

ROS-I Academy Training

ROS Introduction

MASCOR Institute FH Aachen University

2017ff

ROSIN Training Robot Operating System

▶ ROS celebrates its 10th birthday this year!

https://vimeo.com/245826128

ROS Introduction

ROS - Robot Operating System

- Operating System?
- Accumulation of programs
- Installation of third party programs
- File System
- Hardware drivers
- Programming environment

- Robot Framework?
- Preinstalled OS necessary
- Similar to other Robot Frameworks
 - Microsoft Robotics Studio
 - Plaver
 - Fawkes

ROS Benefits

- ROS Robot Operating System

 Standard in mobile robotics
 - Open Source
 - ▶ Big Community
 - ► Reuseability of software
 - ► Fine grained software packages
 - Network based communication

ROS Benefits

ROS - Robot Operating System

- Hardware driver
 - Complete supported robotsystems (125)
 - Programming Languages: C++, Python, Lua, Java...
 - Integration of nearly all other Open Source libraries
 - OpenCV image processing
 - Gazebo simulation environment
 - ► Movelt! pathp lanning
 - PCL 3D pointcloud library
 - ► ROS Industrial

ROS Level of Concepts

H2020 funded GA no. 732287

Higher-Level Concepts

Filesystem

Computation Graph

Community

ROS Community

The first level...

... Community

www.wadeco.de

ROS Community Worldwide

http://www.ros.org/is-ros-for-me/

▶ ROS has grown to include a large community of users worldwide

▶ The Community is the major pillar of ROS

ROS Community Resources

ROS Website

ROS Wiki

ROS News

ROS Community Some Facts: Users (July 2015)

rosin-project.

wiki.ros.org

- 16,043 wiki pages
- 37,235 views / day
- ▶ 46,611 unique IP addresses downloading .deb files

answers.ros.org

	Page		Pageviews	% Pageview
1.	/questions/	P	14,708	4.98%
2.	/question/87866/how-to-edit-the-bashrc-file/	æ	2,625	0.89%
3.	/questions/ask/	æ	1,173	0.40%
4.	/account/signin/?next=/	æ	1,155	0.39%
5.	/question/203610/ubuntu-14042-unmet-dependencies/	P	1,025	0.35%
6.	/account/signin/	æ	931	0.32%
7.	/question/10543/how-do-i-link-a-library-in-cmake/	æ	773	0.26%
8.	/question/196455/kinect-installation-and-setup-on-ros-updated/	P	645	0.22%
9.	/questions/scope:all/sort:activity-desc/page:1/	P	582	0.20%
10.	/question/57213/how-i-completely-remove-all-ros-from-my-syst	æ	518	0.18%

- 24,026 total questions
- 17,414 answered questions
- 523 new guestions

Community Metrics Report, Tully Foote, July 2015

ROS Community Some Facts: Research (July 2015)

Number of papers citing "ROS: an open-source Robot Operating System" (Quigley et al., 2009): 1843 (**52%** increase)

Community Metrics Report, Tully Foote, July 2015

ROS Filesystem

The next level...

... Filesystem

ROS Filesystem Package

- Software in ROS is organized into packages
- Smallest build part in ROS
- Dedicated to one functionality, e.g.:
 - ► Hardware driver
 - Algorithm
 - Visualization tool
 - ► Library . . .
- Packages can be grouped to metapackages
 - References one or more related packages
 - Beneficial for release and versioning
 - (Former called stacks)

REP-144:ROSPackageNaming

ROS Filesystem Package install options

Debian Packages:

- Automatic installation
- Stable versions
- Prebuilt binaries

Source Repositories:

- "Latest" code
- Manual compilation
- Allows code adjustments

ROS Filesystem Package installation (Debian)

Debian:

sudo apt-get install ros-kinetic-package_name

advanced permission packaging tool

install new package

ROS package

ROS distribution

ROS package name

- Automatic installation:
 - ► Location: /opt/ros/<distro>/...
 - Installs all required dependencies
- To remove a package:

sudo apt-get remove ros-kinetic-package name

ROS Filesystem Package installation (Source)

Download from source (usually git)

- Manual compilation via catkin (Explained later)
- To remove a package:
 Delete package folder and re-compile
- Manage multiple version-control packages: wstool

ROS Filesystem Package content - Folder structure

my first pkg

/include - Header files for C++

/scripts - Scripts (**Python** or Shell)

/launch - ROS *launch*-files (Explained later)

Compileable files (C++)

/config - Configuration file (e.g. yaml)

config

include

launch

nobot.launch

scripts

🖺 teleop.pv

CMakeLists.txt

package.xml

Command to generate a new package:

catkin_create_package package_name dependencies

/src

ROS Filesystem Package content - Manifests (package.xml)

H2020 funded GA no. 732287

- Meta information about the package
- Lists dependencies of package
- ► Format 2 is recommended (Old Format 1 still supported)

