

Fonaments de computadors

TEMA 3: BLOCS COMBINACIONALS BÀSICS

Objectius

- Conéixer el funcionament dels circuits combinacionals bàsics següents:
 - Descodificadors
 - Codificadors
 - Multiplexors
 - Demultiplexors

Recursos d'aprenentatge

- Poliformat, secció "Recursos"
 - Exercicis sense solució.
 - Solucions als exercicis.
 - Exàmens d'anys anteriors.
- Poliformat, secció "Lessons"
 - Mòdul 4: Bloques combinacionales básicos. (Teoria i exercicis)
 - Mòdul 5: Composición de bloques combinacionales. (Teoria i exercicis)
 - Mòdul 6 Generación de funciones con multiplexores. (Teoria i exercicis)
 - Mòdul 7: Generación de funciones con decodificadores.
 (Teoria i exercicis)

Índex

- 1. Introducció
- 2. Descodificadors
 - Descodificadors binaris
 - 2. Composició de descodificadors binaris
 - 3. Descodificadors no binaris
- 3. Codificadors
- 4. Multiplexors
 - 1. Composició de multiplexors
 - 2. Multiplexors per a dades d'n bits
- 5. Demultiplexors

Introducció (i)

 En el tema anterior s'han estudiat els principis bàsics necessaris per tractar la descripció i implementació de circuits digitals mitjançant l'ús de portes lògiques elementals.

 En aquest tema s'aplicaran aquests principis per a comprendre el funcionament i construcció dels circuits combinacionals bàsics més utilitzats.

Introducció (ii)

- Aquests circuits implementen funciones senzilles
 - Es poden trobar integrats en pastilles (xips)
- S'estudiarà la importància d'aquests circuits com a elements bàsics en la construcció de les diferents unitats funcionals del computador, i en la transferència de dades entre elles.

- En un circuit combinacional, la relació entre les entrades i les eixides pot expressar-se mitjançant una funció lògica.
 - El valor de les eixides en un instant concret depén exclusivament del valor de les entrades en eixe mateix instant.
- Les portes lògiques introdueixen un xicotet retard entre l'entrada i l'eixida (de l'ordre de nanosegons)
 - En un circuit combinacional real els canvis en les entrades es manifesten en les eixides amb un cert retard.
 - El retard depén del tipus de portes, nombre d'entrades i nivell del circuit.

Descodificadors

- descodificadors binaris
 - m entrades i n = 2^m eixides (2 a 4, 3 a 8, 4 a 16)
 - Són de gran utilitat per a habilitar dispositius
- descodificadors de BCD a 7 segments
 - 4 entrades i 7 eixides
- descodificadors de BCD a decimal
 - 4 entrades i 10 eixides

Descodificadors binaris (i)

Descodificador binari

ENTR	ADES	EIXIDES				
В	Α	S3	S2	S1	S0	
0	0	0	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

Les eixides són mútuament excloents

Ús d'un descodificador binari per habilitar dispositius:

Descodificadors binaris (iii)

Disseny d'un descodificador binari

ENTR	ADES		EIXIDES				
В	Α	S3	S2	S1	S0		
0	0	0	0	0	1		
0	1	0	0	1	0		
1	0	0	1	0	0		
1	1	1	0	0	0		

Les funcions d'eixida només prenen valor 1 per a una sola valoració → No es podran formar grups en la taula de Karnaugh → No hi ha simplificació possible, emprem la forma canònica per obtindre l'expressió algebraica.

Descodificadors binaris (iv)

FCO

EIXIDES

Amb entrada d'habilitació

ENTRADES

Descodificadors binaris (v)

Circuit integrat 74LS139

Entrada d'habilitació i eixides actives a nivell baix. S'indiquen amb els cercles en el símbol lògic i les barres en els noms de les variables.

ENT	ENTRADES			EIXIDES				
/G	В	Α	/S3	/S2	/S1	/S0		
1	X	X	1	1	1	1		
0	0	0	1	1	1	0		
0	0	1	1	1	0	1		
0	1	0	1	0	1	1		
0	1	1	0	1	1	1		

Composició de descodificadors (i)

FCO

- La grandària major existent al mercat és: 4 a 16
- Podem construir descodificadors majors combinant o composant en paral·lel descodificadors més xicotets.

Exemple: Decod. de 3 a 8 (amb descodificadors de 2 a 4)

Composició de descodificadors (i)

FCO

- La grandària major existent al mercat és: 4 a 16
- Podem construir descodificadors majors combinant o composant en paral·lel descodificadors més xicotets.

Exemple: Decod. de 3 a 8 (amb descodificadors de 2 a 4)

E2	E 1	E0	
0	0	0	/DEC0
0	0	1	/DEC1
0	1	0	/DEC2
0	1	1	/DEC3
1	0	0	/DEC4
1	0	1	/DEC5
1	1	0	/DEC6
1	1	1	/DEC7

Composició de descodificadors (i)

FCO

- La grandària major existent al mercat és: 4 a 16
- Podem construir descodificadors majors combinant o composant en paral·lel descodificadors més xicotets.

