CS 480

Introduction to Artificial Intelligence

November 15, 2022

Announcements / Reminders

Follow Week 13 TO DO List

Programming Assignment #02 due on Sunday (11/20/22) at 11:00PM CST

Grading TA assignment:

https://docs.google.com/spreadsheets/d/1ExS0bKnGt_fdf4LHa3YS1qRA7-Iq4xqXVjfSAPMaGVk/edit?usp=sharing

- UPDATED Final Exam date:
 - December 1st, 2022 (last week of classes!)
 - Ignore the date provided by the Registrar

Plan for Today

- Decision Networks
- Markov models [BONUS MATERIAL]
- Fuzzy logic [BONUS MATERIAL]
- Bio-Inspired AI [BONUS MATERIAL]

Decision Network (Influence Diagram)

Decision networks (also called influence diagrams) are structures / mechanisms for making rational decisions.

Decision networks are based on Bayesian networks, but include <u>additional nodes</u> that represent <u>actions</u> and <u>utilities</u>.

Decision Networks

The most basic decision network needs to include:

- information about current state s
- possible actions
- resulting state s' (after applying chosen action a)
- utility of the resulting state U(s')

(Single-Stage) Decision Networks

General Structure

Simplified Structure

Decision Network

(Single-Stage) Decision Networks

General Structure

Utility Table

S	low	low	low	low	high	high	high	high
Q	low	low	high	high	low	low	high	high
F	low	high	low	high	low	high	low	high
U	10	20	5	50	70	150	100	200

Simplified Structure

Action-Utility Table (not all columns shown)

AT	low	low	low	 	high	high	high
L	low	low	high	 	low	high	high
C	low	high	low	 	high	low	high
AS	A	A	A	 	В	В	В
U	10	20	5	 	150	100	200

Decision Network: Evaluation

The algorithm for decision network evaluation is as follows:

- 1. Set the evidence variables for the current state
- 2. For each possible value a of decision node:
 - a. Set the decision node to that value
 - b. Calculate the posterior probabilities for the parent nodes of the utility node
 - c. Calculate the utility for the action / value a
- 3. Return the action with highest utility

Agent's Decisions

Recall that agent **ACTIONS** change the state:

- if we are in state s
- action a is expected to
- lead to another state s' (outcome)

Given uncertainty about the current state s and action outcome s' we need to define the following:

- probability (belief) of being in state s: P(s)
- probability (belief) of action a leading to outcome s': P(s' | s, a)

Now:

$$P(s' \mid s, a) = P(RESULT(a) = s') = \sum_{s} P(s) * P(s' \mid s, a)$$

Expected Action Utility

The expected utility of an action a given the evidence is the average utility value of all possible outcomes s' of action a, weighted by their probability (belief) of occurence:

$$EU(a) = \sum_{s'} \sum_{s} P(s) * P(s' \mid s, a) * U(s') = \sum_{s'} P(Result(a) = s') * U(s')$$

Rational agent should choose an action that maximizes the expected utility:

chosen action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a)

Decision: take umbrella

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(take) = ???$$

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = ???$$

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

S_1 ': D = take, W = sun
S_2 ': D = take, W = rain
EU(take) =
$P(Result(take) = S_1')*U(S_1') +$
$P(Result(take) = S_2')*U(S_2') =$
0.70 * 20 + 0.30 * 70 = 35

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = 35$$

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

S_3 : D = leave, W = sun	
S_4 ': D = leave, W = rain	
EU(leave) =	
$P(Result(leave) = \frac{S_3'}{})*U(\frac{S_3'}{}) +$	
$P(Result(leave) = S_4')*U(S_4') =$	=
0.70 * 100 + 0.30 * 0 = 70	

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(leave) = 70$$

Which action to choose: take or leave Umbrella?

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a) | $\max(\text{EU(take)}, \underline{\text{EU(leave)}}) = \max(35, 70) \rightarrow \text{leave}$

Decision: take umbrella

Decision: take umbrella

 $EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$

D	W	U
leave	sun	100
leave	rain	0
take	sun	
take	rain	70

$$EU(take) = ???$$

Decision: leave umbrella

 $EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$

W	U
sun	100
rain	0
sun	20
rain	70
	rain sun

$$EU(leave) = ???$$

Decision: take umbrella

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

$$EU(take) = 35$$

$$EU(a) = \sum_{s'} P(Result(a) = s') * U(s')$$

	D	W	U
	leave	sun	100
	leave	rain	0
:	take	sun	20
	take	rain	70

$$EU(leave) = 70$$

Which action to choose: take or leave Umbrella?

