Phys. Met. and Radiative Transfer Assignment I

Instructor: Dr. Jun Wang, jun-wang-1@uiowa.edu

Assigned: Aug. 23, 2017; Due: Sep. 6, 2017.

Total points: [210]

[16]

- 1. Check the following routines in the Python/Numpy online documentation and describe their usages. [24]
 - (1) np.zeros((4,3), dtype=np.uint16)
 - (2) np.zeros((4,3), dtype=np.int64)
 - (3) np.zeros((4,3), dtype=np.uint32)
 - (4) np.zeros((4,3), dtype=np.uint64)
 - (5) numpy.full((4,3), 5, dtype=np.int)
 - (6) np.zeros((4,3), dtype=np.str)
- 2. Write Python codes to calculate the value of A:
 - og
 - $(1) A = \frac{2^3}{5} 7 \times 3$
 - $(2) A = 2^{\frac{3}{5}} 7 \times 3$
 - $(3) A = 2^{\frac{3}{5} 7 \times 3}$
 - $(4) A = 2^{\frac{3}{5-7\times3}}$
- 3. Compute the value of A in the following Python expressions. [30]
 - (1) A = min(5,8,9,3)
 - (2) $A = \max(\min(5,8), \max(7,3))$
 - (3) A = min(5, max(8, max(7,3)))
 - (4) A = 3/5 * 3./5
 - (5) A = 3/(5 * 3.)/5
 - (6) A = 3/((5*3.)/5)
 - (7) A = 3/5**2
 - (8) A = 3/5.**2
 - (9) $A = 3/\max(\min(5**2,3),2.)$
 - (10) A = 3/(5.**(max(min(2,3),2.)))

4. The instantaneous solar irradiance F at the top of atmosphere can be computed as:

$$F = S_0 \times \frac{a^2}{r^2} \times \cos(\theta) \tag{1}$$

where S_0 is the solar constant (1368Wm⁻²). $\frac{a^2}{r^2}$ is the ratio of the instantaneous Sun-Earth distance to the average Sun-Earth distance:

$$\frac{a^2}{r^2} = 1.0 + 0.034 \times \cos(\frac{(day - 3)}{365} \times 2\pi)$$
 (2)

where day is the julidan day number, and θ is the solar zenight angle. Write a Python program to calculate the F on the first day of February, May, August, and November in year 2003. Plot your results as a function of θ , where $\theta \in [0, pi]$. Pay attention to both mathematical expression and the physical meaning of your results.

- 5. Do problem 1.1 (page 5) in the textbook [40]
- 6. Do problem 2.11 (page 40-41) in the textbook [20]