

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

A standard linear barcode located at the bottom of the page, consisting of vertical black bars of varying widths on a white background.

**(43) International Publication Date
1 March 2001 (01.03.2001)**

PCT

(10) International Publication Number
WO 01/14420 A2

(51) International Patent Classification⁷: C07K 14/00

the University of California, 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US). TAMAGNONE, Luca [IT/IT]; Corso Einaudi, 43, I-10129 Torino (IT).

(22) International Filing Date: 25 August 2000 (25.08.2000)

(74) Agent: COX, Niki, D.; Biogen, Inc., 14 Cambridge Center, Cambridge, MA 02142 (US).

(25) Filing Language: English

(81) Designated States (*national*): AE AG AI AM AT AU

(26) Publication Language: English

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(30) Priority Data: 60/150.576 25 August 1999 (25.08.1999) US

TC, ID, IL, IN, IS, JT, KE, KG, KR, KZ, LC, LR, LZ, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) **Designated States (regional):** ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(71) *Applicants (for all designated States except US): UNIVERSITY OF TORINO [IT/IT]; Department of Biomedical Sciences and Human Oncology, IRCC, SP 142, I-10060 Candiolo (IT). REGENTS OF THE UNIVERSITY OF CALIFORNIA [US/US]; 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US).*

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

Published:

(75) **Inventors/Applicants (for US only):** ARTIGIANI, Stefania [IT/IT]; Corso Brunelleschi, 121/B, I-10100 Torino (IT). COMOGLIO, Paolo, M. [IT/IT]; Strada Valsalice, 183/8, I-10100 Torino (IT). GOODMAN, Corey, S. [US/US]; Regents of the University of California, 12th floor, 1111 Franklin Street, Oakland, CA 94607-5200 (US). TESIER-LAVIGNE, Marc [US/US]; Regents of

Published: Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/14420 A2

(54) Title: NOVEL PLEXINS AND USES THEREOF

(57) Abstract: The invention provides methods and compositions related to novel plexins. The polypeptides may be produced recombinantly from transformed host cells and from the disclosed plexin encoding nucleic acids or purified from human cells. The invention provides isolated plexin hybridization probes and primers capable of specifically hybridizing with the disclosed plexin genes, plexin-specific binding agents such as specific antibodies, and methods of making and using the subject compositions in diagnosis, therapy and in biopharmaceutical industry. The invention also provides novel plexin neuropilin multimeric receptor complexes for semaphorins and methods of use thereof, including but not limited to, the treatment and diagnosis of neurological disease and neuroregeneration, immune modulation, and viral and oncological diseases.

NOVEL PLEXINS AND USES THEREOF

BACKGROUND OF THE INVENTION

Field of the Invention

5 The invention relates to the identification and characterization of four novel proteins that are members of the plexin family.

Summary of the Related Art

Plexin family members encode large transmembrane proteins, whose cysteine-rich extracellular domains share regions of homology with the Scatter Factor receptors 10 (encoded by the Met gene family). The extracellular domains of plexins also contain ~500 amino acid Semaphorin domains (see below). The highly conserved cytoplasmic moieties of plexins (approx. 600 amino acids), however, have no homology with the Met tyrosine kinase domain, nor with any other known protein. Met-like receptors and their ligands, the Scatter Factors, mediate a complex biological program including 15 dissociation of cell-cell contacts, motility and invasion (for a review see Tamagnone, L. and Comoglio, P.M. (1997) "Control of invasive growth by hepatocyte growth factor (HGF) and related scatter factors." *Cytokine Growth Factor Rev* 8, 129-142). During embryogenesis Scatter Factor-1 and Met promote the dissociation of cell layers in the somites and drive the migration of myogenic cells to their appropriate location (Bladt, 20 F., Riethmacher, D., Isenmann, S., Aguzzi, A., and Birchmeier, C. (1995) "Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud." *Nature* 376, 768-771; Maina, F., Casagranda, F., Audero, E., Simeone, A., Comoglio, P.M., Klein, R.a., and Ponzetto, C. (1996) "Uncoupling of grb2 from the met receptor in vivo reveals complex roles in muscle development." *Cell* 87, 531-542). 25 Met and Scatter Factor-1 are also involved in controlling neurite outgrowth and axonal guidance (Ebens, A., Brose, K., Leonardo, E.D., Hanson, M.G.J., Bladt, F., Birchmeier, C., Barres, B.A., and Tessier-Lavigne, M. (1996) "Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons." *Neuron* 17, 1157-1172; Maina, F., Hilton, M.C., Ponzetto, C., Davies, A.M., and 30 Klein, R. (1997) "Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons." *Genes Dev* 11, 3341-3350; Maina, F., Hilton, M.C., Andres, R., Wyatt, S., Klein, R., and Davies, A.M.

(1998) "Multiple roles for hepatocyte growth factor in sympathetic neuron development." *Neuron* 20, 835-846).

The first clue regarding a possible function for plexins came from the finding that a novel plexin, Vespr, interacts with the viral semaphorin A39R (Comeau, M.R., Johnson, R., DuBose, R.F., Petersen, M., Gearing, P., VandenBos, T., Park, L., Farrah, T., Buller, R.M., Cohen, J.I., Strockbine, L.D., Rauch, C., and Spriggs, M.K. (1998) "A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR." *Immunity*. 8, 473-482). Semaphorins are a large family of secreted and membrane-bound molecules that are characterized by an extracellular domain containing a ~500 amino acid Semaphorin domain (Kolodkin et al. (1993) "The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules." *Cell* 75, 1389-1399). As noted above, plexins contain a more divergent but nevertheless conserved Semaphorin domain.

Semaphorins were originally characterized in the nervous system, where they have been implicated in repulsive axon guidance (Kolodkin et al. (1993) *supra*; Luo, Y., Raible, D., and Raper, J.A. (1993) "Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones." *Cell* 75, 217-227; Tessier-Lavigne, M. and Goodman, C.S. (1996) "The molecular biology of axon guidance." *Science* 274, 1123-1133). More recently, semaphorins have been furthermore implicated in cardiac and skeletal development (Behar, O., Golden, J.A., Mashimo, H., Schoen, F.J., and Fishman, M.C. (1996) "Semaphorin III is needed for normal patterning and growth of nerves, bones and heart." *Nature* 383, 525-528), in the immune response (Hall, K.T., Boumsell, L., Schultze, J.L., Boussiotis, V.A., Dorfman, D.M., Cardoso, A.A., Bensussan, A., Nadler, L.M., and Freeman, G.J. (1996) "Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation." *Proc.Natl.Acad.Sci.U.S.A.* 93, 11780-11785), in the regulation of angiogenesis (Miao, H.Q., Soker, S., Feiner, L., Alonso, J.L., Raper, J.A., and Klagsbrun, M. (1999) "Neuropilin-1 mediates collapsin-1/Semaphorin III inhibition of endothelial cell motility. Functional competition of collapsin-1 and vascular endothelial growth factor-165" [In Process Citation]. *J Cell Biol* 146, 233-242), and in tumor growth and metastasis (Christensen, C.R., Klingelhofer, J., Tarabykina, S., Hulgaard, E.F., Kramerov, D., and Lukyanidin, E. (1998) "Transcription of a novel mouse semaphorin

gene, M-semaH, correlates with the metastatic ability of mouse tumor cell lines."

Cancer Res. 58, 1238-1244).

Previously identified plexins have been shown to be expressed in the developing nervous system, (i.e. Plexin-A is a receptor for class 1 semaphorins (Sema-1a and Sema-1b). Moreover, Plexin-A has been shown via genetic analysis to control motor and CNS axon guidance induced by semaphorins (Winberg, M.L., Noordermeer, J.N., Tamagnone, L., Comoglio, P.M., Spriggs, M.K., Tessier-Lavigne, M., and Goodman, C.S. (1998). Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95, 903-916).

Thus a need exists for discovery of other members of the plexin family of proteins.

SUMMARY OF THE INVENTION

The present invention provides four novel plexin family members.

In one aspect, the invention provides an isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence that encodes an amino acid sequence selected from the group consisting of the amino acid sequence shown in (SEQ ID NO: 2), (SEQ ID NO: 4), (SEQ ID NO: 6) and (SEQ ID NO: 8).

In other aspects, the invention provides isolated nucleic acid having at least 80% nucleic acid sequence identity to a nucleotide sequence selected from the group consisting of the nucleotide sequence shown in (SEQ ID NO: 1), (SEQ ID NO: 3), (SEQ ID NO: 5) and (SEQ ID NO: 7).

In another aspect, the invention provides a vector comprising the nucleic acid of the above-aspects.

The invention also provides an isolated polypeptide the amino acid sequence of which comprises residues 1-18, 19-518, 451-530, 601-680, 751-830, 800-1010, or 1196-1215 of SEQ ID NO: 2; 1-23, 24-507 or 1100-1119 of SEQ ID NO: 4; or 1-42, 43-600, 541-620, 691-770, 831-910, 900-1110 or 1270-1293 of SEQ ID NO: 6; or 8-49, 154-199 or 1-199 of SEQ ID NO: 8.

In another aspect, the invention provides an isolated polypeptide having at least 80% amino acid sequence identity to an amino acid sequence selected from the group consisting of the amino acid sequence shown in (SEQ ID NO: 2), (SEQ ID NO: 4), (SEQ ID NO: 6) and (SEQ ID NO: 8)

The invention also provides a chimeric molecule comprising a polypeptide of the above aspects fused to a heterologous amino acid sequence. In one embodiment the heterologous amino acid sequence is a Fc region of an immunoglobulin.

In other aspects, the invention provides an antibody that specifically binds to the polypeptides of the above aspects.

The invention also provides a method of treating, suppressing or altering a disorder involving aberrant immune regulation involving a signaling pathway between a plexin and a neuropilin in a mammal comprising the step of administering an effective amount of an agent to said mammal capable of interfering with the association between the plexin and neuropilin. Contemplated agents include a chimeric molecule or an antibody of the above aspects.

DESCRIPTION OF THE DRAWINGS

Figure 1.

(A) Phylogenetic tree of human plexins. Known family members cluster in two major groups: plexin A and plexin-B subfamilies. (B) Structural features of plexins, Met-like receptors and semaphorins. In the extracellular moieties, yellow boxes indicate the “*sema*” domains and blue boxes mark the cysteine-rich MRS motifs, some of which are stippled to indicate their atypical sequence; atypical MRS are also found in the *sema domain* of semaphorins. Sequence identity among *sema* domains ranges from 15-50%, as previously described (see Winberg et al., 1998 *supra*). Potential furin-like proteolytic sites are marked by red ribbons. plexin-B1 “truncated” is the product of a splicing variant (see text). plexin-D1 and plexin-C1 (VESPR) are more distant family members, since they include atypical features in their extracellular domains. The intracellular domain of plexins (SP domain) is highly conserved through all family members, and it includes two separate regions of high homology (Maestrini, E., Tamagnone, T., Longati, P., Cremona, O., Gulisano, M., Bione, S., Tamanini, F., Neel, B.G., Toniolo, D., and Comoglio, P.M. (1996) "A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor." Proc. Natl. Acad. Sci. USA 93, 674-678) (green oval and box). Met-like receptors are disulfide-bound heterodimers and include a cytoplasmic tyrosine kinase domain (red box). Mammalian semaphorins can be either secreted or cell surface proteins. Molecular weights of representative proteins are Plexin-A1 220 kDa, Plexin-B1 250 kDa, Plexin-C1 200

kDa, HGF-R/Met 145+45 kDa (heterodimer), Sema 4D 150 kDa (transmembrane), Sema7A approx. 100 kDa (membrane GPI-linked).

Figure 2.

(a) Cell surface semaphorins specifically bind human plexins. Micrographs of the binding assays done testing i) the extracellular domain of semaphorin CD100 fused to alkaline phosphatase (CD100-AP) on COS cells transfected with *plexin-B1 cDNA*; ii) control AP on plexin-B1; iii) CD100-AP on plexin-B2; iv) CD100-AP on the entire extracellular domain of plexin-B1; v) CD100-AP on isolated “plexin-B1 truncated” (including *sema* domain, 1° and 2° MRS); vi) CD100-AP on a “plexin-B1-Δsema” (including 2° and 3° MRS; vii) extracellular domain of semaphorin A39R fused to AP, on plexin-C1 (Vespr); viii) SemaK1-AP on plexin-C1. The final detection of the binding was done either using alkaline phosphatase substrates (i-vi) or by immunofluorescence (vii and viii). (B) Scatchard analysis and binding curve of CD100-AP to plexin-B1 ($K_D = 0.9 \text{ nM} \pm 0.15$).

Figure 3.

Plexins associate with neuropilins *via* specific extracellular domains. Western blots of immunoprecipitated samples from cells co-expressing neuropilins and plexins. Specific MoAbs were used, directed against the VSV-tag included in plexins or the myc-tag included in neuropilin-2 (Np2, 130 kDa). Np2 co-immunoprecipitates with plexins, such as plexin-A3 (220 kDa), the extracellular domain of plexinA1 (approx.160 kDa), and plexin-B1 (250 kDa) but not with the unrelated cell surface receptor DCC (170 kDa). Np2 can also associate a truncated form of the extracellular moiety of plexin-B1 (“plex-B1 trunc.”, approx. 110 kDa), containing the *sema domain*.

Figure 4.

Expression of mRNAs for plexins A1 (panel A, B), -A2 (panel C, D) and A3 (panel E, F) in the spinal cord (sc), dorsal root ganglia (d) and sympathetic ganglia (sg) of E13.5 mouse embryos. Expression of the mRNAs was detected by RNA in situ hybridization. Scale bar:1 μm .

Figure 5.

Effect of a truncated plexin-A1 construct (lacking the cytoplasmic domain) on repulsive and attractive responses of Xenopus spinal neurons to Sema3A and netrin-1. (A-F) A control spinal neuron exposed to a gradient of Sema3A emanating from a pipette (A) is repelled away over a period of 1 hr (B). In contrast, a GFP-expressing

spinal neuron from an embryo injected with mRNA for the truncated plexin-A1 construct (C) is not affected by Sema3A (D). A similar neuron (E) shows a normal attractive response to netrin-1 (F).

- (G) Cumulative distribution plot of turning angles for all the neurons studied.
5 Curves show the percent of neurons with turning angles less than the angle indicated on the abscissa, under different conditions (open circles, control neurons; black and blue circles, control neurons responding to Sema3A or netrin-1, respectively; red and green circles, responses of neurons expressing the truncated plexin-A1 construct to Sema3A and netrin-1, respectively. (H) Mean turning angle under all the conditions just
10 mentioned.

Figure 6.

Tyrosine phosphorylation of plexin-A3 and plexin-B1. (a) Anti-phosphotyrosine western blotting of immunoprecipitated p220^{plex-A3} and p250^{plex-B1} proteins. plexin-B1 is larger since it contains an extra sequence between the second and 15 the third MRS motif, in the extracellular domain (see Fig. 1). (b) The same immunoprecipitated samples underwent *in vitro* kinase assay in the presence of [γ^{32} P]ATP, Mg⁺⁺ and Mn⁺⁺ ions. The SDS-PAGE was treated with alkali in conditions known to eliminate the phosphate labeling of Ser/Thr residues and specifically preserving phosphotyrosines.

20 **Figure 7**

Plexin-A3 overexpression mediates cell repelling cues. (a) Epithelial kidney MDCK cells transfected to overexpress plexin-A3 (or mock transfected) were cocultured with mesenchymal KJ-29 or NIH-3T3 cells. After 16-30 hours, mixed cultures of control cells (upper panels) reached confluence and stopped growing: typically the epithelial cells formed islets (circled) surrounded by a fibroblasts lawn. In contrast, MDCKs overexpressing plexin-A3 (lower panels) overwhelmed the adjacent mesenchymal cells. The latter withdrew and selectively detached from the culture dish (dying cell clusters are indicated by arrowheads), and eventually epithelial cells only survived. To allow an easier detection of the mesenchymal cells, these were labeled 25 with DiI before being plated in mixed cultures. (b) Plexin-A3 expressing cells do not induce apoptotic signal on repelled fibroblasts. Mixed cultures of NIH 3T3 and control or plexin-A3 overexpressing MDCKs were tested for the presence of TUNEL-AP positive cells. Apoptotic cells were not present in clusters of repelled cells (indicated by
30

arrows). The right panel shows a positive control where apoptosis was induced on the same cells by UV treatment. (c) Plexin-A3 over-expressing cells form very transient contacts with fibroblasts. Time-lapse video-microscopy of control and plexin-A3 overexpressing MDCK cells grown in presence of fibroblasts. On top, snap-shot images from the movie, taken every 50 minutes (real time). In the upper row is shown the persistent contact of a fibroblast (marked by an arrow) with an islet of control MDCK cells (marked by a star). In the lower row another fibroblast, instead, forms a transient contact with an islet of plexin-A3 transfected cells, which also, in turn, reshapes. At the bottom, the diagrams show the relative frequency of persistent, 5 transient or very transient contacts between fibroblasts and MDCK cells.

10

DETAILED DESCRIPTION OF THE INVENTION

The reference works, patents, patent applications, and scientific literature, including accession numbers to GenBank database sequences, that are referred to herein establish the knowledge of those with skill in the art and are hereby incorporated by reference in their entirety to the same extent as if each was specifically and individually indicated to be incorporated by reference. Any conflict between any reference cited herein and the specific teachings of this specification shall be resolved in favor of the later. Likewise, any conflict between an art-understood definition of a word or phrase and a definition of the word or phrase as specifically taught in this specification shall be 15 resolved in favor of the latter.

20

Four novel human plexins have been identified: plexin-B2, plexin-B3, plexin-D1 and Plexin A-4. Plexin-A4 is located on human chromosome 7 and is a family member of the plexin-A subfamily which also includes plexin-A1 (alternatively named plexin-1/NOV), plexin-A2 (alternatively named plexin-2/OCT) and plexin-A3 (alternatively 25 named plexin-2/SEX). Plexin-B2 and plexin-B3 are located on human chromosome 22 and chromosome X, respectively, and are family members of the plexin-B subfamily which also includes plexin-B1 (alternatively named SEP). Plexin-B3 maps very close to the plexin-A3 genomic locus on Xq28. Plexin-D1 is the first identified member of the plexin-D subfamily and is atypical of any of the other subfamilies. A fourth 30 subfamily of plexins, the plexin-C subfamily, is defined by VESPR (now plexin-C1).

The four novel plexins as described herein have in their extracellular domains regions of homology with two other protein families: (a) Scatter Factors Receptors, encoded by the *MET* oncogene family (Tamagnone and Comoglio, 1997 *supra*), and (b)

Semaphorins (Kolodkin et al. (1993) *supra* (Figure 1b). In particular, plexins and Met-like receptors contain short cysteine-rich motifs, termed "Met Related Sequences" (MRS), whose minimal consensus is: C-X(5-6)-C-X(2)-C-X(6-8)-C-X(2)-C-X(3-5)-C (Maestrini et al., 1996 *supra*; Tamagnone and Comoglio, 1997 *supra*); blue boxes in Fig. 1B). The proteins of the Met family contain a single MRS (in their receptor β chains), whereas in plexin family members there are two/three repeated MRS motifs. Furthermore, all plexin family members contain in their extracellular moiety a 500 amino acid region similar to the sema domain of semaphorins (Kolodkin et al. (1993) *supra*; Winberg et al., 1998 *supra*); yellow boxes in Fig. 1B. The MRS motif is proposed to function as protein-protein interaction domain.

The cytoplasmic domain of plexins contains a ~600 amino acid domain which we term the SP domain ("Sex and Plexins", marked in green in Fig. 1B) that is highly conserved within the family (57-97% similarity) and in evolution (over 50% similarity between invertebrates and humans). The SP domain does not share homology with any known protein. It includes a number of potential tyrosine phosphorylation sites, but lacks the typical motifs of catalytic tyrosine kinases. Interestingly, the predicted secondary structure of the SP domain includes long conserved alpha helices, typically found in protein-protein interaction modules. Furthermore, there are several dihydrophobic amino acid motifs (such as LL or LJ), known to mediate the internalization and downregulation of transmembrane receptors (Sandoval, I.V. and Bakke O. (1994). Targeting of membrane proteins to endosomes and lysosomes. Trends in Cell Biology 4, 292-297).

The present invention also demonstrates that plexins can form complexes with neuropilins, which in turn demonstrates that a receptor for semaphorins can be hetero-oligomers of plexins and neuropilins. As demonstrated by in situ mRNA expression analysis, plexins and neuropilins are in fact simultaneously expressed in several neuronal populations during embryonic development. The plexin-neuropilin complex predates ligand binding, since the association is not influenced by the presence of class 3 semaphorins. That the observed plexin-neuropilin complexes are formed in *cis* is furthermore supported by the experimental conditions used (cotransfection of isolated cells with the two constructs). An interaction in *trans* might also be envisioned (considering that plexins and semaphorins share similar *sema* domains), however by

analyzing mixed cultures of cells separately transfected with plexins and neuropilins we did not isolate associated complexes (data not shown).

We observed that the main semaphorin binding domain of neuropilins (CUB domain (Giger, R.J., Urquhart, E.R., Gillespie, S.K., Levengood, D.V., Ginty, D.D., and 5 Kolodkin, A.L. (1998) "Neuropilin-2 is a receptor for semaphorin IV: insight into the structural basis of receptor function and specificity." *Neuron* 21, 1079-1092; Nakamura, F., Tanaka, M., Takahashi, T., Kalb, R.G., and Strittmatter, S.M. (1998) "Neuropilin-1 extracellular domains mediate semaphorin D/III-induced growth cone collapse" [In Process Citation]. *Neuron* 21, 1093-1100; Chen et al. 1998 *supra*) is not 10 required for the interaction with plexins, as indicated by the association of the relevant Neuropilin-2 deletion construct with plexin-B1 (not shown). A ternary complex, where neuropilins use two distinct protein modules to form a bridge between the sema domain of semaphorins and the sema domain of plexins is thus contemplated. It is further contemplated that plexins are the functional partners of neuropilins, required for 15 transducing signals mediated by semaphorins, preferably class 3 semaphorins. For example, in flies, which lack both neuropilins and class 3 semaphorins, D Plex A appears sufficient as a functional receptor for Sema 1a, a transmembrane class 1 semaphorin (Winberg et al., 1998 *supra*). Further support that plexins are functional co-receptors for secreted semaphorins is demonstrated in an experiment that shows that a 20 truncated plexin-A1 construct expressed in Xenopus spinal neurons abolishes repulsive responses to Sema3A without markedly affecting attractive responses to netrin-1. These results are consistent with the involvement of plexins.

The intracellular signals transduced by plexins are still largely obscure. The cytoplasmic domain of plexins is large and highly conserved within and across species 25 and contains stretches of alpha helices, which are putative protein-protein interaction domains, and could thus mediate the association with cytosolic partners. We demonstrate herein that the cytoplasmic domain of plexins can be tyrosine phosphorylated, suggesting that, like other receptors devoid of intrinsic catalytic activity, plexins may signal by associating a tyrosine kinase (Stahl, N. and 30 Yancopoulos, G.D. (1993). The alphas, betas, and kinases of cytokine receptor complexes. *Cell* 74, 587-590; Glass, D.J., Bowen, D.C., Stitt, T.N., Radziejewski, C., Bruno, J., Ryan, T.E., Gies, D.R., Shah, S., Mattsson, K., Burden, S.J., DiStefano, P.S.,

Valenzuela, D.M., DeChiara, T.M., and Yancopoulos, G.D. (1996). Agrin acts via a MuSK receptor complex. *Cell* 85, 513-523).

In addition, we show herein that expression of plexins, particularly plexin-A3, mediates cell-repelling cues. By time-lapse video-microscopy we observed a true 5 repelling effect on fibroblasts. Intriguingly, we observed that -upon interaction with fibroblasts- also the islets of plexin-A3 MDCKs at times reshaped. This may be explained by the existence of intra-epithelial repelling cues, balanced by the attractive forces exerted by epithelial cell junctions.

Moreover we have demonstrated that in the nervous system (i.e. *Drosophila*), that 10 defasciculating motor axons co-express both Plexin A and one of its interacting partners, the transmembrane semaphorin Sema-1a (Winberg et al., 1998 *supra*). This demonstrates that plexins act *in vivo* either as receptors or ligands for cell surface semaphorins, which in turn can transduce intracellular signals, as reported for ephrins (Holland et al., 1996 *supra*). Semaphorins, therefore, besides being pivotal in axon 15 guidance, have a general role in morphogenesis and tissue remodeling by mediating cell-repelling cues via their interactions with plexins.

Accordingly, in a first aspect, the invention provides an isolated nucleic acid molecule encoding a novel human plexin polypeptide. By “plexin polypeptide” is meant 20 a member of the plexin family comprising an amino acid sequence that shares at least 60% amino acid sequence homology with SEQ ID NOS: 2 (plexin B-2), 4 (plexin B-3), 6 (plexin D-1) or 8 (plexin A-4), preferably, at least 65% sequence homology, more preferably, at least 70% sequence homology, more preferably, at least at least 75% sequence homology, more preferably, at least 80% sequence homology, still more preferably at least 85% sequence homology, even more preferably, at least 90% sequence 25 homology, and most preferably at least 95% sequence homology with SEQ ID NOS: 2, 4, 6 or 8. Plexin polypeptides of the invention are useful for modulating cell growth (i.e. nerve) and immune regulation.

As used herein, by “modulating” is meant increasing or decreasing cell growth. By “cell growth” is meant any change in cell number or size, including, without 30 limitation, increase or decrease in cell number, increase or decrease in rate of cell division, increase or decrease in rate of cell death, and/or increase or decrease in cell size. Standard methods for measuring cell growth include standard apoptosis assays (*e.g.*, TUNEL assays, DNA fragmentation, trypan blue exclusion) and cell proliferation assays

(*e.g.*, 3 H-thymidine incorporation). It will be appreciated that the degree of modulation of cell growth provided by a plexin polypeptide in a given assay will vary, but one of skill in the art can readily determine the statistically significant change in cell growth of a cell exposed to a plexin polypeptide.

5 By "immune regulation" is meant increasing or decreasing the biological functions of immune cells (*i.e.*, cells involved in an immune response). Immune cells include, without limitation, lymphocytes (T and B), NK cells, dendritic cells, myeloid cells (*e.g.*, macrophages and neutrophils), and other hematopoietic cells involved in an immune response.

10 By "nucleic acid molecule" or "nucleic acid" as used herein, is meant any deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), including, without limitation, complementary DNA (cDNA), genomic DNA, RNA, heteronuclear RNA (hnRNA), messenger RNA (mRNA), DNA/RNA hybrids, or synthetic nucleic acids (*e.g.*, an oligonucleotide) comprising ribonucleic and/or deoxyribonucleic acids or synthetic variants thereof. The nucleic acid of the invention includes, without limitation, an oligonucleotide or a polynucleotide. The nucleic acid can be single stranded, or partially or completely double stranded (duplex). Duplex nucleic acids can be homoduplex or heteroduplex.

