R ADC-TDR-62-472

401 886

OMPUTER SET, GENERAL INFORMATION DATA AN/GSQ-16 (XW-2)

(RUSSIAN-ENGLISH TRANSLATOR)

CONVERTER GROUP, PRINT-TO-DIGITAL AN/GSA-29

TECHNICAL DOCUMENTARY REPORT NO. RADC-TDR-62-472
September 3, 1962

Information Processing Laboratory Rome Air Development Center Research and Technology Division Air Force Systems Command Griffiss Air Force Base, New York

Project No. 4599, Task No. 459902

ASTIA

APR 22 1963

TISIA

(Prepared under Contract AF30(602)-2080 by the
INTERNATIONAL BUSINESS MACHINES CORPORATION
THOMAS J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NEW YORK

Best Available Copy

Qualified requesters may obtain copies from ASTIA, Arlington Hall Station, Arlington 12, Virginia. Orders will be expedited if placed through the librarian or other person designated to request documents from ASTIA.

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

FOREWORD

This report is intended to document the state of development of Converter Group, Print-To-Digital AN/GSA-29 at the completion of Task 14 of Contract AF 30(602)-2080. The primary objectives of the work under this task was the evaluation of the line following system and masking technique.

The entire work assignment was performed at the Thomas J.

Watson Research Center and was carried out in the Experimental

Systems Research Department.

ABSTRACT

The Optical Russian Print Reader (Converter Group,
Print-To-Digital AN/GSA-29) has been assembled, the front
end optics aligned, and the line following servo system analyzed
with the assistance of Baird-Atomic personnel. An IBM 7090
simulation shows that the basic masking technique used for an
idealized electro-optical system yields adequate discrimination
levels only for very high quality characters and for very close
tolerances on text registration. The report contains a detailed
description of the servo analysis and masking technique simulation; it also includes error rate tabulations based on input text
quality and proposed mask alterations.

PUBLICATION REVIEW

This report has been reviewed and is approved.

Approved: C

FRANK J. YOMATNI

Chief, Information Processing Laboratory

Directorate of Intelligence & Electronic Warfare

Approved:

OBERT JO QUINN, JR J, Col, USAF

Director of Intelligence & Electronic Warfare

TABLE OF CONTENTS

Contents	Page
Introduction	1
Summary	1
Background	1
Character Digitalization	2
Line Follower	4
Simulation Program	9
Auxiliary Program	10
Data Arrangement	11
Error Rates	15
Conclusions	21
Appendix — Simulation Data	22-45

ENGINEERING ANALYSIS AND DIGITAL SIMULATION OF THE OPTICAL RUSSIAN PRINT READER

INTRODUCTION

An analysis of the line following servo system and masking technique used in the Optical Russian Print Reader (Converter Group, Print-To-Digital AN/GSA-29) has been made. The line following servo system was statically tested and its operation also simulated. The masking technique was simulated using an IBM 7090 computer with digitalized characters. The simulation was also used to investigate the effect of mask alterations proposed to decrease the system sensitivity to character misalignment. The overall simulation results have been used to predict a lower limit on the error rate and to relate this error rate to character area changes, misregistration, and some system noise.

SUMMARY:

- 1. The design and action of the line follower appears to be adequate for "good" text.*
- 2. With excellent quality characters properly registered on original documents the character discrimination would be sufficient so that it should be within the state of the art to design an optical system and an analog computer to differentiate between characters with a high degree of reliability. However, the major limitation of this character recognition technique is the quality of the source document; this quality being indicated by character area stability, shape stability and individual vertical registration.

BACKGROUND

The equipment (Converter Group, Print-To-Digital AN/GSA-29) was assembled by Baird-Atomic personnel and the front end optics aligned to permit operation of the line follower (Fine Positioning Servo System).

An IBM 7090 computer simulation was used rather than the partially completed system for analyzing the character masking technique for the following reasons:

- 1. The quality of the text could be controlled as to area dropout or addition and vertical registration.
 - 2. The system variables could be bypassed such as:
 - (a) Image distortion from main optical path.
 - (b) Photomultiplier tube (PMT) and amplifier drift.
 - (c) Alignment of 112 lens array for given mask.
 - (d) Mechanical vibrations.
- 3. The proposed vertical mask expansion (slurring) to reduce vertical sensitivity could be easily simulated.

The use of the computer simulation also predicts the upper bound on descrimination levels for the tested Type foat A^{\dagger} and allows a prediction of the system tolerances and text limitation.

^{*&}quot;good" text meaning:

[&]quot;Test with input characters which deviate from their respective masks by less than a few per center in total area imprinted and general shape, and which are aligned from character to character to within 3% of their reference position."

[†]Boni, C. et. al. "Russian Type Study", Technical Note 1, New York University, Division of General Education, Sponsored by RADC, Contract AF 30(602) - 1824, November 15, 1958.

CHARACTER DIGITALIZATION

The use of an IBM 7090 computer for the simulation of the character recognition masking technique necessitated converting the character shapes into a digitalized format. The binary coding 0-1 was used to signify by 0 the absence, and by 1 the occurrence of character area at a fixed location. The location size was chosen to be a square 0.00209 inch on a side when referenced to the original document. The narrowest stroke occurring in the Type font A is approximately 0.004 inch wide and would be represented by two binary bits. The binary bit size of 0.00209 inch at the original document corresponds to a resolution of 9.5 line pairs per millimeter which is about two times better than the optical resolution in the system as it is now and about equal to a reasonable design resolution.

The character digitalization was accomplished by obtaining 96 × blowups of the Russian characters from Type font A (Figure 1). The original photographs of the characters were prepared by Baird-Atomic from many samples and were used in preparing the type font masks.*

The 96 × character photographs to be digitalized were overlaid with a 72 × 72 transparent grid with the established base reference line above bit position number 22 of the even numbered words as shown in the above figure. Each character was also positioned so that some character area was shown as information in either Word #1 or Word #2. Each word is 36 bits long and the maximum field for any character is 144 words. The card punching format was as follows:

Columns: 1 - 3 Decimal Character Number

4-6 Blank

7 - 18 Octal Data (second word)

19 - 30 Octal Data (first word)

31 - 77 Blank

78 - 80 Decimal Card Number

The resolution of this grid size is shown in Figure 3.

Since the card punching was in an octal basis, the computer program was written to convert the data to binary form for analysis. A binary printout of the digitalized characters has been made and is shown in Parts 1 thru 3 of the data printout book. The stars represent where the character area filled the reference square by more than 50%; that is, each star represents a 0.00209 inch square of character area (See Page 22). The star printout appears vertically compressed due to the difference between line spacing and character spacing in the IBM 717 printer. The printouts of Parts 1 thru 3 also list the area of the character as "total number of bits in grid", with each bit again being a 0.00209 inch square at the original document.

Definitions:

Match - The value 2P - (P + N)[‡] normalized by the true area of the reference character. Auto-correlation - The match value when the indicated input character and reference character are identical.

Cross-correlation - The match value when the indicated input character occurs in the listed reference character channel.

[&]quot;It should be noted that the reference to "perfect" characters and "perfect" mask to be used herein refers to the Baird-Atomic photographs. The variation of size or shape in any given character has been eliminated by using the same digitalized characters as both the input and the reference masks.

[†]The printout of the digitalized characters represent Parts 1 thru 3 of the data printout book, with Parts 4 thru 8 the simulation runs. The data book is 1287 pages long, and is being retained at the IBM Research Center. Examples of the type of data obtained have been included and are shown on Pages (22 thru 45.)

[‡]See Page 9.

. ц" ч ш"щъ ы ь э" ю я а б В" Г Д е Ж 3" и й К Л М"Н VΦX ИЙКЛ о" п р с" т. у ф .х ц" ч В'Г Д'Е ЖЗ И М"Н О'П Р'С Т м. — В — ОІ The black of the base of the base of the black of the bla

Figure 1. Type Font A.

Figure 2. Character Digitalization.

LINE FOLLOWER

The purpose of the line follower is to establish a base line for proper vertical alignment of the characters on the type font masks. The recognition system, as designed, is critically sensitive to input vertical alignment on the positive character masks. The vertical sensitivity to alignment was shown by the IBM 7090 character simulation as an inability for the recognition technique to maintain discrimination between similar characters. It has been found that a vertical displacement of ± 0.00209 inch referenced back to the original document is troublesome. This vertical displacement of ± 0.00209 inch represents about 3% of the height of a lower case of an about 2% of the height of an upper case character. This therefore puts the stress on line following servo to maintain adequate discrimination levels.

The line following servo, as presently designed by Baird-Atomic, establishes an average base line for 14 character spaces. The servo system must be capable of film positioning to within ± 0.00094 inch to maintain a ± 0.00209 inch tolerance referenced back at the document.

The decision time for character recognition is less than 25 microseconds meaning that the line servo does not have time to position each character individually during the decision period (400 cps servo with 160 cps reported band-width implies a 6.25 milliseconds response time for error detection and correction).

The mis-alignment of any given character in any line would only be partially corrected by the averaging of the line follower.

The given film samples represent a reduction of a 5 inch wide column of printed material in Type font A. The 5 inch column represents the maximum allowable width and has approximately 66 character spaces per line. The 11 lines per second designed operation gives a document scanning speed of 88.3 inches per second (after correcting of dwell, flyback and idle times). This therefore represents 23.4 microseconds per 0.00209 inch (23.4 microseconds per bit).

The character which is to be recognized has to move 9.8 character spaces from the center of the line follower window to the recognition position. The movement takes 8.2 milliseconds during which the servo may only possibly make one correction.

The decision time of 25 microseconds is determined from the IBM 7090 simulation where the auto-correction function reaches its normalized peak of 1.00 and, in all cases, only remains at this peak for one bit space-or 0.00209 inch on the original document.

米

жж

Upper — 8 x blowups Left — actual character Lower — actual size
Right — digitalized character

Figure 3. Character #17, Actual and Digitalized.

Figure 4. Channel #51 Response.

As an example, it can be clearly seen that the threshold firing value for the N recognition channel must be above 0.83 as this is the maximum cross-correlation normalized match value reached by input character #56 H (See Page 26). This threshold value is not uniquely determined for all characters, but is dependent on the highest cross-correlation obtained for each reference character.

It is advantageous to have the threshold value as close as possible to the highest cross-correlation in order to obtain as much insensitivity to vertical displacement as possible.

Thus, in the cited case, the auto-correlation for character #51 drops to 0.77 when the input is shifted ±1 bit vertically; that is, 0.00209 inch vertically displaced from the reference line established by the line servo when referenced back at the original document.

The auto-correlation then drops to 0.57 for a ± 2 bit vertical shift. These latter values are below the cross-correlation obtained from character #56 in #51 channel. This means that it is necessary to at least maintain better than ± 1 bit vertical alignment for recognition of this character.

The Fine Positioning Servo System (Line Follower) analysis was accomplished by a static operational test of the system and by also simulating the operation by use of the digitalized characters.

The experimental analysis was limited in usefulness due to the uncertainty of measured results. This uncertainty in test results was due to the following:

- 1. The image quality at the measuring reticle was very poor due to the system optics.
- 2. The light level was relatively low, which made the taking of measurements a very fatiguing job.
- 3. The film used for the test was of good quality, but the typographical errors of misalignment of the original text was an uncontrolled parameter.
- 4. The positioning servo was operated statically and no measure of its dynamic operation was possible.

By assuming a normal distribution for the data obtained on 69 lower case letters, it is estimated that approximately ten per cent of all characters will fall outside the range of plus or minus 0.002 inch from their mean position. Approximately one per cent of the characters will fall outside the range of plus or minus 0.003 inch from their mean position.

It is felt that this measure of character misregistration is mainly due to the original document variations.

The line follower action is as follows. A narrow slit approximately 14 character spaces in length is divided into two equal parts optically (A and B below). Each area is examined for total

light level in turn by the same photo-multiplier tube (PMT) through a 400 cycles-per-second rotating optical chopper assembly. The characters are clear areas on the film, (white on black) so that each character is represented by a lighted area on a dark background. The light level in area A is reduced by a factor of 0.5 by means of a neutral density filter and sensed by the PMT. The light level in area B is then sensed by the same PMT. The sampling is synchronous with a 400 cps reference source, so that each sample area is shown relative to the reference timing. The difference in PMT voltage levels (if present) is sensed and used as the feedback signal (error detection) for the film positioning. The film is continuously positioned until the PMT signals are equal.

An example of this is shown by using a lighted bar (C) and the two areas A and B.

The PMT output signals will be examined. With equal total illumination on A and B and keeping in mind the 0.5 light reduction of the signal in A, the PMT signal may be normalized to $V_A = 0.5$ and $V_B = 1.0$.

As the film (with bar C) enters the gate, the otherwise non-illuminated areas A and B receive light.

