CE5310 - Hydroinformatics

Data Handling and Analysis

Refreshing Hydroinformatics – what does it involve?

Refreshing Hydroinformatics – why is it important?

- Hydrodynamic: ocean currents prediction for navigation, analysis of flow patterns in a canal for irrigation, water level dynamics in a reservoir, eddy simulations for sluice gate operation
- Hydrological: modeling of transport processes for rainfall forecasting, run-off calculations using catchment modeling, operation multiple reservoirs and their interactions
- Multi-physics: air-water interaction for storm surge modeling, diffusion-hydrodynamic interaction for water quality modeling, energy-mass interaction for implementing mixing in lake
- •Eco-hydraulic: effect of vegetation on flow patterns, wave energy attenuation studies for tsunami damage control, algae growth prediction for water quality monitoring

The common theme in all these applications

- Understand existing systems (OBSERVE/ANALYZE)
- Represent existing systems (MODEL)
- Improve existing systems (RETROFIT/OPTIMIZE)
- Regulate existing system (CONTROL)

Develop new/better systems (DESIGN)

Refreshing Hydro*informatics* – data, data everywhere!

Big question: How to make sense out of all these various, huge, complex sets of DATA?

<u>Data handling, processing,</u> <u>visualization, analysis</u>

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Objects

Attributes

1	1				
Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Types of Attributes

- There are different types of attributes
 - Nominal
 - Examples: ID numbers, eye color, zip codes
 - Ordinal
 - Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
 - Interval
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - Ratio
 - Examples: temperature in Kelvin, length, time, counts

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values.
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ ² test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Data are Big

- Europe's Very Long Baseline Interferometry (VLBI) has 16 telescopes, each of which produces 1 Gigabit/second of astronomical data over a 25-day observation session
 - storage and analysis a big problem
- AT&T handles billions of calls per day
 - so much data, it cannot be all stored -- analysis has to be done "on the fly", on streaming data

Largest databases in 2003

- Commercial databases:
 - Winter Corp. 2003 Survey: France Telecom has largest decision-support DB, ~30TB; AT&T ~ 26 TB
- Web
 - Alexa internet archive: 7 years of data, 500 TB
 - Google searches 4+ Billion pages, many hundreds TB
 - IBM WebFountain, 160 TB (2003)
 - Internet Archive (<u>www.archive.org</u>),~ 300 TB

From terabytes to exabytes to ...

• UC Berkeley 2003 estimate: 5 exabytes (5 million terabytes) of new data was created in 2002.

www.sims.berkeley.edu/research/projects/how-much-info-2003/

- US produces ~40% of new stored data worldwide
- 2006 estimate: 161 exabytes (IDC study)
 - www.usatoday.com/tech/news/2007-03-05-data_N.htm
- 2010 projection: 988 exabytes

Data Growth

In 2 years, the size of the largest database TRIPLED!

Data in Hydroinformatics – basic classification

• based on processes :

```
Hydrological – (discharge flows, ground water levels, runoff time, evaporation rate,...)

Meteorological – (wind, temperature, pressure, precipitation,...)

Oceanographic – (sea level, currents, tides, residual currents, bathymetry, salinity, SST,...)

Environmental – (water quality parameters, concentrations of solutes, pH, TOC,...)

Hydrodynamic – (fluid properties, velocity profiles, drag measurements, wave properties,...)

Biological – (microbial characteristics, ecosystem diversity, plant properties, 'omics' data,...)

Geographical – (latitude/longitude, soil/sediment properties, terrain usage, seismic data,...)
```

based on nature of data:

```
Time series – (observations are recorded in the order of time Eg. - tide, wind, discharge,...)

Spatial series – (grids, altimeter track, ship mounted measurements)

Continuous – (can take any real value, Eg. - concentration, pH, temperature)

Discrete – (represents units or counts, Eg. - gate opening, valve positions, station index)

Parameters – (represent system characteristics Eg. - bathymetry, drag coeff., roughness)

Constants – (does not change universally Eg. - g, R, astronomical settings, ...)
```

Data in Hydroinformatics – basic classification (contd)

based on data types:

```
Numeric – all the instrument readings (most of the data in hydroinformatics)
```

Text - (tags, station names, gene sequence)

Date/Time - (reference dates, different formats)

Image- (microscopy, satellite image, scanners, RADAR imagery, maps, meteo/oceanographic data);

Audio/video (ecosystem recordings, sonar, PIV, tracer experiment recordings)

based on source:

In-situ measurements – (ADV, tide gauges, UVM, ADCP, weather stations)

Altimetry - (radar, satellites)

Standards - (handbooks, admiralty charts)

Simulation results - (numerical model outputs, model forecasts)

Residuals - (model system mismatches, non-tidal component in sea level changes)

Processed data - (data obtained after processing the raw data, filtered/normalized/scaled,...)

