The monopole category and invariants of bordered 3-manifolds

Jonathan Bloom

Massachusetts Institute of Technology

jbloom@math.mit.edu

Joint work with John Baldwin

Boston College

john.baldwin@bc.edu

January 15, 2014

Overview

- Khovanov's arc algebra
- 2 Monopole category
- Finite generation
- Monopole algebra

Khovanov's arc algebra

Khovanov homology

 ${\rm LinkCoB}$ is the category of links in S^3 and link cobordisms in $S^3\times[0,1].$

Khovanov defines a functor $\mathcal{F}: LinkCob \rightarrow Vect.$

 $\mathcal{F}(L)$ is the reduced Khovanov homology of L with coefficients in \mathbb{F}_2 .

Let V be a rank-2 vector space over \mathbb{F}_2 . For the k-component unlink,

$$\mathcal{F}(\bigcirc\cdots\bigcirc)=\Lambda^{k-1}V$$

In particular, $\mathcal{F}(\bigcirc) = \mathbb{F}_2$ and $\mathcal{F}(\bigcirc\bigcirc) = V$.

Crossingless matchings

Let B^n be the set of crossingless matchings on 2n points.

Let \bar{b} denote the reflection of b across the x-axis.

Then $a \cup \bar{b}$ is a planar unlink and we have well-defined link cobordisms

$$S_{a,b,c}:(a\cup ar{b})\sqcup (b\cup ar{c}) o a\cup ar{c}$$

The arc algebra H^n

Khovanov defines the ring $H^n = \bigoplus_{a,b \in B^n} \mathcal{F}(a \cup \bar{b}).$

The product of $x \in \mathcal{F}(a \cup \overline{b})$ and $y \in \mathcal{F}(b \cup \overline{c})$ is given by the map

$$\mathcal{F}(S_{\mathsf{a},b,c}):\mathcal{F}(\mathsf{a}\cup ar{b})\otimes \mathcal{F}(\mathsf{b}\cup ar{c})
ightarrow \mathcal{F}(\mathsf{a}\cup ar{c})$$

To a tangle T on 2n points, he associates a right H^n -module

$$\mathcal{F}(T) = \bigoplus_{b \in B^n} \mathcal{F}(T \cup \bar{b}).$$

The action of H^n is defined as above using $\mathcal{F}(S_{T,b,c})$.

To a cobordism of tangles, he associates a module homomorphism.

Pairing theorem

These structures turn \mathcal{F} into a 2-functor from points, tangles, and tangle cobordisms to algebras, bimodules, and bimodule homomorphisms.

For example, there is a pairing theorem for tangles on 2n points:

$$\mathcal{F}(T_0)\otimes_{H^n}\mathcal{F}(\bar{T}_1)\cong\mathcal{F}(T_0\cup\bar{T}_1)$$

The proof uses the skein relation to reduce to the case where T_0 and T_1 are crossingless matchings, and from there to $H^n \otimes_{H^n} H^n \cong H^n$.

$$\mathcal{F}(L) = \mathsf{cone}\left(\mathcal{F}(S) : \mathcal{F}(L_0) \to \mathcal{F}(L_1)\right)$$

Another view of $S_{a,b,c}$

8 / 25

THE MONOPOLE CATEGORY

The monopole category $C(\Sigma)$

Let Σ be a smooth, connected, oriented surface of genus g.

A bordered 3-manifold over Σ is a smooth, connected, oriented 3-manifold Y together with an orientation-preserving diffeomorphism $\varphi: \partial Y \to \Sigma$.

We now define the **monopole category** $C(\Sigma)$ of Σ . an A_{∞} category.

The objects of $C(\Sigma)$ are all bordered 3-manifolds over Σ .

 $\mathsf{Mor}(Y_0,Y_1)$ is given by the monopole Floer chain complex $\hat{\mathcal{C}}(Y_0\cup_{\Sigma}\bar{Y}_1)$.

For each k>0 and sequence Y_0,\ldots,Y_k , there is a multiplication map

$$\mu_k: \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_1) \otimes \cdots \otimes \hat{C}(Y_{k-1} \cup_{\Sigma} \bar{Y}_k) \to \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_k)$$

and these maps satisfy the A_{∞} relations.

Context

Our construction is modeled on the Morse category of a manifold, which is also the basis for the Fukaya category of a symplectic manifold.

Conjecture: Fuk(Sym^g(Σ)) and $C(\Sigma)$ are A_{∞} equivalent via a map sending the Lagrangian $\mathbb{T}^{\alpha} \subset \operatorname{Sym}^{g}(\Sigma)$ to the bordered handlebody (Σ, α) .

This is a strengthening of HF \cong HM, itself an analogue of Atiyah-Floer.

Lipshitz-Ozsváth-Thurston, Lekili-Perutz, Mau-Wehrheim-Woodward

Multiplication maps μ_k

For objects Y_0, \dots, Y_k , the multiplication map

$$\mu_k: \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_1) \otimes \cdots \otimes \hat{C}(Y_{k-1} \cup_{\Sigma} \bar{Y}_k) \rightarrow \hat{C}(Y_0 \cup_{\Sigma} \bar{Y}_k)$$

is defined by counting monopoles on a 4-dimensional cobordism W_{Y_0,\cdots,Y_k} over a family of metrics and perturbations parameterized by the k-2 dimensional associahedron (point, interval, pentagon,...).

