SECURITY INFORMATION

NACA RM L53J21

7497

Copy RM L53J21

RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION AT TRANSONIC SPEEDS OF A

SPOILER-SLOT-DEFLECTOR COMBINATION ON AN

UNSWEPT NACA 65A006 WING

By Raymond D. Vogler

Langley Aeronautical Laboratory
Langley Field, Va.

CLASSIFIED DOCUMENT

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

December 8, 1953

Mase TER PLA Horography Than US By rother Mase TER PLA Horography CHANGS Ву..... HAUGE)

NACA RM L53J21

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

WIND-TUNNEL INVESTIGATION AT TRANSONIC SPEEDS OF A

SPOILER-SLOT-DEFLECTOR COMBINATION ON AN

UNSWEPT NACA 65A006 WING

By Raymond D. Vogler

SUMMARY

An investigation was made in the Langley high-speed 7- by 10-foot tunnel to determine the effectiveness of a spoiler-slot-deflector combination in producing rolling moments in the transonic speed range at angles of attack as high as 24° . By use of the transonic bump a Mach number range from 0.62 to 1.20 was obtained. The wing had an aspect ratio of 4, a taper ratio of 0.6, an unswept quarter-chord line, and NACA 65A006 airfoil sections. Forces and moments on the semispan model were obtained with a 57-percent-semispan outboard spoiler-slot-deflector combination located between the 55- and 70-percent-chord lines. For comparison, data were also obtained with spoiler vented and unvented and without a deflector.

As was previously found at lower speeds, a spoiler-slot-deflector combination was more effective at transonic speeds than a spoiler alone in producing rolling moments over a greater angle-of-attack range. At positive angles of attack up to about 12° the spoiler and the spoiler-slot-deflector combination suffer some loss in effectiveness in and above the transonic speed range, but at high angles of attack both configurations show increasing effectiveness with increasing Mach number in the region near M=1.0. The rolling effectiveness of the spoiler-slot-deflector combination is approximately proportional to the projection for the range investigated.

INTRODUCTION

The spoiler used as a lateral-control device has been the subject of considerable investigation at low and high speeds, and on both swept and unswept wings (refs. 1 to 3). Recent investigations of spoilers used as lateral-control devices have shown that on thin wings with small

leading-edge radii the unvented spoiler loses effectiveness rapidly as the angle of attack is increased above 8° (refs. 2 and 3). However, investigations at low and high subsonic speeds as reported in references 3 to 5 have shown that this loss in effectiveness at the higher angles of attack could be substantially reduced by using a slot in the wing behind the spoiler that would allow the air to flow through the wing from the lower to the upper surface when the spoiler was deflected.

The purpose of this investigation was to extend through the transonic speed range previous low and high subsonic speed investigations of spoiler-slot-deflector devices for lateral control. The investigation was made in the Langley high-speed 7- by 10-foot tunnel using the transonic bump to obtain Mach numbers from 0.62 to 1.20. The angle-of-attack range was -4° to 24° . Rolling, yawing, and pitching moments, and lift and drag were obtained with spoiler alone, spoiler-gap lip combination, and spoiler-slot-deflector combination.

SYMBOLS AND COEFFICIENTS

The forces and moments measured on the model are presented about an orthogonal system of axes whose origin coincides with the point of intersection of the root chord line and the quarter-chord line. The longitudinal axis is parallel to the free air stream and the lateral axis coincides with the quarter-chord line.

$\mathtt{C}_{\mathbf{L}}$	lift coefficient, Twice semispan lift qS
$\Delta C_{ m L}$	increment of lift coefficient produced by the control
c_D	drag coefficient, Twice semispan drag
$\triangle C_{\mathrm{D}}$	increment of drag coefficient produced by the control
C_{m}	pitching-moment coefficient, $\frac{\text{Twice semispan pitching moment}}{\text{qS\overline{c}}}$
ΔC_{m}	increment of pitching-moment coefficient produced by the control
c_{i}	rolling-moment coefficient produced by the control, Rolling moment
	q S b

CONTRADDRIVE

C _n	yawing-moment coefficient produced by the control, Yawing moment qSb
q	dynamic pressure, $\frac{\rho V^2}{2}$, lb/sq ft
ρ	mass density of air, slugs/cu ft
v	free-stream air velocity, fps
S	twice wing area of semispan model, 0.125 sq ft '
ъ	twice wing span of semispan model, 0.707 ft
С	local chord, ft
ē	mean aerodynamic chord of wing, 0.1805 ft
М	Mach number
R	Reynolds number of wing based on \bar{c}
a	angle of attack, deg
δ _s	spoiler projection, negative when projected from upper surface of wing, percent chord
δ _đ	deflector projection, positive when projected from lower surface of wing, percent chord

MODEL AND APPARATUS

A drawing of the model and pertinent information are given in figure 1. The solid steel wing had NACA 65A006 airfoil sections parallel to the free air stream, an unswept quarter-chord line, an aspect ratio of 4, and a taper ratio of 0.6. The lateral-control devices investigated included a spoiler, a spoiler-gap-lip combination, and a spoiler-slot-deflector combination (fig. 1). The spoilers and deflectors were made of 0.02-inch-thick steel plates. The leading edge of the spoiler was inlaid flush with the wing surface. Spoiler projections were obtained by raising the rear edge of the plates and bending them along the 55-percent-chord line of the wing. Deflector projections were obtained by bending the plates along the 70-percent-chord line. For the spoiler-slot-deflector configurations, a slot was cut through the wing between the 55- and 70-percent-chord lines, except for two chordwise ribs which

were left for stiffness (fig. 1). The lip was made of a thin piece of metal extending from the rear of the slot forward along the original contour of the wing lower surface. In the spoiler-gap-lip configuration part of the 0.15c slot was filled with a fairing leaving a gap of 0.025c between the fairing and the lip (fig. 1). The lip and the deflectors had sharp leading edges. Each of the control configurations had a span of 0.57b/2 and extended from 0.40b/2 to 0.97b/2.

