Избрани въпроси от хидродинамиката

Калоян Стоилов

12 февруари 2022 г.

I Изменение на количеството на движение

Количеството движение или още - импулс в механиката на твърди тела се нарича $\mathbf{K} = m\mathbf{v}$ (често се бележи с \mathbf{p} , но при нас p е налягането, затова ще бележим с K). Вторият закон на Нютон гласи, че скоростта на изменение на импулса е равно на равнодействащата сила $\mathbf{F} = \frac{\mathrm{d}\mathbf{K}}{\mathrm{d}t} = \frac{\mathrm{d}m\mathbf{v}}{\mathrm{d}t} = m\dot{\mathbf{v}}$. Законът е в сила за тела, непроменящи масата си.

I.1 Масови и повърхностни сили

Нека τ е обем от флуид с маса M. Масовата сила е действащата на флуида в обема сила, която не зависи от взаимодействието с други части на флуида. Нека \mathbf{F}_M е главния вектор на силите (т.е. равнодействащата сила), действащи на флуида във τ . Средна масова сила, действаща върху маса M се нарича $F_{avg} = \frac{\mathbf{F}_M}{M}$. Масова сила \mathbf{F} в точка B, наричаме

(1)
$$\mathbf{F} = \lim_{\tau \to \{B\}} F_{avg} = \lim_{\tau \to \{B\}} \frac{\mathbf{F}_M}{M}$$

Ако знаем **F** в коя да е точка от τ , то може да получим **F**_M. Наистина, нека $\Delta \tau$ е обем с маса $\Delta m = \rho \Delta \tau$, на който действа **F**_a $vg\Delta m$. Разбивайки τ на такива обеми, може да съберем всички такива сили и след граничен преход получаваме:

(2)
$$\mathbf{F}_{M} = \iiint_{\tau} \mathbf{F} dm = \iiint_{\tau} \rho \mathbf{F} d\tau$$

Нека обемът е ограничен от повърхнина S. Флуидът извън τ , действа на този във τ през S чрез повърхностни сили. Нека приближим част от повърхнината с равнинна част ΔS с нормала \mathbf{n} , а главния вектор на силите, действащи ѝ е ΔF_S^n . Средното напрежение, действащо на площта е $\mathbf{t}_{avg}^n = \frac{\Delta F_S^n}{\Delta S}$. Напрежение \mathbf{t}^n на повърхностни сили, действащи в точка B, наричаме

(3)
$$\mathbf{t} = \lim_{\Delta S \to \{B\}} \mathbf{t}_{avg}^n = \lim_{\Delta S \to \{B\}} \frac{\Delta F_S^n}{\Delta S}$$

Отново сумираме всички такива сили за S и след граничен преход главният вектор на повърхностните сили e:

(4)
$$\mathbf{F}_{S} = \iint_{S} d\mathbf{F}_{S}^{n} = \iint_{S} \mathbf{t}^{n} dS$$

I.2 Интегрална форма на закона за изменение на количеството на движение

В малък обем $\Delta \tau$ с маса $\rho \Delta \tau$ ще имаме импулс $\Delta \mathbf{K} = \rho \mathbf{v} \Delta \tau$. Така количеството движение на флуида ще бъде

(5)
$$\mathbf{K} = \iiint_{\tau} \rho \mathbf{v} d\tau$$

Тъй като силите, действащи на au или са масови, или повърхностни, то вторият закон на Нютон придобива вида:

(6)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} \rho \mathbf{v} \mathrm{d}\tau = \iiint_{\tau} \rho \mathbf{F} \mathrm{d}\tau + \iint_{S} \mathbf{t}^{n} \mathrm{d}S$$

Не бива да забравяме, че и самият обем au се мени с времето. Тогава ще имаме

(7)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint \rho \mathbf{v} \mathrm{d}\tau = \iiint \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} \mathrm{d}\tau$$

Така получаваме интегралната форма на закона за изменение на количеството движение

(8)
$$\iiint_{\tau} \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} - \rho \mathbf{F} \mathrm{d}\tau = \iint_{S} \mathbf{t}^{n} \mathrm{d}S$$

