Database-style Operations on Dataframes

About the data

In this notebook, we will using daily weather data that was taken from the National Centers for Environmental Information (NCEI) API. The data collection notebook contains the process that was followed to collect the data.

Note: The NCEI is part of the National Oceanic and Atmospheric Administration (NOAA) and, as you can see from the URL for the API, this resource was created when the NCEI was called the NCDC. Should the URL for this resource change in the future, you can search for the NCEI weather API to find the updated one

Background on the data

Data meanings:

- PRCP: precipitation in millimeters
- · SNOW: snowfall in millimeters
- · SNWD: snow depth in millimeters
- TMAX: maximum daily temperature in Celsius
- . TMIN: minimum daily temperature in Celsius
- TOBS: temperature at time of observation in Celsius
- · WESF: water equivalent of snow in millimeters

> Setup

[] 1,1 cell hidden

> Querying DataFrames

The query() method is an easier way of filtering based on some criteria. For example, we can use it to find all entries where snow was recorded:

[] 🖟 5 cells hidden

Merging DataFrames

We have data for many different stations each day; however, we don't know what the stations are just their IDs. We can join the data in the data/weather_stations.csv file which contains information from the stations endpoint of the NCEI API. Consult the weather_data_collection.ipynb notebook to see how this was collected. It looks like this:

1 station_info = pd.read_csv('/content/data/weather_stations.csv')
2 station_info.head()

	id	name	latitude	longitude	elevation	
C	GHCND:US1CTFR0022	STAMFORD 2.6 SSW, CT US	41.0641	-73.5770	36.6	
1	GHCND:US1CTFR0039	STAMFORD 4.2 S, CT US	41.0378	-73.5682	6.4	
2	GHCND:US1NJBG0001	BERGENFIELD 0.3 SW, NJ US	40.9213	-74.0020	20.1	
3	GHCND:US1NJBG0002	SADDLE BROOK TWP 0.6 E, NJ US	40.9027	-74.0834	16.8	
4	GHCND:US1NJBG0003	TENAFLY 1.3 W, NJ US	40.9147	-73.9775	21.6	

As a reminder, the weather data looks like this:

	attributes	datatype	date	station	value
0	"N,	PRCP	2018-01-01T00:00:00	GHCND:US1CTFR0039	0.0
1	"N,	PRCP	2018-01-01T00:00:00	GHCND:US1NJBG0015	0.0
2	"N,	SNOW	2018-01-01T00:00:00	GHCND:US1NJBG0015	0.0
3	"N,	PRCP	2018-01-01T00:00:00	GHCND:US1NJBG0017	0.0
4	"N,	SNOW	2018-01-01T00:00:00	GHCND:US1NJBG0017	0.0

We can join our data by matching up the station_info.id column with the weather.station column. Before doing that though, let's see how many unique values we have:

While station_info has one row per station, the weather dataframe has many entries per station. Notice it also has fewer uniques:

When working with joins, it is important to keep an eye on the row count. Some join types will lead to data loss:

Since we will be doing this often, it makes more sense to write a function:

```
1 def get_row_count(*dfs):
2   return [df.shape[0] for df in dfs]
3
4 get_row_count(station_info, weather)
   [262, 80256]
```

The map() function is more efficient than list comprehensions. We can couple this with getattr() to grab any attribute for multiple dataframes:

```
1 def get_info(attr, *dfs):
2    return list(map(lambda x: getattr(x, attr), dfs))
3
4 get_info('shape', station_info, weather)
    [(262, 5), (80256, 5)]
```

