Løsningsforslag i SIE 3005 reguleringstehnikt, eksamen 15/8-03

Oppgave (a) Fra fig. 1.1. ser is at volumet mellom varmeelement og lemp-maling er A·l=V. Thopset on τ hidsenhaker fylles delte volumet med neg luft => $9.\tau = V = A.l => \tau = A.l/9$ 16) Effektbrowse rundt varveelenentet: $C \times_1 = -g(X_1 - X_2) + G \cdot u$ (alilumalert) (bootledet) (tilfort) Dessulen: All varme som strømmer ut fra elementet Aus opp av forbistrommende luft: g(x1-x2) = 8pq(x2-v) Liser (2) m.h.p ×1 og bruker $\beta = \delta P A$: $X_1 = \frac{2 + \beta}{9} X_2 - \frac{\beta}{9} U \tag{3}$ Seller (3) im i (1) og bapla celransformerer: $C\frac{gtp}{g}s.x_2-C\frac{g}{g}s.v=-g\left(\frac{gtp}{g}x_2-\frac{g}{g}v-x_2\right)+6u$ => (2 gtf-s x2+ B X2 = (B+Cfs)v+G-u (5) $x_{\lambda} = \frac{G}{\left(\frac{9 + \beta}{5} s + \beta\right)} \cdot u + \frac{\beta(1 + \frac{\gamma}{3} s)}{\left(\frac{9 + \beta}{5} s + \beta\right)} \circ U$ =) $X_2 = \frac{G/B}{(g+B)} + 1 \cdot u + \frac{1+C/g-5}{C(g+B)} \cdot v$ The The contract X_2 and X_3 and X_4 and X_4 and X_5 and X_6 and X_6 and X_6 and X_6 and X_6 and X_6 are the contract of X_6 and X_6 and X_6 are the contract of X_6 and X_6 are 55

1c) Nei, den innoholder en tidsformhelse. Albertatiot: Tidesforsinhelsen ets han tilnærures wed et rasjonalt uttykli i s. Da gas det. 10) ×20 = 90 fordi tidsfornistelren ibre spiller noen rolle når de variable er konstante. Da bein $X_{20} = h_u(s) | \cdot u_0 + h_v(s) | \cdot v_0 = K_u \cdot u_0 + V_0$ Vi seller 40=0 (superposicions princippel gjølder): Ingen effekt på systemel og konstant lempratur vo imm. Da må X20=46 være = V0 => Kv = 1. (e) Vi hor fra (3) at $X_1 = \frac{9+\beta}{9} X_2 - \frac{\beta}{7} V \Rightarrow X_{10} = \frac{9+\beta}{2} \left(\frac{6}{\beta} \cdot u_0 + V_0 \right) - \frac{\beta}{7} V_0$ = 97 6 U. + V. 14 = Voz=Vo1 Ni setter u=0, og bruker $h_v=K_v\frac{1+\overline{1}_2s}{1+\overline{1}_1s}$ (when tidsfersinkelse). Begynnelses verditeoveret: $\lim_{s\to\infty} \chi_2(s) = \lim_{s\to\infty} sh_v(s) \frac{v_{02} \cdot v_{01}}{s} = \frac{\overline{1}_2}{\overline{1}_1} (v_{02} \cdot v_{01}) = \chi_3$

1h) (forts.) Mer realistish:
$$-\frac{1}{1+\alpha T_0 s}$$
, $0<\alpha<1$
lugar immirlung på systemets stabilitet.

1i) Sluttverditeoremet: $e(\omega) = \lim_{s \to 0} \frac{1}{s} - \lim_{s \to 0} \frac{1}{$

 $K_{pk} = 33.2 [dB] gir Nowdo svingning, cu 180 = 0.9$ $\Rightarrow PI - reg - for kpl = 26.3 dB = 20.6$, $T_i = \frac{20}{1.2 \cdot \omega_{180}} = \frac{5.82}{1.2 \cdot \omega_{180}}$ 14) (ho (jw)) > 0 nar w > 0 =) det må være en inlegningen i ho Sida det ille er noen i ha, må den være i hr. Tidsformhedsen sees av spiralformen nar orgo.

 $1/\Delta k \approx 0.5$ => $\Delta k = 2 = 6 dB$ Defe en alseptabel Δk .

Hvordan finne y sees av figur til venstre.