15 By "polypeptide" is meant any molecule comprising two or more amino acids joined together with a peptide bone, regardless of length or post-translational modifications (*e.g.*, without limitation, glycosylation, lipidation, acetylation, or phosphorylation). Useful plexin polypeptides of the invention include, without limitation, the full length plexin polypeptides having the amino acid sequence of SEQ ID NOS: 2, 4 , 6, 8 or 10,; an extracellular domain of the polypeptide having the amino acid sequence 1 to 1199 of SEQ ID NO: 2; 1 to 1099 of SEQ ID NO: 4; 1 to 1270 of SEQ ID NO: 6 or 1 to 199 of SEQ ID NO: 8, with its associated signal peptide; or an extracellular domain of the polypeptide having the amino acid sequence 19 to 1199 of SEQ ID NO: 2; 24 to 1099 of SEQ ID NO: 4; or 43 to 1270 of SEQ ID NO: 6, lacking its associated signal peptide; an intracellular domain of the polypeptide having the amino acid sequence of SEQ ID NOS: 2, 4, 6 or 8; and polypeptides, the amino acid sequence of which comprises about residues 1-18 (putative signal sequence), 19-518 (sema domain), 451-530 (1° MRS), 601-680 (2° MRS), 751-830 (3° MRS), 800-1010 (G-P repeats) or 1196-1215 (putative transmembrane domain) of SEQ ID

NO: 2; about residues 1-23 (putative signal sequence), 24-507 518 (sema domain) or 1100-1119 (putative transmembrane domain) of SEQ ID NO: 4; or about residues 1-42 (putative signal sequence), 43-600 (sema domain), 541-620 (1° MRS), 691-770 (2° MRS), 831-910 (3° MRS), 900-1110 (G-P repeats) or 1270-5 1293 (putative transmembrane domain) of SEQ ID NO: 6; or about residue 8-49 (1° MRS) or 154-199 (2° MRS) of SEQ ID NO: 8.

By "isolated" is meant a compound (*e.g.*, a nucleic acid molecule or a protein) that has been separated from components (*e.g.*, nucleic acid molecules, proteins, lipids, and/or carbohydrates) which naturally accompany it. Water, buffers, and other small 10 molecules (*e.g.*, molecules having a molecular weight of less than about 1000 daltons) may accompany an isolated compound of the invention. Preferably, an isolated compound is at least 70%, by weight, free from components which naturally accompany it. More preferably, an isolated is at least 75%, by weight, free from components which naturally accompany it; still more preferably, at least 80%, by 15 weight, free; even more preferably, at least 85%, by weight, free; and even more preferably, at least 90%, by weight, free from components which naturally accompany it. Most preferably, a substantially purified compound is at least 95%, by weight, free from components which naturally accompany it.

Where the isolated compound is a nucleic acid molecule, the isolated nucleic acid 20 molecule is separated from other nucleic acids (*e.g.*, genes or transcripts) or proteins which, in the naturally-occurring genome of the organism from which the nucleic acid molecule was derived, flanked the nucleic acid molecule. Isolated nucleic acid molecules therefore include, without limitation, a recombinant nucleic acid molecule incorporated into a plasmid or other vector (*e.g.*, a replication-defective virus); a 25 recombinant nucleic acid molecule incorporated into the genome of a prokaryotic or eukaryotic organism; or a nucleic acid molecule which exists as a separate molecule independent of other nucleic acids (*e.g.*, a PCR product, a chemically synthesized nucleic acid molecule, or a nucleic acid molecule produced by restriction endonuclease digestion). Purification of a nucleic acid molecule can be accomplished and measured by 30 any standard method including, without limitation, sequence analysis, chemical synthesis, PCR, CsCl gradient, phenol:chloroform extraction, ethanol precipitation, Southern or Northern blotting analysis followed by band extraction and purification, and

high performance liquid chromatography (HPLC; see, *e.g.*, Fisher (1980) Laboratory Techniques in Biochemistry and Molecular Biology, Work and Burdon (eds.), Elsevier).

Thus, in one non-limiting example, to obtain an isolated nucleic acid molecule encoding a plexin polypeptide, a nucleic acid molecule is chemically synthesized on a 5 standard oligonucleotide synthesis machine. The resulting single stranded molecule is then subjected to second strand synthesis to form a duplex DNA molecule, which is then ligated into a plasmid capable of replication in a prokaryotic or eukaryotic cell. The nucleic acid molecule is then replicated in the cell, purified (*e.g.*, by CsCl gradient), and subjected to sequence analysis.

10 In certain embodiments of the first aspect of the invention, the nucleic acid molecule has a nucleic acid sequence comprising SEQ ID NOS: 1, 3, 5, 7 or 9. Preferably, the nucleic acid molecule of the invention has not more than 500 nucleotides flanking each of the 5' and 3' ends of SEQ ID NOS: 1, 3, 5, 7 or 7. In certain 15 embodiments, the plexin polypeptide has an amino acid sequence that comprises SEQ ID NOS: 2, 4, 6, 8 or 10. Preferably, the plexin polypeptide of the invention has not more than 50 amino acid residues flanking each of the N-terminal and C-terminal ends of SEQ ID NOS: 2, 4, 6, 8 or 10.

20 In certain embodiments of the first aspect of the invention, the nucleic acid molecule hybridizes under stringent conditions (as defined herein) to SEQ ID NOS: 1, 3, 5, 7 or 9.

The invention also includes nucleic acid molecules that hybridize under stringent hybridization conditions (as defined herein) to all or a portion of the 25 nucleotide sequence represented by SEQ ID NOS: 1, 3, 5, 7 or 9 or its complement. The hybridizing portion of the hybridizing nucleic acid is at least 80%, *e.g.*, at least 95%, or at least 98%, homologous to the sequence of a portion or all of a nucleic acid encoding a polypeptide having the amino acid sequence of SEQ ID NOS: 2, 4, 6, 8 or 10, or its complement. Hybridizing nucleic acids of the type described herein can be used, for example, as a cloning probe, a primer (*e.g.*, a PCR primer) or a diagnostic probe.

Hybridization of the oligonucleotide probe to a nucleic acid sample typically is 30 performed under stringent conditions. Nucleic acid duplex or hybrid stability is expressed as the melting temperature or Tm, which is the temperature at which a probe dissociates from a target DNA. This melting temperature is used to define the required stringency conditions. If sequences are to be identified that are related and substantially

identical, rather than identical, then it is useful to first establish the lowest temperature at which only homologous hybridization occurs with a particular concentration of salt (e.g., SSC or SSPE). Then, assuming that 1% mismatch results in a 1°C decrease in the T_m, the temperature of the final wash in the hybridization reaction is reduced
5 accordingly (for example, if the sequences have > 95% identity with the probe are sought, the final wash temperature is decreased 5°C). In practice, the change in the T_m can be between 0.5 C and 1.5 C per 1% mismatch. "Stringent conditions" involve hybridization at 68°C in 5x SSC/5x Denhardt's solution/1.0% SDS, and washing in 0.2xSSC/0.1% SDS at room temperature. "Moderately stringent conditions" include
10 washing in 3xSSC at 42°C. The parameters of salt concentration and temperature can be varied to achieve the optimal level of identity between the probe and the target nucleic acid. Additional guidance regarding such conditions is readily available in the art, for example, by Sambrook *et al.*, *supra*; and Ausubel *et al.*, *supra*.

Nucleic acid sequence homology (as well as amino acid sequence homology) can
15 be measured according to standard methods. Unless otherwise specified, as used herein used herein, "percent homology" of two amino acid sequences or of two nucleic acids is determined using the algorithm of Karlin and Altshul (*Proc. Natl. Acad. Sci. USA* **87**: 2264-2268, 1990), modified as in Karlin and Altschul (*Proc. Natl. Acad. Sci. USA* **90**: 5873-5877, 1993). Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (*J. Mol. Biol.* **215**: 403-410, 1990). BLAST nucleotide searches are performed with the NBLAST program, e (score) = 100, word length = 12, to obtain nucleotide sequences homologous to a nucleic acid molecule of the invention.
20 BLAST protein searches are performed with the XBLAST program, e (score) = 50, word length = 3, to obtain amino acid sequences homologous to a reference polypeptide (e.g., SEQ ID NO: 2). To obtain gapped alignments for comparison purposes, Gapped BLAST is utilized as described in Altschul et al. (*Nucleic Acids Res.* **25**: 3389-3402, 1997). When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) are used, namely e=10; w=11 for nucleic acid; w=3 for amino acid (the Blosum 62 scoring matrix); low complexity sequence filtering. The default settings of BLAST emphasize regions of local alignment to detect relationships among sequences which share only isolated regions of similarity (Altschul et al., *J. Mol. Biol.* **215**: 403-410 (1990). See <http://www.ncbi.nlm.nih.gov>.

Thus, in a non-limiting example to obtain an isolated nucleic acid molecule encoding a plexin polypeptide, a nucleic acid molecule having the sequence of SEQ ID NOS: 1, 3, 5 or 7 is used to probe a cDNA library under stringent conditions according to standard techniques (see., e.g., Ausubel *et al.*, *supra*). Upon identification of a positive 5 clone (*i.e.*, a clone that hybridizes to SEQ ID NOS: 1, 3, 5 or 7 under stringent conditions), that clone is expanded and subjected to sequence analysis. A nucleic acid molecule having a nucleic acid sequence that is at least 70% identical, preferably at least 75% identical, more preferably, at least 80% identical, still more preferably at least 85% identical, even more preferably, at least 90% identical, and most preferably at least 95% 10 identical (as measured by the basic BLAST program of NCBI on default settings) to SEQ ID NOS: 1, 3, 5 or 7 is a nucleic acid molecule of the invention.

In a second aspect, the invention provides four novel isolated plexin polypeptides.

“Isolated” is as defined for the first aspect of the invention. Where the isolated compound is a polypeptide, the isolated polypeptide is separated from organic molecules, 15 such as nucleic acid molecules, polypeptides, and/or carbohydrates, which, in the naturally-occurring organism from which the polypeptide was derived, accompany the polypeptide. Isolated polypeptides therefore also include a recombinant polypeptide (*e.g.*, a human polypeptide expressed in an insect cell), or a chemically synthesized polypeptide. Purification of a polypeptide can be accomplished and measured by any 20 standard method including, without limitation, chemical synthesis, recombinant polypeptide expression in prokaryotic or eukaryotic cells, affinity chromatography, Western blotting analysis, SDS-PAGE analysis, and/or HPLC.

In accordance with this aspect, the invention provides all derivatives, mutants, truncations, and/or splice variants of the four novel plexin polypeptides, so long as these 25 derivatives, mutants, truncations, and/or splice variants share at least 60% amino acid sequence homology with SEQ ID NOS: 2 ,4 ,6 or 8, preferably, at least 65% sequence homology, more preferably, at least 70% sequence homology, more preferably, at least at least 75% sequence homology, more preferably, at least 80% sequence homology, still more preferably at least 85% sequence homology, even more preferably, at least 90% 30 sequence homology, and most preferably at least 95% sequence homology with SEQ ID NOS: 2 ,4 ,6 or 8 as determined using the basic BLAST program of the National Center for Biotechnology (NCBI; National Library of Medicine, Bethesda, MD), using the

default settings defined therein using the sequence of the four novel plexin derivative, mutant, truncation and/or splice variance as the probe.

Preferred plexin polypeptide derivatives include polypeptides whose sequences differ from the sequence given in SEQ ID NOS: 2 ,4 ,6 or 8, by one or more 5 conservative amino acid substitutions, or by one or more non-conservative amino acid substitutions, deletions or insertions which do not abolish the biological activity of the plexins. Conservative amino acid substitutions typically include the substitution of one amino acid for another with similar biochemical characteristics, such as polarity, size, and/or charge. Non-limiting examples of conservative substitutions are substitutions 10 within the following groups: valine, glycine, glycine, alanine, valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine, phenylalanine, and tyrosine.

Useful methods for mutagenesis to generate plexin mutants are known in the art (see, *e.g.*, Sambrook *et al.*, *supra*; Ausubel *et al.*, *supra*). Preferred methods for 15 mutagenesis are described in PCT Publication WO99/12965 and include PCR mutagenesis and saturation mutagenesis. A library of random amino acid sequence variants can also be generated by the synthesis of a set of degenerate oligonucleotide sequences.

In certain embodiments of the second aspect of the invention, the plexin 20 polypeptide has a sequence comprising the sequence of SEQ ID NOS: 2 ,4 ,6 or 8. In one non-limiting example, in accordance with the invention, an isolated plexin polypeptide comprising the sequence of SEQ ID NOS: 2 ,4 ,6 or 8 can chemically synthesized according to standard techniques (*e.g.*, at a commercial peptide generating facility).

For example, a putative plexin polypeptide is purified and subjected to N- 25 terminal sequencing to determine its amino acid sequence. The amino acid sequence of the polypeptide is then compared to SEQ ID NOS: 2 ,4 ,6, 8 or 10 (as measured by the basic BLAST program of NCBI on default settings). A polypeptide that shares at least 60% homology with SEQ ID NOS: 2 ,4 ,6, 8 or 10 is a plexin polypeptide of the 30 invention.

In another example, purification of a plexin polypeptide is facilitated by the addition of a tag to the polypeptide that enables purification of the tagged polypeptide. Non-limiting examples of a tag include a hemagglutinin (HA) tag, a his tag, a GST tag, a

FLAG-tag, and a myc tag. Thus, a nucleic acid molecule of the first aspect is engineered using standard molecular biology techniques to incorporate the nucleic acid sequence encoding the tag. The engineered nucleic acid molecule is then introduced and positioned for expression in an appropriate cell to produce the recombinant tagged polypeptide, which can then be readily purified by binding of the tag to its substrate. For example, the his tag binds to Ni-NTA agarose. Likewise, a GST (glutathione S-transferase) tag binds to glutathione agarose beads. Both his tag and GST tag expression and purification kits are commercially available from PharMingen (San Diego, CA). Likewise, myc-tagged plexin polypeptide are produced by cells introduced with a nucleic acid molecule encoding the tagged protein and positioned for expression in the cell.

It will be appreciated that particularly useful polypeptides of this aspect of the invention are secreted by the cell in which they are produced, thus facilitating purification of the polypeptide from the culture media in which the cells have been maintained, without requiring lysis of the cell.

In a third aspect, the invention provides a cell engineered to comprise a nucleic acid molecule encoding one of the four plexin polypeptides. By "engineered" is meant that the cell of the invention has been modified by standard molecular biology techniques. Where the cell is "engineered to comprise a nucleic acid molecule," standard molecular biology techniques have been employed to introduce the indicated nucleic acid molecule into the cell, either by transformation or transfection of the cell with a plasmid, or by infection or transduction of the cell with a recombinant virus.

The nucleic acid molecule of the first aspect of the invention is preferably subcloned into a plasmid or vector (for example, but not limited to, a vector used to generate a recombinant virus), wherein the nucleic acid molecule is positioned for expression in the plasmid or vector. The plasmid or vector is then introduced into a cell by standard techniques to produce an engineered cell in accordance with the third aspect of the invention.

In certain embodiments of the third aspect, the cell is a prokaryotic cell (*e.g.*, a bacterium). For example, *E. coli* cells (*e.g.*, DH5 α) are transformed (using, *e.g.*, electroporation) with a bacterial plasmid (*i.e.*, a plasmid containing an *E. coli* origin of replication) containing a nucleic acid molecule of the first aspect of the invention. The transformed bacteria are selected using, for example, an antibiotic-resistance encoding nucleic acid molecule (*e.g.*, ampicillin resistance) on the plasmid such that the antibiotic

resistance protein is expressed by the transformed bacteria. The transformed bacteria are then propagated, and can be cryopreserved and stored frozen in glycerol.

Those of skill in the art will appreciate that in accordance with the third aspect of the invention, a nucleic acid molecule encoding one of the four plexin polypeptides may 5 be introduced into a large variety of cells. For example, a nucleic acid molecule encoding one of the four plexin polypeptides can be introduced into prokaryotic cells (*e.g.*, bacteria), and any eukaryotic cell into which an exogenous nucleic acid molecule may be introduced. Thus, in certain embodiments of the third aspect of the invention, the cell is a eukaryotic cell. Eukaryotic cells according to this aspect of the invention that 10 comprise a nucleic acid molecule encoding one of the four plexin polypeptides include, without limitation, yeast cells, plant cells, insect cells, and mammalian cells. Within the category of mammalian cells are cells from any mammalian species (including, without limitation, mouse, hamster, monkey, human), of any lineage (including, without limitation, lymphocyte, fibroblast, stem cell), and may be an immortalized cell, or a non- 15 immortalized cell. Cells, as well as plasmids and/or vectors (*e.g.*, vectors that can be packaged to form infectious virus particles), are commercially available, for example, from the American Type Culture Collection (“ATCC”; Manassas, VA).

In certain embodiments of the third aspect of the invention, the nucleic acid molecule is positioned for expression in the cell. By “positioned for expression” is 20 meant that the nucleic acid molecule is operably linked to at least one regulatory sequence which directs the transcription and translation of the nucleic acid molecule in a cell, such that the cell engineered to comprise the nucleic acid molecule produces (*i.e.*, expresses) the protein encoded by the nucleic acid molecule. By “operably linked” is meant that the nucleic acid molecule and the regulatory sequence are connected in a such 25 a way as to permit expression of the nucleic acid molecule when the nucleic acid molecule is present in a cell. Regulatory sequences include, without limitation, promoters, enhancers, IRES sequences, and polyadenylation signals. Since plexin polypeptides are involved in immune regulation and the modulation of cell growth, it may be desirable to operably link a nucleic acid molecule encoding one of the four plexin 30 polypeptides to an inducible promoter.

The four plexin polypeptides that are encoded by the nucleic acid molecules do not necessarily include the transmembrane domain of the four plexin polypeptides, and so may be produced by the cell as an intracellular polypeptide or a soluble secreted

polypeptide. For example, if the polypeptide fragment is secreted by the cell, it can be purified from the conditioned growth media of the transfected cells, without having to lyse the cells. Likewise, although a soluble intracellular polypeptide fragment is purified from only lysed cells, the fragment, being soluble, does not have to be extracted from the cell membrane; thus, different lysis conditions may be used to obtain purified soluble intracellular polypeptide fragment as compared to the lysis conditions required to obtain purified full length plexin polypeptides (which has a transmembrane domain).

Protein expression systems have been established for a variety of cells and are known to those of skill in the art. Cells are also commercially available from the ATCC, and a variety of protein expression system kits are commercially available from, for example, Invitrogen Corp. (Carlsbad, CA), Clontech Laboratories (Palo Alto, CA), PharMingen (San Diego, CA), Promega Corp. (Madison, WI), and Stratagene (La Jolla, CA).

For example, a nucleic acid molecule encoding one of the four plexin polypeptides is operably linked to bacterial regulatory sequences (*e.g.*, T7 late promoter or bacteriophage regulatory sequences), and the resulting nucleic acid molecule is used to transform bacterial cells, where the transformed bacterial cells produce one of the four plexin polypeptides. In another example, a nucleic acid molecule encoding one of the four plexin polypeptides is operably linked to baculovirus regulatory sequences in a baculovirus vector. Recombinant baculovirus are then generated and used to transduce insect cells (using, for example, the expression kit commercially available from Clontech Laboratories. The transduced insect cells comprise a nucleic acid molecule encoding one of the four plexin polypeptides positioned for expression in the insect cell, and thus produce one of the four plexin polypeptides.

Mammalian cells are widely used as protein expression systems. For example, a mammalian cell may be transduced with a recombinant retrovirus or adenovirus comprising a nucleic acid molecule encoding one of the four plexin polypeptides operably linked to regulatory sequences that are either endogenous to the particular virus or exogenous to the virus (*e.g.*, a CMV promoter in a retroviral vector). The transduced mammalian cell is then propagated *in vitro* in tissue culture, *in vivo* (*e.g.*, in an immunocompromised animal), and/or cryopreserved and stored frozen in DMSO.

In another example, mammalian cells are transfected with an expression plasmid comprising a nucleic acid molecule encoding one of the four plexin polypeptides

operably linked to one or more regulatory sequences on the plasmid. By "expression plasmid" is meant a plasmid in which an inserted nucleic acid molecule of interest (e.g., encoding one of the four plexin polypeptides, a plexin chimeric molecule, or tagged plexin polypeptide) is operably linked to at least one regulatory sequence such that when 5 the expression plasmid containing the inserted nucleic acid molecule of interest is introduced (e.g., by transfection) into a cell, the inserted nucleic acid molecule is positioned for expression in that cell. The nucleic acid molecule in the expression plasmid, upon being introduced into the cell, is thus positioned for expression in that cell, and enables the cell to produce one of the four plexin polypeptides encoded by the 10 nucleic acid molecule.

In one non-limiting example, a nucleic acid molecule according to the first aspect of the invention is inserted into a standard mammalian expression plasmid (e.g., pcDNA3.1 commercially available from Invitrogen Corp., Carlsbad, California), such that the inserted nucleic acid molecule encoding one of the four plexin polypeptides is 15 operably linked to the regulatory sequences in the mammalian expression plasmid. Mammalian cells are then transfected with this expression plasmid (using, e.g., CaPO₄ or DEAE-dextran). Where the expression plasmid contains an antibiotic-resistance encoding nucleic acid molecule (e.g., neomycin resistance on the pCDNA3.1 plasmid) such that the antibiotic resistance protein is expressed by the transfected cells, transfected 20 cells may be selected for the ability to grow in the presence of the antibiotic. The transfected cells may then be propagated and cryopreserved and stored in frozen in DMSO.

In a fourth aspect, the invention provides an isolated nucleic acid molecule encoding a chimeric molecule comprising at least two segments, wherein one of the 25 segments comprises one of the four plexin polypeptides. By "chimeric molecule" is meant a protein that comprises at least two segments of polypeptide joined together by any means, including, without limitation, a covalent bond (e.g., peptide bond), a non-covalent bond (e.g., ionic bond or hydrogen bond) or by a chemical crosslinker. It should be noted that one of the four plexin polypeptides that has been tagged is within the 30 definition of a chimeric molecule.

In certain embodiments of the fourth aspect of the invention, the nucleic acid molecule encoding the segment of a chimeric molecule comprising one of the four plexin

polypeptides hybridizes under stringent conditions to SEQ ID NO: 1, 3, 5 or 7.

"Stringent conditions" are as described above for the first aspect of the invention.

Standard molecular biology techniques may be employed to generate nucleic acid molecules encoding chimeric molecules according to the fourth aspect of the invention.

- 5 For example, a nucleic acid molecule encoding the extracellular domain of one of the four plexin polypeptides may be joined, in frame, to a nucleic acid molecule encoding the constant region of an immunoglobulin molecule (see, e.g., Chamow S.M., *Antibody Fusion Proteins*, John Wiley & Sons, New York, 1999). By "in frame" is meant that a first nucleic acid molecule is ligated to a second nucleic acid molecule such that the each 10 of the amino acid sequences of the polypeptides encoded by each of the first and the second nucleic acid molecules is not frame-shifted.

In one non-limiting example, a chimeric molecule comprising the extracellular domain of one of the four plexin polypeptides including the amino acid sequence of SEQ ID NOS: 2, 4, 6 or 8 is generated. In this example, a nucleic acid molecule encodes 15 amino acid residue number 1(19) through about amino acid residue number 1199 of SEQ ID NO: 2; amino acid residue number 1(24) through about amino acid residue number 1099 of SEQ ID NO: 4; amino acid residue number 1(43) through about amino acid residue number 1270 of SEQ ID NO: 6 and amino acid residue number 1 through about amino acid residue number 199 of SEQ ID NO: 8 with its associated signal peptide 20 (parenthesis depicts about the beginning of the amino acid sequence of the extracellular domain lacking its signal peptide). This nucleic acid molecule is fused in frame with a nucleic acid molecule encoding the constant region of an immunoglobulin, such that the chimeric molecule encoded by the resulting nucleic acid molecule generally has the following structure:

25

N-terminus	extracellular domain of SEQ ID NO: 2 with or lacking its signal peptide	amino acids from the constant region of an Ig molecule	C-terminus
N-terminus	extracellular domain of SEQ ID NO: 4 with or lacking its signal peptide	amino acids from the constant region of an Ig molecule	C-terminus
N-terminus	extracellular domain of SEQ ID NO: 6 with or lacking its signal peptide	amino acids from the constant region of an Ig molecule	C-terminus
N-terminus	extracellular domain of SEQ ID NO: 8 with or lacking its signal	amino acids from the constant region of an Ig molecule	C-terminus

	peptide	
--	---------	--

The heavy chain class (*e.g.*, IgG, IgA, IgM, IgD, or IgE) can be varied in this chimeric molecule depending upon which constant region is used. Nucleic acid molecules encoding the constant region of various immunoglobulin (Ig) heavy chains are known
5 (see, *e.g.*, Zettlmeissl et al., *DNA Cell Biol.* **9**(5):347-53, 1990) Indeed, expression plasmids are available, into which the nucleic acid molecule of interest (*i.e.*, a nucleic acid molecule encoding an extracellular domain of the polypeptide of SEQ ID NO: 2; SEQ ID NO: 4; SEQ ID NO: 6; or SEQ ID NO: 8) can be inserted, and the resulting plasmid introduced into a cell to produce one of the four extracellular plexin-Ig chimeric
10 molecules (see, *e.g.*, Zettlmeissl et al., *supra*; Miller et al., *J. Exp. Med.* **178** (1): 211-222, 1993).

Any variety of chimeric molecule carrying the extracellular domains of one of the four plexin polypeptide may be generated. For example, the extracellular domain of one of the four plexin polypeptides can be myc-tagged, his-tagged, or FLAG tagged
15 according to standard molecular biology techniques.

Such extracellular proteins are particularly useful for identifying ligands to which the extracellular domain of one of the four plexin polypeptides bind. For example, extracellular plexin-D1-Ig chimera can be immobilized on a protein A-sepharose column. Molecules suspected of binding the extracellular domain of plexin-D1 are added to the
20 column, to which the molecule that binds to the extracellular domain of plexin-D1 adhere, and the non-binding molecules flow through the column. The extracellular plexin-D1-binding molecules are readily eluted, for example, by changing the pH or ion concentration of the elution buffer.

Extracellular plexin proteins are also used to identify cells expressing the ligand
25 of plexin extracellular domain on their cell surface (and thereby also identify the ligand itself). For example, cells are incubated with a FLAG-tagged plexin extracellular domain chimeric molecule. A FLAG-tagged plexin extracellular domain chimeric molecule is generated. An anti-FLAG antibody that is detectably labeled is then added to the cells. By “detectably labeled” is meant any means for marking and identifying the presence of a
30 molecule. Detectable labels include, without limitation, radioactive labels (*e.g.*, ^{32}P or ^{35}S) and fluorophore labels (*e.g.*, FITC, phycoerythrin, or rhodamine). For example, FITC-labeled anti-FLAG antibodies are commercially available from Babco, Richmond,

CA. The “stained” cells (*i.e.*, cells incubated first with the FLAG-tagged plexin extracellular domain chimeric molecule and then with the FITC-labeled anti-FLAG antibody), are then subjected to flow cytometry analysis to select those cells that are labeled with FITC, and so express a molecule that binds to the extracellular domain of one of the four plexin polypeptides. The FITC labeled cells are then further manipulated (*e.g.*, characterized to determine which cells express the plexin polypeptide ligand).

