CSCI432 HW5

Brock Ellefson

October 24, 2017

1 Prove that the Frechet distance is a distance metric

Prove that the Frechet distance is a distance metric.

To be a distance metric, you must satisfy 4 requirements:

Let X = discrete space

A metric is a function d: $X \times X \to \mathbb{R}$ such that:

1.
$$d(x,y) = d(y,x)$$

2.
$$d(x,y) = 0 \Leftrightarrow x = y$$

3.
$$d(x,y) + d(y,z) \ge d(x,z)$$

4.
$$d(x,y) \ge 0$$

So,

2 Recurrence Relations

2.a
$$T(n) = 2T(n/4) + n^2$$

Master's Theorem:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Where, $a \ge 1$, b > 1, f(n) is asymptotically positive

$$T(n) = 2T(n/4) + n^2$$

 $a = 2, b = 4, f(n) = n^2$
 $n^{log_b a} \Rightarrow n^{log_4 2} \Rightarrow n^{1/2}$

Case 3

if f(n) is $\Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ and if f(n/b) \leq f(n), then T(n) = $\theta(f(n))$ Therefore, T(n) = $\theta(n^2)$

2.b T(n) = 4T(n/2) + n

Master's Theorem:

$$T(n) = aT(\frac{n}{h}) + f(n)$$

Where, $a \ge 1$, b > 1, f(n) is asymptotically positive

$$T(n) = 4T(n/2) + n$$

$$a = 4, b = 2, f(n) = n$$

$$n^{log_b a} \Rightarrow n^{log_2 4} \Rightarrow n^2$$

Case 1:

if $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$ then $T(n) = \theta(n^2)$.

Therefore, $T(n) = \theta(n^2)$

2.c T(n) = 3T(2n/3) + 4n

Master's Theorem:

$$T(n) = aT(\frac{n}{b}) + f(n)$$

Where, $a \ge 1$, b > 1, f(n) is asymptotically positive

$$T(n) = 3T(2n/3) + 4n$$

$$a = 3, b = 2/3, f(n) = 4n$$

$$n^{log_b a} \Rightarrow n^{log_{3/2} 3} \Rightarrow n^{2.71}$$

Case 1:

if $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$ then $T(n) = \theta(n^{2.71})$.

Therefore, $T(n) = \theta(n^{2.71})$

2.d T(n) = T(n/2) + T(n/3)

Our longest path in this tree is the leftmost path, following a sequence: log_2n . So our initial guess is for this recurrence is O(nlogn).

2.e
$$2T(n/2) + O(\log n)$$

3 Climbing Stairs Problem