Homework 11

103. (1) First, recall that any Banach space is weak-* dense in its double dual. In particular, $\ell^1\Gamma$ is weak-* dense in $(\ell^\infty\Gamma)^*$. Let $\phi \in (\ell^\infty\Gamma)^*$ be a state, and pick some $(\phi_\lambda) \in \ell^1\Gamma$ with $\phi_\lambda \to \phi$ in the weak-* topology. For $\psi \in \ell^1\Gamma$, let ψ^+ be defined by $\psi^+(g) = \text{Re}(\phi(g))^+$, and notice that ϕ^+ is still in ℓ^1 . We will demonstrate that $||\phi_\lambda - \phi_\lambda^+||_1 \to 0$, implying that $\phi_\lambda - \phi_\lambda^+ \to 0$ weakly by Hölder's inequality. Notice that

$$\phi_{\lambda} - \phi_{\lambda}^{+} = 2\phi_{\lambda}^{-} - i\operatorname{Im}(\phi_{\lambda})$$

On the other hand, evaluating at 1 in $\ell^{\infty}\Gamma$ gives

$$\phi_{\lambda}(1) = ||\phi_{\lambda}^{+}||_{1} - ||\phi_{\lambda}^{-}||_{1} + i||\operatorname{Im}(\phi_{\lambda})||_{1}$$

Since $\phi_{\lambda} \to \phi$ in the weak-* topology and ϕ is a state, $\phi_{\lambda}(1) \to 1$, and the latter two 1-norms go to 0, proving our claim.

Therefore, we may replace each ϕ_{λ} with ϕ_{λ}^{+} without changing the weak-* limit, letting us assume that (ϕ_{λ}) is a net of positive members of $(\ell^{1}\Gamma)_{1}$. Define ψ_{λ} by $\psi_{\lambda} = \frac{\phi_{\lambda}}{\phi_{\lambda}(1)}$. Since $\phi_{\lambda}(1) \to \phi(1) = 1$, we have $\psi_{\lambda} \to \phi$ as well. Since $\ell^{1}\Gamma$ is a C*-algebra, the facts that each ψ_{λ} is positive, norm 1, and $\psi_{\lambda}(1) = 1$ imply that each ψ_{λ} is a state, so we are done.

(2) The product weak topology on $\bigoplus_{g\in F}\ell^1\Gamma$ is induced by the usual action of $\bigoplus_{g\in F}\ell^1\Gamma$ on $\bigoplus_{g\in F}\ell^\infty\Gamma$; similarly, since F is finite, all norms on the direct sum consistent with the original are equivalent, so we may as well take the norm $||\bigoplus_{g\in F}x_g||=\max_{g\in F}||x_g||_1$. In particular, the norm on $\ell^\infty\Gamma$ is equivalent to the operator norm from $\ell^1\Gamma$, so this norm is equivalent to the operator norm from $(\bigoplus_{g\in F}\ell^\infty\Gamma)^*$.

To see that K is convex, notice that $\operatorname{Prob}(\Gamma)$ is convex, and recall that the weak closure of a convex set is convex. Since K is weakly closed and the norm on ℓ^{∞} is the operator norm from ℓ^1 , K is also norm closed.

(3) Let m be a left- Γ invariant state on $l^{\infty}\Gamma$. Let $F \subseteq \Gamma$ finite be given. Let (μ_{λ}) be a net in $\operatorname{Prob}(\Gamma)$ converging to m in the weak-* toplogy. The action of each $g \in F$ on $(\ell^{\infty}\Gamma)^*$ is weak-* continuous, so $\bigoplus_{g \in F} g\mu_{\lambda} - \mu_{\lambda} \to \bigoplus_{g \in F} gm - m$ weak-*. However, since m is left- Γ invariant, gm - m = 0 for each $g \in F$, so $\bigoplus_{g \in F} g\mu_{\lambda} \to 0$ weak-*, and hence weakly, since $0 \in \ell^1\Gamma$. Since K is weakly closed and each $\bigoplus_{g \in F} g\mu_{\lambda} - \lambda \in K$, we have $0 \in K$.

Since K is convex, K is in fact the norm closure of $\{\bigoplus_{g\in F} g\mu - \mu : \mu \in \operatorname{Prob}(\Gamma)\}$, so there is a sequence $\mu \in \operatorname{Prob}(\Gamma)$ with $\max_{g\in F} ||g\mu - \mu||_1 < \epsilon$, i.e. Γ has a left-invariant mean.

