

Bachelorarbeit

Tobias Wulf

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Tobias Wulf

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung im Studiengang Bachelor of Science Elektro- und Informationstechnik am Department Informations- und Elektrotechnik der Fakultät Technik und Informatik der Hochschule für Angewandte Wissenschaften Hamburg

Betreuender Prüfer: Prof. Dr. Karl-Ragmar Riemschneider

Zweitgutachter: Prof. Dr. Klaus Jünemann

Eingereicht am: TT. Monat Jahr

Tobias Wulf

Thema der Arbeit

Winkelmessung durch magnetische Sensor-Arrays und Toleranzkompensation mittels Gauß-Prozess

Stichworte

Sensor-Array Simulation, Dipol, Magnetfeld, Kugelmagnetapproximation, TMR, TDK TAS2141, AMR, NXP KMZ60, Toleranzkompensation, Gauß-Prozess, Kovarianzmatrix, Regression, Winkelvorhersage

Kurzzusammenfassung

. . .

Tobias Wulf

Title of Thesis

Angular Measurement by Magnetic Sensor Arrays and Tolerance Compensation by Gaussian Process

Keywords

Sensor Array Simulation, Dipole, Magnetic Field, Sperical Magnet Approximation, TMR, TDK TAS2141, AMR, NXP KMZ60, Tolerance Compensation, Gaussian Process, Covariance Matrix, Regression, Angular Prediction

Abstract

. . .

Inhaltsverzeichnis

T	Mo	tivation 0.0.1 14.12.2020	1			
2	Grı	undlagen 0.0.1 14.12.2020	2			
3		twicklung von Software für die Optimierungs-Experimente 0.0.1 12.2020	3			
4	Erp	probungs- und Optimierungs-Experimente 0.0.1 14.12.2020	4			
5	Au	swertung 0.0.1 14.12.2020	5			
6	Zus	sammenfassung und Bewertung 0.0.1 14.12.2020	6			
Abbildungsverzeichnis						
Tabellenverzeichnis 8						
Abkürzungen						
Li	Literatur 10					
\mathbf{A}	nhar	ng	11			
	A	Genutzte Software 0.0.2 13.12.2020	12			
	В	Software-Dokumentation 0.0.1 13.12.2020	13			
	Sell	ostständigkeitserklärung	214			

1 Motivation 0.0.1 14.12.2020

$2 \ \ Grundlagen \ 0.0.1 \ 14.12.2020$

3 Entwicklung von Software für die Optimierungs-Experimente 0.0.1 14.12.2020

4 Erprobungs- und Optimierungs-Experimente 0.0.1 14.12.2020

5 Auswertung 0.0.1 14.12.2020

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungen

CPU Prozessorkern.

 ${f HDD}$ Festplattenlaufwerk.

OS Betriebssystem.

 ${\bf RAM} \ \ {\bf Arbeits speicher}.$

SW Software.

Literatur

Paper

[1] T. Schüthe, A. Albounyan und K. Riemschneider. "Two-Dimensional Characterization and Simplified Simulation Procedure for Tunnel Magnetoresistive Angle Sensors". In: Sensors Applications Symposium (SAS) (13. März 2019). IEEE, 2019. DOI: 10.1109/SAS.2019.8706125. URL: https://ieeexplore.ieee.org/document/8706125 (besucht am 05.10.2020). Online.

Manual

[2] R. Johnson. *MATLAB Style Guidlines 2.0.* Version 2. MATLAB Central File Exchange, 2014. URL: https://de.mathworks.com/matlabcentral/fileexchange/46056-matlab-style-guidelines-2-0 (besucht am 21.09.2020). Online.

Web-Recherche

[3] Bitbucket. Feature Branch Workflow in Git. Hrsg. von ATLASSIAN. 2020. URL: https://www.atlassian.com/de/git/tutorials/comparing-workflows/feature-branch-workflow (besucht am 10.09.2020). Online.

