Grado en Físicas

Métodos Numéricos

Tema 1. Ecuaciones no lineales de una variable

Alejandro Medina

Curso 2016/17, Septiembre 2016

ESQUEMA

- Introducción
- 2 MÉTODOS ITERATIVOS DE APROXIMACIÓN DE SOLUCIONES
- 3 Análisis de la convergencia

ESQUEMA

- Introducción
- MÉTODOS ITERATIVOS DE APROXIMACIÓN DE SOLUCIONES
- 3 Análisis de la convergencia

Introducción

Planteamiento del problema

$$f(x) = 0$$
 ó $x = g(x)$ \Longrightarrow ix ?

donde las funciones f ó g son funciones no lineales, reales de variable real.

EJEMPLOS:

$$x^{2} + 1 = 0;$$
 $x - \cos x = 0;$ $x = e^{x}$
 $\tan x - e^{x^{2}} = \log x - \frac{1}{1 - \cos x}$

Introducción

PROCESO PARA CALCULAR LAS SOLUCIONES

- Localización de las raíces.
- Separación.
- Stimación de la aproximación numérica a la solución.

SITUACIÓN MÁS SENCILLA

Función continua, f(x), de modo que $\exists [a,b] / f(a) f(b) < 0$

$$\Rightarrow \exists c / f(c) = 0$$
 (Teorema de Bolzano)

ESQUEMA

- Introducción
- MÉTODOS ITERATIVOS DE APROXIMACIÓN DE SOLUCIONES
 - Método de bisección
 - Método de Newton-Raphson
 - Método de la secante
 - Ejemplos numéricos
- ANÁLISIS DE LA CONVERGENCIA

MÉTODOS ITERATIVOS DE APROXIMACIÓN DE SOLUCIONES

MÉTODO DE BISECCIÓN

VNiVERSiDAD D SALAMANCA

$$c_0 = \frac{a_0 + b_0}{2}; \quad c_1 = \frac{a_1 + b_1}{2}...$$

Alejandro Medina

FORMAS DE DEFINIR LA TOLERANCIA

1 Tolerancia en cuanto al tamaño del intervalo *n*-ésimo, ε :

$$\varepsilon = \frac{b-a}{2^n}$$

Tiene la ventaja de que se puede predeterminar el número de iteraciones, *n* necesario para alcanzar esa tolerancia:

$$n = \log_2 \frac{b - a}{\varepsilon}$$

2 Tolerancia en cuanto a la convergencia, β .

Se trata de realizar un número continuo de iteraciones comprobando la convergencia, hasta que se satisfaga la presupuesta:

$$|c_n-c_{n-1}|<\beta$$

Ejemplo:

Utilizando el método de la bisección, resuélvase la ecuación $e^{-x} - x = 0$ en el intervalo [0,1] con una tolerancia $\varepsilon = 0.002$.

Número de iteraciones:

$$\frac{b-a}{2^n}=0{,}002 \implies n \simeq 9$$

n	a _n	b_n	Cn
0	0.0000	1.0000	0.5000
1	0.5000	1.0000	0.7500
2	0.5000	0.7500	0.6250
3	0.5000	0.6250	0.5625
8	0.5664	0.5703	0.5684
9	0.5664	0.5684	0.5674

Raíz aproximada: $c_0 = 0.5674$

(El valor 'exacto', con mayor precisión, es: 0,56714329)

Método de Newton-Raphson

VNiVERSiDAD DSALAMANCA

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k \ge 0)$

Ejemplo:

Ecuación	$x^2 - 5 = 0$	1/x - 7 = 0
Iteración $k+1$	$\boxed{\frac{1}{2}\left(x_k+\frac{5}{x_k}\right)}$	$x_k(2-7x_k)$
0	2.5000000	0.1000000
1	2.2500000	0.1300000
2	2.2361111	0.1417000
3	2.2360680	0.1428478
4	2.2360680	0.1428571
5		0.1428571
Raíz analítica	2,2360680	0,1428571

