

Labview Manual

© 2011 Phidgets Inc.

Labview Manual

© 2011 Phidgets Inc.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: April 2011 in Canada

Table of Contents

Part 1	Welcome to Phidgets	11
Part 2	Introduction	12
1	Understanding Phidgets	13
2	Platform Support	14
Part 3	Programming Concept	15
1	Getting Started	16
2	Event Handler	19
3	Multiple Devices	22
Part 4	Phidgets Common	23
1	ErrorHandler	24
2	PhidgetClose	25
3	PhidgetDelete	26
4	PhidgetEventCloseOnError	27
5	PhidgetEventCreateOnError	28
6	PhidgetEventExeOnError	29
7	PhidgetGetDeviceClass	30
8	PhidgetGetDeviceID	31
9	PhidgetGetDeviceLabel	32
10	PhidgetGetDeviceName	33
11	PhidgetGetDeviceType	34
12	PhidgetGetDeviceVersion	35
13	PhidgetGetServerStatus	36
14	PhidgetLibraryVersion	37
15	PhidgetOpen	38
16	PhidgetOpenRemote	39
17	PhidgetOpenRemoteIP	40
18	PhidgetServerAddress	41
19	PhidgetServiceID	42
20	PhidgetSetDeviceLabel	43
21	SubVIs	44
	_AttachCHK	
	_ChkError _Close	
	_Delete	
	_Open	
	OpenRemote	50

		_OpenRemoteIP	
		_SerialReturn	52
		_WaitAttach	53
		EventCloseIntDouble	54
		EventCloseIntInt	55
		EventExeIntDouble	56
		EventExeIntInt	57
Part 5		Specific Modules	58
	1	Phidget Accelerometer	59
		Acce Axis Count	60
		AcceCreate	61
		AcceEventClose	62
		Acce Event Create	63
		Acce EventExe	64
		Acce Get Data	65
		Acce Get Max	66
		Acce Get Min	67
		Acce Get Trigger	
		AcceOpen	
		AcceSetTrigger	
	2	Phidget Advanced Servo	
		AdvServoCount	
		AdvServoCreate	
		AdvServoEventClose	
		AdvServoEventCreateCrtChange	
		AdvServoEventCreatePosChange	
		AdvServoEventCreateVelChange	
		AdvServoEventExe	
		AdvServoGetAcce	
		AdvServoGetAcceMax	
		AdvServoGetAcceMin	
		AdvServoGetCurrent	
		AdvServoGetEngaged	
		AdvServoGetPos	
		AdvServoGetPosMax	
		AdvServoGetPosMin	
		AdvServoGetRampingState	
		AdvServoGetServoType	
		AdvServoGetVel	
		AdvServoGetVellmt	
		AdvServoGetVelmax	
		AdvServoGetVelmin	
		AdvServoOpen	
		AdvServoSetAcce	
		AdvServoSetEngaged	
		AdvServoSetPos	
		AdvServoSetPosMax	
		AdvServoSetPosMin	
		AdvServoSetRampingState	
		AdvServoSetServoParameters	
		AdvServoSetServoType	
		AdvSarvaSatVallmt	103

	AdvServoStoppedState	104
3	Phidget Encoder	105
	EncoderCreate	106
	Encoder Event Close Input	
	EncoderEventClosePosition	
	EncoderEventCreateInput	
	EncoderEventCreatePosition	
	EncoderEventExeInput	111
	EncoderEventExePosition	
	EncoderGetCount	
	EncoderGetEnabledState	114
	EncoderGetIndexPosition	119
	EncoderGetInputCount	116
	EncoderGetInputState	117
	EncoderGetPosition	118
	EncoderOpen	119
	EncoderSetEnabled	120
	EncoderSetPosition	121
4	Phidget InterfaceKit	122
	IFCreate	
	IFEventClose	
	IFEventCreateInput	
	IFEventCreateOutput	
	IFEventCreateSensor	
	IFEventExe	
	IFGetDataRate	
	IFGetDataRateMax	
	IFGetDataRateMin	
	IFGetInputCount	
	IFGetInputState	
	IFGetOutputCount	
	IFGetOutputState	
	IFGetRatio	
	IFGetSensorCount	
	IFGetSensorValue	
	IFGetSensorValueRaw	
	IFGetTrig	
	IFOpen	
	IFSetDataRate	
	IFSetOutputState	
	IFSetRatio	
	IFSetTrig	
5	Phidget IR	
Ū	· ·	
	IRCreate	
	IREventCloseOnCode	
	IREventCloseOnLearn	
	IREvent Create On Code	
	IREventCreateOnCode	
	IREventCreateOnLearn	
	IREventCreateOnRaw Data	
	IREventExeOnCode	
	IREventExeOnLearn	
	IREventExe On Raw Data	15f

	IRGetLastCode	157
	IRGetLastLearnedCode	158
	IRGetRaw Data	159
	IROpen	160
	IRTransmit	161
	IRTransmitRaw	162
	IRTransmitRepeat	163
6	Phidget LED	
·	-	
	LEDCreate	
	LEDGetBrightness	
	LEDGetCurrentLimit	
	LEDGetVoltage	
	LEDOpen	
	LEDSetBrightness	
	LEDSetCurrentLimit	
	LEDSetVoltage	
7	Phidget Motor Control	174
	MCCreate	175
	MCEventCloseInput	176
	MCEventCloseVelocityCurrent	
	MCEventCreateCurrent	
	MCEventCreateInput	
	MCEventCreateVelocity	
	MCEventExeInput	
	MCEventExeVelocityCurrent	
	MCGetAcceleration	
	MCGetAccelerationMax	
	MCGetAccelerationMin	
	MCGetCurrent	
	MCGetInputCount	
	MCGetInputState	
	MCGetMotorCount	
	MCGetVelocity	
	MCOpen	
	MCSetAcceleration	
	MCSetVelocity	
Ω	Phidget PH Sensor	
U	· ·	
	PHCreate	
	PHEventClose	
	PHEventCreate	
	PHEventExe	
	PHGetPH	
	PHGetPHMax	
	PHGetPHMin	
	PHGetPHTrigger	
	PHGetPotential	
	PHGetPotentialMax	
	PHGetPotentialMin	
	PHOpen	
	PHSetTemperature	
	PHSetTrig	
۵	Phidast PEID	200

	RFIDCreate	210
	RFIDEventClose	211
	RFIDEventCloseOutput	212
	RFIDEventCreateOutput	213
	RFIDEventCreateTag	214
	RFIDEventCreateTagLost	215
	RFIDEventExe	216
	RFIDEventExeOutput	217
	RFIDGetAntennaState	
	RFIDGetLastTag	219
	RFIDGetLEDState	220
	RFIDGetOutputCount	221
	RFIDGetOutputState	
	RFIDGetTagState	223
	RFIDOpen	224
	RFIDSetAntennaState	
	RFIDSetLEDState	226
	RFIDSetOutputState	227
10	Phidget Servo	
•	ServoCount	
	ServoCreate	
	Servo Event Create	
	Servo Cot Engaged	
	ServoGetEngaged	
	Servo Cot Poo Moy	
	Servo Get Pos Max	
	Servo Get Sorvo Timo	
	ServoGetServoType	
	ServoOpen	
	ServoSetEngaged	
	ServoSetPos	
	ServoSetServoParameters	
	ServoSetServoType	
11	Phidget Spatial	244
	SpatialCreate	245
	SpatialEventClose	246
	SpatialEventCreate	247
	SpatialEventExe	248
	SpatialGetAcce	249
	SpatialGetAcceAxisCount	250
	SpatialGetAcceMax	251
	SpatialGetAcceMin	252
	SpatialGetAngRate	253
	SpatialGetAngRateMax	254
	SpatialGetAngRateMin	255
	SpatialGetCompassAxisCount	256
	SpatialGetDataRate	257
	SpatialGetDataRateMax	258
	· SpatialGetDataRateMin	
	SpatialGetGyroAxisCount	
	SpatialGetMagField	
	SpatialGetMagFieldMax	

	SpatialGetMagFieldMin	263
	SpatialOpen	
	SpatialResetCompassCorrectionParameters	265
	SpatialSetCompassCorrectionParameters	266
	SpatialSetDataRate	267
	SpatialZeroGyro	268
12	Phidget Stepper	269
	StepperCreate	271
	StepperEventCloseCurrentVelocity	
	StepperEventCloseInput	
	StepperEventClosePosition	
	StepperEventClosePosition71	
	StepperEventCreateCurrent	
	StepperEventCreateInput	
	StepperEventCreatePosition	
	StepperEventCreatePosition71	
	StepperEventCreateVelocity	
	StepperEventExeCurrentVelocity	
	StepperEventExeInput	
	StepperEventExePosition	
	StepperEventExePosition71	
	StepperGetAcceleration	
	StepperGetAccelerationMax	
	StepperGetAccelerationMin	
	StepperGetCurrent	288
	StepperGetCurrentLimit	
	StepperGetCurrentMax	
	StepperGetCurrentMin	
	StepperGetCurrentPosition	
	StepperGetCurrentPosition71	
	StepperGetEngaged	
	StepperGetPositionMax	295
	StepperGetPositionMax71	296
	StepperGetPositionMin	297
	StepperGetPositionMin71	298
	StepperGetTargetPosition	299
	StepperGetTargetPosition71	300
	StepperGetVelocity	301
	StepperGetVelocityLimit	302
	StepperGetVelocityMax	303
	StepperGetVelocityMin	304
	StepperInputCount	305
	StepperInputState	306
	StepperMotorCount	307
	StepperOpen	308
	StepperSetAcceleration	309
	StepperSetCurrentLimit	310
	StepperSetCurrentPosition	311
	StepperSetCurrentPosition71	312
	StepperSetEngaged	313
	StepperSetTargetPosition	314
	StepperSetTargetPosition71	315
	StepperSetVelocityLimit	316
	StepperStoppedState	

13	Phidget Temperature Sensor	318
	TempCreate	319
	TempEventClose	320
	TempEventCreate	321
	TempEventExe	322
	TempGetAmbient	323
	TempGetAmbientMax	324
	TempGetAmbientMin	325
	TempGetPotential	326
	TempGetPotentialMax	327
	TempGetPotentialMin	328
	TempGetTemperature	329
	TempGetTemperatureMax	330
	TempGetTemperatureMin	331
	TempGetThermocoupleType	332
	TempGetTrigger	333
	TempInputCount	334
	TempOpen	335
	TempSetThermocoupleType	336
	TempSetTrigger	337
14	Phidget TextLCD	338
	TextCreate	339
	TextGetBacklightState	340
	TextGetBrightness	341
	TextGetColumnCount	342
	TextGetContrast	343
	TextGetCursorBlinkState	344
	TextGetCursorState	345
	TextGetRow Count	346
	TextOpen	347
	TextSetBacklightState	348
	TextSetBrightness	349
	TextSetCharacter	350
	TextSetContrast	351
	TextSetCursorBlinkState	352
	TextSetCursorState	353
	TextSetDisplayChar	354
	TextSetDis playString	355
15	Phidget TextLED	356
16	Phidget Weight Sensor	357
Part 6	Phidgets Constants	358
1	ServoType	359
2	ThermocoupleType	360
3	CodeInfo	361
4	IREncoding	362
5	IRLength	363

Index 364

1 Welcome to Phidgets

November 2010, Version 0.1-021110

This help system includes information about LabVIEW programming for each Phidget device. It contains programming concepts, step-by-step instructions, and reference information about VIs, functions and palettes.

To navigate this help system, use the Contents, Index, and Search tabs to the left of this windows.

Phidgets are an easy to use set of building blocks for low cost sensing and control from your PC. Using the Universal Serial Bus (USB) as the basis for all Phidgets, the complexity is managed behind this easy to use and robust Application Program Interface (API) library.

This help system may link to Portable Document Format (PDF) versions of documents. You must have Adobe Reader installed to view or search the PDF versions of these manuals.

Note: (Mac OS X) Phidgets recommends that you use Safari 1.3.2 or later or Firefox 1.0.2 or later to view the *Help.* (Linux) Phidgets recommends that you use Mozilla 1.2 or later or Firefox 1.0.2 or later to view the *Help.*

For more information about this help, refer to the following topics:

Introduction

Programming Concept

Phidgets Common

Specific Modules

Phidgets Constant

_12 Introduction

2 Introduction

Phidgets are an easy to use set of building blocks for low cost sensing and control from your PC. Using the Universal Serial Bus (USB) as the basis for all Phidgets, the complexity is managed behind this easy to use and robust Application Program Interface (API) library.

