Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа № 11.1

по курсу основы современной физики на тему:

Определение ширины запрещенной зоны полупроводника

Работу выполнил: Валеев Рауф

Долгопрудный 2021 год

Цель работы: Исследуется температурная зависимость проводимости типичного полупроводника — германия или кремния. Определяется ширина запрещенной зоны полупроводника из полученной зависимости.

1 Теоретическая справка

Проводимость в полупроводниках зависит от количества электронов в зоне проводимости и дырок в валентной зоне.

Вероятность заполнения $f(\varepsilon)$ энергетических уровней электронами определяется функцией Ферми:

$$f(\varepsilon) = \frac{1}{1 + \exp\left(\frac{\varepsilon - \mu}{kT}\right)},$$

где ε – значение энергии уровня в зоне проводимости, μ – уровень Ферми. В приближении ($\varepsilon-\mu$) >> kT имеем:

$$f(\varepsilon) \approx \exp\left(-\frac{\varepsilon - \mu}{kT}\right).$$

При небольших температурах электроны занимают нижние уровни, то есть $\varepsilon \approx \varepsilon_c$, ε_c – энергия, соответствующая дну зоны проводимости. Тогда количество электронов n_n равно:

$$n_n = Q_n \cdot f(\varepsilon) \approx Q_n \exp\left(-\frac{\varepsilon_c - \mu}{kT}\right).$$

Здесь Q_n – количество занятых электронами уровней. Вероятность возникновения дырки равна $1-f(\varepsilon)$. В рассматриваемом приближении энергию дырок будем считать равной энергии верхней границы валентной зоны ε , тогда число дырок n_p в валентной зоне определяется аналогично

$$n_p = Q_p \cdot (1 - f(\varepsilon)) \approx Q_p \exp\left(\frac{\varepsilon_v - \mu}{kT}\right).$$

В чистых полупроводниках $n_n \approx n_p$, следовательно верно:

$$n_n n_p = n^2 = Q_n Q_p \exp\left(-\frac{\varepsilon_c - \varepsilon_v}{kT}\right).$$

Ширину запрещенной зоны обозначим $\Delta = \varepsilon_c - \varepsilon_v$, тогда получим:

$$n \propto \exp\left(-\frac{\Delta}{2kT}\right)$$
.

В присутствии электрического поля средняя скорость v носителя заряда пропорциональна ему: $v \propto E$. Плотность тока в случае полупроводника запишется так:

$$j = j_n + j_p = |e| (n_n v_n + n_p v_p) \propto nE,$$

где индексы n и p соответствуют электронам и дъркам. Из полученной пропорциональности следует температурная зависимость проводимости полупроводника:

$$\sigma_s \propto \exp\left(-\frac{\Delta}{2kT}\right)$$

2 Экспериментальная установка

Для изучения зависимости $\sigma(T)$ используется установка, схематически изображенная на рис. 2.

Исследуемые образцы $(O_1$ и $O_2)$ в специальном зажиме помещаются в электронагревательную печь Π . Сопротивление образцов измеряется универсальным цифровым вольтметром B7-34A, который обеспечивает

Рис. 1: Экспериментальная установка

высокую точность измерений. В режиме измерения сопротивления на пределах 1 кОм, 10 кОм и 100 кОм погрешность в процентах не превышает

$$\pm [0,015 \pm 0,02 (R_k/R_x - 1)]$$

где R_k — включенный предел измерений, R_x - значение измеряемой величины в килоомах. При этом ток через подключенный образец не превышает 1 мА. Поочередное подключение образцов к прибору осуществляется с помощью ключа K. Один из образцов изготовлен из кристаллического германия (или кремния) и имеет форму прямоугольного параллелепипеда, другой - из тонкой медной проволоки длиной около двадцати MeTpOB. Удельная проводимость образцов находится по формуле

$$\sigma = \frac{l}{RS}$$

где R- сопротивление образца, l- его длина, S- поперечное сечение образца. Размер образцов указан на установке.

