

ISO Certified

Keep in touch:

www.mockopedia.com

Mensuration Solution

1. Answer: (C)

Curved surface of cone = $\frac{22}{7} \times r \times l$ $= 1914 cm^2$

Where r is radius and l is slant height of cone $l = \frac{1914}{22} \times \frac{7}{21} = 29 \, cm$

Height of cone = $\sqrt{29^2 - 21^2} = 20cm$ Perimeter of square = $2 \times 20 = 40$ cm

Side of square $=\frac{40}{4} = 10cm$

Area of square = $10^2 = 100cm^2$

2. Answer: (D)

Let radius & height of cone be 4x and 3x respectively

ATQ -

$$\frac{1}{3}\pi r^2 h = 2156$$

$$\frac{1}{3} \times \frac{22}{7} \times (4x)^2 \times 3x = 2156$$

$$x^3 = \frac{2156 \times 7}{22 \times 16}$$

$$x^3 = 42.875$$

$$x^3 = \frac{2156 \times 7}{22 \times 16}$$

$$x^3 = 42.975$$

$$x = 3.5 cm$$

Radius of cylinder = $3.5 \times 4 \times \frac{150}{100}$ =

Volume of cylinder = $\frac{22}{7} \times 21 \times 21 \times 10.5$ $= 14553 \text{ cm}^3$

3. Answer: (D)

Volume of cylinder (s) = $\pi r^2 h$

 $(r \rightarrow radius)$

 $(h \rightarrow height)$

Volume of cone (c) = $\frac{1}{2}\pi R^2 H$

 $(R \rightarrow radius)$

 $(H \rightarrow height)$

h = H = 10 cm

ATQ,

 $\pi r^2 h + \frac{1}{2} \pi R^2 h = 2190 \pi$

 $\pi \times 10 \left[r^2 + \frac{1}{3} \times 15 \times 15 \right] = 2190\pi$

 $\therefore \frac{r}{R} = \frac{12}{15} = 4:5$

Answer: (A):

Volume of cone (A) = $\pi(r_1)^2 h_1/3$

Here, r_1 = radius of cone

 h_1 = height of cone

Volume of cylinder (H) = $\pi(r_2)^2 h_2$

Here, r_2 = radius of cylinder = 12 cm

 h_2 = height of cylinder

According to question = $h_1 = h_2 = 20$ cm

 $\Rightarrow \pi(r_1)^2 h_1/3 + \pi(r_2)^2 h_2 = 5040 \pi$

 $\Rightarrow \pi \times 20 ((r_1)^2/3 + (12)^2) = 5040 \pi$

 \Rightarrow $(r_1)^2/3 = 252 - 144$

 $\Rightarrow (r_1)^2 = 324$

 \Rightarrow r₁ = 18 cm

: Ratio of radius of A to radius of H

 $= r_1 : r_2 = 18 : 12 = 3 : 2$

5. Answer: (A)

 \therefore radius of cone = $\frac{105}{2}$ m

Slant height of cone = 63m

 \Rightarrow curved surface area of cone = (πrl)

$$= \frac{22}{7} \times \frac{105}{2} \times = 63 = 10395m^2$$

Radius of cylinder = $\frac{105}{2}$ m

Height = 3m (given)

 \therefore curved surface area of cylinder = $2 \pi rh$

$$=2 \times \frac{22}{7} \times \frac{105}{2} \times = 990m^2$$

Total curved area of structure

⇒ curved area of cone + curved area of cylinder = 10395 + 990

 $=11385m^{2}$

∴ total area of canvas = $11385m^2$

6. Answer: (A)

Let radius of cylinder be r cm

ATQ

ISO Certified

$$\frac{4}{3}\pi r^3 = \pi r^2 h \text{ (where h = 16cm)}$$

$$r = 12 \text{ cm}$$
Required volume $-\frac{1}{2}\pi r^2 h$

r = 12 cm
Required volume =
$$\frac{1}{3}\pi r^2 h$$

= $\frac{1}{3} \times \pi \times 12 \times 12 \times 16$
= $768\pi cm^3$

7. Answer: (B)

Let r be the radius of the sphere.

Given,
$$4\pi r^2 = 616$$

r = 7 cm

So, side of the square = 7 cm

Now, perimeter of the square = $4 \times 7 = 28$ cm

8. Answer: (E)

Volume of hemispherical bowl = $\frac{2}{3}\pi r^3$

$$\therefore$$
 Diameter = 54 cm

$$\therefore \text{Radius} = \frac{54}{2} = 27cm$$

Now, volume of hemispherical bowl

$$=\frac{2}{3} \times \frac{22}{7} \times 27 \times 27 \times 27$$

Volume of the cylindrical bottle $\pi r^2 h$

$$=\frac{22}{7}\times 3\times 3\times 9$$

∴ Number of bottles required
$$= \frac{2}{3} \times \frac{22}{7} \times \frac{27 \times 27 \times 27 \times 7}{22 \times 3 \times 3 \times 9} = 162$$

9. Answer: (D)

A sphere is melted and molded into solid cylinder.

Formula Used:

volume of sphere = $4/3 \times 22/7 \times r^3$;

total surface area of sphere = $4 \times 22/7 \times r^2$;

where r = radius of sphere

volume of cylinder = $22/7 \times R^2 \times h$

total surface area of cylinder = $2 \times 22/7 \times R(R)$

+ h); where R = radius of cylinder, h = height

of cylinder

Given radius of both solids are equal i.e. R = rSince sphere is melted into cylinder i.e.

volume remains same

$$\Rightarrow 4/3 \times 22/7 \times r^3 = 22/7 \times R^2 \times h$$

$$\Rightarrow$$
 h = 4r/3

$$\Rightarrow$$
 required ratio = $(4 \times 22/7 \times r^2)$: $(2 \times 22/7 \times r^2)$

$$R(R + h) = 2 \times 3 : 7$$

$$\Rightarrow$$
 required ratio = 6:7

10. Answer: (A)

Keep in touch:

www.mockopedia.com

$$3952\frac{2}{3} = \frac{2}{3}\pi r^3 + \pi r^2 h$$

(h = height of cylinder)

$$\Rightarrow \frac{11858}{3} = \frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 + \frac{22}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \times 7 + \frac{22}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \times 7 \times 7 + \frac{22}{3} \times \frac{22}{7} \times \frac{22}{7}$$

$$\frac{22}{7} \times 7 \times 7 \times h$$

$$\Rightarrow$$
 h = 21 cm.

11. Answer: (E)

$$2\pi r^2 = 616$$

$$r^2 = \frac{616}{2} \times \frac{7}{22}$$

$$r^2 = 98$$

$$\therefore \text{ Volume} = \frac{2}{3}\pi r^3$$

$$=\frac{2}{3}\times\frac{22}{7}\times\frac{98}{98}\times7\sqrt{2}=2032.69\,cm^2$$