Dealing with publication bias in a meta-analysis

Robbie C.M. van Aert

July 24, 2025

Publication bias

- Publication bias is the selective publication of studies and usually favoring statistically significant outcomes
- Consequences of publication bias:
 - ► False impression that an effect exists
 - Overestimation of effect size
- Publication bias is a problem for all synthesizing methods
- Meta-analysis actually enables us to assess publication bias by using meta-information

Publication bias: Evidence

➤ Coursol and Wagner (1986) [1] surveyed researchers on the effects of positive findings

Table 1
Relation Between Outcome (Positive vs. Neutral or Negative) and
Decision to Submit Research for Publication

	Submission decision		
Direction of outcome	Yes	No	Total
Positive (Client improved)	106	23	129
Neutral or negative	28	37	65
(Client did not improve)			
Total	134	60	194

Publication bias: Evidence

➤ Coursol and Wagner (1986) [1] surveyed researchers on the effects of positive findings

Table 2
Relation Between Outcome (Positive vs. Neutral or Negative) and
Acceptance of Research Submitted for Publication

Direction of outcome	Accepted	Not accepted	Total
Positive (Client improved)	85	21	106
Neutral or negative	14	14	28
(Client did not improve)			
Total	99	35	134

Publication bias methods

- ► There are very many different methods
- Methods can be split into funnel plot-based and selection model approaches
- An arbitrary selection of methods based on popularity and potential are discussed

Working example

- Example meta-analysis by McDaniel et al. (1994) [2] available in R package "metadat" [3]
- Association between scores on employment interviews and job performance $\rightarrow k=16$ correlations
- A positive correlation indicates a stronger association
- Fisher's z transformation is applied prior to the analysis
- Analyses are done with R packages metafor [4] and puniform [5]

Working example: Forest plot

► **Interpretation:** The association between employment interviews and job performance is 0.29 (*p*<.001)

Funnel plot [6]

▶ Shows relationship between effect size and its precision

Funnel plot [6]

- An asymmetric funnel is often interpreted as evidence of publication bias
- However, it actually suggests the presence of so-called small-study effects
- ► Causes of small-study effects [7]:
 - Publication bias
 - Different designs and true effects in small vs. large studies
 - Power analysis to determine the required sample size in combination with heterogeneity
 - Chance
 - Etc.

Funnel plot asymmetry tests: Egger's test [8]

- Funnel plot asymmetry tests test for small-study effects
- Egger's test fits a regression line through the points in a funnel plot

Funnel plot asymmetry tests: Egger's test [8]

- Vertical line suggests a symmetric funnel
- ▶ If slope is significantly different from zero \rightarrow funnel plot asymmetry
- ▶ Applied to our example: z = 1.460, p = .144
- Conclusion: We cannot reject the null hypothesis of no small-study effects

Funnel plot asymmetry tests: Egger's test [8]

- Vertical line suggests a symmetric funnel
- ▶ If slope is significantly different from zero \rightarrow funnel plot asymmetry
- ▶ Applied to our example: z = 1.460, p = .144
- ► Conclusion: We cannot reject the null hypothesis of no small-study effects
- ▶ Egger's test has low power in case of small k [9, 10] → recommended to be applied if k > 10 and use $\alpha = 0.1$ [8, 11]
- ► Variants have been proposed that use other measures of precision than the standard error

Trim-and-fill method [12, 13]

- Intuitive non-parametric method to correct effect size estimate
- Missing effect sizes from one side of funnel plot are trimmed and filled in other side

Trim-and-fill method [12, 13]

▶ Results of example (Pearson correlation coefficients):

	Est. 95% CI	Test results
RE model Trim-and-fill	0.285 (0.207;0.360) 0.241 (0.167;0.311)	

- Drawbacks:
 - Method based on funnel plot, so it corrects for small-study effects rather than publication bias
 - ► Simulation studies revealed that the method performs worse than other existing methods [e.g., 14, 15, 16]

PET-PEESE [17]

ightharpoonup Estimate equals the effect size where standard error is zero (infinite sample size) ightharpoonup PET

PET-PEESE [17]

ightharpoonup PEESE ightharpoonup sampling variance as moderator

PET-PEESE [17]

Results of example (Pearson correlation coefficients):

	Est. 95% CI	Test results
RE model	0.285 (0.207;0.360)	z=6.875 (p<.001)
PET	0.122 (-0.117;0.348)	z=1.003 (p=.316)
PEESE	0.224 (0.102;0.340)	z=3.558 (p<.001)

