Relatório Estrutural - Projeto Vetor II

Caio Barros

Universidade Estadual de Londrina - UEL caiobarros.eng@uel.br

1. Estimações de desempenho

Em ambiente de simulação foi possível estimar a atuação do voo do veículo utilizando os dados de empuxos colhidos nos ensaios estáticos. E com isso, algumas circunstâncias foram destacadas, como: apogeu, velocidade máxima e aceleração máxima do veículo. Foram separadas em um histograma as estimativas de pico para cada grandeza descada anteriormente, sendo cada coluna em função de uma respectiva curva de empuxo colhida empiricamente.

Dessa forma, é plausível dizer que com o desempenho atual do motor ele não conseguiria chegar em velocidade suficiente para romper a barreira do som, e com isso, análises de regime transônico e supersônico tornam-se inutilizáveis e isso será evidenciado em sequência.

1.1. Massa dos componentes intrínsecos

Como todos esses componentes listados possuem itens de suporte que serão adicionados no veículo, consideraremos uma adição de 250(duzentos e cinquenta) gramas na massa total dos componentes intrínsecos, totalizando:

$$m_t = 170,95 + 310,70 + 31 + 230 + 250 + 250 = 1012,65g$$
 (1)

Vale salientar que são nas gramas adicionais que devem ocorrer as subtrações de massas, em vista que os outros componentes tem massas fixas e são essênciais para o voo.

Tabela 1: Massa dos componentes

Componente	Gramas(g)
Tubeira	170,95
Motor	310,70
BeagleBone Blue	31
Paraquedas	230
Propelente	≈ 250

2. Primeiro Modelo

No primeiro modelo estrutural estudado é utilizado uma espessura de 1 mm de parede dos cilíndros que constituem o veículo, com isso temos a massa da estrutura angariada pela densidade do material informada pelo fabricante da fibra de carbono.

$$\rho = 152, 9 \frac{\mathrm{kg}}{\mathrm{m}^3} \tag{2}$$

A estrutura foi modelada em Solidworks em virtude que também é o ambiente das simulações estruturais que são discutidas posteriormente.

2.1. Ogiva

Figura 1: Ogiva construída em Solidworks

2.2. Prolongamento da Ogiva

Figura 2: Continuação da Ogiva construída em Solidworks

2.3. Conector

Figura 3: Conector construído em Solidworks

2.4. Corpo

Figura 4: Corpo construído em Solidworks

2.5. Aletas

Figura 5: Aleta construída em Solidworks

2.6. Veículo construído

Figura 6: Veículo construído em Solidworks

Com a densidade fornecida pelo fabricante o Solidworks pode estimar a massa de cada componente da estrutura, sendo elas:

2.7. Massa dos componentes da estrutura do primeiro modelo

Tabela 2: Massa dos componentes

Componente	Gramas(g)
Ogiva	5
Prolongamento da Ogiva	7
Conector	7
Corpo	220
Aleta	4

$$m_{pm} = 5 + 7 + 7 + 220 + (4 \cdot 4) = 255g$$
 (3)

Considerando uma margem de segurança de 10% nas massas fornecidas pelo software com a massa que a peça terá após a fabricação, temos então:

$$m_t = m_{pm} \cdot 1, 1 = 280, 5g$$
 (4)

É importante salientar que foram construídas peças que o fornecedor produz cotidianamente e então foi verificado que está condizente os valores obtidos em software com os valores de massa experimentados pelo fabricante.

2.8. Simulação de desempenho

Figura 7: Desempenho das curvas de empuxo para estrutura do primeiro modelo

3. Segundo Modelo

No segundo modelo foram construídos cilindros de 2 mm de espessura de parede para comparação com o primeiro modelo construído.

3.1. Ogiva

Figura 8: Ogiva construída em Solidworks

3.2. Conector

3.3. Prolongamento da Ogiva

Figura 9: Continuação da Ogiva construída em Solidworks

3.4. Corpo

Figura 10: Corpo construído em Solidworks

3.5. Aletas

Figura 11: Aleta construída em Solidworks

3.6. Veículo construído

Figura 12: Veículo construído em Solidworks

3.7. Massa dos componentes da estrutura do segundo modelo

Tabela 3: Massa dos componentes

Componente	Gramas(g)
Ogiva	8
Prolongamento da Ogiva	14
Conector	14
Corpo	440
Aleta	4

$$m_{sm} = 8 + 14 + 14 + 440 + (4 \cdot 4) = 492g$$
 (5)

Considerando uma margem de segurança de 10% nas massas fornecidas pelo software com a massa que a peça terá após a fabricação, temos então:

$$m_t = m_{sm} \cdot 1, 1 = 541, 2g$$
 (6)

