Final Examination in Theory and Functions of Real Variable

Orville D. Hombrebueno

9/14/2020

Theorem 1.1.8 If a nonempty set S of real numbers is bounded below, then inf S is the unique real number α such that

- (a) $x \ge \alpha$ for all x in S;
- (b) if $\epsilon > 0$ (no matter how small), there is an x_0 in S such that $x_0 < \alpha + \epsilon$.

Proof The set $T = \{x | -x \in S\}$ is bounded above if S is bounded below. If S is bounded below then T is bounded above, so T has a unique supremum, by Theorem 1.1.3. Denote sup $T = -\alpha$. Then (i) if $x \in S$ then $-x \le -\alpha$, so $x \ge \alpha$; (ii) if $\epsilon > 0$ there is an $x_0 \in T$ such that $-x_0 < -\alpha - \epsilon$, so $x_0 > \alpha + \epsilon$. Therefore, there is an α with properties (i) and (ii). If (i) and (ii) hold with α replaced by α_1 then $-\alpha_1$ is a supremum of T, so $\alpha_1 = \alpha$ by the uniqueness assertion of Theorem 1.1.3.

Theorem 1.3.3

- (a) The union of open sets is open.
- (b) The intersection of closed sets is closed.

These statements apply to arbitrary collections, finite or infinite, of open and closed sets.

Additional Proof In (b), showing that $T^c = \bigcup \{F^c | F \in \mathcal{F}\}$ where \mathcal{F} is a collection of closed sets and $T = \bigcap \{F | F \in \mathcal{F}\}$ we have $x \in T^c \Leftrightarrow x \in F^c$ for some F in $F \Leftrightarrow x \in \bigcup \{F^c | F \in F\}$.

Theorem 1.3.7 (Heine-Borel Theorem) If \mathcal{H} is an open covering of a closed and bounded subset S of the real line, then S has an open covering $\widetilde{\mathcal{H}}$ consisting of finitely many open sets belonging to \mathcal{H} .

Additional Proof If $\epsilon > 0$, then $S \cap (\beta - \epsilon, \beta) \neq \emptyset$ and $S^c \cap (\beta, \beta + \epsilon) \neq \emptyset$. Hence, if S is bounded above and $\beta = \sup S$, then $\beta \in \partial S$. Analogously, If S is bounded below and $\alpha = \inf S$ then $\alpha \in \partial S$. Therefore, the inf S and $\sup S$ are in ∂S .

(a) If $x_0 \in \partial S$ and U is a neighborhood of x_0 then, (A) $U \cap S \neq \emptyset$. If x_0 is not a limit point of S, then (B) $U \cap (S - \{x_0\}) = \emptyset$ for some U. Now (A) and (B) imply that $x_0 \in S$, and (B) implies that x_0 is an isolated point of S. Therefore, a boundary point of a set S is either a

limit point or an isolated point of S. (b) If S is closed, Corollary 1.3.6 and (a) imply that $\partial S \subset S$; hence, $\overline{S} = S \cup \partial S = S$. If $\overline{S} = S$, then $\partial S \subset S$. Now, if x_0 is a limit point of S, then every neighborhood of x_0 contains points of S other than x_0 . If every neighborhood of x_0 also contains a point in S^c , then $x_0 \in \partial S$. If there is a neighborhood of x_0 that does not contain a point in S^c , then $x_0 \in S^0$. These are the only possibilities. Therefore, a limit point of a set S is either an interior point or a boundary point of S. By this and Corollary 1.3.6 and since $S^0 \subset S$, S is closed. Hence, $\partial S \subset S$ if S is closed.

Therefore, If S is closed and bounded, then inf S and sup S are both in S.

Theorem 2.1.6 A function f has a limit at x_0 if and only if it has left- and right-hand limits at x_0 , and they are equal. More specifically,

$$\lim_{x \to x_0} f(x) = L$$

if and only if

$$f(x_0+) = f(x_0-) = L.$$

Proof It follows immediately from Definition 2.1.2 and Definition 2.1.5 that the existence of the limit implies the existence of the left- and right-hand limits with the same value. Conversely, if both left- and right-hand limits exists and are equal to L, then given $\epsilon > 0$, there exist $\delta_1 > 0$ and $\delta_2 > 0$ such that $x_0 - \delta_1 < x < x_0$ implies that $|f(x) - L| < \epsilon$, $x_0 < x < x_0 + \delta_2$ implies that $|f(x) - L| < \epsilon$. Choosing $\delta = \min(\delta_1, \delta_2) > 0$, we get that $|x - x_0| < \delta$ implies that $|f(x) - L| < \epsilon$, which show that the limit exist.

