

■ Introducción

- Operación matemática, muy parecida a la convolución, realizada entre dos secuencias.
- Mide el parecido que existe entre dos señales, como una función del retardo de tiempo aplicada a una de ellas.

■ Introducción

- Se aplica en distintas áreas de la ingeniería y la ciencia:
 - Reconocimiento de patrones,
 - Criptoanálisis,
 - Geología,
 - Análisis de partículas,
 - Aplicaciones radar/sonar
 - Comunicaciones digitales, .

Operaciones:

- Auto Correlación
- Cross Correlación

Percepción y Sistemas Inteligentes

■ Ejemplo Ilustrativo 1: Aplicación radar/ sonar

- Sea x(n) las muestras de una señal emitida y y(n) las muestras de la señal recibida.
- Si existe un blanco en el espacio explorado por el radar/sonar:
 - y(n) es una versión retardada de x(n), atenuada y con ruido aditivo w(n)

$$y(n) = \alpha x(n-D) + w(n)$$

donde: α es el factor de atenuación

D es el retardo de ida y vuelta.

Ejemplo 1

- **Problema:** determinar a partir de las secuencias x(n), y(n):
 - a) Si existe un blanco.
 - b) El retardo de tiempo D
 - c) La distancia al blanco.

Solución:

- Comparación visual prácticamente imposible debido al ruido.
- La correlación es un método para extraer la información solicitada.

■ Ejemplo Ilustrativo 2.

Comunicaciones Digitales

- Sea $x_0(n) \equiv$ "0" lógico y $x_1(n) \equiv$ "1" lógico dos secuencias para $0 \le n \le L-1$.
 - L, indica el número de muestras en cada secuencia.
- La señal recibida por el receptor puede representarse como:

$$y(n) = x_i(n) + w(n)$$
 $i = 0,1$ $0 \le n \le L-1$

donde w (n) es el ruido aditivo y otras interferencias propias de los sistemas de comunicación.

■ Ejemplo 2....

Solución:

- El receptor conoce las secuencias para el "0" y para el "1"
- Compara con la señal recibida para determinar a cuál de las dos se asemeja más.
- La comparación puede realizarse mediante la correlación.

Correlación Cruzada

■ Definición:

La **correlación cruzada** de dos secuencias reales de energías finitas x(n) e y(n) se **define** como la secuencia :

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
 δ $r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n+l)y(n)$ $l = 0, \pm 1, \pm 2, ...$

Donde:

- -l parámetro de desplazamiento en el tiempo,
- -xy subíndices que indican las señales que han sido correlacionadas.
- -El orden indica cual secuencia ha sido retardada con respecto a la otra.

Correlación Cruzada

Al invertir los papeles de x(n) e y(n), se invierte el orden de los subíndices en la definición de la correlación:

$$r_{yx}(l) = \sum_{n=-\infty}^{\infty} y(n)x(n-l)$$
 \acute{o} $r_{yx}(l) = \sum_{n=-\infty}^{\infty} y(n+l)x(n)$ $l = 0, \pm 1, \pm 2, ...$

■ Comparando $r_{xy}(l)$ y $r_{yx}(l)$ se concluye que,

$$r_{xy}(l) = r_{yx}(-l)$$

por lo tanto, r_{xy} (l) es simplemente la **versión reflejada** de $r_{yx}(l)$ respecto a l=0.

Lo anterior significa que $r_{xy}(l)$ y $r_{yx}(l)$ proporcionan la **misma** información con respecto a la similitud entre x(n) e y(n).

Correlación Cruzada

Determine la correlación cruzada entre:

$$x(n) = \{...,0, 0,2, -1, 3, 7, \underline{1}, 2, -3, 0,0,...\}$$

 $y(n) = \{...,0, 0,1, -1, 2, -2, 4, 1, -2, 5, 0,...\}$

Solución. Aplicando la definición,

$$r_{xy}(l) = \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
 $l = 0, \pm 1, \pm 2,...$

Se tiene:

$$r_{xy}(l) = \{10, -9, 19, 36, -14, 33, 0, \underline{7}, 13, -18, 16, -7, 5, -3\}$$

Qué indica el valor máximo, el mínimo y el cero?

Auto Correlación

■ Definición:

La **Auto Correlación** se define como la secuencia obtenida al aplicar la correlación cruzada a una misma secuencia x(n):

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n)x(n-l)$$
 $l = 0, \pm 1, \pm 2,...$

ó

$$r_{xx}(l) = \sum_{n=-\infty}^{\infty} x(n+l)x(n)$$

Donde:

l es el parámetro de desplazamiento en el tiempo, xx subíndices de las señales a correlacionar.