І.3 Изменение на интегрално количество

Нека Q бъде някаква величина - скаларна или векторна, която е дефинирана поточково в обем τ . Тогава изменението по времето на общата величина за обема ще бъде

$$(9) \frac{\mathrm{d}}{\mathrm{d}t} \iiint Q \mathrm{d}\tau$$

Тъй като говорим за флуиди и самият обем се мени с времето. Да разгледаме $\tau(t+\Delta t) - \tau(t)$. За достатъчно малко време и малка площ ΔS по границата S(t), може да разглеждаме че се движи със скорост $\mathbf{v} \cdot \mathbf{n}$ към нова повърхнина $S(t+\Delta t)$. Така изменението на обема над тази площ ще може да се пресметне като обем на прав криволинеен цилиндър

(10)
$$\Delta \tau = h \Delta S = (\mathbf{v} \cdot \mathbf{n}) \Delta t \Delta S$$

След граничен преход и изразявайки обема чрез интеграл по елементарни обеми получаваме:

(11)
$$\frac{\iiint\limits_{\tau(t+\Delta t)-\tau(t)} d\tau}{\Delta t} = \iint\limits_{S} \mathbf{v} \cdot \mathbf{n} dS$$

Сега може да получим аналог на формулата за диференциране на Лайбниц

(12)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} Q \mathrm{d}\tau = \iiint_{\tau} \frac{\partial Q}{\partial t} \mathrm{d}\tau + \iint_{S} Q(\mathbf{v} \cdot \mathbf{n}) \mathrm{d}S$$

Може да забележим, че ако Q е скаларна величина, то $Q(\mathbf{v} \cdot \mathbf{n}) = (Q\mathbf{v}) \cdot \mathbf{n}$. Използвайки теоремата на Гаус-Остроградски, то

(13)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} Q \mathrm{d}\tau = \iiint_{\tau} \frac{\partial Q}{\partial t} \mathrm{d}\tau + \iiint_{\tau} \nabla \cdot (Q\mathbf{v}) \mathrm{d}\tau$$

Лесно може да се провери, че

(14)
$$\nabla \cdot (Q\mathbf{v}) = \nabla Q \cdot \mathbf{v} + Q\nabla \cdot \mathbf{v} = \nabla Q \cdot \dot{\mathbf{x}} + Q\nabla \cdot \mathbf{v}$$

Остава да забележим, че

(15)
$$\frac{\partial Q}{\partial t} + \nabla Q \cdot \dot{\mathbf{x}} = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

След използване на линейността на интеграла получаваме

(16)
$$\frac{\mathrm{d}}{\mathrm{d}t} \iiint_{\tau} Q \mathrm{d}\tau = \iiint_{\tau} \frac{\mathrm{d}Q}{\mathrm{d}t} + Q\nabla \cdot \mathbf{v} \mathrm{d}\tau$$

Ако Q е векторна величина, то може да го разгледаме покомпонентно и пак получаваме същата формула.

I.4 Формула на Коши

Нека τ бъде триъгълна пирамида с прав тристенен ъгъл при върха си - началото на координатната система. Тогава може да се опише като съвкупност от 4 повъхнини:

- 1. S_x е стената перпендикулярна на оста x.
- 2. S_{y} е стената перпендикулярна на оста y.
- 3. S_z е стената перпендикулярна на оста z.
- 4. S_n е стената срещу тристенният ъгъл на координатната система.

Тогава \mathbf{t}^{-x} , \mathbf{t}^{-y} , \mathbf{t}^{-z} ще са напреженията по съответните първи три стени. Нека \mathbf{t}^n бъде по четвъртата. Така се достига до формулата

(17)
$$\iiint_{\tau} \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} - \rho \mathbf{F} \mathrm{d}\tau = \iint_{S_{\mathbf{v}}} \mathbf{t}^{-x} \mathrm{d}S + \iint_{S_{\mathbf{v}}} \mathbf{t}^{-y} \mathrm{d}S + \iint_{S_{\mathbf{v}}} \mathbf{t}^{-z} \mathrm{d}S + \iint_{S_{\mathbf{v}}} \mathbf{t}^{n} \mathrm{d}S$$

Когато обема на тетраедъра клони към 0, повърхностните сили са в равновесие. Също така $\mathbf{t}^{-x} = -\mathbf{t}^x$, $\mathbf{t}^{-y} = -\mathbf{t}^y$, $\mathbf{t}^{-z} = -\mathbf{t}^z$. Тогава, ако изразим равновесието като

