Class 14 Mini-project COVID-19 Vaccination Rates

Xihan Zhou (PID: A15845684)

2022-03-03

Getting Started

```
vax <- read.csv("covid19vaccinesbyzipcode_test.csv")
head(vax)</pre>
```

```
as_of_date zip_code_tabulation_area local_health_jurisdiction
                                                                               county
## 1 2021-01-05
                                    92549
                                                            Riverside
                                                                           Riverside
## 2 2021-01-05
                                     92130
                                                            San Diego
                                                                            San Diego
## 3 2021-01-05
                                    92397
                                                      San Bernardino San Bernardino
                                                        Contra Costa
## 4 2021-01-05
                                    94563
                                                                        Contra Costa
## 5 2021-01-05
                                    94519
                                                        Contra Costa
                                                                        Contra Costa
## 6 2021-01-05
                                    91042
                                                         Los Angeles
                                                                         Los Angeles
##
     vaccine_equity_metric_quartile
                                                      vem_source
## 1
                                   3 Healthy Places Index Score
## 2
                                   4 Healthy Places Index Score
## 3
                                   3 Healthy Places Index Score
## 4
                                   4 Healthy Places Index Score
## 5
                                   3 Healthy Places Index Score
## 6
                                   2 Healthy Places Index Score
##
     age12_plus_population age5_plus_population persons_fully_vaccinated
## 1
                     2348.4
                                             2461
## 2
                    46300.3
                                            53102
                                                                         61
## 3
                     3695.6
                                             4225
                                                                         NA
## 4
                    17216.1
                                            18896
                                                                         NA
## 5
                    16861.2
                                            18678
                                                                         NA
## 6
                    23962.2
                                            25741
                                                                         NA
     persons_partially_vaccinated percent_of_population_fully_vaccinated
## 1
## 2
                                27
                                                                   0.001149
## 3
                                NA
                                                                         NA
## 4
                                NA
                                                                         NA
## 5
                                NA
                                                                         NA
## 6
                                                                         NA
     percent_of_population_partially_vaccinated
## 1
## 2
                                         0.000508
## 3
                                               NA
## 4
                                               NA
## 5
                                               NA
```

```
## 6
     percent_of_population_with_1_plus_dose booster_recip_count
##
## 1
                                   0.001657
## 2
                                                              NA
## 3
                                          NA
                                                              NA
                                          NA
## 4
                                                              NA
## 5
                                          NA
                                                              NA
## 6
                                          NA
                                                              NA
##
                                                                   redacted
## 1 Information redacted in accordance with CA state privacy requirements
## 2 Information redacted in accordance with CA state privacy requirements
## 3 Information redacted in accordance with CA state privacy requirements
## 4 Information redacted in accordance with CA state privacy requirements
## 5 Information redacted in accordance with CA state privacy requirements
## 6 Information redacted in accordance with CA state privacy requirements
```

Q1. What column details the total number of people fully vaccinated?

persons_fully_vaccinated is the column that details the total number of people fully vaccinated.

Q2. What column details the Zip code tabulation area?

zip_code_tabulation_area is the column that details the Zip code tabulation area.

Q3. What is the earliest date in this dataset?

```
vax$as_of_date[1]
## [1] "2021-01-05"
```

2021-01-05 is the earliest date in this dataset.

Q4. What is the latest date in this dataset?

```
vax$as_of_date[nrow(vax)]

## [1] "2022-03-01"

2021-03-01 is the latest date in this dataset.

skimr::skim(vax)
```

Table 1: Data summary

Name vax

Table 1: Data summary

Number of rows	107604
Number of columns	15
Column type frequency:	
character	5
numeric	10
Group variables	None

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
as_of_date	0	1	10	10	0	61	0
local_health_jurisdiction	0	1	0	15	305	62	0
county	0	1	0	15	305	59	0
vem_source	0	1	15	26	0	3	0
redacted	0	1	2	69	0	2	0

