CHAPITRE 8

Ensemble relations et lois de compo

Table des matières

Ι	Théorie naïve des ensembles	2
II	Applications	6

Première partie Théorie naïve des ensembles

Définition: Un <u>ensemble</u> est une collection finie ou infinie d'objets de même nature ou non. L'ordre de ces objets n'a pas d'importance.

Remarque (Notation):

Soit E un ensemble et x un objet de E.

On écrit $x \in E$ ou bien $x \ni E$.

REMARQUE (Paradoxe):

On note Ω l'ensemble de tous les ensembles. Alors, $\Omega \in \Omega$.

Ce n'est pas le cas de tous les ensembles :

 $\mathbb{N} \not\in \mathbb{N}$ car \mathbb{N} n'est pas un entier

On distingue donc 2 types d'ensembles :

- ceux qui vérifient $E \notin E$, on dit qu'ils sont <u>ordinaires</u>
- ceux qui vérifient $E \in E$, on dit qu'ils sont <u>extra-ordinaires</u>

On note ${\cal O}$ l'ensemble de tous les ensembles ordinaires.

- Supposons O ordinaire. Alors, $O \notin O$ Or, O est ordinaire et donc $O \in O$ \mathcal{E}
- Supposons O extra-ordinaire.
 - Alors $O \in O$ et donc O ordinaire \mathcal{L}

C'est un paradoxe

Pour éviter ce type de paradoxe, on a donné une définition axiomatique qui explique quelles sont les opérations permettant de combiner des ensembles pour en faire un autre.

Définition: Soit E un ensemble et F un autre ensemble. On dit que E et F sont $\underline{\acute{e}gaux}$ (noté E=F) si E et F contiennent les mêmes objets.

Définition: L'ensemble $\underline{\text{vide}}$, noté \varnothing est le seul ensemble à n'avoir aucun élément.

Définition: Soient E et F deux ensembles. On dit que F est <u>inclus</u> dans E, noté $F \subset E$ ou $E \supset F$ si tous les éléments de F sont aussi des éléments de E.

 $\forall x \in \mathit{F}, x \in \mathit{E}$

Proposition: Pour tout ensemble $E, \varnothing \subset E$

Définition: Soit E un ensemble. On peut former <u>l'ensemble de toutes les parties de E</u> (une partie de E est un ensemble F avec $F \subset E$). On le note $\mathscr{P}(E)$

$$A \in \mathscr{P}(E) \iff A \subset E$$

Définition: Soit E un ensemble et $A, B \in \mathscr{P}(E)$

1. La <u>réunion</u> de A et B est

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$

2. L'<u>intersection</u> de A et B est

$$A\cap B=\{x\in E\mid x\in A\ \text{et}\ x\in B\}$$

3. Le complémentaire de A dans E est

$$E \setminus A = \{x \in E \mid x \notin A\} = C_E A$$

4. La différence symétrique de A et B est

$$A\Delta B = \{x \in E \mid (x \in A \text{ et } x \notin B) \text{ ou } (x \notin A \text{ et } x \notin B) \}$$

= $(A \cup B) \setminus (A \cap B)$

Proposition: Soit E un ensemble et $A, B, C \in \mathscr{P}(E)$

1.
$$A \cap A = A$$

$$2. \ B \cap A = A \cap B$$

3.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$4. \ A\cap\varnothing=\varnothing$$

5.
$$A \cap E = A$$

6.
$$A \cup A = A$$

7.
$$B \cup A = A \cup B$$

8.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

9.
$$A \cup \varnothing = A$$

10.
$$A \cup E = E$$

11.
$$(E \setminus A) \setminus A = E \setminus A$$

12.
$$E \setminus (E \setminus A) = A$$

13.
$$E \setminus \emptyset = E$$

14.
$$E \setminus E = \emptyset$$

15.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

16.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

17.
$$E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$$

18.
$$E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$$

Deuxième partie Applications

Définition: Une <u>application</u> f est la donnée de

- un ensemble E appelé ensemble de départ
- un ensemble F appelé <u>ensemble d'arrivée</u>
- une fonction qui associe à tout élément x de E un unique élément de F noté f(x)

L'application est notée

$$f: E \longrightarrow F$$

 $x \longmapsto f(x)$

Définition: Soit $f: E \to F$ une application. On dit que f est

- <u>injective</u> si tout élément de F a au plus un antécédant par f
- <u>bijective</u> si tout élément de F a un unique antécédant par f
- surjective si tout élément de F a au moins un antécédant par f

Définition: Soit $f: E \to F$ et $g: F \to G$. L'application notée $g \circ f$ est définie par

$$g \circ f : E \longrightarrow G$$

 $x \longmapsto g(f(x))$

On dit que c'est la composée de f et g.

Proposition: Soient $f: E \to F, g: F \to G, h: G \to G$. Alors, $h \circ (g \circ f) = (h \circ g) \circ f$

REMARQUE (\bigwedge Attention): En général, $g \circ f \neq f \circ g$

Par exemple, $f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x^2 \end{array}$ et $g: \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sqrt{x} \end{array}$

Alors, $f \circ g : \begin{array}{ccc} \mathbb{R}^+ & \longrightarrow & \mathbb{R}^+ \\ x & \longmapsto & x \end{array}$ et $g \circ f : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & |x| \end{array}$

donc $f \circ g \neq g \circ f$

II

Proposition: Soient $f: E \to F$ et $g: F \to G$

- 1. Si $g \circ f$ est injective, alors f est injective
- 2. Si $g\circ f$ est surjective, alors g est surjective
- 3. Si f et g sont surjectives, alors $g \circ f$ est surjective
- 4. Si f et g sont injectives, alors $g \circ f$ est injective

Remarque:

 $f: E \longrightarrow F$

$$f$$
 injective \iff $\bigg(\forall (x,y) \in E^2, f(x) = f(y) \implies x = y \bigg)$

Définition: Soit $f: E \to F$ une <u>bijection</u>. L'application $\begin{cases} F & \longrightarrow & E \\ y & \longmapsto & \text{l'unique antécédant de } y \text{ par } f \end{cases}$ est la <u>réciproque</u> de f notée f^{-1}

Définition: L'<u>identité de E</u> est id_E : $E \longrightarrow E$ $x \longmapsto x$

Proposition: Soient $f: E \to F$ et $g: F \to E$

$$\begin{cases}
f \circ g = \mathrm{id}_F \\
g \circ f = \mathrm{id}_E
\end{cases} \iff \begin{cases}
f \text{ bijective} \\
f^{-1} = g
\end{cases}$$

Définition: Soit $f: E \to F$

1. Soit $A \in \mathcal{P}(E)$. L'<u>image directe</u> de A par f est

$$f(A) = \{ f(x) \mid x \in A \}$$

8

2. Soit $B\in \mathscr{P}(F).$ L'<u>image réciproque</u> de B par f est

$$f^{-1}(B) = \{x \in E | f(x) \in B\}$$

