ACA228 - Modelos de Regressão e Previsão

Regressão Linear Multipla: Medidas de Influência

Prof. Carlos Trucíos carlos.trucios@facc.ufrj.br ctruciosm.github.io

Faculdade de Administração e Ciências Contábeis, Universidade Federal do Rio de Janeiro

Aula 15

Leverage

Distância de Cook

DFFITS

DFBETAS

COVRATIO

Exemplo

Figure 6.1 An example of a leverage point.

Figure 6.2 An example of an influential observation.

Figure 6.2 An example of an influential observation.

Leverage

▶ O ponto A não afetará os $\hat{\beta}$'s mas afetara o R^2 e $\hat{V}(\hat{\beta}|X)$.

Influência

 O ponto A terá um forte impacto nos β̂'s

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

Além disso:

 ▶ Algumas vezes podemos encontrar um coeficiente que tem um sinal (±) que não faz sentido.

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

- Algumas vezes podemos encontrar um coeficiente que tem um sinal (±) que não faz sentido.
- Uma variavel que sabemos que é importante no modelo aparece como estatísticamente não significativa.

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

- Algumas vezes podemos encontrar um coeficiente que tem um sinal (±) que não faz sentido.
- Uma variavel que sabemos que é importante no modelo aparece como estatísticamente não significativa.
- Um modelo que se ajusta bem aos dados e que faz total sentido no problema de negócio, apresenta predições pobres

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

- Algumas vezes podemos encontrar um coeficiente que tem um sinal (±) que não faz sentido.
- Uma variavel que sabemos que é importante no modelo aparece como estatísticamente não significativa.
- Um modelo que se ajusta bem aos dados e que faz total sentido no problema de negócio, apresenta predições pobres

Para evitar essas consequências nos $\hat{\beta}$'s, $\hat{V}(\hat{\beta}|X)$ e R^2 , é importante detetar esses pontos e analisar sua possível eliminação.

Além disso:

- Algumas vezes podemos encontrar um coeficiente que tem um sinal (±) que não faz sentido.
- ▶ Uma variavel que sabemos que é importante no modelo aparece como estatísticamente não significativa.
- Um modelo que se ajusta bem aos dados e que faz total sentido no problema de negócio, apresenta predições pobres

Todas essas situações podem ser uma consequência da presença de observações influentes/leverage.

$$H = X(X'X)^{-1}X'$$

A matriz H (leia-se matriz *hat*) tem um papel importante para identificar pontos leverage.

$$H = X(X'X)^{-1}X'$$

▶ vamos utilizar os elementos da diagional da matriz H, $h_{ii} = x_i (X'X)^{-1} x_i'$

$$H = X(X'X)^{-1}X'$$

- ▶ vamos utilizar os elementos da diagional da matriz H, $h_{ii} = x_i (X'X)^{-1} x_i'$
- é uma medida padronizada da distância da i-ésima observação ao centro (do espaço x)

$$H = X(X'X)^{-1}X'$$

- ▶ vamos utilizar os elementos da diagional da matriz H, $h_{ii} = x_i (X'X)^{-1} x_i'$
- é uma medida padronizada da distância da i-ésima observação ao centro (do espaço x)
- Valores grandes indicam potenciais pontos de leverage.

$$H = X(X'X)^{-1}X'$$

- ▶ vamos utilizar os elementos da diagional da matriz H, $h_{ii} = x_i (X'X)^{-1} x_i'$
- é uma medida padronizada da distância da i-ésima observação ao centro (do espaço x)
- Valores grandes indicam potenciais pontos de leverage.
- ▶ Se $h_{ii} > 2(k+1)/n$ a i-ésima observação é um possível ponto de leverage.

$$H = X(X'X)^{-1}X'$$

- ▶ vamos utilizar os elementos da diagional da matriz H, $h_{ii} = x_i (X'X)^{-1} x_i'$
- é uma medida padronizada da distância da i-ésima observação ao centro (do espaço x)
- Valores grandes indicam potenciais pontos de leverage.
- ▶ Se $h_{ii} > 2(k+1)/n$ a i-ésima observação é um possível ponto de leverage.
- No R, utilizamos a função hatvalues()

