Basics of network analysis and network models

Measuring Networks

- Degree distributions
- Small world phenomena
- Clustering Coefficient
- Mixing patterns
- Degree correlations
- Communities and clusters

Degree distributions

 Problem: find the probability distribution that best fits the observed data

Power-law distributions

The degree distributions of most real-life networks follow a power law

$$p(k) = Ck^{-\alpha}$$

- Right-skewed/Heavy-tail distribution
 - there is a non-negligible fraction of nodes that has very high degree (hubs)
 - scale-free: no characteristic scale, average is not informative
- In stark contrast with the random graph model!
 - Poisson degree distribution, z=np

$$p(k) = P(k; z) = \frac{z^{k}}{k!}e^{-z}$$

- highly concentrated around the mean
- the probability of very high degree nodes is exponentially small

Power-law signature

 Power-law distribution gives a line in the loglog plot

• α : power-law exponent (typically $2 \le \alpha \le 3$)

Examples

Taken from [Newman 2003]

Exponential distribution

 Observed in some technological or collaboration networks

$$p(k) = \lambda e^{-\lambda k}$$

Identified by a line in the log-linear plot

$$\log p(k) = -\lambda k + \log \lambda$$

The basic random graph model

- The measurements on real networks are usually compared against those on "random networks"
- The basic G_{n,p} (Erdös-Renyi) random graph model:
 - n: the number of vertices
 - $-0 \le p \le 1$
 - for each pair (i,j), generate the edge (i,j) independently with probability p

A random graph example

Average/Expected degree

• For random graphs z = np

- For power-law distributed degree
 - $-if \alpha \geq 2$, it is a constant
 - if α < 2, it diverges

Maximum degree

- For random graphs, the maximum degree is highly concentrated around the average degree z
- For power law graphs

$$k_{\text{max}} \approx n^{1/(\acute{a}-1)}$$

Clustering (Transitivity) coefficient

- Measures the density of triangles (local clusters) in the graph
- Two different ways to measure it:

$$C^{(1)} = \frac{\sum_{i} \text{triangles centered at node i}}{\sum_{i} \text{triples centered at node i}}$$

The ratio of the means

Example

$$C^{(1)} = \frac{3}{1+1+6} = \frac{3}{8}$$

Clustering (Transitivity) coefficient

Clustering coefficient for node i

$$C_i = \frac{\text{triangles centered at node i}}{\text{triples centered at node i}}$$

$$C^{(2)} = \frac{1}{n}C_i$$

The mean of the ratios

Example

$$C^{(2)} = \frac{1}{5}(1+1+1/6) = \frac{13}{30}$$

$$C^{(1)} = \frac{3}{8}$$

- The two clustering coefficients give different measures
- C⁽²⁾ increases with nodes with low degree

Clustering coefficient for random graphs

- The probability of two of your neighbors also being neighbors is p, independent of local structure
 - clustering coefficient C = p
 - when z is fixed C = z/n = O(1/n)

Table 1: Clustering coefficients, C, for a number of different networks; n is the number of node, z is the mean degree. Taken from [146].

Network	n	z	C	C for
5			measured	random graph
Internet [153]	6,374	3.8	0.24	0.00060
World Wide Web (sites) [2]	153,127	35.2	0.11	0.00023
power grid [192]	4,941	2.7	0.080	0.00054
biology collaborations [140]	1,520,251	15.5	0.081	0.000010
mathematics collaborations [141]	253,339	3.9	0.15	0.000015
film actor collaborations [149]	449,913	113.4	0.20	0.00025
company directors [149]	7,673	14.4	0.59	0.0019
word co-occurrence [90]	460,902	70.1	0.44	0.00015
neural network [192]	282	14.0	0.28	0.049
metabolic network [69]	315	28.3	0.59	0.090
food web [138]	134	8.7	0.22	0.065

The C(k) distribution

- The C(k) distribution is supposed to capture the hierarchical nature of the network
 - when constant: no hierarchy
 - when power-law: hierarchy

The small-world experiment

- Milgram 1967
- Picked 300 people at random from Nebraska
- Asked them to get the letter to a stockbroker in Boston – they could bypass the letter through friends they knew on a first-name basis
- How many steps does it take?
 - Six degrees of separation: (play of John Guare)

Six Degrees of Kevin Bacon

- Bacon number:
 - Create a network of Hollywood actors
 - Connect two actors if they co-appeared in some movie
 - Bacon number: number of steps to Kevin Bacon
- As of Dec 2007, the highest (finite) Bacon number reported is 8
- Only approx 12% of all actors cannot be linked to Bacon
- What is the Bacon number of Elvis Prisley?

Erdos numbers?

The small-world experiment

- 64 chains completed
 - 6.2 average chain length (thus "six degrees of separation")
- Further observations
 - People that owned the stock had shortest paths to the stockbroker than random people
 - People from Boston area have even closer paths

Measuring the small world phenomenon

- d_{ij} = shortest path between i and j
- Diameter:

$$d = \max_{i,j} d_{ij}$$

Characteristic path length:

$$1 = \frac{1}{n(n-1)/2} \sum_{i>j} d_{ij}$$

Harmonic mean

$$1^{-1} = \frac{1}{n(n-1)/2} \sum_{i>j} d_{ij}^{-1}$$

Also, distribution of all shortest paths

Is the path length enough?