P(W=sun)

0.70

P(W=rain)

0.30

P(F=sun)

0.59

P(F=rain)

0.41

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

action =
$$\underset{a}{\operatorname{argmax}}$$
 EU(a) | $\max(\text{EU(take)}, \underline{\text{EU(leave)}}) = \max(35, 70) \rightarrow \text{leave}$

Decision: take umbrella

Decision:take umbrella given e

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Decision:leave umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

	D	W	U
lea	ave	sun	100
lea	ave	rain	0
ta	ke	sun	20
ta	ke	rain	70

Decision:take umbrella given e

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

Conditional probabilities Assume that we are given:

F	W	P(F W)
sun	sun	0.80
rain	sun	0.20
sun	rain	0.10
rain	rain	0.90

By Bayes' Theorem:

$$P(W = \text{sun} \mid F = \text{sun}) = \frac{P(F = \text{sun} \mid W = \text{sun}) * P(W = \text{sun})}{P(F = \text{sun})} = \frac{0.80 * 0.70}{0.59} = 0.95$$

$$P(W = sun \mid F = rain) = \frac{P(F = rain \mid W = sun) * P(W = sun)}{P(F = rain)} = \frac{0.20 * 0.70}{0.41} = 0.34$$

$$P(W = rain \mid F = sun) = \frac{P(F = sun \mid W = rain) * P(W = rain)}{P(F = sun)} = \frac{0.10 * 0.30}{0.59} = 0.05$$

$$P(W = rain \mid F = rain) = \frac{P(F = rain \mid W = rain) * P(W = rain)}{P(F = rain)} = \frac{0.90 * 0.30}{0.41} = 0.66$$

Decision:take umbrella given sun

 $EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

EU(take given sun forecast) = ???

Decision:leave umbrella given sun

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

EU(leave given sun forecast) = ???

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

leave

take

take

rain

sun

rain

0

70

Decision:leave umbrella given sun

 $EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$

EU(leave given sun forecast) = 95

 $P(Result(take)=S_1'|e)*U(S_1') +$

 $P(Result(take)=S_2'|e)*U(S_2') =$

0.95 * 20 + 0.05 * 70 = 22.5

EU(take) =

0

20

70

Decision:take umbrella given rain

 $EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

EU(take given rain forecast) = ???

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

D	W	U
leave	sun	100
leave	rain	0
take	sun	20
take	rain	70

EU(leave given rain forecast) = ???

100

0

70

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

$$EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s') \mid EU(a \mid e) = \sum_{s'} P(Result(a) = s' \mid e) * U(s')$$

EU(leave given rain forecast) = 34

0

20

70

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision: leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision:leave umbrella given sun

EU(leave given sun forecast) = 95

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision:leave umbrella given rain

EU(leave given rain forecast) = 34

Decision:take umbrella given sun

EU(take given sun forecast) = 22.5

Decision:leave umbrella given sun

Value of Perfect Information

The value/utility of best action α without additional evidence (information) is :

$$MEU(\alpha|\epsilon) = \max_{\alpha} \sum_{s'} P(Result(\alpha) = s') * U(s')$$

If we include new evidence/information ($E_j = e_j$) given by some variable E_j , value/utility of best action α becomes:

$$MEU(a_{e_j} \mid e_{j.SSS}) = \frac{max}{a} \sum_{s'} P(Result(a) = s' \mid e_j) * U(s')$$

The value of additional evidence/information from Ei is:

$$VPI(E_j) = \left(\sum_{e_j} P(E_j = e_j) * MEU(a_{e_j} \mid E_j = e_j)\right) - MEU(a)$$

using our current beliefs about the world.

Decision network

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{split} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \textit{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \textit{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{split}$$

Outcome tree

Decision:leave umbrella

$$EU(leave) = 70$$

The value of best action α without additional evidence

$$MEU(\alpha) = MEU(leave) = 70$$

With evidence information ($E_i = e_i$) given by Forecast:

$$MEU(a_{e_1} | e_1) = MEU(take | F = rain) = 53$$

 $MEU(a_{e_2} | e_2) = MEU(leave | F = sun) = 95$

The value of additional evidence / information from F is:

$$\begin{split} \text{VPI}(E_j) = & \left(\sum_{e_j} \text{P}(E_j = e_j) * \text{MEU}(a_{e_j} \mid E_j = e_j) \right) - \textit{MEU}(a) \\ \text{VPI}(F) = & \left(\text{P}(F = rain) * \text{MEU}(take \mid F = rain) + \text{P}(F = sun) * \right. \\ \text{MEU}(\text{leave} \mid F = sun)) - \textit{MEU}(\text{leave}) = \\ & \left(0.41 * 53 + 0.59 * 95 \right) - 70 = 7.78 \end{split}$$

Decision:take umbrella given rain

EU(take given rain forecast) = 53

Decision:leave umbrella given sun

EU(leave given sun forecast) = 95

Utility & Value of Perfect Information

New information will not help here.

