Detecting Housing Price Shifts Using Advanced Machine Learning Methods

Abha Jhaveri, Nicholas Colonna, Nicole Lange

Introduction: Problem

In 2008, the housing market crashed and shocked the entire financial system. The housing bubble triggered prices to decline more than 40% and led to mortgage defaults that caused millions of foreclosures. By forecasting future shifts in the housing market with our model, we hope to detect a possible crash before it happens. This could help save investors, homeowners and prospective buyers from huge losses, like what happened in 2008.

Data Understanding

- 371 monthly observations from 2/1/87-12/1/17
- Dependent Variable: Direction of monthly returns for the Case Shiller Home Price Index
- 10 independent variables encompassing macroeconomic indicators, housing market trends, and consumer preferences
- Source: St. Louis Federal Reserve (FRED)

Data Preparation

- Classification of Case Shiller Index
- Computed the median monthly return of the index
- Classified as 1 (Up) if greater than the median, 0 (Down) otherwise
- Data Split
 - Training set: 2/1/87-12/1/13 (323 observations)
 - Testing set: 1/1/14 -12/1/17 (48 observations)
- Additional Data Splits
 - Pre-Crisis(2/1/87-7/1/06)
 - Post-Crisis (8/1/06-12/1/17)

Modeling

- Features: (6 filtered via backward stepwise selection)
 - Workers Over 55, Monthly Supply of Houses, Population Growth, 10 Year Treasury Yield, Median Household Income, CPI Inflation
- Support Vector Machine Classifier
 - Kernel: radial basis function (rbf)
 - Gamma: 7·10⁻⁸
 - o C: 0.1
- Random Forest Classifier
 - Criterion: entropy
 - Max Depth: 3
 - # of Estimators: 4

Support Vector Classifier vs. Random Forest Classifier

Results & Evaluation

Model performance on test set: 4yrs of economic data

	precision	recall	f1-score	support
0	0.6471	0.8462	0.7333	26
1	0.7143	0.4545	0.5556	22
avg / total	0.6779	0.6667	0.6519	48

 Selected the number of estimators and maximum depth that minimized MSE

• 1 of 4 Decision Trees Used by Random Forest Model

Conclusion

- Our model can predict the monthly directional movement of the housing market more than 50% of the time
- Random Forest is a strong algorithm for classification due to its majority vote methodology
- Reduces both variance and bias
- The applications of Random Forest are broad and not limited to a binary-state prediction

Deployment

Predicted

Down

22

12

Actual

Down

Actual

Confusion matrix on test set

Predicted

Up

10

Prediction vs. Actual