Phase 4 Project — Prédiction de la maladie cardiaque

Bootcamp / DataScience & IA

Amee Hashley Jeudy / ameehashleyjeudy@gmail.com

Objectif. Construire un modèle supervisé qui prédit la présence de maladie cardiaque (target : 1=malade, 0=sain) à partir de variables cliniques (âge, tension, cholestérol, ECG, etc.).

Livrables.

- Préparation des données (EDA, nettoyage, encodage, standardisation)
- Modèles comparés : Logistic Regression, Random Forest, Gradient Boosting
- Évaluation : Accuracy, Precision, Recall, F1, ROC-AUC, Matrice de confusion
- Interprétabilité : coefficients (LR) & importances (RF)
- Conclusion orientée usage (limites et pistes)

1) Imports & setup

```
In [1]: # 1) Imports & setup
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.model_selection import train_test_split, GridSearchCV
        from sklearn.preprocessing import StandardScaler, OneHotEncoder
        from sklearn.compose import ColumnTransformer
        from sklearn.pipeline import Pipeline
        from sklearn.metrics import (
            accuracy_score, precision_score, recall_score, f1_score, roc_auc_score,
            ConfusionMatrixDisplay, RocCurveDisplay, classification_report
        from sklearn.linear_model import LogisticRegression
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
        # Chargement et lecture
        df = pd.read_csv("heart.csv")
        print(df.shape)
        df.head(10)
```

Out[1]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
	0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	0
	1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	0
	2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0
	3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0
	4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0
	5	58	0	0	100	248	0	0	122	0	1.0	1	0	2	1
	6	58	1	0	114	318	0	2	140	0	4.4	0	3	1	0
	7	55	1	0	160	289	0	0	145	1	0.8	1	1	3	0
	8	46	1	0	120	249	0	0	144	0	0.8	2	0	3	0
	0	ΕΛ	1	0	122	206	0	0	116	1	2.2	1	2	2	0

2) EDA & qualité des données

```
In [2]: # 2) EDA & qualité
#Resume statistique et verification des valeurs manquantes
display(df.describe(include="all"))
print("Valeurs manquantes par colonne:\n", df.isna().sum())

# Distribution de la cible
print(df["target"].value_counts(normalize=True).rename("proportion"))
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalacl
ount	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.000000	1025.000000
nean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.529756	149.114146
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.527878	23.005724
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.000000	71.000000
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.000000	132.000000
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.000000	152.000000
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.000000	166.000000
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.000000	202.000000
4 6								

```
Valeurs manquantes par colonne:
sex
           0
ср
trestbps
chol
fbs
restecg
thalach
exang
oldpeak
          0
slope
ca
thal
target
dtype: int64
target
    0.513171
    0.486829
Name: proportion, dtype: float64
```

3) Définition des features & split

Out[3]: (717, 308, 0.5132496513249651, 0.512987012987013)

4) Préprocesseur (encodage + standardisation)

5) Modèle 1 — Logistic Regression (baseline forte)

```
In [5]: # 5) Logistic Regression
        logreg_pipe = Pipeline(steps=[
            ("prep", preprocess),
            ("clf", LogisticRegression(max_iter=2000, solver="lbfgs"))
        ])
        logreg_pipe.fit(X_train, y_train)
        y_pred_lr = logreg_pipe.predict(X_test)
        y_proba_lr = logreg_pipe.predict_proba(X_test)[:, 1]
        lr_metrics = {
            "accuracy": accuracy_score(y_test, y_pred_lr),
            "precision": precision_score(y_test, y_pred_lr),
            "recall": recall_score(y_test, y_pred_lr),
            "f1": f1_score(y_test, y_pred_lr),
             "roc_auc": roc_auc_score(y_test, y_proba_lr),
        1r metrics
Out[5]: {'accuracy': 0.8733766233766234,
          'precision': 0.8742138364779874,
```

```
'precision': 0.8742138364779874,
'recall': 0.879746835443038,
'f1': 0.8769716088328076,
'roc_auc': 0.9442194092827004}
```

6) Modèle 2 — Random Forest (+ tuning simple)

La Forêt Aléatoire capture des interactions non linéaires.

On tune quelques hyperparamètres clés (profondeur, nb d'arbres).

On optimise sur ROC-AUC (robuste à un léger déséquilibre).

