Farkas' Lemma

Rudi Pendavingh

Eindhoven Technical University

Optimization in \mathbb{R}^n , lecture 2

Today's Lecture

Theorem (Farkas' Lemma, 1894)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then either:

- There is an $x \in \mathbb{R}^n$ such that $Ax \leq b$; or
- 2 There is a $y \in \mathbb{R}^m$ such that $y \ge 0$, yA = 0 and yb < 0.
 - Farkas' Lemma is at the core of linear optimization.
 - There are extremely efficient proofs of Farkas' Lemma.
 We'll do a slow, geometrical proof.
 - Farkas' Lemma is augmented by Carathéodory's theorem.

Convex sets

Definition

Let $x, y \in \mathbb{R}^n$. The line segment between x and y is

$$[x, y] := {\lambda x + (1 - \lambda)y \mid \lambda \in [0, 1]}.$$

Definition

A set $C \subseteq \mathbb{R}^n$ is *convex* if $[x, y] \subseteq C$ for all $x, y \in C$.

Lemma

If $C_{\alpha} \subseteq \mathbb{R}^n$ is convex for each α , then $\bigcap_{\alpha} C_{\alpha}$ is convex.

A map $f: \mathbb{R}^m \to \mathbb{R}^n$ is affine if $f: x \mapsto Ax + b$ for some A, b.

Lemma

If $C \subseteq \mathbb{R}^n$ is convex and $f : \mathbb{R}^m \to \mathbb{R}^n$ is affine, then $f^{-1}[C]$ is convex.

Example

- any affine space $\{x \in \mathbb{R}^n \mid Ax = b\}$ is convex
- any halfspace $\{x \in \mathbb{R}^n \mid ax \leq \beta\}$ is convex
- any polyhedron $\{x \in \mathbb{R}^n \mid Ax \leq b\}$ is convex
- the *unit ball* $\{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ is convex
- any ellipsoid $\{Ax + b \mid ||x|| \le 1\}$ $(\det(A) \ne 0)$ is convex

Separation

Definition

A set $H \subseteq \mathbb{R}^n$ is a *hyperplane* if $H = H_{d,\delta} := \{x \in \mathbb{R}^n \mid dx = \delta\}$ for some nonzero rowvector $d \in \mathbb{R}^n$ and $\delta \in \mathbb{R}$.

Definition

Let $X, Y \subseteq \mathbb{R}^n$. Then $H_{d,\delta}$ separates X from Y if

 $dx < \delta$ for all $x \in X$, and $dy > \delta$ for all $y \in Y$.

The Separation Theorem

Theorem

Let $C \subseteq \mathbb{R}^n$ be a closed, convex set and let $x \in \mathbb{R}^n$. If $x \notin C$, then there is a hyperplane separating $\{x\}$ from C.

- **1** $\min\{||y-x|| \mid y \in C\}$ is attained; let $z \in C$ attain the minimum.
- ② Let $d := (z x)^t$ and $\delta := \frac{1}{2}d(z + x)$.
- **3** $H_{d,\delta}$ separates $\{x\}$ from C: $dx < \delta$ and $dy > \delta$ for all $y \in C$

Separation — variations

Theorem

Let C be an open convex set and let $x \in \mathbb{R}^n \setminus C$.

Then there exists a hyperplane H such that $x \in H$ and $C \cap H = \emptyset$.

Proof.

Let $x_i \in \mathbb{R}^n \setminus \overline{C}$ be such that $\lim_{i \to \infty} x_i = x$.

Apply the Separation theorem to \overline{C} , x_i . Construct H.

Theorem

Let $C, D \subseteq \mathbb{R}^n$ be disjoint open convex sets.

Then there is a hyperplane H separating C from D.

Proof.

.. up to you.

Cones

Definition

A set $C \subseteq \mathbb{R}^n$ is a *cone* if $\alpha x + \beta y \in C$ for all $x, y \in C$ and $\alpha, \beta > 0$.

Example

The Lorenz cone is $L^n := \{x \in \mathbb{R}^n \mid \sqrt{x_1^2 + \cdots + x_{n-1}^2} \le x_n\}.$

Example

Let $a_1, \ldots, a_m \in \mathbb{R}^n$. Then the cone spanned by a_1, \ldots, a_m is

$$cone\{a_1,\ldots,a_m\}:=\{\lambda_1a_1+\cdots+\lambda_ma_m\mid \lambda_i\geq 0 \text{ for all } i\}.$$

Farkas' Lemma

Theorem

Let $C \subseteq \mathbb{R}^n$ be a closed cone and let $x \in \mathbb{R}^n$. Either

- $\mathbf{0}$ $x \in C$, or
- ② there is a $d \in \mathbb{R}^n$ such that $dy \ge 0$ for all $y \in C$ and dx < 0.

