

MATLAB 十个基础入门实例详解

- MAT: Matrix

- LAB: Laboratory

教学内容

- 实例一:一周温度数据的定义与操作
- 实例二: 坐标点的平移变换
- 实例三:常用矩阵示例
- 实例四:复数矩阵示例
- 实例五:字符矩阵示例
- 实例六:线性方程组的求解
- 实例七:二维曲线的绘制
- 实例八:三维曲线和三维曲面的绘制
- 实例九:一个简单的动画制作
- 实例十:函数的定义与调用

实例一: 一周温度数据的定义与操作

	星期一	星期二	星期三	星期四	星期五	星期六	星期日
早晨	15	15	18	13	13	15	16
中午	20	21	25	19	20	22	25
夜晚	16	17	12	14	16	18	19

- \checkmark 将一周的温度数据,使用一个矩阵 A 进行保存
- ✓ 取出星期二中午,星期四早晨,星期日中午和夜晚的温度值
- ✓ 取出矩阵 A 中的前六个数值 (from: step: to)
- ✓ 取出星期二的数据
- ✔ 取出星期二,星期三,以及星期六的数据,组成新的矩阵
- ✓ 求每天温度的平均值
- ✓ 求一周的早晨、中午和夜晚温度的平均值
- ✓ 求一周的温度平均值

实例二: 坐标点的平移变换

$$\begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & c \\ 0 & 1 & d \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} x+a+c \\ y+b+d \\ 1 \end{bmatrix}$$
 坐标点第二次平移

$$\begin{bmatrix} 1 & 0 & c \\ 0 & 1 & d \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + a + c \\ y + b + d \\ 1 \end{bmatrix}$$
 直接实现坐标点的两次平移

- 以上的相乘计算均为矩阵乘法(*)
- 考察两个平移变换矩阵之间的矩阵乘法 (*), 和数组乘法 (.*), 看看有何不同?
- 类似需要区分的矩阵/数组运算还有:除法、乘方
- 矩阵加减法=数组加减法,无需区分

实例三: 常用矩阵示例

✓ zeros: 全 0 矩阵

✓ ones: 全1矩阵

✓ rand: 在 0 到 1 上,均匀分布的随机矩阵 ,并绘制数据直方图

✓ randn:均值为 0,方差为 1,正态分布的随机矩阵,并绘制数据直方图

✓ eye: 单位矩阵

✓ magic: 魔术矩阵, 其行、列和对角线上元素的和相等 (用 MATLAB 计算)

实例四:复数矩阵示例

- ✓ 复数的代数形式: z=a+b*i或者 z=a+b*j
- ✓ 复数的指数形式: $z = A e^{i\theta}$
- ✓ 计算复数的实部: real (z)
- ✓ 计算复数的虚部: imag (z)
- ✓ 计算复数的模: abs (z)
- ✓ 计算复数的相角: angle (z)

实例五: 字符矩阵示例

- ✓ 字符串的定义
- ✓ 字符串比较函数: strcmp 与 strcmpi 的区别
- ✓ 字符串转换成矩阵: str2mat
- ✓ 字符串存储在元胞数组 (cell)

实例六:线性方程组的求解

$$\begin{cases} 2 x_1 - x_2 + 3 x_3 = 3 \\ 3 x_1 - 5 x_3 = 6 \\ 4 x_1 - x_2 + x_3 = 9 \end{cases}$$

$$\begin{cases} 2 x_1 - x_2 + 3 x_3 = 5 \\ 3 x_1 - 5 x_3 = 6 \\ 4 x_1 - x_2 + x_3 = 9 \end{cases} \begin{bmatrix} 2 & -1 & 3 \\ 3 & 0 & -5 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 9 \end{bmatrix}$$

- ✓ 改写成矩阵相乘的形式: AX = b
- $\checkmark X = A^{-1}b$
- ✓ MATLAB 代码 (两种写法)
 - X = inv(A)*b, 其中, inv(A)表示矩阵 A 的逆矩阵 A-1
 - X = A\b (左除)

实例七:二维曲线的绘制

- ✓ 定义x
- ✓ 定义 y1 = sin(x); y2 = cos(x); y3 = sin(x) + cos(x)

-1.5

- ✓ 绘制以上二维曲线
- ✓ 设置坐标轴和图例

上下求索 版权所有 (QQ:993878382 微信:sxqiuso)

14

16

18

20

12

10

x值

8

实例八:三维曲线和三维曲面的绘制

✓ 绘制以上的三维曲线

✓ 定义x和y

✓ 计算 z 值
$$z = \frac{x^2}{9} - \frac{y^2}{4}$$

✓ 绘制三维曲面

上下求索 版权所有 (QQ:993878382 微信:sxqiuso)

实例九: 一个简单的动画制作

- ✓ 绘制一条正弦曲线
- ✓ 在曲线上放置一个红色圆圈,使其在曲线上移动

实例十: 函数的定义与调用

- ✓ 定义 x = -5:0.1:5
- ✓ 在脚本 script 里编写代码,绘制 $y = ax^3 + bx^2 + cx + d$ 的曲线,并保存 y 值

$$a = -1, b = 2, c = -5, d = 3$$

$$a = 3, b = -7, c = 1, d = 4$$

$$a = 0, b = 4, c = 0, d = -5$$

✓ 将绘图的代码,定义成函数的形式

function [输出变量] = 函数名 (输入变量)

- ✓ 直接运行函数,查看报错信息
- ✓ 在脚本 script 里调用函数

结束语

- ✓ 通过以上的十个实例,希望可以激发同学们的学习热情,让大家建立起基本的 MATLAB 概念
- ✓ 学好 MATLAB,还需要勤加练习,多思考,多动手写代码
 - 更多的矩阵操作(数值删除,增加,寻找,排序等)
 - 三维/多维矩阵的使用
 - 元胞数组/结构体的使用
 - 符号计算的相关内容
 - 流程控制语句
 - 更多种类的图形绘制
 - 句柄操作,等等
- ✓ 关于推荐的初学者图书,请查看这篇文章:点击查看图书推荐文章

教学视频获取

获取本课程的教学视频,和更多学习资源,请联系

QQ: 993878382 (上下求索)

微信号: sxqiuso (上下求索)

扫一扫下面的二维码,可直接加我微信