Variable type: numeric

skim_variable	n_missir	gomplete_	_rantean	sd	p0	p25	p50	p75	p100	hist
zip_code_tabulation_area	0	1.00	93665.1	111817.39	90001	92257.7	593658.5	5@5380.5	097635.0)
vaccine_equity_metric_qua	art 513 07	0.95	2.44	1.11	1	1.00	2.00	3.00	4.0	
$age12_plus_population$	0	1.00	18895.0	0418993.93	1 0	1346.95	13685.1	.031756.1	288556.7	,
age5_plus_population	0	1.00	20875.2	2421106.02	2 0	1460.50	15364.0	034877.0	0101902	.0
persons_fully_vaccinated	18338	0.83	12155.6	5113063.88	8 11	1066.25	7374.50	20005.0	077744.0)
persons_partially_vaccinat	ed8338	0.83	831.74	1348.68	11	76.00	372.00	1076.00	34219.0)
percent_of_population_ful	ly <u>18</u> 338cin	ated 0.83	0.51	0.26	0	0.33	0.54	0.70	1.0	
percent_of_population_pa	rt 18B3 8_va	ccin 0t83	0.05	0.09	0	0.01	0.03	0.05	1.0	
percent_of_population_wir	th <u>l8338</u> plu	$s_d ds 83$	0.54	0.28	0	0.36	0.58	0.75	1.0	
$booster_recip_count$	64317	0.40	4100.55	5 5900.21	11	176.00	1136.00	6154.50	50602.0)

Q5. How many numeric columns are in this dataset?

There are 9 numeric columns in this dataset.

Q6. Note that there are "missing values" in the dataset. How many NA values there in the persons_fully_vaccinated column?

sum(is.na(vax\$persons_fully_vaccinated))

[1] 18338

There are 18338 "missing values" in the persons_fully_vaccinated column.

Q7. What percent of persons_fully_vaccinated values are missing (to 2 significant figures)?

```
round(100*sum( is.na(vax$persons_fully_vaccinated) ) / length(vax$persons_fully_vaccinated), 2)
## [1] 17.04
17.04% of the persons_fully_vaccinated values are missing.
```

Q8. [Optional]: Why might this data be missing?

Some of the states might not report this kind of the data to the CDC so the data is missing.

Working with dates

```
## ## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## date, intersect, setdiff, union

today()
## [1] "2022-03-03"

vax$as_of_date <- ymd(vax$as_of_date)

today() - vax$as_of_date[1]
## Time difference of 422 days

vax$as_of_date[nrow(vax)] - vax$as_of_date[1]
## Time difference of 420 days</pre>
```

Q9. How many days have passed since the last update of the dataset?

```
(today() - vax$as_of_date[1]) - (vax$as_of_date[nrow(vax)] - vax$as_of_date[1])
## Time difference of 2 days
2 days has passed since the last update of the dataset.
```

Q10. How many unique dates are in the dataset (i.e. how many different dates are detailed)?

```
length(unique(vax$as_of_date))
## [1] 61
```

There are 61 unique date in the dataset.

Working with ZIP codes

```
library(zipcodeR)
geocode_zip('92037')
## # A tibble: 1 x 3
    zipcode lat
                     lng
     <chr>
           <dbl> <dbl>
## 1 92037
              32.8 -117.
zip_distance('92037','92109')
     zipcode_a zipcode_b distance
## 1
         92037
                   92109
                             2.33
reverse_zipcode(c('92037', "92109") )
## # A tibble: 2 x 24
     zipcode zipcode_type major_city post_office_city common_city_list county state
                                                                <blob> <chr> <chr>
            <chr>
                          <chr>
                                     <chr>
##
     <chr>>
                         La Jolla La Jolla, CA
## 1 92037
            Standard
                                                            <raw 20 B> San D~ CA
## 2 92109
           Standard
                         San Diego San Diego, CA
                                                            <raw 21 B> San D~ CA
## # ... with 17 more variables: lat <dbl>, lng <dbl>, timezone <chr>,
      radius_in_miles <dbl>, area_code_list <blob>, population <int>,
      population_density <dbl>, land_area_in_sqmi <dbl>,
      water_area_in_sqmi <dbl>, housing_units <int>,
      occupied housing units <int>, median home value <int>,
## #
      median_household_income <int>, bounds_west <dbl>, bounds_east <dbl>,
## #
      bounds_north <dbl>, bounds_south <dbl>
# Pull data for all ZIP codes in the dataset
zipdata <- reverse_zipcode( vax$zip_code_tabulation_area )</pre>
```

Focus on the San Diego area

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
# Subset to San Diego county only areas
sd <- vax[ vax$county == "San Diego" , ]</pre>
library(dplyr)
sd <- filter(vax, county == "San Diego")</pre>
nrow(sd)
## [1] 6527
sd.10 <- filter(vax, county == "San Diego" &
                 age5_plus_population > 10000)
```

Q11. How many distinct zip codes are listed for San Diego County?

