

UNIVERSIDADE FEDERAL DE MINAS GERAIS

ENGENHARIA DE SISTEMAS

Projeto de Máquina de Vendas em Nível RTL

Bianca Lopes Gabriel Veloso

Conteúdo

1	Introdução	1
	1.1 Objetivo	1
2	Modelagem do Sistema	2
	2.1 Periféricos (Entradas e Saídas)	
	2.2 Arquitetura do Processador: FSM e Datapath	3
3	Projeto do Bloco de Controle	5
	3.1 Detalhamento da FSM	5
4	Considerações Finais	6

1 Introdução

A crescente demanda por sistemas automatizados tem impulsionado o desenvolvimento de soluções inteligentes e eficientes, como as máquinas de vendas. Este trabalho tem como objetivo a elaboração de um projeto em nível RTL para uma máquina de vendas, enfatizando a integração entre hardware e lógica de controle digital. Para tanto, a arquitetura proposta divide-se em duas partes principais: o caminho de dados (Datapath), responsável pelas operações aritméticas e armazenamento, e a máquina de estados finitos (FSM), que orquestra a sequência das operações conforme os sinais de entrada.

Figura 1: Máquina de Refrigerantes

A abordagem modular adotada permite que o sistema seja facilmente adaptado a novas funcionalidades, como a inclusão de diferentes moedas ou a alteração dos preços dos produtos, além de facilitar a manutenção e a verificação formal do projeto.

1.1 Objetivo

O presente projeto visa:

- Desenvolver uma arquitetura RTL que atenda aos requisitos funcionais de uma máquina de vendas;
- Implementar a separação entre a lógica aritmética e de controle, garantindo clareza e modularidade no design;
- Proporcionar uma base para futuras expansões, considerando aspectos de escalabilidade e reuso de módulos.

2 Modelagem do Sistema

Nesta seção, são apresentados os principais componentes do sistema, os quais se articulam para o funcionamento completo da máquina de vendas.

2.1 Periféricos (Entradas e Saídas)

O projeto considera a interação com diversos periféricos, fundamentais para a operação correta do sistema. As entradas e saídas definidas são:

Figura 2: Diagrama de Blocos do Sistema

Entradas:

- coin_value[3:0]: Representa o valor da moeda inserida, codificado em 4 bits.
- product_selection[3:0]: Código do produto selecionado pelo usuário.
- reset: Sinal de reinicialização do sistema, utilizado para restaurar o estado inicial.

Saídas:

- change [3:0]: Indica o valor do troco a ser devolvido, representado em 4 bits.
- display[3:0]: Sinal destinado à comunicação de mensagens ou valores por meio de um display.
- liberar_produto: Sinal que ativa o mecanismo de entrega do produto.
- liberar_troco: Sinal responsável por iniciar a devolução do troco.

Tabela 1: Sinais e Registradores do Sistema

Nome	Bits	Tipo	Descrição resumida
coin_value	4	Entrada	Valor da moeda inserida.
product_selection	4	Entrada	Código do produto escolhido.
reset	1	Entrada	Reinicializa a FSM.
FLASH_ADDR	16	Saída	Endereço para a memória de preços.
FLASH_DATA	16	Entrada	Dados lidos da memória de preços.
FLASH_WE	1	Saída	Controle de escrita na memória.
display	4	Saída	Mensagem/estado no display.
change	4	Saída	Valor do troco a liberar.
libera_produto	1	Saída	Comanda a liberação do refrigerante.
total_inserido	8	Reg.	Acumula valor total inserido.
troco	8	Reg.	Armazena o valor de troco calculado.
preco_produto	8	Reg.	Armazena o preço do produto (LUT).

2.2 Arquitetura do Processador: FSM e Datapath

O núcleo do sistema é composto por dois módulos principais:

FSM (Finite State Machine): A FSM é responsável por gerenciar a sequência de operações, definindo os estados de operação, tais como:

Figura 3: Diagrama de Estado de Alto Nível

- ESPERA: Estado inicial, no qual nenhuma operação aritmética é realizada. A FSM não ativa os sinais de load_acumulador nem do comparador. O registrador total_inserido permanece inalterado, salvo se reset for acionado, zerando-o. Se coin_value ≠ 0, a FSM avança para REGISTRA MOEDA.
- REGISTRA MOEDA: O somador é ativado para adicionar coin_value ao total_inserido. O sinal de controle load_acumulador = 1 carrega o resultado da soma no registrador total_inserido. Após essa operação, a FSM segue para VERIFICA CRÉDITO.

