# TRIGONOMETRIC FUNCTIONS

### **EXERCISE 12A**

- 1 a periodic
- **b** periodic
- c periodic
- **d** not periodic
- e periodic

- f periodic
- g not periodic
- h not periodic

2 8



distance travelled (cm)

- The data is periodic.
  - I The minimum value from the table is 0 and the maximum value is 64.

So, the principal axis is  $y \approx \frac{0+64}{2}$ 

$$\therefore y \approx 32$$

- ii The maximum value is  $\approx 64$  cm.
- iii The period is  $\approx 200$  cm.
- iv The amplitude is  $\approx 32$  cm.
- **b** A curve can be fitted to the data as the distance travelled is continuous.
- 3 8



Data exhibits periodic behaviour.

b



Not enough information to say data is periodic.

## **EXERCISE 12B.1**

1 a  $y=3\sin x$  has amplitude 3 and period  $\frac{2\pi}{1}=2\pi$  When  $x=0,\ y=0.$ 



**b**  $y = -3\sin x$ 

has amplitude |-3|=3

and period  $\frac{2\pi}{1} = 2\pi$ .

When x = 0, y = 0.



It is the reflection of  $y = 3\sin x$  in the x-axis.

- 328
- $y = \frac{3}{2}\sin x$ has amplitude  $\frac{3}{2}$  and period  $\frac{2\pi}{1} = 2\pi$ . When x = 0, y = 0.



2  $y = \sin 3x$ 

has amplitude 1 and period  $\frac{2\pi}{3}$ .

When x = 0, y = 0.



 $y = \sin(-2x)$ 

has amplitude 1 and period  $\frac{2\pi}{|-2|} = \pi$ .

When x = 0, y = 0.





It is the reflection of  $y = \frac{3}{2} \sin x$  in the x-axis.

**b**  $y = \sin\left(\frac{x}{2}\right)$ has amplitude 1 and period  $\frac{2\pi}{\underline{1}} = 4\pi$ . When x = 0, y = 0.





It is the reflection of  $y = \sin 2x$  in the y-axis.

- 3 a period  $=\frac{2\pi}{4}$  b period  $=\frac{2\pi}{|-4|}$  c period  $=\frac{2\pi}{(\frac{1}{3})}$  d period  $=\frac{2\pi}{0.6}$
- $=\frac{20\pi}{6}=\frac{10\pi}{3}$
- 4 a  $\frac{2\pi}{b} = 5\pi$  b  $\frac{2\pi}{b} = \frac{2\pi}{3}$  c  $\frac{2\pi}{b} = 12\pi$  d  $\frac{2\pi}{b} = 4$  e  $\frac{2\pi}{b} = 100$

- $\therefore b = \frac{2}{5} \qquad \therefore b = 3 \qquad \qquad \therefore b = \frac{1}{6} \qquad \qquad \therefore b = \frac{\pi}{2} \qquad \therefore b = \frac{2\pi}{100} = \frac{\pi}{50}$
- 5











## ii



### Prediction:



### **EXERCISE 12B.2**



b



This is the graph of  $y = \sin x$ translated by  $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$ .

This is the graph of  $y = \sin x$ translated by  $\binom{2}{0}$ .





This is the graph of  $y = \sin x$ translated by  $\binom{-2}{0}$ .

This is the graph of  $y = \sin x$ translated by  $\binom{0}{2}$ .





This is the graph of  $y = \sin x$ translated by  $\begin{pmatrix} -\frac{\pi}{4} \\ 0 \end{pmatrix}$ .

This is the graph of  $y = \sin x$ translated by  $\begin{pmatrix} \frac{\pi}{6} \\ 1 \end{pmatrix}$ .

period 
$$=$$
  $\frac{2\pi}{5} = \frac{2\pi}{5}$ 

**b** period = 
$$\frac{2\pi}{(\frac{1}{4})} = 8\pi$$

**a** period = 
$$\frac{2\pi}{5} = \frac{2\pi}{5}$$
 **b** period =  $\frac{2\pi}{(\frac{1}{4})} = 8\pi$  **c** period =  $\frac{2\pi}{|-2|} = \pi$ 

3 a 
$$\frac{2\pi}{b} = 3\pi$$
 b  $\frac{2\pi}{b} = \frac{\pi}{10}$  c  $\frac{2\pi}{b} = 100\pi$  d  $\frac{2\pi}{b} = 50$    
  $\therefore b = \frac{2}{3}$   $\therefore b = 20$   $\therefore b = \frac{2}{100} = \frac{1}{50}$   $\therefore b = \frac{2\pi}{50} = \frac{\pi}{25}$ 

$$\mathbf{b} \qquad \frac{2\pi}{b} = \frac{\pi}{10}$$

$$\mathbf{d} \quad \frac{2\pi}{b} = 50$$

$$b = \frac{2}{3}$$

$$b = 20$$

$$\therefore b = \frac{2}{100} = \frac{1}{50}$$

$$b = \frac{2\pi}{50} = \frac{\pi}{25}$$

- **a** A translation of  $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ , or vertically down **b** A translation of  $\begin{pmatrix} \frac{\pi}{4} \\ 0 \end{pmatrix}$ , or horizontally 1 unit.
  - $\frac{\pi}{4}$  units right.

