RTD Sensor

2)

منبع جریانی به دو سر RTD وصل کردیم ولتاژ دو سر سیم آن را خوانده ایم پس با توجه به ولتاژ خوانده شده میتوان مقاومت یک سیم را بدست آورد که در این مورد برابر 1 اهم است.

3)

ابتدا خروجی سنسور را در زمان شبیه سازی نزدیک صفر میخوانیم که مقدار آن 110.553۷ است

سپس مقدار نهایی که در آن خروجی سنسور ثابت است را میخوانیم

که در اینجا مقدار نهایی 122.3۷ است و زمان شبیه سازی 19.85 است

حال طبق تعریف ثابت زمانی باید زمانی را که طول میکشد تا خروجی به %63.2 خروجی میرسد را اندازه بگیریم 63.2% . $(122.3-110.553)=7.42
ightarrow V_{ au}=110.553+7.42=117.973V$

میبینیم که در زمان 2.75s مقدار خروجی به مقدار مورد نظر رسیده پس ثابت زمانی آن 2.75s به دست می آید.

همچنین نمودار خروجی به این شکل است و از روی آن میتوان به همین نتیجه رسید.

4)

با استفاده از دو ولت متر میتوانیم با کم کردن دو ولتاژ اندازه گیری شده، ولتاژ دو سر RTD بدون ولتاژ روی مقاومت سیم را اندازه گیری کرد، که در این مورد مقاومت 122 اهم به دست می آید.

خروجی این سنسور بین 0 تا 500 اهم تغییر میکند.

T (C°)	-100	0	100	200	300	400	500	600	700	800
Resistance(Ω)	60.27	100	138.5	175.9	212	247	280.9	313.7	345.23	375.67

پار امتر ها به کمک متلب به این صورت پیدا میشوند

$$R_{RTD}=R_{ref}\left(1+lpha_1(T-T_{ref})+lpha_2(T-T_{ref})^2+lpha_3(T-T_{ref})^3
ight)$$
 . T_{ref} را صفر در نظر میگیریم. $R_0=99.99, lpha_1=0.0039, lpha_2=-5.91e^{-7}, lpha_3=1.28e^{-11}$ پس ضرایب به صورت $R_0=99.99, lpha_1=0.0039, lpha_2=-5.91e^{-7}, lpha_3=1.28e^{-11}$ خواهد شد

مدار بهسازی را به صورت بالا طراحی کردیم تا بتواند تغییرات دما را به ولتاژ تبدیل کند، در این مدار از آپ امپ به عنوان جمع کننده استفاده کردیم تا بتوان اثر ولتاژ افتاده روی مقاومت سیم را خنثی کرد. همچنین مقاومت های متصل به آپ امپ را بزرگ انتخاب کردیم تا جریان زیادی نکشند و باعث ایجاد خطا نشوند. میتوانستیم از بافر استفاده کنیم ولی برای ساده تر شدن مدار این کار را نکردیم. چون خروجی حسگر در بازه کاری V<3.6 ADC) است نیازی به المان دیگری جهت تقویت یا تضعیف نداریم.

Thermocouple

2)

 $temperature\ range: (-270\ , 1300) C^{\circ}$

T (C°)	100	200	300	400	500	600	700	800	900	1000
Voltage(mV)	1.57	4.71	8.14	11.77	15.55	19.41	23.32	27.25	31.12	35.05

T (C°)	-100	0
Voltage(mV)	-3.6	-1.2

طبق خواسته سوال برای پیدا کردن معادله به روش حداقل مربعات رگرسور ها را به صورت $[X^1 \, X^0]$ انتخاب میکنیم پس به تبع آن پارامتر هایی که باید محاسبه شوند به صورت $[a \, T_2, T]$ خواهد بود که به ترتیب ضرایب رگرسور ها میباشند. البته برای پیدا کردن معادله از داده های جدول بالا استفاده میکنیم چون منحنی در این دماها خطی تر است.