Theorem 2.1.9 Suppose that f is monotonic on (a,b) and define

$$\alpha = \inf_{a < x < b} f(x)$$
 and $\beta = \sup_{a < x < b} f(x)$.

- (a) If f is nondecreasing, then $f(a+) = \alpha$ and $f(b-) = \beta$.
- (b) If f is nonincreasing, then $f(a+) = \beta$ and $f(b-) = \alpha$.

(Here $a+=-\infty$ if $a=-\infty$ and $b-=\infty$ if $b=\infty$.)

(c) If $a < x_0 < b$, then $f(x_0+)$ and $f(x_0-)$ exist and are finite; moreover,

$$f(x_0-) \le f(x_0) \le f(x_0+)$$

if f is nondecreasing, and

$$f(x_0-) \ge f(x_0) \ge f(x_0+)$$

if f is nonincreasing.

Additional Proof (b) We first prove that $f(a+) = \beta$. If $M < \beta$ there is an x_0 in (a,b) such that $f(x_0) > M$. Since f is nonincreasing, f(x) > M if $a < x < x_0$. Therefore, if

 $\beta = \infty$ then $f(a+) = \infty$. If $\beta < \infty$ let $M = \beta - \epsilon$ where $\epsilon > 0$. Then $\beta - \epsilon < f(x) \le \beta + \epsilon$, so

$$|f(x) - \beta| < \epsilon \quad \text{if} \quad a < x < x_0. \tag{A}$$

If $a = -\infty$ this implies that $f(-\infty) = \beta$. If $a > -\infty$ let $\delta = x_0 - a$. Then (A) is equivalent to

$$|f(x) - \beta| < \epsilon$$
 if $a < x < a + \delta$,

which implies that $f(a+) = \beta$.

Now we prove that $f(b-) = \alpha$. If $M > \alpha$ there is an x_0 in (a,b) such that $f(x_0) < M$. Since f is nonincreasing, f(x) < M if $x_0 < x < b$. Therefore, if $\alpha = -\infty$ then $f(b-) = -\infty$. If $\alpha > -\infty$ let $M = \alpha + \epsilon$ where $\epsilon > 0$. Then $\alpha \le f(x) < \alpha + \epsilon$, so

$$|f(x) - \alpha| < \epsilon \quad \text{if} \quad x_0 < x < b.$$
 (B)

If $b = \infty$ this implies that $f(\infty) = \alpha$. If $b < \infty$ let $\delta = b - x_0$. Then (B) is equivalent to

$$|f(x) - \alpha| < \epsilon$$
 if $b - \delta < x < b$,

which implies that $f(b-) = \alpha$.

(c) Applying (b) to f on (a, x_0) and (x_0, b) separately shows that

$$f(x_0-) = \inf_{a < x_1 < x_0} f(x_1)$$
 and $f(x_0+) = \sup_{x_0 < x_2 < b} f(x_2)$.

However, if $x_1 < x_0 < x_2$ then $f(x_1) \ge f(x_0) \ge f(x_2)$; hence $f(x_0) \ge f(x_0) \ge f(x_0)$.

Theorem 2.2.9 Suppose that f is continuous on a finite closed interval [a, b]. Let

$$\alpha = \inf_{a \le x \le b} f(x)$$
 and $\beta = \sup_{a \le x \le b} f(x)$.

Then α and β are respectively the minimum and maximum of f on [a,b]; that is, there are points x_1 and x_2 in [a,b] such that

$$f(x_1) = \alpha$$
 and $f(x_2) = \beta$.

Additional Proof Showing that there is an x_2 such that $f(x_2) = \beta$, suppose there is no x_2 in [a, b] such that $f(x_2) = \beta$. Then $f(x) < \beta$ for all $x \in [a, b]$. We will show that this leads to a contradiction. Suppose $t \in [a, b]$. Then $f(t) < \beta$, so $f(t) < (f(t) + \beta)/2 < \beta$. Since $f(t) < \beta$ is continuous at t, there is an open interval I_t about t such that I_t such that I_t such that the collection I_t is an open covering of I_t since I_t is compact, the Heine-Borel theorem implies that there are finitely many points I_t , I_t , ..., I_t such that the intervals I_t , I_t , ..., I_t , cover I_t , I_t , ..., I_t , I_t , I_t , ..., I_t , I_t , I_t , ..., I_t , ...,

Theorem 2.2.14 If f is monotonic and nonconstant on [a,b], then f is continuous on [a,b] if and only if its range $R_f = \{f(x)|x \in [a,b]\}$ is the closed interval with endpoints f(a) and f(b).

