Projet 4 — Exploitation durable de la forêt

La gestion durable des forêts comporte un aspect économique, un aspect environnemental et un aspect bien être des populations. Depuis 1992, cette notion a été précisée par des conférences internationales et la France l'a reprise dans la loi d'orientation sur la forêt de 2001 : la gestion durable des forêts garantit leur diversité biologique, leur productivité, leur capacité de régénération, leur vitalité et leur capacité à satisfaire, actuellement et pour l'avenir, les fonctions économique, écologique et sociale pertinentes, aux niveaux local, national et international, sans causer de préjudices à d'autres écosystèmes. Les publications sur le sujet faisant intervenir la notion d'optimisation sont nombreuses. Nous étudions ci-dessous un problème précis d'exploitation durable de la forêt.

Exploitation de la forêt visant à protéger certaines espèces

Nous présentons dans ce paragraphe un modèle d'exploitation de la forêt visant à protéger le mieux possible certaines espèces On considère un ensemble de parcelles forestières carrées et identiques représenté par une matrice $m \times n$ et deux types d'espèces e_1 et e_2 . On note l la

longueur du côté des parcelles. L'habitat de l'espèce e_1 se situe principalement dans les parcelles coupées et l'habitat de l'espèce e_2 est constitué essentiellement des lisières entre parcelles coupées et parcelles non coupées. On considère la zone représentée par la matrice comme un zone non coupée et la zone extérieure à la matrice comme une zone coupée. La population attendue de l'espèce e_1 dans chaque parcelle s_{ij} coupée (resp. non coupée) est égale à t_{ij} (resp. 0) et la population attendue de l'espèce e_2 est égale à gL où g désigne la population attendue de l'espèce e_2 pour chaque kilomètre de lisière et L, la longueur totale de lisière compte tenu des coupes réalisées. Par exemple, l'autour des palombes aime cet habitat de lisières dans le voisinage duquel s'étendent des milieux ouverts où il peut chasser les petits mammifères vivant dans ce même habitat. Le problème consiste à déterminer les parcelles à couper et les parcelles à laisser en l'état de façon à maximiser la somme pondérée des populations des deux espèces.

Formulation par un programme linéaire en variables mixtes

Associons à chaque parcelle s_{ij} la variable booléenne x_{ij} qui vaut 1 ssi la parcelle est non coupée. On peut formuler le problème par le programme linéaire en variables 0-1 suivant :

$$(P1) \begin{cases} \max w_1 \sum_{(i,j) \in M \times N} t_{ij} (1 - x_{ij}) + w_2 g l \sum_{(i,j) \in M \times N} (4x_{ij} - d_{ij}) \\ \text{s.t.} \\ d_{ij} \geqslant \sum_{(k,l) \in A_{ij}} x_{kl} - |A_{ij}| (1 - x_{ij}) \\ d \in \mathbb{R}_+^{M \times N} \\ x \in \{0,1\}^{M \times N} \end{cases}$$
 $(i,j) \in M \times N$

où $M=1,\ldots,m,\,N=1,\ldots,n,\,w_1$ et w_2 sont les coefficients de pondération, l est la longueur du côté de chaque parcelle et A_{ij} désigne l'ensemble des couples (k,l) tels que la parcelle s_{kl} est adjacente à la parcelle s_{ij} .

Travail demandé

- i) Expliquer le programme linéaire en variables mixtes (P1).
- ii) Modéliser le problème par un programme quadratique en variables 0-1 noté (P2).
- iii) Proposer une linéarisation du programme (P2) dont la matrice des contraintes est totalement unimodulaire. On montrera que la matrice des contraintes de cette linéarisation est TU, en s'appuyant sur le fait que la matrice d'incidence sommets-arêtes d'un graphe biparti est TU 4 .
- iv) Résoudre les 2 instances présentées ci-dessous par les deux approches.
- v) Pour chacune des 2 approches, donner le temps de calcul, le nombre de noeuds développés dans l'arbre de recherche. Comparer les résultats obtenus et conclure.
- vi) Résoudre cette même instance par les deux approches dans le cas où l'on impose que le nombre de parcelles non coupées soit supérieur ou égal à 60. De façon générale, la matrice des contraintes reste-t-elle TU lorsqu'on ajoute cette contrainte sur le nombres de parcelles non coupées?
- vii) Étudier le comportement des deux approches en fonction de la taille des instances. Pour cela, on engendrera aléatoirement des jeux d'essai.

^{4.} Nemhauser, G., Wolsey, L.A. (1988). Combinatorial Optimization, Wiley-Interscience, New York.

Description des instances et solutions

Instances

84	68	97	98	64	89	82	71	74	76
87	83	98	75	60	90	78	67	92	94
84	68	70	81	67	61	73	92	86	90
79	62	86	79	73	84	76	98	84	90
62	72	66	72	92	80	71	91	87	70
85	77	63	93	90	94	76	81	99	98
76	63	66	84	94	93	72	92	79	65
76	63	92	69	60	88	79	93	66	73
92	82	77	72	77	81	89	95	80	80
88	89	83	86	69	78	91	64	94	92

$$[t_{ij}]$$

 $m = n = 10, w_1 = 1, w_2 = 5, l = 3, g = 1.26157$

10	10	10	1	10
10	10	1	1	10
10	10	1	10	10
1	10	10	10	10
1	10	10	10	10

 $[t_{ij}]$

 $m = n = 5, w_1 = 2, w_2 = 1, l = 3, g = 1.26157$

Solutions

Effectif de l'espèce e_1 : 6630 Effectif de l'espèce e_2 : 317.92

 $Nombre\ de\ parcelles\ non\ coupées: 21$ $Nombre\ de\ côtés\ appartenant\ à\ la\ lisière: 84$ $Valeur\ de\ la\ fonction\ économique\ à\ l'optimum: 8219.6$

Solution dans le cas où le nombre de parcelles non coupées est supérieur ou égal à 60.

Effectif de l'espèce $e_1:3272$ Effectif de l'espèce $e_2:696.39$

Nombre de parcelles non coupées : 60 Nombre de côtés appartenant à la lisière : 184 Valeur de la fonction économique à l'optimum : 6753.93

Effectif de l'espèce $e_1: 191$ Effectif de l'espèce $e_2: 60.56$

Nombre de parcelles non coupées : 5 Nombre de côtés appartenant à la lisière : 16 Valeur de la fonction économique à l'optimum : 442.56