

Context

Objective:

Share user-generated content (videos) over dedicated wireless networks.

Goals

In this presentation we focus on:

- 1. How to disseminate new content?
- 2. How to design and test such distributed app?

Is there a low-cost solution?

Standard	Bluetooth 802.15.1	WiFi-Direct	WiFi 802.11ac	WiFi-TDLS	LTE
Frequency Bands	2.4 GHz	2.4 / 5 GHz	5 GHz	2.4 / 5GHz	800 - 2600 MHz
Transfer Rate	25 Mbps	250 Mbps	250 Mbps	250 Mbps	100 / 50Mbps 4G
Range	~10 m	~200m	~200m	~200m	-
Network Size	max 7 k Size connections per 5-7 per group device		max rec. 50 2		-
Connection 2-8 s		2-8 s	-	~0s	-
Ţ				Y	
scaling issues				€€€	

Can we leverage multiple technologies?

Advantage: Separation of concerns

Disadvantage: Complexity of implementation and testing

Control Plane

Bluetooth

- Typically lower battery consumption
- Exists research for overcoming group size restrictions
- We are exchanging small-size messages (~4KB max)

Issues to address

- How to build the network algorithms ?
- Which communication protocol to use (gossip vs controlled flooding)?

Data Plane

Strategy	No Infrastructure	Large Infrastructure (€€)	Hybrid (€)
Control Plane	Bluetooth	Bluetooth	Bluetooth
Data Plane	WiFi-Direct	WiFi + TDLS	WiFi + TDLS + Direct

Offers no guarantees:

- Quality of Service
- Scalability

Offers a central control point:

- Supervision of content
- Traffic monitoring
- Caching

"Worst-case" Scenario

No infrastructure - we need ad-hoc peer-to-peer networks

- + No cost (€€)
- Hard to guarantee scalability and content availability

Where to start?

Testing Setup

Proof-of-Concept Demo

Material:

- 12 devices Nexus 9
- 3 producers
- 9 consumers
- 3 videos (8.6 MB, 24.3 MB, 17.5 MB)

WiFi:

Router 802.11n:

- 130 Mbps
- 20MHz/channel
- 4 channels available
- 4MB/s effective bandwidth (we use 1 channel)

WiFi-Direct:

Legacy Mode 802.11ac:

- 450 Mbps
- 40MHz/channel
- 8 channels available
- 7MB/s effective bandwidth (we use 1 channel)

Step #1 - Setup

Step #2 - Data Transfer

Demonstration Video

Network Viewer

Measurements

Technology	Connection Overhead (1)	Mean Transfer Rate (2)	Mean Transfer Rate w/Ov (3)
Wifi	-	950 kB/s	-
Wifi-Direct	3.7s	3094 kB/s	1921 kB/s

- (1) Time spent connecting to AP
- (2) Averaged across all devices not accounting for (1)
- (3) Averaged across all devices accounting for (1)

Bluetooth

Network formation time = 40 +- 15 s (algorithm-dependent)

Future Work

- 1. API enhancement + test suites
- 2. Test algorithms and app behavior at scale
 - Compare strategies, algorithms and comm. protocols
 - Use simulator ns3 Joaquim Silva
- 3. Address security issues
 - Identity theft and authentication mechanisms
 - Content validation safe for viewing

2-Tier Strategies

Strategy	Control Plane (~4KB)	Data Plane (~4MB)	Advantages	Disadvantages
#1	Bluetooth	WiFi	Centralized control and supervision over content and network traffic	Requires infrastructure (€€) AP saturation in over- crowded environments
#2	Bluetooth	WiFi-Direct	Parallelization No infrastructure required	Behavior in scarce and greedy environments Limited range
#3	Bluetooth	WiFi-LTE & WiFi- Direct	Central control Parallelization	Requires infrastructure (€) Requires decision mechanism

How to disseminate content?

Can a single technology be the answer to this problem?