Proof In the case where f is nonincreasing, Theorem 2.1.9(b) implies that the set $\widetilde{R_f} = \{f(x)|x \in (a,b)\}$ is a subset of the open interval (f(b-),f(a+)). Therefore

$$R_f = \{ f(b) \} \cup \widetilde{R}_f \cup \{ f(a) \} \subset \{ f(b) \} \cup (f(b-), f(a+)) \cup \{ f(a) \}. \tag{A}$$

Now suppose f is continuous on [a, b]. Then f(a) = f(a+), f(b-) = f(b), so (A) implies that $R_f \subset [f(b), f(a)]$. If $f(b) < \mu < f(a)$, then Theorem 2.2.10 implies that $\mu = f(x)$ for some x in (a, b). Hence, $R_f = [f(b), f(a)]$.

For the converse, suppose $R_f = [f(b), f(a)]$. Since $f(a) \ge f(a+)$ and $f(b-) \ge f(b)$, (A) implies that f(a) = f(a+) and f(b-) = f(b). We know from Theorem 2.1.9(c) that if f is nonincreasing and $a < x_0 < b$, then $f(x_0-) \ge f(x_0) \ge f(x_0+)$. If either of these inequalities is strict, then R_f cannot be an interval. Since this contradicts our assumption, $f(x_0-) = f(x_0) = f(x_0+)$. Therefore f is continuous at x_0 . We can now conclude that f is continuous on [a,b].

Theorem 2.3.4 If f and g are differentiable at x_0 , then so are f + g, f - g, and fg, with

(a)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0);$$

(b)
$$(f-g)'(x_0) = f'(x_0) - g'(x_0);$$

(c)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$
.

The quotient f/g is differentiable at x_0 if $g(x_0) \neq 0$, with

(d)
$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$$
.

Additional Proof

(a)

$$\lim_{x \to x_0} \frac{(f+g)(x) - (f+g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$
$$= f'(x_0) + g'(x_0).$$

$$\lim_{x \to x_0} \frac{(f-g)(x) - (f-g)(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$
$$= f'(x_0) - g'(x_0).$$

(d)

$$\lim_{x \to x_0} \frac{(f/g)(x) - (f/g)(x_0)}{(x - x_0)} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{[f(x)g(x_0) - f(x_0)g(x_0) + f(x_0)g(x_0) - f(x_0)g(x)]}{(x - x_0)g(x)g(x_0)}$$

$$= \lim_{x \to x_0} \frac{1}{g(x)} \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$+ \frac{f(x_0)}{g(x_0)} \lim_{x \to x_0} \frac{1}{g(x)} \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}.$$

Theorem 2.4.1 (L'Hospital's Rule) Suppose that f and g are differentiable and g' has no zeros on (a,b). Let

$$\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} g(x) = 0$$

or

$$\lim_{x \to b^{-}} f(x) \pm \infty \quad and \quad \lim_{x \to b^{-}} g(x) = \pm \infty,$$

and suppose that

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L \quad (finite \ or \ \pm \infty).$$

Then

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = L.$$

Additional Proof For the case where $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \pm \infty$, If $\lim_{x\to b^-} \frac{f'(x)}{g'(x)} = \infty$ and M is an arbitrary real number, there is an x_0 in (a,b) such that $\frac{f'(c)}{g'(c)} > M$ if $x_0 < c < b$. By the argument given in the text, we can assume also that g has no zeros in $[x_0,b)$ and (A) $\frac{f(x)-f(t)}{g(x)-g(t)} > M$ if $x,t \in [x_0,b)$. If $\lim_{t\to b^-} f(t) = \lim_{t\to b^-} g(t) = 0$ then letting $t\to b^-$ in (A) shows that $\frac{f(x)}{g(x)} \geq M$ if $x,t \in [x_0,b)$, so $\lim_{x\to b^-} \frac{f(x)}{g(x)} = \infty$ in this case. If $\lim_{t\to b^-} f(t) = \lim_{t\to b^-} g(t) = \infty$, let u and x_1 be as in the proof given in the text. Then (B) $\frac{f(x)}{g(x)u(x)} > M$ if $x_1 < x < b$. Since $\lim_{x\to b^-} u(x) = 1$, there is an $x_2 \geq x_1$ such that $u(x) \geq \frac{1}{2}$ if $x_2 < x < b$. Therefore, (B) implies that $\frac{f(x)}{g(x)} > \frac{M}{2}$ if $x_2 < x < b$, so $\lim_{x\to b^-} \frac{f(x)}{g(x)} = \infty$ in this case also.

