SEQUENCE LISTING

<110>	Old, Lloyd J. Scanlan, Matthew J. Chen, Yao-Tseng	
<120>	Cancer-Testis Antigens	
<130>	L0461/7125 (JRV)	
	US 60/280,718 2001-03-30	
	US 60/285,154 2001-04-20	
	US 60/327,432 2001-10-05	
<160>	37	
<170>	PatentIn version 3.1	
<210><211><211><212><213>	20	
<220>		
<223>	Primer	
<400> aggaat	1 ctatg aaaccacttg	20
	20	
<220>		
	Primer	
<400> gacaa	2 cagtt gtatcagacc	20
<210><211><211>		
	21 DNA Artificial Sequence	
	DNA . Artificial Sequence	
<213>	DNA . Artificial Sequence	

<210>	4	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223×	Primer	
\223/		
-400-	4	
<400>		27
ggatcti	tgtt acatgeteae teatate	2.,
<210>	5	
<211>	20	
<212>	DNA	
	Artificial Sequence	
\Z1J/	Artificial bequess	
<220>		
<223>	Primer	
<400>	5	
ccagat	taag aataacgttc	20
<210>	6	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	6	
	aatg accaagagtc	20
ayayya	aatg accaagagee	
<210>		
<211>		
<212>		
<213>		
<220>		
\2207		
000	Primer	
<223>	Primer	
<400>	7	~ -
acaaga	ctag cttatgtgtg g	21
<210>	8	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223>	Primer	
	8 aaga atcttgactt c	21
<210><211><212><213>		
<220>		
<223>	Primer	
<400> gggagt	9 attg acagtggcaa ttt	23
<210> <211> <212> <213>	22	
<223>	Primer	
<400> tgttct	10 caat gtagcgcctt tc	22
<210><211><211><212><213>	29	
<223>	Probe	
<400> ccacct	11 gtag ctataccagc cagactece	29
<210><211><212><213>		
<220>		
<223>	Primer	
<400> gcagag	12 gtecc ctccctgac	19
<210>	13	

11 5 11 1

<211>	23	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	13	
acaggaa	actg gctctgctta aga	23
<210>	14	
<211>	26	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Probe	
<400>		
tcagga	ccat ctccaggtgc atcctc	26
<210>		
<211>	28	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Primer	
<400>	15	28
ccagag	tctc atgttaaaat cacttaca	20
	16	
	30	
<212>		
<213>	Artificial Sequence	
000		
<220>		
000	Projector	
<223>	Primer	
400		
<400>	16	30
gaaaca	cttc ctctctttct ttaagtacaa	-
-010-	17	
<210>	17 28	
<211> <212>		
	Artificial Sequence	
<413>	WICILIOTAL Deduction	
<220>		
<420>		
<223>	Probe	
~~~~		

<400> 17 acccagaaag accaccactt	tgcaggta				28
<210> 18 <211> 2640 <212> DNA <213> Homo sapiens					
<400> 18 catctcgcac ttccaactgc	cctgtaacca	ccaactgccc	ttattccggc	tgggacccag	60
gacttcaagc catgtgggtc	ttgtttctgc	tcagcgggct	cggcgggctg	cggatggaca	120
gtaattttga tagtttacct	gtgcaaatta	cagttccgga	gaaaatacgg	tcaataataa	180
aggaaggaat tgaatcgcag	gcatcctaca	aaattgtaat	tgaagggaaa	ccatatactg	240
tgaatttaat gcaaaaaaac	tttttacccc	ataattttag	agtttacagt	tatagtggca	300
caggaattat gaaaccactt	gaccaagatt	ttcagaattt	ctgccactac	caagggtata	360
ttgaaggtta tccaaaatct	gtggtgatgg	ttagcacatg	tactggactc	aggggcgtac	420
tacagtttga aaatgttagt	tatggaatag	aacccctgga	gtcttcagtt	ggctttgaac	480
atgtaattta ccaagtaaaa	cataagaaag	cagatgtttc	cttatataat	gagaaggata	540
ttgaatcaag agatctgtcc	tttaaattac	aaagcgcaga	gccacagcaa	gattttgcaa	600
agtatataga aatgcatgtt	atagttgaaa	aacaattgta	taatcatatg	gggtctgata	660
caactgttgt cgctcaaaaa	gttttccagt	tgattggatt	gacgaatgct	atttttgttt	720
catttaatat tacaattatt	ctgtcttcat	tggagctttg	gatagatgaa	aataaaattg	780
caaccactgg agaagctaat	gagttattac	acacatttt	aagatggaaa	acatcttatc	840
ttgttttacg tcctcatgat	gtggcatttt	tacttgttta	cagagaaaag	tcaaattatg	900
ttggtgcaac ctttcaaggg	aagatgtgtg	atgcaaacta	tgcaggaggt	gttgttctgc	960
accccagaac cataagtctg	gaatcacttg	cagttatttt	agctcaatta	ttgagcctta	1020
gtatggggat cacttatgat	gacattaaca	aatgccagtg	ctcaggagct	gtctgcatta	1080
tgaatccaga agcaattcat	ttcagtggtg	tgaagatctt	tagtaactgc	agcttcgaag	1140
actttgcaca ttttatttca	aagcagaagt	cccagtgtct	tcacaatcag	cctcgcttag	1200
atccttttt caaacagcaa	gcagtgtgtg	gtaatgcaaa	gctggaagca	ggagaggagt	1260
gtgactgtgg gactgaacag	gattgtgccc	ttattggaga	aacatgctgt	gatattgcca	1320
catgtagatt taaagccggt	tcaaactgtg	ctgaaggacc	atgctgcgaa	aactgtctat	1380
ttatgtcaaa agaaagaatg	tgtaggcctt	cctttgaaga	atgcgacctc	cctgaatatt	1440
gcaatggatc atctgcatca	tgcccagaaa	accactatgt	tcagactggg	catccgtgtg	1500