The ligand of the plexin extracellular domain is itself identified, for example, by lysing the cells, adding the lysate to one of the four plexin extracellular domain-Ig chimeric molecule columns described above, and purifying the ligand. The ligand is then sequenced by N-terminal sequencing.

In another non-limiting example, the intracellular domain of one of the four plexin polypeptides is used as “bait” in a yeast two-hybrid system to identify ligands that interact with the intracellular domain of one of the four plexins described herein. For general description of the two-hybrid system, see U.S. Patent Nos. 5,283,173; 5,468,614; 15 and 5,695,941. In this example, a nucleic acid molecule encoding from about amino acid residue number 143 through at least amino acid residue number 214 of SEQ ID NO: 2 is inserted into a standard DNA binding domain expression plasmid (*e.g.*, the GAL4 DNA binding domain plasmid in the Interactor kit commercially available from PharMingen (San Diego, CA). (It will be understood that the nucleic molecule may encode amino acid residue number 138-148 through at least amino acid residue number 214 of SEQ ID NO: 2.) A variety of cDNA libraries in transcriptional activation domain vectors are available (*e.g.*, from Clontech, Palo Alto CA). The cDNA libraries are screened employing standard methods (see, *e.g.*, the methods employed in U.S. Patent No. 5,780,262) to identify cDNA clones encoding a ligand that binds to the intracellular domain of one of the four plexin polypeptides. One preferable cDNA library screened in this example is a cDNA library generated from an immune cell (*e.g.*, a lymphocyte or NK cell).

In a fifth aspect, the invention provides a purified chimeric molecule comprising one of the four plexin polypeptides. Methods for purifying proteins are as described for the second aspect of the invention.

In a sixth aspect, the invention provides a cell engineered to comprise a nucleic acid molecule encoding a chimeric molecule comprising at least two segments, wherein one of the segments comprises one of the four plexin polypeptides. As described for the

third aspect of the invention, a nucleic acid encoding a chimeric molecule comprising one of the four plexin polypeptides may be introduced into any variety of cells. In certain embodiments, the cell is a prokaryotic cell or a eukaryotic cell. In certain embodiments, the eukaryotic cell is a yeast cell or a mammalian cell (*e.g.*, a human cell).

5 In a seventh aspect, the invention provides an isolated binding agent that specifically binds one of the four plexin polypeptides, or specifically binds a chimeric molecule comprising a segment comprising one of the four plexin polypeptides. In certain embodiments, the plexin protein has an amino acid sequence comprising SEQ ID NOS:2, 4, 6 or 8.

10 By “specifically binds” is meant a binding agent (*e.g.*, an antibody) that binds to its specific target (*e.g.*, one of the four plexin polypeptides) with greater affinity than it binds to other molecules. Preferably, where the binding agent is an antibody, the antibody preferably specifically binds to its specific target with a dissociation constant (K_D) of at least 10^{-5} M, more preferably, 10^{-6} M, even more preferably 10^{-7} M, and most 15 preferably, the binding agent specifically binds to its specific target with a K_D of at least 10^{-8} M.

20 Preferably, the binding agent of this aspect of the invention is an antibody, such as a monoclonal antibody or a polyclonal antibody, or a fragment of an antibody that specifically binds one of the four plexin polypeptides. Standard methods may be employed to generate both monoclonal and polyclonal antibodies that specifically bind to one of the four plexin polypeptides of the invention. See, *e.g.*, Ausubel et al., *supra*; Coligan, J.E. et al., Current Protocols in Immunology, John Wiley & Sons, New York (1991); and Delves, P.J., Antibody Production: Essential Techniques, John Wiley & Sons, New York (1997). Briefly, the plexin polypeptides of the present invention, 25 purified according to the methods described for the second aspect of the invention, are used to immunize rabbits (*e.g.*, for polyclonal antibodies) or mice (*e.g.*, for monoclonal antibodies) to generate antibody-mediated immunity to the four plexin polypeptides used to immunize the animal. For monoclonal antibodies, antibodies can be screened by, *e.g.*, ELISA, to identify those antibodies that show the highest affinity for the immunizing 30 plexin protein of polypeptide fragment. The cloned cell producing the high affinity monoclonal antibody can then propagate *in vitro* (where the antibody is purified from the culture supernatant) or *in vivo* (where the antibody is purified from ascites fluid), and

can also be cryopreserved and stored frozen at, *e.g.*, -70°C in DMSO, to provide a potentially limitless supply of monoclonal antibody.

In addition to intact monoclonal and polyclonal antibodies, the invention also provides various antibody fragments, such as Fab, F(ab')₂, Fv, and sFv fragments.

5 Recombinant, chimeric, and humanized antibodies are also provided.

Recombinant "humanized antibodies" which specifically bind to one of the four plexin polypeptides can be synthesized according to methods known in the art (see, *e.g.*, Green L.L. *et al.*, *Nature Genetics* 7: 13-21, 1994 for fully humanized antibodies expressed in transgenic animals; see also U.S. Patent Nos: 5,693,761; 5,777,085; and 10 5,585,089). Humanized antibodies are chimeras comprising mostly human IgG sequences into which at least portions of the regions responsible for specific antigen-binding (*e.g.*, CDR's) have been inserted. Animals are immunized with the desired antigen, the corresponding antibodies are isolated, and the portion of the variable region sequences responsible for specific antigen binding are removed. The animal-derived 15 antigen binding regions are then cloned into the appropriate position of human antibody genes in which the antigen binding regions have been deleted. Humanized antibodies minimize the use of heterologous (*i.e.*, inter-species) sequences in human antibodies, and thus are less likely to elicit immune responses in the treated subject (see also, *e.g.*, U.S. Patent No. 5,807,715).

20 Construction of different classes of recombinant antibodies can also be accomplished by making chimeric or humanized antibodies comprising nonhuman variable domains and human constant domains (CH1, CH2, CH3) isolated from different classes of immunoglobulins. For example, antibodies with increased antigen binding site valencies can be recombinantly produced by cloning the antigen binding 25 site into vectors carrying the human chain constant regions (see, *e.g.*, Arulanandam *et al.*, *J. Exp. Med.* 177: 1439-1450, 1993).

In addition, standard recombinant DNA techniques can be used to alter the binding affinities of recombinant antibodies with their antigens by altering amino acid residues in the vicinity of the antigen binding sites. The antigen binding affinity of a 30 humanized antibody can be increased by mutagenesis based on molecular modeling (see, *e.g.*, Queen *et al.*, *Proc. Natl. Acad. Sci.* 86: 10029-10033, 1989).

Also provided in the invention are plexin polypeptide-specific single polypeptide chain antibodies (see general methods in U.S. Patent Nos. 4,946,788 and

4,704,692); single domain antibodies (Ward, E.S. et al., *Nature* **341**: 544-546, 1989); and chimeric antibodies (U.S. Patent No. 4,816,567).

Binding agents that specifically bind the plexin polypeptides of the present invention are useful, for example, in determining expression levels of the plexin polypeptides in various tissues of the body, Western blotting analysis, and immunochromatography. Particularly, binding agents that specifically bind the plexin polypeptides are useful for binding the plexin polypeptide on a cell expressing the plexin polypeptide, thereby activating the cell.

A binding agent that specifically binds one of the four plexin polypeptides, for example, is effective as an immune modulator. Additional applications include, without limitation, an injectable formulation comprising a binding agent that specifically binds one of the four plexin polypeptides that is useful to antagonize activity in a disease involving aberrant immune regulation or a disease involving aberrant cell growth.

In an eighth aspect, the invention provides an isolated antisense oligonucleotide complementary to a portion of a nucleic acid molecule encoding one of the four plexin polypeptides. In certain embodiments, hybridization of the antisense oligonucleotide to the nucleic acid molecule inhibits transcription or translation of the nucleic acid molecule.

By two nucleic acid molecules being “complementary” to one another is meant that the first nucleic acid molecule (*e.g.*, an oligonucleotide) is able to form Watson-Crick base pair hydrogen bonds (*i.e.*, hybridize) with the second nucleic acid molecule to form a duplex. The first nucleic acid molecule is thus a “complement” of the second nucleic acid molecule.

The antisense oligonucleotides according to the invention are complementary to a region of a nucleic acid molecule (or a region at the intron/exon boundary of DNA or RNA) that encodes one of the four plexin polypeptides. Preparation of antisense oligonucleotides is well known (see, *e.g.*, Agrawal *et al.*, *Trends Biotechnol.* **10**:152-158, 1992; U.S. Patent No. 5,149,798; Agrawal *et al.*, *Proc. Natl. Acad. Sci. USA* **85**:7079-7083, 1988; Froehler, *Tetrahedron Lett.* **27**:5575-5578, 1986; and Bergot *et al.*, *J. Chromatog.* **559**:35-42, 1992).

In a ninth aspect, the invention provides a method for identifying a nucleic acid molecule encoding one of the four plexin polypeptides, comprising contacting a pool of candidate nucleic acid molecules with a nucleic acid molecule encoding one of the four

plexin polypeptides, wherein hybridization of the nucleic acid molecule encoding one of the four plexin polypeptides under stringent conditions to a candidate nucleic acid molecule identifies the candidate nucleic acid molecule as a nucleic acid molecule that encodes one of the four plexin polypeptides. According to this aspect of the invention,
5 “hybridization” and “stringent conditions” are as defined above for the first aspect of the invention. In certain embodiments, the nucleic acid molecule encoding one of the four plexin polypeptides has a nucleic acid sequence comprising SEQ ID NOS: 1, 3, 5 or 7.

It will be understood that the isolated plexin polypeptides according to the second aspect of the invention, the plexin chimeric molecules according to the fifth aspect of the
10 invention, and binding agents that specifically bind the plexin polypeptides according to the seventh aspect of the invention, are useful as therapeutics to treat an individual suffering from, or suspected of having, a disease or disorder involving aberrant immune regulation or an individual suffering from, or suspected of having, a disease or disorder involving aberrant cell growth, particularly nerve cell growth.
15

By “disease or disorder involving aberrant immune regulation” is meant any disease or disorder in which an abnormal immune response is generated in response to either self or foreign antigens. Thus, this definition includes, without limitation, autoimmune diseases (*e.g.*, lupus, inflammatory bowel disease, or Diabetes Type 1) and immunosuppressive diseases (*e.g.*, multiple sclerosis or rheumatoid arthritis).

20 By “disease or disorder involving aberrant cell growth” is meant any disease or disorder in which an abnormal amount of cell growth is observed. “Cell growth” is defined above. Thus, diseases and disorders involving aberrant cell growth include hyperplasia, neoplasia, and cancer, as well as degenerative diseases, such as neurodegenerative diseases.

25 Preferable therapeutically useful plexin polypeptides are soluble polypeptides (*e.g.*, lacking the hydrophobic transmembrane domain of the plexin polypeptides), particularly soluble polypeptide fragments that are secreted by the cell in which the fragment was produced. In a preferred embodiment the soluble plexin polypeptides are selected from the group consisting of plexin-A-1 (Maestrini et al. 1996 *supra*), plexin-A-
30 2 (Maestrini et al. 1996 *supra*), plexin-A-3 (Maestrini et al. 1996 *supra*), plexin-A-4, plexin-B-1 (Maestrini et al. 1996, *supra*), plexin-B-2, plexin-B-3, plexin-C1 (Comeau et al. 1998 *supra*), plexin-D-1.

In a tenth aspect, the invention provides a method for diagnosing a disease involving aberrant immune regulation or a disease involving aberrant cell growth, comprising comparing the amino acid sequence of one of the four plexin polypeptides from an individual suspected of having the disease with the amino acid sequence of one of the four plexin polypeptides from an unaffected individual, wherein the presence of a difference between the two amino acid sequences identifies the individual suspected of having the disease as having the disease. “Disease or disorder involving aberrant immune regulation” and “disease or disorder involving aberrant cell growth” are as defined above.

By “difference” in the amino acid sequence of one of the four plexin polypeptides from an individual suspected of having the disease or disorder as compared with the amino acid sequence of one of the four plexin polypeptides from an unaffected individual, is meant any mutation that changes the amino acid sequence including substitution, deletion, or addition of one or more amino acid residues.

Thus, in one nonlimiting example, one of the four plexin polypeptides is extracted from cells of an individual suspected of having a disease involving aberrant immune regulation (*e.g.*, using an antibody according to the seventh aspect of the invention). The amino acid sequence of the plexin polypeptide is determined by N-terminal sequencing and compared to the amino acid sequence of one of the four plexin polypeptides from an unaffected individual (*i.e.*, a normal individual of the same species that does not have a disease involving aberrant immune regulation or a disease involving aberrant cell growth). If there is a difference in the two amino acid sequences, the individual suspected of having a disease involving aberrant immune regulation is identified as having a disease involving aberrant immune regulation, and may be treated accordingly.

In certain embodiments of the tenth aspect, the amino acid sequence of the plexin polypeptide from the unaffected individual comprises the sequence of SEQ ID NO: 2, 4, 6, 8 or 10.

The following examples are intended to further illustrate certain preferred embodiments of the invention and are not limiting in nature. Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific substances and procedures described herein. Such

equivalents are considered to be within the scope of this invention, and are covered by the following claims.

Practice of the present invention will employ, unless indicated otherwise, conventional techniques of cell biology, cell culture, molecular biology, microbiology, 5 recombinant DNA, protein chemistry, and immunology, which are within the skill of the art. Such techniques are described in the literature. See, for example, **Molecular Cloning: A Laboratory Manual**, 2nd edition. (Sambrook, Fritsch and Maniatis, eds.), Cold Spring Harbor Laboratory Press, 1989; **DNA Cloning**, Volumes I and II (D.N. Glover, ed), 1985; **Oligonucleotide Synthesis**, (M.J. Gait, ed.), 1984; U.S. Patent No. 10 4,683,195 (Mullis et al.,); **Nucleic Acid Hybridization** (B.D. Hames and S.J. Higgins, eds.), 1984; **Transcription and Translation** (B.D. Hames and S.J. Higgins, eds.), 1984; **Culture of Animal Cells** (R.I. Freshney, ed). Alan R. Liss, Inc., 1987; **Immobilized Cells and Enzymes**, IRL Press, 1986; **A Practical Guide to Molecular Cloning** (B. Perbal), 1984; **Methods in Enzymology**, Volumes 154 and 155 (Wu et al., eds), 15 Academic Press, New York; **Gene Transfer Vectors for Mammalian Cells** (J.H. Miller and M.P. Calos, eds.), 1987, Cold Spring Harbor Laboratory; **Immunochemical Methods in Cell and Molecular Biology** (Mayer and Walker, eds.), Academic Press, London, 1987; **Handbook of Experiment Immunology**, Volumes I-IV (D.M. Weir and C.C. Blackwell, eds.), 1986; **Manipulating the Mouse Embryo**, Cold Spring Harbor 20 Laboratory Press, 1986.

The following Examples are provided to illustrate the present invention, and should not be construed as limiting thereof.

EXAMPLES

Example 1

Identification and cDNA cloning of *plexins* and sequence analysis

Since the coding sequences of human *plexin-B1(SEP)*, *plexin-A2(OCT)* and *plexin-A1(NOV)* were incomplete, we obtained the missing cDNA by RT-PCR; primers were designed by homology to orthologous murine sequences and corresponding ESTs. Updated database entries are X87904, X87831 and X87832, respectively. Partial cDNA of *plexin-A4* was obtained by assembling five overlapping human ESTs (HGI THC Report: THC203425), deriving from chromosome 7 specific cDNA pools. Another EST from chr. 7 (clone 7B19F10) encodes the cytoplasmic domain of a plexin and presumably derives from the same gene as *plexin-A4*. *Plexin-B2* cDNA was amplified by RT-PCR starting from the partial cDNA sequences of clones *MM1* (Shinoura, N., Shamraj, O.I., Hugenholtz, H., Zhu, J.G., McBlack, P., Warnick, R., Tew, J.J., Wani, M.A., and Menon, A.G. (1995). Identification and partial sequence of a cDNA that is differentially expressed in human brain tumors. *Cancer Lett* 89, 215-221) and KIAA0315 (Genbank database); the genomic locus of *SEP-B* was identified due to its 100% sequence identity with clone C22_311 from human chromosome 22. *Plexin-B3* coding sequence was identified in the genomic sequence of ALD locus on human chromosome Xq28, using the algorithms HEXON and GENIE. *Plexin-D1* was similarly found in the genomic sequence of chromosome 3 (pac pDJ70i11). The genomic sequence of *plexin-B1(SEP)*, in the region of the alternative splicing of the extracellular domain, was obtained using the following primers: sense 5'GCAGCACCTGTGCACCCACAAGGC3' and antisense: 5'TGCAGGCTGGACGGAGGATGAGG3'. The common donor site is CCATCAG/gtgattgt (position 2028 from ATG); the alternative splice acceptor sites are: (i) ccccttcag/AGCCC, leading to the canonical plexin-B1 sequence, and (ii) ctcccttcag/GTGAT, leading to "plexin-B1 truncated" variant. All these new sequences were analyzed using the algorithms BLAST2, NETPHOS (phosphorylation prediction sites, by Nicolaj Blom), PH-PREDICT and Consensus Protein Secondary Structure prediction at IBCP. The phylogenetic tree was generated using AllAll algorithm of the Darwin sequence analysis system (at CBRG).

Example 2

Plexin cDNA expression constructs and protein analysis

Cell transfections were carried out by Calcium phosphate and DEAE-dextran methods, using 5-10 µg of each cDNA (1-2 µg each in case of cotransfections). For transient transfections in COS and BOSC-23 cells the cDNA was cloned in pCDNA3 or derived expression plasmids (Invitrogen). MDCK stable transfectants for *plexin-A3* were obtained using pCEP4 expression plasmid (Invitrogen); the selection was done in the presence of Hygromycin-B (100-200 µg/ml). Plexin-A3 positive clones of MDCK cells were isolated from two independent transfections, and showed identical biological properties. Plexin and neuropilin expression constructs included a VSV- and myc-tag at the N' and C' protein termini, respectively, detected by monoclonal antibodies anti-VSV-G (cat. V-5507, Sigma) and anti-cMyc-tag (cat. OP10-100UG, Calbiochem).

“Plexin-B1 truncated” splice variant was expressed from a cDNA fragment isolated by RT-PCR and VSV-tagged at the N' terminus: the encoded amino acid sequence spans up to aa 676 (including the *sema* domain and two MRS motifs). “Plexin-B1-sema” derives from a further deletion of the plexin-B1 extracellular domain, and exclusively includes the *sema* domain. “Plexin-B1-Δsema” protein mutant includes only the C' terminal half of plexin-B1 extracellular domain, starting from amino acid 606, i.e. excluding sema domain and first MRS but including second and third MRS, transmembrane and intracellular domains.

For immunoprecipitations, cells were lysed with EB buffer (20 mM Tris-HCl pH 7.4, 5 mM EDTA, 150 mM NaCl, 10% glycerol, 1% Triton X-100), in the presence of a cocktail of protease inhibitors and 1mM Na-ortovanadate. Immunoprecipitations were performed at 4°C for 4h with the appropriate antibodies; high stringency washes were performed, in the presence of 1 M LiCl.

For *in vitro* kinase assays, immunopurified proteins were incubated with kinase buffer (50 mM Hepes, 100 µM DTT, 5 mM MnCl₂, 5 mM MgCl₂) in the presence of redivue 5 µCi [γ -³²P] ATP (Amersham) for 10 minutes at 4°C in agitation. Samples were then submitted to SDS-PAGE and autoradiography, or analysed using a Phosphor-Imager system (Molecular Dynamics). Alkali treatment of the polyacrilamide gels was performed with 1M KOH for two hours at 55°C.

Western blots were performed according to standard methods. Specific detection of phospho-tyrosines was done with PY20 MoAb (Trasduction laboratories). Final detection was done with ECL system (Amersham).

Example 3

Semaphorin-SEAP binding assays

Soluble forms of Semaphorin extracellular domains were expressed as chimeric molecules with placental Secreted Alkaline Phosphatase (SEAP) and harvested from the conditioned media of transiently transfected COS or BOSC-23 cells. Serum-free media were concentrated over 100 times using Centricon Plus-20 filters (Millipore) with a molecular weight cutoff of 100 kDa. The AP activity of these media was assessed as described (Flanagan, J.G. and Leder, P. (1990). The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 63, 185-194); the specific activity of chimeric molecules was approx. 1000 U/mg. Concentrated Semaphorin-SEAP were diluted as appropriate in a Hepes buffered saline, additioned with 0.2% BSA, 0.1% NaN₃, 5 mM CaCl₂ and 1 mM MgCl₂ (HBSBA). For binding assays, COS cells transiently transfected with plexins were seeded on 48 well plates to reach confluence, and then incubated with Semaphorin-SEAP preparations (approx 1-5 nM) for 90 minutes at room temperature. The binding was detected as described (Flanagan and Leder, 1990). Binding experiments with plexin-C1/VESPR were as described (Comeau, M.R., Johnson, R., DuBose, R.F., Petersen, M., Gearing, P., VandenBos, T., Park, L., Farrah, T., Buller, R.M., Cohen, J.I., Strockbine, L.D., Rauch, C., and Spriggs, M.K. (1998). A poxvirus-encoded semaphorin induces cytokine production from monocytes and binds to a novel cellular semaphorin receptor, VESPR. Immunity. 8, 473-482; He, Z. and Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90, 739-751).

For *in vitro* binding assays, plexin-B1 was purified from cell extracts by immunoprecipitation with anti-VSV antibody. Extracts of mock-transfected cells were used as control samples. After washing, the immunocomplexes were incubated with serial dilutions of CD100-SEAP (prepared as above) for 2 hours at 4°C, in continuous agitation. Samples were then washed 3 times with HBSBA and the bound alkaline phosphatase activity was measured by colorimetric assay using p-nitro-phenyl-phosphate, as described (Flanagan and Leder, 1990). Scatchard analysis was done using Equilibrate (by GertJan C. Veenstra).

Example 4

In situ hybridization analysis

RNA *in situ* hybridization was performed essentially as described (He, Z. and Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. *Cell* 90, 739-751). Briefly cDNA fragments of plexin-A1, -A2, and -A3 were used to generate ³⁵S-labeled antisense and sense RNA probes, which were
5 used for *in situ* hybridization histochemistry of cryostat sections of rat embryos.

Example 5

Xenopus turning assay

The methods for injecting mRNA encoding various constructs, and for studying the turning responses of the neurons, are exactly as described previously (Hong, K.,
10 Hinck, L., Nishiyama, M., Poo, M.M., Tessier-Lavigne, M., and Stein, E. (1999). A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. *Cell* 97, 927-941); Song, H., Ming, G., He, Z., Lehmann, M., Tessier-Lavigne, M., and Poo, M.
15 (1998). Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides [see comments]. *Science* 281, 1515-1518).

Example 6

Mixed-culture assays and time-lapse videomicroscopy

Mock-transfected and plexin-A3 overexpressing MDCK cells were seeded with mesenchymal cells (NIH 3T3, KJ29, D17, among others), in multiwell culture plates by
20 1:4 or 1:1 ratio. NIH and KJ-29 cells were sometimes labeled by addition of DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate, Fluka) in the culture medium, 4 hours before harvesting for the assay; clusters of cells marked with this dye are marked in blue (in light microscopy) and emit red epifluorescence (TRITC filter). The repelling effect was observed 16-30 hours after confluence, by contrast phase
25 microscopy using Leica DM IL. The progress of the assays was also monitored by time-lapse video-microscopy (320 minutes recording were converted into 1 minute play). To determine the time-length of cell contacts, for each assay, randomly chosen fibroblasts were followed during several hours and the duration of each contact between their lamellipodia and MDCK cells was measured. The doubling time of cells and their
30 viability during the assay could also be analyzed, and no differences were observed in presence of control or plexin-A3 expressing cells. Substrate adhesion of plexin-A3 overexpressing MDCKs was analyzed by counting attached cells after 30 minutes from

seeding on micro-wells coated with fibronectin, collagen or polylysine, in the absence of calf serum: no differences versus control cells were observed.

Example 7

Apoptosis detection

5 TUNEL reaction (Boehringer detection kit) was performed on mixed cultures of MDCK and NIH3T3 cells, 24 hours after seeding in a 24-well culture plate. The labeling was converted into a colorimetric signal for analysis by light microscopy using the TUNEL-AP detection kit (Boehringer). As a positive control for the induction of apoptosis, the same cells were treated with UV-C (50 µJ/cm²) or 1µM staurosporin.

10 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be apparent to those skilled in the art that certain changes and modifications will be practiced. Therefore, the description and examples should not be construed as limiting the scope of the invention, which is delineated by the appended claims.

15 Example 8

Plexins are specific receptors for cell surface semaphorins in vertebrates

Plexin-C1 (VESPR) has been shown to bind the soluble viral semaphorins Sema VA and VB (Comeau et al., 1998 *supra*), and we recently found that Drosophila Plexin A (D Plex A) interacts with transmembrane Sema 1a (Winberg et al., 1998 *supra*). We therefore examined in vertebrates whether the extracellular domain of several different cellular semaphorins -fused to alkaline phosphatase- could bind members of the human plexin-A, -B and -C subfamilies. Multiple secreted semaphorins of class 3 (Sema3A, Sema 3C or Sema3F; see below) did not interact with plexins-A1, -A2, -A3, -B1, B2, or -C1 (data not shown). In contrast, plexin-C1(Vespr) specifically bound Sema7A(Sema-K1) (Fig. 2a), a GPI-membrane linked semaphorin (class 7). This result is not entirely unexpected, since Sema7A may represent the cellular counterpart of viral semaphorin SemaVB, previously shown to interact with this plexin (Comeau et al., 1998 *supra*). More interestingly, the class 4 transmembrane semaphorin Sema4D (CD100) did interact strongly and specifically with plexin-B1 (Fig. 2a). Thus the prototypes of two distinct plexin families are the receptors for members of two distinct semaphorin subclasses. We also found that Sema7A and Sema4D do not bind to neuropilin-1 or -2 alone, nor did co-transfection of either neuropilin with plexin-B1 significantly modify

its binding efficiency (not shown). Neuropilins thus seem so far to function as receptors only for vertebrate semaphorins of class 3.

The affinity constant of Sema4D for plexin-B1 was estimated by Scatchard plot to be in the subnanomolar range ($K_D = 0.9$ nM, Fig. 2b; the estimated K_D of Sema7A for plexin-C1 is 2.1 nM, not shown). These values are consistent with those observed for semaphorins-neuropilins, and fly semaphorin1-Plexin A interactions (He and Tessier-Lavigne, 1997 *supra* Winberg et al., 1998).

We used two deletion constructs of plexin-B1 to explore the semaphorin binding sites of plexins. Neither the N-terminal half of plexin-B1 extracellular domain ("plexin-B1 truncated", see previous paragraph), nor its C-terminal half ("plexin-B1-Δsema", see Experimental Procedures) was sufficient alone to bind CD100 (see Fig. 2a), suggesting that the binding of Sema4D depends on multiple structural determinants of the extracellular domain of plexin-B1.

