

Chapter 8 (Chapter 9 in the textbook)

Parity and Other Option Relationships

ALWAYS LEARNING PEARSON

Points to Note

- Important relation: Put-call parity. See P.5
- Generalized put-call parity on exchange options. See P.9
- 73. The relationship between call and put options on exchange rate.

 See P.15
 - 4. Compare the prices of European and American options. See P.16
 - 5. The upper and lower bounds of the option price. See P.17 18
 - 6. Early exercises of American call and put options. See P.19 24
 - 7. Relationship between time to expiration and option price. See P. 25
 - Relationship between strike prices and option prices. See P.26 -30
 - 9. Convexity property of option prices with respect to strike prices. See P.31

Revision	
Ocurreny option	
curreny (1)	urreny (2)
No: ex change	rate (price of @ in O)
eg, 70: \$1.2 denominated (1)	
$C_{0}(\lambda_{0}, K, T) = 1$	$(70 P_{2}(\frac{1}{70}, \frac{1}{K}, T)$
D-deronivaled	2) - denominated
Call opt:m	mitga tug
urderlyin : (2)	underlying = D
pit - call partity	s.e-st ce-rt
C _ P :	= For (S) - PV(K)
•	ω (70, K, T)
= 700 -	Ke-rt
Y (2)	depends on curreny

CAMER > CE	up		
PAMER > Pr	5ur		
Eonly Ex of Ar	merican opt	ing	
	Cal	Put	
non-dividend asset	NE	E	
divident paying	E	E	
Osset		1	
NE: no early E		Early Ex	
CAMOR = C	Eur :	the asset	does not
		have c	lividend.
Non-d'vident per	ym assel		> 0 <
CEUR =	PEUR + S	4-K+K	([- e-4(T-4)
>	Se-1<		
CA ner > S	€-K	NO Early 7	Ex)

Tutorial - Class Activity

29 October, 2019 (Solution)

underlyng

Problem 1

The current exchange rate is 0.42 British pounds per Australian dollar.

70.45 price of 1 AUP

premium of 0.0133 pounds. The put expires in 1 year. Pf (0.42, 0.4, 1) A continuously compounded interest rate available on British pounds is 8%. The continuously

A pound-denominated European Australian dollar put has a strike price of 0.4 pounds and a

YAUD = 7% compounded interest rate available on Australian dollars is 7%. = 8%Calculate the value of an Australian dollar-denominated European British pound put that has a

strike price of 2.5 Australian dollars and expires in 1 year. Panbolying

PAUD (1, 12, 5, 1)

Solution

The price of Australian dollar-denominated European British pound call is given by

$$C_{AUD}\left(\frac{1}{0.42}, 2.5, 1\right) = \left(\frac{1}{0.42}\right)(2.5)P_{Pound}\left(0.42, \frac{1}{2.5}\right)1$$

$$= \left(\frac{1}{0.42}\right)(2.5)(0.0133) \quad P_{CAUD}\left(0.42, \frac{1}{2.5}\right)$$

$$= AUD 0.07917.$$

By the put-call parity,

2nd method

D use the put - call paring

to find Cf. from Pf

2) find PAUD from Cf use the : obn't'ity.

fird PAUD from CAUD

Problem 2

An American call option on a stock has a strike price of 85 and expires in 5 months. You are given

- The continuously compounded risk-free interest rate is 4%. i.
- The dividend of 1.5 payable at the end of today, and another dividend of 1.5 is payable ii. in 3 months.
- The current price of the stock is 100. iii.

iv. A European put option with a strike price of 85 which expires in 5 months costs 0.82.

Could it be rational to exercise the option immediately, before the dividend is paid?

Solution

By the put-call parity, we have

So, it may be rational to exercise the option early.

Problem 3

Three European put options expire in 1 year. The put options have the same underlying asset, but they have different strike prices and premiums.

Put Option	A	В	С
Strike	\$50.00	\$55.00	\$61.00
Premium	\$3.00	\$7.00	\$11.00

The continuously compounded risk-free interest rate is 11%.

- What no-arbitrage property is violated?
- b. What spread position would you use to effect arbitrage?

$$P(K_2) - P(K_1) \leq K_2 - |K_1|$$

 $P(K_2) - P(K_1) \leq |Y(K_2 - K_1)|$

 $p(k_2) - p(k_1) \leq pV(k_2 - k_1)$ $p(k_2) - p(k_1)$ $K_2 - q(k_1) \leq - -$

2

c. Demonstrate that the spread position is an arbitrage.

Solution

(a)

The prices of the options violate the following inequality

$$\frac{P(K_2) - P(K_1)}{K_2 - K_1} \le \frac{P(K_3) - P(K_2)}{K_3 - K_2}$$

Because:

$$\frac{7-3}{55-50} > \frac{11-7}{61-55}$$
 $\frac{4}{5} > \frac{4}{6}$ LHS > RHS

(b)

The above violated inequality can be rewritten as

ove violated inequality can be rewritten as
$$\frac{P(55) - P(50)}{55 - 50} > \frac{P(61) - P(55)}{61 - 55}$$

$$6(P(55) - P(50)) > 5(P(61) - P(55))$$

$$0 > 6P(50) - 11P(55) + 5P(61).$$

The arbitrage profit can be obtained by using the asymmetric butterfly spread with the following transactions:

Buy 6 of the 50-strike put options Sell 11 of the 55-strike put options Buy 5 of the 61-strike put options

(c)

		<i>t</i> = 1 year			
Transaction	t = 0	$S_1 < 50$	$50 \le S_1 \le 55$	$55 < S_1 \le 61$	$61 < S_1$
Buy 6 of <i>P</i> (50)	-6(3.00)	$6(50-S_1)$	0.00	0.00	0.00
Sell 11 of <i>P</i> (55)	11(7.00)	$-11(55-S_1)$	$-11(55-S_1)$	0.00	0.00
Buy 5 of <i>P</i> (61)	-5(11.00)	$5(61-S_1)$	$5(61-S_1)$	$5(61-S_1)$	0.00
Total	(4.00)	0.00	$6S_1 - 300$	$305 - 5S_1$	0.00
	\sum_{Λ}		2		

where P(K) is the price of the K-strike put option.

This strategy has strictly positive cash inflow at t = 0, and has a nonnegative payoff for all possible values S_1 of at t = 1 year. Therefore, this is an arbitrage strategy.