مقادیر ضرایب به این صورت بدست می آید

$$V=lpha(T_1-T_2)$$
 $lpha=0.0376$, $T_2=76.75$ C° کاب بانوجه به ضرایب بالا

البته دمای 72 که در بالا بدست آمد دقیق نیست، چون از داده های بالای 100 برای پیدا کردن خط استفاده شده تا منحنی خطی تر باشد، مقدار دقیق آن برابر 0.37 0.37 0.37 0.37

Туре	Couples	Seebeck Coefficient		
		μV/K		
E	Chromel-Constantan	60		
J	Iron-Constantan	51		
Т	Copper-Constantan	40		
K	Chromel-Alumel	40		
N	Nicrosil-Nisil	38		
S	Pt (10% Rh)-Pt	11		
В	Pt (30% Rh)-Pt (6% Rh	1) 8		
R	Pt (13% Rh)-Pt	12		

با توجه به ضرایب Seebeck میبینیم که ضریب بدست آمده خیلی نزدیک به ضریب همان نوع است، اما با این آرمایش نمیتوان نوع ترموکوپل را به صورت دقیق تشخیص داد زیرا ضرایب بعضی از مدل ها نزدیک به هم است

مقدار T2 بدست آمده بیانگر دمای نقطه CJ ترموکوپل است.

3)

مدار بهسازی را اینگونه طراحی میکنیم تا اختلاف ولتاژ دو سر خواسته شده را به ما بدهد و همچنین در این قسمت از بافر استفاده کردیم تا مقاومت ها جریان نکشند و باعث ایجاد خطا نشوند. چون خروجی حسگر در بازه کاری ADC (V<3.6) است نیازی به المان دیگری جهت تقویت یا تضعیف نداریم. فقط باید توجه کنیم چون در اینجا خروجی حسگر ممکن است ولتاژی منفی باشد باید Vref را نیز متصل کنیم.

مدار بهسازی برای خنثی کردن اثرات تغییر دمای محیط

این مدار مانند قبل از دو بافر و یک differential amplifire استفاده شده تا ولتاژ خروجی ترموکوپل را در اختیار ما قرار دهد، در مرحله ی بعدی برای حذف اثر محیط، ولتاژ سینوسی را با استفاده از یک تقویت کننده تفاضلی دیگر از ولتاژ خروجی ترموکوپل کم میکنیم تا خروجی ثابتی به ما دهد، در مرحله آخر باید ولتاژ 1.2mV که دمای CJ در قسمت قبلی را تعیین میکرد از آن کم کنیم که با استفاده از یک جمع کننده تفاضلی دیگر این کار را انجام میدهیم، در نهایت، دمای ترموکوپل روی صفحه نمایش داده خواهد شد.

5)

12 ADC از آنجا که خروجی ترموکوپل ولتاژی آنالوگ هست پس محدودیتی در دقت ایجاد نمیکند، ولی رزولوشن $\frac{Vref_+-Vref_-}{4096} = \frac{50m-(-5m)}{4096} = 0.01343 mV$ بیت است که باعث محدودیت دقت میشود و دقت حاصل از آن

است که با توجه به محاسبات درون میکروکنترلر °0.36° = 0.01343 * 26.6 است، اما روی صفحه نمایشگر بدون اعشار دما را نشان میدهیم پس دقت آن °1 است. اما با توجه به اینکه معادله مربوط به منحنی خروجی ترموکوپل را خطی گرفتیم(طبق خواسته سوال)، خطای بیشتری در عمل ایجاد میشود.

(100,1000)°C در محدوده $T=T_{TCN}\pm 10.8$ °C طبق آزمایشات

با استفاده از مدار بالا میتوان بدون استفاده از اهم متر مقاومت حسگر را اندازه گرفت، در این حالت برابر 1 کیلو اهم است.

