Nama: Intan Noer Fatimah

NIM : 081811633011

1. Sebuah perusahaan pengalengan buah-buahan akan mengirimkan beberapa trailer dari beberapa pabrik pengolahan ke beberapa gudang penyimpanan, dengan rincian biaya transportasi (dalam jutaan rupiah) setiap trailernya disajikan pada tabel berikut.

	Gudang 1	Gudang 2	Gudang 3	Persediaan	
Pabrik 1	3	5	4	35	
Pabrik 2	2	3	2	25	80
Pabrik 3	6	2	4	20	
Downintson	25	50	10		
Permintaan 85					

Karena jumlah antara kolom dengan baris tidak sama, maka dibutuhkan variabel dummy pada baris

	G1	G2	G3	Persediaan
P1	3	5	4	35
P2	2	3	2	25
Р3	6	2	4	20
Dummy (D)	0	0	0	5
Permintaan	25	50	10	85

Zmin =
$$3x_{11} + 5x_{12} + 4x_{13}$$

+ $2x_{21} + 3x_{22} + 2x_{23}$
+ $5x_{31} + 2x_{32} + 4x_{33}$
+ $0x_{41} + 0x_{42} + 0x_{43}$

Dengan kendala:

$$x_{11} + x_{12} + x_{13}$$
 = 35 (persediaan P1)
 $x_{21} + x_{22} + x_{23}$ = 25 (persediaan P2)
 $x_{31} + x_{32} + x_{33}$ = 20 (persediaan P3)
 $x_{41} + x_{42} + x_{43}$ = 5 (persediaan D)
 $x_{11} + x_{21} + x_{31} + x_{41}$ = 25 (permintaan G1)
 $x_{12} + x_{22} + x_{32} + x_{42}$ = 50 (permintaan G2)
 $x_{13} + x_{23} + x_{33} + x_{43}$ = 10 (permintaan G3)

$$x_{ij} \ge 0$$
, $i = 1,2,3,4$; $j = 1,2,3$

Tabel Transportasi

	G1	G2	G3	Persediaan
P1	X ₁₁ 3	X ₁₂ 5	X ₁₃ 4	35
P2	X ₂₁ 2	X ₂₂ 3	X ₂₃ 2	25
Р3	Х ₃₁ 6	X ₃₂ 2	X ₃₃ 4	20
D	X ₄₁ 0	X ₄₂ 0	X ₄₃ 0	5
Permintaan	25	50	10	85

• Metode North West Corner (1)

	G1	G2	G3	Persediaan
P1	25 ³	10 5	4	35
P2	2	25 3	2	25
Р3	6	15 ²	5 4	20
D	0	0	5 0	5
Permintaan	25	50	10	85

Jumlah sel basis = 6, sesuai dengan ketentuan yaitu

$$= (m+n) -1$$

= $(4+3)-1$

$$=6$$

Zmin =
$$(25 \times 3) + (10 \times 5) + (25 \times 3) + (15 \times 2) + (5 \times 4) + (5 \times 0)$$

= 250

• Stepping Stone (1)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
P1-G3	P1G3 - P3G3 + P3G2 - P1G2	4 - 4 + 2 - 5 = -3

P2-G1	P2G1 - P1G1 + P1G2 - P2G2	2 - 3 + 5 - 3 = 1
P2-G3	P2G3 - P3G3 + P3G2 - P2G2	2 - 4 + 2 - 3 = -3
P3-G1	P3G1 - P3G2 + P1G2 - P1G1	6-2+5-3=6
D-G1	DG1 - DG3 + P3G3 - P3G2 + P1G2 - P1G1	0 - 0 + 4 - 2 + 5 - 3 = 4
D-G2	DG2 - DG3 + P3G3 - P3G2	0 - 0 + 4 - 2 = 2

Tabel awal metode North West Corner belum optimum, karena ada hasil minus pada : P1-G3 = -3 dan P2-G3 = -3

- Karena nilai **P1-G3 dan P2-G3** sama yaitu **-3**, maka dipilih salah satu untuk dimasukkan kedalam basis. Disini dipilih closed path sel **P1-G3**
- **P3-G3** dikeluarkan dari basis karena sel bertanda (-) dengan jumlah unit terkecil yaitu 5.