104. (1) Without loss of generality we may assume $a \leq b$, and then we have

$$\begin{split} & \int_{0}^{1} \left| \chi_{(r,1]} \left(a \right) - \chi_{(r,1]} \left(b \right) \right| dr \\ & = \int_{0}^{a} \left| \chi_{(r,1]} \left(a \right) - \chi_{(r,1]} \left(b \right) \right| dr + \int_{a}^{b} \left| \chi_{(r,1]} \left(a \right) - \chi_{(r,1]} \left(b \right) \right| dr + \int_{b}^{1} \left| \chi_{(r,1]} \left(a \right) - \chi_{(r,1]} \left(b \right) \right| dr \\ & = \int_{a}^{b} dr \\ & = b - a \end{split}$$

(2) We have

$$\begin{split} \|h \cdot \mu - \mu\|_{\ell^{1}\Gamma} &= \sum_{g \in \Gamma} \left| (h \cdot \mu) \left(g \right) - \mu \left(g \right) \right| \\ &= \sum_{g \in \Gamma} \left| \mu \left(h^{-1} g \right) - \mu \left(g \right) \right| \\ &= \sum_{g \in \Gamma} \int_{0}^{1} \left| \chi_{(r,1]} \left(\mu \left(h^{-1} g \right) \right) - \chi_{(r,1]} \left(\mu \left(g \right) \right) \right| dr, \quad \text{by part (1)} \\ &= \int_{0}^{1} \sum_{g \in \Gamma} \left| \chi_{(r,1]} \left(\mu \left(h^{-1} g \right) \right) - \chi_{(r,1]} \left(\mu \left(g \right) \right) \right| dr, \quad \text{by part (1)}, \quad \text{by Tonelli's theorem} \end{split}$$

(3)

$$\begin{split} hE\left(\mu,r\right) &= \left\{hg \mid g \in \Gamma, \mu\left(g\right) > r\right\} \\ &= \left\{k \in \Gamma \mid \mu\left(h^{-1}k\right) > r\right\} \\ &= \left\{g \in \Gamma \mid \left(h \cdot \mu\right)\left(g\right) > r\right\}. \end{split}$$

(4)

$$\begin{split} \int_0^1 |E\left(\mu,r\right)|\,dr &= \int_0^1 \sum_{g \in \Gamma} \chi_{(0,\mu(g)]} dr \\ &= \sum_{g \in \Gamma} \int_0^1 \chi_{(0,\mu(g)]} dr, \text{by Tonelli} \\ &= \sum_{g \in \Gamma} \mu\left(g\right) \\ &= 1 \end{split}$$

(5) We know that $g \in \Gamma$ is in $hE\left(\mu,r\right) \Delta E\left(\mu,r\right)$ if and only if $\mu\left(h^{-1}g\right) \leq r < \mu\left(g\right)$ or $\mu\left(g\right) \leq r < \mu\left(h^{-1}g\right)$. This is equivalent to $\left|\chi_{\left(r,1\right]}\left(\mu\left(h^{-1}g\right)\right) - \chi_{\left(r,1\right]}\left(\mu\left(g\right)\right)\right| = 1$, so we have

$$\left|hE\left(\mu,R\right)\Delta E\left(\mu,r\right)\right| = \sum_{g \in \Gamma} \left|\chi_{\left(r,1\right]}\left(\mu\left(h^{-1}g\right)\right) - \chi_{\left(r,1\right]}\left(\mu\left(g\right)\right)\right|$$

(6) We have

$$\int_{0}^{1} \sum_{h \in F} |hE(\mu, r) \Delta E(\mu, r)| dr = \sum_{h \in F} \int_{0}^{1} |hE(\mu, r) \Delta E(\mu, r)| dr$$

$$= \sum_{h \in F} \int_{0}^{1} \sum_{g \in \Gamma} |\chi_{(r, 1]} (\mu (h^{-1}g)) - \chi_{(r, 1]} (\mu (g))| dr, \quad \text{by (5)}$$