Example 9

15 Plexins associate with class 3 Semaphorin receptors, Neuropilins

As outlined above, secreted semaphorins of subclass 3 are known to bind neuropilins (He and Tessier-Lavigne, 1997 *supra*; Kolodkin et al., 1997 *supra*; Chen, H., Chedotal, A., He, Z., Goodman, C.S., and Tessier-Lavigne, M. (1997) "Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III." *Neuron* 19, 547-559). However, the short cytoplasmic tail of neuropilins seems to be dispensable for their biological activity (Nakamura, et al (1998) *supra*), indicating the requirement of an associated coreceptor for signal transduction. Interestingly, in *Drosophila* (where neuropilins have not been identified to date) Plexin A is sufficient to mediate the biological response to semaphorin-1 in axon guidance (Winberg et al., 1998*supra*).

In an initial set of experiments, we could not observe binding of the class 3 semaphorins Sema3A(Sema III), Sema3C(Sema E) or Sema3F(Sema IV) to plexins-A1, A2, A3, B1, B2 or C1 (not shown). To test whether plexins might be coreceptors with neuropilins for class 3 semaphorins, we set up co-precipitation experiments in COS 30 cells to test whether neuropilins may interact with plexins. Three tested plexins (plexin-A1, -A3 and -B1) associated both with neuropilin-2 (Np2, shown in Fig. 3) and neuropilin-1 (not shown). The binding was specific, inasmuch as neither neuropilin nor any plexins coimmunoprecipitated with the netrin receptor DCC, under conditions

where DCC coimmunoprecipitated with the other netrin receptor UNC5H2 (Fig. 3 and data not shown). We observed finally that the plexin-neuropilin association is mediated by the *sema domain* of plexins, as demonstrated using either the “plexin-B1 truncated” splice variant (Figure 3) or an even shorter form of the extracellular domain (“plexin-B1-sema”, see Experimental procedures, not shown).

To further support the idea of a plexin-neuropilin multimeric receptor complex for semaphorins, we show here that plexin-A3 (e.g.) is expressed in a large number of neuronal classes, including sensory, sympathetic, motor, and olfactory bulb neurons (Figure 4 and data not shown), which are known to respond to class 3 semaphorins, and which express either neuropilin-1 or neuropilin-2 or both (Chen et al., 1997 *supra*; Feiner, L., Koppel, A.M., Kobayashi, H., and Raper, J.A. (1997). Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons *in situ*. *Neuron* 19, 539-545; He and Tessier-Lavigne, 1997 *supra*; Kolodkin et al., 1997 *supra*). Thus, plexin-A3 is a candidate for a physiological coreceptor involved in mediating class 3 semaphorin effects on these axons. Other plexins may also have a role as neuropilin coreceptors in specific cell populations, such as plexin-A2, which is expressed in a subset of sensory neurons and in dorsal horn cells, and plexin-A1, which is expressed at low levels and broadly in the spinal cord (Figure 4).

To directly test the possible involvement of plexins in class 3 semaphorin signal transduction, we studied the repulsive responses of Xenopus spinal neurons to Sema3A, which is mediated by a receptor mechanism involving neuropilin-1 (Song et al., 1998 *supra*). We asked whether these responses could be altered by expression of a presumed dominant-negative plexin-A1 construct lacking the cytoplasmic domain of the protein. Transmembrane proteins can be reliably expressed in these neurons by injecting the encoding mRNA at the developmental two cell stage, allowing the embryos to grow to tadpole stage, and then removing the spinal cord and culturing the neurons (Hong et al., 1999 *supra*). We therefore injected the mRNA encoding the truncated plexin-A1 construct, together with mRNA encoding GFP (as a reporter) and then studied the responses of spinal neurons expressing GFP that were derived from these embryos. Whereas control spinal neurons are repelled by Sema3A (Figure 5A, B and Song et al. 1998 *supra*), neurons from embryos injected with mRNA for truncated plexin-A1 did not respond with either repulsion or attraction to Sema3A (Figure 5C,

D). This blocking effect appeared to be specific, since expression of a different heterologous receptor, UNC5H2, did not impair repulsion by Sema3A (Hong et al., 1997 *supra*), and since expression of the truncated plexin construct did not block attractive responses to netrin-1 (Figure 5E, F). Figure 5G, H quantifies these effects.

5 As can be seen, the effect of Scma3A is completely abolished by the truncated plexin; although there is a slight apparent decrease in the attractive effect of netrin-1 the effect is not statistically significant.

Although we have used a truncated plexin-A1 construct, this construct may be expected to interfere with the function of various plexins, since all the plexins tested 10 (A1, A3 and B1) associated with neuropilin-1. These results support a role for one or more plexins in mediating the repulsive Sema3A signal in the Xenopus spinal neurons.

Example 10

Plexins signal via a novel type of tyrosine phosphorylated cytoplasmic domain

The sequences of plexin cytoplasmic domains are highly conserved among 15 plexins but do not match any known sequences. We found that the plexin-A3 and plexin-B1 proteins are phosphorylated on tyrosine residues when overexpressed in human kidney cells (BOSC-23), as demonstrated using anti-phosphotyrosine antibodies (Fig. 6a). Furthermore, after immunoprecipitation and in vitro kinase assays, plexin-A3 and plexin-B1 became phosphorylated (Fig. 6b). Resistance to an alkali treatment (see 20 Experimental procedures) confirmed the specific phosphorylation of tyrosine residues.

The cytoplasmic domains of several receptors, including Met proteins, become tyrosine phosphorylated owing to an intrinsic kinase activity (Ullrich, A. and Schlessinger, J. (1990) "Signal transduction by receptors with tyrosine kinase activity." Cell 61, 203-212). Since the cytoplasmic domain of plexins is not similar to any bona 25 fide or atypical tyrosine kinase, this suggests that a distinct tyrosine kinase co-immunoprecipitates in association with plexins, and is responsible for their tyrosine phosphorylation. Although some additional phosphorylated proteins can be found specifically with plexin-A3 and -B1, we have not as yet identified this associated kinase. A number of endogenously expressed tyrosine kinases, namely Met, Ron, Abl 30 and Src, were not found associated with plexin-A3 by immunoprecipitation and Western blotting (not shown). Since tyrosine phosphorylated residues often function as docking sites for intracellular signal transducers (Cantley, L.C., Auger, K.R., Carpenter, C., Duckworth, B., Graziani, A., Kapeller, R., and Soltoff, S. (1991) "Oncogenes and

signal transduction." Cell 64, 281-302), the fact that the cytoplasmic domains of plexins are tyrosine phosphorylated further suggests that they are part of signaling complexes.

Example 11

5 Plexin-A3 expressing cells induce repulsion of co-cultured cells

Stable transfectants expressing recombinant human plexin-A3 were successfully obtained in four different cell lines: IMR32 and AF8 (human neuroblasts), and BOSC-23 and MDCK (human and canine kidney cells, respectively). We observed modest phenotypic changes in the transfected cells, which generally become flatter and larger in size. The growth rate of plexin-A3 overexpressing cells was comparable to parental lines and we did not observe differences in the ability to adhere on different substrates (data not shown).

In keeping with previous report on the related Plexin of *Xenopus laevis* (Ohta, K., Mizutani, A., Kawakami, A., Murakami, Y., Kasuya, Y., Takagi, S., Tanaka, H., and Fujisawa, H. (1995). "Plexin: a novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions." Neuron 14, 1189-1199), we observed a modest increase in calcium-dependent homotypic cell aggregation of plexin-A3 transfectants (not shown). Surprisingly, we found that epithelial MDCK cells overexpressing plexin-A3 mediate strong repelling cues for adjacent cells. This was observed by co-culturing mock-transfected and plexin-A3 overexpressing MDCK cells together with several non-epithelial cell lines (such as NIH3T3, Kj29, and D17; Fig. 7A). Mock MDCKs grew alongside mesenchymal cells until confluence, when both cell types stopped proliferating. In contrast, when plexin-A3-overexpressing epithelial cells were grown in the same conditions, the adjacent mesenchymal cells withdrew from them, and ultimately detached from the plate.

To analyze the dynamics of this repulsion process, we monitored for 36 hours, by time-lapse video-microscopy, mixed cultures of transfected MDCK cells and fibroblasts, in a number of independent experiments. At low cell density, fibroblasts showed intrinsic motility, exploring the surface of the plate with long lamellipodia and filopodia, and thus coming in contacts with a high number of stationary MDCK islets. The time-length of the contacts between fibroblasts and control MDCK cells varied from 30 minutes to several hours, lasting mostly over 100 minutes. However, when fibroblasts were cultured with MDCK cells overexpressing plexin-A3, transient

contacts were observed, often lasting less than 30 minutes (see Fig. 7C). At higher cell density, fibroblasts stopped and clustered alongside the islands of control MDCKs, whereas they kept moving in a hectic fashion between the islands of plexin-A3 transfected cells (data not shown).

5 This cell-repelling effect is not due to the release of soluble factors, since exchanging conditioned media between mixed cultures was without effect (not shown). Moreover, the two different cell populations grew normally until they came into contact, indicating that the repelling effect requires cell-cell interaction. To rule out the possibility that plexin-A3 expressing cells generate an apoptotic signal for fibroblasts,
10 we monitored cell viability and apoptosis by TUNEL staining. As shown in Figure 7B, the clusters of repelled fibroblasts did not include apoptotic cells; furthermore, the detaching cells still excluded Trypan blue stain and were able to spread again on a new culture plate (not shown).

Taken together, these results demonstrate that in our experimental system, plexin-
15 A3 mediates cell repelling cues, presumably by interacting with surface bound ligands on opposing cells. We could not identify –so far- the specific ligand for plexin-A3, however we propose that this may be a transmembrane semaphorin. It should be noted that the intracellular domains of transmembrane semaphorins, such as Sema4D, also include tyrosine residues, which may themselves become phosphorylated and associate
20 with cytoplasmic signal transducer molecules, a property shown for ligands of the ephrin family (Holland, S.J., Gale, N.W., Mbamalu, G., Yancopoulos, G.D., Henkemeyer, M., and Pawson, T. (1996) "Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands." Nature 383, 722-725).

What is claimed is:

1. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a
5 nucleotide sequence that encodes an amino acid sequence selected from the group consisting of the amino acid sequence shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4))
2. Isolated nucleic acid having at least 80% nucleic acid sequence identity to a
10 nucleotide sequence selected from the group consisting of the nucleotide sequence shown (SEQ ID NO: 1 (plexin B-2)), (SEQ ID NO: 3 (plexin B-3)), (SEQ ID NO: 5 (plexin D-1)) and (SEQ ID NO: 7 (plexin A-4)).
3. A vector comprising the nucleic acid of any one of claims 1 or 2.
4. An isolated polypeptide having at least 80% amino acid sequence identity to
15 an amino acid sequence selected from the group consisting of the amino acid sequence shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)).
5. An isolated polypeptide having at least 80% amino acid sequence identity
to:
20 (a) the polypeptide shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)), lacking its associated signal peptide;
(b) an extracellular domain of the polypeptide shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)), with its associated signal peptide; or
25 (c) an extracellular domain of the polypeptide shown in (SEQ ID NO: 2 (plexin B-2)), (SEQ ID NO: 4 (plexin B-3)), (SEQ ID NO: 6 (plexin D-1)) and (SEQ ID NO: 8 (plexin A-4)), lacking its associated signal peptide.

6. A chimeric molecule comprising a polypeptide according to claim 4 or 5 fused to a heterologous amino acid sequence.
7. The chimeric molecule of claim 6, wherein the heterologous amino acid sequence is a Fc region of an immunoglobulin.
5. An antibody that specifically binds to a polypeptide according to claim 4 or 5.
9. The antibody according to claim 8, wherein the antibody is a monoclonal, a humanized antibody or a single-chain antibody.
10. A method of suppressing or altering aberrant cell growth involving a signaling pathway between a plexin and a neuropilin in a mammal comprising the step of administering an effective amount of an agent to said mammal capable of interfering with the association between the plexin and neuropilin
11. A method of treating, suppressing or altering a disorder involving aberrant immune regulation involving a signaling pathway between a plexin and a neuropilin in a mammal comprising the step of administering an effective amount of an agent to said mammal capable of interfering with the association between the plexin and neuropilin.
12. The method according to claim 10 or 11 wherein said agent is a chimeric molecule according to claim 6 or 7.
13. The method according to claim 10 or 11, wherein said agent is an antibody according to claim 8 or 9.
14. A method of diagnosing or screening for tumors in a subject characterized by the expression profiles of the polypeptides according to claim 4 or 5 wherein the expression profile of the polypeptides is different in a non-tumor sample as compared to the expression profile of the polypeptides in a tumor sample.

Figure 1 (Tamagnone et al.)

Fig 2

FIG. 4

9 6 F

7/7
FIG. 7

SEQUENCE LISTING

<110> University of Torino
<120> Novel Plexins and Uses Thereof

<130> A077PCT

<140> Not assigned yet
<141> 2000-08-25

<150> 60/150576
<151> 1999-08-25

<160> 12

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 6252
<212> DNA
<213> HOMO SAPIEN

<400> 1
gcggggggca atggcactgc agctctggc cctgaccctg ctggggcctgc tgggcgcagg 60
tgccagcctg aggccccgca agctggactt cttccgcagc gagaaagagc tgaaccacct 120
ggctgtggat gaggcctcag gcgttgttgc cctggggcg gtgaatgc ccc tctaccagct 180
ggatgcgaag ctgcagctgg agcagcagggt ggccacggc ccggccctgg acaacaagaa 240
gtgcacgcgg cccatcgagg ccagccagtg ccatgaggct gagatgactg acaatgtcaa 300
ccagctgctg ctgctcgacc ctcccaggaa ggcctgggt gaggcggca gcctcttcaa 360
gggcatctgc gtcctgcgca ccctgagcaa catctccctc cgccctgttct acgaggacgg 420
cagcggggag aagtcttcg tggccagcaa tgatgagggc gtggccacag tggggctgtt 480
gagctccacg ggtcctgggt gtgaccgcgt gctgtttgtt ggcaaaggca atgggccaca 540
cgacaacggc atcatcgta gcactcggtt gttggaccgg actgacagca gggaggcctt 600
tgaagcctac acggaccacg ccacctaaca ggccggctac ctgtccacca acacacagca 660
gttcctggcg gccttcgagg acggggccta cgttcttctt gtcttcaacc acgaggacaa 720
gcacccggcc cggAACCGCA cgctgtggc acgcgtgtc agagaagacc ccaactacta 780
ctcc tacctg gagatggacc tgcagtggc ggaccccgac atccacggcc ctgcctttgg 840
cacctgcctg gcccctccg tggctgcgc tggctctggc aggggtctat atgctgttt 900
cagcagagac agccggagca gtggggggcc cgggtgcggc ctctgcctgt tcccgcttgg 960
caaggtgcac gccaagatgg aggccaaccg caacgcctgt tacacaggca cccggggaggc 1020
ccgtgacatc ttctacaagc ctttccacgg cgatatccag tgcggccggc acgcgcgggg 1080
ctccagcaag agttcccat gtggctcgga gcacctgccc taccgcgtt gcagccgcga 1140
cgggctcaga ggcacagccg tgctgcagcg tggaggccgt aacctcacgg ccgtgacgg 1200
cggccggcgg aacaaccaca ctgttgctt tctggccacc tctgtatggcc ggtatctcaa 1260
ggtgtaccc accccagatg gcacccctc agatgtacgtc tctatcccttggagataaaa 1320
caagagatc aagcgcgacc tggtaactgtc tggagacccgtt ggcagccctgt acgcctatgac 1380
ccagagacaag gtgttccggc tggccgtgca ggagtgcctg agctacccga cctgcaccca 1440
gtgcggcgac tcccaggacc cctactgcgg ctggtgccgtc gtcggggac gatgcacccg 1500
gaaggccgag tgtccgcggg ccgaggaggc cagccactgg ctgtggagcc gaagcaagtc 1560
ctgcgtggcc gtcaccagcg cccagccaca gaacatgagc cggcggggccc aaaaaaaaaaaaa 1620
gcagctgacc gtcagccccc tccctgcctt gaggcaggag gacgagttgc tgtgcctttt 1680
tggggagtcg ccgccacacc ccggccgcgt ggaggggcgg gccgtcatct gcaactcccc 1740

aagcagcatc	cccgtcacac	cgcaggcca	ggaccacgtg	gccgtgacca	tccagctcct	1800
ccttagacga	ggcaacatct	tcctcacgtc	ctaccagtac	cccttctacg	actgcccaca	1860
ggccatgagc	ctggaggaga	acctgcccgt	catctcctgc	gtgagcaacc	gctggacactg	1920
ccagtggac	ctgcgctacc	acgagtgcgg	ggaggcttcg	cccaaccctg	aggacggcat	1980
cgtcgtgcc	cacatggagg	acagctgtcc	ccagttccctg	ggaccagcc	ccctgggtat	2040
ccccatgaac	cacgagacag	atgtgaactt	ccaggcaag	aacctggaca	ccgtgaaggg	2100
ttcccttcct	cacgtggggc	gtgactgtct	caagttcatc	gagccgtgta	ccatgcagga	2160
atctgggacc	ttcgcccttc	ggacccaaa	gctgtcccac	gatgccaacg	agacgctgcc	2220
cctgcaccc	tacgtcaagt	cttacggcaa	aatatcgac	agcaagctcc	atgtgaccct	2280
ctacaactgc	tcctttggcc	gcagcgactg	cagcctgtgc	cggggcgcta	accccgacta	2340
caggtgtgcg	tggtgcgggg	gccagagcag	gtgcgttat	gaggccctgt	gcaacaccac	2400
ctccgagtgc	ccgcccggcc	tcatcaccag	gatccagcct	gagacggcc	ccctgggtgg	2460
gggcattccgc	atcaccatcc	tgggtccaa	tttgggcgtc	caagcagggg	acatccagag	2520
gatctctgtg	gcccggccga	actgctccct	tcagccggaa	cgttactccg	tgtccaccgg	2580
gatctgtgt	gtgatcgagg	ctggggagac	gcctttcacg	gggggtgtcg	aggtggacgt	2640
cttcggaaa	cttggccctt	cgcctccaa	tgtccagttc	accttccaac	agcccaagcc	2700
tctcaactgt	gagccgcagc	agggaccgc	ggccggccgc	accacactga	ccatccacgg	2760
cacccactg	gacacgggg	cccaggagga	cgtgcgggtg	accctcaacg	gctgcccgtg	2820
taaagtacg	aagtttgggg	cgcaactca	gtgtgtact	ggcccccaagg	cgacacgggg	2880
ccagatgctt	ctggagggtt	cctacggggg	gtccccctgt	cccaaccccg	gcatcttctt	2940
cacctccgc	aaaaaccccg	tactgcgagc	cttcgagccg	ctacgaagct	ttgcccagtgg	3000
tggccgcagc	atcaacgtca	cgggtcaggg	cttcagccctg	atccagaggt	ttgccatgtt	3060
ggtoatcgcg	gagccctctgc	agtcttggca	gccgcccggg	gaggctgaat	ccctgcagcc	3120
catgacgggt	gtgggtacag	actacgtgtt	ccacaatgac	accaaggtcg	tcttcctgtc	3180
cccgccgtg	cctgaggagc	cagggccta	caacccctacg	gtgctgtatcg	agatggacgg	3240
gcaccctgccc	ctgtcagaa	cagggccgg	ggcccttcgag	tacgtccctg	accccaccc	3300
tgagaacttc	acaggtggcg	tcaagaagca	gttcaacaacg	ctcatccacg	ccggggggcac	3360
caacttgaac	aaggcgatga	cgctcgagga	ggccgagggg	ttcggtgggt	ccgagcgtcg	3420
caccatgaag	acgctgacgg	agaccgaccc	gtactgttag	ccccggagg	tgcagcccc	3480
gccccaggcg	cgccagaaac	gagacaccac	acacaacccg	cccgagttca	tttgtaagtt	3540
cggctctcgc	gagtgggtgc	tggggccggt	ggagtacgac	acacgggtga	gctgacgtgcc	3600
gctcagccctc	atcttgcgc	tggtcategt	gcccattggtg	gtcgtcatcg	cggtgtctgt	3660
ctactgctac	tggaggaaga	gccagcaggc	cgaacgagag	tatgagaaga	tcaagtccca	3720
gctggagggc	ctggaggaga	gctgtcgaaa	ccgctgcaag	aaggaaattca	cagacacctat	3780
gatcgagatg	gaggaccaga	ccaaacgacgt	gcacgaggcc	ggcatccccc	tgctggacta	3840
caagacctac	accgaccgcg	tctttcttct	gcccattcaag	gacggcgaca	aggacgttat	3900
gatcaccggc	aagctggaca	tccctgagcc	ggggccggcc	gtgtggggc	aggccctcta	3960
ccagttctcc	aacctgctga	acagaacatc	tttcctcatc	aatttcatcc	acaccctgga	4020
gaaccagccg	gagttctcg	cccgcccaa	ggtctacttc	cggtccctgc	tgacgggtgc	4080
gctgcacccgg	aaactggagt	actacacgg	catcatgcac	acgctcttc	tggagctcct	4140
ggagcgtac	gtgggtggca	agaaccccaa	gctgatgtcg	cgcaggtctg	agactgtgt	4200
ggagaggatg	ctgtccaaact	ggatgtccat	ctgcctgtac	cagtacctca	aggacagtgc	4260
cggggagccc	ctgtacaaggc	tcttcaaggc	catcaaacat	caggtggaaa	agggcccggt	4320
ggatgcggta	cagaagaagg	ccaaatcac	tctcaacgc	acggggctgc	ttggggatga	4380
tgtgggtac	gcacccctga	cggtgagcgt	gatcgtgcag	gacgagggg	tggacgccc	4440
cccggtgaag	gtcctcaact	gtgacaccat	ctcccgaggc	aaggagaaga	tcattgacca	4500
gtgttaccgt	gggcagccct	gctctgtcg	gcccaggcca	gacagcgtgg	tcctggagt	4560
cggtccgggc	tccacagcgc	agatccgtc	ggacctggac	ctgacgtcac	agcggggagg	4620
ccgggtggaa	cgcgtcaaca	cccttatgca	ctacaatgtc	cgggatggag	ccaccctcat	4680
cctgtccaa	gtgggggtct	cccagcagcc	ggaggacagc	cagcaggacc	tgccctgggaa	4740
gccccatgcc	ctcctggagg	aggagaaccc	ggtgtggcac	ctgggtcgcc	cgaccgacga	4800
ggtggacgag	ggcaagtcca	agagaggcag	cgtgaaagag	aaggagcgg	cgaaaggccat	4860
caccgagatc	tacctgacgc	ggctgctctc	agtcaagggc	acactgcagc	agtttgtgga	4920
caacttcttc	cagagcggtc	tggcgccctgg	gcacgcgggt	ccacctgcag	tcaagtactt	4980
cttcgacttc	ctggacgagc	aggcagagaa	gcacaacatc	caggatgaag	acaccatcca	5040

catctggaaag acgaacagct taccgctccg gttctgggtg aacatcctca agaacc cccca	5100
cttcatcttt gacgtgcattg tccacgagggt ggtggacgcc tcgctgtcag tcatcg cgc	5160
gacccatg gatgcctgca cgccacggc gcataagctg agccgcgatt ctcccagcaa	5220
caagctgctg tacgccaagg agatctccac ctacaagaag atggtgagg attactacaa	5280
ggggatccggc gagatggtgc aggtcagcga ccaggacatg aacacacacc tggcagagat	5340
ttccccggcg cacacggact ccttgaacac cctcgtggca ctccaccaggc tctaccaata	5400
cacgcagaag tactatgacg agatcatca tgcccttggag gaggatcctg ccccccagaa	5460
gatgcagctg gccttccgccc tgccagatg tgccgcgtca ctggagaaca aggtcactga	5520
cctctgaccc acaatctcca gtgctgcctt gggacatagg tacctgagggt acctgagagc	5580
ccctcagggg aggaggccga gtggctgtgg ctgaggcccc caccctcccc tggAACGCGC	5640
cccaaggccgg agtgggtgca gccggaaacc ccccaaggcgtc tagactgttag catcttcctc	5700
tgagaatac cgccggggcac cgccaggca ccagccccag ccccaagctcc ctccggccgc	5760
agaaccagca tcgggtgttc actgtcgagt ctcgagtgat ttgaaaatgt gccttacgct	5820
gccacgcctgg gggcagctgg cctccgcctc cgcccacgcga ccagcagccg cttccatgccc	5880
ctaggttggg cccctggggg atctgagggc ctgtggcccc cagggcaagt tcccagatcc	5940
tatgtctgtc tgtccaccac gagatgggag gaggagaaaa agcggtacga tgcccttcctg	6000
acctcaccgg cctccccaag ggtgcggca ctctgggtgg actcacggct gctggggccc	6060
acgtcaaagg tcaagtgaga cgttagtcaa gtcctacgtc ggggcccaga catcctgggg	6120
tcctggtctg tcagacaggc tgcccttagag ccccaacccag tccggggga ctgggagcag	6180
ttccaagacc acccccacccc ttttgtaaa tcttgttcat tgtaaatcaa atacagcgtc	6240
tttttcactc cg	6252

<210> 2
<211> 1838
<212> PRT
<213> HOMO SAPIEN

<400> 2	
Met Ala Leu Gln Leu Trp Ala Leu Thr Leu Leu Gly Leu Leu Gly Ala	
1 5 10 15	
Gly Ala Ser Leu Arg Pro Arg Lys Leu Asp Phe Phe Arg Ser Glu Lys	
20 25 30	
Glu Leu Asn His Leu Ala Val Asp Glu Ala Ser Gly Val Val Tyr Leu	
35 40 45	
Gly Ala Val Asn Ala Leu Tyr Gln Leu Asp Ala Lys Leu Gln Leu Glu	
50 55 60	
Gln Gln Val Ala Thr Gly Pro Ala Leu Asp Asn Lys Lys Cys Thr Pro	
65 70 75 80	
Pro Ile Glu Ala Ser Gln Cys His Glu Ala Glu Met Thr Asp Asn Val	
85 90 95	
Asn Gln Leu Leu Leu Asp Pro Pro Arg Lys Arg Leu Val Glu Cys	
100 105 110	
Gly Ser Leu Phe Lys Gly Ile Cys Ala Leu Arg Ala Leu Ser Asn Ile	
115 120 125	
Ser Leu Arg Leu Phe Tyr Glu Asp Gly Ser Gly Glu Lys Ser Phe Val	
130 135 140	
Ala Ser Asn Asp Glu Gly Val Ala Thr Val Gly Leu Val Ser Ser Thr	
145 150 155 160	
Gly Pro Gly Gly Asp Arg Val Leu Phe Val Gly Lys Gly Asn Gly Pro	
165 170 175	
His Asp Asn Gly Ile Ile Val Ser Thr Arg Leu Leu Asp Arg Thr Asp	
180 185 190	
Ser Arg Glu Ala Phe Glu Ala Tyr Thr Asp His Ala Thr Tyr Lys Ala	