New information may help a lot here.

New information may help a bit here.

VPI Properties

Given a decision network with possible observations \mathbf{E}_{j} (sources of new information / evidence):

The expected value of information is nonnegative:

$$\forall_{j} \text{VPI}(E_{j}) \geq 0$$

VPI is not additive:

$$VPI(E_j, E_k) \neq VPI(E_j) + VPI(E_k)$$

VPI is order-independent:

$$VPI(E_j, E_k) = VPI(E_j) + VPI(E_k \mid E_j) = VPI(E_k) + VPI(E_j \mid E_k) = VPI(E_k, E_j)$$

Information Gathering Agent

function Information-Gathering-Agent(percept) returns an action persistent: D, a decision network

```
integrate percept into D

j \leftarrow the value that maximizes VPI(E_j) / C(E_j)

if VPI(E_j) > C(E_j)

then return Request(E_j)

else return the best action from D
```

BONUS MATERIAL

(NOT ON EXAMS!)

Conditional Independence

Causal Chain:

$$P(M \mid A, B) = \frac{P(A, B, M)}{P(A, B)} = \frac{P(B) * P(A \mid B) * P(M \mid A)}{P(B) * P(A \mid B)} = P(M \mid A)$$

Burglary and MaryCalls are CONDITIONALLY independent given Alarm.

If Alarm is given, what "happened before" does not directly influence MaryCalls.

Markov Chains / Markov Property

A sequence of random variables $\{X_i\}$ is called a Markov chain if it has the Markov property (memoryless property):

$$P(X_k = a \mid X_{k-1} = b, X_{k-2} = c, ..., X_1 = z) = P(X_k = a \mid X_{k-1} = b)$$

Markov Model

A Markov model is a stochastic model used to model (pseudo-) randomly changing systems.

Its key future is the assumption that future states depend only on the current state, not on the events that occurred before it (it assumes the Markov property).

Check out this demo: https://setosa.io/ev/markov-chains/

Fuzzy Logic: the Idea

Boolean ("crisp") logic

true

false

Fuzzy (many valued) logic

true

false

Fuzzy Logic: the Idea

Boolean ("crisp") logic

cold

hot

Fuzzy (many valued) logic

cold warm hot

Fuzzy Logic: Fuzzy Sets

"Crisp" Set A

an element is a set member or not

 $a \in A$ $b \in A$ $c \notin A$

Fuzzy Set A:

an element is a set member with some membership degree μ

$$\mu(a) = 1.0$$

 $\mu(b) = 0.1$
 $\mu(c) = 0.0$

Fuzzy Logic: Fuzzy Sets

Fuzzy Logic: Membership Functions

Fuzzy Logic: Membership Functions

Fuzzy Logic: Logic Operators

Fuzzy Logic: the AND Operator

Fuzzy Logic: the OR Operator

Fuzzy Logic: the NOT Operator

MORE Bonus Material Chapter 4 - related (NOT ON EXAMS!) Search in Complex Environments

Complex Environments

What's the Connection Here?

Source: https://wikipedia.org/

Charles Darwin

Source: https://wikipedia.org/

Charles Robert Darwin was an English naturalist, geologist and biologist, best known for his contributions to the science of evolution. His proposition that all species of life have descended over time from common ancestors is now widely accepted, and considered a foundational concept in science.

Evolved Antenna

An evolved antenna is an antenna designed fully or substantially by an automatic computer design program that uses an evolutionary algorithm that mimics Darwinian evolution.

Source: https://wikipedia.org/

Genetic Algorithm: The Idea

Genetic Algorithm: The Idea

Source: https://livebook.manning.com/book/algorithms-and-data-structures-in-action/chapter-18/v-14/102

Genetic Algorithm: Example

"Good enough" / local maximum

Best / global maximum

Traveling Salesman Problem

A traveler needs to visit all the cities from a list, where distances between all the cities are known and each city should be visited just once. What is the shortest possible route that he visits each city exactly once and returns to the origin city?

N cities \rightarrow (N-1)!/2 paths | 15 cities \rightarrow 43589145600 paths

Source: https://medium.com/ivymobility-developers/traveling-salesman-problem-9ab623c88fab

Example: Genetic Algorithm

http://ostap0207.github.io/web-ga-tsp/

Ant Colony Optimization: The Idea

Source: https://wikipedia.org/

Example: Ant Colony Optimization

https://courses.cs.ut.ee/demos/visual-aco/

Genetic Algorithm in Action

Source: https://www.youtube.com/watch?v=qv6UVOQ0F44

Bonus DEFINITELY OPTIONAL Material

