Geometry and Topology For morning of October 25th

Problem 1 Consider the mean curvatur flow (MCF for short) $f: M \times I \to \mathbb{R}^n$ of a hypersurface M in \mathbb{R}^n where $f_t = f(\cdot, t): M \to \mathbb{R}^n$. This means

$$\left(\frac{\partial f}{\partial t}\right)^{\perp} = H\left(t\right)$$

where $^{\perp}$ denotes the normal component, and H(t) is the mean curvature vector of $f_t(M)$. In particular when $\frac{\partial f}{\partial t} = T$, a constant vector, M_t is called a translating soliton, which is just a parallel transport of M in the direction T.

(1) When n=2, show that the MCF of the grim reaper γ in \mathbb{R}^2

$$y = -\log\cos x$$

is the translating soliton with T = (0, 1).

(2) Show that $M = \gamma \times \mathbb{R}^k$ is a translating soliton in \mathbb{R}^{k+2} .

Problem 2 Let (M^n, g) be a closed, orientable n-dimensional Riemannian manifold with positive Ricci curvature.

- (a) Prove that the first Betti number b_1 of M vanishes.
- (b) Suppose $Ric_M \geq (n-1)\kappa > 0$, show that $\lambda_1 \geq n\kappa$, where λ_1 is the first eigenvalue of the Laplace-Beltrami operator Δ on (M, g).

Problem 3 Let I be the interval [0,1]. For a topological space B, say homeomorphisms $g_0, g_1 : B \to B$ are isotopic if they are homotopic via a homotopy $G: B \times I \to B$ with each $G_t: B \to B$ defined by $G_t(b) = G(b,t)$ also a homeomorphism.

(1) Show that any orientation-preserving homeomorphism $f: D^2 \to D^2$ of the closed unit disc is isotopic to a homeomorphism which is the identity on the boundary S^1 .

(You can use the fact that any orientation-preserving homeomorphim $\phi: S^1 \to S^1$ is isotopic to the identity).

(2) Show that a homeomorphism $f: D^2 \to D^2$ of the unit disc is isotopic to the identity or the reflection along the x-axis.