This manual documents the Phidgets software programming model in National Instruments Labview language. The **Programming Concept** should be the first section to be read for someone beginning to use Phidgets. After the concepts described are understood, users can read **Phidgets Common** and **Specific Modules** for function reference and device documentation in general. Note that these sections are light on function documentation - generally only containing specific reference information and basic function information.

For a more detailed introduction, please refer to **Understanding Phidgets** and **Platform Support**.

Introduction 13

2.1 Understanding Phidgets

Hardware Model

All Phidgets are connected to the computer using USB. Most computers support up to 127 USB devices (or more), so it is easy to connect as many Phidgets as are required for almost any project. Phidgets can be connected either directly to a computer or through Hubs, but there are some limitations.

The maximum cable length for USB is 15 feet. This is a maximum distance between device and computer, even if there are one or more Hubs in between. There are cable extenders available on the market, but these can be unreliable and are not endorsed by Phidgets Inc. Users should never try to run USB over anything other then a certified USB cable, and should never try to run it longer than the spec.

Phidgets run as USB 1.1 low speed or full speed devices, and are supported by both USB 1.1 and USB 2.0 hosts.

Software Model

The Phidgets Labview library is written under the C library - phidget21, which implements the low-level protocols necessary to communicate with the Phidgets, and exports a unified interface to the software programmer. This also makes the Phidgets Labview library cross-platform.

The Phidget Labview library contains only glue logic for interfacing with the C library, thus making maintenance much easier. It should be noted the library employs threading and events extensively. (See Programming Concept for more information.)

14 Introduction

2.2 Platform Support

Operating System Support

Windows

Microsoft Windows 2000 and later are supported, including 64-bit editions. The Windows libraries are installed using an MSI installer that can be found on the Phidgets web site. This installs the C library, the .NET library, the COM library, the Java library, the Phidget Web Service and the Phidget Control Panel.

The Phidget Control Panel is represented by a "Ph" icon that runs in the system tray (usually on the right end of the Windows task bar). This program can be used to list and control any Phidgets attached to the system, and to control the Web Service.

Mac OS X

Mac OS X 10.3.9 and newer on Intel and PPC are supported. The Mac libraries are distributed in a .dmg and are installed using a standard Mac package installer. This installs the C library, the Kernel driver, the Java library, the Phidget Web Service and the Phidget Preference Pane.

The Phidget Preference Pane is a preference pane which resides in System Preferences. This program can be used to list and control any Phidgets attached to the system, and to control the Web Service.

Linux

Linux version 2.4 is supported, including 64-bit editions, but 2.6.7 or newer is recommended. The Linux libraries are distributed as source. The source for the C library, with optional JNI (Java support) extensions and the source for the Phidget Web Service are available as a .tar.gz. The included Makefile makes it easy to build and install the libraries on most Linux distribution.

Other

Other Operating System support is not currently available.

Labview Version Support

The Phidgets Labview library supports 32-bit Labview version 7.1.1 or higher. It also supports 64-bit Labview version 2009 or higher.

Note: If you use Labview 64-bit, you need to install the Phidgets Labview 64-bit library.

3 Programming Concept

This manual is designed such that both novice and expert users can quickly reference the various Phidget LabVIEW functions.

The manual is subdivided into 6 sections: **Getting Started**, **Event Handler**, **Multiple Devices**, **Phidgets Common**, **Specific Modules** and **Phidgets Constants**.

Each section is defined as follow:

Getting Started: tells users how to communicate with phidgets and perform some basic functions. Use the **Getting Started** manual as a tutorial to familiarize yourself with Phidget LabVIEW functions and basic features you use to build data acquisition and instrument control applications.

Event Handler: needs only be used in applications that need to receive events. Use the **Event Handler** manual as a tutorial to learn how to construct the event and use the handler.

Multiple Devices: needs only be used in applications that involve multiple phidgets. Use the **Multiple Devices** manual as a tutorial to configure and control many phidgets in one VI.

Phidgets Common: contains the common functions for all phidgets.

Specific Modules: contains all the functions for specific phidgets.

Phidgets Constants: explains all Phidgets pre-defined constants.

Note: It is *important* for user to upgrade the Phidgets21 library to the most recent version. Click **here** to check and download the latest version library.

3.1 Getting Started

Phidgets are an easy to use set of building blocks for low cost sensing and control from your PC. Using the Universal Serial Bus (USB) as the basis for all Phidgets, the complexity is managed behind this easy to use and robust Application Program Interface (API) library.

As such, the Phidgets Labview VI features a very simple and easy-to-use set of VIs. At the simplest level, all you have to do to control a Phidget is explained in this section.

For illustration purposes, Phidget Accelerometer will be used.

Phidgets Accelerometer Example

Note: For a more specific illustration on different phidgets, users can refer to different examples accordingly.

Serial Number Return FI32 error? Attached? TF FTF Serial Number 132 error out •▶ milliseconds 132 Close the Phidget Channel Waveform Chart 1) Initialize the Phidget Device 0 DBL Acceleration PDBL 10 TF i Perform any execution related with the Phidget. (Read the acceleration data)

Open the diagram of the "Single control example.vi" under the "Accelerometer" folder.

Phidgets can be programmed into 3 steps:

<Step1> Initialize the Phidget. This includes opening a Phidget hardware, creating a Phidget handler or setting up parameters of a Phidget.

Users can also acquire other information in this step. For more details, please refer to the example called "Remote Example.vi" under "TemperatureSensor" folder.

If users want to open Phidgets over the network, a PhidgetOpenRemote and AcceCreate functions will be called instead of AcceOpen.

<Step2> Perform any execution related with the Phidget. This includes data acquisition, device control, event execution etc.

<step3> Close the Phidget. This may include closing the device, releasing all the resources or freeing a Phidget handle and an error handler.

3.2 Event Handler

This demonstrates how to call a Phidgets event and how to use them.

For illustration purposes, Phidget Spatial will be used.

Note: For a more specific illustration on different phidgets, users can refer to different examples accordingly.

Open the diagram of the "Spatial event example.vi" under the "Spatial" folder.

Phidgets Event can be programmed into 3 steps:

<Step1> Create an event handler.

<Step2> Perform any event execution related with the Phidget.

<Step3> Close the related event.

Note: When execute an event, please make sure "create", "execute" and "close" the same event. For example, user wants to run an Event called A. He has to place "CreateEventA.vi", "ExeEventA.vi" and "CloseEventA.vi" on the block diagram. He cannot place "CloseEventB.vi" instead of "CloseEventA.vi". However, for some Phidgets event, they share same VIs. (For more details, please refer to specific Phidgets.)

Phidget Error Event:

Another useful example will be "Temp On Error.vi" under "TemperatureSensor" folder.

In this example, the error event is actually located in "Common Functions" folder. It will detect asynchronous errors from Phidgets.

Note: Phidgets can also support multiple events. For an example, please refer to "Event handler example.vi" under the "InterfaceKit" folder.

3.3 Multiple Devices

Phidgets Labview can control multiple phidgets. As long as the handlers are different, different phidgets can run in parallel.

For a more detailed illustration, please refer to the example of "Multiple control example (Parallel).vi" and "Multiple control example (Advanced).vi" under the "Accelerometer" folder.

Note: Another example will be "TemperatureDisplay.vi" under "TextLCD" folder. This example shows how to combined use different phidgets.

4 Phidgets Common

This section describes the VI functions used by all Phidgets. The SubVI folder contains advanced LabVIEW VIs

ErrorHandler

PhidgetClose

PhidgetDelete

PhidgetEventCloseOnError

PhidgetEventCreateOnError

PhidgetEventExeOnError

PhidgetGetDeviceClass

PhidgetGetDeviceID

PhidgetGetDeviceLabel

PhidgetGetDeviceName

PhidgetGetDeviceType

PhidgetGetDeviceVersion

PhidgetGetServerStatus

PhidgetLibraryVersion

PhidgetOpen

PhidgetOpenRemote

PhidgetOpenRemoteIP

PhidgetServerAddress

PhidgetServiceID

PhidgetSetDeviceLabel

SubVIs (Folder)

4.1 **ErrorHandler**

Description:

Create a Phidget Error handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

error?

ON if error occurs.

error out

4.2 PhidgetClose

Description:

Close a Phidget handle.

Connector Pane:

Controls and Indicators:

Input

Device In

I321

Device # identification.

error in (no error)

THE STATE OF THE S

Describes error conditions that occur before this node runs.

Output

error out

4.3 PhidgetDelete

Description:

Delete a Phidget handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

error out

4.4 PhidgetEventCloseOnError

Description:

Close the the error handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.5 PhidgetEventCreateOnError

Description:

Set up an error event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

4.6 PhidgetEventExeOnError

Description:

This is called when an asynchronous error occurs.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Event?

Returns the event status. (Executed is T; Not executed is F)

ErrorCode

The error code to get the description of.

ErrorString

Contain the error description string.

error out

4.7 PhidgetGetDeviceClass

Description:

Get the class of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DeviceClass

Returns the device class constant.

error out

4.8 PhidgetGetDeviceID

Description:

Get the device ID of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DeviceID Same as the Device in.

Returns the device ID constant.

4.9 PhidgetGetDeviceLabel

Description:

Get the label of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DeviceLabel

Returns the device label.

error out

4.10 PhidgetGetDeviceName

Description:

Get the specific name of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DeviceName

Returns the device name.

error out

4.11 PhidgetGetDeviceType

Description:

Get the type (class) of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DeviceType

Returns the device type.

error out

4.12 PhidgetGetDeviceVersion

Description:

Get the firmware version of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Version

Returns the device version.

error out

4.13 PhidgetGetServerStatus

Description:

Get the connected to server status of a remotely opened Phidget. This will fail if the Phidget was opened locally.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

ServerStatus

Returns the server status. Possible values are 0 for unattached, 1 for attached and

others for undefined.

Attached?

The server status.

error out

4.14 PhidgetLibraryVersion

Description:

Get the library version. This contains a version number and a build date.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

P. 1

Describes error conditions that occur before this node runs.

Output

LibraryVersion

Pabe

Returns the library version.

error out

PP-

4.15 PhidgetOpen

Description:

Open a Phidget locally.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

invalid. Serial Number

Serial number. Specify -1 to open any.

milliseconds

Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out
Same as the Device In.

Serial Number Return

Returns the serial number.

Attached?

Returns the device status. (Attached is T; Not attached is F)

error out

PhidgetOpenRemote 4.16

Description:

Open a Phidget remotely by ServerID. Note that this requires Bonjour (mDNS) to be running on both the host and the server.

Connector Pane:

Controls and Indicators:

Input

Device # identification. This function will create a new device identification if it's 0 or Device In 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

serverID

abc Server ID. Specify NULL to open any.

password

abel Password. Can be NULL if the server is running without password.

error in (no error)

P-1 Describes error conditions that occur before this node runs.

Output

Device Out

1132 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

FTF Returns the device status. (Attached is T; Not attached is F)

error out

PhidgetOpenRemoteIP 4.17

Description:

Open a Phidget remotely by address and port.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

address

abel Address. This can be a hostname or IP address.

password

abcl Password. Can be NULL if the server is running without password.

port I32 Port number. Default is 5001.

error in (no error)

P. . Describes error conditions that occur before this node runs.

Output

Device Out

132 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

FTF Returns the device status. (Attached is T; Not attached is F)

error out

4.18 PhidgetServerAddress

Description:

Get the address and port of a remotely opened Phidget. This will fail if the Phidget was opened locally.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>Server</u>Address

Returns the address.

port

Returns the port number.

error out

4.19 PhidgetServiceID

Description:

Get the server ID of a remotely opened Phidget. This will fail if the Phidget was opened locally.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

ServiceID

Returns the server ID.

error out

4.20 PhidgetSetDeviceLabel

Description:

Set the label of a Phidget. Note that this is not supported on very old Phidgets, and not yet supported in Windows.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

DeviceLabel

The label to be set.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21 SubVIs

This contains a set of advanced LabVIEW VIs that provide a firmware access to all phidgets. This should not be direct accessed by users.

