Dogs vs. Cats Classification Project

1. Project Introduction

Project Understanding

Objective

- 1. Try Different Models
- 2. Visualize Performance
- 3. Achieve 99% Accuracy

Challenge

- 1. Computation Power
- 2. Overfitting Underfitting
- 3. Preprocessing Method

2. Exploratory Analysis

Dogs Sample Preview

Shape

Cats Sample Preview

Noise

3. Simple Model

Structure Input: 96*96*3 Layer1: Cov 32 + Max Pool Layer 2: Cov 64 + Max Pool Layer3: Cov 128 + Max Pool Layer4: Dense 256 + Drop0.5 Layer5: Dense 1

12 Epochs / 6 Mins

Model Evaluation

Misclassified Samples

- 1. Black Cat
- 2. Dog Side Face
- 3. Several Together
- --- Humans Can Recognize

Augmentation

4. Complex Model

Structure

- Input: 96*96*3 + Augmentation
- L1: Cov32+BNorm+Pool+Drop0.2
- L2: Cov64+BNorm+Pool+Drop0.2
- L3: Cov128+BNorm+Pool+Drop0.2
- L4: Dense 512 + Drop0.2
- L5: Dense 1

22 Epochs / 30 Mins

Model Evaluation

Misclassified Samples

- **1. Lying Cat**
- 2. Uncommon Breed
- 3. Blurred Face
- --- Humans Can Recognize

5. Transfer Learning

5 Epochs / 35 Mins

Model Evaluation

Misclassified Samples

- 1. Incorrect Image
- 2. Too Small or Too Big
- 3. Disrupted by Object
- --- Hard to Recognize

6. Project Conclusion

- 1. Classic CNN models effectively establish a baseline.
- 2. Data augmentation improves generalization abilities.
- 3. Learning rate reduction aids model convergence.
- 4. Pre-trained models show remarkable adaptability.

Dogs vs. Cats Classification Project

