http://ismb.francecentral.cloudapp.azure.com/

Biomarker Discovery and Machine Learning in Large Pharmacogenomics Datasets

Arvind Singh Mer,
Zhaleh Safikhani,
Petr Smirnov,
Benjamin Haibe-Kains

Princess Margaret Cancer Center, University Health Network
University of Toronto, Canada

OBJECTIVES

- Know the basics of different preclinical models used in cancer precision medicine
- Understand the role of pharmacogenomics in cancer precision medicine
- Know about different cancer pharmacogenomics datasets and projects
- Perform validation of biomarkers using publically available datasets
- Build machine learning models to predict anticancer drug response

Please don't forget to fill the feedback form!

https://goo.gl/forms/0sR1kfVO6nj4X8bO2

INTRODUCTION

Treatment efficacy of anticancer drugs is low

PRECISION MEDICINE

> Precision Medicine: Patient-Drug matching using genomic profiling

CHALLENGES

- Matching rate is low (only 7% in breast cancer)
- Only a small panel of mutations is used to match patient to drugs
- Only 18-39% patients can be matched to clinical trials based on targeted sequencing

PHARMACOGENOMICS 1

- Pharmaco + Genomics = Pharmacogenomics
- Pharmacogenomics is the study of how genes affect response to drugs
- It aims to:
 - Maximize drug efficacy
 - Minimize drug toxicity
 - Improve patient to drug matching
 - Aid drug development
 - Accelerate precision medicine

PHARMACOGENOMIC MODELS

CELL LINES

Expansion and Immortalization

CELL LINE-BASED (IN VITRO) PHARMACOGENOMIC

Drug Dose Response Curves

Sensitivity vs. Perturbation

Sensitivity vs. Perturbation

CELL LINES

Advantage

- Widely used
- No ethical issues
- Comparatively low cost
- Easy to manage and manipulate
- High-throughput screening
- Many datasets are available

CELL LINES

Advantage

- Widely used
- No ethical issues
- Comparatively low cost
- Easy to manage and manipulate
- High-throughput screening
- Many datasets are available

Disadvantage

- Do not fully recapitulate human cancer
- Lack many features of tumors
- Sensitive to culture conditions
- Different strains can produce different results
- Contamination is frequent

ORGANOIDS

ORGANOIDS

Advantage

- 3D model of tumor
- Better recapitulate tumor biology
- Less ethical issues
- Easy high-throughput screening

ORGANOIDS

Advantage

- 3D model of tumor
- Better recapitulate tumor biology
- Less ethical issues
- Easy high-throughput screening

Disadvantage

- Difficult to derive and immortalize
- Do not recapitulate the microenvironment of the tumors
- Medium-throughput drug screening platform

PDX

Advantage

- In Vivo model of tumor
- Better recapitulate tumor biology
- Recapitulate many in vivo features
- Can be used for tumor microenvironment study

Advantage

- In Vivo model of tumor
- Better recapitulate tumor biology
- Recapitulate many in vivo features
- Can be used for tumor microenvironment study

Disadvantage

- Difficult to establish
- Expensive
- High-throughput screening is difficult

PATIENTS

PATIENTS

Advantage

- Gold standard for drug response
- Direct translational research
- Explicit assessment of toxicity

PATIENTS

Advantage

- Gold standard for drug response
- Direct translational research
- Explicit assessment of toxicity

Disadvantage

- Very expensive
- Several ethical issues
- Many confounding factors
- High-throughput screening is difficult

Questions

Please don't forget to fill the feedback form!

https://goo.gl/forms/0sR1kfVO6nj4X8bO2

Arvind Mer a.mer@utoronto.ca

@ArvidMer

Zhaleh Safikhani zhaleh.safikhani@utoronto.ca

@Zhaleh_julie

Petr Smirnov petr.smirnov@mail.utoronto.ca

@_psmirnov