1560 gactgaatca atggatctgt atagatggag tttgtatgag tggggataaa caatgtacag acacatttgg caaagaagta gagtttggcc cttcagaatg ttattctcac cttaattcaa 1620 agactgatgt atctggaaac tgtggtataa gtgattcagg atacacacag tgtgaagctg 1680 acaatctgca gtgcggaaaa ttaatatgta aatatgtagg taaattttta ttacaaattc 1740 caagagccac tattatttat gccaacataa gtggacatct ctgcattgct gtggaatttg 1800 ccagtgatca tgcagacagc caaaagatgt ggataaaaga tggaacttct tgtggttcaa 1860 ataaggtttg caggaatcaa agatgtgtga gttcttcata cttgggttat gattgtacta 1920 ctgacaaatg caatgataga ggtgtatgca ataacaaaaa gcactgtcac tgtagtgctt 1980 catatttacc tccagattgc tcagttcaat cagatctatg gcctggtggg agtattgaca 2040 gtggcaattt tccacctgta gctataccag ccagactccc tgaaaggcgc tacattgaga 2100 acatttacca ttccaaacca atgagatggc catttttctt attcattcct ttctttatta 2160 ttttctgtgt actgattgct ataatggtga aagttaattt ccaaaggaaa aaatggagaa 2220 ctgaggacta ttcaagcgat gagcaacctg aaagtgagag tgaacctaaa gggtagtctg 2280 gacaacagag atgccatgat atcacttctt ctagagtaat tatctgtgat ggatggacac 2340 aaaaaaatgg aaagaaaaga atgtacatta cctggtttcc tgggattcaa acctgcatat 2400 tgtgatttta atttgaccag aaaatatgat atatatgtat aatttcacag ataatttact 2460 tatttaaaaa tgcatgataa tgagttttac attacaaatt tctgtttttt taaagttatc 2520 ttacgctatt tctgttggtt agtagacact aattctgtca gtaggggcat ggtataagga 2580 aatatcataa tgtaatgagg tggtactatg attaaaagcc actgttacat ttcaaaaaaa 2640

<210> 19

<211> 734

<212> PRT

<213> Homo sapiens

<400> 19

Met Trp Val Leu Phe Leu Leu Ser Gly Leu Gly Gly Leu Arg Met Asp

Ser Asn Phe Asp Ser Leu Pro Val Gln Ile Thr Val Pro Glu Lys Ile 20 25 30

Arg Ser Ile Ile Lys Glu Gly Ile Glu Ser Gln Ala Ser Tyr Lys Ile 35 40 45

Val Ile Glu Gly Lys Pro Tyr Thr Val Asn Leu Met Gln Lys Asn Phe 50 55 60

Leu Pro His Asn Phe Arg Val Tyr Ser Tyr Ser Gly Thr Gly Ile Met 65 70 75 80

Lys Pro Leu Asp Gln Asp Phe Gln Asn Phe Cys His Tyr Gln Gly Tyr 85 90 95

Ile Glu Gly Tyr Pro Lys Ser Val Val Met Val Ser Thr Cys Thr Gly
100 105 110

Leu Arg Gly Val Leu Gln Phe Glu Asn Val Ser Tyr Gly Ile Glu Pro

Leu Glu Ser Ser Val Gly Phe Glu His Val Ile Tyr Gln Val Lys His 130 135 140

Lys Lys Ala Asp Val Ser Leu Tyr Asn Glu Lys Asp Ile Glu Ser Arg 145 150 155 160

Asp Leu Ser Phe Lys Leu Gln Ser Ala Glu Pro Gln Gln Asp Phe Ala 165 170 175

Lys Tyr Ile Glu Met His Val Ile Val Glu Lys Gln Leu Tyr Asn His 180 185 190

Met Gly Ser Asp Thr Thr Val Val Ala Gln Lys Val Phe Gln Leu Ile 195 200 205

Gly Leu Thr Asn Ala Ile Phe Val Ser Phe Asn Ile Thr Ile Ile Leu 210 215 220

Ser Ser Leu Glu Leu Trp Ile Asp Glu Asn Lys Ile Ala Thr Thr Gly 225 230 235 240

Glu Ala Asn Glu Leu Leu His Thr Phe Leu Arg Trp Lys Thr Ser Tyr 245 250 255

Leu Val Leu Arg Pro His Asp Val Ala Phe Leu Leu Val Tyr Arg Glu 260 265 270

Lys Ser Asn Tyr Val Gly Ala Thr Phe Gln Gly Lys Met Cys Asp Ala 275 280 285

Asn Tyr Ala Gly Gly Val Val Leu His Pro Arg Thr Ile Ser Leu Glu 290 295 300

NEW TOTAL STATE OF THE SET BY

Ser Leu Ala Val Ile Leu Ala Gln Leu Leu Ser Leu Ser Met Gly Ile 315 310 Thr Tyr Asp Asp Ile Asn Lys Cys Gln Cys Ser Gly Ala Val Cys Ile Met Asn Pro Glu Ala Ile His Phe Ser Gly Val Lys Ile Phe Ser Asn 345 Cys Ser Phe Glu Asp Phe Ala His Phe Ile Ser Lys Gln Lys Ser Gln 360 355 Cys Leu His Asn Gln Pro Arg Leu Asp Pro Phe Phe Lys Gln Gln Ala 375 370 Val Cys Gly Asn Ala Lys Leu Glu Ala Gly Glu Glu Cys Asp Cys Gly 395 385 Thr Glu Gln Asp Cys Ala Leu Ile Gly Glu Thr Cys Cys Asp Ile Ala 405 410 Thr Cys Arg Phe Lys Ala Gly Ser Asn Cys Ala Glu Gly Pro Cys Cys 425 420 Glu Asn Cys Leu Phe Met Ser Lys Glu Arg Met Cys Arg Pro Ser Phe 435 Glu Glu Cys Asp Leu Pro Glu Tyr Cys Asn Gly Ser Ser Ala Ser Cys 450 Pro Glu Asn His Tyr Val Gln Thr Gly His Pro Cys Gly Leu Asn Gln 470 465 Trp Ile Cys Ile Asp Gly Val Cys Met Ser Gly Asp Lys Gln Cys Thr 485 Asp Thr Phe Gly Lys Glu Val Glu Phe Gly Pro Ser Glu Cys Tyr Ser 500 His Leu Asn Ser Lys Thr Asp Val Ser Gly Asn Cys Gly Ile Ser Asp 520 515

Ser Gly Tyr Thr Gln Cys Glu Ala Asp Asn Leu Gln Cys Gly Lys Leu

530

Ile 545	Cys	Lys	Tyr	Val	Gly 550	Lys	Phe	Leu	Leu	Gln 555	Ile	Pro	Arg	Ala	Thr 560
Ile	Ile	Tyr	Ala	Asn 565	Ile	Ser	Gly	His	Leu 570	Cys	Ile	Ala	Val	Glu 575	Phe
Ala	Ser	Asp	His 580	Ala	Asp	Ser	Gln	Lys 585	Met	Trp	Ile	Lys	Asp 590	Gly	Thr
Ser	Cys	Gly 595	Ser	Asn	Lys	Val	Cys	Arg	Asn	Gln	Arg	Cys 605	Val	Ser	Ser
Ser	Tyr 610	Leu	Gly	Tyr	Asp	Cys 615	Thr	Thr	Asp	Lys	Cys 620	Asn	Asp	Arg	Gly
Val 625	Cys	Asn	Asn	Lys	Lys 630	His	Cys	His	Cys	Ser 635	Ala	Ser	Tyr	Leu	Pro 640
Pro	Ąsp	Cys	Ser	Val 645	Gln	Ser	Asp	Leu	Trp 650	Pro	Gly	Gly	Ser	Ile 655	Asp
Ser	Gly	Asn	Phe 660	Pro	Pro	Val	Ala	Ile 665	Pro	Ala	Arg	Leu	Pro 670	Glu	Arg
Arg	Tyr	Ile 675		Asn	Ile	Tyr	His 680	Ser	Lys	Pro	Met	Arg 685	Trp	Pro	Phe
Phe	Leu 690		Ile	Pro	Phe	Phe 695	Ile	Ile	Phe	Cys	Val 700	Leu	Ile	Ala	Ile
Met 705		Lys			Phe 710			Lys	Lys	Trp 715	Arg		Glu	Asp	Tyr 720
Ser	Ser	. Asp	Glu	Gln 725		Glu	Ser	· Glu	Ser 730	Glu	Pro	Lys	Gly		
	.1> .2>	20 528 DNA Homo	sap	iens											
