Feedback — Week 4 Quiz **Please Note: No Grace Period**

Help

Thank you. Your submission for this quiz was received.

You submitted this quiz on **Mon 26 Jan 2015 11:55 AM PST**. You got a score of **10.00** out of **10.00**.

Question 1

What is produced at the end of this snippet of R code?

set.seed(1)
rpois(5, 2)

Your Answer		Score	Explanation
A vector with the numbers1, 1, 2, 4, 1	~	1.00	Because the `set.seed()' function is used, `rpois()' will always output the same vector in this code.
It is impossible to tell			
because the result is			
random			
A vector with the numbers			
1, 4, 1, 1, 5			
A vector with the numbers			
3.3, 2.5, 0.5, 1.1, 1.7			
Total		1.00 /	
		1.00	

Question 2

Your Answer		Score	Explanation
dnorm			
• rnorm	~	1.00	Functions beginning with the `r' prefix are used to simulate random variates.
qnorm			
o pnorm			
Total		1.00 /	
		1.00	
Question Ex	colana	tion	

Question 3 When simulating data, why is using the set.seed() function important? Your Answer Score **Explanation** It can be used to generate non-uniform random numbers. It ensures that the sequence of random numbers is truly random. It ensures that the random numbers generated are within specified boundaries. It can be used to specify which random number generating 1.00 algorithm R should use, ensuring consistency and reproducibility. Total 1.00 / 1.00

/hich funct istribution?		n be used	to evaluate the inverse cumulative distribution function for the Poisso
Your Answer		Score	Explanation
o dpois			
o ppois			
o rpois			
• qpois	~	1.00	Probability distribution functions beginning with the `q' prefix are used to evaluate the quantile (inverse cumulative distribution) function.
Total		1.00 /	

3 of 7

Question 5

What does the following code do?

```
set.seed(10)
x <- rep(0:1, each = 5)
e <- rnorm(10, 0, 20)
y <- 0.5 + 2 * x + e</pre>
```

	Score	Explanation
~	1.00	
	1.00 / 1.00)
	•	100 Sept. 100 Se

Question 6

What R function can be used to generate Binomial random variables?

Your Answer		Score	Explanation
• rbinom	~	1.00	
dbinom			
qbinom			
pbinom			
Total		1.00 / 1.00	

Question 7

What aspect of the R runtime does the profiler keep track of when an R expression is evaluated?

our Answer		Score	Explanation
the function call stack	~	1.00	
the package search list			
the global environment			
the working directory			
otal		1.00 / 1.00	

Question 8

possible to tell

Consider the following R code

```
library(datasets)
Rprof()
fit <- lm(y ~ x1 + x2)
Rprof(NULL)</pre>
```

(Assume that y, x1, and x2 are present in the workspace.) Without running the code, what percentage of the run time is spent in the 'lm' function, based on the 'by.total' method of normalization shown in 'summaryRprof()'?

Your Answer	Score	Explanation
23%		
50%		
• 100%	✓ 1.00	When using `by.total' normalization, the top-level function (in
		this case, `lm()') always takes 100% of the time.
It is not		

Total 1.00 / 1.00

Question 9 When using 'system.time()', what is the user time? Your Answer Score Explanation It is the time spent by the CPU waiting for other tasks to finish It is the time spent by the CPU evaluating an expression ✓ 1.00 It is the "wall-clock" time it takes to evaluate an expression It is a measure of network latency Total 1.00 / 1.00

Question 10

If a computer has more than one available processor and R is able to take advantage of that, then which of the following is true when using 'system.time()'?

Your Answer		Score	Explanation
user time is 0			
user time is always smaller than elapsed time			
 elapsed time may be smaller than user time 	~	1.00	
elapsed time is 0			
Total		1.00 / 1.00	

7 of 7