Auto Correlación

Ejemplo. Determine la autocorrelación de la secuencia,

$$x(n) = \{..., 0, 0, 2, -1, 3, 7, \underline{1}, 2, -3, 0, 0, ...\}$$

Solución. Aplicando la definición,

$$r_{xx}(l) = \{0, -6, 7, -9, -2, 13, 19, \underline{77}, 13, -2, -9, 7, -6, 0\}$$

■ Propiedades

Algunas se obtienen analizando la **combinación lineal** de **dos secuencias** de energía finita x(n) e y(n):

$$a x(n) + b y(n-l)$$

donde, a y b constantes arbitrarias *l* desplazamiento temporal.

La **energía** de la señal **combinada** es:

$$\sum_{n=-\infty}^{\infty} \left[ax(n) + by(n-l) \right]^2 = a^2 \sum_{n=-\infty}^{\infty} x^2(n) + b^2 \sum_{n=-\infty}^{\infty} y^2(n-l) + 2ab \sum_{n=-\infty}^{\infty} x(n)y(n-l)$$
$$= a^2 r_{xx}(0) + b^2 r_{yy}(0) + 2ab r_{xy}(l)$$

Recordando que

$$r_{xx}(0) = E_x$$
 y $r_{yy}(0) = E_y$

■ Suponiendo que $b\neq 0$ y dividiendo por b^2 ,

$$r_{xx}(0)\left(\frac{a}{b}\right)^2 + 2\left(\frac{a}{b}\right)r_{xy}(l) + r_{yy}(0) \ge 0$$

- Considerando esta expresión como:
 - Ecuación **cuadrática** de coeficientes r(l)
 - Positiva, por ser una medida de energía.
- El discriminante de la solución debe ser no positivo, es decir:

$$4 \left[r_{xy}^{2}(l) - r_{xx}(0) r_{yy}(0) \right] \le 0$$

Resolviendo, se llega a:

Para la **cross-correlación** :

$$|r_{xy}(l)| \le \sqrt{r_{xx}(0)r_{yy}(0)} = \sqrt{E_x E_y}$$

Para la **auto-correlación**:

$$\left| r_{xx}(l) \right| \le r_{xx}(0) = E_x$$

■ Observaciones:

Autocorrelación : Alcanza su valor máximo para el retardo cero.

Cross-correlación: Las energías de las señales constituyen la cota superior.

Conclusiones

- El **escalado** carece de importancia en la correlación.
- La *normalización* genera secuencias en el rango [-1, 1]:

$$\rho r_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} \qquad \rho r_{xy}(l) = \frac{r_{xy}(l)}{\sqrt{r_{xx}(0)r_{yy}(0)}}$$

La correlación satisface la propiedad:

$$r_{xy}(l) = r_{yx}(-l)$$
 y $r_{xx}(l) = r_{xx}(-l)$

es decir, es una función par, y es suficiente calcular r(l) para $l \ge 0$.

Ejemplo

■ Problema: Calcular la autocorrelación de la señal:

$$x(n) = a^n u(n), \qquad 0 < a < 1$$

- **Solución**. Dado que x(n) es de duración infinita, su autocorrelación también es de duración infinita. **Se distinguen dos casos**:
 - $l \ge 0$

$$r_{xx}(l) = \sum_{n=0}^{\infty} x(n)x(n-l) = \sum_{n=l}^{\infty} a^n a^{n-l} = a^{-l} \sum_{n=l}^{\infty} (a^2)^n \Rightarrow r_{xx}(l) = \frac{1}{1-a^2} a^l$$

Recordar que:
$$\sum_{k=l}^{\infty} A^k = \sum_{k=0}^{\infty} A^k - \sum_{k=0}^{l-1} A^k$$

donde, $\sum_{k=0}^{l-1} A^k = \frac{1-A^l}{1-A}$, $\sum_{k=0}^{\infty} A^k = \frac{1}{1-A} \quad \forall |A| < 1$

Ejemplo...

Percepción y Sistemas Inteligentes

- Solución. ...
 - **▶** *l* ≤ *0*

$$r_{xx}(l) = \sum_{n=0}^{\infty} x(n)x(n-l) = a^{-l} \sum_{n=0}^{\infty} (a^2)^n \implies r_{xx}(l) = \frac{1}{1-a^2} a^{-l}$$

► Correlación Total: Puesto que l es negativo, $a^{-l} = a^{|l|}$, las dos expresiones obtenidas se pueden combinar en una sola:

$$r_{xx}(l) = \frac{1}{1 - a^2} a^{|l|}$$
 , $\rho_{xx}(l) = \frac{r_{xx}(l)}{r_{xx}(0)} = a^{|l|}$, $-\infty < l < \infty$

Ejemplo...