- VERIFICA CRÉDITO: O comparador (enable_comparador) é ativado para comparar se total_inserido ≥ preco_produto. Se total_inserido < preco_produto, a FSM vai para ERRO VALOR. Caso contrário, avança para LIBERA PRODUTO.
- ERRO VALOR: Não há operação aritmética. O display pode indicar "Falta X reais" dependendo da lógica de select_display[1:0]. O sistema aguarda nova moeda ou timeout. Se uma nova moeda for inserida, retorna para REGISTRA MOEDA. Se houver um limite de tempo ou reset, pode ir para FINALIZA.
- LIBERA PRODUTO: Como total_inserido ≥ preco_produto já foi verificado, o sinal liberar_produto = 1 sinaliza a liberação do refrigerante. Se total_inserido = preco_produto, a FSM segue para FINALIZA. Caso contrário, avança para CAL-CULA TROCO.
- CALCULA TROCO: O subtrator é ativado para calcular o troco: troco total_inserido - preco_produto. O sinal load_troco = 1 carrega o valor no registrador troco. Após essa operação, a FSM segue para RETORNA TROCO.
- RETORNA TROCO: O sinal liberar_troco = 1 (ou change [3:0] recebe parte do valor de troco) indica a devolução das moedas. Normalmente, troco permanece até que a devolução seja finalizada. Após a devolução, a FSM segue para FINALIZA.
- FINALIZA: Os sinais clear_acumulador e clear_troco podem ser ativados, zerando total_inserido e troco. O display pode exibir uma mensagem de conclusão ou ser zerado. Após isso, retorna ao estado ESPERA, reiniciando o ciclo da FSM.

Datapath: O caminho de dados implementa as operações aritméticas e lógicas necessárias para o funcionamento do sistema. Entre seus componentes, destacam-se:

- Registradores: Armazenam informações como o total_inserido, o troco e o preco_produto.
- Unidades Aritméticas: Somador, subtrator e comparador, que processam os valores monetários conforme a operação requerida.

A integração entre a FSM e o Datapath é realizada por meio de sinais de controle, que determinam quando as operações devem ser iniciadas ou interrompidas, garantindo a sincronização e correta execução das funcionalidades do sistema.

Figura 4: DataPath

3 Projeto do Bloco de Controle

O bloco de controle é implementado através de uma máquina de estados finitos (FSM) de baixo nível, cuja função é gerar os sinais de controle que coordenam as operações do Datapath. Entre os sinais gerados, destacam-se:

- load_acumulador: Sinal que habilita a acumulação do valor da moeda.
- enable_comparador: Ativa o comparador para verificar se o crédito inserido é suficiente.
- Outros sinais específicos para cada operação, como a liberação do produto e a devolução do troco.

3.1 Detalhamento da FSM

A seguir, apresenta-se um breve detalhamento dos estados que compõem a FSM:

• S0 (ESPERA): Estado inicial em que o sistema aguarda a inserção de uma moeda ou a ativação do sinal reset.

- S1 (REGISTRA MOEDA): Ao detectar uma moeda, o sistema ativa o sinal load_acumulador para somar o valor recebido ao total_inserido.
- S2 (VERIFICA CRÉDITO): Com o valor acumulado, o sistema utiliza o comparador para verificar se o crédito é suficiente para a compra do produto selecionado.
- S3 (LIBERA PRODUTO/TROCO): Dependendo do resultado da verificação, o sistema libera o produto ou calcula e devolve o troco, acionando os sinais liberar_produto e liberar_troco, respectivamente.

Esta estrutura possibilita um fluxo de operação claro e bem definido, facilitando tanto a implementação em hardware quanto a análise do comportamento do sistema.

4 Considerações Finais

O presente trabalho descreveu de forma detalhada o projeto de uma máquina de vendas em nível RTL, enfatizando a importância da separação entre a lógica aritmética (Datapath) e a lógica de controle (FSM). A abordagem modular adotada permite:

- Facilidade de Manutenção: A separação clara entre os módulos torna o diagnóstico e a correção de eventuais problemas mais diretos.
- Escalabilidade: A arquitetura possibilita a incorporação de novas funcionalidades ou a modificação dos parâmetros existentes (como valores de moedas e preços de produtos) sem a necessidade de uma reformulação completa do sistema.
- Reutilização: Componentes padronizados podem ser reutilizados em outros projetos, promovendo a eficiência no desenvolvimento de novos sistemas.

A implementação deste projeto contribui para a formação de uma base sólida em design digital e sistemas embarcados, áreas de crescente importância na engenharia moderna.