Introduction to Quantum Computing

Exercise Sheet 1

LM Informatica, a.a. 2023-2024.

Paolo Pistone

Exercise 1. Express the following complex numbers in trigonometric and exponential forms:

- 1. z = 1 i;
- 2. $z = \frac{2}{\sqrt{3}+i}$.

Exercise 2. Knowing that $\cos \frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$, compute all 5-th roots of unity.

Exercise 3. Express the vectors of \mathbb{C}^8 corresponding to the following expressions:

$$|101\rangle \hspace{1cm} |01\rangle \otimes |0\rangle \hspace{1cm} \frac{1}{\sqrt{3}}(|101\rangle + |010\rangle + |111\rangle).$$

Exercise 4. Decide if the following vectors of \mathbb{C}^8 can be decomposed via tensors, or if they are entangled.

$$\frac{1}{\sqrt{3}}(|001\rangle+|111\rangle+|011\rangle), \qquad \frac{1}{\sqrt{2}}(|011\rangle+|100\rangle), \qquad \frac{1}{\sqrt{2}}(|011\rangle+|101\rangle).$$

Exercise 5. Compute the following vector in \mathbb{C}^4 :

$$\frac{1}{\sqrt{6}}\Big(|01\rangle\!\langle00|+5|01\rangle\!\langle01|+3|10\rangle\!\langle11|+2i|10\rangle\!\langle11|\Big)\frac{1}{\sqrt{2}}\Big(|00\rangle+|11\rangle\Big).$$

Exercise 6. Find an orthonormal basis composed of eigenvectors of the matrix below, as well as the associated eigenvalues.

$$M = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$