Sequence and Series

Gunja Sachdeva

August 20, 2024

2)
$$\left\{1-\frac{1}{n}\right\} \longrightarrow L$$

$$\chi: \mathbb{N} \longrightarrow \mathbb{K}$$

$$\chi(u) \equiv \chi(u)$$

$$\{a_{1}, a_{2}, a_{3}, --3\}$$

Recall

A sequence (a_n) in $\mathbb R$ is said to converge to $\ell \in \mathbb R$, or ℓ is said to be a limit of (a_n) , if for every $\epsilon > 0$, there exists an integer $N(\epsilon) \in \mathbb N$ such that

$$|a_n - \ell| < \epsilon$$
 for all $n \ge N(\epsilon)$.

ie,
$$a_n \in (\ell - \epsilon, \ell + \epsilon) \forall n \geq N(\epsilon)$$
.

Recall

A sequence (a_n) in $\mathbb R$ is said to converge to $\ell \in \mathbb R$, or ℓ is said to be a limit of (a_n) , if for every $\epsilon > 0$, there exists an integer $N(\epsilon) \in \mathbb N$ such that

$$|a_n - \ell| < \epsilon$$
 for all $n \ge N(\epsilon)$.

ie,
$$a_n \in (\ell - \epsilon, \ell + \epsilon), \forall n \geq N(\epsilon)$$
.

Remarks.

- The notation is $\lim a_n = \ell$. or $a_n \to \ell$, as $n \to \infty$.
- If a sequence has a limit, we say that the sequence is convergent; if
 it has no limit, we say that the sequence is divergent.
- The convergence of a sequence is unaltered if a finite number of its terms are replaced by some other terms.

(i) Let
$$a \in \mathbb{R}$$
 and $a_n := a$ for all $n \in \mathbb{N}$. Then $a_n \to a$.

 $|\{a,a,a,a,--\}| \cdot |\{e-1\}| = |\{a-a\}| = 0$

So the second choose $N = \{e\} + 1$

(ii) $a_n := 1/n$ for all $n \in \mathbb{N}$. Then $a_n \to 0$.

 $|\{a,a,a,a,--\}| \cdot |\{a-1\}| = |\{a-a\}| = 0$
 $|\{a,a\}| = 1/n$ for all $a \in \mathbb{N}$. Then $a_n \to 0$.

$$|ef E^{-1}|_{2} \cdot |ef E^{-1}$$

(i) Let $a \in \mathbb{R}$ and $a_n := a$ for all $n \in \mathbb{N}$. Then $a_n \to a$.

(ii) $a_n := 1/n$ for all $n \in \mathbb{N}$. Then $a_n \to 0$.

Let $\epsilon > 0$ be given. We want to find $N \in \mathbb{N}$ such that $|(1/n) - 0| < \epsilon$ for all $n \geq N$.

Choose any $N \in \mathbb{N}$ which is greater than $1/\epsilon$. (This is possible because of the Archimedean property of \mathbb{R} .)

For example, we can let $N := \lceil 1/\epsilon \rceil + 1$.

(iii)
$$a_n := 2/(n^2+1)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$.

$$\xi = \frac{1}{5}$$
, choose $N = 4$
 $a_n \in (-0.2, 0.2)$ $\# n \ge 4$

(iii)
$$a_n := 2/(n^2+1)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$. Now

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

Choose $N \in \mathbb{N}$ such that $N > \sqrt{2}/\sqrt{\epsilon}$. For example, let $N := \left[\sqrt{2}/\sqrt{\epsilon}\right] + 1$. Then $|a_n - 0| < \frac{2}{n^2} < \epsilon$ for all $n \ge N$.

(iv)
$$a_n := 5/(3n+1)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$.

$$\left|\frac{5}{3v+1}-0\right|=\frac{5}{3v+1} < \frac{5}{3v}$$

$$|a_{n}-l|=|\frac{5}{3n+1}|<\frac{5}{3n}<2$$
 $+$ $n\geq N$

$$N = \frac{5}{3}e^{-\frac{5}{3}}$$

2=0

(iii)
$$a_n := 2/(n^2+1)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$. Now

$$\left|\frac{2}{n^2+1}-0\right|=\frac{2}{n^2+1}<\frac{2}{n^2}\quad\text{for all }n\in\mathbb{N}.$$

Choose $N \in \mathbb{N}$ such that $N > \sqrt{2}/\sqrt{\epsilon}$. For example, let $N := [\sqrt{2}/\sqrt{\epsilon}] + 1$. Then $|a_n - 0| < \frac{2}{n^2} < \epsilon$ for all $n \ge N$.

(iv)
$$a_n := 5/(3n+1)$$
 for $n \in \mathbb{N}$. Then $a_n \to 0$. Now

$$\frac{5}{3n+1}<\frac{5}{3n}$$
 for all $n\in\mathbb{N}$.

Choose $N \in \mathbb{N}$ such that $N > 5/3\epsilon$. For example, let $N := [5/3\epsilon] + 1$. Then $|a_n - 0| < \frac{5}{3n} < \epsilon$ for all $n \ge N$.

Prove that
$$\lim_{n\to\infty} r^n = 0$$
 for $|r| < 1$. $c \in -1$

(ase 2 9 = 0 and -1(9 < 1)

Given
$$6>0$$
, choose $N = [\frac{1}{5a}] + 1$

Sit $|a_n - o| = |9^n - o|$

$$|3| < 1$$

$$|3| < 1$$

$$|3| < 1$$

$$|3| > 1$$

$$|3| = 1 + a$$

$$|3| |3|$$

Prove that $\lim_{n\to\infty} r^n = 0$ for |r| < 1.