By default merge() performs an inner join. We simply specify the columns to use for the join. The left dataframe is the one we call merge() on, and the right one is passed in as an argument:

```
1 inner_join = weather.merge(station_info, left_on='station', right_on='id')
2 inner_join.sample(5, random_state=0)
```

	attributes	datatype	date	station	value	
27422	"N,	PRCP	2018-01- 23T00:00:00	GHCND:US1NYSF0061	2.3	GHCND:US1NYSF
19317	T,,N,	PRCP	2018-08- 10T00:00:00	GHCND:US1NJUN0014	0.0	GHCND:US1NJUN
13778	"N,	WESF	2018-02- 18T00:00:00	GHCND:US1NJMS0089	19.6	GHCND:US1NJMS
4						

We can remove the duplication of information in the station and id columns by renaming one of them before the merge and then simply using on:

1 weather.merge(station_info.rename(dict(id='station'), axis=1), on='station').sample(5, random_state=0)

	attributes	datatype	date	station	value	name
27422	"N,	PRCP	2018-01- 23T00:00:00	GHCND:US1NYSF0061	2.3	CENTERPORT 0.9 SW, NY US
19317	T,,N,	PRCP	2018-08- 10T00:00:00	GHCND:US1NJUN0014	0.0	WESTFIELD 0.6 NE, NJ US
13778	"N,	WESF	2018-02- 18T00:00:00	GHCND:US1NJMS0089	19.6	PARSIPPANY TROY HILLS TWD 1 2 N I I I I
\prec						•

We are losing stations that don't have weather observations associated with them, if we don't want to lose these rows, we perform a right or left join instead of the inner join:

```
1 left_join = station_info.merge(weather, left_on='id', right_on='station', how='left')
2 right_join = weather.merge(station_info, left_on='station', right_on='id', how='right')
3
4 right_join.tail()
```

	attributes	datatype	date	station	value	
80404	"W,	WDF5	2018-12- 31T00:00:00	GHCND:USW00094789	130.0	GHCND:USW0009
80405	"W,	WSF2	2018-12- 31T00:00:00	GHCND:USW00094789	9.8	GHCND:USW0009
1						•

1 left_join.tail()

	id	name	latitude	longitude	elevation	attribut
80404	GHCND:USW00094789	JFK INTERNATIONAL AIRPORT, NY US	40.6386	-73.7622	3.4	,,
80405	GHCND:USW00094789	JFK INTERNATIONAL AIRPORT, NY US	40.6386	-73.7622	3.4	,,
4		IEI				•

The left and right join as we performed above are equivalent because the side that we kept the rows without matches was the same in both cases:

```
1 left_join.sort_index(axis=1).sort_values(['date', 'station']).reset_index().drop(columns='index').equals(
2     right_join.sort_index(axis=1).sort_values(['date', 'station']).reset_index().drop(columns='index')
3     ) #The output means that the values/rows in the left join and right join is the same

True
True
```

Note we have additional rows in the left and right joins because we kept all the stations that didn't have weather observations:

```
1 get_info('shape', inner_join, left_join, right_join) #the output are the rows and columns in the dataframe after the join, respecti [(80256, 10), (80409, 10), (80409, 10)]
```

If we query the station information for stations that have NY in their name, believing that to be all the stations that record weather data for NYC and perform an outer join, we can see where the mismatches occur:

```
1 outer_join = weather.merge(
     station_info[station_info.name.str.contains('NY')],
3
     left_on='station', right_on='id', how='outer', indicator=True
4
6 outer_join.sample(4, random_state=0).append(outer_join[outer_join.station.isna()].head(2))
    <ipython-input-35-9439cc902f60>:6: FutureWarning: The frame.append method is depreca
     outer_join.sample(4, random_state=0).append(outer_join[outer_join.station.isna()].
            attributes datatype
                                        date
                                                          station value
                                     2018-05-
    17259
                                              GHCND:US1NJPS0022
                                                                     0.3
                   "N,
                                  15T00:00:00
                                     2018-05-
    76178
                   "N,
                                              GHCND:US1NJPS0015
                           PRCP
                                                                     8 1
                                  19T00:00:00
                                    2018-08-
    73410
                           MDPR
                                              GHCND:US1NYNS0018
                                                                    12.2 GHCND:US1NYNS
                                 05T00:00:00
                                     2010-04-
```