<40 gg0	10> acga	20 iggc	ttcg	ıttct	tt c	cgcc	atct	t cg	ıttct	ttcc	aac	atct	tcg	ttct	ttctca
cto	ggcacgaggc ttcgttcttt ccgccatctt cgttctttcc aacatcttcg ttctttctca														

we must be the state of the st

60

120

aaagaggaaa tgacca	aagag tcttccc	cagc cagttgga	cc tgtgattgtc	cagcagccca 180
ctgaggaaaa acgtca	aagaa gaggaad	ccac caactgat	aa tcagggtatt	gcacctagtg 240
gggagatcaa aaatga	aagga gcacctg	gctg ttcaaggg	ac tgatgtggaa	gcttttcaac 300
aggaactggc tctgc	ttaag atagagg	gatg cacctgga	ga tggtcctgat	gtcagggagg 360
ggactctgcc cactt	ttgat cccacta	aaag tgctggaa	gc aggtgaaggg	caactatagg 420
tttaaaccaa gacaa	atgaa gactgaa	aacc aagaatat	g ttcttatgct	ggaaatttga 480
ctgctaacat tctct	taata aagtttt	taca gttttctg	ca aaaaaaaa	528
<210> 21 <211> 110 <212> PRT <213> Homo sapid	ens			
<400> 21				
Met Ser Glu His	Val Thr Arg § 5	Ser Gln Ser S 10	er Glu Arg Gly	Asn Asp 15
Gln Glu Ser Ser	Gln Pro Val (	Gly Pro Val I 25	le Val Gln Glr 30	Pro Thr
Glu Glu Lys Arg		Glu Pro Pro T 40	hr Asp Asn Glr 45	Gly Ile
Ala Pro Ser Gly 50	Glu Ile Lys i 55	Asn Glu Gly A	la Pro Ala Val 60	. Gln Gly
Thr Asp Val Glu 65	Ala Phe Gln ( 70	Gln Glu Leu A 7		s Ile Glu 80
Asp Ala Pro Gly	Asp Gly Pro 2 85	Asp Val Arg G 90	lu Gly Thr Leu	Pro Thr 95
Phe Asp Pro Thr	Lys Val Leu	Glu Ala Gly G 105	lu Gly Gln Leu 110	
<210> 22 <211> 877 <212> DNA <213> Homo sapi	ens			

60

120

ggcacgaggc ttgttcatgg catctttaga aacaaactgc aattttattt catttccttg

tcgttcatac aaagattaca agactagctt atgtgtggac tgtgactgtt ttaaggaaaa

atcatgtcct	cggctgggtt	atcaagccaa	gctatttaaa	ggtgttttaa	aagaaaggat	180
ggaaggaaga	cctcttagga	ccactgtgtt	tttggataca	agtggtacat	atccattctg	240
tacctattat	tttgttctca	gtataattgt	tccagataaa	actatgatgg	atggctcgtt	300
ttcatttaaa	ttattaaatc	agcttgaaat	gattgaagag	ccaaggcttt	atgaaaagaa	360
caaaccattt	tataaacttc	aagaagtcaa	gattcttgct	caattttata	atgactttgt	420
aaatatttca	agcattggtt	tgacatattt	ccagagctca	aatctgcagt	gttccacatg	480
cacatacaag	atccagagtc	tcatgttaaa	atcacttaca	tacccagaaa	gaccaccact	540
ttgcaggtat	aatattgtac	ttaaagaaag	agaggaagtg	tttcttaatc	caaacacatg	600
tacaccaaag	aacacataag	atgccttctt	ccatcaaatg	cacttgcttg	tgaattaatg	660
gacttgtaaa	tgaaacaatg	caatcagtct	tttataatac	actgttcaat	ttgagattca	720
agtatttcta	tttcttggaa	aaaattttaa	gaatcaaaaa	taaagaaaat	aaaaagtgca	780
tacagttaaa	cattccaaaa	aaaaaaaaa	aaaaaaaaa	aaaattggcg	gccgcaagct	840
tattcccttt	agtgagggtt	aattttagct	tggcact			877

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23

Ala Arg Gly Leu Phe Met Ala Ser Leu Glu Thr Asn Cys Asn Phe Ile 1 5 10 15

Ser Phe Pro Cys Arg Ser Tyr Lys Asp Tyr Lys Thr Ser Leu Cys Val 20 25 30

Asp Cys Asp Cys Phe Lys Glu Lys Ser Cys Pro Arg Leu Gly Tyr Gln 35 40 45

Ala Lys Leu Phe Lys Gly Val Leu Lys Glu Arg Met Glu Gly Arg Pro 50 55 60

Leu Arg Thr Thr Val Phe Leu Asp Thr Ser Gly Thr Tyr Pro Phe Cys 70 75 80

Thr Tyr Tyr Phe Val Leu Ser Ile Ile Val Pro Asp Lys Thr Met Met 85 90 95

Asp Gly Ser Phe Ser Phe Lys Leu Leu Asn Gln Leu Glu Met Ile Glu 100 105 110

Glu Pro Arg Leu Tyr Glu Lys Asn Lys Pro Phe Tyr Lys Leu Gln Glu Val Lys Ile Leu Ala Gln Phe Tyr Asn Asp Phe Val Asn Ile Ser Ser Ile Gly Leu Thr Tyr Phe Gln Ser Ser Asn Leu Gln Cys Ser Thr Cys 155 Thr Tyr Lys Ile Gln Ser Leu Met Leu Lys Ser Leu Thr Tyr Pro Glu 170 Arg Pro Pro Leu Cys Arg Tyr Asn Ile Val Leu Lys Glu Arg Glu Glu Val Phe Leu Asn Pro Asn Thr Cys Thr Pro Lys Asn Thr 195 24 <210> <211> 2270 DNA <212> Homo sapiens <213> 24 <400> gggcacattg cagattgttc gggtaaattt aaaatgctag agcatgccct acgtgatgcc 60 aagatggcgg agacttgtat tgtgaaagaa aagcaagatt ataagcagaa attgaaggca 120 180 cttaagattg aagtcaacaa actaaaagag gacctcaatg aaaagacgac agaaaataat gagcaacgag aagagatcat tcgcctcaag caagagaaaa gttgcctgca cgatgaattg 240 ctttttactg tagagagaga aaagaggaaa gatgaattgc ttaatattgc gaagtcaaag 300 caagaacgca caaattcaga actgcacaat ctgagacaga tttatgtaaa acaacagagt 360 gatctgcagt ttcttaattt caatgtggaa aattctcagg aattaataca gatgtatgac 420 480 tcaaagatgg aggaatcaaa ggctctggac tccagcagag acatgtgttt atcagacctt qaaaataacc acccaaaagt cgatattaag agggaaaaaa atcagaagtc actgtttaag 540 600 gaccagaaat ttgaagccat gttggttcag caaaataggt cagacaagag ctcttgcgat gaatgcaaag agaagaaaca acagatcgat actgtgtttg gggagaaaag tgtaattacg 660 ctgtcatcca tattcaccaa agacttagta gagaaacaca acctcccttg gtctctggga 720

Destablished faithfulful from the first market of the state market

780

840

ggaaaaaccc agattgaacc cgaaaacaaa attacattgt gcaagatcca cacaaaatca

ccaaaatqtc atggcactgg ggttcagaac gaaggaaaac aaccctcaga aacacccact

