Le Cture 3 More With Graphs

Recall

This is a digraph

Adjalency Matrix

For agraph G, We define the adjacency matrix $A_i = \begin{cases} 1 & \text{if } \xi_{i,j} \end{cases} \xi \mathcal{E}$

$$Z, A_{ij} = \begin{cases} 1 & i \in (j,i) \in E \\ 0 & o.W. \end{cases}$$

1 st prethod

2nd Method

Properties of adjacency matricer.

009166 vertex Vin The dequee of allvaph 6 ishp number of elges containing V.

deg(y) = 3

The in lout) dequee of avertexly in a digraph Gistre number of edges entering (exiting) V.

L-X -

$$In(v) = 2$$

$$Out(v) = 3$$

The The degree of vertex v is the sum of row (or column) vin the adjacency matrix.

*For dig raphs, there in / out degree can be found with either therow or column sum de pending on the represent ation.

The The number of distinct walks of length n connecting vertex i to vertex; is

(A.M.);

A= (0 1 1) $A^{2} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ $A^{3} = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 2 \end{pmatrix}$

Thm The number of undirected

3 Ly CLPS in G $=\underbrace{2\left(A_{ij}^{3}\right)_{ij}}_{2\cdot 3}$ Exercise 1 Find a formula for the humber of 4

Cycles inpla (given A). undirect pd

$$\frac{2}{1}\left(A^{2}\right)_{i} - \left(\frac{2}{1}\left(A^{2}\right)_{i}\right)$$

Challerope: Find ageneral formula for Cycles of length & N.

Distance matrix

The distance Distis = { weight; if Exist EE of own.

 E_{+} , $P_{3+} = \begin{pmatrix} 0 & 4 & 00 \\ 4 & 0 & -36 \\ 0 & 6 & 70 \end{pmatrix}$

BFS and DFS

Breadth First Search (BFS)

and Depth First Search (DFS)

are two algorithms for finding
a Spanning tree of a Graph.

BFS (explore all Potes from the) Starting node first

DFS (Explore along asingle) Poth as far as possible first

BFS PSeudo Code

List of Nodes (initialize with hentiles

List of predectors (initialize with hentiles

e all as a very large#)

List Next (initialize this as empty)

pick astarting no de S.

For each node adjacent to S. Add the nodes to next.

Take Pred(S) = 0

For each node evadiament to S, Set pred(v)=S

while Next nonempty

take the first entry in Next (callity)

remove this evenenty from next

for each mode Vadiquent to the company

set pred(v) = 4

if pred(v) = 4

add v to Next

Ex.

Nodes=(S,1,2,3,4,5,6,7)Nodes=(S,1,2,3,4,5,6,7)Nodes=(S,1,2,3,4,5,6,7)Next = (S,1,2,3,4,5,6,7)Pred=(S,1,2,3,4,5,6,7)Pred=(S,1,2,3,4,5,6,7)Pred=(S,1,2,3,4,5,6,7)Pred=(S,1,2,3,4,5,6,7)Pred=(S,1,2,3,4,5,6,7)Pred=(S,1,2,3,4,5,6,7)

$$Vext = [C4, 5, 6, 7]$$
 $Pred(2) = 3$
 $Pred(2) = 3$
 $Pred(2) = 5$
 $Pred(2) = 5$
 $Pred(2) = 5$
 $Pred(4) = 5$
 $Shorter (3) = 5$
 $Pred(4) = 5$
 $Pred(4) = 5$
 $Pred(5) = 5$
 $Pred(5$