Weblio Pre-reordering SMT System

Zhongyuan Zhu @ WAT2014

Overview of pre-reordering systems

Reorder input text before translation

John va_0 a ball va_1 hits ジョンはボールを打った

Approaches of pre-reordering

- Syntactic pre-reordering with parse trees
 - Rule-based
 - Head-finalization (Isozaki et al., 2010)
 - Supervised learning with word alignments
 - Automatically learning Rewrite Patterns (Xia and McCord, 2004)
- Syntactic pre-reordering without parse tree
 - LADER (Neubig et al., 2012)

Pre-reordering model in our system

Overview of our pre-reordering system

Head-restructured CFG Parse Tree

- Problem of CFG parse tree
 - Hard to capture long-distance reordering patterns
- Problem of Dependency parse tree
 - Fully lexicalized parse tree leads to a sparse reordering model

Head-restructured CFG Parse Tree

- Our approach
 - Restructure a CFG parse tree to inject head information into it

Head word is always lexicalized

CFG Parse Tree

Dependency Parse Tree

Head-restructured CFG Parse Tree (HRCFG)

Learning reordering model based on LM

• Extract tag sequences in golden order

Finding golden order with word alignments

 Given a bilingual sentence pair, source-side parse tree and word alignments,

the golden order of a node layer is defined as

For nodes $(n_1, n_2, ..., n_k)$

Initial order:

$$o_0 = (1, 2, ..., k)$$

Golden order:

$$\hat{o} = (a_1, a_2, ..., a_k)$$

Average position (Ranked) $a_1 = 1$

 $a_2 = 3$

Reordering a input parse tree

1.List all possible orders for a treelet

3. Select the best order to adjust the treelet

2. Score them with language model

Reordered treelets with LM scores

All 12 possible combinations here

Selected N-best results by accumulated scores (Cube Pruning is applied in the practice)

Experiments

In-house experiments

	BLEU	RIBES
1-best parse + 1 best reorder	34.46	0.7817
N-best parse + 1 best reorder	34.80	0.7851
1-best parse + N-best reorder	34.90	0.7857
N-best parse + N- best reorder	35.10	0.7887

- For "N-best reorder", 10 candidate reordering results are considered.
- For "N-best parse", 30 candidate parse trees are considered.
- We select the final translation by the sum of translation score (given by decoder) and the score of pre-reordering.

N-best reordering & N-best parse tree inputs

 Incorporating multiple reordering results and parse trees benefits automatic scores.

Raphael

RIBES

Official evaluation results

	BLEU	RIBES	HUMAN
N-best reorder	34.87	0.7869	+43.25
N-best reorder + N-best parse	35.04	0.7900	+36.00
BASELINE PBMT	29.80	0.6919	0.00

Official evaluation results

Effect of pre-ordering

• Identical ordered sentences increases to 15%

Closer in order

Example of pre-reordering

Original input

the improvement of the life is a large problem of the practical application.

Reordered input

the life of the improvement va_nsubjpass the practical application of a large problem is .

Reference

寿命の向上が実用化の大きな課題である。

Review

- Language model is just a quick solution to the reordering problem, sometimes it fails in simple cases.
 - Sparseness problem
- To gain more from forest input, it's necessary to integrate it inside the pre-reordering model.

Online demonstrations

Head-restructured CFG parse tree

http://raphael.uaca.com/demos/hdtree

Pre-reordering

http://raphael.uaca.com/demos/raphreorder

Thanks.