11) To ulineariteter deal neures her:

(i) Effekten er paoporgonal med spenningen kvadrert i dvs. P = U² =) ulineart ledd i^e podreget

(ii) this $x_2 >> v$, dus kraftig approximing of the lufter while seg merblant efter varmedomentet. Dette betyr at tickfornishelsen t blin en funksjon av $x_2 =>$ ulinearistet.

b) Ved riktig valg av $h_{r2}(s)$ kan man oppnå en reguleringsgrad $N_2(s) = \frac{1}{1 + h_2(s)h_{r2}(s)} \ll 1$ for den indre sløyfen, noe som undertrykker forstyrrelsen kraftig før den virker på den ytre sløyfen. Riktig $h_{r2}(s)$ gir også $M_2(s) = \frac{h_2(s)h_{r2}(s)}{1 + h_2(s)h_{r2}(s)} \approx 1$ med stor båndbredde, noe som bedrer egenskapene til den ytre sløyfen. Dermed: Høyere båndbredde, bedre stabilitetsegenskaper for det samlede system.

58

Oppgave 3) Se læreboka elisempel 11.6 : Alle s

i PI-veg. erstatles med $\frac{27-1}{7+1}$ is $u[k] = K_p \frac{1+T_i\left(\frac{2}{T}\frac{z-1}{z+1}\right)}{T_i\left(\frac{2}{T}\frac{z-1}{z+1}\right)} e[k]$

Vi multipliserer med T(z+1) i teller og nevner, og får

$$u[k] = K_p \frac{T(z+1) + 2T_i(z-1)}{2T_i(z-1)} e[k]$$

Dette gir

$$\begin{split} 2T_i\left(z-1\right)u[k] &= K_p(T(z+1)+2T_i\left(z-1\right))\ e[k] \Leftrightarrow \\ u[k+1]-u[k] &= \frac{K_p}{2T_i}(Te[k+1]+Te[k]+2T_ie[k+1]-2T_ie[k]) \Leftrightarrow \end{split}$$

$$u[k+1] \; = \; u[k] + K_p \bigg(\bigg(1 + \frac{T}{2T_i} \bigg) e[k+1] - \bigg(1 - \frac{T}{2T_i} \bigg) e[k] \bigg)$$

Innself tallverdier => f1=1, g0= 2.05, g1=-1.95

Oppgeve 4) Anti-overlading trengs nar det er instegred virling i regulatoren og det er metning i fådraget.

Oppgave 5)

a) Laplace transformerer på begge sider av (5.1):

$$s^{2}y + \omega_{o}^{2}y = u + \beta s \cdot u \Rightarrow \frac{y(s)}{u(s)} = h(s) = \frac{1 + \beta s}{s^{2} + \omega_{o}^{2}}$$
(1)

b) Bruhen faserarialed form,
$$(V.14)$$
 og (1) med $\alpha_0 = \omega_0^2$:
 \Rightarrow $A = \begin{bmatrix} 0 & 1 \\ -\omega_0^2 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $c^T = \begin{bmatrix} 1 \\ \beta \end{bmatrix}$ (2)

C) Egenverdiene en polene
$$i(1): \lambda^2 + \omega_0^2 = 0 \Rightarrow \lambda_{1/2} = \pm j\omega_0$$

$$A \underline{M}_1 = \lambda_1 \underline{M}_1 \Rightarrow \begin{bmatrix} 0 & 1 \\ -\omega_0^2 & 0 \end{bmatrix} - \begin{bmatrix} m_{11} \\ -\omega_0^2 & 0 \end{bmatrix} - \begin{bmatrix} m_{11} \\ -\omega_0^2 & 0 \end{bmatrix} = \pm j\omega_0 \cdot \begin{bmatrix} m_{11} \\ m_{21} \end{bmatrix} = \sum_{i=1}^{M_1} m_i = \begin{bmatrix} 1 \\ j\omega_0 \end{bmatrix}, \quad \underline{M}_2 = \begin{bmatrix} 1 \\ -j\omega_0 \end{bmatrix}$$

$$\Rightarrow M = \begin{bmatrix} j\omega_0 & -j\omega_0 \end{bmatrix}$$

d) To distinhe poles på jm.-akse => marginalt statil.

Kan også sies mt fra imp. respons h(t), fordi O < h(x) < 09