$^{36}\text{Al}\,\beta^-\text{n decay}$ (12.0 ms) 2023Lu07

Parent: 36 Al: E=0; $T_{1/2}$ =12.0 ms 20; $Q(\beta^-n)$ =1.227×10⁴ 15; % β^-n decay<31

³⁶Al-T_{1/2}: From implant-βγ correlation (2023Lu07). Other: 14.7 ms 10 (2023Lu07, implant-β correlation), 94 ms 37 (1995ReZZ/2008ReZZ, implant-β correlation), ≈15 ms (1999YoZW, implant-β correlation, preliminary). 2023Lu07 adopted 12.0 ms 20 instead of 14.7 ms 10 based on the cleanest determination with the γ-ray gating.

 36 Al-Q(β^- n): From 2021Wa16.

 36 Al-% β ⁻n decay: From 1995ReZZ/2008ReZZ.

2023Lu07: Exp 1: ³⁶Mg and ³⁶Al were produced via the projectile fragmentation of a 140-MeV/nucleon, 80-pnA ⁴⁸Ca primary beam from the NSCL cyclotrons impinging on a 642-mg/cm²-thick ⁹Be target. The secondary cocktail beam centered around ³³Na was selected by the A1900 separator and implanted into a CeBr₃ scintillator sandwiched between two plastic scintillator veto detectors. Surrounding the implantation array were the SeGA array of 16 segmented Ge detectors and 15 LaBr₃ detectors. Exp 2: ³⁶Mg and ³⁶Al were produced via the projectile fragmentation of a 172.3-MeV/nucleon, 120-pnA ⁴⁸Ca primary beam from the FRIB linac impinging on an 8.89-mm-thick ⁹Be target. The secondary cocktail beam centered around ⁴²Si was selected by the ARIS separator and implanted into a 5-mm-thick YSO segmented scintillator sandwiched between two plastic scintillator veto detectors. Surrounding the implantation array were 11 HPGe clover detectors and 15 fast-timing LaBr₃ detectors, and the VANDLE array of 88 neutron detectors. Both the NSCL and FRIB experiments in 2023Lu07 measured Eγ, Iγ, βγ-coin, γγ-coin, implant-βγ correlation and deduced T_{1/2} of ³⁶Mg g.s., ³⁶Al g.s. and a ³⁶Al isomer. Comparisons with FSU shell-model calculations.

35Si Levels

$$\gamma$$
(35Si)

$$\frac{E_{\gamma}}{910} = \frac{E_{i}(\text{level})}{910} = \frac{J_{i}^{\pi}}{(3/2)^{-}} = \frac{E_{f}}{0} = \frac{J_{f}^{\pi}}{(7/2)^{-}}$$

Comments

 E_{γ} : From 2023Lu07.

2023Lu07 observed the 910y within the 100-ms window following the arrival of a ³⁶Al ion in both NSCL and FRIB experiments. 2023Lu07 also observed the 910y within the 100-ms window following the arrival of a ³⁶Mg ion in both NSCL and FRIB experiments.

2013StZY observed the 910γ in ³⁶Mg decay with its maximum intensity in the 20-30 ms time window after the implantation of ³⁶Mg, indicating its origin from the granddaughter generation

[†] From the Adopted Levels of ³⁵Si.

$^{36}{\rm Al}~\beta^-{\rm n}~{\rm decay}~(12.0~{\rm ms})~~2023{\rm Lu}07$

Decay Scheme

 $^{35}_{14}\mathrm{Si}_{21}$ -2