Лабораторная работа номер 7

Отчёт

Виноградова Мария Андреевна

Содержание

1	Цель работы	
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Реализация переходов в NASM	7
	3.2 Изучение структуры файлы листинга	10
	3.3 Задание для самостоятельной работы	13
4	Выводы	17

Список иллюстраций

J.T	создаем каталог с помощью команды шкип и фаил с помощью ко-	
	манды touch	7
3.2	Заполняем файл	7
3.3	Запускаем файл и смотрим на его работу	8
3.4	Изменяем файл	8
3.5	Запускаем файл и смотрим на его работу	8
3.6	Редактируем файл	9
3.7	Проверяем, сошелся ли наш вывод с данным в условии выводом .	9
3.8	Создаем файл командой touch	9
3.9	Заполняем файл	10
3.10	Смотрим на работу программ	10
	Создаем файл листинга	11
3.12	Изучаем файл	11
	Удаляем операндум из файла	12
3.14	Транслируем файл	12
	Изучаем файл с ошибкой	13
3.16	Создаем файл командой touch	13
	Пишем программу	14
	Смотрим на работу программы(всё верно)	14
3.19	Создаем файл командой touch	15
3.20	Пишем программу	15
	Проверяем работу программы	15
3.22	Проверяем работу программы с другими переменными	16

Список таблиц

1 Цель работы

Изучение команд условного и безусловного переходов. Приобретение навыков написания программ с использованием переходов. Знакомство с назначением и структурой файла листинга.

2 Задание

Написать программы для выбора наименьшего числа и решения системы выражений

3 Выполнение лабораторной работы

3.1 Реализация переходов в NASM

Создаем каталог для программ которые потребуются нам в ходе выполнения ЛБ7, и создаём в нём файл (рис. fig. 3.1).

```
mavinogradova@fedora:~$ mkdir ~/work/arch-pc/lab07
mavinogradova@fedora:~$ cd ^C
mavinogradova@fedora:~$ cd /work/arch-pc/lab07
bash: cd: /work/arch-pc/lab07: Нет такого файла или каталога
mavinogradova@fedora:~$ cd work
mavinogradova@fedora:~/work$ cd arch-pc
mavinogradova@fedora:~/work/arch-pc$ cd lab07
mavinogradova@fedora:~/work/arch-pc/lab07$ touch lab7-1.asm
```

Рис. 3.1: Создаем каталог с помощью команды mkdir и файл с помощью команды touch

Открываем файл в Midnight Commander и заполняем его так как показано в листинге 7.1 (рис. fig. 3.2).

```
mavinogradova@fedora:-/work/study/2024-2025/Apxurexrypa xomfluorreps/lab... × mavinogradova@fedora:-/work/arch-pc/lab07

GNU nano 7.2 //home/mavinogradova/work/arch-pc/lab07/lab7-1.asm
%include 'in_out.asm'
SECTION .data
msgi: D8 'Cooбщение № 1',0
msgi: D8 'Cooбщение № 2',0
msgi: D8 'Cooбщение № 3',0
SECTION .text
GLOBAL _start
    start:
    jmp _label2
    _tabell:
    mov eax, msgi
    call sprintLF
    _label2:
    mov eax, msg2
    call sprintLF
    _label3:
    mov eax, msg3
    call sprintLF
    _label3:
    mov eax, msg3
    call sprintLF
    _end:
    call quit
```

Рис. 3.2: Заполняем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.3).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
mavinogradova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
mavinogradova@fedora:~/work/arch-pc/lab07$ ./lab7-1
Сообщение № 2
Сообщение № 3
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.3: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его так как показано в листинге 7.2 (рис. fig. 3.4).

```
mavinogradova@fedora:~/work/arch-pc/lab07
mavinogradova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab... ×
                                       /home/mavinogradova/work/arch-pc/lab0
%include 'in_out.asm'
      N .data
         'Сообщение № 1',0
       <mark>)В</mark> 'Сообщение № 2',0
         'Сообщение № 3',0
       _start
jmp _label2
 mov eax, msg1
 call sprintLF
  jmp _end
 mov eax, msg2
  call sprintLF
 jmp _label1
 mov eax, msg3
 call sprintLF
  call quit
```