900 ttatctqatq aqaaqcaqtq gcatgatgtc agtgtttacc tgggcctgac caactgtcca 960 aqttcaaaac atccagaaaa gctggatgta gaatgtcaag atcagatgga aaggtccgaa atctcatgct gccagaaaaa tgaagcctgt ctgggcgaaa gtggcatgtg tgactccaag 1020 tgctgccacc cgagtaactt cataattgaa gccccaggcc acatgtctga cgtggagtgg 1080 atqagtattt tcaagccttc caaaatgcag agaattgtcc gcctcaaatc tgggtgcacc 1140 tgttcagaaa gcatctgtgg cacacaacat gactccccgg caagtgagct aattgccatc 1200 caaqattccc actctttggg ttcttcaaaa tctgccttga gagaagatga gacggagtcc 1260 1320 tottocaata aaaaqaacto acctacgagt ttgttaatot acaaagatgo accagcatto 1380 aatqaaaaqq cttcaattqt qttaccctcc caggatgatt tctcgcccac gagcaagctc cagcgtttgc tggcggaatc tcgtcagatg gtgacggacc tggagctgaa cacactgctg 1440 cccatcagcc atgagaatct cactggcagt gccacaaata tttctcatct atgtggaagg 1500 cagaaagcag acaccaatac tgaatgaata cttaaccgta aaactgaaag aggattctag 1560 ttcttcataa acggcactta attccagctg ggagcagaac tagaaagtta atttttaaac 1620 atctacactt cattttcaag ttaaccattt ttgtgctgaa gaaatatttt catgtgtaag 1680 1740 aaagtagacc ttattgtaca tatagaaagt tggaattatg ctaagaatga aaaagacttc tctgtaaaga tacagactac agttaaatgc tagagaagct ctttaaaaaat gtgaatgtca 1800 aatagagaaa gaacccctgc atagaaagtg ctgttttaac tatctgattt ttaaaaaatc 1860 tgtgcataca tttaaattct aaacaatagc ttatcagagt cagctcaaaa tatatgagaa 1920 acagtattct ctcatggttt tagcttttga ctttgctgtg taaatagaca taaggtgctt 1980 2040 tqatataaaa tataaagtgt aactggaaaa tagctcgagg tccttctgtc ccaagctgag cagagececa tettetggg tetatattag teccacetae tgacacaaac aaaagettge 2100 tggaagatcg agttttagac gcatttttaa aaatcttaaa gactaaaaca cttccatttt 2160 aacttgtaaa gtaatttaat tttttaaaga ttatactata tgcctctgtg tcttctctaa 2220 aagaatagat caacttcagt ccataaaaga tatttttaat attaaagaaa 2270

Met Leu Glu His Ala Leu Arg Asp Ala Lys Met Ala Glu Thr Cys Ile
1 5 10 15

<210> 25

<211> 497

<212> PRT

<213> Homo sapiens

<400> 25

Val Lys Glu Lys Gln Asp Tyr Lys Gln Lys Leu Lys Ala Leu Lys Ile

Glu Val Asn Lys Leu Lys Glu Asp Leu Asn Glu Lys Thr Thr Glu Asn

Asn Glu Gln Arg Glu Glu Ile Ile Arg Leu Lys Gln Glu Lys Ser Cys

Leu His Asp Glu Leu Leu Phe Thr Val Glu Arg Glu Lys Arg Lys Asp 70 75

Glu Leu Leu Asn Ile Ala Lys Ser Lys Gln Glu Arg Thr Asn Ser Glu 90

Leu His Asn Leu Arg Gln Ile Tyr Val Lys Gln Gln Ser Asp Leu Gln 105

Phe Leu Asn Phe Asn Val Glu Asn Ser Gln Glu Leu Ile Gln Met Tyr 120

Asp Ser Lys Met Glu Glu Ser Lys Ala Leu Asp Ser Ser Arg Asp Met

Cys Leu Ser Asp Leu Glu Asn Asn His Pro Lys Val Asp Ile Lys Arg 145

Glu Lys Asn Gln Lys Ser Leu Phe Lys Asp Gln Lys Phe Glu Ala Met 165 170

Leu Val Gln Gln Asn Arg Ser Asp Lys Ser Ser Cys Asp Glu Cys Lys 185

Glu Lys Lys Gln Gln Ile Asp Thr Val Phe Gly Glu Lys Ser Val Ile 200 195

Thr Leu Ser Ser Ile Phe Thr Lys Asp Leu Val Glu Lys His Asn Leu 210 215

Pro Trp Ser Leu Gly Gly Lys Thr Gln Ile Glu Pro Glu Asn Lys Ile 225 230 235

Thr Leu Cys Lys Ile His Thr Lys Ser Pro Lys Cys His Gly Thr Gly 250

Val Gln Asn Glu Gly Lys Gln Pro Ser Glu Thr Pro Thr Leu Ser Asp 265 Glu Lys Gln Trp His Asp Val Ser Val Tyr Leu Gly Leu Thr Asn Cys Pro Ser Ser Lys His Pro Glu Lys Leu Asp Val Glu Cys Gln Asp Gln Met Glu Arg Ser Glu Ile Ser Cys Cys Gln Lys Asn Glu Ala Cys Leu 310 Gly Glu Ser Gly Met Cys Asp Ser Lys Cys Cys His Pro Ser Asn Phe 330 Ile Ile Glu Ala Pro Gly His Met Ser Asp Val Glu Trp Met Ser Ile 345 Phe Lys Pro Ser Lys Met Gln Arg Ile Val Arg Leu Lys Ser Gly Cys 360

Thr Cys Ser Glu Ser Ile Cys Gly Thr Gln His Asp Ser Pro Ala Ser 375

Glu Leu Ile Ala Ile Gln Asp Ser His Ser Leu Gly Ser Ser Lys Ser 395

Ala Leu Arg Glu Asp Glu Thr Glu Ser Ser Ser Asn Lys Lys Asn Ser 405 410

Pro Thr Ser Leu Leu Ile Tyr Lys Asp Ala Pro Ala Phe Asn Glu Lys 420 425

Ala Ser Ile Val Leu Pro Ser Gln Asp Asp Phe Ser Pro Thr Ser Lys 435

Leu Gln Arg Leu Leu Ala Glu Ser Arg Gln Met Val Thr Asp Leu Glu 450

Leu Asn Thr Leu Leu Pro Ile Ser His Glu Asn Leu Thr Gly Ser Ala 465 470 475

Thr Asn Ile Ser His Leu Cys Gly Arg Gln Lys Ala Asp Thr Asn Thr 490

Glu

<210> 26 <211> 99 <212> DN <213> Ho	96					
<400> 26 gtatgttco	s t ggcagaaaag	ttgcataact	tgggggttaa	agacaggaat	atggcacaat	60
gcccattgt	g ggcagtgtcc	agacagaaga	agagactcat	atcacctaaa	tgacaaaccc	120
agaatatgt	c acaatgtatc	ctgttgaaag	gaccagaaac	gaggatgaat	tgccacatca	180
tctggttct	g agttctgaga	tattcacaag	tccccttaga	aaacaactca	ggcaagagag	240
ttacatcac	c taggagcccg	ttccaccctt	atgtcacagt	gcttcatgtg	tacaggacta	300
agaagaaag	t cacatcacct	agatgataga	cccagagaca	cgtcacaaag	ccttcctgaa	360