The model was mounted on an electrical strain-gage balance enclosed within the bump. The wing was attached to the balance mount through a wing-profile cutout in the turntable in the surface of the bump. Air flow between the wing root and the cutout was restricted by a sponge rubber seal attached to the wing butt within the balance chamber. The forces and moments were measured simultaneously with calibrated recording potentiometers.

TESTS AND CORRECTIONS

The model was tested in the flow field of a transonic bump mounted on the floor of the Langley high-speed 7- by 10-foot tunnel. The Mach number range was from 0.62 to 1.20 and the angle-of-attack range from _4° to 24°. Investigations were made of the spoiler alone, spoiler-gaplip, and spoiler-slot-deflector configurations with the spoiler projected various amounts up to 10 percent of the local wing chord. On the spoiler-slot-deflector combination the ratio of spoiler projection to deflector projection was 4 to 3.

The variation of mean test Reynolds number, based on the mean aerodynamic chord, with Mach number is given in figure 2.

No corrections to the data have been applied. The usual wind-tunnel blockage and jet-boundary corrections are considered negligible on account of the small size of the model. Reflection-plane corrections to the rolling moments were dispensed with since this investigation was concerned primarily with the effects of angle of attack and Mach number on the relative effectiveness of spoiler-type controls having the same span and the same spanwise location. From experimental and theoretical considerations, it is believed that the magnitude of the rolling-moment data as presented is approximately 15 percent too large at the lowest Mach number but at a Mach number of 1.0 or above is approximately correct.

RESULTS AND DISCUSSION

Presentation of Data

The lift, drag, and pitching-moment coefficients of the plain wing are presented in figure 3, and the increments of lift, drag, and pitching-moment coefficients produced by various controls are shown in tables I to III, as a matter of general interest, along with the yawing- and rolling-moment coefficients. Since the investigation was concerned primarily with lateral control, only the rolling-moment data of tables I to III have been plotted to show the effect of important parameters on the rolling effectiveness of the controls.

Lateral Control Characteristics

An inspection of the tabular values of rolling- and yawing-moment coefficients of the spoiler alone shows the values to have the same algebraic sign in most cases which means that the yawing-moment coefficients are generally favorable or small if unfavorable. However, with the spoiler-slot-deflector combination there are some adverse yawing moments at high angles of attack.

The variation of rolling-moment coefficient with angle of attack for various projections of the controls for the three configurations investigated is given in figure 4. At subsonic speeds the effectiveness of spoiler alone decreased rapidly as the angles of attack were increased above 80 resulting in near zero rolling-moment coefficients at angles of attack from 16° to 20°. The variation of effectiveness with angle of attack is similar to but less abrupt than that shown for the swept wings of references 2 and 5. At supersonic speeds the decrease in spoiler effectiveness with increase in angle of attack was more gradual than at subsonic speeds. The addition of a 0.025c gap in the wing and a sharp lip behind the gap along the lower surface of the wing improved the effectiveness of the spoilers at the higher angles of attack at all Mach numbers. Considerably more improvement throughout the angle-of-attack range and Mach range was obtained by increasing the gap to 0.15c and adding a deflector behind the slot on the lower surface of the wing to direct more air through the slot. A ratio of deflector projection to spoiler projection of 3 to 4, previously found effective throughout the angle-of-attack range (ref. 5), was used in this investigation. The improvement in rolling effectiveness obtained with the slot and deflector is typical of the results obtained in previous investigations of swept wings at subsonic speeds (refs. 3 and 5). At low supersonic Mach numbers the improvement results in rolling-moment coefficients that were fairly constant throughout the angle-of-attack range.

Figure 5 shows the effect of Mach number on the rolling-moment coefficients of the spoiler alone and the spoiler-slot-deflector combination. Both configurations show decreasing rolling-moment coefficients in and above the transonic speed range at positive angles of attack up to about 12° , but both configurations show increasing values at the higher angles of attack in the region near M=1.0.

The variation of rolling-moment coefficient with projection is given in figure 6 for the spoiler alone and for the spoiler-slot-deflector combination at 0° and 16° angles of attack. The increased effectiveness of the spoiler-slot-deflector combination through the projection range at low and high angles of attack is indicated. The effectiveness of the controls is approximately proportional to control projections, although the spoiler alone has lower effectiveness in the projection range near one percent.