Ambient temperature		Temperature coefficient	KTY81	110			KTY81/120			
(°C)	(°F)	(%/K)	Resistance (Ω)			Temperature	Resista	nce (Ω)	Temperature	
		Min	Тур	Max	error (K)	Min	Тур	Max	error (K)	
-55	-67	0.99	475	490	505	±3.02	470	490	510	±4.02
-50	-58	0.98	500	515	530	±2.92	495	515	535	±3.94
-40	-40	0.96	552	567	582	±2.74	547	567	588	±3.78
-30	-22	0.93	609	624	638	±2.55	603	624	645	±3.62
-20	-4	0.91	669	684	698	±2.35	662	684	705	±3.45
-10	14	0.88	733	747	761	±2.14	726	747	769	±3.27
0	32	0.85	802	815	828	±1.91	793	815	836	±3.08
10	50	0.83	874	886	898	±1.67	865	886	907	±2.88
20	68	0.80	950	961	972	±1.41	941	961	982	±2.66
25	77	0.79	990	1000	1010	±1.27	980	1000	1020	±2.54
30	86	0.78	1029	1040	1051	±1.39	1018	1040	1061	±2.68
40	104	0.75	1108	1122	1136	±1.64	1097	1122	1147	±2.97
50	122	0.73	1192	1209	1225	±1.91	1180	1209	1237	±3.28
60	140	0.71	1278	1299	1319	±2.19	1265	1299	1332	±3.61
70	158	0.69	1369	1392	1416	±2.49	1355	1392	1430	±3.94
80	176	0.67	1462	1490	1518	±2.8	1447	1490	1532	±4.3
90	194	0.65	1559	1591	1623	±3.12	1543	1591	1639	±4.66
100	212	0.63	1659	1696	1733	±3.46	1642	1696	1750	±5.05
110	230	0.61	1762	1805	1847	±3.83	1744	1805	1865	±5.48
120	248	0.58	1867	1915	1963	±4.33	1848	1915	1982	±6.07
125	257	0.55	1919	1970	2020	±4.66	1899	1970	2040	±6.47
130	266	0.52	1970	2023	2077	±5.07	1950	2023	2097	±6.98
140	284	0.45	2065	2124	2184	+6.28	2043	2124	2205	+8 51

بله مقاومت خوانده شده در قسمت قبل با داده های دیتاشیت مطابقت دارد.

3)

$$\begin{split} R &= R_0 e^{\beta \left(\frac{1}{T} - \frac{1}{T0}\right)} \\ data \; sheet &\to \frac{R_{100}}{R_{25}} = 1.696 \to \ln(1.696) \\ &= \ln(R_0) + \beta \left(\frac{1}{373} - \frac{1}{T_0}\right) - \left[\ln(R_0) + \beta \left(\frac{1}{298} - \frac{1}{T_0}\right)\right] \to 0.528 \\ &= \beta \left(\frac{1}{373} - \frac{1}{298}\right) \to \beta = -782.9 \end{split}$$

Data sheet: $T_0 = 25^{\circ}\text{C} \rightarrow R_0 = 1000\Omega$

از یک بافر به عنوان مدار بهسازی استفاده کردیم تا پایه میکروکنترلر جریان نکشد و باعث ایجاد خطا نشود، چون بازه خروجی این حسگر در بازه کاری ADC میکروکنترلر است نیازی به المان دیگری نداریم، و صرفا با دادن معادله ترمیستور که در بالا به دست آوردیم، محاسبات انجام خواهد شد.

1)

1 Features

- Rated for -55°C to 130°C Range
- Available in SC70 and DSBGA Package
- Predictable Curvature Error
- Suitable for Remote Applications
- Accuracy at 30°C ±1.5 to ±4°C (Maximum)
- Accuracy at 130°C and -55°C ±2.5 to ±5°C (Maximum)
- Power Supply Voltage Range 2.4 V to 5.5 V
- Current Drain 10 μA (Maximum)
- Nonlinearity ±0.4% (Typical)
- Output Impedance 160 Ω (Maximum)
- Load Regulation

