Corrigé 8

- 1. Calculer, sans machine, les valeurs suivantes :
 - a) $A = \cos(\arcsin(-3))$ c) $C = \tan(\arccos(-\frac{1}{3}))$ e) $E = \cos(2\arccos(\frac{2}{5}))$
 - b) $B = \sin(\arccos(\frac{1}{5}))$ d) $D = \tan(\pi f)$ $F = \sin(-2\arctan(2))$ $\arctan(2)$
 - a) $\arcsin(-3)$ n'a pas de sens, car il n'existe aucun angle dont le sinus vaut -3. Le domaine de définition de la fonction $f(x) = \arcsin(x)$ est $D_f = [-1, 1]$. Donc $A = \cos(\arcsin(-3))$ n'existe pas.
 - b) On exprime $B=\sin(\arccos(\frac{1}{5}))$ à l'aide de la fonction cosinus en utilisant la relation de Pythagore :

$$B^{2} = \sin^{2}\left(\arccos\left(\frac{1}{5}\right)\right)$$
$$= 1 - \cos^{2}\left(\arccos\left(\frac{1}{5}\right)\right)$$
$$= 1 - \left(\frac{1}{5}\right)^{2} = \frac{24}{25}.$$

Or $\alpha = \arccos(\frac{1}{5})$ est un angle qui appartient à l'intervalle $[0, \pi]$, on en déduit donc que son sinus est positif :

$$B = +\sqrt{\frac{24}{25}} = \frac{2\sqrt{6}}{5} \,.$$

c) On exprime $C = \tan(\alpha)$ à l'aide de la fonction cosinus :

$$C = \tan(\alpha) = \frac{\sin \alpha}{\cos \alpha} = \frac{\pm \sqrt{1 - \cos^2 \alpha}}{\cos \alpha}.$$

Or $\alpha = \arccos(-\frac{1}{3})$ est un angle qui appartient à l'intervalle $[0, \pi]$, on en déduit donc que son sinus est positif :

$$C = \frac{+\sqrt{1-\cos^2\alpha}}{\cos\alpha}$$
$$= \frac{+\sqrt{1-(-\frac{1}{3})^2}}{-\frac{1}{3}}$$
$$= -2\sqrt{2}.$$

d) Les points $P(\alpha)$ et $P(\pi - \alpha)$ sont symétriques par rapport à l'axe des ordonnées.

On en déduit que

= -2.

$$\tan(\pi - \alpha) = -\tan \alpha.$$

$$D = \tan(\pi - \arctan(2))$$

$$= -\tan(\arctan(2))$$

e) On utilise l'expression du cosinus de l'angle double : $\cos(2\alpha) = 2\cos^2(\alpha) - 1$.

$$E = \cos\left(2\arccos\left(\frac{2}{5}\right)\right)$$

$$= 2\cos^2\left(\arccos\left(\frac{2}{5}\right)\right) - 1$$

$$= 2\left(\frac{2}{5}\right)^2 - 1$$

$$= -\frac{17}{25}.$$

f) On utilise l'expression du sinus de l'angle double en fonction de la tangente :

$$\sin(2\alpha) = 2\sin(\alpha) \cdot \cos(\alpha)$$
$$= 2\tan(\alpha) \cdot \cos^2(\alpha)$$
$$= \frac{2\tan(\alpha)}{1+\tan^2(\alpha)}.$$

$$F = \sin(-2 \arctan(2))$$

$$= -\sin(2 \arctan(2))$$

$$= -\frac{2 \tan(\arctan(2))}{1 + \tan^2(\arctan(2))}$$

$$= -\frac{4}{5}.$$

- 2. Calculer, sans machine, les valeurs suivantes :
 - a) $A = \arccos(\cos(\frac{17\pi}{3}))$

- c) $C = \arcsin(\cos(-\frac{7\pi}{12}))$
- b) $B = \arctan(\tan(-\frac{7\pi}{12}))$
- d) $D = \arctan(-\cot(\frac{13\pi}{5}))$

a)
$$A = \arccos(\cos(\frac{17\pi}{3}))$$
.

