内积空间

- 1. 内积: 设 (X,K) 线性空间, 内积运算 $<\cdot,\cdot>: X\times X\to K$ 应该满足:
 - (a) 双线性: $\forall \alpha, \beta \in K, x_1, x_2 \in X, <\alpha x_1 + \beta x_2, y>=\alpha < x_1, y>+\beta < x_2, y>;$
 - i. 共轭线性: $\langle x, \alpha y_1 + \beta y_2 \rangle = \bar{\alpha}(x, y_1) + \bar{\beta}(x, y_2);$
 - (b) 共轭对称性: $\forall x, y \in X, \langle x, y \rangle = \overline{\langle y, x \rangle};$
 - (c) $< x, x > \ge 0$, 对于 < x, x > = 0 当且仅当 $x = \theta$;
- 2. 内积空间: 装配内积结构 $<\cdot,\cdot>$ 的空间 $(X,<\cdot,\cdot>)$ 被称为内积空间;
 - (a) 内积诱导的范数: $||x|| := \sqrt{\langle x, x \rangle};$
 - (b) 引理: $\forall x, y \in X, | < x, y > | \le ||x|| \cdot ||y||$;
 - (c) 施瓦兹不等式: $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$;
- 3. 希尔伯特空间: 若 $(X, <\cdot, \cdot>)$ 是完备的,则称 $(X, <\cdot, \cdot>)$ 是希尔伯特空间;
- 4. 平行四边形法则: 对内积空间 $(X, <\cdot, \cdot>)$, $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$;
- 5. 正交: 在内积空间 $(X, <\cdot, \cdot>)$ 中, $x, y \in X, A, B \subset X$:
 - (a) 若< x, y >= 0则称x 与 y正交,记为 $x \perp y$;
 - (b) 若 $\forall z \in A$, 有 $\langle x, y \rangle = 0$, 则称 x 与 A 正交, 记为 $x \perp A$;
 - (c) 若 $\forall z \in A, h \in B$, 都有 $\langle z, h \rangle = 0$, 则称 $A \ni B$ 正交, 记为 $A \perp B$;
- 6. 内积的连续性: 对内积空间 $(X, <\cdot, \cdot>)$, 序列 $\{x_n\}, \{y_n\} \subset X$, 若 $x_n \to x, y_n \to y, y_n < x_n, y_n > \to < x, y>$;
- 7. 内积空间中点到子空间的距离: 在度量空间 (X,d) 中, $x \in X, M \subset X$, $\delta = d(x,M) = \inf_{y \in M} d(x,y)$;
- 8. 凸集: 设 X 是线性空间, $M \subset X$, 若 $\forall x, y \in M$, 有凸组合 $\forall \lambda \in [0,1], \exists z \in M, z = \lambda x + (1-\lambda)y$, 则称 M 是凸集;

- (a) 点到集合距离可达的条件: 设 $(X, <\cdot, \cdot>)$ 是内积空间, $M\subset X, M\neq \phi$, 若 M 是完备的凸集, 则 $\forall x\in X, \exists !y\in M: d(x,M)=\inf_{\tilde{y}\in M}||x-\tilde{y}||=||x-y||;$
- (b) 垂足存在条件: 设 $(X, <\cdot, \cdot>)$ 是内积空间, $Y \subset X, Y$ 是完备子空间, $x \in X$, 则 $\exists ! y \in Y, s.t.: ||x-y|| = \inf_{\tilde{y} \in Y} ||x-\tilde{y}|| = d(x,Y)$. 令 z = x y, 则 $z \perp Y$;
- 9. 直和: 设 X 为线性空间, $Y, Z \subset X$, 若 $\forall x \in X$, 都 $\exists ! x = y + z, y \in Y, z \in Z$, 则称 X 为子空间 Y, Z 的直和, 记作 $X = Y \oplus Z$;
 - (a) 正交补: 设 $(X, <\cdot, \cdot>)$ 是内积空间, $M \subset X$ 非空, 称 $M^{\perp} = \{x \in X | x \perp M\}$ 为 M 的正交补 (集合);
 - i. 无论 M 是不是子空间, M^{\perp} 都是子空间;
 - ii. 无论 M 是不是闭集, M^{\perp} 都是闭集 (进一步是闭子空间);
 - (b) 直和分解: 设 $(H, <\cdot, \cdot>)$ 是希尔伯特空间, $Y \subset H$ 是闭子空间, 则 $H = Y \oplus Y^{\perp}$;
 - i. $Y \cap Y^{\perp} = \{\theta\};$
 - ii. 正交投影: 若 $x \in H$, $x = y + z, y \in Y, z \in Y^{\perp}$, 则称 y, z 分别 为 x 在 Y, Y^{\perp} 上的正交投影;
 - iii. 投影算子: $P: H \rightarrow Y, x \rightarrow Px = y$; A. 幂等性: $P^2 = P$;
 - (c) 设 H 是希尔伯特空间, $Y \subset H$ 是闭子空间, 则 $(Y^{\perp})^{\perp} = Y$;
- 10. X 是内积空间, 若 $A \subset B \subset X$, 则 $B^{\perp} \subset A^{\perp}$;
 - (a) 对希尔伯特空间 $H, M \subset H$ 是非空子集, 当且仅当 $M^{\perp} = \{\theta\}$, $span\{M\}$ 在 H 中稠密;
- 11. 正交集: 对内积空间 $X, S = \{e_{\alpha} | \alpha \in A\} \subset X$, 若 $\forall \alpha, \beta \in A, \alpha \neq \beta$, 都 有 $e_{\alpha} \perp e_{\beta}$, 则称 S 为正交集;
 - (a) 正交规范集: 若正交集 S 中的元素都满足 $||e_{\alpha}|| = 1$, 则称 S 为正 交规范集;
- 12. Bessel 不等式: 对内积空间 $X, S = \{e_{\alpha} | \alpha \in A\} \subset X$ 是正交规范集, 则 $\forall x \in X$, 都有 $\sum_{\alpha \in A} |< x, e_{\alpha} > |^2 \leq ||x||^2$;

