- Partie IV -

Applications du pivot de Gauß

En physique, on a souvent des système linéaires à résoudre. En voici deux petits exemples.

1 Réseau en électrocinétique

On considère le circuit suivant où les trois lois des mailles et deux lois des nœuds s'écrivent

 $E = R_1 i_1 + R_2 i_2$ $R_2 i_2 = R_3 i_3 + R_4 i_4$ $R_4 i_4 = R_5 i_5 + R_6 i_5$ $i_1 = i_2 + i_3$ et $i_3 = i_4 + i_5$ Les valeurs des paramètres E et R sont respectivement E = 5,0 V, $R_1 = 100 \Omega$, $R_2 = R_3 = 220 \Omega$, et $R_4 = R_5 = R_6 = 100 \Omega$.

Écrire une fonction reseau_electrocinetique() qui renvoie les valeurs des 5 courants i_1 à i_5 .

2 Poulie accrochée avec deux masses

On considère le système mécanique ci-contre où $I_{\Delta} = 5.10^{-3}$ kg.m², $m_1 = 100$ g, $m_2 = 200$ g et R = 10 cm (rayon de la poulie). Le but est de déterminer les tensions T_1 et T_2 ainsi que l'accélération angulaire $\ddot{\theta}$ de la poulie. L'écriture des deux relations fondamentales de la dynamique pour les deux masses ainsi que du théorème du moment cinétique scalaire pour la poulie donne les équations

$$-m_1 R\ddot{\theta} = T_1 - m_1 g$$
 $m_2 R\ddot{\theta} = T_2 - m_2 g$ et $I_\Delta \ddot{\theta} = R (T_1 - T_2)$

Écrire une fonction poulie_a_deux_masses() qui renvoie les valeurs de $\ddot{\theta}$, T_1 et T_2 , respectivement en rad.s⁻², newton et newton. On rappelle que $g = 9.81 \text{ m.s}^{-2}$.

Following this, the pong paddle went on a mission to destroy Atari headquarters and, COM due to a mixup, found himself inside the game The Matrix Reloaded.

Boy, was THAT ever hard to explain to him.

m₁