Решение задачи построения максимальной зелёной волны графоаналитическим способом

Красник А.Л.

Москва 2025.

1 Задача

Реализовать алгоритм графоаналитического метода нахождения максимальной "зелёной волны" и с его помощью решить задачу с конкретными данными. Найти такие смещения (сдвиги) светофорных лент, чтобы обеспечить максимальное количество и максимальную ширину "зелёных волн". Допускается изменять длительность сигналов светофоров в заданных диапазонах.

2 Данные светофорных объектов

Таблица 1: Координаты светофорных объектов и расстояния между ни-

Светофорный объект	Имя	X	Y	Дистанция до следующего (м)
0	tls #0	0	0	200
1	tls $\#1$	0	200	250
2	tls $\#2$	0	450	150
3	tls $\#3$	0	600	_

Таблица 2: Фазы и сигналы для светофорных объектов. Сигналы в каждой фазе идут последовательно. Суммарная длительность фазы (т.е. $uu\kappa n$) — 85 секунд

Светофорный	Идентификатор	Сигнал	Длительность	Мин.	Макс.
объект	фазы		сигнала (с)	дл-ть	дл-ть
				(c)	(c)
0	1	Green	30	25	35
0	1	Red	20	20	20
0	2	Green	20	15	25
0	2	Red	15	15	15
1	10	Red	20	20	20
1	10	Green	35	30	40
1	10	Yellow	5	5	5
1	11	Red	10	10	10
1	11	Green	10	5	15
1	11	Yellow	5	5	5
2	20	Red	45	45	45
2	20	Green	10	5	15
2	21	Red	7	7	7
2	21	Green	18	18	18
2	21	Yellow	5	5	5
3	30	Red	40	40	40
3	30	Green	15	10	20
3	31	Red	10	10	10
3	31	Green	20	20	20

3

3 Блок-схема

Рис. 1: Блок-схема графоаналитического метода

4 Результаты програмной реализации

4.1 Обоснование выбора технологий

Для реализации системы был выбран Python благодаря опыту работы с ним и его богатой экосистеме научных библиотек (NumPy, Matplotlib. Matplotlib был выбран как стандартное решение для визуализации, обеспечивающее точное построение пространственно-временных диаграмм. Чистый алгоритмический подход был предпочтён для гарантии точности и верифицируемости результатов. LaTeX использован для документации как отраслевой стандарт оформления научных работ.

4.2 Достигнутые результаты

В ходе программной реализации удалось разработать систему оптимизации зелёных волн, которая способна находить зелёные волны между заданными перекрёстками, а также находить оптимальные временные сдвиги сигналов светофора для максимизации ширины зелёной волны на участке дороги с несколькими светофорами.

4.3 Достоинства и недостатки метода

Достоинсто метода состоит в том, что он гарантирует нахождение оптимальных или близких к оптимальным решений за счёт полного перебора допустимых вариантов. Результаты воспроизводимы и верифицируемы. Метод демонстрирует стабильную работу при различных конфигурациях светофорных объектов, корректно обрабатывает допустимые диапазоны длительности сигналов, т.е. устойчив к различным входным данным.

Самым существенным недостатком метода ялвяется его трудозатратность. Метод полного перебора, используемый для поиска оптимальных смещений светофоров, требует анализа всех возможных комбинаций временных сдвигов, что приводит к экспоненциальному росту вычислительный сложности при увеличении числа перекрёстков. Данный метод не применим к системам с большим числом светофоров.

Рис. 2: Зелёная волна без сдвигов

Рис. 3: Зелёная волна максимальной длины при заданных условиях

Список литературы

- [1] Новиков И. А. Технические средства организации движения: Учебно-методический комплекс. Белгород: Изд-во БГТУ им. В. Г. Шухова, 2009. 302 с.
- [2] Саражинский Д. С., Канский Д. В. Построение графоаналитического плана координированного регулирования для участка УДС: учебно-методическое пособие / Д. С. Саражинский, Д. В. Канский. Минск: БНТУ, 2022. 46 с.