Tutorial for KPROJ

Mingxing Chen

Hunan Normal University

2019

Procedures for doing band unfolding

Step 1: Do a standard VASP SCF calculation to get CHGCAR.

Step 2: Do a band calculation to get WAVECAR.

- The k-points in file KPOINTS now may be different from those we usually used for the supercell.
- ➤ If your system is large, you may split the band calculation into multiple calculations (see user_guide and examples defected_graphene and Ge_Al2O3).

Step 3: Do a *KPROJ* calculation.

- > File INKPROJ is needed.
- For interfaces, you may set proper values for LZLAYER, zlay1, zlay2. For bulk, you can comment out LZLAYER, LXLAYER, LYLAYER.

Step 4: Preparing for plotting.

- > Set the right E-fermi in the output file bs_projected.dat.
- ➤ If you have multiple bs_projected.dat for a large system, please merge them into one first (see user guide).
- > Run futil or the script run_futil to put the data on a grid for plotting.
- **futil** can be obtained by "make futil" under src.
- run_futil is script under the directory utils. Please copy it to your working directory.

Step 5: Do the plotting.

Regarding Step 2: How to set the k-points for band unfolding?

Using the transformation matrix between the primitive cell and the supercell

Basis vectors for the supercell
$$\begin{pmatrix} A_1 \\ A_2 \\ A_3 \end{pmatrix} = \begin{pmatrix} S_{11} & S_{12} & S_{13} \\ S_{21} & S_{22} & S_{23} \\ S_{31} & S_{23} & S_{33} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 Basis vectors for the primitive cell

In reciprocal space

$$\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = S^T \begin{pmatrix} B_1 \\ B_2 \\ B_3 \end{pmatrix}$$
 S^T is the transpose of the matrix S primitive cell supercell

• Do a transformation for the k-points. Remember that we are trying to get the unfolded band structure for the primitive cell. So the k-points used for the band structure should be those in the BZ of the primitive cell. If these k-points are given in the direct coordinates (in the basis b_i). We need to write them in the reciprocal basis of the supercell, i.e., \boldsymbol{B}_{i} .

$$(k'_{x}, k'_{y}, k'_{z}) = (k_{x}, k_{y}, k_{z})S^{T}$$

Use (k'_x, k'_y, k'_z) for Step 2

Examples for getting the k-points

• Graphene in 5 x 5 supercell

$$S = \begin{array}{cccc} 5 & 0 & 0 \\ S = & 0 & 5 & 0 \\ 0 & 0 & 1 \end{array}$$

 $S = 0 \ 5 \ 0$ S^T : transpose of S

The K point in the 1st BZ of the primitive cell may be (1/3, 1/3, 0), which is in the reciprocal basis vectors of the primitive cell, i.e., \boldsymbol{b}_i .

We need to write it in the reciprocal basis vectors of the supercell, i.e., \mathbf{B}_{i} .

$$(k'_x, k'_y, k'_z) = (k_x, k_y, k_z)S^T = (5/3, 5/3, 0)$$

For the *M* point (0, 0.5, 0), it is (0, 2.5, 0)

KPOINTS

direct coordinates

- 1.6666666666667 1.66666666666667 0.000000000000000 1 K

$\sqrt{3}$ x $\sqrt{3}$ supercell of graphene

• The **transform matrix** *S* between the primitive cell and supercell:

$$\begin{pmatrix} \vec{A}_1 \\ \vec{A}_2 \\ \vec{A}_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{pmatrix}$$

High symmetry points for KPOINTS for the band unfolding:

$\sqrt{7}$ x $\sqrt{7}$ supercell of graphene

• The **transform matrix S** between the primitive cell and supercell:

$$\begin{pmatrix} \vec{A}_1 \\ \vec{A}_2 \\ \vec{A}_3 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vec{a}_3 \end{pmatrix}$$

High symmetry points for KPOINTS for the band unfolding:

Brilloin zones

 For large systems, please read user_guide for more details regarding setting up KPOINTS.

Step 3: KPROJ calculation

Files used by KPROJ

INKRPOJ	in	input parameters
WAVECAR	in	the wavefunctions from vasp calculations
OUTKPROJ	out	general outputs
bs_projected.dat	out	weights from k-projection band unfolding, used for plotting

INKPROJ

This example is for band unfolding for a $\sqrt{3}$ x $\sqrt{3}$ supercell of graphene, not for any heterostructure. So, layer projection is not needed. These settings can be safely commented out.

