CITY UNIVERSITY OF HONG KONG

Course code and title : MA1200 Calculus and Basic Linear Algebra I

Session : Semester B, 2016/2017

Time allowed : Three hours

This paper has **SIX** pages (including this cover page).

A brief table of derivatives is attached on pages 5 and 6.

Instructions to candidates:

1. This paper has **TEN** questions.

2. Attempt ALL questions.

3. Each question carries 10 marks.

This is a closed-book examination.

Candidates are allowed to use the following materials/aids:

Non-programmable calculators

Materials/aids other than those stated above are not permitted. Candidates will be subject to disciplinary action if any unauthorised materials or aids are found on them.

NOT TO BE TAKEN AWAY

NOT TO BE TAKEN AWAY
BUT FORWARDED TO LIB

Question 1

The functions f(x) and g(x) are defined by $f(x) = x^2 - 1$, for $x \ge 0$, $g(x) = \sqrt{x}$, for $x \ge 0$.

Find, in a similar form

(a) the inverse function
$$f^{-1}(x)$$
, (5 marks)

(b) the composite function
$$(g \circ f)(x)$$
. (5 marks)

In each case state the largest possible domain and the range of the function.

Question 2

Evaluate the following limits:

(a)
$$\lim_{x \to 0} \frac{1 - \cos(3x)}{x^2},$$
 (3 marks)

(b)
$$\lim_{x \to \infty} \frac{1 - x^2}{1 + x^2}$$
, (3 marks)

(c)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{3}{3x + 2x^2} \right)$$
 (4 marks)

Question 3

- (a) A circle has equation $x^2 + y^2 2x 4y 20 = 0$. Find the equation of the tangent to the circle at the point P(-3,5). (5 marks)
- (b) Let $Q(x_1, y_1)$ be a point outside a circle, $x^2 + y^2 = r^2$, and let y = mx + c be the equation of a tangent drawn from Q to the circle.

Show that
$$(r^2 - x_1^2)m^2 + 2x_1y_1m + (r^2 - y_1^2) = 0$$
. (5 marks)

Question 4

(a) A Greek Mathematician, Archimedes (287-212 B.C.) proposed a method to compute an approximation to the value of π .

Given a circle of radius r units, he calculated the perimeter of inscribed and circumscribed regular hexagons as shown in Figure 1, thus obtaining lower and upper bounds for the circumference of the circle (= $2\pi r$ units). Find the perimeters of hexagon ABCDEF and hexagon PQRSTU, in terms of r.

(b) Find the smallest positive value of x which satisfies the equation $2\cos^2 x + 3\cos x + 1 = 0$. (5 marks)

Question 5

Differentiate with respect to x:

(a)
$$3(5x-1)^2 + \sqrt{x}$$
, $x > 0$; (3 marks)

(b)
$$e^{-x}\cos(3x)$$
; (3 marks)

(c)
$$\frac{\sin x}{x} + (\sin x)^x$$
, $x \neq 0$. (4 marks)

Question 6

(a) A curve has parametric equations $x = t + \sin t$, $y = 1 + \cos t$, where t is the parameter. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t. (5 marks)

(b) Find the seventh derivative of
$$(x^2 - x + 3)e^{-2x}$$
 with respect to x. (5 marks)

(Hint: Leibnitz' rule: For any functions u and v whose derivatives up to the nth order exist, $(uv)^{(n)} = {}_{n}C_{0}u^{(n)}v^{(0)} + {}_{n}C_{1}u^{(n-1)}v^{(1)} + {}_{n}C_{2}u^{(n-2)}v^{(2)} + ... + {}_{n}C_{r}u^{(n-r)}v^{(r)} + ... + {}_{n}C_{n}u^{(0)}v^{(n)}, \text{ where }$ ${}_{n}C_{r} = \frac{n!}{(n-r)! \, r!}, \quad u^{(0)} = u, \quad v^{(0)} = v \text{ and } u^{(r)}, \quad v^{(r)} \text{ are the } r \text{th derivatives of } u \text{ and } v,$ respectively, for r = 1, 2, 3, ..., n.)

