EECS 16B Designing Information Devices and Systems II Spring 2021 Discussion Worksheet Discussion 11B

1. Understanding the SVD

We can compute the SVD for a wide matrix A with dimension $m \times n$ where n > m using $A^{\top}A$ with the method covered in lecture. However, when doing so, you may realize that $A^{\top}A$ is much larger than AA^{\top} for such wide matrices. This makes it more efficient to find the eigenvalues for AA^{\top} . In this question, we will explore how to compute the SVD using AA^{\top} instead of $A^{\top}A$.

(a) What are the dimensions of AA^{\top} and $A^{\top}A$?

(b) Given that the SVD of A is $A = U\Sigma V^{\top}$, find a symbolic expression for AA^{\top} .

(c) Using the solution to the previous part, how can we find U and Σ from AA^{\top} ?

(d)	Now that we have found the singular values σ_i and the corresponding vectors \vec{u}_i in the matrix U , can you find the corresponding vectors \vec{v}_i in V ?
(e)	Now we have a way to find the vectors \vec{v}_i in matrix V ! Verify that these vectors are orthonormal.
(f)	Now that we have found $\vec{v_i}$, you may notice that we only have $m < n$ vectors of dimension n . This is not enough for a basis. How would you complete the m vectors to form an orthonormal basis?

(g)	(Practice.) Given that $A = U\Sigma V^{\top}$ verify that the vectors you found to extend the \vec{v}_i into a basis are in the nullspace of A .
(h)	Using the previous parts of this question and what you learned from lecture, write out a procedure on
	how to find the SVD for any matrix.
Con	tributors:
•	Druv Pai.
•	Neelesh Ramachandran.

- Nikhil Shinde.
- Siddharth Iyer.
- Jane Liang.