_AttachCHK
_ChkError
_Close
_Delete
_Open
_OpenRemote
_OpenRemoteIP
_SerialReturn
_WaitAttach
EventCloseIntDouble
EventCloseIntInt
EventExeIntDouble

4.21.1 _AttachCHK

Description:

Get the attach state of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Attached?

The attach state (Boolean type).

error out

4.21.2 _ChkError

Description:

Check the error of a Phidget.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Return Code

132

The error code to get the description of.

Output

Device Out

PI32

Same as the Device In.

error out

NP II

4.21.3 _Close

Description:

Close a Phidget device.

Connector Pane:

Controls and Indicators:

Input

Device In

132

Device # identification.

error in (no error)

P. .

Describes error conditions that occur before this node runs.

Output

Device Out

132

Same as the Device In.

error out

PP.

4.21.4 _Delete

Description:

Delete a Phidget handler.

Connector Pane:

Controls and Indicators:

Input

Device In

132

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

error out

No.

4.21.5 _Open

Description:

Open a Phidget device.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Serial Number

Serial number. Specify -1 to open any. (Default: -1)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21.6 _OpenRemote

Description:

Open a Phidget remotely by ServerID. Note that this requires Bonjour (mDNS) to be running on both the host and the server.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

Serial Number

Serial number. Specify -1 to open any.

serverID

Server ID. Specify NULL to open any.

password

Password. Can be NULL if the server is running without password.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21.7 _OpenRemoteIP

Description:

Open a Phidget remotely by address and port.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

Serial Number

Serial number. Specify -1 to open any.

address

Address. This can be a hostname or IP address.

password

Password. Can be NULL if the server is running without password.

port

Port number. Default is 5001.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21.8 _SerialReturn

Description:

Return the serial number of a Phidget.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Serial Number Return

Returns the serial number.

error out

4.21.9 _WaitAttach

Description:

Wait until a Phidget attached.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

milliseconds

Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21.10 EventCloseIntDouble

Description:

Close the event handler which contains an integer and a double event variables. This should not be directly accessed by users.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21.11 EventCloseIntInt

Description:

Close the event handler which contains an integer and an integer event variables. This should not be directly accessed by users.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

4.21.12 EventExeIntDouble

Description:

Call the event handler which contains an integer and a double event variables. This should not be directly accessed by users.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Event?

Returns the event status. (Executed is T; Not executed is F)

index

The integer.

acceleration

The double.

error out

4.21.13 EventExeIntInt

Description:

Call the event handler which contains an integer and an integer event variables. This should not be directly accessed by users.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Event?

Device Out
Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Returns the event status. (Executed is T; Not executed is F)

a The integer.

Ь

The integer.

error out

Contains error information.

5 Specific Modules

This section describes each of the VI function used by different Phidgets. All the VI functions are located in its dll folder correspondingly.

Note: Refer to the Product manual for your Phidget and the C Programming Manual for more detailed, language unspecific API documentation.

Please select a specified module accordingly.

Phidget Accelerometer

Phidget Advanced Servo

Phidget Encoder

Phidget InterfaceKit

Phidget IR

Phidget LED

Phidget Motor Control

Phidget PH Sensor

Phidget RFID

Phidget Servo

Phidget Spatial

Phidget Stepper

Phidget Temperature Sensor

Phidget TextLCD

Phidget TextLED (Discontinued)

Phidget Weight Sensor (Discontinued)

5.1 Phidget Accelerometer

This contains VI functions for Phidget Accelerometer. See the product manual for more specific API details, supported functionality, units, etc.

AcceAxisCount

AcceCreate

Acce EventClose

AcceEventCreate

Acce EventExe

Acce Get Data

AcceGetMax

AcceGetMin

AcceGetTrigger

AcceOpen

AcceSetTrigger

5.1.1 AcceAxisCount

Description:

Get the number of acceleration axes supported by this accelerometer.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The axis count.

error out

Specific Modules 61

5.1.2 AcceCreate

Description:

Create a Phidget Accelerometer handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

5.1.3 AcceEventClose

Description:

Close the acceleration change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

Specific Modules 63

5.1.4 AcceEventCreate

Description:

Set up an acceleration change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.1.5 **AcceEventExe**

Description:

This is called when the acceleration changes by more then the change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

132 Device # identification.

Event Registration Refnum In

D Event # identification.

error in (no error)

941 Describes error conditions that occur before this node runs.

Output

Device Out

132 Same as the Device In.

Event Registration Refnum Out

N D Same as the Event Registration Refnum In.

Event? index

TF Returns the event status. (Executed is T; Not executed is F)

FI32

The acceleration index.

acceleration

DBL The acceleration.

error out

Specific Modules 65

5.1.6 AcceGetData

Description:

Get the current acceleration data of an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Channel

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

acceleration

The acceleration.

error out

5.1.7 AcceGetMax

Description:

Get the maximum acceleration supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Channel

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

acce_max

The maximum acceleration.

error out

Specific Modules 67

5.1.8 AcceGetMin

Description:

Get the minimum acceleration supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Channel

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

acce_min

The minimum acceleration.

error out

5.1.9 AcceGetTrigger

Description:

Get the change trigger for an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Channel

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Tigger Out

The change trigger.

error out

69 Specific Modules

5.1.10 AcceOpen

Description:

Open a Phidget Accelerometer.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.1.11 AcceSetTrigger

Description:

Set the change trigger for an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Trigger In

The change trigger.

Channel

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2 Phidget Advanced Servo

This contains VI functions for Phidget Advanced Servo. See the product manual for more specific API details, supported functionality, units, etc.

AdvServoCount

AdvServoCreate

AdvServoEventClose

AdvServoEventCreateCrtChange

AdvServoEventCreatePosChange

AdvServoEventCreateVelChange

AdvServoEventExe

AdvServoGetAcce

AdvServoGetAcceMax

AdvServoGetAcceMin

AdvServoGetCurrent

AdvServoGetEngaged

AdvServoGetPos

AdvServoGetPosMax

AdvServoGetPosMin

AdvServoGetRampingState

AdvServoGetServoType

AdvServoGetVel

AdvServoGetVelImt

AdvServoGetVelmax

AdvServoGetVelmin

AdvServoOpen

AdvServoSetAcce

AdvServoSetEngaged

AdvServoSetPos

AdvServoSetPosMax

AdvServoSetPosMin

 ${\bf AdvServoSetRampingState}$

AdvServoSetServoParameters

AdvServoSetServoType

AdvServoSetVelImt

AdvServoStoppedState

5.2.1 AdvServoCount

Description:

Gets the number of motors supported by this controller.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The motor count.

error out

5.2.2 AdvServoCreate

Description:

Create a Phidget Advanced Servo handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

No.

5.2.3 AdvServoEventClose

Description:

Close the Phidget Advanced Servo event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.4 AdvServoEventCreateCrtChange

Description:

Set up a current change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.2.5 AdvServoEventCreatePosChange

Description:

Set up a postion change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.2.6 AdvServoEventCreateVelChange

Description:

Set up a velocity change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.2.7 AdvServoEventExe

Description:

This is called when the Phidget Advanced Servo event changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The motor index.

Value The return value of related event. (E.g.: For a position change event, this

value is position.)

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.2.8 AdvServoGetAcce

Description:

Get the last set acceleration of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

acce_out

The acceleration.

error out

5.2.9 AdvServoGetAcceMax

Description:

Get the maximum acceleration supported by a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

accemax_out

The maximum acceleration.

error out

5.2.10 AdvServoGetAcceMin

Description:

Get the minimum acceleration supported by a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

accemin_out

The minimum acceleration.

error out

5.2.11 AdvServoGetCurrent

Description:

Get the current current draw for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

current_out

The current.

error out

5.2.12 AdvServoGetEngaged

Description:

Get the engaged state of a motor. This is whether the motor is powered or not.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

EngagedState_out

The engaged state. Possible values are 0 for False, 1 for True and others for undefined.

Engaged?

The engaged state. Possible values are True for Engaged and False for Not Engaged.

error out

5.2.13 AdvServoGetPos

Description:

Get the current position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

pos_out

The position.

error out

5.2.14 AdvServoGetPosMax

Description:

Get the maximum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

posmax_out

The maximum current.

error out

5.2.15 AdvServoGetPosMin

Description:

Get the minimum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

posmin_out

The minimum position.

error out

5.2.16 AdvServoGetRampingState

Description:

Get the speed ramping state for a motor. This is whether or not velocity and acceleration are used.

Connector Pane:

Controls and Indicators:

Input

Device In

1321 Device # identification.

index

132 The motor index.

error in (no error)

94.0 Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

RampingState_out The speed ramping state. Possible values are 0 for False, 1 for True and others for 132 undefined.

RampingState?

FTF The speed ramping state (Boolean type).

error out

5.2.17 AdvServoGetServoType

Description:

Get the servo type of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

GetServoType Returns the servo type. This is an enum. Please refer to Phigets Constant ->

ServoType

error out

5.2.18 AdvServoGetVel

Description:

Get the current velocity of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

vel_out

The current velocity.

error out

5.2.19 AdvServoGetVellmt

Description:

Get the last set velocity limit of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

vellim_out

The velocity limit.

error out

5.2.20 AdvServoGetVelmax

Description:

Get the maximum velocity that can be set for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

velmax_out

The maximum velocity.

error out

5.2.21 AdvServoGetVelmin

Description:

Get the minimum velocity that can be set for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

velmin_out

The minimum velocity.

error out

5.2.22 AdvServoOpen

Description:

Open a PhidgetAdvancedServo.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.2.23 AdvServoSetAcce

Description:

Set the acceleration for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

acce_in

The acceleration.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.24 AdvServoSetEngaged

Description:

Set the engaged state of a motor. This is whether the motor is powered or not.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

SetEngaged

Set the engage state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.25 AdvServoSetPos

Description:

Set the position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

pos_in

The position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.26 AdvServoSetPosMax

Description:

Set the maximum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

posmax_in

The maximum position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.27 AdvServoSetPosMin

Description:

Set the minimum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

posmin_in

The minimum position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.28 AdvServoSetRampingState

Description:

Set the speed ramping state for a motor. This is whether or not velocity and acceleration are used.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

SetRampingState

The speed ramping state. (0 = False 1 = True)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.29 AdvServoSetServoParameters

Description:

Set the servo parameters of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index
The motor index.

min_us

The minimum supported PCM in microseconds.

max_us

The maximum supported PCM in microseconds.

degrees

The degrees of rotation defined by the given PCM range.

velocity_max

The maximum velocity in degrees/second.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out
Same as the Device In.

error out

Contains error information.

5.2.30 AdvServoSetServoType

Description:

Set the servo type of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

setServoType

The servo type. This is an enum. Please refer to Phigets Constant -> ServoType

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.31 AdvServoSetVelImt

Description:

Set the velocity limit for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

vel_in

The velocity limit.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.2.32 AdvServoStoppedState

Description:

Get the stopped state of a motor. This is true when the motor is not moving and there are no outstanding commands

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

StoppedState

The stopped state. Possible values are 0 for False, 1 for True and others for undefined.

Stopped?

The stopped state (Boolean type). Possible values are True for Stopped and False for Not

Stopped.

error out

5.3 Phidget Encoder

This contains VI functions for Phidget Encoder. See the product manual for more specific API details, supported functionality, units, etc.

EncoderCreate

EncoderEventCloseInput

EncoderEventClosePosition

EncoderEventCreateInput

EncoderEventCreatePosition

EncoderEventExeInput

EncoderEventExePosition

EncoderGetCount

EncoderGetEnabledState

EncoderGetIndexPosition

EncoderGetInputCount

EncoderGetInputState

EncoderGetPosition

EncoderOpen

EncoderSetEnabled

EncoderSetPosition

5.3.1 EncoderCreate

Description:

Create a Phidget Encoder handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

NP.

5.3.2 EncoderEventCloseInput

Description:

Close the input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.3.3 EncoderEventClosePosition

Description:

Close the encoder position change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.3.4 EncoderEventCreateInput

Description:

Set up an input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.3.5 EncoderEventCreatePosition

Description:

Set up an encoder position change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.3.6 EncoderEventExeInput

Description:

This is called when the acceleration changes by more then the change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Event?

Returns the event status. (Executed is T; Not executed is F)

index
The input index.

The input index.

<u>Value</u> The input state value. Possible values are 0 for False, 1 for True and

others for undefined.

error out

5.3.7 EncoderEventExePosition

Description:

This is called when an encoder position changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Event?