A vertical stretch of factor 2.

A horizontal stretch of factor  $\frac{1}{4}$ .

A vertical stretch of factor  $\frac{1}{2}$ .

A horizontal stretch of factor 4.

A reflection in the x-axis.

- **h** A translation of  $\begin{pmatrix} -2 \\ -3 \end{pmatrix}$ .
- A vertical stretch of factor 2 followed by a horizontal stretch of factor  $\frac{1}{3}$ .
- **j** A translation of  $\begin{pmatrix} \frac{\pi}{3} \\ 2 \end{pmatrix}$ .

## **EXERCISE 12C**

1 Month, t 10 12 6 Temp, T 14 2125 2416 18 15 15 26 2018



The period is 12 months so  $\frac{2\pi}{h} = 12$ 

Amplitude,  $a \approx \frac{\text{max.} - \text{min.}}{2}$ 

$$\therefore b = \frac{\pi}{6} \quad \{\text{assuming } b > 0\}.$$

 $\approx \frac{27-14}{2} \approx 6.5$ 

As the principal axis is midway between min. and max., then  $d \approx \frac{27+14}{2} \approx 20.5$ 

When T is 20.5 (midway between min. and max.),  $c \approx \frac{2+7}{2} \approx 4.5$  {average of t values}

$$T \approx 6.5 \sin(\frac{\pi}{6}(t-4.5)) + 20.5 \text{ where } \frac{\pi}{6} \approx 0.524$$

- Using technology,  $T \approx 6.14 \sin(0.575t 2.70) + 20.4$ 
  - $T \approx 6.14\sin(0.575(t-4.70)) + 20.4$

The model fits reasonably well.

2 5 Month, t 3 8 10 1112 6 9  $^{4}$ Temp, T  $14\frac{1}{2}$  $7\frac{1}{2}$  $7\frac{1}{2}$  $8\frac{1}{2}$  $10\frac{1}{2}$  $12\frac{1}{2}$ 1516 1210 14



The period is  $\frac{2\pi}{b} = 12$   $\therefore$   $b = \frac{\pi}{6}$   $\{b > 0\}$ 

Amplitude,  $a \approx \frac{\text{max.} - \text{min.}}{2} \approx \frac{16 - 7}{2} \approx 4.5$ 

As the principal axis is midway between min. and max. then  $d \approx \frac{16+7}{2} \approx 11.5$ 

At min., 
$$t=7$$
 and at max.,  $t=2+12=14$   $\therefore$   $c \approx \frac{7+14}{2} \approx 10.5$ 

So, 
$$T \approx 4.5 \sin(\frac{\pi}{6}(t - 10.5)) + 11.5$$

**b** Using technology, 
$$T \approx 4.29 \sin(0.533t + 0.769) + 11.2$$
 Note: (1)  $\frac{\pi}{6} \approx 0.524$   $\checkmark$ 

$$T \approx 4.29 \sin(0.533(t+1.44)) + 11.2$$

(2) 
$$1.44 - (-10.5)$$
  
=  $11.94 \approx 12$ 

**3** a For the model 
$$H = a\sin(b(t-c)) + d$$

period = 
$$\frac{2\pi}{b}$$
 = 12.4 hours  $\therefore$   $b = \frac{2\pi}{12.4} \approx 0.507$ 

We let the principal axis be 0, so d = 0

 $\therefore$  the amplitude a=7, so the min. is -7, and the max. is +7

Let t=0 correspond to 'low tide'  $\therefore$  t=6.2 corresponds to 'high tide'

$$\therefore c = \frac{0 + 6.2}{2} = 3.1$$

So, 
$$H \approx 7\sin(0.507(t-3.1)) + 0$$

$$H \approx 7 \sin(0.507(t-3.1))$$



| 4 | а | Month, t | 1 | 2 | 3  | 4  | 5   | 6   | 7   | 8   | 9   | 10  | 11 | 12 |
|---|---|----------|---|---|----|----|-----|-----|-----|-----|-----|-----|----|----|
|   |   | Temp, T  | 0 | 0 | -4 | -9 | -14 | -17 | -18 | -19 | -17 | -13 | -6 | -2 |