195	200	205
Gly Tyr Leu Ser Thr Asn Thr Gln Gln Phe Val Ala Ala Phe Glu Asp		
210	215	220
Gly Pro Tyr Val Phe Phe Val Phe Asn Gln Gln Asp Lys His Pro Ala		
225	230	235
Arg Asn Arg Thr Leu Leu Ala Arg Met Cys Arg Glu Asp Pro Asn Tyr		
245	250	255
Tyr Ser Tyr Leu Glu Met Asp Leu Gln Cys Arg Asp Pro Asp Ile His		
260	265	270
Ala Ala Ala Phe Gly Thr Cys Leu Ala Ala Ser Val Ala Ala Pro Gly		
275	280	285
Ser Gly Arg Val Leu Tyr Ala Val Phe Ser Arg Asp Ser Arg Ser Ser		
290	295	300
Gly Gly Pro Gly Ala Gly Leu Cys Leu Phe Pro Leu Asp Lys Val His		
305	310	315
Ala Lys Met Glu Ala Asn Arg Asn Ala Cys Tyr Thr Gly Thr Arg Glu		
325	330	335
Ala Arg Asp Ile Phe Tyr Lys Pro Phe His Gly Asp Ile Gln Cys Gly		
340	345	350
Gly His Ala Pro Gly Ser Ser Lys Ser Phe Pro Cys Gly Ser Glu His		
355	360	365
Leu Pro Tyr Pro Leu Gly Ser Arg Asp Gly Leu Arg Gly Thr Ala Val		
370	375	380
Leu Gln Arg Gly Gly Leu Asn Leu Thr Ala Val Thr Val Ala Ala Glu		
385	390	395
Asn Asn His Thr Val Ala Phe Leu Gly Thr Ser Asp Gly Arg Ile Leu		
405	410	415
Lys Val Tyr Leu Thr Pro Asp Gly Thr Ser Ser Glu Tyr Asp Ser Ile		
420	425	430
Leu Val Glu Ile Asn Lys Arg Val Lys Arg Asp Leu Val Leu Ser Gly		
435	440	445
Asp Leu Gly Ser Leu Tyr Ala Met Thr Gln Asp Lys Val Phe Arg Leu		
450	455	460
Pro Val Gln Glu Cys Leu Ser Tyr Pro Thr Cys Thr Gln Cys Arg Asp		
465	470	475
Ser Gln Asp Pro Tyr Cys Gly Trp Cys Val Val Glu Gly Arg Cys Thr		
485	490	495
Arg Lys Ala Glu Cys Pro Arg Ala Glu Glu Ala Ser His Trp Leu Trp		
500	505	510
Ser Arg Ser Lys Ser Cys Val Ala Val Thr Ser Ala Gln Pro Gln Asn		
515	520	525
Met Ser Arg Arg Ala Gln Gly Glu Val Gln Leu Thr Val Ser Pro Leu		
530	535	540
Pro Ala Leu Ser Glu Glu Asp Glu Leu Leu Cys Leu Phe Gly Glu Ser		
545	550	555
Pro Pro His Pro Ala Arg Val Glu Gly Glu Ala Val Ile Cys Asn Ser		
565	570	575
Pro Ser Ser Ile Pro Val Thr Pro Pro Gly Gln Asp His Val Ala Val		
580	585	590
Thr Ile Gln Leu Leu Leu Arg Arg Gly Asn Ile Phe Leu Thr Ser Tyr		
595	600	605
Gln Tyr Pro Phe Tyr Asp Cys Arg Gln Ala Met Ser Leu Glu Glu Asn		
610	615	620
Leu Pro Cys Ile Ser Cys Val Ser Asn Arg Trp Thr Cys Gln Trp Asp		
625	630	635
		640

Leu Arg Tyr His Glu Cys Arg Glu Ala Ser Pro Asn Pro Glu Asp Gly
 645 650 655
 Ile Val Arg Ala His Met Glu Asp Ser Cys Pro Gln Phe Leu Gly Pro
 660 665 670
 Ser Pro Leu Val Ile Pro Met Asn His Glu Thr Asp Val Asn Phe Gln
 675 680 685
 Gly Lys Asn Leu Asp Thr Val Lys Gly Ser Ser Leu His Val Gly Ser
 690 695 700
 Asp Leu Leu Lys Phe Met Glu Pro Val Thr Met Gln Glu Ser Gly Thr
 705 710 715 720
 Phe Ala Phe Arg Thr Pro Lys Leu Ser His Asp Ala Asn Glu Thr Leu
 725 730 735
 Pro Leu His Leu Tyr Val Lys Ser Tyr Gly Lys Asn Ile Asp Ser Lys
 740 745 750
 Leu His Val Thr Leu Tyr Asn Cys Ser Phe Gly Arg Ser Asp Cys Ser
 755 760 765
 Leu Cys Arg Ala Ala Asn Pro Asp Tyr Arg Cys Ala Trp Cys Gly Gly
 770 775 780
 Gln Ser Arg Cys Val Tyr Glu Ala Leu Cys Asn Thr Thr Ser Glu Cys
 785 790 795 800
 Pro Pro Pro Val Ile Thr Arg Ile Gln Pro Glu Thr Gly Pro Leu Gly
 805 810 815
 Gly Gly Ile Arg Ile Thr Ile Leu Gly Ser Asn Leu Gly Val Gln Ala
 820 825 830
 Gly Asp Ile Gln Arg Ile Ser Val Ala Gly Arg Asn Cys Ser Phe Gln
 835 840 845
 Pro Glu Arg Tyr Ser Val Ser Thr Arg Ile Val Cys Val Ile Glu Ala
 850 855 860
 Ala Glu Thr Pro Phe Thr Gly Gly Val Glu Val Asp Val Phe Gly Lys
 865 870 875 880
 Leu Gly Arg Ser Pro Pro Asn Val Gln Phe Thr Phe Gln Gln Pro Lys
 885 890 895
 Pro Leu Ser Val Glu Pro Gln Gln Gly Pro Gln Ala Gly Thr Thr
 900 905 910
 Leu Thr Ile His Gly Thr His Leu Asp Thr Gly Ser Gln Glu Asp Val
 915 920 925
 Arg Val Thr Leu Asn Gly Val Pro Cys Lys Val Thr Lys Phe Gly Ala
 930 935 940
 Gln Leu Gln Cys Val Thr Gly Pro Gln Ala Thr Arg Gly Gln Met Leu
 945 950 955 960
 Leu Glu Val Ser Tyr Gly Gly Ser Pro Val Pro Asn Pro Gly Ile Phe
 965 970 975
 Phe Thr Tyr Arg Glu Asn Pro Val Leu Arg Ala Phe Glu Pro Leu Arg
 980 985 990
 Ser Phe Ala Ser Gly Gly Arg Ser Ile Asn Val Thr Gly Gln Gly Phe
 995 1000 1005
 Ser Leu Ile Gln Arg Phe Ala Met Val Val Ile Ala Glu Pro Leu Gln
 1010 1015 1020
 Ser Trp Gln Pro Pro Arg Glu Ala Glu Ser Leu Gln Pro Met Thr Val
 1025 1030 1035 1040
 Val Gly Thr Asp Tyr Val Phe His Asn Asp Thr Lys Val Val Phe Leu
 1045 1050 1055
 Ser Pro Ala Val Pro Glu Glu Pro Glu Ala Tyr Asn Leu Thr Val Leu
 1060 1065 1070
 Ile Glu Met Asp Gly His Arg Ala Leu Leu Arg Thr Glu Ala Gly Ala

1075	1080	1085
Phe Glu Tyr Val Pro Asp Pro	Thr Phe Glu Asn Phe Thr Gly Gly Val	
1090	1095	1100
Lys Lys Gln Val Asn Lys Leu Ile His Ala Arg Gly Thr Asn Leu Asn		
1105	1110	1115
Lys Ala Met Thr Leu Gln Glu Ala Glu Ala Phe Val Gly Ala Glu Arg		1120
1125	1130	1135
Cys Thr Met Lys Thr Leu Thr Glu Thr Asp Leu Tyr Cys Glu Pro Pro		
1140	1145	1150
Glu Val Gln Pro Pro Pro Lys Arg Arg Gln Lys Arg Asp Thr Thr His		
1155	1160	1165
Asn Leu Pro Glu Phe Ile Val Lys Phe Gly Ser Arg Glu Trp Val Leu		
1170	1175	1180
Gly Arg Val Glu Tyr Asp Thr Arg Val Ser Asp Val Pro Leu Ser Leu		
1185	1190	1195
Ile Leu Pro Leu Val Ile Val Pro Met Val Val Val Ile Ala Val Ser		
1205	1210	1215
Val Tyr Cys Tyr Trp Arg Lys Ser Gln Gln Ala Glu Arg Glu Tyr Glu		
1220	1225	1230
Lys Ile Lys Ser Gln Leu Glu Gly Leu Glu Glu Ser Val Arg Asp Arg		
1235	1240	1245
Cys Lys Lys Glu Phe Thr Asp Leu Met Ile Glu Met Glu Asp Gln Thr		
1250	1255	1260
Asn Asp Val His Glu Ala Gly Ile Pro Val Leu Asp Tyr Lys Thr Tyr		
1265	1270	1275
Thr Asp Arg Val Phe Phe Leu Pro Ser Lys Asp Gly Asp Lys Asp Val		
1285	1290	1295
Met Ile Thr Gly Lys Leu Asp Ile Pro Glu Pro Arg Arg Pro Val Val		
1300	1305	1310
Glu Gln Ala Leu Tyr Gln Phe Ser Asn Leu Leu Asn Ser Lys Ser Phe		
1315	1320	1325
Leu Ile Asn Phe Ile His Thr Leu Glu Asn Gln Arg Glu Phe Ser Ala		
1330	1335	1340
Arg Ala Lys Val Tyr Phe Ala Ser Leu Leu Thr Val Ala Leu His Gly		
1345	1350	1355
Lys Leu Glu Tyr Tyr Asp Ile Met His Thr Leu Phe Leu Glu Leu		
1365	1370	1375
Leu Glu Gln Tyr Val Val Ala Lys Asn Pro Lys Leu Met Leu Arg Arg		
1380	1385	1390
Ser Glu Thr Val Val Glu Arg Met Leu Ser Asn Trp Met Ser Ile Cys		
1395	1400	1405
Leu Tyr Gln Tyr Leu Lys Asp Ser Ala Gly Glu Pro Leu Tyr Lys Leu		
1410	1415	1420
Phe Lys Ala Ile Lys His Gln Val Glu Lys Gly Pro Val Asp Ala Val		
1425	1430	1435
Gln Lys Lys Ala Lys Tyr Thr Leu Asn Asp Thr Gly Leu Leu Gly Asp		
1445	1450	1455
Asp Val Glu Tyr Ala Pro Leu Thr Val Ser Val Ile Val Gln Asp Glu		
1460	1465	1470
Gly Val Asp Ala Ile Pro Val Lys Val Leu Asn Cys Asp Thr Ile Ser		
1475	1480	1485
Gln Val Lys Glu Lys Ile Ile Asp Gln Val Tyr Arg Gly Gln Pro Cys		
1490	1495	1500
Ser Cys Trp Pro Arg Pro Asp Ser Val Val Leu Glu Trp Arg Pro Gly		
1505	1510	1515
		1520

Ser Thr Ala Gln Ile Leu Ser Asp Leu Asp Leu Thr Ser Gln Arg Glu
 1525 1530 1535
 Gly Arg Trp Lys Arg Val Asn Thr Leu Met His Tyr Asn Val Arg Asp
 1540 1545 1550
 Gly Ala Thr Leu Ile Leu Ser Lys Val Gly Val Ser Gln Gln Pro Glu
 1555 1560 1565
 Asp Ser Gln Gln Asp Leu Pro Gly Glu Arg His Ala Leu Leu Glu Glu
 1570 1575 1580
 Glu Asn Arg Val Trp His Leu Val Arg Pro Thr Asp Glu Val Asp Glu
 1585 1590 1595 1600
 Gly Lys Ser Lys Arg Gly Ser Val Lys Glu Lys Glu Arg Thr Lys Ala
 1605 1610 1615
 Ile Thr Glu Ile Tyr Leu Thr Arg Leu Leu Ser Val Lys Gly Thr Leu
 1620 1625 1630
 Gln Gln Phe Val Asp Asn Phe Phe Gln Ser Val Leu Ala Pro Gly His
 1635 1640 1645
 Ala Val Pro Pro Ala Val Lys Tyr Phe Phe Asp Phe Leu Asp Glu Gln
 1650 1655 1660
 Ala Glu Lys His Asn Ile Gln Asp Glu Asp Thr Ile His Ile Trp Lys
 1665 1670 1675 1680
 Thr Asn Ser Leu Pro Leu Arg Phe Trp Val Asn Ile Leu Lys Asn Pro
 1685 1690 1695
 His Phe Ile Phe Asp Val His Val His Glu Val Val Asp Ala Ser Leu
 1700 1705 1710
 Ser Val Ile Ala Gln Thr Phe Met Asp Ala Cys Thr Arg Thr Glu His
 1715 1720 1725
 Lys Leu Ser Arg Asp Ser Pro Ser Asn Lys Leu Leu Tyr Ala Lys Glu
 1730 1735 1740
 Ile Ser Thr Tyr Lys Lys Met Val Glu Asp Tyr Tyr Lys Gly Ile Arg
 1745 1750 1755 1760
 Gln Met Val Gln Val Ser Asp Gln Asp Met Asn Thr His Leu Ala Glu
 1765 1770 1775
 Ile Ser Arg Ala His Thr Asp Ser Leu Asn Thr Leu Val Ala Leu His
 1780 1785 1790
 Gln Leu Tyr Gln Tyr Thr Gln Lys Tyr Tyr Asp Glu Ile Ile Asn Ala
 1795 1800 1805
 Leu Glu Glu Asp Pro Ala Ala Gln Lys Met Gln Leu Ala Phe Arg Leu
 1810 1815 1820
 Gln Gln Ile Ala Ala Leu Glu Asn Lys Val Thr Asp Leu
 1825 1830 1835

<210> 3
 <211> 5367
 <212> DNA
 <213> HOMO SAPIEN

<400> 3
 atggctcgct ggcctccctt cggcctctgc ctcctcctgc tgctgtgtc cccaccgcca 60
 ctgccttga caggggcca tcgcttctcc gcacctaata ccactctcaa ccacttggca 120
 ctggcacctg gccgaggcac actctatgtc ggccgagtga accgcctctt ccagctcagc 180
 cccgagctgc agctcgaggc cgtggctgtc actggccctg taatcgacag ccctgactgc 240
 gtgccttcc gtgacccaggc cgagtgc cagggccaggc tcactgacaa tgccaaaccag 300
 ctgctgctgg tgagcagccg cggccaggag ctgggtggcct gcgggcagggt gcccaggcaggc 360
 gtgtgtgaga cacggcgctt tggggatgtg gcccagggtgc tgtaccaggc tgaggaccct 420
 ggtgacggc agtttgtggc tgccaaatacc ccgggagtgcc caacgggtggg gctgggtggc 480

cccttgcgg	gccgggac	cctgttgt	gccagaggc	tggcgccaa	gctgtcg	540
gggggtccac	ccctggccat	ccgcagct	gccgggtctc	agcccttctc	cagcgaggc	600
ctggccgccc	tgggtgtgg	cgacttctcc	gactacaaca	acagctacgt	cggggcctt	660
gccgacgccc	gtccgccta	ttcgtgttc	cgccgcccgc	gggcccggc	ccaggctgag	720
taccgtccct	acgtggcccg	cgtctgcctc	ggggacacca	acctgtactc	ctacgtggag	780
gtccccctcg	cctgcacagg	ccagggcctc	atccaggccg	ccttccttgc	cccgggcacc	840
ttgttaggg	tgtttgcgc	gggccaagg	ggcacccagg	cggcgctctg	tgccttcccc	900
atggtgagac	tgggtgcac	catggagcag	ggggcggagac	tctgtacac	ggcgggcg	960
cggggccca	ggggcgcaga	ggaagccacc	gtggagtacg	gcgtcacgtc	gcgtgcgtc	1020
acccgtcccc	ttgattcccc	cgagtcgtac	ccctgtggcg	acgagcacac	ccccagcccc	1080
attgtggcc	gccagcccc	ggagggtccag	cctctgtctg	agctcgggca	gccggtcagc	1140
gccgtggcag	ctctccag	agatggcag	atgatagct	tcctggggga	cacccaggc	1200
cagctgtaca	aggctttct	ccacggctcc	cagggccagg	tttaccactc	ccagcaagt	1260
gggcctccag	gctcagccat	cagcccagac	ctgctgtgg	acagcaagtgg	cagtcaccc	1320
tatgtcctga	ctgcccacca	ggtgggaccgg	atacctgtgg	cagcctgccc	ccagttccct	1380
gactgtgc	gctgcctca	ggcccgagg	ccgctgtgt	gctgggtgt	cctccaggc	1440
agggtatccc	ggaaggggca	gtggggccgg	cgaggccagg	tgaaccagt	gtgtggagt	1500
tatgaggagg	acagccact	cctgcacatc	cagaggctgc	tgccggccca	ccacccccc	1560
caggaggcgg	gccaggtc	tttgtctgtc	ccccggctgc	ccatcttgg	tgcagatgaa	1620
tacttccatt	gtgcgttccg	ggactatgac	agcttggc	atgtgaaagg	gccccacgt	1680
gcctgtgtca	ccccctcccc	agaccagg	ccacttaacc	ctccaggc	agaccacgt	1740
actgtggcc	tggccctgat	gttcgaggac	gtgactgtgg	ctgcccacaa	tttctccctt	1800
tatgactgca	gtgcccgtca	ggccttggag	gcccgtgc	ccgtccttcc	ccagggcctg	1860
cctgcctcc	tccactgtc	gctggagct	cctggagaa	ttcggggact	gccggccacc	1920
ctggaggaga	cagcagg	ttcaggcctc	atccactg	aggccacca	gcccggag	1980
ccatgtcccc	tctacgtc	ccagggt	gcccagag	tggtacac	ccatgtctt	2040
tatgtgtgc	ctgaggcag	ccaggcagg	ggggcagggt	gggtggcaga	caggaggc	2100
tcagcacact	ccgtgaccc	ccctagtgt	cctgtacg	tgcgcacatgg	gccacccgg	2160
ctgcagccac	tgccaaggg	ccaaagg	cctggctgc	ctgtgacc	ccctgcccc	2220
ggcccccaaa	ccccagc	tcggcctgg	tggctgg	ggctggccgg	gcacccag	2280
ctgcagatg	gagcgtgg	gcggggacc	ccatctgc	tcatttg	gtgcagg	2340
gagccctg	ccggcccc	tgaggggagg	ttggccctca	ccatcttgg	ctccaacct	2400
ggccggccct	tcgcccgt	gcagta	gaccctgt	tgctgagg	gagtccct	2460
tggggcccc	aggcagg	caccag	accatccg	gtcagcac	ccagacagg	2520
ggcaacacca	gtgcctcg	gggtggccaa	ccctgttcca	tgggtggcg	actgatccgt	2580
gtcaggggca	ccggcctaga	cgtgtc	cgccccctac	tgtctgtgt	gtggagg	2640
gacgcagagg	tgcaggct	caggccc	ccccagg	cacagcca	gaggag	2700
ggaggccctg	ctggcagcc	ccaggtt	atccagct	gtgggggct	gtgcagc	2760
acagcagagc	ccagctact	ccacctgt	tccgcctg	atgcccaca	gtgctccacc	2820
gtctgtcc	tcaactgtc	cagccctc	ctgtgc	gcccgtgt	accagac	2880
gcccacccgc	agcgggtctt	ttcaccc	gacaac	aagtggact	cgccagt	2940
agtggggcc	agggttct	gtaccag	aacccc	tggcaccc	cagccg	3000
gggcctgccc	gcccctacc	cctcaag	ggccatgt	tggatgt	ggcgagg	3060
ctcaacctgg	gcatcag	ggaggagg	ccgtgc	tcggcc	cgagtgc	3120
gtgaagacgc	tcacgc	ccacctgt	tgcgag	ctgcac	ccgcag	3180
gccaatggct	ccggcctg	acagtt	tgcagat	gcaatgt	gtggcc	3240
ggccctgtgc	agtacgagg	tgaaccc	ctgtct	ttccctgg	ggcccagg	3300
ggcgtggca	tgggtgt	agtgt	gccgc	tcctct	cctcatgt	3360
aggcacaaga	gcaagcagg	cctgcgg	taccaga	tgctag	gtggag	3420
ctggagacc	gcgtgg	ccagtgc	aaggagt	tca	gacggag	3480
accgacctca	gcagc	ggaggc	ggatcc	tcctgg	ccgcac	3540
gccgagcgc	cctt	tggccat	ggtt	tcagcc	gcctgagg	3600
ccagggagg	acggcc	tgcact	cgcc	tcacgc	ctccaac	3660
ctcaacagca	agctt	cctcac	aggcc	ggcgg	ccagtg	3720
aaggaggtgg	ggctggg	ctactgg	gagaca	gag	gacagag	3780

atggggaga aactgctcac caactggctg tccatctgcc tgtacgcctt cctgagggag	3840
gtggctggta aaccactgta catgctttc cggccatcc agtaccagggt ggacaaaggc	3900
cccgtggacg ccgtgacagg caaggccaaa cggaccctga atgatagccg cttgctgcgg	3960
gaggacgtgg agttccaggc cctgacgctg atgggtctgg tggggcccg ggctggcggg	4020
gccgcaggca gcagcgagat gcagcgcgtg ccagccccgg tgctcgacac gcacaccatc	4080
acccaggtca aggagaagt gttggaccaa gtctacaagg gcacccctt ctcccagagg	4140
ccctcagtgc atgcccata ccttggtgag agagccagcc ctgcccaccc accccaggga	4200
ccctcccta cccctccggc acctggagcc cctcaactgt gtcttactat gaacataccc	4260
acgctggagg atggcgagga ggggggggtg tgcctctggc acctgggtgaa agccaccgg	4320
gagccagaag gggccaaggt gcggtcagc agectgcggg agcgcgagcc agcaaggggcc	4380
aaggccattc cggaaatcta cctcaccgt ctgctgtcca tgaaggttgg tgcggcctgg	4440
gtggctggc ctgagaggag gctcagccag ggaccccgac cgagccaggg tggggaggg	4500
gcagggcag ctcagccgt ggatggcccc cacaccctgc cttccacaca gcccattatcc	4560
cctgcctcgc agggcacgct gcagaagttt gtggacgaca cttccaggc cattctcagc	4620
gtgaaccggc ccatccccat cgccgtcaag tacctgttg accttctgga tgagctagca	4680
gagaagcacg gcatcgagga cccagggacc ctgcacatct ggaagaccaa cagtctgctg	4740
ctgcggttct gggtaatgc cttgaagaac ccacagctca tctttatgt acgggtgtcg	4800
gacaatgtgg acgccatctc tgctgtcatc gcccagaccc tcatttgcctc ctgttaccacc	4860
tcggagcata aagtggggccg ggtgagagca gtggcagcag cagcagctgg caggggcttg	4920
aggagggaaag gtttatgggg gaaggcttaga gggctgtgca cagagcttg gttggggcagt	4980
ggcagcatca tggggcacc ttacacctcg agctcatgcc tagcgcctcc cttccctccg	5040
gagcaggatt ccccagtgaa caaactgctc tacgccccgg agatcccacg ctacaagcag	5100
atggtgaga ggtactatgc ggacattcgc cagagcttc cggcgagcta ccaggagatg	5160
aactctgctt tggctgagct ctccggaaac tacacttctg ctccccactg tctggaggt	5220
ctgcaagaac tctacaacca catccacagg tactatgatc agattatcag tggccctggag	5280
gaggaccctg tggccagaa gctcagctg gcctgcccgc tgcagcaggc cgccgcctg	5340
gtggaaaaca aagtgactga cctgtga	5367

<210> 4
<211> 1788
<212> PRT
<213> HOMO SAPIEN

Met Ala Arg Trp Pro Pro Phe Gly Leu Cys Leu Leu Leu Leu Leu	
1 5 10 15	
Ser Pro Pro Pro Leu Pro Leu Thr Gly Ala His Arg Phe Ser Ala Pro	
20 25 30	
Asn Thr Thr Leu Asn His Leu Ala Leu Ala Pro Gly Arg Gly Thr Leu	
35 40 45	
Tyr Val Gly Ala Val Asn Arg Leu Phe Gln Leu Ser Pro Glu Leu Gln	
50 55 60	
Leu Glu Ala Val Ala Val Thr Gly Pro Val Ile Asp Ser Pro Asp Cys	
65 70 75 80	
Val Pro Phe Arg Asp Pro Ala Glu Cys Pro Gln Ala Gln Leu Thr Asp	
85 90 95	
Asn Ala Asn Gln Leu Leu Val Ser Ser Arg Ala Gln Glu Leu Val	
100 105 110	
Ala Cys Gly Gln Val Arg Gln Gly Val Cys Glu Thr Arg Arg Leu Gly	
115 120 125	
Asp Val Ala Glu Val Leu Tyr Gln Ala Glu Asp Pro Gly Asp Gly Gln	
130 135 140	
Phe Val Ala Ala Asn Thr Pro Gly Val Ala Thr Val Gly Leu Val Val	

145	150	155	160
Pro	Leu	Pro	Gly
Gly	Arg	Asp	Leu
Leu	Leu	Leu	Val
Ala	Arg	Gly	Leu
165	170	175	
Lys	Leu	Ser	Ala
Gly	Val	Pro	Pro
Leu	Ala	Ile	Arg
Gln	Leu	Ala	Gly
180	185	190	
Ser	Gln	Pro	Phe
Ser	Ser	Glu	Gly
Leu	Gly	Arg	Leu
Val	Val	Val	Gly
195	200	205	Asp
Phe	Ser	Asp	Tyr
Asn	Asn	Ser	Tyr
Val	Gly	Ala	Phe
210	215	220	Ala
Ser	Ala	Tyr	Phe
225	230	235	Arg
Tyr	Arg	Ser	Arg
240	245	250	Gly
Ser	Tyr	Val	Ala
255	260	265	Arg
Ser	Tyr	Val	Val
270	275	280	Cys
Ala	Ala	Phe	Leu
285	290	295	Ala
Pro	Arg	Gly	Thr
Gly	Thr	Gln	Ala
300	305	310	Leu
Gly	Ala	Ser	Cys
315	320	325	Ala
Arg	Gly	Pro	Ser
330	335	340	Gly
Ser	Arg	Cys	Val
345	350	355	Thr
Gly	Asp	Glu	His
360	365	370	Thr
Val	Gln	Pro	Leu
375	380	385	Leu
Leu	Gln	Ala	Asp
390	395	390	Gly
Gln	Leu	Tyr	Lys
405	410	415	Val
Ser	Gln	Gln	Val
420	425	430	Gly
Leu	Asp	Ser	Ser
435	440	445	Gly
Asp	Arg	Ile	Pro
450	455	460	Val
Cys	Leu	Gln	Ala
465	470	475	Gln
Arg	Cys	Thr	Arg
485	490	495	Lys
Trp	Leu	Trp	Ser
500	505	510	Tyr
Leu	Leu	Pro	Gly
515	520	525	His
Ser	Val	Pro	Arg
530	535	540	Leu
Ala	Phe	Gly	Asp
545	550	555	Tyr
Ala	Cys	Val	Thr
565	570	575	Pro
Thr	Asp	His	Val
580	585	590	Pro