$$= \sum_{h \in F} ||h \cdot \mu - \mu||_{\ell^{1}\Gamma}, \quad \text{by (2)}$$

$$< \epsilon$$

$$= \epsilon \int_{0}^{1} |E(\mu, r)| dr, \quad \text{by (4)}.$$

Thus there exists $r \in [0,1]$ such that

$$\sum_{h \in F} \left| hE\left(\mu, r\right) \Delta E\left(\mu, r\right) \right| dr < \epsilon \left| E\left(\mu, r\right) \right|.$$

and in particular for each $h \in F$ we have

$$|hE(\mu, r) \Delta E(\mu, r)| dr < \epsilon |E(\mu, r)|.$$

(7) Now take F_n to be a sequence of finite subsets increasing to Γ , and $\epsilon_n := \frac{1}{n}$. Then there exist $\mu_n \in \text{Prob}(\Gamma)$ and $r_n \in [0, 1]$ such that

$$|hE(\mu_n, r_n) \Delta E(\mu_n, r_n)| < \frac{1}{n} |E(\mu_n, r_n)|,$$

so that

$$\lim_{n \to \infty} \frac{|hE(\mu_n, r_n) \Delta E(\mu_n, r_n)|}{|E(\mu_n, r_n)|} = 0.$$

Thus $(E(\mu_n, r_n))_{n \in \mathbb{N}}$ is a Folner sequence for Γ .

105. (1) Find a bijection from the set of ultrafilters on \mathbb{N} to $\beta\mathbb{N}$.

Proof. Let $\mathscr U$ be the set of ultrafilters on $\mathbb N$. Give $\mathscr U$ the topology generated by basic open sets of the form $\widetilde A:=\{\omega\in\mathscr U:A\in\omega\}$ for $A\subseteq\mathbb N$. We will show that $\mathscr U$ with this topology satisfies the universal property for the Stone-Čech compactification of $\mathbb N$.

For $n \in \mathbb{N}$, let $\widehat{n} \in \mathcal{U}$ be the principal ultrafilter on n, i.e. $\widehat{n} := \{A \subseteq \mathbb{N} : n \in A\}$. The map $\iota : \mathbb{N} \to \mathcal{U}$ given by $\iota(n) := \widehat{n}$ is clearly an injection. Since \mathbb{N} is discrete, ι is a continuous function. We want to show that the image $\iota(\mathbb{N})$ is dense in \mathcal{U} . But this is easy: given $\emptyset \neq A \subseteq \mathbb{N}$, we have $\widehat{n} \in \widetilde{A}$ for all $n \in A$.

Now we claim that \mathscr{U} is a Hausdorff space. Let $\omega_1 \neq \omega_2 \in \mathscr{U}$. Then there is a set $A \subseteq \mathbb{N}$ such that $A \in \omega_1$ and $\mathbb{N} \setminus A \in \omega_2$. Hence, $\omega_1 \in \widetilde{A}$ and $\omega_2 \in \widetilde{\mathbb{N}} \setminus A$, so \mathscr{U} is Hausdorff.

Next, we will show that \mathscr{U} is compact. Note that every basic open set is also closed: $\widetilde{A} = \mathscr{U} \setminus (\widetilde{\mathbb{N} \setminus A})$. Moreover, for any finite collection $A_1, \ldots, A_n \subseteq \mathbb{N}$, since filters are closed under finite intersections and supersets, we have

$$\bigcap_{i=1}^{n} A_i = \{ \omega \in \mathscr{U} : \bigcap_{i=1}^{n} A_i \in \omega \} = \{ \omega \in \mathscr{U} : A_i \in \omega \text{ for } i = 1, \dots, n \} = \bigcap_{i=1}^{n} \widetilde{A_i}.$$

Let $(A_i)_{i\in I}$ be a collection of nonempty subsets of \mathbb{N} such that $\bigcap_{i\in F}\widetilde{A_i}\neq\varnothing$ for all $F\subseteq I$ finite. Then by the previous observation, $\bigcap_{i\in F}A_i\neq\varnothing$. In particular, $\bigcap_{i\in F}A_i\neq\varnothing$. That is, $(A_i)_{i\in I}$ satisfies the finite intersection property. Therefore, by Zorn's lemma, there is an ultrafilter $\omega\in\mathscr{U}$ such that $A_i\in\omega$ for every $i\in I$. That is, $\omega\in\bigcap_{i\in I}\widetilde{A_i}$, so $\bigcap_{i\in I}\widetilde{A_i}\neq\varnothing$. This proves that \mathscr{U} is compact.