(18)
$$\mathbf{t}^{n} \Delta S_{n} + \mathbf{t}^{-x} \Delta S_{x} + \mathbf{t}^{-y} \Delta S_{y} + \mathbf{t}^{-z} \Delta S_{z} = 0$$

След заместване се получава

(19)
$$\mathbf{t}^n \Delta S_n = \mathbf{t}^x \Delta S_x + \mathbf{t}^y \Delta S_y + \mathbf{t}^z \Delta S_z$$

Да изразим $\mathbf{n} = n_x \hat{\mathbf{x}} + n_y \hat{\mathbf{y}} + n_z \hat{\mathbf{z}}$. За площите получаваме аналогични проекции

(20)
$$\Delta S_x = n_x \Delta S_n, \quad \Delta S_y = n_y \Delta S_n, \quad \Delta S_z = n_z \Delta S_n$$

Сега може да заместим и съкратим в (19)

$$\mathbf{t}^n = n_x \mathbf{t}^x + n_y \mathbf{t}^y + n_z \mathbf{t}^z$$

Така достигаме до равенствата на Коши:

$$\mathbf{t}^n = T^T \mathbf{n} = T$$

Матрицата T е тензор от втори ранг и се нарича тензор на напреженията. Често се записва в една от двете форми

(23)
$$T = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_z \end{pmatrix} = \begin{pmatrix} \sigma_1 & \tau_{12} & \tau_{13} \\ \tau_{21} & \sigma_2 & \tau_{23} \\ \tau_{31} & \tau_{32} & \sigma_3 \end{pmatrix}$$

Тогава може да заместим в (8). Прилагаме теоремата за дивергенцията за превръщане на интеграл по границата в интервал по обема

(24)
$$\iiint_{\tau} \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} - \rho \mathbf{F} \mathrm{d}\tau = \iiint_{\tau} \nabla \cdot T \mathrm{d}\tau$$
$$\iiint_{\tau} \frac{\mathrm{d}\rho \mathbf{v}}{\mathrm{d}t} + \rho \mathbf{v} \nabla \cdot \mathbf{v} - \rho \mathbf{F} - \nabla \cdot T \mathrm{d}\tau = \mathbf{0}$$

Тъй като обемът е произволен, подинтегралното векторно поле съвпада с нулевото навсякъде, тоест

(25)
$$\frac{\mathrm{d}\rho\mathbf{v}}{\mathrm{d}t} + \rho\mathbf{v}\nabla\cdot\mathbf{v} - \rho\mathbf{F} - \nabla\cdot\mathbf{T} = \mathbf{0}$$

Остава да забележим следното

(26)
$$\frac{\mathrm{d}\rho\mathbf{v}}{\mathrm{d}t} + \rho\mathbf{v}\nabla\cdot\mathbf{v} = \frac{\mathrm{d}\rho}{\mathrm{d}t}\mathbf{v} + \rho\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \rho\mathbf{v}\nabla\cdot\mathbf{v} = \rho\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} + \mathbf{v}(\frac{\mathrm{d}\rho}{\mathrm{d}t} + \rho\nabla\cdot\mathbf{v}) = \rho\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}$$

Тук изпозлвахме уравнението на непрекъснатостта в общия му вид. Достигнахме до формулата на Коши:

II Безразмерни течения

Ще разгледаме вискозни течения с непроменлива динамична вискозност μ . Същото предполагаме и за масовите сили ${\bf g}$. Експериментални изследвания върху течения с модели/макети могат да служат за качествено/количествено характеризиране на по-големи обекти, които на практика могат да се ползват (напр. кораби, самолети). За тази цел се използва обезразмеряване.

II.1 Безразмерен запис на уравнения на течения

Нека разгледаме системата от уравнения на Навие-Стокс и уравнението на непрекъснатостта

(27)
$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = \mathbf{g} - \frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v}$$
$$\nabla \cdot \mathbf{v} = 0$$

Разглеждаме тяло с характерна дължина l. Правим смяна на координатите, като искаме да разпишем уравненията в следната система

(28)
$$\xi = \frac{x}{l}, \, \eta = \frac{y}{l}, \, \zeta = \frac{z}{l}, \, \tau = \frac{t}{\frac{l}{v}}$$

Въвеждаме безразмерни функции

(29)
$$\mathbf{u} = \frac{l}{\mathbf{v}}\mathbf{v}, \Pi = \frac{l^2}{\mathbf{v}^2}\frac{p}{\rho}, \gamma = \frac{l^3}{\mathbf{v}^2}\mathbf{g}$$

