- 练习 1. 假设 $A, B \in \mathbb{R}^n$ 的子集. 证明:
 - (i) 如果 A, B 中有一个是开集,则 A + B 是开集.
 - (ii) 如果 A, B 都是闭集,则 A + B 是可测集.
- (iii) 如果 A, B 都是闭集,那么 A + B 一定是闭集吗?
- 练习 2. 假设 E_1, E_2 是 \mathbb{R}^n 中的紧集, $E_1 \subset E_2$, $m(E_1) < m(E_2)$. 证明:对任何 $m(E_1) < \lambda < m(E_2)$,存在紧集 E,满足 $E_1 \subset E \subset E_2$ 并且 $m(E) = \lambda$.
- 练习 3. 回忆类 Cantor 集的构造 (第 2 周第一次作业). 给定 $\xi, \theta \in (0, 1/3]$,取 $\ell_k = \xi^k$ 得到类 Cantor 集 $\hat{\mathcal{C}}_1$;取 $\ell_k = \theta^k$ 得到类 Cantor 集 $\hat{\mathcal{C}}_2$. 按下列步骤构造 函数 $F: [0,1] \to [0,1]$:

记 $I_{n,i} = [a_n^i, b_n^i]$ 与 $J_{n,i} = [c_n^i, d_n^i]$ $(i = 1, ..., 2^n)$ 分别为构造 \hat{C}_1 和 \hat{C}_2 的第 n 步时得到的互不相交的闭区间. 定义 $F_n : [0,1] \to [0,1]$ 为这样的函数,

- $F_n(a_n^i) = c_n^i$, $F_n(b_n^i) = d_n^i$, $i = 1, ..., 2^n$;
- 如果 $x \notin P_n := \{a_n^i, b_n^i\}_{i=1}^{2^n}$,则令 $F_n(x)$ 为 x 左右相邻的两个端点 $p_1, p_2 \in P_n$ 处 F 取值 $F_n(p_1), F_n(p_2)$ 的线性插值.

给定任何 $x \in [0,1]$,令 $F(x) = \lim_{n \to \infty} F_n(x)$. 证明: F_n 一致收敛到 F,并且 F 满足下列性质:

- (i) *F* 是连续的双射;
- (ii) F 是单调递增函数;
- (iii) F 将 \hat{C}_1 映满 \hat{C}_2 .
- 练习 4. 举例说明: 存在可测函数 f 与连续函数 ϕ ,其复合函数 $f \circ \phi$ 是不可测的. (利用练习 3.)
- **练习 5** 举例说明. 存在 [0,1] 上定义的可测函数 f,满足如下两个条件: (i) f 在 [0,1] 上处处不连续; (ii) 对任何 [0,1] 上的可测函数 g, 如果 g(x) = f(x) a.e. $x \in [0,1]$,则 g 也在 [0,1] 上处处不连续. (可考虑利用教材第 2 章习题 43.)