On cherche à exprimer $\cos(\frac{17\pi}{3})$ comme le cosinus d'un angle appartenant à la détermination principale du cosinus : $[0, \pi]$.

$$\cos(\frac{17\pi}{3}) = \cos(\frac{18\pi}{3} - \frac{\pi}{3}) = \cos(-\frac{\pi}{3}) = \cos(\frac{\pi}{3}).$$

D'où:
$$A = \arccos(\cos(\frac{17\pi}{3})) = \arccos(\cos(\frac{\pi}{3})) = \frac{\pi}{3}$$

b)
$$B = \arctan(\tan(-\frac{7\pi}{12}))$$
.

On cherche à exprimer $\tan(-\frac{7\pi}{12})$ comme la tangente d'un angle appartenant à la détermination principale de la tangente : $]-\frac{\pi}{2}$, $\frac{\pi}{2}$ [.

$$\tan(-\frac{7\pi}{12}) = \tan(-\frac{7\pi}{12} + \pi) = \tan(\frac{5\pi}{12})$$
.

D'où:
$$B = \arctan(\tan(-\frac{7\pi}{12})) = \arctan(\tan(\frac{5\pi}{12})) = \frac{5\pi}{12}$$
.

c)
$$C = \arcsin(\cos(-\frac{7\pi}{12}))$$
.

On cherche à exprimer $\cos(-\frac{7\pi}{12})$ comme le sinus d'un angle appartenant à la détermination principale du sinus : $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\cos(-\frac{7\pi}{12}) = \sin[\frac{\pi}{2} - (-\frac{7\pi}{12})] = \sin(\frac{13\pi}{12}) = \sin(\pi - \frac{13\pi}{12}) = \sin(-\frac{\pi}{12}).$$

D'où:
$$C = \arcsin(\cos(-\frac{7\pi}{12})) = \arcsin(\sin(-\frac{\pi}{12})) = -\frac{\pi}{12}$$
.

d)
$$D = \arctan(-\cot(\frac{13\pi}{5}))$$
.

On cherche à exprimer $-\cot(\frac{13\pi}{5})$ comme la tangente d'un angle appartenant à la détermination principale de la tangente : $]-\frac{\pi}{2}, \frac{\pi}{2}[$.

$$-\cot(\frac{13\pi}{5}) = \cot(-\frac{13\pi}{5}) = \tan[\frac{\pi}{2} - (-\frac{13\pi}{5})] = \tan(\frac{31\pi}{10}) = \tan(\frac{\pi}{10}).$$

D'où :
$$D = \arctan(-\cot(\frac{13\pi}{5})) = \arctan(\tan(\frac{\pi}{10})) = \frac{\pi}{10}$$
.

3. Montrer que : $\arcsin(\frac{3}{5}) + \arccos(\frac{15}{17}) = \arcsin(\frac{77}{85})$.

Soient $\alpha = \arcsin(\frac{3}{5})$ et $\beta = \arccos(\frac{15}{17})$.

Pour montrer que $\alpha + \beta = \arcsin(\frac{77}{85})$, il faut montrer que $\alpha + \beta$ vérifie les deux propriétés caractéristiques qui définissent $\arcsin(\frac{77}{85})$:

i)
$$\alpha + \beta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

ii) et
$$\sin(\alpha + \beta) = \frac{77}{85}$$
.

i) Pour vérifier que $\alpha+\beta\in\left[-\frac{\pi}{2}\,,\,\frac{\pi}{2}\,\right],\,$ on peut montrer, par exemple, que

$$0 < \alpha < \frac{\pi}{4}$$
 et $0 < \beta < \frac{\pi}{4}$.

* Montrons que $\alpha = \arcsin(\frac{3}{5})$ est compris entre 0 et $\frac{\pi}{4}$.

$$\sin\alpha = \frac{3}{5} \quad \text{et} \quad 0 < \frac{3}{5} < \frac{\sqrt{2}}{2} \,,$$
 d'où $0 < \sin\alpha < \frac{\sqrt{2}}{2} \,.$

Or la fonction sinus est strictement croissante sur l'intervalle $\left[\,0\,,\,\frac{\pi}{2}\,\right]\,,$

donc
$$0 < \alpha < \frac{\pi}{4}$$
.