Рис. 3.4: Изменяем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.5).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm mavinogradova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o mavinogradova@fedora:~/work/arch-pc/lab07$ ./lab7-1 Сообщение № 2 Сообщение № 1 mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.5: Запускаем файл и смотрим на его работу

Снова открываем файл для редактирования и изменяем его так, чтобы полученный вывод совпал с заданным (рис. fig. 3.6).

```
mavinogradova@fedora:~/work/arch-pc/lab07
mavinogradova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab... ×
GNU nano 7.2
                                       /home/mavinogradova/work/arch-pc/lab0
%include 'in_out.asm'
          'Сообщение № 1',0
         'Сообщение № 2',0
        В 'Сообщение № 3',́0
       _start
jmp _label3
 mov eax, msg1
call sprintLF
 jmp _end
 mov eax, msg2
 call sprintLF
  jmp _label1
 mov eax, msg3
 call sprintLF
 jmp _label2
```

Рис. 3.6: Редактируем файл

Создаем исполняемый файл и запускаем его (рис. fig. 3.7).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-1.asm
mavinogradova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-1 lab7-1.o
./lab7-1
Сообщение № 3
Сообщение № 2
Сообщение № 1
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.7: Проверяем, сошелся ли наш вывод с данным в условии выводом

Создаем новый файл (рис. fig. 3.8).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ touch lab7-2.asm
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.8: Создаем файл командой touch

Открываем файл в Midnight Commander и заполняем его так как показано в листинге 7.3 (рис. fig. 3.9).

```
mavinogradova@fedora:~/work/arch-pc/lab07
                                         /home/mavinogradova/work/arch-pc/lab07/lab7
GNU nano 7.2
%include 'in_out.asm'
section
                 .data
   msg1 db 'Введите В: ',0h
   msg2 db "Наибольшее число: ",0h
   A dd '20'
C dd '50'
section .bss
   max resb 10
   B resb 10
   global _start
   mov eax,msg1
   call sprint
   mov ecx,B
   mov edx,10
   call sread
   mov eax,B
   mov [B],eax
   mov [max],ecx ; 'max = A'
   cmp ecx,[c] ; Сравниваем 'A' и 'C'
jg check_B ; если 'A>C', то переход на метку 'check_B',
mov ecx,[c] ; иначе 'ecx = C'
```

Рис. 3.9: Заполняем файл

Создаем исполняемый файл и проверяем его работу, вводя разные значения В (рис. fig. 3.10).

Рис. 3.10: Смотрим на работу программ

3.2 Изучение структуры файлы листинга

Создаем файл листинга дла программы lab7-2.asm (рис. fig. 3.11).

Рис. 3.11: Создаем файл листинга

Открываем файл листинга с помощью команды mcedit и изучаем его (рис. fig. 3.12).

Рис. 3.12: Изучаем файл

Строка 45: BB00000000 - 0000001D - адрес в сегменте кода, BB00000000 - машинный код, mov ebx, 0 - присвоение переменной ebx значения 0

Строка 52: 59 - 0000002D - адрес в сегменте кода, 59 - машинный код, рор есх - восстановление значения регистра есх из стека.

Строка 88: F7FE - 00000042 - адрес в сегменте кода, F7FE - машинный код, idiv esi - целочисленное деление значения в регистре eax на значение в регистре esi. Открываем файл и удаляем один операндум (рис. fig. 3.13).

```
global _start
_start:
    mov eax,msgl
    call sprint

mov ecx,B
    mov edx,
    call sread
```

Рис. 3.13: Удаляем операндум из файла

Создаем исполняемый файл и запускаем его с получением файла листинга (рис. fig. 3.14).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf -l lab7-2.lst lab7-2.a
lab7-2.asm:17: error: invalid combination of opcode and operands
mavinogradova@fedora:~/work/arch-pc/lab07$ ls
in_out.asm lab7-1 lab7-1.asm lab7-1.o lab7-2 lab7-2.asm lab7-2.lst
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.14: Транслируем файл

При исполнении файла, выдается ошибка, но создаются исполнительный файл lab7-2 и lab7-2.lst

Снова открываем файл листинга и изучаем его (рис. fig. 3.15).