Synthetic data - (approximations, missing value replacements)

based on data structure:

Relational – (mySQL, O-ap, MS access, netCDF)

Hierarchical - (mat files, workbook)

Unstructured/Manual – (tables, parameters, settings, data in flat text files)

Data resources for Hydroinformatics applications – *data at fingertips*

- In-situ Sea Level measurements UHSLC (http://uhslc.soest.hawaii.edu/); GLOSS (http://www.gloss-sealevel.org/);
- Satellite Altimetry (SSH/SST/Ocean Color data from TOPEX/Poseidon/Jason) Univ CCAR altimetry center

 (http://argo.colorado.edu/~realtime/welcome/); NASA (http://podaac.jpl.nasa.gov/); CNES (http://podaac.jpl.nasa.gov/); RADS (http://rads.tudelft.nl/rads/rads.shtml)
- Standardized records (admiralty charts, tide tables) UHO UK (http://www.mpa.gov.sg/sites/global navigation/publications/singapore tide tables.page)
- Model (assimilated) meteorological data (wind/pressure/temperature/precipitation): NCEP (http://www.ncep.noaa.gov/); ECMWF (http://www.ecmwf.int/);
- In-situ weather measurements WMO(http://www.nomad3.ncep.noaa.gov/) METAR (http://weather.noaa.gov/weather/metar.shtml); NUS (http://courses.nus.edu.sg/course/geomr/front/fresearch/metstation/data01.htm)
- Satellite imagery (google earth www.earth.google.com, wikimapia www.wikimapia.org, ISRO Bhuvan http://isrobhuvan.in/)
- Coast Line boundaries NGDC Shoreline (http://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html)
- Bathymetry ETOPO (http://www.ngdc.noaa.gov/mgg/global/global.html); IHO (http://www.ngdc.noaa.gov/mgg/bathymetry/iho.html)
- **Geographical data** GLOBE (http://www.ngdc.noaa.gov/mgg/topo/globe.html); LIDAR (http://www.ngdc.noaa.gov/mgg/bathymetry/lidar.html); GIS data / maps (http://www.ngdc.noaa.gov/mgg/topo/globe.html); google map)
- Hydrological data Links (http://www.nerc-wallingford.ac.uk/ih/devel/wmo/hhcdbs.html); GHRC (http://ghrc.msfc.nasa.gov/); Univ. Texas atlas (http://www.crwr.utexas.edu/gis/gishyd98/atlas/Atlas.htm)
- ALSO can request local ministries/authorities/centers/research groups for relevant data generally provided free for research use. Some universities also have repositories of data on specific hydroinformatics applications.

Sample data in Hydroinformatics applications

Sea Level data (UHSLC) - Malaysian peninsula

- Oceanographic, Relational database
- Numerical + Text + date, continuous + discrete

ſ	CODE	Name	Country	Lat	Long	Start	End
Ī	699	Keppel	Singapore	1.26	103.85	01.01.1988	15.05.2008
	141	Ko Lak	Thailand	11.8	99.81	01.05.1985	12.04.2006
						•••	

Date	Time	WL (m)
01.01.1988	01:00	1.225
01.01.1988	02:00	1.225
01.01.1988	03:00	9999
01.01.1988	04:00	1.225
15.05.2008	23:00	1.225

Sample data in Hydroinformatics applications

Temperature at Changi Airport

- meteorological, in-situ measurements
- Numerical, Time series, Hierarchical (mat file)

Singapore satellite image

- Geographical, image data

Microbial growth in canal water

- Environmental/biological, Image data

Sample data in Hydroinformatics applications – *(continued)*

South East Asia regional map

- Coastal boundaries, observations
- Numerical, spatial series

Sea Level Anomaly at Keppel Harbor

- Oceanographic, model output/residuals
- Numerical + date/time, continuous

Sample data in Hydroinformatics applications – *(continued)*

Regional Wind Data (METAR)

- Meteorological, Image data
- Spatially continuous data, directions

Diurnal tide in SEA

- oceanographic, Image data

Flume experiment for vegetated flow

- eco-hydraulics, numerical data
- multiple measurements

Which Level? How much? What not?