The illumination of the slits first occurs in AP and the size of C will be assumed to cover 20% of A. The V_A output signal will therefore be 0.1 (0.5 \times 0.2), while V_B remains at 0 due to its non-illumination. The signal difference is detected and used to advance the servoing of the film (and area C) until the position shown below is reached.

The area of C in A is still 20%, giving a V_A PMT signal of 0.1 and the area of C in B is 10% giving a V_B PMT signal of 0.1 also. The error detection and correction signal is 0 and the servo holds the film stationary.

The descent of C causes V_B to exceed V_A and the servo to raise the film, and the ascent of C causes V_A to exceed V_B and lower the film. The complete servo system may be block diagramed as below, where it is noted to have two feedback loops; one for mechanical position detection and the one just described for error detection and correction.

Figure 5. Serve System Block Diagram.

The gate in the feedback loop is used to inhibit the fine positioning signal and to advance the film to the next line.

The regular occurrence of misregistration below a base line of several characters has been noticed by Baird-Atomic and the masks shifted accordingly. This was taken into account in the character digitalization.

A sample of one line of text was chosen at random and the operation of the line follower simulated. The sampling mask was chosen as 0.01254 inches high when referenced back to the document which corresponds to 6 bits in the IBM 7090 simulation. The bottom edge of each character was divided into ten slices, each one bit wide, and these slice areas computed for each character in the sample line.

R

The action of the line follower was simulated by summing the respective slice areas for 14 consecutive character spaces and assuming that the area was evenly distributed in each slice.

Each slice (0.00209 inch on the document) was broken into 10 segments, each therefore about 0.2 thousands of an inch. It was found that the addition of a cyrillic letter such as P with the large descending bar lowers the average line as established by the line follower by one segment, or about 0.0002 inch at the document. The improbable occurrence of a string of 14 characters with descenders could cause the line follower to descend 0.0028 inch. The average base line may therefore be easily seen to remain within a ±1 bit (±0.00209 inch) tolerance. An exception to the above tolerance limits occurs at the start and finish of a line, as the line follower is using less than 14 character spaces to establish the average line.

This simulation has ignored the logarithmic response of the PMT in order to keep the analysis tractable. This logarithmic response increases the sensitivity of the servoing.

SIMULATION PROGRAM

The Baird-Atomic character recognition scheme uses the identity:

$$P - N = 2P - (P + N)$$

where:

P is the measure of match between the input character and the positive reference mask (1 for perfect match).

N is the measure of match between the input character and a negative reference mask (0 for perfect match).

(P + N) is proportional to the area of the character and is measured by a clear field of view aperature.

A perfect match then has a channel output of P - N = 1 - 0 = 1 or 2P - (P + N) = 2 - 1 = 1 when normalized for that channel.

The following tabulation lists the Field-Of-View numbers their width in bits (columns), and the reference characters associated with each mask. (See Table 1).

Input and output for the IBM 7090 simulation program are accomplished through the medium of magnetic tapes. Two input tapes are required, one consisting of digitalized reference masks and the other, digitalized input characters. For a given reference-input combination the input character is superimposed upon the reference mask at a number of space-time positions specified by control parameters. For each overlay, the area common to the input character and reference mask is compiled, as well as the area common to the input character (at that particular space-time position) and the fixed field mask, whose absolute spatial position is defined relative to the reference mask. A figure of match is then compiled and stored. When all specified superpositions have been processed, the complete data for this input-reference combination is recorded on an output tape (for future processing, if desired) and is simultaneously selectively edited and recorded on another output tape, which then constitutes the primary results of the computation. The data associated with the superposition yielding maximum match is stored.

Five modes of operation of the simulation are provided (and selected by control parameters) to allow for two objectives: (1) the specification of desired input-reference combinations; (2) the thorough investigation of the actual operation of the hardware. One may specify computation for a fixed set of space-time superpositions or operate under various and selectable degrees of discrete approximation to the continuous passage of input characters over reference and fixed field masks. When all specified input and reference combinations have been processed, the data associated with the maximum match for each combination is edited, sorted and tabulated on the output

TABLE I.

Mask Sizes and Associated Characters

Field-Of-View Aperture No.	Width	Reference Characters
1	13	78, 80, 82, 85
2	19	83, 84
2 3	25	75
4	29 ●	79, 8 6
• 5	31	1, 46, 50
• 5 6 7	33	6, 48, 72
7	35	2, 3, 4, 7, 45, 60, 64, 76, 87, 88
8	37	5, 8, 9, 10, 43, 44, 52, 53, 54,
•		61, 66, 74
9	39	18, 47, 51, 58, 62
10	43	14, 27, 57, 59, 65
11	43	12, 13, 29, 39, 40, 42, 56, 63, 69
12	45	16, 55
13	47	21, 28, 32, 34
14	51	11, 22, 25, 30, 70
15	53	26, 31, 71, 73
16	53	20, 24, 49, 77
17	55	19, 33
18	59	15, 37, 67, 68
19	63	23, 38
20	69	•
21	71	41, 89
22	73	17, 35, 36, 81

tape in two ways: (1) by order of reference character; and (2) by descending magnitude of the figure of match.

Two objectives were given prime consideration in the design of the program: (1) speed of computation. Approximately 230,000 double superpositions (input on reference and input on fixed field mask) are accomplished in twenty minutes. Twenty more minutes are required for output and editing of the resulting data. (2) flexibility. Assuming compatibility with the physical limitations of tape and storage, the program was designed to allow for the following possibilities. Input routines are easily alterable to accommodate any type or number of characters or masks. The algorithm which determines the area common to input and reference characters is easily alterable to accommodate any size of character matrix. In addition, this section may easily be expanded to include one of several schemes to simulate the effects of noise (vibration) on mask positioning. The computational algorithm is easily alterable to admit the determination of any prescribed index or measure of match. The editing portion of the program may be easily enlarged or may be eliminated completely, relegating this function to auxiliary program designed for less expensive machines.

AUXILIARY PROGRAMS

A library of auxiliary programs was developed to provide input for and service output of the simulation program. One program develops, from punched octal cards in a single pass, binary tapes constituting perfect input characters and reference masks, elogated and shifted reference masks (which constitute input tapes for the simulation), as well as a punch tape, which may be

used off-line to provide punched card decks corresponding to these output tapes. Other programs were developed to process selectively the intermediate binary data output of the simulation, preparing them for processing by existing large scale data sort, merge and editing programs.

DATA ARRANGEMENT

The printouts in Parts 1 thru 3 of the Data Printout Book* represent the character digitalization. Part 1 is the unaltered characters with each star representing an area 0.00209 inch square when referenced back to the original document. The reference line of each character falls on line 68 of the printouts, which is noted by a star. The width of each character is shown by the column listing and the area of each character is shown by the column listing and the area of each character is listed as the "Total No. of Bits in Grid".

Parts 2 and 3 represent the character masks with respectively a ±1 and ±2 bit vertical expansion. The character area change is shown and the vertical expansion is noted by the character numbering. For example, #051 is unaltered character #51; #151 is character #51 with a ±1 bit vertical expansion; and, #251 is character #51 with a ±2 bit vertical expansion.

Parts 4 thru 8 are the simulation runs, with the page headings as follows:

Vertical () - This is the vertical position in bits of the input character base line relative to the reference character base line.

Page () - Page number in ascending order for the data in each part.

The column headings are as follows, reading from right to left:

REF - reference character number

INP - input character number

DEL - delta change in raster from row to row of data (1-1 bit)

NORM - normalizing area of reference character

L - line number position of right hand column of input character on reference character for which each row of data is listed

MASK - bit count (representing area measure) of input character occurring in mask associated with reference character (P + N)

count of common bits between input and reference character (measure of common area)

UN MAT - the match value in bits 2P - (P + N)

MATCH - the match value normalized by the bit count (area) of the reference character

In order to simplify the data printout, only match values above 0.5 were printed. The maximum value for each reference-input combination was flagged by placing a star next to the reference character number in the row in which it occurs. When the crosscorrelation values are less than 0.5 for all positions, the maximum is printed as a single entry for that particular input-reference combination.

The last four pages of each printout of Parts 4 thru 8 contain the maximum match value for each input-reference combination ordered sequentially by reference character number and also by decreasing match value. These four summary sheets for each part have been included at the end of this report (Pages 26 thru 45).

The fold-out charts on Pages 12 thru 14 represent a tabulation from the summary sheets of Pages 26 thru 45. The definitions of the last four column headings are:

- E > F Crosscorrelation of perfect on perfect at 0 vertical-greater than-autocorrelation of perfect on perfect at +1 vertical
- E > J Crosscorrelation of perfect on perfect at 0 vertical-greater than-autocorrelation of perfect on perfect at +2 vertical

^{*}Sample pages from the Data Printout Book have been included and are Page 22 for Parts 1 thru 3 and Pages 23 thru 45 for Parts 4 thru 8.

Reference Character A B	អ៊ីប៊ីប	Input Character C D	Cross- Match E	+1 Vertical Auto-Match F	Input Character G H	r eter	Gross- Match	+2 Vertical Auto-Match J	Input Character K L	1	Cross- Match	†1 Expanded Mas Input Cross Character Match N O P	ter M	# ,	k2 Expanded Mask Input Cross- Character Match Q R S	ded M	I Mask Gross- E Match F	₩> ₩>	w>~
-	22	k ,	0.76	0.87	22	4	0.72	0.73	77	ĸ	99.0	77	5	0.81	22	5	0,85	×	
2	2	•	0.20	0.73	~	•	0.12	0, 50	22	Ħ	0.11	98	۵.	0.33	6	•	0. 43		
3	₩	•	0.42	0.71	•	•	0. 28	0.43	9	•	0.23	œ	63	0.68	•		0.86		
•	-	-	0.61	0.78	-	-	0.57	0.57		-	0. 51	-	0 =	0.64	61	2	99.0	×	
\$	۳	•	0.33	0.71	9	9	0.43	0. 43	73	2	0, 36	9	9	0.53	•	9			
•	91	•	°.	0.72	13	ð	0.40	0. #	73	9	0.29	9	•	0,65	50	S S	92.0	×	
7 7	75	_	0. 16	0.75	7.5	`	0.18	0.59	7.5	_	0.17	75	•	0. 28	75	٠	0, 40		
•	•	•	0, 57	0.77	₩	•	0, 58	0.54	e	₩.	0.47	۳	8	0.67	m		0. 70	×	
•	01	•	0.57	0.76	2	0	0.49	0.53	2	•	0.38	9	•	99.0	91	•	0.71	×	
10 0	•	•	0, 55	0.82	•	•	0.52	0.65	9	¥	0.40	6	•	99.0	6	6	0.75		
11 ^	84	_	0.16	0.76	*	_	0.16	0.54	2	_	0.16	•	•	0.23	25		0.37		
12 6	38	14	0.70	0.79	38	3	0.75	0.57	38	ā	0.62	13	o A	0.80	=	A	0.86	×	
13 B	37	م	0.65	0.77	18	•	0, 58	0.55	38	=	0.50	12	9	0.82	12	D.	0.89	×	
14 /	77	h	0.68	0.82	13	×	0.65	0.63	67	۴	0.61	62	٥ ۲	0.82	. 62	٥ ۲	96 .0	×	
15 *	22	k	0.57	0.79	36	ਤ	0.51	0.57	36	ਭ	0.40	36	3	0,65	36	3	0.72	×	
16 E	35	3	0.53	0.72	35	3	0. 48	0, 43	35	3	0.40	13	0	0.69	13	ø	92.0	×	
12 ×	21	*	0. 52	0.78	21	×	0.52	0.56	21	ᅩ	0.42	17	×	0.56	21	×	0.57		
18 3	13	A	0.42	0.73	87	υ	0.31	0.46	52	0	0.32	13	•	0.64	13		0.72		
19 N	2	75.	0,72	0.83	* 2	×	99.0	0.67	54	×	0, 54	7 7	°	0, 80	7 2	=	0.83	×	
20 K	19	_	0.71	0.77	61	×	0.00	0.54	13	z	0.47	19	~	98.0	61	5	0.92	×	
21 K	11	×	0.70	0.77	11	×	0.58	0.56	7	오	0. 42	11	×	0.95	17	÷	0.99	×	
22 A	15	×	0.51	0.80	15	×	0.50	0.61	36	ਭ	0. 43	15	。 *	0.71	., 21	Ħ	0.78		
Z3 M	30	»	0.25	0.84	30	>	0.27	0.68	30	~	0. 24	30	٥ ۲	0.35	30	ە م	0, 40		
24 H	33	<u> </u>	0.71	0.83	33	=	0.61	0.66	33	ゴ	0.50	33	ر د	0.82	33	מ	0.83	×	
25 0	7	Q	0. 52	0.80	7	2	0.33	0.60	7	ð	0. 17	7	8	0.69	7	2	0.76		
1 22	33	<u>۔</u> ع	0.64	0.82	54	x	0.62	9. 66	7 7	I	9.50	33	٦ 0	0.79	33	3	0.82		
d 12	7	٤.	0.64	0.80	*	L	0.62	, 61	*	Ľ	0.53	±	L	0.68	62	F.	0. 70	×	
28 87	7	2	0.50	0.74	25	0	0.49	0.49	52	0	0.50	7	5	0.59	52	0	0.74	×	
Z9 T	7	٤.	0.68	0.83	*	Ľ.	0.58	ر. 19	7	Ľ	0.48	*	L	0.70	±	o L	0.70	H	
30 3	7	0	0.11	0.78	52	0	0.09	3.56	84	_	0.09	52	0	0.18	23	Z .	97.0		

