Airbnb Project

Diana Melendez, Ericka Houle and Steven Green

Agenda

Hypothesis

Data

Inspiration

Analysis

Projection

Limitations & Future Analysis

Q&A

Find places to stay on Airbnb

Discover entire homes and private rooms perfect for any trip.

Nearby			
CHECK IN		CHECK OUT	
Add Date		Add Date	
ADULTS		CHILDREN	
2	~	0	~

Q Search

Hypotheses

- There is less competition in rural areas due to higher rates.
- There are more rentals in areas with tourism attractions.
- Population and income affect Airbnb rates.

Datasets

kaggle

Inspiration

open**datasoft**

Texas Airbnb Rentals

Top 5 Urban & Rural Rentals

Urban Counties

- Harris County
- Travis County
- Tarrant County
- Dallas County
- Bexar County

Rural Counties

- Llano County
- Burnet County
- Aransas County
- Bandera County
- Kendall County

Commute Time

Harris County - Urban

Llano County - Rural

Average Number of Bedrooms

Correlation Heatmap - Urban

Correlation Heatmaps Urban vs Rural

OLS Regression Results-Urban

OLS Regression Results

Dep. Variable:	airbnb_rate_mean	R-squared:	0.140						
Model:	OLS	Adj. R-squared:	0.126						
Method:	Least Squares	F-statistic:	9.907						
Date:	Wed, 04 Aug 2021	Prob (F-statistic)	: 0.00255						
Time:	14:01:18	Log-Likelihood:	-387.89						
No. Observations:	63	AIC:	779.8						
Df Residuals:	61	BIC:	784.1						
Df Model:	ī								
Covariance Type:	nonrobust								
coe	f std err	t P> t	[0.025 0.975]						
const -47.869	6 60.496 -6	0.791 0.432	-168.839 73.100						
Income 0.003		3.147 0.003	0.001 0.005						
111COMC 0.005	0.001		0.001						
Omnibus:	2.085	Durbin-Watson:	1.911						
Prob(Omnibus):	0.352	Jarque-Bera (JB):	2.035						
Skew:	0.413	Prob(JB):	0.362						
Kurtosis:	2.695	Cond. No.	2.38e+05						
Kui COSIS.	2.093	cond. No.	2.306+03						

Notes:

- Standard Errors assume that the covariance matrix of the errors is correctly specified.
 The condition number is large, 2.38e+05. This might indicate that there are
- strong multicollinearity or other numerical problems.

Regression Chart-Urban

OLS Regression Results-Rural

OLS Regression Results

			======			========
Dep. Variable: a		irbnb_rate_mean	R-squ	uared:		0.104
Model: OLS		Adj.	Adj. R-squared:			
Method: Least 9		Least Squares	F-sta	F-statistic:		
Date:	We	ed, 04 Aug 2021		(F-statistic):	5.59e-06
Time:		16:38:15		ikelihood:	, -	-1208.6
No. Observati	ons:	191	_	2110 (2110001		2421.
Df Residuals:		189				2428.
Df Model:		109	bic.			2420.
		1				
Covariance Ty	/pe:	nonrobust				
			======	D. I+1		0.0751
	coef	std err	t	P> t	[0.025	0.975]
const	19.8261	15.174	1.307	0.193	-10.107	49.759
TotalPop	0.0035	0.001	4.674	0.000	0.002	0.005
Omnibus:		183.991	Durbi	in-Watson:		2.071
Prob(Omnibus)	:	0.000	Jarqu	ue-Bera (JB):		4608.124
Skew:		3.584				0.00
Kurtosis:		25.971				3.13e+04
=======================================			======	=======================================		==========

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.13e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Regression Chart-Rural

Conclusion

We recommend operating an airbnb rental in a rural area outside a major metropolitan center that has outdoor destinations to maximize profit.

- There will be higher rates in rural areas due to less competition.
 - Rates are slightly higher in rural areas. We also found that the rental size is larger which could contribute to the higher rates.

There are more rentals in areas with tourist attractions.

o (i.e., Houston Theme Parks, Museums and business travel)

Population and income affect Airbnb rates.

• From the correlation data, we can see that rural areas that have a larger total population have higher rates than urban areas. Moreover, urban area rates are affected by income rather than population. This would mean that it is best to target rural counties with a total population of 40,000 to 50,000 people.

Limitations & Future Work

Data: Not current

- Airbnb data is from 2013-2017 (only 6 months of 2017 data available)
- Census data is from 2017
- Airbnb data when compiled only shows data from 106 of 254 counties in Texas.

Future work:

- Look at the effects of rentals during COVID
- Oher the control of the control o
- Seasonality of Airbnb rentals

References

Datasets:

https://www.kaggle.com/PromptCloudHQ/airbnb-property-data-from-texas

https://www.kaggle.com/muonneutrino/us-census-demographic-data

Inspiration:

https://www.kdnuggets.com/2017/08/insights-data-mining-airbnb.html

https://public.opendatasoft.com/explore/dataset/air-bnb-listings/map/

Graphics:

https://www.traveltexas.com/things-to-do/outdoor-adventure/?gclid=CjwKCAjw0qOIBhBhEiwAyvVcfzmOWPSjpt_oiR-it5UaiZhYC_gyne15B3Tc1uD5HuzdE6kB0FIRtBoCUPAQAvD_BwE

https://www.airbnb.com

Definition of Urban vs Rural

https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html

Q & A Time!