Homework set 8

Due by 15:00 on Monday, October 16, 2023.

Please select **three** problems to solve and hand in written solutions either in person or to gunnar@magnusson.io.

Problem 1. Let V be a Hilbert space. Show that V^{\vee} is a Hilbert space when given the inner product

$$\langle f, \bar{g} \rangle = \langle y, \bar{x} \rangle,$$

where $x,y\in V$ and $x\mapsto f$ and $y\mapsto g$ under the Riesz representation theorem.

Solution. Let's denote this correspondence by $x=\rho(f)$. Then we have $f(z)=\langle z,\bar{x}\rangle=\langle z,\overline{\rho(f)}\rangle$ for all $z\in V$. We claim that $\langle f,\bar{g}\rangle=\langle \rho(g),\overline{\rho(f)}\rangle$ defines an inner product: It is additive in each variable because ρ is additive, and we have $\rho(\lambda f)=\bar{\lambda}\rho(f)$, so it is sesquilinear. Further $|f|^2=|\rho(f)|^2=0$ if and only if $\rho(f)=0$, which happens if and only if f=0 by Riesz.

Suppose then that (f_n) is a Cauchy sequence in V^{\vee} , and set $x_n = \rho(f_n)$. As $|f_n - f_m| = |x_n - x_m|$ by definition, it follows that (x_n) is Cauchy, so its limit x exists. Set $f(y) := \langle y, \bar{x} \rangle$. Then $|f - f_n| = |x - x_n|$ so $f_n \to f$. \square

Problem 2. Recall that the annihilator of a subset $M \subset V$ of a normed space is the set

$$\operatorname{ann} M = \{ f \in V^{\vee} \mid f(x) = 0 \text{ for all } x \in M \}.$$

Discuss the relationship between M^{\perp} and ann M in a Hilbert space V.

Solution. There is a linear map

$$\theta: M^{\perp} \to \operatorname{ann} M, \quad y \mapsto (x \mapsto \langle x, \bar{y} \rangle).$$

It is injective by construction, and bounded as $|\theta(x)| = |x|$ for all x. If $f \in \text{ann } M$ there is a $y \in V$ such that $f(x) = \langle x, \bar{y} \rangle$ for all x by Riesz. But for $x \in M$ we have $0 = f(x) = \langle x, \bar{y} \rangle$, so $y \in M^{\perp}$, and θ is thus surjective. \square

Problem 3. Let V be a Hilbert space and let $S \subset V$ be a closed subspace. Show that the quotient space V/S is also a Hilbert space. Show that S^{\perp} is isometric to V/S.

Solution. By Homework 6, Problem 4 we know that $(V/S)^{\vee} \cong \operatorname{ann} S$. Problems 1 and 2 here then give us a diagram

$$\begin{array}{ccc} V/S & S^{\perp} \\ \downarrow & & \downarrow \\ (V/S)^{\vee} & \longrightarrow \operatorname{ann} S \end{array}$$

where all the arrows are isometries, so we win an isometry $V/S \to S^{\perp}$. \square

Problem 4. Let V and W be Hilbert spaces and (f_n) a sequence of bounded operators from V to W such that $f_n \to f$. Show that $f_n^* \to f^*$.

Solution. First let $f:V\to W$ be an arbitrary bounded operator. For any $x\in V$ and $y\in W$ we have

$$\langle f(x), \bar{y} \rangle = \langle x, \overline{f^*(y)} \rangle$$

and we then see that

$$|f^*(y)|^2 = \langle f^*(y), \overline{f^*(y)} \rangle = \langle f(f^*(y)), \overline{y} \rangle.$$

Now

$$|\langle f(f^*(y)), \bar{y} \rangle|^2 \le |f(f^*(y))|^2 |y|^2 \le |f|^2 |f^*(y)|^2 |y|^2$$

so taking square roots and remembering that the inner product term was nonnegative we see that

$$|f^*(y)| \le |f||y|$$

for all y and thus $|f^*| \leq |f|$.

Now, by linearity we may assume that f=0, and then $f^*=0$. By the above we then get $|f_n^*| \leq |f_n| \to 0$.

Problem 5. Let V and W be Hilbert spaces and $f:V\to W$ a bounded operator. Show that:

- 1. im $f^* \subset (\ker f)^{\perp}$.
- 2. $(\operatorname{im} f)^{\perp} \subset \ker f^*$.
- 3. $\ker f = (\operatorname{im} f^*)^{\perp}$.

Solution. 1. Let $y \in W$ and $x \in \ker f$. Then

$$0 = \langle f(x), \bar{y} \rangle = \langle x, \overline{f^*(y)} \rangle$$

so $f^*(y) \in (\ker f)^{\perp}$.

2. Let $x \in V$ and $y \in (\operatorname{im} f)^{\perp}$. Then

$$0 = \langle f(x), \bar{y} \rangle = \langle x, \overline{f^*(y)} \rangle.$$

But x was arbitrary so we can take $x = f^*(y)$ and see that $f^*(y) = 0$, so $y \in \ker f^*$.

3. From 1 we see that $\ker f \subset (\operatorname{im} f^*)^{\perp}$. Applying 2 to f^* we get that $(\operatorname{im} f^*)^{\perp} \subset \ker(f^*)^* = \ker f$. Together we get the result.

Problem 6. Let V and W be Hilbert spaces and $f:V\to W$ a bounded operator. Show that $f^*f:V\to V$ is a bounded self-adjoint operator and that $|f|=\sqrt{|f^*f|}$.

Solution. Since f is bounded then so is f^* , and the composition of bounded operators is bounded. Now

$$|f| = \sup_{x \neq 0} \frac{|f(x)|}{|x|} = \sup_{x \neq 0} \frac{\sqrt{\langle f(x), \overline{f(x)} \rangle}}{|x|} = \sup_{x \neq 0} \frac{\sqrt{\langle f^* f(x), \overline{x}} \rangle}{|x|} \le \sqrt{|f^* f|}$$

by Cauchy–Schwarz. On the other hand we have $|f^*f| \le |f^*||f| \le |f|^2$, so $|f^*f| = |f|^2$. \Box