

Data Sheet June 1999 FN3281.5

Monolithic, Quad SPST, CMOS Analog Switches

The DG441 and DG442 monolithic CMOS analog switches are drop-in replacements for the popular DG201A and DG202 series devices. They include four independent single pole single throw (SPST) analog switches, TTL and CMOS compatible digital inputs, and a voltage reference for logic thresholds.

These switches feature lower analog ON resistance ($<85\Omega$) and faster switch time ($t_{ON} < 250$ ns) compared to the DG201A and DG202. Charge injection has been reduced, simplifying sample and hold applications.

The improvements in the DG441 series are made possible by using a high voltage silicon-gate process. An epitaxial layer prevents the latch-up associated with older CMOS technologies. The 44V maximum voltage range permits controlling $40V_{P-P}$ signals. Power supplies may be single-ended from +5V to +34V, or split from ± 5 V to ± 20 V.

The four switches are bilateral, equally matched for AC or bidirectional signals. The ON resistance variation with analog signals is quite low over a ± 5 V analog input range. The switches in the DG441 and DG442 are identical, differing only in the polarity of the selection logic.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
DG441DJ	-40 to 85	16 Ld PDIP	E16.3
DG441DY	-40 to 85	16 Ld SOIC	M16.15
DG442DJ	-40 to 85	16 Ld PDIP	E16.3
DG442DY	-40 to 85	16 Ld SOIC	M16.15

Pinout

DG441, DG442 (PDIP, SOIC) TOP VIEW

Features

•	ON Resistance (Max)
•	Low Power Consumption (PD) <1.6 mW
•	Fast Switching Action
	- t _{ON} (Max)
	- t _{OFF} (Max, DG441)120ns

- · Low Charge Injection
- Upgrade from DG201A/DG202
- TTL, CMOS Compatible
- · Single or Split Supply Operation

Applications

- Audio Switching
- Battery Operated Systems
- · Data Acquisition
- · Hi-Rel Systems
- · Sample and Hold Circuits
- · Communication Systems
- · Automatic Test Equipment

Functional Diagrams

SWITCHES SHOWN FOR LOGIC "1" INPUT

TRUTH TABLE

LOGIC	V _{IN}	DG441	DG442
0	≤0.8V	ON	OFF
1	≥2.4V	OFF	ON

Schematic Diagram (One Channel)

Pin Descriptions

PIN	SYMBOL	DESCRIPTION
1	IN ₁	Logic Control for Switch 1
2	D ₁	Drain (Output) Terminal for Switch 1
3	S ₁	Source (Input) Terminal for Switch 1
4	V-	Negative Power Supply Terminal
5	GND	Ground Terminal (Logic Common)
6	S ₄	Source (Input) Terminal for Switch 4
7	D ₄	Drain (Output) Terminal for Switch 4
8	IN ₄	Logic Control for Switch 4
9	IN ₃	Logic Control for Switch 3
10	D ₃	Drain (Output) Terminal for Switch 3
11	S ₃	Source (Input) Terminal for Switch 3
12	NC	No Internal Connection
13	V+	Positive Power Supply Terminal (Substrate)
14	S ₂	Source (Input) Terminal for Switch 2
15	D ₂	Drain (Output) Terminal for Switch 2
16	IN ₂	Logic Control for Switch 2

Absolute Maximum Ratings

V+ to V
GND to V
Digital Inputs, V_S , V_D (Note 1) (V-) -2V to (V+) + 2V or 30mA,
Whichever Occurs First
Continuous Current (Any Terminal)
Peak Current, S or D (Pulsed 1ms, 10% Duty Cycle Max) 100mA

Operating Conditions

Temperature Range40°C to 85°C
Voltage Range
Input Low Voltage 0.8V (Max)
Input High Voltage 2.4V (Min)
Input Rise and Fall Time ≤20ns

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{JA} (°C/W)
PDIP Package	90
SOIC Package	
Maximum Junction Temperature (Plastic Packages) .	150 ^o C
Maximum Storage Temperature Range	65°C to 150°C
Maximum Lead Temperature (Soldering 10s)	300°C
(SOIC - Lead Tips Only)	

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

- 1. Signals on S_X , D_X or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- 2. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