agcatggcc	c tggcaaaata	gtacaatcac	ctttgtacct	ggtctagcaa	tatgtcatta	420
ttcaagtgt	g caggtaccaa	ggagaggagc	catactacct	atgttatatg	ccctgtgcta	480
tgtcaaaat	g ccttctttc	agcatggccc	tggaagaatg	tatcatctca	catgtgactg	540
gcctaggaa	g atgtcactat	cctgccatgt	gtgcagggcc	cattttagag	attagagtta	600
tgtcttctt	c taagtcatgg	acccagtgat	atatcactat	gatgtctgtg	agaatgggca	660
ggcaggaat	g taatgtcact	tgcattctag	atccagtgat	gtcacaattc	ttactgaggg	720
cagagccca	ıg tcagaagagt	catatctttt	acaggttggc	ccaagtagat	gtcaaaaacc	780
cctatggat	t agatttacaa	taccacacat	ctcttgtttt	catgtaggag	agttgcctgc	840
attcatctg	ıt gatgatgaaa	gtccttactg	tcagccaagt	gtgcatatga	gactcacaat	900
ttcctctgt	t tgctaaccac	tattatgaca	ctctctattc	aacccaacgg	ttttataaaa	960
catttgtca	t tgttataaaa	aaaaaaaaaa	aaaaaa			996

<210> 27

<211> 90

<212> PRT

<213> Homo sapiens

<400> 27

Met Ile Asp Pro Glu Thr Arg His Lys Ala Phe Leu Lys Ala Trp Pro 1 5 10 15

Trp Gln Asn Ser Thr Ile Thr Phe Val Pro Gly Leu Ala Ile Cys His 20 25 30

Tyr Ser Ser Val Gln Val Pro Arg Arg Gly Ala Ile Leu Pro Met Leu

35 40 45

Tyr Ala Leu Cys Tyr Val Lys Met Pro Ser Phe Gln His Gly Pro Gly 50 55 60

Arg Met Tyr His Leu Thr Cys Asp Trp Pro Arg Lys Met Ser Leu Ser 65 70 75 80

Cys His Val Cys Arg Ala His Phe Arg Asp 85 90

<210> 28

<211> 2347

<212> DNA

<213> Homo sapiens

<400> 28

gggaggtttg gagccctgca taaagagaag gacgggacca cagctgactg ctgtgtcccc 60 acagatetgg geeteetget gecaccatgg ccaaaggtgg agaageeetg ccacagggca 120 gcccagcacc agtccaggat ccccacctca tcaaggtgac agtgaagacg cccaaagaca 180 aggaggattt ctcagttaca gacacatgca ctatccagca gctgaaggaa gagatatctc 240 agegetttaa ggeccaecce gateagettg ttetaatett tgetggeaaa ateeteaagg 300 atcctgactc actggcacag tgtggagtgc gagatggcct cactgtccac ctggtcatca 360 agaggcagca ccgtgccatg ggcaatgagt gcccagctgc ctctgtccct acccagggcc 420 caagteetgg atcacteett cagecaaget ceatttacee ageagatggg eeceetgeet 480 ttagcttagg tctcctcaca ggcctcagta ggctgggctt ggcctatcgt ggcttccctg 540 accagccaag ctccctgatg cggcagcatg tgtctgtgcc tgagtttgtg actcagctca 600 ttgatgaccc cttcatcccg ggtctgctgt ccaacacagg cctagtacgc cagctggttc 660 ttgacaaccc ccatatgcag cagctgatcc agcacaaccc tgagattggg catattctta 720 acaacccgga aattatgcgg cagacactgg agtttttacg taaccctgcc atgatgcagg 780 agatgatacg tagccaggac cgggtgctca gtaacttgga gagcattcct ggtggctaca 840 atgtgctttg cactatgtac acagatatta tggacccaat gcttaacgca gtccaggagc 900 agtttggcgg caatcccttt gccactgcca ctactgataa tgccaccacc accaccagcc 960 aaccttcaag gatggagaat tgtgaccctc tccccaaccc ctggacttcc acacatggag 1020 gctcaggtag caggcaagga aggcaggatg gggatcagga tgcacctgac attagaaata 1080 ggtttccaaa ctttctgggt attataaggc tctatgacta tctccagcaa ttacacgaga 1140 acceccagte cetaggaact tatetacagg ggaetgeate tgeeeteage caaageeagg 1200

aaccaccacc	atcagtaaac	agagttcccc	catcgtcacc	ctcatctcag	gagcctgggt	1260
caggccagcc	tctccccgag	gagtcagtag	caatcaaggg	aaggtcctcc	tgcccagctt	1320
tcctgagata	ccccacagag	aacagtactg	gacaaggtgg	agaccaagat	ggtgcaggga	1380
aaagctctac	tggacatagc	acaaacttgc	ctgatcttgt	ctcggggctg	ggagattctg	1440
ccaacagggt	tccatttgct	cccttatctt	tttcccccac	ggcagccatt	cctggaatcc	1500
ctgagcctcc	ctggctgcca	tccccggctt	atccaagatc	tctgaggcca	gatggcatga	1560
atccagctcc	acagttacag	gatgagatac	aaccacagct	gccactgctg	atgcaccttc	1620
aggcagccat	ggcaaacccc	cgtgccctgc	aagccctgcg	gcagattgag	cagggtctac	1680
aggtcctagc	tactgaagca	cctcgcctcc	tactctggtt	catgccttgc	ctagcaggga	1740
cgggtagtgt	ggcaggaggt	atagagtcta	gagaagatcc	ccttatgtct	gaggatcctc	1800
tcccaaatcc	acctcctgag	gtgttcccag	cactggactc	tgcagagctg	ggcttccttt	1860
cccctccctt	tctccatatg	ctgcaagatt	tagttagtac	aaatccccag	cagctgcagc	1920
ctgaggctca	ctttcaggtg	cagctggagc	aactgcggtc	catgggcttt	ctgaatcgtg	1980
aagccaatct	tcaggccctc	attgctacgg	ggggcgacgt	ggatgctgct	gtggagaagc	2040
tgagacagtc	gtaggagcct	tattcattca	aaccatacgt	tttcctctgt	gcctttttcc	2100
catatcctag	ttccctagct	ctcccatttt	tgaatacagc	tgcattataa	accaaattta	2160
ctatgaagtc	ctttgctgtg	gaggcaatgt	tgttccagag	tcaacgagga	agactaatgg	2220
ccaaaacata	gtggaggtgc	tgtgtgtgag	tcaaccactt	gtaccactat	accactgggg	2280
ggccccagtc	taagctctgc	ttatgcctat	cttgagatgc	aattacaccc	aatttccaat	2340
gtgaaaa						2347

<210> 29

<211> 655

<212> PRT

<213> Homo sapiens

<400> 29

Met Ala Lys Gly Gly Glu Ala Leu Pro Gln Gly Ser Pro Ala Pro Val 1 5 10 15

Gln Asp Pro His Leu Ile Lys Val Thr Val Lys Thr Pro Lys Asp Lys 20 25 30

Glu Asp Phe Ser Val Thr Asp Thr Cys Thr Ile Gln Gln Leu Lys Glu 35 40 45

