



# Machine Learning for Time Series

(MLTS or MLTS-Deluxe Lectures)

# Dr. Dario Zanca

Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander-Universität Erlangen-Nürnberg 31.01.2023

# **Topics overview**



- Time series fundamentals and definitions (2 lectures)
- Bayesian Inference (1 lecture)
- Gussian processes (2 lectures)
- State space models (2 lectures)
- Autoregressive models (1 lecture)
- Data mining on time series (1 lecture)
- Deep learning on time series (4 lectures)
- Domain adaptation (1 lecture)



#### In this lecture...

- 1. Convolutional neural networks
- 2. Convolutional-based architectures







# Deep Learning for Time Series – Convolutional Models Convolutional Neural Networks (CNNs)





#### **Motivation**

#### RNN / LSTM limitations:

- Non-parallelism 

  Long training time
- Difficulties with long sequences
  - Large memory usage
  - Difficult to train (vanishing/exploding gradients)
  - Hard to learn long-term dependencies (mitigated by LSTMs)

#### Some of this problems are attenuated on CNNs:

- Parallel computations
- Easy to use on large input data



#### **Human visual cortex**

CNNs were inspired by the internal functioning of a specialized brain area: the visual cortex.

The visual cortex is in charge of processing visual information collected by the retinae.

Cortical neurons only respond to a small portion of the stimuli (small receptive field).

Small receptive fields are stimulated by high spatial frequencies (fine details); large receptive fields are stimulated by low spatial frequencies (coarse details).





# **Modeling small receptive fields**

- In standard multilayer perceptrons, neurons are connected to all units from the previous layer.
- Cortical neurons have small receptive fields: they have sparse and localized connection with units from the previous layer.
  - → This is modeled by means of convolutional operations.







The (discrete) convolution is a mathematical operation on two functions (in our case, the input and a smaller filter) that produces a third function (the feature map).

$$(input * filter)[n] = \sum_{m=-\infty}^{+\infty} input[m] \cdot filter[n-m]$$

- The sum is evaluated for all values of the shift.
- The term convolution is used both to indicate the result function and process of computing it.



$$y_{11} = w_{11}x_{11} + w_{12}x_{12} + w_{13}x_{13} + w_{21}x_{21} + w_{22}x_{22} + w_{23}x_{23} + w_{31}x_{31} + w_{32}x_{32} + w_{33}x_{33}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| <i>x</i> <sub>21</sub> | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $w_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| <i>y</i> <sub>11</sub> |  |
|------------------------|--|
|                        |  |
|                        |  |



The output computation now only depends on a subset of inputs:

\*

$$y_{12} = w_{11}x_{12} + w_{12}x_{13} + w_{13}x_{14} + w_{21}x_{22} + w_{22}x_{23} + w_{23}x_{24} + w_{31}x_{32} + w_{32}x_{33} + w_{33}x_{34}$$

| $x_{11}$               | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| $x_{31}$               | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | $w_{13}$        |
|----------|-----------------|-----------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$        |
| $w_{31}$ | W <sub>32</sub> | W <sub>33</sub> |

| $y_{11}$ | <i>y</i> <sub>12</sub> |  |
|----------|------------------------|--|
|          |                        |  |
|          |                        |  |



$$y_{13} = w_{11}x_{13} + w_{12}x_{14} + w_{13}x_{15} + w_{21}x_{23} + w_{22}x_{24} + w_{23}x_{25} + w_{31}x_{33} + w_{32}x_{34} + w_{33}x_{35}$$

| $x_{11}$               | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | $x_{22}$               | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| $x_{31}$               | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $w_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| $y_{11}$ | <i>y</i> <sub>12</sub> | $y_{13}$ |
|----------|------------------------|----------|
|          |                        |          |
|          |                        |          |



$$y_{23} = w_{11}x_{23} + w_{12}x_{24} + w_{13}x_{25} + w_{21}x_{33} + w_{22}x_{34} + w_{23}x_{35} + w_{31}x_{43} + w_{32}x_{44} + w_{33}x_{45}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| $x_{31}$               | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $w_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| <i>y</i> <sub>11</sub> | <i>y</i> <sub>12</sub> | <i>y</i> <sub>13</sub> |
|------------------------|------------------------|------------------------|
|                        |                        | $y_{23}$               |
|                        |                        |                        |



$$y_{22} = w_{11}x_{22} + w_{12}x_{23} + w_{13}x_{24} + w_{21}x_{32} + w_{22}x_{33} + w_{23}x_{34} + w_{31}x_{42} + w_{32}x_{43} + w_{33}x_{44}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| $x_{31}$               | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| $x_{51}$               | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $W_{31}$ | W <sub>32</sub> | $W_{33}$               |