Returns the event status. (Executed is T; Not executed is F)

index

The encoder index.

time

The time in ms since the last position change event.

position The current position of the encoder. (This is a relative not absolute

position.)

error out

5.3.8 EncoderGetCount

Description:

Get the number of encoders supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

EncoderCount

The encoder input count.

error out

5.3.9 EncoderGetEnabledState

Description:

Get the enabled state of an encoder. This is whether the encoder is powered or not. Please note that 1057 doesn't support this function.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The encoder index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

EncoderState

The enabled state. Possible values are 0 for False, 1 for True and others for

undefined.

Enabled? The enabled state (Boolean type). Possible values are True for Enabled and False

for Not Enabled (Disabled).

error out

5.3.10 EncoderGetIndexPosition

Description:

Get the position of the last index pulse, as referenced to **Phidget Encoder** -> **EncoderGetPosition**. The function will return an error (EPHIDGET_UNKNOWN) if there hasn't been an index event, or if the encoder doesn't support index.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The encoder index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

IndexPosition

The index position.

error out

5.3.11 EncoderGetInputCount

Description:

Get the number of digital inputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

InputCount

The input count.

error out

5.3.12 EncoderGetInputState

Description:

Get the state of a digital input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The input index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

input_state

The input state. Possible values are 0 for False, 1 for True and others for undefined.

InputState

The input state (Boolean type). Possible values are True for Engaged and False for

Not Engaged.

error out

5.3.13 EncoderGetPosition

Description:

Get the current position of an encoder.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The encoder index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position

The current position.

error out

5.3.14 EncoderOpen

Description:

Open a PhidgetEncoder.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.3.15 EncoderSetEnabled

Description:

Set the enabled state of an encoder. This is whether the encoder is powered or not. Please note that 1057 doesn't support this function.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The encoder index.

SetEnable

The encoder state. (0 = False 1 = True)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.3.16 EncoderSetPosition

Description:

Set the position of an encoder.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The encoder index.

setPosition

The new position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.4 Phidget InterfaceKit

This contains VI functions for Phidget InterfaceKit. See the product manual for more specific API details, supported functionality, units, etc.

supported functionality, units, etc.
IFCreate
IFEventClose
IFEventCreateInput
IFEventCreateOutput
IFEventCreateSensor
IFEventExe
IFGetDataRate
IFGetDataRateMax
IFGetDataRateMin
IFGetInputCount
IFGetInputState
IFGetOutputCount
IFGetOutputState
IFGetRatio
IFGetSensorCount
IFGetSensorValue
IFGetSensorValueRaw
IFGetTrig
IFOpen
IFSetDataRate
IFSetOutputState
IFSetRatio

IFSetTrig

5.4.1 IFCreate

Description:

Create a Phidget InterfaceKit handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

NP.

5.4.2 IFEventClose

Description:

Close the Phidget InterfaceKit event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.4.3 IFEventCreateInput

Description:

Set up a digital input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.4.4 IFEventCreateOutput

Description:

Set up a digital output change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.4.5 IFEventCreateSensor

Description:

Set up a sensor change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.4.6 IFEventExe

Description:

This is called when the Phidget Advanced Servo event changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The input, output or sensor index.

Value The return value of related event. (E.g. for sensor change event, this value

is sensor reading.)

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.4.7 IFGetDataRate

Description:

Get the data rate for an analog input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DataRate

The data rate for an analog input in ms.

error out

5.4.8 IFGetDataRateMax

130

Description:

Get the maximum supported data rate for an analog input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>DataRateMax</u>

The maximum data rate for an analog input in ms.

error out

5.4.9 IFGetDataRateMin

Description:

Get the minimum supported data rate for an analog input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>DataRateMin</u>

The minimum data rate for an analog input in ms.

error out

5.4.10 IFGetInputCount

Description:

Get the number of digital inputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Input Count

The ditial input count.

error out

5.4.11 IFGetInputState

Description:

Get the state of a digital input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The input index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Input State (0,1)

The input state. Possible values are 0 for False, 1 for True and others for undefined.

Input State

The input state (Boolean type).

error out

5.4.12 IFGetOutputCount

Description:

Get the number of digital outputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Output count

The ditial output count.

error out

5.4.13 IFGetOutputState

Description:

Get the state of a digital output.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The output index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Output State (0,1)

The output state. Possible values are 0 for False, 1 for True and others for undefined.

Output State

The output state (Boolean type).

error out

5.4.14 IFGetRatio

Description:

Get the ratio metric state for this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Ratiometric The ratio metric state. Possible values are 0 for False, 1 for True and others for

undefined.

Ratiometric State

The ratio metric state (Boolean type).

error out

5.4.15 IFGetSensorCount

Description:

Get the number of sensor (analog) inputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Sensor Count

The sensor input count.

error out

5.4.16 IFGetSensorValue

Description:

Get a sensor value (0-1000).

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Sensor Value

The sensor value.

error out

5.4.17 IFGetSensorValueRaw

Description:

Get a sensor raw value (12-bit).

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Sensor Value (Raw)

The sensor value.

error out

5.4.18 IFGetTrig

Description:

Get a sensor change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Trig

The change trigger.

error out

5.4.19 IFOpen

Description:

Open a PhidgetInterfaceKit.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.4.20 IFSetDataRate

Description:

Set the data rate for an analog input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

DataRate

Data rate in ms.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.4.21 IFSetOutputState

Description:

Set the state of a digital output.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The output index.

OutputState

The output state. (0 = False 1 = True)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.4.22 IFSetRatio

Description:

Set the ratio metric state for this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Ratiometric

The ratio metric state. (0 = False 1 = True)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.4.23 IFSetTrig

Description:

Set a sensor change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The sensor index.

Trig

The change trigger.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.5 Phidget IR

This contains VI functions for Phidget IR. See the product manual for more specific API details, supported functionality, units, etc.

IRCreate

IREventCloseOnCode

IREventCloseOnLearn

IREventCloseOnRawData

IREventCreateOnCode

IREventCreateOnLearn

IREventCreateOnRawData

IREventExeOnCode

IREventExeOnLearn

IREventExeOnRawData

IRGetLastCode

IRGetLastLearnedCode

IRGetRawData

IROpen

IRTransmit

IRTransmitRaw

IRTransmitRepeat

5.5.1 IRCreate

Description:

Create a Phidget IR handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

No.

5.5.2 IREventCloseOnCode

Description:

Close the Phidget IR OnCode event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.5.3 IREventCloseOnLearn

Description:

Close the Phidget IR OnLearn event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.5.4 IREventCloseOnRawData

Description:

Close the Phidget IR OnRawData event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.5.5 IREventCreateOnCode

Description:

Set up a Phidget IR OnCode event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.5.6 IREventCreateOnLearn

Description:

Set up a Phidget IR OnLearn event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.5.7 IREventCreateOnRawData

Description:

Set up a Phidget IR OnRawData event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.5.8 IREventExeOnCode

Description:

This is called when a code has been received that could be automatically decoded. Data is return as an array with MSB in index 0. Bit count and a repeat flag are also returned. Repeats are detected as either the same code repeated in < 100ms or as a special repeat code.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Data

A user array to store the code data in.

BitCount
The bit count of the code.

Repeat

Returns the repeats.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.5.9 IREventExeOnLearn

Description:

This is called when a code has been received for long enough to be learned. The returned CodeInfo structure can be used to retransmit the same code.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Data

A user array to store the code data in.

CodeInfo This contains all information needed to transmit a code.

Please refer to Phigets Constant -> CodeInfo

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.5.10 IREventExeOnRawData

Description:

This is called when raw data has been read from the device. Raw data always starts with a space and ends with a pulse.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Data

A user array for raw data to be written into.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.5.11 IRGetLastCode

Description:

Get the last code that was received.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

DataLength In (16) Length of the user array - should be at least 16. This is set to the amount of data

actually written to the array.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Data

A user array to store the code data in.

BitCount

Set to the bit count of the code.

dataLength

Length of the user array.

error out

5.5.12 IRGetLastLearnedCode

Description:

Get the last code that was learned.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

DataLength In (16) Length of the user array - should be at least 16. This is set to the amount of data

actually written to the array.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Data

Lus

A user array to store the code data in.

CodeInfo The CodeInfo structure for the learned code. Please refer to Phigets Constant ->

CodeInfo

dataLength

Length of the user array.

error out

5.5.13 IRGetRawData

Description:

Read any available raw data. This should be polled continuously (every 20ms) to avoid missing data. Read data always starts with a space and ends with a pulse.

Connector Pane:

Controls and Indicators:

Input

. Device In

Device # identification.

DataLength In

The maximum amount of data to read. This is set to the actual amount of data read.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Data

A user array for raw data to be written into.

dataLength

The amount of data to read.

error out

5.5.14 IROpen

Description:

Open a PhidgetIR.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.5.15 IRTransmit

Description:

Transmit a code according to the settings in a Codelnfo structure.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

The code to send. Data is transmitted MSBit first. MSByte is in array index 0. LSBit is right justified, so MSBit may be in bit positions 0-7 in array index 0 depending on

the bit count.

CodeInfo The CodeInfo structure specifying to to send the code. Anything left as null to select

default is filled in for the user. Please refer to Phigets Constant -> CodeInfo

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.5.16 IRTransmitRaw

Description:

Transmit RAW data as a series of pulses and spaces.

Connector Pane:

Controls and Indicators:

Input

Device In

132 Device # identification.

The data to send. The array must start and end with a pulse and each element is a Data

[80] positive time in us.

length The length of the data array. Maximum length is 1024, but streams should be kept much

132 shorter, ie. < 100ms between gaps.

carrierFrequency

I32 The Carrier Frequency in Hz. leave as 0 for default.

dutyCycle

I32 The Duty Cycle (10-50). Leave as 0 for default.

The gap time in us. This guarantees a gap time (no transmitting) after the data is sent, gap I32

but can be set to 0.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

132 Same as the Device In.

error out

5.5.17 IRTransmitRepeat

Description:

Transmits a repeat of the last transmitted code. Depending of the Codelnfo structure, this may be a retransmission of the code itself, or there may be a special repeat code.

Connector Pane:

Controls and Indicators:

Input

Device In

132

Device # identification.

error in (no error)

Para

Describes error conditions that occur before this node runs.

Output

Device Out

132

Same as the Device In.

error out

5.6 Phidget LED

This contains VI functions for Phidget LED. See the product manual for more specific API details, supported functionality, units, etc.

LEDCount

LEDCreate

LEDGetBrightness

LEDGetCurrentLimit

LEDGetVoltage

LEDOpen

LEDSetBrightness

LEDSetCurrentLimit

LEDSetVoltage

5.6.1 LEDCount

Description:

Get the number of LEDs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The LED count.

error out

5.6.2 LEDCreate

Description:

Create a Phidget LED handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

No.

5.6.3 LEDGetBrightness

Description:

Get the brightness of an LED.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The LED index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

brightness

The LED brightness (0-100).

error out

5.6.4 LEDGetCurrentLimit

Description:

Get the current limit. This is for all outputs.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

CurrentLimit

The current limit.

error out

5.6.5 LEDGetVoltage

Description:

Get the output voltage. This is for all outputs.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Voltage

The output voltage.

error out

5.6.6 **LEDOpen**

Description:

Open a Phidget LED.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.6.7 LEDSetBrightness

Description:

Set the brightness of an LED.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The LED index.

brightness

The LED brightness (0-100).

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.6.8 LEDSetCurrentLimit

Description:

Set the current limit. This is for all outputs.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

CurrentLimit

The current limit.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.6.9 LEDSetVoltage

Description:

Set the output voltage. This is for all outputs.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Voltage

The output voltage.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.7 Phidget Motor Control

This contains VI functions for Phidget Motor Control. See the product manual for more specific API details, supported functionality, units, etc.

MCCreate

MCEventCloseInput

MCEventCloseVelocityCurrent

MCEventCreateCurrent

MCEventCreateInput

MCEventCreateVelocity

MCEventExeInput

MCEventExeVelocityCurrent

MCGetAcceleration

MCGetAccelerationMax

MCGetAccelerationMin

MCGetCurrent

MCGetInputCount

MCGetInputState

MCGetMotorCount

MCGetVelocity

MCOpen

MCSetAcceleration

MCSetVelocity

5.7.1 MCCreate

Description:

Create a Phidget Motor Control handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

5.7.2 MCEventCloseInput

Description:

Close the Phidget Motor Control input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.7.3 MCEventCloseVelocityCurrent

Description:

Close the Phidget Motor Control velocity/current change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.7.4 MCEventCreateCurrent

Description:

Set up a current change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.7.5 MCEventCreateInput

Description:

Set up an input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.7.6 MCEventCreateVelocity

Description:

Set up a velocity change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.7.7 MCEventExeInput

Description:

This is called when a digital input changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The input index.