CONCLUSIONS

A wind-tunnel investigation was made to determine the effectiveness of a spoiler-slot-deflector combination in producing rolling moments in the transonic speed range through an angle-of-attack range from -4° to 24° . As a result of the investigation the following conclusions are made:

- 1. As was previously found at low and high subsonic speeds, a spoiler-slot-deflector combination is more effective in producing rolling moments over a greater angle-of-attack range than an unvented spoiler alone at Mach numbers through the transonic range up to 1.20.
- 2. At positive angles of attack up to about 12° the spoiler and the spoiler-slot-deflector combination suffer some loss in effectiveness in and above the transonic speed range, but at high angles of attack both configurations show increasing effectiveness with increasing Mach number in the region near M=1.0.
- 3. At Mach numbers from 0.62 to 1.20 and angles of attack from -4° to 24° , the rolling effectiveness of the spoiler-slot-deflector combination is approximately proportional to the projection.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 7, 1953.

REFERENCES

- 1. Wenzinger, Carl J., and Rogallo, Francis M.: Wind-Tunnel Investigation of Spoiler, Deflector, and Slot Lateral-Control Devices on Wings With Full-Span Split and Slotted Flaps. NACA Rep. 706, 1941.
- 2. Vogler, Raymond D.: Wind-Tunnel Investigation at High Subsonic Speeds of Spoilers of Large Projection on an NACA 65A006 Wing With Quarter-Chord Line Swept Back 32.6. NACA RM L51L10, 1952.
- 3. Watson, James W.: Low-Speed Lateral-Control Investigation of a Flap-Type Spoiler Aileron With and Without a Deflector and Slot on a 6-Percent-Thick, Tapered 45° Sweepback Wing of Aspect Ratio 4. NACA RM L52G10, 1952.
- 4. West, F. E., Jr., Solomon, William, and Brummal, Edward M.: Investigation of Spoiler Aileron With and Without a Gap Behind the Spoiler on a 45° Sweptback Wing-Fuselage Combination at Mach Numbers From 0.60 to 1.03. NACA RM L53G07a, 1953.
- 5. Vogler, Raymond D.: Wind-Tunnel Investigation at High Subsonic Speeds of a Spoiler-Slot-Deflector Combination on an NACA 65A006 Wing With Quarter-Chord Line Swept Back 32.6°. NACA RM L53D17, 1953.

Table I.— Spoiler

			δs =-0	1/C							8s =C	5c		
	M	a	ΔCL	ΔCo	ΔC_m	-C _I	C _n	M	α	ΔC_L	ΔC_D	ΔC_m	-C ₇	$-C_n$
	.62 .62 .62 .63	- 4.0 4.0 8.0 12.0	.0118 0073 .0073 .0856 .0190	0078 .0057 .0047 .0101 .0037	-,0091 .0037 0037 .0018 .0095	-,0046 -,0000 -,0001 -,0006 -,0005	0005 0006 0001 0003 0005	62 62 62 62 62	- 4.0 4.0 8.0 18.0	0909 0846 1097 0464 .0137 .0808	.0143 .0281 .0184 .0064 .0082	0163 .0055 0110 0110 0071	0086 0084 0188 0086 0032	0016 0084 0015 0011
81	. 84 . 84 . 84 . 84 . 84	- 4.0 4.0 8.0 12.0	0187 0064 0090 .0018 0032	0042 .0089 .0083 .0106 .0053	.0039 .0076 .0012 0049 .0004	.0020 .0004 0002 0017 0004 0013	-0001 -0010 -0003 -0007 -0013	. 84 . 84 . 84 . 84	- 4.0 4.0 8.0 12.0	1460 1538 1768 0855 0081	.0855 .0870 .0194 .0037 .0006	0801 .0213 .0067 0049 0050	0130 0146 0161 0188 0039 0018	0048 0038 0084 0010 0010
ONE DESIGNATION	.95 .96 .95 .95	- 4.0 4.0 5.0 12.0 16.0 20.0	0850 0308 .0088 .00165 0055	.0089 .0046 0018 .0046 .0114 .0018 0087	.0131 .0133 .0033 .0011 0273 0076	0085 0018 0003 .0008 .0005	0023 0018 0010 0015 0006	955 955 955 955 955 955	- 4.0 4.0 8.0 18.0 16.0	2051 1815 0743 0590 0487 0359	.0415 .0339 .0173 .0042 .0039 0099	.0491 .0393 .0066 .0089 0035 .0031	0170 0171 0118 0079 0061 0046 0022	0065 0040 0026 0012 0005
	1.01 1.01 1.01 1.01 1.01 1.01	- 4.0 4.0 8.0 18.0 16.0 20.0	0146 0000 .0002 .0018 0087 0888 0335	.0059 0005 0027 0081 0182 0182	.0249 0031 0068 0156 0116 0167 0054	0028 0008 0000 0000 0001 0005 0010	0025 0025 0036 0006 0003 0003	1.01 1.01 1.01 1.01 1.01 1.01	- 4.0 4.0 5.0 13.0 16.0 30.0	1050 1076 0606 0470 0456 0141 0178	.0448 .0857 .0128 .0037 .0048 0131 0190	.0278 .0135 .0009 .0008 .0026 0017	0118 0101 0089 0066 0055 0035	0067 0060 0055 0018 0004 0003
	1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 8.0 18.0 26.0 20.0	0006 0030 0050 0037 0138 0176	0046 0031 0035 0055 0064 0147 0146	0089 0080 0060 0090 0111 0103 0103	0001 0010 0000 0000 0003 0009 0007	0015 0008 0009 0011 0009	1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 8.0 18.0 16.0 80.0	0807 0936 0557 0449 0431 0436 0498	.0313 .0219 .0117 .0025 ~.0081 ~.0184 ~.0869	0018 .0158 .0068 .0017 .0034 0047 0107	0080 0095 0068 0060 0057 0060 0088	0057 0036 0087 0017 0014 0015
	1.18 1.12 1.13 1.13 1.12 1.12	- 4.0 4.0 8.0 12.0 15.0 30.0	.0014 0077 .0033 0010 .0042 0069 0178 0314	0059 0009 0049 0073 0089 0108 0108	7.0057 0076 0046 0059 0051 0051	0000 0005 0003 0005 0004 0009 0018	0003 0005 0010 0005 0005 0001	1.18 1.18 1.12 1.12 1.12 1.12	- 4.0 4.0 8.0 12.0 16.0 20.0	0859 0894 0479 0479 0370 0391 0428 .0084	.0314 .0917 .0093 .0010 0016 0151 0286	0087 .0134 .0133 .0088 .0068 .0068	0085 0082 0069 0057 0045 0053 0045	0043 0034 0089 0080 0015 0005
	1.20 1.20 1.20 1.30 1.20 1.20	- 4.0 4.0 8.0 12.0 16.0 30.0	0068 .0009 0011 .0014 0063 0180	0065 0032 0047 0040 0076 0102 0142	0008 0055 0091 0057 0067 0016	0001 0004 .0001 0001 0008 0011	0004 0008 0003 0000 .0001	1.20 1.20 1.20 1.20 1.20 1.30	- 4.0 4.0 9.0 13.0 16.0	0893 0633 0456 0378 0464 0464 0438	.0300 .0198 .0113 .0078 0040 0185 0202	.0093 .0091 .0086 .0048 .0067 .0180	0087 0053 0048 0051 0046 0046	0047 0034 0026 0009 0003 .0004

