Oil Spill Detection from Satellite Imagery

WARINTORN NAWONG

AGENDA

- Problem Statement
- Introduction of Oil Spill
- Introduction of Satellites Imagery
- Model Development Journey
- Conclusion

PROBLEM STATEMENT

To develop OIL Spill Detection from **Satellite Images** in order to build spilling detection system.

To establish the **schedule-based ocean monitoring** to ensure the compliance of oil spill prevention of related operator.

THE CONSEQUENCE OF OIL SPILLS

Environmental Impacts

Oil spill events caused damage to wildlife, marine ecosystems, and coastal environments.

Economical Impacts

Oil spills can lead to severe disruption of the **tourist industry**.

Human Impacts

Oil spills impact on human health, including respiratory, and immune system damage.

OIL SUPPLY CHAIN

Upstream Midstream Downstream

CAUSE OF OIL SPILL

Oil Tanker/Transport Vessels

Oil Rig/Platform

Pipeline

Storage tanks

≈ 50.0 %

of all oil spills are directly or indirectly caused by **human error.**

≈ 40.0 %

of oil spills are attributed to equipment failure or malfunction.

≈ 21.0 %

of oil releases are from **Operational discharges** from vessels.

OIL SPILL CHARACTERISTICS

Operational Discharges

- Tank-washing Procedure
- Platform-sourced pollution

Accidental Discharges

- Ship Accident
- Platform Accident

Straight Linear

Discontinuous Patches

Curvilinear

Rounded Shape

OIL SPILL CHARACTERISTICS

LINE SHAPE

Operational Discharges

- Tank-washing Procedure
- Platform-sourced pollution

Accidental Discharges

- Ship Accident
- Platform Accident

SATELLITES IMAGE TYPES OF OCEAN MONITORING

Example of **Optical Image** acquired by the NASA Satellite

Example of **Synthetic Aperture Radar (SAR) Image** acquired by the Terra SAR-X.

SOURCE: SAR Marine Applications - DR. Domenico Velotto, European Space Agency

SATELLITES IMAGE TYPES OF OCEAN MONITORING

Example of **Optical Image** acquired by the NASA Satellite

Example of **Synthetic Aperture Radar (SAR) Image** acquired by the Terra SAR-X.

THE STRENGTH OF SAR IMAGES

"Synthetic Aperture Radar (SAR)"

All WEATHER CONDITION

SAR sensors are self-illuminating and can penetrate clouds, fog, smog, darkness and smoke.

24 HR OPERATION

SAR satellites can capture images from precisely the same imaging geometry every 24 hours.

HIGH SPATIAL RESOLUTION AND COVERAGE

SAR can provide a wide range of spatial resolution and coverage.

DATASET

DATASOURCE

The trained data source (SARImgV3) is stored in Roboflow websites.

DATA PROVIDER

The data is provided by Mr. Matteo Attimonelli. (Student of Oil Spill Detection Professor)

TYPE OF DATA

The Oil spill Satellite Data is the **Synthetic Aperture** Radar (SAR) type.

1,400

No. of VAL SET

100

416 x 416

200

No. of TEST SET

Dimensions (pixels)

No. of TRAIN SET

MODEL DEVELOPMENT JOURNEY

MODEL PRIMARY SELECTION

To select the most appropriate model.

OIL SPILL SHAPE AUGMENTATION

To do shape-based image augmentation.

EPOCHS OPTIMIZATION

To find the most optimized epochs per performance.

OIL SPILL DIRECTION EQUALIZATION

To do direction-based image augmentation.

MODEL PRIMARY SELECTION

YOLO (YOU ONLY LOOK ONCE) Version 7.

Original Image

Detected Image

YOLOv7 Architecture

- Extended Efficient Layer Aggregation Network (E-ELAN).
- Model Scaling for Concatenation based Models.