InputState

The return value of input state.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.7.8 MCEventExeVelocityCurrent

Description:

This is called when the velocity or current changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

Event?

The motor index.

Value The return value of related event. (E.g. for velocity change event, this value

is velocity reading.)

Returns the event status. (Executed is T; Not executed is F)

error out

5.7.9 MCGetAcceleration

Description:

Get the last set acceleration of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Acceleration

The acceleration.

error out

5.7.10 MCGetAccelerationMax

Description:

Get the maximum acceleration supported by a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Acceleration Max

The maximum acceleration.

error out

5.7.11 MCGetAccelerationMin

Description:

Get the minimum acceleration supported by a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Acceleration Min

The minimum acceleration.

error out

5.7.12 MCGetCurrent

Description:

Get the current current draw for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Current

The current.

error out

5.7.13 MCGetInputCount

Description:

Get the number of digital inputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The digital input count.

error out

5.7.14 MCGetInputState

Description:

Get the state of a digital input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

InputState

The input state. Possible values are 0 for False, 1 for True and others for undefined.

error out

5.7.15 MCGetMotorCount

Description:

Get the number of motors supported by this controller.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The motor count.

error out

5.7.16 MCGetVelocity

Description:

Get the current velocity of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Velocity

The current velocity.

error out

5.7.17 MCOpen

Description:

Open a Phidget Motor Control.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or invalid.

invalid. Serial Number

Serial number. Specify -1 to open any.

milliseconds

Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out
Same as the Device In.

Serial Number Return

Returns the serial number.

Attached?

Returns the device status. (Attached is T; Not attached is F)

error out

5.7.18 MCSetAcceleration

Description:

Set the last set acceleration of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

Acceleration

The acceleration.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.7.19 MCSetVelocity

Description:

Set the velocity of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

Velocity

The velocity.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.8 Phidget PH Sensor

This contains VI functions for Phidget PH Sensor. See the product manual for more specific API details, supported functionality, units, etc.

PHCreate

PHEventClose

PHEventCreate

PHEventExe

PHGetPH

PHGetPHMax

PHGetPHMin

PHGetPHTrigger

PHGetPotential

PHGetPotentialMax

PHGetPotentialMin

PHOpen

PHSetTemperature

PHSetTrig

5.8.1 PHCreate

Description:

Create a Phidget PH Sensor handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

P.P.

5.8.2 PHEventClose

Description:

Close the Phidget PH Sensor change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.8.3 PHEventCreate

Description:

Set up a PH change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.8.4 PHEventExe

Description:

This is called when the PH changes by more then the change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

PH

The PH.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.8.5 PHGetPH

Description:

Get the sensed PH.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PH

The PH.

error out

5.8.6 PHGetPHMax

Description:

Get the maximum PH that the sensor could report.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PH Max

The maximum PH.

error out

5.8.7 PHGetPHMin

Description:

Get the minimum PH that the sensor could report.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PH Min

The minimum PH.

error out

5.8.8 PHGetPHTrigger

Description:

Get the PH change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PH Trigger

The change trigger.

error out

5.8.9 PHGetPotential

Description:

Get the sensed potential.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Potential

The potential.

error out

5.8.10 PHGetPotentialMax

Description:

Get the maximum potential that can be sensed.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Potential Max

The maximum potential.

error out

5.8.11 PHGetPotentialMin

Description:

Get the minimum potential that can be sensed.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Potential Min

The minimum potential.

error out

5.8.12 PHOpen

Description:

Open a Phidget PH Sensor.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.8.13 PHSetTemperature

Description:

Set the temperature to be used for PH calculations.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Temperature

The temperature (degrees celcius). By default this is 20.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.8.14 PHSetTrig

Description:

Set the PH change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Trigger

The change trigger.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.9 Phidget RFID

This contains VI functions for Phidget RFID. See the product manual for more specific API details, supported functionality, units, etc.

RFIDCreate

RFIDEventClose

RFIDEventCloseOutput

RFIDEventCreateOutput

RFIDEventCreateTag

RFIDE vent Create Tag Lost

RFIDEventExe

RFIDEventExeOutput

RFIDGetAntennaState

RFIDGetLastTag

RFIDGetLEDState

RFIDGetOutputCount

RFIDGetOutputState

RFIDGetTagState

RFIDOpen

RFIDSetAntennaState

RFIDSetLEDState

RFIDSetOutputState

5.9.1 RFIDCreate

Description:

Create a Phidget RFID handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

FI32

Device # identification.

error out

No.

5.9.2 RFIDEventClose

Description:

Close the Phidget RFID Tag or TagLost event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.9.3 RFIDEventCloseOutput

Description:

Close the Phidget RFID output change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.9.4 RFIDEventCreateOutput

Description:

Set up an output change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.9.5 RFIDEventCreateTag

Description:

Set up a tag change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.9.6 RFIDEventCreateTagLost

Description:

Set up a tag lost change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.9.7 RFIDEventExe

Description:

This is called when the Phidget RFID Tag or TagLost event changes. Tag Event is called when a tag is first detected by the reader. TagLost Event is called when a tag is no longer detected by the reader.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

Tag

[U8] The tag.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

Contains error information.

5.9.8 RFIDEventExeOutput

Description:

This is called when an output changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The output index.

OutputState The output state. Possible values are 0 for False, 1 for True and others for

vndefined.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.9.9 RFIDGetAntennaState

Description:

Get the state of the antenna.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Antenna State

The antenna state. Possible values are 0 for False, 1 for True and others for undefined.

Antenna On?

The antenna state.

error out

5.9.10 RFIDGetLastTag

Description:

Get the last tag read by the reader. This tag may or may not still be on the reader.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Tag [u8]

The tag. This must be an unsigned char array of size 5.

error out

5.9.11 RFIDGetLEDState

Description:

Get the state of the onboard LED.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

LED State

The LED state. Possible values are 0 for False, 1 for True and others for undefined.

LED On?

The LED state.

error out

5.9.12 RFIDGetOutputCount

Description:

Get the number of outputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The output count.

error out

5.9.13 RFIDGetOutputState

Description:

Get the state of an output.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The output index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

OutputState

The output state. Possible values are 0 for False, 1 for True and others for undefined.

Output?

The output state.

error out

5.9.14 RFIDGetTagState

Description:

Get the tag present status. This is whether or not a tag is being read by the reader.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Tag State

The tag state. Possible values are 0 for False, 1 for True and others for undefined.

Tag On?

The tag state.

error out

5.9.15 RFIDOpen

Description:

Open a Phidget RFID.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.9.16 RFIDSetAntennaState

Description:

Set the state of the antenna. Note that the antenna must be enabled before tags will be read.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

<u>Anten</u>naState

Set the antenna state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.9.17 RFIDSetLEDState

Description:

Set the state of the onboard LED.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

LEDState

Set the LED state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.9.18 RFIDSetOutputState

Description:

Set the state of an output.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The output index.

OutputState

Set the output state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.10 Phidget Servo

This contains VI functions for Phidget Servo. See the product manual for more specific API details, supported functionality, units, etc.

ServoCount

ServoCreate

ServoEventClose

ServoEventCreate

ServoEventExe

ServoGetEngaged

ServoGetPos

ServoGetPosMax

ServoGetPosMin

ServoGetServoType

ServoOpen

ServoSetEngaged

ServoSetPos

ServoSetServoParameters

ServoSetServoType

5.10.1 ServoCount

Description:

Gets the number of motors supported by this controller.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The motor count.

error out

5.10.2 ServoCreate

Description:

Create a Phidget Servo handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

P# 11

Describes error conditions that occur before this node runs.

Output

Device Out

132

Device # identification.

error out

No.

5.10.3 ServoEventClose

Description:

Close the Phidget Servo event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.10.4 ServoEventCreate

Description:

Set up a postion change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.10.5 ServoEventExe

Description:

This is called when the Phidget Advanced Servo event changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The motor index.

Value

The return value of the position.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.10.6 ServoGetEngaged

Description:

Get the engaged state of a motor. This is whether the motor is powered or not.

Connector Pane:

Controls and Indicators:

Input

Device In

132 Device # identification.

index

132 The motor index.

error in (no error)

941 Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

EngagedState_out

132 The engaged state. Possible values are 0 for False, 1 for True and others for undefined.

The engaged state (Boolean type). Possible values are True for Engaged and False for Engaged? FTF

Not Engaged.

error out PP.

5.10.7 ServoGetPos

Description:

Get the current position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

pos_out

The position.

error out

5.10.8 ServoGetPosMax

Description:

Get the maximum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

posmax_out

The maximum current.

error out

5.10.9 ServoGetPosMin

Description:

Get the minimum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

posmin_out

The minimum position.

error out

5.10.10 ServoGetServoType

Description:

Get the servo type of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

GetServoType

Returns the servo type. This is an enum. Please refer to Phigets Constant ->

ServoType

error out

5.10.11 ServoOpen

Description:

Open a PhidgetServo.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.10.12 ServoSetEngaged

Description:

Set the engaged state of a motor. This is whether the motor is powered or not.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

SetEngaged

Set the engage state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.10.13 ServoSetPos

Description:

Set the position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

pos_in

The position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.10.14 ServoSetServoParameters

Description:

Set the servo parameters of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

min_us

The minimum supported PCM in microseconds.

max_us DBL∳

The maximum supported PCM in microseconds.

degrees

DBL

The degrees of rotation defined by the given PCM range.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

PI32

Same as the Device In.

error out

5.10.15 ServoSetServoType

Description:

Set the servo type of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

setServoType

The servo type. This is an enum. Please refer to Phigets Constant -> ServoType

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.11 Phidget Spatial

This contains VI functions for Phidget Spatial. See the product manual for more specific API details, supported functionality, units, etc.

SpatialCreate

SpatialEventClose

SpatialEventCreate

SpatialEventExe

SpatialGetAcce

SpatialGetAcceAxisCount

SpatialGetAcceMax

SpatialGetAcceMin

SpatialGetAngRate

SpatialGetAngRateMax

SpatialGetAngRateMin

SpatialGetCompassAxisCount

SpatialGetDataRate

SpatialGetDataRateMax

SpatialGetDataRateMin

SpatialGetGyroAxisCount

SpatialGetMagField

SpatialGetMagFieldMax

SpatialGetMagFieldMin

SpatialOpen

SpatialResetCompassCorrectionParameters

 ${\bf Spatial Set Compass Correction Parameters}$

SpatialSetDataRate

SpatialZeroGyro

5.11.1 SpatialCreate

Description:

Create a Phidget Spatial handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

5.11.2 SpatialEventClose

Description:

Close the Phidget Spatial event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.11.3 SpatialEventCreate

Description:

Set up a data change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.11.4 SpatialEventExe

Input

error out

Description:

This is called when data come. It is called at **SpatialGetDataRate**, up to 8ms. For the rate faster than 8ms, multiple sets of data are supplied in a single event.

Connector Pane:

Controls and Indicators:

Device In 1321 Device # identification. Event Registration Refnum In Event # identification. error in (no error) P. . Describes error conditions that occur before this node runs. Output Device Out FI32 Same as the Device In. Event Registration Refnum Out P 🗅 Same as the Event Registration Refnum In. Event? FTF Returns the event status. (Executed is T; Not executed is F) The Output Data. Acceleration X. DBL acc0 DBL acc1 Acceleration Y. DBL acc2 Acceleration Z. DBL ang0 Angular rate X DBL ang1 Angular rate Y. Output Angular rate Z. DBL ang2 ₽ 206 **▶DBL** mag0 Magnetic field X Magnetic field Y. ▶DBL mag1 DBL mag2 Magnetic field Z. PI32 sec Timestamp in s.

Timestamp in ms.