```
rf_metrics = {
    "accuracy": accuracy_score(y_test, y_pred_rf),
    "precision": precision_score(y_test, y_pred_rf),
    "recall": recall_score(y_test, y_pred_rf),
    "f1": f1_score(y_test, y_pred_rf),
    "roc_auc": roc_auc_score(y_test, y_proba_rf),
    "best_params": rf_cv.best_params_
}
rf_metrics

Out[6]: {'accuracy': 0.9805194805194806,
    'precision': 0.9810126582278481,
    'recall': 0.9810126582278481,
    'f1': 0.9810126582278481,
    'roc_auc': 0.9950632911392404,
    'best_params': {'clf__max_depth': 10,
```

7) Modèle 3 — Gradient Boosting (baseline boosting

'clf__min_samples_split': 2,
'clf__n_estimators': 400}}

```
In [7]: # 7) Gradient Boosting
        gb_pipe = Pipeline(steps=[
             ("prep", preprocess),
             ("clf", GradientBoostingClassifier(random_state=42))
        ])
        gb_pipe.fit(X_train, y_train)
        y_pred_gb = gb_pipe.predict(X_test)
        y_proba_gb = gb_pipe.predict_proba(X_test)[:, 1]
        gb_metrics = {
             "accuracy": accuracy_score(y_test, y_pred_gb),
             "precision": precision_score(y_test, y_pred_gb),
             "recall": recall_score(y_test, y_pred_gb),
             "f1": f1_score(y_test, y_pred_gb),
             "roc_auc": roc_auc_score(y_test, y_proba_gb),
        gb_metrics
Out[7]: {'accuracy': 0.9642857142857143,
          'precision': 0.9565217391304348,
          'recall': 0.9746835443037974,
          'f1': 0.9655172413793104,
          'roc_auc': 0.9784388185654009}
```

8) Comparaison & courbes ROC

best_params	roc_auc	f1	recall	precision	accuracy	
NaN	0.944219	0.876972	0.879747	0.874214	0.873377	LogReg
{'clf_max_depth': 10, 'clf_min_samples_split	0.995063	0.981013	0.981013	0.981013	0.980519	RandomForest(best)
NaN	0.978439	0.965517	0.974684	0.956522	0.964286	GradBoost

```
In [9]: #Courbe ROC permettant de comparer visuellement la performance globale (AUC)
fig, ax = plt.subplots(figsize=(6, 5))
RocCurveDisplay.from_estimator(logreg_pipe, X_test, y_test, ax=ax)
RocCurveDisplay.from_estimator(best_rf, X_test, y_test, ax=ax)
RocCurveDisplay.from_estimator(gb_pipe, X_test, y_test, ax=ax)
ax.set_title("ROC curves - Test set")
plt.show()
```


Out[8]:

9) Matrices de confusion & rapport

```
In [10]: # 9) Matrices de confusion & rapports
fig, axes = plt.subplots(1, 3, figsize=(14, 4))

ConfusionMatrixDisplay.from_estimator(logreg_pipe, X_test, y_test, ax=axes[0])
axes[0].set_title("LogReg - Confusion")

ConfusionMatrixDisplay.from_estimator(best_rf, X_test, y_test, ax=axes[1])
axes[1].set_title("RandomForest - Confusion")

ConfusionMatrixDisplay.from_estimator(gb_pipe, X_test, y_test, ax=axes[2])
axes[2].set_title("GradBoost - Confusion")
```

```
plt.tight_layout()
  plt.show()
  print("LogReg\n", classification_report(y_test, y_pred_lr))
  print("RandomForest\n", classification_report(y_test, y_pred_rf))
  print("GradBoost\n", classification_report(y_test, y_pred_gb))
          {\sf LogReg-Confusion}
                                                                                          GradBoost — Confusion
                                                RandomForest — Confusion
                                                                            140
                                    120
                                                                            120
                                                                                                                     120
         130
                                                  147
                                                                                          143
                                    100
                                                                            100
                                                                                                                    100
True label
                                        rue label
                                                                                 True label
                                    80
                                                                            80
                                                                                                                     80
                                                                            60
                                                                                                                     60
                                    60
                       139
                                                                155
                                                                                                        154
 1 -
                                                                            40
                                                                            20
                                                                                                                     20
                        1
                                                                1
             Predicted label
                                                     Predicted label
                                                                                              Predicted label
LogReg
                   precision
                                  recall f1-score
                                                          support
             0
                       0.87
                                   0.87
                                                0.87
                                                             150
                       0.87
              1
                                   0.88
                                                0.88
                                                             158
     accuracy
                                                0.87
                                                             308
    macro avg
                       0.87
                                   0.87
                                                0.87
                                                             308
weighted avg
                       0.87
                                   0.87
                                                0.87
                                                             308
RandomForest
                   precision
                                  recall f1-score
                                                          support
             0
                       0.98
                                   0.98
                                                0.98
                                                             150
                       0.98
                                   0.98
              1
                                                0.98
                                                             158
                                                0.98
                                                             308
     accuracy
                       0.98
                                   0.98
                                                0.98
                                                             308
    macro avg
                       0.98
                                   0.98
                                                0.98
                                                             308
weighted avg
GradBoost
                   precision
                                  recall
                                           f1-score
                                                          support
                       0.97
                                   0.95
             0
                                                0.96
                                                             150
              1
                       0.96
                                   0.97
                                                0.97
                                                             158
```

10) Interprétation des modèles

0.96

0.96

0.96

0.96

accuracy

macro avg
weighted avg

