GUIA 2. SISTEMA DE NUMEROS BINARIOS

Juan Esteban Alfonso Hernandez

T.I 1032940696

Ficha:2926378

Sena

Matematicas

Diana Torres

18 de octubre del 2024

Taller

1. Convertir los siguientes números decimales a sus equivalentes binarios:

a.
$$64_{10} \rightarrow 64 = 1000000_2$$

b.
$$100_{10} \rightarrow 64 + 32 + 4 = 1100100_2$$

c.
$$111_{10} \rightarrow 64+32+8+4+2+1 = 11011111_2$$

d.
$$145_{10} \rightarrow 128 + 16 + 1 = 10010001_2$$

e.
$$255_{10} -> 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 111111111_2$$

f.
$$500_{10} \rightarrow 256 + 128 + 64 + 32 + 16 + 4 = 111110100_2$$

g.
$$668_{10} -> 512 + 128 + 16 + 8 + 4 = 10100111100_2$$

$$h.\ 1000_{10} -> 512 + 256 + 128 + 64 + 32 + 8 = 1111101000_2$$

$$16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 =$$

111111111111111111

j.
$$65536_{10} -> 65536 = 1000000000000000000$$

BB	2^{17}	2^{16}	215	2^{14}	2^{13}	212	211	2 ¹⁰	29	28	27	2^6	25	2^4	2^3	2^2	21	20
D	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
a.												1	0	0	0	0	0	0
b.												1	1	0	0	1	0	0
c.												1	1	0	1	1	1	1
d.											1	0	0	1	0	0	0	1
e.											1	1	1	1	1	1	1	1
f.										1	1	1	1	1	0	1	0	0
g.									1	0	1	0	0	1	1	1	0	0
h.									1	1	1	1	1	0	1	0	0	0
i.				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
j.		1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

2. Convertir los siguientes números binarios a sus equivalentes decimales:

b.
$$10000101_2 -> 128 + 4 + 1 = 133$$

c.
$$011100_2 -> 16 + 8 + 4 = 28$$

e.
$$101010_2 -> 32 + 8 + 2 = 42$$

f.
$$1111111111_2 \rightarrow 256+128+64+32+16+8+4+2+1=511$$

g.
$$100100000001_2$$
 -> $2048+256+1=2305$

j.
$$11110001111_2 \rightarrow 1024 + 512 + 256 + 128 + 8 + 4 + 2 + 1 = 1935$$

BB	2^{17}	2^{16}	2^{15}	2^{14}	2^{13}	2^{12}	211	2^{10}	29	28	27	2 ⁶	25	2^4	2^3	2^2	21	20
D	131072	65536	32768	16384	8192	4096	2048	1024	512	256	128	64	32	16	8	4	2	1
a.											0	0	1	1	0	1	1	0
b.											1	0	0	0	0	1	0	1
c.													0	1	1	1	0	0
d.										1	0	0	1	1	1	1	0	0
e.													1	0	1	0	1	0
f.										1	1	1	1	1	1	1	1	1
g.							1	0	0	1	0	0	0	0	0	0	0	1
h.										1	0	1	1	1	1	0	0	1
i.												1	1	1	0	0	0	1
i.								1	1	1	1	0	0	0	1	1	1	1