PI32 micsec

5.11.5 SpatialGetAcce

Description:

Get the current acceleration data of an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Acce

The acceleration in gs.

error out

5.11.6 SpatialGetAcceAxisCount

Description:

Get the number of acceleration axes supplied by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

AcceAxisCount

The axis count.

error out

5.11.7 SpatialGetAcceMax

Description:

Get the maximum acceleration supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>AcceM</u>ax

The maximum acceleration.

error out

5.11.8 SpatialGetAcceMin

Description:

Get the minimum acceleration supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The acceleration index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

AcceMin

The minimum acceleration.

error out

5.11.9 SpatialGetAngRate

Description:

Get the current angular rate of an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The angular rate index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

AngRate

The angular rate in degrees/second.

error out

5.11.10 SpatialGetAngRateMax

Description:

Get the maximum angular rate supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The angular rate index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

AngRateMax

The maximum angular rate.

error out

5.11.11 SpatialGetAngRateMin

Description:

Get the minimum angular rate supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The angular rate index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

AngRateMin

The minimum angular rate.

error out

5.11.12 SpatialGetCompassAxisCount

Description:

Get the number of compass axes supplied by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

CompassAxisCount

The number of compass axes.

error out

5.11.13 SpatialGetDataRate

Description:

Get the data rate.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DataRate

The data rate in milliseconds.

error out

5.11.14 SpatialGetDataRateMax

Description:

Get the maximum supported data rate.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DataRateMax

The data rate in milliseconds.

error out

5.11.15 SpatialGetDataRateMin

Description:

Get the minimum supported data rate.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

DataRateMin

The data rate in milliseconds.

error out

5.11.16 SpatialGetGyroAxisCount

Description:

Get the number of gyroscope axes supplied by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

GyroAxisCount

The number of gyro axes.

error out

5.11.17 SpatialGetMagField

Description:

Get the current magnetic field strength of an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The magnetic field index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

MagField

The magnetic field strength in Gauss.

error out

5.11.18 SpatialGetMagFieldMax

Description:

Get the maximum magnetic field strength supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The magnetic field index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

MagFieldMax

The maximum magnetic field strength in Gauss.

error out

5.11.19 SpatialGetMagFieldMin

Description:

Get the minimum magnetic field strength supported by an axis.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The magnetic field index. (x, y, z)

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

MagFieldMin

The minimum magnetic field strength in Gauss.

error out

5.11.20 SpatialOpen

Description:

Open a PhidgetSpatial.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.11.21 SpatialResetCompassCorrectionParameters

Description:

Reset the compass correction factors. Magnetic field data will be presented directly as reported by the sensor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.11.22 SpatialSetCompassCorrectionParameters

Description:

Set the compass correction factors. This can be used to correcting any sensor errors, including hard and soft iron offsets and sensor error factors.

Connector Pane:

Controls and Indicators:

Input

Device In

Settings

Device # identification.

Input Settings:

magField Local magnetic field strength.

▶DBL offset0 Axis 0 offset correction.

DBL offset1 Axis 1 offset correction.

Axis 2 offset correction.

Axis 0 gain correction.

pobligain1 Axis 1 gain correction.

Axis 2 gain correction.

Non-orthogonality correction factor 0.

Non-orthogonality correction factor 1.

Non-orthogonality correction factor 2.

Non-orthogonality correction factor 3.

Non-orthogonality correction factor 4.

Non-orthogonality correction factor 5.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.11.23 SpatialSetDataRate

Description:

Set the data rate. Note that data at rates faster then 8ms will be delivered to events as an array of data.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

DateRate

The data rate in milliseconds.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.11.24 SpatialZeroGyro

Description:

Zero the gyroscope. This takes about two seconds and the gyro axes will report 0 during the process. This should only be called when the board is not moving.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12 Phidget Stepper

This contains VI functions for Phidget Stepper. Since Labview version 7.1 doesn't support 64bit integers, the Phidget Labview library contains special functions for Labview 7.1 marked by 71. See the product manual for more specific API details, supported functionality, units, etc.

StepperCreate

StepperEventCloseCurrentVelocity

StepperEventCloseInput

StepperEventClosePosition

StepperEventClosePosition71

StepperEventCreateCurrent

StepperEventCreateInput

StepperEventCreatePosition

StepperEventCreatePosition71

StepperEventCreateVelocity

StepperEventExeCurrentVelocity

StepperEventExeInput

StepperEventExePosition

StepperEventExePosition71

StepperGetAcceleration

StepperGetAccelerationMax

StepperGetAccelerationMin

StepperGetCurrent

StepperGetCurrentLimit

StepperGetCurrentMax

StepperGetCurrentMin

StepperGetCurrentPosition

StepperGetCurrentPosition71

StepperGetEngaged

StepperGetPositionMax

StepperGetPositionMax71

StepperGetPositionMin

StepperGetPositionMin71

StepperGetTargetPosition

StepperGetTargetPosition71

StepperGetVelocity

StepperGetVelocityLimit

StepperGetVelocityMax

StepperGetVelocityMin

StepperInputCount

StepperInputState

StepperMotorCount

StepperOpen

StepperSetAcceleration

StepperSetCurrentLimit

StepperSetCurrentPosition

StepperSetCurrentPosition71

StepperSetEngaged

StepperSetTargetPosition

StepperSetTargetPosition71

StepperSetVelocityLimit

StepperStoppedState

5.12.1 StepperCreate

Description:

Create a Phidget Stepper handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

5.12.2 StepperEventCloseCurrentVelocity

Description:

Close the Phidget Stepper current change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.3 StepperEventCloseInput

Description:

Close the Phidget Stepper input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.4 StepperEventClosePosition

Description:

Close the Phidget Stepper position change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.5 StepperEventClosePosition71

Description:

Close the Phidget Stepper position change event handle for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.6 StepperEventCreateCurrent

Description:

Set up a current change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.12.7 StepperEventCreateInput

Description:

Set up an input change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.12.8 StepperEventCreatePosition

Description:

Set up a position change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.12.9 StepperEventCreatePosition71

Description:

Set up a position change event handle for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.12.10 StepperEventCreateVelocity

Description:

Set up a velocity change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.12.11 StepperEventExeCurrentVelocity

Description:

This is called when the Phidget Stepper Current/Velocity event changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The motor index.

Value The return value of related event. (E.g. for velocity change event, this

value is velocity.)

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.12.12 StepperEventExeInput

Description:

This is called when the Phidget Stepper Input event changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The motor index.

Value

The input.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.12.13 StepperEventExePosition

Description:

This is called when the Phidget Stepper Position event changes.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The motor index.

Value

The position.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.12.14 StepperEventExePosition71

Description:

This is called when the Phidget Stepper Position event changes. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Same as the Event Registration Refnum In.

index

The motor index.

HighBit

The high 8 bits of the position.

LowBit The low 32 bits of the position. Note that if the position is negative, the

sign bit must be extended into the HighBit manually.

Event?

Returns the event status. (Executed is T; Not executed is F)

error out

5.12.15 StepperGetAcceleration

Description:

Get the last set acceleration for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Acce

The acceleration.

error out

5.12.16 StepperGetAccelerationMax

Description:

Get the maximum acceleration supported by a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>AcceM</u>ax

The maximum acceleration.

error out

5.12.17 StepperGetAccelerationMin

Description:

Get the minimum acceleration supported by a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

AcceMin

The minimum acceleration.

error out

5.12.18 StepperGetCurrent

Description:

Get the current current draw for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Current

The current.

error out

5.12.19 StepperGetCurrentLimit

Description:

Get the current limit for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Current Limit

The current limit.

error out

5.12.20 StepperGetCurrentMax

Description:

Get the maximum current limit.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

CurrentMax

The maximum current limit.

error out

5.12.21 StepperGetCurrentMin

Description:

Get the minimum current limit.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

CurrentMin

The minimum current limit.

error out

5.12.22 StepperGetCurrentPosition

Description:

Get the current position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position

The position.

error out

5.12.23 StepperGetCurrentPosition71

Description:

Get the current position of a motor. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position The position. This includes hight bit and low bit. Please refer

to StepperEventExePosition71.

error out

5.12.24 StepperGetEngaged

Description:

Get the engaged state of a motor. This is whether the motor is powered or not.

Connector Pane:

Controls and Indicators:

Input

Device In

132 Device # identification.

index

132 The motor index.

error in (no error)

941 Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

EngagedState_out

132 The engaged state. Possible values are 0 for False, 1 for True and others for undefined.

The engaged state (Boolean type). Possible values are True for Engaged and False for Engaged? FTF

Not Engaged.

error out PP.

5.12.25 StepperGetPositionMax

Description:

Get the maximum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>Positio</u>nMax

The maximum position.

error out

5.12.26 StepperGetPositionMax71

Description:

Get the maximum position that a motor can go to. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position The position. This includes hight bit and low bit. Please refer

to StepperEventExePosition71.

error out

5.12.27 StepperGetPositionMin

Description:

Get the minimum position that a motor can go to.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PositionMin

The minimum position.

error out

5.12.28 StepperGetPositionMin71

Description:

Get the minimum position that a motor can go to. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position The position. This includes hight bit and low bit. Please refer

to StepperEventExePosition71.

error out

5.12.29 StepperGetTargetPosition

Description:

Get the last set target position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position

The position.

error out

5.12.30 StepperGetTargetPosition71

Description:

Get the last set target position of a motor. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Position The position. This includes hight bit and low bit. Please refer

to StepperEventExePosition71.

error out

5.12.31 StepperGetVelocity

Description:

Get the current velocity of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Velocity

The velocity.

error out

5.12.32 StepperGetVelocityLimit

Description:

Get the last set velocity limit for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

VelocityLimit

The velocity limit.

error out

5.12.33 StepperGetVelocityMax

Description:

Get the maximum velocity that can be set for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

<u>Velocit</u>yMax

The maximum velocity.

error out

5.12.34 StepperGetVelocityMin

Description:

Get the minimum velocity that can be set for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

VelocityMin

The minimum velocity.

error out

5.12.35 StepperInputCount

Description:

Get the number of digital inputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The digital input count.

error out

5.12.36 StepperInputState

Description:

Get the state of a digital input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Input State (0,1)

The input state. Possible values are 0 for False, 1 for True and others for undefined.

Input State

The input state (Boolean type).

error out

5.12.37 StepperMotorCount

Description:

Get the number of motors supported by this controller.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The motor count.

error out

5.12.38 StepperOpen

Description:

Open a PhidgetStepper.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.12.39 StepperSetAcceleration

Description:

Set the acceleration for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

acce_in

The acceleration.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.40 StepperSetCurrentLimit

Description:

Set the current limit for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

Current

The current limit.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.41 StepperSetCurrentPosition

Description:

Set the current position of a motor. It will not move the motor, just update the position value.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

position

The position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.42 StepperSetCurrentPosition71

Description:

Set the current position of a motor. It will not move the motor, just update the position value. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

HighBit

The high 8 bits of the position.

LowBit The low 32 bits of the position. Note that if the position is negative, the sign bit

must be extended into the HighBit manually.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.43 StepperSetEngaged

Description:

Set the engaged state of a motor. This is whether the motor is powered or not.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

SetEngaged

Set the engage state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.44 StepperSetTargetPosition

Description:

Set the target position of a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

position

The position.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.45 StepperSetTargetPosition71

Description:

Set the target position of a motor. This function is for Labview version 7.1 only.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

HighBit

The high 8 bits of the position.

LowBit The low 32 bits of the position. Note that if the position is negative, the sign bit

must be extended into the HighBit manually.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.46 StepperSetVelocityLimit

Description:

Set the velocity limit for a motor.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

velocity

The velocity limit.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.12.47 StepperStoppedState

Description:

Get the stopped state of a motor. This is true when the motor is not moving and there are no outstanding commands

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The motor index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

StoppedState

The stopped state. Possible values are 0 for False, 1 for True and others for undefined.

Stopped?

The stopped state (Boolean type). Possible values are True for Stopped and False for Not

Stopped.

error out

5.13 Phidget Temperature Sensor

This contains VI functions for Phidget Temperature Sensor. See the product manual for more specific API details, supported functionality, units, etc.

TempCreate

TempEventClose

TempEventCreate

TempEventExe

TempGetAmbient

TempGetAmbientMax

TempGetAmbientMin

TempGetPotential

TempGetPotentialMax

TempGetPotentialMin

TempGetTemperature

TempGetTemperatureMax

TempGetTemperatureMin

TempGetThermocoupleType

TempGetTrigger

TempInputCount

TempOpen

TempSetThermocoupleType

TempSetTrigger

5.13.1 TempCreate

Description:

Create a Phidget Temperature Sensor handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

NP.

