1 Описание задачи

1.1 Часть 1

Функция для минимизации (1.1):

$$y = 4x_1x_2 + 7x_1^2 + 4x_2^2 + 6\sqrt{5}x_1 - 12\sqrt{5}x_2 + 51.$$
(1.1)

Базовая точка: $x \in [0, -\sqrt{5}]$.

1.2 Поиск точки минимума по теоритической формуле

Минимум функции достигается при условии:

$$\begin{cases} \frac{\partial f_1}{\partial x_1} = 0\\ \frac{\partial f_1}{\partial x_2} = 0\\ \frac{\partial^2 f_1}{\partial x_1^2} > 0\\ \frac{\partial^2 f_1}{\partial x_2^2} > 0 \end{cases}$$

$$\begin{cases}
4x_2 + 14x_1 + 6\sqrt{5} = 0 \\
4x_1 + 8x_2 + 6\sqrt{5}x_1 - 12\sqrt{12} = 0 \\
14 > 0 \\
8 > 0
\end{cases}$$

Таким образом: $X_{min}^T = \left(-\sqrt{5}, -2\sqrt{5}\right) \approx (-2.2261; -4.4721), f_{min}(X_{min}^T) = -24.00$

1.2.1 Результаты расчетов

В таблице 1.1 приведены результаты работы **метода минимизации по правильному симплексу**. Первоначальная длина ребра симплекса: a=0.5.

Таблица 1.1 — Результаты работы метода

Метод	Точность	Количество	X	f(X)
		вычислений		
		функции		
метод	0.01	161	[-2.236068, 4.472136]	-24.000000
сопряженных	0.0001	161	[-2.236068, 4.472136]	-24.000000
градиентов	0.000001	161	[-2.236068, 4.472136]	-24.000000
метод	0.01	21	[-2.236068, 4.472136]	-24.000000
Ньютона	0.0001	21	[-2.236068, 4.472136]	-24.000000
	0.000001	21	[-2.236068, 4.472136]	-24.000000
	0.01	164	[-2.236068, 4.472136]	-24.000000
ДФП	0.0001	164	[-2.236068, 4.472136]	-24.000000
	0.000001	164	[-2.236068, 4.472136]	-24.000000
	0.01	101	[-2.237092, 4.475051]	-23.999971
fminsearch	0.0001	127	[-2.236047, 4.472151]	-24.000000
	0.000001	151	[-2.236047, 4.472151]	-24.000000

1.3 Часть 2

В таблице 1.2 представлены результаты работы рассмотренных методов для точности 0.000001.

Таблица 1.2 — Результаты работы метода

Метод	Точность	Количество	X	f(X)
		вычислений		
		функции		
метод	0.01	79	[2.487193, 0.157994]	2.385103
сопряженных	0.0001	191	[2.494021, 0.156760]	2.385086
градиентов	0.000001	2065	[9.520215, 0.041673]	2.381174
метод	0.01	94	[8.994507, 0.044107]	2.381187
Ньютона	0.0001	107	[9.109737, 0.043562]	2.381184
	0.000001	328	[10.501650, 0.037791]	2.381156
	0.01	81	[2.487193, 0.157994]	2.385103
ДФП	0.0001	81	[2.487193, 0.157994]	2.385103
	0.000001	81	[2.487193, 0.157994]	2.385103
	0.01	401	[21.717703, 0.018274]	2.381108
fminsearch	0.0001	401	[21.717703, 0.018274]	2.381108
	0.000001	401	[21.717703, 0.018274]	2.381108