

Data Semantics

Università degli studi di Milano - Bicocca a.a. 2017/18

Alex Ceccotti | 790497 Paolo Quadri | 778549 Michela Sessi | 777760 David Govi | 833653

Outline di presentazione.

Introduzione.

1.Fonti e costruzione grafo RDF.

2.Idea di gioco e query.

3.Demo del gioco.

4.Arricchimento del grafo RDF.

Conclusioni.

Introduzione.

DBpedia offre poche informazioni sul mondo dei Pokémon.

- Mancanza di statistiche di gioco.
- Mancanza di proprietà.

Vogliamo costruire un grafo RDF che racchiuda la conoscenza del dominio dei Pokémon.

Pokemon.csv

ist of F	Pokémon by evolu	ition family					
anto-b	ased evolution fami	ilies	D	ulbasaur family			
4	Bulbasaur	Level 16 →		lvysaur	Level 32 →	3	Venusaur
			Ch	narmander family			
%	Charmander	Level 16 →	43	Charmeleon	Level 36 →	400	Charizard
			-	Squirtle family			
%	Squirtle	Level 16 →	100	Wartortle	Level 36 →	A	Blastoise
	10		C	Caterpie family			
49	Caterpie	Level 7 →	•	Metapod	Level 10 →	*	Butterfree

Evolutions

List of Pokémon by Egg Group

Pokémon
Egg Group 1
Egg Group 2

Out
Bulbasaur
Monster
Grass

Uvysaur
Monster
Grass

Out
W Charmander
Monster
Dragon

Egg Groups

Nella creazione delle triple a partire dalle diverse fonti abbiamo avuto un unico problema di matching.

Venivano create 4 istanze per due Pokémon:


```
Risoluzione a partire dalle evoluzioni:
if row.evoluzione=="Nidorino": nomel = URIRef("Nidorano_(Pokémon)")
if row.evoluzione=="Nidorina": nomel = URIRef("Nidorano_(Pokémon)")
```


Tutte le istanze sono identificate con URI della pagina di Bulbapedia.

URI per il nodo di Charmender:

Definizione di nuove proprietà poke.

Pagina di definizione di poke:has_type in html:

Dizionario delle proprietà Poke

Nome: has_type

Domain: Pokémon

Range: Type

Descrizione della proprietà:

poke:has_type indica la tipologia del Pokémon in base alla quale questo acquista determinate proprietà e relative mosse. Ogni Pokémon può essere associato a più di una tipologia, ogni tipologia può essere associata a più di un Pokémon.

URI della proprietà:

Link al sito web di Bulbapedia: https://bulbapedia.bulbagarden.net/wiki/Type

Uso di RDF e RDFS.

rdfs:label per i nodi

rdfs:label per i nodi

Egg
Ability
Category

rdfs:subClassOf

rdf:type "Pokemon"

rdf:type "Legendary_pokemon"

Obiettivo.

Metagaming: ci si riferisce a ciò che di un gioco va al di là del gioco stesso e cioè a quegli aspetti che non derivano direttamente dalle regole, ma "dall'interazione con l'ambiente e il contesto", elementi che includono l'atteggiamento dei giocatori, il loro stile di gioco, la loro reputazione e il contesto sociale nel quale si gioca.

Arricchimento del grafo

Sviluppo di gioco:

- (¹) Inserimento di dinamiche di intrattenimento.
- Profilazione dell'utente in base all'esperienza.
- (3) Somministrazione della domanda obiettivo.
- (4) Punteggio e risultati.

Domande per la profilazione dell'utente.

4 domande di cui conosciamo la risposta corretta

Nuovo utente

Arricchimento del grafo

Classificazione dell'utente normalizzato

Domande per la profilazione dell'utente.

4) In cosa si evolve *Pokémon?

Domande a scelta multipla one-shot.

Query per la selezione della lista pokémon

Estrazione di un pokemon random

Estrazione dei **type**del pokemon
selezionato

Query per la selezione
dei type != dai type
del pokemon

Estrazione di **3 type** random diversi

Osservazioni.

Restrezione alla generazione I.

Nella domanda ci potrebbero essere due risposte corrette tra le quattro.

Nella domanda 4 può capitare anche un pokémon nella sua evoluzione finale.

Inserimento risposta «Non ha evoluzioni».

Esportazione di un .json

Punteggi.

Domanda obiettivo.

Componi la tua squadra per battere il campione della Lega.

L'estrazione dei pokémon.

- Sfruttiamo le combinazioni dei tipi per stabilire un vantaggio
- Rapporto tra le statistiche
- Speed e Gen·l Crits
- Utilizzo degli esponenti per stabilre l'importanza dei fattori

Arricchimento dell'ontologia.

Come calcoliamo il valore di selezione?

Esempio.

Conclusioni.

Improvements & Conclusions

- Pubblicazione del gioco e implementazione di API Result per la trasmissione di informazioni da e per il grafo.
- Utilizzo delle successive generazioni nel gioco.

Fine tuning dei parametri per il calcolo delle probabilità

> Grafo correttamente compilato in modo coerente. Struttura che permette di approssimare il meta.

References

- K. Jacoba «Ontology and the semantic web».
- Staab ~ "Why evaluate Ontology Technologies? Because it works!"
- Tzizticas, Lantzaki, Zeginis, «Blank Node Matching and RDF/S Comparison Functions»
- Luis Von Ahn¬ «Games with a purpose».
- Bry, Wieser, "Squaring and Scripting the ESP Game: Trimming a GWAP to Deep Semantics"
- Law¬ Ahn¬ «Imput-Agreement: A new mechanism for collecting data using human comutation games».
- Krause, Malaka, Wittstock, "Frontiers of a paradigm- exploring human computation with digital games".
- Man Guptan «Page hunt: improving search engines using human computation games».
- De Coster, De Groote, «Malahanobis distance, Jaro-Winkler distance and nDollar in Usi Gesture».
- Rotoun Qiann Von Daviern Ranking Systems in gaming assessments and/or competitive games».
- Bagchi¬ «Performance and Quality assessment of similarity measures».

