Homework 1

Introductory Model Theory

Due 2021-9-23

Recommended reading: A Course in Model Theory (Bruno Poizat), Chapter 1.

Definition. An equivalence relation is a binary relation \sim with universe E such that

- For any $x \in E$, we have $x \sim x$ (\sim is reflexive).
- For any $x, y \in E$, if $x \sim y$ then $y \sim x$ (\sim is symmetric).
- For any $x, y, z \in E$, if $x \sim y$ and $y \sim z$, then $x \sim z$ (\sim is transitive).

Let (E, \sim) be an equivalence relation. For any $a \in E$, the equivalence class of a is the set $[a]_{\sim} = \{b \in E : a \sim b\}$.

The following exercise is optional, but you should try it if you haven't seen equivalence relations before.

0. Show that $[a]_{\sim} = [b]_{\sim}$ if and only if $a \sim b$, and that $[a]_{\sim} \cap [b]_{\sim} = \emptyset$ if $a \nsim b$.

The remaining exercises are required.

1. Suppose a binary relation (E', \approx) is elementarily equivalent to an equivalence relation (E, \sim) . Show that \approx is an equivalence relation.¹

In the following problems, let \mathcal{K} be the collection of equivalence relations (E, \sim) such that for $n = 1, 2, 3, \ldots$, there is exactly one equivalence class of size n.

- 3. Show that K is non-empty. *Hint*: $\{\{0\}, \{1, 2\}, \{3, 4, 5\}, \ldots\}$
- 4. Suppose that $(E, \sim) \in \mathcal{K}$ and (E', \approx) is elementarily equivalent to (E, \sim) . Show that $(E', \approx) \in \mathcal{K}$. Hint: you can start by applying Problem 1.²
- 5. Suppose that (E, \sim) and (E', \approx) are both in \mathcal{K} . Let s be a local isomorphism from (E, \sim) to (E', \approx) , and let $p \geq 0$. Suppose that for every $a \in \text{dom}(s)$, the \sim -equivalence class of a has the same size as the \approx -equivalence class of s(a), or both equivalence classes have size greater than p. Then s is a p-isomorphism from (E, \sim) to (E', \approx) . Hint: prove this by induction on p.

¹You may not use Theorem 2.2 in Poizat.

²Again, you may not use Theorem 2.2 in Poizat.

- 6. Suppose that (E, \sim) and (E', \approx) are both in \mathcal{K} . Show that (E, \sim) is elementarily equivalent to (E', \approx) . *Hint:* apply the previous problem.
- 7. Construct two equivalence relations (E, \sim) and (E', \approx) such that $(E, \sim) \sim_{\omega} (E', \approx)$, but $(E, \sim) \not\sim_{\infty} (E', \approx)$. Hint: build two non-isomorphic countable binary relations in \mathcal{K} .