- Drawbacks:
 - ► Method corrects for small-study effects
 - ▶ 10 or more effect sizes are needed
 - Precision of effect sizes has to vary

Selection model approaches

- Generic term for methods combining effect size model with selection model
- Effect size model: distribution of effect sizes in the absence of publication bias
- Selection model: mechanism by which effect size estimates are selected to be observed
- Many different selection model approaches have been developed

Step function selection model [18]

Intervals of p-values by setting "steps" \rightarrow studies in an interval have the same probability of getting published

- ▶ Step at $p = 0.025 \rightarrow \text{selected}$ by the user
- Publication probabilities are 1 and $0.4 \rightarrow$ estimated or specified by the user in a sensitivity analysis

Step function selection model approach [18]

Results of fitting 3PSM with step at 0.025 (Pearson correlation coefficients):

	Est. 95% CI	Test results
RE model	0.285 (0.207;0.360)	z=6.875 (p<.001)
3PSM	0.133 (-0.026;0.286)	z=1.643 (p=.100)

▶ Publication probability of nonsignficant study: 0.069 (0;0.195)

Step function selection model approach [18]

Results of fitting 3PSM with step at 0.025 (Pearson correlation coefficients):

	Est. 95% CI	Test results
RE model	0.285 (0.207;0.360)	z=6.875 (p<.001)
3PSM	0.133 (-0.026;0.286)	z=1.643 (p=.100)

- ▶ Publication probability of nonsignficant study: 0.069 (0;0.195)
- Drawbacks:
 - Complicated
 - Require substantial number of studies (but depends on selection model)

P-uniform* [19]

- ► [Robbie adds disclaimer]
- ▶ *P*-uniform* is an extension of *p*-uniform [15, 20], *p*-curve [21], and a method proposed in Hedges (1984) [22]
- ▶ P-uniform* can be seen as a selection model approach
- ► *P*-uniform*'s model is more parsimonious than 3PSM, because the publication probability does not have to be estimated
- P-uniform* and 3PSM show comparable performance in simulation studies [19]

P-uniform* [19]

▶ Results of example (Pearson correlation coefficients):

	Est. 95% CI	Test results
RE model P-uniform*	0.285 (0.207;0.360) 0.152 (-0.057;0.288)	z=6.875 (p<.001) LR=2.266 (p=.132)

P-uniform* [19]

▶ Results of example (Pearson correlation coefficients):

	Est. 95% CI	Test results
RE model P-uniform*	0.285 (0.207;0.360) 0.152 (-0.057;0.288)	z=6.875 (p<.001) LR=2.266 (p=.132)

- Drawbacks:
 - Complicated
 - Unrealistic extreme effect sizes can be estimated if there are only significant studies in a meta-analysis

Summary results working example

- ► Funnel plot indicated that small-study effects might be present, but Egger's test was not significant
- Results estimating effect size:

	Est. 95% CI	Test results
RE model	0.285 (0.207;0.360)	z=6.875 (p<.001)
Trim-and-fill	0.241 (0.167; 0.311)	z=6.271 (p<.001)
PET	0.122 (-0.117;0.348)	$z=1.003 \ (p=.316)$
PEESE	0.224 (0.102;0.340)	z=3.558 (p<.001)
3PSM	0.133 (-0.026;0.286)	$z=1.643 \ (\rho=.100)$
P -uniform *	0.152 (-0.057;0.288)	LR=2.266 (p=.132)

Summary results working example

- ► Funnel plot indicated that small-study effects might be present, but Egger's test was not significant
- Results estimating effect size:

	Est. 95% CI	Test results
RE model	0.285 (0.207;0.360)	z=6.875 (p<.001)
Trim-and-fill	0.241 (0.167; 0.311)	z=6.271 (p<.001)
PET	0.122 (-0.117;0.348)	$z=1.003 \ (p=.316)$
PEESE	0.224 (0.102;0.340)	z=3.558 (p<.001)
3PSM	0.133 (-0.026;0.286)	$z=1.643 \ (p=.100)$
P-uniform*	0.152 (-0.057;0.288)	$LR=2.266 \ (p=.132)$

What to conclude?!

