STSCI 5080 Practice Midterm Exam 2^1

Problem 1. Circle the correct choice in each of the following questions.

- (1) Let X and Y be lifetimes (in year) of two cars, and suppose that X and Y are independent and each follows the exponential distribution with parameter $\lambda = 0.1$. What is the probability that at least one car will be working for more than 10 years?
 - a. e^{-1} b. e^{-2} c. $1 e^{-1}$ d. $1 (1 e^{-1})^2$
- (2) Let X and Y be random variables such that E(X) = 0, $E(X^2) = 1$, E(Y) = 1, $E(Y^2) = 5$, and Corr(X,Y) = 0.5. What is Var(X+2Y)?
 - a. 17 b. 18 c. 21 d. 22
- (3) Suppose that we first draw N according to the Poisson distribution with parameter $\lambda = 10$; throw a six-sided die N times and then count the sum of the face values, which is denoted by Y. What is the mean of Y?
 - a. 3.5 b. 10 c. 30 d. 35
- (4) Find the correct statement. Only one of them is correct.
 - a. If $X_n \stackrel{P}{\to} X$ and the expectations are defined, then $E(X_n) \to E(X)$.
 - b. If X and Y are such that $E(X^k) = E(Y^k)$ for all positive intergers k (assuming that thoese moments exist), then X and Y have the same cdf.
 - c. If X_n and X are continuous with pdfs f_n and f, respectively, and $X_n \stackrel{d}{\to} X$, then $f_n(x) \to f(x)$ pointwise.
 - d. None of them are correct.

¹The actual exam is 1-hour long. The instructions of the first midterm exam apply. In the exam, you will be given a scratch sheet and a formula sheet as in the first midterm exam.

Problem 2. Let X_1, \ldots, X_n be a random sample from the uniform distribution on [0,1]. Let $X_{(1)} = \min_{1 \le i \le n} X_i$ and $X_{(n)} = \max_{1 \le i \le n} X_i$.

- (a) Derive the pdfs of $X_{(1)}$ and $X_{(n)}$.
- (b) Find $E(X_{(n)} X_{(1)})$.

(You can also use this page to answer Problem 2)

Problem 3. Let (X,Y) be a continuous random vector with joint pdf

$$f(x,y) = \begin{cases} 6x & \text{if } x,y \ge 0, \ 0 \le x + y \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

- (a) Find Cov(X, Y) and Corr(X, Y).
- (b) Find $E(Y \mid X)$ and $Var(Y \mid X)$.

(You can also use this page to answer Problem 3)

Problem 4. Let X be a Poisson random variable with parameter λ .

- (a) Find the mgf of X.
- (b) Find the skewness of X, which is defined by

$$\beta_1 = \frac{E[\{X - E(X)\}^3]}{\{\operatorname{Var}(X)\}^{3/2}}.$$

You may use the following identity: $E[\{X - E(X)\}^3] = E(X^3) - 3E(X)E(X^2) + 2\{E(X)\}^3$.

(c) If Y is a Poisson random variable with parameter κ and Y is independent of X, then show that X+Y follows the Poisson distribution with parameter $\lambda+\kappa$.

(You can also use this page to answer Problem 4)

Problem 5. Let Y_n denote a binomial random variable with parameters n and p where 0 .

- (a) Derive the limiting distribution of $\sqrt{n}(Y_n/n-p)$ as $n\to\infty$.
- (b) Suppose that we want to estimate g(p) = p(1-p) which is the variance of the corresponding Bernoulli trial. Find the limiting distribution of $\sqrt{n}\{g(Y_n/n) g(p)\}$.