Exemple: Decod. de 3 a 8 (amb descodificadors de 2 a 4)

E2	E 1	E0			NO	S'ACTIV	A	
0 0 0	0 0 1	0 1 0	/DEC0 /DEC1 /DEC2		1	A S0 B S1 S2 G S3	/DE0 /DE0 /DE0	C1 C2
1 1 1 1	1 0 0 1 1	1 0 1 0 1	/DEC3 /DEC4 /DEC5 /DEC6 /DEC7	E0 E1 E2	>0_C	A S0 B S1 S2 G S3	/DE0 /DE0 /DE0	C5 C6

Composició de descodificadors (ii)

FCO

Descodificador de 3 a 8 utilitzant dos descodificadors de 2 a 4 i un altre d'1 a 2:

Composició de descodificadors (ii)

FCO

Descodificador de 3 a 8 utilitzant nomes descodificadors de 2 a 4:

Composició de descodificadors (iii)

Composició de descodificadors (iv)

Descodificadors no binaris

Descodificadors BCD a 7 segments (eixides no excloents)

	E	ENTRADES			EIXIDES						
DECIMAL	D	С	В	Α	а	b	С	d	е	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	0	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	0	0	1	1
	•				•	-					a

Descodificadors no binaris (ii)

FCO

Descodificador BCD a decimal

	ENTRADES EIXIDES													
DECIMAL	D	С	В	Α	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	0	1	1	0	0	0	1	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	1	0	0	0	0	0
5	0	1	0	1	0	0	0	0	0	1	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	1	0	0	0
7	0	1	1	1	0	0	0	0	0	0	0	1	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	1	0
9	1	0	0	1	0	0	0	0	0	0	0	0	0	1

Funció oposada al descodificador

- Codificador binari
 - $m = 2^n$ entrades i n eixides
 - L'eixida codifica en binari el nombre de l'entrada activa
 - Són molt utilitzats en subsistemes d'entrada/eixida
 - Exemple: el codi d'eixida identifica el dispositiu que realitza una petició al processador
 - És necessari establir prioritats entre les entrades si aquestes poden activar-se simultàniament.

Codificador binari (amb prioritats)

EI	NTR	ADE	EIX	(IDE	S	
E3	E2	E1	E0	S1	SO	Ε
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

- Les entrades de major pes (major nombre d'ordre) tenen prioritat sobre les de menor pes
- L'eixida E indica "al menys una entrada activa en el codificador"

- Les línies de selecció indiquen quina entrada apareixerà en l'eixida
- Molt utilitzats en els camins que segueix la informació en els sistemes informàtics

Multiplexors (ii)

	ADES D ECCIÓ	E	EIX	(IDA		E0	S	
В	Α		,	S	·	E1		
0	0		E	Ξ0		E2 E3		
0	1			Ξ1		20	B A	Menor
1	0		E	E 2				
1	1		E	Ξ3				pes
Taula	de veri	itat	este	sa			_	(LSB)
ENTR	ADES	E	NTR	ADE	S	EIXIDA		Major
D	_		D	E				pes
SELE	CCIÓ		DAI	DES				
В	Α	E3	E2	E1	E0	S		(MSB)
0	0	X	X	X	0	0		
0	0	X	X	X	1	1		
0	1	X	X	0	X	0		
0	1	X	X	1	X	1		
1	0	X	0	X	X	0		
1	0	X	1	X	X	1		
1	1	0	X	X	X	0		
1	1	1	X	X	X	1		

Multiplexors (iii)

HABILITACIÓ		ADES DE ECCIÓ	EIXIDA
HABILITACIO	SEL	ECCIO	
/G	В	Α	S
1	X	X	0
0	0	0	E0
0	0	1	E1
0	1	0	E2
0	1	1	E3

Multiplexors (iv)

Exemple de disseny d'un MUX de 2 entrades de dades

• El multiplexor com a generador de funcions

$$f = \sum_{z,y,x} (0,1,4,6,7)$$

z	у	x	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Composició de multiplexors (i)

MUX de 8 entrades de dades amb MUX's de 4 entrades de dades amb

S2	S1	S0	S
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Composició de multiplexors (ii)

- Mètode general. Exemple:
 - Es vol construir un multiplexor de 1024 a 1 component multiplexors de 3 entrades de selecció. Quants d'aquests es necessitaran i com s'organitzaran?

Composició de multiplexors (iii)

FCO

- Per tindre 1024 entrades amb mux. de 8 entrades (3 de selecció) necessitem 1024 / 8 = 128 mux. de 8 entrades en el nivell 1.
- Per connectar les eixides dels 128 multiplexors
 necessitem 128 / 8 = 16 mux. de 8 entrades en el nivell 2.
- Per connectar les eixides dels 16 multiplexors
 necessitem 16 / 8 = 2 mux. de 8 entrades en el nivell 3.
- Per connectar les eixides dels 2 multiplexors necessitem: 1 mux. de 2 entrades en el nivell 4.

Per a aquest últim multiplexor es pot gastar qualsevol multiplexor de més de

2 entrades de dades.

Multiplexors per a dades de *n* bits (i)

- Construcció de multiplexors de dades d'ample major que 1 bit.
 - Exemple: MUX de 8 entrades de dades de 4 bits

Multiplexors per a dades de *n* bits (ii)

FCO

Exemple d'ús d'un MUX de 4 entrades

Demultiplexors

- Es poden construir utilitzant descodificadors
- Poden utilitzar-se per a habilitar dispositius

Recursos d'aprenentatge

- Poliformat, secció "Recursos"
 - Exercicis sense solució.
 - Solucions als exercicis.
 - Exàmens d'anys anteriors.
- Poliformat, secció "Lessons"
 - Mòdul 4: Bloques combinacionales básicos. (Teoria i exercicis)
 - Mòdul 5: Composición de bloques combinacionales. (Teoria i exercicis)
 - Mòdul 6 Generación de funciones con multiplexores. (Teoria i exercicis)
 - Mòdul 7: Generación de funciones con decodificadores.
 (Teoria i exercicis)

Fonaments de computadors

TEMA 3. BLOCS COMBINACIONALS BÀSICS