Трябва да ги запишем като функции на новите координати. За да сведем уравненията използваме, че

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\partial (\frac{\mathbf{v}}{l}\mathbf{u})}{\partial \tau} \frac{d\tau}{dt} = \frac{\mathbf{v}^{2}}{l^{3}} \frac{\partial \mathbf{u}}{\partial \tau}
(31)$$

$$\mathbf{v} \cdot \nabla \mathbf{v} = \frac{\mathbf{v}}{l} \mathbf{u} \cdot \nabla \frac{\mathbf{v}}{l} \mathbf{u} = \frac{\mathbf{v}^{2}}{l^{2}} \mathbf{u} \cdot (\frac{\partial \mathbf{u}}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial \mathbf{u}}{\partial \eta} \frac{d\eta}{dy} + \frac{\partial \mathbf{u}}{\partial \zeta} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} \mathbf{u} \cdot (\frac{\partial \mathbf{u}}{\partial \xi} + \frac{\partial \mathbf{u}}{\partial \eta} + \frac{\partial \mathbf{u}}{\partial \zeta})
(32)$$

$$\nabla \cdot \mathbf{v} = 0 \iff \frac{\partial u_{x}}{\partial \xi} + \frac{\partial u_{y}}{\partial \eta} + \frac{\partial u_{z}}{\partial \zeta} = 0
(33)$$

$$\mathbf{v} \nabla^{2} \mathbf{v} = \mathbf{v} \nabla \cdot \frac{\mathbf{v}}{l} (\frac{\partial \mathbf{u}}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial \mathbf{u}}{\partial \eta} \frac{d\eta}{dy} + \frac{\partial \mathbf{u}}{\partial \zeta} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{2}} (\frac{\partial^{2} \mathbf{u}}{\partial \xi^{2}} \frac{d\xi}{dx} + \frac{\partial^{2} \mathbf{u}}{\partial \eta^{2}} \frac{d\zeta}{dy}) = \frac{\mathbf{v}^{2}}{l^{3}} (\frac{\partial^{2} \mathbf{u}}{\partial \xi} + \frac{\partial^{2} \mathbf{u}}{\partial \eta^{2}} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} (\frac{\partial^{2} \mathbf{u}}{\partial \xi} + \frac{\partial^{2} \mathbf{u}}{\partial \eta} + \frac{\partial^{2} \mathbf{u}}{\partial \zeta^{2}})$$

$$\frac{1}{\rho} \nabla p = \nabla \frac{p}{\rho} = \frac{\mathbf{v}^{2}}{l^{2}} (\frac{\partial \Pi}{\partial \xi} \frac{d\xi}{dx} + \frac{\partial \Pi}{\partial \eta} \frac{d\eta}{dy} + \frac{\partial \Pi}{\partial \zeta} \frac{d\zeta}{dz}) = \frac{\mathbf{v}^{2}}{l^{3}} (\frac{\partial \Pi}{\partial \xi} + \frac{\partial \Pi}{\partial \eta} + \frac{\partial \Pi}{\partial \zeta})$$

Съкращаваме и получаваме системата

(35)
$$\frac{d\mathbf{u}}{d\tau} = \gamma - \nabla\Pi + \nabla^2\mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

Тук операторите са спрямо новите ни променливи ξ, η, ζ , като вече единицата за дължина е характерната дължина на тялото, т.е. l.

II.2 Подобни координати

Нека имаме две подобни тела със съответни характерни дължини $l_1,\ l_2$ - те ще определят линейния мащаб за двете задачи. Изразяваме съответно течения с кинематични вискозности $\mathbf{v}_i = \frac{\mu_i}{\rho_i}$ в координати $x_i, y_i, z_i, t_i, \quad i=1,2$. Да забележим, че $[\mathbf{v}_i] = \frac{L^2}{T},$ а $[l_i] = L$. Така за мащаб по времето може да вземем $\frac{l_i^2}{\mathbf{v}_i},\ i=1,2$. За обезразмерени уравнения въвеждаме координати

(36)
$$\xi_{i} = \frac{x_{i}}{l_{i}}, \, \eta_{i} = \frac{y_{i}}{l_{i}}, \, \zeta_{i} = \frac{z_{i}}{l_{i}}, \, \tau_{i} = \frac{t_{i}}{\frac{l_{i}^{2}}{v_{i}}}, \quad i = 1, 2$$

Подобни координати на двете течения наричаме тези, за които всички двойки безразмерни величини съвпадат. След тези преобразузавания и двете безразмерни тела имат характерни дължини 1 и са геометрически еднакви.