5.13.2 TempEventClose

Description:

Close the Phidget Temperature Sensor event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Event Registration Refnum In

Event # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.13.3 TempEventCreate

Description:

Set up a temperature change event handle.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Event Registration Refnum Out

Event # identification.

error out

5.13.4 TempEventExe

Description:

This is called when the temperature changes by more then the change trigger.

Connector Pane:

Controls and Indicators:

Input

Device In

132 Device # identification.

Event Registration Refnum In

D Event # identification.

error in (no error)

P. . Describes error conditions that occur before this node runs.

Output

Device Out

132 Same as the Device In.

Event Registration Refnum Out

D D Same as the Event Registration Refnum In.

index Value

FI32 The thermocouple index.

DBL

The temperature.

Event? FTF Returns the event status. (Executed is T; Not executed is F)

error out

5.13.5 TempGetAmbient

Description:

Get the ambient (board) temperature.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Ambient

The ambient (board) temperature.

error out

5.13.6 TempGetAmbientMax

Description:

Get the maximum temperature that the ambient onboard temperature sensor can measure.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Ambient Max

The maximum temperature.

error out

5.13.7 TempGetAmbientMin

Description:

Get the minimum temperature that the ambient onboard temperature sensor can measure.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Ambient Min

The minimum temperature.

error out

5.13.8 TempGetPotential

Description:

Get the currently sensed potential for a thermocouple input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

potential

The potential.

error out

5.13.9 TempGetPotentialMax

Description:

Get the maximum potential that a thermocouple input can measure.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PotentialMax

The maximum potential.

error out

5.13.10 TempGetPotentialMin

Description:

Get the minimum potential that a thermocouple input can measure.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

PotentialMin

The minimum potential.

error out

5.13.11 TempGetTemperature

Description:

Get the temperature measured by a thermocouple input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

temperature

The temperature.

error out

5.13.12 TempGetTemperatureMax

Description:

330

Get the maximum temperature that can be measured by a thermocouple input. This depends on the type of thermocouple attached, as well as the ambient temperature.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index
The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

temperature

The maximum temperature.

error out

5.13.13 TempGetTemperatureMin

Description:

Get the minimum temperature that can be measured by a thermocouple input. This depends on the type of thermocouple attached, as well as the ambient temperature.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index
The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Temp Min

The minimum temperature.

error out

5.13.14 TempGetThermocoupleType

Description:

Get the type of thermocouple set to be at a thermocouple input. By default this is K-Type (1).

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

GetServoType

The thermocouple type. This is an enum. Please refer to Phigets Constant ->

ThermocoupleType

error out

5.13.15 TempGetTrigger

Description:

Get the change trigger for a thermocouple input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

trigger

The change trigger.

error out

5.13.16 TempInputCount

Description:

Get the number of thermocouple inputs supported by this board.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The thermocouple input count.

error out

5.13.17 TempOpen

Description:

Open a Phidget Temperature Sensor.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.13.18 TempSetThermocoupleType

Description:

Set the type of thermocouple plugged into a thermocouple input. By default this is K-Type.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

setServoType The thermocouple type. This is an enum. Please refer to Phigets Constant ->

Thermocouple Type

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.13.19 TempSetTrigger

Description:

Set the change trigger for a thermocouple input.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The thermocouple index.

trigger

The change trigger.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14 Phidget TextLCD

This contains VI functions for Phidget TextLCD. See the product manual for more specific API details, supported functionality, units, etc.

TextCreate

TextGetBacklightState

TextGetBrightness

TextGetColumnCount

TextGetContrast

TextGetCursorBlinkState

TextGetCursorState

TextGetRowCount

TextOpen

TextSetBacklightState

TextSetBrightness

TextSetCharacter

TextSetContrast

TextSetCursorBlinkState

TextSetCursorState

TextSetDisplayChar

TextSetDisplayString

5.14.1 TextCreate

Description:

Create a Phidget TextLCD handle.

Connector Pane:

Controls and Indicators:

Input

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Device # identification.

error out

NP.

5.14.2 TextGetBacklightState

Description:

Get the state of the backlight.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Backlight State

The backlight state. Possible values are 0 for False, 1 for True and others for undefined.

Backlight?

The backlight state (Boolean type).

error out

5.14.3 TextGetBrightness

Description:

Get the brightness of the backlight. Not supported on all TextLCDs.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Brightness

The backlight brightness (0-255).

error out

5.14.4 TextGetColumnCount

Description:

Get the number of columns per supported by this display.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The column count.

error out

5.14.5 TextGetContrast

Description:

Get the last set contrast value.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Contrast

The contrast (0-255).

error out

5.14.6 TextGetCursorBlinkState

Description:

Get the cursor blink state.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

CursorBlink State

The cursor blink state. Possible values are 0 for False, 1 for True and others for

undefined.

Blink?

The cursor blink state (Boolean type).

error out

5.14.7 TextGetCursorState

Description:

Get the cursor visible state.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

Cursor State The state of the cursor. Possible values are 0 for False, 1 for True and others for undefined.

Cursor?

The state of the cursor (Boolean type).

error out

5.14.8 TextGetRowCount

Description:

Get the number of rows supported by this display.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

count

The row count.

error out

5.14.9 TextOpen

Description:

Open a Phidget TextLCD.

Connector Pane:

Controls and Indicators:

Input

Device In Device # identification. This function will create a new device identification if it's 0 or 132

invalid.

Serial Number

132 Serial number. Specify -1 to open any.

milliseconds

132 Time to wait for the attachment. Specify 0 to wait forever. (Default is 5000)

error in (no error)

Para Describes error conditions that occur before this node runs.

Output

Device Out

FI32 Same as the Device In.

Serial Number Return

132 Returns the serial number.

Attached?

TF Returns the device status. (Attached is T; Not attached is F)

error out

5.14.10 TextSetBacklightState

Description:

Set the state of the backlight.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Turn Backlight

Set the backlight state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.11 TextSetBrightness

Description:

Set the brightness of the backlight. Not supported on all TextLCDs

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Brightness

The backlight brightness (0-255).

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.12 TextSetCharacter

Description:

Set a custom character. See the product manual for more information.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The custom character index (8-15).

var1

The first part of the custom character.

var2

The second part of the custom character.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.13 TextSetContrast

Description:

Set the last set contrast value.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Contrast

The contrast (0-255).

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.14 TextSetCursorBlinkState

Description:

Set the cursor blink state.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Cursor Blink

Set the cursor blink state.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.15 TextSetCursorState

Description:

Set the cursor visible state.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

Turn Cursor ON

Set the state of the cursor.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.16 TextSetDisplayChar

Description:

Set a single character on the display.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The row index.

column

The column index.

character

The character to display.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.14.17 TextSetDisplayString

Description:

Set a row on the display.

Connector Pane:

Controls and Indicators:

Input

Device In

Device # identification.

index

The row index.

string

The string to display. Make sure this is not longer then TextGetColumnCount.

error in (no error)

Describes error conditions that occur before this node runs.

Output

Device Out

Same as the Device In.

error out

5.15 Phidget TextLED

Discontinued.

5.16 Phidget Weight Sensor

Discontinued.

6 Phidgets Constants

This section describes each of the Phidgets constant used by different Phidgets.

ServoType

ThermocoupleType

CodeInfo

IREncoding

IRLength

6.1 ServoType

An enum value with the following definition:

Value	Comments
PHIDGET_SERVO_DEFAULT = 1,	Default - This is what the servo API been historically
	used, originally based on the Futaba FP-S148
PHIDGET_SERVO_RAW_us_MODE = 2,	Raw us mode - all position, velocity, acceleration
	functions are specified in microseconds rather then
	degrees
PHIDGET_SERVO_HITEC_HS322HD = 3,	HiTec HS-322HD Standard Servo
PHIDGET_SERVO_HITEC_HS5245MG = 4,	HiTec HS-5245MG Digital Mini Servo
PHIDGET_SERVO_HITEC_805BB = 5,	HiTec HS-805BB Mega Quarter Scale Servo
PHIDGET_SERVO_HITEC_HS422 = 6,	HiTec HS-422 Standard Servo
PHIDGET_SERVO_TOWERPRO_MG90 = 7,	Tower Pro MG90 Micro Servo
PHIDGET_SERVO_HITEC_HSR1425CR = 8,	HiTec HSR-1425CR Continuous Rotation Servo
PHIDGET_SERVO_HITEC_HS785HB = 9,	HiTec HS-785HB Sail Winch Servo
PHIDGET_SERVO_HITEC_HS485HB = 10,	HiTec HS-485HB Deluxe Servo
PHIDGET_SERVO_HITEC_HS645MG = 11,	HiTec HS-645MG Ultra Torque Servo
PHIDGET_SERVO_HITEC_815BB = 12,	HiTec HS-815BB Mega Sail Servo
PHIDGET_SERVO_FIRGELLI_L12_30_50_06_R	Firgelli L12 Linear Actuator 30mm 50:1
= 13,	
PHIDGET_SERVO_FIRGELLI_L12_50_100_06_	Firgelli L12 Linear Actuator 50mm 100:1
R = 14,	
PHIDGET_SERVO_FIRGELLI_L12_50_210_06_	Firgelli L12 Linear Actuator 50mm 210:1
R = 15,	
PHIDGET_SERVO_FIRGELLI_L12_100_50_06_	Firgelli L12 Linear Actuator 100mm 50:1
R = 16,	
PHIDGET_SERVO_FIRGELLI_L12_100_100_06_	Firgelli L12 Linear Actuator 100mm 100:1
R = 17,	
PHIDGET_SERVO_USER_DEFINED = others	Undefined

6.2 ThermocoupleType

An enum value with the following definition:

Value	Comments
PHIDGET_TEMPERATURE_SENSOR_K_TYPE	K-Type thermocouple
= 1,	
PHIDGET_TEMPERATURE_SENSOR_J_TYPE	J-Type thermocouple
= 2,	
PHIDGET_TEMPERATURE_SENSOR_E_TYPE	E-Type thermocouple
= 3,	
PHIDGET_TEMPERATURE_SENSOR_T_TYPE	T-Type thermocouple
= 4,	
PHIDGET_SERVO_USER_DEFINED = others	Undefined

6.3 CodeInfo

The PhidgetIR CodeInfo structure contains all information needed to transmit a code, apart from the actual code data. Some values can be set to null to select defaults. See the product manual for more information.

Data	Item	Comments	
Type			
132	bitCount	Number of bits in the code.	
1321	encoding	Encoding used to encode the data. This is an enum. Please refer to Phigets	
		Constant -> IREncoding	
1321	length	Constant or Variable length encoding. This is an enum. Please refer to Phigets	
		Constant -> IRLength	
132	gap	Gap time in us.	
132	trail	Trail time in us - can be 0 for none.	
132	header [2]	Header pulse and space - can be 0 for none.	
132	one [2]	Pulse and Space times to represent a '1' bit, in us.	
132	zero [2]	Pulse and Space times to represent a '0' bit, in us.	
132	repeat [26]	A series or pulse and space times to represent the repeat code. Start and end with	
		pulses and null terminate. Set to 0 for none.	
I32	min_repeat	Minimum number of times to repeat a code on transmit.	
[80]	toggle_maskBit toggles, which are applied to the code after each transmit.		
	[16]		
1321	carrierFrequ	Carrier frequency in Hz - defaults to 38kHz.	
	ency		
I32	dutyCycle	Duty Cycle in percent (10-50). Defaults to 33.	