The period is 
$$\frac{2\pi}{b} = 12$$
  $\therefore$   $b = \frac{\pi}{6}$   $\{b > 0\}$ 

Amplitude, 
$$a \approx \frac{\text{max.} - \text{min.}}{2} \approx \frac{0 - (-19)}{2} \approx 9.5$$

$$d \approx \frac{\text{max.} + \text{min.}}{2} \approx \frac{0 + (-19)}{2} \approx -9.5$$

At min., t=8 and at max., t=1+12=13  $\therefore$   $c \approx \frac{8+13}{2} \approx 10.5$ 

So, 
$$T \approx 9.5 \sin(\frac{\pi}{6}(t - 10.5)) - 9.5$$



**b** The model is reasonably appropriate.

5 Let the model be  $H = a \sin(b(t-c)) + d$  metres When t = 0, H = 2 and when t = 50, H = 22min. max.



$$a=10\quad \text{\{from the diagram\}}, \qquad d=\frac{\max.+\min.}{2}=\frac{22+2}{2}=12$$

$$c = \frac{0+50}{2} = 25$$
 {values of t at min. and max.}  $\therefore H = 10\sin(\frac{\pi}{50}(t-25)) + 12$ 

# **EXERCISE 12D**

1 **a**  $y = \cos x + 2$ 



This is a vertical translation of  $y = \cos x$  through  $\binom{0}{2}$ .

 $y = \cos(x - \frac{\pi}{4})$ 



This is a horizontal translation of  $y = \cos x$  through  $\begin{pmatrix} \frac{\pi}{4} \\ 0 \end{pmatrix}$ .

 $y = \frac{2}{3}\cos x$ 



This is a vertical stretch of  $y = \cos x$  with factor  $\frac{2}{3}$ .

 $y = -\cos x$ 



This is a reflection of  $y = \cos x$  in the x-axis.

 $\mathbf{b} \quad y = \cos x - 1$ 



This is a vertical translation of  $y = \cos x$  through  $\begin{pmatrix} 0 \\ -1 \end{pmatrix}$ .

 $\mathbf{d} \quad y = \cos(x + \frac{\pi}{6})$ 



This is a horizontal translation of

$$y = \cos x$$
 through  $\begin{pmatrix} -\frac{\pi}{6} \\ 0 \end{pmatrix}$ .

f  $y = \frac{3}{2}\cos x$ 



This is a vertical stretch of  $y = \cos x$  with factor  $\frac{3}{2}$ .

**h**  $y = \cos(x - \frac{\pi}{6}) + 1$ 



This is a translation of  $\begin{pmatrix} \frac{\pi}{6} \\ 1 \end{pmatrix}$ .

i 
$$y = \cos(x + \frac{\pi}{4}) - 1$$



This is a translation of  $\begin{pmatrix} -\frac{\pi}{4} \\ -1 \end{pmatrix}$ .

# $\mathbf{k} \quad y = \cos\left(\frac{x}{2}\right)$



This is a horizontal stretch of factor 2.

## $y = \cos 2x$



This is a horizontal stretch of factor  $\frac{1}{2}$ .

$$1 \quad y = 3\cos 2x$$



This is a horizontal stretch of factor  $\frac{1}{2}$ followed by a vertical stretch of factor 3.

2 a period = 
$$\frac{2\pi}{3}$$

**b** period = 
$$\frac{2\pi}{\frac{1}{3}} = 6\pi$$

**b** period = 
$$\frac{2\pi}{\frac{1}{3}} = 6\pi$$
 **c** period =  $\frac{2\pi}{\frac{\pi}{50}} = 100$ 

a controls the amplitude {amplitude = |a|}. b controls the period {period =  $\frac{2\pi}{|b|}$ }. c controls the horizontal translation. d controls the vertical translation.

**a** If  $y = a\cos(b(x-c)) + d$ , then a = 2,  $\pi = \frac{2\pi}{b}$   $\therefore$  b = 2c and d are 0 as there is no horizontal or vertical shift.  $\therefore y = 2\cos(2x)$ 

**b** If  $y = a\cos(b(x-c)) + d$ , then a = 1,  $4\pi = \frac{2\pi}{b}$  :  $b = \frac{1}{2}$ A vertical shift of 2 units, no horizontal shift  $\therefore$  d=2, c=0. So,  $y = \cos(\frac{1}{2}x) + 2$  or  $y = \cos(\frac{x}{2}) + 2$ .

• If  $y = a\cos(b(x-c)) + d$ , then a = -5,  $6 = \frac{2\pi}{b}$  :  $b = \frac{\pi}{3}$ c = d = 0 {as there is no translation}  $\therefore y = -5\cos\left(\frac{\pi}{3}x\right)$ 

## **EXERCISE 12E**

i  $y = \tan(x - \frac{\pi}{2})$  is  $y = \tan x$ translated  $\begin{pmatrix} \frac{\pi}{2} \\ 0 \end{pmatrix}$ .