3 Измерения. Анализ результатов

Результаты измерений занесем в таблицу:

U, MB	T, C	<i>T</i> , K	$1/T$, 10^{-3} K	R, Om	σ , $\frac{10^7}{\mathrm{O}_{\mathrm{M}\cdot\mathrm{M}}}$	$\delta_{\sigma}, \frac{10^7}{\mathrm{O}_{\mathrm{M} \cdot \mathrm{M}}}$	$\ln\left(\frac{\sigma}{\sigma_0}\right), \frac{1}{O_{M \cdot M}}$	$\delta_{\ln\left(\frac{\sigma}{\sigma_0}\right)}$	
0,19	22	295,14	3,3882	62,2	5,6	0,01	0	0,004	
0,52	30	303,14	3,2988	64,2	5,42	0,01	-0,033	0,004	
0,93	40	313,14	3,1935	66,5	5,24	0,01	-0,066	0,004	
1,36	50	323,14	3,0946	67	5,2	0,01	-0,074	0,004	
1,79	60	333,14	3,0017	71,5	4,87	0,01	-0,14	0,004	
2,23	70	343,14	2,9143	74,3	4,69	0,01	-0,177	0,004	
2,68	80	353,14	2,8317	76,5	$4,\!55$	0,01	-0,208	0,004	
3,13	90	363,14	2,7538	78,7	4,42	0,01	-0,237	0,004	
$\delta_T = 0,02K, \delta_{1/T} = 0,0002K^{-1}, \delta_R = 0,1 \mathrm{Om}, \delta_U = 0,01 \mathrm{mB}$									
U, MB	T, C	T, K	$1/T$, 10^{-3} K	R, Ом	$\sigma, \frac{1}{O_{M \cdot M}}$	$\delta_{\sigma}, \frac{1}{\mathrm{O}_{\mathrm{M}\cdot\mathrm{M}}}$	$\ln\left(\frac{\sigma}{\sigma_0}\right)$	$\delta_{\ln\left(\frac{\sigma}{\sigma_0}\right)}$	
							(, 0)	$\left \frac{\Pi(\overline{\sigma_0})}{\Pi(\overline{\sigma_0})} \right $	
0,19	22	295,14	3,3882				(***)	$m(\overline{\sigma_0})$	
0,19 $0,52$	22 30	295,14 303,14	3,3882 3,2988	708	3,294	0,005	0	0,003	
		,	· · · · · · · · · · · · · · · · · · ·	708 441	3,294 5,288	0,005 0,012	(' ')		
0,52	30	303,14	3,2988				0	0,003	
0,52 $0,93$	30 40	303,14	3,2988 3,1935	441	5,288	0,012	0 0,473	0,003	
0,52 0,93 1,36	30 40 50	303,14 313,14 323,14	3,2988 3,1935 3,0946	441 283	5,288 8,24	0,012 0,03	0 0,473 0,917	0,003 0,004 0,005	
0,52 0,93 1,36 1,79	30 40 50 60	303,14 313,14 323,14 333,14	3,2988 3,1935 3,0946 3,0017	441 283 188	5,288 8,24 12,4	0,012 0,03 0,07	0 0,473 0,917 1,326	0,003 0,004 0,005 0,007	
0,52 0,93 1,36 1,79 2,23	30 40 50 60 70	303,14 313,14 323,14 333,14 343,14	3,2988 3,1935 3,0946 3,0017 2,9143	441 283 188 127	5,288 8,24 12,4 18,4	0,012 0,03 0,07 0,1	0 0,473 0,917 1,326 1,72	0,003 0,004 0,005 0,007 0,007	

Температуру получаем из напряжения по градуировочной таблице термопары. Все погрешности получаем из формулы метода наименьших квадратов.