O dataset delivery disponivel no pacote robustbase, contém 25 observações referentes a maquinas automáticas de vendas de bebidas. Estamos interessados em predizer o tempo necessário para o motorista da rota fazer a manutenção dessas maquinas (o que inclui repor o estoque de bebidas na máquina e fazer pequenas manutenções). O modelo a ser utilizado é da forma:

$$delTime = \beta_0 + \beta_1 \text{ n.prod} + \beta_2 \text{ distance} + u,$$

em que:

- delTime: é o tempo utilizado (em minutos) pelo motorista da rota para fazer a manutenção da máquina,
- n.prod: é o número de caixas do produto estocado e
- be distance: é a distância (em pés) percorrida pelo motorista da rota.

```
library(robustbase)
head(delivery,4)
     n.prod distance delTime
##
## 1
                560
                      16.68
                220 11.50
## 2
## 3
         3 340 12.03
## 4
                 80
                      14.88
modelo <- lm(delTime ~ n.prod + distance, data = delivery)</pre>
2*(2+1)/nrow(delivery) # Ponto de corte hii
## [1] 0.24
hatvalues(modelo) # Valores hii
```

	n.prod	distance	delTime	hii
1	7	560	16.68	0.1018
2	3	220	11.50	0.0707
3	3	340	12.03	0.0987
4	4	80	14.88	0.0854
5	6	150	13.75	0.0750
6	7	330	18.11	0.0429
7	2	110	8.00	0.0818
8	7	210	17.83	0.0637
9	30	1460	79.24	0.4983
10	5	605	21.50	0.1963
11	16	688	40.33	0.0861
12	10	215	21.00	0.1137
13	4	255	13.50	0.0611

	n.prod	distance	delTime	hii
14	6	462	19.75	0.0782
15	9	448	24.00	0.0411
16	10	776	29.00	0.1659
17	6	200	15.35	0.0594
18	7	132	19.00	0.0963
19	3	36	9.50	0.0964
20	17	770	35.10	0.1017
21	10	140	17.90	0.1653
22	26	810	52.32	0.3916
23	9	450	18.75	0.0413
24	8	635	19.83	0.1206
25	4	150	10.75	0.0666

Mede como a i-ésima observação influencia na estimação dos β 's.

$$D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'X'X(\hat{\beta}_{(i)} - \hat{\beta})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{(\hat{y}_{(i)} - \hat{y})'(\hat{y}_{(i)} - \hat{y})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{r_{i}^{2}}{k+1} \frac{h_{ii}}{1 - h_{ii}},$$

Mede como a i-ésima observação influencia na estimação dos β 's.

$$D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'X'X(\hat{\beta}_{(i)} - \hat{\beta})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{(\hat{y}_{(i)} - \hat{y})'(\hat{y}_{(i)} - \hat{y})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{r_{i}^{2}}{k+1} \frac{h_{ii}}{1 - h_{ii}},$$

em que (i) significa sem a i-ésima observação

 \triangleright Valores grandes de D_i indicam que a observação pode ser influente.

Mede como a *i*-ésima observação influencia na estimação dos β 's.

$$D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'X'X(\hat{\beta}_{(i)} - \hat{\beta})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{(\hat{y}_{(i)} - \hat{y})'(\hat{y}_{(i)} - \hat{y})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{r_{i}^{2}}{k+1} \frac{h_{ii}}{1 - h_{ii}},$$

- \triangleright Valores grandes de D_i indicam que a observação pode ser influente.
- ▶ Geralmente, se $D_i > F_{0.5,k+1,n-(k+1)}$ é influente.

Mede como a i-ésima observação influencia na estimação dos β 's.

$$D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'X'X(\hat{\beta}_{(i)} - \hat{\beta})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{(\hat{y}_{(i)} - \hat{y})'(\hat{y}_{(i)} - \hat{y})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{r_{i}^{2}}{k+1} \frac{h_{ii}}{1 - h_{ii}},$$

- ▶ Valores grandes de *D_i* indicam que a observação pode ser influente.
- ▶ Geralmente, se $D_i > F_{0.5,k+1,n-(k+1)}$ é influente.
- ▶ Como $F_{0.5,k+1,n-(k+1)} \approx 1$, alguns livros consideram pontos influentes se $D_i > 1$

Mede como a *i*-ésima observação influencia na estimação dos β 's.

$$D_{i} = \frac{(\hat{\beta}_{(i)} - \hat{\beta})'X'X(\hat{\beta}_{(i)} - \hat{\beta})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{(\hat{y}_{(i)} - \hat{y})'(\hat{y}_{(i)} - \hat{y})}{(k+1)\hat{\sigma}^{2}} \equiv \frac{r_{i}^{2}}{k+1} \frac{h_{ii}}{1 - h_{ii}},$$

