How to Read and Use This Data: A Simple Guide

Evan Wesley - Vivi The Physics Slayer!

October 1, 2025

This dataset presents a compact, integer-based encoding of fundamental physical constants—structured like a "Periodic Table of Constants." All values are derived from whole numbers and modular arithmetic, revealing hidden patterns and enabling exact reconstruction.

The Core Idea

Every physical constant is approximated by a large integer k (its "atomic number") scaled by a Circular Ball/Universal quantum unit U:

Constant $\approx k \cdot U$

where the Circular Ball/Universal unit is defined as:

$$U = \frac{1}{49 \cdot 50 \cdot 137^6}.$$

Most entries use depth p = 6, meaning the denominator includes 137⁶. A few (e.g., the upper bound on $\bar{\theta}_{QCD}$) use higher depth and are noted accordingly.

This formulation allows physical constants to be represented exactly as integers, with extremely small relative errors (often below 10^{-15}).

The Two Tables

Master Table (Output Data EZ Read.txt)

This table lists the encoded constants:

Sector: Category of the constant (e.g., CORE, CKM, HIGGS/YUKAWA)

Symbol: Standard physics notation

Value: Experimental or best-fit numerical value

k (Atomic Number): The integer that encodes the constant

Relative Error: Accuracy of the approximation $k \cdot U$ vs. the true value

Appendix: Full Tables

${\bf Master\ Table\ (Output\ Data\ EZ\ Read.txt)}$

Columns: Sector | Symbol | Value | k (Atomic Number) | Relative Error

+	+	+	-+	+
Sector	Symbol	Value	k (Atomic Number)	Relative Error
+	+	+	-+	+
CORE	CODATA)	137.035999207	•	1.37e-19
CORE	¹(MZ,eff)	127.955	•	1.21e-19
CORE	sin ² _W(MZ,MS)	0.23122	3745543835551242	5.31e-17
CORE	/e mass	206.768283	3349449302734039554	4.48e-20
CORE	/ mass	16.816706	272414624567846991	6.88e-19
CORE	p/e mass	1836.15267343	29743924950681899968	8.95e-21
CORE	a_e (leptonic)	0.001159652181	18785261127619	8.68e-15
CORE	a_ (exp)			1.58e-14
CORE	-			5.17e-11
CORE			-	2.67e-13
+	c (models) +	+	-+	2.076-13
· ·	/e	3477.161425	56326704185983339375	8.63e-21
MASS RATIOS	/p	0.112609526	1824167102878840	1.08e-16
MASS RATIOS	/p	1.893721299	30676481863985203	1.33e-17
MASS RATIOS	l e/p	5.446170e-4	8822277171392	1.05e-14
	e/	0.004836331	78343968325123	1.14e-15
•	e/	2.875909e-4	4658698815637	9.29e-14
	p/	8.880243366		1.17e-18
		0.528060808	8554082285037847	2.80e-19
+	p/ +	+	-+	2.006-19
CKM	V_ud	0.97435	15783542237563154	5.23e-18
CKM	V_us	0.22501	3644947748626351	4.68e-17
CKM	V_ub	0.003732	60454846441818	5.47e-15
CKM	V_cd	0.22487	3642679881932392	7.78e-17
CKM	V_cs	0.97349	15769611056443121	1.56e-17
CKM			•	6.66e-16
•	V_cb	0.04183	677606170059287	
CKM	V_td	0.00858	138987830244052	1.52e-15
CKM	V_ts	0.04111	665942855633213	2.64e-16
CKM	V_tb	0.999118	16184760253820109	7.35e-19
CKM	J_CKM	3.12e-5	505410291797	8.86e-13
CKM	l	0.22501	3644947748626351	4.68e-17
CKM	I A	0.826	13380413494357433	2.24e-17
CKM	1	0.1591	2577268507206135	6.01e-17
CKM	1	0.3523	5706924544869399	3.77e-17
+	+ sin²	0.307 4	-+ 4973107678895559 7	'
PMNS		· ·	-	2.83e-17
PMNS			-	3.78e-16
•		· ·	-	
PMNS	. –			8.55e-18
PMNS +	r_ +	0.0294795 +	477540463964327	7.90e-16
EW/QCD	_s(M_Z)	0.1179	1909867737269663	1.60e-16
EW/QCD	sin ² _W^eff,	0.23153	3750565540373579	8.97e-17
EW/QCD	G_F·M_Z ²	0.09698647	1571088459200101	8.31e-17
EW/QCD	M_W/M_Z	0.88153	14279946619468412	1.14e-17
EW/QCD	 check	1.011223783		7.56e-18
EW/QCD	_Z/M_Z	0.02736337	443260532193774	5.65e-16
EW/QCD	_2/11_2 [GUT]	0.01694296		6.18e-16
EW/QCD	1 50043	1 0.03380005	•	7.07e-16
	1 1			·
EW/QCD	 ~ [CITT]	0.1179		1.60e-16
EW/QCD	g [GUT]	0.46142342	7474620115207141	4.35e-17
EW/QCD	l g	0.65172383	10557305530735293	4.35e-18
EW/QCD	l g	1.21719969	19717476044673042	1.39e-17
EW/QCD	_QCD (null)	•		(exact)
EW/QCD	_QCD (upper)	2.5e-10 (p=10)	1426631354132577	(snap-down)
+	+ M_H/M_Z	+	-+	7 550=19
HIGGS/YUKAWA		1.3735420	22250072802689228	7.55e-18 1.76e-16
HIGGS/YUKAWA	(Higgs Quartic)	•		·
HIGGS/YUKAWA	m_e/M_Z	5.6038e-6	90776557602	4.64e-12