Recommendations

- There is no uniformly best performing publication bias method
- ► Apply publication bias methods that are expected to perform well for the characteristics of the meta-analysis
- Simulation studies provide insights in the performance of the methods [e.g., 16, 20, 23, 24]
- ▶ Use triangulation [25, 26] and report all results
- Think about preregistering the planned publication bias analyses

Avenues for future research

- Model averaging can help summarizing the results of publication bias methods
 - ► Robust Bayes Model Averaging (RoBMA) [27]
 - Robust Frequentist Model Averaging (RoFMA)
- ► How to deal with dependent effect sizes in publication bias analyses?
 - Extend Egger's regression test [28, 29]
 - ▶ Apply methods that assume independence and follow up with cluster-robust inference [30]
 - Multivariate step function selection model
- What if only a subset of studies is susceptible to publication bias \rightarrow Hybrid Extended Meta-Analysis method [31]
- Does publication bias also affects meta-regression analyses?

Closing remarks

- Mixed findings about the severity of publication bias in meta-meta-analyses [32–37]
- Comparing the results of published and unpublished studies can already be insightful
- P-hacking is known to distort many publication bias methods
- ► Hopefully, the uptake of preregistering primary studies mitigates the effect of publication bias

Thank you for your attention

Slides are available on my website:

www.robbievanaert.com

Our research group at Tilburg University:

www.metaresearch.nl

References I

- Coursol, A., & Wagner, E. E. (1986). Effect of positive findings on submission and acceptance rates: A note on meta-analysis bias. *Professional Psychology: Research and Practice*, 17(2), 136–137. https://doi.org/10.1037/0735-7028.17.2.136
- McDaniel, M. A., Whetzel, D. L., Schmidt, F. L., & Maurer, S. D. (1994). The validity of employment interviews: A comprehensive review and meta-analysis. *Journal of Applied Psychology*, 79(4), 599–616. https://doi.org/10.1037/0021-9010.79.4.599
- White, T., Noble, D., Senior, A., Hamilton, W., & Viechtbauer, W. (2022). Metadat: Meta-Analysis Datasets.
- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software*, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03
- 5. van Aert, R. C. M. (2023). Puniform: Meta-analysis methods correcting for publication bias.
- Light, R. J., & Pillemer, D. B. (1984). Summing up: The science of reviewing research. Cambridge, MA: Harvard University Press.
- Sterne, J. A. C., Gavaghan, D., & Egger, M. (2000). Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. *Journal of Clinical Epidemiology*, 53(11), 1119–1129. https://doi.org/10.1016/S0895-4356(00)00242-0
- Egger, M., Smith, G. D., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315(7109), 629–634. https://doi.org/10.1136/bmj.315.7109.629
- Macaskill, P., Walter, S. D., & Irwig, L. (2001). A comparison of methods to detect publication bias in meta-analysis. Statistics in Medicine, 20(4), 641–54.
- Deeks, J. J., Macaskill, P., & Irwig, L. (2005/09/01/). The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. *Journal of Clinical Epidemiology*, 58(9), 882–893. https://doi.org/10.1016/j.jclinepi.2005.01.016

References II

- Sterne, J. A. C., Harbord, R. M., Sutton, A. J., Jones, D. R., Ioannidis, J. P., Terrin, N., ... Higgins, J. P. T. (2011). Recommendations for examining and interpreting funnel plot asymmetry in metaanalyses of randomised controlled trials. *British Medical Journal*, 343(7818), 1–8. https://doi.org/http: //dx.doi.org/10.1136/bmj.d4002
- Duval, S., & Tweedie, R. L. (2000). A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. *Journal of the American Statistical Association*, 95(449), 89–98. https://doi.org/10.1080/01621459.2000.10473905
- Duval, S., & Tweedie, R. L. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics*, 56(2), 455–463. https://doi.org/10.1111/j. 0006-341X.2000.00455.x
- Terrin, N., Schmid, C. H., Lau, J., & Olkin, I. (2003). Adjusting for publication bias in the presence of heterogeneity. Statistics in Medicine, 22(13), 2113–2126. https://doi.org/10.1002/sim.1461
- van Assen, M. A. L. M., van Aert, R. C. M., & Wicherts, J. M. (2015). Meta-analysis using effect size distributions of only statistically significant studies. *Psychological Methods*, 20(3), 293–309. https://doi.org/10.1037/met0000025
- Carter, E. C., Schönbrodt, F. D., Gervais, W. M., & Hilgard, J. (2019). Correcting for bias in psychology: A comparison of meta-analytic methods. Advances in Methods and Practices in Psychological Science, 2(2), 115–144. https://doi.org/10.1177/2515245919847196
- Stanley, T. D., & Doucouliagos, H. (2014). Meta-regression approximations to reduce publication selection bias. Research Synthesis Methods, 5(1), 60–78. https://doi.org/10.1002/jrsm.1095
- Hedges, L. V. (1992). Modeling publication selection effects in meta-analysis. Statistical Science, 7(2), 246–255.
- van Aert, R. C. M., & van Assen, M. A. L. M. (2025). Correcting for publication bias in a meta-analysis with the p-uniform* method. Manuscript submitted for publication. https://doi.org/10.31222/osf.io/zqjr9

