

Complexidade de Algoritmos

Prof. Diego Buchinger diego.buchinger@outlook.com diego.buchinger@udesc.br

Prof. Cristiano Damiani Vasconcellos cristiano.vasconcellos@udesc.br

Um pouco de Teoria dos Números e seu uso na Criptografia

Teoria dos Números

Notação: $d \mid a \rightarrow d$ "divide" a sendo que $d \ge 1$ e $d \le |a|$

- Todo inteiro a é divisível pelos **divisores triviais** 1 e a
- <u>Número primo</u>: únicos divisores são 1 e a
- Todo número composto pode representado pela multiplicação de seus fatores primos (42 = 2*3*7)
- Qual a complexidade de tempo para descobrir se um número *a* qualquer (**int**) é primo?

Divisores Comuns

Um número é dito divisor comum se ele divide dois números:

 $d \mid a$ e $d \mid b$ => d é divisor comum de a e b

Propriedade dos divisores comuns:

$$a \mid b$$
 implica em $|a| \le |b|$
 $a \mid b$ e $b \mid a$ implica em $a = b$
 $d \mid a$ e $d \mid b$ implica em $d \mid (ax + by)$

O máximo divisor comum entre dois números a e b é denotado por: mdc (a , b)

d/a e d/b então $d \mid mdc (a, b)$

Divisores Comuns

Primos relativos ou Primos entre si:

Dois inteiros são chamados de primos relativos se o único inteiro positivo que divide os dois é 1: mdc(a, b) = 1.

Por exemplo, 49 e 15 são primos relativos:

$$49 \rightarrow 1,7,49$$

$$15 \rightarrow 1,3,5,15$$

Propriedade

se
$$mdc(a, p) = 1$$
 e $mdc(b, p) = 1$ então $mdc(ab, p) = 1$
Testar: a=49, b=15, p=7

Fatoração

Fatoração Única

Um inteiro pode ser escrito como um produto da forma:

$$a = p_1^{e_1} \times p_2^{e_2} \times ... \times p_r^{e_r}$$

Exemplo

$$6.000 = 2^4 \times 3^1 \times 5^3 = 16 \times 3 \times 125$$

Teste de primalidade: Dado um número n, determinar se n é primo ("fácil")

Fatoração de inteiros: Dado um número n, representar n através de seus fatores primos (difícil — até o momento)

Divisores Comuns

Calcular:

EUCLID(2,0)

EUCLID(99,78)

Algoritmo de Euclides

EUCLID (a, b)

se b = 0

então retorne a

senão retorne EUCLID(b, a mod b)

Complexidade:

Números pequenos: $O(\log b)$

Números grandes (k bits): O(k) (**mod*)

Divisores Comuns

Algoritmo de Euclides Extendido

Adaptar o algoritmo anterior para calcular x e y em:

$$d = mdc(a,b) = ax + by$$

EXT-EUCLID (a, b)

se b = 0

então retorne (a, 1, 0)

(d', x', y') = EXT-EUCLID(b, a mod b)

$$(d, x, y) = (d', y', x' - a/b * y')$$

retorne (d, x, y)

Calcular:

EXT-EUCLID(4,0)

EXT-EUCLID(99,78)

Divisão inteira

Aritmética Modular

É um sistema para manipular faixas restritas de números inteiros.

Relação de congruência:

 $a \equiv b \pmod{n}$ se e somente se $a \mod n = b \mod n$.

 $a \equiv b \pmod{n} \Leftrightarrow n \ divide (a - b).$

Exemplos:

 $38 \equiv 14 \pmod{12}$, $38 \mod 12 = 14 \mod 12$

 $-10 \equiv 38 \pmod{12}$, $-10 \mod 12 = 38 \mod 12$

Aritmética Modular

```
Soluções para a equação ax \equiv b \pmod{n}

Só há solução se: mdc(a, n) / b

ax \equiv b \pmod{n} tem d soluções distintas

onde d = mdc(a, n)
```

MOD-LIN-SOLVER(a,b,n) (d, x', y') = EXT-EUCLID(a, n) $se d \mid b$ $então x_0 = x'(b \mid d) \mod n$ $para i=0 \quad a \quad d-1 \text{ faça}$ $imprimir(x_0 + i(n \mid d)) \mod n$ senão imprimir "nenhuma solução"

Calcular:

 $14x \equiv 30 \pmod{100}$

MOD-LIN-SOLVER (14, 30, 100)

Aritmética Modular

Inverso multiplicativo modular:

O inverso multiplicativo modular de um inteiro a no módulo m é um inteiro x tal que:

$$ax \equiv 1 \pmod{m}$$

* Existe se e somente se a e m são primos relativos.

$$17x \equiv 1 \pmod{120}$$

MOD-LIN-SOLVER (17, 1, 120)

Teoria dos Números

Teorema de Fermat:

Se p é primo então:

$$a^{p-1} \equiv 1 \pmod{p}$$

Contudo, a^{p-1} pode ser um número relativamente grande, e realizar a operação de módulo pode ser um problema.