Theorem (Farkas' Lemma, 1894)

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$. Then either

- **1** $b \in cone\{a_1, ..., a_m\}$; or
- ② there is a $d \in \mathbb{R}^n$ such that $da_i \geq 0$ for all i and db < 0.

Lemma

Let $a_1, \ldots, a_m \in \mathbb{R}^n$. Then $cone\{a_1, \ldots, a_m\}$ is a closed set.

Farkas' Lemma — variations

Theorem (Farkas' Lemma, variant 1)

Let A be an $m \times n$ matrix, let $b \in \mathbb{R}^m$. Then either:

- **1** there is an $x \in \mathbb{R}^n$ such that Ax = b and $x \ge 0$; or
- ② there is a $y \in \mathbb{R}^m$ such that $yA \ge 0$ and yb < 0.

Theorem (Farkas' Lemma, variant 2)

Let A be an $m \times n$ matrix, $b \in \mathbb{R}^m$. Then either:

- **1** there is an $x \in \mathbb{R}^n$ such that $Ax \leq b$; or
- ② there is a $y \in \mathbb{R}^m$ such that $y \ge 0$, yA = 0 and yb < 0.

Apply the previous theorem to
$$A' := [A \mid -A \mid I], b' := b.$$

Farkas' Lemma — variations

Definition

If $L \subseteq \mathbb{R}^n$ is a linear space, then

$$L^{\perp} := \{ y \in \mathbb{R}^n \mid y \perp x \text{ for all } x \in L \}$$

is the *orthogonal complement* of *L*.

Theorem (Farkas' Lemma, coordinate-free variant)

Let $L \subseteq \mathbb{R}^n$ be a linear space. Exactly one of the following holds:

- there exists an $x \in L$ such that $x \ge 0$ and $x_n > 0$; or
- ② there exists an $y \in L^{\perp}$ such that $y \ge 0$ and $y_n > 0$.

Without loss of generality
$$L = \{ \begin{bmatrix} x \\ t \end{bmatrix} \mid Ax = bt \}$$
. Apply 'Variant 1'.

Carathéodory's theorem

Theorem (Carathéodory, 1911)

Let $S \subseteq \mathbb{R}^n$ be a finite set, and let $x \in \mathbb{R}^n$. If $x \in \text{cone } S$ then there is a linearly independent set $T \subseteq S$ such that $x \in \text{cone } T$.

- **1** Let $T \subseteq S$ be the smallest set such that $x \in \text{cone } T$.
- T is linearly independent: if not,
 - ▶ there are $\mu_t \in \mathbb{R}$ (not all 0) such that $\sum_{t \in T} \mu_t t = 0$.
 - ▶ there are $\lambda_t \geq 0$ such that $\sum_{t \in T} \lambda_t t = x$.
 - there is an $\alpha \in \mathbb{R}$ such that $\lambda_t + \alpha \mu_t \geq 0$ for all t, and $\lambda_{t_0} + \alpha \mu_{t_0} = 0$ for some t_0 .
 - ▶ then $x \in \text{cone}(T \setminus \{t_0\})$; contradiction.

Few linear inequalities suffice for inconsistency

Theorem (Carathéodory, 1911)

Let $S \subseteq \mathbb{R}^n$ be a finite set, and let $x \in \mathbb{R}^n$. If $x \in \text{cone } S$ then there is a linearly independent set $T \subseteq S$ such that $x \in \text{cone } T$.

Corollary

If the system of linear inequalities

$$a_1x \leq b_1, \ldots, a_mx \leq b_m,$$

has no solution $x \in \mathbb{R}^n$, then there is a set $J \subseteq \{1, ..., m\}$ with at most n+1 members such that the subsystem

$$a_i x \leq b_i$$
 for all $i \in J$

has no solution $x \in \mathbb{R}^n$.

Linear inequalities have 'extreme' solutions

Theorem (Carathéodory, 1911)

Let $S \subseteq \mathbb{R}^n$ be a finite set, and let $x \in \mathbb{R}^n$. If $x \in \text{cone } S$ then there is a linearly independent set $T \subseteq S$ such that $x \in \text{cone } T$.

Corollary

If the system of linear inequalities

$$a_1x \leq b_1, \ldots, a_mx \leq b_m,$$

has a solution $x \in \mathbb{R}^n$, then there also is a solution x^* such that

$$lin.hull\{a_1,\ldots,a_m\} = lin.hull\{a_i \mid a_i x^* = b_i\}.$$

The 'fundamental theorem' of linear inequalities

Theorem

Let $a_1, \ldots, a_m, b \in \mathbb{R}^n$. Then exactly one of the following holds:

- **1** there is a linearly independent subset $T \subseteq \{a_1, \ldots, a_m\}$ such that $b \in cone\ T$; and
- ② there is a nonzero $d \in \mathbb{R}^n$ such that $da_i \geq 0$ for all i, db < 0, and $rank\{a_i \mid da_i = 0\} = rank\{a_1, \ldots, a_m, b\} 1$.