 $0 \mu A < I_L < 16 \mu A -2.5 mV (Maximum)$

STREES OUTCOMES HOLEA, GLOSS SPECIFICATION APPLY TOLANDERS AND THE TABLE 19 THE TOLEANDERS AND THE TRANSPORTER TOLEANDERS AN								
PARAMETER	TEST CONDITIONS	MIN (1)	TYP(2)	MAX ⁽¹⁾	UNIT			
Non-linearity (4)	-20°C ≤ T _A ≤ 80°C		±0.4%					
Sensor Gain (Temperature Sensitivity or Average Slope) to equation: V _O =-11.77 mV / °C×T+1.860 V	-30°C ≤ T _A ≤ 100°C	-12.2	-11.77	-11.4	mV/°C			
Output Impedance	Sourcing I _L 0 μA to 16 μA ⁽⁵⁾⁽⁶⁾			160	Ω			
Load Regulation ⁽⁷⁾	Sourcing I _L 0 μA to 16 μA ⁽³⁾⁽⁶⁾			-2.5	mV			
Line Denvilation (8)	2.4 V ≤ V ⁺ ≤ 5.0 V			3.3	mV/V			
Line Regulation (8)	5.0 V ≤ V ⁺ ≤ 5.5 V			11	mV			
	2.4 V ≤ V ⁺ ≤ 5.0 V; T _A = 25°C		4.5	7	μA			
Quiescent Current	5.0 V ≤ V ⁺ ≤ 5.5 V; T _A = 25°C		4.5	9	μA			
	2.4 V ≤ V ⁺ ≤ 5.0 V		4.5	10	μA			
Change of Quiescent Current	2.4 V ≤ V ⁺ ≤ 5.5 V		0.7		μA			
Temperature Coefficient of Quiescent Current			-11		nA/°C			
Shutdown Current	V+ ≤ 0.8 V		0.02		μA			

PIN		TYPE	DESCRIPTION				
NAME	DSBGA	SC70	ITPE	DESCRIPTION			
GND	_	2	GND	Device substrate and die attach paddle, connect to power supply negative terminal. For optimum thermal conductivity to the PC board ground plane, pin 2 must be grounded. This pin may also be left floating.			
GND	A2	5	GND	Device ground pin, connect to power supply negative terminal.			
NC	A1	1	_	NC (pin 1) must be left floating or grounded. Other signal traces must not be connected to this pin.			
vo	B1	3	Analog Output	Temperature sensor analog output			
V ⁺	B2	4	Power	Positive power supply pin			

برای بدست آوردن بیشترین دقت، در پایه های ورودی میکروکنترلر بافر قرار دادیم تا خطا ایجاد نشود، معادلات درون میکروکنترلر را با 16 رقم اعشار نوشتیم، طبق آزمایش ماکسیمم و مینیمم ولتاژ خروجی حسگر را به عنوان $Vref_+, Vref_-$ دادیم تا $Vref_+$ دادیم

3)

ADC resolution : 12 bits
$$\rightarrow accuracy = \frac{Vref_{+} - Vref_{-}}{4096} = \frac{2.4846 - 0.3033}{4096}$$

= 0.000532V

با توجه به معادلات درون میکروکنترلر و غیر خطی بودن آن بیشترین خطا برابر °C 0.0481 خواهد بود.

در نتیجه دقت خروجی میکرو کنترلر 0.0481° است.

دقت صفحه نمایش تا 2 رقم اعشار است پس محدودیتی ایجاد نمیکند.

ولی در عمل حسگر ما با توجه به دیتا شیت دارای دقت $\pm 1.5^{\circ}$ C, $\pm 4^{\circ}$ C(maximum) درجه است که به طرز قابل توجهی دقتش از میکروکنترلر کمتر است و دقت سیستم را محدود میکند.

2)

Features

- Digital Temperature Sensing in SOT-23-5 or TO-220 Packages
- · Outputs Temperature as an 8-Bit Digital Word
- Simple SMBus/I²C™ Serial Port Interface
- · Solid-State Temperature Sensing:
 - ±2°C (max.) Accuracy from +25°C to +85°C
 - ±3°C (max.) Accuracy from 0°C to +125°C
- Supply Voltage of 2.7V to 5.5V
- · Low Power:
 - 200 µA (typ.) Operating Current
 - 5 μA (typ.) Standby Mode Current

دقت سنسور طبق دیتا شیت برابر 2° در دمای 25 تا 85 درجه است و 3° در دمای 0 تا 125 درجه