* Montrons que $\beta = \arccos(\frac{15}{17})$ est compris entre 0 et $\frac{\pi}{4}$.

$$\cos \beta = \frac{15}{17} \quad \text{et} \quad \frac{\sqrt{2}}{2} < \frac{15}{17} < 1 \,,$$
 d'où
$$\frac{\sqrt{2}}{2} < \cos \beta < 1 \,.$$

Or la fonction cosinus est strictement décroissante sur l'intervalle $\left[\,0\,,\,\frac{\pi}{2}\,\right],$

donc
$$0 < \beta < \frac{\pi}{4}$$
.

- * On en conclut que $\alpha + \beta$ est compris entre 0 et $\frac{\pi}{2}$.
- ii) Calcul de $\sin(\alpha + \beta)$ avec $\alpha = \arcsin(\frac{3}{5})$ et $\beta = \arccos(\frac{15}{17})$.

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$= \frac{3}{5} \cdot \frac{15}{17} + \sqrt{1 - \left(\frac{3}{5}\right)^2} \cdot \sqrt{1 - \left(\frac{15}{17}\right)^2}$$

$$= \frac{1}{5 \cdot 17} \left[3 \cdot 15 + \sqrt{5^2 - 3^2} \cdot \sqrt{17^2 - 15^2} \right]$$

$$= \frac{1}{85} \left[45 + \sqrt{25 - 9} \cdot \sqrt{(17 - 15) \cdot (17 + 15)} \right]$$

$$= \frac{1}{85} \left[45 + \sqrt{16} \cdot \sqrt{64} \right]$$

$$= \frac{1}{85} \left[45 + 4 \cdot 8 \right]$$

$$= \frac{77}{85}.$$

En conclusion:

$$\sin(\alpha + \beta) = \frac{77}{85}$$
 et $\alpha + \beta \in [0, \frac{\pi}{2}]$ \Rightarrow $\alpha + \beta = \arcsin(\frac{77}{85})$.

4. Résoudre les équations suivantes sur l'intervalle donné :

- a) $\sin x = -\frac{2}{3}$, $x \in [0, 2\pi]$, e) $\tan x = -\frac{3}{2}$, $x \in [0, 2\pi]$,
- b) $\cos(x \frac{\pi}{3}) = -\frac{2}{3}$, $x \in [\pi, 3\pi]$, f) $\cot(x \frac{\pi}{6}) = -\frac{3}{2}$, $x \in [\pi, 3\pi]$

- c) $\sin(2x) = \frac{2}{3}$, $x \in [-\pi, 0]$, g) $\tan(2x) = 2$, $x \in [-\pi, 0]$,
- d) $\cos(\frac{x}{2}) = \frac{1}{3}$, $x \in [\pi, 3\pi]$, h) $\cot(\frac{x}{2}) = \frac{1}{3}$, $x \in [\pi, 3\pi]$.
- a) Résolution de l'équation $\sin x = -\frac{2}{3}$ sur l'intervalle $[0, 2\pi]$.
 - Résolution sur \mathbb{R}

$$\sin x = -\frac{2}{3} \quad \Leftrightarrow \quad \begin{cases} x = \arcsin\left(-\frac{2}{3}\right) + 2k\pi \\ \text{ou} \\ x = \pi - \arcsin\left(-\frac{2}{3}\right) + 2k\pi \end{cases} \qquad k \in \mathbb{Z}.$$

• Résolution sur l'intervalle $[0, 2\pi]$

Soit $\alpha = \arcsin\left(-\frac{2}{3}\right)$.

Sur l'intervalle $[0, 2\pi]$, l'équation $\sin x = -\frac{2}{3}$ admet deux solutions

- l'une est engendrée par $\alpha + 2k\pi$ avec k = 1,
- l'autre est engendrée par $\,\pi-\alpha+2k\pi\,\,$ avec $\,k=0\,.$

$$S = \left\{ \pi - \arcsin\left(-\frac{2}{3}\right), \ 2\pi + \arcsin\left(-\frac{2}{3}\right) \right\},$$

ou
$$S = \left\{ \pi + \arcsin\left(\frac{2}{3}\right), 2\pi - \arcsin\left(\frac{2}{3}\right) \right\}.$$