6.4 IREncoding

The PhidgetIR supports these data encodings:

Value	Comments
PHIDGET_IR_ENCODING_UNKNOWN = 1,	Unknown - the default value
PHIDGET_IR_ENCODING_SPACE = 2,	Space encoding, or Pulse Distance Modulation
PHIDGET_IR_ENCODING_PULSE = 3,	Pulse encoding, or Pulse Width Modulation
PHIDGET_IR_ENCODING_BIPHASE = 4,	Bi-Phase, or Manchester encoding
PHIDGET_IR_ENCODING_RC5 = 5,	RC5 - a type of Bi-Phase encoding
PHIDGET_IR_ENCODING_RC6 = 6,	RC6 - a type of Bi-Phase encoding
Others	Undefined

6.5 IRLength

The PhidgetIR supports these encoding lengths:

Value	Comments
PHIDGET_IR_LENGTH_UNKNOWN = 1,	Unknown - the default value
PHIDGET_IR_LENGTH_CONSTANT = 2,	Constant - the bitstream + gap length is constant
PHIDGET_IR_LENGTH_VARIABLE = 3,	Variable - the bitstream has a variable length with a constant gap
Others	Undefined

Index

AttachCHK

_ChkError 44 Close 44 _Delete 44 Open 44 _SerialReturn _WaitAttach 44 - A -AcceAxisCount 59, 60 AcceCreate 59.61 AcceEventClose 59, 62 AcceEventCreate 59.63 AcceEventExe 59, 64 AcceGetData 59.65 AcceGetMax 59, 66 AcceGetMin 59, 67 AcceGetTrigger 59, 68 AcceOpen 59.69 AcceSetTrigger 59, 70 AdvServoCount 71, 73 AdvServoCreate 71. 74 AdvServoEventClose 71, 75 AdvServoEventCreateCrtChange 71. 76 AdvServoEventCreatePosChange 71, 77 AdvServoEventCreateVelChange 71, 78 AdvServoEventExe 71, 79 AdvServoGetAcce 71.80 AdvServoGetAcceMax 71, 81 AdvServoGetAcceMin 71.82 AdvServoGetCurrent 71.83 AdvServoGetEngaged 71, 84 AdvServoGetPos 71.85 AdvServoGetPosMax 71, 86 AdvServoGetPosMin 71, 87 AdvServoGetRampingState 71, 88 AdvServoGetServoType 71, 89 AdvServoGetVel 71, 90 AdvServoGetVelImt 71. 91 AdvServoGetVelmax 71. 92 AdvServoGetVelmin 71.93 AdvServoOpen 71, 94

71, 95

AdvServoSetAcce

AdvServoSetEngaged 71, 96 AdvServoSetPos 71. 97 AdvServoSetPosMax 71, 98 AdvServoSetPosMin 71.99 AdvServoSetRampingState 71, 100 AdvServoSetServoParameters 71, 101 AdvServoSetServoType 71, 102 AdvServoSetVelImt 71, 103 AdvServoStoppedState 71. 104

- C -

CodeInfo 155, 358

- E -

EncoderCreate 105, 106 EncoderEventCloseInput 105, 107 EncoderEventClosePosition 105, 108 **EncoderEventCreateInput** 105, 109 EncoderEventCreatePosition 105, 110 EncoderEventExeInput 105, 111 EncoderEventExePosition 105, 112 EncoderGetCount 105, 113 EncoderGetEnabledState 105, 114 EncoderGetIndexPosition 105, 115 EncoderGetInputCount 105, 116 EncoderGetInputState 105, 117 EncoderGetPosition 105, 118 EncoderOpen 105, 119 EncoderSetEnabled 105, 120 **EncoderSetPosition** 105, 121 ErrorHandler 23 Event Handler 11. 12 EventCloseIntDouble 23 EventCloseIntInt 23 EventCreateIntDouble 23 EventCreateIntInt EventExeIntDouble EventExeIntInt 23

- G -

Getting Start 11, 12

- I -

IFCreate 122, 123
IFEventClose 122, 124
IFEventCreateInput 122, 125
IFEventCreateOutput 122, 126

IFEventCreateSensor 122, 127 **IFEventExe** 122, 128 **IFGetDataRate** 122, 129 IFGetDataRateMax 122, 130 122, 131 IFGetDataRateMin **IFGetInputCount** 122, 132 **IFGetInputState** 122, 133 **IFGetOutputCount** 122, 134 **IFGetOutputState** 122, 135 **IFGetRatio** 122, 136 **IFGetSensorCount** 122, 137 IFGetSensorValue 122, 138 IFGetSensorValueRaw 122, 139 **IFGetTrig** 122, 140 122, 141 **IFOpen IFSetDataRate** 122, 142 IFSetOutputState 122, 143 **IFSetRatio** 122, 144 **IFSetTrig** 122, 145 146 **IRCreate IREncoding** 358, 361 **IREventCloseOnCode** 146 **IREventCloseOnLearn** 146 146 IREventCloseOnRawData **IREventCreateOnCode** 146 IREventCreateOnLearn 146 IREventCreateOnRawData 146 IREventExeOnCode IREventExeOnLearn IREventExeOnRawData 146 146 IRGetLastCode IRGetLastLearnedCode 146 **IRGetRawData** 146 **IRLength** 358, 361 146 **IROpen IRTransmit** 146 **IRTransmitRaw IRTransmitRepeat** - L -LEDCount 164

LEDCreate 164 LEDGetBrightness 164 LEDGetCurrentLimit 164 LEDGetVoltage LEDOpen 164 LEDSetBrightness 164 LEDSetCurrentLimit 164 LEDSetVoltage 164

- M -

MCCreate 174 MCEventCloseInput 174 MCEventCloseVelocityCurrent 174 MCEventCreateCurrent 174 MCEventCreateInput 174 **MCEventCreateVelocity** MCEventExeInput MCEventExeVelocityCurrent 174 MCGetAcceleration 174 MCGetAccelerationMax 174 MCGetAccelerationMin 174 MCGetCurrent 174 MCGetInputCount 174 174 **MCGetInputState MCGetMotorCount** 174 **MCGetVelocity** 174 MCOpen 174 MCSetAcceleration 174 **MCSetVelocity** 174 Multiple Devices 11, 12

- P -

PHCreate 194 **PHEventClose** 194 **PHEventCreate** 194 **PHFventFxe** PHGetPH 194 PHGetPHMax 194 PHGetPHMin 194 PHGetPHTrigger 194 **PHGetPotential** 194 PHGetPotentialMax 194 PHGetPotentialMin 194 Phidget Accelerometer 58, 59 Phidget Advanced Servo 58. 71 Phidget Encoder 58, 105 Phidget InterfaceKit 58. 122 58, 146 Phidget IR Phidget LED 58, 164 **Phidget Motor Control** 58, 174 Phidget PH Sensor 58. 194 Phidget RFID 58. 209 58, 228 Phidget Servo Phidget Spatial 58, 244

Phidget Stepper 58. 269 RFIDGetOutputState 209 Phidget Temperature Sensor 58. 318 RFIDGetTagState 209 Phidget TextLCD 58, 338 RFIDOpen 209 Phidget TextLED 58. 356 RFIDSetAntennaState 209 RFIDSetLEDState 209 Phidget Weight Sensor 58, 357 PhidgetClose 23 RFIDSetOutputState 209 PhidgetDelet 23 - S -23 PhidgetDelete PhidgetDeviceLabel 23 Servo Create 228 23 PhidgetDeviceName ServoCount 228, 229 23 PhidgetDeviceType ServoCreate 228, 230 PhidgetDeviceVersion 23 ServoEventClose 228 23 PhidgetEventCloseOnError ServoEventCreate 228 PhidgetEventCreateOnError 23 ServoEventExe 228 PhidgetEventExeOnError 23 ServoGetEngaged 228, 234 23 PhidgetGetDeviceClass ServoGetPos 228, 235 PhidgetGetDeviceID ServoGetPosMax 228, 236 PhidgetGetDeviceLabel 23 ServoGetPosMin 228, 237 23 PhidgetGetServerStatus ServoGetServoType 228, 238 23 PhidgetLibraryVersion ServoOpen 228, 239 PhidgetOpen ServoSetEngaged 228, 240 PhidgetOpenRemote 23 ServoSetPos 228, 241 PhidgetOpenRemotelP 23 ServoSetServoParameters 228, 242 Phidgets Common 11, 12, 13, 23 ServoSetServoType 228, 243 11, 12, 358 Phidgets Constant ServoType 89, 102, 238, 243, 358 23 PhidgetServerAddress SpatialCreate 244, 245 **PhidgetServiceID** SpatialEventClose 244, 246 PhidgetSetDeviceLabel 23 SpatialEventCreate 244, 247 89, 102, 238, 243, 332, 336 **Phigets Constant** SpatialEventExe 244, 248 PHOpen 194 SpatialGetAcce 244, 249 **PHSetTemperature** 194 SpatialGetAcceAxisCount 244, 250 PHSetTrig 194 244, 251 SpatialGetAcceMax Platform Support 12 SpatialGetAcceMin 244, 252 **Programming Concept** 11, 12 244, 253 SpatialGetAngRate SpatialGetAngRateMax 244, 254 - R -SpatialGetAngRateMin 244. 255 **RFIDCreate** 209 SpatialGetCompassAxisCount 244, 256 RFIDEventClose 209 SpatialGetDataRate 244, 248, 257 RFIDEventCloseOutput 209 244, 258 SpatialGetDataRateMax RFIDEventCreateOutput 209 SpatialGetDataRateMin 244, 259 RFIDEventCreateTag SpatialGetGyroAxisCount 244, 260 RFIDEventCreateTagLost 209 SpatialGetMagField 244, 261 RFIDEventExe 209 SpatialGetMagFieldMax 244, 262 RFIDEventExeOutput 209 SpatialGetMagFieldMin 244, 263 RFIDGetAntennaState 209 SpatialOpen 244, 264 SpatialResetCompassCorrectionParameters RFIDGetLastTag 244. 265 RFIDGetLEDState 209 SpatialSetCompassCorrectionParameters 244, 266 RFIDGetOutputCount 209

SpatialSetDataRate 244, 267 StepperSetVelocityLimit 269 SpatialZeroGyro 244, 268 StepperStoppedState 269 Specific Modules 11, 12, 13, 58 SubVIs (Folder) StepperCreate 269 - T -StepperEventCloseCurrentVelocity 269 StepperEventCloseInput **TempCreate** 318 StepperEventClosePosition 269 318 TempEventClose 269 StepperEventClosePosition71 **TempEventCreate** 318 StepperEventCreateCurrent 269 318 TempEventExe StepperEventCreateInput **TempGetAmbient** 269 StepperEventCreatePosition 318 **TempGetAmbientMax** StepperEventCreatePosition71 269 TempGetAmbientMin 318 StepperEventCreateVelocity 269 **TempGetPotential** 318 StepperEventExeCurrentVelocity 269 TempGetPotentialMax 318 269 StepperEventExeInput 318 TempGetPotentialMin StepperEventExePosition 269 **TempGetTemperature** 318 StepperEventExePosition71 269, 293 318 TempGetTemperatureMax StepperGetAcceleration 269 **TempGetTemperatureMin** 318 269 StepperGetAccelerationMax TempGetThermocoupleType 318 269 StepperGetAccelerationMin TempGetTrigger 318 StepperGetCurrent TempInputCount 318 StepperGetCurrentLimit 269 TempOpen 318 269 StepperGetCurrentMax TempSetThermocoupleType 318 269 StepperGetCurrentMin TempSetTrigger 318 StepperGetCurrentPosition 269 TextCreate 338 StepperGetCurrentPosition71 269 TextGetBacklightState 338 StepperGetEngaged **TextGetBrightness** 338 StepperGetPositionMax 269 TextGetColumnCount 338 269 StepperGetPositionMax71 338 TextGetContrast StepperGetPositionMin 269 TextGetCursorBlinkState 338 269 StepperGetPositionMin71 **TextGetCursorState** 338 269 StepperGetTargetPosition 338 TextGetRowCount 269 StepperGetTargetPosition71 **TextOpen** 338 StepperGetVelocity TextSetBacklightState 338 StepperGetVelocityLimit 269 **TextSetBrightness** 338 StepperGetVelocityMax 269 **TextSetCharacter** 338 StepperGetVelocityMin 269 TextSetContrast 338 StepperInputCount 269 TextSetCursorBlinkState 338 StepperInputState 269 TextSetCursorState 338 269 StepperMotorCount TextSetDisplayChar 338 StepperOpen TextSetDisplayString 338 StepperSetAcceleration 269 ThermocoupleType 332, 336, 358 269 StepperSetCurrentLimit StepperSetCurrentPosition 269 - U -StepperSetCurrentPosition71 269 **Understand Phidgets** 12 StepperSetEngaged Using Help 11 StepperSetTargetPosition 269

StepperSetTargetPosition71

269

Phidgets Inc.

Unit 1, 6115 4th Street S.E.

Calgary, AB Canada T2H 2H9

Telephone: 1-403-282-7335 Facsimile: 1-403-282-7332

E-mail: support@phidgets.com Web site: www.phidgets.com