STATS 2107 Statistical Modelling and Inference II

Workshop 9: χ^2 test of association

Matt Ryan

School of Mathematical Sciences, University of Adelaide

Semester 2 2022

The Titanic

The Titanic is a very famous ship that sank in 1912, and we have data on it! This data set contains the following information on 891 passengers:

Variable	Info
survived	Categorical, 1 for yes, 0 for no
pclass	Categorical, either 1, 2, or 3
sex	Categorical, either F or M

The question

Is there a relationship between a passengers class and their survival rate?

How can we go about answering this?

The story so far

	Continuous	Categorical
Continuous Categorical	Linear regression Next year!	t-test χ^2 test

 χ^2 test

The χ^2 test of association tests for independence between two categorical variables X and Y. Suppose

- \triangleright X has I levels i = 1, 2, ..., I
- ightharpoonup Y has J levels $j=1,2,\ldots,J$

Welcome to the cross tabs

	Y_1	Y_2		Y_J
X_1	N ₁₁	N ₁₂		$\overline{N_{1J}}$
X_2	N_{21}	N_{22}		N_{2J}
:	:	:	٠	:
X_I	N_{I1}	N_{I2}		N_{IJ}

A null hypothesis

VS

The χ^2 test works under the following hypothesis:

 H_0 : There is no association between X and Y

 H_a : There is an association between X and Y

A test statistics

$$\chi = \sum_{i,j} \frac{(N_{ij} - \mathsf{E}[N_{ij}])^2}{\mathsf{E}[N_{ij}]}.$$

Under H_0 , $\chi \sim \chi^2_{(I-1)(J-1)}$.

Back to our question

Is there a relationship between a passengers class and their survival rate?

We test the hypothesis:

 H_0 : There is no association between the passenger class and whether they survived.

VS

 H_a : There is an association between the passenger class and whether they survived.

What does the data say?

class	0	1
1	80	136
2	97	87
3	372	119

Perform a test

First, we need this data in a nice format. We can do it tidy, but base is better here:

```
(survival_class_crosstabs <- table(titanic$pclass, titanic$survived))
##</pre>
```

```
## 0 1
## 1 80 136
## 2 97 87
## 3 372 119
```

chisq.test

```
{\tt chisq.test(survival\_class\_crosstabs)}
```

```
##
## Pearson's Chi-squared test
##
## data: survival_class_crosstabs
## X-squared = 102.89, df = 2, p-value < 2.2e-16</pre>
```


What to do

- 1. We rejected the hypothesis test. By looking at the cross tabs, which class do you think is most related to survival outcome? Why do you think this is?
- Obtain a crosstabs table relating passenger sex to survival rate.
- 3. Test the hypothesis at the 5% level that there is no association between sex and whether a passenger survived or not.

Consider the 2×2 case

X_2 Total	W_2	$N_2 - W_2$ N - W	N ₂ N
 X ₁	W_1	$N_1 - W_1$	N ₁
	<i>Y</i> ₁	Y ₂	Total

What happens under the null hypothesis?

Since there is no association between Y and X, there is a probability π of seeing Y_1 and $1-\pi$ of seeing Y_2 , no matter what X is. Hence

$$W_i \sim \text{Bin}(N_i, \pi)$$

Estimating π and expected values

Our best guess of the probability of being in Y_1 is

$$\hat{\pi} = \frac{W}{M}$$
.

Hence,

$$\mathrm{E}\left[W_{i}
ight]pprox N_{i}\hat{\pi} \quad ext{and} \quad \mathrm{var}\left(W_{i}
ight)pprox N_{i}\hat{\pi}(1-\hat{\pi})\,.$$

Table of expected values

Truth

	<i>Y</i> ₁	<i>Y</i> ₂	Total
$\overline{X_1}$	W_1	$N_1 - W_1$	N_1
X_2	W_2	N_2-W_2	N_2
Total	W	N - W	N

Expected

	Y_1	<i>Y</i> ₂
X_1 X_2	$N_1\hat{\pi}$ $N_2\hat{\pi}$	$N_1(1-\hat{\pi}) N_2(1-\hat{\pi})$

Our test statisitic

$$\chi = \frac{(W_1 - E[W_1])^2}{E[W_1]} + \frac{(N_1 - W_1 - E[N_1 - W_1])^2}{E[N_1 - W_1]} + \frac{(W_2 - E[W_2])^2}{E[W_2]} + \frac{(N_2 - W_2 - E[N_2 - W_2])^2}{E[N_2 - W_2]}$$

Consider W_1

$$\begin{split} &\frac{\left(W_{1} - \mathsf{E}\left[W_{1}\right]\right)^{2}}{\mathsf{E}\left[W_{1}\right]} + \frac{\left(N_{1} - W_{1} - \mathsf{E}\left[N_{1} - W_{1}\right]\right)^{2}}{\mathsf{E}\left[N_{1} - W_{1}\right]} \\ &= \frac{\left(W_{1} - N_{1}\hat{\pi}\right)^{2}}{N_{1}\hat{\pi}} + \frac{\left(N_{1} - W_{1} - N_{1}(1 - \hat{\pi})\right)^{2}}{N_{1}(1 - \hat{\pi})} \\ &= \frac{\left(W_{1} - N_{1}\hat{\pi}\right)^{2}}{N_{1}\hat{\pi}} + \frac{\left(W_{1} - \hat{\pi}\right)^{2}}{N_{1}(1 - \hat{\pi})} \\ &= \frac{\left(W_{1} - N_{1}\hat{\pi}\right)^{2}\left(1 - \hat{\pi}\right) + \left(W_{1} - N_{1}\hat{\pi}\right)^{2}\hat{\pi}}{N_{1}\hat{\pi}(1 - \hat{\pi})} \\ &= \frac{\left(W_{1} - N_{1}\hat{\pi}\right)^{2}}{N_{1}\hat{\pi}(1 - \hat{\pi})} \end{split}$$

What does this look like?

$$\left(\frac{\mathsf{Random\ variable} - \mathsf{mean}}{\mathsf{SE}}\right)^2$$

For large N_1 CLT implies $W_1 \sim N(N_1 \hat{\pi}, N_1 \hat{\pi}(1-\hat{\pi}))$, hence

$$\frac{(W_1-N_1\hat{\pi})^2}{N_1\hat{\pi}(1-\hat{\pi})}\stackrel{\cdot}{\sim} \chi_1^2$$

What are the degrees of freedom?

$$\chi = \frac{(W_1 - N_1 \hat{\pi})^2}{N_1 \hat{\pi} (1 - \hat{\pi})} + \frac{(W_2 - N_2 \hat{\pi})^2}{N_2 \hat{\pi} (1 - \hat{\pi})},$$

why is $\chi \sim \chi_1^2$?

What to do

1. Consider the contingency table for sex and survival:

Calculate the table of expected counts. Under the null hypothesis, how many males would we expect to survive the sinking of the Titanic?

2. Manually calculate the test statistics for this χ^2 test. Does this agree with what you got before?