Week 7: Systems Applications & Inequalities

Student: SA Tutor: Rachel Eglash

October 24, 2025

Session 7.3 Linear Modeling & Fit-by-Eye

Quick Reference: Linear Modeling

What is a Line of Best Fit?

A line of best fit (or trend line) is a straight line that best represents the data on a scatter plot.

Key Ideas:

- Not all points will be exactly on the line
- The line shows the general trend or pattern
- We use the line to make predictions
- The line minimizes the distance from all the data points

Steps to Create a Line of Best Fit

1. Plot the Data

- Create a scatter plot of all data points
- Label axes with variable names and units
- Choose an appropriate scale

2. Draw the Line

- Use a ruler or straightedge
- Try to balance points above and below the line
- The line should follow the general trend
- Extend the line across the entire graph

3. Find the Equation

- Pick two points ON your line (they don't have to be data points)
- Calculate the slope: $m = \frac{y_2 y_1}{x_2 x_1}$
- Find the y-intercept using point-slope form
- Write in slope-intercept form: y = mx + b

Residuals

A **residual** measures how far each data point is from the line of best fit.

Formula:

Residual = Actual value - Predicted value

Interpretation:

- Positive residual: data point is above the line
- Negative residual: data point is below the line
- Zero residual: data point is exactly on the line
- Smaller residuals mean better fit

Interpreting Slope and y-Intercept

Slope (m):

- Rate of change
- How much y changes for each 1-unit increase in x
- Include units: "For every [unit of x], [variable y] changes by [slope] [unit of y]"

y-Intercept (b):

- Starting value when x = 0
- May or may not make sense in context
- Include units: "When [variable x] is 0, [variable y] is [y-intercept] [unit of y]"

Worksheet 7.3: Linear Modeling

Instructions

:

For each problem,

- 1. Plot the data points on graph paper
- 2. Draw a line of best fit by eye
- 3. Find the equation using two points on your line
- 4. Calculate residuals for specified data points
- 5. Interpret the slope and y-intercept in context

Worksheet Problem 1: Temperature and Hot Chocolate Sales

A café tracks hot chocolate sales at different temperatures.

Temperature (°F)	Hot Chocolates Sold
30	45
35	42
40	38
45	35
50	30
55	28

Part A

Choose your scale:

- x-axis: Temperature from ______ to _____ (include units)
- y-axis: Sales from ______ to _____ (include units)

Add your scale and label axes.

Plot the points.

Part B

Draw a line of best fit (using a different color).

Part C

Choose two points ON your line and find the equation.
Point 1: (
Point 2: (
Calculate the slope:
Find the y-intercept using point-slope form:
Equation:
Part D
Calculate residuals for $x = 30$, $x = 40$, and $x = 50$:
For $x = 30$:
• Actual value:
• Predicted value (from equation):
• Residual = Actual - Predicted =
For $x = 40$:
• Actual value:
• Predicted value:
• Residual =
For $x = 50$:
• Actual value:
• Predicted value:
• Residual =

Part E		
Interpret the slope in cont	ext:	
For every	(include units) increase in temperature,	
the number of hot chocola	tes sold	
	_ (increases/decreases) by about	(include units)
Part F		
Interpret the y-intercept in	n context:	
When the temperature is 0	0°F, the model predicts h	not chocolates sold.
Part G		
Does the y-intercept make	sense in this context? Why or why not	?
Part H		
Use your model to predict	sales at 60°F:	
Is this prediction reasonab	le? Explain.	

Worksheet Problem 2: Study Time and Quiz Score

A teacher tracks student study time and quiz scores.

Study Time (hours)	Quiz Score (%)
0.25	67
0.5	70
0.75	73
1.0	79
1.25	88
1.5	93

Part A

Add a scale and label axes.

Plot the points.

Part B

Draw a line of best fit (using a different color).

Part C

Find the equation of the line of best fit using two points on your line.

Part D

Calculate residuals for x = 0.5, x = 1.0, and x = 1.5:

Part E

Use your model to predict the quiz score for someone who studies 4 hours:

Part F

Is this prediction reasonable? Why or why not?

(Hint: Can quiz scores go above 100%?)

Worksheet Problem 3: Car Value Over Time

A used car dealer tracks how a car's value changes with age.

Car Age (years)	Value (\$1000s)
1	23
2	20
3	17
4	15
5	12
6	9

Part A

Add a scale and label axes.

Plot the points.

Part B

Draw a line of best fit (using a different color).

Part C
Find the equation of the line of best fit.
Part D
What does the y-intercept represent?
Does this make sense? (What was the car worth when new?)
Part E
According to your model, when will the car be worth \$0?

Part F

Is this prediction realistic? Why or why not?

Worksheet Problem 4: Plant Growth

A biology student measures plant height over time.

Days	Height (cm)
0	3
5	5
10	9
15	12
20	15
25	17

Part A

Add a scale and label axes.

Plot the points.

Draw a line of best fit (using a different color).

Part B

Find the equation of the line of best fit.

Part	\mathbf{C}
I all	\sim

Interpret the y-intercept:

Part D

Calculate the residual for day 10:

Part E

Predict the height after 30 days:

Part F

If the plant can only grow to a maximum of 25 cm, when will it reach this height according to your model?