Amplifiers, Source followers & Cascodes

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Operational amplifier

Table of contents

- □ Single-transistor amplifiers
- **□** Source followers
- □ Cascodes

Single-transistor amplifier - 1

$$A_{v} = g_{m}r_{DS} = \frac{2 I_{DS}}{V_{GS}-V_{T}} \frac{V_{E}L}{I_{DS}} = \frac{2 V_{E}L}{V_{GS}-V_{T}}$$

 $A_{V} \approx 100$ if $V_{E}L \approx 10 \text{ V}$ and $V_{GS}-V_{T} \approx 0.2 \text{ V}$

Single-transistor amplifier - 2

High gain?

Low V_{GS}-V_T and large L!!!

MOST or bipolar amplifier?

MOST
$$A_v = \frac{V_E L}{(V_{GS}-V_T)/2}$$

$$A_{v} \approx 100$$
 if $V_{E}L \approx 10 \text{ V}$ and $V_{GS}-V_{T} \approx 0.2 \text{ V}$

$$A_{v} = \frac{V_{E}}{kT/q}$$

3 vs 2 stages for 10⁶

$$A_{V} \approx 1000$$
 if $V_{E} \approx 26 \text{ V}$ since kT/q = 26 mV

Gain, Bandwidth and Gain-bandwidth

$$A_{v0} = g_m r_{DS}$$

$$BW = \frac{1}{2\pi r_{DS}C_{L}}$$

$$GBW = \frac{g_{m}}{2\pi C_{L}}$$

Gain A_v, BW and GBW

Single-transistor amplifier: Exercise

GBW = 100 MHz for
$$C_L = 3 pF$$

Techno.:
$$K'_n \approx 50 \mu A/V^2$$

 $L_{min} = 0.5 \mu m$

Gain, Bandwidth and Gain-bandwidth

$$V_{in} = Q_{m} r_{DS}$$

$$V_{out} = Q_{m} r_{DS}$$

$$BW = \frac{1}{2\pi R_{S} C_{GS}}$$

GBW =
$$\frac{g_{m}}{2\pi} \frac{r_{DS}}{R_{S}} = f_{T} \frac{r_{DS}}{R_{S}} \sim \frac{1}{WC_{ox}} \frac{1}{V_{GS}-V_{T}}$$

W? L? $V_{GS}-V_{T}$?

Gain, Bandwidth and Gain-bandwidth

$$A_{v0} = g_m r_{DS}$$

$$BW = \frac{1}{2\pi R_S A_{v0} C_F}$$

$$GBW = \frac{1}{2\pi R_S C_F}$$

Miller effect

Miller, Dependence of the input impedance of a three-electrode vacuum tube upon the load in the plate circuit, Scient. Papers Bur. Standards, 1920, 367-385.

Miller capacitance feedback effects

Amplifier with local R- (series) feedback

$$g_{mR} = \frac{g_m}{1 + g_m R_S} \sim \frac{1}{R_S}$$

$$R_{outR} = r_{DS} (1 + g_{m}R_{S})$$

$$\approx (g_{m}r_{DS}) R_{S}$$

$$C_{inR} = \frac{C_{GS}}{1 + g_m R_S}$$

But R_S gives extra noise!

Amplifier with local L- feedback

$$g_{mL} = \frac{g_m}{1 + g_m L_S s}$$

$$R_{outL} = r_{DS} (1 + g_m L_S s)$$

$$Z_{inL} = g_m \frac{L_S}{C_{GS}} + \frac{1 + L_S C_{GS} s^2}{s C_{GS}}$$

No extra noise!