Question 7

Express
$$\frac{x^3 - 3x^2 + 3x - 4}{(x^2 + 1)^2}$$
 in partial fractions. (10 marks)

Question 8

- (a) If $y = \cos^{-1} x$, show that $(1-x^2)\frac{d^2y}{dx^2} x\frac{dy}{dx} = 0$. By repeated differentiation of this result and use the Maclaurin series of y = (x), find the series of $\cos^{-1} x$ in ascending powers of x as far as the term in x^7 .
- (b) Using the result in part (a), find an approximation to the value of π , giving 5 decimal places in your answer. (3 marks

Question 9

A right circular cylinder is inscribed in a sphere of radius R cm as shown in Figure 2.

Find the dimensions of the cylinder if it is to have maximum volume.

Question 10

- (a) Prove from first principles that $\frac{d}{dx}(x^3) = 3x^2$. (4 marks)
- (b) Let $F(x) = |\cos x|$, for $x \in \mathbb{R}$. Determine whether F(x) is differentiable at x = 0. Give your reason. (6 marks) (Hint: You may use $\cos 2\theta = 1 - 2\sin^2 \theta$.)

Short Table of Derivatives of y = f(u) with respect to x, where u is a function of x

Functions, $y = f(u)$	Derivative of y with respect to x
y = c, where c is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
y = cu, where c is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = c\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = u^p$, where p is a constant.	$\frac{\mathrm{d}y}{\mathrm{d}x} = pu^{p-1} \frac{\mathrm{d}u}{\mathrm{d}x}$
y = u + v	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}$
y = uv	$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \frac{u}{v}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{v\frac{\mathrm{d}u}{\mathrm{d}x} - u\frac{\mathrm{d}v}{\mathrm{d}x}}{v^2}$
y = f(u), where u is a function of x .	$\frac{dy}{dx} = \frac{d f(u)}{du} \cdot \frac{du}{dx}, \text{ the chain rule}$
$y = \log_a u , a > 0 .$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{u} \log_a e \frac{\mathrm{d}u}{\mathrm{d}x}$
$y=a^u, \ a>0.$	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^u \log_e a \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = e^u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = u^{\nu}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = vu^{v-1} \frac{\mathrm{d}u}{\mathrm{d}x} + u^v \log_e u \frac{\mathrm{d}v}{\mathrm{d}x}$
$y = \sin u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cos u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\sin u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tan u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cot u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sec u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec u \tan u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \csc u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\csc u \cot u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sin^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cos^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\sqrt{1 - u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tan^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$

Functions, $y = f(u)$	Derivative of y with respect to x
$y = \cot^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{1+u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{\mathrm{d}x}{\mathrm{d}x} = 1 + u^2 \mathrm{d}x$
$y = \sec^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{ u \sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \csc^{-1}u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{ u \sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$ dx \qquad u \sqrt{u^2-1} \ dx $
$y = \sinh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cosh u \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{dx}{dx} = \frac{dx}{dx}$
$y = \cosh u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sinh u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \tanh u$	$\frac{dy}{dy}$, $\frac{du}{dy}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{sech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \coth u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosech}^2 u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{sech} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{sech}\ u \tanh u \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{cosech} u$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosech}u\mathrm{coth}u\frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \sinh^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1+u^2}} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \cosh^{-1} u$ $y = \tanh^{-1} u$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{u^2 - 1}} \frac{\mathrm{d}u}{\mathrm{d}x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \coth^{-1} u$	$\frac{\mathrm{d}x}{\mathrm{d}v} = \frac{1 - u^{-1}}{\mathrm{d}x}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - u^2} \frac{\mathrm{d}u}{\mathrm{d}x}$
$y = \operatorname{sech}^{-1} u$	dv = 1 du
	$u\sqrt{1-u^2}$ ux
$y = \operatorname{cosech}^{-1} u$	dy 1 du
	$\frac{dx}{dx} = -\frac{1}{ u \sqrt{u^2 + 1}} \frac{dx}{dx}$