 $y = -\tan x$  is  $y = \tan x$  reflected in the x-axis.



iii  $y = \tan 3x$  comes from  $y = \tan x$ under a horizontal stretch of factor  $\frac{1}{3}$ .



- **a** translation through  $\binom{1}{2}$ 2
- **b** reflection in x-axis
- horizontal stretch, factor 2; vertical stretch, factor 2
- a period  $=\frac{\pi}{1}=\pi$ 3
- **b** period =  $\frac{\pi}{3}$

c period =  $\frac{\pi}{n}$ 

# **EXERCISE 12F**

1 **a** amplitude = 
$$|1| = 1$$

- **b** amplitude undefined
- c amplitude = |-1| = 1

2 a period = 
$$\frac{\pi}{1} = \pi$$

a period 
$$=\frac{\pi}{1}=\pi$$
 b period  $=\frac{2\pi}{\frac{1}{3}}=6\pi$  c period  $=\frac{2\pi}{2}=\pi$ 

c period 
$$=\frac{2\pi}{2}=\pi$$

3 a 
$$\frac{2\pi}{h} = 2\pi$$

a 
$$\frac{2\pi}{b}=2\pi$$
 b  $\frac{2\pi}{b}=\frac{2\pi}{3}$  c  $\frac{\pi}{b}=\frac{\pi}{2}$  d  $\frac{2\pi}{b}=4$ 

$$\frac{\pi}{b} = \frac{\pi}{2}$$

d 
$$\frac{2\pi}{b}=4$$

$$\therefore b=1$$

$$\therefore b=3$$

$$b=2$$

$$\therefore b = \frac{\pi}{2}$$

4













- **a**  $y = -\sin 5x$  has maximum value -(-1) = 1 {when  $\sin 5x = -1$ } 5 and minimum value -(1) = -1 {when  $\sin 5x = 1$ }
  - **b**  $y = 3\cos x$  has maximum value 3(1) = 3 {when  $\cos x = 1$ } and minimum value 3(-1) = -3 {when  $\cos x = -1$ }
  - $y = 2 \tan x$  has no maximum or minimum values.
  - **d**  $y = -\cos 2x + 3$  has maximum value -(-1) + 3 = 4 {when  $\cos 2x = -1$ } and minimum value -(1) + 3 = 2 {when  $\cos 2x = 1$ }
  - e  $y = 1 + 2\sin x$  has maximum value 1 + 2(1) = 3 {when  $\sin x = 1$ } and minimum value 1+2(-1)=-1 {when  $\sin x=-1$ }
  - f  $y = \sin\left(x \frac{\pi}{2}\right) 3$  has maximum value 1 3 = -2 {when  $\sin\left(x \frac{\pi}{2}\right) = 1$ } and minimum value -1-3=-4 {when  $\sin\left(x-\frac{\pi}{2}\right)=-1$ }
- a vertical stretch, factor  $\frac{1}{2}$ 
  - reflection in the x-axis
  - horizontal translation  $\frac{\pi}{4}$  units to the left
- **b** horizontal stretch, factor 4
- **d** vertical translation down 2 units
- f reflection in the y-axis
- The amplitude is 2, so m=2. The principal axis is y = -3, so n = -3.
- The period is  $2\pi$ , so  $\frac{\pi}{n} = 2\pi$  $p = \frac{1}{2}$

The graph has undergone a vertical translation of 1 unit, so q = 1.

# EXERCISE 12G

- a  $\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$  b  $\tan(\frac{2\pi}{3}) = -\sqrt{3}$  c  $\cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$  d  $\tan(\pi) = 0$

- $\therefore \csc(\frac{\pi}{3}) = \frac{2}{\sqrt{3}} \qquad \therefore \cot(\frac{2\pi}{3}) = -\frac{1}{\sqrt{3}} \qquad \therefore \sec(\frac{5\pi}{6}) = -\frac{2}{\sqrt{3}}$
- $\cot(\pi)$  is undefined.

