第8回CIR-KIT定期ミーティング ロボットアームの関節機構

下松八重 宏太

2015/04/18

1 はじめに

ARCのロボットアーム制作にあたって、まずはロボットアームの機構について考える必要がある。昨年のトマトロボット競技会においても様々な形のロボットアームが参加していた。そこで、今回はロボットアームの関節機構についてまとめようと思う。

2 ロボットアームの関節と自由度

ロボットアームを開発する場合、まずはその自由度について考える必要がある。自由度とは、平面及び空間内においてアームがどの方向に動くことができるのかを表す尺度である。この時、方向とはアームの傾きと位置を意味する。通常、ロボットアームの自由度は各関節の数と一致する。また、今回のように空間内で作業をするロボットアームは6自由度あれば十分であるとされる。ただし、今回はロボットアームの台座となるものが自立移動ロボットであるため、アーム自体の自由度は4自由度あればよいと考えられる。(表1)

表 1: 関節数と自由度

アーム	関節数	自由度
空間作業用ロボットアーム	6	x 軸 $+ y$ 軸 $+ z$ 軸 $+ x$ 軸 $+ y$ 回転 $+ z$ 回転 $= 6$ 自由度
今回開発するロボットアーム	4	x 軸 $+ y$ 軸 $+ z$ 軸 $+ 1$ 軸回転 $= 4$ 自由度
人間の腕	3	肩 3 + 肘 1 + 手首 3 = 7 自由度