Casper Formalized Pt I

Applying π -calculus

to modeling the Casper protocol

Vlad Zamfir, L.G. Meredith

Client <-> Validator interactions

Consensus: Validator <-> Validator interactions

How to turn interaction diagrams into π -calculus specs

Just walk this line to calculate the specification of the verifier's behavior and derive code

and this line to calculate the specification of the claimant's behavior and derive code

behavior and derive code

How to turn π -calculus specs into scala code

```
{ }
P,Q ::= 0
                                        [| a |](m) ![ [| v1 |](m), ..., [| vn |](m) ]
     a![ v1, ..., vn ]
                                        for( [ x1, ..., xn ] <- [| a |](m)) {
     a?( x1, ..., xn )P
                                            [|P|](m)(x1, ..., xn)
     P | Q
                                         spawn{ [| P |](m) }; spawn{ [| Q |](m) }
                                        { val q = new Queue(); [| P |](m[a <- q])}
     (new a)P
     ( def X( x1, ..., xn ) = P )[v1, ..., vn]
                                         object X {
                                            def apply(x1, ..., xn) = {
                                                [|P|](m)(x1, ..., xn)
     X[v1, ..., vn]
                                        X([| v1 |](m), ..., [| vn |](m))
            [|-|](-): ( \pi-calculus, Map[Symbol,Queue] ) -> Scala
```