

- ★ Super Low Gate Charge
- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Description

The XR100N20G is the high cell density trenched N-ch MOSFETs, which provide excellent RDSON and gate charge for most of the synchronous buck converter applications.

The XR100N20G meet the RoHS and Green Product requirement, 100% EAS guaranteed with full function reliability approved.

Product Summary

BVDSS	RDSON	ID
200V	20 mΩ	100A

TO263 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	200	V	
V _{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	100	Α	
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	63	Α	
Ірм	Pulsed Drain Current ²	400	Α	
EAS	Single Pulse Avalanche Energy ³	1190	mJ	
las	Avalanche Current		Α	
P _D @T _C =25°C	Total Power Dissipation ⁴	272	W	
T _{STG}	Storage Temperature Range	-55 to 150	°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction-Ambient ¹			°C/W
Rejc	Thermal Resistance Junction-Case ¹		0.46	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	200			V
⊿BV _{DSS} /⊿T _J	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA				V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10 V, I _D =61A		20	25.5	mΩ
1 100(011)		V _{GS} =4.5V , I _D =61A				
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} . I _D =250uA	3		5	V
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	766 156,15 201111				mV/°C
	Drain Source Leakage Current	V _{DS} =150V , V _{GS} =0V , T _J =25°C			1	- uA
I _{DSS}	Drain-Source Leakage Current	V _{DS} =150V, V _{GS} =0V , T _J =100°C			100	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =10V , I _D =31A		73		S
R_g	Gate Resistance	V _{DS} =0V , V _{GS} =0V , f=1MHz		1.2		Ω
Q_g	Total Gate Charge	V _{DS} =50V , V _{GS} =10V , I _D =61A		134		
Q _{gs}	Gate-Source Charge			49.6		nC
Q_{gd}	Gate-Drain Charge			39.6		
T _{d(on)}	Turn-On Delay Time			36.3		
Tr	Rise Time	$V_{DD} = 50V, R_L = 1.25\Omega$		9.2		no
$T_{d(off)}$	Turn-Off Delay Time	$R_G = 3\Omega$, $V_{GS}=10V$		64		ns
T _f	Fall Time			6.3		
C _{iss}	Input Capacitance	V _{DS} =50V , V _{GS} =0V , f=1MHz		8826		
Coss	Output Capacitance			532		pF
C _{rss}	Reverse Transfer Capacitance			148		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			65	Α
VsD	Diode Forward Voltage ²	V _{GS} =0V , I _S =31A , T _J =250			1.2	V
t _{rr}	Reverse Recovery Time	IF=61A ,di/dt=100A/μs ,		102		nS
Qrr	Reverse Recovery Charge	T _J = 25 C		550.3		nC

Notes 1.Repetitive Rating: Pulse width limited by maximum junction temperature. Notes 2.E_{AS} condition: T_J =25 °C, V_{DD} =40V, V_G =10V, Rg=25 Ω , L=0.5mH.

Notes 3. Repetitive Rating: Pulse width limited by maximum junction temperature.

Typical Electrical And Thermal Characteristics (Curves)

Figure 1. Output Characteristics

Figure 2. Transfer Characteristics

Figure 3. Power Dissipation

Figure 4. Drain Current

Figure 5. BV_{DSS} vs Junction Temperature

Figure 6. R_{DS(ON)} vs Junction Temperature

Typical Electrical And Thermal Characteristics (Curves)

Figure 7. Gate Charge Waveforms

Figure 8. Capacitance

Figure 9. Body-Diode Characteristics

Figure 10. Maximum Safe Operating Area

Avalanche Test Circuit

Switching Time Test Circuit

Gate Charge Test Circuit

Mechanical Dimensions for TO-263

COMMON DIMENSIONS

	MM			
SYMBOL	MIN	MAX		
Α	4.37	4.89		
A1	1.17	1.42		
A2	2.20	2.90		
A3	0.00	0.25		
b	0.70	0.96		
b1	1.17	1.47		
С	0.28	0.60		
D1	8.45	9.30		
D4	6.60	-		
Е	9.80	10.40		
E5	7.06	-		
е	2.54BSC			
Н	14.70	15.70		
H2	1.07	1.47		
L	2.00	2.80		
L1	-	1.75		
L4	0.254BSC			
θ	0°	9°		