Huge, High Dimensional, Complex Data at each Level → ALL FOR TAKING

Data analysis issues

- Data management : storage, distribution, authenticity
- Data complexity: voluminous, noise, inconsistency, form
- Data Integration: varying time scales, spatial locations, randomness
- Data analysis and visualization
- Knowledge inference : system identification, modeling, network design
- Basic mathematical issues related to Data processing : tools
- Verification of analysis outcome collaborative research
- Publishing

data analysis techniques/tools are inevitable

Data activities in Hydroinformatics – basic tasks and important issues

• Data acquisition (collection):

- instrument selection (accuracy, precision and resolution, redundancy)
- direct/remote/track measurements (calibration, noise, mounting)
- temporal (sampling rate) and spatial (locations) resolution

• Data storage:

- hard records (archives as tables/visuals) - soft records (digitizing, database design, multimedia data, file formats, nomenclature, data entry) - hardware (memory, backup)

Data handling:

- transfer (access, sharing, speed) - file format conversion (compatibility) - hosting (web)

Data reconciliation:

- alignment (time zone, consistency, nested grid data, different sources, averaging repeats)
- missing value imputation (averaging, spatial/temporal interpolation, deletion)
- noise removal (noise to signal ratio, cutoff limits, noise source, uncertainty analysis)
- outlier detection (validation, distribution, range, statistical significance, outlier correction)
- trend/drift correction (floating instruments, moving tracks, instrument bias, baseline shift)
- type conversion (image to numeric data, non-dimensionalizing, continuous to discrete)

Data visualization:

- plotting/charting - multimedia (animation/movies) - web based (DSS, hosting)

Data activities in Hydroinformatics – basic tasks and important issues (continued)

• Data Mining:

- querying (database query, summary, row/column filtering, sorting, event selection)
- pattern recognition (supervised and unsupervised, scales (time/space), data availability)
- trend analysis (qualitative, quantitative, seasonal, event specific, periodic/non-stationery)
- feature extraction (influential variables, sensitive parameter, dominant location/period)

• Data processing:

- normalization (bringing different variables to similar scale, variable/global)
- scaling (mean centering, offsetting,, log transformation)
- filtering (frequency based, moving averages, Godin tide filter, wave-let transforms)
- projection (transforms, variance based, eigen/singular values, scores and weights)

• Data analysis:

- statistical (descriptive, comparative, hypothesis testing)
- correlation (nature of interaction, scale free measures, dependency (auto/cross correlation)
- regression (linear/non-linear, least squares, residual analysis)
- uncertainty analysis (error estimation, model sensitivity, confidence intervals)
- performance assessment (model assessment, indices, system performance)
- calibration (model parameter tuning, estimation methods, optimization schemes)
- assimilation (model order reduction, error correction, state/parameter updating)
- modeling (data driven, black box/statistical/evolutionary methods, validation, over-fitting)
- frequency response analysis (tidal analysis, periodicity, disturbance response, stability)

Tools to carry out Hydroinformatics tasks – *major support*

Software – (search google / wikipedia for more details on these and download links for few)

- Editors note pad, word pad, image editors, audio/video editors, ...
- Spreadsheets MS Excel, MiniTab, Lotus 123, Star Office, ...
- Databases mySQL, MS Access, O-ap, ...
- Statistical R, SPSS, SAS, STAT, MS Excel, MiniTab, ...
- Visualization gnuPLOT, Pajek, google APIs, ArcGIS, D3D quickplot, datPAV (SDWA), FEWS, ...
- **Specialized** classification (SIMCA / WEKA / SVMlight), modeling (Neurosolutions for ANN, GP tools), optimization (GAMS), tidal analysis (D3D TIDE, TRIANA)

Desired Features

- facility to handle/process/analyze/visualize data
- interactive and integrated environment
- fast and accurate
- easy implementation /compatibility / generalizibility / repeatability
 - MATLAB very generic to high end specialized applications (expensive/available in NUS)
 - R/Octave free, can do many of MATLAB tasks but less powerful toolboxes/visualization.

R package: http://www.r-project.org/ ; Octave: http://www.gnu.org/software/octave/index.html

We shall see sample data, study a few techniques, use some tools and explore interesting HI case studies