動的知能システム基礎 2022 レポート課題

氏名 堀和希

学籍番号 1W203103

課題

以下の 3x3 のマップを持つ迷路でロボットが探索行動をすると仮定する。観測は 16 の可能性があり、行動は{上、右、下、左、止まる}の 5 種類である。指示した移動方向へ実際に移動できる確率は 0.8 であり、0.2 の確率でスリップして止まる。得られた観測結果は 0.7 の確率で正しく、0.02 の確率でそれ以外の 15 個のうちいずれかの観測が誤認識として得られるとする。

"Exploration and observation"で示された行動 a を行い観察 o が得られたとした時、以下の問いに答えよ。

- (1) t=1 での図を参考に $t=2\sim4$ の数値を埋めなさい。ただし、計算結果は少数第四位になるように四捨五入して良い。(電卓の使用を想定しているが、プログラムを作成して計算しても良い)
- (2) t=4 で最大の確率となる状態(場所)はどこか、記号で答えなさい。

答 C, α

ただし、以下が授業で示したベイズフィルタのアルゴリズムである。

- $F_0(s_0)$ の初期化(観測なしでの確率分布) $F_0(s_0) = P(s_0)$
- for t = 1 to T do
 - a_{t-1} で行動し o_t を観測
 - \blacksquare G_t を計算
 - $G_t(s_t) \leftarrow P(o_t|s_t)P(s_t|a_{t-1})$ $= P(o_t|s_t)\sum_{s_{t-1}} P(s_t|s_{t-1}, a_{t-1})F_{t-1}(s_{t-1})$
 - *F*_tを正規化(確率の定義にあうように合計を1とする)

$$\blacksquare$$
 $F_t(s_t) \leftarrow \frac{G_t(s_t)}{\sum_{s} G_t(s)}$

end for

$\begin{array}{c|cccc} Map & A & B & C \\ \hline \alpha & & & & \\ \beta & & & & \\ \gamma & & & & \\ \end{array}$

$$s_t \in \{(A, \alpha), (B, \beta), (C, \alpha), (A, \beta), (B, \beta), (C, \beta), (A, \gamma), (B, \gamma), (C, \gamma)\}$$

Observations

$$o_t \in \{(1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (13), (14), (15), (16)\}$$

Acitons

 $a_t \!\!\in\!\! \{\!\mathrm{up},\, \mathrm{left},\, \mathrm{down},\, \mathrm{right}, \mathrm{stay}\!\}$

Exploration and observaiton

$$t=1$$
 $F(s_0) \quad A \quad B \quad C$
 $a \quad 0.1 \quad 0.1 \quad 0.1$
 $b \quad 0.1 \quad 0.2 \quad 0.1$
 $g \quad 0.1 \quad 0.1 \quad 0.1$
 $e(s_1 | a_0) \quad A \quad B \quad C$

$P(s_1 a_0)$) A	В	\mathbf{C}
а	0.02	0.1	0.18
b	0.1	0.04	0.26
g	0.02	0.1	0.18

$$\mathbf{a}_0 = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$o_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

$P(s_2 a_1)$) A	В	\mathbf{C}
а	0.0227	0.0227	0.0882
b	0.0082	0.6455	0.0118
g	0.0009	 0.1591 	0.0409

$$a_1 =$$

$$o_2 = \begin{bmatrix} (8) \end{bmatrix}$$

t=3

 $G(s_3)$

3)	A	В	C
α	0.0001	0.0189	0.0001
β	0	0.0038	0.0152
γ	0		0.0001

 $P(s_3 | a_2) A$ В \mathbf{C} 0.0067 α 0.027 0.0045 β 0.0003 0.1905 0.76250.0014 γ | 0.0071

 $F(s_3)$

A В \mathbf{C} $0.0035 \stackrel{|}{\cdot} 0.4929$ 0.0023 α β 0.0002 0.0993 0.3974 $0.0007 \stackrel{|}{_{-}} 0.0037$ 0 γ

 $P(o_3 | s_3) A$ В \mathbf{C} 0.02 0.7 α 0.02 β 0.02 0.02 0.02 0.02 0.02 γ 0.02

$$o_3 = (7)$$

t=4

F(s ₃)	A	В	\mathbf{C}
α	0.0035	0.4929	0.0023
β	0.0002	0.0993	0.3974
γ	0	0.0007	0.0037

$G(s_4)$	A	В	\mathbf{C}
α	0	0.002	0.2777
β	0	0.0004	0.0095
γ	0	0	0.0001

$P(s_4 a_3)$) A	В	C
α	0.0007	0.1014	0.3967
β	0.0002	0.0199	0.4768
γ	0	0.0001	0.0043

$P(o_4 s_4)$) A	В	С
α	0.02	0.02	0.7
β	0.02	0.02	0.02
γ	0.02	0.02	0.02

$$o_4 = \frac{1}{2} (11)$$

発展課題

計算機プログラムを作成し、以下のようなマップ上で指定の行動を行った後、t=4の時のの各状態の確率を求め、以下の問いに答えよ。

ただし、初期時刻 t=0 での状態の確率分布は等確率とする。言語はなんでも良いが、実行方法を示した README.txt を添付して、実行可能であることを担保しなさい。

(1) t=4 で最大の確率となる状態(場所)はどこか、記号で答えなさい。

答 A,β

$$\begin{split} s_t &\in \{(A, \, \alpha), \, (B, \, \beta), \, (C, \, \alpha), \, (D, \, \alpha), \\ &(A, \, \beta), \, (B, \, \beta), \, (C, \, \beta), \, (D, \, \beta), \\ &(A, \, \gamma), \, (B, \, \gamma), \, (C, \, \gamma), \, (D, \, \gamma), \\ &(A, \, \delta), \, (B, \, \delta), \, (C, \, \delta), \, (D, \, \delta)\} \end{split}$$

Exploration and observaiton