- ▶ Valores grandes de *D_i* indicam que a observação pode ser influente.
- ▶ Geralmente, se $D_i > F_{0.5,k+1,n-(k+1)}$ é influente.
- ▶ Como $F_{0.5,k+1,n-(k+1)} \approx 1$, alguns livros consideram pontos influentes se $D_i > 1$
- No R, utilizamos a função cooks.distance()

```
k = 2
n = 25
qf(0.5,k+1,n-(k+1)) # Ponto de corte Di

## [1] 0.813655
cooks.distance(modelo) # Distância de Cook
```

	n.prod	distance	delTime	hii	Di
1	7	560	16.68	0.1018	0.1001
2	3	220	11.50	0.0707	0.0034
3	3	340	12.03	0.0987	0.0000
4	4	80	14.88	0.0854	0.0776
5	6	150	13.75	0.0750	0.0005
6	7	330	18.11	0.0429	0.0001
7	2	110	8.00	0.0818	0.0022
8	7	210	17.83	0.0637	0.0031
9	30	1460	79.24	0.4983	3.4193
10	5	605	21.50	0.1963	0.0538
11	16	688	40.33	0.0861	0.0162
12	10	215	21.00	0.1137	0.0016
13	4	255	13.50	0.0611	0.0023

	n.prod	distance	delTime	hii	Di
14	6	462	19.75	0.0782	0.0033
15	9	448	24.00	0.0411	0.0006
16	10	776	29.00	0.1659	0.0033
17	6	200	15.35	0.0594	0.0004
18	7	132	19.00	0.0963	0.0440
19	3	36	9.50	0.0964	0.0119
20	17	770	35.10	0.1017	0.1324
21	10	140	17.90	0.1653	0.0509
22	26	810	52.32	0.3916	0.4510
23	9	450	18.75	0.0413	0.0299
24	8	635	19.83	0.1206	0.1023
25	4	150	10.75	0.0666	0.0001

Mede a influência da *i*-ésima observação sobre o valor ajustado (fitted value, \hat{y}_i).

$$DFFITS_{i} = rac{\hat{y}_{i} - \hat{y}_{i,(i)}}{\sqrt{s_{(i)}^{2}h_{ii}}} \equiv = \left(rac{h_{ii}}{1 - h_{ii}}
ight)^{1/2}t_{i}$$

Mede a influência da i-ésima observação sobre o valor ajustado (fitted value, \hat{y}_i).

$$DFFITS_{i} = rac{\hat{y}_{i} - \hat{y}_{i,(i)}}{\sqrt{s_{(i)}^{2}h_{ii}}} \equiv = \left(rac{h_{ii}}{1 - h_{ii}}
ight)^{1/2}t_{i}$$

▶ Valors grandes de DDFITS são possíveis pontos influentes/leverage

Mede a influência da *i*-ésima observação sobre o valor ajustado (fitted value, \hat{y}_i).

$$DFFITS_{i} = rac{\hat{y}_{i} - \hat{y}_{i,(i)}}{\sqrt{s_{(i)}^{2}h_{ii}}} \equiv = \left(rac{h_{ii}}{1 - h_{ii}}
ight)^{1/2}t_{i}$$

- Valors grandes de DDFITS são possíveis pontos influentes/leverage
- $|DFFITS_i| > 2\sqrt{(k+1)/n}$

Mede a influência da *i*-ésima observação sobre o valor ajustado (fitted value, \hat{y}_i).

$$DFFITS_{i} = rac{\hat{y}_{i} - \hat{y}_{i,(i)}}{\sqrt{s_{(i)}^{2}h_{ii}}} \equiv = \left(rac{h_{ii}}{1 - h_{ii}}
ight)^{1/2}t_{i}$$

- Valors grandes de DDFITS são possíveis pontos influentes/leverage
- $|DFFITS_i| > 2\sqrt{(k+1)/n}$
- ▶ No R, utilizamos a função dffits()

Mede a influência da *i*-ésima observação sobre o valor ajustado (fitted value, \hat{y}_i).

$$DFFITS_{i} = rac{\hat{y}_{i} - \hat{y}_{i,(i)}}{\sqrt{s_{(i)}^{2}h_{ii}}} \equiv = \left(rac{h_{ii}}{1 - h_{ii}}
ight)^{1/2}t_{i}$$