- b) Résolution de l'équation $\cos(x-\frac{\pi}{3})=-\frac{2}{3}$ sur l'intervalle $\left[\,\pi\,,\,3\pi\,\right]$.
 - ullet Résolution sur $\mathbb R$

$$\cos(x - \frac{\pi}{3}) = -\frac{2}{3} \Leftrightarrow \begin{cases} x - \frac{\pi}{3} = \arccos\left(-\frac{2}{3}\right) + 2k\pi \\ \text{ou} \\ x - \frac{\pi}{3} = -\arccos\left(-\frac{2}{3}\right) + 2k\pi \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\pi}{3} + \arccos\left(-\frac{2}{3}\right) + 2k\pi \\ \text{ou} \\ x = \frac{\pi}{3} - \arccos\left(-\frac{2}{3}\right) + 2k\pi \end{cases}$$

$$k \in \mathbb{Z}.$$

Remarques:

- On vérifie sur le cercle trigonométrique que

$$\arccos(-a) = \pi - \arccos a$$
, $\forall 0 \le a \le 1$.

– D'autre part, en comparant les cosinus des angles $\frac{\pi}{3}$ et $\arccos\left(\frac{2}{3}\right)$, on en déduit une comparaison de ces angles :

$$\frac{1}{2} < \frac{2}{3} \implies \frac{\pi}{3} > \arccos\left(\frac{2}{3}\right)$$
.

Des deux remarques précédentes, on conclut que $\frac{\pi}{3} + \arccos\left(-\frac{2}{3}\right) > \pi$.

Sur l'intervalle $\left[\,\pi\,,\,3\pi\,\right],$ l'équation $\cos(x-\frac{\pi}{3})=-\frac{2}{3}$ admet deux solutions

- l'une est engendrée par $\frac{\pi}{3} + \arccos\left(-\frac{2}{3}\right) + 2k\pi$ avec k = 0,
- l'autre est engendrée par $\ \frac{\pi}{3}-\arccos\left(-\frac{2}{3}\right)+2\,k\,\pi$ avec $\ k=1\,.$

$$S = \left\{ \frac{\pi}{3} + \arccos\left(-\frac{2}{3}\right), \frac{7\pi}{3} - \arccos\left(-\frac{2}{3}\right) \right\},\,$$

ou
$$S = \left\{ \frac{4\pi}{3} - \arccos\left(\frac{2}{3}\right), \frac{4\pi}{3} + \arccos\left(\frac{2}{3}\right) \right\}.$$

- c) Résolution de l'équation $\,\sin(2x)=\frac{2}{3}\,\,$ sur l'intervalle $\,[-\pi\,,\,0\,]\,.$
 - ullet Résolution sur $\mathbb R$

$$\sin(2x) = \frac{2}{3} \quad \Leftrightarrow \quad \begin{cases} 2x = \arcsin\left(\frac{2}{3}\right) + 2k\pi \\ \text{ou} \\ 2x = \pi - \arcsin\left(\frac{2}{3}\right) + 2k\pi \end{cases}$$

$$\Leftrightarrow \quad \begin{cases} x = \frac{1}{2}\arcsin\left(\frac{2}{3}\right) + k\pi \\ \text{ou} \\ x = \frac{\pi}{2} - \frac{1}{2}\arcsin\left(\frac{2}{3}\right) + k\pi \end{cases}$$

$$k \in \mathbb{Z}.$$

Sur l'intervalle $[-\pi, 0]$, l'équation $\sin(2x) = \frac{2}{3}$ admet deux solutions

- -l'une est engendrée par $\ \frac{1}{2} \ {\rm arcsin} \left(\frac{2}{3}\right) + k \, \pi \ \ {\rm avec} \ \ k = -1 \, ,$
- l'autre est engendrée par $\frac{\pi}{2} \frac{1}{2} \arcsin\left(\frac{2}{3}\right) + k\pi$ avec k = -1.

$$S = \left\{ \frac{1}{2} \arcsin\left(\frac{2}{3}\right) - \pi, -\frac{\pi}{2} - \frac{1}{2} \arcsin\left(\frac{2}{3}\right) \right\}.$$