| <i>y</i> <sub>11</sub> | <i>y</i> <sub>12</sub> | <i>y</i> <sub>13</sub> |
|------------------------|------------------------|------------------------|
|                        | $y_{22}$               | $y_{23}$               |
|                        |                        |                        |



$$y_{21} = w_{11}x_{21} + w_{12}x_{22} + w_{13}x_{23} + w_{21}x_{31} + w_{22}x_{32} + w_{23}x_{33} + w_{31}x_{41} + w_{32}x_{42} + w_{33}x_{43}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| <i>x</i> <sub>21</sub> | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | $x_{24}$               | <i>x</i> <sub>25</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| x <sub>41</sub>        | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | $x_{44}$               | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $W_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| $y_{11}$ | <i>y</i> <sub>12</sub> | <i>y</i> <sub>13</sub> |
|----------|------------------------|------------------------|
| $y_{21}$ | $y_{22}$               | $y_{23}$               |
|          |                        |                        |



The output computation now only depends on a subset of inputs:

\*

$$y_{31} = w_{11}x_{31} + w_{12}x_{32} + w_{13}x_{33} + w_{21}x_{41} + w_{22}x_{42} + w_{23}x_{43} + w_{31}x_{51} + w_{32}x_{52} + w_{33}x_{53}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | $x_{22}$               | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $w_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| $y_{11}$ | <i>y</i> <sub>12</sub> | <i>y</i> <sub>13</sub> |
|----------|------------------------|------------------------|
| $y_{21}$ | $y_{22}$               | $y_{23}$               |
| $y_{31}$ |                        |                        |



$$y_{32} = w_{11}x_{32} + w_{12}x_{33} + w_{13}x_{34} + w_{21}x_{42} + w_{22}x_{43} + w_{23}x_{44} + w_{31}x_{52} + w_{32}x_{53} + w_{33}x_{54}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| $x_{31}$               | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | x <sub>44</sub>        | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | w <sub>12</sub> | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $W_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| $y_{11}$        | $y_{12}$ | <i>y</i> <sub>13</sub> |
|-----------------|----------|------------------------|
| $y_{21}$        | $y_{22}$ | $y_{23}$               |
| y <sub>31</sub> | $y_{32}$ |                        |



$$y_{33} = w_{11}x_{33} + w_{12}x_{34} + w_{13}x_{35} + w_{21}x_{43} + w_{22}x_{44} + w_{23}x_{45} + w_{31}x_{53} + w_{32}x_{54} + w_{33}x_{55}$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> | <i>x</i> <sub>15</sub> |
|------------------------|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> | <i>x</i> <sub>25</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> | <i>x</i> <sub>35</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> | <i>x</i> <sub>45</sub> |
| <i>x</i> <sub>51</sub> | <i>x</i> <sub>52</sub> | <i>x</i> <sub>53</sub> | <i>x</i> <sub>54</sub> | <i>x</i> <sub>55</sub> |

| $w_{11}$ | $w_{12}$        | <i>w</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $w_{21}$ | $w_{22}$        | $w_{23}$               |
| $w_{31}$ | W <sub>32</sub> | W <sub>33</sub>        |

| $y_{11}$ | $y_{12}$        | <i>y</i> <sub>13</sub> |
|----------|-----------------|------------------------|
| $y_{21}$ | $y_{22}$        | $y_{23}$               |
| $y_{31}$ | y <sub>32</sub> | $y_{33}$               |



#### **Convolutional layer**

In a convolutional layer, multiple filters can be used in parallel, which result in multiple convolutional operations in parallel on the same input.

The different output are concatenated to create a multi-channel feature map.





#### **Convolutional Neural Network (CNN)**

To incrementally process relevant features, multiple layers of convolution can be stacked to create a deep convolutional neural network (CNN).