II.3 Подобие при вискозни течения

Иска ни се с едно течение да оприличим друго - както например имаме геометрично подобие на фигури и сме извели някакво свойство/количество за една от тях, лесно може да го получим за другата. Ще казваме, че две течения са подобни, ако са около подобни тела и стойностите на техните хидромеханични величини в подобни координати са еднакви с точност до константен множител (не задължително еднакъв за различните величини). И тъй нека имаме две течения със съответни величини

(37)
$$l_i, \mathbf{v}_i, \mathbf{g}_i, \mathbf{v}_i, \frac{p_i}{\rho_i}, \quad i = 1, 2$$

Теченията имат и безразмерни уравнения и нека разгледаме задачата за обтичане по тяло. В безразмерни координати телата се изобразяват в "единично"тяло със същата форма. Нека бележим границата му с S.

- 1. Трябва да са изпълнени граничните условия по границата на тялото $\mathbf{u}_1|_S = \mathbf{u}_2|_S = \mathbf{0}$.
- 2. Трябва да са изпълнени граничните условия в безкрайност $\mathbf{u}_1|_{\infty} = \mathbf{U}_1, \mathbf{u}_2|_{\infty} = \mathbf{U}_2.$

Достатъчно е да са изпълнени следните равенства за безразмерните величини - $\mathbf{u}_1 = \mathbf{u}_2$, $\Pi_1 = \Pi_2$. За да са изпълнени е достатъчно двете безразмерни уравнения да съвпадат, както и граничните условия да съвпадат.

Очевидно граничните условия по границата на тялото са едни и същи. За да съвпадат тези в безкрайност, то трябва

$$\frac{\mathbf{V}_1 l_1}{\mathbf{v}_1} = \mathbf{U}_1 = \mathbf{U}_2 = \frac{\mathbf{V}_2 l_2}{\mathbf{v}_2}$$

За да съвпадат уравненията ще трябва

(39)
$$\frac{\mathbf{g}_1 l_1^3}{\mathbf{v}_1^2} = \gamma_1 = \gamma_2 = \frac{\mathbf{g}_2 l_2^3}{\mathbf{v}_2^2}$$

Последните две уравнения са вектории. Изпълнени са точно когато съответните вектори от двете страни са колинеарни и

(40)
$$\frac{\|\mathbf{V}_1\|l_1}{v_1} = \frac{\|\mathbf{V}_2\|l_2}{v_2}$$

(41)
$$\frac{\|\mathbf{g}_1\|l_1^3}{v_1^2} = \frac{\|\mathbf{g}_2\|l_2^3}{v_2^2}$$

Обикновено се взима еквивалента система уравнения - (40) и

(42)
$$\frac{\|\mathbf{V}_1\|^2}{\|\mathbf{g}_1\|l_1} = \frac{\|\mathbf{V}_2\|^2}{\|\mathbf{g}_2\|l_2}$$

Веднага може да видим, че ако гравитационните сили са същите за 2 подобни (но не еднакви) тела, то няма как в една и съща среда да имат подобни течения. Да допуснем противното и изразим $\|\mathbf{V}_2\| = \frac{\|\mathbf{V}_1\|l_1}{l_2}$ от (40). Но сега след съкращаване в (42) получаваме $\frac{l_1^2}{l_2^2} = 1$, откъдето $l_1 = l_2$.

II.4 Безразмерни характерни числа

II.4.1 Основни безразмерни характерни числа

Числото на Рейнолдс $Re = \frac{\|\mathbf{v}\| l}{v}$ има значение само за вискозни флуиди, т.к. за идеалните v=0, т.е. $Re=\infty$. То представлява отношението на инерчните сили към вискозните сили. Има голямо значение при изследването на флуидното съпротивление.