 $\sin x = \frac{3}{5}, \quad 0 \leqslant x \leqslant \frac{\pi}{2}$ 



 $\cos x = \frac{2}{3}$ 





- $\therefore \quad \csc x = \frac{1}{\sin x} = \frac{5}{3}$ 
  - $\sec x = \frac{1}{\cos x} = \frac{5}{4}$
  - $\cot x = \frac{1}{\tan x} = \frac{4}{3}$

- $\sin x = -\frac{\sqrt{5}}{3}$  and  $\tan x = -\frac{\sqrt{5}}{2}$
- $\therefore$   $\csc x = -\frac{3}{\sqrt{5}}$ 
  - $\sec x = \frac{3}{2}$
  - $\cot x = -\frac{2}{\sqrt{5}}$

 $\cos x = \frac{3}{4}$ 



 $\sin x = -\frac{2}{3}$ 



- $\therefore \sin x = -\frac{\sqrt{7}}{4}$ 
  - $\tan x = -\frac{\sqrt{7}}{3}$
  - $\csc x = -\frac{4}{\sqrt{7}}$
  - $\sec x = \frac{4}{3}$
  - $\cot x = -\frac{3}{\sqrt{7}}$
- $\therefore$   $\cos x = -\frac{\sqrt{5}}{3}$ 
  - $\tan x = \frac{2}{\sqrt{5}}$
  - $\csc x = -\frac{3}{2}$
  - $\sec x = -\frac{3}{\sqrt{5}}$  $\cot x = \frac{\sqrt{5}}{2}$



sec 
$$x = \frac{5}{2}$$
  

$$\therefore \cos x = \frac{2}{5}$$



$$\csc x = 2$$

$$\therefore \quad \sin x = \frac{1}{2}$$



 $\cot x = \frac{2}{\sqrt{21}}$ 

$$\begin{array}{c|c}
S & & A \\
\hline
 & X \\
\end{array}$$
 $T & C$ 

$$\therefore \quad \cos x = -\frac{\sqrt{3}}{2}$$
$$\tan x = -\frac{1}{\sqrt{3}}$$

$$\sec x = -\frac{2}{\sqrt{3}}$$

$$\cot x = -\sqrt{3}$$

$$x$$
 $x$ 
 $x$ 
 $x$ 
 $x$ 
 $x$ 

e 
$$\tan \beta = \frac{1}{2}$$

$$\therefore \cot \beta = 2$$

$$\frac{\sqrt{5}}{\beta}$$
 1

f 
$$\cot \theta = \frac{4}{3}$$

$$\therefore \tan \theta = \frac{3}{4}$$

$$\frac{5}{\theta}$$
 3

$$\therefore \sin \beta = -\frac{1}{\sqrt{5}}$$

$$\cos \beta = -\frac{2}{\sqrt{5}}$$

$$\csc \beta = -\sqrt{5}$$

$$\sec \beta = -\frac{\sqrt{5}}{2}$$

$$\begin{array}{c|c}
S & A \\
\hline
\beta & C
\end{array}$$

$$\therefore \sin \theta = -\frac{3}{5}$$

$$\cos \theta = -\frac{4}{5}$$

$$\csc \theta = -\frac{5}{3}$$

$$\sec \theta = -\frac{5}{4}$$

$$\begin{array}{c|c}
S & A \\
\hline
 & C
\end{array}$$

$$4 \quad a \quad \tan x \cot x$$

$$= \frac{\sin x}{\cos x} \times \frac{\cos x}{\sin x}$$

$$= 1$$

$$\begin{aligned}
\mathbf{b} & \sin x \csc x \\
&= \sin x \times \frac{1}{\sin x} \\
&= 1
\end{aligned}$$

$$\begin{aligned}
& \csc x \cot x \\
&= \frac{1}{\sin x} \times \frac{\cos x}{\sin x} \\
&= \frac{\cos x}{\sin^2 x}
\end{aligned}$$

$$\begin{aligned} \mathbf{d} & \sin x \cot x \\ &= \sin x \times \frac{\cos x}{\sin x} \\ &= \cos x \end{aligned}$$

$$\frac{\cot x}{\csc x} \\
= \frac{\cos x}{\sin x} \div \frac{1}{\sin x} \\
= \frac{\cos x}{\sin x} \times \frac{\sin x}{1} \\
= \cos x$$

# $2\sin x \cot x + 3\cos x$ $\cot x$

$$= \frac{2\sin x \times \frac{\cos x}{\sin x} + 3\cos x}{\frac{\cos x}{\sin x}}$$

$$= (2\cos x + 3\cos x) \times \frac{\sin x}{\cos x}$$
$$= 5\cos x \times \frac{\sin x}{\cos x}$$
$$= 5\sin x$$