- (a) 设 H 是希尔伯特空间, $\{e_{\alpha}|\alpha\in A\}\subset H$ 是正交规范子集, $x\in H$, 则 $\sum_{\alpha\in A}< x, e_{\alpha}>e_{\alpha}\in H$, 且 $||x||^2=\sum_{\alpha\in A}|< x, e_{\alpha}>|^2+||x-\sum_{\alpha\in A}< x, e_{\alpha}>e_{\alpha}||^2$;
- 13. 设 X 是内积空间, $\{e_{\alpha}, \alpha \in A\} = S \subset X$ 是正交规范集:
 - (a) 完备性: 若 $S^{\perp} = \{\theta\}$, 则称 S 完备;
 - (b) Fourier 系数: 若 $\forall x \in X$, 都有 $x = \sum_{\alpha \in A} \langle x, e_{\alpha} \rangle e_{\alpha}$, 则称 S 为一个基 (或封闭), 称 $\{\langle x, e_{\alpha} \rangle\}_{\alpha \in A}$ 为 x 关于基 S 的 Fourier 系数;
- 14. 设 H 是希尔伯特空间, $S = \{e_{\alpha}, \alpha \in A\} \subset H$ 是正交规范集合, 则下面 3 点等价:
 - (a) S 是基 (或封闭);
 - (b) S 是完备的;
 - (c) Bessel 不等式退化为 Parseval 等式: $\forall x \in A, ||x||^2 = \sum_{\alpha \in A} |< x, e_\alpha > |^2;$
- 15. 正交规范基存在: 设 H 是希尔伯特空间, 若 H 可分, 则 H 存在一个正 交规范基 S, 且 S 可数;
- 16. Schmidt 正交化过程:
 - (a) $y_1 = x_1, e_1 = \frac{y_1}{\|y_1\|};$
 - (b) $y_2 = x_2 \langle x_2, e_1 \rangle e_1, e_2 = \frac{y_2}{||y_2||};$

(c)
$$y_n = x_n - \sum_{i=1}^{n-1} \langle x_n, e_i \rangle e_i, e_n = \frac{y_n}{||y_n||};$$

- 17. 黎斯定理: 设 H 是希尔伯特空间, H 上任何有界线性泛函 $f: H \to K$, 都可以表示为内积形式, 即 $\exists ! z = z_f \in H, s.t.: \forall x \in H, f(x) = < x, z >$, 且 ||f|| = ||z||;
- 18. 内积空间的元素相等: 设 X 是内积空间, 元素 $v_1, v_2 \in X$, 若对 $\forall w \in X$, 有 $< v_1, \omega > = < v_2, \omega >$, 则 $v_1 = v_2$. 特别的, 若对 $\forall w \in X$, 有 $< v_1, w > = 0$, 则 w = 0;
- 19. Hahn-Banach 定理: 设 X 是赋范空间, 子空间 $Z \subset X$, 映射 $f: Z \to K$ 是有界线性泛函, 则 f 的延拓 $\exists \tilde{f}: X \to K$ 也是有界线性泛函, 并满足:

