1/eg11-3	Rec	0.79

Conclusions

- HOLDA: novel approach tailored for training NN in the hierarchical cross-silo setting
 - Strategy for the selection of the best weights.
- Privacy risk assessment of the models trained with HOLDA, simulating the MIA
- Experimental results
 - HOLDA models can reach good predictive performance
 - **Privacy risk is not negligible**, especially at the client level.
- Future work : Develop new mitigation strategies to lower the risk, without impacting on the performance

Do you have any questions?

michele.fontana@phd.unipi.it francesca.naretto@sns.it anna.monreale@unipi.it

THANKS

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

Non-Hierarchical Results

Kind	Model	Metric	Training	Validation	Kind	Model	Metric	Training	Validation
		F_1	0.78 (0.01)	0.76 (0.01)			F_1	0.85 (0.01)	0.81 (0.01)
G	All	Prec	0.80 (0.01)	0.79 (0.01)	L	Reg1-NW	Prec	0.86 (0.01)	0.82 (0.01)
		Rec	0.78 (0.00)	0.76 (0.01)		64534	Rec	0.84 (0.01)	0.80 (0.00)
		F_1	0.89 (0.01)	0.84 (0.01)			F_1	0.83 (0.01)	0.81 (0.01)
L	Reg2-C	Prec	0.89 (0.01)	0.85 (0.01)	L	Reg3-C	Prec	0.84 (0.01)	0.82 (0.01)
		Rec	0.88 (0.01)	0.84 (0.01)			Rec	0.85 (0.01)	0.82 (0.01)
	Reg4-E	F_1	0.85 (0.01)	0.82 (0.01)	L	Reg5-E	F_1	0.87 (0.01)	0.83 (0.00)
L		Prec	0.86 (0.01)	0.84 (0.01)			Prec	0.88 (0.01)	0.84 (0.01)
		Rec	0.85 (0.01)	0.82 (0.01)			Rec	0.87 (0.01)	0.82 (0.00)
2222	Reg6-E	F_1	0.82 (0.01)	0.80 (0.00)	L	Reg7-C	F_1	0.83 (0.01)	0.81 (0.01)
L		Prec	0.84 (0.01)	0.82 (0.01)			Prec	0.82 (0.01)	0.83 (0.01)
		Rec	0.81 (0.01)	0.80 (0.00)			Rec	0.85 (0.01)	0.80 (0.00)
		F_1	0.84 (0.01)	0.82 (0.01)		The second second	F_1	0.88 (0.01)	0.82 (0.00)
L	Reg8-S	Prec	0.86 (0.00)	0.84 (0.01)	L	Reg9-NW	Prec	0.89 (0.01)	0.83 (0.00)
		Rec	0.83 (0.00)	0.81 (0.01)			Rec	0.88 (0.01)	0.82 (0.00)
	Reg10-NW	F_1	0.85 (0.01)	0.81 (0.01)	L	Reg11-S	F_1	0.84 (0.01)	0.82 (0.01)
L		Prec	0.86 (0.01)	0.83 (0.01)			Prec	0.85 (0.01)	0.83 (0.01)
		Rec	0.85 (0.01)	0.81 (0.01)			Rec	0.83 (0.01)	0.81 (0.01)

Results: Hierarchical

Kind	Model	Metric	Training	Validation	Kind	Model	Metric	Training	Validation
		F_1	0.80 (0.04)	0.78 (0.00)			F_1	0.83 (0.01)	0.80 (0.00)
G	All	Prec	0.82 (0.00)	0.80 (0.00)		C	Prec	0.85 (0.01)	0.82 (0.00)
		Rec	0.79 (0.00)	0.77 (0.00)			Recall	0.83 (0.01)	0.79 (0.00)
ro i		F_1	0.83 (0.01)	0.79 (0.00)	Ĺ	S	F_1	0.86 (0.01)	0.82 (0.00)
1	E	Prec	0.85 (0.01)	0.81 (0.00)			Prec	0.87 (0.01)	0.83 (0.00)
		Rec	0.83 (0.01)	0.79 (0.00)			Rec	0.86 (0.01)	0.81 (0.00)
		F_1	0.89 (0.01)	0.81 (0.00)			F_1	0.88 (0.01)	0.84 (0.00)
1	NW	Prec	0.89 (0.01)	0.82 (0.00)	L	Reg1-NW	Prec	0.89 (0.01)	0.84 (0.00)
		Rec	0.90 (0.01)	0.80 (0.01)		J	Rec	0.88 (0.01)	0.83 (0.00)
	Reg2-C	F_1	0.93 (0.01)	0.85 (0.00)	L	Reg3-C	F_1	0.86 (0.01)	0.82 (0.00)
L		Prec	0.93 (0.01)	0.86 (0.00)			Prec	0.87 (0.01)	0.83 (0.00)
		Rec	0.93 (0.01)	0.85 (0.00)			Rec	0.86 (0.01)	0.82 (0.00)
		F_1	0.89 (0.01)	0.84 (0.00)	L	Reg5-E	F_1	0.91 (0.01)	0.84 (0.00)
L	Reg4-E	Prec	0.90 (0.01)	0.85 (0.00)			Prec	0.92 (0.01)	0.85 (0.00)
		Rec	0.89 (0.01)	0.84 (0.00)			Rec	0.91 (0.01)	0.84 (0.00)
	Reg6-E	F_1	0.86 (0.01)	0.82 (0.00)	L	Reg7-C	F_1	0.86 (0.01)	0.82 (0.00)
L		Prec	0.88 (0.01)	0.83 (0.00)			Prec	0.88 (0.01)	0.84 (0.00)
		Rec	0.86 (0.01)	0.81 (0.00)			Rec	0.85 (0.01)	0.82 (0.00)
	Reg8-S	F_1	0.89 (0.01)	0.84 (0.00)	L	Reg9-NW	F_1	0.88 (0.00)	0.84 (0.00)
L		Prec	0.90 (0.01)	0.85 (0.00)			Prec	0.88 (0.00)	0.85 (0.00)
***		Rec	0.88 (0.01)	0.83 (0.00)			Rec	0.89 (0.00)	0.84 (0.00)
	Reg10-NW	F ₁	0.88 (0.01)	0.84 (0.00)	L	Reg11-S	F_1	0.88 (0.01)	0.84 (0.00)
L		Prec	0.89 (0.01)	0.85 (0.00)			Prec	0.90 (0.01)	0.85 (0.00)
		Rec	0.87 (0.01)	0.83 (0.00)			Rec	0.88 (0.01)	0.83 (0.00)