Glu Ile Ser Gln Arg Phe Lys Ala His Pro Asp Gln Leu Val Leu Ile 50 60

Phe Ala Gly Lys Ile Leu Lys Asp Pro Asp Ser Leu Ala Gln Cys Gly 65 70 75 80

Val Arg Asp Gly Leu Thr Val His Leu Val Ile Lys Arg Gln His Arg 85 90 95

Ala Met Gly Asn Glu Cys Pro Ala Ala Ser Val Pro Thr Gln Gly Pro
100 105 110

Ser Pro Gly Ser Leu Pro Gln Pro Ser Ser Ile Tyr Pro Ala Asp Gly
115 120 125

Pro Pro Ala Phe Ser Leu Gly Leu Leu Thr Gly Leu Ser Arg Leu Gly 130 135 140

Leu Ala Tyr Arg Gly Phe Pro Asp Gln Pro Ser Ser Leu Met Arg Gln 145 150 150 155 160

His Val Ser Val Pro Glu Phe Val Thr Gln Leu Ile Asp Asp Pro Phe 165 170 175

Ile Pro Gly Leu Leu Ser Asn Thr Gly Leu Val Arg Gln Leu Val Leu 180 185 190

Asp Asn Pro His Met Gln Gln Leu Ile Gln His Asn Pro Glu Ile Gly 195 200 205

His Ile Leu Asn Asn Pro Glu Ile Met Arg Gln Thr Leu Glu Phe Leu 210 215 220

Arg Asn Pro Ala Met Met Gln Glu Met Ile Arg Ser Gln Asp Arg Val 225 230 235 240

Leu Ser Asn Leu Glu Ser Ile Pro Gly Gly Tyr Asn Val Leu Cys Thr 245 250 255

Met Tyr Thr Asp Ile Met Asp Pro Met Leu Asn Ala Val Gln Glu Gln 260 265 270

Phe Gly Gly Asn Pro Phe Ala Thr Ala Thr Thr Asp Asn Ala Thr Thr 275 280 285

Thr Thr Ser Gln Pro Ser Arg Met Glu Asn Cys Asp Pro Leu Pro Asn 290 295 300

Pro Trp Thr Ser Thr His Gly Gly Ser Gly Ser Arg Gln Gly Arg Gln 305 310 315 320

Asp Gly Asp Gln Asp Ala Pro Asp Ile Arg Asn Arg Phe Pro Asn Phe 325 330 335

Leu Gly Ile Ile Arg Leu Tyr Asp Tyr Leu Gln Gln Leu His Glu Asn 340 345 350

Pro Gln Ser Leu Gly Thr Tyr Leu Gln Gly Thr Ala Ser Ala Leu Ser 355 360 365

Gln Ser Gln Glu Pro Pro Pro Ser Val Asn Arg Val Pro Pro Ser Ser 370 375 380

Pro Ser Ser Gln Glu Pro Gly Ser Gly Gln Pro Leu Pro Glu Glu Ser 385 390 395 400

Val Ala Ile Lys Gly Arg Ser Ser Cys Pro Ala Phe Leu Arg Tyr Pro 405 410 415

Thr Glu Asn Ser Thr Gly Gln Gly Gly Asp Gln Asp Gly Ala Gly Lys 420 425 430

Ser Ser Thr Gly His Ser Thr Asn Leu Pro Asp Leu Val Ser Gly Leu 435 440 445

Gly Asp Ser Ala Asn Arg Val Pro Phe Ala Pro Leu Ser Phe Ser Pro 450 460

Thr Ala Ala Ile Pro Gly Ile Pro Glu Pro Pro Trp Leu Pro Ser Pro 465 470 475 480

Ala Tyr Pro Arg Ser Leu Arg Pro Asp Gly Met Asn Pro Ala Pro Gln 485 490 495

Leu Gln Asp Glu Ile Gln Pro Gln Leu Pro Leu Leu Met His Leu Gln 500 505 510

Ala Ala Met Ala As<br/>n Pro Arg Ala Leu Gl<br/>n Ala Leu Arg Gl<br/>n Ile Glu 515 520 525

Gln Gly Leu Gln Val Leu Ala Thr Glu Ala Pro Arg Leu Leu Trp 530 535 540 Phe Met Pro Cys Leu Ala Gly Thr Gly Ser Val Ala Gly Gly Ile Glu 545 550 560 Ser Arg Glu Asp Pro Leu Met Ser Glu Asp Pro Leu Pro Asn Pro Pro 565 570 Pro Glu Val Phe Pro Ala Leu Asp Ser Ala Glu Leu Gly Phe Leu Ser 580 Pro Pro Phe Leu His Met Leu Gln Asp Leu Val Ser Thr Asn Pro Gln 595 Gln Leu Gln Pro Glu Ala His Phe Gln Val Gln Leu Glu Gln Leu Arg 610 Ser Met Gly Phe Leu Asn Arg Glu Ala Asn Leu Gln Ala Leu Ile Ala 625 Thr Gly Gly Asp Val Asp Ala Ala Val Glu Lys Leu Arg Gln Ser 650 <210> 30 <211> 899 <212> DNA <213> Homo sapiens <400> ctagagagta tagggcagaa ggatggcaga tgagtqactc cacatccaga qctqcctccc 60 tttaatccag gatcctgtcc ttcctgtcct gtaggagtgc ctgttgccag tgtggggtga 120 gacaagtttg tcccacaggg ctgtctgagc agataagatt aaqqqctqqq tctqtqctca 180 attaactcct gtgggcacgg gggctgggaa gagcaaagtc agcggtgcct acagtcagca 240 ccatgctggg cctgccgtgg aagggaggtc tgtcctgggc gctgctgctg cttctcttag 300 gctcccagat cctgctgatc tatgcctggc atttccacga gcaaagggac tgtgatgaac 360 acaatgtcat ggctcgttac ctccctgcca cagtggagtt tgctgtccac acattcaacc 420 aacagagcaa ggactactat gcctacagac tggggcacat cttgaattcc tqqaaqqaqc 480 aggtggagtc caagactgta ttctcaatqq aqctactqct qqqqaqaact aqqtqtqqqa 540 aatttgaaga cgacattgac aactgccatt tccaaqaaaq cacaqaqctq aacaatactt 600 tcacctgctt cttcaccatc agcaccaggc cctggatgac tcagttcagc ctcctgaaca 660

agacctgctt	ggagggattc	cactgagtga	aacccactca	caggcttgtc	catgtgctgc	720
tcccacattc	cgtggacatc	agcactactc	tcctgaggac	tcttcagtgg	ctgagcagct	780
ttggacttgt	ttgttatcct	attttgcatg	tgtttgagat	ctcagatcag	tgttttagaa	840
aatccacaca	tcttgagcct	aatcatgtag	tgtagatcat	taaacatcag	cattttaag	899

<210> 31 <211> 147

<212> PRT

<213> Homo sapiens

<400> 31

Met Leu Gly Leu Pro Trp Lys Gly Gly Leu Ser Trp Ala Leu Leu Leu 1 5 10 15

Leu Leu Leu Gly Ser Gln Ile Leu Leu Ile Tyr Ala Trp His Phe His  $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$ 

Glu Gln Arg Asp Cys Asp Glu His Asn Val Met Ala Arg Tyr Leu Pro 35 40 45

Ala Thr Val Glu Phe Ala Val His Thr Phe Asn Gln Gln Ser Lys Asp 50 55