```
length(unique(sd$zip_code_tabulation_area))
## [1] 107
```

There are 107 distinct zip codes listed for San Diego County.

Q12. What San Diego County Zip code area has the largest 12 + Population in this dataset?

```
sd[which.max(sd$age12_plus_population),]$zip_code_tabulation_area
## [1] 92154
```

92154 is the San Diego County Zip code area with the largest 12 + Population in this dataset.

Q13. What is the overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-03-01"?

```
sd.latest = filter(sd, as_of_date == "2022-03-01")
mean(sd.latest$percent_of_population_fully_vaccinated, na.rm=T)
```

[1] 0.7052904

The overall average "Percent of Population Fully Vaccinated" value for all San Diego "County" as of "2022-03-01" is 0.7053.

Q14. Using either ggplot or base R graphics make a summary figure that shows the distribution of Percent of Population Fully Vaccinated values as of "2022-03-01"?

```
hist(sd.latest$percent_of_population_fully_vaccinated, breaks = 30)
```

Histogram of sd.latest\$percent_of_population_fully_vaccinated


```
library(ggplot2)

ggplot(sd.latest) +
  aes(percent_of_population_fully_vaccinated) + geom_histogram()
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Warning: Removed 1 rows containing non-finite values (stat_bin).


```
ucsd <- filter(sd, zip_code_tabulation_area=="92037")
ucsd[1,]$age5_plus_population</pre>
```

[1] 36144

Q15. Using ggplot make a graph of the vaccination rate time course for the 92037 ZIP code area:

```
baseplot = ggplot(ucsd) +
  aes(as_of_date, percent_of_population_fully_vaccinated) +
  geom_point() +
  geom_line(group=1) +
  ylim(c(0,1)) +
  labs(x ="Date", y="Percent Vaccinated") +
  labs(title="Vaccination Rate for CA 92037 (UCSD)")
baseplot
```

Vaccination Rate for CA 92037 (UCSD)

Q16. Calculate the mean "Percent of Population Fully Vaccinated" for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-03-01". Add this as a straight horizontal line to your plot from above with the geom_hline() function?

```
mean.36 = mean(vax.36$percent_of_population_fully_vaccinated, na.rm=T)
mean.36
```

[1] 0.7353974

Adding the lin 3 showing the average vaccination rate for all zip code areas with a population just as large as 92037

```
baseplot + geom_hline(yintercept = mean.36, linetype=2, color = "red")
```

Vaccination Rate for CA 92037 (UCSD)

Q17. What is the 6 number summary (Min, 1st Qu., Median, Mean, 3rd Qu., and Max) of the "Percent of Population Fully Vaccinated" values for ZIP code areas with a population as large as 92037 (La Jolla) as_of_date "2022-03-01"?

```
summary(vax.36$percent_of_population_fully_vaccinated)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.3890 0.6554 0.7350 0.7354 0.8044 1.0000
```

Q18. Using ggplot generate a histogram of this data.

```
ggplot(vax.36) +
  aes(percent_of_population_fully_vaccinated) + geom_histogram() +
  labs(x="Percent of Population Fully Vaccinated in a ZIP code area", y="Count (ZIP code areas)") +
    labs(title="Histogram of Vaccination Rate Across San Diego County") +
  labs(subtitle="As of 2022-03-01")
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Histogram of Vaccination Rate Across San Diego County As of 2022–03–01

Q19. Is the 92109 and 92040 ZIP code areas above or below the average value you calculated for all these above?

```
vax %>% filter(as_of_date == "2022-03-01") %>%
  filter(zip_code_tabulation_area=="92040") %>%
  select(percent_of_population_fully_vaccinated)

## percent_of_population_fully_vaccinated
## 1 0.551981
```

The ZIP code 92109 is above the average value calculated above while 92040 is below the average value.

Q20. Finally make a time course plot of vaccination progress for all areas in the full dataset with a age5_plus_population > 36144.

```
group=zip_code_tabulation_area) +
geom_line(alpha=0.2, color="blue") +
ylim(c(0,1)) +
labs(x="Date", y="Percent Vacinated",
    title="Vaccination Rate Across CA",
    subtitle="Only areas with population above 36k are shown") +
geom_hline(yintercept = mean.36, linetype=2, color = "red")
```

Vaccination Rate Across CA

Only areas with population above 36k are shown

Q21. How do you feel about traveling for Spring Break and meeting for in-person class afterwards?

Since on average area with 36k+ population have a percent vaccinated rate around 75, I feel safe traveling for Spring Break and meeting for in-person class afterward as long as we still keep the precautions for preventing COVID-19.