However, after many layer the number of features grow very quickly → Computationally expensive





$$y_{11} = \max(x_{11}, x_{12}, x_{21}, x_{22})$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> |
|------------------------|------------------------|------------------------|------------------------|
| <i>x</i> <sub>21</sub> | $x_{22}$               | <i>x</i> <sub>23</sub> | $x_{24}$               |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> |



| $y_{11}$ |  |
|----------|--|
|          |  |



$$y_{12} = \max(x_{13}, x_{14}, x_{23}, x_{24})$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> |
|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | $x_{22}$               | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> |
| $x_{41}$               | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> |

$$\xrightarrow{\max x}$$

| $y_{11}$ | $y_{12}$ |
|----------|----------|
|          |          |



$$y_{21} = \max(x_{31}, x_{32}, x_{41}, x_{42})$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> |
|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | <i>x</i> <sub>22</sub> | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> |
| <i>x</i> <sub>41</sub> | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> |

$$\xrightarrow{\max x}$$

| $y_{11}$ | <i>y</i> <sub>12</sub> |
|----------|------------------------|
| $y_{21}$ |                        |



$$y_{22} = \max(x_{33}, x_{34}, x_{43}, x_{44})$$

| <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> | <i>x</i> <sub>13</sub> | <i>x</i> <sub>14</sub> |
|------------------------|------------------------|------------------------|------------------------|
| $x_{21}$               | $x_{22}$               | <i>x</i> <sub>23</sub> | <i>x</i> <sub>24</sub> |
| <i>x</i> <sub>31</sub> | <i>x</i> <sub>32</sub> | <i>x</i> <sub>33</sub> | <i>x</i> <sub>34</sub> |
| <i>x</i> <sub>41</sub> | <i>x</i> <sub>42</sub> | <i>x</i> <sub>43</sub> | <i>x</i> <sub>44</sub> |

$$\xrightarrow{\max x}$$

| $y_{11}$ | $y_{12}$ |
|----------|----------|
| $y_{21}$ | $y_{22}$ |



- Other operations can be used instead of the max, e.g., the mean, L<sup>2</sup>-norm, ...
- There is no general consensus on which of these operation is the best and this should be experimentally validated case by case.



#### **Padding operation**

The convolution, as illustrated previously, leads to a reduction of the dimensionality.

 $\rightarrow$  Given an input of size n and a filter of size m, the resulting feature map have size n-m+1.

For this reason, the padding operation is used to add symmetrically zeros to the input, such that the resulting feature map is of the same size as the input.





Stride 1 with Padding

Feature Map



#### 1-D Convolutional Neural Networks

CNNs can be used to learn temporal dependencies on time series data.

- The convolution is applied along a single dimension, i.e., the temporal dimension.
- The resulting model is generally referred to as 1-D CNN.



The output computation now only depends on a subset of the time series:

$$y_1 = w_1 x_1 + w_2 x_2 + w_3 x_3$$

 $w_1$ 

 $w_2 | w_3 |$ 

\_

 $y_1$ 



The output computation now only depends on a subset of inputs:

$$y_2 = w_1 x_2 + w_2 x_3 + w_3 x_4$$

 $x_1$   $x_2$   $x_3$   $x_4$   $x_5$ 

 $w_1$   $w_2$   $w_3$ 

 $= |y_1|y_2|$ 



The output computation now only depends on a subset of inputs:

$$y_3 = w_1 x_3 + w_2 x_4 + w_3 x_5$$

 $x_1$   $x_2$   $x_3$   $x_4$   $x_5$ 

<

 $w_1$   $w_2$   $w_3$ 

=

 $y_1 \mid y_2$ 

 $y_3$ 



#### **Translation equivariance**

**Translation equivariance** is a property of Convolutional Neural Networks (CNNs) where the output of a CNN remains the same after an object within an image is translated (moved) by a fixed amount.

This means that if you translate an input image by a fixed number of pixels, the output of the CNN will be the same, up to the same translation.

→ An example of this property is seen in image classification tasks, where the presence of an object in an image remains the same regardless of its location within the image.

**CNNs are translation equivariant** because the same kernel is used to scan the entire image and compute the activation map: when the input image is translated, the same kernel is used to compute the activation map, leading to the same output, up to the same translation.







# Deep Learning for Time Series – Convolutional Models Convolutional-based Neural Networks (CNNs)





#### **CNNs for time series**

CNNs can be used to process sequential data, in place of RNNs.

- CNNs look forward, while RNN models only learn from data before the timestep it needs to predict.
  - → CNNs (with shuffling) can see data from a broader perspective.
  - → RNNs can learn causality

Definition. Causality is the influence that an event (cause) contributes to a successive event (effect).

A difference with conditional statements is that causality require the antecedent to precede or coincide with the consequent in time.



#### **ConvLSTM**

The ConvLSTM is a recurrent layer, just as like as LSTM, but the matrix multiplications within the LSTM cell are replaced by convolutional operations.

- → Suited for video processing.
- → It keeps the dimensionality of the input,
   e.g., 3D for a single-channel video.





