伏安法测电阻

2013599 田佳业 2023.4.4

实验目的

- 1.学会设计用伏安法测电阻的实验电路。
- 2.掌握各种电阻元件伏安特性曲线的测量方法。
- 3.学会用作图法处理实验数据。

实验原理

线性元件和非线性元件

当一电阻元件两端加上不同的直流电压U时,元件内则有相应的电流I流过,以电流I为纵坐标,电压U为横坐标,作出I-U关系曲线,这便是该电阻元件的伏安特性曲线。通常情况下,导电金属丝、碳膜电阻、金属膜电阻等,其伏安特性曲线是一条通过原点的直线,这类元件称为线性元件,其阻值是一个不随I、U变化的常数。对于像晶体二极管、热敏电阻等类元件,它们的伏安特性曲线不是一条直线,这类元件称为非线性元件,其阻值不是常数

仪器选定和连接原理

变阻器

变阻器的用途是用来控制电路中的电压和电流,使其达到某一指定的数值,或使其在一定范围内连续变化。变阻器的连接方式按如下考虑:如所选电源的额定电流大于负载RX额定电流的两倍以上,宜选用分压电路

电表

电表选定后,电表的连接方式有两种,一种是电压表跨接在电流表和电阻的外侧,称为电压表外接法(或电流表内接法);另一种是电压表跨接在R两端,称为电压表内接法(或电流表外接法)。不论采用哪一种接法,依欧姆定律R=U/I算出的R值,由于电表内阻的影响,都会引入一定的误差。易看出,电压表外接时,测得的R值偏大,电压表内接时测得的R偏小。

本次实验选择分压法,电压表外接。

分压理由: 能将电压从o调到最大, 更适用于测较大的电阻

用电压表外接法,此次实验希望能够看到较明显的修正效果(非追求误差较小)

实验仪器

直流稳压电源: DF1709SB

台式万用表: GDM-8342

手持万用表: UT61B

滑动变阻器: BX7-11

万用表测量数据

金属膜电阻 $R_{x1} = 109.1\Omega$

低值电阻 $R_{x2}=0.9\Omega$

伏安法测量数据

直流电源输出电压3.00V

金属膜电阻

原始数据表

U/V	0.12917	0.27723	0.41361	0.5131	0.5746	0.7358	0.8653	1.0884	1.2439
I/mA	1.07	2.3	3.45	4.28	5.03	6.58	7.62	8.93	10.42

数据处理

使用最小二乘法线性拟合,得: y=8.4122x+0.0603 $R^2=0.9957$ b很小, R^2 很大,说明符合线性电阻特征,且拟合效果较好。

则下式中 U_2 和 U_1 分别取测量最大值和最小值。 I_2 和 I_1 同理。

根据仪表显示情况判断测量误差,再由此计算金属膜电阻的测量误差:

$$\Delta U = \pm (0.0002 imes 1.2439 + 0.0001) ext{ V}, \ \Delta I = \pm (0.012 imes 10.42 + 3 imes 0.01) ext{ mA}$$

相对误差:

$$ho_x=\sqrt{
ho_u^2+
ho_i^2}=\sqrt{\left(rac{\Delta U}{U_2-U_1}
ight)^2+\left(rac{\Delta I}{I_2-I_1}
ight)^2}=0.018$$

绝对误差: $\Delta R = \overline{R_x} imes
ho_x = 2.1$

最终测量结果为: $R_x = (116 \pm 2)\Omega$

```
import math
u2 = 1.2349
u1 = 0.12917
i2 = 10.42
i1 = 1.7
r_a = 2
i2 = i2 * 1e-3
i1 = i1 * 1e-3
# according regression argument in excel
regression_k = 8.4122
regression_k = regression_k * 1e-3
r_x = 1 / regression_k - r_a
delta u = 2e-4 * u2 + 1e-4
# delta_i is mA! so i2 * 1000
delta i = 0.012 * i2 * 1000 + 3 * 0.01
# convert mA to A
delta_i = delta_i * 1e-3
delta_r = math.sqrt((delta_u / (u2 - u1)) ** 2 + (delta_i / (i2 - u1)) ** 2 + (delta_i / (i2 - u1)) ** 2 + (delta_i / (i2 - u1)) ** 3 + (delta_i / (i2 - u1)) *
i1)) ** 2)
print("delta_r = {}".format(delta_r))
abs_delta_r = delta_r * r_x
print("r_x = {}_{\pm}{}_{-}".format(r_x, abs_delta_r))
#output:
#delta r = 0.017782585492447493
\#r \times = 116.87496730938399 \pm 2.0783390981061265
```

晶体二极管

晶体二极管正向伏安特性原始数据表

U/V	0.36554	0.46145	0.48471	0.5212	0.5581	0.5862	0.6137	0.6332	0.6582	0.7061	0.7239
I/mA	0.01	0.11	0.23	0.51	0.94	1.44	2.42	3.65	5.04	8.78	10.74

虽然理论上应当是指数增长的,但由于为避免损坏二极管未测量更大的电流,因此在实验数据下使用乘幂拟合效果较好。

在
$$2.00$$
 mA 下的阻值 $=\frac{U_a}{I_a}=\frac{0.6045}{0.0020}=302\Omega$ 在 8.00 mA 下的阻值 $=\frac{U_b}{I_b}=\frac{0.6916}{0.0080}=86\Omega$

```
import math

# i=355.84u^10.294

# i=2

u1 = 2 / 355.84

u1 = math.pow(u1, 1 / 10.294)

print("x1 = {}".format(u1))

# i=8

u2 = 8 / 355.84

u2 = math.pow(u2, 1 / 10.294)
```

```
print("x2 = {}".format(u2))
r1 = u1 / 0.002
r2 = u2 / 0.008
print("r1 = {}".format(r1))
print("r2 = {}".format(r2))
```

思考题

欲测导线电阻(约 0.05Ω),给定直流电流表(15mA, 2.4Ω),甲电池,滑线电阻(100Ω , 1.5A),画出电路图并说明测量方法。

```
import schemdraw
import schemdraw.elements as elm
# use IEC style
elm.style(elm.STYLE_IEC)
d = schemdraw.Drawing()
Battery = d.add(elm.BatteryCell().reverse().up())
d += elm.ResistorVarIEC().right().label('100Ω')
d += elm.Dot()
d.push()
d += elm.Switch()
R_X = d.add(elm.Resistor().right().label('$R_x$'))
d += elm.Line().down()
d.pop()
d += elm.Line().down()
d.add(elm.MeterA().right().tox(R_X.end))
d.add(elm.Line().down())
d.add(elm.Line().left().tox(Battery.start))
d.add(elm.Line().up())
d.draw()
```


分析:三个元件的阻值数量级差别都很大,在现有条件下无论选择怎样的方法都会造成较大的误差。

按照图中的方法,可以先断开开关,根据 $(100+R_G)I_{G1}=U$ 先求得电路总电压,然后合上开关,利用 $\frac{U-I_{G2}R_G}{100}-I_{G2}=\frac{I_{G2}R_G}{R_x}$ 求得 R_x 。