 $\textbf{Electrical Specifications} \qquad \text{(Dual Supply) Test Conditions: } V+ = +15V, V- = -15V, V_{\text{IN}} = 2.4V, 0.8V, V_{\text{ANALOG}} = V_{\text{S}}, V_{\text{D}}, V_{\text{S}} = -15V, V_{\text{S}}$ Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN	(NOTE 3)	MAX	UNITS
DYNAMIC CHARACTERISTICS		ı	Į.	<u>.</u>		· I
Turn-ON Time, t _{ON}	$R_L = 1k\Omega$, $C_L = 35pF$, $V_S = \pm 10V$, (Figure 1)	25	-	150	250	ns
Turn-OFF Time, t _{OFF}						
DG441		25	-	90	120	ns
DG442			-	110	210	ns
Charge Injection, Q (Figure 2)	$C_L = 1nF$, $V_G = 0V$, $R_G = 0\Omega$	25	-	-1	-	pC
OFF Isolation (Figure 4)	$R_L = 50\Omega$, $C_L = 5pF$, $f = 1MHz$	25	-	60	-	dB
Crosstalk (Channel-to-Channel) (Figure 3)		25	-	-100	-	dB
Source OFF Capacitance, C _{S(OFF)}	f = 1MHz, V _{ANALOG} = 0 (Figure 5)	25	-	4	-	pF
Drain OFF Capacitance, C _{D(OFF)}		25	-	4	-	pF
Channel ON Capacitance, C _{D(ON)} + C _{S(ON)}	-	25	-	16	-	pF
DIGITAL INPUT CHARACTERISTICS						•
Input Current V _{IN} Low, I _{IL}	V _{IN} Under Test = 0.8V, All Others = 2.4V	Full	-0.5	-0.00001	0.5	μΑ
Input Current V _{IN} High, I _{IH}	V _{IN} Under Test = 2.4V, All Others = 0.8V	Full	-0.5	0.00001	0.5	μΑ
ANALOG SWITCH CHARACTERISTICS	,			•		
Analog Signal Range, V _{ANALOG}		Full	-15	-	15	V
Drain-Source ON Resistance, r _{DS(ON)}	$I_S = \mp 10 \text{mA}, V_D = \pm 8.5 \text{V}, V + = 13.5 \text{V},$	25	-	50	85	Ω
·	V- = -13.5V	85	-	-	100	Ω
Source OFF Leakage Current, I _{S(OFF)}	$V+ = 16.5V, V- = -16.5V, V_D = \pm 15.5V,$	25	-0.5	0.01	0.5	nA
,	V _S = ∓15.5V	85	-5	-	5	nA
Drain OFF Leakage Current, I _{D(OFF)}		25	-0.5	0.01	0.5	nA
,		85	-5	-	5	nA
Channel ON Leakage Current,	$V + = 16.5V$, $V - = -16.5V$, $V_S = V_D = \pm 15.5V$	25	-0.5	0.08	0.5	nA
$I_{D(ON)} + I_{S(ON)}$		85	-10	-	10	nA
POWER SUPPLY CHARACTERISTICS						1
Positive Supply Current, I+	V+ = 16.5V, V- = -16.5V, V _{IN} = 0V or 5V	Full	-	15	100	μΑ
Negative Supply Current, I-	1	25	-1	-0.0001	-	μΑ
		Full	-5	-	-	μΑ
Ground Current, I _{GND}	†	Full	-100	-15		μА

Electrical Specifications (Single Supply) Test Conditions: V+ = 12V, V- = 0V, V_{IN} = 2.4V, 0.8V, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (°C)	MIN	(NOTE 3)	MAX	UNITS		
DYNAMIC CHARACTERISTICS	DYNAMIC CHARACTERISTICS							
Turn-ON Time, t _{ON}	$R_L = 1k\Omega$, $C_L = 35pF$, $V_S = 8V$, (Figure 1)	25	-	300	450	ns		
Turn-OFF Time, t _{OFF}		25	-	60	200	ns		
Charge Injection, Q (Figure 2)	$C_L = 1$ nF, $V_G = 6$ V, $R_G = 0$ Ω	25	-	2	-	pC		
ANALOG SWITCH CHARACTERIS	TICS	•						
Analog Signal Range, V _{ANALOG}		Full	0	-	12	V		
Drain-Source ON Resistance, rDS(ON)	$I_S = 10$ mA, $V_D = 3$ V, 8V V+ = 10.8V	25	-	100	160	Ω		
		Full	-	-	200	Ω		
POWER SUPPLY CHARACTERIST	rics	•						
Positive Supply Current, I+	V+ = 13.2V, V- = 0V, V _{IN} = 0V or 5V	Full	-	15	100	μА		
Negative Supply Current, I-		25	-1	-0.0001	-	μΑ		
		Full	-100	-0.0001	-	μΑ		
Ground Current, I _{GND}		Full	-100	-15	-	μΑ		

NOTES:

Test Circuits and Waveforms

 V_O is the steady state output with the switch on. Feedthrough via switch capacitance may result in spikes at the leading and trailing edge of the output waveform.

