2. Combinational Circuits

Aims

to show how logic gates are combined on a chip

 to show how logic gates can be combined to produce useful circuits such as :-

multiplexors and comparators

2.0 Introduction

- Gates are made from TRANSISTOR circuits
 - Transistors **AMPLIFY** or **SWITCH** electrical signals. Gates use the **SWITCHING** property

Chips can be divided into rough classes based on the number of gates they contain :-

SSI	(Small Scale Integrated)	circuit	1 to 10	logic gates
MSI	(Medium Scale Integrated)	circuit	10 to 100	logic gates
LSI	(Large Scale Integrated)	circuit	100 to 100,000	logic gates
VLSI	(Very Large Scale Integrated)	circuit	> 100,000	logic gates

In the 1970s, computers were constructed out of large numbers of these chips, but technological advances have allowed an entire CPU to be etched onto a single chip

The current state of the art allows nearly
10 million gates
on a chip

Fairchild '74' series chip, 1969

2.1 Combinational Circuits

Many circuits have the property of their outputs being wholly dependent on their inputs

Such circuits are called **combinational circuits**

Over the next few weeks we will examine some frequently used combinational circuits

2.1.1

Multiplexors

- If you carefully examine the truth table you can see that the MULTIPLEXER output is
- either D1 or D2, depending on the value of C1

The MULTIPLEXER is acting as a DATA SWITCH

The truth table reduces to : -

• The function of a multiplexor is to

route one of many data inputs to a single output

The control input (C1) determines which of the data inputs is passed through to the output

A $2^n - to - 1$ multiplexor has 2^n data inputs and n control inputs.

Control bus

Address bus

Data bus

 The bit combination on the control inputs determines which data input is selected for output

A	В	C	Output
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3
1	0	0	D_4
1	0	1	D ₅
1	1	0	D_6
1	1	1	D ₇

A simpler way to diagrammatically represent an eight-input multiplexor is shown below.

2.2 Comparators

• A *comparator* compares *two* inputs

and outputs a 1 on the E output if the inputs are Equal

Multiple (parallel) Bit EQUAL function

AO	В0	Al	B1	A2	B2	A3	В3	A0B0	AlB1	Output	A2B2	A3B3
0	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	1	1	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	1	0	1	0	0	0	1	1
0	0	0	0	0	1	1	0	0	0	0	1	1
0	0	0	0	0	1	1	1	0	0	1	1	0
0	0	0	0	1	0	0	0	0	0	1	1	0
0	0	0	0	1	0	0	1	0	0	0	1	1
0	0	0	0	1	0	1	0	0	0	0	1	1
0	0	0	0	1	0	1	1	0	0	1	1	0
0	0	0	0	1	1	0	0	0	0	1	0	0
0	0	0	0	1	1	0	1	0	0	0	0	1
0	0	0	0	1	1	1	0	0	0	0	0	1
0	0	0	0	1	1	1	1	0	0	1	0	0
0	0	0	1	0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	1	0	1	0	0	1
0	0	0	1 1	0	0	1 1	0	0	1 1	0	0	1 0
0	0	0	1	0	1	0	1 0	0	1	0	0 1	0
0	0	0	1	0	1	0	1	0	1	0	1	1
0	0	0	1	0	1	1	0	0	1	0	1	1
0	0	0	1	0	1	1	1	0	1	0	1	0
0	0	0	1	1	0	0	0	0	1	0	1	0
0	0	0	1	1	0	0	1	0	1	0	1	1
0	0	0	1	1	0	1	Û	0	1	0	1	1
0	0	0	1	1	0	1	1	0	1	Ö	1	Ô
0	0	Ö	1	1	1	Ô	Ô	0	1	Ö	Ô	o o
0	ō	ō	1	1	1	ō	1	0	1	Ō	0	1
0	0	0	1	1	1	1	0	0	1	Ō	0	1
0	0	0	1	1	1	1	1	0	1	Ō	Ō	0
0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	1	0	1	0	0	1
0	0	1	0	0	0	1	0	0	1	0	0	1
0	0	1	0	0	0	1	1	0	1	0	0	0
0	0	1	0	0	1	0	0	0	1	0	1	0
0	0	1	0	0	1	0	1	0	1	0	1	1
0	0	1	0	0	1	1	0	0	1	0	1	1
0	0	1	0	0	1	1	1	0	1	0	1	0
0	0	1	0	1	0	0	0	0	1	0	1	0
0	0	1	0	1	0	0	1	0	1	0	1	1
0	0	1	0	1	0	1	0	0	1	0	1	1
0	0	1	0	1	0	1	1	0	1	0	1	0
0	0	1	0	1	1	0	0	0	1	0	0	0
0	0	1	0	1	1	0	1	0	1	0	0	1
0	0	1	0	1	1	1	0	0	1	0	0	1

AO	ВО	A1	B1	A2	B2	A3	B3	A0⊕B0	A1⊕B1	A2⊕B2	А3⊕В3	NOR
0	0	0	0	0	0	0	0	0	0	0	0	1
0	1	0	1	0	1	0	1	1	1	1	1	0
1	0	1	0	1	0	1	0	1	1	1	1	0
1	1	1	1	1	1	1	1	0	0	0	0	1

REFERENCES

 http://worldclassprogramme.com/Arithmetic-Circuits.php