#### **ConvLSTM**

The ConvLSTM is defined by the following equations:

$$egin{aligned} i_t &= \sigma(W_{xi} * X_t + W_{hi} * H_{t-1} + W_{ci} \odot \mathcal{C}_{t-1} + b_i) \ f_t &= \sigma(W_{xf} * X_t + W_{hf} * H_{t-1} + W_{cf} \odot \mathcal{C}_{t-1} + b_f) \ \mathcal{C}_t &= f_t \odot \mathcal{C}_{t-1} + i_t \odot anh(W_{xc} * X_t + W_{hc} * \mathcal{H}_{t-1} + b_c) \ o_t &= \sigma(W_{xo} * X_t + W_{ho} * \mathcal{H}_{t-1} + W_{co} \odot \mathcal{C}_t + b_o) \ \mathcal{H}_t &= o_t \odot anh(\mathcal{C}_t) \end{aligned}$$





#### **ConvLSTM**

 ConvLSTM can be confused with CNN+LSTM models, i.e., a sequential combination of the two architectures which first processes an input frame through a CNN to create a flatten representation which is then fed as input to the LSTM.





#### **ConvLSTM**

# ConvLSTM are successfully applied to different tasks:

- Gesture recognition [1]
- Precipitation nowcasting [2]
- Medical image segmentation [3]
- Video salient object detection [4]
- ..



- [1] "Attention in Convolutional LSTM for Gesture Recognition", Zhang et al.
- [2] "Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting", Shi et al.
- [3] "Multi-level Context Gating of Embedded Collective Knowledge for Medical Image Segmentation", Asadi-Aghbolaghi et al.
- [4] "Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection", Song et al.



Temporal Convolutional Networks (TCNs) were introduced in 2016 for video-based action segmentation [5].

It is a variation of CNN for better modeling of sequencing tasks.

The TCN provides a unified approach to capture both:

- Low-level features encoding spatio-temporal information, and
- 2. High-level temporal information



[5] "Temporal convolutional networks: A unified approach to action segmentation", Lea et al.



Temporal Convolutional Networks (TCNs) are based on an encoder-decoder framework.

- It takes as input a sequence of any length and output a sequence of the same length.
- The causal convolution (or, temporal convolution) main characteristic is that the output at time t is <u>only convolved</u> with the observation until time t.
  - → There is no information leakage from the future



Image from the original paper: "Temporal convolutional networks: A unified approach to action segmentation", Lea et al.



The causal convolution is best suited to model causality in the data.

- For images it can be implemented by "masked convolutions", i.e., a tensor mask is applied before the actual convolution takes place.
- For 1D data, e.g., audio processing, it can be more easily implemented by shifting the output of a normal convolution by a few timesteps.



Image from the original paper: "Temporal convolutional networks: A unified approach to action segmentation", Lea et al.



# Among a multitude of applications, TCNs have been successfully applied to:

- Weather prediction task [6]
- Sound event localization [7]
- Action segmentation [8]
- •



- [6] "Temporal convolutional networks for the Advance prediction of enSo", Yan, Jining, et al.
- [7] "SELD-TCN: Sound Event Localization & Detection via Temporal Convolutional Networks.", Guirguis et al.
- [8] "Temporal convolutional networks: A unified approach to action segmentation.", Colin et al.



### Advantages of TCNs:

- TCNs exhibit longer memory than RNNs, given the same capacity
- Parallelism of training



- [6] "Temporal convolutional networks for the Advance prediction of enSo", Yan, Jining, et al.
- [7] "SELD-TCN: Sound Event Localization & Detection via Temporal Convolutional Networks.", Guirguis et al.
- [8] "Temporal convolutional networks: A unified approach to action segmentation.", Colin et al.







# **Deep Learning for Time Series – Convolutional Models**Recap





### In this lecture

- Convolutional neural networks (CNNs)
  - The convolution operation
  - Pooling
  - Padding
  - 1D and 2D convolutions
- Convolutional-based architectures
  - ConvLSTM
  - TCN



## **Critical comparison**

## Recurrent-based, convolutional-based, mixed

|                       | FF-NN   | RNN        | CNN   |
|-----------------------|---------|------------|-------|
| Data                  | Tabular | Sequential | Grids |
| Weight-sharing        | No      | Yes        | Yes   |
| Recurrent connections | No      | Yes        | Yes   |
| Equivariant           | No      | No         | Yes   |
| Parall. comp.         | Yes     | No         | Yes   |
| Vanishing grad.       | Yes     | Yes        | Yes   |
| Spatial relationships | No      | No         | Yes   |
| Causality             | No      | Yes        | No    |