Theorem 3.3.2 If f is integrable on [a,b] and c is a constant, then cf is integrable on [a,b] and

$$\int_{a}^{b} cf(x)dx = c \int_{a}^{b} f(x)dx.$$

Proof Trivial if c=0. Suppose $c\neq 0$ and $\epsilon>0$. If $\widehat{\sigma}$ is a Riemann sum of cf, then $\widehat{\sigma}=\sum_{j=1}^n cf(c_j)(x_j-x_{j-1})=c\sum_{j=1}^n f(c_j)(x_j-x_{j-1})=c\sigma$, where σ is a Riemann sum for f. Since f is integrable on [a,b], Definition 3.1.1 implies that there is a $\delta>0$ such that $\left|\sigma-\int_a^b f(x)dx\right|<\frac{\epsilon}{|c|}$ if σ is a Riemann sum of f over any partition P of [a,b] such that $\|P\|<\delta$. Therefore, $\left|\widehat{\sigma}-\int_a^b cf(x)dx\right|<\epsilon$ if $\widehat{\sigma}$ is a Riemann sum of cf over any partition P of [a,b] such that $\|P\|<\delta$, so cf is integrable over [a,b], again by Definition 3.1.1.

Theorem 3.3.3 If f_1, f_2, \ldots, f_n are integrable on [a, b] and c_1, c_2, \ldots, c_n are constants, then $c_1 f_1 + c_2 f_2 + \cdots + c_n f_n$ is integrable on [a, b] and

$$\int_{a}^{b} (c_{1}f_{1} + c_{2}f_{2} + \dots + c_{n}f_{n})(x)dx = c_{1} \int_{a}^{b} f_{1}(x)dx + c_{2} \int_{a}^{b} f_{2}(x)dx + \dots + c_{n} \int_{a}^{b} f_{n}(x)dx.$$

Proof If f_1 and f_2 are integrable on [a,b] and c_1 and c_2 are constants, then Theorem 3.3.2 implies that c_1f_1 and c_2f_2 are integrable on [a,b] and $\int_a^b c_if_i(x)dx = c_i\int_a^b f_i(x)dx$, i=1,2. Therefore, Theorem 3.3.1 implies P_2 . Now suppose $n\geq 2$ and P_n is true. Let f_1,f_2,\ldots,f_{n+1} be integrable on [a,b] and c_1,c_2,\ldots,c_{n+1} be constants. By Theorem 3.3.1, $c_1f_1,c_2f_2,\ldots,c_{n+1}f_{n+1}$ are integrable on [a,b], and $\int_a^b c_if_i(x)dx = c_i\int_a^b f_i(x)dx$, $i=1,2,\ldots,n+1$. Now $\int_a^b (c_1f_1+c_2f_2+\cdots+c_{n+1}f_{n+1})(x)dx = \int_a^b [(c_1f_1+c_2f_2+\cdots+c_nf_n)(x)dx+\int_a^b c_{n+1}f_{n+1}(x)dx$ (by P_2) = $c_1\int_a^b f_1(x)dx+c_2\int_a^b f_2(x)dx+\cdots+c_n\int_a^b f_n(x)dx+c_{n+1}\int_a^b f_{n+1}(x)dx$ by P_n and Theorem 3.3.2. Therefore, P_n implies P_{n+1} .

Theorem 3.3.11 If f is integrable on [a,b] and $a \le c \le b$, then $F(x) = \int_c^x f(t)dt$ is differentiable at any point x_0 in (a,b) where f is continuous, with $F'(x_0) = f(x_0)$. If f is continuous from the right at a, then $F'_+(a) = f(a)$. If f is continuous from the left at b, then $F'_-(b) = f(b)$.

