

# **Robotics**

Path Optimization - briefly

Marc Toussaint University of Stuttgart Winter 2016/17

Lecturer: Peter Englert

### **Outline**

- These are only some very brief notes on path optimization
- The aim is to explain how to formulate the optimization problem.
  Concerning the optimization algorithm itself, refer to the Optimization lecture.

## Feedback control, path finding, trajectory optim.



- Feedback Control: E.g.,  $q_{t+1} = q_t + J^{\sharp}(y^* \phi(q_t))$
- Trajectory Optimization:  $\operatorname{argmin}_{q_{0:T}} f(q_{0:T})$
- Path Finding: Find some  $q_{0:T}$  with only valid configurations

## From inverse kinematics to path costs

· Recall our optimality principle of inverse kinematics

$$\underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \|\Phi(q)\|^2$$

- A trajectory  $q_{0:T}$  is a sequence of robot configurations  $q_t \in \mathbb{R}^n$
- Consider the cost function

$$f(q_{0:T}) = \sum_{t=0}^{T} \|q_{t-1} - q_t\|_W^2 + \sum_{t=0}^{T} \|\Phi_t(q_t)\|^2$$

(where  $(q_{-1})$  is a given prefix)

•  $\|q_{t-1} - q_t\|_W^2$  represents control costs  $\Phi_t(q_t)$  represents task costs

### General k-order cost terms

[Notation:  $x_t$  instead of  $q_t$  represents joint state]

$$\begin{aligned} & \min_{x_{0:T}} & & \sum_{t=0}^{T} f_t(x_{t-k:t})^{\top} f_t(x_{t-k:t}) \\ & \text{s.t.} & & \forall_t: \ q_t(x_{t-k:t}) < 0 \ , \quad h_t(x_{t-k:t}) = 0 \ . \end{aligned}$$

### Cost terms

• The  $f_t(x_{t-k:t})$  terms can penalize various things:

or in some arbitrary task spaces

$$k=0 \quad f_t(x_t) = \phi(x_t) - y^* \qquad \text{penalize offset in some task space}$$
 
$$k=1 \quad f_t(x_{t-1},x_t) = \phi(x_t) - \phi(x_{t-1})$$
 
$$k=2 \quad f_t(x_{t-2},...,x_t) = \phi(x_t) - 2\phi(x_{t-1}) + \phi(x_{t-2})$$
 
$$k=3 \quad f_t(x_{t-3},...,x_t) = \phi(x_t) - 3\phi(x_{t-1} + 3\phi x_{t-2}) - \phi(x_{t-3})$$

• And terms  $f_t$  can be stacked arbitrarily

## **Choice of optimizer**

$$\begin{split} \min_{x_{0:T}} \quad & \sum_{t=0}^{T} f_t(x_{t-k:t})^{\top} f_t(x_{t-k:t}) \\ \text{s.t.} \quad & \forall_t: \ g_t(x_{t-k:t}) \leq 0 \ , \quad h_t(x_{t-k:t}) = 0 \ . \end{split}$$

- Constrained optimization methods:
  - Log-barrier, squared penalties
  - Augmented Lagrangian
- Note: also the Lagrangian is the form of the so-called Gauss-Newton form. The pseudo Hessian is a banded, symmetric, positive-definite matrix.