												* Ex	panded		24Expanded Mask	popu		ı		
Reference		Input	Cross	+1 Vertical	Input		Cross-	+2 Vertical	Input		Cross-	Input		Cross-	Input Cross-	ב ב		4)	7>	
Character		Character C D	Metch E	Auto-Match	ט	X	I	J.	×	į	M	z		Ъ	a	~		•		
				ļ	i															
31	_	1 1	0,35	0.77	٦,	-	0.32	0.54		-	0.30	_	-	0.37	-	_	0.39			
32 X	J	21 K	0.27	0.75	SZ SZ	0	0. 21	0.50	52	0	0.18	17	×	0.41	11	¥	0. 52			
33 4	-	24 H	0.69	0.85	54	x	92.0	0.70	24	I	0.63	77	Ξ	0.77	77	x	0.77			
34	_	¥ 97	0.53	0.81	36	ផ	0.49	0.62	36	₹	0.43	36	3	0.56	36	ੜ	0.57			
35 17	7	न १९	0.61	0.84	36	3	0.54	0.68	36	3	0, 40	36	3	0.70	36	3	0.72			
36	≖	35 W	0, 60	0.83	35	3	0.48	99.0	35	3	0.34	35	Ξ	0.65	35	Е	0.67			
37 1	م	39 b	0,62	0.79	39	۵	0.61	0.58	38	4	0, 55	39	م	0.70	12	ю	0.75	×		
38 b	7	39 b	95.	0.79	39	م	0.43	09.0	39	م	0.29	39	م	0.61	39	م	0.61			
39	_	38 bl	0.85	0.17	38	7	0.85	0.54	38	19	0.64	38	19	1, 02	38	P1	1.05 x	×	×	
0	ው	41 10	0.28	0.64	7	ð	0.39	0. 29	Ŧ	2	0.34	∓	δ	0.48	81	m	0.59			
‡ ×	Q	21 K	0.40	0.77	52	0	0.38	0.55	52	0	0.43	12	×	0. 52	12	¥	0. 59			
27	Œ	34 4	0.47	0.79	34	-	0, 41	0.58	36	ਭ	0.36	34	.	0.57	11	¥	0.64			
43	-	50	0.51	0.73	99	9 1	0, 50	9***	20	•	0.38	20	•	0.65	20	•	0.71	×		
*		73 6	95.	0.74	7.3	9	0.46) *.	9	9	0, 32	23	•	0.64	2.5	•	99.0	×		
45	_	e 69	0, 51	0.66	69	Ą	0.59	0.32	11	۵	0.43	69	,	0.75	29	3	0.87	×		
\$	_	74 87	0.62	0.76	29	3	0.70	0.53	54	5	0.61	19		0.84	19	F	0.88	×		
X 14	•	* *5	0.59	0.72	54	ĸ	0.59	0.44	3 5	k	0, 43	54	h	0.78	54	ĸ	0.80	×		
48	_	o 09	0.66	0.68	09	u	0.51	0.37	09	U	0. 30	09	Ü	0.74	09	v	9. 76	×		
\$ *	~	53 K	98.	0.72	53	Ж	0, 45	0.47	53	L	0, 30	53	צ	0.56	53	¥	95.0	×		
90	_	72	0.48	0.63	72	•	0.27	6. 27	99	7	0.14	7.5		0.72	£	•	0.87	×		
51	_	36	0.83	0.77	25	7%	0.69	0.57	58	k	0. 52	95		0.89	28	x	0.90 x	×		
52 W	-	51 #	0.62	0.74	51		0.45	0.48	99		0.29	15		0, 78	15	*	0. 80	×		
53 K	u	\$ *	0.76	0.70	49	×	0.61	0. 42	6	¥	0.34	6	★	1.00	\$	×	1.01 ×	×	H	
3	.	X 14	09.0	0.78	47	H	0.47	9.56	29	3	0, 32	L *	ų	0.69	L	ĸ	0.73	×		
55 M	<	51 #	0,36	0.80	51	ĸ	0.29	0.61	99	7	0. 24	15	*	0.43	15	=	0.50			
.98	_	¥ 89	0.83	0.76	88	h	0.75	0.52	28	Þ	0.58	28	×	0.93	28	×	0.93 ×	×	×	
57 0	_	73 6	0.67	0.74	73	9	0.68	0. 49	73	2	0.53	73	٥	0.75	73	9	0.78	×		
85 85		¥ 89	0.80	0.79	29	3	0.68	0.60	29	2	0.53	9	1	0.84	65	3	0.86 x	×		
65	_	\$	0,38	0.77	\$	L	0.37	9. 56	\$	Ł	0, 31	25	•	0. 49	28	þ	0, 55		-	
09		*	0, 57	0.70	\$	•	7	°.	84		0. 23	4	•	0, 80	\$	•	0.83	×		
)	Ð												

627- 627- 627- 646- 646- 646- 646- 646- 646- 646- 64	×				×		×	• *	×	×	×	×		×		×		×											
	0.66	0. 20	09.0	99.0	0.90	0.67	0.86	0.92	0.93	09.0	0.83	0.83	0. 66	0.80	97 .0	0.34	0.32	0.88	0. 18	0.54	0.41	99.0	0.45	0, 45	0.77	0, 55	0.41	0. 42	0.30
nded R A	Ľ.	ĸ	3	×	3	F	3	3	3	۵	٩	•	۰	=	<	١	_			Ħ	×		5	36	4	ሲ	u	¥	,
42 Expanded Mask Input Gross- Character Match Q R S	\$	3 5	29	4	89	58	89	29	70	11	69	20	25	*	ij	89	7.5	82	80	51	23	78	3 5	77	38	22	09	\$	76
tl Expanded Mask Input Gross- Character Match N O P	0.65	0.11	0.52	0.51	06.0	0.62	0.85	0.91	0.92	0, 60	0.83	0.70	0, 60	0, 71	0.19	0.34	0.31	0.56	-0.02	0.48	0.29	0.57	0.42	0, 40	0.63	0.45	0.24	0.24	0, 30
anded ter	۲.	k;	3	¥	3	þ	3	3	٥	۵	٥	•	•	2	4	ι	\	••		Ħ	X		*	*	-	α	v	8	
41 Expand Input Character N O	\$	2	29	53	89	28	99	29	11	11	69	20	25	%	=	83	75	82	82	15	23	82	*	51	-	1.2	09	13	92
Cross- Match M	0, 33	0.02	0.27	0.15	99.0	0.34	0.43	0.55	0.43	0. 29	0.27	0.24	0.29	0, 38	0.08	-0, 13	0.30	0.45	-0.63	0.52	0.07	97.0	0, 36	0, 38	0.40	0. 11	0, 06	0.07	-0.03
	• 5	Ľ	3	J	3	3	3	э	۵	م	.	•	¥	*	م	ı	,	••	ı			•	ä	8	7	Ω	م	Ŀ.	•
Input Character K L	3	\$	29	09	29	29	89	29	11	11	69	20	53	51	37	89	7.5	83	83	62	85	79	20	13	34	23	69	\$	7.4
+2 Vertical Auto-Match J	0.54	0.42	09.0	0.26	0.61	0.54	0.59	0.58	0.41	0,53	0.46	0.29	0.48	0.43	0.72	0.17	0, 59	0, 33	0, 45	0,53	0.61	0. 43	0.70	0,71	0.73	o. \$	0, 34	0, 33	-0. 01
Gross- Match I	0.49	0.0	0,35	97.0	0.85	0.43	0.63	0,73	0,67	0.45	0.54	0, 43	0, 39	0.50	0.09	0.29	0,31	0.41	-0.38	0.45	0.08	0.32	0.37	0.38	0. 40	0. 22	90.0	0.07	0.07
Input Character G H	k,	Ł.	3	¥	3	3	3	3	۵	۵	'n	6	¥	I	'n	ı	'	••		Ħ	-	•	3	3	-	D,	م	E.	•
Input Chara	3	\$	29	53	3	67	89	29	11	11	69	S	53	26	37	83	75	82	78	15	82	42	20	13	-	27	69	\$	92
+1 Vertical Auto-Match F	0.77	0.70	0.80	0.62	0.80	0.76	0.79	0.79	0.70	0.76	0.72	0.64	0.74	0.72	0.84	0.58	0.80	99.0	0.72	0.75	0.80	0.72	0.85	0.86	0,86	0.73	0.66	0.66	0.49
Cross- Match E	0.57	0.07	0.40	0, 23	0.88	0.51	0.82	0.82	0,81	0.58	0.79	0. 52	0.45	0, 50	0. 10	0, 31	0.29	0.33	-0.11	0, 40	0.12	0.40	0.39	0. 38	0.46	0.22	0.03	0.0	0.19
i o	Ł	L	3	v	3	3	3		م	۵	۾	E	•	=	م	ı	_			Ħ	×		3	9	-	ρ,	s		
Input Character C D	\$	\$	29	9	89	29	89	29	11	11	69	2	23	35	37	89	75	42	78	15	23	82	20	13	1	27	9	73	92
B de T	+	*	- 0 -	Ж	3	•	•	a	م	3		•	9	•	/		*	••			핥	••	_	_	_	~	¥	*	ı
Reference Character A B	61	79	63	49	9	99	49	89	69	70	7.1	7.2	73	74	75	92	77	78	79	80	81	82	83	2	8	98	81	88	68

- P > 1 Crosscorrelation of perfect on ±1 vertically expanded mask at 0 vertical-greater than-one
- S > 1 Crosscorrelation of perfect on ±2 vertically expanded mask at 0 vertical-greater than-one

The sensitivity of the autocorrelation to vertical alignment was anticipated by Baird-Atomic and a possible solution proposed. The proposed solution was to expand the masks in the vertical direction so that the input character would fall totally within the mask even if misregistered an amount equal to or less than the mask expansion. The vertical mask expansion gives a proportional decrease in sensitivity to vertical position, but also gives rise to an increase in the cross-correlation maximum (See Figure 7).

Figures 6 and 7 below indicate the changes in the autocorrelation and crosscorrelation values due to vertical misregistration and vertical mask slurring.

Figure 6 shows that the median autocorrelation drops from a normalized maximum of 1.0 when correctly positioned to a value of 0.76 when displaced vertically by one bit (0.00209 inch at the document). This autocorrelation median drops to 0.56 for a two bit vertical shift.

Figure 7 shows the range of crosscorrelation maximums for perfect masking and for vertically slurred masks. The increased vertical insensitivity obtained by vertically expanding (slurring) the mask is offset by an increase in the crosscorrelation values, that is, a loss in discrimination.

The match values obtained for a given reference character are normalized by the area of that reference character. This sets 1.0 as a perfect match and references all other match values to this. The actual channel voltage signals are dependent on the light source, system transmission, PMT gain, noise levels, etc. The relative channel signals may be calculated on the basis of the reference character area. For example, the smallest character is a period, #79 (.) and the largest is a capitol letter, #17 (M). Their respective areas are 65 bits and 1252 bits. Therefore, although both perfect match values are 1.0, the voltage levels in channel #17 is 1252/65 = 19.3 times that in channel #79.

ERROR RATES

An error rate table was constructed by using the autocorrelation and crosscorrelation tabulation for perfect characters with misalignment and on expanded (slurred) masks.

The error rate is given in Table II and is the number of missed characters per 1000 random input characters. The system noise is completely ignored and an error is defined only when the crosscorrelation becomes equal to or greater than the autocorrelation in a given channel. The area dropout or addition per cent is a direct measure of the reduced or increased character area as seen by the character matrix.

The error rate has been tabulated taking into account the character frequencies as given in the NYU study. (Reference, Page 1.) The tabulation of the upper and lower case character frequencies has been included and is shown on Page 19.

The electronic controls for the character channels generate an inhibit pulse blocking all channels for the remainder of the character space after one character channel has triggered. This technique is helpful when crosscorrelation peaks are close to or greater than autocorrelation peak values but occur (in time) after the autocorrelation peak has triggered the correct channel. When the competitive crosscorrelation peak would ordinarily occur before the autocorrelation peak, a similar blanking effect is obtained by shifting the relative positions of the reference apertures so as to change the order in which the peaks occur. This blanking possibility was not taken into account in computing the error rates in Table II.