• Metode Norht-West Corner (2)

	G1	G2	G3	Persediaan
P1	25 ³	10 5	4	35
P2	2	20 3	5 ²	25
Р3	6	20 ²	4	20
D	0	0	5 0	5
Permintaan	25	50	10	85

Zmin =
$$(25 \times 3) + (10 \times 5) + (20 \times 3) + (5 \times 2) + (20 \times 2) + (5 \times 0)$$

= 235

• Metode Stepping Stone (2)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
P1-G3	P1G3 - P2G3 + P2G2 - P1G2	4 - 2 + 3 - 5 = 0
P2-G1	P2G1 - P1G1 + P1G2 - P2G2	2 - 3 + 5 - 3 = 1
P3-G1	P3G1 - P3G2 + P1G2 - P1G1	6-2+5-3=6
P3-G3	P3G3 - P2G3 + P2G2 - P3G2	4-2+3-2=3
D-G1	DG1 - DG3 + P2G3 - P2G2 + P1G2 - P1G1	0 - 0 + 2 - 3 + 5 - 3 = 1

Tabel kedua metode North West Corner belum optimum, karena ada hasil minus pada : D-G2 = -1

- Sel **D-G3** dikeluarkan dari basis karena sel bertanda (-) dengan jumlah unit terkecil yaitu 5.
- Sel **D-G2** dimasukkan ke basis.

• Metode North-West Corner (3)

	G1	G2	G3	Persediaan
P1	25 ³	10 5	4	35
P2	2	15 ³	10 ²	25
Р3	6	20 ²	4	20
D	0	5 o	0	5
Permintaan	25	50	10	85

Zmin =
$$(25 \times 3) + (10 \times 5) + (15 \times 3) + (10 \times 2) + (20 \times 2) + (5 \times 0)$$

= 230

Metode Stepping Stone (3)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
P1-G3	P1G3 - P2G3 + P2G2 - P1G2	4 - 2 + 3 - 5 = 0
P2-G1	P2G1 - P1G1 + P1G2 - P2G2	2 - 3 + 5 - 3 = 1
P3-G1	P3G1 - P3G2 + P1G2 - P1G1	6-2+5-3=6
P3-G3	P3G3 - P2G3 + P2G2 - P3G2	4-2+3-2=3
D-G1	DG1 - DG3 + P2G3 - P2G2 + P1G2 - P1G1	0 - 0 + 2 - 3 + 5 - 3 = 1
D-G3	DG3 - DG2 + P2G2 - P2G3	0 - 0 + 3 - 2 = 1

Tabel ketiga tersebut sudah optimum karena sel non basis tidak ada yang bernilai negatif. Maka, biaya minimumnya adalah 230.

2. Selesaikan masalah transportasi dengan tabel biaya sbb:

	Tujuan 1	Tujuan 2	Tujuan 3	Tujuan 4	Suplai
Sumber 1	3	5	3	4	45
Sumber 2	4	3	2	3	55
Sumber 3	5	3	4	2	35
Permintaan	20	45	30	30	

Jawab:

	Tujuan 1	Tujuan 1 Tujuan 2 Tujuan 3 Tujuan 4 Sup		plai		
Sumber 1	3	5	3	4	45	
Sumber 2	4	3	2	3	55	135
Sumber 3	5	3	4	2	35	
Permintaan	20	45	30	30		
remintaan		12	25			

Karena jumlah antara kolom dengan baris tidak sama, maka dibutuhkan variabel dummy pada kolom.

	T1	T2	Т3	T4	Dummy (D)	Supplai
S1	3	5	3	4	0	45
S2	4	3	2	3	0	55
S3	5	3	4	2	0	35
Permintaan	20	45	30	30	10	135

Zmin =
$$3x_{11} + 5x_{12} + 3x_{13} + 4x_{14} + 0x_{15}$$

+ $4x_{21} + 3x_{22} + 2x_{23} + 3x_{24} + 0x_{25}$
+ $5x_{31} + 3x_{32} + 4x_{33} + 2x_{34} + 0x_{35}$

