GR5260 Programming for Quantitative & Computational Finance

Instructor: Ka Yi Ng April 21, 2023

Tree-based models

Tree-based ML models

- Partitioning feature space into rectangular blocks, assigning a constant prediction value to each block
- Decision trees using CART algorithm
- Random forests: ensemble example
- Recall:
 - Training dataset: $(x^{(1)}, y^{(1)})$, ..., $(x^{(m)}, y^{(m)})$
 - Features: $x = (x_1, ..., x_n)$
 - Classification: $y \in \{1, 2, ..., K\}$
 - Regression: $y \in \mathbb{R}$

Classification: CART algorithm

Gini impurity index for a set of N points in K classes:

•
$$G = \sum_{i=1}^{K} \widehat{p}_i (1 - \widehat{p}_i)$$
, $\widehat{p}_i = \frac{N_{class_i}}{N}$ and $N_{class_i} = \#$ points of class i

As an error measure
$$P_{blue} (1 - P_{blue})$$

- 3 red points, 3 blue points, 7 green points
- $G = \left(\frac{3}{13}\right)\left(\frac{10}{13}\right) + \left(\frac{3}{13}\right)\left(\frac{10}{13}\right) + \left(\frac{7}{13}\right)\left(\frac{6}{13}\right) = 0.60$ 3 red points, 4 blue points, 6 green points

•
$$G = \left(\frac{3}{13}\right)\left(\frac{10}{13}\right) + \left(\frac{4}{13}\right)\left(\frac{9}{13}\right) + \left(\frac{6}{13}\right)\left(\frac{7}{13}\right) = 0.64$$

Decision Tree: Classification

Partition n-dim feature space using hyperplanes defined by feature values

Classification: CART algorithm

Classification: CART algorithm

- At each node:
 - Compute its Gini impurity index, G_{node}
 - Among all features, find the feature (X_j) and threshold level H that gives the best split $(X_j \le H)$ ie. minimizes the cost function

$$J(j,H) = \frac{N_{left}}{N}G_{left} + \frac{N_{right}}{N}G_{right}$$

- If the difference $G_{node} J(\hat{\jmath}, \hat{H}) > \delta$ split the node using the best split criterion; otherwise, no split
- Repeat the above until no nodes can be split or some predefined criterion (eg. #nodes, tree depth) is met
- Prediction:
 - For each leaf node: predicted class probability distribution
 - Given a new data point x_{new} , determine the leaf node it belongs to.
 - Predicted label = class with highest probability in the leaf node

Regression: CART algorithm

- At each node:
 - \overline{y}_{node} = mean of label values of all points belonging to the node

$$MSE_{node} = \frac{1}{N} \sum_{i \in node} (y^{(i)} - \overline{y}_{node})^2$$

- Among all features, find the feature (X_j) and threshold level H that gives the best split $(X_j \le H)$ ie. minimizes the cost function

$$J(j,H) = \frac{N_{left}}{N} MSE_{left} + \frac{N_{right}}{N} MSE_{right}$$

- If the difference $MSE_{node} J(\hat{j}, \hat{H}) > \delta$, split the node using the best split criterion; otherwise, no split
- Repeat the above until no nodes can be split or some predefined criterion (eg. #nodes, tree depth) is met
- Prediction:
 - Given a new data point x_{new} , find the leaf node \mathscr{N} it belongs to.
 - Predicted y_{new} = average label values of training points in node \mathcal{N}

Regression: CART algorithm

- Benefits:
 - Interpretability: explicit descriptive rules
 - Flexible, no model function assumptions
- Limitations:
 - Prone to overfitting

- Limitations:
 - Sensitive to orientation of training data

- Hyperparameters: Limit size of tree to reduce overfitting
 - Tree depth
 - Maximum no. of leaf nodes
 - Minimum no. of samples in each split
 - Minimum no. of samples in each leaf node
- Random forest: reduce model instability
 - averaging prediction over multiple decision trees
- PCA: identify the principal components

Random forests

- Uses Bagging (Bootstrap aggregation)
 - Average the predictions from a set of decision trees
 - Reduce variance (more stable prediction)
- For each tree: Ti Di Tsoo Cless one both
 - Training set: randomly sample m examples with replacement from the original training set \mathcal{D}
 - At each node: select \tilde{n} features at random ($\tilde{n} \leq n$), seek best split on these features
- Prediction: stable prediction
 - Regression: average of predicted values over the trees
 - Classification: class with highest average predicted probability over the trees

Decision tree vs Random forest

- Reduce variance and prediction error
 - Training sets: bootstrap sampling
 - Feature bagging: reduce correlation among trees
 - Average prediction
- Feature importance
 - MDI: mean decrease in impurity due to a feature
 - Alternative measures: applicable to any model
 - Permutation importance (MDA): mean decrease in model performance if a feature's values on testing set are permuted

Ensemble methods

- Train a set of models (base learners)
- Prediction: from combining the predictions
- Bagging
 - For base learners with high variance, low bias
 - Average prediction of models trained independently

Boosting

- For base learners with low variance, high bias
- train a sequence of models, one being dependent upon the previous models
- eg. gradient boosting: train on the residual errors made by the previous model predictor
- Reduce high bias of weak learners; hard to scale up