Table I.—Concluded

		δ _s =-	.075c							S₃ = -	.IOc		
M	a	△CL	ΔC_D	ΔCm	-CI	-Cn	M	a	△C _L	ΔC_D	ΔC_m	-C _Z	$-c_n$
.63 .63 .63 .62	- 4.0 .0 4.0 6.0 18.0	1450 1715 1869 1378 0987	.0356 .0366 .0850 .0105 0004	0092 .0110 0055 0000 0017 0034	0154 0166 0805 0169 0070	0057 0048 0030 0011 0005 0000	. 69 . 69 . 69 . 69	- 4.0 4.0 5.0 12.0	2386 2708 2938 2358 0688 0419	.0558 .0555 .0375 .0148 0054	.0073 .0893 .0110 .0110 .0057	0249 0273 0319 0879 0187 0021	0103 0087 0067 0039 0024 0027
.84 .84 .84 .84	- 4.0 4.0 8.0 12.0	2407 8557 8554 1871 0690 0194	.0499 .0434 .0262 .0063 0039	.0313 .0363 .0174 .0076 .0015	0881 0937 0863 0215 0099 0088	0077 0061 0033 0006 .0007	.84 .84 .84 .84	- 4.0 4.0 8.0 12.0 16.0	3171 3498 3638 3070 1339 0003	.0787 .0690 .0486 .0076 ~.0138 ~.0095	.0463 .0468 .0249 .0188 .0102	0304 0355 0386 0389 0173 0086	0121 0099 0071 0025 0006 0018
995555 9955 9955 995	- 4.0 4.0 8.0 12.0 16.0 20.0	2663 8685 1699 0864 0878 0663	.0738 .0501 .0889 .0135 .0089 0059	.0569 .0585 .0819 .0130 .0106 .0085	0238 0267 0196 0117 0097 0067 0081	0105 0068 0037 0022 0007 0000	95 95 95 95 95	- 4.0 4.0 5.0 18.0 16.0	3356 3471 3175 1578 1005 0308	.0991 .0766 .0450 .0134 0058 0076	.0678 .0608 .0394 .0371 .0870 .0083	-,0296 0347 0335 0226 0179 0127 0026	0143 0101 0069 0034 0018 0006
1.0111111011110011	- 4.0 4.0 8.0 12.0 16.0 20.0	1488 1673 1883 1081 0949 0289 0868	.0716 .0509 .0254 .0098 00189 .0001 0186	.0199 .0135 .0144 .01119 .0023 0128	0157 0158 0137 0190 0097 0038	0099 0088 0071 0028 0001 0001	1.01 1.01 1.01 1.01 1.01 1.01	4.0 4.0 8.0 12.0 16.0 20.0 84.0	8038 3457 3681 1805 1440 1301 0477	.1036 .0776 .0439 .0158 0035 0161 .0017	.0830 .0166 .0899 .0308 .0217 0113	0286 0251 0251 0369 0193 0160 0146 0096	0144 0130 0108 0059 0035 0015 0013
1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 5.0 19.0 16.0 30.0 24.0	1408 1684 1238 0983 0063 0748 0704	.0600 .0454 .0826 .0088 0056 0156 0261	0057 .0139 .0306 .0115 .0118 .0071	0136 0149 0123 0101 0085 0070 0038	0098 0065 0045 0033 0091 0005 0010	1.07 1.07 1.07 1.07 1.07 1.07	- 4.00 4.00 1166.00 24.00	1846 8981 8846 1679 1411 1134 1036 0883	.0938 .0745 .0424 .0147 0147 0888 0825	0057 .0189 .0344 .0283 .0361 .0150 .0139	0199 0234 0214 0178 0135 0135 0101	0130 0103 0078 0052 0034 0001
1.18 1.18 1.18 1.18 1.18 1.18	4.0 4.0 8.0 16.0 20.0	1882 1615 1190 0918 0727 0727 0780	.0585 .0483 .0198 .0065 .0003 0138 0181	0074 .0096 .0847 .0158 .0136 .0114	0131 0144 0113 0097 0076 0063 0058	0078 0066 0048 0034 0010 0010	1.18 1.18 1.18 1.18 1.18 1.18	4.00 4.00 4.00 1166.00 94.0	1880 2336 2055 1610 1885 0999 1147	.0891 .0734 .0404 .0185 .0018 0137 0842 0346	0103 .0066 .0371 .0381 .0281 .0288 .0170	0185 0935 0196 0171 0140 0119 0114	0118 0113 0074 0049 0029 0003
1.30 1.20 1.20 1.20 1.20	- 4.0 4.0 8.0 12.0 16.0	1864 1098 0868 0737 0708 0673 0570	.0559 .0400 .0837 .0144 .0013 0097 0198	.0011 .0137 .0117 .0187 .0113 .0189	0135 0118 0090 00083 0076 0070	0081 0063 0044 0027 0018 0007	1.80 1.80 1.80 1.80 1.80	- 4.0 4.0 8.0 12.0 15.0	1838 1677 1354 1061 0869	.0870 .0887 .0395 .0316 .0018 0181	0007 .0173 .0263 .0224 .0228 .0256	0198 0807 0161 0146 0189 0119	0113 0108 0069 0046 0083 0008