```
In [11]: # 10.1) Coefficients de la régression Logistique (après OneHot + Scaling)

# Récupérer les noms de features transformés
ohe = logreg_pipe.named_steps["prep"].named_transformers_["cat"]
num_names = num_cols
cat_names = ohe.get_feature_names_out(cat_cols).tolist()
all_names = num_names + cat_names
```

0.96

0.96

0.96

308

308

308

```
coefs.head(10), coefs.tail(10)
Out[11]: (ca_4
                      1.507346
           ca_0
                      1.327919
           sex_0
                      0.875880
                    0.747402
           cp_3
                   0.742352
           cp_2
           slope_2 0.623569
           thal_2 0.577419
           thal_1
                    0.525376
           exang_0 0.353521
           thalach 0.350872
           dtype: float64,
           thal_0 -0.414143
           trestbps -0.419059
           oldpeak -0.470938
           ca_3 -0.533303
           slope_1 -0.547460
           ca_1 -0.622342
thal_3 -0.664919
sex_1 -0.852147
           cp_0
                      -1.242748
           ca_2
                      -1.655886
           dtype: float64)
In [12]: # 10.2) Importances de La RandomForest
          importances = best_rf.named_steps["clf"].feature_importances_
          rf_imp = pd.Series(importances, index=all_names).sort_values(ascending=False)
          rf_imp.head(15)
                      0.094142
Out[12]: cp_0
          thalach 0.091861
thal_2 0.088639
          oldpeak 0.083518
ca_0 0.081485
          age
                    0.078952
                    0.062155
0.060584
          chol
          thal_3
          trestbps 0.059252
          exang_1 0.042375
exang_0 0.039584
cp_2 0.025112
slope_2 0.024288
          slope_1
                      0.018622
          sex_1
                      0.018145
          dtype: float64
```

coefs = pd.Series(logreg_pipe.named_steps["clf"].coef_[0], index=all_names).sort_values(ascending)

Conclusion & Recommandations

• Performance:

Trois modèles de classification ont été comparés sur les 308 observations du jeu de test :

```
Régression Logistique : AUC = 0.94 ; F1 = 0.88 ; Accuracy = 0.87
```

Gradient Boosting: AUC = 0.98; F1 = 0.97; Accuracy = 0.96

Random Forest (tuned) : AUC = 0.995; F1 = 0.98; Accuracy = 0.98

*Le meilleur modèle est donc la Random Forest optimisée, qui combine précision, rappel et robustesse, tout en maintenant une excellente AUC proche de 1 (0.995). Cela indique une capacité quasi parfaite à distinguer les patients malades des non malades.

Variables clés :

Selon la régression logistique : les variables les plus positivement associées au risque de maladie sont ca_4, ca_0, sex_0, cp_3, cp_2, et thal_2. Les variables protectrices sont notamment ca_2, cp_0, sex_1, et oldpeak.

Selon la Random Forest, les variables les plus importantes pour la décision sont : cp_0 (type de douleur thoracique), thalach (fréquence cardiaque maximale), oldpeak (dépression ST), thal_2, et age.

Ces résultats confirment que les indicateurs cardiovasculaires classiques (tension, fréquence cardiaque, âge, anomalies ECG) sont déterminants dans la détection du risque.

Usage :

Le modèle peut être intégré dans un outil d'aide à la décision médicale, pour : détecter précocement les profils à risque ; aider les cliniciens à prioriser les examens complémentaires ; servir de base à un suivi préventif dans les campagnes de dépistage.

• Limites:

- Données tabulaires classiques (pas d'images médicales)
- Variables cliniques simplifiées (mesures ponctuelles, pas de séries temporelles)
- Biais potentiels (population d'étude originale)
- Aucune calibration spécifique du seuil décisionnel (probabilité = 0.5 utilisée par défaut).

Pistes d'amelioration :

- Calibration des probabilités pour ajuster le seuil selon la stratégie médicale (priorité au Recall pour minimiser les faux négatifs).
- Exploration d'algorithmes avancés : XGBoost, LightGBM, ou réseaux de neurones légers.
- Interprétabilité patient-par-patient via SHAP ou LIME, afin d'expliquer chaque prédiction médicale.
- Extension du dataset avec des données réelles locales (hôpitaux, ministères, ONG santé) pour renforcer la validité externe du modèle.