3.8. Simulação de desempenho

Figura 13: Desempenho das curvas de empuxo para estrutura do segundo modelo

4. Simulações de Flambagem

4.1. Primeiro Modelo

Propriedades do estudo

Propriedades do estudo	
Nome do estudo	Flambagem 1
Tipo de análise	Flambagem
Tipo de malha	Malha sólida
Número de modos	1
Tipo de Solver	FFEPlus
Opções de união incompatíveis	Automático
Efeito térmico:	Ativada
Opção térmica	Incluir cargas de temperatura
Temperatura de deformação zero	298 Kelvin
Inclui efeitos da pressão de fluidos do SOLIDWORKS Flow Simulation	Desativada
Mola suave:	Desativada
Pasta de resultados	Documento do SOLIDWORKS (C:\Users\caiosnx\iCloudDrive\projetos\VetorIISolidworks)

Unidades

Sistema de unidades:	SI (MKS)
Comprimento/Deslocamento	mm
Temperatura	Kelvin
Velocidade angular	Rad/s
Pressão/Tensão	N/m^2

Acessórios de fixação e Cargas

Nome do acessório de fixação	lmagem de acessório de fixação	Detalhes de acessório de fixação
Fixo-1	- Ten	Entidades: 1 borda(s) Tipo: Geometria fixa

Nome da carga	Carregar imagem	Detalhes de c	carga
Gravidade-1	÷	Referência: P Valores: 0 Unidades: n	0 -9,81
Força-1			1 face(s) Aplicar força normal 400 N

Informações de contato

Contato	Imagem do contato	Propriedades	de contato
Interação global	A	Tipo: Componentes: Opções:	Unido 1 componente(s) Malha independente

Informações de malha

Tipo de malha	Malha sólida
Gerador de malhas usado:	Malha padrão
Transição automática:	Desativada
Incluir loops de malha automáticos:	Desativada
Pontos Jacobianos para malha de alta qualidade	16 Pontos
Tamanho do elemento	12,1567 mm
Tolerância	0,607833 mm
Qualidade da malha	Alta
Refazer malha de peças falhas de maneira independente	Desativada

Informações de malha - Detalhes

Resultados do estudo

4.2. Segundo Modelo

Propriedades do estudo

Propriedades do estudo	
Nome do estudo	Flambagem 1
Tipo de análise	Flambagem
Tipo de malha	Malha sólida
Número de modos	1
Tipo de Solver	FFEPlus
Opções de união incompatíveis	Automático
Efeito térmico:	Ativada
Opção térmica	Incluir cargas de temperatura
Temperatura de deformação zero	298 Kelvin
Inclui efeitos da pressão de fluidos do SOLIDWORKS Flow Simulation	Desativada
Mola suave:	Desativada
Pasta de resultados	Documento do SOLIDWORKS (C:\Users\caiosnx\iCloudDrive\projetos\VetorIISolidworks)

Unidades

Sistema de unidades:	SI (MKS)
Comprimento/Deslocamento	mm
Temperatura	Kelvin
Velocidade angular	Rad/s
Pressão/Tensão	N/m^2

Acessórios de fixação e Cargas

Nome do acessório de fixação	lmagem de acessório de fixação	Detalhes de acessório de fixação
Fixo-1	- Ten	Entidades: 1 borda(s) Tipo: Geometria fixa

Nome da carga	Carregar imagem	Detalhes de carga	
Gravidade-1	÷		Plano superior 0 0 -9,81 m/s^2
Força-1		Entidades: Tipo: Valor:	Aplicar força normal

Informações de contato

Contato	Imagem do contato	Propriedades	de contato
Interação global	A	Tipo: Componentes: Opções:	Unido 1 componente(s) Malha independente

Informações de malha

morniações de maina		
Tipo de malha	Malha sólida	
Gerador de malhas usado:	Malha padrão	
Transição automática:	Desativada	
Incluir loops de malha automáticos:	Desativada	
Pontos Jacobianos para malha de alta qualidade	16 Pontos	
Tamanho do elemento	13,2169 mm	
Tolerância	0,660847 mm	
Qualidade da malha	Alta	
Refazer malha de peças falhas de maneira independente	Desativada	

Informações de malha - Detalhes

Total de nós	19195
Total de elementos	9321
Proporção máxima	32,296
% de elementos com Proporção < 3	0,257
Porcentagem de elementos com Proporção > 10	4,27
Porcentagem de elementos distorcidos	0
Tempo para conclusão da malha (hh;mm;ss):	00:00:02
Nome do computador:	DESKTOP

Resultados do estudo

4.3. Comparação

4.4. Fator de amplitude resultante das análises

Tabela 4: Massa dos componentes

Modelo	AMPRES
Primeiro Modelo (52mm)	0.60494
Segundo Modelo (54mm)	0.60846

É possível concluir que o ponto de flabagem máxima dos dois é muito similar e que com isso desvalida a opção de optar por espessura de 2 mm. Outro motivo que nega a ideia de usar o segundo modelo é o grande aumento de massa da estrutura afetando diretamente os valores esperados de apogeu e velocidade máxima como destacado na tabela 5.

4.5. Estimações de desempenho para ambos modelos

Tabela 5: Comparação de desempenhos

Modelo	Apogeu(m)	$V_{m\acute{a}x}(m/s)$	$a_{m\acute{a}x}(m/s^2)$
Primeiro Modelo (52mm)	1236,64	203,57	27,83
Segundo Modelo (54mm)	1074,94	171,59	23,39