Числото на Фруд $Fr = \frac{\|\mathbf{V}\|}{\sqrt{\|g\|}l}$ има смисъл и за невискозни флуиди. Квадратът му представлява отношението на инерчните сили към гравитационните сили. Има голямо значение при изследване на влиянието на вълни над тела - тогава гравитационната сила оказва съществено влияние. Обратно - ако цялото тяло е потопено във флуид, то действието на гравитацията се състои в добавянето на налягане и тогава Fr е без голямо значение. Изключение би било, ако тялото се намира на граница на две фази. То е най-широко разпространеното безразмерно число в механиката на флуидите.

Така за да са подобни две течения, трябва числата им на Рейнолдс и Фруд да съвпадат. Оказва се, че при моделирането с реални макети това не е елементарно. Може да допуснем, че гравитационната сила е еднаква, т.к. разликата при нея ще е минимална - а даже и в зависимост къде правим експеримента може да е никаква. Ако искаме да използваме макет с малък мащаб, то намаляваме l да кажем 25 пъти, за да остане Fr непроменено, то ще трябва да увеличим относителната скорост 5 пъти. Още повече, заради това ще променим числото на Рейнолдс. За да предотвратим това, е необходимо да използваме течност с кинематичен вискозитет 125 пъти по-малък от тази в която ще се използва истинсият обект. Но например в корабостроенето модел само 1:25 не би бил малък. Ако се моделира голям кораб, макета би бил 10-12m. Има някои течности, които при подходящи температури имат 5-10 пъти по-нисък кинематичен вискозитет от водата - например живак, охладителна течност, толуен. Течности с необходимия вискозитет практически не съществуват. Понякога е възможно хидродинамични тестове да се правят във въздушна среда, т.к. кинематичният вискозитет на въздуха е близо 15 пъти по-малък от този на водата. Обратното също е възможно - малки макети при малки скорости на водата могат да имат подобни течения на големи тела с голяма относителна скорост спрямо въздуха. Едно от големите предимства на развилите се последните няколко десетилетия компютърни системи за флуидни симулации е, че се извършват от компютъра и дори математическият модел да не улови изцяло физически случващото се, то симулацията може да извърши изчисления за течение, за което не можем физически да намерим подобно, с което лесно да се борави.

Числото на Струхал $St = \frac{\Omega l}{\|V\|}$ има смисъл и за невискозни флуиди. То представлява отношението на вихровото ускорение към адвективното ускорение. За безвихрови течения е 0. Характеризира турболенти потоци и вихрови осцилации, получаващи се зад обекти, наричано вихрова следа. Във връзка с това има и друга дефиниция, свързваща го директно с честотата

на такива осцилации. Рошко провел серия експерименти в началото на 50-те години във връзка с обтичане по цилиндър. При 500 < Re < 500000, числото на Струхал практически остава непроменено. Повечето риби и летящи животни се движат с 0.2 < St < 0.4.

Числото на Мах $M=\frac{\|\mathbf{V}\|}{c}$, където c е скоростта на звука в средата. Квадратът му представлява отношението на итерчните сили към силите на свиваемост. С него може да се мери изентропното отклонение от закона за несвиваемост.

II.4.2 Безразмерни характерни числа при топлопроводни потоци

Числото на Екерт $Ec = \frac{\|\mathbf{V}\|^2}{c_p(T_w - T_f)}$, T_f , T_w са съответно температурите на свободния поток и стените. То представлява отношението на кинетичната към топлинната енергия.

стените. То представлява отношението на кинетичната към топлинната енергия. Числото на Прантл $Pr = \frac{c_p \mu_0}{k_0}$. Това е отношението на разсейването на импулса към топлинното разсейване.

II.4.3 Безразмерни характерни числа при повърхностни напрежения

Числото на Вебер $We=\frac{\|\mathbf{V}\|^2\rho l}{\sigma}$ измерва отношението на инерчните сили към тези на повърностното напрежение. При големи числа на Вебер капки лесно се деформират при сбъсъци с твърди повърхности.

Числото на Бонд $Bo = \frac{\|\mathbf{g}\|\rho l^2}{\sigma}$ е отношението на гравитационните сили към тези на повърностното напрежение. При големи числа на Бонд гравитационните сили оказват много по-голямо влияние при течения около повърхността на флуида, отколкото повърхностното напрежение.

Капилиарното число $Ca = \frac{\|\mathbf{V}\|\mu}{\sigma}$ представлява отношението на вискозното напрежение към повърностното напрежение. Бавни течения през порести среди или тясни тръби се характеризират с ниски капилярни числа и образуване на мехурчета.