La convergencia del método no está asegurada

EJEMPLOS:

x_k coincide con algún extremo de la función

El algoritmo entra en algún bucle oscilante

MÉTODO DE LA SECANTE

VNiVERSiDAD D SALAMANCA

$$x_{k+1} = x_k - f(x_k) \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}$$

MÉTODO DE LA regula-falsi

VNiVERSIDAD DSALAMANCA

Variante del método de la secante que siempre converge

ALGUNOS EJEMPLOS NUMÉRICOS

Consideremos la ecuación:

$$f(x) = x^3 + 4x^2 - 10 = 0$$

Tiene una raíz en [1,2], porque f(1) = -5 y f(2) = 14.

Valor de la raíz con 10 decimales: $\alpha = 1,3652300134$

1. Método de la bisección

Valores iniciales: $a_0 = 1.0$, $b_0 = 2.0$; Tolerancia = 0.0005

n	a _n	b_n	Cn	$f(c_n)$
0	1,00000000	2,00000000	1,50000000	2,37500000
1	1,00000000	1,50000000	1,25000000	-1,79687500
2	1,25000000	1,50000000	1,37500000	0,16210937
3	1,25000000	1,37500000	1,31250000	-0,84838867
4	1,31250000	1,37500000	1,34375000	-0,35098266
7	1,35937500	1,36718750	1,36328125	-0,03214997
8	1,36328125	1,36718750	1,36523437	0,00007202
9	1,36328125	1,36523437	1,36425781	-0,01604669
10	1,364257812	1,36523437	1,36474609	-0,00798926

La convergencia se alcanza en n = 10.

En n=8 se obtiene un valor más próximo a la raíz exacta, que se pasa de largo porque no se verifica para ese *n* la condición de convergencia.

2. Método de Newton

Valor inicial, $x_0 = 1,0000$; Tolerancia = 0,0005.

n	X _n	$f(x_n)$
1	1,45454545	1,54019534
2	1,36890040	0,06071969
3	1,36523660	0,00010877
4	1,36523001	0,0000000004

Ahora se obtiene la convergencia en la iteración n=4. Además, para este ejemplo concreto $|\alpha-x_4| \simeq 10^{-10}$.

Es decir, la convergencia es mucho más rápida que en el método de la bisección, pero en contra de aquél, no siempre converge.

3. Método de la secante

Valores iniciales, $x_0 = 1,0000$; $x_1 = 2,0000$; Tolerancia = 0,0005.

Ejemplos numéricos

n	X _n	$f(x_n)$
2	1,26315789	-1,60227438
3	1,33882784	-0,43036474
4	1,36661639	0,02290943
5	1,36521190	-0,00029907
6	1,36523000	-0,00000020

La convergencia se consigue en n = 6.

$$|\alpha - x_6| \simeq 1,3 \times 10^{-8}$$

ESQUEMA

- Introducción
- 2 MÉTODOS ITERATIVOS DE APROXIMACIÓN DE SOLUCIONES
- 3 Análisis de la convergencia

Análisis de la convergencia

Método	Orden de converg.	Convergencia
Bisección	1 (lineal)	Asegurada
Newton-Raphson	2 (cuadrático)	No asegurada
Secante	\simeq 1,62 (superlineal)	No asegurada

Ejemplo:

Supongamos que (x_n) converge linealmente a c=0 y que (y_n) converge también a 0 pero cuadráticamente, siendo la constante γ igual en ambos casos. Entonces:

$$|x_{1}| \leq \gamma |x_{0}|; |y_{1}| \leq \gamma |y_{0}|^{2}$$

$$|x_{2}| \leq \gamma |x_{1}| \leq \gamma^{2} |x_{0}|; |y_{2}| \leq \gamma |y_{1}|^{2} \leq \gamma^{3} |y_{0}|^{4}$$

$$|x_{3}| \leq \gamma |x_{2}| \leq \gamma^{3} |x_{0}|; |y_{3}| \leq \gamma |y_{2}|^{2} \leq \gamma^{7} |x_{0}|^{8}$$

