Credit Card Fraud Detection

Kyle Felkel & Michael Chan

Introduction

- Why is credit card fraud a problem?
 - Significant Financial costs
 - Global costs of \$15 billion in 2014
 - Increase in online transactions
 - Losses expected to increase to \$30 billion by 2020

Previous Work

- Significant Amount of research has been done
 - Focus is on champion-challenger approach
 - Most papers use Random Forest and Naïve-Bayes models.

Credit Card Fraud: Problem Constraints

- Real time processing required
- The cost of predicting false negatives versus false positives
- Data sets are difficult to find
- Fraudsters adjust, constant retraining required
- Data set imbalance

Our Work

- Examined a real-world dataset
- Selected 2 established Machine Learning algorithms
 - Random Forest, Naïve-Bayes Classifier
- Performed 3 feature selection methods
 - o Correlation Filtered, Backwards Selection: Random Forest and Naïve-Bayes
- Compared the results of the 6 models built

Our expectation is that Random Forest and Naïve-Bayes will have similar results. Models built with backwards selected features should also perform better.

Dataset

- 284,807 transactions from September 2013 by European cardholders
- 31 Features
 - Amount, Time, v1-v28, Class
 - Features v1-v28 are anonymized and transformed to numeric values for confidentiality

Time	V1	V2	V3	 V26	V27	V28	Amount	Class
0	-1.35981	-0.07278	2.536347	-0.18911	0.133558	-0.02105	149.62	0
0	1.191857	0.266151	0.16648	0.125895	-0.00898	0.014724	2.69	0
1	-1.35835	-1.34016	1.773209	-0.1391	-0.05535	-0.05975	378.66	0
1	-0.96627	-0.18523	1.792993	-0.22193	0.062723	0.061458	123.5	0
2	-1.15823	0.877737	1.548718	0.502292	0.219422	0.215153	69.99	0
2	-0.42597	0.960523	1.141109	0.105915	0.253844	0.08108	3.67	0

Methodology and Tools

- Data Preprocessing
 - Binning
 - Undersampling
 - Feature Selection
 - Correlation
 - Backwards

Binning: Before and After

Data Imbalance

- 284,807 Transactions
- 492 Fraudulent transactions
 - 0.17% of all transactions
- Undersampling will be used to correct this

Undersampling

- Creatures a new, relatively small, and balanced data set
 - 984 total Entries
 - 492 Fraudulent Transactions
 - 492 Credible Transactions

Methodology and Tools

- Feature Selection
 - Correlation Filter Feature Selection
 - Features with correlation > 0.5 with target feature
 - Backward Feature Selection
 - Build full model and remove features

Methodology and Tools: Machine Learning Algorithms

- Random Forest Algorithm
 - 20 Decision Trees
 - Easy to understand and implement
- Naive-Bayes Algorithm
 - Probability assuming independent features
 - Suitable for real time predictions

Methodology and Tools

- Measures of success
 - False Negatives minimized
 - F1score:
 - Recall = (TP) / (TP + FN)
 - Precision = (TP) / (TP + FP)
 - F1Score = 2 * (Precision * Recall) / (Precision + Recall)
 - Accuracy:
 - Accuracy = (TP + TN) / (TP + TN + FP + FN)

Methodology and Tools

Tools

- Python
- Pandas
- o sklearn/matplotlib/seaborn/mlxtend
- Jupyter/Anaconda
- Kaggle

Results: Feature Selection Outputs

Feature Selection Model:	Selected Features:
Filtered correlation selection	'V3', 'V4', 'V9', 'V10', 'V11', 'V12', 'V14', 'V16', 'V17'
Random Forest Backwards selection	'V4', 'V7', 'V13', 'V14', 'V17', 'V18', 'V21', 'V26', 'V27'
Naïve-Bayes Backwards Selection	'V4', 'V6', 'V7', 'V13', 'V14', 'V19', 'V23', 'V25', 'bin_time'

Results: Model and Feature Set Combinations

Model No.	Model:	Dataset features:
1	Random Forest	Filtered correlation selected
2	Naïve-Bayes	Filtered correlation selected
3	Random Forest	Random Forest backward selected
4	Naïve-Bayes	Random Forest backward selected
5	Random Forest	Naïve-Bayes backward selected
6	Naïve-Bayes	Naïve-Bayes backward selected

Results: Raw Data

TABLE 3	Number of Classifications					
Model	TN	FN	TP	FP		
1	84	3	102	8		
2	80	0	102	12		
3	91	3	93	10		
4	88	1	95	13		
5	89	2	100	6		
6	85	2	100	10		

TABLE 4	CLASS	CLASSIFICATION RATES					
Model	TPR	TNR	FPR	FNR			
1	.97	.91	.09	.03			
2	1.0	.87	.13	0.0			
3	.97	.90	.10	.03			
4	.99	.87	.13	.01			
5	.98	.94	.06	.02			
6	.98	.89	.11	.02			

