INTRODUCTION TO UNIX-LINUX — QUALITY CONTROL

Klebsiella Workshop Sep 2024

From experiments to data

we are here

Informative data and graphics

Quality control = First step of the bioinformatics analyses

Quality control (raw reads)

Adaptor / Trimming

(adapters/low quality reads)

Alignment /mapping

Variant calling

(QC)

Tree
Building
(QC/caveats)

Different Quality Control tools

Illumina - ref

- FastQC (most widely used)
- MultiQC (compresses dataset)
- Fastp (all-in-one)

DeNovo – no ref

- Metaplan
- BLAST

Quality control

Adaptor / Trimming

Alignment /mapping

Variant calling

- A quality control tool for high throughput sequence data.
- FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis.

The main functions of FastQC are:

- Import of data from BAM, SAM or FastQ files (any variant)
- Providing a quick overview to tell you in which areas there may be problems
- Summary graphs and tables to quickly assess your data
- Export of results to an HTML based permanent report
- Offline operation to allow automated generation of reports without running the interactive application

Quality control

Adaptor / Trimming

Alignment /mapping

Variant calling

Measure of the quality of the identification of the nucleobases generated by automated DNA sequencing

Phred Quality Score	Probability of incorrect base call	Base call accuracy		
10	1 in 10	90%		
20	1 in 100	99%		
30	1 in 1000	99.9%		
40	1 in 10,000	99.99%		
50	1 in 100,000	99.999%		
60	1 in 1,000,000	99.9999%		

Quality control

Adaptor / Trimming

Alignment /mapping

Variant calling

Sequence: FASTA

we are here

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Sequence: FASTQ

we are here

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

№ FastQC Report

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per base GC content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Kmer Content

Basic Statistics

Measure	Value					
Filename	WES_human_Illumina.pe_1.fastq					
File type	Conventional base calls					
Encoding	Sanger / Illumina 1.9					
Total Sequences	4942814					
Filtered Sequences	0					
Sequence length	76					
%GC	47					

Per base sequence quality

Produced by FastQC (version 0.10.1)

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Quality score: Per-base

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Per-base Quality

■ Bad quality score

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Tree Building

Improving Quality

- Filtering of sequences
 - with small mean quality score
 - too small
 - with too many N bases
 - based on their GC content
- Cutting/Trimming sequences
 - from low quality score parts
 - tails

Installation & Usage: FastQC

• Installation:

Wget https://github.com/s-andrews/FastQC/archive/refs/tags/v0.12.1.zip

• Usage:

- Run either interactive graphical application in which you can dynamically load FastQ files and view their results. OR
- In a non-interactive mode where you specify the files you want to process on the command line and FastQC will generate an HTML report for each file without launching a user interface.

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Installation of fastQC using conda

we are here

Quality control

Adaptor / Trimming

Alignment /mapping

Variant calling

```
conda install bioconda::fastqc
conda install
bioconda/label/broken::fastqc
conda install
bioconda/label/cf201901::fastqc
```


MultiQC

- MultiQC is a tool to create a single report with interactive plots for multiple bioinformatics analyses across many samples.
- MultiQC provides clear and customizable visualizations, including graphs, boxplots, and heatmaps that help in interpreting the data quickly and effectively.

General Statistics

- Copy table	III Configure Columns	↓ Sort by highlight • Plot		Showing ⁸ / ₈ rows and ⁹ / ₁₁ columns.					
Sample Name	5'-3' bias	M Aligned	% Aligned	M Aligned	% Aligned	M Aligned	% Dups	% GC	M Seqs
Irrel_kd_1	1.18	35.6	86.4%	31.2	92.1%	33.2	55.9%	47%	36.1
Irrel_kd_2	1.14	30.4	86.0%	26.5	92.2%	28.4	53.6%	47%	30.8
Irrel_kd_3	1.19	23.6	85.7%	20.5	92.0%	22.0	50.1%	48%	23.9
Mov10_kd_2	1.13	51.9	86.0%	45.3	91.6%	48.3	60.5%	48%	52.7
Mov10_kd_3	1.13	30.7	86.0%	26.8	91.6%	28.5	54.6%	47%	31.1
Mov10_oe_1	1.09	38.1	80.2%	32.1	88.9%	35.5	56.5%	47%	40.0
Mov10_oe_2	1.18	35.4	81.0%	30.0	88.8%	33.0	55.9%	48%	37.1
Mov10_oe_3		20.3	81.5%	17.3	90.0%	19.1	50.1%	47%	21.2

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Installation & Usage: MultiQC

- Installation:
 - pip install multiqc

- Usage:
 - Basic command: multiqc .
 - Or navigate within directory: multiqc [path to fastqc files] data/* fastqc.zip
 - Other parameters / options:
 - -o/--outdir (desired folder name)
 - -p/--export (export .pdf .jpg .png files)

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Different trimming tools

Illumina – ref data

- Trimmomatic
- CutaDapt
- Fastp
- Flexar
- Trimgalore

DeNovo – no ref

- Kraken
- Filtlong
- Porechop
- Blobology
- BLAST

Quality control

Adaptor / Trimming

we are here

Alignment / mapping

Variant calling

Trimmomatic

- Trimmomatic performs a variety of useful trimming tasks for illumina paired-end and single ended data. The selection of trimming steps and their associated parameters are supplied on the command line.
- Requies Java installation, check java –version
- Inputs Single-end or Paired-end FASTQ or FASTQ.GZ reads
- https://github.com/usadellab/Trimmomatic?tab
 =readme-ov-file

Quality control

Adaptor / Trimming

we are here

Alignment / mapping

Variant calling

Installation & Usage: Trimmomatic

• Installation:

we are here

- wget https://github.com/usadellab/Trimmomatic.git
- Usage:
 - java -jar trimmomatic-0.39.jar PE input_forward.fq.gz input_reverse.fq.gz output_forward_paired.fq.gz output_forward_unpaired.fq.gz output_reverse_paired.fq.gz output_reverse_unpaired.fq.gz ILLUMINACLIP:TruSeq3-PE.fa:2:30:10:2:True LEADING:3 TRAILING:3 MINLEN:36
- The above code is for reference only

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Fastp

- <u>fastp</u> is a tool designed to provide fast all-in-one preprocessing for FASTQ files. This tool is developed in C++ with multithreading supported to afford high performance.
- Inputs Single-end or Paired-end FASTQ or FASTQ.GZ reads
- https://github.com/OpenGene/fastp?tab=readmeov-file#features

Quality control

Adaptor / Trimming

Alignment / mapping

Variant calling

Installation & Usage: Fastp

- Installation:
 - wget http://opengene.org/fastp/fastp
 - chmod a+x ./fastp
- Usage:
 - SE code: fastp -i in.fq -o out.fq
 - PE code: fastp -i in.R1.fq.gz -I in.R2.fq.gz -o out.R1.fq.gz -0 out.R2.fq.gz

• The above code is for reference only

Quality control

Adaptor / Trimming

we are here

Alignment / mapping

Variant calling