Table II.—Spoiler, Gap, and Lip

							 √-						
		δs = -(75c							δ ₅ =	.075c		
M	a	△C _L	$\Delta C_{\mathcal{O}}$	ΔC_m	-C ₁	$-C_{II}$	M	a	ΔCL	ΔC_D	ΔC_m	$-C_{z}$	$-C_{II}$
. 68 . 62 . 62 . 62	- 4.0 .0 4.0 8.0 18.0 16.0	0966 1141 1485 1047 0393 .0848	.0140 .0825 .0149 .0184 .0007	0037 .0110 0073 0037 .0049	00#5 0065 0110 0089 0034	0039 0039 0081 0015 0003	. 68 . 69 . 69 . 69 . 69	- 4.0 4.0 8.0 12.0	1558 1866 8065 1858 0891 0058	.0383 .0380 .0375 .0113 0048	.0019 .0147 .0038 .0037 .0088 .0180	0163 0184 0841 0826 0143 0075	0063 0060 0040 0037 0018 0004
. 84 . 84 . 84 . 84	- 4.0 .0 4.0 9.0 12.0	1676 3030 1775 1483 0799 0178	.0937 .0878 .0186 .0037 0066 0071	.0851 .0265 .0089 .0037 .0071	0107 0135 0185 0163 0097 0042	0040 0039 0087 0008	.84 .84 .84 .84	- 4.0 4.0 4.0 12.0	2135 2334 2722 2228 1327 0388	.0475 .0434 .0878 .0035 0137	.0387 .0366 .0165 .0138 .0084	0806 0887 0885 0853 0169 0079	0075 0041 0043 0017 0003
.95 .95 .95 .95	- 4.0 4.0 13.0 15.0 20.0	1958 1843 1008 0846 1018 0684	.0341 .0319 .0106 0011 0137 0175	.0446 .0438 .0808 .0848 .0233 .0118	0151 0167 0108 0104 0088 0008	0061 0040 0087 0014 0009 0005	99995555	- 4.0 4.0 8.0 18.0 16.0	25888 	.0607 .0504 .0897 .0063 0901 0287	.0578 .0548 .0308 .0301 .0484 .0341	0984 0854 0811 0158 0160 0131 0064	0089 0049 00001 0001
1.01 1.01 1.01 1.01 1.01 1.01	- 4.0 4.0 8.0 12.0 16.0 24.0	0888 1976 0946 1078 1148 0944 0487	.0358 .0239 .0078 0054 0208 0283	.0860 .0843 .0188 .0246 .0309 .0164	0095 0117 0108 0106 0108 0091	0061 0058 0051 0017 0000 .0001	1.01 1.01 1.01 1.01 1.01 1.01	4.0 4.0 8.0 18.0 18.0 20.0	1392 1780 1854 1419 1199 0580	.0610 .0483 .0903 .0018 0190 0318 0190	.0269 .0284 .0340 .0374 .0427 .0284 0022	0183 0180 0166 0182 0141 0133 0089	0090 0089 0072 0085 0007 0006
1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 6.0 18.0 16.0 20.0	0970 0841 0762 0932 0987 0943	.0270 .0186 .0091 0062 0196 02591 0381	0029 .0238 .0198 .0244 .0264 .0195 .0167	0083 0081 0091 0093 0094 0056	0057 0040 0084 0083 0014 0016 .0016	1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 8.0 18.0 16.0 80.0	1368 1605 1338 1407 1183 1154 1016	.0531 .0411 .0194 .0009 0195 0406 0456	0011 .0861 .0403 .0496 .0437 .0359 .0898	0133 0161 0136 0146 0147 0136 0129 0101	00 65 00 70 00 42 00 85 00 19 .00 95 .00 32
1.19 1.12 1.12 1.13 1.13 1.13	4.0 4.0 18.0 18.0 20.0	0779 0908 0795 0803 0945 0810 0856 1035	.0240 .0195 .0052 0070 0135 0865 0317	0048 .0147 .0235 .0258 .0254 .0247 .0163	0075 0084 0083 0087 0098 0090 0090	0045 0036 0030 0038 0013 0003 0021	1.12 1.12 1.12 1.12 1.12 1.12	- 4.0 4.0 8.0 18.0 16.0 20.0	1158 1586 1886 1175 1105 1117 1299	.048T .039T .014T 008T 0158 0414 0644	0030 .0858 .0399 .0401 .0438 .0375 .0377	0187 0153 0133 0133 0130 0193	0073 0063 0045 0028 0014 .0019 .0036
1.80 1.20 1.20 1.20 1.20	- 4.0 4.0 8.0 18.0	0756 0522 0639 0724 0924	.0315 .0163 .0083 .0011 0139	.0055 .0103 .0193 .0196 .0253	0071 0051 0068 0075 0087	0048 0039 0085 0009 0000	1.80 1.80 1.80 1.80 1.80	- 4.0 .0 4.0 5.0 12.0	1215 1106 1014 0983 1149 1107	.0447 .0361 .0189 .0077 0113	.0073 .0850 .0262 .0309 .0366	0138 0118 0114 0128 0119	0071 0055 0034 0016 .0004 .0015