When this blanking is incorporated along with a ± 0.004 inch expanded mask, as much as 7% of the area of a character can be deleted with a vertical misalignment of as much as ± 0.004 inch before the first error occurs.

It is possible to calculate another error rate due to the Gaussian nature of the photomultiplier tube (PMT) output. This was done for channel #51 representing the cyrillic letter N. The shot

+1 VERTICAL SHIFT

Figure 6. Auto-Correlation Variations.

noise of the photomultiplier tubes was assumed to have a Gaussian distribution with a standard deviation in photo-electrons equal to the square root of the total number of photo-electrons occurring per sample time.* The recognition technique is such that the signal from the positive mask

^{*}Smullin, L. D. and Haus, H. A. (eds.): "Noise in Election Devices," Page 58, John Wiley and Sons, Inc., New York, 1959.

Figure 7. Cross-Correlation Variations (0 Vertical Displacement).

PMT is doubled (2P) and summed with the inverted signal from the field of view (FOV) aperature PMT [-(P+N)]. The standard deviation of the total signal is then equal to

$$\sigma = \sqrt{(2 \sigma_{\rm P})^2 + (\sigma_{({\rm P + N})})^2}$$

where

 $\sigma_{
m p}$ standard deviation of mask PMT signal $\sigma_{({
m P}+{
m N})}$ standard deviation of FOV PMT signal

The threshold level for firing the channel indicator was chosen for minimum error at a point between the maximum crosscorrelation (0.89) and the autocorrelation (1.0) signal where the standard deviation of the two signals were equal (0.94). The highest crosscorrelation (0.89) was for the perfect character #56 (H) on the ±1 bit vertically expanded (slurred) mask of reference character #51.

TABLE II. Error Rates (Lower Bound)

Area Dropout or Addition	Per	ect on fect rtical	I .	ect on fect ertical	Perfe ±1 N 0 Ver	lask	Perfe ±2 M 0 Ve	/ask
in Per Cent	Errors	Char.	Errors	Char.	Errors	Char.	Errors	Char.
0	0	0	238	10	33	2	33	2
1	0	0	etc.	ļ	33	2	34	3
2	0	0		1	33	2	34	3
3	0	0			33	2 2 2 2	34	3
4	0	0			33		34	4
5	0	0)		34	3	34	4
6	0	0	İ	Ì	34	3 3 4	34	4
7	0	0			100		100	5
8	0	0			100	4	104	7
9	0	0			104	5	104	7
10	0	0	ļ	j	107	6 7	195	9
11	0	0			195	7	etc.	l
12	3	1			etc.			
13	3	1	[[
14	3	1						
15	3	2 2		j	J			l
16	3							
17	157	4						l
18	169	6]		J	J
	etc.							l

The numbers in the character (char.) column refer to the total number of characters contributing to the error rate.

Error rates above 15% (150 per 1000) are not extensively tabulated.

The error rate listed is for 1000 random input characters.

The error rate is divided into two parts:

- (1) the errors which occur when character #51 appears in its own channel and is not recognized, and
- (2) when some other character (as #56 above) appears in channel #51 and is recognized incorrectly as character #51.

TABLE III.
Character Frequencies

Character No. (Upper Case)	Frequency in Per Cent	Character No. (Lower Case)	Frequency in Per Cent
11	0.09	43	7.21
12	0.05	44	1.55
13	0.18	45	4.56
14	0.03	46	1.31
15	0.03	47	2.72
16	0.04	48	9.55
17	0.01	49	0.80
18	0.04	50	1.66
19	0.08	51	8.77
20	0.01	52	0.92
21	0.09	53	3.30
22	0.04	54	4.50
23	0.09	55	3.21
24	0.20	56	6.59
25	0.09	57	10.15
26	0.11	58	2.37
27	0.07	59	5.21
28	0.26	60	5.31
29	0.09	61	6.56
30	0.03	62	2.50
31	0.02	63	0.21
32	0.02	64	1.02
33	0.00	65	0.31
34	0.05	66	1.31
35	0.01	67	0.80
36	0.00	68	0.40
37	0.00	69	0.01
38	0.00	70	2.42
39	0.00	71	1.18
40	0.07	72	0.27
41	0.00	73	0.48
42	0.01	74	1.06

Frequency of Upper Case

1.18%

Frequency of Lower Case

98.82%

The first type of error - correct character not recognized - is represented by the area of the autocorrelation probability curve shown in Figure 8 which is below the threshold value of 0.94. The second type of error - wrong character recognized - is represented by the area of the cross-correlation probability curves shown in Figure 7 which exceed the threshold value of 0.94. The error rate contributions are shown below for channel #51 (N).

Figure 8. Match Values for Channel #51.

The error rate per 1000 random characters for each input is obtained by multiplying the character frequency of occurrence (See Page 18) by the error rate per 1000 repeats of the same input character.

The total error rate contributed by this channel is therefore 2.61⁺ errors per 1000 random input characters.

This character channel (#51) has the highest error rate of all characters, but it is easily seen that this order of magnitude error rate per channel is entirely excessive when there are 89 independent channels contributing.

This calculation was based on the light levels obtained with the source now mounted on the machine (30 ampere tungsten ribbon filament) and on a sample time of 23.4 microseconds as an indicated minimum from the IBM 7090 simulation. The light level at the PMT's was therefore 15.7 photo-electrons/bit/sample time where a bit again refers to square area 0.00209 inch on a side referenced back to the original document.

This calculation was only based on the effects of shot noise in the PMT's and ignored Johnson Noise, Amplifier Noise, Vibration Noise, etc. The system PMT noise level is now fairly high but a simple calculation reveals that a doubling* of the light level received at the PMT's decreases the total error rate for Channel #51 by a factor of 8.4.

^{*}An increase of the light level received at the PMT's may be accomplished by coating the main lens as to their specifications and by modifying the light source.

TABLE IV.
Shot Noise Error Rates For Channel #51

Input	Character		Correct (Not Rec	Character ognized	_	haracter mized
#	Symbol	Frequency in Per Cent	Errors per 1000 Repeats of Input	Errors per 1000 Random Characters	Errors per 1000 Repeats of Input	Errors per 1000 Random Characters
51	И	8.77	15.4	1.35		•
56	H	6.59	-	<u>-</u>	15.4	1.07
58	Π	2.37	-	_	8.2	0.19
65	Ц	0.31		-	0+	0+
			Sub Totals	1.35		1.26+

CONCLUSIONS

The IBM 7090 simulation of an idealized electro-optical system indicates that for very high quality characters and with very close tolerances on text registration, the basic masking technique yields adequate discrimination between characters. In addition, an analysis of the line following technique indicates the basic approach will position excellent quality text to within a ±.002 inch vertical displacement referred to original text. This variation is the result of the random occurrence of input characters which contain descenders.

The tolerance of the masking technique to vertical misalignment can be improved with the vertical expansion (slurring) of the mask character as proposed by Baird-Atomic. However, as the amount of vertical slurring is increased, the discrimination between characters decreases and becomes more sensitive to characters malformed by area loss or addition.

For example, using a reasonably slurred mask, (± 0.004 inch referred to original document) character area losses or additions in excess of 7% will seriously affect the reading reliability, even when the input characters are registered vertically within ± 0.004 inch of the correct position.

The computer simulation undertaken under this task, although very comprehensive, is not conclusive for the following reasons. First, it dealt with only a single type font, and does not necessarily illustrate the typical character discriminations resulting with other type fonts. Second, there is no known study of the quality of Russian technical text which will relate the real life input from technical journals of interest to the printing quality constraints shown necessary by the simulation. And thirdly, it has not been established that it is technologically feasible to construct a practical system in which parameters such as electrical noise, optical resolution, and mechanical vibrations can be specified and held within adequate tolerances to obtain character discrimination necessary in a useful system. Feasibility of such an effort can only be determined by a comprehensive mechanical, electrical, and optical analysis of any proposed system, probably involving additional digital simulation.

٥

220	0 0	7	E G	. w	V =	0 0	4 00	- 0	5	t m	2	0	•	9 1

。本本水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水

*** ***

**** **** **** *** ***

*** *** ***

****************** **水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水水** ******************************

TOTAL NO. OF BITS IN GRID

481

22

051

SIMULATION DATA

		VE	RTICAL	0			PAGE	106
MATCH	UNMAT	P	MASK	L	NORM	DEL	INP	RĚF
0.0977	47	196	345	32	481	1	1	51*
-0.1040	-50	250	550	30	481	1	2	51*
-0.0936	-45	0	45	61	481	1	3	51*
0.0021	1	209	417	18	481	1	4	51*
-0.0665	-32	113	258	11	481	1	5	51*
-0.0042	-2	131	264	50	481	1	6	51*
-0.0582	-28	0	28	61	481	1	7	51*
-0+1518	-73	0	73	61	481	1	8	51*
-0.0852	-41 12	140 145	321 278	11 52	481 481	1	9	51* 51*
0.0249 -0.0333	-16	0	16	7 7	481	1	10 11	51#
-0•0555 -0•0561	-10 -27	ŏ	27	70	481	i	12	51*
-0.0457	-22	ŏ	22	72	481	i	13	51*
-0.0270	-13	203	419	52	481	ī	14	51*
-0.0665	-32	0	32	84	481	ī	15	51*
-0.0291	-14	195	404	57	481	ĩ	16	51#
-0.0541	-26	0	26	101	481	1	17	51*
-0 • 1455	-70	65	200	58	481	1	18	51*
-0.0187	- 9	284	577	48	481	1	19	51*
-0.0457	-22	192	406	15	481	1	20	51#
-0.0104	-5	195	395	61	481	1	21	51*
0.0478	23	195	367	16	481	1	22	51*
-0.0312	-15	0	15	92	481	1	23	51*
-0.0665 -0.1414	-32 -68	0 117	32 302	81 67	481 481	1	24 25	51* 51*
0.0083	-66 4	197	390	63	481	1	26	51*
-0.0478	-23	0	23	71	481	i	27	51*
-0.0852	~41	133	307	62	481	i	28	51*
-0.0748	-36	100	36	72	481	î	29	51*
-0.0270	-13	0	13	77	481	ī	30	51*
-0.0042	-2	102	206	11	481	1	31	51*
-0.0686	-33	0	33	74	481	1	32	51#
-0.0686	-33	0	33	85	481	1	33	51*
0.0000	O.	195	390	15	481	1	34	51#
0.0166	8	195	382	15	481	1	35	51#
-0.0208	-10	197	404	84	481	1	36	51*
0.0582	28 32	111 305	194 578	11	481	1	37	51*
0.0665 0.0915	32 44	113	182	34 11	481 481	1	38 39	51* 51*
-0.0270	-13	116	245	9	481	1	40	51*
0.0125	6	195	384	82	481	î	41	51*
-0.0166	~8	192	6 92	14	481	i	42	51*
0.4241	204	313	422	31	481	ī	43	51*
0.0603	29	160	291	51	481	1	44	51#
0.4615	222	307	392	29	481	1	45	51#
0.3680	177	228	279	26	481	1	46	51*
0.3139	151	207	263	16	481	1	47	51*
0 - 2328	112	250	388	29	481	1	48	51*
0.4532	218	381	544	50	481	1	49	51*
0.2682 0.6923	129 333	228 407	327 481	29 31	481 481	1	50	51*
1.0000	481	481·	481	35 21	401	1	51	51
0 • 6923	333	407	481	36 33				
1.0000	481	481	481	32				

