ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

BÁO CÁO HỌC PHẦN CƠ SỞ DỮ LIỆU ĐỀ TÀI: QUẨN LÝ KHO CẨNG

Tên nhóm: nhóm 5

Họ tên thành viên: Trần Trung Hậu

MSSV: 23020061

Họ tên thành viên: Mai Minh Tùng

MSSV: 23020432

Lớp học phần: INT2211_37

Giảng viên hướng dẫn: TS.Trần Hồng Việt

Hà Nội, 12/2024

Choose topic: Port Management Database System

Objective:

To develop a database system for managing operations at a port, ensuring efficient tracking and scheduling of ship arrivals, dock assignments, and departures.

Key Requirements:

1. Data Management:

- Maintain records of ships, including unique identifiers (ShipID), name, and capacity.
- Manage docks with information on DockID, dock type, and availability.

2. Scheduling:

- Track the arrival and departure dates for ships at specific docks.
- Prevent scheduling conflicts where two ships are assigned to the same dock simultaneously.

3. Operations Tracking:

- Record and monitor cargo handling activities, including goods loaded or unloaded at the port.
- Provide a history of ship dockings and operations for future reference.

4. Efficiency and Optimization:

- Ensure optimal utilization of docks based on ship requirements and dock capacity.
- Minimize delays by forecasting and resolving potential scheduling conflicts.

5. **Reporting:**

- Generate daily, weekly, and monthly reports summarizing port activities.
- Track key performance indicators (e.g., average docking time, cargo volume handled).

End Users:

- Port administrators for scheduling and resource allocation.
- Cargo managers for tracking shipments.
- Shipping companies for monitoring docking schedules.

System Scope: The system will provide a centralized platform to manage port operations effectively, reducing manual errors, and improving overall efficiency.

Contain 10 entities:

- Task(<u>TaskID</u>, TaskName, Description, StartDate, EndDate, Status)
- Employee(<u>EmployeeID</u>, <u>TaskID</u>, Name, PhoneNumber, Email, Role)
- Dock(<u>DockID</u>, <u>DockManagerID</u>, <u>PortID</u>, Status, Capacity, Location)
- Port(PortID, PortManagerID, Name, Capacity, Location)
- Warehouse(<u>WarehouseID</u>, <u>WarehouseManagerID</u>, <u>PortID</u>, Status, Capacity, Location)
- Ship(ShipID, Name, Capacity, Status)
- Container(<u>ContainerID</u>, <u>ShipID</u>, <u>WarehouseID</u>, Status, Location, Type)
- Goods(GoodsID, Name, Weight, Quantity, Category, Price)
- Invoice(<u>InvoiceID</u>, <u>CustomerID</u>, Amount, Date)
- Customer(<u>CustomerID</u>, FirstName, LastName, Country, City, Address, PhoneNumber).

ER Model For System:

Relationship Model (Convert ER To Relationship Model):

- Task(<u>TaskID</u>, TaskName, Description, StartDate, EndDate, Status)
- Employee(<u>EmployeeID</u>, <u>TaskID</u>, Name, PhoneNumber, Email, Role)
- Dock(<u>DockID</u>, <u>DockManagerID</u>, <u>PortID</u>, Status, Capacity, Location)
- Port(<u>PortID</u>, <u>PortManagerID</u>, Name, Capacity, Location)
- Warehouse(<u>WarehouseID</u>, <u>WarehouseManagerID</u>, <u>PortID</u>, Status, Capacity, Location)
- Ship(ShipID, Name, Capacity)
- Container(<u>ContainerID</u>, <u>ShipID</u>, <u>WarehouseID</u>, Status, Location, Type)
- Goods(GoodsID, ContainerID, Name, Weight, Quantity, Category)
- Invoice(<u>InvoiceID</u>, <u>CustomerID</u>, Amount, Date)
- Customer(<u>CustomerID</u>, FirstName, LastName, Country, City, Address, PhoneNumber).
- GoodsInvoice(GoodsID, InvoiceID, Quantity)
- DockShip(<u>DockID</u>, <u>ShipID</u>, ArrivalDate, DepartureDate)
- ContainerGoods(ContainerID, GoodsID, Quantity)

