Hits	Search Text	DB	Time stamp
65	(ionized adj physical adj vapor) and @ad<20020123 and (Ti or titanium)	USPAT; US-PGPUB	2003/09/23
18	1	USPAT; US-PGPUB	2003/09/23
16	((ionized adj physical adj vapor) and @ad<20020123 and (Ti or titanium)) and	USPAT; US-PGPUB	2003/09/23
	((ionized adj physical adj vapor) and @ad<20020123 and AC)	05-FGF0B	13.10
1	(ionized adj physical adj vapor) and @ad<20020123 and AC	EPO; JPO; DERWENT;	2003/09/23 13:22

DERWENT; IBM_TDB

L Number 1 2 3

4

	77:4-	I Common Mary to	DD	I mama atama
L	Hits	Search Text	DB	Time stamp
Number				
1	121	ionized adj physical adj vapor	USPAT;	2003/09/23
			US-PGPUB	11:43
2	107	(ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123	US-PGPUB	11:43
3	65	((ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123) and (Ti or titanium)	US-PGPUB	11:44
4	63	(((ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:54
	-	(fortin or mosel)		!
5	15	((((ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:48
		(fortin or mosel)) and silicide		
6	6	(((((ionized adj physical adj vapor) and	USPAT;	2003/09/23
		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:50
		(fortin or mosel)) and silicide) and		
	İ	cobalt		
7	9	(((((ionized adj physical adj vapor) and	USPAT;	2003/09/23
•		@ad<20020123) and (Ti or titanium)) not	US-PGPUB	11:50
		(fortin or mosel)) and silicide) not		
		((((((ionized adj physical adj vapor) and		
		@ad<20020123) and (Ti or titanium)) not		
		(fortin or mosel)) and silicide) and		
		cobalt)		
8	48	1	USPAT;	2003/09/23
· ·	""	(%(\(\frac{1}{2}\)) and (Ti or titanium)) not	US-PGPUB	11:54
		(fortin or mosel)) not ((((ionized adj		
		physical adj vapor) and @ad<20020123) and	}	
		(Ti or titanium)) not (fortin or mosel))		
		and silicide)	}	
	I	and silicide/	1	I

DOCUMENT-IDENTIFIER:

US 20020001946 A1

TITLE:

Method and fabricating metal

interconnection with

reliability using ionized physical

vapor deposition

----- KWIC -----

Detail Description Paragraph - DETX (3):

[0020] First, referring to FIG. 3, a first Ti film 22 is formed on a

semiconductor substrate 21 at a thickness of approximately 50 to 500 .ANG.

using the ionized physical vapor deposition (referred to as "IPVD") method. In

the sputtering method, metal atoms from a target may be ionized and accelerated

toward a wafer through <u>AC</u> bias which is applied to a semiconductor substrate.

The directness of the ionized atoms may provide an improved step-coverage of

the first Ti film 22. In the IPVD method using a radio frequency coil, a

hollow cathode or a magnetron, since the kinetic energy of the ionized Ti atoms

is high, the first Ti film 22 has an excellent crystal orientation in an

<002> direction. Further, in the preferred embodiment of the present

invention, the $\underline{\mathbf{AC}}$ bias is in a range of 0 to 500 W and the DC bias is applied

to the radio frequency coil in a range of 0.5 to 5 kW when the processing

pressure is in a range of approximately 1 to 100 mtor.

Claims Text - CLTX (3):

2. The method as recited in claim 1, wherein the ionized physical vapor deposition method uses any one of a radio frequency coil, a hollow cathode and a magnetron and applies <u>AC</u> bias to a processing chamber in order to increase a

09/23/2003, EAST Version: 1.04.0000

directness of the ionized atoms from a Ti target.

Claims Text - CLTX (5):

4. The method as recited in claim 3, wherein an <u>AC</u> bias of 0 to 500 W is applied to a wafer, on which the multilayer metal thin film is formed, at a pressure of 1 to 100 mtorr and a DC bias of 0.5 to 5 kW is applied to the radio frequency coil.

Claims Text - CLTX (15):

14. The method as recited in claim 10, wherein the ionized physical vapor deposition method uses any one of a radio frequency coil, a hollow cathode and a magnetron and applies <u>AC</u> bias of 0 to 500 W to a processing chamber.

Claims Text - CLTX (17):

16. The method as recited in claim 15, wherein an \underline{AC} bias of 0 to 500 W is applied to a wafer, on which the multilayer metal thin film is formed, at a pressure of 1 to 100 mtorr and a DC bias of 0.5 to 5 kW is applied to the radio frequency coil.

09/23/2003, EAST Version: 1.04.0000