Finally, we must show that \mathscr{U} satisfies the extension property: given a compact Hausdorff space X and a (continuous) map $f: \mathbb{N} \to X$, there is a unique continuous extension $\widetilde{f}: \mathscr{U} \to X$:

Let X be a compact Hausdorff space, and let $f: \mathbb{N} \to X$ be any function. Define $\widetilde{f}: \mathscr{U} \to X$ by $\widetilde{f}(\omega) := \lim_{n \to \omega} f(n)$ as in (2). By (4), $\widetilde{f}(\widehat{n}) = f(n)$ for $n \in \mathbb{N}$, so \widetilde{f} is a well-defined extension of f. It remains to show that \widetilde{f} is continuous. Let $U \subseteq X$ be open. If $f^{-1}(U) = \emptyset$, there is nothing to show. Suppose $f^{-1}(U) \neq \emptyset$. Since X is a compact Hausdorff space, it is normal. Therefore, we may find an open set $V \subseteq X$ (a neighborhood of a given point in $U \cap f(\mathbb{N})$) such that $\overline{V} \subseteq U$ and $f^{-1}(V) \neq \emptyset$. Let $\omega \in f^{-1}(V)$. Then $f^{-1}(X \setminus \overline{V}) \notin \omega$, so $\widetilde{f}(\omega) = \lim_{n \to \omega} f(n) \in \overline{V} \subseteq U$. Thus, $\widetilde{f^{-1}(V)}$ is a nonempty open subset of \mathscr{U} such that $\widetilde{f}(f^{-1}(V)) \subseteq U$, so \widetilde{f} is continuous. Uniqueness of f follows from the density of \mathbb{N} in the Hausdorff space \mathscr{U} .

Note: To see the connection with the C^* -algebra construction from last semester, we could also realize $\widehat{\ell^{\infty}}$ as the collection of ultralimits $\lim_{n\to\omega}$ for $\omega\in\mathscr{U}$. Linearity of these limits is shown in (5), and they are multiplicative for the same reason.

(2) Let ω be an ultrafilter on \mathbb{N} . Let X be a compact Hausdorff space and $f: \mathbb{N} \to X$. We say $x = \lim_{n \to \omega} f(n)$ if for every open neighborhood U of x, $f^{-1}(U) \in \omega$. Prove that $\lim_{n \to \omega} f(n)$ always exists for any function $f: \mathbb{N} \to X$.

Proof. Let $\mathscr{C} := \{K \subseteq X : K \text{ is closed and } f^{-1}(K) \in \omega\}$. Note that \mathscr{C} is nonempty, since $X \in \mathscr{C}$. Moreover, $\varnothing \notin \mathscr{C}$. Given $K_1, \ldots, K_n \in \mathscr{C}$, we have

$$f^{-1}\left(\bigcap_{i=1}^{n} K_i\right) = \bigcap_{i=1}^{n} f^{-1}(K_i) \in \omega,$$

since ω is a filter, so $\bigcap_{i=1}^n K_i \in \mathscr{C}$. In particular, $\bigcap_{i=1}^n K_i \neq \emptyset$. By compactness, it follows that $\bigcap_{K \in \mathscr{C}} K \neq \emptyset$.

Let $x \in \bigcap_{K \in \mathscr{C}} K$. Let U be an open neighborhood of x. We want to show $f^{-1}(U) \in \omega$. Note that $X \setminus U$ is closed and $x \notin X \setminus U$. Hence $X \setminus U \notin \mathscr{C}$ by the construction of x. But $f^{-1}(X \setminus U) = \mathbb{N} \setminus f^{-1}(U)$. Since ω is an ultrafilter, it follows that $f^{-1}(U) \in \omega$.

Finally, we claim that x is the unique limit of f along ω . Indeed, since X is Hausdorff, given any other point $y \in X$, we may find disjoint open neighborhoods $U \ni x$ and $V \ni y$ so that $f^{-1}(V) \subseteq f^{-1}(X \setminus U) = \mathbb{N} \setminus f^{-1}(U) \notin \omega$.

(3) Show that every principal ultrafilter on \mathbb{N} contains a unique singleton set, and any two ultrafilters containing the same singleton set are necessarily equal. Thus we may identify the set of principal ultrafilters on \mathbb{N} with \mathbb{N} .