ROS Filesystem Dependencies

- Dependencies can be
 - Other ROS packages
 - System libraries (e.g. "Boost")
- ▶ Format 2 dependencies (Catkin-howto):

```
<buildtool_depend> - Required for build tools (catkin is mandatory)
```

```
<exec_depend> - Required for execution (e.g. Python script ...)
```

```
<build_depend> - Required for building (e.g. C++ library ...)
```

<test_depend> - Required for testing

<build_export_depend> – If exported header depends on other ones

<depend> - All-in-one (If **all** are required)

ROS Filesystem Package content - CMakeLists.txt

- Defines build rules for catkin. E.g.:
 - Declare compilation of executables
 - How to resolve header and library references
- Mostly Cmake, plus catkin-specific ones
- Does not know about package.xml dependencies

ROS Filesystem Catkin

- ROS build system:
 - Based on CMake macros and Python scripts
 - Cross-platform (Ubuntu, Windows, Embedded-Linux)
- ROS packages are managed via "workspaces"
 - Catkin can create and compile them

Catkin (Used in training):

Command:

catkin make

Must be called in the root of the workspace

Catkin tools:

Command:

catkin build

Builds each package in isolation

ROS Filesystem Catkin workspace (1)

Folder where you modify, build and install catkin packages

WORKSPACE catkin ws/

SOURCE SPACE src/

BUILD SPACE

DEVEL SPACE

build/ devel/

INSTALL SPACE install/

pkg1/

pkg2/

ROS Filesystem Catkin workspace (2)

Used for Development

- Source Space:
 - Contains the source version of packages
- Build Space:
 - Where CMake is invoked and generates artifacs
- Devel Space:
 - Where built targets are placed prior to installation

Dependence

Ready for Installation

- Install Space:
 - Self-contained package ready for release
 - ▶ Package-structure like in /opt/ros/<distro>

Example with catkin make

Go to the ROS workspace

cd ~/catkin ws

Install all dependencies of package(s)

rosdep install -i --from-paths src

Compile the workspace

catkin make

ROS Filesystem Environment Setup File

setup.sh

Environment setup in general

setup.bash

- Environment setup file for Bash

- setup.zsh Environment setup file for Z shell
- Generated during the initialization process of a workspace
- Extends the present ROS environment

Source ROS env: source <ws-path>/devel/setup.bash

Check current env:

echo \$ROS_PACKAGE_PATH

ROS Computation Graph

The next level ...

... Computation Graph

ROS Computation Graph Concept

▶ The Computation Graph is the peer-to-peer network of ROS processes that are processing data together.

Reflects the whole communication in the ROS system.

ROS Computation Graph Node

- Executable part of ROS:
 - Scripts for Python
 - Compiled source code for C++
 - Generally programs using a ROS client library
 - ► Haskell, Lisp, Matlab, ...
 - Process that performs computation
 - Meant to operate at fine-grained scale

To run a node:

rosrun package_name node_name

A robot control system will usually comprise many nodes

Manipulation

Motor controller

Camera

ROS Computation Graph Parameter Server

- Allows data to be stored by key in a central location
- Globally viewable
- Not designed for high-performance
- static, non binary data (configuration data)
- Examples
 - adjustable hardware drivers:
 - webcams.
 - joysticks, ...
 - adjustable algorithms:
 - path planning,
 - ► sensor fusion, ...
- More flexibility

ROS Computation Graph Launch Files

- XML based
- Starts the roscore
- Tool to manage a robotic system:
 - setting of parameter values
 - including other launch files
 - definition of namespaces
 - respawning of died nodes

To run a launch file:

roslaunch package_name launch_file_name

ROS Computation Graph Launch Files Example


```
<!-- -*- mode: XML -*- -->
              beginn of the launch file
<launch:
                starting a node
<node name="cam" pkg="usb_cam" type="usb_cam_node" output="screen">
         <param name="video device" value="/dev/video0" /:</pre>
                                                                  settina
         <param name="image width"</pre>
                                       value="640" />
                                                                  parameters
         <param name="image height"</pre>
                                       value="480" />
              ending a start node process
</node>
                                                 name of executable
         name of running process
<node name="view" pkg="image_view" type="image_view" output="screen" />
                          name of package
                                                      output of errors
</launch>
                                                      and warnings
       end of the launch file
```


ROS Computation Graph RViz

- ▶ 3D visualization tool of ROS
- Can be used to visualize any type of sensor data or algorithm results, e.g.:
 - ► images,
 - laser scan data,
 - ▶ imu data,
 - transformations,
 - maps,
 - robot models,
 - planned paths,
 - etc.

To run RViz:

rosrun rviz rviz

H2020 funded GA no. 732287

ROS Any questions?

http://www.allonrobots.com/