These joins are equivalent to their SQL counterparts. Below is the inner join. Note that to use equals() you will have to do some manipulation of the dataframes to line them up:

Revisit the dirty data from the previous module.

```
1 dirty_data = pd.read_csv('/content/data/dirty_data.csv', index_col='date').drop_duplicates().drop(columns='SNWD')
2 dirty_data.head()
```

	station	PRCP	SNOW	TMAX	TMIN	TOBS	WESF	inclement_wea	
date									
2018-01- 01T00:00:00	?	0.0	0.0	5505.0	-40.0	NaN	NaN		
2018-01- 02T00:00:00	GHCND:USC00280907	0.0	0.0	-8.3	-16.1	-12.2	NaN	F	
2018-01- 03T00:00:00	GHCND:USC00280907	0.0	0.0	-4.4	-13.9	-13.3	NaN	F	
1								—	

We need to create two dataframes for the join. We will drop some unecessary columns as well for easier viewing:

```
1 valid_station = dirty_data.query('station != "?"').copy().drop(columns=['WESF', 'station']) #Filters out stations that doesn't have
2 station_with_wesf = dirty_data.query('station == "?"').copy().drop(columns=['station', 'TOBS', 'TMIN', 'TMAX']) #filters out statio
```

1 valid_station.sample(5, random_state = 0)

	PRCP	SNOW	TMAX	TMIN	TOBS	$\verb"inclement_weather"$
date						
2018-05-10T00:00:00	0.0	0.0	26.1	8.9	10.0	False
2018-06-16T00:00:00	0.0	0.0	25.0	12.8	16.1	False
2018-04-19T00:00:00	6.9	0.0	11.1	2.8	3.9	False
2018-06-17T00:00:00	0.0	0.0	28.3	13.3	15.0	False
2018-04-12T00:00:00	0.0	0.0	10.0	-3.3	2.2	False

1 station_with_wesf.sample(5, random_state = 0)

	PRCP	SNOW	WESF	inclement_weather
date				
2018-05-01T00:00:00	2.0	NaN	NaN	NaN
2018-05-19T00:00:00	9.7	NaN	NaN	NaN
2018-05-23T00:00:00	17.0	NaN	NaN	NaN
2018-08-09T00:00:00	41.1	NaN	NaN	NaN
2018-09-10T00:00:00	23.9	NaN	NaN	NaN

Our column for the join is the index in both dataframes, so we must specify left_index and right_index:

```
1 valid_station.merge(station_with_wesf, left_index=True, right_index=True).query('WESF > 0').head()
```

	PRCP_x	SNOW_x	TMAX	TMIN	TOBS	inclement_weather_x	PRCP_y	SNOW_y	WESF	inclement_weather_y
date										
2018-01-30T00:00:00	0.0	0.0	6.7	-1.7	-0.6	False	1.5	13.0	1.8	True
2018-03-08T00:00:00	48.8	NaN	1.1	-0.6	1.1	False	28.4	NaN	28.7	NaN
2018-03-13T00:00:00	4.1	51.0	5.6	-3.9	0.0	True	3.0	13.0	3.0	True
2018-03-21T00:00:00	0.0	0.0	2.8	-2.8	0.6	False	6.6	114.0	8.6	True
2018-04-02T00:00:00	9.1	127.0	12.8	-1.1	-1.1	True	14.0	152.0	15.2	True

The columns that existed in both dataframes, but didn't form part of the join got suffixes added to their names: _x for columns from the left dataframe and _y for columns from the right dataframe. We can customize this with the suffixes argument:

1 valid_station.merge(station_with_wesf, left_index=True, right_index=True, suffixes=('', '_?')).query('WESF > 0').head()