- d) Résolution de l'équation $\cos(\frac{x}{2}) = \frac{1}{3}$ sur l'intervalle $[\pi, 3\pi]$.
 - Résolution sur \mathbb{R}

$$\cos(\frac{x}{2}) = \frac{1}{3} \Leftrightarrow \begin{cases} \frac{x}{2} = \arccos\left(\frac{1}{3}\right) + 2k\pi \\ \text{ou} \\ \frac{x}{2} = -\arccos\left(\frac{1}{3}\right) + 2k\pi \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 2\arccos\left(\frac{1}{3}\right) + 4k\pi \\ \text{ou} \\ x = -2\arccos\left(\frac{1}{3}\right) + 4k\pi \end{cases}$$

$$k \in \mathbb{Z}.$$

• Résolution sur l'intervalle $[\pi, 3\pi]$

Sur l'intervalle $[\pi, 3\pi]$, l'équation $\cos(\frac{x}{2}) = \frac{1}{3}$ n'admet pas de solution.

– Pour $k=0\,,\,$ les deux solutions sont inférieures à $\,\pi\,.\,$

En effet $0 < \arccos\left(\frac{1}{3}\right) < \frac{\pi}{2}$, d'où

$$0 < 2 \arccos\left(\frac{1}{3}\right) < \pi$$
 et $-\pi < -2 \arccos\left(\frac{1}{3}\right) < 0$.

– Pour k=1, les deux solutions sont supérieures à 3π . En effet :

$$4\pi < 2 \arccos\left(\frac{1}{3}\right) + 4\pi < 5\pi$$
 et $3\pi < -2 \arccos\left(\frac{1}{3}\right) + 4\pi < 4\pi$.

$$S = \emptyset$$
.

- e) Résolution de l'équation $\tan x = -\frac{3}{2}$ sur l'intervalle $\left[\,0\,,\,2\pi\,\right]$.
 - ullet Résolution sur $\mathbb R$

$$\tan x = -\frac{3}{2} \quad \Leftrightarrow \quad x = \arctan(-\frac{3}{2}) + k\pi, \qquad k \in \mathbb{Z}.$$

• Résolution sur l'intervalle $[0, 2\pi]$

Soit
$$\alpha = \arctan\left(-\frac{3}{2}\right)$$
.

Sur l'intervalle $[0, 2\pi]$, l'équation $\tan x = -\frac{3}{2}$ admet deux solutions : $x=\pi+\alpha$ et $x=2\pi+\alpha$.

$$S = \left\{ \pi + \arctan\left(-\frac{3}{2}\right), \ 2\pi + \arctan\left(-\frac{3}{2}\right) \right\}.$$

- f) Résolution de l'équation $\cot(x-\frac{\pi}{6})=-\frac{3}{2}$ sur l'intervalle] $\pi\,,\,3\pi\,[\,.$
 - ullet Résolution sur $\mathbb R$

$$\cot(x - \frac{\pi}{6}) = -\frac{3}{2} \quad \Leftrightarrow \quad x - \frac{\pi}{6} = \operatorname{arccot}\left(-\frac{3}{2}\right) + k\pi$$

$$\Leftrightarrow x = \frac{\pi}{6} + \operatorname{arccot}\left(-\frac{3}{2}\right) + k\pi, \qquad k \in \mathbb{Z}.$$

EPF - Lausanne

Remarques:

- On vérifie sur le cercle trigonométrique que

$$\pi - \operatorname{arccot}(-a) = \operatorname{arccot} a$$
, $\forall a \ge 0$.

 $-\,$ D'autre part, en comparant les cotangentes des angles $\,\frac{\pi}{6}\,$ et $\,\operatorname{arccot}\left(\frac{3}{2}\right),$ on en déduit une comparaison de ces angles :

$$\sqrt{3} > \frac{3}{2} \implies \frac{\pi}{6} < \operatorname{arccot}\left(\frac{3}{2}\right)$$
.

Des deux remarques précédentes, on conclut que $\frac{\pi}{6} + \operatorname{arccot}\left(-\frac{3}{2}\right) < \pi$.