Val Ala Ala Thr Asn Phe Ser Phe Tyr Asp Cys Ser Ala Val Gln Ala
 595 600 605
 Leu Glu Ala Ala Ala Pro Val Leu Pro Gln Gly Leu Pro Ala Ser Phe
 610 615 620
 His Cys Trp Leu Glu Leu Pro Gly Glu Leu Arg Gly Leu Pro Ala Thr
 625 630 635 640
 Leu Glu Glu Thr Ala Gly Asp Ser Gly Leu Ile His Cys Gln Ala His
 645 650 655
 Gln Arg Glu Leu Pro Val Pro Ile Tyr Val Thr Gln Gly Glu Ala Gln
 660 665 670
 Arg Leu Asp Asn Thr His Ala Leu Tyr Gly Glu Pro Glu Gly Ser Gln
 675 680 685
 Ala Gly Gly Ala Gly Trp Val Ala Asp Arg Arg Ser Ala His Cys
 690 695 700
 Leu Thr Leu Pro Ser Asp Pro Val Arg Leu Arg His Gly Pro Pro Gly
 705 710 715 720
 Leu Gln Pro Leu Pro Ser Gly Gln Gln Glu Pro Gly Leu Pro Val Thr
 725 730 735
 Ser Pro Ala Pro Gly Pro Gln Thr Pro Ala Ala Arg Pro Gly Trp Ala
 740 745 750
 Gly Trp Leu Ala Gly His Pro Ala Leu Gln Ser Gly Ala Trp Val Arg
 755 760 765
 Gly Thr Pro Ser Ala Ile Ile Cys Leu Leu Gln Val Glu Pro Leu Thr
 770 775 780
 Gly Pro Pro Glu Gly Leu Ala Leu Thr Ile Leu Gly Ser Asn Leu
 785 790 795 800
 Gly Arg Ala Phe Ala Asp Val Gln Tyr Ala Asp Pro Val Leu Leu Ser
 805 810 815
 Leu Ser Pro Arg Trp Gly Pro Gln Ala Gly Gly Thr Gln Leu Thr Ile
 820 825 830
 Arg Gly Gln His Leu Gln Thr Gly Gly Asn Thr Ser Ala Phe Val Gly
 835 840 845
 Gly Gln Pro Cys Pro Met Gly Gly Arg Leu Ile Arg Val Arg Gly Thr
 850 855 860
 Gly Leu Asp Val Val Gln Arg Pro Leu Leu Ser Val Trp Leu Glu Ala
 865 870 875 880
 Asp Ala Glu Val Gln Ala Ser Arg Ala Gln Pro Gln Asp Pro Gln Pro
 885 890 895
 Arg Arg Ser Cys Gly Ala Pro Ala Ala Asp Pro Gln Ala Cys Ile Gln
 900 905 910
 Leu Gly Gly Leu Leu Gln Arg Thr Ala Glu Pro Ser Ser Leu His
 915 920 925
 Leu Trp Ser Ala Leu Asn Ala Pro Gln Cys Ser Thr Val Cys Ser Val
 930 935 940
 Asn Ser Ser Ser Leu Leu Leu Cys Arg Ser Pro Ala Val Pro Asp Arg
 945 950 955 960
 Ala His Pro Gln Arg Val Phe Phe Thr Leu Asp Asn Val Gln Val Asp
 965 970 975
 Phe Ala Ser Ala Ser Gly Gly Gln Gly Phe Leu Tyr Gln Pro Asn Pro
 980 985 990
 Arg Leu Ala Pro Leu Ser Arg Glu Gly Pro Ala Arg Pro Tyr Arg Leu
 995 1000 1005
 Lys Pro Gly His Val Leu Asp Val Glu Gly Glu Gly Leu Asn Leu Gly
 1010 1015 1020
 Ile Ser Lys Glu Glu Val Arg Val His Ile Gly Arg Gly Glu Cys Leu

1025	1030	1035	1040
Val Lys Thr Leu Thr Arg Thr His Leu Tyr Cys Glu Pro Pro Ala His			
1045	1050	1055	
Ala Pro Gln Pro Ala Asn Gly Ser Gly Leu Pro Gln Phe Val Val Gln			
1060	1065	1070	
Met Gly Asn Val Gln Leu Ala Leu Gly Pro Val Gln Tyr Glu Ala Glu			
1075	1080	1085	
Pro Pro Leu Ser Ala Phe Pro Val Glu Ala Gln Ala Gly Val Gly Met			
1090	1095	1100	
Gly Ala Ala Val Leu Ile Ala Ala Val Leu Leu Thr Leu Met Tyr			
1105	1110	1115	1120
Arg His Lys Ser Lys Gln Ala Leu Arg Asp Tyr Gln Lys Val Leu Val			
1125	1130	1135	
Gln Leu Glu Ser Leu Glu Thr Gly Val Gly Asp Gln Cys Arg Lys Glu			
1140	1145	1150	
Phe Thr Asp Leu Met Thr Glu Met Thr Asp Leu Ser Ser Asp Leu Glu			
1155	1160	1165	
Gly Ser Gly Ile Pro Phe Leu Asp Tyr Arg Thr Tyr Ala Glu Arg Ala			
1170	1175	1180	
Phe Phe Pro Gly His Gly Gly Cys Pro Leu Gln Pro Lys Pro Glu Gly			
1185	1190	1195	1200
Pro Gly Glu Asp Gly His Cys Ala Thr Val Arg Gln Gly Leu Thr Gln			
1205	1210	1215	
Leu Ser Asn Leu Leu Asn Ser Lys Leu Phe Leu Leu Thr Val Arg Ala			
1220	1225	1230	
Val Trp Arg Glu Cys Pro Val Gly Lys Glu Val Gly Leu Gly Asn Tyr			
1235	1240	1245	
Trp Pro Glu Thr Lys Val Gly Glu Glu Thr Glu Thr Met Val Glu Lys			
1250	1255	1260	
Leu Leu Thr Asn Trp Leu Ser Ile Cys Leu Tyr Ala Phe Leu Arg Glu			
1265	1270	1275	1280
Val Ala Gly Glu Pro Leu Tyr Met Leu Phe Arg Ala Ile Gln Tyr Gln			
1285	1290	1295	
Val Asp Lys Gly Pro Val Asp Ala Val Thr Gly Lys Ala Lys Arg Thr			
1300	1305	1310	
Leu Asn Asp Ser Arg Leu Leu Arg Glu Asp Val Glu Phe Gln Pro Leu			
1315	1320	1325	
Thr Leu Met Val Leu Val Gly Pro Gly Ala Gly Gly Ala Ala Gly Ser			
1330	1335	1340	
Ser Glu Met Gln Arg Val Pro Ala Arg Val Leu Asp Thr Asp Thr Ile			
1345	1350	1355	1360
Thr Gln Val Lys Glu Lys Val Leu Asp Gln Val Tyr Lys Gly Thr Pro			
1365	1370	1375	
Phe Ser Gln Arg Pro Ser Val His Ala Leu Asp Leu Gly Glu Arg Ala			
1380	1385	1390	
Ser Pro Ala His Pro Pro Gln Gly Pro Phe Pro Thr Pro Pro Ala Pro			
1395	1400	1405	
Gly Ala Pro Gln Leu Cys Leu Thr Met Asn Ile Pro Thr Leu Glu Asp			
1410	1415	1420	
Gly Glu Glu Gly Val Cys Leu Trp His Leu Val Lys Ala Thr Glu			
1425	1430	1435	1440
Glu Pro Glu Gly Ala Lys Val Arg Cys Ser Ser Leu Arg Glu Arg Glu			
1445	1450	1455	
Pro Ala Arg Ala Lys Ala Ile Pro Glu Ile Tyr Leu Thr Arg Leu Leu			
1460	1465	1470	

Ser Met Lys Val Gly Ala Ala Trp Val Ala Gly Pro Glu Arg Arg Leu
 1475 1480 1485
 Ser Gln Gly Pro Arg Pro Ser Gln Gly Val Gly Gly Ala Gly Ala Ala
 1490 1495 1500
 Ser Ala Val Asp Gly Pro His Thr Leu Pro Ser Thr Gln Pro Leu Ser
 1505 1510 1515 1520
 Pro Ala Ser Gln Gly Thr Leu Gln Lys Phe Val Asp Asp Thr Phe Gln
 1525 1530 1535
 Ala Ile Leu Ser Val Asn Arg Pro Ile Pro Ile Ala Val Lys Tyr Leu
 1540 1545 1550
 Phe Asp Leu Leu Asp Glu Leu Ala Glu Lys His Gly Ile Glu Asp Pro
 1555 1560 1565
 Gly Thr Leu His Ile Trp Lys Thr Asn Ser Leu Leu Leu Arg Phe Trp
 1570 1575 1580
 Val Asn Ala Leu Lys Asn Pro Gln Leu Ile Phe Asp Val Arg Val Ser
 1585 1590 1595 1600
 Asp Asn Val Asp Ala Ile Leu Ala Val Ile Ala Gln Thr Phe Ile Asp
 1605 1610 1615
 Ser Cys Thr Thr Ser Glu His Lys Val Gly Arg Val Arg Ala Val Pro
 1620 1625 1630
 Ala Ala Ala Ala Gly Arg Gly Leu Arg Arg Lys Gly Leu Trp Gly Lys
 1635 1640 1645
 Pro Arg Gly Leu Cys Thr Glu Leu Trp Val Gly Ser Gly Ser Ile Met
 1650 1655 1660
 Gly Ala Pro Ser Pro Pro Ser Ser Cys Leu Ala Pro Pro Leu Pro Pro
 1665 1670 1675 1680
 Glu Gln Asp Ser Pro Val Asn Lys Leu Leu Tyr Ala Arg Glu Ile Pro
 1685 1690 1695
 Arg Tyr Lys Gln Met Val Glu Arg Tyr Tyr Ala Asp Ile Arg Gln Ser
 1700 1705 1710
 Ser Pro Ala Ser Tyr Gln Glu Met Asn Ser Ala Leu Ala Glu Leu Ser
 1715 1720 1725
 Gly Asn Tyr Thr Ser Ala Pro His Cys Leu Glu Ala Leu Gln Glu Leu
 1730 1735 1740
 Tyr Asn His Ile His Arg Tyr Tyr Asp Gln Ile Ile Ser Ala Leu Glu
 1745 1750 1755 1760
 Glu Asp Pro Val Gly Gln Lys Leu Gln Leu Ala Cys Arg Leu Gln Gln
 1765 1770 1775
 Val Ala Ala Leu Val Glu Asn Lys Val Thr Asp Leu
 1780 1785

<210> 5
 <211> 5892
 <212> DNA
 <213> HOMO SAPIEN

<400> 5
 gcgcacgccc ggatggctct tcgcgccg ggcggcgac ccttagcgg cccggccgccc 60
 gctgccagcc cccccgccgtt ccagacgccc cccgcgtgcc cggtgcgcgt gctgttgctg 120
 ctgcctcgtgg gggccgcgcg gcccggcgcc ctggagatcc agcgtcgggtt cccctcgccc 180
 acgcaccacca acaacttcgc cctggacggc gccggcgggga ccgtgtaccc gcgcggccgtc 240
 aaccggcctct atcagctgtc gggcccaac ctgagcctgg aggcccggc gcgcgtgggc 300
 ccgggtcccg acagccccgt gtgtcacgct cccgacgtgc cgcaggcctc gtgcgagcac 360
 ccgcggcgccc tcacggacaa ctacaacaag atcctgcagc tggacccgg ccagggcctg 420
 gtagtcgtgt gcgggtccat ctaccaggc ttctgcccagc tgccggcgccg ggttaacatc 480

tcggccgtgg ccgtgcgcctt cccgcccgcgc gcgccgccccg ccgagcccgt cacggtgttc	540
cccagcatgc tgaacgtggc ggccaaccac csgaacgcgt ccaccgtggg gctagttctg	600
cctccgcgg cgggcgcggg gggcagccgc ctgctcggtt gcccacgtt caccgggtac	660
ggcagctctt tcttcccgcc caaccgcgc ctggaggacc accgcttgcgaa acacgcgc	720
gagatcgcca tccgctccct ggacacgcgc ggcgacccgtt ccaagctt caccctgac	780
ctcaaccctt ccgacgacaa catctcaag atcaagcagg ggcgcaagga gcagcacaag	840
ctggcttcg tgagcgcctt cctgcaccccg tccgaccccg cgccgggtgc acagtcttac	900
gcgtacctgg cgctcaacag cgaggcgcgc gcccggcaca aggagagcca ggcgcccggc	960
ctgctggcgc gcatctgcct gccccacggc gcccggggcg acgccaagaa gtcaccggag	1020
tccractatcc agttgggtt gcagtgcgc ggcggcgcg gccggcgcg cctctacagc	1080
cgcctggtgt cggcttcggc agccgggag cggcttgcgtt ctgtcttgcgac gggccccag	1140
gggtcccccg cggccgcgc tgctccggcc gcactctgcg ccttccgtt cgccgacgtg	1200
cgaggcccca tccgagctgc ggcacccgcg tgcttcgtt aacccggcgcg acacgtgggt	1260
gcccgtgtc acagcgtgt gcaggcgcg gacccggctt gcgacgcgaa gtcacacatc	1320
cagctccagc cagagcagat ggactgttgc gctgttcacc tgacgacccc gctgttccatc	1380
ctggacccccc tgaaggccac gcccgttgcg cgcggccccc gcctcaccc cgtggccgtg	1440
gccagcgtca acaactacac agcggcttc otggcgcacgg tcaacgggag gtttctcaag	1500
atcaacctga acgagagcat gcagggtgttgc agcaggcggg tggtgactgt ggcctatgg	1560
gagcccggtc accatgtcat gcagtttgac ccagcagact cccgttaccc ttacctgtat	1620
acgtccccacc agatggccag ggtgaaggcgc gccgcctgcgac gtcactc cactgttgg	1680
gactgcgtgg gtgcggcggc cgcctactgc ggctgggtgtt ccctggagac gcccgtgcacc	1740
ttgcagcagg actgcacccaa ttccagccag cagcattttt ggaccagtgc cagcgaggc	1800
cccagccgct gtccctccat gacggctctg cttcccgaga tcgatgtgcg ccaggagttac	1860
ccagggatgtc ttctcgacat ctcggcgcg ctgcggcagcc tcagtggtcat ggagatggcc	1920
tgtactatgtt ggaacaacat cgcactgtg gtcgggggtt cagggccctt ctttgggtcac	1980
cagattgcctt actgcacccat ctcggcggg gaccagttt cgccttccccc ccccaaccag	2040
gaccacgtga ctgttgagat gtctgtgagg gtcaatgggc ggaacatcgtt caaggccat	2100
ttcaccatct acgactgcgtc cgcactgcgca caagtgtacc cccacacagc ctgttaccagc	2160
tgcctgtcggtt cacagtggcc ctgtttctgg tgcagccagc agcactcttgc tgtttccaa	2220
cagtcctcggt gcgaggccctt accaaaccccc accggccctt aggactgcggcc cccggaccctg	2280
ctctcaccctt tggcaccctgtt gcctaccggcgtt ggctcccaga acatccttgcgtt gctctggcc	2340
aacactgcctt ttttccagggt tgcaagccctg gagtgtagttt ttgggtgttgcgagatctc	2400
gaggctgtgtt ggggtgaatga gtctgttgcgat cgtgtgtacc aggtgggtgttgcacacgc	2460
cggaaagagcc aggtgttccc gtcgcgttgcgca accacttgcgttgcg ggcggccgc cccggaccctg	2520
gacagccctt agcccatgtatc agtcatgttgc tataactgttgc ccatggcgcg cccggactgt	2580
tcccagtgtcc tggggccgcgaa agacccgggtt cccctgtgcg tgggtgttgcgatccatc	2640
ctggggggccctt ctctcgacccat ctcggcgttgcg acctggccccc ccccccggat cccggccgtt	2700
gagccctgtt gttggcccggtt ggacgggtggg accctgttgcgat ccatccgggaa aaggAACCTG	2760
ggccggccgc tcaagtgttgcgat gcccacggcgtt gggtggattt gtgggtgttgcgatccatc	2820
ctgcctgtaca gatacacccgtt gtcggaggatcgtgttgcgatccatc gacccggcc accccggagg	2880
ccgcctctcgatgtgtgttgcgatccatc gtcgcgttgcgatccatc gcaagtcccg gacccgttcc	2940
tcctacgtgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc tgggtgttgcgatccatc	3000
accaggatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3060
aacgacacacccctgcacatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3120
cctggggggccctgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3180
gtgcacggccatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3240
cggcccgccatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3300
gtgcagaatgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3360
ctcaactccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3420
gtggacttcttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3480
ctggacccttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3540
cagtctcttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3600
ctcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3660
ataggccatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3720
aacgacttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc gtcgcgttgcgatccatc	3780

aaccagacca	tcgcccacact	gcagctgggg	ggcagcgaga	cggccatcat	cgtgtccatc	3840
gtcatactgca	gcgtcctgt	gctgctctcc	gtggtggccc	tgttctgtctt	ctgtaccaag	3900
agccgacgtg	ctgagcgtta	ctggcagaag	acgctgctgc	agatggagga	gatgaaatct	3960
cagatccgag	aggaaatccg	caaaggcttc	gctgagctgc	agacagacat	gacagatctg	4020
accaaggagc	tgaaccgcag	ccagggcattc	cccttcctgg	agtataagca	cttcgtgacc	4080
cgcacccctt	tccccaagtg	ttccctccctt	tatgaagagc	gttacgtgt	gccctcccaag	4140
accctcaact	ccccaggcag	ctcccaaggca	caggaaaccc	accactgt	gggagagtg	4200
aagattcctg	agagctgcgg	gccccaaatcg	gaagaggggaa	ttagcgtgtt	ctccctacta	4260
ctcaacaaca	agcaacttctt	catcgcttt	gtccacgcgc	tggaggcagca	gaaggacttt	4320
gcgggtgcgc	acaggtgcag	cctggccctcg	ctgctgacca	tcgcgtgca	cgccaagctg	4380
gagtaactaca	ccagcatcat	gaaggagctg	ctgggtggacc	tcatttgcgc	ctcgccgc	4440
aagaacccca	agctcatgt	gccccgcaca	gagtctgtgg	tggagaagat	gctcaccaac	4500
tggatgtcca	tctgcatgt	cagctgtctg	cgggagacgg	tggggagacc	attttctctg	4560
ctgctgtgt	ccatcaagca	gcaaatcaac	aagggctcca	tcgacccat	cacaggcaag	4620
gccccgtaca	cactcaatga	ggagttggctg	ctgcgggaga	acatcgaggc	caagccccgg	4680
aacctgaacg	tgtccttcca	gggctgtggc	atggacttcgc	tgagcgtgcg	ggccatggac	4740
accgcacacgc	tgacacaggt	caaggagaag	atccctgggg	ccttctgca	gaatgtgccc	4800
tactccagt	ggccgcgtgc	agaggacgtc	gaccttgagt	gttgccttc	cagcacacag	4860
agtacatcc	ttcgggaccc	ggacgacacc	tcaagtgggg	aagacggccg	caagaagctt	4920
aacacgctgg	cccattacaa	gatccctgaa	ggtgcctccc	tggccatgag	tctcatagac	4980
aagaaggaca	acacactggg	ccgagtgaaa	gacttggaca	cagagaagta	tttccatttg	5040
gtgctgccta	cggacgagct	ggcggagccc	aagaagtctc	accggcagag	ccatcgcaag	5100
aagggtctcc	cgaaaatcta	cctgacccgc	ctgctctcca	ccaagggcac	gttgcagaag	5160
tttctggatg	acctgttcaa	ggccattctg	agtatccgt	aagacaagcc	cccactggct	5220
gtcaagtact	tttcgactt	cctggaggag	caggctgaga	agagggaaat	ctccgacccc	5280
gacaccctac	acatctggaa	gaccaacacgc	ttccctctcc	gttctgggt	gaacatccctg	5340
aagaacccc	agtttgtct	tgacatcgac	aagacagac	acatcgacgc	ctgcctttca	5400
gtcatecgcc	aggccctcat	cgacgcctgc	tccatctctg	acctgcagct	ggcgaaggat	5460
tcgccaacca	acaagctct	ctacgccaag	gagattcctg	agtacccgaa	gatcggtcag	5520
cgctactaca	agcagatcca	ggacatgacg	ccgctcagcg	agcaagagat	gaatgcccatt	5580
ctggccgagg	agtcgaggaa	ataccagaat	gagttcaaca	ccaatgtggc	catggcagag	5640
attttaggt	cgcccaagag	gtatcgccg	cagatcatgg	ccgcgtgga	ggccaacccc	5700
acggcccgga	gacacaact	gcagcacaag	tttggcagg	tggtgctt	gatggaggac	5760
aacatctacg	agtgtacag	tgaggcctga	gacacatgga	gagttgtca	ggctgctgct	5820
gggagaaatg	gaccccact	gggcctcaac	ttgatcttct	acccctgtcc	tgtactcag	5880
actggaaat	ac					5892

<210> 6
<211> 1925
<212> PRT
<213> HOMO SAPIEN

<400> 6
Met Ala Leu Arg Ala Ala Gly Gly Ala Pro Phe Ser Gly Pro Ala Ala
1 5 10 15
Ala Ala Ser Pro Pro Pro Phe Gln Thr Pro Pro Arg Cys Pro Val Pro
20 25 30
Leu Leu Leu Leu Leu Leu Gly Ala Ala Arg Ala Gly Ala Leu Glu
35 40 45
Ile Gln Arg Arg Phe Pro Ser Pro Thr Pro Thr Asn Asn Phe Ala Leu
50 55 60
Asp Gly Ala Ala Gly Thr Val Tyr Leu Ala Val Asn Arg Leu Tyr
65 70 75 80

Gln Leu Ser Gly Ala Asn Leu Ser Leu Glu Ala Glu Ala Ala Val Gly
 85 90 95
 Pro Val Pro Asp Ser Pro Leu Cys His Ala Pro Gln Leu Pro Gln Ala
 100 105 110
 Ser Cys Glu His Pro Arg Arg Leu Thr Asp Asn Tyr Asn Lys Ile Leu
 115 120 125
 Gln Leu Asp Pro Gly Gln Gly Leu Val Val Val Cys Gly Ser Ile Tyr
 130 135 140
 Gln Gly Phe Cys Gln Leu Arg Arg Gly Asn Ile Ser Ala Val Ala
 145 150 155 160
 Val Arg Phe Pro Pro Ala Ala Pro Pro Ala Glu Pro Val Thr Val Phe
 165 170 175
 Pro Ser Met Leu Asn Val Ala Ala Asn His Pro Asn Ala Ser Thr Val
 180 185 190
 Gly Leu Val Leu Pro Pro Ala Ala Gly Ala Gly Gly Ser Arg Leu Leu
 195 200 205
 Val Gly Ala Thr Tyr Thr Gly Tyr Gly Ser Ser Phe Phe Pro Arg Asn
 210 215 220
 Arg Ser Leu Glu Asp His Arg Phe Glu Asn Thr Pro Glu Ile Ala Ile
 225 230 235 240
 Arg Ser Leu Asp Thr Arg Gly Asp Leu Ala Lys Leu Phe Thr Phe Asp
 245 250 255
 Leu Asn Pro Ser Asp Asp Asn Ile Leu Lys Ile Lys Gln Gly Ala Lys
 260 265 270
 Glu Gln His Lys Leu Gly Phe Val Ser Ala Phe Leu His Pro Ser Asp
 275 280 285
 Pro Pro Pro Gly Ala Gln Ser Tyr Ala Tyr Leu Ala Leu Asn Ser Glu
 290 295 300
 Ala Arg Ala Gly Asp Lys Glu Ser Gln Ala Arg Ser Leu Leu Ala Arg
 305 310 315 320
 Ile Cys Leu Pro His Gly Ala Gly Gly Asp Ala Lys Lys Leu Thr Glu
 325 330 335
 Ser Tyr Ile Gln Leu Gly Leu Gln Cys Ala Gly Gly Ala Gly Arg Gly
 340 345 350
 Asp Leu Tyr Ser Arg Leu Val Ser Val Phe Pro Ala Arg Glu Arg Leu
 355 360 365
 Phe Ala Val Phe Glu Arg Pro Gln Gly Ser Pro Ala Ala Arg Ala Ala
 370 375 380
 Pro Ala Ala Leu Cys Ala Phe Arg Phe Ala Asp Val Arg Ala Ala Ile
 385 390 395 400
 Arg Ala Ala Arg Thr Ala Cys Phe Val Glu Pro Ala Pro Asp Val Val
 405 410 415
 Ala Val Leu Asp Ser Val Val Gln Gly Thr Gly Pro Ala Cys Glu Arg
 420 425 430
 Lys Leu Asn Ile Gln Leu Gln Pro Glu Gln Leu Asp Cys Gly Ala Ala
 435 440 445
 His Leu Gln His Pro Leu Ser Ile Leu Gln Pro Leu Lys Ala Thr Pro
 450 455 460
 Val Phe Arg Ala Pro Gly Leu Thr Ser Val Ala Val Ala Ser Val Asn
 465 470 475 480
 Asn Tyr Thr Ala Val Phe Leu Gly Thr Val Asn Gly Arg Leu Leu Lys
 485 490 495
 Ile Asn Leu Asn Glu Ser Met Gln Val Val Ser Arg Arg Val Val Thr
 500 505 510
 Val Ala Tyr Gly Glu Pro Val His His Val Met Gln Phe Asp Pro Ala