Table II.— Concluded.

 $\delta_s = -10c$

		05-	. /UC _			
M	a	ΔC_L	ΔC_D	ΔC_m	-C ₇	-C _n
.63 .63 .63 .63	- 4.0 4.0 8.0 12.0 16.0	3261 2667 3184 2829 1267 0279	.0606 .0614 .0470 .0191 0036 0030	.0130 0314 .0149 .0185 .0254 .0269	0238 0276 0343 0328 0185 0091	0101 0090 0068 0040 0018 0007
.84 .84 .84 .84 .84	- 4.0 4.0 5.0 18.0	2803 3248 3805 3233 1794 0397	.0760 .0699 .0494 .0127 0105	.0491 .0517 .0304 .0239 .0148	0278 0329 0386 0355 0885 0082	0183 0100 0072 0028 .0001 0009
.95 .95 .95 .95	- 4.0 4.0 8.0 12.0 16.0 20.0	3253 3354 2965 1842 1921 1560 0859	.0997 .0806 .0587 .0271 0092 0318	.0688 .0641 .0430 .0356 .0480 .0474	0889 0327 0326 0827 0815 0179 0077	0151 0109 0085 0050 0016 .0007
1.01 1.01 1.01 1.01 1.01 1.01	- 4.0 4.0 8.0 12.0 20.0 24.0	1860 2535 2803 2024 1694 1601 0943 0364	.0988 .0776 .0444 .0150 0112 0276 0184 0351	.0378 .0394 .0497 .0490 .0534 .0383 .0045	0814 0855 0281 0218 0800 0132 0065	0146 0135 0105 0046 0016 0019
1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 8.0 12.0 16.0 20.0 24.0	1818 2346 2346 1897 1821 2534 1534	.0876 .0736 .0414 .0144 0130 0871 0461	0028 .0271 .0513 .0467 .0518 .0422 .0375	0196 0246 0327 0199 0190 0175 0164 0140	0133 0108 0076 0051 0028 0000
1.12 1.12 1.12 1.12 1.12 1.12 1.12	- 4.0 4.0 8.0 12.0 16.0 30.0	1741 2363 2378 1836 1673 1493 1428 1609	.0837 .0717 .0370 .0110 0054 0273 0404	0068 .0804 .0534 .0507 .0499 .0472 .0455	0189 0847 0823 0198 0178 0173 0152	0122 0103 0077 0044 0025 0002 .0021
1.20 1.20 1.20 1.20 1.20 1.20	- 4.0 .0 4.0 8.0 12.0 16.0 20.0	1861 2033 1786 1580 1553 1523 1584	.0799 .0690 .0392 .0206 0052 0247 0421	.0054 .0877 .0391 .0408 .0450 .0478	0189 0381 0181 0168 0166 0158 0145	0120 0102 0071 0035 0013 .0006 .0026