Tyr Tyr Ala Tyr Arg Leu Gly His Ile Leu Asn Ser Trp Lys Glu Gln 65 70 75 80

Val Glu Ser Lys Thr Val Phe Ser Met Glu Leu Leu Leu Gly Arg Thr 85 90 95

Arg Cys Gly Lys Phe Glu Asp Asp Ile Asp Asn Cys His Phe Glu Glu 100 105 110

Ser Thr Glu Leu Asn Asn Thr Phe Thr Cys Phe Phe Thr Ile Ser Thr 115 120 125

Arg Pro Trp Met Thr Gln Phe Ser Leu Leu Asn Lys Thr Cys Leu Glu 130 135 140

Gly Phe His

<210> 32 <211> 2186 <212> DNA

where the life is the time of

<213> Homo sapiens

<400> 32 tggagaggcc acagetgetg getteetggg ettetecaaa eteetgtgtg tegecaetge 60 caccggcagg gagccaggag agagacagaa aggggctgag acagaatgat caaaaggaga 120 gcccaccctg gtgcgggagg cgacaggacc aggcctcgac ggcgccgttc cactgagagc 180 tggattgaaa gatgtctcaa cgaaagtgaa aacaaacgtt attccagcca cacatctctg 240 gggaatgttt ctaatgatga aaatgaggaa aaagaaaata atagagcatc caagccccac 300 tecaetectg etaetetgea atggetggag gagaactatg agattgeaga gggggtetge 360 atccctcgca gtgccctcta tatgcattac ctggatttct gcgagaagaa tgatacccaa 420 cctgtcaatg ctgccagctt tggaaagatc ataaggcagc agtttcctca gttaaccacc 480 agaagactcg ggacccgagg acagtcaaag taccattact atggcattgc agtgaaagaa 540 agctcccaat attatgatgt gatgtattcc aagaaaggag ctgcctgggt gagtgagacg 600 ggcaagaaag aagtgagcaa acagacagtg gcatattcac cccggtccaa actcggaaca 660 ctgctgccag aatttcccaa tgtcaaagat ctaaatctgc cagccagcct gcctgaggag 720 aaggtttcta cctttattat gatgtacaga acacactgtc agagaatact ggacactgta 780 ataagagcca actttgatga ggttcaaagt ttccttctgc acttttggca aggaatgccg 840 ccccacatgc tgcctgtgct gggctcctcc acggtggtga acattgtcgg cgtgtgtgac 900 tccatcctct acaaagctat ctccggggtg ctgatgccca ctgtgctgca ggcattacct 960 gacagettaa eteaggtgat tegaaagttt gecaageaae tggatgagtg getaaaagtg 1020 gctctccacg acctcccaga aaacttgcga aacatcaagt tcgaattgtc gagaaggttc 1080 tcccaaattc tgagacggca aacatcacta aatcatctct gccaggcatc tcgaacagtg 1140 atccacagtg cagacatcac gttccaaatg ctggaagact ggaggaacgt ggacctgaac 1200 agcatcacca agcaaaccct ttacaccatg gaagactctc gcgatgagca ccggaaactc 1260 atcacccaat tatatcagga gtttgaccat ctcttggagg agcagtctcc catcgagtcc 1320 tacattgagt ggctggatac catggttgac cgctgtgttg tgaaggtggc tgccaagaga 1380 caagggtcct tgaagaaagt ggcccagcag ttcctcttga tgtggtcctg tttcggcaca 1440 agggtgatcc gggacatgac cttgcacagc gccccagct tcgggtcttt tcacctaatt 1500 cacttaatgt ttgatgacta cgtgctctac ctgttagaat ctctgcactg tcaggagcgg 1560 gccaatgagc tcatgcgagc catgaaggga gaaggaagca ctgcagaagt ccgagaagag 1620 atcatcttga cagaggctgc cgcaccaacc ccttcaccag tgccatcgtt ttctccagca 1680 aaatctgcca catctgtgga agtgccacct ccctcttccc ctgttagcaa tccttcccct 1740

gagtacactg	gcctcagcac	tacaggtaat	ggaaagtcct	tcaaaaactt	tgggtagtta	1800
atgtttgaag	aaagggcttt	ctgccagcct	gggcaacata	gtgagacttc	atttccacac	1860
acacaaaaag	ccagacatct	tggctcacac	ctgtagtccc	agctacttgg	gaggctgagg	1920
tgggagaatt	gcttgagccc	aggagctacg	atcgcaccac	tgcattctag	ccttagtgat	1980
acagtgagac	cttgtctcaa	aaaaggaaaa	acagggcttt	ctggaaaaac	attcttctcc	2040
cacaatctcc	aaaagataat	gccaaaacct	gggtatcttc	ctggatttgt	gaatgacgta	2100
caggtattca	tttattcatt	ggtacacatt	ctgtatgctg	ctgttttcaa	gttggcaaat	2160
taagcatatg	ataaaatccc	aaaact				2186

<210> 33

<211> 563

<212> PRT

<213> Homo sapiens

<400> 33

Met Ile Lys Arg Arg Ala His Pro Gly Ala Gly Gly Asp Arg Thr Arg 1 5 10 15

Pro Arg Arg Arg Ser Thr Glu Ser Trp Ile Glu Arg Cys Leu Asn 20 25 30

Glu Ser Glu Asn Lys Arg Tyr Ser Ser His Thr Ser Leu Gly Asn Val\$35\$ 40 45

Ser Asn Asp Glu Asn Glu Glu Lys Glu Asn Asn Arg Ala Ser Lys Pro 50 55 60

His Ser Thr Pro Ala Thr Leu Gln Trp Leu Glu Glu Asn Tyr Glu Ile 65 70 75 80

Ala Glu Gly Val Cys Ile Pro Arg Ser Ala Leu Tyr Met His Tyr Leu 85 90 95

Asp Phe Cys Glu Lys Asn Asp Thr Gln Pro Val Asn Ala Ala Ser Phe 100 105 110

Gly Lys Ile Ile Arg Gln Gln Phe Pro Gln Leu Thr Thr Arg Arg Leu 115 120 125

Gly Thr Arg Gly Gln Ser Lys Tyr His Tyr Tyr Gly Ile Ala Val Lys 130 135 140

Trp Val Ser Glu Thr Gly Lys Lys Glu Val Ser Lys Gln Thr Val Ala 165 170 175

Tyr Ser Pro Arg Ser Lys Leu Gly Thr Leu Leu Pro Glu Phe Pro Asn 180 185 190

Val Lys Asp Leu Asn Leu Pro Ala Ser Leu Pro Glu Glu Lys Val Ser 195 200 205

Thr Phe Ile Met Met Tyr Arg Thr His Cys Gln Arg Ile Leu Asp Thr 210 215 220

Val Ile Arg Ala Asn Phe Asp Glu Val Gln Ser Phe Leu Leu His Phe 225 230 235 240

Trp Gln Gly Met Pro Pro His Met Leu Pro Val Leu Gly Ser Ser Thr 245 250 255

Val Val Asn Ile Val Gly Val Cys Asp Ser Ile Leu Tyr Lys Ala Ile 260 265 270

Ser Gly Val Leu Met Pro Thr Val Leu Gln Ala Leu Pro Asp Ser Leu 275 280 285