"YOLOv7 is the **fastest** and **most accurate** real-time object detection model for computer vision tasks. (2022) "

EPOCH OPTIMIZATION

mAP: Mean Average Precision

$$mAP = \frac{1}{|classes|} \sum_{c \in classes} \frac{|TP_c|}{|FP_c| + |TP_c|}$$

IoU: Intersect Over Union

$$IOU = \frac{\text{area of overlap}}{\text{area of union}} = \frac{}{}$$

Metrics	200 EPOCHS	300 EPOCHS
Precision	0.598	0.675
Recall	0.438	0.352
mAP @ loU > 0.5	0.432	0.367

BASELINE RESULTS

Metrics	200 EPOCHS	
Precision	0.598	
Recall	0.438	
mAP @ loU > 0.5	0.432	

ERROR ANALYSIS

Imbalanced Shape Prediction

Line Shape Oil Spill > 70 ~ 80 % of Training Set.

Non-line Shape Oil Spill < 20 ~ 30 % of Training Set.

Spill Direction Bias Prediction

Vertical-like Direction

Horizontal-like Direction

IMAGE AUGMENTATION STRATEGY

Add 300 pics.

Add 900 pics.

Add 300 pics.

Add New augmentation

01

NON-LINE SHAPE AUGMENTATION FOR 300 PICs.

02

NON-LINE SHAPE AUGMENTATION FOR 900 PICs.

03

Version 01 with 90 deg Rotation AUGMENTATION.

Version 03 with New Augmentation Properties.

MODEL COMPARISON

Metrics (Test Set)	300 Non-line augmentation	900 Non-line augmentation	300 Non-line augmentation with 90-rotation.	300 Non-line with additional augmentation.
Precision	0.675	0.659	0.599	0.599
Recall	0.352	0.429	0.457	0.449
Max F1 Score	0.51 @ 0.413 conf	0.52 @ 0.29 conf	0.52 @ 0.29 conf	0.51 @ conf
mAP @ loU > 0.5	0.367	0.429	0.453	0.439

ERROR ANALYSIS ON REAL CASE

SENTINEL-1/2

ERS-1/2

EUROPEAN SPACE AGENCY EUROPEAN SPACE AGENCY

ENVISAT

ALOS-2

EUROPEAN SPACE AGENCY

JAXA

Terra SAR-X

RADARSAT-1/2

German Aerospace Center Canadian Space Agency

15 Major Oil Spill Events around the world

Bay of Plenty, New Zealand

POST-AUGMENTATION RESULTS

Oil Spill Case from Caspian Sea, Azerbaijan

Oil Spill Case from Latakia, Syria to Cyprus

Before non-line shape augmentation

After non-line shape augmentation ver. 1

After non-line shape augmentation ver. 3

BEST MODEL PREDICTION

East China Sea, China/Japan

Gulf of Mexico, USA

Caspian Sea, Azerbaijan

Latakia, Syria to Cyprus

Montara, Australia

Coast of Galicia, Spain

Kuroshio, Taiwan

Al Khafji, Kuwait

MODEL CONSTRAINTS

FALSE POSITIVE (FP)

- Model misclassified the label of real objects such the river or water resource near the ocean.
- Model framed the over/undersize of the real label which caused the low score in mAP@loU > 0.5.

FALSE NEGATIVE (FN)

 Model could not detect high complexity of oil spill shape.

CONCLUSION

01 Final Model: Y0L0V7

04

Model Performance

02 Augmented Method

 90 Rotate : Clockwise, Counter-Clockwise and Upside Down.

• <u>Crop</u>: 0 – 37 % of Zoom

Rotation: -5 to 5

Brightness: -30 - 0 %

• Blur: Up to 2 Px

03

• Noise: Up to 10% of pixel

Hyperparameter

• **Defaults Hyperparameter** as per developer suggestions such as Lr0 = 0.01, Lrf = 0.1 etc.

Metrics (Test Set)	Baseline	Best Model	
Precision	0.598	0.599	
Recall	0.438	0.457	
Max F1 Score	0.51 @ 0.29 conf	0.52 @ 0.29 conf	
mAP @ loU > 0.5	0.432	0.453	

05 Model Constraints

- Real water resource misclassification
- Wrong size of box prediction
- Complexity of Shape misclassification

WAY FORWARD

Consult Domain Experts

To explore more features of oil spill and ocean characteristics with domain experts to boost spill detection.

Satellite Data

To gather a higher size of train data to increase the model performance and reliability.

Explore more data in Thailand

To seek out Thailand-based satellite data to domestically utilize oil spill detection in risk location i.e. Gulf of Thailand.

Alternative Options

To explore more advanced options such as **image segmentation** in order to reduce the limitations of object detection.