• Résolution sur l'intervalle π , 3π

Sur l'intervalle] π , 3π [, l'équation $\cot(x-\frac{\pi}{3})=-\frac{3}{2}$ admet deux solutions

- l'une est très proche de 2π : $x = \pi + \frac{\pi}{6} + \operatorname{arccot}\left(-\frac{3}{2}\right)$,
- l'autre est très proche de 3π : $x = 2\pi + \frac{\pi}{6} + \operatorname{arccot}\left(-\frac{3}{2}\right)$.

$$S = \left\{ \frac{7\pi}{6} + \operatorname{arccot}\left(-\frac{3}{2}\right), \frac{13\pi}{6} + \operatorname{arccot}\left(-\frac{3}{2}\right) \right\}.$$

- g) Résolution de l'équation $\tan(2x)=2$ sur l'intervalle] $-\pi$, 0 [.
 - Résolution sur \mathbb{R}

$$\tan(2x) = 2 \quad \Leftrightarrow \quad 2x = \arctan(2) + k \pi$$

$$\Leftrightarrow \quad x = \frac{1}{2} \cdot \arctan(2) + k \frac{\pi}{2}, \qquad k \in \mathbb{Z}.$$

• Résolution sur l'intervalle $\;]-\pi\,,\,0\,[$

Sur l'intervalle] $-\pi$, 0 [, l'équation $\tan(2x) = 2$ admet deux solutions qui correspondent à $\frac{1}{2} \cdot \arctan(2) + k \frac{\pi}{2}$ avec k = -2 et k = -1.

$$S = \left\{ \frac{1}{2} \cdot \arctan(2) - \pi, \frac{1}{2} \cdot \arctan(2) - \frac{\pi}{2} \right\}.$$

- h) Résolution de l'équation $\cot(\frac{x}{2}) = \frac{1}{3}$ sur l'intervalle] π , 3π [.
 - Résolution sur \mathbb{R}

$$\cot(\frac{x}{2}) = \frac{1}{3} \quad \Leftrightarrow \quad \frac{x}{2} = \operatorname{arccot}\left(\frac{1}{3}\right) + k\pi$$

$$\Leftrightarrow \quad x = 2 \cdot \operatorname{arccot}\left(\frac{1}{3}\right) + 2k\pi, \qquad k \in \mathbb{Z}.$$

- Résolution sur l'intervalle π , 3π Sur l'intervalle] π , 3π [, l'équation $\cot(\frac{x}{2}) = \frac{1}{3}$ admet une seule solution. $S = \left\{ 2 \cdot \operatorname{arccot}\left(\frac{1}{2}\right) + 2\pi \right\}.$
- 5. Résoudre les inéquations suivantes sur l'intervalle donné :
 - a) $\cos(2x) > -\frac{3}{4}$, $x \in [0, 2\pi]$, c) $\tan(2x) \ge 2$, $-\pi \le x \le 0$.
 - b) $\cot x \ge -\frac{1}{2}$, $-\frac{3\pi}{2} \le x < 0$,
 - a) Résolution de l'inéquation $\cos(2x) > -\frac{3}{4}$ sur l'intervalle $[\,0\,,\,2\pi\,]$
 - Représentation des points P(2x) tels que $\cos(2x) > -\frac{3}{4}$. On représente, sur l'axe des cosinus, les valeurs plus grandes que $-\frac{3}{4}$. Puis on représente les points du cercle trigonométrique dont l'abscisse est plus grande que $-\frac{3}{4}$.

 $\cos(2x) > -\frac{3}{4} \quad \Leftrightarrow \quad -\arccos(-\frac{3}{4}) + 2k\pi < 2x < \arccos(-\frac{3}{4}) + 2k\pi \,, \quad k \in \mathbb{Z} \,.$

• On en déduit les points P(x) solution de l'inéquation $\cos(2x) > -\frac{3}{4}$.

$$-\arccos(-\tfrac{3}{4}) + 2k\pi < 2x < \arccos(-\tfrac{3}{4}) + 2k\pi$$

$$\Leftrightarrow$$
 $-\frac{1}{2}\arccos(-\frac{3}{4}) + k\pi < x < \frac{1}{2}\arccos(-\frac{3}{4}) + k\pi, \quad k \in \mathbb{Z}.$