$$Z_{inL} = L_S \omega_T + L_S s + \frac{1}{s C_{GS}}$$

Amplifier with local MOST-R- Feedback

$$V_{DS2} = V_{GS2} - V_{GS1} \approx 0.2 \text{ V}$$

$$r_{DS2} = \frac{1}{KP W_2/L_2 (V_{GS2}-V_T)}$$

$$R_{outR} = r_{DS1} (1 + g_{m1} r_{DS2})$$

$$C_{inR} = \frac{C_{GS1} + C_{GS2}}{1 + g_{m1}r_{DS2}}$$

Diode-connected MOST: parallel Feedback

$$I_{DS} = K'_{n} \frac{W}{L} (V_{DS} - V_{T})^{2}$$

Diode-connected MOST: small-signal

$$r_{ds} = 1/g_m // r_{DS} \approx 1/g_m$$

Diode-connected MOST at high frequencies

Wideband amplifier

$$V_{OUT} = V_{DD} - V_{GS2}(V_{OUT})$$

$$A_{v0} = \frac{g_{m1}}{g_{m2}} = \sqrt{\frac{(W/L)_1}{(W/L)_2}} = \frac{V_{GS2} - V_T}{V_{GS1} - V_T}$$

$$R_{OUT} = 1/g_{m2}$$

Linear wideband amplifier

$$V_{OUT} = V_{GS2}$$

$$A_{v0} = \frac{g_{m1}}{g_{m2}} = \sqrt{\frac{(W/L)_1}{(W/L)_2}} = \frac{V_{GS2} - V_T}{V_{GS1} - V_T}$$

$$R_{OUT} = 1/g_{m2}$$

Current mirror with only nMOSTs

Same V_{OUTDC} as V_{INDC}
No body bias effect
Good PSRR
Double power consumption

Wideband amplifiers

$$A_{v0} = \frac{g_{m1}}{g_{m2}} = \sqrt{\frac{(W/L)_1}{(W/L)_2}} = \frac{V_{GS2} - V_T}{V_{GS1} - V_T}$$