## **EXERCISE 12H**

| 1 | Function     | Restricted<br>domain                                 | Restricted range             | Inverse<br>function | Domain                       | Range                                                |
|---|--------------|------------------------------------------------------|------------------------------|---------------------|------------------------------|------------------------------------------------------|
|   | $y = \sin x$ | $-\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2}$ | $-1 \leqslant y \leqslant 1$ | $y = \arcsin x$     | $-1 \leqslant x \leqslant 1$ | $-\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}$ |
|   | $y = \cos x$ | $0 \leqslant x \leqslant \pi$                        | $-1 \leqslant y \leqslant 1$ | $y = \arccos x$     | $-1 \leqslant x \leqslant 1$ | $0 \leqslant y \leqslant \pi$                        |
|   | $y = \tan x$ | $-\frac{\pi}{2} < x < \frac{\pi}{2}$                 | $y\in\mathbb{R}$             | $y = \arctan x$     | $x\in \mathbb{R}$            | $-\frac{\pi}{2} < y < \frac{\pi}{2}$                 |

| 2 | - | arccos | (1) |   | n |
|---|---|--------|-----|---|---|
| Z | a | arccos | 1   | = | U |

**b** 
$$\arcsin(-1) = -\frac{\pi}{2}$$

c 
$$\arctan(1) = \frac{\pi}{4}$$

d 
$$\arctan(-1) = -\frac{\pi}{4}$$

e 
$$\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}$$

f 
$$\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

g 
$$\arctan(\sqrt{3}) = \frac{\pi}{3}$$

**h** 
$$\arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$$

i 
$$\arctan\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$

$$\sin^{-1}(-0.767) \approx -0.874$$
 k  $\cos^{-1}(0.327) \approx 1.24$ 

$$k \cos^{-1}(0.327) \approx 1.24$$

I 
$$\tan^{-1}(-50) \approx -1.55$$

- 3 The inverse transformation from  $y = \sin x$  to  $y = \arcsin x$  has an invariant point where  $\sin x = \arcsin x$  : at (0, 0).
  - **b** The inverse transformation from  $y = \tan x$  to  $y = \arctan x$  has an invariant point where  $\tan x = \arctan x$  : at (0, 0).
  - The inverse transformation from  $y = \cos x$  to  $y = \arccos x$  has an invariant point where  $\cos x = \arccos x$  : at (0.739, 0.739).
- **a**  $y = \arctan x$  has horizontal asymptotes  $y = -\frac{\pi}{2}$  and  $y = \frac{\pi}{2}$ .
  - The functions  $y = \arcsin x$  and  $y = \arccos x$  each have points on the lines x = -1 and x=1. So, these functions do not have vertical asymptotes.

5 a 
$$\arcsin(\sin\frac{\pi}{3}) = \frac{\pi}{3}$$

a 
$$\arcsin(\sin\frac{\pi}{3}) = \frac{\pi}{3}$$
 b  $\arccos(\cos(-\frac{\pi}{6})) = \frac{\pi}{6}$ 

c 
$$\tan(\arctan(0.3)) = 0.3$$

d 
$$\cos(\arccos(-\frac{1}{2})) = -\frac{1}{2}$$
 e  $\arctan(\tan \pi) = 0$ 

e 
$$\arctan(\tan \pi) = 0$$

f 
$$\arcsin(\sin\frac{4\pi}{3}) = -\frac{\pi}{3}$$

## **REVIEW SET 12A**

- not periodic
- periodic

**2**  $y = 4 \sin x$  has amplitude 4.



- 3 a  $-1 \leqslant \sin x \leqslant 1$ 
  - $\therefore$  1 + sin x has minimum 1 + (-1) = 0 and maximum 1 + 1 = 2.
  - **b**  $-1 \leqslant \cos 3x \leqslant 1$ 
    - $\therefore$   $-2\cos 3x$  has minimum -2(1)=-2 and maximum -2(-1)=2.
- 4 a period  $=\frac{2\pi}{\frac{1}{5}}=10\pi$

**b** period  $=\frac{2\pi}{4}=\frac{\pi}{2}$ 

c period  $=\frac{2\pi}{\frac{1}{2}}=4\pi$ 

**d** period =  $\frac{\pi}{3}$ 

| 5 | Function                      | Period Amplitude |           | Domain                                                | Range                        |  |
|---|-------------------------------|------------------|-----------|-------------------------------------------------------|------------------------------|--|
|   | $y = -3\sin(\frac{x}{4}) + 1$ | $8\pi$           | 3         | $x\in \mathbb{R}$                                     | $-2 \leqslant y \leqslant 4$ |  |
|   | $y = \tan 2x$                 | $\frac{\pi}{2}$  | undefined | $x \neq \pm \frac{\pi}{4}, \pm \frac{3\pi}{4}, \dots$ | $y\in\mathbb{R}$             |  |
|   | $y = 3\cos \pi x$             | 2                | 3         | $x\in \mathbb{R}$                                     | $-3 \leqslant y \leqslant 3$ |  |

