Optimisation et optimisation numérique TD 1

Lucie Le Briquer

9 janvier 2018

Exercice 1 (conditions de convexité)

1. Si f est convexe, $\forall x, y \in C$, $\forall t \in [0, 1]$:

$$\underbrace{f(ty + (1-t)x)}_{f(x+t(y-x))} \leqslant tf(y) + (1-t)f(x)$$

Donc pour $t \neq 0$:

$$\frac{f(x+t(y-x))-f(x)}{t}\leqslant f(y)-f(x)$$

Alors en faisant tendre t vers 0:

$$f'(x)(y-x) \leqslant f(y) - f(x)$$

par définition de la différentielle.

Réciproqueent, soient $x, y \in C$ et $\in [0, 1]$.

$$f(x) - f(tx + (1-t)y) \ge f'(tx + (1-t)(y))((1-t)(x-y))$$
$$= (1-t)f'(tx + (1-t)y)(x-y)$$
$$f(y) - f(tx + (1-t)y) \ge -tf'(tx + (1-t)(y))(x-y)$$

Donc:

$$tf(x) + (1-t)f(y) - f(tx + (1-t)y) \ge 0$$

2. Supposons f strictement convexe. Soient $x, y \in C$. Posons $\gamma(t) = f((1-t)x + ty)$. γ est C^1 sur [0,1] et $\forall t \in [0,1]$:

$$\gamma'(t) = f'((1+t)x + ty)(y-x)$$

Donc on veut $\gamma(1) > \gamma(0) + \gamma'(0)$. Montrons que γ est strictement convexe. Soient $t_1, t_2 \in [0, 1]$ tels que $t_1 \neq t_2$. Soient $u \in]0, 1[$.

$$\gamma(ut_1 + (1-u)t_2) = f\bigg((1-ut_1 + (1-u)t_2)x + (ut_1 + (1-u)-t_2)y\bigg)$$

$$= f\bigg(u(t_1y + (1-t_1)x) + (1-u)(t_2y + (1-t_2)x)\bigg)$$

$$< uf(t_1y + (1-t_1)x) + (1-u)f(t_2y + (1-t_2)x)$$

$$= u\gamma(t_1) + (1-u)\gamma(t_2)$$

Donc γ est strictement convexe. Ainsi :

$$\gamma(1) - \gamma(0) = \int_0^1 \gamma'(t)dt > \int_0^1 \gamma'(0)dt = \gamma'(0)$$

Exercice 2 (propriétés des convexes)

1. Supposons f convexe; Soient $(x_1, y_1), (x_2, y_2) \in \operatorname{epi}(f), y_1 \geqslant f(x_1)$ et $y_2 \geqslant f(x_2)$.

$$f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2) \le (1-t)y_1 + ty_2$$

Donc:

$$(1-t)(x_1,y_1) + t(x_2,y_2) = ((1-t)x_1 + ty_2, (1-t)x_2 + ty_2) \in epi(f)$$

Réciproquement, soient $(x_1, x_2) \in E^2$. On a $(x_1, f(x_1)), (x_2, f(x_2)) \in epi(f)$ qui est convexe, donc $\forall t \in [0, 1]$:

$$((1-t)x_1 + tx_2, (1-t)f(x_1) + tf(x_2)) \in epi(f)$$

ce qui donne l'inégalité de convexité.

2. Soient $(x, y) \in E^2$, $t \in [0, 1], \forall x \in I$:

$$f_i((1-t)x + ty) \leq (1-t)f_i(x)tf_i(y)$$

$$\leq (1-t)\sup_{i \in I} f_i(x) + t\sup_{i \in I} f_i(y)$$

D'où:

$$\sup_{i \in I} f_i \big((1-t)x + ty \big) \leqslant (1-t) \sup_{i \in I} f_i(x) + t \sup_{i \in I} f_i(y)$$

Exercice 3 (fonctions semi-continues inférieurement)

 $(a) \Rightarrow (b) : f \text{ s.c.i.}, \ \lambda \in \mathbb{R}, \ O = \{x \in E, \ f(x) > \lambda\}. \ \text{Soit } x \in O, \ f(x) > \lambda, \ \text{prenons } \varepsilon := \frac{f(x) - \lambda}{2}.$ f est s.c.i. donc il existe un ouvert U contenant x tel que :

$$\inf_{U} f \geqslant f(x) - \varepsilon = \frac{f(x) + \lambda}{2} > \lambda$$

Donc $\forall x' \in U$, $f(x') > \lambda$. $U \subset O$ donc O est ouvert.

 $(b) \Rightarrow (c)$:

$$epi(f) = \{(x, y) \in E \times \mathbb{R} \mid f(x) \leq y\}$$
$$O_y = \{(x, y) \in E \times \mathbb{R} \mid f(x) > y\}$$

Soient $x, y \in O$, f(x) > y, $\varepsilon := \frac{f(x) - y}{2}$. $f(x) > y + \varepsilon = \frac{f(x) + y}{2}$ donc $x \in O_{y + \varepsilon}$. Il existe U ouvert contenant $x, U \subset O$. $\forall x' \in U$, $f(x') > y + \varepsilon$, $\forall (x', y') \in U \times]y - \varepsilon, y + \varepsilon[$, f(x') > y donc :

$$U \times]y - \varepsilon, y + \varepsilon [\subset O \text{ ouvert}]$$

Donc epi(f) est un fermé.

 $(c) \Rightarrow (a) : \text{soit } x \in E, \ y = f(x), \ \varepsilon > 0 \text{ et } z = f(x) - \varepsilon = y - \varepsilon. \text{ On a } f(x) > z. \text{ Donc } (x,z) \in O = \operatorname{epi}(f)^C.$ Il existe U ouvert de E et $\eta > 0$ tel que $U \times]z - \eta, z + \eta[\subset O.$ En particulier $U \times \{z\} \in O.$ Donc $\forall x' \in U, \ f(x') > z = f(x) - \varepsilon.$

$$\inf_{U} f \geqslant f(x) - \varepsilon$$

Donc f s.c.i.