- Solución. ...
 - ► Gráficamente

Cálculo de la autocorrelación de x(n)=a²

Correlación V.S. Convolución

Observación

- Las **similitudes** entre el cálculo de la *cross-correlación* y la *convolución* de dos secuencias **son evidentes**.
- La **convolución** de x(n) con y(-n) es igual a la **correlación** cruzada $r_{xy}(l)$; esto es,

$$r_{xy}(l) = x(l) * y(-l)$$

Cuando y(n)=x(n), se obtiene la *auto-correlación* como,

$$r_{xx}(l) = x(l) * x(-l)$$

■ Definición:

Sean x(n) e y(n) dos **señales de potencia.** Su correlación cruzada y autocorrelación se definen como:

$$r_{xy}(l) = \lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} x(n) y(n - l) \quad y \quad r_{xx}(l) = \lim_{M \to \infty} \frac{1}{2M + 1} \sum_{n = -M}^{M} x(n) x(n - l)$$

- ▶ Si x(n) e y(n) son dos secuencias **periódicas** de periodo **N**:
 - ▶ los promedios sobre un **intervalo infinito** son iguales a los promedios sobre **un periodo.**

■ Definición...

► Las expresiones anteriores se reducen a:

$$r_{xy}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) y(n-l) \quad y \quad r_{xx}(l) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) x(n-l)$$

donde, el factor 1/N puede considerarse un factor de escala.

- ▶ Lo que permite calcular la correlación con un solo periodo.
- ► Esta característica es de gran utilidad práctica.

■ Aplicación Práctica.

- La correlación se emplea para **determinar periodicidades** en señales físicas **corrompidas por interferencias** aleatorias.
- Considérese la secuencia y(n)=x(n)+w(n), donde :
 x(n) secuencia periódica de periodo desconocido N
 w(n) interferencia aditiva aleatoria
- ▶ Supóngase que se observan M muestras de y(n), donde $0 \le n \le M-1$ y M >> N.
- ▶ Por razones prácticas se supone que y(n)=0 para n<0 y $n\ge M$.

■ Aplicación Práctica....

 \blacktriangleright Con las condiciones anteriores, la autocorrelación de y(n), normalizada en 1/M, queda determinada por:

$$r_{yy}(l) = \frac{1}{M} \sum_{n=0}^{M-1} y(n) y(n-l) = \frac{1}{M} \sum_{n=0}^{M-1} [x(n) + w(n)] [x(n-l) + w(n-l)]$$

$$r_{yy}(l) = \frac{1}{M} \sum_{n=0}^{M-1} x(n)x(n-l) + \frac{1}{M} \sum_{n=0}^{M-1} \left[x(n)w(n-l) + w(n)x(n-l) \right] + \frac{1}{M} \sum_{n=0}^{M-1} w(n)w(n-l)$$

$$r_{yy}(l) = r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l)$$

$$r_{yy}(l) = r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l)$$

- $\mathbf{r}_{\mathbf{x}\,\mathbf{x}}(l)$
 - ► La **autocorrelación** de x(n) es **periódica** puesto que x(n) es periódica, y presentará picos en *l*=0, N, 2N,...
 - La **amplitud** de los picos de la autocorrelación **disminuye** a medida que l tiende a M. Por lo tanto hay que evitar calcular $r_{x x}(l)$ para valores l > M/2.
- $\mathbf{r}_{xw}(l) \mathbf{y} \mathbf{r}_{wx}(l)$
 - La **correlación** entre x(n) y w(n) debe ser **muy pequeña** puesto que las dos señales **no están relacionadas** en absoluto.

$$r_{yy}(l) = r_{xx}(l) + r_{xw}(l) + r_{wx}(l) + r_{ww}(l)$$

- $\mathbf{r}_{ww}(l)$
 - La **autocorrelación** de w(n) presentará un pico en l=0, pero dada su naturaleza aleatoria se supone que $\mathbf{r}_{ww}(l)$ tenderá rápidamente **hacia** cero.

■ Conclusión:

- ▶ Se espera que sólo $\mathbf{r}_{xx}(l)$ presente picos considerables para l > 0.
- Es posible detectar señales periódicas x(n) inmersas en la interferencia w(n) e identificar su periodo.

Ejemplo

■ Problema:

Determinar la **periodicidad** de las **manchas solares** (**sunspots**) a partir de la **tabla d**e Wölfer.

Introducción

■ En 1825 el farmacéutico alemán Heinrich Samuel Schwabe, descubrió las manchas solares.

■ Introducción...

Las manchas solares son causadas por disturbios en el campo magnético del Sol que emana hacia la fotosfera (parte visible de la 'superficie').