Technology	Advantages	Disadvantages	
Bluetooth	No infrastructure required	Low range and transfer rates Restricted network size	
WiFi-Direct	No infrastructure required Parallelization	Restricted network size Complexity	
WiFi Centralized control and supervision over content and network traffic		Requires infrastructure (\$\$) AP saturation	

Proof-of-Concept Demo

Step #1 - Setup

- 1. Create control network simple prototype algorithm
- 2. Producers create and share videos flooding algorithm

Step #2 - Data Transfer

- 1. Consumers download videos from producers concurrently
- 2. Repeat this step for WiFi and WiFi-Direct

Pseudo code (Simple P2P - First Discovered & Available, First Connected):

```
start: setDiscoverable(false)
     devices = discovery(timeout, 5 12)
     IF (devices != null)
           sortDevicesBy(devices, "rssi")
           FOR device: devices
                 IF (isPeerAvailable(device))
                       connectTo(device)
                       IF (countPeers() < MIN_PEERS)</pre>
                             continue
                       ELSE
                             break
     setDiscoverable(true)
listen:
           wait for new peers(timeout)
     IF (peersCount() == 0)
           goto start
     ELSE
           goto listen
```

Problem

Challenges:

- How to leverage peer-to-peer connections for sharing content (human-usable)?
- Dynamic, highly volatile environment and networks.
- Define mechanisms and strategies for content sharing and caching (application/client-wise).
- How can edge clouds augment content dissemination and visualization?
- What are the roles and interactions between edge and remote clouds.

APIs

- Each layer provides a library with its own API.
- Up-down library dependency.
- To be shared as soon as considered stable.
- Each layer has its own test-suite (to do)

Experiment #1 Timeline

Create Bluetooth Network (start signal sent to devices)

All devices are **connected** (to at least 1 peer)

Producers **load** videos from computer

Producers share videos

Consumers download videos from producers (in parallel)

First consumer **plays video** (completes download)

Last consumer plays video (completes download)

Experimental Protocol

Setup

- Create bluetooth network
- Producers load videos from computer
- Producers share videos

Scenario #1 - Parallel dissemination

- Consumers download videos from producers concurrently.
- Represents Best-case scenario faster dissemination

Scenario #2 - Sequential dissemination

- Videos are disseminated "left-to-right" sequentially
- Represents **Worst-case** scenario slower dissemination

Results - Setup

Technology Observed Bandwidth		Network Formation Time (1)	Socket Creation Time (2)	Hop Overhead (3)	
Bluetooth	~ 200 KB/s	~40 s	~ 3 s	200 ms/hop	

Router Bandwidth - 4 MB/s

- (1) -
- (2) -
- (3) -
- (4) -

Current Strategy (#2)

Decouple network control and data planes

Dissemination Strategies

Strategy	Metadata & Control (~4KB)	Data (~4MB)	Advantages	Disadvantages
#1	Bluetooth	Bluetooth	No infrastructure required	Low range and transfer rates Network size restrictions
#2	WiFi-Direct	WiFi-Direct	No infrastructure required Parallelization	Network size restrictions Complexity
#3	WiFi	WiFi	Centralized control and supervision over content and network traffic	Requires infrastructure (\$\$) AP saturation

Dissemination Strategies

Strategy	Metadata & Control (~4KB)	Data (~4MB)	Advantages	Disadvantages
#4	Bluetooth	WiFi	Centralized control and supervision over content and network traffic	Requires infrastructure (\$\$) AP saturation in over-crowded environments
#5	Bluetooth	WiFi-Direct	Parallelization No infrastructure required	Behavior in scarce and greedy environments Limited range
#6	Bluetooth	WiFi-LTE & WiFi- Direct	Central control Parallelization	Requires infrastructure (\$) Requires decision mechanism

Common Advantage: Separation of concerns

Common Disadvantage: Complexity of implementation and testing

Context

Objective:

Share user-generated content (videos) over dedicated wireless networks.

Study Cases:

- #1 No infrastructure is available
- #2 Local infrastructure is available: APs, edge-cloud

Technologies:

WiFi, WiFi-Direct, WiFi-TDLS, Bluetooth, LTE

We focus on:

- How to disseminate content?
- 2. How to implement and test such distributed Android application?

User Generated Replays