					_		T						
	చ్చే.	025c;	84=.018	3 <i>c</i>	- <u></u> -				δ_{s}	= . 05c ;	&=.037	7c	
M	α	ΔC_L	ΔC_D	ΔC_m	-C ₁	$-C_{D}$	М	a	ΔC_L	ΔC_D	ΔC_m	-C ₇	$-C_{n}$
.68 .62 .63 .63	- 4.0 4.0 8.0 12.0 16.0	0845 0671 0650 0520 0303 0005	.0051 .0137 .0090 .0108 .0031	.0058 .0147 0073 0018 .0051	0008 0061 0099 0076 0071 0041	0032 0030 0035 0025 0020 0007	. 62 . 63 . 63 . 63	4.0 4.0 8.0 18.0	1103 1624 1961 1559 0990	.0357 .0484 .0270 .0134 0051	.087,5 .0458 .0838 .0856 .0894 .0221	0080 0164 0817 0808 0148 0069	0070 0061 0043 0026 0018
.84 .84 .64 .84	- 4.0 4.0 8.0 18.0	0407 0917 0980 1059 0665 0816	.0198 .0997 .0154 .0073 0000	.0390 .0376 .0159 .0143 .0136	0097 0086 0114 0118 0079 0083	0038 0049 0095 0015 0008	. 94 . 64 . 84 . 84	4.0 4.0 8.0 19.0	1610 1829 2819 2165 1650 0905	.0500 .0508 .0388 .0105 0121	.0614 .0601 .0485 .0401 .0439	0144 0176 0237 0247 0198 0130	0085 0074 0058 0017 .0003
.95 .95 .95 .95 .95	4.0 4.0 8.0 18.0 16.0	1311 0838 0403 0675 1109 0678 0832	.0210 .0270 .0238 .0185 0012 0052	.0877 .0475 .0875 .0456 .0398 .0154	0098 0094 0078 0088 0100 0062 0048	0053 0036 0036 0087 0015 0018	.95 .95 .95 .95	4.00000 4.0000 1260 1260	9354 1980 1476 1448 8058 1917 0619	.0613 .0546 .0359 .0189 0164 0388 0842	.0789 .0624 .0591 .0655 .0649 .0716	0197 0805 0188 0178 0803 0184 0060	0093 0075 0054 0030 0003 .0015 0001
1.01 1.01 1.01 1.01 1.01 1.01	- 4.0 4.0 8.0 18.0 16.0 20.0	0489 0277 0250 0410 0757 0184 0869	.0194 .0180 .0102 .0078 0053 0149 .0030 0076	.043B .0137 .0089 .0165 .0368 .0099 0196	0065 0042 0047 0050 0067 0097	0048 0045 0084 0016 0018 0008 0003	1.01 1.01 1.01 1.01 1.01 1.01	- 4.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00	1847 1866 0947 1143 1382 1414 0813	.0537 .0378 .0380 .0095 0117 0885 0094	.0549 .0384 .0361 .0448 .0543 .0427 .0157	0146 0151 0123 0136 0150 0167 0040	0079 0078 0078 0033 0013 0011 0003
1.07 1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 5.0 18.0 16.0 20.0	0289 0153 0208 0408 0715 0639 0380	.0061 .0084 .0086 .0085 0076 0176 0182	.0088 .0081 .0133 .0147 .0808 .0148 0054	0088 0037 0034 0045 0067 0063		1.07 1.07 1.07 1.07 1.07 1.07	4.0 4.0 8.0 13.0 16.0 20.0	1168 1936 0883 0988 1276 1217 1032	.0419 .0335 .0248 .0110 0093 0875 0356	.0250 .0486 .0384 .0401 .0507 .0476 .0295	0181 0188 0104 0117 0134 0138 0109	0073 0059 0048 0029 0029 0005
1.12 1.19 1.19 1.19 1.12 1.12	- 4.0 4.0 8.0 18.0 18.0 24.0	0319 0498 0319 0304 0641 0659 0830	.0070 .0082 .0050 .0013 0040 0174 0189	.0057 .0040 .0119 .0170 .0281 .0164	0034 0032 0030 0035 0054 0054 0054	0024 0088 0087 0087 0017 0001	1.18 1.18 1.18 1.18 1.18 1.18	7 4 . 0 4 . 0 5 . 0 18 . 0 80 . 0 84 . 0	0968 1058 0717 0847 11287 -:1289 1291	.0390 .0319 .0804 .0046 0384 0339 0538	.0888 .0385 .0380 .0485 .0509 .0496 .0370	0108 0118 0093 0105 0156 0150 0130	0065 0050 0044 0036 0018 .0017 .0030
1.20 1.20 1.30 1.80 1.20 1.20	- 4.0 4.0 8.0 19.0 16.0	0156 0159 0399 0313 0580 0688	.0049 .0070 .0048 .0062 0021 0070	0001 .0004 .0060 .0145 .0165	0082 0034 0035 0052 0052 0062	0028 0023 0028 0015 0008 0008	1.20 1.20 1.20 1.20 1.20	- 4.0 4.0 8.0 18.0 16.0	0988 0726 0666 0717 0943 1164 1080	.0368 .0365 .0190 .0131 0086 0347	.0385 .0874 .0886 .0315 .0431 .0492 .0399	0106 0082 0081 0088 0104 0133 0118	0066 0049 0039 0081 0014 0005

Table III :—Concluded.

