Artificial Intelligence 머신러닝의 기초

전통적인 프로그램은 사람이 규칙을 수정

머신러닝이

오늘의 습도를 통해

판단할 수 있도록

프로그래밍하자!

머신러닝은 스스로 규칙을 수정 이신러닝 지금까지의 비온 날의 데이터를 종합하니 오늘의 습도가 58%면 다음 날 비가 왔습니다. 새로운 데이터가 들어 오면 규칙을 다시 조정합니다.

규칙을 스스로 수정

머신러닝은 학습 방식에 따라

지도 학습(supervised learning),

비지도 학습(unsupervised learning),

강화 학습(reinforcement learning)으로 분류

지도 학습은 입력과 타깃으로 모델을 훈련

비지도 학습은 타깃이 없는 데이터를 사용(ex. 군집(dustering))

규칙이란 가중치와 절편을 의미

손실 함수로 모델의 규칙을 수정

인공신경망을 여러 겹 쌓으면 딥러닝

딥러닝은 머신러닝이 처리하기 어려운 데이터를 더 잘 처리함(비정형 데이터)

딥러닝에 잘 맞는 데이터

Affro.

이미지/영상, 음성/소리, 텍스트/번역 등의 비정형 테이터

머신러닝에 잘 맞는 데이터

데이터베이스, 레코드 파일, 엑셀/CSV 등에 담긴 정형 데이터

Machine Learning 종류

Machine Learning

Supervised Learning

지도 학습

- ◆ 정답이 있는 데이터를 통해
- ◆ 데이터 분류 / 올바른 결과 예측

Regression 회귀

√ 연속형 변수

✓ 범주형 변수

Classification

분류

Unsupervised Learning

비지도 학습

- ◆ 정답이 없는 데이터를 통해
- ◆ 데이터의 유의미한 패턴 / 구조 발견

Clustering 군집화 Reinforcement Learning 강화 학습

- ◆ 행동에 대한 보상을 통해
- ◆ 누적 보상을 최대화 하는 의사결정

지도학습 - 선형회귀

Linear Regression

선형 회귀

공부 시간	시험 점수
0.5	10
1.2	8
1.8	14
2.4	26
2.6	22
3.2	30
3.9	42
4.4	48
4.5	38
5	58
5.3	60
5.8	72
6	62
6.1	68
6.2	72
6.9	58
7.2	76
8.4	86
8.6	90
10	100

데이터를 가장 잘 표현하는 직선은?

공부 시간	시험 점수
0.5	10
1.2	8
1,8	14
2.4	26
2.6	22
3.2	30
3.9	42
4.4	48
4.5	38
5	58
5.3	60
5.8	72
6	62
6.1	68
6.2	72
6.9	58
7.2	76
8.4	86
8.6	90
10	100

9시간을 공부했을 때 예상 시험 점수는?

X

Independent variable 독립 변수 (원인)

= 입력 변수, feature

У

Dependent variable 종속 변수 (결과)

= 출력 변수, target, label

실제 값과 예측 값 차이의 <mark>제곱의</mark> 합을 최소화

$$sum(y - \hat{y})^2$$

다항회귀(Polynomial Regression)

공부 시간	시험 점수
₽ 0.5	10
1.2	8
1.8	14
2.4	26
2.6	22
3.2	30
3.9	42
4.4	48
4.5	38
5	58
5.3	60
5.8	72
6	62
6.1	68
6.2	72
6.9	58
7.2	76
8,4	86
8,6	90
10	100

데이터를 가장 잘 표현하는 선?

Classification vs Clustering

	Classification	Clustering
Class를 미리 아는가(사전정보)	Yes	No
사용	새로운 샘플/데이터를(이미 알고 있는)Class로 분류	데이터 패턴을 찾은 뒤 Class에 그룹화 제안
알고리즘	Decision Tree, Bayesian, KNN, Random Forest, Naive Bayes	K-Means, Fuzzy, EM, GMMM, 계층분석
데이터 조건	데이터 라벨링되어 있어야 함	예) 사진, 게시글, 비디오
학습	Supervised	Unsupervised
분석 방법	학습(Train) 모델로 데이터 학습	자체 데이터 학습

선형회귀 vs 로지스틱회귀

비지도 학습

Clustering

지도학습

비지도학습

Classification ≠ Clustering

"유사한 특징을 가지는 데이터들을 그룹화"

(예) 고객 세분화, 소셜 네트워크 분석, 기사 그룹 분류, ...