- (a) 延拓: $\tilde{f}(x) = f(x), \forall x \in Z$;
- (b) 保范: $||\tilde{f}|| = ||f||$;
- (c) 推论: 设 X 是赋范空间, $x_0 \in X$, $x_0 \neq \theta$, 则 $\exists \tilde{f}: X \to K$ 有界线性 泛函, 使得 $\tilde{f}(x_0) = ||x_0|| \neq 0$, 且 $||\tilde{f}|| = 1$;
- (d) 注释: 赋范空间 X 上的有界线性泛函足够多. 即若 $x_1, x_2 \in X, x_1 \neq x_2,$ 则 $\exists \tilde{f}: X \to K$ 有界线性泛函, 使得 $\tilde{f}(x_1) \neq \tilde{f}(x_2);$
- 20. 一致有界定理 (共鸣定理): 设 X 是巴拿赫空间, Y 是一般赋范空间, 序列 $\{T_n\}_{n=1}^{\infty}: X \to Y$ 中的算子都有界线性. 若 $\forall x \in X, \exists M_x > 0$, 使得 $||T_nx|| \leq M_x, \forall n \in \mathbb{Z}^+,$ 则 $\exists M > 0$ 使得 $||T_n|| \leq M, \forall n \in \mathbb{Z}^+;$
- 21. 开映射: 设 X, Y 是度量空间, 映射 $T: X \to Y$. 若 X 中任意开集 U, 它的象 $TU = \{Tx, x \in U\}$ 是 Y 中的开集, 则称 T 是开映射;
 - (a) 注意: 连续映射 $(Im \to Ker$ 均是开集) \neq 开映射 $(Ker \to Im$ 均是 开集);
- 22. 开映射定理: 设 X,Y 是巴拿赫空间, 映射 $T:X\to Y$ 是满射且为有界 线性算子, 则 T 是开映射;
 - (a) 进一步, 若 T 是双射且为有界线性算子, 则逆映射 $T^{-1}: Y \to X$ 是连续线性算子;
- 23. 等价范数: 设 X 是线性空间, 范数 $||\cdot||_1$ 和 $||\cdot||_2$ 都是 X 上的范数, 且 $(X,||\cdot||_1)$ 和 $(X,||\cdot||_2)$ 都是完备的. 若存在 b>0, 使得 $||x||_2 \le b||x||_1, \forall x \in X$, 则存在 a>0, 使得 $||x||_1 \le a||x||_2, \forall x \in X$. 从而, $||x||_1$ 与 $||x||_2$ 是等价的;
- 24. 闭线性算子: X, Y 是赋范空间, 映射 $T: D(T) \subset X \to Y$ 是线性算子, 乘积赋范空间 $(X \times Y, || \cdot ||)$ 中的元素 $(x, y) \in X \times Y$, 乘积空间的范数 ||(x, y)|| = ||x|| + ||y||. 若算子 T 的图 $G(T) = \{(x, y) \in X \times Y | x \in D(T), y = Tx\}$ 在 $X \times Y$ 中是闭集, 则称 T 为闭线性算子;
 - (a) 注意: 对于线性算子, 闭算子 ⇒ 连续 (有界);
- 25. 闭图像定理: 设 X, Y 是巴拿赫空间, 线性算子 $T: D(T) \subset X \to Y$. 若 D(T) 是闭集, 且 T 是闭算子, 则 T 有界;

- (a) 闭算子条件: $T:D(T)\subset X\to Y$ 有界线性, 且 D(T) 是闭集, 则 T 是闭算子;
- 26. 伴随算子: 设 X,Y 是赋范空间, X 的对偶空间 $X' = \{f: X \to K$ 有界线性泛函}, Y 的对偶空间 $Y' = \{g: Y \to K$ 有界线性泛函}, 有界线性算子 $T: X \to Y$, 则可定义 $T^*: Y' \to X', g \to T^*g$, 满足 $T^*g(x) := g(Tx)$. 称 T^* 为 T 的伴随算子;
 - (a) 伴随算子 T^* 是线性有界算子, 且 $||T^*|| = ||T||$;
- 27. 二次对偶空间: 设 $(X, ||\cdot||)$ 是赋范空间, 对偶空间 $X' = \{f : X \to K 有界线性泛函\}$, 算子 $f \in X'$ 的范数 $||f|| = \sup_{x \in X, x \neq \theta} \frac{|f(x)|}{||x||}$, 则 $(X', ||\cdot||)$ 也是赋范空间. X' 的对偶空间 $(X')' = \{g : X' \to K 有界线性泛函\}$, 再对算子 $g \in (X')'$ 定义范数 $||g|| = \sup_{f \in X', f \neq \theta} \frac{|g(f)|}{||f||}$ 得到赋范空间 $((X')', ||\cdot||)$. 称 (X')' 为 X 的二次对偶空间, 记作 X'';
 - (a) 赋范空间 $X, x \in X$, 定义 $g_x : X' \to K, f \to g_x(f) = f(x)$, 则 $g_x \in X''$ 是有界线性泛函, 且 $||g_x|| = ||x||$;
- 28. 弱收敛: 在赋范空间 X 中, 有序列 $\{x_n\} \subset X$, 若有界线性泛函 $\forall f \in X', f(x_n) \to f(x)$, 则称序列弱收敛, 记为 $x_n \to^{\omega} x \in X$ (手写时 ω 记在 \to 上方);
 - (a) 弱收敛的极限唯一;
 - (b) 弱收敛序列的任意子序列也是弱收敛;
 - (c) 弱收敛序列一定是有界的, 即 $||x_n|| \leq M, \forall n$;
- 29. 强弱收敛的关系:
 - (a) 在赋范空间 X 中, 序列 $\{x_n\} \subset X$, 若序列强收敛 $x_n \to x$, 则序列 弱收敛 $x_n \to \omega$ x;
 - (b) 在赋范空间 X 中, 若维数 dim $X = K < +\infty$ 有限, 则弱收敛可推出强收敛;
- 30. 在希尔伯特空间 H 中, 序列 $x_n \to^{\omega} x$ 当且仅当 $\forall z \in H$ 都有 $< x_n, z > \to < x, z >$;