Dengan kendala:

$$\begin{array}{lll} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} & = 45 \text{ (supply S1)} \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} & = 55 \text{ (supply S2)} \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} & = 35 \text{ (supply S3)} \\ x_{11} + x_{21} + x_{31} & = 20 \text{ (permintaan T1)} \\ x_{12} + x_{22} + x_{32} & = 45 \text{ (permintaan T2)} \\ x_{13} + x_{23} + x_{33} & = 30 \text{ (permintaan T3)} \\ x_{14} + x_{24} + x_{34} & = 30 \text{ (permintaan T4)} \\ x_{15} + x_{25} + x_{35} & = 10 \text{ (permintaan D)} \end{array}$$

$$x_{ij} \ge 0$$
, $i = 1, 2, 3$; $j = 1, 2, 3, 4, 5$

Tabel Transportasi

	T1	T2	Т3	T4	D	Persediaan
S1	X ₁₁ 3	X ₁₂ 5	X ₁₃ 3	X ₁₄ 4	X ₁₅ 0	45
S2	X ₂₁ 4	X ₂₂ 3	X ₂₃ 2	X ₂₄ 3	X ₂₅ 0	55
S3	X ₃₁ 5	X ₃₂ 3	X ₃₃ 4	X ₃₄ 2	X ₃₅ 0	35
Permintaan	20	45	30	30	10	135

• Metode North West Corner (1)

	T1	T2	Т3	T4	D	Persediaan
S1	20 ³	25 ⁵	3	4	0	45
S2	4	20 ³	30 ²	5 3	0	55
S3	5	3	4	25 ²	10 °	35
Permintaan	20	45	30	30	10	135

Jumlah sel basis = 7, sesuai dengan ketentuan yaitu

$$= (m+n) -1$$

$$=(3+5)-1$$

=7

Zmin =
$$(20 \times 3) + (25 \times 5) + (20 \times 3) + (30 \times 2) + (5 \times 3) + (25 \times 2) + (10 \times 0)$$

= 370

• Stepping Stone (1)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
S1-T3	S1T3 - S2T3 + S2T2 - S1T2	3 - 2 + 3 - 5 = -1
S1-T4	S1T4 - S2T4 + S2T2 - S1T2	4 - 3 + 3 - 5 = -1
S1-D	S1D - S3D + S3T4 - S2T4 + S2T2 - SIT2	0 - 0 + 2 - 3 + 3 - 5 = -3

S2-T1	S2T1 - S1T1 + S1T2 - S2T2	4-3+5-3=3
S2-D	S2D - S3D + S3T4 - S2T4	0 - 0 + 2 - 3 = -1
S3-T1	S3T1 - S1T1 + S1T2 - S2T2 + S2T4 - S3T4	5 - 3 + 5 - 3 + 3 - 2 = 5
S3-T2	S3T2 - S2T2 + S2T4 - S3T4	3 - 3 + 3 - 2 = 1
S3-T3	S3T3 - S3T4 + S2T4 - S2T3	4-2+3-2=3

Tabel awal metode North West Corner belum optimum, karena ada hasil minus pada: S1-T3 = -1; S1-T4 = -1; S1-D = -3; dan S2-D = -1

- S1-D dipilih karena memiliki nilai paling negative yaitu -3.
- **S2-T4** dikeluarkan dari basis karena sel bertanda (-) dengan jumlah unit terkecil yaitu 5.

Metode North West (2)

	T1	T2	Т3	T4	D	Persediaan
S1	20 ³	20 5	3	4	5 0	45
S2	4	25 ³	30 ²	3	0	55
S3	5	3	4	30 ²	5 0	35
Permintaan	20	45	30	30	10	135

Zmin =
$$(20 \times 3) + (20 \times 5) + (5 \times 0) + (25 \times 3) + (30 \times 2) + (30 \times 2) + (5 \times 0)$$

= 355

• Metode Stepping Stone (2)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
S1-T3	S1T3 - S2T3 + S2T2 - S1T2	3 - 2 + 3 - 5 = -1
S1-T4	S1T4 - S1D + S3D - S3T4	4 - 0 + 0 - 2 = 2
S2-T1	S2T1 - S2T2 + S1T2 - S1T1	4 - 3 + 5 - 3 = 3
S2-T4	S2T4 - S2T2 + S1T2 - S1D + S3D - S3T4	3 - 3 + 5 - 0 + 0 - 2 = 3
S2-D	S2D - S1D + S1T2 - S2T2	0 - 0 + 5 - 3 = 2
S3-T1	S3T1 - S1T1 + S1T2 - S1D + S3D - S3T4	5-3+5-0+0-2=5

S3-T2	S3T2 - S2T2 + S1T2 - SID + S3D - S3T4	3 - 3 + 5 - 0 + 0 - 2 = 3
S3-T3	S3T3 - S2T3 + S2T2 - S1T2 + S1D - S3D	4-2+3-5+0-0=0

Tabel kedua metode North West Corner belum optimum, karena ada hasil minus pada : S1-T3= -1

- Sel **S1-T3** dimasukkan ke basis karena satu-satunya yang mengandung nilai negative.
- Sel **S1-T2** dikeluarkan dari basis karena sel bertanda (-) dengan jumlah unit terkecil yaitu 20.

