92586 Computational Linguistics

9. "More than One" Neuron

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

16/04/2020

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

1 / 15

Previously

16/04/2020

16/04/2020

2/15

The perceptron

Alberto Barrón-Cedeño (DIT-UniBO)

Intro to neural networks

Table of Contents

1 Backpropagation (brief)

2 Keras

Chapter 5 of Lane et al. (2019)

Backpropagation (brief)

92586 Computational Linguistics

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

Weight Updating

Learning in a "simple" perceptron vs a fully-connected network

(Lane et al., 2019, p. 158, 168)

¹Remember: aka linear regression

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

5 / 15

Backpropagation (of the errors)

- The error is computed on the output vector
- How much error did W_{1i} "contribute"?
- "Path": $W_{1i} \rightarrow [W_{1i}, W_{2i}] \rightarrow output$

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

Backpropagation (of the errors)

A better activation function

Step function: $f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$

Sigmoid function: non-linear and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

Let us see

Non-linear \rightarrow model non-linear relationships

Continuously differentiable ightarrow partial derivatives wrt various variables to update the weights

Backpropagation

Differentiating to adjust

Squared error (in (Lane et al., 2019, p. 171) they say this is MSE; wrong)

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
(4)

With (4) we can find the derivative of the actfunct \forall neuron wrt its input. Plain words: find the contribution of a weight to the error and adjust it! (no further math)

²Notice that the first W_{1i} should be W_{1i}

Backpropagation (of the errors)

~Gradient descent: minimising the error

Non-convex error curve

(Lane et al., 2019, p. 173–174)

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

Keras

16/04/2020

9 / 15

Addressing Local minima

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet \to more likely to make it to the global minimum

Mini-batch

- Much smaller batch, combining the best of the two worlds
- ullet Fast as batch, resilient as stochastic gradient descent

Important parameter: learning rate α

A parameter to define at what extent should we "correct" the error

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020 10 / 15

Some Available Libraries

There are many high- and low-level libraries in many languages

PyTorch

Community-driven; https://pytorch.org/

Theano

MILA (UdeM); www.deeplearning.net/software/theano/3

TensorFlow

Google Brain; https://www.tensorflow.org/

Others

We will use **Keras**; https://keras.io/

³Non active

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

11 / 15

What is Keras

- High-level wrapper with an accessible API for Python
- Gives access to three alternative backends
 - ► Theano
 - ► ThensorFlow
 - ► CNTK (MS)

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

20 13 / 15

Keras

Logical exclusive OR in Keras

input		output
0	0	0
0	1	1
1	0	1
1	1	0

■ Let us see

- First dense layer
 - ▶ 2 inputs, 10 neurons
 - ► 30 parameters
 - ▶ $2 \times 10 \rightarrow 20$
 - ▶ But we also have the bias! That's 10 more weights
- Second dense layer
 - ► 10 inputs, 1 neuron
 - ► 11 parameters

Now we can compile the model

■ Let us see

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020 14

14 / 15

References

Lane, H., C. Howard, and H. Hapkem 2019. *Natural Language Processing in*

2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.

Alberto Barrón-Cedeño (DIT-UniBO)

92586 Computational Linguistics

16/04/2020

15 / 15