Mate 6540

Tarea 1

Problema 1.	Show that if d is a metric for X , then
	d'(x, y) = d(x, y)/(1 + d(x, y))
	is a bounded metric that gives the topology of X . [Hint: If $f(x) = x/(1+x)$ for $x > 0$, use the mean-value theorem to show that $f(a+b) - f(b) \le f(a)$.]
Problema 2.	If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X , show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X . Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X ?
Problema 3.	Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X . Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest
	topology contained in all \mathcal{T}_{α} .
Problema 4.	Show that the collection
	$C = \{[a, b) \mid a < b, a \text{ and } b \text{ rational}\}\$
	is a basis that generates a topology different from the lower limit topology
	on $\mathbb{R}.$
Problema 5.	Sea $X = \{f \mid f: [0,1] \rightarrow [0,1]$ es una función $\}$. Para cada subconjunto A de $[0,1]$, defina
	$B_A = \{ f \in X \mid f(x) = 0, \ \forall x \in A \}.$
	<u>Demuestre</u> que $\mathscr{B} = \{B_A \mid A \subseteq [0,1]\}$ es una base para una topología sobre X .