

Cambridge International AS & A Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/1
Paper 1 Pure Mathema	itics 1	Oct	tober/November 202
			1 hour 50 minute
You must answer on the	e question paper.		
You will need: List of f	ormulae (MF19)		

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has **20** pages. Blank pages are indicated.

PapaCambridge

JC20 11_9709_11/RP © UCLES 2020

y = 2x + 3	do not meet.						
•••••	•••••	•••••	,	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••		•••••		••••••	•••••		•••••
•••••	•••••	•••••	,	••••••	•••••	•••••	
•••••		•••••					
••••••	•••••	••••••		••••••	••••••	••••••	••••••
••••••	•••••	•••••			•••••		••••••
•••••	•••••	•••••		•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••••		•••••		•••••	•••••		•••••
		•••••					
••••••	•••••	•••••	,	•••••	•••••	•••••	••••••
••••••	•••••	••••••		••••••	••••••	•••••••	• • • • • • • • • • • • • • • • • • • •
		•••••					

The equation of a curve is such that $\frac{dy}{dx} = \frac{1}{(x-3)^2} + x$. It is given that the curve passes through the point (2, 7).
Find the equation of the curve. [4]

Find	ne rate at which the radius of the balloon is increasing when the radius is 10 cm.	[3]
		•••••
		•••••
		•••••

In the diagram, the lower curve has equation $y = \cos \theta$. The upper curve shows the result of applying a combination of transformations to $y = \cos \theta$.

Find, in terms of a cosine function, the equation of the upper curve.	[3]
	•••••

a)	Find the value of the non-zero constant a .	
		••••••
		•••••
		•••••
		••••••
		•••••
		•••••
		••••••
		••••••
h)	Find the coefficient of x^6 in the expansion of $(1-x^3)\left(2x^2+\frac{a}{x}\right)^6$.	
<i>U)</i>	That the coefficient of x in the expansion of $(1-x)(2x+\frac{1}{x})$.	

The equation of a curve is $y = 2 + \sqrt{25 - x^2}$.	
Find the coordinates of the point on the curve at which the gradient is $\frac{4}{3}$.	[5]
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

7	(a)	Show that $\sin \theta$	$\sin \theta$	$-2\tan^2\theta$	[2]
,	(a)	Show that $\frac{\sin \theta}{1 - \sin \theta}$	$\frac{1+\sin\theta}{1}$	= 2 tan θ.	[3]
			•••••		
			••••••		
			•••••		
			•••••		
			•••••		
			•••••		
			•••••		

(I.)	II 1 4	$\sin \theta$	$\sin \theta$	0 6 00 . 0 . 1000	[2]
(b)	Hence solve the equation	$1-\sin\theta$	$\frac{1+\sin\theta}{}$	$= 8$, for $0^{\circ} < \theta < 180^{\circ}$.	[3]
		•••••	••••••		••••••
			•••••		
		•••••	•••••		••••••
		•••••	•••••		
					••••••
			•••••		
		•••••	•••••		••••••

)	Show that $r = 2R - 1$.	

It is now given that the 3rd term of the first progression is equal to the 2nd term of the second progression. **(b)** Express S in terms of a. [4]

The diagram shows a circle with centre A passing through the point B. A second circle has centre B and passes through A. The tangent at B to the first circle intersects the second circle at C and D.

The coordinates of A are (-1, 4) and the coordinates of B are (3, 2).

(a)	Find the equation of the tangent <i>CBD</i> .	[2]

i ina u	n equation of					
•••••	•••••		•••••	•••••	 ••••••	•••••
•••••	••••••		••••••		 •••••••	•••••
•••••	•••••	, 	•••••		 ••••••••••	•••••
•••••					 	•••••
•••••	•••••		•••••		 •••••••••	••••••
					 	•••••
	•••••		•••••		 ••••••	
					 	•••••
			•••••		 	
Find, l	by calculation	, the <i>x</i> -coord	dinates of C a		 	
Find, l	by calculation	, the <i>x</i> -coord	dinates of C			
Find, l	by calculation	, the <i>x</i> -coord	dinates of C			
Find, I	oy calculation	, the x-coord	dinates of C			
Find, I	by calculation	, the x-coord	dinates of C			
				and <i>D</i> .		
				and <i>D</i> .		
				and <i>D</i> .		
				and <i>D</i> .		
				and <i>D</i> .		
				and <i>D</i> .		

9709/11/O/N/20

© UCLES 2020

The diagram shows a sector CAB which is part of a circle with centre C. A circle with centre O and radius r lies within the sector and touches it at D, E and F, where COD is a straight line and angle ACD is θ radians.

(a)	Find CD in terms of r and $\sin \theta$.	[3]

PapaCambridge

It is now given that r = 4 and $\theta = \frac{1}{6}\pi$. **(b)** Find the perimeter of sector *CAB* in

Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
Find the area of the	shaded region in t	erms of π and $\sqrt{3}$.	
		erms of π and $\sqrt{3}$.	
Find the area of the			

11 The functions f and g are defined	The functions f and g	g are defined	bs
--------------------------------------	-----------------------	---------------	----

$$f(x) = x^2 + 3$$
 for $x > 0$,
 $g(x) = 2x + 1$ for $x > -\frac{1}{2}$.

(a)	Find an expression for $fg(x)$.	[1]
(b)	Find an expression for $(fg)^{-1}(x)$ and state the domain of $(fg)^{-1}$.	[4]
		•••••
		•••••
		•••••

(c)	Solve the equation $fg(x) - 3 = gf(x)$.	[4]
		••••••
		•••••••••••

The diagram shows a curve with equation $y = 4x^{\frac{1}{2}} - 2x$ for $x \ge 0$, and a straight line with equation y = 3 - x. The curve crosses the *x*-axis at *A* (4, 0) and crosses the straight line at *B* and *C*.

(a)	Find, by calculation, the x -coordinates of B and C .	[4]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
(b)	Show that B is a stationary point on the curve.	[2]
		•••••
		•••••

•	
•	
•	•••••
•	 •••••
•	•••••
•	•••••
•	•••••
•	 •••••
•	
	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question nur must be clearly shown.	nber(s)
	•••••
	•••••
	•••••
	•••••
	•••••
	••••••
	•••••
	••••••
	•••••
	••••••
Permission to reproduce items where third-party owned material protected by convigint is included has been sought and cleared where possible	le Ever

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

© UCLES 2020 9709/11/O/N/20