Рис. 3.15: Изучаем файл с ошибкой

3.3 Задание для самостоятельной работы

ВАРИАНТ-12

Напишите программу нахождения наименьшей из 3 целочисленных переменных а,b и с.Значения переменных выбрать из табл. 7.5 в соответствии с вариантом, полученнымпри выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу.

Создаем новый файл (рис. fig. 3.16).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ touch lab7-3.asm
mavinogradova@fedora:~/work/arch-pc/lab07$ mc
```

Рис. 3.16: Создаем файл командой touch

Открываем созданный файл и пишем программу, которая выберет наименбшее число из трех(2 числа уже в программе, 3-е вводится из консоли) (рис. fig. 3.17).

```
mavinogradova@fedora:~/work/arch-pc/lab07
Ŧ
mavinogradova@fedora:~/work/study/2024-2025/Архитектура компьютера/arch-pc/lab..
GNU nano 7.2
                                     /home/mavinogradova/work/arch-pc/lab07/lab
include 'in_out.asm'
   msg1 db 'Введите В: ',0h
  msg2 db "Наименьшее число: ",0h
A dd '99'
C dd '26'
section .bss
   min resb 10
   B resb 10
section
  global _start
   mov eax,msgl
   call sprint
   mov ecx,B
   mov edx,10
   call sread
   mov eax,B
   call atoi
   mov [B],eax
   mov ecx,[A]
   mov [min],ecx
   cmp ecx,[C]
   jl check_B
   mov [min],ecx
```

Рис. 3.17: Пишем программу

Создаем исполняемый файл, запускаем его и смотрим на работу программы (рис. fig. 3.18).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-3.asm
mavinogradova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-3 lab7-3.o
mavinogradova@fedora:~/work/arch-pc/lab07$ ./lab7-3
Введите В: 29
Наименьшее число: 26
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.18: Смотрим на работу программы(всё верно)

2. Напишите программу, которая для введенных с клавиатуры значений х и а вычисляет значение заданной функции F(x) и выводит результат вычислений. Вид функции F(x) выбрать из таблицы 7.6 вариантов заданий в соответствии с вариантом, полученным при выполнении лабораторной работы № 7. Создайте исполняемый файл и проверьте его работу для значений х и а из 7.6.

Создаем новый файл (рис. fig. 3.19).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ touch lab7-4.asm
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.19: Создаем файл командой touch

Открываем файл и пишем программу, которая решит систему выражений из варианта номер которого получен в ходе выполнения лаболаторной (12) (рис. fig. 3.20).

```
%include 'in_out.asm'
SECTION .data
msg1: DB 'BBequre x: ', 0h
msg2: DB 'BBequre a: ', 0h
otv: DB 'F(x) = ', 0h

SECTION .bss
x: RESB 80
a: RESB 80
res: RESB 80

SECTION .text
GLOBAL _start

_start:
mov eax, msg1
call sprint

mov ecx,x
mov edx,80
call sread

mov eax, x
call atoi
mov [x], eax

mov eax, msg2
call sprint

mov ecx, a
mov edx, 80
call sread

mov eax, msg2
call sprint

mov ecx, a
mov edx, 80
call sread

mov eax, a
```

Рис. 3.20: Пишем программу

Создаем исполняемый файл, запускаем его и проверяем его работу при x=3 и a=7 (рис. fig. 3.21).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm mavinogradova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o mavinogradova@fedora:~/work/arch-pc/lab07$ ./lab7-4 Введите х: 3 Введите а: 7 F(x) = 21
```

Рис. 3.21: Проверяем работу программы

Создаем исполняемый файл, запускаем его и проверяем его работу при x=6 и a=4 (рис. fig. 3.22).

```
mavinogradova@fedora:~/work/arch-pc/lab07$ nasm -f elf lab7-4.asm
mavinogradova@fedora:~/work/arch-pc/lab07$ ld -m elf_i386 -o lab7-4 lab7-4.o
mavinogradova@fedora:~/work/arch-pc/lab07$ ./lab7-4
Введите х: 6
Введите а: 4
F(x) = 1
mavinogradova@fedora:~/work/arch-pc/lab07$
```

Рис. 3.22: Проверяем работу программы с другими переменными

4 Выводы

При выполнении лабораторной работы я изучила команды условных и безусловных переходов, а также приобрела навыки написания программ с использованием перходов, познакомилась с назначением и структурой файлов листинга.