Y, en general,

$$|x_n| \le \gamma^n |x_0|$$
; $|y_n| \le \gamma^{2^n-1} |y_0|^{2^n}$

La siguiente tabla muestra cómo convergen estas cotas de error, considerando que:

$$\mid x_0 \mid = \mid y_0 \mid = 1$$
 y $\gamma = 0.5$

	Lineal	Cuadrática
n	$(0,5)^n$	$(0,5)^{2^n-1}$
1	$5,0000 \times 10^{-1}$	$5,0000 \times 10^{-1}$
2	$2,5000 \times 10^{-1}$	$1,2500 \times 10^{-1}$
3	$1,2500 \times 10^{-1}$	$7,8125 \times 10^{-3}$
4	$6,2500 \times 10^{-2}$	$3,0518 \times 10^{-5}$
7	$7,8125 \times 10^{-3}$	$5,8775 \times 10^{-39}$

La sucesión que converge cuadráticamente dista de cero menos de 10^{-38} a partir de su séptimo término, mientras que hacen falta al menos 126 términos de la otra para garantizar la misma precisión.

EJERCICIOS TEÓRICOS

1.- Utilizando el método de bisección, calcula la raíz en el intervalo [0,1] de la función:

$$f(x) = x^3 - 7x^2 + 14x - 6 = 0$$

con las siguientes precisiones: 1) $\varepsilon=10^{-1}$; 2) $\varepsilon=10^{-2}$ y 3) $\varepsilon=10^{-3}$.

2.- Utiliza el método de Newton para obtener una solución a la ecuación $x-\cos x=0$ en el intervalo $[0,\pi/2]$ con precisión 10^{-4} . Toma, por ejemplo, como punto de partida $x_1=0,5$.

EJERCICIOS TEÓRICOS

3.- Una partícula parte del reposo y se desliza a lo largo de un plano inclinado cuya inclinación, θ , cambia con velocidad constante,

$$\frac{d\theta}{dt}=\omega<0.$$

Después de t segundos, la posición de la partícula viene dada por:

$$x(t) = \frac{g}{2\omega^2} \left(\frac{e^{\omega t} - e^{-\omega t}}{2} - \sin \omega t \right)$$

Supongamos que la partícula ha recorrido 1,7 m en 1 s. Determina la velocidad ω con el método de la secante y con una precisión 10^{-5} . (Tómese g=-9,8 m/s²).

EJERCICIOS TEÓRICOS

4.- Una estructura para una construcción dispone de un sistema de amortiguamiento ante movimientos de tipo oscilatorio. La coordenada *y* de la estructura responde a la ecuación:

$$y(t) = 10 \,\mathrm{e}^{-t/2} \cos 2t$$

¿En qué instante de tiempo la coordenada y tiene un valor de 4,000? (Resuélvase el problema utilizando el método de la bisección con tolerancia $\varepsilon=10^{-3}$.)

Ejercicios teóricos

5.- Una buena aproximación al crecimiento del número de nodos con que interacciona uno dado en una red de comunicaciones compleja viene dado aproximadamente por la ecuación:

$$t - \frac{\cos t}{\sin t} = 0$$

Obténgase su raíz, alrededor de t=0.5, utilizando el método de Newton con 6 cifras significativas en los cálculos y precisión mayor que 10^{-4} .

6.- Las trayectorias de dos partículas en el plano (x,y) vienen dadas por $y_1(x) = e^x$ e $y_2(x) = 3x$. Determina aproximadamente los puntos de intersección, α y β , entre las 2 curvas. Para hacerlo utiliza el método de Newton tomando como puntos de partida: 0,5 para α y 1,5 para β . Como criterio de convergencia, se debe verificar que: $|x_{n+1} - x_n| < 10^{-3}$.