$[CYBER1][2024\text{-}2025] \ Partiel \ (Sujet \ A) \ (1h30)$

Architecture des Ordinateurs	${f Architect\iota}$	ire des	Ordinateurs]
------------------------------	----------------------	---------	--------------------	---

NOM:	PRÉNOM:

Vous devez respecter les consignes suivantes, sous peine de 0 :

- Lisez le sujet en entier avec attention
- Répondez sur le sujet
- Ne détachez pas les agrafes du sujet
- Écrivez lisiblement vos réponses (si nécessaire en majuscules)
- Écrivez lisiblement votre nom et votre prénom sur la copie dans les champs prévus au dessus de cette consigne
- Ne trichez pas

1 Conversions Binaires d'Entiers (5 points)

1.1 (1 point) Rappelez les 14 premières puissances de 2 :

2^{0}	2^1	2^2	2^3	2^4	2^5	2^{6}	2^7	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}

1.2 (2 points) Convertissez ces nombres vers le format décimal. Vous donnerez leur interprétation sur 12 bits en tant que nombre signé, puis non-signé.

	signé	non-signé
\$ 4A5		
\$ 936		

1.3 (2 points) Convertissez ces nombres décimaux en binaire sur 12 bits, puis en hexadécimal.

		hexadécimal					
1914							
-356							

2 Flottants IEEE 754 (8 points)

						_							_	_
า 1	(n	:+-\	D	1	1	C		7 1	1	flottants,	_::		1	1-1-1-
<i>7</i>	1 / T	mines	вап	meiez	108	iormais	1 11 11 11 11 11 11 11 11 11 11 11 11 1	7.54	aes	norrants.	ainsi (mne.	ienrs	mais :
	\ -	, ,	TOUP	PCICE	100	IOIIIIGUS			aco	110 coarros,	CIIIDI (que	ICGIS	DIGID .

simple précision	(bits)		
double précision	(bits)		

	biais
simple précision	
double précision	

2.2 (4 points) Reportez en binaire l'exposant biaisé trouvé dans ces flottants IEEE 754, puis cochez à quelle(s) catégorie(s) ils correspondent :

Flottant IEEE 754	Exposant biaisé	Caté	égorie(s)
\$ FF82 A420		□ + Zéro $□$ − Zéro $□$ Normalisé $□$ Dénormalisé	$\Box + \infty$ $\Box - \infty$ \Box Supranormalisé \Box NaN
\$ 8000 0000			$\begin{array}{c} \square + \infty \\ \square - \infty \\ \square \text{ Supranormalis\'e} \\ \square \text{ NaN} \end{array}$
\$ 007F 8A90		□ + Zéro □ − Zéro □ Normalisé □ Dénormalisé	$\Box + \infty$ $\Box - \infty$ \Box Supranormalisé \Box NaN
\$ 6A78 2100		□ + Zéro □ − Zéro □ Normalisé □ Dénormalisé	$\Box + \infty$ $\Box - \infty$ \Box Supranormalisé \Box NaN

2.3 (2 points) Convertissez ces valeurs décimales vers le format IEEE 754 simple précision tout en indiquant le signe et l'exposant biaisé en binaire :

Nombre	S	Exposant biaisé									F	Iexac	lécin	nal (l	EEE	754))	
42,015625										\$								
-56,375										\$								

- 3 Circuits Logiques (7 points)
- 3.1 (1 point) Écrivez la formule associée à ce schéma :

- 3.2 (2 points) Remplissez la table de 3.3 vérité de la formule précédente :
- 3.3 (2 points) Déduisez-en la formule des mintermes, ainsi que la formule des maxtermes :

Mintermes:

Maxtermes:

3.4 (2 points) Remplissez le tableau de Karnaugh, formez les groupes, et déduisezen la formule réduite :

SUJET A ARCHITECTURE DES ORDINATEURS 1