• Toujours graphiquement, on retient les solutions qui appartiennent à l'intervalle $[0, 2\pi]$:

$$S = \left[0, \frac{1}{2}\arccos(-\frac{3}{4})\right]$$

$$\cup \left[\pi - \frac{1}{2}\arccos(-\frac{3}{4}), \pi + \frac{1}{2}\arccos(-\frac{3}{4})\right]$$

$$\cup \left[2\pi - \frac{1}{2}\arccos(-\frac{3}{4}), 2\pi\right].$$

- b) Résolution de l'inéquation $\cot x \geq -\frac{1}{2}$ sur l'intervalle $\left[-\frac{3\pi}{2}\,,\,0\,\right[$
 - Représentation des points P(x) tels que $\cot x \ge -\frac{1}{2}$. On représente, sur l'axe des cotangentes, les valeurs plus grandes que $-\frac{1}{2}$. Puis on représente les points correspondants sur le cercle trigonométrique.

$$\cot x \ge -\frac{1}{2} \quad \Leftrightarrow \quad k\pi < x \le \operatorname{arccot}(-\frac{1}{2}) + k\pi \,, \quad k \in \mathbb{Z} \,.$$

• Graphiquement, on retient les solutions qui appartiennent à l'intervalle $\left[-\frac{3\pi}{2}\,,\,0\right[$:

$$S = \left[-\frac{3\pi}{2}, -2\pi + \operatorname{arccot}(-\frac{1}{2}) \right] \cup \left[-\pi, -\pi + \operatorname{arccot}(-\frac{1}{2}) \right].$$

- c) Résolution de l'inéquation $\tan(2x) \geq 2$ sur l'intervalle $[-\pi, 0]$
 - Représentation des points P(2x) tels que $\tan(2x) \geq 2$. On représente, sur l'axe des tangentes, les valeurs plus grandes que 2. Puis on représente les points correspondants sur le cercle trigonométrique.

$$\tan(2x) \ge 2 \quad \Leftrightarrow \quad \arctan(2) + k\pi \le 2x < \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z}.$$

• On en déduit les points P(x) solution de l'inéquation $\tan(2x) \ge 2$.

$$\arctan(2) + k\pi \le 2x < \frac{\pi}{2} + k\pi$$

$$\Leftrightarrow \quad \frac{1}{2} \cdot \arctan(2) + k \frac{\pi}{2} \le x < \frac{\pi}{4} + k \frac{\pi}{2}, \qquad k \in \mathbb{Z}.$$

 \bullet Graphiquement, on retient les solutions qui appartiennent à l'intervalle $[-\pi\,,\,0\,]$:

$$S = \left[-\pi + \frac{1}{2} \cdot \arctan(2) \,, \,\, -\frac{3\pi}{4} \,\right[\,\cup \, \left[-\frac{\pi}{2} + \frac{1}{2} \cdot \arctan(2) \,, \,\, -\frac{\pi}{4} \,\right[\,.$$

6. Exprimer la somme S suivante à l'aide d'une seule valeur de la fonction $\arctan x$.

$$S = \arctan 2 + \arctan 3 + \arctan 7 + \arctan 8$$

Indication: commencer par calculer $\arctan 2 + \arctan 3$, puis $\arctan 7 + \arctan 8$.

a) Soient $\alpha = \arctan 2$ et $\beta = \arctan 3$.

Pour pouvoir exprimer $\alpha + \beta$ à l'aide d'une seule fonction Arctangente, on localise cet angle, puis on calcule sa tangente.

- $\alpha \in [0, \frac{\pi}{2}[$ et $\beta \in [0, \frac{\pi}{2}[$ $\Rightarrow \alpha + \beta \in [0, \pi[.$
- $\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 \tan \alpha \tan \beta} = \frac{2+3}{1 2 \cdot 3} = -1$.

D'où $\alpha + \beta = \arctan(-1) + \pi = -\frac{\pi}{4} + \pi = \frac{3\pi}{4}$.

b) Soient $\gamma = \arctan 7$ et $\delta = \arctan 8$.

De même, on localise l'angle $\gamma + \delta$, puis on calcule sa tangente.

