Math 415 - Lecture 6

Elementary Matrices, LU Decomposition

Friday September 4th 2015

Textbook: Chapter 1.4, 1.5

Suggested Practice Exercise: Chapter 1.4 Exercise 22, 27, Chapter 1.5: 4, 5, 11, 23, 29

Khan Academy Video: Matrix multiplication (part I), Matrix multiplication (part II), Defined and undefined matrix operations

Review of matrix multiplication

• Matrix multiplication is linear combination: $A\mathbf{x}$ is a linear combination of the columns of A with weights given by the entries of \mathbf{x} .

Example 1.

$$Ax = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + (-1) \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

• Linear Combination is Linear System Example 2.

$$x_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + x_3 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \leftrightarrow \begin{aligned} x_1 + 2x_2 + 3x_3 &= -2 \\ 4x_1 + (-1)x_2 + 0x_3 &= 4 \end{aligned}$$

• $A\mathbf{x} = \mathbf{b}$ is the matrix form of the linear system with augmented matrix $\begin{bmatrix} A & | & \mathbf{b} \end{bmatrix}$. $Example \ 3$.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} \leftrightarrow \begin{bmatrix} x_1 + 2x_2 + 3x_3 = -2 \\ 4X_1 + (-1)x_2 + 0x_3 = 4 \end{bmatrix}$$
$$\leftrightarrow \begin{bmatrix} 1 & 2 & 3 & | & -2 \\ 4 & -1 & 0 & | & 4 \end{bmatrix}$$

• Each column of AB is a linear combination of the columns of A with weights given by the corresponding column of B: $AB = A \begin{bmatrix} \mathbf{b_1} & \dots & \mathbf{b_p} \end{bmatrix} = \begin{bmatrix} A\mathbf{b_1} & \dots & A\mathbf{b_p} \end{bmatrix}$

Example 4. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix}$, then

$$AB = \begin{bmatrix} A \begin{bmatrix} 3 \\ 0 \end{bmatrix} & A \begin{bmatrix} 4 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} & 4 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 8 \\ 6 & 10 \end{bmatrix}$$

• Row-column rule: The *ij*-th entry of AB is $a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{in}b_{nj}$.

Example 5. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ 0 & 2 \end{bmatrix}$, then the 22 entry of AB is

$$AB_{22} = \begin{bmatrix} & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} & 4 \\ & 2 \end{bmatrix} = 2 \times 4 + 1 \times 2 = 10$$

• Matrix multiplication is not commutative: usually, $AB \neq BA$.

Transpose

Definition. If A is $m \times n$, the **transpose** of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A. In terms of matrix elements $(A^T)_{ij} = A_{ji}$.

Example 6. Let
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 8 \\ 7 & 6 & 5 & 4 & 3 \end{bmatrix}$$
. The $A^T =$

Example 7. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}$. Compute AB, $(AB)^T$, A^TB^T and B^TA^T .

Solution.

$$AB = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

$$(AB)^{T} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$A^{T}B^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 3 & 10 \\ 2 & 0 & -4 \\ 2 & 1 & 4 \end{bmatrix}$$

$$B^{T}A^{T} = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

Conclusion. The transpose of a product is the product of transposes IN OPPO-SITE ORDER:

$$(AB)^T = B^T A^T$$

Definition. A is symmetric if $A = A^T$.

Example 8. Which of these is symmetric?

$$\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}^T = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}^T = \begin{bmatrix} 0 & 3 \\ 0 & 1 \end{bmatrix}^T$$

Theorem 1. Let A and B denote matrices whose sizes are appropriate for the following sums and products.

$$(a) \left(A^T\right)^T = A,$$

(b)
$$(A + B)^T = A^T + B^T$$

(c) For any scalar
$$r$$
, $(rA)^T = rA^T$

$$(d) (AB)^T = B^T A^T$$

Example 9. Prove that $(ABC)^T = C^T B^T A^T$.

Solution.

Elementary matrices

Definition. The $n \times n$ identity matrix I_n has all entries 0, except on the main diagonal where the entries are 1. For example

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Definition. An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix. A **permutation matrix** is one that is obtained by performing row exchanges on an identity matrix.

Example 10. Let
$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$.

 E_1 , E_2 , and E_3 are elementary matrices. Why?

Solution.

$$E_1 A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] =$$

$$E_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

$$E_3 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} =$$

Theorem 2. If an elementary row operation is performed on an $m \times n$ - matrix A, the resulting matrix can be written as EA, where the $m \times m$ -matrix E is created by performing the same row operations on I_m .

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} =$$

We write this as

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

Remark. Elementary matrices are *invertible* because row operations are *reversible*. To determine the inverse of an elementary matrix E, determine the elementary row operation needed to transform E back into I and apply this operation to I to find the inverse.

Example 11. Compute the inverse of
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

Solution.

Example 12. Compute the following products using the row or column interpretation of matrix multiplication. (Don't just use the row-column rule.)

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} =$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} =$$