- Valors grandes de DDFITS são possíveis pontos influentes/leverage
- $|DFFITS_i| > 2\sqrt{(k+1)/n}$
- ▶ No R, utilizamos a função dffits()

Mede a influência da *i*-ésima observação sobre o valor ajustado (fitted value, \hat{y}_i).

$$DFFITS_{i} = rac{\hat{y}_{i} - \hat{y}_{i,(i)}}{\sqrt{s_{(i)}^{2}h_{ii}}} \equiv = \left(rac{h_{ii}}{1 - h_{ii}}
ight)^{1/2}t_{i}$$

- Valors grandes de DDFITS são possíveis pontos influentes/leverage
- $|DFFITS_i| > 2\sqrt{(k+1)/n}$
- ▶ No R, utilizamos a função dffits()

```
2*sqrt((k+1)/n) # Ponto de corte DFFITS
```

[1] 0.6928203

dffits(modelo)

	n.prod	distance	delTime	hii	Di	DFFITS
1	7	560	16.68	0.1018	0.1001	-0.5709
2	3	220	11.50	0.0707	0.0034	0.0986
3	3	340	12.03	0.0987	0.0000	-0.0052
4	4	80	14.88	0.0854	0.0776	0.5008
5	6	150	13.75	0.0750	0.0005	-0.0395
6	7	330	18.11	0.0429	0.0001	-0.0188
7	2	110	8.00	0.0818	0.0022	0.0790
8	7	210	17.83	0.0637	0.0031	0.0938
9	30	1460	79.24	0.4983	3.4193	4.2961
10	5	605	21.50	0.1963	0.0538	0.3987
11	16	688	40.33	0.0861	0.0162	0.2180
12	10	215	21.00	0.1137	0.0016	-0.0677
13	4	255	13.50	0.0611	0.0023	0.0813

	n.prod	distance	delTime	hii	Di	DFFITS
14	6	462	19.75	0.0782	0.0033	0.0974
15	9	448	24.00	0.0411	0.0006	0.0426
16	10	776	29.00	0.1659	0.0033	-0.0972
17	6	200	15.35	0.0594	0.0004	0.0339
18	7	132	19.00	0.0963	0.0440	0.3653
19	3	36	9.50	0.0964	0.0119	0.1862
20	17	770	35.10	0.1017	0.1324	-0.6718
21	10	140	17.90	0.1653	0.0509	-0.3885
22	26	810	52.32	0.3916	0.4510	-1.1950
23	9	450	18.75	0.0413	0.0299	-0.3075
24	8	635	19.83	0.1206	0.1023	-0.5711
25	4	150	10.75	0.0666	0.0001	-0.0176

Mede a influência da *i*-ésima observação na estimação dos β_j .

$$DFBETAS_{i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j,(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}},$$

em que C_{jj} é o j-ésimo elemento da diagional da matriz $(X'X)^{-1}$

Mede a influência da *i*-ésima observação na estimação dos β_j .

$$DFBETAS_{i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j,(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}},$$

em que C_{jj} é o j-ésimo elemento da diagional da matriz $(X'X)^{-1}$

▶ Se $|DFBETAS_i| > 2/\sqrt{n}$ o valor é um possível ponto influente.

Mede a influência da *i*-ésima observação na estimação dos β_j .

$$DFBETAS_{i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j,(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}},$$

em que C_{jj} é o j-ésimo elemento da diagional da matriz $(X'X)^{-1}$

- ▶ Se $|DFBETAS_i| > 2/\sqrt{n}$ o valor é um possível ponto influente.
- ▶ No R, utilizamos a função dfbetas()

Mede a influência da *i*-ésima observação na estimação dos β_j .

$$DFBETAS_{i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j,(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}},$$

em que C_{jj} é o j-ésimo elemento da diagional da matriz $(X^\prime X)^{-1}$

- ▶ Se $|DFBETAS_i| > 2/\sqrt{n}$ o valor é um possível ponto influente.
- ▶ No R, utilizamos a função dfbetas()
- Cuidado: existe uma função dfbeta() mas é diferente do que desejamos calcular.

Mede a influência da *i*-ésima observação na estimação dos β_j .

$$DFBETAS_{i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j,(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}},$$

em que C_{jj} é o j-ésimo elemento da diagional da matriz $(X^\prime X)^{-1}$

- ▶ Se $|DFBETAS_i| > 2/\sqrt{n}$ o valor é um possível ponto influente.
- ▶ No R, utilizamos a função dfbetas()
- Cuidado: existe uma função dfbeta() mas é diferente do que desejamos calcular.