.62 - 4.01846								S	;=-10c ,	80=075	īc .		
M	a	ΔCL	ΔC_D	ΔC_m -	C_{i}	$-C_{D}$	M	a	△C _L	ΔC_D	ΔC_m	$-C_{\ell}$	-C _n
.68 .68	4.0 8.0 18.0	2709 3367 3304 8240	.0717 .0515 .0167	.0509 .0443 .0494	0975 0361 0366 0874	0110 0095 0077 0047 0086 0010	. 688 . 688 . 688	4.0 4.0 8.0 18.0	8797 3751 4458 4738 3573 8534	.1155 .1173 .0958 .0587 .0103	.0516 .0847 .0730 .0774 .0974 .1046	0306 0415 0486 0598 0431 0339	0180 0164 0133 0090 0047 0010
.84 .84 .84	4.0 8.0 12.0	3395 3396 3698 3105	.0768 .0543 .0142 0193	.0589 .0465 .0591	0281 0358 0394 0337	0185 0106 0084 0033 0001	. 84 . 84 . 84 . 84 . 84	- 4.0 4.0 8.0 12.0	3009 3641 4742 4749 3885 2770	.1973 .1973 .1038 .0514 .0074	.0805 .0861 .0756 .0806 .0766 .1129	0308 0398 0516 0515 0435 0389	0186 0901 0139 0079 0034 0006
.95 .95 .95	4.0 8.0 12.0	8496 9577 8581 8795 8931	.0611 .0618 .0842 0083	.0496 .0627 .0798 .0835	0274 0298 0268 0298 0298	0145 0119 0088 0046 0019 .0015	.95 .95 .95 .95	- 4.0 4.0 8.0 18.0 16.0 80.0	3697 3675 4075 3689 4185 4856 3168	.1831 .1429 .1135 .0574 .0064 0456	.0905 .0904 .0936 .1173 .1419 .1449	0370 0488 0470 0484 0451 0456	0805 0187 0158 0089 0030 .0019
1.01	4.0 8.0 18.0 16.0 30.0	2106 2090 3164 2494 2471 1861	.0696 .0446 .0190 0157 0484	.0398 .0999 .0564 .0777	0939 0989 0930 0954 0978 0934	0131 0180 0103 0048 0018 .0018 .0038	1.01 1.01 1.01 1.01 1.01 1.01	4.0 4.0 8.0 18.0 16.0 20.0	233 233 233 233 233 233 233 233 233 233	.1869 .0915 .09499 .00577 0879	.0607 .1041 .1139 .1305 .1395 .095		0913 0197 0165 0091 0091 0007 .0050
1.07	4.0 8.0 12.0 16.0 80.0	2076 1648 1913 2148 2317 2376	.0632 .0410 .0175 0113 0414 0692	.0299 .0493 .0536 .0661	0884 0199 0206 0287 0857 0857	0180 0099 0074 0055 0087 .0004 .0043	1.07 1.07 1.07 1.07 1.07	- 4.0 4.0 8.0 18.0 16.0 24.0	8645 3081 3416 3114 35384 3614 3661	.1363 .1167 .0856 .0470 .0051 0789 1156	.0558 .1010 .1055 .1295 .1295 .1268	0301 0349 0358 0359 0354 0381 0388	0800 0171 0131 0090 0082 0003 0053
		1984 1710 1711 80156 8255 83584	.0744 .0685 .0370 .0164 00568 0897	.0860 .0486 .0528 .0638	0219	0110 0097 0075 0081 0081 .0005 .0048	1.12	- 4.0 4.0 5.0 18.0 16.0 80.0	3573 3128 3200 2965 3098 3349 3426 3789	.1317 .1149 .0801 .0434 .0185 0386 0674	.0276 .0801 .0966 .1047 .11875 .1299	0399 0349 0338 0333 0365 0371 0368	0187 0168 0138 0084 00042 .0001 .0056
1.80 1.80 1.80 1.80 1.80	- 4.0 4.0 5.0 18.0 16.0	1554 1546 1466 17982 215	.0697 .0564 .0354 .0215 0017 0269 0578	.0894 .0899 .0394 .0517	0177 0181 0160 0164 0183 0803 0816	0107 0090 0063 0041 0015 .0009	1.20 1.20 1.20 1.80 1.80	- 4.0 4.0 8.0 12.0 15.0	2565 2656 2640 2452 27039 3175	.1368 .1078 .0736 .0501 .0154 0851	.0346 .0552 .0718 .0825 .0994 .1171 .1239	0292 0380 0884 0277 0294 0324 0339	0181 0180 0114 0073 0035

Figure 1.- General arrangement of model and controls.

Figure 2.- Variation of mean Reynolds number with Mach number.

Figure 3.- Aerodynamic characteristics of the plain wing.

Figure 4.- Rolling-moment characteristics of the spoiler alone, the spoiler-gap-lip combination, and the spoiler-slot-deflector combination.

(b) M = 0.84.

Figure 4.- Continued.

(c) M = 0.95.

a,deg

12

16

0

20

24

Figure 4.- Continued.

(d) M = 1.01.

Figure 4.- Continued.

(e) M = 1.07.

Figure 4.- Continued.

(f) M = 1.12.

Figure 4.- Continued.

(g) M = 1.20.

Figure 4.- Concluded.

Figure 5.- Variation of rolling-moment coefficient with Mach number at various wing angles of attack for the spoiler alone and the spoiler-slot-deflector combination. $\delta_{\rm g}$ = -0.10c; $\delta_{\rm d}$ = 0.075c.

Figure 5.- Concluded.

Figure 6.- Variation of rolling-moment coefficient with projections of the spoiler alone and the spoiler-slot-deflector combination. $\delta_d = -0.75\delta_g$.

Figure 6.- Concluded.

•;