Online Retail Customer Behavior Analysis and Customer Segmentation

Springboard Data Science Career Track Capstone 3

Yuan Yin • 08.25.2021

Introduction

Dataset:

Two-year transactional data of an online gift retail, many customers of which are wholesalers

Goals of This Project

- To analyze customer behavior to help the company know the customers well
- To cluster customers for better designing targeted marketing campaigns

Customer Behavior Analysis

- Monthly/Seasonal Transaction Analysis
- Time Cohort Analysis
- Historical Customer Lifetime
 Value Calculation

Monthly/Seasonal Transaction Analysis

Sales Volume and Revenue by Month

 Sales Volume and Revenue by Season*

Monthly/Seasonal Customers Analysis

Number of Active
 Customers by Month

Number of Active
 Customers by Season

Time Cohort Analysis

What is Cohort Analysis

Analyse data based on grouped customers(Cohort) rather than looking at the data as one unit.

Why Cohort Analysis

Develop targeted marketing strategies

Types of Cohort to Analyse

- Time-Based Cohorts
- Segment-Based Cohorts
- Size-Based Cohorts

Time Cohort Analysis

 Average Revenue of Monthly Cohort

 Average Retention Rate of Monthly Cohort

Customer Segmentation

With KMeans Algorithm

- Metric Selection
- Data Preprocessing
- Number of Clusters Optimizing
- Customer Profiling

- Customer segmentation is the practice of dividing customers into groups based on the similarity of characteristics.
- Each group or segment is related to a significant customer profile so companies can design targeted marketing campaigns.

Metric Selection

- Recency, Frequency, and Monetary Value (RFM)
- → Recency: **how recent** was each customer's last purchase
- → Frequency: how many purchases the customer has done
- → Monetary Value: how much has the customer spent

- Recency, Monetary Value, and Tenure (RMT)
- → Tenure: how long the customer has been with the company since their first transaction

Data Preprocessin

→ Why Data Preprocessing

KMeans Assumption:

- Numeric Features
- Symmetrical Features
- Same Mean Values and Same Standard Deviation

→ How to Preprocess data

- Unskew Feature
- Scale Feature

Data Pre-processing

 RFMT Distribution Before Preprocessing

RFMT Distribution After Preprocessing

Number of Clusters Optimizing

How to Predefine the Number of Clusters, i.e., k

How to Do Customer Segmentation

- Customer segmentation is a type of clustering task
- The best-known Machine Learning algorithm for clustering is KMeans.
- In general, a well-formed set of clusters have two highlights:
 - ✓ good cohesion
 - ✓ good separation
- Business Insights

Customer Segmentation And Profiling

How to Identify Customer Profiles

- Based on RFM or RMT metrics
- Summary Statistics
- Relative Importance
- Snake Plot
- o 2D kde Plot
- 3D Scatter Plot

 Segment Size Ratio of RFM Model

Snake Plot of RFM Model

Snake Plot of RMT Model

 2D kde Plot of RFM Model

 2D kde Plot of RMT Model

Scatter Plot of RFM Model

Scatter Plot of RFM Model

Improved Solution: 5-Segment RFM Model

Snake Plot

• 2D kde Plot

Improved Solution: 5-Segment RFM Model

• Segment Size Ratio

• 3D Scatter Plot

Snake Plot

• 2D kde Plot

Segment Size Ratio

• 3D Scatter Plot

Summary Statistics

	Recency	cency					MonetaryValue				
	mean	median	min	max	s	td		mean	median	min	max
Segment											
0	315.0	358	37	576	111	.0		528.0	432.0	96.0	4512.0
1	31.0	18	1	521	41.0		9	286.0	4600.0	462.0	564101.0
2	33.0	23	1	227	32.0		1	604.0	1126.0	211.0	44534.0
3	90.0	58	1	326	83.0			262.0	212.0	3.0	1862.0
4	259.0	231	6	730	172.0		1	787.0	1276.0	96.0	77347.0
5	538.0	557	42	730	135.0			236.0	195.0	3.0	1437.0
			Size								
	sto	d mean	med	lian	min	max	std				
Segment											
0	387.0	388.0)	401	105	587	97.0	857			
1	24047.0	663.0)	686	93	730	79.0	1020			
2	2354.0	285.0)	297	1	659	170.0	998			
3	196.0	133.0)	84	1	639	122.0	628			
4	2778.0	651.0	Y	658	403	730	64.0	1066			
5	169.0	591.0)	603	350	730	98.0	744			

→ Segment 0: One_Time. The customers within this segment purchased products about one year ago, for the first and last time.

→ Segment 1: Potential_Valuable. The customers within this segment are relatively new but have generated considerable revenue. Besides, this segment is pretty active.

This segment is worthy to highlight

→ Segment 2: **High_End**. The customers within this segment are active, loyal, and have generated much revenue.

The most important segment for the company

→ Segment 3: New. The customers within this segment are new to the company. The median value of Tenure is only 64 days, which is much lower than the other segments

Based on the Time Cohort Analysis, the customers in this segment are easy to churn

→ Segment 4: Low_and_Lost. The customers in this segment generated very low revenue since most of them have not purchased anything for more than one year and a half.

No need to pay close attention to this segment.

→ Segment 5: Once_Valuable_Potential_Lost. The customers within this segment did not purchase recently but they have generated pretty high revenue.

The company may take special actions to prevent these customers from being really lost.

Future Work

- In this project, we segment customers using KMeans. We will try to identify meaningful segments using other clustering algorithms such as Non-negative Matrix Factorization (NMF) or Hierarchical Clustering
- Except for customer segmentation, we will do market basket analysis, product segmentation, Customer Lifetime Value prediction, next transaction prediction, customer churn prediction, and so on.