Zadanie A. Zapisz odwrotnie

Limit czasowy: 10 sekund Na ocenę: dostateczną

Odczytaj ze standardowego wejścia łańcuch, nie przekraczający stu znaków, a następnie wypisz go w odwrotnej kolejności.

Wejście

Łańcuch o długości n ($1 \le n \le 100$), złożony ze znaków a-z.

Wyjście

Na wyjściu mamy łańcuch będący odwrotnością danego łańcucha.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
korek	kerok

Zadanie B. Palindrom

Limit czasowy: 10 sekund

Na ocenę: dobrą, jeśli rozwiązano też zadanie A

Bardzo wiele liczb naturalnych spełnia następującą własność. Bierzemy liczbę i dodajemy do niej liczbę zapisaną w odwrotnym porządku. Powtarzamy tę czynność, aż uzyskamy liczbę będącą palindromem. Palindrom, to ciąg znaków, który przeczytany od końca daje ten sam ciąg. Weźmy na przykład liczbę 57. 57 + 75 = 132, 132 + 231 = 363. Liczba 363 jest palindromem, zatem dla wejściowej liczby równej 57 potrzebowaliśmy 2 iteracji. Znajdź potrzebną liczbę iteracji, aby w wyżej opisanym procesie, z wejściowej liczby otrzymać palindrom.

Wejście

Liczba całkowita dodatnia mniejsza od 9000. Można założyć, że potrzebna liczba iteracji jest skończona oraz że wszystkie operacje mogą być wykonywane na standardowym typie całkowitym (int) bez obawy o przekroczenie zakresu.

Wyjście

Liczba potrzebnych iteracji.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
59	3

Zadanie C. Suma na ścieżce

Limit czasowy: 10 sekund

Na ocenę: bardzo dobrą, jeśli rozwiązano też zadania A i B

Przez drzewo będziemy rozumieli nieskierowany graf spójny nie posiadający cykli. Drzewo ukorzenione jest drzewem, w którym wyróżniono jeden z wierzchołków; ten wyróżniony wierzchołek nazywamy korzeniem. Liściem w drzewie ukorzenionym nazywamy każdy wierzchołek (wyłączając korzeń) o stopniu równym 1. Ścieżką w drzewie ukorzenionym nazywamy ciąg wierzchołków v_1, v_2, \ldots, v_t (t > 1) o tej własności, że v_1 jest korzeniem oraz wierzchołki v_i i v_{i+1} są połączone krawędzią dla każdego $1 \le i < t$. Ponadto wierzchołek v_i nazywamy rodzicem wierzchołka v_{i+1} .

Załóżmy, że każdemu wierzchołkowi drzewa ukorzenionego, n wierzchołkowego, przypisano liczbę ze zbioru $I = \{0, 1, \dots, n-1\}$ w taki sposób, że dwa różne wierzchołki mają przypisane różne liczby. Wówczas n elementowa tablica a może reprezentować drzewo ukorzenione w następujący sposób: jeśli rodzicem wierzchołka o numerze i jest wierzchołek o numerze j, to a[i] = j. Niech korzeniem będzie wierzchołek o numerze k. Ponieważ korzeń nie ma rodzica, przyjmujemy, że a[k] = -1. Dla przykładowego drzewa

odpowiednią tablicą będzie a = [6, 2, 5, 2, 2, -1, 5]. Drzewo to ma 7 wierzchołków, korzeniem jest wierzchołek o numerze 5, a liśćmi są wierzchołki: 0, 1, 3 i 4.

Napisz program, który na podstawie tablicy a wyznacza maksymalną sumę numerów wierzchołków należących do jednej ścieżki. Dla wyżej przedstawionego drzewa wynikiem byłaby suma = 11 (5 + 6 + 0 lub 5 + 2 + 4).

Wejście

Najpierw podajemy n, a potem n kolejnych liczb w tablicy a. Uwaga: pierwsza liczba na wejściu nie jest zatem częścią wejściowej tablicy; to informacja o długości tablicy a.

Wyjście

Liczba całkowita równa maksymalnej sumie.

Przykład

Dla danych wejściowych	poprawnym wynikiem jest
3	3
1	
-1	
1	