On considère l'expression $f(x,y) = xy^2 - y^3 + \ln(1 - x^2 - y^2)$.

- 1. Déterminer l'ensemble D_f des $(x,y) \in \mathbb{R}^2$ tels que f(x,y) est bien définie, et le représenter graphiquement.
- 2. Calculer les dérivées partielles $\frac{\partial f}{\partial x}(x,y)$ et $\frac{\partial f}{\partial y}(x,y)$;
- 3. Calculer
 - (a) $\frac{\partial^2 f}{\partial x \partial y}(x, y)$;
 - (b) $\frac{\partial^2 f}{\partial y \partial x}(x, y)$;

1/
$$f$$
 est la somme de f , $(x,y) \mapsto xy^2 - y^3$

$$f_1 (x, y) \mapsto xy^2 - y^3$$

 $f_2 (x, y) \mapsto |n(1-x^2-y^2)|$

=>
$$D_{f_2} = \begin{cases} 1 - 3c^2 - y^2 > 0 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3c^2 + y^2 < 1 \\ \end{cases} = \begin{cases} 3$$

$$\frac{\partial}{\partial x} (\log(-x^2 - y^2 + 1) + x y^2 - y^3) = y^2 - \frac{2x}{-x^2 - y^2 + 1}$$

$$\frac{\partial}{\partial y} (\log(-x^2 - y^2 + 1) + x y^2 - y^3) = y \left(-\frac{2}{-x^2 - y^2 + 1} + 2x - 3y \right)$$

3/ Calculatorre

$$\frac{\partial^2}{\partial y} \partial x = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f \right) = \frac{\partial}{\partial y} \left(y^2 - \frac{2x}{1 - x^2 - y^2} \right) = y \left(2 - \frac{4x}{(-x^2 - y^2 + 1)^2} \right)$$

On considère les fonctions $\gamma_1: \mathbb{R} \to \mathbb{R}$ et $\gamma_2: \mathbb{R} \to \mathbb{R}$ définies par

$$\gamma_1(t) = 1 - t^2$$

$$\gamma_2(t) = \frac{1}{4}t^3 - 3t$$

pour tout $t \in \mathbb{R}$, et l'application $f : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = x - y + 1.$$

- 1. Etudier les variations de γ_1 et γ_2 sur l'intervalle $[0, +\infty[$;
- 2. La fonction $\gamma_1 : \mathbb{R} \to \mathbb{R}$ est-elle bijective? Déterminer un intervalle maximal I sur lequel elle est bijective et déterminer sa réciproque;

Pour
$$\gamma_1$$
, $\gamma_1(1) = \gamma_1(-1) = 0$

$$\lim_{t \to \infty} \gamma_1(t) = \lim_{t \to -\infty} \gamma_1(t) = -\infty$$

$$\gamma_1(t) = -2t \quad \gamma_1'(t) = 0 \iff t = 0$$

Pow
$$\delta_2$$
 $\gamma_2(t) = 0 \iff t (t^2/4 - 3) = 0$

$$\iff t = \sigma, t = \pm 2\sqrt{3}$$

$$| 1m \quad \delta_2(t) = + \omega$$

$$t \to + \omega$$

$$\delta_2'(t) = 3t^2/4 - 3 = 3(t^2/4 - 1) = 0$$

$$\implies \delta_2'(t) = 0 \iff t^2/4 - 1 = 0$$

$$\implies \delta_2'(t) = 0 \iff t^2/4 - 1 = 0$$

$$\implies \delta_2'(t) = 0 \iff t^2/4 - 1 = 0$$

	0	2	2 13	+ 🛛
7_	O	-4	0	+ &
γ,'	-1	0	6	
	7	<i>→</i> >	A	

32 D'après l'étade de vaniation

of, est stactement décroissante sur IRT

=> Y, injective => bijective

Pour son inverse considere

$$y = 1 - t^{2} \Leftrightarrow t^{2} = 1 - y$$

$$\Rightarrow + = |1 - y|^{\frac{1}{2}}$$

$$+ > 0$$

3. Représenter le graphe de f en restriction au domaine

$$R = [-1, 1]^2 = \{(x, y) \in \mathbb{R}^2, -1 \le x \le 1, -1 \le y \le 1\}$$

 $de \mathbb{R}^2$.

4. Les composées $\gamma_1 \circ \gamma_2$, $f \circ \gamma_1$ et $\gamma_1 \circ f$ sont-elles définies ? si oui les calculer.

Q4 $\gamma_1 \circ \gamma_2$ définie cow $Im \gamma_2 \subset \mathbb{R} = D_{\gamma_1}$ for pas cléfinie $Im \gamma_1 \notin \mathbb{R}^2 = D_f$ γ_1 of définie cow $Im f \subset D_{\gamma_1}$

- 2. Donner le vecteur vitesse $\gamma'(t)$ de γ au point $\gamma(t)$;
- 3. Montrer que γ possède une tangente verticale au point $\gamma(0)$, et une tangente horizontale en $\gamma(2)$.
- 4. Déterminer la droite tangente à γ en $\gamma(2\sqrt{3})$;

Q2
$$\gamma'(t) = \begin{pmatrix} \gamma_1(t) \\ \gamma_2(t) \end{pmatrix} = \begin{pmatrix} -2t \\ 3(t_{14}^2 - 1) \end{pmatrix}$$
Q3 la tangente est verticale
$$vecteur vitesse est vertical \iff \gamma_1(t) = 0$$

$$\Leftrightarrow t = 0$$
Q4 Remplacer $t = 2\sqrt{3}$ dams $\gamma'(t)$

$$\gamma'(2\sqrt{3}) = \begin{pmatrix} -4\sqrt{3} \\ 0 \end{pmatrix} \Rightarrow \text{tempente}$$
horizontale

- 5. Tracer l'image de l'intervalle $[0, +\infty[$ par l'application γ , en plaçant les tangentes aux points $\gamma(0)$, $\gamma(2)$, $\gamma(2\sqrt{3})$;
- 6. En remarquant que pour tout $t \in \mathbb{R}$ on a $\gamma(-t) = (\gamma_1(t), -\gamma_2(t))$, expliquer comment compléter le tracé de la courbe amorcée à la question précédente pour obtenir l'image de \mathbb{R} tout entier par l'application γ .

