Connectivity 1

Agenda

Intro to communications

IoT/HW specific protocols

Wired: UART/RS485, SPI, I2C, OneWire

Wireless: WiFi, BT 4.0/BLE, LoRa, LTE, Zigbee, Z-wave, NFC, IrDA

Exercises

Intro to communications

What is information?

Data

Datum = something given, a thing

Knowledge

Subject + data = experience Learning = increasing knowledge

- Reduces uncertainty
- Improves outcome

Information

Conveys knowledge increments
Measured in bits
Entropy (data vs information)

Reducing uncertainty
$$P(A \mid E) != P(A)$$

Improving outcome

1916 - 2001

$$I(m) = log_2(M)$$
 [bit]

Entropy

$$H = - sum(P_i log_2(P_i))$$
 [bit]

Shannon, Nyquist, Hartley, Mitchell

What is communication?

Communication

Conveying information (knowledge)

Encoding & decoding

Information <-> Data

Transmission & reception

Data <-> Signal (energy wave)

Channel

Carries the signal / data

May add noise/disturbance

Signal & channel characteristics

Signal

Energy: An energy wave

Spectrum (Fourier sum of sine waves)

Channel

Bandwidth, power, noise, attenuation

Latency

Capacity: $C = B \log_2(1+P_S/P_N)$ [bit/s]
*P is power in Watts

Digital signal

Time discretization (Nyquist): $F_s > 2B$

Amplitude quantization:

$$SQNR = 20log_{10}(2^{Q}) = 6.02 Q [dB]$$

^{*} Signal to quantization noise ratio: Q bits

Common media types

Electrical wires

Twisted pair: 10 GB/s, 100 m, 0.5 EUR/m

Coaxial: 10 MB/s, 450m, 0.5 EUR/m

Optical fibers

Single mode: 100TB/s, ~150 km, 0.06 EUR/m

Multi-mode: 1GB/km, ~2 km, 0.3 EUR/m

Radio (e.g. ISM bands)

2.4 / 5GHz: 300MB/s, 50 m

433 / 868 MHz: 64KB/s, 20 km

More about radio

Propagation

Direction & Multi path

Penetration

Polarization

Antennas

Omni and directed

Connectors: SMA, UF.L, BNC, F ...

Regulations

Standard bodies: FCC(US), ETSI (EU) ...

Restrictions: Frequency, power, duty cycle

Connector	Frequency	Impedance
SMA	< 17 GHz	50Ω
UF.L	< 6 GHz	50Ω
BNC / F	< 3 GHz	50Ω, 75Ω

What is communication?

Communication

Conveying information (knowledge)

Encoding & decoding

Information <-> Data

Transmission & reception

Data <-> Signal (energy wave)

Channel

Carries and modifies the signal / data Information may be affected

Encoding & Error control

Encoding

Text: Morse, ASCII, UTF8, CP1251 ...

Images: BMP, GIF, JPEG ...

Sound: MPEG/MP3, Flac, Vorbis, Speex ...

Video: VP9, H265 ...

Error control

Detection: Parity bit, Checksum, Hash...

Correction:

ACK/ARQ

FEC: Hamming, Reed-Solomon, Turbo code, LDPC

ASCII Alphabet			
Α	1000001	N	1001110
В	1000010	0	1001111
C	1000011	P	1010000
D	1000100	l Q l	1010001
E	1000101	R	1010010
F	1000110	S	1010011
G	1000111	T	1010100
н	1001000	U	1010101
ř. I	1001001	l v l	1010110
J	1001010	W	1010111
K	1001011	x	1011000
L	1001100	Y	1011001
М	1001101	z	1011010

IoT wired protocols

UART (Universal Async Receive Transmit – aka Serial)

Overview

UART (3.3 / 5 V, few meters)

RS232 (9600 bps/ 15m)

RS485 / Modbus

- 35Mbs / 12 m ... 100kbps / 1200m
- Multi node (master slave or ethernet like)

Applications

Industrial devices / solar (RS485)

Some (old) sensors

Implementation

ESP8266: SoftwareSerial

ESP32: HardwareSerial

RS485 anemometer example

I2C

Overview

Distance: 1 – 10 m

Data and Clock lines

Synchronous bus (master clock)

Multi-master & up to 1008 slaves

Half-duplex, 100 kbit – 3.2mbit/s

Programming

Slave address: 7/10 bit

Open address

Write data

Read data

SPI (Serial peripheral interface)

Overview

Distance: 1 – 10 m

Synchronous bus (master clock)

- Data, Clock and Chip select lines
- Single master / multi slave (SS)

Full duplex, up to 50Mbit/s

Implementation

ESP32: <u>Hardware</u> SPI

Bit order (MSB/LSB)

Data mode (rising/falling edge)

Clock speed (divider)

SCK MOSI MISO SS

OneWire et al

Overview

Distance: 10 to 100s of meters

Radius & weight

Half-duplex, 16 kbit / 125 kbit (overdrive)

Data line only (2/3 wire interface)

Single master / up to 100s of slaves

Programming

64bit slave IDs

Parasitic power (charge up)

Find devices

Communicate

Some other protocols

Industrial

CAN bus

Industrial Ethernet (PROFINET, Modbus TCP ...)

4-20 mA

HiFi sound

<u> 12S</u>

IoT wireless protocols

Common network topologies

P₂P

Simplest

Star (Star of stars)

Common in public deployments

Mesh

Complex

Potentially more reliable

Partially connected with XOR distance

(Petar Maymounkov – DHT)

Bluetooth 4 (BLE)

GATT (generic attribute profile)

Designed for low power

Peripherals advertise themselves

Central device initiates two way connection

Profiles, Services & Characteristics

Peripheral

Central

GATT Client

Bluetooth 5

Already here (BT4 compatible)

Samsung Galaxy S8, S8+, Note, S9, S9+, iPhone 8, some boards ... and ESP32 ©

Longer range (~ 4x)

12dB improved sensitivity, 500kbps or 125kbps modes with Coded PHY

Higher data throughput (~5x)

2x LE (up to 2Mbs) by changes in physical / radio layer Data Length Extensions (DLE)

Better broadcasting (Advertising Extensions)

Less congestion, extended advertising payloads

Periodic advertising & long range connections (e.g. for way-finding, indoor navigation, asset tracking)

LoRa

FM Chirp Spread Spectrum & FEC

- Noise like signal: SNR = -5 to -20dB
- Bandwidth (7.8 500KHz) @ 868/915 MHz carrier
- Spreading factor (64 4096)
- Coding rate (for FEC)
- Range: LoS ~20km, non LoS ~2km
- Throughput = 18bps 78Kbps
- Resistance to fading (e.g. from multipath)

Interesting properties

Star, P2P and Mesh topologies
Private & Public deployments (LoRaWAN)
Military origin (anti-jamming & LPI)

LoRaWAN

TTN - The things network

Crowd sourced gateways

You can build one too

Centralized backbone

But you can deploy one yourself Open source

End devices

Kind of expensive (compared to ESP)

Some other protocols

Cellular

3G, LTE, 4G, Sigfox ...

IEEE 802.15.4

ZigBee (popular in EU)

- 2.4 GHz, Mesh, many vendors = Interop. problems
- Use cases: Home automation, Smart buildings, meters ...

Z-wave (popular in US)

- 868MHz, Mesh, single vendor
- Use cases: Home automation, Smart buildings

Custom

e.g. HC-12