Higraph model of μ_3 .

The first three A_{∞} relations.

Challenge: reducibles

Kronheimer and Mrowka model monopole Floer theory on Morse theory for a manifold with boundary.

[B] *The combinatorics of Morse homology with boundary.* http://arxiv.org/pdf/1212.6467v1.pdf

Challenge: coherent data

To define $\mathcal{C}(\Sigma)$, we must make many choices (diffeomorphisms, metrics, perturbations,...) such that the A_{∞} relations hold on the nose. Parallel issues arise for the Fukaya category. In our case, $\mathcal{C}(\Sigma)$ is also well-defined up to A_{∞} equivalence, and we are working to make this 'natural'.

Our approach to coherence is novel and hinges on Smale's 1964 result that $\mathrm{Diff}(D^2,\partial D^2)$ is contractible. In fact, we need a diffeologically smooth version of this fact that first appeared in 2011.

Jiayong Li and Jordan Alan Watts. The orientation-preserving diffeomorphism group of S^3 deforms to SO(3) smoothly. Transformation Groups, Springer, Vol. 16, No. 2, 2011, pp. 537-553.

FINITE GENERATION

A surgery triad is a triple of 3-manifolds (Y, Y_0, Y_1) such that there is a framed knot K in Y such that Y_i is i-surgery on K.

Significance: Floer homology sends surgery triads to exact triangles.

$$\hat{C}(Y) \cong \mathsf{cone}\left(\hat{m}(W) : \hat{C}(Y_0) \to \hat{C}(Y_1)\right)$$

Ex: $(S^3, S^1 \times S^2, S^3)$ forms a surgery triad via surgery on the unknot.

Ex: $(\#^{k-1}S^1 \times S^2, \#^kS^1 \times S^2, \#^{k-1}S^1 \times S^2)$ is a surgery triad.

We say that the 3-manifolds $\#^k S^1 x S^2$ are generated by S^3 through surgery triads.

All branched-double covers are generated by S^3 because the skein triangle corresponds to the surgery triad under branched double cover.

In fact, all closed 3-manifolds are generated by S^3 through surgery triads.

Skein triangle below

Surgery triangle above

Bordered manifolds

Bordered manifolds that arise as branched covers of $T \subset D^3$ on 2g + 2points are generated by branched covers of the c_g crossingless matchings.

With this motivation, we've shown that all bordered manifolds over Σ_g are generated by n_g bordered handlebodies:

$$n_1 = 1, \quad n_g = 1 + \sum_{i=1}^{g-1} n_i n_{g-i}$$

This also equals the binomial transform of the Catalan numbers c_g .

$$n_g = \sum_{k=0}^g \binom{g}{k} c_g$$

$$c_{g+1} = 1$$
, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ... $n_g = 1$, 2, 5, 15, 51, 188, 731, 2950, 12235, ...

Conjecture: n_g is minimal.

Coincidence?

Khovanov's generators count vertices of the associahedron. Our bordered generators count vertices of the composihedron.

Figure 1: The cast of characters. Left to right: $\mathcal{CK}(4),\,\mathcal{J}(4),\,3\text{-d}$ cube, and $\mathcal{K}(5).$

Stefan Forcey, Quotients of the multiplihedron as categorified associahedra, Homotopy, Homology and Applications, vol. 10(2), 227256, 2008.

THE MONOPOLE ALGEBRA

The monopole algebra

Now that we have a set $\mathcal{H}(\Sigma) = \{H_{\alpha}\}$ of finitely many generators for $\mathcal{C}(\Sigma)$, we can equivalently work with A_{∞} algebras and modules:

$$\mathcal{A}(\Sigma) = \bigoplus_{\alpha,\beta} \mathcal{F}(H_\alpha \cup_{\Sigma} \bar{H}_\beta) \qquad \mathcal{C}(Y) = \bigoplus_{\beta} \mathcal{F}(Y \cup_{\Sigma} \bar{H}_\beta)$$

Here $\mathcal{C}(Y)$ is an invariant of the bordered manifold Y up to quasi-isomorphism, and the pairing theorem holds by reduction to Khovanov's approach.

 $\mathsf{MCG}(\Sigma)$ acts on $\mathcal{A}(\Sigma)$ and in fact yields a faithful linear-categorical action in every genus except possibly g=2 (here we rely on recent work of Corrin Clarkson and $\mathsf{HM}=\mathsf{HF}$).

We can compute the homology algebra of $\mathcal{A}(\Sigma)$ explicitly. It naturally contains a copy of the arc algebra H^{g+1} .

2+1+1

HM is a "2-functor" from the "2-category" of surfaces, cobordisms of surfaces, and cobordisms of cobordisms of surfaces to the "2-category" of A_{∞} algebras, bimodules, and maps of bimodules.

A cobordism of surfaces with n boundary components yields an A_{∞} n-module.

Master version may have applications to computing 4-manifold invariants.

Topological approach goes through in other Floer theories and may give algebraic insight into equivalences.

(Optimistic) conjecture:
$$HH(_{\mathcal{A}(\Sigma)}C(Y)_{\mathcal{A}(\Sigma)}) \hookrightarrow \widehat{HM}(\cup_{\Sigma}Y_{\Sigma})$$