0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.352	0.391	0
10	0.391	0.431	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749	0.790	10
20	0.790	0.830	0.870	0.911	0.951	0.992	1.033	1.074	1.114	1.155	1.196	20
30	1.196	1.238	1.279	1.320	1.362	1.403	1.445	1.486	1.528	1.570	1.612	30
40	1.612	1.654	1.696	1.738	1.780	1.823	1.865	1.908	1.950	1.993	2.036	40
50	2.036	2.079	2.122	2.165	2.208	2.251	2.294	2.338	2.381	2.425	2.468	50
60	2.468	2.512	2.556	2.600	2.643	2.687	2.732	2.776	2.820	2.864	2.909	60
70	2.909	2.953	2.998	3.043	3.087	3.132	3.177	3.222	3.267	3.312	3.358	70
80	3.358	3.403	3.448	3.494	3.539	3.585	3.631	3.677	3.722	3.768	3.814	80
90	3.814	3.860	3.907	3.953	3.999	4.046	4.092	4.138	4.185	4.232	4.279	90
100	4.279	4.325	4.372	4.419	4.466	4.513	4.561	4.608	4.655	4.702	4.750	100

Рис. 2: Градуировочная таблица медь-константановой термопары

Построим графики зависимости $\sigma_x(T)$ и $\ln(\sigma/\sigma_0)$ от 1/T для обоих образцов. Опреде-

Рис. 3: График зависимости σ от T для меди

лим по наклону графика $\sigma(T)$ температурный коэффициент сопротивления: Для меди мы получили, что

$$\sigma = a + b \cdot T$$

Получаем, что если мы поделим b на a, то мы получим искомую величину:

$$\alpha = \frac{a}{b}$$

$$\sigma_{\alpha} = \alpha \cdot \sqrt{\left(\frac{\sigma_a}{a}\right)^2 + \left(\frac{\sigma_b}{b}\right)^2}$$

В итоге получаем, что

$$\alpha = -0,0016 \pm 0,0001 K^{-1}$$

В таблице указаны данные в градусах Цельсия, для этого нужно пересчитать коэффицент для градуировки температуры в цельсиях: $a'=a+b\cdot 273, 15K\approx 4, 5\Rightarrow \alpha=0,0038C^{-1}$ а уже это число соответствует теоретическому $\alpha_{th}=0,004C^{-1}$, что означает, что наше полученное значение совпадает с табличным.

Рис. 4: График зависимости σ от T для полупроводника

Как видно из графиков, σ для меди падает линейно, когда как для полупроводника она растет. Это связано с тем, что для металла все электроны свободные, и у них линейно увеличивается подвижность электронов, когда как для полупроводника ключевую роль играет попадание электрона в зону проводимости, которая зависит от экспоненты, из-за чего и получаем такие зависимости.

Рис. 5: График зависимости $\ln\left(\frac{\sigma}{\sigma_0}\right)$ от 1/T для полупроводника

Теперь определим ширину запрещенной зоны для графика зависимости логарифма σ от 1/T.

Получаем искомую Δ из формулы

$$\sigma \approx = A \exp\left(-\frac{\Delta}{2k_BT}\right)$$

В итоге получаем, что коэффициент наклона графика будет равен $\frac{\Delta}{2k_B}$ То есть

$$\Delta = -2k_B \cdot b = (12, 4 \pm 0, 2) \cdot 10^{-20}$$
Дж $= 0,774 \pm 0,012$ эВ

$$\Delta_{Ge} = 0,75$$
9B

Это означает, что мы получили искомое значение, приближенное к теории.

4 Вывод

В ходе работы мы исследовали характер поведения проводимости от температуры и получили, что и ожидалось: электропроводность линейно убывает с ростом температуры для проводника и экспоненциально растет для полупроводника. Так же мы посчитали тепловой коэффициент теплопроводности, который совпадает с табличным, как и ширина запрещенной зоны, которая оказалось довольно точной, поскольку у нас в качестве полупроводника был использован Германий.

Список литературы

[1] Игошин Ф. Ф., Самарский Ю. А., Ципенюк Ю. М. Лабораторный практикум по общей физике: квантовая физика. МФТИ, 2012.