Thr Gln Val Ile Arg Lys Phe Ala Lys Gln Leu Asp Glu Trp Leu Lys 290 295 300

Val Ala Leu His Asp Leu Pro Glu Asn Leu Arg Asn Ile Lys Phe Glu 305 310 315 320

Leu Ser Arg Arg Phe Ser Gln Ile Leu Arg Arg Gln Thr Ser Leu Asn 325 330 335

His Leu Cys Gln Ala Ser Arg Thr Val Ile His Ser Ala Asp Ile Thr 340 345 350

Phe Gln Met Leu Glu Asp Trp Arg Asn Val Asp Leu Asn Ser Ile Thr 355 360 365

Lys Gln Thr Leu Tyr Thr Met Glu Asp Ser Arg Asp Glu His Arg Lys 370 375 380

Leu 385	Ile	Thr	Gln	Leu	Tyr 390	Gln	Glu	Phe	Asp	His 395	Leu	Leu	Glu	Glu	Gln 400
Ser	Pro	Ile	Glu	Ser 405	Tyr	Ile	Glu	Trp	Leu 410	Asp	Thr	Met	Val	Asp 415	Arg
Cys	Val	Val	Lys 420	Val	Ala	Ala	Lys	Arg 425	Gln	Gly	Ser	Leu	Lys 430	Lys	Val
Ala	Gln	Gln 435	Phe	Leu	Leu	Met	Trp 440	Ser	Сув	Phe	Gly	Thr 445	Arg	Val	Ile
Arg	Asp 450	Met	Thr	Leu	His	Ser 455	Ala	Pro	Ser	Phe	Gly 460	Ser	Phe	His	Leu
Ile 465	His	Leu	Met	Phe	Asp 470	Asp	Tyr	Val	Leu	Tyr 475	Leu	Leu	Glu	Ser	Leu 480
His	Суз	Gln	Glu	Arg 485	Ala	Asn	Glu	Leu	Met 490	Arg	Ala	Met	Lys	Gly 495	Glu
Gly	Ser	Thr	Ala 500	Glu	Val	Arg	Glu	Glu 505	Ile	Ile	Leu	Thr	Glu 510	Ala	Ala
Ala	Pro	Thr 515	Pro	Ser	Pro	Val	Pro 520	Ser	Phe	Ser	Pro	Ala 525	Lys	Ser	Ala
Thr	Ser 530	Val	Glu	Val	Pro	Pro 535	Pro	Ser	Ser	Pro	Val 540	Ser	Asn	Pro	Ser
Pro 545	Glu	Tyr	Thr	Gly	Leu 550	Ser	Thr	Thr	Gly	Asn 555	Gly	Lys	Ser	Phe	Lys 560
Asn	Phe	Gly													
<210 <211 <212 <213	.> 5 !> I	34 558 DNA Homo	sapi	ens.											
<400 acag		84 Nat g	ıgttt	atct	a ct	attg	gago	cat	gggt	cct	ggga	atat	tg g	acca	cccca
aatagaagag ctcaaagtca tccctgaaac cagcgaggaa aataatgagg acatctggaa								tggaa							
ttca	gaag	jag a	ttcc	agaa	g ga	gcag	aata	. tga	.tgat	atg	tggg	atgt	ta g	agaa	atccc

agagtatgag	attatattca	gacagcaggt	gggaactgaa	gatatatttt	tagggttgtc	240
aaaaaaggac	tcctcaacag	gttgttgcag	tgaactagtg	gctaaaatta	aattgccaaa	300
tacaaaccct	tctgatattc	aaattgatat	ccaggaaaca	atccttgacc	ttcgtactcc	360
tcagaagaag	ctgttgataa	ctcttcctga	gctggtggaa	tgtaccagtg	ccaaagcatt	420
ctatatccca	gagactgaaa	ctcttgaaat	ccctatgact	atgaaaagag	agttagatat	480
tgctaatttc	ttctgaaact	gcatgaaaaa	gataaaaagt	agtaaaatgg	cattggtaac	540
aataaaaaaa	ctttgaaa					558

<210> 35

<211> 164

<212> PRT

<213> Homo sapiens

<400> 35

Gln Thr Asn Gly Leu Ser Thr Ile Gly Ala Met Gly Pro Gly Asn Ile 1 5 10 15

Gly Pro Pro Gln Ile Glu Glu Leu Lys Val Ile Pro Glu Thr Ser Glu 20 25 30

Glu Asn Asn Glu Asp Ile Trp Asn Ser Glu Glu Ile Pro Glu Gly Ala 35 40 45

Glu Tyr Asp Asp Met Trp Asp Val Arg Glu Ile Pro Glu Tyr Glu Ile 50  $\phantom{000}55\phantom{000}$  60

Ile Phe Arg Gln Gln Val Gly Thr Glu Asp Ile Phe Leu Gly Leu Ser 65 70 75 80

Lys Lys Asp Ser Ser Thr Gly Cys Cys Ser Glu Leu Val Ala Lys Ile 85 90 95

Lys Leu Pro Asn Thr Asn Pro Ser Asp Ile Gln Ile Asp Ile Gln Glu
100 105 110

Thr Ile Leu Asp Leu Arg Thr Pro Gln Lys Lys Leu Leu Ile Thr Leu 115 120 125

Pro Glu Leu Val Glu Cys Thr Ser Ala Lys Ala Phe Tyr Ile Pro Glu 130 135 140

Thr Glu Thr Leu Glu Ile Pro Met Thr Met Lys Arg Glu Leu Asp Ile

現態神器 issuing is a minimum in the contract of the contract of

145	150	155	160
Ala Asn Phe	Phe		
<210> 36 <211> 538 <212> DNA <213> Homo	sapiens		
<400> 36 ggcacgaggt	cgaaaactcc tggaa	ccctc tgagagagga	cagtttccag actcctcggt 60
agggacgcgg	gaagagacca tgtgt	gggaa atatgagtga g	gcatgtgaga acaagatccc 120
aatcctcaga	aagaggaaat gacca	agagt cttcccagcc	agttggatct gtgattgtcc 180
aggagcccac	tgaggaaaaa cgtca	agaag aggaaccacc	aactgataat cagggtattg 240
cacctagtgg	ggagatcgaa aatga	aggag cacctgccgt	tcaagggcct gacatggaag 300
cttttcaaca	ggaactggct ctgct	taaga tagaggatga 🤇	geetggagat ggteetgatg 360
tcagggaggg	gattatgccc acttt	tgatc tcactaaagt q	gctggaagca ggtgatgcgc 420
aaccataggt	ttcaagcaag acaaa	tgaag actgaaacca a	agaacgttat tettaatetg 480
gaaatttgac	tgataatatt ctctt	aataa agttttaagt 1	tttctgcaaa gaaaaaaa 538
<210> 37 <211> 111 <212> PRT <213> Homo	sapiens		
<400> 37			
Met Ser Glu 1	His Val Arg Thr 5	Arg Ser Gln Ser S	Ser Glu Arg Gly Asn 15
Asp Gln Glu	Ser Ser Gln Pro 20	Val Gly Ser Val 1 25	Ile Val Gln Glu Pro 30
Thr Glu Glu 35	Lys Arg Gln Glu	Glu Glu Pro Pro 3	Thr Asp Asn Gln Gly 45
Ile Ala Pro 50	Ser Gly Glu Ile		Ala Pro Ala Val Gln 50

Gly Pro Asp Met Glu Ala Phe Gln Glu Leu Ala Leu Leu Lys Ile

Glu Asp Glu Pro Gly Asp Gly Pro Asp Val Arg Glu Gly Ile Met Pro

Thr Phe Asp Leu Thr Lys Val Leu Glu Ala Gly Asp Ala Gln Pro 100  $\phantom{0}$  105  $\phantom{0}$  110

作。資本の直接機能的 変数数 Fee 過去 変わけ i 機能計 fine to all en excel·com

10 B (# # 27 H) 1 3