

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 8 Martie 2014

CLASA a XII-a

Problema 1. Pentru $n \in \mathbb{N}^*$ considerăm funcția $f_n : [0, n] \to \mathbb{R}$ dată de $f_n(x) = \arctan([x])$, unde [x] reprezintă partea întreagă a numărului real x. Să se arate că f_n este integrabilă și să se determine

$$\lim_{n\to\infty}\frac{1}{n}\int_0^n f_n(x)\mathrm{d}x.$$

Gazeta Matematică

Problema 2. Fie $f:[0,1]\to\mathbb{R}$ o funcție derivabilă, cu derivata continuă și fie

$$s_n = \sum_{k=1}^n f\left(\frac{k}{n}\right).$$

Să se arate că șirul $(s_{n+1} - s_n)_{n \in \mathbb{N}^*}$ este convergent către $\int_0^1 f(x) dx$.

Problema 3. Fie $(A, +, \cdot)$ un inel cu proprietatea: oricare ar fi $x \in A$, $x + x^2 + x^3 = x^4 + x^5 + x^6$.

- a) Să se arate că dacă $n \geq 2$ este un număr natural, $x \in A$ și $x^n = 0$, atunci x = 0.
 - b) Să se arate că $x^4 = x$, oricare ar fi $x \in A$.

Problema 4. Fie (G,\cdot) un grup care nu are elemente de ordin 4 şi $f:G\to G$ un morfism de grupuri care are proprietatea $f(x)\in\{x,x^{-1}\}$, oricare ar fi $x\in G$. Să se arate că f(x)=x oricare ar fi $x\in G$, sau $f(x)=x^{-1}$ oricare ar fi $x\in G$.

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.