Video_Sol.mpg

(http://sohowww.nascom.nasa.gov/gallery/Movies/sunspots.html)

Los potentes campos magnéticos cerca de las manchas solares producen regiones activas que frecuentemente generan destellos solares y eyecciones de masa coronal conocidas como,"tormentas solares".

■ Introducción...

- Las tormentas solares pueden dirigirse a la Tierra. Estas emiten grandes nubes cargadas de partículas. reconsm.mpg

 (http://sohowww.nascom.nasa.gov/gallery/Movies/animations.html)
 - Las partículas interactúan con el campo magnético terrestre y crean tormentas geomagnéticas
 - Representan riesgos para astronautas y naves espaciales en órbita, así como interferencia en las redes eléctricas y de telecomunicaciones en el tierra.

Ejemplo

■ Solución

- ► Usar la tabla de Wölfer elaborada para 100 años entre 1770 y 1869.
- ► Seleccionar $0 \le l \le 20$, donde cada valor de l corresponde a un año.

Año	Manchas	Año	Manchas	Año	Manchas	Año	Manchas
1770	101	1795	21	1820	16	1845	40
1771	82	1796	16	1821	7	1846	62
1772	66	1797	6	1822	4	1847	98
1773	35	1798	4	1823	2	1848	124
1774	31	1799	7	1824	8	1849	96
1775	7	1800	14	1825	17	1850	66
1776	20	1801	34	1826	36	1851	64
1777	92	1802	45	1827	50	1852	54
1778	154	1803	43	1828	62	1853	39
1779	125	1804	48	1829	67	1854	21
1780	85	1805	42	1830	71	1855	7
1781	68	1806	28	1831	48	1856	4
1782	38	1807	10	1832	28	1857	23
1783	23	1808	8	1833	8	1858	55
1784	10	1809	2	1834	13	1859	94
1785	24	1810	0	1835	57	1860	96
1786	83	1811	1	1836	122	1861	77
1787	132	1812	5	1837	138	1862	59
1788	131	1813	12	1838	103	1863	44
1789	118	1814	14	1839	86	1864	47
1790	90	1815	35	1840	63	1865	30
1791	67	1816	46	1841	37	1866	16
1792	60	1817	41	1842	24	1867	7
1793	47	1818	30	1843	11	1868	37
1794	41	1819	24	1844	15	1869	74

Facultad de Ingeniería

Percepción y Sistemas Inteligentes

Escuela de Ingeniería Eléctrica y Electrónica

Ejemplo ...

Ejemplo

Percepción y Sistemas Inteligentes

Observaciones

- En el 2008 no se observaron manchas solares en 266 de los 366 días del año (73 por ciento).
- ➤ Sólo en 1913, se presentaron menos 311 días sin manchas solares.
- ► En 2009 han caído aún más: Al 31 de marzo no ha habido manchas solares en 78 de los 90 días del año (87 por ciento).

Observaciones

- En 2001 ocurrió el último máximo solar y el mínimo en el 2006.
- Se espera un máximo de manchas entre el 2012 y 2013.

Ejemplo ...

http://sohowww.nascom.nasa.gov/data/realtime-images.html

■ Introducción:

Al **aplicar** la señal x(n), con autocorrelación $r_{xx}(l)$ conocida, a la entrada de un **sistema** con respuesta impulsional h(n), se obtiene:

- ► Se encuentran relaciones entre las correlaciones de x(n), y(n) y h(n) así como con la energía,
- Estas relaciones son de utilidad en el análisis de sistemas LTI.

La cross-correlación $r_{yx}(l)$ entre la señal de entrada y salida es:

$$r_{yx}(l) = y(l) * x(-l) = h(l) * [x(l) * x(-l)] = h(l) * r_{xx}(l)$$

Lo que indica que se puede considerar a r_{yx} (l) como la salida del sistema LTI cuando la entrada es r_{xx} (l).

La Auto-correlación $r_{yy}(l)$ de la señal de salida es:

$$r_{yy}(l) = y(l) * y(-l) = [h(l) * x(l)] * [h(-l) * x(-l)] = r_{hh}(l) * r_{xx}(l)$$

La **auto-correlación** $r_{hh}(l)$ de la repuesta impulsional h(n) **existe si** el sistema es **estable**.

■ Correlación – Energía/Potencia

- La **estabilidad** asegura que si la **entrada** es una señal de **energía** (potencia) la **salida** también es una señal de **energía** (potencia).
- ► Evaluando la expresión de **auto-correlación** $\mathbf{r}_{yy}(l)$ en l=0, se tiene:

$$r_{yy}(0) = E_y = \sum_{k=-\infty}^{\infty} r_{hh}(k) \ r_{xx}(k)$$

la **energía** (potencia) de la **señal de salida** en términos de las **autocorrelaciones** de h(n) y x(n).

