

Representación de la información Ejercicios propuestos

Ejercicio 1. Un computador dispone de un ancho de palabra que le permite representar números en complemento a dos en el rango $[-2^{22}, 2^{22}-1]$. Responda justificadamente:

- a) ¿Cuál es el número de bits de los registros de este computador?
- b) Cuanto KB de memoria puede direccionar como mucho este computador?

Ejercicio 2. Los siguientes números se encuentran representados en complemento a dos utilizando 6 bits. Indique su correspondiente valor decimal:

- a) 010011
- b) 110111
- c) 100000

Ejercicio 3. Se desea representar números enteros dentro del rango -8191...8191. Indicar de forma razonada:

- a) ¿Cuál es el número de bits que se necesita si se quiere utilizar una representación en complemento a uno?
- b) ¿Cuál es el número de bits que se necesita si se quiere utilizar una representación en signo-magnitud?

Ejercicio 4. Indique la representación de los siguientes números, razonando su respuesta:

- a) -16 en complemento a 2 con 5 bits
- b) -16 en complemento a 1 con 5 bits
- c) +13 en signo magnitud con 5 bits
- d) -14 en complemento a dos con 5 bits

Ejercicio 5. Represente en el estándar IEEE 754 de simple precisión los números 14 y 3.5

Ejercicio 6. Responda de forma justificada

- a) ¿Dónde tiene más precisión una variable de tipo *float*, en un computador de 32 bits o en uno de 64 bits? Razone su respuesta.
- b) Indique de forma razonada y justificada si se puede almacenar de forma exacta cualquier entero de 32 bits en complemento a dos en una variable de tipo *float*?
- Ejercicio 7. Realice la suma de los números anteriores representados en el estándar IEEE 754

Ejercicio 8. Realice el producto de los números anteriores representados en el estándar IEEE 754.

Ejercicio 9. Considere una representación en coma flotante de 16 bits (similar a la del estándar IEEE 754) que emplea 5 bits para el exponente y 10 para la mantisa. Se pide:

- a) Indique el menor y el mayor número no normalizado representable.
- b) Indique el menor y el mayo normalizado representable

Ejercicio 10. Represente los números 14 y 3,5 utilizando la representación en coma flotante de 16 bits.

Ejercicio 11. Indicar el valor decimal de los siguientes números hexadecimales que siguen el formato de coma flotante IEEE 754

- a) 0xFF800000
- b) 0x7F804000
- c) 0xC7B00000
- d) 0x00180000

Ejercicio 12. Sume 8,76 x 10 a 1,47 x 10² suponiendo que solo se dispone de 3 dígitos para la mantisa, primero con dígitos de guarda y redondeo y después sin ellos.

Ejercicio 13. ¿Qué error se comete en la representación del número 0.1 si se utiliza este estándar de 16 bits frente a utilizar 32 bits?

Ejercicio 14. Indique de forma razonada el valor decimal de los siguientes números hexadecimales que representan números en coma flotante en el estándar IEEE 754 de 32 bits:

- a) 0x7F800000
- b) 0x40E00000

Ejercicio 15. ¿Cuántos números no normalizados se pueden representar en el estándar IEEE 754 de 32 bits?

Ejercicio 16. Calcule el número de valores que se pueden representar en coma flotante de 32 bits que están comprendidos entre el 1 y y 2, y entre el 3 y el 4.

Ejercicio 17 Los siguientes números se encuentran representados en complemento a dos utilizando 6 bits. Indique su correspondiente valor decimal:

- a) 010011
- b) 100111

Ejercicio 18. Indique el valor decimal del siguiente número representado en el estándar de coma flotante IEEE 754 de 32 bits. 0x00200000

Ejercicio 19. Indique el valor decimal del siguiente número representado en el estándar IEEE 754 de simple precisión: 0xBE800000.

Ejercicio 20. En relación al estándar IEEE 754 de simple precisión, se pide:

- a) Indique el valor decimal correspondiente al mayor número negativo representable.
- b) Indique el valor de 0xFFF00000, que se corresponde con los bits almacenados en una variable de tipo float.