Specification Data:

Task

Data Element	Description	Composition Or Data Type	Values
<u>TaskID</u>	Unique identifier for a Task	Int	1, 2, 3, 4, 5,
TaskName	Task Name	String	Mange Port,Mange Dock,

Description	Detailed description of the task	String	Some things,
StartDate	Start date	Date (YY-MM-DD)	2022-02-22,
EndDate	End date	Date (YY-MM-DD)	2024-04-06,
Status	Status of task	String	Completed, In Progress,

• Container

Data Element	Description	Composition Or Data Type	Values
ContainerID	Unique identifier for a Container	Int	1, 2, 3, 4,
ShipID	Each container belongs to a certain ship if it is being transported	Int	1, 4, 6,
WarehouseID	Each container belongs to a terminal if it has not yet been shipped or has already been shipped	Int	1, 6, 7,

Status	Status of container	String	On Hold, At Port,
Location	Container storage place	String	ShipID 4941, ShipID 13,
Туре	Container category	String	Platform Container, Insulated Container,

• Customer

Data Element	Description	Composition Or Data Type	Values
CustomerID	Unique identifier for a Customer	Int	1, 2, 3,
FirstName	Customer's first name	String	Joseph, Anthony,
LastName	Customer's last name	String	James, Green,
Country	Country where customer lives	String	Canada, Brazil,
City	City where customer lives	String	New George, West Joy,
Address	Customer's address	String	Unit 5993 Box 9124 DPO AP 10883,

PhoneNumber	Customer's	String	(706)489-4272,.
	phone number		

• Dock

Data Element	Description	Composition Or Data Type	Values
DockID	Unique identifier for a Dock	Int	1, 2, 3,
DockManagerI D	Each dock will have a manager	Int	4, 6, 8,
<u>PortID</u>	Each dock will belong to a port	Int	5, 7, 9,
Status	Status of Dock	String	Inspection, Overcrowded,
Capacity	Dock capacity	String	3232 million, 3113 million,
Location	Location of the dock	String	Los Angeles, CA, New York and New Jersey, NY/NJ,

• Employee

Data Element	Description	Composition	Values
--------------	-------------	-------------	--------

		Or Data Type	
EmployeeID	Unique identifier for a Employee	Int	1, 2, 3, 4,
<u>TaskID</u>	Each employee will have a task	Int	1, 3, 5,
Name	Employee's name	String	James Lane, Julie Ayers,
PhoneNumber	Employee's phone number	String	987-415-7718
Email	Employee's email	String	abs@gmail.com
Role	Employee's role	String	Port Manager, Warehouse Manager,

• Goods

Data Element	Description	Composition Or Data Type	Values
GoodsID	Unique identifier for a Goods	Int	1, 2, 3, 4,
Name	Goods's name	String	Lamp, Water Filter,
Weight	Goods's weight	Int	1234, 163,

Quantity	Quantity of Goods	Int	102, 270,
Category	Category of Goods	String	Food, Stationery,
Price	Value of each Goods	Int	152, 546,

• Invoice

Data Element	Description	Composition Or Data Type	Values
InvoiceID	Unique identifier for a Invoice	Int	1, 2, 3, 4,
CustomerID	Each invoice will belong to a customer	Int	1, 2, 3,
Amount	Total amount purchased by the customer	Float	432456.00, 345266.00,
Date	Invoice date	Date (YY-MM-DD)	2023-09-21

• Port

Data Element	Description	Composition Or Data Type	Values
<u>PortID</u>	Unique identifier for a Port	Int	1, 2, 3,
<u>PortManagerID</u>	Each port will have a manager	Int	1, 2, 3,
Name	Port name	String	Port 1, Port 2,
Capacity	Port capacity	String	31 million, 25 million,
Location	Port location	String	Port of Los Angeles, CA,

• Ship

Data Element	Description	Composition Or Data Type	Values
ShipID	Unique identifier for a Ship	Int	1, 2, 3,
Name	Ship name	String	Ship 1, ship 2,
Capacity	Ship capacity	String	13682 TEU, 11250 TEU,
Status	Ship status	String	Full, Not Full