Results: Visualization

Results: Scoring

TABLE 5 CLASSIFICATION SCORING						
Model	Recall	Precision	F1-score	Accuracy		
1	.91	.97	.94	.94		
2	.87	1.00	.93	.94		
2	00	07	02	02		
3	.90	.97	.93	.93		
4	.87	.99	.93	.93		
	.07	.,,,	.,,,	.,,,		
5	.94	.98	.96	.96		
6	.89	.98	.93	.94		

Conclusion

 Best model was: Model 5 (Random Forest with Naive-Bayes backwards selected features)

o FNR: 0.02

F1Score: 0.96

Accuracy 0.96

- All models performed extremely well
- Both Random Forest and Naïve-Bayes suitable algorithms
 - Effect of Algorithm vs Feature Selection

Future work:

- Training/Processing Time
 - Over half a million cards in circulation
- Include Cost-analysis
 - Amount omitted during feature selection
- Thresholding
- More Algorithms

References

- [1] S. Patil, V. Nemade and P. Soni, "Predictive Modelling For Credit Card Fraud Detection Using Data Analytics", Procedia Computer Science, vol. 132, pp. 385-395, 2018. Available: 10.1016/j.procs.2018.05.199.
- [2] D. Wang, B. Chen and J. Chen, "Credit card fraud detection strategies with consumer incentives", Omega, vol. 88, pp. 179-195, 2019. Available: 10.1016/j.omega.2018.07.001.
- [3] N. Carneiro, G. Figueira and M. Costa, "A data mining based system for credit-card fraud detection in e-tail", Decision Support Systems, vol. 95, pp. 91-101, 2017. Available: 10.1016/j.dss.2017.01.002.
- [4] F. Carcillo, Y. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé and G. Bontempi, "Combining unsupervised and supervised learning in credit card fraud detection", Information Sciences, 2019. Available: 10.1016/j.ins.2019.05.042.
- [5] A. Correa Bahnsen, D. Aouada, A. Stojanovic and B. Ottersten, "Feature engineering strategies for credit card fraud detection", Expert Systems with Applications, vol. 51, pp. 134-142, 2016. Available: 10.1016/j.eswa.2015.12.030.
- [6] M. S. Kumar, V. Soundarya, S. Kavitha, E. Keerthika, and E. Aswini, "Credit Card Fraud Detection Using Random Forest Algorithm," 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), 2019.
- [7] M. Zareapoor and P. Shamsolmoali, "Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier", Procedia Computer Science, vol. 48, pp. 679-685, 2015. Available: 10.1016/j.procs.2015.04.201.
- [8] J. VanderPlas Python Data Science Handbook: Essential Tools for Working with Data 1st ed. Sebastopol, California: O'Reilly Media, 2016, pp 382-432
- [9] A. de Sá, A. Pereira and G. Pappa, "A customized classification algorithm for credit card fraud detection", Engineering Applications of Artificial Intelligence, vol. 72, pp. 21-29, 2018. Available: 10.1016/j.engappai.2018.03.011.

References

- [10] S. Carta, G. Fenu, D. R. Recupero, R. Saia "Fraud detection for E-commerce transactions by employing a prudential Multiple Consensus model", Journal of Information Security and Applications, vol.46, pp.13-22, 2019. Available: 10.1016/j.jisa.2019.02.007
- [11] E. Kim et al., "Champion-challenger analysis for credit card fraud detection: Hybrid ensemble and deep learning", Expert Systems with Applications, vol. 128, pp. 214-224, 2019. Available: 10.1016/j.eswa.2019.03.042.
- [12] J. Han, M. Kamber, & J. Pei Data Mining: Concepts and Techniques, Elsevier Science & Technology 3rd ed. Saint Louis, Morgan Kaufmann, 2011, pp 88-376
- [13] P. Cichosz Data Mining Algorithms: Explained Using R 1st ed. Somerset, John Wiley & Sons, Incorporated, 2015, pp 571-587
- [14] J. Martinez, "Credit Fraud | Dealing with Imbalanced Datasets," Kaggle, 03-Jul-2019. [Online]. Available: https://www.kaggle.com/janiobachmann/credit-fraud-dealing-with-imbalanced-datasets.
- [15] Machine Learning Group of ULB, Credit Card Fraud Detection: Anonymized credit card transactions labeled as fraudulent or genuine, 3, Brussels, Belgium: Kaggle, 2018. [Online] Available: https://www.kaggle.com/mlg-ulb/creditcardfraud
- [16] F. Fadaei Noghani and M. Moattar, "Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection", Journal of Artificial Intelligence and Data Mining, vol. 5, no. 2, pp. 235-243, 2017. Available: 10.22044/jadm.2016.788.
- [17] W. Hsu, 'Ch8_Hsu3, California State University Northridge, 2019.