Anhang

A Genutzte Software 0.0.2 13.12.2020

Für die Nachvollziehbarkeit der getätigten Entwicklungsarbeiten und die Erstellung der Bachelor-Thesis, ist das dafür jeweilige Betriebssystem (OS) und die verwendete Software (SW) tabellarisch aufgeführt. Es finden sich genutzte Versionen der SW und angaben zu Minimalanforderung für deren Nutzung. Die Anforderungen sind für Prozessorkern (CPU), Arbeitsspeicher (RAM), Festplattenlaufwerk (HDD) näher aufgeschlüsselt. Die Programmierarbeiten mit MATLAB sind jeweils auf einem Windows und Linux geschrieben bzw. getestet worden.

Software	Verwendungszweck (Typ)	MinAnforderung	Version	Erscheinungstag
Ubunut Budgie	Linux-Betriebssystem	2 GHz Dual-Core-CPU	18.04 LTS	26.04.2018
	(Laptop OS)	4 GB RAM		
		25 GB freier HDD-Speicher		
Windows 10 Enterprise	Windows-Betriebssystem	1 GHz Core-CPU	1909	12.11.2020
	(Laptop OS)	1 GB RAM		
		32 GB freier HDD-Speicher		
MATLAB	Simulationssoftware	Intel/ AMD x86-64 CPU	2020b	17.09.2020
	(Multi-Paradigmen Programmier-	4 GB RAM		
	Sprache, IDE)	3.5 GB freier HDD-Speicher		
Git	Versionierung	-	2.29	29.10.2020
	(Kommandozeilenprogramm)	_		
		-		
Inkscape	Vektorgrafikzeichenprogramm	1 GHz CPU	0.92.3	11.03.2018
	(Grafikaufbereitung)	256 MB RAM		
		302 MB freier HDD-Speicher		
Texstudio	Textbearbeitung f. LaTeX	-	2.12.6	25.07.2020
	Dokumente (Editor)	_		
		24.7 MB freier HDD Speicher		
wkhtmltopdf	HTML- zu Pdf-Konvertierung	-	0.12.6	11.06.2020
		-		
		-		
JabRef	Literaturverwaltungsprogramm	-	5.1	30.08.2020
	f.BibLaTeX (Editor)	-		
	. ,	-		

Tabelle A.1: Genutzte Software zu Erstellung der Thesis und Dokumentation der Ergebnisse, Entwicklungsumgebung für die geschriebene Simulationssoftware zu Generierung und Auswertung der Sensor-Array-Simulation.

B Software-Dokumentation 0.0.1 13.12.2020

Die Software-Dokumentation ist automatisiert mit MATLAB-Skripten erstellt worden. Es ist dafür ein zweischrittiger Prozess implementiert, der im ersten Schritt eine in MATLAB integrierte HTML-Dokumentation erstellt und im Anschluss diese zu eigenständigen PDF-Dateien exportiert. Als letzter Schritt sind diese zu einem LaTeX Manual zusammengefasst im Anhang eingebunden. Mit diesem Verfahren ist es möglich eine Dokumentation direkt aus geschriebenen M-Dateien zu generieren, allerdings ist es dafür nötig eine spezielle Formatierung und einen gewissen Programmierstil einzuhalten [2]. Die Dokumentation enthält neben dem erstellten Quellcode eine Reihe von Arbeitsanweisung, wie mit der Software umzugehen ist. Zusätzlich sind Beschreibungen zu Erstellung und Pflege des Software-Projektes mit beigefügt. Die geschriebene Software ist Mitzuhilfenahme einer des Software-Versionierungsprogramm Git erstellt worden, was eine genaue Nachvollziehbarkeit in Bezug auf die einzelnen Arbeitsschritte ermöglicht. Zu Versionierung ist der Git-Feature-Branch-Workflow [3] angewandt worden. Aus stilistischen Gründen ist die gesamte Software-Dokumentation in Englisch verfasst.

Erklärung zur selbstständigen Bearbeitung einer Abschlussarbeit

Hiermit versichere	ich, dass ich die von	rliegende Arbeit ohne	fremde Hilfe	selbständig
verfasst und nur d	ie angegebenen Hilfs	smittel benutzt habe.	Wörtlich oder	dem Sinn
nach aus anderen V	Verken entnommene S	Stellen sind unter Ang	abe der Quelle	n kenntlich
gemacht.				
Ort	Datum	Unterschrift im C	Original	