			RTICAL	. 0			PAGE	107
MATCH	UNMAT	P	MASK .	L	NORM	DEL	INP	REF
0.5322	256	422	588	31	481	1	52	51
0.5322	256	422	588	31	4.01			# E1
0.5114	246	336	426 4 26	32	481	1	53	51 #
0.5114 0.3617	246 174	336 210	246	32 13	481	1	54	51*
0.2952	142	207	272	14	481	i	55	51*
0.6091	293	377	461	30	481	ī	56	51
0.8254	397	429	461	31				
0.6341	305	383	461	32				
0.8254	397	429	461	31				#
0.1580	76	134	192	50	481 481	1	57 58	51* 51
0.5135 0.7256	247 349	370 421	493 493	31 32	401	1	26	21
0.5343	257	375	493	33				
0.7256	349	421	493	32				#
0.1913	92	284	476	30	481	1	59	51#
0.2121	102	202	302	29	481	1	60	51*
0.2911	140	215	290	39	481	1	61	51*
-0.0166	-8	62	132	12	481	1	62	51*
0.1788	● 86 103	139 226	192 349	62 31	481 481	1	63 64	51* 51*
0.2141 0.6570	316	425	534	35	481	i	65	51
0.6570	316	425	524	35		-		*
0.5260	253	325	397	30	481	1	66	51
0.5593	269	333	397	31				
0.5593	269	333	397	31				*
0.6528	314	399	484	31	481	1	67	51
0•6778 0•5239	326 252	407 370	488 488	32 48				
0.7464	359	421	483	49				
0.5800	279	379	479	50				
0.7464	359	421	483	49				#
0.7006	337	420	503	35	481	1	68	51
0.5301	255	179	503	36				
0.5759	277	371	465	52				
0.7900	380	421 371	462 459	53 54				
0.5884 0.7900	283 380	421	462	53				#
0.4407	212	288	364	28	481	1	69	51#
0.3222	155	211	267	60	481	. 1	70	51*
0.4823	232	297	362	28	481	1	71	51*
0.1767	85	218	351	28	481	1	72	51*
0.3867	186	301	416	46	481	1	73	51*
0.5489	264	343	422	31 31	481	1	74	51 #
0.5489 -0.0644	264 -31	343 0	422 31	51 51	481	1	75	51*
0.0229	11	44	77	1.9	481	i	76	51*
-0.0499	-24	69	162	9	481	1	77	51*
0.1268	61	● 84	107	29	481	1	78	51*
0.0852	41	53	65	29	481	1	79	51*
-0.0416	-20	47	114 160	30 9	481 481	1	80 81	51* 51*
0.0832 0.1081	40 52	100 100	148	30	481	i	82	51*
0.1001	34	172	310	36	461	î	83	51*
040101	→ ¬					-		

		V	ERTICAL	0			PAGE	108
MATCH	UNMAT	P	MASK	L	NORM	DEL	INP	RËF
0.0208	10	176	342	11	481	1	84	51*
0.0312	15	125	235	29	481	1	85	51*
-0.0561	-27	0	27	54	481	1	86	51*
-0.0208	-10	159	328	30	481	ì	87	51#
-0.0270	-13	170	353	31	481	1	88	51#
-0.0270	-13	2.0	53	10	481	1	89	51*

	TADI	F OF MA	YTMA.	VFRTIC	AL O		
REF	INP	NORM	LINE	MASK	P	UNMAT	MATCH
_							
1	22	345	18	383	322	261	0.7565
2	86	550	29	321	215	109 214	0.1982 0.4188
3		511	30	696 345	455 321	297	0.6061
4	1	490 509	28 30	511	340	169	0.3320
5	3 10	499	30	566	393	220	0.4409
7	75	384	25	248	154	60	0.1562
8	3	696	30	511	455	399	0.5733
9	10	595	30	566	452	338	^.5681
10	9	566	31	595	452	309	0.5459
11	84	665	35	346	226	106	0.1594
12	38	813	59	646	609	572	0.7036
13	37	831	40	727	635	543	0.6534
14	22	510	18	373	360	347	0.6804
15	22	828	49	682	575	468	0.5652
16	35	661	17	382	366	350	0.5295
17	21	1252	71	718	683	648	0.5176
18	13	646	35	809	541	273	0.4226
19	20	974	51	912	809	706	0.7248
50	19	912	49	974	809	644	0.7061
21	17	718	44	864	683 575	502 345	0.6992 0.5059
22	15	682 1037	53 50	805 680	472	264	0.2546
23 24	30 33	994	54	1009	855	701	0.7052
25	41	78A	45	626	517	408	0.5178
26	33	812	54	994	757	520	0.6404
27	14	730	36	510	489	468	0.6411
28	41	587	46	595	443	291	0.4957
29	14	642	48	467	451	435	0.6776
30	25	680	20	399	237	75	0.1103
31	1	850	2.3	345	323	301	0.3500
32	71	758	45	716	46?	208	0.2744
33	24	1039	50	994	855	716	0.6891
34	26	662	75	382	365	348	0.5257
35	36	1232	70	1213	981	749 730	0.6080 0.6018
36	35	1213	66 53	1232 605	981 558	511	0.6224
37 38	39 39	821 1000	39	605	580	555	0.5550
39	38	605	59	646	580	514	0.8496
40	_	560	40	556	355	154	0.2750
41	21	1207	45	718	560	402	0.3992
42	34	786	41	656	512	368	0.4682
43		422	25	327	777	217	0.5142
44	73	585	31	356	341	326	0.5573
45		392	29	364	282	200	0.5102
46		279	13	230	202	174	0.6237
47		413	32	420	331	242	0.5860
48	60	388	76	302	260	258	0.6649
49	53 72	755	52 26	426 351	423 254	420 157	0.7703
50 51	72 56	481	31	461	429	397	0.8254
52		588	32	481	422	363	0.6173
53		426	32	522	423	324	0.7606
54		470	36	411	331	251	0.3976
55		588	40	481	345	209	0-3554

	TARL	E OF MA	XIMA.	VERTIC	AL O	:	
REF	INP	NORM	FINE	MASK	P	UNMAT	MATCH
84	68	461	53	471	426	381	0.8265
56				383	322	261	0.6692
57	73	390	30 54	462	429	396	0.8032
38	48	493		279	231	163	0.3845
57	46	476	26 27	_	280	172	0.5695
60	48	302		388		180	0.5696
61	46	316	74	278 72	729 48	24	0.0659
62	46	364	11	677	493	309	0.3972
69	67	178 •	45			81	0.2321
64	60	349	42	219	150 488	470	0.8801
65	68	534	36	506	144	204	0.4139
66	67	397	31	484		578	0.8175
67	68	707	53	720	649	591	0.8208
68		720	49	707	649	318	
69		395	37	362	340	310 350	0.8051 0.5785
70	_	605	28	362	356		
71	69	362	28	395	340	285	0.7873
72		351	26	327	754	181	0.5157
73	- •	569	45	390	322	254	0.4464
74		422	31	461	337	213	0.5047
79		248	66	79	52	25	0-1508
76	-	77	65	105	63	74	0.3117
77		787	34	248	238	728	0.7916
78		107	9●	65	50	35 - 7	0.3271 +0.1077
79		65	9	107	50 56	46	0.4035
80		114	56 64	66 1037	584	131	0.1208
81		1084	9	107	83	59	0-3986
82		148	10	208	165	122	0.3861
83		316	51	213	172	131	0.3786
84	_	346			216	107	0.4553
85	_	255	12	325		69	0.2150
86		321	23	327	198	74	0.0732
87		328	47	206	115	31	0.0878
84	•	353	13	181	106	_	
89	76	250	17	_ 77	63	49	0.1892

	TARLE OF MAXIMA.				D PAGE 1 UNMAT MATCH		
REF	INP	NORM	LINE	Mask	Ρ	URMAI	HAICH
65	68	554	36	506	488	470	0.8801
39	38	605	59	646	580	514	0.8496
56	68	461	53	471	426	381	0.8265
51	56	481	31	461	429	397	0.8254
68	67	720	49	707	649	591	0.8208
67	69	707	55	720	649	578 318	0.8175
69	71	3 95 4 9 3	57 54	362 462	340 429	396	0.8032
58 71	68 69	362	28	395	340	785	0.7873
53	47	426	32	522	423	324	0.7606
1	22	345	18	383	322	261	0.7565
19	20	974	50	912	809	706	0.7248
20	19	912	49	974	809	644	0.7061
24		994	54	1009	855	701	0.7052
12		A13	59	646	609	572	0.7096
21	17	718	44	864	683	502	0.6992
33		1039	50	994 373	855 360	716 347	0.6891
14		510 642	18 48	467	451	435	0.6776
29 57	-	3 9 0	30	383	322	261	0.6692
48	-	388	26	302	280	258	0.6649
13		831	40	727	635	543	0.6534
27		730	36	510	489	468	0.6411
26		812	54	994	757	520	0.6404
46		279	13	230	505	174	0.6237
37		821	53	605	558	511	0.6224
52		588	12	481	422	369	0.6173
35		1232	70	1213	981	749	0.6080
4	_	490	28 66	345 1237	321 981	297 730	0.6061 0.6018
36 54		1213 420	36	411	331	251	0.5976
47		413	32	420	331	742	0.5860
70		605	28	362	356	350	0.5785
ï	_	696	30	511	455	399	0.5733
61	46	316	34	278	229	180	0,5696
50		302	27	388	280	172	0.5695
9		595	30	566	452	338	0.5681
15		928	49	682	575	448 326	0.5652 0.5573
44	-	585 755	31 52	356 426	341 423	420	0.5563
36		1000	39	605	580	555	0.5550
10	_	566	31	595	452	309	0.5459
i		661	17	382	366	350	0.5295
54		662	75	382	365	348	0.5257
2:	41	788	45	676	517	408	0.5178
17		1292	71	718	683	648	0.5176
72		151	26	327	254	181	0.9157
41		422	25	327	272 344	717 204	0.5142 0.5139
6(4)		397 392	31 29	484 364	282	200	0.5102
2		482	53	805	575	345	0.5059
7		422	31	461	937	213	0.5047
21		587	46	595	443	791	0-4957
30	72	327	26	951	254	157	0.4001
41	2 34	786	41	656	512	368	0.4682

	TARLE OF MAXIMA.		VERTICAL		PA	IGE 2	
REF	INP	NORW	LINE	MASK	P	UNMAT	MATCH
	_						
85	_ 1	235	12	325	216	107	0.4553
73	5 7	569	45	390	322	254	0.4464
6	10	499	30	566	393	550	0.4409
18	13	646	35	809	541	273	0.4276
3	8	511	30	696	455	214	0.4188
80	15	114	56	66	56	46	0.4035
41	21	1007	45	718	560	402	0.3992
82	78	148	9	107	83	59	0.3986
63	67	778	45	677	493	309	0.3972
83	70 •	316	10	205	165	172	0.3861
59	46	476	76	279	231	183	0.3845
84	73	346	51	213	172	131	0.3786
55	51	588	40	481	345	209	0.3554
31	1	860	33	345	123	301	0.3500
5	3	509	30	511	340	169	0.3320
78	79	107	9	65	90	45	0.3271
76	89	77	65	102	63	24	0.3117
77	75	782	34	248	238	228	0.2916
40	41	560	40	5560	395	154	0.2750
32	21	758	46	716	462	208	0.2744
23		1037	50	680	472	264	0.2546
64		349	42	219	150	81	0.2921
16		321	23	327	198	69	0.2150
7		550	Z 9	321	215	109	0.1982
89		259	17	77	63	49	0.1892
11	84	665	35	346	226	106	0.1594
7		384	25	248	154	60	0.1562
81	-	1084	64	1037	584	191	0.1208
30		680	20	399	237	75	C-1703
75		248	66	79	52	25	0.1008
88		353	13	181	106	31	0.0878
87	-	328	47	206	115	24	0.0732
62		364	11	77	48	24	0.0659
79		65	9	107	50	-7	-0.1077
77	75	7	7	# C/ F	21)	-,	- A TO L

-

	TABLE OF MAXIMA.		VERTICAL 1		PAGE 1		
REF			LINE	MASK	P	UNMAT	HATCH
101	22	345	18	383	315	247	0.7159
102	-3	550	31	511	289	67	0.1218
103	6	511	28	499	321	143	0.2798
104	1	490	28	345	312	279	0.5694
105	_6	509	29	499	359	219	0.4303
106	73 75	499	30 25	351 248	276 158	201 68	0.4028 0.1771
107	3	384 696	31	511	457	403	0.5790
109	10	595	30	566	430	294	0.4941
110	- 6	566	29	499	396	293	0.5177
111	84	465	35	346	227	108	0.1674
112	38	819	59	646	629	612	0.7528
113	18	131	41	646	565	484	0.5824
114	19	510	17	469	401	333	0.6529
115	34 35	828 661	53 17	852 382	6 36 349	420 316	0.5072 0.4781
116	21	1252	71	718	687	656	0.5240
118	28	646	33	413	305	197	0.3050
119	24	974	50	994	816	638	0.6550
120	19	912	49	974	760	546	0.5987
121	17	718	44	864	640 •		0.5794
122	15	682	53	805	572	339	0.4971
123	30	1037	50	680	479	278	0.2681
124	33 41	994 788	54 45	1009 626	807 442	605 258	0.49 87 0.3274
125	24	612	7) 70	994	749	504	1.6207
127	14	730	36	510	483	456	0.6247
128	25	587	48	712	501	290	0.4940
129	14	642	48	467	421	375	0.5841
130	25	680	21	408	236	64	0.0941
131	1	860	33	345	310.	275	0.3198
132	25	758	68	389	275	161	0.2124
133	24	1039 662	50 96	994 396	881 361	768 326	0.7392
134	36 36	1232	70	1213	940	667	0.5414
136	35	1213	66	1232	906	580	0.4782
137	39	821	53	605	551	497	0.6054
130	39	1000	39	605	518	431	0.4310
139	38	605	59	646	560	514	0.8496
140	41	560	40	556	387	218 380	0.3893
141	25 34	1007 786	67 41	788 656	584 490	324	0.3774 0.4122
142	50	422	26	327	269	211	0.5000
144	73	585	31	356	312	268	0.4581
145	69	392	29	364	297	230	0.5867
144	67	279	14	236	215	194	0.4953
147	54	413	32	420	331	242	0.5860
148	60	385	26	302	250	198	0.5103
149	53 72	755 327	52 76	42 6 351	383 219	340	0.4503
151	52	481	76 31	28 6	460	87 332	0.2661 0.6902
152	51	588	32	481	372	263	0,4473
153	49	426	32	922	391	260	0.4103
154	47	420	36	411	304	197	0.4690
155	51	588	40	481	327	173	0.2942