515	520	525
Asp Ser Gly Tyr Leu Tyr Leu Met Thr Ser His Gln Met Ala Arg Val		
530	535	540
Lys Val Ala Ala Cys Asn Val His Ser Thr Cys Gly Asp Cys Val Gly		
545	550	555
Ala Ala Asp Ala Tyr Cys Gly Trp Cys Ala Leu Glu Thr Arg Cys Thr		
565	570	575
Leu Gln Gln Asp Cys Thr Asn Ser Ser Gln Gln His Phe Trp Thr Ser		
580	585	590
Ala Ser Glu Gly Pro Ser Arg Cys Pro Ala Met Thr Val Leu Pro Ser		
595	600	605
Glu Ile Asp Val Arg Gln Glu Tyr Pro Gly Met Ile Leu Gln Ile Ser		
610	615	620
Gly Ser Leu Pro Ser Leu Ser Gly Met Glu Met Ala Cys Asp Tyr Gly		
625	630	635
Asn Asn Ile Arg Thr Val Ala Arg Val Pro Gly Pro Ala Phe Gly His		
645	650	655
Gln Ile Ala Tyr Cys Asn Leu Leu Pro Arg Asp Gln Phe Pro Pro Phe		
660	665	670
Pro Pro Asn Gln Asp His Val Thr Val Glu Met Ser Val Arg Val Asn		
675	680	685
Gly Arg Asn Ile Val Lys Ala Asn Phe Thr Ile Tyr Asp Cys Ser Arg		
690	695	700
Thr Ala Gln Val Tyr Pro His Thr Ala Cys Thr Ser Cys Leu Ser Ala		
705	710	715
Gln Trp Pro Cys Phe Trp Cys Ser Gln Gln His Ser Cys Val Ser Asn		
725	730	735
Gln Ser Arg Cys Glu Ala Ser Pro Asn Pro Thr Ser Pro Gln Asp Cys		
740	745	750
Pro Arg Thr Leu Leu Ser Pro Leu Ala Pro Val Pro Thr Gly Gly Ser		
755	760	765
Gln Asn Ile Leu Val Pro Leu Ala Asn Thr Ala Phe Phe Gln Gly Ala		
770	775	780
Ala Leu Glu Cys Ser Phe Gly Leu Glu Glu Ile Phe Glu Ala Val Trp		
785	790	795
Val Asn Glu Ser Val Val Arg Cys Asp Gln Val Val Leu His Thr Thr		
805	810	815
Arg Lys Ser Gln Val Phe Pro Leu Ser Leu Gln Leu Lys Gly Arg Pro		
820	825	830
Ala Arg Phe Leu Asp Ser Pro Glu Pro Met Thr Val Met Val Tyr Asn		
835	840	845
Cys Ala Met Gly Ser Pro Asp Cys Ser Gln Cys Leu Gly Arg Glu Asp		
850	855	860
Leu Gly His Leu Cys Val Trp Ser Asp Gly Cys Arg Leu Arg Gly Pro		
865	870	875
Leu Gln Pro Met Ala Gly Thr Cys Pro Ala Pro Glu Ile Arg Ala Ile		
885	890	895
Glu Pro Leu Ser Gly Pro Leu Asp Gly Gly Thr Leu Leu Thr Ile Arg		
900	905	910
Gly Arg Asn Leu Gly Arg Arg Leu Ser Asp Val Ala His Gly Val Trp		
915	920	925
Ile Gly Gly Val Ala Cys Glu Pro Leu Pro Asp Arg Tyr Thr Val Ser		
930	935	940
Glu Glu Ile Val Cys Val Thr Gly Pro Ala Pro Gly Pro Leu Ser Gly		
945	950	955
		960

Val Val Thr Val Asn Ala Ser Lys Glu Gly Lys Ser Arg Asp Arg Phe
 965 970 975
 Ser Tyr Val Leu Pro Leu Val His Ser Leu Glu Pro Thr Met Gly Pro
 980 985 990
 Lys Ala Gly Gly Thr Arg Ile Thr Ile His Gly Asn Asp Leu His Val
 995 1000 1005
 Gly Ser Glu Leu Gln Val Leu Val Asn Asp Thr Asp Pro Cys Thr Glu
 1010 1015 1020
 Leu Met Arg Thr Asp Thr Ser Ile Ala Cys Thr Met Pro Glu Gly Ala
 1025 1030 1035 1040
 Leu Pro Ala Pro Val Pro Val Cys Val Arg Phe Glu Arg Arg Gly Cys
 1045 1050 1055
 Val His Gly Asn Leu Thr Phe Trp Tyr Met Gln Asn Pro Val Ile Thr
 1060 1065 1070
 Ala Ile Ser Pro Arg Arg Ser Pro Val Ser Gly Gly Arg Thr Ile Thr
 1075 1080 1085
 Val Ala Gly Glu Arg Phe His Met Val Gln Asn Val Ser Met Ala Val
 1090 1095 1100
 His His Ile Gly Arg Glu Pro Thr Leu Cys Lys Val Leu Asn Ser Thr
 1105 1110 1115 1120
 Leu Ile Thr Cys Pro Ser Pro Gly Ala Leu Ser Asn Ala Ser Ala Pro
 1125 1130 1135
 Val Asp Phe Phe Ile Asn Gly Arg Ala Tyr Ala Asp Glu Val Ala Val
 1140 1145 1150
 Ala Glu Glu Leu Leu Asp Pro Glu Glu Ala Gln Arg Gly Ser Arg Phe
 1155 1160 1165
 Arg Leu Asp Tyr Leu Pro Asn Pro Gln Phe Ser Thr Ala Lys Arg Glu
 1170 1175 1180
 Lys Trp Ile Lys His His Pro Gly Glu Pro Leu Thr Leu Val Ile His
 1185 1190 1195 1200
 Lys Glu Gln Asp Ser Leu Gly Leu Gln Ser His Glu Tyr Arg Val Lys
 1205 1210 1215
 Ile Gly Gln Val Ser Cys Asp Ile Gln Ile Val Ser Asp Arg Ile Ile
 1220 1225 1230
 His Cys Ser Val Asn Glu Ser Leu Gly Ala Ala Val Gly Gln Leu Pro
 1235 1240 1245
 Ile Thr Ile Gln Val Gly Asn Phe Asn Gln Thr Ile Ala Thr Leu Gln
 1250 1255 1260
 Leu Gly Gly Ser Glu Thr Ala Ile Ile Val Ser Ile Val Ile Cys Ser
 1265 1270 1275 1280
 Val Leu Leu Leu Ser Val Val Ala Leu Phe Val Phe Cys Thr Lys
 1285 1290 1295
 Ser Arg Arg Ala Glu Arg Tyr Trp Gln Lys Thr Leu Leu Gln Met Glu
 1300 1305 1310
 Glu Met Glu Ser Gln Ile Arg Glu Glu Ile Arg Lys Gly Phe Ala Glu
 1315 1320 1325
 Leu Gln Thr Asp Met Thr Asp Leu Thr Lys Glu Leu Asn Arg Ser Gln
 1330 1335 1340
 Gly Ile Pro Phe Leu Glu Tyr Lys His Phe Val Thr Arg Thr Phe Phe
 1345 1350 1355 1360
 Pro Lys Cys Ser Ser Leu Tyr Glu Glu Arg Tyr Val Leu Pro Ser Gln
 1365 1370 1375
 Thr Leu Asn Ser Gln Gly Ser Ser Gln Ala Gln Glu Thr His Pro Leu
 1380 1385 1390
 Leu Gly Glu Trp Lys Ile Pro Glu Ser Cys Arg Pro Asn Met Glu Glu

1395	1400	1405
Gly Ile Ser Val Phe Ser Ser Leu Leu Asn Asn Lys His Phe Leu Ile		
1410	1415	1420
Val Phe Val His Ala Leu Glu Gln Gln Lys Asp Phe Ala Val Arg Asp		
1425	1430	1435
Arg Cys Ser Leu Ala Ser Leu Leu Thr Ile Ala Leu His Gly Lys Leu		
1445	1450	1455
Glu Tyr Tyr Thr Ser Ile Met Lys Glu Leu Leu Val Asp Leu Ile Asp		
1460	1465	1470
Ala Ser Ala Ala Lys Asn Pro Lys Leu Met Leu Arg Arg Thr Glu Ser		
1475	1480	1485
Val Val Glu Lys Met Leu Thr Asn Trp Met Ser Ile Cys Met Tyr Ser		
1490	1495	1500
Cys Leu Arg Glu Thr Val Gly Glu Pro Phe Phe Leu Leu Leu Cys Ala		
1505	1510	1515
Ile Lys Gln Gln Ile Asn Lys Gly Ser Ile Asp Ala Ile Thr Gly Lys		
1525	1530	1535
Ala Arg Tyr Thr Leu Asn Glu Glu Trp Leu Leu Arg Glu Asn Ile Glu		
1540	1545	1550
Ala Lys Pro Arg Asn Leu Asn Val Ser Phe Gln Gly Cys Gly Met Asp		
1555	1560	1565
Ser Leu Ser Val Arg Ala Met Asp Thr Asp Thr Leu Thr Gln Val Lys		
1570	1575	1580
Glu Lys Ile Leu Glu Ala Phe Cys Lys Asn Val Pro Tyr Ser Gln Trp		
1585	1590	1595
Pro Arg Ala Glu Asp Val Asp Leu Glu Trp Phe Ala Ser Ser Thr Gln		
1605	1610	1615
Ser Tyr Ile Leu Arg Asp Leu Asp Asp Thr Ser Val Val Glu Asp Gly		
1620	1625	1630
Arg Lys Lys Leu Asn Thr Leu Ala His Tyr Lys Ile Pro Glu Gly Ala		
1635	1640	1645
Ser Leu Ala Met Ser Leu Ile Asp Lys Lys Asp Asn Thr Leu Gly Arg		
1650	1655	1660
Val Lys Asp Leu Asp Thr Glu Lys Tyr Phe His Leu Val Leu Pro Thr		
1665	1670	1675
Asp Glu Leu Ala Glu Pro Lys Lys Ser His Arg Gln Ser His Arg Lys		
1685	1690	1695
Lys Val Leu Pro Glu Ile Tyr Leu Thr Arg Leu Leu Ser Thr Lys Gly		
1700	1705	1710
Thr Leu Gln Lys Phe Leu Asp Asp Leu Phe Lys Ala Ile Leu Ser Ile		
1715	1720	1725
Arg Glu Asp Lys Pro Pro Leu Ala Val Lys Tyr Phe Phe Asp Phe Leu		
1730	1735	1740
Glu Glu Gln Ala Glu Lys Arg Gly Ile Ser Asp Pro Asp Thr Leu His		
1745	1750	1755
Ile Trp Lys Thr Asn Ser Leu Pro Leu Arg Phe Trp Val Asn Ile Leu		
1765	1770	1775
Lys Asn Pro Gln Phe Val Phe Asp Ile Asp Lys Thr Asp His Ile Asp		
1780	1785	1790
Ala Cys Leu Ser Val Ile Ala Gln Ala Phe Ile Asp Ala Cys Ser Ile		
1795	1800	1805
Ser Asp Leu Gln Leu Gly Lys Asp Ser Pro Thr Asn Lys Leu Leu Tyr		
1810	1815	1820
Ala Lys Glu Ile Pro Glu Tyr Arg Lys Ile Val Gln Arg Tyr Tyr Lys		
1825	1830	1835
		1840

<210> 7
<211> 601
<212> DNA
<213> HOMO SAPIEN

```

<400> 7
caccagagtc cctgtggagt cctgtggtca gtatcagac tgcggcgagt gccttggctc 60
aggcgacccc cactgtggct ggtgtgtgct gcacaacact tgcacccgga aggagcggtg 120
tgagcggtcc aaggagcccc gcaggtttgc ctccggagatg aagcagtgta tccggctgac 180
ggtccatccc aacaatatct ccgtctctca gtacaacgcg ctgctggcc tggagacgta 240
caatgtcccc gagctgtcag ctggcgtaa ctgcacccctt gaggacctgt cagagatgga 300
tgggctggtc gtgggcaatc agatccagtg ctactccctt gcacccaagg aggtgccccg 360
gatcatcaca gagaatgggg accaccaatgt cgtacagctt cagctcaaat caaaggagac 420
cggcatgacc ttgcccgca ccagctttgt cttttacaat tgcaagcgctcc acaatcgty 480
cctgtccctgc gtggagatc cataccgctg ccactgggt aaataccggc atgtctgcac 540
ccatgacccc aagacctgct ccttcccgaggaa aggccgagtg aagctgcccc aggttaggtcc 600
c

```

<210> 8
<211> 199
<212> PRT
<213> HOMO SAPIEN

```

<400> 8
Thr Arg Val Pro Val Glu Ser Cys Gly Gln Tyr Gln Ser Cys Gly Glu
      1           5           10          15
Cys Leu Gly Ser Gly Asp Pro His Cys Gly Trp Cys Val Leu His Asn
      20          25          30
Thr Cys Thr Arg Lys Glu Arg Cys Glu Arg Ser Lys Glu Pro Arg Arg
      35          40          45
Phe Ala Ser Glu Met Lys Gln Cys Val Arg Leu Thr Val His Pro Asn
      50          55          60
Asn Ile Ser Val Ser Gln Tyr Asn Ala Leu Leu Val Leu Glu Thr Tyr
      65          70          75          80
Asn Val Pro Glu Leu Ser Ala Gly Val Asn Cys Thr Phe Glu Asp Leu
      85          90          95
Ser Glu Met Asp Gly Leu Val Val Gly Asn Gln Ile Gln Cys Tyr Ser
      100         105         110
Pro Ala Ala Lys Glu Val Pro Arg Ile Ile Thr Glu Asn Gly Asp His
      115         120         125
His Val Val Gln Leu Gln Leu Lys Ser Lys Glu Thr Gly Met Thr Phe
      130         135         140

```

Ala Ser Thr Ser Phe Val Phe Tyr Asn Cys Ser Val His Asn Ser Cys
 145 150 155 160
 Leu Ser Cys Val Glu Ser Pro Tyr Arg Cys His Trp Cys Lys Tyr Arg
 165 170 175
 His Val Cys Thr Asp Pro Lys Thr Cys Ser Phe Gln Glu Gly Arg Val
 180 185 190
 Lys Leu Pro Glu Val Gly Pro
 195

<210> 9

<211> 6408

<212> DNA

<213> HOMO SAPIEN

<400> 9

atgcctgctc	tgggcccagc	tcttctccag	gctctctggg	ccgggtgggt	cctcaccctc	60
cagccccctc	caccaactgc	attcaactccc	aatggcacgt	atctgcagca	cctggcaagg	120
gacccccacct	caggcacccct	ctacactgggg	gctaccaact	tcctgttcca	gctgagccct	180
gggtgtcagc	tggaggccac	agtgtccacc	ggccctgtgc	tagacagcag	ggactgcctg	240
ccacccgtga	tgcctgtatga	gtgcctccag	gcccagccata	ccaacaaccc	gaatcagctg	300
ctcctgggtga	gcccaggggc	cctgtgtta	tgccggagcg	tgcaccagg	ggtctgtgaa	360
cagcggcgcc	tggggcagct	cgaggcagctg	ctgctgcggc	cagagcggcc	tggggacaca	420
caatatgtgg	ctgccaatga	tcctgcggtc	agcacggtgg	ggctgttagc	ccagggcttg	480
gcaggggagc	ccctccctgtt	tgtggggcga	ggatacacca	gcaggggtgt	gggggggtggc	540
attccaccca	tcacaaccccg	ggccctgtgg	ccgcccggacc	cccaagctgc	tttctccatat	600
gaggagacag	ccaagctggc	agtggggccgc	ctctccgagt	acagccacca	tttcgtgagt	660
gccttgcac	gtggggccag	cgccctacttc	ctgttcttcgc	ggcgggacct	gcaggctcag	720
tctagagctt	ttcgtgccta	tgtatctcga	gtgtgtctcc	gggaccagca	ctactactcc	780
tatgtggagt	tgcctctggc	ctgcgaaggt	ggccgtactg	ggctgatcca	ggctgcagct	840
gtggccacgt	ccagggaggt	ggcgcatggg	gaggtgctct	ttgcagctt	ttcctcggt	900
gcacccccc	ctgtggggcg	gcccccatcg	gcccgtgtg	gggcacatctgg	ggcctctgcc	960
ctctgtgcct	tcccccttgg	tgaggtggac	cggtgtgtca	atcgacacgc	agatgcctgc	1020
tacacccggg	agggtcg	tgaggatggg	accgagggtgg	cctacatcga	gtatgtatgc	1080
aattctgact	gtgcacagct	gccagtggac	accctggatg	tttacccctg	tggctcagac	1140
cacacccca	gccccatggc	cagccgggtc	ccgctggaa	ccacaccaat	tctggagttg	1200
ccagggattc	agctaacacgc	tgtggcagtc	accatggaa	atggacacac	catcgcttc	1260
ctgggtgata	gtcaagggca	gctgcacagg	gtctacttgg	gcccagggg	cgatggccac	1320
ccatactcca	cacagagcat	ccagcagggg	tctgcagtg	gcagagacact	cacctttgat	1380
gggaccttgc	agcacctgt	tgtcatgacc	cagagcacac	ttctgttgc	ttctgtggct	1440
tcctgtgc	agcaccttgg	ctgtcatct	tcctgtgtc	acagggaccc	atactgtgg	1500
tggtgtgtc	tccttggcag	gtgcagtcgc	cgttctgag	gctcgaggggg	ccagggccc	1560
gagcagttgc	tatggagctt	ccagcttgag	ctgggtgtc	tgcaagtggc	agccatgagt	1620
cctgccaaca	tcagccgaga	ggagacgagg	gaggtttcc	tatca	gtgc	1680
ccctgtggc	caggggagtc	atattccgtc	cactttgggg	tttacatcagag	ttctgc	1740
ctgactgtt	ctgggtgtat	gtgccttgc	ccagacccta	gtgaggcccc	atctgtgc	1800
agaggagccg	actacgtatc	cgtgagcgtg	gagctcagat	ttggcgtgt	tgtatgc	1860
aaaacttccc	tctcttttca	tgactgtgtg	gcccgtactg	aactccggcc	atctgtgc	1920
tgccaggcct	gtgtgagcag	ccgcgtgggg	tgtaactgtt	gtgtgtggca	gcacctgtgc	1980
accacaagg	cctcggtgt	tgctggggcc	atgggttgc	gcccgttgc	cccg	2040
tccccagacc	ctcctgcaag	aggtggaccc	agccctccc	caccacagc	ccccaaagcc	2100
ctggccaccc	ctgctccgt	cacccttccc	gtggagcc	gggctccctc	cacagccaca	2160
gcttcggaca	tctcacctgg	ggctagtcct	tccctgtca	gcccgtgggg	gccatgggca	2220
ggttctggct	ccatatcttc	ccctggctcc	acagggtc	ctctccatga	ggagccctcc	2280
cctcccaagcc	ccaaaaatgg	accttggaaacc	gctgtccctg	ccccactga	tttcagaccc	2340
tcagccacac	ctgaggac	cttggcctcc	ccgctgtc	cgtagaggt	agcagcagtg	2400

ccccctgcag	accctggccc	cgaggcttt	catcccacag	tgcccctgga	cctgccccct	2460
gccactgttc	ctgccaccac	tttcccaggg	gccatggct	ccgtgaagcc	cgcctggac	2520
tggctcacga	gagaaggcgg	cgagctgccc	gaggcggacg	agtggacggg	gggtgacgca	2580
cccgcttct	ccacttccac	cctccctcta	ggtgatggag	actcagcaga	gcttgagggc	2640
cctcccggcc	ccctcatcct	cccgtccagc	ctcgactacc	agtatgacac	ccccgggctc	2700
tgggagctgg	aagaggcgac	cttggggca	agctcctgccc	cctgtgtgga	gagcgttca	2760
ggctccacgt	tgatgccgt	ccatgtggag	cgggaaatcc	ggctgcttagg	caggaacctg	2820
cacccccc	aggatggccc	aggagacaat	gagtgtgtga	tggagctgga	gggcctcgag	2880
gtgggggtt	aggccgggt	cgagttgtgg	ccacccctccag	ataccaggat	ccatgtcacc	2940
tgcgcagcgc	accagctca	ctatggggat	tgccagccgg	agctccgtgt	ggggctgttt	3000
ctgcgtcggt	ccggccgtt	gctgtgtggac	agtgtgtggg	ggctgcatgt	gttactgtat	3060
gactgttccg	tgggacatgg	agactgcagc	cgctgcca	ctgcccattg	ccagttatg	3120
tgtgtgttgt	gtgaggggg	gcgtccacgt	tgtgtgacc	gggaggcctg	ttgtgaggct	3180
gaggctgtgg	ccacccttgt	cccagcgc	ctcatccact	cggtggagcc	actgactgg	3240
ccctgttagac	gaggcacc	tgtcaccatc	aggggctcca	acctgggcca	gcatgtgcag	3300
gatgtgttgt	gcatggt	ggtggttgg	gtgcccgtt	ctgtggatgc	ccaggagttac	3360
gaggcttcca	gcagcctgt	gtgcatacc	ggggccatgt	gggaggaggt	ggccggcgg	3420
acagcggtgg	agggtccgg	aagaggacgt	gtgtgttca	aacacgactt	tgcctaccat	3480
gatccgaagg	tccattccat	cttccggcc	cgccggccca	gagctgggg	caccctgttc	3540
accccttaat	gtcttca	cctgtactgg	cggttggagg	ataccggat	gttgggttga	3600
gaccagcctt	gtcacttgt	gccggagcag	cagtcaac	aactgcgtt	tgagaccagc	3660
ccacccccc	cgccctg	gctccctgt	gctgtgtgt	ttggggccac	ggagcggagg	3720
cttcaacgcg	gacagttcaa	gtatacctt	gaccccaaca	tcacccctgc	ttggcccccacc	3780
aagagcttcc	tcagtggagg	acgtgagata	tgcgtccgt	gccagaatct	ggacgtggta	3840
cagacgcca	gaatccgggt	gaccgtgg	tcgagaatgc	tgcagccaa	ccaggggctt	3900
ggacggaggc	gtcgcgtgt	cccggagacg	gcatgttccc	ttggacc	ctgcagtagc	3960
cagaatttt	aggagccgt	ccatgtca	tcctccca	tcatcacgt	ccgcacac	4020
gcccctccag	gcctgcgt	ggacccttgg	gtccgggttgg	aatttac	tgacaac	4080
gtcttgcact	tttcaacact	gaacccca	ccttcttct	atggggcga	ccccaccc	4140
cagccactca	accctgagga	ccccccat	ccattccgg	acaagcctgg	gagtgtgtc	4200
tccgtggagg	gggagaac	ggaccc	atgttca	aggaggttgg	ggcttat	4260
ggggatggcc	cctgtgtgt	gaagacgt	acgcggcacc	acctgtact	cgagcccc	4320
gtggagcgc	ccctgccc	gcaccat	ctccgagagg	cacctgact	tttgcctg	4380
ttcacgggt	agatgggaa	cttgcgtt	tcctgggt	acgtgcagta	tgacggc	4440
agccctgggg	ctttcctgt	ggcagcc	gtgggttgg	gggtgggcac	ctcttct	4500
gctctgggt	tcatcat	tgtcc	tacaggaga	agagcaagca	ggccctgagg	4560
gactataaga	aggttcagat	ccagtcgg	aatctggaga	gcagttgt	ggaccgct	4620
aagaaggaat	tcacagact	catgtact	atgaccgat	tcaccaggat	cctctgg	4680
agcggcatcc	ccttcctg	ctacaagg	tatgtgg	ggatcttct	ccctgggcac	4740
cgcgagtcgc	ccttgacc	ggaccc	gtgcctgaga	gcagacggcc	ctgttagag	4800
caaggcgtgg	ggcagctc	taacc	aacagca	tcttctc	caagttcat	4860
cacacgctgg	agaccc	cac	gtcgggacc	gtgcctacgt	gcatctct	4920
ctcacccgtgg	cactgc	gaagctt	tat	acatcc	cactct	4980
agtgcac	ttgccc	tgatgtt	ccat	tgatgt	ccat	5040
actgttgtt	agaagctgt	caccaact	atgtt	gtctgtat	ttcgt	5100
gactccgtt	ggggac	gtatgt	tttgc	ttaagc	actggata	5160
gggc	acagtgt	aggcaagg	aaata	tgaa	ccgcct	5220
agagaggat	tggat	ttggat	cc	tgat	cc	5280
gcaggagg	cccagg	cccagg	ttggat	tgat	cc	5340
aaggagaaga	tgctgg	gtttata	ggatgt	ccacc	cc	5400
cgcaccc	atgtt	gtgg	ccgtt	ccat	cc	5460
gatgtca	ctgagg	gggt	ccct	tgat	cc	5520
gtccca	gagca	gggt	ccct	tgat	cc	5580
aaccaggatt	atgtcc	agagcg	ccaa	tgatgt	cc	5640
atccggccct	ggcac	atgt	gttgg	tgatgt	cc	5700

ggcagccttc	ggggcgaaaa	gcgtgagcgc	gccaaggcca	tccctgagat	ctacctgacc	5760
cgcctgctgt	ccatgaaggg	cacctgcag	aagttcgtag	atgacctgtt	ccaggtgatt	5820
ctcagcacca	ccccccccgt	gccgctcgct	gtgaagtact	tcttgcacct	gctggatgag	5880
caggcccagc	agcatggcat	ctccgaccag	gacaccatcc	acatctggaa	gaccaacagc	5940
ttgcctctga	gtttctggat	caataataata	aaaaacccgc	agtttgggtt	cgacgtgcaa	6000
acatctgata	acatggatgc	ggtgccctt	gtcattgcac	agaccttcat	ggacgcctgc	6060
accctggccg	accacaaggt	gggcgggac	tcccgatca	acaaacttct	gtatgcacgg	6120
gacattcccc	ggtacaagcg	gatggggaa	aggtactatg	cagacatcag	acagactgtc	6180
ccagccagcg	accaagagat	gaactctgtc	ctggctgaac	tgtccggaa	ctactccgga	6240
gacctcgaaa	cgcgagtggc	cctgcatgaa	ctctacaagt	acatcaacaa	gtactatgac	6300
cagatcatca	ctgcccctgga	ggaggatggc	acggcccaga	agatgcagct	gggctatcg	6360
ctccagcaga	ttgcagctgc	tgtggaaaac	aaggtcacag	atctatag		6408

<210> 10
<211> 2135
<212> PRT
<213> HOMO SAPIEN

<400> 10						
Met Pro Ala Leu Gly Pro Ala Leu Leu Gln Ala Leu Trp Ala Gly Trp						
1	5	10	15			
Val Leu Thr Leu Gln Pro Leu Pro Pro Thr Ala Phe Thr Pro Asn Gly						
20	25	30				
Thr Tyr Leu Gln His Leu Ala Arg Asp Pro Thr Ser Gly Thr Leu Tyr						
35	40	45				
Leu Gly Ala Thr Asn Phe Leu Phe Gln Leu Ser Pro Gly Leu Gln Leu						
50	55	60				
Glu Ala Thr Val Ser Thr Gly Pro Val Leu Asp Ser Arg Asp Cys Leu						
65	70	75	80			
Pro Pro Val Met Pro Asp Glu Cys Pro Gln Ala Gln Pro Thr Asn Asn						
85	90	95				
Pro Asn Gln Leu Leu Leu Val Ser Pro Gly Ala Leu Val Val Cys Gly						
100	105	110				
Ser Val His Gln Gly Val Cys Glu Gln Arg Arg Leu Gly Gln Leu Glu						
115	120	125				
Gln Leu Leu Leu Arg Pro Glu Arg Pro Gly Asp Thr Gln Tyr Val Ala						
130	135	140				
Ala Asn Asp Pro Ala Val Ser Thr Val Gly Leu Val Ala Gln Gly Leu						
145	150	155	160			
Ala Gly Glu Pro Leu Leu Phe Val Gly Arg Gly Tyr Thr Ser Arg Gly						
165	170	175				
Val Gly Gly Ile Pro Pro Ile Thr Thr Arg Ala Leu Trp Pro Pro						
180	185	190				
Asp Pro Gln Ala Ala Phe Ser Tyr Glu Glu Thr Ala Lys Leu Ala Val						
195	200	205				
Gly Arg Leu Ser Glu Tyr Ser His His Phe Val Ser Ala Phe Ala Arg						
210	215	220				
Gly Ala Ser Ala Tyr Phe Leu Phe Leu Arg Arg Asp Leu Gln Ala Gln						
225	230	235	240			
Ser Arg Ala Phe Arg Ala Tyr Val Ser Arg Val Cys Leu Arg Asp Gln						
245	250	255				
His Tyr Tyr Ser Tyr Val Glu Leu Pro Leu Ala Cys Glu Gly Gly Arg						
260	265	270				