Proof. Let ω be an ultrafilter on \mathbb{N} , and suppose $A = \{n_1, \ldots, n_k\} \in \omega$ has the fewest elements of any set in ω . Suppose for contradiction that $k \geq 2$. By minimality of A, we must have $\{n_1\} \notin \omega$. But then $\mathbb{N} \setminus \{n_1\} \in \omega$, so $\{n_2, \ldots, n_k\} = A \cap (\mathbb{N} \setminus \{n_1\}) \in \omega$, contradicting minimality of A.

Hence $\omega \ni \{n\}$ for some $n \in \mathbb{N}$. This n is necessarily unique, since ω is closed under finite intersections and does not contain the empty set.

We claim that $\omega = \hat{n} := \{A : n \in A\}$. First, \hat{n} is a filter. On the other hand, if $A \in \omega$, then $A \cap \{n\} \in \omega$, so $n \in A$. Hence, $\omega \subseteq \hat{n}$. Since ω is an ultrafilter (and therefore a maximal filter), we must have $\omega = \hat{n}$.

(4) Determine $\lim_{n\to\omega} f(n)$ for $f:\mathbb{N}\to X$ as in (2) when ω is principal.

Proof. Let $\omega = \hat{k}$ be a principal ultrafilter. We claim $\lim_{n\to\omega} f(n) = f(k)$. Indeed, for every open set $U\ni f(k)$, we have $k\in f^{-1}(U)$, so $f^{-1}(U)\in \hat{k}=\omega$.

(5) Let ω be a free ultrafilter on \mathbb{N} . Suppose $\Gamma = \bigcup_{n \in \mathbb{N}} \Gamma_n$ is a locally finite group and m_n is the uniform probability (Haar) measure on Γ_n . Define $m: 2^{\Gamma} \to [0,1]$ by $m(A) = \lim_{n \to \omega} m_n(A \cap \Gamma_n)$. Prove that m is a left Γ -invariant finitely additive probability measure on Γ , i.e. Γ is amenable.

Proof. Clearly $m(\Gamma) = 1$. Let $A, B \subseteq \Gamma$ be disjoint. Then since m_n is additive for each $n \in \mathbb{N}$,

$$m(A \cup B) = \lim_{n \to \omega} (m_n(A \cap \Gamma_n) + m_n(B \cap \Gamma_n))$$

Thus, in order to show that m is finitely additive, it suffices to show that $\lim_{n\to\omega}$ is additive.

Suppose $x = \lim_{n \to \omega} x_n$ and $y = \lim_{n \to \omega} y_n$ for some sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in [0,1]. Let U be a neighborhood of x+y. Since addition is jointly continuous, we may find neighborhoods V of x and W of y such that $V+W \subseteq U$. By assumption, $\{n: x_n \in V\} \in \omega$ and $\{n: y_n \in W\} \in \omega$. Hence,

$${n: x_n + y_n \in U} \supseteq {n: x_n \in V, y_n \in W} = {n: x_n \in V} \cap {n: y_n \in W} \in \omega.$$

Therefore, $\lim_{n\to\omega} x_n + y_n = x + y$ as desired.

It remains to show that m is left Γ -invariant. Let $g \in \Gamma$. Then there is an $N \in \mathbb{N}$ such that $g \in \Gamma_n$ for all $n \geq N$. Since ω is free, $\{n \geq N\} \in \omega$. Let $A \subseteq \Gamma$, and let U be a neighborhood of m(A). Then we have

$$\{n: m_n((gA) \cap \Gamma_n) \in U\} = \{n: m_n(g(A \cap g^{-1}\Gamma_n)) \in U\}$$

$$= \{n: m_n(A \cap g^{-1}\Gamma_n) \in U\}$$

$$\supseteq \{n \ge N: m_n(A \cap \Gamma_n) \in U\}$$

$$= \{n \ge N\} \cap \{n: m_n(A \cap \Gamma_n) \in U\}.$$

Since $m(A) = \lim_{n \to \omega} m_n(A \cap \Gamma_n)$, both of these sets in the final line are elements of ω , so their intersection is also in ω . Hence, $m(gA) = \lim_{n \to \omega} m_n((gA) \cap \Gamma_n) = m(A)$.