Advanced Regression: 5 Machine learning: Neural networks

Garyfallos Konstantinoudis

Epidemiology and Biostatistics, Imperial College London

21st March 2023

Introduction to neural networks Neural network model formulation neuralnet function in R

Deep learning

Deep learning with the keras package

Machine learning resources in R

Week 5 overview

- ▶ 10-10:50 Neural Networks: Introduction of basic concepts.
- ▶ 11:00-13:00 Tutorial on random forest: Make sure you all do part 1 and discuss it.
- ▶ 14:00-15:00 Mock exam & Formative assessment: Go through it together.
- ▶ 15:00-15:30 Q&A. Another one 20.04.2023, at 11:00 https://imperial-ac-uk.zoom.us/j/95015633726?pwd= bDNJTVVoL1Z2ajZzWEOrRGFjYSswZz09.
- ▶ 15:30-16:00 Presentation on lags.
- Course feedback.

Introduction to neural networks

Neural networks

- Neural network are a large class of models and learning methods offering great flexibility.
- Group of units called nodes or neurons that are connected allowing them to transmit signals between themselves.
- Inspired by the brain's interconnected network of neurons.

Introduction to neural networks

Neural network's neurons are organised into layers

Input: Predictors or features

► Hidden layer: Neurons transmitting signal

Output: Outcome

Motivating example: Recognise handwritten digits

Online book by Michael Nielsen (http: //neuralnetworksanddeeplearning.com/chap1.html)

[└] Neural networks

Introduction to neural networks

Introduction to neural networks

Motivating example: Recognise handwritten digits

- https: //www.3blue1brown.com/lessons/neural-networks
- https://www.youtube.com/watch?v=aircAruvnKk

Introduction to neural networks

Motivating example: Recognise handwritten digits

K-class classification task:

- y_k , where k = 1, ..., K each being coded as a binary dummy variable for the kth class.
- ▶ **Input**: *p* predictors or features $x_1, ..., x_p$
- ▶ **Hidden layer**: M derived features $h_1, ..., h_M$

$$h_m = \sigma(\alpha_{0,m} + \alpha_m^t x), \text{ for } m \in 1, ..., M$$

► Targets: *K* predictors

$$t_k = (\beta_{0,k} + \beta_k^t h), \text{ for } k \in 1, ..., K$$

Output: K predictions $f_k(x)$

$$f_k(x) = g_k(t)$$
, for $k \in 1, ..., K$

Hidden layer: M derived features $h_1, ..., h_M$

$$h_m = \sigma(\alpha_{0,m} + \alpha_m^t x), \text{ for } m \in 1, ..., M$$

- $ightharpoonup \alpha_{0,m}$ offset or intercept for *m*th hidden layer
- \triangleright α_m weights (vector of length p) of the input features
- \triangleright σ activation functions of $s = \alpha_{0,m} + \alpha_m^t x$:
 - $\diamond \ \, \mathsf{Linear} \,\, f(s) = s$
 - ♦ Sigmoid

$$f(s) = \frac{1}{1 + \exp(-c \times s)}$$

♦ Relu

$$f(s) = \begin{cases} s & \text{if } s \ge 0 \\ 0 & \text{if } s < 0 \end{cases}$$

Hyperbolic tangent (Tanh)

$$f(s) = \frac{\exp(s) - \exp(-s)}{\exp(s) + \exp(-s)}$$

Neural network model formulation

Activation function

Sigmoid function

$$f(s) = \frac{1}{1 + \exp(-c \times s)}$$

c scale parameter

Prediction function $f_k(x)$

$$f_k(x) = g_k(t), \ k \in {1, ..., K}$$

where

Targets are defined as

$$t_k = (\beta_{0,k} + \beta_k^t h), \text{ for } k \in 1, ..., K$$

- \triangleright $\beta_{0,k}$ offset or intercept for kth target
- \triangleright β_k weights (vector of length m) of the input features
- \triangleright g_k output function
 - Identity function
 - Softmax

$$g_k(t) = \frac{\exp t_k}{\sum_{k=1}^K \exp t_k}$$

Training the neural network

- Feed-forward perceptron which uses only a one hidden layer.
- Parameters to fit:

```
\begin{aligned} &\{\alpha_{0,m},\alpha_m; m\in 1,...M\}; \quad \textit{M}(\textit{p}+1) \quad \text{ feature weights} \\ &\{\beta_{0,\textit{k}},\beta_{\textit{k}}; \textit{k}\in 1,...K\}; \quad \textit{K}(\textit{M}+1) \quad \text{ prediction weights} \end{aligned}
```

- Back-propagation algorithm using gradient descent and the chain rule.
- ► For full details on the algorithm see section 11.4 in Elements of Statistical Learning https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Issues in neural networks

- Starting values of the algorithm
- Features need to be scaled prior to the analysis
- Choice of the number of hidden units and layers Increasing the amount of hidden layers and units increases the complexity and ability to model more complicated non-linear patterns.
- Overfitting

Regularisation with additional parameters:

- Decay parameter: Penalty for large weights
- Drop out: Random dropping out of nodes during training to prevent overfitting
- Learning rate: Scaling the magnitude of the weight updates

_neuralnet function in R

neuralnet function in the neuralnet package

neuralnet(f,data=data,hidden,act.fct,linear.output=T)

f: formula

data: input data

hidden: specification of the hidden layer structure

act.fct: activation function

linear.output=T: linear activation function

neuralnet function in the neuralnet package

f: formula

ightharpoonup y \sim x1 + x2 + x3

hidden: specification of the hidden layer structure

- Length represents the number of layers and the
- Numbers represent the number of units
- Examples:
 - ♦ hidden = c(5): 1 layer with 5 units
 - \diamond hidden = c(5,2): 2 layers with 5 and 2 units

Functionalities:

- plot.nn: Plot the neural network.
- predict.nn: Prediction of outcome based on new input data.

