主管 领导 审核 签字

哈尔滨工业大学(深圳)2018/2019 学年秋季学期

复变函数与积分变换期末试题

题号	_	=	三	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范 遵守考场纪律

	•
株名 	密…
李母	
班号	•

- 填空题 (每小题 3 分, 共 15 分)
- 1. 复数 $(1+i\sqrt{3})^{2018}$ 的三角表示式是
- 2. 设f(z)在|z|<1 内解析,且g(z)= $f(z^2)$,则 $g^{(2019)}(0) = _____$
- 3. 设函数 $\frac{e^{\frac{z}{z-i}}\cos z}{(z^2-3z+2)} = \sum_{n=0}^{\infty} a_n z^n$,则幂级数 $\sum_{n=0}^{\infty} a_n z^n$ 的收敛半经
- 4. 设f(z)在复平面上解析,且 $f(z) = \sum_{n=0}^{\infty} a_n z^n$,则 $Res\left[\left(\frac{1}{z} + \frac{1}{z^2}\right)f(z),0\right] = \underline{\qquad}_{\circ}$
- 5. 已知 $F(\omega)=\pi[\delta(\omega+2)+\delta(\omega-2)]$ 为函数f(t)的傅氏变换,则 $f(t) = \underline{\hspace{1cm}}$

- 单项选择题(每小题3分,共15分)
 - 1. 函数w=Lnz各个分支的解析区域为 ().
 - A. 复平面;

- B. 扩充复平面;
- C. 除去原点的复平面;
- D. 除去原点与负实轴的复平面;
- 2. 设 $f(z) = a_0 + a_1 z$, 其中 a_0, a_1 是复常数,则

$$\frac{1}{2\pi i} \oint_{|z|=1} |f(z)|^2 dz = ().$$

- A. a_0^2 B. a_1^2 C. $a_0 \overline{a_1}$
- D. $\overline{a_0}a_1$

- 3. 下列命题,正确的是()。
 - A. 幂级数在它的收敛圆周上处处收敛;
 - B. 幂级数的收敛半径大于 0,则其在收敛圆内的和函数解析;
 - C. 幂级数 $\sum_{n=0}^{\infty} a_n(z-2)^n$ 在点z=4处收敛,则其在z=1处发散;
 - D. 函数 $f(z)=\overline{z}$ 在复平面上仅在 z=0 处可导。
- 4. 为使积分 $\frac{1}{\pi i}$ $\oint_C \frac{1}{z(z^2-1)} dz = 1$,积分路径 C(C) 为正向简单闭曲线) 应()。
 - A. 包含 1 而不包含 0, -1; B. 包含 0, 1 而不包含-1;
- - C. 包含 0, -1 而不包含 1; D. 包含 0, 1, -1;
- 5. 下列傅氏变换F中,不正确的是 ()。
 - A. $F[u(t)] = \frac{1}{i\omega} + \pi \delta(\omega)$ B. $F[\delta(t)] = 1$
 - C. $F[1] = 2\pi\delta(\omega)$
- D. $F[\cos \omega_0 t] = \delta(\omega + \omega_0) \delta(\omega \omega_0)$

1.
$$I = \oint_{|z|=4} (z + \overline{z}) dz;$$

2.
$$I = \oint_{|z|=2} \frac{e^z}{z(z-1)^2} dz$$
;

3.
$$I = \oint_{|z|=2} \frac{1}{(z+i)^{10}(z-1)(z-3)} dz$$
;

$$4. \quad I = \int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx.$$

四、 (8分) 求函数
$$f(z) = \frac{z-1}{z(z+2)}$$
 在 $0 < |z| < 2$ 内的洛朗展开式.

五、 (7分) 设
$$f(z) = \frac{1}{z^2 - 3z + 2}$$
, 求积分
$$I_n = \oint_{|z| = \frac{1}{2}} \frac{f(z)}{z^{n+1}} dz, n = 0, 1, 2 \cdots$$

六、 (10 分) 利用拉普拉斯变换求解下列初值问题 $\begin{cases} y'' - y' - 6y = 2 \\ y(0) = 1, y'(0) = 0 \end{cases}$

七、 $(5 \, \mathcal{G})$ 设 f(z) 在区域 D 内解析。如果存在两个不全为零的复数 c_1 和 c_2 , 使得

$$c_1 f(z) + c_2 \overline{f(z)} = 0, \forall z \in D,$$

则 f(z) 在区域 D 内是常数。