6 a If  $y = a\cos(b(x - c)) + d$ 

| 9649 | 12     | $2\pi$              |
|------|--------|---------------------|
| then | a = -4 | $\frac{1}{b} = \pi$ |

$$\therefore b=2$$

$$c = d = 0$$

$$y = -4\cos 2x$$

**b** If  $y = a\cos(b(x-c)) + d$ 

then 
$$a=1$$
,  $\frac{2\pi}{b}=8$   $\therefore$   $b=\frac{\pi}{4}$ 

$$d = \frac{\text{max.} + \text{min.}}{2} = \frac{3+1}{2} = 2$$

$$c = 0$$

So, 
$$y = \cos\left(\frac{\pi}{4}x\right) + 2$$

- 7 a A vertical stretch with scale factor 3 followed by a horizontal stretch with scale factor  $\frac{1}{2}$ .
  - **b** A translation of  $\begin{pmatrix} \frac{\pi}{3} \\ -1 \end{pmatrix}$ .
- 8 a
- $\cos x = \frac{1}{3}$

 $0 < x < \pi$ 

but  $\cos x > 0$ 

 $\therefore 0 < x < \frac{\pi}{2}$ 

 $3/2\sqrt{2}$ 

b

 $\tan x = \frac{4}{5}$ 

 $\pi < x < 2\pi$ 

but  $\tan x > 0$ 

 $\therefore \pi < x < \frac{3\pi}{2}$ 



- S A x
- $\therefore \sin x = \frac{2\sqrt{2}}{3}$   $\tan x = 2\sqrt{2}$ 
  - $\tan x = 2\sqrt{2}$
  - $\csc x = \frac{3}{2\sqrt{2}}$
  - $\sec x = 3$
  - $\cot x = \frac{1}{2\sqrt{2}}$
- S A
- $\therefore \sin x = -\frac{4}{\sqrt{41}}$  $\cos x = -\frac{5}{\sqrt{41}}$ 
  - $\csc x = -\frac{\sqrt{41}}{4}$
  - $\sec x = -\frac{\sqrt{41}}{5}$
  - $\cot x = \frac{5}{4}$

9 a  $\arctan(\tan(-0.5)) = -0.5$ 

**b**  $\arcsin(\sin(-\frac{\pi}{6})) = -\frac{\pi}{6}$ 

 $\operatorname{arccos}(\cos 2\pi) = 0$ 

### **REVIEW SET 12B**



approximately periodic



not periodic

2  $y = \sin 3x$  has period  $\frac{2\pi}{3}$ .



a period  $=\frac{2\pi}{\frac{1}{3}}=6\pi$ 

**b** period =  $\frac{\pi}{4}$ 

 $y = 0.6\cos(2.3x)$  has period  $\frac{2\pi}{2.3} \approx 2.73$ 



 $maximum = -5^{\circ}C$ ,  $minimum = -79^{\circ}C$ 

amplitude =  $\frac{-5 - -79}{2} = 37^{\circ}$ C, so a = 37principal axis is  $y = \frac{-5 + -79}{2} = -42$ , so c = -42

Now, we see that the temperature is  $-68^{\circ}$ C and rising on days 600 and 1300, so we estimate the period to be 700 days.

 $\therefore b \approx \frac{2\pi}{700} \approx 0.00898$ 

So,  $T \approx 37 \sin(0.00898n) - 42$  °C

A Mars year is equivalent to one period of the temperature pattern, so 1 Mars year  $\approx$  700 Mars days.

 $Minimum = mean \ value - amplitude = c - |a|, \quad maximum = mean \ value + amplitude = c + |a|.$ 

so  $\min = -3 - 5 = -8$ and  $\max = -3 + 5 = 2$ 

 $y = 5\sin x - 3$  has a = 5, c = -3 **b**  $y = \frac{1}{3}\cos x + 1$  has  $a = \frac{1}{3}$ , c = 1so  $\min = 1 - \frac{1}{3} = \frac{2}{3}$ and  $\max = 1 + \frac{1}{3} = 1\frac{1}{3}$ 

7 A reflection in the x-axis followed by a horizontal stretch with scale factor  $\frac{1}{2}$ .

A vertical stretch with scale factor 2, followed by a translation of  $\begin{pmatrix} \frac{\pi}{4} \\ \frac{1}{2} \end{pmatrix}$ , followed by a horizontal stretch with scale factor 2.

8



**b** a translation of  $\begin{pmatrix} \frac{\pi}{2} \\ 0 \end{pmatrix}$ 



 $y = \arcsin x$ :

$$\begin{aligned} \text{Domain} &= \{x \mid -1 \leqslant x \leqslant 1\} \\ \text{Range} &= \{y \mid -\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2}\} \end{aligned}$$

 $y = \arccos x$ :

$$\begin{aligned} \text{Domain} &= \{x \mid -1 \leqslant x \leqslant 1\} \\ \text{Range} &= \{y \mid 0 \leqslant y \leqslant \pi\} \end{aligned}$$

 $\mathbf{c}$  A reflection in the y-axis (or a reflection in the x-axis), followed by a translation

of 
$$\begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix}$$
.

