DSC 140A Probabilistic Modeling & Machine Knarning

Lecture 16 | Part 1

Decision Trees

The Problem

► UCSD Medical Center (1970s): identify patients at risk of dying within 30 days after heart attack.

A Decision Tree

Decision Trees

► A **decision tree** is a rooted tree.

- Internal nodes ask yes/no questions.
 - Categorical: Is patient a male?
 - ► **Numerical**: Is patient's age > 62.5 years?
- Leaf nodes are decisions (class labels).
- Path from root is a sequence of "and"s:
 - Is patient over 62.5 **and** male **and** BP > 100? Then high risk.

Learning Decision Trees

- ► How do we **learn** a tree from data?
 - Find right sequence of questions so that each training point is correctly classified.

Learning Decision Trees

- Start with single node containing all data points
- Repeat greedy procedure:
 - Look at all possible questions (splits)
 - ▶ Pick the one that most reduces **uncertainty**.

Stop when each leaf node is pure.

Aside: Generating Possible Questions

- Categorical: One question per value seen.
- E.g., county of residence.
 - Patient is from San Diego County?
 - Patient is from Riverside County?
 - Patient is from Orange County?

Aside: Generating Possible Questions

► **Numerical**: one question between each pair of consecutive values.

- E.g., ages in data = {42, 43, 55, 57, 61, 75}
 - Patient is < 42.5?</p>
 - ▶ Patient is < 49?
 - ▶ ..
 - ▶ Patient is < 68?

Measuring Uncertainty

A good question splits the data by class.

Measuring Uncertainty

- Suppose our node contains proportions:

 - p from class +(1 − p) from class -
- Common uncertainty scores:
 - ► Misclassification rate: min{p, 1 p}
 - ► **Gini index**: 2*p*(1 *p*)
 - ► Entropy: $p \log \frac{1}{p} + (1 p) \log \frac{1}{1 p}$

Benefit of a Question

Let *u*(*S*) be the uncertainty score for a set of labeled points, *S*.

Consider a particular question (split):

Benefit of a Question

Resulting uncertainty:

$$p_L u(S_L) + p_R u(S_R)$$

Example

- ► Initial Gini uncertainty: $2 \times \frac{13}{28} \times \frac{15}{28}$.
- $p_L u(S_L) + p_R u(S_R) = \frac{4}{28} \cdot 0 + \frac{24}{28} \cdot 2 \cdot \frac{9}{24} \cdot \frac{15}{24} = \frac{45}{112}$

Example

- ► Initial Gini uncertainty: $2 \times \frac{13}{28} \times \frac{15}{28}$.
- $p_L u(S_L) + p_R u(S_R) = \frac{8}{28} \cdot 0 + \frac{20}{28} \cdot 2 \cdot \frac{5}{20} \cdot \frac{15}{20} = \frac{30}{112}$

Summary

To learn a decision tree:

- Pick a measure of uncertainty (Gini, Entropy, etc.)
- Recursively ask question minimizing uncertainty.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 16 | Part 2

- ► The training error is **zero**.
 - We might be overfitting.
- ► (One) **solution**: rewind a few steps.

Two Strategies

- Pruning: simplify already-constructed tree.
- **Early-stopping**: stop early.

Pruning

- Given a full decision tree.
- Starting with predecessors of leaf nodes, replace node by most common class.
- ► If the change reduces validation error, keep it. Otherwise reverse it.

Early-Stopping

- Stop recursion when:
 - node is "pure enough" (uncertainty is low).
 - tree is too deep.

Decision Tree Properties

Very expressive:

- Can accommodate any type of data
 - numerical, Boolean, etc.
- Can accommodate any number of classes
- Can perfectly fit any data set
 - If data has no duplicates from different classes.
 - Danger! Overfitting!