References III

- van Aert, R. C. M., Wicherts, J. M., & van Assen, M. A. L. M. (2016). Conducting meta-analyses on p-values: Reservations and recommendations for applying p-uniform and p-curve. Perspectives on Psychological Science, 11(5), 713–729. https://doi.org/10.1177/1745691616650874
- Simonsohn, U., Nelson, L. D., & Simmons, J. P. (2014). P-curve and effect size: Correcting for publication bias using only significant results. Perspectives on Psychological Science, 9(6), 666–681. https://doi.org/10.1177/1745691614553988
- Hedges, L. V. (1984). Estimation of effect size under nonrandom sampling: The effects of censoring studies yielding statistically insignificant mean differences. *Journal of Educational Statistics*, 9(1), 61–85.
- McShane, B. B., Böckenholt, U., & Hansen, K. T. (2016). Adjusting for publication bias in meta-analysis: An evaluation of selection methods and some cautionary notes. *Perspectives on Psychological Science*, 11(5), 730–749. https://doi.org/10.1177/1745691616662243
- Renkewitz, F., & Keiner, M. (2019). How to detect publication bias in psychological research: A comparative evaluation of six statistical methods. Zeitschrift für Psychologie, 227(4), 261–279. https://doi.org/10.1027/2151-2604/a000386
- Kepes, S., Banks, G. C., McDaniel, M., & Whetzel, D. L. (2012). Publication bias in the organizational sciences. Organizational Research Methods, 15(4), 624–662. https://doi.org/10.1177/1094428112452760
- Coburn, K. M., & Vevea, J. L. (2015). Publication bias as a function of study characteristics. Psychological Methods, 20(3), 310–30. https://doi.org/10.1037/met0000046
- Bartoš, F., Maier, M., Wagenmakers, E.-J., Doucouliagos, H., & Stanley, T. D. (2023). Robust Bayesian meta-analysis: Model-averaging across complementary publication bias adjustment methods. Research Synthesis Methods, 14(1), 99–116. https://doi.org/10.1002/jrsm.1594
- Fernández-Castilla, B., Declercq, L., Jamshidi, L., Beretvas, S. N., Onghena, P., & Van den Noortgate, W. (2021). Detecting selection bias in meta-analyses with multiple outcomes: A simulation study. The Journal of Experimental Education, 89(1), 125–144. https://doi.org/10.1080/00220973.2019.1582470

References IV

- Hong, C., Salanti, G., Morton, S. C., Riley, R. D., Chu, H., Kimmel, S. E., & Chen, Y. (2020).
 Testing small study effects in multivariate meta-analysis. *Biometrics*, 76(4), 1240–1250. https://doi.org/10.1111/biom.13342
- Chen, M., & Pustejovsky, J. E. (2025). Adapting methods for correcting selective reporting bias in meta-analysis of dependent effect sizes. *Psychological Methods*. https://doi.org/10.1037/met0000773
- van Aert, R. C. M. (2025). Meta-analyzing nonpreregistered and preregistered studies. Psychological Methods. https://doi.org/10.1037/met0000719
- Bartoš, F., Maier, M., Shanks, D. R., Stanley, T. D., Sladekova, M., & Wagenmakers, E.-J. (2023).
 Meta-analyses in psychology often overestimate evidence for and size of effects. Royal Society Open Science, 10(7), 230224. https://doi.org/10.1098/rsos.230224
- Bartoš, F., Maier, M., Wagenmakers, E.-J., Nippold, F., Doucouliagos, H., Ioannidis, J. P. A., ... Stanley, T. D. (2024). Footprint of publication selection bias on meta-analyses in medicine, environmental sciences, psychology, and economics. Research Synthesis Methods, 15(3), 500–511. https://doi.org/10.1 002/jrsm.1703
- Nuijten, M. B., van Assen, M. A. L. M., Augusteijn, H. E. M., Crompvoets, E. A. V., & Wicherts, J. M. (2020). Effect sizes, power, and biases in intelligence research: A meta-meta-analysis. *Journal of Intelligence*, 8(4), 36. https://doi.org/10.3390/jintelligence8040036
- van Aert, R. C. M., Wicherts, J. M., & van Assen, M. A. L. M. (2019). Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. *PLOS ONE*, 14(4). https://doi.org/10.1371/journal.pone.0215052
- Mathur, M. B., & Vander/Weele, T. J. (2021). Estimating publication bias in meta-analyses of peerreviewed studies: A meta-analysis across disciplines and journal tiers. Research Synthesis Methods, 12(2), 176–191. https://doi.org/10.1002/jrsm.1464
- Sladekova, M., Webb, L. E. A., & Field, A. P. (2023). Estimating the change in meta-analytic effect size estimates after the application of publication bias adjustment methods. *Psychological Methods*, 28(3), 664–686. https://doi.org/10.1037/met0000470