• Metode North West (3)

	T1	T2	Т3	T4	D	Persediaan
S1	20 ³	5	20 ³	4	5 0	45
S2	4	45 3	30 ²	3	0	55
S3	5	3	4	30 ²	5 0	35
Permintaan	20	45	30	30	10	135

Zmin =
$$(20 \times 3) + (20 \times 3) + (5 \times 0) + (45 \times 3) + (30 \times 2) + (30 \times 2) + (5 \times 0)$$

= 335

Metode Stepping Stone (3)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
S1-T2	S1T2 - S1T3 + S2T3 - S2T2	5 - 3 + 2 - 3 = 1
S1-T4	S1T4 - S1D + S3D - S3T4	4 - 0 + 0 - 2 = 2
S2-T1	S2T1 - S1T1 + S1T3 - S2T3	4 - 3 + 3 - 2 = 2
S2-T4	S2T4 - S2T3 + S1T3 - S1D + S3D - S3T4	3-2+3-0+0-2=2
S2-D	S2D - S1D + S1T3 - S2T3	0 - 0 + 3 - 2 = 1
S3-T1	S3T1 - S1T1 + S1T3 - S1D + S3D - S3T4	5 - 3 + 3 - 0 + 0 - 2 = 3
S3-T2	S3T2 - S2T2 + S2T3 - S1T3 + S1D - S3D	3-3+2-3+0-0=-1
S3-T3	S3T3 - S2T3 + S1T3 -S1D + S3D - S3T4	4 - 2 + 3 - 0 + 0 - 2 = 3

Tabel kedua metode North West Corner belum optimum, karena ada hasil minus pada : S3-T2= -1

- Sel **S3-T2** dimasukkan ke basis karena satu-satunya yang mengandung nilai negative.
- Sel S3-D dikeluarkan dari basis karena sel bertanda (-) dengan jumlah unit terkecil yaitu 5.

• Metode North West (4)

	T1	T2	Т3	T4	D	Persediaan
S1	20 ³	5	15 ³	4	10 °	45
S2	4	40 3	15 ²	3	0	55
S3	5	5 3	4	30 ²	0	35
Permintaan	20	45	30	30	10	135

Zmin =
$$(20 \times 3) + (15 \times 3) + (10 \times 0) + (40 \times 3) + (15 \times 2) + (5 \times 3) + (30 \times 0)$$

= 330

• Metode Stepping Stone (3)

Sel Bukan Basis	Closed Path	Pengurangan Biaya
S1-T2	S1T2 - S1T3 + S2T3 - S2T2	5 - 3 + 2 - 3 = 1
S1-T4	S1T4 - S1T3 + S2T3 - S2T2 + S3T2 - S3T4	4 - 3 + 2 - 3 + 3 - 2 = 1
S2-T1	S2T1 - S1T1 + S1T3 - S2T3	4 - 3 + 3 - 2 = 2
S2-T4	S2T4 - S3T4 + S3T2 - S2T2	3 - 2 + 3 - 3 = 1
S2-D	S2D - S1D + S1T3 - S2T3	0 - 0 + 3 - 2 = 1
S3-T1	S3T1 - S3T2 + S2T2 - S2T3 + S1T3 - S1T1	5 - 3 + 3 - 2 + 3 - 3 = 3
S3-T3	S3T3 - S2T3 + S2T2 - S3T2	4 - 2 + 3 - 3 = 2
S3-D	S3D - S1D + S1T3 -S2T3 + S2T2 - S3T2	0 - 0 + 3 - 2 + 3 - 3 = 1

Tabel ketiga tersebut sudah optimum karena sel non basis tidak ada yang bernilai negatif. Maka, biaya minimumnya adalah 330.