Feuille de TD 2 : suites

Exercice 1. Etudier la convergence des suites définies par les formules suivantes.

(a)
$$a_n = 1 + \frac{e^{in^2}}{n+3}$$
.

(b)
$$b_n = (1+i)^n$$
.

(c)
$$c_n = \frac{3n-3}{2n+3}$$
.

(d)
$$d_n = \frac{n + \sqrt{n^2 + 1}}{n - \sqrt{n^2 + 1}}$$
.

(e)
$$e_n = \left(1 + \frac{1}{n}\right)^{2n}$$
.

Exercice 2. Soit (u_n) une suite complexe. Ecrire les propriétés suivantes à l'aide de quantificateurs.

- (a) (u_n) admet une limite réelle.
- (b) (u_n) n'est pas bornée.
- (c) (u_n) n'est pas convergente.
- (d) (u_n) est constante à partir d'un certain rang.

Exercice 3. Soit (u_n) une suite convergeant vers $\ell \in \mathbb{C}^*$.

- (a) Prouver qu'il existe m > 0 et $N \in \mathbb{N}$ tels que pour tout $n \geq N$, $|u_n| \geq m$.
- (b) Prouver que $(1/u_n)$ converge vers $1/\ell$.

Exercice 4. Soit (u_n) une suite convergente de nombres entiers. Démontrer que (u_n) est constante à partir d'un certain rang.

Exercice 5. Démontrer les estimations suivantes, quand $n \to +\infty$.

(a)
$$4(n+1)^3 - 2n^2 + n\cos n = O(n^3)$$
.

(b)
$$\frac{7n^2 - 15n}{n - 3} \sim 7n$$
.

(c)
$$\sin(1/n) \sim 1/n$$
.

(d)
$$\ln(n+1) - \ln(n) - \frac{1}{n} = O(1/n^2)$$
.

(e)
$$n^a = o(r^n)$$
 pour tous $a \in \mathbb{R}$ et $r > 1$.

(f)
$$z^n = o(n!)$$
 pour tout $z \in \mathbb{C}$.

(g)
$$n! = o(n^n)$$
.

Exercice 6. Déterminer les bornes supérieure et inférieure des ensembles de réels suivants (finies ou infinies). Sont-elles atteintes?

$$-A = \{(-1)^n \mid n \in \mathbb{N}\}.$$

$$-B = \{(-1)^n n \mid n \in \mathbb{N}\}.$$

$$-C = \{\cos x \mid 2\pi/3 < x < 4\pi/3\}.$$

$$-D = \left\{\frac{n}{n+1} \mid n \in \mathbb{N}\right\}.$$

$$-E = \left\{\frac{2p}{2pq+3} \mid p, q \in \mathbb{N}^*\right\}.$$

Exercice 7. Etant donnée une fonction croissante $f:[0,1] \to [0,1]$, on note $A = \{x \in [0,1] \mid x \leq f(x)\}.$

- (a) Montrer que A admet une borne supérieure $\sigma \in [0,1]$.
- (b) Prouver que $f(\sigma)$ est un majorant de A, puis que σ est dans A.
- (c) Vérifier que, pour tout élément x de A, f(x) est dans A.
- (d) En déduire que $f(\sigma) = \sigma$.

Exercice 8. (Somme télescopique) Pour tout n > 1, on pose

$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $T_n = \sum_{k=2}^n \frac{1}{k(k-1)}$.

- (a) Vérifier que (S_n) est croissante.
- (b) Exploiter l'identité $\frac{1}{k(k-1)} = \frac{1}{k-1} \frac{1}{k}$ pour montrer que (T_n) est convergente.
- (c) En déduire que (S_n) est convergente.

Exercice 9. Pour tout
$$n \in \mathbb{N}^*$$
, on pose $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{nn!}$.

- (a) Prouver que les suites (u_n) et (v_n) sont adjacentes.
- (b) En déduire qu'elles convergent vers une même limite $e \in]2,3[$.
- (c) Prouver que e est un nombre irrationnel.

Exercice 10. Pour $n \in \mathbb{N}$, on pose $u_n = n \cos\left(\frac{n\pi}{4}\right)$.

- (a) Extraire de (u_n) une sous-suite tendant vers $+\infty$.
- (b) Extraire de (u_n) une sous-suite convergente.

Exercice 11.

- (a) Montrer que la suite $(\sin n)$ est divergente. Indication: $\sin(n \pm 1)$.
- (b) Montrer qu'il existe une suite strictement croissante d'entiers a_n telle que la suite $(\sin a_n)$ converge.

Exercice 12. Soit (u_n) une suite complexe. Prouver que (u_n) converge vers ℓ si et seulement si les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent vers ℓ .

Exercice 13. Soit (u_n) une suite complexe bornée et divergente.

- (a) Montrer que (u_n) admet une sous-suite convergeant vers un nombre complexe ℓ .
- (b) Prouver qu'il existe $\epsilon > 0$ et une extractrice $\phi : \mathbb{N} \to \mathbb{N}$ telle que

$$\forall n \in \mathbb{N}, \quad |u_{\phi(n)} - \ell| \ge \epsilon.$$

(c) Prouver que (u_n) admet une sous-suite convergeant vers un nombre complexe ℓ' différent de ℓ .

Exercice 14. (Moyenne de Cesaro) Soit (u_n) une suite convergeant vers $\ell \in \mathbb{C}$. On s'intéresse à la suite (μ_n) obtenue en posant

$$\forall n \in \mathbb{N}^*, \quad \mu_n = \frac{1}{n} \sum_{k=1}^n u_k.$$

(a) Soit $\epsilon > 0$. Prouver qu'il existe $N \in \mathbb{N}^*$ tel que pour tout indice n > N:

$$\frac{1}{n} \sum_{k=N+1}^{n} |u_k - \ell| \le \epsilon.$$

(b) Prouver qu'il existe un entier $N' \geq N$ tel que pour tout indice n > N':

$$|\mu_n - \ell| \le 2\epsilon.$$

(c) Qu'a-t-on démontré?

Exercice 15. On dit qu'une suite complexe (u_n) est de Cauchy si

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N}, \ \forall p, q \ge N, \ |u_p - u_q| \le \epsilon.$$

- (a) Prouver que toute suite convergente est de Cauchy.
- (b) Prouver que toute suite de Cauchy est bornée.
- (c) Prouver que toute suite de Cauchy admet une sous-suite convergente.
- (d) Prouver que toute suite de Cauchy est convergente.

Exercice 16. Soit (u_n) une suite réelle bornée. Pour $N \in \mathbb{N}$, on note

$$s_N = \sup\{u_k \mid k \ge N\}$$
 et $i_N = \inf\{u_k \mid k \ge N\}$.

(a) Vérifier que (s_N) et (i_N) sont des suites monotones, puis convergentes. On peut donc définir :

$$\lim \sup(u_n) = \lim_{N \to +\infty} s_N \quad et \quad \liminf(u_n) = \lim_{N \to +\infty} i_N.$$

- (b) Calculer $\limsup \left((-1)^n e^{1/n} \right)$ et $\liminf \left((-1)^n e^{1/n} \right)$.
- (c) Prouver que la suite (u_n) converge vers ℓ si et seulement si

$$\lim \sup(u_n) = \lim \inf(u_n) = \ell.$$