References V

- Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2008). Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. *Journal of Clinical Epidemiology*, 61(10), 991–6. https://doi.org/10.1016/j.jclinepi.2007.11.010
- Terrin, N., Schmid, C. H., & Lau, J. (2005). In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. *Journal of Clinical Epidemiology*, 58(9), 894–901. https://doi.org/10.1016/j.jclinepi.2005.01.006
- Vevea, J. L., & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity analysis using a priori weight functions. *Psychological Methods*, 10(4), 428–443. https://doi.org/10.1037/1082-989X.10.4.428

Contour-enhanced funnel plot [38]

 \blacktriangleright Eyeballing a funnel plot for asymmetry is difficult [39] \rightarrow contour-enhanced funnel plot

PDF of the step function selection model

$$f(Y_i; \mu, \omega, s_i, \sigma_i) = \frac{s_i^{-1} w(Y_i, \sigma_i) \phi\left(\frac{Y_i - \mu}{s_i}\right)}{\int s_i^{-1} w(Y_i, \sigma_i) \phi\left(\frac{Y_i - \mu}{s_i}\right) dY_i}$$
(1)

$$w(Y_{i},\sigma_{i}) = \begin{cases} \omega_{1} & \text{if } -\sigma_{i}\Phi^{-1}(a_{1}) < Y_{i} < \infty; \\ \omega_{m} & \text{if } -\sigma_{i}\Phi^{-1}(a_{m}) < Y_{i} \leq -\sigma_{i}\Phi^{-1}(a_{m-1}); \\ \omega_{M} & \text{if } -\infty < Y_{i} \leq -\sigma_{i}\Phi^{-1}(a_{M-1}) \end{cases}$$

$$(2)$$

- Y_i: observed effect size estimate
- $ightharpoonup \sigma_i$: square root of the within-study sampling variance
- s_i: square root of the total variance
- \triangleright ϕ : PDF of standard normal distribution
- m: index for the intervals
- ► *M*: total number of intervals
- \triangleright a_1, \dots, a_M : cut points on the p-value scale

Step function selection model

▶ Probabilities can also assumed to be known [40]

Likelihood function p-uniform*

$$L(\mu, \tau^2; y_i, \sigma_i^2, y_i^{cv}) = \begin{cases} \frac{1}{\sqrt{\sigma_i^2 + \tau^2}} \phi\left(\frac{y_i - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right) & \text{if } p_i \leq \alpha \\ \frac{1 - \Phi\left(\frac{y_i^{cv} - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right)}{1 - \Phi\left(\frac{y_i - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right)} & \text{if } p_i \leq \alpha \\ \frac{1}{\sqrt{\sigma_i^2 + \tau^2}} \phi\left(\frac{y_i - \mu}{\sqrt{\sigma_i^2 + \tau^2}}\right) & \text{if } p_i > \alpha \end{cases}$$

- y_i: observed effect size estimate
- $ightharpoonup \sigma_i^2$: within-study sampling variance
- $\triangleright y_i^{CV}$: critical value
- $ightharpoonup \phi$: PDF of standard normal distribution
- ▶ Φ: CDF of standard normal distribution
- ▶ p_i: right-tailed p-value