The same results can be obtained if we set LZLAYER =T and zlay1 = 0, zlay2 = 1 ..., which means integration over the whole space. But, it takes longer than the way of simply commenting them out.

Run KPROJ by \$PATH_TO_KPROJ/KPROJ

Step 4: Preparing for plotting

Modifying file bs_projected.dat, giving the right E_F.

Replacing it by the one from the SCF calculation.

Run script run_futils (making it before the first using, i.e., make futils under src)

A sample of run_futils is given under the directory **utils**

```
#!/bin/bash

$PATH_TO_KPROJ/futils <<!

emin = -20

emax = 5

de = 0.01

dele=0.02

x

!
```


de: energy interval for the grid between emin and emax

dele: broadening factor, usually 2*de

Please play with these parameters to have a feeling to obtain a nice plot.

Large systems

If you have multiple bs_projecte.dat, please merge them into one first.

- You need copy them to a new working directory and rename them like bs_projecte.dat_1, bs_projecte.dat_2, ...
- User program mergefile to do that. You can get it by "make mergefile" under src.
- An example is given under Ge_Al2O3.
 - I split the calculation into four sub-calculations. Two are for the k-path along M-Gamma and the others are for the k-path along Gamma-K.
 - After KPROJ, each calculation gives me one bs_projected.dat.
 - Then I make a new working directory merge_bs. After that, I did the copy "cp MG/CAL1/bs_projected.dat merge_bs/bs_projected.dat_1" and "cp MG/CAL2/bs_projected.dat merge_bs/bs_projected.dat_2", ...
 - > Then, I merge them into one bs projected.dat (see the picture below).
 - E-fermi has to be set correctly (Using the one from the scf calculation).

```
mingxing@CMX: proj_Ge$ mergefile
No. of eigenvalue files

4

Mode 1: merge k-points
Mode 2: merge bands (kpts for each bs file must be the same)

1

Flip bands around the first kpt?
0 for No and 1 for yes

0

ISPIN,NKPTS,NBANDS: 1 202 396

1 repeated kpts; now total of 201
```

Outputs of run_futils

Nonmagnetic/SOC calculations: band

band_kproj_1.dat

plotbnds.gnu

For gnuplot

plot_bands_1.dat

plot_bands_1.general

For opendx

bsplot.agr

For xmgrace

magnetic calculations:

band_kproj_1.dat

band_kproj_2.dat

band_kproj_tot.dat

plotbnds.gnu

spin up

spin down

total

For gnuplot

plot_bands_1.dat

plot_bands_1.general

plot_bands_2.dat plot_bands_2.general spin up

For opendx

spin down

Step 4: plot using gnuplot

plotbnds.gnu looks like

```
set cbrange [0: 99.19]
# tics pointing out
set tics out
# hide tics on x
unset xtics
set ytics font "Helvetica,32" nomirror # hide tics on the oppo
           -0.600
                   1.000
                           0.400 font "Helvetica,32" nomin
#set vtics
# set tics width
set border lw 2
set ylabel offset -5.5,0
set ylabel "E (eV)" font "Helvetica,32"
set tmargin 1
set bmargin 1
#set label "{/Symbol G}" font "Helvetica,32" at 0.50,-15.3
set label "K" font "Helvetica,32" at -0.07909,
                                            -0.65000
set label "K" font "Helvetica,32" at
                                   0.25594, -0.65000
set label "K" font "Helvetica,32" at 2.25612,
                                            -0.65000
set label "K" font "Helvetica,32" at
                                   3.08463. -0.65000
splot "band kproj 1.dat"
```

You may modify this value to make a nice plot.

symmetry k-points. For example, if it is expected to be M, change "K" to "M".

If it is E then change "K" to

If it is Γ , then change "K" to "{\Symbol G}"

Give the name of the high

Give the desired spin states

Name of the file for your plot

On the terminal, running "gnuplot plotbnds.gnu" will give a *.eps file.

Problems

- When MAT_P2S is not complete.
- When using LSORBIT = T for calculations without SOC included or using LSORBIT = F for SOC calculations.
- When WAVECAR is too large. In this case, splitting the band calculation into several subcalculations.