	TABL	E OF M	AXIMA.	VERTIC	AL	1 P/	AGE 2
REF	INP	NORM	LINE	MASK	P	UNHAT	MATCH
156	58	461	32	493	419	345	0.7484
157	73	390	30	383	325	267	0.6846
158	67	493	50	483	410	337	0.6836
159	46	476	26	279	727	175	0.3676
160	48	302	27	388	270	152	0.5033
161	54	316	21	356	255	154	0.4873
162	46	364	11	72	44	16	0.0440
163	67	778	45	677	476	775	0.3535
164	53	349	32	426	255	84	0.2407
165	68	534	36	506	479	452	0.8464
166	67	397	66	231	201	171	0.4307
167	68	707	52	720	581	442	0.6252
168	67	720	40	707	617	527	0.7319
169	71	395	37	362	314	266	0.6734
170	71	605	28	362	317	272	0.4496
171	69	362	28	395	296	197	^.544Z
172	50	351	26	327	239	151	0.4302
173	53	569	31	476	323	220	0.3866
174	56	422	31	461	336	211	0.5000
175	37	248	66	79	51	23	0.0927
176	89	77	66	98	60	27	0.2857
177	75	782	34	248	246	244	0.3120
178	82	107	10	148	96	44	0.4112
179	78	65	n	107	43	-25	-0.1846
180	15	114	54	73	62	51	0.4474
181	85	1084	19	235	162	89	0.0821
182	79	148	10	65	56	47	0.3176
183	70	316	10	208	163	118	0.3734
184	73	346	51	213	172	131	0.3786
185	1	235	12	325	210	95	0.4043
186	27	321	24	339	205	71	0.2212
187	69	328	57	57	39	21	0.0640
188	46	353	10	62	44	26	7-7737
189	76	259	17	77	48	19	0.0734

	TARI	LE OF MAS	YTMA.	VERTIC	AL 1	PA	SE 1
REF			LINE	MASK	~ p ·	UNMAT	MATCH
137	30	605	59	646	580	514	0.4496
165	68 38	534 613	36 59	506 646	479 629	45Z 612	0.8464
156	5 8	461	32	493	419	345	0.7484
133	24	1039	50	994	881	768	0.7392
168	67	720	49	707	617	527	0.7319
101	22	345	18	383	315	247	0.7159
146	67	279	14	236	215	194	0.6953
151	52	481	31	588	460	332	0.6902
157	73	390	30	383	325	267	0.6846
158	67	493	50	483	410	337	0.6836
169	71	395	37	362	314	266	0.6794
119	24	974	50	994	616	638	0.6550
114	19	510	17	469	401	333	0.6529
167	68	707	55 36	720 510	581 483	442 456	0.6252
127 126	14 24	730 812	50	994	749	504	0.6207
153	49	426	32	522	391	260	0.6103
124	33	994	54	1009	807	605	0.6987
137	39	821	53	605	551	497	0.6054
120	19	912	49	974	760	546	0.4987
145	69	392	29	364	297	237	0.5867
147	54	413	37	420	331	742	0.5860
129	14	642	48	467	421	375	0.5841
113	18	831	41	646	565	484	0.5824
121	17	718	44	864	640	416	0.5794
108	3	696	31	511	457	403	0.5790
104	1	490	28	345	312	279	0.5694
171	69	362	28	395	296	197 667	0.5442
135	36	1232	70 71	1213 718	940 687	656	0.5240
117	21	1252 566	79	499	396	293	0.5177
110	6 60	388	26	302	250	198	0.5103
115	36	828	5.9	852	636	470	0.5072
160	48	302	27	388	270	152	0.5033
143	_	422	26	327	269	211	0.5000
174	56	422	31	461	336	211	0.5000
122	15	682	53	805	572	339	0.4971
109	10	595	30	566	430	294	0.4941
128	25	587	48	712	501	290	0.4940
134		662	96	396	361	326	0.4724
161	74	316	21	376	255	154	0.4873
136		1213	66	1232	906	580	0.4782
116		661 420	17	392 411	349 304	716 197	0.4781
144		585	91	356	312	268	0.4561
149	53	755	52	426	383	340	0.4503
170		603	28	362	317	272	0.4496
180		114	55	73	62	51	0.4474
152	51	588	32	481	372	263	0.4473
130	39	1000	39	605	518	431	0.4310
166		397	66	231	201	171	0.4307
105		509	29	499	359	219	0.4303
172		351	76	327	739	151	0.4302
142	34	786	41	656	490	324	0.4122

	TABLE OF MAXIMA.		VERTIC	AL '	1 PAGE 2		
REF	INP	NORM	LINE	MASK	P	UNMAT	MATCH
178	82	107	10	148	96	44	0.4112
185	ī	235	12	325	210	95	0.4043
106	73	499	30	351	276	201	0.4028
140	41	560	40	556	387	218	0.3893
173	53	569	31	426	323	220	0.3866
184	73	346	51	213	177	131	0.3786
141	25	1007	67	788	584	380	0.3774
183	70	316	10	208	163	118	0.3734
159	46	476	26	279	727	175	0.3676
163	67	778	45	677	476	275	0.3595
125	41	788	45	676	447	258	0.3274
131	1	860	33	345	310	275	0.4198
182	79	148	10	65	56	47	0.3176
177	75	782	34	248	246	244	0,3120
118	28	646	33	413	305	197	0.3050
155	51	588	40	481	327	173	0.2942
176	89	77	66	98	60	27	0.2857
103	6	511	2.8	499	321	143	0.2798
123	30	1037	50	680	479	278	0.2681
150	72	327	26	351	219	87	0.2661
164		349	17	426	255	84	0.2407
186		321	24	339	205	71	0.2212
132		758	68	389	275	161	0.2124
107		384	75	248	158	68	0.1771
111	84	665	35	346	227	108	0.1624
102	3	55¢	31	511	289	67	0.1218
130	25	680	21	408	736	64	0.2941
175	37	248	66	79	51	23	0.0927
181	85	1084	19	235	162	89	0.0521
188	46	355	10	62	44	26	0.0737
189	76	259	17	77	48	19	0.0734
187		328	57	57	39	21	0.0640
162		364	11	7?	44	16	0.0440
179		65	9	107	41	-25	-0.3845

	TARL	E OF MAX	LAMES	VERTICA	L 2	PAG	SE 1
REF		NORM L		MASK	P	UNMAT	HATCH
	_						
1	22	345	18	383	306	229	0.6638
3	22	550	54	309	184	59 119	0.1073
3	6 1	511 490	29 28	499 345	309 298	251	0.2329 0.5122
5	73	509	30	356	269	182	0.3576
6	73	499	30	351	247	143	0.2866
7	75	384	25	248	157	66	0.1719
8	3	696	30	511	419	327	0.4698
9	10	595	30	566	396	559	0.3798
10	6	566	30	499	363	227	0.4011
11	84	665	36	346	226	106	0.1594
12	38	813	59	646	573	500 417	0.6150
13	38	831	59	649	533	417 311	0.5018 0.6098
14	29	510	29	571 863	441 598	333	0.4022
15	36 35	828 661	54 17	382	323	264	0-3994
16 17	21	1252	71	718	622	526	0.4201
18	75	646	38	613	411	209	0.3235
19	24	974	50	994	761	528	0.5471
20	19	912	48	974	700	426	0.4671
21	41	716	66	720	511	302	0.4206
22	36	682	100	400	345	290	0.4252
23	30	1037	49	680	464	248	0.2397
24	33	994	-4	1009	751 3 8 1	493 136	0.4960 0.1726
25	41 24	788 812	45 50	626 994	699	404	0.4975
26 27	14	730	36	510	448	386	0.5288
28	25	587	48	712	504	296	0.5043
29	14	642	48	457	189	313	0.4844
37	84	680	24	346	203	60	0.0883
31	1	860	33	345	300	255	0.2965
32	75	758	68	389	261	133	0.1755
33	24	1039	50	994	925	656	0.6314 0.4320
34	36	662	96 70	396 1213	343 852	286 491	0.3985
35 36	96 35	123 <i>2</i> 1213	66	1232	820	408	0.3364
37	38	821	73	649	551	453	0.5518
38		1000	39	605	448	291	0.2910
39		605	59	646	518	390	0.6446
40		36A	40	556	374	192	0.3429
41	25	1007	67	788	611	434	0.4910
42		786	93	396	341	286	0.3639
43		422	25	327	244	161	0.3815
44	- 6	385	30	499 362	343 266	187 170	0.3197 0.4337
45 46		392 279	29 13	241	205	169	0.6057
47		413	32	420	299	178	0.4310
48		388	26	302	209	110	0.2990
49		755	52	426	328	230	0.3046
50		527	43	166	106	46	0.1407
51		481	12	493	17?	251	0-5218
52		588	31	461	516	171	0.2908
53	49	426	32	522	334	146	0.3427
54		420	69	227	180	133	0.3167
55	66	588	39	397	268	139	0.2364

	TARL	F OF M	AXIMA.	VERTIC	AL	2 P/	\GE 2
REF		NORM	LINE	MASK	P	UNMAT	HATCH
56	58	461	32	493	380	267	0.5792
57	73	390	30	383	294	205	0.5256
58	67	493	50	483	373	263	0.5335
59	46	476	26	279	214	149	0.3130
60	4.6	302	27	388	228	68	0.2252
61	54	316	21	356	230	104	0.3291
62	46	364	11	72	40	8	0.0220
63	67	778	45	677	443	209	0.2686
64	60	349	42	219	135	51	0.1461
65	67	534	50	503	433	363	0.6798
66	67	397	66	231	183	135	0.3471
67	68	707	53	720	512	304	0.4300
68	67	720	49	707	550	393	0.5458
- 69	71	395	37	362	766	170	0.4304
70	71	605	28	362	269	176	0.2909
71	69	362	28	395	247	99	0.2735
72	50	351	26	327	705	83	0.2365
73	53	569	31	426	296	1,66	0.2917
74	51	422	32	481	321	161	0.3815
75	97	248	65	64	52	20	0.0806
76	89	77	66	98	44	-10	- 0.1299
77	75	782	34	248	248	238	0.3043
78	#2	107	10	148	98	48	0.4486
79	89	65	1	41	n	-41	-0.6398
80		114	10	65	62	59	0.5175
61	85	1084	19	235	154	73	0.0673
82		148	10	65	53	41	0.2770
83	70	316	10	208	161	114	0.3508
84	73	346	51	213	172	131	0.3786
89		235	39	231	163	95	0.4043
64		321	24	339	187	35	0.1090
87	69	328	56	63	41	19	0.0579
80		353	1.1	66	46	26	2 .0737
89	74	259	94	7	Ú	-7	-0.0270

