Depth First search

Algorithm Club

Terminology

Graph Traversal / Graph Search: Visit each node/vertex in the graph. The order in which nodes are visited can be used to categorize the graph traversal.

Spanning Tree: A subset of Graph G, such that all the vertices are connected using minimum number of possible number of edges. Hence, a spanning tree does not have cycles and a graph may have more than one spanning tree.

Graph Traversal Algorithm: These algorithms specify the order to search through nodes of a graph.

Ex: Depth first search (DFS), Breadth first search (DFS), A* search

Problem space:

4	3	5	2	6	9	7	8	1
6	8	2	5	7	1	4	9	3
1	9	7	8	3	4	5	6	2
8	2	6	1	9	5	3	4	7
3	7	4	6	8	2	9	1	5
9	5	1	7	4	3	6	2	8
5	1	9	3	2	6	8	7	4
2	4	8	9	5	7	1	3	6
7	6	3	4	1	8	2	5	9

How to represent grids as graphs?

Each cell is a node. Edges connect adjacent cells.

Walls have no edges

Depth first search: Algorithm for finding spanning trees

- Time complexity: O(V+E)
- Recursively explore graph, backtracking as necessary
- As the name suggests, a DFS plunges depth first into a graph without regard for which edge it takes next until it cannot got further at which point it backtracks and continues.

- Choose Starting node and mark as visited
- Add unvisited adjacent node to the stack
- If all children visited, pop top element from the stack and set as current node
- 4. Repeat steps 2 & 3

- Choose Starting node and mark as visited
- Add unvisited adjacent node to the stack
- If all children visited, pop top element from the stack and set as current node
- 4. Repeat steps 2 & 3

- Choose Starting node and mark as visited
- Add unvisited adjacent node to the stack
- If all children visited, pop top element from the stack and set as current node
- 4. Repeat steps 2 & 3

- Choose Starting node and mark as visited
- Add unvisited adjacent node to the stack
- If all children visited, pop top element from the stack and set as current node
- 4. Repeat steps 2 & 3

Applications in Bioinformatics

Evolutionary
 Relationships between

Proteins or Genes

Traversing Biological Networks