Application example neuralnet

1. Write the formula:

```
f = as.formula(paste("y \sim", paste(colnames(x), collapse = "+")))
```

- 2. Fit the neural network with one layer
 nn1 =
 neuralnet(f,data=data,hidden=c(5),linear.output=T)
- 3. Fit the neural network with two layers
 nn2 =
 neuralnet(f,data=data,hidden=c(5,3),linear.output=T)
- 4. Plot the neural networks
 - plot(nn1)
 - o plot(nn2)

└neuralnet function in R

Example neuralnet: One layer with 5 units

└neuralnet function in R

Example neuralnet: Two layers with 5 and 3 units

Deep learning with the keras package

Deep learning in R

Deep learning algorithms

Are neural networks with multiple layers, a deep structure.

- tensorflow package Interface to TensorFlow https://www.tensorflow.org, an open source software library for numerical computation using data flow graphs. TensorFlow was developed by the Google Brain Team within Google's Machine Intelligence research organization.
- keras package Interface to keras https://keras.io a high-level neural networks application programming interface (API) based on python.

Deep learning with the keras package

k class classification in keras

- Extensive tutorials online: https://cloud.r-project.org/ web/packages/keras/index.html
- Application example from zalando research https://cran.r-project.org/web/packages/keras/ vignettes/tutorial_basic_classification.html
- lacktriangle Aim: Predict the product category (k=10 class classification)
 - T-shirt/top
 - 1. Trouser
 - 2. Pullover
 - 3. Dress
 - 4. Coat
 - 5. Sandal
 - 6. Shirt
 - 7. Sneaker
 - 8. Bag
 - 9. Ankle boot

Deep learning with the keras package

Input

▶ 70,000 grayscale images at low resolution of 28 by 28 pixels

Deep learning with the keras package

Data structure

► Training data: 60,000 images

► Test data: 10,000 images

Building the model

1. Specify the model:

```
model = keras_model_sequential()
model % > %
  layer_mflatten(input_shape = c(28, 28)) % > %
  layer_mdense(units = 128, activation = 'relu') % > %
  layer_mdense(units = 10, activation = 'softmax')
```

2. Compile the model:

```
model % > % compile(
  optimizer = 'adam',
  loss = 'sparse_categorical_crossentropy',
  metrics = c('accuracy')
)
```

3. Fit the model:

model % > % fit(train_images, train_labels, epochs = 5)

Specify the neural network structure

- layer_mdense: Fully connected (dense) hidden layer
- units: Number of units
- activation: Activation function (exponential, elu, relu, softmax, sigmoid, selu, softplus, tanh and many more)
- ▶ Use multiple layer_mdense to add more layers

Compile the model

- optimizer: Adam, adagrad, adadelta, adamax stochastic gradient descent (SGD) and others
- loss: Depending on task (regression: mean_squared_error, mean_absolute_error, huber_loss, kullback_leibler_divergence; classification: categorical_crossentropy, sparse_categorical_crossentropy and many more)
- metrics: Depending on task (regression: mean_squared_error, mean_absolute_error; classification: accuracy, binary_accuracy, categorical_accuracy, sparse_categorical_accuracy)

Evaluating training and test error

► Training error:

```
score = model % > % evaluate(train_images,
train_labels)
cat('Training loss:', score$loss)
Training loss: 0.2772723
cat('Training accuracy:', score$acc)
Training accuracy: 0.89925
```

Test error:

```
score = model % > % evaluate(test_images,
test_labels)
cat('Test loss:', score$loss)
Test loss: 0.3530962
cat('Test accuracy:', score$acc)
Test accuracy: 0.8742
```

Making predictions

- Probabilities for class k: predictions = model % > %
 predict(test_images)
- Class: class_pred = model % > %
 predict_classes(test_images)

Deep learning with the keras package

Machine learning resources in R

CRAN Task view https:

//cran.r-project.org/web/views/MachineLearning.html presents a collection of established and curated R-packages on

- Neural Networks and Deep Learning
- Recursive Partitioning
- Random Forests
- Regularized and Shrinkage Methods
- Boosting and Gradient Descent
- Support Vector Machines and Kernel Methods
- Bayesian Methods
- Optimization using Genetic Algorithms

Take away: Machine learning: Neural networks and deep learning

- Neural networks offer a very flexible and powerful framework for prediction.
- Tuning and optimising a neural network involves many parameters (for example number of layers and units, regularisation) and needs to be performed very carefully.
- ▶ There are different algorithms for optimisation.
- ► Neural networks are black boxes which optimise prediction but tell us little about the structure of the data.

Neural network book

- ► Chapters 1-3
- https://www.inf.ed.ac.uk/teaching/courses/nlu/ assets/reading/Gurney_et_al.pdf

General background reading The Elements of Statistical Learning

- ► Chapter 11
- https://web.stanford.edu/~hastie/ElemStatLearn/