Case 1. r = 0

In this case the sequence is $\{0,0,0,\ldots\}$ which converges to 0.

Case 2. $r \neq 0$ and |r| < 1.

Since |r| < 1, $\frac{1}{|r|} > 1$. Let $\frac{1}{|r|} = 1 + a$ where a > 0. Then

$$|r^n - 0| = |r|^n = \frac{1}{(1+a)^n}.$$

We have $(1+a)^n > na$ for all $n \in \mathbb{N}$ and hence,

$$|r^n - 0| < \frac{1}{na}$$
 for all $n \in \mathbb{N}$.

Let $\epsilon > 0$ be given. Then

$$|r^n - 0| < \epsilon \text{ holds } \text{if } n > \frac{1}{a\epsilon}.$$

Choose any $N \in \mathbb{N}$ such that $N > \frac{1}{a\epsilon}$. Then

$$\forall n \geq N, |r^n - 0| < \epsilon.$$

Since $\epsilon > 0$ is arbitrary,

$$\lim_{n\to\infty}r^n=0.$$

Prove that the sequence $((-1)^n:n\in\mathbb{N})=(-1,1,-1,1,\ldots)$ is not convergent.

= ((f1)2k-20) - (f1)2k+1-20)

Prove that the sequence $((-1)^n:n\in\mathbb{N})=(-1,1,-1,1,\ldots)$ is not convergent.

Let $x_n := (-1)^n$ be convergent and converges to the real number x. Then definition of convergence must hold for every ϵ .

• In particular choose $\epsilon = \frac{1}{2}$. Then there exists a natural number k such that

$$|x_n - x| = |(-1)^n - x| < \frac{1}{2} \text{ for all } n \ge k.$$

Since
$$(-1)^{2k} = 1$$
 and $(-1)^{2k+1} = -1$,

$$2 = |(-1)^{2k} - (-1)^{2k+1}|$$

$$= |((-1)^{2k} - x) - ((-1)^{2k+1} - x)|$$

$$\leq |((-1)^{2k} - x)| + |((-1)^{2k+1} - x)| < \frac{1}{2} + \frac{1}{2} = 1,$$

which is a contradiction. Therefore, the sequence $(-1)^n$ is not convergent.

Definition

The sequence (a_n) diverges to infinity if for every number $M \in \mathbb{R}$ there is an integer N such that $\forall n > N$, we have $a_n > M$. If this holds, we write

$$\lim_{n\to\infty} a_n = \infty$$
 or $a_n \to \infty$.

Similarly if for every number $m \in \mathbb{R}$, there is an integer N such that $\forall n > N$, we have $a_n < m$, then we say (a_n) diverges to negative infinity. We write

$$\lim_{n o \infty} a_n = -\infty$$
 or $a_n o -\infty$.

Properties of limits

Uniqueness of Limits. A sequence in \mathbb{R} can have at most one limit.

Let Song be a sequence which converges to liandily

S. E. l.
$$\pm l_2$$

Given $e = \frac{|l-l_2|}{2}$, $\exists N(e)$ and $N_2(e)$ s. t

 $|a_n - l_1| \in E$ $\forall n \ge N_1$

and $|a_n - l_2| \in E$ $\forall n \ge N_2$
 $\exists |a_n - l_1| \in E$ and $|a_n - l_2| \in E$ $n \ge \max\{N_1, N_2\}$

Properties of limits

Uniqueness of Limits. A sequence in \mathbb{R} can have at most one limit.

Proof. Let (a_n) be a real sequence and suppose that ℓ_1 and ℓ_2 are both limits for (a_n) and let $\ell_1 \neq \ell_2$.

- Let $\epsilon := |\ell_1 \ell_2|/2$. Since $\ell_1 \neq \ell_2, \epsilon > 0$.
- Since ℓ_1 is a limit of the sequence, for the chosen $\epsilon,\exists~\textit{N}_1\in\mathbb{N}$ such that

$$|a_n - \ell_1| < \epsilon$$
, for all $n \ge N_1$.

• Since ℓ_2 is a limit of the sequence, for the chosen $\epsilon, \exists N_2 \in \mathbb{N}$ such that

$$|a_n - \ell_2| < \epsilon$$
, for all $n \ge N_2$.

Let $N = \max\{N_1, N_2\}$. Then:

$$|a_n - \ell_1| < \epsilon$$
 and $|a_n - \ell_2| < \epsilon$ for all $n \ge N$,

and hence,

$$|\ell_1 - \ell_2| = |(a_N - \ell_2) - (a_N - \ell_1)| \le |a_N - \ell_1| + |a_N - \ell_2| < \epsilon + \epsilon = |\ell_1 - \ell_2|$$

which is a contradiction. Hence, $\ell_1 = \ell_2$.

Theorem

A convergent sequence is bounded.

Suppose $a_n \to \ell$. Let $\epsilon := 1$. There is $N \in \mathbb{N}$ such that

$$|a_n - \ell| < 1$$
 for all $n \ge N$.

Hence

$$|a_n| \le |a_n - \ell| + |\ell| < 1 + |\ell|$$
 for all $n \ge N$.

- Thus it remains to find a bound for $a_1, a_2 \cdots, a_{N-1}$. Choose $\beta = \max\{|a_1|, |a_2|, \cdots, |a_{N-1}|\}$. Then $|a_n| \leq \beta$, for all $1 \leq n \leq N-1$.
- Define $\alpha := \max\{|a_1|, \ldots, |a_{N-1}|, |\ell| + 1\}$. Then $|a_n| \leq \alpha$ for all $n \in \mathbb{N}$. Hence (a_n) is bounded.