Calcular:

$$a=2 / p=5$$

$$a=5 / p=3$$

$$a=4 / p=7$$

Teoria dos Números

Exponenciação Modular:

Realizar a operação de elevação ao quadrado repetida e realizar o módulo sempre possível.

Exemplo: 2⁵³ *mod* 101

O Caráter Primo

Densidade de números primos

Distribuição dos primos:
$$\pi(n) \rightarrow n^o de \ primos \le n$$

 $Exemplo: \pi(10) = 4 \rightarrow \{2,3,5,7\}$

Teorema dos números primos:
$$\lim_{n \to \infty} \frac{\pi(n)}{n / \ln n} = 1$$

Para n grande, n / ln n é uma boa aproximação para $\pi(n)$!

O Caráter Primo

Densidade de números primos

Com base no teorema apresentado podemos fazer uma estimativa de <u>probabilidade</u> para verificar se um número escolhido ao acaso é primo ou não como: 1 / ln(n)

Quantos números de 512 bits precisamos testar, em média, até encontrar um número primo?

 $ln(2^{512}) \approx 355 \text{ números}$

 $1/355 \approx 0.28\%$ (chance de encontrar um primo de 1^a)

O Caráter Primo

Densidade de números primos

Para testarmos o caráter primo de um número pequeno n, podemos testar verificando a divisibilidade por todos os números entre $2 e \sqrt{n}$

Para inteiros pequenos: $\Theta(\sqrt{n})$

Para inteiros grandes com k bits: $\Theta(2^k)$

O crivo de eratóstenes (algoritmo) é um dos mais conhecidos para criar uma lista de primos até um dado n

(ver gif: https://pt.wikipedia.org/wiki/Crivo_de_Erat%C3%B3stenes)

Teste do caráter pseudoprimo

Considerando novamente a equação modular:

$$a^{n-1} \equiv 1 \pmod{n}$$

O teorema de Fermat nos diz que se n é primo, então n satisfaz esta equação para qualquer escolha de a ($a \in Z^+_n$)

Se encontrarmos um a que não satisfaça a equação, então certamente n não é primo

Teste do caráter pseudoprimo

Ao testarmos se: $2^{n-1} \equiv 1 \pmod{n}$

caso falso: n certamente não é primo

caso verdade: ou n é primo, ou n é pseudoprimo de base 2

Mas, com que frequência há um falso positivo?

Raramente! Existem apenas 22 valores menores

que 10.000: {341, 561, 645, 1105, ...}

Usando 512 bits a chance é de 1 / 10²⁰

Usando 1024 bits a chance é de 1 / 10⁴¹

Teste do caráter pseudoprimo

Teste Aleatório do Caráter primo de Miller-Rabin

* Experimentar diversos valores como base:

Melhora a confiabilidade, mas existem números "traiçoeiros" e extremamente raros que dão falso positivo para diferentes bases (números de Carmichael)

❖ Observar raiz quadrada não trivial de 1 módulo n:

```
x^2 \equiv 1 \pmod{n} e x não é 1 ou -1 (ex: x=6, n=35)
```

```
MILLER-RABIN( n, s )

para j=1 a s

a = RANDOM()

se ( WITNESS( a, n ) )

então retorne falso

retorne verdade
```

[número composto, certamente]

[número quase certamente primo]

Ideia: Permitir que comunicação entre dois participantes sem que um intruso possa entender as mensagens trocadas.

Baseia-se na facilidade em se encontrar números primos grandes e na dificuldade em fatorar o produto entre dois números primos grandes.

Em um sistema de criptografia de chave pública, cada participante possui:

- + uma chave pública (pública);
- + uma chave privada (secreta);

Como funciona:

- Bob obtém a chave pública de Alice;
- Bob usa a chave para codificar a mensagem M:
 C = P_A(M) e envia C;
- Alice recebe C e utiliza sua chave privada para recuperar a mensagem original M:

$$M = S_A(C)$$

Algoritmo:

- Selecionar dois números primos grandes $p \in q$, (512 bits, cada por exemplo) sendo $p \neq q$
- \triangleright Calcular: n = p * q
- Selecionar um inteiro ímpar "pequeno" e tal que e seja primo relativo de (p-1)(q-1) [número primo]:

$$mdc(e, (p-1)(q-1)) = 1$$

Chave pública = (e, n)

Algoritmo:

 \triangleright Calcular d como o inverso modular de e:

$$e*d \equiv 1 \mod ((p-1)(q-1))$$

Chave privada = (d, n)

Transforma um inteiro M (que representa um bloco de dados da mensagem) em um inteiro C (que representa um bloco da mensagem criptografada), usando a seguinte função:

$$C = M^e \mod n$$

A transformação da mensagem criptografada *C* na mensagem original é executada através da formula:

$$M = C^d \mod n$$

Cuidado!!

n deve ser maior do que M!