Mede a influência da *i*-ésima observação na estimação dos β_j .

$$DFBETAS_{i} = \frac{\hat{\beta}_{j} - \hat{\beta}_{j,(i)}}{\sqrt{S_{(i)}^{2}C_{jj}}},$$

em que C_{jj} é o j-ésimo elemento da diagional da matriz $(X'X)^{-1}$

- ▶ Se $|DFBETAS_i| > 2/\sqrt{n}$ o valor é um possível ponto influente.
- ▶ No R, utilizamos a função dfbetas()
- Cuidado: existe uma função dfbeta() mas é diferente do que desejamos calcular.

2/sqrt(n) # Ponto de corte DIFBETAS

[1] 0.4

dfbetas(modelo)

	(Intercept)	n.prod	distance
1	-0.1873	0.4113	-0.4349
2	0.0898	-0.0478	0.0144
3	-0.0035	0.0039	-0.0028
4	0.4520	0.0883	-0.2734
5	-0.0317	-0.0133	0.0242
6	-0.0147	0.0018	0.0011
7	0.0781	-0.0223	-0.0110
8	0.0712	0.0334	-0.0538
9	-2.5757	0.9287	1.5076
10	0.1079	-0.3382	0.3413
11	-0.0343	0.0925	-0.0027
12	-0.0303	-0.0487	0.0540
13	0.0724	-0.0356	0.0113

	(Intercept)	n.prod	distance
14	0.0495	-0.0671	0.0618
15	0.0223	-0.0048	0.0068
16	-0.0027	0.0644	-0.0842
17	0.0289	0.0065	-0.0157
18	0.2486	0.1897	-0.2724
19	0.1726	0.0236	-0.0990
20	0.1680	-0.2150	-0.0929
21	-0.1619	-0.2972	0.3364
22	0.3986	-1.0254	0.5731
23	-0.1599	0.0373	-0.0527
24	-0.1197	0.4046	-0.4654
25	-0.0168	0.0008	0.0056

▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_i$ e \hat{y}_i

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_i$ e \hat{y}_i
- ► Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_i$ e \hat{y}_i
- Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.
- ▶ Para mensurar o papel que a *i*-ésima observação exerçe sobre a precisão da estimação utilizaremos o COVRATIO.

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_i$ e \hat{y}_i
- Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.
- ▶ Para mensurar o papel que a *i*-ésima observação exerçe sobre a precisão da estimação utilizaremos o COVRATIO.

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_i$ e \hat{y}_i
- Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.
- ▶ Para mensurar o papel que a i-ésima observação exerçe sobre a precisão da estimação utilizaremos o COVRATIO.

$$COVRATIO_{i} = rac{\left| (X'_{(i)}X_{(i)})^{-1}s_{(i)}^{2}
ight|}{\left| (X'X)^{-1}\hat{\sigma}^{2}
ight|} \equiv rac{s_{(i)}^{k+1}}{\hat{\sigma}^{k+1}} \Big(rac{1}{1-h_{ii}}\Big)$$

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_j$ e \hat{y}_i
- Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.
- ▶ Para mensurar o papel que a *i*-ésima observação exerçe sobre a precisão da estimação utilizaremos o COVRATIO.

$$COVRATIO_{i} = rac{\left| \left(X'_{(i)} X_{(i)}
ight)^{-1} s_{(i)}^{2}
ight|}{\left| \left(X' X
ight)^{-1} \hat{\sigma}^{2}
ight|} \equiv rac{s_{(i)}^{k+1}}{\hat{\sigma}^{k+1}} \Big(rac{1}{1 - h_{ii}} \Big)$$

► Se *COVRATIO*_i > 1, a *i*-ésima observação ajuda a melhorar a precisão da estimação

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_j$ e \hat{y}_i
- Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.
- ▶ Para mensurar o papel que a i-ésima observação exerçe sobre a precisão da estimação utilizaremos o COVRATIO.

$$COVRATIO_{i} = \frac{\left| (X'_{(i)}X_{(i)})^{-1}s_{(i)}^{2} \right|}{\left| (X'X)^{-1}\hat{\sigma}^{2} \right|} \equiv \frac{s_{(i)}^{k+1}}{\hat{\sigma}^{k+1}} \left(\frac{1}{1-h_{ii}} \right)$$