Additional Proof Since
$$\frac{1}{x-a} \int_a^x f(a)dt = f(a)$$
, we can write
$$\frac{F(x) - F(a)}{x-a} - f(a) = \frac{1}{x-a} \int_a^x [f(t) - f(a)]dt.$$

From this and Theorem 3.3.5, (A) $\left| \frac{F(x) - F(a)}{x - a} - f(a) \right| \le \frac{1}{|x - a|} \left| \int_a^x |f(t) - f(a)| dt \right|$. Since f is continuous from the right at a, there is for each $\epsilon > 0$ a $\delta > 0$ such that $|f(t) - f(a)| < \epsilon$ if $a \le x < a + \delta$ and t is between x and a. Therefore, from (A), $\left| \frac{F(x) - F(a)}{x - a} - f(a) \right| < \epsilon \frac{|x - a|}{|x - a|} = \epsilon$ if $a < x < a + \delta$. This proves that $F'_+(a) = f(a)$.

Since $\frac{1}{b-x} \int_x^b f(b)dt = f(b)$, we can write

$$\frac{F(x) - F(b)}{b - x} - f(b) = \frac{1}{b - x} \int_{x}^{b} [f(b) - f(t)] dt.$$

From this and Theorem 3.3.5, (B) $\left| \frac{F(x) - F(b)}{b - x} - f(b) \right| \le \frac{1}{|b - x|} \left| \int_x^b |f(b) - f(t)| dt \right|$. Since f is continuous from the left at b, there is for each $\epsilon > 0$ a $\delta > 0$ such that $|f(b) - f(t)| < \epsilon$ if $b - \delta \le x < b$ and t is between x and b. Therefore, from (B), $\left| \frac{F(x) - F(b)}{b - x} - f(b) \right| < \epsilon \frac{|b - x|}{|b - x|} = \epsilon$ if $b - \delta < x < b$. This proves that $F'_{-}(b) = f(b)$.

Theorem 4.1.7 Let $\lim_{x\to\infty} f(x) = L$, where L is in the extended reals, and suppose that $s_n = f(n)$ for large n. Then

$$\lim_{n\to\infty} s_n = L.$$

Proof Suppose that $s_n = f(n)$ for $n \ge N_1$. Let $\epsilon > 0$. Since $\lim_{x \to \infty} f(x) = L$ there is an integer $N > N_1$ such that $|f(x) - L| < \epsilon$ if x > N, so $|s_n - L| = |f(n) - L| < \epsilon$ if $n \ge N$. Therefore, $\lim_{n \to \infty} s_n = L$.

Theorem 4.2.3 If $\{s_n\}$ is monotonic and has a subsequence $\{s_{n_k}\}$ such that

$$\lim_{k \to \infty} s_{n_k} = s \quad (-\infty \le s \le \infty),$$

then

$$\lim_{n \to \infty} s_n = s.$$

Additional Proof If $\{s_n\}$ is nonincreasing, then $\{s_{n_k}\}$ is also, so it suffices to show that (A) $\inf\{s_{n_k}\}=\inf\{s_n\}$ and apply Theorem 4.1.6(b). Since the set of terms of $\{s_{n_k}\}$ is contained in the set of terms of $\{s_n\}$, (B) $\inf\{s_n\} \leq \inf\{s_{n_k}\}$. Since $\{s_n\}$ is nonincreasing, there is for every n an integer $n_k > n$ such that $s_n \geq s_{n_k}$. This implies that $\inf\{s_n\} \geq \inf\{s_{n_k}\}$. This and (B) imply the conclusion.

Theorem 4.3.19 If $\sum a_n$ converges absolutely, then $\sum a_n$ converges.

Proof Suppose that $\sum_{n=m}^{\infty} |a_n| < \infty$. Let $b_n = |a_n| - a_n$; then $0 \le b_n \le 2|a_n|$, so $\sum_{n=m}^{\infty} b_n$

converges absolutely, by the comparison test. Since $a_n = |a_n| - b_n$, $\sum_{n=m}^{\infty} a_n$ converges, by Theorem 4.3.3.

References

- Agarwal, R. P., Flaut, C., & O'Regan, D. (2018). An introduction to real analysis. Boca Raton: Taylor & Francis Group, LLC.
- Hammack, R. (2018). Book of proof (3rd ed.). Richmond, Virginia, 23284: Author.
- Heil, C. (2019). Introduction to real analysis. Springer.
- Madden, D. J., & Aubrey, J. A. (2017). An introduction to proof through real analysis. 111 River Street, Hoboken, NJ 07030, USA: John Wiley & Sons, Inc.