Random graphs have diameter

$$d = \frac{logn}{logz}$$

- d = logn/loglogn when $z = \omega(logn)$
- Short paths should be combined with other properties
 - ease of navigation
 - high clustering coefficient

Degree correlations

- Do high degree nodes tend to link to high degree nodes?
- Pastor Satoras et al.
 - plot the mean degree of the neighbors as a function of the degree

Fig. 3.13. Correlations of the degrees of nearest-neighbour vertices (autonomous systems) in the Internet at the interdomain level (after Pastor-Satorras, Vázquez, and Vespignani 2001). The empirical dependence of the average degree of the nearest neighbours of a vertex on the degree of this vertex is shown in a log-log scale. This empirical dependence was fitted by a power law with exponent approximately 0.5.

Connected components

- For undirected graphs, the size and distribution of the connected components
 - is there a giant component?
- For directed graphs, the size and distribution of strongly and weakly connected components

Generative models of graphs

What is a network model?

- Informally, a network model is a process (randomized or deterministic) for generating a graph
- Models of static graphs
 - input: a set of parameters Π , and the size of the graph n
 - output: a graph $G(\Pi,n)$
- Models of evolving graphs
 - input: a set of parameters Π , and an initial graph G_0
 - output: a graph G_t for each time t

Erdös-Renyi Random graphs

Paul Erdös (1913–1996)

Erdös-Renyi Random Graphs

- The G_{n,p} model
 - input: the number of vertices n, and a parameter p, $0 \le p \le 1$
 - process: for each pair (i,j), generate the edge (i,j) independently with probability p
- Related, but not identical: The $G_{n,m}$ model
 - process: select m edges uniformly at random

The giant component

- Let z=np be the average degree
- If z < 1, then almost surely, the largest component has size at most $O(\ln n)$
- if z > 1, then almost surely, the largest component has size $\Theta(n)$. The second largest component has size $O(\ln n)$
- if $z = \omega(\ln n)$, then the graph is almost surely connected.

The phase transition

- When z=1, there is a phase transition
 - The largest component is $O(n^{2/3})$
 - The sizes of the components follow a power-law distribution.

Random graphs degree distributions

The degree distribution follows a binomial

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

• Assuming z=np is fixed, as $n\to\infty$, p(k) is approximated by a Poisson distribution

$$p(k) = P(k;z) = \frac{z^{k}}{k!}e^{-z}$$

 Highly concentrated around the mean, with a tail that drops exponentially

A random graph degree distribution

Random graphs and real life

A beautiful and elegant theory studied exhaustively

Random graphs had been used as idealized network models

Unfortunately, they don't capture reality...

Departing from the Random Graph model

- We need models that better capture the characteristics of real graphs
 - degree sequences
 - clustering coefficient
 - short paths

How can we generate data with power-law degree distributions?

Preferential Attachment in Networks

- First considered by [Price 65] as a model for citation networks
 - each new paper is generated with m citations (mean)
 - new papers cite previous papers with probability proportional to their indegree (citations)
 - what about papers without any citations?
 - each paper is considered to have a "default" citation
 - probability of citing a paper with degree k, proportional to k+1
- Power law with exponent $\alpha = 2 + 1/m$

Barabasi-Albert model

- The BA model (undirected graph)
 - input: some initial subgraph G_0 , and m the number of edges per new node
 - the process:
 - nodes arrive one at the time
 - each node connects to m other nodes selecting them with probability proportional to their degree
 - if [d₁,...,d_t] is the degree sequence at time t, the node t+1 links to node i with probability

$$\frac{d_i}{\sum_i d_i} = \frac{d_i}{2mt}$$

• Results in power-law with exponent $\alpha = 3$

Small world Phenomena

- So far we focused on obtaining graphs with power-law distributions on the degrees. What about other properties?
 - Clustering coefficient: real-life networks tend to have high clustering coefficient
 - Short paths: real-life networks are "small worlds"
 - this property is easy to generate
 - Can we combine these two properties?

Small-world Graphs

- According to Watts [W99]
 - Large networks (n >> 1)
 - Sparse connectivity (avg degree z << n)
 - No central node ($k_{max} << n$)
 - Large clustering coefficient (larger than in random graphs of same size)
 - Short average paths (~log n, close to those of random graphs of the same size)

Watts and Strogatz model [WS98]

- Start with a ring, where every node is connected to the next z nodes
- With probability p, rewire every edge (or, add a shortcut) to a uniformly chosen destination.
 - Granovetter, "The strength of weak ties"

Watts and Strogatz model [WS98]

- Start with a ring, where every node is connected to the next z nodes
- With probability p, rewire every edge (or, add a shortcut) to a uniformly chosen destination.
 - Granovetter, "The strength of weak ties"

Clustering Coefficient – Characteristic Path Length

log-scale in p

When
$$p = 0$$
, $C = 3(k-2)/4(k-1) \sim \frac{3}{4}$
 $L = n/k$

For small p, C ~ ¾ L ~ logn