Prof. Dr. H. Drees

Übungen zur Risikotheorie

1. Hausaufgabenübungsblatt

- 1. Zeigen Sie, dass die Mischung von Poisson-Verteilungen mit Mischungsmaß $\Gamma_{\alpha,\beta}$ gerade die negative Binomialverteilung $\mathcal{B}^-_{(\alpha,\beta/(\beta+1))}$ ist! (Die Definitionen der auftretenden Verteilungen finden Sie im Skript auf den Seiten 7 und 12.)
 - Hinweis: Vergleichen Sie dazu am besten die Zähldichte, also die Wahrscheinlichkeiten beliebiger Einpunktmengen, und verwenden Sie die Relation $\alpha\Gamma(\alpha) = \Gamma(\alpha+1)$. (4 Punkte)
- 2. Sei in der Situation von Korollar und Definition 1.6(ii) für alle $\vartheta \in \Theta$ eine Zufallsvariable X_{ϑ} auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) gegeben mit Verteilung Q_{ϑ} sowie eine Zufallsvariable X auf dem gleichen Wahrscheinlichkeitsraum mit Verteilung Q. Zeigen Sie: Für alle messbare Abbildungen $f: (\mathcal{X}, \mathcal{C}) \to ([0, \infty), \mathbb{B}[0, \infty))$ gilt

$$E(f(X)) = \int E(f(X_{\vartheta})) Q_{\Theta}(d\vartheta).$$

Hinweis: Verwenden Sie den im Korollar und Definition 1.6 nachgewiesenen Zusammenhang $Q = (Q_{\Theta} \otimes K)^{pr_2}$, den Transformsationssatz sowie den Satz von Fubini-Tonelli für Markov-Kerne (Satz 4.6 im Kurzskript zur Maßtheorie)! (4 Punkte)

Abgabe: Donnerstag, den 22.10.2015, vor der Übung.