- ► Se *COVRATIO*_i > 1, a *i*-ésima observação ajuda a melhorar a precisão da estimação
- ▶ Se COVRATIO_i < 1, a i-ésima observação piora a precisão da estimação

- ▶ A distância de Cook, DFFITS e DFBETAS fornecem informações úteis para conhecer o efeito da i-ésima observação nos $\hat{\beta}_j$ e \hat{y}_i
- Contudo, eles não fornecem nenhuma informação sobre a precisão geral da estimativa.
- ▶ Para mensurar o papel que a *i*-ésima observação exerçe sobre a precisão da estimação utilizaremos o COVRATIO.

$$COVRATIO_{i} = rac{\left| \left(X'_{(i)} X_{(i)}
ight)^{-1} s_{(i)}^{2}
ight|}{\left| \left(X' X
ight)^{-1} \hat{\sigma}^{2}
ight|} \equiv rac{s_{(i)}^{k+1}}{\hat{\sigma}^{k+1}} \Big(rac{1}{1 - h_{ii}} \Big)$$

- ► Se *COVRATIO*_i > 1, a *i*-ésima observação ajuda a melhorar a precisão da estimação
- Se COVRATIO_i < 1, a i-ésima observação piora a precisão da estimação
- ▶ No R, utilizamos a função covratio()

	n.prod	distance	delTime	hii	Di	DFFITS	COVRATIO
1	7	560	16.68	0.1018	0.1001	-0.5709	0.8711
2	3	220	11.50	0.0707	0.0034	0.0986	1.2149
3	3	340	12.03	0.0987	0.0000	-0.0052	1.2757
4	4	80	14.88	0.0854	0.0776	0.5008	0.8760
5	6	150	13.75	0.0750	0.0005	-0.0395	1.2396
6	7	330	18.11	0.0429	0.0001	-0.0188	1.1999
7	2	110	8.00	0.0818	0.0022	0.0790	1.2398
8	7	210	17.83	0.0637	0.0031	0.0938	1.2056
9	30	1460	79.24	0.4983	3.4193	4.2961	0.3422
10	5	605	21.50	0.1963	0.0538	0.3987	1.3054
11	16	688	40.33	0.0861	0.0162	0.2180	1.1717
12	10	215	21.00	0.1137	0.0016	-0.0677	1.2906
13	4	255	13.50	0.0611	0.0023	0.0813	1.2070

	n.prod	distance	delTime	hii	Di	DFFITS	COVRATIO
14	6	462	19.75	0.0782	0.0033	0.0974	1.2277
15	9	448	24.00	0.0411	0.0006	0.0426	1.1918
16	10	776	29.00	0.1659	0.0033	-0.0972	1.3692
17	6	200	15.35	0.0594	0.0004	0.0339	1.2192
18	7	132	19.00	0.0963	0.0440	0.3653	1.0692
19	3	36	9.50	0.0964	0.0119	0.1862	1.2153
20	17	770	35.10	0.1017	0.1324	-0.6718	0.7598
21	10	140	17.90	0.1653	0.0509	-0.3885	1.2377
22	26	810	52.32	0.3916	0.4510	-1.1950	1.3981
23	9	450	18.75	0.0413	0.0299	-0.3075	0.8897
24	8	635	19.83	0.1206	0.1023	-0.5711	0.9476
25	4	150	10.75	0.0666	0.0001	-0.0176	1.2311

Exemplo

Exemplo

Exemplo

	Beta0	Beta1	Beta2	sigma	R2
1	2.341	1.616	0.014	3.259	0.956
2	4.447	1.498	0.010	2.430	0.944
3	1.916	1.786	0.012	3.173	0.952
4	4.643	1.456	0.011	2.483	0.898

O modelo2 (sem a observação 9) produz uma mudança considerável na estimação dos β 's, reduz o $\hat{\sigma}$ e o R^2 é pouco alterado. O modelo3 não apresenta muitas mudanças em comparação com o modelo1. O modelo3, não presenta muita diferença com o modelo2. Talvez devemos retirar apenas a observação 9.

Leituras Recomendadas

▶ Montgomery, Douglas C., Elizabeth A. Peck, and G. Geoffrey Vining. Introduction to linear regression analysis. John Wiley & Sons, 2021. Chapter "Diagnostic for leverage and influence"