	740 1	E OF MA	WTMA.	VERTICA	L 2	PAG	E 1
REF	INP	NORM	LINE	MASK	` P	UNMAT	MATCH
	• • • •						
65	67	534	50	503	433	363	0.6798
1	22	345	18	383	306	229	0.6638
39	36	605	59	646	518	390 656	0.6314
33	24	1039	50	994	825	500	0.6150
12	36	813	59	646 571	573 441	311	0.6098
14	29	510 279	29 13	241	205	169	0.6057
46 56	54 58	461	32	493	380	267	0.5792
37	38	821	73	649	551	453	0.5518
68	67	720	49	707	550	393	0.5458
19	24	974	50	994	761	528	0.5421
58	67	493	50	483	373	263	0.5335
27	14	730	16	510	448	386	0.5288
57	73	390	30	383	294	205	0.5256
51	58	481	32	493	372	251	0.5218
80	79	114	3.0	65	62	50	0.5175
4	1	490	28	345	798	251	0.5122
28	25	587	4.8	712	504	296	U-5043
13	38	831	59	649	533	417	0.5018
26	24	812	50	994	699	404	0.4975
24	33	994	54	1003	751 389	493 311	0.4844
29		64?	48	467 511	419	327	0.4698
8	9	696	30 48	974	700	426	0.4671
20		912 107	10	148	98	48	0.4486
78 45		392	29	362	266	170	0.4337
34	-	995	96	396	341	286	0.4320
47		413	32	420	299	178	0.4310
41		1007	67	788	611	434	0.4310
69	_	395	37	362	266	170	0.4304
67		707	53	729	512	304	0.4300
22	36	682	100	400	345	290	0.4252
21	41	718	66	720	511	302	0.4206
17		1252	71	718	622	526	0.4201
85		235	39	231	163	95	0.4043
19		828	54	863	598	333 227	0.4011
17	_	566	30	499 382	963 923	264	U. 1994
16		661 1232	17 70	202 1213	952	491	0.3985
35 45		422	25	327	244	161	0.3015
74		422	32	481	321	161	0.3815
Š		595	30	566	396	726	0.3798
84		346	51	213	172	131	0.3786
42		786	93	396	341	286	0.3639
8:		316	10	208	161	114	0.3608
	73	509	30	356	269	182	0.3576
46	41	560	40	556	374	192	0.3429
5		426	32	522	334	146	0.3427
60		397	66	231	183	135	0.9401
30		1213	66	1232	820	408	0.3364
6		316	21	356	230	104	0.3291
1		646	38	613	411	219	0.3235
4		585	30	499	143	187 133	0.3197 0.3167
5		420	69	227	180	149	0.9130
5	9 46	476	26	279	214	7 A 2	

:

	TARI	LE OF H	AXIMA.	VERTIC	AL	-	AGE 2
REF			. TINE	MASK	P	UNMAT	MATCH
49	53	755	52	426	928	230	0.3046
77	75	782	34	248	243	258	0.3043
48	60	388	26	302	209	116	0.2990
31	1	860	33	345	300	255	0.2965
73	53	569	31	426	296	166	0.2917
38	39	1000	39	605	448	291	0.2910
70	71	605	28	362	269	176	0.2909
52	56	588	31	461	316	171	2.2906
6	73	499	30	351	247	143	0.2866
82	79	148	10	65	53	41	0.2770
71	69	367	28	395	247	99	0.2735
63	67	778	45	677	443	209	0.2686
23	30	1037	49	680	464	248	0.2392
72	50	351	26	327	205	83	0.2365
55	66	588	39	397	268	139	0.2364
3	6	511	29	499	309	119	0.2329
60	48	302	27	388	228	68	0.2252
32	25	758	68	389	261	133	0.1755
25	41	788	45	626	381	136	0.1726
7	75	384	25	248	157	66	r.1719
11	84	665	36	346	226	196	0.1594
64	60	349	42	219	135	51	0.1461
50	66	327	43	166	106	46	0.1407
86	27	321	24	339	187	35	0.1090
2	22	550	54	309	184	59	0.1073
30	84	680	24	346	203	60	0.0882
75	37	248	65	84	52	20	0.0805
88	46	353	11	66	46	26	0.0797
81	35	1084	10	235	154	73	0.0673
87		328	*6	63	41	19	0.0579
62	46	364	11	72	40		0.0220
89		259	96	7	0	-7	-0.0270
76		77	66	98	44	-10	→ 0.1299
79		65	1	41	0	-41	-0.6308

	TABLE OF MAXIMA.		VERTICAL 0		PAGE 1		
REF	1 NP	NORM	LINE	MASK	p	UNMAT	MATCH
	- • • • • • • • • • • • • • • • • • • •		••••		' &		_
101	22	345	18	363	331	279	0.8087
102	86	550	29	321	252	183	0.3927
103	8	511	30	696	521	346	0.6771
104	1	490	28	345	329	313	0.6388
105	6	509	30	499	385	271	0.5324
106	10	499	30	566	446	326	0.6533
107	75	384	26	248	177	106 465	0.2760 0.6681
108	3	696 595	30 30	511 566	485 480	394	0.6622
109	10 9	366	31	595	491	387	0.6837
111	4	665	39	490	321	152	0.2286
112	13	613	40	831	739	647	0.7958
113	12	831	40	813	746	679	0.8171
114	29	510	29	571	495	419	0.8216
115	36	828	53	852	696	- 540	0.6522
116	13	661	41	831	647	453	0.4853
117	21 a	1252	71	718	711	704	0.5623
118	19	646	36	816	614	412	0.6378
119	24	974	50	994	888	782	0.8029
120	19	912	49	974	881	788	0.8640
121	17	718	44	864	774	684	0.9526
122	15	682	53	805	646	487	0.7141
123	30	1037	50	680	521	362	0.3491
124	33	994	54	1009	912	615	0.8199
125	41	788	45	626	584	542	0.6878
126	33	812	54	994	819	644	0.7931 0.6795
127		730	36	510	503	496 345	0.5577
128	41	587	46 48	995 467	470 457	447	0.6963
129		447	20	399	259	119	0.1750
130	25 1	650 860	33	345	330	315	0.3663
131		758	46	716	512	908	0.4063
133	_ =	1039	50	994	896	798	0.7680
134		662	96	396	382	368	0.5559
135		1232	70	1213	1037	861	0.6989
136	35	1213	66	1232	1011	790	0,6513
137	39	821	53	605	590	575	0.7004
130	39	1000	39	605	605	605	0.6050
339	38	605	59	645	633	620	1.0240
140		560	40	556	412	768	0.4764
141	21	1007	45	718	622	526	0.5223
142		786	41	656 227	551 301	446 275	0.5674 0.6517
143		422 585	25 30	327 390	383	376	0.6427
144		392	29	364	329	294	0.7500
146		279	21	285	259	233	0.8351
147		413	32	420	371	322	0.7797
148		388	26	302	295	268	0.7423
149		755	57	426	426	426	0.5642
150		327	26	351	294	237	0.7248
151		481	31	461	444	427	0.8877
152	51	586	32	481	471	461	0.7840
155		426	32	522	474	426	1.0000
154		420	36	411	350	289	0.4881
155	51	568	40	481	367	253	0.4303

70.1

	TABL	E OF M	.AMIXA	VERTIC	AL	0 •	AGE 2
REF	INP	NORM	LINE	MASK	P	UNMAT	MATCH
484		444	2.0	400	440	497	0.0243
156	58	461	32	493	460	427	0.9262
157	73	390	30	363	338	293	0.7513
158	65	493	36	534	475	412	0.8357
159	57	476	31	390	312	234	0.4916
160	48	502	27	388	315	242	0.8013
161	46	316	34	278	242	206	0.6519
168	54 67	364 778	44	222 677	191	40 407	0.1099
163			45		542		0.5231
164	53	349	32	426	302	178	0.5100
165	68	534	36	506	494	452	0.9026
166	56	397	31	493	369	245	0-6171
167	68	707	53	720	661	602	0.8515
168	67	720	49	707	681	655	0.9097
169	71	395	37	362	362	362	0.9165
170	71	605	28	362	361	360	0.5950
171	69	362	28	395	348	501	0.8315
172	50	351	26	327	286	245	0.6980
173	57	569	45	390	367	344	0.6046
174	56	422	31	461	381	301	0.7193
175	11	248	44	304	175	46	0.1855
176	89	77	65	102	64	26	0.9377
177	75	782	34	248	246	744	0.3120
178	82	107	10	148	104	60 − 1	0.9607
179	78 15	114	9 55	107 73	53 64	55	+0.0154 0.4825
180	23	1084	64	1037	675	313	0.2587
162	78	148	9	107	96	85	0.5743
183	54	316	10	222	177	132	0.4177
184	51	346	37	222	181	140	
185) 1	235	12	325	236	147	0.4046
186	27	321	24	339	242	145	0.4517
187	60	328	42	206	143	_	
188	73	320 353	13	-	133	80 85	0.2459
		-		181			0.2408
189	76	259	16	77	77	77	0.2973

entertailment something store the second conservation of

Control of the second of the s

	~	E OF M	AUTMA.	VERTICA	AL O	PAG	SE 1
055		NORM	LINE	MASK	• "	UNMAT	HATCH
REF	1 45	MOKE.	£ 1146.	N FI GIV	·		
139	36	605	59	646	637	620	1.0248
153	49	426	32	522	474	426	1.0000
121	17	718	44	864	774	684	0.9526
156	58	461	37	493	460	427	0.9262
169	71	395	37	362	762	362	0.9165
168	67	720	49	707	681	655	0.9097
165	68	534	36	506	494	482	0.9026
151	56	481	31	461	444	427	0.8877
150	19	912	49	974	881	788	0.8640
167	68	707	43	720	661	60Z	0.8515
158	65	493	36	534	473	412 233	0.8357 0.8351
146	61	279	21	255	259	201	0.8315
171	69	367	7 R	395	348 495	419	0.8216
114	29	51^	29 54	571 1009	912	815	0.8199
124	33	994 531	40	813	746	679	0.8171
113	12 22	345	18	383	331	279	0.8087
101 119	24	974	50	994	888	782	0.8029
160	48	302	27	388	315	242	0.8013
112	13	813	40	831	739	647	0.7958
126	33	812	54	994	819	644	0.7931
152	51	588	32	481	471	461	0.7540
147		413	32	420	371	322	0.7797
133		1039	5 ¢	994	896	798	0.7680
157		39r	30	383	338	293	0.7513
145		392	29	364	379	294	0.7500
148		968	26	302	295	288	0.7423
150	72	327	26	351	294	237	0.7248
122	15	682	53	805	646	487	0.7141
174		422	31	461	381	301 575	0.7133
137		821	52	605	590 1037	861	0.6989
135		1232	70	1213 327	1037 286	245	0.6980
172		351	26 48	467	457	447	0.6963
129		642	36	411	350	289	0.6881
154		420 788	45	626	584	542	0.6578
12		661	41	831	642	453	0.6953
116		566	31	595	491	387	0.6837
110		730	36	510	503	496	0.6795
103	_	511	30	696	521	346	0.6771
100	-	696	30	511	488	465	0.6681
10		595	30	565	480	394	1.6622
100	-	499	30	566	446	326	0.6533
11		828	59	852	696	540	0.6522
16	46	316	34	278	242	206	0.6519
14:		422	25	327	301	275	0.6517
130		1213	65	1232	1011	790	0.6513
14		585	30	390	383	376	0.6477
10		490		345	329	313 412	0.6388
11		646 235		816 325	614 2 36	147	0.6255
18		237 397		493	169	245	0.6171
16		1000		605	605	605	0.6050
17		569		390	367	344	0.6046
17		605		362	361	360	0.5950
1		• • • •			200		

٤

A STATE OF

,

see a companie of the good

0

	TABL	LE OF M	AXIMA.	VERTIC	AL () P	AGE 2
REF	INP	NORM	LINE	MASK	ρ	UNMAT	MATCH
120	41	587	46	595	473	948	0.000
182	78	148	9	107	96	945 85	0.5877
142	34	786	41	656	551	446	0.5743
149	53	755	52	426	426	426	0.5674
117	21	1252	71	718	711	704	0.5642
178	12	107	10	148	104	60	0.5607
134	36	662	96	396	382	368	0.5559
105	7	509	30	499	385	271	0.5324
163	67	778	45	677	542	407	0.5231
141	21	1007	45	718	622	526	0.5223
164	53	349	32	426	302	178	0.5100
159	57	476	31	390	312	234	0.4916
180	15	114	55	73	64	55	0.4825
140	41	560	40	556	417	268	0.4786
186	27	321	24	339	242	145	0.4517
155	51	588	40	481	367	253	0.4303
183	54	316	10	222	177	132	0.4177
132	21	758	46	716	512	308	0.4063
184	51	346	37	222	181	140	0.4046
131	1	860	33	345	330	315	0.3663
123	30	1037	50	680	521	362	0.3491
176	69	. 77	65	102	64	26	0.3377
102	86	550	29	321	252	183	0.3327
177	73	782	34	248	246	244	9.3120
189	76	259	16	77	77	77	0.2973
181	23	1084	64	1037	675	313	0.2887
197	75	384	26	248	177	106	0.2760
187	60	328	42	206	143	80	0.2439
188	73	353	19	181	133	85	0.2408
111	•	665	59	490	321	152	0.2286
175	11	248	44	304	175	46	0.1555
130	25	680	20	399	259	119	0.1750
162	54	364	44	222	131	40	0.1099
179	78	65	9	167	55	-1	⇔0.0154