NOTE: Logic input waveform is inverted for switches that have the opposite logic sense.

FIGURE 1A. MEASUREMENT POINTS

SWITCH S₁ O D₁ D₂ V₂ V₃ V₄ R_L C_L C_L

Repeat test for Channels 2, 3 and 4.

For load conditions, see Specifications. C_L includes fixture and stray capacitance.

 $V_O = V_S \frac{R_L}{R_L + r_{DS(ON)}}$

FIGURE 1B. TEST CIRCUIT

FIGURE 1. SWITCHING TIMES

^{3.} Typical values are for DESIGN AID ONLY, not guaranteed nor production tested.

Test Circuits and Waveforms (Continued)

FIGURE 2A. MEASUREMENT POINTS

FIGURE 2B. TEST CIRCUIT

FIGURE 2. CHARGE INJECTION

SIGNAL GENERATOR 10dBm V_S

N_D

N

FIGURE 3. CROSSTALK TEST CIRCUIT

FIGURE 4. OFF ISOLATION TEST CIRCUIT

FIGURE 5. SOURCE/DRAIN CAPACITANCES TEST CIRCUIT

Application Information

GAIN ERROR IS DETERMINED ONLY BY THE RESISTOR TOLERANCE. OP AMP OFFSET AND CMRR WILL LIMIT ACCURACY OF CIRCUIT.

$$\frac{V_{OUT}}{V_{IN}} = \frac{R_1 + R_2 + R_3 + R_4}{R_4} = 100 \text{ with SW}_4 \text{ closed}$$

FIGURE 6. PRECISION WEIGHTED RESISTOR PROGRAMMABLE GAIN AMPLIFIER

FIGURE 7. OPEN LOOP SAMPLE AND HOLD

Typical Performance Curves

FIGURE 8. $r_{DS(ON)}$ vs V_D and power supply voltage

FIGURE 9. $r_{DS(ON)}$ vs V_D and temperature

Typical Performance Curves (Continued)

FIGURE 10. $r_{DS(ON)}$ vs V_D AND TEMPERATURE (SINGLE 12V SUPPLY)

FIGURE 12. INPUT CURRENT vs TEMPERATURE

FIGURE 14. CROSSTALK AND OFF ISOLATION vs FREQUENCY

FIGURE 11. $r_{\text{DS(ON)}}$ vs V_{D} and single supply voltage

FIGURE 13. SUPPLY CURRENT vs TEMPERATURE

FIGURE 15. CHARGE INJECTION vs SOURCE VOLTAGE

Typical Performance Curves (Continued)

FIGURE 16. SWITCHING TIMES vs INPUT VOLTAGE

FIGURE 18. LEAKAGE CURRENT VS ANALOG VOLTAGE

FIGURE 20. SOURCE/DRAIN CAPACITANCE vs ANALOG VOLTAGE

FIGURE 17. SWITCHING TIME vs POWER SUPPLY VOLTAGE (DG441)

FIGURE 19. SWITCHING THRESHOLD vs SUPPLY VOLTAGE

FIGURE 21. SOURCE/DRAIN CAPACITANCE vs ANALOG VOLTAGE (SINGLE 12V SUPPLY)

Typical Performance Curves (Continued)

FIGURE 22. SOURCE/DRAIN LEAKAGE CURRENTS (SINGLE 12V SUPPLY)

FIGURE 23. SWITCHING TIME VS INPUT VOLTAGE (SINGLE 12V SUPPLY)

FIGURE 24. SWITCHING TIME vs SINGLE SUPPLY VOLTAGE (DG441)

Die Characteristics

DIE DIMENSIONS:

2160µm x 1760µm x 485µm

METALLIZATION:

Type: SiAI

Thickness: 12kÅ ±1kÅ

PASSIVATION:

Type: Nitride

Thickness: 8kÅ ±1kÅ

WORST CASE CURRENT DENSITY:

9.1 x 10⁴ A/cm²

Metallization Mask Layout

DG441, DG442

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation 7585 Irvine Center Drive Suite 100 Irvine, CA 92618

TEL: (949) 341-7000 FAX: (949) 341-7123 Intersil Corporation 2401 Palm Bay Rd. Palm Bay, FL 32905 TEL: (321) 724-7000

FAX: (321) 724-7946

EUROPE

Intersil Europe Sarl Ave. William Graisse, 3 1006 Lausanne Switzerland

TEL: +41 21 6140560 FAX: +41 21 6140579 **ASIA**

Intersil Corporation Unit 1804 18/F Guangdong Water Building 83 Austin Road

TST, Kowloon Hong Kong TEL: +852 2723 6339 FAX: +852 2730 1433