Tyr Gly Leu Ile Gln Ala Ala Ala Val Ala Thr Ser Arg Glu Val Ala
 275 280 285
 His Gly Glu Val Leu Phe Ala Ala Phe Ser Ser Ala Ala Pro Pro Thr
 290 295 300
 Val Gly Arg Pro Pro Ser Ala Ala Ala Gly Ala Ser Gly Ala Ser Ala
 305 310 315 320
 Leu Cys Ala Phe Pro Leu Asp Glu Val Asp Arg Leu Ala Asn Arg Thr
 325 330 335
 Arg Asp Ala Cys Tyr Thr Arg Glu Gly Arg Ala Glu Asp Gly Thr Glu
 340 345 350
 Val Ala Tyr Ile Glu Tyr Asp Val Asn Ser Asp Cys Ala Gln Leu Pro
 355 360 365
 Val Asp Thr Leu Asp Ala Tyr Pro Cys Gly Ser Asp His Thr Pro Ser
 370 375 380
 Pro Met Ala Ser Arg Val Pro Leu Glu Ala Thr Pro Ile Leu Glu Trp
 385 390 395 400
 Pro Gly Ile Gln Leu Thr Ala Val Ala Val Thr Met Glu Asp Gly His
 405 410 415
 Thr Ile Ala Phe Leu Gly Asp Ser Gln Gly Gln Leu His Arg Val Tyr
 420 425 430
 Leu Gly Pro Gly Ser Asp Gly His Pro Tyr Ser Thr Gln Ser Ile Gln
 435 440 445
 Gln Gly Ser Ala Val Ser Arg Asp Leu Thr Phe Asp Gly Thr Phe Glu
 450 455 460
 His Leu Tyr Val Met Thr Gln Ser Thr Leu Leu Lys Val Pro Val Ala
 465 470 475 480
 Ser Cys Ala Gln His Leu Asp Cys Ala Ser Cys Leu Ala His Arg Asp
 485 490 495
 Pro Tyr Cys Gly Trp Cys Val Leu Leu Gly Arg Cys Ser Arg Arg Ser
 500 505 510
 Glu Cys Ser Arg Gly Gln Gly Pro Glu Gln Trp Leu Trp Ser Phe Gln
 515 520 525
 Pro Glu Leu Gly Cys Leu Gln Val Ala Ala Met Ser Pro Ala Asn Ile
 530 535 540
 Ser Arg Glu Glu Thr Arg Glu Val Phe Leu Ser Val Pro Asp Leu Pro
 545 550 555 560
 Pro Leu Trp Pro Gly Glu Ser Tyr Ser Cys His Phe Gly Glu His Gln
 565 570 575
 Ser Pro Ala Leu Leu Thr Gly Ser Gly Val Met Cys Pro Ser Pro Asp
 580 585 590
 Pro Ser Glu Ala Pro Val Leu Pro Arg Gly Ala Asp Tyr Val Ser Val
 595 600 605
 Ser Val Glu Leu Arg Phe Gly Ala Val Val Ile Ala Lys Thr Ser Leu
 610 615 620
 Ser Phe Tyr Asp Cys Val Ala Val Thr Glu Leu Arg Pro Ser Ala Gln
 625 630 635 640
 Cys Gln Ala Cys Val Ser Ser Arg Trp Gly Cys Asn Trp Cys Val Trp
 645 650 655
 Gln His Leu Cys Thr His Lys Ala Ser Cys Asp Ala Gly Pro Met Val
 660 665 670
 Ala Ser His Gln Ser Pro Leu Val Ser Pro Asp Pro Pro Ala Arg Gly
 675 680 685
 Gly Pro Ser Pro Ser Pro Pro Thr Ala Pro Lys Ala Leu Ala Thr Pro
 690 695 700
 Ala Pro Asp Thr Leu Pro Val Glu Pro Gly Ala Pro Ser Thr Ala Thr

705	710	715	720
Ala Ser Asp Ile Ser Pro Gly Ala Ser Pro Ser Leu Leu Ser Pro Trp			
725	730	735	
Gly Pro Trp Ala Gly Ser Gly Ser Ile Ser Ser Pro Gly Ser Thr Gly			
740	745	750	
Ser Pro Leu His Glu Glu Pro Ser Pro Pro Ser Pro Gln Asn Gly Pro			
755	760	765	
Gly Thr Ala Val Pro Ala Pro Thr Asp Phe Arg Pro Ser Ala Thr Pro			
770	775	780	
Glu Asp Leu Leu Ala Ser Pro Leu Ser Pro Ser Glu Val Ala Ala Val			
785	790	795	800
Pro Pro Ala Asp Pro Gly Pro Glu Ala Leu His Pro Thr Val Pro Leu			
805	810	815	
Asp Leu Pro Pro Ala Thr Val Pro Ala Thr Thr Phe Pro Gly Ala Met			
820	825	830	
Gly Ser Val Lys Pro Ala Leu Asp Trp Leu Thr Arg Glu Gly Gly Glu			
835	840	845	
Leu Pro Glu Ala Asp Glu Trp Thr Gly Gly Asp Ala Pro Ala Phe Ser			
850	855	860	
Thr Ser Thr Leu Leu Ser Gly Asp Gly Asp Ser Ala Glu Leu Glu Gly			
865	870	875	880
Pro Pro Ala Pro Leu Ile Leu Pro Ser Ser Leu Asp Tyr Gln Tyr Asp			
885	890	895	
Thr Pro Gly Leu Trp Glu Leu Glu Glu Ala Thr Leu Gly Ala Ser Ser			
900	905	910	
Cys Pro Cys Val Glu Ser Val Gln Gly Ser Thr Leu Met Pro Val His			
915	920	925	
Val Glu Arg Glu Ile Arg Leu Leu Gly Arg Asn Leu His Leu Phe Gln			
930	935	940	
Asp Gly Pro Gly Asp Asn Glu Cys Val Met Glu Leu Glu Gly Leu Glu			
945	950	955	960
Val Val Val Glu Ala Arg Val Glu Cys Glu Pro Pro Pro Asp Thr Gln			
965	970	975	
Cys His Val Thr Cys Gln Gln His Gln Leu Ser Tyr Glu Ala Leu Gln			
980	985	990	
Pro Glu Leu Arg Val Gly Leu Phe Leu Arg Arg Ala Gly Arg Leu Arg			
995	1000	1005	
Val Asp Ser Ala Glu Gly Leu His Val Val Leu Tyr Asp Cys Ser Val			
1010	1015	1020	
Gly His Gly Asp Cys Ser Arg Cys Gln Thr Ala Met Pro Gln Tyr Gly			
1025	1030	1035	1040
Cys Val Trp Cys Glu Gly Glu Arg Pro Arg Cys Val Thr Arg Glu Ala			
1045	1050	1055	
Cys Gly Glu Ala Glu Ala Val Ala Thr Gln Cys Pro Ala Pro Leu Ile			
1060	1065	1070	
His Ser Val Glu Pro Leu Thr Gly Pro Val Asp Gly Gly Thr Arg Val			
1075	1080	1085	
Thr Ile Arg Gly Ser Asn Leu Gly Gln His Val Gln Asp Val Leu Gly			
1090	1095	1100	
Met Val Thr Val Ala Gly Val Pro Cys Ala Val Asp Ala Gln Glu Tyr			
1105	1110	1115	1120
Glu Val Ser Ser Ser Leu Val Cys Ile Thr Gly Ala Ser Gly Glu Glu			
1125	1130	1135	
Val Ala Gly Ala Thr Ala Val Glu Val Pro Gly Arg Gly Arg Gly Val			
1140	1145	1150	

Ser Glu His Asp Phe Ala Tyr Gln Asp Pro Lys Val His Ser Ile Phe
 1155 1160 1165
 Pro Ala Arg Gly Pro Arg Ala Gly Gly Thr Arg Leu Thr Leu Asn Gly
 1170 1175 1180
 Ser Lys Leu Leu Thr Gly Arg Leu Glu Asp Ile Arg Val Val Val Gly
 1185 1190 1195 1200
 Asp Gln Pro Cys His Leu Leu Pro Glu Gln Gln Ser Glu Gln Leu Arg
 1205 1210 1215
 Cys Glu Thr Ser Pro Arg Pro Thr Pro Ala Thr Leu Pro Val Ala Val
 1220 1225 1230
 Trp Phe Gly Ala Thr Glu Arg Arg Leu Gln Arg Gly Gln Phe Lys Tyr
 1235 1240 1245
 Thr Leu Asp Pro Asn Ile Thr Ser Ala Gly Pro Thr Lys Ser Phe Leu
 1250 1255 1260
 Ser Gly Gly Arg Glu Ile Cys Val Arg Gly Gln Asn Leu Asp Val Val
 1265 1270 1275 1280
 Gln Thr Pro Arg Ile Arg Val Thr Val Val Ser Arg Met Leu Gln Pro
 1285 1290 1295
 Ser Gln Gly Leu Gly Arg Arg Arg Val Val Pro Glu Thr Ala Cys
 1300 1305 1310
 Ser Leu Gly Pro Ser Cys Ser Ser Gln Gln Phe Glu Glu Pro Cys His
 1315 1320 1325
 Val Asn Ser Ser Gln Leu Ile Thr Cys Arg Thr Pro Ala Leu Pro Gly
 1330 1335 1340
 Leu Pro Glu Asp Pro Trp Val Arg Val Glu Phe Ile Leu Asp Asn Leu
 1345 1350 1355 1360
 Val Phe Asp Phe Ala Thr Leu Asn Pro Thr Pro Phe Ser Tyr Glu Ala
 1365 1370 1375
 Asp Pro Thr Leu Gln Pro Leu Asn Pro Glu Asp Pro Thr Met Pro Phe
 1380 1385 1390
 Arg His Lys Pro Gly Ser Val Phe Ser Val Glu Gly Glu Asn Leu Asp
 1395 1400 1405
 Leu Ala Met Ser Lys Glu Glu Val Val Ala Met Ile Gly Asp Gly Pro
 1410 1415 1420
 Cys Val Val Lys Thr Leu Thr Arg His His Leu Tyr Cys Glu Pro Pro
 1425 1430 1435 1440
 Val Glu Gln Pro Leu Pro Arg His His Ala Leu Arg Glu Ala Pro Asp
 1445 1450 1455
 Ser Leu Pro Glu Phe Thr Val Gln Met Gly Asn Leu Arg Phe Ser Leu
 1460 1465 1470
 Gly His Val Gln Tyr Asp Gly Glu Ser Pro Gly Ala Phe Pro Val Ala
 1475 1480 1485
 Ala Gln Val Gly Leu Gly Val Gly Thr Ser Leu Leu Ala Leu Gly Val
 1490 1495 1500
 Ile Ile Ile Val Leu Met Tyr Arg Arg Lys Ser Lys Gln Ala Leu Arg
 1505 1510 1515 1520
 Asp Tyr Lys Lys Val Gln Ile Gln Leu Glu Asn Leu Glu Ser Ser Val
 1525 1530 1535
 Arg Asp Arg Cys Lys Lys Glu Phe Thr Asp Leu Met Thr Glu Met Thr
 1540 1545 1550
 Asp Leu Thr Ser Asp Leu Leu Gly Ser Gly Ile Pro Phe Leu Asp Tyr
 1555 1560 1565
 Lys Val Tyr Ala Glu Arg Ile Phe Phe Pro Gly His Arg Glu Ser Pro
 1570 1575 1580
 Leu His Arg Asp Leu Gly Val Pro Glu Ser Arg Arg Pro Thr Val Glu

1585	1590	1595	1600
Gln Gly Leu Gly Gln	Leu Ser Asn Leu Leu Asn Ser Lys Leu Phe Leu		
1605	1610	1615	
Thr Lys Phe Ile His Thr Leu Glu Ser Gln Arg Thr Phe Ser Ala Arg			
1620	1625	1630	
Asp Arg Ala Tyr Val Ala Ser Leu Leu Thr Val Ala Leu His Gly Lys			
1635	1640	1645	
Leu Glu Tyr Phe Thr Asp Ile Leu Arg Thr Leu Leu Ser Asp Leu Val			
1650	1655	1660	
Ala Gln Tyr Val Ala Lys Asn Pro Lys Leu Met Leu Arg Arg Thr Glu			
1665	1670	1675	1680
Thr Val Val Glu Lys Leu Leu Thr Asn Trp Met Ser Ile Cys Leu Tyr			
1685	1690	1695	
Thr Phe Val Arg Asp Ser Val Gly Glu Pro Leu Tyr Met Leu Phe Arg			
1700	1705	1710	
Gly Ile Lys His Gln Val Asp Lys Gly Pro Val Asp Ser Val Thr Gly			
1715	1720	1725	
Lys Ala Lys Tyr Thr Leu Asn Asp Asn Arg Leu Leu Arg Glu Asp Val			
1730	1735	1740	
Glu Tyr Arg Pro Leu Thr Leu Asn Ala Leu Leu Ala Val Gly Pro Gly			
1745	1750	1755	1760
Ala Gly Glu Ala Gln Gly Val Pro Val Lys Val Leu Asp Cys Asp Thr			
1765	1770	1775	
Ile Ser Gln Ala Lys Glu Lys Met Leu Asp Gln Leu Tyr Lys Gly Val			
1780	1785	1790	
Pro Leu Thr Gln Arg Pro Asp Pro Arg Thr Leu Asp Val Glu Trp Arg			
1795	1800	1805	
Ser Gly Val Ala Gly His Leu Ile Leu Ser Asp Glu Asp Val Thr Ser			
1810	1815	1820	
Glu Val Gln Gly Leu Trp Arg Arg Leu Asn Thr Leu Gln His Tyr Lys			
1825	1830	1835	1840
Val Pro Asp Gly Ala Thr Val Ala Leu Val Pro Cys Leu Thr Lys His			
1845	1850	1855	
Val Leu Arg Glu Asn Gln Asp Tyr Val Pro Gly Glu Arg Thr Pro Met			
1860	1865	1870	
Leu Glu Asp Val Asp Glu Gly Ile Arg Pro Trp His Leu Val Lys			
1875	1880	1885	
Pro Ser Asp Glu Pro Glu Pro Pro Arg Pro Arg Arg Gly Ser Leu Arg			
1890	1895	1900	
Gly Gly Glu Arg Glu Arg Ala Lys Ala Ile Pro Glu Ile Tyr Leu Thr			
1905	1910	1915	1920
Arg Leu Leu Ser Met Lys Gly Thr Leu Gln Lys Phe Val Asp Asp Leu			
1925	1930	1935	
Phe Gln Val Ile Leu Ser Thr Ser Arg Pro Val Pro Leu Ala Val Lys			
1940	1945	1950	
Tyr Phe Phe Asp Leu Leu Asp Glu Gln Ala Gln Gln His Gly Ile Ser			
1955	1960	1965	
Asp Gln Asp Thr Ile His Ile Trp Lys Thr Asn Ser Leu Pro Leu Arg			
1970	1975	1980	
Phe Trp Ile Asn Ile Ile Lys Asn Pro Gln Phe Val Phe Asp Val Gln			
1985	1990	1995	2000
Thr Ser Asp Asn Met Asp Ala Val Leu Leu Val Ile Ala Gln Thr Phe			
2005	2010	2015	
Met Asp Ala Cys Thr Leu Ala Asp His Lys Leu Gly Arg Asp Ser Pro			
2020	2025	2030	

Ile Asn Lys Leu Leu Tyr Ala Arg Asp Ile Pro Arg Tyr Lys Arg Met
 2035 2040 2045
 Val Glu Arg Tyr Tyr Ala Asp Ile Arg Gln Thr Val Pro Ala Ser Asp
 2050 2055 2060
 Gln Glu Met Asn Ser Val Leu Ala Glu Leu Ser Trp Asn Tyr Ser Gly
 2065 2070 2075 2080
 Asp Leu Gly Ala Arg Val Ala Leu His Glu Leu Tyr Lys Tyr Ile Asn
 2085 2090 2095
 Lys Tyr Tyr Asp Gln Ile Ile Thr Ala Leu Glu Glu Asp Gly Thr Ala
 2100 2105 2110
 Gln Lys Met Gln Leu Gly Tyr Arg Leu Gln Gln Ile Ala Ala Ala Val
 2115 2120 2125
 Glu Asn Lys Val Thr Asp Leu
 2130 2135

<210> 11
<211> 2190
<212> DNA
<213> HOMO SAPIEN

<400> 11

atgcctgctc	tggcccaagc	tcttctccag	gctctctggg	ccgggtgggt	cctcaccctc	60
cagccccctc	caccaactgc	attcaactccc	aatggcacgt	atctgcagca	cctggcaagg	120
gaccacct	caggcacct	ctacctgggg	gctaccaaact	tcctgttcca	gtgagccct	180
gggcgtcage	tggagggcac	agtgtccacc	ggccctgtgc	tagacagcag	ggactgcctg	240
ccacctgtga	tgcctgtatga	gtgcctccag	gcccagcccta	ccaacaaccc	aatcagctg	300
ctcctgttga	gcccaggggc	cctgttgta	tgcggggagc	tgcaccaggg	gttctgtgaa	360
cagccgcgc	tggggcagct	cgagcagctg	ctgctgcggc	cagaggggcc	tggggacaca	420
caatatgtgg	ctgccaatga	tcctgcgtc	agcacgggtt	ggctgttagc	ccagggcttg	480
gcaggggagc	ccctcctgtt	tgtggggcga	ggatacacca	gcaggggtgt	gggggggtggc	540
attccaccca	tcacaacccg	ggccctgtgg	ccgcccggacc	ccaaagctgc	tttctcttat	600
gaggagacag	ccaagctgcc	agtggggccgc	ctctccgagt	acagccacca	ttcgttgagt	660
gccttgcac	gtggggccag	cgcctacttc	ctgttctgc	ggcgggacct	gcaggctcag	720
tctagagctt	tgcgtgccta	tgtatctcga	gtgtgtctcc	gggaccagca	ctactactcc	780
tatgtggagt	tgcctctgdc	ctgcgaagggt	ggccgcatac	ggctgatcca	ggctgcagct	840
gtggccacgt	ccagggaggt	ggcgcatggg	gagggtctt	ttgcagctt	ttcctcggt	900
gcacccccc	ctgtggccg	gccccatcg	ggggctgtcg	gggcatactgg	gcctctgc	960
ctctgtgcct	tccccctgga	tgagggtggac	cggttgcata	atgcacgcg	agatgcctgc	1020
tacacccggg	agggtcggtc	tgaggatggg	accgaggtgg	cctacatcga	gtatgatgtc	1080
aattctgact	gtgcacagct	gccagtggac	accctggatg	ttatccctg	tggctcagac	1140
cacacgcccc	gccccatggc	cagccgggtc	ccgctggaaag	ccacaccaat	tctggagtgg	1200
ccagggattc	agctaacagc	tgtggcagtc	accatggaaag	atggacacac	catcgcttcc	1260
ctgggtgata	gtcaagggca	gctgcacagg	gtctacttgg	gcccaggag	cgatggccac	1320
ccatactccca	cacagagcat	ccagcagggg	tctgcagtga	gcagagacct	cacctttgat	1380
gggacctttg	agcacctgtc	tgtcatggc	caagcacac	ttctgaagg	tcctgtggct	1440
tcctgtgc	agcacctgtc	ctgtgcata	tgccttgc	acaggagaccc	atactgtggg	1500
tggtgtgtc	tccttggcag	gtgcagtcgc	cggttgcgt	gctcgagggg	ccagggccca	1560
gagcagtggc	tatggagctt	ccagcctgag	ctgggctgtc	tgcaagtggc	agccatgagt	1620
cctgccaaca	tcagccgaga	ggagacgagg	gaggtttcc	tatcagtgcc	agacctgcca	1680
ccccctgtggc	caggggagtc	atattctgc	cactttgggg	aacatcagag	tcctgcccctg	1740
ctgactggtt	ctgggtgtat	gtgccttcc	ccagacccta	gtgaggcccc	agtgtgc	1800
agaggagccg	actacgtatc	cgtgagcgtg	gagctcagat	ttggcgctgt	tgtatcgcc	1860
aaaacttccc	tctctttcta	tgactgtgt	gcccgtactg	aactccgccc	atctgcgcag	1920
tgccaggccct	gtgtgagcag	ccgctggggg	tgtaactgtt	gtgtctggca	gcacctgtgc	1980
acccacaagg	cctcgtgtga	tgctgggccc	atggttgcaa	gccatcaggt	gatggagact	2040

cagcagagct tgagggccct cccgcccccc tcatcctccc gtccagccctc gactaccagt	2100
atgacacccccc cgggctctgg gagcttggaaag aggcgacctt gggggcaagc tcctgcccct	2160
gtgtggagag cgttcaggc tccacgttga	2190

<210> 12
<211> 729
<212> PRT
<213> HOMO SAPIEN

<400> 12	
Met Pro Ala Leu Gly Pro Ala Leu Leu Gln Ala Leu Trp Ala Gly Trp	
1 5 10 15	
Val Leu Thr Leu Gln Pro Leu Pro Pro Thr Ala Phe Thr Pro Asn Gly	
20 25 30	
Thr Tyr Leu Gln His Leu Ala Arg Asp Pro Thr Ser Gly Thr Leu Tyr	
35 40 45	
Leu Gly Ala Thr Asn Phe Leu Phe Gln Leu Ser Pro Gly Leu Gln Leu	
50 55 60	
Glu Ala Thr Val Ser Thr Gly Pro Val Leu Asp Ser Arg Asp Cys Leu	
65 70 75 80	
Pro Pro Val Met Pro Asp Glu Cys Pro Gln Ala Gln Pro Thr Asn Asn	
85 90 95	
Pro Asn Gln Leu Leu Leu Val Ser Pro Gly Ala Leu Val Val Cys Gly	
100 105 110	
Ser Val His Gln Gly Val Cys Glu Gln Arg Arg Leu Gly Gln Leu Glu	
115 120 125	
Gln Leu Leu Leu Arg Pro Glu Arg Pro Gly Asp Thr Gln Tyr Val Ala	
130 135 140	
Ala Asn Asp Pro Ala Val Ser Thr Val Gly Leu Val Ala Gln Gly Leu	
145 150 155 160	
Ala Gly Glu Pro Leu Leu Phe Val Gly Arg Gly Tyr Thr Ser Arg Gly	
165 170 175	
Val Gly Gly Ile Pro Pro Ile Thr Thr Arg Ala Leu Trp Pro Pro	
180 185 190	
Asp Pro Gln Ala Ala Phe Ser Tyr Glu Glu Thr Ala Lys Leu Ala Val	
195 200 205	
Gly Arg Leu Ser Glu Tyr Ser His His Phe Val Ser Ala Phe Ala Arg	
210 215 220	
Gly Ala Ser Ala Tyr Phe Leu Phe Leu Arg Arg Asp Leu Gln Ala Gln	
225 230 235 240	
Ser Arg Ala Phe Arg Ala Tyr Val Ser Arg Val Cys Leu Arg Asp Gln	
245 250 255	
His Tyr Tyr Ser Tyr Val Glu Leu Pro Leu Ala Cys Glu Gly Arg	
260 265 270	
Tyr Gly Leu Ile Gln Ala Ala Ala Val Ala Thr Ser Arg Glu Val Ala	
275 280 285	
His Gly Glu Val Leu Phe Ala Ala Phe Ser Ser Ala Ala Pro Pro Thr	
290 295 300	
Val Gly Arg Pro Pro Ser Ala Ala Ala Gly Ala Ser Gly Ala Ser Ala	
305 310 315 320	
Leu Cys Ala Phe Pro Leu Asp Glu Val Asp Arg Leu Ala Asn Arg Thr	
325 330 335	
Arg Asp Ala Cys Tyr Thr Arg Glu Gly Arg Ala Glu Asp Gly Thr Glu	
340 345 350	
Val Ala Tyr Ile Glu Tyr Asp Val Asn Ser Asp Cys Ala Gln Leu Pro	

355	360	365
Val Asp Thr Leu Asp Ala Tyr Pro Cys Gly Ser Asp His Thr Pro Ser		
370	375	380
Pro Met Ala Ser Arg Val Pro Leu Glu Ala Thr Pro Ile Leu Glu Trp		
385	390	395
400		
Pro Gly Ile Gln Leu Thr Ala Val Ala Val Thr Met Glu Asp Gly His		
405	410	415
Thr Ile Ala Phe Leu Gly Asp Ser Gln Gly Gln Leu His Arg Val Tyr		
420	425	430
Leu Gly Pro Gly Ser Asp Gly His Pro Tyr Ser Thr Gln Ser Ile Gln		
435	440	445
Gln Gly Ser Ala Val Ser Arg Asp Leu Thr Phe Asp Gly Thr Phe Glu		
450	455	460
His Leu Tyr Val Met Thr Gln Ser Thr Leu Leu Lys Val Pro Val Ala		
465	470	475
480		
Ser Cys Ala Gln His Leu Asp Cys Ala Ser Cys Leu Ala His Arg Asp		
485	490	495
Pro Tyr Cys Gly Trp Cys Val Leu Leu Gly Arg Cys Ser Arg Arg Ser		
500	505	510
Glu Cys Ser Arg Gly Gln Gly Pro Glu Gln Trp Leu Trp Ser Phe Gln		
515	520	525
Pro Glu Leu Gly Cys Leu Gln Val Ala Ala Met Ser Pro Ala Asn Ile		
530	535	540
Ser Arg Glu Glu Thr Arg Glu Val Phe Leu Ser Val Pro Asp Leu Pro		
545	550	555
560		
Pro Leu Trp Pro Gly Glu Ser Tyr Ser Cys His Phe Gly Glu His Gln		
565	570	575
Ser Pro Ala Leu Leu Thr Gly Ser Gly Val Met Cys Pro Ser Pro Asp		
580	585	590
Pro Ser Glu Ala Pro Val Leu Pro Arg Gly Ala Asp Tyr Val Ser Val		
595	600	605
Ser Val Glu Leu Arg Phe Gly Ala Val Val Ile Ala Lys Thr Ser Leu		
610	615	620
Ser Phe Tyr Asp Cys Val Ala Val Thr Glu Leu Arg Pro Ser Ala Gln		
625	630	635
640		
Cys Gln Ala Cys Val Ser Ser Arg Trp Gly Cys Asn Trp Cys Val Trp		
645	650	655
Gln His Leu Cys Thr His Lys Ala Ser Cys Asp Ala Gly Pro Met Val		
660	665	670
Ala Ser His Gln Val Met Glu Thr Gln Gln Ser Leu Arg Ala Leu Pro		
675	680	685
Pro Pro Ser Ser Ser Arg Pro Ala Ser Thr Thr Ser Met Thr Pro Pro		
690	695	700
Gly Ser Gly Ser Trp Lys Arg Arg Pro Trp Gly Gln Ala Pro Ala Pro		
705	710	715
720		
Val Trp Arg Ala Phe Arg Ala Pro Arg		
725		