MATH S1202: Calculus IV	Name:

 $\mathbf{Summer}\ \mathbf{2018}$

Final Exam

June 28, 2018

Time Limit: 95 minutes

Question	Points	Score
1	10	
2	20	
3	30	
4	40	
Total	100	

1. [10 points] Let C be a circle of radius R centered about the point (a,b) in the xy-plane. If f is the function f(x,y)=x+y+1, compute the line integral $\int_C f \, ds$.

Final Exam

- **2.** [20 points] Let **G** denote the vector field $\mathbf{G}(x,y,z) = (2(x+y),2(x+y)+e^z,ye^z)$ defined on \mathbb{R}^3 .
- (a) [10 points] If **G** is conservative, find a function g such that $\nabla g = \mathbf{G}$. If **G** is not conservative, explain why not.

(b) [10 points] Compute the work done by **G** on a particle moving along $\mathbf{r}(t) = (\sin(t), \cos(t), t)$ for $0 \le t \le 2\pi$.

Final Exam

- 3. [30 points] Let E be the solid region under the paraboloid $z = 1 x^2 y^2$ lying in the first octant. Let S denote the boundary of E with the induced orientation.
- (a) [10 points] Compute the flux of the vector field $\mathbf{H}(x,y,z) = (x,y,z-x^2-y^2)$ over S.

(b) [10 points] Let S_1 denote the portion of the boundary of E lying along the paraboloid $z = 1 - x^2 - y^2$ with induced orientation. Compute the flux of $\mathbf{H}(x, y, z) = (x, y, z - x^2 - y^2)$ over S_1 .

(c) [10 points] Let C_1 denote the boundary of S_1 with the corresponding induced orientation. (Note that C_1 consists of 3 arcs.) If **H** is the vector field $\mathbf{H}(x,y,z) = (x,y,z-x^2-y^2)$, compute the work done by **H** on a particle moving along C_1 .

- **4.** [40 points] Let S_2 denote the portion of the cylinder $x^2 + y^2 4y = 0$ lying between the planes z = 0 and z = y.
- (a) [10 points] Compute the area of S_2 .

(b) [10 points] If a thin sheet occupies the surface S_2 with constant density $\rho(x, y, z) = c$, then compute the x-coordinate \bar{x} of the center of mass.

(c) [10 points] Find an equation of the tangent plane to S_2 at the point (0,4,1).

(d) [10 points] If **F** is the vector field $\mathbf{F}(x, y, z) = (2yz - 2z, 0, xy)$, then compute the flux $\iint_{S_2} \text{curl } \mathbf{F} \cdot d\mathbf{S}$, where S_2 is oriented so that the unit normal vector points away from the inside of the cylinder $x^2 + y^2 - 4y = 0$.

Final Exam