				UED-161	AL O	PAG	E 1
		F OF MA		VERTICA MASK	*L ''	UNITAT	MATCH
REF	INP	NORM	LIME	MASK	7	O	
201	22	345	18	383	338	293	0.8493
202	9	550	30	595	415	235	0.4273
203	8	511	30	696	568	440	0.8611
204	19	490	29	519	420	321	0.6551
205	6	509	30	499	412	325	0-6385
206	5	499	30	509	443	377	0.7555
207	75	384	26	248	300	152	0.3958
708	3	696	30	511	500	489	0.7026 0.7092
508	10	595	30	566	4 9 4 509	42? 423	0.7473
210	9	566	37	595 508	416	244	0.3669
211	52	665	37 40	588 831	767	703	0.8647
212	13	813	40	813	776	739	0.8893
213	12 29	831 510	29	571	530	489	0.9588
214 215	36	828	53	852	727	592	0.7150
216	13	661	41	831	674	517	0.7821
217	21	1252	71	718	715	712	0.5687
218	13	646	36	816	641	466	0.7214
219	24	974	50	994	900	806	0.8275
220	19	912	49	974	906	838	0.9189
721	17	718	44	864	788	712	0.9916
222	15	682	53	805	668	531	0.7786 0.3954
223	30	1037	50	186	545	410	0.8280
224	33	994	54	1009	916	823 598	0.7589
225	41	788	45	626 004	612 830	666	0.8202
226	33	812	54 29	994 559	544	509	0.6973
227	29	730 587	48	712	573	434	0.7394
225	25 14	642	48	467	458	449	0.6994
229	23	680	58	941	558	175	0.2574
231	1	860	33	345	741	737	0.3919
232	17	758	66	933	663	393	0.5185
733	74	1039	50	994	898	802	0.7719
234	36	662	96	396	385	374	0.5650 0.7183
235	36	1232	70	1213	1049	885 * 816	0.6727
236	35	1213	66	1232 813	1024 735	617	0.7515
237	12	821	54 39	605	605	605	0.6050
235	39 38	1000 605	59	646	641	636	1,0512
239 240		560	39	646	488	330	0.5893
241	21	1007	45	718	658	598	0.5938
242		786	68	A79	690	501	0.6374
743		422	25	377	314	301	0.7193
244		585	30	390	989	768	0.6632
245		392	32	484	412	340	0.8673
246		279		285	765	245 392	0.8781 0.8039
247		413	37 26	420 302	376 298	294	0.7577
248	_	388 755		426	426	426	0.5642
249 250		327		422	354	286	0.8746
251		481	31	461	448	435	0.9044
252		588		481	477	473	0.8044
253		426		522	477	432	1.0141
254		420		411	355	305	0.7262
255		588	40	481	387	293	0.4983

	TABLE OF MAXIMA.			VERTICAL		n PA	AGE 2
REF	INP	NORM	LINE	MASK	P	TAMMU	MATCH
256	58	461	32	493	462	431	0.9349
257	73	390	30	383	344	305	0.7821
258	65	493	36	534	480	426	0.8641
259	58	476	32	493	378	263	0.5525
261	48	302	27	388	319	250	0.8278
261	46	316	34	278	743	208	0.6582
262	54	364	44	272	148	74	0.2033
263	67	778	45	677	570	463	0.5951
264	49	349	50	574	380	236	0.6762
265	68	594	36	506	494	487	0.9076
266	58	397	31	493	279	265	0.6675
267	68	707	53	720	665	610	0.8628
268	67	720	49	707	683	659	0.9153
269	70	395	51	404	385	366	0.9266
270	71	615	28	362	362	362	0.5981
271	69	362	28	395	348	301	0.8315
272	50	351	26	327	310	293	0.8348
273	57	569	45	390	383	376	0.6608
274	56	422	31	461	399	337	0.7986
275	11	248	44	304	187	70	0.2823
276	99	77	65	102	64	26	0.3377
277	75	782	34	248	748	748	0.*171
278	82	107	10	148	121	94	0.8785
279	80	65	9	114	63	12	0.1846
280	15	114	54	8.0	71	62	0.5439
281	23	1084	64	1037	742	447	0.4124
282	78	145	9	107	102	97	0.6554
283	54	316	10	222	187	142	0.4494
284	77	346	37	319	237	155	0.4480
285		235	13	333	257	181	0.7702
286	27	321	24	339	758	177	0.5514
287	60	428	30	302	218	734	0-4085
286	49	353	46	545	?47	148	0.4193
289	76	259	16	77	77	77	0.2975

	TABLE OF MAXIMA.			VERTICAL O		PAGE 1	
REF	INP	NORM	LINE	MASK		UNMAT	MATCH
		4.00		4.4	449	494	1 0819
237	38	605	59	646	641 477	636 432	1.0512
253	49 17	426 718	32 44	522 864	788	712	0.9916
221 214	29	510	29	571	530	489	0.9588
256	58	461	32	493	462	431	0.9349
269	70	395	51	404	385	366	0.9266
220	19	912	49	974	905	838	0.9189
268	67	720	•49	707	683	659	0.9153
251	56	481	31	461	448	435	0.9044
265	68	534	36	506	494	482	0.9026
213	12	831	40	813	776	739	0.6893
278	92	107	10	148	121	94	0.8785
246	61	279	21	285	265	245	0.8781
250	43	327	28 32	422 484	354 417	286 340	0.8673
245	67	392 813	7.6 40	831	767	703	0.8647
212 258	13 65	493	36	534	480	426	0.8641
267	2.0	707	53	720	665	610	0.8628
203		511	30	696	568	440	0.8613
201	ZŽ	345	16	383	338	293	0.8493
272		351	26	327	310	293	0.8348
271	69	362	28	395	348	301	0.8315
224	33	994	54	1009	916	823	0.8280
260	48	302	2.7	388	319	250	0.8278
219	24	974	50	994	900	806	0.8275
226		812	54	994	830	666	0.8505
252		588	32	491	477	473	0.8044
247	_	413	32	420	376	332	0.8039
274		422	31	461	399	737	0.7986
216		661	41 30	831 383	674 344	517 305	0.7821 ^.7821
257		390 390	53	805	668	531	0.7786
222 233		1039	50	994	898	802	0.7719
285		235	13	333	257	161	0.7702
229		788	45	626	612	598	0.7589
248		388	26	302	298	294	0.7577
206	5	499	30	509	443	377	0.7555
237	12	821	54	813	715	617	0.7515
210		566	31	595	509	423	0.7473
224		587	48	712	573	434	0.7394
254		420	36	411	358	305 466	0.7262
218		646	36 70	816	641 1049	400 685	0.7183
795 215		1232 828	53	1219 652	722	592	0.7150
243		422	25	327	314	301	0.7193
209		595	30	566	494	422	0.7092
208		696	30	511	500	489	0.7026
229		642	48	467	456	449	0.6994
227	29	730	29	559	534	509	0.6973
264		349	50	574	380	236	0.6762
234		1213	66	1232	1024	816	0.4727
266		397	71	493	379	265	0.6675
244		585	30	390 390	389 383	348 376	0.6632
271	57	569	45	701			

	TARLE OF MAXIMA.			VFRTICAL		n PA	PAGE 2	
REF	INP	NORM	LINE	MASK	P	UNMAT	MATCH	
282	78	148	9	107	102	97	0.6554	
204	19	490	29	519	420	321	0.6551	
205	6	509	30	499	412	325	1.6385	
242	17	786	68	879	690	503	0.6374	
238	39	1000	19	605	605	605	0.6050	
270	71	605	28	362	362	362	0.4985	
263	67	778	45	677	570	463	1.5951	
241	21	1007	45	718	658	598	0.5938	
240	18	560	79	646	488	220	0.5893	
217	21	1252	71	738	715	712	7.5687	
234	36	662	96	396	385	274	0.5650	
249	53	755	52	426	426	426	0.5642	
259	58	476	32	493	378	263	0.5525	
286	27	321	24	339	258	177	0.5514	
280	15	114	54	80	71	62	0.5439	
232	17	758	66	933	663	333	0.5185	
255	51	588	40	447	387	799	0.4983	
283	54	316	10	272	182	142	0.4494	
284	77	346	37	319	237	155	0.4480	
202	9	550	3.3	595	415	フマモ	1.4273	
288	49	753	45	546	347	148	0.4193	
281	23	1084	64	1037	742	447	0.4174	
287	60	328	30	302	218	134	0.4055	
207	75	384	76	248	200	152	0.3958	
223	30	1037	50	68 <u>0</u>	545	410	0.3954	
231	1	860	33	345	341	3.7	0.3919	
211	52	665	37	588	416	244	0.3569	
276	89	_ 77	65	102	64	76	C•3377	
277	75	782	34	248	248	248	0.3171	
289	76	259	16	77	77	77	0.2973	
275	11	248	44	304	187	70	0.2823	
230	23	680	58	941	558	175	0.2574	
262	54	364	44	222	145	74	. 0.2033	
279	80	55	9	114	63	12	0.1846	

1 22

CATALOGUE FILE CARD

1. Petters Recognition 2. Analog-to-Digital Convertor 1. Project 4599, Tank 459022 11. INM Corp. Themse J. Wason Research Contert, Yorktown Heights, N. Y. I'v. In ASTIA collection		1. Pettern Recognition 2. Analog-to-Digital Converter II. Project 4299, Tank 459902 III. Cone AF 20(602)-2080 III. IBM Corp. Thomas J. Watson Research Contor. Yorkhova Heights, N. Y. IV. In ASTIA collection	
Rome Air Development Center, Griffian AF Base, NY Rp. No. RADC-TOR-62-472, ENGINEERING ANALYSIS AND DIGITAL. SIMILATION OF BAIRD-ATOMEC FRINT READER Final Rpt. 8 Sept 62, 45 pp. Unclassified Report The Optical Reasinn Frist Reader (Convertor Group, Frial-To-Digital AN/CSA-29) has been secondard, the front end optical aligned, and the like following serve system smalls and with the seminance of Baird-Atomic personnel. An IBM 7000 simulation shows that the basic masking technique used for an idealized electro-optical system yields adoptate discrimination levels only for very high quality characters and for very close tolerances on text registration. The report contains a detailed description of the serve manyways and smalling technique simulation; it also includes error rate tabulations beard on input text quality and proposed mask alternitons	0	Rome Air Development Center, Criffins AF Base, NY Ret No. RADC-TDR-62-472, ENGINEERING ANALYSES AND INGITAL SMULATION OF BAIRD-ATOMIC PRINT READER, Final Ret, 3 Sopt 63, 45 pp. Unclassified Report The Optical Russian Print Reader (Converter Group, Print-To- Digital AN/GSA-29) has been assembled, the front end optics aligned, and the line following serve system snalyzed with the snesistance of Baird-Anomic personnel. An IBM 7090 simula- tion shows that the basic marking technique used for an idealized electro-optical system yields adequate discrimina- tion levels only for very high quality characters and for very close tolerances on text registration. The report contains a detailed description of the serve analyzis and meaking toch- mique simulation; it also includes error rate tabulations based on input text quality and proposed mask alternions.	
1. Pattern Recognition 2. Analog-to-Digital Convertor Hall Project - 1999 Tear 459902 H. Cont A. 30(602)-2080 Hill Hills Corp. Thomas J. Watson Research Thomas J. Watson Research Thomas J. Watson Research The Construction Yorktown Heights, N. Y. Hight H. Is ASTIA collection tion tion closed		1. Pattern Recognition 2. Asalog-to-Digital Convertor 1. Profest 4599, Task 45902 11. IBM Corp. Themse J. Wetson Research Conter Yorktows Heights, N. Y. IV. Is ASTIA collection	
Rosse Air Development Center, Griffice AF Boss, NY Ros No. RADC-TUR-62-472, ENGINEERING ARALIYES AND DIGITAL SIMILATION OF BARID-ATOMIC PRINT READER Final Rat, 2 Sopt 62, 45 pp Unclassified Report The Optical Research Print Reader (Corrector Georg, Print-To- Digital AN/GSA-29) has been semenabled, the front end optica aligned, and the line following serve system samplyand vife the semidence of Bariel-Mannic personnel. An IBM 7000 simulation aboves that the lenier landing technique most for an idealized electro-optical system yields adopted discrimination levels of the serve high quality describes and for very close tolesco on text registeration. The report contains a detailed description of the serve analysis and manking techniques simulation; it also includes curve rate tabulations based on input text quality and proposed mark alternitons.	0	Rome Air Development Center, Criffies AF Base, NY RR No. RADC-TDR-62-472. ENGUREERING ANALTESS AND DIGITAL SHULL-ATRON OF BAIRD-ATOMIC PRINT READER, Final list, 3 Sept 62, 45 pp. Uncleasified Report The optical Reseates Print Reader (Converter Group, Print-To- Digital AN/CSA-29) has been assembled, the front end optics aligned, and the line following serve system analyzed with the assentance of Baird-Atomic personnel. An IBM 7000 simulation shows that the basic maniful personnel. An IBM 7000 simulation shows that the basic maniful probatique seed for an idealised electre-optical system yields aloquete discrimination levels only for very high quality chemicus and for very close tolerance of the serve malysis and smarting techniques simulation; it also includes error rate tabulations based on input tent quality and proposed mank absentions.	