	PRCP	SNOW	TMAX	TMIN	TOBS	inclement_weather	PRCP_?	SNOW_?	WESF	<pre>inclement_weather_?</pre>
date										
2018-01-30T00:00:00	0.0	0.0	6.7	-1.7	-0.6	False	1.5	13.0	1.8	True
2018-03-08T00:00:00	48.8	NaN	1.1	-0.6	1.1	False	28.4	NaN	28.7	NaN
2018-03-13T00:00:00	4.1	51.0	5.6	-3.9	0.0	True	3.0	13.0	3.0	True
2018-03-21T00:00:00	0.0	0.0	2.8	-2.8	0.6	False	6.6	114.0	8.6	True
2018-04-02T00:00:00	9.1	127.0	12.8	-1.1	-1.1	True	14.0	152.0	15.2	True

Since we are joining on the index, an easier way is to use the join() method instead of merge(). Note that the suffix parameter is now Isuffix for the left dataframe's suffix and rsuffix for the right one's:

```
1 valid_station.join(station_with_wesf, rsuffix='_?').query('WESF > 0').head()
```

	PRCP	SNOW	TMAX	TMIN	TOBS	$\verb"inclement_weather"$	PRCP_?	SNOW_?	WESF	<pre>inclement_weather_?</pre>
date										
2018-01-30T00:00:00	0.0	0.0	6.7	-1.7	-0.6	False	1.5	13.0	1.8	True
2018-03-08T00:00:00	48.8	NaN	1.1	-0.6	1.1	False	28.4	NaN	28.7	NaN
2018-03-13T00:00:00	4.1	51.0	5.6	-3.9	0.0	True	3.0	13.0	3.0	True
2018-03-21T00:00:00	0.0	0.0	2.8	-2.8	0.6	False	6.6	114.0	8.6	True
2018-04-02T00:00:00	9.1	127.0	12.8	-1.1	-1.1	True	14.0	152.0	15.2	True

Joins can be very resource-intensive, so it's a good idea to figure out what type of join you need using set operations before trying the join itself. The pandas set operations are performed on the index, so whichever columns we will be joining on will need to be the index. Let's go back to the weather and station_info dataframes and set the station ID columns as the index:

```
1 weather.set_index('station', inplace=True)
2 station_info.set_index('id', inplace=True)
```

The intersection will tell us the stations that are present in both dataframes. The result will be the index when performing an inner join:

```
1 weather.index.intersection(station_info.index)
```

```
'GHCND:US1NJMN0081'],
dtype='object', length=109)
```

The set difference will tell us what we lose from each side. When performing an inner join, we lose nothing from the weather dataframe:

We lose 153 stations from the station_info dataframe, however:

The symmetric difference will tell us what gets lost from both sides. It is the combination of the set difference in both directions:

```
1 ny_in_name = station_info[station_info.name.str.contains('NY')]
2
3 ny_in_name.index.difference(weather.index).shape[0]\
4 + weather.index.difference(ny_in_name.index).shape[0]\
5 == weather.index.symmetric_difference(ny_in_name.index).shape[0]
True
```

The union will show us everything that will be present after a full outer join. Note that since these are sets (which don't allow duplicates by definition), we must pass unique entries for union:

Note that the symmetric difference is actually the union of the set differences:

Comments and Conclusions

• I found out in this module that the .query() method is one of the easiest and useful method to quickly filter out and print user-specific criteria from the dataframe

- I learned that in order to use the different join methods—like outer join, inner join, right join, and left join—the .merge() method is utilized. As it says, merge joins two dataframes into a single dataframe. This is used to provide more insight or to connect similar data from both dataframes.
 - One of the important knowledge that I got here was that the dataframe called before the .merge() is going to be the base whilst the dataframe inside the .merge() is going to be the argument, or respectively, the left and right dataframe.
- We can also utilize the .intersection() and .difference() method to create new sets that contains values which exists in both sets, and values which exist in either but not both, respectively.