• Warehouse

Data Element	Description	Composition Or Data Type	Values
WarehouseID	Unique identifier for a Warehouse	Int	1, 2, 3, 4,
WarehouseMan agerID	Each warehouse will have a manager	Int	1, 2, 3,
<u>PortID</u>	Each warehouse will belong to a port	Int	1, 2, 3,
Status	Warehouse status	String	Closed, Expanding
Capacity	Warehouse capacity	String	86726 million, 91522 million
Location	Warehouse location	String	Los Angeles, CA, New York and New Jersey, NY/NJ

• DockShip

Data Element	Description	Composition Or Data Type	Values
ShipID	Unique identifier for a	Int	1, 2, 3, 4,

	Ship		
DockID	Unique identifier for a Dock	Int	Empty, Reserved
ArrivalDate	Ship arrival date	Date (YY-MM-DD)	2022-11-02,
DepartureDate	Ship departure date	Date (YY-MM-DD)	2024-06-03,

• GoodsInvoice

Data Element	Description	Composition Or Data Type	Values
InvoiceID	Unique identifier for a Invoice	Int	1, 2, 3,
GoodsID	Unique identifier for a GoodsID	Int	1, 2, 3,
Quantity	Quantity of Goods for each Invoice	Int	234, 573,

• ContainerGoods

Data Element	Description	Composition	Values
		Or Data Type	

ContainerID	Unique identifier for a Container	Int	1, 2, 3,
GoodsID	Unique identifier for a Goods	Int	1, 2, 3,
Quantity	Quantity of Goods in each Container	Int	123, 4356,

Relationship Model For System:

- Task Employee:
 - Relationship type: (1 N)
 - Relationship: One Task may be done by many Employees and many Employees can do one Task
- Employee Dock:
 - Relationship type: (1 1)
 - Relationship: One Dock has one Manager and one Manager Manages one Dock
- Employee Port:
 - Relationship type: (1 1)
 - Relationship: One Port has one Manager and one Manager manages one Port
- Employee Warehouse:
 - Relationship type: (1 1)
 - Relationship: One Warehouse has one Manager and one Manager Manages one Warehouse

- Dock Ship:
 - Relationship type: (N N)
 - Relationship: One Dock contains many Ships and one Ship anchors in many Docks
- Ship Container:
 - Relationship type: (1 N)
 - Relationship type: One Ship contains many Containers and one Container may belong to one Ship
- Container Goods:
 - o Relationship: (N N)
 - Relationship type: One Containers contains many Goods and one Item belongs to many Containers
- Goods Invoice:
 - Relationship: (N N)
 - Relationship type: One Item may appear in many Invoices and one Invoice can save the data of many Goods
- Customer Invoice:
 - o Relationship: (1 N)
 - Relationship type: One customer has many Invoices and one invoice may belong to one Customer
- Port Dock:
 - Relationship: (1 N)
 - Relationship type: One Port contains many Dock and one Dock belong to one Port
- Port Warehouse:
 - Relationship: (1 N)
 - Relationship type: One Port contains many Warehouse and one Warehouse belong to one Port

CONVERT functional dependencies -> 3NF:

• Because all functional dependencies are converted to 3NF. So we don't need to do it.

CREATE DATABASE:

- Create entities table:
 - + Create Task table:

+ Create Employee Table:

+ Create Dock table:

+ Create Port table:

+ Create Warehouse table:

+ Create Ship table:

```
CREATE TABLE IF NOT EXISTS Ship (
ShipID INT PRIMARY KEY NOT NULL,
Name VARCHAR(255),
Capacity INT,
Status VARCHAR(255)
);
```

+ Create Container table:

+ Create Goods table:

+ Create Invoice table:

+ Create Customer table:

- Create relationship tables:
 - + Relationship of Dock and Ship (Many to Many):

+ Relationship of Container and Goods (Many - to - Many):

+ Relationship of Goods and Invoice (Many - to - Many):

IMPORT DATA:

Generate data in .CSV file, then import data:

 Ω

QUERY:

- Query using inner join:
 - Find each port belonging to each dock.