## **REVIEW SET 12C**

a period  $=\frac{2\pi}{b}=6\pi$  b period  $=\frac{2\pi}{b}=\frac{\pi}{12}$  c period  $=\frac{2\pi}{b}=9$ 

 $b = \frac{1}{3}$ 

 $\therefore b = 24$ 

 $b = \frac{2\pi}{9}$ 

2



**b** f(x) has minimum value -1+2=1and maximum value 1+2=3

f(x) = k will have solutions for  $1\leqslant k\leqslant 3$ 

3 The graph is periodic because it repeats itself over and over in a horizontal direction in intervals of the same length.

i period = 8

maximum value = 5

iii minimum value = -1



b





| 5 | Month | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   |
|---|-------|------|------|------|------|------|------|------|------|------|------|------|------|
|   | Тетр  | 31.5 | 31.8 | 29.5 | 25.4 | 21.5 | 18.8 | 17.7 | 18.3 | 20.1 | 22.4 | 25.5 | 28.8 |



**a** 
$$T = a \sin b(t-c) + d$$
 period  $= \frac{2\pi}{b} = 12$ ,  $\therefore b = \frac{2\pi}{12} = \frac{\pi}{6}$   
 $\max. = 31.8$   $\therefore a = \frac{\max. - \min.}{2} \approx \frac{31.8 - 17.7}{2} \approx 7.05$   
 $\min. = 17.7$   $d = \frac{\max. + \min.}{2} \approx \frac{31.8 + 17.7}{2} \approx 24.75$   
 $c = \frac{7 + 14}{2} = 10.5$  {values of  $t$  at min. and max.}



So,  $T \approx 7.05 \sin(\frac{\pi}{6}(t - 10.5)) + 24.75$ 

- b From technology,  $T\approx 7.21\sin(0.488t+1.082)+24.75$   $\approx 7.21\sin(0.488(t+2.22))+24.75$  The model fits reasonably well.
- **6** a translation through  $\begin{pmatrix} \frac{\pi}{3} \\ 1 \end{pmatrix}$ 
  - **b** vertical stretch with scale factor 2, followed by a reflection in the x-axis
  - horizontal stretch with scale factor  $\frac{1}{3}$

7 **a** If 
$$y = a \sin(bx - c) + d$$
  
then  $a = \frac{\max. - \min.}{2} = \frac{1 - -\frac{1}{2}}{2} = \frac{3}{4}$ ,  $\frac{2\pi}{b} = \frac{\pi}{2}$   $\therefore$   $b = 4$ ,  $d = \frac{\max. + \min.}{2} = \frac{1 - \frac{1}{2}}{2} = \frac{1}{4}$   
So,  $y = \frac{3}{4} \sin(4x - c) + \frac{1}{4}$  and passes through  $(0, 0)$   $\therefore \frac{3}{4} \sin(0 - c) + \frac{1}{4} = 0$   $\therefore \sin(-c) = -\frac{1}{3}$   $\therefore c = \arcsin(\frac{1}{3})$   $\therefore c \approx 0.340$   
So,  $y = \frac{3}{4} \sin(4x - 0.340) + \frac{1}{4}$ .

then principal axis 
$$= 0$$
  $\therefore$   $d = 0$ ,  $\frac{\pi}{b} = \pi$   $\therefore$   $b = 1$ ,  $c = \frac{\pi}{2}$ 

So,  $y = a \tan(x - \frac{\pi}{2})$ 

and passes through  $(\frac{\pi}{4}, -1)$ 
 $\therefore$   $a \tan(\frac{\pi}{4} - \frac{\pi}{2}) = -1$ 
 $\therefore$   $a \tan(-\frac{\pi}{4}) = -1$ 
 $\therefore$   $a = 1$ 

So,  $y = \tan(x - \frac{\pi}{2})$ .

8 a 
$$\csc x \tan x$$

$$= \frac{1}{\sin x} \frac{\sin x}{\cos x}$$

$$= \sec x$$

$$\frac{\tan x}{\sec x} = \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}}$$

$$= \sin x$$

$$\begin{aligned}
& = \frac{1}{\cos x} - \tan x \sin x \\
&= \frac{1}{\cos x} - \frac{\sin x}{\cos x} \sin x \\
&= \frac{1 - \sin^2 x}{\cos x} \\
&= \frac{\cos^2 x}{\cos x} \\
&= \cos x
\end{aligned}$$

**9** a  $y = \arctan x$  is the inverse function of  $y = \tan x$  for the restricted domain  $-\frac{\pi}{2} < x < \frac{\pi}{2}$ .