비지도학습 - Clustering

K-Means

"데이터를 K 개의 클러스터(그룹)로 군집화하는 알고리즘, 각 데이터로부터 이들이 속한 클러스터의 중심점까지의 평균 거리를 계산"

중심점: Centroid

비지도학습 - Clustering

K-Means 동작순서

- 1. K값 설정
- 지정된 K개 만큼의 랜덤좌표 설정

중심점1

laaS, Paas, SaaS and Cloud

Compiler vs Interpreter

	Interpreter	Compiler
종류	python	C S S Java
작동 방식	소스코드를 실행 시 마다 해석	소스 코드를 한번에 기계어로 변환
실행속도	느림	빠름
보안	낮음	높음
메모리 사용량	큼	적음
디버깅	비교적 용이	어려움
활용	웹개발, 프로토타입 제작 등	운영체제, 펌웨어, 게임엔진, 그래픽처리 등 성능 이 중요한 애플리케이션 또는 시스템 프로그래밍

Interactive Mode vs Script Mode

Interactive Mode	Script Mode
Notebook	Visual Studio Code Microsoft
In [1]: import pandas as pd In [2]: import matplotlib.pyplot as plt	Editor Screen
한줄 한줄 바로 결과를 표시	전체 코드 작성 후 Run

통계 기초

Pandas

```
1 df1 = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"], index=["x", "y"])
2 display(df1)
A B
x 1 2
y 3 4
```



```
1 s3 = pd.Series({"A":1, "B":2, "C":3, "D":4})
2 display(s3)

A    1
B    2
C    3
D    4
dtype: int64
```


평균을 중심으로 흩어진 정도

변량	자료1 변량	(평균) 편차 변량-평균
1	156	-4
2	157	-3
3	159	-1
4	163	3
5	165	5
총합	800	0
평균	$\frac{800}{5}$ = 160	
		산포도 사용불가

		(평균) 편차	편차 이용한 산포도	
	자료1 변량	변량-평균	평균편차 변량-160	중앙값편차 변량-159
1	156	-4	4	3
2	157	-3	3	2
3	159	-1	1	0
4	163	3	3	4
5	165	5	5	6
총합	800	0	16	15
평균	$\frac{800}{5}$ = 160			
		산포도 사용불가	산포도 사용불가	중앙값을 이용한 산포도 교육과정 밖

	rl = 1	(편차) ² 이용		7] = 0	(편차) ² 이용
	자료1	(변량-평균)2		자료2	(변량-평균)²
1	156	16	1	156	16
2	157	9	2	157	9
3	159	1	3	162	4
4	163	9	4	165	25
5	165	25			
총합	800	60	총합	640	54
평균	$\frac{800}{5}$ = 160	분산 <u>60</u> = 12	평균	$\frac{640}{4}$ = 160	분산 $\frac{52}{4}$ = 13.5
		표준편차 2√3			표준편차 $\frac{3\sqrt{6}}{2}$

7, 2, 8, 3, 1, 9, 5, 2, 9, 6, 8, 4

InnerQuatile Range

$$IQR = Q3 - Q1$$

$$\mathbf{Q}1 = (2+3) / 2 = 2.5$$

$$\mathbf{Q} = (5+6) / 2 = 5.5$$

$$\mathbf{Q}3 = (8+8) / 2 = 8$$

$$Q4 = 9$$

사분위수 범위(Interquartile range) = Q3 - Q1 = 9 - 4 = 5

실험군 (Group=1)			
환자	그룹	점수	
1	1	10	
2	1	16	
3	1	27	
4	1	15	
5	1	21	
6	1	14	
7	1	16	
8	1	21	
9	1	22	
10	1	23	
11	1	25	
12	1	28	
13	1	27	
14	1	13	
15	1	15	
16	1	16	
17	1	21	
18	1	22	
19	1	25	
20	1	28	

대조군 (Group=2)				
환자	그룹	점수		
21	2	23		
22	2	26		
23	2	27		
24	2	23		
25	2	16		
26	2	18		
27	2	31		
28	2	33		
29	2	28		
30	2	36		
31	2	18		
32	2	21		
33	2	26		
34	2	28		
35	2	29		
36	2	33		
37	2	32		
38	2	16		
39	2	18		
40	2	23		

[막대그래프]

범주(category)로 구분되는 데이터 막대로 표현하려는 범부의 순서는 의도에 따라 바뀔수 있으며 막대간 일정한 간격을 유지

[히스토그램]

범측정된 연속적인 값(몸무게, 성적등) 으로 표시되는 데이터를 표현 막대의 순서를 임의적으로 바꿀수 없으며 막대간의 간격없이 표현