Caso contrário existem múltiplas interpretações para a mensagem codificada. Se M for maior do que n, deve-se dividir a mensagem em blocos

Criptografia RSA (Exemplo)

Mensagem: "ola" => 111 105 97 => 01101111 01101001 01100001

A princípio nossa mensagem M teria o valor decimal: 7.301.473

Vamos utilizar $\mathbf{p} = 521 \text{ e } \mathbf{q} = 383$,

logo n =
$$p*q = 199.543$$
 e $(p-1)*(q-1) = 198.640$

Como M > n, devemos dividir a mensagem M em blocos.

Vamos usar blocos de dois caracteres!

Escolher arbitrariamente um valor para e [primo relativo a (p-1)(q-1), ou simplesmente um número primo] $\rightarrow e = 227$ [primo "pequeno"] note que: mdc (227, 198.640) = 1 *Chave pública* = (227, 199.543)

Criptografia RSA (Exemplo)

$$\mathbf{p} = 521 \text{ e } \mathbf{q} = 383 \mid n = 199.543 \mid e = 227$$

Para gerar a chave privada precisamos calcular *d* como o inverso modular de *e*:

$$e*d \equiv 1 \pmod{(p-1)(q-1)} = 227*d \equiv 1 \pmod{198.640}$$

Usamos Euclides Estendido (227, 198.640) => mdc = 1 / x = -92.757 / y = 106

E assim a única solução válida para a equação modular é:

$$d = x (1/d) \mod n = -92.757 \mod 198.640 = 105.883$$

Chave privada = (105.883, 199.543).

Mensagem M: 01101111 01101001 01100001 00000000

$$M_1 = 57.193 / M_2 = 24832$$

Codificando

Decodificando

$$C_1 = 57.193^{227} \mod 199.543 = 34.997$$
 $M_1 = 34.997^{105883} \mod 199.543 = 57.193$

$$M_2 = 61.019^{105883} \mod 199.543 = 24.832$$

$$C_2 = 24.832^{227} \mod 199.543 = 61.019$$

Ataque Força Bruta ao RSA

Considerando que as mensagens criptografadas forem capturadas por terceiros, um ataque de **força bruta** é um ataque em que testa-se uma a uma todas as combinações possíveis para se quebrar (descobrir) uma chave privada.

No caso do RSA o "atacante" irá usar o valor n da chave pública para fatorar os valores de p e q.

Uma vez descoberto p e q basta calcular a chave privada e transformar a mensagem criptografada.

Trabalho RSA

- Escreva um programa que realize:
 - * codificação (criptografia RSA) de uma mensagem (String) em blocos de 4 caracteres (32 bits) => n > 4.294.967.295;
 - * decodificação de mensagem criptografada com chave privada
 - decodificação de mensagem criptografada através de um ataque de força bruta usando a chave pública;
- Quantificar o tempo para criar uma mensagem codificada
- Quantificar e comparar o tempo para decodificar uma mensagem usando a chave privada e força bruta com diferentes tamanhos para os números primos (começando com **p** e **q** de 32 bits)
- Pode-se usar as bibliotecas (importadas ou da linguagem) para manipular números grandes (BigInt) – JAVA ou C/C++

Trabalho RSA

• Funções a serem implementadas:

```
geraPrimoPequeno(): int
    crivoEratóstenes ()
primoProvavel( bits : int ) : BigInt
    testePrimalidade( n : BigInt ) : boolean
inversoModular( a : BigInt , b : BigInt ) : BigInt
    gcdExt (a : BigInt , b : BigInt ) : Trio
expModular( num : BigInt, exp : int, n : BigInt ) : BigInt
ataqueForcaBruta( msg : String, e : int, n : BigInt ) : String
```


Referências

Algoritmos. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Cliford Stein. Campus.

Algorithms. Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani. McGraw Hill.

Concrete Mathematics: A Foundation for Computer Science (2nd Edition). Ronald L. Graham, Donald E. Knuth, Oren Patashnik. Addison Wesley.

M. R. Garey and D. S. Johnson. 1978. "Strong" NP-Completeness Results: Motivation, Examples, and Implications. J. ACM 25, 3 (July 1978)