• Find the weight of the current container.

```
SELECT con.ContainerID,

SUM(Quantity * Weight) AS WeightContainer

FROM container con

INNER JOIN goods g

ON g.ContainerID = con.ContainerID

GROUP BY g.ContainerID;
```

- Query using outer join:
 - Display each task for each employee.

• Display the number of containers in each ship.

- Using subquery in where:
 - o Display total amount spent by each customer.

• Display the total amount for each container.

- Using subquery in from:
 - Display container which has an amount over 5000\$.

```
SELECT congo.TotalContainer

FROM (SELECT SUM(Price * Quantity) AS TotalContainer

FROM Goods g

INNER JOIN Container con

ON g.ContainerID = con.ContainerID

GROUP BY g.ContainerID

) congo

WHERE TotalContainer > 50;
```

• Calculate the total value (revenue) of each item in 2020.

```
SELECT goodsDate.ID, goodsDate.Name,
       MAX(goodsDate.totalAmount) AS MaxTotalAmount
FROM (
    SELECT g.GoodsID AS ID, g.Name AS Name,
           SUM(Quantity * Price) AS totalAmount
    FROM goods g
    INNER JOIN containergoods cong
        1<->1..n: ON g.GoodsID = cong.GoodsID
    INNER JOIN container con
        1..n<->1: ON cong.ContainersID = con.ContainerID
    INNER JOIN ship si
        1..n<->1: ON con.ShipID = si.ShipID
    INNER JOIN dockship dosi
        1<->1..n: ON si.ShipID = dosi.ShipID
    WHERE YEAR(ArrivalDate) = 2020
       OR YEAR(DepartureDate) = 2020
    GROUP BY g.GoodsID, g.Name
) AS goodsDate
GROUP BY goodsDate.ID, goodsDate.Name;
```

• Query using group by and aggregate functions:

• Count how many docks the port has.

• Display the number of invoices for each customer.

Transaction:

```
-- TRANSACTION for customer

START TRANSACTION;

DELETE FROM customer

WHERE Country = 'USA' OR Country = 'Germany';

ROLLBACK;

COMMIT;
```

Trigger:

When you insert the new goods for a customer, the update_invoice trigger will be update automatic customer's invoice.

```
create definer = root@localhost trigger update_invoice
    after insert
   on goods
   for each row
BEGIN
    UPDATE invoice
    SET amount = amount + (
        SELECT NEW.Price * gin.Quantity
        FROM goodsinvoice gin
       WHERE gin.GoodsID = NEW.GoodsID
        LIMIT 1
   WHERE InvoiceID IN (
        SELECT InvoiceID
        FROM goodsinvoice
       WHERE GoodsID = NEW.GoodsID
    );
END;
```

Update amount when event occurs:

Change country when event occurs:

```
-- trigger for country - customer

DELIMITER //

CREATE TRIGGER after_delete_country_customer

BEFORE DELETE ON customer

FOR EACH ROW

BEGIN

IF OLD.Country = 'USA' THEN

UPDATE customer

SET Country = 'USK'

WHERE CustomerID = OLD.CustomerID;

END IF;

END //

DELIMITER;
```

Store Procedure:

When the task has a completed status, it will automatically delete the task.

```
-- procedure for task

DELIMITER //

CREATE PROCEDURE delete_task()

BEGIN

DELETE FROM Task

WHERE Status = 'Completed';

END //

DELIMITER;
```

Print all customer information:

```
DELIMITER //

CREATE PROCEDURE get_customer()

Begin

SELECT * FROM customer;

END //

DELIMITER;

-- procedure for container

DELIMITER //
```

Change container information when event occurs:

```
DELIMITER //

CREATE PROCEDURE change_container(
    IN NewStatus VARCHAR(50),
    IN NewLocation VARCHAR(255),
    IN NewType VARCHAR(50)
)

BEGIN
    UPDATE container
        SET Status = NewStatus, Location = NewLocation, Type = NewType
        WHERE ShipID = '80';
END //

DELIMITER;
```