- $\gamma \in [0, \frac{\pi}{2}[$ et $\delta \in [0, \frac{\pi}{2}[$ $\Rightarrow \gamma + \delta \in [0, \pi[.$
- $\tan(\gamma + \delta) = \frac{\tan \gamma + \tan \delta}{1 \tan \gamma \tan \delta} = \frac{7 + 8}{1 7 \cdot 8} = -\frac{3}{11}$.

D'où $\gamma + \delta = \arctan(-\frac{3}{11}) + \pi = \pi - \arctan(\frac{3}{11})$.

A ce stade, le contrat est rempli :

$$S = (\alpha + \beta) + (\gamma + \delta) = \frac{3\pi}{4} + \pi - \arctan \frac{3}{11} = \frac{7\pi}{4} - \arctan \frac{3}{11}$$
.

c) Mais on peut réitérer encore une fois le procédé : on localise l'angle S puis on calcule sa tangente.

•
$$\alpha + \beta = \frac{3\pi}{4}$$
 et $\gamma + \delta \in \frac{\pi}{2}$, $\pi \in S \in \frac{5\pi}{4}$, $\frac{7\pi}{4}$.

•
$$\tan S = \frac{\tan(\alpha + \beta) + \tan(\gamma + \delta)}{1 - \tan(\alpha + \beta) \tan(\gamma + \delta)} = \frac{-1 + (-\frac{3}{11})}{1 - (-1) \cdot (-\frac{3}{11})} = -\frac{7}{4}$$
.

D'où $S = \arctan(-\frac{7}{4}) + 2\pi = 2\pi - \arctan\frac{7}{4}$.

7. Déterminer le domaine de définition des expressions suivantes :

a)
$$a(x) = \arccos(\sqrt{x})$$

c)
$$c(x) = \arcsin(\tan x)$$

b)
$$b(x) = \tan(\arcsin x)$$

d)
$$d(x) = \tan(2 \arccos x)$$

a)
$$a(x) = \arccos(\sqrt{x})$$
.

$$D_a = \left\{ x \in \mathbb{R} \mid x \ge 0 \quad \text{et } -1 \le \sqrt{x} \le 1 \right\}.$$

$$\left\{ \begin{array}{l} x \ge 0 \\ -1 \le \sqrt{x} \le 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ge 0 \\ 0 \le \sqrt{x} \le 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x \ge 0 \\ 0 \le x \le 1, \end{array} \right.$$

$$D_a = \left[0, 1 \right].$$

b) $b(x) = \tan(\arcsin x)$.

$$D_b = \left\{ x \in \mathbb{R} \mid -1 \le x \le 1 \text{ et } \arcsin x \ne \pm \frac{\pi}{2} \right\}.$$

$$\forall x \in [-1, 1], \ \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \text{ et } \left\{ \begin{array}{l} \arcsin x = -\frac{\pi}{2} \iff x = -1, \\ \arcsin x = +\frac{\pi}{2} \iff x = +1. \end{array} \right.$$

$$D_b = \left[-1, 1 \right].$$

c) $c(x) = \arcsin(\tan x)$.

$$D_c = \left\{ x \in \mathbb{R} \mid x \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z} \quad \text{et} \quad -1 \le \tan x \le 1 \right\}.$$

$$D_c = \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{4} + k\pi, \frac{\pi}{4} + k\pi \right].$$

d) $d(x) = \tan(2 \arccos x)$.

$$D_d = \left\{ x \in \mathbb{R} \mid -1 \le x \le 1 \text{ et } 2 \arccos x \ne \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}.$$

$$2\,\arccos x = \frac{\pi}{2} + k\pi \quad \Leftrightarrow \quad \arccos x = \frac{\pi}{4} + \frac{k\pi}{2}\,, \qquad k \in \mathbb{Z}$$

$$\Leftrightarrow \begin{cases} \arccos x = \frac{\pi}{4} \\ \text{ou} \\ \arccos x = \frac{3\pi}{4} \end{cases} \Leftrightarrow \begin{cases} x = \frac{\sqrt{2}}{2} \\ \text{ou} \\ x = -\frac{\sqrt{2}}{2} \end{cases}$$

$$D_d = [-1, 1] \setminus \left\{ -\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right\}.$$