$$R_{out} = r_{DS1} / / r_{DS2}$$

 $A_{v0} = g_m R_{out}$

$$R_{out} = 1/g_{m2}$$

Class A versus class AB amplifier

$$v_{out} = A_v v_{in}$$

Class A stage

$$v_{out} = A_v v_{in}$$

Class AB stage

Vout

CMOS inverter-amplifier

Digital invertor

Analog amplifier

Operating points nMOST & pMOST

Transfer characteristic

Analog amplifier : DC

$$V_{in} = \frac{V_{DD}}{2} \implies V_{out} = \frac{V_{DD}}{2}$$

$$I_{DSn} = K'_n \frac{W_n}{L_n} (V_{in}-V_T)^2$$

$$I_{DSp} = K'_p \frac{W_p}{L_p} (V_{DD}-V_{in}-V_T)^2$$

$$\longrightarrow$$
 $K'_n \frac{W_n}{L_n} = K'_p \frac{W_p}{L_p}$

$$I_{DS} = K'_n \frac{W_n}{L_n} (\frac{V_{DD}}{2} - V_T)^2$$

Analog amplifier: AC model

For the same I_{DS} en V_{GS} - V_T : $g_{mn} = g_{mp} = g_m$

Analog amplifier: AC gain Av

If
$$V_{En}L_n = V_{Ep}L_p = V_E$$

$$g_{DSn} = g_{DSp} = g_{DS}$$

$$(g_{DS} = 1/r_{DS})$$

$$A_{v0} = -\frac{2g_{m}}{2g_{DS}} = -\frac{2V_{E}}{\frac{V_{DD}}{2} - V_{T}}$$

Analog amplifier: BW & GBW

$$A_{v0} = 2g_m R_{out}$$

$$A_{v0} = 2g_{m}R_{out}$$

$$R_{out} = \frac{r_{DS}}{2}$$

$$BW = \frac{1}{2\pi R_{out}C_L}$$

$$GBW = \frac{2g_{m}}{2\pi C_{L}}$$

Analog amplifier: poles due to CGS

$$A_{v0} = 2g_m R_{out}$$

$$A_{v0} = 2g_{m}R_{out}$$

$$GBW = \frac{2g_{m}}{2\pi C_{L}}$$

$$C_{GSt} = C_{GS1} + C_{GS2}$$

$$C_{GSt} = C_{GS1} + C_{GS2}$$

But if
$$R_SC_{GSt} > r_{DS}C_L$$
: $GBW = f_T \frac{r_{DS}}{R_S}$

Analog amplifier: poles due to CDG

Analog amplifier: other poles

$$A_{v0} = 2g_m R_{out}$$

$$A_{v0} = 2g_{m}R_{out}$$

$$GBW = \frac{2g_{m}}{2\pi C_{L}}$$

$$C_{DGt} = C_{DG1} + C_{DG2}$$

$$C_{DGt} = C_{DG1} + C_{DG2}$$

But if
$$R_SC_{DGt} > \frac{1}{2\pi GBW}$$
: GBW =

$$GBW = \frac{1}{2\pi R_S C_{DGt}}$$

Class AB operation

Table of contents

- □ Single-transistor amplifiers
- □ Source followers
- □ Cascodes

Single-transistor stages

Source follower with $V_{BS} = 0$ (p-well)

Source follower with $V_{BS} \neq 0$ (n-well)

$$V_{GS} = V_{T} + \sqrt{\frac{I_{B}}{K'W/L}}$$

$$V_{OUT} = V_{IN} - V_{GS}$$

$$V_{T} = V_{T0} + \gamma \left[\sqrt{|2\Phi_{F}| + V_{OUT}} - \sqrt{|2\Phi_{F}|} \right]$$

$$A_v = \frac{1}{n}$$

Source follower non-linearity

Emitter follower

$$A_{v} = 1 \qquad R_{OUT} = \frac{1}{g_{m}} + \frac{R_{S} + r_{B}}{\beta + 1}$$

$$R_{IN} = r_{\pi} + r_{B} + (\beta + 1)R_{E}$$

Limited isolation!

Source follower with C_L load

Source follower with C_L load

Source follower: Output impedance

Emitter follower: Output impedance

Source follower as active L

$$Z_{OUT} \approx \frac{1}{g_m} (1 + R_S C_{GS} s)$$
 $L \approx \frac{R_S}{2\pi f_T}$ up to $f_T = \frac{g_m}{2\pi C_{GS}}$

Source follower as active L

Floating inductor with parallel C

with HF peaking!

Table of contents

- □ Single-transistor amplifiers
- □ Source followers
- □ Cascodes

Single-transistor stages

Cascode with resistive load

Cascode with resistive load

Cascode with active load

Cascode versus single-transistor

$$A_v = (g_m r_{DS})_1$$

 $R_{out} = r_{DS1}$

$$A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$$

 $R_{out} = r_{DS1} (g_m r_{DS})_2$

Cascode versus single-transistor

Cascode versus single-transistor

Miller effect in cascode?

Cascode with capacitance Cm at middle point

Telescopic Cascode

$$A_{v} = g_{m1} R_{out}$$

$$R_{out} = \frac{1}{2} r_{DS1} g_{m2} r_{DS2}$$

$$BW = \frac{1}{2\pi} \frac{1}{R_{out} C_{L}}$$

$$GBW = \frac{g_{m1}}{2\pi} \frac{1}{C_{L}}$$

Folded Cascode

Cascode versus cascade

$$A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$$
 $A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$

Cascode versus cascade

Two-stage Miller amplifier

$$GBW = \frac{g_{m1}}{2\pi C_L}$$

$$GBW = \frac{g_{m1}}{2\pi C_0}$$

Regulated cascode or gain boosting

 $A_v = (g_m r_{DS})_1 (g_m r_{DS})_2$ $A_v = (g_m r_{DS})_1 (g_m r_{DS})_2 (g_m r_{DS})_3$

Hosticka, JSSC Dec.79, pp. 1111-1114; Sackinger, JSSC Febr.90, pp. 289-298; Bult JSSC Dec.90, pp. 1379-1384

Regulated cascode, Cascode & single-transistor

Gain boosting

Pole-zero doublet and settling time

Single-transistor stages

MOST amplifier & follower

Bipolar transistor ($\beta >> 1$)

In- & output resistances MOST cascode

In- & output resistances Bipolar trans. cascode

Calculation of AR for a MOST cascode

Table of contents

- □ Single-transistor amplifiers
- □ Source followers
- □ Cascodes