HIGGS/YUKAWA	m_/M_Z	0.0011587	18769712773164	5.14e-15	Ī
HIGGS/YUKAWA	m_/M_Z	0.0194858	315650813254981	2.96e-16	I
HIGGS/YUKAWA	I у_е	l 2.0754e-6	33619154268	1.07e-11	
HIGGS/YUKAWA	У_	4.2912e-4	6951374737775	1.73e-14	I
HIGGS/YUKAWA	l y_	0.0072166	116901473972260	4.07e-15	I
HIGGS/YUKAWA	m_u/M_Z	2.4126e-5	390819642043	6.24e-13	
HIGGS/YUKAWA	l у_u	1.0626e-5	172126190091	1.42e-12	
HIGGS/YUKAWA	m_d/M_Z	5.1542e-5	834932871638	1.92e-13	
HIGGS/YUKAWA	y_d	l 2.2700e-5	367724133376	8.06e-13	
HIGGS/YUKAWA	m_s/M_Z	0.0010528	17053948016432	2.71e-14	
HIGGS/YUKAWA	l y_s	0.0004637	7510961022142	3.92e-15	
HIGGS/YUKAWA	m_c/M_Z	0.0139273	225609520634054	1.99e-15	
HIGGS/YUKAWA	I у_c	0.0061339	99363755188754	6.96e-16	
HIGGS/YUKAWA	m_b/M_Z	0.0458396	742557319882163	6.24e-16	
HIGGS/YUKAWA	l y_b	0.0201888	327039761172434	6.04e-16	
HIGGS/YUKAWA	m_t/M_Z	1.8945558	30690000617904919	1.21e-17	
HIGGS/YUKAWA	l y_t	0.8344071	13516600272763094	1.70e-17	
HIGGS/YUKAWA	m_1/M_Z (p=10)	1.0966e-13	625800593121	3.96e-13	I
HIGGS/YUKAWA	m_2/M_Z (p=10)	l 1.4474e-13	825961959206	1.00e-13	I
HIGGS/YUKAWA	m_3/M_Z (p=10)	5.6100e-13	3201384454595	3.29e-14	I
HIGGS/YUKAWA	y_1 (p=10)	4.8299e-14	275617344326	9.12e-13	I
HIGGS/YUKAWA	y_2 (p=10)	6.3747e-14	363773131910	4.16e-14	I
HIGGS/YUKAWA	y_3 (p=10)	2.4708e-13	1409965236917	1.72e-13	I

$DNA\ Fingerprint\ Table\ ({\tt Output\ Data\ (DNA)}\ {\tt EZ\ Read.txt})$

Columns: Sector | Symbol | Residue (mod 23, 49, 50, 137)

Sector	Symbol	Residue (mod 23, 49, 50, 13
CORE	¹ (CODATA)	(3, 42, 47, 5)
CORE	¹(MZ,eff)	(0, 37, 8, 103)
CORE	sin²_W(MZ,MS)	(18, 32, 42, 65)
CORE	/e mass	(15, 35, 4, 63)
CORE	/ mass	(8, 34, 41, 92)
CORE	p/e mass	(21, 38, 18, 60)
CORE	a_e (leptonic)	(12, 42, 19, 25)
CORE	a_ (exp)	(10, 9, 18, 7)
CORE	(models)	(17, 44, 26, 105)
CORE	c (models)	(17, 41, 4, 79)
MASS RATIOS	+ /e	(10, 8, 25, 48)
MASS RATIOS	/p	(5, 41, 40, 43)
MASS RATIOS	/p	(21, 15, 3, 73)
	l e/p	(9, 27, 42, 108)
	e/	(15, 4, 23, 8)
	e/	(0, 20, 37, 9)
	p/	(12, 22, 22, 57)
	p/	(1, 12, 47, 106)
CKM	+ V_ud	(21, 47, 4, 134)
CKM	V_us	(21, 27, 1, 61)
CKM	V_ub	(20, 31, 18, 18)
CKM	V_cd	(13, 14, 42, 95)
CKM	V_cs	(22, 38, 21, 11)
CKM	V_cb	(15, 35, 37, 131)
CKM	V_td	(17, 13, 2, 82)
CKM	V_ts	(1, 39, 13, 111)
CKM	V_tb	(6, 7, 9, 119)
CKM	J_CKM	(21, 47, 47, 68)
CKM	·	(21, 27, 1, 61)
CKM	i I A	(4, 34, 33, 123)
CKM	1	(6, 29, 35, 43)
U1111	1	1 (0, 20, 00, 40)

	.	
PMNS PMNS	sin ² sin ² sin ² _CP/ r_	(2, 7, 9, 75)
EW/QCD EW/QCD	_s(M_Z) sin²_W^eff, G_F·M_Z² M_W/M_Z _check _Z/M_Z [GUT] g [GUT] g g [GUT] g g	(15, 3, 13, 101)
HIGGS/YUKAWA	(Higgs Quartic) m_e/M_Z m_/M_Z m_/M_Z y_e y_ y_ y_ m_u/M_Z y_u m_d/M_Z y_d m_s/M_Z y_d m_s/M_Z y_s m_c/M_Z y_c m_b/M_Z y_b m_t/M_Z y_b m_t/M_Z y_t m_1/M_Z y_t y	(8, 7, 28, 42)

Why This Format Is Useful

Enables **exact arithmetic** with physical constants using only integers Reveals **number-theoretic structure** in the Standard Model parameters Simplifies **reproduction**, **validation**, **and extension** of the dataset in code Facilitates pattern searches via **modular residue comparisons** To reconstruct any constant: multiply its k by U. To explore relationships: compare residue tuples across sectors.